ABSTRACT

Information systems are an essential part of technological progress, the success of information systems that can produce precise, accuracy, quality, and fast information that enhances the performance of organizations and people. According to Delone and McLean's model, there are an information system's critical success factors. Six key variables that support information systems success are information quality, quality system, service quality, use, user satisfaction, and net benefits. This research uses quantitative research methods, and the data used were 80 respondents by using purposive sampling, assisted by using questionnaire data collection methods. Analysis of the data used is PLS-SEM using the SmartPLS application. The results showed a significant effect on the quality information on use, user satisfaction, and net benefits. There is no significant effect on the quality system to use, user satisfaction, and net benefits. Quality of service is significant for use and net benefits, but there is no significant effect on user satisfaction.

KEYWORDS

Information system success, Delone and McLean, PLS, SEM
centralized data integration platform to collect and process data in one place. The platform can connect all data from each agency and carry out an analysis process so that it can produce output as a basis for decision making and policy.

Batu city government cooperates with a third party, namely IBM (International Business Machines Corporation), a United States company that manufactures and sells computer hardware and software, to use its platform, the IBM IOC (Intelligent Operations Center). IBM IOC offers its capabilities in integrated data processing, monitoring, and managing every vital service in the city. Not only Batu City uses this platform, but the city of Bandung and Malang regency have also implemented it, to help in creating a smart city. Kota Batu has completed the Smart city master plan on the Movement Towards 100 Smart city in 2019. The Smart City program in Kota Batu has run from the beginning of September 2017. By recruiting a successful screening of 80 Smart city freelancers, as experts responsible for it. It decides into two fields 32 experts in the field of information technology who served in the Command Center as an information system control center under the auspices of the Office of Communication and Information, and 48 experts in the field of agriculture as a companion to farmers on agricultural land under the auspices of the Department of Agriculture. Currently, a Smart city in Batu has run for two and a half years, and no evaluation of the information system has been implemented. Thus, it is necessary to evaluate the system for two years of use.

METHODS

Research Design

The research design can be interpreted as a specific framework designed or designed by researchers who describe the research process plan. The research design used in this study is quantitative by collecting primary and secondary data to measure the research variables. The data collection method uses the questionnaire method by distributing questions that have been compiled by researchers to research respondents. Analysis of the data used in this study was PLS-SEM using the SmartPLS application.

Scope

The scope of this research is on IBM IOC information system users in the Batu City Government, especially at the Communication and Information Office as the person in charge of managing the information system.

Research Location

The location of the study conducted in the Batu City Government. Researchers chose this location because they had worked as Smart city freelancers at the Communication and Information Service, and IBM IOC information system management officer. The latter had not evaluated the system for two years of use.

Research Variable

The research variable is an attribute or nature or value of people, objects, or activities with individual variations determined by researchers to be studied and drawn conclusions (Sugiyono, 2013). In this study, researchers used six variables in the success model of Delone and Mclean (2003) to measure the successful implementation of IBM IOC information systems. Then from these variables sought indicators as benchmarks in a study. According to Sugiyono (2013), the classification of research variables on the interdependence of variables, namely:

Independent Variable

The independent variable or the independent variable is the variable that influences or is the cause of the change or the emergence of the dependent variable (Sugiyono, 2011).
Table 1. Independent variable Indicator

Variable	Code	Indicator
Information Quality	X1.1	Accuracy
	X1.2	Relevance
	X1.3	Timeliness
System Quality	X2.1	Security
	X2.2	Flexibility
	X2.3	Reliability
Service Quality	X3.1	Responsiveness
	X3.2	Empathy

Source: Delone and Mclean (2016)

Intervening Variable

Intervening variables theoretically affect the relationship between the independent and dependent variables into an indirect relationship that cannot be observed and measured. This variable is the interrupting variable between the independent and dependent variables, so the independent variable does not directly affect the change or the emergence of the dependent variable (Sugiyono, 2011).

Table 2. Intervening Variable Indicator

Variable	Code	Indicator
Use	Y1.1	Frequency of Use
	Y1.2	Nature of Use
User Satisfaction	Y2.3	Satisfaction

Source: Delone and Mclean (2016)

Dependent Variable

The dependent variable is the variable affected or the result because of the independent variable (Sugiyono, 2011).

Table 3. Dependent Variable Indicator

Variable	Code	Indicator
Net Benefits	Z1	Learning
	Z2	Productivity
	Z3	Task Performance

Source: Delone and Mclean (2016)

Sampling Technique

The sampling technique researchers used non-probability sampling with a purposive sampling technique. The technique to determine the research sample with specific considerations aimed at making the data obtained later more representative (Sugiyono, 2010).

Table 4. Total Research Sample

No	Criteria	Total
1	Responsible for monitoring data and information systems	72
2	Charge of the information system database administrator	6
3	Responsible for uploading data to the information system database	2
	Total Sample	**80**

Collecting Data Technique

In this study, researchers used a method of collecting data through a questionnaire using the help of the google form application. Questionnaire links distributed to predetermined research subjects in measuring the attitudes and opinions of research subjects used a research scale using the Likert scale.

Data Analysis

In this study, the data analysis technique used is the SEM (Structural Equation Modeling) method with quantitative analysis. According to Latan (2013), SEM is a second-generation multivariate analysis technique that combines factor and path analysis to enable researchers to test and estimate the relationship between multiple exogenous and endogenous simultaneously with many indicators. In this study, the sample used is less than 100 samples. The researchers used the Partial Least Square (PLS) method to conduct SEM testing assisted with SmartPLS software. Evaluation of the measurement model aims to find the validity and reliability of indicators. Conducting structural model evaluation aims to see the significance of the relationship between latent variables by looking at the path coefficient, which shows the relationship between latent variables in the research model.
Hypothesis Testing and Interpretation

Hypothesis testing performed by the bootstrapping sampling method developed by Geisser and Stone. Testing calculated by t-test; if a p-value ≤ 0.05 or Cronbach alpha 5% obtained, it concluded significantly.

RESULTS

The questionnaire data collected through the Google Forms link-sharing method, which distributes to the research sample via social networks, namely Whatsapp and Instagram. The questionnaire distributes to all THL Smart cities through personal contact and social networking groups. Respondents receive the shared link and fill out a questionnaire. The completed and collected questionnaires are tabulated through the Microsoft Excel application and saved with a file with a CSV extension to imports into the SmartPLS application. The data is then processed using the SmartPLS application, starting with importing the CSV questionnaire data and then drawing the research model. The research model gives an indicator that already contains CSV data by dragging and dropping it on each variable. The calculation of the PLS Algorithm, Bootstrapping, and Blindfolding calculates the data description used by the researcher. The method of describing the research results used by researchers includes the distribution of answers, structural model testing, measurement tests, path tests, and hypothesis testing.

Distribution of answers to research indicators

The data collected is classified based on the total score of the respondents' answers from each variable. Calculation of the average score of the answers can be categorized as follows:

Table 5. Average Value Category

Interval	Category
1.00-1.18	Very Low
1.81-2.60	Low
2.61-3.40	Medium
3.41-4.20	High
4.21-5.00	Very High

Source: Husein (2011)

Table 6. Distribution of Questionnaire Answers

Indicator	Score	Average	Category
Information Quality	38	3.28	Medium
System Quality	107	4.30	Very High
Service Quality	79	4.41	Very High
Use	27	3.70	High
User Satisfaction	3	3.08	Medium
Net Benefits	50	3.33	Medium

Outer Model Test

The researcher's reflective indicator model has five stages, namely the discriminant validity, composite reliability, AVE, and Cronbach alpha. The three weighting factor calculations, average variance extracted, and discriminant validity categorizes in the validity test, and composite reliability and Cronbach alpha categorize in the reliability test. The calculation in the SmartPLS application uses the PLS Algorithm calculation.

Validity Test

Convergent validity testing is through testing the loading factor and AVE value while testing the discretionary validity through discriminant validity testing.
Evaluation of The Implementation of IBM IOC Using the Delone and Mclean Model

Figure 1. Loading Factor and AVE

Outer loadings

Outer loadings value > 0.7 in the initial research step, if the value of the outer loadings of 0.50-0.60 is obtaining, it is still acceptable (Ghozali, 2014). The test results for loading factors through the SmartPLS application can see the following figure:

Table 7. Outer Loadings

Variable	X1	X2	X3	Y1	Y2	Z
X1.1	0.769					
X1.2	0.559					
X1.3	0.789					
X2.1		0.713				
X2.2		0.873				
X2.3		0.855				
X3.1			0.873			
X3.2			0.898			
Y1.1				0.911		
Y1.2				0.776		
Y2.1					1.000	
Z1						0.679
Z2						0.709
Z3						0.746

All research indicators provide a value of > 0.5, and it can say that the use of indicators is valid. If the indicator value shows < 0.7, it cannot use in further research.

Average variance extracted

AVE value indicates the magnitude of the indicator variance contained by the construct; the value must indicate ≥ 0.5.

Table 8. AVE Calculation Results

Variable	Average Variance Extracted
X1	0.514
X2	0.667
X3	0.784
Y1	0.717
Y2	1.000
Z	0.507

Discriminant validity

Table 9. Discriminant Validity Calculation Results

Var	X1	X2	X3	Y1	Y2	Z
X1	0.717					
X2	-0.084	0.8				
X3	0.029	0.4	0.885			
Y1	0.263	0.3	0.396	0.8		
Y2	0.361	0.0	0.095	0.3	1.000	
Z	-0.104	0.2	-0.123	0.1	-0.246	0.7

Testing between constructs has in stock or different from other constructs. HTMT value < 0.9, then discriminant validity has been established between the two reflective constructions. Values > 0.9 indicate a lack of discriminant validity. The conclusions given according to the results of the above data calculation are:
Tabel 10, Heterotrait-Monotrait Ratio Conclusion

Konstruct	Value	Result
X2→X1	0,337	Valid
X3→X1	0,196	Valid
X3→X2	0,654	Valid
Y1→X1	0,541	Valid
Y1→X2	0,501	Valid
Y1→X3	0,560	Valid
Y2→X1	0,464	Valid
Y2→X2	0,060	Valid
Y2→X3	0,111	Valid
Y2→Y1	0,499	Valid
Z→X1	0,468	Valid
Z→X2	0,384	Valid
Z→X3	0,202	Valid
Z→Y1	0,402	Valid
Z→Y2	0,333	Valid

Table 12. Cronbach alpha Calculation Results

Variable	Cronbach’s Alpha
X1	0,535
X2	0,758
X3	0,725
Y1	0,617
Y2	1,000
Z	0,514

The Cronbach alpha calculation results show a value of > 0.6, but the Y1 and Z variables show a value of ≥ 0.6. According to Hair (2014), the value of Cronbach alpha > 0.4-0.6 can categorize as quite reliable.

Inner Model Test

Structural model tests performed to see the significance of the relationship between latent variables by looking at the path coefficients that show the relationship between latent variables in the research model. Calculations on the SmartPLS application use PLS Algorithm, Bootstrapping, and Blindfolding calculations.

R-Square

Table 13. R-Square Calculation Results

Variable	R Square	R Square Adjusted
Y1	0,278	0,250
Y2	0,138	0,104
Z	0,220	0,167

R square results of 0.75, 0.50, and 0.25 for endogenous latent variables in the structural model indicate that the model is "good", "moderate", and "weak". The conclusions given according to the results of data processing above are:

Table 14. R Square Conclusion

Path	Explanation	Result
Y1	variable ability X1, X2, X3 explains Y1 of 0,250	Weak 0,250
Y2	variable ability X1, X2, X3 explains Y2 of 0,104	Weak 0,104
Z	variable ability X1, X2, X3, Y1, Y2 explains Z of 0,167	Weak 0,167

Reliability Test

Reliability testing in the SmartPLS application uses two methods of calculating Composite reliability and Cronbach Alpha.

Composite reliability and Cronbach alpha

Then composite reliability testing is used to measure internal consistency, and the value must be > 0.6.

Table 11. composite reliability Calculation Results

Variable	Composite Reliability
X1	0,758
X2	0,857
X3	0,879
Y1	0,834
Y2	1,000
Z	0,755

The results of the calculation of composite reliability show a value of > 0.7 so that it shows all constructs are said to be reliable.
F-Square

Table 15. F-Square Calculation Results

Variable	X1	X2	X3	Y1	Y2	Z
X1	0.106	0.148	0.001			
X2	0.081	0.000	0.068			
X3	0.068	0.006	0.105			
Y1				0.069		
Y2				0.095		
Z						

F² values of 0.02, 0.15, and 0.35 interpreted whether the predictor of latent variables has a low, medium, or high influence on the structural level. The conclusions given according to the above calculation results are:

Table 16. F-Square Conclusion

Konstruct	Value	Result
X1→Y1	0.106	Low and intolerable
X1→Y2	0.148	Low and intolerable
X2→Y1	0.001	Low and intolerable
X2→Y2	0.081	Low and intolerable
X3→Y1	0.000	Low and intolerable
X3→Y2	0.068	Low and intolerable
Y1→Z	0.068	Low and intolerable
Y2→Z	0.006	Low and intolerable

Q-Square

Table 17. Q Square Calculation Results

Variable	SSO	SSE	Q²
X1	240,000	240,000	
X2	240,000	240,000	
X3	160,000	160,000	
Y1	160,000	137,671	0.140
Y2	80,000	75,998	0.050
Z	240,000	223,306	0.070

The calculation of Q2 has a value> 0, indicating that the model has predictive relevance, or it can be said to predict its endogenous variables. If the calculation of values obtains 0.02, 0.15, and 0.35, the category of results obtained is "small," "medium," and "large." Calculations using reflective indicators on endogenous constructs. The conclusions given according to the calculation results above are:

Table 18. Q Square Conclusion

Konstruct	Value	Result
Y1	0.140	small
Y2	0.050	small
Z	0.070	small

Path Analysis

Direct effect

Table 19. Coefficients and P-Values Calculation Results

Variable	Original Sample	Mean	Standard Deviation	T Statistics	P Values
X1 → Y1	0.279	0.281	0.134	2.075	0.041
X1 → Y2	0.360	0.343	0.159	2.261	0.026
X2 → Y1	0.277	0.285	0.109	2.541	0.013
X2 → Y2	0.010	0.025	0.114	0.086	0.932
X3 → Y1	0.254	0.241	0.105	2.430	0.017
X3 → Y2	0.080	0.081	0.113	0.711	0.479
Y1 → Z	0.285	0.310	0.101	2.824	0.006
Y2 → Z	-0.306	-0.295	0.114	2.694	0.009

Test the hypothesis of the direct effect of an influential variable on the variable affected. The estimated value for the path relationship in the structural model must be significant. This significance value can obtain by bootstrapping procedure. If the P-Values value < is 0.05, then it is declared significant, while the P-Values > 0.05 is not significant. The conclusions given according to the above calculation results are:
Table 20, Path Coefficients Conclusion

Path	Explanation	Result
X1→Y1 Path coefficient = 0.279 and P-Values = 0.041 shows the effect of X1 on Y1	Positive and significant	
X1→Y2 Path coefficient = 0.360 and P-Values = 0.026 shows the effect of X1 on Y2	Positive and significant	
X2→Y1 Path coefficient = 0.277 and P-Values = 0.013 shows the effect of X2 on Y1	Positive and insignificant	
X2→Y2 Path coefficient = 0.010 and P-Values = 0.932 shows the effect of X2 on Y2	Positive and insignificant	
X3→Y1 Path coefficient = 0.254 and P-Values = 0.017 shows the effect of X3 on Y1	Positive and significant	
X3→Y2 Path coefficient = 0.080 and P-Values = 0.479 shows the effect of X3 on Y2	Positive and insignificant	
Y1→Z Path coefficient = 0.285 and P-Values = 0.006 shows the effect of Y1 on Z	Positive and significant	
Y2→Z Path coefficient = -0.306 and P-Values = 0.009 shows the effect of Y2 on Z	Negative and significant	

Indirect effects

Table 21, Specific Indirect Effect Calculation Results

Variable	Original Sample	Mean	Standard Deviation	T Statistics	P Values
X1→Y1→Z	0.080	0.085	0.058	1.382	0.171
X2→Y1→Z	0.079	0.085	0.060	1.315	0.192
X3→Y1→Z	0.073	0.067	0.046	1.589	0.116
X1→Y2→Z	-0.110	-0.112	0.071	1.550	0.125
X2→Y2→Z	-0.003	-0.007	0.036	0.083	0.934
X3→Y2→Z	-0.025	-0.023	0.037	0.668	0.506

Test the hypothesis of the indirect effect of an exogenous variable on an endogenous variable mediated by an intervening variable. If the P-Values value < 0.05 is declared significant, the intervening variable mediates the effect of an exogenous variable on an endogenous variable or has an indirect effect. If P-Values > 0.05, then declared not significant, intervening variables do not mediate the effect of an exogenous variable on an endogenous variable or have a direct effect. The conclusions given according to the above data calculations are:

Table 22, Specific Indirect Effect Conclusion

Indirect Effect	Explanation	Result
X1→Y1→Z	Original sample 0.080 with P-Values 0.171. Y1 mediates the effect of X1 on Z	Insignificant
X2→Y1→Z	Original sample 0.079 with P-Values 0.192. Y1 does not mediate the effect of X2 on Z	Insignificant
X3→Y1→Z	Original sample 0.073 with P-Values 0.116. Y1 mediates the effect of X3 on Z	Insignificant
X1→Y2→Z	Original sample -0.110 with P-Values 0.125. Y2 does not mediate the effect of X1 on Z	Insignificant
X2→Y2→Z	Original sample -0.003 with P-Values 0.934. Y2 does not mediate the effect of X2 on Z	Insignificant
X3→Y2→Z	Original sample -0.025 with P-Values 0.506. Y2 does not mediate the effect of X3 on Z	Insignificant

Total effects
Evaluation of The Implementation of IBM IOC
Using the Delone and Mclean Model

The total effect is the effect of direct effects and indirect effects, namely the sum of the direct and indirect effects of an exogenous latent variable on endogenous latent variables. The p-value required of \(\leq 0.05 \). The conclusions given according to the above data calculations are:

1) The effect of information quality on use.
 It knows the impact from X1 to Y1 has a path coefficient of 0.279; the t-statistic result of 2.075 is \(> 1.96 \) with a p-value of 0.041, which is \(< 0.05 \). The calculated value indicates that the information quality variable has a positive significance to the use variable. Hypothesis H1, the variable information quality impacts the use variable is accepted.

2) The effect of information quality on user satisfaction.
 It knows the impact of X1 on Y2 has a path coefficient of 0.360; the t-statistic result of 2.061 is \(> 1.96 \) with a p-value of 0.026, which is \(< 0.05 \). The calculated value indicates that the information quality variable has a positive significance to the user satisfaction variable. Hypothesis H2, the variable information quality impacts the user satisfaction variable is accepted.

3) The effect of system quality on use.
 It knows the impact of X2 on Y1 has a path coefficient of 0.277, a t-statistic result of 2.451, which is \(> 1.96 \), the p-value of 0.013 < 0.05. The calculated value indicates that the system quality variable has a positive significance to the use variable. Hypothesis H3, the variable system quality impacts the use variable is accepted.

4) The effect of system quality on satisfaction.
 It knows the impact of X2 on Y2 has a path coefficient of 0.080, a t-statistic result of 0.711, which is \(< 1.96 \), the p-value of 0.479 > 0.05. The calculated value indicates that the system quality variable has a positive significance to the user satisfaction variable. Hypothesis H4, the variable system quality impacts the satisfaction variable is accepted.

The hypotheses are tested through statistical software such as SmartPLS using t-test calculations. The hypothesis is accepted if the p-value is \(\leq 0.05 \) and rejected otherwise. The calculations are as follows:

Variable	Original Sample	Mean	Standard Deviation	T Statistics	P Values
X1 → Y1	-0.066	-0.037	0.191	0.346	0.730
X1 → Y2	0.351	0.357	0.124	2.823	0.006
X1 → Z	-0.290	-0.308	0.126	2.298	0.024
X2 → Y1	0.277	0.010	0.086	2.451	0.013
X2 → Y2	0.275	0.229	0.126	2.914	0.006
X2 → Z	0.080	0.711	0.010	2.824	0.009
X3 → Y1	-0.338	2.714	0.009	2.694	0.009
Y1 → Z	0.285	0.338	0.009	2.694	0.009
Y2 → Z	-0.306	0.711	0.010	2.824	0.006
calculated value indicates that the system quality variable has a positive significance to the use variable. Hypothesis H3, the system quality variable, has an impact on the accept use variable.

4) The effect of system quality on user satisfaction.

It knows that the impact of X2 on Y2 has a path coefficient of 0.010; the result of the t-statistic is 0.086, which is < 1.96 with a p-value of 0.932, namely > 0.05; this hypothesis cannot accept because the results of t-statistics and p-values do not meet test terms. This calculation shows that the system quality variable does not have any significance to the user satisfaction variable. Hypothesis H4, variable system quality impacts the variable user satisfaction reject.

5) The effect of service quality on use.

It knows the impact of X3 on Y1 has a path coefficient of 0.254, a t-statistic result of 2.430 is > 1.96 with a p-value of 0.017, which is < 0.05. The calculated value indicates that the service quality variable has a positive significance to the use variable. Hypothesis H5, variable service quality impacts the variable use is accepted.

6) The effect of service quality on user satisfaction.

It knows that the impact of X3 on Y2 has a path coefficient of 0.080, the result of the t-statistic is 0.711, which is < 1.96 with a p-value of 0.479, namely > 0.05. The calculated value shows that the service quality variable has a positive significance to the use variable. Hypothesis H6, variable service quality impacts the variable use is accepted.

7) The effect of use on net benefits.

It knows that the impact of Y1 on Z has a path coefficient of 0.285; the t-statistic result of 2.824 is > 1.96, with a p-value of 0.006, which is < 0.05. The calculated value indicates that variable use has a positive significance for the net benefit variable. Hypothesis H7, variable use has an impact on the variable net benefits received.

8) The effect of user satisfaction on net benefits.

It knows that the impact of Y2 on Z has a path coefficient of -0.306, the result of the t-statistic is 2.694, namely > 1.96 with a p-value of 0.009, which is < 0.05. The calculated value shows that the user satisfaction variable has a significance to the net benefit variable. Hypothesis H8, the user satisfaction variable, has an impact on the net benefits variable received.

9) The effect of information quality, system quality, and service quality on net benefits.

It knows that the impact of X1 (information quality) on Z (net benefit) has a t-statistic result of 0.200 with a p-value of 0.842, which is declared insignificant. The impact of X2 (system quality) on Z (net benefit) has a t-statistic of 2.290 with a p-value of 0.025, which is significant. The impact of X3 (service quality) on Z (net benefit) has a t-statistic result of -0.338 with a p-value of 0.008, which is significant with a negative value. Hypothesis H9, there is an impact of information quality on net benefits is rejected. There is an impact on system quality and service quality on the net benefits received.

DISCUSSION

1. Information quality has an impact on use

It is often the neglected aspect of research on the success of information systems. Information quality has the main purpose of information systems is to provide accuracy, timeliness, and relevance. The quality of information is an important dimension in the success of a system (Delone, 2016). Previous research has proven that the quality of information has an impact on the use of Delone (2016), which is strengthened by Dewantoro's research (2019) showing that information quality has a positive impact on usage. This study proves interactions impact of information quality on the use of the IBM IOC application users.

2. Information quality has an impact on user satisfaction

Information quality is an important factor that contributes to user satisfaction (Delone, 2016). The impact of information quality on
user satisfaction with a positive impact is proven in previous research by Delone (2016) supported in research by Dewantoro (2019), Irfan (2019), Hidayatullah (2020). This study proves interactions impact of information quality on user satisfaction from users of the IBM IOC application.

3. System quality has an impact on use
System quality is still a key variable in measuring information system performance (Delone, 2016). Previous research examining the impact of system quality on users had a positive impact on Dewantoro's research (2019). This study proves interactions impact of system quality interaction on use of the IBM IOC application.

4. System quality has an impact on user satisfaction
System quality is still a key variable in measuring the success of information systems (Delone, 2016). Previous research tested the impact of system quality on user satisfaction as having a positive impact explained in the research of Lestari (2019), Hidayatullah (2020), but there was no impact of system quality on user satisfaction shown in Panjaitan's research (2019). This study proves interactions impact of system quality involvement on user satisfaction of users of the IBM IOC application.

5. Service quality has an impact on use
The failure of service quality in measuring the success of information systems can lead to unfavorable results because net benefits that are not very good describe poor service quality (Delone, 2016). Previous research tested the impact of service quality involvement on usage had a positive impact explained in Dewantoro's research (2019). The test results state that there is an impact of service quality involvement on the usage of the IBM IOC application users.

6. Service quality has an impact on user satisfaction
Service quality measures the contribution of information technology organizations that are responsible for or create information systems (Delone, 2016). Previous research tested the impact of service quality involvement on user satisfaction which had a positive impact explained in research by Irfan (2019), Dewantoro (2019), Hidayatullah (2020), but in Lestari's research (2019) the involvement of service quality on user satisfaction had no significant impact. This study proves that there is no interaction impact on service quality involvement on user satisfaction of users of the IBM IOC application.

7. Use has an impact on net benefits
Use is the main focus of measuring the success of information systems (Delone, 2016). Previous research tested the impact of use involvement on net benefits to having a positive impact described in Lestari's research (2019). This study proves interactions impact of usage engagement on the net benefits of users of the IBM IOC application.

8. User satisfaction has an impact on net benefits
Success measures are popular and mostly serve as surrogate measures for other dimensions of success (Delone, 2016). Previous research tested interactions impact of user satisfaction involvement on net benefits as having a positive impact, explained in the research of Irfan (2019), Hidayatullah (2020). This study proves interactions impact of user satisfaction involvement on net benefits of users of the IBM IOC application.

9. Information quality, system quality, and service quality have an impact on net benefits
Information quality has a strong impact on the results of net benefits, along with service quality as well as system quality as a measure of the model (Delone, 2016). Previous research has tested the absence of the impact of the involvement of information quality and system quality on net benefits through use in Krisdiantoro's study (2018). Panjaitan (2019) in his research there is no impact on the involvement of system quality, service quality, and information quality on net benefits.
through user satisfaction, it can be explained as follows:

a) The results of the calculation of indirect effects explain that there is no impact on the involvement of system quality, service quality, and information quality on net benefits through use.

b) The results of the calculation of indirect effects explain that there is no impact on the involvement of system quality, service quality, and information quality on net benefits through user satisfaction.

c) The impact of system quality, service quality, and information quality on net benefits through calculating total effects proves that there is no impact of system quality involvement on net benefits, however, as in Delone's (2016) research, information quality, and service quality prove that there is an impact of involvement on net benefits.

CONCLUSION

Based on the results of the IBM IOC evaluation research through the Delone and McLean information system success model, the following conclusions are:

1) The information quality variable explains the accuracy and relevance indicators indicate the high category, while the timeliness shows the deficient category. The accuracy indicator describes accurate, precise, and complete data information, getting good responses from the IBM IOC information system users. The relevance indicator explains the navigation menu and required data, getting good responses from the IBM IOC information system users. The timeliness indicator describes up-to-date data and access speed, getting an inadequate response from the IBM IOC information system users.

2) The system quality variable explains that the security and flexibility indicators show the very high category, while the reliability indicator shows the high category. The security indicator describes the security when using and data security, getting good responses from users of the IBM IOC information system. The flexibility indicator describes access from various devices and can be accessed from anywhere, getting a good response from users of the IBM IOC information system. Reliability indicators describe data that can be accounted for, run well when accessed simultaneously, provide information when an error occurs, and get good responses from users of the IBM IOC information system.

3) The quality variable explains the responsiveness and empathy indicators showing a very high category. The responsiveness indicator explains the officer's response when an error occurs and the officer's quick reaction, getting a good response from users of the IBM IOC information system. The empathy indicator explains complaint handling and friendly handling, getting good responses from the IBM IOC information system users.

4) The use variable explains the frequency of use indicator shows the high category, while the use indicator's nature shows the medium category. The frequency of use indicates that it runs well even though it is often used and wants to reuse, getting good responses from the IBM IOC information system users. The nature of use indicator explains the ease of use and convenience when using, getting a reasonable response from users of the IBM IOC information system.

5) The user satisfaction variable explains the satisfaction indicator shows the moderate category. The satisfaction indicator describes satisfaction when using and working as expected, getting a reasonable response from users of the IBM IOC information system.

6) The net benefit variable explains the learning indicator shows a deficient category, while the productivity and task performance indicators show the high category. Learning indicators explain user guides' availability and help improve user
capabilities, getting an inadequate response from users of the IBM IOC information system. The productivity indicator explains that it helps complete tasks effectively and increase productivity, getting good responses from users of the IBM IOC information system. The task performance indicator explains that it helps to complete tasks faster and reduce errors in providing reports and getting good responses from the IBM IOC information system users.

LIMITATION

The PLS-SEM testing in this study had previous researchers conveyed several important points that needed to be considered to investigate information:
1. Relevance and learning indicators cannot be used in further research, because the results obtained in calculating outer loading are <0.7.
2. The timeliness indicator gets a poor response, so it needs to be paid attention again regarding data updates and access speed of IBM IOC information systems.
3. Learning indicators get a good response, so it needs to be considered again related to providing the use and assistance of the IBM IOC information system.

In Delone and McLean's 2016 research, there are recommendations for measuring indicators of each variable, which can be used in future research in measuring the success of an information system.

REFERENCES

[1] Bahesa P.B., 2018. Analysis of the Success of the Pamekasan Regency Government Website Information System Based on the Delone And Mclean Model. Final Project of the Faculty of Technology and Information Technology. STIKOM. Surabaya.

[2] Budiyanto. 2009. Evaluation of Information System Success Using the Delone and Mclean Model Approach. Thesis of Master of Accounting Study Program. Sebelas Maret University. Surakarta.

[3] Delone W., Mclean. 1992. Information System Success: The Quest for The Dependent Variabbel. Journal of Information Systems Research.

[4] Delone W., Mclean. 2003 Informations System Success: The A Ten-Year Update. Journal of Information Systems Research.

[5] Delone W., Mclean. 2016. Informations System Success: Measurement, Foundations and Trends. Journal of Information Systems Research.

[6] Dewantoro Bayu, Irman Hermadi, Joko Ratono. 2019. Evaluation of the 1Office-integrated System Using an Adeptation To the Delone and Mclean Success Model. Journal of the Faculty of Mathematics and Natural Sciences. University of IPB. Bogor.

[7] Fajri Arrofiq B.A, Admaja D.H, Satrio H.W. 2019. Evaluation of the Quality and Success of the Batu Among Tani Technology (BATT) Information System Using the Technology Acceptance Model (TAM) and Delone and Mclean Approaches. Journal of Information Systems Study Programs. Brawijaya University. Malang.

[8] Fannani Alfian, Widhy Hayuhardhika N.P, Admaja Dwi Herlambang. 2019. Evaluation of Successful Implementation of Employee Performance Targets (SKP) in Sidoarjo Regency Based on Delone and McLean Models. Journal of
Information Systems Study Program.
Brawijaya University. Malang.

[9] Ghozali Imam. 2011. Application of Multivariate Analysis with SPSS Program. Diponegoro University. Semarang.

[10] Hair, Joseph E, Jr et al. 2014. A Primer on Partial Least Square Structural Equation Modelling (PLS-SEM). SAGE Publication, Inc. California. The USA.

[11] Hidayatullah Syarif, Umu Khouroh, Irany Windhyastiti, Ryan Gerry Patalo, Abdul Waris. 2020. Implementation of DeLone And McLean’s Information System Success Model the Zoom Application-Based Learning System During the Covid-19 Pandemic. Journal of Information Technology and Management, Faculty of Economics and Business, University of Merdeka Malang, Indonesia.

[12] Husein Umar. 2011. Research Methods for Thesis and Business Thesis. Second Edition. Grafindo Persada. Jakarta.

[13] Irfan Mohammad. 2019. The Effect of System Quality, Information Quality, and Service Quality on the Net Benefits of Using Briva Payment Systems with Intervening User Satisfaction Variables (Validation of Delone and Mclean Information System Success Model). Thesis of Master of Accounting Study Program Postgraduate Program. Islamic University of Indonesia. Yogyakarta.

[14] Jaya Gede N.M, Made Sumertajaya. 2008. Structural Equation Modeling with Partial Least Square. Journal of Mathematics Senmas and Mathematics Education by the teaching staff the Unpad Statistics Department and the teaching staff of the Statistics Department of IPB. Indonesia.

[15] Krisdiantoro Y., Imam S., Yeney W.P. 2018. Effects of System Quality and Information Quality on Net Benefits with Intensity of Use as Mediation Variables. Actual Accounting Journal. Ministry of Finance. Indonesia.

[16] Latan H., Selva. 2013. Multivariate Analysis of Techniques and Applications Using the IBM SPSS 20.0 Program. Alfabeta. Bandung. Indonesia.

[17] Lestari Sri, Dies L.R. 2019. Implementation of the Delone and Mclean Model for the Success of the Replication Database Implementation at the Directorate General of Customs and Excise. Journal of Information Systems Study Program, College of Computer Science. Cipta Karya Informatika. East Jakarta.

[18] Panjaitan E.S., Sri F.H., Nuraziza M.U., Salsalina S. 2019. Analysis of Factors Affecting the Net Benefits Mediated by Population Administration Information System User Satisfaction. Journal of Information Technology and Information Systems. STMIK Mikroskil Medan. Medan.

[19] Pentidari Alpia, Aditya Rachmadi, Admaja Dwi Herlambang. 2019. Evaluation of the Success of Open Public Access Catalog System Implementation with the Delone and Mclean Model in the UB Library. Journal of Information Systems
Evaluation of The Implementation of IBM IOC Using the Delone and Mclean Model

Study Program. Brawijaya University. Malang.

[20] Rodliyah Millatur. 2016. Estimated Score Factor with Partial Least Square (PLS) in Measurement Model. Thesis of Department of Statistics Faculty of Mathematics and Natural Sciences. ITS. Surabaya.

[21] Sorongan Erick, Qory Hidayati. 2020. Evaluation of Implementation of E-Government with Delone and Mclean. Journal of Electrical Engineering. Balikpapan State Polytechnic. Balikpapan. Indonesia.

[22] Sugiyono. 2010. Educational Research Methods Quantitative, Qualitative, and R&D Approaches. Alfabet. Bandung, Indonesia.

[23] Sugiyono. 2011. Educational Research Methods Quantitative, Qualitative, and R&D Approaches. Alfabet. Bandung, Indonesia.

[24] Sugiyono. 2013. Educational Research Methods Quantitative, Qualitative, and R&D Approaches. Alfabet. Bandung, Indonesia.

[25] Sugiyono. 2015. Combined Research Methods (Mix Methods). Alfabet. Bandung. Indonesia.