(Pure) transcendence bases in ϕ-deformed shuffle bialgebras*

July 7, 2015

V.C. Bui⁴, G.H.E. Duchamp¹ ², Q.H. Ngô², V. Hoang Ngoc Minh³ ², C. Tollu¹ ²
¹Université Paris XIII, 1, 93430 Villetaneuse, France.
²LIPN - UMR 7030, CNRS, 93430 Villetaneuse, France.
³Université Lille II, 1, Place Déliot, 59024 Lille, France.

Abstract

Computations with integro-differential operators are often carried out in an associative algebra with unit and they are essentially non-commutative computations. By adjoining a cocommutative co-product, one can have those operators perform on a bialgebra isomorphic to an enveloping algebra. That gives an adequate framework for a computer-algebra implementation via monoidal factorization, (pure) transcendence bases and Poincaré-Birkhoff-Witt bases.

In this paper, we systematically study these deformations, obtaining necessary and sufficient conditions for the operators to exist, and we give the most general cocommutative deformations of the shuffle co-product and an effective construction of pairs of bases in duality. The paper ends by the combinatorial setting of systems of local systems of coordinates on the group of group-like series.

*The present work is part of a series of papers devoted to the study of the renormalization of divergent polyzetas (at positive and at non-positive indices) via the factorization of the non commutative generating series of polylogarithms and of harmonic sums and via the effective construction of pairs of dual bases in duality in ϕ-deformed shuffle algebras. It is a sequel to ³ and its content was presented in several seminars and meetings, including the 74th Séminaire Lotharingien de Combinatoire.
1 Introduction

The shuffle product first appeared in 1953 in the work of Eilenberg and Mac Lane [17]. As soon as 1954, Chen used it to express the product of iterated (path) integrals [8] and Ree, building on Friedrichs’ criterion, proved that the non-commutative series of iterated integrals are exponentials of Lie polynomials, thus connecting the Lie polynomials with the shuffle product [37]. In 1956, Radford proved that the Lyndon words form a (pure) transcendence basis of the shuffle algebra [36]. The latter result is now well understood through the duality between bialgebras and enveloping algebras (see for example [38]), of which the construction in 1958 of the Poincaré-Birkhoff-Witt-Lyndon basis by Chen, Fox and Lyndon [10] and of its dual basis by Schützenberger, via monoidal factorization [39, 38], gave a striking illustration. This pair of dual bases enabled to factorize the diagonal series in the shuffle bialgebra and, consequently, to proceed combinatorially with the Dyson series [21] or the transport operator [20], which play a leading role in the relations between special functions involved in quantum field theory [26] and in number theory [6]. In 1973, that is within twenty years of the introduction of the shuffle product, Knutson defined the quasi-shuffle in [27], where it shows up as the inner product of symmetric groups [2]. This product is very similar to the Rota-Baxter operator introduced by Cartier in 1972, in his study of the so-called Baxter algebras [7]. Although the analogue of Radford’s

1From now on, Poincaré-Birkhoff-Witt will be abbreviated to PBW.
2In the present paper, that product will be referred to as the quasi-shuffle or as the stuffle product, indifferently.
theorem was pointed out by Malvenuto and Reutenauer [30], the factorization of
the diagonal series in the quasi-shuffle bialgebra, initiated in [23, 24], has not yet
been carried over to more general bialgebras.

Schützenberger’s factorization [38] and its extensions have since been applied
to the renormalization of the associators [23, 24], to which matter they turned out
to be central.

The coefficients of these power series are polynomial at positive integral multi-
indices of Riemann’s zeta function [28, 42] and they satisfy quadratic relations
which Lyndon words help explain. The latter relations can be obtained by iden-
tifying the local coordinates on a bridge equation connecting the Cauchy and the
Hadamard algebras of polylogarithmic functions, and by using the factorization
of the non commutative generating series of polylogarithms [22] and of harmonic
sums [23, 24]. That bridge equation is mainly a consequence of the isomorphisms
between the algebra of non commutative generating series of polylogarithms and
the shuffle algebra on one hand, between the algebra of non commutative gener-
ating series of harmonic sums and the quasi-shuffle algebra on the other hand.

As for the generalization of Schützenberger’s factorization to more general
bialgebras, the key step, and the main difficulty thereof, is to decompose orthog-
onally such bialgebras into the Lie algebra generated by its primitive elements
and the associated orthogonal ideal, as Ree was able to achieve in the case of the
shuffle bialgebra [37], and to construct, whenever possible, the respective bases.
In favorable cases, it is to be hoped that those bialgebras are enveloping algebras,
so that the Eulerian projectors are convergent and other analytic computations can
be performed.

To make that decomposition possible, one first needs to determine the Eule-
rian projectors by taking the logarithm of the diagonal series and second to insure
their convergence. A key ingredient is the fact that the diagonal series are group-
like and give a host of group-like elements by specialization, so one can use the
exponential-logarithm correspondence to compute within a combinatorial Haus-
dorff group.

To that effect, the present work generalizes the recursive definitions of the
shuffle and quasi-shuffle products given, respectively, by Fliess [19] and Hoffman
[25], to introduce the φ-deformed shuffle product, where φ stands for an arbitrary
algebra law. Recent studies on these structures can be found in [14, 32, 33].

3These associators, which are formal power series in non-commutative variables, were intro-
duced in quantum field theory by Drinfel’d [12]. The explicit coefficients of the universal associ-
ator Φ_{KZ} are polyzêtas and regularized polyzêtas [28].
4These values are usually referred to as MZV’s by Zagier [42] and as polyzêtas by Cartier [6].
These φ-shuffle products interpolate between the classical shuffle and quasi-shuffle products for $\varphi \equiv 0$ and $\varphi \equiv 1$, respectively, and allow a classification of the associated bialgebras.

This paper is devoted to the combinatorics of φ-deformed shuffle algebras and to the effective constructions of pairs of dual bases. Its is organized as follows:

- Section 2 is a short reminder of well-known facts about the combinatorics of the q-shuffle product [2], which encompasses the shuffle [38] and the quasi-shuffle products [23, 24].

- In Section 3, we thoroughly investigate algebraic and combinatorial aspects of the φ-deformed shuffle products and explain how to use bases in duality to get a local system of coordinates on the (infinite dimensional) Lie group of group-like series.

Throughout the paper, we have a particular concern for Lie series and their correspondence with the Hausdorff group.

2 A survey of shuffle products

For standard definitions and facts appertaining to the (algebraic) combinatorics on words, we refer the reader to the classical books by Lothaire [29] and Reutenauer [38].

Throughout the paper, \mathbb{K} stands for a (unital, associative and commutative) \mathbb{Q}-algebra containing a parameter q. In this section, we review the known combinatorics of bases in duality and local coordinates on the infinite dimensional Lie group of group-like series (Hausdorff group). The parameter q allows for a unified treatment between shuffle ($q = 0$) and quasi-shuffle ($q = 1$) products.

Let $Y = \{y_i\}_{i \geq 1}$ be an alphabet, totally ordered by $y_1 > y_2 > \cdots$. The free monoid and the set of Lyndon words over Y are denoted by Y^* and $\text{Lyn}Y$, respectively. The unit of Y^* it denoted by 1_{Y^*}. We also write $Y^+ = Y^* \setminus \{1_{Y^*}\}$.

The q-stuffle [2], which interpolates between the shuffle [37], quasi-shuffle [30] (or stuffle) and minus-stuffle products [9], for $q = 0, 1$ and -1, respectively, is defined as follows:

$$u \shuffle_q 1_{Y^*} = 1_{Y^*} \shuffle_q u = u,$$

$$y_s u \shuffle_q y_t v = y_s(u \shuffle_q y_t v) + y_t(y_s u \shuffle_q v) + q y_{s+t}(u \shuffle_q v),$$

(1) (2)
or its dual co-product, as follows, for any \(y_s, y_t \in Y \) and \(u, v \in Y^* \),

\[
\Delta_q(1_{Y^*}) = 1_{Y^*} \otimes 1_{Y^*},
\]

\[
\Delta_q(y_s) = y_s \otimes 1_{Y^*} + 1_{Y^*} \otimes y_s + q \sum_{s_1 + s_2 = s} y_{s_1} \otimes y_{s_2},
\]

(3) \hspace{1cm} (4)

We now turn to the study of the combinatorial \(q \)-stuffle Hopf algebra, which we do by stressing the importance of the Lie elements\(^5\) studied by Ree \[37\], and show how Schützenberger’s factorization extends to this new structure.

The \(q \)-stuffle is commutative, associative and unital. With the co-unit defined by

\[
\epsilon(P) = \langle P | 1_{Y^*} \rangle,
\]

for \(P \in \mathbb{K}(Y) \), we got \(H_{\mathbb{K}q} = (\mathbb{K}(Y), \text{conc}, 1_{Y^*}, \Delta_q, \epsilon) \) and \(H_{\mathbb{K}q}^\vee = (\mathbb{K}(Y), \mathbb{W}_q, 1_{Y^*}, \Delta_{\text{conc}}, \epsilon) \) which are mutually dual bialgebras and, in fact, Hopf algebras because they are \(\mathbb{N} \)-graded by the weight.

Let \(D_Y \) be the diagonal series over \(H_{\mathbb{K}q} \), i.e.

\[
D_Y = \sum_{w \in Y^*} w \otimes w.
\]

(5)

Then

\[
\log D_Y = \sum_{w \in Y^*} w \otimes \pi_1(w),
\]

(6)

where \(\pi_1 \) is the extended Eulerian projector over \(H_{\mathbb{K}q} \), defined by \[2\]

\[
\pi_1(w) = w + \sum_{k \geq 2} \frac{(-1)^{k-1}}{k} \sum_{u_1, \ldots, u_k \in Y^+} \langle w | u_1 \mathbb{W}_q \cdots \mathbb{W}_q u_k \rangle u_1 \cdots u_k.
\]

(7)

Let \(\{\Pi_l\}_{l \in \mathcal{L}ynY} \) be defined by,

\[
\begin{cases}
\Pi_y = \pi_1(y), & \text{for } y \in Y, \\
\Pi_l = [\Pi_s, \Pi_r], & \text{for the standard factorization } (s, r) \text{ of } l \in \mathcal{L}ynY - Y.
\end{cases}
\]

(8)

Then it forms a basis of the Lie algebra of primitive elements of \(H_{\mathbb{K}q} \)\[2\].

Let \(\{\Pi_w\}_{w \in Y^*} \) be defined by, for any \(w \in Y^* \) such that \(w = l_1^{i_1} \cdots l_k^{i_k} \) with \(l_1 > \ldots > l_k \) and \(l_1, \ldots, l_k \in \mathcal{L}ynY \),

\[
\Pi_w = \Pi_{l_1}^{i_1} \cdots \Pi_{l_k}^{i_k}.
\]

(9)

\(^5\)Following Ree \[37\], the Lie elements contain the non-commutative power series which are Lie series (as the Chen non-commutative generating series of iterated integrals), i.e. they are group-like for the co-product of the shuffle.
Then, by the PBW theorem, the set \(\{\Pi_w\}_{w \in Y^*} \) is a basis of \(\mathbb{K}\langle Y \rangle \) [2].

Let \(\{\Sigma_w\}_{w \in Y^*} \) be the family dual to \(\{\Pi_w\}_{w \in Y^*} \) in the quasi-shuffle algebra. Then \(\{\Sigma_w\}_{w \in Y^*} \) freely generates the quasi-shuffle algebra and the subset \(\{\Sigma_l\}_{l \in \mathcal{L}yn Y} \) forms a transcendence basis of \((\mathbb{K}\langle Y \rangle, \omega, \mathbb{K}[Y^*]) \). The \(\Sigma_w \) can be obtained as follows [2]:

\[
\begin{aligned}
\Sigma_y &= y, \\
\Sigma_l &= \sum_{w \in L_{\text{lex}}^n} \frac{q_{\text{lex}}}{i!} y_{s_{k_1}} \cdots y_{s_{k_i}} \Sigma_{l_1 \cdots l_n}, \\
\Sigma_w &= \prod_{i=1}^{k} \frac{\Sigma_{l_{i_1}} \omega \cdots \Sigma_{l_{i_k}}}{i_1 ! \cdots i_k !},
\end{aligned}
\]

(10)

and \(l_1 \succeq \text{lex} \cdots \succeq \text{lex} l_k \in \mathcal{L}yn Y \). In the second expression of (10), the sum (!) is taken over all subsequences \(\{k_1, \ldots, k_i\} \subset \{1, \ldots, k\} \) and all Lyndon words \(l_1 \succeq \text{lex} \cdots \succeq \text{lex} l_n \) such that \((y_{s_{k_1}}, \ldots, y_{s_{k_i}}) \preceq (y_{s_{k_1}}, \ldots, y_{s_{k_i}}, l_1, \ldots, l_n) \), where \(\preceq \) denotes the transitive closure of the relation on standard sequences, denoted by \(\preceq \) (see [2]).

In this case, since \(\{\Pi_w\}_{w \in Y^*} \) and \(\{\Sigma_w\}_{w \in Y^*} \) are multiplicative, then we get the \(q \)-extended Schützenberger’s factorization as follows [2]:

\[
\mathcal{D}_Y = \sum_{w \in Y^*} \Sigma_w \otimes \Pi_w = \prod_{l \in \mathcal{L}yn Y} \exp(\Sigma_l \otimes \Pi_l).
\]

(11)

This series, in the factorized form, encompasses the most part of the combinatorics of Dyson’s functional expansions in quantum fields theory [15, 31]. It is the infinite dimensional analogue of the theorem of Wei-Norman [40, 41].

3 Algebraic aspects of \(\varphi \)-shuffle bialgebras

From now on, we will work with an alphabet \(Y = \{y_i\}_{i \in I} \) with \(I \) an arbitrary index set, which needs not be totally ordered unless we write it explicitly.

3.1 First properties

Let us consider the following recursion in order to construct a map

\[
Y^* \times Y^* \longrightarrow \mathbb{K}\langle Y \rangle
\]

(12)

\[\text{The duality pairing is given by } \langle u \mid v \rangle = \delta_{u,v}, \text{ for } u, v \in Y^*.\]

\[\text{The indexing is one-to-one, i.e. there is no repetition.}\]
i) for any $w \in Y^*$,

$$(\text{Init}) \quad 1_{Y^*} \cdot \varphi w = w \varphi 1_{Y^*} = w$$ \hfill (13)

ii) for any $a, b \in Y$ and $u, v \in Y^*$,

$$(\text{Rec}) \quad au \varphi bv = a(u \varphi bv) + b(au \varphi v) + \varphi(a, b)(u \varphi v),$$ \hfill (14)

where φ is an arbitrary mapping defined by its structure coefficients

$$\varphi : Y \times Y \rightarrow \mathbb{K}Y,$$ \hfill (15)

$$\left(y_i, y_j \right) \mapsto \sum_{k \in I} \gamma_{y_i y_j}^{y_k} y_k,$$ \hfill (16)

The following proposition guarantees the existence of a unique bilinear law on $\mathbb{K}\langle Y \rangle$ satisfying (Init) and (Rec).

Proposition 1 (**3**). The recursion (Rec) together with the initialization (Init) defines a unique mapping

$$\varphi \cdot Y^* \times Y^* \rightarrow \mathbb{K}\langle Y \rangle$$

which can, at once, be extended by multilinearity as a law

$$\varphi \cdot : \mathbb{K}\langle Y \rangle \otimes \mathbb{K}\langle Y \rangle \rightarrow \mathbb{K}\langle Y \rangle$$

The space $\mathbb{K}\langle Y \rangle$ endowed with the law $\varphi \cdot$ is an algebra (with unit $1_{\mathbb{K}\langle Y \rangle}$ by definition). It will be called the φ-shuffle algebra. In full generality, this algebra need not be associative or commutative if φ is not so. In the next example, we give a table of well known laws which can be defined after this pattern (in which φ is reasonable).
Example 1. Below, a summary table of ϕ-deformed cases found in the literature. The last case (infiltration product) comes from computer science (see [34, 35, 13]):

Name	(recursion) Formula	ϕ	
Shuffle	au ⊔ bv = a(u ⊔ bv) + b(au ⊔ v)	ϕ ≡ 0	
Quasi-shuffle	x_i u ⊔ v x_j v = x_i(u ⊔ v x_j v) + x_j(u x_i u ⊔ v) + x_i x_j(u ⊔ v)	ϕ(x_i, x_j) = x_i x_j	
Min-shuffle	x_i u ⊔ v x_j v = x_i(u ⊔ v x_j v) + x_j(x_i u ⊔ v) - x_i x_j(u ⊔ v)	ϕ(x_i, x_j) = -x_i x_j	
Muffle	x_i u ⊔ v x_j v = x_i(u ⊔ v x_j v) + x_j(x_i u ⊔ v) + x_i x_j(u ⊔ v)	ϕ(x_i, x_j) = x_i x_j	
q-stuffle	x_i u ⊔ q x_j v = x_i(u ⊔ q x_j v) + x_j(x_i u ⊔ q v) + q x_i x_j(u ⊔ v)	ϕ(x_i, x_j) = q x_i x_j	
q-shuffle	x_i u ⊔ q x_j v = x_i(u ⊔ q x_j v) + x_j(x_i u ⊔ q v) + q x_i x_j(u ⊔ v)	ϕ(x_i, x_j) = q^x_j x_i x_j	
LDIAG(1, qs)	au * bv = a(u * bv) + b(au * v) + q[a][b](a.b)	ϕ(a, b) = q[a][b](a.b)	(a.b) assoc.
non-crossed,			
non-shifted			
B-shuffle	au ⊔_B bv = a(u ⊔_B bv) + b(au ⊔_B v) + (a, b)(u ⊔_B v)	ϕ(a, b) = (a, b) = (b, a)	
Semigroup-			
shuffle	xt u ⊔_t x_s v = xt(u ⊔_t x_s v) + x_s(x_t u ⊔_t v) + x_t x_s(u ⊔_t v)	ϕ(x_t, x_s) = x_t x_s	
q-Infiltration	au ↑ bv = a(u ↑ bv) + b(au ↑ v) + qδ_a,b(a ↑ v)	ϕ(a, b) = qδ_a,b	

Now, we cope with the first properties of ϕ (see [13]): associativity, commutativity and dualizability.

Definition 1 ([3]). A law μ : K⟨Y⟩ ⊗ K⟨Y⟩ → K⟨Y⟩ is said dualizable if there exists a (linear) mapping

\[\Delta_μ : K⟨Y⟩ → K⟨Y⟩ \otimes K⟨Y⟩ \]

(necessarily unique) such that the dual mapping

\[(K⟨Y⟩ \otimes K⟨Y⟩)^* \rightarrow K⟨⟨Y⟩⟩ \]

restricts to μ. Or equivalently,

\[\forall u, v, w ∈ Y^*, \quad \langle μ(u ⊗ v) | w⟩ = ⟨u ⊗ v | Δ_μ(w)⟩^2. \]

\(^8through the pairing δ_{u,v} \)
Theorem 1 ([3]). We have

1. The law $$\phi$$ is associative (resp. commutative) if and only if the extension $$\phi : K[Y] \otimes K[Y] \to K[Y]$$ is so.

2. Let $$\gamma_{x,y} := \langle \phi(x, y) | z \rangle$$ be the structure constants of $$\phi$$, then $$\phi$$ is dualizable if and only if $$\phi$$ is so i.e. if $$(\gamma_{x,y})_{x,y,z \in Y}$$ satisfies

$$\forall z \in Y \left(\# \{(x, y) \in Y^2 | \gamma_{x,y} \neq 0 \} < +\infty \right).$$

Proof. (sketch) We use the following lemma

Lemma 1 ([3]). Let $$\Delta$$ be the morphism $$K\langle Y \rangle \to A\langle \langle Y^* \otimes Y^* \rangle \rangle$$ defined on the letters by

$$\Delta(y_s) = y_s \otimes 1 + 1 \otimes y_s + \sum_{n,m \in I} \gamma_{y_s,y_n,y_m} y_n \otimes y_m.$$

Then

1. $$\forall u, v, w \in Y^*, \langle u \phi \phi v | w \rangle = \langle u \otimes v | \Delta(w) \rangle \otimes 2.$$
2. $$\forall w \in Y^+, \Delta(w) = w \otimes 1 + 1 \otimes w + \sum_{u,v \in Y^+} \langle \Delta(w) | u \otimes v \rangle u \otimes v.$$

The theorem follows by application of points [1] and [2] above. \qed

If $$\phi$$ is associative (which is fulfilled in all cases of the table [1]), we extend $$\phi$$ to $$Y^+$$ by the universal property of the free semigroup $$Y^+$$,

$$\left\{ \begin{array}{ll} \phi(x) = x, & \text{for } x \in Y, \\ \phi(xw) = \phi(x, \phi(w)), & \text{for } x \in Y \text{ and } w \in Y^+ \end{array} \right.$$

and we extend the definition of the structure constants accordingly: for $$x_1 \ldots x_l \in Y^+$$,

$$\gamma_{x_1,\ldots,x_l}^y = \langle y | \phi(x_1 \ldots x_l) \rangle = \sum_{t_1,\ldots,t_{l-2} \in Y} \gamma_{x_1,t_1}^y \gamma_{x_2,t_2}^{t_1} \ldots \gamma_{x_{l-1},x_l}^{t_{l-2}}.$$

Note that the fact that $$\phi$$ is dualizable can be rephrased as

$$\forall y \in Y \left(\# \{w \in Y^2 | \gamma_w^y \neq 0 \} \text{ is finite} \right).$$

9
In this case, it can be checked immediately that, for an arbitrarily fixed \(N \geq 1 \),
\[
(\forall y \in Y)(\{w \in Y^N | \gamma^y_w \neq 0\} \text{ is finite}) \tag{20}
\]
but, by no means, we have in general
\[
(\forall y \in Y)(\{w \in Y^+ | \gamma^y_w \neq 0\} \text{ is finite}). \tag{21}
\]
This condition (21) is strictly stronger than (19) as the example of any group law on \(Y \), with \(|Y| \geq 2 \) and finite, shows.

Definition 2. An associative law \(\varphi \) on \(\mathbb{K}Y \) will be said moderate if and only if it fulfils condition (21).

Let us now state the structure theorem [3].

Theorem 2 ([3]). Let us suppose that \(\varphi \) is dualizable and associative. We still denote its dual co-multiplication by
\[
\Delta_{\varphi} : \mathbb{K}\langle Y \rangle \longrightarrow \mathbb{K}\langle Y \rangle \otimes \mathbb{K}\langle Y \rangle.
\]
Then \(B_{\varphi} = (\mathbb{K}\langle Y \rangle, \text{conc}, 1_{Y^*}, \Delta_{\varphi}, \varepsilon) \) is a bialgebra. If, moreover, \(\varphi \) is commu-
tative, the following conditions are equivalent

1. \(B_{\varphi} \) is an enveloping bialgebra.
2. \(B_{\varphi} \) is isomorphic to \((\mathbb{K}\langle Y \rangle, \text{conc}, 1_{Y^*}, \Delta_{\varphi}, \varepsilon) \) as a bialgebra.
3. For all \(y \in Y \), the following series is a polynomial
\[
(P) \quad y + \sum_{l \geq 2} \frac{(-1)^{l-1}}{l} \sum_{x_1, \ldots, x_l \in Y} (y | \varphi(x_1 \ldots x_l)) \ x_1 \ldots x_l.
\]
4. \(\varphi \) is moderate.

Proof. (sketch)
4 \(\implies \) 3) Obvious
3 \(\implies \) 2) One first constructs an endomorphism of \((\mathbb{K}\langle Y \rangle, \text{conc}, 1_{Y^*}) \) sending each letter \(y \in Y \) to the polynomial form \((P) \) and prove that it is an automorphism of \(\text{AAL}^{9} \) which sends \((\mathbb{K}\langle Y \rangle, \text{conc}, 1_{Y^*}, \Delta_{\varphi}, \varepsilon) \) to \((\mathbb{K}\langle Y \rangle, \text{conc}, 1_{Y^*}, \Delta_{\varphi}, \varepsilon) \).

\[^{9}\text{Abbreviation for associative algebra with unit.}\]
2 \implies 1) Because \((K\langle Y \rangle, \text{conc}, 1_{Y^*}, \Delta_{\text{conc}}, \epsilon)\) is an enveloping bialgebra.

1 \implies 4) Remark that, for each letter \(y \in Y\)
\[
\langle \Delta_{\text{conc}}^{(n-1)}(y) \mid x_1 \otimes x_2 \otimes \cdots \otimes x_n \rangle = \gamma^y_{x_1 \ldots x_n}.
\]

Example 2. 1. The muffle product (see Table 1), which determines the product of Hurwitz polyzetas with rational centers and correspond to \(\varphi(x_i, x_j) = x_{i,j}\) for \(i, j \in \mathbb{Q}^*_+\), is not dualizable (\(\gamma^1_{n,1/n} = 1\) for all \(n \geq 1\)).

2. The \(q\)-infiltration bialgebra (see again Table 1) has its origin in computer science [34, 35] and appears as a generic solution in [13]. It provides a bialgebra
\[
\mathcal{H}_{q\text{-infiltr}} = (K\langle Y \rangle, \text{conc}, 1_{X^*}, \Delta_{\downarrow q}, \epsilon)
\]
\((q \in K)\) based on a \(\varphi\), associative, commutative and dualizable law, but, if \(Y \neq \emptyset\) this law is moderate only iff \(q\) is nilpotent in the \(\mathbb{Q}\)-algebra \(K\). Indeed, for all \(x \in Y\), \((1 + qx)\) is group-like and its inverse \((1 + qx)^{-1}\) is in \(K\langle X \rangle\) if and only if \(q\) is nilpotent. In this case the antipode is the involutive antiautomorphism defined on the letters by
\[
S(x) = \frac{-x}{1 + qx}
\]

3.2 Structural properties

We only assume that \(\varphi\) is associative.

The bialgebra
\[
\mathcal{H}_{\text{conc}} = (K\langle Y \rangle, \text{conc}, 1_{Y^*}, \Delta_{\text{conc}}, \epsilon)
\]
is a Hopf algebra because it is conilpotent\(^{10}\). Its antipode can be computed by

\(^{10}\)The law \(\Delta_{\text{conc}}\), dual to the concatenation is, of course, defined by
\[
\Delta_{\text{conc}}(w) = \sum_{uv = w} u \otimes v
\]
the corresponding \(n\)-fold \(\Delta_{\text{conc}}^+(\Delta^+ = \Delta\) minus the primitive part\) reads
\[
\Delta_{\text{conc}}^+(n-1)(w) = \sum_{u_1 u_2 \cdots u_n = w} u_1 \otimes u_2 \otimes \cdots \otimes u_n
\]
from which it is clear that \(\Delta_{\text{conc}}^+(n-1)(w) = 0\) for \(n > |w|\).
$a(1_{Y^*}) = 1$ and, for $w \in Y^+$,

$$a_{\varphi}(w) = \sum_{k \geq 1} (-1)^{-k} \sum_{u_1, \ldots, u_k \in Y^+} u_1 \varphi \cdots \varphi u_k.$$ \hfill (23)

Due to the finite number of decompositions of any word $u_1 \ldots u_k = w \in Y^+$ into factors $u_1, \ldots, u_k \in Y^+$, we can, at this very early stage define an endomorphism $\Phi(S)$ of $\mathbb{K}\langle Y \rangle$ as

$$\Phi(S)[w] = \sum_{k \geq 1} a_k \sum_{u_1, \ldots, u_k \in Y^+} u_1 \varphi \cdots \varphi u_k.$$ \hfill (24)

associated to any univariate formal power series $S = a_1 X + a_2 X^2 + a_3 X^3 + \ldots$. The case of

$$\log(1 + X) = \sum_{k \geq 1} \frac{(-1)^{k-1}}{k} X^k$$ \hfill (25)

will be of particular importance. It reads here in the style of formula (23).

$$\tilde{\pi}_1(w) = \sum_{k \geq 1} \frac{(-1)^{k-1}}{k} \sum_{u_1, \ldots, u_k \in Y^+} u_1 \varphi \cdots \varphi u_k.$$ \hfill (26)

This $\tilde{\pi}_1 \in \text{End}(\mathbb{K}\langle Y \rangle)$ has an adjoint $\pi_1 \in \text{End}(\mathbb{K}\langle\langle Y \rangle\rangle)$ which reads

$$\pi_1(S) = \sum_{w \in Y^*} \langle S \mid \tilde{\pi}_1(w) \rangle w$$ \hfill (27)

$$= \sum_{k \geq 1} \frac{(-1)^{k-1}}{k} \sum_{u_1, \ldots, u_k \in Y^+} \langle S \mid u_1 \varphi \cdots \varphi u_k \rangle u_1 \ldots u_k.$$ \hfill (28)

It is an easy exercise to check that the family in the sums of (27) is summable\footnote{A family of (simple, double etc.) series is summable if it is locally finite (see \cite{3} for a complete development).}.

It is easy to check that the dominant term of all terms in a φ product is the corresponding φ product, this explain why we still have the theorem of Radford.

\textbf{Theorem 3. (Radford’s theorem)} When φ is commutative, the associative and commutative algebra with unit $(\mathbb{K}\langle Y \rangle, \varphi, 1_{Y^*})$ is a polynomial algebra. More

\footnote{A family of (simple, double etc.) series is summable if it is locally finite (see \cite{3} for a complete development).}
precisely, the morphism \(\beta : \mathbb{K}[\mathcal{L}ynY] \rightarrow (\mathbb{K}\langle Y \rangle, \varphi, 1_{Y^*}) \) defined, for all \(l \in \mathcal{L}ynY \), by \(\beta(l) = l \) is an isomorphism. In other words, the family

\[
\left(l_1 \varphi^{i_1} \varphi \cdots \varphi^{i_k} \right)_{k \geq 0, \{i_1, i_2, \ldots, i_k\} \in \mathcal{L}ynY}^{\mathcal{L}ynY} \rightarrow \left(K \langle Y \rangle, \varphi, 1 \right)
\]

is a linear basis of \(\mathbb{K}\langle Y \rangle \).

Proof. One checks that

\[
l_1^{\varphi^{i_1}} \varphi \cdots \varphi^{i_k} = l_1^{\varphi^{i_1}} \varphi \cdots \varphi^{i_k} + \sum_{|v| < \sum_{1 \leq j \leq k} i_j} c_{ij} v
\]

the result follows. \(\square \)

The theorem of Radford is important in the classical cases because it is the left hand side of Schützenberger’s factorization in which one has the move \(\text{PBW} \rightarrow \text{Radford} \), see [11] for a discussion of the converse.

Lemma 2 (\(\varphi \)-extended Friedrichs criterion). We denote\(^{12} \) by

\[
\Delta_{\varphi} : \mathbb{K}\langle Y \rangle \rightarrow \mathbb{K}\langle Y^* \otimes Y^* \rangle
\]

the dual of \(\varphi \) applied to series, i.e. defined by

\[
\Delta_{\varphi}(S) = \sum_{u, v \in Y^*} \langle S \mid u \varphi v \rangle u \otimes v.
\]

Let now \(S \in \mathbb{K}\langle Y \rangle \), one has

1. If \(\langle S \mid 1_{Y^*} \rangle = 0 \) then \(S \) is primitive, (i.e. \(\Delta_{\varphi} S = S \otimes 1_{Y^*} + 1_{Y^*} \otimes S \)) if and only if, for any \(u \) and \(v \in Y^* \), one has \(\langle S \mid u \varphi v \rangle = 0 \).
2. If \(\langle S \mid 1_{Y^*} \rangle = 1 \), then \(S \) is group-like, (i.e. \(\Delta_{\varphi} S = S \otimes S \)) if and only if, for any \(u \) and \(v \in Y^* \), one has \(\langle S \mid u \varphi v \rangle = \langle S \mid u \rangle \langle S \mid v \rangle \).

\(^{12}\)As in the classical case, \(\Delta_{\varphi} \) is a \(\varphi \)-morphism as can be seen by transposition of the fact that \(\Delta_{\text{conc}} \) is a \(\varphi \)-morphism.

\(^{13}\)Tensor products of linear forms ; \(1_{Y^*} \) being the counit \(P \mapsto \langle P \mid 1_{Y^*} \rangle \).

\(^{14}\)idem
Proof. The expected equivalences are due respectively to the following facts

\[
\Delta_{\varphi} S = S \otimes 1 + 1 \otimes S - \langle S \mid 1 \rangle 1 \otimes 1 + \sum_{u,v \in Y^*} \langle S \mid u \varphi v \rangle u \otimes v,
\]

\[
\Delta_{\varphi} S = \sum_{u,v \in Y^*} \langle S \mid u \varphi v \rangle u \otimes v \quad \text{and} \quad S \otimes S = \sum_{u,v \in Y^*} \langle S \mid u \rangle \langle S \mid v \rangle u \otimes v.
\]

Lemma 3. Let \(S \in \mathbb{K}\langle\langle Y \rangle\rangle \) be such that \(\langle S \mid 1 \rangle = 1 \), then \(S \) is group-like if and only if \(\log S \) is primitive.

Proof. Since \(\Delta_{\varphi} \) and the maps \(T \mapsto T \otimes 1 \), \(T \mapsto 1 \otimes T \) are continuous homomorphisms, then if \(\log S \) is primitive, then (see Lemma 2(1))

\[
\Delta_{\varphi}(\log S) = \log S \otimes 1 + 1 \otimes \log S
\]

and since \(\log S \otimes 1 \) and \(1 \otimes \log S \) commute then we get successively

\[
\Delta_{\varphi} S = \Delta_{\varphi}(\exp(\log S)) = \exp(\Delta_{\varphi}(\log S)) = \exp(\log S \otimes 1 \cdot \exp(1 \otimes \log S)) = (\exp(\log S) \otimes 1 \cdot \exp(\log S))(1 \otimes \exp(\log S)) = S \otimes S.
\]

This means, with \(\langle S \mid 1 \rangle \), that \(S \) is group-like. The converse can be obtained in the same way. \(\square \)

In fact, Lemma 3 establishes a nice log-exp correspondence for the Lie group of group-like series.

Lemma 4. 1. The group-like series form a group (for the concatenation).

2. The space \(\text{Prim}(\mathbb{K}\langle\langle Y \rangle\rangle) \) is a Lie algebra (for the bracket derived from concatenation).

\(\text{For any } h \in \mathbb{K}\langle\langle Y \rangle\rangle, \text{ if } \langle h \mid 1 \rangle = 0 \text{, one defines}
\]

\[
\log(1 \otimes h) = \sum_{n \geq 1} \frac{(-1)^{n-1}}{n} h^n \quad \text{and} \quad \exp(h) = \sum_{n \geq 1} \frac{h^n}{n!},
\]

and one has the usual formulas \(\log(\exp(h)) = h \) and \(\exp(\log(1 \otimes h)) = 1 \otimes h \).
Proof. As in the classical case.

We extend the transposition process in the same way as in lemma and note, for $n \geq 1$

$$\Delta^{(n-1)}: \mathbb{K}\langle\langle Y \rangle\rangle \to \mathbb{K}\langle\langle (Y^*)^\otimes n \rangle\rangle$$

the dual of $\Delta_{\varphi}^{(n-1)}$ applied to series, i.e. defined by

$$\Delta^{(n-1)}(S) = \sum_{u_1, u_2, \ldots, u_n \in Y^*} \langle S | u_1 \varphi \cdots \varphi u_n \rangle \ u_1 \otimes \cdots \otimes u_n.$$ \hfill (30)

We will use several times the following lemma which gives the combinatorics of products of primitive series (and the polynomials).

Lemma 5 (Higher order co-multiplications of products). Let us consider the language M over the alphabet $A = \{a_1, a_2, \ldots, a_m\}$

$$M = \{w \in A^* | w = a_{j_1} \cdots a_{j_{|w|}}, j_1 < \ldots < j_{|w|}, 1 \leq |w| \leq m\}$$

and the morphism

$$\mu: \mathbb{K}\langle A \rangle \to \mathbb{K}\langle\langle Y \rangle\rangle,$$

$$a_i \mapsto S_i,$$

where S_1, \ldots, S_m are primitive series in $\mathbb{K}\langle\langle Y \rangle\rangle$. Then

$$\Delta^{(n-1)}(S_1 \cdots S_m) = \sum_{w_1, \ldots, w_n \in M} \sum_{a_1 \cdots a_m \in \supp(w_1 \cdots \cdots w_n)} \mu(w_1) \otimes \cdots \otimes \mu(w_n)$$

Proof. (Sketch) Let $S = (S_1, \ldots, S_m)$ be this set of primitive series and for $I = \{i_1, \ldots, i_k\} \subset [1 \cdots m]$ in increasing order, let us note $S[I]$ the product $S_{i_1} \cdots S_{i_k}$, one has

$$\Delta^{(n-1)}(S_1 \cdots S_m) = \sum_{I_1 + \cdots + I_n = [1 \cdots m]} S[I_1] \otimes \cdots \otimes S[I_n]$$

setting $w_i = (a_1 a_2 \ldots a_m)[I]$, one gets the expected result. \hfill □
Lemma 6 (Pairing of products). Let S_1, \ldots, S_m be primitive series in $\mathbb{K}\langle\langle Y \rangle\rangle$ and let P_1, \ldots, P_n be proper\footnote{i.e. polynomials without constant term [1]} polynomials in $\mathbb{K}\langle Y \rangle$. Then one has in general
\[
\langle P_1 \varphi \cdots \varphi P_n \mid S_1 \ldots S_m \rangle = \sum_{w_1, \ldots, w_n \in M \atop |w_1| + \cdots + |w_n| = m \atop a_1 \cdots a_m \in \text{supp}(w_1 \cdots w_n)} \prod_{i=1}^n \langle P_i \mid \mu(w_i) \rangle.
\]
In particular, we have the following exhaustive list of circumstances

1. If $n > m$ then $\langle P_1 \varphi \cdots \varphi P_n \mid S_1 \ldots S_m \rangle = 0$.

2. If $n = m$ then
\[
\langle P_1 \varphi \cdots \varphi P_n \mid S_1 \ldots S_m \rangle = \sum_{\sigma \in S_n} \prod_{i=1}^n \langle P_i \mid S_{\sigma(i)} \rangle.
\]

3. If $n < m$ then one has the general form in which every product in the sum contains at least a factor $\langle P_i \mid \mu(w_i) \rangle$ with $|w_i| \geq 2$.

Proof. It is a consequence of Lemma\footnote{i.e. polynomials without constant term [1]} through the equality
\[
\langle P_1 \varphi \cdots \varphi P_n \mid S_1 \ldots S_m \rangle = \langle P_1 \otimes \cdots \otimes P_n \mid \Delta_{\varphi}^{(n-1)}(S_1 \ldots S_n) \rangle.
\]

We assume that φ is associative and dualizable.

Now, we have the following two structures.
\[
\mathcal{H}_{\mathbb{K}\varphi} = (\mathbb{K}\langle Y \rangle, \text{conc}, 1_Y^*, \Delta_{\mathbb{K}\varphi}, \varepsilon), \quad (31)
\]
\[
\mathcal{H}^\lor_{\mathbb{K}\varphi} = (\mathbb{K}\langle Y \rangle, \varphi, 1_Y^*, \Delta_{\text{conc}}, \varepsilon) \quad (32)
\]
which are mutually dual\footnote{This duality is separating [4].} bialgebras. The bialgebra $\mathcal{H}_{\mathbb{K}\varphi}$ need not be a Hopf algebra, even if $\Delta_{\mathbb{K}\varphi}$ is cocommutative (see Example\footnote{This duality is separating [4].} 2).

Now, let us consider
\[
\mathcal{I} := \text{span}_\mathbb{K}\{u \varphi v\}_{u,v \in Y^+}, \quad (33)
\]
\[
\mathbb{K}_+\langle Y \rangle := \{P \in \mathbb{K}\langle Y \rangle \mid \langle P \mid 1_Y^* \rangle = 0\}, \quad (34)
\]
\[
\mathcal{P} := \text{Prim}(\mathcal{H}_{\mathbb{K}\varphi}) = \{P \in \mathbb{K}\langle Y \rangle \mid \Delta_{\mathbb{K}\varphi}^+(P) = 0\}, \quad (35)
\]
where
\[\Delta^+_{\varphi} (P) = \Delta_{\varphi} (P) - (P \otimes 1_{Y^*} + 1_{Y^*} \otimes P). \] (36)

Remark 1. At this stage (\(\varphi \) not necessarily moderate), it can happen that \(\text{Prim}(\mathcal{H}_{\varphi}) = \{0\} \). This is the case, for example with the \(q \)-infiltration bialgebra on one letter at \(q = 1 \)
\[\mathcal{H}_{\varphi} = (K[x], \text{conc}, 1_{x^*}, \Delta_{1^*}, \epsilon) \]
and, more generally, when \(q \) is not nilpotent.

We can also endow \(\text{End}(K\langle Y \rangle) \), the \(K \)-module of endomorphisms of \(K\langle Y \rangle \), with the **convolution** product defined by
\[\forall f, g \in \text{End}(K\langle Y \rangle), \quad f \ast g = \text{conc} \circ (f \otimes g) \circ \Delta_{\varphi}, \] (37)
i.e., \(\forall P \in K\langle Y \rangle, \quad (f \ast g)(P) = \sum_{u,v \in Y^*} \langle P \mid u_{\varphi} v \rangle f(u)g(v). \) (38)

Then \(\text{End}(K\langle Y \rangle) \) becomes a \(K \)-associative algebra with unity (AAU), its unit being \(e = 1_{K\langle Y \rangle} \circ \epsilon. \)

It is convenient to represent every \(f \in \text{End}(K\langle Y \rangle) \) by its graph, a double series which reads
\[\Gamma(f) = \sum_{w \in Y^*} w \otimes f(w) \] (39)
This representation is faithful and, by direct computation, one gets
\[\Gamma(f)\Gamma(g) = \Gamma(f \ast g) \] (40)
where the multiplication of double series is performed by the stuffle on the left and the concatenation on the right.

Definition 3. Let \(t \) be a real parameter. Let us define
\[D_Y := \Gamma(\text{Id}_{K\langle Y \rangle}) = \sum_{w \in Y^*} w \otimes w, \quad \text{Haus}_Y := \log D_Y, \quad \sigma_Y(t) := \exp(t\text{Haus}_Y). \]

We assume that \(\varphi \) is associative, commutative and dualizable.

Lemma 7. (\(\pi_1 \) is a projector on the primitive series) The endomorphism \(\pi_1 \) is a projector, the image of which is exactly the space of primitive series, \(\text{Prim}(K\langle\langle Y \rangle\rangle) \).
Proof. (sketch) The proof follows the lines of [38] with the difference that \(\pi_1(w) \) might not be a polynomial and the operator defined in Lemma 2 is not a genuine co-product. The diagonal series \(D_y \) (when considered as a series in \(K\langle\langle Y'\rangle\rangle \langle\langle Y'\rangle\rangle \), the coefficient ring, \(K\langle\langle Y'\rangle\rangle \), being endowed with the \(\varphi \) product) is group-like in the sense of lemma 2. Then using

\[
\log(D_y) = \sum_{w \in Y^*} w \otimes \pi_1(w)
\]

(which can be established by summability of the family \((w \otimes \pi_1(w))_{w \in Y^*} \), but remember that the \(\pi_1(w) \) are, in general, series \(18 \)), one gets that, for all \(w \), \(\pi_1(w) \) is a primitive series. Now, from

\[
\pi_1(S) = \sum_{w \in Y^*} \langle S | w \rangle \pi_1(w)
\]

one has \(\pi_1(S) \in \text{Prim}(K\langle\langle Y'\rangle\rangle) \). Conversely, from Friedrichs criterion, one gets that \(\pi_1(S) = S \) if \(S \in \text{Prim}(K\langle\langle Y'\rangle\rangle) \).

In the remainder of the paper, we suppose that \(\varphi \) is moderate (and still dualizable, associative and commutative).

Definition 4. (Projectors, [38]) Let \(I_+ : K\langle Y'\rangle \to K\langle Y'\rangle \) be the linear mapping defined by

\[
I_+(1_{Y^*}) = 0, \quad \forall w \in Y^+, \quad I_+(w) = w.
\]

One defines\(^{19}\)

\[
\pi_1 := \log(e + I_+) = \sum_{n \geq 1} \frac{(-1)^{n-1}}{n} I_+^{*n}, \quad \text{where} \quad I_+^{*n} := \text{conc}_{n-1} \circ I_+^{(n)} \circ \Delta^{(n-1)}.
\]

\(^{18}\)In more details, this equality amounts to checking the summability of the family

\[
\left(\frac{(-1)^{k-1}}{k} w \otimes \langle w | u_1 \varphi \cdots \varphi u_k \rangle u_1 \cdots u_k \right)_{w \in Y^*, \ k \geq 1, \ u_1, \cdots, u_k \in Y^+}
\]

(which is immediate) and rearranging the sums.

\(^{19}\)The series below are summable because the family \((I_+^{*n})_{n \geq 0} \) is locally nilpotent (see [3] for complete proofs). Note that this definition gives the same result as the computation of the adjoint of \(\tilde{\pi}_1 \) given in Eq. 27.
It follows immediately that

\[\exp(\pi_1) = \sum_{k \geq 1} \frac{1}{k!} \pi_1^k = \sum_{n \geq 1} \pi_n, \quad (41) \]

where \(e = 1_{\mathbb{K}(Y)} \circ \epsilon \) is the orthogonal complement of \(I_+ \) and neutral for the convolution product. The \(\pi_n \) so obtained is called the \(n \)-th eulerian projector.

Lemma 8. The endomorphism \(\tilde{\pi}_1 \) defined in Eq. (26) is the adjoint of \(\pi_1 \). One has

\[\tilde{\pi}_1 = \sum_{n \geq 1} \frac{(-1)^{n-1}}{n} \phi_{\varphi}^{(n-1)} \circ \Delta_{\varphi}^{(n-1)} \circ \Delta_{\text{conc}}^{(n-1)}. \]

Proof. Immediate. \(\square \)

Proposition 2. (Graph of \(\pi_1 \), values and its exponential as resolution of unity)

1. For all \(Y \) and \(\varphi \) (moderate, associative, commutative and dualizable), one has

\[\mathcal{H}aus_Y = \sum_{w \in Y^+} w \otimes \pi_1(w) = \sum_{w \in Y^+} \tilde{\pi}_1(w) \otimes w. \]

2. Let \(P \in \mathbb{K}(Y) \) be a primitive polynomial, for \(\Delta_{\varphi} \). Then

\[\pi_1(P) = P, \quad \forall k, n \in \mathbb{N}_+, \quad \pi_n(P^k) = \delta_{k,n} P^k. \]

3. One has

\[\text{Id}_{\mathbb{K}(Y)} = e + I_+ = \sum_{n \geq 0} \pi_n \]

is a resolution of identity with mutually orthogonal summands.

4. We have

\[\mathbb{K}_+(Y) = \mathcal{P} \oplus I = \mathcal{P} \oplus \left(\bigoplus_{n \geq 2} \pi_n(\mathbb{K}(Y)) \right). \]
Proof. The only statement which cannot be proved through an isomorphism with the shuffle algebra is the first equality of the point 4. The fact that $\mathcal{P} \cap \mathcal{I} = \{0\}$ comes from Friedrichs criterion and $\mathcal{P} + \mathcal{I} = \mathbb{K}_+ \langle Y \rangle$ is a consequence of the fact (seen again through any isomorphism with the shuffle algebra) that

$$(\mathcal{H}_{\langle \phi \rangle})_+ = \text{span}_\mathbb{K} \left(\bigcup_{n \geq 1} (P_1 \phi \cdots \phi P_n)_{P \in \text{Prim}(\mathcal{H}_{\langle \phi \rangle})} \right).$$

\square

Remark 2. 1. The first equality of Proposition 2.4, i.e.

$$\mathbb{K}_+ \langle Y \rangle = \mathcal{P} \bigoplus \mathcal{I}$$

is known as the theorem of Ree [37].

2. The projector on \mathcal{P} parallel to \mathcal{I} is not in general in the descent algebra (see [16]). This proves that, although they are isomorphic, the spaces \mathcal{I} and $\bigoplus_{n \geq 2} \pi_n(\mathbb{K} \langle Y \rangle)$ are, in general, not identical.

Proposition 2.1 leads to

Corollary 1. We have $\pi_1(1_{Y^*}) = \tilde{\pi}_1(1_{Y^*}) = 0$ and, for all $w \in Y^+$,

$$\pi_1(w) = w + \sum_{k \geq 2} \frac{(-1)^{k-1}}{k} \sum_{u_1, \ldots, u_k \in Y^+} \langle w \mid u_1 \phi \cdots \phi u_k \rangle u_1 \cdots u_k,$$

$$\tilde{\pi}_1(w) = w + \sum_{k \geq 2} \frac{(-1)^{k-1}}{k} \sum_{u_1, \ldots, u_k \in Y^+} \langle w \mid u_1 \cdots u_k \rangle u_1 \phi \cdots \phi u_k.$$

In particular $\pi_1(1_{Y^*}) = \tilde{\pi}_1(1_{Y^*}) = 0$ and, for any $y \in Y$, $\tilde{\pi}_1(y) = y$ and

$$\pi_1(y) = y + \sum_{l \geq 2} \frac{(-1)^{l-1}}{l} \sum_{x_1, \ldots, x_l \in Y^*} \gamma_{x_1, \ldots, x_l}^y x_1 \cdots x_l.$$

Remark 3. We already knew that, as soon as ϕ is associative, $\tilde{\pi}_1(w)$ is a polynomial. Here, because ϕ is moderate, dualizable, and associative, $\pi_1(w)$ also is a polynomial, and because ϕ is commutative, the images are primitive.

Proposition 3. We have
1. **The expression of** $\sigma_Y(t)$ **is given by**

$$
\sigma_Y(t) = \sum_{n \geq 0} t^n \sum_{w \in Y^*} w \otimes \pi_n(w) = \sum_{n \geq 0} t^n \sum_{w \in Y^*} \tilde{\pi}_n(w) \otimes w,
$$

where $\tilde{\pi}_n$ is the adjoint of π_n. **These are given by**

$$
\pi_n(w) = \frac{1}{n!} \sum_{u_1, \ldots, u_n \in Y^+} \langle w | \tilde{\pi}_1(u_1) \varphi \cdots \varphi \tilde{\pi}_1(u_n) \rangle \pi_1(u_1) \cdots \pi_1(u_n),
$$

$$
\tilde{\pi}_n(w) = \frac{1}{n!} \sum_{u_1, \ldots, u_n \in Y^+} \langle w | \pi_1(u_1) \cdots \pi_1(u_n) \rangle \tilde{\pi}_1(u_1) \varphi \cdots \varphi \tilde{\pi}_1(u_n)).
$$

2. **For any** $w \in Y^*$, **we have**

$$
w = \sum_{k \geq 0} \frac{1}{k!} \sum_{u_1, \ldots, u_k \in Y^+} \langle w | u_1 \varphi \cdots \varphi u_k \rangle \pi_1(u_1) \cdots \pi_1(u_k)
$$

$$
= \sum_{k \geq 0} \frac{1}{k!} \sum_{u_1, \ldots, u_k \in Y^+} \langle w | u_1 \cdots u_k \rangle \tilde{\pi}_1(u_1) \varphi \cdots \varphi \tilde{\pi}_1(u_k).
$$

In particular, for any $y_s \in Y$, **we have** $y_s = \tilde{\pi}_1(y_s)$ **and**

$$
y_s = \sum_{k \geq 1} \frac{1}{k!} \sum_{y_{s_1}, \ldots, y_{s_k} \in Y} \gamma_{y_{s_1}, \ldots, y_{s_k}} \pi_1(y_{s_1}) \cdots \pi_1(y_{s_k}).
$$

Proof. Direct computation.

Applying the tensor product\(^{20}\) of isomorphisms of algebras\(^{21}\) $\alpha \otimes \operatorname{Id}_Y$ to the diagonal series D_Y, we obtain a group-like element and then computing the logarithm of this element (or equivalently, applying $\alpha \otimes \operatorname{Id}_Y$ to Haus_Y) we obtain S which is, by Lemma\(^3\) primitive:

$$
S = \sum_{w \in Y^*} \alpha(w) \pi_1(w) = \sum_{w \in Y^*} \alpha \circ \tilde{\pi}_1(w) w. \tag{42}
$$

\(^{20}\)Extended to series.

\(^{21}\)In order to clarify the ideas at this point, the reader can also take the alphabet duplication isomorphism

$$
\forall \bar{y} \in \bar{Y}, \bar{y} = \alpha(y)
$$

and use $\{w\}_{w \in Y^*}$ as a basis for $\mathbb{K} \langle \bar{Y} \rangle$.

21
Lemma 9. For any \(w \in Y^+ \), one has \(\pi_1(w) \in \text{Prim}(\mathbb{K}\langle Y \rangle) \).

Proof. Immediate from lemma[7] \(\square \)

A primitive projector, \(\pi : \mathbb{K}\langle Y \rangle \to \mathbb{K}\langle Y \rangle \), is defined in the same way as a Lie projector by the three following conditions:

\[
\pi \circ \pi = \pi, \quad \pi(1_{Y^*}) = 0 \quad \pi(\mathbb{K}\langle Y \rangle) = \text{Prim}(\mathbb{K}\langle Y \rangle) = \mathcal{P}. \tag{43}
\]

For example, \(\pi_1 \) defined in Definition 4 (see also proposition 2) is a primitive projector which will be used to construct bases of \(\mathcal{P} \) and its enveloping algebra (see Theorem 5 below). Another example of a primitive projector is the orthogonal projector on \(\mathcal{P} \) attached to the decomposition in Remark 2.

Now, for the remainder of the paper, let \(Y = \{ y_w \}_{w \in Y} \) (resp. \(Y_1 = \{ y_x \}_{x \in Y} \)) be a copy of \(Y^+ \) (resp. \(Y \)).

Let us then equip \(\mathbb{K}\langle Y \rangle \) and \(\mathbb{K}\langle Y_1 \rangle \) with \(\bullet \) (the concatenation so denoted to be distinguished from the concatenation within \(Y^+ \)) and \(\sqcup \) (or equivalently by \(\Delta \bullet \) and \(\Delta \sqcup \)).

Thus, the Hopf algebras \((\mathbb{K}\langle Y \rangle, \bullet, 1_{Y^*}, \Delta_{\sqcup}, \epsilon_{Y^*}) \) and \((\mathbb{K}\langle Y_1 \rangle, \bullet, 1_{Y^*}, \Delta_{\sqcup}, \epsilon_{Y^*_1}) \) are connected, \(\mathbb{N} \)-graded, non-commutative and cocommutative bialgebras and hence enveloping bialgebras (in fact, they are free algebras but specially indexed to match our purpose).

Now we can state the following

Theorem 4. (New letters as images) Let \(\pi : \mathbb{K}\langle Y \rangle \to \mathbb{K}\langle Y \rangle \) be a primitive projector. Let \(\psi_\pi \) be the \(\text{conc} \)-morphism defined by

\[
\psi_\pi : \mathbb{K}\langle Y \rangle \to \mathbb{K}\langle Y \rangle,
\quad y_w \mapsto \psi_\pi(y_w) = \pi(w)
\]

then \(\psi_\pi \) is surjective and a Hopf morphism.

Moreover, \(\ker \psi_\pi = \mathcal{J} = \mathcal{J}_1 + \mathcal{J}_2 \) where \(\mathcal{J}_1 \) and \(\mathcal{J}_2 \) are the two-sided ideals of \(\mathbb{K}\langle Y \rangle \) generated respectively by

\[
\mathcal{J}_1 = \{ y_u - y_{\pi(u)} \}_{u \in Y^+} \quad \text{and} \quad \mathcal{J}_2 = \{ y_u \bullet y_v - y_v \bullet y_u - y_{[\pi(u), \pi(v)]} \}_{u,v \in Y^+}
\]

where, the indexing of the alphabet has been extended by linearity to polynomials i.e.,

\[
P = \sum_{w \in Y^+} \alpha(w) w \quad \text{and} \quad y_P = \sum_{w \in Y^+} \alpha(w) y_w.
\]
Proof. The fact that ψ_π is surjective is due to $\pi(\mathbb{K}\langle Y \rangle) = P$ and any enveloping algebra (here $\mathcal{H}_\mathbb{K}\mathcal{F}_\varphi$) is generated by its primitive elements. The fact that ψ_π is a Hopf morphism is due to a general property of enveloping algebras: if a morphism of AAU between two enveloping algebras sends the primitive elements of the first into primitive elements of the second, then it is a Hopf morphism.

Let now $(p_i)_{i \in J}$ be an ordered (J is endowed with a total ordering \prec_J) basis\(^{22}\) of $P = \text{Prim}(\mathbb{K}\langle Y \rangle)$ and let us recall that $J = J_1 + J_2$ denotes the two sided ideal generated by the elements J_i being generated by S_i, $i = 1, 2$.

First, we remark that the elements of $S_1 \cup S_2$ are in the kernel of ψ_{π_1}, and then $J \subset \ker \psi_{\pi_1}$.

On the other hand, for $u_1, u_2, \ldots, u_n \in Y^+$, one has

$$ y_{u_1} \cdot y_{u_2} \cdot \ldots \cdot y_{u_n} \equiv y_{\pi(u_1)} \cdot y_{\pi(u_2)} \cdot \ldots \cdot y_{\pi(u_n)} \mod J \quad (44) $$

(in fact they are even equivalent mod J_1) which amounts to say that $\mathbb{K}\langle Y \rangle = J + \langle P \rangle$ where $\langle P \rangle$ is the space “generated by P”, in fact, generated by

$$ \bigcup_{n \geq 0} \{ y_{p_{i_1}} \cdot \ldots \cdot y_{p_{i_n}} \}_{i_j \in J}. $$

Now, by recurrence over the number of inversions, one can show, using S_2, that

$$ y_{p_{i_1}} \cdot \ldots \cdot y_{p_{i_n}} \equiv y_{p_{\sigma(i_1)}} \cdot \ldots \cdot y_{p_{\sigma(i_n)}} \mod J \quad (45) $$

where $\sigma \in \mathfrak{S}_n$ is such that $\sigma(i_1) \succ_J \sigma(i_2) \succ_J \ldots \succ_J \sigma(i_n)$ (large order reordering).

Let C be the space generated by the elements

$$ \{ y_{p_{j_1}} \cdot \ldots \cdot y_{p_{j_n}} \}_{j_1 \succ_j \ldots \succ_j J}
$$

by (44) and (45), we get $J + C = \mathbb{K}\langle Y \rangle$.

Now, thanks to the PBW theorem, the family of images

$$ \left(\Phi_{\pi_1}(y_{p_{j_1}} \cdot y_{p_{j_2}} \cdot \ldots \cdot y_{p_{j_n}}) \right)_{j_1 \succ_J j_2 \succ_J \ldots \succ_J J_n} \quad (47) $$

is a basis of $\mathbb{K}\langle Y \rangle$ which proves that $\Phi_{\pi_1}|_{C}: C \rightarrow \mathbb{K}\langle Y \rangle$ is an isomorphism and completely proves the claim. \(\square\)

\(^{22}\)With the properties of φ here, the bialgebra $(\mathbb{K}\langle Y \rangle, \text{conc}, 1_Y, \Delta_{\mathbb{K}\mathcal{F}_\varphi}, \epsilon)$ is isomorphic to $(\mathbb{K}\langle Y \rangle, \text{conc}, 1_Y, \Delta_{\mathbb{K}\mathcal{F}_\varphi}, \epsilon)$ in which the module of primitive elements is free, thus $\mathcal{P} = \text{Prim}(\mathbb{K}\langle Y \rangle)$ is free.
We now suppose that the alphabet Y is totally ordered.

Definition 5.
1. Let $\{\Pi_l\}_{l \in \mathcal{L}ynY}$ and $\{\Pi_w\}_{w \in Y^*}$ be the families of elements of \mathcal{P} and $\mathbb{K}\langle Y \rangle$ respectively, obtained as follows

$\Pi_{y_k} = \pi_1(y_k)$ for $k \geq 1$,
$\Pi_l = [\Pi_s, \Pi_r]$ for $l \in \mathcal{L}ynX$, standard factorization of $l = (s, r)$,
$\Pi_w = \Pi_{l_1} \cdots \Pi_{l_k}$ for $w = l_1 \cdots l_k$, $l_1 \succ_{lex} \cdots \succ_{lex} l_k, l_1, \ldots, l_k \in \mathcal{L}ynY$.

2. Let $\{\Sigma_w\}_{w \in Y^*}$ be the family of the φ-deformed quasi-shuffle algebra obtained by duality with $\{\Pi_w\}_{w \in Y^*}$:

$$\forall u, v \in Y^*, \quad \langle \Sigma_v | \Pi_u \rangle = \delta_{u,v}.$$

A priori, the $\{\Sigma_w\}_{w \in Y^*}$ could be series, we prove first that, in this context, they are polynomials.

Proposition 4. *(Adjoint of ϕ_{π_1})* Let ϕ_{π_1} be the conc-endomorphism of algebra defined on the letters as follows :

$$\phi_{\pi_1} : \mathbb{K}\langle Y \rangle \longrightarrow \mathbb{K}\langle Y \rangle, \quad y_k \mapsto \phi_{\pi_1}(y_k) = \pi_1(y_k).$$

Then ϕ_{π_1} is an automorphism with the following properties

1. This automorphism is such that, for every $l \in \mathcal{L}ynY$,

$$\phi_{\pi_1}(P_l) = \Pi_l,$$

(where P_l are the polynomials calculated with the mechanism of Def. 5 setting $\varphi \equiv 0$ (or, equivalently, by Eq. 8 with $q = 0$), i.e. within the shuffle algebra $(\mathbb{K}\langle Y \rangle, \text{conc}, 1, \Delta_{\text{sh}}, \epsilon)$)

2. This automorphism has an adjoint $\phi_{\pi_1}^\vee$ within $\mathbb{K}\langle Y \rangle$ which reads, on the words $w \in Y^*$

$$\phi_{\pi_1}^\vee (w) = \sum_{k \geq 0} \sum_{y_{i_1} \cdots y_{i_k} \in Y^*} \langle w | \pi_1(y_{i_1}) \cdots \pi_1(y_{i_k}) \rangle y_{i_1} y_{i_2} \cdots y_{i_k}$$
3. In the style of Definition 4, one has

\[\phi_{\pi_1} = e + \sum_{k \geq 1} \text{conc}^{(k-1)} \circ (\pi_1 \circ I_1)^{\otimes k} \circ \Delta^{(k-1)}_{\text{conc}}, \]

\[\phi_{\pi_1}^\vee = e + \sum_{k \geq 1} \text{conc}^{(k-1)} \circ (I_1 \circ \bar{\pi}_1)^{\otimes k} \circ \Delta^{(k-1)}_{\text{conc}}, \]

where \(I_1 \) is the projector on \(\mathbb{K}Y \) parallel to \(\bigoplus_{n \neq 1} (\mathbb{K} \langle Y \rangle)_n \).

4. For all \(w \in Y^* \), \(\Sigma_w = (\phi_{\pi_1}^\vee)^{-1}(S_w) \).

Proof. (Sketch) It was proved in Theorem 2 that the endomorphism \(\phi_{\pi_1} \) is an isomorphism. The recursions used to construct \(\Pi_l \) and \(P_l \) prove that \(\phi_{\pi_1}(P_l) = \Pi_l \) and then \(\phi_{\pi_w}(P_l) = \Pi_w \) for every word \(w \). Now the expression of \(\phi_{\pi_1} \) is a direct consequence of the definition of \(\phi_{\pi_1} \). This implies at once the expression of \(\phi_{\pi_1}^\vee \) and the fact that \(\phi_{\pi_1}^\vee \in \text{End}(\mathbb{K} \langle Y \rangle) \), the last equality come from the following

\[\delta_{u,v} = \langle \Pi_u \mid \Sigma_v \rangle = \langle \phi_{\pi_1}(P_u) \mid \Sigma_v \rangle = \langle P_u \mid \phi_{\pi_1}^\vee(\Sigma_v) \rangle \]

which shows that, for all \(w \in Y^* \), \(\phi_{\pi_1}^\vee(\Sigma_w) = S_w \) and the claim.

We can now state

Theorem 5.

1. The family \(\{\Pi_l\}_{l \in L_{\text{Grp}}} \) forms a basis of \(\mathcal{P} \).
2. The family \(\{\Pi_w\}_{w \in Y^*} \) is a linear basis of \(\mathbb{K} \langle Y \rangle \).
3. The family \(\{\Sigma_w\}_{w \in Y^*} \) is a linear basis of the \(\varphi \)-shuffle algebra
4. The family \(\{\Sigma_l\}_{l \in L_{\text{Grp}}} \) forms a pure transcendence basis of \((\mathbb{K} \langle Y \rangle, \varphi^\omega, 1_{Y^*}) \).

3.3 Local coordinates by \(\varphi \)-extended Schützenberger’s factorization

We have remarked very early (\(\varphi \) needs only to be associative) that the set of group-like series (for \(\Delta_{\varphi} \)) forms a (infinite dimensional Lie) group (see Lemmas 3 and 4), its Lie algebra is the (Lie) algebra of Lie series and we have a nice log-exp correspondence (see Lemma 3). We will see in this paragraph that, when \(\varphi \) possesses all the “good” properties (moderate, dualizable, associative and commutative), one has an analogue of the Wei-Norman theorem \([40, 41]\) which gives a system of local coordinates for every finite dimensional (real or complex) Lie group. Let us recall it.

25
Theorem 6. [40, 41] Given a (finite dimensional) Lie group G (real $k = \mathbb{R}$ or complex $k = \mathbb{C}$), its Lie algebra \mathfrak{g}, and a basis $B = (b_i)_{1 \leq i \leq n}$ of \mathfrak{g}, there exists a neighbourhood W of 1_G (in G) and n local coordinate analytic functions $W \to k$, $(f_i)_{1 \leq i \leq n}$ such that, for all $g \in W$

\[g = \prod_{1 \leq i \leq n} e^{t_i(g)b_i} = e^{t_1(g)b_1}e^{t_2(g)b_2} \ldots e^{t_n(g)b_n}. \]

Now, we have seen that, if φ is moderate, dualizable, associative and commutative,

\[\mathcal{H}_{\varphi} = (\mathbb{K}\langle Y \rangle, \text{conc}, 1_{Y^*}, \Delta_{\varphi}, \epsilon) \]

is isomorphic to the shuffle bialgebra algebra $(\mathbb{K}\langle Y \rangle, \text{conc}, 1_{Y^*}, \Delta_{\varphi}, \epsilon)$ one can construct bases $\{\Pi_w\}_{w \in Y^*}$; $\{\Sigma_w\}_{w \in Y^*}$ of $\mathbb{K}\langle Y \rangle$ with the following properties

1. the restricted family $\{\Pi_l\}_{l \in \mathcal{L}_{yn}Y}$ is a basis of $P = \text{Prim}(\mathbb{K}\langle Y \rangle)$

2. the whole basis is constructed by decreasing concatenation (see Definition 5) and hence of type PBW

3. they are in duality $\langle \Pi_u | \Sigma_v \rangle = \delta_{u,v}$

4. due to these three properties one has

\[\Sigma_w = \frac{\sum_{l_1, \ldots, l_k} l_1^{i_1} \ldots l_k^{i_k}}{i_1! \ldots i_k!}, \quad \text{for } w = l_1^{i_1} \ldots l_k^{i_k} \]

Now within the algebra of double series (whose support is $\mathbb{K}^{Y^* \otimes Y^*}$) endowed with the law $\varphi \otimes \text{conc}, M$. P. Schützenberger (see [33]) gave the beautiful formula

\[\sum_{w \in Y^*} w \otimes w = \prod_{l \in \mathcal{L}_{yn}Y} e^{\Sigma_l \otimes P_l}. \]

Which can be used to provide a system of local coordinates on the Hausdorff group i.e. the group of series in $\mathbb{K}\langle \langle Y \rangle \rangle$ which are group-like for Δ_{φ}. Indeed,
due to the fact that for a group-like S, $(S \hat{\otimes} \text{Id})$ is compatible with the law of the
double algebra and then applying the operator $(S \hat{\otimes} \text{Id})$ to (50), we get

$$S = (S \hat{\otimes} \text{Id})(\sum_{w \in Y^*} w \hat{\otimes} w) = \prod_{l \in \text{dyn} Y} e^{(S|\Sigma_l)} P_l$$ (51)

which is the perfect analogue of the theorem of Wei-Norman for the Hausdorff
group (group of group-like series).

4 Conclusion

In this paper, we have systematically studied the deformations of the shuffle product by addition of a superposition term. Fortunately, this study provides necessary and sufficient conditions for the objects (antipode, Ree ideal, bases in duality) and operators (infinite convolutional series, primitive projectors) to exist together with their consequences. We have established a local system of coordinates for the (infinite dimensional) Lie group of group-like series. This system is the perfect analogue of the well known theorem of Wei-Norman which holds for every finite dimensional Lie group.

References

[1] J. Berstel and C. Reutenauer.– Rational series and their languages, Springer-Verlag, 1988.

[2] V.C. Bui, G.H.E. Duchamp, and Hoang Ngoc Minh.– Schützenberger’s factorization on the (completed) Hopf algebra of q–stuffle product, Journal of Algebra, Number Theory and Applications 30 (2) (2013) 191–215.

[3] G.H.E. Duchamp, V. Hoang Ngoc Minh, C. Tollu, V.C. Bui, and N. Hoang Nghia.– Combinatorics of φ–deformed stuffle Hopf algebras, ArXiv: 1302.5391 (math.CO).

[4] N. Bourbaki.– Topological vector spaces. Chapters 1-5, Springer-Verlag, 2003.

23 All summabilities can be checked from the fact that φ is moderate.
[5] N. Bourbaki.– *Algebra II. Chapters 4-7*, Springer-Verlag, 2003.

[6] P. Cartier.– *Function polylogarithmes, nombres polyzêtas et groupe pronilpotents*, Séminaire Bourbaki, 53e année, 2000-2001, n°884, Mars 2001 (https://eudml.org/doc/110287).

[7] P. Cartier.– *On the structure of free Baxter algebras*, Adv. Math. 9 (2) (1972) 253–265.

[8] K.-T. Chen.– *Iterated integrals and exponential homomorphisms*, Proc. Lond. Mathem. Soc. (3) 4 (1954) 502–512.

[9] C. Costermans and Hoang Ngoc Minh.– *Noncommutative algebra, multiple harmonic sums and applications in discrete probability*, J. Symbolic Comput. 44 (7) (2009) 801–817.

[10] K.T. Chen, R.H. Fox, and R.C. Lyndon.– *Free differential calculus, IV. The quotient groups of the lower central series*, Ann. of Math. 68 (1) (1958) 81–95.

[11] M. Deneufchâtel, G.H.E. Duchamp, and V. Hoang Ngoc Minh.– *Radford bases and Schützenberger’s factorizations*, ArXiv: 1111.6759 (math.CO).

[12] V.G. Drinfel’d.– *On quasitriangular quasi-Hopf algebra and a group closely connected with $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$*, Algebra i Analiz 2 (4) (1990) 149–181 (Russian); English transl., Leningrad Math. J. 2 (4) (1991) 829–860.

[13] G. Duchamp, M. Flouret, E. Laugerotte, and J.-G. Luque.– *Direct and dual laws for automata with multiplicities*, Theoret. Comput. Sci. 267 (1-2) (2001) 105–120.

[14] G.H. E. Duchamp, C. Tollu, K.A. Penson, and G.A. Koshevoy.– *Deformations of algebras: Twisting and perturbations*, Séminaire Lotharingien de Combinatoire, B62e (2010), 14 pp.

[15] F.J. Dyson.– *The radiation theories of Tomonaga, Schwinger and Feynman*, Phys. Rev. 75 (3) (1949) 486–502.

[16] G. Duchamp, A. Klyachko, D. Krob, and J.-Y. Thibon.– *Noncommutative symmetric functions III: Deformations of Cauchy and convolution algebras*, Discrete Mathematics and Theoretical Computer Science 1 (1997) 159–216.
[17] S. Eilenberg and S. Mac Lane.– On the groups $H(\Pi, n) I$, Ann. of Math. 58 (1) (1953) 55–106.

[18] J-Y. Enjalbert and Hoang Ngoc Minh.– Combinatorial study of Hurwitz colored polyzétas, Discrete Math. 312 (24) (2012) 3489–3497.

[19] M. Fliess.– Sur divers produits de séries formelles, Bull. Soc. Math. France 102 (1974) 181–191.

[20] Hoang Ngoc Minh, G. Jacob, and N. Oussous.– Input/Output behaviour of nonlinear control Ssystems: Rational approximations, nilpotent structural approximations, in “Analysis of controlled dynamical systems”, (B. Bonnard, B. Bride, J.P. Gauthier and I. Kupka, eds.), pp. 253-262, Progress in Systems and Control Theory, Birkhäuser, 1991.

[21] Hoang Ngoc Minh and G. Jacob.– Symbolic integration of meromorphic differential equation via Dirichlet functions, Discrete Math. 210 (1-3) (2000) 87–116.

[22] Hoang Ngoc Minh, M. Petitot, and J. Van der Hoeven.– Computation of the monodromy of generalized polylogarithms, In “Proc. ISSAC’98”, Rostock, Allemagne, Août 1998.

[23] Hoang Ngoc Minh.– On a conjecture by Pierre Cartier about a group of associators, Acta Math. Vietnam. 38 (3) (2013) 339–398.

[24] Hoang Ngoc Minh.– Structure of polyzetas and Lyndon words, Vietnam J. Math. 41 (4) (2013) 409–450.

[25] M. Hoffman.– Quasi-shuffle products, J. Algebraic Combin. 11 (1) (2000) 49–68.

[26] C. Kassel.– Quantum groups, Graduate Texts in Mathematics, vol. 155, Springer-Verlag, New York, 1995.

[27] D. Knutson.– \lambda-rings and the representation theory of the symmetric group, Lecture Notes in Mathematics, vol. 308, Springer-Verlag, 1973.

[28] T.Q.T. Lê and J. Murakami.– Kontsevich’s integral for Kauffman polynomial, Nagoya Math. J. 142 (1996) 39–65.
[29] M. Lothaire.– Combinatorics on words. (2nd edition), Cambridge Mathematical Library, Cambridge university press, 1997.

[30] C. Malvenuto and C. Reutenauer.– Duality between quasi-symmetric functions and the Solomon descent algebra, J. Algebra 177 (1995) 967–982.

[31] W. Magnus.– On the exponential solution of differential equation for a linear operator, Comm. Pure Appl. Math. 7 (1954) 649–673.

[32] D. Manchon, S. Paycha,– Nested sums of symbols and renormalised multiple zeta functions, arxiv.org/abs/math/0702135

[33] J.-C. Novelli, F. Patras, and J.-Y. Thibon.– Natural endomorphisms of quasi-shuffle Hopf algebras, Bull. Soc. Math. France 141 (1) (2013) 107–130.

[34] P. Ochsenschläger.– Binomialkoeffizienten und Shuffle-Zahlen, Technischer Bericht, Fachbereich Informatik, T. H. Darmstadt, 1981.

[35] P. Ochsenschläger.– Eine Klasse von Thue-Folgen, Technischer Bericht, Fachbereich Informatik, T. H. Darmstadt, 1981.

[36] D.E. Radford.– A natural ring basis for shuffle algebra and an application to group schemes, J. Algebra 58 (1979) 432–454.

[37] R. Ree.– Lie elements and an algebra associated with shuffles Ann. of Math. 68 (1958) 210–220.

[38] C. Reutenauer.– Free Lie algebras, London Math. Soc. Monographs, New Series, vol. 7, Oxford Science Publications, 1993.

[39] M.-P. Schützenberger.– Sur une propriété combinatoire des algèbres de Lie libres pouvant être utilisée dans un problème de mathématiques appliquées, Séminaire Dubreil. Algèbre et théorie des nombres, tome 12, no 1 (1958-1959), exp. num 1, pages 1–23.

[40] J. Wei and E. Norman.– Lie algebraic solution of linear differential equations, J. Math. Phys. 4 (1963) 575–581.

[41] J. Wei and E. Norman.– On global representation of the solution of linear differential equations as product of exponentials, Proc. Amer. Math. Soc. 15 (1964) 327–334.
[42] D. Zagier. – *Values of zeta functions and their applications*, In “First European Congress of Mathematics", vol. 2, pages 497–512, Birkhäuser, 1994.