Supply Chain Performance Measurement Using Supply Chain Operation Reference (SCOR) in Sugar Company in Indonesia

E Kusrini1, V N Helia1,*, M P Maharani1
1Industrial Engineering Department, Faculty of Industrial Technology, Universitas Islam Indonesia, Yogyakarta, Indonesia
*Email : vembri@uii.ac.id

Abstract. This study aims to measure supply chain performance by using SCOR (Supply Chain Operation Reference), a process-based model. It focuses on five business processes namely Plan, Source, Make, Deliver, and Return. There are 45 KPIs grouped into 5 main KPI attributes: Reliability, Responsiveness, Agility, Cost, and Asset Management. In order to get a more precise performance value, then weighted by using Analytical Hierarchy Process (AHP) method. The final value is obtained from the multiplication of the value of performance by the weight of importance. This study was conducted by taking a case study at one of the sugar company in Indonesia. The results of this study indicate that the supply chain performance of the sugar company is in a good category with the final grade of 70.94 from the 0-100 scale. Value of each process consecutively as follows: Plan 18.47, Source 16.12, Make 10.73, Deliver 10.79, and Return 7.1. Some recommendations are given to the company for evaluation and refinement focused on low business process values.

1. Introduction

XYZ Ltd is one sugar-cane based agroindustry company. The company has a sugar factory and a spiritus factory. Industry in the field of sugar production is one promising industry because sugar is one of the staple food needs used by humans every day. At present, the sugar-producing industry is increasing in number. In addition, demand for products, especially sugar, continues to increase. This is evidenced by the comparison between total production and total consumption. According to the Executive Director of the Indonesian Sugar Association (AGI), the need for sugar for both household and industrial will continue to increase in line with the increasing population. This phenomenon requires companies to rearrange their business strategies and tactics. Therefore, companies need to think about how to implement processes in producing products that are better, faster, and cheaper than other competitors.

Based on observations there are problems in the supply chain XYZ Ltd. These problems come from suppliers and consumers. Judging from the aspect of suppliers, the quality of sugar cane supplied is quite a lot which has not been in accordance with the standards for the production process. Usually, the sugar cane is damaged like wilting, too young, and the condition is dirty, causing low water content and sugar cane is not good. In addition, the weather factor is also a determinant of the quality of sugarcane, when it is in the rainy season it will usually result in increased sugarcane growth rates and affect the quality
of sugarcane due to decreased yield levels. Furthermore, from the aspect of the consumer where there are still products returned by consumers due to damage or return products.

From the problems found in the aspects of supply chain performance, it can be concluded that supply chain performance is less efficient. It is necessary to evaluate the supply chain system at XYZ Ltd as a whole so that the company know the supply chain conditions and improve the supply chain process going forward. Some companies carry out supply chain analysis in improving their performance to gain competitive advantages [1]. Performance measurement is also carried out for many studies [2]. The Hellenic Sugar Industry (HSI) conducts a combination of supply chain analysis with analysis of customer demand, logistics costs and the development of suitable transportation models [3]. Many methods of supply chain performance measurement system (SCPMS). One method of measuring supply chain performance is using processes, where the activities of business processes are used to identify performance measures and metrics [4]. SCOR (Supply Chain Operation Reference) provides standard process definitions, including terminology and metrics [5]. The Supply Chain Council develops SCOR that aims to evaluate supply chains. SCOR also provides usual performance framework, standard terminology, and optimum practices [6]. SCOR also has advantages in terms of process details and can be used for benchmarks. Some SCOR applications are widely used in many industries, one of them in Taiwan [7]. The SCOR model is a useful tool and is widely followed by the manufacturing industry [8], but it is not easy to apply it. For example, the application of SCOR in the construction industry [9].

One process and other processes in the supply chain has a different critical level [10]. To be able to distinguish priorities between processes, one weighting method is used, namely the Analytical Hierarchy Process [11]. Thus, the supply chain can also be combined with the Analytical Hierarchy Process (AHP) to overcome various problems, such as in the poultry supply chain [12]. SCOR with AHP (Analytical Hierarchy Process) and fuzzy AHP to create a valuation model in risk uncertainty in the supply chain of body manufacturing bus [13]. SCOR is also quite extensive in its application if it is associated with environmental issues, namely green SCOR [14]. Therefore, in this study using SCOR and AHP in measuring performance in sugar companies and providing recommendations on improvements in order to improve the efficiency of supply chain performance at XYZ Ltd.

2. Methodology

The focus of the study is the measurement of supply chain performance using SCOR 11.0 [15] and AHP methods [11]. The K-Chart research explains in detail the research focus and state of the art from this research. The measurement of supply chain performance using the SCOR and AHP method. K-Chart describes that the type of manufacturing or the object of research is the food industry with products, namely sugar. In the next sequence is the type of production where the company uses the type of production of MTS (Make To Stock). Then, the aspects to be analyzed are economic aspects with the method chosen is SCOR 11.0.

The research stage is as follow in figure 1. Firstly, mapping the business process with SCOR approach. The SCOR approach has a plan, source, make, deliver, return, and enable activities. Then, the next stage is designing performance metrics. In evaluating using SCOR there are several parameters including reliability, responsiveness, agility, cost and asset management. These parameters needed many data. The reliability data related to fulfilling the perfect order needed, such as demand data, forecasting data, on-time delivery, timelines of order receipt, verification of the number and quality of products from suppliers, verify the number and quality of return products from the customer. The responsiveness data in this paper means cycle time in completing orders from consumers. It is obtained directly from production, marketing, purchasing, and installation. There are procurement cycle time, production cycle time, delivery cycle time, and return cycle time. The agility data is data added time that needed by the company to complete orders from consumers. The cost data is data on total expenditure cost incurred every period. Assets management data has to do with cash to cash cycle time, which is the time required in its business cycle. Supporting data are pending sales day, inventory supply data, etc.

The AHP method in this study is used for weighting wherein the results of SCOR and AHP will be integrated so that the results of the supply chain performance from the company are obtained. To be
able to understand the meaning of the calculation results, an analysis is performed for each of the performance attributes.

Problem formulation	Mapping business processes with SCOR approach	Designing performance metrics	AHP weighting	Final calculation of supply chain performance	Analysis of each attribute in supply chain metrics

Figure 1. Research stage

3. Result and Discussion

3.1. Mapping Business Processes with the SCOR Approach

This study uses the SCOR approach to supply chain measurement. Therefore, it is necessary to map business processes first. Starting from level one and level two to the third level accompanied by business metrics. Table 1 shows the mapping of XYZ Ltd business processes at level 1 and level 2 using SCOR. Then, the whole process and sub-process are summarized into one in the supply chain flow pattern using the SCOR approach (figure 2).

Table 1. Mapping Business Processes XYZ Ltd

No.	Business Process	SCOR Level 1	SCOR Level 2	Implementing
1	Plan	Plan	Plan Make	Director, Department
2	Supply	Source	Source Stocked Product	Farming Facility & Planting Section, Warehouse Section, Accounting & Finance Section
3	Production	Make	Make to stock	Fabrication Section, Installation Section
4	Distribution	Deliver	Deliver Stocked Product	Marketing Section, Sugar Warehouse Section
5	Return	Return	Deliver Return Defective Product	Marketing Section, Sugar Warehouse Section
6	Management	Enable	Manage Performance	Director, Department

Figure 2. Supply Chain Flow Pattern With SCOR Approach
3.2. Designing Performance Metrics

Each process has a performance metric obtained from the SCOR approach. In addition, based on the mapping of previous business processes, it can be identified as the factors that influence the supply chain performance assessment of XYZ Ltd. This is defined as the performance attributes of each metric. The specific description of each process and the classification of metrics into performance attributes can be explained as follows (Table 2).

NO.	Level 1 SCOR	Level 2 SCOR	METRIC	PERFORMANCE ATTRIBUTE
1	PLAN	Plan Make	RL 3.37 Forecast Accuracy	RELIABILITY
2	SOURCE	Source Stocked Product	RS 3.42 Identify, prioritize, and aggregate production requirement cycle time	RELIABILITY
3			RS 3.16 Identify, assess, and aggregate production resources cycle time	RESPONSIVENESS
4			RS 3.13 Balance production resource with production requirement cycle time	RESPONSIVENESS
5			RS 3.28 Establish production plans cycle time	RESPONSIVENESS
6			RL 3.18 %Order/lines processed complete	RELIABILITY
7			RL 3.20 %Order/lines received on-time to demand requirement	RELIABILITY
8			RL 3.24 %Order/lines received damage free	RESPONSIVENESS
9			RL 3.21 %Order/lines received with correct content	RESPONSIVENESS
10			RL 3.25 %Product transferred on-time to demand requirement	RESPONSIVENESS
11			RS 3.14 Verify product cycle time	RESPONSIVENESS
12			RS 3.8 Authorize supplier payment cycle time	RESPONSIVENESS
13			CO 3.009 Purchased material cost	COST
14			AM 3.16 Inventory days of supply raw material	ASSET MANAGEMENT
15			RL 3.39 Scheduling achievement	RELIABILITY
16			RL 3.58 Yield	RELIABILITY
17			RS 3.49 Issue material cycle time	RESPONSIVENESS
18			RS 3.101 Produce & test cycle time	RESPONSIVENESS
19			RS 3.142 Package cycle time	RESPONSIVENESS
20			RS 3.114 Release finished product to deliver cycle time	RESPONSIVENESS
21			CO 3.014 Production labor cost	COST
22			CO 3.016 Production property, plant, & equipment cost	COST
23			AM 3.9 Capacity utilisation	ASSET MANAGEMENT
24			RL 3.33 Delivery item accuracy	RELIABILITY
25			RL 3.34 Delivery location accuracy	RELIABILITY
26			RL 3.35 Delivery quantity accuracy	RELIABILITY
27			RL 3.41 Orders delivered damaged free conformance	RESPONSIVENESS
28			RL 3.50 Shipping documentation accuracy	RESPONSIVENESS
29			RS 3.100 Process inquiry & quote cycle time	RESPONSIVENESS
30			RS 3.112 Receive, enter, & validate order cycle time	RESPONSIVENESS
31			RS 3.116 Reserve resources & determine delivery date cycle time	RESPONSIVENESS
32			RS 3.18 Consolidate orders cycle time	RESPONSIVENESS
33			RS 3.16 Build loads cycle time	RESPONSIVENESS
34			RS 3.126 Ship product cycle time	RESPONSIVENESS
35			RS 3.102 Receive & verify product by customer cycle time	RESPONSIVENESS
36			AG 3.32 Current delivery volume	AGILITY
37			CO 3.022 Transportation cost	COST
38			AM 3.45 Inventory days of supply finished goods	ASSET MANAGEMENT
39			AG 3.31 Current delivery return volume	RESPONSIVENESS
40			RS 3.19 Current return order return cycle time	RESPONSIVENESS
41			RS 3.104 Receive defective product cycle time	RESPONSIVENESS
42			RS 3.136 Transfer defective product cycle time	RESPONSIVENESS
43			AG 3.31 Current defective product cycle time	AGILITY
44			RS 3.78 Manage production performance cycle time	RESPONSIVENESS
45			CO 3.017 Production GRC, inventory & overhead cost	COST

The Plan process has a subprocess namely Plan Make. The metrics in this sub-process are: (1) Forecast accuracy with the attributes of Reliability; (2) Identify, prioritize, and aggregate cycle time production requirements; (3) Identify, assess and aggregate cycle time production resources; (4) Balance production resources with cycle time production requirements; and (5) Establish cycle time production plans with Responsiveness attributes. The Source process has subprocesses there are Source Stocked Products, the metrics in this subprocess are: (6) % Orders/lines processed complete; (7) % Orders/lines received on-time to demand requirements, (8) % Orders/lines received defect free; (9) % Orders/lines received with correct content; (10) Product transferred on-time to demand requirements with
Reliability attributes; (11) Verify cycle time products; (12) Authorize cycle time payment suppliers with Responsiveness attributes; (13) Purchased material costs with Cost attributes; (14) Inventory days of supply raw material with Asset Management attributes.

The Make process has subprocess namely Make to Stock. The metrics in this subprocess are: (15) Schedule Achievement; (16) Yield with Reliability attribute; (17) Issue material cycle time; (18) Produce and test cycle time; (19) Package cycle time; (20) Release finished product to deliver cycle time with Responsiveness attribute; (21) Production labor cost; (22) Production property, plant, and equipment cost with the attribute Cost; (23) Capacity utilization with the Asset Management attribute. Deliver process has sub-processes, namely Deliver Stocked Product. The metrics in this subprocess are: (24) Delivery item accuracy; (25) Delivery location accuracy; (26) Delivery quantity accuracy; (27) Orders delivered defect-free conformance; (28) Shipping documentation accuracy with Reliability; (29) Process inquiry and quote cycle time; (30) Receive, enter, and validate orders cycle time; (31) Reserve resources & determine delivery date cycle time; (32) Consolidate orders cycle time; (33) Build loads cycle time; (34) Ship products cycle time; (35) Receive & verify products by customer cycle time with Responsiveness attributes; (36) Current delivery volumes with Agility attributes; (37) Transportation costs with Cost; (38) Inventory days of supply finished goods with attribute Asset Management.

Table 3. Results of XYZ Ltd Score Calculation

L1	Metric Name	Final Score	Weight	Score	Total
PLAN	Reliability	91.69	0.67	61.43	92.37
	Responsiveness	93.75	0.33	30.94	
SOURCE	Reliability	99.83	0.33	32.94	76.79
	Responsiveness	63.77	0.22	14.03	
	Cost	55.28	0.25	13.82	
	Asset Management	80	0.20	16	
MAKE	Reliability	53.24	0.36	19.17	63.14
	Responsiveness	70.1	0.22	15.42	
	Cost	38.89	0.22	8.55	
	Asset Management	100	0.20	20	
DELIVER	Reliability	99.98	0.30	30	71.94
	Responsiveness	69.86	0.29	20.26	
	Agility	66.67	0.12	8	
	Cost	55.39	0.20	11.08	
	Asset Management	28.95	0.09	2.6	
RETURN	Responsiveness	86.8	0.70	60.76	70.76
	Agility	33.33	0.30	10	
ENABLE	Responsiveness	50	0.47	23.5	42.94
	Cost	36.69	0.53	19.44	
The Return process has subprocesses namely Deliver Return Defective Product. The metrics in this subprocess are: (39) Authorize defective product return cycle time; (40) Current customer return order cycle time; (41) Receive defective product cycle time; (42) Transfer defective product cycle time with Responsiveness attribute; (43) Current deliver return volume with Agility attribute. The Enable process has subprocesses that are Manage Performance. The metrics in this subprocess are: (44) Manage production performance cycle time with Responsiveness; (45) Production GRC attributes, inventory, and overhead costs with Cost attributes. So, there are 45 metrics from 6 processes in the implementation of SCOR at XYZ Ltd.

3.3. AHP weighting
The scores for each attribute in table 3 obtained from the previous calculation. The weight used is the result of weighting calculations on level 2 using the AHP method. AHP calculations are performed on levels 1, 2 and 3, where weighting at level 3 is given the assumption that each metric has the same important weight. The data used amounted to 4 people, therefore in the previous calculation also used Geometric Mean method to find the average value of paired comparison. After that, a consistency test is also carried out where if the value of Consistency Ratio (CR) less than 0.1, then the data is declared true or consistent. Based on the results of this attribute score calculation, a score can be obtained for each process, where the score of this process will be recalculated to determine the final measurement of the supply chain performance.

3.4. Final Calculation of Supply Chain Performance
The final calculation of supply chain performance is obtained from the calculation of the results of SCOR calculations with AHP. Based on the calculation, it can be obtained the final score for the performance of the XYZ Ltd supply chain is 70.94 that can be seen in table 4. The data used is the total score for each process multiplied by the weight of each process. The weight is obtained from the weighting results at level 1 using the AHP method.

Process	Total Score	Weight	Final Score
Plan	92.37	0.20	18.47
Source	76.79	0.21	16.12
Make	63.14	0.17	10.73
Deliver	71.94	0.15	10.79
Return	70.76	0.10	7.1
Enable	42.94	0.18	7.73
Total			70.94

3.5. Analysis of Each Attribute in Supply Chain Metrics
Table 4 indicates the value of attribute scores in each process. The Plan process has two attributes. There is Reliability with a score of 91.69 and Responsiveness 93.75. This shows that for planning XYZ Ltd is good in terms of accuracy and time efficiency. However, there are still some attributes that still score below 70 including the Source process with the attributes of Responsiveness and Cost. Then, Make process with attributes Reliability and Cost, Deliver process with attributes of Responsiveness, Agility, Cost, and Asset Management, Return process with attribute Agility, and finally, Enable process with the attributes of Responsiveness and Cost.
Therefore, the company needs to evaluate and improve so that the company's supply chain performance can be better. Suggestions for improvements are improvements focused first on sugar cane farmers because to produce sugar the main raw material used is sugar cane. Thus, sugar cane is the most important thing in the continuity of production at XYZ Ltd. It is important to always maintain the quality and continuity of sugarcane from sugar cane farmers so that in the future XYZ Ltd can maintain the quality of sugar produced with the maximum production target according to achieve. It is also necessary to improve the quality of the Source process. Identification of key performance indicators and best practices that conducted an analysis of level 3 (metric) needs to be done. In modeling the Source process a Design Chain Operation Reference (DCOR) can be made before integrating it with the SCOR model [16].

Table 4 shows that the Return process has the lowest value. One way to manage the Return process is to use functional integration in the company [17]. The focus of that research is on the integration of marketing and logistics which can affect the effectiveness of the return management process. The results of the identification of external factors that can influence it, such as the customer market, competitive environment, and regulatory environment. Therefore, repairs also need to be done for the product delivery process, because every month there are still products returned by consumers. It happened because they are damaged during the shipping process. The company needs to add a protector to the product that is sent to minimize damage to the packaging. In terms of the speed of time in shipping also need to be considered to increase customer satisfaction to the company.

4. Conclusions and Recommendations

Supply chain measurements are carried out using SCOR 11.0. The conclusion of the research is as a priority weight determinant which includes 5 processes, namely Plan, Source, Make, Deliver, and Return. It is known that the level of supply chain performance XYZ Ltd is 70.94 on a scale of 0-100. This can be said that the level of performance of the XYZ Ltd supply chain is good. In addition, the weighting results using AHP according to 4 experts are for the highest weight process in the Source process with a weight of 0.21 and the lowest weight in the Return process with a weight of 0.10. Suggestions that can be given to companies are companies can hold training for farmers and company employees, tighten the process of quality control for raw materials and finished products, provide additional protection for products shipped, provide subsidies for superior seeds to farmers to improve product quality, holding forums with farmers to establish good relationships with companies, tighten selection supplier and prioritize suppliers loyal to maintain contract sustainability.

Companies need to establish methods used to assess supply chain performance so that companies can improve performance from all sides, such as product quality and company resources. So, it is expected that the company will get more profit and overall company performance will increase as well. For further research, it is expected to be more completed in determining the performance measurement using SCOR. For example, we can add skills to people in using SCOR and make sustainability to implementing SCOR in industry. It is hoped that this method of SCOR 11.0 can be developed to measure supply chain performance by integrating supply chain performance measurement with the environment, ICT, etc.

REFERENCES
[1] Delipinar GE, Kocaoglu B 2016 Using SCOR Model to Gain Competitive Advantage: A Literature Review Procedia - Social and Behavioral Sciences 229 pp 398-406.
[2] David R, Josep J 2014 Study on performance measurement systems-Measures and Metrics Int. J of Scientific and Research Publications Vol. 4, Issue 9, 1.
[3] Ioannou G 2005 Streamlining the supply chain of the Hellenic sugar industry, J. of Food Eng. 70 (3) pp 323-332.
[4] Chan FTS, Qi HJ 2003 Feasibility of performance measurement system for supply chain: A process-based approach and measures Integrated Manufacturing Systems 14(3) pp. 179–190.
[5] Stewart G 1997 ‘Supply-chain operations reference model (SCOR): The first cross-industry framework for integrated supply-chain management’, Logistics Information Management, 10(2) pp. 62–67.

[6] Huan SH, Sheoran SK, Wang G 2004 A review and analysis of Supply Chain Operations Reference (SCOR) model Supply Chain Management: An International Journal 9(1) pp 23-29.

[7] Lee JS, Tzong-Ru, Shiu, Yi-Siang, Sivakumar P 2012 The applications of SCOR in manufacturing: two cases in Taiwan Procedia Engineering 38 pp 2548-2563.

[8] Prakash S, Sandeep Gunjan S, Rathore A, Supply Chain Operations Reference (SCOR) model: an overview and a structured literature review of its application, 2013.

[9] Persson F, Jonas B, Orjan G 2010 Construction logistics improvements using the SCOR model- Tornet case, Advances in Production Management Systems. New Challenges, New Approaches, Springer Berlin Heidelberg pp 211-218.

[10] Palma-Mendoza JA, Nealey K, Roy R 2014 Business process re-design methodology to support supply chain integration Int. J. of Inf. Mgt 34 (2) pp 167-176.

[11] Saaty TL, Vargas IG 2012 Models, methods, concepts, & applications of the analytic hierarchy process (2nd. Ed.), New York : Springer.

[12] Bukhori IB, Widodo KH, Ismoyowati D 2015 Evaluation of Poultry Supply Chain Performance in XYZ Slaughtering House Yogyakarta Using SCOR and AHP Method Agriculture and Agricultural Science Procedia 3 221-225.

[13] Butdee S, Phuangsalee P 2019 Uncertain risk assessment modelling for bus body manufacturing supply chain using AHP and fuzzy AHP Procedia Manufacturing 30 pp 663-670.

[14] Ntabe EN, LeBel L, Munson AD, Santa-Eulalia LA 2015 A systematic literature review of the supply chain operations reference (SCOR) model application with special attention to environmental issues Int. J. of Production Economics 169 pp 310-332.

[15] SCC 2012 Supply Chain Operations Reference Model Revision 11.0. Pittsburg, PA :Supply Chain Council Inc.

[16] Zuniga R, Marcus S, Klaus-Dieter T 2013 Study on the Application of DCOR and SCOR models for the sourcing Process in the Mineral, Raw Material Industry Supply Chain. Dynamics in Logistics, Springer Berlin Heidelberg pp 211-220.

[17] Mollenkopf D, Russo I, Frankel R 2007 The returns management process in supply chain strategy Int. J. of Physic. Dist. & Log. Mgt 37 (7) pp 568-592.

Acknowledgments
This research was supported by Directorate of Research and Community Service or DPPM (Direktorat Penelitian dan Pengabdian Masyarakat) Universitas Islam Indonesia, Yogyakarta, Indonesia and Industrial Engineering Department, Faculty of Technology Industry, Universitas Islam Indonesia, Yogyakarta, Indonesia.