锂离子动力电池热失控与安全管理研究综述*

朱晓庆1,2,3 王震坡1,2 WANG Hsin3 王聪1,2
(1. 北京理工大学电动车辆国家工程实验室 北京 100081;
2. 北京电动车辆协同创新中心 北京 100081;
3. 橡树岭国家实验室 橡树岭 TN 37831 美国)

摘要：锂离子动力电池具有能量密度高、循环寿命长、无记忆效应等优点，被认为是最具前景的一类动力电池。随着整体能量密度的不断提高和制造成本的降低，以热失控为特征的锂离子动力电池安全事故频发，严重威胁着乘客的人身和财产安全。因此，以防止锂离子电池热失控为核心的研究成为近几年电动车辆研究领域的热点，同时也需要这样的综述类文章来进行引领。从动力电池安全角度出发，对目前锂离子电池热失控研究现状进行综述，总结了最新研究成果。较为具体地阐明了热失控触发条件和发生机理，比较全面地总结了提高锂离子动力电池系统安全性的方法，以期促进先进锂离子电池系统安全管理方法与策略的开发，进而提高动力电池系统安全性。填补了该领域缺少中文综述的空白。

关键词：锂离子电池；电动车辆；热失控；失效机理；安全管理

中图分类号：TM912

Review of Thermal Runaway and Safety Management for Lithium-ion Traction Batteries in Electric Vehicles

ZHU Xiaqing1,2,3 WANG Zhenpo1,2 WANG Hsin3 WANG Cong1,2
(1. National Engineering Laboratory for Electric Vehicles, Beijing Institute of Technology, Beijing 100081;
2. Collaborative Innovation Center for Electric Vehicles in Beijing, Beijing 100081;
3. Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA)

Abstract: Lithium-ion battery is considered to be the most promising type of traction battery of electric vehicles (EVs) for its high energy density, long cycle life and no memory effect. With the continuous improvement of energy density of lithium-ion batteries and the reduction of manufacturing costs, the safety accidents characterized by thermal runaway have occurred frequently, which seriously threatens the safety of passengers’ lives and property. Therefore, the issue of lithium-ion battery thermal runaway has become a research focus in the field of EVs. Meanwhile, the development of related fields also needs the guidance of such review articles. From a safety point of view, a comprehensive overview of current state of thermal runaway within lithium-ion batteries used in EVs is summarized, as well as the latest research results. Moreover, the trigger and failure mechanisms of thermal runaway are clarified, and the methods to improve the safety of lithium-ion power battery system are summarized comprehensively, with the aim of promoting the development of safety management methods and strategies for advanced lithium-ion battery systems and improving the safety of traction battery systems. The gap of the lack of Chinese review papers is filled in this field.

Key words: lithium-ion batteries; electric vehicles; thermal runaway; failure mechanism; safety management

0 前言

汽车工业的发展给人类带来了极大的便利，也让人们不得不面对能源短缺和环境污染的问题，特别是雾霾事件。在环保和节能目标的共同推动下，电动汽车的研究得到了许多国家的重视。近年来，我国在电动汽车关键零部件、整车制造、示范运行等方面取得了重大进展。目前，以电动汽车为主的新能源汽车是我国战略新兴产业之一，也是“中国制造2025”的重点推进领域之一。

动力电池系统是电动汽车能量的直接来源，是电动汽车的重要组成部分。锂离子电池因具有高比
能量、低自放电率以及长寿命等特点，成为最具实用价值的电动汽车动力电池[1-2]。然而，以热失控为特征的锂离子电池系统安全事故时有发生，对人身安全等造成严重威胁，因此动力电池高能量密度条件下的高安全性是电动汽车商业化推广应用的首要保障[3-5]。“热失控”是指电池内部出现放热连锁反应引起电池温升速率急剧变化的过热现象。动力电池在机械损伤、电滥用、热滥用等极端条件下的事故均以热失控的形式最终体现。

近年来，以动力电池热特性、热失控机理、防护与控制方法为核心的动力电池热安全研究已经成为科研领域的热点和重点问题。目前，国内外研究人员已经从试验探索、机理分析以及安全防护等方面对锂离子动力电池的热失控进行了大量探索[6-7]，并已初步掌握了热失控的触发机理、扩展机理和安全防护预警方法，为电动汽车的大规模推广和应用奠定了基础。同时，一些具有独到见解的综述性文章相继发表，譬如，中国科技大学的王青松教授课题组[8]概述了锂离子电池热失控理论、建模以及基本的化学反应；美国佛蒙特电池设计公司的SPOTNITZ等[9]对高能量锂离子电池的滥用行为进行了总结；乔治亚理工学院的BANDHAUER等[10]综述了锂离子电池的热安全问题；ABADA等[11]总结了锂离子动力电池的安全建模问题。虽然这些总结性研究为锂离子动力电池的热失控研究提供了很好的参考，但是，没有涉及最近几年涌现出的众多新方法和新技术，也没有对安全管理与防护以及热失控预警等方面的内容做详细总结。因此，为了更为全面、及时地反映这一领域的发展态势，本文在研究大量国内外相关文献的基础上，对锂离子动力电池热失控研究的最新成果进行了总结。分析了锂离子动力电池热失控的行为特性和触发机理，并从多方面探讨了锂离子动力电池系统安全管理办法与策略。

1 锂离子动力电池热失控行为特性及研究方法

1.1 锂离子动力电池热失控行为特性

当锂离子动力电池发生热失控时，其最直接的体现是温度的急剧上升，同时伴随有起火、爆炸等极端情况[12]。图1所示为锂离子电池热失控温度电压曲线及热失控发生瞬间的热成像图。其中，图1a是某25 A·h三元锂离子动力电池进行绝热热失控测试时的温度和电压曲线[13]，由测试结果可知，热失控发生时，温度曲线以近乎垂直的直线快速上升，同时，电池电压迅速下降，表明内部发生了剧烈的内短路；热失控发生之后，电池开始冷却，并逐渐降低到环境温度。若不及时对其降温，则会在高温下引发更加剧烈的燃烧反应。热失控发生时，锂离子动力电池单体的最高温度都会超过热失控的初始温度T_0，若不及时对其降温，就会引发热失控的扩展，而到动力电池系统带来灾难性的后果。

图1 锂离子电池热失控温度电压曲线及热成像图

目前，科研人员主要从电池电压、温度、放热速率等方面对锂离子动力电池的热失控特性进行研究，以期为热失控预警和安全管理系统设计提供支持。
内短路导致电池热失控过程中存在的熔断现象。美国橡树岭国家实验室的 WANG 等[14]利用超高速同步 X 射线成像技术研究了 18650 锂离子电池在热失控过程中高温气体的喷出特性，发现高温气体的喷出特性与电池的热失控行为有直接关系。电池的热失控行为与电池的热失控特性密切相关。

1.2 锂离子动力电池热失控研究方法

自锂离子电池诞生之日起，其安全性就一直备受关注。国外对于锂离子电池的安全性的研究起步较早，得到了很多有价值的研究成果。国外科研人员不仅基于滥用测试研究了锂离子单体电池的行为特性，还基于量热测试对常用正极材料、负极材料、电解液和隔膜等常用组分的热特性进行了系统研究，分析了不同温度范围内可能的放热反应和参与反应介质，为以后锂离子电池热失控机理分析提供了重要参考[7-10]；同时，也有科研人员基于数值计算对锂离子电池的热失控过程进行数值模拟（或有限元模拟）；此外，也有诸多关于提高锂离子电池安全性的研究。

国内对于锂离子动力电池安全性的研究是伴随着新能源汽车的大规模推广和应用开始的[3,7]。与国外相比，国内在该方面的研究起步较晚，但是起点高、进展迅速。不仅在锂离子电池单体热失控方面进行了系统的研究，还研究了动力电池模组和动力电池包的热失控及其扩展，为锂离子动力电池的安全防护提供了很多有价值的参考；同时，国内科研人员在锂离子电池组分的热行为特性、高安全性锂离子电池材料以及热失控（滥用）的数值模拟等方面也做了大量研究。需要指出的是，国内在动力电池故障诊断（电压故障诊断、温度故障诊断以及内短路故障诊断）和安全性预警等方面已经取得了诸多成果。
多行业领先的研究成果[18-25]，上述研究大大提升了我国在动力电池安全研究领域的影响力。

总之，对于锂离子动力电池热失控的研究主要从试验研究和建模(数值计算)两个方面进行。

1.2.1 试验研究

触发电池电池发生热失控是锂离子电池热失控研究的基础，机械触发、电触发(过充、过放和短路)和热触发是目前最常用的触发电池热失控方式[3-4]。机械滥用可以直接导致锂离子电池发生内部破坏和内短路，电滥用可以引起内部放热副反应的发生，热滥用所引起的高温可以破坏电池固体电解质膜(SEI)和电池隔膜，并导致一系列放热副反应的发生。相关研究将在第2节中进行详细阐述，此处不再赘述。

产热量、产热速率和温升速率是锂离子动力电池热失控过程中最为关注的问题，如何获取这些关键性参数是研究和防护电池热失控、阻断热失控扩展的基础。目前，常用的锂离子动力电池生热量、生热速率和温升速率测量设备和方法有加速量热仪(Accelerating rate calorimeter, ARC)、差示扫描量热仪(Differential scanning calorimeter, DSC)、VSP2(Vent sizing package 2)量热仪、C80微量热仪等。

1.2.2 建模研究

为了重现和模拟锂离子电池热失控过程，研究电池热失控机理，一些常用的锂离子电池模型被提出和应用。例如：反应动力学模型、热模型、机械失效模型、电化学模型、耦合模型[3,7]以及热失控放热模型等。

1.2.2.1 反应动力学模型

锂离子电池热失控过程中会产生大量的热，这些热量会加速电池温度的上升。虽然电池是由具有不同热稳定性材料构成，但是由于其热量的释放非常集中，因此可将电池视为一个整体，将温度进行均衡。大多数的化学反应都会受到反应温度和反应物浓度的影响，电池热失控也是如此，温度升高时，热失控反应也会更加剧烈，这一过程可以应用阿伦尼乌斯公式(Arrhenius 公式)进行描述。Arrhenius 公式是研究与温度有关化学反应和反应动力学的基础，被广泛应用于动力电池热失控方面的研究[3]。

式(1)和式(2)所示为 Arrhenius 公式的基本表达式，其描述了化学反应浓度 c、反应温度 T 以及反应速率κ之间的关系

$$\kappa(T) = A \cdot \exp \left(-\frac{E_a}{R \cdot T}\right) \quad (1)$$

$$\kappa(T) = \frac{dc}{dt} \quad (2)$$

式中，A 为前向因子(也称频率因子)，E_a 为摩尔气体常数(或称为理想气体常数)，C 为表面活化能。该公式在实际应用中，通常需要对其进行修正，修正后的 Arrhenius 公式如下

$$\kappa(T) = A \cdot \exp \left(-\frac{E_a}{R \cdot T}\right) \cdot f(c) \quad (3)$$

$$f(c) = c^n(1-c)^n \quad (4)$$

式中，$f(c) = c^n(1-c)^n \cdot [-\ln(1-c)]^n$，其描述了化学反应速率与反应物浓度之间的关系。而对于不同的反应，$f(c)$ 有不同的表达方式，具体表达式参见文献[26]。

在热失控建模研究中，对于反应浓度修正公式 $f(c)$，通常不会考虑 $-\ln(1-c)$ 项。式(4)和式(5)所示为热失控反应动力学中常用的计算建模公式

$$\kappa(T) = A \cdot \exp \left(-\frac{E_a}{R \cdot T}\right) \cdot c^n(1-c)^n \quad (5)$$

为了更准确地描述反应动力学，需要准确地获得动力学三因子(Kinetic triplet): $f(c)$、E_a 和 A。常用的动力学三因子常用的方法是基于 DSC 和热重分析(Thermal gravimetric analysis, TGA)试验来拟合这些参数。目前，常用的动力学解析 DSC 数据的方法是 Ozawa 法和 Kissinger 法[3,27]。

1.2.2.2 热模型

虽然 Arrhenius 公式能够准确地描述与温度有关化学反应和反应动力学，但是其无法直观地展示电池表面积温度的分布，以及热量在电池内部、外部的传播和扩散等。此外，电池的性能、寿命和安全性受温度的影响很大，这就需要建立热模型来对电池进行热仿真和分析，以期优化电池设计、深入研究散热和加热方法，并提高其热安全性等。热模型的建立需要考虑的因素很多，包括几何结构、电芯堆叠方式、电池间隙、散热方式和速率等。总之，动力电池热模型的建立必须考虑电池实际使用、安装以及运行工况等。

建立电池热模型首先要考虑的是电池内外的热平衡(包括产热和散热)

$$\frac{d}{dt} Q_{\text{AH}} = \rho C_p \frac{\partial T}{\partial t} = Q_{\text{gen}} - Q_{\text{dis}} \quad (6)$$

式中，ρ 是电池密度，C_p 是平均热容量，T 是电池温度，Q_{AH} 代表单位体积的热量累积，Q_{gen} 代表电池运行过程中的产热量，Q_{dis} 代表热量散失(包括对流热、热传导热和辐射热)。

电池运行过程中的产热主要由充放电过程中的
电荷转移和化学反应引起的。此外，还有一些无法预知或不期望的温度上升，如温度过高所引起的异常化学反应。因此电池产热可分为可逆热和不可逆热两个部分。可逆热是由于开路电压随温度变化引起的熵的变化产生的，而不可逆热是由于过电位产生的内耗引起的，包括欧姆耗损、电荷转移过电位、物质传递的阻抗(受限)以及当电流施加或断开时，由浓度梯度的形成(或松弛)引起的混合热(Heat of mixing, \(Q_{mix}\))。此外，焓变是不可逆热的另一个来源，它是由于锂离子在固相中的扩散所导致的材料相变(Phase change, \(Q_{pc}\))引起的。

BERNARDI 等[28]第一次基于热力学能量平衡原理建立了不包含集流体的完整电池热模型，其假设电池温度是恒定的，但是会随着事件的发生而变化，则产热速率可以由式(7)给出，

\[
\dot{Q}_{gen} = -iV - \sum_j i_j T_j \frac{dU_{j,avg}}{dT} + T_{max} + Q_{pc}
\]

式中，\(i\) 为单位体积的电流，\(iV\) 是电功率，第二项是对所有同时发生的反应求和的反应焓，\(U_{j,avg}\) 是在平均组成下反应 \(j\) 的理论开路电位(Open circuit potential, OCP)。

对于热量的散失，其主要包括三部分：传导散热、对流散热和辐射散热，相关理论已经成熟，此处不再赘述。在电池内部，热量的散失只有热传导的方式，因此其控制方程可以写作

\[
\rho C_p \frac{\partial T}{\partial t} = \dot{Q}_{gen} + \nabla \cdot (k \nabla T)
\]

在电池的每个边界上，关于对流和辐射热可由下式给出

\[
-k_n \frac{\partial T}{\partial n} = h_n(T_n - T_{amb}) + \varepsilon \sigma (T_n^4 - T_{amb}^4)
\]

式中，左侧项表示在方向 \(n(n=x, y, z)\) 上来自电池内部的热传导通量；\(h_n\) 为对流传热系数；\(T_n\) 为电池各个边界的温度；\(T_{amb}\) 为环境温度；\(\varepsilon\) 为辐射系数(辐射率)；\(\sigma\) 为斯蒂芬-玻耳兹曼常数(Stefan-Boltzmann constant)。

目前，热模拟通常以三维(Three-dimensional, 3D)的方式被呈现，因为其可以更加直观地展示电池的温度分布[29]。基于计算流体动力学(Computational fluid dynamics, CFD)、有限体积法(Finite volume method, FVM)和有限元法(Finite element method, FEM)的3D热模型建模方法是目前常用的热模型建立方法。

1.2.2.3 力学模型

力学模型的建立主要基于电池部件的力学性能，结合相应的材料力学理论来实现。根据部件尺寸大小和成组关系，锂离子电池的力学模型可以分为电池组件的本构模型(Constitutive models)、电池单体模型和电池系统模型。

电池组件的本构模型主要基于电池基本结构和组件材料的力学性能来建立，基本结构包括：集流体、隔膜、包覆材料和外壳等，各组件材料的力学性能如表1[30]所示。

材料	材料力学特性	
集流体	铝和铜	各向异性(Anisotropy)
		应变硬化(Strain hardening)
		韧性断裂(Ductile fracture)
包覆材料	石墨/活性颗粒和粘合剂的粉末	压力依赖性(Pressure dependence)
隔膜	多孔聚合物(PE和PP等)	正交各向异性(Orthotropy)
	(有/无陶瓷涂层)	弹-黏塑性(Elasto-viscoplasticity)
		温度依赖性(Temperature dependent)
外壳	钢、铝、或铝塑膜	各向异性(Anisotropy)
	(Pouch Cell)	应变硬化(Strain hardening)
		韧性断裂(Ductile fracture)

对电池整体力学性能产生影响的主要是集流体、隔膜和电池外壳。电池在生产过程中，要经历多次卷绕，这就导致一定程度的塑性各向异性(Plastic anisotropy)被施加到电池材料中，在数学计算中塑性各向异性可以使用简单、常用的Hill48模型[31]来表示。

尽管科研人员已经做了较多的尝试来对电池隔膜材料进行建模，但是由于隔膜材料的温度依赖性和弹粘塑性性，其力学性能还不是很明确。在试验方面，DMA (Dynamic mechanical analysis) 和 XRD (X-ray diffraction)[32]的方法被用于隔膜材料力学性能分析。

电池中各个夹层之间的紧密粘合都是由于粘合剂的作用，因此集流体与正负极活性材料之间存在相互作用力。但是随着循环次数的增多或某些极端滥用情况(过充)，电池的体积将会增大、集流体间距离将会发生改变，这将导致电池力学性能的变化，因此力学建模过程必须考虑这些应力条件。此外，电极和隔膜之间的装配应力也不容忽视。

因此，与其他材料或结构相比，锂离子电池具有4种特殊的力学性能[30]：(1) 压力依赖性(拉伸和压缩的力学响应差异很大)；(2) 粘性；(3) 应变硬化(当电池承受压缩载荷时，它开始致密化，且硬化速率增加很快)；(4) 各向异性；(5) 受到压缩载荷时容易形成剪切带和断裂。
电池单体建模主要分为详细模型、RVE(Representative volume element)模型和均匀模型。详细模型需要将电池各个部件都考虑在内，同时考虑各个部件之间的相互作用，而不是单纯的将其叠加在一起。由于隔膜、集流体都非常薄，因此，详细模型建模过程非常复杂，计算量很大。RVE模型通常定义为很小的具有代表性的体积微元来表示整个单体电池[31]。基于这个基本原理，SAHRAEI等[33]和ZHANG等[34]开发了软包电池和18650锂离子电池的RVE模型。电池均匀模型将电极堆叠或电池中的卷绕结构作为均质材料进行处理，因此，在3种电池力学模型中，均匀模型是计算效率最高的。均匀化电池建模的任务被简化为选择适当的本构模型并校准未知系数。

电池系统或电池模组级别的力学模型的建立更加复杂，因此，在该级别的模型中，电池单体的力学模型通常采用均匀模型，以提高计算效率。例如，清华大学和MIT合作研究了特斯拉电动汽车事故中机械失效原因[35]。该计算模型包括模块的所有其他组件，每个组件都有完整的材料数据输入。电池模组模型内包括400个圆柱形电池，电池被6.35 mm厚的铝合金装甲所保护。同时，有的学者将动力电池系统嵌入到电动汽车内来模拟碰撞事故[36]。

1.2.2.4 电化学模型

在热失控发生之前，锂离子电池内部的基本电化学过程还没有被破坏，为了精准预测离子扩散、电流分布、固液电位等重要参数，需要基于锂离子电池内部机理对其电化学过程进行描述，而锂离子电池的电化学模型可以很好地解决这一问题。

自DOYLE等[37]在基于锂负极、固体聚合物电解质和嵌入复合阴极的电池模型上进行的开创性工作以来，研究人员已经开发了许多锂离子电池的电化学模型。一些作者回顾了锂离子电池的主要电化学模型及其在优化设计方面的应用[38-40]。目前，耦合的P2D模型或简化的1D电化学模型和3D模型成为研究电池内部温度不均性的趋势[45-50]。对于大容量锂离子电池和电池组，有时也将耦合或解耦的子模型用于描述锂离子电池的电或热行为。例如：SUN等[51]定义了3个子模型，包括3D CFD电池包的子模型、1D BP(Battery pack network)子模型和3D电池/模组级别的热-电耦合子模型，来研究模拟驾驶循环条件下锂离子动力电池系统中单体电池的热行为特性。仿真结果显示，该模型可以快速地预测电池内部不均匀的发热率、电池温度分布以及电池组的温度变化等。

目前，在多场耦合建模研究中，研究最多的是EC-T(电化学-热学耦合)模型，EC-T模型可以模拟各种工作条件下的电池热行为，从而为电池系统的设计、管理，电池状态的估计以及电化学、热学参数的估计等提供更好的指导。EC-T模型已经被用于各种不同的电池和电池组的研究[11]，主要包括估计可逆热与不可逆热，估计电池表面和内部的温度分布。
研究冷却对于电池容量的影响，活性物质微粒尺寸和电极厚度共同对产热速率的影响，温度对于固相和液相锂离子浓度梯度的影响，老化对于不同温度条件下电池功率和容量损失的影响以及集中流体数量、位置和尺寸对于电池寿命和性能的影响等。

目前，科研人员对于锂离子电池多场耦合建模已经进行了比较多的研究，也取得了一些进展。但是，目前对于锂离子电池多场耦合的研究还不充分，耦合场主要集中于电化学和热学的耦合，而对于电化学和机械场的耦合，热场和机械场的耦合，以及机电热多场耦合的研究还相对较少。而当热失控发生时，多场相互作用，相互影响，共同支配着锂离子电池的热失控行为。针对这些问题，北京航空航天大学的LIU等[52-54]做了比较多的工作，如提出了一多物理场计算框架模型来模拟18650锂离子电池单体在机械滥用负载下，从遭受最初的形变到最终发生热失控的过程，该模型耦合了机械场、电场和热场，分析结果比较精确。为了更好地理解机械滥用条件下锂离子电池的行为特性、预测外部撞击时的内短路，他们提出了一种多场耦合的RVE模型建模方法，耦合建模原理[54]如图3所示。该方法利用有限元软件LD-DYNA将力场、电场和热场进行了耦合。其通过阶段耦合来实现多场的耦合建模，具体操作是，在机械碰撞引发内部放热(短路)瞬间，将电-热模型施加到变形电池。虽然取得了良好的建模精度，但这种阶段性耦合建模方法还是无法真正模拟机械失效时的电池行为机理。

图3 多场耦合的RVE模型建模原理

1.2.2.6 热失控放热模型

当热失控发生时，电池的产热方式不同于与正常电池，主要是因为热失控发生过程中的剧烈放热反应的存在。锂离子电池的热失控模型主要涉及单体级别的热失控和模组(系统)级别的热失控，其中，单体级别的热失控主要考虑电池单体的热特性、热稳定性以及化学反应等特性，而模组(系统)级别的热失控模型主要关注热失控在单体电池和或模组之间的扩展。此外，热失控模型大都基于多场耦合模型来建立，考虑多场相互作用。

单体级别的热失控模型主要有两种方法，基于量热学的方法和基于化学反应的方法。相对应的是量热学模型和化学反应生热模型。量热学模型的建立需要对电池材料或单体电池进行热量测定，并基于Arrhenius公式对其特异性进行表征，该过程与第1.2.2.2节中，热模型的建模方法类似。HATCHARD等[55]基于ARC和DSC测量的动力学数据，提出了一种电池热模型，该模型可以预测高温测试下的电池或电极材料的响应。化学反应生热模型是基于热失控发生机理建立的，该模型过程考虑热失控发生时的各种燃烧、放热反应，进而通过传热学原理对电池热失控进行模拟。例如KIM等[29]建立了锂离子电池的3D热模型来模拟其在滥用条件下的热行为，该模型将热失控发生过程中的放热反应融入到能量平衡方程中(式(10))，但是其没有考虑涉及锂金属的放热反应，而在过充电滥用条件下，锂金属的放热反应不容忽视。

$$Q_{ab} = Q_{SEI} + Q_{se} + Q_{pe} + Q_{de} + Q_{lab}$$ \(10\)

式中，$$Q_{SEI}$$为SEI膜分解的体积产热率(Volumetric heat generation rates)，$$Q_{se}$$为负极活性材料与电液反应的体积产热率，$$Q_{pe}$$为正极活性材料与电液反应的体积产热率，$$Q_{de}$$为电液分解反应的体积产热率，$$Q_{lab}$$为负极活性材料与粘合剂反应的体积产热率。电池组分的体积产热率可由式(11)进行计算

$$Q_i = H_i \cdot W_i \cdot R_i$$ \(11\)

式中，$$R_i$$为电池组分$$i$$的反应率(Reaction rate)，$$H_i$$为比热释放(Specific heat release)，$$W_i$$为有效的活性材料含量(Specific active material content)。最近，LOPEZ等[56]基于KIM的化学反应能量方程建立锂离子电池的热滥用模型，并基于试验测试对HATCHARD等[55]提出的热参数进行了校准。此外，他们通过使用HATCHARD等[55,57]在试验工作中获得的加热测试结果，用18650电池和棱柱形电池对该模型进行了验证。基于不同的模拟条件，他们发现热失控的严重程度随着炉温的升高而升高，并随着对流系数的降低而增加。通过改变电液分解过程中释放的热量，发现电液分解反应的放热速率的贡献率不容忽视(特别是对于棱柱形的卷绕电池)。因此，在单体级别的锂离子电池的热失控的模组研究中，有时还要关注电液分解的燃烧反应放热在电池热失控过程中的关键作用。锂离子电池模组或系统级别的热失控建模主要
是研究热失控在电池单体或模组之间的扩展机理，探究热失控的阻断方法，以减轻热失控对动力电
池系统或整车的破坏性。清华大学的 Feng 等[1]建立了一大容量方形锂离子电池模组(6 块电池)的 3D
热失控扩展模型。该模型建立过程中，使用经验公
式来简化热失控反应动力学的计算，并通过针刺热
失控触发试验对该模型的建模准确性进行了验证。
基于仿真结果，他们提出了几种延缓热失控扩展的
方法：① 提高热失控触发温度；② 减少电量的释
放(与 SOC 有关)；③ 强化热失控发生时的散热；
④ 在相邻电池之间增加额外的隔热层。

2 锂离子电池热失控发生机理研究

引发锂离子动力电池热失控的原因很多，大
体上分为机械滥用原因(碰撞、挤压、穿刺)、电滥用原因(过充、过放和外短路)和热滥用原因等。机
械滥用可以破坏隔膜引发内短路，进而导致电池
发生热失控；过充和过放条件下的电滥用能够引
起电池内部的各种副反应，导致电池局部过热，
引发热失控；外短路是一种非正常状态下电池的
极速放电情况，超高电流将导致电池热量累积严
重，甚至极耳熔断和热失控；热滥用条件下，电
池局部温度过热，引起电池内部隔膜收缩、崩溃，
导致内短路和热失控的发生；除了以上诱因之外，
老化也是引发热失控事故的原因之一，老化对于
锂离子电池安全性的主要体现金属枝晶的生长上，
随着循环次数的增加和生产过程中混入的杂质微粒的诱
导，不良副反应形成的锂枝晶等尖锐物体容易刺穿隔膜，导致微内短路的发生，这
也是波音 787 客机动力电池事故最可能的诱因[3]。

图 4 总结了锂离子电池的热失控触发原因和热失控触发条件对比。表 2 总结了不同锂离子电池热
失控触发条件的特点。

触发条件	产生原因	作用时间	外部表现	典型内部机理	电压和温度变化
碰撞和挤压	车辆碰撞、地面冲击等	长	变形、泄漏、破裂、起火	聚合物和隔膜破	
坏、内短路	电压下降、温度升高				
碰撞和挤压	车辆碰撞、地面撞击等	短	变形、泄漏、破裂、起火	集流体和隔膜破	
坏、内短路	电压下降、温度升高				
针刺	BMS 失效、充电机故障、单体电池的不一致性等	短(与倍率有关)	变形、泄漏、破裂、起火	铜集流体溶解	电压下降或反转，温度变化不大
针刺	BMS 失效、充电机故障、单体电池的不一致性等	短(与倍率有关)	变形、泄漏、破裂、起火	集流体和隔膜破	
坏、内短路	电压下降或反转，温度变化不大				
针刺	BMS 失效、充电机故障、单体电池的不一致性等	长	变形、泄漏、破裂、起火	锌析出、石墨负极结	
构破坏	电压升高，温度升高				
过热电	BMS 失效、充电机故障、单体电池的不一致性等	短	变形、泄漏、破裂、起火	锌析出、石墨负极结	
构破坏	电压升高，温度升高				
过热电	BMS 失效、充电机故障、单体电池的不一致性等	长	变形、泄漏、破裂、起火	锌析出、石墨负极结	
构破坏	电压升高，温度升高				
过热电	BMS 失效、充电机故障、单体电池的不一致性等	长	变形、泄漏、破裂、起火	锌析出、石墨负极结	
构破坏	电压升高，温度升高				
过热电	BMS 失效、充电机故障、单体电池的不一致性等	长	变形、泄漏、破裂、起火	锌析出、石墨负极结	
构破坏	电压升高，温度升高				
过热电	BMS 失效、充电机故障、单体电池的不一致性等	长	变形、泄漏、破裂、起火	锌析出、石墨负极结	
构破坏	电压升高，温度升高				
过热电	BMS 失效、充电机故障、单体电池的不一致性等	长	变形、泄漏、破裂、起火	锌析出、石墨负极结	
构破坏	电压升高，温度升高				
过热电	BMS 失效、充电机故障、单体电池的不一致性等	长	变形、泄漏、破裂、起火	锌析出、石墨负极结	
构破坏	电压升高，温度升高				
过热电	BMS 失效、充电机故障、单体电池的不一致性等	长	变形、泄漏、破裂、起火	锌析出、石墨负极结	
构破坏	电压升高，温度升高				
过热电	BMS 失效、充电机故障、单体电池的不一致性等	长	变形、泄漏、破裂、起火	锌析出、石墨负极结	
构破坏	电压升高，温度升高				
过热电	BMS 失效、充电机故障、单体电池的不一致性等	长	变形、泄漏、破裂、起火	锌析出、石墨负极结	
构破坏	电压升高，温度升高				
过热电	BMS 失效、充电机故障、单体电池的不一致性等	长	变形、泄漏、破裂、起火	锌析出、石墨负极结	
构破坏	电压升高，温度升高				
过热电	BMS 失效、充电机故障、单体电池的不一致性等	长	变形、泄漏、破裂、起火	锌析出、石墨负极结	
构破坏	电压升高，温度升高				
过热电	BMS 失效、充电机故障、单体电池的不一致性等	长	变形、泄漏、破裂、起火	锌析出、石墨负极结	
构破坏	电压升高，温度升高				
过热电	BMS 失效、充电机故障、单体电池的不一致性等	长	变形、泄漏、破裂、起火	锌析出、石墨负极结	
构破坏 | 电压升高，温度升高 |

2.1 热失控触发条件和触发机理

2.1.1 机械滥用

当电动汽车遭受碰撞时，电池包在强大撞击力
的作用下将发生剧烈变形，同时电池也会受到挤压
力而发生形变，导致电解液泄漏或隔膜破坏引发热
失控。有时，汽车上某些尖锐部件在遭受撞击时也
会插入电池包，刺穿电池，直接导致电池内短路引
发热失控。针对动力电池的机械滥用引发热失控的
研究表明从电池组件(外壳、电极、隔膜和集流体)级别、单体电池级别、模组或电池包级别以及整车级别几个方面展开[3, 30, 50]，如图5所示。常用的锂离子动力电池滥用测试方式有挤压、压痕、针刺及碰撞等，其中挤压又包括外侧面挤压(Lateral compression)、面内挤压(In-plane compression)，半球挤压(Hemispherical punch)以及双球挤压(Pinch)等测试方式[36]。

WANG 等[58]在考虑材料各向异性、荷电状态(SOC)、应变速率(Strain rate)和电解液成分的情况下，基于拉伸试验研究了18650(镍钴铝正极材料)锂离子电池正负极材料的力学性能，结果发现，正负极材料的机械性能对于应变速率和电解液成分的依赖性较大；ZHANG 等[59]基于模型和综合机械性能测试研究了18650锂离子电池外壳的塑性和断裂性能，并使用改进的 Mohr-Coulomb 断裂模型来对不同载荷条件下外壳裂纹萌生与扩展进行了预测；ZHANG 等[60]基于压痕测试，研究了软包锂离子电池的机械行为特性，并基于计算机断层扫描技术，分析了锂离子电池在机械变形条件下的失效和内短路发生机理；LAI 等[61]基于电池主要部件的拉力测试和干性代表体积元(RVE)的约束压缩测试研究了锂离子电池的力学性能，并发现 RVE 的抗拉能力主要与电池组件的屈曲(Buckling)、最终密实化(Final densification)有关，且标准化的应力-应变曲线与试验样高度相关性不大。MALEKI 等[62]使用针刺、小压痕和挤压测试研究了锂离子电池的机械损伤引发的内短路问题，发现针刺和压痕测试所引起的电池放热能够很好地传播到电池的外壳和施压物体，只有挤压测试可以很好地近似模拟电池内短路。XU 等[50]在考虑应变速率和 SOC 的情况下，建立了18650锂离子电池的各向异性均质模型，并使用机械挤压滥用测试和落锤测试对模型的可靠性进行了评估。FENG 等[1]建立了大容量锂离子动力电池模组的热失控扩展模型，并基于模组针刺试验，对该热失控扩展模型进行了验证。橡树岭国家实验室的WANG 等[14]系统地研究了机械穿刺导致大型锂离子电池发生热失控的问题，并通过热失控危险评分系统(Thermal runaway risk score system)对不同材料的电池对于穿刺的滥用容忍度进行了评价。

与单体锂离子电池相比，电池包和整车的机械滥用研究无论在试验方面还是建模计算方面都比较困难。试验方面，试验情形(电池形状、排列方式、作用点位置等)繁杂多变，且试验成本很高；建模计算方面，模组、电池包和整车细节较多，模型搭建异常复杂。因此，关于电池模组、电池包和整车机械滥用研究的论文相对较少。例如，清华大学和MIT 等[35]联合研究了由于地面冲击导致的电池包和电池破坏，并基于有限元模型重现了引起电动汽车地面冲击事故导致 Tesla 电动汽车起火事件。XIA 等[63]
研究了不同冲击载荷条件下，100%SOC的袋装锂离子电池模组的失效行为特性，结果发现，进行侧面(X和Y方向)挤压的电池模组没有发生热失控；而从正面(Z方向)挤压的电池发生了热失控，这表明，袋装电池正面的机械滥用容忍度很低。

2.1.2 电滥用

过充电、过放电、外短路等电滥用情况是最为常见的电动汽车动力电池系统故障，严重影响着锂离子动力电池的使用安全性和使用寿命。通常，充电系统故障、BMS的不合理设计、动力电池系统中电池单体的不一致性以及连接件的松动等都会导致动力电池系统遭受电滥用[64]。

2.1.2.1 过充电

过充电是电动汽车动力电池系统最常见的故障之一。若不及时切断充电电流，过充电将损坏电池系统，甚至导致电池起火、爆炸等灾难性后果。过充电过程中，电池电压会持续上升，在高电压条件下(>4.5 V)，NCM三元锂离子电池的正极材料会被破坏和分解[17,65-66]；随着电压的继续升高(4.9~5 V)，传统商用电解液(1M LiPF6/EC∶DEC∶DMC=1∶1∶1)将被氧化，产生CH4等烷烃[17, 65-66]；由于石墨负极容量有限，过多的锂离子无法被完全嵌入到石墨负极内，析锂反应开始，同时，过度的脱锂也会导致正极结构性崩塌，进而引起电压的微降和电池内阻的升高；随着过充电的继续进行，焦耳热的累积更加严重，当温度高于60℃时，过高的温度将加剧电池内部的各种副反应(例如：电解液氧化、脱锂正极与电解液的反应、电解液与锂的反应等)，并产生各种气体(如CO、CO2、H2以及C2H4)等[17,65-66]；放热的副反应将加剧电池温度，导致具有保护作用的SEI膜的破坏；随着热量的不断积累，当电池温度达到隔膜收缩、破坏温度时，可能发生大范围的内部短路，进而导致热失控的发生[17,65-66]。

国内外学者对锂离子电池过充电失效特性进行了大量的理论和试验研究。LEISING等[67]对棱锥形LiCoO2锂离子电池进行过充电测试，以阐明过充电反应的机理。结果表明，在高电压下，锂的熔化可能是电池破裂的重要原因。与LEISING的工作类似，OHSAKI等[68]对过充电反应进行了详细研究，并基于热失控特征将电池过充过程分为4个阶段。SPOTNITZ等[69]通过模拟大功率锂离子电池的热行为来研究其滥用行为，过充电模拟结果显示热失控是在过充电过程中通过将电池加热到高温来激活分解反应的结果。ZENG等[70]将电池温度和最高电压与正极中的锂浓度相关联来研究Bellcore锂离子电池的过充特性。结果表明，控制活性材料中的锂浓度应是确保锂离子电池过充电安全性的重要措施。BELOV等[70]利用示差扫描量热法(DSC)测试了LCO阴极在过充电条件下锂离子电池的失效机制。OUYANG等[71]研究了过充引起NCM+LMO锂离子电池的容量衰减现象，并采用增量容量分析(ICA)法研究了过充导致容量衰退的机制。REN等[45]开发了一种电化学-热耦合模型来模拟NCM+LMO复合正极材料锂离子电池过充电至热失控的演变过程。ZHU等[65]基于正极与负极的电化学行为研究了富镍三元锂离子动力电池的失效机理，其研究发现，当过充容量大于30%时，活性物质损失和锂的损失是造成电池失效的主要原因。图6所示为过充导致热失控过程的热成像图[65]。

图6 过充电导致锂离子电池发生热失控过程

2.1.2.2 过放电

过放电是另一种常见的电滥用情况和电动车故障，过放电通常不会引发锂离子动力电池热失控事故，但是会对电池形成不可逆的容量损失[72]，其行为特性如图7所示。文献[72-77]对锂离子电池在过放电条件下的行为特性和失效机理进行了系统的研究。一般地，锂离子电池过放电过程可以分为3个阶段[73]：随着锂离子电池的持续放电，负极的脱锂和正极的锂化两个过程同时进行，电池开路电压下降；当电压达到3.4~3.5 V(NCM材料)时，铜集流体的溶解反应开始，因此负极电压进入电化学反应的平台期，溶剂的铜离子可以进入电解液、穿过隔膜并沉积到正极；同时，负极的过度脱锂将导致SEI膜分解并产生气体，若再次充电，新的SEI膜将形成；随着铜离子沉积的增多，内短路逐渐形成，严重的可能引发热失控。可见，铜集流体的溶解是过放电滥用条件下最重要的副反应。此外，在过放电过程中，锂化负极中的锂离子会不断地向正极移动，最终导致多孔的负极形成空穴和正极材料饱和，造成电极材料的结构塌陷[73]。
2.1.2.3 外短路

外短路是指电池正负两个端子直接相连（通常连接电阻小于 5 mΩ）所引起的快速放电现象[4]。由于连接电阻很小，电池放电电流很大，导致电池端子温升高，甚至熔断。连接件的松动、车辆碰撞、海水浸泡以及误操作等都会形成外短路。图 8 所示为典型的电池外短路电流和温度曲线。LEISING 等[67]研究了一种用 LiNiO2 作为正极材料、石墨作为负极材料的锂离子动力电池的外短路行为，在电池外短路时，测量的电流首先上升到峰值 20 C，然后迅速下降到一个较低的水平 10 C，并持续了一段时间。当锂离子动力电池完全放电结束时，其电流就降为了零，这种峰值-平稳-下降的过程是外部短路的典型特征。LARSSON 等[78]研究发现，大容量锂离子电池发生外短路时的高温足以熔断极耳与集流体之间的连接；CHEN 等[79]研究了全气候电动汽车锂离子电池的外短路特性，并基于此提出了一种在线预测外短路导致的电池表面温升的方法；SPOTNITZ 等[80]总结出了由外短路引起的热失控机制。他们证实，过热是由短路时的欧姆热所产生的，且电流的峰值被负极锂离子的扩散所限制，因此通过增加负极锂离子的传导率或增加负极的表面积则可以得到更高的峰值电流。以上分析可知，外短路是一种极端情况的快速放电现象，因此，可以直接安装保护装置，如保险丝、纳米结构热开关[80]等，来阻断外短路的发生。但是，在某些情况下，外短路电阻较大，无法触发保险装置，鉴于此，科研人员提出了一些外短路故障诊断方法，如基于模型的外短路故障诊断方法[25]、基于试验阈值的方法[81]等。此外，清华大学的 XU 等[82]还对水下浸泡滥用条件下锂离子电池的行为机制进行了研究，结果表明高压电弧是导致电池失效的主要原因。

2.1.3 热滥用

由于内阻的存在，锂离子电池在使用过程中会出现放热现象，一般情况下，这种状态是可控的。但是在某些极端情况下，例如电滥用或机械滥用，当散热速率低于产热速率时就会产生热量累积，引起局部过热，甚至热失控。此外，电池连接件的松动或锈蚀也会导致局部过热现象。

中国科技大学的王青松教授团队[83-86]对锂离子电池在高温（热滥用）条件下的行为特性及失效机理做了比较多的研究，例如，在文献[47]中，该团队利用去卷积的方法（Deconvolution method）研究分析了锂离子电池在高温条件下的热行为和复杂热反应；文献[48]利用锥形量热仪研究了大容量锂离子电池的高温着火特性，研究发现，锂离子电池的燃烧过程可以分为电池膨胀、火焰射流、稳定燃烧、二次射流、稳定燃烧，再次射流等多个阶段；文献[85]基于三维热模型和一维电化学模型研究了锂离子电池在动态充电循环条件下的热传播特性。此外，一些学者利用 ARC 和 VSP2 绝热量热仪对方形电池[12]、18650 锂离子电池[87-89]在热滥用情况下的热失控特性和热危险性进行了研究。针对高温对于锂离子电池性能的影响，清华大学的 FENG 等[90]将三元 NCM111 锂离子电池置于 ARC 中进行高温测试，待加热到某一温度后突然停止加热，并对电池进行迅速冷却的方法来研究不同截止温度对于电池性能的影响，结果表明，随着截止温度的升高，电池容量衰退明显，且电池内阻随着截止温度的升高而升高。为了研究热滥用条件下锂离子电池的热行为、温度分布和不同反应的产热量，KIM 等[29]建立了锂离子电池的三维热滥用模型（图 9），研究结果发现，该模型可以很好地预测热反应的传播，此外，还发现小型电池的散热效率更高。
2.1.4 内短路

通常，热失控过程中都会伴随有内短路的发生，同时，内短路所产生的热量会进一步引发新的连锁反应，因此内短路是锂离子电池热失控的共性环节。广义上讲，内短路是由于正负极集流体之间的电阻过低所导致的自放电现象，这种现象常由隔膜的损伤所致。

在机械滥用、电滥用和热滥用等滥用情况下，锂离子电池可能会立即发生内短路(机械损伤导致电池内部破坏的微观结果如图10所示)引发热失控现象，同时，也可能导致不可逆的容量衰退。还有一种内短路是由于电池自身问题所致，称为自发内短路，这类内短路通常是由于制造过程中在电池内部混入的杂质诱发，从杂质混入到内短路发生的演化时间较长，整个过程存在于电池工作的全生命周期内。此外，随着电池循环次数的增多，副反应所形成的尖锐物质，例如锂枝晶、铜枝晶等也会刺穿隔膜引发内短路。清华大学的张明轩对动力电池的内短路问题做了比较详细的研究，并且发现了内短路发生过程中的熔断现象。

2.2 不同热失控阶段的放热反应机理

锂离子动力电池的热失控通常是一个过程，受到电池容量、散热条件、热管理系统效率等因素的影响，该过程会持续几秒钟到数十分钟不等。此外，在不同温度范围内，内部反应机理并不相同。

清华大学的FENG等在绝热环境下，利用EV-ARC对大容量三元(NCM111)锂离子动力电池的热失控行为进行了探索，并参考现有文献对不同失控阶段和温度范围内锂离子电池内部化学反应进行了系统的总结，开创了利用EV-ARC研究商用大容量锂离子动力电池热失控的先河；北京理工大学的ZHU等基于过充电测试，总结了锂离子电池在过充电至热失控过程中，各个温度范围内的反应机理，如图11所示。这些链式放热的反应主要包括：SEI膜的分解、析锂反应、嵌入锂与电解液的反应、隔膜的破裂和分解、嵌入锂与氟化粘合剂的反应、电解液分解、正极活性物质分解以及粘合剂的分解等。

2.2.1 SEI膜的分解

锂离子电池在使用初期，在负极表面，锂离子与电解液发生反应形成一层钝化膜，称为SEI膜，该电解质膜对于负极的保护具有重要意义。通常认为，SEI膜由稳定(如Li2CO3)和亚稳定(例如：(CH2OCO2Li)2)的组分构成，当温度达到90～120℃时亚稳定的组分会发生分解和破坏。

亚稳定的SEI组分的分解反应如下

$$(\text{CH}_2\text{OCO}_2\text{Li})_2 \rightarrow \text{LiCO}_3 + \text{C}_2\text{H}_4 + \text{CO}_2 + \frac{1}{2}\text{O}_2 \quad (12a)$$

或其他
2Li+(CH₂OOC₂Li) → 2Li₂CO₃ + C₃H₄ (12b)

基于量热测试和电池材料热稳定分析，科研人员对SEI膜的分解进行了证实。DU等[95]在研究锂离子电池的负极反应时发现，在120～140℃有一放热反应，该放热反应可能是SEI膜的分解；RICHARD等[96]基于加速量热试验研究发现，由于SEI膜的分解，在温度达到大约100℃(MCMB，LiPF₆/EC+DEC)时，识别到一放热峰，该放热峰是由于SEI膜的组分由亚稳定向稳定转变所引起的。该放热峰对于嵌入锂的数量是不敏感的，同时，对于新电池，没有发现该放热峰。

MALEKI等[97]认为，锂离子电池的自加热温度与SEI膜的破坏温度接近，为123～167℃。ZHAO等[98]研究发现，处于放电状态的石墨电极上的SEI膜在约330℃和430℃的温度下彻底分解，并伴随着CO₂的释放，且SEI膜的化学结构的转变会影响其热稳定性。

在120～250℃范围内，原来的SEI膜遭到破坏，石墨负极将失去SEI膜的保护，被暴露在电解液中，电解液与嵌入锂发生反应，形成新的SEI膜，SEI膜的破坏和形成过程可以同时进行，形成SEI膜的平衡过程[7, 95]。

2.2.2 嵌入锂(锂化石墨)与电解液的反应

当温度高于120℃时，由于SEI膜的分解和破坏，负极失去保护层，从而导致电解液与负极的直接接触，嵌入锂将与电解液发生放热反应，其反应方程式如下

2Li + C₆H₆O₃(EC) → Li₂C₆O₃ + C₆H₆ (13a)
2Li + C₆H₆O₃(PC) → Li₂C₆O₃ + C₆H₆ (13b)
2Li + C₆H₆O₃(DMC) → Li₂C₆O₃ + C₂H₆ (13c)

式中，EC(Ethylene carbonate，碳酸乙烯酯)、PC(Propylene carbonate，碳酸丙烯酯)和DMC(Dimethyl carbonate，碳酸二甲酯)是常见的电解液有机溶剂。LAMPE-ONNERUD等[99]研究发现，在ECD/MC电解液中，锂化与非锂化的石墨负极的初始放热温度差异很大，完全锂化的石墨的放热反应起始温度为70℃，而石墨为200℃，这也证明了嵌入锂(锂化石墨)与电解液之间放热反应的存在。通常认为，锂化的石墨负极与无水电解液的放热反应发生在120～140℃[95, 100]，但是，随着锂盐的不同，其初始反应温度也不相同；电化学锂化的石墨负极的热稳定性与电解液中锂盐的成分有很大关系，有如下排序：LiTFSI > LiTf > LiPF₆ > LiBF₄[101]。同时，在高温下，LiC₆x(x > 0.71)石墨负极也会崩塌、放热，而锂也会从多孔石墨中被释放出来，进而引发更多的放热反应[102]。GARCIA等[103]利用DSC对SONY 18650电池锂化的石墨负极和EC：PC：DEC/LiPF₆
电解液进行了研究，结果表明，干燥的锂化碳负极在 300 °C 呈现一放热峰，但是在电解液存在的情况下，放热峰轨迹变得复杂，例如，在大约 100 °C、150 °C、270 °C 以及 300 °C 都呈现峰值。WANG 等[104]基于 DSC 研究发现，锂化碳和电解液共同存在的环境中，在放热曲线上观察到 4 个放热峰，分别为 99 °C、214 °C、228 °C 和 243 °C，放热反应开始于 57 °C，对应的反应热为 393 J/g，该结果与 GARCIA 等[103]的研究结果接近。

2.2.3 含有锂和氟化粘合剂的反应

研究表明，氟化粘合剂可以与锂化的碳负极发生放热反应。Zhang 等[100]认为，带电锂离子电池负极在 DSC 测试中所观察到的放热曲线上（从 230 °C 开始到 300 °C）是由于 PVDF 粘合剂与锂的反应引起的。Lampe-Onnerud 等[105]基于 DSC 研究发现，锂化的碳基与 PVDF 粘合剂的放热反应仅仅发生于 280~320 °C，而材料的厚度对于正常使用中的电池来说是无法达到的。对于 Li2C6 与 PVDF 粘合剂的反应温度，Maleki 等[97]发现，该反应从大约 200 °C 开始，到 287 °C 达到最大值，放热值大约为 317 J/g，Biensan 等[106]发现，该反应开始于约 240 °C，在 290 °C 达到峰值，在 350 °C 时结束。

Duan 等[99]研究中锂化碳和锂与不同的氟化粘合剂的反应物质，结果显示，由于基质较大的表面积，相比锂与粘合剂的反应，Li2C6 与粘合剂的反应会在更低的温度下进行。同时，他们通过 X-ray 分析发现，LiF 是主要的反应产物。其中指，锂嵌入锂或金属锂）与氟化粘合剂发生如下反应

\[\text{CH} \text{CF}_2 + \text{Li} \rightarrow \text{LiF} + \text{CH} + \frac{1}{2} \text{H}_2 \]

或

\[2 \text{Li} + \text{RF} \rightarrow 2 \text{LiF} + \frac{1}{2} \text{R}_2 \]

通常，充满电的负极含有的锂的摩尔数至少是氟的摩尔数的 4 倍[89]。这种过量的锂似乎与作为反应产物的氟化锂形成不一致，因为用 8 wt% PVDF 粘合剂进行的 DSC 研究表明，Li2C6 粘合剂反应的热量随负极的锂化程度的增加而线性增加[107]。然而，另一方面，其他研究人员发现，随着 PVDF 粘合剂数量的增加，放热量也呈线性增加[106]。这种结果差异可能源于 DSC 试验中有效反应锂的数量的限制，实际上，锂必须扩散通过碳负极才能触及 PVDF 粘合剂，并不是所有的锂都是可参与反应的，至少在初期，锂和 PVDF 并不处于相同位置，上述研究的计量比例是没有意义的。

2.2.4 电解液的氧化与分解

锂离子电池电解液是由盐（如 LiPF6、LiBF4、LiCF2SO3）等和有机溶剂（EC、PC、DMC 等）构成。在高电压的条件下，由于电池的电压升高，电解液被氧化分解，然而文献中报道的试验氧化电位值差别很大，有时甚至会得出相互矛盾的结论。一般而言，电解液分解被表面催化过程，即分解过程的起始电位取决于极电材料的元素性质，其出现在约 0.15 V，接触面积和电极材料有关。例如，在钠导电碳和 LiMn2O4 存在的情况下，DSC 组分的分解电位分别下降到 4.8 V 和 4.2 V。由于电解液成分复杂，与电池中其他材料之间存在复杂的交互作用，目前对于电解液分解的过程和结果的研究还不明确。例如，EC 可分解为二氧化碳和环氧乙烷（Ethylene Oxide），而环氧乙烷能够继续放热分解。同时，EC 的分解反应可以被镍酸盐所催化。Sloop 等[109]研究了 LiPF6-EC：EMC 电解液在 85 °C 时的稳定性，他们在 EC 溶液中添加了金属粉末，发现当 EC 和 EC 溶液中存在金属粉末时，溶液的稳定性提高。对于 EC：EMC 混合物，其 DSC 砷在广泛的放热范围表现出轻微的吸热。对于 1M LiPF6 溶液，其电解液的热焓为 300 J/g，Botte 等[110]研究发现，金属氧化物的分解在 EC 中的分解率影响很大，对于 LiPF6-PC：EC：3DMC 电解液的分解，Biensan 等[106]发现了一个 250 J/g 的放热反应。

在热失控过程中，电解液本身也会发生氧化分解，式(15)和式(16)所示分别为常温电解液成分的完全氧化过程和非完全氧化过程[7, 9]。

\[\text{C}_3\text{H}_6\text{O}_3(\text{EC}) \rightarrow 3\text{CO}_2 + 2\text{H}_2\text{O} \]

(15a)

\[4\text{O}_2 + \text{C}_3\text{H}_6\text{O}_3(\text{PC}) \rightarrow 4\text{CO}_2 + 3\text{H}_2\text{O} \]

(15b)

\[3\text{O}_2 + \text{C}_4\text{H}_10\text{O}_3(\text{DMC}) \rightarrow 3\text{CO}_2 + 3\text{H}_2\text{O} \]

(15c)

\[6\text{O}_2 + \text{C}_4\text{H}_10\text{O}_3(\text{DEC}) \rightarrow 5\text{CO}_2 + 5\text{H}_2\text{O} \]

(15d)

\[\text{O}_2 + \text{C}_2\text{H}_4\text{O}_2(\text{EC}) \rightarrow 3\text{CO}_2 + 2\text{H}_2\text{O} \]

(16a)

\[2\text{O}_2 + \text{C}_2\text{H}_4\text{O}_2(\text{PC}) \rightarrow 3\text{CO}_2 + 3\text{H}_2\text{O} \]

(16b)

\[1.5\text{O}_2 + \text{C}_2\text{H}_4\text{O}_2(\text{DMC}) \rightarrow 3\text{CO}_2 + 3\text{H}_2\text{O} \]

(16c)

\[3.5\text{O}_2 + \text{C}_3\text{H}_10\text{O}_5(\text{DEC}) \rightarrow 5\text{CO}_2 + 5\text{H}_2\text{O} \]

(16d)

此外，热失控阶段 LiPF6 韭盐也会发生分解反应，产生 Lewis 酸 PF5，PF5 将与水继续发生反应，同时，PSF 将于电解液继续发生反应，生成 HF，而 HF 会导致过渡金属氧化物的分解[65, 83]。

2.2.5 正极活性物质的分解

带电的正极材料在高温下会发生分解反应。例如，Ni0.8Co0.2O2 会分解产生 Ni24Co20O4 和氧气[111]。
LiMn$_2$O$_4$(LM0)会分解产生Mn$_2$O$_3$、Mn$_2$O$_4$、MnO和氧气[112]; Li$_6$CoO$_2$(LCO,钴酸锂)分解生成Li$_2$CoO$_2$、Co$_3$O$_4$和氧气[113]; Li(Ni$_{0.5}$Co$_{0.5}$Al$_x$)O$_2$(x=\geq0.8)(NCA)分解生成NiO、Co$_3$O$_4$、Al$_2$O$_3$和氧气[114]等。可见,正极材料的热分解都会存在化合价的变化,也会产生氧气,这些氧气又会与电解液中的有机成分发生反应(燃烧),进而引发链式反应。

DOUGHTY等[115]在Vehicle Battery Safety Roadmap Guidance中指出,常见锂离子动力电池正极材料的热稳定性有如下排序:LFP>LMO>三元材料(NCM>NCA)>LiCoO$_2$,在ARC中测得不同正极材料的自生热速率如图12所示[6]。

图12 不同正极材料的自生热速率(修改自文献[6])

BIENSAN等[116]研究了几种不同电解液/正极材料反应的反应焓变,结果发现,对于Li$_{0.45}$CoO$_2$,在200~500℃,有450 J/g的焓被释放。NOH等[117]研究了Ni含量对于Li(Ni$_x$Co$_y$Mn$_z$)O$_2$(其中x=1/3,0.5,0.6,0.7,0.8和0.85)材料热稳定性的影响,他们发现,Ni的含量对于Li(Ni$_x$Co$_y$Mn$_z$)O$_2$材料的热稳定性有很大影响,图13所示为不同x值对应的Li(Ni$_x$Co$_y$Mn$_z$)O$_2$正极材料的放热焓。事实上,对于富镍三元材料(x:y:z=8:1:1,6:2:2,或5:2:3)的研究还在进行,其热行为特性和高温分解机理还不明确。

但是,在过充电过程中,正极材料中的过渡金属离子的化合价会发生相应变化,例如Ni$^{2+}$会变成Ni$^{3+}$和Ni$^{4+}$,而Co$^{3+}$和Mn$^{4+}$没有被氧化[117-118]。YE等[66]基于过充电引发热失控过程中的Ni离子、Co离子和Mn离子的化合价变化,推测出了NCM(5:2:3)正极材料的分解机理;与此方法类似,ZHU等[65]推测出了NCM(6:2:2)正极材料在热失控过程中的分解机理。

2.2.6 隔膜的收缩和破坏

目前,锂离子电池商用隔膜常用的材料是聚乙烯(Polyethylene, PE)和聚丙烯(Polypropylene, PP)。隔膜上的微孔具有关闭效应,当温度达到隔膜微孔关闭温度时,隔膜微孔就会关闭,阻碍锂离子的传递和移动,进而导致电池内阻上升。上升的内阻将阻止极端滥用情况下(外短路、过充电等)大电流的通过,但是对于局部过热的情况,并没有大电流通过,隔膜关闭效应的作用将被弱化。随着温度的继续上升,当温度达到PE和PP隔膜熔点时(PE和PP隔膜的熔点分别约为130℃和170℃),这种PE/PP基的隔膜将收缩。由于隔膜收缩是一吸热过程[106,119-120],因此,隔膜收缩能够一定程度上延缓升温。BIENSAN等[106]研究发现,收缩过程中,PE和PP隔膜的热焓分别为−90 J/g和−190 J/g,峰值吸热功率分别为1.442 W/g和2 W/g。当温度继续升高,收缩的隔膜将被破坏,内短路发生;热量被瞬间释放,进而发生不可控的热失控。高温下,隔膜将被汽化。三层PP/PE/PP隔膜的破坏温度与PP隔膜的破坏温度非常接近。目前,具有陶瓷涂层的隔膜材料的破坏温度已经被提高到200~260℃[12,120]。

3 锂离子动力电池热失控安全管理及预警方法

以防止动力电池系统热安全事故发生、阻断或延缓热失控扩展为目标,研究者在安全事故预警机制、热安全控制策略、高安全结构设计等方面开展了研究工作。

3.1 提高锂离子电池系统安全性的方法

3.1.1 单体电池的安全性设计

锂离子动力电池单体的安全性设计主要从锂离子电池的结构出发,分为安全的隔膜、安全的正极材料、安全的负极材料、安全的电解液以及安全的集流体等几个方面,如图14所示。
3.1.1.1 安全的正极材料

研究人员主要采用掺杂、包覆、微观粒子的结构设计以及金属原子的替代等方式来提高正极材料的安全性[3]。例如，SUN等[122]开发了一种具有浓度梯度的高安全性锂离子电池正极材料，这种材料中，每个粒子都有一个富含Ni的中心体和一个富含Mn的外层，随着接近表面，Ni浓度降低，Mn和Co浓度增加，半电池测试结果显示，该电池材料在高温和过充条件下，依然具有良好的循环性能。SASAKI等[125]基于SEM和原位XRD测量，在过充条件下研究了Li(Ni,Co,Al)O2正极材料掺杂Mg后的影响和结构变化，结果表明Mg会影响过充条件下Li(Ni,Co,Al)O2正极材料的电化学稳定性，能够避免过充过程中微观粒子的破裂。DIPPEL等[126]利用线性电位扫描法和横流试验，研究了将NHC-PF3作为NCM三元电池材料添加剂时对于过充的保护作用。其研究发现，NHC-PF3在Li/Li+半电池测试中，添加剂在4.57V时才被氧化，这表明NHC-PF3能够一定程度上保护NCM三元电池材料避免过充的危险。此外，该材料不会影响原有电池的循环寿命。

3.1.1.3 安全的负极材料

目前，提高负极材料的安全性主要通过材料包覆[127]，或在电解液中添加添加剂以提高SEI膜的稳定性。其他新型高安全性材料也被用于锂离子电池负极的制备，例如：碳纤维、合金材料等。

MENKIN等[128]设计并制备了人工SEI膜以提高锂离子动力电池的安全性和循环性能。HERSTEDT等[129]在电解液中添加(五氟苯基)硼烷(TPFPB)阴离子受体来提高SEI膜的热稳定性。HOSSAIN等[130]研究了具有碳纤维负极的5.5 A·h锂离子聚合物电池的过充行为特性，并基于SEM和X-ray荧光谱分析了过充后电池的材料形态和特性变化。结果发现，在过充过程中具有碳纤维负极材料的锂离子电池表现出较低的发热量，这对于防止锂离子电池过热失控具有重要意义。

3.1.1.4 安全的电解液

锂离子热失控发生过程中，大多数放热反应都有电解液的参与，因此电解液在锂离子电池热失控过程中起着关键性的作用，提高电解液的稳定性，对于热失控的防止具有重要意义。目前，提高电解液安全性的方法主要有：添加阻燃剂[131]，采用固态聚合类物质、采用离子液体和氧化还原钳制剂(ReDox shuttles)[108,132]。氟化碳酸乙烯(FEC)是研究最多的锂离子电解液添加剂，最初的目的改善SEI膜的成分和提高负极可逆的嵌入(脱)锂的库伦效率[108]，同时，BENMAXZA等[133]研究发现，PEC还可以提高LiNi0.8Co0.15Al0.015O2正极材料的热分解起始温度和减少放热；此外，与非氟化碳酸盐相比，PEC可以通过降低可燃性提高了电解液的安全性[133]，并且，由于强碳-氟键的存在[134-135]，其热稳定性也得到提高。近年来，科研人员研究发现，线性氟化碳酰胺(如1-氟乙基）碳酰胺乙酯也可能在提高锂离子电池电解液的安全性方面起决定性作用[136-137]。对于锂离子电池常用的过充电危险，研究人员认还在电解液中添加氧化还原原铬制剂[138-139]和具有特定电压隔绝作用的电解液添加剂[140-141]来防止或延缓过充对电池的损害。

3.1.1.5 安全的壳体设计

对于锂离子动力电池来说，目前使用的多为有机液体电解液，因此保证锂离子电池在极端冲击和长时间循环情况下对抗冲击力和安全性是保证其安全性的重要因素。此外，对于某些滥用情况，如过充电、短路等，需要其有特殊的安全部件和装备，如安全阀、热熔丝(保险丝)和泄压开关等。KIM等[142]设计了一种具有特殊制造工艺的锂离子电池安全阀(图15)。详细描述了其制造生产工艺和结构参数设计。该安全阀的制造过程包括反向挤压和压印过程，内部压力测试结果显示，与焊接安全阀相比，该安全阀可以以较低的成本和高效的生产工艺达到同样的安全效果。此外，也有研究人员对集流体进行新型安全性
设计，以提高锂离子电池安全性或防止热失控的发生。橡树岭国家实验室的 NAGUIB 等提出了一种锂离子电池电极安全设计理念，以保证电池在机械冲击下不会发生灾难性故障，该电极在受到冲击时，受损部分会与电极的其余部分隔离，以限制任何短路电流的通过和扩展。

3.1.2 动力电池系统安全防护和优化设计

在不同的触发条件下，锂离子电池会产生不同的热失控行为，因此，动力电池系统安全防护和优化设计也是针对这几个触发条件展开的，如图 16 所示。

3.1.2.1 电池包结构优化和强化设计

机械碰撞和针刺主要会对电池外部机械结构造成不可逆的损伤，甚至破坏隔膜引发内短路。机械结构的优化强化设计主要从电池包结构设计、电池包在整车的安装、电池单体的排布、整车结构强化以及隔振等方面展开。三星研发团队的 JEON 等基于优化设计理论并结合有限元分析设计了具有轻量化、大容量的锂离子动力电池包结构，电池包能够减小电池遭受冲击后的变形。美国专利(No. 8663824)揭示了一种新型电池包设计，其中电池包借助于横向构件被分成多个电池模组隔室，每个隔室只包含一个电池模块，中间电池模块与两侧电池模块分割开来，并为电源线和数据线提供方便通道。CHEN 等研究了 18650 锂离子电池不同排布方式对于电池着火行为的影响，结果显示具有更大加热区域(4×1)的电池的点燃和燃烧时间更短，也更危险。但是，该试验并没有考虑局部过热的情况，仅仅是对整体模组进行加热。SINZ 等建立纯电动汽车的有限元模型，以研究车辆受到不同情况碰撞时对电池包的影响，并通过结构强化设计，对薄弱部位进行加固。但是，该设计没有考虑整体质量和设计的轻量化，仅仅是通过采用坚实、厚重的结构来提高其防冲、防变形能力。KUKREJA 等设计了一种多功能的(耐损伤和能量存储)动力电池系统，该电池系统将高能材料与吸能原件相组合，可以在电动汽车遭受碰撞时吸收更多的能量，减轻电池系统的损伤。

3.1.2.2 过流、过压安全性设计

目前，车辆中的电路中都配置有熔断器和保险丝，当有大电流通过时熔断器或保险丝能够及时切断电流，以保证电池包的安全。此外，电池的串并联方式也对锂离子电池系统的安全性有一定的影响。KIM 等在研究内短路监测算法中发现，串联电池的数量会对发生内短路时的监测信号产生影响，因此合理优化串并联电池的数量能够提高动力电池系统的安全性。

3.1.2.3 热管理系统设计

由于锂离子电池对温度异常敏感，低温时的性能衰退和高温时的安全性都是动力电池系统设计所必须考虑的内容，因此热管理系统对于锂离子动力电池系统来说非常重要。目前常用的冷却方式有液冷和风冷，如特斯拉电动汽车的电池包就采用先进的液冷技术，而国内其他的城市客车的电池包一般都采用风冷，但是采用风冷冷却方式的电池包其密封性较差。近年来，相变材料、水凝胶、以及组合材料(例如: 相变材料与传导填充材料的混合、相变材料与泡沫金属或膨胀石墨的混合)等也被用于动力电池热管理系统，有的相变材料吸热效果很好，可以用于防止失控的发生。AL-HALLAJ 等第一次将相变材料应用于锂离子电池热管理系统，其将二十五烷和二十六烷的石蜡混合物用于 18650 锂离子电池组。ZHAO 等开发了一种柔性的水凝胶膜用于电池热管理系统，该系统基于经济的聚丙烯酸钠材料，其可以做成任何形状并方便地堆叠到常用锂离子电池中，大电流放电和异常放热测试结果显示，该系统可以以较低的成本实现传统的冷却(液冷、风冷)效果。
3.1.2.4 热失控发生后的降温、灭火、隔离和火焰气体引导

当单体电池发生热失控后，若不及时对其隔离或灭火，其高温将引发相邻电池的热失控，导致热失控的扩展，因此当热失控已经无法避免时，如何灭火和隔离热失控就显得尤为重要。目前，常用的隔离热失控的方式有：采用降温灭火介质对其灭火和降温、通过绝热材料或阻燃材料对发生热失控电池进行隔离、将火焰和危险气体进行合理引导使其通过安全路径排出电池包等。例如：XU 等[152]设计了一种具有矩形小通道的冷却管，以防止锂离子电池热失控的发生，其具体结构如图 17 所示。其研究发现，该矩形管无法抑制电池单体发生热失控，但是可以防止热失控的扩散。此外，FENG 等[1]开发了一总热模型来研究大容量 NCM111 锂离子电池热失控扩展情况，并基于仿真结果提出了几点阻止热失控扩展的措施。

![防止热失控扩散的矩形小通道示意图](image)

3.1.3 安全管理系统软件的优化

动力电池系统的安全运行需要软件的控制，监控、测量电池性能是保证系统安全的基础。但是，电动汽车动力电池系统在使用过程中会遇到各种故障，常见的故障有：过压、过温、连接松动、不一致性、内短路、过充电等。能够直观反映电池性能的参数很少，如电池/电池组电压、温度、电流、SOC 等。但是这些参数在电池包和模组中会有所不同。同时，虽然理论上电池包中各个电池的充放电过程相同，但是由于电池单体的不一致性，其容量和 SOC 会有所不同。随着使用时间的增加，这些不一致性就会导致一些不可预知的安全性事故。因此，在系统软件级别方面，就要求 BMS 能够有效地基于有限参数对电池组中单体电池的非正常运行状态进行预知和判断，以实现安全性预警。

目前，对于锂离子动力电池安全事故或故障，提出了大量的安全预警和故障诊断方法。针对连接件松动故障，MA 等[22]基于跨电压测量和统计学分析，开发了一种新型的诊断串联锂离子动力电池连接故障的方法；不同于 MA 的方法，北京理工大学的 YAO 等[20]基于熵的理论提出了一种动力电池连接故障的诊断方法。其具体方法是：首先在振动环境下模拟电池的充放电过程得到电压波动的数据；其次，在特定的电压下，采用离散余弦滤波方法对系统噪声进行分析；最后使用局部香农熵、全局香农熵和样本熵对滤波数据进行了分析。针对电压故障，与 YAO 等[20]的方法类似，WANG 等[18]将熵的理论应用于电动汽车系统电压故障的诊断方面，其电压数据来源于国家监控平台中受监控的电动汽车，其数据更能反映电动汽车的运行情况。此外，他还提出了一种偏离标准正态分布(Z-score)的安全管理策略。针对不可预知的内短路，清华大学的 FENG 等[24]使用一个电化学-热耦合模型(内短路模型架构见图 18)对内短路故障特性进行了分析。该模型填补了内短路特性和检测之间的空白。此外，他们还提出了一种基于模型的内短路故障在线诊断方法[21]。该方法基于模型的控制理论，将测得的电压和温度转换为能够反映内短路特征的电化学状态(能量消耗和发热)，而故障电池的特性会偏离平均值，从而捕获内短路故障。该方法同时考虑了电压和温度信号，提高了控制算法的鲁棒性。针对过充电和过放电故障，LIU 等[153]应用多模自适应滤波(MMAE)实现了动力电池系统过充和过放故障的快速、准确诊断。针对动力电池系统故障和缺陷，
ZHAO 等[19]基于新能源汽车大数据，利用机器学习算法和3σ多级筛选策略(3σ-MSS)，提出了一种新的统故障和缺陷诊断方法。

此外，科研人员还提出了基于气体检测的电池漏液故障诊断[154]，基于模型的电池系统传感器故障检测和诊断[155]，基于量化随机建模方法的锂离子电池故障诊断[156]，基于电化学模型的故障诊断[157]以及基于云计算的电池状态检测与故障诊断[158]等众多的锂离子动力电池故障诊断和检测方法等，极大地促进了锂离子动力电池系统安全管理策略的发展。

3.2 锂离子动力电池热失控安全防护所面临的挑战及展望

3.2.1 电池能量密度不断提高

为了获得更高的续驶里程，锂离子动力电池厂商都在致力于高能量密度锂离子动力电池的研发和生产，例如，国轩高科的190 Wh/kg圆柱电芯产品将于2019年实现量产，同时根据国家动力电池技术路线图的规划要求，到2020年，锂离子动力电池的单体能量密度目标为300 Wh/kg。在此狭小的空间内容纳过高的能量，势必会给电池的运行安全性带来挑战，如高能量密度的富镍三元锂离子电池正极材料的自生热触发温度更低、自生热速率更高(图12)，当热失控发生时，该类锂离子电池的降温灭火更加困难。此外，为了提高电池包的能量密度，电池包内部单体电池之间间距不断缩小，散热不良，局部热量累积严重。因此，在保证使用安全的前提下，尽可能提高能量密度是锂离子动力电池设计、生产的首要目的；同时，相关部门应当根据实际进展(研究进展和商业化进展)及时更新路线规划，推进锂离子动力电池安全性标准规范的制定和发展。

3.2.2 热失控行为特性差异及其不可预知性

不同触发条件对于热失控行为特性影响很大，例如，过充电时电池的胀气、过放电时的低电压、挤压时的漏液、虚接时电压的异常以及局部过热时的温度异常等都需要BMS有相应的应对措施，这就给BMS的设计提出了更高的要求。总之，对于不同触发条件所引发的电池故障和热失控，BMS应采取不同的预警和安全管理方法和策略。此外，有些热失控事件的发生还具有一定的不可预知性。车辆碰撞、老化、元器件故障以及使用不当等都可能导致动力电池发生局部过热和热失控，有的作用时间很短，有的反而会很长，具有很强的不可预知性，这就给动力电池热失控的防止带来困难。因此，快速准确的预警和可靠的防护是防止动力电池发生热失控的最有效方法。

3.2.3 热失控触发条件对于热失控行为特性的影响

不同的热失控触发条件所引发的电池故障和热失控，BMS应采取不同的预警和安全管理方法和策略。此外，有些热失控事件的发生还具有一定的不可预知性。车辆碰撞、老化、元器件故障以及使用不当等都可能导致动力电池发生局部过热和热失控，有的作用时间很短，有的反而会很长，具有很强的不可预知性，这就给动力电池热失控的防止带来困难。因此，快速准确的预警和可靠的防护是防止动力电池发生热失控的最有效方法。

3.2.4 热管理系统的有效性

为了使电池处于最合适的工作状态，延长电池使用寿命，电池的热管理系统就显得尤为重要。目前，对于动力电池的热管理主要包括低温加热和高温散热两个方面。对于散热，常用的散热方式主要有风冷和液冷是两种，也有采用相变材料对电池进行冷却的研究实例。但是，动力电池的热管理不仅包括正常状态下的电池加热和散热，也包括异常状态下的迅速降温灭火。当单个动力电池发生热失控时，其产热率快，温升率高，很容易引发相邻电池的热失控及其扩展，而热失控的扩展将导致电池之间的链式反应，是热失控事故中最为危险的一类事故；同时，电池包狭小空间内的灭火和降温异常困难，并且大部分的车辆并没有配备有效的降温灭火系统，这是导致很多电动车辆发生热失控后仅剩下钢制骨架的原因。此外，由于快速降温灭火需要特殊设备和介质，这势必会增加车辆整备质量、占据有限的动力电池空间，影响续驶里程，特别是推广比较困难。因此，通过添加绝热层，使用热导管(Heat pipe)，水凝胶以及相变材料等将单体电池热失控限制在有限范围内，并防止其扩展是目前最行之有效的方法。
3.2.5 预警方法和策略的实用性

锂离子动力电池的安全预警是确保乘客生命和财产安全的重要一环。有效的预警和安全管理策略可以及时发现动力电池系统故障和危险，发出警告，并使执行装置做出相应的动作。然而，锂离子动力电池的可监控参数很少，只有电流、电压和温度。因此，如何基于有限数据来对动力电池系统的安全性进行有效评估是当前锂离子动力电池安全预警的困难之处。

虽然科研人员提出了各种故障检测和预测以及安全预警方法(第3.1.3节)，但是由于数据计算量大、算法复杂、通用性差(不同种类的电池无法通用)、在线实现困难等原因，导致这些算法和方法无法应用于实际中，实用性不强。因此，开发快速、高效、通用性强、可在线实现的预警技术和方法是实现动力电池热失控预警的当务之急。随着5G技术、人工智能、云计算以及物联网技术的发展，复杂算法的处理速度和数据流的传输速度将得到很好的改善，这为实时的在线故障检测和预测提供了可能。

3.2.6 产品质量和生产标准差异

产品质量和生产标准差异直接影响锂离子动力电池的可靠性和耐用性。一致性是动力电池产品质量好坏的评价标准之一。在电池组中，一致性好的单体电池极易处于过放电或过充的状态，容量衰减速度加快，同时，与其连接的电池也会长期处于非正常的充放电状态，导致不一致性在电池组中的扩大，进而导致安全事故的发生。此外，生产过程中异常金属微粒的掺杂也会影响电池使用寿命和安全性，随着循环次数的增加，金属微粒会诱发金属锂枝晶生长，并最终穿过电池隔膜导致电池内短路，甚至热失控。

产品质量和生产标准差异产生的主要原因有以下3个方面。

(1) 补贴政策与产品研发周期并不匹配，为了达到补贴政策要求，企业盲目追求比能量，导致电池产品缺乏测试验证。

(2) 动力电池生产没有形成统一的标准，且部分企业也没有建立企业内部安全测试标准。

(3) 部分BMS企业和充电机厂商没有严格执行国家标准。

此外，加上老化、安全管理策略的缺乏等原因，导致2018年动力电池安全事故频发。为此，2018年9月25日，工业和信息化部装备工业发展中心发布了《关于开展新能源乘用车、载货汽车安全隐患专项排查工作的通知》，建议“检查至少包括动力电池的外观检查、软件诊断、气密性检测、开箱检查及换件和容量测试等内容”。因此，各生产企业要加强技术研发，提高产品质量、统一生产标准，政府部门要加强监管和执法力度，以保证产品的安全性和可靠性。

4 结论

综述了锂离子动力电池热失控与安全管理研究现状。

(1) 在热失控研究方法方面，总结了常用的锂离子电池热失控研究方法，较为详细地介绍了建模研究在热失控研究中的应用。

(2) 在热失控触发机理方面，总结了不同触发条件的特点和产生原因，重点阐述了锂离子动力电池在机械滥用、电滥用和热滥用条件下的热失控特性。

(3) 在反应机理方面，分析了锂离子电池主要组分(正极材料、电解液、SEI膜、隔膜等)的热稳定性，深度总结了不同热失控阶段的化学反应机理和放热规律。

(4) 在安全设计方面，从锂离子电池单体的优化设计、动力电池系统安全防护和优化设计以及安全管理系统软件三个方面阐述了提高锂离子动力电池系统安全性的方法。

(5) 在安全预警方面，分析了锂离子动力电池的常见故障，总结了最新的安全预警和故障诊断方法。

虽然已经取得大量的理论和试验成果，但是锂离子动力电池热失控与安全管理的研究还处于不断发展阶段，热失控的防护和动力汽车系统的安全管理还面临诸多挑战。

参考文献

[1] FENG X, LU L, OUYANG M, et al. A 3D thermal runaway propagation model for a large format lithium ion battery module[J]. Energy, 2016, 115: 194-208.

[2] ZHANG J, ZHANG L, SUN F, et al. An overview on thermal safety issues of lithium-ion batteries for electric vehicle application[J]. IEEE Access, 2018, 6: 23848-23863.

[3] 冯旭宁. 车用锂离子动力电池热失控诱发与扩展机理、建模与防控[D]. 北京: 清华大学, 2016. FENG Xuning. Thermal runaway initiation and propagation of lithium-ion traction battery for electric vehicle: Test, modeling and prevention[D]. Beijing: Tsinghua University, 2016.
Mechanical abuse simulation and thermal runaway risks of lithium-ion batteries from kinetics analysis of cell components[J]. Applied Energy. 2018, 228: 633-644.

A review[J]. Energy Storage Materials. 2018, 10: 246-267.

Thermal runaway caused fire and explosion of lithium-ion battery[J]. Journal of Power Sources. 2012. 208: 210-224.

Abuse behavior of high-power lithium-ion cells[J]. Journal of Power Sources. 2003, 113(1): 81-100.

A critical review of thermal issues in lithium-ion batteries[J]. Journal of the Electrochemical Society, 2011, 158(3): R1-R25.

Safety focused modeling of lithium-ion batteries: A review[J]. Journal of Power Sources, 2016, 306: 178-192.

Thermal runaway features of large format prismatic lithium-ion battery using extended volume accelerating rate calorimetry[J]. Journal of Power Sources, 2014, 255: 294-301.

Internal short circuit trigger method for lithium-ion battery based on shape memory alloy[J]. Journal of the Electrochemical Society, 2017, 164(13): A3038-A3044.

Mechanical abuse simulation and thermal runaway risks of large-format Li-ion batteries[J]. Journal of Power Sources. 2017, 342: 913-920.

Identifying the cause of rupture of Li-ion batteries during thermal runaway[J]. Advanced Science. 2018, 5(1): 1700369.

ZHONG G. MAO B. WANG C. et al. Thermal runaway and fire behavior investigation of lithium-ion batteries using modified cone calorimeter[J]. Journal of Thermal Analysis and Calorimetry, 2018: 1-11.

ZHU X. WANG Z. WANG Y. et al. Overcharge investigation of large format lithium-ion pouch cells with Li(Ni0.6Co0.2Mn0.2)O2 cathode for electric vehicles: Thermal runaway features and safety management method[J]. Energy, 2019, 169: 868-880.

WANG Z. HONG J. LIU P. et al. Voltage fault diagnosis and prognosis of battery systems based on entropy and Z-score for electric vehicles[J]. Applied Energy, 2017, 196: 289-302.

ZHAO Y. LIU P. WANG Z. et al. Fault and defect diagnosis of battery for electric vehicles based on big data analysis methods[J]. Applied Energy, 2017, 207: 354-362.

YAO L. WANG Z. MA J. Fault detection of the connection of lithium-ion power batteries based on entropy for electric vehicles[J]. Journal of Power Sources, 2015, 293: 548-561.

FENG X. PAN Y. HE X. et al. Detecting the internal short circuit in large-format lithium-ion battery using model-based fault-diagnosis algorithm[J]. Journal of Energy Storage. 2018, 18: 26-39.

MA M. WANG Y. DUAN Q. et al. Fault detection of the connection of lithium-ion power batteries in series for electric vehicles based on statistical analysis[J]. Energy, 2018, 164: 745-756.

HONG J. WANG Z. YAO Y. Fault prognosis of battery system based on accurate voltage abnormality prognosis using long short-term memory neural networks[J]. Applied Energy, 2019, 251: 113381.

FENG X. HE X. LU L. et al. Analysis on the fault features for internal short circuit detection using an electrochemical-thermal coupled model[J]. Journal of the Electrochemical Society. 2018, 165(2): A155-A167.

CHEN Z. XIONG R. TIAN J. et al. Model-based fault diagnosis approach on external short circuit of lithium-ion battery used in electric vehicles[J]. Applied Energy, 2016, 184: 365-374.

MACNEIL D D. DAHN J R. Test of reaction kinetics using both differential scanning and accelerating rate calorimetry as applied to the reaction of Li x CoO2 in non-aqueous electrolyte[J]. The Journal of Physical Chemistry A. 2001, 105(18): 4430-4439.
et al. Mathematical modeling of lithium-ion and nickel battery systems[J]. Journal of Power Sources. 2002. 110(2): 267-284.

[40] SANTHANAGOPALAN S, GUO Q, RAMADASS P, et al. Review of models for predicting the cycling performance of lithium ion batteries[J]. Journal of Power Sources. 2006. 156(2): 620-628.

[41] CHATURVEDI N A, KLEIN R, CHRISTENSEN J, et al. Algorithms for advanced battery-management systems[J]. IEEE Control Systems. 2010. 30(3): 49-68.

[42] CHATURVEDI N A, KLEIN R, CHRISTENSEN J, et al. Modeling, estimation, and control challenges for lithium-ion batteries[C]// Proceedings of the 2010 American Control Conference. 2010. Baltimore, MD: IEEE, 2010. 1997-2002.

[43] KLEIN R, CHATURVEDI N A, CHRISTENSEN J, et al. Electrochemical model based observer design for a lithium-ion battery[J]. IEEE Transactions on Control Systems Technology, 2013. 21(2): 289-301.

[44] GUO M, SIKHA G, WHITE R E. Single-particle model for a lithium-ion cell: Thermal behavior[J]. Journal of the Electrochemical Society. 2011. 158(2): A122-A132.

[45] REN D, FENG X, LU L, et al. An electrochemical-thermal coupled overcharge-to-thermal-runaway model for lithium-ion battery[J]. Journal of Power Sources. 2017, 364: 328-340.

[46] FANG W, KWON O J, WANG C. Electrochemical-thermal modeling of automotive Li-ion batteries and experimental validation using a three-electrode cell[J]. International Journal of Energy Research. 2010. 34(2): 107-115.

[47] BAHIRAEI F, GHALKHANI M, FARTAJ A, et al. A pseudo 3D electrochemical-thermal modeling and analysis of a lithium-ion battery for electric vehicle thermal management applications[J]. Applied Thermal Engineering, 2017. 125: 904-918.

[48] XU M, ZHANG Z, WANG X, et al. Two-dimensional electrochemical-thermal coupled modeling of cylindrical LiFePO4 batteries[J]. Journal of Power Sources. 2014. 250(12): 233-243.

[49] JIANG J, RUAN H, SUN B, et al. A reduced low-temperature electro-thermal coupled model for lithium-ion batteries[J]. Applied Energy, 2016. 177: 804-816.

[50] XI J, LIU B, WANG X, et al. Computational model of
18650 lithium-ion battery with coupled strain rate and SOC dependencies[J]. Applied Energy, 2016, 172: 180-189.

[51] SUN H, WANG X, TOSSAN B, et al. Three-dimensional thermal modeling of a lithium-ion battery pack[J]. Journal of Power Sources, 2012, 206(206): 349-356.

[52] LIU B, ZHAO H, YU H, et al. Multiphysics computational framework for cylindrical lithium-ion batteries under mechanical abusive loading[J]. Electrochimica Acta, 2017, 256: 172-184.

[53] XU J, WU Y, YIN S. Investigation of effects of design parameters on the internal short-circuit in cylindrical lithium-ion batteries[J]. Rsc Advances, 2017, 7(24): 14360-14371.

[54] ZHANG C, SANTHANAGOPALAN S, SPRAGUE M A, et al. Coupled mechanical-electrical-thermal modeling for short-circuit prediction in a lithium-ion cell under mechanical abuse[J]. Journal of Power Sources. 2015, 290: 102-113.

[55] HATCHARD T D, MACNEIL D D, BASU A, et al. Thermal model of cylindrical and prismatic lithium-ion cells[J]. Journal of the Electrochemical Society. 2001, 148(7): A755-A761.

[56] LOPEZ C F, JEEVARAJAN J A, MUKHERJEE P P. Characterization of lithium-ion battery thermal abuse behavior using experimental and computational analysis[J]. Journal of the Electrochemical Society. 2015, 162(10): A2163-A2173.

[57] HATCHARD T D. Importance of heat transfer by radiation in Li-ion batteries during thermal abuse[J]. Electrochemical and Solid-State Letters. 2000, 3(7): 305-308.

[58] WANG L, YIN S, ZHANG C, et al. Mechanical characterization and modeling for anodes and cathodes in lithium-ion batteries[J]. Journal of Power Sources. 2018, 392: 265-273.

[59] ZHANG X, WIERZBICKI T. Characterization of plasticity and fracture of shell casing of lithium-ion cylindrical battery[J]. Journal of Power Sources. 2015, 280: 47-56.

[60] ZHU X, WANG H, WANG X, et al. Internal short circuit and failure mechanisms of lithium-ion pouch cells under mechanical indentation abuse conditions: An experimental study[J]. Journal of Power Sources. 2020, 455: 227939.

[61] LAI W J, ALI M Y, PAN J. Mechanical behavior of representative volume elements of lithium-ion battery modules under various loading conditions[J]. Journal of Power Sources. 2014, 248: 789-808.

[62] MALEKI H, HOWARD J N. Internal short circuit in Li-ion cells[J]. Journal of Power Sources, 2009, 191(2): 568-574.

[63] XIA Y, CHEN G, ZHOU Q, et al. Failure behaviours of 100% SOC lithium-ion battery modules under different impact loading conditions[J]. Engineering Failure Analysis, 2017, 82: 149-160.

[64] 朱晓庆, 王霞, 王聪, 等. 三元锂离子动力电池过充行为特性实验研究[J]. 汽车工程, 2019, 41(5): 582-589.

ZHU Xiaoqing, WANG Zhenpo, WANG Cong, et al. An experimental study on overcharge behaviors of lithium-ion power battery with LiNi0.6Co0.2Mn0.2O2 cathode[J]. Automotive Engineering, 2019, 41(5): 582-589.

[65] ZHU X, WANG Z, WANG C, et al. Overcharge investigation of large format lithium-ion pouch cells with Li (Ni0.6Co0.2Mn0.2) O2 cathode for electric vehicles: Degradation and failure mechanisms[J]. Journal of the Electrochemical Society, 2018, 165(16): A3613-A3629.

[66] YE J, CHEN H, WANG Q, et al. Thermal behavior and failure mechanism of lithium-ion cells during overcharge under adiabatic conditions[J]. Applied Energy. 2016, 182: 464-474.

[67] LEISING R A, PALAZZO M J, TAKEUCHI E S, et al. Abuse testing of lithium-ion batteries: Characterization of the overcharge reaction of lioco2/graphite cells[J]. Journal of the Electrochemical Society, 2001, 148(8): A838-A844.

[68] OHSAKI T, KISHI T, KUBOKI T, et al. Overcharge reaction of lithium-ion batteries[J]. Journal of Power Sources, 2005, 146(1-2): 97-100.

[69] ZENG Y, WU K, WANG D, et al. Overcharge investigation of lithium-ion polymer batteries[J]. Journal of Power Sources. 2006, 160(2): 1302-1307.

[70] BELOV D, YANG M H. Failure mechanism of Li-ion battery at overcharge conditions[J]. Journal of Solid State Electrochemistry, 2008, 12(7-8): 885-894.

[71] OU YANG M, REN D, LU L, et al. Overcharge-induced capacity fading analysis for large format lithium-ion batteries with LiyNi1/3Co1/3Mn1/3O2+LiyMn2O4 composite
[72] ZHANG L, MA Y, CHENG X, et al. Capacity fading mechanism during long-term cycling of over-discharged LiCoO2/ mesocarbon microbeads battery[J]. Journal of Power Sources, 2015, 293: 1006-1015.

[73] SHU J, SHUI M, XU D, et al. A comparative study of overdischarge behaviors of cathode materials for lithium-ion batteries[J]. Journal of Solid State Electrochemistry, 2012, 16(2): 819-824.

[74] EROL S, ORAZEM M E, MULLER R P. Influence of overcharge and over-discharge on the impedance response of LiCoO2/ C batteries[J]. Journal of Power Sources, 2014, 270: 92-100.

[75] GUO R, LU L, OUYANG M, et al. Mechanism of the entire overdischarge process and overdischarge-induced internal short circuit in lithium-ion batteries[J]. Scientific Reports, 2016, 6: 30248.

[76] HE H, LIU Y, LIU Q, et al. Failure investigation of LiFePO4 cells in over-discharge conditions[J]. Journal of the Electrochemical Society, 2013, 160(6): A793-A804.

[77] MALEKI H, HOWARD J N. Effects of overcharge on performance and thermal stability of a Li-ion cell[J]. Journal of Power Sources, 2006, 160(2): 1395-1402.

[78] LARSSON F, MELLANDER B E. Abuse by external heating, overcharge and short circuiting of commercial lithium-ion battery cells[J]. Journal of the Electrochemical Society, 2014, 161(10): A1611-A1617.

[79] CHEN Z, XIONG R, LU J, et al. Temperature rise prediction of lithium-ion battery suffering external short circuit for all-climate electric vehicles application[J]. Applied Energy, 2018, 213: 375-383.

[80] MCDONALD R C, VANBLARCOM S L, KWSNIK K E. A nanostructured composites thermal switch controls internal and external short circuit in lithium ion batteries[R]. NASA Tech Briefs. Newton MA (United States): April 2013, 35.

[81] XIA B, CHEN Z, MI C. External short circuit fault diagnosis for lithium-ion batteries[C]/ 2014 IEEE Transportation Electrification Conference and Expo (ITEC). Dearborn, MI: IEEE, 2014: 1-7.

[82] XU C, OUYANG M, LU L, et al. Preliminary study on the mechanism of lithium ion battery pack under water immersion[J]. ECS Transactions, 2017, 77(11): 209-216.

[83] PING P, WANG Q, HUANG P, et al. Thermal behaviour analysis of lithium-ion battery at elevated temperature using deconvolution method[J]. Applied Energy, 2014, 129: 261-273.

[84] PING P, WANG Q S, HUANG P F, et al. Study of the fire behavior of high-energy lithium-ion batteries with full-scale burning test[J]. Journal of Power Sources, 2015, 285: 80-89.

[85] WANG Q, SUN Q, PING P, et al. Heat transfer in the dynamic cycling of lithium-titanate batteries[J]. International Journal of Heat and Mass Transfer, 2016, 93: 896-905.

[86] WANG Q, ZHAO X, YE J, et al. Thermal response of lithium-ion battery during charging and discharging under adiabatic conditions[J]. Journal of Thermal Analysis and Calorimetry, 2016, 124(1): 417-428.

[87] ISHIKAWA H, MENDOZA O, SONE Y, et al. Study of thermal deterioration of lithium-ion secondary cell using an accelerated rate calorimeter (ARC) and AC impedance method[J]. Journal of Power Sources, 2012, 198: 236-242.

[88] JHU C Y, WANG Y W, SHU C M, et al. Thermal explosion hazards on 18650 lithium-ion batteries with a VSP2 adiabatic calorimeter[J]. Journal of Hazardous Materials, 2011, 192(1): 99-107.

[89] JHU C Y, WANG Y W, WEN C Y, et al. Thermal runaway potential of LiCoO2 and Li (Ni1/3Co1/3Mn1/3) O2 batteries determined with adiabatic calorimetry methodology[J]. Applied Energy, 2012, 100: 127-131.

[90] FENG X, SUN J, OUYANG M, et al. Characterization of large format lithium-ion battery exposed to extremely high temperature[J]. Journal of Power Sources, 2014, 272: 457-467.

[91] WANG H, SIMUNOVIC S, MALEKI H, et al. Internal configuration of prismatic lithium-ion cells at the onset of mechanically induced short circuit[J]. Journal of Power Sources, 2016, 306: 424-430.

[92] 中华人民共和国国家质量监督检验检疫总局，中国国家标准化管理委员会. GB/T 31485—2015 电动汽车用动力蓄电池安全要求及试验方法[S]. 北京：中国标准出版社，2015. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Standardization Administration of the People’s Republic of China. GB/T 31485—2015 Safety requirements and test methods for traction battery of electric vehicle[S].
[93] LAMPE-ONNERUD C, ZHAO L, RICHARD M N, DU PASQUIER A, MALEKI H. 2020. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Standardization Administration of the People’s Republic of China. GB/T 31498—2015 The safety requirement of electric vehicle post crash[S]. Beijing: China Standard Press of China, 2015.

[94] 中华人民共和国国家质量监督检验检疫总局，中国国家标准化管理委员会. GB/T 31467.3-2015 电动汽车用锂离子动力蓄电池包和系统-第 3 部分：安全性要求与测试方法[S]. 北京：中国标准出版社, 2015.

[95] DU PASQUIER A, DISMA F, BOWMER T, et al. Differential scanning calorimetry study of the reactivity of carbon anodes in plastic Li-ion batteries[J]. Journal of the Electrochemical Society, 1998, 145(2): 472-477.

[96] RICHARD M N, DAHN J R. Accelerating rate calorimetry study on the thermal stability of lithium intercalated graphite in electrolyte. I. Experimental[J]. Journal of the Electrochemical Society, 1999, 146(6): 2068-2077.

[97] MALEKI H, DENG G, ANANI A, et al. Thermal stability studies of Li-ion cells and components[J]. Journal of the Electrochemical Society, 1999, 146(9): 3224-3229.

[98] ZHAO L, WATANABE I, DOI T, et al. TG-MS analysis of solid electrolyte interphase (SEI) on graphite negative-electrode in lithium-ion batteries[J]. Journal of Power Sources, 2006, 161(2): 1275-1280.

[99] LAMPE-ONNERUD C, SHI J, CHAMBERLAIN R, et al. Safety studies of Li-ion key components by ARC[C]// Sixteenth Annual Battery Conference on Applications and Advances, 2001. Long Beach, CA: IEEE, 2001, 367-373.

[100] ZHANG Z, FOUCHARD D, REA J R. Differential scanning calorimetry material studies: Implications for the safety of lithium-ion cells[J]. Journal of Power Sources, 1998, 70(1): 16-20.

[101] ANDERSSON A M, HERSTEDT M, BISHOP A G, et al. The influence of lithium salt on the interfacial reactions controlling the thermal stability of graphite anodes[J]. Electrochimica Acta, 2002, 47(12): 1885-1898.

[102] YANG H, BANG H, AMINE K, et al. Investigations of the exothermic reactions of natural graphite anode for Li-ion batteries during thermal runaway[J]. Journal of the Electrochemical Society, 2005, 152(1): A73-A79.

[103] GARCIA M, NAGASUBRAMANIAN G, TALLANT D R, et al. Instability of polyvinylidene fluoride-based polymeric binder in lithium-ion cells: Final report[R]. Office of Scientific & Technical Information Technical Reports. 1999.

[104] WANG Q, SUN J, YAO X, et al. Thermal stability of LiPF6/EC+ DEC electrolyte with charged electrodes for lithium-ion batteries[J]. Thermochimica Acta, 2005, 437(1-2): 12-16.

[105] LAMPE-ONNERUD C, SHI J, SINGH S K, et al. Safety studies on lithium-ion batteries by accelerating rate calorimetry[C]// Fourteenth Annual Battery Conference on Applications and Advances, 1999. Long Beach, CA: IEEE, 1999, 215-220.

[106] BIENSAŃ P, SIMON B, J.P PÉRÈS, et al. On safety of lithium-ion cells[J]. Journal of Power Sources, 1999, 81-82: 906-912.

[107] MALEKI H, DENG G, KERZHNÉ-HALLER L, et al. Thermal stability studies of binder materials in anodes for lithium-ion batteries[J]. Journal of the Electrochemical Society, 2000, 147(12): 4470-4475.

[108] KALHOF J, ESHETU G G, BRESSER D, et al. Safer electrolytes for lithium-ion batteries: State of the art and perspectives[J]. Chem Sus Chem, 2015, 8(13): 2154-2175.

[109] SLOOP S E, PUGH J K, WANG S, et al. Chemical reactivity of PF 5 and LiPF6 in ethylene carbonate/dimethyl carbonate solutions[J]. Electrochemical and Solid-State Letters, 2001, 4(4): A42-A44.

[110] BOTTE G G, WHITE R E, ZHANG Z. Thermal stability of LiPF6-EC: EMC electrolyte for lithium-ion batteries[J]. Journal of Power Sources, 2001, 97: 570-575.
[111] AL-HALLAJ S., MALEKI H., HONG J.S., et al. Thermal modeling and design considerations of lithium-ion batteries[J]. Journal of Power Sources. 1999, 83(1-2): 1-8.

[112] MACNEIL D.D., DAHN J.R. The reaction of charged cathodes with nonaqueous solvents and electrolytes: Li
cathe

[113] WANG Q., SUN J., CHEN C. Thermal stability of delithiated LiMn2O4 with electrolyte for lithium-ion batteries[J]. Journal of the Electrochemical Society. 2007, 154(4): A263-A267.

[114] BANG H.J., JOACHIN H., YANG H., et al. Contribution of the structural changes of LiNi0.8Co0.15Mn0.05O2 on the exothermic reactions in Li-ion cells[J]. Journal of the Electrochemical Society. 2006, 153(4): A731-A737.

[115] DOUGHTY D.H., PESARAN A.A. Vehicle battery safety roadmap guidance[R]. National Renewable Energy Lab. (NREL). Golden, CO (United States). October 2012.

[116] NOH H.J., YOUN S., CHONG S.Y., et al. Comparison of the structural and electrochemical properties of layered Li[Ni0.5Co0.3Mn0.2O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries[J]. Journal of Power Sources. 2013, 233: 121-130.

[117] SU Y., CUI S., ZHUO Z., et al. Enhancing the high-voltage cycling performance of LiNi0.8Mn0.2Co0.15O2 by retarding its interfacial reaction with an electrolyte by atomic-layer-deposited Al2O3[J]. ACS Applied Materials & Interfaces. 2015, 7(45): 25105-25112.

[118] SONG Y., AVERY K., RICHARD V.C.I., et al. Secondary lithium-ion battery with mixed nickelate cathodes: U.S. Patent Application 13/893, 918[P]. 2014-1-2.

[119] ARORA P., ZHANG Z. Battery separators[J]. Chemical Reviews. 2004, 104(10): 4419-4462.

[120] ORENDORFF C.J. The role of separators in lithium-ion cell safety[J]. The Electrochemical Society Interface. 2012, 21(2): 61-65.

[121] HUANG X. Separator technologies for lithium-ion batteries[J]. Journal of Solid State Electrochemistry. 2011, 15(4): 649-662.

[122] SUN Y.K., MYUNG S.T., PARK B.C., et al. High-energy cathode material for long-life and safe lithium batteries[J]. Nature Materials. 2009, 8(4): 320-324.

[123] SHI C., ZHANG P., HUANG S., et al. Functional separator consisted of polyimide nonwoven fabrics and polyeth-

ylene coating layer for lithium-ion batteries[J]. Journal of Power Sources. 2015, 298: 158-165.

[124] BALAKRISHNAN P.G., RAMESH R., KUMAR T.P. Safety mechanisms in lithium-ion batteries[J]. Journal of Power Sources. 2006, 155(2): 401-414.

[125] SASAKI T., GODBOLE V., TAKEUCHI Y., et al. Morphological and structural changes of Mg-substituted Li(Ni0.8Co0.15Al0.05)O2 during overcharge reaction[J]. Journal of the Electrochemical Society, 2011, 158(11): A1214-A1219.

[126] DIPPEL C., SCHMITZ R., MÜLLER R., et al. Carbene adduct as overcharge protecting agent in lithium-ion batteries[J]. Journal of the Electrochemical Society, 2012, 159(10): A1587-A1590.

[127] JUNG Y.S., CAVANAGH A.S., RILEY L.A., et al. Ultrathin direct atomic layer deposition on composite electrodes for highly durable and safe Li-ion batteries[J]. Advanced Materials. 2010, 22(19): 2172-2176.

[128] MENKIN S., GOLODNITSKY D., PELED E. Artificial solid-electrolyte interphase (SEI) for improved cycleability and safety of lithium-ion cells for EV applications[J]. Electrochemistry Communications. 2009, 11(9): 1789-1791.

[129] HERSTEDT M., STJERNDALH M., GUSTAFSSON T., et al. Anion receptor for enhanced thermal stability of the graphite anode interface in a Li-ion battery[J]. Electrochemistry communications. 2003, 5(6): 467-472.

[130] HOSSAIN S., KIM Y.K., SALEH Y., et al. Overcharge studies of carbon fiber composite-based lithium-ion cells[J]. Journal of Power Sources. 2006, 161(1): 640-647.

[131] HYUNG Y.E., VISSERS D.R., AMINE K. Flame-retardant additives for lithium-ion batteries[J]. Journal of Power Sources. 2003, 119: 383-387.

[132] GUERFI A., DONTIGNY M., CHAREST P., et al. Improved electrolytes for Li-ion batteries: Mixtures of ionic liquid and organic electrolyte with enhanced safety and electrochemical performance[J]. Journal of Power Sources. 2010, 195(3): 845-852.

[133] BENMAYZA A., LU W., RAMANI V., et al. Electrochemical and thermal studies of LiNi0.8Co0.15Al0.05O2 under fluorinated electrolytes[J]. Electrochimica Acta. 2014, 123: 7-13.

[134] MÖLLER K.C., HODAL T., APPEL W.K., et al. Fluorinated organic solvents in electrolytes for lithium ion cells[J]. Journal of Power Sources. 2001, 97: 595-597.
[135] O'HAGAN D. Understanding organofluorine chemistry: An introduction to the C-F bond[J]. Chemical Society Reviews, 2008, 37(2): 308-319.

[136] KALHOFF J, BRESSER D, BOLLOLI M, et al. Enabling LiTFSI-based electrolytes for safer lithium-ion batteries by using linear fluorinated carbonates as (Co)solvent[J]. Chem Sus Chem. 2014, 7(10): 2939-2946.

[137] BOLLOLI M, ALLOIN F, KALHOFF J, et al. Effect of carbonates fluorination on the properties of LiTFSI-based electrolytes for Li-ion batteries[J]. Electrochimica Acta. 2015, 161: 159-170.

[138] BEHL W K. Anodic oxidation of lithium bromide in tetrahydrofuran solutions[J]. Journal of the Electrochemical Society, 1989, 136(8): 2305-2310.

[139] MOSHURCHAK L M, LAMANNA W M, BULINSKI M, et al. High-potential redox shuttle for use in lithium-ion batteries[J]. Journal of the Electrochemical Society, 2009, 156(4): A309-A312.

[140] XIAO L, AL X, CAO Y, et al. Electrochemical behavior of biphenyl as polymerizable additive for overcharge protection of lithium-ion batteries[J]. Electrochimica Acta. 2004, 49(24): 4189-4196.

[141] SHIMA K, SHIZUKA K, UE M, et al. Reaction mechanisms of aromatic compounds as an overcharge protection agent for 4 V class lithium-ion cells[J]. Journal of Power Sources. 2006, 161(2): 1264-1274.

[142] KIM J H, LEE K H, KO D C, et al. Design of integrated safety vent in prismatic lithium-ion battery[J]. Journal of Mechanical & Technology, 2017, 31(5): 2505-2511.

[143] NAGUIB M, ALLU S, SIMUNOVIC S, et al. Limiting internal short-circuit damage by electrode partition for impact-tolerant Li-ion batteries[J]. Joule, 2018, 2(1): 155-167.

[144] JEON Y C, LEE G G, KIM T Y, et al. Development of battery pack design for high power Li-ion battery pack of HEV[J]. World Electric Vehicle Journal, 2007, 1(1): 94-99.

[145] FREY P, GRACE D. Battery pack exhaust nozzle utilizing an SMA seal retainer: USA: Tesla Motors, Inc., US8663824[P]. 2014.

[146] CHEN M, YUEN R, WANG J. An experimental study about the effect of arrangement on the fire behaviors of lithium-ion batteries[J]. Journal of Thermal Analysis & Calorimetry, 2017: 1-8.

[147] SINZ W, BREITFUB C, TOMASCH E, et al. Integration of a crashworthy battery in a fully electric city bus[J]. International Journal of Crashworthiness, 2012, 17(1): 105-118.

[148] KIM G H, SMITH K, IRELAND J, et al. Fail-safe design for large capacity lithium-ion battery systems[J]. Journal of Power Sources, 2012, 210(4): 243-253.

[149] KHATEEB S A, AMIRUDDIN S, FARID M, et al. Thermal management of Li-ion battery with phase change material for electric scooters: Experimental validation[J]. Journal of Power Sources. 2005, 142(1): 345-353.

[150] AL-HALLAJ S, SELMAN J R. Thermal modeling of secondary lithium batteries for electric vehicle/hybrid electric vehicle applications[J]. Journal of Power Sources, 2002, 110(2): 341-348.

[151] ZHAO R, ZHANG S, GU J, et al. An experimental study of lithium-ion battery thermal management using flexible hydrogel films[J]. Journal of Power Sources, 2014, 255(6): 29-36.

[152] XU J, LAN C, QIAO Y, et al. Prevent thermal runaway of lithium-ion batteries with minichannel cooling[J]. Applied Thermal Engineering, 2017, 110: 883-890.

[153] LIU Z, SOHEL A. Application of MMAE to the fault detection of lithium-ion battery[J]. Applied Mechanics and Materials, 2014, 598: 5.

[154] WENCER M, WALLER R, LORENTZ V R H, et al. Investigation of gas sensing in large lithium-ion battery systems for early fault detection and safety improvement[C]// IECON 2014- 40th Annual Conference of the IEEE Industrial Electronics Society. Dallas, TX: IEEE, 2015: 5654-5659.

[155] DEY S, MOHON S, PISU P, et al. Sensor fault detection, isolation, and estimation in lithium-ion batteries[J]. IEEE Transactions on Control Systems Technology, 2016, 24(6): 2141-2149.

[156] MOHON S, DEY S, PISU P, et al. A quantized stochastic modeling approach for fault diagnosis of lithium-ion batteries[J]. IFAC-Papers on Line, 2015, 48(21): 970-975.

[157] RAHMAN M A, ANWAR S, IZADIAN A. Electrochemical model based fault diagnosis of a lithium-ion battery using multiple model adaptive estimation approach[C]// 2015 IEEE International Conference on Industrial Technology (ICIT). Seville, Spain: IEEE, 2015, 210-217.

[158] KIM T, MAKWANA D, ADHIKAREE A, et al.
Cloud-based battery condition monitoring and fault diagnosis platform for large-scale lithium-ion battery energy storage systems [J]. Energies, 2018, 11(1): 125.

[159] EV 新能源汽车，工信部启动新能源车辆安全大排查，车企准备好了吗？中国汽车报[EB/OL]. [2019-01-19]. https://baijiahao.baidu.com/s?id=1614291503848966696&wfr=spider&for=pc.

E V new energy vehicles, the Ministry of Industry and Information Technology launched a new energy vehicle safety investigation, Is the vehicle enterprise ready? China Automotive News [EB/OL]. [2019-01-19]. https://