Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Separation and analysis of glycyrrhizin, 18β-glycyrrhetic acid and 18α-glycyrrhetic acid in liquorice roots by means of capillary zone electrophoresis

Cesare Sabbioni a, Roberto Mandrioli a, Anna Ferranti a, Francesca Bugamelli a, Maria Addolorata Saracinoa, Giorgio Cantelli Fortib, Salvatore Fanalic, Maria Augusta Raggi a,

a Department of Pharmaceutical Sciences, Faculty of Pharmacy, Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
b Department of Pharmacology, Faculty of Pharmacy, Alma Mater Studiorum, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
c Institute of Chemical Methodologies, National Research Council, Research Area Rome I, Via Salaria Km 20,300, 00016 Monterotondo Scalo, Rome, Italy

Available online 7 April 2005

Abstract

Glycyrrhizin is the main active compound of Glycyrrhiza glabra root extracts; according to recent studies, glycyrrhizin and its aglycon, glycyrrhetic acid, have interesting therapeutic properties. A new capillary electrophoretic method has been developed for the separation and quantification of glycyrrhizin, β-glycyrrhetic acid and its isomer α-glycyrrhetic acid. Separation of the analytes was achieved in less than 3 min on a fused silica capillary, by injecting the samples at the short end of the capillary (effective length: 8.5 cm). The background electrolyte was composed of pH 10.0 carbonate buffer, methanol and ethylene glycol (80/10/10) and contained 0.4% β-cyclodextrin; indomethacin was used as the internal standard. Diode array detection was used, with quantitative assays carried out at 254 nm. Linearity was found over the 5–200 and 2.5–100 μg L⁻¹ concentration ranges for glycyrrhizin and glycyrrhetic acid, respectively. This method has been applied to the determination of the analytes in different matrices (liquorice roots and commercial confectionery products), and to the purity control of β-glycyrrhetic acid obtained from the hydrolysis of glycyrrhizin. When analysing β-glycyrrhetic acid and its epimer in roots, the samples were purified by means of a suitable solid-phase extraction (SPE) procedure with Oasis HLB cartridges, which granted good selectivity, eliminating matrix interference.

Keywords: Glycyrrhizin; 18β-Glycyrrhetic acid; 18α-Glycyrrhetic acid; Liquorice root; Capillary electrophoresis

1. Introduction

Glycyrrhiza glabra (liquorice) roots and rhizomes are extensively used in herbal medicines for their emollient, antitus- sive, anti-inflammatory, antiviral and gastroprotective properties.

The product called “liquorice” in confectionery manufac- turing (i.e. flakes or pastilles of pure liquorice) is obtained by treating dried G. glabra roots with boiling water, which is then evaporated to obtain a semi-solid extract. Liquorice extract is largely used in confectionery, as well as a masking agent or taste corrective in several pharmaceutical formu- lations (e.g. in preparations containing cascara, ammonium chloride and quinine) and in food production (e.g. to improve the taste of beer).

The main active compound of G. glabra is glycyrrhizin or glycyrrhetic acid (G, 3-O-(2-O-β-D-glucopyranuronos- yl-α-D-glucopyranuronosyl)-3β-hydroxy-11-oxo-18β, 20(22)-olean-12-ene-29-oic acid). This molecule is present in the root as potassium and calcium salts at percentages of between 2 and 15% (w/w) depending on plant species, geographic and climatic conditions [1–2], and consists of an aglycon (a pentacyclic triterpenic structure) bound to two glucuronic
acid molecules (Fig. 1a). The best-known organoleptic property of G is its sweet taste; it is 170 times sweeter than sucrose [3] (“Glycyrrhiza” means “sweet root” in ancient Greek), and this explains the wide use of G as a sweetener and masking agent in pharmaceutical products.

The aglycon of G is glycyrrhetic acid (GA) which exists as two isomers, the trans form (β-GA, Fig. 1b) and the cis form (α-GA, Fig. 1c) [4].

G has anti-inflammatory, antiallergic, antihepatotoxic, antiulcer and antiviral properties [4–7]. Furthermore, G is one of the leading natural compounds for clinical trials in recent studies on chronic viral hepatitis and human immunodeficiency virus (HIV) infections [5–7]. Chronic consumption of G prevents the development of hepatic carcinoma from C hepatitis [8] and the antiviral activity of G against SARS-associated corona virus has been demonstrated in vitro last year [9]. G finds application also in inhibiting unwanted effects of contraceptive formulations, such as alterations in blood coagulation and thrombosis [10].

It has been noted that G sometimes produces side effects such as: cardiac dysfunctions, edema, weight gain and hypertension. However, recent clinical studies, supported by pharmacological studies, have demonstrated that these side effects only arise in predisposed subjects or those receiving very high doses of pure G. Moreover, the unwanted effects are less frequent and less severe in subjects receiving liquorice extracts [11], because the bioavailability of G considerably decreases when it is administered as liquorice extract, as opposed to the pure compound [12].

The amount of β-GA in liquorice root is reported to be between 0.1–1.6% range [13,14], depending on species and growing region, while the amount of α-GA in Asian root is usually lower than 0.7% [14]. Some authors have investigated the pharmacological effects of β-GA and α-GA, demonstrating that their activity is qualitatively very similar, but with different intensity: for instance, the antihypertensive activity of β-GA is higher than that of α-GA, while its anti-inflammatory activity is considerably lower [15,16]. Differences were also observed in the activity of cis and trans isomers in inhibiting the mutagenicity in Salmonella typhimurium [17]. Other authors have described the metabolism of G to GA, by observing the formation of the two isomers in animal species [4]. GA can be commercially produced by hydrolysis of G; this procedure yields mainly β-GA isomers, but α-GA may also be present [18].

The aglycon has been found to possess antitumor [19], antiviral [7] and antiulcer [20] properties. Moreover, GA has demonstrated a “simil-estrogenic” property, and for this reason can be used in the substitutive treatment of menopausal dysfunctions [21].

The Italian pharmacopoeia [22] reports an analytical procedure for the quality control of liquorice root, in which the analysis of G is carried out by means of reversed-phase liquid chromatography (RP-HPLC) with UV detection; no official method is reported for the quantification of β-GA or α-GA.

Several papers report analytical methods for the determination of G and/or GA with different techniques such as HPLC [18,23–31], capillary electrophoresis (CE) [32–36], gas chromatography (GC) [14], and high-performance thin-layer chromatography (HPTLC) [4].

Only a few papers regard procedures to separate β-GA and α-GA, using HPLC [18,31], GC [14] or HPTLC [4]; no one, however, reports the separation of these analytes by means of CE.

Thus, the aim of this paper is the development of a feasible and rapid CE procedure for the simultaneous analysis of G, β-GA and α-GA. In fact, HPLC techniques require very
expensive chiral stationary phases for the separation of iso-
mers, while HPTLC requires high manual ability and it is not
a widespread technique.

2. Experimental

2.1. Chemicals

Glycyrrhizin [3-0-(2,0-β-d-glucopyranuronosyl-a-α-
glucuronic acid)]-3β-hydroxy-11-oxo-18β-hydroxy-
12-enedioic acid), α- and β-glycyrrhetic acid (3β-hydroxy-
11-oxo-18β-olean-12-en-29-oic acid), indomethacin
used as the internal standard (for the control of migration
times) and β-cyclodextrin hydrate (β-CD) were purchased
from Sigma (St. Louis, MO, USA). Ethanol (96%), or-
thophosphoric acid (85%), sodium hydroxide, diethylene
glycol and methanol were of analytical grade from Carlo
Erba (Milan, Italy), and G. glabra root was from Sali (Silvi
Marina, Italy). Ultrapure water (18.2 MΩ cm) was obtained
by means of a Millipore (Milford, MA, USA) Milli-Q
apparatus.

2.2. Solutions

Stock solutions of glycyrrhizin, glycyrrhetic acid and the
internal standard (indomethacin) 1 mg mL⁻¹ were made by
dissolving 20 mg of compound in 20 mL of methanol and
were stable for at least five months when stored at −20 °C.
Working solutions were prepared every day by diluting the
stock solutions with a mixture (named Sol. A) of 2.5 mM, pH
10.0 carbonate buffer 1% of methanol.

The background electrolyte (BGE) was prepared by dis-
solving 20 mg of β-CD in 4 mL of carbonate buffer (25 mM,
PH 10.0) and then mixing this solution with 0.5 mL of methanol
and 0.5 mL of diethylene glycol. The carbonate buffer was
prepared by dissolving 26.5 mg of sodium carbonate in about
5 mL of water; the solution was brought to pH 10.0 with 0.1 M
HCl and then diluted to 10 mL with water.

The BGE was filtered through a cellulose acetate syringe
filter (0.2 μm, Albet-Jacs-020-25) prior to use.

2.3. Apparatus and electrophoretic conditions

CE experiments were carried out with a PECE apparatus
(Agilent Technologies, Palo Alto, CA, USA). An uncoated,
fused silica capillary (50 μm i.d., 375 μm o.d., 48.5 cm total
length, 8.5 cm effective length) from Composite Metal (Hal-
low, UK) was used.

Analysis was performed using the BGE above described.
Injection was carried out by pressure at the anodic end at
50 mbar for 30 s. The separation voltage was of −25 kV, tem-
perature 25.0 °C, detector wavelength 254 nm.

Before use, the new capillary was purged with deionised
water, with 1.0 M sodium hydroxide, water, and then with
the BGE for 10 min each. Before each run, the capillary
was rinsed with the BGE for 2 min. After each run the cap-
illary was rinsed as follows: 1 min with water, 1 min with
hydrochloric acid 0.1 M, 1 min with water, 1 min with 1 M
sodium hydroxide and 2 min with water, all at 5 bar. For stor-
age overnight, the capillary was washed with water for 5 min,
with 1 M sodium hydroxide for 5 min and water again for
10 min, all at 5 bar.

2.4. Method validation

2.4.1. Calibration curves

Standard solution, in the 5–200 μg mL⁻¹ range for gly-
ocyrrhin and in the 2.5–100 μg mL⁻¹ range for α- and β-
glycyrrhetic acid, were prepared and injected into the CE
system (internal standard was maintained at the concentra-
tion of 20 μg mL⁻¹).

The analyte peak area values were plotted against the
corresponding concentrations of the analytes (expressed as
μg mL⁻¹) and the calibration curves constructed by means
of the least-square method.

2.4.2. Precision

The assays to evaluate intermediate precision (interday)
and repeatability (intraday) were performed injecting solu-
tions at the same concentration six times over different days
and six times in the same day, respectively.

Each assay was carried out at three different concen-
trations of the analytes and in particular: 5, 100 and
200 μg mL⁻¹ for G, and 2.5, 50 and 100 μg mL⁻¹ for α- and
β-GA. The percentage relative standard deviations (RSDs)
of the data obtained were calculated.

2.5. Sample analysis

2.5.1. Liquorice roots and confectionery products

At first, the liquorice root or confectionery products were
finely ground to a powder. Then, a known amount of the
I.S. (50 μL) was added to 1 g of powder. To this mixture,
10 mL of a solution of methanol and water 1:1 were added and
transferred into a 25 mL round-bottom flask. The mixture
was thermostatted at 60 °C for 25 min under stirring, and
then centrifuged for 10 min at 3000 rpm. The supernatant
was filtered through a cellulose acetate syringe filter.

The analysis of G was performed directly injecting the
extract into the CE after 1.00 dilution with Sol. A.

To analyse αGA and β-GA, a pre-treatment was carried
out by means of a solid-phase extraction (SPE) procedure
using Oasis HLB (hydrophilic–lipophilic balance) cartridge
(60 mg, 3 mL) from Waters (Milford, MA, USA). The car-
tridges were conditioned and equilibrated by passing through
them 3 mL of methanol and 3 mL of deionised water.

To 250 μL of extract, 50 μL of I.S. (in order to obtain a
final concentration of 20 μg mL⁻¹) were added, the mixture
was dried at rotary evaporator under vacuum at 60 °C and
redissolved with 1 mL of Sol. A by stirring and sonication.
The resulting solution was loaded onto the cartridge. After

C. Sabbioni et al. / J. Chromatogr. A 1081 (2005) 65–71
67
washing twice with 2 × 1 mL of water and with 1 mL of a water/methanol mixture (80/20, v/v) the cartridge was dried under vacuum (40 kPa) for 30 s. The analytes were then eluted with 2 mL of methanol which was dried by means of a rotary evaporator and the residue redissolved, by stirring and sonication, in 1 mL of Sol. A.

The solution was filtered through a cellulose acetate syringe filter (0.20 μm, Albet-Jacs-020-25) and injected into CE.

2.5.2. Purified GA

Samples of GA, obtained by hydrolysis of G extracted from liquorice root and subsequent purification, were dissolved in methanol at a nominal concentration of 100 μg mL⁻¹.

After suitable dilution with Sol. A, the sample was injected into CE to determine the purity grade of the extract and to evaluate the amount of the α and β isomers.

3. Results and discussion

3.1. CE separation of G and GA

In the last few years some papers report CE procedures for the analysis of G [32–36], however only some of them simultaneously determine both GA and G by means of CE [32,36]. The aim of this study is the development of a rapid and feasible CZE procedure for the separation and simultaneous analysis of G and the two isomers αGA and βGA.

This work was planned in two steps: firstly, the best electrothermic conditions to separate G from GA were studied, and secondly, the BGE composition was modified to obtain the separation of the α and β isomers of GA.

A basic BGE buffer was used to obtain a strong electroosmotic flow (EOF) and to negatively charge the analytes (G pKₐ = 2.75 ± 0.70; GA pKₐ = 4.70 ± 0.21). It should be noted that G possesses three acidic hydrogen atoms, however a basic pH value assures that at least one negative charge is always present on each G molecule.

The strong electroosmotic flow favours the cathodic migration of the analytes while the negative charge, with strong difference of charge/mass ratio between G and GA, allows the separation of the two compounds.

Thus, in order to have a strong EOF, a pH 10.0, 25 mM carbonate buffer was selected for BGE preparation. The electrophoretic run was carried out using the short section of the capillary to obtain brief run times and to decrease the broadening of the electrothermic peaks. Since the solubility of GA in water is very low, also at high pH, methanol was added to the BGE to increase its solubility.

In Fig. 2, the effective and apparent mobilities of G and GA are plotted against the percentage of methanol in the BGE. As one can see, the addition of a methanol percentage higher than 10% decreases the apparent and effective mobilities of the analytes, as well as the differences in mobility, thus reducing peak resolution. Therefore, an amount of 10% of methanol was chosen to prepare the BGE.

Fig. 3 shows an electropherogram obtained from the simultaneous analysis of a standard solution of G, αGA and βGA. Indomethacin was used as the internal standard [29].

As one can see, the analytes are well separated and the run time is less than 1.2 min, but as expected there is no separation between the two isomers.

3.2. CE separation of αGA and βGA

The second step in the development of the CE procedure was to find a BGE that allowed the separation of the α and β isomers of GA.

Assays were carried out adding various amounts of β-CD, in the 0.17–0.40% range, to the BGE. A partial separation was already present at 0.17% β-CD, but even the highest percentage of β-CD (0.4%) did not allow the baseline separation of the analytes. To improve the separation, the addition of diethylene glycol was investigated, which increases the vis-
Fig. 3. Electropherogram of a standard solution containing 20 μg mL⁻¹ of αGA, βGA, G and I.S. Electrophoretic conditions: fused silica capillary: 50 μm i.d., 48.5 cm total length, 8.5 cm effective length; BGE: 90% of 25 mM pH 10.0 carbonate buffer, 10% of methanol; injection: by pressure, anodic end, 50 mbar x 30 s; voltage: −25 kV; temperature 25.0 °C; detector wavelength 254 nm.

Fig. 4. Electropherogram of a standard solution containing 20 μg mL⁻¹ of αGA, βGA, G and I.S. Electrophoretic conditions: as in Fig. 3 except BGE: 80% of 25 mM pH 10.0 carbonate buffer, 10% of methanol, 10% of diethylene glycol containing 0.4% β-CD.

3.3. Method validation

This methodology was applied to the analysis of standard working solutions in the 2.5–100 μg mL⁻¹ concentration range for αGA and βGA, and 5–200 μg mL⁻¹ for G, prepared as described in Section 2. A standard calibration curve was established by plotting the area of the analytes against the analyte concentrations. The regression equations of αGA, βGA and G (obtained by means of the least square method) were

\[
y = -0.39 + 0.40x,
y = -0.13 + 0.49x,
y = 0.25 + 0.23x,
\]

respectively, where y is the area of analyte peak, and x is the concentration expressed as μg mL⁻¹; the linear correlation coefficients were 0.9987 for αGA, 0.9992 βGA and 0.9987 for G.

Precision expressed by the RSD values ranged from 1.0 to 2.1% for repeatability and from 2.5 to 4.5% for intermediate precision. The limit of detection (LOD) was 1 μg mL⁻¹ for αGA and βGA and 2.5 μg mL⁻¹ for G, while the limit of quantification (LOQ) was of 2.5 μg mL⁻¹ for αGA and βGA and 5 μg mL⁻¹ for G. Detection and quantification limits were calculated according to the USP guidelines [37].

3.4. Analysis of G in roots and confectionery products

The extraction of αGA, βGA and G from liquorice root and confectionery products was developed starting from the procedure reported in our previous paper describing the analysis of GA and G by means of HPLC [13]. However, it is necessary to have more concentrated samples, due to CE-diode array detection (DAD) having shorter optical path and thus lower sensitivity with respect to HPLC-DAD. In order to avoid possible precipitation of GA, a certain amount of methanol was included both in the BGE and in the solutions used for sample redissolution and dilution.

Assays were carried out to find the best conditions of extraction and the procedure is reported in Section 2; the extracts of confectionery products and roots are injected directly into CE after filtration and dilution 100 times to determine G. As an example, in Fig. 5 the electropherogram of an extract of root is reported. The G concentration in the root sample, obtained by interpolation of the peak area on the appropriate calibration curve, was found to be 52 μg mL⁻¹, corresponding to 5.2% (w/w) in dried root.
As one can see, it is not possible to identify the peaks of the GA isomers due to the strong matrix signal in the range of migration times from 1.0 to 1.5 min and the low levels of the analytes in the matrix; thus, an SPE procedure was developed.

3.5. Analysis of GA in roots after SPE pre-treatment

Different stationary phases were tested to find the one that allowed good matrix purification and a high extraction yield. Preliminary studies, loading the analytes in basic aqueous solution, were performed using cartridges with C2, C8, C18 and HLB (hydrophilic–lipophilic balance) sorbents.

The HLB cartridges gave the best performances, in fact C2, C8 and C18 sorbents did not give good extraction yields as well as strong interference from the matrix. Therefore, Oasis HLB cartridges were chosen for subsequent assays. The evaluation of recovery was calculated on αGA and βGA concentrations because the extraction yield of G is not important since it is possible to analyse G in roots by direct CE injection of the extract after suitable dilution (see Fig. 5).

To minimize the interference of the matrix, the washing steps were investigated using mixtures of water and methanol at concentrations between 10 and 50%. The best conditions were found to be a washing with 1 mL of water/methanol (80:20, v/v).

The analytes were eluted with 2 mL of methanol, then the eluate was dried and redissolved in Sol. A. As an example, the electropherograms of a root extract sample purified by means of the SPE procedure described and of the same sample spiked with a 20 μg mL⁻¹ standard solution of αGA, βGA and the I.S. are reported in Fig. 6.

In Fig. 6a, which corresponds to the analysis of a root sample, the signals of both αGA and βGA are too low to be quantified. Since the LOD is 1 μg mL⁻¹, the amount of each epimer in the examined root sample resulted to be lower than 0.4%. These results were confirmed by means of HPLC analysis [13], where the sum of αGA and βGA in the root was equal to 0.13%. A peak corresponding to G is also present in this electropherogram, however its quantification is not important because G can be determined by direct injection. The peaks of αGA and βGA are well defined in Fig. 6b, corresponding to the same root sample which was spiked with the analytes and subjected to the SPE procedure. The extraction yield values obtained were satisfactory, being 77% for αGA and βGA and 80% for the I.S.

3.6. Analysis of purified GA

A procedure for the purification of βGA is being studied in our laboratory. The aim of this study is to obtain pure GA from liquorice root extract; the crude extract of G is hydrolysed to obtain GA and purification steps are carried out to obtain pure βGA.

The CE procedure described above was applied to check the hydrolysis of G to GA and the subsequent purification of
GA, thus, the method allows to determine the purity grade of βGA and the possible amount of αGA obtained. Two electropherograms are reported in Fig. 7: the first one (a) corresponds to a solution of purified βGA with a nominal concentration of 20 μg mL⁻¹, while the second (b) corresponds to the same solution spiked with 20 μg mL⁻¹ of αGA.

As one can see, no trace of αGA was detected in the first electropherogram and the matrix did not give signals; the βGA concentration found, obtained by interpolation of the peak area on the appropriate calibration curve, was 18 μg mL⁻¹, thus the purity of the βGA sample resulted to be 90%. A neat and well-separated peak, corresponding to LOD (1 μg mL⁻¹) in the purified βGA.

4. Conclusion

An original CE procedure for the analysis of G and the cis and trans isomers of GA has been developed for the first time in our laboratory and applied to real samples of different natural and commercial products.

This procedure demonstrated to be faster than the other methods reported, which applied HPLC, HPTLC and GC, it is also cheaper (in fact, the additive used to obtain the separation methods reported, which applied HPLC, HPTLC and GC; it is natural and commercial products. Moreover, a simple and reliable SPE procedure was developed for the analysis of αGA and βGA in root.

Acknowledgments

This research was financially supported by MIUR (Ministero dell’Istruzione, dell’Università e della Ricerca, Italy—ex-60% funds). Thanks are also due to Dr. Raffaella Mast and Mr. Stefano Savino Lasaponara for their technical assistance.

References

[1] G.R. Fenwick, J. Lisierowski, C. Nerstman. Food Chem. 38 (1990) 119.
[2] E.A. Sprots, G.R. Fenwick, Food Addit. Contam. 7 (1990) 769.
[3] K. Mizutani, T. Karamoto, Y. Tamura, N. Ohtake, S. Doi, M. Iwata, M. Nakao, T. Yumoto, Biosci. Biotechnol. Biochem. 58 (1994) 554.
[4] G. Vampa, S. Becareni, T. Rossi, Farmaco 47 (1992) 825.
[5] T. Fujisaki, T. Kondou, A. Fukuoka, S. Tounou, M. Mine, N. Matabi, K. Hanada, M. Osuka, K. Misumi, T. Nakaya, T. Isiw. H. Miyakawa, Hepatol. Res. 26 (2003) 10.
[6] J. Liu, E. Burshtiner, K. Tomati, C. Glanil, An. J. Gastroenterol. 98 (2003) 536.
[7] L.A. Balinas, Car. Med. Chem. 10 (2003) 155.
[8] T.G. Van Rossum, A.G. Volto, R.A. De Man, J.T. Brower, S.W. Schults, Aliment. Pharm. Therap. 12 (1998) 199.
[9] J. Ciolfi, B. Morgenstern, G. Bauer, P. Chandra, H. Rabenau, H.W. Doerr, Lancet 361 (2003) 2045.
[10] L.I. Francischetti, R.Q. Monteiro, J.A. Guimaraes, B. Francischetti, Bioccm. Biophys. Res. Commun. 9 (1997) 259.
[11] A. Irideh, N. Yousif, A. Yagi, Biol. Pharm. Bull. 24 (2001) 1161.
[12] M. Ukiya, T. Ishida, Y. Kasahara, H. Nishino, Cancer Lett. 177 (2002) 7.
[13] C. Sabbioni, A. Ferrari, F. Bugamelli, A. Gallo, A. Pani, A. Vescovini, F. Marsano, M.A. Raggi, J. Chromatogr. A 1081 (2005) 65–71.