Maximal planar networks with large clustering coefficient and power-law degree distribution

Tao Zhou1,2, Gang Yan2, and Bing-Hong Wang1\textsuperscript* \\
1Nonlinear Science Center and Department of Modern Physics, University of Science and Technology of China, Hefei Anhui, 230026, PR China 2Department of Electronic Science and Technology, University of Science and Technology of China, Hefei Anhui, 230026, PR China

(Dated: October 24, 2018)

In this article, we propose a simple rule that generates scale-free networks with very large clustering coefficient and very small average distance. These networks are called Random Apollonian Networks (RAN) as they can be considered as a variation of Apollonian networks. We obtain the analytic results of power-law exponent $\gamma = 3$ and clustering coefficient $C = \frac{4}{3} - 36\ln\frac{3}{2} \approx 0.74$, which agree very well with the simulation results. We prove that the increasing tendency of average distance of RAN is a little slower than the logarithm of the number of nodes in RAN. Since most real-life networks are both scale-free and small-world networks, RAN may perform well in mimicking the reality. The RAN possess hierarchical structure as $C(k) \sim k^{-1}$ that in accord with the observations of many real-life networks. In addition, we prove that RAN are maximal planar networks, which are of particular practicability for layout of printed circuits and so on. The percolation and epidemic spreading process are also studied and the comparison between RAN and Barabási-Albert (BA) as well as Newman-Watts (NW) networks are shown. We find that, when the network order N(the total number of nodes) is relatively small (as $N \sim 10^5$), the performance of RAN under intentional attack is not sensitive to N, while that of BA networks is much affected by N. And the diseases spread slower in RAN than BA networks during the outbreaks, indicating that the large clustering coefficient may slower the spreading velocity especially in the outbreaks.

PACS numbers: 89.75.Hc, 64.60.Ak, 84.35.+i, 05.40.-a, 05.50.+q, 87.18.Sn

I. INTRODUCTION

Many social, biological, and communication networks can be properly described as complex networks with nodes representing individuals or organizations and edges mimicking the interactions among them1 2 3 4 5 6 7 8 9 10 11 12 13 14. Examples are numerous: these include the Internet15 16 17, the World Wide Web18 19 20 21 22, social networks of acquaintance or other relations between individuals23 24 25 26 27 28 29 30 31 32 33, metabolic networks34 35 36 37 38, food webs39 40 41 42 43 44 45 and many others46 47 48 49 50 51 52 53 54 55 56 57. The ubiquity of complex networks inspires scientists to construct a general model. In the past 200 years, the study of topological structures of the networks used to model the interconnection systems has gone through three stages. For over a century, there is an implicit assumption that the interaction patterns among the individuals can be embedded onto a regular structure such as Euclidean lattices, hypercube networks, and so on58 59 60 61. Since late 1950s mathematicians began to use random graphs to describe the interconnections, this is the second stage62 63 64 65 66 67 68 69. In the past few years, with the computerization of data acquisition pro-

*Electronic address: bhwang@ustc.edu.cn, Fax: +86-551-3603574.
efficient C of the whole network is the average of $C(x)$ over all x. Experiments indicate that most real-life networks have much smaller average distance (as $L \sim \ln N$ where N is the number of nodes in the network) than the completely regular networks and have much greater clustering coefficient than those of the completely random networks. Therefore they should not be treated as either completely regular or random networks. The recognition of small-world effect involves the two factors mentioned above: a network is called a small-world network as long as it has small average distance and great clustering coefficient. Another important characteristic in real-life networks is the power-law degree distribution, that is $p(k) \propto k^{-\gamma}$, where k is the degree and $p(k)$ is the probability density function for the degree distribution. γ is called the power-law exponent, and usually between 2 and 3 in real-life networks. This power-law distribution falls off much more gradually than an exponential one of a completely random network, allowing for a few nodes of very large degree to exist. Networks with power-law degree distribution are referred to as scale-free networks, although one can and usually does have scales present in other network properties.

From 1998 much attention has been focused on how to model complex network. One of the most well-known models is Watts and Strogatz’s small-world network (WS network), which can be constructed by starting with a regular network and randomly moving one endpoint of each edge with probability p. Another popular model was proposed independently by Monasson and by Newman and Watts(NW Networks), where no edges are rewired. Some variations of the small-world model have been proposed. Several authors have studied the model in dimension higher than one and obtained similar results to the one dimension case. Another kind of models in which shortcuts preferentially join nodes that are close together on the underlying lattice also have been studied. Very recently, Zhu et. al. proposed a so-called directed dynamical small-world model, in which the network structure is affected by the processes upon the network.

Another significant model is Barabási and Albert’s scale-free network model (BA network), which is very much similar to Price’s. The BA model suggests that two main ingredients of self-organization of a network in a scale-free structure are growth and preferential attachment. These point to the facts that most networks grow continuously by adding new nodes, which are preferentially attached to existing nodes with large number of neighbors. The subsequent researches on various processes taking place upon complex networks, such as percolation, epidemic processes, cascade processes, and so on, indicate that the scale-free degree distribution plays the most crucial role rather than small-world effect. Therefore, in the recent two or three years, the study of modelling complex networks focuses on revealing the underlying mechanism of power-law degree distribution. Roughly, these models for scale-free networks can be classified into 3 main scenarios. The first one is related to the models of human behavior and was introduced in a network version under the name “preferential attachment” mentioned above. The second class of models is where a scale-free distribution appears as a result of a balance between a modelled tendency to form hubs against an entropic pressure towards a random network with an exponential degree distribution. The third one is the self-organized models that lead to power-law degree distribution.

In the recent several months, a few authors have demonstrated the use of pure mathematical objects and methods to construct scale-free networks. The first interesting instance is the so-called integer networks, in which the nodes represent integers and two nodes are linked by an edge if and only if x is divided exactly by y or y is divided exactly by x, where x and y are nonzero integers. Zhou and Wang et al have studied the statistical properties of these networks and demonstrated that they are scale-free networks of large clustering coefficient. Another significant instance is the Apollonian Networks (AN) introduced by Andrade et al. In our opinion, Apollonian networks may be not the networks of best performance, but assuredly the most beautiful ones we have ever seen. Another related work is owed to Dorogovtsev and Mendes et. al., in which the deterministic networks, named pseudo-fractals, are obtained by random attachment aiming at edges.

In this article, we propose a simple rule that generates scale-free networks with very large clustering coefficient and very small average distance. These networks are called Random Apollonian Networks (RAN), since they can be considered as a variation of Apollonian Networks.
II. BRIEF INTRODUCTION OF APOLLONIAN NETWORKS

Apollonian networks, introduced by Andrade et al. [142], are derived from the problem of space-filling packing of spheres according to the ancient Greek mathematician Apollonius of Perga [147]. To produce an Apollonian packing, we start with an initial array of touching disks, the interstices of which are curvilinear triangles. In the first generation disks are added inside each interstice in the initial configuration, such that these disks touch each of the disks bounding the curvilinear triangles. The positions and radii of these disks can easily be calculated, and the circle size distribution follows a power-law with exponent of about 1.3 [147]. Of course, these added disks cannot fill all of the space in the interstices, but instead give rise to three smaller interstices. In the second generation, further disks are added inside all of these new interstices, which again touch the surrounding disks. This process is then repeated for successive generations. If we denote the number of generations by t, where $t = 0$ corresponds to the initial configuration, as $t \to \infty$ the space-filling Apollonian packing is obtained as shown in figure 1. Apollonian packing can be used as a basis of a network, where each disk is a node in the network and nodes are connected if the corresponding disks are in contact. We call this contact an “Apollonian Network”. Figure 2 shows how the network evolves with the addition of new nodes at each generation. For each new disk added, three new interstices in the packing are created, that will be filled in the next generation. Equivalently, for each new node added, three new triangles are created in the network, into which nodes will be inserted in the next generation.

Doye et. al. have studied the properties of Apollonian networks detailedly [148], and shown the degree distribution $p(k) \propto k^{-\gamma}$, average length $l \propto (\ln N)^{\beta}$, where $\gamma = 1 + \frac{\ln 3}{\ln 2} \approx 2.585$, $\beta \approx 0.75$ and N is the order [149] of the network, in other words, Apollonian networks are scale-free and display small-world effect. It is worth remarking that the clustering coefficient C is close to 0.828, much larger than that of BA networks, in the limit of large N.

Andrade et. al. have also found many peculiar results about some well-known models upon Apollonian networks, including percolation, electrical conduction, and magnetic model [142, 146].

III. RANDOM APOLLONIAN NETWORKS

Random Apollonian network starts with a triangle containing three nodes marked as 1, 2 and 3. Then, at each time step, a triangle is randomly selected, and a new node is added inside the triangle and linked to the three vertices of this triangle. The sketch maps for the network growing process are shown in figure 3.

It is clear that, at time step t, our network is of order $N = t + 3$. Using this simple rule, one can get random Apollonian network of arbitrary order as he like. Note that the randomness is involved in our model (that is why we call these networks random Apollonian networks), the analytic approaches are completely different from the earlier studies on Apollonian networks.
The four figures show a possible growing process for RAN at time $t = 1$ (a), $t = 2$ (b), $t = 3$ and $t = 4$ (d). At time step 1, the 4th node is added to the network and linked to node 1, 2 and 3. Then, at time step 2, the triangle $\triangle 134$ is selected, the 5th node is added inside this triangle and linked to node 1, 3 and 4. After that, the triangles $\triangle 234$ and $\triangle 124$ are selected at time step 3 and 4, respectively. And node 6 and 7 are added inside these two triangles respectively. The figure 3d shows a random Apollonian network of order 7. Keep on the similar iterations, one can get RAN of any orders as he like.

![Image](55x535 to 299x740)

FIG. 3: The sketch maps for the network growing process.

FIG. 4: Degree distribution of RAN, with $N = 640000$ (black squares), $N = 320000$ (red circles) and $N = 160000$ (blue triangles). In this figure, $P(k)$ denotes the number of nodes of degree k. The power-law exponent γ of the three probability density function are $\gamma_{640000} = 2.94 \pm 0.04$, $\gamma_{320000} = 2.92 \pm 0.05$ and $\gamma_{160000} = 2.92 \pm 0.06$, respectively. The average exponent of them are 2.93. The inset shows Degree distribution of RAN, with $N = 80000$ (black squares), $N = 40000$ (red circles) and $N = 20000$ (blue triangles). The exponents are $\gamma_{640000} = 2.91 \pm 0.07$, $\gamma_{320000} = 2.90 \pm 0.07$ and $\gamma_{160000} = 2.90 \pm 0.09$. The mean value is 2.90. The two dash lines have slope -3.0 for comparison.

IV. STATISTICAL CHARACTERISTICS OF RANDOM APOLLONIAN NETWORKS

A. The scale-free property

As we have mentioned above, the degree distribution is one of the most important statistical characteristics of networks. Since a majority of real-life networks are scale-free networks, whether the networks are of power-law degree distribution is a criterion to judge the validity of the model. In this subsection, we will give the simulation and analytic results on random Apollonian networks’ degree distribution.

Note that, after a new node is added to the networks, the number of triangles increases by $2(\text{154})$. Therefore, we can immediately get that when the networks are of order N, the number of triangles are:

$$N_{\Delta} = 2(N - 3) + 1 = 2N - 5$$ \hspace{1cm} (1)

Let N_{Δ}^i denote the number of triangles containing the ith node, the probability that a newly added node will link to the ith node is N_{Δ}^i/N_{Δ}. Apparently, except the node 1, 2 and 3, N_{Δ}^i/N_{Δ} is equal to the degree of the ith node: $N_{\Delta}^i = k_i$. Therefore, we can write down a rate equation 118 for the degree distribution. Let $n(N, k)$ be the number of nodes with degree k when N nodes are present, now we add a new node to the network, $n(N, k)$ evolves according to the following equation:

$$n(N+1, k+1) = n(N, k) \frac{k}{N_{\Delta}} + n(N, k+1)(1 - \frac{k+1}{N_{\Delta}})$$ \hspace{1cm} (2)

When N is sufficient large, $n(N, k)$ can be approximated as $Np(k)$, where $p(k)$ is the probability density function for the degree distribution. In terms of $p(k)$, the above equation can be rewritten as:

$$(N+1)p(k+1) = \frac{Nkp(k)}{N_{\Delta}} + Np(k+1) - \frac{N(k+1)p(k+1)}{N_{\Delta}}$$ \hspace{1cm} (3)

Using Equ.(1) and the expression $p(k+1) - p(k) = \frac{dp}{dk}$, we can get the continuous form of Equ.(3):

$$k \frac{dp}{dk} + \frac{3N - 5}{N} p(k) = 0$$ \hspace{1cm} (4)

This lead to $p(k) \propto k^{-\gamma}$ with $\gamma = (3N - 5)/N \approx 3$ for large N.

In figure 4, we report the degree distribution for $N = 640000, 320000, 160000, 80000, 40000$ and 20000. The simulation results agree very well with the analytic one.

By the way, some readers may think the RAN are almost the same as BA networks. Indeed, the two ingredi-
At first, let us calculate the clustering coefficient of RAN. As we mentioned in section 1, for an arbitrary node x, the clustering coefficient $C(x)$ is:

$$C(x) = \frac{2E(x)}{k(x)(k(x) - 1)}$$

(5)

where $E(x)$ is the number of edges among node x’s neighbor-set $A(x)$, and $k(x) = |A(x)|$ is the degree of node x. The clustering coefficient C of the whole network is defined as the average of $C(x)$ over all nodes.

By means of theoretic calculation (see Appendix A for details), we obtain the clustering coefficient of RAN with large order N as:

$$C = \frac{46}{3} - 36\ln \frac{3}{2} \approx 0.74$$

(6)

Figure 5 shows the simulation results about the clustering coefficient of RAN, which agree very well with the analytic one. It is remarkable that, the clustering coefficient of BA networks is very small and decreases with the increasing of network order, following approximately a power law $C \sim N^{-0.73}$, which is quite different from the real-life networks. All the data are obtained by 10 independent simulations.

In addition, many real networks including Internet, World Wide Web, and the actor network, are characterized by the existence of hierarchical structure\cite{151, 152, 153}, which can usually be detected by the negative correlation between the clustering coefficient and the degree. The BA networks, which does not possess hierarchical structure, is known to have the clustering coefficient $C(x)$ of node x independent of its degree $k(x)$\cite{151},...
works and BA networks. They perform better in mimicking reality rather than WS networks, which are both scale-free and small-world networks. Since most real-life networks are also small-world networks, RAN may agree with the analytic result well.

In respect that the random Apollonian networks are known conclusion that when $0 < p < 0.3$, the performances of RAN and BA networks under random failures are almost the same; when $0.3 < p < 0.6$, RAN are little resilient than BA networks; when p becomes even larger, BA networks get obviously more resilient than RAN. The critical thresholds of RAN and BA networks are $p_c^{RAN} \approx 0.85$ and $p_c^{BA} \approx 0.95$, which will approaches 1 as the networks grow in size. All the data are averaged over 100 independent simulations.

while the RAN has been shown to have $C(k) \sim k^{-1}$ (see Eq.(A2), in accord with the observations of many real-life networks.

In succession, let’s discuss the average distance of RAN. By means of theoretic approximate calculation (see Appendix B for details), we prove that the increasing tendency of $L(N)$ is a little slower than $1nN$. In figure 6, we report the simulation results on average distance of RAN, which agree with the analytic result well.

In respect that the random Apollonian networks are of very large clustering coefficient and very small average distance, they are not only the scale-free networks, but also small-world networks. Since most real-life networks are both scale-free and small-world networks, RAN may perform better in mimicking reality rather than WS networks and BA networks.

V. THE PLANARITY OF RANDOM APOLLONIAN NETWORKS

There are many practical situations in which it is important to decide whether a given network is planar, and if so, to then find a planar embedding of the network. For example, a very large scale integrated (VLSI) designer has to place the cells on printed circuit boards according to several designing requirements. One of these requirements is to avoid crossings since they may lead to undesirable signals. One is, therefore, interested in knowing if a given electrical network is planar, where the nodes correspond to electrical cells and the edges to the conductor wires connecting the cells.

A network is a planar network if it can be drawn in the plane in such a way that no two edges intersect. Putting it a little more rigorously, it is possible to represent it by a drawing in the plane in which the nodes correspond to distinct points and the edges to simple Jordan curves connecting the points of its end-points. In this drawing every two curves are either disjoint or meet only at a common end-point. The above representation of a graph is said to be a plane networks.

In some places, the networks will perform better when they have more edges. Therefore, how to add more edges into a network but keeping it a planar network is a practical and interesting problem. According to the rule that generates RAN, one can immediately find that RAN are planar networks. Hereinafter, we will show that the RAN are maximal planar networks, which are the planar networks with fixed order who has maximum edges.

If we omit the nodes and edges of a planar networks from the plane, the remainder falls into connected components, called faces. Clearly, each plane network has exactly one unbounded face and each edge is in the boundary of two faces. If we draw the graph of a convex polyhedron in the plane, then the faces of the polyhedron clearly correspond to the faces of the plane networks. This lead to the Euler’s polyhedron theorem or simply Euler’s formula that if a connected plane networks has n nodes, m edges and f faces, then:

$$n - m + f = 2$$

Furthermore, denote f_i the number of faces having exactly i edges in their boundaries. Clearly,

$$\sum_i f_i = f$$

And since each edge is in the boundary of two faces, we have:

$$\sum_i if_i = 2m$$

Combine Equ.(8) and Equ.(9) and note that each face has at least 3 edges, we have:

$$2m \geq 3\sum_i f_i = 3f$$

Then, using Euler’s formula, one can obtain that:

$$m \leq 3n - 6$$
That is to say the maximum number of edges for a planar network with order \(n \) is \(3n - 6 \). Apparently, the random Apollonian network with order \(N \) has \(3N - 6 \) edges on the beam, thus all the RAN are maximal planar networks.

VI. PERCOLATION AND EPIDEMIC SPREADING ON RANDOM APOLLONIAN NETWORKS

As we mentioned above, close to many real-life networks, random Apollonian networks are both scale-free and small-world. Therefore, it is worthwhile to investigate the processes taking place upon RAN and directly compare these results with just small-world networks (like WS and NW networks) and just scale-free networks (like BA networks). These comparisons may give us deep sight into dynamic properties of networks.

In this section, we will exhibit some simulation results on two deeply studied ones, percolation and epidemic spreading process. Since the WS networks may be unconnected, we will use NW networks as exemplifications of small-world networks.

A. Percolation

In the year 2000, Albert et. al. have raised the questions of random failures and intentional attack on networks\(^6\). Part of these questions can be equally considered as site-percolation or bond-percolation on networks\(^5\). In this subsection, upon RAN, BA and NW networks, we will investigate two kinds of site-percolation, random site-percolation (RSP) and preferential site-percolation (PSP), which correspond to random failures and intentional attack aiming at nodes, respectively.

When such networks are subject to random breakdowns—a fraction \(p \) of the nodes and their incident edges are removed randomly—their integrity might be compromised: when \(p \) exceeds a certain threshold, \(p > p_c\), the network disintegrates into smaller, disconnected fragments. Below that critical threshold, there still exists a connected cluster named giant component that spans the entire system (its size is proportional to that of the entire system). In figure 7, we report the simulation results for RSP upon RAN, BA and NW networks. RAN and BA networks are obviously more resilient than NW networks under random failures that agrees with the well-known conclusion\(^8\). According to the results obtained by Cohen et. al.\(^9\), RAN and BA networks do not have nontrivial critical threshold \(p_c < 1 \) in the limit of large network order \(N \rightarrow \infty \). However, for finite network order and large \(p \), RAN are frailer than BA networks.

Figure 8 shows the performances of RAN, BA and NW networks under intentional attack, which means the removal of nodes is not random, but rather nodes with the greatest degree are targeted first. One can find that the scale-free networks are far more sensitive to sabotage of a small fraction of the nodes, leading support to the view of Albert and Cohen et. al.\(^5\). Although we know the critical threshold for PSP upon scale-free networks will decay to zero as the increasing of network order as \(\lim_{N \rightarrow \infty} p_c = 0 \), the notable difference between RAN and BA networks when \(N \) is relatively small surprises us. For very large \(N \) (as \(N \sim 10^6 \) or even larger), the performances of RAN and BA are almost the same with \(p_c < 0.03 \). However, the susceptibility to order of RAN and BA networks are completely different. BA networks are very sensitive to network order, for \(N = 10000 \), its critical threshold is about ten times than the asymptotic value. And RAN are almost impervious to the change of network order. Since many real-life networks are of order in the range \(10^3 \) to \(10^5 \), this finding may be valuable in practicability.

Why RAN and BA networks display completely different susceptibility to order changing, does it owe to the difference of clustering structure or hierarchical structure? This problem puzzles us much. To study the finite-size effect for PSP upon scale-free networks in detail and to use network model with tunable clustering coefficient\(^10\) may reveal some news, which will be considered in the future.
B. Epidemic Spreading Process

Recent studies on epidemic spreading in complex networks indicate a particular relevance in the case of networks characterized by various topologies that in many cases present us with new epidemic propagation scenarios such as the absence of any epidemic threshold below which the infection cannot initiate a major outbreak\cite{93,100}. The new scenarios are of practical interest in computer virus diffusion and the spreading of diseases in heterogeneous populations. However, most previous studies have been focused on the stationary properties of endemic states or the final prevalence(i.e. the number of infected individuals) of epidemics. For the sake of protecting networks and finding optimal strategies for the deployment of immunization resources, it is of practical importance to study the dynamical evolution of the outbreaks, which has been far less investigated before. Barthélemy et. al. reported both the analytic and numerical results of velocity of epidemic outbreaks in BA networks, which leaves us very short response time in the deployment of control measures\cite{103}. We have studied the same process in weighted scale-free networks and demonstrated that the larger dispersion of weight of networks results in slower spreading, which may be a good news for us\cite{106}. In this subsection, we intend to study how the connectivity pattern(i.e. topological structure) affects the epidemic spreading process in the outbreaks. Numerical simulations about BA, NW and RAN networks are drawn, which may give us more comprehensive sight into the corresponding dynamic behavior.

In order to study the dynamical evolution of epidemic outbreaks, we shall focus on the susceptible-infected(SI) model in which individuals can be in two discrete states, either susceptible or infected\cite{156,157}. Each individual is represented by a node of the network and the edges are the connections between individuals along which the infection may spread. The total population(the network order) N is assumed to be constant thus if $S(t)$ and $I(t)$ are the number of susceptible and infected individuals at time t, respectively, then

$$N = S(t) + I(t) \quad \text{(12)}$$

In the SI model, the infection transmission is defined by the spreading rate λ at which each susceptible individual acquires the infection from an infected neighbor during one time step. In this model, infected individuals are assumed to be always infective, which is an approximation that is useful to describe early epidemic stages in which no control measures are deployed. According to Eq.(12), one can easily obtain the probability that an susceptible individual x will be infected at the present time step is:

$$\lambda_x(t) = 1 - \lambda \theta(x,t-1) \quad \text{(13)}$$

where $\theta(x,t-1)$ denotes the number of infected individuals at time step $t-1$ in x’s neighbor-set $A(x)$.

We start by selecting one node randomly and assume it is infected. The diseases or computer virus will spread in
the networks in according with the rule of Eq.(13). In figure 9, we plot the average density over 1000 independent runs in RAN, BA and NW networks with $N = 10000$ and $\langle k \rangle = 6$ fixed. Obviously, all the individuals will be infected in the limit of long time as $\lim_{t \to \infty} i(t) = 1$, where $i(t) = \frac{I(t)}{N}$ denotes the density of infected individuals at time step t. More over, the simulation results indicate that the diseases spread more quickly in BA networks than RAN, as well as in RAN than NW networks. To make the outcome more clear, we have calculated the diseases spreading velocity, which is defined as:

$$v_{inf}(t) = \frac{di(t)}{dt} \approx \frac{I(t) - I(t - 1)}{N}$$

Figure 10 shows the spreading velocity vs time in RAN, BA and NW networks with $N = 10000$ and $\langle k \rangle = 6$. The spreading velocity reaches a peak quickly. Before the peak-time, the spreading velocities of the three kinds of networks satisfy the inequality:

$$v_{inf}^{BA} > v_{inf}^{RAN} > v_{inf}^{NW}$$

The result that diseases spread more quickly in RAN and BA networks than in NW networks is easy to be understood as the well-known conclusion: boarder degree distribution will speed up the epidemic spreading process.\[99,100\].

Why the diseases spread more quickly in BA networks than RAN is a very interesting question. We argue that the larger clustering coefficient may slow down the epidemic spreading process especially in the outbreaks. For an arbitrary edge e, containing two nodes x and y, obviously, the distance between x and y is $d(x,y) = 1$. Remove the edge e from quondam network, then, the distance between x and y will increase $d'(x,y) > 1$ (if the removal of e makes x and y disconnected, then we set $d'(x,y) = N$). The quantity $d'(x,y)$ can be considered as edge e’s score $s(e) = d'(x,y) \geq 2$, denoting the number of edges the diseases must pass through from x to y or form y to x if they do not pass across e. If $s(e)$ is small, then e only plays a local role in the epidemic spreading process, else when $s(e)$ is large, e is of global importance. For each edge e, if it does some contribution to clustering coefficient, it must be contained in at least one triangle and $s(e) = 2$. Therefore, networks of larger clustering coefficient have more local edges. RAN and BA networks are two extreme ones of scale-free networks. In RAN, all the edges are of score 2; while in BA networks, almost all the edges are of score larger than 2 because the clustering coefficient of BA networks will decay to zero quickly as N increases. Consequently, diseases spread more quickly in BA networks than RAN.

The above explanation is qualitative and rough, to study the process upon networks with tunable clustering coefficient\[107\] may be useful for the present problem, which will be one of the future works.

VII. CONCLUSIONS

In conclusion, in respect to the random Apollonian networks are of very large clustering coefficient and very small average distance, they are not only the scale-free networks, but also small-world networks. Since many real-life networks are scale-free and small-world networks, RAN may perform better in mimicking reality rather than WS networks and BA networks. In addition, RAN possess hierarchical structure that in accord with the observations of many real networks and we propose an analytic approach to calculate clustering coefficient. Since in the earlier studies, only few analytic results about clustering coefficient of networks with randomness are reported\[151,159,160,161\], we believe that our work may enlightened readers on this subject.

Further more, we briefly introduce the conception of planar network(it is also called “planar graph” in mathematical language), and prove that RAN are maximal planar networks, which are of particular practicability for layout of printed circuits and so on. Although whether a network is planar or not is a natural and important question that attracts much attention for mathematicians, it seems not interesting for physicists and almost no pertinent results are reported in the earlier studies on complex networks. But in fact, many real-life networks are planar networks by reason of technical or natural requirements, such as layout of printed circuits, river networks upon the earth’s surface, vas networks clinging to cutis, and so forth. Since the planar networks have some graceful characteristics that can not be found in non-planar ones, researchers ought to pay more attention to networks’ planarity. We wish our abecedarian work to stimulate physicists thinking more of planarity.

The percolation and epidemic spreading process are also studies and the comparison between RAN and BA as well as NW networks are shown. In percolation model, we find that, when the network order N is relatively small(as $N \sim 10^3$), the performance of RAN under intentional attack is not sensitive to N, while that of BA networks is much affected by N. In epidemic spreading process, the diseases spread slower in RAN than BA networks during the outbreaks, indicating that the large clustering coefficient may slower the spreading velocity especially in the outbreaks. We give some qualitative explanation about how the clustering structure affect the spreading process in the outbreaks, but Why RAN and BA networks display completely different susceptibility to order changing is even a problem puzzling us. Those simulation results suggest that the clustering structure may affect the dynamical behavior upon networks much. Since many real-life networks are of great clustering coefficient, to study the process upon networks with tunable clustering coefficient\[107\] is significant.
Acknowledgments

This work has been partially supported by the State Key Development Programme of Basic Research (973 Project) of China, the National Natural Science Foundation of China under Grant No. 70471033, 10472116 and No.70271070, the Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP No.20020358009), and the Foundation for Graduate Students of University of Science and Technology of China under Grant No. USTC-SS-0501.

APPENDIX A: MORE DETAILS FOR CALCULATION OF CLUSTERING COEFFICIENT

At first, let us consider the clustering coefficient $C(x)$ of an arbitrary node x except the nodes 1, 2 and 3. At the very time when node x is added to the network, it is of degree 3 and $E(x) = 3$. After, if the degree of node x increases by one (i.e. a new node is added to be a neighbor of x) at some time step, then $E(x)$ will increases by two since the newly added node will link to two of the neighbors of node x. Therefore, we can write down the expression of $E(x)$ in terms of $k(x)$:

$$E(x) = 3 + 2k(x) - 3 = 2k(x) - 3 \quad (A1)$$

Using Equ.(5), we can get the clustering coefficient of node x as:

$$C(x) = \frac{2(2k(x) - 3)}{k(x)(k(x) - 1)} \quad (A2)$$

$$C = \frac{2}{k_{min}} + \frac{1}{2k_{min}^2} - \frac{1}{k_{max}} - \frac{1}{2k_{max}^2} - \frac{1}{k_{max}^3} - \ln\frac{k_{min}(k_{max} - 1)}{k_{min}(k_{max} - 1)} \quad (A7)$$

It is clear that $k_{min} = 3$ and for sufficient large N, $k_{max} \gg k_{min}$, and α satisfy the normalization equation:

$$\int_{k_{min}}^{k_{max}} p(k)dk = 1 \quad (A8)$$

Therefore, $\alpha = 18$ and $C = \frac{46}{3} - 361n/2 \approx 0.74$.

APPENDIX B: THE AVERAGE DISTANCE

At first, let’s prove an interesting property about the shortest paths in RAN. Marked each node according to the time when the node is added to the network (see figure 3), then we have the following lemma:

Consequently, we have:

$$C = \frac{2}{N} \sum_{i=1}^{N} \frac{2k_i - 3}{k_i(k_i - 1)} = \frac{2}{N} \sum_{i=1}^{N} (\frac{3}{k_i} - \frac{1}{k_i - 1}) \quad (A3)$$

where k_i denotes the degree of the ith node. Rewrite \(\sum_{i=1}^{N} f(k_i) \) in continuous form:

$$\sum_{i=1}^{N} f(k_i) = \int_{k_{min}}^{k_{max}} Np(k)f(k)dk \quad (A4)$$

where k_{min} and k_{max} denote the minimal and maximal degree in RAN, respectively. Then, Equ.(A3) can be rewritten as:

$$C = 6 \int_{k_{min}}^{k_{max}} \frac{p(k)}{k}dk - 2 \int_{k_{min}}^{k_{max}} \frac{p(k)}{k - 1}dk \quad (A5)$$

In section 4, we have proved that $p(k) = \alpha k^{-\gamma}$ with $\gamma = 3$ and α a constant, thus one can write down the expression that:

$$C = 6\alpha \int_{k_{min}}^{k_{max}} k^{-4}dk - 2\alpha \int_{k_{min}}^{k_{max}} \frac{1}{k^{3}(k - 1)}dk \quad (A6)$$

Note that $1/k^3(k - 1) = 1/(k - 1) - 1/k - 1/k^2 - 1/k^3$, one can immediately obtain the value of C as:

\(\sum_{i \neq j} f(k_i, k_j) \) does not pass through any nodes k satisfying that $k > \max \{i, j\}$.

Proof. Using nodes’ sequence

$$i \rightarrow x_1 \rightarrow x_2 \rightarrow \cdots \rightarrow x_n \rightarrow j$$

to denote the shortest path from i to j of length $n + 1$. Obviously, $n = 0$ is the trivial case. Suppose that $n > 0$ and $x_k = \max \{x_1, x_2, \cdots, x_n\}$, if $\forall 1 \leq k \leq n, x_k < \max \{i, j\}$, then the proposition is true.

In succession, we prove that the case $x_k > \max \{i, j\}$ would not come forth. Suppose that the triangle $\triangle y_1y_2y_3$ is selected when node x_k is added. Since $x_k > \max \{i, j\}$, neither i nor j is inside the triangle $\triangle y_1y_2y_3$. Hence the path from i to j passing through x_k must enter into and leave $\triangle y_1y_2y_3$. We may assume that the path enter into
△y_1y_2y_3 by node y_1 and leave from node y_2, then there exists a subpath of SP_{ij} from y_1 to y_2 passing through x_k, which is apparently longer than the direct path y_1 → y_2. Hence if SP_{ij} is the shortest path, the youngest node must be either i or j. ■

Using symbol d(i, j) to represent the distance between i and j, the average distance of RAN with order N, denoted by L(N), is defined as:

\[L(N) = \frac{2\sigma(N)}{N(N-1)} \]

(B1)

where the total distance is:

\[\sigma(N) = \sum_{1 \leq i < j \leq N} d(i, j) \]

(B2)

According to the lemma, newly added node will not affect the distance between old nodes. Hence we have:

\[\sigma(N + 1) = \sigma(N) + \sum_{i=1}^{N} d(i, N + 1) \]

(B3)

Assume that the node N + 1 is added into the triangle △y_1y_2y_3, then the Equ.(B3) can be rewritten as:

\[\sigma(N+1) = \sigma(N) + \sum_{i=1}^{N} (D(i, y) + 1) = \sigma(N) + \sum_{i=1}^{N} D(i, y) \]

(B4)

where \(D(i, y) = \min\{d(i, y_1), d(i, y_2), d(i, y_3)\} \). Construct △y_1y_2y_3 continuously into a single node y, then we have \(D(i, y) = d(i, y) \). Since \(d(y_1, y) = d(y_2, y) = d(y_3, y) = 0 \), the Equ.(B4) can be rewritten as:

\[\sigma(N + 1) = \sigma(N) + N + \sum_{i \in \Gamma} d(i, y) \]

(B5)

where \(\Gamma = \{1, 2, \cdots, N\} - \{y_1, y_2, y_3\} \) is a node set with cardinality \(N - 3 \).

The sum \(\sum_{i \in \Gamma} d(i, y) \) can be considered as the total distance from one node y to all the other nodes in RAN with order N - 2. In a rough version, the sum \(\sum_{i \in \Gamma} d(i, y) \) is approximated in terms of \(L(N - 2) \):

\[\sum_{i \in \Gamma} d(i, y) \approx (N - 3)L(N - 2) \]

(B6)

Note that, the average distance \(L(N) \) increases monotonously with N, it is clear that:

\[(N - 3)L(N - 2) = \frac{2\sigma(N - 2)}{n - 2} < \frac{2\sigma(N)}{N} \]

(B7)

Combining (B5), (B6) and (B7), one can obtain the inequation:

\[\sigma(N + 1) < \sigma(N) + N + \frac{2\sigma(N)}{N} \]

(B8)

If (B8) is not an inequation but an equation, then the increasing tendency of \(\sigma(N) \) is determined by the equation:

\[\frac{d\sigma(N)}{dN} = N + \frac{2\sigma(N)}{N} \]

(B9)

This equation leads to

\[\sigma(N) = N^2 \ln N + H \]

(B10)

where \(H \) is a constant. As \(\sigma(N) \sim N^2 L(N) \), we have \(L(N) \sim \ln N \). Which should be pay attention to, since (B8) is an inequation indeed, the precise increasing tendency of \(L \) may be a little slower than \(\ln N \).

1. R. Albert and A. L. Barabási, Rev. Mod. Phys. 74, 47(2002).
2. S. N. Dorogovtsev and J. F. F. Mendes, Adv. Phys. 51, 1079(2002).
3. E. J. Newman, SIAM Review 45, 167(2003).
4. E. J. Newman, J. Stat. Phys. 101, 819(2000).
5. B. Hayes, Amer. Sci. 88, 9(2000).
6. B. Hayes, Amer. Sci. 88, 104(2000).
7. H. Strogatz, Nature 410, 268(2001).
8. X.-F. Wang, Int. J. Bifurcation & Chaos 12, 885(2002).
9. X.-F. Wang and G.-R. Chen, IEEE Circuits & Systems Magazine 3, 6(2003).
10. T. S. Evans, arXiv:cond-mat/0405123
11. L. A. N. Amaral and J. M. Ottino, Eur. Phys. J. B38, 147(2004).
12. A.-L. Barabási, Linked: The New Science of Networks (Perseus Publishing, Cambridge, 2002).
13. S. N. Dorogovtsev and J. F. F. Mendes, Evolution of Networks: From Biological Nets to the Internet and WWW (Oxford University Press, Oxford, 2003).
14. D. J. Watts, Small Worlds (Princeton University Press, Princeton, 1999).
15. M. Faloutsos, P. Faloutsos and C. Faloutsos, Computer Communications Review 29, 251(1999).
16. R. Pastor-Satorras, A. Vázquez and A. Vespignani, Phys. Rev. Lett. 87, 258701(2001).
17. G. Caldarell, R. Marchetti and L. Pietronero, Europhys. Lett. 52, 386(2000).
18. B. A. Huberman, The Laws of the Web (MIT Press, Cambridge, 2001).
19. A.-L. Barabási, R. Albert and H. Jeong, Physica A281, 69(2000).
20. G. W. Flake, S. R. Lawrence, C. L. Giles and F. M. Coetzee, IEEE Computer 35, 66(2002).
21. A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins and J. Wener, Computer Networks 33, 309(2000).
22. R. Albert, H. Jeong and A.-L. Barabási, Nature 401, 130(1999).
23. J. Scott, Social Network Analysis: A Handbook (Sage Publications, London, 2000).
24. S. Wasserman and K. Faust, Social Network Analysis
Barabási and S. Havlin, Phys. Rev. E 66, 015104(2002).

[94] N. Sarshar, P. O. Boykin and V. P. Roychowdhury, arXiv: cond-mat/0406575

[95] F. Jasch, C. von Ferber and A. Blumen, arXiv: cond-mat/0406152

[96] G. Palla, I. Derényi, I. Farkas and T. Vicsek, Phys. Rev. E 69, 046117(2004).

[97] S. N. Dorogovtsev, Phys. Rev. E 67, 045102(2003).

[98] S. N. Dorogovtsev, A. V. Goltsev and J. F. F. Mendes, Eur. Phys. J. B38, 177(2004).

[99] R. Pastor-Satorras and A. Vespignani, Phys. Rev, Lett. 86, 3200(2001).

[100] R. Pastor-Satorras and A. Vespignani, Phys. Rev. E 63, 066117(2001).

[101] M. Boguna and R. Pastor-Satorras, Phys. Rev. E 66, 047104(2002).

[102] M. Boguna, R. Pastor-Satorras and A. Vespignani, Phys. Rev. Lett. 90, 028701(2003).

[103] R. M. May and A. L. Lloyd, Phys. Rev. E 64, 060112(2001).

[104] R. Pastor-Satorras and A. Vespignani, Phys. Rev. E 65, 035109(2002).

[105] M. Barthélemy, A. Barrat, R. Pastor-Satorras and A. Vespignani, Phys. Rev. Lett. 92, 178701(2004).

[106] G. Yan, T. Zhou, J. Wang, Z.-Q. Fu and B.-H. Wang, arXiv: cond-mat/0408049(Chin. Phys. Lett. In Press 2005).

[107] P. Holme and B. J. Kim, Phys. Rev. E 65, 066109(2002).

[108] P. Holme, Phys. Rev. E 66, 036119(2002).

[109] Y. Moreno, J. B. Gómez and A. F. Pacheco, Europhys. Lett. 58, 630(2002).

[110] Y. Moreno, R. Pastor-Satorras, A. Vázquez and A. Vespignani, Europhys. Lett. 62, 292(2003).

[111] A. E. Motter and Y. -C. Lai, Phys. Rev. E 66, 065102(2002).

[112] A. E. Motter, arXiv: cond-mat/0401074

[113] K. -I. Goh, D. -S. Lee, B. Kahng and D. Kim, Phys. Rev. Lett. 91, 148701(2003).

[114] D. -S. Lee, K. -I. Goh, B. Kahng and D. Kim, arXiv: cond-mat/0401531

[115] T. Zhou and B. -H. Wang, arXiv: cond-mat/0406575

[116] H. A. Simon, Biometrika 42, 425(1955).

[117] S. Bornholdt and K. H. Ebel, Phys. Rev. E 64, R035104(2001).

[118] P. L. Krapivsky, S. Redner and F. Leyvraz, Phys. Rev. Lett. 85, 4629(2000).

[119] P. L. Krapivsky and S. Redner, Phys. Rev. E 63, 066123(2001).

[120] S. N. Dorogovtsev, J. F. F. Mendes and A. N. Samukhin, Phys. Rev. Lett. 85, 4633(2000).

[121] S. N. Dorogovtsev and J. F. F. Mendes, Europhys. Lett. 52, 33(2000).

[122] S. N. Dorogovtsev and J. F. F. Mendes, Phys. Rev. E 63, 025101(2001).

[123] R. Albert and A. -L. Barabási, Phys. Rev. Lett. 85, 5234(2000).

[124] B. Tadić, Physica A293, 273(2001).

[125] B. Tadić, Physica A314, 278(2002).

[126] G. Bianconi and A. -L. Barabási, Phys. Rev. Lett. 86, 5632(2001).

[127] G. Bianconi and A. -L. Barabási, Europhys. Lett. 54, 436(2001).

[128] B. -S. Yuan, K. Chen and B. -H. Wang, arXiv: cond-mat/0408391

[129] K. Deng and Y. Tang, Chin. Phys. Lett. 21, 1858(2004).

[130] C. -G. Li and G. -R. Chen, Physica A 343, 288(2004).

[131] A. Capocci, G. Galdarelli, R. Marchetti and L. Pietronero, Phys. Rev. E 64, R035105(2001).

[132] J. Berg and M. Lässig, Phys. Rev. Lett. 89, 228701(2002).

[133] M. Baisier and S. S. Manna, Phys. Rev. E 68, 047103(2003).

[134] B. J. Kim, A. Trusina, P. Minnhagen and K. Sneppen, arXiv: cond-mat/0403006

[135] G. Yan, T. Zhou, Y. -D. Jin and Z. -Q. Fu, arXiv: cond-mat/0408631

[136] S. Jain and S. Krishna, Phys. Rev. Lett. 81, 5684(1998).

[137] S. Jain and S. Krishna, PNAS 98, 543(2001).

[138] R. V. Sóle, R. Pastor-Satorras, E. Smith and T. B. Kepler, Advances in Complex Systems 5, 43(2002).

[139] A. Vázquez, A. Flammini, A. Maritan and A. Vespignani, Complexus 1, 38(2003).

[140] A. Wagner, Mol. Biol. Evol. 18, 1283(2001).

[141] T. Zhou, B. -H. Wang, P. -Q. Jiang, Y. -B. Xie and S. -L. Bu, arXiv: cond-mat/0405258

[142] J. S. Andrade Jr., H. J. Herrmann, R. F. S. Andrade and L. R. da Silva, arXiv: cond-mat/0406295

[143] S. N. Dorogovtsev, J. F. F. Mendes and A. N. Samukhin, Phys. Rev. E 63, 062101(2001).

[144] S. N. Dorogovtsev, A. V. Goltsev and J. F. F. Mendes, Phys. Rev. E 65, 066122(2002).

[145] T. Zhou, G. Yan, P. -L. Zhou, Z. -Q. Fu and B. -H. Wang, arXiv: cond-mat/0409414

[146] J. S. Andrade Jr. and H. J. Herrmann, arXiv: cond-mat/0411364

[147] D. W. Boyd, Can. J. Math. 25, 303(1973).

[148] J. P. K. Doye and C. P. Massen, arXiv: cond-mat/0407779

[149] In this paper, the terminology “order” means the number of nodes in network, which is also called network size in some other papers.

[150] The selected triangle is destroyed and replaced by three new triangles, thus the number of triangles increases by 2.

[151] E. Ravasz and A. -L. Barabási, Phys. Rev. E 67, 026112(2003).

[152] A. Trusina, S. Maslov, P. Minnhagen and K. Sneppen, Phys. Rev. Lett. 92, 178702(2004).

[153] B. -J. Kim, Phys. Rev. Lett. 93, 168701(2004).

[154] P. Grassberger, Math. Biosci. 63, 157(1983).

[155] G. R. Grimmett, Percolation(Springer-Verlag, Berlin, 1989).

[156] R. M. Anderson and R. M. May, Infectious Diseases in Humans(Oxford University Press, Oxford, 1992).

[157] J. D. Murray, Mathematical Biology(Springer, New York, 1993).

[158] The symbol z and ϕ denote the average coordination number and the adding probability in generating NW networks, respectively.

[159] A. Barrat and M. Weigt, Eur. Phys. J. B13, 547(2000).

[160] M. E. J. Newman, Computer Physics Communications 147, 40(2002).

[161] G. Szabó, M. Alava and J. Kertész, Phys. Rev. E 67, 056102(2003).