TWISTED VECTOR BUNDLES ON POINTED NODAL CURVES

IVAN KAUSZ

Abstract. Motivated by the quest for a good compactification of the moduli space of G-bundles on a nodal curve we establish a striking relationship between Abramovich’s and Vistoli’s twisted bundles and Gieseker vector bundles.

Contents

1. Introduction 1
2. Twisted G-bundles 2
3. Review of Gieseker vector bundles 4
4. Twisted GL_r-bundles on a fixed curve 6
5. Construction 6
6. Independence of the isomorphisms (1) and (2) 11
7. Independence of the isomorphisms (3) and (4) 14
8. Surjectivity 15
9. Further directions 18
References 18

1. Introduction

This paper grew out of an attempt to understand a recent draft of Seshadri ([Se2]) and is meant as a contribution in the quest for a good compactification of the moduli space (or stack) of G-bundles on a nodal curve.

We are led by the idea that such a compactification should behave well in families and also under partial normalization of nodal curves. This statement may be reformulated by saying that we are looking for an object which has the right to be called the moduli stack of stable maps into the classifying stack BG of a reductive group G.

For finite groups G the stack of stable maps into BG has been recently constructed by means of so called twisted bundles by D. Abramovich and A. Vistoli ([AV, ACV]). On the other hand, as shown in [K3], the notion of Gieseker vector bundles leads to the construction of the stack of stable maps into BGL_r.

In this note we establish a connection between the straightforward generalization of the notion of twisted bundles to the case of the non-finite reductive group GL_r and Gieseker vector bundles. My hope is that this relationship - whose observation is entirely due to

Date: January 12, 2005.
Partially supported by the DFG.
Seshadri, and which in my mind is really striking - may help to find the right notion for more general reductive groups G.

I would like to thank Seshadri for generously imparting his ideas. This paper owes very much to long discussions which I had with Nagaraj in November and December 2002. I would like to thank the Institute of Mathematical Sciences in Chennai, whose hospitality made these discussions possible.

2. Twisted G-bundles

Throughout this section k denotes an algebraically closed field and G a reductive group over k.

A twisted G-bundle is a twisted object in the sense of [AV], §3 where the target stack \mathcal{M} is taken to be the classifying stack BG. For convenience we recall the necessary definitions from loc. cit.

Definition 2.1. 1. An n-marked curve consists of data $(U \to S, \Sigma_i)$ where $\pi : U \to S$ is a nodal curve and $\Sigma_1, \ldots, \Sigma_n \subset U$ are pairwise disjoint closed subschemes whose supports do not intersect the singular locus U_{sing} of π and are such that the projections $\Sigma_i \to S$ are étale.

2. A morphism between two n-marked curves $(U \to S, \Sigma_i^U)$ and $(V \to S, \Sigma_i^V)$ is an S-morphism $f : U \to V$ such that $f(\Sigma_i^U) \subseteq \Sigma_i^V$ for each i. Such a morphism is called strict, if for each i the support of $f^{-1}(\Sigma_i^V)$ coincides with the support of Σ_i^U and if furthermore the support of $f^{-1}(V_{\text{sing}})$ coincides with the one of U_{sing}.

3. The pull back of an n-marked curve $(U \to S, \Sigma_i)$ by a morphism $S' \to S$ is the n-marked curve $(U \times_S S', \Sigma_i \times_S S')$.

4. An n-pointed nodal curve is an n-marked curve where the projections $\Sigma_i \to S$ are isomorphisms.

5. Let $(U \to S, \Sigma_i)$ be an n-marked curve. The complement (inside U) of the union of the singular locus U_{sing} and the markings Σ_i is called the generic locus of U and is denoted by U_{gen}.

Definition 2.2. 1. An action of a finite group Γ on an n-marked nodal curve $(U \to S, \Sigma_i)$ is an action of Γ on U as an S-scheme which leaves the Σ_i invariant. Such an action is called tame, if for each geometric point u of U the stabilizer $\Gamma_u \subseteq \Gamma$ of u has order prime to the characteristic of u.

2. Let S be a k-scheme. Let $(U \to S, \Sigma_i)$ be an n-marked nodal curve and let η be a principal G-bundle on U. A essential action of a finite group Γ on (η, U) is a pair of actions of Γ on η and on $(U \to S, \Sigma_i)$ such that

(i) the actions of Γ on η and on U are compatible, i. e. if $\pi : U \to \eta$ denotes the projection, then $\pi \circ \gamma = \gamma \circ \pi$ for each $\gamma \in \Gamma$.

(ii) if $\gamma \in \Gamma$ is an element different from the identity and u is a geometric point of U fixed by γ, then the automorphism of the fiber η_u induced by γ is not trivial.

3. An essential action of a finite group Γ on (η, U) is called tame, if the action of Γ on $(U \to S, \Sigma_i)$ is tame.

Definition 2.3. Let S be a k-scheme. Let $C \to S$ be an n-pointed nodal curve and let ξ be a principal G-bundle over C_{gen}. A chart (U, η, Γ) for ξ consists of the following data
(1) An n-marked curve $U \to S$ and a strict morphism $\phi : U \to C$.

(2) A principal G-bundle η on U.

(3) An isomorphism $\eta \times_U \mathcal{U}_\text{gen} \xrightarrow{\sim} \xi \times_C \mathcal{U}_\text{gen}$ of G-bundles on \mathcal{U}_gen.

(4) A finite group Γ.

(5) A tame, essential action of Γ on (η, U).

These data are required to satisfy the following conditions

(i) The action of Γ leaves the morphisms $U \to C$ and $\eta \times_U \mathcal{U}_\text{gen} \xrightarrow{\sim} \xi \times_C \mathcal{U}_\text{gen}$ invariant.

(ii) The induced morphism $U/\Gamma \to C$ is étale.

Proposition 2.4. (cf. [AV], Prop 3.2.3) Let $C \to S$ be an n-pointed nodal curve over a k-scheme S and let ξ be a principal G-bundle on C_{gen}. Let (U, η, Γ) be a chart for ξ. Then the following holds.

(1) The action of Γ on \mathcal{U}_gen is free.

Let s be a geometric point of S and let u be a closed point of the curve U_s. Let $\Gamma_u \subseteq \Gamma$ be the stabilizer of u. Then Γ_u is a cyclic group. Let e be its order and let γ_u be a generator of Γ_u. Then

(2) if u is a regular point, the action of γ_u on the tangent space of U_s at u is via multiplication by a primitive e-th root of unity.

(3) if u is a singular point, Γ_u leaves each of the two branches of U_s at u invariant. The action of γ_u on the tangent space of each of the branches is via multiplication with a primitive e-th root of unity.

Definition 2.5. Let $C \to S$ be an n-pointed nodal curve over a k-scheme S and let ξ be a principal G-bundle on C_{gen}. A chart (U, η, Γ) for ξ is called balanced, if for each geometric fiber of $U \to S$ and each singular point u on it the action of γ_u on the tangent spaces of the two branches is via multiplication with primitive roots of unity which are inverse to each other.

Definition 2.6. Let $C \to S$ be an n-pointed nodal curve over a k-scheme S and let ξ be a principal G-bundle on C_{gen}. Two charts (U_1, η_1, Γ_1) and (U_2, η_2, Γ_2) of ξ are called compatible, if for each pair of u_1, u_2 of geometric points of U_1, U_2 lying above the same geometric point u of C the following holds:

Let C^{sh} denote the strict henselization of C at u. For $j = 1, 2$ let $\Gamma'_j \subseteq \Gamma_j$ denote the stabilizer subgroup of the point u_j, let U_j^{sh} denote the strict henselization of U_j at u_j, and let $\eta_j^{\text{sh}} := \eta_j \times_U U_j^{\text{sh}}$. Then there exists an isomorphism $\theta : \Gamma'_1 \to \Gamma'_2$, a θ-equivariant isomorphism $\phi : U_1^{\text{sh}} \xrightarrow{\sim} U_2^{\text{sh}}$ of C^{sh}-schemes, and a θ-equivariant isomorphism $\eta_1^{\text{sh}} \xrightarrow{\sim} \phi^* \eta_2^{\text{sh}}$ of G-bundles.

Definition 2.7. Let g and n be two non-negative integers. An n-pointed twisted G-bundle of genus g is a triple $(\xi, C \to S, \mathcal{A})$ where

(1) S is a k-scheme,

(2) $C \to S$ is proper n-pointed nodal curve of finite presentation with geometrically connected fibers of genus g,

(3) ξ is a principal G-bundle on C_{gen}.

(4) $\mathcal{A} = \{(U_\alpha, \eta_\alpha, \Gamma_\alpha)\}$ is a balanced atlas, i.e. a collection of mutually compatible balanced charts for ξ, such that the images of the U_α cover C.

Definition 2.8. Let $(\xi, C \to S, \mathcal{A})$ be an n-pointed twisted G-bundle of genus g. A morphism of k-schemes $S' \to S$ induces a triple $(\xi', C' \to S', \mathcal{A}')$ as follows:

- The n-pointed nodal curve $C' \to S'$ is the pull back of $C \to S$ by $S' \to S$.
- Thus we have a morphism $C'_{\text{gen}} \to C_{\text{gen}}$, and the G-bundle ξ' is the pull back of ξ by this morphism.
- Let $\{U_\alpha, \eta_\alpha, \Gamma_\alpha\}$ be the set of charts which make up the atlas \mathcal{A}. Then $\mathcal{A}' = \{U'_\alpha, \eta'_\alpha, \Gamma_\alpha\}$, where $U'_\alpha \to S'$ is the pull back of the n-marked curve $U_\alpha \to S$, and η'_α is the pull back of η_α by the morphism $U'_\alpha \to U_\alpha$. Since the $(U'_\alpha, \eta'_\alpha, \Gamma_\alpha)$ are charts for ξ' which are balanced and mutually compatible (cf. [AV], Prop. 3.4.3), \mathcal{A}' is a balanced atlas.

Thus the triple $(\xi', C' \to S', \mathcal{A}')$ is an n-pointed twisted G-bundle of genus g. It is called the pull back of $(\xi, C \to S, \mathcal{A})$ by the morphism $S' \to S$.

Definition 2.9. A morphism between two n-pointed twisted G-bundles $(\xi', C' \to S', \mathcal{A}')$ and $(\xi, C \to S, \mathcal{A})$ consists of a Cartesian diagram

$$
\begin{array}{ccc}
C' & \longrightarrow & C \\
\downarrow & & \downarrow \\
S' & \longrightarrow & S
\end{array}
$$

and an isomorphism $\xi' \sim \xi \times_{C_{\text{gen}}} C'_{\text{gen}}$ such that the pull-back of the charts in \mathcal{A} (considered as charts for ξ') are compatible with all the charts in \mathcal{A}'.

3. Review of Gieseker vector bundles

In this section I will recall some definitions from my earlier papers [K1] and [K2].

Let k be an algebraically closed field. Let $n \geq 1$ be an integer and let R_1, \ldots, R_n be n copies of the projective line \mathbb{P}^1. On each R_i we choose two distinct points x_i and y_i. Let R be the nodal curve over k constructed from R_1, \ldots, R_n by identifying y_i with x_{i+1} for $i = 1, \ldots, n - 1$. We call such a curve R a chain of projective lines of length n with components R_1, \ldots, R_n. On the extremal components R_1 and R_n we have the two points x_1 and y_n respectively, which are smooth points of R.

Definition 3.1. A vector bundle E of rank r on R is called admissible, if

1. for each $i \in [1, n]$ the restriction of E on the component R_i is of the form
 $$d_i \mathcal{O}_{R_i}(1) \oplus (r - d_i) \mathcal{O}_{R_i}$$
 for some integer $d_i \geq 1$ and
2. there exists no nonvanishing global section of E over R which vanishes in the two points x_1 and y_n.

Let C be an irreducible curve with exactly one double point p. Let $\tilde{C} \to C$ be the normalization of C and let $p_1, p_2 \in \tilde{C}$ be the two points lying above p. Let $C_0 := C$. For
n ≥ 1 we let C_n denote reducible nodal curve which is constructed from \tilde{C} and a chain $R = R_1 \cup \cdots \cup R_n$ of projective lines by identifying the points p_1, x_1 and p_2, y_n respectively.

Definition 3.2. A *Gieseker vector bundle* on C is a pair $(C' \to C, \mathcal{F})$ where $C' = C_n$ for some $n ≥ 0$, the morphism $C' \to C$ is the one which contracts the chain of projective lines to the point p and \mathcal{F} is a vector bundle on C' whose restriction to the chain of projective lines is admissible in the sense of [31].

Definition 3.3. A *Gieseker vector bundle datum* on the two-pointed curve (\tilde{C}, p_1, p_2) is a triple $(C' \to C, F, p')$, where $(C' \to C, \mathcal{F})$ is a Gieseker vector bundle on C and p' is a singular point in C'.

Let V and W be two r-dimensional k-vector spaces. In [K1] I have constructed a certain compactification $KGL(V, W)$ of the space $\text{Isom}(V, W)$ of linear isomorphisms from V to W which has properties similar to De Concini and Procesi's so-called wonderful compactification of adjoint linear groups. We need the following fact about $KGL(V, W)$ whose proof can be found in [K1], §9:

The variety $KGL(V, W)$ is the disjoint union of strata $\mathcal{O}_{I, J} \subset KGL(V, W)$ indexed by pairs of subsets $I, J \in [0, r - 1]$ such that $\min(I) + \min(J) ≥ r$. Let I, J be such a pair. Let us write $I = \{i_1, \ldots, i_{n_1}\}$ and $J = \{j_1, \ldots, j_{n_2}\}$ where $i_1 < \cdots < i_{n_1} < i_{n_1 + 1} := r$ and $j_1 < \cdots < j_{n_2} < j_{n_2 + 1} := r$. A $(k$-valued) point in $\mathcal{O}_{I, J}$ is given by the data

$$\Phi = (F_\bullet(V), F_\bullet(W), \overline{\varphi}_1, \ldots, \overline{\varphi}_{n_1}, \overline{\psi}_1, \ldots, \overline{\psi}_{n_2}, \Phi')$$

where

1. $F_\bullet(V)$ denotes a flag
$$0 = F_0(V) \subsetneq F_1(V) \subsetneq \cdots \subsetneq F_{n_2}(V) \subsetneq F_{n_2+1}(V) \subsetneq \cdots \subsetneq F_{n_1+n_2+1}(V) = V$$
with $\dim F_\nu(V) = r - j_{n_2+1-\nu}$ for $\nu \in [0, n_2]$ and $\dim F_\nu(V) = i_{\nu - n_2}$ for $\nu \in [n_2 + 1, n_1 + n_2 + 1]$,

2. $F_\bullet(W)$ denotes a flag
$$0 = F_0(W) \subsetneq F_1(W) \subsetneq \cdots \subsetneq F_{n_1}(W) \subsetneq F_{n_1+1}(W) \subsetneq \cdots \subsetneq F_{n_1+n_2+1}(W) = W$$
where $\dim F_\nu(W) = r - i_{n_1+1-\nu}$ for $\nu \in [0, n_1]$ and $\dim F_\nu(W) = i_{\nu - l}$ for $\nu \in [n_1 + 1, n_1 + n_2 + 1]$,

3. the symbol $\overline{\varphi}_\nu$ denotes the homothety class of an isomorphism from the subquotient $F_{n_1-\nu+1}(W)/F_{n_1-\nu}(W)$ of W to the subquotient $F_{n_2+\nu+1}(V)/F_{n_2+\nu}(V)$ of V,

4. the symbol $\overline{\psi}_\nu$ denotes the homothety class of an isomorphism from the subquotient $F_{n_2-\nu+1}(V)/F_{n_2-\nu}(V)$ of V to the subquotient $F_{n_1+\nu+1}(W)/F_{n_1+\nu}(W)$ of W,

5. the symbol Φ' denotes an isomorphism from the subquotient $F_{n_2+1}(V)/F_{n_2}(V)$ of V to the subquotient $F_{n_1+1}(W)/F_{n_1}(W)$ of W.

The relationship between Gieseker vector bundles and the compactification $KGL(V, W)$ is given by the following

Theorem 3.4. (Cf. [K2], Theorem 9.5) There exists a natural bijection from the set of all Gieseker vector bundle data on (\tilde{C}, p_1, p_2) to the set of all pairs (\mathcal{E}, Φ), where \mathcal{E} is a vector bundle on \tilde{C} and Φ is a k-valued point in $KGL(\mathcal{E}[p_1], \mathcal{E}[p_2])$.
More precisely, let \((C' \to C, \mathcal{F}, p')\) be a Gieseker vector bundle datum on \((\tilde{C}, p_1, p_2)\). Let \(R = R_1 \cup \cdots \cup R_n\) be the chain of projective lines in \(C'\). Let \(y_0 := p_1\) and \(x_{n+1} := p_2\). Let \(n_1 + n_2 = n\) be such that the singular point \(p' \in C'\) comes from identifying the points \(y_{n_1}\) and \(x_{n_1+1}\). Let \(d_i\) be the degree of \(\mathcal{F}\) restricted to \(R_i\). Let \((\mathcal{E}, \Phi)\) be the pair associated to the given Gieseker vector bundle datum \((C' \to C, \mathcal{F}, p')\). Then \(\Phi\) is in fact a point in the stratum \(O_{I,J}\), where \(I = \{i_1, \ldots, i_{n_1}\}\), \(J = \{j_1, \ldots, j_{n_2}\}\) and the \(i_\nu, j_\nu\) are defined by

\[
i_\nu = r - \sum_{i=\nu}^{n_1} d_i, \quad j_\nu = r - \sum_{i=n_1+1}^{n-\nu+1} d_i.
\]

The special case \(n = 0\) is included here in the sense that then \(I = J = \emptyset\) and \(\Phi \in O_{\emptyset,\emptyset} = \text{Isom}(\mathcal{E}[p_1], \mathcal{E}[p_2])\).

4. Twisted GL\(_r\)-bundles on a fixed curve

Throughout this section \(k\) denotes an algebraically closed field and \(r\) a positive integer.

Let \((C, p_i)\) be an \(n\)-pointed nodal curve over \(k\). Let \(\text{TVB}_r(C, p_i)\) be the set of isomorphism classes of \(n\)-pointed twisted GL\(_r\)-bundles of the form

\[(\xi, C \to \text{Spec}(k), \mathcal{A})\]

The case of a one-pointed smooth curve. Assume that \(C\) is smooth and that \(n = 1\), i.e. \((C, p_i) = (C, p)\) is a one-pointed smooth curve. Let \(\text{PB}_r(C, p)\) be the set of isomorphism classes of vector bundles \(E\) of rank \(r\) on \(C\) together with a flag in the fiber at \(p\).

Theorem 4.1. There is a natural surjection

\[\text{TVB}_r(C, p) \to \text{PB}_r(C, p)\]

We skip the proof of Theorem 4.1, since on the one hand the result is well known (cf. [MS], [B]) and on the other hand there is a proof analogous to (and easier than) the proof of Theorem 4.2 which we give in detail below.

The case of a nodal curve with one singularity. Assume now that \(n = 0\) and \(C\) has exactly one double point. Let \(\text{GVB}_r(C)\) be the set of isomorphism classes of Gieseker vector bundles of rank \(r\) on \(C\).

Theorem 4.2. There is a natural surjection

\[\text{TVB}_r(C) \to \text{GVB}_r(C)\]

The rest of the paper is concerned with the proof of Theorem 4.2.

5. Construction

Let \(C\) be a nodal curve over \(\text{Spec}(k)\) with one singular point \(p\). Let \((\xi, C \to \text{Spec}(k), \mathcal{A})\) be an object of \(\text{TVB}_r(C)\). Let \((U, \eta, \Gamma')\) be a chart belonging to \(\mathcal{A}\) such that there is a point \(q \in U\) which is mapped to \(p\).
We denote by \(\hat{\mathcal{O}}_p \) and \(\hat{\mathcal{O}}_q \) the completion of the local rings \(\mathcal{O}_{C,p} \) and \(\mathcal{O}_{U,q} \) respectively. Let \(\Gamma_q \subseteq \Gamma \) be the subgroup consisting of those elements, which leave \(q \) invariant. \(\Gamma_q \) acts on \(\hat{\mathcal{O}}_q \), and \(\hat{\mathcal{O}}_p \) may be identified with the set of invariants under that action. By proposition 2.4 the group \(\Gamma_q \) is cyclic of some order \(e \) (which is prime to \(\text{char}(k) \) by the tameness assumption).

Let \(\gamma \) be a generator of \(\Gamma_q \).

We choose an isomorphism
\[
\hat{\mathcal{O}}_p \cong k[[s,t]]/(s \cdot t) \tag{1}
\]
It follows from 2.4.(3) that there exists an isomorphism
\[
\hat{\mathcal{O}}_q \cong k[[u,v]]/(u \cdot v) \tag{2}
\]
and a primitive \(e \)-th root of unity \(\zeta \) such that the diagrams
\[
\begin{array}{ccc}
\hat{\mathcal{O}}_q & \xrightarrow{\cong} & k[[u,v]]/(u \cdot v) \\
\downarrow \gamma & & \downarrow u \quad v \\
\hat{\mathcal{O}}_q & \xrightarrow{\cong} & k[[u,v]]/(u \cdot v) \\
\end{array}
\]
and
\[
\begin{array}{ccc}
\hat{\mathcal{O}}_q & \xrightarrow{\cong} & k[[u,v]]/(u \cdot v) \\
\downarrow & & \downarrow \zeta u \quad \zeta^{-1} v \\
\hat{\mathcal{O}}_p & \xrightarrow{\cong} & k[[s,t]]/(s \cdot t) \\
\end{array}
\]
are commutative.

Let \(\hat{K}_p \) be the total quotient ring of \(\hat{\mathcal{O}}_p \). Then we have \(\text{Spec}(\hat{K}_p) = \text{Spec}(\hat{\mathcal{O}}_p) \times_C C_{\text{gen}} \) and the isomorphism (11) induces an isomorphism \(\hat{K}_p \cong k((s)) \times k((t)) \). We choose an isomorphism
\[
\xi \times_{C_{\text{gen}}} \text{Spec}(\hat{K}_p) \cong \text{GL}_r \times \text{Spec}(\hat{K}_p) \tag{3}
\]

The group \(\Gamma_q \) acts on \(\eta \times_U \text{Spec}(\hat{\mathcal{O}}_q) \) (since it acts compatibly on \(\eta, U, \text{Spec}(\hat{\mathcal{O}}_q) \)). To analyse this action we need the following

Lemma 5.1. Let \(k \) be an algebraically closed field. Let \((R, \mathfrak{m}) \) be a local \(k \)-algebra with residue field \(R/\mathfrak{m} = k \). Let \(\Gamma \) be a cyclic group of order \(e \) prime to the characteristic of \(k \) and let \(\gamma \in \Gamma \) be a generator. Assume that \(\Gamma \) acts on \(R \) such that the induced action on \(k \) is trivial. Let \(M \) be a trivial \(R \)-module of rank \(r \) on which \(\Gamma \) acts such that \(\gamma(ax) = \gamma(a)\gamma(x) \) for all \(a \in R, x \in M \). Then there is a basis \(x_1, \ldots, x_r \) of \(M \) such that \(\gamma(x_i) = \zeta_i x_i \) for some \(e \)-th roots of unity \(\zeta_i \).

Proof. Let \(e_1, \ldots, e_r \) be an arbitrary basis of \(M \). Let \(a = (a_{i,j}) \in \text{GL}_r(R) \) be defined by \(\gamma(e_j) = \sum_{i=1}^r a_{i,j} e_i \). Since \(\gamma \) is of order \(e \), it follows that
\[
\prod_{j=0}^{e-1} \gamma^j(a) = 1 \ .
\]
We have to show that there is a matrix $b \in \text{GL}_r(R)$ such that
\[a \cdot \gamma(b) = b \cdot z \]
for some diagonal matrix $z \in \text{GL}_r(k)$ with $z^e = 1$.

Representation theory of finite groups tells us that there is a matrix $c \in \text{GL}_r(k)$ and a diagonal matrix $z \in \text{GL}_r(k)$ with $z^e = 1$ such that $a \cdot c \equiv c \cdot z$ modulo m. Let $a' := c^{-1} \cdot a \cdot c$ and let b' be the matrix
\[b' := \sum_{i=0}^{e-1} \left(\prod_{j=0}^{i-1} \gamma^j(a') \right) z^{-i}. \]
Since $b \equiv e \cdot 1$ modulo m, it follows that $b' \in \text{GL}_r(R)$. Using the fact that $\prod_{i=0}^{e-1} \gamma^j(a') = 1$ a simple calculation shows that
\[\gamma(b') = (a')^{-1} \cdot b' \cdot z. \]
Therefore, if we set $b := c \cdot b'$, we get the desired equality. \hfill \square

Corollary 5.2. There exists an isomorphism
(4)
\[\eta \times_U \text{Spec} \left(\tilde{O}_q \right) \xrightarrow{\cong} \text{GL}_r \times \text{Spec} \left(\tilde{O}_q \right) \]
of principal GL_r-bundles on $\text{Spec} \left(\tilde{O}_q \right)$, and elements $\alpha_1, \ldots, \alpha_r \in \mathbb{Z}/e\mathbb{Z}$ such that the following diagram commutes:
\[\eta \times_U \text{Spec} \left(\tilde{O}_q \right) \xrightarrow{\cong} \text{GL}_r \times \text{Spec} \left(\tilde{O}_q \right) \]
\[\downarrow \gamma \hspace{1cm} \downarrow \text{diag}(\zeta^{\alpha_1}, \ldots, \zeta^{\alpha_r}) \times \gamma \]
where the morphism $\text{diag}(\zeta^{\alpha_1}, \ldots, \zeta^{\alpha_r}) : \text{GL}_r \to \text{GL}_r$ is multiplication from the left with the matrix whose only non-zero entries are the values $\zeta^{\alpha_1}, \ldots, \zeta^{\alpha_r}$ on the diagonal.

Proof. This is immediate from lemma 5.1. \hfill \square

Let \hat{K}_q be the total quotient ring of \tilde{O}_q. The Γ-equivariant isomorphism $\eta \times_U U_{\text{gen}} \xrightarrow{\cong} \xi \times C_{\text{gen}}$ U_{gen}, which is part of the data of the chart (U, η, Γ), induces a Γ_q-equivariant isomorphism
(5)
\[\eta \times_U \text{Spec} \left(\hat{K}_q \right) \xrightarrow{\cong} \xi \times C_{\text{gen}} \text{Spec} \left(\hat{K}_q \right) \]
of principal GL_r-bundles over $\text{Spec} \left(\hat{K}_q \right)$.

Via the isomorphisms (3) and (4) such an isomorphism is given by a matrix $F \in \text{GL}_r(\hat{K}_q)$ such that
\[\gamma(F) = F \cdot \text{diag}(\zeta^{\alpha_1}, \ldots, \zeta^{\alpha_r}) \]
The isomorphism (2) induces an isomorphism $\text{GL}_r(\hat{K}_q) \xrightarrow{\cong} \text{GL}_r(k((u))) \times \text{GL}_r(k((v)))$ and we denote by $(F^1(u), F^2(v))$ the image of F under this isomorphism. The above condition on F translates into the condition
(6)
\[F^1_{i,j}(\zeta u) = \zeta^{\alpha_{i,j}} F^1_{i,j}(u) \]
(7)
\[F^2_{i,j}(\zeta^{-1} v) = \zeta^{\alpha_{i,j}} F^2_{i,j}(v) \]
for the entries $F^1_{i,j}(u) \in k((u))$ and $F^2_{i,j}(v) \in k((v))$ of the matrices $F^1(u)$ and $F^2(v)$.
After possibly changing the isomorphism \(\Phi \) by a permutation matrix, we can choose integers \(a_1, \ldots, a_r \) with
\[
0 \leq a_1 \leq a_2 \leq \cdots < e \quad \text{and} \quad a_i \equiv \alpha_i \mod e\mathbb{Z}.
\]

Conditions (9), (11) imply that there are matrices \(H^1(s) \) and \(H^2(t) \) with entries \(H^1_{i,j}(s) \in \kappa((s)) \) and \(H^2_{i,j}(t) \in \kappa((t)) \) such that
\[
\begin{align*}
F^1_{i,j}(u) &= u^{a_j} H^1_{i,j}(u^e) \\
F^2_{i,j}(v) &= v^{-a_j} H^2_{i,j}(v^e)
\end{align*}
\]

We will now use the \(GL_r \)-bundle \(\xi \) over \(C_{\text{gen}} \), the isomorphisms (11) and (13), the numbers \(a_1, \ldots, a_r \) and the matrices \(H^1(s) \) and \(H^2(t) \), to construct a Gieseker vector bundle of rank \(r \) on the curve \(C \).

Let \(p_1 \) and \(p_2 \) denote the closed point of \(\text{Spec}(k[[s]]) \) and \(\text{Spec}(k[[t]]) \) respectively. Let \(\mathcal{V} \) be the trivial vector bundle \(\mathcal{O}^{[1,r]} \) on the disjoint union \(\text{Spec}(k[[s]]) \sqcup \text{Spec}(k[[t]]) \) (the normalization of \(\text{Spec}(k[[s,t]]/(s\cdot t)) \)), and let \(V \) and \(W \) be its fiber at \(p_1 \) and \(p_2 \) respectively. Of course, both \(V \) and \(W \) are naturally identified with \(k^{[1,r]} \).

The numbers \(a_1, \ldots, a_r \) define a partition
\[
[1,r] = D_1 \sqcup D_2 \sqcup \cdots \sqcup D_m
\]
characterized by the following properties:

1. \(D_1 \) is the (possibly empty) set of all indices \(i \) such that \(a_i = 0 \).
2. For \(\nu \geq 2 \) the set \(D_\nu \) is non-empty.
3. If \(1 \leq \nu < \nu' \leq m, i \in D_\nu \) and \(j \in D_{\nu'} \) then \(a_i < a_j \).
4. For all \(\nu \in [1,m] \) and \(i, j \in D_\nu \) we have \(a_i = a_j \).

We define filtrations
\[
\begin{align*}
0 &= F_0(V) \subset F_1(V) \subset F_2(V) \subset \cdots \subset F_{m-1}(V) \subset F_m(V) = V \\
0 &= F_0(W) \subset F_1(W) \subset F_2(W) \subset \cdots \subset F_{m-1}(W) \subset F_m(W) = W
\end{align*}
\]
by setting
\[
F_i(V) := k^{D_1 \sqcup \cdots \sqcup D_i} \quad \text{and} \quad F_i(W) := k^{D_{m-i+1} \sqcup \cdots \sqcup D_m}
\]
for \(i = 0, \ldots, m \). For \(i = 1, \ldots, m-1 \) let
\[
\varphi_i : F_{m-i}(W)/F_{m-i-1}(W) = k^{D_{i+1}} \sim k^{D_{i+1}} = F_{i+1}(V)/F_i(V)
\]
be the identity morphism on \(k^{D_{i+1}} \) and let \(\overline{\varphi}_i \) be the homothety class of \(\varphi_i \). Finally let
\[
\Phi' : F_1(V)/F_0(V) = k^{D_1} \sim k^{D_1} = F_m(W)/F_{m-1}(W)
\]
be the identity morphism on \(k^{D_1} \).

By [11] 9.3 the data
\[
((F_{\bullet}(V), F_{\bullet}(W)), \overline{\varphi}_1, \ldots, \overline{\varphi}_{m-1}, \Phi')
\]
define a \(k \)-valued point of \(KGL(V,W) \), i.e. a generalized isomorphism \(\Phi \) from \(V \) to \(W \).

Let \(\tilde{C} \to C \) be the normalization of the curve \(C \). By a slight abuse of notation we denote also by \(p_1, p_2 \) the two points of \(\tilde{C} \) which lie above the singular point \(p \) of \(C \). Let \(\mathcal{E}_\xi \) be the rank \(r \) vector bundle on \(C_{\text{gen}} = \tilde{C} \setminus \{p_1,p_2\} \) associated to the principal \(GL_r \)-bundle \(\xi \).
We use the isomorphism
\[
(k(\langle s \rangle) \times k(\langle t \rangle))^{[1,r]} \xrightarrow{(H^1,H^2)} (k(\langle s \rangle) \times k(\langle t \rangle))^{[1,r]}
\]
\[
\mathcal{V} \otimes_{k[[s]] \times_k [t]} (k(\langle s \rangle) \times k(\langle t \rangle)) \cong \mathcal{E}_\xi \otimes_{\mathcal{O}_C} \tilde{K}_p
\]
as a glueing datum to define a vector bundle \mathcal{E} on \tilde{C}, whose fibers at the points p_1 and p_2 are naturally identified with V and W respectively. By \[\text{3.4}\] the pair (\mathcal{E}, Φ) induces a Gieseker vector bundle datum $(C' \to C, \mathcal{F}, p')$ on (\tilde{C}, p_1, p_2) which in turn induces a Gieseker vector bundle $(C' \to C, \mathcal{F})$ on C.

For the convenience of the reader I will now describe the Gieseker vector bundle $(C' \to C, \mathcal{F})$ explicitly. Let $R_0 := \text{Spec}(k[[s]])$, $R_m := \text{Spec}(k[[t]])$. If $m = 1$, we set $R = \text{Spec}(k[[s, t]]/(s \cdot t))$, which is nothing else but the nodal curve which arises from $R_0 \sqcup R_m$ by identifying the points p_1 and p_2. If $m \geq 2$, let R_1, \ldots, R_{m-1} be $m - 1$ copies of the projective line \mathbb{P}^1 and let x_i, y_i be two distinct points in R_i. Let R be the nodal curve which arises from the union
\[
R_0 \sqcup R_1 \sqcup \cdots \sqcup R_{m-1} \sqcup R_m
\]
by identifying $p_1 \in R_0$ and $p_2 \in R_m$ with $x_1 \in R_1$ and $y_{m-1} \in R_{m-1}$ respectively and by identifying $y_i \in R_i$ with $x_{i+1} \in R_{i+1}$ for $i \in [1, m-2]$:

\[
\begin{array}{cccccccc}
R_0 & R_1 & R_2 & R_3 & \cdots & R_{m-2} & R_{m-1} & R_m \\
p_1 = x_1 & y_1 = x_2 & y_2 = x_3 & & & & & \end{array}
\]
\[
y_{m-2} = x_{m-1} & y_{m-1} = p_2
\]

Let $\mathcal{O}_{R_i}(1)$ be the defining bundle on $R_i = \mathbb{P}^1$ together with isomorphisms
\[
\mathcal{O}_{R_i}(1)[x_i] \sim k \quad \text{and} \quad \mathcal{O}_{R_i}(1)[y_i] \sim k
\]
We define the rank r vector bundles
\[
E_i := \mathcal{O}_{R_i}^{D_1 \sqcup \cdots \sqcup D_i} \otimes_k \mathcal{O}_{R_i}(1)^{D_{i+1}} \oplus \mathcal{O}_{R_i}^{D_{i+2} \sqcup \cdots \sqcup D_m}
\]
on R_i together with the isomorphisms
\[
E_i[x_i] \sim k^{[1,r]} \quad \text{and} \quad E_i[y_i] \sim k^{[1,r]}
\]
induced by \[\text{11}\].

The maximal ideal $sk[[s]]$ of $k[[s]]$ is a free module of rank one and as such defines a line bundle $\mathcal{O}_{R_0}(-1)$ on $R_0 = \text{Spec}(k[[s]])$. We consider this line bundle together with the isomorphism
\[
\mathcal{O}_{R_0}(-1)[p_2] \sim k
\]
given by $sk[[s]]/s^2k[[s]] \to k$, $s \mapsto 1$. The generic fiber of $\mathcal{O}_{R_0}(-1)$ is identified with $k(\langle s \rangle)$ via the inclusion $sk[[s]] \hookrightarrow k[[s]]$. Then we have the rank r vector bundles
\[
E_0 := \mathcal{O}_{R_0}^{D_1} \oplus \mathcal{O}_{R_0}(-1)^{D_{i+1}} \oplus \mathcal{O}_{R_i}^{D_{i+2} \sqcup \cdots \sqcup D_m} \quad \text{and} \quad E_m := \mathcal{O}_{R_m}^{[1,r]}
\]
on R_0 and R_m together with isomorphisms

\[(14) \quad E_0[p_1] \sim k^{[1,r]} \quad \text{and} \quad E_m[p_2] \sim k^{[1,r]} \]

(the first one being induced by \((13)\)) and isomorphisms

\[(15) \quad E_0 \otimes_{O_{R_0}} k((s)) \sim k((s))^{[1,r]} \quad \text{and} \quad E_m \otimes_{O_{R_m}} k((t)) \sim k((t))^{[1,r]} \]

The vector bundles E_0, \ldots, E_m glue together via the isomorphisms \((12)\) and \((14)\) to form a rank r vector bundle E on R.

Let $C' \to C$ be the modification of C obtained by gluing together R and C_{gen} along the isomorphism

\[
\begin{array}{c}
\text{Spec } (k((s))) \sqcup \text{Spec } (k((t))) \\
\downarrow \\
R \\
\downarrow \\
C_{\text{gen}} \\
\end{array}
\]

and let \mathcal{F} be the rank r vector bundle on C' obtained by gluing together E and \mathcal{E}_{gen} via the isomorphism

\[
(k((s)) \times k((t)))^{[1,r]} \xrightarrow{(H^1, H^2)} (k((s)) \times k((t)))^{[1,r]}
\]

It is easy to check that \((C' \to C, \mathcal{F})\) is indeed a Gieseker vector bundle on C.

It remains to be shown that the association

\[
(\xi, C \to \text{Spec } (k), \mathcal{A}) \mapsto (C' \to C, \mathcal{F})
\]

is surjective and does not depend on the choices \((1), (2), (3), (4)\) which we made during the construction. This will be done in the next sections.

\section{Independence of the isomorphisms \((1)\) and \((2)\)}

Let

\[
\widehat{O}_p \sim k[[s, t]]/(s \cdot t)
\]

be another isomorphism and let

\[
\widehat{O}_q \sim k[[u, v]]/(u \cdot v)
\]

be an isomorphism with the required property with respect to \((1)\). For the moment we make the following assumption:

The images of the two minimal ideals of \widehat{O}_p under \((1)\) and \((1)\) are the same. \((*)\)
Then there are units $\sigma(s), \pi(s) \in k[[s]]^\times$ and $\tau(t), \omega(t) \in k[[t]]^\times$ such that the following diagrams commute:

$$
\begin{array}{c}
\xymatrix{ k[[s, t]]/(s \cdot t) \ar[r]^{s \mapsto s \sigma(s)} \ar[d]^{(1)} & k[[s, t]]/(s \cdot t) \ar[d]^{(1')} \ar[r]_{t \mapsto t \tau(t)} & \hat{O}_p \\
k[[u, v]]/(u \cdot v) \ar[r]^{u \mapsto u \pi(u^e)} \ar[d]^{(2)} & k[[u, v]]/(u \cdot v) \ar[d]^{(2')} \ar[r]_{v \mapsto v \omega(v^e)} & \hat{O}_p \\
} \end{array}
$$

Furthermore we have $\pi^e = \sigma$ and $\omega^e = \tau$.

It should be noticed that the e-th root of unity ζ is independent of whether we choose $\mathbf{(1)}$ or $\mathbf{(1')}$, since it is the eigenvalue of γ operating on the tangent space of one of the branches of $\text{Spec}(\hat{O}_q)$ and by assumption ($*$) both the isomorphisms $\mathbf{(1)}$ and $\mathbf{(1')}$ map that branch $\text{Spec}(\hat{O}_q)$ to the same branch $\{v = 0\}$ of $\text{Spec}(k[[u, v]]/(u \cdot v))$. Therefore the elements $\alpha_1, \ldots, \alpha_r \in \mathbb{Z}/e\mathbb{Z}$ and the numbers a_1, \ldots, a_r are independent of whether we choose $\mathbf{(1)}$ or $\mathbf{(1')}$.

Let $(\tilde{F}_1(u), \tilde{F}_2(v))$ be the image of F under the isomorphism $\text{GL}_r(\tilde{K}_q) \cong \text{GL}_r(k[[u]]) \times \text{GL}_r(k[[v]])$ induced by $\mathbf{(2)}$. Then we have $\tilde{F}_1(u) = F^1(u \pi(u^e))$ and $\tilde{F}_2(v) = F^2(v \omega(v^e))$ and it follows that

$$
\begin{align*}
\tilde{F}_{i,j}^1(u) &= u^{a_j} \cdot \tilde{H}_{i,j}^1(u^e) \\
\tilde{F}_{i,j}^2(v) &= v^{-a_j} \cdot \tilde{H}_{i,j}^2(v^e)
\end{align*}
$$

where

$$
\begin{align*}
\tilde{H}_{i,j}^1(s) &= \pi^a \cdot \tilde{H}_{i,j}^1(s^\sigma) \\
\tilde{H}_{i,j}^2(t) &= \omega^{-a_j} \cdot \tilde{H}_{i,j}^2(t^\tau)
\end{align*}
$$

Therefore the following diagram commutes:

$$
\begin{array}{c}
\xymatrix{ (k((s)) \times k((t)))^{[1,r]} \ar[r]^{(H_1, H_2)} \ar[d]_{(k((s)) \times k((t)))^{[1,r]}} \ar[d]_{(k((s)) \times k((t)))^{[1,r]}} & (k((s)) \times k((t)))^{[1,r]} \ar[d]_{(k((s)) \times k((t)))^{[1,r]}} \ar[d]_{(k((s)) \times k((t)))^{[1,r]}} \\
E_{\xi} \otimes_{\mathcal{O}_\xi} \tilde{K}_p \ar[r]_{s \mapsto s \sigma} \ar[d]_{(H_1, H_2)} \ar[d]_{(H_1, H_2)} & \hat{K}_p \ar[d]_{(H_1, H_2)} \ar[d]_{(H_1, H_2)} \\
(k((s)) \times k((t)))^{[1,r]} \ar[r]^{(\tilde{H}_1, \tilde{H}_2)} & (k((s)) \times k((t)))^{[1,r]} \\
} \end{array}
$$

where the left vertical arrow maps an element $(x(s), y(t))$ to the element

$$(\text{diag}(\pi^{a_1}, \ldots, \pi^{a_r})x(s^\sigma), \text{diag}(\omega^{-a_1}, \ldots, \omega^{-a_r})y(t^\tau)).$$
Let \tilde{E} be the vector bundle on \tilde{C} obtained by the gluing datum $(\tilde{H}^1, \tilde{H}^2)$. Then the above diagram shows that there is an isomorphism $E \sim \tilde{E}$ which induces the isomorphisms

$$E[p_1] = k[1, r] \xrightarrow{\text{diag}(\pi(0)^{-a_1}, \ldots, \pi(0)^{-a_r})} k[1, r] = \tilde{E}[p_1]$$

$$E[p_2] = k[1, r] \xrightarrow{\text{diag}(\omega(0)^{a_1}, \ldots, \omega(0)^{a_r})} k[1, r] = \tilde{E}[p_2]$$

between the fibers at p_1 and p_2 respectively. Thus it maps the generalized isomorphism $\Phi \in \text{KGL}(k[1, r], k[1, r])$ to the generalized isomorphism $\Phi \in \text{KGL}(k[1, r], k[1, r]) = \text{KGL}(E[p_1], E[p_2])$. This shows that the pairs (E, Φ) and (\tilde{E}, Φ) are isomorphic. Consequently this is also true for the associated Gieseker vector bundles.

To get rid of the assumption (\ast) we investigate now what happens if we change the isomorphisms [11, 12] by composing them with the automorphisms

$$k[[s, t]]/(s \cdot t) \xrightarrow{s^{-1}t} k[[s, t]]/(s \cdot t)$$

$$k[[u, v]]/(u \cdot v) \xrightarrow{u^{-1}v} k[[u, v]]/(u \cdot v)$$

respectively.

This means that ζ^{-1} takes the role of ζ and consequently the set $\{\alpha_1, \ldots, \alpha_r\} \subseteq \mathbb{Z}/e\mathbb{Z}$ from [3, 2] is replaced by the set $\{-\alpha_1, \ldots, -\alpha_r\}$. It follows that in [8] we would choose integers $\tilde{a}_1, \ldots, \tilde{a}_r$ instead of a_1, \ldots, a_r, where

$$\tilde{a}_i = \begin{cases} a_i & \text{for } i \in [1, i_1] = D_1 \\ e - a_{r+i_1+1-i} & \text{for } i \in [i_1 + 1, r] \end{cases}$$

Then the matrix F is replaced by the matrix $\tilde{F} = F \cdot \Lambda$, where

$$\Lambda = \begin{bmatrix} \mathbb{I}_{i_1} & 0 \\ 0 & 1 \end{bmatrix}$$

is the permutation matrix belonging to the permutation $\lambda \in S_r$, where

$$\lambda(i) = \begin{cases} i & \text{for } i \in [1, i_1] \\ r + i_1 + 1 - i & \text{for } i \in [i_1 + 1, r] \end{cases}$$

and the matrices $H^1(s)$ and $H^2(t)$ are replaced by the matrices $\tilde{H}^1(s)$ and $\tilde{H}^2(t)$ respectively, where

$$\tilde{H}^1(s) = H^2(s) \cdot \Lambda \cdot \begin{bmatrix} \mathbb{I}_{i_1} & 0 \\ 0 & s^{-1}\mathbb{I}_{r-i_1} \end{bmatrix}$$

and

$$\tilde{H}^2(t) = H^1(t) \cdot \Lambda \cdot \begin{bmatrix} \mathbb{I}_{i_1} & 0 \\ 0 & t\mathbb{I}_{r-i_1} \end{bmatrix}$$

The numbers $\tilde{a}_1, \ldots, \tilde{a}_r$ define the partition

$$[1, r] = \tilde{D}_1 \sqcup \tilde{D}_2 \sqcup \cdots \sqcup \tilde{D}_m$$
where \(\tilde{D}_1 = D_1 \) and \(\tilde{D}_i = \lambda(D_{m+2-i}) \) for \(i \in [2, m] \). Let \((\tilde{R} = \tilde{R}_0 \cup \cdots \cup \tilde{R}_m, \tilde{E}) \) be the nodal curve associated to this partition, together with isomorphisms \(\tilde{E} \otimes_{\mathcal{O}_{\tilde{R}}} k((s)) \cong k((s))^{[1,r]} \) and \(\tilde{E} \otimes_{\mathcal{O}_{\tilde{R}}} k((t)) \cong k((t))^{[1,r]} \) as in \((15)\).

Now one checks easily that there is an isomorphism
\[
\rho : (R, E) \cong (\tilde{R}, \tilde{E})
\]
which sends the component \(R_i \) to \(\tilde{R}_{m-i} \) (\(i = 0, \ldots, m \)), such that the following diagram commutes:
\[
\begin{array}{ccc}
E \otimes_{\mathcal{O}_R} (k((s)) \times k((t))) & \cong & (k((s)) \times k((t)))^{[1,r]} \\
\downarrow \rho & & \downarrow \rho' \\
\tilde{E} \otimes_{\mathcal{O}_{\tilde{R}}} (k((s)) \times k((t))) & \cong & (k((s)) \times k((t)))^{[1,r]}
\end{array}
\]
where the morphism \(\rho' \) is given by
\[
(x(s), y(t)) \mapsto \left(\Lambda \cdot \begin{bmatrix} I_{i_1} & 0 \\ 0 & s^{-1}I_{r-i_1} \end{bmatrix}, \Lambda \cdot \begin{bmatrix} I_{i_1} & 0 \\ 0 & tI_{r-i_1} \end{bmatrix} \cdot x(t) \right)
\]

From the commutativity of the diagram
\[
\begin{array}{ccc}
(k((s)) \times k((t)))^{[1,r]} & \xrightarrow{H^1(s), H^2(t)} & (k((s)) \times k((t)))^{[1,r]} \\
\downarrow \rho' \quad & & \quad \downarrow t \mapsto s \quad \gamma(A) \quad \downarrow t \mapsto s \\
(k((s)) \times k((t)))^{[1,r]} & \xrightarrow{H^1(s), H^2(t)} & (k((s)) \times k((t)))^{[1,r]}
\end{array}
\]

it finally follows that the Gieseker vector bundle \((\tilde{C}' \to C, \tilde{F}) \) constructed from the data \(\xi, (\Pi), (\tilde{a}_1, \ldots, \tilde{a}_r), \tilde{H}^1(s), \tilde{H}^2(t) \) is isomorphic to the Gieseker vector bundle \((C' \to C, F) \) constructed from the data \(\xi, (\Pi), (a_1, \ldots, a_r), H^1(s), H^2(t) \).

7. Independence of the Isomorphisms (3) and (4)

Independence of (3) is immediate, since if we change it by an automorphism of \(\text{GL}_r \times \text{Spec}(\tilde{K}_p) \) (which can be written as an element in \(\text{GL}_r(k((s))) \times \text{GL}_r(k((t))) \)), then \((H^1(s), H^2(t)) \) is changed by that same matrix.

Two isomorphisms (4) differ by a matrix \(A = (A_{i,j}) \in \text{GL}_r(\hat{O}_q) \) such that
\[
(16) \quad A = \text{diag}(\zeta^{-\alpha_1}, \ldots, \zeta^{-\alpha_r}) \cdot \gamma(A) \cdot \text{diag}(\zeta^{\alpha_1}, \ldots, \zeta^{\alpha_r})
\]
After identifying \(\hat{O}_q \) with the ring \(k[[u, v]]/(u \cdot v) \) via the isomorphism (1), we can write
\[
A = A^0 + u \cdot A^1(u) + v \cdot A^2(v)
\]
with uniquely determined matrices \(A^0 \in \text{GL}_r(k), A^1(u) \in M(r \times r, k[[u]]) \) and \(A^2(v) \in M(r \times r, k[[v]]) \). Condition (16) implies that \(A^0 \) is a block matrix of the form

\[
(17) \quad A^0 = \begin{bmatrix}
A_1^0 & 0 \\
0 & A_m^0
\end{bmatrix}
\]

where the \(A_i^0 \) are blocks of size \(\#D_i \) for \(i = 1, \ldots, m \). Condition (16) implies furthermore that there are matrices \(B^1(s) = (B_{i,j}^1(s)) \in \text{GL}_r(k[[s]]) \) and \(B^2(t) = (B_{i,j}^2(t)) \in \text{GL}_r(k[[t]]) \) such that

\[
A^1(u) = u^{-1} \text{diag}(u^{a_1}, \ldots, u^{a_r}) \cdot B^1(u^e) \cdot \text{diag}(u^{-a_1}, \ldots, u^{-a_r}) ,
\]

\[
A^2(v) = v^{-1} \text{diag}(v^{-a_1}, \ldots, v^{-a_r}) \cdot B^2(v^e) \cdot \text{diag}(v^{a_1}, \ldots, v^{a_r})
\]

and such that

\[
(18) \quad B_{i,j}^1(0) = 0 \quad \text{for} \quad a_i - a_j \leq 0 ,
\]

\[
B_{i,j}^2(0) = 0 \quad \text{for} \quad a_j - a_i \leq 0 .
\]

The change of (4) by the matrix \(A \) means that we have to replace \(F \) by the matrix

\[
\tilde{F} = F \cdot A
\]

and that consequently we have to replace the matrices \(H^1(s) \) and \(H^2(t) \) by the matrices

\[
\tilde{H}^1(s) = H^1(s) \cdot (A^0 + B^1(s)) \quad \text{and}
\]

\[
\tilde{H}^2(t) = H^2(t) \cdot (A^0 + B^2(t))
\]

respectively.

The pair of matrices \((A^0 + B^1(s), A^0 + B^2(t)) \) defines an automorphism of \(\mathcal{V} \) which induces the automorphisms \(A^0 + B^1(0) \) and \(A^0 + B^2(0) \) on the special fibers \(V \) and \(W \) respectively. From (17) and (18) it follows that the induced automorphism of \(\text{KGL}(V,W) \) maps the generalized isomorphism \(\Phi \) to itself.

It follows that the pair \((\tilde{\mathcal{E}}, \tilde{\Phi})\) obtained by the glueing datum \((\tilde{H}^1, \tilde{H}^2)\) is isomorphic to the pair \((\mathcal{E}, \Phi)\) obtained by the glueing datum \((H^1, H^2)\). Therefore also the induced Gieseker vector bundles are isomorphic.

8. Surjectivity

Let \((C' \to C, \mathcal{F})\) be a Gieseker vector bundle on \(C \). By definition, \(C' \) is either isomorphic to \(C \), or it is the union of the normalization \(\tilde{C} \) of \(C \) and a chain \(R \) of projective lines which intersects \(\tilde{C} \) in the two points \(p_1 \) and \(p_2 \) lying above the singularity \(p \in C \). In the first case we let \(p' := p \), in the second case we let \(p' = p_2 \). Then the tripel

\[
(\tilde{C}' \to \tilde{C}, \tilde{\mathcal{F}}', p')
\]

is a Gieseker vector bundle datum in the sense of (3.3) By (3.4) such a datum induces a vector bundle \(\mathcal{E} \) on the curve \(\tilde{C} \) together with a generalized isomorphism \(\Phi \) from \(V := \mathcal{E}[p_1] \) to \(W := \mathcal{E}[p_2] \).
More precisely, Φ is a k-valued point of $\text{KGL}(V, W)$ which lies in the stratum $\mathbf{O}_{I, J}$ for some $I \subseteq [0, r - 1]$ and $J = \emptyset$. As we have recalled in (3) such a point is given by a tupel
\[
((F_\bullet(V), F_\bullet(W)), \overline{\varphi}_1, \ldots, \overline{\varphi}_{m-1}, \Phi')
\]
where $m := |I| + 1$,
\[
0 = F_0(V) \subseteq F_1(V) \subseteq F_2(V) \subseteq \cdots \subseteq F_{m-1}(V) \subseteq F_m(V) = V
\]
\[
0 = F_0(W) \subseteq F_1(W) \subseteq F_2(W) \subseteq \cdots \subseteq F_{m-1}(W) \subseteq F_m(W) = W
\]
are flags in V and W respectively, $\overline{\varphi}_i$ is the homothety class of an isomorphism
\[
\varphi_\nu : F_{m-\nu}(W)/F_{m-\nu-1}(W) \xrightarrow{\sim} F_{\nu+1}(V)/F_\nu(V)
\]
and Φ' denotes an isomorphism $F_1(V)/F_0(V) \xrightarrow{\sim} F_m(W)/F_{m-1}(W)$.

There is a basis v_1, \ldots, v_r of V and w_1, \ldots, w_r of W and a partition
\[
[1, r] = D_1 \sqcup D_2 \sqcup \cdots \sqcup D_m
\]
with the property that
1. $i \in D_\nu, j \in D_{\nu'}$ and $i < j$ implies $\nu \leq \nu'$,
2. $F_\nu(V)$ is generated by $\{v_i \mid i \in D_1 \sqcup \cdots \sqcup D_\nu\}$ and $F_\nu(W)$ is generated by $\{w_i \mid i \in D_{m-\nu+1} \sqcup \cdots \sqcup D_m\}$,
3. for $i \in D_{\nu+1}$ the isomorphism φ_ν sends the residue class of w_i mod $F_{m-\nu-1}(W)$ to the residue class of v_i mod $F_\nu(V)$,
4. for $i \in D_1$ the isomorphism Φ' sends v_i to the residue class of w_i mod $F_{m-1}(W)$.

For $i = 1, 2$ we choose an isomorphism
\[
\mathcal{E} \otimes_{\mathcal{O}_C} \hat{\mathcal{O}}_{p_i} \xrightarrow{\sim} \hat{\mathcal{O}}_{p_i}^r
\]
which induces the isomorphism $V \xrightarrow{\sim} k^r$, $v_i \mapsto e_i$ and $W \xrightarrow{\sim} k^r$, $w_i \mapsto e_i$ from the fibres at p_1 and p_2 respectively, where e_1, \ldots, e_r is the canonical basis of k^r. Let ξ be the principal GL_r-bundle on C_{gen} of local frames of the restriction of the vector bundle \mathcal{E} to $C_{\text{gen}} = \tilde{C} \setminus \{p_1, p_2\}$. Then the isomorphisms ξ induce the isomorphism
\[
\xi \times_{C_{\text{gen}}} \text{Spec}(\hat{K}_p) \xrightarrow{\sim} \text{GL}_r \times \text{Spec}(\hat{K}_p)
\]

Lemma 8.1. There is a morphism $f : U \to C$, an integer $e \geq m$ prime to the characteristic of k and an operation of $\Gamma := \mathbb{Z}/e\mathbb{Z}$ on U such that
1. Γ leaves f invariant and the induced morphism $U/\Gamma \to C$ is étale,
2. U has exactly one singular point q and $f^{-1}(p) = \{q\}$,
3. the action of Γ on $f^{-1}(C_{\text{gen}})$ is free.

Proof. Since p is an ordinary double point of C, there exists a diagram of pointed schemes and étale morphisms as follows:
\[
(C, p) \xrightarrow{\text{étale}} (U_0, q_0) \xrightarrow{\text{étale}} (V_0, y_0) := ((\text{Spec}(k[s, t]/(s \cdot t)), (s, t))
\]
After removing from U_0 the points $\neq q_0$ in the fiber of $U_0 \to C$ we may assume that q_0 is the only point lying above p. Choose $e \in \mathbb{Z}$ prime to $\text{char}(k)$ with $e \geq m$. Let
\[
(V, y) := ((\text{Spec}(k[u, v]/(u \cdot v)), (u, v))
\]
and let \((V, y) \to (V_0, y_0)\) be defined by \(s \mapsto u^e, t \mapsto v^e\). Let \(\gamma\) be a generator of \(\Gamma = \mathbb{Z}/e\mathbb{Z}\) and let \(\zeta \in k\) be a primitive \(e\)-th root of unity. We define an action of \(\Gamma\) on \((V, y)\) by letting
\[\gamma(u) = \zeta u \text{ and } \gamma(v) = \zeta^{-1} v.\]
Now we set
\[U := U_0 \times_{V_0} V\]
and let \(f : U \to C\) be the composition \(U \to U_0 \to C\). From \(V\) the scheme \(U\) inherits an action of the group \(\Gamma\). Since \(V/\Gamma = V_0\) and \(U_0 \to V_0\) is flat we have \(U/\Gamma = U_0\) which by construction is étale over \(C\). The only point in the fibre of \(f\) over \(p\) is the point \(q = (q_0, y) \in U\). Since \(U_0 \to V_0\) is étale and \(V \to V_0\) is smooth outside the point \(y\), it follows that the fibre product \(U = U_0 \times_{V_0} V\) is regular outside \(q\). Furthermore, since the action of \(\Gamma\) on \(V \setminus \{y\}\) is free the same holds for the action of \(\Gamma\) on \(U \setminus \{q\}\). \(\square\)

In what follows we will construct a chart \((U, \eta, \Gamma)\) for \(\xi\) where \(U \to C\) and \(\Gamma\) are chosen as in the lemma and the GL\(_r\)-bundle \(\eta\) with \(\Gamma\)-operation is glued together from an object \(\eta_{\text{gen}}\) over \(U_{\text{gen}}\) and an object \(\hat{\eta}_q\) over the completion of \(U\) at the singular point \(q\).

To fix notation, let \(\hat{\Omega}_q\) be the completion of the local ring \(\hat{\Omega}_{U,q}\) and let \(\gamma\) be a generator of \(\Gamma\). There exists an isomorphism

\[(21) \quad \hat{\Omega}_q \xrightarrow{\sim} k[[u, v]]/(u \cdot v)\]

and a primitive \(e\)-th root of unity \(\zeta\) such that the automorphism \(\gamma : \hat{\Omega}_q \xrightarrow{\sim} \hat{\Omega}_q\) translates into the automorphism \(u \mapsto \zeta u, v \mapsto \zeta^{-1} v\) of \(k[[u, v]]/(u \cdot v)\) (cf. \(\text{[ACV]}, 2.1.2\)).

Let \(a_i \in [0, e - 1] \ (i \in [1, r])\) be chosen such that:
\[
a_i = 0 \quad \text{for} \quad i \in D_1, \\
a_i < a_j \quad \text{for} \quad i \in D_\nu, \ j \in D_{\nu'}, \ \nu < \nu', \\
a_i = a_j \quad \text{for} \quad i, j \in D_{\nu}, \ \nu \in [1, m].
\]

Let \(\hat{\eta}_q := \text{GL}_r \times \text{Spec } \hat{\Omega}_q\) together with the \(\Gamma\)-operation defined by
\[
\text{diag}(\zeta^{a_1}, \ldots, \zeta^{a_r}) \times \gamma : \text{GL}_r \times \text{Spec } \hat{\Omega}_q \xrightarrow{\sim} \text{GL}_r \times \text{Spec } \hat{\Omega}_q.
\]

Let \(\eta_{\text{gen}} := \xi \times_{\text{gen}} U_{\text{gen}}\) together with the \(\Gamma\)-operation given by
\[
\text{id} \times \gamma : \xi \times_{\text{gen}} U_{\text{gen}} \xrightarrow{\sim} \xi \times_{\text{gen}} U_{\text{gen}}.
\]

Now we glue together \(\hat{\eta}_q\) and \(\eta_{\text{gen}}\) along \(\text{Spec } \hat{K}_q \cong k((u)) \times k((v))\) via the isomorphism
\[
\hat{\eta}_q \times_{\text{Spec } \hat{\Omega}_q} \text{Spec } (\hat{K}_q) \xrightarrow{\text{20}} \text{GL}_r \times \text{Spec } (\hat{K}_q) \xrightarrow{F^1 \times F^2} \text{GL}_r \times \text{Spec } (\hat{K}_q) = \eta_{\text{gen}} \times_{U_{\text{gen}}} \text{Spec } (\hat{K}_q)
\]
where
\[
F^1 = \text{diag}(u^{a_1}, \ldots, u^{a_r}) \quad \text{and} \quad F^2 = \text{diag}(v^{-a_1}, \ldots, v^{-a_r}).
\]

This gives a principal GL\(_r\)-bundle \(\eta\) on \(U\). From the commutativity of the diagram
\[
\text{Spec } (\hat{K}_q) \xrightarrow{\text{20}} \eta_{\text{gen}} \times_{U_{\text{gen}}} \text{Spec } (\hat{K}_q)
\]
\[
\text{Spec } (\hat{K}_q) \xrightarrow{\text{20}} \eta_{\text{gen}} \times_{U_{\text{gen}}} \text{Spec } (\hat{K}_q)
\]
it follows that the Γ-operation on $\hat{\eta}_q$ and η_{gen} induces a Γ-operation on η. It is clear from the construction that the triple (U, η, Γ) forms a chart for ξ.

There is a chart (U_1, η_1, Γ_1) for ξ, where $U_1 := C_{\text{gen}}$, $\eta := \xi$, $\Gamma := (1)$. This chart together with the chart (U, η, Γ) make up a balanced atlas \mathcal{A} for ξ. It is clear by construction that the twisted G-bundle $(\xi, C \to \text{Spec}(k), \mathcal{A})$ is mapped to the Gieseker vector bundle $(C' \to C, \mathcal{F})$.

9. Further directions

The relationship between twisted GL_r-bundles and Gieseker vector bundles should be further investigated since it might lead to a clue what the right notion of stable maps to the classifying stack of a reductive group are. The next step would be to try to extend the mapping given in 4.2 so that it works for families.

For example let $A := \mathbb{C}[[t]]$, let $S := \text{Spec} A$ and let $C \to S$ be a stable curve over S. Let

$$
\begin{array}{ccc}
C' & \rightarrow & C \\
S & \longrightarrow & \\
\end{array}
$$

be a Gieseker vector bundle of rank r on C.

Assume in particular that the generic fiber of $C \to S$ is smooth and that its special fiber is irreducible with one double point p. Then it can be shown that there is a twisted GL_r-bundle $(\xi, C \to S, \mathcal{A})$ such that if we apply the mappings from theorems 4.1 and 4.2 to the isomorphism class of the generic and special fiber of $(\xi, C \to S, \mathcal{A})$, then we obtain the generic and special fiber of the Gieseker vector bundle $(C' \to C, \mathcal{F})$ respectively. Indeed, in the neighbourhood of p one may chose a chart (U, η, Γ) for ξ, where $U \to C$ étale locally looks like

$$
\begin{array}{ccc}
\text{Spec } A[u, v]/(uv - t) & \longrightarrow & \text{Spec } A[x, y]/(xy - t^e) \\
& \leftarrow \leftarrow & \\
u^e & \leftarrow & x \\
v^e & \leftarrow & y
\end{array}
$$

On the other hand, assume $C = C_0 \times S$, where C_0 is an irreducible curve with one ordinary double point p, and assume that $C' \to C$ induces an isomorphism of the generic fibers and the morphism $C_1 \to C_0$ on the special fibers. For simplicity let us assume furthermore that the rank r of the Gieseker bundle is one. In this situation it would be interesting to know, whether there is a twisted GL_1-bundle $(\xi, C \to S, \mathcal{A})$ such that the map of theorem 4.2 maps the generic and the special fiber of $(\xi, C \to S, \mathcal{A})$ to the generic and special fiber of $(C' \to C, \mathcal{F})$ respectively.

References

[AV] D. Abramovich, A. Vistoli: Compactifying the space of stable maps. J. Amer. Math. Soc. 15 (2002), no. 1, 27–75

[ACV] D. Abramovich, A. Corti, A. Vistoli: Twisted bundles and admissible covers. Special issue in honor of Steven L. Kleiman. Comm. Algebra 31 (2003), no. 8, 3547–3618.

[B] Indranil Biswas: Parabolic bundles as orbifold bundles. Duke Mathematical Journal, Vol. 88, No.2

[F2] G. Faltings: Moduli-stacks for bundles on semistable curves. Math. Ann. 304 (1996), no. 3, 489-515.

[G] D. Gieseker: A degeneration of the moduli space of stable bundles. J. Differential Geom. 19 (1984), no. 1, 173-206.
[Kn] F. F. Knudsen: The projectivity of the moduli space of stable curves, II: The stacks $M_{g,n}$. Math. Scand. 52 (1983), 161-199

[K1] I. Kausz: A Modular Compactification of the General Linear Group, Documenta Math. 5 (2000) 553-594

[K2] I. Kausz: A Gieseker Type Degeneration of Moduli Stacks of Vector Bundles on Curves, math.AG/0201197. To appear in Transactions of the AMS.

[K3] I. Kausz: Stable maps into the classifying space of the general linear group. Preliminary draft.

[MS] V. Mehta and C.S. Seshadri: Moduli of vector bundles with parabolic structures. Math. Ann. 248, 205-239 (1980)

[NS] D.S. Nagaraj and C.S. Seshadri: Degenerations of the moduli spaces of vector bundles on curves II. Proc. Indian Acad. Sci. Math. Sci. 109 (1999), no 2, 165-201

[Se1] C.S. Seshadri: Degenerations of the moduli spaces of vector bundles on curves. School on Algebraic Geometry (Trieste, 1999), 205-265, ICTP Lect. Notes, 1, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2000.

[Se2] C.S. Seshadri: Moduli spaces of torsion free sheaves and G-spaces on nodal curves. Preliminary draft, November 2002.

NWF I - MATHEMATIK, UNIVERSITÄT REGENSBURG, 93040 REGENSBURG, GERMANY

E-mail address: ivan.kausz@mathematik.uni-regensburg.de