The autoimmunity of primary biliary cirrhosis and the clonal selection theory

Carlo Selmi¹,², Ian R Mackay³ and M Eric Gershwin¹

Primary biliary cirrhosis (PBC) is a chronic cholestatic liver disease in which an immune-mediated injury targets the small intrahepatic bile ducts. PBC is further characterized by highly specific serum antimitochondrial autoantibodies (AMAs) and autoreactive T cells, a striking female predominance, a strong genetic susceptibility and a plethora of candidate environmental factors to trigger the disease onset. For these reasons, PBC appears ideal to represent the developments of the clonal selection theory over the past decades. First, a sufficiently potent autoimmunogenic stimulus in PBC would require the coexistence of numerous pre-existing conditions (mostly genetic, as recently illustrated by genome-wide association studies and animal models) to perpetuate the destruction of the biliary epithelium by the immune system via the persistence of forbidden clones. Second, the proposed modifications of mitochondrial autoantigens caused by infectious agents and/or xenobiotics well illustrate the possibility that peculiar changes in the antigen structure and flexibility may contribute to tolerance breakdown. Third, the unique apoptotic features shown for cholangiocytes are the ideal setting for the development of mitochondrial autoantigen presentation to the immune system through macrophages and AMA; thus, turning the non-traditional mitochondrial antigen into a traditional one. This article will review the current knowledge on PBC etiology and pathogenesis in light of the clonal selection theory developments.

Immunology and Cell Biology (2011) 89, 70–80; doi:10.1038/icb.2010.126; published online 26 October 2010

Keywords: antimitochondrial antibodies; autoimmunity; environmental factors; thymic selection; tolerance
to celebrate the 50-year anniversary since the Nobel Prize was awarded for the enunciation of immune tolerance.

The first description of possible biliary cirrhosis, probably obstructive, was by the celebrated Italian pathologist Giovanni Battista Morgagni in 1761 and the earliest report of non-obstructive biliary cirrhosis is attributed to Addison and Gull in 1851.5 The disease was put on the map clinically by Ahrens et al in 1950.6 Serum ‘antitissue’ autoantibodies were described in 1959 and PBC was nominated as an autoimmune disease in 1963.4 The antitissue autoantibodies were identified as antimitochondrial in 1965.7 After a considerable pause, a cDNA encoding the AMA autoantigen was cloned in 1986 and the antigen was identified as subunits (E2) of the pyruvate dehydrogenase complex (PDC-E2)8,9 is nuclear encoded and expressed, but is imported to become located on the inner mitochondrial membrane.

In the wider field of autoimmunity numerous self-antigens became recognized as functional structures of the cell, particularly nuclear components, the autoepitopes were mapped, but adverse effector/inhibitory properties of autoantibodies in vivo remained incompletely defined.10 Among the characterized autoantigens, functional sites were found within cell nuclei as chromatin, nucleoli and ribonucleoproteins additional to the mitochondrial proteins. DNA molecules and the associated histones were among the most common of the reactive nuclear autoantigens, being recognized by almost all sera from patients with systemic lupus erythematosus giving reactivity for antinuclear antibodies (ANA). Other ANA included anti-Scl70 antibodies directed against topoisomerase I (Scl-70), a nuclear non-histone protein that uncoils condensed chromatin during mitosis,11 the anti-Sm12 antibodies and SS-B (or La) antibodies directed at eukaryotic RNA polymerase III in Sjögren’s syndrome and systemic lupus erythematosus. The genesis of all of these ‘non-traditional’ autoantibodies seemed harder to explain than that of the ‘traditional’ autoantibodies of organ-specific autoimmunity, such as thyroid peroxidase and thyrotropin receptor recognized by autoantibodies in autoimmune thyroid diseases. The discovery of PBC-specific ANA came after AMA description and led to further possible implications in the pathogenesis of the disease, although our knowledge on the ANA onset and role in PBC remains largely incomplete. We will herein provide a conspectus of mitochondrial autoimmunity before returning to the question as to how clonal selection theory might relate to the non-traditional, if not paradoxical, autoimmunity of PBC by invoking our recent discoveries on patterns and pathways of apoptosis in the target cell, the cholangiocyte.

BIOCHEMICAL PROPERTIES OF THE PBC AUTOANTIGENS

The 2-oxo-acid dehydrogenase complex (2-OADC) autoantigens are multi-enzyme complexes essential in energy metabolism.13 As this enzyme family has been repeatedly reviewed in the context of PBC, the data are presented in summary form in Table 1 and Figure 2 for the constituent PDC, the 2-oxo glutarate dehydrogenase complex and the branched chain 2-oxoacid dehydrogenase complex. Each of the three complexes consists of three subunits, that is, E1, E2 and E3. The E2 components consist of several functional domains. There is the inner catalytic domain containing the active site, one or more lipoyl domains containing the lysine residue to which the essential cofactor lipoic acid is attached and an E3-binding domain. PDC-E2 and E3 binding protein (E3BP) are the major autoantigens for serum AMA. Both PDC-E2 and E3BP fold into distinct domains linked by flexible regions rich in alanine and proline residues; interestingly, such flexibility is important for the enzyme catalytic function.14 Moreover, both polypeptides have a central core region, responsible for binding to other polypeptides. The E2 core, moreover, contains residues essential for its catalytic activity and is linked to a binding domain, which accounts for the binding to E1 (and possibly E3). On the other hand, the corresponding E3BP region binds E3 only. Both polypeptides include at their amino terminals compact domains containing the covalently attached lipoic acid co-factor.13 PDC-E2 has two and E3BP a single lipoylated domain.15 These lipoyl domains are exposed on the surface of the E2 core, a necessity for the function of the molecules. In all three instances, the domain is composed by a single lipoic acid residue covalently attached to a lysine residue in a constant DKA sequence motif. There are no crystallographic structural data, but there is available for the inner lipoyl domain of human PDC-E2 a three-dimensional model derived by nuclear magnetic resonance (Figure 1).16

ANTIGEN-SPECIFIC ADAPTIVE RESPONSE IN PBC

AMA specifically recognizes lipoylated domains of the 2-OADC family of enzymes (Table 1) of the mitochondrial respiratory chain. All

Table 1 Molecular weights and functions of the 2-oxo-acid dehydrogenase complexes

Enzymes	MW (kDa)	Function
PDCs		
E1a decarboxylase	41	Decarboxylates pyruvate with TTP as a co-factor
E1b decarboxylase	36	Decarboxylates pyruvate with TTP as a co-factor
E2 acetyltransferase	74	Transfers acetyl group from E1 to CoA
E3 lipoamide dehydrogenase	55	Regenerates disulfide of E2 by oxidation of lipoic acid
E3 binding protein (protein X)	56	Anchoring E2 to the E2 core of pyruvate dehydrogenase complex
OGDC		
E1 oxoglutarate dehydrogenase	113	Decarboxylates alpha-keto glutarate with TTP as a co-factor
E2 succinyl transferase	48	Transfers succinyl group from E2 to CoA
E3 lipoamide dehydrogenase	55	Regenerates disulfide of E2 by oxidation of lipoic acid
BCOADC		
E1a decarboxylase	46	Decarboxylates alpha-keto acids
E1b decarboxylase	38	Derived from leucine, isoleucine and valine with TTP as a co-factor
E2 acetyltransferase	52	Transfers acetyl group from E1 to CoA
E3 lipoamide dehydrogenase	55	Regenerates disulfide of E2 by oxidation of lipoic acid

Abbreviations: BCOADC, branched-chain 2-oxo-acid dehydrogenase complex; CoA, coenzyme A; OGDC, 2-oxoglutarate dehydrogenase complex; PDCs, pyruvate dehydrogenase complexes; TTP, thiamine pyrophosphate.
immunodominant epitopes contain an ExDKA (glutamic acid –E–, x, aspartic acid, –D–, lysine –K– and alanine –A–) motif, with lipoic acid attached to K at position 173, which is necessary and/or sufficient for antigen recognition. Among the 2-OADC constituents, the major autoantigen is the PDC-E2. Less frequent autoantigenic are the E2 components of OADC and branched-chain 2-oxo acid dehydrogenase complexes and the E3BP. In addition, nucleotide sequence analysis of genes encoding specific human monoclonal antibodies to PDC-E2 and combinatorial Fabs strongly suggest that these autoantibodies have been selected from a restricted set of somatically mutated immunoglobulin germline genes.

Thelper (CD4+) T-cell receptors and CD8+ T cells are present in portal tracts, around damaged bile ducts, strongly suggesting the participation of cellular immune mechanisms in the biliary damage. Autoreactive CD4 T cells that specifically target PDC-E2-self-antigen are present in peripheral blood and liver. There is a specific 100–150-fold increase in the number of PDC-E2-specific CD4 T cells in the hilar lymph nodes and liver versus peripheral blood in patients with PBC, whereas it is of interest that their presence is independent of the serum AMA status. Autoreactive CD8 T cells likewise have been characterized in PBC, and are considered the major effectors of tissue injury in PBC. The human leukocyte antigen (HLA) class I-restricted epitope for CD8 T cells, namely the 159–167 amino-acid sequence, maps in close vicinity to the epitopes recognized by CD4 T cells as well as by AMA (Figure 2). Notably the autoepitope for T cells, both CD4 and CD8 T cells, overlaps with the B-cell (AMA) counterpart and includes the lipoylated amino-acid K173 of the inner lipoyl domain. Similar to CD4 autoreactive T cells, there is a 10-fold higher frequency of PDC-E2 159–167-specific CD8 T cells within the liver versus peripheral blood. Moreover, the precursor frequency of PDC-E2-specific autoreactive CD8 T cells is significantly higher in early rather than late stage of the disease. The autoreactive CD8 T cells in PBC have specific cytotoxicity against PDC-E2 antigen and, as well, produce interferon-γ rather than interleukin (IL)-4/IL-10 cytokines.

THE ROLE OF LIPOIC ACID IN PDC-E2 RECOGNITION

The three-dimensional model of PDC-E2, and its unique oxidative mechanisms, raise the idea that foreign compounds that mimic or alter lipoic acid could bind AMA when the lipoic acid molecule becomes conjugated to any carrier molecule, such that immunization of rabbits with a bovine serum albumin conjugate of a lipoic acid mimic (6-bromohexanoic acid) would induce AMA, and it was later shown that lipoic acid can indeed be mounted on a protein background. Thus, PBC could be due to chemical exposure, and lipoic acid or a lipoic acid mimic could be important in the failure of tolerance to mitochondrial antigens. Several lipoic acid (LA) mimotopes have been identified with the use of mimotope-conjugated carrier molecules and affinity-purified anti-PDC-E2 antibodies; specifically, 79/97 (81%) of AMA-positive PBC sera reacted to lipoylated human albumin (HSA-LA), and a high reactivity to HSA-LA correlated with the level of reactivity to PDC-E2. Also, PDC-E2 affinity-purified sera reacted with HSA-LA, suggesting that some of the antibodies to HSA-LA are a subset of anti-PDC-E2 specificities. The antibody reactivity to lipoylated PDC-E2 and PDC-E2 is
proteins. During spontaneous or induced apoptosis, numerous—
bacterial homologs, which are phylogenetically distant from human
normally there is tolerance to these, even if there are responses to
2-OADC antigens are not ‘cryptic’ to the immune system, and
yet our findings otherwise on the presence in PBC of autoantibodies to lipoic acid are of particular
interest in resembling the immune response to iodine in autoimmune thyroiditis observed in chickens, rats and non-obese diabetic (NOD) mice.23–27
CHOLANGIOCYTE APOPTOSIS AND ‘TRADITIONAL’
MITOCHONDRIAL AUTOANTIGENS
The mitochondrial antigens recognized by both B- and T-cell auto-
immune responses in PBC are ubiquitously expressed in all nucleated
cells, and are highly conserved in phylogensis.38 Mitochondrial
2-OADC antigens are not ‘cryptic’ to the immune system, and
normally there is tolerance to these, even if there are responses to
bacterial homologs, which are phylogenetically distant from human proteins. During spontaneous or induced apoptosis, numerous—
perhaps all—cell types express mitochondrial antigens on the intact plasma membrane and within apoptotic blebs,39,40 which then acquire the capability to initiate an autoimmune response by presentation of 2-OADC-derived autoantigens.41 Notably this latter process is specific to cholangiocyties, explaining in part why PBC recurs after liver transplantation.42,43 Indeed, AMA may react, although weakly, against biliary epithelial cells of normal subjects44 and specifically reactive T cells,45,46 and B cells, and serum AMA,47 have been found (at low levels) in the serum of non-PBC subjects. Nevertheless, the immune system starts a progressive autoimmune attack against cholangiocyties only in patients destined to develop PBC, and this occurs irrespective of whether the biliary epithelium is derived from a patient with PBC or a control subject.48 Accordingly, liver infiltrating autoreactive T cells to 2-OADC were found only in patients with PBC, irrespective of their serum AMA status.22 The mitochondrial autoantigens undergo a particular cell-specific processing that may well contribute to, if not entirely explain, the organ specificity of PBC.50,51 The lack of putative post-translational modifications alters protein degradation leading to the accumulation and exposure of large amounts of autoantigens, as postulated for the ‘traditional’ autoantigens of the organ-specific autoimmune diseases.52 In most cell types, lysine-lipoylated sequences when released from the mitochondria during apoptosis are oxidized by glutathiones; the oxidated forms are not immunogenic and are not recognized by serum AMA because glutathionylation masks the autoantibody recognition site.50,53 On the other hand, cholangiocytes and cells from certain other epithelia fail to covalently link glutathione to lysine-lipoyl groups during apoptosis.50 In cholangiocytes, cleavage of the immunodominant PDC-E2 epitope has not been detected in vivo during either apoptosis or phagocytosis.55 Moreover, the enhanced expression of 2-OADC proteins, with a particular luminal concentration, is seen early in cholangiocytes in PBC versus other chronic inflammatory biliary disease, for example, primary sclerosing cholangitis.54 This abnormal expression of PDC-E2 may depend on self-antigens being presented by cholangiocytes after binding to HLA molecules, although HLA class II on cholangiocytes have more of an intrahepatic basolateral than luminal surface expression,55–56 and
anyway are expressed only weakly and in the early stages of disease.50
This observation could be also secondary to immune complexes deposition rather than membrane protein expression. There are different opinions on exposure of self-antigens on the cell membrane during cholangiocyte apoptosis,59,60 or during the rearrangement of lipid rafts as seen after Toll-like receptor activation by microbial infection61 or after ingestion of apoptotic cholangiocytes by other cholangiocytes.53 While cholangiocyte phagocytosis of neighboring apoptotic cholangiocytes is not specific to PBC, this effect could be involved in the presentation process of mitochondrial antigen observed in PBC, indicating that mitochondrial autoantigens are similar to the ‘traditional’ group.
The intact PDC-E2 in apoptotic fragments could be uptaken by local antigen-presenting cells and transferred to regional lymph nodes for priming of cognate T cells, thus initiating PBC. This is indeed an attractive possibility; however, solid data of such antigen presentation are awaited and it could not be excluded that the reported mechanisms are not PBC specific. A major contribution came from Lleo et al.,49 who first showed that PDC-E2 is found in the blebs of human intrahepatic bile duct cells undergoing apoptosis, and subsequently that macrophages are capable of uptaking the autoantigen found in apoptotic blebs (coined apotopes).41 The addition of serum AMA to the co-culture of macrophages and apotopes led to a significant increase in proinflammatory cytokine secretion. These phenomena were not observed in other epithelial cell lines and appears to confirm the importance of apoptosis in the perpetuation of the autoimmune injury,52 as well as the view that PBC bile duct cells are not unique.58
ANA IN PBC
Serum ANA are detected in nearly 50% of patients with PBC, with some reports suggesting that the prevalence may be higher in AMA-negative sera.63 PBC-specific indirect immunofluorescence patterns include ‘nuclear rim’, based on the recognition by the autoantibodies of gp210 and nucleoporin62 (within the nuclear pore complex, which also includes LBR), and ‘multiple nuclear dots’, based on the reactivity with Sp100 and PML, and most recently, Sp140 (nuclear body proteins).64,65 In addition, the crossreactivity with small ubiquitin-like modifiers bound to both Sp100 and PML have been suggested as independent antigens also specific for PBC.66 The prevalence of ‘nuclear rim’ ANA in PBC is similar to the different techniques utilized for the test, particularly when recombinant or isolated antigens are included. Gp210 consists of three main domains: a large glycosylated lumenal domain, a single hydrophobic transmembrane segment and a short cytoplasmic tail. The antigenic epitopes recognized by anti-gp210 ANA are located within the glycosylated lumenal domain (a 64 kDa fragment) and the cytoplasmic tail (15 amino acids).67 In general terms, anti-gp210 are detected in 26% of cases using the gp210-C terminal peptide amino acids 1863–1887 and 27% when using isolated nuclear pore complexes.69 The major nuclear body protein is Sp100, which consists of at least three non-overlapping major autoantigenic domains in sp100 recognized by Sp100-positive PBC sera and two stretches of 16–20 amino acids are the predominant autoantigens.67 One domain, which contains the sequence similarity with HIV nef proteins, was recognized by all anti-sp100 sera. The prevalence of anti-Sp100 ANA in PBC is estimated to range between 9% and 30% when different methods are used. It was first supposed that ANA-positive patients with PBC are more frequently AMA negative, possibly because of the lack of a masking effect of these latter antibodies in such sera, yet this remains to be determined and current data do not support this view.
There is a third type of ANA associated with PBC and are directed against centromeric proteins (ACA) that occur in PBC mostly together with the usual ‘clinical partner’ of ACA, limited CREST-type scleroderma, at a prevalence formerly cited as 10% but now seemingly higher, although with specificity limited by the rheumatological co-morbidity. No studies have been able to discern any link between PBC-specific ANA or the antigens they recognize and the immunopathology of PBC, nor is it clear how or why these ANA are generated in individuals with PBC. Whether ANA positivity should be regarded as the result of the unique cholangiocyte apoptotic features (discussed below) or of the T-regulatory defect is a fascinating hypothesis that awaits experimental confirmation and provides additional evidence that ‘non-traditional’ autoantigens in PBC could in fact be ‘traditional’. Nevertheless, significant associations between the presence of ANA and a worse prognosis have been independently reported, different from AMA.

INNATE IMMUNITY IN PBC

Innate immunity as an activator of autoimmune responses is receiving much attention. The liver is a major organ of innate immunity in containing the largest resident population of innate immune system cells, including natural killer cells and natural killer T (NKT) cells. As with other autoimmune diseases, innate immune mechanisms likely contribute to the initiation and progression of liver damage, and in PBC in particular as judged by features such as epithelioid granulomas, elevated levels of polyclonal IgM, hyper-responsiveness of the immune system to CpG, increased levels in blood and liver natural killer cells and an indicative cytokines response. There is a consistent elevation of serum polyclonal IgM in PBC, regardless of the AMA or ANA status, and reduction is usually observed during treatment. The hyper-IgM appears secondary to a chronic innate immune response of memory B cells to specific bacterial molecular motifs such as unmethylated CpG motifs. Furthermore, patient peripheral B cells exposed to CpG motifs express increased amounts of TLR9 and CD86, hence enhancing their production of AMA. This evidence strongly suggests a profound disease-specific dysregulation of B cells and supports the proposed link between bacterial infection and PBC, that is, B cells become hyper-responsive to innate stimuli, such as microbial CpG motifs, favoring perpetuation of the autoimmune process. Other innate immune cells such as monocytes have also been implicated in the pathogenesis of PBC since their pro-inflammatory activity is greatly enhanced in PBC. Functionally, monocytes become activated by pathogen-associated patterns through Toll-like receptor to release pro-inflammatory cytokines, including IL-1, IL-6, IL-18, IL-12 and tumor necrosis factor-α that can amplify adaptive T-cell-mediated immune responses against pathogens. Thus, peripheral blood monocytes in PBC are overly sensitive to infectious stimuli, resulting in hyper-secretion of pro-inflammatory cytokines; the relevant mechanisms are unknown, but might relate to the higher frequency of recurrent Gram-negative bacterial infections (for example, urinary tract infections) in PBC. In other words, both B cells and monocytes constantly exposed to bacterial products from portal blood could participate in the modulation of adaptive cellular immune response and possibly also in its priming.

NKT cells are now implicated in autoimmune responses as innate effector cells that are regulated by self and non-self glycolipid antigens presented by the antigen-presenting molecule CD1d, allowing for a rapid NKT cell production of effector cytokines and chemokines, thus modulating both innate and adaptive immune responses. The involvement of NKT cells in the pathogenesis of PBC was suggested by our study reporting a higher than normal frequency of CD1d-restricted NKT cells in PBC patients, and, as for autoreactive T cells, CD1d-restricted NKT cells were more frequent in liver than peripheral blood. Chuang et al. found likewise an increased number of CD1d-restricted NKT cells in the liver of a mouse model for PBC transgenic for directed expression of a dominant-negative form of tumor growth factor (TGF)-β1 receptor type II (dNTG/βRII). Such CD1d-restricted NKT cells in the liver had an increased IFN-γ production after exposure to 9-galactosylceramide and there was a decreased hepatic lymphoid cell infiltration and milder cholangitis than in controls. Innate immune system hyper-responsiveness is probably insufficient per se for disruption of immune tolerance, and might well participate in the initiation and/or perpetuation of autoimmune injury. Thus, Mattner et al. showed that, in a murine model of PBC (discussed below), N. aromaticivorans induced autoreactive AMAs and T-cell-mediated autoimmunity against small bile ducts by NKT-dependent mechanisms.

ENVIRONMENTAL AGENTS AND PBC AUTOANTIGENS

Environmental agents, chemical compounds or infecting microbes, are suspected to be involved into the breakdown of tolerance, through molecular mimicry and crossreactivity mechanisms. This idea is supported by the less than complete genetic evidence, including ~60% concordance rate for PBC in monozygotic twins and insufficient associations in PBC patients from genome-wide association studies. Thus, a mimotope carried by a microbe or a neo-antigen generated by xenobiotic-modified self-antigen that mimics mitochondrial proteins may activate autoreactive lymphocytes that have ‘leaked out’ into the peripheral repertoire. The process becomes self-perpetuating because of the presence of crossreactive unmodified self-antigens on cholangiocytes surface.

Similar to the majority of autoimmune diseases and their specific autoantibodies, the pathogenetic role of serum AMA remains debated and data questioned the sequence of the immunodominant B-cell epitope and the role of the lysine-lipoated motif in the PBC B-cell response. Ultimately, only the recapitulation of an AMA-mediated injury in an animal model will provide definitive evidence of the autoantibody role in PBC pathology. However, the study of the immunodominant T-cell epitope, PDC-E2 163–176, has provided important evidence on pathogenesis of PBC, based on the reactivity of cloned PDC-E2 163–176-specific T-cell lines. Thus, for this peptide, the contact residues with T-cell receptors are so that microbial proteins, whether or not related to PDC-E2, that have an ExDK sequence are potentially capable of recognition by autoreactive T cells. Interestingly, this activating PDC-E2 peptide was not lipoylated at K73 and conservative substitutions at position 173 did not abrogate T-cell response, indicating that the lipoated motif is a minor role participant in T-cell responsiveness. However, glutamic acid (E) is crucial to T-cell recognition as its substitution abrogates reactivities. Considering the proximity of E170 to K173, we hypothesize that the customary glutathionylation of the lipoated residue at position 173 can mask or alter the exposure of E170 so as to abrogate contact between this residue and CDR3 of the T-cell receptors. Of note, this mechanism can be considered as an ‘immunological defense’ in most cell types, with the exception of cholangiocytes.

The experimental evidence illustrated thus far (along with the demonstration of autoantibody reactivity with lipopid acid) has obvious fascinating implications in terms of autoantigen selection. Indeed, one of the major issues in classical immunology is what makes an antigen an autoantigen. Indeed, this commonly takes place for intracellular enzymes (as in the case of PBC) and cell surface receptors.
Although molecular mimicry and epitope spreading (discussed below) cannot be overlooked, additional mechanisms have been sought and currently imply the structural features of antigens, particularly flexibility, as well illustrated by the three major type 1 diabetes autoantigens. Other factors may also include dysfunctions of vitamin D3 based on genetic polymorphisms or other modulators.

Infectious agents

The question of an environmental factor initiating PBC, this is supported by the incomplete concordance among monozygotic twins, there are reported instances of non-familial clustering, and a claimed changing risk of PBC in individuals moving from high-risk to lower risk locations (that is, geoepidemiology). Infectious agents are the obvious choice for environmental candidates and support for an infectious hypothesis is garnered from data that lipopolysaccharide, a specific component of Gram-negative bacterial cell wall, injected into mice either alone or in combination with PDC-E2 induce the appearance of portal lymphocytic infiltration and cholangiocyte degeneration as seen in the human PBC liver. Further, lipoteichoic acid, the Gram-positive cell wall component, has been detected in PBC liver samples around damaged bile ducts, and serum levels of lipoteichoic acid-specific IgA are significantly higher in PBC than in normals, and bacterial DNA containing unmethylated CpG motifs triggers a PDC-specific T helper type 1 response in peripheral blood mononuclear cell from mice immunized with PDC. Finally, T helper type 17 cells that are important components of the mucosal host defense system against infections (although also involved in the pathogenesis of various autoimmune diseases) are constituents of the periductular infiltrates in human PBC. However, the identity of the suspected pathogen (if such does exist) and the exact initiating mechanisms remain unrecognized.

Among mechanisms proposed to explain just how an infectious agent could contribute to the onset of an autoimmune disease in genetically susceptible subjects, molecular mimicry remains popular, having been reported for many microbes. Shared sequences between human and microbial proteins can disrupt immune tolerance by inducing crossreactive antibodies or effector T cells and/or by promoting epitope spreading, although this has been refuted in PBC. Other non-exclusive mechanisms involve superantigen polyclonal activation of T cells, that is, staphylococcal enterotoxins, mouse mammary tumor virus antigens and viral polyclonal activation of B cells, that is, Epstein–Barr virus, IgA production and T helper type 17 differentiation.

We may summarize that numerous specific infectious agents, mainly bacteria, but also viruses, parasites and fungi, have been suspected in PBC, but these studies have failed to show any clear association of a microbial agent with the disease and the evidence at best is only circumstantial, such as linear or conformational mimicry between microbial proteins and human mitochondrial antigens.

Xenobiotics

The other environmental factor seriously proposed for is constituted by foreign chemicals, that is, xenobiotics that can modify a defined self or non-self protein so as to cause a change in its molecular structure that enhances immunogenicity. This has been proposed for numerous autoimmune diseases and is consistent with the observed geopidemiological gradient, and is supported by a number of epidemiology studies as discussed previously. One particular example is development of autoantibodies in subjects to halothane, a previously used inhalatory anesthetic that can induce antibodies reactive with lipoylated PDC-E2. As stated above, lipoic acid attaches to only a very limited number of proteins, yet is a critical component of the PDC-E2 epitope. The PDC-E2 structure exposes lipoic acid at the exterior of the protein complex, making it accessible to chemical modification. The role of xenobiotics in PBC is supported by serum reactivity against specific organic compounds with structures similar to lipoic acid, further, two of these compounds (6-bromohexanoate and 2-octynoic acid) are capable of inducing AMA and PBC-like liver lesions in guinea-pigs and NOD:121 or C57BL/6 mice, respectively. The ability of N. aromaticivorans to metabolize chemical compounds might link xenobiotics and bacteria in the etiology of PBC, as discussed above.

The 2-OADC antigens undergo several post-translational modifications endogenously, and such changes may alter the epitope regions of the proteins. Nevertheless, external influences can also contribute to protein alterations and neo-antigen formation. Of note, the liver is constantly exposed to chemicals derived from the gut through the portal circulation to be metabolized, activated or excreted in the bile, and there is evidence that xenobiotics can modify mitochondrial proteins. Thus, Long et al. in 2001 showed that specific organic structures attached to the mitochondrial antigens were recognized by PBC sera with a higher affinity than the native forms of such antigens, suggesting that an organic compound may serve as a mimotope for an autoantigen; one such halogenated compound induced AMA production in rabbits without requiring the peptide backbone of PDC-E2, albeit without producing liver lesions (possibly due to latency of disease expression), and antibodies disappeared when the stimulus was discontinued. In another study, induction of PBC-like liver lesions did follow during a longer follow-up in guinea–pigs, whereas yet a further study reported two new xenobiotic-induced PBC murine models based on the immunization of NOD:122 or C57BL/6 mice with 2-octynoic acid. Both models illustrated breakdown of tolerance in the absence of exposure to PDC-E2, but there was no progression to liver disease. Utilizing a different approach, we next showed that 2-nonynoic acid is capable of being recognized by PBC sera with high affinity, of interest since this non-naturally occurring compound is known to be found in several cosmetic products, including nail polish and their frequent use among women could contribute to female predominant PBC.

Cumulatively, the xenobiotic theory in PBC induction is fascinating and may well fit into the previously illustrated view that conformational changes of self-antigens may provide an efficient way to overcome the numerous checkpoints for ‘forbidden’ clones to survive and expand to ultimately produce the orchestrated autoimmune response based on cellular and humoral responses.

THE GENETICS OF PBC

Not mutually exclusive with regard to environmental factors leading to PBC, the challenge to identify susceptibility gene(s) that predispose to the development of the diseases is still open. Of interest, a most recent multicenter study reported of the first genome-wide association study and identified IL-12 and its relative receptor as susceptibility genes for PBC. These data were later confirmed by our group in an independent cohort of Italian patients and controls as well as in a meta-analysis with Northern American subjects. Among significantly associated genes, we recapitulated the proposed importance of HLA and STAT4 genes.

The majority of previous studies not only have been derived solely from case–control designs, but were also limited by poor control matching criteria and sample size or selection. A plethora of association studies have been conducted (reviewed elsewhere), mainly focused on immune genes that affect the immune system belonging.
to both the HLA family and non-HLA immune modulators genes, including CTLA-4, IL-1, IL-10 and vitamin D receptor.132,133

Pertinent to the individual susceptibility to PBC, several sex-related factors appear to increase the risk of developing the disease, mostly by means of reproductive life variables. Among these are the role of pregnancies,134,135 contraceptives, estrogen replacement treatments126 and recurrent vaginitis,136 but the mechanisms remain to be elucidated. However, the novel hypothesis of sex chromosome-related deficiency for IL-2 receptor α (as in the model) or the lack of T-regulatory mechanisms (as in the mouse) surmise that PBC susceptibility should be seen as a tolerance dysregulation secondary to a permissive background (as in the NOD mice). Histologically, it presents lymphocyte infiltration around the portal tracts associated with cholangiocyte injury.142 These data illustrate the important relationships between Tregs and the appearance of autoimmune portal tract pathology and serum AMA. An additional animal model is a variant of the NOD mouse model (NOD.c3c4) manifesting autoimmune cholestasis and PBC-specific serology, showing AMA positivity of 50–60% and ANA positivity of 80–90%. This mouse is protected from diabetes by B6/B10 regions on chromosomes 3 and 4 that contain B6/B10 insulin-dependent diabetes (Idd1) loci. Histologically, it presents lymphocyte infiltration around portal tracts with chronic non-suppurative destructive cholangitis and epithelioid granuloma formations; nevertheless, the morphological features of bile ducts differ somewhat from those in human PBC.145 On the basis of these animal models, we may surmise that PBC susceptibility should be seen as a tolerance dysregulation secondary to a permissive background (as in the NOD model) or the lack of T-regulatory mechanisms (as in the mouse deficient for IL-2 receptor α on which an environmental insult could rapidly establish an autoimmune reaction).123,124

One cumulative theory has been proposed recently,128 and is based on the frequency of germline gene mutation, multiplied over the large number of known ‘tolerance/autoimmunity’ genes, which are well illustrated in the numerous genome-wide association studies. These would result in a high frequency of deleterious mutations in a heterozygous state on which an autoimmune-prone phenotype could ensue either in the event of homozygosity of one or another such genes, if a somatic mutation occurred, or via a chromosome-specific haploinsufficiency, as well illustrated for the X chromosome.138 Further, most autoimmune diseases manifest a striking prevalence in older ages and the observed disease latency (in the case of PBC represented by the long latency between AMA appearance and disease manifestations) suggests that successive mutations may need to occur in a stepwise stochastic manner for the autoimmune phenotype to become apparent. Similar stochastic events may take place also at different levels, including the exposure to specific environmental factors or the interaction between different cell types in the maintenance of immune tolerance. This is supported by most recent evidence obtained in inflammatory bowel diseases,146 in which genes and infections concur to the development of Crohn’s disease in an animal model.147 There are multiple other environmental agents and factors that have been incriminated in other autoimmune diseases, including the potential role of nucleic acids as adjuvants that have not yet been studied in PBC, but which should be addressed as possible modulators of pathology, including epigenetic influences, commensal microbiota, nanoparticles, ultraviolet light, tobacco smoke, nutrition and stress.148–156

LINKING AMA IN THE PATHOGENESIS OF PBC

In contrast to classical systemic autoimmune diseases, PBC is highly tissue specific with the cells of the small intrahepatic bile ducts as the primary target. However, apparently paradoxically, the autoantigens of PBC, PDC-E2, 2-oxo glutarate dehydrogenase complex-E2 and branched chain 2-oxocid dehydrogenase complex-E2 are ubiquitous mitochondrial proteins in all nucleated cells and hence seen as ‘non-traditional’ at least as compared with the ‘traditional’ autoantigens of thyrogastric organ-specific autoimmunity—this is possibly resolved as discussed below by the unique immunopathological characteristics of cholangiocytes.

However, first of all, staining of small bile ducts with a panel of monoclonal antibodies against the mitochondrial autoantigens has shown that some give an intense staining at the apical surface of the cells lining the bile duct lumen, and this is specific for PBC liver157–158 versus other liver pathology. This apical staining is seen only with selected PDC-E2-specific monoclonal antibodies and that distinct epitopes could identified with such monoclonal antibodies, leading to the hypothesis that a PDC-E2-mimicking (and thus crossreactive with AMA protein) is recognized by the human autoantibodies.157–159 Others have suggested that the apical staining is due to immune complexes of IgA AMA and PDC-E2.160,161 Although a solid proteomic confirmation of this critical issue is awaited, it does appear that cholangiocytes are not just an innocent bystander in PBC pathology, but rather are active participants. They may be involved in biliary and mucosal secretory transfer, including that of dimeric IgA162–164. In particular, experimental data161 suggest that PDC-E2-specific IgA may enter bile duct cells via a poly-Ig receptor and complex with PDC-E2, thereby potentially contributing to pathology. Anti-PDC-E2 IgA antibody titer in PBC sera directly correlates with the level of caspase activation,54 and suggest that during transcytosis through poly-Ig receptor-positive cells, exposure to PDC-E2-specific dimeric IgA can result in the initiation of caspase activation. On the basis of the presence of dimeric AMA-IgA in biliary and mucosal secretions,165 constant transcytosis may render the exposed cells more susceptible to apoptosis, thus producing the bile duct damage. The apoptosis of biliary epithelial cells in PBC warrants further discussion and may be proved to be crucial for immune tolerance breakdown,40,62 as illustrated in other experimental settings.166 It was first reported that PDC-E2 remains intact and retains its immunogenicity during cholangiocyte apoptosis, due to a cell-specific lack of glutathionylation of biliary epithelial cells.50 The intact PDC-E2 in apoptotic fragments could be uptaken by local antigen-presenting cells and transferred to regional lymph nodes for priming of cognate T cells, thus initiating PBC. A major contribution came from Lleo et al.,50 who most recently showed that PDC-E2 is found in the blebs of human intrahepatic bile duct cells undergoing apoptosis. More importantly, this phenomenon was not observed in other epithelial cell lines and appears to confirm the importance of apoptosis in the perpetuation of the autoimmune injury,52 as well as the view that PBC bile duct cells are not unique.18 This is indeed an attractive possibility, and data supporting such antigen presentation have been recently proposed to ultimately
support that PBC autoantigens (both nuclear and mitochondrial) are indeed ‘traditional’.

CONCLUDING REMARKS
On the basis of the data discussed, PBC can be sustained as a model autoimmune disease in which there is loss of immune tolerance to the mitochondrially located PDC-E2 autoantigen with the emergence of autoreactive populations of T and B lymphocytes (forbidden clones in the old parlance). Among many likely contributors to PBC pathogenesis is a strong genetic predisposition, not yet sufficiently dissected out, and environmental influences among which some could determine the structure and flexibility of the autoantigen, and others (lifestyle factors) could impact more on immune function itself. 12 Particularly promising are current studies on a cholangiocyte-specific form of apoptotic degradation of the PDC-E2 autoantigen, which in our view could blur distinctions between the ‘traditional’ autoantigens of the organ-specific autoimmune diseases and the ‘non-traditional’ autoantigens of PBC, chiefly PDC-E2. 40, 41 Further, we may expect that additional unsuspected factors will be investigated in the pathogenesis of PBC. These may include the recently suggested immunomodulatory effects of the gut microbiota 167 as intestinal adsorption capacity was already found affected in patients with PBC. 168 Clearly, there are many avenues still wide open to would-be investigators of the pathogenesis of PBC.

CONFICT OF INTEREST
The authors declare no conflict of interest.

ACKNOWLEDGEMENTS
This study was funded by National Institutes of Health Grant DK39588.

1 Atassi MZ, Casali P. Molecular mechanisms of autoimmunity. Autoimmunity 2008; 41: 123–132.
2 Mackay IR. Autoimmunity since the 1957 clonal selection theory: a little acom to a large oaks. Immunol Cell Biol 2008; 86: 67–71.
3 Cohn M, Mitchison NA, Paul WE, Silverstein AM, Talmage DW, Weigert M. Reflections on the clonal-selection theory. Nat Rev Immunol 2007; 7: 823–830.
4 Neuberger MS. Antibody diversification by somatic mutation: from Burnet onwards. Immunol Cell Biol 1998; 76: 103–107.
5 Ahrens Jr EH, Payne MA, Kunkel HG, Eisenmenger WJ, Blondheim SH. Primary biliary cirrhosis: significance of lipoate attachment. Exp Clin Endocrinol Diabetes 1985; 12: 277–284.
6 Sternthal E, Like AA, Sarantis K, Braverman LE. Lymphocytic thyroiditis and diabetes: evidence of molecular mimicry in human autoimmune diseases. J Exp Med 1995; 181: 1835–1845.
7 Walker JG, Doniach D, Roitt IM, Sherlock S. Serological tests in diagnosis of primary biliary cirrhosis. Gastroenterology 1973; 65: 1915–1925.
8 Ahrens Jr EH, Payne MA, Kunkel HG, Eisenmenger WJ, Blondheim SH. Primary biliary cirrhosis. Medicine (Baltimore) 1950, 29: 299–364.
9 Walker JG, Doniach D, Rollit IM, Sherlock S. Serological tests in diagnosis of primary biliary cirrhosis. Lancet 1965; 39: 827–831.
10 Gershwin ME, Mackay IR, Sturgess A, Coppen RL. Identification and specificity of a cDNA encoding the 70 kd mitochondrial antigen recognized in primary biliary cirrhosis. J Immunol 1987; 138: 3525–3531.
11 Neuberger MS. Antibody diversification by somatic mutation: from Burnet onwards. Immunol Cell Biol 1998; 76: 103–107.
12 Zieve GW, Khusial PR. The anti-Sm immune response in autoimmunity and cell biology. Adv Immunol 2003; 79: 433–500.
13 Neuberger MS. Antibody diversification by somatic mutation: from Burnet onwards. Immunol Cell Biol 1998; 76: 103–107.
14 Neuberger MS. Antibody diversification by somatic mutation: from Burnet onwards. Immunol Cell Biol 1998; 76: 103–107.
15 Neuberger MS. Antibody diversification by somatic mutation: from Burnet onwards. Immunol Cell Biol 1998; 76: 103–107.
16 Neuberger MS. Antibody diversification by somatic mutation: from Burnet onwards. Immunol Cell Biol 1998; 76: 103–107.
17 Neuberger MS. Antibody diversification by somatic mutation: from Burnet onwards. Immunol Cell Biol 1998; 76: 103–107.
18 Neuberger MS. Antibody diversification by somatic mutation: from Burnet onwards. Immunol Cell Biol 1998; 76: 103–107.
19 Neuberger MS. Antibody diversification by somatic mutation: from Burnet onwards. Immunol Cell Biol 1998; 76: 103–107.
autointolerance of primary biliary cirrhosis. Proc Natl Acad Sci USA 1993; 90: 2527–2531.

45 Ichiki Y, Shimoda S, Hara H, Shigematsu H, Nakamura M, Hayashida K et al. Analysis of T-cell receptor beta of the T-cell clones reactive to the human PDC-E2 163–176 peptide in the context of HLA-DRF3 in patients with primary biliary cirrhosis. Hepatology 1997; 26: 728–733.

46 Shigematsu H, Shimoda S, Nakamura M, Matsushita S, Nishimura Y, Sakamoto N et al. Fine specificity of T cells reactive to human PDC-E2 163–176 peptide, the immunodominant autoantigen in primary biliary cirrhosis: implications for molecular mimicry and cross-recognition among mitochondrial autoantigens. Hepatology 2000; 32: 901–909.

47 Chen QJ, Rowley MJ, Mackay IR. Anti-idiotypic antibodies to anti-PDC-E2 in primary biliary cirrhosis: potential subjects. Hepatology 1999; 29: 624–631.

48 Shimoda S, Harada K, Niio H, Yashimoto T, Soejima Y, Takemoto A et al. Biliary epithelial cells and primary biliary cirrhosis: the role of liver-infiltrating monoclonal T cells. Hepatology 2008; 47: 958–965.

49 Borchers AT, Shimoda S, Bowles C, Keen CL, Gershwin ME. Lymphocyte recruitment and homing to the liver in primary biliary cirrhosis and primary sclerosing cholangitis. Semin Immunopathol 2009; 31: 309–322.

50 Odin JA, Huebert RC, Casciola-Rosen L, LaRussfo NF, Rosen A. Bcl-2-dependent oxidation of pyruvate dehydrogenase-E2, a primary biliary cirrhosis autoantigen, during apoptosis. J Clin Invest 2001; 108: 223–232.

51 Mao TK, Davis PA, Odin JA, Coppell RL, Gershwin ME. Sidechain biology and the structural determinants of GAD antigenicity. Hepatology 2006; 43: 909–916.

52 Jacobson EM, Huber A, Toner Y. The HLA gene complex in thyroid autoimmunity: from epidemiology to etiology. J Autoimmun 2008; 30: 58–62.

53 Sasaki M, Ikeda H, Nakanuma Y. Activation of ATM signaling pathway is involved in oxidative stress-impediment of mitophagy p21WAF1/DJ1 nicotine chronic non-suppressive dechorangitits in primary biliary cirrhosis: an immunohistochesmical study. J Autoimmun 2008; 31: 73–78.

54 Matsuurura S, Van De Water J, Leung P, Odin JA, Yamanoto K, Gores GJ et al. Caspase induction by LgA anti-mitochondrial antibody: LgA-mediated biliary injury in primary biliary cirrhosis. Hepatology 2004; 39: 1415–1422.

55 Allina J, Hu B, Sullivan DM, Fiel Mi, Thung SN, Bronk SF et al. T cell targeting and phagocytosis of apoptotic biliary epithelial cells in primary biliary cirrhosis. J Autoimmun 2006; 27: 252–261.

56 Ballardin G, Mirakian R, Bianchi FB, Pisi E, Doriani D, Bottazzo GF. Aberrant expression of HLA-DR antigens on bileduct epithelium in primary biliary cirrhosis: relevance to pathogenesis. Lancer 1984; 2: 1009–1013.

57 Van den Dorp J, Van Griensven M, Desmet VJ. Expression of HMC products by normal and abnormal bile duct epithelium. J Hepatol 1986; 3: 310–317.

58 Ayres RC, Neuberger JM, Shaw J, Joplin R, Adams DH. Intercellular adhesion molecule-1 and MHC antigens on human intrahepatic bile duct cells: effect of pro-inflammatory cytokines. Gut 1993; 34: 1245–1249.

59 Nishimoto H, Yamada G, Mizuno M, Tsuji T. Immunelectron microscopic localization of MHC class 1 and 2 antigens on human intrahepatic bile duct cells: effect of pro-inflammatory cytokines. Gastroenterology 2004; 127: 485–492.

60 Selmi C, Mayo MJ, Bach N, Ishibashi H, Invernizzi P, Gish RG et al. Primary biliary cirrhosis in monotypic and dizygotic twins: genetics, epigenetics, and environment. Gastroenterology 2004; 127: 485–492.

61 Hirschfield GM, Liu X, Xu, C, Lu, Y, Xie Y, Gu et al. Primary biliary cirrhosis associated with HLA IL22A and IL22RB2 variants. Nat J Hepatol Med 2009; 360: 2544–2555.

62 Rieger R, Gershwin ME. The X and why of xenobiotics in primary biliary cirrhosis. Hepatology 2005; 42: 224–227.

63 Invernizzi P, Selmi C, Rantfier C, Podda M, Gershwin ME. Antinuclear antibodies in primary biliary cirrhosis. Autoimmun Rev 2009; 8: 258–262.

64 Muratori P, Granoz A, Fern S, Pappas G, Volta U, Menichella R et al. Multiple nuclear dots and rim-like-membranous IgG isotypes in primary autoimmune. Autoimmunity 2009; 42: 204–211.

65 Invernizzi P, Selmi C, Rantfer C, Podda M, Wesierska-Gadek J. Antinuclear antibodies in primary biliary cirrhosis. Semin Liver Dis 2003; 25: 298–310.

66 Granoz A, Yang WH, Muratori L, Lim MJ, Nakajima A, Fern S et al. PML nuclear body component Sp140 is a novel autoantigen in primary biliary cirrhosis. Am J Gastroenterol 2010; 105: 125–131.

67 Janka C, Selmi C, Gershwin ME, Will H, Sterndors T. Small ubiquitin-related modifier 2 is a novel and independent class of autoantigens in primary biliary cirrhosis. Autoimmunity 2005; 40: 609–616.

68 Worman HJ. Nuclear envelope protein autoantigens in primary biliary cirrhosis. Hepatology 2002; 37 (Suppl 3): S406–S411.

69 Nakamura M, Kondo H, Matsumoto T, Koyama A, Tsuchiya M, Its M et al. Anti-gp210 and anti-centromere antibodies are different risk factors for the progression of primary biliary cirrhosis. Hepatology 2007; 45: 118–127.

70 Invernizzi P, Podda M, Battezzati PM, Crosignani A, Zain M, Hitchman E et al. Natural killer T cells exacerbate liver injury in a transforming growth factor beta receptor 1 dominant-negative mouse model of primary biliary cirrhosis. Hepatology 2008; 47: 571–580.

71 Selmito Y, Lank Z, Wolff Y, Gershwin ME et al. Multicenter trial: the X and why of xenobiotics in primary biliary cirrhosis. Autoimmun Rev 2008; 7: 76–84.

72 Liu R, Lafer J, Saurin S, Prevalence of vitamin D deficiency in chronic liver disease. Dig Dis Sci 2010; 55: 2624–2628.

73 Tanaka A, Nezu S, Uegaki S, Shibuya A, Miyakawa H. The prevalence of primary biliary cirrhosis near Superfund toxic waste sites. J Gastroenterol 2001; 36: 927–930.

74 Wesierska-Gadek J, Penner E, Battezzati PM, Selmi C, Zain M, Hitchman E et al. Comparison of the clinical features and course of antimitochondrial antibody-positive and -negative primary biliary cirrhosis. Hepatology 1997; 25: 1090–1095.

75 Zain M, Giongini A, Selmi C, Battezzati PM, Cocchi C, Casini A. Acute liver and renal failure during treatment with buprenorphine at therapeutic dose. Dig Liver Dis 2009; 41: e10–e11.

76 Selmi C, Liao A, Pasini S, Zain M, Gershwin ME. Intrahepatic immunity and primary biliary cirrhosis, Curr Mol Med 2009; 9: 45–56.

77 Zuniga Y, Vazquez K, Gershwin ME et al. Low prevalence of primary biliary cirrhosis in a first generation migrant south Asian population. Eur J Gastroenterol Hepatol 1996; 8: 663–666.
In summary, the pathogenesis of primary biliary cirrhosis can be attributed to the immune system's reaction against the bile duct epithelial cells. The immune response targets various autoantigens, leading to autoimmunity and disease progression. The role of sex chromosomes, particularly monosomy X, in women with primary biliary cirrhosis has been highlighted, possibly due to the influence of the X chromosome in sex chromosome defects and autoimmunity.

In conclusion, the complex interplay between genetic and environmental factors, along with the role of sex chromosomes, is crucial in understanding the pathogenesis and clinical manifestations of primary biliary cirrhosis. Further research is needed to elucidate these mechanisms fully and to develop targeted therapies for this disease.
mitochondrial antigens in saliva in primary biliary cirrhosis. *Hepatology* 2000; 31: 24–29.

164 Tanaka A, Nalbandian G, Leung PS, Benson GD, Munoz S, Findor JA et al. Mucosal immunity and primary biliary cirrhosis: presence of antimitochondrial antibodies in urine. *Hepatology* 2000; 32: 910–915.

165 Tanaka A, Nezu S, Uegaki S, Mikami M, Okuyama S, Kawamura N et al. The clinical significance of IgA antimitochondrial antibodies in sera and saliva in primary biliary cirrhosis. *Ann N Y Acad Sci* 2007; 1107: 259–270.

166 Allina J, Stanca CM, Garber J, Hu B, Saudes-Fridman C, Bach N et al. Anti-CD16 autoantibodies and delayed phagocytosis of apoptotic cells in primary biliary cirrhosis. *J Autoimmun* 2008; 30: 238–245.

167 Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. *Nature* 2009; 461: 1282–1286.

168 Feld JJ, Meddings J, Heathcote EJ. Abnormal intestinal permeability in primary biliary cirrhosis. *Dig Dis Sci* 2006; 51: 1607–1613.