ON THE DEPENDENCE ON p OF THE VARIATIONAL EIGENVALUES OF THE p-LAPLACE OPERATOR

MARCO DEGIOVANNI AND MARCO MARZOCCHI

Abstract. We study the behavior of the variational eigenvalues of the p-Laplace operator, with homogeneous Dirichlet boundary condition, when p is varying. After introducing an auxiliary problem, we characterize the continuity answering, in particular, a question raised in [18].

1. Introduction

Let Ω be a connected and bounded open subset of \mathbb{R}^N and let $1 < p < \infty$. The study of the nonlinear eigenvalue problem

$$\begin{cases}
-\Delta_p u = \lambda |u|^{p-2}u & \text{in } \Omega, \\
u = 0 & \text{on } \partial\Omega,
\end{cases}$$

has been the object of several papers, starting from [17], where it has been proved that the first eigenvalue is simple and is the unique eigenvalue which admits a positive eigenfunction. Alternative proofs and more general equations have been the object of the subsequent papers [3, 4, 14, 15, 20, 21], while the existence of a diverging sequence of eigenvalues has been proved under quite general assumptions in [21, 24].

If we denote by $\lambda_p^{(1)}$ the first eigenvalue of (1.1) and by u_p the associated positive eigenfunction such that

$$\int_{\Omega} u_p^p \, dx = 1,$$

a challenging question concerns the behavior of $\lambda_p^{(1)}$ and u_p with respect to p. As shown in [18], about the dependence from the right one has in full generality

$$\lim_{s \to p^+} \lambda_s^{(1)} = \lambda_p^{(1)},$$

$$\lim_{s \to p^+} \int_{\Omega} |\nabla u_s - \nabla u_p|^p \, dx = 0,$$

2000 Mathematics Subject Classification. 35P30, 35B35.

Key words and phrases. Nonlinear eigenvalues, p-Laplace operator, variational convergence.

The research of the authors was partially supported by Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (INdAM).
while the “corresponding” assertions from the left
\[
\lim_{s \to p^-} \lambda^{(1)}_s = \lambda^{(1)}_p ,
\]
\[
\lim_{s \to p^-} \int_\Omega |\nabla u_s - \nabla u_p|^s \, dx = 0
\]
are true under some further assumption about \(\partial \Omega \). A counterexample in the same paper [18] shows that otherwise in general they are false.

A related question concerns the equivalence, without any assumption on \(\partial \Omega \), between the two assertions. In [18] it is proved that, if
\[
\lim_{s \to p^-} \int_\Omega |\nabla u_s - \nabla u_p|^s \, dx = 0,
\]
then
\[
\lim_{s \to p^-} \lambda^{(1)}_s = \lambda^{(1)}_p ,
\]
while the converse is proposed as an open problem. Subsequent papers have considered more general situations (see [10, 11]), but the previous question seems to be still unsolved (see also [19]).

The main purpose of this paper is to introduce an auxiliary problem which allows to describe the behaviour of \(\lambda^{(1)}_s \) and \(u_s \) as \(s \to p^- \) (see the next Theorem 3.2). Then in Theorem 4.1 we provide several equivalent characterizations of the fact that
\[
\lim_{s \to p^-} \lambda^{(1)}_s = \lambda^{(1)}_p .
\]
In particular, in Corollary 4.4 we give a positive answer to the mentioned open problem.

We also consider the dependence on \(s \) of the full sequence \((\lambda^{(m)}_s) \) of the variational eigenvalues, defined according to some topological index \(i \). In particular, in Corollary 6.2 we prove that
\[
\lim_{s \to p^-} \lambda^{(m)}_s = \lambda^{(m)}_p \quad \forall m \geq 1
\]
if and only if
\[
\lim_{s \to p^-} \lambda^{(1)}_s = \lambda^{(1)}_p .
\]
The convergence of \(\lambda^{(m)}_s \) has been already studied in [6], under the \(\Gamma \)-convergence of the associated functionals. More specifically, in [22] it has been proved the continuity of \(\lambda^{(m)}_s \) with respect to \(s \), provided that \(\partial \Omega \) is smooth enough.

2. The First Eigenvalue with Respect to a Larger Space

Throughout the paper, \(\Omega \) will denote a bounded and open subset of \(\mathbb{R}^N \). No assumption will be imposed \(a \) priori about the regularity of \(\partial \Omega \). We will also denote by \(\mathcal{L}^N \) the Lebesgue measure in \(\mathbb{R}^N \).

If \(u \in W^{1,p}(\Omega) \), the condition “\(u = 0 \) on \(\partial \Omega \)” is usually expressed by saying that \(u \in W^{1,p}_0(\Omega) \). If \(\partial \Omega \) is smooth enough, this is perfectly reasonable; if not, other (nonequivalent) formulations can be proposed. In the line of the approach of [18], if \(1 < p < \infty \) we set
\[
W^{1,p}_0(\Omega) = W^{1,p}(\Omega) \cap \left(\bigcap_{1 < s < p} W^{1,s}_0(\Omega) \right) = \bigcap_{1 < s < p} \left(W^{1,p}(\Omega) \cap W^{1,s}_0(\Omega) \right) .
\]
Proposition 2.1. The following facts hold:
(a) $W^{1,p}_0(\Omega)$ is a closed vector subspace of $W^{1,p}(\Omega)$ satisfying
$$W^{1,p}_0(\Omega) \subseteq W^{1,p}_0(\Omega);$$
(b) for every $u \in W^{1,p}_0(\Omega)$, the function
$$\hat{u} = \begin{cases} u & \text{on } \Omega; \\ 0 & \text{on } \mathbb{R}^N \setminus \Omega \end{cases}$$
belongs to $W^{1,p}(\mathbb{R}^N)$; in particular,
$$\left(\int_\Omega |\nabla u|^p \, dx \right)^{1/p}$$
is a norm on $W^{1,p}_0(\Omega)$ equivalent to the one induced by $W^{1,p}(\Omega)$;
(c) if $p < N$, we have $W^{1,p}_0(\Omega) \subseteq L^{p'}(\Omega)$ and
$$\inf \left\{ \frac{\int_\Omega |\nabla u|^p \, dx}{(\int_\Omega |u|^{p^{*}} \, dx)^{p/p^{*}}} : u \in W^{1,p}_0(\Omega) \setminus \{0\} \right\}$$
$$= \inf \left\{ \frac{\int_\Omega |\nabla u|^p \, dx}{(\int_\Omega |u|^{p^{*}} \, dx)^{p/p^{*}}} : u \in W^{1,p}_0(\Omega) \setminus \{0\} \right\};$$
(d) if $p > N$, we have $W^{1,p}_0(\Omega) = W^{1,p}(\Omega)$;
(e) if Ω has the segment property, we have $W^{1,p}_0(\Omega) = W^{1,p}(\Omega)$ for any p.

Proof. Since $W^{1,p}(\Omega) \cap W^{1,s}(\Omega)$ is a closed vector subspace of $W^{1,p}(\Omega)$ containing $W^{1,p}_0(\Omega)$, assertion (a) follows.

If $u \in W^{1,p}_0(\Omega)$, the function
$$\hat{u} = \begin{cases} u & \text{on } \Omega; \\ 0 & \text{on } \mathbb{R}^N \setminus \Omega \end{cases}$$
begins to $W^{1,s}(\mathbb{R}^N)$ for any $s < p$ and
$$- \int_{\mathbb{R}^N} \hat{u} D_j v \, dx = \int_\Omega D_j u v \, dx \quad \forall v \in C^1_c(\mathbb{R}^N).$$

It follows $\hat{u} \in W^{1,p}(\mathbb{R}^N)$, whence assertion (b).

If $p < N$, let U be a bounded open subset of \mathbb{R}^N with $\overline{\Omega} \subseteq U$ and let $u \in W^{1,p}_0(\Omega)$. Then $\hat{u} \in W^{1,p}_0(U) \subseteq L^{p'}(U)$ (see e.g. [5, Lemma 9.5]) and
$$\frac{\int_U |\nabla \hat{u}|^p \, dx}{(\int_U |\hat{u}|^{p^{*}} \, dx)^{p/p^{*}}} = \frac{\int_\Omega |\nabla u|^p \, dx}{(\int_\Omega |u|^{p^{*}} \, dx)^{p/p^{*}}}.$$

Assertion (c) follows from the fact that
$$\inf \left\{ \frac{\int_\Omega |\nabla v|^p \, dx}{(\int_\Omega |v|^{p^{*}} \, dx)^{p/p^{*}}} : v \in W^{1,p}_0(\Omega) \setminus \{0\} \right\}$$
is independent of Ω (see e.g. [25]).
If \(p > N \) and \(u \in W^{1,p}_0(\Omega) \), we have \(\hat{u} \in C(\overline{\Omega}) \cap W^{1,p}(\Omega) \) with \(\hat{u} = 0 \) on \(\partial \Omega \). It follows that \(\hat{u} \in W^{1,p}_0(\Omega) \) (see e.g. [5, Theorem 9.17], where the proof of \((i) \Rightarrow (ii)\) does not use the regularity of \(\partial \Omega \)), whence assertion \((d)\).

Assertion \((e)\) is taken from [11, Theorem 2.1]. □

Let us point out that the counterexample in [18] shows that \(W^{1,p}_0(\Omega) \) can be strictly larger than \(W^{1,p}_0(\Omega) \) in the case \(1 < p \leq N \) (see also the next Remark 3.3).

Now we set

\[
\lambda_p^{(1)} = \inf \left\{ \frac{\int_{\Omega} |\nabla u|^p \, dx}{\int_{\Omega} |u|^p \, dx} : u \in W^{1,p}_0(\Omega) \setminus \{0\} \right\},
\]

\[
\lambda_p^{(1)} = \inf \left\{ \frac{\int_{\Omega} |\nabla u|^p \, dx}{\int_{\Omega} |u|^p \, dx} : u \in W^{1,p}_0(\Omega) \setminus \{0\} \right\}.
\]

It is easily seen that also the infimum defining \(\lambda_p^{(1)} \) is achieved and we clearly have \(0 < \lambda_p^{(1)} \leq \lambda_p^{(1)} \).

More precisely, there exists \(v \in W^{1,p}_0(\Omega) \) such that

\[
v \geq 0 \quad \text{a.e. in } \Omega, \quad \int_{\Omega} v^p \, dx = 1, \quad \int_{\Omega} |\nabla v|^p \, dx = \lambda_p^{(1)}.
\]

According to [17, 18], if \(\Omega \) is connected we also denote by \(u_p \) the positive eigenfunction in \(W^{1,p}_0(\Omega) \) associated with \(\lambda_p^{(1)} \) such that

\[
\int_{\Omega} u_p^p \, dx = 1.
\]

In the next result we will see that something similar can be done with respect to the space \(W^{1,p}_0(\Omega) \).

Theorem 2.2. If \(\Omega \) is connected, the following facts hold:

(a) there exists one and only one \(u_p \in W^{1,p}_0(\Omega) \) such that

\[
u_p \geq 0 \quad \text{a.e. in } \Omega, \quad \int_{\Omega} u_p^p \, dx = 1, \quad \int_{\Omega} |\nabla u_p|^p \, dx = \lambda_p^{(1)};
\]

moreover, we have \(u_p \in L^\infty(\Omega) \cap C^1(\Omega) \) and \(u_p > 0 \) in \(\Omega \);

(b) the set of \(u \)'s in \(W^{1,p}_0(\Omega) \) such that

\[
\int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla v \, dx = \lambda_p^{(1)} \int_{\Omega} |u|^{p-2}uv \, dx \quad \forall v \in W^{1,p}_0(\Omega)
\]

is a vector subspace of \(W^{1,p}_0(\Omega) \) of dimension 1;

(c) if \(\lambda \in \mathbb{R} \) and \(u \in W^{1,p}_0(\Omega) \) satisfy

\[
\begin{cases}
u \geq 0 \quad \text{a.e. in } \Omega, \\
\int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla v \, dx = \lambda \int_{\Omega} u^{p-1}v \, dx \quad \forall v \in W^{1,p}_0(\Omega),
\end{cases}
\]

then \(\lambda = \lambda_p^{(1)} \) and \(u = t u_p \) for some \(t > 0 \).

Since the proof follows the same lines of [17], we postpone it to the Appendix.
3. Behavior from the left of the first eigenvalue

Proposition 3.1. If $1 < s < p < \infty$, it holds

$$s \left(\Delta_{s}^{(1)} \right)^{1/s} \leq \lambda_{s}^{(1)} \leq p \left(\Delta_{p}^{(1)} \right)^{1/p}.$$

Proof. Let $s < t < p$. For every $u \in W^{1,p}_{0}(\Omega) \cap L^{\infty}(\Omega)$, we have $|u|^{p/t} \in W^{1,t}_{0}(\Omega)$, hence

$$\lambda_{t}^{(1)} \int_{\Omega} |u|^{p} \, dx \leq \int_{\Omega} |\nabla |u|^{p/t}|^{t} \, dx = \left(\frac{p}{t} \right)^{t} \int_{\Omega} |u|^{p-t} |\nabla u|^{t} \, dx \leq \left(\frac{p}{t} \right)^{t} \left(\int_{\Omega} |u|^{p} \, dx \right)^{\frac{p-t}{p}} \left(\int_{\Omega} |\nabla u|^{p} \, dx \right)^{\frac{t}{p}}.$$

It follows

$$\lambda_{t}^{(1)} \left(\int_{\Omega} |\nabla u|^{p} \, dx \right)^{\frac{1}{p}} \leq \left(\frac{p}{t} \right)^{t} \left(\int_{\Omega} |u|^{p} \, dx \right)^{\frac{1}{p}} \quad \forall u \in W^{1,p}_{0}(\Omega) \cap L^{\infty}(\Omega).$$

For every $u \in W^{1,p}_{0}(\Omega)$, the function

$$v_{k} = \max\{\min\{u, -k\}, k\}$$

belongs to $W^{1,p}_{0}(\Omega) \cap L^{\infty}(\Omega)$ and is convergent to u in $W^{1,p}(\Omega)$. It follows

$$\lambda_{t}^{(1)} \left(\int_{\Omega} |u|^{p} \, dx \right)^{\frac{1}{p}} \leq \left(\frac{p}{t} \right)^{t} \left(\int_{\Omega} |\nabla u|^{p} \, dx \right)^{\frac{1}{p}} \quad \forall u \in W^{1,p}_{0}(\Omega),$$

whence

$$\lambda_{t}^{(1)} \leq \left(\frac{p}{t} \right)^{t} \left(\lambda_{p}^{(1)} \right)^{\frac{1}{p}}.$$

On the other hand, in [18, Remark p. 204] it is proved that

$$s \left(\lambda_{s}^{(1)} \right)^{1/s} \leq t \left(\lambda_{t}^{(1)} \right)^{1/t}$$

and the argument does not require Ω to be connected. We conclude that

$$s \left(\lambda_{s}^{(1)} \right)^{1/s} \leq t \left(\lambda_{t}^{(1)} \right)^{1/t} \leq p \left(\lambda_{p}^{(1)} \right)^{1/p}.$$

For the sake of completeness we have also recalled the other (easy) inequalities. □

Now we can prove the main result of this section.

Theorem 3.2. If $1 < p < \infty$, it holds

$$\lim_{s \to p^{-}} \lambda_{s}^{(1)} = \lim_{s \to p^{-}} \lambda_{s}^{(1)} = \lambda_{p}^{(1)}.$$

If Ω is connected, we also have

$$\lim_{s \to p^{-}} \int_{\Omega} |\nabla u_{s} - \nabla u_{s}^{*}|^{s} \, dx = \lim_{s \to p^{-}} \int_{\Omega} |\nabla u_{s} - \nabla u_{s}^{*}|^{s} \, dx = 0.$$

Proof. By Proposition 3.1 it is clear that

$$\lim_{s \to p^{-}} \Delta_{s}^{(1)} \leq \lim_{s \to p^{-}} \lambda_{s}^{(1)} \leq \Delta_{p}^{(1)}.$$
Let \((p_k)\) be a sequence strictly increasing to \(p\), let \(v_k \in W^{1,(p_k)-}_0(\Omega)\) with
\[
v_k \geq 0 \quad \text{a.e. in } \Omega, \quad \int_\Omega v_k^{p_k} \, dx = 1, \quad \int_\Omega |\nabla v_k|^{p_k} \, dx = \lambda^{(1)}(p_k)
\]
and let \(1 < t < p\). In particular, it holds
\[
\lim_{k \to \infty} \int_\Omega |\nabla v_k|^{p_k} \, dx < +\infty.
\]
Up to a subsequence, we have \(p_k > t\) and \((v_k)\) is weakly convergent to some \(u\) in \(W^{1,t}_0(\Omega)\). Since the sequence \((v_k)\) is eventually bounded in \(W^{1,s}_0(\Omega)\) for any \(s < p\), it follows
\[
u \in \bigcap_{1 < s < p} W^{1,s}_0(\Omega).
\]
Moreover, it holds
\[
u \geq 0 \quad \text{a.e. in } \Omega, \quad \int_\Omega u^{p} \, dx = 1
\]
and, for every \(s < p\),
\[
\int_\Omega |\nabla u|^s \, dx \leq \liminf_{k \to \infty} \int_\Omega |\nabla v_k|^s \, dx \leq \liminf_{k \to \infty} \left[\mathcal{L}^N(\Omega)^{1 - \frac{s}{p_k}} \left(\int_\Omega |\nabla v_k|^{p_k} \, dx \right)^{\frac{s}{p_k}} \right]
\]
\[
= \lim_{k \to \infty} \left[\mathcal{L}^N(\Omega)^{1 - \frac{s}{p_k}} \left(\lambda^{(1)}(p_k)^{\frac{1}{p_k}} \right)^{\frac{s}{p_k}} \right] = \mathcal{L}^N(\Omega)^{1 - \frac{s}{p}} \left(\lim_{k \to \infty} \lambda^{(1)}(p_k) \right)^{\frac{s}{p}}.
\]
By the arbitrariness of \(s\), we infer that \(u \in W^{1,p}(\Omega)\), hence \(u \in W^{1,p-}_0(\Omega)\), with
\[
\lambda^{(1)} \leq \int_\Omega |\nabla u|^p \, dx \leq \lim_{k \to \infty} \lambda^{(1)}(p_k).
\]
It follows
\[
\lim_{s \to p-} \lambda^{(1)} = \lim_{s \to p-} \lambda^{(1)} = \lambda^{(1)} = \int_\Omega |\nabla u|^p \, dx.
\]
Now assume that \(\Omega\) is connected. From (a) of Theorem 2.2, we infer that \(v_k = u_{p_k}\), \(u = u_p\) and
\[
\lim_{s \to p-} u_s = u_p \quad \text{weakly in } W^{1,t}_0(\Omega) \quad \text{for any } t < p.
\]
In particular, it holds
\[
\lim_{s \to p-} \int_\Omega \left| \frac{u_s + u_p}{2} \right|^s \, dx = 1,
\]
whence
\[
\liminf_{s \to p-} \int_\Omega \left| \frac{\nabla u_s + \nabla u_p}{2} \right|^s \, dx \geq \lambda_p.
\]
If \(2 < s < p\), Clarkson’s inequality yields
\[
\int_\Omega \left| \frac{\nabla u_s + \nabla u_p}{2} \right|^s \, dx + \int_\Omega \left| \frac{\nabla u_s - \nabla u_p}{2} \right|^s \, dx \leq \frac{1}{2} \int_\Omega |\nabla u_s|^s \, dx + \frac{1}{2} \int_\Omega |\nabla u_p|^s \, dx,
\]
whence
\[
\lim_{s \to p-} \int_\Omega |\nabla u_s - \nabla u_p|^s \, dx = 0 \quad \text{if } p > 2.
\]
When $1 < s < p \leq 2$, Clarkson’s inequality becomes
\[
\left(\int_{\Omega} \left| \frac{\nabla u_s + \nabla u_p}{2} \right|^s \, dx \right)^{\frac{1}{s-1}} + \left(\int_{\Omega} \left| \frac{\nabla u_s - \nabla u_p}{2} \right|^s \, dx \right)^{\frac{1}{s-1}} \leq \left(\frac{1}{2} \int_{\Omega} |\nabla u_s|^s \, dx + \frac{1}{2} \int_{\Omega} |\nabla u_p|^s \, dx \right)^{\frac{1}{s-1}},
\]
but the argument is the same.

Finally, in a similar way one can prove that
\[
\lim_{s \to p^-} \int_{\Omega} |\nabla u_s - \nabla u_p|^s \, dx = 0.
\]

\[\square\]

Remark 3.3. Since the paper [18] contains a counterexample with
\[
\lim_{s \to p^-} \lambda_s^{(1)} < \lambda_p^{(1)},
\]
in that case we have $\lambda_2^{(1)} < \lambda_p^{(1)}$, hence $W^{1,p}_{-0}(\Omega) \neq W^{1,p}_{0}(\Omega)$.

Now we aim also to describe the behavior as $s \to p^-$ in the terms of the variational convergence of [1, 7].

Definition 3.4. Let X be a metrizable topological space, $f : X \to [-\infty, +\infty]$ a function and let (f_h) be a sequence of functions from X to $[-\infty, +\infty]$. According to [7, Proposition 8.1], we say that (f_h) is Γ-convergent to f and we write
\[
\Gamma - \lim_{h \to \infty} f_h = f,
\]
if the following facts hold:
(a) for every $u \in X$ and every sequence (u_h) converging to u in X it holds
\[
\liminf_{h \to \infty} f_h(u_h) \geq f(u);
\]
(b) for every $u \in X$ there exists a sequence (u_h) converging to u in X such that
\[
\lim_{h \to \infty} f_h(u_h) = f(u).
\]

If $1 < p < \infty$, we define two functionals $\mathcal{E}_p, \mathcal{E}_{-p} : L^1_{\text{loc}}(\Omega) \to [0, +\infty]$ as
\[
\mathcal{E}_p(u) = \begin{cases}
\left(\int_{\Omega} |\nabla u|^p \, dx \right)^{1/p} & \text{if } u \in W^{1,p}_0(\Omega), \\
+\infty & \text{otherwise},
\end{cases}
\]
\[
\mathcal{E}_{-p}(u) = \begin{cases}
\left(\int_{\Omega} |\nabla u|^p \, dx \right)^{1/p} & \text{if } u \in W^{1,p}_{-0}(\Omega), \\
+\infty & \text{otherwise}.
\end{cases}
\]

Theorem 3.5. For every sequence (p_h) strictly increasing to p, with $1 < p < \infty$, it holds
\[
\Gamma - \lim_{h \to \infty} \mathcal{E}_{p_h} = \Gamma - \lim_{h \to \infty} \mathcal{E}_{-p_h} = \mathcal{E}_p.
\]
Proof. Define, whenever $1 < s < \infty$, $f_s, f_s^\prime: L_{\text{loc}}^1(\Omega) \to [0, +\infty]$ as
\[
f_s(u) = \mathcal{L}^N(\Omega)^{-1/s} \mathcal{E}_s(u), \quad f_s^\prime(u) = \mathcal{L}^N(\Omega)^{-1/s} \mathcal{E}_s(u).
\]
Then f_s, f_s^\prime are lower semicontinuous and the sequences (f_{p_h}), $(f_{p_h}^\prime)$ are both increasing and pointwise convergent to f_p^\prime. From [7, Proposition 5.4] we infer that
\[
\Gamma - \lim_{h \to \infty} f_{p_h} = \Gamma - \lim_{h \to \infty} f_{p_h}^\prime = f_p^\prime
\]
and the assertion easily follows. □

4. SOME CHARACTERIZATIONS

Without imposing any assumption on $\partial \Omega$, we aim to characterize the fact that
\[
\lim_{s \to p^-} \lambda_s^{(1)} = \lambda_p^{(1)}.
\]

Theorem 4.1. If $1 < p < \infty$ and Ω is connected, the following facts are equivalent:

(a) $\lim_{s \to p^-} \lambda_s^{(1)} = \lambda_p^{(1)}$;
(b) for every sequence (p_h) strictly increasing to p, it holds
\[
\Gamma - \lim_{h \to \infty} \mathcal{E}_{p_h} = \mathcal{E}_p;
\]
(c) $W_0^{1,p^-}(\Omega) = W_0^{1,p}(\Omega)$;
(d) $\lambda_p^{(1)} = \lambda_p^{(1)}$;
(e) $\underline{u}_p = u_p$;
(f) $\underline{w}_p \in W_0^{1,p}(\Omega)$;
(g) the solution u of
\[
\begin{cases}
 u \in W_0^{1,p^-}(\Omega), \\
 \int \Omega |\nabla u|^{p-2} \nabla u \cdot \nabla v \, dx = \int \Omega v \, dx \quad \forall v \in W_0^{1,p^-}(\Omega),
\end{cases}
\]
given by the next Theorem 7.1, belongs to $W_0^{1,p}(\Omega)$.

Proof. By Theorem 3.2 it is clear that (a) \iff (d), while we have (b) \iff (c) by Theorem 3.5. Now we consider the assertions from (e) to (g).

It is clear that (c) \implies (d). If $\lambda_p^{(1)} = \lambda_p^{(1)}$, we have that $u_p \in W_0^{1,p}(\Omega) \subseteq W_0^{1,p^-}(\Omega)$ satisfies
\[
u_p \geq 0 \text{ a.e. in } \Omega, \quad \int \Omega u_p \, dx = 1, \quad \int \Omega |\nabla u_p|^p \, dx = \lambda_p^{(1)}.
\]
From (a) of Theorem 2.2 we infer that $u_p = \underline{w}_p$. Therefore (d) \implies (e).

Of course, (e) \implies (f). If $\underline{w}_p \in W_0^{1,p}(\Omega)$, let
\[
z_k = \min \{ \lambda_p^{(1)} (k\underline{w}_p)^{p-1}, 1 \}
\]
and let $w_k \in W_0^{1,p^-}(\Omega)$ be the solution of
\[
\int \Omega |\nabla w_k|^{p-2} \nabla w_k \cdot \nabla v \, dx = \int \Omega z_k v \, dx \quad \forall v \in W_0^{1,p^-}(\Omega)
\]
according to Theorem 7.1. Since $0 \leq z_k \leq \lambda_p^{(1)}(ku_p)^{p-1}$ a.e. in Ω, we have $0 \leq w_k \leq ku_p$ a.e. in Ω. From $w_k \in W^{1,p}(\Omega)$ and $ku_p \in W^{1,p}_0(\Omega)$, we infer that $w_k \in W^{1,p}_0(\Omega)$.

Since (z_k) is convergent to 1 in $L^p(\Omega)$, we also have

$$\lim_{k \to \infty} \int_{\Omega} |\nabla w_k - \nabla u|^p \, dx = 0,$$

whence $u \in W^{1,p}_0(\Omega)$. Therefore $(f) \Rightarrow (g)$.

Finally, assume that (g) holds and let u be as in assertion (g). If $z \in L^\infty(\Omega)$ and $w \in W^{1,p}_0(\Omega)$ is the solution of

$$\int_{\Omega} |\nabla w|^{p-2} \nabla w \cdot \nabla v \, dx = \int_{\Omega} z v \, dx \quad \forall v \in W^{1,p}_0(\Omega),$$

we have $-M^{p-1} \leq z \leq M^{p-1}$ for some $M > 0$, whence $-Mu \leq w \leq Mu$ a.e. in Ω. It follows $w \in W^{1,p}_0(\Omega)$.

Now let $w \in W^{1,p}_0(\Omega)$. Let $z \in L^p(\Omega)$ and $Z \in L^p(\Omega; \mathbb{R}^N)$ be such that

$$\int_{\Omega} |\nabla w|^{p-2} \nabla w \cdot \nabla v \, dx = \int_{\Omega} (zv + Z \cdot \nabla v) \, dx \quad \forall v \in W^{1,p}(\Omega).$$

Then let (z_k) and (Z_k) be two sequences in C^∞_c converging to z and Z, respectively, in L^p. Since $(z_k - \div Z_k) \in L^\infty(\Omega)$, there exists $w_k \in W^{1,p}_0(\Omega)$ such that

$$\int_{\Omega} |\nabla w_k|^{p-2} \nabla w_k \cdot \nabla v \, dx = \int_{\Omega} (z_k - \div Z_k)v \, dx \quad \forall v \in W^{1,p}_0(\Omega).$$

Since

$$\int_{\Omega} |\nabla w|^{p-2} \nabla w \cdot \nabla v \, dx = \int_{\Omega} (zv + Z \cdot \nabla v) \, dx \quad \forall v \in W^{1,p}_0(\Omega),$$

$$\int_{\Omega} |\nabla w_k|^{p-2} \nabla w_k \cdot \nabla v \, dx = \int_{\Omega} (z_kv + Z_k \cdot \nabla v) \, dx \quad \forall v \in W^{1,p}_0(\Omega),$$

it follows

$$\lim_{k \to \infty} \int_{\Omega} |\nabla w_k - \nabla w|^p \, dx = 0,$$

whence $w \in W^{1,p}_0(\Omega)$. Therefore $(g) \Rightarrow (c)$. \hfill \Box

Remark 4.2. If Ω is not assumed to be connected, it holds

$$\begin{align*}
(b) & \iff (c) \iff (g) \\
(a) & \iff (d)
\end{align*}$$

In fact the same proof shows that

$$\begin{align*}
(b) & \iff (c) \iff (g) \\
(a) & \iff (d)
\end{align*}$$

and it is obvious that $(c) \Rightarrow (g)$.

On the other hand, let U be a bounded open set as in Remark 3.3, with $W^{1,p}_0(U) \neq W_0^{1,p}(U)$, and let $\Omega = U \cup B$, where B is an open ball with $\overline{U \cap B} = \emptyset$. Then $W^{1,p}_0(\Omega) \neq W^{1,p}_0(\Omega)$, so that (b), (c) and (g) are false. However, if the ball B is large enough, the first eigenvalue associated with Ω coincides with that
associated with B, which has the segment property, so that assertions (a) and (d) are true.

Remark 4.3. Let us stress, in Theorem 4.1, the assertion $(a) \Rightarrow (b)$. When Ω is connected, the convergence of the first eigenvalue implies the Γ-convergence of the full functional. This fact will be on the basis of the next Corollary 6.2.

Corollary 4.4. If Ω is connected and

$$
\lim_{s \to p^-} \chi^{(1)}_s = \lambda^{(1)}_p,
$$

then it holds

$$
\lim_{s \to p^-} \int_{\Omega} |\nabla u_s - \nabla u_p|^s \, dx = 0.
$$

Proof. From Theorem 4.1 we infer that $u_p = u_p$. By Theorem 3.2 we conclude that

$$
\lim_{s \to p^-} \int_{\Omega} |\nabla u_s - \nabla u_p|^s \, dx = \lim_{s \to p^-} \int_{\Omega} |\nabla u_s - \nabla u_p|^s \, dx = 0.
$$

□

Remark 4.5. The converse of the previous Corollary was known since a long time (see [18, Theorem 3.11]), while Corollary 4.4 was proposed as an open problem. Corollary 4.4 also answers a question raised in [18] concerning the formulation of Lemma 3.12 in that paper.

5. Behavior from the right of the first eigenvalue

The next results are essentially contained in [18, 8]. We mention them for the sake of completeness.

Theorem 5.1. If $1 < p < \infty$, it holds

$$
\lim_{s \to p^+} \lambda^{(1)}_s = \lim_{s \to p^+} \lambda^{(1)}_s = \lambda^{(1)}_p.
$$

If Ω is connected, we also have

$$
\lim_{s \to p^+} \int_{\Omega} |\nabla u_s - \nabla u_p|^p \, dx = \lim_{s \to p^+} \int_{\Omega} |\nabla u_s - \nabla u_p|^p \, dx = 0.
$$

Proof. The assertions concerning $\lambda^{(1)}_s$ and u_s are proved in [18, Theorems 3.5 and 3.6], but the same arguments apply also to $\lambda^{(1)}_s$ and u_s. □

Theorem 5.2. For every sequence (p_h) strictly decreasing to p, with $1 < p < \infty$, it holds

$$
\Gamma - \lim_{h \to \infty} \mathcal{E}_{p_h} = \Gamma - \lim_{h \to \infty} \mathcal{E}_{p_h} = \mathcal{E}_p.
$$

Proof. The assertion concerning \mathcal{E}_{p_h} is proved in [8, Theorem 5.3] when $1 < p < N$, but the same argument applies to the other cases. □
6. Behavior of Higher Eigenvalues

Let \(i \) be an index with the following properties:

(i) \(i(K) \) is an integer greater or equal than 1 and is defined whenever \(K \) is a nonempty, compact and symmetric subset of a topological vector space such that \(0 \not\in K \);

(ii) if \(X \) is a topological vector space and \(K \subseteq X \setminus \{0\} \) is compact, symmetric and nonempty, then there exists an open subset \(U \) of \(X \setminus \{0\} \) such that \(K \subseteq U \) and

\[
\hat{i}(K) \leq i(K) \quad \text{for any compact, symmetric and nonempty } \hat{K} \subseteq U;
\]

(iii) if \(X, Y \) are two topological vector spaces, \(K \subseteq X \setminus \{0\} \) is compact, symmetric and nonempty and \(\pi : K \to Y \setminus \{0\} \) is continuous and odd, we have

\[
i(\pi(K)) \geq i(K);
\]

(iv) if \(X \) is a normed space with \(1 \leq \dim X < \infty \), we have

\[
i(\{ u \in X : ||u|| = 1 \}) = \dim X.
\]

Well known examples are the Krasnosel’skiǐ genus (see e.g. [16, 23, 28]) and the \(\mathbb{Z}_2 \)-cohomological index (see [12, 13]). More general examples are contained in [2].

If \(1 < p < \infty \), we consider

\[
M = \left\{ u \in W^{1,p}_0(\Omega) : \int_\Omega |u|^p \, dx = 1 \right\},
\]

\[
\overline{M} = \left\{ u \in W^{1,p-}_0(\Omega) : \int_\Omega |u|^p \, dx = 1 \right\},
\]

endowed with the \(W^{1,p}(\Omega) \)-topology, and we define for every \(m \geq 1 \) the variational eigenvalues of the \(p \)-Laplace operator as

\[
\lambda_p^{(m)} = \inf \left\{ \max_{u \in K} \int_\Omega |\nabla u|^p \, dx : K \text{ is a nonempty, compact and symmetric subset of } M \text{ with } i(K) \geq m \right\},
\]

\[
\overline{\lambda}_p^{(m)} = \inf \left\{ \max_{u \in K} \int_\Omega |\nabla u|^p \, dx : K \text{ is a nonempty, compact and symmetric subset of } \overline{M} \text{ with } i(K) \geq m \right\}.
\]

It is easily seen that the new definitions of \(\lambda_p^{(1)} \) and \(\overline{\lambda}_p^{(1)} \) are consistent with the previous ones and we clearly have

\[
\lambda_p^{(m)} \leq \lambda_p^{(m+1)},
\]

\[
\overline{\lambda}_p^{(m)} \leq \overline{\lambda}_p^{(m+1)},
\]

\[
\lambda_p^{(m)} \leq \lambda_p^{(m)}.
\]
Theorem 6.1. If $1 < p < \infty$, for every $m \geq 1$ we have

$$\lim_{s \to p^-} \lambda_s^{(m)} = \lim_{s \to p^-} \lambda^{(m)} = \lambda^{(m)},$$

$$\lim_{s \to p^+} \lambda_s^{(m)} = \lim_{s \to p^+} \lambda^{(m)} = \lambda^{(m)}.$$

Proof. Taking into account Theorems 3.5 and 5.2, the assertions follow from the results of [6, 8]. Let us give some detail following the approach of [8].

If we define $g_p : L^1_{loc}(\Omega) \to \mathbb{R}$ as

$$g_p(u) = \begin{cases}
\left(\int_{\Omega} |u|^p \, dx \right)^{1/p} & \text{if } u \in L^p(\Omega), \\
0 & \text{otherwise},
\end{cases} \quad (6.1)$$

it is easily seen that g_p is $L^1_{loc}(\Omega)$-continuous on

$$\{ u \in L^1_{loc}(\Omega) : \mathcal{E}_p(u) \leq b \}$$

for any $b \in \mathbb{R}$.

If we consider

$$\widehat{M} = \{ u \in L^1_{loc}(\Omega) : g_p(u) = 1 \}$$

dowered with the $L^1_{loc}(\Omega)$-topology, by [8, Corollary 3.3] we have

$$\left(\lambda_p^{(m)} \right)^{1/p} = \inf \left\{ \sup_{u \in K} \mathcal{E}_p(u) : K \text{ is a nonempty, compact and symmetric subset of } \widehat{M} \text{ with } i(K) \geq m \right\},$$

$$\left(\lambda^{(m)} \right)^{1/p} = \inf \left\{ \sup_{u \in K} \mathcal{E}_p(u) : K \text{ is a nonempty, compact and symmetric subset of } \widehat{M} \text{ with } i(K) \geq m \right\},$$

(see also [8, Theorem 5.2]). Then the assertions follow from Theorems 3.5, 5.2 and [8, Corollary 4.4] (see also [8, Theorem 6.4]). \hfill \Box

Corollary 6.2. Let $1 < p < \infty$ and assume that Ω is connected. Then we have

$$\lim_{s \to p} \lambda^{(m)} = \lambda_p^{(m)} \quad \forall m \geq 1$$

if and only if

$$\lim_{s \to p^-} \lambda_s^{(1)} = \lambda_p^{(1)}.$$

Proof. If

$$\lim_{s \to p^-} \lambda_s^{(1)} = \lambda_p^{(1)},$$

from Theorem 4.1 we infer that $W^{1,p}_0(\Omega) = W^{1,p}_0(\Omega)$, whence $\lambda_p^{(m)} = \lambda_p^{(m)}$ for any $m \geq 1$. Then the assertion follows from Theorem 6.1.

The converse is obvious. \hfill \Box
7. Appendix

In this appendix we see that several well-known properties of $W^{1,p}_0(\Omega)$ are still valid for $W^{1,p}_0(\Omega)$.

Theorem 7.1. If $1 < p < \infty$, the following facts hold:

(a) For every $z \in L^p(\Omega)$ and $Z \in L^p(\Omega; \mathbb{R}^N)$, there exists one and only one $w \in W^{1,p}_0(\Omega) \subseteq W^{1,p}(\Omega)$ such that

\[
\int_{\Omega} |\nabla w|^{p-2} \nabla w \cdot \nabla v \, dx = \int_{\Omega} (zv + Z \cdot \nabla v) \, dx \quad \forall v \in W^{1,p}_0(\Omega)
\]

and the map

\[
L^p(\Omega) \times L^p(\Omega; \mathbb{R}^N) \rightarrow W^{1,p}(\Omega)
\]

\[
(z, Z) \mapsto w
\]

is continuous;

(b) If $z_1, z_2 \in L^p(\Omega)$ with $z_1 \leq z_2$ a.e. in Ω and $w_1, w_2 \in W^{1,p}_0(\Omega)$ are the solutions of

\[
\int_{\Omega} |\nabla w_k|^{p-2} \nabla w_k \cdot \nabla v \, dx = \int_{\Omega} z_k v \, dx \quad \forall v \in W^{1,p}_0(\Omega),
\]

then it holds $w_1 \leq w_2$ a.e. in Ω.

Proof. Assertion (a) easily follows from Proposition 2.1. Since $(w_1 - w_2)^+ \in W^{1,p}_0(\Omega)$, we have

\[
\int_{\Omega} |\nabla w_1|^{p-2} \nabla w_1 \cdot \nabla (w_1 - w_2)^+ \, dx = \int_{\Omega} z_1(w_1 - w_2)^+ \, dx,
\]

\[
\int_{\Omega} |\nabla w_2|^{p-2} \nabla w_2 \cdot \nabla (w_1 - w_2)^+ \, dx = \int_{\Omega} z_2(w_1 - w_2)^+ \, dx,
\]

hence

\[
0 \leq \int_{\{w_1 > w_2\}} \left(|\nabla w_1|^{p-2} \nabla w_1 - |\nabla w_2|^{p-2} \nabla w_2 \right) \cdot (\nabla w_1 - \nabla w_2) \, dx
\]

\[
= \int_{\Omega} (z_1 - z_2)(w_1 - w_2)^+ \, dx \leq 0.
\]

It follows $w_1 \leq w_2$ a.e. in Ω. \hfill \Box

Lemma 7.2. If $\lambda \in \mathbb{R}$ and $u \in W^{1,p}_0(\Omega) \setminus \{0\}$ satisfy

\[
\int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla v \, dx = \lambda \int_{\Omega} |u|^{p-2} u v \, dx \quad \forall v \in W^{1,p}_0(\Omega),
\]

then $u \in L^\infty(\Omega) \cap C^1(\Omega)$.

Moreover, if Ω is connected and $u \geq 0$ a.e. in Ω, it holds $u > 0$ in Ω.

Proof. If $p > N$ we have $W^{1,p}_0(\Omega) = W^{1,p}_0(\Omega)$ and the assertion is proved in [17]. Therefore assume that $1 < p \leq N$. If we set

\[
R_k(t) = \begin{cases} t + k & \text{if } t < -k, \\ 0 & \text{if } -k \leq t \leq k, \\ t - k & \text{if } t > k, \end{cases}
\]
we have $R_k(u) \in W^{1,p-}_0(\Omega)$, hence
\[
\int_\Omega |\nabla R_k(u)|^p \, dx = \lambda \int_\Omega |u|^{p-1}|R_k(u)| \, dx.
\]

Let $1 < s < p$ with $s^* \geq p$. If we set
\[
A_k = \{ x \in \Omega : |u(x)| > k \} = \{ x \in \Omega : R_k(u(x)) \neq 0 \},
\]
it follows
\[
\int_{A_k} (|u| - k)^p \, dx \leq \mathcal{L}^N(A_k)^{1-\frac{s}{p}} \left(\int_\Omega |R_k(u)|^{s^*} \, dx \right)^\frac{p}{s^*}
\]
\[
\leq c(N,s)^p \mathcal{L}^N(A_k)^{1-\frac{s}{p}} \left(\int_\Omega |\nabla R_k(u)|^s \, dx \right)^\frac{p}{s^*}
\]
\[
\leq c(N,s)^p \mathcal{L}^N(A_k)^{1-\frac{s}{p}} \int_\Omega |\nabla R_k(u)|^p \, dx
\]
\[
= c(N,s)^p \mathcal{L}^N(A_k)^{1-\frac{s}{p}} \lambda \int_{A_k} |u|^{p-1}(|u| - k) \, dx.
\]

Then the same argument of [18, Lemma 4.1] shows that $u \in L^\infty(\Omega)$. By the results of [9], [26], we infer that $u \in C^1(\Omega)$.

If Ω is connected and $u \geq 0$ a.e. in Ω, by [27, Theorem 5] we conclude that $u > 0$ in Ω. \qed

Proof of Theorem 2.2.

If $u \in W^{1,p-}_0(\Omega) \setminus \{0\}$ satisfies
\[
\int_\Omega |\nabla u|^p \, dx = \lambda^{(1)}_p \int_\Omega |u|^p \, dx,
\]
we claim that $u \in L^\infty(\Omega) \cap C^1(\Omega)$ and either $u > 0$ in Ω or $u < 0$ in Ω.

Actually, by the minimality of $\lambda^{(1)}_p$ it follows that
\[
\int_\Omega |\nabla u|^{p-2}\nabla u \cdot \nabla v \, dx = \lambda^{(1)}_p \int_\Omega |u|^{p-2}uv \, dx \quad \forall v \in W^{1,p-}_0(\Omega)
\]
and from Lemma 7.2 we infer that $u \in L^\infty(\Omega) \cap C^1(\Omega)$. Moreover, also $w = |u|$ has the same properties and, by Lemma 7.2, satisfies $w > 0$ in Ω. Since Ω is connected, we have either $u = w$ or $u = -w$ and the claim is proved.

In particular, there exists $w \in W^{1,p-}_0(\Omega) \cap L^\infty(\Omega) \cap C^1(\Omega)$ such that $w > 0$ in Ω and
\[
\int_\Omega |\nabla w|^{p-2}\nabla w \cdot \nabla v \, dx = \lambda^{(1)}_p \int_\Omega |w|^{p-2}wv \, dx \quad \forall v \in W^{1,p-}_0(\Omega).
\]

Now let $\lambda \in \mathbb{R}$ and $u \in W^{1,p-}_0(\Omega) \setminus \{0\}$ satisfy
\[
\begin{cases}
 u \geq 0 \text{ a.e. in } \Omega,
 \\
 \int_\Omega |\nabla u|^{p-2}\nabla u \cdot \nabla v \, dx = \lambda \int_\Omega |u|^{p-2}v \, dx \quad \forall v \in W^{1,p-}_0(\Omega).
\end{cases}
\]

Again, from Lemma 7.2 we infer that $u \in L^\infty(\Omega) \cap C^1(\Omega)$ with $u > 0$ in Ω, so that $\tilde{u} = \log u$ and $\tilde{w} = \log w$ also belong to $C^1(\Omega)$. If we set $u_k = u + (1/k)$,
\[w_k = w + (1/k), \; \tilde{u}_k = \log u_k \quad \text{and} \quad \tilde{w}_k = \log w_k, \] we have
\[\frac{1}{u_k} (u_k^p - w_k^p), \quad \frac{1}{w_k} (w_k^p - u_k^p) \in W_0^{1,p} (\Omega). \]

The first function can be used as a test in the equation of \(u \) and the second one in that of \(w \). As in [17, Lemma 3.1], it follows
\[
\int_{\Omega} \left(\lambda \frac{w^{p-1}}{u^{p-1}} - \lambda_p^{(1)} \frac{w^{p-1}}{w^{p-1}} \right) (u_k^p - w_k^p) \, dx
= \int_{\Omega} u_k^p \left(|\nabla \tilde{u}_k|^p - |\nabla \tilde{w}_k|^p - p |\nabla \tilde{w}_k|^{p-2} \nabla \tilde{w}_k \cdot (\nabla \tilde{u}_k - \nabla \tilde{w}_k) \right) \, dx
+ \int_{\Omega} w_k^p \left(|\nabla \tilde{w}_k|^p - |\nabla \tilde{u}_k|^p - p |\nabla \tilde{u}_k|^{p-2} \nabla \tilde{u}_k \cdot (\nabla \tilde{w}_k - \nabla \tilde{u}_k) \right) \, dx \geq 0.
\]
Passing to limit as \(k \to \infty \) and applying Lebesgue’s theorem and Fatou’s lemma, we infer that
\[
(\lambda - \lambda_p^{(1)}) \int_{\Omega} (u^p - w^p) \, dx
\geq \int_{\Omega} u^p \left(|\nabla \tilde{u}|^p - |\nabla \tilde{w}|^p - p |\nabla \tilde{w}|^{p-2} \nabla \tilde{w} \cdot (\nabla \tilde{u} - \nabla \tilde{w}) \right) \, dx
+ \int_{\Omega} w^p \left(|\nabla \tilde{w}|^p - |\nabla \tilde{u}|^p - p |\nabla \tilde{u}|^{p-2} \nabla \tilde{u} \cdot (\nabla \tilde{w} - \nabla \tilde{u}) \right) \, dx \geq 0.
\]
Since \(u \) can be replaced by \(tu \) for any \(t > 0 \), it follows \(\lambda = \lambda_p^{(1)} \). Then the strict convexity of \(\{ \xi \mapsto |\xi|^p \} \) implies that \(\nabla (\tilde{u} - \tilde{w}) = 0 \) in \(\Omega \). Since \(\Omega \) is connected, we infer that \(\tilde{u} = \tilde{w} + c \), hence \(u = e^c w \).

On the other hand, if \(u \in W_0^{1,p} (\Omega) \setminus \{0\} \) satisfies
\[
\int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla v \, dx = \lambda_p^{(1)} \int_{\Omega} |u|^{p-2} uv \, dx \quad \forall v \in W_0^{1,p} (\Omega),
\]
it follows
\[
\int_{\Omega} |\nabla u|^p \, dx = \lambda_p^{(1)} \int_{\Omega} |u|^p \, dx,
\]
hence \(u \in C^1(\Omega) \) with either \(u > 0 \) in \(\Omega \) or \(u < 0 \) in \(\Omega \). We infer that \(u = tw \) for some \(t \neq 0 \). \(\square \)

References

[1] H. Attouch, “Variational convergence for functions and operators”, *Applicable Mathematics Series*, Pitman, Boston, 1984.

[2] T. Bartsch, “Topological methods for variational problems with symmetries”, *Lecture Notes in Mathematics*, 1560. Springer-Verlag, Berlin, 1993.

[3] M. Belloni and B. Kawohl, A direct uniqueness proof for equations involving the \(p \)-Laplace operator, *Manuscripta Math.* 109 (2002), no. 2, 229–231.

[4] L. Brasco and G. Franzina, A note on positive eigenfunctions and hidden convexity, *Arch. Math. (Basel)* 99 (2012), no. 4, 367–374.

[5] H. Brezis, “Functional analysis, Sobolev spaces and partial differential equations”, *Universitext*, Springer, New York, 2011.

[6] T. Champion and L. De Pascale, Asymptotic behaviour of nonlinear eigenvalue problems involving \(p \)-Laplacian-type operators, *Proc. Roy. Soc. Edinburgh Sect. A* 137 (2007), no. 6, 1179–1195.
[7] G. Dal Maso, “An introduction to Γ-convergence”, Progress in Nonlinear Differential Equations and their Applications, 8, Birkhäuser, Boston, 1993.

[8] M. Degiovanni and M. Marzocchi, Limit of minimax values under Γ-convergence, Electron. J. Differential Equations 2014 (2014), no. 266, 19 pp.

[9] E. DiBenedetto, $C^{1+\alpha}$ local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal. 7 (1983), no. 8, 827–850.

[10] A. El Khalil, S. El Manouni and M. Ouanan, On the principal eigencurve of the p-Laplacian: stability phenomena, Canad. Math. Bull. 49 (2006), no. 3, 358–370.

[11] A. El Khalil, P. Lindqvist and A. Touzani, On the stability of the first eigenvalue of $A_p u + \lambda g(x)|u|^{p-2}u = 0$ with varying p, Rend. Mat. Appl. (7) 24 (2004), no. 2, 321–336.

[12] E.R. Fadell and P.H. Rabinowitz, Bifurcation for odd potential operators and an alternative topological index, J. Functional Analysis 26 (1977), no. 1, 48–67.

[13] E.R. Fadell and P.H. Rabinowitz, Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems, Invent. Math. 45 (1978), no. 2, 139–174.

[14] B. Kawohl and P. Lindqvist, Positive eigenfunctions for the p-Laplace operator revisited, Analysis (Munich) 26 (2006), no. 4, 545–550.

[15] B. Kawohl, M. Lucia and S. Prashanth, Simplicity of the principal eigenvalue for indefinite quasilinear problems, Adv. Differential Equations 12 (2007), no. 4, 407–434.

[16] M.A. Krasnosel’skiǐ, “Topological methods in the theory of nonlinear integral equations”, A Pergamon Press Book, The Macmillan Co., New York, 1964.

[17] P. Lindqvist, On the equation $\text{div} (|Du|^p - 2Du) + \lambda|u|^{p-2}u = 0$, Proc. Amer. Math. Soc. 109 (1990), no. 1, 157–164 and 116 (1992), no. 2, 583–584.

[18] P. Lindqvist, On nonlinear Rayleigh quotients, Potential Anal. 2 (1993), no. 3, 199–218.

[19] P. Lindqvist, A nonlinear eigenvalue problem, in Topics in mathematical analysis, P. Clatiti, E. Gonzalez, M. Lanza de Cristoforis and G.P. Leonardi eds., Ser. Anal. Appl. Comput., 3, 175–203, World Sci. Publ., Hackensack, NJ, 2008.

[20] M. Lucia and S. Prashanth, Simplicity of principal eigenvalue for p-Laplace operator with singular indefinite weight, Arch. Math. (Basel) 86 (2006), no. 1, 79–89.

[21] M. Lucia and F. Schuricht, A class of degenerate elliptic eigenvalue problems, Adv. Nonlinear Anal. 2 (2013), no. 1, 91–125.

[22] E. Parini, Continuity of the variational eigenvalues of the p-Laplacian with respect to p, Bull. Aust. Math. Soc. 83 (2011), no. 3, 376–381.

[23] P.H. Rabinowitz, “Minimax methods in critical point theory with applications to differential equations”, CBMS Regional Conference Series in Mathematics, 65, Published for the Conference Board of the Mathematical Sciences, Washington, 1986.

[24] A. Szulkin and M. Willem, Eigenvalue problems with indefinite weight, Studia Math. 135 (1999), no. 2, 191–201.

[25] G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. (4) 110 (1976), 353–372.

[26] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations 51 (1984), no. 1, 126–150.

[27] J.L. Vázquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12 (1984), no. 3, 191–202.

[28] M. Willem, “Minimax theorems”, Progress in Nonlinear Differential Equations and their Applications, 24, Birkhäuser, Boston, 1996.

Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, Via dei Musei 41, 25121 Brescia, Italy

E-mail address: marco.degiovanni@unicatt.it, marco.marzocchi@unicatt.it