COMPARISON OF THE EFFECT OF LOW FREQUENCY ELECTROMAGNETIC FIELD APPLICATION WITH THE PROCEDURES USING SOLID MAGNETS IN PATIENTS WITH GONARTHROSIS

ELEKTROMAGNETYCZNEGO NISKIEJ CZĘSTOTLIWOŚCI Z ZABIEGAMI Z UŻYCIEM MAGNESÓW STAŁYCH U PACJENTÓW Z GONARTROZĄ

Key words: gonarthrosis, permanent magnets, alternating magnetic field, quality of life, pain

Summary

Background. The aim of the study was comparative assessment of the effect of treatment using low frequency alternating magnetic field and permanent magnets on the quality of life, intensity of symptoms and the range of movements in patients with unilateral degenerative changes in the knee joint.

Material and methods. The sample included 60 participants aged 55-75 years from “Senioren Zentrum Schloss Liechtenstein der Wiener Privat Klinik” in Austria. The patients were divided into two groups (EM and SM), depending on the applied form of treatment. EM patients underwent treatment using low frequency alternating magnetic field, applied on the knee joint with degenerative changes. The second group underwent 10 25-minute-long procedures. Two bipolar permanent magnets were placed on the patients’ knee joints 12 hours a day to wear them 10 days. The quality of life was measured using WOMAC scale, pain intensity was measured using visual analog scale (VAS) and the measurement of the range of motion in the knee joint was taken.

Results. The results show that both the low frequency alternating magnetic field and permanent magnets have a statistically significant favorable effect on improvement of quality of life, reduce pain and improve the range of motion in patients with gonarthrosis. The between group comparison of the therapeutic effects has revealed a significantly greater improvement of the quality of life in the group of patients undergoing treatment using magnets.

Conclusions. The benefits of the treatment using alternating magnetic field or permanent magnets in patients with gonarthrosis seem to be comparable in the light of the study results. However, the additional benefits of treatment with permanent magnets, due to the possibility of self-application after consultation with the specialist in this field, are of note. It is particularly important in cases of problems with direct access to specialist therapeutic centers. In the case of athletes, it is also possible to apply this form of treatment by the patients themselves after sport-related injuries or in preventive measures aimed at the improvement of natural processes of post-exercise restitution.

Streszczenie

Wstęp. Celem badań była porównawcza ocena wpływu leczenia zmiennym polem magnetycznym niskiej częstotliwości i magnesami stałymi na jakość życia, natężenie dolegliwości bólowych oraz zakresy ruchu u pacjentów dotkniętych jednostronnymi zmianami zwyrodnieniowymi stawu kolanowego.

Materiał i metody. Badania przeprowadzono w grupie 60 osób w wieku 55-75 lat, w „Senioren Zentrum Schloss Liechtenstein der Wiener Privat Klinik” w Austrii. Pacjenci zostali podzielieni na dwie grupy (EM i SM) w zależności od zastosowanej formy terapii. Pacjentom z grupy EM aplikowano zmiennie pole magnetyczne niskiej częstotliwości na dotknięte zmianami zwyrodnieniowymi staw kolanowy. W grupie tej wykonano 10 zabiegów trwających każdorazowo 25 minut. Pacjentom z grupy SM przez okres 10 dni zakładano na 12 godzin dziennie dwuświątkowe magnesy stałe. W obu grupach mierzono jakość życia wg skali WOMAC, natężenie bólu w skali wizualno-analogowej VAS oraz zakresy ruchu w stawie kolanowym. Do statystycznej analizy danych wykorzystano program Statistica wersji 12 (StatSoft, Poland).

Wyniki. Przeprowadzone badania wykazały, że zarówno zmiennie pole magnetyczne niskiej częstotliwości, jak i magnesy stałe mają statystycznie istotny, korzystny wpływ na poprawę jakości życia, zmniejszenie dolegliwości bólowych i poprawę zakresu ruchu u osób z gonarthrozą. Porównanie efektów leczniczych między grupami wykazało też znacząco większą poprawę jakości życia w grupie pacjentów, którzy byli leczeni magnesami.

Wnioski. Korzyści wynikające z zastosowania zmiennego pola magnetycznego czy magnesów stałych u osób z gonarthrozą wydają się być, w świetle przeprowadzonych badań, porównywalne. Warto jednak zwrócić uwagę na dodatkowe korzyści terapii magnesami stałymi wynikające z możliwości ich samodzielnego aplikowania, po uprzedniej porozumieniowej konsultacji z odpowiednim specjalistą. Ma to szczególnie istotne znaczenie w sytuacjach utrudnionego, bezpośredniego dostępu do specjalistycznych ośrodków leczniczych. W przypadku sportowców może to też stwarzać dodatkowe możliwości samodzielnego ich stosowania po kontuzjach sportowych czy w profilaktyce zdrowotnej w celu usprawnienia naturalnych procesów restytucji powysiłkowej.

Address for correspondence / Adres do korespondencji
Edyta Szczuka
tel.: 501175360
e-mail: edyta.szczuka@awf.wroc.pl

Received / Otrzymano 22.10.2020 r.
Accepted / Zaakceptowano 07.04.2021 r.
Gonarthrosis is one of the most frequent injuries of the musculoskeletal system in the population of nowadays. Its incidence is increasing due to the decrease in the average life span and age of the population worldwide. Gonarthrosis is a progressive and chronic disease and its course is affected by such factors as age, sex, body mass, genetic factors, overload and injuries. The persistent inflammation of the synovium leads to gradual damage to the articular cartilage and next, permanent damage to bone structures. Gonarthrosis manifests with pain, joint stiffness and limitation of physical activity which, in the future, may significantly contribute to deterioration of the quality of life and disability [1].

The problem of the incidence of gonarthrosis is also present in athletes, which has been also highlighted by the authors of the systematic review from 2016, based on the results of 46 studies. The outcome of the above-mentioned analysis indicates that the risk of gonarthrosis is the highest in football players and slightly lower in runners. Some study outcomes analyzed in the presented review paper indicate the correlation between the intensity of practiced sport discipline and the incidence of gonarthrosis. More frequent cases of gonarthrosis are noted in athletes who have sustained such conclusions as damage to the meniscus or anterior cruciate ligament (ACL) tear [2].

The meta-analysis conducted by Madaleno et al. [3] indicates that the estimated incidence of gonarthrosis in former athletes is about 30% and these values are statistically significantly higher as compared with those obtained in the general population. Involvement in sports, however, does not always result in such adverse effects. Under appropriate circumstances, it can favorably affect the knee joint cartilage, which positively responds to moderately increased load. Involvement in sport also allows athletes to maintain an adequate body mass, which is an important factor, reducing the risk of gonarthrosis. Sport-related activity prevents the loss of cartilage proteoglycans which are responsible for viscoelasticity of the articular cartilage and the increase in muscle mass and strength may contribute to reduction of excessive load exerted on the passive joint components. Regardless the possibility that the evidence supporting the relationship between circumstances and the development of gonarthrosis in athletes is still uncertain from the scientific point of view, most of the researchers have no doubts that excessively intensive involvement in sports increases the risk of non-age related, premature damage to the structures of the active and passive movement apparatus [4].

Conservative treatment of degenerative diseases including these affecting the knee joint, comprises various forms of treatment. Romanowski et al. [5] have presented the obligatory standards of the treatment of degenerative changes in joints, based on the recommendations of the European League Against Rheumatism (EULAR), the American College of Rheumatology (ACR), Osteoarthritis Research Society International (OARSI) and the National Institute for Health and Care Excellence (NICE). These recommendations indicate that during non-pharmacological treatment of gonarthrosis some measures require special attention in sports, however, does not always result in such adverse effects. Under appropriate circumstances, it can favorably affect the knee joint cartilage, which positively responds to moderately increased load. Involvement in sport also allows athletes to maintain an adequate body mass, which is an important factor, reducing the risk of gonarthrosis. Sport-related activity prevents the loss of cartilage proteoglycans which are responsible for viscoelasticity of the articular cartilage and the increase in muscle mass and strength may contribute to reduction of excessive load exerted on the passive joint components. Regardless the possibility that the evidence supporting the relationship between circumstances and the development of gonarthrosis in athletes is still uncertain from the scientific point of view, most of the researchers have no doubts that excessively intensive involvement in sports increases the risk of non-age related, premature damage to the structures of the active and passive movement apparatus [4].

Conservative treatment of degenerative diseases including these affecting the knee joint, comprises various forms of treatment. Romanowski et al. [5] have presented the obligatory standards of the treatment of degenerative changes in joints, based on the recommendations of the European League Against Rheumatism (EULAR), the American College of Rheumatology (ACR), Osteoarthritis Research Society International (OARSI) and the National Institute for Health and Care Excellence (NICE). These recommendations indicate that during non-pharmacological treatment of gonarthrosis some measures require special

Choroba zwyrodnieniowa stawu kolanowego (gonarthroza) jest jednym z najczęstszych schorzeń narządu ruchu współczesnego człowieka. Częstość jej występowania, z uwagi na wzrost średniej długości życia i starzenie się światowej populacji, wykazuje tendencję wzrostową. Gonarthroza ma charakter postępujący i przewlekły, a na jej charakter i przebieg mają wpływ takie czynniki jak wiek, płc, masa ciała, czynniki genetyczne, przeciążenia oraz urazy. Na skutek utrzymującego się stanu zapalnego błony mazowej stawu dochodzi do stopniowego uszkodzenia chrząstki stawowej, a następnie trwałego zniszczenia struktur kostnych. Chorobie zwyrodnieniowej stawu kolanowego towarzyszy ból, sztywność stawowa, ograniczenie sprawności fizycznej, co w dłuższej perspektywie w sposób istotny może przyczyniać się do obniżenia jakości życia i niepełnosprawności [1].

Problem występowania chorób zwyrodnieniowych stawu kolanowego jest też obecny u sportowców na co zwrócili uwagę autorzy systematycznego przeglądu z 2016 roku, który przeprowadzono w oparciu o wyniki 46 badań. Z analizy tej wynika, że ryzyko gonarthrozy jest największe u zawodników piłki nożnej, nieco mniejsze u biegaczy. Część analizowanych w prezentowanym przeglądzie badań udowadnia związek intensywności uprawianego sportu z występowaniem gonarthrozy. Obserwuje się częstszes występowanie gonarthrozy u sportowców po wcześniejszych kontuzjach takich jak uszkodzenie łańcoków czy zerwanie więzadła krzyżowego przedniego [2].

Z metaanalityz Madaleno i wsp. [3] wynika, że częstosc występowania choroby zwyrodnieniowej stawu kolanowego u byłych sportowców można szacować na około 30% i są to wartości wyższe w porównaniu do populacji ogólnej. Uprawianie sportu nie zawsze jednak musi wywoływać tego rodzaju negatywne efekty. W sprzyjających okolicznościach aktywność sportowa może korzystnie wpływać na stan chrząstki stawu kolanowego, która pozytywnie reaguje na umiarkowane, zwiększone obciążenia. Uprawianie sportu pozwala utrzymać też prawidłową masę ciała, co jest istotnym czynnikiem zmniejszającym ryzyko gonarthrozy. Aktywność sportowa zapobiega utratie proteoglikanów chrząstki, które są odpowiedzialne za jej właściwości lepkosprężyste, a zwiększenie masy i siły mięśni może pozytywnie wpływać na zmniejszenie nadmiernego obciążenia biernych elementów stawu.

Mimo tego, że dowody w zakresie okolicznościowości występowania gonarthrozy u sportowców można uznać za wciąż niepewne naukowo, to jednak większość autorów nie ma wątpliwości co do tego, że zbyt intensywne uprawianie sportu zwiększa ryzyko, nieadekwatnego do wieku, szybszego zużycia struktur czynnych i innego aparatu ruchu [4].

W leczeniu zachowawczym chorób zwyrodnieniowych, w tym także stawu kolanowego, stosuje się różne formy terapii. Romanowski i wsp. [5] przedstawili obowiązujące standardy leczenia zmian zwyrodnieniowych stawów w oparciu o rekomendacje European League Against Rheumatism (EULAR), American College of Rheumatology (ACR), Osteoarthritis Research Society International (OARSI) i National Institute for Healthy and Care Excellence (NICE). Z zaleceń tych wynika, że w niefarmakologicznym leczeniu gonarthrozy należy zwrócić szczególną uwagę na edukację, terapię podtrzymującą, terapię angażującą oraz terapię lekową.
attention; these are: patients' self-control and their individual health-related behavior, body mass reduction, workouts (aerobic, strengthening, in water, tai chi), manual therapy, transdermal electric stimulation and adequate orthopedic equipment.

The accepted in physiotherapy treatment of gonarthrosis comprises various physiotherapeutic approaches including laser therapy [6], which, according to other researchers, can enhance the efficacy of the simultaneously applied therapeutic interventions [7], topical cryotherapy used as a separate procedure or preparation for workout [8-10], ultrasound and transcutaneous electrical nerve stimulation (TENS) [11]. High efficacy of the complex gonarthrosis treatment approaches, conducted in sanatoria, is emphasized. These include laser treatment, cryotherapy, mud packs, saline baths and individual gymnastics [12].

Descriptions of the approaches to gonarthrosis treatment using electromagnetic field are frequent in research papers. The values of magnetic field applied in therapy are characterized by the frequency lower that 100 Hz (as a rule: 10-20 Hz) and magnetic induction in militesla (from 1 pT to 20 mT, twice or trice stronger than earthly magnetic field induction). Only during transcranial stimulation and depression treatment, the value concerning to induction may reach even 5 tesla at the frequency of several Hz. The devices used in magnet therapy are composed of an amplifier (driver) which generates current having defined parameters (value, shape, frequency). Current flow through the inductor (applicator), having various shapes generates magnetic field around the inductor (applicator). In the devices produced by different manufacturers, both the shape of the inductor and the shape of the current impulse itself can have quite different forms. The research results indicate that magnet therapy can be effective in treatment of many conditions, showing the effect accelerating treatment of new fractures, regains bone mass in cases of its loss (osteoporosis) has a multidirectional favorable effect in joint conditions, in treatment of soft tissues and nerve regeneration. Magnet therapy also has an analgetic and anti-inflammatory effect, improves circulation, strengthens the immune system, reduces swelling, decreases excessive muscle tension and excessive mental stress [13].

The systematic review of randomized, controlled studies conducted by We et al. [14] has provided suggestive evidence confirming high efficacy of pulsed magnetic field in the treatment of gonarthrosis. After four and eight weeks of using magnet therapy, better effects are obtained than after placebo treatment. The authors of the analysis also emphasize the problem of treatment safety, indicating an alarming fact of using magnetic field with electric current above the levels recommended by the International Commission on Non-Ionizing Radiation Protection. The safety issues in magnet therapy application in patients or the degree of physiotherapist exposure are discussed in scientific meilus [13,15].

The application of magnets emitting permanent magnetic field in treatment, especially in degenerative diseases, is more seldom mentioned in scientific periodicals. However, many years ago, these magnets were the prototypes of the contemporary therapies using magnetic field emitting devices. As early as in ancient Greece physicians used iron rings to kaczę pacjenta, w tym samokontrolę jego indywidualnych zachowań zdrowotnych, redukcję masy ciała, ćwiczenia (aerobowe, wzmacniające, w wodzie, tai chi), terapię manualną, przeszskorną stymulację elektryczną i odpowiednio zaopatrzenie ortopedyczne.

Uznawanym w fizjoterapii metodami leczenia gonarthrozy są różne metody fizyterapii, w tym laseroterapia [6], która, jak piszą inni autorzy, może wzmacniać skuteczność, stosowanych równolegle interwencji leczniczych [7]. Kryoterapia miejscowa stosowana jako samodzielny zabieg lub jako przygotowanie do ćwiczeń [8-10], fala utradźwiękowa i TENS [11]. Podkreślą się wysoką skuteczność kompleksowo prowadzonych terapii gonarthrozy przeprowadzanych np. w-warunkach uzdrowiskowych, tj. laseroterapii, krioterapii, okładów borownowymi, kąpieli solankowych i gimnastyki indywidualnej [12].

Stosunkowo dużo miejsca w pracach naukowych poświęca się opisowi metod leczenia gonarthrozy przy wykorzystaniu pola magnetycznego. Warto overpolo magnetycznego stosowanego w terapii charakteryzują się częstotliwością mniejszą od 100 Hz (z reguły 10-20 Hz) i indukcyjną magnetyczną rzędę mili Tesli (tj. o 1 pT do 20 mT), która jest 2-3 razy większa od indukcji pola magnetycznego Ziemi. Jedynie w stymulacji przeczaskowej, w leczeniu depresji, wartość indukcji może osiągać nawet 5 Tesli, przy częstotliwościach rzędu kilku Hz. Urządzenia stosowane w magnetoterapii składają się z zasilacza (sterownika), który wytwarza prąd o określonych parametrach (wartość, kształt, częstotliwość). Przepływ prądu poprzez cewkę o różnych kształtach powoduje powstawanie pola magnetycznego w otoczeniu cewki (aplikatora).

W urządzeniach różnych producentów zarówno kształt cewki, jak i kształt samego impulsu prądowego może mieć bardzo różne formy. Magnetoterapia może być, jak wykazują badania, skuteczna w wielu schorzeniach, wykazując działanie, które przyspiesza leczenie świeżych złamań, odtwarzanie ubytki masy kostnej (osteopora), ma wielokierunkowe korzystne działanie w chorobach stawów, w leczeniu tkanej miękkich, w regeneracji nerwów. Magnetoterapia wykazuje też działanie przeciwbólowe i przeciwpalne, zwiększa ukrwienie, wzmacnia układ odpornościowy, zmniejsza obręczki, obniża podwyższone napięcie mięśniowe i redukuje namierny stres psychiczny [13].

Systematyczny przegląd randomizowanych, kontrolowanych badań przeprowadzony przez We i wsp. [14] dostarcza sugestywnych dowodów potwierdzających wysoką skuteczność impulsowego pola elektromagnetycznego w leczeniu choroby zwrodnieniowej stawu kolanowego. Po 4 i 8 tygodniach stosowania magnetoterapii zabiegi te okazują się być bardziej skuteczne niż placebo. Autorzy analizy zwrócili też uwagę na problem bezpieczeństwa stosowania zabiegów, wskazując na niepokojący fakt zastosowania w trzech eksperymentach natężenia pola elektromagnetycznego powyżej poziomów zalecanych przez Międzynarodową Komisję ds. Ochrony przed Promieniwaniem Niejonizującym (International Commission on Non-Ionizing Radiation Protection). Zresztą problemy bezpieczeństwa zastosowania magnetoterapii u pacjentów czy stopnia narażenia nań obsługujących fizjoterapeutów są przedmiotem dyskusji w środowiskach naukowych [13,15].

O wiele mniej miejsca przeznacza się w periodykach naukowych na omówienie tematów związanych
treat gout and the Germans used magnetite to treat headaches, gout and venereal diseases. Presently permanent magnets are used with the intensity ranging from 30 to 5000 gauss. These magnets, in a form of rings, can be placed directly on the body or in different objects such as mats, cushions, trunk and neck protectors, shoe linings, bands on hands, feet or knees or in jewelry (bracelets, necklaces and earrings). Haci magnetic cupping is an interesting, relatively new product, allowing to combine vacuum therapy, needling and magnet therapy. Generally, there are several kinds of therapeutic magnets of different shapes, size and thickness. These can be natural magnets obtained from magnetite or as a result of hard rock magnetizing. Magnets used in treatment include rubber or ceramic magnets and they may contain the so-called rare-earth elements. In rubber magnets, the elastic material is usually impregnated using magnetic powder. Ceramic magnets usually consist of strontium ferrite or barium ferrite and are about twice as strong per volume unit as elastic magnets. Permanent rare-earth magnets are the strongest and the most expensive permanent magnets. Such magnets are made of neodymium, cobalt, samarium or other rare-earth elements. Assessment of the physical properties of permanent magnets requires considering its material composition, size, shape (cylindrical, rectangular, spherical) and thickness as these parameters affect the depth of magnetic field penetration. The knowledge of the tridimensional magnetic cloud generated by the permanent magnet is important as its adequate composition may guarantee that the field surface will surround the tissue which is subjected to treatment. However, the fact that magnet manufacturers do not provide reliable information about the thickness of magnetic stream of pole front surface and they don’t describe the details of other technical parameters such as durability, alloy composition or detailed recommendations how to use magnets according to specific recommendations, is an issue of common concern [16,17].

The aim of the study was comparative analysis of the effect of treatment using low frequency alternating magnetic field (EM) and magnets emitting permanent magnetic field (SM) on improvement of the quality of life, reduction of pain and improvement (increase) of the range of motion in the knee joint in patients with gonarthrosis.

Material and methods

Material

The study was conducted between January and February 2019 at Senioren Zentrum Schloss Liechtenstein der Wiener Privat Klinik in Austria. An orthopedist qualified the patients for the trial. 12 patients were excluded from the study. The following exclusion criteria were applied: knee joint surgery, history zastosowaniem magnesów emitujących stałe pole magnetyczne w terapii, zwłaszcza w chorobach o charakterze zwyrodnieniowym. Tymczasem historycznie to właśnie magnesy stałe były pierwotowem współcześnie stosowanych terapii urządzeniami emitującymi pole magnetyczne. Już w starożytniej Grecji lekarze stosowali pierścień wykonane z żelaza w celu leczenia atryntu, a w XVII wieku Niemcy używali magnetytu do leczenia bólu głowy, dny moczanowej i chorób wewnętrznych. Obecnie używa się magnesów stałych na intensywności oddziaływania w granicach 30-5000 gausów. Magnesy te, w formie krążków, mogą być umieszczane bezpośrednio na ciele lub montowane w różnych przedmiotach, takich jak maty, poduszki, ochronnicze na tułów i szyję, wkładki do butów, opaski na dłoń, stopy, kolałna lub w bizuterii (bransoletki, naszyjniki, kolczyki). Interesującym, stosunkowo nowym produktem, który łączy terapeutyczną, igłoterapię oraz magnetoterapię są balki magnetyczne Haci. Zasadniczo różnica się kilka rodzajów magnesów terapeutycznych o różnych kształtach, wielkości i grubości. Mogą to być magnesy naturalne pozyskiwane z magnetytu lub otrzymywane w wyniku namagnesowania stali twardych. Magnesy używane w terapii mogą być gumowe, ceramiczne, mogą zawierać też pierwsiaki pochodzące z tzw. ziem rzadkich. W magnesach gumowych elastyczny materiał impregnowany jest proszkem magnetycznym. Magnesy ceramiczne składają się zagenszyczki z ferrytu strontu lub ferrytu baru i są około dwa razy silniejsze na jednostkę objętości niż magnesy elastyczne. Trwałe magnesy ziem rzadkich są najsilniejszymi i najdroższymi magnesami trwałymi. Magnesy te mogą być wykonane z neodymu, kobaltu, samaru lub innych pierwsiaków ziem rzadkich. Przy ocenie właściwości fizycznych magnesu trwałego należy wziąć pod uwagę skład materiałowy, wielkość, kształt (cylindryczne, prostopadłe, kuliste) i grubość magnesu, które wpływają na głębokość wnikania pola magnetycznego. Istotna jest też znajomość trójwymiarowej chmury magnetycznej generowanej przez magnes trwały, której odpowiedni rozkład może dać gwarancję, że powierzchnia pola otoczki tkankę, która ma być poddana terapii. Powszechne problemem jest też fakt, iż producenci magnesów nie dostarczają wiarygodnych informacji o gęstości strumienia magnetycznego powierzchni czoła bieguna oraz szczegółów innych parametrów technicznych, takich np. jak ich trwałość, skład stopu czy szczegółowe zalecenia odnośnie ich stosowania w odniesieniu do poszczególnych wskazań [16,17].

Celem badań była porównawcza ocena wpływu leczenia zmienionym polem magnetycznym nieskąądostliwości (EM) i magnesami emitującymi stałe pole magnetyczne (SM) na poprawę jakości życia, zmniejszenie dolegliwości bólowych, zwiększenie zakresu ruchu w stawie kolanowym u osób dotkniętych problemem gonartrozy.
of knee joint injuries, age ≤ 50 years, bilateral gonarthrosis and physiotherapy procedures applied at least one month before the treatment. The inclusion criteria were: unilateral gonarthrosis, diagnosis of gonarthrosis based on X-ray and no contraindications for magnet therapy. Finally, 60 patients aged 55-75 years were included in the study and the sample was divided into two therapeutic groups. Both the group treated using alternating magnetic field (EM) and the group treated using magnets (SM) included 30 patients. In EM group there were 15 women and 15 men while in SM group there were 14 women and 16 men. In EM group there were 10 patients with higher education, 12 with secondary education and 8 patients with vocational education. In group SM in turn, 11 participants had completed higher education while 14 and 5 participants had completed secondary and vocational education. In EM group, 11 participants had completed higher education while 14 and 5 participants had completed secondary and vocational education. In EM group (n=19) most of the patients had degenerative changes in the right knee joint. In SM group there were 15 participants with changes in the left knee joint and 15 with changes in the right knee joint. The mean age of the patients and the duration of their condition were respectively: 64.5 ± 7.3 years (EM) and 64.4 ± 7.6 years (SM); 4.8 ± 4.8 years (EM) and 5.0 ± 3.5 years (SM). In order to obtain the characteristics of basic morphological traits, measurements were taken of body mass and body height and, based on the results, Body Mass Index (BMI) values were calculated. Body mass was measured using a medical scale with the accuracy of 100g. BMI values were calculated using the formula: body mass in kg/body height in m².

The average values of body weight, body height and the BMI in the EM and SM groups were: 80.6 ± 13.9 kg (EM) and 84.1 ± 15.8 kg (SM); 173.9 ± 8.2 cm (15.8 kg 176.6 ± 9.4 cm (SM); 26.56 ± 3.54 kg/m² (EM) and 26.70 ± 3.19 kg/m² (SM).

Methods

1. Magnet therapy in EM and SM groups

 A) Magnetic field of lower intensity was applied to patients from EM group. The procedure was performed using Magneris device for magnet therapy (manufacturer: ASTAR ABR, Bielsko-Biała, Poland). The device has an inbuilt treatment program, dedicated to patients with joint degeneration, called "Arthrose". Within 14 days 10 procedures were performed between Monday and Friday using "Arthrose" program. The applied strength of the electromagnetic field was 2.5 mT. The duration of a single treatment session was each time 25 minutes.

 B) Magnets generating permanent magnetic field were applied in SM group (manufacturer: Magnettfabrik Bonn GmbH, Dorotheenstraße, Germany). 2 magnets with a diameter of 30 mm thickness of 2 mm and inductivity of 3.000 Gauss, and N and S mutually attracting opposite poles, were used (Fig. 1). The magnets were used within 14 days, 12 hours daily and were placed in the middle of the lateral gap and medial knee joint.
2. Badania jakości życia i nasilenia bólu

Subiektywne badania jakości życia przeprowadzono wykorzystując skalę WOMAC (The Western Ontario and McMaster Universities Osteoarthritis Index). Skala zawiera 24 pytania dotyczących trzech obszarów: ból (5 pytań), sztywność poranna (2 pytań), aktywność fizyczna (17 pytań). Wszystkie wymienione obszary punktowane są w skali 0-4 pkt, gdzie 0 oznacza brak jakichkolwiek ograniczeń, a 4 pkt ekstremalne ograniczenia. Im więcej punktów (maksymalnie 96) uzyska pacjent, tym gorsza jest jego jakość życia i większa niepełnosprawność. Wynik można także przedstawić w procentach jako sumę punktów uzyskanych w ankiecie i podzielony przez 96 punktów, a następnie mnożony przez 100%.

Nasilenie bólu w dotkniętym zwyrodnieniu stawu kolanowego mierzono posługując się skalą wizualno-analogową VAS (Visual Analogue Scale). Pacjent zaznaczał na 10 cm odcinku skali aktualny poziom bólu w stawie. Brak bólu oznacza 0 pkt, ból nie do wytrzymania – 10 pkt.

3. Badanie zakresu ruchu w stawie kolanowym

Ruchy prostowania i zginania dotkniętego zwyrodnieniem stawu kolanowego mierzono goniometrem z dokładnością do 1 stopnia. Ruch prostowania mierzono w pozycji leżenia przodem, kończyny dolne były wyprostowane w stawach biodrowych i kolanowych, podudzia poza leżanką. Ramię nieruchome goniometru kierowano na krętarz większy kości udowej, ramię ruchome goniometru kierowano na kostkę boczną. Oś obrotu goniometru przykładano do głowy strzałki. Zginanie w stawie kolanowym mierzono w pozie leżeniu przodem. Konczyny dolne wyprostowane były w stawach biodrowych i kolanowych, podudzia poza leżanką. Ramię nieruchome goniometru kierowano na krętarz większy kości udowej, ramię ruchome goniometru kierowano na kostkę boczną. Oś obrotu goniometru przykładano do głowy strzałki.

Badania jakości życia, natężenia bólu i zakresów ruchu przeprowadzono w grupach EM i SM dwukrotnie, tj. przed i po 14 dniach leczenia. Pacjentów zakwalifikowano do leczenia i badań informowano o ich celu i przebiegu. Wszyscy wyrażali dobrowolnie pisemną zgodę na udział w eksperyencie.
4. Statistical analysis

Descriptive statistics were used for analysis of the material. The following parameters were calculated: the arithmetic mean, standard deviation (SD) and between-group/between-subject differences in the mean values; the confidence interval (CI) was 95%. Distribution of the data was verified using Shapiro-Wilk test. The between-subject differences were compared prior to and following the treatment using Wilcoxon signed rank test. The between-group differences were compared using the nonparametric Mann-Whitney U-test. Statistical significance level was set at \(p < 0.05 \). Statistical analysis was conducted using Statistica program, version 12 (StatSoft, Poland).

Results

1. The quality of life, pain and the ranges of motion in patients treated using alternating magnetic field (EM) were measured.

Improvement of the quality of life was noted after the treatment, based on assessment results, measured using WOMAC scale in patients treated using alternating magnetic field (EM group). Pain assessment score was 2.2 points lower and the assessment score corresponding to morning stiffness decreased by 1.0 points while physical activity assessment score and the total WOMAC score were 6.8 points lower. The Wilcoxon's test showed that the differences between the values, obtained prior to and following the treatment, were statistically significant at \(p = 0.000 \) (Tab. 1).

On completion of the treatment using the alternating magnetic field (EM group), pain reduction was indicated based on VAS scale result as well as the increase in the range of motion during extension and flexion of the involved knee joint. The Wilcoxon's test revealed statistically significant differences in comparison with the values obtained prior to the treatment. The index corresponding to pain and flexion movement was \(p = 0.000 \) while for the extension movement it was \(p = 0.015 \). Pain measured using VAS scale was reduced by 1.1 cm, the range of motion increased by 2.0° during extension, and by 4.8° during flexion (Tab. 2).

Wyniki

1. Jakość życia, dolegliwości bólowe, zakresy ruchów w grupie chorych leczonych zmiennym polem magnetycznym (EM)

U pacjentów leczonych zmiennym polem magnetycznym (grupa EM) po zakończeniu terapii stwierdzono poprawę jakości życia ocenianą wg. WOMAC. Ból zmniejszył się o 2.2 pkt, sztywność poranna o 1.0 pkt., aktywność fizyczna o 3.7 pkt, a wynik ogólny WOMAC o 6.8 pkt. Test Wilcoxon wykazał, że różnice w stosunku do wartości początkowych przed rozpoczęciem lenienia były istotne statystycznie, gdyż \(p = 0.000 \) (Tab. 1).

Po zakończeniu lenienia zmieniły się podobne wyniki w porównaniu do wyników przed lenieniem. W przypadku bólu i zginania \(p = 0.000 \), natomiast w przypadku prostowania \(p = 0.015 \). Ból zmniejszył się o 1.1 cm, prostowanie zwiększyło się o 2.0°, a zginanie o 4.8° (Tab. 2).

Tab. 1. Comparison of the quality of life according to WOMAC scale prior to and following the treatment in EM group

Parameter Cecha	EM group / Grupa EM	n = 30		
	test I / badanie I	test II / badanie II	d (95% CI)	\(p \) value Wartość \(p \)
Pain / Ból	\(10.0 \pm 4.9 \)	\(7.8 \pm 4.8 \)	2.2 (1.8-2.7)	0.000
Stiffness / Sztywność	\(3.7 \pm 2.1 \)	\(2.7 \pm 2.0 \)	1.0 (0.6-1.2)	0.000
Physical activity / Aktywność fizyczna	\(31.5 \pm 15.4 \)	\(27.8 \pm 15.2 \)	3.7 (2.9-4.4)	0.000
Total WOMAC / WOMAC ogółem	\(45.2 \pm 21.2 \)	\(38.4 \pm 20.9 \)	6.8 (5.7-7.9)	0.000

EM group: alternating magnetic field; test I: before the treatment; test II: after the treatment; \(x \): the arithmetic mean; s: standard deviation; d (95% CI): difference in the mean values prior to and following the treatment (95% confidence interval-CI); \(p \): Wilcoxon's test result

Grupa EM: zmienne pole magnetyczne; badanie I: przed leczeniem; badanie II: po leczeniu; \(x \): średnia arytmetyczna; s: odchylenie standardowe; d (95% CI): różnica średnich przed-po leczeniu (95% przedział ufności); WOMAC: The Western Ontario and McMaster Universities Osteoarthritis Index. p: wartość testu Wilcoxona
2. The quality of life, pain and ranges of motion in the group of patients treated using magnets (SM)

In patients treated using magnets generating permanent magnetic field (SM) an improvement of the quality of life was noted after the treatment, based on WOMAC scale. The values corresponding to pain and morning stiffness decreased by 3.8 and 0.9 points respectively while the score corresponding to physical activity increased by 7.4 points; the total WOMAC result was 11.6 points. The Wilcoxon's test revealed differences in comparison with the values obtained prior to the treatment; the differences were statistically significant at $p = 0.000$ (Tab. 3).

On completion of the treatment using magnets (SM group), a decrease in pain intensity measured using VAS scale was noted as well as the increase in the range of motion in the involved knee during extension and flexion movements. The Wilcoxon's test showed statistically significant differences as compared with the parameters obtained prior to the treatment. The value obtained for pain and flexion was $p = 0.000$ while during extension movements this value was $p = 0.003$. Pain measured using VAS scale decreased by 2.0 cm, the range of flexion increased by 2.8° and flexion range increased by 8.5° (Tab. 4).

3. Between-group comparison of the quality of life, pain and range of motion in the knee joint in patients with gonarthrosis:

For a more accurate analysis, the test results were compared in the groups treated using an alternating magnetic field (EM) and the groups treated using

Tab. 2. Comparison of pain intensity using VAS scale and the range of motion prior to and following the treatment

Parameter	EM group / Grupa EM	n = 30			
Pain in VAS scale / Ból w skali VAS	test I / badanie I	test II / badanie II	d (95% CI)	p Value	Wartość p
4.0 ± 1.8	2.9 ± 1.9	1.1 (0.8-1.3)	0.000		
Extension / Prostowanie	6.2 ± 4.8	6.2 ± 4.8	2.0 (0.6-3.3)	0.015	
Flexion / Zginanie	96.7 ± 9.7	101.5 ± 9.9	-4.8 (-5.9-3.5)	0.000	

EM group: alternating magnetic field; VAS: Visual Analogue Scale; test I: prior to the treatment; test II: following the treatment; \bar{x}: arithmetic mean; s: standard deviation (SD); d: (95% CI) the difference between the mean values obtained prior and following the treatment (95% confidence interval); P: Wilcoxon’s test result
Grupa EM: zmienne pole magnetyczne; VAS: skala wizualno-analogowa; badanie I: przed leczeniem; badanie II: po leczeniu; \bar{x}: średnia arytmetyczna; s: odchylenie standardowe; d: (95% CI) różnica średnich przed-po leczeniu (95% przedział ufności); p: wartość testu Wilcoxon

Tab. 3. Comparison of the quality of life according to WOMAC scale prior to and following the treatment in SM group

Parameter	SM group / Grupa SM	n = 30			
Pain / Ból	test I / badanie I	test II / badanie II	d (95% CI)	p Value	Wartość p
9.3 ± 3.6	5.5 ± 3.7	3.8 (3.0-4.5)	0.000		
Stiffness / Sztywność	2.2 ± 1.6	1.3 ± 1.2	0.9 (0.6-1.2)	0.000	
physical activity / Aktywność fizyczna	24.6 ± 13.1	17.2 ± 12.5	7.4 (4.6-10.1)	0.000	
WOMAC total / WOMAC ogółem	35.6 ± 16.9	24.0 ± 16.7	11.6 (8.1-14.0)	0.000	

SM group: magnets generating persistent magnetic field; test I: prior to the treatment; test II: following the treatment; \bar{x}: arithmetic mean; s: standard deviation (SD) ; (95% CI) the difference between the mean values obtained prior to and following the treatment (95% confidence interval); p: the value obtained from Wilcoxon's test.
Grupa SM: magnesy generujące stałe pole magnetyczne; badanie I: przed leczeniem; badanie II: po leczeniu; \bar{x}: średnia arytmetyczna; s: odchylenie standardowe; d: (95% CI) różnica średnich przed-po leczeniu (95% przedział ufności); WOMAC: The Western Ontario and McMaster Universities Osteoarthritis Index. p: wartość testu Wilcoxon
magnetyczne (SM) przed i po leczeniu. Przed leczeniem grupy terapeutyczne były podobne do siebie o czym świadczy wyniki testu U Mann-Whitneya. Wyjątek pod tym względem w WOMAC stanowi tylko różnica między grupami w sztywności porannej, gdzie $p=0.010$. Różnice dotyczące takich domen, jak: ból, $p=0.621$; aktywność fizyczna, $p=0.090$; ogólny WOMAC, $p=0.079$ nie były statystycznie istotne. Po zakończeniu leczenia grupy różniły się od siebie. Nie stwierdzono jedynie między grupami istotnej różnicy statystycznej nasilenia bólu po terapii wg WOMAC, bo $d=2.3$ pkt, $p=0.064$. W przypadku sztywności porannej ($d=1.4$ pkt; $p=0.006$) po terapii nieco lepsze rezultaty osiągnęły pacjenci w grupie EM, wśród których zanotowano zmniejszenie sztywności o 1.0 pkt, a u pacjentów w grupie SM o 0.9 pkt. Między grupami wystąpiły istotne różnice statystyczne w obszarze aktywności fizycznej ($d=10.6$ pkt, $p=0.005$). Lepsze rezultaty po terapii uzyskali chorzy leczeni magnesami generującymi stałe pole magnetyczne (SM), u których parametr ten polepszył się o 7.4 pkt, natomiast

Tab. 4. Porównanie nasilenia bólu w skali VAS i zakresu ruchu stawu kolanowego przed i po leczeniu w grupie SM

Parameter/Cecha	SM group / Grupa SM n = 30	test I / badanie I $\bar{X} \pm s$	test II / badanie II $\bar{X} \pm s$	d (95% CI)	p value/Wartość p
Pain in VAS scale / Ból w VAS	4.7 ± 1.8	2.7 ± 1.8	2.0 (1.5-2.5)	0.000	
eExtension / Prorostowanie	7.5 ± 4.9	4.8 ± 3.8	2.8 (1.2-4.4)	0.003	
Flexion / Zginanie	96.7 ± 9.0	105.2 ± 8.0	-8.5 (-10.3-6.7)	0.000	

SM group: magnets generating persistent magnetic field; VAS: Visual Analogue Scale; test I: prior to the treatment; test II: after the treatment; \bar{X}: arithmetic mean; s: standard deviation; d (95% CI): difference in average pre- or post-treatment (95% confidence interval); p: Wilcoxon test value
Grupa SM: magnesy generujące stałe pole magnetyczne; VAS: skala wizualno-analogowa; badanie I: przed leczeniem; badanie II: po leczeniu; \bar{X}: średnia arytmetyczna; s: odchylenie standardowe; d (95% CI): różnica średnich przed-po leczeniu (95% przedział ufności); p: wartość testu Wilcoxon

Tab. 5. Porównanie WOAMC quality of life differences between variable magnetic field (EM) and magnets generating a persistent magnetic field (SM) before and after treatment

Parameter/Cecha	Test I / Badanie I $\bar{X} \pm s$	d (95% CI)	p value/Wartość p	Test II / Badanie II $\bar{X} \pm s$	d (95% CI)	p value/Wartość p		
Pain / Ból	10.0 ± 4.9	9.3 ± 3.6	0.7 (-1.5-3.0)	0.621	7.8 ± 4.8	5.5 ± 3.7	2.3 (1.4-4.5)	0.064
Stiffness / Sztywność	3.7 ± 2.1	2.2 ± 1.6	1.5 (0.4-2.4)	0.010	2.7 ± 2.0	1.3 ± 1.2	1.4 (0.5-2.3)	0.006
Physical activity / Aktywność fizyczna	31.5 ± 15.4	24.6 ± 13.1	6.9 (-0.4-14.3)	0.090	27.8 ± 15.2	17.2 ± 12.5	10.6 (3.4-17.8)	0.005
WOMAC total / WOMAC ogółem	45.2 ± 21.2	35.6 ± 16.9	9.6 (-0.3-19.5)	0.079	38.4 ± 20.9	24.0 ± 16.7	14.4 (4.6-24.1)	0.008

EM group: variable magnetic field; SM group: magnets generating a solid magnetic field; test I: before treatment; test II: after treatment; \bar{X}: arithmetic mean; s: standard deviation; d (95% CI): mean difference between before and after treatment groups (95% confidence interval); WOMAC: The Western Ontario and McMaster Universities Osteoarthritis Index; p: Mann-Whitney test value
Grupa EM: zmienne pole magnetyczne; Grupa SM: magnesy generujące stałe pole magnetyczne

Stolarzewicz B. i wsp. Pole elektromagnetyczne a magnesy stałe w leczeniu gonartrozy
proved by 7.4 points while in the group treated with magnetic field this parameter improved by 3.7 points. After treatment some differences in the total WOMAC result (d=14.4 points, p=0.008) were revealed. Better final results were noted in SM group, where the quality of life improved by 11.6 points and in EM group, where the corresponding value improved by 6.8 points (Tab. 5).

Prior to the treatment, the two groups were similar in terms of pain severity, measured using VAS scale (d =-0.7, p=0.109) as well as extension and flexion of the knee joint with degenerative changes respectively: d=0.5, p=0.741 and d =0.0, p=0.748. After the treatment, no statistically significant between-group differences were found in such parameters as: pain measured using VAS scale, d=0.2 scale, p=0.591, knee joint extension d=1.4, p=0.284 and flexion d=3.7, p=0.209. This means that the effectiveness of both the alternating magnetic field (EM), permanent magnetic field (SM) and magnets in pain reduction and improvement of the range of motion in the knee joint is similar (Table 6). The absence of significant between-group differences in pain severity measured using VAS scale confirmed a similar trend for pain severity, assessed using WOMAC scale.

Discussion

Progress in biophysics, biology, functional genomics, neurobiology, psychology, psychoneuroimmunology and other branches suggest the presence of a subtle system of interactions, which are responsible for organizing biological processes at multiple levels of human body functioning, affecting different regulatory and reparative processes. These interactions partly occur in low energy processes or subtle processes such as nonthermal magnetic field, or the processes potentially related to consciousness and nonlocality, and within more complex informative processes based on electroencephalographic (EEG) or electrocardiographic (ECG) data. Based on this information, different therapeutic approaches are developed in the group leczonej polem magnetycznym o 3.7 pkt. Grupy różniły się od siebie po terapii pod względem ogólnego wyniku WOMAC (d=14.4 pkt, p=0.008). Lepsze wyniki końcowe zanotowano w grupie SM, gdzie jakość życia poprawiła się o 11.6 pkt, w grupie EM o 6.8 pkt. (Tab. 5).

Dyskusja

Postępy w biofizyce, biologii, genomice funkcjonalnej, neurobiologii, psychologii, psychoneuroimmunologii i innych dziedzinach sugerują istnienie subtelnego systemu interakcji, które organizują procesy biologiczne na wielu poziomach funkcjonowania ludzkiego organizmu wpływając na różnych rodzajach efekty regulacyjne i naprawcze. Interakcje te przebiegają częściowo poprzez niskoenergetyczne lub subtelne procesy takie jak nietermiczne pole elektromagnetyczne lub procesy potencjalnie związane ze świadomością i nielokalnością oraz poprzez bardziej zrozumiałe procesy informacyjne oparte o dane elektroencefalograficzne (EEG) czy elektrokardiograficzne (EKG). W oparciu o te informacje powstają różnorod-
oped including these of diagnostic nature or connect
ed with manipulation of biofield. Despite the exper-
iments conducted in this field, the knowledge of these
effects is, according to Muesham, still in its initial phase
d of development. This concerns not only assessment o
clinical efficacy of the procedures taking advanta-
ge of various devices, but also explanation of the ba
ic mechanisms and their effects [17]. The authors o
the report entirely agree with these opinions. When re
viewing the literature on magnetotherapy, we have t
the impression that acquisition of the knowledge o	reatment parameters to be adopted is not based on t
results obtained from basic studies or the thera
peutic properties of the magnetic? field in a given ca
se, but on the empirical demonstration of the effec
tiveness of pre-established procedures.

Multiple studies are reported in the available li	ature, assessing the effects of physiotherapy in pa
tients with gonarthrosis, especially pain relief and im
provement of the quality of daily life. According to P
age et al. [18], there is a strong evidence for short-
term beneficial effects of exercise on joint pain and f
unction. The effectiveness of analgesic effects can be f
commonly be increased by paying more attention to th
correctness of workout performance, the use of kine
siology tapes or orthotics, or appropriately designed t
herapeutic footwear.

Other studies [19] indicate favorable effects of iso
metric or isometric exercises and the effect of selected ph
ysiotherapeutic approaches on pain (according to VAS s
cale), disease activity, sleep quality (Sleep Qua
lity Index (Epworth Sleepiness Scale), depression (Beck D
epression Inventory) and the quality of life (WO
MAC and SF-36 short form) in patients with gonar
throsis.

The efficacy of variable frequency magnetic field a
plied in patients with gonarthrosis has already been re
ported in earlier research papers and systematic re
views [20-26]. As already mentioned, these studies do n
do not completely solve all problems, although they a
re a valuable source of information on effective pro
cedures. According to the review of the available li
terature, alternating magnetic field of different frequen
cy is applied in the treatment of degenerative changes in
the knee with varied intensity and the duration of a s
ingle therapeutic session, the number of therapeu
tic procedures and the duration of treatment differ.

Therefore, it is difficult to state unequivocally which a
pplications of a alternating magnetic field should be s
lected in order to achieve maximal therapeutic ef
fects. Lannitti et al. [22] treated patients with gonar
throsis using low frequency alternating magnetic field of
6-100 Hz three times a week within six weeks; the t
reatment lasted 15 minutes and was applied during e
ach 30-minute long therapeutic session. Next, they a
plied high frequency magnetic field of 500-2000 Hz w
ithin the remaining 15 minutes of the session. On c
ompletion of the treatment,, the results revealed sta
tistically significant pain reduction as well as mor
ning stiffness reduction and improvement of the qua
lity of life and physical fitness. Bagnato et al. [20], u
sing the Acti Patch device (Bioelectronics Corporation, MD,
USA) applied both low frequency alternating magneti
c field of 3- 7.8 Hz and high frequency alternating magne
tic field 145 Hz. The patients used the device w
ithin at least 12 hours, mainly at night. After a month, o
n completion of the treatment, 23% reduction of pain ne metody terapeutyczne o charakterze diagnostycz
nym lub manipulacji interakcjami biopola. Mimo pro
wadzonych eksperymentów w tym zakresie wiedza na
temat tych oddziaływań jest, zdaniem Muesham,a
wać na początkowym etapie rozwoju. Dotyczy to n
ie tylko obszaru oceny skuteczności klinicznej za
biegów z wykorzystaniem różnych urządzeń, ale też w
prowadzenia podstawowych mechanizmów ich oddzia
ływania [17]. Autorzy doniesienia całkowicie przychyl
ają się do tych opinii. Dokonując przeglądu literatury z
akresu magnetoterapii nie sposób nie odnieść wrażenia, ż
budowanie wiedzy o tym jakie należałoby b
 przyjąć parametry zabiegowe odbywa się n
 w oparciu o wyniki badań podstawowych i właściwości tera
peutycznych pola w danym przypadku, lecz na dro
dere empirycznego wykazania skuteczności z góry założonych procedur.

W dostępnej literaturze można odnośdzić szereg ba
dań oceniających wpływ fizjoterapii na problemy o
bólu i poprawę codziennego funkcjonowania. Page i w
sp. [18] twierdzą, że istnieją mocne dowody, które wska
zują na krótkoterminowy, korzystny wpływ ćwiczeń n
ból i funkcje stawu. Skuteczność oddziaływania przeciwbólowego można dodatkowo zwiększyć popr
zez równe własne większe uwagi na poprawność wyk
ywanie ćwiczeń, wykorzystanie do terapii taśm kine
zologicznych, ortez czy odpowiednio zaprojektowa
ego obuwia.

Wyniki innych badań [19] wskazują na pozytywny wp
ływ ćwiczeń izometrycznych, izotonicznych oraz w
ybryanych metod fizjoterapii na ból (skala VAS), ak
tywność choroby, jakość snu (Sleep Quality Index, t
worth Sleepiness Scale), depresję (Beck Depres
sion Inventory) i jakość życia (WOMAC i SF-36 short f
) pacjentów z chorobą zwyrodnieniową stawu ko
olanowego.

Skuteczność pola magnetycznego zmniejsza czę
stotliwości u osób z chorobą zwyrodnieniową stawu ko
olanowego była już przedmiotem wcześniejszych ba
dań oraz systematycznych przeglądów [20-26]. Badania te nie rozstrzygają do końca, jak już wspo
mniano, o wszystkich problemach, choć stanowią c
ne źródło informacji o skutecznych procedurach za
biegów. Z przeglądu dostępnej piśmiennictwa wy
nika, że w leczeniu zwyrodnienia stawu kolanowego s
osuje się aplikacje zmienionego pola magnetycznego o
różnej częstotliwości, różnym natężeniu, różnym cz
asie pojedynczej sesji terapeutycznej, różnej ilości z
biegów i różnym okresie leczenia. Dlatego też trud
no jednoznacznie stwierdzić jakie aplikacje zmienne
ego pola magnetycznego należałoby dobierać, ab
osiągnąć maksymalne efekty terapeutyczne. Lannitti i w
sp. [22] stosowali 3 razy w tygodniu, przez 6 tygodni w
każdej 30-minutowej sesji terapeutycznej, zmienne pola magnetyczne niskiej częstotliwości 6-100 Hz p
 przez 15 minut i wysokiej częstotliwości 500-2000 Hz p
 przez kolejne 15 minut u osób z gonarzọzą. Po zako
czeniu terapii wykazano istotne statystycznie zmniejszenie bólu, sztywności porannej, poprawę jakoś
ności życia i sprawności fizycznej chorych. Bagnato i w
sp. [20] stosowali pilotowo zarządzanie zabiegami a
cti Patch (Bioelectronics Corporation, MD, USA) zarówno zmie
енные pola magnetyczne niskiej częstotliwości 3- 7.8 Hz, j
jak i zmienne pole magnetyczne o wysokiej czę
stotliwości - 145 Hz. Pacjenci korzystali z urządzeń co najmniej 12 godzin, głównie w nocy. Okazało się,
was noted as well as improvement of the patients' quality of life, assessed using WOMAC scale (questionnaire). Külcü et al. [23] assessed treatment efficacy using a pulsed electromagnetic field and ultrasound for pain reduction and improvement of the quality of life in patients with gonarthrosis, and compared their results with those of the control group. Pulsed electromagnetic field was applied using Body Mag device (Eltech Srl, Treviso, Italy). The frequency, intensity and the duration of application adhered to the manufacturer's recommendations. The frequencies of 2 Hz, 10 Hz and 25 Hz were applied. The intensity ranged from 2mT and 10 mT. The duration of the therapeutic session was 35 minutes and 15 sessions were performed within a week. In the group treated with ultrasound continuous waves were applied with the frequency of 1 MHz and power of 1.5 W/cm² (Chattanooga, TN, USA.). The duration of treatment was 10 minutes and five sessions were carried out within a week. The control group was treated only with paracetamol. The results indicated that alternating magnetic field as well as ultrasound treatment more effectively reduced pain and improved the patient's quality of life measured using WOMAC questionnaire as compared with the pharmacological treatment applied in the control group. The results also indicated a higher level of pain reduction in patients treated with alternating magnetic field as compared with those treated with ultrasound. Thamsborg et al. [25] assessed the efficacy of treatment with pulsed electromagnetic field in patients with gonarthrosis, using Biofields Aps device (Denmark). 2-hour magnetic field of 50 Hz was applied five days a week within six weeks. The results indicated reduction of pain and improvement of the quality of life according to WOMAC scale after six and next, twelve weeks following the treatment. Some researchers [26] used combined treatment to relieve pain and increase the patient's range of motion, using magnet therapy and cryotherapy. They conducted 10 radiotherapy sessions 5 times weekly using Magnetronic MF-10 device. The time of exposure was no longer than 20 minutes. Impulse frequency was 20 Hz with magnetic flux density of 6–7 mT. Besides, 10 topical cryotherapy procedures were applied using Cryo-jet device. The procedures were performed 5 times a week and the duration of each application did not exceed 3 minutes. After the treatment, a statistically significant pain reduction was noted as well as an increase of the range of motion in all patients.

In most of the scientific reports the favorable effect of alternating magnetic field is presented, including its analgesic effect and improvement of physical condition or the patient's quality of life. However, the biological effects of alternating magnetic field activity on human organism seem to be more complex processes than they were believed to be earlier and, so far, they have not been fully recognized. It is believed that magnetic field affecting the body permeates all structures of the tissue, activating calcium ions at the cellular level through the cell membrane, which, in turn, favors osteoblast and chondrocyte regeneration [27,28].

Scientific information on using permanent magnets for the treatment of various health-related problems is still insufficient, although a continuous growth of sales of these magnets has been noted for many years on markets worldwide. In 2000, the value of

Because 1 month after the conclusion of the treatment the efficacy was assessed using WOMAC scale. Külcü et al. [23] assessed the efficacy of treatment using pulsed electromagnetic field in patients with gonarthrosis, and compared their results with those of the control group. Pulsed electromagnetic field was applied using Body Mag device (Eltech Srl, Treviso, Italy). The frequency, intensity and the duration of application adhered to the manufacturer's recommendations. The frequencies of 2 Hz, 10 Hz and 25 Hz were applied. The intensity ranged from 2 mT and 10 mT. The duration of the therapeutic session was 35 minutes and 15 sessions were performed within a week. In the group treated with ultrasound, continuous waves were applied with the frequency of 1 MHz and power of 1.5 W/cm² (Chattanooga, TN, USA.). The duration of treatment was 10 minutes and five sessions were carried out within a week. The control group was treated only with paracetamol. The results indicated that alternating magnetic field as well as ultrasound treatment more effectively reduced pain and improved the patient's quality of life measured using WOMAC questionnaire as compared with the pharmacological treatment applied in the control group. The results also indicated a higher level of pain reduction in patients treated with alternating magnetic field as compared with those treated with ultrasound. Thamsborg et al. [25] assessed the efficacy of treatment with pulsed electromagnetic field in patients with gonarthrosis, using Biofields Aps device (Denmark). 2-hour magnetic field of 50 Hz was applied five days a week within six weeks. The results indicated reduction of pain and improvement of the quality of life according to WOMAC scale after six and next, twelve weeks following the treatment. Some researchers [26] used combined treatment to relieve pain and increase the patient's range of motion, using magnet therapy and cryotherapy. They conducted 10 radiotherapy sessions 5 times weekly using Magnetronic MF-10 device. The time of exposure was no longer than 20 minutes. Impulse frequency was 20 Hz with magnetic flux density of 6–7 mT. Besides, 10 topical cryotherapy procedures were applied using Cryo-jet device. The procedures were performed 5 times a week and the duration of each application did not exceed 3 minutes. After the treatment, a statistically significant pain reduction was noted as well as an increase of the range of motion in all patients.

In most of the scientific reports the favorable effect of alternating magnetic field is presented, including its analgesic effect and improvement of physical condition or the patient's quality of life. However, the biological effects of alternating magnetic field activity on human organism seem to be more complex processes than they were believed to be earlier and, so far, they have not been fully recognized. It is believed that magnetic field affecting the body permeates all structures of the tissue, activating calcium ions at the cellular level through the cell membrane, which, in turn, favors osteoblast and chondrocyte regeneration [27,28].

Scientific information on using permanent magnets for the treatment of various health-related problems is still insufficient, although a continuous growth of sales of these magnets has been noted for many years on markets worldwide. In 2000, the value of

Since 1 month after the conclusion of the treatment the efficacy was assessed using WOMAC scale. Külcü et al. [23] assessed the efficacy of treatment using pulsed electromagnetic field in patients with gonarthrosis, and compared their results with those of the control group. Pulsed electromagnetic field was applied using Body Mag device (Eltech Srl, Treviso, Italy). The frequency, intensity and the duration of application adhered to the manufacturer's recommendations. The frequencies of 2 Hz, 10 Hz and 25 Hz were applied. The intensity ranged from 2 mT and 10 mT. The duration of the therapeutic session was 35 minutes and 15 sessions were performed within a week. In the group treated with ultrasound, continuous waves were applied with the frequency of 1 MHz and power of 1.5 W/cm² (Chattanooga, TN, USA.). The duration of treatment was 10 minutes and five sessions were carried out within a week. The control group was treated only with paracetamol. The results indicated that alternating magnetic field as well as ultrasound treatment more effectively reduced pain and improved the patient's quality of life measured using WOMAC questionnaire as compared with the pharmacological treatment applied in the control group. The results also indicated a higher level of pain reduction in patients treated with alternating magnetic field as compared with those treated with ultrasound. Thamsborg et al. [25] assessed the efficacy of treatment with pulsed electromagnetic field in patients with gonarthrosis, using Biofields Aps device (Denmark). 2-hour magnetic field of 50 Hz was applied five days a week within six weeks. The results indicated reduction of pain and improvement of the quality of life according to WOMAC scale after six and next, twelve weeks following the treatment. Some researchers [26] used combined treatment to relieve pain and increase the patient's range of motion, using magnet therapy and cryotherapy. They conducted 10 radiotherapy sessions 5 times weekly using Magnetronic MF-10 device. The time of exposure was no longer than 20 minutes. Impulse frequency was 20 Hz with magnetic flux density of 6–7 mT. Besides, 10 topical cryotherapy procedures were applied using Cryo-jet device. The procedures were performed 5 times a week and the duration of each application did not exceed 3 minutes. After the treatment, a statistically significant pain reduction was noted as well as an increase of the range of motion in all patients.

In most of the scientific reports the favorable effect of alternating magnetic field is presented, including its analgesic effect and improvement of physical condition or the patient's quality of life. However, the biological effects of alternating magnetic field activity on human organism seem to be more complex processes than they were believed to be earlier and, so far, they have not been fully recognized. It is believed that magnetic field affecting the body permeates all structures of the tissue, activating calcium ions at the cellular level through the cell membrane, which, in turn, favors osteoblast and chondrocyte regeneration [27,28].

Scientific information on using permanent magnets for the treatment of various health-related problems is still insufficient, although a continuous growth of sales of these magnets has been noted for many years on markets worldwide. In 2000, the value of
magnet sales only in the United States amounted to 350 million dollars and 4 billion dollars (in 1999) worldwide. According to some available sources, potential clinical benefits of using these magnets prove effective in such health-related problems as: inflammatory arthritis, chronic pain syndromes, insomnia, headaches, problems with wound healing, fibromyalgia and carpal tunnel syndromes. The main problem, however, consists in the lack of scientific recommendations concerning treatment programs, dosage and the frequency and time of magnet treatment. Besides, there is no sufficient information when the magnets should be applied, either in the course of the disease or in cases of specific clinical recommendations [29]. In the reported studies, magnets were placed at the same points in all patients. The authors of this paper wonder whether the efficacy of magnet treatment would improve if the methodology of such procedures was individualized and focused on the most damaged sites in the joint area. It would require a more detailed physical examination and ultrasound imaging, which would allow a more precise recognition of the target tissue in a given patient, where magnets should be placed. A separate problem consists in determining a real field distribution and selection of an adequate effective dose depending on the assumed therapeutic effects. Methodological discrepancies concerning this issue may cause that some treatment procedures turn out ineffective as in the report presented by Collacott et al. [30] in their randomized double-blind trial with controlled placebo.

Conclusions

1. In the light of the so far performed studies, the benefits of using EM or SM treatment in patients with gonarthrosis are comparable.
2. Additional benefits of treatment using permanent magnets are of note; magnets can be easily applied by patients themselves after consultation with a proper specialist. It is particularly important under conditions of difficulties with a direct access to specialist medical centers.
3. In the case of athletes, such treatment approaches may provide additional opportunities of self-application after sport-related injuries or in prevention aimed at improvement of natural processes of post-exercise restitution.

Wnioski

1. Korzyści wynikające z zastosowania EM czy SM u osób z gonartrozą wydają się być, w świetle przeprowadzonych badań, porównywalne.
2. Warto zwrócić uwagę na dodatkowe korzyści terapii magnesami stałymi dzięki możliwości ich samodzielnego aplikowania, po uprzedniej konsultacji z odpowiednim specjalistą. Ma to szczególne istotne znaczenie w sytuacjach utrudnionego, bezpośredniego dostępu do specjalistycznych ośrodków leczniczych.
3. W przypadku sportowców może to też stwarzać dodatkowe możliwości samodzielnego ich stosowania po kontuzjach sportowych czy w profilaktyce zdrowotnej w celu usprawnienia naturalnych procesów restytucji powiększki.

Piśmiennictwo / References

1. Safiri S, et al. Global, regional and national burden of osteoarthritis 1990-2017: a systematic analysis of the Global Burden of Disease Study 2017. Ann Rheum Dis 2020; 79(6): 819–28.
2. Tran G, et al. Does sports participation (including level of performance and previous injury) increase risk of osteoarthritis? A systematic review and meta-analysis. Br J Sports Med 2016; 50: 1459–66.
3. Madalenof O, Santos BA, Araujo VL, Oliveira VC, Resende RA. Prevalence of knee osteoarthritis in former athletes: a systematic review with meta-analysis. Braz J Phys Ther 2018; 22(6): 437–45.
4. Siwecka G, Wodka-Natkaniec E, Niedźwiedzka T. Ryzyko wystąpienia choroby zwyrodnieniowej kręgosłupa u piłkarzy nożnych. Medycyna Sportowa 2016; 1: 27–33.
5. Romanowski W, Zdanowska A, Romanowski M. Choroba zwyrodnieniowa stawów. Aktualne standardy leczenia. Forum Reumatol 2016; 2(2): 52–7.
6. Angelova A, Ilieva EM. Effectiveness of high intensity laser therapy for reduction of pain in knee osteoarthritis. Pain Res Manag 2016; 2016: 9163618. doi: 10.1155/2016/9163618. Epub 2016 Dec 20.
7. Ezzati K, et al. The beneficial effects of high-intensity laser therapy and co-interventions on musculoskeletal pain management: a systematic review. J Lasers Med Sci 2020; 11(1): 81–90.
8. Kopacz Ł, et al. Wartość terapeutyczna krioterapii miejscowej w leczeniu pacjentów z gonarthrozą. Fizjoterapia Polska 2013; 4: 31–6.
9. Nawrat-Szoloysik A, Matyja B. Wykorzystanie krioterapii miejscowej, jako wstęp do ćwiczeń w zmianach zwyrodnieniowych stawu kolanowego. Rehabilitacja w Praktyce 2012; 6: 42–6.
10. Strojek K, et al. Ocena skuteczności krioterapii skojarzonej z kinezyterapią w leczeniu zmian zwyrodnieniowych stawów kolanowych. Journal of Health Sciences 2014; 10: 383–90.
11. Ciosek Z, Szylińska A, Kopacz Ł, Kot K, Rotter I. Ocena skuteczności wybranych zabiegów fizyoterapeutycznych u pacjentów ze zmianami zwyrodnieniowymi stawów kolanowych. Pomeranian J Life Sci 2017; 63(4): 13–7.
12. Klimek-Piskorz E, Szymura K. Ocena skuteczności leczenia uzdrowiskowego u kobiet z chorobą zwyrodnieniową stawów kolanowych. Acta Balneologica 2014; 1: 15–9.
13. Kraszewski W, Syrek P. Magnetoterapia – zastosowanie pola magnetycznego w leczeniu oraz zagrożenia z nim związane. Prace Instytutu Elektroniki 2010; 248: 213–28.
14. We SR, Koog YH, Jeong KI, Wi H. Effects of pulsed electromagnetic field on knee osteoarthritis: a systematic review. Rheumatology 2013; 52(5): 815–24.
15. Koutsojannis C, Andrikopoulos A, Seimenis I, Adamopoulos A. Magneto-therapy in physiotherapy units: introduction of quality control procedure due to lack of maintenance. Radiation Protection Dosimetry 2019; 185(4): 532–41.
16. Arabloo J, et al. Health technology assessment of magnet therapy for relieving pain. Med J Islam Repub Iran 2017; 31: 31.
17. Muesham D, Chevalier G, Barsotti T, Gurfein BT. An overview of biofield devices. Glob Adv Health Med 2015; 4(suppl): 42-51.
18. Page CJ, Hinman RS, Bennell KL. Physiotherapy management of knee osteoarthritis. In J Rheum Dis 2011; 14(2): 145–51.
19. Atlas EU, Demirdal U. The effect of physical therapy and rehabilitation modalities on sleep quality in patients with primary knee osteoarthritis: a single-blind, prospective, randomized-controlled study. Turk J Phys Med Rehabil 2020; 66(1): 73-83.
20. Bagnato G L, Miceli G, Marino N, Sciortino D, Bagnato GF. Pulsed electromagnetic fields in knee osteoarthritis: a double blind, placebo-controlled, randomized clinical trial. Rheumatology 2016; 55(4): 755-62.
21. Bjordal JM, et al. Short-term efficacy of physical interventions in osteoarthritic knee pain. A systematic review and meta-analysis of randomised placebo-controlled trials. BMC Musculoskeletal Disorders 2007; 22(8): 51.
22. Iannitti T, Fistetto G, Esposito A, Rottigni V, Palmieri B. Pulsed electromagnetic field therapy for management of osteoarthritis-related pain, stiffness and physical function: clinical experience in the elderly. Clinical Interventions in Aging 2013; 8: 1289–93.
23. Külcü DG, Gülen G, Altunok EC. Short-term efficacy of pulsed electromagnetic field therapy on pain and functional level in knee osteoarthritis: a randomized controlled study. Turkish Journal of Rheumatology 2009; 24(3): 144–8.
24. Vavken P, Arrich F, Schuhfried O, Doroftka R. Effectiveness of pulsed electromagnetic field therapy in the management of osteoarthritis of the knee: a meta-analysis of randomized controlled trials. Journal of Rehabilitation Medicine 2009; 41(6): 406–11.
25. Thamsborg G i wsp. Treatment of knee osteoarthritis with pulsed electromagnetic fields: a randomized, double-blind, placebo-controlled study. Osteoarthritis Cartilage 2005; 13(7): 575–81.
26. Boerner E, Ratajczak B, Chmiel M, Kuciel-Lewandowska J, Arletta Hawrylak A. Ocena skuteczności krioterapii i magnetoterapii u chorych ze zmianami zwyrodnieniowymi stawów kolanowych. Acta Bio-Optica et Informatica Medica 2010; 16(4): 310–3.
27. De Mattei M, et al. Effects of pulsed electromagnetic fields on human articular chondrocyte proliferation. Connective Tissue Research 2001; 42(4): 269–79.
28. Diniz P, Soejima K, Ito G. Nitric oxide mediates the effects of pulsed electromagnetic field stimulation on the osteoblast proliferation and differentiation. Nitric Oxide 2002; 7(1): 18-23.
29. Colbert AP, et al. Static magnetic field therapy: a critical review of treatment parameters. eCAM 2009; 6(2): 133–9.
30. Collacott EA, Zimmerman JT, White DW, Rindone JP. Bipolar permanent magnets for the treatment of chronic low back pain: a pilot study. JAMA 2000; 283(10): 1322-5.