Molecular profiling of oral microbiota in jawbone samples of bisphosphonate-related osteonecrosis of the jaw

X Wei, S Pushalkar, C Estilo, C Wong, A Farooki, M Formier, G Bohle, J Huryn, Y Li, S Doty, D Saxena

Objective: Infection has been hypothesized as a contributing factor to bisphosphonate (BP)-related osteonecrosis of the jaw (BRONJ). The objective of this study was to determine the bacterial colonization of jawbone and identify the bacterial phylotypes associated with BRONJ.

Materials and Methods: Culture-independent 16S rRNA gene-based molecular techniques were used to determine and compare the total bacterial diversity in bone samples collected from 12 patients with cancer (six, BRONJ with history of BP; six, controls without BRONJ, no history of BP but have infection).

Results: Denaturing gradient gel electrophoresis profile and Dice coefficient displayed a statistically significant clustering of profiles, indicating different bacterial population in BRONJ subjects and control. The top three genera ranked among the BRONJ group were Streptococcus (29%), Eubacterium (9%), and Pseudoramibacter (8%), while in the control group were Parvimonas (17%), Streptococcus (15%), and Fusobacterium (15%). H&E sections of BRONJ bone revealed layers of bacteria along the surfaces and often are packed into the scalloped edges of the bone.

Conclusion: This study using limited sample size indicated that the jawbone associated with BRONJ was heavily colonized by specific oral bacteria and there were apparent differences between the microbiota of BRONJ and controls.

Key words: bisphosphonate; osteonecrosis of the jaw; microbial shift; 16S rDNA; denaturing gradient gel electrophoresis; osteomyelitis
infection), especially after exposure of bone following a dental procedure such as an extraction. Compared with other parts of the body, bone can easily be colonized by the abundant flora of bacteria and yeast in the oral cavity that have the potential to cause biofilm-mediated disease (Sedghizadeh et al., 2008, 2009). Hoefert and Eufinger (Hoefert and Eufinger, 2011) in their recent study indicated that long-term preoperative antibiotic treatment can lead to a complete healing in 70–87% of cases in contrast to 35–53% with a short-term regime. In addition, patients with cancer are routinely treated with immunosuppressive agents and these patients are susceptible to bacterial infections (Kosmidis and Chandrasekar, 2012). Affected bone is an ideal incubator for periodontal and periapical bacteria, chronically stimulating inflammatory and immune responses (Ricucci and Siqueira, 2008; Rokadiya and Malden, 2008; Heitz-Mayfield and Lang, 2010). Although the disease can occur spontaneously, 90% of cases are coupled with surgical dental treatment, such as tooth extractions, mandibular exostoses, periodontal disease, and local trauma from ill-fitting dentures.

Recently, we showed that the BRONJ tissue is heavily colonized by oral bacteria, and use of systemic antibiotics failed to restrict the bacterial colonization without effective healing of the lesion after the onset of BRONJ (Ji et al., 2012). BP treatment may change the oral environment of the patient and BRONJ may be supported by increased bacterial adhesion to bone coated with BPs (Kos and Luczak, 2009; Kos, 2011). The bone exposition during the surgery or during tooth extraction acts as a trigger opening the door for bacterial invasion. As a result, it creates a more favorable condition for the growth of oral pathogens on the bone surface that may be a contributing factor to the development of BRONJ. To delineate the BRONJ pathogenesis, it is vital to identify the bacterial species/phylotypes that colonize jawbone associated with BRONJ. Moreover, it is not well understood whether the bacteria involved in bone infection associated with BRONJ is similar or different to other biofilm associated bone infections in the oral cavity (Ruggiero et al., 2004; Sedghizadeh et al., 2008, 2009) (Ruggiero et al., 2009).

Here, we report the bacterial phylotypes that colonize the jawbone of BRONJ compared with non-BP-related bone infection in patients with cancer. Total bacterial profile was determined by 16S rRNA gene fragment analysis using denaturing gradient gel electrophoresis (DGGE) and sequencing. This is the first investigation using a culture-independent approach studying bacterial colonization in bone samples of BRONJ compared with the bacterial profile of other bone infection(s) found in the oral cavity.

Methods

Sample collection

Twelve infected bone samples were collected from patients with cancer, including seven men and five women. The age range was 28–73, mean 58.25 (± 11.46), six each from subjects with BRONJ (subjects with ONJ and history of BP therapy) and without BRONJ (no ONJ and no history of BP therapy (control). The term ‘control’ is broadly used throughout the article to refer to subjects not treated with BPs and without BRONJ but have cancer and jawbone infection that require surgical procedures as part of their standard of care treatment. Patients who were pregnant or lactating; who had a history of radiation therapy to the head and neck region; with BRONJ who had responded to conservative therapy and did not require surgical intervention; with osteonecrosis of the jaw that was associated with other conditions (e.g., Paget’s disease of bone, fibro-osseous lesion, metastatic cancer); who had any clinically significant condition (e.g., severe anemia or neutropenia, malnutrition, bleeding disorders, uncontrolled diabetes); and who were undergoing specific types of chemotherapy (e.g., bevacizumab) were eliminated from the study. The subjects were not on antibiotics at the time of sample collection. The samples were collected from patients with cancer who were referred to Dental Services, Memorial Sloan-Kettering Cancer Center, for treatment for surgical procedures as part of their standard of care treatment. The samples were surgical debridement of bone and were obtained by sequestrectomy. Thus, no surgical procedure specific to this study was performed, and no additional material was collected from patients. The written informed consent was obtained from 12 patients with cancer selected for this study. This study was approved by the Institutional Review Board of Memorial Sloan-Kettering Cancer Center and New York University School of Medicine Committee on Activities Involving Human Subjects. The demographic and clinicopathological data of the subjects were summarized in Table 1. All the samples were collected using sterile procedure and stored at −80°C.

Microscopy

A subset of bone samples were preserved in 10% neutral buffered formalin, decalcified in 10% EDTA, pH 7.4, dehydrated, and embedded in paraffin. Sections were stained with hematoxylin and eosin and visualized under microscope.

DNA extraction and PCR amplification

Bone samples were homogenized aseptically by sonication and treated with Proteinase K (2.5 µg ml⁻¹) at 55°C overnight. Bacterial genomic DNA was extracted by the modified Epicentre MasterPure DNA purification protocol (Epicentre Biotechnologies, Madison, WI, USA) (Ji et al., 2012). DNA concentration for all 12 samples was adjusted to 20 ng µl⁻¹. The 16S rDNA was amplified with the universal primer pair 8F and 1492R to generate the 16S gene segments for cloning (Lane, 1991; Paster et al., 2001). Each PCR mixture (50 µl) contained 5 µl of 10× PCR buffer, 1.5 µl of 50 mM MgCl₂, 4 µl of 2.5 mM of each dNTP, 1 µl of 50 pmol of each primer, 1 µl of 5 U µl⁻¹ Taq DNA polymerase, and 1 µl of the total genomic DNA. Standard PCR protocol includes an initial denaturation step of 5 min at 95°C, followed by 30 cycles that consisted of 1 min at 95°C, 1 min at
604

Table 1 Demographic and clinical data of the subjects with BRONJ and control

Sample no.	Gender	Age at first dental visit	History	Type of IV BP (pamidronate, zoledronic acid, or both)	Site of infection
01A	Male	50	Large cell lymphoma of the liver	None	Carious, fractured maxillary teeth
02A	Male	28	NSGCT; testicular cancer	None	Carious, fractured maxillary teeth
03A	Female	58	Amyloidosis in the setting of lymphoplasma cytoma	None	Caries and periodontally infected tooth
05A	Female	56	Vocal cord SCC	None	Extensive caries
07A	Male	63	SCC of the base of the tongue	None	Tooth mobility with furcation involvement
08A	Male	66	Multiple myeloma	None	Large carious lesions
04C	Male	65	Renal cell carcinoma	Zoledronic acid	ONJ of RT and LT maxilla
05C	Female	55	Multiple myeloma	Zoledronic acid	ONJ of LT mandible
08C	Male	73	Prostate cancer	Zoledronic acid	ONJ of LT mandible
09C	Female	68	Breast cancer	Both	ONJ of LT mandible
10C	Male	60	Prostate cancer	Zoledronic acid	ONJ of RT mandible
13C	Female	57	Breast cancer	Zoledronic acid	ONJ of RT mandible

A, control; C, BRONJ; RT, right; LT, left; ONJ, osteonecrosis of the jaw.

52°C, and 1 min at 72°C, plus an additional cycle of 5 min at 72°C for chain elongation. PCR products were resolved by electrophoresis in 1% agarose gel.

PCR-based DGGE assay

A set of universal bacterial 16S rDNA primers, forward primer bac1 (prbac1, 5'-ACTACGTGCCAGCAGCCG-3') and reverse primer bac2 (prbac2, 5'-GGACTACCA-GGTTATCTACTAATCC-3'), were used to generate an approximately 300-bp amplicon (Rupf et al, 1999) (Ji et al, 2012). A 40-nucleotide GC-clamp (CGCCCGGGGCCGCGGGGCGGGGGCACGGGG-GG) was added to the 5' end of prbac1 (Sheffield et al, 1989). Each PCR mixture (50 µl) contained 5 µl of 10× PCR buffer, 1.5 µl of 50 mM MgCl₂, 4 µl of 2.5 mM of each dNTP, 1 µl of 50 pmol of each primer, 1 µl of 5 U µl⁻¹ Taq DNA polymerase, and 1 µl of the total genomic DNA. An initial denaturation step of 3 min at 95°C was followed by 30 cycles that consisted of 30 s at 94°C, 40 s at 63°C, and 1 min at 72°C, plus an additional cycle of 7 min at 72°C for chain elongation. The amplicon sizes were confirmed by 1% agarose gel electrophoresis. For DGGE, a 40–60% linear DNA denaturing gradient (100%) denaturant is equivalent to 7 M of urea, and 40% deionized formamide was formed in 8% (w/v) polyacrylamide gels. Then, 30 µl of each PCR-amplified product and species-specific DGGE standard markers (Li et al, 2005) were loaded in each lane and separated with the DCode System (Bio-Rad, Hercules, CA, USA). Electrophoresis was performed at a constant 60 V at 58°C for 16 h in 1× Tris–acetate–EDTA (TAE) buffer (pH 8.5). After electrophoresis, gels were rinsed and stained for 15 min in water containing 0.5 µg ml⁻¹ ethidium bromide, followed by 15-min destaining in water. DGGE images were digitally captured and recorded with AlphalImager 3300 System (Alpha Innotech Corporation, San Leandro, CA, USA). All of the DGGE gel images were normalized first according to the known species-specific DGGE reference markers and analyzed using Fingerprinting II Informatix (Bio-Rad) and BioNumerics (Applied Maths, Austin, TX, USA) software (Li et al, 2007).

Cloning and sequencing

According to the manufacturers’ instructions, the PCR-amplified 16S rDNA fragment (1500 bp) was ligated into the pCR 4-TOPO vector and transformed into competent *E. coli* TOP10 cells using a TOPO TA Cloning Kit (Invitrogen, San Diego, CA, USA). A total of 1152 (12 samples, 96 clones per sample) clones were picked and submitted for sequencing (Beckman Coulter Genomics, Beverly, MA, USA). The trimmed 1066 sequences as received from the company were aligned by NAST alignment tool (http://greengenes.lbl.gov/cgi-bin/nph-NAST_align.cgi) (DeSantis et al, 2006a) and checked for chimera by Chimera check with Bellerophon (version 3) using Greengenes (http://greengenes.lbl.gov/cgi-bin/nph-bel3_interface.cgi) (DeSantis et al, 2006a). The phylotypes (the term ‘phylotype’ is broadly used for the bacteria at species level) were provisionally identified based on S_ab score to 16S rRNA gene sequences in the SEQ MATCH program of Ribosomal Database Project 16S rRNA database (Release 10 http://rdp.cme.msu.edu/seqmatch/seqmatchIntro.jsp) (Maidak et al, 2001) The sequences with ≥450 bases and S_ab score ≥0.8 were selected for further analysis (Pei et al, 2004; Vickerman et al, 2007). On an average, most of the sequences had a length of 450–1000 bases.

Estimation of microbial biodiversity

Sequence data related to species distribution were prepared in Microsoft Excel. Rarefaction and abundance curves, and diversity indices of Shannon index, Simpson index and evenness were determined by PAST (http://folk.uio.no/ohammer/past/) (Hammer et al, 2001). Richness estimators Chaol and abundance-based coverage estimators (ACE) were conducted by ASLO (http://www.aslo.org/lomethods/free/2004/0114a.html) (Kemp and Aller, 2004). The percentage
of coverage was calculated by Good’s method with the formula \[1-(n/N)\times 100\], where \(n\) is the number of phylotypes in a sample represented by one clone (singletons) and \(N\) is the total number of sequences in that sample (Good, 1953).

Results

Microscopy

Bisphosphonate-related osteonecrosis of the jaw soft tissues showed inflammation that was verified by large bacterial masses along all bone surfaces in the biopsy. The sample was preserved in neutral buffered formalin, decalcified, and embedded in paraffin. Sections were stained with hematoxylin and eosin, resulting in the decalcified bone staining red/pink, and all bacteria and cellular debris stained dark blue or black. The layers of bacteria are aligned along all the bone surfaces and often are packed into the scalloped edges of the bone, giving the bone fragment a ‘moth-eaten’ appearance (Figure 1). No bone cells were found on the bone surface in these cases, and the osteocytes within the bone matrix were also dead and missing from their lacunae. This is a typical appearance of dead bone in ONJ.

DGGE profile analysis

Polymerase chain reaction/denaturing gradient gel electrophoresis assay differentiated PCR amplicons on the basis of sequence differences. The molecular profiles specified the presence of microorganisms within the bone samples representative of individual band of varying intensities (Figure 2). The difference in bacterial diversity was clearly distinguished by cluster analysis with Ward’s algorithm based on the Dice coefficient. A distinct cluster from the BRONJ group was observed, with Ward’s algorithm based on the Dice coefficient. A diversity of bacteria was found in both the control and BRONJ groups. We detected 7 distinct phyla, including *Actinobacteria*, *Bacteroidetes*, *Firmicutes*, *Fusobacteria*, *Proteobacteria*, *Spirochaetes*, and one phylum named TM7 with no currently known cultured representatives (Figure 4). *Fusobacteria* was found only in the control group, while TM7 was seen only in the BRONJ group. The predominant phylum in both the groups was *Firmicutes*, which was 61% in control group and much higher (76%) in BRONJ group. Twenty genera were identified within this phylum. Of cultured bacteria, *Lactobacillus gasseri* (11%) and *Streptococcus mutans* (6%) were predominant species in control group, while *Pseudoramibacter alactolyticus* (14%) and *Streptococcus mitis* (12%) predominated in the BRONJ group.

We identified 72 distinct species from 38 genera. *Lactobacillus* and *Streptococcus* were the biggest genera, both including 14% of the total cultured clones. *Pseudoramibacter alactolyticus* (14%), *S. mitis* (12%), *Atopobium* sp. (9%), *Mogibacterium timidum* (9%), and *Bacteroides bacterium* oral taxon 272 (8%) were the predominant species in BRONJ group, while *Fusobacterium nucleatum* (9%), *L. gasseri* (11%), and *S. mutans* (6%) were the largest species in control group (Figure 5). Thirteen bacterial species were exclusively present in BRONJ group, and 14 were present only in control, whereas nine were present in both the groups (Table 2). The most prevalent uncultured phylotypes found in BRONJ group were *Streptococcus* sp. oral taxon 064 (GU399337, 13%) and bacterium (EF511636, 7%; FJ470437, 6%), whereas *Clostridium* sp. (EF704878, 14%; EF695683, 9%), *Fusobacteria bacterium* (EF706831, 6%), and *Fusobacterium* sp. (EU932811, 6%) in control group (Supporting Information, Table S1).

Species richness and diversity

Rarefaction curves were plotted by the number of observed phylotypes as a function of the numbers of clones at 95% confidence level from control group and BRONJ group by using the individual-based method (Krebs, 1989). It quickly reached an asymptotic maximum for both groups (Figure 6). The rank-abundance curves exhibited a similar pattern for control and BRONJ.
BRONJ group bacterial communities (Figure 7). A few species were abundant; the long right-hand tail on the rank-abundance curve was a result of rare species. For Shannon, Simpson, and evenness indices, the higher values in the BRONJ group suggested that this group had higher diversity and evenness of species distribution compared to control group (Table 3). Lower values of Good’s coverage, predicted S_{ACE}, and predicted S_{Chao1} for BRONJ group indicated that more new phylotypes would be expected in additional sample set in this group than control group. The value of observed phylotypes/predicted S_{ACE} and the value of observed phylotypes/predicted S_{Chao1} for control and BRONJ groups were very similar.

Discussion

To our knowledge, there are no published data on the characterization of the bacterial profile found in
jawbone from patients with BRONJ. In this study, we used culture-independent molecular phylogenetic methods to identify the bacterial phylotypes from subjects with BRONJ and control (without BRONJ and no history of BP). Bacterial 16S rDNA was PCR-amplified with universal primers, followed by DGGE, cloning, and sequencing to allow an unrestricted and quantitative investigation of the bacterial population present on jawbone associated with BRONJ.

Microscopic studies supported the assumption that the BRONJ bones are deeply colonized by bacteria. The layers of bacteria are aligned along all the bone surfaces and often packed into the scalloped edges of the bone, giving the bone fragment a ‘moth-eaten’ appearance. This is a typical presentation of dead bone in BRONJ samples found infected with oral bacteria (Sedghizadeh et al., 2008, 2009). Similarly, Sedghizadeh et al. (2008) demonstrated by SEM that the bone specimens from affected sites in all patients had large areas occluded with biofilms comprising mainly bacteria, and occasionally yeast, embedded in extracellular polymeric substance, while control bone tissue was unremarkable, indicating that the bone specimens BRONJ are colonized by specific oral bacteria.

We also used a molecular fingerprinting technique DGGE (Li et al., 2005, 2006) to evaluate the predominant bacterial species present in bone samples. DGGE analysis results demonstrate that each group has its unique pattern of 16S rDNA species and displayed statistically significant clustering of profiles (Figures 2–3). The banding pattern indicated that some bacterial species/phylotypes present in one group were either reduced in numbers or absent in other group (Figure 2). The results of our study also demonstrated that the DGGE profiles of each group type formed significant group-specific clusters. Moreover, the overall BRONJ and control profiles were more similar within each group than between the groups, which suggest the presence of
common phylotypes associated with BRONJ or other dental infection. These results demonstrated that BRONJ group can be predicted with reasonable accuracy based on DGGE banding patterns. Even though the molecular fingerprinting profile does not provide immediate discrimination among bacterial species, it does enable the simultaneous analysis of multiple samples and thus facilitates the direct comparison of bacterial communities from different samples of interest. The phylogenetic analysis by cloning and sequencing matches the DGGE profile. A bacteria-rich microbiota was present in the control and BRONJ groups. Phyla of
Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria, which are associated with other bacterial infections in oral cavity, were present in both groups (Paster et al., 2001; Kumar et al., 2005; Vickerman et al., 2007; Sedghizadeh et al., 2008, 2009).

The phylum Fusobacteria (15%) was detected only in the control group, whereas the phylum TM7 was only found in BRONJ group (2%). Species within this phylum have been commonly identified in both healthy subjects and those with periodontitis (Paster et al., 2001). It was reported that TM7 was strongly associated with subgingival plaques (Paster et al., 2001; Brinig et al., 2003; Oouverney et al., 2003; Ledder et al., 2007), and there are no cultured representatives of this phylum. The top three genera ranked among the BRONJ group were Streptococcus (29%), Eubacterium (9%), and Pseudomonas (8%), while in the control group were Parvimonas (17%), Streptococcus (15%), and Fusobacterium (15%) (Figure 5). Actinomyces are usually considered as opportunistic pathogens, and many species in this genus have been reported to be associated with periodontal disease, osteomyelitis, as well as BRONJ (Fine et al., 1999; Slots and Ting, 1999; Tonetti and Mombelli, 1999; Hansen et al., 2006; Estilo et al., 2008; Naik and Russo, 2009). However, in our BRONJ samples, we did not observe high number of Actinomyces. Naik and Russo (Naik and Russo, 2009) reported the presence of the actinomyces-like organisms from bone associated with BRONJ and in another study using histomorphometric analysis of oral mucosa and jawbones have shown that Actinomyces is associated with BRONJ (Kaplan et al., 2009); however, most of these assumptions were based only on microscopic observations. We used molecular 16S rRNA gene and Actinomyces primers in combination of universal primers (Olson et al., 2007; Sakamoto et al., 2008) but did not observe high abundance of Actinomyces as indicated by DGGE gel (Figure 2, lower bottom bands) and sequencing. More significantly, we identified 13 strains that were only present in BRONJ (Table 2). The presence of these opportunistic organisms such as Finegoldia magna, gram-positive bacteria responsible for prosthetic infections, septic arthritis, and other bone and joint infections (Levy et al., 2009); Moryella indoligenes, gram-positive bacteria responsible for abscess (Carlier et al., 2007); Oribacterium, gram-negative after staining but structurally gram-positive responsible for maxillary sinusitis and its major metabolic end products are acetic, butyric, and lactic acids (Carlier et al., 2004); Selenomonas infelix, gram-negative anaerobic bacilli normally found in human buccal flora and can cause bacteremia and lung abscess in a patient with cancer (Bisiaux-Salauze et al., 1990); and species of Porphyromonas and Prevotella, responsible for endodontic infections (Gomes et al., 2005), indicated that BRONJ lesions/bone are colonized by different bacteria than those that are present in other biofilm-associated jawbone infections.

An understanding of the infectious disease process requires knowledge of the entire bacterial community, and how these bacteria are involved in disease progression. 16S rDNA libraries can be used to determine the abundance and richness of any bacterial species present in sample. We used S_Cho1 and S_ACE estimator to determine the real phylotype abundance distributions in our samples (Kemp and Aller, 2004). The ratio of observed phylotypes to predicted S_Cho1 was 0.65 for control group and 0.71 for BRONJ group, and the ratio of observed phylotypes to predicted S_ACE was 0.64 for control group and 0.59 for BRONJ group. These data suggested that with larger sample size, a more precise estimate of phylotype richness would be possible. However, the Shannon index, which indicates rarity and commonness of species, indicated that control and BRONJ had high species evenness and richness. The diversity of bacteria in the control group (H’ = 3.83 ± 0.1) was greater than that in BRONJ group (H’ = 3.71 ± 0.1). Simpson index, which represents the number of species present, as well as the abundance of each species, indicated that both the groups had ≥0.96, which meant that the probability of two clones from one of the groups that belonged to the same species was ≤4%. The Good’s coverage and evenness index indicated that our sequencing results covered 85% of species present in BRONJ samples, and the individuals (species) were distributed more evenly in BRONJ group than the controls. These data proved that the sample sets had high bacterial diversity and richness, and with limited sample size, we can determine the bacterial profile associated with each group.

There are many hypotheses for BRONJ pathogenesis (Allen and Burr, 2009) the manifestation of necrotic bone resulting from BP-induced remodeling suppression that allow accumulation of non-viable osteocytes, direct cytotoxic effect of BPs on osteocytes, BPs antiangiogenic effects, and role of oral bacteria. Our observations indicated that the BRONJ bone was colonized by bacteria, and the bacterial phylotypes were different from other bone infections in the oral cavity not associated with BP therapy. Staphylococcus aureus is the predominant cause of osteomyelitis, and the composition of local flora may allow other pathogens access to the bone; however, in our study, we did not detect any S. aureus which indicated that there may be other oral bacteria which can trigger bone infection in BRONJ. Bacterial profile of our control group was similar to other jawbone infection like caries and periodontal disease (Dewhirst et al., 2010). The BRONJ group had totally different bacterial phylotypes that are not associated with other jawbone infections (Table 2), but are known to cause other opportunistic infections. The plausible basis for BRONJ development is also the increased bacterial adhesion to the BP-covered bone (Allen and Burr, 2009; Kos and Luczak, 2009). Kos and Luczak (Kos and Luczak, 2009; Kos, 2011) proposed that BRONJ may result from increased bacterial adhesion to bone coated with BPs. In their mouse models, zoledronic acid promoted the adherence and proliferation of S. mutans to hydroxyapatite, suggesting that zoledronic acid may increase bacterial infection. They further suggested that this could be mediated by proteins termed ‘microbial surface components which
recognize adhesive matrix molecules’ (MSCRAMM) and that the binding of gram-positive strains was attributed to the amino-terminal domain of MSCRAMM structure that may play a significant role in the pathogenesis of infection (Kos and Luczak, 2009; Kos, 2011). Similarly, in our studies, we observed that BRONJ bone was colonized by bacteria which were different from bone infections that were not associated with BP, indicating that BP may play a significant role in bacterial colonization of jawbone. The cationic amino group of nitrogen-containing BPs may attract bacteria by direct electrostatic interaction, through a direct surface protein interaction or by providing an amino acid mimic on the surface of the bony hydroxyapatite that interacts with MSCRAMM component and mediates increased bacterial adhesion (Kos and Luczak, 2009; Kos, 2011). We did not observe high number of S. mutans, but we did observe high number of organisms that belong to genus Streptococcus and other organisms such as Oribacterium. It is also hypothesized that the bone is healthy until it is injured and infected with specific oral bacteria, and reduced resorptive ability caused by BP hinders the formation of new bone or there may be vascular damage caused by BP (Street et al., 2002; Aspenberg, 2006; Bi et al., 2010). Infection could contribute to BRONJ by enhancing osteoclast-independent bone resorption. BRONJ tissue consistently shows a prevalence of scalloped bone surfaces, a seemingly paradoxical property, given the effect of BPs on bone resorption. Bacteria and associated fibroblast-like cells have the capacity to directly resorb bone, independent of osteoclasts, by liberating various acids and proteases (Allen and Burr, 2009).

The acidic environment created by high abundance of aciduric bacteria especially Streptococcus and other saccharolytic bacteria may play a significant role in bone necrosis. In humans, acidic environments are common in infections and wound healing after surgical procedures. pH values less than 6.2 are common during infections, which may further enhance the growth of aciduric bacteria. In either case, there is an infectious environment that plays a significant role in the pathogenesis of BRONJ, and other factors such as dental infections, invasive procedures, and nitrogen-containing amino-BPs can act as initiators of BRONJ (Otto et al., 2010). At this stage, it is not known whether bacteria colonize and promote the lesion, or whether they colonize after the lesion has developed. In either case, ‘identification of unique bacterial phylotypes’ will be highly significant for understanding and monitoring the pathophysiology and treatment of BRONJ.

Our results, using a limited sample size, demonstrated the presence of diverse and unique bacterial communities in BRONJ, which raises an intriguing question about the role of oral bacterial in BRONJ pathogenesis. The existence of certain abundant known and as-yet-uncultured species in the BRONJ group may reflect its association with BRONJ. Further studies using large sample size are warranted to determine the significance of these specific oral bacterial in BRONJ pathogenesis.

Acknowledgments

This work was supported by CTSC Grant UL 1RR024996 and NYUCD Dean’s Award for Student Research.

Author contributions

DS, CE, AF, MF, GB, and JH conceived the idea and designed the study; CE, AF, MF collected the samples; XW, SP, CW conducted the experiments; XW, SP, CW, YL, SD, and DS did the data analysis; DS, XW, SP wrote the manuscript.

References

Aghaloo TL, Felsenfeld AL, Tetradis S (2010). Osteonecrosis of the jaw in a patient on denosumab. J Oral Maxillofac Surg 68: 959–963.
Allen M, Burr D (2009). The pathogenesis of bisphosphonate-related osteonecrosis of the jaw: so many hypotheses, so few data. J Oral Maxillofac Surg 67: 61–70.
Aspenberg P (2006). Osteonecrosis of the jaw: what do bisphosphonates do? Expert Opin Drug Saf 5: 743–745.
Bi Y, Gao Y, Ehrichiu D et al (2010). Bisphosphonates cause osteonecrosis of the jaw-like disease in mice. Am J Pathol 177: 280–290.
Bisiaux-Salauze B, Perez C, Sehald M, Petit JC (1990). Bacteremias caused by Selenomonas artemidis and Selenomonas infelix. J Clin Microbiol 28: 140–142.
Brinig M, Lepp P, Ouvrney C, Armitage G, Relman D (2003). Prevalence of bacteria of division TM7 in human subgingival plaque and their association with disease. Appl Environ Microbiol 69: 1687–1694.
Carlier J-P, K’Ouas GN, Bonne I, Lozniewski A, Mory F (2004). Oribacterium sinus gen. nov., sp. nov., within the family ‘Lachnospiraceae’ (phylum Firmicutes). Int J Syst Evol Microbiol 54: 1611–1615.
Carlier J-P, K’Ouas G, Han XY (2007). Moryella indoligenes gen. nov., sp. nov., an anaerobic bacterium isolated from clinical specimens. Int J Syst Evol Microbiol 57: 725–729.
Cremers S, Farooki A (2011). Biochemical markers of bone turnover in osteonecrosis of the jaw in patients with osteoporosis and advanced cancer involving the bone. Ann N Y Acad Sci 1218: 80–87.
DeSantis TZ, Hugenholtz P, Larsen N et al (2006a). Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72: 5069–5072.
DeSantis T, Hugenholtz P, Keller K et al (2006b). NAST: a multiple sequence alignment server for comparative analysis of 16S rRNA genes. Nucleic Acids Res 34: 394–399.
Dewhirst FE, Chen T, Izard J et al (2010). The human oral microbiome. J Bacteriol 192: 5002–5017.
Durie B, Katz M, Crowley J (2005). Osteonecrosis of the jaw and bisphosphonates. N Engl J Med 353: 99–102, discussion 99–102.
Estilo CL, Van Poznak CH, Williams T et al (2008). Osteonecrosis of the maxilla and mandible in patients with advanced cancer treated with bisphosphonate therapy. Oncologist 13: 911–920.
Filleul O, Crompott E, Saussez S, (2010). Bisphosphonate-induced osteonecrosis of the jaw: a review of 2,400 patient cases. J Cancer Res Clin Oncol 136: 1117–1124.
Fine D, Furgang D, Schreiner H et al (1999). Phenotypic variation in Actinobacillus actinomyctemcomitans during laboratory growth: implications for virulence. Microbiology 145(Pt 6): 1335–1347.
Bacterial diversity in jawbone of BRONJ
X Wei et al

Sedghizadeh P, Kumar S, Gorur A, Schaudinn C, Shuler C, Costerton J (2008). Identification of microbial biofilms in osteonecrosis of the jaws secondary to bisphosphonate therapy. J Oral Maxillofac Surg 66: 767–775.

Sedghizadeh P, Kumar S, Gorur A, Schaudinn C, Shuler C, Costerton J (2009). Microbial biofilms in osteomyelitis of the jaw and osteonecrosis of the jaw secondary to bisphosphonate therapy. J Am Dent Assoc 140: 1259–1265.

Sehbai A, Mirza M, Ericson S, Marano G, Hurst M, Araham J (2007). Osteonecrosis of the jaw associated with bisphosphonate therapy: tips for the practicing oncologist. Community Oncol 4: 47–52.

Sheffield V, Cox D, Lerman L, Myers R (1989). Attachment of a 40-base-pair G + C-rich sequence (GC-clamp) to genomic DNA fragments by the polymerase chain reaction results in improved detection of single-base changes. Proc Natl Acad Sci U S A 86: 232–236.

Slots J, Ting M (1999). Actinobacillus actinomycetemcomitans and porphyromonas gingivalis in human periodontal disease: occurrence and treatment. Periodontol 2000(20): 82–121.

Street J, Bao M, deGuzman L et al (2002). Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci U S A 99: 9656–9661.

Tonetti M, Mombelli A (1999). Early-onset periodontitis. Ann Periodontol 4: 39–53.

Vassiliou V, Tselis N, Kardamakis D (2010). Osteonecrosis of the jaws: clinicopathologic and radiologic characteristics, preventive and therapeutic strategies. Strahlenther Onkol 186: 367–373.

Vickerman M, Brossard K, Funk D, Jesionowski A, Gill S (2007). Phylogenetic analysis of bacterial and archaeal species in symptomatic and asymptomatic endodontic infections. J Med Microbiol 56: 110–118.

Woo S, Hellstein J, Kalmar J (2006). Narrative [corrected] review: bisphosphonates and osteonecrosis of the jaws. Ann Intern Med 144: 753–761.

Supporting Information
Additional Supporting information may be found in the online version of this article:

Table S1 Some predominant uncultured species present in bone samples of subjects with BRONJ and control.

Please note: Wiley-Blackwell is not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.