The phenotypic performance and correlations analyses of six promising lines red rice grown on the paddy field

Herna1, G R Sadimantara1, L O Afa1, E Febrianti1, S Leomo2 and Muhidin1

1Department of Agrotechnology, Faculty of Agriculture, Universitas Halu Oleo, Kendari, Southeast Sulawesi 93212 Indonesia
2Department of Soil Sciences, Faculty of Agriculture, Universitas Halu Oleo, Kendari, Southeast Sulawesi 93212 Indonesia

E-mail: gusti5@yahoo.com

Abstract. Red rice is an essential food and has nutritional content, but farmers' production and interest in red rice cultivation are still relatively low. One effort to develop and increase brown rice production is planting superior varieties with selection efficiency. The purpose of this study was to determine the correlation between yield components and yields of the six promising lines of red rice in paddy fields and to know the yield components that were positively correlated very significantly to the results in paddy fields. The research design used was a randomized block design (RBD) consisting of 6 crosses, namely GS11-1, GS11-2, GS12-1, GS12-2, GS44-1, GS44-2, and one comparison variety, Trisakti. The results of the analysis show that there were two components of yield that were highly positively correlated with yields of red rice, which were positively correlated significantly, including the number of productive tillers with grain yield per clump (0.83 **) and the weight of 1000 grains with grain yield (0.57 **).

1. Introduction

Rice, beside as source of carbohydrate and still dominant as staple food. Rice also has a role as a functional food because its content of antocyanine and important for healthy life [1-3]. Government has effort to increase rice production, to fullfile the rice that always increase every year. The program to increase rice production included provide better seed [4-6], expanded farming system [7-11], develop high yielding new breeding variety through irradiance technique [12-14], hybridization [15-18], and hybrid variety [19-20]. Another program to increase rice production by fertilizing using organic fertilizer application of biological fertilizers of non symbiotic fixing-nitrogen as Azotobacter sp and Azospirillum sp [21-26]. On other side also chasing by decreasing rice level consumption and development of alternative food [27]. Various efforts to increase rice production are mainly carried out by assembling new varieties. The assembly is carried out to obtain superior varieties. The development of improved varieties can improve rice productivity through plant breeding programs. The promising lines of rice cultivar have been assembled through crossbreeding between local upland rice and paddy cultivar [18,28]. Furthermore, these red rice crossbreed lines need to be tested in the rice production center's adaptation area to assess the potential yield and the ability to adapt in upland and paddy fields. The knowledge about the relationship between yield and its related traits is needed for an efficient selection strategy for the plant breeders to evolve an economic variety.
2. Materials and methods
The research was carried out in community-owned rice fields in Renomeeto Village, West Ranomeeto District, South Konawe Regency. The rice cultivar used in this experiment resulted from a cross between upland rice and lowland rice. The research design used was a randomized block design (RBD) consisting of 6 crosses, namely GS11-1, GS11-2, GS12-1, GS12-2, GS44-1, GS44-2, and one comparison variety, Trisakti. Each treatment was repeated three times. The parameters observed including tiller number, flag leaf angle, flag leaf area, panicle length, days to 50% flowering, days to maturity, total grain per panicle, filled grain percentage, thousand-grain weight and yield per hill.

3. Results and discussion

3.1. Field performance
The result findings of a phenotypic study of six promising rice lines presented in table 1. The six rice promising lines were higher than the check variety based on the phenotypic results, almost all of the phenotypic performance. The GS44-1 lines reported 1000 grains and days to 50 percent flowering as the highest weight, followed by the GS44-2 line and GS11-1 lines.

Table 1. The phenotypic performance of 6 promising lines and check variety.

Traits	GS11-1	GS11-2	GS12-1	GS12-2	GS44-1	GS44-2	Check Variety
FLW	43.59a	44.20a	42.90a	40.34ab	38.59ab	40.98ab	28.80b
FLA	12.42ab	12.11ab	12.64a	12.09ab	11.93ab	11.57ab	10.24b
PL	23.83a	23.53a	25.27a	24.17a	24.83a	25.10a	20.37b
DTF	69.00ab	69.67a	67.67b	70.67a	70.67a	70.00a	54.00c
DTM	100.00b	100.00b	104.00a	104.00a	104.00a	104.00a	84.00c
GT/P	128.18b	126.53b	166.69a	144.75ab	141.17ab	146.64ab	75.08c
FG/P	76.02bc	73.54bc	79.06ab	79.32ab	76.34bc	68.49c	86.93a
TGW	28.55ab	26.92b	26.05b	26.79b	30.74a	28.58ab	26.50b

Remark: FLW- Flag leaf area, FLA- Flag leaf angle, PL- Panicle length, DTF- Days to 50% flowering, DTM- Days to maturity, GT/P- Grain total per panicle, FG/P- Filled grain percentage, TGW- Thousand-grain weight. Number in the same colour follow by the same superscript (a,b,c) was no significant difference in DMRT 0.05.

3.2. Correlation coefficient analysis
The results of the analysis show that there is a correlation between various components of growth and plant production on the main crop yield in the form of grain yield per hill (table 2).

Table 2. Coefficient correlation for yield-related traits of eight promising lines of red rice evaluated

Traits	TN	FLA	FLW	PL	DTF	DTM	GT/P	FG/P	TGW	GY
TN	1									
FLA	0.16	1								
FLW	-0.14	-0.07	1							
PL	-0.07	0.51*	0.43	1						
DTF	0.02	0.64**	-0.03	0.82**	1					
DTM	-0.05	0.63**	0.17	0.91**	0.95**	1				
GT/P	-0.16	0.52*	0.44*	0.91**	0.76**	0.90**	1			
FG/P	-0.13	-0.47*	-0.12	-0.59**	-0.69**	-0.64**	-0.52*	1		
TGW	0.41	-0.02	-0.18	0.31	0.35	0.28*	0.08	-0.22	1	
GY	0.83**	0.36	0.04	0.39	0.4	0.41	0.35	-0.25	0.57**	1
Remark: **TN**- Tillering number, **FLA**- Flag leaf angle, **FLW**- Flag leaf area, **PL**- Panicle length, **DTF**- Days to 50% flowering, **DTM**- Days to maturity, **GT/P**- Grain total per panicle, **FG/P**- Filled grain percentage, **TGW**- Thousand-grain weight, **GY**- Grain yield per hill (Number on the same column follow by * has a significant correlation and follow by ** has a very significant correlation).

The results of the analysis based on Pearson’s correlation show that there are several components of the results that have a positive correlation with grain yields, including tiller number (0.83), flag leaf angle (0.36), panicle length (0.39), days to 50% flowering (0.4), days to maturity (0.41), grain total per panicle (0.35) and thousand-grain weight (0.57). However, based on table 2, it also appears that the yield components that have a significant positive correlation are only the parameters of the number of productive tillers and the weight of 1000 grains. The productive tiller number and thousand-grain weight are considered as an important component for realizing high yield because it exhibited a significant and positive association with grain total per hill. The difference of 1000 grains weight of each treatment is genetically derived from each of the different rice lines traits and is genetic properties.

4. Conclusion
It’s concluded that the number productive tiller and weight of 1000 grains have positively correlated with grain yield per clump. The rice promising lines (GS44-1 and GS44-2) have better performances in component of yield.

Reference
[1] Bhat F M and Riar C S 2015 Health benefits of traditional rice varieties of temperate regions *Med. Aromat. Plants* 4
[2] Shao Y, Xu F, Sun X, Bao J and Beta T 2014 Identification and quantification of phenolic acids and anthocyanins as antioxidants in bran, embryo and endosperm of white, red and black rice kernels (*Oryza sativa* L.) *J. Cereal Sci.* 59 211–8
[3] Gunaratne A, Wu K, Li D, Bentota A, Corke H and Cai Y-Z 2013 Antioxidant activity and nutritional quality of traditional red-grained rice varieties containing proanthocyanidins *Food Chem.* 138 1153–61
[4] Sutariati G A K, Muhidin, Rakian T C, Afa L O, Made Widanta I, Mudi L, Sadimantara G R and Leomo S 2018 The effect of integrated application of pre-plant seed bio-invigoration, organic and inorganic fertilizer on the growth and yield of local upland rice *Biosci. Res.* 15 160–5
[5] Sutariati G A K, Arif N, Muhidin, Rakian T C, Mudi L and Nuralam 2017 Persistency and seed breaking dormancy on local upland rice of Southeast Sulawesi, Indonesia *Pakistan J. Biol. Sci.* 20 563–70
[6] Sutariati G A K, Bande L O S, Khaeruni A, Muhidin, Mudi L and Savitri R M 2018 The effectiveness of preplant seed bio-invigoration techniques using Bacillus sp. CKD061 to improving seed viability and vigor of several local upland rice cultivars of Southeast Sulawesi *IOP Conf. Ser. Earth Environ. Sci.* 122
[7] Kadidaa B, Sadimantara G R, Suaib, Saftuan L O and Muhidin 2017 Genetic diversity of local upland rice (*Oryza sativa* L.) genotypes based on agronomic traits and yield potential in North Buton, Indonesia *Asian J. Crop Sci.*
[8] Sadimantara G R, Febrianti E, Suliartini N W S, Sutariati G A K and Yusuf D N 2020 Grain yield and yield attributes response of four upland rice (*Oryza sativa* L.) promising lines to shade stress *IOP Conference Series: Earth and Environmental Science* 454 12188
[9] Nuraida W O, Pitra Pradipta R, Sri Suliartini N W, Wijayanto T, Muhidin and
Sadimantara G R 2020 Production and quality of upland red rice under the shade stress *Int. J. Sci. Technol. Res.* 9 5016–9

[10] Muhidin, Syam’un E, Kaimuddin, Musa Y, Sadimantara G R, Usman, Leomo S and Rakian T C 2018 Shading effect on generative characters of upland red rice of Southeast Sulawesi, Indonesia *IOP Conference Series: Earth and Environmental Science* vol 157 p 012017

[11] Muhidin, Syam’un E, Kaimuddin, Musa Y, Sadimantara G R, Usman, Leomo S and Rakian T C 2018 The effect of shade on chlorophyll and anthocyanin content of upland red rice *IOP Conf. Ser. Earth Environ. Sci.* 122 012030

[12] Suliartini N W S, Wijayanto T, Madiki A, Boer D, Muhidin and Juniawan 2018 Relationship of some upland rice genotype after gamma irradiation *IOP Conf. Ser. Earth Environ. Sci.* 122

[13] Suliartini N W S, Wijayanto T, Madiki A, Boer D, Muhidin and Tufaila M 2018 Yield potential improvement of upland red rice using gamma irradiation on local upland rice from southeast sulawesi Indonesia *Biosci. Res.* 15 1673–8

[14] Suliartini N W S, Kuswanto K, Basuki N and Soegianto A 2016 Superior lines candidates evaluation of two local red rice Southeast Sulawesi cultivars (Indonesia) derived from gamma rays irradiation techniques *Int. J. Plant Biol.* 7

[15] Sadimantara G R, Muhidin, Sri Suliartini N W, Nuraida W, Sadimantara M S, Leomo S and Ginting S 2018 Agronomic and yield characteristics of new superior lines of amphibious rice derived from paddy rice and local upland rice crossbreeding in konawe of Indonesia *Biosci. Res.* 15 893–9

[16] Sadimantara G R, Alawyah T, Suliartini N W S, Febrianti E and Muhidin 2019 Growth performance of two superior line of local upland rice (*Oryza sativa* L.) from SE Sulawesi on the low light intensity *IOP Conference Series: Earth and Environmental Science* vol 260 (IOP Publishing) p 12145

[17] Sadimantara G R, Kadidaa B, Suaib, Safuan L O and Muhidin 2018 Growth performance and yield stability of selected local upland rice genotypes in Buton Utara of Southeast Sulawesi *IOP Conference Series: Earth and Environmental Science* vol 122

[18] Sadimantara G R, Muhidin, Ginting S and Suliartini N W S 2016 The potential yield of some superior breeding lines of upland rice of Southeast Sulawesi Indonesia *Biosci. Biotechnol. Res. Asia* 13 1867–70

[19] Afa L O, Purwoko B S, Junaedi A, Harijdaja O and Dewi I S 2018 Simulation of hybrid rice tolerance to drought stress on nutrients culture in seedling phase *Biosci. Res.* 15 530–9

[20] Afa L O, Purwoko B S, Junaedi A, Harijdaja O and Dewi I S 2018 Screening of hybrid rice tolerance through stimulated condition of drought stress in rainfed lowland *Biosci. Res.* 15 1630–7

[21] Muhidin, Syam’un E, Kaimuddin, Musa Y, Sadimantara G R, Rakian T C, Leomo S and Yusuf D N 2020 Effect of root endophytic diazotrophic azotobacter and azospirrilum on the vegetative growth of local upland red rice *Int. J. Sci. Technol. Res.* 9 3345–8

[22] Muhidin, Syam’un E, Musa Y, Sadimantara G R, Leomo S, Sutariati G A K, Yusuf D N and Rakian T C 2020 Effect dual inoculation of Azotobacter and Azospirrilum on the productive trait upland red rice cultivar *IOP Conference Series: Earth and Environmental Science* vol 575 (IOP Publishing) p 12093
[23] Nurmas A, Anwar, Karimuna L, Sabaruddin L, Khaeruni A and Muhidin 2018 The role of Azotobacter sp. In reducing inorganic fertilizer of nitrogen on growth of local maize (Zea mays l.) In ultisol Biosci. Res. 15 428–36

[24] Nurmas A, Karimuna L, Sabaruddin L, Khaeruni A, Muhidin, Rahayu M, Hasid R and Adawiyah R 2018 The effectiveness of azotobacter sp. In increasing grown of local maize and sorghum in the intercropping system in ultisols Biosci. Res. 15 1645–4652

[25] Fukami J, Cerezini P and Hungria M 2018 Azospirillum: Benefits that go far beyond biological nitrogen fixation AMB Express 8 73

[26] Wani S A, Chand S, Wani M A, Ramzan M and Hakeem K R 2016 Azotobacter chroococcum—a potential biofertilizer in agriculture: an overview Soil Science: Agricultural and Environmental Prospectives (Springer) pp 333–48

[27] Muhidin, Leomo S, Alam S and Wijayanto T 2016 Comparative studies on different agroecosystem base on soil physicochemical properties to development of Sago Palm on Dryland Int. J. ChemTech Res.

[28] Sadimantara G R and Cahyono E 2014 Genetic Analysis on Some Agro-morphological Characters of Hybrid Progenies from Cultivated Paddy Rice and Local Upland Rice Adv. Stud. Biol. 6 7–18

[29] Yoshida S 1981 Fundaments of Rice Crop Science (Los Baños, Laguna, Philippines: International Rice Research Institute)