The Characterizations of δ – Algebras with Their Ideals

Shuker M. Khalil$^{a)}$ and Ahmed Naji Hassan$^{b)}$

Department of Mathematics, College of Science, University of Basrah, Basrah 61004

$^{a)}$Corresponding author: shuker.alsalem@gmail.com

$^{b)}$ahmed.naji874@yahoo.com

Abstract. We explored new algebra structures such as δ –algebra, δ –subalgebra and δ –ideal in this work. In addition, we study their fundamental characteristics and their connections with other algebras, such as $d/\rho/BCK$ – algebras, $d/\rho/BCK$ – subalgebras and $d/\rho/BCK$ – ideals. Also, some examples to illustrate our notions are given.

MSC (2010): 20G05, 20D06, 20B30, 20B35

Keywords: d-algebra, BCK-algebra, ρ – algebra, Ideals, d-subalgebra.

1. Introduction

BCK – Algebra [1] and BCI – algebra [2] were considered by Imai and Iseki. After that, in 1983, Hu showed BCH – algebras [3] and Li [4] addressed it in 1985. Next, some new algebra forms are seen ([5]-[26]). The construction of d – algebra, a further extension of BCK-algebras, was demonstrated in 1999, see [27]. Moreover, Jun, Neggers and Kim [28] demonstrate the construction of the d – ideal in d – algebra. They also considered fuzzy algebra constructions such as fuzzy $d/B/BCCI$ – algebras, fuzzy d/d^ρ – ideals and the relationships between them are seen ([29]-[31]).

The constructions of ρ – algebra, ρ/ρ – ideals, ρ – subalgebra and permutation topological ρ – algebra were first proposed by Khalil and Abdul Alradha in 2017 [5]. Next, the concepts of soft ρ – algebra and soft edge ρ – algebra [6] were demonstrated.
In this study, we explored new algebra structures such as δ–algebra, δ–subalgebra and δ–ideal. We study their fundamental characteristics and their connections with other algebras, such as $d/\rho/BCK$–algebras, $d/\rho/BCK$–subalgebras and $d/\rho/BCK$–ideals. In addition, some examples to illustrate our notions are given.

2. Preliminaries

We remember the basic description and data that are required in our work in this section.

Definition 2.1: [27] A d–algebra (η, α, f) is a set $\eta \neq \emptyset$ and fulfilling the following assumptions with binary operation α and a fixed f:

i) $\alpha\alpha\eta = f$

ii) $\alpha\alpha\eta = f$

iii)$\alpha\alpha\eta = f$ and $\alpha\alpha\eta = f \rightarrow \alpha = \eta$, for all $\eta, \alpha \in \eta$.

Remark 2.2:[27] For any d–algebra η. We say η is finite d–algebra if η is a finite set.

Definition 2.3: [28] For any d–algebra (η, α, f), we say it is BCK–algebra, if η such that following assumptions:

(1). $(\alpha\eta\alpha)(\alpha\eta\alpha) = f$

(2). $(\alpha\eta\alpha)(\alpha\eta\alpha) = f$, for all $\alpha, \eta \in \eta$.

Definition 2.4: [28] For any $\phi \neq \emptyset \subseteq \eta$. We say \emptyset is a d–subalgebra $(d$–SA) of η if $\alpha\eta\eta \in \emptyset$, $\forall \alpha, \eta \in \emptyset$ and (η, α, f) is a d–algebra.

Definition 2.5: [28] For any $\phi \neq \emptyset \subseteq \eta$. We say \emptyset is a d–ideal $(d$–I) of η if (η, α, f) is a d–algebra and fulfilling the following assumptions:

(1). $\alpha\eta\eta \in \emptyset$ and $\alpha \in \emptyset \rightarrow \alpha \in \emptyset$,

(2). $\alpha \in \emptyset$ and $\eta \in \emptyset \rightarrow \alpha\eta\eta \in \eta$, $\forall \alpha, \eta \in \eta$.

Definition 2.6: [28] For any $\phi \neq \emptyset \subseteq \eta$. We say \emptyset is a BCK–ideal $(BCK$–I) of η if (η, α, f) is a BCK–algebra and fulfilling the following assumptions:

(1). $\alpha \in \emptyset$,

(2). $\alpha\eta\eta \in \emptyset$ and $\eta \in \emptyset \rightarrow \alpha \in \emptyset$, for all $\alpha, \eta \in \eta$.

Definition 2.7: [5] We say (η, α, f) is a ρ–algebra if $\eta \in \eta$ and fulfilling the following assumptions:

i) $\alpha\eta\eta = f$

ii) $\alpha\eta\eta = f$

iii)$\alpha\eta\eta = f$ and $\alpha\eta\eta = f \rightarrow \alpha = \eta$, for all $\eta, \alpha \in \eta$.

iv) For all $\eta \neq \emptyset \in \eta$–$\{f\} \rightarrow \alpha\eta\eta = \alpha\eta\eta \neq f$.
Note: Any ρ-algebra is d-algebra. Nevertheless, the opposite is not true in general.

Definition 2.8: [5] For any $\phi \neq H \subseteq \Omega$. We say H is a $(\rho-SA)$ of η if $\nu \omega \in H$, $\forall \nu, \omega \in H$ and (Ω, o, f) is a ρ-algebra.

Definition 2.9: [5] For any $\phi \neq \xi \subseteq \eta$. We say ξ is a $(\rho-I)$ of η if (η, o, f) is a ρ-algebra and fulfilling the following assumptions:

1. $\nu, \omega \in \xi$ imply $\nu \omega \in \xi$,
2. $\nu \omega \in \xi$ and $\omega \in \xi$ imply $\nu \in \xi$, $\forall \nu, \omega \in \eta$.

Definition 2.10: [5] For any $\phi \neq \xi \subseteq \eta$. We say ξ is a $(\rho-I)$ of η if (η, o, f) is a ρ-algebra and fulfilling the following assumptions:

1. $f \in \xi$,
2. $\nu \in \xi$ and $\omega \in \eta \rightarrow \nu \omega \in \xi$, $\forall \nu, \omega \in \eta$.

Definition 2.11: [28]
Assume that (η, o, e) is a d-algebra. If η satisfies the identity $(\nu \omega \omega)\omega \nu = e$, then η is said to be d^*-algebra.

Remark 2.12: [28]
In d^*-algebra any BCK-algebra is d-ideal and d-subalgebra.

3. Characterizations of δ-algebra

In this section, new definitions such as δ-algebra, δ-ideal and fuzzy δ-subalgebra in algebra will be introduced and their relationships with other algebras will be studied.

Definition 3.1:
We say (η, o, f) is a δ-algebra if $f \in \eta$ and fulfilling the following assumptions:

i) $\nu \omega = f$

ii) $f = f$

iii) $\nu \omega = f$ and $\omega \nu = f \rightarrow \omega = \nu$, for all $\nu, \omega \in \eta$.

iv) For all $\nu \neq \omega \in \eta - \{f\} \rightarrow \nu \omega \omega = \omega \nu \omega \neq f$.

v) For all $\nu \neq \omega \in \eta - \{f\} \rightarrow (\nu \omega (\omega \sigma))\omega (\sigma \omega) = f$
Example 3.2: Suppose that \(\eta = \{ f, \nu, \omega, \sigma \} \) and the binary operation \(\circ \) is described as a table (1)

\[
\begin{array}{cccc}
\circ & f & \nu & \omega & \sigma \\
\hline
f & f & f & f & f \\
\nu & \nu & f & \nu & \nu \\
\omega & \omega & \nu & f & \nu \\
\sigma & \sigma & \nu & \nu & f \\
\end{array}
\]

"Table (1)"

Hence \((\eta, \circ, f) \) is a \(\delta \) – algebra

Remarks 3.3:

(1) Any \(\delta \) – algebra will be \(d \) – algebra. Nevertheless, the opposite is not true in general.
(2) Any \(\delta \) – algebra will be \(\rho \) – algebra. Nevertheless, the opposite is not true in general.

Example 3.4: Suppose that \(\eta = \{ f, \nu, \omega, \sigma \} \) and the binary operation \(\circ \) is described as a table (2)

\[
\begin{array}{cccc}
\circ & f & \nu & \omega & \sigma \\
\hline
f & f & f & f & f \\
\nu & \nu & f & \nu & \nu \\
\omega & \omega & \omega & f & \sigma \\
\sigma & \sigma & \sigma & \sigma & f \\
\end{array}
\]

"Table (2)"

Hence \((\eta, \circ, f) \) is a \(d \) – algebra. However, it is not \(\delta \) – algebra, since \(\nu \neq \omega \in \eta \setminus \{ f \} \) and \(\nu \circ \omega \neq \omega \circ \nu \). Also, if \(\circ \) is described as a table (3)

\[
\begin{array}{cccc}
\circ & f & \nu & \omega & \sigma \\
\hline
f & f & f & f & f \\
\nu & \nu & f & \nu & \omega \\
\omega & \omega & \nu & f & \nu \\
\sigma & \sigma & \omega & \nu & f \\
\end{array}
\]

"Table (3)"

Then \((\eta, \circ, f) \) is a \(\rho \) – algebra. However, it is not \(\delta \) – algebra, since \(\nu \neq \sigma \in \eta \setminus \{ f \} \) and \(\nu \circ (\nu \circ \sigma) = (\nu \circ \omega) \circ \nu = \nu \circ \omega \neq \nu \neq f \).

Definition 3.5: Assume that \(\phi \neq H \subseteq \Omega \), where \((\Omega, \circ, f) \) is a \(\delta \) – algebra, we say that \(H \) is \(\delta \) – subalgebra (\(\delta \) – SA) of \(\Omega \) if \(\nu \circ \omega \in H \), whenever \(\nu \in H \) and \(\omega \in H \).

Theorem 3.6: If \((\Omega, \circ, f) \) is a \(\delta \) – algebra, then \(H \) is \(d \) – SA of \(\Omega \), whenever \(H \) is \(\delta \) – SA of \(\Omega \).

Proof: Assume \(H \) is \(\delta \) – SA of \(\delta \) – algebra \(\Omega \). Hence we have \(\Omega \) is \(d \) – algebra and \(H \) satisfies \(\nu \circ \omega \in H \) whenever \(\nu \in H \) and \(\omega \in H \). Thus \(H \) is \(d \) – SA of \(\delta \) – algebra \(\Omega \).

Theorem 3.7: If \((\Omega, \circ, f) \) is a \(\delta \) – algebra, then \(H \) is \(\rho \) – SA of \(\Omega \), whenever \(H \) is \(\delta \) – SA of \(\Omega \).

Proof: Assume \(H \) is \(\delta \) – SA of \(\delta \) – algebra \(\Omega \). Hence we have \(\Omega \) is \(\rho \) – algebra and \(H \) satisfies \(\nu \circ \omega \in H \) whenever \(\nu \in H \) and \(\omega \in H \). Thus \(H \) is \(\rho \) – SA of \(\rho \) – algebra \(\Omega \).
Remarks 3.8:

(1) Theorem (3.6) show that any $\delta - SA$ is $\delta - SA$. Nevertheless, the opposite is not true in general.

(2) Theorem (3.7) show that any $\delta - SA$ is $\rho - SA$. Nevertheless, the opposite is not true in general.

Example 3.9: Suppose $\Omega = \{1,2,3,4,5\}$ is a d-algebra, where ω is described as a table (4):

ω	1	2	3	4	5
1	1	1	1	1	1
2	2	1	1	2	1
3	3	3	1	1	3
4	4	4	4	1	4
5	5	5	5	5	1

"Table (4)"

Then $H = \{1,4\}$ is $d - SA$ of Ω. However, Ω is not δ-algebra, so $H = \{1,4\}$ is not $\delta - SA$ of Ω.

Example 3.10:

See table (3) in Example (3.4), we have $H = \{f, u, \omega\}$ is $\rho - SA$ of η. However, η is not δ-algebra, so $H = \{f, u, \omega\}$ is not $\delta - SA$ of η.

Proposition 3.11:

Let $\Omega = \{1,2,\ldots,n\}$, $|\Omega| = n$ and define (\bullet) on Ω as follows:

$$
\nu \bullet \omega = \begin{cases}
1, & \text{if } \nu = \omega \text{ or } \nu = 1 \\
\nu, & \text{if } \nu > \omega \neq 1, \\
\nu, & \text{if } \omega < \nu
\end{cases}
$$

for all $\nu, \omega \in \Omega$. Then $(\Omega, \bullet, 1)$ is δ-algebra.

Proof:

(3) Since $\nu \bullet \omega = \begin{cases}
1, & \text{if } \nu = \omega \text{ or } \nu = 1 \\
\nu, & \text{if } \omega < \nu
\end{cases}$, and $\forall \nu, \omega \in \Omega$. Then for each $n > 1$, the following are hold:

i)- $\nu \bullet 1 = 1$,
ii)- $1 \bullet \nu = 1$,
iii)- $\nu \bullet \omega = 1$ and $\omega \bullet \nu = 1 \Rightarrow \nu = \omega \forall \nu, \omega \in \Omega$.
iv)- For any $\nu \neq \omega \in \Omega - \{1\}$, if $\omega > \nu \rightarrow \nu \bullet \omega = \omega = \omega \bullet \nu$, and $\nu \bullet \omega = \nu \neq \omega \bullet \omega$, if $t < c$.

Hence $\nu \bullet \omega = \omega \bullet \nu \neq 1$
v)- For any \(\nu \neq \omega \in \Omega - \{1\} \), if \(\omega > \nu \) we have \((\nu \cdot (\nu \cdot \omega)) \cdot (\omega \cdot \nu) = (\nu \cdot \omega) \cdot (\nu \cdot \omega) = 1 \) and \((\nu \cdot (\nu \cdot \omega)) \cdot (\omega \cdot \nu) = (\nu \cdot \nu) \cdot (\omega \cdot \nu) = 1 \cdot (\omega \cdot \nu) = 1 \), if \(\omega < \nu \). Hence \((\nu \cdot (\nu \cdot \omega)) \cdot (\omega \cdot \nu) = 1 \). Then \((\Omega, \cdot, 1)\) is \(d^{n}-\text{algebra}. \)

Notes Referring to \(d^{n} \)-Algebra 3.12:
Let \(n = \nu > 2 \), where \(\nu \) is a prime. So \((\Omega, \cdot, 1)\) is a finite \(d^{n} \)-algebra, where \(\cdot \) is described as a table (5):

\(\cdot \)	1	2	3	4	5	\(\nu \cdot 3 \)	\(\nu \cdot 2 \)	\(\nu \cdot 1 \)	\(\nu \)
1	1	1	1	1	1	1	1	1	\(\nu \)
2	2	1	3	4	5	\(\nu \cdot 3 \)	\(\nu \cdot 2 \)	\(\nu \cdot 1 \)	\(\nu \)
3	3	3	1	4	5	\(\nu \cdot 3 \)	\(\nu \cdot 2 \)	\(\nu \cdot 1 \)	\(\nu \)
4	4	4	4	1	5	\(\nu \cdot 3 \)	\(\nu \cdot 2 \)	\(\nu \cdot 1 \)	\(\nu \)
5	5	5	5	5	1	\(\nu \cdot 3 \)	\(\nu \cdot 2 \)	\(\nu \cdot 1 \)	\(\nu \)

It is obvious that for each \(2 \leq i \leq \nu - 1 \), \((H_{i}, \cdot, 1)\) is \(d^{n} \)-SA of finite \(d^{n} \)-algebra \((\Omega, \cdot, 1)\), where \(H_{i} = \{1, 2, \ldots, i\} \). In addition, \(\forall \nu \neq \omega \in \Omega - \{1\} \) and \(\nu < \omega \), we consider that \((\nu \cdot \omega) \cdot \nu = \omega \cdot \nu = \omega \cdot 1 = 1 \). So there is no need for \(d^{n} \)-algebra to be \(d^{n} \)-algebra.

Now, if \(\Omega = \{1, 2, 3, 4\} \) let's use the table below:

\(\omega \)	1	2	3	4
1	1	1	1	1
2	2	1	2	2
3	3	2	1	2
4	4	2	2	1

"Table (5)"

"Table (6)"
Then \((\Omega, o, 1)\) is a \(\delta\)-algebra. Moreover, \((\Omega, o, 1)\) is not \(BCK\)-algebra, since
\[((3o4)o(3o1))o(1o4) = (2o3)o1 = 2o1 = 2 \neq 1\). Therefore \(\delta\)-algebra need not be \(BCK\)-algebra.

Definition 3.13:
Assume \((\eta, o, f)\) is a \(\delta\)-algebra and \(\phi \neq \mathcal{I} \subseteq \eta\). Then \(\mathcal{I}\) is said to be \(\delta\)-ideal \((\delta-I)\) of \(\delta\)-algebra \(\eta\) if:

(1). \(\nu, \omega \in \mathcal{I} \Rightarrow \nu \omega \in \mathcal{I}\)

(2). \(\nu \omega \in \mathcal{I}\) and \(\omega \in \mathcal{I} \Rightarrow \nu \in \mathcal{I} \forall \nu, \omega \in \eta\).

Example 3.14:
For any \(\delta\)-algebra \(\eta\), we have \(\eta\) and \(\{f\}\) are \(\delta\)-ideals. Also, any \(\delta-I\) of \(\delta\)-algebra \(\eta\) is a \(\delta\)-SA.

Lemma 3.15: Every \(\delta-I\) is \((\nu/d)\)-SA.

Proof:
Let \(\mathcal{I}\) be \(\delta-I\) of \(\delta\)-algebra \((\eta, o, f)\), then from [Theorems (3.6) - (3.7)] we have \((\eta, o, f)\) is \((\nu/d)\)-algebra and hence from [Definition 3.13- (1)] we consider that \(\mathcal{I}\) is \((\nu/d)\)-SA.

Theorem 3.16: Every \(d-I\) in \(\delta\)-algebra \((\eta, o, f)\) is \(\delta-I\).

Proof:
Let \(\mathcal{I}\) be a \(d-I\) in \(\delta\)-algebra \((\eta, o, f)\). We want to show that:

(1). \(\nu, \omega \in \mathcal{I} \Rightarrow \nu \omega \in \mathcal{I}\)

(2). \(\nu \omega \in \mathcal{I}\) and \(\omega \in \mathcal{I} \Rightarrow \nu \in \mathcal{I} \forall \nu, \omega \in \eta\)

Since \(\mathcal{I}\) is the \(d-I\), condition (2) is held. Even \(\forall \nu, \omega \in \mathcal{I}\), we have \(\nu \in \mathcal{I}\) and \(\omega \in \eta\) (since \(\mathcal{I} \subseteq \eta\)). This implies that \(\nu \omega \in \mathcal{I}\) [By definition (2.9)-(2)]. Also, since \((\eta, o, f)\) is \(\delta\)-algebra then \(\mathcal{I}\) is \(\delta-I\) for us.

Theorem 3.17:
Every \(d-I\) in \(\delta\)-algebra \((\eta, o, f)\) is \(\delta-I\).

Proof: By [Definition (2.5)-(2)] and by the same way in proof theorem (3.16), we have every \(d-I\) in \(\delta\)-algebra \((\eta, o, f)\) is \(\delta-I\).

Remark 3.18: The opposite of theorem (3.17) is not true in general.
Example 3.19: Assume $\Omega = \{1,2,3,4,5\}$ is a d–algebra, where * is described as a table (7):

$$
\begin{array}{ccccc}
* & 1 & 2 & 3 & 4 & 5 \\
1 & 1 & 1 & 1 & 1 & 1 \\
2 & 2 & 1 & 2 & 1 & 2 \\
3 & 3 & 3 & 4 & 1 & 4 \\
4 & 4 & 4 & 3 & 1 & 4 \\
5 & 4 & 4 & 2 & 2 & 1 \\
\end{array}
$$

"Table (7)"

Then $\mathcal{G} = \{1,2\}$ is a d–1 of Ω. Also, Ω is not δ–algebra, thus $\mathcal{G} = \{1,2\}$ is not δ–1 of Ω.

Lemma 3.20: the intersection of a family of δ–1 in δ–algebra Ω is a δ–1 in Ω.

Proof:

Let P_i , $i \in \mathcal{X}$ be a δ–1 of Ω and let $\nu, \omega \in \bigcap_{i \in \mathcal{X}} P_i$, then $\nu, \omega \in P_i$, so $\nu \omega \in P_i \forall i \in \mathcal{X}$, (since P_i is a δ–1) so $\nu \omega \omega \in \bigcap_{i \in \mathcal{X}} P_i$. Now, let $\nu \omega \omega \in \bigcap_{i \in \mathcal{X}} P_i$ and $\omega \in \bigcap_{i \in \mathcal{X}} P_i$, so $\nu \omega \omega \in P_i$. Then $\nu \omega \omega = \nu \omega \omega \in \bigcap_{i \in \mathcal{X}} P_i$.

Remark 3.21: In δ–algebra (Ω, ω, f), the δ–1 of Ω is a δ–SA. Nevertheless, the opposite is not true in general.

Example 3.22: Suppose (Ω, ω, f) is δ–algebra where $\Omega = \{1,2,3,4,5,6\}$ and ω is described as a table (7):

$$
\begin{array}{cccccccc}
\omega & 1 & 2 & 3 & 4 & 5 & 6 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
2 & 2 & 1 & 3 & 4 & 5 & 6 \\
3 & 3 & 3 & 1 & 4 & 5 & 6 \\
4 & 4 & 4 & 1 & 5 & 6 \\
5 & 5 & 5 & 5 & 5 & 1 & 6 \\
6 & 6 & 6 & 6 & 6 & 6 & 1 \\
\end{array}
$$

"Table(8)"

Also, let $\phi \neq H \subseteq \Omega , \ H = \{1,2,6\} , \ H$ is a δ–SA, but H is not δ–1 since if we take $\nu = 3$ and $\omega = 6$ then $\nu \omega \omega = 3 \times 6 = 6 \in H$ and $\omega \in H$, but $\nu \notin H$.

Theorem 3.23: Every δ–1 \mathcal{G} of δ–algebra η is a BCK–1 of BCK–algebra η.

Proof: Let \mathcal{G} be a δ–1 in δ–algebra (η, ω, f). Then $\phi \neq \mathcal{G} \subseteq \eta$ and (η, ω, f) is d–algebra. We just need to prove that:

(1). $f \in \mathcal{G}$,

(2). $\nu \omega \omega \in \mathcal{G}$ and $\omega \in \mathcal{G}$ imply $\nu \in \mathcal{G}$, for all $\nu, \omega \in \mathcal{G}$.

Since \mathcal{G} is the δ–1, condition (2) is held. At least $\exists \nu \in \mathcal{G}$ (since $\phi \neq \mathcal{G}$). Therefore $\nu \omega \omega \in \mathcal{G}$[By definition(3.11)-(1)]. But $\nu \omega \omega = f$, so $f \in \mathcal{G}$. Then \mathcal{G} is a BCK–1 of BCK–algebra η.

Remark 3.24: In the following diagram, we will state our results:
4. Conclusion

We introduce the notions of δ– algebra, δ– subalgebra and δ– ideal in this review. They are shown their basic characterizations and their relationships with other algebras such as $d / \rho / BCK$ – algebras, $d / \rho / BCK$ – subalgebras and $d / \rho / BCK$ – ideals are shown. Some new forms of fuzzy algebras, such as fuzzy δ– algebra, fuzzy δ– subalgebra and fuzzy δ– ideal will be discussed. Next, the links between them and other forms of fuzzy algebras will also be given.

References

[1] Y. Imai and K. Iseki, On axiom systems of propositional calculi XIV, Proc. Japan Academy, 42 (1966), 19-22.
[2] K. Iseki, An algebra related with a propositional calculus, Proc. Japan Academy, 42 (1966), 26-29.
[3] Q. P. Hu and X. Li, On BCH-algebras, Math, Seminar Notes, 11 (1983), 313-320.
[4] Q. P. Hu and X. Li, On proper BCH-algebras, Math. Japon., 30 (1985), 659-661.
[5] S. M. Khalil, M. Alradha, Characterizations of ρ– algebra and generation permutation topological ρ-algebra using permutation in symmetric group, American Journal of Mathematics and Statistics, 7(4), (2017), 152–159.
[6] S. M. Khalil, M. A. Alradha. Soft edge ρ-algebras of the power sets, International Journal of Applications of Fuzzy Sets and Artificial Intelligence,7,(2017), 231–243.
[7] S. M. Khalil and A. N. Hassan, Applications of Fuzzy Soft ρ-Ideals in ρ-Algebras, Fuzzy Information and Engineering, (2020), DOI: 10.1080/16168658.2020.1799703.
[8] S. M. Khalil, S. A. Abdul-Ghani, Soft M-Ideals and Soft S-Ideals in Soft S-Algebras, J. Phys.: Conf. Ser., 1234 (2019) 012100, doi:10.1088/1742-6596/1234/1/012100.
[9] S. M. Khalil and N. M. A. Abbas, On Nano with Their Applications in Medical Field, AIP Conference Proceedings 2290, 04002 (2020); https://doi.org/10.1063/5.0027374
[10] S. M. Khalil, New category of the fuzzy d-algebras, Journal of Taibah University for Science, 12(2), (2018), 143-149. doi.org/10.1080/16583655.2018.1451059
[11] S. M. Khalil, and A. N. Hassan, New Class of Algebraic Fuzzy Systems Using Cubic Soft Sets with their Applications, IOP Conf. Series: Materials Science and Engineering, 928 (2020) 042019 doi:10.1088/1757-899X/928/4/042019

[12] S. M. Khalil and N. M. A. Abbas, Characteristics of the Number of Conjugacy Classes and P-Regular Classes in Finite Symmetric Groups, IOP Conference Series: Materials Science and Engineering, 571 (2019) 012007, doi:10.1088/1757-899X/571/1/012007.

[13] M. M. Torki and S. M. Khalil, New Types of Finite Groups and Generated Algorithm to Determine the Integer Factorization by Excel, AIP Conference Proceedings 2290, 040020 (2020); https://doi.org/10.1063/5.0027691

[14] S. M. Khalil and N. M. Abbas, Applications on New Category of the Symmetric Groups, AIP Conference Proceedings 2290, 040004 (2020); https://doi.org/10.1063/5.0027380

[15] S. M. Khalil and F. Hameed, Applications on Cyclic Soft Symmetric Groups, IOP Conf. Series: Journal of Physics, 1530 (2020) 012046, doi:10.1088/1742-6596/1530/1/012046.

[16] S. A. Abdul-Ghani, S. M. Khalil, M. Abd Ulrazaq, and A. F. Al-Musawi, New Branch of Intuitionistic Fuzzification in Algebras with Their Applications, International Journal of Mathematics and Mathematical Sciences, Volume 2018, Article ID 5712676, 6 pages.

[17] S. M. Khalil, Decision making using algebraic operations on soft effect matrix as new category of similarity measures and study their application in medical diagnosis problems, Journal of Intelligent & Fuzzy Systems, 37, (2019), 1865-1877. doi: 10.3233/JIFS-179249.

[18] S. M. Saied and S. M. Khalil, Gamma Ideal Extension in Gamma Systems, Journal of Discrete Mathematical Sciences and Cryptography, (2021) to appear.

[19] S. M. Khaliland F. Hameed, An algorithm for generating permutations in symmetric groups using soft spaces with general study and basic properties of permutations spaces. J Theor Appl Inform Technol, 96(9), (2018), 2445-2457.

[20] S. M. Khalil, M. Ulrazaq, S. Abdul-Ghani, Abu Firas Al-Musawi, σ–Algebra and σ–Baire in Fuzzy Soft Setting, Advances in Fuzzy Systems, Volume 2018, Article ID 5731682, 10 pages.

[21] S. M. Khalil, Decision Making Using New Category of Similarity Measures and Study Their Applications in Medical Diagnosis Problems, Afrika Matematika, (2021), https://doi.org/10.1007/s13370-020-00866-2

[22] S. M. Khalil and A. Rajah, Solving the Class Equation $x^d = \beta$ in an Alternating Group for each $\beta \in H \cap C^n$ and $n \neq 0$, Journal of the Association of Arab Universities for Basic and Applied Sciences, 10,(2011), 42-50.

[23] S. M. Khalil and A. Rajah, Solving Class Equation $x^d = \beta$ in an Alternating Group for all $n \in \theta$ and $\beta \in H_n \cap C^n$, journal of the Association of Arab Universities for Basic and Applied Sciences, 16 (2014), 38–45.

[24] S. M. Khalil, Dissimilarity Fuzzy Soft Points and their Applications, Fuzzy Information and Engineering, 8(3), (2016), 281-294 .http://dx.doi.org/10.1016/j.fiae.2016.11.003

[25] S. M. Khalil, E. Suleiman and M. M. Torki, Generated New Classes of Permutation I/B-Algebras, Journal of Discrete Mathematical Sciences and Cryptography, (2021) to appear.

[26] S. M. Khalil, F. Hameed, Applications of Fuzzy ρ – Ideals in ρ – Algebras, Soft Computing, 24(18), (2020), 13997-14004. doi.org/10.1007/s00500-020-04773-3.

[27] J. Neggers and H. S. Kim, On d – algebras, Math. Slovaca, 49 (1999), 19-26.

[28] J. Neggers, Y. B. Jun and H. S. Kim, On d – ideals in d – algebras, Math. Slovaca 49(3) (1999), 243–251.

[29] Y. B. Jun, J. Neggers, and H. S. Kim, Fuzzy d – ideals of d – algebras, J. Fuzzy Math., 8 (2000), 123-130.
[30] A. Zarandi, S. Borumand, Redefined fuzzy B–algebras. Fuzzy Optim Decis Mak., 7(4), (2008), 373–386.
[31] L. Zixin, Z. Guangji, Z. Cheng, et al., New kinds of Fuzzy ideal in BCI–algebras*. Fuzzy Optim Decis Mak., 5 (2), (2006), 177–186.