Nucleolipids of Canonical Purine β-D-Ribo-Nucleosides: Synthesis and Cytostatic/Cytotoxic Activities Toward Human and Rat Glioblastoma Cells

Christine Knies,[a] Katharina Hammerbacher,[b] Gabriel A. Bonaterra,*[b] Ralf Kinscherf†,[b] and Helmut Rosemeyer†*[a]

Dedicated to Prof. Dr. Jiri Žemlicka, Detroit, MI, USA.

We report on the synthesis of two series of canonical purine β-D-ribonucleoside nucleolipids derived from inosine and adenosine, which have been characterized by elemental analyses, electrospray ionization mass spectrometry (ESI MS) as well as by 1H and 13C NMR, and pH-dependent UV/Vis spectroscopy. A selection of the novel nucleolipids with different lipophilic moieties were first tested on their cytotoxic effect toward human macrophages. Compounds without a significant inhibitory effect on the viability of the macrophages were tested on their cytostatic/cytotoxic effect toward human astrocytoma/oligodendroglioma GOS-3 cells as well as against the rat malignant neuroectodermal BT4Ca cell line. In order to additionally investigate the potential molecular mechanisms involved in the cytotoxic effects of the derivatives on GOS-3 or BT4Ca cells, we evaluated the induction of apoptosis and observed the particular activity of the nucleolipid ethyl 3-(4-hydroxymethyl-2-methyl-6-[6-oxo-1-(3,7,11-trimethyl-dodeca-2,6,10-trienyl)-1,6-dihydro-purin-9-yl]-tetrahydro-furo[3,4-d][1,3]dioxol-2-yl)propionate (8c) toward both human and rat glioblastoma cell lines in vitro.

Introduction

In a series of precedent publications we and others have demonstrated that the cancerostatic/cancerotoxic activity of pyrimidine β-D-ribonucleoside antimetabolites such as 5-fluorouridine and 6-azauridine towards different human tumor cell lines[1,2] as well as neurobiological[3] and antiviral activities[4,5] can be significantly improved by lipophilization. Also, regular, canonical pyrimidine β-D-ribonucleosides such as uridine and 5-methyluridine acquire a surprisingly high antitumor in vitro activity upon covalent hydrophobization.[6,7] The positioning and type of the lipophilic residues are hereby of decisive importance. It has been shown that, in particular, the introduction of an ethyl levulinate group at the O-2,3'-hydroxyls in form of a cyclic ketal and, additionally, a farnesyl sesquiterpene moiety at N(3) leads to compounds with significant activity.[2]

In this manuscript, we extend our study to purine β-D-ribonucleoside nucleolipids, particularly to inosine and adenosine derivatives. Again, a selection of the compounds was tested with respect to the viability/survival of phorbol 12-myristate 13-acetate (PMA)-differentiated human THP-1 macrophages when treated with these compounds.[2] Those which proved to be nontoxic for the immune cells were then further tested on their cytostatic/cytotoxic in-vitro activity towards human astrocytoma/oligodendroglioma GOS-3 cells, as well as against rat malignant neuroectodermal BT4Ca cells.

Results and Discussion

Synthesis

Starting from adenosine (1), its ethyl levulinate derivative 3 was prepared according to a well-known procedure (Scheme 1).[8] However, in contrast to older publications, we found that this ketal formation resulted in the formation of a diastereoisomeric mixture (1R)/(1S) with a ratio of about 10:1 in all cases.

Ketal formation of adenosine with nonadecan-10-one gave an i-astereoisomeric mixture (1R)/(1S) with a ratio of about 10:1 in all cases.

© 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

[a] C. Knies,* Prof. Dr. H. Rosemeyer
Organic Chemistry I–Bioorganic Chemistry
Institute of Chemistry of New Materials
University of Osnabrück, Barbarastr. 7, 49069 Osnabrück (Germany)
E-mail: Helmut.Rosemeyer@uni-osnabrueck.de
[b] K. Hammerbacher,* Dr. G. A. Bonaterra, Prof. Dr. R. Kinscherf
Anatomy and Cell Biology, Department of Medical Cell Biology
University of Marburg, Robert-Koch-Straße 8, 35032 Marburg (Germany)
E-mail: gabriel.bonaterra@staff.uni-marburg.de
† These authors contributed equally to this publication.
[††] Senior authors
derivative \(4^{[d]}\) while \(5\) could not be deaminated to \(6\). The latter was obtained by direct ketal formation of inosine \((2)\) with nonadecan-10-one.

All novel compounds were characterized by elemental analyses, high-resolution electrospray ionization mass spectrometry (HR ESI MS) as well as by \(^1\)H and \(^{13}\)C NMR, and pH-dependent UV/Vis spectroscopy. Assignment of \(^{13}\)C NMR resonances was made with the help of DEPT-135 as well as by gradient-selected homo- and heteronuclear correlation spectroscopy (Bruker pulse programs, \(^1\)H, \(^{13}\)C-HSQCETGP; \(^1\)H, \(^{13}\)C-H-COSYGPSW). Careful inspection of the NMR spectra, particularly of the \(^{13}\)C NMR spectra, revealed that compound \(3\) was formed as a diastereoisomeric \((1R)/(1S)\)-mixture (for an example of the diastereoisomer structures, see Scheme 2), while the subsequent deamination product \(4\) proved to be the diastereoisomerically almost pure \((1R)\) derivative. This might be traced back to the following reasons: 1) It has been shown earlier that the enzymatic deamination of adenosine which has been ketalized at the \(2',3'\)-O-position with unsymmetrical ketones such as pentan-2-one\(^{[10]}\) to the corresponding \((1R)\) and \((1S)\) \(2',3'\)-O-(1-methylbutylidene-
ne/adenosines occurs with significantly different Michaelis–Menten kinetics; the (1S)-configured ketal is deaminated at an 8.5-fold lower \(v_{\text{max}} \) rate than the (1R)-configured isomer.\(^{[15]}\)

2) The deamination product 4 was isolated by crystallization which might lead to a preferred precipitation of the corresponding (1R) product. In contrast to this, ketal formation of inosine (2) with ethyl levulinate in the presence of triethylorthoformate\(^{[14]}\) leads to a diastereoisomeric mixture of compound 4 ([1R]:[1S] ≈ 10:1) (Schemes 1 and 3).

Interestingly, the \(^{13}\text{C}\) NMR spectrum of compound 4, prepared by the latter method, exhibits characteristically increasing \(\Delta v \) values ([1R]:[1S] for the C(1'), C(4'), C(2'), and C(3') carbons and a strong decrease again for C(5') (Figure 1). The graph shown in Figure 1 demonstrates almost identical chemical shift differences of compound 4 as well as of the analogous compound 9\(^{[12]}\)—both adopting an anti-conformation at the \(\alpha \)-glycosylic bond. The formation of an almost equimolar mixture of (1R) and (1S) diastereoisomers of a ketal formation reaction of inosine with 4-oxopentyl 4-methylbenzoate has been found already recently.\(^{[12]}\) It was corroborated also for analogous reactions with other nucleosides which will be the subject of a forthcoming publication. The almost identical chemical shift differences, which have already been observed earlier for pyrimidine \(\beta \)-\(\alpha \)-ribonucleoside ketales\(^{[7]}\) might be the result of the interworking of various C–O and C–C magnetic anisotropy effects\(^{[13]}\) of ketal moiety bonds (Figure S1 in the Supporting Information), for example of \(\{\text{C(acetal)}\} \) and \(\{\text{CH}_2_{\text{acetal}} \text{–CH}_2_{\text{C(=O)} \text{)} \text{)} \text{)} \text{)} \) bonds, within (1R)-O-2,3,\(^{[1]}\) [1-2-carboxyethyl]ethylen]adenosine.\(^{[14]}\) Others such as \(\{\text{C(acetal)}\text{–CH}_2_{\text{(acetal)}} \text{)} \text{)} \) anisotropy effects may be counterproductive.

In the following, we lipophilized the inosine nucleolipid 6 further at N(1) by farnesylation (dimethylformamide [DMF], \(\text{K}_2\text{CO}_3 \))\(^{[15]}\) and obtained compound 7. It could be shown that the alkylation occurs without 5'-OH protection which might be substantially advantageous for an antitumor activity as the latter requires probably an intracellular phosphorylation of the 5'-OH group. Because it had been recently shown that a lipophilization of pyrimidine \(\beta \)-\(\alpha \)-ribonucleosides at the O-2',3' position as well as at N(3) of the pyrimidine base leads to nucleolipids with a pronounced and selective cytostatic/cytotoxic in vitro activity toward various human tumor cell lines,\(^{[2]}\) we now converted also the inosine derivative 4 [pure (1R)-diastereoisomer, prepared by enzymatic deamination from compound 3] to the corresponding N(1)-prenylated inosine nucleolipids 8a–c. In the case of the preparation of compounds 8a,b by-products, such as probably formed O-alkylated compounds, were chromatographically removed and not further characterized. Only in the case of the farnesylation of compound 4, the reaction was studied in more detail; it was performed at two different temperatures: 1) At room temperature (20°C), the alkylation afforded the N(1)-prenylated derivatives 8c (kinetic reaction control, see Experimental Section). 2) Alkylation at already slightly elevated temperatures (40–55°C), however, gave, after work-up, the N(1)- as well as further O(4)-prenylated derivatives such as 8d (thermodynamic reaction control) and another one, the structure of which proved to be more complicated. The general structure of the O-alkylated derivatives was corroborated by pH-dependent UV/Vis spectroscopy. Tentatively, we postulate that the O(6)-farnesylated nucleolipid 8d reacts with
an excess of farnesyl bromide (10) via the intermediate 11 to the O(6)-triterpenyl derivative 12 (Scheme 4)—an inosine nucleoside carrying a squalene-analogous N(1)-side chain, which has been formed by a head–tail addition of two farnesyl residues. This is underlined by pH-dependent UV/Vis and NMR spectroscopy (1H, 13C NMR) as well as by HR ESI MS spectrometry.

Next, we alkylated the adenosine nucleoside 3 with three different prenyl bromides and obtained the corresponding N(1)-alkylated salts 13a–c (Scheme 2). These were submitted to Dimroth rearrangements[16,17] with an aqueous dimethylamine solution[18] which yielded the adenosine nucleosides 14a–c. By this way, we were able to synthesize chain-extended analogues of the nucleoside antimetabolite N(6)-isopentenyladenosine (= N6-(Δ2-isopentenyl)adenosine)[19] carrying additionally an O-2',3'-ethylevulinate ketal group without saponification of the ester. In an earlier publication we have reported the synthesis of an N(6)-isopentenyladenosine derivative with an O-2',3'-levulinate moiety using 1 M aq NaOH.[20] All compounds were characterized by HR ESI MS, elemental analyses, as well as by 1H and 13C NMR and UV/Vis spectroscopy.
Lipophilic properties of purine 2’-o-ribonucleosides and their nucleolipids

Applying the ALOGPS v.3.01 program,[21,22] the $^{10}\text{Log}_P$ values of the nucleolipids, as well as of their precursor molecules, were calculated; for this purpose we used the eadmet.com/de/physprop.php site with ePhysChem that contains the program mentioned. The results are shown in Figure 2A,B. The figures clearly demonstrate the possibility of a fine tuning of the compounds’ lipophilicity by the introduction of stepwise elongated prenyl side chains to both adenosine and inosine.

In addition to $^{10}\text{Log}_P$ calculations, we have also measured such data experimentally for those four compounds which have been tested biologically (see Experimental Section). A comparison of calculated and experimental data can be seen in Table 1.

Table 1. Translation of plain compound numbers into the NS/NL-nomenclature.[23]

Compound numbers	NS/NL code[a]	Compound numbers	NS/NL code[a]
1	NS_5.0.0.0	9	NL_6.6.0.0
2	NS_6.0.0.0	10	N.a.n.
3	NL_5.1.0.0	11	N.a.n.
4	NL_6.1.0.0	12	N.a.n.
5	NL_5.3.0.0	13a	NL_5.1.1.0
6	NL_6.3.0.0	13b	NL_5.1.2.0
7	NL_6.3.1.3.0	13c	NL_5.1.3.0
8a	NL_6.1.1.0	14a	NL_5.1.1.0
8b	NL_6.1.2.0	14b	NL_5.1.2.0
8c	NL_6.1.3.0	14c	NL_5.1.3.0
8d	NL_6.1.3.0		

[a] According to Ref. [23]. N.a.n.: not a number.

Scheme 4. Side reactions occurring upon farnesylation of inosin-2’-3’-ketal 4. Reagents and conditions: a) farnesyl bromide, K$_2$CO$_3$, DMF, rt, 24 h, 57%; b) farnesyl bromide, K$_2$CO$_3$, DMF, 30°C, 30 min, then rt., 24 h; c) excess of farnesyl bromide, 24 h, 55°C; 12: 37%. REL: ribosylethylevulinate.
Biological results

Using an in vitro model to differentiate between anticancer properties and side effects, we tested the cytotoxic effects on the viability of PMA-differentiated human THP-1 macrophages after treatment for 48 h. At concentrations of 6.25, 12.5, 25, or 50 μM 5-fluorouridine, there was a significant inhibition of the viability/survival by 11.9% (p < 0.001), 8.4% (p < 0.05), 13.7% (p < 0.001), 12.14% (p < 0.05) compared with negative control (Figure 3). The purine derivative 8c did not exhibit any significant inhibitory effect on viability/survival of THP-1 macrophages (Figure 3). At a concentration of 50 μM, the derivatives 5 and 6 revealed significantly (p < 0.001) cytotoxic effects of 93.3% and 86.5%; additionally, the derivative 5 significantly (p < 0.001) showed cytotoxic effects of 69.9% at 25 μM, in comparison with the control (Figure 3). Because the derivative 8c revealed no or only marginal cytotoxic effects on differentiated human THP-1 macrophages, the effects of this substance—in comparison with the positive control (5-fluorouridine)—was tested in human astrocytoma/oligodendroglioma GOS-3 and rat malignant neuroectodermal BT4Ca cells. Incubation (48 h) of the human astrocytoma/oligodendroglioma GOS-3 cells with 5-fluorouridine (1.56, 3.12, 6.25, 12.5, 25, or 50 μM) resulted in significant (p < 0.001), 60.3, 58.7, 65.1, 59.5, 58.8, and 68.1% inhibitions of the viability/survival when compared with the control. At concentrations of 25 μM and 50 μM, the derivative 8c significantly (p < 0.001) inhibited the viability/survival by 58.6% and 81.8%, and at a concentration of 12.5 μM, viability/survival was (not significantly) inhibited by 11.9%, in comparison with the control (Figure 5).

In order to investigate additionally the potential molecular mechanisms involved in the cytotoxic effects of the derivatives on GOS-3 or BT4Ca cells, induction of apoptosis was evaluated. At a concentration of 50 μM, the derivative 5-fluorouridine sig-

Figure 2. 10LogPow values of A) purine β-β-ribonucleosides adenosine (5) and B) inosine (6), as well as their nucleolipids.

Figure 3. Viability/survival of differentiated human THP-1 macrophages after 48 h of incubation with 5-FU (5-fluorouridine), or its derivatives 5, 6, or 8c. Values are given [in % survival of control (incubation with medium alone = 100% survival) as mean ± SEM; ***p < 0.001 vs. negative control; n = 4.

Figure 4. Viability/survival of human astrocytoma/oligodendroglioma GOS-3 cells after 48 h of incubation with 5-FU (5-fluorouridine, positive control) or its derivative 8c. Values are given [in % survival of control (incubation with medium alone = 100% survival) as mean ± SEM; **p < 0.01, ***p < 0.001 vs. negative control (medium alone); n = 5.
significantly \(p < 0.01\) enhanced the percentage of apoptotic GOS-3 cells by 8.6\%, when compared with the control (Figure 6A,C). Moreover, a significant \(p < 0.05\) 63.6\% and 62.0\% decrease of the cell number was found using 25 \(\mu\)M and 50 \(\mu\)M of the derivative 5-fluorouridine (Figure 6B,C). At a concentration of 50 \(\mu\)M, the derivative 8c significantly \(p < 0.001\) induced apoptosis by 94.9\% (Figure 6A,C); additionally, a significant \(p < 0.05\) and \(p < 0.001\) 45.7\% and 82.4\% decrease of the cell number was observed by 25 \(\mu\)M and 50 \(\mu\)M treatment, in comparison with the control (Figure 6B,C).

Treatment of BT4Ca cells with 25 \(\mu\)M or 50 \(\mu\)M of 5-fluorouridine induced an increase of apoptosis by 5.2\% \(p < 0.01\) and 14.7\% \(p < 0.001\) (Figure 7A,C), and decreased the cell number by 93.6\% \(p < 0.001\) and 95.7\% \(p < 0.001\) in comparison with the control (Figure 7B,C). Treatment of BT4Ca cells with the derivative 8c (50 \(\mu\)M) significantly \(p < 0.001\) enhanced the percentage of apoptosis by 95.7\%, in comparison with the control (Figure 7A,C). Moreover, treatment of BT4Ca cells with the derivative 8c at 25 \(\mu\)M or 50 \(\mu\)M significantly \(p < 0.001\) decreased the cell number by 56.5\% and 97.3\%, in comparison with the control (~100\% cells) (Figure 7B,C).

Additional investigations of the protein expression (western blot) of the ubiquitin-binding autophagic adaptor p62/SQSTM1 (hereafter p62) showed a significant \(p < 0.01\) activation being 260\% higher than the negative control (100\%) after treatment with 25 \(\mu\)M 8c (Figure 8A,C). Proliferating cell nuclear antigen (PCNA) expression showed a significant \(p < 0.05\) inhibition by 84.4\% or 73.1\%, which was, however, not significant after treatment with 12.5 \(\mu\)M or 25 \(\mu\)M of 5-fluorouridine, respectively (Figure 8A,C). Whereas treatment with 12.5 \(\mu\)M and 25 \(\mu\)M 8c significantly \(p < 0.01\) inhibited the PCNA expression in GOS-3 cells by 76.6\% and 96.8\% (Figure 8B,C). Furthermore, treatment of BT4Ca cells with 12.5 \(\mu\)M 5-fluorouridine showed a significant \(p < 0.01\) 67.7\% inhibition, whereas the effect of 25 \(\mu\)M was nonsignificant when compared with the control. Treatment with 12.5 \(\mu\)M of 8c showed a significant \(p < 0.01\) 50.2\% inhibition, but 25 \(\mu\)M increased significantly \(p < 0.05\) 49.5\% the protein expression of p62/SQSTM1 when compared with the control (Figure 9A,C). Furthermore, after treatment of
BT4Ca cells with 12.5 μM or 25 μM 5-fluorouridine, we found an (insignificant) 54.9% and 42.1% inhibition of PCNA expression on protein level (Figure 9B,C). When treated with 12.5 μM or 25 μM of the derivative 8c, we found a significant (p < 0.01) 12.6% or 80.43% inhibition of the PCNA protein expression when compared with the control (Figure 9B,C).

Experimental Section

Nomenclature

For the general numbering of nucleosides and nucleolipids, a novel denomination system was developed which allows an easy comparison of compound data among the various publications of our groups and which is disclosed in ref. [23]. Moreover, it was deposited sustainably in the repository of the library of the University.
All chemicals were purchased from Sigma–Aldrich (Deisenhofen, Germany) or TCI-Europe (Zwijndrecht, Belgium). Solvents were of laboratory grade and were distilled before use. Column chromatography was performed on silica gel 60. Thin-layer chromatography (TLC) was performed using aluminum sheets and silica gel 60 F₂₅₄: 0.2 mm layer (Merck, Germany). NMR spectra (¹H, ¹³C, DEPT-135) were obtained using an AMX-500 instrument (Bruker, Rheinetten, Germany); ¹H: 500.14 MHz, ¹³C: 125.76 MHz; chemical shifts (δ) are reported in ppm referenced to an internal standard of residual protosolvent [D₆DMSO (2.50, 39.50 ppm, rel. to tetramethylsilane (TMS) as internal standard). Multiplicity is quoted as br (broad), s (singlet), d (doublet), t (triplet), q (quartet), quint (quintet), m (multiplet), and dt (pseudotriplet), dd (doublet of doublet), ddd (doublet of double of double). J values are reported in Hz. 2D [¹H, ¹³C] and [¹H, ¹H] correlation spectra (heteronuclear single quantum coherence, HSQC) and Cosy-Long-Range spectra (pulse program: cosygmpfph) were measured with the same instrument.

Sample preparation was performed as follows: an appropriate amount of compound (usually 20–25 mg) was dissolved in [D₆DMSO (0.5 mL) and placed in the NMR quartz tube (diameter, 5 mm). Before measurement the solutions were degassed by ultrasonication for several minutes. Number of scans: ¹H: 64, ¹³C: 12.000, DEPT-135: 5000. ESI MS was performed using a Bruker Daltonics Esquire HCT instrument (BrukerDaltonics, Leipzig, Germany); ionization was performed with a 2% aq. formic acid (HCOOH) solution. UV/VIs spectra were obtained using a Cary 1E spectrophotometer (Varian, Darmstadt, Germany). Sample compounds of about 1 mg were dissolved either in MeOH or an appropriate buffer solution (pH 3, 7, or 9, 100 mL each). Aliquots of 1 mL of the fully dissolved compounds (warming, ultrasonication) were subjected to UV/VIs spectrometry in MT4 quartz cuvettes (Hellma, Darmstadt, Germany). Elemental analyses (C, H, N) were performed on an AGILENT instrument (Fa. Elementar, Hanau, Germany).¹⁵Log_P^{ow} values were calculated using the http://eadmet.com/de/physprop.php website with ephysChem that contains ALOGPS v.3.0. Experimental determination of ¹⁵Log_P^{ow} values of compounds were performed as follows: samples of compounds 5-fluorouridine (NS_{5.0.0.0}, 6c (NL_{3.5.0.0}) and 8c (NL_{6.1.3.0}) were dissolved in a heterogenic mixture of n-butanol (25 mL) and H₂O (25 mL) by ultrasonication (10 min) under slightly warming. After separation of the layers from each phase aliquots of 1 mL were withdrawn, and their UV spectra were run in 1 cm quartz cuvettes. From the ratio of maximal extinctions of both layers at A_{max} corresponding ¹⁵Log_P^{ow} values were calculated and compared with increment-based calculations (Table 2).

General synthetic methods

The complete characterization data for all synthesized compounds mentioned below can be found in the Supporting Information.

Ethyl 3-[4-(6-amino-purin-9-yl)-6-hydroxymethyl-2-methyl-tetrahydro-furo[3,4-d][1,3]dioxol-2-yl]-propionate (3, NL_{5.1.0.0}):

The compound was prepared following a previously described procedure,[13] but with slight modifications and supported by further analytical data. To a solution of anhydrous adenosine (1, N_{5.5.0.0}, 1.38 g, 5 mmol) in dry and

Figure 9. Effects of 48 h treatment of BT4Ca cells with 5-FU (5-fluorouridine), or its derivative 8c. Western blot of (A) autophagy [p62/SQSTM1] and (B) proliferation [PCNA] markers quantified by densitometric analysis. Values expressed in % of negative control (100%) are given as mean ± SEM. *p < 0.05 and **p < 0.01 (by T-TEST) significance vs. control. Representative western blots of p62/SQSTM1 and PCNA (C) are shown; n = 3 independent experiments.

https://repositorium.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-2015110413639.

Nucleolipids are abbreviated by NL, nucleosides by NS. The first number refers to the nucleoside. The second number refers to the moiety at the 2’,3’-position at the glyconic ring; cyclic moieties are abbreviated by “cycl” before the number. The third number refers to the lipophilic moiety at the base [N(3) for pyrimidines, N(1) for purines]. The fourth number refers to a lipophilic moiety at the 5’-O-position. Identical residues carry the same number; “0” stands for a molecule without a residue at this position. For a translation of the NS/NL nomenclature to the plain compound numbers used throughout the text, schemes, figures see Table 1.
amine-free dimethylformamide (DMF, 10 mL), ethyl levulinate (1.42 mL, 10 mmol), triethyl orthoformate (1.65 mL, 10 mmol) and 4 M HCl in 1,4-dioxane (2 mL) were added. After stirring for 24 h at ambient temperature, the reaction mixture was partitioned between CH₂Cl₂ (75 mL) and a saturated aqueous NaHCO₃ solution (30 mL). The aqueous phase was washed with CH₂Cl₂ (2 × 25 mL), and the combined organic layers were evaporated on a rotary evaporator. The resulting oil was co-evaporated repeatedly with CH₂Cl₂ in order to remove residual DMF. The product was precipitated by addition of dry diethyl ether (Et₂O), filtered, and dried in high vacuum overnight yielding the title compound as colorless crystals (1.24 g, 3.15 mmol, 71%; diastereoisomeric mixture, [1R/1S] = 12:1).

Ethyl 3-[4-hydroxymethyl-2-methyl-6-(6-oxo-1,6-dihydro-purin-9-yl)-tetrahydro-furo[3,4-d][1,3]dioxol-2-yl]-propionate (8), NL_6.1.0.0 [9,11,23]: A) By enzymatic deamination of 3: Compound 3 (0.94 g, 2.39 mmol) was dissolved in H₂O (27 mL), and adenosine deaminase (90 units, calf intestine)—dissolved in 0.9 mL of glycerol— was added. The reaction mixture was stirred at ambient temperature for 72 h (TLC monitoring). The resulting solution was evaporated on a rotary evaporator, leaving colorless crystals of the title compound as pure (1R)-4 diastereoisomer (0.94 g, 2.39 mmol, 100%). B) By Direct Ketal Formation of Inosine: Anhydrous inosine (2, 1.0 g; 3.73 mmol) was dissolved in dry DMF (18 mL). Then, ethyl levulinate (1.05 mL; 7.41 mmol), triethyl orthoformate (0.92 mL; 5.60 mmol), and 4 M HCl in 1,4-dioxane (3.5 mL) were added, and the reaction mixture was stirred for 24 h at rt. The reaction mixture was partitioned between CH₂Cl₂ (175 mL) and a saturated conc. aq. NaHCO₃ solution (5 mL). The aqueous phase was washed twice with CH₂Cl₂ (80 mL, each). The combined organic layers were evacuated and repeatedly co-evaporated from CH₂Cl₂ to remove residual DMF. The oily residue was dried in high vacuum overnight at 40 °C and subsequently purified by column chromatography (SiO₂, 60 H, column: 6.5 × 14 cm; CH₂Cl₂/MeOH: 85:15; v/v). From the main zone, the title compound was isolated as a white powder (diastereoisomeric mixture, 1.108 g, 2.81 mmol, 75%). The material proved to be identical with an authentic sample in all respects, except for the NMR data.[9,11]

Table 2. Comparison of calculated and UV/Vis-measured ²²LogP₈₈ values of 5-fluorouridine and compounds 5, 6, and 8c used for in vitro tests.

Compound	²²LogP₈₈ measured	²²LogP₈₈ calculated
5-Fluorouridine	~0.61	~1.3 ± 0.38
5	≥ 4.00	5.1 ± 0.74
6	≥ 3.50	5.3 ± 0.74
8c	≥ 3.74	3.5 ± 0.74

Values are for single measurements.

9-(6-Hydroxymethyl-2,2-dinonyl-tetrahydro-furo[3,4-d][1,3]-dioxol-4-yl)-1,9-dihydro-purin-6-one (6, NL_6.3.0.0): To a solution of anhydrous inosine (2, 1.0 g, 3.72 mmol) in dry DMF (15 mL), non- decan-10-one (2.1 g, 7.44 mmol), triethyl orthoformate (1.0 g, 5.58 mmol), and 4 M HCl in 1,4-dioxane (3 mL) were added. The reaction mixture was stirred for 48 h at ambient temperature under exclusion of moisture. Then, the mixture was partitioned between CH₂Cl₂ (350 mL) and a saturated aqueous NaHCO₃ solution (50 mL). The organic layer was washed with water (40 mL) and 1 x 100 mL, and the combined aqueous phases were re-extracted with CH₂Cl₂ (2 × 25 mL). The combined organic layers were dried (Na₂SO₄), filtered, and evaporated. The residue was dried in high vacuum and then submitted to column chromatography (SiO₂, 60 H, column: 6 × 14 cm; CH₂Cl₂/MeOH 9:1). Evaporation of the main zone afforded the title compound as a colorless oil (700 mg, 1.314 mmol, 35%).

9-(6-Hydroxymethyl-2,2-dinonyl-tetrahydro-furo[3,4-d][1,3]dioxol-4-yl)-1-(3,7,1)-trimethyl-dodeca-2,6,10-trienyl-1,9-dihydro-purin-6-one (7, NL_6.3.3.3.0): To a solution of compound 6 (593 mg, 1.113 mmol) in dry DMF (6 mL), K₂CO₃ (380 mg, 2.88 mmol) was added, and the suspension was stirred for 30 min at ambient temperature. Thereupon, famesyl bromide (0.35 mL, 1.17 mmol) was added dropwise under an N₂ atmosphere while stirring. After 24 h, K₂CO₃ was filtered off and washed repeatedly with CH₂Cl₂ (2 × 25 mL). The filtrate and washings were evaporated on a rotary evaporator; the resulting oil was dried in high vacuum for 24 h. The residue was submitted to column chromatography (SiO₂, 60 H, column: 6 x 12 cm, CH₂Cl₂/MeOH 97:3). Evaporation of the main zone afforded the title compound as a colorless oil (499.2 mg, 0.677 mmol, 61%).

Ethyl 3-[4-hydroxymethyl-2-methyl-6-[3-(methyl-but-2-enyl)-6-oxo-1,6-dihydro-purin-9-yl]-tetrahydro-furo[3,4-d][1,3]dioxol-2-yl]-propionate (8b, NL_6.1.1.0 [23]): To a solution of anhydrous 5-fluorouridine and compounds 6, 7, and 8c (9.0 mL) was added in 1,4-dioxane (98:2) gave the title compound as a colorless oil (200 mg, 0.43 mmol, 48%)
partitioned between H2O (30 mL) and CH2Cl2 (40 mL) in a separation funnel. The organic phase was pooled, and the aqueous phase was washed with CH2Cl2 (2 × 25 mL). The combined organic layers were dried (Na2SO4), filtered, and evaporated on a rotary evaporator. Residual DMF was removed by repeated co-evaporation with CH2Cl2 and subsequent drying in high vacuum. Column chromatography (SiO2, 60H, column: 5 × 6.5 cm, CH2Cl2/MeOH 95:5) gave the title compound as a colorless solid (140 mg, 0.25 mmol, 40%).

Ethyl 3-{4-hydroxymethyl-2-methyl-6-[6-oxo-1-(3,7,11-trimethyl-dodeca-6,10-trienyl)-1,6-dihydro-purin-9-yl]-tetrahydrofuro[3,4-d][1,3]dioxol-2-yl}propionate (10c, NLO_5.1.3): To a solution of anhydrous, stereocinemically pure compound (1R)-4-(0.2 g, 0.51 mmol) in dry DMF (3 mL), K2CO3 (178 mg, 1.32 mmol) was added. The suspension was stirred at ambient temperature for 30 min. Then farnesyl bromide (0.16 mL, 0.56 mmol) was added dropwise under Ar atmosphere. The reaction mixture was stirred for 24 h at rt under exclusion of light and moisture. Thereupon, the suspension was filtered, and the salt was washed repeatedly with CH2Cl2 (2 × 25 mL). Filtrate and washings were evaporated on a rotary evaporator, and the oily residue was dried in high vacuum. The raw product was purified by column chromatography (SiO2, 60H, column: 6.5 × 11 cm, CH2Cl2/MeOH 97:3). Evaporation of the main zone gave the title compound as a colorless oil (1751 mg, 0.29 mmol, 57%).

Repetition of the formerly described experiment at elevated temperatures yielding 8c and 9-(2,3-O-(1R)-4-ethoxy-1-methyl-4-oxobutylidene)-β-c-ribofuranosyl)-6-[(2E,6E,9E,13E,17E)-3,7,11,14,18,22-heptamethyltricosa-6,9,13,17,21-hexa-1-yl(oxy)]-9H-purine (12, via nonisolated 8d): To a solution of anhydrous, stereocinemically pure compound (1R)-4-(0.15 g, 0.51 mmol) in dry DMF (4.8 mL), K2CO3 (140 mg, 1.32 mmol) was added. The suspension was heated to 50 °C for 30 min and then cooled to 40 °C. Then, farnesyl bromide (0.12 mL, 0.42 mmol) was added dropwise stirred at ambient temperature for 30 min. Subsequently, a second portion of farnesyl bromide (0.16 mL, 0.38 mmol) was added dropwise under Ar atmosphere. The reaction mixture was stirred for another 24 h at rt under exclusion of light and moisture. Then, CH2Cl2 (6 mL) was added; the suspension was filtered, and the salt was washed repeatedly with CH2Cl2 (2 × 25 mL). Filtrate and washings were evaporated on a rotary evaporator, and the oily residue was dried in high vacuum. The raw product was purified by column chromatography (SiO2, 60H, column: 6.5 × 7 cm, CH2Cl2/MeOH 95:5). Evaporation of the corresponding main zone gave the N(1)-prenylated salts 9a-c. The product was obtained as a slightly yellowish solid (0.78 g, 1.48 mmol, 58%).

General Procedure for the Dimroth rearrangements of compounds 9a-c:16,17 Compounds 9a-c (0.7 mmol each) were suspended in Me2NHi-MeOH (1 mL, 4.5 mL) and stirred for 20 h at ambient temperature (TLC monitoring). Subsequently, the corresponding reaction mixtures, containing compounds 10a, 10b, or 10c, were concentrated on a rotary evaporator and then in high vacuum. The residues were purified by column chromatography (SiO2, 60H, columns: 5 × 7 cm, 6.5 × 12.5 cm, and 6.5 × 10.5 cm; solvent systems: CH2Cl2/MeOH, 98.2, CH2Cl2/MeOH, 95.5). The main fractions were pooled and evaporated to give slightly colored oils of 10a-c.

Ethyl 3-{4-hydroxymethyl-2-methyl-6-[6-(3-ethylbut-2-enylamino)-purin-9-yl]-tetrahydrofuro[3,4-d][1,3]dioxol-2-yl}-propionate (10a, NL_5.1.1.0): The product was obtained as a colorless oil (0.21 g, 0.46 mmol, 62%).

Ethyl 3-{4-hydroxymethyl-2-methyl-6-[6-ethoxycarbonyl-2-methyl-(3,7-dimethyl-octa-2,6-dienylamino)-purin-9-yl]-tetrahydrofuro[3,4-d][1,3]dioxol-2-yl}-propionate (10b, NL_5.1.2.0, NL_5.1.3.0): The product was obtained as a slightly orange oil (0.98 g, 1.64 mmol, 67%).

Biological methods

Cell lines and culture conditions: In vitro experiments were performed using the human astrocytoma/oligodendroglioma GOS-3 cells (DSMZ GmbH, Braunschweig, Germany), the rat malignant neuro-ectodermal BT4Ca cells (a kind gift from Dr. Nadine John, Hannover Medical School, Hannover, Germany), as well as the human acute monocytic leukemia cell line THP-1 (DSMZ GmbH, Braunschweig, Germany). The cells were cultured in 90% RPMI 1640 medium supplemented with 10% fetal bovine serum (FBS), 100 U/mL penicillin, and 0.1 mg/mL streptomycin, and were maintained at 37 °C in a humidified atmosphere (5% CO2, 95% air) as described earlier.1-3

Determination of viability/survival of 5-fluorouridine and derivatives: 96-well plates (BD Falcon, Becton Dickinson GmbH, Heidelberg, Germany) were seeded with 1.5 × 104 GOS-3, 5 × 104 BT4Ca, or 3 × 104 THP-1 cells. After 24 h, the medium was changed and different concentrations of 5-fluorouridine or its derivatives 5, 6, 8c, were tested at concentrations of 1.56, 3.12, 6.25, 12.5, 25, or 50 μM.
After incubation for 48 h, viability/cytotoxicity was measured using PrestoBlue reagent (Invitrogen-Life Technologies GmbH, Darmstadt, Germany) as described earlier.12–14 PrestoBlue was added to the cells into the culture medium and 30 min, 1 h, 2 h, or 3 h after addition of PrestoBlue16, the optical density (OD) was measured at 570 nm and 600 nm (as reference) with a SUNRISE ELISA-reader (Tecan, Salzburg, Austria). Results are expressed in % survival (OD 570/600 nm of samples × 100 / OD 570/600 nm of control without substances). As control (100% viability = 0% cytotoxicity), cells were cultured with medium alone. To evaluate the cytotoxic effect on macrophages, this procedure was repeated with 5 × 104 per well of phorbol-12-myristate-13-acetate (PMA; 100 ng mL–1)-differentiated (48 h) human THP-1 macrophages, which were treated (48 h) with different concentrations of the substances under test.

Apoptosis assay: Human GOS-3 cells or rat BT4Ca were seeded in 96-well plates at a density of 1.5 × 103 and 5 × 103 per well, respectively. After 24 h, the medium was changed, and the substances under test were added at various concentrations as indicated. Apoptotic cells were identified by YO-PRO-1 (1 μM) in combination with the Hoechst 33342 nuclear staining dye (5 mg mL–1)).

SDS-PAGE and western blotting: GOS-3 and BT4Ca cells were scrapped off in radioimmunoprecipitation assay (RIPA) buffer pH 7.5 (Cell Signaling Technology Europa, Leiden, The Netherlands). An aliquot was used for protein quantification using PierceTM BCA Protein Assay Kit (Pierce Biotechnology, Rockford, USA), and after addition of sample buffer, pH 8.3, boiled at 95°C (10 min). Samples were stored at 20°C. Afterwards, electrophoresis was done using NuPAGE Novex 4–12% Bis-Tris precast polyacrylamide gels (Life Technologies GmbH, Darmstadt, Germany) and a loading of 30 μg total protein per lane. Additionally, prestained pegGOLD Protein Marker VI (PEQLAB Biotechnologie GmbH, Erlangen, Germany) was used. Blotting was performed with wet/tank blotting systems (Bio-Rad Laboratories GmbH, München, Germany) and nitrocellulose Amersham Hybond-ECL membranes (GE Healthcare Europe GmbH, Glattbrugg, Switzerland) for enhanced chemiluminescence (ECL).

protein transfer was done at 0.6 mA cm–2 (o/n, rt) and after transfer buffer containing 10% MeOH. Nonspecific sites were blocked with Tween 20-supplemented Tris-buffered saline (TTBS) and 5% milk. Nonspecific sites were blocked with 10%M eOH. Nonspecific sites were blocked with ME (5 mg mL–1; Mobitec Company, Göttingen, Germany). The total number of cells (Hoechst 33342+ nuclei) and apoptotic cells (YO-PRO-1+ nuclei) was counted using an inverse fluorescence microscope Eclipse TS100 (Nikon GmbH, Düsseldorf, Germany) equipped with a camera Axiocam MRc (Carl Zeiss Microscopy GmbH, Göttingen, Germany) and a computer-assisted morphometry system AxiVision 4 (Carl Zeiss Microscopy GmbH, Göttingen, Germany) and the percent of apoptotic cells to the total cells was then calculated. Additionally the % of total cell count after 48 h treatment was calculated using the total number of cells containing Hoechst 33342+ nuclei, considering the negative control without treatment as 100%.24

Acknowledgements

The authors thank the following University of Osnabrück and Marburg members: Marianne Gather Steckhan for the NMR measurements, Dr. Stefan Walter for HR ESI MS, Anja Schuster for the elemental analyses, Petra Bös for formulae drawings, Henning Eickmeier and Holger Heine for the preparation of Figure 3 (University of Osnabrück); Andrea Cordes, Elke Völk-Badouin (University of Marburg); Diana Yudin and Anna Diegel (University of Osnabrück) for valuable technical assistance; as well as Ellen Essen and Gabriella Staud (University of Marburg) for preparation of the manuscript. The authors also gratefully acknowledge financial support by the Bundesministerium für Wirtschaft, Germany (FKZ: KF 2369401 S89 and FKZ 2369501 S89). Moreover, the authors thank Prof. Dr. Uwe Beginn for excellent laboratory facilities at the University of Osnabrück.

Keywords: antitumor agents · cytotoxicity · glioblastomas · ketal lipophilicity · nucleolipids · prenylation

[1] E. Malecki, A. Farhad, G. A. Bonaterra, D. Röthlein, M. Wolf, J. Schmitt, R. Kinscherf, H. Rosemeyer, Chem. Biodiversity 2013, 10, 2225–2246.
[2] A. Farhat, E. Malecki, G. A. Bonaterra, D. Röthlein, M. Wolf, J. Schmitt, H. Rosemeyer, R. Kinscherf, Chem. Biodiversity 2014, 11, 469–482.
[3] K. Raasch, E. Malecki, M. Siemann, M. M. Martinez, J. J. Heinisch, J. Müller, L. Bakota, C. Kaltischmidt, B. Kaltischmidt, H. Rosemeyer, R. Brandt, Chem. Biol. Drug Des. 2015, 86, 129–143.
[4] K. L. Gangadhar, P. Srivastava, J. Rozenzki, H. P. Mattelaer, V. Leen, W. Dehaen, J. Hoffkens, E. Lescrinier, P. Herdewijn, J. Syst. Chem. 2014, 5, 5–12.
[5] K. L. Gangadhar, PhD Thesis, Katholische Universität Leuven, Leuven (Belgium), 2015.
[6] C. Kries, G. A. Bonaterra, K. Hammerbacher, A. Cordes, R. Kinscherf, H. Rosemeyer, Chem. Biodiversity 2015, 12, 1902–1944.
[7] C. Kries, K. Hammerbacher, G. A. Bonaterra, R. Kinscherf, H. Rosemeyer, Chem. Biodiversity 2015, DOI: 10.1002/cbdv.201500158.
[8] F. Seela, F. Cramer, Chem. Ber. 1975, 108, 1329–1338.
[9] H. Rosemeyer, PhD Thesis, University of Paderborn, Paderborn (Germany), 1980.
[10] J. Ott, F. Seela, Bioorg. Chem. 1981, 10, 82–89.
[11] H. Rosemeyer, F. Seela, Carbohydr. Res. 1978, 62, 155–163.
[12] a) K. Köstler, H. Rosemeyer, Molecules 2009, 14, 4323–4336; b) C. Kries, T. Abakumov, H. Rosemeyer, unpublished results; c) T. Abakumov, M.Ed. Thesis, University of Osnabrück, Osnabrück (Germany), 2016.
[13] a) R. F. Zürcher, Helv. Chim. Acta 1961, 44, 1755–1765; b) H. Fribolin, Ein- und zweidimensionale NMR-Spektroskopie, Wiley-VCH, Weinheim, 2006, p. 48.
[14] D. Adamiak, M. Nölttemeyer, W. Saenger, F. Seela, Z. Naturforsch. 1978, 33c, 169–173.
[15] K. Köstler, E. Werz, E. Malecki, M. Montilla-Martinez, H. Rosemeyer, Chem. Biodiversity 2013, 10, 39–61.
[16] M. Wahren, Z. Chem. 1969, 9, 241–252.
[17] A. Diestel, M.Ed. Thesis, University of Osnabrück, Osnabrück (Germany), 2015.
[18] S. Casati, R. Ottria, E. Baldoli, E. Lopez, J. Maier, P. Ciuffreda, Anticancer Res. 2011, 31, 3401–3406.
[19] P. Langen, Antimetabolites of Nucleic Acid Metabolism, Gordon and Breach, New York, London, Paris, 1975, p. 166.
[20] H. Rosemeyer, F. Seela, Angew. Chem. 1984, 96, 365–367.
[21] I. V. Tetko, G. I. Poda, C. Ostermann, R. Mannhold, Chem. Biodiversity 2009, 6, 1837–1844.
[22] R. Mannhold, G. I. Poda, C. Ostermann, I. V. Tetko, J. Pharmaceutical Sci. 2009, 98, 861–893.

[23] https://www.researchgate.net/profile/Helmut_Rosemeyer and urn:nbn:de:gbv:700-2015110413639. The publication can be downloaded from: https://repositorium.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-2015110413639.
[24] G. A. Bonaterra, E. U. Heinrich, O. Kelber, D. Weiser, J. Metz, R. Kinscherf, Phytomedicine 2010, 17, 1106–1113.

Received: October 14, 2015
Published online on December 20, 2015