Corrigendum: Sufficient conditions for uniqueness of the weak value

2012 J. Phys. A: Math. Theor. 45 015304

J Dressel and A N Jordan

Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA

E-mail: jdressel@pas.rochester.edu and jordan@pas.rochester.edu

Received 8 November 2012
Published 12 December 2012
Online at stacks.iop.org/JPhysA/46/029501

In section 5 of [1] we implicitly used the following lemma without proof.

Lemma. The singular values of the \(M \times N \) dimensional matrix \(F = P + g^n F_n \) with \(M \leq N \) have maximum leading order of \(g^n \), where \(P = [p_1 \vec{1} \cdots p_N \vec{1}] \) and \(F_n = [E_1 \cdots E_N] \) such that \(\sum_j p_j = 1 \) and \(\sum_j E_j = 0 \).

Proof. The \(M \) singular values of \(F \) are \(\sigma_k = \sqrt{\lambda_k} \), where \(\lambda_k \) are the eigenvalues of the \(M \times M \) dimensional matrix \(G = F F^T \). The \(N \times N \) dimensional matrix \(H = F^T F \) also has the same \(M \) eigenvalues as \(G \), as well as \((N - M) \) additional zero eigenvalues. Since \(P^T F_n = 0 \), the latter has the simple form \(H = P^T P + g^n F_n^T F_n \), where \((P^T P)_{ij} = M p_i p_j \) is \(M \) times the projection operator onto the probability vector \(\vec{p} = (p_1, \ldots, p_N) \) and \((F_n^T F_n)_{ij} = E_i \cdot E_j \). We will use \(H \) to determine the singular values of \(F \).

Differentiating the eigenvalue relation \(H(g^n)\vec{u}_k(g^n) = \lambda_k(g^n)\vec{u}_k(g^n) \) with respect to \(g^n \) produces the following deformation equation that describes how the eigenvalues of \(H \) continuously change with increasing \(g^n \),

\[
\dot{\lambda}_k(g^n) = ||F_n\vec{u}_k(g^n)||^2.
\]

Integrating this equation produces the following perturbative expansion of the eigenvalues for small \(g \),

\[
\lambda_k(g^n) = \lambda_k(0) + g^n ||F_n\vec{u}_k(0)||^2 + O(g^{2n}).
\]

Hence, to prove the lemma it is sufficient to show that \(\lambda_k(0) \) and \(||F_n\vec{u}_k(0)|| \) cannot both vanish unless \(\lambda_k(g^n) = 0 \) for all \(g \).

Since \(H(0) = P^T P \) is proportional to a projection operator, \(\lambda_1(0) = M ||\vec{p}||^2 \) is its only nonzero eigenvalue with associated eigenvector \(\vec{u}_1(0) = \vec{p}/||\vec{p}|| \). Hence, \(\sigma_1(g^n) \approx \sqrt{M} ||\vec{p}|| \approx 0 \) to leading order. For \(k \neq 1 \), \(\lambda_k(0) = 0 \) and \(\vec{u}_k(0) \) can be chosen arbitrarily to span the degenerate \((N - 1) \)-dimensional subspace orthogonal to \(\vec{u}_1(0) \). Suppose \(||F_n\vec{u}_k(0)|| = 0 \) for some \(k \neq 1 \), which implies \(F_n\vec{u}_k(0) = 0 \) since only the zero vector has zero norm. It follows that \(H(g^n)\vec{u}_k(0) = P^T P\vec{u}_k(0) + g^n F_n^T F_n\vec{u}_k(0) = 0 \) since \(\vec{u}_k(0) \) is orthogonal to \(\vec{u}_1(0) \). Therefore, \(\vec{u}_k(0) \) is an eigenvector of \(H(g^n) \) with eigenvalue 0 for any \(g \). Since \(H \) is symmetric, its eigenvectors form an orthogonal set for any \(g \), so we must have the
identification $\tilde{u}_k(g^{2n}) = \tilde{u}_k(0)$. As a result, the associated eigenvalue vanishes for any g, $\lambda_k(g^{2n}) = \lambda_k(0) = 0$, which proves the lemma.

This proof has also been included in a subsequent extended article [2].

Acknowledgments

We thank Dr Parrott for urging us to justify this lemma [3].

References

[1] Dressel J and Jordan A N 2012 Sufficient conditions for uniqueness of the weak value J. Phys. A: Math. Theor. 45 015304

[2] Dressel J and Jordan A N 2012 Contextual-value approach to the generalized measurement of observables Phys. Rev. A 85 022123

[3] Parrott S 2012 Proof gap in ‘Sufficient conditions for uniqueness of the weak value’ arXiv:1202.5604v6