CAPACITY THEORY FOR
MONOTONE OPERATORS

Gianni DAL MASO (1)
Igor V. SKRYPNIK (2)

Abstract

If $Au = -\text{div}(a(x, Du))$ is a monotone operator defined on the Sobolev space $W^{1,p}(\mathbb{R}^n)$, $1 < p < +\infty$, with $a(x, 0) = 0$ for a.e. $x \in \mathbb{R}^n$, the capacity $C_A(E, F)$ relative to A can be defined for every pair (E, F) of bounded sets in \mathbb{R}^n with $E \subset F$. We prove that $C_A(E, F)$ is increasing and countably subadditive with respect to E and decreasing with respect to F. Moreover we investigate the continuity properties of $C_A(E, F)$ with respect to E and F.

(1) SISSA, Via Beirut 4, 34013 Trieste, Italy
e-mail: dalmaso@tsmi19.sissa.it

(2) Institute of Applied Mathematics and Mechanics,
Academy of Sciences of Ukraine, R. Luxemburg St. 74,
340114 Donetsk, Ukraine
e-mail: skrypnik@iamm.ac.msk.su

Ref. S.I.S.S.A. 6/95/M (January 95)
Introduction

Let $A: W^{1,p}(\mathbb{R}^n) \to W^{-1,q}(\mathbb{R}^n)$, $1 < p < +\infty$, $1/p + 1/q = 1$, be a monotone operator of the form

\begin{equation}
Au = -\text{div}(a(x, Du)),
\end{equation}

where $a: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ is a Carathéodory function which satisfies the usual monotonicity, coerciveness, and growth conditions (see (1.5), (1.6), (1.7) below), and $a(x, 0) = 0$ for a.e. $x \in \mathbb{R}^n$.

If E and F are bounded sets in \mathbb{R}^n, with E closed, F open, and $E \subset F$, the capacity of E in F relative to the operator A is defined as

\begin{equation}
C_A(E, F) = \int_{F \setminus E} (a(x, Du), Du) \, dx,
\end{equation}

where u, the C_A-potential of E in F, is the weak solution of the Dirichlet problem

\begin{equation}
Au = 0 \text{ in } F \setminus E, \quad u = 1 \text{ in } \partial E, \quad u = 0 \text{ in } \partial F.
\end{equation}

This definition is extended to arbitrary bounded sets by giving a suitable meaning to problem (0.3) when $F \setminus E$ is not open (Definition 3.8).

The purpose of this paper is to prove the main properties of the set function C_A. In particular we prove that $C_A(E, F)$ is increasing with respect to E (Theorem 4.3) and decreasing with respect to F (Theorem 4.5). Moreover, we show that $C_A(\cdot, F)$ is continuous along all increasing sequences of sets (Theorem 4.7) and along all decreasing sequences of closed sets contained in the interior of F (Theorem 4.8), while $C_A(E, \cdot)$ is continuous along all decreasing sequences of sets (Theorem 4.10) and along all increasing sequences of open sets containing the closure of E (Theorem 4.11). These results allow us to show that

\begin{equation*}
C_A(E, F) = \sup\{C_A(K, U) : K \text{ compact, } K \subset E, \ U \text{ bounded and open, } U \supseteq F\}
\end{equation*}

when E and F are bounded Borel sets (Theorem 5.5), and to prove that $C_A(\cdot, F)$ is countably subadditive (Theorem 5.9).

Finally, we introduce the capacity $C_A(E, F, s)$ with respect to a constant $s \in \mathbb{R}$ by replacing the condition $u = 1$ in ∂E which appears in (0.3) with the condition $u = s$
in \(\partial E \) (Definition 6.3). We prove that the function \(\frac{1}{s} C_A(E, F, s) \) is continuous and increasing with respect to \(s \) (Theorems 6.10 and 6.11).

When \(Au = - \text{div}(|Du|^{p-2} Du) \), the capacity \(C_A \) coincides with the usual capacity \(C_p \) associated with the Sobolev space \(W^{1,p}(\mathbb{R}^n) \) (see Section 1), for which the above mentioned properties are well known and can be obtained easily by using the fact that (0.3) is the Euler equation of a suitable minimum problem, and thus \(C_p(E, F) \) can be defined equivalently as the infimum of \(\int_F |Dv|^p dx \) over the set of all functions \(v \) in \(W^{1,p}_0(F) \) such that \(v \geq 1 \) in a neighbourhood of \(E \). For a monotone operator of the form (0.1) problem (0.3) is, in general, not equivalent to a minimum problem, and this fact forces us to develop a completely new proof.

When the operator \(A \) is linear, the capacity \(C_A \) was introduced in [20], but, to our knowledge, the properties considered above have been established only in [5]. The proof avoids auxiliary minimum problems, but involves the adjoint operator \(A^* \) in an essential way, and, therefore, it can not be adapted to the monotone case.

Our proof is based on an estimate of the \(C_A \)-potentials (Lemmas 4.1 and 4.2), which follows from a standard comparison argument (Theorem 2.11). The main new idea is to deduce the inequalities for the capacity \(C_A \) from the corresponding inequalities for the \(C_A \)-potentials. The tools used in this approach are the notion of \(C_A \)-distribution (Theorem 3.14, Definition 3.15, and Proposition 3.17) and a technical lemma which allows us, under very special conditions, to deduce the inequality \(Au_1 \geq Au_2 \) from the inequality \(u_1 \leq u_2 \) (Lemma 2.5).

For a complete treatment of the problem, we consider also the case when the operator \(A \) is not strictly monotone, and thus (0.3) may have more than one solution. We prove that in this case the capacity \(C_A(E, F) \) defined by (0.2) does not depend on the choice of the \(C_A \)-potential \(u \). The proof is based on a careful investigation, developed in Section 2, of the properties of the set of all solutions of problem (0.3).

Under some natural assumptions on \(a \) the capacities \(C_A \) and \(C_p \) are equivalent (Remark 3.12), i.e., there exist two constants \(\alpha > 0 \) and \(\beta > 0 \) such that

\[
\alpha C_p(E, F) \leq C_A(E, F) \leq \beta C_p(E, F).
\]

Therefore the precise behaviour of the capacity \(C_A \) is not important in all those problems where it is enough to obtain just an estimate of \(C_A(E, F) \), like, e.g., the characterization of regular boundary points for the operator \(A \), which, actually, can be expressed in terms of the capacity \(C_p \).
There are, however, problems where the capacity C_A cannot be replaced by an equivalent capacity. An example is given by the study of the asymptotic behaviour, as $j \to \infty$, of the solutions u_j of the Dirichlet problems

\begin{equation}
Au_j = f \quad \text{in } \Omega_j, \quad u_j = 0 \quad \text{in } \partial \Omega_j,
\end{equation}

where A is a monotone operator of the form (0.1), $f \in W^{-1,q}(\mathbb{R}^n)$, and (Ω_j) is a sequence of uniformly bounded open sets in \mathbb{R}^n. Under some special assumptions on the structure of the sets Ω_j, this problem has been studied by means of the capacities $C_A(E,F,s)$ in [15], [16], [17], [18], and [19], where a rigorous asymptotic development of u_j is expressed in terms of the C_A-potentials of suitable sets related to Ω_j.

When A is the differential of a convex functional of the form

$$G(u) = \int_{\mathbb{R}^n} g(x,Du) \, dx,$$

with $g(x,\cdot)$ even and homogeneous of degree p, all assumptions on the structure of the sets Ω_j can be avoided. In this case, given a bounded open set Ω containing all sets Ω_j, the asymptotic behaviour of (u_j) is determined by the limit, as $j \to \infty$, of the capacities $C_A(E \setminus \Omega_j, \Omega)$ on a sufficiently large class of subsets E of Ω (see [4]). Since these results depend strongly on the operator A, it is clear that in this problem C_A cannot be replaced by an equivalent capacity.

The properties of C_A will be used in a forthcoming paper to extend the results of [4] to the case of an arbitrary monotone operator A of the form (0.1). To this aim we intend to adapt the techniques of [7] to the non-linear case, by using the results of the present paper and the compactness results of [8], [9], and [1].

1. Notation and preliminaries

* Sobolev spaces and p-capacity. Let p and q be two real numbers with $1 < p < +\infty$, $1 < q < +\infty$, and $1/p + 1/q = 1$. For every open set $\Omega \subset \mathbb{R}^n$ the Sobolev space $W^{1,p}(\Omega)$ is defined as the space of all functions u in $L^p(\Omega)$ whose first order distribution derivatives $D_i u$ belong to $L^p(\Omega)$, endowed with the norm

$$\|u\|_{W^{1,p}(\Omega)}^p = \int_{\Omega} |Du|^p \, dx + \int_{\Omega} |u|^p \, dx,$$
where $Du = (D_1 u, \ldots, D_n u)$ is the gradient of u. The space $W^{1,p}_0(\Omega)$ is the closure of $C_0^{\infty}(\Omega)$ in $W^{1,p}(\Omega)$, and $W^{-1,q}(\Omega)$ is the dual of $W^{1,p}_0(\Omega)$. We shall always identify each function u of $W^{1,p}_0(\Omega)$ with the function v of $W^{1,p}(\mathbb{R}^n)$ such that $v = u$ in Ω and $v = 0$ in $\Omega^c = \mathbb{R}^n \setminus \Omega$. With this convention the space $W^{1,p}_0(\Omega)$ can be regarded as a closed subspace of $W^{1,p}(\mathbb{R}^n)$.

The lattice operations \vee and \wedge are defined by $a \vee b = \max\{a, b\}$ and $a \wedge b = \min\{a, b\}$. It is well known that, if u and v belong to $W^{1,p}(\Omega)$, then $u \vee v$ and $u \wedge v$ belong to $W^{1,p}(\Omega)$, and that the same property holds for $W^{1,p}_0(\Omega)$. The positive and the negative part of a function u are denoted by u^+ and u^-.

If $\Omega \subset \mathbb{R}^n$ is a bounded open set and $E \subset \Omega$ is an arbitrary set, the p-capacity of E in Ω, denoted by $C_p(E, \Omega)$, is defined as the infimum of $\int_\Omega |Du|^p dx$ over the set of all functions u in $W^{1,p}_0(\Omega)$ such that $u \geq 1$ in a neighbourhood of E, with the usual convention $\inf \emptyset = +\infty$. It follows immediately from the definition that

$$C_p(E, \Omega) = \inf\{C_p(U, \Omega) : U \text{ open}, E \subset U \subset \Omega\}. \tag{1.1}$$

Moreover it is possible to prove that the set function $C_p(\cdot, \Omega)$ is increasing and countably subadditive.

We say that a set N in \mathbb{R}^n is C_p-null if $C_p(N \cap \Omega, \Omega) = 0$ for every bounded open set $\Omega \subset \mathbb{R}^n$. It is easy to prove that, if N is contained in a bounded open set Ω_0 and $C_p(N, \Omega_0) = 0$, then N is C_p-null, i.e., $C_p(N \cap \Omega, \Omega) = 0$ for every other bounded open set Ω.

We say that a property $\mathcal{P}(x)$ holds C_p-quasi everywhere (abbreviated as C_p-q.e.) in a set $E \subset \mathbb{R}^n$ if it holds for all $x \in E$ except for a C_p-null set $N \subset E$. The expression almost everywhere (abbreviated as a.e.) refers, as usual, to the Lebesgue measure.

A function $u : \mathbb{R}^n \to \mathbb{R}$ is said to be quasi continuous if for every bounded open set $\Omega \subset \mathbb{R}^n$ and for every $\varepsilon > 0$ there exists a set $E \subset \Omega$, with $C_p(E, \Omega) \leq \varepsilon$, such that the restriction of u to $\Omega \setminus E$ is continuous.

It is well known that every $u \in W^{1,p}(\mathbb{R}^n)$ has a quasi continuous representative, which is uniquely defined up to a C_p-null set. In the sequel we shall always identify u with its quasi continuous representative, so that the pointwise values of a function $u \in W^{1,p}(\mathbb{R}^n)$ are defined C_p-quasi everywhere in \mathbb{R}^n. We recall that, if a sequence (u_j) converges to u in $W^{1,p}(\mathbb{R}^n)$, then a subsequence of (u_j) converges to u C_p-q.e. in \mathbb{R}^n.

For all these properties of quasi continuous representatives of Sobolev functions we refer to [10], Section 4.8, [12], Section 4, [14], Section 7.2.4, and [21], Section 3.
Given any set \(E \subset \mathbb{R}^n \) we define the Sobolev space \(W^{1,p}_0(E) \) as the set of all functions \(u \in W^{1,p} (\mathbb{R}^n) \) such that \(u = 0 \) \(C_p \)-q.e. in \(E^c \), where \(E^c \) denotes the complement of \(E \) with respect to \(\mathbb{R}^n \). It is easy to see that \(W^{1,p}_0(E) \) is a closed subspace of \(W^{1,p}(\mathbb{R}^n) \). The space \(W^{-1,q}(E) \) is defined as the dual of \(W^{1,p}_0(E) \) and the duality pairing is denoted by \(\langle \cdot, \cdot \rangle \). The transpose of the imbedding of \(W^{1,p}_0(E) \) into \(W^{1,p}(\mathbb{R}^n) \) defines a natural projection of \(W^{-1,q}(\mathbb{R}^n) \) onto \(W^{-1,q}(E) \), so that all elements of \(W^{-1,q}(\mathbb{R}^n) \) can be regarded as elements of \(W^{-1,q}(E) \). When \(E \) is open, our definitions coincide with the classical definitions considered at the beginning of this section (see [12], Theorem 4.5).

If \(f \) and \(g \) belong to \(W^{-1,q}(E) \), we say that \(f = g \) in \(W^{-1,q}(E) \) if \(\langle f, v \rangle = \langle g, v \rangle \) for every \(v \in W^{1,p}_0(E) \). We say that \(f \leq g \) in \(W^{-1,q}(E) \) if \(\langle f, v \rangle \leq \langle g, v \rangle \) for every \(v \in W^{1,p}_0(E) \) with \(v \geq 0 \) \(C_p \)-q.e. in \(E \). It is easy to see that \(f = g \) in \(W^{-1,q}(E) \) if and only if \(f \leq g \) in \(W^{-1,q}(E) \) and \(g \leq f \) in \(W^{-1,q}(E) \).

The previous definitions allow us to consider the capacity \(C_p(E,F) \) when \(E \) and \(F \) are arbitrary bounded sets in \(\mathbb{R}^n \). In this case we define

\[
(1.2) \quad C_p(E,F) = \min \left\{ \int_F |D u|^p dx : u \in W^{1,p}_0(F), \ u \geq 1 \ \text{C}_p\text{-q.e. in } E \right\},
\]

with the usual convention \(\min \emptyset = +\infty \). When \(F \) is open and \(E \subset F \), this definition agrees with the definition considered at the beginning of the paper (see [11], Section 10, or [12], Corollary 4.13). If \(C_p(E,F) < +\infty \), then the minimum problem (1.2) has a unique minimum point, which is called the \(C_p \)-potential of \(E \) in \(F \).

Quasi open and quasi closed sets. We say that a set \(U \) in \(\mathbb{R}^n \) is \(C_p \)-quasi open (resp. \(C_p \)-quasi closed) if for every bounded open set \(\Omega \subset \mathbb{R}^n \) and for every \(\varepsilon > 0 \) there exists an open (resp. closed) set \(V \subset \mathbb{R}^n \) such that \(C_p((U \triangle V) \cap \Omega, \Omega) < \varepsilon \), where \(\triangle \) denotes the symmetric difference of sets.

If a function \(u: \mathbb{R}^n \to \mathbb{R} \) is \(C_p \)-quasi continuous, then for every \(t \in \mathbb{R} \) the sets \(\{ u < t \} = \{ x \in \mathbb{R}^n : u(x) < t \} \) and \(\{ u > t \} = \{ x \in \mathbb{R}^n : u(x) > t \} \) are \(C_p \)-quasi open, while the sets \(\{ u \leq t \} = \{ x \in \mathbb{R}^n : u(x) \leq t \} \) and \(\{ u \geq t \} = \{ x \in \mathbb{R}^n : u(x) \geq t \} \) are \(C_p \)-quasi closed. In particular this property holds for every \(u \in W^{1,p}(\mathbb{R}^n) \).

We shall frequently use the following lemma on the approximation of the characteristic function of a \(C_p \)-quasi open set. We recall that the characteristic function \(1_E \) of a set \(E \subset \mathbb{R}^n \) is defined by \(1_E(x) = 1 \), if \(x \in E \), and by \(1_E(x) = 0 \), if \(x \in E^c \).

Lemma 1.1. For every \(C_p \)-quasi open set \(U \) in \(\mathbb{R}^n \) there exists an increasing sequence \((v_j) \) of non-negative functions of \(W^{1,p}(\mathbb{R}^n) \) which converges to \(1_U \) \(C_p \)-quasi everywhere in \(\mathbb{R}^n \).
Proof. See [3], Lemma 1.5, or [6], Lemma 2.1.

The following lemma is used in the proof of Theorems 4.8 and 4.11.

Lemma 1.2. Let U be the union of an increasing sequence (U_j) of C_p-quasi open sets in \mathbb{R}^n and let F be an arbitrary set in \mathbb{R}^n. Then for every function u of $W^{1,p}_0(F \cap U)$ there exists a sequence (u_j) which converges to u strongly in $W^{1,p}(\mathbb{R}^n)$ and such that $u_j \in W^{1,p}_0(F \cap U_j)$ for every j.

Proof. Let u be a function of $W^{1,p}_0(F \cap U)$. It is not restrictive to assume that $u \geq 0$ C_p-q.e. in \mathbb{R}^n. By Lemma 1.6 of [3] there exists an increasing sequence (u_j) which converges to u strongly in $W^{1,p}(\mathbb{R}^n)$ and such that $u_j \leq u 1_{U_j}$ C_p-q.e. in \mathbb{R}^n for every j. Then the sequence (u_j^+) converges to u strongly in $W^{1,p}(\mathbb{R}^n)$ and satisfies $0 \leq u_j^+ \leq u 1_{U_j}$ C_p-q.e. in \mathbb{R}^n for every j. Since $u = 0$ C_p-q.e. in F^c, we conclude that $u_j^+ = 0$ C_p-q.e. in $F^c \cup U_j^c$, hence $u_j^+ \in W^{1,p}_0(F \cap U_j)$ for every j.

The following lemmas show that all C_p-quasi open sets and all C_p-quasi closed sets can be approximated by an increasing sequence of compact sets.

Lemma 1.3. Let U be a C_p-quasi open set in \mathbb{R}^n. Then there exists an increasing sequence (K_j) of compact subsets of U whose union covers C_p-quasi all of U.

Proof. Since every C_p-quasi open set is the union of an increasing sequence of C_p-quasi open bounded sets, we may assume that U is bounded. Let Ω be a bounded open set in \mathbb{R}^n containing U. Since U is C_p-quasi open, for every $k \in \mathbb{N}$ there exists an open set V_k, contained in Ω, such that $C_p(U \triangle V_k, \Omega) < 1/k$. By (1.1) there exists an open set W_k such that $U \triangle V_k \subset W_k \subset \Omega$ and $C_p(W_k, \Omega) < 1/k$. This implies, in particular, that $V_k \setminus W_k = U \setminus W_k$. As V_k is open, it is the union of an increasing sequence $(C^j_k)_j$ of compact sets. Let us define

$$K_j = (C^0_k \setminus W_1) \cup \cdots \cup (C^j_k \setminus W_j).$$

Then K_j is compact and contained in U. As $C^j_k \subset C^{j+1}_k$, the sequence (K_j) is increasing. Moreover the union E of (K_j) contains $V_k \setminus W_k = U \setminus W_k$ for every k. Therefore $C_p(U \setminus E, \Omega) \leq C_p(W_k, \Omega) < 1/k$ for every k, and hence $C_p(U \setminus E, \Omega) = 0$.

Lemma 1.4. Let F be a C_p-quasi closed set in \mathbb{R}^n. Then there exists an increasing sequence (K_j) of compact subsets of F whose union covers C_p-quasi all of F.

Proof. Since every C_p-quasi closed set is the union of an increasing sequence of C_p-quasi closed bounded sets, we may assume that F is bounded. Let Ω be a bounded open set in \mathbb{R}^n containing \overline{F}. Since F is C_p-quasi closed, for every $j \in \mathbb{N}$ there exists a compact set F_j, contained in Ω, such that $C_p(F \triangle F_j, \Omega) < 2^{-j}$. By (1.1) there exists an open set U_j such that $F \triangle F_j \subset U_j \subset \Omega$ and $C_p(U_j, \Omega) < 2^{-j}$. Let $V_j = U_j \cup U_{j+1} \cup \cdots$, so that $V_{j+1} \subset V_j$ and $C_p(V_j, \Omega) < 2^{1-j}$. Let K_j be the compact set defined by $K_j = F \setminus V_j$. As $F \triangle F_j \subset U_j \subset V_j$, we have $K_j = F \setminus V_j$. This implies that $K_j \subset F$ and that the sequence (K_j) is increasing. Moreover the union E of (K_j) contains $F \setminus V_j$ for every j. Therefore $C_p(F \setminus E, \Omega) \leq C_p(V_j, \Omega) < 2^{1-j}$ for every j, and hence $C_p(F \setminus E, \Omega) = 0$.

Lemma 1.5. Let $E = U \cap F$ be the intersection of a C_p-quasi open set U and a C_p-quasi closed set F. Then there exists an increasing sequence (K_j) of compact subsets of E whose union covers C_p-quasi all of E.

Proof. The assertion follows from Lemmas 1.3 and 1.4.

Measures. By a Radon measure on \mathbb{R}^n we mean a continuous linear functional on the space $C_0(\mathbb{R}^n)$ of all continuous functions with compact support in \mathbb{R}^n. It is well known that for every Radon measure λ there exists a countably additive set function μ, defined on the family of all bounded Borel subsets of \mathbb{R}^n, such that $\lambda(u) = \int_{\Omega} u \, d\mu$ for every $u \in C_0(\Omega)$. We shall always identify the functional λ with the set function μ.

We say that a Radon measure μ on \mathbb{R}^n belongs to $W^{-1,q}(\mathbb{R}^n)$ if there exists $f \in W^{-1,q}(\mathbb{R}^n)$ such that

$$
(1.3) \quad \langle f, \varphi \rangle = \int_{\mathbb{R}^n} \varphi \, d\mu \quad \forall \varphi \in C_0^\infty(\mathbb{R}^n),
$$

where $\langle \cdot, \cdot \rangle$ denotes the duality pairing between $W^{-1,q}(\mathbb{R}^n)$ and $W^{1,p}(\mathbb{R}^n)$. We shall always identify f and μ. Note that, by the Riesz Representation Theorem, for every non-negative functional $f \in W^{-1,q}(\mathbb{R}^n)$ there exists a non-negative Radon measure μ on \mathbb{R}^n such that (1.3) holds.

We say that a Radon measure μ on \mathbb{R}^n is C_p-absolutely continuous if $\mu(N) = 0$ for every C_p-null Borel set $N \subset \mathbb{R}^n$. It is well known that every non-negative Radon
measure \(\mu \) which belongs to \(W_{-1,q}(\mathbb{R}^n) \) is \(C_p \)-absolutely continuous and that, in this case, \(W^{1,p}(\mathbb{R}^n) \subset L^1_\mu(\mathbb{R}^n) \) and (1.3) holds for every \(\varphi \in W^{1,p}(\mathbb{R}^n) \).

The monotone operator. Let \(a: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n \) be a function which satisfies the usual Carathéodory conditions, i.e., for every \(\xi \in \mathbb{R}^n \) the function \(x \mapsto a(x, \xi) \) is (Lebesgue) measurable on \(\mathbb{R}^n \), and for a.e. \(x \in \mathbb{R}^n \) the function \(\xi \mapsto a(x, \xi) \) is continuous on \(\mathbb{R}^n \). We assume that there exist two constants \(c_1 > 0 \) and \(c_2 > 0 \), and two functions \(b_1 \in L^1(\mathbb{R}^n) \) and \(b_2 \in L^q(\mathbb{R}^n) \), such that

\[
\begin{align*}
(1.4) & \quad a(x, 0) = 0, \\
(1.5) & \quad (a(x, \xi) - a(x, \eta), \xi - \eta) \geq 0, \\
(1.6) & \quad (a(x, \xi), \xi) \geq c_1 |\xi|^p - b_1(x), \\
(1.7) & \quad |a(x, \xi)| \leq c_2 |\xi|^{p-1} + b_2(x)
\end{align*}
\]

for a.e. \(x \in \mathbb{R}^n \) and for every \(\xi, \eta \in \mathbb{R}^n \). Note that (1.4) and (1.5) imply

\[
(1.8) \quad (a(x, \xi), \xi) \geq 0
\]

for a.e. \(x \in \mathbb{R}^n \) and for every \(\xi \in \mathbb{R}^n \). Let \(A: W^{1,p}(\mathbb{R}^n) \to W_{-1,q}(\mathbb{R}^n) \) be the operator defined by \(Au = -\text{div}(a(x, Du)) \), i.e.,

\[
(1.9) \quad \langle Au, v \rangle = \int_{\mathbb{R}^n} (a(x, Du), Dv) \, dx
\]

for every \(u, v \in W^{1,p}(\mathbb{R}^n) \).

Remark 1.6. Since \(a \) satisfies the Carathéodory conditions, by (1.7) the operator \(A \) is continuous. Moreover, for every \(E \subset \mathbb{R}^n \) and for every \(u \in W^{1,p}(\mathbb{R}^n) \) we have

\[
(1.10) \quad \langle Au, v \rangle \leq (c_2 \|Du\|_{L^p(E, \mathbb{R}^n)}^{p-1} + \|b_2\|_{L^q(E)}) \|Dv\|_{L^p(E, \mathbb{R}^n)} \quad \forall v \in W_0^{1,p}(E).
\]

From (1.5) we get

\[
(1.11) \quad \langle Au - Av, u - v \rangle \geq 0 \quad \forall u, v \in W^{1,p}(\mathbb{R}^n),
\]

hence \(A \) is monotone. Inequality (1.8) implies that

\[
(1.12) \quad \langle Au, u \rangle \geq 0 \quad \forall u \in W^{1,p}(\mathbb{R}^n).
\]

By (1.6) for every \(E \subset \mathbb{R}^n \) we have

\[
(1.13) \quad \langle Au, u \rangle \geq c_1 \int_E |Du|^p \, dx - \int_E b_1 \, dx \quad \forall u \in W_0^{1,p}(E).
\]

By Poincaré’s Inequality this implies that \(A \) is coercive on all subspaces of the form \(\{ u \in W^{1,p}(\mathbb{R}^n) : u - \psi \in W_0^{1,p}(E) \} \), with \(E \) bounded and \(\psi \in W^{1,p}(\mathbb{R}^n) \).
2. Some properties of the solutions

In this section we prove some properties of the solutions \(u \) of the Dirichlet problem

\[
\begin{cases}
 u - \psi \in W^{1,p}_0(E), \\
 Au = f \quad \text{in } W^{-1,q}(E),
\end{cases}
\]

where \(E \) is an arbitrary bounded set in \(\mathbb{R}^n \), \(\psi \) is a function in \(W^{1,p}(\mathbb{R}^n) \), and \(f \) belongs to \(W^{-1,q}(E) \).

Theorem 2.1. Let \(E \) be a bounded set in \(\mathbb{R}^n \), let \(\psi \in W^{1,p}(\mathbb{R}^n) \), and let \(f \in W^{-1,q}(E) \). Then the Dirichlet problem (2.1) has at least a solution, and the set of all solutions of (2.1) is bounded, closed, and convex in \(W^{1,p}(\mathbb{R}^n) \).

Proof. By Remark 1.6 the operator \(A: W^{1,p}(\mathbb{R}^n) \rightarrow W^{-1,q}(\mathbb{R}^n) \) is continuous and monotone. Since \(E \) is bounded, \(A \) is coercive on the set \(\{ u \in W^{1,p}(\mathbb{R}^n) : u - \psi \in W^{1,p}_0(E) \} \). Therefore the properties of the set of the solutions of (2.1) follow from the classical theory of monotone operators (see, e.g., [13], Chapter III).

Lemma 2.2. Let \(E \) be a bounded set in \(\mathbb{R}^n \), let \(\psi \in W^{1,p}(\mathbb{R}^n) \), let \(f \in W^{-1,q}(E) \), and let \(u_1 \) and \(u_2 \) be two solutions of (2.1). Then \(u_1 \lor u_2 \) and \(u_1 \land u_2 \) are solutions of (2.1).

Proof. Since \(u_1 - u_2 \in W^{1,p}_0(E) \), by (2.1) we have

\[
\int_E (a(x,Du_1) - a(x,Du_2), Du_1 - Du_2) \, dx = 0.
\]

By (1.5) we have \((a(x,Du_1) - a(x,Du_2), Du_1 - Du_2) \geq 0 \) a.e. in \(E \), hence

\[
(2.2) \quad (a(x,Du_1) - a(x,Du_2), Du_1 - Du_2) = 0 \quad \text{a.e. in } E.
\]

Let us fix \(v \in W^{1,p}_0(E) \) with \(v \geq 0 \) \(C_p \)-q.e. in \(E \). For every \(\varepsilon > 0 \) let us define \(v_\varepsilon = (\varepsilon v) \land (u_1 - u_2) \). As \(v_\varepsilon \in W^{1,p}_0(E) \), by (2.1) we have

\[
\int_E (a(x,Du_1), Dv_\varepsilon) \, dx = \langle f, v_\varepsilon \rangle,
\]

\[
\int_E (a(x,Du_2), \varepsilon Dv - Dv_\varepsilon) \, dx = \langle f, \varepsilon v - v_\varepsilon \rangle.
\]
By adding these equalities we obtain
\[
\int_E (a(x, Du_1), Dv_\varepsilon) \, dx + \int_E (a(x, Du_2), \varepsilon Dv - Dv_\varepsilon) \, dx = \varepsilon \langle f, v \rangle.
\]
This implies that
\[
\varepsilon \int_{\{\varepsilon v < u_1 - u_2\}} (a(x, Du_1), Dv) \, dx + \int_{\{u_1 - u_2 \leq \varepsilon v\}} (a(x, Du_1), Du_1 - Du_2) \, dx +
+ \varepsilon \int_{\{u_1 - u_2 \leq \varepsilon v\}} (a(x, Du_2), Dv) \, dx - \int_{\{u_1 - u_2 \leq \varepsilon v\}} (a(x, Du_2), Du_1 - Du_2) \, dx = \varepsilon \langle f, v \rangle.
\]
By (2.2) we have
\[
\int_{\{\varepsilon v < u_1 - u_2\}} (a(x, Du_1), Dv) \, dx + \int_{\{u_1 - u_2 \leq \varepsilon v\}} (a(x, Du_2), Dv) \, dx = \langle f, v \rangle.
\]
Passing to the limit as \(\varepsilon \to 0\) we get
\[
\int_{\{u_1 > u_2\}} (a(x, Du_1), Dv) \, dx + \int_{\{u_1 \leq u_2\}} (a(x, Du_2), Dv) \, dx = \langle f, v \rangle,
\]
which implies
\[
\int_E (a(x, D(u_1 \vee u_2)), Dv) \, dx = \langle f, v \rangle
\]
for every \(v \in W_0^{1,p}(E)\) with \(v \geq 0\) \(C_p\)-q.e. in \(E\). This proves that \(A(u_1 \vee u_2) = f\) in \(W^{-1,q}(E)\). The equality \(A(u_1 \wedge u_2) = f\) in \(W^{-1,q}(E)\) can be proved in a similar way. \(\Box\)

We are now in a position to prove the existence of a maximal and a minimal solution of (2.1).

Theorem 2.3. Let \(E\) be a bounded set in \(\mathbb{R}^n\), let \(\psi \in W^{1,p}(\mathbb{R}^n)\), and let \(f \in W^{-1,q}(E)\). Then there exist two solutions \(u_1\) and \(u_2\) of problem (2.1) such that \(u_1 \leq u \leq u_2\) \(C_p\)-q.e. in \(E\) for every other solution \(u\) of (2.1).

Proof. Let \(K\) be the set of all solutions of (2.1). By Theorem 2.1 \(K\) is non-empty, bounded, closed, and convex in \(W^{1,p}(\mathbb{R}^n)\). Since this space is separable, there exists a sequence \((v_j)\) in \(K\) which is dense in \(K\). For every \(k \in \mathbb{N}\) let us define
\[
u^k_1 = \inf_{1 \leq j \leq k} v_j, \quad u^k_2 = \sup_{1 \leq j \leq k} v_j, \quad u_1 = \inf_{1 \leq j} v_j, \quad u_2 = \sup_{1 \leq j} v_j.
\]
By Lemma 2.2 both u_1^k and u_2^k belong to K, therefore the sequences (u_1^k) and (u_2^k) are bounded in $W^{1,p}(\mathbb{R}^n)$ and converge to u_1 and u_2 weakly in $W^{1,p}(\mathbb{R}^n)$. As K is weakly closed in $W^{1,p}(\mathbb{R}^n)$, we conclude that u_1 and u_2 belong to K, i.e., they are solutions of (2.1). If u is another solution of (2.1), by the density of (v_j) there exists a subsequence (v_{j_k}) which converges to u strongly in $W^{1,p}(\mathbb{R}^n)$ and C_p-q.e. in \mathbb{R}^n. Since $u_{1k}^j \leq v_{jk} \leq u_{2k}^j$ C_p-q.e. in \mathbb{R}^n for every k, we conclude that $u_1 \leq u \leq u_2$ C_p-q.e. in \mathbb{R}^n.

Definition 2.4. The functions u_1 and u_2 introduced in the previous theorem are called the *minimal* and the *maximal solution* of problem (2.1).

The following lemma will be fundamental in the proof of the monotonicity properties of the capacity C_A associated with the operator A.

Lemma 2.5. Let B and C be two sets in \mathbb{R}^n, and let w_1 and w_2 be two functions in $W^{1,p}(\mathbb{R}^n)$ such that $w_1 = w_2$ C_p-q.e. in B and $w_1 \leq w_2$ C_p-q.e. in C. Assume that $Aw_1 = Aw_2$ in $W^{-1,q}(C \setminus B)$. Then $Aw_1 \geq Aw_2$ in $W^{-1,q}(C)$.

Proof. Let us fix a function v in $W^{1,p}_0(C)$ with $v \geq 0$ C_p-q.e. in C. For every $\varepsilon > 0$ let us define $v_\varepsilon = (\varepsilon v) \wedge (w_2 - w_1)^+$. Since v_ε belongs to $W^{1,p}_0(C \setminus B)$ and $Aw_1 = Aw_2$ in $W^{-1,q}(C \setminus B)$, we have $\langle Aw_1, v_\varepsilon \rangle = \langle Aw_2, v_\varepsilon \rangle$. Therefore by the monotonicity condition (1.5)

\[
\varepsilon \langle Aw_1, v \rangle - \varepsilon \langle Aw_2, v \rangle = \langle Aw_1 - Aw_2, \varepsilon v - v_\varepsilon \rangle = \\
= \varepsilon \int_{C \cap \{w_2 - w_1 \leq \varepsilon v\}} (a(x, Dw_1) - a(x, Dw_2), Dv) \, dx - \\
- \int_{C \cap \{w_2 - w_1 \leq \varepsilon v\}} (a(x, Dw_1) - a(x, Dw_2), Dw_2 - Dw_1) \, dx \geq \\
\geq \varepsilon \int_{C \cap \{w_2 - w_1 \leq \varepsilon v\}} (a(x, Dw_1) - a(x, Dw_2), Dv) \, dx.
\]

Dividing by ε and passing to the limit as $\varepsilon \to 0$ we obtain

\[
\langle Aw_1, v \rangle - \langle Aw_2, v \rangle \geq \int_{C \cap \{w_2 \leq w_1\}} (a(x, Dw_1) - a(x, Dw_2), Dv) \, dx.
\]

(2.3) $\langle Aw_1, v \rangle - \langle Aw_2, v \rangle \geq \int_{C \cap \{w_2 \leq w_1\}} (a(x, Dw_1) - a(x, Dw_2), Dv) \, dx$.

Since $w_1 \leq w_2$ C_p-q.e. in C, we have $Dw_1 = Dw_2$ a.e. in $C \cap \{w_2 \leq w_1\} = C \cap \{w_2 = w_1\}$. Therefore the right hand side of (2.3) is equal to 0 and, consequently, $\langle Aw_1, v \rangle \geq \langle Aw_2, v \rangle$, which concludes the proof. \qed
If \(u_1 \) and \(u_2 \) are two solutions of problem (2.1), then \(Au_1 = Au_2 \) in \(W^{-1,q}(E) \). As \(u_1 = u_2 = \psi \) \(C_p \)-q.e. in \(E^c \), we have also \(Au_1 = Au_2 \) in \(W^{-1,q}(E^c) \). The following theorem shows that actually \(Au_1 = Au_2 \) in \(W^{-1,q}(\mathbb{R}^n) \).

Theorem 2.6. Let \(E \) be a bounded set in \(\mathbb{R}^n \), let \(\psi \in W^{1,p}(\mathbb{R}^n) \), and let \(f \in W^{-1,q}(E) \). Then there exists \(g \in W^{-1,q}(\mathbb{R}^n) \) such that \(Au = g \) in \(W^{-1,q}(\mathbb{R}^n) \) for every solution \(u \) of problem (2.1).

Proof. Let \(u_1 \) and \(u_2 \) be the minimal and the maximal solution of (2.1). If we apply Lemma 2.5 with \(B = E^c \) and \(C = \mathbb{R}^n \), we obtain that \(Au_1 \geq Au \geq Au_2 \) in \(W^{-1,q}(\mathbb{R}^n) \) for every solution \(u \) of (2.1). Therefore it is enough to prove that \(Au_1 \leq Au_2 \) in \(W^{-1,q}(\mathbb{R}^n) \). Let \(\varphi \in C^\infty_0(\mathbb{R}^n) \) with \(\varphi \geq 0 \) in \(\mathbb{R}^n \) and let \(c = \|\varphi\|_{L^\infty(\mathbb{R}^n)} \). Let us fix a function \(\chi \) in \(C^\infty_0(\mathbb{R}^n) \) such that \(\chi = c \) in \(E \cup \{ \varphi \neq 0 \} \) and \(\chi \geq 0 \) in \(\mathbb{R}^n \). Then \(\chi - \varphi \) belongs to \(C^\infty_0(\mathbb{R}^n) \) and \(\chi - \varphi \geq 0 \) in \(\mathbb{R}^n \). As \(Au_1 \geq Au_2 \) in \(W^{-1,q}(\mathbb{R}^n) \), we have

\[
\langle Au_1, \chi - \varphi \rangle \geq \langle Au_2, \chi - \varphi \rangle.
\]

Since \(u_1 = u_2 = \psi \) \(C_p \)-q.e. in \(E^c \), we have \(Du_1 = Du_2 \) a.e. in \(\{ \chi \neq c \} \). As \(D\chi = 0 \) a.e. in \(\{ \chi = c \} \), we have

\[
\langle Au_1, \chi \rangle = \int_{\{\chi \neq c\}} (a(x,Du_1), D\chi) \, dx = \int_{\{\chi \neq c\}} (a(x,Du_2), D\chi) \, dx = \langle Au_2, \chi \rangle.
\]

By (2.4) this implies \(\langle Au_1, \varphi \rangle \leq \langle Au_2, \varphi \rangle \) for every \(\varphi \in C^\infty_0(\mathbb{R}^n) \) with \(\varphi \geq 0 \) and, by density, this implies \(Au_1 \leq Au_2 \) in \(W^{-1,q}(\mathbb{R}^n) \).

Corollary 2.7. Let \(E \) be a bounded set in \(\mathbb{R}^n \), let \(\psi \in W^{1,p}(\mathbb{R}^n) \), let \(f \in W^{-1,q}(E) \), and let \(u_1 \) and \(u_2 \) be the minimal and the maximal solution of (2.1). Let \(B \) be a subset of \(E \). Then \(u_1 \) coincides with the minimal solution \(v_1 \) of the Dirichlet problem

\[
\begin{aligned}
\begin{cases}
 v - u_1 \in W^{1,p}_0(B), \\
 Av = f & \text{in } W^{-1,q}(B),
\end{cases}
\end{aligned}
\]

and \(u_2 \) coincides with the maximal solution \(v_2 \) of the Dirichlet problem

\[
\begin{aligned}
\begin{cases}
 v - u_2 \in W^{1,p}_0(B), \\
 Av = f & \text{in } W^{-1,q}(B).
\end{cases}
\end{aligned}
\]
Proof. It is clear that u_1 is a solution of (2.5). Let v_0 be another solution of (2.5). We have to prove that $u_1 \leq v_0$ C_p-q.e. in B. By Theorem 2.6, applied to problem (2.5), there exists $g \in W^{-1,q}(\mathbb{R}^n)$ such that $Av = g$ in $W^{-1,q}(\mathbb{R}^n)$ for every solution v of (2.5). In particular we have $Av_0 = Au_1$ in $W^{-1,q}(\mathbb{R}^n)$. Since u_1 is a solution of (2.1), we have $Au_1 = f$ in $W^{-1,q}(E)$. This implies that $Av_0 = f$ in $W^{-1,q}(E)$, thus v_0 is a solution of (2.1) too. By the minimality of u_1 we conclude that $u_1 \leq v_0$ C_p-q.e. in E, and, therefore, u_1 is the minimal solution of (2.5). The proof for u_2 is analogous. \[\]

Corollary 2.8. Let E be a bounded set in \mathbb{R}^n, let $\psi \in W^{1,p}(\mathbb{R}^n)$, let $f \in W^{-1,q}(\mathbb{R}^n)$, and let u_1 and u_2 be two solutions of (2.1). Then $\langle Au_1 - f, u_1 \rangle = \langle Au_2 - f, u_2 \rangle$.

Proof. Since $u_1 - u_2$ belongs to $W^{1,p}_0(E)$, by (2.1) we have $\langle Au_1 - f, u_1 - u_2 \rangle = 0$, hence $\langle Au_1 - f, u_1 \rangle = \langle Au_1 - f, u_2 \rangle$. By Theorem 2.6 we have $Au_1 = Au_2$ in $W^{-1,q}(\mathbb{R}^n)$, hence $\langle Au_1 - f, u_2 \rangle = \langle Au_2 - f, u_2 \rangle$.

The following lemma will be used in the proof of the Comparison Principle.

Lemma 2.9. Let E be a bounded open set in \mathbb{R}^n, let $\psi \in W^{1,p}(\mathbb{R}^n)$, and let $f \in W^{-1,q}(E)$. Assume that $Aw \leq f$ in $W^{-1,q}(E)$ and that $(w - \psi)^+ \in W^{1,p}_0(E)$, i.e., $w \leq \psi$ C_p-q.e. in E^c. Then there exists a solution u of (2.1) such that $u \geq w$ C_p-q.e. in E.

Proof. Let K be the set of all functions v in $W^{1,p}(\mathbb{R}^n)$ such that $v = \psi$ C_p-q.e. in E^c and $v \geq w$ C_p-q.e. in E. As $(w - \psi)^+$ belongs to $W^{1,p}_0(E)$, the function $\psi + (w - \psi)^+$ belongs to K, so that K is non-empty. By Remark 1.6, using the classical theory of monotone operators (see, e.g., [13], Chapter III), we can find a solution u of the variational inequality

\[
\begin{cases}
 u \in K,
 \\
 \langle Au, v - u \rangle \geq \langle f, v - u \rangle \quad \forall v \in K.
\end{cases}
\]

We want to prove that u is a solution of (2.1). If z belongs to $W^{1,p}_0(E)$ and $z \geq 0$ C_p-q.e. in E, then $v = u + z$ belongs to K, hence

\[
\langle Au, z \rangle \geq \langle f, z \rangle.
\]
In order to prove the opposite inequality, for every \(\varepsilon > 0 \) we consider the function \(z_\varepsilon = (\varepsilon z) \wedge (u - w) \). Since \(u = \psi \geq w \) and \(z = 0 \) \(C_p \)-a.e. in \(E^c \), we have \(z_\varepsilon = 0 \) \(C_p \)-a.e. in \(E^c \), hence \(z_\varepsilon \in W_0^{1,p}(E) \). As \(u - z_\varepsilon \geq u - (u - w) = w \) \(C_p \)-a.e. in \(E \), the function \(u_\varepsilon = u - z_\varepsilon \) belongs to \(K \). Therefore (2.7) yields \(\langle Au, z_\varepsilon \rangle \leq \langle f, z_\varepsilon \rangle \). This implies

\[
\varepsilon \int_{\{\varepsilon z < u - w\}} (a(x, Du), Dz) \, dx + \int_{\{\varepsilon z \geq u - w\}} (a(x, Du), Du - Dw) \, dx \leq \langle f, z_\varepsilon \rangle.
\]

Since \(Aw \leq f \) in \(W^{-1,q}(E) \) and \(\varepsilon z - z_\varepsilon \geq 0 \) \(C_p \)-a.e. in \(E \), we have also \(\langle Aw, \varepsilon z - z_\varepsilon \rangle \leq \langle f, \varepsilon z - z_\varepsilon \rangle \), which gives

\[
\varepsilon \int_{\{\varepsilon z \geq u - w\}} (a(x, Dw), Dz) \, dx - \int_{\{\varepsilon z \geq u - w\}} (a(x, Dw), Du - Dw) \, dx \leq \langle f, \varepsilon z - z_\varepsilon \rangle.
\]

By adding this inequality to (2.9) we obtain

\[
\varepsilon \int_{\{\varepsilon z < u - w\}} (a(x, Du), Dz) \, dx + \varepsilon \int_{\{\varepsilon z \geq u - w\}} (a(x, Dw), Dz) \, dx + \\
+ \int_{\{\varepsilon z \geq u - w\}} (a(x, Du) - a(x, Dw), Du - Dw) \, dx \leq \varepsilon \langle f, z \rangle.
\]

By the monotonicity condition (1.5) we get

\[
\int_{\{\varepsilon z < u - w\}} (a(x, Du), Dz) \, dx + \int_{\{\varepsilon z \geq u - w\}} (a(x, Dw), Dz) \, dx \leq \langle f, z \rangle,
\]

and taking the limit as \(\varepsilon \to 0 \) we obtain

\[
(2.10) \quad \int_{\{u > w\}} (a(x, Du), Dz) \, dx + \int_{\{u \leq w\}} (a(x, Dw), Dz) \, dx \leq \langle f, z \rangle.
\]

As \(u \geq w \) \(C_p \)-a.e. in \(\mathbb{R}^n \), we have \(Du = Dw \) a.e. in \(\{u \leq w\} = \{u = w\} \), so that (2.10) gives \(\langle Au, z \rangle \leq \langle f, z \rangle \). Together with (2.8) this implies \(Au = f \) in \(W^{-1,q}(E) \). As \(u \in K \), we have also \(u - \psi \in W_0^{1,p}(E) \) and \(u \geq w \) \(C_p \)-a.e. in \(E \) as required. \(\square \)

Remark 2.10. If in Lemma 2.9 we assume that \(Aw \geq f \) in \(W^{-1,q}(E) \) and that \((w - \psi)^- \in W_0^{1,p}(E) \), i.e., \(w \geq \psi \) \(C_p \)-a.e. in \(E^c \), then we can prove that there exists a solution \(u \) of (2.1) such that \(u \leq w \) \(C_p \)-a.e. in \(E \).

We are now in a position to prove the Comparison Principle.
Theorem 2.11. Let E be a bounded set in \mathbb{R}^n, let φ, $\psi \in W^{1,p}(\mathbb{R}^n)$, and let f, $g \in W^{-1,q}(E)$. Assume that $f \leq g$ in $W^{-1,q}(E)$ and $(\varphi - \psi)^+ \in W_{0}^{1,p}(E)$, i.e., $\varphi \leq \psi$ C_p-q.e. in E^c. Let u and v be two solutions of the Dirichlet problems

$$
\begin{align*}
&\begin{cases}
u - \varphi \in W_0^{1,p}(E), \\
Au = f \quad \text{in } W^{-1,q}(E),
\end{cases} \\
&\begin{cases}
v - \psi \in W_0^{1,p}(E), \\
Av = g \quad \text{in } W^{-1,q}(E),
\end{cases}
\end{align*}
$$

let u_1 and v_1 be the minimal solutions, and let u_2 and v_2 be the maximal solutions. Then $u_1 \leq v_1 \leq v$ and $u \leq u_2 \leq v_2$ C_p-q.e. in E.

Proof. Since $Au_2 = f \leq g$ in $W^{-1,q}(E)$ and $u_2 = \varphi \leq \psi$ C_p-q.e. in E^c, by Lemma 2.9 there exists a solution v_0 of the second problem in (2.11) such that $u_2 \leq v_0$ C_p-q.e. in E. Since u_2 and v_2 are the maximal solutions, we have $u \leq u_2$ and $v_0 \leq v_2$ C_p-q.e. in E, hence $u \leq u_2 \leq v_2$ C_p-q.e. in E. The other inequalities can be proved in the same way by using Remark 2.10.

3. Capacity, capacitary potentials, and capacitary distributions

In this section we introduce the capacity C_A associated with the operator A, and the related notions of C_A-potential and C_A-distributions.

Definition 3.1. We say that two bounded sets E and F are C_p-compatible if there exists a function ψ in $W^{1,p}(\mathbb{R}^n)$ such that $\psi = 1$ C_p-q.e. in E and $\psi = 0$ C_p-q.e. in F^c.

Remark 3.2. It is clear that E and F are C_p-compatible if and only if there exists a function ψ in $W^{1,p}(\mathbb{R}^n)$ such that $0 \leq \psi \leq 1$ C_p-q.e. in \mathbb{R}^n, $\psi = 1$ C_p-q.e. in E, and $\psi = 0$ C_p-q.e. in F^c.

Remark 3.3. If $\overline{E} \subset \hat{F}$, then E and F are C_p-compatible. The converse is not true. For instance, for every function u in $W^{1,p}(\mathbb{R}^n)$ the sets $E = \{u > t\}$ and $F = \{u > s\}$ are C_p-compatible for $s < t$, with $\psi = (t-s)^{-1}((u \wedge t) - s)^+$, but, in general, \overline{E} is not contained in \hat{F}.

Remark 3.4. If E_1 and E_2 are C_p-compatible with F, so is $E_1 \cup E_2$. For the proof, let us consider two functions ψ_1 and ψ_2 as in Remark 3.2 with $E = E_1$ and $E = E_2$. Then $\psi_1 \vee \psi_2$ satisfies the same conditions with $E = E_1 \cup E_2$. Similarly we can prove that, if E is C_p-compatible with F_1 and F_2, then E is C_p-compatible with $F_1 \cap F_2$.

Definition 3.5. Let E and F be two C_p-compatible bounded sets in \mathbb{R}^n and let ψ be a function as in Definition 3.1. Every solution u of the Dirichlet problem

$$
\begin{cases}
 u - \psi \in W^{1,p}_0(F \setminus E), \\
 Au = 0 \quad \text{in } W^{-1,q}(F \setminus E),
\end{cases}
$$

is called a C_A-potential of E in F. The maximal and the minimal solutions of (3.1) are called the maximal and minimal C_A-potentials of E in F.

Remark 3.6. Clearly the definition of C_A-potential does not depend on the choice of ψ. By the definition of the space $W^{1,p}_0(F \setminus E)$ and by the properties of ψ we have that every C_A-potential u of E in F satisfies $u = 1$ C_p-q.e. in E and $u = 0$ C_p-q.e. in F^c.

Remark 3.7. Let u_1 and u_2 be the minimal and the maximal C_A-potentials of E in F. Since $a(x,0) = 0$ by (1.4), the Comparison Principle (Theorem 2.11) implies that $0 \leq u_2$ and $u_1 \leq 1$ C_p-q.e. in $F \setminus E$.

Definition 3.8. Let E and F be two bounded sets in \mathbb{R}^n. If E and F are C_p-compatible, the capacity of E in F relative to the operator A is defined as

$$
C_A(E,F) = \langle Au, u \rangle = \int_{F \setminus E} (a(x,Du), Du) \, dx,
$$

where u is any C_A-potential of E in F. By Corollary 2.8 this definition is independent of the choice of u. If E and F are not C_p-compatible, we define $C_A(E,F) = +\infty$.

Remark 3.9. By (1.12) we have $C_A(E,F) \geq 0$, and by (1.4) we have $C_A(\emptyset,F) = 0$. By (3.1) we have also $C_A(E,F) = \langle Au, v \rangle$ for every C_A-potential u of E in F and for every function v in $W^{1,p}(\mathbb{R}^n)$ such that $v = 1$ C_p-q.e. in E and $v = 0$ C_p-q.e. in F^c.

Remark 3.10. It follows immediately from the definitions that if E_1, E_2, F_1, F_2 are bounded sets in \mathbb{R}^n and $F_1 \Delta F_2$ and $E_1 \Delta E_2$ are C_p-null sets, then $C_A(E_1,F_1) = C_A(E_2,F_2)$ and the C_A-potentials are the same.

If $Au = -\text{div}(|Du|^{p-2}Du)$, then $C_A = C_p$. In the general case the relationship between C_A and C_p is given by the following proposition.
Proposition 3.11. Let E and F be two bounded sets in \mathbb{R}^n. Then

(3.2) \[C_A(E, F) \geq c_1 C_p(E, F) - \|b_1\|_{L^1(F)}, \]

(3.3) \[C_A(E, F) \leq k_1 C_p(E, F) + k_2(F) C_p(E, F)^{1/p}, \]

with

(3.4) \[k_1 = \frac{(4c_2)^p}{p(qc_1)^{p-1}}, \quad k_2(F) = \frac{4c_2}{c_1^{1/q}} \|b_1\|^{1/q}_{L^1(F)} + 4\|b_2\|_{L^q(F)}, \]

where c_1, c_2 and b_1, b_2 are the constants and the functions which appear in (1.6) and (1.7). If b_1 and b_2 belong to $L^\infty(F)$, then

(3.5) \[C_A(E, F) \leq (k_1 + k_3(F)) C_p(E, F), \]

with

(3.6) \[k_3(F) = 2^{p+1} \left(\frac{c_2}{c_1^{1/q}} \|b_1\|^{1/q}_{L^\infty(F)} + \|b_2\|_{L^\infty(F)} \right) \operatorname{diam}(F)^{p-1}, \]

where $\operatorname{diam}(F)$ is the diameter of the set F.

Proof. To prove (3.2) we may assume that $C_A(E, F) < +\infty$. Let u be a C_A-potential of E in F. By (1.13) we have

(3.7) \[C_A(E, F) = \langle Au, u \rangle \geq c_1 \int_F |Du|^p dx - \int_F b_1 dx. \]

Since by (1.2)

\[C_p(E, F) \leq \int_F |Du|^p dx, \]

from (3.7) we obtain (3.2).

To prove (3.3) and (3.5) we may assume that $C_p(E, F) < +\infty$. Let w be the C_p-potential of E in F, let $v = (2w - 1)^+$, and let $G = \{v > 0\} = \{w > \frac{1}{2}\}$. Since $w = 1$ C_p-q.e. in E and $w = 0$ C_p-q.e. in F^c, we have $v = 1$ C_p-q.e. in E and $v = 0$ C_p-q.e. in F^c. From (1.10) and from Remark 3.9 we obtain

(3.8) \[C_A(E, F) = \langle Au, v \rangle \leq (c_2 \|Du\|_{L^p(G, \mathbb{R}^n)}^{p-1} + \|b_2\|_{L^q(G)}) \|Dv\|_{L^p(G, \mathbb{R}^n)}. \]

By (1.13) we have

(3.9) \[c_1^{1/q} \|Du\|_{L^p(F, \mathbb{R}^n)}^{p-1} \leq C_A(E, F)^{1/q} + \|b_1\|^{1/q}_{L^1(F)}, \]
while the definition of v gives

$$\|Dv\|_{L^p(G, \mathbb{R}^n)} = 2 \|Dw\|_{L^p(G, \mathbb{R}^n)} \leq 2 C_p(E, F)^{1/p}. \tag{3.10}$$

From (3.8), (3.9), and (3.10) we get

$$C_A(E, F) \leq 2 \left(\frac{c_2}{c_1^{1/q}} C_A(E, F)^{1/q} + \frac{c_2}{c_1^{1/q}} \|b_1\|_{L^1(G)}^{1/q} + \|b_2\|_{L^q(G)} \right) C_p(E, F)^{1/p}, \tag{3.11}$$

Using Young’s Inequality we obtain

$$C_A(E, F) \leq \frac{(4c_2)^p}{p(qc_1)^{p-1}} C_p(E, F) + \left(\frac{4c_2}{c_1^{1/q}} \|b_1\|_{L^1(G)}^{1/q} + 4\|b_2\|_{L^q(G)} \right) C_p(E, F)^{1/p}, \tag{3.12}$$

which implies (3.3). If b_1 and b_2 belong to $L^\infty(F)$, then

$$\|b_1\|_{L^1(G)}^{1/q} \leq \text{meas}(G)^{1/q} \|b_1\|_{L^\infty(G)}^{1/q},$$

$$\|b_2\|_{L^q(G)} \leq \text{meas}(G)^{1/q} \|b_2\|_{L^\infty(G)}.$$

As $G = \{ w > \frac{1}{2} \}$, by Poincaré’s Inequality we have

$$\text{meas}(G) \leq 2^p \|w\|_{L^p(F)}^p \leq 2^p \text{diam}(F)^p \|Dw\|_{L^p(F)}^p = 2^p \text{diam}(F)^p C_p(E, F).$$

Therefore (3.12) implies

$$\|b_1\|_{L^1(G)}^{1/q} \leq \|b_1\|_{L^\infty(G)}^{1/q} 2^{p-1} \text{diam}(F)^p C_p(E, F)^{1/q},$$

$$\|b_2\|_{L^q(G)} \leq \|b_2\|_{L^\infty(F)}^{1/q} 2^{p-1} \text{diam}(F)^p C_p(E, F)^{1/q},$$

which, together with (3.11), yields (3.5).

\[\square\]

Remark 3.12. If $b_1 = 0$ a.e. in F and $b_2 \in L^\infty(F)$, then for every bounded set E we have

$$c_1 C_p(E, F) \leq C_A(E, F) \leq (k_1 + k_3(F)) C_p(E, F),$$

where c_1, k_1, and $k_3(F)$ are defined in (1.6), (3.4), and (3.6).

The following lemma will be useful in the proof of Theorems 3.14, 4.7, 4.8, and 6.10.
Lemma 3.13. Let E and F be two C_p-compatible bounded sets in \mathbb{R}^n and let u be a C_A-potential of E in F. Then $Au \geq 0$ in $W^{-1,q}(F)$ and $Au \leq 0$ in $W^{-1,q}(E^c)$.

Proof. Let u_1 and u_2 be the minimal and the maximal C_A-potentials of E in F. By Remark 3.7 we have $u_1 \leq 1$ C_p-q.e. in \mathbb{R}^n. If we apply Lemma 2.5 with $B = E$, $C = F$, $w_1 = u_1$, and we choose as w_2 any function in $W^{1,p}(\mathbb{R}^n)$ which is equal to 1 C_p-q.e. in F, we obtain $Au_1 \geq Aw_2 = 0$ in $W^{-1,q}(F)$. Since $Au = Au_1$ in $W^{-1,q}(\mathbb{R}^n)$ by Theorem 2.6, we conclude that $Au \geq 0$ in $W^{-1,q}(F)$.

By Remark 3.7 we have $u_2 \geq 0$ C_p-q.e. in \mathbb{R}^n. If we apply Lemma 2.5 with $B = F^c$, $C = E^c$, $w_1 = 0$, and $w_2 = u_2$, we obtain $Au_2 \leq A0 = 0$ in $W^{-1,q}(E^c)$. Since $Au = Au_2$ in $W^{-1,q}(\mathbb{R}^n)$ by Theorem 2.6, we conclude that $Au \leq 0$ in $W^{-1,q}(E^c)$.

By Theorem 2.6 there exists $g \in W^{-1,q}(\mathbb{R}^n)$ such that $Au = g$ in $W^{-1,q}(\mathbb{R}^n)$ for every C_A-potential u of E in F. The following theorem gives a precise description of g.

Theorem 3.14. Let E and F be two C_p-compatible bounded sets in \mathbb{R}^n. Then there exists a unique pair (λ, ν) of non-negative Radon measures on \mathbb{R}^n such that:

(a) λ and ν are mutually singular;
(b) for every C_A-potential u of E in F and for every $\varphi \in C_0^\infty(\mathbb{R}^n)$ we have
\[
\langle Au, \varphi \rangle = \int_{\mathbb{R}^n} \varphi d\lambda - \int_{\mathbb{R}^n} \varphi d\nu.
\]

Moreover, the following properties hold:
(c) the measures λ and ν are bounded and C_p-absolutely continuous;
(d) condition (b) holds also for every $\varphi \in W^{1,p}(\mathbb{R}^n) \cap L^\infty(\mathbb{R}^n)$;
(e) the measure $\lambda - \nu$ belongs to $W^{-1,q}(\mathbb{R}^n)$;
(f) $\text{supp} \lambda \subset \partial E$ and $\text{supp} \nu \subset \partial F$;
(g) $v \in W_0^{1,p}(E) \cup W_0^{1,p}(E^c) \implies v = 0$ λ-a.e. in \mathbb{R}^n;
(h) $v \in W_0^{1,p}(F) \cup W_0^{1,p}(F^c) \implies v = 0$ ν-a.e. in \mathbb{R}^n;
(i) $\lambda(U) = 0$ whenever $U \cap E$ and $U \cap E^c$ are C_p-quasi open;
(j) $\nu(U) = 0$ whenever $U \cap F$ and $U \cap F^c$ are C_p-quasi open;
(k) $\lambda(F^c) = 0$ and $\nu(E) = 0$.
Proof. By Theorem 2.6 there exists \(g \in W^{-1,q}(\mathbb{R}^n) \) such that \(Au = g \) in \(W^{-1,q}(\mathbb{R}^n) \) for every \(C_A \)-potential \(u \) of \(E \) in \(F \). We want to prove that there exists a unique pair \((\lambda, \nu)\) of mutually singular non-negative Radon measures on \(\mathbb{R}^n \) such that

\[
(g, \varphi) = \int_{\mathbb{R}^n} \varphi \, d\lambda - \int_{\mathbb{R}^n} \varphi \, d\nu \quad \forall \varphi \in C_0^\infty(\mathbb{R}^n),
\]

and that \(\lambda \) and \(\nu \) satisfy properties (c)–(k).

Let us fix a function \(\psi \) as in Remark 3.2. By Lemma 3.13 we have \(g \geq 0 \) in \(W^{-1,q}(F) \). Since \(\psi \varphi \) belongs to \(W^{1,p}_0(F) \) for every \(\varphi \) in \(C_0^\infty(\mathbb{R}^n) \), we conclude that

\[
(g, \psi \varphi) \geq 0 \quad \forall \varphi \in C_0^\infty(\mathbb{R}^n), \varphi \geq 0.
\]

By the Riesz Representation Theorem there exists a non-negative Radon measure \(\lambda \) on \(\mathbb{R}^n \) such that

\[
(g, \varphi) = \int_{\mathbb{R}^n} \varphi \, d\lambda \quad \forall \varphi \in C_0^\infty(\mathbb{R}^n).
\]

In order to construct \(\nu \), we recall that by Lemma 3.13 we have \(g \leq 0 \) in \(W^{-1,q}(E^c) \). Since \((1 - \psi)\varphi \) belongs to \(W^{1,p}_0(E^c) \) for every \(\varphi \) in \(C_0^\infty(\mathbb{R}^n) \), we conclude that

\[
(g, (1 - \psi) \varphi) \leq 0 \quad \forall \varphi \in C_0^\infty(\mathbb{R}^n), \varphi \geq 0.
\]

By the Riesz Representation Theorem there exists a non-negative Radon measure \(\nu \) on \(\mathbb{R}^n \) such that

\[
(g, (1 - \psi) \varphi) = -\int_{\mathbb{R}^n} \varphi \, d\nu \quad \forall \varphi \in C_0^\infty(\mathbb{R}^n).
\]

From (3.14) and (3.15) we obtain

\[
(g, \varphi) = (g, \psi \varphi) + (g, (1 - \psi) \varphi) = \int_{\mathbb{R}^n} \varphi \, d\lambda - \int_{\mathbb{R}^n} \varphi \, d\nu,
\]

which proves (3.13) and hence (b). Property (e) follows from (b) and from the fact that \(Au \) belongs to \(W^{-1,q}(\mathbb{R}^n) \).

Let us prove (c). As \(g = 0 \) in \(W^{-1,q}(F^c) \) by (1.4), using (3.14) and (3.15) we obtain

\[
\int_{\mathbb{R}^n} \varphi \, d\lambda = \int_{\mathbb{R}^n} \varphi \, d\nu = 0.
\]
for every \(\varphi \in C_0^\infty(\mathbb{R}^n) \) with \(\text{supp} \varphi \subset F^c \). Therefore the supports of \(\lambda \) and \(\nu \) are contained in the compact set \(\overline{F} \). This implies that the measures \(\lambda \) and \(\nu \) are bounded. It remains to show that \(\lambda \) and \(\nu \) vanish on all \(C_p \)-null sets. To this aim, it is sufficient to prove that \(\lambda(C) = \nu(C) = 0 \) for every \(C_p \)-null compact set \(C \subset \mathbb{R}^n \). In this case it is possible to construct a sequence \((\varphi_j) \) of functions in \(C_\infty^\infty(\mathbb{R}^n) \) such that \(0 \leq \varphi_j \leq 1 \) in \(\mathbb{R}^n \), \(\varphi_j = 1 \) in \(C \), and \((\varphi_j) \) converges to 0 strongly in \(W^{1,p}(\mathbb{R}^n) \). Then by (3.14) for every \(j \) we have

\[
\lambda(C) \leq \int_{\mathbb{R}^n} \varphi_j \, d\lambda = \langle g, \psi \varphi_j \rangle.
\]

Since \((\psi \varphi_j) \) converges to 0 strongly in \(W^{1,p}(\mathbb{R}^n) \), passing to the limit as \(j \to \infty \) we obtain \(\lambda(C) = 0 \). In the same way we prove that \(\nu(C) = 0 \).

Since the measures \(\lambda \) and \(\nu \) are bounded and \(C_p \)-absolutely continuous, every function of \(W^{1,p}(\mathbb{R}^n) \cap L^\infty(\mathbb{R}^n) \) belongs to \(L^1_\lambda(\mathbb{R}^n) \) and to \(L^1_\nu(\mathbb{R}^n) \), and thus, by an easy approximation argument, from (3.14) and (3.15) we obtain

\[
\langle g, \psi v \rangle = \int_{\mathbb{R}^n} v \, d\lambda, \quad \langle g, (1-\psi)v \rangle = -\int_{\mathbb{R}^n} v \, d\nu
\]

for every \(v \in W^{1,p}(\mathbb{R}^n) \cap L^\infty(\mathbb{R}^n) \), which implies (d).

By considering separately the positive and the negative part of \(v \), it is enough to prove (g) when \(v \) is non-negative. Let us fix \(v \in W^{1,p}_0(E) \cup W^{1,p}_0(E^c) \) with \(v \geq 0 \) \(C_p \)-q.e. in \(\mathbb{R}^n \). If \(v \) belongs to \(W^{1,p}_0(E) \), then \(v = \psi v \) \(C_p \)-q.e. in \(\mathbb{R}^n \). Since \(g = 0 \) in \(W^{-1,q}(E) \) by (1.4), from (3.16) we obtain

\[
\int_{\mathbb{R}^n} v \, d\lambda = \langle g, v \rangle = 0.
\]

If \(v \) belongs to \(W^{1,p}_0(E^c) \), then \(\psi v \) belongs to \(W^{1,p}_0(F \setminus E) \). As \(g = 0 \) in \(W^{-1,q}(F \setminus E) \) by (3.1), it follows from (3.16) that

\[
\int_{\mathbb{R}^n} v \, d\lambda = \langle g, \psi v \rangle = 0.
\]

In both cases \(\int_{\mathbb{R}^n} v \, d\lambda = 0 \). Since \(v \) and \(\lambda \) are non-negative, this implies \(v = 0 \) \(\lambda \)-a.e. in \(\mathbb{R}^n \).

Similarly, it is enough to prove (h) when \(v \) is non-negative. Let us fix \(v \in W^{1,p}_0(F) \cup W^{1,p}_0(F^c) \) with \(v \geq 0 \) \(C_p \)-q.e. in \(\mathbb{R}^n \). If \(v \) belongs to \(W^{1,p}_0(F) \), then \((1-\psi)v \) belongs to \(W^{1,p}_0(F \setminus E) \). As \(g = 0 \) in \(W^{-1,q}(F \setminus E) \) by (3.1), it follows from (3.16) that

\[
\int_{\mathbb{R}^n} v \, d\nu = -\langle g, (1-\psi)v \rangle = 0.
\]
If v belongs to $W^{1,p}_0(F^c)$, then $v = (1 - \psi)v$ C_p-q.e. in \mathbb{R}^n. Since $g = 0$ in $W^{-1,q}(F^c)$ by (1.4), from (3.16) we obtain

$$\int_{\mathbb{R}^n} v \, d\nu = -\langle g, v \rangle = 0.$$

In both cases $\int_{\mathbb{R}^n} v \, d\nu = 0$. Since v and ν are non-negative, this implies $v = 0$ ν-a.e. in \mathbb{R}^n.

It is enough to prove (i) for every C_p-quasi open set U such that either $U \subset E$ or $U \subset E^c$. In both cases by Lemma 1.1 there exists an increasing sequence (v_j) of functions of $W^{1,p}_0(E) \cup W^{1,p}_0(E^c)$, with $0 \leq v_j \leq 1_U$ C_p-q.e. in \mathbb{R}^n, which converges to 1_U C_p-q.e. in \mathbb{R}^n. By (g) we have $\int_{\mathbb{R}^n} v_j \, d\lambda = 0$ for every j, and passing to the limit as $j \to \infty$ we get $\lambda(U) = 0$. The proof of (j) is similar.

Since $(\partial E)^c \cap E$ and $(\partial E)^c \cap E^c$ are open sets, by (i) we have $\lambda((\partial E)^c) = 0$, hence $\text{supp} \lambda \subset \partial E$. Similarly we prove that the inclusion $\text{supp} \nu \subset \partial F$ follows from (j).

Since E is C_p-compatible with F, the set $E \setminus F$ is C_p-null. Consequently, by Remark 3.10, the C_A-potentials do not change if we replace E by $E \cap F$. Therefore in the rest of the proof we may assume that $E \subset F$.

Let χ be a function in $C^\infty_0(\mathbb{R}^n)$ such that $\chi = 1$ in F. Since $\chi - \psi \in W^{1,p}_0(E^c)$, by (f) and (g) we have $1 - \psi = \chi - \psi = 0$ λ-a.e. in \mathbb{R}^n. Since $\psi \in W^{1,p}_0(F)$, by (h) we have $\psi = 0$ ν-a.e. in \mathbb{R}^n. These facts imply that λ is concentrated in the set $\{\psi = 1\}$ while ν is concentrated in the set $\{\psi = 0\}$ and prove that λ and ν are mutually singular.

Since $\psi = 1$ λ-a.e. in \mathbb{R}^n and $\psi = 0$ C_p-q.e. in F^c, by (c) we have $\lambda(F^c) = 0$. Similarly, as $\psi = 0$ ν-a.e. in \mathbb{R}^n and $\psi = 1$ C_p-q.e. in E, by (c) we have $\nu(E) = 0$.

Finally, condition (b) determines uniquely the signed measure $\lambda - \nu$. Since λ and ν are non-negative and mutually singular, by the uniqueness of the Hahn Decomposition we have $\lambda = (\lambda - \nu)^+$ and $\nu = (\lambda - \nu)^-$, thus the pair (λ, ν) is uniquely determined by conditions (a) and (b). In particular λ and ν do not depend on the function ψ used in the proof. \hfill \Box

Definition 3.15. Let E and F be two C_p-compatible bounded sets in \mathbb{R}^n. The measures λ and ν introduced in the previous theorem are called the *inner* and the *outer* C_A-distributions of E in F.

Remark 3.16. If $\overline{E} \subset \hat{F}$, it is easy to see that the C_A-distributions λ and ν belong to $W^{-1,q}(\mathbb{R}^n)$. This is not true, in general, when E and F are only C_p-compatible. For a counterexample we refer to the Appendix of [5].
Proposition 3.17. Let E and F be two C_p-compatible bounded sets in \mathbb{R}^n and let λ and ν be the inner and the outer C_A-distributions of E in F. Then

$$C_A(E, F) = \lambda(\partial E) = \lambda(\mathbb{R}^n) = \lambda(F) = \nu(\partial F) = \nu(\mathbb{R}^n) = \nu(E^c).$$

Proof. By properties (f) and (k) of Theorem 3.14 we have $\lambda(\partial E) = \lambda(\mathbb{R}^n) = \lambda(F)$ and $\nu(\partial F) = \nu(\mathbb{R}^n) = \nu(E^c)$.

Since E is C_p-compatible with F, the set $E \setminus F$ is C_p-null. Consequently, by Remark 3.10, the inner an the outer C_A-distributions do not change if we replace E by $E \cap F$. Therefore it is not restrictive to assume that $E \subset F$. Let u be a C_A-potential of E in F, let ψ be as in Remark 3.2, and let χ be a function in $C^\infty_0(\mathbb{R}^n)$ such that $\chi = 1$ in F. Since $\psi \in W^{1,p}_0(F)$ and $\chi - \psi \in W^{1,p}_0(E^c)$, by properties (f), (g), and (h) of Theorem 3.14 we have $\psi = 0$ ν-a.e. in \mathbb{R}^n, $\chi = 1$ ν-a.e. in \mathbb{R}^n, and $\psi = \chi = 1$ λ-a.e. in \mathbb{R}^n. By Theorem 3.14(d) this implies

$$\langle Au, \psi \rangle = \int_{\mathbb{R}^n} \psi \, d\lambda = \lambda(\mathbb{R}^n),$$

$$\langle Au, \chi - \psi \rangle = -\int_{\mathbb{R}^n} (\chi - \psi) \, d\nu = -\nu(\mathbb{R}^n).$$

By Remark 3.9 we have $C_A(E, F) = \langle Au, \psi \rangle$. Since $Du = 0$ a.e. in F^c and $D\chi = 0$ a.e. in F, by (1.4) we have $\langle Au, \chi - \psi \rangle = -\langle Au, \psi \rangle$. Therefore (3.17) implies that $C_A(E, F) = \lambda(\mathbb{R}^n) = \nu(\mathbb{R}^n)$. \hfill \Box

4. Monotonicity and continuity along monotone sequences

In this section we study the monotonicity and continuity properties of $C_A(E, F)$ with respect to E and F. These results are based on the fundamental inequality proved in Lemma 2.5, on the properties of the C_A-distributions discussed in Section 3, and on the properties of the minimal and maximal C_A-potentials proved in the following lemmas.

Lemma 4.1. Let E_1, E_2, F be three bounded sets in \mathbb{R}^n. Assume that $E_1 \subset E_2$ and that E_2 and F are C_p-compatible. If u_1 and u_2 are the minimal C_A-potentials of E_1 and E_2 in F, then $u_1 \leq u_2$ C_p-q.e. in \mathbb{R}^n.
Proof. By Corollary 2.7 u_1 coincides with the minimal solution u of the problem
\[
\begin{align*}
\begin{cases}
u - u_1 & \in W^{1,p}_0(F \setminus E_2), \\
Au & = 0 \text{ in } W^{-1,q}(F \setminus E_2).
\end{cases}
\end{align*}
\]
By Remark 3.7 we have $u_1 \leq 1$ C_p-q.e. in E_2. Therefore the Comparison Principle (Theorem 2.11) implies that $u_1 \leq u_2$ C_p-q.e. in $F \setminus E_2$. Since $u_1 \leq 1 = u_2$ C_p-q.e. in E_2 and $u_1 = 0 = u_2$ C_p-q.e. in F^c, we conclude that $u_1 \leq u_2$ C_p-q.e. in \mathbb{R}^n.

Lemma 4.2. Let E, F_1, F_2 be three bounded sets in \mathbb{R}^n. Assume that $F_1 \subset F_2$ and that E and F_1 are C_p-compatible. If u_1 and u_2 are the maximal C_A-potentials of E in F_1 and F_2, then $u_1 \leq u_2$ C_p-q.e. in \mathbb{R}^n.

Proof. By Corollary 2.7 u_2 coincides with the minimal solution u of the problem
\[
\begin{align*}
\begin{cases}
u - u_2 & \in W^{1,p}_0(F_1 \setminus E), \\
Au & = 0 \text{ in } W^{-1,q}(F_1 \setminus E).
\end{cases}
\end{align*}
\]
By Remark 3.7 we have $u_2 \geq 0$ C_p-q.e. in F_1^c. Therefore the Comparison Principle (Theorem 2.11) implies that $u_1 \leq u_2$ C_p-q.e. in $F_1 \setminus E$. Since $u_1 = 1 = u_2$ C_p-q.e. in E and $u_1 = 0 \leq u_2$ C_p-q.e. in F_1^c, we conclude that $u_1 \leq u_2$ C_p-q.e. in \mathbb{R}^n.

We prove now that the set function $C_A(\cdot, F)$ is increasing.

Theorem 4.3. Let E_1, E_2, F be three bounded sets in \mathbb{R}^n such that $E_1 \subset E_2$. Then $C_A(E_1, F) \leq C_A(E_2, F)$.

Proof. Since the inequality is trivial when E_2 and F are not C_p-compatible, the conclusion follows from Proposition 3.17 and from the following lemma.

Lemma 4.4. Let E_1, E_2, F be three bounded sets in \mathbb{R}^n. Assume that $E_1 \subset E_2$ and that E_2 and F are C_p-compatible. Let ν_1 and ν_2 be the outer C_A-distributions of E_1 and E_2 in F. Then $\nu_1(B) \leq \nu_2(B)$ for every Borel set $B \subset \mathbb{R}^n$.

Proof. Let u_1 and u_2 be the minimal C_A-potentials of E_1 and E_2 in F. Then $u_1 \leq u_2$ C_p-q.e. in \mathbb{R}^n by Lemma 4.1. If we apply Lemma 2.5 with $B = F^c$, $C = E_2^c$, $w_1 = u_1$,
and $w_2 = u_2$, we obtain $Au_1 \geq Au_2$ in $W^{-1,q}(E_2^c)$. By (d) and (g) of Theorem 3.14 we have
\[\int_{\mathbb{R}^n} v d\nu_1 = -\langle Au_1, v \rangle \leq -\langle Au_2, v \rangle = \int_{\mathbb{R}^n} v d\nu_2 \]
for every $v \in W_0^{1,p}(E_2^c)$ with $v \geq 0$ C_p-q.e. in \mathbb{R}^n. By Lemma 1.1 this implies $\nu_1(V) \leq \nu_2(V)$ for every C_p-quasi open set V contained in E_2^c. As $\{u_2 > 0\}$ is C_p-quasi open, by Theorem 3.14(j) we have $\nu_1(\{u_2 \geq 1\}) \leq \nu_1(\{u_2 > 0\}) = 0$ and $\nu_2(\{u_2 \geq 1\}) \leq \nu_2(\{u_2 > 0\}) = 0$. For every open set $U \subset \mathbb{R}^n$ the set $U \cap \{u_2 < 1\}$ is C_p-quasi open and is contained in E_2^c (up to a C_p-null set). Therefore $\nu_1(U) = \nu_1(U \cap \{u_2 < 1\}) \leq \nu_2(U \cap \{u_2 < 1\}) = \nu_2(U)$. Since ν_1 and ν_2 are Radon measures, this implies that $\nu_1(B) \leq \nu_2(B)$ for every Borel set $B \subset \mathbb{R}^n$.

The following theorem shows that $C_A(E, \cdot)$ is decreasing.

Theorem 4.5. Let E, F_1, F_2 be three bounded sets in \mathbb{R}^n such that $F_1 \subset F_2$. Then $C_A(E, F_1) \geq C_A(E, F_2)$.

Proof. Since the inequality is trivial when E and F_1 are not C_p-compatible, the conclusion follows from Proposition 3.17 and from the following lemma.

Lemma 4.6. Let E, F_1, F_2 be three bounded sets in \mathbb{R}^n. Assume that $F_1 \subset F_2$ and that E and F_1 are C_p-compatible. Let λ_1 and λ_2 be the inner C_A-distributions of E in F_1 and F_2. Then $\lambda_1(B) \geq \lambda_2(B)$ for every Borel set $B \subset \mathbb{R}^n$.

Proof. Let u_1 and u_2 be the maximal C_A-potentials of E in F_1 and F_2. Then $u_1 \leq u_2$ C_p-q.e. in \mathbb{R}^n by Lemma 4.2. If we apply Lemma 2.5 with $B = E$, $C = F_1$, $w_1 = u_1$, and $w_2 = u_2$, we obtain $Au_1 \geq Au_2$ in $W^{-1,q}(F_1)$. By (d) and (h) of Theorem 3.14 we have
\[\int_{\mathbb{R}^n} v d\lambda_1 = \langle Au_1, v \rangle \geq \langle Au_2, v \rangle = \int_{\mathbb{R}^n} v d\lambda_2 \]
for every $v \in W_0^{1,p}(F_1)$ with $v \geq 0$ C_p-q.e. in \mathbb{R}^n. By Lemma 1.1 this implies $\lambda_1(V) \leq \lambda_2(V)$ for every C_p-quasi open set V contained in F_1. As $\{u_1 < 1\}$ is C_p-quasi open, by Theorem 3.14(i) we have $\lambda_1(\{u_1 \leq 0\}) \leq \lambda_1(\{u_1 < 1\}) = 0$ and $\lambda_2(\{u_1 \leq 0\}) \leq \lambda_2(\{u_1 < 1\}) = 0$. For every open set $U \subset \mathbb{R}^n$ the set $U \cap \{u_1 > 0\}$ is C_p-quasi open and is contained in F_1 (up to a C_p-null set). Therefore $\lambda_1(U) = \lambda_1(U \cap \{u_1 > 0\}) \geq \lambda_2(U \cap \{u_1 > 0\}) = \lambda_2(U)$. Since λ_1 and λ_2 are Radon measures, this implies that $\lambda_1(B) \geq \lambda_2(B)$ for every Borel set $B \subset \mathbb{R}^n$.

\[\square \]
The following theorem shows that the set function $C_A(\cdot, F)$ is continuous along all increasing sequences.

Theorem 4.7. Let E and F be two bounded sets in \mathbb{R}^n. If E is the union of an increasing sequence of sets (E_j), then

$$C_A(E, F) = \lim_{j \to \infty} C_A(E_j, F) = \sup_j C_A(E_j, F).$$

Proof. Let $S = \sup_j C_A(E_j, F)$. By monotonicity (Theorem 4.3) we have $S \leq C_A(E, F)$. It remains to prove the opposite inequality when $S < +\infty$, and hence each set E_j is C_p-compatible with F. Let u and u_j be the minimal C_A-potentials of E and E_j in F. As $S < +\infty$, by (1.13) the sequence (u_j) is bounded in $W^{1,p}(\mathbb{R}^n)$, and by (1.10) the sequence (Au_j) is bounded in $W^{-1,q}(\mathbb{R}^n)$. Passing, if necessary, to a subsequence, we may assume that (u_j) converges weakly in $W^{1,p}(\mathbb{R}^n)$ to some function $w \in W^{1,p}_0(F)$ and that (Au_j) converges weakly in $W^{-1,q}(\mathbb{R}^n)$ to some element f of $W^{-1,q}(\mathbb{R}^n)$.

We want to prove that $Au = f$ in $W^{-1,q}(F)$ and that $w = u$ C_p-a.e. in \mathbb{R}^n. From the monotonicity condition (1.11) for every j we obtain

$$\langle A v, v - u_j \rangle \geq \langle A u_j, v - u_j \rangle \quad \forall v \in W^{1,p}(\mathbb{R}^n). \quad (4.1)$$

If $j \leq i$, by Lemma 4.1 we have $u_j \leq u_i \leq u$ C_p-a.e. in \mathbb{R}^n, hence $u_j \leq w \leq u$ C_p-a.e. in \mathbb{R}^n for every j. Since $Au_j \geq 0$ in $W^{-1,q}(F)$ (Lemma 3.13), we have

$$\langle Au_j, v - u_j \rangle \geq \langle Au_j, v - w \rangle \quad \forall v \in W^{1,p}_0(F),$$

which, together with (4.1), gives

$$\langle A v, v - u_j \rangle \geq \langle A u_j, v - w \rangle \quad \forall v \in W^{1,p}_0(F).$$

Passing to the limit as $j \to \infty$ we get

$$\langle A v, v - w \rangle \geq \langle f, v - w \rangle \quad \forall v \in W^{1,p}_0(F).$$

Putting $v = w + \varepsilon z$, with $z \in W^{1,p}_0(F)$ and $\varepsilon > 0$, and dividing by ε we obtain

$$\langle A(w + \varepsilon z), z \rangle \geq \langle f, z \rangle \quad \forall z \in W^{1,p}_0(F).$$
Passing to the limit as $\varepsilon \to 0$ we get

$$\langle Aw, z \rangle \geq \langle f, z \rangle \quad \forall z \in W^{1,p}_0(F),$$

hence $Aw = f$ in $W^{-1,q}(F)$. As $u_j \leq u \leq w$ are C_p-q.e. in \mathbb{R}^n and $u_j = u = 1$ C_p-q.e. in E_j (Remark 3.6), we have $w = 1$ C_p-q.e. in E_j for every j, hence $w = 1$ C_p-q.e. in E. Since $w \in W^{1,p}_0(F)$, we have also $w = 0$ C_p-q.e. in F^c. This shows that w satisfies the first condition in (3.1).

It remains to prove that $Aw = 0$ in $W^{-1,q}(F \setminus E)$. If $v \in W^{1,p}_0(F \setminus E)$, then $v \in W^{1,p}_0(F \setminus E_j)$ and the definition of u_j implies that $\langle Au_j, v \rangle = 0$ for every j. Since (Au_j) converges to f weakly in $W^{-1,q}(\mathbb{R}^n)$ and $Aw = f$ in $W^{-1,q}(F)$, we conclude that

$$\langle Aw, v \rangle = \langle f, v \rangle = \lim_{j \to \infty} \langle Au_j, v \rangle = 0 \quad \forall v \in W^{1,p}_0(F \setminus E),$$

hence $Aw = 0$ in $W^{-1,q}(F \setminus E)$. This proves that w is a C_A-potential of E in F. Since $w \leq u$ C_p-q.e. in \mathbb{R}^n, by the minimality of u we obtain $w = u$ C_p-q.e. in \mathbb{R}^n.

By Remark 3.9 we have $C_A(E_j, F) = \langle Au_j, u \rangle$ for every j. Using again the fact that (Au_j) converges to f weakly in $W^{-1,q}(\mathbb{R}^n)$ and that $Au = f$ in $W^{-1,q}(F)$ we obtain

$$C_A(E, F) = \langle Au, u \rangle = \langle f, u \rangle = \lim_{j \to \infty} \langle Au_j, u \rangle = \lim_{j \to \infty} C_A(E_j, F),$$

which concludes the proof of the theorem.

For the continuity of the set function $C_A(\cdot, F)$ along decreasing sequences (E_j) we need two additional assumptions: the sets E_j must be C_p-quasi closed and C_p-compatible with F.

Theorem 4.8. Let F be a bounded set in \mathbb{R}^n, let (E_j) be a decreasing sequence of C_p-quasi closed bounded sets, and let E be their intersection. If E_1 and F are C_p-compatible, then

$$C_A(E, F) = \lim_{j \to \infty} C_A(E_j, F) = \inf_{j} C_A(E_j, F).$$

Proof. By Theorem 4.3 we have $C_A(E_j, F) \leq C_A(E_1, F) < +\infty$ for every j. Let u_j be the minimal C_A-potential of E_j in F. By (1.13) the sequence (u_j) is bounded in
$W^{1,p}(\mathbb{R}^n)$, and by (1.10) the sequence (Au_j) is bounded in $W^{-1,q}(\mathbb{R}^n)$. Passing, if necessary, to a subsequence, we may assume that (u_j) converges weakly in $W^{1,p}(\mathbb{R}^n)$ to some function $u \in W^{1,p}_0(F)$ and that (Au_j) converges weakly in $W^{-1,q}(\mathbb{R}^n)$ to some element f of $W^{-1,q}(\mathbb{R}^n)$.

We want to prove that $Au = f$ in $W^{-1,q}(F)$ and that u is a C_A-potential of E in F. From the monotonicity condition (1.11) for every j we obtain

\[(4.2) \quad \langle Av, v - u_j \rangle \geq \langle Au_j, v - u_j \rangle \quad \forall v \in W^{1,p}(\mathbb{R}^n).\]

If $j \geq i$, by Lemma 4.1 we have $u_j \leq u_i$ C_p-q.e. in \mathbb{R}^n. Since $Au_j \geq 0$ in $W^{-1,q}(F)$ (Lemma 3.13), we have

\[\langle Au_j, v - u_j \rangle \geq \langle Au_j, v - u_i \rangle \quad \forall v \in W^{1,p}_0(F),\]

which, together with (4.2), gives

\[\langle Av, v - u_j \rangle \geq \langle Au_j, v - u_i \rangle \quad \forall v \in W^{1,p}_0(F)\]

whenever $j \geq i$. Passing to the limit as $j \to \infty$ we obtain

\[\langle Av, v - u \rangle \geq \langle f, v - u_i \rangle \quad \forall v \in W^{1,p}_0(F),\]

and as $i \to \infty$ we get

\[\langle Av, v - u \rangle \geq \langle f, v - u \rangle \quad \forall v \in W^{1,p}_0(F).\]

Putting $v = u + \varepsilon z$, with $z \in W^{1,p}_0(F)$ and $\varepsilon > 0$, and dividing by ε we obtain

\[\langle A(u + \varepsilon z), z \rangle \geq \langle f, z \rangle \quad \forall z \in W^{1,p}_0(F).\]

Passing to the limit as $\varepsilon \to 0$ we get

\[\langle Au, z \rangle \geq \langle f, z \rangle \quad \forall z \in W^{1,p}_0(F),\]

hence $Au = f$ in $W^{-1,q}(F)$. Since $u_j = 1$ C_p-q.e. in E and $u_j = 0$ C_p-q.e. in F^c for every j (Remark 3.6), we have $u = 1$ C_p-q.e. in E and $u = 0$ C_p-q.e. in F^c. This shows that u satisfies the first condition in (3.1).

It remains to prove that $Au = 0$ in $W^{-1,q}(F \setminus E)$. Let us fix $v \in W^{-1,q}(F \setminus E)$. Since the sets E_j are C_p-quasi closed, by Lemma 1.2 there exists a sequence (v_j) which
converges to \(v \) strongly in \(W^{1,p}(\mathbb{R}^n) \) and such that \(v_j \in W^{1,p}_0(F \setminus E_j) \) for every \(j \). As the sequence \((E_j) \) is decreasing, we have \(v_i \in W^{1,p}_0(F \setminus E_j) \) for every \(j \geq i \). By the definition of \(u_j \) we have \(\langle Au_j, v_i \rangle = 0 \) for every \(j \geq i \). Since \((Au_j) \) converges to \(f \) in \(W^{-1,q}(\mathbb{R}^n) \) and \(Au = f \) in \(W^{-1,q}(F \setminus E) \), as \(j \to \infty \) we get
\[
\langle Au, v_i \rangle = \langle f, v_i \rangle = \lim_{j \to \infty} \langle Au_j, v_i \rangle = 0.
\]

Passing to the limit as \(i \to \infty \) we obtain \(\langle Au, v \rangle = 0 \), hence \(Au = 0 \) in \(W^{-1,q}(F \setminus E) \).

By Remark 3.9 we have \(C_A(E, F) = \langle Au, u_1 \rangle \) and \(C_A(E_j, F) = \langle Au_j, u_1 \rangle \) for every \(j \). Using again the fact that \((Au_j) \) converges to \(f \) weakly in \(W^{-1,q}(\mathbb{R}^n) \) and that \(Au = f \) in \(W^{-1,q}(F) \) we obtain
\[
C_A(E, F) = \langle Au, u_1 \rangle = \langle f, u_1 \rangle = \lim_{j \to \infty} \langle Au_j, u_1 \rangle = \lim_{j \to \infty} C_A(E_j, F),
\]
which concludes the proof of the theorem. \(\square \)

Remark 4.9. Elementary examples in the case \(p = 2 \) and \(Au = -\Delta u \) show that the conclusion of Theorem 4.8 does not hold if the sets \(E_j \) are not \(C_p \)-quasi closed. The assumption that \(E_1 \) and \(F \) are \(C_p \)-compatible is automatically satisfied if \(F \) is open and the sets \(E_j \) are compact and contained in \(F \).

We consider now the continuity properties with respect to \(F \). The following theorem shows that the set function \(C_A(E, \cdot) \) is continuous along all decreasing sequences.

Theorem 4.10. Let \(E \) and \(F \) be two bounded sets in \(\mathbb{R}^n \). If \(F \) is the intersection of a decreasing sequence of sets \((F_j) \), then
\[
C_A(E, F) = \lim_{j \to \infty} C_A(E, F_j) = \sup_j C_A(E, F_j).
\]

Proof. It is enough to repeat the proof of Theorem 4.7 with obvious modifications. For instance we have to replace the minimal \(C_A \)-potentials by the maximal \(C_A \)-potentials, \(W^{1,p}_0(F) \) by \(\{ u \in W^{1,p}(\mathbb{R}^n) : u = 1 \text{ \(C_p \)-q.e. in } E \} \), and \(W^{-1,q}(F) \) by \(W^{-1,q}(F^c) \). \(\square \)

For the continuity of the set function \(C_A(E, \cdot) \) along increasing sequences, we need additional assumptions.
Theorem 4.11. Let E and F be two bounded set in \mathbb{R}^n. Assume that F is the union of an increasing sequence (F_j) of C_p-quasi open sets such that E and F_1 are C_p-compatible. Then

$$C_A(E, F) = \lim_{j \to \infty} C_A(E, F_j) = \inf_j C_A(E, F_j).$$

Proof. It is enough to modify the proof of Theorem 4.8 as in the proof of Theorem 4.10.

\[\square\]

5. Approximation properties and subadditivity

In this section we prove that, if E and F are bounded Borel sets, then $C_A(E, F)$ can be approximated by $C_A(K, U)$, with K compact, $K \subset E$, and U bounded and open, $U \supset F$. Finally we prove that $C_A(E, F)$ is countably subadditive with respect to E.

We begin with the problem of the approximation of $C_A(E, F)$ by $C_A(K, F)$, with K compact, $K \subset E$.

Lemma 5.1. Let E and F be two C_p-compatible bounded sets in \mathbb{R}^n. If E is a Borel set, then

$$(5.1) \quad C_A(E, F) = \sup\{C_A(K, F) : K \text{ compact, } K \subset E\}.$$

Proof. Let ψ be a function in $W_0^{1,p}(F)$ such that $\psi = 1$ C_p-q.e. in E, let $H = \{\psi \geq 1\}$, and let α be the set function defined by $\alpha(B) = C_A(B \cap H, F)$ for every $B \subset \mathbb{R}^n$. Since H is C_p-quasi closed and C_p-compatible with F, the set function α satisfies the following properties:

(i) if $B \subset C$, then $\alpha(B) \leq \alpha(C)$ (Theorem 4.3);

(ii) if B is the union of an increasing sequence of sets (B_j), then $\alpha(B) = \sup_j \alpha(B_j)$ (Theorem 4.7);

(iii) if K is the intersection of a decreasing sequence of compact sets (K_j), then $\alpha(K) = \inf_j \alpha(K_j)$ (Theorem 4.8).
Therefore α is an abstract capacity in the sense of Choquet. By the Capacitability Theorem ([2], Theorem 1) for every Borel set $B \subset \mathbb{R}^n$ we have

\begin{equation}
\alpha(B) = \sup\{\alpha(K) : K \text{ compact}, K \subset B\}.
\end{equation}

Since $\psi = 1$ C_p-q.e. in E, we have $\alpha(B) = C_A(B, F)$ for every $B \subset E$ (Remark 3.10). Consequently (5.2) implies (5.1).

Theorem 5.2. Let E and F be two bounded sets in \mathbb{R}^n. If E is a Borel set, then

\begin{equation}
C_A(E, F) = \sup\{C_A(K, F) : K \text{ compact}, K \subset E\}.
\end{equation}

Proof. Let Ω be a bounded open set containing E and F, let D be a countable dense subset of $W^{1,p}_0(F)$, and let F_0 be the union of the sets $\{v \neq 0\}$ for $v \in D$. If $u \in W^{1,p}_0(F)$, then there exists a sequence (v_j) in D which converges to u strongly in $W^{1,p}(\mathbb{R}^n)$. Since $v_j = 0$ C_p-q.e. in F_0^c, we have $u = 0$ C_p-q.e. in F_0^c. Therefore, if B is a bounded set in \mathbb{R}^n such that $C_p(B \setminus F_0, \Omega) > 0$, then B and F are not C_p-compatible. We may assume that all functions $v \in D$ are Borel functions, so that F_0 is a Borel set.

If $C_p(E \setminus F_0, \Omega) > 0$, then $C_A(E, F) = +\infty$ by the previous remark. If we apply Choquet’s Capacitability Theorem ([2], Theorem 1) to the capacity $C_p(\cdot, \Omega)$, we obtain that there exists a compact set K contained in $E \setminus F_0$ such that $C_p(K \setminus F_0, \Omega) = C_p(K, \Omega) > 0$. This implies that $C_A(K, F) = +\infty$ and proves (5.3) in this case.

If $C_p(E \setminus F_0, \Omega) = 0$, then $C_A(E, F) = C_A(E \cap F_0, F)$ (Remark 3.10) and $E \cap F_0$ is the union of the sets $E \cap \{|v| > \frac{1}{k}\}$ for $k \in \mathbb{N}$ and $v \in D$. Since all these sets are C_p-compatible with F (with $\psi = (k|v|) \wedge 1$), so are their finite unions (Remark 3.4). Therefore $E \cap F_0$ is the union of an increasing sequence (E_j) of sets which are C_p-compatible with F. By Theorem 4.7 we have

$$C_A(E, F) = C_A(E \cap F_0, F) = \sup_j C_A(E_j, F),$$

and (5.3) follows from the fact that

$$C_A(E_j, F) = \sup\{C_A(K, F) : K \text{ compact}, K \subset E_j\}$$

by Lemma 5.1. \qed
We consider now the problem of the approximation of $C_A(E,F)$ by $C_A(E,U)$, with U bounded and open, $U \supseteq F$.

Lemma 5.3. Let E and F be two C_p-compatible bounded sets in \mathbb{R}^n. If F is a Borel set, then

\[(5.4) \quad C_A(E,F) = \sup \{ C_A(E,U) : U \text{ bounded and open, } U \supseteq F \}.\]

Proof. Let Ω be a bounded open set in \mathbb{R}^n containing F, let ψ be a function in $W_0^{1,p}(F)$ such that $\psi = 1$ C_p-q.e. in E, let $V = \{ \psi > 0 \}$, and let β be the set function defined by $\beta(B) = C_A(E,(\Omega \setminus B) \cup V)$ for every $B \subset \mathbb{R}^n$. Since V is C_p-quasi open and E is C_p-compatible with V, the set function β satisfies the following properties:

(i) if $B \subset C$, then $\beta(B) \leq \beta(C)$ (Theorem 4.5);

(ii) if B is the union of an increasing sequence of sets (B_j), then $\beta(B) = \sup_j \beta(B_j)$ (Theorem 4.10);

(iii) if K is the intersection of a decreasing sequence of compact sets (K_j), then $\beta(K) = \inf_j \beta(K_j)$ (Theorem 4.11).

Therefore β is an abstract capacity in the sense of Choquet. By the Capacitability Theorem ([2], Theorem 1) for every Borel set $B \subset \mathbb{R}^n$ we have

\[(5.5) \quad \beta(B) = \sup \{ \beta(K) : K \text{ compact, } K \subset B \}.\]

Since $\psi = 0$ C_p-q.e. in F^c, we have $\beta(B) = C_A(E,\Omega \setminus B)$ for every $B \subset F^c$ (Remark 3.10). In particular $\beta(F^c) = C_A(E,F)$. Consequently (5.5) gives

$$C_A(E,F) = \sup \{ C_A(E,\Omega \setminus K) : K \text{ compact, } K \subset F^c \},$$

which implies (5.4). \qed

Theorem 5.4. Let E and F be two bounded sets in \mathbb{R}^n. If F is a Borel set, then

\[(5.6) \quad C_A(E,F) = \sup \{ C_A(E,U) : U \text{ bounded and open, } U \supseteq F \}.\]

Proof. Let Ω be a bounded open set containing \overline{E} and \overline{F}, let D be a countable dense subset of $H = \{ v \in W^{1,p}(\mathbb{R}^n) : v \geq 1 \text{ } C_p\text{-q.e. in } E \}$, and let E_0 be the intersection of
the sets \(\{ v \geq 1 \} \) for \(v \in D \). If \(u \in H \), then there exists a sequence \((v_j) \) in \(D \) which converges to \(u \) strongly in \(W^{1,p}(\mathbb{R}^n) \). Since \(v_j \geq 1 \) \(C_p \)-q.e. in \(E_0 \), we have \(u \geq 1 \) \(C_p \)-q.e. in \(E_0 \). Therefore, if \(B \) is a bounded set in \(\mathbb{R}^n \) such that \(C_p(E_0 \setminus B, \Omega) > 0 \), then \(E \) and \(B \) are not \(C_p \)-compatible. We may assume that all functions \(v \in D \) are Borel functions, so that \(E_0 \) is a Borel set. As \(\overline{E} \subset \Omega \), the set \(E_0 \setminus \Omega \) is \(C_p \)-null, thus we may assume that \(E_0 \subset \Omega \).

If \(C_p(E_0 \setminus F, \Omega) > 0 \), then \(C_A(E, F) = +\infty \) by the previous remark. If we apply Choquet’s Capacitability Theorem ([2], Theorem 1) to the capacity \(C_p(\cdot, \Omega) \), we obtain that there exists a compact set \(K \) contained in \(E_0 \setminus F \) such that \(C_p(K, \Omega) > 0 \). As \(C_p(E_0 \setminus (\Omega \setminus K), \Omega) = C_p(K, \Omega) > 0 \), we obtain that \(C_A(E, \Omega \setminus K) = +\infty \) and (5.6) is proved.

If \(C_p(E_0 \setminus F, \Omega) = 0 \), then \(C_A(E, F) = C_A(E, F \cup E_0) \) (Remark 3.10) and \(F \cup E_0 \) is the intersection of the sets \(F \cup \{ v > 1 - \frac{k}{k+1} \} \) for \(k \in \mathbb{N} \) and \(v \in D \). Since \(E \) is \(C_p \)-compatible with all these sets (with \(\psi = (kv - k + 1)^+ \)), \(E \) is \(C_p \)-compatible with their finite intersections (Remark 3.4). Therefore \(F \cup E_0 \) is the intersection of a decreasing sequence \((F_j) \) of sets such that \(E \) is \(C_p \)-compatible with \(F_j \) for every \(j \). By Theorem 4.10 we have

\[
C_A(E, F) = C_A(E, F \cup E_0) = \sup_j C_A(E, F_j),
\]

and (5.6) follows from the fact that

\[
C_A(E, F_j) = \sup\{ C_A(E, U) : U \text{ bounded and open}, U \supset F_j \}
\]

by Lemma 5.3. \(\square \)

We are now in a position to prove the main approximation theorem for \(C_A \).

Theorem 5.5. Let \(E \) and \(F \) be two bounded Borel sets in \(\mathbb{R}^n \). Then

\[
C_A(E, F) = \sup\{ C_A(K, U) : K \text{ compact}, K \subset E, U \text{ bounded and open}, U \supset F \}.
\]

Proof. The conclusion follows from Theorems 5.2 and 5.4. \(\square \)

We consider now the problem of the approximation of \(C_A(E, F) \) by \(C_A(U, F) \), with \(U \) bounded and \(C_p \)-quasi open, \(U \supset E \).
Proposition 5.6. Let E and F be two bounded sets in \mathbb{R}^n. Then

(5.7) \[C_A(E, F) = \inf \{ C_A(U, F) : U \text{ bounded and } C_p\text{-quasi open, } U \supseteq E \}. \]

Proof. Let I be the right hand side of (5.7). By monotonicity we have $C_A(E, F) \leq I$. Let us prove the opposite inequality when $C_A(E, F) < +\infty$, and hence E and F are C_p-compatible. Let u be the minimal C_A-potential of E in F. For every $k \in \mathbb{N}$ let $E_k = \{ u \geq 1 - \frac{1}{2^k} \}$, $U_k = \{ u > 1 - \frac{1}{2^k} \}$, and let $E_0 = \{ u = 1 \}$. By Remark 3.7 we can write $E_0 = \{ u \geq 1 \}$, hence E_0 is the intersection of the decreasing sequence (E_k). It is easy to see that u is a C_A-potential of E_0 in F, hence

\[C_A(E_0, F) = \int_F (a(x, Du), Du) \, dx = C_A(E, F). \]

Since E_1 and F are C_p-compatible, with $\psi = (2u) \wedge 1$, and all sets E_k are C_p-quasi closed, by Theorem 4.8 we have

\[C_A(E, F) = C_A(E_0, F) = \inf_k C_A(E_k, F). \]

Since the sets U_k are C_p-quasi open and $E \subset U_k \subset E_k$ (up to a C_p-null set), we have

\[C_A(E, F) = \inf_k C_A(E_k, F) \geq \inf_k C_A(U_k, F) \geq I, \]

which concludes the proof.

We are now in a position to prove the subadditivity of the capacity $C_A(\cdot, F)$.

Theorem 5.7. Let E_1, E_2, F be three bounded sets in \mathbb{R}^n. Then

(5.8) \[C_A(E_1 \cup E_2, F) \leq C_A(E_1, F) + C_A(E_2, F). \]

Proof. The inequality is trivial if $C_A(E_1, F) = +\infty$ or $C_A(E_2, F) = +\infty$. Therefore we may assume that E_1 and E_2 are C_p-compatible with F. By Proposition 5.6 for every $\varepsilon > 0$ there exist two C_p-quasi open sets U_1 and U_2 such that $E_1 \subset U_1$, $E_2 \subset U_2$, and

(5.9) \[C_A(U_1, F) + C_A(U_2, F) \leq C_A(E_1, F) + C_A(E_2, F) + \varepsilon. \]
By Lemma 1.5 there exist two increasing sequences \((K_1^j)\) and \((K_2^j)\) of compact sets, contained in \(U_1\) and \(U_2 \setminus U_1\) respectively, whose unions cover \(C_p\)-quasi all of \(U_1\) and \(U_2 \setminus U_1\). By Remark 3.10 and by Theorems 4.3 and 4.7 we have

\[
C_A(E_1 \cup E_2, F) \leq C_A(U_1 \cup U_2, F) = \lim_{j \to \infty} C_A(K_1^j \cup K_2^j, F).
\]

Since by monotonicity (Theorem 4.3)

\[
C_A(K_1^j, F) + C_A(K_2^j, F) \leq C_A(U_1, F) + C_A(U_2, F),
\]

in view of (5.9) and (5.10) it is enough to prove that for every \(j\) we have

\[
C_A(K_1^j \cup K_2^j, F) \leq C_A(K_1^j, F) + C_A(K_2^j, F).
\]

Let us fix \(j\) and let \(K_1 = K_1^j\) and \(K_2 = K_2^j\). As the compact sets \(K_1\) and \(K_2\) are disjoint, there exist two disjoint open set \(V_1\) and \(V_2\) such that \(K_1 \subset V_1\) and \(K_2 \subset V_2\).

Let \(u_1\), \(u_2\), and \(u\) be the minimal \(C_A\)-potentials of \(K_1\), \(K_2\), and \(K_1 \cup K_2\) in \(F\), and let \(\lambda_1\), \(\lambda_2\), and \(\lambda\) be the corresponding inner \(C_A\)-distributions. We want to prove that

\[
\lambda(B \cap K_1) \leq \lambda_1(B) \quad \text{and} \quad \lambda(B \cap K_2) \leq \lambda_2(B) \quad \text{for every Borel set } B \subset \mathbb{R}^n.
\]

By Lemma 4.1 we have \(u_1 \leq u\) and \(u_2 \leq u\) \(C_p\)-q.e. in \(\mathbb{R}^n\). If we apply Lemma 2.5 with \(B = K_1\), \(C = V_1 \cap F\), \(w_1 = u_1\), \(w_2 = u\), we obtain \(Au \leq Au_1\) in \(W^{-1,q}(V_1 \cap F)\). By properties (d) and (h) of Theorem 3.14 we have

\[
\int_{\mathbb{R}^n} v \, d\lambda = \langle Au, v \rangle \leq \langle Au_1, v \rangle = \int_{\mathbb{R}^n} v \, d\lambda_1
\]

for every \(v \in W_0^{1,p}(V_1 \cap F)\) with \(v \geq 0\) \(C_p\)-q.e. in \(\mathbb{R}^n\). By Lemma 1.1 this implies \(\lambda(V) \leq \lambda_1(V)\) for every \(C_p\)-quasi open set \(V\) in \(V_1 \cap F\). In particular, since \(\{u_1 > 0\}\) is \(C_p\)-quasi open and is contained in \(F\), we have \(\lambda(U \cap V_1 \cap \{u_1 > 0\}) \leq \lambda_1(U \cap V_1 \cap \{u_1 > 0\})\) for every open set \(U\) in \(\mathbb{R}^n\). As \(\lambda\) and \(\lambda_1\) are Radon measures, this implies that \(\lambda(B) \leq \lambda_1(B)\) for every Borel set \(B \subset V_1 \cap \{u_1 > 0\}\). Since \(u_1 = 1\) \(C_p\)-q.e. in \(K_1\) and \(K_1 \subset V_1\), we have \(\lambda(B \cap K_1) \leq \lambda_1(B \cap K_1) \leq \lambda_1(B)\) for every Borel set \(B \subset \mathbb{R}^n\), which proves the first inequality in (5.12). The other inequality is proved in a similar way.

Since \(\text{supp } \lambda \subset K_1 \cup K_2\) (Theorem 3.14(f)), by (5.12) we have \(\lambda(\mathbb{R}^n) = \lambda(K_1) + \lambda(K_2) \leq \lambda_1(\mathbb{R}^n) + \lambda_2(\mathbb{R}^n)\), which gives (5.11) by Proposition 3.17. \(\square\)
When Ω is a bounded open set in \mathbb{R}^n and $E \subset \Omega$, then $C_A(E, \Omega)$ can be approximated by $C_A(U, \Omega)$, with U open, $E \subset U \subset \Omega$.

Proposition 5.8. Let Ω be a bounded open set in \mathbb{R}^n and let $E \subset \Omega$. Then
\begin{equation}
C_A(E, \Omega) = \inf\{C_A(U, \Omega) : U \text{ open, } E \subset U \subset \Omega\}.
\end{equation}

Proof. Let I be the right hand side of (5.13). Since $C_A(E, F) \leq I$ by monotonicity, we have only to prove the opposite inequality. By Theorem 4.3 and by Proposition 5.6 for every $\varepsilon > 0$ there exists a C_p-quasi open set V such that $E \subset V \subset \Omega$ and
\begin{equation}
C_A(V, \Omega) \leq C_A(E, \Omega) + \varepsilon.
\end{equation}
Since V is C_p-quasi open, there exists an open set U contained in Ω such that $C_p(U \triangle V, \Omega) < \varepsilon$, and by (1.1) there exists an open set W contained in Ω such that $U \triangle V \subset W$ and $C_p(W, \Omega) < \varepsilon$. As $V \cup W = U \cup W$, the set $V \cup W$ is open. By subadditivity (Theorem 5.7) we have
\begin{equation*}
I \leq C_A(V \cup W, \Omega) \leq C_A(V, \Omega) + C_A(W, \Omega).
\end{equation*}
By (3.3) and (5.14) we have
\begin{equation*}
I \leq C_A(V \cup W, \Omega) \leq C_A(E, \Omega) + (1 + k_1)\varepsilon + k_2(\Omega)\varepsilon^{1/p},
\end{equation*}
where k_1 and $k_2(\Omega)$ are the constants defined in (3.4). Since $\varepsilon > 0$ is arbitrary, we obtain $I \leq C_A(E, \Omega)$.

We conclude by proving that $C_A(\cdot, F)$ is countably subadditive.

Theorem 5.9. Let E and F be a bounded set in \mathbb{R}^n and let (E_j) be a sequence of bounded sets in \mathbb{R}^n. If E is contained in the union of the sequence (E_j), then
\begin{equation}
C_A(E, F) \leq \sum_{j=1}^{\infty} C_A(E_j, F).
\end{equation}

Proof. For every $k \in \mathbb{N}$ let $B_k = E \cap E_k$ and let $G_k = B_1 \cup \ldots \cup B_k$. By Theorems 4.3 and 5.7 for every k we have
\begin{equation*}
C_A(G_k, F) \leq \sum_{j=1}^{k} C_A(B_j, F) \leq \sum_{j=1}^{\infty} C_A(E_j, F).
\end{equation*}
Since E is the union of the increasing sequence (G_k), the continuity along increasing sequences (Theorem 4.7) implies (5.15).
6. Capacity relative to a constant

In this section we define the capacity $C_A(E, F, s)$ with respect to a constant s by replacing the condition $u = 1$ in ∂E which appears in (0.3) with the condition $u = s$ in ∂E.

Definition 6.1. Let E and F be two C_p-compatible bounded sets in \mathbb{R}^n, let s be a real number, and let ψ be a function in $W^{1, p}(\mathbb{R}^n)$ such that $\psi = 1$ C_p-q.e. in E and $\psi = 0$ C_p-q.e. in F^c. Every solution u of the Dirichlet problem

$$
\begin{cases}
 u - s\psi \in W^{1, p}_0(F \setminus E), \\
 Au = 0 \quad \text{in } W^{-1, q}(F \setminus E),
\end{cases}
$$

is called a C_A-potential of E in F relative to the constant s. The maximal and the minimal solutions of (6.1) are called the maximal and minimal C_A-potentials of E in F relative to the constant s.

Remark 6.2. Clearly the previous definition does not depend on the choice of ψ. By the definition of the space $W^{1, p}_0(F \setminus E)$ and by the properties of ψ we have that every C_A-potential u of E in F relative to the constant s satisfies $u = s$ C_p-q.e. in E and $u = 0$ C_p-q.e. in F^c.

Definition 6.3. Let E and F be two C_p-compatible bounded sets in \mathbb{R}^n and let $s \in \mathbb{R}$. The capacity of E in F relative to the operator A and to the constant s is defined as

$$
C_A(E, F, s) = \langle Au, u \rangle = \int_{F \setminus E} (a(x, Du), Du) \, dx,
$$

where u is any C_A-potential of E in F relative to the constant s. By Corollary 2.8 this definition is independent of the choice of u.

Remark 6.4. Let $s \neq 0$ and let $a_s : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ be the function defined by

$$
a_s(x, \xi) = s \, a(x, s\xi).
$$

Then a_s satisfies conditions (1.4)–(1.7) with c_1, c_2, and b_2 replaced by $|s|^p c_1$, $|s|^p c_2$, and $|s|^b_2$. Let A_s be the operator defined by (1.9) with a replaced by a_s. Then u is a
C_A-potential of E in F relative to the constant s if and only if u/s is a C_{A_s}-potential of E in F according to Definition 3.5, and

$$C_A(E, F, s) = C_{A_s}(E, F).$$

This shows that all properties of $C_A(E, F)$ proved in Sections 3–5 are still valid for $C_A(E, F, s)$, with some obvious modifications, for every $s \in \mathbb{R}$.

Remark 6.5. From Lemma 3.13 and Remark 6.4 we obtain that, if u is a C_A-potential of E in F relative to a constant $s > 0$, then $Au \geq 0$ in $W^{-1,q}(F)$ and $Au \leq 0$ in $W^{-1,q}(E^c)$, whereas the inequalities are reversed when $s < 0$. If $s = 0$, by (1.4) the function 0 is a C_A-potential of E in F relative to the constant 0. If u is another C_A-potential of E in F relative to the constant 0, then $Au = 0$ in $W^{-1,q}(\mathbb{R}^n)$ by Theorem 2.6.

If $Au = -\text{div}(|Du|^{p-2}Du)$, then $C_A(E, F, s) = |s|^p C_p(E, F)$. In the general case the relationship between $C_A(E, F, s)$ and $C_p(E, F)$ is given by the following proposition, which follows immediately from Proposition 3.11 and Remark 6.4.

Proposition 6.6. Let E and F be two C_p-compatible bounded sets in \mathbb{R}^n and let $s \in \mathbb{R}$. Then

\[(6.2) \quad C_A(E, F, s) \geq |s|^p c_1 C_p(E, F) - \|b_1\|_{L^1(F)}, \]

\[(6.3) \quad C_A(E, F, s) \leq |s|^p k_1 C_p(E, F) + |s| k_2(F) C_p(E, F)^{1/p}, \]

where c_1, k_1 and $k_2(F)$ are the constants which appear in (1.6) and (3.4). If b_1 and b_2 belong to $L^\infty(F)$, then

$$C_A(E, F, s) \leq (|s|^p k_1 + |s| k_3(F)) C_p(E, F),$$

where $k_3(F)$ is defined in (3.6).

The following lemma is an immediate consequence of the Comparison Principle (Theorem 2.11).

Lemma 6.7. Let E and F be two C_p-compatible bounded sets in \mathbb{R}^n, let s_1 and s_2 be two real numbers, and let u_1 and u_2 be the maximal (or minimal) C_A-potentials of E in F relative to the constants s_1 and s_2 respectively. If $s_1 \leq s_2$, then $u_1 \leq u_2$ C_p-q.e. in \mathbb{R}^n.
Definition 6.8. Let E and F be two C_p-compatible bounded sets in \mathbb{R}^n and let $s \in \mathbb{R}$. We define
\[
\hat{C}_A(E,F,s) = \begin{cases}
\frac{1}{s}C_A(E,F,s), & \text{if } s \neq 0, \\
0, & \text{if } s = 0.
\end{cases}
\]

Remark 6.9. By (6.1) we have $\hat{C}_A(E,F,s) = \langle Au, v \rangle$ for every C_A-potential of E in F relative to the constant s and for every function v in $W^{1,p}(\mathbb{R}^n)$ such that $v = 1$ C_p-a.e. in E and $v = 0$ C_p-a.e. in F^c (see Remark 6.5 for the case $s = 0$).

We prove now that $\hat{C}_A(E,F,s)$ depends continuously on s.

Theorem 6.10. Let E and F be two C_p-compatible bounded sets in \mathbb{R}^n. Then the function $s \mapsto \hat{C}_A(E,F,s)$ is continuous on \mathbb{R}.

Proof. Let $\mathbb{R}_+ = \{ s \in \mathbb{R} : s \geq 0 \}$ and $\mathbb{R}_- = \{ s \in \mathbb{R} : s \leq 0 \}$. We prove only that $s \mapsto \hat{C}_A(E,F,s)$ is continuous on \mathbb{R}_+, the proof for \mathbb{R}_- being analogous. We begin by proving the right continuity on \mathbb{R}_+. Let us fix $s \geq 0$ and let (s_j) be a decreasing sequence in \mathbb{R} converging to s. Let u and u_j be the maximal C_A-potentials of E in F relative to the constants s and s_j respectively. As $C_p(E,F) < +\infty$, by (6.3) and (1.13) the sequence (u_j) is bounded in $W^{1,p}(\mathbb{R}^n)$, and by (1.10) the sequence (Au_j) is bounded in $W^{-1,q}(\mathbb{R}^n)$. Passing, if necessary, to a subsequence, we may assume that (u_j) converges weakly in $W^{1,p}(\mathbb{R}^n)$ to some function $w \in W^{1,p}_0(F)$ and that (Au_j) converges weakly in $W^{-1,q}(\mathbb{R}^n)$ to some element f of $W^{-1,q}(\mathbb{R}^n)$. By Lemma 6.7 we have $u \leq u_j \leq u_i$ C_p-a.e. in \mathbb{R}^n for every $j \geq i$, hence $u \leq w \leq u_i$ C_p-a.e. in \mathbb{R}^n. Since $u = s$ and $u_i = s_i$ C_p-a.e. in E (Remark 6.2), as $i \to \infty$ we obtain that $w = s$ C_p-a.e. in E.

We want to prove that $f = Aw$ in $W^{-1,q}(F)$ and that $w = u$ C_p-a.e. in \mathbb{R}^n. From the monotonicity condition (1.11) for every j we obtain
\[
(6.4) \quad \langle Av, v - u_j \rangle \geq \langle Au_j, v - u_j \rangle \quad \forall v \in W^{1,p}(\mathbb{R}^n).
\]

If $j \geq i$, by Lemma 6.7 we have $u_j \leq u_i$ C_p-a.e. in \mathbb{R}^n. Since $Au_j \geq 0$ in $W^{-1,q}(F)$ (Remark 6.5), we have
\[
(6.5) \quad \langle Au_j, v - u_j \rangle \geq \langle Au_j, v - u_i \rangle \quad \forall v \in W^{1,p}_0(F),
\]
which, together with (6.4), gives

$$\langle Av, v - u_j \rangle \geq \langle Au_j, v - u_i \rangle \quad \forall v \in W^{1,p}_0(F)$$

whenever \(j \geq i\). Passing to the limit as \(j \to \infty\) we obtain

$$\langle Av, v - w \rangle \geq \langle f, v - u_i \rangle \quad \forall v \in W^{1,p}_0(F),$$

and as \(i \to \infty\) we get

(6.6) $$\langle Av, v - w \rangle \geq \langle f, v - w \rangle \quad \forall v \in W^{1,p}_0(F).$$

Putting \(v = w + \varepsilon z\), with \(z \in W^{1,p}_0(F)\) and \(\varepsilon > 0\), and dividing by \(\varepsilon\) we obtain

$$\langle A(w + \varepsilon z), z \rangle \geq \langle f, z \rangle \quad \forall z \in W^{1,p}_0(F).$$

Passing to the limit as \(\varepsilon \to 0\) we get

$$\langle Aw, z \rangle \geq \langle f, z \rangle \quad \forall z \in W^{1,p}_0(F),$$

hence \(Aw = f\) in \(W^{-1,q}(F)\).

By the definition of \(u_j\) we have \(\langle Au_j, v \rangle = 0\) for every \(v \in W^{1,p}_0(F \setminus E)\) and for every \(j\). As \(j \to \infty\) we obtain

$$\langle Aw, v \rangle = \langle f, v \rangle = \lim_{j \to \infty} \langle Au_j, v \rangle = 0 \quad \forall v \in W^{1,p}_0(F \setminus E),$$

hence \(w\) is a \(C_A\)-potential of \(E\) in \(F\) relative to the constant \(s\). Since \(u \leq w\) \(C_p\)-q.e. in \(\mathbb{R}^n\), by the maximality of \(u\) we obtain \(u = w\) \(C_p\)-q.e. in \(\mathbb{R}^n\).

Let \(\psi\) be a function in \(W^{1,p}(\mathbb{R}^n)\) such that \(\psi = 1\) \(C_p\)-q.e. in \(E\) and \(\psi = 0\) \(C_p\)-q.e. in \(F^c\). Since \((Au_j)\) converges to \(f\) weakly in \(W^{-1,q}(\mathbb{R}^n)\) and \(Au = f\) in \(W^{-1,q}(F)\), by Remark 6.9 we have

$$\hat{C}_A(E, F, s) = \langle Au, \psi \rangle = \langle f, \psi \rangle = \lim_{j \to \infty} \langle Au_j, \psi \rangle = \lim_{j \to \infty} \hat{C}_A(E, F, s_j).$$

This proves that the function \(s \mapsto \hat{C}_A(E, F)\) is right continuous on \(\mathbb{R}_+\). For the proof of the left continuity on \(\mathbb{R}_+\), we fix \(s > 0\) and an increasing sequence \((s_j)\) converging to \(s\). We may assume that \(s_j > 0\) for every \(j\). Then we use the same arguments as in the first part of the proof, with the only difference that now we use the minimal \(C_A\)-potentials instead of the maximal \(C_A\)-potentials. As \((s_j)\) is increasing, the sequence \((u_j)\) is increasing, and, consequently, \(u_i\) must be replaced by \(w\) in (6.5) and we obtain directly (6.6). The final part of the proof remains unchanged. \(\square\)
We prove now that $\hat{C}_A(E, F, s)$ is increasing with respect to s.

Theorem 6.11. Let E and F be two C_p-compatible bounded sets in \mathbb{R}^n and let s_1 and s_2 be two real numbers with $s_1 < s_2$. Then $\hat{C}_A(E, F, s_1) \leq \hat{C}_A(E, F, s_2)$.

Proof. Let u_1 and u_2 be two C_A-potentials of E in F relative to the constants s_1 and s_2 respectively, let t be a real number such that $0 < t < s_2 - s_1$, and let v be the function of $W^{1,p}(\mathbb{R}^n)$ defined by $v = \frac{1}{t}((u_2 - u_1) \wedge t)$. By Remark 6.2 we have $v = 1$ C_p-a.e. in E and $v = 0$ C_p-a.e. in F^c. Therefore, Remark 6.9 implies that

$$\hat{C}_A(E, F, s_2) - \hat{C}_A(E, F, s_1) = \langle Au_2 - Au_1, v \rangle = \frac{1}{t} \int_{\{u_2 - u_1 < t\}} (a(x, Du_2) - a(x, Du_1), Du_2 - Du_1) \, dx,$$

and the conclusion follows from the monotonicity condition (1.5).

Acknowledgments

This work is part of the Project EURHomogenization, Contract SC1-CT91-0732 of the Program SCIENCE of the Commission of the European Communities, and of the Research Project “Irregular Variational Problems” of the Italian National Research Council.

References

[1] CASADO DIAZ J., GARRONI A.: A compactness theorem for Dirichlet problems in varying domains with monotone operators. In preparation.

[2] CHOQUET G.: Forme abstraite du théorème de capacibilité. *Ann. Inst. Fourier (Grenoble)* 9 (1959), 83-89.

[3] DAL MASO G.: On the integral representation of certain local functionals. *Ricerche Mat.* 32 (1983), 85-113.

[4] DAL MASO G., DEFRANCESCHI A.: Limits of nonlinear Dirichlet problems in varying domains. *Manuscripta Math.* 61 (1988), 251-278.

[5] DAL MASO G., GARRONI A.: Capacity theory for non-symmetric elliptic operators. Preprint SISSA, Trieste, 1993.

[6] DAL MASO G., GARRONI A.: New results on the asymptotic behaviour of Dirichlet problems in perforated domains. *Math. Mod. Meth. Appl. Sci.* 3 (1994), 373-407.
[7] DAL MASO G., GARRONI A.: The capacity method for asymptotic Dirichlet problems. Preprint SISSA, Trieste, 1994.

[8] DAL MASO G., MURAT F.: Dirichlet problems in perforated domains for homogeneous monotone operators on H^1_0. *Calculus of Variations, Homogenization and Continuum Mechanics (CIRM-Luminy, Marseille, 1993)*, 177-202, World Scientific, Singapore, 1994.

[9] DAL MASO G., MURAT F.: Asymptotic behaviour and correctors for Dirichlet problems in perforated domains with homogeneous monotone operators. In preparation.

[10] EVANS L.C., GARIEPY R.F.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton, 1992.

[11] FEDERER H., ZIEMER W.P.: The Lebesgue set of a function whose distribution derivatives are p-th power summable. *Indiana Univ. Math. J.* 22 (1972), 139-158.

[12] HEINONEN J., KILPÄLÄINEN T., MARTIO O.: Nonlinear Potential Theory of Degenerate Elliptic Equations. Clarendon Press, Oxford, 1993.

[13] KINDERLEHRER D., STAMPACCHIA G.: An Introduction to Variational Inequalities and Their Applications. Academic Press, New York, 1980.

[14] MAZ’YA V.G.: Sobolev Spaces. Springer-Verlag, Berlin, 1985.

[15] SKRYPNIK I.V.: Nonlinear Elliptic Boundary Value Problems. Teubner-Verlag, Leipzig, 1986.

[16] SKRYPNIK I.V.: Methods of Investigation of Nonlinear Elliptic Boundary Value Problems (in Russian). Nauka, Moscow, 1990.

[17] SKRYPNIK I.V.: Averaging nonlinear Dirichlet problems in domains with channels. *Soviet Math. Dokl.* 42 (1991), 853-857.

[18] SKRYPNIK I.V.: Asymptotic behaviour of solutions of nonlinear elliptic problems in perforated domains. *Mat. Sb. (N.S.)* 184 (1993), 67-90.

[19] SKRYPNIK I.V.: Homogenization of nonlinear Dirichlet problems in perforated domains of general structure. Preprint SISSA, Trieste, 1994.

[20] STAMPACCHIA G.: Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus. *Ann. Inst. Fourier (Grenoble)* 15 (1965), 189-258.

[21] ZIEMER W.P.: Weakly Differentiable Functions. Springer-Verlag, Berlin, 1989.