Chronic Inflammatory Diseases: Are We Ready for Microbiota-based Dietary Intervention?

Emilie Viennois, Andrew T. Gewirtz, and Benoit Chassaing

Institute for Biomedical Sciences and Neuroscience Institute, Georgia State University, Atlanta, Georgia

SUMMARY
Accumulating evidence supports the orchestrating role of the intestinal microbiota in chronic inflammatory disorders. As more dietary factors are identified as potential mediators of microbiota composition and function, will personal dietary intervention based on microbiota composition soon be part of disease management?

The last 15 years have witnessed the emergence of a new field of research that focuses on the roles played by the intestinal microbiota in health and disease. This research field has produced accumulating evidence indicating that dysregulation of host-microbiota interactions contributes to a range of chronic inflammatory diseases, including inflammatory bowel diseases, colorectal cancer, and metabolic syndrome. Although dysregulation of the microbiota can take complex forms, in some cases, specific bacterial species that can drive specific clinical outcomes have been identified. Among the numerous factors influencing the intestinal microbiota composition, diet is a central actor, wherein numerous dietary factors can beneficially or detrimentally impact the host/microbiota relationship. This review will highlight recent literature that has advanced understanding of microbiota-diet-disease interplay, with a central focus on the following question: Are we ready to use intestinal microbiota composition-based personalized dietary interventions to treat chronic inflammatory diseases? (Cell Mol Gastroenterol Hepatol 2019;8:61–71; https://doi.org/10.1016/j.jcmgh.2019.02.008)

Keywords: Microbiota; Inflammation; Diet; Personalized Medicine.

The intestinal microbiota is a vast and complex community of microorganisms that includes 10^{14} bacteria per intestine and about 100–500 different species per individual. Among its numerous functions, the gut microbiota is essential to promote maturation of the intestinal immune system and help digestion by permitting extraction of calories and nutrients that would otherwise be eliminated in feces. Besides these beneficial roles, the gut microbiota can also turn detrimental to its host and, if not well-managed, can lead to the development of inflammatory diseases such as inflammatory bowel disease (IBD) and metabolic syndrome. Importantly, the large post–mid-20th century increase in the incidence of IBD and metabolic syndrome highlights the pivotal role of nongenetic factors in determining the extent to which individuals genetically prone to disease actually develop it. Nongenetic factors previously shown to influence the intestinal microbiota and development of colitis are listed in Table 1.

During the last 15 years, numerous studies have reported alterations in microbiota composition in both preclinical and clinical models of chronic inflammatory diseases. Although those alterations may, in part, be driven by the disease state, recent work has highlighted that an altered microbiota can also play a role in driving the disease, with the observation that disease can be transferred to germ-free mice by microbiota transplantation. For example, a pioneering study by Turnbaugh et al revealed that colonization of germ-free mice with an "obese microbiota" caused the recipient mice to gain more weight than those who received a "lean microbiota." Mechanistic investigations have highlighted the importance of some specific microbiota members in driving detrimental outcomes, such as intestinal inflammation.

Altogether, these findings suggest that microbiota could be seen as a next-generation medicine, with the hypothesis that therapeutic/dietary interventions can be based on individual microbiota composition.

Lessons Learned From Cancer Therapy
The concept of microbiota composition-based therapy is most advanced in the research area of cancer therapeutics, particularly in determining drug efficacy. Recent studies have highlighted how intestinal bacteria can impact efficacy of anticancer drugs, with the findings that cancer patients can be stratified into responders and non-responders to immunotherapy on the basis of their intestinal microbiota composition. This suggests that microbiota should be considered when assessing therapeutic intervention.

For example, Gopalakrishnan et al identified that fecal microbiota composition differs between patients with metastatic melanoma that responded or not to anti-programmed cell death protein 1 (PD-1) immunotherapy on the basis of their intestinal microbiota composition. This is an open access article under the CC BY-NC-ND license. http://creativecommons.org/licenses/by-nc-nd/4.0/.

Abbreviations used in this paper: AIEC, adherent invasive Escherichia coli; CD, Crohn’s disease; CMC, carboxymethylcellulose; FMT, fecal microbiota transplantation; HCC, hepatocellular carcinoma; IBD, inflammatory bowel disease; PD-1, programmed cell death protein 1; P80, polysorbate 80.
Compounds	Model used	Effect on the intestinal microbiota	Effect on the host	Reference
Soluble fibers	C57/Bl6 WT treated with DSS C57/Bl6 IL10KO	Alteration of microbiota composition at the phylum level Impact on bacterial biomass and proinflammatory potential	Promotion of intestinal inflammation	55, 56
Aluminum	Colorectal distention in rats	Not studied	Orally administered low-dose aluminum induced visceral hypersensitivity	79
Maltodextrin	Biofilm formation assay	Increased biofilm formation and adhesion ability of Crohn’s disease–associated adherent and invasive Escherichia coli bacteria No alteration of mucosa-associated microbiota	Deregulation of intestinal antimicrobial defense Promotion of endoplasmic reticulum stress, mucus depletion	44, 80, 81
Dietary emulsifier (CMC and P80)	C57/Bl6 WT C57/Bl6 IL10KO C57/Bl6 TLR5KO	Alteration of microbiota composition Increase of microbiota proinflammatory potential Promotion of microbiota encroachment	Promotion of low-grade intestinal inflammation and metabolic disorders in WT and TLR5KO mice Promotion of colitis incidence and severity in IL10KO mice	20, 32, 82, 83
Thickener (carrageenan)	Pig	Microbiota composition alterations at the phylum level Decreased proportion of A muciniphila	Ulcerations in the large intestine	84–86
Artificial sweeteners	SAMP1/YitFc (SAMP) mice	Alteration of microbiota composition, promotion of proteobacteria	Exacerbation of ileal inflammation	87
Titanium dioxide nanoparticles	Adult zebrafish (Danio rerio) C57/Bl6 WT Wistar rats	Alteration of microbiota composition	Increase in levels of the inflammatory cytokines Colonic microinflammation	88–90
DSS, dextran sulfate sodium; WT, wild-type.				
cell death protein 1 (PD-1) therapy. Patients who responded to this therapy had higher abundance of the Faecalibacterium genus in their fecal microbiota, whereas non-responders harbored a higher abundance of Bacteroidales order. This finding importantly highlighted that an initial assessment of microbiota composition could be used as predictor of anti-PD-1 therapy success and could help to determine drug dose and frequency. Similarly, Routy et al. demonstrated a central role played by the gut microbiota in the therapeutic response induced by immune checkpoint inhibitors targeting the PD-1/PD-L1 axis, with the identification of responder and non-responder patients. Fecal metagenomics revealed that the relative abundance of Akkermansia muciniphila correlated with clinical responses to immune checkpoint inhibitors, and oral supplementation with A. muciniphila after fecal microbiota transplantation (FMT) from non-responder feces was sufficient to restore the efficacy of PD-1 blockade in mice model. Such studies highlight the future of microbiota-based precision medicine therapies, with the concept that patients entering immunotherapy treatment for cancer may first have their microbiota composition analyzed to determine (1) what is the best therapeutic approach and (2) whether some patients could benefit from FMT before therapy to be converted from non-responders to responders. However, although these studies highlight the critical role of microbiota members in defining anti-PD-1 therapy responsiveness, no consensus was reached regarding the specificity, no consensus was reached regarding the specific microbiota members in driving the associations reported in each independent study. These findings suggest a potential unappreciated heterogeneity and the importance of performing thorough microbiota composition analysis by using uniformed sequencing platform and analysis workflow, as well as precise patient stratification based on cancer type, cancer stage, patient origin, etc.

Lessons Learned From Research on Dietary Emulsifiers

We and others previously hypothesized that emulsifiers, which are added to most processed foods to aid texture and extend shelf life, might have played a role in the rapid post–mid-20th century increase in the incidence of chronic inflammatory diseases. Investigation of this hypothesis led us to observe that emulsifiers induced a chronic intestinal inflammation that promotes development of chronic colitis in susceptible mice and metabolic syndrome in wild-type mice. By treating mice with 2 commonly used emulsifiers, namely polysorbate 80 (P80) and carboxymethylcellulose (CMC), at doses seeking to model the broad consumption of the numerous emulsifiers that are incorporated into a large variety of processed foods, we observed changes in species composition of the gut microbiota and increased expression of proinflammatory molecules. Such alterations included increased lipopolysaccharide and flagellin, which can activate host proinflammatory gene expression. Moreover, CMC- and P80-induced alterations in microbiota resulted in enhanced capacity to infiltrate the dense mucus layer that lines the intestine. Mucosa-associated microbiota has been previously studied and is characterized by a distinct composition compared with luminal microbiota, with important roles played by this community on maturation of the immune system (for example, the well-documented impact of segmented filamentous bacteria on Th17 cells). However, the colonic inner mucus layer normally harbors a relatively low bacterial biomass, which compositionally differs from luminal and mucosa-associated microbiota. CMC and P80 alter this inner mucus environment by promoting microbiota encroachment in a way that triggers chronic colitis in mice genetically prone to this disorder. In wild-type mice with normal immune systems, emulsifiers induced low-grade (ie, mild) intestinal inflammation and metabolic syndrome, characterized by increased adiposity and hyperglycemia. As a result of investigation into mechanisms underlying emulsifier-mediated promotion of inflammation, we identified that the effects of their consumption were eliminated in mice lacking a microbiota (germ-free), and that transplantation of microbiota from emulsifier-treated mice to wild-type germ-free recipient mice was sufficient to transfer some parameters of low-grade inflammation and metabolic syndrome, indicating a central role played by the microbiota in mediating the effects.

Importantly, we recently demonstrated that a complex microbiota community is required for emulsifier-mediated detrimental effects, with the observation that emulsifier consumption by gnotobiotic mice colonized with a highly restricted microbiota composed of only 8 bacteria, namely altered Schaedler flora (ASF), was not sufficient to induce microbiota encroachment, intestinal inflammation, or altered metabolism. These findings suggest that a complex microbiota containing some specific species is required to mediate detrimental effects of emulsifier exposure (Figure 1). In the coming years, microbiota composition analysis combined with the evaluation of inter-individual variations in response to emulsifier should identify specific species detrimentally impacted by such compounds. In other words, whereas some individuals may harbor a microbiota that will not be impacted by emulsifier exposure, other individuals may harbor some specific bacteria in their microbiota that make them susceptible to emulsifier-driven detrimental effects such as chronic intestinal inflammation and metabolic deregulations (Figure 1).

Lessons Learned From Patient Cohort Studies

FMT has recently gained interest as a possible novel treatment option for chronic inflammatory diseases including IBD. Indeed, even though treatments of such disorders by FMT are quite exploratory at present, the interest in its potential is attested to by the increasing number of publications describing FMT as therapy for IBD. However, the clinical outcomes in the various studies are excessively heterogenous, with studies reporting no improvement, deterioration, improvement, improvement but no remission, and/or clinical remission. These studies once again demonstrated heterogeneity in therapeutic outcomes and suggest that personalized intervention based on microbiota composition of the donor and/or the recipient microbiota...
may be needed, even if coming with quite some challenges. Currently, the notion that FMT can successfully treat diseases characterized by gut inflammation is best supported by the successful use of FMT in treatment of recurrent *Clostridium difficile* infection, which results in severe colitis. This approach allows a donor microbiota to recolonize the gastrointestinal tract of a patient with a complex microbial community, thus conferring “colonization resistance” to *C. difficile* infection and preventing pathogenesis.39 Although specific approaches to FMT treatment of recurrent *C. difficile* vary across institutions, it generally uses clinical stratification of both donors and recipients to transplant microbiota that will reach high success rates of engraftment.40 Analogously, a proper diagnosis strategy and clinical classification of IBD patients, and perhaps fecal donors, would seem warranted for successful FMT-based IBD therapy.

Similarly, another approach to beneficially manipulate the intestinal microbiota in the IBD population is through dietary modulation, which may also highly benefit from considering inter-individual variations in microbiota composition. Association study between dietary intake and incidence of IBD has pointed to food components as impacting IBD development. Indeed, certain food components such as polyunsaturated fatty acids, omega-6 fatty acids, and meat seem to predispose for IBD, whereas fibers and fruits or vegetables were associated with a decreased
risk of Crohn’s disease (CD) and ulcerative colitis, respec-

tively. Results from dietary therapy, such as exclusive

enteral nutrition (which is using exclusive liquid feeding

with either elemental or polymeric formulas) for IBD,

remain inconclusive. Because IBDs are multifactorial

diseases and IBD population is highly heterogeneous, per-

forming dietary intervention in the IBD population to

investigate the role of a food component or a food additive

without considering this inter-individual variation might not

provide conclusive results. An example highlighting this

concept is a study demonstrating that the ubiquitous dietary

component maltodextrin enhanced CD-associated adherent

invasive Escherichia coli (AIEC) biofilm formation. Hence,

on the basis of the observation that only 30%–40% of the

CD population harbor AIEC bacteria, we can hypothe-
size that if a research clinical trial using maltodextrin-free

diet were to be performed at the IBD population level,

results will show different results for AIEC+ and AIEC–sub-

jects (Figure 2A). On the other hand, if such maltodextrin-free diet clinical trial were to focus on the CD

population carrying AIEC bacteria, we can expect much

clearer beneficial clinical outcomes (Figure 2B).

Other important investigations focusing on the obese

population have highlighted the importance of the intestinal

microbiota in clinical trials, particularly in regard to dietary

intervention. In an elegant study by Clément and Cani

groups, the authors found that baseline of A muciniphila

abundance within the intestinal microbiota associated with

better clinical outcomes after a 6-week dietary intervention

in the obese population. By stratifying the population on

the basis of A muciniphila level, they indeed found that pa-

tients harboring a higher level of this specific bacteria had

greatest benefits from the dietary intervention. Hence, one

can speculate that such observation may apply to other

bacteria, and that the success of dietary intervention aiming

to improve metabolic health may highly benefit from indi-

vidualization based on microbiota composition.

In a similar vein of research, a recent study demon-

strated that colonization of the gastrointestinal tract by

probiotic is dependent on and can be predicted by micro-

biota composition, suggesting that some microbiota might

be more predisposed to benefit from probiotic treatment.

Importantly, although patients can be stratified by their

ability to be colonized, functional outcomes were not

addressed in this study, and numerous reports actually

suggest that a daily probiotic does not necessarily need to

colonize to exert its beneficial effect. Interestingly, probiotic treatment was also recently found to have a

detrimental impact on microbiota recolonization after anti-

biotic use, highlighting that stable colonization of the

gastrointestinal tract by such species may also be
detrimental.

Lessons Learned From Preclinical Research on

Purified Soluble Fiber

In a recent study, we unexpectedly observed that in

mice, enriching purified diets with soluble fiber inulin led to

icteric hepatocellular carcinoma (HCC), with up to 40%

penetrance rate in male mice and 20% in female mice. In

this model, we identified a central role played by the

intestinal microbiota, with the observation that HCC sus-

ceptibility was transferred to normally unaffected mice by

co-housing. Mechanistically, soluble fiber–induced HCC

was prevented by inhibition of microbial fermentation. This

study also revealed that an analysis of the microbiota

composition could predict the likelihood of an animal to

develop soluble fiber–induced HCC. Moreover, HCC

penetration was impacted by the animal provider, high-

lighting further that a specific microbiota is required for

the development of soluble fiber–driven HCC and suggest-

ing that in this case, the intestinal microbiota could be

more determinant than host genetics for precision medicine.

Similarly, we identified that although soluble fiber

supplementation was beneficial in a model of diet-induced

obesity in wild-type mice, it was associated with exacer-

bation of colitis in genetically susceptible mice (IL10KO).

Altogether, these findings suggest that precision dietary

supplementation based on personal gut microbiota might be

a promising future direction to manage intestinal and

extraintestinal disorders. For example, Prevotella genus

is known to be an effective producer of short-chain fatty acid

through dietary fiber degradation, and one can imagine dietary

recommendation for daily fiber intake based on

Prevotella relative abundance in the gastrointestinal tract to

avoid detrimental impacts on the liver.

Lessons Learned From General Population-based Studies

Because of recent advances in nucleic acid sequencing

methods that have dramatically increased the cost-

effectiveness of microbiota composition analyses tech-

iques, important progress has recently been made by

investigating microbiota composition at the population level

altogether with detailed characterization of clinical outcomes.

Among these recent studies, one assessed factor can

contribute to postprandial blood glucose level elevation af-

ter a meal, a defining parameter of prediabetes and a major

risk factor for type 2 diabetes. Although inter-individual

variations in postprandial blood glucose level had been

previously described, they were yet not well-understood.

In this research, Zeevi et al monitored glucose levels of 800

participants in response to almost 50,000 meals, and they

importantly found high inter-individual variability of blood

glucose levels after an identical meal, suggesting that dietary

recommendations at the population level may have limited

utility. In addition, the authors used machine-learning al-

gorithm that integrated multiple parameters, including gut

microbiota composition, and they demonstrated that such

algorithm can accurately predict postprandial glycemic

response to a specific meal. Such findings elegantly
demonstrate the microbiota power in determining clinical

outcomes and further support the concept of integrating

microbiota inter-individual variations for clinical research.

A tool based on multiple factors, including microbiota

composition, that is able to precisely predict glycemic

response could be highly beneficial for the type 1 diabetic
Figure 2. Importance of microbiota-based classification in research clinical trial. (A) Without a classification based on the resistant and susceptible status of the individuals, a dietary intervention aiming to supplement a beneficial compound or withdraw a detrimental one will lead to the absence of significant clinical outcome between the treated and the control groups. (B) By classifying the participants on the basis of their microbiota status (resistant or susceptible), significant clinical outcomes can be observed in the susceptible population, whereas no effect is observed in the population harboring a resistant microbiota.
population by providing personalized dietary recommendations as well as optimized dosing of insulin to precisely control blood glucose levels.60

Discussion and Perspective

The recent and rapid evolution of the microbiome field of research has demonstrated the importance of the microbiome in determining health and disease outcomes. Furthermore, it suggests that microbiome analysis should be added to clinical trials, especially as relates to dietary research, because this information may be essential for correctly appreciating clinical outcomes (Figure 2). Indeed, although a dietary intervention aiming to withdraw and/or supplement specific macro/micronutrients to treat/prevent a chronic inflammatory disease may fail at the population level, the identification of subpopulation harboring specific bacteria that can mediate the beneficial effect may reveal positive outcome of such dietary interventions (Figure 2). Hence, the importance that the intestinal microbiota may have on the outcome of clinical intervention in chronic inflammatory diseases, either drug-based or dietary-based, should now be appreciated and routine feces collection considered. Furthermore, it is estimated that one-third of clinical trials are terminated as a result of hepatotoxicity in subset of patients. Microbiota composition should be investigated in such scenarios because it may allow for correction of such approach is to classify patients on the basis of their therapeutic response. We envision that such data can be used to unlock the potential of the microbiota in serving as a predictor of clinical outcome in dietary intervention.

Conclusion

We submit that deeper understanding of the human microbiota will lead to the identification and comprehension of resistant and susceptible microbiota, allowing health care providers to provide precise, tailored dietary and therapeutic recommendations for their patients. Clearly, additional research is warranted to uncover the determinants and mechanisms by which gut microbiome composition would render a human subject as resistant or susceptible to a particular intervention. To date, most studies have relied on analyzing microbiota composition via 16S rRNA gene sequencing, but accurately predicting responses may require analysis of metagenomes (all the genomic content of a microbiota) and/or metatranscriptomes (all the genes actively expressed by a microbiota) to successfully identify responders and non-responders. Moreover, in addition to the species level, identification of microbiota members at the strain level may need to be investigated.78 In addition, it appears important to determine which microbiota subpopulation is to be used to properly stratify patient populations: fecal microbiota, luminal microbiota, mucosa-associated microbiota, or inner mucus–associated microbiota, especially because these microbiota subtypes are not communicating with the host or responding to dietary intervention in the same way. Our recently developed technique of laser capture microdissection to specifically collect and identify inner mucus–associated bacteria could help in this endeavor.30 Moreover, even such extensive analysis may not yield optimal predictive power, and hence we envision that developing functional assays to test how individual microbiotas respond to a particular treatment will be needed. Such need for further studies notwithstanding, routine sampling of stool in dietary-based or drug-based clinical intervention should already be considered to broadly assess microbiota composition in clinical trials, including retrospective analysis. Such approaches may soon begin to unlock the potential of the microbiota in serving as a predictor of clinical outcome in dietary intervention.

References

1. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto JM, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Li S, Jian M, Zhou Y, Li Y, Zhang X, Li S, Qin N, Yang H, Wang J, Brunak S, Dore J, Guarner F, Kristensen K, Pedersen O, Parkhill J, Weissbach J, Meta HITC, Bork P, Ehrlich SD, Wang J. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010;464:59–65.
2. Lloyd-Price J, Abu-Ali G, Huttenhower C. The healthy human microbiome. Genome Med 2016;8:51.
3. Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell 2014;157:121–141.
4. Chassaing B, Darfeuille-Michaud A. The commensal microbiota and enteropathogens in the pathogenesis of inflammatory bowel diseases. Gastroenterology 2011;140:1720–1728.
5. Chassaing B, Aitken JD, Gewirtz AT, Vijay-Kumar M. Gut microbiota drives metabolic disease in immunologically altered mice. Adv Immunol 2012;116:93–112.
6. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006;444:1027–1031.
7. Devkota S, Wang Y, Musch MW, Leone V, Fehliner-Peach H, Nadimpalli A, Antonopoulos DA, Jabri B, Chang EB. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in il10−/− mice. Nature 2012;487:104–108.
8. Nagao-Kitamoto H, Shreiner AB, Gilliland MG 3rd, Kitamoto S, Ishii C, Hirayama A, Kuffa P, El-Zaateri M, Grasberger H, Seekatz AM, Higgins PD, Young VB, Fukuda S, Kao JY, Kamada N. Functional characterization of inflammatory bowel disease-associated gut dysbiosis in gnotobiotic mice. Cell Mol Gastroenterol Hepatol 2016;2:468–481.
9. Jobin C. Precision medicine using microbiota. Science 2018;359:32–34.
10. Matson V, Fessler J, Bao R, Chongswat T, Zha Y, Alegre ML, Luke JJ, Gajewski TF. The commensal microbiota is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 2018;359:104–108.
11. Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Derosa L, Duong CPM, Alou MT, Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Kaprins TV, Pietro PA, Vicente D, Hoffman K, Wei SC, Cogdill AP, Zhao L, Ludgens CW, Hutchinson DS, Manzo T, Petaccia de Macedo M, Cotechihi T, Kumar T, Chen WS, Reddy SM, Szczepaniak Sioane R, Galloway-Pena J, Jiang H, Chen PL, Shpali EJ, Rezvani K, Alousi AM, Chemaly RF, Shenburne S, Vence LM, Okhuesen PC, Jensen VB, Swennes AG, McAllister F, Marcelo Riquelme Sanchez E, Zhang Y, Le Chatelier E, Zitvogel L, Pons N, Austin-Benrener J, Haydu LE, Burton EM, Gardner JM, Sirmans E, Hu J, Lazar AJ, Tsujikawa T, Diab A, Twabi H, Glitza IC, Hwu WJ, Patel SP, Woodward SE, Amaria RN, Davies MA, Gershwenfeld JE, Hwu P, Lee JE, Zhang J, Coussens LM, Cooper ZA, Futeal PA, Daniel CR, Ajami NJ, Petrosino JF, Tetzlaff MT, Sharma P, Allison JP, Jeng RR, Wargo JA. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 2018;359:97–103.
12. Vetizou M, Pitt JM, Dailiere R, Lepage P, Walschmitt N, Flamant C, Rusakiewicz S, Routy B, Roberti MP, Duong CP, Poirier-Colame V, Roux A, Becharf S, Formenti S, Golden E, Cording S, Eberl G, Schlitzer A, Ginhoux F, Mani S, Yamazaki T, Jacquenet N, Enot DP, Berard M, Nigou J, Opolon P, Eggemont A, Woerther PL, Chachaty E, Chapat N, Robert C, Mateus C, Kroemer G, Raoul D, Boneca IG, Carbonnel F, Chamailler M, Zitvogel L. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 2015;350:1079–1084.
13. Petrosino JF. The microbiome in precision medicine: the way forward. Genome Med 2018;10:12.
14. Goodrich JK, Di Rienzi SC, Poole AC, Koren O, Walters WA, Caporaso JG, Knight R, Ley RE. Conducting a microbiome study. Cell 2014;158:250–262.
15. Goodrich JK, Di Rienzi SC, Poole AC, Olszewska A, Koren O, Walters WA, Caporaso JG, Knight R, Ley RE. Conducting a microbiome study. Cell 2014;158:250–262.
16. Ng SC, Shi HY, Hamidi N, Underwood FE, Tang W, Benchimol EI, Panaccione R, Ghosh S, Wu JCY, Chan FKL, Sung JYY, Kaplan GG. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet 2018;390:2769–2778.
17. Roberts CL, Rushworth SL, Richman E, Rhodes JM. Hypothesis: increased consumption of emulsifiers as an explanation for the rising incidence of Crohn’s disease. J Crohns Colitis 2013;7:338–341.
18. Roberts CL, Keita AV, Duncan SH, O’Keeffe N, Soderholm JD, Rhodies JM, Campbel BJ. Translocation of Crohn’s disease Escherichia coli across M-cells: contrasting effects of soluble plant fibres and emulsifiers. Gut 2010;59:1331–1339.
19. Swidsinski A, Ung V, Sydora BC, Loening-Baucke V, Srinivasan S, Ley RE, Gewirtz AT. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 2015;519:92–96.
20. Li H, Limenitakis JP, Limenitakis PC, Rupp S, Stolp B, Stein JV, Stecher B, Sauer U, McCoy KD, Macpherson AJ. The outer mucus layer hosts a distinct microbiota. Nature Communications 2015;6:8292.
21. Duerkop BA, Vaishnava S, Hooper LV. Immune responses to the microbiota at the intestinal mucosal surface. Immunity 2009;31:368–376.
22. Ivanov II, Atarashi K, Manipel N, Brodie EL, Shima T, Karaoz U, Wei DG, Goldfarb KC, Santee CA, Lynch SV, Tanoue T, Imaoka A, Itoh K, Takeda K, Umesaki Y, Honda K, Littman DR. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 2009;139:485–498.
24. Carroll IM, Ringel-Kulka T, Keku TO, Chang YH, Packey CD, Sartor RB, Ringel Y. Molecular analysis of the luminal- and mucosal-associated intestinal microbiota in diarrhea-predominant irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol 2011; 301:G799–G807.

25. Galley JD, Yu Z, Kumar P, Dowd SE, Lyte M, Bailey MT. The structures of the colonic mucosa-associated and luminal microbial communities are distinct and differentially affected by a prolonged murine stressor. Gut Microbes 2014;5:748–760.

26. Heinsen FA, Knecht H, Neuling SC, Schmitz RA, Knecht C, Kühlbacher T, Rosenstiel PC, Schreiber S, Friedrichs AK, Ott SJ. Dynamic changes of the luminal and mucosa-associated gut microbiota during and after antibiotic therapy with paromomycin. Gut Microbes 2015;6:243–254.

27. Gaboriau-Routhiau V, Rakotobe S, Lecuyer E, Mulder I, Lan A, Bironneau C, Rochet V, Pisi A, De Paepe M, Brandi G, Eberl G, Snel J, Kelly D, Cerf-Bensussan N. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 2009;31:677–689.

28. Johansson ME, Phillipson M, Petersson J, Velcich A, Holm L, Hansson GC. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci U S A 2008;105:15064–15069.

29. Hansson GC, Johansson ME. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Gut Microbes 2010;1:51–54.

30. Chassaing B, Gewirtz AT. Identification of inner mucus-associated bacteria by laser capture microdissection. Cell Mol Gastroenterol Hepatol 2019;7:157–160.

31. Dewhirst FE, Chien CC, Paster BJ, Ericson RL, Hansson GC. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Gut Microbes 2010;1:51–54.

32. Chassaing B, Van de Wiele T, De Bodt J, Marzorati M, Gewirtz AT. Dietary emulsifiers directly alter human microbiota composition and gene expression ex vivo potentiating intestinal inflammation. Gut 2017; 66:1414–1427.

33. Syal G, Kashani A, Shih DQ. Fecal microbiota transplantation in inflammatory bowel disease: a primer for internists. Am J Med 2018;131:1017–1024.

34. Vermeire S, Joosens M, Verbeke K, Hildebrand F, Machiels K, Van den Broeck K, Van Assche G, Rutgeerts PJ, Raes J. Pilot study on the safety and efficacy of faecal microbiota transplantation in refractory Crohn’s disease. Gastroenterology 2012;142:S-360.

35. Kump PK, Grochenig HP, Lackner S, Trajanoski S, Reicht G, Hoffmann KM, Deutschmann A, Wenzl HH, Petritsch W, Krejs GJ, Gorkiewicz G, Hogenauer C. Alteration of intestinal dysbiosis by fecal microbiota transplantation does not induce remission in patients with chronic active ulcerative colitis. Inflamm Bowel Dis 2013;19:2155–2165.

36. Vaughn BP, Gevers D, Ting A, Korzenik JR, Robson SC, Moss AC. Fecal microbiota transplantation induces early improvement in symptoms in patients with active Crohn’s disease. Gastroenterology 2014;146:S-591–S-592.
Itzkovitz S, Maharshak N, Shibolet O, Shapiro H, Pevsner-Fischer M, Sharon I, Halpern Z, Segal E, Elinav E. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell 2018;174:1388–1405 e21.

50. Kristensen NB, Bryrup T, Alin KH, Nielsen T, Hansen TH, Pedersen O. Alterations in fecal microbiota composition by probiotic supplementation in healthy adults: a systematic review of randomized controlled trials. Genome Med 2016;8:52.

51. Farnworth ER. The evidence to support health claims for probiotics. J Nutr 2008;138:1250S–1254S.

52. Suez J, Zmora N, Zilberman-Schapira G, Mor U, Dori-Bachash M, Bashardes S, Zur M, Regev-Lehavi D, Ben-Zeev Brik R, Federici S, Horn M, Cohen Y, Moor AE, Zevei D, Korem T, Kotler E, Harelmen A, Itzkovitz S, Maharshak N, Shibolet O, Pevsner-Fischer M, Shapiro H, Sharon I, Halpern Z, Segal E, Elinav E. Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT. Cell 2018;174:1406–1423 e16.

53. Singh V, Yeoh BS, Chassaing B, Xiao X, Saha P, Aguila Olvera R, Lapek JD Jr, Zhang L, Wang WB, Hao S, Flythe MD, Gonzalez DJ, Cani PD, Conejo-Garcia JR, Xiong N, Kennett MJ, Joe B, Patterson AD, Gewirtz AT, Vijay-Kumar M. Dysregulated microbial fermentation of soluble fiber induces cholestatic liver cancer. Cell 2018;175:679–694 e22.

54. Wan YY, Jena PK. Precision dietary supplementation based on personal gut microbiota. Nat Rev Gastroenterol Hepatol 2019;16:204–206.

55. Chassaing B, Miles-Brown J, Pellizzon M, Ulman E, Ricci M, Zhang L, Patterson AD, Vijay-Kumar M, Gewirtz AT. Lack of soluble fiber drives diet-induced adiposity in mice. Am J Physiol Gastrointest Liver Physiol 2015;309:G528–G541.

56. Miles JP, Zou J, Kumar MV, Pellizzon M, Ulman E, Ricci M, Gewirtz AT, Chassaing B. Supplementation of low- and high-fat diets with fermentable fiber exacerbates severity of DSS-induced acute colitis. Inflamm Bowel Dis 2017;23:1133–1143.

57. Schroeder BO, Backhed F. Signals from the gut microbiota to distant organs in physiology and disease. Nat Med 2016;22:1079–1089.

58. Chen T, Long W, Zhang C, Liu S, Zhao L, Hamaker BR. Fiber-utilizing capacity varies in Prevotella- versus Bacteroides-dominated gut microbiota. Sci Rep 2017;7:2594.

59. Zevei D, Korem T, Zmora N, Israeli D, Rothschild D, Weinberger A, Ben-Yacov O, Lador D, Avnit-Sagi T, Lotan-Pompan M, Suez J, Mahdi JA, Matot E, Malka G, Kosower N, Rein M, Zilberman-Schapira G, Dohnalova L, Pevsner-Fischer M, Bikovsky R, Halpern Z, Elinav E. Personalized nutrition by prediction of glycemic responses. Cell 2015;163:1079–1094.

60. Jumpertz von Schwartzenberg R, Turnbaugh PJ. Siri, what should I eat? Cell 2015;163:1051–1052.

61. Wang L, McLeod HL, Weinshilboum RM. Genomics and drug response. N Engl J Med 2011;364:1144–1153.

62. Taneja V. Microbiome: impact of gender on function & characteristics of gut microbiome. In: Legato MJ, ed. Principles of gender-specific medicine: gender in the genomic era. 3rd ed. New York: Elsevier, 2017:569–583.}

63. Goodrich JK, Davenport ER, Clark AG, Ley RE. The relationship between the human genome and microbiome comes into view. Annu Rev Genet 2017;51:413–433.

64. Blekhman R, Goodrich JK, Huang K, Sun Q, Bukowski R, Bell JT, Spector TD, Keinan A, Ley RE, Gevers D, Clark AG. Host genetic variation impacts microbiome composition across human body sites. Genome Biol 2015;16:191.

65. Davenport ER. Elucidating the role of the host genome in shaping microbiome composition. Gut Microbes 2016;7:178–184.

66. Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R, Beaumont M, Van Treuren W, Knight R, Bell JT, Spector TD, Clark AG, Ley RE. Human genetics shape the gut microbiome. Cell 2014;159:789–799.

67. Goodrich JK, Davenport ER, Beaumont M, Jackson MA, Knight R, Ober C, Spector TD, Bell JT, Clark AG, Ley RE. Genetic determinants of the gut microbiome in UK twins. Cell Host Microbe 2016;19:731–743.

68. Goodrich JK, Davenport ER, Waters JL, Clark AG, Ley RE. Cross-species comparisons of host genetic associations with the microbiome. Science 2016;352:532–535.

69. Bonder MJ, Kurilshikov A, Tigchelaar EF, Mjazic J, Imhann F, Vila AV, Deelen P, Vatanen T, Schirmer M, Smeeakens SP, Zehamakova DV, Jankipersadsing SA, Jaeger M, Oosting M, Centi MC, Mascele AA, Swertz MA, Li Y, Kumar V, Joosten L, Harnsen H, Weersma RK, Franke L, Hofker MH, Xavier RJ, Jonkers D, Netea MG, Wijmenga C, Fu J, Zehamakova A. The effect of host genetics on the gut microbiome. Nat Genet 2016;48:1407–1412.

70. Turpin W, Espin-Garcia O, Xu W, Silverberg MS, Kevans D, Smith MI, Guttman DS, Griffiths A, Panaccione R, Otley A, Xu L, Shestopaloff K, Moreno-Hagelsieb G, Consortium GEMPR, Paterson AD, Croitoru K. Association of host genome with intestinal microbial composition in a large healthy cohort. Nat Genet 2016;48:1413–1417.

71. Wang J, Thingholm LB, Skiezeviciene J, Rausch P, Kummen M, Hov JR, Degenhardt F, Heinsen FA, Ruhlmann MC, Szymczak S, Holm K, Esko T, Sun J, Pricop-Jeckstadt M, Al-Dury S, Bohov P, Bethune J, Sommer F, Ellinghaus D, Berge RK, Hubenthal M, Koch M, Schwarz K, Rimbach G, Hubbe P, Pan WH, Sheikani-Tezjeri R, Hasler R, Rosenstiel P, D’Amato M, Cloppenborg-Schmidt K, Kunzel S, Laudes M, Marschall HU, Lieb W, Notlings U, Karlsen TH, Baines JF, Franke A. Genome-wide association analysis identifies variation in vitamin D receptor and other host factors influencing the gut microbiota. Nat Genet 2016;48:1396–1406.

72. Igartua C, Davenport ER, Gilad Y, Nicolae DL, Pinto J, Ober C. Host genetic variation in mucosal immunity.
pathways influences the upper airway microbiome. Microbiome 2017;5:16.

73. Thaiss CA, Levy M, Korem T, Dohnalova L, Shapiro H, Jaitn DA, David E, Winter DR, Gury-BenAri M, Tatirovsky E, Tuganbaev T, Federici S, Zmora N, Zeevi D, Dori-Bachash M, Pevsner-Fischer M, Kartvelishvily E, Brandis A, Harmelin A, Shibolet O, Halpern Z, Honda K, Amit I, Segal E, Elinav E. Microbiota diurnal rhythmicity programs host transcriptome oscillations. Cell 2016; 167:1495–1510 e12.

74. Voigt RM, Forsyth CB, Green SJ, Engen PA, Keshavarzian A. Circadian rhythm and the gut microbiome. Int Rev Neurobiol 2016;131:193–205.

75. Thaiss CA, Zeevi D, Levy M, Zilberman-Schapira G, Suez J, Tengeler AC, Abramson L, Katz MN, Korem T, Zmora N, Kuperman Y, Biton I, Gilad S, Harmelin A, Shapiro H, Halpern Z, Segal E, Elinav E. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell 2014;159:514–529.

76. Spanogiannopoulos P, Bess EN, Carmody RN, Turnbaugh PJ. The microbial pharmacists within us: a metagenomic view of xenobiotic metabolism. Nat Rev Microbiol 2016;14:273–287.

77. Saad R, Rizkallah MR, Aziz RK. Gut pharmacomicrobiomics: the tip of an iceberg of complex interactions between drugs and gut-associated microbes. Gut Pathog 2012;4:16.

78. Greenblum S, Carr R, Borenstein E. Extensive strain-level copy-number variation across human gut microbiome species. Cell 2015;160:583–594.

79. Esquerre N, Basso L, Dubuquoy C, Djouina M, Chappard D, Blanpied C, Desreumaux P, Vergnolle N, Vignal C, Body-Malapel M. Aluminum ingestion promotes colorectal hypersensitivity in rodents. Cell Mol Gastroenterol Hepatol 2012;7:457–467.

80. Nickerson KP, Chanin R, McDonald C. Deregulation of intestinal anti-microbial defense by the dietary additive, maltodextrin. Gut Microbes 2015;6:78–83.

81. Laudisi F, Di Fusco D, Dinallo V, Stolfi C, Di Grazia A, Marfini I, Colantoni A, Ortenzi A, Alteri C, Guerrieri F, Mavilio M, Ceccherini-Silberstein F, Federici M, MacDonald TT, Monteleone I, Monteleone G. The food additive maltodextrin promotes endoplasmic reticulum stress-driven mucus depletion and exacerbates intestinal inflammation. Cell Mol Gastroenterol Hepatol 2019;7:457–473.

82. Holder MK, Peters NV, Whylings J, Fields CT, Gewirtz AT, de Vries GJ, Chassaing B. Dietary emulsifiers affect the intestinal microbiota and alter anxiety and social behaviors in a sex-dependent manner. Sci Rep 2019;9:172.

83. Viennois E, Merlin D, Gewirtz AT, Chassaing B. Dietary emulsifier-induced low-grade inflammation promotes colon carcinogenesis. Cancer Res 2017;77:27–40.

84. Watt J, Marcus R. Carrageenan-induced ulceration of the large intestine in the guinea pig. Gut 1971;12:164–171.

85. Martino JV, Van Limbergen J, Cahill LE. The role of carrageenan and carboxymethylcellulose in the development of intestinal inflammation. Front Pediatr 2017;5:96.

86. Shang Q, Sun W, Shan X, Jiang H, Cai C, Hao J, Li G, Yu G. Carrageenan-induced colitis is associated with decreased population of anti-inflammatory bacteria, Akkermansia muciniphila, in the gut microbiota of C57BL/6J mice. Toxicol Lett 2017;279:87–95.

87. Rodriguez-Palacios A, Harding A, Menghini P, Himmelman C, Retuerto M, Nickerson KP, Lam M, Croniger CM, McLean MH, Durum SK, Pizarro TT, Ghannoum MA, Ilic S, McDonald C, Cominelli F. The artificial sweetener Splenda promotes gut Proteobacteria, dysbiosis, and myeloperoxidase reactivity in Crohn’s disease-like ileitis. Inflamm Bowel Dis 2018;24:1005–1020.

88. Chen L, Guo Y, Hu C, Lam PKS, Lam J CW, Zhou B. Dysbiosis of gut microbiota by chronic coexposure to titanium dioxide nanoparticles and bisphenol A: implications for host health in zebrafish. Environ Pollut 2018;234:307–317.

89. Bettini S, Boutet-Robinet E, Cartier C, Comera C, Gaultier E, Dupuy J, Naud N, Tache S, Grysan P, Reguer S, Thieriet N, Refregiers M, Thiaudiere D, Cravedi JP, Carriere M, Audinot JN, Pierre FH, Guzylack-Piriou L, Houdeau E. Food-grade TiO2 impairs intestinal and systemic immune homeostasis, initiates prion-like lesion and promotes aberrant crypt development in the rat colon. Sci Rep 2017;7:40373.

90. Nogueira CM, de Azevedo WM, Dagli ML, Toma SH, Leite AZ, Lordello ML, Nishitokukado I, Ortiz-Angostinho CL, Duarte ML, Ferreira MA, Sipahi AM. Titanium dioxide induced inflammation in the small intestine. World J Gastroenterol 2012;18:4729–4735.