Conventional vs Microwave assisted SiO$_2$/P$_2$O$_5$ catalyzed synthesis of Schiff bases

N Mishra1, R Yadav1, K Kumar1, H Pandey1 and R Pandey*2

1Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya Sagar-470003, INDIA
2Department of Chemistry, National Institute of Technology, Uttarakhand-246174, INDIA
E-mail ID: rppandeysu@gmail.com

Abstract: Here in this work we have carried out synthesis of isoniazid and their benzaldehyde derivative in the presence of SiO$_2$/P$_2$O$_5$ catalyzed utilizing conventional and microwave assisted protocols. Both these protocols examined comparatively and we found that microwave assisted synthesis is more efficient, eco-friendly and economical method as compared to conventional method. Yield of product is also higher than conventional method. Use of heterogeneous catalyst is also promoting the yield of product and it is very easy to separate from the product by simple filtration and centrifugation. These synthesized compounds are characterized by physical and spectral studies (IR, UV-VIS, NMR spectroscopy) Isoniazid having excellent anti-tubercular activity and due to presence of Isoniazid they may have good antibiotic property.

Keyword: Schiff bases, microwave assisted synthesis, isoniazid, SiO$_2$/P$_2$O$_5$ catalyst, heterogeneous catalyst.

1. Introduction:

Several methods for the synthesis of azomethine group have been described in last few years. There are number of new developed techniques and innovations that has been reported like solvent-free reaction, K-10 clay, microwave irradiation, solid-state synthesis in presence of ionic-liquid and presence of some phase transfer catalyst.1 In these following techniques, microwave irradiation method with presence of catalyst, mostly used because of its operational simplicity, promote the reaction rates, and reaction route selectivity.2 Schiff bases are used for the synthesis of wide range synthetic organic products as pigments and dyes, catalysts, and as polymer stabilisers.3 The tremendous advances in the bio-inorganic chemistry has attracted interest of chemists in complexes of Schiff base, it well
established recognition that many of the complexes based on Schiff base act as models for species that are biologically relevant. Schiff bases exhibits a plethora of activities which are hugely relevant in biological field which prominently includes antifungal, antibacterial, antimalarial, anti-proliferative, anti-inflammatory, antiviral, and antipyretic. Azomethine group of Schiff base is present in wide variety of naturally derived as well as in synthetic compounds.

Its activity against tuberculosis was firstly reported in the late 1940s and as a drug into clinical market in 1952. Various Nano emulsion compositions derived from carvone Schiff base based on isoniazid. Azomethine (CSB-INH) designed and developed utilizing the method of aqueous phase titration in order to explore its anticancer potential for chemoprevention against colon cancer. Azetidinone scaffold developed by simple conventional synthesis, that exhibits potent antimicrobial and anti-mycobacterial activity. Schiff bases of isonicotinic hydrazide those have potent tuberculostatic and radical scavenging activities against INH-induced oxidative hepatic damage. Isoniazid derivatives have been synthesized and evaluated for anticonvulsant and anti-mycobacterial activity of standard strain H37Rv.

Microwave irradiation use in organic synthesis has become popular in pharmaceutical and academic areas. Because it is used as a powerful technique to promote a variety of chemical reactions and as a new enabling technology for the development of drug discovery. Reactions applied in microwave in solvent-free condition are hugely beneficial due to reduced pollution and economical due to its simple handling. Catalysis which employ a catalyst having phase different from its reactant partners and interact with them is termed heterogeneous catalysis. The catalysis action is carried forward when catalyst adsorb reactants on its surface thereby increasing the rate of reaction. Heterogeneous and homogeneous catalysis may offer advantages depending on specific cases. Heterogeneous catalyst specifically are more advantageous easy separation and recoverable can be employed for liquid and gas phase based processes. Heterogeneous catalysis was appreciated firstly in the sector of refining of the petroleum products and in industries producing chemicals at large scale.

2. Materials and instrumentation

All reagent grade chemicals were purchased from commercially sources. Chromatographic grade silica gel 60 Merck and Isoniazid were purchased from Merck and Sigma-Aldrich. All other analytical grade reagents and solvents by purchased from S.D. chemicals, and Thomas baker Company. Melting points all reported are uncorrected, recorded using in electro thermal melting point apparatus. Thin layer chromatography (TLC) performed by using E-Merck pre coated 60 G254 plates and the spots were rendered visible by observing in UV light. IR spectra recorded utilizing shimadzu FT-IR 8300 Spectrophotometer. 1H NMR and 13C NMR spectra were recorded on Jeol resonance spectrometer in DMSO-d6 at 300 MHz.

2.1 Conventional method: Equimolar mixture of Isoniazid (0.02 mol) and 2,4-dichloro benzaldehyde (0.02 mol) and 0.050g of SiO2/P2O5 catalyst thoroughly mixed then reaction mixture transferred to an open Pyrex 100 mL round bottom flask with 25 mL ethanol and refluxed at 70°C. Reaction monitored by using chloroform and methanol (8:2 v/v as eluent) for TLC. After 30 minutes when completion of reaction mixture cooled to room temperature. The reaction mixture was filtered to remove the catalyst and concentrated to furnish product. The resulting mass purified by column chromatography using (chloroform /methanol) as eluant to get product. The obtained purified product was recrystallized from ethanol as white crystal of compound. RN-1 Yield 70%; m.p. 240-
242°C. Other compounds RN-18 to RN-27 was prepared similarly by treating 1 with various aromatic aldehydes Characterization data (RN-1 to RN–11) are presented.

2.2 Microwave method: Equimolar mixture of reactants with 0.050g of SiO₂/P₂O₅ catalyst is prepared in similar manner as described above. This mixture transferred in 5 mL ethanol to an open glass vessel and reaction was performed at 800W power, on microwave irradiation and reaction monitored with the help of TLC in chloroform and methanol (8:2 v/v as eluent). After 2-3 minutes when completion of reaction, mixture was cooled to room temperature. The resulting mass purified by column chromatography with (chloroform/methanol) as eluent to get product. This product was recrystallized from ethanol to obtained white crystal of compound RN-1. Yield 95%, m.p. 240-242°C. Other compounds RN-2 to RN-11 were prepared similarly by treating 1 with various aromatic aldehydes. Characterization data of the compounds (RN-1 to RN–11) were found to similar as reported for conventional method and are given.

3. Characterization of Schiff bases products (RN-1 to RN-11)

N’-(2,4-Dichlorobenzylidene)-isonicotinohydradize (RN-1): The product was obtained as a white crystal, Molecular formula; C₁₃H₇Cl₂N₃O, mp. 240-242°C; IR υmax (cm⁻¹): 3195 (NH), 3026 (C-H), 1665 (C=O), 3048, 1598 (C=N), 1612 (C=N str., Schiff base), 1087 (C-Cl). ¹H NMR δppm: 8.65 (d, 2H), 11.8 (s, 1H, N-H), 7.80 (d, 2H), 8.90 (s, 1H of N=CH), 7.51 (d, 1H of aromatic ring), 7.95 (d, 1H, aromatic). ¹³C NMR (CDCl₃, 100 MHz): 127.3–132.4 (C of aromatic ring), 139.2 (N=CH, azomethine), 162.5 (C of amide C=O), 121.3-147.8 (C of pyridine ring) in the δppm ranges.

N’-(3-Bromobenzylidene)-isonicotinohydradize (RN-12): The product was obtained as white-brownish crystals, Molecular Formula C₁₃H₁₀BrN₃O, mp. 248-250°C. IR, υmax (cm⁻¹): 3188 (N-H), 3009 (C-H), 1618 (C=O), 1618 (C=N str.), 1596 (C=N). ¹H NMR (300 MHz) δppm: 8.80 (d, H), 10.66 (s, H, N-H), 7.80 (d, H), 8.40 (s, 1H of N=CH), 7.55-7.54 (d, 1H, aromatic), 7.70-7.71 (d, 1H, aromatic), 7.32-7.31 (d, 1H). ¹³C NMR (CDCl₃, 100 MHz): 123.2-135.7 (C), 145.2(N=CH, azomethine), 161.5 (C of amide C=O), 121.3-148.8 (C of pyridine ring) in the δppm ranges.

N’-(4-Bromobenzylidene) isonicotinohydradize (RN-3): The product was obtained as pinkish white crystals, Molecular Formula C₁₃H₁₀BrN₃O, mp. 246-252°C; IR υmax (cm⁻¹) : 3187 (N-H), 3017 (C-H), 1662 (C=O), 3043, 1615 (C=N str.), 1594 (C=N). ¹H NMR (300 MHz) δppm: 8.81-8.77 (m, H of pyridine), 7.85-7.83 (m for H of pyridine), 8.10 (s, H, NH), 7.24 (s, 1H of N=CH), 7.64 (m for H of aromatic), 7.66 (m for 2H of aromatic). (CDCl₃, 100 MHz): 125.2-132.7 (C of aromatic ring),
147.8(N=CH, azomethine), 161. 2 (C of amide C=O), 121.7 -149.8 (C of pyridine ring) in the ppm ranges.

N’-(3-Methylbenzylidene)-isonicotinohydrazide (RN-4): The product was obtained as brown-white crystals, Molecular Formula C_{14}H_{13}N_{3}O. m.p. 210°C; IR υmax (cm−1) : 3192 (N-H), 3029 (C-H), 1667 (amide C=O), 3044,1612 (C=N str.), 1598 (imine C=N). 1H NMR (300 MHz) δppm: 8.77-8.76 (m, 2H, of pyridine), 7.82-7.80 (m, H), 11.82 (s, 1H,N-H), 8.41 (s, 1H of N=CH), 7.74 (d for 1H of aromatic), 7.60 (m for 2H of aromatic), δppm (δ for 3H of CH3), 7.42-7.25 (d for 2H of aromatic). 13C NMR (CDCl3, 100 MHz): 172.2- 138.7 (C of aromatic ring), 146.8 (N=CH, azomethine), 163. 21(C of amideC=O), 22.3 (C of methyl carbon), 121.7 -149.8 (C of pyridine ring) in the ppm ranges.

N’-(4-Methylbenzylidene)-isonicotinohydrazide (RN-5): The product was obtained as light orange shiny crystals, Molecular Formula C_{14}H_{13}N_{3}O. m.p. 212-214°C; IR υmax (cm−1) : 3194 (N-H), 3028 (C-H), 1667 (amide C=O), 1608(C=N str., Schiff base), 3044, 1592 (imine C=N). 1H NMR (300 MHz) δppm: 8.77-8.76 (m, 2H, of pyridine), 7.82-7.80 (m, 2H of pyridine), 11.62 (s, 1H,NH), 7.55 (s, 1H of N=CH), 7.74 (d for 1H of aromatic), 7.60 (d for 1H of aromatic), 2.41 (s for 3H of CH3), 7.23-7.25 (m for 2H of aromatic). 13C NMR (CDCl3, 100 MHz): 128.2- 126.6 (C of aromatic ring), 146.8 (N=CH, azomethine), 163. 0 (C of amide C=O), 21.6 (C of methyl carbon), 121.7 -149.8 (C of pyridine ring) in the ppm ranges.

N’-(2-Methoxybenzylidene)-isonicotinohydrazide (RN-6): The product was obtained as light pink crystals, Molecular Formula C_{14}H_{13}N_{3}O. m.p. 192°-194°C; IR υmax (cm−1) : 3214 (N-H), 3055 (C-H), 1602 (C=N str.), 1662 (C=O), 1612 (C=N). 1H NMR (300 MHz) δppm: 8.78-8.76 (m, H), 7.83-7.81 (m, H), 11.65 (s, 1H, NH), 8.65(s, H of N=CH), 7.84 (d for 1H of aromatic), 7.46 (d for 1H of aromatic), 3.78 (s for3H of OCH3), 7.26 (d for 1H of aromatic), 7.15-7.14 (m for 2H of aromatic). 13C NMR (CDCl3, 100 MHz): 111.6- 133.7 (C of aromatic ring), 146.2 (N=CH, azomethine), 163. 5 (C of amide C=O), 54.6 (C of methoxy carbon), 121.5 -149.6 (C of pyridine ring) in the ppm ranges.

N’-(4-Methoxybenzylidene)-isonicotinohydrazide (RN-7): The product was obtained as light yellow crystals, Molecular Formula C_{14}H_{13}N_{3}O. m.p. 196-198°C. IR υmax (cm−1) : 3216 (N-H), 3051 (C-H), 1610 (C=N str.), 1664 (C=O), 1608 (C=N). 1H NMR (300 MHz) δppm: 8.78-8.76 (m, 2H, of pyridine), 7.82-7.81 (m, H), 11.62 (s, H), 7.65(s, H), 7.83 (d, H), 7.06 (m for 1H of aromatic), 3.82 (s for3H of OCH3). 13C NMR (CDCl3, 100 MHz): 114.6- 130.3 (C of aromatic ring), 146.6(N=CH, azomethine), 163. 2 (C of amide C=O), 55.6 (C of methoxy carbon), 121.4 -149.7 (C of pyridine ring) in the ppm ranges.

N’-(3-Methoxybenzylidene)-isonicotinohydrazide (RN-8): The product was obtained as light red crystals, Molecular Formula C_{14}H_{13}N_{3}O. m. p. 198°C. IR υmax (cm−1) : 3218 (N-H), 3052(C-H), 1615 (C=N str.), 1662 (C=O), 1604 (C=N). 1H NMR (300 MHz) δppm: 8.78 (d,1H, of pyridine), 7.81 (d, H), 11.67 (s, H), 8.45 (s, 1H of N=CH), 7.43-7.42 (m for 1H of aromatic), 7.04 (m for 1H of aromatic), 3.76 (s for 3H ofOCH3). 13C NMR (CDCl3, 100 MHz): 112.6- 160.5 (C of aromatic ring), 146.7 (N=CH,azomethine), 163.1 (C of amide C=O), 55.4 (C of methoxy carbon), 121.6 -149.5 (C of pyridine ring) in the ppm ranges.
N’-(3,4,5-Trimethoxybenzylidene)-isonicotinohydrazide (RN-9): The product was obtained as light orange crystals, Molecular Formula C_{16}H_{17}N_{3}O_{4}. m.p. 218°C. IR \(\text{max} \) (cm\(^{-1}\)): 3220 (N-H), 3055 (C-H), 1668 (C=O), 1598 (C=N str.), 1608 (C=N). \(^1\)H NMR (300 MHz) \(\delta \)ppm: 8.78 (d, H), 7.81 (d, H), 11.65 (s, 1H, N-H), 8.42 (s, 1H), 7.20 (s, 2H) 3.81(s, H), 3.70 (s, H). \(^13\)CNMR (CDCl\(_3\), 100 MHz): 111.6-160.5 (C of aromatic ring), 146.7 (N=CH, azomethine), 163.1 (C of amide C=O), 55.4 (C of methoxy carbon), 121.6-149.5 (C of pyridine ring) in the \(\delta \)ppm ranges.

N’-(Furan-2-yl-methylene)-isonicotinohydrazide (RN-10): The product was obtained as brown crystals, Molecular Formula C\(_{11}\)H\(_{9}\)N\(_{3}\)O\(_{2}\). m.p. 95-97°C. IR \(\text{max} \) (cm\(^{-1}\)): 3272 (N-H), 3051 (C-H), 1658 (C=O), 1592 (C=N str.), 1620 (C=N). \(^1\)H NMR (300 MHz) \(\delta \)ppm: 8.78 (d, H), 7.81 (d, H), 10.75 (s, 1H, NH), 8.32 (s, 1H of N=CH), 7.82 (m, 1H), 6.61 (m, H), 5.92 (d for 1H of furfural ring). \(^13\)C NMR (CDCl\(_3\), 100 MHz): 112.6-148.1 (C of furfural ring), 136.7 (N=CH, azomethine), 163.1 (C of amide C=O), 121.5 -149.7 (C of pyridine ring) in the \(\delta \)ppm ranges.

N’-(2-Nitrobenzylidene)-isonicotinohydrazide (RN-11): The product was obtained as light creamy shiny powder, Molecular Formula C\(_{13}\)H\(_{10}\)N\(_{4}\)O\(_{3}\). m.p. 205°C. IR \(\text{max} \) (cm\(^{-1}\)): 3182 (N-H), 3001 (C-H), 1608 (C=N str., Schiffbase), 1685 (C=O), 1590 (C=N), 1512 (NO\(_2\)). \(^1\)H NMR (300 MHz)(DMSO-d\(_6\)) \(\delta \)ppm: 8.78 (d, 1H, of pyridine), 7.81 (d for 2H of pyridine), 10.72 (s, 1H, N-H), 8.32 (s, 1H) 8.02 (m, 1H of aromatic ring), 7.91 (m, 1H), 7.72 (m, H). \(^13\)C NMR (CDCl\(_3\), 100 MHz): 122.6-145.8 (C of aromatic ring), 142.7 (N=CH, azomethine), 163.5 (C of amide C=O), 121.1 -149.7 (C of pyridine ring) in the \(\delta \)ppm ranges.

4. Proposed mechanism for Schiff Base synthesis

Reaction mechanism that involved in Schiff Base generation is the nucleophilic attack carried out by amino group of isoniazid on the aldehyde which posses electrophilic carbonyl carbon to form an imine. This step being reversible in nature so formation of Schiff base mainly depend on the rate of removal of water. The imines that were reported by Schiff involves carbonyl compound and amine condensation involving azeotropic distillation to remove water. Removal of water becomes more efficient with the help of molecular sieves. Dehydrating solvents used as an \textit{in situ} dehydration strategy has been able to generate product in moderate yields. Taking all these in consideration, in the present protocol, we make their utilization.

5. Comparative study of yield vs time for conventional vs microwave assisted synthesis.

Schiff bases (RN-1 to RN-11) using from heterogeneous Catalyst (SiO\(_2\)/P\(_2\)O\(_5\)): It is interesting to mention that all the reactions under microwave irradiation in case of synthesis of Schiff bases (RN-1 to RN-11) presence of heterogeneous (SiO\(_2\)/P\(_2\)O\(_5\)) catalyst were completed within approximately 2-3 minutes with excellent yields on the other hand same reaction in conventional heating at reflux takes about 30 minutes approx. gave lower yields as compare to microwave method. The comparative implications of microwave irradiation vs conventional heating for the synthesis of Schiff bases (RN-1 to RN-11) have been summed up in Table1.
Table 1. Yield of product via conventional and microwave irradiation method

Compounds	Conventional	Microwave		
Code	Time (min)	Yield (%)	Time (min)	Yield (%)
RN-1	70	30	2.5	95
RN-2	71	30	3	92
RN-3	76	25	3	94
RN-4	80	30	2	92
RN-5	72	30	2.5	90
RN-6	81	30	2	90
RN-7	70	22	3	95
RN-8	70	20	3	92
RN-9	70	25	3	91
RN-10	79	22	3	95
RN-11	82	30	2.5	92

6. Catalyst recyclability

The reusability of the (SiO₂/P₂O₅) catalyst was examined for Schiff base condensation in ethanol solvent. This reaction was performing in between Equimolar Isoniazid and furfural aldehyde in presence of catalytic amount of catalyst for 3 minutes by microwave-assisted synthesis at 800 W or 30 minutes and 70°C from conventional synthesis. After appropriate reaction time product collect as a liquid forms for analysis, and the solid catalyst separated by filtration. The separated SiO₂/P₂O₅ catalyst was investigated for its further usability. For this purpose we performed the condensation of Schiff base using 2 mole of the substrate with optimized reaction conditions. When first cycle of reaction gets completed catalyst filtered out and washed with acetone then after with then allowed to dry in an oven (100°C) for 12 to 15 hours and used as it is for further reaction for synthesis of Azomethine. The catalyst showed proper efficiency in catalyzing the reaction and delivered excellent yields up to the 4th time use.

7. Chemistry

The formation of imine via heterogeneous catalyst through Schiff base condensation. It was confirmed by 1H NMR, 13C NMR and IR spectra that the Schiff base condensation reaction possibly done using SiO₂/P₂O₅ heterogeneous catalyst in green conditions. After that the cyclization reaction takes place at azomethine position (N=CH) in high yield. In IR- band at 1598 (C=N), 1658 (C=O-NH), 1592-1618 (C=N str., Schiff base). In 1H NMR spectra signals that appear: a singlet at δ 8.40-8.90 corresponds to Schiff base (azomethine), 7.32-7.71 (doublets for Ar-H of benzylidene), 10.66 (s for CONH). A doublet at δ ppm 7.80 corresponds to pyridine ring proton. The structures of compounds (RN-1 to RN-11) were supported by IR spectra are observed in (RN-1 to RN-11) with absence of 1602-1620 cm⁻¹ for -N=C- band with presence of 1652-1692 cm⁻¹ for ketone group of azetidinone.

8. Conclusions

In case of synthesis assisted by SiO₂/P₂O₅ Lewis acid heterogeneous catalyst due to its high surface area and acid-site it makes reaction more efficient and easily utilized for synthesis under solid state reaction method. This material shows excellent catalytic activity for the formation of Schiff base, in EtOH solvent to give maximum yields of 92-90% (Microwave), 70-80% (conventional) respectively, under microwave-assisted /conventional heating at 800W/70°C. The EtOH used as a green solvent in the reaction, gave highly efficient Schiffbase yield from Isoniazid. Under comparable reaction
conditions, the silica supported phosphorous-pentaoxide (SiO$_2$/P$_2$O$_5$) catalyst with highly acidic site and surface area produced 20% more Schiff base, than the corresponding catalyst with a smaller surface area and lower acidity, which suggests that the surface area and acidity of the catalyst play important roles in the Schiff base synthesis. According to all the above outcomes in conclusion, we report in this experiment a mild and efficient catalyst for the preparation of azomethine via Schiff base condensation from Isoniazid with corresponding aromatic aldehydes in presence of green solvent with excellent reusability of catalyst. That was further converted into substituted 3-chloro-2-oxo-azitidine in good yields with short reaction times. Substituted group positions also affect the synthesis of isoniazid derivatives.

Acknowledgement. R Pandey is thankful to National Institute of Technology Uttarakhand and other authors are acknowledging to Dr. Harisingh Gour Vishwavidyalaya Sagar.

Reference:

[1] Varma RS, Dahiya R, Kumar S. 1997Tetrahedron Lett., 38(12), 2039; Schmeyers J, Toda F, Boy J. Kaupp, G.J. 1998Chem Soc Perkin Trans.2., 989.; Vass A, Duda’s J, Varma RS. 1999Tetrahedron Lett., 40(27), 4951.; Tanaka K, Shiraishi R.,2000Green Chem, 2(6), 272.;Andrade CKZ, Takada SCS, Alves LM, Rodrigues JP, Suarez, PAZ, Branda’o RF, et al.2004Synlett., 12, 2135; Va’ zquez MA., Landa M, Reyes L, Miranda R, Tamraz J, Delgado F. 2004Synth Commun., 34(15), 2705.; Gopalakrishnan M, Sureshkumar P, Kanagarajan V, Thanusu.: Govindaraju R.. 2005J Chem Res, 5,299.; Gopalakrishnan M, Sureshkumar P, Kanagarajan V, Thanusu.2007J. Res Chem, Intermed, 33(6):541; Gedye R, Smith F, Westaway K, Ali H, Baldira L, Laberge L, et al. 1986Tetrahedron Lett.;27(3):279.

[2] Gopalakrishnan M, Sureshkumar P, Kanagarajan V, ThanusuJ.,2007Res Chem, Intermed;33(6):541.

[3] Dhar DN, Taploo CL. Schiff bases and their applications. 1982 J Sci nd Res, 41(8), 50.; Przybyski P, Huczynski A, Pyta K, Brzezinski B, Bartl F. 2009Curr Org Chem, 13(2)

[4] Anonymous.; Br. 1952Med. J., 2, 735.

[5] Bernstein, J.; Lott, W. A.; Steinberg, B. A.; Yale, H. L.; 1952Am. Rev. Taberc., 65, 357.

[6] Wang L.C.; Zhao J.H.; Song C.Y.; Xu H.S. 2006,J Chem Eng Technol., 22, 372.

[7] Bhat, Mashooq A.; Iqbal,Muzaffar.; Al-Dhifyan, Abdullah.; Shakeel, Faiyaz. 2015, Journal of Molecular Liquids, 203, 111.

[8] Elumalai, Karthikeyan.; Ali, Mohammed Ashraf.; Elumalai, Manogaran.; Eluri, Kalpana.; Srinivasan, Sivaneswari.; Mohanti, Sujit Kumar.; Thota, Anil.2013, Drug Invention Today., 5, 100.

[9] Georgieva, Nedyalka.; Yaneva, Zvezdelina.; Nikolova, Galin.; Simova, Svetlana.2012 Advances in Bioscience and Biotechnology.3, 1068.

[10] Hussain, Sayyed.; Jadhav, Shivaji.; Rai, Megha.; Mazahar, Farooqui. 2011 InternationalJournal of Drug Design and Discovery.2(3), 527.

[11] Hayes, B. L. Chemistry at the Speed of Light; 2002.CEM Publishing: Matthews, NC.

[12] Lidström, P.; Tierney, J.; Wathey, B.; Westman, 2001J. Tetrahedron., 57, 9225.

[13] Larhed, M.; Hallberg, A. 2001,Drug Discovery Today., 6, 406
[14] Caddick, S. 1995, *Tetrahedron*, **51**, 10403.
[15] R. A. Sheldon, 1994 *Chem. Tech.*, **3**, 38.
[16] Thomas, M.; Maschmeyer, T.; Johnson, B.F.G.; Shephard, D.S. 1999 *J. Mol. Catal. A.* **141**, 139.