High scored thyroid storm after stomach cancer perforation: A case report

Seung Min Baik, Yejune Pae, Jae-Myeong Lee

Abstract

BACKGROUND
Thyroid storm is a life-threatening emergency. Reportedly, the prevalence of thyroid storm is 1%-2% among patients admitted to the hospital for thyrotoxicosis. Burch and Wartofsky (1993) introduced a scoring system using precise clinical criteria to identify thyroid storms. Only 17 cases of thyroid storm with a score > 70 points have been reported. Although thyroid storms are uncommon, their clinical findings resemble those of sepsis.

CASE SUMMARY
A 48-year-old man was referred to the emergency room from a local clinic owing to suspicion of gastric ulcer perforation; medications for hypertension, diabetes mellitus, and hyperthyroidism had been suspended 1 year prior to this visit. We performed an emergency distal gastrectomy with Billroth II anastomosis for gastric cardia cancer perforation, and the patient was referred to the surgical intensive care unit (ICU). On the 2nd d in the ICU, his body temperature (BT) increased to 41.3 °C at 19:00, with the thyroid storm score (90 points) peaking at 18:00 (BT; 41.2°C, pulse rate; 138/min, irritable status). The patient was administered propylthiouracil, intravenous glucocorticoids, acetaminophen, and Lugol’s solution daily. Subsequently, we performed bladder irrigation with cold saline using a Foley catheter and applied a hypothermic blanket to decrease the patient's BT. His vital signs were stable on the 8th day in the ICU.

CONCLUSION
Thyroid storms are uncommon, with few reports in the literature; however, their clinical findings resemble those of sepsis and require further investigation. Since
an untreated thyroid storm results in a high mortality rate, it should be investigated when managing sepsis.

Key Words: Thyroid storm; Stomach cancer; Severity score; Sepsis; Case report

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Since thyroid storm is a life-threatening emergency and mortality is high when treatment is delayed, thyroid function evaluation should not be overlooked when managing sepsis.

INTRODUCTION

Thyroid storm is a life-threatening emergency. Reportedly, the prevalence of thyroid storm 1%-2% among patients admitted to the hospital for thyrotoxicosis[1]. In a nationwide survey of hospitals in Japan, the incidence of thyroid storm in hospitalized patients was 0.22% among all patients with thyrotoxicosis and 5.4% of patients admitted to the hospital for thyrotoxicosis[2,3]. Thyroid storm can develop in patients with long-standing untreated hyperthyroidism and can be precipitated by an acute event such as thyroid or non-thyroidal surgery, trauma, infection, an acute iodine load, or parturition[4].

Recent data suggest that the mortality rate of thyroid storms is approximately 10%-30%[1,2]. Multiple organ failure is the most common cause of death, followed by congestive heart failure, respiratory failure, arrhythmia, disseminated intravascular coagulation, gastrointestinal perforation, hypoxic brain syndrome, and sepsis[2,3].

Thyroid storm is diagnosed by clinical findings. Burch and Wartofsky (1993) introduced a scoring system using precise clinical criteria for the identification of thyroid storms[5]. Based on these criteria, a score of < 25 points indicates that a thyroid storm is unlikely; 25-44 points an impending thyroid storm; and ≥ 45 points, thyroid storm. There is no concept of a “severe” thyroid storm. However, to the best of our knowledge, only 17 cases of thyroid storm with a score > 70 points have been reported. Among these 17 cases, only four cases had a score of 90 points. Although thyroid storms are uncommon, their clinical findings resemble those of sepsis.

Here, we report a case of thyroid storm with a score of 90 points after gastric perforation surgery, and we analyze the “severe” form of thyroid storm (with a score > 70 points) in the 17 cases reported in the literature.

CASE PRESENTATION

Chief complaints
In the emergency room (ER), he complained of nausea, diffuse abdominal pain, general weakness, anorexia, and indigestion, which had started 4 d prior to admission.

History of present illness
A 48-year-old male patient was referred to the ER from a local clinic owing to suspicion of gastric ulcer perforation. We performed an emergent distal gastrectomy with Billroth II anastomosis for gastric cardia cancer perforation, a palliative surgery performed owing to peritoneal tumor seeding. The total operating time was 3 h and 55 min, and the patient's vital signs were stable during surgery. Postoperatively, the patient was referred to the surgical intensive care unit (ICU), and his vital signs were checked every hour.

History of past illness
He had a medical history of hypertension, type II diabetes mellitus (DM), and hyperthyroidism. One year ago, he had stopped taking medications for hypertension, DM, and hyperthyroidism.
Personal and family history
The patient's personal and family history information could not be obtained.

Physical examination
On physical examination, he presented with hypoactive bowel sounds and direct tenderness in the epigastric area.

Laboratory examinations
Laboratory examination in the ER showed the following results: white blood cell counts $12.5 \times 10^3/\mu L$, erythrocyte sedimentation rate 38 mm/h, and C-reactive protein 16.93 mg/dL.

The results of thyroid function tests are shown in Table 1. The free T4, T3, and T4 Levels exceeded the normal range, while thyroid stimulating hormone levels were below the normal range. The other laboratory results were non-specific.

Imaging examinations
Computed tomography in the ER revealed peritonitis due to gastric ulcer perforation and gastric malignancy with suspected peritoneal carcinomatosis.

FINAL DIAGNOSIS
On the 2nd in the ICU, the patient's body temperature (BT) increased to 41.3 °C at 19:00, and the thyroid storm score peaked at 18:00 (BT 41.2 °C; pulse rate: 138/min); furthermore, he was irritable; had a Glasgow Coma Scale score of E3V1M5, with eye opening to speech, no verbal response, and localized motor response to pain; and complained of severe pain (Table 2). The patient's highest score for a thyroid storm was 90.

TREATMENT
The patient was administered a daily dose of oral propylthiouracil (PTU) 800 mg, PTU enema 400 mg, intravenous glucocorticoids 40 mg, oral acetaminophen 650 mg, and oral Lugol’s solution 1.5 mL. Subsequently, we performed bladder irrigation with cold saline using a Foley catheter and applied a hypothermic blanket to decrease the patient's BT.

On the 3rd in the ICU, the PTU dose was increased to 1200 mg/d, while the doses of the other drugs were maintained. From the 4th day, the oral PTU dose was fixed at 200 mg, q6hd; Lugol’s solution (0.5 mL; q8hd) was also delivered. On the 9th d, the patient was referred to the general ward, with the administration of oral PTU 200 mg four times daily and tapering of glucocorticoid therapy.

OUTCOME AND FOLLOW-UP
The patient's vital signs were stable from the 8th postoperative day, and he showed clear mental status on the 4th postoperative day (Figure 1). In the general ward, on the 15th day, the oral PTU dose was decreased to 200 mg three times daily. On the 29th hospital day, he was discharged with an asymptomatic status, stable vital signs, and a prescribed dose of oral PTU 200 mg three times daily.

DISCUSSION
We report a case of thyroid storm with extremely high fever (41.3 °C), typically associated with patient mortality. Indeed, high fever alone increases mortality in ICU patients[6].

While this patient’s BT was < 40 °C in the ER, it increased to > 40°C postoperatively. Later, the patient presented with tachycardia (peaked at 138/min), irritability, and abdominal pain; he also had a history of hyperthyroidism, with a high score of 90 points in the thyroid storm scoring system, which reflects disease severity. Based on the scoring system, thyroid storms are considered unlikely for scores of < 25 points, while 25-45 points suggest impending storms; a score of > 45 points is highly associated with thyroid storms[5] (Table 2). Therefore, when the score approaches 45 points, the patient needs more intensive monitoring and re-evaluation for thyroid storm. The mortality risk associated with thyroid storm is estimated to be 8%-25%, despite modern advancements in treatment and supportive measures [7].
In this case, the extremely high BT (41.3 °C), elevated pulse rate (PR) (138/min), and altered Glasgow Coma Scale score (E3V1M5) observed on the 2nd day in the ICU were immediately considered to indicate thyroid storm, and treatment was initiated. Severity was assessed at the same time as the diagnosis using the scoring system. The patient was diagnosed with gastric ulcer perforation. Therefore, these symptoms may be considered as signs of sepsis.

To the best of our knowledge, there are some reports of cases with scores of < 70 points; however, there are only 17 reported cases with scores of ≥ 70 points[8-24] (Table 2). Among the 17 cases with scores of ≥ 70 points, two involved mortality. Case 1 involved the highest severity score, with 115 points. In case 1, the patient had no previous medical or family history of thyroid disease (0 points). Laboratory findings showed liver dysfunction with jaundice (20 points), while physical examination revealed the following: atrial flutter with a PR of 162/min (35 points), high fever (39.3 °C) (20 points), impaired consciousness (30 points), and reduced ejection fraction (43%) with moderate bilateral pleural effusion (10 points). The patient in case 1 was discharged from the hospital on day 94. In the two mortality cases, the severity scores were 80 and 70. In the mortality case with a severity score of 80 points, the central nervous system dysfunction score was very high (30 points). Meanwhile, in the mortality case with a

Table 1 Thyroid function test values of the patient

Hormone (normal range, unit)	At ER (preoperation)	Postop. day 6	Postop. day 11
T3 (60.0-181.0, ng/dL)	625.4	79.9	94.1
T4 (4.50-10.90, ng/dL)	27.27	5.80	12.45
fT4 (0.89-1.76, ng/dL)	7.02	1.90	3.58
TSH (0.55-4.78, uIU/mL)	< 0.008	< 0.008	< 0.008

BT: Body temperature; CNS: Central nervous system; GI-hepatic dysfx.: Gastrointestinal-hepatic dysfunction; CV: Cardiovascular; HF: Heart failure; Pre.Hx.: Precipitant history.

Table 2 Summary severity scores of previously reported thyroid storm cases over 70 points and the present case

Case No.	Age/Gender	BT	CNS effect	GI-hepatic dysfx.	CV dysfx.	HF	Pre. Hx.	Total	Mortality	Ref.
1	40/Male	20	30	20	35	10	0	115	No	Shimoda et al[8], 2014
2	50/Female	0	20	0	35	5	10	90	No	Izumi et al[9], 2009
3	48/Male	10	10	20	25	10	10	85	No	Sasaki et al[10], 2011
4	30/Female	15	30	0	25	0	10	80	Yes	Yamaji et al[11], 1991
5	43/Male	10	20	10	25	5	10	80	No	Diaz et al[12], 2009
6	62/Female	20	0	10	25	15	0	70	No	Jha et al[13], 2012
7	55/Female	0	20	10	25	5	10	70	No	Ogiso et al[14], 2008
8	56/Female	0	20	20	20	10	0	70	No	Yoshino et al[15], 2010
9	50/Male	15	10	10	25	0	10	70	Yes	Hosojima et al[16], 1992
10	51/Female	15	10	0	25	15	10	75	No	Nai et al[17], 2018
11	52/Male	5	20	10	30	10	0	75	No	Andrade et al[18], 2018
12	36/Female	20	10	0	20	15	10	75	No	Sugiyama et al[19], 2017
13	24/Female	30	10	10	25	0	10	85	No	McMillen et al[20], 2016
14	63/Male	20	10	0	35	5	0	70	No	Snyder et al[21], 2020
15	59/Female	10	20	10	25	0	10	75	No	Osada et al[22], 2011
16	50/Female	15	20	10	35	10	0	90	No	Umezue et al[23], 2013
17	41/Female	10	10	10	35	15	10	90	No	Kulaksizoglu et al[24], 2012
18	48/Male	30	10	20	20	0	10	90	No	Present case

BT: Body temperature; CNS: Central nervous system; GI-hepatic dysfx.: Gastrointestinal-hepatic dysfunction; CV: Cardiovascular; HF: Heart failure; Pre.Hx.: Precipitant history.
severity score of 70 points, the cardiovascular dysfunction score was 25 points, which was relatively high compared to other scores. However, the total severity scores in the mortality cases were not relatively high compared to those of other thyroid storm cases. In all 18 cases, including our case, no correlation was found between the severity score and mortality; nevertheless, the number of cases is insufficient to draw a valid conclusion.

Comparing our case to the other 17 cases reported in the literature, we found that our patient presented with extremely high fever and a high severity score. In cases with the same score (cases 2, 16, 17, and 18 [present case]), the highest-scored factor differed between cases. Meanwhile, cases 2, 16, and 17 had high scores for cardiovascular dysfunction (PR > 140/min with atrial fibrillation), and the present case involved a high BT (41.3 °C).

High fever and tachycardia are the main parameters of systemic inflammatory response syndrome, as per the criteria established in 1991[25]. In the Sepsis-3 criteria, newly established in 2016, PR and BT were not included[26]. Although PR and BT were excluded from the diagnostic criteria for sepsis, they are still important in managing sepsis. On the other hand, thyroid storm is not a major consideration in ICU. Therefore, when uncontrolled fever or tachycardia is observed, it may be useful for the physician to consider evaluation of thyroid function. The reason is that sepsis-induced tachycardia and high fever are improved by appropriate sepsis management, but the signs induced by thyroid storm are different in treatment guidelines such as antithyroid agents, Lugol’s solution and steroid etc.

CONCLUSION

In general, thyroid function tests are not performed before emergency surgery for bowel perforation. Tachycardia and high fever are commonly observed postoperatively. However, since thyroid storm is a life-threatening emergency and mortality is high when treatment is delayed, thyroid function evaluation should not be overlooked when managing sepsis.

FOOTNOTES

Author contributions: Lee JM and Baik SM designed the research study; Lee JM, Baik SM and Pae Y performed the research, analyzed the data and wrote the manuscript; all authors have read and approve the final manuscript.

Informed consent statement: The study was approved by the Institutional Review Board (IRB) (approval number: 2021AN0281) and waived the informed consents due to the retrospective study.
Thyroid Storm: Case Report and Literature Review.

Nai Q, Hosojima H, Yoshino T, Yamaji Y, Izumi K, Nayak B, Ansari M, Pak S, Tian Y, Amzad-Hossain M, Zhang Y, Lou Y, Sen S, Islam M. Cardiorespiratory Failure in Thyroid Storm: Case Report and Literature Review. J Clin Med Res 2018; 10: 351-357 [PMID: 29511425 DOI: 10.14740/jocmr3106w]

Conflict-of-interest statement: All authors declare that they have no conflicts of interest related to this work.

CARE Checklist (2016) statement: All authors have read the CARE Checklist (2016), and the manuscript was prepared and revised according to the CARE Checklist (2016).

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: South Korea

ORCID number: Seung Min Baik 0000-0003-1051-6775; Yejune Pae 0000-0002-5493-8606; Jae-Myeong Lee 0000-0001-5494-0653.

S-Editor: Wang LL
L-Editor: A
P-Editor: Wang LL

REFERENCES

1. Nuyak B, Burman K. Thyrotoxicosis and thyroid storm. Endocrinol Metab Clin North Am 2006; 35: 663-686, vii [PMID: 17127140 DOI: 10.1016/j.ecl.2006.09.003]
2. Akamizu T, Satoe T, Isozaki O, Suzuki A, Wakino S, Ibari T, Tsaboi K, Munden T, Kouki T, Otani H, Teramukai S, Uehara R, Nakamura Y, Nagai M, Mori M. Japan Thyroid Association. Diagnostic criteria, clinical features, and incidence of thyroid storm based on nationwide surveys. Thyroid 2012; 22: 661-679 [PMID: 22690898 DOI: 10.1089/thy.2011.0334]
3. Feldt-Rasmussen U, Emerson CH. Further thoughts on the diagnosis and diagnostic criteria for thyroid storm. Thyroid 2012; 22: 1094-1095 [PMID: 23130563 DOI: 10.1089/thy.2012.2211]
4. Sherman SI, Simonson L, Ladenson PW. Clinical and socioeconomic predispositions to complicated thyrotoxicosis: a predictable and preventable syndrome? Am J Med 1996; 101: 192-198 [PMID: 8757360 DOI: 10.1016/0002-9343(96)80076-3]
5. Burch HB, Wartofsky L. Life-threatening thyrotoxicosis. Thyroid storm. Endocrinol Metab Clin North Am 1993; 22: 263-277 [PMID: 8325286]
6. Erkens R, Wernly B, Masyuk M, Muessig JM, Franz M, Schulze PC, Lichtenaeyer M, Kelm M, Jung C. Admission Body Temperature in Critically Ill Patients as an Independent Risk Predictor for Overall Outcome. Med Princ Pract 2020; 29: 389-395 [PMID: 31786567 DOI: 10.1159/000505126]
7. Ross DS, Burch HB, Cooper DS, Greenlee MC, Laurberg P, Maia AL, Rivkees SA, Samuels M, Sosa JA, Stan MN, Walter MA. 2016 American Thyroid Association Guidelines for Diagnosis and Management of Hyperthyroidism and Other Causes of Thyrotoxicosis. Thyroid 2016; 26: 1343-1421 [PMID: 27521067 DOI: 10.1089/thy.2016.0229]
8. Shimoda Y, Satoh T, Takahashi H, Kato-Topi A, Ozawa A, Tomaru T, Horiguchi N, Kaira K, Nishioka M, Shibusawa N, Hashimoto K, Wakino S, Mori M, Yamada M. A case of thyroid storm with a markedly elevated level of circulating soluble interleukin-2 receptor complicated by multiple organ failure and disseminated intravascular coagulation syndrome. Endocr J 2014; 61: 691-696 [DOI: 10.1507/endocrj.14-0073]
9. Izumi K, Kondo S, Okada T. A case of atypical thyroid storm with hypoglycemia and lactic acidosis. Endocr J 2009; 56: 747-752 [DOI: 10.1507/endocrj.k09e-043]
10. Sasaki K, Yoshida A, Nakata Y, Mizote I, Sakata Y, Komuro I. A case of thyroid storm with multiple organ failure effectively treated with plasma exchange. Intern Med 2011; 50: 2801-2805 [PMID: 22082892 DOI: 10.2169/internalmedicine.50.6078]
11. Yamaji Y, Hayashi M, Suzuki Y, Noy A, Yamamoto O. Thyroid crisis associated with severe hypocalcemia. Jpn J Med 1991; 30: 179-181 [PMID: 1865592 DOI: 10.2169/internalmedicine1962.30.179]
12. Diaz R, Blakey MD, Murphy PB, Cryan AK, Cmelak AJ. Thyroid storm after intensity-modulated radiation therapy: a case report and discussion. Oncologist 2009; 14: 233-239 [PMID: 19286762 DOI: 10.1634/theoncologist.2008-0156]
13. Jha S, Waghdhare S, Reddi R, Bhattacharya P. Thyroid storm due to inappropriate administration of a compounded thyroid hormone preparation successfully treated with plasmapheresis. Thyroid 2012; 22: 1283-1286 [PMID: 23067331 DOI: 10.1089/thy.2011.0353]
14. Ogiso S, Iinomoto S, Hata H, Yamaguchi T, Otani T, Koizumi K. Successful treatment of gastric perforation with thyrotoxic crisis. Am J Emerg Med 2008; 26: 1065.e3-1065.e4 [PMID: 19091282 DOI: 10.1016/j.ajem.2008.03.005]
15. Yoshino T, Kawano D, Aizuhata T, Kuswana T, Kogawa R, Sakurai A, Tanjoh K, Yanagawa T. A patient with Graves’ disease who survived despite developing thyroid storm and lactic acidosis. Ups J Med Sci 2016; 115: 282-286 [PMID: 26731531 DOI: 10.3109/03009734.2014.846908]
16. Hosojima H, Iwasaki R, Miyauchi E, Okada H, Morimoto S. Rhabdomyolysis accompanying thyroid crisis: an autopsy case report. Intern Med 1992; 31: 1233-1235 [PMID: 1286234 DOI: 10.2169/internalmedicine.31.1233]
17. Nai Q, Ansari M, Pak S, Tian Y, Amzad-Hossain M, Zhang Y, Lou Y, Sen S, Islam M. Cardiorespiratory Failure in Thyroid Storm: Case Report and Literature Review. J Clin Med Res 2018; 10: 351-357 [PMID: 29511425 DOI: 10.14740/jocmr3106w]
Baik SM et al. High scored thyroid storm after stomach cancer perforation

18 Andrade Luz I, Pereira T, Catorze N. Thyroid storm: a case of haemodynamic failure promptly reversed by aggressive medical therapy with antithyroid agents and steroid pulse. BMJ Case Rep 2018; 11 [PMID: 30567262 DOI: 10.1136/bcr-2018-226669]

19 Sugiyama Y, Tanaka R, Yoshiyama Y, Ichino T, Hishinuma N, Shimizu S, Imai N, Mitsuzawa K, Kawamata M. A case of sudden onset of thyroid storm just before cesarean section manifesting congestive heart failure and pulmonary edema. JA Clin Rep 2017; 3: 20 [PMID: 29457064 DOI: 10.1136/bcr-2017-214603]

20 McMillen B, Dhillon MS, Yong-Yow S. A rare case of thyroid storm. BMJ Case Rep 2016; 2016: 10.1136/bcr-2016-226669 [PMID: 27090545 DOI: 10.1136/bcr-2016-214603]

21 Snyder S, Joseph M. The Perfect Storm: A Case of Ischemic Stroke in the Setting of Thyroid Storm. Cureus 2020; 12: e7992 [PMID: 32523847 DOI: 10.7759/cureus.7992]

22 Osada E, Hiroi N, Sue M, Masai N, Iga R, Shigemitsu R, Oka R, Miyagi M, Iso K, Kuboki K, Yoshino G. Thyroid storm associated with Graves' disease covered by diabetic ketoacidosis: A case report. Thyroid Res 2011; 4: 8 [PMID: 21492449 DOI: 10.1186/1756-6614-4-8]

23 Umezu T, Ashitani K, Toda T, Yanagawa T. A patient who experienced thyroid storm complicated by rhabdomyolysis, deep vein thrombosis, and a silent pulmonary embolism: a case report. BMC Res Notes 2013; 6: 198 [DOI: 10.1186/1756-0500-6-198]

24 Kulaksizoglu M, Gonen MS, Kebapcilar L, Sahin F, Acikgoz B, Demir T, Dincturk E. Multiorgan dysfunction accompanied with metimazole and thyroid storm. Transfus Apher Sci 2012; 46: 149-152 [PMID: 22284265 DOI: 10.1016/j.transci.2012.01.001]

25 Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, Schein RM, Sibbald WJ. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest 1992; 101: 1644-1655 [PMID: 1303622 DOI: 10.1378/chest.101.6.1644]

26 Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, Hotchkiss RS, Levy MM, Marshall JC, Martin GS, Opal SM, Rubenfeld GD, van der Poll T, Vincent JL, Angus DC. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016; 315: 801-810 [PMID: 26903338 DOI: 10.1001/jama.2016.0287]
