CP violating asymmetry in stop decay into bottom and chargino

Helmut Eberl, Sebastian Frank, Walter Majerotto

Institute of High Energy Physics (HEPHY)
Vienna, Austria

SUSY09 Conference
Boston, June 2009
Outline

1. Motivation

2. CP violating decay rate asymmetry
 - Definitions
 - Contributions
 - Numerical results

3. Conclusions and Outlook
Baryon asymmetry of the universe

- Exists much more baryonic matter than antimatter
- Standard Model (SM) *cannot* explain baryon asymmetry of the universe (BAU)!
- Evidence from acoustic peaks (early universe baryon-photon plasma oscillations) deduced from Cosmic Microwave Background measurements

Baryon-to-photon ratio

\[
\eta \equiv \frac{n_B}{s} \equiv \frac{n_b - n_{\bar{b}}}{s} = (6.1^{+0.3}_{-0.2}) \times 10^{-10}
\]

s ... entropy density (roughly photon density)

\(n_b, n_{\bar{b}}\) ... number densities of baryons (antibaryons)
Baryogenesis

Problem
How does η get this small value from expected initial condition $\eta = 0$?

Criteria of a solution
Three necessary conditions for baryogenesis: Sakharov requirements
1. Baryon number violation
2. Departure from thermal equilibrium
3. Charge (C) and Charge-Parity (CP) violation

SM can meet Sakharov criteria but baryon asymmetry is too small!
Possible solution
Electroweak Baryogenesis

- Supersymmetric extensions of SM can contain new sources of CP violation
- Lead to increase and thus possible explanation of baryon asymmetry
- Special case: Minimal Supersymmetric Standard Model (MSSM) introduces new parameters
- If some parameters are chosen complex, processes can lead to new CP violating asymmetries
- Even if BAU cannot be explained, study of CP violation and values of (possible complex!) parameters is important
Definition

Decay rate asymmetry \(\delta^{CP} \)

\[
\delta^{CP} = \frac{\Gamma^+ - \Gamma^-}{\Gamma^+ + \Gamma^-}
\]

- In our case: decay of stop into bottom and chargino
 \[
 \Gamma^+ = \Gamma(\tilde{t}_i \rightarrow b \tilde{\chi}^+_k), \quad \Gamma^- = \Gamma(\tilde{t}_i^* \rightarrow \bar{b} \tilde{\chi}^{+c}_k)
 \]

- In general: \(\Gamma^\pm \propto \sum_s |M^\pm_{\text{tree}}|^2 + 2 \text{Re}\left(\sum_s (M^\pm_{\text{tree}})^\dagger M^\pm_{\text{loop}} \right) \)

- Asymmetry can be approximated to
 (no CP violation at tree level, one loop contributions small)

\[
\delta^{CP} \cong \frac{\Gamma^+ - \Gamma^-}{2 \Gamma_{\text{tree}}} = A^+_{CP} - A^-_{CP} \quad A^\pm_{CP} = \frac{\text{Re}\left(\sum_s (M^\pm_{\text{tree}})^\dagger M^\pm_{\text{loop}} \right)}{\sum_s |M^\pm_{\text{tree}}|^2}
\]
Further calculations (e.g. defining combined coupling matrices C_{ij}^\pm) result in *decomposition* into CP invariant (C_{ij}^{inv}) and CP violating part (C_{ij}^{CP}) ($i, j \in \{R, L\}$).

Decay rate asymmetry δ^{CP}

$$\delta^{CP} = \frac{1}{2 \sum_s |M_{\text{tree}}|^2} \left(2\Delta (C_{CP}^{RR} + C_{CP}^{LL}) - 4m_b m_{\tilde{\chi}_k^+} (C_{CP}^{RL} + C_{CP}^{LR}) \right)$$

$$\Delta = (m_{t_i}^2 - m_b^2 - m_{\tilde{\chi}_k^+}^2) \quad C_{CP}^{ij} \propto -2\text{Im}(bg_0g_1g_2)\text{Im}(PaVe)$$

b ... tree level coupling

g_0g_1g_2 ... couplings of vertices
Resulting from

\[C_{CP}^{ij} \propto -2 \text{Im}(b g_0 g_1 g_2) \text{Im}(PaVe) \]

we observe that decay rate asymmetry \(\delta^{CP} \) only \(\neq 0 \) if

1. Inclusion of at least one loop corrections and
2. Complex couplings (via complex MSSM parameters) and
3. At least a second decay channel kinematically open (i.e. in addition to \(\tilde{t}_i \rightarrow b \tilde{\chi}_k^+ \) e.g. as well \(\tilde{t}_i \rightarrow \tilde{g} t \) open)
Gluino \tilde{g} couples with strong interaction force (QCD)

Thus, if decay $\tilde{t}_i \rightarrow t \tilde{g}$ becomes possible (i.e. $m_{\tilde{t}_i} \geq m_t + m_{\tilde{g}}$) these contributions should dominate over all others
All vertex contributions
All stop-selfenergy contributions
All chargino-selfenergy contributions

H. Eberl, S. Frank, W. Majerotto @ HEPHY / Vienna

CP violating asymmetry in stop decay into bottom and chargino
Calculation

- All 47 CP violating contributions calculated with FeynArts.
- Most important contributions calculated independently for cross check and complex gluino phase.
- Checks:
 - Electric dipole moments (EDM) with own code.
 - Cold dark matter relic density (Ω_{CDM}) and $B \rightarrow X_s \gamma$ with MicrOMEGAs.
- Parameters:
 - Coupling α_s taken running in \overline{DR} scheme, renormalized at scale of decaying stop mass $m_{\tilde{t}_i}$ in SPA convention.
 - 3rd generation Yukawa couplings h_t, h_b taken running.
 - GUT relations for gaugino masses used \Rightarrow gluino mass $m_{\tilde{g}}$ related to M_2.
A typical scenario

Parameters:

- SUSY breaking mass parameters (all generations)
 $M_{\tilde{Q}} = M_{\tilde{u}} = M_{\tilde{d}} = 650 \text{ GeV}$, $M_{\tilde{L}} = M_{\tilde{e}} = 600 \text{ GeV}$

- Trilinear breaking parameters $|A_t| = |A_b| = |A_\tau| = 190$
 (1st and 2nd generation set to zero)

- Complex phases $\varphi_{A_t} = \varphi_{A_b} = \varphi_{A_\tau} = \pi/4$
 ($\varphi_\mu = 0$ due to EDM problems, $\varphi_{M_1} = 0$ effect on δ^{CP} negligible, $\varphi_{\tilde{g}} = 0$ at first)

- Gaugino masses $M_2 = 150 \text{ GeV}$,
 $|M_1| = M_2/2$ (GUT relation)

- Higgsino mass parameter $|\mu| = 830 \text{ GeV}$

- $\tan \beta = 5$

- $M_{A^0} = 1000 \text{ GeV}$
Implications of our scenario:

- Phase $\varphi_{A_{t}}$ is at first only source of CP violation (gluino phase $\varphi_{\tilde{g}}$ set to zero in the beginning)
- Chargino $\tilde{\chi}_{1}^{+}$ of our decay $\tilde{t}_{1} \to b \tilde{\chi}_{1}^{+}$ is gaugino-like (due to $M_{2} \ll |\mu|$)
- Higgsino-like chargino ($M_{2} \gg |\mu|$) only possible if GUT relation is relaxed and gluino mass becomes free parameter (otherwise gluino gets too heavy and main contribution to δ_{CP} via $\tilde{t}_{1} \to \tilde{g} t$ not possible)
- Stops \tilde{t}_{1} and \tilde{t}_{2} have low mass splitting and high mixing \Rightarrow stops quite similar \Rightarrow \tilde{t}_{2} decay not of interest
Numerical results
\(\tilde{t}_1 \rightarrow b \tilde{\chi}_1^+ \) (all contributions)

- Convenience: output parameter \(m_{\tilde{t}_1} \) shown, but actually input parameter \(M_{\tilde{Q}} \) varied
- Decay channel \(\tilde{t}_1 \rightarrow t \tilde{g} \) opens up at \(m_{\tilde{t}_1} \sim 582 \) GeV
- Dominance of both gluino contributions over all others
- However if \(\tilde{t}_1 \rightarrow t \tilde{g} \) opens up, \(BR(\tilde{t}_1 \rightarrow b \tilde{\chi}_1^+) \) drops quickly!
Numerical results

Comparison $BR(\tilde{t}_1 \rightarrow b \tilde{\chi}_1^+) \text{ vs } BR(\tilde{t}_1 \rightarrow \tilde{g} t)$

Permanent conflict between δ^{CP} and $BR(\tilde{t}_1 \rightarrow b \tilde{\chi}_1^+)$!

- High δ^{CP} needs gluino contributions \Rightarrow BR falls off
- High BR needs NO gluino contributions \Rightarrow δ^{CP} keeps low
- Solution is to compromise . . .
Numerical results

Gluino vs all other contributions

After threshold at $m_{\tilde{t}_1} \sim 582$ GeV gluino contributions account for $\sim 98\%$ of all contributions to δ^{CP}
Numerical results
Comparison of gluino contributions

(a) Gluino in selfenergy loop,
(b) Gluino in vertex correction

Contrary to expectation only one gluino contribution dominates!

Major reason lies in \(Im(C_2) \) embedded in form factor of vertex correction, however no simple explanation possible
Numerical results

\(\tilde{t}_1 \rightarrow b \tilde{\chi}_1^+ \) (all contributions)

\[\delta_{CP} \] is the only complex phase and thus only source of CP violation

Maximum at \(\varphi_{A_t} = \pi/4 \)
Numerical results
\(\tilde{t}_1 \to b\tilde{\chi}_1^+\) (all contributions)

- \(\tan \beta\) low for high \(\delta^{CP}\)
- The heavier the decaying particle \((m_{\tilde{t}_1} \sim M_{\tilde{Q}})\)
 - the higher \(\delta^{CP}\) gets
 - the lower \(BR(\tilde{t}_1 \to b\tilde{\chi}_1^+)\) becomes
| $|A_t|$ | determines degree of mass splitting of $m_{\tilde{t}_1,2}$

| $|A_t|$ | ~ 190: mass splitting low ($m_{\tilde{t}_1} \sim 603 \text{ GeV}, m_{\tilde{t}_2} \sim 641 \text{ GeV}$)

Low mass splitting enhances gluino in selfenergy contribution (propagator $\propto 1/(m_{\tilde{t}_1}^2 - m_{\tilde{t}_2}^2)$)
Numerical results
Effect on mass splitting of \tilde{t}_1 and \tilde{t}_2

- $m_{\tilde{t}_1} = 650$ GeV, $m_{\tilde{t}_2}$ variable (actually parameter $M_{\tilde{Q}}$, $M_{\tilde{U}}$ varied)
- Exist two solutions for $M_{\tilde{Q}, \tilde{U}}(m_{\tilde{t}_2})$: $m_{LL} < m_{RR}$ and $m_{LL} > m_{RR}$ (diagonal elements of stop mass matrix)
- Gaugino-like chargino couples with left-handed (LH) stop (\tilde{t}_1 external, \tilde{t}_2 internal particle)

$\tilde{t}_1 \rightarrow b \tilde{\chi}_1^+$

$\delta_{CP} [%]$

$BR [%]$

$m_{\tilde{t}_2} [GeV]$
Numerical results

Effect on mass splitting of \tilde{t}_1 and \tilde{t}_2

- $m_{LL} < m_{RR}$: \tilde{t}_1 LH (BR high), \tilde{t}_2 RH (δ_{CP} low)
- $m_{LL} > m_{RR}$: \tilde{t}_1 RH (BR low), \tilde{t}_2 LH (δ_{CP} high)

Either way, combination of δ_{CP} and BR keeps low, unless mass splitting of \tilde{t}_1 and \tilde{t}_2 is low!

Mass splitting cannot be arbitrarily small (otherwise $M_{\tilde{Q}}, M_{\tilde{U}} \in \mathbb{C}$)
Now gluino phase $\varphi_{\tilde{g}}$ as 2nd source of CP violation

Strong dependence on $\varphi_{\tilde{g}}$ as expected

Periodic behavior of $\varphi_{\tilde{g}}$ as a function of φ_{A_t}
Numerical results
Total cross section of stop1 pair production at LHC

- Plot generated with Prospino
- $\sqrt{s} = 14$ TeV
- $\tilde{t}_{1,2}$ mass splitting 100 GeV
- $\sigma = 200 \text{ fb} @ \tilde{t}_1 = 610 \text{ GeV}, \tilde{t}_2 = 710 \text{ GeV}
Experimental measurability

- Luminosity $\mathcal{L} = 300 \text{[fb]}^{-1}$ at LHC in 5 years (design luminosity)
- Rough estimate: number of CP violating events
 $N = \mathcal{L} \times \sigma \times \delta^{CP} \times BR = 300 \times 200 \times 0.1 \times 0.2 = 1200$
- Measurement of particles of $\tilde{t}_1 \rightarrow b \tilde{\chi}_1^+$ and $\tilde{t}_1^* \rightarrow \bar{b} \tilde{\chi}_1^{+c}$
 decay only possible after good understanding of particle properties of MSSM
- Possible signature:
 Subsequent decay of $\tilde{\chi}_1^{\pm}$ into $\tilde{\chi}_1^0$ and $W^{\pm} \rightarrow l\nu_l$
- Measurement at LHC possible, but Super-LHC and CLIC better for detection of this effect
Conclusions

- In MSSM with complex parameters, loop corrections to $\tilde{t}_i \rightarrow b \tilde{\chi}_k^+$ decay can lead to CP violating decay rate asymmetry $\delta^{CP} = \frac{\Gamma^+ - \Gamma^-}{\Gamma^+ + \Gamma^-}$

- Studied this asymmetry at full one-loop level, analyzing dependence on parameters and phases (φ_{A_t} and $\varphi_{\tilde{g}}$)

- δ^{CP} of several percent are obtained, mainly due to gluino contribution in selfenergy loop

- High δ^{CP} reached with low mass splitting and high mixing of stop particles, chargino should be gaugino-like

- But δ^{CP} must be always seen in relation to BR (opposing δ^{CP}) and σ_{prod} (stop should be rather light)

- Measurement at LHC possible (2nd phase)
Present results will be published soon . . .

Further scenario: mSUGRA with complex phase φ_A

Possible further study of production and decay
Many thanks to . . .

- My supervisors Dr. Majerotto and Dr. Eberl
- All my colleagues at my institute
- YOU for listening!
Numerical results
Comparison with higgsino-like chargino

- Relaxing GUT relations for gaugino masses
 $\Rightarrow m_{\tilde{g}}$ becomes free parameter

- Exchanging values of M_2 and $|\mu|
 \Rightarrow M_2 = 830 \text{ GeV}, |\mu| = 150 \text{ GeV}
 \Rightarrow \tilde{\chi}_1^+ \text{ (and } \tilde{\chi}_1^0 \text{) becomes higgsino-like}
Motivation

CP violating decay rate asymmetry

Conclusions and Outlook

Numerical results

Comparison with higgsino-like chargino

- Yukawa coupling in $\tilde{t}_i b \tilde{\chi}_k^+$ coupling becomes important
- Since (s)top Yukawa coupling stronger than gauge coupling
 - Faster decay rates for stop
 - Especially decay into neutralino enhanced

H. Eberl, S. Frank, W. Majerotto @ HEPHY / Vienna

CP violating asymmetry in stop decay into bottom and chargino