Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Chlorine dioxide is a more potent antiviral agent against SARS-CoV-2 than sodium hypochlorite

N. Hatanaka, B. Xu, M. Yasugi, H. Morino, H. Tagishi, T. Miura, T. Shibata, S. Yamasaki

Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
Asian Health Science Research Institute, Osaka Prefecture University, Osaka, Japan
Osaka International Research Center for Infectious Diseases, Osaka Prefecture University, Osaka, Japan
Research and Development Center, Taiko Pharmaceutical Co. Ltd, Kyoto, Japan

SUMMARY

Background: A new coronavirus (SARS-CoV-2) abruptly emerged in Wuhan, China, in 2019 and rapidly spread globally to cause the COVID-19 pandemic.

Aim: To examine the anti-SARS-CoV-2 activity of the potent disinfectant Cleverin, the major disinfecting component of which is chlorine dioxide (ClO₂); and to compare the results with that of sodium hypochlorite in the presence or absence of 0.5% or 1.0% foetal bovine serum (FBS).

Methods: Concentrated SARS-CoV-2 viruses were treated with various concentrations of ClO₂ and sodium hypochlorite and 50% tissue culture infective dose was calculated to evaluate the antiviral activity of each chemical.

Findings: When SARS-CoV-2 viruses were treated with 0.8 ppm ClO₂ or sodium hypochlorite, viral titre was decreased only by 1 log₁₀ TCID₅₀/mL in 3 min. However, the viral titre was decreased by more than 4 log₁₀ TCID₅₀/mL when treated with 80 ppm of each chemical for 10 s regardless of presence or absence of FBS. It should be emphasized that treatment with 24 ppm of ClO₂ inactivated more than 99.99% SARS-CoV-2 within 10 s or 99.99% SARS-CoV-2 in 1 min in the presence of 0.5% or 1.0% FBS, respectively. By contrast, 24 ppm of sodium hypochlorite inactivated only 99% or 90% SARS-CoV-2 in 3 min under similar conditions. Notably, except for ClO₂, the other components of Cleverin such as sodium chlorite, decaglycerol monolaurate, and silicone showed no significant antiviral activity.

Conclusion: Altogether, the results strongly suggest that although ClO₂ and sodium hypochlorite are strong antiviral agents in absence of organic matter but in presence of organic matter, ClO₂ is a more potent antiviral agent against SARS-CoV-2 than sodium hypochlorite.
pneumonia and named as ‘severe acute respiratory syndrome coronavirus 2’ (SARS-CoV-2) [1]. The disease caused by this virus was termed COVID-19. SARS-CoV-2 quickly spread all over the world, and on March 11th, 2020, the World Health Organization (WHO) declared COVID-19 a pandemic [2]. By June 30th, 2021, confirmed cases of, and deaths from, COVID-19 were >180 million, and almost four million, respectively; the disease remains a significant threat to mankind [3].

SARS-CoV-2 is transmitted through aerosols, droplets, and fomites [4]. Therefore, it is important to inactivate virus particles on surfaces contaminated by droplets from infected persons. WHO has recommended use of 70% ethanol or 1000 ppm of sodium hypochlorite (NaClO) for disinfection [5]. NaClO is likely the most commonly used surface disinfectant in the world. However, it is well known that antiviral activity of NaClO is readily decreased by the presence of organic matter such as saliva and blood [6].

Several studies have shown that 10 ppm of chlorine dioxide (ClO2) inactivated 99.99% of influenza A virus in the presence of 1% foetal bovine serum (FBS), whereas 100 ppm of NaClO, which is 10-fold higher concentration than that of ClO2, was required to inactivate the same degree of influenza virus under the same conditions [7]. However, there is no evidence as to whether ClO2 inactivates SARS-CoV-2. If it does, there is no information available on how much ClO2, and for how long an exposure, is needed to inactivate SARS-CoV-2. Therefore, this study examined the antiviral activity of ClO2 against SARS-CoV-2 under various conditions in terms of its concentration, incubation time, and absence or presence of organic matter. The results were compared with those of NaClO.

Methods

Cell culture

VeroE6/TMPRSS2 cells were used for cultivation of SARS-CoV-2; the cells were incubated at 37°C in a 5% CO2 humified incubator (ESPEC Corp., Osaka, Japan) [8]. VeroE6/TMPRSS2 cell line was purchased from the Japanese Collection of Research Bioresources (Osaka, Japan). The cells were cultured in Dulbecco’s modified Eagle medium, low glucose, pyruvate (DMEM; Thermo Fisher Scientific, Inc., Waltham, MA, USA) supplemented with 5% heat-inactivated foetal bovine serum (FBS; Thermo Fisher) and 1 mg/mL G418 (Nacalai Tesque, Inc., Kyoto, Japan).

Virus preparation

One hundred and forty thousand VeroE6/TMPRSS2 cells were cultured in a 25 cm2 cell culture flask at 37°C for 16 h in the medium. Culture medium was removed and 100 μL of 10-fold serially diluted viral solution in DMEM supplemented with 2% FBS and 1 mg/mL G418 was added. The infected VeroE6/TMPRSS2 cells were cultured at 37°C for 72 h. Cells were fixed with methanol (Nacalai Tesque) and stained with 0.5% Crystal Violet. Fifty percent tissue culture infective dose (TCID50) was calculated. The detection limit was confirmed to be ≤2.2 log10 TCID50/mL.

Statistical analysis

Statistical analyses were performed using Microsoft Excel 2016 (Microsoft, Redmond, WA, USA). Error bars show standard deviations. P-values were calculated with Student’s t-test using paired, two-tailed distribution. P < 0.05 was considered statistically significant.

Results

To examine and compare the antiviral activity of ClO2 in Cleverin against SARS-CoV-2 in the absence or presence of organic matter with that of sodium hypochlorite, the concentrated viruses suspended in PBS were treated with several concentrations of ClO2 or sodium hypochlorite in the absence or presence of FBS. Antiviral activity of both chemicals was
observed in a concentration-dependent manner (Figure 1). When the viruses were treated with 80 ppm ClO₂ or sodium hypochlorite as a final concentration regardless of presence of organic matter, the viral titre was decreased to the detection limit (≤2.2 log₁₀ TCID₅₀/mL) even in 10 s (Figure 1). When the viruses were treated with 8 ppm ClO₂, the viral titre was decreased by 3–4 log₁₀ TCID₅₀ in the absence of organic matter (Figure 1A). In the case of 8 ppm sodium hypochlorite, the viral titre was decreased by 2–3 log₁₀ TCID₅₀ under the same conditions. However, there was no significant difference in viral

Figure 1. Antiviral activity of 0.8, 8, and 80 ppm of chlorine dioxide and sodium hypochlorite against SARS-CoV-2. Concentrated SARS-CoV-2 suspended in phosphate-buffered saline (PBS) without foetal bovine serum (FBS) (A), PBS with 0.5% FBS (B) or PBS with 1% FBS (C) was incubated with 80, 8, or 0.8 ppm of chlorine dioxide (ClO₂) or sodium hypochlorite (NaClO) for 10 s, 30 s, 1 min, or 3 min as indicated. Viral titre was determined by measurement of 50% tissue culture infective dose per mL (TCID₅₀/mL). All data represent the means ± SD from three independent experiments. Dashed line indicates the detection limit for each experiment. *Viral titre is significantly different between ClO₂ and NaClO treatments.
titres between viruses treated with ClO₂ and sodium hypochlorite (Figure 1A). In fact, 0.8 ppm of both chemicals decreased the viral titre by only 1 log₁₀ TCID₅₀ regardless of presence of organic matter.

When the viruses were treated with 8 ppm ClO₂ in the presence of 0.5% FBS as final concentration, the viral titre was decreased by 2–3 log₁₀ TCID₅₀ whereas the titre was decreased by only 1 log₁₀ TCID₅₀ when treated with 8 ppm sodium hypochlorite under the same conditions (Figure 1B). Furthermore, when the viruses were treated with 8 ppm ClO₂ for 30 s, 1 or 3 min in the presence of 0.5% FBS, the viral titre was significantly lower than when treated with 8 ppm sodium hypochlorite (Figure 1B). Similarly, when the viruses were treated with 8 ppm ClO₂ in the presence of 1% FBS, the viral titre decreased by around 2–3 log₁₀ TCID₅₀ whereas it was decreased by only 1 log₁₀ TCID₅₀ when treated with 8 ppm sodium hypochlorite under the same conditions (Figure 1C). The viral titre was significantly lower when treated with 8 ppm ClO₂ for 3 min compared with 8 ppm sodium hypochlorite (Figure 1C).

Since 80 ppm ClO₂ inactivated the viruses completely but 8 ppm ClO₂ inactivated partially, we further examined antiviral activity of 24 ppm ClO₂ and the result was compared with that of sodium hypochlorite. When the viruses were treated with 24 ppm ClO₂, the viral titre was decreased to below the detection limit (≤2.2 log₁₀ TCID₅₀/mL) even in the presence of 0.5% FBS in 10 s (Figure 2); however, the same concentration of sodium hypochlorite under the same conditions was unable to inactivate the viruses completely. Furthermore, when the viruses were treated with 24 ppm ClO₂ in the presence of 1.0% FBS, the viral titre was decreased by about 4 log₁₀ TCID₅₀ even in 10 s and was significantly lower than that treated with the same concentration of sodium hypochlorite under the same conditions (Figure 2).

Cleverin is not pure ClO₂: apart from ClO₂ it also contains sodium chlorite, decaglycerol monolaurate, and silicone. Therefore, to confirm whether the antiviral activity of Cleverin is ClO₂ dependent, the antiviral activity of pure ClO₂, sodium chlorite, and mixture of decaglycerol monolaurate and silicone was further examined separately (Figure 3). When viruses were treated with 8 ppm of pure ClO₂, the viral titre was decreased by >4 log₁₀ TCID₅₀ in the absence of FBS (Figure 3A) while the viral titre was decreased by about 2 log₁₀ TCID₅₀ only in 10 s in the presence of FBS (Figure 3B). However, when 80 ppm of pure ClO₂ was applied, the viral titre was decreased to below the detection limit (≤2.2 log₁₀ TCID₅₀/mL) even in the presence of 1.0% FBS in 10 s (Figure 3B). On the other hand, 4800 ppm sodium chlorite was hardly able to decrease the viral titre and Cleverin devoid of 80 ppm ClO₂ and 4800 ppm sodium chlorite but containing 528 ppm decaglycerol monolaurate, and 12.8 ppm silicone decreased viral titre only by 1 log₁₀ TCID₅₀ regardless of presence or absence of FBS (Figure 3). Taken together, these data clearly indicate that the main component effecting the inactivation of SARS-CoV-2 is ClO₂ but not the other components in Cleverin.

Discussion

COVID-19 is an emerging disease and to date there is no highly effective treatment, although a few medicines have been found to improve clinical outcomes in large trials [9]. Rapid development and production of vaccines in several countries has permitted large-scale vaccination of subjects in many, mostly developed, countries [10–12]. However, the majority of the world’s population remains unvaccinated, and it is uncertain how effective vaccination will be in the longer term as immunity wanes, and new SARS-CoV-2 variants emerge.
Thus disinfectants active against SARS-CoV-2 will remain a cornerstone of control of COVID-19 globally. Sodium hypochlorite is one of the most popular disinfectants in clinical settings. However, sodium hypochlorite has some disadvantages; for example, it may produce more trihalomethane and it exhibits weak antimicrobial activity in presence of organic matters compared to ClO₂ [7,15,16]. Therefore, our study tested antiviral activity of ClO₂, which is a major component of Cleverin, against SARS-CoV-2.

Eighty parts per million of both ClO₂ and sodium hypochlorite inactivated 6–7 log₁₀ TCID₅₀/mL of SARS-CoV-2 to below the detection limit (≤2.2 log₁₀ TCID₅₀/mL) in just 10 s even in the presence of 1.0% FBS (Figure 1C), indicating that both ClO₂ and sodium hypochlorite may be useful disinfectants against SARS-CoV-2 in saliva. Saliva is the most important infection source and contains ~1.1 mg/mL proteins [17]. In this study, 5.0% FBS was used as highest concentration in virus solution (1.0% FBS as final concentration), which is two times higher in protein concentration than that in saliva.

Further, the study examined the antiviral activity of pure ClO₂, sodium chlorite, and Cleverin without ClO₂ and sodium chlorite independently, since Cleverin, in addition to 100 ppm ClO₂, also contains 6000 ppm sodium chlorite, 660 ppm deaglycerol monolaurate, and 16 ppm silicone. In fact, 60 μL of 100 ppm ClO₂ (80 ppm, a final concentration) showed the same antiviral activity with Cleverin, but 60 μL of 6000 ppm sodium chlorite
chlorite (4800 ppm, a final concentration), a precursor of ClO2, showed no antiviral activity. In addition, 60 μL mixture of 660 ppm decaglycerol monolaurate (528 ppm, a final concentration) and 16 ppm silicone (12.8 ppm, a final concentration) was also tested and showed no significant reduction of viral titre in the presence of 1.0% FBS. However, viral titre was slightly decreased (~1 log10 TCID50 reduction) when FBS was absent (Figure 3). Since decaglycerol monolaurate is a surfactant, this compound might affect the envelope or proteins of SARS-CoV-2 [18]. Nevertheless, we conclude that the antiviral activity of Cleverin is ClO2 dependent.

When 24 ppm sodium hypochlorite was exposed to the virus, the viral titre decreased by 4 log10 TCID50 in 30 s in the absence of FBS (Figure 2); however, when 0.5% or 1.0% FBS was present, 24 ppm sodium hypochlorite reduced the viral titre by only 2 log10 TCID50 even in 3 min. It should be noted that 24 ppm of ClO2 reduced the viral titre to below the detection limit (<2.2 log10 TCID50/mL) even in 10 s in the presence of 0.5% FBS and by >4 log10 TCID50 in 30 s in the presence of 1.0% FBS (Figure 2), suggesting that ClO2 is a much more powerful disinfectant than sodium hypochlorite, especially when organic matter is present in the contaminants. This advantage was also demonstrated by other pathogens such as influenza A virus and multidrug-resistant (MDR) bacteria such as mexitillin-resistant Staphylococcus aureus (MRSA), MDR Pseudomonas aeruginosa (MDPR) and MDR Acinetobacter baumannii (MDRA) [7,16]. ClO2 has been shown to have 10-fold higher antiviral activity than sodium hypochlorite against influenza A virus in the presence of 1% FBS [7]. When the virus was exposed to ClO2, their major surface glycoproteins such as haemagglutinin and neuraminidase, responsible for the viral infection to and release from cells, were degraded [19]. This could be the mechanism by which ClO2 inactivates virus infectivity. Other examples are MDR bacteria: ClO2 had more effective antimicrobial activity than sodium hypochlorite against MRSA, MDRP, and MDRA in the presence of 3.0% BSA and 3.0% shee erythrocyte [16]. In addition, ClO2 is less toxic than sodium hypochlorite because of production of the carcinogen trihalomethane by the latter [15]. Taken together, these observations might point to ClO2 being more useful than sodium hypochlorite to inactivate SARS-CoV-2, especially in clinical material.

Antiviral activity of ClO2 against SARS-CoV-2 was expected because it has been recently demonstrated that ClO2 may inhibit binding of recombinant spike protein of SARS-CoV-2 to its receptor molecule, angiotensin-converting enzyme 2 (ACE-2) [20]. It has also been demonstrated that ClO2 can denature proteins by oxidative modification of tryptophan and tyrosine residues [21]. Since tyrosine at position 453, which is located in the receptor-binding domain of the spike protein, forms a hydrogen bond with histidine at position 34, located in an alpha 1 helix of the ACE-2 protein, oxidative modification of the tyrosine by ClO2 could reduce the infectivity of the virus [22]. Indeed, infectivity of SARS-CoV-2 to the VeroE6/TMPRSS2 cells has been demonstrated to be significantly reduced by ClO2 in this study.

Various mutant strains of SARS-CoV-2 have emerged in the UK, South Africa, and Brazil, and have spread in many countries throughout the globe [13,14]. These strains have a mutation in asparagine at position 501 to tyrosine (N501Y) in the spike protein of SARS-CoV-2, which is also responsible for receptor binding. Two new SARS-CoV-2 lineages (N501Y) reported in the UK are more transmissible than the 501N lineage. Since ClO2 targets tryptophan and tyrosine in proteins, ClO2 might inactivate these novel mutants efficiently. Currently experiments are under way in our laboratory to verify whether ClO2 can inactivate these mutant viral strains as effectively as in the case of the wild-type strain.

In conclusion, our data indicate that ClO2 is a more effective disinfectant against SARS-CoV-2 than NaClO in presence of organic matter. Use of 24 ppm ClO2 inactivated 6.5 log10 TCID50/mL of SARS-CoV-2 to below the detection limit even in the presence of 0.5% FBS in 10 s. Therefore, ClO2 is a powerful disinfectant against SARS-CoV-2 and it may be useful for the reduction of SARS-CoV-2 infection.

Acknowledgements

We thank the National Institute of Infectious Diseases (Tokyo, Japan) for providing the SARS-CoV-2 JPN/TY/WK-521 strain. We thank Dr Rupak K. Bhadra, CSIR-Indian Institute of Chemical Biology, Kolkata, India, for critically reading the manuscript.

Conflict of interest statement

This study was performed as a collaborative research of Taiko Pharmaceutical Co. Ltd.

Funding sources

Supported by Taiko Pharmaceutical Co. Ltd.

References

[1] Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020;382:727–33.
[2] World Health Organization. Archived: WHO timeline-COVID-19. Available at: https://www.who.int/news/item/27-04-2020-who-timeline--covid-19 [last accessed June 2021].
[3] World Health Organization. WHO coronavirus disease (COVID-19) dashboard. Available at: https://covid19.who.int/ [last accessed June 2021].
[4] Kumar GD, Mishra A, Dunn L, Townsend A, Ogudainim IC, Bright KR, et al. Biocides and novel antimicrobial agents for the mitigation of coronaviruses. Front Microbiol 2020;11:1351.
[5] World Health Organization. Cleaning and disinfection of environmental surfaces in the context of COVID-19. Available at: https://www.who.int/publications/i/item/cleaning-and-disinfection-of-environmental-surfaces-in-the-context-of-covid-19 [last accessed September 2021].
[6] Fukuzaki S. Mechanisms of actions of sodium hypochlorite in cleaning and disinfection processes. Biocontrol Sci 2006;11:147–57.
[7] Miura T, Shibata T. Antiviral effect of chlorine dioxide against influenza virus and its application for infection control. Open Antimicrob Agents J 2010;2:71–8.
[8] Matsuyama S, Nao N, Shirota K, Kawase M, Saito S, Takayama I, et al. Enhanced isolation of SARS-CoV-2 by TMPRSS2 expressing cells. Proc Natl Acad Sci USA 2020;117:7001–3.
[9] Jean SS, Lee PI, Hseuh PR. Treatment options for COVID-19: the reality and challenges. J Microbiol Immunol Infect 2020;53:436–43.
[10] Anderson EJ, Rouphael NG, Widge AT, Jackson LA, Roberts PC, Makhene M, et al. Safety and immunogenicity of SARS-CoV-2 mRNA-1237 vaccine in older adults. N Engl J Med 2020;383:2427–38.
Sahin U, Muik A, Derhovanessian E, Vogler I, Kranz LM, Vormehr M, et al. COVID-19 vaccine BNT162b1 elicits human antibody and Th1 T cell responses. Nature 2020;586:594–9.

Ramasamy MH, Minassian AM, Ewer KJ, Flaxman AL, Folegatti PM, Owens DR, et al. Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young and old adults (COVID02): a single-blind, randomized, controlled, phase 2/3 trial. Lancet 2021;396(10267):1979–92.

Leung K, Shum MHH, Leung GM, Lam TT, Wu JT. Early transmissibility assessment of the N501Y mutant strains of SARS-CoV-2 in the United Kingdom, October to November 2020. Euro Surveill 2021;26:2002106.

Makoni M. South Africa responds to new SARS-CoV-2 variant. Lancet 2021;397:267.

Sorlini S, Collivignarelli C. Trihalomethane formation during chemical oxidation with chlorine, chlorine dioxide and ozone of ten Italian natural waters. Desalination 2005;176:103–11.

Hinenoya A, Awasthi SP, Yasuda N, Shima A, Morino H, Koizumi T, et al. Chlorine dioxide is a better disinfectant than sodium hypochlorite against multi-drug resistant Staphylococcus aureus, Pseudomonas aeruginosa and Acinetobacter baumannii. Jpn J Infect Dis 2015;68:276–9.

Jenzano JW, Hogan SL, Noyes CM, Featherstone GL, Lundblad RL, et al. Comparison of five techniques for the determination of protein content in mixed human saliva. Anal Biochem 1986;159:370–6.

Simon M, Veit M, Ostrrieder K, Gradzielski M. Surfactants — compounds for inactivation of SARS-CoV-2 and other enveloped viruses. Curr Opin Colloid Interface Sci 2021;55:101409.

Shibata T, Ogata N. Protective effect of low-concentration chlorine dioxide gas against Influenza A virus infection. J Gen Virol 2008;89:60–7.

Ogata N, Miura T. Inhibition of the binding of spike protein of SARS-CoV-2 coronavirus to human angiotensin-converting enzyme 2 by chlorine dioxide. Ann Pharmacol Pharmaceut 2020;5:1195.

Ogata N. Denaturation of protein by chlorine dioxide: oxidative modification of tryptophan and tyrosine residues. Biochemistry 2007;46:4898–911.

Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 2020;367:1444–8.