Tenascin-C deficiency impairs alveolarization and microvascular maturation during postnatal lung development

Sonja I. Mund¹ and Johannes C. Schittny¹

¹Institute of Anatomy, University of Bern, Switzerland

Running title. Tenascin-C deficiency impairs pulmonary alveolarization

Abbreviations.

TNC Tenascin-C
WT Wildtype
2D Two-dimensional
3D Three-dimensional
TUNEL TdT-mediated dUTP nick end labeling

Correspondence. Johannes C. Schittny,
Institute of Anatomy, University of Bern,
Baltzerstrasse 2, CH-3000 Bern 9, Switzerland
Tel.: x41-31-631-8431, FAX: x41-31-631-3807, schittny@ana.unibe.ch
Abstract

After the airways have been formed by branching morphogenesis the gas-exchange area of the developing lung is enlarged by the formation of new alveolar septa (alveolarization). The septa themselves mature by a reduction of their double layered capillary networks to single layered ones (microvascular maturation). Alveolarization in mice is subdivided into a first phase (postnatal days 4-21, classical alveolarization), where new septa are lifted off from immature pre-existing septa, and a second phase (days 14-adulthood, continued alveolarization), where new septa are formed from mature septa. Tenascin-C (TNC) is a multi-domain extracellular matrix protein contributing to organogenesis and tumorigenesis. It is highly expressed during classical alveolarization, but afterwards it is markedly reduced. To study the effect of TNC deficiency on postnatal lung development, the formation and maturation of the alveolar septa was followed stereologically. Furthermore, the number of proliferating (Ki-67-positive) and TUNEL-positive cells was estimated. In TNC deficient mice for both phases of alveolarization a delay and catch-up was observed. Cell proliferation was increased at days 4 and 6, at day 7 thick septa with an accumulation of capillaries and cells were observed, and the number of TUNEL-positive cells (dying cells or DNA-repair) was increased at day 10. While at days 15 and 21 premature microvascular maturation was detected, the microvasculature was less mature at day 60 as compared to wildtype. No differences were observed in adulthood. We conclude that TNC contributes to the formation of new septa, to microvascular maturation, and to cell proliferation and migration during postnatal lung development.

Word count: 250
Keywords. lung developmental, pulmonary alveolarization, tenascin-C deficiency, microvascular maturation, cell proliferation,

New & Noteworthy Previously we showed that the extracellular matrix protein tenascin-C takes part in prenatal lung development by controlling branching morphogenesis. Now we report that tenascin-C is also important during postnatal lung development, because tenascin-C deficiency delays the formation and maturation of the alveolar septa during classical, but also during continued alveolarization. Adult lungs are undistinguishable from wildtype due to a catch-up formation of new septa.
Introduction

Structural lung development

Starting from the lung buds (lung anlage) the conducting airways and parts of the respiratory airways are formed by continuous cycles of branching and growth into the surrounding mesenchyme (branching morphogenesis (65, 83)). During the stage of alveolarization the gas exchange surface area is enlarged by the lifting off of new alveolar septa from the pre-existing septa. The newly formed septa increase in height and subdivide the existing airspaces into smaller units (septation), called alveoli. During the lifting off of new alveolar septa one leaflet of the existing double layered capillary network within the existing septa folds up and gives rise to a new double layered capillary network inside the newly formed septa (3, 6, 7, 65, 87). Depending on the point of view, this process is either call alveolarization or septation. While alveolarization focuses on the formation of new airspaces (alveoli), septation focuses on the formation of new walls (septa) which are subdividing the existing airspaces. In order to optimize the gas exchange the double layered capillary networks of all septa are reduced to a central, single layered one by capillary fusion and the former central layer of connective tissue is reduced to a thin fibrous meshwork interwoven with the capillaries (microvascular maturation). Alveolarization and microvascular maturation start in parallel around postnatal day 4 in mice and rats and continue until young adulthood (50, 59, 65, 70). The stage of alveolarization can be subdivided into two phases. Classical alveolarization (days 4-21 in mice and rats) is characterized by the lifting off/folding up of new septa from immature pre-existing septa containing a double layered capillary network, while during continued alveolarization (day 14-adulthood (roughly days 36-60) in mice and rats) new septa are lifted off/folding up of mature pre-existing septa containing a single layered capillary network (1, 50, 70). In humans alveolarization is considered to start before birth and last up to young adulthood, and microvascular maturation is regarded to last until 2-3 years of age (65, 66, 83).
Cell proliferation and programmed cell death

While the structural mechanism of alveolarization/septation has been well established, the knowledge about the cellular processes and molecular signals guiding the lifting off of new septa is still limited (61, 67). It is well recognized that smooth muscle cells, elastic fibers, and collagen fibrils appear concentrated at the free edges of the existing and newly forming septa throughout septation. The presence of these three components seems to be crucial for the formation of new alveolar septa (20, 61, 67). In addition, the importance of cell proliferation for the lifting off of new septa was emphasized by the finding that in rats the rate of cell proliferation of all major cell types increased exactly in parallel to the beginning of classical alveolarization (39, 45). The absolute number of fibroblasts and epithelial cells is later diminished by apoptosis. In rats a peak of programmed cell death was detected at the end of the third postnatal week (45, 68). To the best of our knowledge programmed cell death has so far never been followed during postnatal lung development in mice, but is expected to be similar.

Tenascin-C

It is well acknowledged that the extracellular matrix plays an important role in regulating the behavior of cells that contact it. During prenatal lung development there is much evidence that different components of the extracellular matrix, such as tenascin-C elastin, fibronectin and different laminin-isoforms have unique functions in the regulation of branching morphogenesis (61). However, less is known about the role of the extracellular matrix on alveolarization and microvascular maturation. Tenascin-C (TNC) is a large, hexameric glycoprotein of the extracellular matrix. It is transiently expressed during organogenesis, where it is especially prominent at mesenchymal-epithelial interaction sites and along pathways of migrating cells. TNC is markedly reduced in adult tissues, but reappears under pathological conditions such as inflammation and tumorigenesis (8, 9, 21, 23, 61, 78, 84). During prenatal lung development TNC accumulates in the basement membranes and mesenchyme surrounding the branching and growing tips of the bronchial tree (41, 85, 88).
At this location it contributes to the control of branching morphogenesis (60). At the beginning of classical alveolarization TNC appears concentrated at the tips of the newly forming septa in parallel to smooth muscle cells, elastic fibers, and collagen fibrils. During the following postnatal lung development and during adolescence TNC expression declines to rarely detectable levels (38, 53, 62, 85). TNC expression is up-regulated by different growth factors, cytokines, as well as by mechanical stress (8, 15). It was shown to be down regulated by glucocorticoids (36, 58) and also in surgical induced congenital diaphragmatic hernia (81).

Antibody perturbation assays and tissue culture studies have suggested multiple functions for TNC (12). TNC has been shown to inhibit adhesion to fibronectin of most cells in culture, but for some cells, it functions as adhesion substrate. Therefore, it has been classified as adhesion-modulating protein (10, 54, 63). Furthermore, depending on the cell type TNC has been demonstrated to promote or inhibit cell migration and cell proliferation, and to modulate cell shape (36, 46) (18). Given the multiplicity of functions which have been suggested for TNC by in vitro studies it was rather surprising when TNC null mice were initially reported to show no abnormalities. At the same token no mechanism of compensation for the loss of TNC was found (5, 18, 24, 47, 62, 80). Looking in more detail it became evident that TNC knockout mice show subtle phenotypes, e.g. [i] behavioral abnormalities (26, 40), [ii] a reduced hematopoietic activity of bone marrow cells (52), [iii] an impaired healing of corneal wounds which were exposed to mechanical stress (48), [iv] a suppression of the formation of fibrous adhesions after injury of temporomandibular joint (73), [v] a reduced Wnt/β-catenin signaling combined with a reduced proliferation and migration of stem cells in whisker follicle stem cell niches (32, 79).

Developmental alterations have also been reported (14). E.g., [i] fetal lung organ cultures of TNC-null mice showed a reduction of the number of branches, while the growth of the lung explants was not altered (60), and [ii] an increased migration and reduced proliferation of neural precursor cells was detected during the development of the central nervous system (40).
Aim of the present study

Although it is well recognized that in the developing lung the expression of TNC peaks at the start of the first phase of alveolarization (classical alveolarization), the effect of TNC deficiency during this phase has never been investigated so far. The aim of the present study was to provide this information. Therefore, we followed alveolarization/septation and microvascular maturation in the TNC null mice strain generated by Forsberg et al. (24) and in matched wildtype mice using morphological and stereological methods. In addition, the extent of cell proliferation and of TUNEL-positive cells was compared between TNC null and wildtype lungs.
Material and methods

Animals and tissues

Lungs from the TNC null strain “Tnc tm1Ref” of Forsberg et al. (24) and from 129/SV wildtype control animals were obtained between postnatal days 2-86 as described in the following. For every data point an N = 3-8 male animals was used (see figure legends), because the experiments were done at a time were the ethics committee asked for one sex only in order to reduce the number of animals necessary for the study. The animals were housed in the central animal facility of the University of Bern at a 12/12 hour day/night circle. They received water and food ad libitum. The animals were deeply anesthetized using a mixture of medetomidin, midazolam, and fentanyl (22) and afterwards euthanized by exsanguination during the removal of the lung. After abdomen and thorax of the deeply anesthetized mice were opened, the airspace was filled via tracheal installation with freshly prepared 4% paraformaldehyde in PBS (10mM sodium phosphate, containing 127 mM sodium chloride, pH 7.4) at a constant pressure of 20 cm water column. At this pressure, the lung reaches roughly its total lung capacity. In order to prevent a recoiling of the lung, the pressure was maintained at least for 2h at 4°C. For the immunohistochemical investigation, the pulmonary blood vessels were beforehand perfused with phosphate-buffered saline (PBS, 10 mM sodium phosphate, containing 127 mM sodium chloride, pH 7.4), containing 5 U/ml heparin, 10 mg/ml procaine, and 10 mM EDTA (Fluka Chemie AG, Buchs, Switzerland). Handling of the animals before and during the experiments, as well as the experiments themselves, were approved and supervised by the Swiss Agency for Environment, Forests and Landscape and the Veterinary Service of the Canton of Berne. For ethical reasons we were obliged to keep the number of animals as low as possible. Therefore, we used the left lung for the stereological studies, the right lower lobe for imaging, and the remaining lobes of histochemical staining. According to Zeltner et al. and Barré et al. (4, 86) the lobes represent a representative sample of the entire lung. For light microscopical morphometry as well as for TdT-mediated dUTP nick end labeling assay and Ki-67-staining the left lung was dehydrated en bloc in a graded series of...
ethanol and embedded in paraffin using Histoclear™ (Life Science International, Frankfurt, Germany) as intermedium. A series of step sections of 4.5 µm thickness was obtained perpendicular to the longitudinal axis of the left lung at 10-13 equally spaced locations. The gap between the locations (length of the step) was constant for all lobes obtained at the same postnatal day, but increased with the size of the lobes. The first location was determined as follows. The blocks were cut until first pieces of lung appeared in the sections. Afterwards a randomly selected number of sections was discarded before the first step section was taken / the first location was reached. This number was smaller than the number of sections between two equally spaced locations. The sections were transferred onto silanized micro slides and air-dried overnight at 37°C. Sections used for light microscopical morphometry were stained with fuchsine.

Approximately 40 images were taken from all serial sections of the left lung of each animal according to a systematic random sampling scheme (19). Images were recorded using a Leica DM RB light microscope (Glattbrugg, Switzerland) equipped with a motorized Maerzheuser XY stage (Wetzlar, Germany) and a JVC 930 3-chip color video camera (Oberwil, Switzerland) and the software analySIS (Münster, Germany). The estimation of the volume density of the lung parenchyma, the septal surface area density, the length of the free septal edge, as well as the number of TUNEL-positive cells was done at a final magnification of 250x, whereas for the estimation of the number of proliferating cells and the total number of cells a final magnification of 870x was used.

For transmission electron microscopy and synchrotron-radiation x-ray-tomographic microscopy the right upper and right lower lobes were diced into tissue cubes of about 2mm edge length. The tissue blocks were postfixed with 2.5% glutaraldehyde in 0.03M potassium phosphate buffer (pH 7.4, osmolarity 360 mOsm) for at least 48h at 4°C, stained for 1 hour in 1% Na-cacodylate buffered osmium tetroxide solution (osmolarity 350 mOsm, pH 7.4) and stained for another 2 hours in 0.5% uranyl acetate solution. After dehydration in a graded series of ethanol the tissue blocks were embedded in Epon 812 (68).
For transmission electron microscopy 5 Epon embedded tissue blocks of the right upper lobes were randomly taken and ultrathin sections (80-90nm) were cut using a Reichert-Jung Ultracut microtome. Sections were double stained with lead citrate (56) and uranyl acetate (25). One section per block was viewed in a Philips 400 transmission electron microscope. Approximately 25 images per section were taken according to a systematic random sampling scheme (19) by a Morada camera (soft-imaging-system, Münster, Germany) and the software item (Münster, Germany). Stereological measurements were done at a final magnification of 3400x.

For synchrotron-radiation x-ray-tomographic microscopy 5 blocks of the right lower lobes were randomly taken, shaped down to rods of a diameter of 1.3 mm on a watchmaker’s lathe and glued on a rod-like holder of a diameter of 3.0 mm. Special care was taken that they were mounted perpendicularly to the surface of the holder in order to fit exactly into the window of the camera.

Immunohistochemistry

Immunohistochemistry was applied to stain proliferating cells with anti-Ki-67, a marker for cell proliferation (71), and to stain TUNEL-positive cells performing the TdT-mediated dUTP nick end labeling assay adapted from Gavrieli and associates (29).

Anti-Ki-67 staining. As described in (68, 69), paraffin sections were cooked in a household pressure cooker in Target Retrieval Solution (DAKO, Glostrup, Denmark) for 13 min at 2 bar, blocked with TBS containing 100mg/ml Casein (Sigma) and incubated over night at 4°C with the monoclonal rat anti-mouse-Ki-67-antibody (Clone Tec-3, DAKO, diluted 1:50 in antibody diluent, DAKO). Immunoreactivity was detected using the biotinylated polyclonal rabbit anti rat antibody (DAKO, diluted 1:200 in antibody diluent, DAKO), streptavidin-biotin horseradish peroxidase complex (DAKO), and 3-amino-9-ethylcarbazole (Sigma) as a substrate. The nuclei were counterstained with Mayer’s hematoxylin (VWR, Darmstadt, Germany).
TUNEL assay. As described in (68, 69), paraffin sections were digested with 3.6 μg/ml proteinase K (21°C, 10 min) and incubated with terminal transferase reaction solution, containing 9 mM digoxigenin-11-dUTP and 0.165 U/ml enzyme (Roche, Rotkreuz, Switzerland) for 40 min at 37°C. The incorporated digoxigenin was detected using an alkaline-phophatase labelled anti-digoxigenin antibody (Roche Rotkreuz, Switzerland; diluted 1:1000 in blocking reagent for nucleic acid hybridization and detection, Roche Rotkreuz, Switzerland) and 4-nitro-blue-tetrazolium-chloride (Roche Diagnostics, Mannheim, Germany).

Negative controls were performed with nonspecific mouse IgG (Ki-67 staining) or by omitting of the terminal transferase reaction solution (TUNEL). None or only little nonspecific background was observed in all negative controls. In addition, the Ki-67 was observed as a nuclear staining, only.

Light microscopical morphometry

After the fixation the volumes of the left lungs were first measured by water displacement (64). After embedding in paraffin and sectioning the lung volumes were estimated by the Cavalieri method (33, 49). Both volumes were used to calculate the shrinkage for every lung in order to correct for the shrinkage. The volume density of the lung parenchyma (airspaces and septal tissue, excluding bronchi, bronchioli and blood vessels > 20μm in diameter) was estimated by point counting.

The surface density of the alveolar septa was estimated by intersection counting. The absolute values were calculated as the product of the surface density and the lung volume for each animal and each time-point (33, 82).

The length density and length of the free septal edge was estimated stereologically as described and applied by Schittny and coworkers (50, 58, 70, 77). Briefly, this approach is based on the following two principles. First, any length appearing in three-dimensional (3D) space may be stereologically estimated by counting the number of points cutting the plane of 2D sections (33, 82). Second, in 3D space every airspace possesses one entrance ring.
which is represented by the free edges of the alveolar septa. Because the free septal edges are recognized as tips of the cut septa in 2D sections, their length density was estimated by counting the number of the tips of the cut septa in a reference area on paraffin sections. By simple enlargement of the lung, without the addition of new septa, the length density of the free edges of the alveolar septa will decrease, because a volume increases by a factor of x^3, while a length increases only by a factor of x^1. This kind of growth follows the principle of isometric scaling and geometric similarity – meaning that proportional relationships are preserved. E.g., when the volume increases by a factor of 8, the surface increases by a factor of 4 and the length by a factor of 2. This principle, the square-cube law, (27) was most likely first described by Galileo Galilei in 1638. In order to calculate the length of the free septal edge, which were newly formed in addition to the isometric scaled growth of the lung, we mathematically corrected the growth induced decrease of the length density by multiplying the length density by a factor of $3\sqrt[3]{(V_x/V_0)^2}$ (thereby V_x represents the parenchymal lung volume at the time point X, and V_0 the volume at the start of the growth). The resulting “growth corrected length density” stays constant throughout isometric scaled growth of the lung parenchyma, but shows an increase if new septa are formed. Therefore, the increase of the growth corrected length density was taken as a measure for the anlage of new alveolar septa as follows. The growth corrected length density at a given day was divided by the growth corrected length density at day 4 and multiplied by 100 to express the result as percentage. Therefore, the anlage of new septa is given as increase of the septa present at day 4.

The number of proliferating or TUNEL-positive cells as well as the total number of cells was estimated using the physical disector principle (33, 76). The disector was kept constant at 9 μm.

Electron microscopical morphometry

The fraction of the alveolar surface area characterized by a single or double layered capillary network or an atypical appearance with more than two capillary layers was
estimated by intersection counting (33, 82). In addition, the thickness of the septum was measured perpendicular to the surface of the septum at each intersection. Intersections with lung epithelium adjacent to non-parenchymal structures were not taken into account (82).

Synchrotron radiation x-ray tomographic microscopy and visualization

5 samples of each time-point were scanned at the TOMCAT (X02DA) beamline at the Swiss Light Source (SLS) of the Paul-Scherrer-Institute (PSI), Villigen, Switzerland (75). The energy was tuned to 12.398 keV (corresponding to an x-ray wavelength of 1 Å). After penetration of the sample, x-rays were converted into visible light by a thin Ce-doped YAG scintillator screen (Crismatec Saint-Gobain, Nemours, France). Projection images were further magnified by diffraction limited microscope optics and finally digitized by a high-resolution CCD camera (Photonic Science Ltd., East Sussex, UK), (74). The optical magnification was set to 10x and on-chip binning was selected to improve the signal to noise ratio, resulting in isotropic voxels of $1.43 \mu m^3$ for the reconstructed images. For each measurement, 1500 projections were acquired along with dark and periodic flat field images at an integration time of 100ms each (30, 31, 42-44). Data were post-processed and rearranged into flat field corrected sinograms online. Reconstruction of the volume of interest was performed on a 24-node Linux PC farm using highly optimized filtered back-projection routines. We used a global thresholding approach for surface rendering. For 3D-visualization and surface rendering we used the software Imaris (Bitplane AG, Zürich, Switzerland) on an Athlon 64 3500 based personal computer. To enhance the contrast between air and lung tissue and to smooth the images we applied the gamma correction tool using the software Adobe Photoshop C53 version 10.0 (Adobe Systems Incorporated, Microsoft Windows Media Technologies).

Statistical analysis

The Kolmogorov-Smirnov test was applied to assess the Gaussian distribution of the data. Differences between groups were assessed by one-way analysis of variance (ANOVA)
followed by Bonferroni-Holm-corrected post hoc t-tests (2, 57). Statistical significance was defined as \(\alpha < 0.05 \). For all morphometrical measurements 3-8 male animals per time point were used (see figure legends).
Results

Morphological observation in 3D visualizations of the lung parenchyma

In order to study the effect of TNC deficiency during postnatal lung development, we morphologically compared the three-dimensional (3D) structure of the terminal airspaces between TNC null and wildtype lungs during the phase of classical alveolarization. As method, we used 3D-visualizations which were obtained by x-ray-tomographic microscopy. At day 4 the lungs of TNC deficient and of wildtype animals showed a similar appearance. The lung parenchyma was characterized by large terminal airspaces (saccules) in both groups (Fig. 1A+B). At day 7 newly formed septa and alveoli were detected in wildtype lungs indicating that alveolarization is ongoing (Fig 1D). TNC null lungs of the same age appeared to be in a state analogous to day 4, but showed focal areas of atypically thickened septa (Fig. 1C, arrowhead). At postnatal day 15 we were not able to observe any structural differences between both groups by morphological inspection of the 3D-visualizations at light microscopical resolution (Fig. 1E+F).

Stereological estimations

To verify our observations the lung volumes, the anlage of new alveolar septa and the septal surface area were quantified and compared between wildtype and TNC null animals. The lung volumes of TNC deficient animals were increased by 10-20% between days 2-21 (Fig. 2A). We did not observe any differences regarding the body weight of TNC null versus wildtype animals. Thus, the specific lung volume (lung volumes per body weight) of TNC null animals was larger than the one of wildtype mice between days 4-21 (data not shown). By following the anlage of new alveolar septa and alveolar surface area, we observed that the first and second phase of alveolarization (classical and continued alveolarization) was delayed. Alveolarization started delayed after day 7 in TNC deficient lungs, was compensated at days 15 -21, again delayed at day 36 and again compensated at day 60 and afterwards (Fig. 2 B+C).
By comparing the morphology of the interairspace septa between wildtype and TNC null lungs using light- and electron microscopy, focal areas of atypically thickened septa with an accumulation of capillaries and connective tissue, as well as an increased cellularity were observed in TNC null lungs at day 7 (Fig. 3). To better characterize this phenotype [i] the septal wall thickness was measured, [ii] microvascular maturation was followed by estimating the septal surface area possessing double versus single layered capillary networks on electron-microscopical images using intersection counting, and [iii] the number of proliferating cells (Ki-67-positive cells) as well as [iv] the total number of cells were stereologically estimated. The mean septal wall thickness of TNC null lungs was increased by 100% at day 7 (Fig. 4A). A histogram of the measured thickness revealed a shift from the classes of thinner measurements (0-10 μm) to thicker measurements (15-65 μm) in the TNC null lungs at this age (Fig. 4B). This result underlines our impression that only focal areas of the septa are thickened. Microvascular maturation was delayed and started after day 7 in TNC null animals (Fig. 5). In addition, about 33% of the alveolar septa of the TNC null lungs showed an atypical appearance with more than two capillary layers at day 7. This phenotype was only observed in tenascin-C null lungs of this age. At days 15 and 21 microvascular maturation appeared to be overcompensated. The percentage of mature septa was increased in TNC null lungs, but the difference disappeared at day 36. At day 60 a decreased fraction of mature septa was detected in TNC null mice. In adult animals at day 86 no differences were observed (Fig. 5). Following cell proliferation by estimating the number of Ki-67-positive cells, a peak of proliferating cells was detected at days 4 and 6 both in wildtype and TNC null animals. However, the number of proliferating cells was significantly larger in tenascin-C null lungs than in wildtype (Fig. 6C). The total number of cells was increased in tenascin-C deficient lungs at days 10 and 14, but at day 17 or later no differences were observed (Fig. 6D and data not shown).

Asking whether this disappearance of the difference in the total normal number of cells at day 17 or later may be explained by an increased rate of cell death, the number of TUNEL-positive cells was compared between TNC null and wildtype lungs. The TUNEL-
essay stains cell possessing a large amount of DNA breakage which is typical for apoptosis, programed cell death, and highly elevated DNA repair. Both in wildtype and TNC null animals a peak of TUNEL-positive cells was observed at days 14 and 17. In addition, TNC deficient lungs showed a premature increased rate of TUNEL-positive cell at day 10. At all other investigated time points no differences were observed (Fig. 7).
Discussion

Although numerous reports on TNC expression during organ and tissue development exist and many in vitro studies have suggested multiple functions for this protein during development (see introduction and (36) (9)), until now only one developmental abnormality has been reported in lungs of TNC deficient mice (60) (14). Recently we described a reduced branching morphogenesis during the development of the bronchial tree (60). In the present study we investigated the effect of TNC deficiency during postnatal lung development using the TNC null mice strain of Forsberg et al. (24). Early postnatal lung development is characterized by the start of alveolarization and microvascular maturation as well as a peak of cell proliferation. It is well acknowledged that TNC expression peaks in the lung while these processes take place. By following the anlage of new septa and microvascular maturation by stereological estimations, we observed that both developmental processes were delayed in TNC null lungs and started after day 7 (Figs. 2B, 5A, and 8) which is 3-4 days too late. This result lets us conclude that TNC contributes to the regulation of alveolarization/septation and microvascular maturation during early postnatal lung development. Remarkably, at day 7 about one third of the septal surface area present in TNC null lungs showed an atypical structure with more than 2 capillary layers (Fig. 5B). To the best of our knowledge such incorrectly structured septa have never been detected during postnatal lung development before.

TNC and cell migration

The expression of TNC is in parts controlled by mechanical stimuli. Furthermore, the presence of TNC facilitates cell migration e.g. by binding of TNC to the cell binding domain of fibronectin or by the recognition of TNC by α_8 integrin (8, 13, 15, 78). Since the process of lifting off of new alveolar septa most likely includes mechanical forces and requires a coordinated migration of all cell types present in the distal lung, this phenotype implies that cell migration and the transduction of mechanical forces may be impaired by TNC deficiency. In consequence, we hypothesize that TNC contributes to mechano transduction and to the
regulation of cell migration which are both required for the lifting off of new alveolar septa and
for the formation of correct structured alveolar septa including the capillary network during
early postnatal lung development.

Cell proliferation

In parallel to the delayed start of alveolarization and microvascular maturation, an increased
number of proliferating cells was detected in TNC deficient lungs at days 4 and 6 (Fig. 6C).
We therefore conclude that TNC also takes part in the regulation of cell proliferation, and
thus seems to be a key factor for the regulation of the major developmental processes, i.e.
alveolarization, microvascular maturation, cell migration and cell proliferation, taking place
during early postnatal lung development. Moreover, our result of an increased cell
proliferation is basically interesting, because this study is the first one detecting this
phenomenon in vivo in TNC deficient mice. Many in vitro studies have shown that depending
on the cell type TNC can either stimulate (37) (11) (35) (72) (16) or inhibit cell proliferation
(11) (55) (17). However, in vivo studies have only observed a reduced rate of cell
proliferation in TNC deficient mice so far, namely in association with a model of renal
glomerulonephritis and in association with the behavior of neural precursor cells during the
development of the central nervous system (28) (51). Thus, our results indicate that TNC can
exert supportive or inhibitory effects on cell proliferation not only in vitro, but also in vivo.

Mechanical forces

Taking into account that TNC expression may be induced due to mechanical strain, and TNC
is highly expressed at the tips of the alveolar septa, which are recognized to bear high
mechanical forces, we moreover speculate that TNC expression might be up-regulated by
mechanical stimuli during early postnatal lung development. Since TNC seems to contribute
to the regulation of cellular processes like cell migration and cell proliferation during early
postnatal lung development, its function during this period might be described as mechano-
transducer, in a sense that mechanical stimulation promotes cellular action via up-regulation of TNC expression.

Continued alveolarization

The peak of TNC expression during the first postnatal week is followed by a decline to markedly reduced, but still detectable, levels during the third postnatal week during normal lung development in rats and mice (58, 63, 85). Unexpectedly, besides impairing early postnatal lung development (classical alveolarization), TNC deficiency did also alter later stages of lung development. In TNC deficient lungs the continued alveolarization (second phase) was prolonged. While a premature microvascular maturation was detected at days 15 and 21 (Fig. 2B and 5A), a delay of microvascular maturation was observed at day 60. The latter may be due to the catch-up of alveolarization observed between days 36 and 60 in the TNC deficient lungs, because newly formed septa are immature and it takes a short while until they mature. Therefore, we hypothesize that the observed higher “input rate” of new septa induces a higher percentage of immature septa in the TNC deficient lungs at day 60. The altered continued alveolarization let us hypothesize that TNC contributes not only to the lifting off of new septa and microvascular maturation at the start of postnatal lung development, but that the low levels of TNC detected during later stages of lung development also contribute to the regulation of both of the latter named processes.

Programmed cell death.

Given the roles of the protein TNC both during early postnatal lung development and during later stages which have been demonstrated in the present study, it seems to be surprising that no differences were detected in TNC deficient lungs in adulthood at postnatal day 86. This result may be explained by the presence of corrective mechanisms during postnatal lung development in TNC deficient animals. Although an increased number of proliferating cells was observed in TNC null lungs at days 4 and 6, the total number of cells was increased only at days 10 and 14, but not thereafter (Fig. 6). A possible mechanism
explaining this phenomenon would be a compensatory alteration of the rate of programmed cell death similarly to the alterations observed in rat which were treated with dexamethasone as neonates (45). Estimating the number of TUNEL-positive cells a premature peak of positive cells was detected in TNC null animals at day 10 (Fig. 7). Unfortunately, the TUNEL-essay is not completely specific for programmed cell death. It also detects cells expressing a high amount of DNA breakage during DNA repair. Because, programmed cell death is reported during this stage of development, it is likely that at least a high number of the TUNEL-positive cells are dying. The present study is the second one reporting that both cell proliferation and programmed cell death are altered in TNC deficient mice during development. However, in contrast to our observation Garcion et al. found a reduced rate of cell proliferation and a reduced rate of programmed cell death of neural precursor cells during development of the central nervous system in TNC deficient mice (28). Thus, the compensation of impaired cell proliferation by the adaptation of programmed cell death seems to be an important corrective mechanism which leads to the apparent normality of TNC deficient mice in adulthood. Furthermore, it needs to be mentioned that the present study is the first one following TUNEL-positive cells in the developing mouse lung. Over the last decades postnatal lung development was generally considered to be identical in mice and rats. However, while rat lung development was well characterized by morphometrical methods, postnatal lung development in the mouse was only followed by morphological observations. We were recently able to show that postnatal lung development in mice and rats is not identical regarding the endpoint of alveolarization, the rate of the anlage of new alveolar septa and the growth rate of the lung parenchyma (70) (50). In the present study we further observe that the peak of TUNEL-positive cells starts earlier in mice than in rats. While in rats a peak was detected at days 19 and 21 (45) (68), the peak was observed in mice already at days 14 and 17 (Fig. 7).

Rescue of phenotype
An additional question arising is why the anlage of new alveolar septa and septal surface area observed in adult TNC deficient animals is identical to wildtype. The phenotype of a practically absent formation of new septa between days 4-7 in TNC deficient lungs was compensated in the TNC deficient lungs leading to an increased rate of newly forming septa between days 7-15. The reduced formation of new septa between days 21-36 in TNC deficient animals was compensated by prolonged alveolarization between days 36-60 (Fig. 2B). In parallel to the prolonged alveolarization a decrease of the fraction of the septal surface area characterized by a single layered capillary network (mature capillary network) was observed between days 36-60 in TNC deficient lungs (Fig. 5A). Principally, the lifting off of new septa requires the existence of a double layered capillary network. While during classical alveolarization (first phase) double layered capillary networks are still present in the prenatally formed septa, the late formation of new septa is facilitated by local duplications of the single layered capillary network at the sides of septation (70) (65). Most likely the double layered capillary networks which are present during adolescence and young adults in wildtype and TNC deficient lungs (Fig. 5A) appear at sites where new septa are forming and grow into the alveolar lumen. Therefore, it is anticipated that an increased rate of the formation of new septa should result in a transient immaturity of the alveolar septa. Another process which was associated with TNC deficiency during postnatal lung development and which practically represents a rescue mechanism is the increased lung volume we observed in TNC null animals during early postnatal lung development (Fig. 2A). Although in TNC null lungs practically no septa were formed between days 4-7 and the anlage of septa was still decreased at day 10, the septal surface area of TNC deficient animals was only slightly reduced at day 7 and not significantly different at day 10 (Fig. 2C). However, this compensatory effect was restricted to the first three postnatal weeks and did not rescue the reduced formation of new alveolar septa between days 21-36. In principle the increase of the lung volume could be caused by two different effects: increased lung growth and/or increased compliance of the lung tissue and the thorax (the filling of the lungs was done when the thorax was still closed except a small hole in the
diaphragm). We would not like to speculate which of the mechanisms is predominately involved. However, for the TNC deficient mice it does not matter, because in both cases, lung growth versus compliance, a larger gas-exchange area could be used as compared to wildtype – and most likely the latter is what counts for the mice.

Does the question of increased lung growth versus lung compliance effect the stereological estimations? No, because the estimations are done as good as possible under standardized conditions. To use a constant pressure for filling represents the state of the art (34). However, stereological estimations do not tell anything about the reason why a parameter is different in different groups of animals.

Does the question affect the finding of delayed and catch-up alveolarization? No, because without the observed increase of lung volume the effect would be even more pronounced.

Conclusion

In summary, we describe a new developmental phenotype of the TNC null mouse. In TNC deficient lungs both alveolarization and microvascular maturation started with a delay, cell proliferation was increased and thick septa with an accumulation of capillaries and cells were observed during early postnatal lung development. These results are summarized in figure 8. These results let us hypothesize that TNC contributes to the lifting off of new septa, the regulation of cell migration and cell proliferation, and furthermore to microvascular maturation at the start of postnatal lung development. The increased cell proliferation was most likely rescued by an increased number of dying cells (TUNEL-positive), while the delayed alveolarization and microvascular maturation were compensated by an increase of the formation of new alveolar septa and an increase of septal maturation. In addition, the phase of continued alveolarization (second phase) was prolonged and in parallel the alveolar microvascular was less mature in TNC deficient mice towards the end of continued alveolarization. The latter may be explained by an increased or better catch-up formation of new alveolar septa which are immature directly after they are formed. We hypothesize that
TNC contributes not only to the lifting off of new alveolar septa and microvascular maturation during early postnatal lung development, but also during later stages.

Acknowledgement

The authors thank Mrs. Bettina de Breuyn, Mrs. Krystyna Sala, Mrs. Catherine Allemann Probst, as well as Mr. Christoph Lehmann for expert technical assistance, and Drs. Federica Marone-Welford and Marco Stampanoni for their continuous excellent support at the beamline TOMCAT (Paul-Scherrer-Institut, Villigen, Switzerland).

Grants

We are thankful for the support by the Swiss National Science Foundation grants #3100.068256.02, #3100A0-109874, #310030-153468, and #310030_175953

Disclosures

The author(s) do not have to declare any kind of conflicts of interests.

Author’s contributions

In collaboration S.I.M. and J.C.S. performed all experiments including the handling of the animals and the harvesting or the lungs, analyzed the data, interpreted results of experiments, and prepared the figures. S.I.M. did the stereological counting and drafted the manuscript. J.C.S. conceived and designed the research project.
References

1. Ackermann M, Houdek JP, Gibney BC, Ysasi A, Wagner W, Belle J, Schittny JC, Enzmann F, Tsuda A, Mentzer SJ, and Konerding MA. Sprouting and intussusceptive angiogenesis in postpneumonectomy lung growth: mechanisms of alveolar neovascularization. *Angiogenesis* 17: 541-551, 2014.

2. Altman PA, and Dittmer DS. *Biology Data Book*. Bethesda, MD: Federation of American Societies for Exp.Biology, 1972.

3. Amy RW, Bowes D, Burri PH, Haines J, and Thurlbeck WM. Postnatal growth of the mouse lung. *J Anat* 124: 131-151, 1977.

4. Barre SF, Haberthur D, Cremona TP, Stampanonni M, and Schittny JC. The total number of acini remains constant throughout postnatal rat lung development. *American journal of physiology Lung cellular and molecular physiology* 311: L1082-L1089, 2016.

5. Bartsch U. The extracellular matrix molecule tenascin-C: expression in vivo and functional characterization in vitro. *Prog Neurobiol* 49: 145-168, 1996.

6. Burri PH. The postnatal growth of the rat lung. 3. Morphology. *The Anatomical record* 180: 77-98, 1974.

7. Burri PH, Dbaly J, and Weibel ER. The postnatal growth of the rat lung. I. Morphometry. *The Anatomical record* 178: 711-730, 1974.

8. Chiquet-Ehrismann R, and Chiquet M. Tenascins: regulation and putative functions during pathological stress. *The Journal of pathology* 200: 488-499, 2003.

9. Chiquet-Ehrismann R, Hagios C, and Schenk S. The complexity in regulating the expression of tenascins. *Bioessays* 17: 873-878, 1995.

10. Chiquet-Ehrismann R, Kalla P, Pearson CA, Beck K, and Chiquet M. Tenasin interferes with fibronectin action. *Cell* 53: 383-390, 1988.

11. Chiquet-Ehrismann R, Mackie EJ, Pearson CA, and Sakakura T. Tenasin: an extracellular matrix protein involved in tissue interactions during fetal development and oncogenesis. *Cell* 47: 131-139, 1986.

12. Chiquet-Ehrismann R, Orend G, Chiquet M, Tucker RP, and Midwood KS. Tenascins in stem cell niches. *Matrix Biol* 37: 112-123, 2014.

13. Chiquet-Ehrismann R, and Tucker RP. Tenascins and the importance of adhesion modulation. *Cold Spring Harb Perspect Biol* 3: a004960, 2011.

14. Chiquet-Ehrismann R, and Tucker RP. Tenascins and the importance of adhesion modulation. *Cold Spring Harb Perspect Biol* 3: 2011.

15. Chiquet M, Matthisson M, Koch M, Tannheimer M, and Chiquet-Ehrismann R. Regulation of extracellular matrix synthesis by mechanical stress. *Biochem Cell Biol* 74: 737-744, 1996.

16. Chung CY, Murphy-Ullrich JE, and Erickson HP. Mitogenesis, cell migration, and loss of focal adhesions induced by tenascin-C interacting with its cell surface receptor, annexin II. *Mol Biol Cell* 7: 883-892, 1996.

17. Crossin KL. Cytotactin binding: inhibition of stimulated proliferation and intracellular alkalinization in fibroblasts. *Proceedings of the National Academy of Sciences of the United States of America* 88: 11403-11407, 1991.

18. Crossin KL. Tenasin: a multifunctional extracellular matrix protein with a restricted distribution in development and disease. *J Cell Biochem* 61: 592-598, 1996.

19. Cruz-Orive LM, and Weibel ER. Sampling designs for stereology. *J Microsc* 122: 235-257, 1981.

20. Dubreuil G, Lacoste A, and Raymond R. Observations sur le développement du poumon humain. *BullHistolTechMicrosc* 13: 235-245, 1936.

21. Ekblom P, and Aufderheide E. Stimulation of tenasin expression in mesenchyme by epithelial-mesenchymal interactions. *Int J Dev Biol* 33: 71-79, 1989.

22. Erhardt W, Henke J, Haberstroh J, Baumgartner C, and Tacke S. Analgesie. In: *Anästhesie und Analgesie beim Klein- und Heimtier* Schattauer GmbH 2011, p. 383-434.

23. Erickson HP, and Bourdon MA. Tenasin: an extracellular matrix protein prominent in specialized embryonic tissues and tumors. *Annu Rev Cell Biol* 5: 71-92, 1989.
24. Forsberg E, Hirsch E, Frohlich L, Meyer M, Ekblom P, Aszodi A, Werner S, and Fassler R. Skin wounds and severed nerves heal normally in mice lacking tenascin-C. *Proceedings of the National Academy of Sciences of the United States of America* 93: 6594-6599, 1996.

25. Frasca JM, and Parks VR. A Routine Technique for Double-Staining Ultrathin Sections Using Uranyl and Lead Salts. *Journal of Cell Biology* 25: 157-+, 1965.

26. Fukamauchi F, Mataga N, Wang YJ, Sato S, Youshiki A, and Kusakabe M. Abnormal behavior and neurotransmissions of tenascin gene knockout mouse. *Biochemical and biophysical research communications* 221: 151-156, 1996.

27. Galilei G. *Discorsi e dimostrazioni matematiche, intorno à due nuove scienze attenenti alla mecanica & i movimenti locali*. In Leida, 1638.

28. Garcia E, Faissner A, and ffrench-Constant C. Knockout mice reveal a contribution of the extracellular matrix molecule tenascin-C to neural precursor proliferation and migration. *Development* 128: 2485-2496, 2001.

29. Gavrieli Y, Sherman Y, and Ben-Sasson SA. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. *J Cell Biol* 119: 493-501, 1992.

30. Haberthur D, Barre SF, Tschanz SA, Yao E, Stampannoni M, and Schittny JC. Visualization and stereological characterization of individual rat lung acini by high-resolution X-ray tomographic microscopy. *Journal of applied physiology (Bethesda, Md : 1985)* 115: 1379-1387, 2013.

31. Haberthur D, Hintermuller C, Marone F, Schittny JC, and Stampannoni M. Radiation dose optimized lateral expansion of the field of view in synchrotron radiation X-ray tomographic microscopy. *J Synchrotron Radiat* 17: 590-599, 2010.

32. Hendaoui I, Tucker RP, Zingg D, Bichet S, Schittny J, and Chiquet-Ehrismann R. Tenascin-C is required for normal Wnt/beta-catenin signaling in the whisker follicle stem cell niche. *Matrix Biol* 40: 46-53, 2014.

33. Howard CV, and Reed MG. *Unbiased stereology. Three-dimensional measurement in microscopy*. Abingdon, Oxon, New York: Garland Science / BIOS Scientific Publishers, 2005.

34. Hsia CC, Hyde DM, Ochs M, and Weibel ER. An official research policy statement of the American Thoracic Society/European Respiratory Society: standards for quantitative assessment of lung structure. *Am J Respir Crit Care Med* 181: 394-418, 2010.

35. Huang W, Chiquet-Ehrismann R, Moyano JV, Garcia-Pardo A, and Orend G. Interference of tenascin-C with syndecan-4 binding to fibronectin blocks cell adhesion and stimulates tumor cell proliferation. *Cancer Res* 61: 8586-8594, 2001.

36. Jones FS, and Jones PL. The tenascin family of ECM glycoproteins: structure, function, and regulation during embryonic development and tissue remodeling. *Developmental dynamics : an official publication of the American Association of Anatomists* 218: 235-259, 2000.

37. Jones PL, Crack J, and Rabinovitch M. Regulation of tenascin-C, a vascular smooth muscle cell survival factor that interacts with the alpha v beta 3 integrin to promote epidermal growth factor receptor phosphorylation and growth. *J Cell Biol* 139: 279-293, 1997.

38. Kaarteenaho-Wiik R, Kinnula V, Herva R, Paakko P, Pollanen R, and Soini Y. Distribution and mRNA expression of tenascin-C in developing human lung. *Am J Respir Cell Mol Biol* 25: 341-346, 2001.

39. Kauffman SL, Burri PH, and Weibel ER. The postnatal growth of the rat lung. II. Autoradiography. *The Anatomical record* 180: 63-76, 1974.

40. Kiernan BW, Garcia E, Ferguson J, Frost EE, Torres EM, Dunnett SB, Saga Y, Aizawa S, Faissner A, Kaur R, Franklin RJ, and ffrench-Constant C. Myelination and behaviour of tenascin-C null transgenic mice. *The European journal of neuroscience* 11: 3082-3092, 1999.

41. Koch M, Wehrlehall B, Baumgartner S, Spring J, Brubacher D, and Chiquet M. Epithelial Synthesis of Tenasin at Tips of Growing Bronchi and Graded Accumulation in Basement-Membrane and Mesenchyme. *Experimental Cell Research* 194: 297-300, 1991.
42. Lovric G, Barre SF, Schittny JC, Roth-Kleiner M, Stampanoni M, and Mokso R. Dose optimization approach to fast X-ray microtomography of the lung alveoli. J Appl Crystallogr 46: 856-860, 2013.

43. Lovric G, Mokso R, Arcadu F, Vogiatzis Oikonomidis I, Schittny JC, Roth-Kleiner M, and Stampanoni M. Tomographic in vivo microscopy for the study of lung physiology at the alveolar level. Sci Rep 7: 12545, 2017.

44. Lovric G, Vogiatzis Oikonomidis I, Mokso R, Stampanoni M, Roth-Kleiner M, and Schittny JC. Automated computer-assisted quantitative analysis of intact murine lungs at the alveolar scale. PloS one 12: e0183979, 2017.

45. Luyet C, Burri PH, and Schittny JC. Suppression of cell proliferation and programmed cell death by dexamethasone during postnatal lung development. American journal of physiology Lung cellular and molecular physiology 282: L477-483, 2002.

46. Mackie EJ. Molecules in focus: tenasin-C. The international journal of biochemistry & cell biology 29: 1133-1137, 1997.

47. Mackie EJ, and Tucker RP. The tenasin-C knockout revisited. J Cell Sci 112 (Pt 22): 3847-3863, 1999.

48. Matsuda A, Yoshiki A, Tagawa Y, Matsuda H, and Kusakabe M. Corneal wound healing in tenasin knockout mouse. Investigative ophthalmology & visual science 40: 1071-1080, 1999.

49. Michel RP, and Cruz-Orive LM. Application of the Cavalieri principle and vertical sections method to lung: estimation of volume and pleural surface area. J Microsc 150: 117-136, 1988.

50. Mund SI, Stampanoni M, and Schittny JC. Developmental alveolarization of the mouse lung. Developmental dynamics : an official publication of the American Association of Anatomists 237: 2108-2116, 2008.

51. Nakao N, Hiraiwa N, Yoshiki A, Ike F, and Kusakabe M. Tenasin-C promotes healing of Habu-snake venom-induced glomerulonephritis: studies in knockout congenic mice and in culture. Am J Pathol 152: 1237-1245, 1998.

52. Ohta M, Sakai T, Saga Y, Aizawa S, and Saito M. Suppression of hematopoietic activity in tenasin-C-deficient mice. Blood 91: 4074-4083, 1998.

53. Olave N, Lal CV, Halloran B, Pandit K, Cuna AC, Faye-Petersen OM, Kelly DR, Nicola T, Benos PV, Kaminski N, and Ambalavanan N. Regulation of alveolar septation by microRNA-489. American journal of physiology Lung cellular and molecular physiology 310: L476-487, 2016.

54. Orend G, and Chiquet-Ehrismann R. Adhesion modulation by antiadhesive molecules of the extracellular matrix. Exp Cell Res 261: 104-110, 2000.

55. Orend G, Huang W, Olayiye MA, Hynes NE, and Chiquet-Ehrismann R. Tenasin-C blocks cell-cycle progression of anchorage-dependent fibroblasts on fibronectin through inhibition of syndecan-4. Oncogene 22: 3917-3926, 2003.

56. Reynolds ES. The use of lead citrate of high pH as an electron opaque stain in electron microscopy. J Cell Biol 17: 208-211, 1963.

57. Riffenburgh RH. Statistics in medicine. London, San Diego: Academic Press, 1999.

58. Roth-Kleiner M, Berger TM, Gremlich S, Tschanz SA, Mund SI, Post M, Stampanoni M, and Schittny JC. Neonatal steroids induce a down-regulation of tenasin-C and elastin and cause a deceleration of the first phase and an acceleration of the second phase of lung alveolarization. Histochem Cell Biol 141: 75-84, 2014.

59. Roth-Kleiner M, Berger TM, Tarek MR, Burri PH, and Schittny JC. Neonatal dexamethasone induces premature microvascular maturation of the alveolar capillary network. Developmental dynamics : an official publication of the American Association of Anatomists 233: 1261-1271, 2005.

60. Roth-Kleiner M, Hirsch E, and Schittny JC. Fetal lungs of tenasin-C-deficient mice grow well, but branch poorly in organ culture. Am J Respir Cell Mol Biol 30: 360-366, 2004.

61. Roth-Kleiner M, and Post M. Similarities and dissimilarities of branching and septation during lung development. Pediatr Pulmonol 40: 113-134, 2005.

62. Saga Y, Yagi T, Ikawa Y, Sakakura T, and Aizawa S. Mice Develop Normally without Tenascin. Gene Dev 6: 1821-1831, 1992.
63. Sage EH, and Bornstein P. Extracellular proteins that modulate cell-matrix interactions. SPARC, tenascin, and thrombospondin. J Biol Chem 266: 14831-14834, 1991.

64. Scherle W. A simple method for volumetry of organs in quantitative stereology. Mikroskopie 26: 57-60, 1970.

65. Schittny JC. Development of the lung. Cell Tissue Res 367: 427-444, 2017.

66. Schittny JC. How high resolution 3-dimensional imaging changes our understanding of postnatal lung development. Histochem Cell Biol 150: 677-691, 2018.

67. Schittny JC, and Burri PH. Morphogenesis of the Mammalian Lung: Aspects of Structure and Extracellular Matrix Components. In: Lung Development and Regeneration, edited by Massaro D, Massaro GD, and Chambon P. New York, Basel, Hong Kong: Marcel Dekker Inc, 2004, p. 275-317.

68. Schittny JC, Djonov V, Fine A, and Burri PH. Programmed cell death contributes to postnatal lung development. Am J Respir Cell Mol Biol 18: 786-793, 1998.

69. Schittny JC, Luyet C, and Burri PH. Suppression of a peak of programmed cell death by dexamethasone in postnatal developing lung. Annals of Anatomy 181: 307, 1999.

70. Schittny JC, Mund SI, and Stampanoni M. Evidence and structural mechanism for late lung alveolarization. American journal of physiology Lung cellular and molecular physiology 294: L246-254, 2008.

71. Scholzen T, and Gerdes J. The Ki-67 protein: from the known and the unknown. J Cell Physiol 182: 311-322, 2000.

72. Seiffert M, Beck SC, Schermutzki F, Muller CA, Erickson HP, and Klein G. Mitogenic and adhesive effects of tenascin-C on human hematopoietic cells are mediated by various functional domains. Matrix Biol 17: 47-63, 1998.

73. Shinohara Y, Okamoto K, Goh Y, Kiga N, Tojyo I, and Fujita S. Inhibition of fibrous adhesion formation in the temporomandibular joint of tenascin-C knockout mice. European journal of histochemistry : EJH 58: 2337, 2014.

74. Stampanoni M, Borchert G, Wyss P, Patterson B, Hunt S, Vermeulen D, and Rueggsegger P. High resolution X-ray detector for synchrotron-based microtomography. Nucl Instrum Meth A 491: 291-301, 2002.

75. Stampanoni M, Groso A, Isenegger A, Mikuljan Q, Chen Q, Bertrand A, Henein S, Betemps R, Frommherz U, Bööhler P, Meister D, Lange M, and Abela R. Trends in synchrotron-based tomographic imaging: the SLS experience. In: Developments in X-Ray Tomography V, edited by Bonse U Proc. of SPIE, 2006, p. 1605-7422.

76. Sterio DC. The unbiased estimation of number and sizes of arbitrary particles using the disector. JMicrosc 134: 127-136, 1984.

77. Tschanz SA, Salm LA, Roth-Kleiner M, Barre SF, Burri PH, and Schittny JC. Rat lungs show a biphasic formation of new alveoli during postnatal development. Journal of applied physiology (Bethesda, Md : 1985) 117: 89-95, 2014.

78. Tucker RP, and Chiquet-Ehrismann R. Tenascin-C: Its functions as an integrin ligand. The international journal of biochemistry & cell biology 65: 165-168, 2015.

79. Tucker RP, Ferralli J, Schittny JC, and Chiquet-Ehrismann R. Tenascin-C and tenascin-W in whisker follicle stem cell niches: possible roles in regulating stem cell proliferation and migration. J Cell Sci 126: 5111-5115, 2013.

80. Vollmer G. Biologic and oncologic implications of tenascin-C/hexabrachion proteins. Crit Rev Oncol Hematol 25: 187-210, 1997.

81. Vuckovic A, Herber-Jonat S, Flemmer AW, Roubliova XI, and Jani JC. Alveolarization genes modulated by fetal tracheal occlusion in the rabbit model for congenital diaphragmatic hernia: a randomized study. PloS one 8: e69210, 2013.

82. Weibel ER. Morphometric and stereological methods in respiratory physiology including fixation techniques. In: Techniques in Respiratory Physiology Part IP 401 Ed: ABOtis Elsevier Scientific Publishers Ireland Ltd 1-35: 1984.

83. Woods JC, and Schittny JC. Lung structure at preterm and term birth. In: Fetal Lung Development - Clinical Correlates & Future Technologies, edited by Jobe AH, Whitsett JA, and Abman SH. New York: Cambridge University Press, 2016, p. 126-140.

84. Yoshida T, Akatsuka T, and Imanaka-Yoshida K. Tenascin-C and integrins in cancer. Cell adhesion & migration 9: 96-104, 2015.
85. Young SL, Chang LY, and Erickson HP. Tenascin-C in rat lung: distribution, ontogeny and role in branching morphogenesis. Developmental biology 161: 615-625, 1994.

86. Zeltner TB, Bertacchini M, Messerli A, and Burri PH. Morphometric estimation of regional differences in the rat lung. Experimental lung research 16: 145-158, 1990.

87. Zeltner TB, and Burri PH. The postnatal development and growth of the human lung. II. Morphology. Respir Physiol 67: 269-282, 1987.

88. Zhao Y, and Young SL. Tenascin in rat lung development: in situ localization and cellular sources. Am J Physiol 269: L482-491, 1995.
Figures legends

Figure 1. 3D-visualizations of the terminal airspaces. On postnatal day 4 the lung parenchyma of wildtype (WT) and TNC null mice (TNC) consisted of large terminal airspaces (A+B). In wildtype mice the start of alveolarization is characterized by the formation of new septa (arrow) and alveoli (asterisk) on day 7 (D). In TNC null lungs focal areas of atypical thickened septa were detected (arrowhead in C) on day 7 which are indicative for a halted alveolarization. At postnatal day 15 the differences disappeared (E+F). Bar, 50μm; visualizations are based on synchrotron-based x-ray-tomographic microscopy.

Figure 2. Lung volume, total length of the free septal edge, anlage of newly forming alveolar septa, and total surface area. The lung volumes (A), the total length of the free septal edge (B), the anlage of newly forming alveolar septa (C), and the septal (alveolar) surface area (D) were stereologically estimated. The anlage of newly formed septa is normalized to day 2 and equal to the newly formed length of the free septal edge. The lung volumes of TNC null animals were increased by approximately 20% between days 2-21 (A). In TNC null lungs classical alveolarization started delayed after day 7 (B-D). Furthermore, the formation of new alveolar septa was markedly reduced between days 21-36, but alveolarization was prolonged to day 60 (B+C). The septal surface area of TNC deficient animals was decreased at days 7 and 36 (D). Error bars indicate the standard deviations; N = 5-8 lungs of male mice per time point and genotype.

Figure 3. Morphological observations on light and electron- microscopical images at postnatal day 7. The morphological appearance of the interairspace septa of wildtype and tenascin C null lungs was compared on light- (A+B) and electron microscopical images (C+D). We observed focal areas with atypical thickened septa in TNC null lungs at postnatal day 7 (arrows). The focally thickened areas showed an abnormal structure with an accumulation of capillaries and connective tissue, as well as an increased cellularity, but no epithelial cells inside the thickening. Bar, 50 μm in A+B; 20μm in C+D.
Figure 4. Thickness of septa. The thickness of the septa was measured on electron microscopical lung images as shown in figure 3C+D. At day 7 the mean septal wall thickness of the tenascin C null mice was increased by 100% as compared to wildtype mice (A). Panel B shows a histogram of the thickness measured at postnatal day 7 using a class width of 5μm. In TNC deficient lungs a broader distribution and a shift to thicker septa was observed. Error bars indicate the standard deviations; N = 5 lungs of male mice per time point and genotype.

Figure 5. Microvascular maturation. In TNC null lungs microvascular maturation was delayed and started after day 7 (A). About one third of the alveolar septa of TNC deficient animals showed an atypical appearance with more than two capillary layers at day 7 (B). At days 15 and 21 premature microvascular maturation was detected. The difference disappeared at day 36. At day 60 a decreased fraction of single layered septa was observed in TNC null lungs, but in adult animals at day 86 no differences were detected (A). Error bars indicate the standard deviations; N = 5 lungs of male mice per time point and genotype.

Figure 6. Cell proliferation and total number of cells. Lung sections of TNC deficient and wildtype mice were stained with anti-Ki-67, a marker for cell proliferation, and counterstained with hematoxylin as shown for postnatal day 6 (A+B). The number of Ki-67- positive cells (C) as well as the total number of cells (D) per cubic millimeter of septal volume was evaluated between postnatal days 4-17. Both in wildtype and in TNC null lungs a peak of proliferating cells was detected at days 4 and 6, but the number of Ki-67- positive cells observed in mice lacking TNC exceeded the one in wildtype (C). At days 10 and 14 the total number of cells per cubic millimeter was larger in TNC null than in wildtype lungs (D). Bar, 50 μm. Error bars indicate the standard deviations; N = 3 lungs of male mice per time point and genotype.
Figure 7. TUNEL-essay positive cells. Sections of TNC null and wildtype lungs were labelled by the TUNEL-procedure as shown for postnatal day 10 (A+B). The TUNEL-essay stains cell possessing a large amount of DNA breakage which is typical for programmed cell death and highly elevated DNA repair. A peak of TUNEL-positive cells was observed at days 14 and 17 both in TNC deficient and wildtype lungs. At day 10 a four-fold increase was detected in lungs lacking TNC as compared to wildtype (C). Bar, 200 μm. Error bars indicate the standard deviations; N = 3 lungs of male mice per time point and genotype.

Figure 8. Timeline of phenotypes. The different phenotype in TNC deficient lungs are compared to the phenotype of wildtype lungs. Panel A summarizes the structural differences: Lung volumes of TNC deficient lungs are increased between days 4-21, but the length of the free septal edge, the anlage of septa and the alveolar surface area are all decreased at days 7 (-10) and 36. The three of them catch up at days 15-21 and a second time at day 60. Panel B illustrates cell number, proliferation, and death. An increased cell proliferation at days 4-7 is associated with an increased number of cells at days 10-15 in TNC deficient lungs. Programmed cell death is increased at day 10 which results in a normalization of the number of cells at days 15-86 as compared to wildtype. Panel C compares septal thickness and microvascular maturation. It seems to be that the delay of classical alveolarization at day 7 causes an increase of the septal thickness. Microvascular maturation is also effected at day 7, but showed a decreased maturity. The same was observed at day 60 which is most likely due to a catch-up alveolarization between days 36-60. All data are given as increase or decrease in comparison to wildtype (WT).
A

Single layered surface area (%)

Age (days)

4 7 15 21 36 60 86

B

Distribution of capillary layers at day 7

TNC WT

0% 30% 60% 90%
