Immunomodulatory Effect of *Eriobotrya japonica* Seed Extract on Allergic Dermatitis Rats

Guangchen Sun¹, Yingqin Liu², Jinling Zhu², Miki Iguchi³, Saburo Yoshoka³, Mitsuhiko Miyamura¹ and Shojiro Kyotani⁴

¹School of Pharmacy Sciences, and ²School of Basic Medical Science, Jiamusi University, Jiamusi City, Heilongjiang, 154007, China
³Department of Pharmacy, Kochi Medical School Hospital, Kohasu, Oko-cho, Nankoka, Kochi 783–8505, Japan
⁴Faculty of Pharmaceutical Sciences Tokushima Bunri University, Nishihamabouji Yamashiro-cho, Tokushima 770–8514, Japan

(Received August 13, 2009)

Summary We examined the immunomodulatory effect of *Eriobotrya japonica* seed extract (ESE) on rat allergic dermatitis elicited by repeated dinitrofluorobenzene (DNFB) application on the ear. Oral administration of ESE significantly inhibited development of allergic dermatitis based on lower ear thickness and serum immunoglobulin E (IgE) levels. Th1 cytokine interferon-γ (IFN-γ) and interleukin-2 (IL-2), Th2 cytokine interleukin-4 (IL-4) and interleukin-10 (IL-10) in the lesional skin were determined. Oral administration of ESE significantly decreased IL-4 while significantly increasing IL-10 in lesional skin, and the lower levels of IFN-γ and IL-2 were reversed by oral administration of ESE. The infiltration of eosinophils in the lesional skin was decreased by oral administration of ESE. These results suggested that ESE exerts anti-allergic actions by improving the balance of Th1/Th2 in allergic dermatitis.

Key Words *Eriobotrya japonica* seed extract, allergic dermatitis, cytokines, DNFB, eosinophil

Eriobotrya japonica is native to China and Japan and is well known as a kind of delicious fruit. *Eriobotrya japonica* seeds are used as a traditional Chinese herb to treat edema. *Eriobotrya japonica* seeds contain amygdalin (1), unsaturated fatty acids, such as linoleic acid and linolenic acid, and plant sterols, such as β-sitosterol, caffeic acid, chlorogenic acid and various essential amino acids (2).

We previously reported *Eriobotrya japonica* seed extract (ESE) is a strong reactive oxygen species scavenger (2) and effective for prevention and treatment of disorders, such as hepatopathy (3), nephropathy (4), type 2 diabetes (5), mucositis (6), allergic contact dermatitis (7), and inhibiting mast cell activation (8).

Itchiness and edema are symptoms that influence the quality of life of patients with atopic dermatitis. Most patients with atopic dermatitis have peripheral blood eosinophilia and increased serum immunoglobulin (Ig) E concentrations. The deviation of the immune response toward either the Th1 or Th2 pathway can elicit a number of pathologic conditions, such as Th2 deviation in allergic reactions and Th1 deviation in organ-specific autoimmunity. Human atopic dermatitis has a strong immune-mediate component and is marked by increased activity levels of Th2 cells and their cytokine, interleukin-4 (IL-4), with fewer immunomodulatory Th1 cells and their cytokines IL-2 and gamma-interferon (IFN-γ).

In this study, the allergic dermatitis rat animal model was validated, and the immunomodulatory effect of ESE on the late phase of allergic dermatitis was examined.

MATERIALS AND METHODS

Preparation of extract. *Eriobotrya japonica* seed extract was prepared as previously described (7, 8). In brief, *Eriobotrya japonica* seeds were collected in Wakayama and Kochi Prefectures and dried in sunlight. *Eriobotrya japonica* seeds (1 kg) were powdered in a blender equipped with a refrigerator at 1,000 rpm, and extracted by stirring with a mixer at 300 rpm for 1 wk after being dissolved in 70% ethanol. After filtration, the supernatant was collected and evaporated under vacuum to afford 130 g of dried extract. The dried extract was diluted in 1,000 mL water and the diluted solution was stored in a refrigerator until being administered to animals.

Animals. Male 6-wk-old Sprague-Dawley rats were purchased from Japan SLC, Inc., Japan. The animals were kept in a specific pathogen-free animal facility that maintained a temperature of 19–25°C, humidity of 30–70% and a 12 h day/night cycle, and were given access to pellet food and water. The experiments were conducted in accordance with the Guiding Principles for the Care and Use of Laboratory Animals.

Sensitization and elicitation procedure. The rats were divided into three groups of seven animals each: The
control group were sensitized with 1 mL saline solution containing 10 μg dinitrophenyl (DNP)-Ovalbumin (OVA) (DNP-OVA, Sigma Chemical Co., St Louis, MO, USA) and 1 mg Al(OH)$_3$ gel, given as an intra-peritoneal injection (i.p.) on days 0, 7, 14. Twenty-one days following the first sensitization, animals were challenged by applying 100 μL of 0.5% 2,4-dinitrofluorobenzene (DNFB, Wako Pure Chemical Industries, Ltd., Osaka, Japan) solution in acetone: olive oil (4:1) to both sides of the right ear (50 μL on the dorsal side and 50 μL on the ventral side) 2 times with a 3-d interval. The ESE group were treated the same as the control group rats but received ESE (10 mL/d rat) in drinking water from 2 d before the first challenge to the end of the experiment. The vehicle group was sham-sensitized and received only 1 mg/mL Al(OH)$_3$ suspended in 1 mL saline (Fig. 1).

Ear thickness was measured 72 h after each challenge using a dial thickness gauge (Ozaki Seisakusho, Tokyo, Japan) under light ether anesthesia. Changes in ear thickness were expressed as mean ear thickness ± SE.

Measurement of serum IgE level. After 72 h of the second DNFB challenge, blood was obtained and centrifuged at 3,000×g for 30 min and stored at −80°C until assay. Total serum IgE was measured using an enzyme-linked immunosorbent assay (ELISA) kit (Bethyl Laboratories, Inc.). The serum samples (100 μL 10 to 50-fold diluted serum) were applied to each well. The total serum IgE concentration in each well was estimated using a standard sample from the manufacturer’s kit.

Measurement of cytokines. Amounts of cytokines in skin lesions were determined by ELISA. Skin biopsies were cut into small pieces and homogenized vigorously with a 30-fold volume of PBS containing 0.05% Tween-20, 100 μg/mL aprotinin, and 2 μg/mL phosphatase, AppliChem), supplemented with Fast Red (Sigma Chemical Co.) as a chromogen, and counterstained with hematoxylin. Individual inflammatory cell types were counted in 4–8 high-power fields (HPFs) at ×200 and expressed as cells per HPF, with mean and SE calculated.

Statistical analysis. Descriptive data are expressed as mean ± SE. Groups were compared by a one-way ANOVA with post hoc analyses for pairwise comparisons (ANOVA) and linearity. Statistical significance was inferred at a two-sided value of $p<0.05$ (t-test).

RESULTS

The effects of ESE on ear swelling

The ear swelling change in DNFB-induced rat ear dermatitis is shown in Fig. 2. DNFB applied to the ear of sensitized mice caused immediate type dermatitis with ear thickness increasing after 15 min. In order to investigate the effect of ESE on the late phase of immediate type response of allergic dermatitis, the ear thickness was determined at 72 h after each DNFB challenge. The time course of ear swelling response showed that administration of ESE suppressed the ear swelling of immediate response and alleviated the ear thickness by 15.2% in the first challenge and 32.5% in the second challenge, respectively, compared with the control
Eriobotrya japonica Seed Extract on Allergic Dermatitis

Fig. 2. The effects of ESE on ear swelling. Rats were sensitized with 1 mL saline solution containing DNP-OVA (10 μg) and Al(OH)₃ (1 mg), given as an intraperitoneal injection on days 0, 7, 14. Twenty-one days following sensitization, rats were challenged with 100 μL acetone/olive oil (4:1) containing 0.5% DNFB to the two sides of the right ear at 3-d intervals two times. Ear thickness was measured at 72 h after DNFB challenge. Values are expressed as the mean±SE of seven animals. *p<0.05, compared with the control value (Student’s t-test).

Fig. 3. The effects of ESE on serum IgE level. Rats were sensitized with 1 mL saline solution containing DNP-OVA (10 μg) and Al(OH)₃ (1 mg), given as an intraperitoneal injection on days 0, 7, 14. Twenty-one days following sensitization, rats were challenged with 100 μL acetone/olive oil (4:1) containing 0.5% DNFB to the two sides of the right ear at 3-d intervals two times. After 72 h of the second DNFB challenge, blood was obtained and serum IgE level was determined with ELISA. Values are expressed as the mean±SE of seven animals. *p<0.05, compared with the control value (Student’s t-test).

Fig. 4. A: The effects of ESE on eosinophil number in lesional skin. Rats were sensitized with 1 mL saline solution containing DNP-OVA (10 μg) and Al(OH)₃ (1 mg), given as an intraperitoneal injection on days 0, 7, 14. Twenty-one days following sensitization, rats were challenged with 100 μL acetone/olive oil (4:1) containing 0.5% DNFB to the two sides of the right ear at 3-d intervals two times. After 72 h of the second challenge, ears were excised and subjected to immunohistology. Individual inflammatory cell types were counted in 4–8 high-power fields (HPFs) at ×200 and expressed as cells per HPF, with mean±SE calculated. B: The representation of immunohistology staining of eosinophils in lesional skin. (a) Vehicle: less infiltration of eosinophils was observed. (b) Control: infiltration of eosinophils was observed. (c) ESE: ESE inhibited eosinophil infiltration when orally administered beginning 2 d before the first DNFB challenge. Magnification: ×200.
DISCUSSION

In a previous report, we clarified the main components of ESE and investigated the antioxidative action (2, 6); we also clarified that ESE was useful for the improvement of allergic diseases (7, 8) and nephropathy (4) in a rat model, but immunomodulatory effects on allergy diseases are still unclear.

In previous study, rats were sensitized with 1 mL saline solution containing DNP-OVA (10 μg) and Al(OH)₃ (1 mg), given as an intraperitoneal injection on days 0, 7, 14. Twenty-one days following sensitization, rats were challenged with 100 μL acetone/olive oil (4 : 1) containing 0.5% DNFB to the two sides of the right ear at 3-d intervals two times. After 72 h of the second challenge, ears were excised and subjected to cytokine determination. Values are expressed as the mean±SE of seven animals.

We are also interested in an allergic dermatitis model procedure in a previous report (10). In this study, SD rats were actively sensitized with dinitrophenol (DNP)-ovalbumin (OVA) intraperitoneally. Serum IgE levels increased with DNP-OVA immunized at this stage (data not shown). After the DNFB challenge, ear swelling appeared as an immediate response followed by a late phase response from the first challenge.

In order to explain the improving effects of ESE on the contact dermatitis, the serum immunoglobulin E and cytokines in lesional skin were measured. The immunoglobulin E level was significantly inhibited by oral ESE administration, and a vast majority of patients with atopic dermatitis exhibit hyperproduction of immunoglobulin E, particularly during disease onset or flare. Immunoglobulin E-dependent late-phase reactions may influence the chronic inflammation response in atopic dermatitis (11). The allergic dermatitis improving function may be established as one of the effects of ESE on allergic dermatitis.

ESE administration significantly reduced the levels of the anti-inflammatory cytokine IL-10, and increased the production of the anti-inflammatory IL-10 in lesional skin. It also has been reported that IL-10 is a natural suppressant of irritant and of chronic hypersensitivity responses, and hence limits immune-mediated damage in the skin. Mouse models with IL-10 deficiencies display exaggerated chronic hypersensitivity responses and more extensive immunopathologic cutaneous damage (12–15). Intradermal administration of IL-10 before challenge can inhibit the elicitation stage of allergic contact dermatitis. It is interesting that we got a similar result in a rat model. These observations and our results suggest that therapeutic manipulation of IL-10 production could be a part that ESE plays in the treatment of allergic contact dermatitis. It is noteworthy that the IL-4 concentration in inflamed tissue was significantly reduced by oral administration of ESE, whereas no significant changes in IFN-γ concentration were observed. Evidence exists that the Th1 and Th2 types of immune response are reciprocally regulated in vivo (16–18). IFN-γ, which is mainly produced by Th1 cells, especially inhibits the proliferation of Th2 cells and their IL-4 production (19, 20). These results suggest that the inhibitory effect of ESE on IL-4 production was not due to Th1 activation.
but it is possible that oral administration of ESE might directly inhibit IL-4 production, and increase IL-10 production.

The infiltration of eosinophils in the lesional skin in atopic dermatitis has been well established. A correlation between eosinophilia and the degree of spongiosis has been noticed in acute dermatitis or acute exacerbations of chronic atopic dermatitis (21). This suggests that the immunomodulatory effects of ESE on alleviating the symptom of the allergic dermatitis may be through inhibiting the eosinophil infiltration into the lesional skin.

In summary, the suppression of the hypersensitivity reaction together with reduction of IgE and IL-4 production and increase of IL-10 may explain our findings that ESE may serve as a dietary supplementation for the alleviations of chronic atopic dermatitis (10).

Acknowledgments

This investigation was kindly supported by grants from Jiamusi University China and Japan Science and Technology Agency.

REFERENCES

1) Gray DO, Fowden L. 1972. Isolation of 4-methylene-proline from *Eriobotrya japonica*. *Phytochemistry* 11: 745–750.

2) Yokota J, Takuma D, Hamada A, Onogawa M, Yoshioka S, Kusuonse M, Miyamura M, Kyotani S, Nishioka Y. 2006. Scavenging of reactive oxygen species by *Eriobotrya japonica* seed extract. *Bioll Pharm Bull* 29: 467–471.

3) Nishioka Y, Yoshioka S, Kusuonse M, Cui T, Hamada A, Ono M, Miyamura M, Kyotani S. 2002. Effects of extract derived from *Eriobotrya japonica* on liver function improvement in rats. *Biol Pharm Bull* 25: 1051–1057.

4) Hamada A, Yoshioka S, Takuma D, Yokota J, Cui T, Kusuonse M, Miyamura M, Kyotani S, Nishioka Y. 2004. The effect of *Eriobotrya japonica* seed extract on oxidative stress in adriamycin-induced nephropathy in rats. *Biol Pharm Bull* 27: 1961–1964.

5) Tanaka K, Nishizono S, Makino N, Tamaru S, Terai O, Ikeda I. 2008. Hypoglycemic activity of *Eriobotrya japonica* seeds in type 2 diabetic rats and mice. *Biosci Biotechnol Biochem* 72: 686–693.

6) Takuma D, Sun G, Yokota J, Hamada A, Onogawa M, Yoshioka S, Kusuonse M, Miyamura M, Kyotani S, Nishioka Y. 2008. Effect of *Eriobotrya japonica* seed extract on 5-fluorouracil-induced mucositis in hamsters. *Biol Pharm Bull* 31: 250–254.

7) Sun G, Zhang Y, Takuma D, Onogawa M, Yokota J, Hamada A, Yoshioka S, Kusuonse M, Miyamura M, Kyotani S, Nishioka Y. 2007. Effect of orally administered *Eriobotrya japonica* seed extract on allergic contact dermatitis in rats. *J Pharm Pharmacol* 59: 1405–1412.

8) Onogawa M, Sun G, Takuma D, Hamada A, Yokota J, Yoshioka S, Kusuonse M, Miyamura M, Kyotani S, Nishioka Y. 2009. Animal studies supporting the inhibition of mast cell activation by *Eriobotrya japonica* seed extract. *J Pharm Pharmacol* 61: 237–241.

9) Frew JA. 1988. The relationship between infiltrating CD4+ lymphocytes, activated eosinophils, and the magnitude of the allergen-induced late phase cutaneous reaction in man. *J Immunol* 141: 4158–4164.

10) Tahara E, Sato T, Watanabe C, Shimada Y, Itoh T, Nagai H, Terasawa K, Suiki I. 1999. A third-phase cutaneous (very late phase) response after elicitation with dinitrofluorobenzene in passively or actively sensitized mice. *Allergol Int* 48: 265–273.

11) Abramovits W. 2005. Atopic dermatitis. *J Am Acad Dermatol* 53: s86–93.

12) Berg DJ, Leach MW, Kuhn R, Rajewsky K, Muller W, Davidson NJ, Renneck D. 1995. Interleukin 10 but not interleukin 4 is a natural suppressant of cutaneous inflammatory responses. *J Exp Med* 182: 99–108.

13) Kondo S, Pastore S, Shivi G, McKenzie RC, Sauder DN. 1993. Characterization of epidermal cytokine profiles in sensitization and elicitation phases of allergic contact dermatitis as well as irritant contact dermatitis in mouse skin. *Lymphokine Cytokine Res* 13: 367–375.

14) Schwarz A, Grabbe S, Riemann H, Aragane Y, Simon M, Manon S, Andrade S, Luger TA, Zlotnik A, Schwarz T. 1994. In vivo effects of interleukin-10 on contact hypersensitivity and delayed-type hypersensitivity reactions. *J Invest Dermatol* 103: 211–216.

15) Ferguson TA, Dubé P, Griffith TS. 1994. Regulation of contact hypersensitivity by interleukin 10. *J Exp Med* 179: 1597–1604.

16) Heinzl FP, Sadick MD, Holaday BJ, Coffman RL, Locksley RM. 1989. Reciprocal expression of interferon γ or IL-4 during the resolution or progression of murine leishmaniasis: evidence for distinct helper T cell subsets. *J Exp Med* 179: 59–72.

17) Romagnani S. 1991. Human Th1 and Th2 subsets: doubt no more. *Immunol Today* 12: 256–257.

18) Mosmann TR, Coffman RL. 1987. Th1 and Th2 cells: different patterns of lymphokine secretion lead to different functional properties. *Annu Rev Immunol* 7: 145–173.

19) Gajewski TF, Schell SR, Nau G, Fitch FW. 1989. Regulation of T cell activation: differences among T-cell subsets. *Immunol Rev* 111: 79–110.

20) Stout RD, Bottomly K. 1989. Antigen-specific activation of effector macrophages by IFN-gamma producing (Th1) T cell clones. Failure of IL-4-producing (Th2) T cell clones to activate effector function in macrophages. *J Immunol* 142: 760–765.

21) Kiehl P, Falkenberg K, Vogelbruch M, Kapp A. 2001. Tissue eosinophilia in acute and chronic dermatitis: a morphometric approach using quantitative image analysis of immunostaining. *Br J Dermatol* 145: 720–729.