Comparison between the dissolution profiles of nine meloxicam tablet brands commercially available in Buenos Aires, Argentina

Laura D. Simionato, Luciana Petrone, Mariela Baldut, Silvina L. Bonafede, Adriana Inés Segall

Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Calidad de Medicamentos, CONICET, Junín 956 (1113) CABA, Argentina

ABSTRACT

In this work, the dissolution profiles of nine meloxicam tablet brands marketed in Argentina have been evaluated. As meloxicam is a Class 2 Biopharmaceutical Classification System (BSC) drug, interchangeability between commercial products must be demonstrated through in vivo bioequivalence studies. However, in our country, such studies remain to be performed.

Dissolution studies have been performed according to USP 38 and evaluated by fitting experimental data to the zero and first-order, the Hixson-Crowell, the Higuchi, and the Weibull model-dependent methods. To test the pertinence of these release models, the Akaike Information Criteria (AIC) were used.

All brands satisfied the dissolution profiles (phosphate buffer, pH 7.5) established in the USP. The comparison between the dissolution profiles was carried out by model-dependent and model-independent methods. The Weibull model provided the best kinetic curve adjustment. Brands I, II, IV and VI had the best fitting, with the maximum determination coefficient and the smallest AIC values. Model-independent methods included ratio test and the fit factors. The Dissolution Efficiency (DE) and Mean Dissolution Time (MDT) were analysed with ANOVA and the DGC method. In both cases, brand I did not show similarity with the rest of the brands. Using fit factors, only brands I, II and V were similar to each other.

Significant differences were found among the in vitro dissolution profiles of meloxicam tablets belonging to the nine brands. As meloxicam is a class 2 BCS drug, interchangeability between commercial products must be demonstrated through in vivo bioequivalence studies. However, in Argentina, such studies remain to be performed. Our results demonstrate that caution must be exercised as regards interchangeability of generic products.

© 2018 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

It is known that low water solubility causes a decrease in the release rate of a drug. Thus, the formulation of oral delivery forms of these drugs is a permanent challenge in the pharmaceutical industry. In many cases, the dissolution rate of these drugs is a limiting factor affecting the therapeutic activity. To enhance dissolution several techniques have been developed, such as salt formation, and the development of inclusion complexes and pro-drugs (Jafar et al., 2010; Noolkar et al., 2013).

Three categories of dissolution test specifications for immediate release products are described in the guide provided by the Centre for Drug Evaluation and Research at the Food and Drug Administration (Food and Drug Administration, 1997): (a) single-point specifications, (b) two-points specifications and (c) dissolution profile comparison. Although this point estimate approach is suitable for drug products containing API with high solubility-high permeability, it may not be adequate for low solubility drugs or for products with modified release characteristics. According to the guide: “for highly soluble and rapidly dissolving drug products (BCS classes 1 and 3), a single-point dissolution test specification of 85% (Q = 80%) in 60 min or less is sufficient as a routine quality control test for batch-to-batch uniformity”. For class 2 BSC APIs, it is recommended that a two-point dissolution specification be established, one at 15 min and the other at 30, 45, or 60 min, in order to ensure 85% dissolution (Food and Drug Administration, 1997).

Although weight, hardness, content uniformity, friability and disintegration are tests often employed for the analysis of an
immediate release solid dosage form, the most important are the quantitation of the API, the determination of impurities and the dissolution test (Al Ameri et al., 2012). Once the dissolution specifications are set for a new drug, based on availability studies, such specifications become official for the development of all subsequent drug products having the same active ingredients. According to good laboratory practices, dissolution is considered one of the most important tests that is to be performed on a solid pharmaceutical dosage form (Al Ameri et al., 2012). This test is also used to control stability of the drug product and batch-to-batch consistency (Food and Drug Administration, 1997; Administración Nacional de Medicamentos, Alimentos y Tecnología Médica, 1999).

In vitro dissolution profiles can be compared by three groups of methods: (A) methods based on analysis of variance, (B) model-dependent methods, (C) model-independent methods. Dissolution data can either be analysed in their crude form or they can be transformed using simple ANOVA-based methods. The ANOVA is a useful method to detect differences between the profiles in level and shape (Polli et al., 1997; Yuksel et al., 2000; Costa and Souza Lobo, 2001; Adams et al., 2001; LeBlond et al., 2016).

Model-dependent methods are based on an appropriate curve fitting procedure: the zero and first-order, the Hixson-Crowell, the Higuchi, the quadratic, the Weibull, the Gompertz and the logistic (Yuksel et al., 2000; Costa et al., 2003; Khan et al., 2013). Model-dependent methods explore the mathematical equations governing the liberation profile as a function of certain parameters related to the pharmaceutical dosage form. These models allow an easy quantitative interpretation of data. These methods are always applied in the formulation-development stage.

Model-independent methods generate a single value from a dissolution profile, thus allowing data to be compared directly. Model-independent methods include fit factors and ratio tests. Ratio tests determine, at the same sampling time, the percentage of drug dissolved, the mean dissolution time (MDT) and the dissolution efficiency percentage (DE) of the test formulation in relation to the pharmaceutical dosage form at the same active drug, except when the drug is highly soluble and highly permeable, i.e., class I BCS compounds.

In vitro dissolution profiles can be compared by three groups of methods: (A) methods based on analysis of variance, (B) model-dependent methods, (C) model-independent methods. Dissolution data can either be analysed in their crude form or they can be transformed using simple ANOVA-based methods. The ANOVA is a useful method to detect differences between the profiles in level and shape (Polli et al., 1997; Yuksel et al., 2000; Costa and Souza Lobo, 2001; Adams et al., 2001; LeBlond et al., 2016).

Model-dependent methods are based on an appropriate curve fitting procedure: the zero and first-order, the Hixson-Crowell, the Higuchi, the quadratic, the Weibull, the Gompertz and the logistic (Yuksel et al., 2000; Costa et al., 2003; Khan et al., 2013). Model-dependent methods explore the mathematical equations governing the liberation profile as a function of certain parameters related to the pharmaceutical dosage form. These models allow an easy quantitative interpretation of data. These methods are always applied in the formulation-development stage.

2. Materials and methods

2.1. Reagents

Analytical grade potassium dihydrogen phosphate (Biopack, Argentina) and sodium hydroxide (Anedra, Argentina) were used. Meloxicam was purchased in Uniforma (Argentina), with 99.9% purity, as calculated with reference to the dried substance (India).

2.2. Materials

Nine commercial brand tablets containing 15 mg meloxicam were purchased from pharmacies in Buenos Aires (Argentina). All tests were performed before the product expiration dates, which were similar among brands.

2.3. Apparatus and procedure

All dissolution studies were performed using USP Apparatus 2 (The United States Pharmacopeia, 2015b) in a Vankel, VK 7010 (Varian Inc., USA) manual-sampling dissolution bath. The meloxicam tablets dissolution test was performed at 75 ± 1 rpm in phosphate buffer pH = 7.5. The acceptance criterion was Q = 70% of the labeled amount of meloxicam released in 30 min.

The dissolution medium volume was 900 mL. In all experiments, 10 mL sample aliquots were withdrawn at 5, 15, 30, 45 and 60 min using micropipettes, without medium replacement. The withdrawn amounts were adjusted in the calculations. All samples were filtered through 10.0 μm filter paper (Whatman 91), which was properly validated with the standard solution comparing its performance with that obtained with membrane filters. The drug amount dissolved was determined spectrophotometrically in a Cary 1E Varian UV–VIS spectrophotometer (Victoria, Australia) at 362 nm. To prove peak purity, the second order derivative UV spectra was recorded against dissolution medium as reference solution. This procedure was performed with each product.

Twelve tablets of each preparation were studied to obtain statistically significant results.

2.4. Model-dependent methods

Five model-dependent approaches were used to compare the meloxicam dissolution profiles. The model-dependent approaches included the zero order, the first order, the Hixson-Crowell, the Higuchi and the Weibull models.

2.4.1. Zero order kinetics

The drug dissolution from pharmaceutical dosage forms that do not disaggregate and deliver the API slowly (assuming that the area is not modified and that no equilibrium conditions are reached) can be represented by the following equation:

\[Q_t = Q_0 + K_D t \]

where \(Q_0 \) is the initial amount of drug in the pharmaceutical dosage form, \(Q_t \) is the amount of drug in the pharmaceutical dosage form at time \(t \) and \(K_D t \) is the proportionality constant.

2.4.2. First order kinetics

The amount of API delivered from pharmaceutical dosage forms following this dissolution profile are delivered with a rate that is comparable to the amount of API remaining within, in such way...
that the amount of API liberated per unit of time diminish. First order dissolutions can be represented by the following equation:

\[\ln Q_t = \ln Q_0 + K_0 t \]

(2)

where \(Q_0 \) is the initial amount of API in the pharmaceutical dosage form, \(Q_t \) is the amount of API in the pharmaceutical dosage form at time \(t \) and \(K_0 \) is the proportionality constant.

2.4.3. Hixson-Crowell model

The Hixson-Crowell model assumes that the particle normal area is comparable to the cubic root of its volume. The following equation represents the dissolution profile:

\[Q_{1/3}^0 + Q_{1/3}^t = K_d t \]

(3)

where \(Q_0 \) is the initial amount of API in the pharmaceutical dosage form, \(Q_t \) is the amount of API in the pharmaceutical dosage form at time \(t \) and \(K_d \) is the dissolution constant.

2.4.4. Higuchi model

The Higuchi equation is a “square root of time” release kinetics. This kinetic model gives good experimental fitting data in API dissolution processes formulated as modified liberation systems or semisolid dosage forms. This model can be represented by the following equation:

\[Q = K_d \sqrt{t - t_0} \]

(4)

where \(K_d \) is the dissolution constant.

2.4.5. Weibull model

The Weibull function is a mathematical model lacking physicochemical fundament and can be used to study the dissolution rate. The following equation represents the model:

\[\ln \left(\frac{Q}{Q_{\infty} - Q} \right) = \beta \ln(t - t_0) - \beta \ln t_d \]

(5)

where \(Q \) is the amount of API dissolved at time \(t \), \(Q_{\infty} \) is the amount of API dissolved at time infinite, also called “total dissolution”, \(t_0 \) is the lag time and \(t_d \) is the time interval necessary to dissolve or release 63.2% of the API present in the pharmaceutical dosage form. The shape parameter \(\beta \) is obtained from the slope.

To test the pertinence of the release models employed, the Akaike Information Criteria (AIC) (Aguilar et al., 2008) were used. The AIC are a measure of the best fit based on maximum probability.

Brand	Other ingredients	Appearance
I	Sodium citrate, lactose, microcrystalline cellulose, povidone, colloidal silicon dioxide, insoluble povidone, magnesium stearate	Yellow, circular, with indented line in centre
II	Lactose, microcrystalline cellulose, povidone, insoluble povidone, colloidal silicon dioxide, sodium citrate, sunset yellow aluminium lake, magnesium stearate	Orange, circular, with indented line in centre
III	Lactose monohydrate, sodium citrate, povidone, colloidal silicon dioxide, polyethylene glycol 1500, microcrystalline cellulose, crospovidone	Yellow, circular, with indented line in centre
IV	Lactose monohydrate, microcrystalline cellulose, crospovidone, colloidal silicon dioxide, sodium citrate dehydrate, magnesium stearate, iron (III) oxide yellow	Orange, circular, with indented line in centre
V	Lactose monohydrate, microcrystalline cellulose, sodium citrate trihydrate, povidone K30, colloidal silicon dioxide, crospovidone, magnesium stearate	Yellow, circular, with indented line in centre
VI	Cellactose, crospovidone, povidone K30, sodium citrate, colloidal silicon dioxide, magnesium stearate	Yellow, circular, with indented line in centre
VII	Cellactose, sodium croscarmellose, colloidal silicon dioxide, sodium citrate dihydrate, magnesium stearate	Yellow, circular, with indented line in centre
VIII	Sodium citrate, lactose, microcrystalline cellulose, povidone, iron (III) oxide red, colloidal silicon dioxide, crospovidone, magnesium stearate	Orange, circular, with indented line in centre
IX	Sodium croscarmellose, sodium lauryl sulfate, cellactose 80, reticulated polyvinylpyrrolidone, colloidal silicon dioxide, magnesium stearate, sodium citrate	Yellow, circular, with indented line in centre

Table 1: Formulation compositions.
Parameters of the mathematical models and descriptive statistics for the dissolution data.

When comparing data sets, the model associated with the smallest AIC value is considered the best fit. The AIC is only applicable when specimens with equal weighting scheme are compared.

2.5. Model-independent methods

2.5.1. Fit factors

Moore and Flanner (Moore and Flanner, 1996) have developed a simple model for independent approximation using fit factors. Fit factors are the difference factor f_1 and the similarity factor f_2. These fit factors contrast the difference between the percent API dissolved per unit time of a test with that of a reference formulation. Fit factors have been accepted by FDA Centre for Drug Evaluation and Research (CDER) (Food and Drug Administration, 1997) and the similarity factor has also been adopted by the European Medicines Agency (EMA) Committee for Medicinal Products for Human Use (CHMP) (European Medicines Agency, 2010) and World Health Organization (WHO) (World Health Organization, 2006) as a rating criterion of similarity between two in vitro dissolution profiles. In Argentina, regulations establish that changes in the post marketing stage as regards dissolution profiles must be evaluated using the similarity factor f_2 (Administración Nacional de Medicamentos, Alimentos y Tecnología Médica, 2009).

The fit factors are denoted f_1 (difference factor) and f_2 (similarity factor) and are defined by Eqs. (7) and (8).

$$f_1 = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{R_t - T_t}{R_t} \right) \times 100$$ \hspace{1cm} (7)

$$f_2 = 50 \log \left(1 + \frac{\sum_{i=1}^{n} (R_t - T_t)^2}{R_t^2} \right)^{-0.5} \times 100$$ \hspace{1cm} (8)

(7) Difference factor (8) Similarity factor

where n is the number of dissolution sampling times, and R_t and T_t are the individual or mean percent dissolved at each time point, t, for the reference and test dissolution profiles, respectively. The parameter f_1, whose values range from 0 to 15, and f_2, whose values range from 50 to 100, are used to define equivalence of two dissolution profiles, which means an average difference $\leq 10\%$ at each sampling time.

2.5.2. Dissolution efficiency

This concept has been presented by Khan and Rhodes in 1972 (Khan and Rhodes (1972)). For each sample, the percentage

Table 2

Time (min)	Brand	mean%	RSD	Lower limit	Upper limit
I	32.3	30.4	14.0	48.4	
II	24.2	8.6	20.8	27.8	
III	60.3	9.8	49.4	67.7	
IV	59.9	9.8	51.7	68.6	
V	28.7	8.3	25.2	32.0	
VI	69.8	13.4	49.7	82.7	
VII	66.7	10.1	56.5	78.3	
VIII	78.8	1.9	76.0	81.2	
IX	59.2	2.6	56.7	62.8	
I	66.9	7.5	58.6	74.0	
II	64.2	8.6	55.0	74.0	
III	88.7	6.7	77.2	96.6	
IV	83.0	5.4	77.2	89.2	
V	74.0	2.5	71.4	77.2	
VI	86.9	7.0	79.3	94.8	
VII	89.8	8.7	84.9	113.3	
VIII	97.8	2.5	95.3	102.5	
IX	85.0	4.6	78.1	92.9	

Table 3

Parameters of the mathematical models and descriptive statistics for the dissolution data.

Model	Statistics	I	II	III	IV	V	VI	VII	VIII	IX
Zero Order	r^2	0.8257	0.8414	0.6774	0.7601	0.6720	0.7272	0.5990	0.5931	0.7807
	k	0.1385	0.1644	0.0842	0.0834	0.1174	0.0529	0.0637	0.0468	0.1028
	AIC	12.38	13.53	11.47	9.32	16.49	5.61	10.37	7.43	10.83
First Order	r^2	0.9533	0.9667	0.8080	0.8689	0.7903	0.8205	0.6411	0.6815	0.5182
	k	0.0206	0.0319	0.0244	0.0220	0.0268	0.0143	0.0179	0.0180	0.0350
	AIC	-9.59	-9.35	-2.40	-5.69	-1.28	-8.17	-1.18	-2.03	-3.68
Hixson-Crowell	r^2	0.9195	0.9361	0.7647	0.8352	0.7523	0.7896	0.6304	0.6507	0.8791
	k	0.0151	0.0179	0.0121	0.0113	0.0147	0.0073	0.0090	0.0082	0.0162
	AIC	-14.16	-13.71	-10.15	-13.03	-7.82	-15.87	-9.83	-11.27	-11.21
Higuchi	r^2	0.8943	0.9142	0.8102	0.8788	0.8069	0.8464	0.7440	0.7338	0.8951
	k	1.4778	1.7464	0.9283	0.9039	1.5180	0.5751	0.7153	0.5250	1.1102
	AIC	-8.22	9.13	8.82	5.91	13.85	2.76	8.14	5.31	7.14
Weibull	r^2	0.9985	0.9955	0.9896	0.9961	0.9745	0.9934	0.9470	0.9635	0.8966
	t_d	13.25	14.93	2.53	3.22	11.60	1.30	1.50	0.32	2.85
	β	0.4285	0.5320	0.2753	0.2541	0.4749	0.1632	0.2167	0.1761	0.3206
	AIC	-25.20	-17.60	-19.95	-25.68	-9.97	-27.51	-14.00	-18.03	-16.86
Dissolution efficiency is calculated as the percentage ratio of the area under the dissolution curve up to time t to that of the area of the rectangle described by 100% dissolution at the same time point, and is defined as follows:

$$\text{DE} \% = \frac{\text{AUC}_t}{Q_{100}} \times 100$$ \hspace{1cm} (9)$$

2.5.3. Mean dissolution time

The mean dissolution time is determined from the accumulation curves of dissolved API as function of time (Aguilar et al., 2008).

$$\text{MDT} = \frac{\sum [t_i \Delta Q_i]}{Q_{\text{max}}}$$ \hspace{1cm} (10)$$

where t_i is an intermediate time of the intervals of sampling time, ΔQ_i is the amount of API dissolved in every interval of t and Q_{max} is the maximum of API dissolved.

Results of DE and MDT corresponding to the different meloxicam tablet brands were compared by one-way analysis of variance (ANOVA). The analysis was performed with the Infostat 2008 statistical package (Di Rienzo et al., 2008). After this analysis, a multiple-comparisons method (DGC) was applied (Di Rienzo et al., 2002).

3. Results and discussion

In vitro dissolution testing is a fundamental analytical methodology in the pharmaceutical industry. This methodology allows quality assurance of solid pharmaceutical forms for oral administration. The lot-to-lot quality assurance fosters the development of new formulations, guarantee quality homogeneity and ensure an acceptable API performance even after being modified. If all these requirements are met, the formulation optimization during the development phase is favoured, and stability studies and manufacturing process quality control can be carried out (Adams et al., 2001; Dressman et al., 1998; Ferraz et al., 2007).

Table 1 summarises the characteristics of the nine products. Brand I was taken as the reference product.

The dissolution test for meloxicam tablets described in the USP (The United States Pharmacopeia, 2015b) indicates that no less than 70% ($Q + 5\%$) of the API should be dissolved in 30 min. Table 2 summarises the mean percent dissolved at each time point, the relative standard deviation (RSD), and the upper and lower limits. As shown in Table 2, all Brands fulfilled the USP specifications.

Dissolution curves indicated that the analysed products presented different dissolution profiles (Fig. 1). As meloxicam is a class 2 BCS drug, the dissolution test may be formulation-dependent, and the decision related to generics must be made based on the in vivo bioequivalence studies.

![Statistical comparison of the Dissolution Efficiency (DE) among the nine commercial products. The average is indicated near the boxes. Bars indicate standard deviation.](image1)

![Statistical comparison of the Mean Dissolution Time (MDT) among the nine commercial products. The average is indicated near the boxes. Bars indicate standard deviation.](image2)
The dissolution profiles corresponding to the nine products were evaluated by fitting experimental data to the zero and first-order, the Hixson-Crowell, the Higuchi, and the Weibull models. In Table 3, the following parameters are presented: dissolution constants (k) and the determination constant (r^2), for zero and first order, Hixson-Crowell and Higuchi models, and the shape parameter β, the determination constant (r^2) and T_d which is the time interval necessary to dissolve or release 63.2% of the drug present in the pharmaceutical dosage form, for the Weibull model. No significant variations were found among all β values ($\beta < 1$). The Weibull model provided the best adjustment curve for the nine brands, with the higher determination coefficients (r^2) and smallest AIC values for all the brands tested (bold print indicating the best fits).

The determination of DE and MDT values are useful methods to reduce each curve to a single number, which may be referred to the dissolution rate constant (Figs. 2 and 3). Statistical differences were found among the brands analysed (Tables 4a, 4b, and 5a, 5b.). The DGC test indicated that brands III, IV, VI and IX were similar, whereas brand VII was similar to brand VIII. MDT values for brands III, IV and VI were found to be similar to each other, whereas brand VII was similar to brand VIII. In both cases, brand I was not found to be similar to any other.

Fit factors are important quantitative parameters recommended by the FDA to compare dissolution profiles (Food and Drug Administration, 1997). The results obtained with each brand using brand I as reference are shown in Table 6. The similarity factor f_2 is more sensitive in finding dissimilarities between dissolution curves than the difference factor f_1, and the fit factor values are dependent on the number of sampling time point selected. According to the FDA, f_1 values less than 15 and f_2 values greater than 50 should ensure equivalence between the dissolution curves, indicating an average difference of no more than 10% at the sample time points. According to this guideline, the dissolution curves corresponding to brand II and brand V would be similar to that obtained with the reference formulation.

4. Conclusions

This study found variations in the dissolution profiles of meloxicam tablets commercially available in Argentina. The dissolution profiles obtained with the analysed products were found to be quite different from each other, thus demonstrating that the results obtained with the dissolution test are formulation-dependent. All brands fulfilled the specifications of the dissolution test established by the USP 38.

The Weibull model kinetic curve rendered the best adjustment. The best fittings were obtained with brands I, II, IV and VI, with maximum determination coefficients and smallest AIC values.

The ANOVA and DGC tests applied to DE and MDT values demonstrated that brand I was not similar to any other.

If fit factors are considered, only brands I, II and V were similar. In conclusion, significant differences were observed between the in vitro dissolution profiles of meloxicam tablets of different commercial preparations. As meloxicam is a class II BCS drug, interchangeability between commercial products must be demonstrated with in vivo bioequivalence studies, which remain to be implemented in our country.

Table 4a	Variance analysis (ANOVA) of DE Values for the nine pharmaceutical products.			
Variation source	Square sum	Degrees of freedom	Medium square	F^*
Between treatments	3733.05	8	466.63	72.67
Within treatments	635.68	99	6.42	
Total	4368.73	107		

$F_{\text{critical}} = 1.890$.

* Significant for $P > 0.05$.

Table 4b	DGC test of DE values for the nine pharmaceutical products.
Test: DGC Alfa = 0.05 $PCALT = 2.1382$	
Error: 6.4210 df: 99	
Brands	Average
II	73.25
I	75.56
V	81.26
IX	84.64
IV	86.24
VI	86.77
III	87.03
VII	90.25
VIII	91.45

Table 5a	Variance analysis (ANOVA) of MDT values for the nine Pharmaceutical products.			
Variation source	Square sum	Degrees of freedom	Medium square	F^*
Between treatments	1885.17	8	235.65	77.90
Within treatments	299.49	99	3.03	
Total	2184.66	107		

$F_{\text{critical}} = 2.033$.

* Significant for $P > 0.05$.

L.D. Simionato et al. / Saudi Pharmaceutical Journal 26 (2018) 578–584
Table 5b

DGC test of MDT values for the nine Pharmaceutical products.

Table 6

Fit factors for the nine brands of meloxicam tablets based on the average of twelve tablets.

Fit factor	Brand	f1	f2	
VII	8.35	12	0.50	A
VI	9.37	12	0.50	A
III	11.61	12	0.50	B
IV	11.62	12	0.50	B
IV	12.13	12	0.50	B
IX	13.31	12	0.50	C
V	16.05	12	0.50	D
I	19.61	12	0.50	E
II	21.31	12	0.50	F

Acknowledgment

This work was supported by grant 20020130100342BA to A. I. Segall from UBA and PIP N°: 11420110100380 from CONICET.

References

Adams, E., Coomans, D., Smeyers-Verbeke, J., Massart, D.L., 2001. Application of linear mixed effects models to the evaluation of dissolution profiles. Int. J. Pharm. 226, 107–125. https://doi.org/10.1016/S0378-5173(01)00775-X.

Table 5

Fit factors for the nine brands of meloxicam tablets based on the average of twelve

| Error: 3.0251 df: 99 |

Brands	Average	n	E.E.
VII	8.35	12	0.50
VI	9.37	12	0.50
III	11.61	12	0.50
IV	11.62	12	0.50
IX	13.31	12	0.50
V	16.05	12	0.50
I	19.61	12	0.50
II	21.31	12	0.50

Dressman, J.B., Amidon, G.L., Reppas, L., Shah, V.P., 1998. Dissolution testing as a prognostic tool for oral drug absorption: immediate release dosage forms. Pharm. Res. 15 (1), 11–22. https://doi.org/10.1023/A:1011984216775.

European Medicines Agency, 2010. Guideline on the investigation of bioequivalence. Committee for Medicinal Products for Human Use (CHMP), London UK.

Ferraz, H.G., Carpentieri, L.N., Pereira, Watanabe S., 2007. Dissolution profile evaluation of solid pharmaceutical forms containing chloramphenicol marketed in Brazil. Braz. Arch. Biol. Technol. 50 (1), 57–65. https://doi.org/10.1590/1516-89132007010100007.

Food and Drug Administration, 1997. Guidance for Industry, Testing of Immediate Release Solid Oral Dosage Forms. U.S. Department of Health and Human Services, Center for Drug Evaluation and Research (CDER), U.S. Government Printing Office: Washington, DC.

Intra-Agency Agreement Between the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) and the U.S. Food and Drug Administration (FDA) Oral Formulations Platform—Report 1. <https://ncahc.nichd.nih.gov/collaborativeforts/initiatives/Documents/Formulations_Platform_Report1.pdf> (accessed June 5, 2017).

Jafar, M., Mhg, D., Shareef, A., 2010. Enhancement of dissolution and antiinflammatory effect of meloxicam using solid dispersions. Int. J. Pharm. 2 (1), 22–27.

Khan, F., Li, M., Schindwein, W., 2013. Comparison of in vitro dissolution tests for commercially available aspirin tablets. Diss. Technol. 20, 48–58. https://doi.org/10.14227/D200113P48.

Khan, K.A., Rhodes, C.T., 1972. Effect of compaction pressure on the dissolution efficiency of some direct compression systems. Pharm. Acta Helv. 47, 594–607.

LeBlond, D., Altan, S., Novick, S., Peterson, J., Shen, Y., Yang, H., 2016. In vitro dissolution curve comparisons: a critique of current practice. Diss. Technol. 23 (1), 14–23. https://doi.org/10.14227/DTC30116P14.

Moore, J.W., Flanner, H.H., 1996. Mathematical comparison of dissolution profiles. Pharm. Technol. 20, 64–74.

Nookar, S.B., Jadhav, N.R., Bhende, S.A., Killedar, S.G., 2013. Solid-state characterization and dissolution properties of meloxicam-moringa coagulant-PVP ternary solid dispersions. AAPS PharmSciTech. 14 (2), 569–577. https://doi.org/10.1007/s12249-013-9941-5.

Pappich, M.C., Martinez, M.N., 2015. Applying biopharmaceutical classification system (BCS) criteria to predict oral absorption of drugs in dogs: challenges and pitfalls. AAPS J. 17 (4), 948–964. https://doi.org/10.1007/s12248-015-9743-7.

Polli, J.E., Rekhi, G.S., Ausburger, L.L., Shah, V.P., 1997. Methods to compare dissolution profiles and a rationale for wide dissolution specifications for metoprolol tartrate tablets. J. Pharm. Sci. 86, 690–700. https://doi.org/10.1021/acs.jpharmsci.9b00473c.

Sugihara, M., Takeuchi, S., Sugita, M., Higaki, K., Kataoka, M., Yamashita, S., 2015. Analysis of intra- and intersubject variability in oral drug absorption in human bioequivalence studies of 113 generic products. Mol. Pharmaceutics 12, 4405–4413. https://doi.org/10.1021/acs.molpharmaceut.5b00602.

The United States Pharmacopeia, 2015a. 38th Ed. (Spanish version) U.S. Pharmacopeial Convention, Rockville, MD; pp. 520–530.

The United States Pharmacopeia, 2015b. 38th Ed. (Spanish version) U.S. Pharmacopeial Convention, Rockville, MD; pp. 4640–4642.

World Health Organization, 2006. Technical Report Series No. 937, Annex 7, Multisource (generic) pharmaceutical products: guidelines on registration requirements to establish interchangeability.

Yuksel, N., Kanik, A.E., Baykara, T., 2000. Comparison of in vitro dissolution profiles by ANOVA-based, model-dependent and -independent methods. Int. J. Pharm. 209, 57–67. https://doi.org/10.1016/S0378-5173(00)00554-8.