Mathematical model on Alzheimer’s disease

Wenrui Hao1* and Avner Friedman2

Abstract

Background: Alzheimer disease (AD) is a progressive neurodegenerative disease that destroys memory and cognitive skills. AD is characterized by the presence of two types of neuropathological hallmarks: extracellular plaques consisting of amyloid β-peptides and intracellular neurofibrillary tangles of hyperphosphorylated tau proteins. The disease affects 5 million people in the United States and 44 million world-wide. Currently there is no drug that can cure, stop or even slow the progression of the disease. If no cure is found, by 2050 the number of Alzheimer’s patients in the U.S. will reach 15 million and the cost of caring for them will exceed $1 trillion annually.

Results: The present paper develops a mathematical model of AD that includes neurons, astrocytes, microglia and peripheral macrophages, as well as amyloid β aggregation and hyperphosphorylated tau proteins. The model is represented by a system of partial differential equations. The model is used to simulate the effect of drugs that either failed in clinical trials, or are currently in clinical trials.

Conclusions: Based on these simulations it is suggested that combined therapy with TNF-α inhibitor and anti amyloid β could yield significant efficacy in slowing the progression of AD.

Keywords: Alzheimer disease, Mathematical modeling, Drug treatment

Background

AD is the most common form of dementia. The disease is an irreversible, progressive, brain disorder that destroys memory and cognitive skills, and eventually the ability to carry out even the simplest tasks. While the genetic inheritability of AD is in the range of 50 –80% [1, 2], the cause of the disease is mostly unknown. The disease strikes aging people typically 65 or older, and twice more women than men. In 2015 there were more than 5 million people in the United States with AD, and 44 millions world-wide [3]. The cost of caring for AD patients in the U.S. was estimated at $226 billions for 2015 [3].

AD is characterized by the presence of two types of neuropathological hallmarks: extracellular plaques and intracellular neurofibrillary tangles (NFTs). The extracellular plaques consist primarily of amyloid β-peptide (Aβ) deposits. The NFTs are intraneural aggregation of hyperphosphorylated tau proteins. Reactive oxygen species (ROS) appears to be one of the early events in the progression of the disease [4]. Amyloid precursor protein (APP) on neurons membrane constitutively shed Aβ peptides [5]. High levels of ROS promote abnormal deposition of Aβ [4, 6]. Tau protein in the central nervous system (CNS) is predominantly expressed in neurons; its main role is to promote microtubules assembly and stability. Glycogen synthase kinase-type 3 (GSK-3) is activated by the abnormally produced Aβ, and it mediates the hyperphosphorylation of tau proteins [4, 6–9].

The hyperphosphorylated tau proteins cause microtubule depolymerization and destruction, as they aggregate to form neurofibrillary tangles. This results in neuronal death and release of the NFTs to the extracellular environment [4, 10].

The non-neuronal cells in the brain consist of cells that support neurons directly, mostly astrocytes, and immune cells. Microglia are the resident macrophages in the brain. They constitute the main active immune cells in the brain. They are activated by soluble Aβ oligomers which build up from the Aβ deposits [11, 12].
Astrocytes are in close proximity to neurons. They support neuronal cross-talk, and mediate the transport of nutrients from the blood to neurons. Astrocytes are activated primarily by TNF-α, but also by Aβ [10, 13–16]. Activated astrocytes produce Aβ, but at a smaller rate than neurons [16]. Activated astrocytes also produce MCP-1, which attracts monocytes from the blood into the plaques [17–19]. The monocytes differentiate into proinflammatory macrophages, M1, but may then change phenotype into anti-inflammatory M2 macrophage. Activated microglia have two phenotypes: proinflammatory M1 macroglia and anti-inflammatory M2 macroglia [12, 20]. Macrophages have a major role in Aβ clearance [12, 20], but activated microglia are poorly phagocytic for Aβ compared to peripheral macrophages [21]. M1 and M1 macrophages are neurotoxic; they produce proinflammatory cytokines TNF-α, IL-6, IL-12 and IL-1β [20, 22, 23]. M2 macroglia and peripheral M2 macrophages produce anti-inflammatory cytokines IL-10, IL-13, IL-4 and TGF-β [20]. The neuronal stress caused by the proinflammatory cytokines, is resisted by IL-10, IL-13 and IL-4, but nevertheless it contributes to neuronal damage and death [20, 22, 23]. There are currently no drugs that can cure AD, or stop its progression. Many clinical trials of drugs aimed at preventing or clearing the Aβ and tau pathology have failed to demonstrate efficacy [24–27]. Currently the only treatment of AD is by medications that are used to treat the symptoms of the disease.

The role of TGF-β is somewhat controversial [28]. On one hand, TGF-β provides protection against neuroninflammation and neurondegeneration [29–34], but on the other hand, TGF-β-induced TIAF1 interacts with amyloid fibrils to favorably support plaque formation [28], and blocking TGF-β-smad2/3 in peripheral macrophages mitigates AD pathology [35].

Figure 1 is a schematic of the network associated with the progression of AD. Figure 1a shows the network within a neuron which leads from ROS to NFTs and the destruction of microtubules. Figure 1b shows the network of activated cells, microglia, astrocyte and monocyte-derived macrophages and their effect on neurons and their microenvironment.

In this paper we develop a mathematical model of AD. The model is represented by a system of partial differential equations (PDEs) based on Fig. 1. For simplicity we represent all the proinflammatory cytokines by TNF-α, and all the anti-inflammatory cytokines by IL-10.

We shall use our model to conduct in silico trials with several drugs: TNF-α inhibitor, anti-Aβ drug, MCP-1 inhibitor, and injection of TGF-β. Simulations of the model show that continuous treatment with TNF-α inhibitor yields a slight decrease the death of neurons, and anti-Aβ drug yields a slight decrease in the aggregation of Aβ over 10 years period, while the benefits from injection of TGF-β and MCP-1 inhibitor drugs are negligible. This suggests that clinical trials consider combination therapy with TNF-α and anti-Aβ drugs.

We note that Fig. 1 does not display neurites: the projections of axons and dendrites from the body of neurons. It is known that the aggregations of Aβ mediate rapid disruption of synaptic plasticity and memory [36–39]. Thus the progression of AD in terms of reduction in dendritic complexity and synaptic dysfunction will not be considered in the present paper.

We conclude the Introduction by mentioning earlier mathematical models which deal with some aspects of AD: Aβ polymerization [40], Aβ plaque formation and the role of prions interacting with Aβ [41, 42], linear cross-talk among brain cells and Aβ [43], and the influence of SORLA on AD progression [44, 45].

Methods

Mathematical model

Model’s variables

The mathematical model is based on Fig. 1 and is represented by a system of partial differential equations. Table 1 lists the variables used in the model.

Equations for Aβ

The amyloid-β within neurons, $A_β^i$, are constitutively released from APP at a rate $\lambda_β^i$ and are degraded at a rate $dA_β^i$. Under reactive oxidative stress, R, $A_β^i$ is overproduced. Hence the equation for $A_β^i$ is given by

$$\frac{\partial A_β^i}{\partial t} = \left(\lambda_β^i (1 + R) - dA_β^i \right) \frac{N}{N_0},$$

where N_0 is the reference density of the neuron cells in the brain.

The extracellular amyloid-β peptides satisfy the following equation:

$$\frac{\partial A_β^0}{\partial t} = A_β \left| \frac{\partial N}{\partial t} \right| + \lambda_β \frac{N}{N_0} + \lambda_α \frac{A}{A_0}$$

production

$$- \left(dA_β^0 \frac{\partial}{\partial t} (M_1 + \theta M_2) + dA_β^0 (M_1 + \theta M_2) \right) \frac{A_β^0}{A_β^0 + K_α},$$

clearance

(2)

where $K_α$ is a Michaelis-Menten coefficient. Neurons die at a rate $\frac{\partial N}{\partial t}$, thereby releasing their $A_β^i$. Hence they contribute $A_β^i \left| \frac{\partial N}{\partial t} \right|$ to the growth rate of $A_β^0$, which is the first term on the right-hand side of Eq. (2). The second term on
Fig. 1 Schematic network in AD: (a) Amyloid precursor protein (APP) sheds Amyloid β peptides. ROS promotes abnormal production of Aβ [5, 6], which activates GSK-3 [4, 6, 8]. Activated GSK-3 mediates hyperphosphorylation of tau proteins [4, 6], which results in the formation of NFTs [10] and destruction of microtubules [4, 10], leading to neuron death. (b) Astrocytes are activated by Aβ [10, 16] and TNF-α [14, 15], and they produce MCP-1 [17–19], which attracts macrophages into the tissue [17, 19]. NFT activates microglias [10, 13, 15]. Activated proinflammatory microglias and macrophages produce TNF-α and other proinflammatory cytokines [20, 22, 23], while anti-inflammatory microglias and macrophages produce IL-10 and other anti-inflammatory cytokines [20, 22, 23]. Dead neurons release Aβ and NFTs, and soluble Aβ oligomers activate microglia [11, 12]. Activated astrocytes secrete Aβ [16]. Aβ deposit is reduced through endocytosis by microglia and macrophages [12, 20].

The right-hand side of Eq. (2) represents Aβ constitutively released from APP [5], and the third term accounts for Aβ released by activated astrocytes [16]; A0 is the reference density of the astrocyte cells in the brain. Aβ0 is cleared primarily by peripheral macrophages M1 and M2, but also by activated microglias M1 and M2, so Aβ0M > Aβ0M [21], and M1 M1 are more effective in clearing Aβ0 than M2 and M2 [46, 47] so 0 < θ < 1. APP on live neurons shed Aβ peptides both inside the neurons (as Aβi) and outside the neurons (as Aβo). We assume that most Aβ0 are produced from dead neurons. Hence, in Eq. (2), we neglected the production of Aβ0 by live neurons. We also assumed that ROS increases primarily the Aβ that are within live neurons, and thus neglected the increase of Aβ0 by ROS.

Equation for τ

Tau protein is constitutively produced at some rate λτ0. We assume that when Aβi production exceeds a threshold Aβi0, GSK-3 becomes activated and it mediates
hyperphosphorylation of tau. In steady state, the difference \(A_\beta^1 - A_\beta^0 \) is proportional to \(R \). Hence the equation for tau is given by:

\[
\frac{\partial \tau}{\partial t} = \left(\frac{\lambda_{\tau 0} + \lambda_{\tau R}}{production - degradation} \right) \frac{N}{N_0},
\]

(3)

where \(\lambda_{\tau 0} \) and \(\lambda_{\tau R} \) are Michaelis-Menten coefficients. The first two terms on the right-hand side arise from the death of tau [4, 6–9]. Neuron death is also caused by stress from proinflammatory cytokines which is, however, resisted by anti-inflammatory cytokines [20, 22, 23]. For simplicity we represent all the proinflammatory cytokines by TNF-\(\alpha \) and all the anti-inflammatory cytokines by IL-10. Hence the equation for \(N \) takes the following form:

\[
\frac{\partial N}{\partial t} = -d_{NF} \frac{F_i}{F_i + K_{Fi}} N - d_{NT} \frac{T_\alpha}{T_\alpha + K_{Ta}} \frac{1}{1 + \gamma T_{10}/K_{T_{10}}} N,
\]

(6)

where the death rates of \(N \) caused by \(F_i \) and \(T_\alpha \) are assumed to depend on their saturation levels.

Equation for astrocytes

Astrocytes are activated primarily by extracellular TNF-\(\alpha \) [14, 15], but also by \(A_\beta \) [10, 16], so that

\[
\frac{\partial A}{\partial t} = \lambda_{A_{\beta 0}} A_\beta + \lambda_{A_{\tau \alpha}} T_\alpha - d_{AA} A.
\]

(7)

Equation for dead neurons

The equation for dead neurons, \(N_d \), is given by

\[
\frac{\partial N_d}{\partial t} = d_{NF} \frac{F_i}{F_i + K_{Fi}} N + d_{NT} \frac{T_\alpha}{T_\alpha + K_{Ta}} \frac{1}{1 + \gamma T_{10}/K_{T_{10}}} N
\]

\[
-d_{N_d M}(M_1 + M_2) \frac{N_d}{N_d + K_{N_d}} - d_{N_d M}(M_1 + M_2) \frac{N_d}{N_d + K_{N_d}},
\]

(8)

where \(K_{N_d} \) is a Michaelis-Menten coefficient. The first two terms on the right-hand side arise from the death of \(N \) cells. The last two terms account for the clearance of \(N_d \) by microglias and peripheral macrophages [48].

Equation for A\(\beta \)O

The A\(\beta \)O are soluble A\(\beta \) oligomers and they can diffuse throughout the brain tissue [49, 50]. Their density \(A_\beta \) satisfies the equation:

\[
\frac{\partial A_\beta}{\partial t} - D_{A_\beta} \Delta A_\beta = \lambda_{A_\beta 0} A_\beta + d_{A_\beta 0} A_\beta - d_{A_\beta} A_\beta.
\]

(9)
where λ_{AO} is the rate by which the A_O are formed from the extracellular amyloid β peptides, and $D_{AO} \Delta A_O$ accounts for the diffusion of A_O.

Equation for HMGB-1

In general, when cell death occurs through necrosis, dying cells release HMGB-1 [51]. In AD, HMGB-1 is produced by dying neurons [52–54]. Hence,

$$\frac{\partial H}{\partial t} - D_H \Delta H = \lambda_{H} N_d - d_{H} H \ .$$ \hspace{1cm} (10)

Equations for activated microglias

Activated microglia have two phenotypes: proinflammatory M_1 and anti-inflammatory M_2. They satisfy the following equations:

$$\frac{\partial M_1}{\partial t} + \nabla \cdot (M_1 \nabla H) = M_1^{MF} \left[\lambda_{MF} F_0 + \lambda_{MA} A_0 \right] - \lambda_{M_1} M_1 \frac{T_0}{T_0 + K_{T_0}} M_1 - d_{M_1} M_1 ,$$ \hspace{1cm} (11)

$$\frac{\partial M_2}{\partial t} + \nabla \cdot (M_2 \nabla H) = M_2^{MF} \left[\lambda_{MF} F_0 + \lambda_{MA} A_0 \right] \frac{T_0}{T_0 + K_{T_0}} M_2 - \lambda_{M_2} M_2 \frac{T_0}{T_0 + K_{T_0}} M_2 + d_{M_2} M_2 ,$$ \hspace{1cm} (12)

where $\varepsilon_1 = \frac{T_0}{T_0 + K_{T_0}}$ and $\varepsilon_2 = \frac{I_{t_0}}{I_{t_0} + K_{I_{t_0}}}$.

Microglia can travel in the brain [55]. Activated microglia are chemotacted to dead neurons [10, 13, 15], more precisely, to the cytokines HMGB-1 produced by N_d, and this is represented by the second term of the left-hand side of Eqs. (11), (12). Microglia are activated by extracellular NFTs [10, 13, 15], and by soluble oligomers A_O [11, 12]. They become of M_1 phenotype under proinflammatory signals from TNF-α, and of M_2 phenotype under anti-inflammatory signals from IL-10. These facts are expressed by the first term on the right-hand sides of Eqs. (11), (12); β_{ε_1} is the ratio by which the activated microglia become M_1 macrophages, and β_{ε_2} is the ratio by which activated microglia become M_2 macrophages. The parameter β reflects the ratio of proinflammatory/anti-inflammatory environment, as determined by the relative “strength” of T_0 vs. I_{t_0}.

In addition, there is a transition $M_1 \rightarrow M_2$ under the TGF-β signaling [32], which is accounted by the second term on the right-hand side of these equations.

Equations for macrophages

Peripheral macrophages \hat{M} are differentiated from monocytes which migrate through the blood vessels. They satisfy a flux condition

$$\frac{\partial \hat{M}}{\partial t} + \hat{a}(P)(\hat{M} - M_0) = 0$$

on the boundary of the blood vessels, where n is the outward normal, M_0 is the density of the monocytes in the brain capillaries, and $\hat{a}(P)$ is a function which depends on the concentration of MCP-1. By averaging these fluxes from blood vessels, we can represent (as in [56]) the immigration of \hat{M} macrophages into the brain tissue by a term $\hat{a}(P)(M_0 - \hat{M})$. We assume that the incoming macrophages divide into \hat{M}_1 and \hat{M}_2 phenotype depending on the relative concentrations of TNF-α and IL-10 [47]. Macrophages M_1 can also change phenotype to M_2 macrophages under signaling by TGF-β. We finally note that because of the blood-brain barrier (BBB) we do not include diffusion of peripheral macrophages, but we do include chemotaxis by amyloid-β plaques or, more specifically, by the soluble A_O [17–19]. Hence peripheral macrophages satisfy the following equations:

$$\frac{\partial \hat{M}_1}{\partial t} + \hat{v} \cdot (\hat{M}_1 \nabla A_O) = \alpha(P)(M_0 - \hat{M}) \frac{T_0}{T_0 + K_{T_0}} \hat{M}_1 - d_{\hat{M}_1} \hat{M}_1 ,$$ \hspace{1cm} (13)

$$\frac{\partial \hat{M}_2}{\partial t} + \hat{v} \cdot (\hat{M}_2 \nabla A_O) = \alpha(P)(M_0 - \hat{M}) \frac{T_0}{T_0 + K_{T_0}} \hat{M}_2 - d_{\hat{M}_2} \hat{M}_2 ,$$ \hspace{1cm} (14)

where $\hat{M} = \hat{M}_1 + \hat{M}_2$ and $\alpha(P) = \frac{P}{PT + K_P}$ [56].

Equations for TGF-β, TNF-α, MCP-1, and IL-10

T_β and IL-10 are produced by M_2 microglia and \hat{M}_2 macrophages. TNF-α is produced by proinflammatory macrophages M_1 and \hat{M}_1. Hence the equations for T_β, T_α and I_{t_0} have the following form:

$$\frac{\partial T_\beta}{\partial t} - D_{T_\beta} \Delta T_\beta = \lambda_{T_\beta} M_2 + \lambda_{T_\beta} \hat{M}_2 - d_{T_\beta} T_\beta ,$$ \hspace{1cm} (15)

$$\frac{\partial I_{t_0}}{\partial t} - D_{I_{t_0}} \Delta I_{t_0} = \lambda_{I_{t_0}} M_2 + \lambda_{I_{t_0}} \hat{M}_2 - d_{I_{t_0}} I_{t_0} ,$$ \hspace{1cm} (16)

$$\frac{\partial T_\alpha}{\partial t} - D_{T_\alpha} \Delta T_\alpha = \lambda_{T_\alpha} M_1 + \lambda_{T_\alpha} \hat{M}_1 - d_{T_\alpha} T_\alpha .$$ \hspace{1cm} (17)
MCP-1 is produced by activated astrocytes [17–19] and by microglias [12], which are assumed to be of \(M_2\) phenotype. Hence

\[
\frac{\partial P}{\partial t} - D_P \Delta P = \lambda_{PA} A + \lambda_{PM_2} M_2 - d_P P. \tag{18}
\]

The estimates of parameters in Eqs. (1)–(18) are given in “Appendix”.

Results and discussions

We simulate the model (1)-(18) in a rectangular domain \(\Omega = \{(x,y), 0 \leq x \leq 1, 0 \leq y \leq 1\}\). We assume that \(A_{10}, H, T, I_{10}, T\) and \(P\) satisfy periodic boundary conditions.

\[
A_{10}, H, T, I_{10}, T\ and P satisfy periodic boundary conditions. \tag{19}
\]

We take initial values, for each variable \(X\), to be below (or above) the expected steady state for \(X\), if \(X\) is expected to grow (or decrease) with the progression of the disease. A specific choice is given below, but the simulations do not change, after a short time, with other choices:

\[
\begin{align*}
A^*_p = 10^{-8} \text{ g/ml}, & \quad A^*_p = 10^{-6} \text{ g/ml}, \quad \tau = 1.37 \times 10^{-10} \text{ g/ml}, \quad f^* = 3.36 \times 10^{-10} \text{ g/ml}, \\
f^* = 3.36 \times 10^{-11} \text{ g/ml}, & \quad N = 0.14 \text{ g/ml}, \quad A = 0.14 \text{ g/ml}, \quad M_1 = M_2 = 0.02 \text{ g/ml}, \\
\hat{M}_1 = \hat{M}_2 = 0 & \quad g/ml, \quad H = 1.3 \times 10^{-11} \text{ g/ml}, \quad T = 10^{-6} \text{ g/ml}, \\
T = 2 \times 10^{-5} \text{ g/ml}, & \quad I_{10} = 10^{-5} \text{ g/ml}, \quad P = 5 \times 10^{-9} \text{ g/ml}.
\end{align*}
\tag{20}
\]

We also prescribe the value of ROS in Eqs. (1), (3) by

\[
R = R(t) = \begin{cases}
R_0 \frac{t}{100} & 0 \leq t \leq 100 \\
R_0 & t > 100
\end{cases}. \tag{21}
\]

Figure 2 shows the average density of all the 18 variables of the model over a period of 10 years. We first observe that, for all the species that tend to a steady state in Fig. 2, the steady states are approximately the same as those that we assumed in estimating some of the model parameters. Thus the steady state values of \(\tau, F_i, H, M_1, M_2, \hat{M}_1, \hat{M}_2, T, T\), and \(I_{10}\) are approximately equal to the values assumed in “Appendix”. We conclude that estimates of the parameters which were based on steady state assumptions on macrophages, microglia and the half-saturation parameters are consistent with the simulation results.

We next observe that neurons are dying at approximately the rate of 5% a year, which was one of our important assumptions that was based on clinical data. We also note that, as the disease progresses, the plaque of \(A\beta\) peptides, \(A^*\), and the soluble \(A\beta\) oligomers, \(A_{10}\), are increasing; \(A^*\) reaches the level of \(7 \times 10^{-6} \text{ g/ml}\), in agreement with clinical data [57], and the assumed average of \(A_{10}\) concentration, \(K_{A_{10}}\), is indeed in good approximation to the average of the profile of \(A_{10}\) in Fig. 2. The assumed average of the \(F_0\) concentration, \(K_{F_0}\), is also in

Fig. 2 Average concentration of cytokines and average density of cells. All the parameters are as in Tables 2 and 3.
good agreement with the average of the profile of F_t in Fig. 2.

We note that N_d nearly stabilizes over time, at the level assumed in “Appendix,” which means that, over time, macrophages and microglia clear debris of dead cells at nearly the same rate at which neurons are dying. Hence $\frac{\partial N_d}{\partial t}$ becomes very small over time, resulting in significant decline in extracellular NFT, while intracellular NFTs (F_t) maintain a comparatively high level.

We finally note that the density of activated astrocytes is slightly increasing in agreement with a mouse model [58] which reports that astrocytes become increasingly prominent with the progression of the disease. The increase in A causes P also to increase, and the average of P is approximately equal to our estimate of K_P in S.I.

Anti-Alzheimer drugs

Until now, all clinical trials aimed to develop drugs that can cure AD have failed. There are currently no drugs that can prevent, stop or even delay the progression of Alzheimer’s disease, and there are many ongoing clinical trials. According to the 2016 Alzheimer’s Disease Facts and Figures, and the National Institute of Aging, if no cure is found, by 2050 the number of Alzheimer’s patients in the U.S. will reach 15 millions and the cost of caring for them will exceed $1 trillion annually.

Avenues for AD therapies include prevention of build up of plaque (anti-amyloid drugs), preventing tau aggregation, and reducing inflammation. Clinical trials are concerned with both safety and efficacy. Here we shall use our mathematical model to conduct *in silico* trials with several drugs, addressing only the question of efficacy.

Treatment for AD causes changes in the densities of cells and concentrations of cytokines. In order to determine the efficacy of a drug, we should observe (i) to what extend it decreases the death rate of neuronal and astrocyte death of neurons will improve cognition of patients; and (ii) to what extent it decreases A_β^o, since A_β aggregation mediates rapid dysfunction of synaptic plasticity and dendritic channels thereby causing memory loss [36–39].

TNF-α inhibitor

Since TNF-α is implicated in generating neurotoxicity which leads to death of neurons, TNF-α inhibitor (etanercept) has been considered as a drug for Alzheimer’s patients [59]. In 2015 clinical trials phase 2 [60] the drug has shown some favorable trends but with “no statistically significant changes in cognition.” Since there were no serious adverse events, it was suggested that a larger, broader group needs to be tested before recommending etanercept for use for general Alzheimer patients.

We shall apply our model to determine how this TNF-α inhibitor affects AD patients. We use the following procedure:

1. Run the model for 300 days in order to ensure that AD has been diagnosed in patients;
2. Apply continuous treatment by the drug from day 300 until the end of 10 years.

During treatment, the effect of the drug is to replace Eq. (17) for TNF-α by the equation

$$\frac{\partial T_a}{\partial t} - DT_a \Delta T_a = \lambda_{T_\alpha M_1} M_1 + \lambda_{T_\alpha M_1} M_1 - d_T T_a - fT_a, \tag{22}$$

where f is proportional to the amount of etanercept. We note that since etanercept is a soluble TNF receptor fusion protein, it stabilizes TNF-α [61] and thus TNF-α is diminished at rate fT_a. The red profiles in Fig. 3 show the result of the treatment with $f = 10d_T$, compared to no treatment.

TGF-β injection

TGF-β is an anti-inflammatory cytokine which induces phenotype change from proinflammatory to anti-inflammatory macrophages. It was suggested that TGF-β mitigates AD pathology [29–34].

We note that the effect of T_β injection is to decrease M_1 and M_1 (see Eqs. (11), (13)), which results in a decrease in T_a (by Eq. (17)) and hence in a decrease in neuronal death rate. To model the treatment by injection of TGF-β we replace Eq. (15) for T_β by the equation

$$\frac{\partial T_\beta}{\partial t} = - DT_\beta \Delta T_\beta = \lambda_{T_\beta M_1} M_1 + \lambda_{T_\beta M_1} M_1 - d_T T_\beta + g, \tag{23}$$

where g is proportional to the amount of injected TGF-β. In steady state, T_β maintains the level of K_T, while its degradation rate is d_T. Hence the source of T_β in steady state is $d_T T_\beta$. We take g to be 10 times this source, that is $g = 10d_T K_T$. We then follow the same treatment procedure for TNF-α inhibitor. The light-blue profiles in Fig. 3 show the results of the treatment, compared to no treatment.

Anti-Αβ drugs

There are several drugs in Phase 3 clinical trials that aim to reduce the effect of A_β aggregation [62]. Among them is aducanumab, which is thought to be microglia-mediated phagocytosis and clearance of A_β [63, 64]. In our model, this drug will cause a decrease in the concentration of soluble A_β^o, by replacing Eq. (2) by the equation

$$\frac{\partial A_\beta^o}{\partial t} = A_\beta^o \left[\frac{\partial N}{\partial t} + \lambda A - \frac{A_\beta^o}{A} \right] + \lambda N A_\beta^o + \lambda A_\beta^o A - (d_{A_\beta^o A_\beta}(M_1 + \theta M_2) + d_{A_\beta^o A_\beta}(M_1 + \theta M_2)(1 + h)) \frac{A_\beta^o}{A_\beta^o + K_{A_\beta}}, \tag{24}$$
where h is proportional to the amount of the dosing level; we take $h = 10$.

Figure 4 shows the efficacy of several drugs in terms of N and A^β_β. The lowest curve in Fig. 4a, and the highest curve in Fig. 4b, correspond to the case where the curves of no treatment and several other drugs coincide; these drugs have negligible efficacy. Following the same treatment procedure as in the case of TNF-\(\alpha\) inhibitor, Fig. 4 shows no efficacy of aducanumab in terms of N but significant efficacy in terms of A^β_β in comparison to no treatment and to treatments by TNF-\(\alpha\) inhibitor and TGF-\(\beta\) injection.

MCP-1 inhibitor

Bindarit was shown to inhibit CCL2 (MCP-1) in brain tissue [65]. Hence it decreases \dot{M}_1 (by Eq. (13)), which results in a decrease in T_α (by Eq. (17)) and thus also in a decrease in neuronal death rate. Bindarit was also reported to inhibit A\(\beta\)-induced neuronal death in vitro [66]. Hence it has a therapeutic potential in the treatment of neuroninflammatory/neurodegenerative diseases like AD [66]. We can conduct in silico trial with bindarit by revising Eq. (18) for P, replacing it with the equation

$$\frac{\partial P}{\partial t} - D_P \Delta P = \lambda_{PA} A + \lambda_{PM} M_2 - d_P P(1 + k) \quad (25)$$

with $k = 10$ Following the treatment procedure as in the case of of TNF-\(\alpha\) inhibitor, Fig. 4 shows no efficacy of the drug in terms of N and A^β_β in comparison to no treatment.

Methylthiomnium chloride (MTC) is the first identified tau aggregation inhibitor currently in Phase 3 trial [27]. In our model the drug will cause a decrease in the production of tau proteins and in their ability to turn into NFT. We model this by multiplying the production terms $\lambda_{\tau 0}$ and λ_{τ} by $1/10$. Following the procedure as in case of TNF-\(\alpha\) inhibitor, we found that the drug has almost negligible efficacy (not shown here).

Combination therapy

The results of Fig. 4 suggest that a combination therapy with etanercept (TNF-\(\alpha\) inhibitor) and aducanumab (anti-A\(\beta\) drug), under the same '10-fold' amount, could both slow the death rate of neurons and decrease the growth of A\(\beta\) in a significant way. Figure 5 shows the dynamics of N and A^β_β under such combination of drugs with different proportions of fold numbers: $(\text{etanercept, aducanumab})=(0,0)$ (no drugs), $(10,5)$, $(20,10)$, $(30,15)$, $(40,20)$ and $(50,25)$. The reduction in the death of neurons, after 10 years, compared to the case of no drugs, is 3.8, 5.2, 6.4, 7.9 and 9.2%, respectively, and the respective reduction in the concentration of A\(\beta\) is 21, 32.2, 43.6, 53.9 and 64.1%.

We next consider combined therapy for any value of etanercept (f) and aducanumab (h). We define the N-efficacy of (f, h), $E_N(f, h)$, to be

$$E_N(f, h) = \frac{N(f, h) - N(0, 0)}{N(0, 0)},$$
Fig. 4 Treatment with etanercept (decreasing T_α degradation rate by 10 fold), TGF-β injection (increasing its constitutive source by 10 fold), aducanumab (increasing the clearance rate of A_β^0 by 10 fold), and bindarit (increasing MCP-1 natural degradation by 10 fold). In a, the profiles of no treatment, bindarit and aducanumab coincide. In b, no treatment and bindarit coincide. The lowest curve in Fig. 4a, and the highest curve in Fig. 4b, correspond to the case where the curves of no treatment and several other drugs coincide; these drugs have negligible efficacy.

where the density N is computed at the end of 10 years. Similarly we define the anti-A_β^0 efficacy by

$$E_{A_\beta}(f, h) = \frac{A_\beta^0(0, 0) - A_\beta^0(f, h)}{A_\beta^0(0, 0)}$$

where the A_β^0 concentration is computed also at the end of 10 years.

Figure 6 is an efficacy map of the combined therapy with f in range of (0,50) and h in the range of (0,25). For any pair (f,h) the color columns in Fig. 6a and 6b show the efficacy for N and anti-A_β^0.

We see that the efficacy of the combined therapy is very small if $f < 20$ or $h < 10$, and it increases sharply with f and h in the region where $40 < f < 50, 20 < h < 25$.

From Fig. 6 we see that anti-A_β antibody decreases the external concentration of A_β (A_β^e) with efficacy less than 0.5 ($h=20, f=0$). Higher efficacy requires T_α inhibitor ($h=20, f=20$) which will protect neuron from death and prevent astrocytes activation, and thereby reduce A_β^0. This result can be explained by our assumptions in Eq. (2) where we neglected the production of A_β^0 by live neurons and the increase of A_β^0 by ROS.

The PK/PD literature employs the concept of combination index (ϕ) in order to assess the level of synergy between two drugs [67]. This concept was used in simulations of several diseases (e.g. cancer and microbial diseases) in order to determine optimal dosage regimens [67–69]. Since in our AD model it is not clear how to define ϕ, and no data are available to evaluate ϕ, we shall, instead, introduce the following concept, for example in the case of etanercept and aducanumab:

We say that these two drugs at concentrations f and g have positive synergy with respect to N if $E_N(f, g) > E_N(2f, 0)$ and $E_N(f, g) > E_N(0, 2g)$. We accordingly define the synergy index $\sigma_N = \sigma_N(f, g)$ by

$$\sigma_N = E_N(f, g) / \max\{E_N(2f, 0), E_N(0, 2g)\}.$$
Thus, $\sigma_N > 1$ means positive synergy and $\sigma_N < 1$ means negative synergy. The above definition depends on the doses f, g. If σ_N is large then the combination therapy at total amount $f + g$ is much more effective than a single therapy, at the total same amount, in reducing the death rate of N. If $\sigma_N < 1$ then a single drug is preferable. Similarly one can define the synergy index σ_{A^β} with respect to A^β. Figure 7 shows the synergy index σ_N for (f, g) in the range $0 < f < 50$ and $0 < g < 25$. We see that there is a positive synergy between etanercept (f) and aducanumab (h). Furthermore, given a total amount A of the combined drugs, so that $f + h = A$, the synergy increases as f/g increases. This suggests that in an optimal regimen f should be significantly larger than h, provided negative side-effects are discounted.

The synergy map for σ_{A^β} is similar to that of σ_N (not shown here), and so the synergy increases when f/g is increased.

From Fig. 5 we see that although the amyloid level are controlled, cell death levels do not decrease significantly. This may suggest that other combinations of drugs may target complimentary pathways more efficiently. For example, it was suggested in [70] that Amyloid β and tau combine to induce neuron into cell cycle, which leads to cell death; accordingly, one could explore using anti-A β and anti tau aggregation in combination therapy.

Sensitivity analysis

Sensitivity analysis on the model parameters can support the robustness of the simulation results. But it can also suggest what drugs do not work and what drugs are more likely to work. We conducted sensitivity analysis on parameters associated with production and removal rates of A^β, death rates of N, and production rates of TNF-α, TGF-β and MCP-1:

$$
\lambda_{N, A, d_{NF}, d_{NT}, (\lambda_{T^\alpha M}, \lambda_{T^\beta M})}, \gamma, (\lambda_{T^\beta M}, \lambda_{T^\alpha M}) \times \delta, (d_{A^\beta M}, (\lambda_{PA}, \lambda_{PM}) \xi, d_{A^\beta M}) \epsilon,
$$

where we varied $\lambda_{N, A, d_{NF}, d_{NT}}$ between $1/2$ and twice their value in Tables 2 and 3, and varied $\gamma, \delta, \xi, \epsilon$ between $1/2$ and 2.

Following the sensitivity analysis method described in [71], we performed Latin hypercube sampling and generated 2000 samples to calculate the partial rank correlation coefficients (PRCC) and p-values with respect to the density of N and with respect to the concentration of A^β at
time $t=10$ years. The results are shown in Fig. 8. All the p-values were less than 0.01. A positive PRCC (i.e., positive correlation) for N means that an increase in the parameter will increase the number of live neurons. A negative PRCC for N means that an increase in the parameter will decrease the number of live neurons. Similarly, a positive (negative) PRCC for A_β^L means that an increase in the parameter will increase (decrease) the concentration of A_β^L. Thus, for example, we see that d_{NF} and d_{NT} are negatively correlated to N and positively correlated to A_β^L. This is not surprising since, with an increase in d_{NF} and d_{NT}, more neurons die (so N decreases) and as a result more A_β emerge from the increasingly dying neurons, thus raising the concentration of A_β^L. The fact that the correlation coefficients of d_{NT} are significantly larger than the correlation coefficients of d_{NF}, suggests that a drug which blocks TNF-α would be more effective than a drug which clears the F_i. The other PRCC values can also be seen to be consistent with the model dynamics.

We observe that ϵ is negatively correlated to A_β^L. Indeed, if ϵ is increased, more A_β^L are cleared out (by Eq. (2)). To see how this affects N we note that if A_β^L is decreased then A_β decreases (by Eq. (9)) and correspondingly M_1 decreases (by Eq. (11)), and then T_{α} decreases (by

Table 2 Parameters’ description and value

Parameter	Description	Value
D_{AO}	Diffusion coefficient of AβO	4.32×10^{-2} cm2 day$^{-1}$ estimated
D_H	Diffusion coefficient of HMGB-1	8.11×10^{-2} cm2 day$^{-1}$ estimated
D_{Ta}	Diffusion coefficient for TNF-α	6.55×10^{-2} cm2 day$^{-1}$ estimated
$D_{T\beta}$	Diffusion coefficient of TGF-β	6.55×10^{-2} cm2 day$^{-1}$ estimated
D_{10}	Diffusion coefficient of IL-10	6.04×10^{-2} cm2 day$^{-1}$ estimated
D_{o}	Diffusion coefficient of MCP-1	1.2×10^{-1} cm2 day$^{-1}$ estimated
λ_0	Production rate of A_β^L	9.51×10^{-6} g/ml/day estimated
λ_{10}	Production rate of A_β^L by neuron	8×10^{-9} g/ml/day estimated
λ_A	Production rate of A_β^L by astrocytes	8×10^{-10} g/ml/day estimated
λ_{10}	Production rate of tau proteins in health	8.1×10^{-11} g/ml/day estimated
λ_T	Production rate of tau proteins by ROS	1.35×10^{-11} g/ml estimated
$\lambda_{T\alpha}$	Production rate of NFT by tau	1.66×10^{-3}/day estimated
λ_{AX}	Production/activity rate of astrocytes by TNF-α	1.54/day estimated
$\lambda_{AX'}$	Production/activity rate of astrocytes by A_β^L	1.793/day estimated
λ_{A10}	Production rate of AβO	5×10^{-2}/day estimated
λ_{H10}	Production rate of HMGB-1	3×10^{-3}/day estimated
$\lambda_{T\alpha}$	Production/activity rate of microglia by NFT	2×10^{-2}/day estimated
λ_{MM}	Production/activity rate of microglia by astrocytes	2.3×10^{-3}/day estimated
λ_{M1}	Rate of $M_1 \rightarrow M_2$	6×10^{-3}/day estimated
λ_{M1}	Rate of $M_2 \rightarrow M_1$	6×10^{-4}/day estimated
λ_{T1}	Production rate of TGF-β by M	1.5×10^{-2} day$^{-1}$ [56, 99]
λ_{M1}	Production rate of TGF-β by M	1.5×10^{-2} day$^{-1}$ [56, 99]
λ_{M1}	Production rate of TNF-α by M_1	3×10^{-2} day$^{-1}$ estimated
λ_{M1}	Production rate of TNF-α by M_1	3×10^{-2} day$^{-1}$ estimated
λ_{M1}	Production rate of IL-10 by M_2	6.67×10^{-3} day$^{-1}$ [47, 90]
λ_{M1}	Production rate of IL-10 by M_2	6.67×10^{-3} day$^{-1}$ [47, 90]
λ_{M1}	Production rate of MCP-1 by astrocytes	6.6×10^{-8} day$^{-1}$ estimated
λ_{M1}	Production rate of MCP-1 by astrocytes	1.32×10^{-7} day$^{-1}$ estimated
θ	M_2/M_1 effectivity in clearance of A_β^L	0.9 estimated
α	Flux rate of macrophages	5 estimated
β	Proinflammatory/anti-inflammatory ratio	10 estimated
γ	I_{10} inhibition ratio	1 estimated
Parameter	Description	Value
-----------	-------------	-------
d_{Ai}	Degradation rate of A_i	9.51/day [82]
d_{A_O}	Degradation rate of A_O	9.51/day [82]
$d_{A_O}^M$	Clearance rate of A_O by microglia	2×10^{-3}/day estimated
$d_{A_O}^M$	Clearance rate of A_O by macrophages	10^{-2}/day estimated
d_t	Degradation rate of tau proteins	0.277/day [88]
d_i	Degradation rate of intracellular NFT	2.77×10^{-3}/day estimated
d_{fO}	Death rate of neurons	2.77×10^{-4}/day estimated
d_{fN}	Death rate of neurons by NFTs	3.4×10^{-4}/day estimated
d_{fNT}	Death rate of neurons by TNF-α	1.7×10^{-4}/day estimated
d_{fN}^M	Clearance rate of dead neurons by M	0.06/day estimated
d_{fN}^M	Clearance rate of dead neurons by \hat{M}	0.02/day estimated
d_d	Death rate of astrocytes	1.2×10^{-3} day$^{-1}$ estimated
d_{d1}	Death rate of M_1 microglia	0.015 day$^{-1}$ [47,74]
d_{d2}	Death rate of M_2 microglia	0.015 day$^{-1}$ [47,74]
d_{d3}	Death rate of M_3 macrophages	0.015 day$^{-1}$ [47,74]
d_{dO}	Death rate of A_O	0.051/day estimated
d_f	Degradation rate of HMG-B-1	58.71/day [95]
d_{fA}	Degradation rate of TNF-α	55.45 day$^{-1}$ [47,74]
d_{fT}	Degradation rate of TGF-β	3.33×10^2 day$^{-1}$ [56,99]
d_{fT}	Degradation rate of IL-10	16.64 day$^{-1}$ [47]
d_{fo}	Degradation rate of MCP-1	1.73 day$^{-1}$ [47,74]
R_0	Initial inflammation by ROS	6 estimated
M_0	Monocytes concentration in blood	5×10^{-2} estimated
N_0	Reference density of neuron	0.14 g/cm3 estimated
M_0^O	Source of microglia	0.047 g/cm3 estimated
A_0	Reference density of astrocytes	0.14 g/cm3 estimated
K_{A_O}	Michaelis-Menten coefficient for A_O	7×10^{-3} g/cm3 estimated
K_{A_O}	Michaelis-Menten coefficient for N_d	10^{-3} g/ml estimated
K_{IL}	Half-saturation of IL-10	2.5×10^{-6} g/ml estimated
K_{T}	Half-saturation of TGF-β	2.5×10^{-7} g/ml [90]
K_{M}	Half-saturation of microglia	0.047 g/ml estimated
K_{O}	Half-saturation of macrophages	0.047 g/ml estimated
K_{M1}	Half-saturation of M_1 microglia	0.03 g/ml estimated
K_{M2}	Half-saturation of M_2 microglia	0.017 g/ml estimated
K_{M3}	Half-saturation of M_3 macrophages	0.04 g/ml estimated
K_{M4}	Half-saturation of \hat{M}_2 macrophages	0.007 g/ml estimated
K_{T}	Half-saturation of intracellular NFTs	3.36×10^{-10} g/ml [89]
K_{T}	Average of extracellular NFTs	2.58×10^{-11} g/ml estimated
K_{M}	Average of of A_M	1×10^{-7} g/ml estimated
K_{T}	Half-saturation of MCP-1	6×10^{-9} g/ml estimated
K_{T}	Half-saturation of TNF-α	4×10^{-5} g/ml estimated
Eq. (17)); so we may expect N to increase, but perhaps not much, since we have ignored other indirect interactions from the model. From Fig. 8 we see that \(\epsilon \) is indeed positively correlated to N but the correlation is small. The correlation levels of \(\epsilon \) with respect to N and \(A_\beta^0 \) suggest that an anti-A\(\beta \) drug, like aducanumab, will have some benefits in reducing Amyloid \(\beta \), but little benefit in reducing death of neurons. This is also seen from Fig. 4.

Conclusion

AD is an irreversible progressive neuroninflammatory/neurodegenerative disease that destroys memory and cognitive skills. Currently there is no drug that can cure, stop, or even slow the progression of the disease. Life expectancy at diagnosis is 10 years, and, at death, 50% of the brain neurons have already died. AD patients show abnormal aggregation of beta-amyloids (\(A_\beta^0 \)) and neurofibrillary tangles (NFTs) of hyperphosphorylated tau proteins. NFTs destroy microtubules in neurons, which results in neurons death. Soluble \(A_\beta^0 \) oligomers activate microglias (the resident macrophages in the brain), thereby initiating inflammatory response. Additionally, peripheral macrophages, responding to cue from MCP-1 produced by astrocytes, are attracted to the brain and increase the inflammatory environment, which is harmful to neurons.

Figure 1 is a schematic network of AD: it includes neurons, astrocytes, microglia, peripheral macrophages, \(\beta \)-amyloids, tau proteins, and several cytokines involved in the cross-talk among the cells. In the present paper, we developed a mathematical model of AD based on Fig. 1. The model can be used to explore the efficacy of drugs that may slow the progress of the disease. We conducted several in silico trials with several drugs: etanercept (TNF-\(\alpha \) inhibitor), injection of TGF-\(\beta \), aducanumab (Anti-A\(\beta \) drug) and bindarit (MCP-1 inhibitor). We found that at ‘10-fold’ level, etanercept has the largest efficacy in slowing death of neurons, while aducanumab has the largest efficacy in reducing the aggregation of \(A_\beta^0 \), although these efficacies were quite small. Based on these findings we propose that clinical trials should use a combination therapy with etanercept (f) and aducanumab (h). In Fig. 6 we developed efficacy maps for any combination therapy with \(0 < f < 50 \) and \(0 < h < 25 \), and we used this map to derive, in Fig. 7, a synergy map for \(\sigma_N = \sigma_N(f,g) \). Figure 7 shows that the synergy between f and g increases if \(f/g \) increases, while \(f + g \) is kept fixed. This suggests that in an optimal regimen with fixed total amount, A, of the drugs, f should be significantly larger than h. We did not consider here, however, adverse side effects that are likely to limit the amount of drugs that can be given to a patient. When these limits become better known, one could then proceed to determine the optimal combination of etanercept and aducanumab for slowing the progression of AD.

The mathematical model developed in this paper depends on some assumptions regarding the mechanism of interactions involving amyloid, tau and neurofilaments in AD. There are currently not enough data to sort out competing assumptions. Hence the conclusion of the paper regarding combination therapy should be taken with caution.

Our mathematical model focused on the progression of AD in terms of neurons death and amyloid \(\beta \) aggregation. But dendritic pathologies also play an important role in the disease. Dendritic abnormalities in AD include dystrophic neuritides, reduction in dendritic complexity and loss in dendritic spines [36, 37]. In particular, \(A_\beta \) plaques affect dendritic channels, and NFT mediates synaptic dysfunction [36–39]. Recent studies also begin to address white matter degeneracy that could help identify high risk of AD [72].

Appendix

Parameter estimation

In the sequel, in an expression of the form \(\frac{X}{X + K_X} \) in the context of activation, the half-saturation parameter \(K_X \) is taken to be the steady state of the species X provided X tends to a steady state. Hence in a steady state equation this factor is equal to \(\frac{1}{2} \). If X does not tend to a steady state then the parameter \(K_X \) will be taken to be the estimated average of X over a period of 10 years, the average survival time of AD patients [73]. In an expression of the form \(\frac{1}{1 + \gamma X/K_X} \) (where \(\gamma = \gamma(X) \)) in the context of inhibition, \(K_X \) is again the half-saturation of X, so that in steady state the inhibition is \(1/(1 + \gamma) \). If cells Y phagocytose species X, then the clearing rate is proportional to \(Y - \frac{X}{X + K_X} \)
where the Michaelis-Menten constant K_X depends only on the ‘eating capacity’ of Y, so K_X has no relation to the half-saturation of X.

Diffusion coefficients

The diffusion coefficient of proteins (Y) are proportional to $1/M_Y^{1/3}$, where M_Y is the molecular weight [74]. Accordingly, we have the following relation [75]:

$$D_Y = \frac{M_Y^{1/3}}{M_Y^{1/3}} D_Y,$$

where M_Y and D_Y are the molecular weight and the diffusion coefficient of VEGF. Since $D_Y = 8.64 \times 10^{-2} \text{cm}^2 \text{day}^{-1}$ [76], $M_Y = 24 \text{kDa}$ [76], $M_P = 8.9 \text{kDa}$ [77], $M_H = 55 \text{kDa}$ [78], $M_{I_0} = 55 \text{kDa}$ [79], $M_{I_1} = 70 \text{kDa}$ [46], and $M_H = 29 \text{kDa}$ [80], we get $D_P = 1.20 \times 10^{-1} \text{cm}^2 \text{day}^{-1}$, $D_{H_0} = 6.55 \times 10^{-2} \text{cm}^2 \text{day}^{-1}$, $D_{I_0} = 6.04 \times 10^{-2} \text{cm}^2 \text{day}^{-1}$ and $D_H = 8.11 \times 10^{-2} \text{cm}^2 \text{day}^{-1}$.

Molecular weight of $A\beta$ is 24 kDa [81], so in soluble state its diffusion coefficient would be $8.64 \times 10^{-2} \text{cm}^2 \text{day}^{-1}$. We assume that soluble oligomer $A\beta O$ has a smaller diffusion coefficient, namely, $D_{A\beta O} = 4.32 \times 10^{-2} \text{cm}^2 \text{day}^{-1}$.

Eq. (1)

By [82], the half-life of $A\beta_1$ is 1.5–2 h in mice. Hence $d_{A\beta} = 6g/ml/day$. Membrane proteins APP shed amyloid β, some end up inside the cell and some outside the cell. We assume that in healthy steady state $A\beta = A\beta$, however the simulation results do not change appreciably if we take $A\beta > A\beta$. According to [57], the density in brain-gray matter of $A\beta$ is approximately 1000 ng/g in control and 7000 ng/g in AD. Hence, from the steady state of Eq. (1) in a healthy normal case, $A\beta = 10^{-6}$ g/ml and $\lambda_{\beta} = 6g/ml/day$. From the steady state of Eq. (1) in AD and Eq. (21) we then get that $R_0 = 6$.

The brain has 75% water and 60% of its dry matter is fat. We assume that the average density of brain tissue is 1 g/cm3. The human brain has 100 billion neurons, and its weight is approximately 1400 g, so its volume is approximately 1400 ml. Hence its neurons number density is 7×10^7 neurons/cm3. The diameter of neurons is 16 μm [83]. Accordingly, we estimate the volume of 1 neuron to be 2×10^{-9} cm3, and the neurons density is then $7 \times 10^7/2 \times 10^{-9}$ g/cm3, that is $N_0 = 0.14$ g/cm3.

Eq. (2)

The number of neurons is three times the number of microglia [55], hence $K_{\hat{M}} = \frac{1}{2} N_0 = 0.047$ g/ml.

By [16] an astrocyte produces much less $A\beta$ than a neuron, so we take $\lambda_A = \frac{1}{10} \lambda_N$.

Microglias are the first responders to NFTs and AβO. Peripheral macrophages arrive later, and their immune response may perhaps exceed that of microglia, but this is currently not known [12, 84]. We assume that in steady state the microglia density M and the peripheral macrophages density M are equal, so that $\hat{M} = K_{\hat{M}} = M = K_M = 0.047$ g/ml. Motivated by the inflammatory immune attack in AD [85], we assume that, in steady state, the proinflammatory macrophages exceed the anti-inflammatory macrophages, and that proinflammatory peripheral macrophages exceed the proinflammatory microglia. Thus, in steady state, $\hat{M}_1 > \hat{M}_2, M_1 > M_2$ and $M_1 > M_1$, and we take $K_{\hat{M}_1} = 0.04, K_{\hat{M}_2} = 0.007, K_M = 0.03, K_M = 0.017$.

Activated microglias are poorly phagocytic for $A\beta$ compared to peripheral macrophages [6]. Accordingly we take

$$d_{A\beta M} = \frac{1}{5} d_{A\beta M}.$$

Taking $d_{A\beta M} = 10^{-2}/day$, we then have

$$d_{A\beta M} = 2 \times 10^{-3}/day.$$

We assume that \hat{M}_1 and M_1 are more effective than \hat{M}_2 and M_2 in clearing $A\beta$, and take $\theta = 0.9$.

We assume that survival time of patients with AD is 10 years, and that at the end-stage 50% of their neurons have died [73]. Hence, the death rate of N is $d_N = \frac{ln2}{10 \text{years}} = 1.9 \times 10^{-4}/\text{day}$.

By [57], $A\beta = 7 \times 10^{-6}$ g/ml. We assume that the clearance of $A\beta$ by macrophages and microglia is nearly unlimited (i.e., it is almost linear in $A\beta$) by taking $\hat{A}\beta = 10^3 A\beta = 7 \times 10^{-3}$ g/ml. To estimate λ_N, we first consider the steady state of Eq. (2),

$$10^{-6} \frac{\partial N}{\partial t} + \lambda_N = \frac{1}{10} \lambda_N = \left(\frac{d_{A\beta M} (K_{\hat{M}_1} + 0.9 K_{\hat{M}_2}) + d_{A\beta M} (K_{\hat{M}_1} + 0.9 K_{\hat{M}_2})}{A\beta + K_{\hat{A}\beta}} \right).$$

To estimate the average of $\frac{\partial N}{\partial t}$, we use the equation

$$N(t) = N_0 e^{-d_{N} t}, \quad N(0) = 0.14 \text{g/ml},$$

so that

$$\frac{dN}{dt} = 0.14 \times 1.9 \times 10^{-4} e^{-1.9 \times 10^{-4} t}.$$

The values of $\frac{\partial N}{\partial t}$ for $500 < t < 1000$ days vary very little, i.e., from 1.8×10^{-5} g/ml/day to 1.9×10^{-5} g/ml/day. We take $\frac{\partial N}{\partial t} = 1.8 \times 10^{-5}$ g/ml/day as the average of $\frac{\partial N}{\partial t}$ over 10 years, but other choices do not affect significantly our simulation results. We then get that $\lambda_N = 4 \times 10^{-9}$ g/ml/day.
The estimate of \(\lambda_N \) was based on the steady-state assumption in Eq. (2). However, in AD the A\(\beta \) peptides are continuously aggregating, so that the steady state assumption needs to be revised. We do this by increasing the value of \(\lambda_N \): we take \(\lambda_N = 2 \times 4 \times 10^{-9} \times 8 \times 10^{-9} \) g/ml/day, and then \(\lambda_N = 8 \times 10^{-10} \) g/ml/day.

The number of astrocytes is approximately equal to the number of neurons [86, 87], hence \(A_0 = N_0 = 0.14 \) g/ml.

Eq. (3)

Half-life of tau proteins is 60 hours [88]. Hence \(d_\tau = \frac{\ln 2}{60/24} = 24 \ln 2 = 0.277 \) day. Concentration of tau proteins is in healthy normal individuals is 137 pg/ml and, in AD, 490 pg/ml [89]. From the steady state of Eq. (3) in the healthy case, we have \(\lambda_\tau = d_\tau \tau \), where \(\tau = 137 \) pg/ml. Hence \(\lambda_\tau = 3.78 \times 10^{-11} \) g/ml/day. Similarly, \(\lambda_R = d_\tau \tau \) in AD, where \(\tau = 490 \) pg/ml. Hence we have \(\lambda_\tau = 8.1 \times 10^{-11} \) g/ml, or \(\lambda_\tau = 1.35 \times 10^{-11} \) day.

Eqs. (4) and (5)

We assume that neurofibrillary tangles inside neurons are much more stable than tau proteins, taking \(d_{Fi} = \frac{1}{10} d_\tau \tau \) = 2.77 \times 10^{-3} \) day. We also assume that extracellular NFTs do not degrade as fast as internalized NFTs, taking \(d_{Fi} = \frac{1}{10} d_\tau \tau \) = 2.77 \times 10^{-4} \) day. We also assume that 60% of the hyperphosphoglated tau proteins become neurofibrillary tangles. From the steady state of Eq. (4) we then have that \(\gamma_F = 0.6 d_{Fi} \). Hence \(\gamma_F = 1.662 \times 10^{-3} \) day.

Eq. (6)

It is not known whether the rate of death of neurons caused by NFT is larger or smaller than the death rate caused by \(T_\alpha \). We take \(d_N = 2d_{NT} \), but the simulation of the model in the case where \(d_N = 2d_{NT} \) are very similar (not shown here). Assuming that at steady state of Eq. (6) the concentrations of \(F_i, T_\alpha \) and \(I_{10} \) are at half-saturation, we get \(d_N = \frac{1}{2} + \frac{1}{4} \), so that \(d_N = \frac{4 + 4y}{374y} \times 1.9 \times 10^{-4} \) day and \(d_N = \frac{2 + 2y}{374y} \times 1.9 \times 10^{-4} \) day. In particular, if \(y = 1 \) then \(d_N = 2.4 \times 10^{-4} \) day and \(d_N = 1.7 \times 10^{-4} \) day. We take \(K_{I_{10}} = 2 \times 10^{-6} \) g/cm\(^3\) (which is somewhat larger than the estimated half-saturation of \(I_{10} \) in lung inflammation [47, 90]). We assume that in AD, 60% of hyperphosphorylated tau proteins (whose concentration in disease is 490 pg/ml [89]) are in NFT form, so that \(K_{I_{10}} = 0.6 \times 490 \) pg/ml=2.94 \times 10^{-10} \) g/ml. In [89] the concentration of tau protein was taken uniformly in the tissue of patients. We assume, however, that the concentration of NFT is higher inside neurons than outside neurons, and take \(K_{I_{10}} = 3.36 \times 10^{-10} \) g/ml, \(K_{F_i} = 2.58 \times 10^{-11} \) g/ml. From the steady state of Eq. (17) and the estimates of \(\lambda_{T_\alpha M_1} \) and \(\lambda_{T_\alpha M_1} \) (see under Eq. (17) below) we get \(T_\alpha = 4 \times 10^{-5} \) g/ml, so that \(K_{T_\alpha} = 4 \times 10^{-5} \) g/ml.

Eq. (7)

We take the half-life of astrocytes to be the same as the half-life of ganglionic glial cells, that is, 600 days [91]. Hence \(d_A = 1.2 \times 10^{-3} \) day. We assume that the activation of astrocytes is due more to TNF-\(\alpha \) than to A\(\beta \), and take \(\lambda_{AT_\alpha} = \frac{2}{3} \lambda_{AA_\alpha} \). By the steady state of Eq. (7) we then get \(\lambda_{AT_\alpha} = 1.4 \) day, and \(\lambda_{AA_\alpha} = 1.63 \) day. Actually, in a mouse model of AD, the number of activated astrocytes is increasing [58]. So we compensate for this by increasing both \(\lambda_{AT_\alpha} \) and \(\lambda_{AA_\alpha} \) by a factor 1.1, taking \(\lambda_{AT_\alpha} = 1.54 \) day and \(\lambda_{AA_\alpha} = 1.793 \) day.

Eq. (8)

In mice experiments [92], macrophages phagocytosed apoptotic cells at rates that varied in the range 0.1–1.27/h. We assume that necrotic cells (and their debris) in human brain are phagocytosed by peripheral macrophages at rate \(d_{N_\alpha M} = 0.2 \) day. We also assume that microglia play a greater role in clearing necrotic neurons, and take \(d_{N_\alpha M} = 0.2 \) day. We also take \(K_{N_\alpha} = 10^{-3} \) g/ml.

Eq. (9)

We assume the degradation rate of \(A_\alpha \) is much slower than that of \(A_\beta \), taking \(d_{A_\alpha} = \frac{1}{10} d_{A_\beta} = 0.951 \) day. The ratio of soluble \(A_\alpha \) to total \(A_\beta \) is approximately \(\frac{1}{27} \) [93].

From the steady state of Eq. (9) we then get \(\lambda_{A_\alpha} = \frac{1}{27} d_{A_\alpha} = 3.8 \times 10^{-2} \) day.

The estimate of \(\lambda_{A_\alpha} \) was based on the steady-state assumption in Eq. (9). However, in AD the soluble A\(\beta \) oligomer is continuously increasing, following the increase in \(A_\beta \), so the steady-state assumption needs to be revised. We do this by increasing the above value of \(\lambda_{A_\alpha} \), taking the new value to be \(\lambda_{A_\alpha} = 5 \times 10^{-2} \) day.

Eq. (10)

Concentration of HMGB-1 in neurons is 1.3 ng/ml [94], hence \(H = 0.14 \times 1.3 \) ng/ml=1.8 \times 10^{-10} \) g/ml. Half-life of HMGB-1 is 17 minutes [95], so that \(d_H = 58.71 \) day. We assume that \(N_\alpha \) stabilizes somewhere below 2.5 \times 10^{-4} \) g/ml. From the steady state of Eq. (10), we then get \(\lambda_H = 3 \times 10^{-5} \) day.

Eqs. (11) and (12)

We take \(d_{M_1} = d_{M_2} = 0.015 \) day [47, 90]. Then, our assumption (under Eq. (2)) that \(K_{M_1} > K_{M_2} \) suggests that \(\beta > 1 \). We take \(\beta = 10 \).

We take \(M_0^G = K_M = 0.047 \) g/ml and \(\alpha = 5 \). In the absence of data, we take the production rate \(\lambda_{MF} \) of macrophages by NFT to be the same as the production rate under stimulation by M. Tuberculosis in [90], namely, \(\lambda_{MF} = 2 \times 10^{-2} \) day. We assume that production rate of macrophages by NFT is larger than the production rate by \(A_\alpha \), and take \(\lambda_{MA} = 2.3 \times 10^{-3} \) day.
By [57] the concentration of Aβ in AD is 7×10^{-6} g/ml and, by [55], the ratio of A_0 to $A_β$ is $\frac{1}{25}$, so that $K_{A_0} = \frac{1}{25} \times 7 \times 10^{-6} = 2.8 \times 10^{-7}$ g/ml.

We assume that more NFT reside within neurons than outside them, so that K_{F_i} is smaller than K_{F_i}. Recalling that $K_{F_i} = 3.36 \times 10^{-11}$ g/ml, we take $K_{F_i} = 2.58 \times 10^{-11}$ g/ml.

The coefficient $\lambda_{M_1} T_β$ is the rate by which TGF-β affects the change of phenotype from M_1 to M_2. In the case of infection in the lung by $M. tuberculosis$, under inflammatory conditions caused by the pathogen, $\lambda_{M_1} T_β = 6 \times 10^{-3}$/day [90]; we take it to be the same in the present case. We take $K_{T_β} = 2.5 \times 10^{-7}$ g/ml, and $K_{I0} = 2.5 \times 10^{-6}$ g/ml.

Eqs. (13) and (14)

Peripheral macrophages immigrate into the brain of AD [96, 97]. We assume that, because of the BBB, the concentration of monocytes in the brain capillaries must be significantly higher than the concentration of peripheral macrophages already in the tissue. Recalling that in steady state $\dot{M} = 0.047$ g/ml, we take $M_0 = 0.05$ g/ml. The parameter α was estimated by 5, in order to make the asymptotic behavior of \dot{M} in the simulations agree with its assumed steady state of 0.047 g/ml (under Eq. (2)). When microglia cells are activated, they become either of M_1 or M_2 phenotype. But peripheral macrophages are initially biased toward M_1 phenotype rather than M_2 phenotype, since $K_{T_α} > K_{I0}$. We assume, in line with this bias toward M_1, that the transition rate from M_1 into M_2 phenotype by TGF-β is at a smaller rate than the corresponding transition rate for microglia, that is, $\dot{\lambda}_{M_1} T_β < \dot{\lambda}_{M_2} T_β$. We take $\dot{\lambda}_{M_1} T_β = 6 \times 10^{-3}$/day.

Eq. (17) Activated alveolar macrophages produce TNF-α at rate 4.86×10^{-3}/day [47]. We assume that proinflammatory macrophages produce TNF-α at a larger rate (five fold), taking $\dot{\lambda}_{T_α M_1} = \dot{\lambda}_{T_α M_1} = 3 \times 10^{-2}$ g/ml.

Eq. (18) Astrocytes secrete MCP-1 [17–19] but activated anti-inflammatory microglia also secrete MCP-1. We assume that the production rate by astrocytes in larger than that by M_2, and take $\dot{\lambda}_{PA} = \frac{3}{2} \dot{\lambda}_{PM_2}$. MCP-1 concentration in initial stages of AD is 750 pg/ml [98]. Using the steady state equation

$$1 \frac{\dot{\lambda}_{PM_2}}{2} A_0 + \dot{\lambda}_{PM_2} M_2 = d_P P,$$

with $P = 6 \times 10^{-9}$ g/ml and $d_P = 1.73$/day [74], we get $\dot{\lambda}_{PM_2} = 1.2 \times 10^{-7}$/day and $\dot{\lambda}_{PA} = 6 \times 10^{-8}$/day [47].

Since A is increasing in time, also P is increasing in time. Hence the steady state assumption needs to be revised. We do it by increasing $\dot{\lambda}_{PA}$ and $\dot{\lambda}_{PM_2}$ by a factor 1.1, taking $\dot{\lambda}_{PM_2} = 1.32 \times 10^{-7}$/day, and $\dot{\lambda}_{PA} = 6.6 \times 10^{-8}$/day.

Acknowledgements
The authors have been supported by the Mathematical Biosciences Institute and the National Science Foundation under Grant DMS 0931642.

Availability of data and materials
The dataset supporting the conclusions of this article is included within the article.

Authors’ contributions
WH and AF developed and simulated the model, and wrote the final manuscript. Both authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Ethics approval and consent to participate
Not applicable.

Author details
1 Department of Mathematics, The Penn State University, 16802 University Park, PA, USA. 2 Mathematical Biosciences Institute & Department of Mathematics, The Ohio State University, 43210 Columbus, OH, USA.

Received: 25 June 2016 Accepted: 25 October 2016

Published online: 18 November 2016

References
1. Gatz M, Reynolds CA, Fratiglioni L, Johansson B, Mortimer JA, Berg S, Fiske A, Pedersen NL. Role of genes and environments for explaining Alzheimer disease. Arch Gen Psychiat. 2006;63(2):168–74.
2. Wilson RS, Barlow S, Lee JH, Leurgans SE, Foroud TM, Sweet RA, Graff-Radford N, Bird TD, Mayeux R, Bennett DA. Heritability of different forms of memory in the Late Onset Alzheimer’s Disease Family Study. J Alzheimers Dis. 2011;23(2):249–55.
3. alzheimers, n.: 2015 Alzheimer’s Statistics. 2016. http://www.alzheimers.net/resources/alzheimers-statistics/. Accessed 1 Sept 2016.
4. Liu Z, Li P, Wu J, YW, Ping L, Ximin H, et al. The Cascade of Oxidative Stress and Tau Protein Autophagic Dysfunction in Alzheimer’s Disease. Alzheimer’s Dis Challenges Future. 2015;2: do:10.5772/59980.
5. Seeman P, Seeman N. Alzheimer’s disease: beta-amyloid plaque formation in human brain. Synapse. 2011;65(12):1289–97.
6. Kremers A, Louis J, Jaworski T, Van Leuven F. GSK3 and Alzheimer’s Disease Facts and Fiction. Front Mol Neurosci. 2011;4:17.
7. Bloom GS. Amyloid-beta and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol. 2014;71(4):505–8.
8. Mondragon-Rodriguez S, Perry G, Zhu X, Boehm J. Amyloid Beta and tau proteins as therapeutic targets for Alzheimer’s disease treatment: rethinking the current strategy. Int J Alzheimers Dis. 2012;2012:630182.
9. Wray N, Noble W. Linking amyloid and tau pathology in Alzheimer’s disease: the role of membrane cholesterol in Abeta-mediated tau toxicity. J Neurosci. 2009;29(31):9665–77.
10. Mokhtar SH, Bakhraysah MM, Cram DS, Petraitos S. The Beta-amyloid protein of Alzheimer’s disease: communication breakdown by modifying the neuronal cytoskeleton. Int J Alzheimers Dis. 2013;2013:910502.
11. Joshi P, Turola E, Ruz A, Bargami A, Libera DD, Benussi L, et al. Microglia convert aggregated amyloid-beta into neurotoxic forms through the shedding of microvesicles. Cell Death Differ. 2014;21(4):582–93.
12. Tsernaut P, Eili A, Rivest S. The dynamics of monocytes and microglia in Alzheimer’s disease. Alzheimers Res Ther. 2015;7(1):41.
13. de Calignon A, Polydoro M, Suarez-Calvet M, William C, Adamowicz DH, Kopeikina KI, et al. Propagation of tau pathology in a model of early Alzheimer’s disease. Neurobiol Aging. 2012;33(4):685–97.
14. Garwood CJ, Pooler AM, Atherton J, Hanger DP, Noble W. Astrocytes are important mediators of Abeta-induced neurotoxicity and tau phosphorylation in primary culture. Cell Death Dis. 2011;2:167.
15. Morales I, Guzman-Martinez L, Cerda-Troncoso C, Fanas GA, Maccioni RB. Neuroinflammation in the pathogenesis of Alzheimer’s disease. A
rational framework for the search of novel therapeutic approaches. Front Cell Neurosci. 2014;8:112.
16. Zhao J, O’Connor T, Vassar R. The contribution of activated astrocytes to A beta production: implications for Alzheimer’s disease pathogenesis. J Neuroinflammation. 2011;8:150.
17. Hohsfield LA, Humpel C. Migration of blood cells to beta-amyloid plaques in Alzheimer’s disease. Exp Gerontol. 2015;65:8–15.
18. Li C, Zhao R, Gao K, Wei Z, Yin MY, Lau LT, Chu D, Yu AC. Astrocyes: implications for neuroinflammatory pathogenesis of Alzheimer’s disease. Curr Alzheimer Res. 2011;18(1):67–80.
19. Porcellini E, Ianni M, Carboni E, Franceschi M, Licastro F. Monocyte chemotactic protein-1 promoter polymorphism and plasma levels in Alzheimer’s disease. Immun Ageing. 2013;10(1):6.
20. Wang WY, Tan MS, Yu J, Tan L. Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Ann Transl Med. 2015;3(10):136.
21. Lai AY, McLaurn J. Clearance of amyloid-beta peptides by microglia and macrophages: the issue of what, when and where. Future Neurol. 2012;7(2):165–76.
22. Bhaskar K, Maphis N, Xu G, Varvel NH, Aarons KR, Bass JW, et al. Microglial derived tumor necrosis factor-alpha drives Alzheimer’s disease-related neuronal cell cycle events. Neurobiol Dis. 2016;62:273–85.
23. Sharma V, Thakur V, Singh S, Guleria R. Tumor Necrosis Factor and Alzheimer’s Disease: A Cause and Consequence Relationship. Klinik Psk Bull Clin Psy. 2012;22:86–97.
24. Boutajangout A, Sigurdsson EM, Krishnamurthy PK. Role of TGFbeta-Smad2/3 innate immune signaling mitigates Alzheimer-like neurodegeneration and Alzheimer’s. Curr Alzheimer Res. 2016;13(3):183–92.
25. Hong-Qi Y, Zhi-Kun S, Sheng-Di C. Current advances in the treatment of Alzheimer’s disease. J Alzheimers Dis. 2014;38(2):281–93.
26. Hao W, Crouser ED, Friedman A. Mathematical model of sarcoidosis. Proc Nat Acad Sci USA. 2014;111(45):16065–70.
27. Sokolowski JD, Mandell JW. Phagocytic clearance in neurodegeneration. Am J Pathol. 2011;178(4):1416–28.
28. Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid-beta-peptide. Nat Rev Mol Cell Biol. 2007;8(2):101–12.
29. Waters J. The concentration of soluble extracellular amyloid-beta protein in acute brain slices from CRND8 mice. PLoS ONE. 2010;5(12):15709.
30. Muller S, Ronfani L, Bianchi ME. Regulated expression and subcellular localization of HMGB1, a chromatin protein with a cytokine function. Int J Immunol. 2004;25(5):332–43.
31. Savchenko VL, McKanna JA, Nikonenko IR, Skibo GG. Microglia and astrocytes in the rat adult brain: comparative immunocytochemical analysis demonstrates the efficacy of lipocortin 1 immunoactivity. Neuroscience. 2000;96(1):195–203.
32. Hao W, Rosin BH, Friedman A. Mathematical model of renal interstitial fibrosis. Proc Nat Acad Sci USA. 2014;111(39):14193–8.
33. Roher AE, Esf K, Kojjoh T, Castano EM, Van Vickle GD, Kalbann WM, et al. Amyloid beta peptides in human plasma and tissues and their significance for Alzheimer’s disease. Alzheimers Dement. 2009;5(1):18–29.
34. Furman JL, Sama DM, Gant JC, Beckett TL, Murphy MP, Bachstetter AD, Van Eldik LJ, Norris CM. Targeting astrocytes ameliorates neurologic changes in a mouse model of Alzheimer’s disease. J Neurosci. 2012;32(46):16129–40.
35. Tobinick E, Gross H, Weinberger A, Cohen H. TNF-alpha modulation for treatment of Alzheimer’s disease: a 6-month pilot study. MedGenMed. 2006;8(2):25.
36. Butchart J, Brook L, Hopkins V, Teeling J, Puntener U, Culliford D, et al. Etanercept in Alzheimer disease: A randomized, placebo-controlled, double-blind, phase 2 trial. Neurology. 2015;84(21):2161–8.
37. Piazza F, Winblad B. Amyloid-Related Imaging Abnormalities (ARIA) in Immunotherapy Trials for Alzheimer’s Disease: Need for Prognostic Biomarkers? J Alzheimers Dis. 2016;52(2):417–20.
38. Karran E, Hardy J. A critique of the drug discovery and phase 3 clinical programs targeting the amyloid hypothesis for Alzheimer disease. Ann Neurol. 2014;76(2):185–205.
39. Patel KB. Biogen’s aducanumab raises hopes that Alzheimer’s can be treated at its source. Manag Care. 2015;24(6):19.
40. Reardon S. Antibody drugs for Alzheimer’s show glimmers of promise. Nature. 2015;523(7562):509–10.
41. Bertsch M, Franchi B, Marcellio N, Tesi MC, Tosin A. Alzheimer’s disease: a mathematical model for onset and progression. Math Med Biol. 2016. doi:10.1093/mtmb/dqw003.
42. Helal M, Hingant E, Pujo-Menjouet L, Webb GF. Alzheimer’s disease: analysis of a mathematical model incorporating the role of prions. J Math Biol. 2014;69(5):1207–35.
43. Bun I, Li L. Mathematical modeling for the pathogenesis of Alzheimer’s disease. PLoS ONE. 2010;5(12):15176.
44. Lao A, Schmidt V, Schmitz Y, Willnow TE, Wollenhauer O. Multi-compartmental modeling of SORLA’s influence on amyloidogenic processing in Alzheimer’s disease. BMC Syst Biol. 2012;6:74.
45. Schmidt V, Baun K, Lao A, Rateitschak K, Schmitz Y, Teichmann A, et al. Quantitative modelling of amyloidogenic processing and its influence by SORLA in Alzheimer’s disease. EMBO J. 2012;31(1):187–200.
46. Hamza T, Barnett JB, Li B. Interleukin12 a key immunoregulatory cytokine in infection applications. Int J Mol Sci. 2010;11(3):789–806.
47. Hao W, Crouser ED, Friedman A. Mathematical model of sarcoidosis. Proc Nat Acad Sci USA. 2014;111(45):16065–70.
48. Hao W, Rosin BH, Friedman A. Mathematical model of renal interstitial fibrosis. Proc Nat Acad Sci USA. 2014;111(39):14193–8.
49. Roher AE, Esf K, Kojjoh T, Castano EM, Van Vickle GD, Kalbann WM, et al. Amyloid beta peptides in human plasma and tissues and their significance for Alzheimer’s disease. Alzheimers Dement. 2009;5(1):18–29.
50. Furman JL, Sama DM, Gant JC, Beckett TL, Murphy MP, Bachstetter AD, Van Eldik LJ, Norris CM. Targeting astrocytes ameliorates neurologic changes in a mouse model of Alzheimer’s disease. J Neurosci. 2012;32(46):16129–40.
51. Muller S, Ronfani L, Bianchi ME. Regulated expression and subcellular localization of HMGB1, a chromatin protein with a cytokine function. Int J Immunol. 2004;25(5):332–43.
52. Gao HM, Zhou H, Zhang F, Wilson BC, Kam W, Hong JS. HMGB1 acts on microglia Mac1 to mediate chronic neuroinflammation that drives progressive neurodegeneration. J Neurosci. 2011;31(3):1081–92.
53. Lotze MT, Tracey KJ. High-mobility group box 1 protein (HMGB1): a nuclear weapon in the immune arsenal. Nat Rev Immunol. 2005;5(4):331–42.
54. Zou YJ, Crews FT. Release of neuronal HMGB1 by ethanol through decreased HDAC activity activates brain neuroinflammatory signaling. PLoS ONE. 2014;9(2):87935.
55. Savchenko VL, McKanna JA, Nikonenko IR, Skibo GG. Microglia and astrocytes in the rat adult brain: comparative immunocytochemical analysis demonstrates the efficacy of lipocortin 1 immunoactivity. Neuroscience. 2000;96(1):195–203.
