ARTICLE; MEDICAL BIOTECHNOLOGY

Microtensile bond strength and sealing efficiency of all-in-one self-etching adhesives

Neslihan Tekce a,*, Mustafa Demirci b, Safa Tunçer c and Ömer Uysal d

a Department of Restorative Dentistry, Faculty of Dentistry, Kocaeli University, Kocaeli, Turkey; b Department of Conservative Dentistry, Faculty of Dentistry, Istanbul University, Istanbul, Turkey; c Department of Conservative Dentistry, Faculty of Dentistry, Istanbul University, Istanbul, Turkey; d Bezmialem Vakif University, Faculty of Medicine, Department of Biostatistics and Medical Informatics, Istanbul, Turkey

(Received 7 October 2014; accepted 8 October 2014)

This study aimed to evaluate the microtensile bond strength and amount of microleakage with self-etch adhesives. For the bond strength study, 50 human third molars were randomly assigned to five groups according to the adhesive system used. In each group, half of the specimens were subjected to the microtensile test immediately after the bonding procedures and tooth sectioning, while the remaining half were subjected to the test after storage in distilled water for 3 months. For the microleakage study, following the preparation and restoration of class V cavities, 70 human molars were divided into two groups for the five adhesives; the specimens in one group were stored in distilled water for 24 h and those in the other group were stored for 3 months. In both groups, the teeth were sectioned and evaluated for dye penetration after the storage time. After 24 h, the microtensile bond strengths in descending order were as follows: Clearfil SE Bond > G Aenial Bond > Optibond All-in-One (AiO) > Adper Prompt L Pop (hereafter L Pop) > Futurabond M. After 3 months, the μTBS of all five bonding agents was decreased, although the decrease was significant only for L Pop, which showed the highest scores for leakage around the enamel margins, whereas Futurabond M showed the highest scores for leakage around the gingival margins. After 3 months, the microleakages scores significantly increased for G Aenial Bond, Futurabond M and OptibondAiO.

Keywords: bond strength durability; all in one self-etching adhesives; sealing effect

Introduction

Simplified adhesives, often referred to as all-in-one self-etch adhesives, have gained considerable market share [1] and popularity among dentists since their recent introduction, considering they are available as a single solution containing etchant, primer, and bonding agent held together by both hydrophilic and hydrophobic monomers with a relatively high concentration of solvent.[1,2]

In contemporary adhesives, hydrophilic resin monomers are dissolved in volatile solvents such as acetone and ethanol, which aid in displacing water from the dentinal surface and facilitate resin monomer penetration into the collagen network,[3] increasing bond strength. Water is also essential as an ionization medium to facilitate self-etching activity in self-etch adhesives. Elimination of all solvents and water from the adhesive is essential before light curing to prevent adverse effects on monomer polymerization.[4] This is achieved by allowing an evaporation time between resin application and polymerization. Residual solvent in the adhesive resin or water in the hybrid layer because of high hydrophilic content of the adhesive or inappropriate water evaporation leads to pore formation in the cured adhesive,[5] which can compromise restoration longevity.[6]

Bond durability and the hermetic coating is essential for long-term restoration success, because a poor bond weakens adhesion and leads to gap formation at the tooth-restoration interface.[7] Microleakage predisposes the tooth to post-operative sensitivity, secondary caries and eventual treatment failure.[8]

Bond strength decrease in hydrophilic resin primarily occurs during the first month of water storage in vitro.[9] Reportedly, the bond strength curve decreases after 3–6 months of water storage, although it does not decrease to zero; moreover, bond strength is retained after long-term water storage.[10] This decrease may result from water movement within the hybrid layer,[11] or hydrolysis of collagen fibrils not encapsulated by resin monomers at the base of the hybrid layer.[12,13]

Taken together, adhesive systems require solvents and hydrophilic monomers to produce a strong bond at the moist dentin surface. However, the solvent and hydrophilic content of the adhesive causes gradual deterioration of adhesives at tooth interfaces. Therefore, this study aimed to investigate the effectiveness of four all-in-one self-etch adhesives with varied hydrophilicity and solvents and one two-step self-etch adhesive (as a control) in terms of microtensile bond strength and microleakage.
after distilled water storage for 24 h and 3 months. The null hypotheses were as follows.

1. The solvent content of adhesives influences initial \(\mu \)TBS values and leakage scores.
2. Despite a more user-friendly technique simplified adhesives tend to display an inferior bond strength compared with multistep adhesives.
3. Interface deterioration initiates after 3 months of water storage, with decreasing \(\mu \)TBS values and/or increasing leakage scores.

Materials and methods

Microtensile bond strength

Fifty caries- and defect-free human third molars were obtained from patients requiring extraction. The teeth were disinfected in 0.5% chloramin T (Merck KGaA 64271 Darmstadt, Germany), stored in distilled water at 4 °C and used within 6 months after extraction. The occlusal enamel was horizontally sectioned 1 mm below the dentinoenamel junction (DEJ) using a slow—speed diamond saw (Isomet 1000, Buehler, Lake Bluff, IL, USA). A light microscope (Olympus SZ61, Munster, Germany) was used at 20× magnification to ensure accurate occlusal enamel removal. The exposed dentin surfaces were further polished on wet 600-grit SiC paper for 60 s to create a standardized smear layer.

The teeth were then randomized into five groups \((n = 10) \), which were randomly assigned to one of the five adhesives being tested. All adhesive systems were applied strictly according to the manufacturer’s instructions (Table 1). After application, a composite core build-up was performed using a microhybrid resin composite in three layers of maximum 2-mm thickness to a height of 5 mm (Filtek Z 250, Shade A2, (3M ESPE, St. Paul, USA). Each increment was light-cured with a quartz-tungsten halogen curing unit (Bisco V Light Curing Meter, Benlio Dental Inc, Ankara, Turkey) for 40 s. The light intensity output was monitored using a dental radiometer (Hilux Light Curing Meter, Benlioglu Dental Inc, Ankara, Turkey) and was at least 600 Mw/cm². The restored teeth were stored in water at 37 °C for 24 h and longitudinally cut into five or six 1-mm-thick and 10-mm-long sections perpendicular to the tooth-adhesive interface, using a slow—speed diamond saw under water irrigation. The sections were left partially attached to the tooth, which was then rotated 90 degrees and sectioned again to obtain 1-mm²-thick (±0.2 mm²) and 10-mm-long sticks. Specimens that failed during sectioning were excluded from statistical analyses. All bonding procedures were performed at room temperature by a single operator. The intact sticks were then randomized into two subgroups; specimens in one group were stored in distilled water at 37 °C for 24 h and subjected to bond strength testing, while those in the other group were stored in distilled water at 37 °C for 3 months before being loaded to failure. After the storage period, the specimens were attached to a modified device for microtensile testing with cyanoacrylate resin (Zapit Dental ventures of North America, Corona, CA, USA) and subjected to a tensile force until failure in a universal testing machine (Micro Tensile Tester BISCO Inc, Schaumburg, IL, USA) at a crosshead speed of 0.5 mm/min. The failure load was recorded for each specimen. The failure mode was evaluated at 30× (Olympus SZ61) and classified as cohesive within dentin, cohesive within composite resin and adhesive/mixed (failure at resin-dentin interface or concomitant cohesive failure of the neighbouring substrates).[11]

The mean \(\mu \)TBS values after 24 h and 3 months were calculated for each adhesive. The distribution of \(\mu \)TBS data was checked for normality using the Kolmogorov–Smirnov test and statistically analysed using one-way ANOVA to examine the effects of adhesive type and testing time on bond strength. When significant differences were found among adhesives, they were compared using Tukey’s HSD post-hoc test, with \(p < 0.05 \) considered statistically significant.

Microleakage

Seventy caries- and defect-free human molars were collected after obtaining patient consent. The teeth were disinfected in 0.5% chloramin T for a week, stored in distilled water at 4 °C, and used within 6 months after extraction. Standard class V buccal cavities were centred on the cement-enamel junction and were approximately 2-mm deep, 3-mm high and 5-mm wide. Maintaining 90° cavosurface angles at all cavity margins produced a slightly divergent preparation with no deliberate mechanical retention.

Each bonding resin was applied on the dentin surface according to the manufacturer’s instructions \((n = 7; \text{Table } 1) \). Following adhesive treatment (Filtek Z 250), a composite core was built with light activation of individual increments for 40 s (Bisco VIP).

Soft-Lex disks (3M ESPE) were used for finishing and polishing. The bonded specimens were stored in distilled water at 37 °C for 24 h before being subjected to 500 thermocycles between water baths at 5 °C and 55 °C. The specimens in each group were tested after 24 h or after water storage for 3 months. After the storage time, the tooth apices were sealed with amalgam (YDA Amalgam Alloy Capsules, Spain), and all tooth surfaces, except a 1-mm-wide zone around the restoration margin, were sealed with nail varnish. Subsequently, they were immersed in a 0.5% methylene blue dye solution for 24 h. The teeth were then rinsed under tap water and dried. Each tooth was buccolingually...
Table 1. Ingredients, manufacturers, application technique and lot number of dentin bonding systems used in this study.

Dentin bonding agents	Manufacturer	Ingredients	Application	Lot number
Optibond All-In-One	Kerr Corporation Orange, CA	Monomers — Glycerol phosphate dimethacrylate (GPDM) Difunctionalmethacrylatedimoners, HEMA Solvents — water, acetone and ethanol Photo-initiator — camphorquinone Fillers — three nano-sized fillers Fluoride-releasing fillers — sodium exafluorosilicate and ytterbiumfluoride	Apply to tooth for 20 s with agitation twice Repeat this procedure twice Light-cure for 10 s	2956948
Clearfil SE Bond	KURARAY Medical Okuyama, Japan	Primer: MDP, HEMA, hydrophilic dimethacrylate, N-Diethenol p-toluidine, water Bond: MDP, BisGMA, HEMA, hydrophobic dimethacrylate, CQ, N, N-Diethenol p-toluidine, Silanated colloidal silica	Apply primer 20 s. Mild air stream. Apply bond. Gentle air stream. Light cure 10 s.	41205
Futurabond M	VOCO Cuxhaven Germany	Urethandimethacrylate, HEMA Acetone Acidic adhesive monomer 2-hydroxyethylmethacrylat Catalyst	Apply adhesive (scrubbing) 20 s. Air blow. Light cure 20 s.	1015233
G-Aenial Bond	GC CORPORATION Tokyo, Japan	Phosphorylated methacrylates 4-Methacryloyloxyethyltrimellitate anhydride (4-META) Triethylene glycol dimethacrylates (TEGMA) Urethane dimethacrylates (UDMA) Acetone, water	Apply one coat of adhesive, leave undisturbed for 10 s Air dry vigorously Light-cure for 10 s	1011181
Adper Prompt L-Pop	3M ESPE St Paul, MN, USA	HEMA phosphates, HEMA, bis-GMA, modified polyalkenoic acid, water, photoinitiator	Scrub first coat 15 s. Gently air dry. Second coat application (scrubbing) 15 s. Gently air dry. Light-cure 10 s.	387690

BisGMA = 2,2-bis(4-(2-hydroxy-3-methacryloxypropoxy))-phenylpropane; HEMA = 2-hydroxyethylmethacrylate.
sectioned into 0.8-mm-thick sections with a slow—speed diamond saw under water cooling (Isomet 1000) to evaluate dye penetration. On each restoration, three cuts (mesial, middle, and distal) were prepared longitudinally in the buccolingual direction using a diamond saw mounted on a cutting machine (Isomet 1000; Figure 1). These preparations yielded six evaluating surfaces (four sections) for each restoration, with a total of 420 viewing surfaces. Each specimen allowed one measure in enamel and one in dentin, with a total of 840 measures. The sections were observed under a stereomicroscope (Olympus SZ61, Olympus Corporation, Tokyo, Japan) at 40 magnification, and microleakage at the enamel and gingival margins in each section was evaluated by two independent operators using the following scoring system:

0: no dye penetration,
1: dye penetration up to DEJ in the enamel margin or up to one-third of the full gingival wall length,
2: dye penetration beyond DEJ and up to two-thirds of the full enamel margin wall length or between
3: dye penetration beyond two-thirds of the full enamel or gingival wall length, without axial wall involvement,
4: extensive dye penetration with axial wall involvement.

Borderline cases were decided by consensus among observers. Statistical analyses were conducted using the Kruskal—Wallis test to determine statistically significant differences in leakage at the enamel and gingival margins among groups for each adhesive and among the five adhesives within each group. If a significant difference was observed at any margin, Dunn’s multiple comparison test was performed. Intergroup comparisons (enamel vs. gingival margins) were conducted using the Wilcoxon signed-rank test. All statistical tests were performed at $p < 0.05$.

Results and discussion

Microtensile bond strength

The mean μTBS values obtained with the five bonding agents after 24 h and 3 months are shown in Table 2. Pre-testing failures were excluded from analysis. One-way ANOVA revealed statistically significant differences for adhesive type ($p < 0.05$), with significant differences in μTBS values among all bonding agents at 24 h: Clearfil SE Bond (43.9 ± 6.8 MPa) > G Aenial Bond (35.3 ± 6.2 MPa) > Optibond All-In-One (AiO; 30.4 ± 5.3 MPa) > Adper Prompt L Pop (L Pop; 26.2 ± 6.2 MPa) > Futurabond M (18.4 ± 3.8 MPa). After 3 months, the μTBS values were significantly different among all except between L Pop and Futurabond M: Clearfil SE Bond (42.1 ± 6.6 MPa) > G Aenial Bond (32.7 ± 5.9 MPa) > Optibond All-In-One (28.1 ± 5.6 MPa) > L Pop (21.2 ± 5.8 MPa) > Futurabond M (17.0 ± 3.5 MPa).

The μTBS values of all adhesives decreased slightly over time, with only L Pop showing a significant decrease after 3 months.

The failure modes observed under light microscopy are presented in Table 3. The majority of failure modes for each adhesive were adhesive/mixed after 24 h and 3 months. Although the overall failure percentage was markedly lower than the adhesive/mixed failure percentage, cohesive failure within composite was observed as

Water storage time	n	Optibond All-In-One	n	G Aenial Bond	n	Clearfil SE Bond	n	Adper Prompt L Pop	n	Futurabond M
24 h	61	30.4 ± 5.3 Aa	64	35.3 ± 6.2 Ba	57	43.9 ± 6.8 Ca	59	26.2 ± 6.2 Da	58	18.4 ± 3.8 Ea
3 months	72	28.1 ± 5.6 Aa	60	32.7 ± 5.9 Ba	57	42.1 ± 6.6 Ca	58	21.2 ± 5.8 Db	51	17.0 ± 3.5 Da

![Figure 1. Schematic illustration of cutting restorations on the teeth and methodology of microleakage evaluation. Adapted from Demirci et al. [14] with permission from John Wiley and Sons by License Number: 3559240332458.](image-url)
the second most common failure mode for all except Futurabond M.

Consistent with results of this study, similar bond strength values after 24 h were reported in other studies for Clearfil SE Bond.[15,16] Proença et al. [15] found that Clearfil SE Bond exhibited the highest μTBS value compared with L Pop and Futurabond M. The superior performance of this system is attributed to the synergy of an unsaturated 10-MDP (10-Methacryloyloxydecyl dihydrogen phosphate) as the acidic monomer combined with HEMA (2-hydroxyethyl methacrylate), which supposedly improves tooth surface wetting and calcium ion chelation in dentin.[15,16]

Van Landuyt et al. [17] found that μTBS was significantly poorer with Optibond AiO than with Clearfil SE Bond and G Bond. Optibond AiO incorporates not only HEMA (8%—11%) but also water, acetone (35%—45%) and ethanol (4%—9%). This can result in stronger water absorption by the adhesive resin, which could act as a semi-permeable membrane allowing water transport and thus affect the adhesive’s mechanical properties.[18] Another possible explanation for the relatively lower performance of Optibond AiO is water entrapment within the hybrid layer [19] because of high hydrophilicity; incomplete solvent removal from the adhesive layer [5] can also adversely affect Bi-GMA polymerization [20] and decrease the bond strength of Optibond AiO.

G Aenial Bond exhibited the highest μTBS values after Clearfil SE Bond, probably because of 4-MET in the former. This monomer can chemically interact with hydroxyapatite crystals.[21] G Aenial Bond is HEMA-free. HEMA promotes adhesion in most self-etch systems,[22] maintains resin monomers in one solution, and prevents phase separation.[23,24] However, high HEMA

Table 3. Distributions of failure patterns for each experimental condition: adhesive/mix, cohesive resin, cohesive dentin).

Dentin bonding agent	Water storage time	Adhesive/mix (%)	Cohesive resin (%)	Cohesive dentin (%)
Optibond All-In-One	24 h	93.5%	4.9%	1.6%
	3 months	91.68%	6.94%	1.38%
G Aenial Bond	24 h	92.3%	6.2%	1.5%
	3 months	85%	10%	5%
SE Bond	24 h	87.79%	7.01%	5.2%
	3 months	89.49%	7.01%	3.5%
L Pop	24 h	94.92%	5.08%	–
	3 months	100%	–	–
Futurabond M	24 h	100%	–	–
	3 months	100%	–	–

Table 4. Distribution of microleakage scores, the mean values and standard deviations of enamel and dentin microleakage for each group of studied dentin bonding agents and pair wise comparisons. Within a column, values having different capital letters exhibited statistically significant differences ($p < 0.05$); comparison of the dentin bonding agents within each groups. Within a row having different lower case letters exhibited statistically significant difference ($p < 0.05$); comparison of the same dentin bonding agent between enamel and dentin within each group).

Dentin bonding agents	Enamel leakage scores	24 h	3 months														
n	0 1 2 3 4 Mean Std. dev.	11 25 6 – – 0.88 0.63	Ab	Aa													
24 h		Futurabond M	25	17	20	0.48	0.5	Aa	25	17	–	–	0.4	0.49	Ba		
24 h		Clearfil SE Bond	42	39	3	–	–	0.07	0.26	Ba	35	7	–	–	0.17	0.37	BCb
3 months		Optibond All-In-One	42	18	24	–	–	0.57	0.5	Aa	37	5	–	–	0.12	0.32	Cb
24 h		Prompt L Pop	42	18	14	1	–	0	0	Ca	11	31	–	–	0.74	0.44	Ab
3 months		G Aenial Bond	42	22	20	–	–	0.48	0.5	Aa	25	17	–	–	0.4	0.49	Ba
24 h		24	33	18	–	–	0.79	0.41	C Da	42	8	34	–	–	0.81	0.39	CDa

574 N. Tekce et al.
Table 5. Comparison of the same dentin bonding agents between two groups (24 h and 3 months). Within a column, values having different capital letters exhibited statistically significant difference for enamel and dentin margins, separately ($p < 0.05$); comparison of the same dentin bonding agents between two groups.

Group	Futurabond M	Clearfil SE Bond	Optibond AIO	Prompt L Pop	G Aenial Bond
Enamel	A	A	A	A	A
Dentin	A	A	A	B	B

concentrations can adversely impact the mechanical properties of the polymer over time. Higher HEMA concentrations in one-step self-etch adhesives may decrease the initial bond strength because of water attraction. Therefore, the success of G Aenial Bond can be attributed to not only 4-MET presence but also HEMA absence.

Futurabond M is a one-step self-etching adhesive containing HEMA and acetone, while it does not contain water, which is required to dissociate weak acids into ionized forms for smear layer permeation and underlying intact tooth substrate demineralization. This probably affects the μTBS values of Futurabond M. Furthermore, residual water in dentin channels and acetone should be completely eliminated before polymerization. However, the recommended application time may be insufficient to allow water removal from the polymerized layer, possibly resulting in the low μTBS values for Futurabond M in this study. Another possible explanation is the increased initial acetone content that results in thinner adhesive layers, affecting the adjacent dentin bond.

The bond strengths after 24 h decreased for all adhesives during 3 months of water storage, with the decrease being insignificant only except L Pop. Water storage for 3 and 6 months did not significantly decrease the μTBS values of G Bond and Clearfil S3 Bond, consistent with this study. Additionally, Osorio et al. showed that Clearfil SE Bond exhibited the best resin–dentin bond durability compared with Futurabond M and L Pop. Clearfil SE Bond can produce hybrid layers that are less sensitive to age. The high camphorquinone percentage in this adhesive may have improved the polymerization degree and indirectly improved the resistance to deterioration.

Moreover, G Aenial Bond showed better resistance to water degradation compared with L Pop after 3 months of water storage. Torkabadi et al. evaluated the bonding durability of G Bond (HEMA-free) and Clearfil S3 Bond (HEMA-containing) after 1 year of water storage. There were no significant differences for G Bond between each time point, although μTBS values decreased over time. Considering the deteriorating effects of HEMA on the adhesive interface over time, HEMA removal can increase the resistance of adhesives to deterioration.

Three month water storage significantly decreased μTBS values for L Pop. Reis et al. reported a significant decrease in the bond strength of L Pop after 6 months of water storage (24.3 ± 3.1 MPa to 16.9 ± 4.1 MPa). Previous studies have shown that aggressive one-step self-etching adhesives (L Pop, Futurabond M) can completely dissolve the smear layer and form relatively thick hybridized complexes that incorporate the dissolved smear layer components. Adhesive systems containing methacrylated phosphoric acid HEMA-ester (L Pop) may be quite acidic, resulting in profound enamel and dentin demineralization with the added disadvantage of hydrolytic instability. These factors may explain the significant decrease in μTBS values of L Pop after 3 months.

Microleakage

Data for distributions and mean values of enamel and gingival margin microleakage in each group and pair-wise comparisons are shown in Table 4. After 24 h, enamel margin microleakage was significantly less in the Clearfil SE Bond-treated teeth than in the other teeth. L Pop showed the highest microleakage score among all adhesives. Gingival margin microleakage was significantly lesser with Optibond AiO and Clearfil SE Bond than with the other bonding agents. Futurabond M showed the highest microleakage score among all adhesives. Enamel and gingival margin microleakage scores were significantly different for all adhesives except G Aenial Bond at 24 h.

After 3 months, enamel margin microleakage was significantly lesser in Clearfil SE Bond-treated teeth than in the other teeth. L Pop showed the highest microleakage score among all adhesives (Table 5). Gingival margin microleakage was significantly lesser in Clearfil SE Bond-treated teeth than in the other teeth. Futurabond M showed the highest microleakage score among all adhesives. Optibond AiO exhibited significantly lesser microleakage than L Pop. Enamel and gingival margin microleakage scores were significantly different for all adhesives except G Aenial Bond (Table 5).

Finally, enamel margin microleakage was significantly different between 24 h and 3 months with G Aenial Bond, while gingival margin microleakage was significantly different between time points with Futurabond M, Optibond AiO and G Aenial Bond (Table 5).
Clearfil SE Bond displayed the lowest microleakage scores in this study. Deliperi et al. [32] indicated that Clearfil SE Bond showed low microleakage values, similar to those of the total etch system Prime & Bond NT. Osorio et al. [33] reported the lowest dye penetration values in dentin for Clearfil SE Bond compared with Etch & Prime 3.0 and Scotchbond MP. Condon et al. [34] reported that apart from 10-MDP, silanated colloidal silica nanofillers in Clearfil SE Bond increase crosslinking and decrease polymerization shrinkage, which may contribute to decreased microleakage. L Pop exhibited relatively high leakage scores compared with the other adhesives at both storage times. Gueders et al. [35] reported significantly high microleakage scores for L Pop than for Scotchbond MP, Optibond Solo Plus and i Bond. Similarly, Manuja et al. [36] reported that L Pop showed higher microleakage scores than Optibond AiO. According to Brackett et al. [37], the pH of the adhesive is not the only factor determining sealing ability. Other factors such as substrate-related factors, variations in adhesive viscosity, surface tension, functional monomers, water concentration and other components of the bonding system also affect bonding.[36,38] In contrast, Van Landuyt et al. [17] and Blunck and Zaslansky [39] demonstrated no correlation between pH and marginal integrity and gap formation in different adhesives.

Futurabond M exhibited the maximum gingival margin microleakage and very little enamel margin microleakage. Amaral et al. reported that the presence of acetone results in high microleakage scores in a moist environment.[7] Systems with only acetone and no water are more sensitive to moisture variations. The advantage of non-acetone adhesive systems is relative insensitivity to dentin surface moisture.[40] This can be the reason for the high gingival margin microleakage scores for Futurabond M.

Blunck and Zaslansky [41] reported that all-in-one adhesives exhibited a decreased marginal quality score and a varied deterioration rate; furthermore, different materials had different deterioration rates after short- and long-term water storage (21 days, 1 year, 3 years). Monticelli et al. [42] reported a decreased sealing effectiveness of Clearfil SE Bond and L Pop along enamel and dentin margins after 24 months of water storage. Researchers report that water sorption phenomena may occur over time, resulting in swelling of the resin layer and weakening of the adhesive joint.[38,42] Phase separation and/or the low polymerization rate of simplified adhesives reportedly result in the formation of weaker interfaces with exposed collagen fibrils, which possibly degrade over time.[43] Taken together, water and other chemicals leaching from the oral cavity may decrease the mechanical properties of polymers.[44] In addition, the substrate is a biological tissue, which makes adhesion difficult.[45] Additionally, the chemical composition of the adhesive itself plays an important role in forming a strong, durable and biologically compatible bond.[46]

Conclusion
Our first null hypothesis was accepted because the results of this study confirm that the water-free, acetone-based, HEMA-containing all-in-one adhesive Futurabond M exhibited the lowest μTBS values not only at 24 h but also after 3 months of water storage. Also, the microleakage scores showed that Futurabond M is very sensitive to dentin moisture, as indicated by the higher gingival margin microleakage scores. Furthermore, ethanol—water-based adhesives used in this study displayed higher μTBS values and lower leakage scores. The second null hypothesis can be accepted because, in any case, the μTBS values of one-step self-etch adhesives were significantly lower than those of two-step self-etch adhesives; however, the μTBS values of all-in-one adhesives differ according to the adhesive composition (more than the adhesive mechanism) and the μTBS values of one-step self-etch adhesives are rather different. The same result is valid for the microleakage test. The third hypothesis can be accepted because the bond strengths of all adhesives at 24 h decreased during 3 months of water storage. The sealing effect of the adhesives at the enamel and gingival margins varied after 24 h depending on the adhesive type. Also, water storage and thermocycling slightly increased the microleakage scores over time, and this increase was pronounced at the gingival margins after 3 months.

Acknowledgements
The current study is based on a thesis submitted to the graduate faculty, University of Istanbul, in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

Disclosure statement
No potential conflict of interest was reported by the authors.

Funding
This work was supported by Scientific Research Projects Coordination Unit of Istanbul University. Project number 5224.

References
[1] Furukawa M, Shigetani Y, Finger WJ, Hoffmann M, Kanhira M, Endo T, Komatsu M. All-in-one self-etch model adhesives: HEMA-free and without phase separation. J Dentistry. 2008;36(6):402–408.
[2] Pashley EL, Agee KA, Pashley DH, Tay FR. Effects of one versus two applications of an unfilled, all-in-one adhesive on dentine bonding. J Dentistry 2002;30(2-3):83–90.
[3] Tay FR, Gwinnett JA, Wei SH. Micromorphological spectrum from over drying to over wetting acid-conditioned...
dentin in water-free acetone-based, single-bottle primer/adhesives. Dental Mater. 1996;12(4):236–244.

[4] Jacobsen T, Soderholm KJ. Effect of primer solvent, primer agitation, and dentin dryness on shear bond strength to dentin. Am J Dentistry. 1998;11(5):225–228.

[5] Dickens SH, Cho BH. Interpretation of bond failure through conversion and residual solvent measurement and Weibull analyses of flexural and microtensile bond strengths of bonding agents. Dental Mater. 2005;21(4):354–364.

[6] Yiu CKY, Pashley EL, Hiraiishi N, King NM, Goracci C, Ferrari M, Carvalho RM, Pashley DH, Tay FR. Solvent and water retention in dental adhesive blends after evaporation. Biomaterials. 2005;26(34):6863–6872.

[7] Amaral CM, Hara AT, Pimenta LAF, Rodrigues AL. Microleakage of hydrophilic adhesive systems in CV composite restoration. Am J Dentistry. 2001;14(1):31–33.

[8] Tay FR, Pashley DH, Hiraiishi N, Imazato S, Rueggeberg FA, Salz U, Zimmermann J, King NM. Tubular occlusion prevents water-treeing and through-and-through fluid movement in a single-bottle, one-step self-etch adhesive model. J Dental Res. 2005;84(10):891–896.

[9] Yiu CK, King NM, Pashley DH, Suh BI, Carvalho RM, Carrilho MR, Tay FR. Effect of resin hydrophilicity and water storage on resin strength. Biomaterials. 2004;25(26):5798–5799.

[10] Hashimoto M., Fujita S, Nagano F, Ohno H, Endo K. Ten-years degradation of resin–dentin bonds. Eur J Oral Sci. 2010;118(4):404–410.

[11] Reis A, Grande RH, Oliveira GMS, Lopes GC, Loguercio AD. A 2-year evaluation of moisture on microtensile bond strength and nanoleakage. Dental Mater. 2007;23(7):862–870.

[12] Sano H, Yoshikawa T, Pereira PNR, Kanemura N, Morgami M, Tagami J. Long-term durability of dentin bonds made with a self-etching primer, in vivo. J Dental Res. 1999;78:906–911.

[13] Carrilho MR, Tay FR, Pashley DH, Tjaderhane L, Carvalho RM. Mechanical stability of resin–dentin bond components. Dental Mater. 2005;21(3):232–241.

[14] Demirci M, Tuncer S, Tekce N, Erdilek D, Uysal O. Influence of adhesive application methods and rebonding agent application on sealing effectiveness of all-in-one self-etching adhesives. J Esthet Restor Dent. 2013;25(5):326–343.

[15] Proença JP, Polido M, Osorio E, Erhardt MC, Aguilera FS, Garcia-Godoy F, Osorio R, Toledano M. Dentin regional bond strength of self-etch and total-etch adhesive systems. Dental Mater. 2007;23(12):1542–1548.

[16] Van Landuyt KL, Kanumilli P, De Munck J, Peumans M, Lambrechts P, Meerbeek BV. Bond strength of a mild self-etch adhesive with and without prior acid-etching. J Dentistry. 2006;34(1):77–85.

[17] Van Landuyt KL, Mine A, De Munck J, Jaecques S, Peumans M, Lambrechts P, Van Meerbeek B. Are one-step adhesives easier to use and better performing? Multifactorial assessment of contemporary one-step self-etching adhesives. J Adhes Dentistry. 2009;11(3):175–190.

[18] Meerbeek BV, Munck JD, Yoshida Y, Inoue S, Vargas M, Vijay P, Van Landuyt K, Lambrechts P, Vanherle G. Adhesion to enamel and dentin: current status and future challenges. Oper Dentistry. 2003;28(3):215–235.

[19] Tay FR, Lai CNS, Chersoni S, Pashley DH, Mak YF, Suppa P, Prati C, King NM. Osmotic blistering in enamel bonded with one-step self-etch adhesives. J Dental Res. 2004;83(4):290–295.

[20] Toledano M, Proença JP, Erhardt MCG, Osorio E, Aguilera FS, Osorio R, Tay F.R. Increases in dentin-bond strength if doubling application time of an acetone-containing one step adhesive. Oper Dentistry. 2007;32(2):133–137.

[21] Siddhu SK, Omata Y, Tanaka T, Koshiro K, Sprefacio D, Semeraro S, Mezzzanica D, Sano H. J Biomed Mater Res B Appl Biomater. 2007;80(2):297–303.

[22] Nakao Y, Naitako T, Pereira PN, Inokoshi S, Tagami J. Dimensional changes of demineralized dentin treated with HEMA primers. Dental Mater. 2000;16(6):441–446.

[23] Van Landuyt KL, Snaeuwaert J, Peumans M, Munck JD, Lambrechts P, Meerbeek BV. The role of HEMA in one step self-etch adhesives. Dental Mater. 2008;24(10):1412–1419.

[24] Van Landuyt KL, De Munck J, Snaeuwaert J, Coutinho E, Poitevin A, Yoshida Y, Inoue S, Peumans M, Suzuki K, Lambrechts P, Van Meerbeek B. Monomer-solvent phase separation in one-step self-etch adhesives. J Dental Res. 2005;84(2):183–188.

[25] Cho BH, Dickens SH. Effects of the acetone content of single solution dentin bonding agents on the adhesive layer thickness and the microtensile bond strength. Dental Mater. 2004;20:107–115.

[26] Torkabadi S, Nakajima M, Ikeda M, Foxton RM, Tagami J. Bonding durability of HEMA-free and HEMA containing one-step adhesives to dentine surrounded by bonded enamel. J Dentistry. 2008;36(1):80–86.

[27] Osorio R, Proença JP, Erhardt MC, Osorio E, Aguilera FS, Tay FR, Toledano M. Resistance of ten contemporary adhesives to resin-dentine bond degradation. J Dental Res. 2008;86(2):163–169.

[28] Yoshida Y, Nagakane K, Fukuda R, Nakayama Y, Okazaki M, Shintani H. Comparative study on adhesive performance of functional monomers. J Dental Res. 2004;83(6):454–458.

[29] Reis A, Albuquerque M, Pegoraro M, Mattei G, Buer JR, Grande RH, Klein-Junior CA, Baumhardt-Neto R, Loguercio AD. Can the durability of one step self etch adhesives be improved by double application or by an extra layer of hydrophobic resin? J Dentistry. 2008;36(5):309–315.

[30] Tay FR, Pashley DH. Aggressiveness of contemporary self-etching adhesives. I: depth of penetration beyond dentin smear layers. Dental Mater. 2001;17(4):296–308.

[31] Salz U, Zimmermann J, Zeuner F, Moschner N. Hydrolytic stability of self-etching adhesive systems. J Adhes Dentistry. 2005;7(2):107–116.

[32] DeliPERI S, Bardwell DN, Wegley C. Restoration interface microleakage using one total-etch and three self-etch adhesives. Oper Dentistry. 2007;32(2):179–184.

[33] Osorio R, Toledano M, Leonardi G, Tay F. Microleakage and interfacial morphology of self-etching adhesives in CV resin composite restorations. J Biomed Mater Res B Appl Biomater. 2003;66(1):399–409.

[34] Condon JR, Ferracane JL. Reduced polymerization stress through non-bonded nanofiller particles. Biomaterials. 2002;23(18):3807–3815.

[35] Guedes AM, Charpentier JF, Albert AI, Geerts SO. Microleakage after thermocycling of 4 etch and rinse and 3 self-etch adhesives with and without a flowable composite lining. Oper Dentistry. 2006;31(4):450–455.

[36] Manuja N, Nagpal R. Resin-Tooth interfacial morphology and sealing ability of one-step self-etch adhesives: Microleakage and SEM study. Microsc Res Tech. 2012;75(7):903–909.
[37] Brackett MG, Brackett WW, Haisch LD. Microleakage Class V resin composites placed using self-etching resins: Effect of prior enamel etching. Quintessence Int. 2006; 37(2):109–113.

[38] Pashley DH, Tay FR. Aggressiveness of contemporary self-etching adhesives. Part 2: Etching effects on unground enamel. Dental Mater. 2001;17(5):430–444.

[39] Blunck U, Zaslansky P. Enamel margin integrity of class I one-bottle all-in-one adhesive-based restorations. J Adhes Dentistry. 2011;13(1):23–29.

[40] Swift EJ, Bayne SC. Shear bond strength of a new one-bottle dentin adhesive. Am J Dentistry. 1997;10(4):184–188.

[41] Blunck U, Zaslansky P. Effectiveness of all in one adhesive system tested by thermocycling following short and long term water storage. J Adhes Dentistry. 2007; 9(2):231–240.

[42] Monticelli F, Toledano M, Silva AS, Osorio E, Osorio R. Sealing effectiveness of etch and rinse vs. self etching adhesives after water aging: influence of acid etching and NaOCl dentin pretreatment. J Adhes Dentistry. 2008; 10(3):183–188.

[43] Nakaoki Y, Sasakawa W, Horiuchi S, Nagano F, Ikeda T, Tanaka T, Inoue S, Uno S, Sano H, Sidhu SK. Effect of double-application of all-in-one adhesives on dentin bonding. J Dentistry. 2005;33(9):765–772.

[44] Amano S, Yamamoto A, Tsubota K, Rikuta A, Miyazaki M, Platt JA, Moore BK. Influence of thermal and mechanical load cycling on the microtensile bond strength of self-etching adhesives. Oper Dentistry. 2006;31(5):616–622.

[45] Owens BM, Johnson WW. Effect of insertion technique and adhesive system on microleakage of Class V resin composite restorations. J Adhes Dentistry. 2005;7(4): 303–308.

[46] Mjör IA, Shen C, Eliasson ST, Richter S. Placement and replacement of restorations in general dental practice in Iceland. Oper Dentistry. 2002;27(2):117–123.