Supporting Information

Redox-Triggered C-C Coupling of Alcohols and Vinyl Epoxides: Diastereo- and Enantioselective Formation of All-Carbon Quaternary Centers via tert-(Hydroxy)-Prenylation

Jiajie Feng, Victoria J. Garza and Michael J. Krische

University of Texas at Austin, Department of Chemistry and Biochemistry, Austin, TX 78712, USA

Table of Contents:

General Information .. S2
Spectroscopy, Spectrometry, and Data Collection .. S2
General Procedures for Preparation of Iridium Complexes 1a-IVb ... S3
Detailed Procedures and Spectral Data for tert-(Hydroxy)-Prenylation of Alcohols (1a-1j) and Aldehydes (2a-2i): .. S5
Synthesis of Myrcene Oxide 3c .. S45
Detailed Procedures and Spectral Data for Couplings between 4-Bromobenzyl Alcohol (1a) and Other Vinyl Epoxides: Butadiene Monoxide (3b) and Myrcene Oxide (3c): ... S47
Crystallographic Material for 4a-acetonide ... S52
General Information

All reactions were run under an atmosphere of argon. Sealed tubes (13x100 mm) were purchased from Fischer Scientific (catalog number 14-959-35C) and were flame dried followed by cooling in a desiccator. Tetrahydrofuran, toluene, and dioxanes were distilled from sodium-benzophenone immediately prior to use. Ethyl Acetate was dried over potassium carbonate and distilled immediately prior to use. Anhydrous solvents were transferred by oven-dried syringes. Analytical thin-layer chromatography (TLC) was carried out using 0.25 mm commercial silica gel plates (Dynanmic Absorbents F254). Visualization was accomplished with UV light followed by dipping in p-anisaldehyde stain solution then heating. Purification of reactions was carried out by flash chromatography using Silacycle silica gel (40-63 μm, unless indicated specifically). Potassium phosphate was purchased through Acros Organics, flame dried prior to use, and stored in a desiccator. All alcohol substrates were purchased from commercially available sources and purified prior to use. Cyclohexylacetaldehyde 2i and geranial 2d were prepared through known procedures with NMR spectra comparable to that in the literature. All other aldehydes were used from commercially available sources, and purified via distillation in a Hickman still or column chromatography prior to use.

Spectroscopy, Spectrometry, and Data Collection

Infrared spectra were recorded on a Perkin-Elmer 1600 spectrometer. Low-resolution mass spectra (LRMS) were obtained on a Karatos MS9 and are reported as m/z (relative intensity). High-resolution mass spectra (HRMS) were obtained on an Agilent Technologies 6530 Accurate Mass Q-TOF LC/MS instrument and are reported as m/z (relative intensity). Accurate masses are reported for the molecular ion (M, M+H, or M-H), or a suitable fragment ion. 1H nuclear magnetic resonance spectra were recorded using a 400 MHz spectrometer. Coupling constants are reported in Hertz (Hz) for CDCl$_3$ solutions, and chemical shifts are reported as parts per million (ppm) relative to residual CHCl$_3$ δ$_H$ (7.26 ppm). 13C nuclear magnetic resonance spectra were recorded using a 100 MHz spectrometer for CDCl$_3$ solutions, and chemical shifts are reported as parts per million (ppm) relative to residual CDCl$_3$ δ$_C$ (77.0 ppm). 31P nuclear magnetic resonance spectra were recorded using a 162 MHz spectrometer for CDCl$_3$ solutions. The products formed through C-C coupling from the alcohol and aldehyde oxidation levels are identical in all respects outside of diastereomeric ratios and enantiomeric excess. Melting points were taken on a Stuart SMP3 melting point apparatus.

1 Valente, C.; Organ, M. G. *Chem. Eur. J.* 2008, 14, 8239

2 Wilson, M. S., Woo, J. C. S.; Dake, G. R. *J. Org. Chem.* 2006, 11, 4237.
General Procedures for Preparation of Iridium Complexes Ia-IVb

A sealed tube equipped with a magnetic stir bar was added Cs₂CO₃ (169 mg, 0.52 mmol, 200 mol%), corresponding benzoic acid (0.52 mmol, 200 mol%), bidentate phosphine ligand (0.26 mmol, 100 mol%), and [Ir(cod)Cl]₂ (87.3 mg, 0.13 mmol, 50 mol%). The reaction vessel was placed under an atmosphere of argon, and THF (2.6 mL, 0.1 M) and allyl acetate (0.070 mL, 0.65 mmol, 250 mol%) were added by syringe. The resulted mixture was allowed to stir at room temperature for 30 min, and was allowed to stir at 80 °C for another 90 min. The reaction was allowed to reach ambient temperature, and the mixture was filtered through a celite plug and washed by DCM (50 mL) until all yellow residue was dissolved. The combined filtrate was concentrated in vacuo and subjected to column chromatography (SiO₂: DCM:THF, 15:1). The obtained gum-like product was dissolved in THF (0.6 mL), and precipitated upon rapid addition of HPLC grade hexanes (6 mL). The product was filtered and washed by small amount of HPLC grade hexanes, followed by removal of trace amount of solvent in vacuo.

(R)-Ir-Ia: 3-nitrobenzoic acid (87 mg) and (R)-SEGPHOS (159 mg) was used. The title complex was obtained as light yellow powder in 63% yield (166 mg).

(R)-Ir-Ib: 4-cyano-3-nitrobenzoic acid (100 mg) and (R)-SEGPHOS (159 mg) was used. The title complex was obtained as yellow powder in 62% yield (167 mg).

(R)-Ir-IIa: 3-nitrobenzoic acid (87 mg) and (R)-DM-SEGPHOS (188 mg) was used. The title complex was obtained as yellow powder in 47% yield (110 mg).

(R)-Ir-IIb: 4-cyano-3-nitrobenzoic acid (100 mg) and (R)-DM-SEGPHOS (188 mg) was used. The title complex was obtained as bright yellow powder in 82% yield (243 mg).

(R)-Ir-IIIa: 3-nitrobenzoic acid (87 mg) and (R)-BINAP (162 mg) was used. After chromatography purification, the title complex was obtained as light yellow powder in 83% yield (221 mg) without any further precipitation.

(R)-Ir-IIIb: 4-cyano-3-nitrobenzoic acid (100 mg) and (R)-BINAP (162 mg) was used. The title complex was obtained as yellow powder in 63% yield (171 mg).

(R)-Ir-IVA: 3-nitrobenzoic acid (87 mg) and (R)-TolBINAP (176 mg) was used. The title complex was obtained as yellow powder in 73% yield (205 mg).
(R)-Ir-IVb

Following the general procedure, 4-cyano-3-nitrobenzoic acid (100 mg) and (R)-TolBINAP (176 mg) was used. The title complex was obtained as yellow powder in 70% yield (202 mg).

31P NMR (162 MHz, CDCl$_3$) δ -7.14* (d, $J = 21.2$ Hz, 0.3H), -13.68 (d, $J = 22.7$ Hz, 1H), -14.56* (d, $J = 21.2$ Hz, 0.3H), -16.64 (d, $J = 22.7$ Hz, 1H).

HRMS (ESI) Calcd. for C$_{59}$H$_{47}$IrN$_2$O$_4$P$_2$Na [M+Na]$^+$: 1125.2537, Found: 1125.2525.

MP 228.3-229.9 °C (decomposition)
Detailed Procedures and Spectral Data for tert-(Hydroxy)-Prenylation of Alcohols (1a-1j) and Aldehydes (2a-2i):

(1S,2S)-1-(4-bromophenyl)-2-methyl-2-vinylpropane-1,3-diol (4a)

![Chemical structure of (1S,2S)-1-(4-bromophenyl)-2-methyl-2-vinylpropane-1,3-diol (4a)]

Detailed Procedures

From alcohol oxidation level: An oven-dried pressure tube equipped with a magnetic stir bar was charged with K$_3$PO$_4$ (2.2 mg, 0.01 mmol, 5 mol%), (R)-Ir-IVb (11.0 mg, 0.01 mmol, 5 mol%), and 4-bromobenzyl alcohol (37.4 mg, 0.2 mmol, 100 mol%). The reaction vessel was placed under an atmosphere of argon, and THF (0.4 mL, 0.5 M) and isoprene monoxide (59 µL, 0.6 mmol, 300 mol%) were added by syringe. The reaction vessel was sealed and the reaction mixture was allowed to stir at 45˚C for 1 day. The reaction was allowed to reach ambient temperature and concentrated *in vacuo*. The residue was subjected to column chromatography (SiO$_2$: hexanes:ethyl acetate, 5:1) to furnish the title compound as a white solid (49.5 mg, *anti*:syn > 20:1) in 91% yield.

From aldehyde oxidation level: An oven-dried pressure tube equipped with a magnetic stir bar was charged with K$_3$PO$_4$ (2.2 mg, 0.01 mmol, 5 mol%), (R)-Ir-IVb (11.0 mg, 0.01 mmol, 5 mol%), and 4-bromobenzaldehyde (37.0 mg, 0.2 mmol, 100 mol%). The reaction vessel was placed under an atmosphere of argon, and THF (0.4 mL, 0.5 M), 2-propanol (46 µL, 0.6 mmol, 300 mol%) and isoprene monoxide (59 µL, 0.6 mmol, 300 mol%) were added by syringe. The reaction vessel was sealed and the reaction mixture was allowed to stir at 45˚C for 1 day. The reaction was allowed to reach ambient temperature and concentrated *in vacuo*. The residue was subjected to column chromatography (SiO$_2$: hexanes:ethyl acetate, 5:1) to furnish the title compound as a white solid (46.9 mg, *anti*:syn = 10:1) in 87% yield.

1H NMR (400 MHz, CDCl$_3$) δ 7.42 (d, *J* = 8.5 Hz, 2H), 7.16 (d, *J* = 8.4 Hz, 2H), 6.02 (dd, *J* = 17.7, 11.0 Hz, 1H), 5.22 (dd, *J* = 11.0, 1.1 Hz, 1H), 5.01 (dd, *J* = 17.7, 1.2 Hz, 1H), 4.65 (s, 1H), 3.60 (d, *J* = 10.7 Hz, 1H), 3.52 (d, *J* = 10.7 Hz, 1H), 3.28 (br, 1H), 2.62 (br, 1H), 0.87 (s, 3H).

13C NMR (100 MHz, CDCl$_3$) δ 139.7, 139.1, 130.8, 129.4, 121.5, 116.6, 79.2, 69.8, 46.3, 17.6.

LRMS (ESI) Calcd. for C$_{12}$H$_{15}$BrO$_2$Na [M+Na]$^+$: 293.0, Found: 293.0.

FTIR (neat): 3343, 2926, 1637, 1592, 1486, 1404, 1200, 1104, 1070, 1036, 1009, 921, 826, 755, 698 cm$^{-1}$.

MP 51.1-51.7 °C

HPLC (Chiralcel OD-H column, hexanes:i-PrOH = 90:10, 0.50 mL/min, 230 nm), *anti*:syn = 40:1, ee = 94% from 4-bromobenzyl alcohol, ee = 94% from 4-bromobenzaldehyde.
From Alcohol Oxidation Level

Peak Ret Time	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area [%]
1	VV	0.3739	5373.34814	223.97386	4.8940
2	VV	0.4869	4.85357e4	1595.49243	44.2062
3	VB	0.5048	4.99210e4	1570.89380	45.4679
4	BB	0.4736	5963.83789	195.68607	5.4319

Peak Ret Time	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area [%]
1	MM	0.4320	2004.05054	77.31152	2.6874
2	MM	0.6576	7.12945e4	1807.01978	95.6034
3	MM	0.5602	1274.59680	37.91838	1.7092
From Aldehyde Oxidation Level

Peak	Time	Type	Area	Height	Width	Start	End
1	17.183	VV	2589.09790	101.23418	0.3984	16.715	17.536
2	18.055	VB	6.55493e4	1783.26868	0.5968	17.536	19.244
3	19.983	BB	5596.25928	177.88858	0.4830	19.270	20.864
(1S,2S)-1-(benzo[d][1,3]dioxol-5-yl)-2-methyl-2-vinylpropane-1,3-diol (4b)

Detailed Procedures

From alcohol oxidation level: An oven-dried pressure tube equipped with a magnetic stir bar was charged with K$_3$PO$_4$ (2.2 mg, 0.01 mmol, 5 mol%), (R)-Ir-IVb (11.0 mg, 0.01 mmol, 5 mol%), and piperonyl alcohol (30.4 mg, 0.2 mmol, 100 mol%). The reaction vessel was placed under an atmosphere of argon, and THF (0.2 mL, 1 M) and isoprene monoxide (59 µL, 0.6 mmol, 300 mol%) were added by syringe. The reaction vessel was sealed and the reaction mixture was allowed to stir at 45 °C for 1 day. The reaction was allowed to reach ambient temperature and concentrated in vacuo. The residue was subjected to column chromatography (SiO$_2$: hexanes:ethyl acetate, 4:1) to furnish the title compound as a colorless oil (42.1 mg, *anti*:syn > 20:1) in 89% yield.

From aldehyde oxidation level: An oven-dried pressure tube equipped with a magnetic stir bar was charged with K$_3$PO$_4$ (2.2 mg, 0.01 mmol, 5 mol%), (R)-Ir-IVb (11.0 mg, 0.01 mmol, 5 mol%), and piperonal (30.0 mg, 0.2 mmol, 100 mol%). The reaction vessel was placed under an atmosphere of argon, and THF (0.2 mL, 1 M), 2-propanol (46 µL, 0.6 mmol, 300 mol%), and isoprene monoxide (59 µL, 0.6 mmol, 300 mol%) were added by syringe. The reaction vessel was sealed and the reaction mixture was allowed to stir at 45 °C for 1 day. The reaction was allowed to reach ambient temperature and concentrated in vacuo. The residue was subjected to column chromatography (SiO$_2$: hexanes:ethyl acetate, 4:1) to furnish the title compound as a colorless oil (42.5 mg, *anti*:syn > 20:1) in 90% yield.

1H NMR (400 MHz, CDCl$_3$) δ 6.84 (s, 1H), 6.75 (d, $J = 0.5$ Hz, 2H), 6.07 (dd, $J = 17.8$, 11.0 Hz, 1H), 5.96-5.93 (m, 2H), 5.25 (dd, $J = 11.0$, 1.3 Hz, 1H), 5.07 (dd, $J = 17.8$, 1.3 Hz, 1H), 4.64 (s, 1H), 3.62 (d, $J = 10.7$ Hz, 1H), 3.56 (d, $J = 10.7$ Hz, 1H), 2.81 (br, 1H), 2.35 (br, 1H), 0.91 (s, 3H).

13C NMR (100 MHz, CDCl$_3$) δ 147.1, 146.9, 139.6, 134.7, 121.1, 116.3, 108.2, 107.4, 100.9, 79.8, 69.9, 46.5, 17.7.

LRMS (ESI) Calcd. for C$_{13}$H$_{16}$O$_4$Na [M+Na]$^+$: 259.1, Found: 259.1.

FTIR (neat): 3362, 2922, 1739, 1504, 1487, 1442, 1372, 1241, 1124, 1094, 1038, 929, 866, 816, 757 cm$^{-1}$.

HPLC (Chiralcel OJ-H column, hexanes:i-PrOH = 95:5, 0.50 mL/min, 280 nm), *anti*:syn = 60:1, ee = 91% from piperonyl alcohol, *anti*:syn = 50:1, ee = 90% from piperonal.
From Alcohol Oxidation Level

#	RetTime [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area [%]
1	53.625	BV	0.9198	3254.34741	53.49318	9.1137
2	55.171	VV	0.9244	3139.77246	51.27665	8.7928
3	57.471	VB	1.0593	1.46131e4	210.66290	40.9235
4	63.683	BB	1.1709	1.47012e4	191.22240	41.1700
From Aldehyde Oxidation Level

#	RetTime [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	55.486	BV	0.7324	286.49448	5.60444	1.7399
2	58.236	VB	1.0328	1.54241e4	229.30447	93.6717
3	73.997	BB	0.9421	755.52783	10.06055	4.5884
(1R,2S)-1-(furan-2-yl)-2-methyl-2-vinylpropane-1,3-diol (4c)

Detailed Procedures

From alcohol oxidation level: An oven-dried pressure tube equipped with a magnetic stir bar was charged with K$_3$PO$_4$ (2.2 mg, 0.01 mmol, 5 mol%), (R)-Ir-IVb (11.0 mg, 0.01 mmol, 5 mol%), and furfuryl alcohol (19.6 mg, 0.2 mmol, 100 mol%). The reaction vessel was placed under an atmosphere of argon, and THF (0.4 mL, 0.5 M) and isoprene monoxide (59 µL, 0.6 mmol, 300 mol%) were added by syringe. The reaction vessel was sealed and the reaction mixture was allowed to stir at 45 °C for 1 day. The reaction was allowed to reach ambient temperature and concentrated in vacuo. The residue was subjected to column chromatography (SiO$_2$: hexanes:ethyl acetate, 5:1) to furnish the title compound as a colorless oil (33.3 mg, anti: syn > 20:1) in 91% yield.

From aldehyde oxidation level: An oven-dried pressure tube equipped with a magnetic stir bar was charged with K$_3$PO$_4$ (2.2 mg, 0.01 mmol, 5 mol%), (R)-Ir-IVb (11.0 mg, 0.01 mmol, 5 mol%), and furfural (19.2 mg, 0.2 mmol, 100 mol%). The reaction vessel was placed under an atmosphere of argon, and THF (0.6 mL, 0.33 M), 2-propanol (46 µL, 0.6 mmol, 300 mol%), and isoprene monoxide (59 µL, 0.6 mmol, 300 mol%) were added by syringe. The reaction vessel was sealed and the reaction mixture was allowed to stir at 45 °C for 1 day. The reaction was allowed to reach ambient temperature and concentrated in vacuo. The residue was subjected to column chromatography (SiO$_2$: hexanes:ethyl acetate, 5:1) to furnish the title compound as a colorless oil (33.1 mg, anti: syn = 5:1) in 91% yield.

1H NMR (400 MHz, CDCl$_3$) δ 7.37 (dd, J = 1.8, 0.8 Hz, 1H), 6.34 (dd, J = 3.1, 2.0 Hz, 1H), 6.30-6.26 (m, 1H), 6.04 (dd, J = 17.7, 11.0 Hz, 1H), 5.26 (dd, J = 11.0, 1.1 Hz, 1H), 5.15 (dd, J = 17.8, 1.1 Hz, 1H), 4.74 (s, 1H), 3.71 (d, J = 10.8 Hz, 1H), 3.56 (d, J = 10.9 Hz, 1H), 2.88 (br, 1H), 2.27 (br, 1H), 1.02 (s, 3H).

13C NMR (100 MHz, CDCl$_3$) δ 154.4, 141.7, 139.6 116.1, 110.2, 107.7, 73.6, 69.3, 46.4, 17.8.

LRMS (ESI) Calcd. for C$_{10}$H$_{14}$O$_3$Na [M+Na]$^+$: 205.1, Found: 205.1.

FTIR (neat): 3363, 2923, 1637, 1503, 1459, 1416, 1259, 1148, 1007, 921, 884, 813, 734, 669 cm$^{-1}$.

HPLC (two connected Chiralcel OC-H columns, hexanes:i-PrOH = 88:12, 0.20 mL/min, 210 nm), anti: syn = 30:1, ee = 91% from furfuryl alcohol, ee = 94% from furfural.
From Alcohol Oxidation Level
From Aldehyde Oxidation Level

#	RetTime	Type	Width	Area	Height	Area	%
1	74.729	BV	0.9818	1.17614e5	1498.28320	75.3427	
2	76.789	VB	1.1783	3.63492e4	462.78833	23.2852	
3	85.848	MM	1.5995	2141.89429	22.31884	1.3721	
(2S,3S,E)-2,5,9-trimethyl-2-vinyldeca-4,8-diene-1,3-diol (4d)

Detailed Procedures

From alcohol oxidation level: An oven-dried pressure tube equipped with a magnetic stir bar was charged with K$_3$PO$_4$ (2.2 mg, 0.01 mmol, 5 mol%), (R)-Ir-IVb (11.0 mg, 0.01 mmol, 5 mol%), and geraniol (30.9 mg, 0.2 mmol, 100 mol%). The reaction vessel was placed under an atmosphere of argon, and THF (0.6 mL, 0.3 M) and isoprene monoxide (79 µL, 0.8 mmol, 400 mol%) were added by syringe. The reaction vessel was sealed and the reaction mixture was allowed to stir at 45 °C for 1 day. The reaction was allowed to reach ambient temperature and concentrated in vacuo. The residue was subjected to column chromatography (SiO$_2$: chloroform:methanol, 150:1) to furnish the title compound as a colorless oil (35.0 mg, anti:syn > 20:1) in 73% yield.

From aldehyde oxidation level: An oven-dried pressure tube equipped with a magnetic stir bar was charged with K$_3$PO$_4$ (2.2 mg, 0.01 mmol, 5 mol%), (R)-Ir-IVb (11.0 mg, 0.01 mmol, 5 mol%), and geranial (30.4 mg, 0.2 mmol, 100 mol%). The reaction vessel was placed under an atmosphere of argon, and THF (0.4 mL, 0.5 M), 2-propanol (46 µL, 0.6 mmol, 300 mol%), and isoprene monoxide (59 µL, 0.6 mmol, 300 mol%) were added by syringe. The reaction vessel was sealed and the reaction mixture was allowed to stir at 45 °C for 1 day. The reaction was allowed to reach ambient temperature and concentrated in vacuo. The residue was subjected to column chromatography (SiO$_2$: chloroform:methanol, 50:1) to furnish the title compound as a colorless oil (36.7 mg, anti:syn = 20:1) in 77% yield.

1H NMR (400 MHz, CDCl$_3$) δ 6.03 (dd, $J = 17.7, 11.0$ Hz, 1H), 5.26 (dd, $J = 11.0, 1.4$ Hz, 1H), 5.21 (dd, $J = 9.4, 1.2$ Hz, 1H), 5.16 (dd, $J = 17.7, 1.4$ Hz, 1H), 5.06 (dd, $J = 6.9, 4.1$, 1.3 Hz, 1H), 4.35 (d, $J = 9.4$ Hz, 1H), 3.64 (d, $J = 10.7$ Hz, 1H), 3.56 (d, $J = 10.8$ Hz, 1H), 2.38 (br, 1H), 2.25-1.86 (m, 5H), 1.69 (d, $J = 1.4$ Hz, 3H), 1.68 (d, $J = 1.0$ Hz, 3H), 1.60 (s, 3H), 0.95 (s, 3H).

13C NMR (100 MHz, CDCl$_3$) δ 140.3, 139.8, 131.7, 123.9, 123.9, 116.0, 73.8, 69.9, 46.1, 39.8, 26.2, 25.7, 17.7, 17.2, 16.8.

LRMS (ESI) Calcd. C$_{15}$H$_{26}$O$_2$Na for [M+Na]$^+$: 261.2, Found: 261.2.

FTIR (neat): 3340, 2966, 2922, 1669, 1637, 1439, 1415, 1377, 1260, 1097, 1035, 1009, 916, 818, 756, 668 cm$^{-1}$.

HPLC Diastereomeric ratio and enantiomeric excess was determined by HPLC analysis of the 1-benzoate of product (Chiralcel OD-H column, hexanes:i-PrOH = 99:1, 0.20 mL/min, 210 nm), anti:syn = 30:1, ee = 91% from geraniol, ee = 94% from geranial.
From Alcohol Oxidation Level

Peak	RetTime	Type	Width	Area	Height	Area	%
#	[min]	[min]	[mAU*s]	[mAU]	%		
1	41.946	BB	0.7982	3878.34546	75.89896	6.1285	
2	54.315	BV	1.3010	2.76214e4	303.16302	43.6467	
3	58.485	VV	1.2532	2.77584e4	342.62363	43.8632	
4	61.739	VB	1.1138	4025.89600	53.87474	6.3616	

Diagram

From Alcohol Oxidation Level

Peak	RetTime	Type	Width	Area	Height	Area	%
#	[min]	[min]	[mAU*s]	[mAU]	%		
1	42.173	BB	0.5652	141.35085	3.39873	0.2727	
2	54.239	BB	1.0403	4.80523e4	718.49957	92.6957	
3	58.361	BB	1.1394	2178.22876	24.16941	4.2019	
4	63.462	BB	0.9835	1466.89954	19.06814	2.8297	
From Aldehyde Oxidation Level

![Graph showing aldehyde oxidation level](image)

Peak	RetTime	Type	Width	Area	Height	Area %
1	40.799	MM	0.8599	2.05757e4	398.80432	9.0374
2	52.176	MM	1.4991	1.99822e5	2221.62500	87.7664
3	56.739	MM	1.2249	7276.98828	99.01257	3.1962
(2S,3S)-2,5-dimethyl-2-vinylhex-4-ene-1,3-diol (4e)

Detailed Procedures

From alcohol oxidation level: An oven-dried pressure tube equipped with a magnetic stir bar was charged with K$_3$PO$_4$ (2.2 mg, 0.01 mmol, 5 mol%), (R)-Ir-IVb (11.0 mg, 0.01 mmol, 5 mol%), and prenol (17.2 mg, 0.2 mmol, 100 mol%). The reaction vessel was placed under an atmosphere of argon, and THF (0.2 mL, 1 M) and isoprene monoxide (79 µL, 0.8 mmol, 400 mol%) were added by syringe. The reaction vessel was sealed and the reaction mixture was allowed to stir at 45 °C for 1 day. The reaction was allowed to reach ambient temperature and concentrated in vacuo. The residue was subjected to column chromatography (SiO$_2$: hexanes:ethyl acetate, 5:1) to furnish the title compound as a white solid (29.1 mg, anti:syn > 20:1) in 85% yield.

From aldehyde oxidation level: An oven-dried pressure tube equipped with a magnetic stir bar was charged with K$_3$PO$_4$ (2.2 mg, 0.01 mmol, 5 mol%), (R)-Ir-IVb (11.0 mg, 0.01 mmol, 5 mol%), and prenal (16.8 mg, 0.2 mmol, 100 mol%). The reaction vessel was placed under an atmosphere of argon, and THF (0.4 mL, 0.5 M), 2-propanol (46 µL, 0.6 mmol, 300 mol%), and isoprene monoxide (59 µL, 0.6 mmol, 300 mol%) were added by syringe. The reaction vessel was sealed and the reaction mixture was allowed to stir at 45 °C for 1 day. The reaction was allowed to reach ambient temperature and concentrated in vacuo. The residue was subjected to column chromatography (SiO$_2$: hexanes:ethyl acetate, 5:1) to furnish the title compound as a white solid (27.6 mg, anti:syn = 20:1) in 81% yield.

1H NMR (400 MHz, CDCl$_3$) δ 6.04 (dd, $J = 17.8, 11.0$ Hz, 1H), 5.26 (dd, $J = 11.0, 1.4$ Hz, 1H), 5.22 (dq, $J = 9.4, 1.4$ Hz, 1H), 5.16 (dd, $J = 17.8, 1.4$ Hz, 1H), 4.34 (d, $J = 9.4$ Hz, 1H), 3.64 (d, $J = 10.7$ Hz, 1H), 3.56 (d, $J = 10.7$ Hz, 1H), 2.52 (br, 1H), 2.14 (br, 1H), 1.75 (d, $J = 1.3$ Hz, 3H), 1.70 (d, $J = 1.3$ Hz, 3H), 0.95 (s, 3H).

13C NMR (100 MHz, CDCl$_3$) δ 139.8, 137.1, 123.9, 116.0, 73.9, 69.9, 46.0, 26.0, 18.4, 17.3.

LRMS (ESI) Calcd. C$_{10}$H$_{18}$O$_2$Na for [M+Na]$^+$: 193.1, Found: 193.1.

FTIR (neat): 3361, 2969, 2923, 1675, 1637, 1445, 1416, 1376, 1005, 915, 846, 681 cm$^{-1}$.

MP 39.8-41.0 °C

HPLC Diastereomeric ratio and enantiomeric excess was determined by HPLC analysis of the 1-benzoate of product (two connected Chiralpak AD-H columns, hexanes:i-ProOH = 95:5, 0.20 mL/min, 210 nm), anti:syn > 99:1, ee = 93% from prenol, ee = 86% from prenal.
From Alcohol Oxidation Level

#	RetTime	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area [%]
1	94.556	BV	1.1457	1.45915e4	193.95432	7.5084
2	96.541	VB	1.6253	8.29694e4	760.21350	42.6943
3	104.758	BB	1.6311	1.84827e4	167.79832	9.5108
4	112.571	BB	1.8968	7.82903e4	609.39807	40.2865
From Aldehyde Oxidation Level

#	RetTime	Type	Width	Area	Height	Area %
1	83.835	BB	1.2388	7536.07959	89.82337	78.5005
2	90.379	BB	0.8929	402.28818	5.31590	4.1905
3	105.492	BB	1.3433	1661.66968	14.58324	17.3090
(2S,3S,E)-2-methyl-5-phenyl-2-vinylpent-4-ene-1,3-diol (4f)

Detailed Procedures

From alcohol oxidation level: An oven-dried pressure tube equipped with a magnetic stir bar was charged with K$_3$PO$_4$ (2.2 mg, 0.01 mmol, 5 mol%), (R)-Ir-IVb (11.0 mg, 0.01 mmol, 5 mol%), and cinnamyl alcohol (26.8 mg, 0.2 mmol, 100 mol%). The reaction vessel was placed under an atmosphere of argon, and THF (0.6 mL, 0.3 M) and isoprene monoxide (59 µL, 0.6 mmol, 300 mol%) were added by syringe. The reaction vessel was sealed and the reaction mixture was allowed to stir at 45 °C for 1 day. The reaction was allowed to reach ambient temperature and concentrated *in vacuo*. The residue was subjected to column chromatography (SiO$_2$: hexanes:ethyl acetate, 5:1) to furnish the title compound as a white solid (37.2 mg, *anti*:syn > 20:1) in 85% yield.

From aldehyde oxidation level: An oven-dried pressure tube equipped with a magnetic stir bar was charged with K$_3$PO$_4$ (2.2 mg, 0.01 mmol, 5 mol%), (R)-Ir-IVb (11.0 mg, 0.01 mmol, 5 mol%), and cinnamaldehyde (26.4 mg, 0.2 mmol, 100 mol%). The reaction vessel was placed under an atmosphere of argon, and THF (2.0 mL, 0.1 M) 2-propanol (46 µL, 0.6 mmol, 300 mol%), and isoprene monoxide (59 µL, 0.6 mmol, 300 mol%) were added by syringe. The reaction vessel was sealed and the reaction mixture was allowed to stir at 45 °C for 1 day. The reaction was allowed to reach ambient temperature and concentrated *in vacuo*. The residue was subjected to column chromatography (SiO$_2$: hexanes:ethyl acetate, 5:1) to furnish the title compound as a white solid (33.2 mg, *anti*:syn = 10:1) in 76% yield.

1H NMR (400 MHz, CDCl$_3$) δ 7.43-7.20 (m, 5H), 6.59 (d, $J = 15.8$ Hz, 1H), 6.23 (dd, $J = 15.9, 7.5$ Hz, 1H), 6.07 (dd, $J = 17.8, 11.0$ Hz, 1H), 5.28 (dd, $J = 11.0, 1.3$ Hz, 1H), 5.17 (dd, $J = 17.8, 1.3$ Hz, 1H), 4.25 (d, $J = 7.4$ Hz, 1H), 3.71 (d, $J = 10.8$ Hz, 1H), 3.61 (d, $J = 10.7$ Hz, 1H), 2.69 (br, 1H), 2.51 (br, 1H), 1.05 (d, $J = 8.4$ Hz, 3H).

13C NMR (100 MHz, CDCl$_3$) δ 139.7, 136.6, 132.6, 128.6, 128.4, 127.8, 126.6, 116.1, 78.8, 69.8, 45.8, 18.1.

LRMS (ESI) Calcd. C$_{14}$H$_{18}$O$_2$Na for [M+Na]$^+$: 241.1, Found: 241.1.

FTIR (neat): 3357, 3081, 3025, 2965, 2926, 2875, 1637, 1494, 1449, 1416, 1300, 1156, 1095, 1070, 1028, 967, 919, 836, 757, 741, 692 cm$^{-1}$.

MP 87.0-87.6 °C

HPLC (two connected Chiralcel OJ-H columns, hexanes:i-PrOH = 92:8, 0.50 mL/min, 230 nm), *anti*:syn = 40:1, ee = 93% from cinnamyl alcohol, ee = 91% from cinnamaldehyde.
From Alcohol Oxidation Level

#	RetTime [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area [%]
1	49.245	VV	0.5703	2.8901*10^4	765.79352	11.6025
2	50.181	VV	0.6663	2.9384*10^4	669.12909	11.7967
3	52.199	VB	0.7797	9.4803*10^4	1832.00684	38.0594
4	54.894	BB	0.8895	9.6003*10^4	1578.56946	38.5413

#	RetTime [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area [%]
1	50.196	BV	0.4991	612.76685	18.66265	0.3878
2	51.035	VB	0.6355	3380.96704	81.23939	2.1398
3	53.418	BV	0.6328	5530.77246	135.33653	3.5004
4	55.220	VB	0.9970	1.4848*10^5	1988.94861	93.9720
From Aldehyde Oxidation Level
(2S,3S)-2-methyl-2-vinlynonane-1,3-diol (4g)

Detailed Procedures

From alcohol oxidation level: An oven-dried pressure tube equipped with a magnetic stir bar was charged with K$_3$PO$_4$ (2.2 mg, 0.01 mmol, 5 mol%), (R)-Ir-IVb (11.0 mg, 0.01 mmol, 5 mol%), and 1-heptanol (23.2 mg, 0.2 mmol, 100 mol%). The reaction vessel was placed under an atmosphere of argon, and THF (0.4 mL, 0.5 M) and isoprene monoxide (79 μL, 0.8 mmol, 400 mol%) were added by syringe. The reaction vessel was sealed and the reaction mixture was allowed to stir at 60 °C for 1 day. The reaction was allowed to reach ambient temperature and concentrated *in vacuo*. The residue was subjected to column chromatography (SiO$_2$: hexanes:ethyl acetate, 6:1) to furnish the title compound as a white solid (30.3 mg, anti:syn > 20:1) in 74% yield.

From aldehyde oxidation level: An oven-dried pressure tube equipped with a magnetic stir bar was charged with K$_3$PO$_4$ (2.2 mg, 0.01 mmol, 5 mol%), (R)-Ir-IVb (11.0 mg, 0.01 mmol, 5 mol%), and heptanal (22.8 mg, 0.2 mmol, 100 mol%). The reaction vessel was placed under an atmosphere of argon, and THF (0.4 mL, 0.5 M) 2-propanol (46 μL, 0.6 mmol, 300 mol%), and isoprene monoxide (59 μL, 0.6 mmol, 300 mol%) were added by syringe. The reaction vessel was sealed and the reaction mixture was allowed to stir at 60 °C for 1 day. The reaction was allowed to reach ambient temperature and concentrated *in vacuo*. The residue was subjected to column chromatography (SiO$_2$: hexanes:ethyl acetate, 6:1) to furnish the title compound as a white solid (29.2 mg, anti:syn = 12:1) in 73% yield.

1H NMR (400 MHz, CDCl$_3$) δ 5.96 (dd, $J = 17.8$, 11.1 Hz, 1H), 5.23 (dd, $J = 11.1$, 1.3 Hz, 1H), 5.13 (dd, $J = 17.8$, 1.3 Hz, 1H), 3.69 (d, $J = 10.7$ Hz, 1H), 3.60-3.51 (m, 2H), 2.48 (br, 1H), 2.42 (br, 1H), 1.60-1.40 (m, 2H), 1.40-1.21 (m, 8H), 1.01 (s, 3H), 0.88 (t, $J = 6.8$ Hz, 3H).

13C NMR (100 MHz, CDCl$_3$) δ 140.2, 115.6, 77.8, 70.0, 45.6, 32.0, 31.8, 29.3, 26.5, 22.6, 18.2, 14.1.

LRMS (CI) Calcd. C$_{12}$H$_{25}$O$_2$ for [M+H]$^+$: 201, Found: 201.

FTIR (neat): 3348, 2955, 2927, 2857, 1459, 1417, 1377, 1028, 963, 915, 679 cm$^{-1}$.

MP 53.6-54.3 °C

HPLC Diastereomeric ratio and enantiomeric excess was determined by HPLC analysis of the 1-benzoate of product (Chiralcel OD-H column, hexanes:i-PrOH = 98:2, 0.25 mL/min, 254 nm), anti:syn = 40:1, ee = 93% from 1-heptanol, ee = 93% from heptanal.
From Alcohol Oxidation Level
From Aldehyde Oxidation Level

#	Ret Time	Type	Width	Area	Height	Area %
1	23.327	MM	0.7276	1644.37085	37.66661	96.7509
2	25.910	MM	1.1734	17.41916	2.47408e-1	1.0249
3	43.439	MM	1.3668	37.80240	4.60965e-1	2.2242
(2S,3S)-2-methyl-5-phenyl-2-vinylpentane-1,3-diol (4h)

Detailed Procedures

From alcohol oxidation level: An oven-dried pressure tube equipped with a magnetic stir bar was charged with K$_3$PO$_4$ (2.2 mg, 0.01 mmol, 5 mol%), (R)-Ir-IVb (11.0 mg, 0.01 mmol, 5 mol%), and 3-phenyl-1-propanol (27.2 mg, 0.2 mmol, 100 mol%). The reaction vessel was placed under an atmosphere of argon, and THF (0.4 mL, 0.5 M) and isoprene monoxide (59 µL, 0.6 mmol, 300 mol%) were added by syringe. The reaction vessel was sealed and the reaction mixture was allowed to stir at 60 °C for 1 day. The reaction was allowed to reach ambient temperature and concentrated in vacuo. The residue was subjected to column chromatography (SiO$_2$: hexanes:ethyl acetate, 5:1) to furnish the title compound as a white solid (33.7 mg, anti:syn > 20:1) in 76% yield.

From aldehyde oxidation level: An oven-dried pressure tube equipped with a magnetic stir bar was charged with K$_3$PO$_4$ (2.2 mg, 0.01 mmol, 5 mol%), (R)-Ir-IVb (11.0 mg, 0.01 mmol, 5 mol%), and 3-phenylpropionaldehyde (26.8 mg, 0.2 mmol, 100 mol%). The reaction vessel was placed under an atmosphere of argon, and THF (0.4 mL, 0.5 M), 2-propanol (46 µL, 0.6 mmol, 300 mol%), and isoprene monoxide (59 µL, 0.6 mmol, 300 mol%) were added by syringe. The reaction vessel was sealed and the reaction mixture was allowed to stir at 60 °C for 1 day. The reaction was allowed to reach ambient temperature and concentrated in vacuo. The residue was subjected to column chromatography (SiO$_2$: hexanes:ethyl acetate, 5:1) to furnish the title compound as a white solid (40.0 mg, anti:syn = 5:1) in 91% yield.

1H NMR (400 MHz, CDCl$_3$) δ 7.35–7.12 (m, 5H), 5.95 (dd, $J = 17.8$, 11.1 Hz, 1H), 5.22 (dd, $J = 11.1$, 1.2 Hz, 1H), 5.10 (dd, $J = 17.8$, 1.3 Hz, 1H), 3.69 (d, $J = 10.7$ Hz, 1H), 3.61-3.52 (m, 2H), 2.96-2.87 (m, 1H), 2.62 (ddd, $J = 13.7$, 9.6, 6.8 Hz, 1H), 2.79-2.38 (m, 2H), 1.86-1.75 (m, 1H), 1.74-1.58 (m, 1H), 1.00 (s, 3H).

13C NMR (100 MHz, CDCl$_3$) δ 142.2, 140.0, 128.5, 128.4, 125.9, 115.8, 77.1, 69.9, 45.5, 33.9, 32.8, 18.3.

LRMS (ESI) Calcd. C$_{14}$H$_{20}$O$_2$Na for [M+Na]$^+$: 243.2, Found: 243.1.

FTIR (neat): 3326, 2923, 1496, 1454, 1417, 1313, 1155, 1071, 1029, 918, 748, 699, 669 cm$^{-1}$.

MP 72.1-73.4 °C

HPLC (two connected Chiralcel OJ-H columns, hexanes:i-PrOH = 98:2, 0.50 mL/min, 210 nm), anti:syn = 30:1, ee = 93% from 3-phenyl-1-propanol, ee = 85% from 3-phenylpropionaldehyde.
From Alcohol Oxidation Level

#	RetTime	Type	Width	Area	Height	Area %
1	160.020	BB	1.6347	1.08077e4	78.87156	8.3340
2	186.058	BV	1.6558	1.09341e4	77.69662	8.4315
3	191.048	VB	2.5492	5.44213e4	279.30661	41.9652
4	201.188	BB	2.7592	5.35188e4	227.44640	41.2693

#	RetTime	Type	Width	Area	Height	Area %
1	180.055	MM	2.4549	1053.76868	7.15417	3.2073
2	185.545	MM	2.3959	1006.25250	6.99975	3.0626
3	193.176	MM	3.0734	3.07957e4	166.99921	93.7301
From Aldehyde Oxidation Level

![Graph showing aldehyde oxidation level with peaks and areas](image)

Peak	RetTime	Type	Width	Area	Height	Area %
1	196.154	MM	2.2134	7877.12500	59.31392	13.8838
2	202.192	MM	2.4781	3694.45679	24.84729	6.5116
3	209.675	MM	3.4103	4.51647e4	220.72470	79.6046
(2S,3S)-4-cyclohexyl-2-methyl-2-vinylbutane-1,3-diol (4i)

Detailed Procedures

From alcohol oxidation level: An oven-dried pressure tube equipped with a magnetic stir bar was charged with K$_3$PO$_4$ (2.2 mg, 0.01 mmol, 5 mol%), (R)-Ir-IVb (11.0 mg, 0.01 mmol, 5 mol%), and 2-cyclohexyl-1-ethanol (25.6 mg, 0.2 mmol, 100 mol%). The reaction vessel was placed under an atmosphere of argon, and THF (0.4 mL, 0.5 M) and isoprene monoxide (79 µL, 0.8 mmol, 400 mol%) were added by syringe. The reaction vessel was sealed and the reaction mixture was allowed to stir at 60 °C for 1 day. The reaction was allowed to reach ambient temperature and concentrated in vacuo. The residue was subjected to column chromatography (SiO$_2$: hexanes:ethyl acetate, 6:1) to furnish the title compound as a white solid (32.3 mg, anti:syn > 20:1) in 76% yield.

From aldehyde oxidation level: An oven-dried pressure tube equipped with a magnetic stir bar was charged with K$_3$PO$_4$ (2.2 mg, 0.01 mmol, 5 mol%), (R)-Ir-IVb (11.0 mg, 0.01 mmol, 5 mol%), and cyclohexylacetaldehyde (25.2 mg, 0.2 mmol, 100 mol%). The reaction vessel was placed under an atmosphere of argon, and THF (0.4 mL, 0.5 M), 2-propanol (46 µL, 0.6 mmol, 300 mol%), and isoprene monoxide (59 µL, 0.8 mmol, 300 mol%) were added by syringe. The reaction vessel was sealed and the reaction mixture was allowed to stir at 70 °C for 1 day. The reaction was allowed to reach ambient temperature and concentrated in vacuo. The residue was subjected to column chromatography (SiO$_2$: hexanes:ethyl acetate, 6:1) to furnish the title compound as a white solid (27.4 mg, anti:syn = 20:1) in 65% yield.

1H NMR (400 MHz, CDCl$_3$) δ 5.95 (dd, $J = 17.8$, 11.1 Hz, 1H), 5.23 (dd, $J = 11.1$, 1.3 Hz, 1H), 5.12 (dd, $J = 17.8$, 1.3 Hz, 1H), 3.72-3.65 (m, 2H), 3.57 (d, $J = 10.7$ Hz, 1H), 2.40 (br, 1H), 2.30 (br, 1H), 1.84 (d, $J = 12.7$ Hz, 1H), 1.75-1.59 (m, 4H), 1.55-1.40 (m, 1H), 1.35-1.11 (m, 5H), 1.04-0.89 (m, 4H), 0.86-0.73 (m, 1H).

13C NMR (100 MHz, CDCl$_3$) δ 140.2, 115.7, 74.8, 70.0, 45.5, 39.8, 34.8, 34.0, 32.2, 26.6, 26.4, 26.1, 18.2.

LRMS (ESI) Calcd. C$_{13}$H$_{24}$O$_2$Na for [M+Na]$^+$: 235.2, Found: 235.2.

FTIR (neat): 3289, 2922, 2854, 1457, 1444, 1418, 1263, 1200, 1129, 1069, 1051, 1033, 992, 953, 916, 834, 759, 685 cm$^{-1}$.

MP 96.0-96.8 °C

HPLC Diastereomeric ratio and enantiomeric excess was determined by HPLC analysis of the 1-benzoate of product (two connected Chiralcel OC-H columns, hexanes:i-PrOH = 98:2, 0.50 mL/min, 230 nm), anti:syn = 30:1, ee = 99% from 2-cyclohexyl-1-ethanol, ee = 95% from cyclohexylacetaldehyde.
From Alcohol Oxidation Level

Peak RetTime	Type	Width	Area	Height	Area %
1	38.564 BB	1.1697	5.35729e4	699.39789	40.6564
2	46.378 BB	1.3130	1.31294e4	116.01938	9.9638
3	51.389 BV	1.7017	5.04832e4	427.49615	38.3116
4	54.851 VB	1.6986	1.45846e4	122.35559	11.0682

From Alcohol Oxidation Level

Peak RetTime	Type	Width	Area	Height	Area %
1	40.137 BB	1.3499	1.24632e5	1312.45300	96.3233
2	50.102 VB	1.3678	2722.18823	25.49278	2.1039
3	54.014 BB	0.7880	400.06882	6.01470	0.3092
4	57.795 BB	1.3488	1634.99207	14.41982	1.2636
From Aldehyde Oxidation Level

![Graph showing aldehyde oxidation level](image)

Peak	RetTime	Type	Width	Area	Height	Area Percent
#	[min]		[min]	[mAU*s]	[mAU]	
1	38.324	MM	1.4002	4.57392e4	544.42340	93.3408
2	46.954	MM	1.9818	2092.56323	17.59784	4.2703
3	54.783	MM	2.2931	1170.60303	8.50797	2.3889
(2S,3S,5S)-2-methyl-2-vinylhexane-1,3,5-triol (4j)

Detailed Procedures

An oven-dried pressure tube equipped with a magnetic stir bar was charged with K$_3$PO$_4$ (2.2 mg, 0.01 mmol, 5 mol%), (R)-Ir-IVb (11.0 mg, 0.01 mmol, 5 mol%), and (S)-butane-1,3-diol (18.0 mg, 0.2 mmol, 100 mol%). The reaction vessel was placed under an atmosphere of argon, and THF (0.2 mL, 1.0 M) and isoprene monoxide (79 µL, 0.8 mmol, 400 mol%) were added by syringe. The reaction vessel was sealed and the reaction mixture was allowed to stir at 60 °C for 2 day. The reaction was allowed to reach ambient temperature and concentrated in vacuo. The residue was subjected to column chromatography (SiO$_2$: DCM:i-PrOH, 10:1) to furnish the title compound (4j) as a colorless oil (20.9 mg) in 60% yield. The (2R,3R)-diastereomer (iso-4j) was obtained as a colorless oil (1.0 mg) in 3% yield.

1H NMR (400 MHz, CDCl$_3$) δ 6.00 (dd, $J = 17.8, 11.1$ Hz, 1H), 5.23 (dd, $J = 11.1, 1.3$ Hz, 1H), 5.11 (dd, $J = 17.8, 1.3$ Hz, 1H), 4.14 (br, 1H), 4.10-3.99 (m, 1H), 3.86 (dd, $J = 10.5, 2.0$ Hz, 1H), 3.71 (d, $J = 10.6$ Hz, 1H), 3.58 (d, $J = 10.7$ Hz, 1H), 3.23 (br, 1H), 2.83 (br, 1H), 1.58 (dt, $J = 14.4, 2.3$ Hz, 1H), 1.55-1.43 (m, 1H), 1.22 (d, $J = 6.2$ Hz, 3H), 1.02 (s, 3H).

13C NMR (100 MHz, CDCl$_3$) 140.0, 115.4, 79.2, 70.1, 69.5, 45.0, 39.2, 24.3, 18.4.

LRMS (ESI) Calcd. C$_9$H$_{18}$O$_3$Na for [M+Na]$^+$: 197.1, Found: 197.1.

FTIR (neat): 3343, 2967, 2920, 2879, 1457, 1417, 1375, 1317, 1161, 1121, 1073, 1031, 982, 917, 836, 680 cm$^{-1}$.
Detailed Procedures

An oven-dried pressure tube equipped with a magnetic stir bar was charged with K$_3$PO$_4$ (2.2 mg, 0.01 mmol, 5 mol%), (S)-Ir-IVb (11.0 mg, 0.01 mmol, 5 mol%), and (S)-butane-1,3-diol (18.0 mg, 0.2 mmol, 100 mol%). The reaction vessel was placed under an atmosphere of argon, and THF (0.2 mL, 1.0 M) and isoprene monoxide (79 µL, 0.8 mmol, 400 mol%) were added by syringe. The reaction vessel was sealed and the reaction mixture was allowed to stir at 60 °C for 2 day. The reaction was allowed to reach ambient temperature and concentrated \textit{in vacuo}. The residue was subjected to column chromatography (SiO$_2$: DCM:i-PrOH, 10:1) to furnish the title compound (iso-4j) as a colorless oil (23.0 mg) in 66% yield. The (2$S,3S$)-diastereomer (4j) was obtained as a colorless oil (1.3 mg) in 4% yield.

1H NMR (400 MHz, CDCl$_3$) δ 6.01 (dd, $J = 17.8$, 11.1 Hz, 1H), 5.23 (dd, $J = 11.0$, 1.2 Hz, 1H), 5.12 (dd, $J = 17.8$, 1.2 Hz, 1H), 4.23-4.07 (m, 1H), 3.97 (d, $J = 10.1$ Hz, 1H), 3.70 (d, $J = 10.7$ Hz, 1H), 3.66-3.50 (m, 2H), 3.14 (br, 1H), 2.84 (br, 1H), 1.68-1.55 (m, 1H), 1.49 (ddd, $J = 14.9$, 7.9, 1.8 Hz, 1H), 1.25 (d, $J = 6.2$ Hz, 3H), 0.99 (s, 3H).

13C NMR (100 MHz, CDCl$_3$) δ 140.0, 115.5, 73.7, 70.0, 65.5, 45.1, 39.1, 23.2, 18.0.

LRMS (ESI) Calcd. C$_9$H$_{18}$O$_3$Na for [M+Na]$^+$: 197.1, Found: 197.1.

FTIR (neat): 3345, 2966, 2925, 1457, 1417, 1374, 1127, 1084, 1029, 984, 916, 855, 835, 811, 680 cm$^{-1}$.

(2$R,3R,5S$)-2-methyl-2-vinylhexane-1,3,5-triol (iso-4j)
Synthesis of Myrcene Oxide 3c3

6-methyl-2-vinylhept-5-ene-1,2-diol (X1)

A solution of potassium permanganate (7.9 g, 50 mmol, 100 mol%) and benzyltri-\textit{n}-butylammonium chloride (15.6 g, 50 mmol, 100 mol%) in DCM (500 mL) was stirred at ambient temperature for 3 h. It was then cooled to -5 °C, and myrcene (15.4 mL, 90 mmol, 180 mol%) was added to the solution. The resulted mixture was stirred at this temperature overnight. Aqueous NaOH solution (1.5 M, 160 mL), NaHSO\textsubscript{3} solution (0.6 M, 200 mL), and H\textsubscript{2}SO\textsubscript{4} solution (1.0 M, 250 mL) was added in sequence to quench the reaction. The organic phase was separated and the aqueous phase was extracted with DCM (3 × 100 mL). The combined organic phases were washed with saturated NaHCO\textsubscript{3} solution (100 mL), and dried over anhydrous magnesium sulfate. The excessive myrcene was removed by a short plug of silica gel (hexanes:ethyl acetate, 5:1). The more polar residue was collected and subjected to column chromatography (SiO\textsubscript{2}: hexanes:Et\textsubscript{2}O, 2:1) to furnish the title compound as a colorless oil (0.95 g) in 11% yield.

1H NMR (400 MHz, CDCl\textsubscript{3}) δ 5.80 (dd, J = 17.4, 10.8 Hz, 1H), 5.34 (dd, J = 17.3, 1.4 Hz, 2H), 5.26 (dd, J = 10.8, 1.4 Hz, 1H), 5.10 (tq, J = 7.4, 1.4 Hz, 1H), 3.53-3.42 (m, 2H), 2.36 (br, 1H), 2.12-1.93 (m, 2H), 1.67 (d, J = 1.2 Hz, 3H), 1.65-1.57 (m, 4H), 1.50 (ddd, J = 13.8, 10.4, 5.5 Hz, 1H).

13C NMR (100 MHz, CDCl\textsubscript{3}) δ 140.6, 132.2, 124.1, 115.2, 76.2, 68.8, 36.7, 25.7, 22.0, 17.7.

2-hydroxy-6-methyl-2-vinylhept-5-en-1-yl 4-methylbenzenesulfonate (X2)

A solution of X1 (0.95 g, 5.6 mmol, 100 mol%) in pyridine (7.5 mL) was cooled to 0 °C and TsCl (1.28 g, 6.7 mmol, 120 mmol%) was added. The resulted mixture was stirred at 0 °C for 5 h. Aqueous HCl solution (1.2 M, 5 mL) was then added, and the mixture was extracted with Et\textsubscript{2}O (3 × 10 mL). The combined organic phase was washed with HCl (0.1 M, 10 mL) and brine (10 mL). It was dried over anhydrous sodium sulfate and concentrated \textit{in vacuo}. The residue was subjected to column chromatography (SiO\textsubscript{2}: hexanes:ethyl acetate, 7:1) to furnish the title compound as a colorless oil (1.50 g) in 83% yield.

1H NMR (400 MHz, CDCl\textsubscript{3}) δ 7.81-7.76 (m, 2H), 7.35 (d, J = 8.6 Hz, 2H), 5.73 (dd, J = 17.3, 10.8 Hz, 1H), 5.33 (dd, J = 17.3, 1.1 Hz, 1H), 5.23 (dd, J = 10.8, 1.1 Hz, 1H), 5.05 (tq, J = 7.2, 1.3 Hz, 1H), 3.89 (s, 2H), 2.45 (s, 3H), 2.10 (s, 1H), 2.07-1.89 (m, 2H), 1.68-1.58 (m, 4H), 1.56 (s, 3H), 1.49 (ddd, J = 13.9, 10.4, 5.6 Hz, 1H).

3 (a) Fauchet, V.; Arreguy-San Miguel, B.; Taran, M.; Delmond, B. \textit{Synth. Commun.} 1993, 23, 2503. (b) Löbermann, F.; Weisheit, L.; Trauner, D. \textit{Org. Lett.} 2013, 15, 4324.
1H NMR (400 MHz, CDCl$_3$) δ 5.77 (dd, J = 17.4, 10.8 Hz, 1H), 5.35 (dd, J = 17.4, 1.3 Hz, 1H), 5.22 (dd, J = 10.8, 1.3 Hz, 1H), 5.11 (tq, J = 7.1, 1.4 Hz, 1H), 2.82 (d, J = 5.3 Hz, 1H), 2.67 (d, J = 5.3 Hz, 1H), 2.10 (dd, J = 15.6, 7.6 Hz, 2H), 1.80-1.66 (m, 5H), 1.60 (s, 3H).

1C NMR (100 MHz, CDCl$_3$) δ 137.5, 132.1, 123.5, 116.5, 58.5, 55.1, 33.6, 25.7, 23.7, 17.7.

1C NMR (100 MHz, CDCl$_3$) δ 145.0, 138.7, 132.6, 132.6, 129.9, 128.0, 123.6, 116.0, 75.2, 74.3, 36.7, 25.7, 21.7, 21.7, 17.7.

2-(4-methylpent-3-en-1-yl)-2-vinyloxirane (3c)

A solution of X2 (1.57 g, 4.8 mmol, 100 mol%) in Et$_2$O was cooled to 0 °C and KOH powder (0.54 g, 9.6 mmol, 200 mol%) was added. The resulted slurry was vigorously stirred at 0 °C for 3 h. The reaction mixture was then filtered through a short plug of celite and washed with excessive Et$_2$O. The filtrate was carefully concentrated in vacuo (185 mbar, 0 °C). The residue was subjected to column chromatography (SiO$_2^4$: pentane:Et$_2$O, 200:1) to furnish the title compound (3c) as a colorless oil (0.63 g) in 83% yield.

1H NMR (400 MHz, CDCl$_3$) δ 5.77 (dd, J = 17.4, 10.8 Hz, 1H), 5.35 (dd, J = 17.4, 1.3 Hz, 1H), 5.22 (dd, J = 10.8, 1.3 Hz, 1H), 5.11 (tq, J = 7.1, 1.4 Hz, 1H), 2.82 (d, J = 5.3 Hz, 1H), 2.67 (d, J = 5.3 Hz, 1H), 2.10 (dd, J = 15.6, 7.6 Hz, 2H), 1.80-1.66 (m, 5H), 1.60 (s, 3H).

1C NMR (100 MHz, CDCl$_3$) δ 137.5, 132.1, 123.5, 116.5, 58.5, 55.1, 33.6, 25.7, 23.7, 17.7.

4 Sorbent standard silica gel (40-63 µm).
Detailed Procedures and Spectral Data for Couplings between 4-Bromobenzyl Alcohol (1a) and Other Vinyl Epoxides: Butadiene Monoxide (3b) and Myrcene Oxide (3c):

(1R,2S)-1-(4-bromophenyl)-2-vinylpropane-1,3-diol (5a)

Detailed Procedures

An oven-dried pressure tube equipped with a magnetic stir bar was charged with K$_3$PO$_4$ (2.2 mg, 0.01 mmol, 5 mol%), (R)-Ir-Ib (10.3 mg, 0.01 mmol, 5 mol%), and 4-bromobenzyl alcohol (37.4 mg, 0.2 mmol, 100 mol%). The reaction vessel was placed under an atmosphere of argon, and THF (0.4 mL, 0.5 M) and butadiene monoxide (32 µL, 0.4 mmol, 200 mol%) were added by syringe. The reaction vessel was sealed and the reaction mixture was allowed to stir at 60 °C for 1 day. The reaction was allowed to reach ambient temperature and concentrated in vacuo. The residue was subjected to column chromatography (SiO$_2$: DCM:ethyl acetate, 10:1) to furnish the title compound as a yellow oil (32.3 mg, anti:syn = 5:1) in 63% yield.

1H NMR (400 MHz, CDCl$_3$) δ 7.47 (d, J = 8.4 Hz, 2H), 7.21 (d, J = 8.4 Hz, 2H), 5.78 (ddd, J = 17.2, 10.8, 8.4 Hz, 1H), 5.24 (dd, J = 10.8, 1.6 Hz, 1H), 5.13 (dd, J = 17.2, 1.6 Hz, 1H), 4.84 (d, J = 5.2 Hz, 1H), 3.66 (m, 2H), 2.73 (br, 1H), 2.58-2.51 (m, 1H), 1.90 (br, 1H).

13C NMR (100 MHz, CDCl$_3$) δ 141.1, 134.5, 131.3, 128.1, 121.4, 119.9, 74.3, 63.8, 53.1.

HPLC (two connected Chiralcel OC-H columns, hexanes:i-PrOH = 90:10, 0.50 mL/min, 230 nm), anti:syn = 5:1, ee = 94%.

The spectroscopic properties of this compound were consistent with the data available in the literature.5

5 Zhang, Y. J.; Yang, J. H.; Kim, S. H.; Krische, M. J. J. Am. Chem. Soc. 2010, 132, 4562.
Peak RetTime Type Width Area Height Area
[min] [min] [mAU*s] [mAU] %
1 31.070 VV 0.5718 5.27088e4 1464.98840 43.5267
2 32.945 VV 0.6643 5.41713e4 1294.19458 44.7344
3 34.347 VV 0.5530 7082.66064 198.15199 5.8488
4 35.376 MF 0.6306 7132.60547 188.50462 5.8901

Peak RetTime Type Width Area Height Area
[min] [min] [mAU*s] [mAU] %
1 31.332 VV 0.6642 1289.96228 28.06549 2.3364
2 33.206 MF 0.6804 4.57839e4 1121.45105 82.9228
3 34.293 FM 0.3785 779.22272 34.31005 1.4113
4 35.570 VV 0.5953 7359.58105 190.23361 13.3295
(1S,2S)-1-(4-bromophenyl)-2-(4-methylpent-3-en-1-yl)-2-vinylpropane-1,3-diol (5b)

Detailed Procedures

An oven-dried pressure tube equipped with a magnetic stir bar was charged with K$_3$PO$_4$ (1.1 mg, 0.005 mmol, 5 mol%), (R)-Ir-IVb (5.5 mg, 0.005 mmol, 5 mol%), and 4-bromobenzyl alcohol (18.7 mg, 0.1 mmol, 100 mol%). The reaction vessel was placed under an atmosphere of argon, and THF (0.1 mL, 1.0 M) and myrcene oxide 3e (60.9 mg, 0.4 mmol, 400 mol%) were added by syringe. The reaction vessel was sealed and the reaction mixture was allowed to stir at 45 °C for 2 day. The reaction was allowed to reach ambient temperature and concentrated in vacuo. The residue was subjected to column chromatography (SiO$_2$: DCM:i-PrOH, 200:1) to furnish the title compound as a colorless oil (32.0 mg, anti:syn > 20:1) in 94% yield.

1H NMR (400 MHz, CDCl$_3$) δ 7.46-7.40 (m, 2H), 7.23-7.15 (m, 2H), 5.62 (dd, J = 18.0, 11.3 Hz, 1H), 5.21 (dd, J = 11.3, 1.0 Hz, 1H), 5.07 (ddq, J = 8.4, 5.6, 1.3 Hz, 1H), 4.89 (dd, J = 18.0, 1.0 Hz, 1H), 4.71 (s, 1H), 3.86 (d, J = 11.0 Hz, 1H), 3.64 (d, J = 11.0 Hz, 1H), 3.09 (br, 1H), 2.31 (br, 1H), 1.95 (dd, J = 16.0, 7.5 Hz, 2H), 1.73-1.63 (m, 4H), 1.58 (s, 3H), 1.37-1.28 (m, 1H).

13C NMR (100 MHz, CDCl$_3$) δ 139.8, 138.2, 131.8, 130.7, 129.6, 124.3, 121.4, 116.5, 79.2, 64.6, 48.2, 32.5, 25.7, 22.3, 17.7.

LRMS (ESI) Calcd. for C$_{17}$H$_{23}$BrO$_2$Na [M+Na]$^+$: 361.1, Found: 361.1.

FTIR (neat): 3347, 2969, 2924, 1487, 1448, 1404, 1376, 1072, 1037, 1010, 919, 836, 760, 670 cm$^{-1}$.

HPLC (two connected Chiralcel OC-H column, hexanes:i-PrOH = 98:2, 0.75 mL/min, 230 nm), anti:syn = 40:1, ee = 87%.
Crystallographic Material for 4a-acetonide

X-ray Experimental for C₁₅H₁₉O₂Br (4a-acetonide)

Crystals grew as colorless prisms by slow evaporation from n-hexanes. The data crystal had approximate dimensions; 0.35 x 0.13 x 0.05 mm. The data were collected on a Rigaku AFC12 diffractometer with a Saturn 724+ CCD using a graphite monochromator with MoKα radiation (λ = 0.71073Å). A total of 1192 frames of data were collected using ω-scans with a scan range of 0.5° and a counting time of 45 seconds per frame. The data were collected at 100 K using a Rigaku XStream low temperature device. Details of crystal data, data collection and structure refinement are listed in Table 1. Data reduction were performed using the Rigaku Americas Corporation’s Crystal Clear version 1.40. The structure was solved by direct methods using SIR97 and refined by full-matrix least-squares on F² with anisotropic displacement parameters for the non-H atoms using SHELXL-97. Structure analysis was aided by use of the programs PLATON98 and WinGX. The hydrogen atoms on carbon were calculated in ideal positions with isotropic displacement parameters set to 1.2xUeq of the attached atom (1.5xUeq for methyl hydrogen atoms).

The absolute configuration of 4a-acetonide was determined by the method of Flack. The Flack x-parameter refined to 0.016(8). The assignment was corroborated by use of the Hooft y-parameter, which refined to 0.020(6).

The function, Σw(|F₀|² - |Fc|²)², was minimized, where w = 1/[σ(FO)² + (0.0234*P)² + (0.1828*P)] and P = ([FO]² + 2|Fc|²)/3. Rw(F²) refined to 0.0512, with R(F) equal to 0.0201 and a goodness of fit, S, =

6 CrystalClear 1.40 (2008). Rigaku Americas Corporation, the Woodlands, TX.
7 Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, G. L.; Giacovazzo, C.; Guagliardi, A.; Moliterni, A. G. G.; Polidori, G.; Spagna, R. J. Appl. Cryst. 1999, 32, 115.
8 Sheldrick, G. M. Acta Cryst. 2008, A64, 112.
9 Spek, A. L. (1998). PLATON, A Multipurpose Crystallographic Tool. Utrecht University, the Netherlands.
10 Farrugia, L. J. J. Appl. Cryst. 1999, 32, 837.
11 Flack, H. D. Acta Cryst. 1983, A39, 876.
12 Hooft, R. W. W.; Straver, L. H.; Spek, A. L. J. Appl. Cryst. 2008, 41, 96.
Definitions used for calculating $R(F)$, $R_w(F^2)$ and the goodness of fit, S, are given below.\(^{13}\) The data were checked for secondary extinction effects but no correction was necessary. Neutral atom scattering factors and values used to calculate the linear absorption coefficient are from the International Tables for X-ray Crystallography (1992).\(^{14}\) All figures were generated using SHELXTL/PC.\(^{15}\) Tables of positional and thermal parameters, bond lengths and angles, torsion angles and figures are found elsewhere.

\[^{13}\] $R_w(F^2) = \left\{ \sum w(|F_o|^2 - |F_c|^2)^2 / \sum w(|F_o|)^4 \right\}^{1/2}$ where w is the weight given each reflection. $R(F) = \sum (|F_o| - |F_c|) / \sum |F_o|$ for reflections with $F_o > 4(\sigma(F_o))$. $S = \left[\sum w(|F_o|^2 - |F_c|^2)^2 / (n - p) \right]^{1/2}$, where n is the number of reflections and p is the number of refined parameters.

\[^{14}\] Wilson, A. J. C. *International Tables for X-ray Crystallography*; Kluwer Academic Press: Boston, 1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4.

\[^{15}\] Sheldrick, G. M. (1994). SHELXTL/PC (Version 5.03). Siemens Analytical X-ray Instruments, Inc., Madison, Wisconsin, USA.
Table 1. Crystal data and structure refinement for 4a-acetonide.

Property	Value
Empirical formula	C_{15}H_{19}BrO_{2}
Formula weight	311.21
Temperature	100(2) K
Wavelength	0.71073 Å
Crystal system	orthorhombic
Space group	P 2 1 2 1 2 1
Unit cell dimensions	a = 7.051(3) Å, b = 12.646(5) Å, c = 16.338(5) Å
	a = 90°, b = 90°, g = 90°
Volume	1456.9(9) Å
Z	4
Density (calculated)	1.419 Mg/m³
Absorption coefficient	2.814 mm⁻¹
F(000)	640
Crystal size	0.350 x 0.130 x 0.050 mm
Theta range for data collection	3.147 to 27.460°
Index ranges	-9 <= h <= 9, -16 <= k <= 15, -21 <= l <= 21
Reflections collected	19873
Independent reflections	3327 [R(int) = 0.0445]
Completeness to theta = 25.242°	99.8%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.00 and 0.770
Refinement method	Full-matrix least-squares on F²
Data / restraints / parameters	3327 / 0 / 167
Goodness-of-fit on F²	1.082
Final R indices [I>2sigma(I)]	R1 = 0.0201, wR2 = 0.0508
R indices (all data)	R1 = 0.0209, wR2 = 0.0512
Absolute structure parameter	0.016(8)
Extinction coefficient	n/a
Largest diff. peak and hole	0.223 and -0.216 e Å⁻³
Table 2. Atomic coordinates ($x \times 10^4$) and equivalent isotropic displacement parameters ($\AA^2 \times 10^3$) for 4a-acetonide. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x	y	z	U(eq)
C1	6572(4)	4143(2)	1332(1)	19(1)
C2	8152(3)	5825(2)	1200(1)	16(1)
C3	9329(3)	5616(2)	1990(1)	18(1)
C4	9483(3)	4403(2)	2053(1)	21(1)
C5	4593(3)	3739(2)	1508(2)	26(1)
C6	7389(4)	3632(2)	565(2)	28(1)
C7	7697(3)	6980(2)	1063(1)	16(1)
C8	6091(3)	7444(2)	1413(1)	18(1)
C9	5729(3)	8518(2)	1313(1)	20(1)
C10	7005(3)	9117(2)	864(1)	20(1)
C11	8585(4)	8684(2)	498(1)	22(1)
C12	8925(3)	7604(2)	603(1)	20(1)
C13	8300(3)	6025(2)	2736(1)	22(1)
C14	8987(4)	6708(2)	3269(2)	30(1)
C15	11319(3)	6071(2)	1898(2)	25(1)
Br1	6540(1)	10594(1)	740(1)	28(1)
O1	6386(2)	5263(1)	1236(1)	18(1)
O2	7659(2)	3906(1)	2044(1)	20(1)
Table 3. Bond lengths [Å] and angles [°] for 4a-acetonide.

Bond	Length	Bond	Length
C1-O2	1.425(3)	C6-H6C	0.98
C1-O1	1.432(2)	C7-C12	1.392(3)
C1-C5	1.513(3)	C7-C8	1.398(3)
C1-C6	1.523(3)	C8-C9	1.390(3)
C2-O1	1.434(2)	C8-H8	0.95
C2-C7	1.512(3)	C9-C10	1.386(3)
C2-C3	1.557(3)	C9-H9	0.95
C2-H2	1.00	C10-C11	1.378(3)
C3-C13	1.510(3)	C10-Br1	1.907(2)
C3-C15	1.523(3)	C11-C12	1.397(3)
C3-C4	1.542(3)	C11-H11	0.95
C4-O2	1.432(3)	C12-H12	0.95
C4-H4A	0.99	C13-C14	1.320(3)
C4-H4B	0.99	C13-H13	0.95
C5-H5A	0.98	C14-H14A	0.95
C5-H5B	0.98	C14-H14B	0.95
C5-H5C	0.98	C15-H15A	0.98
C6-H6A	0.98	C15-H15B	0.98
C6-H6B	0.98	C15-H15C	0.98
O2-C1-O1	110.33(17)	C13-C3-C15	113.13(19)
O2-C1-C5	105.68(17)	C13-C3-C4	108.68(18)
O1-C1-C5	105.71(19)	C15-C3-C4	108.51(17)
O2-C1-C6	112.3(2)	C13-C3-C2	110.76(17)
O1-C1-C6	111.36(17)	C15-C3-C2	110.24(17)
C5-C1-C6	111.17(19)	C4-C3-C2	105.17(17)
O1-C2-C7	107.48(16)	O2-C4-C3	111.93(16)
O1-C2-C3	110.13(16)	O2-C4-H4A	109.2
C7-C2-C3	113.55(17)	C3-C4-H4A	109.2
O1-C2-H2	108.5	O2-C4-H4B	109.2
C7-C2-H2	108.5	C3-C4-H4B	109.2
C3-C2-H2	108.5	H4A-C4-H4B	107.9
Bond	Angle	Bond	Angle
-----------------------------	---------	-----------------------------	---------
C1-C5-H5A	109.5	C11-C10-Br1	118.81(16)
C1-C5-H5B	109.5	C9-C10-Br1	118.71(17)
H5A-C5-H5B	109.5	C10-C11-C12	118.3(2)
C1-C5-H5C	109.5	C10-C11-H11	120.8
H5A-C5-H5C	109.5	C12-C11-H11	120.8
H5B-C5-H5C	109.5	C7-C12-C11	120.9(2)
C1-C6-H6A	109.5	C7-C12-H12	119.6
C1-C6-H6B	109.5	C11-C12-H12	119.6
H6A-C6-H6B	109.5	C14-C13-C3	125.5(2)
C1-C6-H6C	109.5	C14-C13-H13	117.3
H6A-C6-H6C	109.5	C3-C13-H13	117.3
H6B-C6-H6C	109.5	C13-C14-H14A	120.0
C12-C7-C8	119.1(2)	C13-C14-H14B	120.0
C12-C7-C2	119.71(19)	H14A-C14-H14B	120.0
C8-C7-C2	121.15(19)	C3-C15-H15A	109.5
C9-C8-C7	120.7(2)	C3-C15-H15B	109.5
C9-C8-H8	119.6	H15A-C15-H15B	109.5
C7-C8-H8	119.6	C3-C15-H15C	109.5
C10-C9-C8	118.5(2)	H15A-C15-H15C	109.5
C10-C9-H9	120.8	H15B-C15-H15C	109.5
C8-C9-H9	120.8	C1-O1-C2	114.55(17)
C11-C10-C9	122.5(2)	C1-O2-C4	113.51(16)
Table 4. Anisotropic displacement parameters (Å² x 10³) for 4a-acetonide. The anisotropic displacement factor exponent takes the form: -2\(p^2\) [h²a*²U₁₁ + ... + 2hka*b*U₁₂]

	U₁₁	U₂₂	U₃₃	U₁₂	U₁₃	U₂₃
C1	20(1)	15(1)	21(1)	3(1)	0(1)	-1(1)
C2	16(1)	16(1)	17(1)	0(1)	2(1)	-1(1)
C3	18(1)	17(1)	20(1)	2(1)	-1(1)	1(1)
C4	14(1)	18(1)	31(1)	3(1)	-2(1)	1(1)
C5	20(1)	26(1)	31(1)	9(1)	-2(1)	-5(1)
C6	37(1)	18(1)	28(1)	-2(1)	6(1)	-5(1)
C7	19(1)	16(1)	13(1)	0(1)	-1(1)	-1(1)
C8	19(1)	20(1)	16(1)	2(1)	1(1)	1(1)
C9	21(1)	22(1)	17(1)	-1(1)	-4(1)	3(1)
C10	26(1)	15(1)	19(1)	0(1)	-8(1)	0(1)
C11	26(1)	20(1)	21(1)	4(1)	1(1)	-5(1)
C12	22(1)	20(1)	18(1)	0(1)	5(1)	0(1)
C13	21(1)	24(1)	19(1)	4(1)	-2(1)	3(1)
C14	36(1)	28(1)	24(1)	-1(1)	-7(1)	10(1)
C15	18(1)	21(1)	36(1)	1(1)	-1(1)	0(1)
Br1	35(1)	14(1)	35(1)	1(1)	-13(1)	2(1)
O1	17(1)	16(1)	20(1)	2(1)	-1(1)	-2(1)
O2	18(1)	19(1)	24(1)	6(1)	-1(1)	-1(1)
Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å^2 x 10^3) for 4a-acetonide.

	x	y	z	U(eq)
H2	8888	5560	719	20
H4A	10246	4133	1589	25
H4B	10149	4215	2566	25
H5A	4641	2976	1613	39
H5B	3775	3877	1035	39
H5C	4082	4102	1990	39
H6A	8687	3885	479	42
H6B	6605	3820	92	42
H6C	7400	2862	632	42
H8	5237	7022	1722	22
H9	4632	8833	1547	24
H11	9421	9109	183	27
H12	10010	7292	357	24
H13	7052	5769	2828	26
H14A	10230	6984	3199	36
H14B	8240	6924	3723	36
H15A	11250	6844	1885	37
H15B	11886	5813	1389	37
H15C	12100	5847	2363	37

Table 6. Torsion angles [°] for 4a-acetonide.

Torsion Angle	Value 1	Value 2	Value 3
O1-C2-C3-C13	-62.6(2)	C9-C10-C11-C12	-1.5(3)
C7-C2-C3-C13	57.9(2)	Br1-C10-C11-C12	179.15(17)
O1-C2-C3-C15	171.38(17)	C8-C7-C12-C11	0.9(3)
C7-C2-C3-C15	-68.0(2)	C2-C7-C12-C11	-177.0(2)
O1-C2-C3-C4	54.6(2)	C10-C11-C12-C7	0.2(3)
C7-C2-C3-C4	175.18(17)	C15-C3-C13-C14	0.3(3)
C13-C3-C4-O2	63.4(2)	C4-C3-C13-C14	120.9(2)
C15-C3-C4-O2	-173.18(17)	C2-C3-C13-C14	-124.1(2)
C2-C3-C4-O2	-55.2(2)	O2-C1-O1-C2	56.3(2)
O1-C2-C7-C12	-146.97(19)	C5-C1-O1-C2	170.15(17)
C3-C2-C7-C12	91.0(2)	C6-C1-O1-C2	-69.0(2)
O1-C2-C7-C8	35.2(3)	C7-C2-O1-C1	177.67(16)
C3-C2-C7-C8	-86.9(2)	C3-C2-O1-C1	-58.2(2)
C12-C7-C8-C9	-0.7(3)	O1-C1-O2-C4	-55.3(2)
C2-C7-C8-C9	177.14(19)	C5-C1-O2-C4	-169.07(17)
C7-C8-C9-C10	-0.5(3)	C6-C1-O2-C4	69.6(2)
C8-C9-C10-C11	1.7(3)	C3-C4-O2-C1	58.0(2)
C8-C9-C10-Br1	-179.02(16)		
Figure 1. View of 4a-acetonide showing the atom labeling scheme. Displacement ellipsoids are scaled to the 50% probability level.