Genome Sequence of *Streptomyces aureofaciens* ATCC Strain 10762

Julien S. Gradnigo, a Greg A. Somerville, b Michael J. Huether, c Richard J. Kemmy, c Craig M. Johnson, c Michael G. Oliver, c Etsuko N. Moriyama a,d

School of Biological Sciences, University of Nebraska–Lincoln, Lincoln, Nebraska, USA; School of Veterinary Medicine and Biomedical Sciences, University of Nebraska–Lincoln, Lincoln, Nebraska, USA; Zoetis, Lincoln, Nebraska, USA; Center for Plant Science Innovation, University of Nebraska–Lincoln, Lincoln, Nebraska, USA

Streptomyces aureofaciens is a Gram-positive actinomycete that produces the antibiotics tetracycline and chlorotetraycline. Here, we report the assembly and initial annotation of the draft genome sequence of *S. aureofaciens* ATCC strain 10762.

REFERENCES

1. Duggar BM. 1948. Auromycin; a product of the continuing search for new antibiotics. Ann N Y Acad Sci 51:177–181. http://dx.doi.org/10.1111/j.1749-6632.1948.tb27262.x.

2. Nelson ML, Levy SB. 2011. The history of the tetracyclines. Ann N Y Acad Sci 1241:17–32. http://dx.doi.org/10.1111/j.1749-6632.2011.06354.x.

3. Darken MA, Berenson H, Shirk RJ, Sjolander NO. 1960. Production of tetracycline by *Streptomyces aureofaciens* in synthetic media. Appl Microbiol 8:46–51.

4. Laluce C, Molinari R. 1977. Selection of a chemically defined medium for submerged cultivation of *Streptomyces aureofaciens* with high extracellular caseinolytic activity. Biotechnol Bioeng 19:1863–1884. http://dx.doi.org/10.1002/bit.260191210.

5. Tripathi G, Rawal SK. 1998. Simple and efficient protocol for isolation of...
high molecular weight DNA from *Streptomyces aureofaciens*. Biotechnol Tech 12:629–631. http://dx.doi.org/10.1023/A:1008836214495.

6. Lohse M, Bolger AM, Nagel A, Fernie AR, Lunn JE, Stitt M, Usadel B. 2012. RobiNA: a user-friendly, integrated software solution for RNA-Seq-based transcriptomics. Nucleic Acids Res 40:e622–e627. http://dx.doi.org/10.1093/nar/gks540.

7. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. http://dx.doi.org/10.1089/cmb.2012.0021.

8. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Ciufò S, Li W. 2013. Prokaryotic Genome Annotation Pipeline. The NCBI Handbook [internet], 2nd ed. NCBI, Bethesda, MD. http://www.ncbi.nlm.nih.gov/books/NBK174280.

9. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL. 2004. Versatile and open software for comparing large genomes. Genome Biol 5:R12. http://dx.doi.org/10.1186/gb-2004-5-2-r12.