Supporting Information

Glycomic analysis reveals a conserved response to bacterial sepsis induced by different bacterial pathogens.

Daniel W. Heindel1, Shuhui Chen1, Peter V. Aziz2, Jonathan Y. Chung1, Jamey D. Marth2, Lara K. Mahal1,3*

1Biomedical Research Institute, Department of Chemistry, New York University, NY, 10003; \\
2SBP Medical Discovery Institute, La Jolla, California, 92037; \\
3Department of Chemistry, University of Alberta, Edmonton, AB, CANADA, T6G 2G2.

* To Whom Correspondence should be addressed: lkmahal@ualberta.ca
Table of Contents

Supplementary Methods

Supplementary Figure S1. Heat map of lectin microarray data for sera from SPN infected

Supplementary Figure S2. Heat map of lectin microarray data for sera from MRSA infected mice

Supplementary Figure S3. Volcano plot depicting changes in glycan abundances between septic and uninfected animals infected with SPN

Supplementary Figure S4. Volcano plot depicting changes in glycan abundances between septic and uninfected animals infected with MRSA.

Supplementary Figure S5. Bisecting GlcNAc levels decrease during sepsis (SPN and MRSA)

Supplementary Figure S6. Heat map of lectin microarray data for sera from ST infected mice

Supplementary Figure S7. Heat map of lectin microarray data for sera from EC infected mice

Supplementary Figure S8. Bisecting GlcNAc levels decrease during upon sepsis induced by EC and SPN

Supplementary Figure S9. Volcano plot depicting changes in glycan abundances between septic and uninfected animals infected with ST

Supplementary Figure S10. Volcano plot depicting changes in glycan abundances between septic and uninfected animals infected with EC

Supplementary Figure S11. MPA Lectin Blots and Corresponding Ponceaus

Supplementary Figure S12. Western Blot of Fibronectin and ITIH2 before and after MPA pulldown, and Corresponding Ponceaus

Supplementary Figure S13. Western Blot of Fibronectin and ITIH2, and Lectin Blot of MPA for sera from MRSA and ST infected mice with Corresponding Ponceaus

Supplementary Table 1. Lectins used in microarrays

Supplementary Table 2. Lectin Microarray Information

Supplementary Table 3. Mass spectrometric analysis of MPA enriched proteins present in mouse septic samples.

Supplementary Table 4. .xls sheet available on Synapse containing proteomic data
Supplementary Methods

Sample Preparation for Mass Spectrometry
The excised gel band was cut into approximately 1mm³ pieces and destained by adding a 1:1 v/v destaining solution of methanol and 100 mM ammonium bicarbonate to the gel pieces and incubated at 37 °C for 15 minutes. The destaining solution was removed and fresh destaining solution added. This process was repeated until the blue stain was removed. The gel pieces were washed in 100% acetonitrile to partially dehydrate the band and further dehydrated in a SpeedVac concentrator. The proteins were reduced by adding 100 µL of 20 mM dithiothreitol and incubating for 1 hr at 57°C. Subsequently free cysteines were alkylated by adding 100 µL of 50 mM iodoacetamide and letting the solution incubate in the dark for 45 minutes. The alkylating solution was discarded and the gel pieces dehydrated again with a 100% acetonitrile wash and SpeedVac concentrator. The samples were digested overnight on a shaker with 250 ng trypsin in 100 mM ammonium bicarbonate at room temperature. The solution was removed and placed into a clean Eppendorf tube. An extraction buffer consisting of 1:2 v/v 5% formic acid/acetonitrile was added to the gel pieces and incubated on a shaker at 37 °C for 15 minutes. The solution extracted and combined with the previous extracted solution and this procedure repeated two more times. The combined solutions were concentrated using a SpeedVac concentrator to remove the organic solvent. The remaining solution was loaded onto equilibrated C18 microspin columns (Harvard apparatus) using a microcentrifuge for 30 sec at 6000 rpm. Sample tube was rinsed three times with 0.1%TFA and the solution passed through the microspin columns. Peptides were eluted into an Eppendorf tube using a solution of 40% acetonitrile in 0.5% acetic acid followed by the addition of 80% acetonitrile in 0.5% acetic acid. The samples were dried in a SpeedVac concentrator, reconstituted in 10 µL 0.5% acetic acid and stored at -80°C until analysis.

Mass Spectrometry Analysis
An aliquot of the sample was loaded onto a Acclaim PepMap trap column (2 cm x 75 μm) in line with an EASY-Spray analytical column (50 cm x 75 μm ID PepMap C18, 2 μm bead size) using the auto sampler of an EASY-nLC 1200 HPLC (Thermo Fisher Scientific). Solvent A consisting of 2% acetonitrile in 0.5% acetic acid and solvent B consisting of 80% acetonitrile in 0.5% acetic acid. Peptides were gradient eluted into a Thermo Fisher Scientific Orbitrap Eclipse mass spectrometer using the following gradient for Solvent B: 0-5% in 5 minutes, 5 - 35% in 60 min, 35 - 45% in 10 min, 45 - 100% in 10 min and 100 - 100% in 10 min. High resolution full MS spectra were acquired with a resolution of 120,000, scan range from 400 to 1500m/z, with a maximum ion time of 50ms, an AGC target of 4e5 and a dynamic exclusion of 30 seconds. The top 20 MS/MS spectra were collected with an AGC target of 2e5, maximum ion time of 200ms, one microscan, 2 m/z isolation window, and Normalized Collision Energy (NCE) of 27.

Data Processing
The MS/MS spectra were searched against the UniProt Mus musculus reference proteome database (downloaded 05/2019) containing common contaminant proteins using Sequest HT within Proteome Discoverer 1.4. The search parameters used were:
precursor mass tolerance ±10 ppm, fragment mass tolerance ±0.02 Da, enzyme trypsin (full) with two maximum missed cleavages, dynamic modification of oxidation on methionine and deamidation on glutamine and asparagine, static modification of carbamidomethyl on cysteine. The data was filtered using a 1% peptide and protein FDR cut off searched against a decoy database. Results were further filtered to only include only proteins identified by at least two unique peptides. The raw files are accessible at https://massive.ucsd.edu under MassIVE accession MSV000088518.
Supplementary Figure S1. Heat map of lectin microarray data for sera from SPN infected mice. Median normalized log₂ ratios (Sample (S)/Reference (R)) of mouse sera samples were ordered by uninfected, early, and late sepsis.
Supplementary Figure S2. Heat map of lectin microarray data for sera from MRSA infected mice. Median normalized log$_2$ ratios (Sample (S)/Reference (R)) of mouse sera samples were ordered by uninfected, early, and late sepsis.
Supplementary Figure S3. Volcano plot depicting changes in glycan abundances between septic and uninfected animals infected with SPN. Statistically significant lectins specific for core 1/3 O-glycans (blue) and bisecting GlcNAc (pink) are labeled. The dashed red line indicates $p < 0.05$ by the Students t-test.
Supplementary Figure S4. Volcano plot depicting changes in glycan abundances between septic and uninfected animals infected with MRSA. Statistically significant lectins specific for core 1/3 O-glycans (blue) and bisecting GlcNAc (pink) are labeled. The dashed red line indicates $p < 0.05$ by the Students t-test.
Supplementary Figure S5. Bisecting GlcNAc levels decrease during sepsis (SPN and MRSA). Box plot analysis of bisecting GlcNAc lectin binding by PHA-E. *P*-values derive from Student’s t-test (* p < 0.05, ** < 0.01, *** < 0.001). For consistency, the same probe of PHA-E is shown.
Supplementary Figure S6. Heat map of lectin microarray data for sera from ST infected mice. Median normalized log₂ ratios (Sample (S)/Reference (R)) of mouse sera samples were ordered by uninfected, early, and late sepsis.
Supplementary Figure S7. Heat map of lectin microarray data for sera from EC infected mice. Median normalized log₂ ratios (Sample (S)/Reference (R)) of mouse sera samples were ordered by uninfected, early, and late sepsis.
Supplementary Figure S8. Bisecting GlcNAc levels decrease during upon sepsis induced by EC and SPN Box plot analysis of bisecting GlcNAc lectin binding by PHA-E. *P-values derive from Student’s t-test (* p < 0.05, ** < 0.01, *** < 0.001).
Supplementary Figure S9. Volcano plot depicting changes in glycan abundances between septic and uninfected animals infected with ST. Statistically significant lectins specific for core 1/3 O-glycans (blue), bisecting GlcNAc (pink) and α-1,2 fucose (orange) are labeled. The dashed red line indicates \(p < 0.05 \) by the Student’s t-test.
Supplementary Figure S10. Volcano plot depicting changes in glycan abundances between septic and uninfected animals infected with EC. Statistically significant lectins specific for core 1/3 O-glycans (blue), bisecting GlcNAc (pink), α-1,2 fucose (orange), terminal galactose (brown), high mannose (dark blue), and α-2,6 sialic acid (purple) are labeled. The dashed red line indicates $p < 0.05$ by the Student’s t-test.
Supplementary Figure S11. MPA Lectin Blots and Corresponding Ponceaus. The entire lectin blots for data shown in Figure 4 are shown along with Ponceau analysis that confirms even loading.
Supplementary Figure S12. Western Blot of Fibronectin and ITIH2 before and after MPA pulldown, and Corresponding Ponceaus. The entire Western Blot for data present in Figure 5c are shown along with Ponceau.
Supplementary Figure S13. Western Blot of Fibronectin and ITIH2, and Lectin Blot of MPA for sera from MRSA and ST infected mice with Corresponding Ponceaus. The entire Western Blot for data present in Figure 5d-e are shown along with Ponceau.
Supplementary Table 1. Lectins used in microarrays

Lectin	Species/Origin	Print Conc. (µg/mL)	Rough Specificity /Inhibitory monosaccharide	Vendor/Source
AAL ¹	*Aleuria aurantia*	1000	Fucose	Vector
ACA ¹	*Amaranthus Caudatus*	1000	Gal-β1,3-GalNAc / Lac	Vector
AIA ¹	*Artocarpus integrifolia*	500	β1,3-GalNAc	Vector/EY
AMA ¹	*Allium moly*	500	Oligo mannose	EY
Anti-B.G.H2 ¹	MAb mouse IgM [A46-B/B10]	undiluted	Blood group H2 antigen	Santa Cruz Biotechnology
Anti-CD15 ¹	MAb mouse IgM [MY-1]	undiluted	Lewis X	Abcam
Anti-Forssman ¹	MAb Rat IgM [117C9]	undiluted	Forssman Antigen	Abcam
Anti-Lewis B	IgM [T218]	undiluted	Lewis B	Sigma
Anti-Lewis X ¹	MAb mouse IgM [P12]	undiluted	Lewis X	Abcam
Anti-Lewis Y ¹	MAb mouse IgM [F3]	undiluted	Lewis Y	Abcam
Anti-MUC5AC human ¹	MAb mouse IgG1 [CLH2]	undiluted	human MUC5AC	Sigma
Anti-MUC5AC mouse	Goat polyclonal to mouse MUC5AC	undiluted	mouse MUC5AC	LSBio
Anti-Mucin 15 ¹	MAb mouse IgG1 [H-5]	undiluted	Mucin 15	Santa Cruz Biotechnology
Anti-Sialyl Lewis A ¹	MAb mouse IgG1	undiluted	Sialyl Lewis A	Abcam
Anti-Sialyl Lewis X ¹	MAb mouse IgM	undiluted	Sialyl Lewis X	Abcam
AOL ¹	*Aspergillus oryzae*	1000	Fucose	TCI America
APA ¹	*Abras precatorius*	500	Gal-β1,3-GalNAc / Lac	EY
ASA ¹	*Allium sativum*	1000	Mannose	EY
Blackbean ¹	*Blackbean crude*	1000	GalNAc	EY
BPA ¹	*Bauhinia purpurea*	500	β-Gal / β-GalNAc	Vector
BR6	unknown (from unpublished work)	480	under investigation	Gift from Dr. Barbara Bensing
CA	*Colchicum autumnale*	1200	Bi-antennary N-linked glycans	EY
CAA ¹	*Caragana arborescens*	1000	Bi-antennary N-linked glycans	EY
Calsepa ¹	*Calystegia sepium*	1000	Bisecting N-linked glycans	EY
CCA ¹	*Cancer antennarius*	1000	9-O-Acetylated sialylation / 4-O-Acetyl sialylation	EY
Cholera Toxin	Vibrio cholerae	1000	GM1 ganglioside	Sigma
Con A	Canavalia ensiformis	1000	Tri-mannose core	EY/Vector
CSA †	Cystisus scoparius	1000	Terminal GalNAc	EY
DBA †	Dolichos Biflorus	1000	GalNAc	Vector
diCBM40 †	engineered Nani from Clostridium perfringens	1000	α Sialylation	Generated in house
DSA †	Datura stramonium	500	LacNAc	EY/Vector
ECA †	Erythrina cristagalli	1000	LacNAc	Vector
EEL/EEA †	Eunonymus europaeus	1000	Blood Group B	Vector/EY
GafD †	recombinant GafD from Escherichia coli	1000	GlcNAc	Generated in house
GHA †	Glechoma hederacea	500	GalNAc	EY
GNA/GNL †	Galanthus nivalis	1500	Oligo mannose	Vector/EY
GS-I †	Griffonia simplicifoia-I	1000	α-Gal / Lac	Vector/EY
GS-II †	Griffonia simplicifoia-II	1000	GlcNAc	Vector
GS-IB4 †	Griffonia simplicifoia-I, isolectin B4	2000	Gal	Vector
H84T †	Banana lectin	1000	High mannose	Gift from Dr. David Markovitz
HAA †	Homarus americanus	1000	Terminal GalNAc	EY
HHL †	Hippeastrum Hybrid	1500	Oligo/High mannose	Vector
HPA †	Helix pomatia	1000	Blood Group A	Sigma/EY
IRA †	Iris Hybrid	1000	GalNAc / Lac	EY
LAA	Laburnum alpinum	900	GlcNAc	EY
LBA †	Phaseolus lunatus	1000	Blood Group A	EY
LcH †	Lens Culinaris	1000	Core Fucose	Vector
LEA/LEL †	Lycopersicon esculentum	1000	GlcNAc	Vector/EY
LFA †	Limax flavus	500	α Sialylation	EY
Lotus †	Lotus tetragonolobus	1000	Fucose	Vector
MAA †	Maackia amurensis	500	Sialylation/Sulfation	EY
MAL-I †	Maackia amurensis-I	2000	Sialylation/Sulfation	Vector
Source	Species/Type	ohio2	Sialylation/Sulfation	Vector
---------	------------------------------	-------	-------------------------------	--------------
MAL-II	*Maackia amurensis-II*	2000	Sialylation/Sulfation	Vector
MNA-G	*Morus nigra Morniga G*	1000	GalNAc	EY
MNA-M	*Morus nigra Morniga M*	1000	Oligo mannose / Gal	EY
MPA/MPL	*Maclura pomifera*	1000	β1,3-GalNAc	Vector
NPA	*Narcissus pseudonarcissus*	1000	Oligo mannose	Vector
PA-I	*Pseudomonas aeruginosa*	1000	Gal	Sigma
PA-IL	bacteria	1000	GalNAc	Generated in house
PHA-E	*Phaseolus vulgaris*	1000	Bisecting GlcNAc	Vector/EY/Sigma
PHA-L	*Phaseolus vulgaris*	1000	β1,6 Branching N-Link glycans	Vector/EY/Roche
PMA	*Polygonatum multiflorum*	500	Oligo mannose	EY
PNA	*Arachis hyogaea*	1000	Gal-β1,3-GalNAc	Vector/EY
PSA	*Pisum sativum*	1000	Core Fucose	Vector
PSL	*Polyporus squamosus*	1000	α2,6 sialylation	EY
PTA	*Psophocarpus tetragonolobus*	500	Blood Groups	EY
PTL-I	*Psophocarpus tetragonolobus-I*	1500	Blood Group A	Vector
PTL-II	*Psophocarpus tetragonolobus-II*	1000	α2 Fucose	Vector
RCA120	*Ricinus Communis Agglutinin I*	1000	Gal / Lac	Vector
rCVN	Recombinant Cyanovirin	1000	High mannose	Gift from Dr. Barry O'Keefe
rGRFT	Recombinant Griffithsin	1000	High mannose	Gift from Dr. Barry O'Keefe
Ricin B Chain	*Ricinus communis*	1000	Gal	Vector
RPA	*Robinia pseudoacacia*	500	Complex N-link glycans	EY
rSVN	Recombinant Scytovirin	1000	High mannose	Gift from Dr. Barry O'Keefe
SBA	*Glycine max*	1000	LacdiNAc	Vector
SJA	*Sophora japonica*	1000	LacdiNAc	Vector
SK1	*Streptococcus sanguinis SK1*	1800	α2,3 sialylation	Gift from Dr. Barbara Bensing
SK678	*Streptococcus sanguinis SK678*	450	α2,3 sialylation	Gift from Dr. Barbara Bensing
SLBR-B	*Streptococcus gordonii M99*	1000	α2,3 sialylation	Gift from Dr. Barbara Bensing
SLBR-H	*Streptococcus gordonii DL1*	2000	α2,3 sialylation	Gift from Dr. Barbara Bensing
SLBR-N	*Streptococcus gordonii UB10712*	1000	α2,3 sialylation	Gift from Dr. Barbara Bensing
SNA	*Sambucus nigra*	500/1000	α2,6 sialylation	Vector/Sigma
Lectin	Species / Genus	Concentration	Carbohydrate Pattern	Supplier
---------	-------------------------	---------------	----------------------	-------------------
SNA-II	*Sambucus nigra*-II	1000	α2 Fucose / oligo mannose	EY
STA/STL	*Solanus tuberosum*	500	GlcNAc	Vector
TJA-I	*Trichosanthes japonica*-I	1000	α2,6 sialylation	TCI
TJA-II	*Trichosanthes japonica*-II	1000	α2 Fucose	NorthStar Bioproducts/Aniara Diagnostica
TL	*Tulipa sp.*	700	GlcNAc	EY
UDA	*Urtica dioica*	1000	GlcNAc / Oligo mannose	EY
UEA-I	*Ulex europaeus*-I	1000	α2 Fucose	Vector
UEA-II	*Ulex europaeus*-II	2000	GlcNAc	Vector
VFA	*Vicia faba*	1000	GlcNAc	EY
VVA	*Vicia villosa*	1000	Terminal GalNAc	Vector/EY
VVA(man)	*Vicia villosa*	500	Mannose	Vector/EY
X408	unknown (from unpublished work)	1000	under investigation	Gift from Dr. Barbara Bensing
WFA	*Wisteria floribunda*	1000	GalNAc-β1,4	Vector
WGA	*Triticum vulgare*	1000	GlcNAc	Vector/EY

1: lectins printed in the first set of lectin microarrays
2: lectins printed in the second set of lectin microarrays
Supplementary Table 2. Lectin Microarray Information

Description*	
1. Sample: Glycan-containing sample (e.g. glycan, glycoprotein, cell lysate etc.)	
Description of Sample	Sera was collected from uninfected mice as well as mice infected with different types of bacteria (EC, ST, MRSA, SPN). Sera was collected at two different time points for the infected mice that correspond to early and late sepsis that are defined by c.f.u in the blood. All samples were collected in the Marth Laboratory at UCSD.
Sample preparation protocol	Sera samples were collected in the Marth Laboratory at UCSD and shipped to NYU and supplemented with protease inhibitor cocktails.
Labelling protocol for sample detection	Samples were labelled with Alexa Fluor 555-NHS (Thermo Fisher). Serum protein concentrations were determined using the DC assay. 50 µg of protein were labelled for each individual sample following the manufacturers protocol.
Two-color reference (if used)	Reference samples were created for each bacterial experiment and labeled with Alexa Fluor 647-NHS. For SPN, MRSA and ST, a bacteria-specific reference sample was prepared by mixing equal amounts of sera from all 48 animals used in each study. For EC, a master reference was created from the sera samples from the EC, ST and SPN experiments.
Assay protocol	Lectin microarrays are blocked with blocking buffer for one hour at room temperature. Slides are rinsed twice with PBST (0.005%) and once with PBS, then dry the slide using a slide spinner. Each slide was mounted on a 24-well format hybridization cassette (Arrayit), in which each well contains a subarray. To each well, add equal amounts of samples and universal reference, and dilute with PBS and PBST (0.2%) to reach the final volume (150µL). Incubate the slides on an orbital shaker for two hours at room temperature in the dark. After hybridization, wash the arrays with PBST (0.005%) twice for ten minutes, and twice for five minutes. Once finished, remove the slides from the cassette, and immerse the slides in ultrapure water, and dry the slides using a slide spinner.
2. Lectin Library

General description of the lectin library used in the array	Lectin microarrays are generated in house.
List of lectins and glycan binding proteins, source, concentration and buffer	Please see Supplementary Table 1.
Modification of lectins (e.g. biotin) if any.	N/A

3. Immobilization Surface; e.g., Microarray Slide

Immobilization surface	Nexterion Slide H Barcoded 3D Hydrogel Coated
Manufacturer	Shott North America
Custom preparation of surface	N/A

4. Array Production

Description of Arrayer	Nano-Plotter 2.1 piezoelectric printer (GeSim, Germany) with cooled microwell plate holder and cooled printing deck
Lectin deposition	Three replicates of each lectin are printed onto each subarray.
Printing conditions	Dilute lectins to the pre-determined concentrations in the print buffer (final concentration of print buffer: 0.01% Tween-20, 1mM monosaccharide in PBS; Please see Supplementary Table 1 for the concentrations of lectins). Load the mixed solution to the microplate. Before printing, check the humidity of the print chamber. The humidity should be kept around 50% during the entire printing. Ensure both microwell plate holder and printing deck are cooled. Adjust the cooling temperature based on ambient temperature and the temperature of the cooled slide deck surface, preventing moisture building up inside the print chamber. Once printing is complete, allow the slides to dry for at least one hour.
Array layout	For each microarray, it contains 24 subarrays (3 columns and 8 rows). In each subarray, triplicates of a lectin are printed, and for a row with five lectins, the spot layout should be 15 columns. The row number depends on how many lectin probes are printed on the arrays (i.e., 110 lectins require 22 rows).
Quality control
Well-characterized glycoproteins including fetuin, asialofetuin and RNase B are used for quality assurances of the printed microarrays.

5. Detector and Data Processing
Instrument (scanner, flow cytometer)
Instrument settings
Image analysis software
Data processing and statistical analysis

6. Lectin Microarray Data Presentation
Data presentation and interpretation

7. Data Location
Data Location
Supplementary Table 3. Mass spectrometric analysis of MPA enriched proteins present in mouse septic samples

Accession	Description	Score	# PSMs	# AAs	MW [kDa]	calc. pl
Q9CQT7	Desumoylating isopeptidase 1 (Desi1)	282.18	156	168	18.4	4.94
P63017	Heat shock cognate 71kDa protein (Hspa8)	129.48	36	646	70.8	5.52
Q61696	Heat shock 70kDa protein 1A (Hspa1a)	127.00	37	641	70.0	5.72
Q61703	Inter-alpha-trypsin inhibitor heavy chain H2 (Itih2)	64.54	30	946	105.9	7.27
P63268	Actin, gamma-enteric smooth muscle (Actg2)	33.47	10	376	41.8	5.48
P68373	Tubulin alpha-1C chain (Tuba1c)	28.91	11	449	49.9	5.10
P11276	Fibronectin (Fn1)	23.16	10	2477	272.4	5.59
Q61702	Inter-alpha-trypsin inhibitor heavy chain H1 (Itih1)	16.87	7	907	101.0	6.96
Q61781	Keratin, type I cytoskeletal 14 (Krt14)	15.03	6	484	52.8	5.17
P16627	Heat shock 70 kDa protein 1-like (Hspa1)	11.80	10	641	70.6	6.24
Q61786	Keratin, type II cytoskeletal 1b (Krt77)	10.72	5	572	61.3	8.02
Q3UV17	Keratin, type II cytoskeletal 2 oral (Krt76)	9.48	4	594	62.8	8.43
P50446	Keratin, type II cytoskeletal 6A (Krt6a)	6.17	3	553	59.3	7.94
Q922U2	Keratin, type II cytoskeletal 5 (Krt5)	6.09	3	580	61.7	7.75
Q91X72	Hemopexin (Hpx)	5.41	2	460	51.3	7.80
P28666	Murinoglobulin-2 (Mug2)	3.67	2	1451	162.3	6.74

Proteins labeled in red were removed from our final analysis as they were either a) unglycosylated or b) proteins that were clearly due to contamination (e.g. keratins).