Effects of cold atmospheric plasma on mucosal tissue culture

Christian Welz¹, Sven Becker¹, Yang-Fang Li², Tetsuji Shimizu², Jin Jeon², Sabina Schwenk-Zieger¹, Hubertus M Thomas², Georg Isbary¹, Gregor E Morfill², Ulrich Harréus¹ and Julia L Zimmermann²

¹ Department of Otorhinolaryngology, Head & Neck Surgery, Ludwig-Maximilians-University, 81377 Munich, Germany
² Max Planck Institute for Extraterrestrial Physics, 85741 Garching, Germany
³ Department of Dermatology, Allergology and Environmental Medicine, Hospital Munich Schwabing, Germany

E-mail: Christian.Welz@med.uni-muenchen.de

Received 17 July 2012, in final form 28 September 2012
Published 17 December 2012
Online at stacks.iop.org/JPhysD/46/045401

Abstract
Thermal plasmas have been commonly used in medical applications such as plasma ablation and blood coagulation. Newer developments show that plasmas can be generated with ion temperatures close to room temperature: these non-thermal or so-called cold atmospheric plasmas (CAPs) therefore open up a wide range of further biomedical applications. Based on the understanding of the bactericidal, virucidal and fungicidal properties of CAPs, information about the effects of CAP on mucosal cells and tissue is still lacking. Therefore this study focuses on the interaction of CAP with healthy head and neck mucosal cells on a molecular level.

To analyse this interaction in detail, fresh tissue samples from healthy nasal and pharyngeal mucosa were harvested during surgery, assembled to a three-dimensional tissue culture model (mini organ cultures) and treated with CAP for different treatment times. Effects on the viability, necrosis induction and mutagenic activity were evaluated with the trypan blue exclusion test, Annexin-V/PI staining and alkaline microgel electrophoresis (comet assay). Trypan blue exclusion test revealed that the CAP treatment significantly decreases the cell viability for all tested treatment times (5, 10, 30, 60 and 120 s; p < 0.05), but only a treatment time of 120 s showed a cytotoxic effect as the viability dropped below 90%. Annexin-V/PI staining revealed a significant increase in necrosis in CAP treated pharyngeal tissue cultures for treatment times of 60 and 120 s (p < 0.05). For nasal tissue this effect was already detected for a 30 s treatment (p < 0.05). Comet assay analysis showed no mutagenic effects after exposure to CAP.

1. Introduction
In the past few years different cold atmospheric plasma (CAP) devices—ranging from dielectric barrier discharge (DBD) [1], surface microdischarge (SMD) [2], plasma jet/bullets [3, 4] to microwave driven plasma sources [5]—have proved their effectiveness for applications in health care and medicine. It is well known that all these CAP devices produce a so-called ‘chemical cocktail’ composed of electrons, charged particles, reactive species (mainly reactive oxygen and nitrogen species), UV light and heat, which may vary in concentration—depending on the used device. CAPs are able to inactivate bacteria (even multi-resistant strains such as EHEC and MRSA), fungi, viruses and spores very efficiently in a dose-dependent manner [2, 6].

Concerning the effects of CAP on eukaryotic cells and tissue, first results have also been obtained. Maisch et al for example showed that CAP treated porcine skin (up to several minutes) histologically did not possess any differences compared with the untreated control [7]. Newer
experiments with lung fibroblast cells from Chinese hamster showed no toxicity or induction of mutagenicity for different dosages, including those which could easily inactivate different microorganisms [8]. In addition to these results other in vitro studies on benign and malignant epithelial cells were able to demonstrate that CAP influences the cell proliferation, cell cycle and apoptosis [9]. Applications in medicine—such as clinical studies on chronic wounds—showed the vast potential of CAPs: highly significant higher germ reduction compared with the untreated control wounds was obtained from studies on more than 260 patients using the CAP technology as an add-on to the standard topical treatment therapy [10]. Furthermore, newest results show that the CAP treatment accelerates wound healing in chronic [11] and in skin graft wounds [12]. Concerning skin diseases, a report in 2010 was published which showed the successful treatment of the Hailey–Hailey disease [11].

To date only wounds (chronic or skin graft) of the skin or different skin diseases were addressed in clinical studies and no investigations of the effects of CAP on mucosa were studied. The mucosal membranes line all cavities that are exposed to the environment and to the internal organs. Acute bacterial infections of mucosal lined organs are very prevalent [13]; particularly pharyngotonsillitis and rhinosinusitis which are the most frequent diseases in humans. Because of the complex physiological and anatomical conditions of head and neck organs and the resulting difficulty of access, topical therapies of head and neck infections have commonly only a symptomatic and not a curative aspect.

In order to find a new approach for the treatment of mucosal diseases, the CAP influence on mucosal tissue cultures was evaluated in this study. To predict the CAP dosage, i.e. treatment time dependent toxicity potential and to elucidate the capability of DNA damage of CAP, fresh tissue samples from healthy nasal and pharyngeal mucosa were assembled to a three-dimensional tissue culture model and treated with a CAP device using the SMD technology for plasma production in air [2].

2. Materials and methods

Biopsies. Fresh tissue samples of oropharyngeal and nasal mucosa were obtained during surgery of tonsillectomy (n = 10, 7 male, 3 female, average age 34.7 years) and conchotomy (n = 10, 6 male, 4 female, average age 41.5 years). To avoid any additional risks for the concerned patients, specimens were gathered after the surgery from the resectates. Therefore no disadvantages for the patients occurred and the intended therapy remained unaffected. The study design was approved by the local ethics committee. All donors were informed about procedures and aims of the study, and provided a written informed consent. After excision, all samples were immediately covered with 0.9% NaCl solution.

Mini organ cultures (MOCs). After proximate transport (<2 h after excision) to the laboratory, the mucosal samples were assembled to tissue cultures (mini organ cultures, MOCs)—a three-dimensional in vitro model with biotransformative activity [14] (figure 1). For this, the samples had to be dissected into mucosal cubes of 1 mm³ excluding deeper layers, vessels and lymphatic parts and washed three times in bronchial epithelial cell basal medium (BEGM; Promocell, Heidelberg, Germany). The prepared cubes were placed in 24-well plates. Each well was coated with 0.75% Agar Noble (Difco; Detroit, MI, USA) dissolved in Dulbecco’s Modified Eagle Medium (Gibco; Eggenstein, Germany), 10% fetal calf serum (FCS) (Gibco), non-essential amino acids (Gibco), and amphotericin B (Gibco). After a mean cultivation time of 20 days in 250 µl bronchial epithelial cell growth medium (BEGM supplemented with bovine pituitary extract, insulin, hydrocortisone, epinephrine, triiodothyronine, transferrin and retinoic acid; Promocell, Heidelberg, Germany) and incubation at 37 °C, 5% CO₂, and 100% relative humidity, the MOCs were completely recoated with interacting endogenous epithelium, no additional cells for recoating were added. Growth medium was renewed every second day, and the MOCs were transferred to a new multi-well plate every seventh day. For all methods and treatment times 3 MOCs from each donor were cultured.

Plasma treatment. This study was carried out by employing a CAP device which uses the SMD technology for plasma production in air [2]. Details of the so-called MiniFlatPlaSter device were published in Maisch et al [7] and others [8, 14]. Briefly, the handheld CAP device is portable and the high voltage power supply for generation of the plasma is therefore incorporated inside. The used SMD electrode consists of a glass Epoxy board, which is sandwiched by a copper foil layer and a stainless-steel mesh grid. By applying a high pulse-like voltage of 7 kV (peak-to-peak) with a repetition frequency of 6.75 kHz the plasma is produced homogenously on the mesh grid side in the ambient air. The power consumption was...
measured to approximately $0.5\,\text{W}\,\text{cm}^{-2}$. The applied potential across the dielectric is transformed from an approximately $4\,\text{V}$ dc rechargeable battery unit to a $7\,\text{kV}$ pulsed voltage using suitable electronics and a mini-transformer.

The main constituents produced by the MiniFlatPlaSter are listed in Table 1. Concerning the UV emission the main components are in the wavelength range between 280 and 400 nm. The UV power density was measured to be less than 0.6 $\mu\text{W}\,\text{cm}^{-2}$. For a plasma treatment time of 60 s the UV dose of the MiniFlatPlaSter therefore is less than $36\,\mu\text{J}\,\text{cm}^{-2}$, which is a factor of 100 below the ICNIRP (International Commission on Non-Ionizing Radiation Protection) safety limits for intact human skin. Looking at the production of toxic gases, mean values of 25 ppm for O$_3$, <1 ppm for NO and <35 ppm for NO$_2$ for a treatment time of 2 min were measured close to the plasma electrode. So far, no safety limit values were published for the application of O$_3$, NO or NO$_2$ on healthy skin or mucosa. Nevertheless, the measured values for O$_3$ and NO$_2$ are above the safety limits published by NIOSH (National Institute for Occupational Safety and Health) for 8 h continuous inhaling. As the MiniFlatPlaSter produces the plasma indirectly—i.e. without using the sample (in our case the MOC) as a counter electrode—the current through the sample is far below the respective CAP treatment time. To avoid dehydration effects caused by the experimental conditions MOCs were separated by vortexing and removed mechanically under a dissecting microscope. Histolytic enzymes were neutralized with FCS (Gibco, Germany) and the cell suspension was washed twice in phosphate buffered saline (PBS) (Gibco, Germany). As a precaution against collateral DNA damage induced by ultraviolet light caused by daylight and/or fluorescent tubes [31], all following steps were made under red light conditions.

Charged particles	Reactive species	Heat	Photons	Static electric field	Electrical current through the samples
Electrons, ions	O$_3$	Mean value for a treatment time of 1 min <25 ppm	Mean value for a treatment time of 1 min <1 ppm	Mean value for a treatment time of 1 min <15 ppm	Power density $<0.66\,\mu\text{W}\,\text{cm}^{-2}$
	NO	Mean value for a treatment time of 1 min <1 ppm	Mean value for a treatment time of 1 min <15 ppm	Mean value for a treatment time of 1 min <15 ppm	$\sim10^3\,\text{V}\,\text{m}^{-1}$ on the mesh electrode
	NO$_2$	Mean value for a treatment time of 1 min <1 ppm	Mean value for a treatment time of 1 min <15 ppm	Mean value for a treatment time of 1 min <15 ppm	$<50\,\text{nA}\,\text{cm}^{-2}$

For this, after the CAP treatment, all MOCs first underwent enzymatic digestions for 1 h, after being covered with a solution of 50 mg protease (Biochrom, Heidelberg, Germany), 10 mg hyaluronidase (Roche, Mannheim, Germany) and 10 mg collagenase P (Roche) dissolved in 10 ml BEGM. After digestion, connective tissue and extracellular matrix components were separated by vortexing and removed mechanically under a dissecting microscope. For this, after the CAP treatment, all MOCs first underwent enzymatic digestions for 1 h, after being covered with a solution of 50 mg protease (Biochrom, Heidelberg, Germany), 10 mg hyaluronidase (Roche, Mannheim, Germany) and 10 mg collagenase P (Roche) dissolved in 10 ml BEGM. After digestion, connective tissue and extracellular matrix components were separated by vortexing and removed mechanically under a dissecting microscope. Histolytic enzymes were neutralized with FCS (Gibco, Germany) and the cell suspension was washed twice in phosphate buffered saline (PBS) (Gibco, Germany). As a precaution against collateral DNA damage induced by ultraviolet light caused by daylight and/or fluorescent tubes [31], all following steps were made under red light conditions.

Cell viability/trypan blue exclusion test

Trypan blue is one of the main recommended dye techniques for exclusion staining and for counting cellular populations, therefore evaluating cellular viability and acute cellular toxicity [16]. The method is based on the principle that living cells exclude the dye, because of their intact cell membrane. However, non-viable cells take up the dye due to their damaged membrane and are stained blue. To monitor the cell viability changes after different CAP treatment times as described above, the trypan blue exclusion test was performed using the following protocol. Supernatant PBS from cell separation steps was discarded after centrifugation at 800 rpm for 5 min at $4\,^\circ\text{C}$. Pellets of treated cells were resuspended in 1 ml of $1\times$ PBS. $50\,\mu\text{l}$ of cell suspension was mixed with an equal volume of trypan blue 0.4% (Merck), transferred to a hemocytometer slide and afterwards counted under light microscopy. A minimum of 200 cells were metered for each data point in a total of sixteen microscopic fields. The defined percentage of viability equals non-stained cells/(stained + non-stained cells) $\times 100$ [17].

Necrosis detection Annexin-V/Propidium iodid IHC staining

Acute necrosis was measured 2 h after the CAP treatment with fluorescence microscopy using an Annexin V-FITC detection kit (Merck for Biosciences, Germany). CAP treatment and MOC preparation to single cells were carried out as described above. Cells were stained with Annexin V-FITC and propidium iodide (PI) according to the manufacturer’s instructions. Structural changes according to the plasma membrane of the cell are early steps in the apoptotic pathway. One of these changes is the translocation of phosphatidylserin (PS) from the internal to the external face of the plasma membrane. Annexin-V is a calcium-dependent phospholipid...
DNA damage/comet assay. To detect DNA damage after the CAP treatment, assessment of the alkaline microgel electrophoresis (comet assay) was performed subsequently to the cell separation steps. The used protocol allows the detection of DNA-strand breaks in single cells, alkali-labile sites (ALSs) and incomplete excision repair sites [18].

Cell pellets were resuspended in 75 µl of 0.7% low-melting agarose (Biozym, Hameln, Germany) and applied to slides (Langenbrinck, Emmendingen, Germany), frosted at the long edges and covered with 0.5% normal melting agarose (Biozym, Hameln, Germany) to provide stability to the agarose layers.

For cell lysis the slides were placed in alkali solution for 1 h (10% DMSO, 1% Triton-X, 2.5 M NaCl, 10 mM Trizma-Base, 100 mM Na2EDTA and 1% N-lauroylsarcosine sodium salt). Prior to electrophoresis, the slides were placed in a horizontal gel electrophoresis chamber (Renner, Dammstadt, Germany), positioned close to the anode and incubated with alkaline buffer solution containing 300 mM NaOH and 1 mM Na2EDTA at pH 13.2. After a 20 min DNA unwinding period, electrophoresis was started at 0.8 V cm−1 and 300 mA and continued for 20 min. Following neutralization (Trisma base, 400 mM, pH 7.5; Merck Germany) fluorescent DNA staining was performed with 75 µl ethidium bromide (Sigma; [51 µl]). After staining, the slides were analysed with a DMLB microscope (Leica, Bensheim, Germany). 80 cell nuclei per slide (2 slides per CAP treatment time) were selected with random pattern and digitized with the attached monochrome CCD camera (Cohu Inc., San Diego, CA, USA).

A high DNA damage/fragmentation leads to a faster and further migration in the electric field. Undamaged DNA does not migrate, which results in a figure shaped like a comet with undamaged DNA in the head and damaged DNA in the tail. Migration was measured by the image analysis software Komet++ (Kinetic Imaging, Liverpool, UK) using the % of DNA in tail and the Olive tail moments (OTM). The OTM represents the multiplication of the relative amount of DNA in the tail with the median migration distance. The % tail DNA is a measure of the relative fluorescent intensity in the head and tail. The % tail DNA further enables a comparison of data over studies whereas the OTM, although consistent within a study, may not be comparable across different studies [19].

Statistical analysis. Unless elsewhere noted data were reported as the arithmetic mean ± SEM. The SPSS 16.0 software (SPSS GmbH, Munich, Germany) was used for statistical analyses and imaging. For calculating the statistical significance of the results the Mann–Whitney test was used. Differences were considered significantly at p < 0.05, prior the statistical analysis. Bonferroni correction was used if necessary [20].

3. Results

Cell viability. Figure 2 shows the viability of oropharyngeal and nasal tissue culture cells after CAP exposure for treatment times of 5, 10, 30, 60 and 120 s compared with the untreated controls. Cell viability was measured 2 h after the CAP treatment using the trypan blue exclusion test as described in section 2. This time point was chosen to investigate the acute cytotoxic effects on healthy cells and to further eliminate influences of other cell mechanisms like apoptosis or cell repair which usually occur later. Viabilities of the controls were set to 100% so that the results—expressed in per cent of the control—allow the comparison between the different tissues. For the pharyngeal tissue culture the viability was significantly reduced to 93.3% (p < 0.05) for a treatment time of 5 s, respectively, to 94.9% for 10 s (p < 0.05) as compared with the controls. Longer treatment times (30 and 60 s) induced a further reduction to 90.9%. Compared with the shorter treatment times (5 and 10 s) this was no further significant decrease in the viability. After a duration of 120 s the viability significantly dropped to 84.9% (p < 0.01). For the nasal tissue a similar significant reduction of the viability was observed. Compared with the controls the viability was reduced to 94.2% for a treatment time of 5 s (p < 0.05) and to 95.1% (p < 0.05) for 10 30 and 60 s and to a further decreased viability of 92% (p < 0.05). A treatment time of 120 s showed a viability of 86.5% (p < 0.01). Compared with the untreated cells and compared with all other treatment times a significant decrease in the cell viability after 120 s of CAP treatment in pharyngeal and nasal tissue (p < 0.05) was observed (table 2).
Necrosis detection. The trypan blue exclusion test gives a good indication for the cell viability in short term assays. Assessing the toxicity with the trypan blue exclusion test alone, may underestimate the toxicity since it is based on the loss of membrane integrity which is a late step in cell death. Furthermore, this test does not allow the discrimination between apoptotic and necrotic cells, and moreover false positive blue stained cells, with a mechanical damaged cell membrane but a viable cell function can occur. To confirm our suggestions of a treatment time dependent acute toxic effect on mucosal cells, Annexin-V/PI staining 2 h after the CAP treatment was measured (see section 2).

The untreated controls showed an average of 3.5% (pharyngeal tissue), respectively, 2.8% (nasal tissue) of necrotic cells (figure 3). For the pharyngeal tissue, a slight increase of necrosis was detected for CAP treatment times of up to 30 s, but these data are not significant. A CAP treatment time of 60 s showed an average of 5.7% necrotic cells which is a significant increase compared with the control ($p < 0.05$) and the 5 s treatment ($p < 0.05$). The 120 s treatment increased the rate of necrotic cells to 9% which was significant compared with the control and all other treatment times especially with the 60 s treatment ($p < 0.05$). For the nasal tissue a treatment time of 30 and 60 s led to a similar average of 6.8%, respectively, 7% of necrotic cells. Compared with the controls and the 5 s treatment these results are statistically significant ($p < 0.05$). 120 s of CAP treatment increased the average of necrotic cells to 10.3% which was significant compared with the control and to treatment times of up to 30 s ($p < 0.05$) (table 3).

DNA-damage measurement. To clarify if the time dependent reduction in cell viability and the increasing cell death (necrosis) is induced through DNA damage and to further investigate the mutagenic potential of increasing CAP treatment times the alcaline micropol electrophoresis (comet assay; as described in section 2) was used for the detection of DNA damage in human mucosal cells. DNA damage was quantified by analysing the percentage of DNA in the comet tail (% tail DNA) and the OTM (median DNA migration distance \times relative amount of DNA in the tail of the comet). Figure 4 shows the % tail DNA in detail.

Analysis of all experiments using pharyngeal tissue revealed that there was no significant increase of DNA damage compared with the controls ($p > 0.05$) for all CAP treatment times (table 4). For the nasal tissue a significant increase of % tail DNA after 60 s (6.7%) compared with the untreated controls (5.0%; $p < 0.05$) and the treatment time of 5 s (5.1%; $p < 0.05$) was observed. Nevertheless, all measured OTMs were under 2 (data not shown). As only OTMs > 2 are considered to reflect relevant DNA damage [21], we can conclude that no significant genotoxic effect was observed for all CAP treatment times of up to 120 s. Surprisingly, there was a significant reduction of DNA fragmentation after 120 s treatment time for both tissues (pharyngeal 4.1%; nasal 5.0%) compared with the 60 s (5.8%; $p < 0.05$) and 30 s (5.6%; $p < 0.05$) treatment in pharyngeal and to the 60 s (6.7%; $p < 0.05$) in nasal tissue. This issue was analysed in detail using a theoretical model, which is described below. This model has as a major assumption a space/time dependent CAP effect on the cells.

Theoretical model. As described above MOCs are three-dimensional in vitro models, built up of a few layers of ‘target cells’ (either mucosal cells from pharyngeal or nasal tissue) around an organic substrate (figure 1). Some of the ‘target cells’ may also become embedded inside the substrate.

The following model is partly based on known facts (e.g. the structure of MOCs, the possibilities for cell changes etc), and partly on assumptions. These assumptions are stated in the mathematical development of the model at the appropriate steps.

The basic aim is to define an ‘untreated’ DNA marker $\langle D_u \rangle$, based on the natural evolution of the MOC system, and a ‘plasma treated’ DNA marker $\langle D_p \rangle$ based on additional plasma effects on the cells that are in principle possible. The ratio of these markers can be related to the measurements (figure 4).

The main assumptions are CAP treatment affects the surface layer of cells; we can define ‘DNA markers’ as an average over the cells in parametric form; the plasma treated
expression (equations (9)–(12)) and by comparing this with
This is done by looking at different limits for the derived
expression how the ‘DNA marker’ would evolve, depending
on the plasma dose, without specifying this dose directly.

Furthermore, we assume that the CAP treatment only affects
the surface cells directly. There are at least four possibilities
due to this:
(1) some cells remain normal, i.e. totally unaffected—\(N_S^N\),
(2) some cells are turned into dormant forms (so-called
‘hedgehogs’)—\(N_{SI}\),
(3) the plasma inflicts DNA damage—\(N_{SD}\),
(4) some cells become necrotic—\(N_{ST}\)
and also we have for the sum of all cell types \(\sum_i N_S^i = N_S\).

For DNA damage testing, the dormant forms (hedgehogs) are usually not considered. Let us call the DNA marker \('D'\).

The value for \(D\), as determined in the DNA damage measurements, is the cumulative sum of all the individual markers summed over all the target cells, except for the dormant forms.

For the untreated case, we assume that there are no dormant cells:

\[
\langle D \rangle_u = (N_S D_S + N_i D_i).
\]

where the subscript \(S\) stands for ‘surface’ and \(i\) for interior. We may safely assume that \(D_S = D_i\), so that

\[
\langle D \rangle_u = D(N_S + N_i),
\]

However, there is always a natural level of DNA damage that occurs in such samples, dependent on the life time of the MOC, so that we may write

\[
\langle D \rangle_u = [f D + (1 - f) D'](N_S + N_i),
\]

where \(f(t)\) is the fraction of normal target cells after time \(t\), and \(D'\) refers to the natural DNA damaged marker (average). If some cells naturally become dormant or necrotic then \(N_S + N_i\) have to be reduced accordingly, and we get

\[
\langle D \rangle_u = [f D + (1 - f) D'](N_S + N_i) f_I f_T.
\]

where \((1 - f_I)\) and \((1 - f_T)\) are the fraction of cells which naturally (after time \(t\)) have become dormant or necrotic. We put the factor

\[
\left[f + (1 - f) \frac{D'}{D} \right] f_I f_T \overset{\text{def}}{=} F
\]

so that (4) becomes simply

\[
\langle D \rangle_u = F D(N_S + N_i).
\]

\(F\) may be regarded as the natural evolutionary factor of the target cell sample. Anything that happens as a result of CAP application is additional.

For the CAP treated sample we can in principle have an additional effect for dormancy, DNA damage and necrotic action.

This effect is assumed to be simply additive to the natural ones described above. Then we may write

\[
\langle D \rangle_p = F (N_S + N_i - N_{SI} - N_{SD} - N_{ST}) D + F N_{SD} D',
\]

where the level of \(N_{SI}, N_{SD}\) and \(N_{ST}\) depends on the plasma dose \(p\). Compared with the untreated case, the DNA marker becomes

\[
\frac{\langle D \rangle_p}{\langle D \rangle_u} = 1 - \frac{N_{SI} + N_{SD} + N_{ST}}{N_S + N_i} + \frac{N_{SD}}{N_S + N_i} \frac{D'}{D}
\]

we see that there is a term that increases the (relative) DNA marker, and another one that decreases this marker.

Table 3. \(p\) values (Wilcoxon test) for necrosis detection tests of pharyngeal and nasal tissue cultures. Level of significance \(p \leq 0.05\).
Pharyngeal tissue culture
5 s
0 s
5 s
10 s
30 s
60 s

Figure 4. Detection of DNA damage (using the comet assay) in pharyngeal (blue) and nasal (red) tissue culture after different CAP treatment times. Whisker blots show the standard errors of the mean, which ranged from 0.28 to 0.53 (pharyngeal tissue experiments), respectively, from 0.27% to 0.77% (nasal tissue experiments).
Special cases:

(1) At low plasma doses we may assume that there are no additional modifications over the natural ones. Then
\[
\langle D_p \rangle / \langle D_i \rangle = 1.
\] (9)

(2) At moderate plasma doses the sum of modified cells = \(N_S - N_{SN} \) will begin to increase. If this is only due to DNA damage, then equation (8) reduces to
\[
\langle D_p \rangle / \langle D_i \rangle = 1 + \frac{N_{SD}}{N_S + N_i} \left(\frac{D'}{D} - 1 \right).
\] (10)

(3) At high plasma doses we need to consider the full equation (8). Rewriting gives
\[
\langle D_p \rangle / \langle D_i \rangle = 1 + \frac{N_{SD}}{N_S + N_i} \left(\frac{D'}{D} - 1 \right) - \frac{N_{SI} + N_{ST}}{N_S + N_i}.
\] (11)

The cross-over point, A, occurs when
\[
N_{SD}(D'/D - 1) = N_{SI} + N_{ST}
\]
or
\[
N_{SD} \frac{D'}{D} = N_S - N_{SN}.
\] (12)

(4) At very high plasma doses, in the extreme limit we may argue that the whole surface cell population has become necrotic—i.e. \(N_{ST} = N_S \) and correspondingly \(N_{SI} = N_{SD} = 0 \). Then we get
\[
\langle D_p \rangle / \langle D_i \rangle = 1 - \frac{N_S}{N_S + N_i}.
\] (13)

This feature of our model is in qualitative agreement with the observations concerning DNA damage shown in figure 4. Quantitatively, we can determine this effect, for instance, by assuming the MOC to consist of \(n \) equal layers of cells. Then we have simply
\[
\langle D_p \rangle / \langle D_i \rangle = 1 - 1/n.
\] (14)

Interpretation of the measurements according to this model.

The model results and the measurements (figures 3 and 4) together with the MOC structure (figure 1) suggest the following:

(1) The MOCs consist of a few layers, \(n \), of cells were \(2 \leq n \leq 10 \). We take an average \(n = 5 \).

(2) The DNA marker does not vary significantly with plasma dose (up to 120 s), so that in first approximation the ratio \(\langle D_p \rangle / \langle D_i \rangle = 1 \). This corresponds to equation (9), i.e. ‘low’ plasma dose, and implies that practically all cells are unaffected by the plasma, i.e. \(N_S \approx N_{SN} \).

(3) There is a hint of a systematic effect in the data, suggesting that \(\langle D_p \rangle / \langle D_i \rangle \) increases slightly up to 60 s of plasma treatment. This would imply using the ‘moderate plasma’ dose solution in a second approximation. If the DNA marker changes only due to DNA damage (and not because some cells may become dormant or necrotic) the model reduces to equation (10). This is an extreme assumption, but worth investigating further. Using this interpretation on figure 4 applies \(1 + \frac{N_{SN}}{N_{SD}} (D'/D - 1) = 1.34 \) (nasal time) and \(= 1.18 \) (pharyngeal time), respectively (and by implication \(D' \) is larger than \(D \)). From our model assumptions, \(N_{SD} \leq N_S \) and \(N_{SI}/N_S = 1/n \) with \(n \) the typical number of cell layers. Then \(D'/D \geq 2.7 \) (nasal time) and \(\geq 1.9 \) (pharyngeal time), respectively, taking \(n \) to be 5 on average.

(4) As the plasma dose is doubled to 120 s, the amount of DNA in the tail (of the comet) (according to figure 4) decreases again. This result is statistically borderline and we may overinterpret its significance. Nevertheless, the model is capable of explaining this seemingly curious result, too. The data suggest that \(\langle D_p \rangle / \langle D_i \rangle \approx 1 \) again (within the statistically accuracy). This corresponds to the situation described in equation (12). Rearranging this and substituting for \(D'/D \) we obtain the result that at this stage \(N_{SD} \approx N_{SI} + N_{ST} \), i.e. the number of DNA damaged cells in the surface layer of the MOCs is similar to the number of dormant and necrotic cells.

(5) In the extreme limit, where the plasma dose is so high that the whole surface layer of cells might become necrotic, we obtain the situation given in equation (14). Then the amount of DNA in the tail of the comet can become smaller than the control at most (for \(n = 5 \)) by 20%. This result is also broadly consistent with the measurements of increase of necrotic cells (up to 9%), shown in figure 3, hence there is some internal consistency in such model assumptions, which encourages further investigations in this direction.

4. Discussion

CAPs are known to have excellent bactericidal properties. Furthermore, ex vivo studies have shown that they are benign with respect to human skin [15]. There is however practically no information about the effects on mucosal cells. Because of the high prevalence of bacterial infections of the head and neck sided organs, this study addresses the interaction of CAP with healthy mucosal tissue for the first time. The results for pharyngeal and nasal tissue demonstrate that CAP leads
to a treatment time dependent reduction in viability without significant detectable DNA damage. For up to 60 s of CAP treatment only weak cytotoxic and no significant mutagenic effects were observed. The in vitro model of MOCs used in this study was chosen because, in contrast to single cell experiments in culture, MOCs have a connective cell structure with a biotransformative activity which simulates in vivo conditions and therefore may reflect the effect of CAPs better than common two-dimensional single cells experiments [22]. Furthermore, we were able to carry out the CAP treatment in a more realistic setting, without cell medium covering the cells (only a slight film remained on the MOCs).

Up to now, many studies on several benign and malignant cell lines have been published, reporting a power- and/or treatment time dependent cell death suggesting CAP induced apoptosis and/or cytotoxic CAP effects [9, 23]. Whereas in almost all of these studies the median lethal dose, LD$_{50}$ (LD$_{50}$ = dose that is required to kill half the members of a tested ‘population’) was reached easily also for short treatment times, i.e. plasma dosages, our experiments only showed a maximum of viability reduction of 14% after 120 s of CAP application. A concomitant significant increase of necrotic cells after a treatment of 120 s confirmed these results. Shorter treatment times induced significant reduction of viable cells too, but the viability was still larger than 90% compared with the controls. These findings of a lower decrease in viability (than that reported by the authors) may be explained by the fact that we used tissue culture in our experiments, whereas other groups used single cell cultures. As already mentioned above it is well known that tissue culture models have a biotransformative activity and are therefore more resistant to exogenous influences [24]. Furthermore, the studies performed in other groups were all carried out with different CAP devices producing different concentrations of reactive species, ions, etc. The viability measurements in our experiments were carried out shortly (∼2 h) after the CAP treatment, so that only the acute effect on the viability was observed and effects on the viability that take more time, such as apoptosis induction, were not investigated yet. Overall, further investigations regarding long term survival of healthy mucosal cells still have to be made, but a strong cytotoxic effect for CAP treatment times of up to 120 s is considered to be unlikely.

To evaluate the mutagenic potential of CAP on healthy human mucosal single cell cultures, the microgel technique involving electrophoresis (comet assay) was used. The version used for our experiments is very efficient for detecting frank DNA single-strand breaks (SSBs), double strand breaks (DSBs) and ALSs. Because almost all genotoxins induce more SSB and/or ALS than DSB and other DNA alterations such as DNA crosslinks or intercalations, the comet assay is highly sensitive for detecting low levels of DNA damage and requires only a small number of cells per sample, which makes it superior to other genotoxicity tests [18]. Compared with the untreated controls no significant treatment time, respectively, dose-dependent increase, of DNA damage was observed in our tests. The results therefore show that exposure of mucosal tissue cultures to CAP does not have a significant mutagenic effect for treatment times of up to 120 s. Similar results were obtained by Boxhammer et al., who carried out the HPRT assay to analyse the induction of mutagenicity in V 79 lung fibroblast hamster cells: in this study, which was carried out with the same plasma device used here (MiniFlatPlaSter), treatment times of up to 240 s did not induce any mutations beyond those which occur naturally [8]. In contrast to these findings Arndt et al showed that 120 s of CAP treatment—using the MiniFlatPlaSter—induced phosphorylation of H2AX, a histone variant that is phosphorylated in response to DNA-DSBs in two melanoma cell lines. Nevertheless, a lower CAP treatment time of 60 s did not show any DNA-DSBs in the same setup [25]. This finding of a CAP dosage dependent increase in DNA damages was also reported by other authors using different CAP devices and cell lines [9, 26].

At this point we want to mention that a comparison of diverse experiments carried out with different CAP devices is difficult due to the differences in the production of their respective components. Nevertheless, experiments also carried out with one plasma device—in this case the MiniFlatPlaSter—give different results when different cell lines (malignant/non-malignant) or cell tissue cultures (MOCs) are targeted (and/or different detection assays are used).

From the experiments Kalghatgi et al performed, it was suggested that the dose-dependent DNA damage, measured with the γ-H2AX detection method, is mediated by stable organic components in the cell medium, such as organic peroxides (i.e. peroxidized amino acids) induced by intracellular reactive oxygen species (ROS) [26]. This means that DNA interacting, respectively, damaging agents are reactive ingredients of the medium and that the shown effects are probably indirect effects of the CAP treated medium and no direct CAP effects on the cells. These indirect effects can be ruled out in our study—as well as in the studies performed by Boxhammer et al. and Arndt et al—as the MOCs were treated under almost ‘dry conditions’, i.e. no medium covered the cells during the CAP treatment.

Nevertheless, our results surprisingly show a highly significant time-/dose-dependent decrease of DNA fragmentation after 120 s (see figure 4), which can be interpreted in two ways. On the one hand, this phenomenon may be explained by the formation of DNA crosslinks mediated by plasma induced intracellular ROS. Several studies have shown the formation of intracellular ROS induced by CAP [9, 27]. ROS are potentially harmful for the cellular metabolism. At low doses they are known to have a positive effect on cell proliferation but induce mutagenesis, whereas high levels of ROS inhibit cell proliferation, induce cytotoxic effects and apoptosis [28]. ROS including superoxide, hydrogen peroxide and free hydroxyls are also able to generate peroxidized proteins that react with the DNA by forming strong intramolecular protein-DNA-crosslinks (PDC) or to promote DNA-DNA interstrand crosslinks [29]. The comet assay used in this study is very sensitive for the detection of DNA-single strand breaks, ALSs and DNA-DSBs. The presence of DNA-DNA or DNA-protein crosslinks reduces the ability of DNA to migrate in the agarose gel. Assuming a dose-dependent increase of intracellular ROS and the proportional formation of DNA crosslinks this mechanism may explain our results with a decrease in DNA migration...
after 120 s of CAP treatment. Nevertheless, further investigations concerning this topic have to be carried out to prove this explanation.

On the other hand, a model calculation was set up in order to explain both the observed cell viability and the DNA measurements. The basic model assumption is that CAP influences the surface layers of cells, causing necrosis above a certain dose. This model is in good qualitative and quantitative agreement with the measurements. The two interpretations address different aspects of the observations (the DNA issue and the necrosis) and are therefore complementary.

Against the medical background this is the first study which ever evaluated the effects of CAP on mucosal cells. In conclusion no mutagenic effects for treatment times of up to 120 s were detectable. Nevertheless, a slight reduction in cell viability was observable. Regarding the undeniable bactericidal effect of the MiniFlatPlaSter within even lower treatment times our results could contribute to future applications such as the gentle treatment of mucosal bacterial infections.

Acknowledgments

The authors thank Julia Köritzer for helpful discussions on the experiments. The work, carried out at the Max Planck Institute for Extraterrestrial Physics, Garching, Germany, was funded by the grant M.TT.A.EXT00002.

References

[1] Lu X P and Laroussi M 2006 J. Phys. D: Appl. Phys. 39 1127–31
[2] Morfill G E, Shimizu T, Steffes B and Schmidt H U 2009 New J. Phys. 11 115019
[3] Laroussi M and Akan T 2007 Plasma Process. Polym. 4 777–88
[4] Walsh J L and Kong M G 2011 Appl. Phys. Lett. 99 081501
[5] Shimizu T et al 2008 Plasma Process. Polym. 5 577–82
[6] Maisch T, Shimizu T, Isbary G, Heinlin J, Karrer S, Klämpf T G, Li Y-F, Mortill G E, and Zimmermann J L 2012 Appl. Environ. Microbiol. 78 4242–7
Zimmermann J L, Dünner K, Shimizu T, Mortill G E, Wolf A, Boxhammer V, Schlegel J, Gansbacher B and Anton M 2011 J. Phys. D: Appl. Phys. 44 505201
Hänel M, von Woedtke T and Weltmann K-D 2010 Plasma Process. Polym. 7 244–9
Klämpf T G, Isbary G, Shimizu T, Li Y-F, Zimmermann J L, Stolz W, Schlegel J, Mortill G E and Schmidt H U 2012 Appl. Environ. Microbiol. 78 5077–82
Zimmermann J L, Shimizu T, Schmidt H-U, Li Y-F, Mortill G E and Isbary J 2012 New J. Phys. 14 073037
[7] Maisch T, Shimizu T, Li Y-F, Heinlin J, Karrer S, Mortill G E and Zimmermann J L 2012 PLoS ONE 7 e34610
[8] Boxhammer V et al 2012 Mutation Res. Submitted
[9] Vandamme M et al 2012 Int. J. Cancer 130 2185–94
[10] Sensenig R et al 2011 Ann. Biomed. Eng. 39 674–87
[11] Isbary G et al 2010 Br. J. Dermatol. 163 78–82
[12] Isbary G et al 2012 Br. J. Dermatol. (epub ahead of print)
[13] Isbary G et al 2011 Arch. Dermatol. 147 388–90
[14] Heinlin J et al 2012 Exp. Dermatol. submitted
[15] Ahovuo-Saloranta A, Borissenko O V, Kovanen N, Varonen H, Rautakorpi U M, Williams J W Jr and Makela M 2008 Cochrane Database Syst. Rev. 2 CD000243
Altamimi S, Khalil A, Khalawi A I, Milner R A, Pusic M V and Al Othman M A 2012 Cochrane Database Syst. Rev. 8 CD004872
[16] Kleinassser N H, Juchhoff J, Wallner B C, Bergner A, Harreus U A, Gamarra F, Buhrlen M, Huber R M and Rettenmeier A W 2004 Mutation Res. 561 63–73
Wallner B C, Harreus U A, Gamarra F, Sassen A and Kleinassser N H 2005 HNO 53 1037–46
[17] Isbary G et al 2012 Clin. Plasma Med. (epub ahead of print)
[18] Wong H M, Rauth A M, Bendayan R, Manias J L, Ramaswamy M, Li Z, Erhan S Z and Wu Y X 2006 Pharm. Res. 23 1574–1585
[19] Phillips H J 1973 Tissue Culture 407–8
[20] Tice R R, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu J C and Sasaki Y F 2000 Environ. Mol.Mutagen. 35 206–21
[21] Lovell D P and Omori T 2008 Mutagenesis 23 171–82
[22] Hochberg Y 1988 Biometrika 75 800–3
[23] Harreus U, Schnezer P, Kuchenmeister F and Maier H 1999 Laryngorhinootologie 78 176–81
[24] Kleinassser N H, Harreus U A, Gamarra F, Driemel O, Hagen R and Buehrlen M 2009 Eur. Arch. Otorhinolaryngol. 266 385–9
[25] Kim D, Gweon B, Kim D B, Choe W and Shin J H 2009 IFMBE Proc. 25 335–7
[26] Nuccitelli R, Tran K, Sheikh S, Athos B, Kreis M and Nuccitelli P 2010 Int. J. Cancer 127 1277–36
[27] Shashurin A, Keidar M, Hartmann A, Kharissova O V, Rettenmeier A W 2004 Exp. Dermatol. 13 278–83
Stoffels E, Kieft E J, Sladek R E J, vanden Laan E P and Steinbruch M 2006 Plasma Sources Sci. Technol. 15 169
[28] Desoizo B and Jardillier J 2000 Crit. Rev. Oncol. Hematol. 36 59–60
[29] Drewitz M, Helbling M, Fried J, Bieri M, Moritz W, Lichtenberg J and Kelm J M 2011 Biotechnol. J. 6 1488–96
[30] Arndt et al 2012 Exp. Dermatol. submitted
[31] Kalghatgi S, Kelly C, Cerchard E, Torabi B, Alekseev O, Fridman A, Friedman G and Azizkhan-Clifford J 2010 PLoS ONE 6 e16270
[32] Lupu A R and Georgescu N 2010 Roum. Arch. Microbiol. Immunol. 69 67–74
[33] Dreh R and Junod A F 1996 Eur. J. Cancer. 32A 30–8
Lehnert B E and Iyer R 2002 Hum. Exp. Toxicol. 21 65–9
[34] Gebicki S and Gebicki J 1999 Biochem. J. 338 629–36
[35] Shimizu T, Sakaiyama Y, Graves D B, Zimmermann J L and Mortill G E 2012 New J. Phys. 14 103028
[36] Lytle C D, Cyr W H, Beer J Z, Miller S A, James R H, Landry R J, Jacobs M E, Kaczmarek R G, Shankness C M and Gaylor D 1992 Photodermatol. Photoinmunol. Photomed. 9 268–74
Ikehata H and Ono T 2011 J. Radiat. Res 52 115–25