Helicobacter pylori-negative, non-steroidal anti-inflammatory drug: Negative idiopathic ulcers in Asia

Katsunori Iijima, Takeshi Kanno, Tomoyuki Koike, Tooru Shimosegawa

Katsunori Iijima, Takeshi Kanno, Tomoyuki Koike, Tooru Shimosegawa, Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Miyagi, Japan

Author contributions: Iijima K substantial contributions to conception and design, interpretation of data, drafting the article, final approval of the version to be published; Kanno T, Koike T and Shimosegawa T acquisition of data, revising it critically for important intellectual content, final approval of the version to be published.

Correspondence to: Iijima Katsunori, MD, Division of Gastroenterology, Tohoku University Graduate School of Medicine, Seiryo-machi, Aobaku, Sendai 980-8574, Miyagi, Japan. kijima@med.tohoku.ac.jp
Telephone: +81-22-7177171 Fax: +81-22-7177177
Received: September 11, 2013 Revised: November 7, 2013 Accepted: December 3, 2013 Published online: January 21, 2014

Abstract

Since the discovery of Helicobacter pylori (H. pylori) infection in the stomach, the bacteria infection and non-steroidal anti-inflammatory drugs (NSAIDs) use had been considered to be the 2 main causes of peptic ulcers. However, there have been recent reports of an increase in the proportion of peptic ulcers without these known risk factors; these are termed idiopathic peptic ulcers. Such trend was firstly indicated in 1990s from some reports in North America. In Asia, numerous studies reported that idiopathic ulcers accounted for a small percentage of all ulcers in the 1990s, but in the 2000s, multiple studies reported that the proportion of idiopathic ulcers had reached 10%-30%, indicating that the incidence of idiopathic ulcers in Asia has also been rising in recent years. While a decline in H. pylori infection rates of general population in Asia is seen as the main reason for the increased incidence of idiopathic ulcers, it is also possible that the absolute number of idiopathic ulcer cases has increased. Advanced age, serious systemic complication, and psychological stress are considered to be the potential risk factors for idiopathic ulcers. Management of idiopathic ulcers is challenging, at present, because there is no effective preventative measure against recurrence in contrast with cases of H. pylori-positive ulcers and NSAIDs-induced ulcers. As it is expected that H. pylori infection rates in Asia will decline further in the future, measures to treat idiopathic ulcers will also likely become more important.

INTRODUCTION

After Helicobacter pylori (H. pylori) was discovered in 1982, it was considered to be the cause of a large number of peptic ulcers (90%-95% of duodenal and 70%-90% of...
gastric ulcers\cite{8}. \textit{H. pylori}, aspirin, and other non-steroidal anti-inflammatory drugs (NSAIDs) comprise the causes of a large proportion of peptic ulcers. A subsequent rise in global NSAID use and a relative increase in the proportion of NSAID-caused ulcers\cite{5,6} led to wide acceptance that \textit{H. pylori} infection and NSAID use are the 2 main causes of peptic ulcer\cite{9}. Other causes include Zollinger-Ellison syndrome, Crohn's disease, and viral infections such as cytomegalovirus and herpes.

However, there have been recent reports of an increase in the proportion of peptic ulcers without these known risk factors; these are termed idiopathic peptic ulcers. By the 1990s, several studies reported that idiopathic ulcers comprised 20%-40% of all peptic ulcers in North America\cite{10-12}. In this region, 20% of \textit{H. pylori}-positive ulcers recur due to bacterial elimination\cite{13}, a markedly higher percentage than that reported in other areas. This finding indicated that a large number of “bystander” cases existed, wherein a patient is positive for \textit{H. pylori} but the bacteria are not directly involved in causing the ulcer. In the 2000s, increases in the proportion of idiopathic ulcers were also reported in Europe and Asia (Table 1). However, a few studies still report low idiopathic ulcer proportions (4%), including a recent report from Italy\cite{14}.

Detailed reviews of idiopathic ulcers were published in 2002\cite{15} and 2008\cite{16}. Here, we examine more recent trends in the incidence of idiopathic ulcers, particularly in Asia.

PRECAUTIONS FOR IDIOPATHIC ULCER DIAGNOSIS

When diagnosing idiopathic ulcers, \textit{H. pylori} infection and history of NSAID use, the 2 main causes of peptic ulcers, must be completely ruled out. Otherwise, one will naturally find a high proportion of idiopathic ulcers.

Various methods are used to diagnose \textit{H. pylori} infection, none of which is 100% accurate alone. Thus, the absence of \textit{H. pylori} can be determined only when several tests are combined and the results of all are found to be negative\cite{17}. Diagnostic methods that use endoscopic biopsy specimens-histology, culture, and rapid urease tests (RUT)-can show false negatives due to sampling errors caused by non-uniform distribution of \textit{H. pylori} inside the stomach\cite{18}. Therefore, biopsies must be obtained from several locations. Further, these methods can show false negatives immediately after acute upper digestive tract hemorrhage\cite{19}. In these situations, other diagnostic methods must be used in combination. The urea breath test (UBT) examines urease activity throughout the stomach due to \textit{H. pylori}, and is used to compensate for sampling errors in tests using biopsy specimens. However, care is needed when using UBT, as false negatives can result when bacterial concentrations decrease during administration of proton pump inhibitors (PPIs)\cite{20}, similar to other tests using biopsies. The serum antibody method is not affected by PPI administration or acute upper digestive tract hemorrhage; therefore, it is useful for diagnosing \textit{H. pylori} infection in these situations. However, this method continues to show positive results for some time after bacterial elimination\cite{21}, making it difficult to differentiate between current and past infections. Nevertheless, it is a useful test because it provides a precise diagnosis of idiopathic ulcer (as few false negatives as possible). There are several tests for even more precise diagnosis of \textit{H. pylori} negative patients; although these tests do not directly confirm the presence of \textit{H. pylori}, they eliminate the diagnosis of idiopathic ulcer based on tissue findings associated with infection, such as neutrophil infiltration into the gastric mucosa or atrophy of the gastric mucosa\cite{22,23}.

Another important factor in diagnosing idiopathic ulcers is careful elimination of NSAID users. Aspirin and other NSAIDs can be purchased without a doctor's prescription in many countries. A large number of surreptitious NSAID users likely exist; therefore, patients must be questioned scrupulously about their drug history. Indeed, several previous studies have clarified the existence of surreptitious NSAIDs users. Lanas \textit{et al}\cite{24} examined patients with gastrointestinal perforation using platelet cyclooxygenase activity in the blood as an objective marker of aspirin usage. They identified 13% more aspirin users with this method than were found through investigation of medical history. Moreover, based on measurements of blood salicylic acid concentrations, Hirschowitz \textit{et al}\cite{25} reported that 50% of intractable peptic ulcer patients who denied using aspirin were in fact aspirin users. These findings underscore the necessity of carefully eliminating NSAID users when diagnosing idiopathic ulcers. Retrospective studies, which can only determine NSAID usage from past medical records, would be inevitably too lenient in eliminating NSAID users. The result would be a tendency to report higher rates of idiopathic ulcers; therefore, care must be taken when interpreting such data.

IDIOPATHIC ULCER TRENDS IN ASIA

Six reports of the proportion of idiopathic ulcers in Asia were published in 1999-2003 based on patient data from the 1990s\cite{26-28}, 5 of which reported low rates of 1.3%-4.1\%(19-28). In 9 studies from 2005-2006 based on patient data from the 2000s\cite{29-34}, almost all reported that the proportion of idiopathic ulcers was 10%-30%, indicating that the proportion of these ulcers among all peptic ulcers in Asia is increasing. A decline in \textit{H. pylori} infection rates among background healthy individuals is likely a cause of this increase. This trend is common among Asian countries\cite{35}, and indicates that recent improvements in sanitation and the increased use of \textit{H. pylori} elimination therapies have decreased the \textit{H. pylori} infection rates in the region. Even if the increase in idiopathic ulcers is merely a relative rise accompanying a decline in \textit{H. pylori}-positive ulcers, or if \textit{H. pylori} has only been coexisting as a bystander in many cases, the decline in \textit{H. pylori} infection rates among the overall population has given prominence to the issue of idiopathic ulcers. Further, it
has been reported that not only the proportion of idiopathic ulcers has increased but also the actual number of cases has been increasing annually\(^28\). This trend suggests the existence of not just a relative cause but also some other direct factor that is contributing to the incidence of idiopathic ulcers. Next, we will examine the incidence of idiopathic ulcers in various Asian countries in detail.

Hong Kong

Hong Kong has been the most active region in conducting clinical studies on idiopathic ulcers; these studies have provided valuable data for understanding trends in idiopathic ulcer incidence. Two studies on the proportion of idiopathic ulcers based on patient data from the 1990s reported somewhat scattered results of 4% and 17\(^\circ\)\(^25,26\). However, 3 studies based on data from the 2000s reported relatively high and consistent values of 14%-23\(^\circ\)\(^23,25,26\). In particular, a recent major study on approximately 5000 peptic ulcer patients from 2002-2009 reported a 13.8\% proportion of idiopathic ulcers\(^24\), again showing that these ulcers are not rare in Hong Kong. A study on yearly changes in the proportion of idiopathic ulcer patients is increasing\(^28\), with other reports also showed an increase in the proportion of idiopathic ulcers over time\(^26\). While this rise in idiopathic ulcer rates reflects a relative increase accompanying a decline in \(H. pylori\)-positive ulcers due to the increased use of bacterial elimination therapy or decline of \(H. pylori\) infection rate among background healthy population\(^46\), yearly data also suggest that the actual number of idiopathic ulcer patients is increasing\(^20\).

Japan

Five studies of the frequency of idiopathic ulcers in Japan based on 1990s patient data reported very low rates.
of 0.9%-2.6%[19-22,24]. In addition, a 2000-2002 investigation of hemorrhagic ulcer patients found that 11% were H. pylori-negative and NSAID-negative[30]. However, after eliminating cases with a possible history of H. pylori infection based on histological atrophy of the gastric mucosa, the final proportion of idiopathic ulcers was 1.7%[38]. There have since been no further studies on the frequency of idiopathic ulcers in Japan. Recently, there has been a marked decline in H. pylori infection rates among the general Japanese population[47], and it is possible there has been an accompanying rise in the proportion of idiopathic ulcers, as has occurred in other Asian countries. Sugiyama et al[33] found a similarly low proportion of idiopathic ulcers in Japanese ulcer patients divided into 2 age groups, which showed major differences in H. pylori infection rates. Based on this finding, they surmised that the proportion of idiopathic ulcers does not vary according to H. pylori infection rates. Considering the extremely low proportion of idiopathic ulcers in Japan in the 1990s, information on recent trends would be of great interest.

South Korea
There are two reports from South Korea on the frequency of idiopathic ulcers based on patient data from the 2000s. One of them, based on 2004-2005 data, reported a high (22%) proportion of idiopathic ulcers[31]. However, the diagnosis of H. pylori infection in this study was based on only a single RUT and histological examination. Therefore, it is unclear whether the diagnosis of H. pylori negativity was sufficiently precise. The more recent study, based on 2006-2008 data, employed a strict definition of H. pylori negativity using a urease test, histological examination, culture, and the serum antibody method. This report confirmed a high proportion of idiopathic ulcers (16.2%)[35]. No reports from South Korea are based on patient data from the 1990s; therefore, comparisons with past data cannot be performed. However, it can be surmised that idiopathic ulcers are not rare in South Korea, similar to Europe and the United States. The recent decline in H. pylori infection rates among the general South Korean population[33,50] can be considered as the cause of the increase in the proportion of idiopathic ulcers unrelated to H. pylori.

Taiwan
A study from Taiwan based on data from 2003-2004 reported an idiopathic ulcer frequency of 8%[32]. Another report based on 2007-2008 data reported a 17% frequency[34], indicating that the proportion of idiopathic ulcers has been rising in recent years. The cause of this trend is also thought to be a decline in H. pylori infection rates in Taiwan[33].

Other Asian countries
A study of 1999-2000 patient data from Pakistan reported that 29% of ulcers were idiopathic[27]. Although this developing country was thought to have a high H. pylori infection rate at the time[51], the study reported a large proportion of idiopathic ulcers. However, problems with the methods used to diagnose H. pylori infection and issues with the retrospective study design, which did not allow a precise idiopathic ulcer diagnosis, possibly led to this apparently high proportion.

A study of 2002-2004 patient data from Singapore reported an 11% proportion of idiopathic ulcers[29]. However, data on serum thromboxane B2 concentrations suggested that 1/3 of these cases were surreptitious NSAID users, resulting in a true proportion of idiopathic ulcers of 8%-[29]. Singapore is a multi-ethnic country and is known to have relatively lower rates of H. pylori infection than other Asian nations[35]. Nevertheless, this final proportion of idiopathic ulcers is relatively low. This study showed the importance of eliminating surreptitious NSAID users through blood tests, as well as through interviews.

Patient data from India from 2008-2009 showed an extremely high proportion of idiopathic ulcers at 37%-[32], on par with rates in North America. This study diagnosed H. pylori using RUT and UBT, thus having a certain level of precision. Although the H. pylori infection rates in India have traditionally been high[33,34], recent studies have reported a decline in infection rates[35], and the high frequency of idiopathic ulcers may be a reflection of this. However, since this study involved only a single institution and a relatively small number of ulcer patients, further investigation is needed.

RISK FACTORS OF IDIOPATHIC ULCERS
Although a clear cause of idiopathic ulcers hasn’t yet to be shown, several factors related to the condition have been proposed.

Age
Numerous studies in Europe, the United States, and Asia have shown that idiopathic ulcer patients are significantly older than those with simple H. pylori ulcers or H. pylori/NSAID ulcers[11,23,24,28,29,36], although older age may be a mere confounder of the following risk factors such as systemic complications or psychological stress. Aging has been shown to be accompanied by a decline in the defense functions of the gastric mucosa owing to a variety of mechanisms, particularly a lower prostaglandin concentration in the gastric mucosa as a person ages[37], which may be a potential cause for gastric ulcers but not for duodenal ulcers. Prostaglandin plays a central role in the gastric mucosa defense structure by increasing gastric mucus secretions, bicarbonate secretions, and blood flow[38]. Thus, the diminished prostaglandin concentration in elderly individuals renders the gastric mucosa more fragile, creating an environment in which ulcers are more likely to occur.

Systemic complications
Many studies, primarily from Asia, have reported that a wide variety[22,24,26,29] of serious[35] systemic complications
Figure 1 Changing pattern of the etiology of peptic ulcers before (2010) and after (2011) the Great East Japan earthquake. In the analysis of etiologic factors of the ulcers, cases from each year were classified into four groups according to the Helicobacter pylori (H. pylori) status and non-steroidal anti-inflammatory drugs (NSAIDs) intake. The proportion of H. pylori-negative non-NSAID takers among PU patients after the earthquake (2011) was significantly higher than in the previous year (13% in 2010 vs 24% in 2011, P < 0.05). The date available from reference[67].

are risk factors for idiopathic ulcers. This finding is possibly related to reports stating that peptic ulcers that occur in intensive care units or against a background of serious underlying disease are unrelated to H. pylori infection[49,60]. Physical or psychological stress caused by an underlying disease might be related to ulcer incidence.

Several recent studies have reported the relationship between hepatocirrhosis and hemorrhagic peptic ulcers[64,65]. In particular, decompensated hepatocirrhosis was demonstrated to be a risk factor for hemorrhagic peptic ulcer, independent of H. pylori infection[61-63]. Thus, hepatocirrhosis is an important cause of idiopathic ulcers. Although the pathology by which hepatocirrhosis leads to a peptic ulcer is complex, portal hypertension is likely involved. Visceral congestion from portal hypertension might be linked to ulcer incidence, as it damages the gastroduodenal mucosal blood flow and inhibits the process of mucosal repair[64,65]. In addition, decreased gastric prostaglandin synthesis observed in hepatocirrhosis patients may be involved in the hepatocirrhosis-related gastric mucosal injury[62,63].

Psychological stress

A link between psychological stress and peptic ulcers has long been suggested[68], but once H. pylori infection and damage from NSAID use were identified as the 2 main causes of peptic ulcers, it became unclear whether psychological stress should be considered an independent cause of peptic ulcer[64,69]. However, there have been reports of ulcer formation in the victims of the Great East Japan Earthquake that struck in 2011[67,68]. Kanno et al[66] compared the ulcer incidence 3 mo after the disaster with the ulcer incidence in the same period during the previous year; they found a 1.5-fold rise in ulcer cases after the disaster. Further, the proportion of H. pylori- and NSAID-negative (that is, idiopathic) ulcers rose significantly from 13% in 2010 to 24% after the disaster in 2011 (Figure 1)[67]. This study excluded cases complicated by severe trauma due to the disaster, showing indirectly that psychological stress can be an independent cause of peptic ulcers among disaster victims. Interestingly, the H. pylori-, NSAID-negative ulcers that arose after the disaster were in patients who were significantly older than those with other ulcer types[67]; this finding is consistent with the characteristic of idiopathic ulcers described above.

MANAGEMENT OF IDIOPATHIC ULCERS

Bacterial elimination therapy is often effective for preventing the recurrence of H. pylori-positive ulcers and does not require subsequent maintenance therapy with acid-suppressive agents[61]. In NSAID-induced ulcers, changing therapy to COX-2-selective NSAIDs or other alternative medications that do not cause as much damage to the gastrointestinal mucosa can be expected to suppress recurrences[41]. However, for idiopathic ulcers, although acid-suppressive agents can produce temporary relief, they are not an effective preventive measure against recurrence. It has been shown that recurrence rates are high when patients remain unmedicated after such temporary cures. A study from Denmark observed 32 unmedicated patients with H. pylori-negative duodenal ulcers for 2 years, and reported a 35% recurrence rate[12]. Additionally, a prospective study from Hong Kong that observed unmedicated patients with idiopathic, hemorrhagic gastroduodenal ulcers for 7 years found that 42% experienced a relapse of ulcer hemorrhage. This is 4 times the percentage found while observing patients with H. pylori-positive ulcers who were unmedicated after bacterial elimination[60]. Further, a recent report from South Korea found that compared to H. pylori-positive ulcers and NSAID-induced ulcers, idiopathic ulcers showed more recurrences, which led to increased medical costs[56].

Although it has been shown that recurrences can easily occur when patients with idiopathic ulcer are not treated, there is no consensus on whether maintenance therapy with acid-suppressive agents can effectively prevent these recurrences. In the aforementioned study from Denmark, PPI administration was found to have an effect on preventing the recurrence of H. pylori-negative duodenal ulcers[12]. However, a recent major follow-up study from Hong Kong that examined 663 patients with idiopathic hemorrhagic gastroduodenal ulcers did not find H2-blocker or PPI administration to be effective in preventing ulcer hemorrhage relapse[39]. Around 50% of the cases in the Hong Kong study were gastric ulcers[39], and it was found that gastric ulcers, even idiopathic cases, might show different reactivity to acid-suppressive agents than duodenal ulcers. Until it is determined which medications can effectively prevent the recurrence of idiopathic ulcers, the most realistic choice appears to be continuous PPI therapy.
CONCLUSION

Numerous studies reported that idiopathic ulcers in Asia accounted for a small percentage of all ulcers in the 1990s, but in the 2000s, multiple studies reported that the proportion of idiopathic ulcers had reached 10%-30%. Despite limitations such as difficulties in precise diagnosis of H. pylori infection and identification of surreptitious NSAID users, it is clear that the incidence of idiopathic ulcers in Asia has been rising in recent years. While a decline in H. pylori infection rates in Asia is seen as the main reason for the increased incidence of idiopathic ulcers, it is also possible that the absolute number of idiopathic ulcer cases has increased. As it is expected that H. pylori infection rates in Asia will decline further in the future, measures to treat idiopathic ulcers will also likely become more important. Further multicenter studies from many different countries, with the same protocol, are necessary to investigate the real incidence of idiopathic ulcers and the real causes.

REFERENCES

1. Kuipers EJ, Thijis JC, Festen HP. The prevalence of Helicobacter pylori in peptic ulcer disease. Aliment Pharmacol Ther 1995; 9 Suppl 2: 59-69 [PMID: 8547530]
2. Lassen A, Hallas J, Schaffalitzky de Muckadell OB. Complicated and uncomplicated peptic ulcers in a Danish county 1993-2002: a population-based cohort study. Am J Gastroenterol 2006; 101: 945-953 [PMID: 16573778 DOI: 10.1111/j.1572-0241.2006.00518.x]
3. Musumba C, Jorgensen A, Sutton L, Van Eker D, Moorcroft J, Hopkins M, Pritchard DM, Pirmohamed M. The relative contribution of NSAIIDs and Helicobacter pylori to the aetiology of endoscopically-diagnosed peptic ulcer disease: observations from a tertiary referral hospital in the UK between 2005 and 2010. Aliment Pharmacol Ther 2012; 36: 48-56 [PMID: 22554233 DOI: 10.1111/j.1365-2036.2012.05118.x]
4. Malferttheiner P, Chan FK, McColl KE. Peptic ulcer disease. Lancet 2009; 374: 1449-1461 [PMID: 19683340 DOI: 10.1016/S0140-6736(09)60938-7]
5. Peterson WL, Cioccola AA, Sykes DL, McSorley DJ, Webb DD. Ranitidine bismuth citrate plus clarithromycin is effective for healing duodenal ulcers, eradicating H. pylori and reducing ulcer recurrence. RBC H. pylori Study Group. Aliment Pharmacol Ther 1996; 10: 251-261 [PMID: 8791947 DOI: 10.1111/j.1365-2036.1996.00251.x]
6. Jyotheeswaran S, Shah AN, Jin HO, Potter GD, Ona FV, Chey Wy. Prevalence of Helicobacter pylori in peptic ulcer patients in greater Rochester, NY: is empirical triple therapy justified? Am J Gastroenterol 1998; 93: 574-578 [PMID: 9576450 DOI: 10.1111/j.1572-0241.1998.167_b.x]
7. Cioccola AA, McSorley DJ, Turner K, Sykes D, Palmer JB. Helicobacter pylori infection rates in duodenal ulcer patients in the United States may be lower than previously estimated. Am J Gastroenterol 1999; 94: 1834-1840 [PMID: 10406244 DOI: 10.1111/j.1572-0241.1999.02142.x]
8. Laine L, Hopkins RJ, Girardi LS. Has the impact of Helicobacter pylori therapy on ulcer recurrence in the United States been overstated? A meta-analysis of rigorously designed trials. Am J Gastroenterol 1998; 93: 1409-1415 [PMID: 9732917]
9. McColl KE, el-Nujumi AM, Chittajallu RS, Dahill SW, Dorrain CA, el-Omar E, Penman I, Fitzsimons EJ, Drain J, Graham H. A study of the pathogenesis of Helicobacter pylori negative chronic duodenal ulceration. Gut 1993; 34: 762-768 [PMID: 8314508 DOI: 10.1136/gut.34.6.762]
10. Gisbert JP, Blanco M, Mateos JM, Fernandez-Salazar L, Fernandez-Bermejo M, Cantero J, Fajares JM. H. pylori-negative duodenal ulcer prevalence and causes in 774 patients. Dig Dis Sci 1999; 44: 2295-2302 [PMID: 10573377 DOI: 10.1023/A:1026691253953]
11. Meucci G, Di Battista R, Abbiati C, Benassi R, Berti L, Borodil A, Colombo E, Ferrara A, Prada A, Spinzi G, Venturelli R, de Franchis R. Prevalence and risk factors of Helicobacter pylori-negative peptic ulcer: a multicenter study. J Clin Gastroenterol 2000; 31: 42-47 [PMID: 10914775 DOI: 10.1097/00004836-200007000-00010]
12. Bytzer P, Teglbjaerg PS. Helicobacter pylori-negative duodenal ulcers: prevalence, clinical characteristics, and prognosis—results from a randomized trial with 2-year follow-up. Am J Gastroenterol 2001; 96: 1409-1416 [PMID: 11374675]
13. Konturek SJ, Bielanski W, Plonka M, Pawlik T, Pepera J, Konturek PC, Czarnecki J, Penar A, Jedrychowski W. Helicobacter pylori, non-steroidal anti-inflammatory drugs and smoking in risk pattern of gastroduodenal ulcers. Scand J Gastroenterol 2003; 38: 923-930 [PMID: 14531527 DOI: 10.1080/00365520310004696]
14. Arents NL, Thijis JC, van Zwet AA, Kleibeuker JH. Does the declining prevalence of Helicobacter pylori unmask patients with idiopathic peptic ulcer disease? Trends over an 8 year period. Eur J Gastroenterol Hepatol 2004; 16: 779-783 [PMID: 15269980 DOI: 10.1017/S0953438104000836.19243.73]
15. Arroyo MT, Forne M, de Argila CM, Feu F, Arenas J, de la Vega J, Garrigos V, Monf F, Castro M, Bujanda L, Cosme A, Castiella A, Gisbert JP, Hervas A, Lana A. The prevalence of peptic ulcer not related to Helicobacter pylori or non-steroidal anti-inflammatory drug use is negligible in southern Europe. Helicobacter 2004; 9: 249-254 [PMID: 15165261 DOI: 10.1111/j.1083-4389.2004.00219.x]
16. Sbrozzi-Vanni A, Zullo A, Di Giulio E, Hassan C, Corleto VH, Lahner E, Annibale B. Low prevalence of idiopathic peptic ulcer disease: an Italian endoscopic survey. Dig Liver Dis 2010; 42: 773-776 [PMID: 20444661 DOI: 10.1016/j.dld.2010.03.019]
17. Borody TJ, George LL, Brandl S, Andrews P, Ostapowicz N, Hyland L, Devine M. Helicobacter pylori-negative duodenal ulcer. Am J Gastroenterol 1991; 86: 1154-1157 [PMID: 1882793]
18. Xia HH, Kalantar JS, Mitchell HM, Talley NJ. Can helicobacter pylori serology still be applied as a surrogate marker to identify peptic ulcer disease in dyspepsia? Aliment Pharmacol Ther 2000; 14: 615-624 [PMID: 10792126 DOI: 10.1046/j.1365-2036.2000.00720.x]
19. Tsuji H, Kohli Y, Fukumitsu S, Morita K, Kaneko H, Ohkawara T, Minami M, Ueda K, Sawa Y, Matsuaki H, Morinaga O, Ohkawara Y. Helicobacter pylori-negative gastric and duodenal ulcers. J Gastroenterol Hepatol 1999; 14: 455-460 [PMID: 10452677 DOI: 10.1046/j.1440-1746.1999.00526.x]
20. Higuchi K, Arakawa T, Fujitawa Y, Uchida T, Tominaga K, Watanabe T, Kuroki T. Is Helicobacter pylori-negative duodenal ulcer masked by the high prevalence of H. pylori infection in the general population? Am J Gastroenterol 1999; 94: 3083-3084 [PMID: 10528899 DOI: 10.1111/j.1572-0241.1999.03083.x]
21. Aoyama N, Shinoda Y, Matsushima Y, Shirasaka D, Kinosita Y, Kasuga M, Chiba T. Helicobacter pylori-negative peptic ulcer in Japan: which contributes most to peptic ulcer development, Helicobacter pylori, NSAIDs or stress? J Gastroenterol Hepatol 2000; 15 Suppl 12: 33-37 [PMID: 10792125]
22. Nishikawa K, Sugiyama T, Kato M, Ishizuka J, Komatsu Y, Kaga H, Katagiri M, Nishikawa S, Hori K, Takeda H, Asaka M. Non-Helicobacter pylori and non-NSAID peptic ulcer disease in the Japanese population. Eur J Gastroenterol Hepatol 2000; 12: 635-640 [PMID: 10912481 DOI: 10.1097/00004275-200007000-00010]

Iijima K et al. Idiopathic peptic ulcer in Asia
Idiopathic peptic ulcer in Asia

Abbas Z, Jafari W, Khan AH, Shah MA. Prevalence of Helicobacter pylori antibodies in endoscopy personnel and non-medical volunteers of Karachi. J Pak Med Assoc 1998; 48: 201-203 [PMID: 10067023]

Ho KY, Chan YH, Kang JY. Increasing trend of reflux esophagitis and decreasing trend of Helicobacter pylori infection in patients from a multiethnic Asian country. Am J Gastroenterol 2005; 100: 1923-1928 [PMID: 16128934 DOI: 10.1111/j.1572-0241.2005.50138.x]

Katerlalis PH, Tippett GH, Norbu P, Lowe DG, Brennan R, Farthing MJ, Dyspepsia, Helicobacter pylori, and peptic ulcer in a randomly selected population in India. Gut 1992; 33: 1462-1466 [PMID: 1452068 DOI: 10.1136/gut.33.11.1462]

Graham DY, Adam E, Reddy GT, Agarwal JP, Agarwal R, Evans DJ, Malaty HM, Evans DG. Seroepidemiology of Helicobacter pylori infection in India. Comparison of developing and developed countries. Dig Dis Sci 1991; 36: 1084-1088 [PMID: 1864201 DOI: 10.1007/BF01297451]

Singh V, Trikha B, Nain CK, Singh K, Vaiphei K. Epidemiology of Helicobacter pylori and peptic ulcer in India. J Gastroenterol Hepatol 2002; 17: 659-665 [PMID: 12100610 DOI: 10.1046/j.1440-1746.2002.02746.x]

Kemppainen H, Riihiala I, Sourander L. Clinical presentation of peptic ulcer in the elderly. Gerontology 1997; 43: 283-288 [PMID: 9309418 JS DOI: 10.1159/000213864]

Cryer B, Redfern JS, Goldschmiedt M, Lee E, Feldman M. Effect of aging on gastric and duodenal mucosal prostaglandin concentrations in humans. Gastroenterology 1992; 102: 1118-1125 [PMID: 1551520]

Wallace DL. Prostaglandins, NSAIDs, and gastric mucosal protection: why doesn’t the stomach digest itself? Physiol Rev 2008; 88: 1547-1565 [PMID: 18923189 DOI: 10.1152/physrev.00004.2008]

Schilling D, Haish G, Sloot N, Jakobs R, Saggau W, Riemann JF. Low seroprevalence of Helicobacter pylori infection in patients with stress ulcer bleeding--a prospective evaluation of patients on a cardiacsurgical intensive care unit. Intensive Care Med 2000; 26: 1832-1836 [PMID: 11271092 DOI: 10.1007/s001340000724]

Halm U, Halm F, Thein D, Mohr FW, Mössner J. Helicobacter pylori infection: a risk factor for upper gastrointestinal bleeding after cardiac surgery? Crit Care Med 2000; 28: 110-113 [PMID: 10667508 DOI: 10.1097/00003524-20000100-00018]

Luo JC, Leu HB, Hou MC, Huang CC, Lin HC, Lee FY, Chang FY, Chan WL, Lin SJ, Chen JW. Cirrhotic patients at increased risk of peptic ulcer bleeding: a nationwide population-based cohort study. Aliment Pharmacol Ther 2012; 36: 542-550 [PMID: 22817655 DOI: 10.1111/j.1365-2036.2012.05225.x]

Chang SS, Hu HY. Helicobacter pylori is not the predominant etiology for liver cirrhosis patients with peptic ulcer disease. Eur J Gastroenterol Hepatol 2013; 25: 159-165 [PMID: 23044811 DOI: 10.1097/MEG.0b013e32835a1b26]

Lo GH, Yu HC, Chan YC, Chen WC, Hsu PL, Lin CK, Lai KH. The effects of eradication of Helicobacter pylori on the recurrence of duodenal ulcers in patients with cirrhosis. Gastrointest Endosc 2005; 62: 350-356 [PMID: 1611950 DOI: 10.1016/S0016-5107(05)01633-0]

Mc Cormack TT, Sims J, Eyre-Brook I, Kennedy H, Goepel J, Johnson AG, Triger DR. Gastric lesions in portal hypertension: inflammatory gastritis or congestive gastropathy? Gut 1985; 26: 1226-1232 [PMID: 3877665 DOI: 10.1136/gut.26.11.1226]

Iwao T, Toyonaga A, Ikegami M, Shigemori H, Oho K, Sumino M, Tanikawa K. Gastric mucus generation in cirrhotic patients with portal hypertension. Effects of tetrapyrrolacetone. Dig Dis Sci 1996; 41: 1727-1732 [PMID: 8794786 DOI: 10.1007/BF02088737]

Szabo S. Hans Selye and the development of the stress concept. Special reference to gastroduodenal ulcerogenesis. Ann N Y Acad Sci 1996; 851: 19-27 [PMID: 9668601]

Kanno T, Iijima K, Abe Y, Koike T, Shimada N, Hoshi T, Sano N, Ohyauichi M, Ito H, Atsumi T, Konishi H, Asonuma S, Shimosegawa T. Peptic ulcers after the Great East Japan earthquake and tsunami: possible existence of psychosocial stress ulcers in humans. J Gastroenterol 2013; 48: 483-490 [PMID: 23053423 DOI: 10.1007/s00535-012-0681-1]

Kanno T, Iijima K, Abe Y, Koike T, Shimada N, Hoshi T, Sano N, Ohyauichi M, Ito H, Atsumi T, Konishi H, Asonuma S, Shimosegawa T. Hemorrhagic ulcers after Great East Japan Earthquake and Tsunami: features of post-disaster hemorrhagic ulcers. Digestion 2013; 87: 40-46 [PMID: 23343968 DOI: 10.1159/00034937]

Wong GL, Wong VW, Chan Y, Ching JY, Au K, Hui AJ, Lai LH, Chow DK, Siu DK, Lui YN, Wu JC, To KF, Hung LC, Chan HL, Sung JJ, Chan FK. High incidence of mortality and recurrent bleeding in patients with Helicobacter pylori-negative idiopathic bleeding ulcers. Gastroenterology 2009; 137: 525-531 [PMID: 19445937 DOI: 10.1053/j.gastro.2009.05.006]
