Accelerating Parallel Write via Deeply Integrating Predictive Lossy Compression with HDF5

Sian Jin*, Dingwen Tao*, Houjun Tang ‡, Sheng Di†, Suren Byna‡, Zarija Lukic‡, Franck Cappello†

*Luddy School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, USA
†Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL, USA
‡Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
Accelerating Parallel Write via Deeply Integrating Predictive Lossy Compression with HDF5

Key Components
- HDF5 VOL Connector
- Prediction model for lossy compressors
- Scheduling algorithms
- Other specific designs: overflow control, fine-grained compression, buffering, shared Huffman tree

Overlap compression to I/O
- Estimate the offset of write operation
Accelerating Parallel Write via Deeply Integrating Predictive Lossy Compression with HDF5

Key Components
- HDF5 VOL Connector
- Prediction model for lossy compressors
- Scheduling algorithms
- Other specific designs: overflow control, fine-grained compression, buffering, shared Huffman tree

Limitations and Future Works
- Predictions can be inaccurate; system can create uncertainty
 - Accurate prediction or more tolerant system design
 - Uncertainty analysis
- Not user friendly

Additional Components
- Offline profiling
- User-defined error bound (eb)
- Adaptive error bound selection module
- Additional config file (e.g., H5Dwrite())
- New API