YB₆: A ‘Ductile’ and Soft Ceramic with Strong Heterogeneous Chemical Bonding for Ultrahigh-Temperature Applications

Yanchun Zhoua, Bin Liub, Huimin Xianga, Zhihai Fenga and Zhongping Lia

aScience and Technology on Advanced Functional Composite Laboratory, Aerospace Research Institute of Materials & Processing Technology, No. 1 South Dahongmen Road, Beijing 100076, People’s Republic of China; bDepartment of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996, USA

(Received 9 February 2015; final form 12 May 2015)

Transition metal borides have contributed to the success of ultrahigh-temperature materials (UHTM) development. Current ZrB₂- and HfB₂-based UHTMs exhibit high-temperature environmental stability, high strength and modulus but inevitable brittleness due to strong covalent bonding. In contrast but interestingly, YB₆ is predicted as a ‘ductile’ and soft ceramic for ultrahigh-temperature applications, through density functional theory investigations on its electronic structure and bonding properties. The ‘ductility’ is underpinned by chemical bonding anisotropy, that is, a strong σ bond connecting the B₆ octahedra and a weak banana bond formed by overlapping the lobes of two perpendicular p orbitals (τ bond).

Keywords: Ultrahigh-Temperature Ceramics, YB₆, Ductile Ceramics, DFT, Heterogeneous Chemical Bonding

Ultrahigh-temperature ceramics based on metal borides are regarded as the materials of choice for nose and sharp leading edges of hypersonic vehicles, hot structure components for scramjet engines,[1–3] matrix and/or surface coatings for ultrahigh-temperature ceramic matrix composites.[4,5] ZrB₂- and HfB₂-based materials are the most investigated UHTMs at present owing to their high melting point and chemical inertness. However, the intrinsic brittleness, poor thermal shock resistance and difficulty in machining into sharp or complex shapes have blocked their applications in hypersonic vehicles. In order to stimulate the applications of metal borides for ultrahigh-temperature applications, new advances in understanding structure–property relations and improving ductility and machinability becomes emergent.

In the ZrB₂ and HfB₂ scenarios, the high Young’s modulus is underpinned by the strong covalent bonds between B atoms in the crystal structure.[6,7] It is well established that, in addition to chemical composition, chemical bonding plays an important role in dictating the structure and properties of a material. Therefore, comparing to chemical composition modification of ZrB₂ (or HfB₂), modification of the nature of chemical bonding in transition metal borides is more effective in overcoming the intrinsic brittleness, poor thermal shock resistance (due to high Young’s modulus) and machinability (due to high hardness). Especially, if weak bonds exist together with the strong covalent bonds in transition metal borides, tailoring the properties will become feasible.

A typical example of chemical bonding dictating structure and defining properties is the interplay of crystal structure, chemical bonding and properties of carbon allotropes. For diamond, the strong covalent C sp³–C sp³ bond within the tetrahedra makes diamond the strongest material. For graphite, the overlapping of C sp²–C sp² orbitals (σ bond) and C pₓ–C pₓ orbitals (π bond) makes graphene the strongest in two dimensions, while the alternative stacking of the graphene layers linked by Van de Waals’ force makes graphite soft and machinable. The coexistence of both strong σ + π bonds in graphite layers and weak Van de Waals’ force in between layers is an extreme example of bonding anisotropy within a crystal structure. Comparing to carbon, boron has three valence electrons, being one less than carbon, such that the chemical bonding in boron allotropes and borides is more diverse and complex. In boron clusters, the bonding is contributed by the two-center two-electron (2c–2e) peripheral B–B bonds, the globally
delocalized σ-bonds (radial σ-bonds) and the globally π-bonds.[7] In borides, except the layered hexagonal sheet in AB_2-type compounds, B atoms form B_6 octahedron, B_{12} cuboctahedron and B_{12} icosahedron.[8–10] The B-polyhedra lack two valence electrons per polyhedron to complete the polyhedra-based framework and thus metals donate electrons to B-polyhedra in metal borides, so that boron compounds are often electron-deficient solids.[11–13] The diversity of structures and bonding properties of borides makes it possible to tailor the properties of boride-based ultrahigh-temperature ceramics. In this work, we report our theoretical prediction on the electronic structure, chemical bonding and mechanical properties of a ‘ductile’ and soft ultrahigh-temperature ceramic: YB_6, which has a low density of 3.70 g/cm3 and a melting point of 2600°C.[14] Moreover, its oxidation product Y_2O_3 also has a high melting point of 2435°C and a relative low density of 5.03 g/cm3.

To elucidate the chemical bonding and mechanical properties of YB_6, first-principles calculations based on density functional theory (DFT) were performed using the Cambridge Serial Total Energy Package (CASTEP) code,[15] wherein the Vanderbilt-type ultrasoft pseudopotential[16] and generalized gradient approximation based on the Perdew–Burke–Ernzerhof scheme[17] for the exchange-correlation function were used. The plane-wave basis set cutoff was 450 eV and the special points sampling integration over the Brillouin zone was employed using the Monkhorst–Pack method with $6\times6\times6$ special k-points mesh.[18] Lattice parameters were modified to minimize the enthalpy and interatomic forces. The Broyden–Fletcher–Goldfarb–Shanno minimization scheme[19] was used in geometry optimization. The tolerance for geometry optimization is difference in total energy within 5×10^{-6} eV/atom, maximum ionic Hellmann–Feynman force within 0.01 eV/Å, maximum ionic displacement within 5×10^{-4} Å and maximum stress within 0.02 GPa. The density of states is calculated using the Vienna ab initio simulation package.[20,21] In this method, the Kohn–Sham equations of DFT were solved within a plane-wave basis set with electron–ion interactions described by the projector augmented wave method.[20] The exchange and correlation, the plane-wave basis set cutoff, the special k-points mesh were selected the same as the calculations used in CASTEP. The elastic stiffness was determined from a linear fit of the calculated stress as a function of strain. The polycrystalline bulk modulus E was calculated from the second-order elastic constants, c_{ij}, according to the Voigt,[22] Reuss,[23] and Hill[24] approximations.

YB_6 crystallizes in CaB_6-type structure with a space group of $\text{Pm} \tilde{3} \text{m}$ (No. 221) and Y at $1a$ (0, 0, 0) and B at $6f$ (z, 1/2, 1/2) Wyckoff positions. Figure 1 shows a $2 \times 1 \times 1$ supercell of YB_6. Within the unit cell, six B atoms form an octahedron, and the octahedra in adjacent unit cells are connected by the two nearest corner B atoms along three main axis directions, forming a three-dimensional B_6 octahedral network. The fully relaxed structural parameters of YB_6 are listed in Table 1. The consistency is good with both the experimental[14,25] and the previous calculated data.[26–28] As demonstrated in the previous work of Massidda et al.[28] there are two different B–B bond lengths in YB_6, that is, the inter-octahedra bond length (e.g. $\text{B}_1′–\text{B}_2$ in Figure 1(a)) is shorter than the intra-octahedron bond length (e.g. $\text{B}_1–\text{B}_3$ in Figure 1(a)), which is an obvious indication of anisotropic chemical bonding.

To visually illustrate the anisotropic bonding nature, the electron density difference map on the (002) plane of YB_6 is shown in Figure 1(b), wherein the four-corner B atoms in B_6 octahedron are cut into a two-dimensional square. In Figure 1(b), the electron localization in the inter-octahedron bond (e.g. $\text{B}_1′–\text{B}_2$) is stronger than that in the intra-octahedron bonds (e.g. $\text{B}_1–\text{B}_3$). The inter-octahedron bond is a head on overlapping, which is a typical σ bond. However, the non-uniform redistribution of charges between adjacent B atoms within B_6 octahedron is neither a σ-type nor a π-type bond but somewhat reminiscent of a banana bond. Generally, a banana bond or a bent bond is a general representation of electron density or configuration resembling a similar ‘bent’ structure within small ring molecules or as a representation of double or triple bonds within a compound that is as alternative to the σ and π bond models.[29–31] As we will demonstrate in the later part of this paper, here the
Mater. Res. Lett., 2015

Table 1. The DFT calculated and experimental lattice constants, atomic positions, inter-octahedral \((d_{\text{inter}})\) and intra-octahedral \((d_{\text{intra}})\) B–B bond lengths, second-order elastic constants \(c_{ij}\), bulk, shear and Young’s modulus of YB\(_6\).

Space group and lattice constant
Space group
\(Pm\bar{3}m\) (No. 221)

Atomic coordinates
\(Y\)
(0,0,0)

Inter-octahedral and intra-octahedron B–B bond lengths
Inter-Oct
\(c_{\text{exp}}\)
1.630

Second-order elastic constants (GPa)
\(c_{11}\)
451

Elastic constants of polycrystalline bulk YB\(_6\) (GPa)
\(B\)
172

Cauchy pressure, Pugh’s modulus ratio and shear anisotropic factor
Cauchy pressure \((c_{12} - c_{44})\)
18 (GPa)

Note: Cauchy pressure \(c_{12} - c_{44}\), Pugh’s modulus ratio \(G/B\) and shear anisotropic factor are also given.

Figure 2. (a) TDOS and PDOS of YB\(_6\). (b) Projected electronic density of states of B1 and B3 atoms on the (002) plane of YB\(_6\), the states of B1 2s\(2p_x\), B1 2p\(_x\), B3 2s\(2p_y\), B3 2p\(_y\) orbitals are plotted separately to give a clear view on the inter-octahedra and intra-octahedron B–B bonds.

To distinguish the different covalent bonds between B\(_6\) octahedra and within B\(_6\) octahedron, PDOS of B1 and B3 atoms of s, \(p_x\), and \(p_y\) orbitals are given in Figure 2(b) and decomposed charge density distributions on the (002) plane are shown in Figure 3. The lowest lying states from \(-16.1\) to \(-15.2\) eV in Figure 2(a) are quas core \(sp\) band of B atoms.[32] The states from \(-11.2\) to \(-8.1\) eV are mainly from hybridized B1 2s\(2p_x\) (B2 2s\(2p_x\)) and B3 2s\(2p_y\) (B4 2s\(2p_y\)) orbitals. For B1, \(sp\) hybridization is realized through recombination of B1 2s and B1 2p\(_x\) orbitals; for B3, \(sp\) hybridization is realized through recombination of B3 2s and B3 2p\(_y\) orbitals. As shown in Figure 3(a), overlapping of B1\(_1^\prime\) 2s\(2p_x\)–B2 2s\(2p_x\) forms a strong \(\sigma\)-type inter-octahedra covalent bond in the \(x\) direction; similarly, overlapping of B3 2s\(2p_y\)–B4 2s\(2p_y\) forms a strong \(\sigma\)-type inter-octahedra covalent bond in the \(y\) direction. In the states from \(-7.8\) banan bond is resulted from a weak bond formed by overlapping of perpendicular \(p\) orbitals.

To give a clear view on the inter-octahedra and intra-octahedra B–B bonding, total density of states (TDOS), projected density of states (PDOS) and the decomposed distribution of charge density from different covalent bonding peaks in the TDOS of YB\(_6\) are investigated. Figure 2(a) shows the TDOS and PDOS of YB\(_6\). Three features are observed: the first is the hybridization between B 2s and B 2p orbitals (\(sp\) hybridization); the second is the presence of a pseudo-gap, and the third is the finite states at a Fermi level. Strong \(sp\) hybridization is evident because the B 2s orbitals are extended and overlapped with B 2p orbitals in a large energy range. The creation of the pseudo-gap may be attributed to, on the one hand, the ionization because of the charge transferring from Y to B, and on the other hand, the hybridization effect in YB\(_6\). In short, the Y–B bond is ionic-covalent in nature. The finite states at a Fermi level are from both Y 3d and B 2p states, indicating the presence of the metallic bond in YB\(_6\) and it is electrically conductive. In short, metallic, ionic and covalent bonding all have contributions to the chemical bonding in YB\(_6\).
bonding system, and 6 electrons are used to form the 2e–2c bond between the octahedra. The strong σ bond is the 2e–2e bond, and the banana bond is the HOMO of the polycentric bonding system. We must emphasize that unlike the banana bond in organic compounds,[29–31] the banana bond formed by overlapping the lobes of perpendicular B–2p orbitals is much weaker (we name it τ bond, since it is a Greek letter τ, meaning perpendicular).

The coexistence of strong σ bond and weak banana bond makes the mechanical properties of YB₆ tunable. For example, strong anisotropy in elastic stiffness is observed from the second-order elastic constants c₁₁, bulk modulus B and shear modulus G for YB₆ as tabulated in Table 1 (which are consistent with previous experimental and theoretical results[27,33]). c₁₁ that represents stiffness against principle tensile/compression strain (451 GPa) is much higher than c₄₄ that represents shear deformation resistance against (100)/(001) shear strain (14 GPa). For cubic crystals, the shear anisotropic factor is calculated by \(A = 2c_{44}/(c_{11} − c_{12}) \). The shear anisotropic factor for YB₆ is 0.067, demonstrating huge shear anisotropy. Pettifor’s Cauchy pressure \(c_{12}−c_{44} \) and Pugh’s modulus ratio G/B are often used to distinguish intrinsic ductile materials from brittle ones.[34,35] Positive Pettifor’s Cauchy pressure and low Pugh’s modulus ratio \((G/B < 0.571) \) are criteria for intrinsic ductile materials. Pettifor’s Cauchy pressure \((c_{12}−c_{44}) \) and Pugh’s modulus ratio \(G/B \) of YB₆ are 18 GPa and 0.296, respectively, indicating the intrinsic ductility and damage tolerance of YB₆. It is intriguing that Pugh’s modulus ratio of YB₆ is much lower than the experimentally confirmed quasi-ductile and damage tolerant ceramics such as Ti₃SiC₂ (0.759),[36] Ti₃AlC₂ (0.706),[37] Cr₂AlC (0.513),[38] γ-Y₂Si₂O₇ (0.545),[39] Y₂Si₂O₅ (0.435),[40] B-Yb₂Si₂O₇ (0.448) [41] and LaPO₄ (0.535).[42] Thus, YB₆ is predicted a ‘ductile’ ultrahigh-temperature ceramic.

Besides damage tolerance, easy machining into sharp edge and complex shape components is also important for ultrahigh-temperature applications. Low hardness is a necessary parameter to ensure the easy machinability. Using the model proposed by Chen et al.[43,44] \(H_v = 2(k^2G)^{0.585} − 3 \), where \(k \) is Pugh’s modulus ratio, the Vickers hardness of YB₆ is calculated to be 3.02 GPa, which is in good agreement with the experimental microhardness \((H_k) \) of 2.69 GPa determined under a load of 20 g.[45] Both the intrinsic ductility and the low hardness are resulted from the anisotropic elastic properties which originate from the anisotropic chemical bonding and the presence of weak bond formed by overlapping the lobes of perpendicular B–2p orbitals. In addition, YB₆ has Young’s modulus of 156 GPa, which is much lower than those of ZrB₂ and HfB₂ (523 and 535 GPa, respectively).[46] Low Young’s modulus indicates better thermal shock resistance for YB₆.
In summary, we have predicted an intrinsic ‘ductile’ and soft machinable ultrahigh-temperature ceramic YB₆ through DFT investigations. The ‘ductility’ is underpinned by the anisotropic chemical bonding within the crystal structure of YB₆, that is, the coexistence of strong σ bond connecting the B₆ octahedra and the weak banana bond within the B₆ octahedron. Unlike the banana bonds in organic compounds, the banana bond in YB₆ is formed by overlapping the lobes of two perpendicular B-2p orbitals (τ bond). This kind of weak covalent bond not only exits in metal hexaborides but also in metal tetraborides, which can be described by alternating sheets of metal atoms and B₆ octahedra linked together laterally by B₂ units. The disclosure of this new type of covalent bond not only enriches the diversity of covalent bonds in ceramics but also opens the door to design next-generation UHTMs for applications in hypersonic reentry vehicles. The YB₆-based composites are expected to be the solution of tailoring ‘ductility’ of UHTMs.

Disclosure statement No potential conflict of interest was reported by the authors.

Funding The authors wish to acknowledge the partial support of this work by the National Outstanding Young Scientist Foundation for Y.C. Zhou [grant number 59925208], and the Natural Sciences Foundation of China [grant number U1435206].

References
[1] Fahrenholtz WG, Hilmas GE, Talmyn IG, Zaykoski JA. Refractory diborides of zirconium and hafnium. J Am Ceram Soc. 2007;90:1347–1364.
[2] Opeka MM, Talmy IG, Zaykoski JA. Oxidation-based materials selection for 2000°C+ hypersonic aerosurfaces: theoretical considerations and historical experience. J Mater Sci. 2004;39:5887–5904.
[3] Wie DM, Drewry DG, King DE, Hudson CM. The hypersonic environment: required operating conditions and design challenges. J Mater Sci. 2004;39:5915–5924.
[4] Corral EL, Loehman RE. Ultra-high temperature ceramic coatings for oxidation protection of carbon–carbon composites. J Am Ceram Soc. 2008;91:1495–1502.
[5] Blum YD, Marschall J, Hui D, Young S. Thick protective UHTC coatings for SiC-based structures: process establishment. J Am Ceram Soc. 2008;91:1453–1460.
[6] Zhou YC, Wang JM, Li Z, Zhan X, Wang JY. First-principles investigation on the chemical bonding and intrinsic elastic properties of transition metal diborides TMB₂ (TM = Zr, Hf, Nb, Ta and Y), ultrahigh temperature ceramic materials for extreme environment applications. New Jersey: Wiley; 2014. Chapter 4.
[7] Zubarev DY, Boldyrev AI. Comprehensive analysis of chemical bonding in boron clusters. J Comput Chem. 2006;28:251–268.
[8] Higashi I. Crystal chemistry of α-AlB₁₂ and γ-AlB₁₂. J Solid State Chem. 2000;154:168–176.
[9] Albert B, Hillebrecht H. Boron: elementary challenge for experimenters and theoreticians. Angew Chem Int Ed. 2009;48:8640–8668.
[10] Shein IR, Ivanovskii AL. Elastic properties of mono- and polycrystalline hexagonal AlB₂-like diborides of s, p and d metal from first-principles calculations. J Phys: Condens Mater. 2008;20:415218.
[11] Chen JY, Froneczek FR, Young DP, Ditusa JF, Adams PW. Synthesis, structure and superconductivity in Be₁₋₀₀B₃. J Solid State Chem. 2002;163:385–389.
[12] Vlasse M, Slack GA, Garbaskauskas M, Kasper JS, Viala JC. The crystal structure of SiB₆. J Solid State Chem. 1986;63:31–45.
[13] Werheit H, Filipov V, Kuhlmann U, et al. Raman effect in icosahedral boron-rich solid. Sci Technol Adv Mater. 2010;11:023001.
[14] Roger J, Babizhetskii VS, Guizouarn T, Hiebl K, Guerin R, Halet JF. The ternary Re–Si–B systems (RE = Dy, Ho, Er and Y) at 1270 K, solid state phase equilibria and magnetic properties of solid solution REB₂₀–₀₅Si₅ (RE = Dy and Ho). J Alloys Compd. 2006;417:72–84.
[15] Segall MD, Lindan PLD, Probert MJ, et al. First-principles simulation: ideas, illustrations and the CASTEP code. J Phys: Condens Matter. 2002;14:2717–2744.
[16] Vanderbilt D. Soft self-consistent pseudopotential in a generalized eigenvalue formalism. Phys Rev B. 1990;41:7892–7895.
[17] Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865–3868.
[18] Pack JD, Monkhorst HJ. Special points for Brillouin-zone integrations – a reply. Phys Rev B. 1977;16:1748–1749.
[19] Prfrometerm BG, Côte M, Louie SG, Cohen ML. Relaxation of crystals with quasi-Newton method. J Comp Phys. 1977;131:233–240.
[20] Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B. 1999;59:1758.
[21] Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total energy calculations using a plane-wave basis set. Phys Rev B. 1996;54:11169–11186.
[22] Voigt W. Lehrbuch der kristallohysic. Leipzig: Teubner; 1928.
[23] Reuss A. Berechnung der fließgrenze von misch kristallen auf grund der plastizitätstheorie für ein kristalle. Z Angew Meath Mech. 1929;9:49–58.
[24] Hill R. The elastic behaviour of a crystalline aggregate. Proc Phys Soc A. 1952;65:349–354.
[25] Chen CH, Aizawa T, Iyi N, Sato A, Otani S. Structure refinement and thermal expansion of hexaborides. J Alloys Compd. 2004;366:L6–L8.
[26] Jager B, Pauch S, Wolf W, Herzig P, Zogal OJ, Shitsevalov N, Paderno Y. Characterization of the electronic properties of YB₄ and YB₆ using ¹¹B NMR and first-principles calculations. J Alloy Compd. 2004;383:232–238.
[27] Grechnyev GE, Baranovskiy AE, Fil VD, Ignatov TV, Kolobov IG, Logosha AV. Electronic structure and bulk properties of MB₆ and MB₁₂ borides. Low Temp Phys. 2008;34:921–929.
[28] Massidda S, Continenza A, de Pascale TM, Monnier R. Electronic structure of divalent hexaborides. Z Phys B. 1997;102:83–89.
[29] Burnelle L, Kaufmann JJ. Molecular orbitals of diborane in terms of a Gaussian basis. J Chem Phys. 1965;43:3540–3545.
[30] Wiberg KB. Bent bonds in organic compounds. ACC Chem Res. 1996;29:229–234.
[31] Palke WE. Double bonds are bent equivalent hybrid (banana) bonds. J Am Chem Soc. 1986;108:6543–6544.
[32] Shein IR, Okatov SV, Medvedeva NI, Ivanovskii AL. Electronic band structure of low-temperature YB12, YB6 superconductors and layered YB2, MgB2 diborides. arXiv:cond-matter/0202015; 2002.
[33] Baranovskiy AE, Grechnev GE, Fil VD, et al. Electronic structure, bulk and magnetic properties of MB6 and MB12 borides. J Alloys Compd. 2007;442:228–230.
[34] Pettifor DG. Theoretical prediction of structure and related properties of intermetallics. Mater Sci Technol. 1992;8:345–349.
[35] Pugh SF. Relation between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos Mag. 1954;45:823–843.
[36] Wang JY, Zhou YC. Polymorphism of Ti3SiC2 ceramic: first principles investigations. Phys Rev B. 2004;69:144108.
[37] Wang XH, Zhou YC. Layered machinable and electrically conductive Ti2AlC and Ti3AlC2 ceramics, a review. J Mater Sci Technol. 2010;26:385–416.
[38] Lin ZJ, Li MS, Zhou YC. Synthesis, microstructure, and properties of Cr2AlC. J Mater Sci Technol. 2007;23:721–746.
[39] Sun ZQ, Zhou YC, Wang JY, Li MS. γ-Y2Si2O7, a machinable silicate ceramic: mechanical properties and machinability. J Am Ceram Soc. 2007;90:2534–254.
[40] Sun ZQ, Wang JY, Li MS, Zhou YC. Mechanical properties and damage tolerance of Y2SiO5. J Europ Ceram Soc. 2008;28:2895–2901.
[41] Zhou YC, Zhao C, Wang F, Sun YJ, Zheng LY, Wang XH. Theoretical prediction and experimental investigation on the thermal and mechanical properties of bulk β-Y2Si2O7. J Am Ceram Soc. 2013;96:3891–3900.
[42] Wang JY, Zhou YC, Lin ZJ. First-principles elastic stiffness of LaPO4 monazite. Appl Phys Lett. 2005;87:051902.
[43] Chen XQ, Niu HY, Li DZ, Li YY. Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics. 2011;19:1275–1281.
[44] Niu HY, Chen XQ, Liu PT, et al. Extra-electron induced covalent strengthening and generalization of intrinsic ductile-to brittle criterion. Sci Rep. 2012;2:718.
[45] Gurin VN, Derkachenko LI, Nikanorov MM, Nikanorov SP, Jung W, Müller R. Lanthanide and actinide tetra- and hexaboride single crystals: preparation, form of growth, and microhardness anisotropy. Phys Solid State. 1996;38:1508–1512.
[46] Zhou YC, Xiang HM, Feng ZH, Li ZP. General trends in electronic structure, stability, chemical bonding and mechanical properties of ultrahigh temperature ceramics TMB2 (TM = transition metal). J Mater Sci Tech. 2015;31:285–294.