Ras GTPases’ interaction with effector domains
Breaking the families’ barrier

Manishha Patel1,3 and Jean-François Côté1,2,3,*

1Institut de Recherches Cliniques de Montréal (IRCM); Montréal, QC Canada; 2Faculté de Médecine and Département de Biochimie; Université de Montréal; Montréal, QC Canada; 3Division of Experimental Medicine; Faculty of Medicine; McGill University; Montréal, QC Canada

*Correspondence to: Jean-François Côté; Email: jean-francois.cote@ircm.qc.ca

The Ras superfamily of proteins consists of five branches: Ras, Rho, Arf, Rab and Ran subfamilies. These proteins are involved in a plethora of biological functions spanning cytoskeletal organization, cell proliferation, transcription and intracellular trafficking. Ras-Binding Domains (RBDs) have classically been identified as autonomous ubiquitin-like folded regions that bind certain activated Ras GTPases of the Ras subfamily. In general, RBDs in many proteins have been tagged with membrane-targeting functions as in the case of the well-characterized c-Raf-RBD/Ras interaction. However, it is becoming apparent that the definition and functions of RBDs need to be revamped in order to reflect the new discoveries associated with this domain. Here, we discuss in more detail the recent advances associated with these RBDs. We highlight research identifying RBDs in formins, ELMOs and the RhoGEF, Syx and discuss the emerging role for RBDs in controlling autoinhibition relief and the newly recognized versatility of RBDs to interact with Rho and Arf family GTPases. In addition, these recent findings raise the exciting hypothesis that functional RBDs remain hidden in the proteome and are ready to be uncovered.

Introduction

One-hundred-fifty or so Ras proteins are subdivided into Ras, Rho, Arf, Rab and Ran subfamilies. Numerous important biological activities have been ascribed to these groups of GTPases: Ras’ regulate cell proliferation, Rho’s control the actin cytoskeleton and Arfs’ and Rab’s shape vesicular trafficking.6-10 Yet, this is a gross generalization of their functions and it is important to underscore that many different activities are also present within each subfamily. For example, some Ras and Arf family members can directly impinge on the actin cytoskeleton and play a role in cell migration.3-5 Individual and careful study of each GTPase is therefore warranted to uncover the unique roles of distinct GTPases.

In most cases, members of the Ras superfamily act as molecular switches alternating between active, GTP-bound, and inactive, GDP-bound, conformational states. Because of their high affinity for guanine nucleotides and their low intrinsic GTPase activity, at least two classes of regulatory proteins are indispensable for controlling the biological activity of these small GTPases in cells. The guanine nucleotide exchange factors (GEFs) act as positive regulators by promoting the dissociation of GDP from small GTPases and allowing for their reloading with the GTP nucleotide.6-10 Inversely, the GTPase-activating proteins (GAPs) recognize GTP-bound G-proteins and enhance their intrinsic GTPase activity to favor the inactive GDP-bound state, therefore acting as negative regulators of the cycle.11-13 A third class of regulators, acting only on Rho and Rab G-proteins, are the guanine nucleotide dissociation inhibitors (GDIs). These inhibitory proteins have the double duty of both locking the GTPase in a nucleotide state, most of the time in a GDP conformation, and preventing membrane targeting by masking the membrane targeting signals.14-19 It remains an important area of research to determine exactly how GDIs are uncoupled from Rho/Rab GT Pases during GEF-mediated activation.

In their active GTP-loaded state, Ras G-proteins can transmit signals by binding to a specific set of proteins termed effectors. The structural basis for such interactions is in many cases now well established: the most significant structural change between the GDP and GTP bound state of a G-protein is a conformational change in two surface loops known as Switch I and Switch II regions.20,21 Remarkably, this GTP-induced remodeling of the switch regions increases the affinity of a given GTPase for its own set of specific effectors allowing for physical interaction and signal transduction.20,21 A number of domains in effector proteins have now been demonstrated to mediate specific binding to Ras [Ras Association domains (RAs), Ras-Binding Domains (RBDs), Ral-Binding Domains (RalBDs), etc.], Rho [Cdc42/Rac Interactive Binding domains (CRIB), GTPase-Binding Domains (GBDs), Anti-Parallel Coiled-Coil domains (ACCs), split PH, etc.], Arf [GGA and Tom1 domains (GATs), Leucine Zippers (LZs), Arf-Binding Domains (ArfBDs), etc.] and Rab [Rab-Binding Domains (RabBDs), Zinc Fingers (ZF s), RNU-PLAT domains, etc.] GTPases. In Table 1, we summarize some
Table 1. List of solved crystal structures for small Ras superfamily GTPase/effector domain complexes

GTPase superfamilies	Effector binding proteins	Crystal structures	GTPase effector protein/effector domain crystal structures	
Arf subfamily				
Arf1	ARHGAP21	ARHGAP21 ArfBD (PH domain and helical region) in complex with Arf1 [17347647]	Arf1/ARHGAP21 Arf-binding domain (ArfBD)	
		GGA	GGA_GAT domain (N-terminus) in complex with Arf1 [12679809]	Arf1/GGA GAT domain
Arf6	Cholera toxin (CT)	CT_A subunit in complex with Arf6 [16099990]	-	
	JIP4	JIP4_LZI in complex with Arf6 [19644450]	Arf6/JIP4 leucine zipper II (LZII)	
	MKLP1	MKLP1_1 in complex with Arf6 [22522702]	-	
Arf1/ARHGAP21				
Arf6/Cholera toxin				
Arf6/JIP4				
Arf6/MKLP1				
Arf1/Arfaptin-2				
Arf1/GGA				
Arf1/Golgin-245				
Arf2	BART	BART in complex with Arl2 [19368893]	-	
	PDEδ	PDEδ_L in complex with Arl2 [11980706]	-	
	UNC119a	UNC119a in complex with Arl2 [22960633]	-	
Arf1/Arfaptin-2				
Arf1/GGA				
Arf1/Golgin-245				
Rho subfamily				
Cdc42	ACK	ACK_CRIB in complex with Cdc42 [10360579]	Cdc42/ACK CRIB domain	
	PAK	PAK_CRIB in complex with Cdc42 [10802735]	Cdc42/PAK CRIB domain	
	Par6	Par6_CRIB-PDZ in complex with Cdc42 [12606577]	Cdc42/Par6 CRIB-PDZ domains	
	WASP	WASP_CRIB in complex with Cdc42 [10360578]	Cdc42/WASP CRIB domain	
Rac1	Phospholipase C-β2	Rac1_Phospholipase C-β2 PH domain	Rac1/Phospholipase C-β2 PH domain	
	Plexin-B1	Plexin-B1_L in complex with Rac1 [17115053]	-	
Rac2	Phospholipase C-γ2	Rac2_Phospholipase C-γ2 split PH domain	Rac2/Phospholipase C-γ2 split PH domain	
	Plexin A2	Plexin A2_rbod (ubiquitin-like fold) in complex with Rac2 [19394299]	-	
RhoA	PKN	PKN_ACC finger domain in complex with RhoA [10619026]	RhoA/PKN atypical coiled-coil (ACC) domain	
	ROCK1	ROCK1_RhoBD (coiled-coil) in complex with RhoA [14660612]	-	
RhoC	Dia1	Dia1_GDI in complex with RhoC [15864301; 16292343; 16472745]	RhoC/Dia1 GTPase-binding domain (GBD)	
Rnd1	Plexin A2	Plexin A2_rbod (ubiquitin-like fold) in complex with Rnd1 [21610070]	Rnd1/Plexin A2 Rho-binding domain (RhoBD) or RBD-like	
	Plexin B1	Plexin B1_rbod (ubiquitin-like fold) in complex with Rnd1 [21610070]	Rnd1/Plexin B1 Rho-binding domain (RhoBD) or RBD-like	
Rnd3	ROCK1	ROCK1_L in complex with Rnd3 [18946488]	-	
Ras subfamily				
H-Ras	PI3K	PI3K_rbod in complex with H-Ras [11136978]	H-Ras/PI3K_y Ras-binding domain (RBD)	
	RalGDS	RalGDS_rbod in complex with H-Ras [9628477; 10371160]	H-Ras/RalGDS Ras-binding domain (RBD)	
	C3bout1	C3bout1 in complex with RalA [15809419]	-	
	Exo84	Exo84_rbod (PH-FOLD) in complex with RalA [15920473]	RalA/Exo84 PH domain	
	Sec5	Sec5_rbod (immunoglobulin-like β-sandwich) in complex with RalA [12839989]	RalA/Sec5 immunoglobulin-like β-sandwich	
Rap1A	c-Raf1	c-Raf1_rbod (ubiquitin-like fold) in complex with Rap1A [7791872]	Rap1A/c-Raf1 Ras-binding domain (RBD)	
	Krit1	Krit1_FERM domain in complex with Rap1A [22577140]	Rap1/Krit1 FERM F1 and F2 lobes	

ACC, antiparallel coiled-coil; ArfBD, Arf-binding domain; ASH, ASPP/SPD-2/Hydrin; BAR, Bin1/Amphiphysin/Rvs167; C, C-terminus; CRIB, Cdc42/Rac inter-active binding; FERM, 4.1 protein/Effrin/Radixin/Moesin; GAT, GGA and Tom1; GBD, GT-Pase-binding domain; GRIP, Golgin-97/RanBP2alppha/Imh1p/p230/ golgin-245; LF, leucine finger; LZ, leucine zipper; N, N-terminus; PDZ, PSD-95 and ZO-1; PH, pleckstrin homology; RBD, Ras-binding domain; RhoBD, Rho-binding domain; RUN, RPI8/UNC-14/NESCA; spPH, split PH; ZF, zinc finger. Numbers in brackets denote Pubmed IDs (PMIDs).
of the interactions between GTPases and their effectors focusing on complexes where structural data are available.

Through various mechanisms, including but not limited to release of auto-inhibition, membrane targeting or direct stimulation of catalytic activity, effector proteins transmit signals leading to the appropriate biological function. What are the structural features of effectors responsible for binding small GTPases? A number of motifs have now been shown to mediate such interaction of effectors with activated Ras family proteins: here, we will discuss in more detail recent advances on the first such domain originally identified in c-Raf and involved in Ras-GTP interaction, the self-titled Ras-Binding Domain (RBD).

Defining Features of the Ras-Binding Domain

Historically, experiments using an activated and oncogenic version of Ras were instrumental to establish the notion that effector proteins are essential to transmit G-protein signaling. Indeed, activated mutants of Ras with point mutations in the Switch I region were unable to transform cells implying that this region in Ras is critical to bind to downstream proteins. Following these observations, evidence that c-Raf acts downstream of Ras was accumulating and the domain mediating the direct interaction between c-Raf and Ras was uncovered: residues 51–131 of c-Raf defined the first effector domain, termed the RBD. Multiple structures of Ras proteins bound to RBDs have been solved and the residues involved in the interaction are identified. In general, most of the contacts on the RBD side are identified. In general, most of the contacts on the RBD side involve charged residues of β2 with some residues in β1 and α1 also touching the Ras GTPases. Conversely, charged residues found in β2/β3 (within the Switch I region) of the Ras family GTase are implicated in contacting the RBDs.

Until recently, the RBD was viewed as a Ras subfamily-specific recognition module. Here, we will briefly review a series of recent papers reporting interaction of newly discovered RBDs with affinities for GTases of the Rho and Arf families.

Unexpected Binding Partners for RBDs: Beyond Ras Proteins

FHOD1 binds Rac-family GTases via a RBD. FHOD1 is a formin involved in promoting actin polymerization via its formin homology (FH)-1 and FH-2 module. Like several members of this family, FHOD1 exists in a repressed state due to intramolecular interactions between its DID (diaphanous inhibitory domain) and DAD (diaphanous autoregulatory domain) domains. Rac GTase-binding activity was known to be present in the N-terminus of this formin. Likewise, close family members, Dia-related formins, were well established to bind to RhoA/B/C GTases via their N-terminus in a manner that facilitated the release of the DID-DAD inhibitory contacts to favor activation of proteins. Schulte et al. therefore opted to use a structural approach to gain insight into how FHOD1 may become activated in cells.

Rab subfamily	Proteins	Description
Rab5A	EEA1	EEA1^{εκεΦΠΖ} C2H2 zinc finger
Rab6	Rab6IP1	Rab6IP1 helical RUN-PLAT domains
Rab8A	OCR1L	OCR1L^{αικ} ASH domain
Rab22A	Rabenosyn5	Rabenosyn5^{εκεΦΠΖ} C2H2 zinc finger

ACC, antiparallel coiled-coil; ArfBD, Arf-binding domain; ASH, ASPM/SPD-2/Hyedin; BAR, Bin1/Amphiphysin/Rvs167; C, C-terminus; CRIB, Cdc42/Rac activating interaction; FERM, 4.1 protein/Enrin/Radixin/Moesin; GAT, GGA and Tom1; GBD, GTase-binding domain; GRIP, Golgin-97/RanBP2alpha/Imh1p/p230/golgin-245; LF, leucine finger; LZ, leucine zipper; N, N-terminus; PDZ, PSD-95 and ZO-1; PI, piewkrin homology; RBD, Ras-binding domain; RhoBD, Rho-binding domain; RUN, RhoP8/UNC-14/NESCA; spPH, split PH; ZF, zinc finger. Numbers in brackets denote Pubmed IDs (PMIDs).
activate this formin. Searches for structural homologs revealed striking similarity of the RBD of FHOD1 to RBDs of RalGDS and PI 3-Kinase. Homology to the F1 lobe of the FERM domain of Moesin was also noted. It remains unclear as to how the RBD of FHOD1 binds to Rac. No mutagenesis was performed to determine the critical residues responsible for Rac-binding. A prediction would be that it binds to GTPases in a manner similar to Ras/Raf via charged amino acids. Co-crystallization of activated Rac and the FHOD1 RBD domain would be one way to reveal the residues critical to the contact of these molecules. Such therefore established for the first time that RBD domains are not limited to Ras subfamily GTPases in terms of specificity. From a functional point view, the RBD of FHOD1 is critical for targeting the formin to the membrane upon Rac activation. However, this essential recruitment step is not sufficient to fully activate the formin activity; this is in contrast to Rho-mediated recruitment of Dia1 to the membrane where this appears sufficient to also release DID-DAD interactions.41,46 (Fig. 1A). In the case of FHOD1, it is consequently believed that additional steps, such as its phosphorylation by ROCK,47 are also required to maximally activate this formin. Searches for structural homologs revealed striking similarity of the RBD of FHOD1 to RBDs of RalGDS and PI 3-Kinase. Homology to the F1 lobe of the FERM domain of Moesin was also noted. It remains unclear as to how the RBD of FHOD1 binds to Rac. No mutagenesis was performed to determine the critical residues responsible for Rac-binding. A prediction would be that it binds to GTPases in a manner similar to Ras/Raf via charged amino acids. Co-crystallization of activated Rac and the FHOD1 RBD domain would be one way to reveal the residues critical to the contact of these molecules. Such
an approach may also uncover if there is crosstalk between the RBD and DID (as is the case for Dia1), as such to propose a new hypothesis on the role of Rac-binding with respect to changing the inactive conformation of FHOD1 to an active one.

A versatile RBD in ELMO proteins interacts with RhoG and Arl4A GTPases. ELMO proteins interact with a subset of the family of DOCK180 atypical GEFs and contribute to coordinate Ras signaling. These proteins are evolutionarily conserved and recent data in mammalian models highlight that activation of Rac by DOCK180 is required for myoblast fusion and cardiovascular development. ELMO1, in vivo, appears to be a key player in engulfment of apoptotic germ cells in the testes and in the clearance of apoptotic neurons during neurogenesis. At the molecular level, ELMOs couple DOCK180 for Rac activation within various cellular compartments whether at the plasma membrane via small GTPase-binding or integrins/Integrin-Linked Kinase recruitment, or directly to receptors, such as through their interaction with the G-protein coupled receptor, BAI1.

When screening for novel partners of activated RhoG, Katoh and Negishi identified ELMO1 and how this RhoG/ELMO complex co-recruited DOCK180 for Rac activation. Mapping studies revealed that a unique extreme N-terminal portion of ELMO is involved in the nucleotide-state specific interaction with RhoG. We recently found that ELMO proteins exist in a closed conformation similar to what is described above for formins such as Dia1 and FHOD1 (Fig. 1B). These investigations led to the identification of three novel domains involved in controlling the ELMO conformation state. ELMO’s newly identified domains consist of the ELMO Inhibitory Domain (EID) and ELMO Autoregulation Domain (EAD), mimicking the formins’ DID and DAD function, while the RhoG-binding site on ELMO is associated with an N-terminal domain of ELMO/DOCK180 to the membrane to promote cytoskeletal changes such as actin stress fiber depolymerization and membrane ruffles. The exact biological processes regulated by Arl4A remain poorly understood. So far, using the ELMO RBD as bait, we found that initial screening by the yeast-two hybrid system only gave 2 positive interactions (RhoG, Arl4A) out of 85 tested for which the interaction could be reproduced in cells and were functionally important. When screening additional RBDs, it will be important to take into account that the yeast-two hybrid screens could uncover weak and non-physiological interactions. In these cases, it will be important to perform interaction assays and functional experiments to fully establish the importance of GTPase/RBD coupling. Accordingly, the library of GTPases we generated in the GATEWAY system might prove very useful to rapidly shuttle the GTPases’ cDNAs in various expression vectors designed to carry out specific experiments (GST, GFP, TAP, FLAG, etc.). For example, to assay the specificity of the ELMO/RhoG interaction, we created a library of 85 GST-tagged GTPases in a mammalian expression vector (pDEST27) and rapidly tested the ability of ELMO to bind to all Ras, Rho and Arf family members. In Figure 2C, we show such an example where we screened all the Rho proteins for ELMO-binding. Likewise, we also created a library of 85 eGFP-Rho, eGFP-Ras and Arf-eGFP family members to test for GTPases that could recruit ELMO to the membrane in an RBD-dependent manner. These co-localization experiments led us to confirm a specific recruitment of Myc-ELMO1 to the membrane when co-expressed with RhoG and Arl4A (data not shown). A similar library was generated by Tobias Meyer’s lab and was successfully used to identify GTPases mediating cytoskeletal changes and activation of PI 3-Kinase signaling. In contrast to our library, traditional cloning would need to be done to swap the Meyer lab’s entire library into new vectors.

We have demonstrated that “opening” of ELMO is integral for the biological function of the DOCK180/ELMO tandem during cell migration. However, thus far, the signals that unhydrate the closed ELMO molecule evade us. Whether active RhoG or Arl4A can induce direct conformational changes that evoke opening of the ELMO protein remains to be formally determined. In our attempt to study such direct effects of RhoG on ELMO conformation, we were confronted with technical limitations in our ELMO biosensor, namely that the tagging of the N-terminus of ELMO2 with either GFP or Renilla Luciferase II (RLucII) created steric constraints that prevented efficient RhoG/RBD interactions. Structural analysis of a RhoG-GTP/ELMO or Arl4A/ELMO complex would clarify if this interaction can perturb the closed conformation of ELMO proteins. What we know at this point is that engagement of either Arl4A or RhoG to ELMO targets and tethers the complex to the cell membrane. (Fig. 1B).
It would also be of interest to test known ELMO-binding partners (i.e., IpgB1, BAI1 and ERM proteins)52,59,60 in the event that these partners are responsible for endorsing the opening of ELMO through the RBD and/or adjacent regions. As it is suggested for the formins FHOD1, DAAM1 and partially for Dia, we propose that yet to be identified factors in the form of novel...
interactors and/or post-translational regulation, contribute to unlock ELMO in a spatio-temporal manner.

A previously unidentified RBD in Syx specifically binds to the Rho family member Rnd3. Syx, also referred to as GEF720/PLEKHG5/TECH, is a member of the Dbl RhoGEF family.61-63 In vivo studies demonstrate that Syx plays an important role during neuronal cell differentiation and zebrafish development.62,64 Structurally, Syx is a multidomain protein where a zinc-finger domain is present at the N-terminus and a Dbl Homology-Pleckstrin Homology (DH-PH) module is found centrally64 (Fig. 1C). The enzymatic activity of Syx relies on the DH domain and has been shown to catalyze nucleotide exchange specifically on RhoA.64 Interestingly, the Manser lab discovered, through co-purification, that Syx may exist in an autoinhibited conformation that is relieved by a N-terminal truncation mutant rather than full-length Syx64 when the C-terminal portion of Syx is deleted64 (Fig. 1C). It is quite possible then that at basal level, Syx exists in an autoinhibited conformation and Rnd1/3 binding to the Syx RBD may act as a release signal for this molecule (Fig. 1C). It will be exciting to test such models in the future. Interestingly, Syx is not the first identified RhoGEF to contain a RBD. For example, the RBDs of TIAM1/2 act as recognition sequences for activated Ras and such interactions have important consequences for tumorigenesis.68

What is unique about the Rho- and Arf-Binding RBDs? The work discussed here suggests that a collection of RBDs may currently rest uncovered in the proteome. The crystal structure of a fragment of FHOD1 was instrumental in the discovery of a RBD involved in Rac activation.69 The detection of the ELMO RBD was possible due to sequence homology to FHOD1.35 Finally, Manser et al. had to visually inspect the primary sequence of Syx to uncover its RBD.64 Improving bioinformatics methods to detect RBDs would be of great interest to better understand the signaling networks controlled by Ras-family GTPases.

We began exploring if unique characteristics could be attributed to RBDs binding Rho and Arf proteins in comparison to classical Ras-binding RBDs. Our manual sequence analyses and secondary structure predictions highlight similarities of the FHOD/ELMO/Syx RBDs to the c-Raf RBD, and further accentuates conserved charged and hydrophobic residues in the predicted secondary structure of the ubiquitin fold (Fig. 3). One difference we could observe in the case of the RBD of ELMO and FHOD1 is the presence of an acidic residue (Asp) at the end of β2 whereas a basic residue is found in c-Raf at this position (Arg), and several other Raf-like RBDs (RGS12_RBD1/2 and RGS14_RBD1/2) contain a Lys.31,32 We also noted that α1 tends to contain more hydrophobic residues in comparison to c-Raf (Fig. 3) and a panel of other RBDs (not shown). The identification of novel RBDs binding Rhos and Arfs would provide a better framework to clearly establish what is unique about these interactions. Crystallizing complexes of novel RBDs bound to GTPases may also uncover whether the binding mode is identical to canonical RBDs’ binding to Ras or if special requirements have evolved.

Interestingly, the RBD domain of Grb14, a member of the Grb7-family of adaptor proteins, was recently shown to bind Rab5 in a nucleotide-dependent manner.69 This raises the exciting possibility that selected RBDs could also be specifically interacting with Rab family members therefore extending the functionality

Figure 3. Sequence homology in the RBDs of ELMO, c-Raf1, FHOD1 and Syx. Secondary structure prediction and sequence comparison between c-Raf1, FHOD1, ELMO-family proteins and Syx indicates an evolutionarily conserved Ras-Binding Domain (RBD) characterized by the presence of a ubiquitin-like subdomain. ELMO secondary structure was predicted with Jpred3. FHOD1 (Protein Data Bank ID code 3DAD) and Raf1 (Protein Data Bank ID code 1GUA) structures were used for the manual alignment with the ELMO RBDs. Conserved hydrophobic residues are highlighted in yellow, and conserved positively and negatively charged residues are indicated in blue and purple, respectively. Green residues depict the conserved Leucine residue in the ELMO proteins shown to be critical for RhoG and Arl4A GTPase binding. Charged residues in c-Raf involved in contacting Ras are shown in red. Residues highlighted in bold lettering indicate sequences that fold as helical. Asterisks indicate residues in Syx suggested to be involved in GTPase binding. E indicates β strand, H indicates α-helical.
of the RBD domain. Likewise, it was also recently observed that the Lobe 1 (L1) of the FERM domain of Krit1, a region known to fold as a ubiquitin-like domain, is involved in binding to active Rap1. Structural studies also uncovered that the 2F lobe of the Krit1 FERM domain also contributes to this interaction. 70

Globally, this finding suggests that a subset of FERM domains could act as RBD-like domains and further broaden mechanisms of GTPases' signaling.

Conclusions

Studying the expanding realm of RBDs highlights the truly divergent nature of these domains. This is true not only in terms of structure, but also in effector binding and biological function. It remains to be determined whether a clear signature in RBDs exists that will establish if a RBD will bind GTPases, and if so, which ones. For this, we herein describe a library of cDNAs coding for all GTPases of the Ras, Rho, Ran and Arf families in active form that can be used to systematically interrogate RBD/GTPase interaction (Fig. 2). Collectively, with each new discovery of RBD-containing proteins, we are getting closer to a clearer understanding of their regulation and biological functions.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

We thank Dr Yoran Margaron and Viviane Tran for generating some of the eGFP-tagged and B42-tagged Ras superfamily GTPases discussed in this review. M.P is a recipient of a FRQ-S post-doctoral fellowship and is currently training in Dr Courtneidge's laboratory (Sandford-Burnham Institute, La Jolla, CA). J.-F.C. holds a FRQ-S “Junior 2” career award. Work in the Côté laboratory is funded by operating grants from the Canadian Cancer Society (#019104), Canadian Institute of Health Research (MOP 77591) and Quebec Breast Cancer Foundation to J.-F.C.

References

1. Colicelli J. Human RAS superfamily proteins and related GT-Pases. Nat STKE 2004; 2004:RE13; PMID:15367757; http://dx.doi.org/10.1126/stke.2502004re13

2. Heasman SJ, Ridley AJ. Mammalian Rho GT-Pases: new insights into their functions from in vivo studies. Nat Rev Mol Cell Biol 2008; 9:690-701; PMID:18719708; http://dx.doi.org/10.1038/nrm2476

3. Myers KR, Casanova JE. Regulation of actin cytoskeleton dynamics by Arf-family GT-Pases. Trends Cell Biol 2008; 18:184-92; PMID:18388799; http://dx.doi.org/10.1016/j.tcb.2008.02.002

4. Hall A, Lalli G, Rho and Ras GT-Pases in axon growth, guidance, and branching. Cold Spring Harb Perspect Biol 2010; 2:a001818; PMID:20182621; http://dx.doi.org/10.1101/cshperspect.a001818

5. Matsumoto K, Asano T, Endo T. Novel small GTPase related to fold as a ubiquitin-like domain, is involved in binding to the Lobe 1 (L1) of the FERM domain of Krit1, a region known to fold as a ubiquitin-like domain, is involved in binding to active Rap1. Structural studies also uncovered that the 2F lobe of the Krit1 FERM domain also contributes to this interaction. 70

Globally, this finding suggests that a subset of FERM domains could act as RBD-like domains and further broaden mechanisms of GTPases’ signaling.

Conclusions

Studying the expanding realm of RBDs highlights the truly divergent nature of these domains. This is true not only in terms of structure, but also in effector binding and biological function. It remains to be determined whether a clear signature in RBDs exists that will establish if a RBD will bind GTPases, and if so, which ones. For this, we herein describe a library of cDNAs coding for all GTPases of the Ras, Rho, Ran and Arf families in active form that can be used to systematically interrogate RBD/GTPase interaction (Fig. 2). Collectively, with each new discovery of RBD-containing proteins, we are getting closer to a clearer understanding of their regulation and biological functions.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

We thank Dr Yoran Margaron and Viviane Tran for generating some of the eGFP-tagged and B42-tagged Ras superfamily GTPases discussed in this review. M.P is a recipient of a FRQ-S post-doctoral fellowship and is currently training in Dr Courtneidge’s laboratory (Sandford-Burnham Institute, La Jolla, CA). J.-F.C. holds a FRQ-S “Junior 2” career award. Work in the Côté laboratory is funded by operating grants from the Canadian Cancer Society (#019104), Canadian Institute of Health Research (MOP 77591) and Quebec Breast Cancer Foundation to J.-F.C.
45. Alberts AS. Diaphanous-related Formin homology proteins. Curr Biol 2002; 12:R796; PMID:12744701; http://dx.doi.org/10.1016/S0960-9822(02)01039-X
46. Otsomo T, Otsomo C, Tomochick DR, Machius M, Rosen MK. Structural basis of Rho GTPase-mediated activation of the formin mDia1. Mol Cell 2005; 18:273-81; PMID:15866170; http://dx.doi.org/10.1016/j.molcell.2004.04.002
47. Takeya Y, Taniguchi K, Narumiya S, Sumimoto H. The mammalian formin FHOD1 is activated through phosphorylation by ROCK and mediates thrombin-induced stress fibre formation in endothelial cells. EMBO J 2008; 27:618-28; PMID:18239683; http://dx.doi.org/10.1038/emboj.2008.7
48. Laurin M, Frader N, Blangy A, Hall A, Vouici K, Coté JF. The atypical Rac activator Dock180 (Dock181) regulates myosin fission in vivo. Proc Natl Acad Sci USA 2008; 105:15446-51; PMID:18820033; http://dx.doi.org/10.1073/pnas.080546105
49. Samantaus F, Hirashima M, Laurin M, Takii R, Nishikimi A, Kirijima K, et al. Dock181 is a Rac activator that regulates cardiovascular development by acting downstream of Cxcr4. Circ Res 2010; 107:1102-5; PMID:20829512; http://dx.doi.org/10.1161/CIRCRESAHA.110.223388
50. Elliott MR, Zheng S, Park D, Woodson RL, Reardon MA, Juncadella IJ, et al. Unexpected requirement for ELMO1 in clearance of apoptotic germ cells in vivo. Nature 2010; 467:333-7; PMID:20844538; http://dx.doi.org/10.1038/nature09356
51. Lu Z, Elliott MR, Chen Y, Walsh JT, Klibanov AL, Ravichandran KS, et al. Phagocytic activity of neuronal progenitors regulates adult neurogenesis. Nat Cell Biol 2011; 13:1076-83; PMID:21804544; http://dx.doi.org/10.1038/ncc2299
52. Park D, Tosello-Trampont AC, Elliott MR, Lu M, Haney LB, Ma Z, et al. BAII is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module. Nature 2007; 450:430-4; PMID:17960134; http://dx.doi.org/10.1038/nature06329
53. Ho E, Irvine T, Vilik GJ, Lajoie G, Ravichandran KS, D’Souza SJ, et al. Integrin-linked kinase interactions with ELMO2 modulate cell polarity. Mol Cell Biol 2009; 29:3033-43; PMID:19349446; http://dx.doi.org/10.1098/rstb.2009.0050
54. Karth H, Negishi M, RohG activates Rac1 by direct interaction with the Dock180-binding protein Elmo. Nature 2003; 424:461-4; PMID:12870977; http://dx.doi.org/10.1038/nature01817
55. Patel M, Margaron Y, Frader N, Yang Q, Wilkes B, Bouvier M, et al. An evolutionarily conserved autokinase molecular switch in ELMO proteins regulates Rac signaling. Curr Biol 2010; 20:2021-7; PMID:20135343; http://dx.doi.org/10.1016/j.cub.2010.01.028
56. Patel M, Chiang TC, Tran V, Lee FJ, Côté JF. The Arf family GTPase Arha complexes with ELMO to promote actin cytoskeleton remodeling and reveals a versatile Rac-binding domain in the ELMO family proteins. J Biol Chem 2011; 286:38969-79; PMID:21930703; http://dx.doi.org/10.1074/jbc.M111.274191
57. Hey WD, Meyer T. Switch-of-function mutants based on morphology classification of Ras superfamily small GTPases. Cell 2003; 113:315-28; PMID:12725140; http://dx.doi.org/10.1016/S0092-8674(03)00315-5
58. Yang HW, Shin MG, Lee S, Kim JR, Park WS, Cho KH, et al. Cooperative activation of PI3K by Ras and Rho family small GTPases. Mol Cell 2012; 47:281-90; PMID:22683270; http://dx.doi.org/10.1016/j.molcel.2012.05.007
59. Grimesley CM, Lu M, Haney LB, Kinchen JM, Ravichandran KS. Characterization of a novel interaction between ELMO1 and ERbin proteins. J Biol Chem 2006; 281:5928-37; PMID:16377631; http://dx.doi.org/10.1074/jbc.M50647200
60. Handa Y, Suzuki M, Ohya K, Iwai H, Ishijima N, Koleske AJ, et al. Shigella IpgB1 promotes bacterial entry through the ELMO-Dock180 machinery. Nat Cell Biol 2007; 9:121-8; PMID:17173036; http://dx.doi.org/10.1038/ncl.2006.1526
61. Liu M, Horowitz A. A PDZ-binding motif as a critical determinant of Rho guanine exchange factor function and cell phenotype. Mol Cell Biol 2006; 17:1880-7; PMID:16467373; http://dx.doi.org/10.1099/mcb.006.01-0002
62. Marx R, Henderson J, Wang J, Baraban JM, Tech: a RhoA GEF selectively expressed in hippocampal and cortical neurons. J Neurochem 2005; 92:850-8; PMID:15686487; http://dx.doi.org/10.1111/j.1471-4159.2004.02930.x
63. De Toledo M, Coulon V, Schmidt S, Fort P, Blangy A. The gene for a new brain specific Rho exchange factor maps to the highly unstable chromosomal region 1p36.2-1p36.3. Oncogene 2001; 20:7037-17; PMID:11704860; http://dx.doi.org/10.1038/sj.onc.1204921
64. Goh LL, Manser E. The RhoA GEF Syt is a target of Rnd3 and regulated via a Raf-like ubiquitin-related domain. PLoS ONE 2010; 5:e12409; PMID:20811643; http://dx.doi.org/10.1371/journal.pone.0012409
65. Chedin F. Regulation of Rnd proteins. Nat Rev Mol Cell Biol 2006; 7:54-62; PMID:16495413; http://dx.doi.org/10.1038/nrm1978
66. Foster R, Hu KQ, Lu Y, Nolan KM, Thien J, Seltzman J. Identification of a novel human Rho protein with unusual properties: GTPase deficiency and in vivo farnesylation. Mol Cell Biol 1996; 16:2689-99; PMID:8649576
67. Goh LL, Manser E. The GTPase-deficient Rnd proteins are stabilized by their effectors. J Biol Chem 2012; 287:31311-20; PMID:22807448; http://dx.doi.org/10.1074/jbc.M112.327056
68. Malliri A, van der Kammen RA, Clark K, van der Valk M, MichieLS, Collard JG. Mice deficient in the Rho family small GTPases. Mol Cell 2012; 13:1076-83; PMID:22577159; http://dx.doi.org/10.1016/j.molcel.2012.05.007
69. Li X, Zhang R, Draheim KM, Liu W, Calderwood DA, Boggon TJ. Structural basis for small G protein effector interaction of Rho-related protein 1 (Rap1) and adaptor protein Krev interaction trapped 1 (KRT1). J Biol Chem 2012; 287:22317-27; PMID:22577140; http://dx.doi.org/10.1074/jbc.M112.361295