First-order chiral phase transition may naturally lead to the “quenched” initial condition and strong soft-pion fields

O. Scavenius1,2, A. Dumitru1

1 Physics Department, Yale University, P.O. Box 208124, New Haven, CT 06520, USA
2 The Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen \O, Denmark

(March 27, 2022)

We propose a novel mechanism for DCC formation in a first-order chiral phase transition. In this case the effective potential for the chiral order parameter has a local minimum at $\Phi \sim 0$ in which the chiral field can be “trapped”. If the expansion is sufficiently fast a bubble of disoriented chiral field can emerge and decouple from the rest of the fireball. The bubble may overshoot the mixed phase and subsequently supercool until the barrier disappears, when the potential resembles that at $T = 0$. This situation corresponds to the initial condition realized in a “quench”. Thus, the subsequent alignment in the vacuum direction leads to strong amplification of low momentum modes of the pion field. We propose that these DCCs could accompany the previously suggested baryon rapidity fluctuations.

Relativistic heavy-ion collisions might offer the interesting opportunity to study chiral symmetry restoration at non-zero temperature and density, which could possibly lead to the formation of domains of disoriented chiral condensate (DCC) \cite{1-5}. The strongest amplification of the pion field is obtained for the so-called “quenched” initial condition \cite{3}. It is assumed that the heatbath is removed instantaneously after restoration of chiral symmetry.

However, dynamical simulations \cite{1,2} show that the “quench” does not emerge naturally in a heavy ion collision, if the chiral phase transition is second-order or a smooth crossover. In this letter, we instead propose a new approach to obtain the “quenched” initial conditions naturally in the presence of a first-order phase transition.

It has been argued \cite{6} that the phase transition for two massless quarks at baryon-chemical potential $\mu = 0$ is second-order which then becomes a smooth crossover for small quark masses. On the other hand, a first-order phase transition is predicted for small temperatures and large μ. If, indeed, there is a smooth crossover for $\mu = 0$ and non-zero T, and a first-order transition for small T and non-zero μ, then the first-order phase transition line in the (μ, T) plane must end in a second-order critical point. This point is predicted to be at $T \sim 100$ MeV and $\mu \sim 600$ MeV. However, some lattice QCD results indicate a
first-order transition even at vanishing baryon-chemical potential [7].

Such temperatures and baryon-chemical potentials can be reached in the central region of heavy-ion collisions in the forthcoming Pb(40 AGeV)+Pb experiments at the CERN-SPS [8], and in the fragmentation regions of more energetic collisions at the CERN-SPS, BNL-RHIC, and CERN-LHC ($\sqrt{s} \approx 20, 200, 5000$ AGeV) [9]. Furthermore, fluctuations in individual events can also provide rapidity bins with significantly higher μ and lower T than on average [10–13]. In any case, the dynamical scenario for DCC formation described in this Letter applies to the case of a first-order chiral phase transition, and is qualitatively independent of the value of μ. Our calculation described below has been performed at $\mu = 0$, and the parameters of the Lagrangian (in particular the coupling of the chiral field to the heat-bath) have been chosen such as to yield a first-order phase transition. It can be viewed as a representative example to illustrate the idea; the basic mechanism works equally well also at non-zero μ.

In case of a first-order transition, the thermodynamical potential as function of the order parameter Φ exhibits a local minimum at $\Phi = 0$ both in the chirally restored phase as well as in the mixed phase [1,2,14]. In high-energy heavy-ion collisions the expansion rate of the locally comoving three-volume element can become large [15]. This opens the possibility that the system can break up into smaller droplets [12,16], which might not be able to follow an adiabatic expansion. Instead, a bubble can “overshoot” the phase boundary [11] into the low-density broken phase. The chiral field in the bubble is coherent if the bubble-radius is on the order of the coherence length or smaller. Close to a first-order phase boundary, the chiral field is light and this coherence length is expected to be large.

Suppose the bubble is created in the restored phase, close to the first-order phase boundary. Following [11] we suppose that the chiral field within the bubble is trapped in the $\Phi \sim 0$ local minimum of the potential (chiral symmetry is still restored but the field oscillates in the false direction), while in previous work [12,17] it was assumed that chiral symmetry breaking had already occurred in the bubble.

The preceding expansion will lead to a velocity profile in the bubble. In other words, the
bubble will exhibit a Hubble-like expansion with a very large expansion rate \([12,13]\), and
supercool. During the period of supercooling the chiral field oscillates coherently within the
whole bubble, while its energy dissipates partly due to friction (coupling to the heat-bath
\([18]\)). The local minimum in the effective potential persists until the droplet reaches the
spinodal line where the potential is close to that at \(T = 0\) (one single minimum). The
moment where the coherent field “leaps” over the barrier depends on the barrier height and
the fluctuation. In a quasi-static situation the field would tunnel to the global minimum.
However, in a high energy heavy ion collision the local expansion rate is so large (roughly
\(10^{20}\) times larger than that of the universe at spontaneous chiral symmetry breaking \([15]\)
that it is reasonable to assume that tunneling has no time to occur.

\[\text{FIG. 1. Finite temperature effective potential (i.e. the grand canonical potential) within the}\]
linear \(\sigma\)-model at \(T = 130\ MeV\) (left) and \(T = 100\ MeV\) (right). The black dot depicts the average
chiral field at the corresponding time.

A second possibility for the chiral field to be kicked over the barrier to the global minimum
at \(\Phi \neq 0\) is via a thermal fluctuation. Estimates within homogeneous nucleation theory \([19]\)
show that the time-scale for nucleation of critically-sized bubbles with \(\Phi \neq 0\) is about the
same as that needed to reach the spinodal region (\(\approx 2\ fm/c\) in our calculation below). Finite-
size effects delay bubble nucleation even further \([20]\): if our entire decoupled bubble has the
size of the critically-sized bubble in homogeneous nucleation theory, it can not convert to the broken phase via homogeneous nucleation. Instead, it must supercool until it reaches the spinodal instability (when the potential resembles that at $T = 0$), cf. also \[11\]. Thus, the most favorable scenario for amplification of the low-momentum modes of the pion field, i.e. the “quenched” initial condition, is automatically realized in a natural way if the chiral phase transition is first-order.

Similar to previous studies of DCC formation our scenario also requires a rapid evolution out of equilibrium. However, the required 10%-20% supercooling appear much more moderate than the instantaneous removal of the heat-bath at $T \sim T_C$, as is necessary to obtain the “quenched” initial conditions in a smooth crossover \[3\].

After the true vacuum is reached, the coherent chiral field will eventually decay into pions due to residual interactions \[2,21\]. If, at this stage, the heat-bath is still very hot and dense, scattering of the DCC-pions with particles from the heat-bath will randomize the isospin orientation and spread the momentum distribution \[22\]. However, in case of a first-order transition with supercooling, the DCC decays at a much lower temperature and density of the heat-bath. Therefore, it might be more feasible to detect the DCC-pions. These pions will be blue-shifted, though, according to the velocity of the bubble from which they emerged.

Above we discussed the mechanism for DCC formation within a decoupled bubble. In principle, however, the same idea can be applied to the entire fireball, thus assuming that it supercools and reaches the spinodal instability as a whole. Nevertheless, we have chosen to describe how our picture works in a smaller droplet.

To illustrate the above idea, we applied the linear σ-model coupled to a heat-bath \[3,16\]. The Lagrangian of the linear sigma model with quark degrees of freedom reads

$$\mathcal{L} = \bar{q} (i\gamma^\mu \partial_\mu - g(\sigma + i\gamma_5 \vec{\tau} \cdot \vec{\pi}))q + \frac{1}{2} (\partial_\mu \sigma \partial^\mu \sigma + \partial_\mu \vec{\pi} \partial^\mu \vec{\pi}) - U(\sigma, \vec{\pi}),$$ \hspace{1cm} (1)

where the zero temperature potential is

$$U(\sigma, \vec{\pi}) = \frac{\lambda^2}{4} (\sigma^2 + \vec{\pi}^2 - v^2)^2 - H\sigma.$$ \hspace{1cm} (2)
Here q is the light quark field $q = (u, d)$. The scalar field σ and the pion field $\vec{\pi} = (\pi_1, \pi_2, \pi_3)$ together form a chiral field $\Phi = (\sigma, \vec{\pi})$. This Lagrangian is invariant under chiral $SU_L(2) \otimes SU_R(2)$ transformations if the explicit symmetry breaking term $H\sigma$ is zero. The parameters of the Lagrangian are usually chosen such that the chiral symmetry is spontaneously broken in the vacuum and the expectation values of the meson fields are $\langle \sigma \rangle = f_\pi$ and $\langle \vec{\pi} \rangle = 0$, where $f_\pi = 93$ MeV is the pion decay constant. The constant H is fixed by the PCAC relation which gives $H = f_\pi m_\pi^2$, where $m_\pi = 138$ MeV is the pion mass. Then one finds $v^2 = f_\pi^2 - \frac{m_\pi^2}{\lambda^2}$. The sigma mass, $m_\sigma^2 = 2\lambda^2 f_\pi^2 + m_\pi^2$, which we set to 600 MeV yields $\lambda^2 \approx 20$. The coupling to the heat-bath, $g = 5.5$, is chosen such as to obtain the potential shown in Fig. 1. It corresponds to a first-order chiral phase transition. Note that this large value for g results in a constituent quark mass at $T = 0$ of $m_q = gf_\pi \sim 512$ MeV. Thus, the nucleon mass is too large. However, this is not relevant for our present considerations. A stronger coupling leads to a stronger first-order phase transition with a more pronounced barrier and even larger constituent quark mass; on the other hand, $g = 3.3$ fits the nucleon mass in the vacuum but results in a smooth crossover [5].

The Euler-Lagrange equations of motion for the fields,

$$\partial_\mu \partial^\mu \sigma + \lambda^2 [\sigma^2 + \vec{\pi}^2 - v^2] \sigma - H = -g\rho_s,$$

$$\partial_\mu \partial^\mu \vec{\pi} + \lambda^2 [\sigma^2 + \vec{\pi}^2 - v^2] \vec{\pi} = -g\vec{\rho}_{ps},$$

(3)

are solved self-consistently through the effective quark and antiquark mass, $m_q = g\sqrt{\sigma^2 + \vec{\pi}^2}$, with the continuity equation for the energy-momentum tensor of the heat-bath, which is constituted by the quarks:

$$\partial_\mu T^{\mu\nu} + \rho_s \partial^\nu m_q = 0,$$

(4)

where ρ_s and $\vec{\rho}_{ps}$ are the scalar and pseudoscalar densities, respectively. To solve eqs. (3) we employ a second-order leap-frog algorithm, while eqs. (4) are solved with the RHLLE algorithm [23], assuming that $T^{\mu\nu}$ is that of an ideal fluid in local thermodynamical equilibrium. For more details please refer to [5].
FIG. 2. The π_0 and σ field strengths within the forward light-cone for $g = 5.5$ and initial condition $\Phi = (0.1, 0.07, 0, 0)$, $\partial \Phi / \partial t = 0$. The initial expansion scalar was chosen as $\partial \cdot u \approx 1/(2\text{fm}/c)$.

Let us consider the evolution starting close to the minimum of the potential shown to the left in Fig. 1. The evolution of the fields is shown in Fig. 2. The chiral field is “trapped” for $t \sim 2 \text{ fm}/c$ in the local minimum until the temperature drops to the value corresponding to the potential to the right ($T \sim 100 \text{ MeV}$). At this point the bubble is supercooled by about 15% and the barrier to the global minimum has almost disappeared. Here, the field starts to “accelerate” and rolls towards the true vacuum. Note that the field gets an additional “kick” because the bubble starts to collapse under the vacuum pressure Φ, which at this point, after the system has crossed the first order phase transition line, exceeds that of the classical field inside the bubble. For this scenario, we find that the pion field is amplified by more than a factor of 100, corresponding to about 18 π_0’s and 3 σ’s for an initial radius of 4 fm, see Fig. 3. For the simple quench scenario, where the fields evolve in the zero temperature potential U and without coupling to any heat-bath, we get similar results: 21 π_0’s and 4 σ’s. We computed these numbers as described in [24,5].
In summary, we discussed a novel mechanism for DCC formation in a first-order chiral phase transition. We study a bubble of disoriented chiral field that decouples from the rest of the system before reaching the phase boundary. The bubble supercools and grows due to the large volume-expansion rate established during preexpansion (before decoupling of the bubble). As the effective potential approaches the $T = 0$ form, the local minimum at $\Phi = 0$ disappears. This leads to the “quenched” initial condition. The subsequent alignment in the vacuum direction leads to very strong amplification of low momentum modes of the pion field. Numerical simulations within the linear σ-model coupled to quarks at non-zero baryon-chemical potential are in progress. However, the above general discussion does not depend on a specific model for the chiral dynamics.

If the chiral phase transition is first-order, as is particularly likely the case for finite baryon density $[6]$, and if the system breaks up into smaller droplets or bubbles, rapidity fluctuations (e.g. of baryon number) can occur, as proposed in $[11, 13, 16]$. If a DCC is formed, in coincidence “pion-spikes” of given bubble-isospin could appear in the same p_T and rapidity range.
ACKNOWLEDGMENTS

We thank the Yale Relativistic Heavy Ion Group for kind hospitality and support from grant no. DE-FG02-91ER-40609. Also, we gratefully acknowledge fruitful discussions with A.D. Jackson, I. Mishustin, D.H. Rischke, J. Schaffner and U.A. Wiedemann. We thank D.H. Rischke for reading the manuscript prior to publication.

[1] A.A. Anselm, Phys. Lett. B217, 169 (1989)
 A.A. Anselm and M.G. Ryskin, Phys. Lett. B266, 482 (1991)
 J.D. Bjorken, Int. J. Mod. Phys. A7, 4189 (1992)
[2] J. Blaizot and A. Krzywicki, Phys. Rev. D46, 246 (1992)
[3] K. Rajagopal and F. Wilczek, Nucl. Phys. B399, 395 (1993); Nucl. Phys. B404, 577 (1993)
 S. Gavin, A. Gocksch and R.D. Pisarski, Phys. Rev. Lett. 72, 2143 (1994)
 S. Gavin and B. Müller, Phys. Lett. B329, 486 (1994)
 M. Asakawa, Z. Huang and X. Wang, Phys. Rev. Lett. 74, 3126 (1995)
 M. Boyanovsky, H.J. de Vega and R. Holman, Phys. Rev. D51, 734 (1995)
[4] J. Randrup, Phys. Rev. Lett. 77, 1226 (1996)
 J. Schaffner-Bielich and J. Randrup, Phys. Rev. C59, 3329 (1999)
[5] I.N. Mishustin and O. Scavenius, Phys. Lett. B396, 33 (1997)
 I.N. Mishustin, J.A. Pedersen and O. Scavenius, Heavy Ion Phys. 5, 377 (1997) hep-ph/9801314
 I.N. Mishustin and O. Scavenius, hep-ph/9804338, to be published in PRL.
[6] M.A. Halasz, A.D. Jackson, R.E. Shrock, M.A. Stephanov and J.J. Verbaarschot, Phys. Rev. D58, 096007 (1998)
 M.A. Stephanov, Nucl. Phys. A642, 90 (1998)
 M. Stephanov, K. Rajagopal and E. Shuryak, Phys. Rev. Lett. 81, 4816 (1998)
 J. Berges and K. Rajagopal, Nucl. Phys. B538, 215 (1999)
 T.M. Schwarz, S.P. Klevansky and G. Papp, nucl-th/9903048.
[7] Y. Iwasaki, K. Kanaya, S. Kaya, S. Sakai and T. Yoshie, Phys. Rev. D54, 7010 (1996)
[8] J. Sollfrank, J. Phys. G 23, 1903 (1997), and nucl-th/9707024; J. Cleymans and K. Redlich,
 Phys. Rev. Lett. 81, 5284 (1998); L.V. Bravina et al., J. Phys. G 25, 351 (1999)
[9] A. Dumitru, D.H. Rischke, T. Schönfeld, L. Winckelmann, H. Stöcker and W. Greiner, Phys.
 Rev. Lett. 70, 2860 (1993)
[10] C. Spieles, L. Gerland, H. Stöcker, C. Greiner, C. Kuhn and J.P. Coffin, Phys. Rev. Lett. 76, 1776 (1996)
[11] H. Heiselberg and A.D. Jackson, nucl-th/9809013.
[12] I.N. Mishustin, Phys. Rev. Lett. 82, 4779 (1999)
[13] S. Gavin, nucl-th/9908070
[14] L.P. Csernai, I.N. Mishustin, and A. Mocsy, Heavy Ion Phys. 3, 151 (1996)
 G.E. Brown, M. Buballa and M. Rho, Nucl. Phys. A609, 519 (1996)
P. Papazoglou, J. Schaffner, S. Schramm, D. Zschiesche, H. Stöcker and W. Greiner, Phys. Rev. C55, 1499 (1997)

[15] A. Dumitru, [hep-ph/9905217].

[16] L.P. Csernai and I.N. Mishustin, Phys. Rev. Lett. 74, 5005 (1995)

[17] J.I. Kapusta and A.P. Vischer, Z. Phys. C75, 507 (1997)

[18] T.S. Biro and C. Greiner, Phys. Rev. Lett. 79, 3138 (1997)

C. Greiner and B. Müller, Phys. Rev. D55, 1026 (1997)

F. Cooper, S. Habib, Y. Kluger and E. Mottola, Phys. Rev. D55, 6471 (1997)

D.H. Rischke, Phys. Rev. C58, 2331 (1998)

[19] L.P. Csernai and J.I. Kapusta, Phys. Rev. Lett. 69, 737 (1992)

L.P. Csernai, J.I. Kapusta, G. Kluge and E.E. Zabrodin, Z. Phys. C58, 453 (1993)

[20] E.E. Zabrodin, L. Bravina, H. Stöcker and W. Greiner, Phys. Rev. C59, 894 (1999)

[21] S. Mrowczynski and B. Müller, Phys. Lett. B363, 1 (1995)

H. Hiro-Oka and H. Minakata, [hep-ph/9906301].

[22] M. Bleicher et al., Nucl. Phys. A638, 391 (1998)

[23] D.H. Rischke, S. Bernard and J.A. Maruhn, Nucl. Phys. A595, 1346 (1995)

[24] A. Abada, M. Birse, Phys. Rev. D55, 6887 (1997)

G. Amelino-Camelia, J.D. Bjorken, S.E. Larsson, Phys. Rev. D56, 6942 (1997)