Some bounds on the eigenvalues of uniform hypergraphs

Xijing Yuan*, Man Zhang†, Mei Lu‡

February 24, 2015

Abstract

Let \(H \) be a uniform hypergraph. Let \(A(H) \) and \(Q(H) \) be the adjacency tensor and the signless Laplacian tensor of \(H \), respectively. In this note we prove several bounds for the spectral radius of \(A(H) \) and \(Q(H) \) in terms of the degrees of vertices of \(H \).

AMS classification: 15A42, 05C50

Keywords: hypergraph, adjacency tensor, signless Laplacian tensor, spectral radius, bounds.

1 Introduction

We denote the set \(\{1, 2, \ldots, n\} \) by \([n] \). Hypergraph is a natural generalization of simple graph (see [1]). A hypergraph \(H = (V(H), E(H)) \) on \(n \) vertices is a set of vertices, say \(V(H) = \{1, 2, \ldots, n\} \) and a set of edges, say \(E(H) = \{e_1, e_2, \ldots, e_m\} \), where \(e_i = \{i_1, i_2, \ldots, i_l\}, i_j \in [n], j = 1, 2, \ldots, l. \) If \(|e_i| = k \) for any \(i = 1, 2, \ldots, m \), then \(H \) is called a \(k \)-uniform hypergraph. The degree \(d_i \) of vertex \(i \) is defined as \(d_i = |\{e_j : i \in e_j \in E(H)\}|. \) If \(d_i = d \) for any vertex \(i \) of hypergraph \(H \), then \(H \) is called a \(d \)-regular hypergraph. An order \(k \) dimension \(n \) tensor \(T = (T_{i_1, i_2, \ldots, i_k}) \in \mathbb{C}^{n \times n \times \cdots \times n} \) is a multidimensional array with \(n^k \) entries, where \(i_j \in [n] \) for each \(j = 1, 2, \ldots, k. \) To study the properties of uniform hypergraphs by algebraic methods, adjacency matrix and signless Laplacian matrix of graph are generalized to adjacency tensor and signless Laplacian tensor of uniform hypergraph.

Definition 1 [2] [10]. Let \(H = (V(H), E(H)) \) be a \(k \)-uniform hypergraph on \(n \) vertices. The adjacency tensor of \(H \) is defined as the \(k \)-th order \(n \)-dimensional tensor \(A(H) \) whose \((i_1 \cdots i_k) \)-entry is:

\[
(A(H))_{i_1, i_2, \ldots, i_k} = \begin{cases} \frac{1}{(k-1)!} & \{i_1, i_2, \ldots, i_k\} \in E(H) \\ 0 & \text{otherwise.} \end{cases}
\]

Let \(D(H) \) be a \(k \)-th order \(n \)-dimensional diagonal tensor, with its diagonal entry \(D_{ii \cdots i} \) being \(d_i \), the degree of vertex \(i \), for all \(i \in [n] \). Then

\[
Q(H) = D(H) + A(H)
\]

is the signless Laplacian tensor of the hypergraph \(H \).

The following general product of tensors, is defined in [11] by Shao, which is a generalization of the matrix case.

Definition 2 Let \(A \in \mathbb{C}^{n_1 \times n_2 \times \cdots \times n_2} \) and \(B \in \mathbb{C}^{n_2 \times n_3 \times \cdots \times n_{k+1}} \) be order \(m \geq 2 \) and \(k \geq 1 \) tensors, respectively. The product \(AB \) is the following tensor \(C \) of order \((m - 1)(k - 1) + 1\) with entries:

\[
C_{i_1, \ldots, i_{m-1}} = \sum_{i_2, \ldots, i_m \in [n_2]} A_{i_1, \ldots, i_m} B_{i_2, \ldots, i_m, i_{m-1}} \quad (1)
\]

Where \(i \in [n], \alpha_1, \ldots, \alpha_{m-1} \in [n_3] \times \cdots \times [n_{k+1}] \).

*Department of Mathematics, Shanghai University, Shanghai 200444, China; email: xijingyuan2002@hotmail.com
†Department of Mathematics, Shanghai University, Shanghai 200444, China.
‡Corresponding author. Department of Mathematical Sciences, Tsinghua University, Beijing, 100084; email: mlu@math.tsinghua.edu.cn
Let \mathcal{T} be an order k dimension n tensor, let $x = (x_1, \cdots, x_n)^T \in \mathbb{C}^n$ be a column vector of dimension n. Then by (1) $\mathcal{T}x$ is a vector in \mathbb{C}^n whose ith component is as the following

$$(\mathcal{T}x)_i = \sum_{i_2, \cdots, i_k=1}^n \mathcal{T}_{i_2 \cdots i_k} x_{i_2} \cdots x_{i_k}. \quad (2)$$

Let $x^{[k]} = (x_1^k, \cdots, x_n^k)^T$. Then (see [10]) a number $\lambda \in \mathbb{C}$ is called an eigenvalue of the tensor \mathcal{T} if there exists a nonzero vector $x \in \mathbb{C}^n$ satisfying the following eigenequations

$$\mathcal{T}x = \lambda x^{[k-1]}, \quad (3)$$

and in this case, x is called an eigenvector of \mathcal{T} corresponding to eigenvalue λ.

An eigenvalue of \mathcal{T} is called an H-eigenvalue, if there exists a real eigenvector corresponding to it ([10]). The maximal absolute value of eigenvalues of \mathcal{T} is called the spectral radius of \mathcal{T} denoted by $\rho(\mathcal{T})$ (see [12]).

In [3], the weak irreducibility of nonnegative tensors was defined. It was proved in [4] and [15] that a k-uniform hypergraph \mathcal{H} is connected if and only if its adjacency tensor $\mathcal{A}(\mathcal{H})$ (and so $\mathcal{Q}(\mathcal{H})$) is weakly irreducible. They furthered proved the following results, which implies that $\rho(\mathcal{T})$ is an H-eigenvalue of \mathcal{T} under some conditions.

Lemma 3 [4][15] Let \mathcal{T} be a nonnegative tensor. Then $\rho(\mathcal{T})$ is an H-eigenvalue of \mathcal{T} with a nonnegative eigenvector. Furthermore, if \mathcal{T} is weakly irreducible, then $\rho(\mathcal{T})$ has a positive eigenvector.

Let \mathcal{T} be a tensor of order k and dimension n. For $i = 1, 2, \cdots, n$, denote by

$$r_i(\mathcal{T}) = \sum_{i_2, \cdots, i_k \in [n]} \mathcal{T}_{i_2 \cdots i_k}. \quad (4)$$

For a nonnegative tensor \mathcal{T} the following bound for $\rho(\mathcal{T})$ in terms of $r_i(\mathcal{T})$ was proposed in [13], and the conditions for the equal cases were studied in [7].

Lemma 4 [7][13] Let \mathcal{T} be a nonnegative tensor of dimension n. We have

$$\min_{1 \leq i \leq n} r_i(\mathcal{T}) \leq \rho(\mathcal{T}) \leq \max_{1 \leq i \leq n} r_i(\mathcal{T}). \quad (5)$$

Moreover, if \mathcal{T} is weakly irreducible, then the equality in (5) holds if and only if $r_1(\mathcal{T}) = \cdots = r_n(\mathcal{T})$.

For adjacency tensor $\mathcal{A}(\mathcal{H})$ of k-uniform hypergraph \mathcal{H} we have $r_i(\mathcal{A}(\mathcal{H})) = d_i$, where d_i is the degree of vertex i. Hence Lemma 4 implies the following result, which is an analog of a classical theorem in spectral graph theory.

Corollary 5 [3] Let \mathcal{H} be a k-uniform hypergraph with maximum degree Δ. Then $\rho(\mathcal{A}(\mathcal{H})) \leq \Delta$.

In this note we first give a bound on $\rho(\mathcal{A}(\mathcal{H}))$ in terms of degrees of vertices, which improves the bound as shown in Corollary 5. Some bounds on $\rho(\mathcal{Q}(\mathcal{H}))$ are also proved.

2 Several bounds on $\rho(\mathcal{A}(\mathcal{H}))$ and $\rho(\mathcal{Q}(\mathcal{H}))$

Some techniques of this note are based on the facts that diagonal similar tensors have the same spectra (see [11]).

Definition 6 [11][13] Let \mathcal{A} and \mathcal{B} be two order k dimension n tensors. Suppose that there exists a nonsingular diagonal matrix D of order n such that $\mathcal{B} = D^{k-1} \mathcal{A}D$, then \mathcal{A} and \mathcal{B} are called diagonal similar.
Theorem 2.1 of [11] implied the following result for similar tensors, thus for diagonal similar tensors.

Lemma 7 [11] Let \mathcal{A} and \mathcal{B} be two order k dimension n similar tensors. Then \mathcal{A} and \mathcal{B} have the same spectra.

Now we introduce a special class of hypergraphs, whose spectral radius of the adjacency tensor can be determined by Theorem 8. Let \mathcal{G}_0 be a d-regular $(k-1)$-uniform hypergraph on $n-1$ vertices. If \mathcal{G} is obtained from \mathcal{G}_0 by adding a new vertex v to each edge of \mathcal{G}_0, then we may call that \mathcal{G} is a blow-up of \mathcal{G}_0 and write $\mathcal{G} = \mathcal{G}_0(v)$. Obviously, \mathcal{G} is a k-uniform hypergraph on n vertices with $d_v = |E(\mathcal{G})| = |E(\mathcal{G}_0)|$ and $d_u = d$ for any $u \in (V(\mathcal{G}) \setminus \{v\})$. Let K^{k-1}_{k-1} be the $(k-1)$-uniform hypergraph on $k-1$ vertices, and tK^{k-1}_{k-1} be t disjoint unions of K^{k-1}_{k-1}. For example, the hyperstar $S_{(k-1)+1, k}$ (see [5]) is a blow-up of tK^{k-1}_{k-1}.

Theorem 8 Let \mathcal{H} be a k-uniform hypergraph on n vertices with degree sequence $d_1 \geq d_2 \geq \cdots \geq d_n$. Let $\mathcal{A}(\mathcal{H})$ be the adjacency tensor of \mathcal{H}. Then

$$\rho(\mathcal{A}(\mathcal{H})) \leq d_1^k d_2^{1-k}.$$

Equality holds if and only if \mathcal{H} is a regular hypergraph, or \mathcal{H} is a blow-up of some regular hypergraph.

Proof Write $\mathcal{A} = \mathcal{A}(\mathcal{H})$ for short.

1. If $d_1 = d_2$, by Lemma 4 we have

$$\rho(\mathcal{A}) \leq \max_{1 \leq i \leq n} r_i(\mathcal{A}) = \max_{1 \leq i \leq n} d_i = d_1 = d_1^k d_2^{1-k}.$$

Equality holds if and only if $r_i(\mathcal{A})$ is a constant. So \mathcal{H} is a regular hypergraph.

2. Now we suppose that $d_1 > d_2$ holds. If \mathcal{P} is a diagonal matrix, then by (1), we have

$$(P^{-(k-1)} \mathcal{A})_{i_1i_2\cdots i_k} = P^{-(k-1)}_{i_1i_2} \mathcal{A}_{i_3i_4\cdots i_k} \mathcal{P}_{i_3i_4} \cdots \mathcal{P}_{i_ki_k}.$$

Now take $\mathcal{P} = \text{diag}(x, 1, \cdots, 1)$ with $x > 1$. Then we have

$$r_1(P^{-(k-1)} \mathcal{A}) = \sum_{i_2, \cdots, i_k \in [n]} (P^{-(k-1)} \mathcal{A})_{i_1i_2\cdots i_k}$$

$$= \sum_{i_2, \cdots, i_k \in [n]} P^{-(k-1)}_{1i_2} \mathcal{A}_{i_3i_4\cdots i_k} \mathcal{P}_{i_3i_4} \cdots \mathcal{P}_{i_ki_k}$$

$$= \frac{1}{x^{k-1}} \sum_{i_2, \cdots, i_k \in [n]} \mathcal{A}_{i_2\cdots i_k}$$

$$= \frac{d_1}{x^{k-1}}.$$

Denote by $d_{\{1,i\}}$ the number of edges, which contain vertices both 1 and i, i.e.,

$$d_{\{1,i\}} = |\{e_j : \{1,i\} \subset e_j \in E(\mathcal{H})\}|.$$

For $2 \leq i \leq n$, we have
\[r_i(P^{-(k-1)}AP) = \sum_{i_2, \ldots, i_k \in [n]} (P^{-(k-1)}AP)_{i_2 \cdots i_k} \]
\[= \sum_{i_2, \ldots, i_k \in [n]} P_{ii}^{-(k-1)}A_{i_2 \cdots i_k}P_{i_2} \cdots P_{i_k} \]
\[= \sum_{i_2, \ldots, i_k \in [n]} P_{ii}^{-(k-1)}A_{i_2 \cdots i_k}P_{i_2} \cdots P_{i_k} + \sum_{i_2, \ldots, i_k \in [n]} P_{ii}^{-(k-1)}A_{i_2 \cdots i_k}P_{i_2} \cdots P_{i_k} \]
\[= xd_{\{1,i\}} + d_i - d_{\{1,i\}} \]
\[\leq xd_i \]
\[\leq xd_2. \]

Noting that \(d_1 > d_2 \), if we take
\[x = \left(\frac{d_1}{d_2} \right)^{\frac{1}{k}}, \]
then \(x > 1 \), and
\[r_i(P^{-(k-1)}AP) = d_i^{\frac{1}{k}}d_2^{1 - \frac{1}{k}}, \]
for \(2 \leq i \leq n \),
\[r_i(P^{-(k-1)}AP) \leq xd_2 = d_i^{\frac{1}{k}}d_2^{1 - \frac{1}{k}}. \]
Thus for each \(1 \leq i \leq n \), we have
\[r_i(P^{-(k-1)}AP) \leq d_i^{\frac{1}{k}}d_2^{1 - \frac{1}{k}}. \]

Then by Lemma 4,
\[\rho(P^{-(k-1)}AP) \leq \max_{1 \leq i \leq n} r_i(P^{-(k-1)}AP) = d_i^{\frac{1}{k}}d_2^{1 - \frac{1}{k}}. \]

Furthermore, by Lemma 7 we have
\[\rho(A) = \rho(P^{-(k-1)}AP) \leq d_1^{\frac{1}{k}}d_2^{1 - \frac{1}{k}}. \]
(6)

If the equality in (6) holds we have \(d_{\{1,i\}} = d_i \), and \(d_2 = d_3 = \cdots = d_n \). The condition \(d_{\{1,i\}} = d_i \) implies that any edge containing vertex \(i \) contains vertex 1, so \(d_1 \) equals to the number of edges of \(\mathcal{H} \).
Concerning that \(d_2 = d_3 = \cdots = d_n \), then \(\mathcal{H} \) is a blow-up of a \(d_2 \)-regular and \((k-1)\)-uniform hypergraph.

On the other hand, if \(\mathcal{H} = \mathcal{H}_0(v) \), where \(\mathcal{H}_0 \) is a \(d_2 \)-regular and \((k-1)\)-uniform hypergraph, we take
\[P = \text{diag}(\left(\frac{d_1}{d_2} \right)^{\frac{1}{k}}, 1, \cdots, 1). \]

Then for each \(1 \leq i \leq n \), we have
\[r_i(P^{-(k-1)}AP) = d_i^{\frac{1}{k}}d_2^{1 - \frac{1}{k}}, \]
and Lemma 4 and Lemma 7 implies that
\[\rho(A) = \rho(P^{-(k-1)}AP) = d_1^{\frac{1}{k}}d_2^{1 - \frac{1}{k}}. \]

\[\square \]

Lemma 9 Let \(\mathcal{A} \) and \(\mathcal{B} \) be two order \(k \) dimension \(n \) tensors satisfying \(|\mathcal{A}| \leq \mathcal{B} \), where \(\mathcal{B} \) is weakly irreducible. Let \(\lambda \) be an eigenvalue of \(\mathcal{A} \). Then \(|\lambda| \leq \rho(\mathcal{B}) \).

4
Corollary 10 Let H be a connected k-uniform hypergraph on n vertices with degree sequence $d_1 \geq \cdots \geq d_n$. Let $Q(H)$ be the signless Laplacian tensor of H. Then

(1) $\rho(Q(H)) \geq d_1$;

(2) $\rho(Q(H)) \leq d_1 + d_1^{1/2} d_2^{1/2}$, equality holds if and only if H is a regular hypergraph.

Proof (1) Noting that $\mathcal{D}(H) \leq Q(H)$, Lemma 9 implies that $d_1 = \rho(\mathcal{D}(H)) \leq \rho(Q(H))$.

(2) Let I be the unit tensor and $D = d_1 I$. Then $|Q(H)| \leq D' + A(H)$, and so by Lemma 9 we have $\rho(Q(H)) \leq \rho(D' + A(H))$. It is not difficult to see that $\rho(Q(H)) = \rho(D' + A(H))$ if and only if $d_1 = d_n$. Thus

$$\rho(Q(H)) \leq \rho(D' + A(H)) = \rho(D') + \rho(A(H)) = d_1 + \rho(A(H)) \leq d_1 + d_1^{1/2} d_2^{1/2}.$$

Equality holds if and only if $d_1 = d_n$, namely, H is a regular hypergraph.

Theorem 11 Let H be a connected k-uniform hypergraph on n vertices, and $b_i > 0$ for each $1 \leq i \leq n$. Then,

$$\rho(Q(H)) \leq \max_{e \in E(H)} \max_{\{i, j\} \subseteq e} \frac{d_i + d_j + \sqrt{(d_i - d_j)^2 + 4b_i b_j}}{2},$$

where $b_p' = b_p^{(k-1)} \sum_{\{p, p_2, \cdots, p_k\} \in E(H)} b_{p_2} \cdots b_{p_k}$ for any $1 \leq p \leq n$.

Proof Write $Q(H) = Q$ and $\rho(Q(H)) = \rho$ for short. Let $B = \text{diag}(b_1, b_2, \cdots, b_n)$ and $b_i > 0$ for any $1 \leq i \leq n$. By Lemma 7 we know that $\rho(B^{-(k-1)}QB) = \rho$. By (1) we have have

$$B^{-(k-1)}QB_{i_1i_2\cdots i_k} = B^{-(k-1)}_{i_1i_2\cdots i_k} B_{i_2i_3} \cdots B_{i_ki_k}.$$

Since H is connected, the tensor Q and so the tensor $B^{-(k-1)}QB$ is weakly irreducible. By Lemma 3 we know that ρ is an H-eigenvalue of $B^{-(k-1)}QB$ and there exists a positive eigenvector corresponding to ρ, denoted by x. We may suppose that $x_i = 1, x_p = 1$ for any vertex p different from i. Let

$$x_j = \max\{x_p : \{i, p\} \subseteq e \in E(H)\}.$$

From the definitions of eigenvalue and eigenvector (see (3)), we have

$$(B^{-(k-1)}QB)x = \rho x^{[k-1]}.$$

For any vertex p we have

$$(B^{-(k-1)}QB)_x = \rho x^{k-1}.$$

By (1) we have

$$B^{-(k-1)}QB_{pp_2\cdots p_k} x_p x_{p_2} \cdots x_{p_k} = \rho x^{k-1}_p,$$

then,

$$d_p x^{k-1}_p + \sum_{\{p, p_2, \cdots, p_k\} \in E(H)} b_p^{-(k-1)} b_{p_2} \cdots b_{p_k} x_{p_2} \cdots x_{p_k} = \rho x^{k-1}_p.$$

Hence we have

$$(\rho - d_p)x^{k-1}_p = b_p^{-(k-1)} \sum_{\{p, p_2, \cdots, p_k\} \in E(H)} b_{p_2} \cdots b_{p_k} x_{p_2} \cdots x_{p_k}. (7)$$

Recall that for any vertex p

$$b_p' = b_p^{-(k-1)} \sum_{\{p, p_2, \cdots, p_k\} \in E(H)} b_{p_2} \cdots b_{p_k}.$$
Now take $p = i$ in (7), then we obtain
\[
\rho - d_i = b_i^{-1} \sum_{\{i, i_2, \ldots, i_k\} \in E(H)} b_{i_2} \cdots b_{i_k} x_{i_2} \cdots x_{i_k} \\
\leq b_i^{-1} \sum_{\{i, i_2, \ldots, i_k\} \in E(H)} b_{i_2} \cdots b_{i_k} x_{i_2}^{k-1},
\]
\[
= b'_ix_{i}^{k-1}.
\]
And take $p = j$ in (7), then we have
\[
(\rho - d_j)x_j^{k-1} = b_j^{-1} \sum_{\{j, j_2, \ldots, j_k\} \in E(H)} b_{j_2} \cdots b_{j_k} x_{j_2} \cdots x_{j_k} \\
\leq b_j^{-1} \sum_{\{j, j_2, \ldots, j_k\} \in E(H)} b_{j_2} \cdots b_{j_k},
\]
\[
= b'_jx_{j}^{k-1}.
\]
Now we obtain
\[
\rho - d_i \leq b'_ix_{i}^{k-1} \text{ and } (\rho - d_j)x_j^{k-1} \leq b'_j.
\]
Noting that $\rho \geq d_p$, (see Corollary 13), multiplying the left and right sides of the two inequalities, respectively, we have,
\[
(\rho - d_i)(\rho - d_j)x_j^{k-1} \leq b'_ib'_jx_j^{k-1}.
\]
Thus we have,
\[
\rho^2 - (d_i + d_j)\rho + d_id_j - b'_ib'_j \leq 0,
\]
and then
\[
\rho \leq \frac{d_i + d_j + \sqrt{(d_i - d_j)^2 + 4b'_ib'_j}}{2}.
\]
So we have proved that
\[
\rho(Q(H)) \leq \max_{e \in E(H)} \max_{\{i, j\} \subseteq e} \frac{d_i + d_j + \sqrt{(d_i - d_j)^2 + 4b'_ib'_j}}{2}.
\]
The proof is completed. \qed

For each i, if we take $b_i = 1$, then $b'_i = d_i$ in Theorem 11 we may obtain the following result.

Corollary 12 Let H be a k-uniform hypergraph. Then we have
\[
\rho(Q(H)) \leq \max_{e \in E(H)} \max_{\{i, j\} \subseteq e} (d_i + d_j).
\]
For a vertex i of the k-uniform hypergraph H, denote by
\[
m_i = \frac{\sum_{\{i, i_2, \ldots, i_k\} \in E(H)} d_{i_2} \cdots d_{i_k}}{d_i^{k-1}},
\]
which is a generalization of the average of degrees of vertices adjacent to i of the simple graph. For each i, if we take $b_i = d_i$, then $b'_i = m_i$ in Theorem 11 we may obtain the following result.

Corollary 13 Let H be a k-uniform hypergraph. Then we have
\[
\rho(Q(H)) \leq \max_{e \in E(H)} \max_{\{i, j\} \subseteq e} \frac{d_i + d_j + \sqrt{(d_i - d_j)^2 + 4m_im_j}}{2}.
\]
Remark 14 Take \(B = \text{diag}(1, 1, \cdots, 1) \) and use the similar arguments as that in Theorem \([11]\) for the tensor \(B^{-(k-1)} A(H) B \), then we may obtain that

\[
\rho(A(H)) \leq \max_{e \in E(H)} \max_{\{i, j\} \subseteq e} \sqrt{d_id_j}.
\]

If take \(B = \text{diag}(d_1, d_2, \cdots, d_n) \), then we may prove that

\[
\rho(A(H)) \leq \max_{e \in E(H)} \max_{\{i, j\} \subseteq e} \sqrt{m_im_j}.
\]

References

[1] C. Berge, Hypergraph. Combinatorics of Finite sets, third edition, North-Holland, Amsterdam, 1973.

[2] K.C. Chang, K. Pearson, T. Zhang, Perron-Frobenius theorem for nonnegative tensors, Commun. Math. Sci. 6(2008)507-520.

[3] J. Cooper, A. Dutle, Spectra of uniform hypergraphs, Linear Algebra Appl., 436 (2012), 3268-3292.

[4] S. Friedland, A. Gaubert, L. Han, Perron-Frobenius theorems for nonnegative multilinear forms and extensions, Linear Algebra Appl., 438(2013)738-749.

[5] S. Hu, L. Qi, J. Shao, Cored hypergraphs and their Laplacian eigenvalues, Linear Algebra Appl., 439 (2013) 2980-2998.

[6] S. Hu, L. Qi, J. Xie, The largest Laplacian and signless Laplacian H-eigenvalues of a uniform hypergraph, Linear Algebra Appl., 469 (2015) 1-27.

[7] M. Khan, Z. Fan, On the spectral radius of a class of non-odd-bipartite even uniform hypergraphs, arXiv:1408.3303v1, Aug 2014.

[8] H. Li, Y. Shao, L. Qi, The external spectral radii of \(k \)-uniform supertrees, arXiv:1405.7257v1, May 2014.

[9] L. Qi, Eigenvalues of a real supersymmetric tensor, Journal of Symbolic Computation 40(2005)1302-1324.

[10] L. Qi, \(H^+ \)-eigenvalue of Laplacian and signless Laplacian tensors, Commun. Math. Sci. 12(2014)1045-1064.

[11] J. Shao, A general product of tensors with applications, Linear Algebra Appl., 439(2013)2350-2366.

[12] J. Shao, H. Shan, B. Wu, Some spectral properties and characterizations of connected odd-bipartite uniform hypergraphs, arXiv: 1403.4845.

[13] Y. Yang, Q. Yang, Further results for Perron-Frobenius Theorem for nonnegative tensors, Siam J Matrix Anal. Appl., 31(5)(2010)2517-2530.

[14] Y. Yang, Q.Yang, Further results for Perron-Frobenius Theorem for nonnegative tensors, Siam J Matrix Anal. Appl., 32(4)(2011)1236-1250.

[15] Y. Yang, Q. Yang, On some properties of nonegative weakly irreducible tensors, arXiv: 1111.0713 v3, 2011.