Colistin-resistant Enterobacterales among veterinary healthcare workers and in the Dutch population

C. M. Dierikx¹*, A. P. Meijs¹, P. D. Hengeveld¹, F. R. M. van der Klis¹, J. van Vliet¹, E. F. Gijsbers¹, M. Rozwandowicz¹, A. H. A. M. van Hoek¹, A. P. A. Hendrickx¹, J. Hordijk¹ and E. Van Duijkeren¹

¹National Institute for Public Health and the Environment (RIVM), Centrum for Infectious Disease Control, Bilthoven, The Netherlands

*Corresponding author. E-mail: cindy.dierikx@rivm.nl

Received 6 October 2021; accepted 25 March 2022

Objectives: Plasmid-mediated colistin resistance can be transferred from animals to humans. We investigated the prevalence of carriage of mcr-mediated colistin-resistant Escherichia coli and Klebsiella pneumoniae (ColR-E/K) in veterinary healthcare workers and in the general population in the Netherlands.

Methods: Two cross-sectional population studies were performed: one among veterinary healthcare workers and one in the general population. Participants sent in a faecal sample and filled in a questionnaire. Samples were analysed using selective enrichment and culture. Mobile colistin resistance genes (mcr) were detected by PCR and ColR-E/K were sequenced using Illumina and Nanopore technologies.

Results: The prevalence of mcr-mediated ColR-E/K was 0.2% (1/482, 95% CI 0.04%–1.17%) among veterinary personnel and 0.8% (5/660, 95% CI 0.3%–1.8%) in the population sample. mcr-1 was found in E. coli from four persons, mcr-8 in K. pneumoniae from one person and another person carried both mcr-1 and mcr-8 in a K. pneumoniae isolate. mcr-1 was found on different plasmid types (IncX4, IncI1 and IncI2), while mcr-8 was found on IncN plasmids only.

Conclusions: mcr-mediated ColR-E/K resistance was uncommon in both populations. Professional contact with animals does not increase the chance of carriage of these bacteria in the Netherlands at present. mcr-8 was found for the first time in the Netherlands. Surveillance of colistin resistance and its underlying mechanisms in humans, livestock and food is important in order to identify emerging trends in time.

Introduction

Colistin or polymyxin E is an antibiotic belonging to the class of polymyxins and has been on the market since the 1950s.¹ In human medicine, it is a last-resort drug for treatment of MDR Gram-negative bacterial infections and its use has increased during the last decade.² Polymyxins are categorized as highest priority critically important antimicrobials by WHO.³

Colistin is also used in animals for treatment of gastrointestinal infectious diseases mainly in calves, pigs and poultry.⁴,⁵ For a long time it was believed that the mechanism of resistance to colistin was limited to chromosomal mutations. However, in 2015 a mobile colistin resistance gene (mcr-1) on a plasmid was found in Enterobacterales from pigs, retail meat and an inpatient in China.⁶ The emergence of plasmid-mediated, transmissible colistin resistance is of great concern as it facilitates the spread between different bacterial isolates and species as well as between animals and humans. To date, 10 mcr genes (mcr-1 to mcr-10) and many subvariants have been described.⁷ These genes have been detected in zoonotic pathogens and it is likely that they are transferred between animals and humans.¹,⁸ The more frequent isolation of mcr genes among animal isolates compared with human ones, together with the higher use of colistin in livestock compared with human medicine in China has been suggestive of the direction of transmission from animals to humans.⁶

Although prevalence data and colistin use suggest that plasmid-mediated colistin resistance is transferred from animals to humans, it is unknown whether individuals with professional animal contact carry colistin-resistant Enterobacterales more often. Therefore, the objective of the present study was to investigate the prevalence of mcr-mediated colistin resistant Escherichia coli and Klebsiella pneumoniae (ColR-E/K) carriage among the Dutch population as well as among veterinary healthcare workers.
Material and methods

Ethics

Samples from two population studies were used: one study was part of the Antibiotic Resistant Bacteria in Dutch Veterinarians study (Dutch acronym: AREND) and the other study was part of the national sero-epidemiological study (Dutch acronym: PIENTER3). The University Medical Centre Utrecht designated the AREND study not to be subject to the Medical Research Involving Human Subjects Act or WMO (Decision number 18-389/C), while the medical research ethics committee Noord-Holland approved PIENTER3 (METC number M015-022). All participants signed an informed consent form.

Population studies

The AREND study was conducted between August 2018 and March 2019 and included 482 veterinarians, veterinary technicians and veterinary assistants. Participants were recruited at the annual Dutch veterinary conference in 2018, via articles in newsletters and journals for veterinarians, and by information about the study sent directly to veterinary clinics by postal mail. Criteria for inclusion were age 18 years or older and working in veterinary care. Persons working with companion animals, horses and/or livestock were included. Participants were asked to complete a web-based questionnaire about their contact with animals at work and at home, hygiene, health and medication use and leisure activities such as travel behaviour. Furthermore, they were asked to collect a faecal sample at home and send it to the laboratory by regular mail. On the day of arrival, the faecal samples were kept in the fridge (4°C) until further processing, which took place within 2 days.

The PIENTER3 study was conducted in 2016–17. This was a nationwide cross-sectional population study in the Netherlands, to investigate the protection level against infectious diseases included in the National Immunization Programme. For that purpose, a two-stage cluster sampling technique was used to draw a random sample of persons aged 0–89 years from Dutch municipalities. Subpopulations were oversampled: these included people living in low vaccination coverage areas, people with a non-Western migration background and people with a migration background from Suriname, Aruba and the former Dutch Antilles (SAN). A total of 7600 persons in the Netherlands were enrolled in the study. Participants were invited to give a blood sample and were among others also asked to collect a faecal sample in 15% glycerol-saline solution and send it to the survey location by the participant. The faecal sample was transported under frozen conditions to the laboratory, where the samples were kept at –70°C. For more information about the study design of PIENTER3 see Verberk et al., 2019. In the present study, samples derived from participants aged ≥18 years and stored in the –70°C freezer were used for genome analysis. No further selection criteria were applied. The samples included 660 faecal samples, derived from twenty municipalities, from a total of 2779 persons from 48 municipalities in the Netherlands that had provided a faecal sample.

Laboratory methods

To determine ColR-E/K presence in the faecal samples a sterile cotton swab (AREND) or a 10 μL loop (PIENTER3) of the faecal material was suspended in a sterile glass tube with 5 mL of Buffered Peptone Water (BioTrading) with 2 mg/L colistin (colistin sulphate salt, Sigma). After over-night incubation at 37°C, the enrichment was inoculated on ChromID Colistin R Agar (bioMérieux) with a 10 μL inoculation loop. The plates were incubated overnight at 37°C, and afterwards one colony per colour (pink to burgundy or blue/green) per person was isolated and inoculated on Columbia Agar with sheep blood (Oxoid). Species were confirmed using MALDI-TOF MS (Bruker) according to the manufacturer’s instructions. For ColR-E/K suspected isolates the MICs were analysed by broth microdilution using MIC colistin strips (Merlin) according to the manufacturer’s instruction, following ISO 20776-1:2019. The clinical breakpoint of >2 mg/L recommended by CLSI and EUCAST was used to determine resistance. The ColR-E/K suspected isolates were screened for mcr-1 to -9 genes by two multiplex PCRs. If mcr genes were suspected, the PCR was repeated in singleplex format with the same primers for confirmation. The primers are described previously.

Genome analysis of mcr-mediated ColR-E/K

One colony was inoculated in 1.5 mL BHI broth and incubated overnight at 37°C. The overnight culture was centrifuged at 13,000 g for 3 min. After removal of the supernatant, the cell pellet was washed in 500 μL physiological saline (0.9%) and subsequently centrifuged again for 3 min. The cell pellet was resuspended in 450 μL DNA/RNA-Shield (Zymo Research) and stored at 4°C. Genomic DNA was isolated using a Zymo Research kit (BaseClear, Leiden, the Netherlands). An Illumina genomic nextera XT 2 × 150 bp paired-end DNA library was prepared and sequenced on an Illumina NovaSeq 6000 (BaseClear). Raw reads were trimmed and de novo assembled using SPAdes 3.10.0.

The isolates were analysed by long read Nanopore sequencing as described in Hendriks et al., 2020. Illumina and Nanopore sequences were combined for a hybrid assembly using Unicycler v0.4.8 with modified settings for depth_filter (set to 0.1) and min_fasta_length (set to 1000). Plasmids 260-1 and 132-1 were assembled with the depth_filter set to 0.01. Phylogenetic groups, serotypes and STs were assigned using in-house implemented task templates in Ridom SeqSphere+ (Version 7.1.0 (2020-06)). Plasmids were characterized with Abricate v0.9.3 (https://github.com/tseemann/abricate), using the PlasmidFinder database. Resistance genes were assigned with ResFinder version 4.0 using ≥98% identity and 100% coverage of genes. Plasmids were compared using blastn.

All the genomic sequences are available at the European Nucleotide Archive at the European Molecular Biology Laboratory (accession no. PRJEB45559, see Table S1, available as Supplementary data at JAC-AMR Online).

Results

The 482 veterinary healthcare workers that participated in the AREND study were aged between 20 and 70 years, the average age was 40 years (median 38 years) and 85% were female. The 660 included participants from PIENTER3 study were aged between 18 and 85 years, the average being 50 years (median 52 years). Thirty-three percent were born in a non-Western country, 61% were female and 7.8% reported direct contact with pets and/or farm animals at work.

mcr genes were detected in an E. coli isolate from a veterinary technician participating in the AREND study (0.2% (1/482, 95% CI 0.04%–1.17%) and in three E. coli and two K. pneumoniae isolates from five persons from the PIENTER3 population (0.8% (5/660, 95% CI 0.3%–1.8%), including four with a migration background from Suriname. Three of these six persons reported travel to Asia, two did not report any travel in the past 6 months and for one person the travel history was unknown. All E. coli isolates harboured mcr-1 (three on IncX4 plasmids, and one on IncI1 plasmid). One K. pneumoniae isolate
harboured mcr-8 on an IncF plasmid, while the other K. pneumoniae isolate carried mcr-1 as well as mcr-8 on IncI1 and IncF plasmids, respectively. An overview of the characteristics of the mcr-positive isolates, the participants and the potential risk factors is shown in Table 1.

The three IncX4 plasmids found in E. coli isolates in this study were not identical to each other and were 33, 34, and 41 kb in size. The mcr-1 genes were organized in the same commonly found embedding structure: IS26-hypothetical protein (hp)-hp-par4-hp-hp-mcr-1-par2-hp-pir. This genetic structure was previously found on a 33 kb IncX4 plasmid (pLV23529) in an E. coli isolate originating from swine cecum in Portugal. The genetic region around mcr-1.1 harboured mcr-8 on an IncF plasmid, while the other K. pneumoniae isolate carried mcr-1 as well as mcr-8 on IncI1 and IncF plasmids, respectively. An overview of the characteristics of the mcr-positive isolates, the participants and the potential risk factors is shown in Table 1.

The three IncX4 plasmids found in E. coli isolates in this study were not identical to each other and were 33, 34, and 41 kb in size. The mcr-1 genes were organized in the same commonly found embedding structure: IS26-hypothetical protein (hp)-hp-par4-hp-hp-mcr-1-par2-hp-pir. This genetic structure was previously found on a 33 kb IncX4 plasmid (pLV23529) in an E. coli isolate originating from swine cecum in Portugal. Plasmid 260-1 in addition to mcr-1 carried blaTEM-18

The two IncF plasmids 91-1 and 137-1_IncF in K. pneumoniae (Table 1) were different in size (103 kb and 161 kb, respectively). Both of them contained an IncFIIK replicon and plasmid 91-1 an IncFIA as well. The genetic region around mcr-8 of plasmid 137-1_IncF was identical to the region in a 300 kb K. pneumoniae plasmid pk9 isolated from a patient in Lebanon (sasA-CopR-mcr-8-hp-hp). This region in plasmid 91-1 was almost identical (sasA-CopR-mcr-8-hp-hp-Kpn43) to that of pk9 and 137_1_incF. Plasmid 137-1_IncF carried, besides the mcr-8 gene, resistance determinants to aminoglycosides (aadA2), β-lactams (blaTEM-18) macrolides [mhp(A)], sulphonamides (sul1), tetracycline (tet(A)) and trimethoprim (dfrA12). Plasmid 91-1 did not carry additional antibiotic resistance genes.

The IncI1 plasmid 137-1_IncI1 of plasmid ST8, carrying the mcr-1 gene, was 51 kb in size. This plasmid differed in size from an mcr-1-carrying IncI1 plasmid (pMCR-E2899) recently isolated from turkey meat (107 kb) in the Netherlands. The genetic region around mcr-1 of plasmid 137-1_IncI1 was identical to the region in pMCR-E2899 (ISAp1-tpap2-mcr1.1-ISApl1). Besides mcr-1, plasmid 137-1_IncI1 carried genes for resistance to aminoglycosides (aadA12), macrolides [erm(B)] and sulphonamides (sul1) in contrast to the published pMCR-E2899, which harboured resistance genes to only β-lactams (blaTEM-18) and colistin (mcr-1).

IncI2 plasmid 88-1 (Table 1) was 60 kb in size and carried the mcr-1.1 gene also surrounded by the genes nik8 and pap2 as described in a 64 kb plasmid PE26 carrying mcr-1.9 found in an enterotoxigenic E. coli isolate from a patient in China. Plasmid 88-1 like PE26 only carried resistance to colistin (i.e. mcr-1.1).

Besides mcr and the other resistance genes carried on the identified plasmids, multiple additional antibiotic resistance determinants were present in several of the isolates investigated (Table 1) either on the chromosome or on other plasmids present.

Discussion

In the present culture-based cross-sectional study, the prevalence of intestinal carriage of mcr-mediated ColR-E/K resistance was low in veterinary healthcare workers as well as in a subset of the general Dutch population. This might be a result of low veterinary colistin usage in the Netherlands. Consequently, mcr-mediated resistance is identified only incidentally in E. coli from different livestock species (<2% in 2019). Colistin is almost never used in companion animals in the Netherlands, therefore carriage of ColR-E/K in pets is also expected to be low. This indicates that at present professional contact with animals is not an important transmission route for humans in the Netherlands. The Dutch population might also be exposed to mcr genes through consumption of (imported) food products. This was illustrated in 2018, when a marked difference was found between the mcr-1 prevalence among caecal samples of broilers fattened in Germany but slaughtered in the Netherlands (24.4%) compared with the mcr prevalence among Dutch broilers (0.3%). To date, the prevalence of mcr-positive E. coli in meat sold in the Netherlands is low, except for turkey meat (13.3% in 2019). Additional studies are needed to evaluate the transfer of mcr genes from animals and food to humans in different countries with different prevalence.

The mcr-prevalence in our study is comparable to that found in patients in other studies from Europe. Among patients attending a tertiary care hospital in the Netherlands prevalence was 0.35% (2/576 persons mcr-1 positive) in 2014–15 and among inpatients in hospitals in Paris it was 0.57% (7/1217 patients mcr-1 positive). In a study among 1091 healthy individuals in Switzerland no mcr-related resistance was found. In China, however, much higher prevalence of carriage of mcr-1-mediated colistin resistance in E. coli was reported in persons visiting hospitals for routine examinations. In 2006, this prevalence was found to be 14.6%. In 2019, after the ban of the use of colistin as growth promotor in animals in China, it declined to 6.3%, which is still much higher than in our study.

Three of the six persons carrying mcr-mediated ColR-E/K in the present study had travelled to Asia during the 6 months prior to sampling. In a study among inpatients in hospitals in Paris three of the seven persons had been hospitalized abroad in Asia in the previous year. Travel to Asia, Africa and Latin America has been identified as a risk factor for carriage of other MDR bacteria, such as ESBL-producing Enterobacteria, and this might play a role for mcr-producing isolates as well.

Four of the six persons carrying mcr genes (including the two mcr-8 carriers) in our study were first generation immigrants from Suriname, but none of them reported travelling to Suriname during the last 6 months. It should be noted that first generation immigrants from Suriname were oversampled in the PIENTER3 population study and this might partly explain our finding. To illustrate: in 2019, 3.0% of the population at large were first or second generation immigrants from Suriname, Aruba and the former Dutch Antilles, against 29.2% of PIENTER3 participants.

In the present study, the mcr-1 genes were found on different plasmid types, namely IncI2 and IncX4 in E. coli and IncI1 in K. pneumoniae. The plasmid families IncHI2, IncI2 and IncX4 account for more than 90% of plasmids carrying the mcr-1 genes from different sources worldwide. IncI1 plasmids carrying mcr-1 are less commonly reported, although they have been isolated recently from wastewater samples of German pig and poultry slaughterhouses. Interestingly, mcr-1 in a similar resistance region on another IncI1 plasmid has been reported in an E. coli isolate originating from a retail turkey meat sample in the Netherlands in 2015. All plasmids described in this study differ from each other, but have mcr-surrounding genes that have been described previously in similar plasmid families all over the world.

To the best of our knowledge this is the first time that mcr-8 genes were found in the Netherlands. We found only two mcr-8 isolates and therefore no conclusions can be drawn about the origin. However, until now mcr-8 has not been described in Europe,
except for one patient in France, who was repatriated from Morocco.39 The mcr-8 gene was first described by Wang et al.15 in 2018 in K. pneumoniae isolates on IncFII conjugative plasmids derived from chickens and pigs in China and in a patient in a hospital. To date mcr-8 has been described in K. pneumoniae and other bacteria (Stenotrophomonas sp. and Raoultella ornithinolytica) isolated from poultry, sewage water from a poultry farm, pigs and patients in China.40–43 In addition, besides the patient in France mentioned earlier, mcr-8 was also found in Algeria (in a patient), Laos (in healthy humans) and Bangladesh (in patients), often located on IncF plasmids.44–46

Table 1. Characteristics of mcr-positive isolates and participants carrying these colistin-resistant E. coli/K. pneumoniae

Species	K. pneumoniae	E. coli	K. pneumoniae	E. coli	E. coli	E. coli
ST	ST4065	ST106	ST231	ST636	ST93	ST93
ST	O2v2: KL-	O17:H18	O1v2:KL51	O21:H7	O5:H4	O7:H4
ST	n.a.	D1	n.a.	B23	A0	A0
ID number mcr-carrying plasmid	91-1	132-1	137-1	88-1	260-1	308-1
mcr gene type	mcr-8.1	mcr-1.1	mcr-1.1	mcr-8.1	mcr-1.1	mcr-1.1
Plasmid type	IncF	IncX4	IncF	IncF	IncX4	IncX4
Plasmid size, kb	103	33	51	161	60	34
Additional resistance genes on this plasmid	None	None	ermB, sulI	None	bla\textsubscript{TEM-1}\textsubscript{B}, dfrA12, mph(A), sul1	None
Additional resistance genes in the isolatea	bla\textsubscript{SHV-172}\textsubscript{-like}, oqxA, oqxB, tet(A), strA, strB	None	bla\textsubscript{SHV-212}\textsubscript{-like}, oqxA, oqxB	bla\textsubscript{SHV-172}\textsubscript{-like}, oqxA, oqxB, strA, strB, sul2, tet(B)	bla\textsubscript{SHV-172}\textsubscript{-like}, oqxA, oqxB, strA, strB, sul2, tet(B)	bla\textsubscript{SHV-172}\textsubscript{-like}, oqxA, oqxB, strA, strB, sul2, tet(B)
Participants						
Age (category), years	70–89	60–69	60–69	50–59	30–39	30–39
Sex	Male	Male	Female	Male	Female	Male
Country of birth	Suriname	Suriname	Suriname	Suriname	Netherlands	Netherlands
Ethnicity	First gen. Suriname	First gen. Suriname	First gen. Suriname	First gen. Suriname	Other Western	UNK
Urbanization levelb	Very high	Very low				
Has children attending daycare centre	No	No	No	No	No	No
Job	Retired	Retired	Healthcare	Maritime industry	Government	Veterinary technician
Has weekly or more often contact with animals at work	No	No	No	No	No	No
Travel in last 6 months	No travel	Southern Asia	Western Asia	UNK	Eastern Asia	No travel
Contact with animals in last 4 weeks	No contact	No contact	Cat	UNK	Dog, guinea pig	Dog, cat, horse
Use of stomach protectors	Yes	Yes	No	No	No	No
Antibiotic use last 3 months	No	Yes	Yes	Yes	Yes	Yes
Which type of antibiotic?	n.a.	Amoxicillin	Co-trimoxazole	UNK	n.a.	n.a.
Hospital visit in last 6 months	Yes	Yes	No	UNK	No	UNK
Number of hospitalizations in last 6 months	No	No	No	UNK	No	Yes

n.a., not applicable; gen., generation; UNK, unknown.

aResFinder results with 100% coverage and >98% identity. The bla\textsubscript{SHV-172}\textsubscript{-like} variant differs by two non-synonymous SNPs from the reference sequence: A256C (Q86K) and T756G (D252E). The bla\textsubscript{SHV-212}\textsubscript{-like} variant differs by one non-synonymous SNP to the reference sequence: A238G (M80V).

bVery high: ≥2500 addresses/km2; high/moderate: 1000–2500 addresses/km2; low/very low: <1000 addresses/km2.
Generally, the mcr-carrying plasmids reported in this study did not harbour as many resistance determinants as some plasmids reported in previous studies that have a similar mcr gene genetic environment. Nevertheless, nearly all isolates carried (multiple) other antibiotic resistance genes. This could complicate treatment in case of an infection.

In conclusion, professional contact with animals does not increase the chance of mcr carriage in humans in the Netherlands at present. mcr-8 was detected for the first time in the Netherlands. Although carriage of mcr-positive ColR-E/K is still very rare in both populations studied, different mcr genes were carried on four different plasmid types. Therefore surveillance of colistin resistance and its underlying mechanisms in food, humans and livestock is important in order to identify emerging trends in time.

Acknowledgements
Part of this work was presented at the Annual Scientific Meeting of the One Health European Joint Programme (10–12 June 2021, abstract number O17).

We would like to thank the PIENTER3 team for making the faecal samples and the results of the questionnaires available. Particularly we thank Roel Willems for inoculating the PIENTER3 faeces in our culture media. In addition, we would like to thank Laurent Poirel, Muna Unjam, Kees Veldman and the EURL-AR reference lab for sharing their mcr-positive control strains and Jaap Koelewijn, Cecile Dam-Deisz and Wendy van Overbeek for their help in the lab.

Funding
This research was funded by the Dutch Ministry of Health, Welfare and Sport (V/150166/21/CR).

Transparency declarations
None to declare.

Supplementary data
Table S1 is available as Supplementary data at JAC-AMR Online.

References
1 Catry B, Cavaleri M, Baptiste K et al. Use of colistin-containing products within the European Union and European Economic Area (EU/EEA): development of resistance in animals and possible impact on human and animal health. Int J Antimicrob Agents 2015; 46: 297–306.
2 Li J, Nation RL, Miline RW et al. Evaluation of colistin as an agent against multi-resistant Gram-negative bacteria. Int J Antimicrob Agents 2005; 25: 11–25.
3 WHO Advisory Group on Integrated Surveillance of Antimicrobial Resistance (AGISAR). Critically Important Antimicrobials for Human Medicine: 6th Revision. 2018. https://www.who.int/publications/i/item/9789241515528.
4 EMA. Updated Advice on the Use of Colistin Products in Animals Within the European Union. Development of Resistance and Possible Impact on Human and Animal Health: Report Number EMA/CVMP/CHMP/231573/2016. 2016. https://www.ema.europa.eu/en/documents/scientific-guideline/updated-advice-use-colistin-products-animals-within-european-union-development-resistance-possible_en-0.pdf.
5 Kempf I, Jouy E, Chauvin C. Colistin use and colistin resistance in bacteria from animals. Int J Antimicrob Agents 2016; 48: 598–606.
6 Liu YY, Wang Y, Walsh TR et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 2016; 16: 161–8.
7 Wang C, Feng Y, Liu L et al. Identification of novel mobile colistin resistance gene mcr-10. Emerg Microbes Infect 2020; 9: 508–16.
8 Gharaibeh MH, Shatnawi SQ. An overview of colistin resistance, mobilized colistin resistance genes dissemination, global responses, and the alternatives to colistin: a review. Vet World 2019; 12: 1735–46.
9 Verberk JDM, Vos RA, Mollemma L et al. Third national biobank for population-based seroprevalence studies in the Netherlands, including the Caribbean Netherlands. BMC Infect Dis 2019; 19: 470.
10 International Organization for Standardization. ISO 20776-1:2019 Susceptibility Testing of Infectious Agents and Evaluation of Performance of Antimicrobial Susceptibility Test Devices—Part 1: Broth Micro-Dilution Reference Method for Testing the In Vitro Activity of Antimicrobial Agents Against Rapidly Growing Aerobic Bacteria Involved in Infectious Diseases. ISO, 2019.
11 AbuOun M, Stubberfield EJ, Duggett NA et al. mcr-1 and mcr-2 (mcr-1/2) variant genes identified in Moraxella species isolated from pigs in Great Britain from 2014 to 2015. J Antimicrob Chemother 2018; 73: 2904.
12 Borowiak M, Fischer J, Hammel JA et al. Identification of a novel transposon-associated phosphoethanolamine transferase gene, mcr-5, conferring colistin resistance in d-tartrate fermenting Salmonella enterica subsp. enterica serovar Paratyphi B. J Antimicrob Chemother 2017; 72: 3317–24.
13 Kieffer N, Royer G, Decousser JW et al. mcr-9, an Inducible Gene Encoding an Acquired Phosphoethanolamine Transferase in Escherichia coli, and Its Origin. Antimicrob Agents Chemother 2019; 63: e00965-19.
14 Rebello AR, Bortolaia V, Kjeldgaard JS et al. Multiplex PCR for detection of plasmid-mediated colistin resistance determinants, mcr-1, mcr-2, mcr-3, mcr-4 and mcr-5 for surveillance purposes. Euro Surveill 2018; 23: 17-00672.
15 Wang X, Wang Y, Zhou Y et al. Emergence of a novel mobile colistin resistance gene, mcr-8, in NDM-producing Klebsiella pneumoniae. Emerg Microbes Infect 2018; 7: 122.
16 Yang Y-Q, Li Y-X, Lei C-W et al. Novel plasmid-mediated colistin resistance gene mcr-7.1 in Klebsiella pneumoniae. J Antimicrob Chemother 2018; 73: 1791–5.
17 Bankevich A, Nurk S, Antipov D et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19: 455–77.
18 Hendrickx APA, Landman F, de Haan A et al. Plasmid diversity among genetically related Klebsiella pneumoniae bla&MPC-2 and bla&MPC-3 isolates collected in the Dutch national surveillance. Sci Rep 2020; 10: 16778.
19 Wick RR, Judd LM, Gorrée CL et al. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 2017; 13: e1005595.
20 van Hoek A, van Veldhuizen NJ, Friesema I et al. Comparative genomics reveals a lack of evidence for pigeons as a main source of stx2F-carrying Escherichia coli causing disease in humans and the common existence of hybrid Shiga toxin-producing and enteropathogenic E. coli pathotypes. BMC Genomics 2019; 20: 271.
21 Carattoli A, Zankari E, Garcia-Fernandez A et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 2014; 58: 3895–903.
22 Bortolaia V, Kaas RS, Ruppe E et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother 2020; 75: 3491–500.

23 Manageiro V, Clemente L, Romao R et al. IncX4 plasmid carrying the new mcr-1.9 gene variant in a CTX-M-8-producing Escherichia coli isolate recovered from swine. Front Microbiol 2019; 10: 367.

24 Saloum T, Panossian B, Bitar I et al. First report of plasmid-mediated colistin resistance mcr-8.1 gene from a clinical Klebsiella pneumoniae isolate from Lebanon. Antimicrob Resist Infect Control 2020; 9: 94.

25 Brouwer MSM, Goodman RN, Kant A et al. Mobile colistin resistance gene mcr-1 detected on an IncI1 plasmid in Escherichia coli from meat. J Glob Antimicrob Resist 2020; 23: 145–8.

26 Liu H, Zhu B, Liang B et al. A novel mcr-1 variant carried by an Inc12-type plasmid identified from a multidrug resistant enterotoxigenic Escherichia coli. Front Microbiol 2018; 9: 815.

27 Nethmap/MARAN 2020. Monitoring of Antimicrobial Resistance and Antibiotic Usage in Animals in the Netherlands in 2019. https://www.wur.nl/nl/show/Nethmap-MARAN-2020.htm.

28 van Dijk M, Taverne F. Antibioticumgebruik bij Gezelschapsdieren: Uitkomsten van een Survey Onder Dierenartspraktijken Over de Jaren 2012 t/m 2014. 2016. https://cdn.i-pulse.nl/autoriteitdiergeneesmiddelen/userfiles/Publicaties/def-sda-rapport-antibioticumgebruik-bij-gezelschapsdieren.pdf.

29 Nethmap/MARAN 2019. Monitoring of Antimicrobial Resistance and Antibiotic Usage in Animals in the Netherlands in 2018. https://www.wur.nl/nl/show/Nethmap-MARAN-2019-rapport.htm.

30 Terveer EM, Nijhuis RHT, Crobach MJ et al. Prevalence of colistin resistance gene (mcr-1) containing Enterobacteriaceae in feces of patients attending a tertiary care hospital and detection of a mcr-1 containing, colistin susceptible E. coli. PLoS One 2017; 12: e0178598.

31 Bourrel AS, Poirel L, Royer G et al. Colistin resistance in Parisian inpatient faecal Escherichia coli as the result of two distinct evolutionary pathways. J Antimicrob Chemother 2019; 74: 1521–30.

32 Zurfluh K, Stephan R, Widmer A et al. Screening for fecal carriage of MCR-producing Enterobacteriaceae in healthy humans and primary care patients. Antimicrob Resist Infect Control 2017; 6: 28.

33 Wang Y, Xu C, Zhang R et al. Changes in colistin resistance and mcr-1 abundance in Escherichia coli of animal and human origins following the ban of colistin-positive additives in China: an epidemiological comparative study. Lancet Infect Dis 2020; 20: 1161–71.

34 van den Bunt G, van Pelt W, Hidalgo L et al. Prevalence, risk factors and genetic analysis of extended-spectrum β-lactamase and carbapenemase-producing Enterobacteriaceae (ESBL-E and CPE): a community-based cross-sectional study, the Netherlands, 2014 to 2016. Euro Surveill 2019; 24: 1800594.

35 Arcilla MS, van Hattem JM, Matamoros S et al. Dissemination of the mcr-1 colistin resistance gene. Lancet Infect Dis 2016; 16: 147–9.

36 StatLine Bevolking. Kerncijfers 2019. https://opendata.cbs.nl/statline/#/CBS/nl/dataset/37296NED/table? fromstatweb.

37 Matamoros S, van Hattem JM, Arcilla MS et al. Global phylogenetic analysis of Escherichia coli and plasmids carrying the mcr-1 gene indicates bacterial diversity but plasmid restriction. Sci Rep 2020; 10: 2963.

38 Savin M, Bierbaum G, Blau K et al. Colistin-resistant Enterobacteriaceae isolated from process waters and wastewater from German poultry and pig slaughterhouses. Front Microbiol 2020; 11: 575391.

39 Bonnin RA, Bernabeu S, Jaureguy F et al. MCR-8 mediated colistin resistance in a carbapenem-resistant Klebsiella pneumoniae isolated from a repatriated patient from Morocco. Int J Antimicrob Agents 2020; 55: 105920.

40 Li J, Liu S, Fu J et al. Co-occurrence of colistin and meropenem resistance determinants in a Stenotrophomonas strain isolated from sewage water. Microb Drug Resist 2019; 25: 317–25.

41 Ma K, Feng Y, Liu L et al. A cluster of colistin- and carbapenem-resistant Klebsiella pneumoniae carrying blaNDM-1 and mcr-8.2. J Infect Dis 2020; 221: Suppl 2: S237–42.

42 Wang X, Wang Y, Zhou Y et al. Emergence of colistin resistance gene mcr-8 and its variant in Raoultella ornithinolytica. Front Microbiol 2019; 10: 228.

43 Yang X, Liu L, Wang Z et al. Emergence of mcr-8.2-bearing Klebsiella quasipneumoniae of animal origin. J Antimicrob Chemother 2019; 74: 2814–7.

44 Farzana R, Jones LS, Barratt A et al. Emergence of mobile colistin resistance (mcr-8) in a highly successful Klebsiella pneumoniae sequence type 15 clone from clinical infections in Bangladesh. mSphere 2020; 5: e00023-20.

45 Hadjadi L, Baron SA, Olaitan AO et al. Co-occurrence of variants of mcr-3 and mcr-8 genes in a Klebsiella pneumoniae isolate from Laos. Front Microbiol 2019; 10: 2720.

46 Nabti LZ, Sahli F, Ngaiganam EP et al. Development of real-time PCR assay allowed describing the first clinical Klebsiella pneumoniae isolate harboring plasmid-mediated colistin resistance mcr-8 gene in Algeria. J Glob Antimicrob Resist 2020; 20: 266–71.