Mussel-inspired Coating of α-AlH₃: A Compact Structure with Highly Enhanced Stability

Mingna Qin
Xi’an Modern Chemistry Research Institute, Xi’an, Shaanxi 710065

Bingjie Yao
Xi’an Modern Chemistry Research Institute, Xi’an, Shaanxi 710065

Qiang Shi
Xi’an Modern Chemistry Research Institute, Xi’an, Shaanxi 710065

Wang Tang
Xi’an Modern Chemistry Research Institute, Xi’an, Shaanxi 710065

Shaoli Chen
Xi’an Modern Chemistry Research Institute, Xi’an, Shaanxi 710065

Tao Guo
Xi’an Modern Chemistry Research Institute, Xi’an, Shaanxi 710065

Shaojun Qiu
Xi’an Modern Chemistry Research Institute, Xi’an, Shaanxi 710065

Yan Zhang
Fujian Polytechnic Normal University, Fuzhou, Fujian, 363000

Zhongxue Ge (✉ qmn5158@163.com)
Xi’an Modern Chemistry Research Institute, Xi’an, Shaanxi 710065

Research Article

Keywords:

Posted Date: January 13th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1218346/v1

License: ☺️ ☉️ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

we present a novel surfacing coating to resolve the stability of α-AlH$_3$. Inspired by the strong chemical adhesion of mussels, the polymerization of dopamine was first introduced to coat α-AlH$_3$ through a simple situ polymerization. The α-AlH$_3$ was used as a substrate. In-depth characterizations confirmed compact formation with PDA on α-AlH$_3$ surface. The coated α-AlH$_3$ sample was characterized by XRD XPS and SEM. The results show that a strong PDA film is formed on the surface of α-AlH$_3$, the PDA@α-AlH$_3$ retained primary morphology. The crystal form of α-AlH$_3$ does not change after coated by PDA. The results of XPS analysis show that N1s appears on the material after coated with PDA, indicating that polydopamine is formed on the surface of α-AlH$_3$. The moisture absorption tests show that the moisture absorption rate of α-AlH$_3$ is greatly reduced after being coated with PDA. The excellent intact ability of PDA prevent α-AlH$_3$ reacting with watered in the air. The thermal stability of α-AlH$_3$ before and after coating was analyzed by DSC. This work demonstrates the successful applications of dopamine chemistry to α-AlH$_3$, thereby providing a potential method for the metastable materials.

Introduction

We present a novel surface coating to resolve the stability of α-AlH$_3$. Inspired by the strong chemical adhesion of mussels, the polymerization of dopamine was first introduced to coat α-AlH$_3$ through simple situ polymerization. The α-AlH$_3$ was used as a substrate. In-depth characterizations confirmed compact formation with PDA on the α-AlH$_3$ surface. The coated α-AlH$_3$ sample was characterized by XRD XPS and SEM. The results show that a strong PDA film is formed on the surface of α-AlH$_3$, and PDA@α-AlH$_3$ retains its primary morphology. The crystal form of α-AlH$_3$ does not change after coating with PDA. The XPS analysis results show that N1s appears on the material after coating with PDA, indicating that polydopamine is formed on the surface of α-AlH$_3$. The moisture absorption tests show that the moisture absorption rate of α-AlH$_3$ is greatly reduced after being coated with PDA. The excellent intact ability of PDA prevent α-AlH$_3$ from reacting with water in air. The thermal stability of α-AlH$_3$ before and after coating was analyzed by DSC. This work demonstrates the successful applications of dopamine chemistry to α-AlH$_3$, thereby providing a potential method for metastable materials.

AlH$_3$ is a solid-state hydrogen storage, hydrogen provider and reducing agent. Combined with oxidizer(ADN, AP CL-20), it becomes a high energy material often used for aerospace and missile industry$^{1-4}$. Theoretical studies have shown that the specific impulse value of AlH$_3$ is higher in solid, liquid and solid–liquid propellants than in Al$^{5-7}$. AlH$_3$ is a special compound. It has at least seven different crystalline structures depending on the synthesis conditions: α, β, γ, δ, ϵ, and ζ. Among them, α-AlH$_3$ is the best-studied crystalline$^{8-12}$. However, α-AlH$_3$ has a small enthalpy of formation and is in a metastable state. Hence, the problem related to stability remains unresolved$^{13-16}$.
To date, various researchers worldwide have been tackling this problem in improving the stability of AlH₃, including surface passivation, surface coating and doping with other substrates. In spite of this, the appropriate coating material and the novel coating technique for coating α-AlH₃ should be explored.

Dopamine is a biological neurotransmitter that widely exists in living organisms. The use of dopamine solution through the oxidation-polymerization of monomers has provided a facile and versatile method for modifying the surfaces of solid materials, which has led to the development of bioinspired poly(dopamine) (PDA) for the successful modification of various substrates, including metals, metals with native oxide surfaces, ceramics, semiconductors, carbon materials, and synthetic polymers. PDA-mediated chemistry could provide a general method for the fabrication of numerous multifunctional substrates with specific properties. Dopamine chemistry is a straightforward and versatile coating strategy that may open a door for the surface processing of α-AlH₃. However, few works have reported the use of PDA coating on α-AlH₃.

Herein, we report a general and facile approach to the coating of α-AlH₃, which is bioinspired through the in situ polymerization of dopamine. To the best of our knowledge, this is the first report about the application of dopamine chemistry to α-AlH₃. A simple scatter of α-AlH₃ in an aqueous dopamine solution can lead to the spontaneous deposition of PDA film. The stability of α-AlH₃ is significantly improved through the PDA coating. The present work potentially provides a new method for the modification of metastable.

Results And Discussion

The PDA@α-AlH₃ composite and α-AlH₃ were subjected to XRD analysis, and the results are shown in Figure 1. Figure 1 shows that the characteristic peaks of the PDA@α-AlH₃ composite material appear at 2θ = 27.84°, 38.58°, 40.72°, 46.1°, 49.96°, 57.26°, 63.26°, 66.26°, 68.14°, 72.48°, 73.84°, 82.52°, 86.16°, corresponding to the (012), (104), (006), (022), (024), (116), (122), (018), (214), (300), (208) and (119) planes of α-AlH₃ (JCPDF 23-0761), respectively. The position of the diffraction peak of the PDA@α-AlH₃ complex is basically the same as the characteristic diffraction peak of α-AlH₃. It shows that the position of the characteristic diffraction peak remains unchanged before and after the modification, indicating that α-AlH₃ has good crystallization performance, without the characteristic diffraction peak of PDA with the coating agent, and the coating amount of the coating agent PDA is small, indicating that α-AlH₃ is coated and modified by PDA.

The surface compositions of PDA@α-AlH₃ and α-AlH₃ were analyzed by photoelectron spectroscopy (XPS), and the results are shown in Figure 2 and Table 1. Figure 2 shows that the element types on the surface of α-AlH₃ before and after coating changed. The surface elements of α-AlH₃ before coating only contain three elements: C, Al, and O. After coating, the surface elements of PDA@α-AlH₃ contained not only three elements: C, Al, and O but also the characteristic N element peak of the polydopamine film. These observations indicate that the surface of α-AlH₃ was successfully coated with a polydopamine
film. However, the intensity of the peaks has changed. The intensity of the C1 s peak is significantly increased, indicating that the intensity of the O1 s peak and Al2p corresponding to the carbon element in the PDA coated on the surface of α-AlH₃ is significantly reduced. At the same time, it can be seen more specifically from Table 1 that the content of C1 s increased from 18.17–52.37%, and the corresponding contents of O and Al were reduced. From Table 1, the content of O1 s is reduced from 38.58–22.83%, the content of Al2p is reduced from 43.25–21.27%, and the content of N1 s is characteristic of a polydopamine film at 3.53%, indicating that the surface of α-AlH₃ is coated with PDA.

Table 1. XPS testing results of XPS of α-AlH₃ and PDA@α-AlH₃

Sample	Al2p/%	C1 s/%	O1 s/%	N1 s/%
α-AlH₃	43.25	18.17	38.58	0
PDA@α-AlH₃	21.27	52.37	22.83	3.53

To further study the influence of PDA on the micromorphology of α-AlH₃, the morphology analysis results of PDA@α-AlH₃ and α-AlH₃ by SEM are shown in Figure 3. Figure 3 shows the SEM images and atomic distribution as determined by the EDS mapping images of two samples obtained from different locations. Figure 3(a) is the SEM and EDS-mapping image of α-AlH₃. It has a cubic morphology of polycrystalline irregularity, with a particle size of approximately 10 µm, a relatively smooth surface, and relatively sharp edges and corners. There is a superpositional phenomenon between the particles. Figure 3(b) is the SEM and EDS mapping image of PDA@α-AlH₃. It is a cube with less regularity, with a particle size of approximately 10 µm. The surface is relatively uneven and is attached to polydopamine particles, indicating that PDA is evenly coated on the α-AlH₃ surface. It is clear that the elements of α-AlH₃ determined by EDS mapping are different in terms of their composition and distribution. EDS mapping shows that the Al shown in green is full of coverage because Al is the major element present in α-AlH₃. The O distribution is shown in red patches and dots. The Cl distribution is shown in yellow patches and dots. This shows that some Cl minerals included in α-AlH₃ have been unremoved by cleaning.

After coating, the elements of PDA@α-AlH₃ contained not only Al and O but also the characteristic N and C elements of polydopamine. The C distribution is shown in blue patches and dots. The N distribution is shown in purple patches and dots. The composition of samples determined by EDS is given in Table 1. As seen from Table 2, the C atomic percentage was increased by 24.55%, and when the N atomic percentage was increased by 2.44%, α-AlH₃ was coated by PDA, showing a significant enrichment of the C and N contents. At the same time, the Al and

The O atomic percentages were decreased by 7.88% and 8.87%, respectively.

Table 2. Elemental analysis of α-AlH₃ and PDA@α-AlH₃ samples by EDS, n.d., not detected.
To study whether a small amount of coating agent PDA can slow down the moisture absorption of α-AlH₃, the moisture absorption rates of PDA@α-AlH₃ and α-AlH₃ were tested. The results are shown in Figure 4. The results show that at room temperature and 93% relative humidity, the moisture absorption rate of α-AlH₃ coated with PDA is significantly lower than that of α-AlH₃ g. With increasing time, the moisture absorption rate of uncoated α-AlH₃ increases rapidly with storage time and reaches the equilibrium point of moisture absorption after 12 days, which is as high as 13.3%. The moisture absorption rate of α-AlH₃ after being coated with PDA is only 0.05%, which shows that the polydopamine film on the surface plays an important role in isolating moisture in the air. It is speculated that this is mainly due to the close combination of PDA, which effectively inhibits the reaction of AlH₃ with water vapor in the air.

Thermal stability is a key performance factor for novel materials. To investigate the thermal stability of the samples before and after modification, the thermal performance was determined by DSC. The test results of the samples are displayed in Figure 5. The characteristic parameters are summarized in Table 3. As shown in Fig. 5, the DSC curve of α-AlH₃ exhibits a single endothermic desorption process starting at and peaking at 181.2 °C, which is in accordance with the endothermic reaction being attributed to the dehydridding of α-AlH₃. However, the thermal decomposition temperature of PDA@α-AlH₃ is 191.1°C, indicating that the thermal stability of α-AlH₃ is greatly improved after PDA modification, which is due to the formation of organic PDA to improve its heat resistance. These results clearly demonstrate that PDA@α-AlH₃ completely decomposed into Al is more difficult than pure α-AlH₃.

Table 3. Thermal analysis data of α-AlH₃ and PDA@α-AlH₃

Sample	Endothermic peak			
	T₀/°C	Tₚ/°C	Tₑ/°C	ΔH/Jg⁻¹
α-AlH₃	166.2	181.2	204.1	405.1
PDA/α-AlH₃	177.1	191.1	210.2	418.6

Elements	Al	O	Cl	N	C
Sample α-AlH₃ mass %	87.22	12.49	0.29	n.d	n.d
Sample α-AlH₃ atomic %	80.39	19.41	0.21	n.d	n.d
Sample PDA@α-AlH₃ mass %	77.20	7.73	n.d	1.56	13.51
Sample PDA@α-AlH₃ atomic %	62.47	10.54	n.d	2.44	24.55
According to the relevant literature, AlH₃ will slowly decompose to liberate hydrogen at room temperature. For this reason, the prepared samples are naturally placed in a desiccator, and after a period of time, the hydrogen content is detected, and the decomposition rate is indirectly calculated through the change in hydrogen content. The test results of samples α-AlH₃ and PDA@α-AlH₃ are shown in Table 4 below. Table 4 shows that the hydrogen content of the product is reduced due to the decomposition of. The initial hydrogen content of sample #1 is 9.745%. From the initial hydrogen content data of #2, #3 and #4, we can see that there are varying degrees of reduction in hydrogen about α-AlH₃ modified by PDA. However, from the perspective of decomposition rate, the decomposition rate of α-AlH₃ is the highest, and the decomposition rate is reduced after modification by PDA. The decomposition of PDA@α-AlH₃ may be slowed due to the formation of the organic polymer PDA. The more organic content there was, the lower the decomposition rate.

Table 4. The H element content of α-AlH₃ and PDA@α-AlH₃ stored at room temperature

No	Sample	Storage time/d	Percent hydrogen/%	Decomposition rate/%	
			Initial	windup	
#1	α-AlH₃	365	9.745	9.632	1.16
#2	PDA/α-AlH₃	365	9.136	9.126	0.11
#3	PDA/α-AlH₃	365	9.095	9.089	0.07
#4	PDA/α-AlH₃	365	9.235	9.215	0.22

To investigate the influence of PDA on the sensitivity of α-AlH₃, different batches of prepared PDA@α-AlH₃ samples were numbered, and the impact, friction and electrostatic sensitivity were tested to study the influence of PDA on the sensitivity of α-AlH₃. The test results are shown in the table 5.

Table 5. The sensitivity results of α-AlH₃ and PDA@ AlH₃
No	sample	Impact sensitivity	Friction sensitivity	Electrostatic sensitivity
#1	α-AlH₃	14%	40%	90°3.92MPa
				V₅₀=10.0kV, no fire
#2	PDA/α-AlH₃	12%	44%	90°3.92MPa
				V₅₀=10.0kV, no fire
#3	PDA/α-AlH₃	14%	44%	90°3.92MPa
				V₅₀=10.0kV, no fire
#4	PDA/α-AlH₃	14%	40%	90°3.92MPa
				V₅₀=10.0kV, no fire
#5	PDA/α-AlH₃	12%	40%	90°3.92MPa
				V₅₀=10.0kV, no fire

Experimental batch number #1 is α-AlH₃, and experimental batch numbers #2, #3, #4 and #5 are all PDA-modified materials. From Table 5, it can be seen that the α-AlH₃ surface modification material polydopamine has an effect on α-AlH₃. The impact sensitivity, friction sensitivity and electrostatic sensitivity have little effect. After being modified by PDA, it can meet the requirements of later application indexes.

Conclusion

Polydopamine (PDA) was successfully generated on the surface of α-AlH₃ by in situ dopamine (DA) polymerization, and the structure and morphology of the package were characterized by various test methods, such as XRD, XPS and SEM. The results showed that the coating layer was more uniform, the coating effect was better, and the crystal type of the material was not changed. The stability of the PDA@α-AlH₃ composite at room temperature and 93% high humidity is significantly higher than that of uncoated α-AlH₃. This research provides new ideas for the long-term storage performance of α-AlH₃ and its application in propellants.

Methods

Materials

α-AlH₃ was typically synthesized following a wet chemical method. LiAlH₄ and AlCl₃ react in diethyl ether to produce an alane-ether complex. Then, α-AlH₃ was crystallized from the crystallization solution by
removing ether by heating the crystallization solution to a temperature ranging from approximately 80 °C to 90 °C; additionally, the crystallization additive was also added to the crystallization solution. α-AlH₃ was synthesized in our institute. Dopamine hydrochloride was purchased from Sigma–Aldrich and used as received. The other chemicals were commercial, analytical grade and used without further purification.

Coating of α-AlH₃ with PDA

A phosphate-buffered saline (PBS pH=7~7.5) solution was first prepared after the as-prepared solution and α-AlH₃ was dispersed to the PBS solution, with stirring at 300 rpm for 30 minutes. Then, dopamine was added to the above suspension, with stirring at 300 rpm for 4 h. During the polymerization process, the color of the solution changed from white to dark brown as a result of dopamine polymerization. The obtained dark brown solution was filtered. The samples were rinsed with distilled water and then dried in a vacuum oven at 60 °C. The entire operation process is shown in Figure 6.

Hygroscopicity test

Static hygroscopicity refers to the GJB772A-97 method. Place the saturated solution of potassium nitrate in a desiccator. After equilibrium, a hygrometer was used to determine the relative humidity in the desiccator to be 93%. Combine α-AlH₃ and PDA@α-AlH₃ at the same time. Place it in a dry place, and use a Mettler analytical electronic analytical balance for weighing, with an accuracy of 0.0001. The weight change was recorded every 24 hours, the change in moisture absorption rate was observed, and the moisture absorption rate was calculated as follows:

\[Q = \frac{\Delta G}{m} \times 100\% \]

In the formula, \(Q \) is the moisture absorption rate, \(\Delta G \) is the weight gain of the sample after moisture absorption, and \(m \) is the initial weight of the sample.

characterization

Structural characterization of the α-AlH₃ and PDA@α-AlH₃ samples was performed by powder X-ray diffraction (XRD, DMAX2400 with Cu Kα radiation at \(\lambda = 1.5418 \) Å). The morphology of the samples was examined by field emission scanning electron microscopy (SEM, Quanta600FEG). The surface chemistry was analyzed using X-ray elemental analysis (XPS, Thermo Fisher spectrometer equipped with monochromatic Al Ka radiation (1486.6 eV)). The thermal analysis was studied by DSC (NETZSCH STA 449C). The samples were heated from room temperature to the set temperatures with a heating rate of 10 °C/min under an Ar₂ gas flow rate of 70 ml/min to prevent oxidation.

References
1. Graetz, J. et al. Aluminum hydride as a hydrogen and energy storage material: past, present and future.
 J Alloys Compd. **509**, S517-S528(2011).

2. Sandrock, G. et al. Accelerated thermal decomposition of AlH₃ for hydrogen-fueled vehicles.
 Applied Physics A Materials Science Processing. **80**, 687-690(2005).

3. Grew, K. N. et al. Assessment of Alane as a Hydrogen Storage Media for Portable Fuel Cell Power
 Sources, *J. Power Sources.* **217**, 417–430(2012).

4. Young, G. Aluminum Hydride as a Fuel Supplement to Nanothermites. *Journal of Propulsion and
 Powde.* **30**, 70-77(2014).

5. Maggi, F. et al. Theoretical Analysis of Hydrides in Solid and Rocket Propulsion, *Int. J. Hydrogen
 Energy.* **37**, 1760-1769(2012).

6. Deluca, I T. et al. High-energy metal fuels for rocket propulsion: Characterization and performance.
 Chinese Journal of Explosives and Propellants. **36**, 1-14(2013).

7. Volker, W. et al. On the oxidation and combustion of AlH₃ a potential Fuel for rocket propellants and
 gas generators. *Prope, Explos, Pyrotech.* **32**, 213-221(2007).

8. DeLuca, et al. Physical and ballistic characterization of AlH₃-based space propellants, *Aerosol Sci.
 Technol.* **11**, 18–25(2007).

9. Duan C. W., Hu L. X. & Ma J. L. Ionic liquids as an efficient medium for the mechanochemical synthesis
 of α-AlH₃ nanocomposites. *Journal of Materials Chemistry A.* **6**, 6309-6318(2018).

10. Jeong, W. Lee, S.H. & Kim J, Synthesis and Hydrogen Desorption Properties of Aluminum
 Hydrides *Journal of Nanoscience and Nanotechnology,* **16**, 2987–2991(2016).

11. Graetz, J. & Reilly, J. J. Thermodynamics of the α, β and γ polymorphs of AlH₃, *J. Alloys Comp.*
 424, 262-265, 2006.

12. Saitoh H, et al. Formation and crystal growth process of AlH₃ Al-H system. *Journal of Alloys and
 Compounds.* **496**,25-28(2010).

13. Zhu, Z. Y. et al. Effects of phase impurity on stability and security of aluminum hydrid. *Chinese
 Journal of Energetic Material.* **19**, 637-640(2011).

14. Ismail, I. M. K.& Hawkins T. Kinetics of thermal decomposition of aluminum hydride I-nonisothermal
 decomposition under vacuum and in inert atmosphere (argon). *Thermochim Acta.* **439**, 32(2005).

15. Bulychev, B.M. Nonsolvated aluminum hydride. Crystallization from diethyl ether-benzene solutions.
 Russ Chem Bull. **56**,1305(2007).
16. Sandrock, et al. Alkali metal hydride doping of α-AlH$_3$ for enhanced H$_2$ desorption kinetics. *J. Alloys Compd.* **421**, 185-189(2006).

17. Petrie, M. A., et al. Preparation of α-Aluminum hydride polymorphs, particular stabilized α-AlH$_3$. USP 6228338, (2001).

18. Cai, X.W., et al Liquid Carbon Dioxide as Anti-Solvent Coating Aluminum Hydride. Propellants, Expolosives, pyrotechnics, **40**, 914 – 919(2015).

19. Jiang Z. F. Zhou-feng. et al. Research Progress in the stabilization of Aluminum Hydride. *Chinese Journal of Explosives ∥Propellans* **43**, 107-115(2020).

20. Qin, M. N. et al. The α-AlH$_3$ coated with stearic acid: preparation and its electrostatic sensitivity, *Chinese J. Energetic Mater.* **25**, 59–62(2017).

21. Xing, J. H. Xia,Y. & Wang,J.W. A method for improving thermal stability of aluminum hydride. CN 109019507A (2018).

22. Petrie, M. A. et al, Preparation of aluminum hydride polymorphs, particularly stabilized α-AlH$_3$. US, 6228338 B1, (2001).

23. Chen, R. et al. Surface passivation of aluminum hydride particles via atomic layer deposition. *J. Vacuum Sci. Technol. Vacuum Surfaces Films* **35**, 03E111(2017).

24. Xing, X. H. et al. Research progress in improving thermal stability of aluminum trihydride, *Chemical Propellants & Polymeric Materials*. **16**, 21–25 (2018).

25. Lee, H. Lee, B. & Messersmith, P. A reversible wet/dry adhesive inspired by mussels and geckos, *Nature*. **1**, 338–341 (2007).

26. Maerten, C. T. et al. Morphogen electrochemically triggered self-construction of polymeric films based on mussel-inspired chemistry, *Langmuir*. **31**, 13385–13393 (2015).

27. Lee, H. S. Dellatore, W. & Messersmith, P. Mussel-inspired surface chemistry for multifunctional coatings, *Science*. **318**, 426–430(2007).

28. Liu, Y. Ai, K. & Lu, L.H. Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields, *Chem.Rev*. **114**, 5057–5115(2014).

29. Dreyer, D. R. et al. Perspectives on poly(dopamine), *Chem. Sci.* **4** 3796–3802(2013).

30. Feiyan, G. et al. Mussel-inspired coating of energetic crystals: A compact core–shell structure with highly enhanced thermal stability. *Chemical Engineering Journal*. **309**, 140-150(2017).
Figures

Figure 1

XRD patterns of PDA@α-AlH₃ and α-AlH₃
Figure 2

XPS patterns of α-AlH₃ and PDA@α-AlH₃

Figure 3

SEM and EDS mapping images of α-AlH₃ and PDA@α-AlH₃ collected from different location distributions, (a)α-AlH₃, (b)PDA@α-AlH₃.
Figure 4

The moisture absorption curves of α-AlH$_3$ and PDA@α-AlH$_3$
Figure 5

the DSC curve of α-AlH_3 and PDA@α-AlH_3
Figure 6

Possible deposition process of PDA@α-AlH₃