DETERMINATION OF PRIORITIES OF ELEMENTARY SCHOOL REHABILITATION AT ASAHAN USING SIMPLE ADDICTIVE WEIGHT

Dian Aprillia1*, William Ramdhan2, Wan Mariatul Kifti3

Jurusan Informasi
STMIK Royal Kisaran,
Kabupaten Asahan, Indonesia
https://stmikroyal.ac.id/
daprillia827@gmail.com1*, william.ramdhan052@gmail.com2, kifti.inti@gmail.com3
(*)Corresponding Author

Abstract
In the budgeting process for school building rehabilitation activities in Asahan Regency, there are still inaccuracies in selecting prioritized primary schools for rehabilitation. This study aimed to apply the Simple Additive Weighting (SAW) method to determine five primary schools that were prioritized for repair. This research method uses quantitative methods. The data source comes from the East Kisaran and West Kisaran Elementary Schools. The data were analyzed using the SAW method based on the criteria weight depending on the matrix value and normalization. The results showed the 5 largest criteria weights, namely UPTD SDN 010097 Selawan (0.940), UPTD SDN 014689 Lestari (0.884), UPTD SDN 010039 Sentang (0.880), SD Taman Kasih Karunia (0.847), and UPTD SDN 018453 Siumbut-Umbut (0.820). This study concluded that the double exponential smoothing method could make it easier to determine which primary school decisions are prioritized for rehabilitation.

Keywords: decision support; elementary school; priority; rehabilitation; simple additive weighting

INTRODUCTION
School facilities and infrastructure are components of education, which is also the main problem faced by schools (Wardani, 2021). It is due to the limitations of school facilities and the lack of good management from the manager, such as damaged school buildings, inadequate learning media, and lack of classrooms so that there is one study group placed in a multimedia room that is not by the standard of classroom size. (Sahid & Rachlan, 2019). Lack of planning in the procurement of facilities so that procurement activities often occur that do not match the specifications needed by users, uneven distribution of facilities, and lack of care and maintenance of existing infrastructure facilities (Sahid & Rachlan, 2019). Damaged school buildings can affect the quality of education for students because children are psychologically not comfortable studying in buildings that are almost collapsed (Bustari, 2016).

In budgeting for school building rehabilitation activities in Asahan Regency, there are often inaccuracies in selecting schools that need to be rehabilitated, considering that currently, the rehabilitation of primary schools is only based on

The work is distributed under the Creative Commons Attribution-NonCommercial 4.0 International License
the level of the worst damage. The factors that cause inaccuracy in budgeting are the absence of an accurate database of school conditions and a comprehensive system for determining the priority scale for handling school building maintenance. So far, the determination of the priority scale for handling school building maintenance only focuses on the criteria for the level of damage.

Schools that should be more deserving of maintenance but do not receive care. In other cases, the status of the land is not clear, but it is receiving rehabilitation. As a result, there is often an inaccuracy in determining the priority of handling the maintenance of school buildings that really must be rehabilitated, considering that currently, the rehabilitation of primary schools is only based on the level of the worst damage (Mulyadi, 2019).

The decision support system can be used as a tool to make a decision on which primary school is the priority for rehabilitation (Prasetya, 2019), so it is hoped that it can help the Asahan District Education Office in making policy decisions, to obtain valid, objective and reliable information about elementary schools that are priority rehabilitation.

The simple additive weighting (SAW) method is a decision support system that can select the best alternative from several other options because of the ranking process after determining the weight for each attribute. The simple additive weight (SAW) method is often also known as the weighted addition method. The basic concept of the simple additive weighting (SAW) method is to find the weighted sum of the performance ratings for each alternative on all attributes. The simple additive weighting (SAW) method is recommended to solve the selection problem in a multi-process decision-making system. The simple additive weighting (SAW) method is a method that is widely used in decision-making that has many attributes (Friyadie, 2016) (Lubis & Fadil, 2020). This study aims to apply the SAW method to objectively determine priority primary schools for rehabilitation in Asahan.

RESEARCH METHODS

Type of Research
This type of research is quantitative research.

Time and Place of Research
This research was conducted from February 2022 to June 2022. The study was conducted at the Department of Education in the Head of Profile. JL Ahmad Yani, Kisaran Naga.

1. Problem Identification
Problem identification is the first step in applying simple additive weighting. Problem identification aims to determine the appropriate data to be analyzed using the simple additive weighting method.

2. Method, Source, and Data Collecting
This research method is qualitative. The data used in this study is the data of the East Kisaran and West Kisaran Regional Elementary Schools. The techniques used for data collection include the following:

a) Field Research
In field research, researchers directly visit the research site and take the data needed for research. The field research was conducted using direct interviews with the Principals of Kisaran Timur and Kisaran Barat Elementary Schools.

b) Literature Research
Literature research is carried out by collecting references from journals or academic books related to the problems discussed and used as support for comparisons in thesis completion.

3. Data Collecting
At this stage, the data obtained is processed into new information that is easier to understand.

4. Data Analysis
After the data is processed, the system is analyzed using the SAW method based on the matrix value, normalization, and the number of weights as parameters in making decisions.

RESULT AND DISCUSSION

The decision support system is interactive, helping decision-making through data and decision models to solve semi-structured and unstructured problems. The basic concept of the simple additive weighting method is to find the weighted sum of the performance ratings for each alternative on all attributes (Resti, 2017).

The problems identified were the problems faced by the Asahan District Education Office. Namely, the assessment team's selection of primary schools prioritized for rehabilitation was still carried out manually, so it was inefficient to use the budget because every performance assessment always carried out procurement and doubling instruments. In addition, there is much interest in providing an evaluation of the selection of primary schools as a priority for rehabilitation so that the assessment is not carried out transparently. A decision support system, namely SAW, is needed to
overcome these obstacles. The data analyzed in this study are referred to as criteria data which can be seen in Table 1.

Table 1. Criteria

No.	Alternative	Criteria
1.	C1	Building Age
2.	C2	Number of Students
3.	C3	Operational Permit
4.	C4	Rate of damage
5.	C5	Facilities

After the criteria data was determined, the criteria conversion was carried out. Conversion of standards is the value of the existing criteria for the calculation process. Values in the conversion criteria consist of 1 to 5. Conversion criteria can be seen in Tables 2, 3, and 4.

Table 2. Conversion of Building Age Criteria

Building Age (Years)	Value
>6	5
5-6	4
4-5	3
3-4	2
1-2	1

Table 3. Conversion of Student Criteria

Number of Students	Value
>200	5
151-200	4
101-150	3
51-100	2
10-50	1

Table 4. Conversion of Criteria for Operational Permits

Operational Permits (Month)	Value
49-60	5
37-48	4
25-36	3
13-24	2
0-12	1

Table 5. Conversion of Damage Level Criteria

Rate of Damage	Value
Worst (>50%)	5
Poor (41%-50%)	4
Pretty Good	3
Good (21% - 30%)	2
Very Good (10 % - 20%)	1

After the conversion of criteria is carried out, the standard weights are determined. See tables 5 and 6, which are useful for describing the criteria' importance. The importance of the requirements can be seen in Table 7.

Table 7. Criteria Weight

Alternative	Criteria	Weight	Attribute
C1	Building Age	5	Benefit
C2	Number of Students	2	Benefit
C3	Operational Permit	4	Benefit
C4	Rate of damage	3	Benefit
C5	Facilities	1	Benefit

Furthermore, the name of the education unit is determined as the data to be decided by the SAW method. The decision by the SAW method is based on the value of the decision matrix. The value of the decision matrix is the value of each alternative against each criterion. The value is based on the value of the previously converted criteria. Decision makers provide alternative values based on the level of importance of each criterion needed (Setiawan, 2017). The SAW method requires normalizing the decision matrix to a scale that can be compared with all available alternative ratings. The decision matrix can be seen in Table 8.

Table 8. Decision Matrix Value

Code	Alternative	C1	C2	C3	C4	C5
A1	SDs Ir Ar-Reja	3	4	4	4	4
A2	SD Taman Kasih Karunia	5	4	4	4	4
A3	UPTD SDN 010039 Sentang	4	5	4	5	2
A4	UPTD SDN 010086 Selawon	5	3	3	5	3
A5	UPTD SDN 010087 Selawon	3	3	4	4	2
A6	UPTD SDN 010088 Selawon	4	4	5	4	4
A7	UPTD SDN 010093 Selawon	5	3	4	3	3
A8	UPTD SDN 010096 Karang Anjer	2	3	4	4	4
A9	UPTD SDN 010097 Selawon	5	4	5	5	4
The SAW method requires the process of normalizing the decision matrix (X) to a scale that can be compared with all available alternative ratings (Susilowati et al., 2019) (Pratama et al., 2017) (Buraehar, 2020). The calculation of the normalization matrix starts from the values that have been collected from each alternative and its criteria. Normalization of this matrix is used to find the value of the performance rating on each criterion (Wiyono, 2017). Previous studies used the decision and normalization matrix to determine the ranking (Muilty, 2016). Normalization matrix values can be seen in Table 9. After obtaining the normalized matrix value, the number of weights is calculated by adding the product of the normalized matrix with the weight value. The normalized matrix values can be seen in Table 10.

Code	Alternative	C1	C2	C3	C4	C5
A10	UPTD SDN 013849	3	3	3	5	4
A11	UPTD SDN 013853	4	4	4	5	4
A12	UPTD SDN 013854	3	3	4	4	4
A13	UPTD SDN 013855	2	4	4	4	4
A14	UPTD SDN 013856	5	5	3	3	4
A15	UPTD SDN 014671 Sentang	3	5	4	4	3
A16	UPTD SDN 014685	4	5	3	4	3
A17	UPTD SDN 014689	3	3	4	3	3
A18	UPTD SDN 015921	1	4	4	3	3
A19	UPTD SDN 017108 Sentang	4	3	5	4	3
A20	UPTD SDN 018065	3	4	2	5	3
A21	UPTD SDN 018453	5	3	4	4	4
A22	SD Harapan Bunut	2	4	2	3	3
A23	SD Islam Manaul Hidayah	3	3	3	5	5
A24	SD Swasta Al Washiyah 74	1	1	1	6	5
A25	SD Tamam Siswa Sidodadi	4	2	5	3	3
A26	SD Tpi Kisaran	3	3	3	3	4

Elementary School	C1	C2	C3	C4	C5
UPTD SDN 013853	0.8	0.8	0.8	1	0.5
UPTD SDN 013854	0.6	0.6	0.6	0.8	0.5
UPTD SDN 013855	0.4	0.8	0.8	0.8	0.5
UPTD SDN 013856	1	1	0.6	0.6	0.667
UPTD SDN 014671	0.6	1	0.8	0.6	0.567
UPTD SDN 014685	0.8	1	0.6	0.8	0.667
UPTD SDN 014689	1	1	0.8	0.6	0.667
UPTD SDN 015921	0.6	0.8	0.8	0.6	0.667
UPTD SDN 017108	0.8	0.6	1	0.8	0.667
UPTD SDN 018065	0.6	0.8	0.4	1	0.667
UPTD SDN 018453	1	0.6	0.8	0.8	1
SD Harapan Bunut	0.4	0.8	0.4	0.6	0.667
SD Islam Manaul Hidayah	0.6	0.6	0.6	1	0.667
SD Swasta Al Washiyah 74	0.2	0.8	0.8	1	0.5
SD Tpi Kisaran	0.8	0.4	1	0.6	0.667
SD Tpi Kisaran	0.6	0.6	0.6	0.6	0.5

Table 10. Total Weight
adjusted to the type of attribute so that it can obtain a normalized matrix, \(R \), and ranking as the final result, by adding the normalized matrix multiplication \(R \) with the weight vector, the largest value was selected as the best alternative (Ermin, Sunardi, & Fadil, 2020).

CONCLUSIONS AND SUGGESTIONS

Conclusion

The SAW method as a decision support system can determine the priority of primary school rehabilitation at the Asahan District Education Office based on the number of weights. The SAW method states that 5 elementary schools are entitled to rehabilitation based on the largest number of weights, namely UPTD SDN 010097 Selawan (0.940), UPTD SDN 014689 Lestari (0.884), UPTD SDN 010039 Sentang (0.880), SD Taman Kasih Karunia (0.847), and UPTD SDN 018453 Siumbut-Umbut (0.820).

Suggestion

The SAW method should also be compared with other methods to strengthen the decision support system’s results.

REFERENCES

Buraerah, M. F. (2020). Penerapan Metode Simple Additive Weighting (SAW) Dalam Menentukan Karakteristik Lahan Terbaik Untuk Tanaman Ubi Jalar (Ipomoea batatas L.). *Smart Comp: Jurnalnya Orang Pintar Komputer*, 9(2), 80–84. https://doi.org/10.30591/smartcomp.v9i2.1

Ermin, E., Sunardi, S., & Fadil, A. (2020). Metode Simple Additive Weighting Pada Penentuan Penerimaan Karyawan. *Format: Jurnal Ilmiah Teknik Informatika*, 8(2), 125. https://doi.org/10.22441/format.2019.v8i2.005

Friyadie, F. (2016). Penerapan Metode Simple Additive Weight (Saw) Dalam Sistem Pendukung Keputusan Promosi Kenaikan Jabatan. *Jurnal Pilar Nusa Mandiri*, 12(1), 37–45. https://doi.org/10.33480/pilarv12i1.257

Helilintar, R., Winarno, W. W., & Fatta, H. Al. (2016). Penerapan Metode SAW dan Fuzzy Dalam Sistem Pendukung Keputusan Penerimaan Beasiswa. *Creative Information Technology Journal*, 3(2), 89. https://doi.org/10.24076/citec.2016v3i2.68

Lubis, D. J., & Fadil, N. M. (2020). Penerapan Metode

Code	Name	Weigh t	Ranki ng
A11	UPTD SDN 013853 Selawan	0.820	7
A12	UPTD SDN 013854 Selawan	0.633	22
A13	UPTD SDN 013855 Selawan	0.647	21
A14	UPTD SDN 013856 Selawan	0.780	10
A15	UPTD SDN 014671 Sentang	0.700	15
A16	UPTD SDN 014685 Siumbut-Umbut	0.764	12
A17	UPTD SDN 014689 Lestari	0.884	16
A18	UPTD SDN 015921 Kedai Ledang	0.684	9
A19	UPTD SDN 017108 Sentang	0.818	20
A20	UPTD SDN 018065 Teladan	0.658	20
A21	UPTD SDN 018453 Siumbut-Umbut	0.820	5
A22	SD Harapan Bunut	0.511	26
A23	SD Islam Manbal Hidayah	0.684	18
A24	SD Swasta Al Washliyah 74	0.620	23
A25	SD Taman Siswa Sido dadi	0.751	13
A26	SD Tpi Kisaran	0.593	25

Based on Table 10, 5 elementary schools that deserve rehabilitation are 5 elementary schools with the 5 largest weight values, namely UPTD SDN 010097 Selawan (0.940), UPTD SDN 014689 Lestari (0.884), UPTD SDN 010039 Sentang (0.880), SD Taman Kasih Karunia (0.847), and UPTD SDN 018453 Siumbut-Umbut (0.820). The greater the number of weights, the greater the opportunity to receive the largest value was selected as the best alternative (Setiadi et al., 2018; Topadang et al., 2020). Analysis with the SAW method uses predetermined criteria to reference the ranking (Syam & Rabidin, 2019)(Helilintar, Winarno, & Fatta, 2016). The ranking process is the sum of the normalized matrix multiplication \(R \) with the preference weight vector so that the largest value is chosen as the best alternative(Subagio et al., 2017). The research stage in the application of the SAW method consists of determining the criteria that will be used as a reference in decision making, determining the suitability of each alternative for each criterion, making a decision matrix based on the criteria \(C_j \) then normalizing the matrix based on the equation

The work is distributed under the Creative Commons Attribution-NonCommercial 4.0 International License
SAW (Simple Additive Weighting) untuk Menentukan Siswa Bermasalah di SMK Taruna Terpadu 2 Bogor. Teknol: Jurnal Ilmiah Teknologi Informasi Dan Sains, 10(1), 35–44. https://doi.org/10.36350/jbs.v10i1.76
Mulyadi, 2019. Prosedur Penentuan Prioritas Pemeliharaan Gedung Sekolah Menengah Atas Negeri Di Kabupaten Balangan. Jurnal Teknologi Berkelanjutan, 8(1), 1-5.
Mulyati, S. (2016). Penerapan Metode Simple Additive Weighting Untuk Penentuan Prioritas Pemasaran Produk Bakso Sapri. Jurnal Digit, 5(2), 159–170.
Pratama, M. N. P., Sevtiana, A., & Martha, D. (2017). Penerapan Metode Simple Additive Weighting (Saw) Pada Sistem Seleksi Penerimaan Calon Siswa Baru (Studi Kasus: Smk Negeri 1 Cirebon). Jurnal Digest, 5(2), 33–37.
Prasetia, M. 2019. Sistem Pendukung Kepustusan Prioritas Rehabilitasi Bangunan Sdn/Min Di Kabupaten Pulang Pisau. Jurnal Teknologi Berkelanjutan, 8(2), 41-49.
Resti, N. C. (2017). Penerapan Metode Simple Additive Weighting (SAW) pada Sistem Pendukung Keputusan Pemilihan Lokasi untuk Cabang Baru Toko Pakan UD. Indo Multi Fish. Intensif, 1(2), 102. https://doi.org/10.29407/intensif.v1i2.839
Sahid, D.R. & Rachlan, E.R. 2019. Pengelolaan Fasilitas Pembelajaran Guru dalam Meningkatkan Mutu Pembelajaran Pendidikan Jasmani di Sekolah Menengah Kejuruan (SMK). Indonesian Journal of Education Management and Administration Review, 3(1), 25-39.
Setiadi, A., Yunita, Y., & Ningsih, A. R. (2018). Penerapan Metode Simple Additive Weighting(SAW) Untuk Pemilihan Siswa Terbaik. Jurnal Sisfokom (Sistem Informasi Dan Komputer), 7(2), 104–109. https://doi.org/10.32736/sisfokom.v7i2.572
Setiawan, A. (2017). Implementasi Metode SAW Dalam Penerimaan Siswa Baru Pada SMA Negeri 16 Medan. Jurasis (Jurnal Riset Sistem Informasi Dan Teknik Informatika), 2(1), 96. https://doi.org/10.30645/jurasis.v2i1.23
Sigit Eko Wiyono, L. (2017). Penerapan Metode Simple Additive Weighting (Saw) Pada Sakinah Supermarket Untuk. 26(1), 24–28.
Subagio, R. T., Abdullah, M. T., & Jaenudin. (2017). Penerapan Metode SAW (Simple Additive Weighting) dalam Sistem Pendukung Keputusan untuk Menentukan Penerima Beasiswa. Prosiding SAINTIKS FTK UNIKOM, 2, 61–68.
Susilowati, T., Sucipto, S., Nungsiyati, N., Kartika, T. A., & Zaman, N. (2019). Penerapan Metode Simple Additive Weighting (Saw) Pada Amri Supermarket Banjar Jaya Untuk Pemilihan Karyawan Terbaik. Explore: Jurnal Sistem Informasi Dan Telematika, 10(2). https://doi.org/10.36448/jsit.v10i2.1317
Syam, S., & Rabidin, M. (2019). Metode Simple Additive Weighting dalam Sistem Pendukung Keputusan Pemilihan Karyawan Berprestasi (Studi Kasus: PT. Indomarco Prismatama cabang Tangerang 1). Unistek, 6(1), 14–18. https://doi.org/10.33592/unistek.v6i1.168
Topadang, A., Irwansyah, I., & Safruddin, S. (2020). Analisis Pemilihan Beasiswa Kurang Mampu Pada Sekolah Dasar Katolik Hati Kudus Samarinda. Just TI (Jurnal Sains Terapan Teknologi Informasi), 12(2), 66–72.
Wardani, S.D.K. 2021. Pengelolaan Sarana Dan Prasarana Dalam Menunjang Mutu Pembelajaran Peserta Didik Di Masa Pandemi Covid-19. Jurnal Inspirasi Manajemen Pendidikan, 9(3), 516-531.