sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015;17:405-424.

7. Carrell RW, Lomas DA. Alpha1-antitrypsin deficiency--a model for conformational diseases. N Engl J Med 2002;346:45-53.

8. Sarper N, Orlando C, Demirsoy U, Gelen SA, Jochmans K. Homozygous antithrombin deficiency in adolescents presenting with lower extremity thrombosis and renal complications: two case reports from Turkey. J Pediatr Hematol Oncol 2014;36:190-192.

9. de la Morena-Barrio B, Orlando C, de la Morena-Barrio ME, Vicente V, Jochmans K, Corral J. Incidence and features of thrombosis in children with inherited antithrombin deficiency. Haematologica 2019;104:2512-2518.

10. Di Minno MN, Ambrosino P, Ageno W, Rosendaal F, Di Minno G, Dentali F. Natural anticoagulants deficiency and the risk of venous thromboembolism: a meta-analysis of observational studies. Thromb Res 2015;135:923-932.

11. Castaldo G, Cerbone AM, Guida A, Tandurella L, Ingino R, Tufano A, Ceglia C, Di Minno MN, Ruocco AL, Di Minno G. Molecular analysis and genotype-phenotype correlation in patients with antithrombin deficiency from Southern Italy. Thromb Haemost 2012;107:673-680.

12. Bradley JF, Collins DL, Schimke RN, Parrott HN, Rothberg PG. Two distinct phenotypes caused by two different missense mutations in the same codon of the VHL gene. Am J Med Genet 1999;87:163-167.

An Interesting Case: Sunitinib-Induced Microangiopathic Hemolytic Anemia and Nephrotic Syndrome

İlginç Bir Olgu: Sunutinib İlişkili Mikroanjiyopatik Hemolitik Anemi ve Nefrotik Sendrom

To the Editor,

Sunitinib is a heterodimeric oral tyrosine kinase inhibitor that targets a large number of receptors, including VEGFR and PDGFR. Anti-VEGF treatments can cause hypertension, proteinuria, neutropenia, anemia, and thrombocytopenia [1]. It has been shown in animal experiments that vascular endothelial growth factor (VEGF) contributes to the repair of glomerular endothelium in experimental microangiopathy and anti-VEGF antibodies cause proteinuria by glomerular dissociation and downregulation of nephrin receptors [2]. The increase of VEGF levels in the blood 2-3 weeks after thrombotic microangiopathy (TMA) supports the idea of VEGF-mediated repair of the glomerular endothelium [3]. Anti-VEGF treatment may cause thrombosis due to the procoagulant phospholipids released as a result of the disruption of plasma membrane integrity and due to the decrease in the levels of nitric oxide and prostaglandin I2, which contributes to the production of VEGF [4].

A 54-year-old woman was receiving sunitinib for a metastatic gastrointestinal stromal tumor (GIST). She presented to the clinic 8 months after the initiation of therapy with microangiopathic hemolytic anemia (MAHA) and nephrotic syndrome (NS). Proteinuria (3.5 g) was detected in the 24-h urine collection. The platelet count was 35000/mm3, white blood cell count was 6700/mm3, and hemoglobin was 7 g/dL. In the blood smear, normochromic normocytic anemia, diffuse schistocytes, and fragmented erythrocytes were present (Figure 1). Sunitinib was discontinued and methylprednisone was

![Figure 1. Peripheral blood smear showed rare schistocytes and mild thrombocytopenia.](image-url)
started with the resolution of symptoms. MAHA and NS relapsed
with re-challenge with sunitinib. Symptoms resolved after the
discontinuation of sunitinib.

Bollee et al. published the case of a patient with malignant skin
hidradenoma who developed hypertension and proteinuria. Renal biopsy showed microangiopathic anemia [5]. A second
reported case involved metastatic renal cell carcinoma; hypertension, nephrotic proteinuria, azotemia, creatinine
increase, oliguria, thrombocytopenia, and anemia developed and kidney biopsy showed focal segmental glomerulosclerosis
and TMA. After the cessation of sunitinib, the patient recovered
[6]. A third case involved hypertension and proteinuria; a
kidney biopsy showed TMA. This patient improved with the
cessation of sunitinib and steroids [7]. In a fourth case of
metastatic GIST, the patient presented with hypertension, loss
of vision, seizures, anemia, thrombocytopenia, acute renal
failure, and posterior leukoencephalopathy with schistocytes
in the blood smear. After the cessation of sunitinib, he
improved [8]. A fifth case involved metastatic renal cell
carcinoma with nephrectomy as well as nephrotic proteinuria.
TMA was confirmed by kidney biopsy. Kidney functions and
proteinuria almost entirely improved after stopping sunitinib
and starting steroids [9]. In another case of metastatic renal
cell carcinoma, three weeks after the start of sunitinib,
hypertension, proteinuria, thrombocytopenia, and anemia
developed. Schistocytes were noticed in the blood smear. The
patient's symptoms improved after the discontinuation of
sunitinib [10].

In contrast to many cases discussed, the case that we
present here was not a case of renal cell carcinoma but
rather metastatic GIST. Generally, sunitinib is used in the
first line of treatment for renal cell carcinoma, but it is used
after imatinib in GIST treatment, as we did for this patient.
Therefore, it is interesting that this toxicity developed
after the second tyrosine kinase inhibitor. In this regard, it
is an infrequent phenomenon. Similar to other patients
mentioned, hypertension was detected in our patient before
the development of toxicity. As in most of the other cases,
our patient's condition improved almost completely after
stopping sunitinib. Our patient did not undergo a kidney
biopsy because she had thrombocytopenia and therefore
rejected the kidney biopsy. Furthermore, the diagnosis was
made clinically, so a biopsy was not required.

The use of anti-VEGF drugs has become widespread and there
are limited published data about such severe toxicities (Table
1). For this reason, we wanted to present this rare case that we
found and we believe that it can contribute to the literature.

Keywords: Sunitinib, Nephrotic syndrome, Hemolytic anemia,
Microangiopathic hemolytic anemia

Table 1. Naranjo algorithm assessment.
Naranjo Algorithm
2020-03-03 11:30:14
1. Are there previous conclusive reports on this reaction? Yes [2]
2. Did adverse reaction improve after the suspected drug was given? Yes [2]
3. Did the adverse reaction improve if the suspected drug was discontinued or a specific antagonist was given? Yes [2]
4. Did the adverse reaction improve after the reaction was rekindled? Yes [2]
5. Was the adverse reaction more severe when the dose was increased? Yes [2]
6. Was the adverse reaction more severe when the dose was decreased? No [0]
7. Was the adverse reaction more severe when another drug was administered? Yes [2]
8. Did the adverse reaction occur with or without other drugs? Yes [2]
9. Did the patient have a similar reaction to the same or similar drugs in any previous exposure? Yes [2]
10. Was the adverse reaction due to a known adverse effect? No [0]
Naranjo Score 8
Adverse Drug Reaction
PROBABLE

Anahtar Sözcükler: Sunitinib, Nefrotik sendrom, Hemolitik anemi, Mikroanjiyopatik hemolitik anemi

Ethics

Informed Consent: Since the patient died, consent was not
obtained.

Authorship Contributions

Concept: V.H., S.P.; Analysis or Interpretation: V.H., S.P.; Literature
Search: V.H., S.P.; Writing: V.H., S.P.

Conflict of Interest: No conflict of interest was declared by the
authors.

Financial Disclosure: The authors declared that this study
received no financial support.

References

1. Faire S, Delbado C, Vera K, Robert C, Lozaheic S, Lassau N, Bello C,
Deprimo S, Brega N, Massimini G, Armand JP, Seigalla P, Raymond E.
Safety, pharmacokinetic, and antitumor activity of SU11248, a novel oral
multitarget tyrosine kinase inhibitor, in patients with cancer. J Clin Oncol
2005;24:24-35.

2. Kim YG, Suga SI, Kang DH, Jefferson JA, Mazzalii M, Gordon KL, Matsui K,
Breiteneder-Geleff S, Shankland SJ, Hughes J, Kerjashki D, Schreiner GF,
Johnson RJ. Vascular endothelial growth factor accelerates renal recovery
in experimental thrombotic microangiopathy. Kidney Int 2000;58:2390-2399.
Kimura Disease Associated with Minimal Change Disease

Minimal Değişiklik Hastalığı ile İlişkili Kimura Hastalığı

Rafet Eren¹, Enes Cömert², İlkın Mansuroğlu³, Esma Evrim Doğan¹, Gülay Kadioğlu⁴

¹University of Health Sciences Turkey, Prof. Dr. Cemil Taşıçoğlu City Hospital, Department of Hematology, İstanbul, Turkey
²University of Health Sciences Turkey, Prof. Dr. Cemil Taşıçoğlu City Hospital, Department of Internal Medicine, İstanbul, Turkey
³University of Health Sciences Turkey, Prof. Dr. Cemil Taşıçoğlu City Hospital, Department of Pathology, İstanbul, Turkey
⁴University of Health Sciences Turkey, Prof. Dr. Cemil Taşıçoğlu City Hospital, Department of Nephrology, İstanbul, Turkey

To the Editor,

Kimura disease is a benign chronic inflammatory disease with unknown etiology, which usually presents with lymphadenopathies in the head and neck, peripheral blood eosinophilia, and elevated serum immunoglobulin E (IgE) levels. It is mostly observed in young males of Asian descent in the second and third decades of life, but sporadic cases in other ethnic groups have also been reported [1,2]. Here we present a patient with Kimura disease and concomitant nephrotic syndrome who presented with lymphadenopathies of atypical locations.

A 25-year-old male patient presented with new-onset hypertension, decreased urine output, and lower extremity swelling. His past medical history was unremarkable with no history of allergies. On examination, his blood pressure was 140/100 mmHg, heart rate was 90/min, and body temperature was 37 °C. He had bilateral 2+ pitting edema of the bilateral lower extremities and an enlarged, soft, nontender 3-cm left inguinal lymph node. Laboratory evaluation results were as follows: white blood cells, 6790/µL; eosinophils, 1280/µL (18.9%); normal hemoglobin level and platelet count; serum creatinine, 0.66 mg/dL; urea, 26 mg/dL; albumin, 2.4g/dL; triglyceride, 295mg/dL; erythrocytesedimentation rate, 81 mm/h; total IgE, 3318 kU/L (<87). Urinalysis showed 3+ protein and the spot urine protein/creatinine ratio was 7819 mg/g. Viral serologies and rheumatologic markers were negative. Serum C3, C4, IgG, IgA, and IgM levels were also normal. A percutaneous renal biopsy was performed for nephrotic syndrome. Pathological examination of the specimen revealed no significant changes by light microscopy and was negative for immunofluorescence, indicating minimal change disease. The patient was started on low-dose perindopril with a gradual increase to 10 mg/day. Positron emission tomography-computed tomography (CT) performed to assess any associated malignancy showed hypermetabolic activity in the inguinal and right external iliac regions (SUVmax: 2.5). The left inguinal lymph node was excised. The pathology was reported to be consistent with Kimura disease (Figure 1). During follow-up, his creatinine levels progressively increased to 2 mg/dL and he was started on methylprednisolone at 1 mg/kg. At week 1, his creatinine regressed to baseline. At week 3, complete remission of proteinuria was achieved and...