Introduction

The analysis and treatment plan in the maxillofacial deformity has traditionally been based on 2-dimensional cephalometric measurement system (1). This has been used for clinicians steadily for several decades, but among the maxillofacial deformities, particularly in the case of facial asymmetry, the overlapping of anatomical structures become more severe, This makes it difficult to perform accurate analysis.

In addition, since post-operative 3-dimensional changes must be predicted in 2-dimensions, postoperative anomalies may remain (2).

Recently, 3-dimensional analysis and research on the maxillofacial anomaly have become active, and many attempts have been made to overcome the disadvantages of the two-dimensional method. Among them, reconstructing the patient’s maxillofacial bone using computerized tomography (CT) and using it in the analysis and treatment plan can reduce the difficulty of analyzing the patient’s condition due to overlap of the anatomical structures in the maxillofacial region, It enables virtual surgery on a computer program so that it can predict the change of the patient’s facial appearance after the actual operation (3, 4).

We report a case of severe facial asymmetry with hemimandibular hypoplasia undergoing early mandibular distraction osteogenesis surgery, After completion of the growth, orthognathic surgery was performed (5, 6). The purpose of this study was to evaluate the effectiveness of preoperative 3-dimensional virtual surgery in patients with severe facial asymmetry by predicting the asymmetric improvement effect by performing...
3-dimensional virtual surgery before orthognathic surgery.

A Case Report

A 4Y 11M female patient visited the department of oral maxillofacial surgery with facial asymmetry and mandibular left deviation at the mouth opening, and performed preoperative examination including panoramic radiography and cephalometric radiography. On radiographic examination, distraction osteogenesis was performed with the use of extraoral mandibular ramus distractor under the diagnosis of condylar malunion of the mandible (Fig. 1).

After 14Y and 6M, the patient was re-admitted to department of oral and maxillofacial surgery under the facial asymmetry and inconvenience feeling at mastication. CT scans were performed, and 3D virtual skulls were created using Simplant (Simplant pro, Materialize, Belgium) based on the CT DICOM file and diagnosed and analyzed for maxillofacial deformity. We analyzed the results of facial asymmetry and planned maxillomandibular simultaneous orthognathic surgery for mandibular posterior movement with a significant amount of maxillary canting correction, genioplasty, and shaving of parasymphysis (Fig. 2).

For precise surgical planning, the tooth portion of the 3D virtual skull overlapped the laser scan image to create a virtual craniofacial bone with accurate dental images. Based on the three-dimensional maxillofacial measurement analysis, we programmed the maxillary and mandibular movements in the

Fig. 1. 4Y 11M female with malunion condyle, Lt. (A) Malunioned condyle, Lt. (B) Illustration of operation plan (Distraction osteogenesis) (C) Before distraction osteogenesis (D) After distraction osteogenesis.
program, and based on this, the surgical plan for facial asymmetry was precisely established. Because the patient’s facial asymmetry was severe, we established operation plan with canting correction of the maxilla was 8 mm or more, and lateral movement of chin top was 6 mm or more on genioplasty. Orthognathic surgery, genioplasty, and shaving of parasymphysis were performed by conventional methods, and it was confirmed that the facial and occlusal aspects were improved after surgery (Fig. 3). A virtual model was constructed from the CT images taken preoperative virtual surgery and one month after the operation, and the positions of the maxilla and mandible were compared and analyzed by superimposing them on the basis of the cranial base. It was confirmed that the maxilla and distal segment of mandible except for the operative site of shaving and the proximal segment of mandible were within the error range of 1mm or less. And the asymmetry of the face was improved much (Fig. 4).

Discussion

The conventional cephalometric images used in the analysis of the maxillofacial anomaly may cause various errors due to the representation of the complex facetted maxillofacial bone in a 2-dimensional plane. Especially, in the case of facial asymmetry, the left and right structures if you do not overlap on surface sagittal plane, the analysis may become inaccurate due to the num-

Fig. 2. 19Y 5M female with facial asymmetry before treatment (A) Facial photographs (B) Cephalometric radiographs (C) 3D virtual skulls.

Fig. 3. After surgery facial asymmetry is corrected (A) Facial photographs (B) Cephalometric radiographs (C) 3D virtual skulls.
number of overlapping structures (7).

Since the conventional method is to predict the 3-dimension-
al structure using some plane radiographs taken from the front,
side and other directions, and to make the analysis and the op-
eration plan, the change of the facial profile and the final ap-
pearance of the facial prediction is difficult.

However, comparing the three-dimensional virtual surgery
with postoperative results, there was no significant difference
between the various measurement sites. This is a great help in
determining the exact amount of movement of the maxilla and
mandible during surgery planning in cases of severe facial asym-
metry that is difficult to predict with conventional methods (8).

In addition, three-dimensional images provide more intui-
tive images than conventional cephalometric radiographs,
making it easier and quicker to plan the surgery than the two-
dimensional method predicted In addition, it is easy to discuss
the treatment plan with the orthodontist, and modification of
the intermediate operative plan can be done simply by virtual
operation, so that the surgical plan can be established more
quickly and accurately than the conventional method (3).

In this case, the maxillary canting correction amount is more
than 8 mm and the lateral movement amount of the chin top is
more than 6 mm due to the patient’s severe asymmetry. It is
not easy to determine the amount of this movement by the 2-di-
Mentional method. Therefore, in order to supplement the two-
dimensional method, stereolithographic model is used, but it is
also a cost problem and it is difficult to modify the model sur-
gery. However, this discomfort was relieved through the use of
a three-dimensional virtual model. As a result, it was confirmed
that the error was within 1 mm in the planned area including
the maxillary bone and the mandibular distal segment.

In order to analyze the 3-dimensional based maxillofacial
deformity, it is necessary to use the DICOM file of the CT to cre-
ate the 3D virtual model, and the process such as image integra-
tion and segmentation is required, additional time, labor, and
cost are considered to be required compared to the convention-
al analysis of 2-dimensional cephalometric analysis (10). How-
ever, in the case of severe facial asymmetry, the conventional
2-dimensional method without using 3-dimensional virtual
surgery requires additional cost and time using the sialolithog-
raphy model, and it is necessary to change the treatment plan
before surgery. The result was unacceptable results and addi-
tional time and expense such as additional surgery. From these
viewpoints, it is considered that the utility of three-dimension-
al virtual surgery in the case of facial asymmetry, which is par-
ticularly severe during the treatment of maxillofacial deformi-
ties, is considered to be maximized.

Conclusion

In maxillofacial deformity area, 2-dimensional cephalometric
analysis method is a highly reliable method that has been
used by many surgeons for a long period of time. However, fa-
cial asymmetry especially in cases of severe asymmetric dis-
eses such as hemimandibular hypoplasia, the limit of predic-
tion of results clearly exists and solving this was a longstanding
trouble of the surgeon. Analysis of three-dimensional maxillo-
facial deformities and treatment planning with virtual surgery
can enhance the accuracy of the surgical plan for accurate pre-
diction of changes after asymmetric patient’s surgery, while at
the same time for an intuitive image it is also possible to ensure
rapid operation planning. In terms of having such advantages,
the utility of the operation including the three-dimensional vir-
tual surgery seems to be very large especially from severe facial

Fig. 4. Superimposition of 3D virtual skull and color scale (A) Pre-operation simulation surgery (B) Post-operation 1 M (C) Superimposition.
asymmetric patients. As the future in maxillofacial deformity area research of three-dimensional analysis and virtual surgery progresses further, it may become an effective method for treating severe facial asymmetry that many operators have been suffering.

References

1. Ellis E 3rd, Johnson DG, Hayward JR. Use of the orthognathic surgery simulating instrument in the presurgical evaluation of facial asymmetry. J Oral and Maxillofac Surg 1984; 42:805-811
2. Sarver DM. Esthetic orthodontics and orthognathic surgery. 1998: Mosby Incorporated
3. Swennen GR, Mollemans W, Schutyser F. Three-dimensional treatment planning of orthognathic surgery in the era of virtual imaging. Journal of Oral and Maxillofacial Surgery 2009;67(10):2080-2092
4. Schendel SA, Jacobson R, Khaleesi S. 3-Dimensional facial simulation in orthognathic surgery: is it accurate? J Oral and Maxillofac Surg 2013;71:1406-1414
5. Polley JW, Figueroa AA. Distraction Osteogenesis: Its Application in Severe Mandibular Deformities in Hemifacial Microsomia. Journal of Craniofacial Surgery 1997;8(5):422-430
6. Hanson PR, Melugin MB. Surgical Orthodontic Treatment of Mandibular Asymmetries. Seminars in Orthodontics 2009;15(4):268-278
7. Adams GL, et al. Comparison between traditional 2-dimensional cephalometry and a 3-dimensional approach on human dry skulls. American Journal of Orthodontics and Dentofacial Orthopedics 2004;126(4):397-409
8. Kawamata A, Ariji Y, Langlais RP. Three-dimensional computed tomography imaging in dentistry. Dental Clinics of North America 2000;44(2):395-410
9. Mehra P, et al. Use of 3-d stereolithographic models in oral and maxillofacial surgery. Journal of Maxillofacial and Oral Surgery 2011;10(1):6-13
10. Plooij JM, et al. Digital three-dimensional image fusion processes for planning and evaluating orthodontics and orthognathic surgery. A systematic review. International journal of Oral and Maxillofacial Surgery 2011;40(4):341-352