A WinBUGS code for ignorable analysis in Section 5.1.1

model{
 for(i in 1:409){
 ## the conditional distribution of Y
 Y[i] ~ dnorm(mu[i], inv_tau)
 mu[i] <- alpha_0*(1-Z[i]) + alpha_1*Z[i] + beta_1[1]*X[i,1] + beta_1[2]*X[i,2] + beta_1[3]*X[i,3] + beta_1[4]*X[i,4]

 ## distribution of X including baseline score X[i,1] and indicators of center X[i,2:5]
 X[i,1] ~ dnorm(muX[i], inv_sigma)
 muX[i] <- alpha_00 + beta_0[1]*X[i,2] + beta_0[2]*X[i,3] + beta_0[3]*X[i,4]
 X[i,2:5] ~ dmulti(prX[1:4], 1)
 }

 ## conditional mean of Y for each Z
 avg_Y0 <- alpha_00 + beta_0[1]*prX[1] + beta_0[2]*prX[2] + beta_0[3]*prX[3]
 m0 <- alpha_0 + beta_1[1]*avg_Y0 + beta_1[2]*prX[1] + beta_1[3]*prX[2] + beta_1[4]*prX[3]
 m1 <- alpha_1 + beta_1[1]*avg_Y0 + beta_1[2]*prX[1] + beta_1[3]*prX[2] + beta_1[4]*prX[3]

 ## treatment effect
 theta <- alpha_1 - alpha_0

 ## priors
 for(k in 1:3){
 beta_0[k] ~ dnorm(0, 0.001)
 beta_1[k] ~ dnorm(0, 0.001)
 }
}
alpha_00 ~ dnorm(0, 0.001)
alpha_0 ~ dnorm(0, 0.001)
alpha_1 ~ dnorm(0, 0.001)
beta_1[4] ~ dnorm(0, 0.001)
inv_sigma ~ dgamma(0.01, 0.01)
inv_tau ~ dgamma(0.01, 0.01)
prX[1:4] ~ ddirich(a[])
}

B WinBUGS code for nonignorable analysis in Section 5.1.2

model{
for(i in 1:409){
 ## the conditional distribution of Y
 Y[i] ~ dnorm(mu[i], inv_tau)
 mu[i] <- alpha_0[R[i]]*(1-Z[i]) + alpha_1[R[i]]*Z[i] + beta_1[1]*X[i,1] + beta_1[2]*X[i,2]
 + beta_1[3]*X[i,3] + beta_1[4]*X[i,4]

 ## distribution of X including baseline score X[i,1] and indicators of center X[i,2:5]
 X[i,1] ~ dnorm(muX[i], inv_sigma)
 muX[i] <- alpha_00 + beta_0[1]*X[i,2] + beta_0[2]*X[i,3] + beta_0[3]*X[i,4]
 X[i,2:5] ~ dmulti(prX[1:4], 1)

 ## hazard model for the pattern
 for(j in 1:3){
 logit(h[i,j]) <- lambda_0[j] + lambda_Z*Z[i] + lambda_X[1]*X[i,1] + lambda_X[2]*X[i,2]
 + lambda_X[3]*X[i,3] + lambda_X[4]*X[i,4]
 }

 ## probabilities for being in each pattern
 R[i] ~ dcat(p[i,1:4])
 p[i,1] <- h[i,1]
 p[i,2] <- h[i,2]*(1 - p[i,1])
 p[i,3] <- h[i,3]*(1 - p[i,1] - p[i,2])
 p[i,4] <- 1 - sum(p[i,1:3])
}

MC integration
create L responses with covariates for each Z
for(i in 1:L){
 Z.mc[i] <- 0
}
\begin{verbatim}
Z_mc[i+L] <- 1

for(i in 1:L2){
 X_mc[i,1] ~ dnorm(muX_mc[i], inv_sigma)
 muX_mc[i] <- alpha_00 + beta_0[1]*X_mc[i,2] + beta_0[2]*X_mc[i,3] + beta_0[3]*X_mc[i,4]
 X_mc[i,2:5] ~ dmulti(prX[1:4], 1)

 ## conditional mean of Y for each pattern
 for(k in 1:4){
 mu_mc[i,k] <- alpha_0[k]*(1-Z_mc[i]) + alpha_1[k]*Z_mc[i] + beta_1[1]*X_mc[i,1]
 + beta_1[2]*X_mc[i,2] + beta_1[3]*X_mc[i,3] + beta_1[4]*X_mc[i,4]
 }

 ## hazard model
 for(j in 1:3){
 logit(h_mc[i, j]) <- lambda_0[j] + lambda_Z*Z_mc[i] + lambda_X[1]*X_mc[i,1]
 + lambda_X[2]*X_mc[i,2] + lambda_X[3]*X_mc[i,3] + lambda_X[4]*X_mc[i,4]
 }

 ## probabilities for being in each pattern
 p_mc[i,1] <- h_mc[i,1]
 p_mc[i,2] <- h_mc[i,2]*(1 - p_mc[i,1])
 p_mc[i,3] <- h_mc[i,3]*(1 - p_mc[i,1] - p_mc[i,2])
 p_mc[i,4] <- 1 - sum(p_mc[i,1:3])

 ## average over patterns
 avg_mu_mc[i] <- mu_mc[i,1]*p_mc[i,1] + mu_mc[i,2]*p_mc[i,2] + mu_mc[i,3]*p_mc[i,3]
 + mu_mc[i,4]*p_mc[i,4]
}

treatment effect on means
m0 <- mean(avg_mu_mc[1:L])
ml <- mean(avg_mu_mc[(L+1):L2])
theta <- ml - m0

priors for identified parameters
for(k in 1:3){
 alpha_0[k] ~ dnorm(0, 0.001)
 alpha_1[k] ~ dnorm(0, 0.001)
 beta_0[k] ~ dnorm(0, 0.001)
 lambda_0[k] ~ dnorm(0, 0.001)
}

for(j in 1:4){
 beta_1[j] ~ dnorm(0, 0.001)
 lambda_X[j] ~ dnorm(0, 0.001)
}
\end{verbatim}
\begin{verbatim}
alpha_00 ~ dnorm(0, 0.001)
lambda_Z ~ dnorm(0, 0.001)
inv_tau ~ dgamma(0.01, 0.01)
inv_sigma ~ dgamma(0.01, 0.01)
prX[1:4] ~ ddirich(a[])

priors for unidentified parameters
alpha_0[4] <- zeta_00 + zeta_01*(K+C)
alpha_1[4] <- zeta_01 + zeta_11*(K+C)
zeta_00 <- inprod(M[1,], alpha_0[1:3])
zeta_10 <- inprod(M[2,], alpha_0[1:3])
zeta_01 <- inprod(M[1,], alpha_1[1:3])
zeta_11 <- inprod(M[2,], alpha_1[1:3])
\end{verbatim}

C WinBUGS code for two pattern model in Section 5.1.3

model{
for(i in 1:409){
the conditional distribution of Y
Y[i] ~ dnorm(mu[i], inv_tau)
mu[i] <- alpha_0[R[i]]*(1-Z[i]) + alpha_1[R[i]]*Z[i] + beta_1[1]*X[i,1]
+ beta_1[2]*X[i,2] + beta_1[3]*X[i,3] + beta_1[4]*X[i,4]

distribution of X including baseline score X[i,1] and indicators of center X[i,2:5]
X[i, 1] ~ dnorm(muX[i], inv_sigma)
muX[i] <- alpha_00 + beta_0[1]*X[i,2] + beta_0[2]*X[i,3] + beta_0[3]*X[i,4]
X[i, 2:5] ~ dmulti(prX[1:4], 1)

hazard model
logit(h[i]) <- lambda_0 + lambda_Z*Z[i] + lambda_X[1]*X[i,1] + lambda_X[2]*X[i,2]
+ lambda_X[3]*X[i,3] + lambda_X[4]*X[i,4]

probabilities for being in each pattern
R[i] ~ dcat(p[i, 1:2])
p[i, 1] <- h[i]
p[i, 2] <- 1 - h[i]
}

MC integration
create L responses with covariates for each Z
for(i in 1:L){
 Z_mc[i] <- 0
 Z_mc[i+L] <- 1
}

for(i in 1:L2){
 X_mc[i, 1] ~ dnorm(muX_mc[i], inv_sigma)
 muX_mc[i] <- alpha_00 + beta_0[1]*X_mc[i,2] + beta_0[2]*X_mc[i,3] + beta_0[3]*X_mc[i,4]
 X_mc[i, 2:5] ~ dmulti(prX[1:4], 1)
}

conditional mean of Y for each pattern
for(k in 1:2){
 mu_mc[i, k] <- alpha_0[k]*(1-Z_mc[i]) + alpha_1[k]*Z_mc[i] + beta_1[1]*X_mc[i,1] + beta_1[2]*X_mc[i,2] + beta_1[3]*X_mc[i,3] + beta_1[4]*X_mc[i,4]
}

hazard model
logit(h_mc[i]) <- lambda_0 + lambda_Z*Z_mc[i] + lambda_X[1]*X_mc[i,1] + lambda_X[2]*X_mc[i,2] + lambda_X[3]*X_mc[i,3] + lambda_X[4]*X_mc[i,4]

probabilities for being in each pattern
p_mc[i, 1] <- h_mc[i]
p_mc[i, 2] <- 1 - h_mc[i]

average over patterns
avg_mu_mc[i] <- mu_mc[i,1]*p_mc[i,1] + mu_mc[i,2]*p_mc[i,2]

compute the mean of the L response Y2 for each Z
m0 <- mean(avg_mu_mc[1:L])
m1 <- mean(avg_mu_mc[(L+1):L2])
theta <- m1 - m0

priors
alpha_0[1] ~ dnorm(0, 0.001)
alpha_1[1] ~ dnorm(0, 0.001)
alpha_0[2] <- alpha_0[1] + delta_0
alpha_1[2] <- alpha_1[1] + delta_1
for(k in 1:3){
beta_0[k] ~ dnorm(0, 0.001)
beta_1[k] ~ dnorm(0, 0.001)
lambda_X[k] ~ dnorm(0, 0.001)
}

lambda_0 ~ dnorm(0, 0.001)
alpha_00 ~ dnorm(0, 0.001)
beta_1[4] ~ dnorm(0, 0.001)
lambda_X[4] ~ dnorm(0, 0.001)
lambda_Z ~ dnorm(0, 0.001)
lambda_Y ~ dnorm(0, 0.001)
inv_sigma ~ dgamma(0.01, 0.01)
inv_tau ~ dgamma(0.01, 0.01)
prX[1:4] ~ ddirich(a[])

D Estimates of models in Sections 5.1.2 and 5.2
Table 1: Posterior summaries for observed data parameters in the RAM-PMM in Section 5.1.2.

parameter	mean	95% CI
$\alpha_0^{(1)}$	23.7	(18.7, 28.5)
$\alpha_0^{(2)}$	23.6	(18.2, 29.1)
$\alpha_0^{(3)}$	19.8	(12.9, 26.7)
$\alpha_1^{(1)}$	23.8	(19.03, 28.5)
$\alpha_1^{(2)}$	22.5	(16.8, 28.1)
$\alpha_1^{(3)}$	20.4	(12.9, 28.1)
$\beta_1[1]$	0.5	(0.4, 0.6)
$\beta_1[2]$	-0.8	(-5.1, 3.5)
$\beta_1[3]$	-4.1	(-7.3, -0.9)
$\beta_1[4]$	0.3	(-3.8, 4.4)
λ_0	0.1	(-0.7, 0.8)
λ_1	2.1	(1.3, 2.98)
λ_2	0.7	(-0.2, 1.6)
λ_z	-0.3	(-0.6, 0.01)
$\lambda_x[1]$	0.002	(-0.01, 0.02)
$\lambda_x[2]$	-1.5	(-2.04, -1.02)
$\lambda_x[3]$	0.5	(-0.1, 0.99)
$\lambda_x[4]$	-1.3	(-1.7, -0.8)

Table 2: Posterior summaries for parameters which are a function of the sensitivity parameter C in the RAM-PMM in Section 5.1.2.

C	0	1	2	3				
parameter	mean	95% CI						
$\alpha_0^{(4)}$	20.5	(13.8, 27.1)	18.6	(9.5, 27.5)	16.7	(5.1, 28.2)	14.98	(0.8, 29.3)
$\alpha_1^{(4)}$	20.5	(13.4, 27.7)	18.9	(8.8, 28.8)	17.2	(4.1, 30.3)	15.7	(-0.7, 32.2)
Table 3: Parameter estimates in the RAM-SM response (linear regression) model.

parameter	estimate	95% CI
β_0^*	23.3	(18.3, 28.3)
θ	-1.5	(-3.8, 0.8)
$\beta^*[1]$	0.5	(0.4, 0.6)
$\beta^*[2]$	-1.1	(-4.5, 2.2)
$\beta^*[3]$	-3.2	(-6.4, 0.1)
$\beta^*[4]$	0.9	(-2.3, 4.1)

Table 4: Parameter estimates in the RAM-SM missing data mechanism.

parameter	estimate	95% CI
λ_{01}	-0.6	(-1.8, 0.6)
λ_{02}	1.7	(0.5, 2.9)
λ_{03}	0.5	(-0.7, 1.7)
γ	-1.2	(-2.6, 0.2)
$\lambda[1]$	-0.02	(-0.04, -0.003)
$\lambda[2]$	-1.7	(-2.3, -1.1)
$\lambda[3]$	0.7	(0.1, 1.2)
$\lambda[4]$	-1.5	(-2.1, -0.9)
δ_1	0.04	(0.01, 0.1)
δ_2	0.03	(-0.01, 0.1)