UNTYING KNOTS IN 4D AND WEDDERBURN’S THEOREM

IGOR V. NIKOLAEV

Abstract. It is proved that the Wedderburn Theorem on finite division rings implies that all knots and links in the smooth 4-dimensional manifolds are trivial.

1. Introduction

Our brief note contains an algebraic proof of the otherwise known topological fact, that all knots and links in the smooth 4-dimensional manifolds can be untied, i.e. are trivial. The novelty is a surprising rôle of the Wedderburn Theorem [Maclagan-Wedderburn 1905] in the 4-dimensional topology.

Recall that arithmetic topology studies a functor, F, between the 3-dimensional manifolds and the fields of algebraic numbers [Morishita 2012]. Such a functor maps 3-dimensional manifolds M^3 to the algebraic number fields K, so that the knots (links, resp.) in M^3 correspond to the prime ideals (ideals, resp.) in the ring of integers O_K.

The map F extends to the smooth 4-dimensional manifolds M^4 and the fields of hyper-algebraic numbers K, i.e. fields with a non-commutative multiplication.

To formulate our result, denote by O_K the ring of integers of the field K. A ring R is called a domain, if R has no zero divisors. The R is called simple, if it has only trivial two-sided ideals. Our main result is the following theorem.

Theorem 1.1. O_K is a simple domain.

Remark 1.2. Theorem 1.1 is false for the algebraic integers, since the domain O_K is never simple.

Corollary 1.3. Any knot or link in M^4 is trivial.

Proof. If $\mathcal{K} \subset M^4$ ($\mathcal{L} \subset M^4$, resp.) is a non-trivial knot (link, resp.), then $F(\mathcal{K})$ ($F(\mathcal{L})$, resp.) is a non-trivial two-sided prime ideal (two-sided ideal, resp.) in O_K. The latter contradicts 1.1, since O_K is a simple ring. □

The paper is organized as follows. Section 2 contains a brief review of the preliminary results. Theorem 1.1 is proved in Section 3.

2010 Mathematics Subject Classification. Primary 16P10; Secondary 57Q45.

Key words and phrases. 4-dimensional manifolds, Wedderburn Theorem.
2. Preliminaries

2.1. Arithmetic topology. The arithmetic topology studies an interplay between 3-dimensional manifolds and number fields [Morishita 2012] [3]. Let \mathcal{M}^3 be a category of closed 3-dimensional manifolds, such that the arrows of \mathcal{M}^3 are homeomorphisms between the manifolds. Likewise, let \mathcal{K} be a category of the algebraic number fields, where the arrows of \mathcal{K} are isomorphisms between such fields. Let $\mathcal{M}^3 \in \mathcal{M}^3$ be a 3-manifold, let $\mathcal{S}^3 \in \mathcal{M}^3$ be the 3-sphere and let O_K be the ring of integers of $K \in \mathcal{K}$. An exact relation between 3-manifolds and number fields can be described as follows.

Theorem 2.1. The exists a covariant functor $F : \mathcal{M}^3 \to \mathcal{K}$, such that:

(i) $F(S^3) = \mathbb{Z}$;

(ii) each ideal $I \subseteq O_K = F(\mathcal{M}^3)$ corresponds to a link $\mathcal{L} \subset \mathcal{M}^3$;

(iii) each prime ideal $I \subseteq O_K = F(\mathcal{M}^3)$ corresponds to a knot $\mathcal{K} \subset \mathcal{M}^3$.

Denote by \mathcal{M}^4 a category of all smooth 4-dimensional manifolds \mathcal{M}^4, such that the arrows of \mathcal{M}^4 are homeomorphisms between the manifolds. Denote by \mathcal{K} a category of the hyper-algebraic number fields \mathcal{K}, such that the arrows of \mathcal{K} are isomorphisms between the fields. Theorem 2.1 extends to 4-manifolds as follows.

Theorem 2.2. ([4, Theorem 1.1]) The exists a covariant functor $F : \mathcal{M}^4 \to \mathcal{K}$, such that the 4-manifolds $\mathcal{M}_1^4, \mathcal{M}_2^4 \in \mathcal{M}^4$ are homeomorphic if and only if the hyper-algebraic number fields $F(\mathcal{M}_1^4), F(\mathcal{M}_2^4) \in \mathcal{K}$ are isomorphic.

2.2. Wedderburn Theorem. Roughly speaking, Wedderburn’s Theorem says that finite non-commutative fields cannot exist [Maclagan-Wedderburn 1905] [2]. Namely, denote by \mathcal{D} a division ring. Let \mathbb{F}_q be a finite field for some $q = p^r$, where p is a prime and $r \geq 1$ is an integer number.

Theorem 2.3. (Wedderburn Theorem) If $|\mathcal{D}| < \infty$ and \mathcal{D} is finite dimensional over a division ring, then $\mathcal{D} \cong \mathbb{F}_q$ for some $q = p^r$.

We shall use 2.3 along with a classification of simple rings due to Artin and Wedderburn. Recall that a ring R is called simple, if R has only trivial two-sided ideals. By $M_n(\mathcal{D})$ we understand the ring of n by n matrices over \mathcal{D}.

Theorem 2.4. (Artin-Wedderburn) If R is a simple ring, then $R \cong M_n(\mathcal{D})$ for a division ring \mathcal{D} and an integer $n \geq 1$.

Remark 2.5. The ring $M_n(\mathcal{D})$ is a domain if and only if $n = 1$. For instance, if $n = 2$, then the matrices $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ and $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ are zero divisors in the ring $M_2(\mathcal{D})$.

3. Proof of theorem 1.1

Theorem 1.1 will be proved by contradiction. Namely, we show that existence of a non-trivial two-sided ideal in O_K contradicts 2.3. To begin, let us prove the following lemma.

Lemma 3.1. O_K is a non-commutative Noetherian domain.
Proof. Recall that O_K is generated by the zeroes of a non-commutative polynomial

$$\mathcal{P}(x) := \sum a_i x b_i x e_i \ldots e_i x l_i,$$

where $a_i, b_i, e_i, \ldots, e_i, l_i \in O_L$ and K is a finite dimensional extension of L. By the Hilbert Basis Theorem for non-commutative rings [Amitsur 1970] [1], if O_L is Noetherian, i.e. any ascending chain of the two-sided ideals of O_L stabilizes, then the ring O_K is also Noetherian. Repeating the construction, one arrives at a finite dimensional extension $H \subset K$, where H is the field of quaternions. The ring of the Hurwitz quaternions O_H is known to be Noetherian. Thus O_K is a Noetherian ring. Lemma 3.1 is proved. □

Returning to the proof of theorem 1.1, let us assume to the contrary, that I is a non-trivial two-sided ideal of O_K. By lemma 3.1, there exists the maximal two-sided ideal I_{max}, such that

$$I \subseteq I_{\text{max}} \subset O_K.$$ \hspace{1cm} (3.1)

Lemma 3.2. The ring $R := O_K/I_{\text{max}}$ is a simple domain.

Proof. The ring R is simple, since I_{max} is the maximal two-sided ideal of O_K. The ring R is a domain, since O_K is a domain and the homomorphism

$$h : O_K \to R$$ \hspace{1cm} (3.2)

is surjective. □

Remark 3.3. It follows from $R \cong O_K/I_{\text{max}}$, that $|R| < \infty$. Indeed, any non-trivial subgroup of the abelian group $(O_K, +)$ has finite index by the Margulis normal subgroup theorem. In particular, the subgroup $(I_{\text{max}}, +)$ has finite index in $(O_K, +)$.

To finish the proof of theorem 1.1, we write

$$R \cong M_n(\mathcal{D}),$$ \hspace{1cm} (3.3)

where \mathcal{D} is a division ring, see Theorem 2.4. Since R is a domain, we conclude that $n = 1$ in formula (3.3), see remark 2.5. Thus

$$R \cong \mathcal{D}.$$ \hspace{1cm} (3.4)

But remark 3.3 says that $|R| < \infty$ and by the Wedderburn Theorem one gets $R \cong F_q$ for some $q = p^r$. In particular, the homomorphism (3.2) implies that the ring O_K is commutative. Indeed, since R is a commutative ring, one gets $h(xy - yx) = h(x)h(y) - h(y)h(x) = h(x)h(y) - h(x)h(y) = 0$, where 0 is the neutral element of R. In other words, the element $xy - yx$ belongs to the kernel of h, which is a two-sided ideal $I_h \subset O_K$. If h is not injective, then I_h is non-trivial and taking the multiplicative identity $1 \in I_h$ we obtain a contradiction $h(1) = 0$. Thus h is injective and $xy = yx$ for all $x, y \in O_K$, i.e. O_K is a commutative ring. On the other hand, the ring O_K cannot be commutative by an assumption of theorem 1.1. The obtained contradiction completes the proof of theorem 1.1.
References

1. S. A. Amitsur, *A noncommutative Hilbert Basis Theorem and subrings of matrices*, Trans. Amer. Math. Soc. **149** (1970), 133-142.

2. J. H. Maclagan-Wedderburn, *A theorem on finite algebras*, Trans. Amer. Math. Soc. **6** (1905), 349-352.

3. M. Morishita, *Knots and Primes. An Introduction to Arithmetic Topology*, Springer Universitext, London, Dordrecht, Heidelberg, New York, 2012.

4. I. Nikolaev, *Arithmetic topology of 4-manifolds*, arXiv:1907.03901

1 Department of Mathematics and Computer Science, St. John’s University, 8000 Utopia Parkway, New York, NY 11439, United States.

Email address: igor.v.nikolaev@gmail.com