Early brain development in infants at high risk for autism spectrum disorder

Heather Cody Hazlett1,2, Hongbin Gu1, Brent C. Munse13, Sun Hyung Kim1, Martin Styner1, Jason J. Wolff4, Jed T. Elison5, Meghan R. Swanson2, Hongtu Zhu4, Kelly N. Botteron7, D. Louis Collins11, John N. Constantino7, Stephen R. Dager8,9, Annette M. Estes9,10, Alan C. Evans11, Vladimir S. Fonov11, Guido Gerig12, Penelope Kostopoulos11, Robert C. McKinstry13, Juhu Pandey14, Sarah Paterson15, John R. Pruett Jr7, Robert T. Schultz14, Dennis W. Shaw8,9, Lonnie Zwaigenbaum16, Joseph Piven1,2 & the IBIS Network*

Brain enlargement has been observed in children with autism spectrum disorder (ASD), but the timing of this phenomenon, and the relationship between ASD and the appearance of behavioural symptoms, are unknown. Retrospective head circumference and longitudinal brain volume studies of two-year olds followed up at four years of age have provided evidence that increased brain volume may emerge early in development1–2. Studies of infants at high familial risk of autism can provide insight into the early development of autism and have shown that characteristic social deficits in ASD emerge during the latter part of the first and in the second year of life3,4. These observations suggest that prospective brain-imaging studies of infants at high familial risk of ASD might identify early postnatal changes in brain volume that occur before an ASD diagnosis. In this prospective neuroimaging study of 106 infants at high familial risk of ASD and 42 low-risk infants, we show that hyperexpansion of the cortical surface area between 6 and 12 months of age precedes brain volume overgrowth observed between 12 and 24 months in 15 high-risk infants who were diagnosed with autism at 24 months. Brain volume overgrowth was linked to the emergence and severity of autistic social deficits. A deep-learning algorithm that primarily uses surface area information from magnetic resonance imaging of the brain of 6–12-month-old individuals predicted the diagnosis of autism in individual high-risk children at 24 months (with a positive predictive value of 81% and a sensitivity of 88%). These findings demonstrate that early brain changes occur during the period in which autistic behaviours are first emerging.

We first reported increased brain volume in adolescents and adults with ASD over twenty years ago5. Subsequent reports suggested that brain overgrowth in ASD may be most apparent during early childhood6–8. A study of infants at risk for ASD (33 high-risk and 22 low-risk infants), scanned from 6 to 24 months of age, found enlarged brain volume present at 12 and 24 months in the 10 infants that were later diagnosed with autism at 24 months of age or later9 (mean age, 32.5 months).

In the present study, we examined data from a subset of individuals from a longitudinal study comprising 318 infants at high familial risk for ASD (HR), of which 70 met clinical best-estimate criteria for ASD (HR-ASD) and 248 that did not meet the criteria for ASD (HR-neg) at 24 months of age, and 117 infants at low familial risk (LR) for ASD, who also did not meet the criteria for ASD at 24 months (see Methods for diagnostic and exclusion criteria). The three groups were comparable in (mean) race/ethnicity (85% white), family income, maternal age at birth (33 years old), infant birth weight (8 lb), and gestational age at birth (39 weeks). The HR-ASD group had more males than the other two groups (83% of the HR-ASD group was male compared to 59% and 57% of the LR and HR-neg groups, respectively) and mothers in the LR group had a higher education level (Extended Data Table 1).

Infants were evaluated at 6, 12 and 24 months of age, which included detailed behavioural assessments and high-resolution magnetic resonance imaging (MRI) of the brain, to prospectively investigate brain and behavioural trajectories during infancy. The analyses described below were conducted on a subset of 106 high-risk (n = 15 HR-ASD; n = 91 HR-neg) and 42 low-risk infants for whom all three MRI scans were successfully obtained. On the basis of our previous findings at 2–4 years of age2, we hypothesized that brain overgrowth in ASD begins before 24 months of age; that overgrowth is associated with hyperexpansion of the cortical surface area; and that these early brain changes are temporally linked to the emergence of the defining behaviours of ASD. We also investigated whether differences in the development of brain characteristics might suggest early biomarkers (that is, occurring before the onset of the defining behaviours of ASD) for the detection of ASD.

We first examined group differences in the trajectories of brain growth rate (Fig. 1). The growth rate of the total brain volume (TBV) did not differ between groups from 6 to 12 months of age. However, pairwise comparisons at 24 months showed large effect sizes for HR-ASD compared to LR and HR-ASD compared to HR-neg. The HR-ASD group showed a significantly increased TBV growth rate in the second year compared to both the LR and HR-neg groups (Extended Data Table 2).

In addition, the HR-ASD group showed a significantly increased surface area growth rate from 6 to 12 months of age compared to both the HR-neg and LR groups, with the most robust increases observed in the left/right middle occipital gyrus, right cuneus and right lingual gyrus area (see Fig. 2). No group differences were observed in cortical thickness. We observed a significant correlation between surface area growth rate of 6–12 months and enlargement in TBV at 24 months of age in all subjects (r192 = 0.59, P < 0.001), as well as in the combined HR subgroup (r99 = 0.63, P < 0.001). Raw means, standard deviations and effect sizes for the group comparisons of TBV and surface area are provided in Extended Data Table 3. Regional differences in surface area change rate (6–12 months) were observed in the HR-ASD group (Fig. 2).

1Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina 27599, USA. 2Carolina Institute for Developmental Disabilities, Chapel Hill, North Carolina 27599, USA. 3College of Charleston, Charleston, South Carolina 29424, USA. 4Department of Educational Psychology, University of Minnesota, Minneapolis, Minnesota 55455, USA. 5Institute of Child Development, University of Minnesota, Minneapolis, Minnesota 55455. 6Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina 27599, USA. 7Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri 63110, USA. 8Department of Radiology, University of Washington, Seattle, Washington 98105, USA. 9Center on Human Development and Disability, University of Washington, Seattle, Washington 98105, USA. 10Department of Speech and Hearing Sciences, University of Washington, Seattle, Washington 98105, USA. 11Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 0G4, Canada. 12Tandon School of Engineering, New York University, New York, New York 10003, USA. 13Mailman School of Public Health, Columbia University, New York, New York 10032, USA. 14Department of Psychology, Temple University, Philadelphia, Pennsylvania 19122, USA. 15Department of Pediatrics, University of Alberta, Edmonton, Alberta T6G 2R3, Canada.

* A list of participants and their affiliations appears at the end of the paper.
Given that the timing of TBV overgrowth in our study coincided with findings from other studies that have shown emergence of social deficits in the second year of life, we explored whether the rate of volume overgrowth was linked to autism severity. Pearson correlations between TBV and behavioural measurements of autism symptoms and social communication (on the Autism Diagnostic Observation Schedule (ADOS) and Communication and Symbolic Behaviour Scales (CSBS)) were generated, adjusting for multiple comparisons.

We first investigated the relationship between autistic behaviour (ADOS severity score) at 24 months and the TBV change rate at 6–12 and 12–24 months in the HR groups (HR-ASD and HR-neg). We found no significant correlation between the 24-month ADOS severity score and the 6–12 month TBV change rate ($t_{174} = 0.14, P = 0.06$); however, a significant correlation was found between the 24-month ADOS severity score and the 12–24 month TBV change rate ($t_{192} = 0.16, P = 0.03$). Subsequent analyses designed to investigate the components of overall autism severity (ADOS) during the latter interval revealed a significant correlation between the 12–24 month TBV change rate and the 24-month ADOS social affect score ($r_{192} = 0.17, P = 0.01$), but not the ADOS restricted/repetitive behaviour score ($r_{192} = 0.07, P = 0.31$).

To follow up on the relationship between change in brain volume and social deficits in the second year described above, we investigated the relationship between TBV change rates and social behaviour at 24 months with an independent measure of social behaviour, the CSBS. Consistent with the findings from the ADOS analysis, the CSBS social composite score was significantly correlated with a more rapid TBV change rate at 12–24 months ($r_{18} = 0.18, P = 0.02$) in HR subjects. No significant correlations were observed between CSBS social composite score at 24 months and TBV change rate at 6–12 months ($r_{143} = 0.11, P = 0.17$).

As opposed to the ADOS, which was only carried out at 24 months (the ADOS was primarily designed as a tool for diagnosis), measurements of social behaviour were available from the CSBS at both 12 and 24 months. We investigated the change in social behaviour during this time, taking into consideration our observations of changes in brain volume during that same period in the HR-ASD group, and a previous report that social deficits in ASD appear to unfold during the second year of life. We observed a significant group (HR-ASD versus HR-neg) × time (12–24 months) interaction for the CSBS social composite score ($F_{2,289} = 10.0, P < 0.0001$). This finding was further supported by the observation that the CSBS effect size almost tripled from 12 ($d = 0.39$) to 24 ($d = 1.22$) months.

On the basis of earlier findings from our group with regards to surface area, cortical thickness and brain volume, we examined whether selected MRI brain measurements at 6 and 12 months of age could be used to accurately identify those infants who would later meet the criteria for ASD at 24 months of age. Independent of knowledge about the results of the above analyses, a machine learning classification algorithm based on a deep-learning network, was employed to investigate how well regional surface area and cortical thickness at 6 and 12 months, intracranial volume (at 6 and 12 months) and sex predicted HR-ASD diagnosis at 24 months of age. We used only data from those infants for whom cortical thickness and surface area data at both 6 and 12 months were available (HR-ASD = 34, HR-neg = 145). A tenfold cross-validation was used to compute classification performance, whereby the whole classification procedure, including network training, was performed separately in each fold (see Supplementary Information for details on method, validation and comparison to other approaches). The classification scheme distinguished the HR-ASD group from the HR-neg group in the cross-validation with 94% accuracy ($n = 168$ out of 179), 88% sensitivity ($n = 30$ out of 34), 95% specificity ($n = 138$ out of 145), 81% positive predictive value ($n = 30$ out of 37) and 97% negative predictive value ($n = 138$ out of 142) (Extended Data Table 4).

Additional analysis of the trained deep-learning network suggests that contributions to the discrimination are mostly on the basis of surface area and not cortical thickness (or TBV or sex), particularly at 6 months of age, as 11 of the top 12 measurements that contributed to the deep-learning network were regional surface area variables and the top six were variables from 6 months of age (Fig. 3 and Extended Data Fig. 1).

Our data suggest that very early, post-natal hyperexpansion of cortical surface areas may have an important role in the development of autism. The rate of cortical surface area expansion from 6 to 12 months was significantly increased in individuals diagnosed with autism at 24 months, and was linked to subsequent brain overgrowth, which, in turn, was linked to the emergence of social deficits. This suggests a sequence whereby hyperexpansion of the cortical surface area is an early event in a cascade leading to brain overgrowth and emerging autistic deficits. In infants diagnosed with autism at 24 months, surface area hyperexpansion in the first year was observed in cortical areas linked to the processing of sensory information (for example, the left middle occipital cortex), consistent with regions previously reported to show the earliest increase in surface area growth rate in typically developing infants, and with reports showing early sensory differences in infants who will later develop ASD.
The finding of brain overgrowth in this sample of young children with ‘idiopathic’ ASD is consistent with emerging literature demonstrating brain overgrowth in genetically defined ASD subgroups (for example, 16p11 deletions (ref. 15), CHD8 (ref. 16)). Cellular mechanisms and heritability that underlie surface area expansion are thought to differ from mechanisms that underlie cortical thickness17,18, and surface area hyperexpansion has been reported in genetically-engineered mouse models of autism19. Our findings are not inconsistent with the mini-column hypothesis of autism20, which postulates that symmetrical proliferation of periventricular progenitor cells leads to an increased number of mini-columns. These mini-columns may have a role in the pathogenesis of surface area hyperexpansion and the later emergence of the disorder19,21. Overproliferation of cortical progenitor cells may affect other mechanisms of post-natal development (for example, dendritic arborization and decreased pruning22). Overproduction of upper-layer neurons in the neocortex was previously shown to be associated with autism-like features in mice22 and the 16p11.2-deletion mouse has been shown to exhibit altered cortical progenitor proliferation23. Furthermore, an imaging study described increased brain volume in individuals with a 16p11 deletion, a genetically defined subgroup of individuals often presenting with ‘syndromic autism’19. Expansion of basal progenitor cells in rodent models23 has been shown to regulate cerebral volume size and folding, while the dysregulation of neural-progenitor-cell proliferation has been observed in genetically engineered mouse models of ASD-associated genes (for example, CHD8)24. The importance of CHD8 in mediating regulatory networks during neurodevelopment was previously demonstrated25 and suggests a potential role of CHD8 in disrupting the proliferation and differentiation of neurons during early brain development. In addition, increased rates of proliferation of neural progenitor cells and neuron number compared to controls have been observed in induced pluripotent stem cells derived from individuals with ASD who also had increased brain volume on MRI25. Increased proliferation resulted from dysregulation of a β-catenin/BRN2 transcriptional cascade and was associated with reduced synaptogenesis that led to functional defects in neuronal networks, and these proliferation deficits could be rescued by stimulating the insulin growth factor 1 pathway26. The findings in the present study together with these recent reports suggest that understanding the mechanisms that underlie surface area hyperexpansion in the first year in human infants can probably provide important insights into the downstream pathogenesis of autism.

Prediction models developed from behaviourally based algorithms during infancy have not provided sufficient predictive power to be clinically useful27. We found that a deep-learning algorithm primarily using surface area information from brain MRI at 6 and 12 months of age predicted the 24 month diagnosis of autism in children at high familial risk for autism. This finding may have implications for early detection and intervention, given that this period is before consolidation of the defining features of ASD and the typical age for diagnosis28. The latter part of the first and early second years of life are characterized by greater neural plasticity relative to later ages and is a time when the social deficits associated with autism are not yet well established. Intervention at this age may prove more efficacious than later in development. The fact that we demonstrate group differences in surface area growth rate from 6 to 12 months, that very early surface area changes are linked to later brain overgrowth in the second year, and that overgrowth is, in turn, linked to the emergence of core social deficits in autism during this period, provides additional context to support the validity of the prediction model we report. The positive predictive value findings from this study on high-risk infants are probably conservative in nature owing to the likelihood that our HR-ASD group may be higher functioning than those who are clinically referred and diagnosed with ASD at 24 months of age, and that HR-neg groups are known to be more heterogeneous with respect to later development of cognitive, behavioural, social-communication and motor deficits than typical case-control studies29–31. The algorithm described in this paper will require replication before it could be considered a possible clinical tool for predicting ASD in high familial risk infants, as false diagnostic predictions have the potential to adversely affect individuals
and families. In addition, we do not know whether the brain differences we observed are specific to so-called idiopathic autism or share characteristics with other neurodevelopmental disorders. Although the findings of this study do not have direct application to the larger population of children with ASD who are not known to be at high familial risk for ASD, they provide a proof of principle that early prodromal detection using a brain biomarker may be possible. Future analyses incorporating complementary data from other relevant modalities (for example, behavior, molecular genetics, electrophysiology and other imaging modalities such as whole brain functional MRI) may improve the accuracy of the prediction we observed.

Online Content Methods, along with any additional Extended Data display items and Source Data, are available in the online version of the paper; references unique to these sections appear only in the online paper.

Received 15 April 2016; accepted 6 January 2017.

1. Hazlett, H. C. et al. Magnetic resonance imaging and head circumference study of brain size in autism: birth through age 2 years. Arch. Gen. Psychiatry 62, 135–1376 (2005).
2. Hazlett, H. C. et al. Early brain growth in autism associated with an increase in cortical surface area before age 2 years. Arch. Gen. Psychiatry 68, 467–476 (2011).
3. Ozonoff, S. et al. A prospective study of the emergence of early behavioral signs of autism. J. Am. Acad. Child Adolesc. Psychiatry 49, 256–266.e1, 2 (2010).
4. Zwaigenbaum, L. et al. Behavioral manifestations of autism in the first year of life. Int. J. Dev. Neurosci. 23, 143–152 (2005).
5. Piven, J. et al. An MRI study of brain size in autism. Am. J. Psychiatry 152, 1145–1149 (1995).
6. Courchesne, E. et al. Unusual brain growth patterns in early life in patients with autistic disorder: an MRI study. Neurology 57, 245–254 (2001).
7. Schumann, C. M. et al. Longitudinal magnetic resonance imaging study of cortical development through early childhood in autism. J. Neurol. Sci. 30, 4419–4427 (2010).
8. Sparks, B. F. et al. Brain structural abnormalities in young children with autism spectrum disorder. Neurology 59, 184–192 (2002).
9. Shen, M. et al. Early brain enlargement and elevated extra-axial fluid in infants who develop autism spectrum disorder. Brain 136, 2825–2835 (2013).
10. Lord, C., Rutter, M., DiLavore, P. C. & Risi, S. The Autism Diagnostic Observation Schedule. (Western Psychological Services, 2000).
11. Wetherby, A. & Prizant, B. Communication and Symbolic Behavior Scales Developmental Profile, First Normed Edition. (Paul H. Brookes, 2002).
12. Li, G. et al. Mapping longitudinal hemispheric structural asymmetries of the human cortical cortex from birth to 2 years of age. Cereb. Cortex 24, 1289–1300 (2014).
13. Elison, J. T. et al. White matter microstructure and atypical visual orienting in 7-month-old at risk for autism. Am. J. Psychiatry 170, 899–908 (2013).
14. Erst, A. et al. Behavioral, cognitive, and adaptive development in infants with autism spectrum disorder in the first 2 years of life. J. Neurol. Neurosurg. Psychiatry 74, 24 (2015).
15. Qureshi, A. Y. et al. Opposing brain differences in 16p11.2 deletion and duplication carriers. J. Neurosci. 34, 11199–11211 (2014).
16. Bernier, R. et al. Disruptive CHD8 mutations define a subtype of autism early in development. Cell 158, 263–276 (2014).
17. Panizzon, M. S. et al. Distinct genetic influences on cortical surface area and cortical thickness. Cereb. Cortex 19, 2728–2735 (2009).
18. Rakic, P. A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends Neurosci. 18, 383–388 (1995).
19. Chen, A. & Walsh, C. A. Regulation of cortical size by control of cell cycle exit in neural precursors. Science 297, 365–369 (2002).
20. Casanova, M. F. et al. Minicolumnar abnormalities in autism. Acta Neuropathol. 112, 287–303 (2006).
21. Hill, J. et al. Similar patterns of cortical expansion during human development and evolution. Proc. Natl Acad. Sci. USA 107, 13135–13140 (2010).
22. Packer, A. Neocortical neurogenesis and the etiology of autism spectrum disorder. Neurosci. Biobehav. Rev. 64, 185–195 (2016).
23. Fang, W. Q. et al. Overproduction of upper-layer neurons in the neocortex leads to autism-like features in mice. Cell Reports 9, 1635–1643 (2014).
METHODS

Data reporting. No statistical methods were used to predetermine sample size. The experiments were not randomized.

Sample. This study includes data acquired from an NIH-funded Autism Centers of Excellence (ACE) network study, referred to as the ‘Infant Brain Imaging Study’ (IBIS). The network includes four clinical data collection sites (University of North Carolina at Chapel Hill, University of Washington, Children’s Hospital of Philadelphia, Washington University in St. Louis), a Data Coordinating Center at the Monash Institute of Neurological Sciences (McGill University), and two image processing sites (University of Utah and UNC). Data collection sites had study protocols approval from their Institutional Review Boards (IRB), and all enrolled subjects had informed consent provided by parent/guardian. Infants at high (HR) and low familial risk (LR) entered the study at 6 months of age (a subset of HR infants entered at 12 months) and were followed-up at 12 and 24 months. Results from the 6 month brain volume findings have previously been reported for a subset of this sample34.

Subjects were enrolled as HR if they had an older sibling with a clinical diagnosis of ASD confirmed with the Autism Diagnostic Interview-Revised35 (ADI-R). Subjects were enrolled in the LR group if they had an older sibling without evidence of ASD and no family history of a first or second-degree relative with ASD. Exclusion criteria for both groups included the following: (1) diagnosis or physical signs strongly suggestive of a genetic condition or syndrome (for example, fragile X syndrome) reported to be associated with ASDs, (2) a significant medical or neurological condition affecting growth, development or cognition (for example, CNS infection, seizure disorder, congenital heart disease), (3) sensory impairment such as vision or hearing loss, (4) low birth weight (<2,000 g) or prematurity (<36 weeks gestation), (5) possible perinatal brain injury from exposure to in utero exogenous compounds reported to likely affect the brain adversely in at least some individuals (for example, alcohol, selected prescription medications), (6) non-English speaking families, (7) contraindication for MRI (for example, metal implants), (8) adopted subjects, and (9) a family history of intellectual disability, psychosis, schizophrenia or bipolar disorder in a first-degree relative.

The sample for this analysis included all children with longitudinal imaging data processed until 31 August 2015. The final sample included 318 HR and 117 LR children, each with 2–3 MRI scans (Extended Data Table 1).

Assessment protocols. Behavioural assessment. Infants were assessed at ages 6, 12 and 24 months and received a brain MRI scan in addition to a battery of behavioural and developmental tests. The tests included measurements of cognitive development, adaptive functioning and behaviours associated with autism. Developmental level and adaptive functioning were assessed at each time point using the Mullen Scales of Early Learning36 and Vineland Scales of Adaptive Behaviour37. Autism-oriented assessments included the Autism Diagnostic Interview-Revised35, Autism Diagnostic Observation Scale10 (ADOS-WPS) at 24 months and Communication and Symbolic Behaviour Scales of Development Profile31 (CSBS-DP) at 12 and 24 months. From the CSBS, the total raw score and the social composite raw score were used in the brain–behavioural analyses. Raw scores were used to allow better representation of the distribution of the data.

Diagnostic (outcome) classification. Diagnostic classification was made by an expert clinician at each site using all clinical, behavioural and questionnaire data available at 24 months. A diagnosis of ASD was made using the DSM-IV-TR (diagnostic and statistical manual of mental disorders, edition IV, text revision)38 criteria for autism and pervasive developmental disorder, not otherwise specified (PDD-NOS)38 by an expert clinician blind to the outcome of the imaging results. Across the IBIS network, the expert clinicians met quarterly for diagnostic reliability meetings (via video/telephone) using the DSM-IV-TR criteria independently. The rationale for this conservative approach was to maximize validity of diagnosis at 24 months of age38. Reliability between diagnostic raters was maintained throughout the project period.

HR subjects were classified as HR-neg (that is, negative for ASD) if they did not meet either either ASD or PDD-NOS criteria on the DSM-IV-TR. In order to have a LR comparison group representing typically developing infants without autism, we also assessed each LR subject at 24 months. The LR subjects included did not meet ASD or PDD-NOS criteria on the DSM-IV-TR. In a subset of HR infants entered at 12 months, we used an ADI-R to assess their diagnostic reliability at 24 months. The LR subjects met DSM-IV criteria for ASD at their 24-month assessment (one for autism, two for PDD-NOS) and were excluded from the study (Extended Data Table 5). There is strong evidence of differences in the underlying genetic architecture of multiple versus single incidence (or sporadic) cases, with the latter more often being attributed to de novo events, that support our exclusion of these LR-ASD subjects from a combined analysis. The three outcome variables investigated were total brain volume (TBV), surface area and cortical thickness. Each model included random coefficients for the first year growth rate (6–12 months)
and change of growth rate in the second year (12–24 months), and random inter-
cepts for each child to account for individual differences and correlated repeated
measures collected at 6, 12 and 24 months. For subject i from group k at month j,
the brain measure is:

$$Y_{ij} = (β_{0k} + b_{0k}) + (β_{1k} + b_{1k})t_{ij} + (β_{2k} + b_{2k})(t_{ij} - 12) + e_{ij}$$

The mean group growth rate in the first year will be $β_{1k}$, and the growth rate for
the 12 months beyond will be $β_{2k}$. The inclusion of the change of slope after
12 months is to capture the change in growth rate from the first to the second year.
The first two years of life is a period of rapid brain development, with growth rate
being faster in the first than the second year45,46. The two-piece linear mixed model
was chosen to capture the change in growth rate from the first to the second year.
We required all subjects in this analysis to have 3 completed scans at 6, 12, and
24 months. This reduced the HR-ASD sample from 70 to 15 subjects. This require-
ment is to ensure that we captured the individual growth rate change from the
first to the second year without the potential bias caused by partial visits and changes
in study cohorts at different visits. We examined possible bias in the HR-ASD
subjects with three completed visits versus those with only one or two visits and
found no significant differences in demographic (for example, sex, age) or outcome
measure (for example, TBV, surface area). Results are shown in Extended Data
Tables 6 and 7.

To model the unique brain overgrowth separate from the general body growth,
we modelled the brain growth relative to normative body growth in the first two
years45,46. Normative age based on body length was used instead of chronological
age in order to capture brain overgrowth in the context of body growth. The nor-
mative age for each infant’s body size (t, corrected age) was used in the model as
the continuous growth variable. The corrected age correlates highly with chron-
ological age while taking into account the infant’s sex and body size, which is
necessary to determine the relative brain overgrowth. Sex-specific WHO height
norms47 were used to determine the corrected age based on an infant’s sex and
higher length.

We addressed potential sex-related brain differences in two ways. First, in order
to account for sex-related body size differences and their effects on brain volume48,
we normalized differences in body size by using the sex-specific WHO height
norms. Second, we included sex as a covariate in the analysis model to account
for remaining sex-related differences49. The approach to include sex as a model
covariate will account for a linear, fixed effect of sex differences in brain volume.
However, for developmental studies, the sex differences in body size and brain
volume may be nonlinear, with an unknown function form. Using a body size
standardization based on normative sex-specific height data are more likely to
account for nonlinear sex-related differences.

The final model covariates include site and sex. Despite regular cross-site cali-
bration in both behavioural and imaging protocols, a site covariate was included to
account for the possibility of cohort differences or potential administrative dif-
cerences in a multi-site study. Sex was included as a covariate in the analysis model
to account for remaining sex-related differences not accounted for by sex-specific body growth. However, when we analysed only males for group differences,
our results remain unchanged (Extended Data Fig. 2 and Extended Data Table 8).

As a sensitivity analysis, we also tested the model with other demographic,
familial and child birth-related covariates (race, social economic status, mother’s
education, mother’s age at birth, birth weight and gestational age), and only the
sex and site remained in the model with $P < 0.01$.

The association of 24-month clinical outcome (ADOS, CSBS) with brain growth
rates (TBV) from 6–12 and 12–24 month intervals was assessed among HR subjects
using a Pearson correlation. Family income, mother’s education, subject sex and
birth weight were examined as potential covariates, but none contributed signifi-
cantly and were excluded from the final analysis.

Multiple-comparison adjustments were performed for all pairwise comparisons
and the correlation analyses, which followed the tests for overall group differences
(F test, reported in Extended Data Table 2). All pairwise comparisons and cor-
relation analyses used adaptive Hochberg multiple-comparison adjustments50.
Only those comparisons that remained significant after the multiple comparison
adjustment are reported (Fig. 1 and Extended Data Table 2).

The machine learning analysis used a nonlinear prediction model based on a
standard three-stage deep-learning network and included the following unbiased/
unweighted information: sex, age-corrected intracranial volume, and age-corrected
surface area and cortical thickness measurements from 39 left and 39 right cortical
hemisphere regions at 6 and 12 months (approximately 312 measurements). This
analysis included 34 HR-ASD and 145 HR-neg subjects. The model was evalu-
ated via a standard tenfold cross-validation. The core of the prediction model
is a weighted three-stage neural/deep-learning network51, where the first stage
reduces 315 measurements to 100, the second stage reduces 100 to 10, and the
third stage reduces 10 to only 2 measurements. At each stage, the measurements
in the progressively smaller sets are the weighted combination of input measure-
ments from the previous stage. In general, the training process determines (1) those
network weights that retain information that are capable of distinguishing the
affected condition (for example, HR-ASD) from the unaffected condition
(HR-neg), as well as (2) the linear support vector machine based classification deci-
sion that separates the group label (HR-ASD and HR-neg) in the two-dimensional
final network space. Thus to apply the prediction model, the data are first inserted
to the two-dimension final network space using the trained deep-learning net-
work, and then classified in the final network space using the trained support
vector machine. All training was performed purely on the training data in each
fold. Once training was achieved, this prediction model was applied to the testing
data in each fold. Classification measurements of accuracy, sensitivity, specificity,
positive predictive value and negative predictive value are combined and reported
across the 10 folds. Details of our machine learning procedures and validity tests
are provided in the Supplementary Information.

Data availability. The raw data that support the findings from this study are publi-
cally available from the NIH National Database for Autism Research (NDAR). Any
additional data may be available from the corresponding author upon reasonable
request. Source data for Figs 1–3 are provided with the paper.

Information on the following tools used in our analyses (AutoSeg, HeadCirc
and ITK-SNAP) is freely available for download: http://www.med.neu.uic.edu/psych/
research/niral/download/download-software and http://www.nitrc.org. All of the
Matlab source code used to construct, train and test the prediction pipeline is also
available at https://github.com/nmsuall/dbd_autism.git.
Extended Data Figure 1 | Visualization of cortical regions with surface area measurements among the top 40 features contributing to the linear sparse learning classification. The cortical features produced by the deep learning approach (Fig. 3) are highly consistent with those observed using an alternative approach (linear sparse learning) shown here. Results from this alternative approach are included for comparison in Supplementary Tables 2 and 3.
Extended Data Figure 2 | Trajectories of TBV for males (left) and females (right). For illustrative purposes, we provide plots for TBV for males and females from the same sample. The longitudinal trajectories of total brain volume (TBV) from 6 to 24 months for the three groups examined are shown with males and females displayed separately. The trajectory of TBV for males among the three groups is similar to the pattern we see in the full sample (Fig. 1). The female HR-ASD group is quite small ($n = 2$), which makes the pattern of trajectory difficult to interpret. These figures support the general similarity of the findings in the combined sample and the male-only sample. Red, HR-ASD; green, HR-neg; blue, LR. TBV is shown in mm3. The age (in months) is corrected by length (body size, in cm).
No significant group differences (between HR-ASD, HR-neg and LR) were observed in race/ethnicity, family income, maternal age at birth, infant birth weight, gestational age at birth, or age at visit. As expected, on the basis of the disproportionately higher rates of ASD in males, the HR-ASD group contained significantly more males than the LR group ($\chi^2 = 36.4, P < 0.01$). We also observed that the LR group had higher maternal education compared to the other two groups ($\chi^2 = 36.4, P < 0.01$). As expected, on the basis of the association between intellectual disability and ASD, the HR-ASD group had significantly lower Mullen and Vineland scores at 24 months than the other two groups. Mullen ELC, Early Learning Composite standard score; Vineland ABC, Vineland Adaptive Behaviour Composite standard score; SD, standard deviation.
Extended Data Table 2 | Group differences in developmental trajectories and cross-sectional volumes by age

Measure	Trajectory	Slope	SE	Slope	SE	Slope	SE	df1, df2	F	P
Total brain volume	1st Year	24.046	14.16	25.281	9.00	27.268	23.969	2.289	0.72	0.49
	2nd Year	1.928	52.3	10.277	36.0	13.318	10.600	2.289	3.83	0.02
Surface Area	1st Year	9.72	71.1	10.61	46.0	13.31	12.5	2.289	3.13	0.04
	2nd Year	8.04	38.0	8.14	26.0	8.60	7.5	2.289	1.93	0.15
Cortical Thickness	1st Year	-0.024	0.003	-0.024	0.002	-0.024	0.008	2.289	0.00	0.99
	2nd Year	-0.025	0.002	-0.021	0.001	-0.026	0.004	2.289	1.44	0.24

Brain volume measurements for trajectory and cross-sectional analyses are in mm³, surface area measurements are in mm² and cortical thickness measurements are in mm. The slope is presented as change/months. Adjusted group mean is the model estimated group mean at the specified time point. Year 1, 6–12 month period; year 2, 12–24 month period; pairwise group comparison (P < 0.05); the sample for the piecewise linear model included subjects with complete data at all three visits (6, 12 and 24 months).
Extended Data Table 3 | Raw means and standard deviations for TBV and surface area group comparisons showing effect size and confidence intervals

Visit Age	Group 1 N	Raw Mean (SD)	Group 2 N	Raw Mean (SD)	t	Effect Size d	Effect size Confidence interval
6	HR-ASD	800001 (69515)	HR-neg	771080 (63012)	0.54	0.15	-0.40 - 0.70
6	HR-ASD	800001 (69515)	LR-neg	770896 (77012)	1.25	0.38	-0.23 - 0.96
6	HR-neg	771080 (63012)	LR-neg	770896 (77012)	1.22	0.23	-0.14 - 0.60
6	HR-ASD	800001 (69515)	HR-neg	771080 (63012)	0.99	0.28	-0.28 - 0.83
12	HR-ASD	969305 (83486)	HR-neg	922692 (69138)	0.99	0.28	-0.28 - 0.83
12	HR-ASD	969305 (83486)	LR-neg	917106 (85631)	1.87	0.57	-0.05 - 1.17
12	HR-neg	922692 (69138)	LR-neg	917106 (85631)	1.53	0.29	-0.09 - 0.66
24	HR-ASD	1111636 (101094)	HR-neg	1066273 (99719)	2.88	0.88	0.24 - 1.48
24	HR-neg	1111636 (101094)	LR-neg	1066273 (99719)	0.9	0.17	-0.20 - 0.54

Surface Area (SA) Comparisons

Visit Age	Group 1 N	Raw Mean (SD)	Group 2 N	Raw Mean (SD)	t	Effect Size d	Effect size Confidence interval
8	HR-ASD	54866 (3671)	HR-neg	53017 (3723)	0.17	0.05	-0.51 - 0.60
6	HR-ASD	54866 (3671)	LR-neg	52785 (4102)	1.0	0.31	-0.30 - 0.91
6	HR-neg	53017 (3723)	LR-neg	52785 (4102)	1.35	0.26	-0.12 - 0.62
12	HR-ASD	61745 (4206)	HR-neg	59576 (4046)	1.45	0.41	-0.15 - 0.96
12	HR-neg	61745 (4206)	LR-neg	59011 (4502)	2.44	0.75	0.12 - 1.35
24	HR-ASD	73254 (5236)	HR-neg	70567 (4842)	1.75	0.33	-0.04 - 0.70
24	HR-neg	73254 (5236)	LR-neg	70567 (4842)	2.49	0.70	0.13 - 1.25

Brain volume measurements are in mm³, surface area measurements are in mm². Visit age is shown in months. Raw mean is the group mean.
A nonlinear prediction model included the following unbiased/unweighted information: sex, age-corrected intracranial volume and age-corrected surface area and cortical thickness measurements from 39 left and 39 right cortical hemisphere regions at 6 months and 12 months. The prediction model was evaluated using a standard tenfold cross-validation approach. Classification performance of the prediction model is at 94% overall accuracy, 88% sensitivity, 95% specificity, 81% positive predictive value and 97% negative prediction value.

TP, true positive; FP, false positive; PPV, positive predictive value; NPV, negative predictive value; diagnosis, outcome on the basis of DSM-IV-TR criteria.

Extended Data Table 4 | Prediction model using cortical data to classify groups at 24 months

Prediction	Diagnosis HR+ N=34	Diagnosis HR- N=145		
HR+	30	7	81%	37
HR-	4	138	97%	142
	88%	95%		179

A test

A known	B known
TP	FP
PPV	TP+FP

B test

Sensitivity	Specificity
FN	TN
NPV	FN+TN

A known

TP+FN
FP+TN
(TP+FN+FN+TN)

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
Extended Data Table 5 | Clinical characteristics for LR subjects who met ASD criteria at 24 months

LR	DSM	Sex	Mullen ELC	Vineland ABC	ADOS SA	ADOS RBx	ADOS Sev	TBV	SA
Case 1	PDD	F	113	94	12	1	6	1034400	69839
Case 2	PDD	M	82	78	8	4	4	NA	NA
Case 3	AUT	M	59	89	12	4	7	1110231	72244

All data presented is for the visit at 24 months old. DSM, DSM-IV diagnostic criteria; PDD, pervasive developmental disorder, not otherwise specified; AUT, autism; Mullen ELC, Mullen Early Learning Composite standard score; Vineland ABC, Vineland Adaptive Behaviour Composite standard score; ADOS SA, ADOS social affective total score; ADOS RBx, ADOS repetitive behaviour total; ADOS Sev, ADOS severity score; SA, surface area; NA, no MRI data at 24 months.
Extended Data Table 6 | Subject demographics (including tests for group differences) for subjects with all 3 longitudinal visits and those with 1–2 visits completed

Measure	Visit	Subjects with All 3 Visits (N=15)	Subjects with Partial Visits (N=53)	P		
		N	%	N	%	
Sex						
Male		13	87	44	83	.73
Female		2	13	9	17	
Race						.99
White		13	87	46	87	
Non-white		2	13	7	13	
Not reported		0	0	0	0	
Family Income						.54
Not answered		0	0	1	2	
<50K		3	20	14	26	
50K-75K		3	20	14	26	
75K-100K		5	33	7	13	
100K-150K		3	20	9	17	
>150K		1	7	8	15	
Mother’s Highest Education						.58
No college		5	33	23	43	
College Degree		5	33	19	36	
Graduate Degree		5	33	11	21	

Measure		Mean	SD	Mean	SD	P
Mother’s Age at Childbirth (Years)	34.5	3.6	32.9	4.2	.20	
Gestational Age at Birth (Weeks)	38.6	1.0	39.1	1.1	.24	
Birth Weight in pounds (lbs)	7.6	1.7	7.9	1.2	.54	
Age at study visit						
6 months	6.7	0.8	6.6	0.7	.61	
12 months	12.9	0.7	12.6	0.6	.10	
24 months	24.6	0.6	24.6	0.6	.72	

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
We further tested whether there were any group differences in developmental function (Mullen) and TBV and surface area. Groups did not differ in developmental function at any visit age, indicating that the subjects in the 3-visit and 1–2-visit subgroups are similar in their developmental capabilities. No group differences were observed for either TBV or surface area at any visit age, suggesting groups appear to have similar profiles for the brain measurements. Age is the visit age (in months), brain volume measurements are in mm³ and surface area measurements are mm².

Age	Subjects with All 3 Visits (N=15)	Subjects with Partial Visits (N=30, 26, 26)	p		
	Mean	SD	Mean	SD	
6	8000001	69514	792607	64296	.41
12	959305	83485	975504	75371	.53
24	1111639	101093	1095702	106536	.60
	54886	3671	54312	3830	.68
12	61745	4206	61545	4893	.90
24	73254	5293	71841	6388	.41
Extended Data Table 8 | Group differences in developmental trajectories and cross-sectional volumes by age for males

Measure	Trajectory	LR (N=28)	HR-neg (N=51)	HR-ASD (N=13)	Overall Group Comparison	Pairwise Group Contrast				
		Slope	SE	Slope	SE	df1, df2, F, P				
Total brain volume	1st Year	217559	1683	24038	1124	18833	4522	2, 106	1.25	0.29
	2nd Year	10398	996	9396	460	16255	3057	2, 106	2.83	0.06
Surface Area	1st Year	1020	105	1070	75	1421	153	2, 177	2.58	0.08
	2nd Year	859	47	891	37	921	80	2, 177	0.29	0.75
Cortical Thickness	1st Year	-0.020	0.004	-0.021	0.003	-0.025	0.006	2, 177	0.19	0.83
	2nd Year	-0.028	0.002	-0.023	0.002	-0.026	0.004	2, 177	0.41	0.87
Cross-Sectional	Visit age	LSM	SE	LSM	SE	LSM	SE	df1, df2, F, P		
Total brain volume	6 months	718586	16333	72722	15685	752604	42125	2, 106	0.49	0.62
	12 months	847944	20012	871452	11539	974399	52450	2, 106	0.53	0.56
	24 months	972725	21498	984204	12307	1068460	57570	2, 106	1.24	0.29
Surface area	6 months	63167	960	54895	473	54463	939	2, 177	2.32	0.10
	12 months	59287	781	61307	586	62990	1170	2, 177	4.01	0.02
	24 months	69582	886	72001	667	74036	1354	2, 177	4.42	0.01
Cortical thickness	6 months	6.04	0.05	5.99	0.033	6.09	0.087	2, 177	1.10	0.33
	12 months	5.92	0.045	5.86	0.034	5.85	0.07	2, 177	0.81	0.45
	24 months	6.61	0.036	6.58	0.026	6.63	0.06	2, 177	0.37	0.69

The primary analysis of brain volume trajectories included only those male and female study participants with three completed visits (6, 12 and 24 months), to best depict longitudinal trajectories over time. Separate analyses on males and females are likely to be inadequately powered owing to small subsample size (males = 13, females = 2) and therefore provide inconclusive results. With that caveat, we provide the results of our male-only analysis for the three groups for total brain volume. We do not see any group differences in the first year (6–12 months). The HR-ASD males show a pattern of TBV brain enlargement by the end of the second year, compared to the LR and HR-neg groups. Brain volume measurements for trajectory and cross-sectional analyses are in mm³, surface area measurements are in mm² and cortical thickness measurements are in mm. Slope is presented as change/months. The sample for the piecewise linear model included subjects with complete data at all three visits (6, 12 and 24 months): 1st year, 6–12 month period; 2nd year, 12–24 month period; LSM, least square means; pairwise group comparison (P < 0.05); SE, standard error.