Association of VAMP5 and MCC genetic polymorphisms with increased risk of Hirschsprung disease susceptibility in Southern Chinese children

Jinglu Zhao1*, Xiaoli Xie1*, Yuxiao Yao1*, Qiiuming He1, Ruizhong Zhang1, Huimin Xia1, Yan Zhang1

1Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
*Equal contribution

Correspondence to: Hui-min Xia, Yan Zhang; email: xia-huimin@foxmail.com, yannizy@gmail.com
Keywords: Hirschsprung disease, association, VAMP5, MCC
Received: January 2, 2018 Accepted: April 20, 2018 Published: April 25, 2018

Copyright: Zhao et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ABSTRACT

Hirschsprung disease (HSCR) is a genetic disorder characterized by the absence of neural crest cells in parts of the intestine. This study aims to investigate the association of vesicle-associated membrane protein 5 (VAMP5) and mutated in colorectal cancer (MCC) genetic polymorphisms and their correlated risks with HSCR. We examined the association in four polymorphisms (rs10206961, rs1254900, and rs14242 in VAMP5, rs11241200 in MCC) and HSCR susceptibility in a Southern Chinese population composed of 1473 cases and 1469 controls. Two variants in VAMP5 were replicated as associated with HSCR. Interestingly, we clarified SNPs rs10206961 and rs1254900 in VAMP5 are more essential for patients with long-segment aganglionic (LHSCR). Relatively high expression correlation was observed between VAMP5 and MCC using data from public database showing there may exist potential genetic interactions. SNP interaction was cross-examined by logistic regression and multifactor dimensionality reduction analysis revealing that VAMP5 rs1254900 and MCC rs11241200 were interacting significantly, thereby contributing to the risk of HSCR. The results suggest that significant associations of the rs10206961 and rs14242 in VAMP5 with an increased risk of HSCR in Southern Chinese, especially in LHSCR patients. This study provided new evidence of epistatic association of VAMP5 and MCC with increased risk of HSCR.

INTRODUCTION

Hirschsprung disease (HSCR) is the most common cause of neonatal intestinal obstruction [1], defined by the partial or complete absence of the neural crest cells in the intestinal tract [2]. The overall prevalence of HSCR among the Asian population is estimated at 2.8/10,000 live births and displayed a significant racial variation [3]. HSCR can be classified into three types based on the length of the aganglionic tract, including short-segment HSCR (S-HSCR), long-segment HSCR (L-HSCR) and total colonic aganglionosis (TCA) with the percentages around 80%, 15% and 5% respectively [4, 5]. HSCR is a complex multifactorial disease, which is mainly determined by individual genetic factors [6, 7]. The recurrence risk in siblings varied from 1% to 33% depending on the length of the aganglionic segments and gender of the probands. More than ten genes were identified as contributed to the pathogenesis of HSCR including RET, GDNF, EDNRB, EDN3 and so on [8]. However, mutations in these genes account for only ~50% of the known cases of HSCR [9].

Vesicle-associated membrane protein 5 (VAMP5) has been reported to provide their subcellular targeting in the synaptic vesicle fusion process of enteric nervous
system (ENS) neurotransmission [10, 11]. Shin JG et al. suggested that two single nucleotide polymorphisms (SNP, rs10206961 and rs1254900) of VAMP5 were the potential risk locus in TCA progression by using 187 Korean HSCR patients and 283 unaffected controls (P=0.006 for rs10206961, P=8.03×10⁻³ for rs1254900), we also included SNP rs14242 in VAMP5 with suggestive significance to HSCR (P=0.04) for further replication [12].

Mutated in colorectal cancer (MCC) gene which is located on chromosome 5q21 encodes a protein comprised of 829 amino acids [13]. MCC is a tumor suppressor in different types of cancers, including hepatocellular carcinoma, colorectal cancer (CRC) and acute myeloid leukemia [14]. MCC is strongly related to the plasma membrane and membrane organelles in mouse intestinal epithelial cells and neuronal cells via an immunoelectron microscopic analysis [15]. Additionally, case-control studies suggested that MCC might confer alternative genetic susceptibility to CRC in individuals with schizophrenia, implying MCC as a factor related to neurodevelopmental disorders [16]. A genome-wide association study (GWAS) by Garcia-Barcelo et al. has revealed that MCC was a plausible candidate gene of HSCR [17]. Rs11241200 in MCC was chosen for replication in current study according to this GWAS. It is noteworthy that MCC did not only function as an independent tumor suppressor in the majority of colorectal cancers, but also functioned as a susceptibility gene in HSCR.

The underlying genes remain largely unknown, especially the interplays between these susceptibility genes. The aim of this study was to ascertain whether the genetic polymorphisms of VAMP5 (rs10206961, rs1254900 and rs14242) and MCC (rs11241200) were associated with HSCR in 1470 Chinese HSCR cases and 1473 controls. We have clarified SNPs rs10206961 and rs1254900 in VAMP5 which are more essential for patients with LHSCR. Interestingly, further elaborated of SNP rs1254900 (VAMP5) and rs11241200 (MCC) were found to be interacted significantly, thereby contributing to the risk of SHSCR. This finding may add MCC to the list of genes as associated with HSCR. Further replications and functional evaluations are still required.

RESULTS

Assocation of VAMP5 and MCC SNPs with HSCR

Four SNPs were selected for replication in this study including 3 SNPs on VAMP 5 and 1 SNPs on MCC. The selection criteria were detailed listed in the Method. Detailed information about four SNPs genotyped in this study was shown in Table 1 using 1473 HSCR patients and 1469 HSCR-free controls from South China. The genotype distribution for the 4 SNPs followed the hardy-weinberg equilibrium (HWE) in the control subjects (P_hwe=0.58 for rs10206961, P_hwe=0.46 for rs1254900, P_hwe=0.07 for rs14242 and P_hwe=0.07 for rs11241200). All four SNPs are located in the intronic region. SNPs rs10206961 and rs14242 in VAMP5 shows significant association with HSCR (0.044≤P_adj≤0.046, 1.12≤OR≤1.17 for rs10206961; P_adj=0.020, OR=1.20 for rs14242). Inconsistent with the report by Shin JG et al. [12] for the SNP rs1254900 in VAMP5 , we failed to replicate the association in our population (0.666≤P≤0.953, 0.97≤OR≤1.04 for rs1254900). For the most prominent SNP rs11241200 in MCC, 0.282≤P≤0.438 for rs11241200, we failed to replicate the association as presented previously [17]. To better digest the effective pattern for the two SNPs on VAMP5, we specified the samples following four different genetic models including additive, dominant, recessive and genotypic models. Larger effect was observed in both SNPs following dominant models (OR=1.12/1.17 for 10206961; OR=1.20 for 14242 respectively).

Figure 1. The linkage disequilibrium patterns (LD) of the SNPs in VAMP5 included in this study. Haplotype blocks in VAMP5 were defined according to the LD value in Guangzhou replication. The numbers in the boxes are the pairwise correlation coefficient r² between respective SNPs. Darker shades of gray indicate higher value of LD. Lighter shades of gray represents lower value of LD. The highest LD value of 0.58 was observed between rs10206961 and rs1254900, while rs14242 showed limited LD with all the other SNPs among these populations.
Independence test of the replicated SNPs

To further identify the independence of SNPs previously replicated in VAMP5, the linkage disequilibrium (LD) patterns were examined on Guangzhou replication data (Figure 1). Consistent with the public data as shown in Supplementary Figure 1, SNPs rs10206961 and rs1254900 showed moderate LD with each other ($r^2 = 0.58$). SNP rs14242 showed limited LD with all the other SNPs ($r^2 = 0.35$).

Conditional logistic regression analysis was performed to investigate the independent effects among the three SNPs in VAMP5 (Table 2). SNPs rs10206961 and rs14242 kept significant after controlling the effect of rs1254900 ($P = 2.3E-03$, OR = 1.30 for rs10206961; $P = 0.022$, OR = 1.18 for rs14242). SNPs rs10206961 remains no significance to disease if the effect of rs14242 were controlled, vice versa ($P = 0.48$, OR = 1.06 for rs10206961 $P = 0.45$, OR = 1.07 for rs14242).

Interestingly, though SNP rs1254900 showed no
evidence of association to disease (Table 1), we observed SNP rs1254900 was significant if the effect of SNP rs10206961 was adjusted (P=0.018, OR=1.22). These results raised up the notion that diversified effects of these SNPs exist in this region for disease susceptibility, such as epistatic effect.

Intergenic SNPs show epistatic effect to HSCR

As shown in Table 3, pairwise epistasis test was among the three SNPs in *VAMP5*. Surprisingly, we failed to observe any intragenic epistatic association to disease (0.11≤P≤0.5, 0.86≤OR≤1.15). As presented above, *VAMP5* and *MCC* may involve in the enteric nervous system (ENS) neurotransmission. We also observed the two genes showed relative high coexpression correlation in Peripheral blood mononuclear cell (PBMC) with confidence (P=0.002, OR=1.26) using the data extracted from ImmuCo [18]. Thus, we also included the SNP in MCC (rs11241200), the result suggested significant elevated effect between SNP rs1254900 (*VAMP5*) and rs11241200 (*MCC*) to disease (P_int= 2.9E-03, OR=1.42). SNP rs1254900, rs14242 showed less synergetic effect with other SNPs reflected

Table 2. Independence testing among SNPs in *VAMP5*.

NP	SNP whose effect were adjusted	rs10206961	rs1254900	rs14242
rs10206961	NA	P=2.3E-03	1.30(1.01~1.55)	P=0.48
rs1254900	P=0.018	1.22(1.04~1.45)	NA	1.10(0.96~1.25)
rs14242	P=0.45	1.07 (0.90~1.27)	1.18(1.03~1.36)	NA

SNP: Single Nucleotide Polymorphism; The data in each column represent the remaining effect of association (P-values) after adjusting for the effect of SNP(s) on the top row of each Column.

Table 3. Pair-wise epistatic interacting results among *VAMP5* and *MCC* SNPs done by logistic regression and Multifactor dimensionality reduction (MDR).

SNP	rs10206961	rs1254900	rs14242	rs11241200
VAMP5	P_int= 0.50	1.06 (0.89~1.26)	0.86 (0.72~1.03)	0.84 (0.67~1.06)
rs10206961	NA	P_int= 0.11	1.15 (0.95~1.39)	P_int= 2.9E-03
rs1254900	P_int= 0.15	NA	P_int= 0.07	1.42 (1.14~1.79)
rs14242	P_int= 0.07	1.26(1.09~1.46)	NA	0.81 (0.64~1.02)
MCC	CVC=10/10	BA=0.53	P=0.002	NA

SNP: Single Nucleotide Polymorphism; a Cross-validation consistency (CVC) reflects the number of times MDR analysis identified the same model as the data were divided into different segments. b Balanced accuracy (BA) is defined as (sensitivity + specificity)/2.
by the insignificant P values shaded in grey. Another statistical method for testing epistatic interaction was also applied for further validation. Pairwise Multifactor dimensionality reduction (MDR) analysis was adopted here to test the epistatic interaction between SNP pairs. Table 3 showed the results of cross-validation consistency (CVC) and Balanced accuracy (BA) obtained from MDR analysis of the two-locus model, which showed significant pairwise interactions. The significance of the result was tested showing the consistent higher effect size between epistatic rs11241200 (MCC) with rs10206961, rs1254900 and rs14242 (VAMP5) to disease (P=0.002, OR=1.26).

Clinical stratification of SNPs in VAMP5 and MCC with HSCR

HSCR is heterogenous varied with different subclinical manifestations, typically classified by the aganglionosis length of the patients including SHSCR, LHSCR and TCA patients. For the two SNP including rs14242 and rs10206961 which showed evidence of association to HSCR in current study, rs14242 is associated with increased risk of the SHSCR though the effect is marginal (P=0.039, OR=1.19). SNP rs10206961 showed much stronger evidence of association to LHSCR with larger effect size and more stringent P value (2.97E-03≤P≤0.027, 0.61≤OR≤1.44), especially following the additive model. Surprisingly, despite from the epistatic effect with SNP rs1254900 to disease, we also observed a significant individual association to LHSCR patients. (P=4.62E-03, OR=0.61), highlighting extra roles for the SNP to disease. So we further examined the epistatic effect of SNP rs11241200 (MCC) and rs1254900 (VAMP5) to different HSCR patients. As shown in Table 4, we only observed significant epistatic associations in SHSCR patients to the disease (P_int=8.9E-03, OR=1.40), for LHSCR patients, marginal effect was observed which may be caused by limited samples waiting for further replications (P_int=0.066, OR=1.48). It is also possible SNP rs11254900 plays multiple roles leading to disease association which also required functional characterization.

DISCUSSION

HSCR is a complex clinical syndrome. Increasing studies focused on case-control and trio based study designs. It the largest population-based study to the correlation of VAMP5 and MCC genetic polymorphisms with HSCR risk in our study that 1473 cases and 1470 unrelated controls were enrolled in. We have replicated two SNPs rs10206961 and rs14242 in VAMP5 that were associated with HSCR (Table 1, 2). In further subclinical manifestation analysis, we further clarified SNPs rs10206961 and rs1254900 in VAMP5 and found they were essential for patients with LHSCR (Tables 3, 5). Interestingly, SNP interaction confirmed through logistic regression and multifactorial dimensionality reduction analysis revealed that the genotypes of the polymorphisms of VAMP5 rs1254900 and MCC rs11241200 were interacting significantly, thereby contributing to the risk of SHSCR (Table 4).

VAMP5 belongs to part of the vesicle-associated membrane protein (VAMP) and the soluble NSF attachment protein receptor (SNARE) superfamily. SNARE superfamily is responsible for the last stage of docking and subsequent fusion in diverse intracellular membrane transport events [19]. VAMP5 can provide their subcellular targeting in neurotransmission [11, 19].

Table 4. HSCR subphenotype interaction examination among rs1254900 (VAMP5) and rs11241200 (MCC).

SNP	MCC		
	SHSCR	LHSCR	TCA
rs1254900			
P_int=	8.9E-03	0.066	0.772
VAMP5	1.40(1.09–1.81)	1.48(0.97–2.06)	1.09(0.62–1.92)

HSCR: Hirschsprung disease; SNP: Single Nucleotide Polymorphism; SHSCR: aganglionosis length including short-length LHSCR: long-length; TCA: total colonic aganglionosis.
It may also facilitate glucose transporter type 4 (GLUT-4) translocation from the intracellular pool to the plasma membrane. Downregulation of VAMP5 might determine reduced GLUT4 membranal expression, followed by reduced glucose transport [20]. Accordingly, we hypothesize that the VAMP5 risk alleles could unbalance the metabolism of its encoded protein leading to the disorders of intestinal protein synthesis, although there is a lack of direct experimental support for this assumption. Considering the facts that pathophysiology of HSCR, it is caused by a congenital absence of neurons in a portion of the intestinal tract. More specifically, genetic variants of VAMP5 may functionally hinder the normal migration and proliferation of enteric neural crest cells. Similar genetic studies have suggested that there was a relationship between VAMP5 poly-

Chr	SNP	BP	A1/A2	Test	Subphenotype	Control	P	OR
2	rs10206961	85587861	T/C	ADD	152/486/364	216/676/563	0.357	1.06(0.94–1.19)
				DOM	638/364	892/563	0.217	1.11(0.94–1.32)
				REC	152/850	216/1239	0.919	1.01(0.80–1.28)
				ADD	249/497/256	342/711/401	0.249	1.07(0.95–1.20)
2	rs1254900	85589211	A/G	ADD	746/256	1053/401	0.300	1.10(0.92–1.33)
				DOM	746/256	1053/401	0.300	1.10(0.92–1.33)
				REC	249/753	342/1112	0.398	1.09(0.90–1.32)
				ADD	83/444/474	135/570/750	0.217	1.08(0.95–1.23)
				DOM	527/474	705/750	**0.039**	1.19(1.01–1.41)
				REC	83/918	135/1320	0.413	0.88(0.66–1.19)
				ADD	32/206/539	36/274/771	0.198	1.12(0.94–1.34)
				REC	32/745	36/1045	0.296	1.31(0.79–2.16)
2	rs10206961	85587861	T/C	ADD	58/142/89	216/676/563	**2.97E-03**	1.32(1.10–1.57)
				DOM	200/89	892/563	**8.98E-03**	1.44(1.10–1.89)
				REC	58/231	216/1239	**0.027**	1.44(1.04–1.99)
				ADD	45/154/85	342/711/401	**0.024**	0.81(0.67–0.97)
				DOM	199/85	1053/401	0.365	0.88(0.66–1.16)
				REC	45/239	342/1112	**4.62E-03**	0.61(0.43–0.86)
				ADD	27/119/135	135/570/750	0.325	1.10(0.91–1.34)
				DOM	146/135	705/750	0.247	1.16(0.90–1.51)
				REC	27/254	135/1320	0.819	1.05(0.68–1.63)
				ADD	5/54/169	36/274/771	0.370	0.88(0.66–1.17)
				DOM	5/54/169	36/274/771	0.370	0.88(0.66–1.17)
				REC	5/223	36/1045	0.477	0.71(0.27–1.83)
2	rs10206961	85587861	T/C	ADD	14/33/35	216/676/563	0.903	0.98(0.71–1.35)
				DOM	47/35	892/563	0.532	0.87(0.55–1.36)
				REC	14/68	216/1239	0.534	1.21(0.67–2.19)
				ADD	23/35/23	342/711/401	0.683	1.07(0.78–1.46)
				DOM	58/23	1053/401	0.783	0.93(0.57–1.53)
				REC	23/58	342/1112	0.334	1.28(0.78–2.11)
				ADD	10/32/41	135/570/750	0.450	1.14(0.82–1.58)
				DOM	42/41	705/750	0.645	1.11(0.71–1.73)
				REC	10/73	135/1320	0.362	1.38(0.69–2.73)
				ADD	3/23/40	36/274/771	0.066	1.48(0.97–2.25)
				DOM	26/40	310/771	0.056	1.65(0.99–2.76)
				REC	3/63	36/1045	0.537	1.46(0.44–4.91)

CHR: Chromosome; SNP: Single Nucleotide Polymorphism; BP: Base pair of where the SNP is located. Func.refgene: The function role of SNP in the gene. Gene.refgene: The gene where the SNP located to; A1/A2 indicates the risk allele and protective allele to disease; Freq: indicates risk allele frequency of the SNP in cases or controls. ADD, DOM and REC indicate the association test following additive, dominant, recessive and genotypic models. The P value indicates the significance based on different genetic models. The calculation of odds ratio (OR) is also based on the risk allele of each SNP.
morpisms and HSCR [12]. Three SNPs in VAMP5 overlaps with the previously reported potential association of VAMP5 polymorphisms with 21 TCA patients [20]. But in our study, we observed the association of VAMP5 with HSCR, especially in SHSCR and LHSCR patients, but we failed to replicate the association of SNPs using 82 TCA patients. The possible sources of this discrepancy could be attributed to number of samples. As shown in independence test result, SNP rs14242 showed limited LD with all the other SNPs (Figure 1, r²=0.35). Besides, our study presents the epistatic association between MCC and Vamp5. MCC is known to reduced activation of NF-κB signalling in colorectal cells as well as a factor related to neurodevelopmental disorders [21]. A study on mice has shown that MCC binds SH3/ankyrin domain gene 3 isoform were able to participate in neurodevelopmental, neurobehavioral and autism spectrum disorders [22]. Epistasis between the different genes provides us a perspective for disease etiology, not only limited HSCR, we also observed in other complex diseases such as colorectal cancer [23]. Taking the advantage of large replication samples, we tested the pairwise genetic epistasis between VAMP5 and MCC. Intriguingly, a significant synergetic interaction between rs1254900 (VAMP5) and rs11241200 (MCC) was identified through the cross-validation by logistic regression and MDR analysis, thereby contributing to the risk of SHSCR. We could speculate that VAMP5 and MCC gene are associated with the neurotransmitter release process that affects neurogenesis SNPs for the subphenotype interaction examination to make a more precise and convicitive assessment, pointing to the increased risk of SHSCR comparing to other related diseases.

There are several limitations to this study. First, the effect of gene-environment interactions was not emphasized. Second, more accurate ORs should be adjusted by patient factors such as medication consumption and other exposure factors. Third, as the heterogeneity in different ethnicities influenced the results significantly, the findings from the Asian based studies were not convicitive enough. We also calculated the power of current study using Epistasis Power Calculator (https://gump.qimr.edu.au/general/manuelF/epistasis/epipower4i.html), based on current sample size with the incidence rate 1 per 5000 infants, the power to detect pairwise epistatic effect is limited (0.61 for case-only study, 0.37 for case-control study), further replication in independent cohort was still required. Fourth, although this is the largest population-based study conducted to-date, the statistical power was still limited due to the relative insufficient sample size. Replication studies from other hospital with a larger sample size are encouraged to confirm the association. Lastly, the functional mechanisms subject to the association of VAMP5 and MCC for HSCR is required in the further study, borrowing the idea from other diseases [24, 25].

In summary, our study indicated significant associations between rs1254900 (VAMP5) and rs11241200 (MCC) as independently related with SHSCR status. We proposed a relationship that may fill the gap between genetic susceptibility and subclinical manifestation. These conclusions also will provide a basis for future efforts to understand the detailed mechanisms of this intestinal disorder. SNPs associated with increased severity or worsening progression of HSCR would potentially afford a better individualized treatment of patients.

MATERIALS AND METHODS

Study subjects

Following ethical approval by the institutional review board of Guangzhou Women and Children’s medical center, 1470 Southern Chinese HCSR cases (from 2000-2015; age range 8.37 ± 20.50 months; 83.67% males) were diagnosed with HSCR by surgical procedures and followed up histological examination. This pathologic evaluation of a rectal biopsy that shows nerve fibers in either mucosa or submucosa and the absence of ganglion cells in the submucosa [26]. All the cases were divided into three subgroups according to the segment lengths of aganglionosis including 1033 S-HSCR, 294 L-HSCR and 82 TCA. 1473 population control samples (age range 18.61 ± 19.75 months; 34.35% males) were collected with no history of HSCR and neurological disorders. Parental informed consent was obtained from all patient subjects in this study. The detailed clinical information of this study was summarized in Supplementary Table 1.

SNP Genotyping and quality control

Three SNPs in VAMP5 involved in the study were selected according to a GWAS in 187 Korean HSCR cases (Supplementary Table 2). Five SNPs were replicated in their study as shown in Supplementary Figure 1, two SNPs were removed according to the high LD (r²>0.9, rs1561198 and rs55971080) in Asians (the LD in CEU among the SNPs was less tightly with r²>0.8). The three SNPs with high LD were annotated by the RegulomeDB database (http://www.regulomedb.org/) to estimate the potential functional roles. The potential regulatory SNP (rs10206961) was remained for further replication.

Three SNPs in MCC from the HSCR GWAS by Garcia-Barcelo et al. (Supplementary Table 3). [17] showed
similar likelihood and effect size of disease association, linkage disequilibrium (LD) was examined among them reflecting the association might derive from one signal ($r^2 > 0.9$). SNP rs11241200 was chosen for replication in current study with higher annotation score by Regulome DB [17]. Four selected SNPs were genotyped by MassARRAY iPLEX Gold system (Sequenom) on the samples. Hardy-Weinberg equilibrium tests were performed and SNPs with $P < 0.05$ were excluded from the final analysis. Quality control of the four SNPs was performed as follows: 1. Cases/controls were excluded from the analysis on the basis of SNPs with >10% missing data. 2. Any subjects with 10% missing call were removed. After all quality control procedures, all four SNPs were kept for further analysis consisted of 1470 cases and 1473 controls.

Association analysis and subphenotype analysis

The SNPs were tested for associations with the disease by means of comparison of the minor allele frequency in cases and controls (basic allelic test) as well as other tests using PLINK1.9 (logistic regression for additive model, test of dominant and recessive models) [27]. Subphenotype association analyzes were performed by comparing cases with and without a certainly given subphenotype.

Independence testing

Linkage disequilibrium (LD) patterns were analyzed and displayed by HaploView [28]. Logistic regression tests were performed using SNPTEST v2.5b [29]. Tests of independent contributions toward disease associations for SNPs in a single locus were done using logistic regression, adjusting for the effect of a specific SNP in the same locus.

Gene Coexpression

We visited ImmuCo, a database of gene Co-expression and Correlation in multiple cells including expression data for a total of 20,283 human (http://immuco.bjmu.edu.cn/) and examined the pairwise expression correlation between VAMP5 and MCC. The correlation was calculated by Graphpad 5.0

Genetic epistasis

Epistasis test (case-control analysis) by logistic regression was adopted here for the parametric analysis of genetic interaction using PLINK1.9 [30]. PLINK uses a model according to allele dosage ranging from 0 to 2 indicating the number of risk alleles for each SNP, A and B, and fits the model in the form of $Y = b_0 + b_1 SNPA + b_2 SNPB + b_3 SNPA*SNPB + e$. The parameters b1, b2 and b3 indicate the contribution of SNP A and SNP B and interaction between A and B. The test for interaction is based on the coefficient b3. P values less than 0.05 were considered statistically significant.

Multifactor dimensionality reduction (MDR) was used to determine the genetic model that could most successfully predict the disease status or phenotype from several loci. Pairwise non-parametric epistasis test was also applied using MDR analysis [31]. This method includes a combined cross-validation (CV)/permutation testing procedure that minimizes false positive results by multiple examinations of the data. We determined the statistical significance by comparing the average prediction error from the observed data with the distribution of average prediction errors under the null hypothesis. The MDR analysis was carried out using version 2.0 of the open-source MDR software package that is freely available online (http://www.epistasis.org) [32].

Abbreviations

BA: Balanced accuracy; CEU: northern and western Europe; CMH: Cochran-Mantel-Haenszel; CRC: colorectal cancer; CV: cross-validation; ENS: enteric nervous system; GLUT-4: glucose transporter type 4; GWAS: genome-wide association study; HSCR: Hirschprung disease; HWE: hardy-weinberg equilibrium; LD: Linkage disequilibrium; L-HSCR: long-segment HSCR; MCC: Mutated in colorectal cancer; OR: odds ratios; MDR: multifactor dimensionality reduction; S-HSCR: short-segment HSCR; SNARE: soluble NSF attachment protein receptor; SNPs: Single nucleotide polymorphisms; TCA: total colonic aganglionosis; VAMP5: vesicle-associated membrane protein 5.

AUTHOR CONTRIBUTIONS

Yan Zhang and Huimin Xia designed experiment. Yuxiao Yao, Jinglu Zhao, Xiaoli Xie, Qiuming He, Ruizhong Zhang conducted the study. Yan Zhang and Xiaoli Xie analyzed the data. Yuxiao Yao, Jinglu Zhao and Yan Zhang wrote the paper. All authors read and approved the manuscript.

ACKNOWLEDGEMENTS

We thank Yanlu Tong and Hezhen Wang for their assistance in DNA extraction and in the collection of medical histories. The authors have no conflicts of interest to declare. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional review board of Guangzhou Women and Children’s medical center (No.
REFERENCES

1. Polley TZ Jr, Coran AG, Heidelberger KP, Wesley JR. Suction rectal biopsy in the diagnosis of Hirschsprung’s disease and chronic constipation. Pediatr Surg Int. 1986; 1:84–89. https://doi.org/10.1007/BF00166866

2. Whitehouse FR, Kernohan JW. Myenteric plexuses in congenital megacolon; study of 11 cases. Arch Intern Med 82:75. Arch Intern Med (Chic). 1948; 82:75–11. https://doi.org/10.1001/archinte.1948.00220250085005

3. Tang CS, Cheng G, So MT, Yip BH, Miao XP, Wong EH, Ngan ES, Lui VC, Song YQ, Chan D, Cheung K, Yuan ZW, Lei L, et al. Genome-wide copy number analysis uncovers a new HSCR gene: NRG3. PLoS Genet. 2012; 8:e1002687. https://doi.org/10.1371/journal.pgen.1002687

4. Ruttenstock E, Puri P. A meta-analysis of clinical outcome in patients with total intestinal aganglionioma. Pediatr Surg Int. 2009; 25:833–39. https://doi.org/10.1007/s00383-009-2439-2

5. Moore SW. Total colonic aganglionosis in Hirschsprung disease. Semin Pediatr Surg. 2012; 21:302–09. https://doi.org/10.1055/j.smpedsurg.2012.07.004

6. Bahrami A, Joodi M, Ahmadi M, Maftouh M, Hassanian SM, Ferns GA, Avan A. Genetic background of Hirschsprung Disease: A bridge between basic science and Clinical application. J Cell Biochem. 2018; 119:28-33. https://doi.org/10.1002/jcb.26149

7. Zhang Z, Li Q, Diao M, Liu N, Cheng W, Xiao P, Zou J, Su L, Yu K, Wu J, Li L, Jiang Q. Sporadic Hirschsprung Disease: Mutational Spectrum and Novel Candidate Genes Revealed by Next-generation Sequencing. Sci Rep. 2017; 7:14796. https://doi.org/10.1038/s41598-017-14835-6

8. Butler Tjaden NE, Trainor PA. The developmental etiology and pathogenesis of Hirschsprung disease. Transl Res. 2013; 162:1–15. https://doi.org/10.1016/j.trsl.2013.03.001

9. Butler Tjaden NE, Trainor PA. The developmental etiology and pathogenesis of Hirschsprung disease. Transl Res. 2013; 162:1–15. https://doi.org/10.1016/j.trsl.2013.03.001

10. Böttner M, Harde J, Barrenschee M, Hellwig I, Vogel I, Ebsen M, Wedel T. GDNF induces synaptic vesicle markers in enteric neurons. Neurosci Res. 2013; 77:128–36. https://doi.org/10.1016/j.neures.2013.08.012

11. Zeng Q, Tran TT, Tan HX. Hong W. The cytoplasmic domain of Vamp4 and Vamp5 is responsible for their correct subcellular targeting: the N-terminal extenSion of VAMP4 contains a dominant autonomous targeting signal for the trans-Golgi network. J Biol Chem. 2003; 278:23046–54. https://doi.org/10.1074/jbc.M303214200

12. Shin JG, Kim DY, Seo JM, Oh JT, Park KW, Kim HY, Park BL, Kim JH, Shin HD. Potential association of VAMP5 polymorphisms with total colonic aganglionioma in Hirschsprung disease. Neurogastroenterol Motil. 2016; 28:1055–63. https://doi.org/10.1111/nmo.12807

13. Wang Y, Cao Y, Huang X, Yu T, Wei Z, McGrath J, Xu F, Bi Y, Li X, Yang F, Li W, Zou X, Peng Z, et al. Allele-specific expression of mutated in colorectal cancer (MCC) gene and alternative susceptibility to colorectal cancer in schizophrenia. Sci Rep. 2016; 6:26688. https://doi.org/10.1038/srep26688

14. Xiao J, Lv D, Zhou J, Bei Y, Chen T, Hu M, Zhou Q, Fu S, Huang Q. Therapeutic Inhibition of miR-4260 Suppresses Colorectal Cancer via Targeting MCC and SMAD4. Theranostics. 2017; 7:1901–13. https://doi.org/10.7150/thno.19168

15. Matsumine A, Senda T, Baeg GH, Roy BC, Nakamura Y, Noda M, Toyoshima K, Akiyama T. MCC, a cytoplasmic protein that blocks cell cycle progression from the G0/G1 to S phase. J Biol Chem. 1996; 271:10341–46. https://doi.org/10.1074/jbc.271.17.10341

16. Curtis LJ, Bubb VJ, Gledhill S, Morris RG, Bird CC, Wylie AH. Loss of heterozygosity of MCC is not...
17. Garcia-Barcelo MM, Tang CS, Ngan ES, Lui VC, Chen Y, So MT, Leon TY, Miao XP, Shum CK, Liu FQ, Yeung MY, Yuan ZW, Guo WH, et al. Genome-wide association study identifies NRG1 as a susceptibility locus for Hirschsprung’s disease. Proc Natl Acad Sci USA. 2009; 106:2694–99. https://doi.org/10.1073/pnas.0809630105

18. Wang P, Qi H, Song S, Li S, Huang N, Han W, Ma D. ImmuCo: a database of gene co-expression in immune cells. Nucleic Acids Res. 2015; 43:D1133–39. https://doi.org/10.1093/nar/gku980

19. Zeng Q, Subramaniam VN, Wong SH, Tang BL, Parton RG, Rea S, James DE, Hong W. A novel synaptobrevin/VAMP homologous protein (VAMPS) is increased during in vitro myogenesis and present in the plasma membrane. Mol Biol Cell. 1998; 9:2423–37. https://doi.org/10.1091/mbc.9.9.2423

20. Basso D, Millino C, Greco E, Romualdi C, Foger P, Valerio A, Bellin M, Zambon CF, Navaglia F, Dussini N, Avogaro A, Pedrazzoli S, Lanfranchi G, Plebani M. Altered glucose metabolism and proteinase in pancreatic cancer cell conditioned myoblasts: searching for a gene expression pattern with a microarray analysis of 5000 skeletal muscle genes. Gut. 2004; 53:1159–66. https://doi.org/10.1136/gut.2003.024471

21. Cammareri P, Vincent DF, Hodder MC, Ridgway RA, Murgia C, Nobis M, Campbell AD, Varga J, Huels DJ, Subramani C, Prescott KL, Nixon C, Hedley A, et al. TGFβ pathway limits dedifferentiation following WNT and MAPK pathway activation to suppress intestinal tumourigenesis. Cell Death Differ. 2017; 24:1681–93. https://doi.org/10.1038/cdd.2017.92

22. Benthani F, Tran PN, Currey N, Ng I, Giry-Laterriere M, Carey L, Kohonen-Corish MR, Pangon L. Proteogenomic Analysis Identifies a Novel Human SHANK3 Isoform. Int J Mol Sci. 2015; 16:11522–30. https://doi.org/10.3390/ijms160511522

23. Gong J, Tian J, Lou J, Wang X, Ke J, Li J, Yang Y, Gong Y, Zhu Y, Zou D, Peng X, Yang N, Mei S, et al. A polymorphic MYC response element in KBTBD11 influences colorectal cancer risk, especially in interaction with a MYC regulated SNP rs6983267. Ann Oncol. 2018; 29:632–39. https://doi.org/10.1093/annonc/mdy789

24. Li J, Zou L, Zhou Y, Li L, Zhu Y, Yang Y, Gong Y, Lou J, Ke J, Zhang Y, Tian J, Zou D, Peng X, et al. A low-frequency variant in SMAD7 modulates TGF-β signaling and confers risk for colorectal cancer in Chinese population. Mol Carcinog. 2017; 56:1798–807. https://doi.org/10.1002/mc2.22637

25. Lou J, Gong J, Ke J, Tian J, Zhang Y, Li J, Yang Y, Zhu Y, Gong Y, Li L, Zhang J, Zhong R, Miao X. A functional polymorphism located at transcription factor binding sites, rs6695837 near LAMC1 gene, confers risk of colorectal cancer in Chinese populations. Carcinogenesis. 2017; 38:177–83. https://doi.org/10.1093/carcin/bgw204

26. Narayanan SK, Soundappan SS, Kwan E, Cohen RC, Charlton A, Cass DT. Angiogenesis with the absence of hypertrophied nerve fibres predicts disease proximal to rectosigmoid colon. Pediatr Surg Int. 2016; 32:221–26. https://doi.org/10.1007/s00383-015-3835-4

27. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007; 81:559–75. https://doi.org/10.1086/519795

28. Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005; 21:263–65. https://doi.org/10.1093/bioinformatics/bth457

29. Marchini J, Howie B, Myers S, McVean G, Donnelly P. A new multipoint method for genome-wide association studies by imputation of genotypes. Nat Genet. 2007; 39:906–13. https://doi.org/10.1038/ng2088

30. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007; 81:559–75. https://doi.org/10.1086/519795

31. Hahn LW, Ritchie MD, Moore JH. Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions. Bioinformatics. 2003; 19:376–82. https://doi.org/10.1093/bioinformatics/btf869

32. Zhang J, Zhang Y, Zhang L, Yang J, Ying D, Zeng S, Lee TL, Lau CS, Chan TM, Leung AM, Mok CC, Wong SN, Lee KW, et al. Epistatic interaction between genetic variants in susceptibility gene ETS1 correlates with IL-17 levels in SLE patients. Ann Hum Genet. 2013; 77:344–50. https://doi.org/10.1111/ahg.12018
Supplementary Figure 1. The linkage disequilibrium patterns of the susceptibility single-nucleotide polymorphisms in VAMP5 and MCC for Hirschsprung disease (HSCR) in different populations. CHB: Han Chinese. JPT: Japanese. CEU: Utah residents with ancestry from northern and western Europe. The LD (r²) patterns of five SNPs in VAMP5 in CHB & JPT populations (a), CEU populations (b) from 1000G data. The LD (r²) patterns of three SNPs in MCC in CHB & JPT populations (a), CEU populations (b) from 1000G data. The numbers in the boxes are the pairwise correlation coefficient r² between respective SNPs. Darker shades of color indicate higher value of LD. Lighter shades of color represents lower value of LD. In the previous HSCR genome-wide association study (GWAS), the red circle in left figure indicates three SNPs (rs10206961, rs1254900 and rs14242) in VAMP5 with the most significant most significant P-values association with risk of HSCR. The red circle in right figure (rs11241200) was included for analysis because it has been reported to be associated with HSCR in the HSCR GWAS by Garcia-Barcelo et al.

Supplementary Table 1. The subclinical information collected for the subjects in this study.

HSCR subphenotype	Cases (n=1470)	%	Controls (n=1473)	%
Subjects				
Age range (Months)	8.37±20.50	18.61±19.75		
≤2	725	49.32%	458	31.09%
>2	745	50.68%	1015	68.91%
Gender				
Females	240	16.33%	967	65.65%
Males	1230	83.67%	506	34.35%
Clinical manifestation				
SHCSR	1033	70.27%		
LHCSR	294	20.00%		
TCA	82	5.58%		
Total intestine	3	0.20%		

HSCR: Hirschsprung disease; SHSCR: aganglionosis length including short-length; LHCSR: long-length; TCA: total colonic aganglionosis.
Supplementary Table 2. Shin et al, 2016 /283 Controls and 374 Cases

SNP	A1/A2	Control	HSCR	OR	P*	
rs10206961	T/C	0.323	0.409	1.48	(1.12–1.95)	0.007
rs1254900	T/C	0.495	0.455	0.83	(0.63–1.10)	0.2
rs14242	A/G	0.293	0.358	1.36	(1.02–1.80)	0.03

SNP: Single Nucleotide Polymorphism; A1/A2 indicates the risk allele and protective allele to disease; HSCR: Hirschsprung disease; The calculation of odds ratio (OR) is also based on the risk allele of each SNP. The P value indicates the significance based on different genetic models.

Supplementary Table 3. Garcia-Barcelo et al, 2009/346 Controls and 181 Cases

SNP	A1/A2	Control	HSCR	OR	P
rs10900684	T/C	—	—	—	2.42E-05
rs11241200	A/C	—	—	—	3.45E-05
rs10067046	C/G	—	—	—	3.00E-04

SNP: Single Nucleotide Polymorphism; A1/A2 indicates the risk allele and protective allele to disease; HSCR: Hirschsprung disease; The calculation of odds ratio (OR) is also based on the risk allele of each SNP. The P value indicates the significance based on different genetic models.