VO\textsubscript{2}max-Based Physical Fitness Categories in a Brazilian Population with Supposed High Socioeconomic Status and without Structural Heart Disease

João Manoel Rossi Neto,1,2 Antonio Sergio Tebexreni,2 Alexandre Novakoski F. Alves,2 Floriana Bertini Abreu,2 Priscilla Ayumi Nishio,2 Mauricio Cruz Thomazi,2 Ivana Antelmi,2 Paola Emanuela P. Smanio2

Instituto Dante Pazzanese de Cardiologia,1 São Paulo, SP - Brazil
Fleury Group,2 São Paulo, SP – Brazil

Abstract

Background: The most widely used data for cardiorespiratory fitness (CRF) referrals are from the Cooper Clinic, which uses calculated maximal oxygen uptake (VO\textsubscript{2}max) values.

Objective: To develop CRF values from cardiopulmonary exercise testing (CPX) in a Brazilian population with high socioeconomic level and free of structural heart disease. VO\textsubscript{2}max testing results were compared with the Cooper Clinic and FRIEND Registry data.

Methods: CPX data from consecutive individuals between January 1,2000, and May 31,2016 were used in this study. Inclusion criteria were: VO\textsubscript{2}max by a pre-specified definition. We built a CRF chart according to VO\textsubscript{2}max percentiles: very poor (≤20%), poor (20-40%), fair (40-60%), good (60-80%), excellent (80-90%), and superior (≥90%). Kappa correlation was used to analyze our data in comparison with that of the other two databases. Statistical tests with \(p<0.005\) were considered significant.

Results: Final cohort included 18,186 tests: 12,552 men, 5,634 women (7–84 years). The most recurrent response was “good” (20.2%). There was a mean difference in weight, height, body mass index (BMI), and age in the CRF chart. An inverse correlation existed between VO\textsubscript{2}max and age, weight, and BMI. Using a linear regression and these variables, a predictive equation was developed for VO\textsubscript{2}max. Our findings differed from that of the other databases.

Conclusion: We developed a classification for CRF and found higher values in all classification ranges of functional capacity in contrast to the Cooper Clinic and FRIEND Registry. Our findings offer a more accurate interpretation of ACR in this large Brazilian population sample when compared to previous standards based on the estimated VO\textsubscript{2}max.

Keywords: Physical Activity; Exercise; Cooper Test; Social Class; Endurance Training; Physical Endurance ; Life Style Healthy.
compared to other tables widely used in our setting (American Heart Association, Cooper Clinic, and Universidade Federal de São Paulo). In our institution the most widely used data for CRF referrals are based on the Cooper Clinic data. These data classified an individual’s VO₂ max based on the ACSM Guidelines for Exercise Testing and Prescription, first published in 1995. The tables used for classification relied on data from the Cooper Clinic (Dallas, TX) and provided percentiles for men and women based on individual results from either a maximal Balke treadmill test, a 12-minute run test, or 1.5-mile run test. More importantly, recent data of 2,525,827 adults representing eight high- and upper-middle-income countries showed that there has been a meaningful overall decline in the CRF of adults since the year 1980. This decrease has progressively increased in magnitude over time, suggest a corresponding decline in overall population health. The report states there is a need for continuous national and international surveillance systems to monitor health and fitness trends, especially among low- and middle-income countries for which no data currently exist.

The purpose of this report was to develop reference standards for functional capacity by establishing CRF values derived from cardiopulmonary exercise testing (CPX) in a large Brazilian population sample with a supposed high socioeconomic level and free of structural heart disease. Using VO₂ max, we compared our results with that of the Cooper Clinic and data from the FRIEND Registry.

Methods

Participants

We analyzed the data collected from consecutive individuals who underwent CPX between January 1, 2000, and May 31, 2016. These data were collected from four Fleury Laboratory units, which are large private cardiology referral laboratories in southern Brazil, as the tests were conducted by a private clinic, the participants had a supposed higher socioeconomic status. Six cardiologists participated, of which all had experience in conducting exercise and cardiopulmonary testing. The following variables were available from this report: indications for the test as physical fitness assessment, age, weight, height, medication use, whether the VO₂ uptake was considered maximum or peak, the value of VO₂ uptake (mL·kg⁻¹·min⁻¹ and mL·min⁻¹), if the resting electrocardiogram traces were normal or altered (ischemia, bundle branch block, second and third AV block, atrial fibrillation, left ventricular hypertrophy, and pre-excitation syndrome), or if the test result was considered abnormal (ischemic or suggestive of ischemia) or normal. A database was constructed using these variables. The inclusion criteria were: checkup or aerobic evaluation as the indication, VO₂ max values available, a normal electrocardiogram, normal test results, and no medication use that could influence the VO₂ uptake.

The exclusion criteria were: abnormal test results (see inclusion criteria), or medication use that could influence VO₂ uptake (beta blockers, medications for chronic obstructive pulmonary disease, or antiarrhythmics). With these criteria, we were able to obtain the VO₂ max in a population considered to be free of structural heart disease and compare the results with the data from the Copper Clinic.

Our sample population was mostly from the city of Sao Paulo, a megalopolis with many immigrants, cultures, and ethnicities. As we have previously stated, our participants had a supposed higher socioeconomic status and perhaps most of them should be considered “physically active”.

VO₂ max

We used the criteria reported by Howley et al. and Balady et al. to define the VO₂ max criteria that was maintained for the entire cohort. VO₂ max was defined by two or more of the following criteria: 1) respiratory exchange ratio (RER) >1.10, 2) at least 95% of the age-predicted maximal heart rate [220 − age (in y)], 3) a plateau in the VO₂ uptake curve despite increasing the exercise intensity until exhaustion (≤2.1 mL·kg⁻¹·min⁻¹ to the next level), or 4) clinical volitional exhaustion (maximal voluntary effort according to the Borg scale that ranges from very, very easy = 1 to exhaustion = 10). Samples were obtained breath by breath and averaged over 30-second time frames. If a plateau was not reached, the highest VO₂ max during a 30-second stage was used.

Functional capacity was evaluated based on percentile ranking of VO₂ max and CRF was classified as very poor (<20%), poor (20-40%), fair (40-60%), good (60-80%), excellent (80-90%), and superior (>90%). All institutional units used the Vmax Encore (SensorMedics, Norma Linda, CA) gas analyzer. Flow calibration was performed by a 3-L syringe, and gas analyzers were calibrated using two standard gases (gas 1:16% O₂, 4% CO₂; gas 2: 26% O₂, 0.0% CO₂) according to the recommended manufacturer instructions prior to each use.

Treadmill protocol

The ramp treadmill protocol was used for all tests and was based on the patient’s previous aerobic condition. The test was individualized with a two-minute warm-up phase starting as low as 4.0 km/h and increasing at increments of 1.0 km/h, up to the tolerance limit of the subject. All tests started at a grade of 0%, and the grade was increased up to 20% (the objective being to have most tests fall within the 8 to 12-minute range). The average maximal velocity and grade during the test protocol were 12.0 km/h (range 4–20 km/h) and 4.5% (range 0–20%), respectively. The CPX was carried out according to the recommended standards provided in recently published guidelines.

Ethics statement

The study was approved by the review board/ethics committee of the Fleury Institute (CAAE: 63362116.1.0000.5474) and complied with the Declaration of Helsinki. The Fleury Institute review board/ethics committee considered informed consent unnecessary owing to the characteristics of this study (retrospective database analysis).
Statistical analyses

Descriptive data are presented as mean ± standard deviation (SD) and categorical data are reported as frequencies (percentages). We used an analysis of variance to compare differences in VO2max values between the sexes and across age groups. To determine differences by analysis of variance, the Tukey test was applied for post-hoc analysis if significance was observed. Pearson’s correlation was used to assess the correlation of VO2max with the quantitative covariates. An ANOVA test was used for the quantitative covariates. A Kappa test was used to assess agreement between the databases. Analysis of linear regression was performed with the variables age, sex, weight, and height to elaborate a the VO2 peak prediction equation. We tested the normality of the main outcome quantitative variables by the Kolmogorov-Smirnov (KS) test and there was a normal distribution. SPSS statistical software, version 22.0 (IBM Corp., Armonk, NY), was used for all analyses. All tests with a significance of P<0.05 were considered statistically significant.

Results

The initial cohort included 24,929 tests. We excluded 5,262 tests because they were considered to be peak VO2 values, 704 because they had electrocardiogram abnormalities, 812 because of medication use that could influence the VO2max results, and 235 because of incomplete data (figure 1). The final cohort included 18,186 tests, 12,552 men and 5,634 women ranging in age from 7-84 years. Overall, the VO2max was 39.9±8.6 mL.kg^-1.min^-1 (range 11.0–75.7 mL.kg^-1.min^-1). We included only three individuals older than 80 years, and the VO2max for all these individuals revealed a mean of 24.0±5.4 mL/kg/min. In the age group ≤12 years, the mean age was 11.4±1.2 and 11.2±0.7 and the mean VO2max was 46.3±9.5 and 44.7±7.5 for boys (n = 22) and girls (n = 13), respectively.

In the age group of 70–79 years, we had 62 tests; 48 men and 14 women with a mean VO2max of 28.7±6.7 mL/kg/min and 23.4±5.9 mL/kg/min, respectively. There was a negative percentage variation among all age groups between men and women being greater in the older groups (Table 1). In post hoc analysis, there was a significant difference in mean VO2max between the age groups, both among women and men, except in women between the ages of 60-69 and 70-79 (p=0.437).

It should be noted in Table 2 that distribution of CRF results, and age groups in the Fleury record are higher in both males and females when compared to data from the Cooper Clinic and FRIEND registry. Table 8 shows a poor agreement and statistically significant using Kappa’s concordance between the three databases.

Discussion

The current analysis represents, to our knowledge, the largest study of reference data on treadmill cardiorespiratory fitness using data obtained from CPX. In Brazil, the largest existing reference studies were in Herdy’s first report with 3,992 exams18 and in their second report with 9,250 exams.19 Herdy and Uhlendorf19 published a Brazilian cardiorespiratory fitness classification based on maximum oxygen consumption, but the functional capacity in that study was classified according to the American Heart Association (AHA) guidelines, which were published in 1972.

We have demonstrated that all correlations are statistically significant (Table 3), but the values were low. The largest correlation was noted between VO2max and age, at −28.4%. The negative value in this case indicates that the greater the age, the lower the VO2max, and vice versa. However, this correlation was classified as being weak. The significance of the correlation is very closely related to the sample size, and since in this study we had an extraordinarily large sample, the weak correlation values were statistically significant.

As indicated in Table 7, the results by sex, functional capacity, and age groups in the Fleury record are higher when compared to those from the Cooper Clinic13 and FRIEND registry.15 The values of Kappa statistics less than 0.20 indicates a poor level of agreement between the databases (table 8), and are extremely low and should be considered different in daily practice. We cannot explain the differences between our results and the Cooper Clinic data. However, as mentioned by the FRIEND registry,13 this may be related to the Balke protocol, “which can cause local fatigue of calf muscles and potentially an early test termination. This would result in a lower predicted VO2max”.13 In fact, the Balke protocol presents characteristics that can compromise the VO2max measurement, especially when the test duration exceeds 15 minutes. This can lead to early fatigue due to...
Figure 1 – Flowchart of the recruitment strategy and inclusion profile for the study.

Table 1 – Descriptive characteristics of the Fleury cohort*

Age group (y)*	<19	20-29	30-39	40-49	50-69	60-69	70-79	ALL
Men n=403	16.2±2.2	25.7±2.8	35.0±2.8	44.0±2.8	53.4±2.7	63.3±2.7	72.4±2.5	40.2±10.2
Age (y)	175.8±9.7	177.9±6.8	177.9±6.7	177.3±6.6	176.4±6.2	174.8±6.4	173.8±6.7	177.3±6.8
Height	72.1±15.8	80.2±11.8	82.8±11.4	82.8±11.6	82.3±11.1	81.1±11.5	79.3±9.1	82.1±11.8
Weight	23.2±4.0	25.3±3.1	26.1±3.0	26.3±3.1	26.5±3.2	26.5±3.2	26.5±2.9	26.1±3.2
VO2max	46.7±8.0	45.0±7.5	43.5±7.9	41.6±7.8	38.6±7.9	33.7±7.1	28.7±6.7	42.1±8.3
% Var	-7.6	-3.3	-4.4	-7.2	-12.7	-14.8		

Women n=123 n=732 n=2028 n=1985 n=624 n=128 n=14 n=5634

Age (y)	16.0±2.4	25.9±2.6	34.9±2.8	43.9±2.7	53.4±2.7	63.5±2.7	72.3±1.8	39.3±9.7
Height	163.7±7.4	164.8±6.3	164.4±6.0	163.5±5.9	162.8±5.9	160.8±5.4	158.1±5.6	163.8±6.1
Weight	60.7±12.3	61.0±9.1	62.1±9.8	62.5±9.2	62.9±9.9	62.6±9.8	64.5±9.9	62.2±9.6
BMI	22.5±3.9	22.4±3.0	23.0±3.3	23.4±3.1	23.7±3.3	24.2±3.6	26.1±5.0	23.2±3.2
VO2max	38.2±7.9	36.9±6.6	36.0±7.0	34.7±7.1	31.4±6.5	26.5±5.7	23.4±5.9	35.0±7.3
% Var	-3.4	-2.4	-3.6	-3.6	-9.5	-1.6	-11.7	

BMI: body mass index (kg/m²); VO2max: relative maximal oxygen uptake (mLO2·kg⁻¹·min⁻¹). *Data are presented as mean±SD. Weight (kg). Height (cm). % Var: percentual variation.
velocity and increased incline, especially in individuals with reduced physical conditioning. 20 Regardless, in this study the results obtained for CPX are different from those derived from mathematical equations based on velocity and grade, such as those obtained by Cooper’s data.

Likewise, the differences we observed between our data and the FRIEND data are difficult to understand. Several factors influence CPX results, and we have demonstrated differences between the largest databases in our previous study. 21 We can speculate that these differences could be due to the level of previous physical conditioning, hereditary and genetic predisposition, socioeconomic status, nutritional level, sports culture, emotional stress, and other factors. The principal similarity between the studies was that the vast majority of participants were apparently healthy. In our previous studies, we performed a comparison of the direct measurement of the mean reference values for VO\textsubscript{2}\text{max} for each age group with other databases. In those studies, Norwegian22,23 men and women presented higher cardiorespiratory fitness than in the United States13 and Brazil.21 This difference was also greater for the Norwegians when compared to the FRIEND Registry.13

In 2013, the American Heart Association affirmed the need

Fleury Classification	Mean	SD	Min	Max	CI	p-value
Weight						
Very weak	84.16	16.86	18.8	158.0	0.55	
Weak	77.65	14.27	33.3	137.0	0.46	
Fair	75.42	13.27	36.0	185.0	0.43	<0.001
Good	72.79	12.12	32.0	117.0	0.39	
Excellent	70.96	11.84	12.5	105.0	0.54	
Superior	68.79	10.96	32.0	100.0	0.50	
Very weak	1.74	0.09	1.37	2.06	0.003	
Weak	1.73	0.09	1.38	2.05	0.003	
Fair	1.73	0.09	1.17	2.00	0.003	
Good	1.73	0.09	1.42	2.05	0.003	
Excellent	1.73	0.09	1.42	2.05	0.004	
Superior	1.72	0.09	1.30	1.97	0.004	
Very weak	27.76	4.22	5.8	48.4	0.14	
Weak	25.72	3.25	16.9	39.2	0.10	
Fair	24.93	3.03	10.3	72.3	0.10	<0.001
Good	24.17	2.56	15.9	39.5	0.08	
Excellent	23.66	2.47	4.7	31.9	0.11	
Superior	22.99	2.20	16.3	34.5	0.10	
Very weak	40.38	10.13	9.0	77.0	0.33	
Weak	39.97	10.10	7.0	79.0	0.33	
Fair	39.91	10.20	11.0	79.0	0.33	0.027
Good	39.71	10.10	10.0	77.0	0.32	
Excellent	39.89	9.99	11.0	74.0	0.46	
Superior	39.50	9.85	11.0	73.0	0.45	

Table 2 – Distribution of the relative frequency of the VO\textsubscript{2}\text{max} classification

Fleury	%	P-value
Very weak	19.8%	0.280
Weak	20.0%	0.650
Fair	20.0%	0.640
Good	20.2%	Ref.
Excellent	9.8%	<0.001
Superior	10.2%	<0.001

Ref. = reference

Table 3 – Correlation of quantitative variables with VO\textsubscript{2}\text{max}

VO\textsubscript{2}\text{max}	Corr (r)	P-value
Weight (Kg)	-7.5%	<0.001
Height (cm)	25.0%	<0.001
BMI (kg/m2)	-27.9%	<0.001
Age (years)	-28.4%	<0.001

Corr (r)= correlation
to develop a registry that directly measured normative values of VO₂ uptake. Unfortunately, we do not have morbidity or mortality data showing the relationship between CRF and all-cause/cardiovascular disease mortality in Brazil, so we usually extrapolate data from the United States.

While VO₂max measured directly using ventilatory gas exchange techniques is recognized as the standard for determining CRF, CPX is not always available for routine clinical exercise testing. It is also considered costlier (although more vendors have now entered the market with cost reductions) and requires more specialized staff; however, the availability of trained personnel is currently much less of an issue than it was earlier. When CPX is not feasible, other procedures can be used to obtain an estimate of CRF. Maximal exercise test time or the maximal workload (speed and grade for treadmill tests or watts for cycle ergometer tests) from the tests can be used in regression equations that have been developed to estimate VO₂max with standards errors of approximately ±10-15% of VO₂max. In addition, we have demonstrated that there was difference in CRF classification

Table 5 – P-values for Table 4

	Very weak	Weak	Fair	Good	Excellent	Superior	Excellent
Weight							
Weak	<0.001						
Fair	<0.001	<0.001					
Good	<0.001	<0.001	<0.001				
Excellent	<0.001	<0.001	<0.001	<0.001			
Superior	<0.001	<0.001	<0.001	<0.001	<0.001		
Weak	0.430						
Fair	0.945		0.932				
Height							
Good	0.064		0.946		0.429		
Excellent	0.005	0.295	0.049		0.753		
Superior	<0.001	0.042	0.003	0.248	0.983		
Weak	<0.001						
Fair	<0.001	<0.001					
BMI							
Good	<0.001	<0.001	<0.001				
Excellent	<0.001	<0.001	<0.001	<0.001	<0.001		
Superior	<0.001	<0.001	<0.001	<0.001	<0.001		
Weak	0.495						
Fair	0.338		1.000				
Age							
Good	0.050		0.883		0.959		
Excellent	0.518	1.000	1.000	1.000	0.991		
Superior	0.025	0.570	0.705	0.976	0.857		

Table 6 – Relationship of Fleury Classification with Sex and Age Group

	Very weak	Weak	Fair	Good	Excellent	Superior	Total	p-value
Sex								
Female	30.8	31.1	30.6	30.9	31.7	30.7	30.9	0.979
Male	69.2	68.9	69.4	69.1	68.3	69.3	69.1	
<19	2.9	2.8	2.9	2.9	2.9	2.8	2.9	
20-29	10.6	10.6	10.6	11.0	9.8	10.5	10.6	
30-39	35.2	35.5	35.3	35.1	35.4	35.6	35.3	
40-49	35.2	35.1	34.8	35.0	35.3	35.1	35.1	1.000
50-59	13.0	13.0	13.0	12.9	13.2	13.0	13.0	
60-69	2.7	2.5	2.7	2.7	2.7	2.7	2.8	
70-79	0.3	0.4	0.4	0.4	0.4	0.3	0.4	
Table 7 – CRF classification by VO2max (ml/kg/min) between references (Ref) of Fleury (F), Cooper Clinic (C) and FRIEND (K) data

Age	Ref	Very weak	Weak	Fair	Good	Excellent	Superior
<19	F	≤42.5	42.6-46.8	46.9-51.1	51.2-55.6	55.7-56.6	≥58.7
	C	≤35.0	35.1-38.3	38.4-45.1	45.25-50.9	51.0-55.9	≥56.0
20-29	F	≤38.6	38.7-42.8	42.9-46.4	46.5-51.8	51.9-55.2	≥55.3
	C	≤33.0	33.1-36.4	36.5-42.4	42.5-46.4	46.5-52.4	≥52.5
	K	≤33.2	33.0-38.3	38.4-44.5	44.6-51.4	51.8-55.5	≥55.6
30-39	F	≤36.5	36.6-41.4	41.5-45.3	45.4-50.3	50.4-53.5	≥53.6
	C	≤31.5	31.6-35.4	35.5-40.9	41.0-44.9	45.0-49.4	≥49.5
	K	≤25.4	25.5-28.1	28.9-31.1	31.2-36.2	36.3-41.7	≥41.8
40-49	F	≤34.7	34.8-39.5	39.6-43.5	43.6-48.1	48.2-51.7	≥51.8
	C	≤30.2	30.3-33.5	33.6-38.9	39.0-43.7	43.8-48.0	≥48.1
	K	≤22.2	22.3-25.4	25.5-28.6	28.7-34.2	34.3-37.1	≥37.2
50-59	F	≤31.4	31.5-36.3	36.4-40.5	40.6-45.0	45.1-49.0	≥49.1
	C	≤26.1	26.2-30.9	31.0-35.7	35.8-40.9	41.0-45.3	≥45.4
	K	≤21.5	21.6-24.8	24.9-28.2	28.3-30.7	30.8-34.0	≥34.1
60-69	F	≤27.0	27.1-31.3	31.4-35.3	35.4-39.2	39.3-42.7	≥42.8
	C	≤20.5	20.6-26.0	26.1-32.2	32.3-36.4	36.5-44.2	≥44.3
	K	≤19.0	19.1-22.4	22.5-23.2	23.3-26.7	26.7-29.9	≥30.0
70-79	F	≤22.6	22.7-26.1	26.2-29.9	30.0-34.7	34.8-37.3	≥37.4
	K	≤16.7	16.8-16.5	18.6-20.4	20.5-24.5	24.8-28.1	≥29.2

Table 8 – Kappa’s concordance of the Fleury classification and Cooper and FRIEND data

Kappa	P-value	
Cooper	0.008	0.014
Friend	0.015	<0.001

between our data (direct VO2max) and Cooper data (indirect VO2max) and FRIEND registry (direct VO2max). Therefore, we believe that direct measurements of VO2max should be the method of choice for assessing an individual’s CRF. However, we have developed a prediction equation for VO2max for our population that should be validated in future studies and
compared with other Brazilian and international equations. In 2014, Almeida et al.26 developed a Brazilian Equation (BE) in healthy subjects, that was able to predict VO$_{2\text{peak}}$ (values close to those directly measured by CPX), and showed a very good performance in the internal validation test, while Jones and Wasserman differed significantly from the real VO$_{2\text{peak}}$. More important, in the population from which BE was derived, the physical activity level represented the most important variable for the calculation of VO$_{2\text{peak}}$.

There are some limitations that are common to all studies that use retrospective data and databank analyses, which are also present in our study. We tried to rule out any preexisting structural heart disease, results, or drugs that could influence the VO$_{2\text{max}}$ result. The term “considered to be free of structural heart disease” would not be appropriate for the entire study population because some individuals may have risk factors for cardiovascular disease (diabetes, obesity, etc.). Although all tests were performed to measure functional capacity, the choice of treadmill protocols was specific to each contributing institutional unit. While the sample size was large, the number of participants varied among the age groups, with the greatest representation in the 30- and 40-year-old age groups, and a lesser representation of those over 70-year-old (approximately 0.4 of the total sample). Our results suggest that future studies should seek greater representation from the younger and older age groups. All the tests were carried out at the Fleury laboratory units in the city of São Paulo, a megalopolis with more than 12 million people. However, it was still not possible to determine the patients’ geographical distribution.

Our data should preferably be used for patients with a supposed high socioeconomic status without known structural heart disease who are being evaluated for a physical fitness assessment. As such, it may perhaps be inadequate for the general population of Brazil, since it is likely that the level of physical conditioning, nutritional status, and socioeconomic level is lower in the general population. However, the sample size was large and all the tests were considered to involve maximal effort. This then provides more accurate reference values in relation to the VO$_{2\text{max}}$ estimation equations for laboratories that include CPX as part of the maximal exercise test measurements.

Regardless of the method used for CRF assessment, the ultimate goal is providing clinical relevance to the test result value. It is widely accepted that low-CRF is associated with increased rates of both morbidity and mortality. These findings have been demonstrated in multiple cohorts with data from men and women, in different races, and from multiple countries.1

Conclusions

We developed a classification for ACR. Our results found higher values in all classification ranges of functional capacity when compared to those of the Cooper Clinic and the FRIEND registry. These values could provide a more accurate interpretation of ACR in a large Brazilian population sample with supposed high socioeconomic level and an absence of structural heart disease when compared to previous standards that were based on estimates of VO$_{2\text{max}}$ workload.

Author contributions

Conception and design of the research: Rossi Neto JM, Antelmi I; Acquisition of data: Rossi Neto JM, Tebexreni AS, Alves ANF, Nishio PA, Thomazi MC, Smanio PEP; Analysis and interpretation of the data, Statistical analysis and Writing of the manuscript: Rossi Neto JM; Critical revision of the manuscript for intellectual content: Tebexreni AS, Alves ANF.

Potential Conflict of Interest

No potential conflict of interest relevant to this article was reported.

Sources of Funding

There were no external funding sources for this study.

Study Association

This study is not associated with any thesis or dissertation work.

Ethics approval and consent to participate

This article does not contain any studies with human participants or animals performed by any of the authors.

References

1. Ross R, Blair SN, Arena R, Church TS, Després J-P, Franklin BA, et al. Importance of Assessing Cardiorespiratory Fitness in Clinical Practice: A Case for Fitness as a Clinical Vital Sign: A Scientific Statement From the American Heart Association. Circulation. 2016 13;134(24):e653–99.
2. Kodama S, Saito K, Tanaka S, Maki M, Yachi Y, Asami M, et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. JAMA. 2009;301(19):2024–35.
3. Kokkinos P, Myers J. Exercise and physical activity: clinical outcomes and applications. Circulation. 2010;122(16):1637–48.
4. Wicks JR, Oldridge NB. How Accurate is the Prediction of Maximal Oxygen Uptake with Treadmill Testing? PLoS One [Internet]. 2016 Nov 22 [cited 2019 Mar 6];11(11). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5119771/
5. Farrell SW, Finley CE, Radford NB, Haskell WL. Cardiorespiratory fitness, body mass index, and heart failure mortality in men: Cooper Center Longitudinal Study. Circ Heart Fail. 2013;6(5):898–905.
6. Almeida, AEM, Santander, IRMF, Campos, MIM, Nascimento, JA, et al. Classification System for Cardiorespiratory Fitness Based on a Sample of the Brazilian Population. Int J Cardiouvsc Sci. 2019;32(4):343–54.
7. Marins JCB, Giannichi RS. Avaliação & prescrição de atividade física: guia prático. 3rd ed. Rio de Janeiro: Shape; 2003.
8. Blair SN, Kohl HW, Paffenbarger RS, Clark DG, Cooper KH, Gibbons LW. Physical fitness and all-cause mortality: A prospective study of healthy men and women. JAMA. 1989;262(17):2395–401.

9. Barros Neto TL, Cesar MC, Tambeiro VL. Avaliação da aptidão física cardiorrespiratória. In: O exercício: preparação fisiológica - avaliação médica - aspectos especiais e preventivos. São Paulo: Atheneu; 1999. p. 15–24.

10. Kenney WL, Humphrey RH, Bryant CX. ACSM's Guidelines for Exercise Testing and Prescription. 5th ed. Michigan: American College of Sports Medicine; 2008.

11. American College of Sports Medicine, Rebee D, Ehman JK, Ligouri G, Magal M, editors. ACSM's guidelines for exercise testing and prescription. 10th edition. Philadelphia Baltimore New York: Wolters & Kluwer; 2018. 472 p.

12. Lamoureux NR, Fitzgerald JS, Norton K, Sabato T, Tremblay MS, Tomkinson GR. Temporal Trends in the Cardiorespiratory Fitness of 2,525,827 Adults Between 1967 and 2016: A Systematic Review. Sports Med. 2019;49(1):41–55.

13. Kaminsky LA, Arena R, Myers J. Reference Standards for Cardiorespiratory Fitness Measured With Cardiopulmonary Exercise Testing: Data From the Fitness Registry and the Importance of Exercise National Database. Mayo Clin Proc. 2015;90(11):1515–23.

14. Howley ET, Bassett DR, Welch HG. Criteria for maximal oxygen uptake: review and commentary. Med Sci Sports Exerc. 1995;27(9):1292–301.

15. Balady GJ, Arena R, Myers J, Cola L, Fletcher GF, et al. Clinician's Guide to cardiopulmonary exercise testing in adults: a scientific statement from the American Heart Association. Circulation. 2010;122(2):191–225.

16. Myers J, Arena R, Franklin B, Pina I, Kraus WE, McInnis K, et al. Recommendations for clinical exercise laboratories: a scientific statement from the American heart association. Circulation. 2009;119(24):3144–61.

17. Myers J, Forman DE, Balady GJ, Franklin BA, Nelson-Worel J, Martin B-J, et al. Supervision of exercise testing by nonphysicians: a scientific statement from the American Heart Association. Circulation. 2014;130(12):1014–27.

18. Herdy AH, Uhlenföld D. Reference values for cardiopulmonary exercise testing for sedentary and active men and women. Arq Bras Cardiol. 2011;96(1):54–9.

19. Herdy AH, Caixeta A. Brazilian Cardiorespiratory Fitness Classification Based on Maximum Oxygen Consumption. Arq Bras Cardiol. 2016 May;106(5):389–95.

20. Silva S, Monteiro W, Farinatti P. Exercise Maximum Capacity Assessment: A Review on the Traditional Protocols and the Evolution to Individualized Models. Rev Bras Med Esporte. 2011;36:1–9.

21. Rossi Neto JM, Teixeira AS, Alves ANF, Smario PEP, de Abreu FB, Thomazi MC, et al. Cardiorespiratory fitness data from 18,189 participants who underwent treadmill cardiopulmonary exercise testing in a Brazilian population. PloS ONE. 2019;14(1):e0209897.

22. Loe H, Rogmo O, Saltin B, Wisløff U. Aerobic capacity reference data in 3816 healthy men and women 20-90 years. PloS ONE. 2013;8(5):e64319.

23. Edvardsen E, Hansen BH, Holme IM, Dyrstad SM, Andersen SA. Reference values for cardiorespiratory response and fitness on the treadmill in a 20- to 85-year-old population. Chest. 2013;144(1):241–8.

24. Kaminsky LA, Arena R, Beckie TM, Brubaker PH, Church TS, Forman DE, et al. The importance of cardiorespiratory fitness in the United States: the need for a national registry: a policy statement from the American Heart Association. Circulation. 2013;127(5):652–62.

25. Kaminsky LA, Myers J, Arena R. Determining Cardiorespiratory Fitness With Precision: Compendium of Findings From the FRIEND Registry. Prog Cardiovasc Dis. 2019;62(1):76–82.

26. de Almeida AEM, Stefani C de M, do Nascimento JA, de Almeida NM, Santos A da C, Ribeiro JP, et al. An Equation for the Prediction of Oxygen Consumption in a Brazilian Population. Arq Bras Cardiol. 2014;103(4):299–307.
