REAL HYPERSURFACES IN COMPLEX TWO-PLANE GRASSMANNIANS WITH REEB PARALLEL RICCI TENSOR IN GENERALIZED TANAKA-WEBSTER CONNECTION

HYUNJIN LEE, YOUNG JIN SUH AND CHANGHWA WOO

Abstract. There are several kinds of classification problems for real hypersurfaces in complex two-plane Grassmannians $G_2(\mathbb{C}^{m+2})$. Among them, Suh classified Hopf hypersurfaces M in $G_2(\mathbb{C}^{m+2})$ with Reeb parallel Ricci tensor in Levi-Civita connection. In this paper, we introduce a new notion of generalized Tanaka-Webster Reeb parallel Ricci tensor for M in $G_2(\mathbb{C}^{m+2})$. By using such parallel conditions, we give complete classifications of Hopf hypersurfaces in $G_2(\mathbb{C}^{m+2})$.

Introduction

In this paper, let M represent a real hypersurface in $G_2(\mathbb{C}^{m+2})$, $m \geq 3$, and S denote the Ricci tensor of M. Hereafter unless otherwise stated, we consider that X, Y, Z are any tangent vector fields on M. Let W be any tangent vector field on the distribution $\mathfrak{h} = \{X \in TM | X \perp \xi\}$. k stands for a non-zero constant real number.

The classification of real hypersurfaces in Hermitian symmetric space is one of interesting parts in the field of differential geometry. Among them, we introduce a complex two-plane Grassmannian $G_2(\mathbb{C}^{m+2})$ defined by the set of all complex two-dimensional linear subspaces in \mathbb{C}^{m+2}. It is a kind of Hermitian symmetric space of compact irreducible type with rank 2. Remarkably, the manifolds are equipped with both a Kähler structure J and a quaternionic Kähler structure \mathfrak{J} satisfying $JJ_\nu = J_\nu J$ ($\nu = 1, 2, 3$) where $\{J_\nu\}_{\nu=1,2,3}$ is an orthonormal basis of \mathfrak{J}. When $m = 1$, $G_2(\mathbb{C}^4)$ is isometric to the two-dimensional complex projective space $\mathbb{C}P^2$ with constant holomorphic sectional curvature eight. When $m = 2$, we note that the isomorphism $\text{Spin}(6) \simeq \text{SU}(4)$ yields an isometry between $G_2(\mathbb{C}^4)$ and the real Grassmann Manifold $G_2^+(\mathbb{R}^6)$ of oriented two-dimensional linear subspaces in \mathbb{R}^6. In this paper we assume m is not less than 3. (see [2]).

Let N be a local unit normal vector field of M. Since $G_2(\mathbb{C}^{m+2})$ has the Kähler structure J, we may define a Reeb vector field $\xi = -JN$ and a 1-dimensional distribution $[\xi] = \text{Span}\{\xi\}$. The Reeb vector field ξ is said to be a Hopf if it is

\textbf{1} 2010 Mathematics Subject Classification : Primary 53C40; Secondary 53C15.

\textbf{2} Key words : Real hypersurfaces; complex two-plane Grassmannians; Hopf hypersurface; generalized Tanaka-Webster connection; Ricci tensor; Reeb parallel.

* This work was supported by Grant Proj. No. NRF-2011-220-C00002 from National Research Foundation of Korea. The first author by Grant Proj. No. NRF-2012-R1A1A3002031, the second by Grant Proj. No. NRF-2012-R1A2A2A01043023. And the third author supported by NRF Grant funded by the Korean Government (NRF-2013-Fostering Core Leaders of Future Basic Science Program).
invariant under the shape operator A of M. The 1-dimensional foliation of M by the integral curves of ξ is said to be a Hopf foliation of M. We say that M is a Hopf hypersurface if and if the Hopf foliation of M is totally geodesic. By the formulas in [9] Section 2, it can be easily seen that ξ is Hopf if and only if M is Hopf.

From the quaternionic Kähler structure \mathfrak{F} of $G_2(\mathbb{C}^{m+2})$, there naturally exists almost contact 3-structure vector field $\xi_\nu = -J_\nu N$, $\nu = 1, 2, 3$. Put $Q^\perp = \text{Span}\{\xi_1, \xi_2, \xi_3\}$, which is a 3-dimensional distribution in a tangent vector space $T_x M$ of M at $x \in M$. In addition, Q stands for the orthogonal complement of Q^\perp in $T_x M$. It becomes the quaternionic maximal subbundle of $T_x M$. Thus the tangent space of M consists of the direct sum of Q and Q^\perp as follows: $T_x M = Q \oplus Q^\perp$.

For two distributions $[\xi]$ and Q^\perp defined above, we may consider two natural invariant geometric properties under the shape operator A of M, that is, $A[\xi] \subset [\xi]$ and $AQ^\perp \subset Q^\perp$. By using the result of Alekseevskii [1], Berndt and Suh [2] have classified all real hypersurfaces with two natural invariant properties in $G_2(\mathbb{C}^{m+2})$ as follows:

Theorem A. Let M be a real hypersurface in $G_2(\mathbb{C}^{m+2})$, $m \geq 3$. Then both $[\xi]$ and Q^\perp are invariant under the shape operator of M if and only if

(A) M is an open part of a tube around a totally geodesic $G_2(\mathbb{C}^{m+1})$ in $G_2(\mathbb{C}^{m+2})$,

or

(B) m is even, say $m = 2n$, and M is an open part of a tube around a totally geodesic $\mathbb{H}P^n$ in $G_2(\mathbb{C}^{m+2})$.

In the case (A), we say M is of Type (A). Similarly in the case (B) we say M is of Type (B). Using Theorem A, geometers have given characterizations for Hopf hypersurfaces in $G_2(\mathbb{C}^{m+2})$ with geometric quantities, shape operator, normal (or structure) Jacobi operator, Ricci tensor, and so on. Actually, Lee and Suh [9] gave a characterization for a real hypersurface of Type (B) as follows:

Theorem B. Let M be a Hopf hypersurface in $G_2(\mathbb{C}^{m+2})$, $m \geq 3$. Then ξ belongs to the distribution Q if and only if M is locally congruent to an open part of a tube around a totally geodesic $\mathbb{H}P^n$ in $G_2(\mathbb{C}^{m+2})$, $m = 2n$. In other words, M is locally congruent to a real hypersurface of Type (B).

In particular, there are various well-known results with respect to S on Hopf hypersurfaces in $G_2(\mathbb{C}^{m+2})$. From such a point of view, Suh [17] gave a characterization of a model space of Type (A) in $G_2(\mathbb{C}^{m+2})$ under the condition $S\phi = \phi S$ where ϕ denotes the structure tensor field of M. In [18] and [19], he also considered the parallelism of Ricci tensor with respect to the Levi-Civita connection and gave, respectively,

Theorem C. [19] Let M be a real hypersurface in $G_2(\mathbb{C}^{m+2})$, $m \geq 3$ with non-vanishing geodesic Reeb flow. If the Ricci tensor is Reeb parallel, $\nabla_\xi S = 0$. Then M is locally congruent to one of the following:

(i) a tube over a totally geodesic $G_2(\mathbb{C}^{m+1})$ in $G_2(\mathbb{C}^{m+2})$ with radius $r \neq \frac{\pi}{4\sqrt{2}}$,

or

(ii) a tube over a totally geodesic $\mathbb{H}P^n$, $m = 2n$, in $G_2(\mathbb{C}^{m+2})$ with radius r such that $\cot^2(2r) = \frac{1}{2m-1}$ and ξ-parallel eigenspaces $T_{\text{cot}}r$ and $T_{\text{tan}}r$.

Motivated by these works, we define the notion of Reeb parallel Ricci tensor with respect to the generalized Tanaka-Webster connection for a real hypersurface M
in $G_2(\mathbb{C}^{m+2})$. In order to do this, we first define the generalized Tanaka-Webster connection $\widehat{\nabla}^{(k)}$ on M given by

$$\widehat{\nabla}^{(k)}_\xi Y = \nabla_X Y + g(\phi AX, Y)\xi - \eta(Y)\phi AX - k\eta(X)\phi Y,$$

where k is a non-zero real number (see [3], [4], [5]). Hereafter, unless otherwise stated, a GTW connection means a generalized Tanaka-Webster connection. In addition, we put

$$F_X^{(k)} Y = g(\phi AX, Y)\xi - \eta(Y)\phi AX - k\eta(X)\phi Y.$$

Then the operator $F_X^{(k)}$ becomes a skew-symmetric (1,1) type tensor, that is, $g(F_X^{(k)} Y, Z) = -g(Y, F_X^{(k)} Z)$ for any tangent vector fields X, Y, Z on M and said to be Tanaka-Webster (or k-th-Cho) operator with respect to X.

Related to this connection, the Ricci tensor S is said to be generalized Tanaka-Webster Reeb parallel (in short, GTW-parallel) if the covariant derivative in GTW connection $\nabla^{(k)}$ of S along ξ is vanishing, that is, $(\nabla^{(k)}_\xi S)Y = 0$. From this, we naturally see that this notion is weaker than generalized Tanaka-Webster parallel (shortly, GTW-parallel) Ricci tensor, that is, $(\nabla^{(k)}_\xi S)Y = 0$. Recently, Pérez and Suh [14] proved the non-existence of Hopf hypersurfaces in $G_2(\mathbb{C}^{m+2})$, $m \geq 3$, with GTW-parallel Ricci tensor. From such a viewpoint, we assert:

Theorem 1. Let M be a Hopf hypersurface in complex two-plane Grassmannians $G_2(\mathbb{C}^{m+2})$, $m \geq 3$, with $\alpha = g(A\xi, \xi) \neq 2k$. The Ricci tensor S of M is GTW-Reeb parallel if and only if M is locally congruent to one of the following:

(i) a tube over a totally geodesic $G_2(\mathbb{C}^{m+1})$ in $G_2(\mathbb{C}^{m+2})$ with radius r such that $r \neq \frac{1}{2\sqrt{2}} \cot^{-1}(\frac{k}{\sqrt{2}})$, or

(ii) a tube over a totally geodesic \mathbb{H}^n, $m = 2n$, in $G_2(\mathbb{C}^{m+2})$ with radius r such that $r = \frac{1}{2} \cot^{-1}(\frac{k}{4(2n-1)})$.

For the case $\alpha = 2k$, the Reeb vector field ξ of Hopf hypersurface M with GTW-Reeb parallel Ricci tensor belongs to either \mathcal{Q} or \mathcal{Q}^\perp. So, for the case $\xi \in \mathcal{Q}^\perp$, we obtain that the trace θ of the shape operator A is constant along ξ, that is, $\theta \xi = 0$. In addition for the case $\xi \in \mathcal{Q}$ we have the following:

Corollary 1. Let M be a real hypersurface in complex two-plane Grassmannians $G_2(\mathbb{C}^{m+2})$, $m \geq 3$, with GTW-parallel Ricci tensor for $\alpha = 2k$. If ξ belongs to the distribution \mathcal{Q}, then M is locally congruent to an open part of a tube around a totally geodesic \mathbb{H}^n, $m = 2n$, in $G_2(\mathbb{C}^{m+2})$ with radius r such that $r = \frac{1}{2} \tan^{-1}(\frac{\sqrt{2}}{2n-1})$.

On the other hand, we consider the notion of GTW-Reeb parallel Ricci tensor on \mathfrak{h}, that is, $(\nabla^{(k)}_\xi S)W = 0$ for any $W \in \mathfrak{h}$. Then by virtue of Theorem C for the case $\alpha = 2k$, we assert the following:

Theorem 2. Let M be a Hopf hypersurface in complex two-plane Grassmannians $G_2(\mathbb{C}^{m+2})$, $m \geq 3$, with $\alpha = 2k$. The Ricci tensor of M satisfies the Reeb parallelism on \mathfrak{h} in both GTW and Levi-Civita connections, that is, $(\nabla^{(k)}_\xi S)W = 0$ and $(\nabla^{(k)}_\xi S)W = 0$ for any $W \in \mathfrak{h}$ if and only if M is locally congruent to an open part of a tube around a totally geodesic $G_2(\mathbb{C}^{m+1})$ in $G_2(\mathbb{C}^{m+2})$ with radius r such that $r = \frac{1}{2} \cot^{-1}(\frac{\sqrt{2}}{\sqrt{2}})$.

Moreover, as a generalization of the assumption \(\hat{\nabla}_\xi^{(k)} S = 0 = \nabla_\xi S \) on \(\mathfrak{h} \) in Theorem 2, we want to consider that \(\hat{\nabla}_\xi^{(k)} S = \nabla_\xi S \), that is, the Reeb parallel Ricci tensor in GTW connection coincides with the Reeb parallel Ricci tensor in Levi-Civita connection. This condition has a geometric meaning such that \(S \) commutes with the Tanaka-Webster operator \(F_\xi \), that is, \(S \cdot F_\xi = F_\xi \cdot S \). This meaning gives any eigenspaces of \(S \) are invariant by the Tanaka-Webster operator \(F_\xi \). From such a point of view, we have the following:

Theorem 3. Let \(M \) be a Hopf hypersurface in complex two-plane Grassmannians \(G_2(\mathbb{C}^{m+2}) \), \(m \geq 3 \). Then \(\hat{\nabla}_\xi^{(k)} S = \nabla_\xi S \) if and only if \(M \) is locally congruent to an open part of a tube around a totally geodesic \(G_2(\mathbb{C}^{m+1}) \) in \(G_2(\mathbb{C}^{m+2}) \).

But for the case where the derivative of the Ricci tensor in GTW connection is equal to the derivative in Levi-Civita connection, that is, \(\hat{\nabla}_X^{(k)} S = \nabla_X S \) for any \(X \in T M \), we assert the following:

Corollary 2. There does not exist any Hopf hypersurface in complex two-plane Grassmannians \(G_2(\mathbb{C}^{m+2}) \), \(m \geq 3 \), satisfying \((\nabla_X^{(k)} S) Y = (\nabla_X S) Y \) for arbitrary tangent vector fields \(X \) and \(Y \) on \(M \).

Obviously, we know that the condition \(\hat{\nabla}_X^{(k)} S = \nabla_X S \) has a geometric meaning that any eigenspaces of \(S \) are invariant by the Tanaka-Webster operator \(F_X \). Recently, Pérez and Suh [15] investigated the Levi-Civita and GTW covariant derivatives for the shape operator or the structure Jacobi operator of real hypersurfaces in complex projective space \(\mathbb{C}P^m \). Moreover, in [6] Jeong, Lee and Suh gave a characterization of Hopf hypersurfaces in \(G_2(\mathbb{C}^{m+2}) \) with \(\hat{\nabla}_X^{(k)} A = \nabla A \).

In this paper, we refer [1], [2], [7], [9], [16] and [17] for Riemannian geometric structures of \(G_2(\mathbb{C}^{m+2}) \) and its geometric quantities, respectively. In order to get our results, in sections 1 we will give the fundamental formulas related to the Reeb parallel Ricci tensor. In section 2 we want to give a complete proof of Theorem 1 for \(\alpha = g(AX, \xi) \neq 2k \). In section 3 we will consider the case \(\alpha = 2k \) and give a proof of Corollary 1 and Theorem 2. Finally, in section 4 we will give a complete proof of Theorem 3 and Corollary 2.

1. GTW-Reeb parallel Ricci tensor

From [13], the Ricci tensor \(S \) of a real hypersurface \(M \) in \(G_2(\mathbb{C}^{m+2}) \), \(m \geq 3 \), is given by

\[
SX = \sum_{i=1}^{4m-1} R(X, e_i) e_i = (4m + 7)X - 3\eta(X)\xi + hAX - A^2 X + \sum_{\nu=1}^{3} \{-3\eta_\nu(X)\xi_\nu + \eta_\nu(\xi)\phi_\nu X - \eta(\phi_\nu X)\phi_\nu \xi - \eta(X)\eta_\nu(\xi)\nu\}
\]

where \(h \) denotes the trace of the shape operator \(A \), that is, \(h = \text{Tr}A \).
And we also have
\[(\nabla_X S)Y = -3g(\phi AX, Y)\xi - 3\eta(Y)\phi AX\]
\[-3\sum_{\nu=1}^{3} \left\{ g(\phi_{\nu}AX, Y)\xi_{\nu} + \eta_{\nu}(Y)\phi_{\nu}AX \right\} \]
\[(3.2)\]
\[+ 3\sum_{\nu=1}^{3} \left\{ 2g(\phi AX, \xi_{\nu})\phi_{\nu}Y + g(AX, \phi_{\nu}\phi Y)\phi_{\nu}\xi \right. \]
\[-\eta(Y)g(AX, \xi_{\nu})\phi_{\nu}\xi + \eta_{\nu}(\phi Y)g(AX, \xi)\xi_{\nu} - \eta_{\nu}(\phi Y)\phi_{\nu}AX \]
\[-\eta(Y)g(\phi AX, \xi_{\nu})\xi_{\nu} - \eta(Y)g(\phi_{\nu}AX, \xi)\xi_{\nu} \}
\[+ (Xh)AY + h(\nabla_X A)Y - (\nabla_X A)AY - A(\nabla_X A)Y. \]
Substituting \(X = \xi\) into (3.2) and using the condition that \(M\) is Hopf, that is, \(A\xi = \alpha\xi\), we get
\[(3.3)\]
\[(\nabla_\xi S)Y = -4\alpha \sum_{\nu=1}^{3} \left\{ g(\phi_{\nu}\xi, Y)\xi_{\nu} + \eta_{\nu}(Y)\phi_{\nu}\xi \right\} + (\xi h)AY \]
\[+ h(\nabla_\xi A)Y - (\nabla_\xi A)AY - A(\nabla_\xi A)Y. \]

In this section we assume that \(M\) is a Hopf hypersurface in \(G_2(\mathbb{C}^{m+2})\) with GTW-Reeb parallel Ricci tensor, that is, \(S\) satisfies:
\[(3.1)\]
\[(\nabla_\xi^{(k)} S)X = 0. \]

By the definition of GTW connection \(\nabla_\xi^{(k)}\), the covariant derivative of \(S\) with respect to the GTW connection along \(\xi\) becomes
\[(3.4)\]
\[(\nabla_\xi^{(k)} S)X = \nabla_\xi^{(k)}(SX) - S(\nabla_\xi^{(k)} X) \]
\[= \nabla_\xi(SX) + g(\phi A\xi, SX)\xi - \eta(SX)\phi A\xi - k\eta(\xi)\phi SX \]
\[\quad - S(\nabla_\xi X) - g(\phi A\xi, X)S\xi + \eta(X)S\phi A\xi + k\eta(\xi)S\phi X \]
\[= (\nabla_\xi S)X - k\phi SX + kS\phi X. \]
Thus the condition \((C-1)\) is equivalent to
\[(3.5)\]
\[(\nabla_\xi S)X = k\phi SX - kS\phi X, \]
it yields
\[4(k - \alpha) \sum_{\nu=1}^{3} \left\{ \eta_{\nu}(\phi X)\xi_{\nu} - \eta_{\nu}(X)\phi_{\nu}\xi \right\} \]
\[(3.6)\]
\[= (\xi h)AX + h(\nabla_\xi A)X - (\nabla_\xi A)AX - A(\nabla_\xi A)X - kh\phi AX \]
\[+ k\phi A^2X + khA\phi X - kA^2\phi X \]
from \(3.1\), \(3.2\) and \([8, \text{Section 2}]\).

Using these equations, we prove that \(\xi\) belongs to either \(Q\) or \(Q^\perp\), where \(M\) is a Hopf hypersurface in \(G_2(\mathbb{C}^{m+2})\) with GTW-Reeb parallel Ricci tensor.

Lemma 1.1. Let \(M\) be a Hopf hypersurface in \(G_2(\mathbb{C}^{m+2})\), \(m \geq 3\). If \(M\) has GTW-Reeb parallel Ricci tensor, then \(\xi\) belongs to either \(Q\) or \(Q^\perp\).
From the Codazzi equation \([8, \text{Section 2}]\) and differentiating \((4.1)\) a real hypersurface of Type (B) is a Hopf hypersurface with GTW-Reeb parallel Ricci tensor, the equation \((3.6)\) becomes

\[M \]

Using the equation \([8, \text{Lemma 2.1}]\) and the previous one, we get \(\alpha\) with GTW-Reeb parallel Ricci tensor and \(\xi\) belongs to \(Q\). Therefore from this, \((4.1)\) can be written as

\[4(k - \alpha)\eta_1(\xi)\phi_1\xi = \alpha(\xi\eta)\xi - h(\xi\alpha)\xi - 2\alpha(\xi\alpha)\xi, \]

where we have used \((\nabla_\xi A)\xi = (\xi\alpha)\xi\) and \((\nabla_\xi A)A\xi = \alpha(\xi\alpha)\xi\).

Taking the inner product of \((3.7)\) with \(\phi_1\xi\), we have

\[4(k - \alpha)\eta_1(\xi)\eta^2(X_0) = 0, \]

because of \(\eta^2(X_0) + \eta^2(\xi_1) = 1.\) From this, we have the following three cases.

Case 1: \(\alpha = k.\)

For this case, we see that \(\alpha\) becomes a non-zero real number. Using the equation in \([2, \text{Lemma 1}]\), we assert that \(\xi\) belongs to either \(Q\) or \(Q^\perp.\)

Case 2: \(\eta(\xi_1) = 0.\)

By the notation \([**]\), we see that \(\xi\) belongs to \(Q.\)

Case 3: \(\eta(X_0) = 0.\)

This case implies that \(\xi\) belongs to \(Q^\perp\) from \([**]\).

Accordingly, summing up these cases, the proof of our Lemma is completed. \(\square\)

2. Proof of Theorem 1

In this section, let \(M\) be a Hopf hypersurface, \(\alpha \neq 2k\), in \(G_2(\mathbb{C}^{m+2})\) with GTW-Reeb parallel Ricci tensor. Then by Lemma \([L.1]\) we shall divide our consideration in two cases depending on \(\xi\) belongs to either \(Q^\perp\) or \(Q\), respectively.

First of all, if we assume \(\xi \in Q\), then a Hopf hypersurface in \(G_2(\mathbb{C}^{m+2}), m \geq 3\), with GTW-Reeb parallel Ricci tensor and \(\alpha = q(A\xi, \xi) \neq 2k\) is locally congruent to a real hypersurface of Type (B) by virtue of Theorem B given in the introduction.

Next let us consider the case, \(\xi \in Q^\perp.\) Accordingly, we may put \(\xi = \xi_1.\) Since \(M\) is a Hopf hypersurface with GTW-Reeb parallel Ricci tensor, the equation \((3.6)\) becomes

\[(\xi h)AX + h(\nabla_\xi A)X - (\nabla_\xi A)AX - A(\nabla_\xi A)X = k(h\phi AX - \phi A^2X - hA\phi X + A^2\phi X). \]

From the Codazzi equation \([8, \text{Section 2}]\) and differentiating \(A\xi = \alpha\xi,\) we obtain

\[(\nabla_\xi A)X = (\nabla_X A)\xi + \phi X + \phi_1X + 2\eta_3(X)\xi_2 - 2\eta_2(X)\xi_3 \]

\[= (X\alpha)\xi + \alpha\phi AX - A\phi AX + \phi X + \phi_1X + 2\eta_3(X)\xi_2 - 2\eta_2(X)\xi_3. \]

Using the equation \([8, \text{Lemma 2.1}]\) and the previous one, we get

\[(\nabla_\xi A)X = \frac{\alpha}{2}\phi AX - \frac{\alpha}{2}A\phi X + (\xi\alpha)\eta(X)\xi. \]

Therefore from this, \((4.1)\) can be written as

\[(\xi h)AX + \tilde{\kappa}h\phi AX - \tilde{\kappa}hA\phi X + (h - 2\alpha)(\xi\alpha)\eta(X)\xi - \tilde{\kappa}\phi A^2X + \tilde{\kappa}A^2\phi X = 0, \]

where \(\tilde{\kappa} = \left(\frac{\alpha}{2} - k\right).\)
Since $\tilde{\kappa} \neq 0$ is equivalent to the given condition $\alpha \neq 2k$, (4.2) yields

$$\frac{(\xi h)}{\tilde{\kappa}} AX + h\phi AX - hA\phi X + \frac{(h - 2\alpha)}{\tilde{\kappa}} (\xi \alpha) \eta(X) \xi - \phi A^2 X + A^2 \phi X = 0.$$

Now we consider the case $\xi h = 0$. Then (4.3) can be reduced to

$$h\phi AX - hA\phi X + \frac{(h - 2\alpha)}{\tilde{\kappa}} (\xi \alpha) \eta(X) \xi - \phi A^2 X + A^2 \phi X = 0.$$

Taking the inner product of (4.4) with ξ, we have

$$\frac{(h - 2\alpha)}{\tilde{\kappa}} (\xi \alpha) \eta(X) \xi = 0.$$

Thus (4.4) becomes

$$h\phi AX - \phi A^2 X - hA\phi X + A^2 \phi X = 0.$$

On the other hand, from the equation (3.1) we calculate

$$S\phi X - \phi SX = hA\phi X - A^2 \phi X - h\phi AX + \phi A^2 X,$$

then by (4.5) it follows that $S\phi X = \phi SX$ for any tangent vector field X on M. Hence, by Suh [17] we assert that M satisfying our assumptions must be a model space of Type (A).

We now assume $\xi h \neq 0$. Putting $\sigma = \frac{(\xi h)}{\tilde{\kappa}}(\neq 0)$ and $\tau = \frac{(h - 2\alpha)}{\tilde{\kappa}}(\xi \alpha)$, the equation (4.3) becomes

$$\sigma AX + h\phi AX - hA\phi X + \tau \eta(X) \xi - \phi A^2 X + A^2 \phi X = 0.$$

Applying ϕ to (4.6) and replacing X by ϕX in (4.6), respectively, we get the following two equations:

$$\sigma \phi AX - hAX + h\alpha \eta(X) \xi - h\phi A\phi X + A^2 X - \alpha^2 \eta(X) \xi + \phi A^2 \phi X = 0$$

and

$$\sigma A\phi X + h\phi A\phi X + hAX - h\alpha \eta(X) \xi - \phi A^2 \phi X - A^2 X + \alpha^2 \eta(X) \xi.$$

Summing up the above two equations, we obtain $\phi A + A\phi = 0$. Thus from this, the equation (4.6) implies

$$\sigma AX + 2h\phi AX + \tau \eta(X) \xi = 0.$$

Let us X_h be the orthogonal projection of X onto the distribution $h = \{X \in TM| X \perp \xi\}$. Inserting this into the previous equation yields

$$\sigma AX_h + 2h\phi AX_h = 0.$$

In addition, applying ϕ to this equation, it follows

$$\sigma \phi AX_h - 2hAX_h = 0.$$

Thus we obtain

$$\begin{pmatrix} \sigma & 2h \\ -2h & \sigma \end{pmatrix} \begin{pmatrix} AX_h \\ \phi AX_h \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

The determinant of the square matrix of order 2, that is, $\sigma^2 + 4h^2 \geq \sigma^2 \neq 0$, so we get $AX_h = 0$ for any $X_h \in h$. Substituting X_h as ξ_2 and ξ_3, it implies $A\xi_2 = 0$ and $A\xi_3 = 0$, respectively. Hence, we can assert that the distribution Q^\perp is invariant under the shape operator, that is, M is a Q^\perp-invariant real hypersurface. Thus by virtue of Theorem A, we conclude that M with our assumptions must be a model space of Type (A).

Summing up these discussions, we conclude that if a Hopf hypersurface M in complex two-plane Grassmannians $G_{2}(\mathbb{C}^{m+2})$, $m \geq 3$, satisfying (C-1) and $\alpha \neq 2k$, then M is of Type (A) or (B).

Hereafter, let us check whether S of a model space of Type (A) (or of Type (B)) satisfies the Reeb parallelism with respect to $\nabla^{(k)}$ by [2, Proposition 3] (or [2, Proposition 2], respectively).

Let us denote by M_{A} a model space of Type (A). From now on, using the equations (3.1), (3.2) and [2, Proposition 3], let us check whether or not S satisfies (3.0) which is equivalent to our condition (C-1) for each eigenspace T_{α}, T_{β}, T_{λ}, and T_{μ} on $T_{x}M_{A}$, $x \in M_{A}$. In order to do, we find one equation related to S from (3.0) using the property of M_{A}, $\xi = \xi_{1}$ as follows.

$$
(\nabla^{(k)}_{\xi}S)X = -h(\nabla_{\xi}A)X + (\nabla_{\xi}A)AX + A(\nabla_{\xi}A)X + kh\phi AX
- k\phi A^{2}X - khA\phi X + kA^{2}\phi X,
$$

(4.7)

since $h = \alpha + 2\beta + 2(m - 2)\lambda$ is a constant.

Case A-1: $X = \xi (= \xi_{1}) \in T_{\alpha}$.

Since $(\nabla_{\xi}A)\xi = 0$, we see that $(\nabla^{(k)}_{\xi}S)\xi = 0$ from the equation (4.7). It means that the Ricci tensor S becomes GTW Reeb parallel on T_{α}.

Case A-2: $X \in T_{\beta} = \text{Span}\{\xi_{2}, \xi_{3}\}$.

For $\xi_{\mu} \in T_{\beta}$, $\mu = 2, 3$ we have

$$(\nabla_{\xi}A)\xi_{\mu} = \beta(\nabla_{\xi}\xi_{\mu}) - A(\nabla_{\xi}\xi_{\mu})$$

$$= \beta q_{\mu+2}(\xi)\xi_{\mu+1} - q_{\mu+2}(\xi)\xi_{\mu+1} - \alpha \beta \phi_{\mu}\xi$$

$$- q_{\mu+2}(\xi)A\xi_{\mu+1} + q_{\mu+1}(\xi)A\xi_{\mu+2} - \alpha A\phi_{\mu}\xi,$$

which follows that $(\nabla_{\xi}A)\xi_{2} = 0$ and $(\nabla_{\xi}A)\xi_{3} = 0$. Therefore, from the equation (4.7) we obtain, respectively,

$$(\nabla^{(k)}_{\xi}S)\xi_{2} = kh\phi A\xi_{2} - k\phi A^{2}\xi_{2} - khA\phi \xi_{2} + kA^{2}\phi \xi_{2}$$

$$= (-kh\beta + k\beta^{2} + k\beta^{2})\xi_{3} = 0,$$

and $(\nabla^{(k)}_{\xi}S)\xi_{3} = 0$ by similar methods. So, we assert that the Ricci tensor S of M_{A} is Reeb parallel on T_{β}.

By the structure of a tangent vector space $T_{x}M_{A}$ at $x \in M_{A}$, we see that the distribution Q is composed of two eigenspaces T_{λ} and T_{μ}. On this distribution $Q = T_{\lambda} \oplus T_{\mu}$ we obtain

$$
(\nabla_{\xi}A)X = \alpha \phi AX - A\phi AX + \phi X + \phi_{1}X
$$

(4.8)

by virtue of the Codazzi equation [3, Section 2]. Using this equation we consider the following two cases.

Case A-3: $X \in T_{\lambda} = \{X \mid X \in Q, JY = J_{1}Y\}$.

We naturally see that if $X \in T_{\lambda}$, then $\phi X = \phi_{1}X$. Moreover, the vector ϕX also belong to the eigenspace T_{λ} for any $X \in T_{\lambda}$, that is, $\phi T_{\lambda} \subset T_{\lambda}$. From these and (4.8), we obtain

$$(\nabla_{\xi}A)X = (\alpha \lambda - \lambda^{2} + 2)\phi X, \text{ for } X \in T_{\lambda}.$$
From (4.7) and together with these facts, we obtain
\[
(\nabla^{(k)}_{\xi} S)X = (\alpha \lambda - \lambda^2 + 2)(2\alpha - h)\phi X,
\]
which implies that \(S \) must be Reeb parallel for \(\nabla^{(k)}_{\xi} \) on \(T_\lambda \), since \(\alpha \lambda - \lambda^2 + 2 = 0 \).

Case A-4: \(X \in T_\mu = \{ X \mid X \in Q, JY = -J_1Y \} \).

If \(X \in T_\mu \), then \(\phi X = -\phi_1X, \phi T_\mu \subset T_\mu \) and \(\mu = 0 \). So, from (4.8), we obtain \((\nabla_{\xi}A)X = 0 \), moreover \((\nabla^{(k)}_{\xi} S)X = 0 \) for any \(X \in T_\mu \).

Summing up all cases mentioned above, we can assert that \(S \) of real hypersurfaces \(M_A \) of Type (A) in \(G_2(\mathbb{C}^{m+2}) \) is GTW Reeb parallel.

Now let us consider our problem for a model space of Type (B), which will be denoted by \(M_B \). In order to do this, let us calculate the fundamental equation related to the covariant derivative of \(S \) of \(M_B \) along the direction of \(\xi \) in GTW connection. On \(T_xM_B, x \in M_B \), since \(\xi \in Q \) and \(h = \text{Tr}(A) = \alpha + (4n-1)\beta \) is a constant, the equation (3.6) is reduced to
\[
(\nabla^{(k)}_{\xi} S)X = 4k - \alpha \sum_{\nu=1}^{3} \left\{ \eta_{\nu}(\phi X)\xi_{\nu} - \eta_{\nu}(X)\phi_{\nu} \right\}
\]
\[
- h(\nabla_{\xi}A)X + (\nabla_{\xi}A)AX + A(\nabla_{\xi}A)X
\]
\[
+ kh\phi AX - k\phi A^2X - khA\phi X + kA^2\phi X.
\]

Moreover, by the equation of Codazzi and [2] Proposition 2] we obtain that for any \(X \in T_xM_B \)
\[
(\nabla_{\xi}A)X = \alpha \phi AX - A\phi AX + \phi X - \sum_{\nu=1}^{3} \left\{ \eta_{\nu}(X)\phi_{\nu} \xi + 3g(\phi_{\nu} \xi, X)\xi_{\nu} \right\}
\]
\[
(4.9)
\]
\[
= \begin{cases}
0 & \text{if } X \in T_\alpha \\
\alpha\beta\phi\xi_\ell & \text{if } X \in T_\beta = \text{Span}\{\xi_\ell \mid \ell = 1, 2, 3\} \\
-4\xi_\ell & \text{if } X \in T_\gamma = \text{Span}\{\phi\xi_\ell \mid \ell = 1, 2, 3\} \\
(\alpha \lambda + 2)\phi X & \text{if } X \in T_\lambda \\
(\alpha \mu + 2)\phi X & \text{if } X \in T_\mu.
\end{cases}
\]

From these two equations, it follows that
\[
(\nabla^{(k)}_{\xi} S)X = \begin{cases}
0 & \text{if } X = \xi \in T_\alpha \\
(\alpha - k)(4 - h\beta + \beta^2)\phi\xi_\ell & \text{if } X = \xi_\ell \in T_\beta \\
(4(\alpha - k) + (h - \beta)(4 + k\beta))\xi_\ell & \text{if } X = \phi\xi_\ell \in T_\gamma \\
(h - \beta)(k\mu - k\lambda - \alpha \lambda - 2)\phi X & \text{if } X \in T_\lambda \\
(h - \beta)(k\mu - k\lambda - \alpha \mu - 2)\phi X & \text{if } X \in T_\mu.
\end{cases}
\]
\[
(4.10)
\]

So, we see that \(M_B \) has Reeb parallel GTW-Ricci tensor, when \(\alpha \) and \(h \) satisfies the conditions \(\alpha = k \) and \(h - \beta = 0 \), which means \(r = \frac{1}{2} \cot^{-1}\left(\frac{-k}{4(2n-1)} \right) \). Moreover, this radius \(r \) satisfies our condition \(\alpha \neq 2k \).

Hence summing up these considerations, we give a complete proof of our Theorem 1 in the introduction. \(\Box \)
3. Proofs of Corollary 1 and Theorem 2

In section 2 we obtained the classification of Hopf hypersurfaces M with GTW-Reeb parallel Ricci tensor and $\alpha \neq 2k$. Thus in present section we will consider the case $\alpha = 2k$ related to the GTW-Reeb parallelism of Ricci tensor of a Hopf hypersurface M in $G_2(\mathbb{C}^{m+2})$, $m \geq 3$.

Now let us prove Corollary 1 in the introduction.

Our condition $\alpha = 2k$ means that α is constant. From this we assert that ξ belongs to either \mathcal{Q} or \mathcal{Q}^\perp. For $\xi \in \mathcal{Q}$, it is a well-known fact that a Hopf hypersurface in $G_2(\mathbb{C}^{m+2})$, $m \geq 3$ must be a model space M_B of Type (B) (see [9]). On the other hand, from (4.10) and $\alpha = 2k$, the GTW covariant derivative of Ricci tensor S of M_B along the direction of ξ is given

$$
(\tilde{\nabla}^{(k)}_\xi S)X = \begin{cases}
0 & \text{if } X = \xi \in T_\alpha \\
(4k - h\beta + \beta^2)\phi\ell & \text{if } X = \phi\ell \in T_{\beta} \\
(4k + (h - \beta)(4 + k\beta))\ell & \text{if } X = \ell \in T_{\gamma} \\
-(h - \beta)(k\beta + 2)\phi X & \text{if } X \in T_\lambda \\
-(h - \beta)(k\beta + 2)\phi X & \text{if } X \in T_{\mu}.
\end{cases}
$$

Actually, since $\alpha = 2k$, we naturally have $k\beta + 2 = 0$. It follows that S is GTW Reeb parallel on T_λ and T_{μ}. In order to be the GTW-Reeb parallel Ricci tensor on the other eigenspaces T_{β} and T_{γ}, we should have the following two equations,

$$(4 - h\beta + \beta^2) = 0$$

and

$$4k + (h - \beta)(4 + k\beta) = 0.$$

Combining these two equations, we have $2k + h - \beta = 0$. Since $h = \alpha + 3\beta + (4n - 4)(\lambda + \mu) = \alpha + (4n - 1)\beta$ and $\alpha = 2k$, it follows that $\beta = -2n - 1$. By virtue of [2] Proposition 2, $\alpha = -2\tan(2r)$ and $\beta = 2\cot(2r)$ where $r \in (0, \pi/4)$, we obtain $\tan(2r) = \sqrt{2n - 1}$. From such assertions, we conclude that a model space of Type (B) has GTW-Reeb parallel Ricci tensor for special radius r such that $r = \frac{1}{2}\tan^{-1}(\sqrt{2n - 1})$, which gives us a complete proof of Corollary 1.

□

On the other hand, for the case $\xi \in \mathcal{Q}^\perp$, the equation (1.2) becomes

$$(\xi h)AX = 0$$

under the assumption of $\alpha = 2k$. For the case $\xi h \neq 0$, it follows that $AX = 0$. If $X = \xi$, then $\alpha = 0$, which gives a contradiction. From this, we assert the following for the case $\xi \in \mathcal{Q}^\perp$:

Remark. Let M is a Hopf hypersurface, that is, $A\xi = \alpha\xi$ where $\alpha = 2k$, in $G_2(\mathbb{C}^{m+2})$, $m \geq 3$, with GTW-Reeb parallel Ricci tensor, $\tilde{\nabla}^{(k)}_\xi S = 0$. If $\xi \in \mathcal{Q}^\perp$, then we only get the result that the trace h of the shape operator A is constant along the direction of ξ, that is, $\xi h = 0$.

From such a point of view, we now only focus our attention to the Ricci Reeb parallelism in GTW connection on the distribution $\mathfrak{h} = \{X \in TM \mid X \perp \xi\}$, as given by the proof of Theorem 2.
As mentioned above in the proof of Corollary 1, we see that \(\xi \in \mathcal{Q} \) or \(\xi \in \mathcal{Q}^\perp \), because \(M \) is a Hopf hypersurface in \(G_2(\mathbb{C}^{m+2}) \) with \(\alpha = 2k \). Moreover, if \(\xi \in \mathcal{Q} \), then \(M \) must be a model space of Type \((B)\).

Now, let us consider the case \(\xi \in \mathcal{Q}^\perp \). Then by Suh [19] we have the following key lemma in the proof of Theorem 2.

Lemma 3.1. Let \(M \) be a Hopf hypersurface, that is, \(A\xi = \alpha \xi \) where \(\alpha = 2k \), in \(G_2(\mathbb{C}^{m+2}) \), \(m \geq 3 \). If \(M \) satisfies the following properties:

(i) the Reeb vector field \(\xi \) belongs to the distribution \(\mathcal{Q}^\perp \),

(ii) the Ricci tensor \(S \) is Reeb parallel with respect to both the Levi-Civita and GTW connections on \(\mathfrak{h} \), that is, \((\nabla^G_k)S)X = 0 \) and \((\nabla^S)X = 0 \) for any tangent vector field \(W \in \mathcal{H} \),

then \(M \) must be a model space of Type \((A)\) or Type \((B)\) in \(G_2(\mathbb{C}^{m+2}) \).

Proof. As investigated above, from the assumption of \(\alpha = 2k \) and the equation \((1.2)\) we have

\[(\xi h)AW = 0 \]

for any tangent vector field \(W \in \mathcal{H} \).

From this, we see that the distribution \(\mathfrak{h} \) is totally geodesic, that is, \(AW = 0 \) for any \(W \in \mathfrak{h} \), if \((\xi h) \neq 0 \). So, we can assert that \(M \) is a \(\mathcal{Q}^\perp \)-invariant hypersurface in \(G_2(\mathbb{C}^{m+2}) \), that is, \(g(AQ, Q^\perp) = 0 \).

Next, we consider the case \((\xi h) = 0 \). From \((1.1)\) we get \(S\xi = (4m+ha-\alpha^2)\xi \). Differentiating this formula along the direction of \(\xi \) and using our assumptions, \(A\xi = \alpha \xi \), \((\xi h) = (\xi \alpha) = 0 \), it follows that \((\nabla^hS)\xi = 0 \). It implies that the Ricci tensor \(S \) becomes Reeb parallel. Then by virtue of the result given by Suh [19] we give a complete proof of our Lemma. \(\square \)

As a consequence, we assert that if \(M \) is a Hopf hypersurface, \(\alpha = 2k \), in \(G_2(\mathbb{C}^{m+2}) \) satisfying two Ricci Reeb parallelism defined by \((\nabla^hS)W = 0 \) and \((\nabla^hS)W = 0 \) for any \(W \in \mathfrak{h} \), then it must be either a real hypersurface of Type \((A)\) or Type \((B)\).

From now on, let us consider the converse problem. In other words, we now check whether the Ricci tensor \(S \) of model spaces \(M_A \) or \(M_B \) in \(G_2(\mathbb{C}^{m+2}) \) satisfies the conditions in Theorem 2 or not.

By [2] Proposition 3 and the checking for a model space \(M_A \) given in the introduction and section [2], respectively, we see that \(M_A \) is a Hopf hypersurface in \(G_2(\mathbb{C}^{m+2}) \) with the GTW-Reeb parallel Ricci tensor on \(\mathfrak{h} \subset TM_A \).

Now let us show that the Ricci tensor \(S \) of \(M_A \) is Reeb parallel in \(\nabla \) on \(\mathfrak{h} \), that is, \((\nabla^S)W = 0 \) for \(W \in \mathfrak{h} \subset TM_A \). By virtue of [2] Proposition 3], the equation \((5.3)\) can be written as

\[(\nabla^S)Y = h(\nabla^A)Y - (\nabla^A)AY - A(\nabla^A)Y \]

\[= h(\nabla^A)Y - \hat{\kappa}(\nabla^A)Y - A(\nabla^A)Y, \]

where \(AY = \hat{\kappa}Y \) for any \(W \in \mathfrak{h} \subset TM_A \). Moreover, from the equation of Codazzi, we obtain

\[(\nabla^A)Y = (\nabla^A)\xi + \phi Y + \phi_1Y - 2\eta_2(Y)\xi_3 + 2\eta_3(Y)\xi_2 \]

\[= \alpha \phi Y - A\phi Y + \phi Y + \phi_1Y - 2\eta_2(Y)\xi_3 + 2\eta_3(Y)\xi_2, \]
Reeb parallel on T becomes (M

Summing up three cases above, ($Civita connection $∇$

Case A-2 : $Y \in T_β = \text{Span}\{ξ_2, ξ_3\}$

From (5.3), we obtain $(∇_ξA)ξ_2 = (β^2 - αβ - 2)ξ_3$, which implies $(∇_ξA)ξ_2 = 0$ since $β^2 - αβ - 2 = 0$. So, we see that $(∇_ξS)ξ_2 = 0$ by (5.2). Similarly, if we put $Y = ξ_3$ in (5.3), then $(∇_ξA)ξ_3 = -(β^2 - αβ - 2)ξ_2 = 0$, because $αβ = 2 \cot^2(\sqrt{2}r) - 2$. From this and (5.2), we see that $(∇_ξS)ξ_3 = 0$.

Case A-3 : $Y \in T_μ = \{Y \perp ξ_1, ξ_2, ξ_3 \mid φY = φ_1Y\}$

If $Y \in T_μ$, then $φY \perp T_μ$ and $φ_1Y \perp T_μ$. From these, the equation (5.3) becomes $(∇_ξA)Y = (αλ - λ^2 + 2)φY$. It follows $(∇_ξA)Y = 0$, since $αλ = 2 \tan^2(\sqrt{2}r) - 2$. Hence we see that the Ricci tensor S of $M_λ$ becomes Reeb parallel on $T_β$, that is, $(∇_ξS)Y = 0$ for any $Y \in T_λ$.

Summing up three cases above, $M_λ$ have Reeb parallel Ricci tensor in the Levi-Civita connection $∇$ on the distribution h.

On the other hand, let us check whether M_B satisfies our conditions, $∇_ξS = 0$ and $∇_ξ^{(k)}S = 0$ on $h ⊂ TM_B$. Suppose that the Ricci tensor S of M_B is Reeb parallel, $(∇_ξS)X = 0$ for $X \in h$. From (5.3) and (5.4) we obtain

$$(∇_ξS)X = \begin{cases}
-4α + hαβ - αβ^2 & \text{if } X = ξ_β \\
-4α + h - β & \text{if } X = φξ_β \\
(h - β)(αλ + 2)φX & \text{if } X \in T_γ \\
(h - β)(αμ + 2)φX & \text{if } X \in T_δ \end{cases}$$

Since the Ricci tensor S is Reeb parallel on the eigenspace $T_γ$, we have $(h - β)(αλ + 2) = 0$. It implies that

(5.4) \hspace{1cm} (h - β) = 0,

because $(αλ + 2) ≠ 0$. On the other hand, for $T_γ$ we get $(α + h - β) = 0$, which means $α = 0$ from (5.4). It makes a contraction. Thus we assert that there does not exist M_B satisfying the conditions in Theorem 2.

With such assertions we give a complete proof of Theorem 2 in the introduction.

4. Proofs of Theorem 3 and Corollary 2

First we want to give a proof of Theorem 3. Among the conditions in Theorem 2, we focus our attentions to the assumptions related to the Reeb parallelism of Ricci tensor S. Actually, we consider that on h two covariant derivatives of S in Levi-Civita and GTW connections are equal to zero, that is, $(∇_ξS)W = 0 = (∇_ξ^{(k)}S)W$ for any tangent vector field $W \in h = \{X ∈ TM \mid X ⊥ ξ\}$. So, in this section, we will
By straightforward calculation it is
\[(\nabla_\xi S)X = (\hat{\nabla}_{\xi}^{(k)} S)X\]
for any tangent vector field \(X\) on \(M\). By virtue of the equation (3.3), the condition \((C-2)\) is equivalent to the \(S\phi = \phi S\). On the other hand, Suh proved in [17] that a Hopf hypersurface \(M\) in \(G_2(\mathbb{C}^{m+2})\), \(m \geq 3\), with commuting Ricci tensor is locally congruent a tube of radius \(r\) over a totally geodesic \(G_2(\mathbb{C}^{m+1})\) in \(G_2(\mathbb{C}^{m+2})\) Then we conclude that a Hopf hypersurface \(M\) in \(G_2(\mathbb{C}^{m+2})\), \(m \geq 3\), satisfying the condition \((C-2)\) if and only if \(M\) is of Type \((A)\), which gives us a complete proof of Theorem 3.

By Theorem 3, if a real hypersurface \(M\) in \(G_2(\mathbb{C}^{m+2})\) satisfies \(\nabla S = \hat{\nabla}_{Y}^{(k)} S\), then naturally \((C-2)\) holds on \(M\). So \(M\) is of Type \((A)\). Now let us check whether a model space \(M_A\) of Type \((A)\) satisfies our condition.

(C-3)
\[(\hat{\nabla}_{X}^{(k)} S)Y = (\nabla_{X} S)Y\]
for any tangent vector fields \(X, Y \in T_x M_A\), \(x \in M_A\). In order to do this, we assume that the Ricci tensor \(S\) of \(M_A\) satisfies \((C-3)\). That is, we have

\[0 = (\hat{\nabla}_{X}^{(k)} S)Y - (\nabla_{X} S)Y\]
(6.1)
\[= g(\phi AX, SY)\xi - \eta(SY)\phi AX - k\eta(X)\phi SY - g(\phi AX, Y)\xi + \eta(Y)S\phi AX + k\eta(X)\phi Y\]
for any \(X, Y \in T_x M_A\).

Since \(T_x M_A = T_\alpha \oplus T_\beta \oplus T_\lambda \oplus T_\gamma\), the equation (6.1) holds for \(X \in T_\beta\) and \(Y \in T_\alpha\). For the sake of convenience we put \(X = \xi_2 \in T_\beta\) and \(Y = \xi \in T_\alpha\). Since \(S\xi = \delta\xi\) and \(S\xi_3 = \sigma\xi_3\) where \(\delta = (4m + h\alpha - \alpha^2)\) and \(\sigma = (4m + 6 + h\beta - \beta^2)\), the equation (6.1) reduces to \(\beta(\delta - \sigma)\xi_3 = 0\). By [2] Proposition 3, since the principal curvature \(\beta = \sqrt{2}\cot(\sqrt{2}r)\) for \(r \in (0, \pi/\sqrt{8})\) is non-zero, it follows \((\delta - \sigma) = 0\). In other words, by [2] Proposition 3 we obtain

\[-(\delta - \sigma) = 6 - \alpha\beta + \beta^2 + (2m - 2)\beta\lambda - (2m - 2)\alpha\lambda\]
\[= 8 - 4(m - 1)\tan^2(\sqrt{2}r),\]
which gives us

(6.2)
\[\tan^2(\sqrt{2}r) = \frac{2}{m - 1}.\]
In addition, since (6.1) holds for \(X \in T_\lambda\) and \(Y = \xi\), we obtain

\[0 = (\hat{\nabla}_{X}^{(k)} S)\xi - (\nabla_{X} S)\xi = \lambda(\tau - \delta)\phi X,\]
where in the second equality we have used \(\phi X \in T_\lambda\) and \(S X = (4m + 6 + h\lambda - \lambda^2)X = \tau X\) for any \(X \in T_\lambda\). Because \(\lambda = -\sqrt{2}\tan(\sqrt{2}r)\) where \(r \in (0, \pi/\sqrt{8})\) is non-zero, we have also

\[\tau - \delta = 0.\]
By straightforward calculation it is

\[\tau - \delta = 6 + h\lambda - \lambda^2 - h\alpha + \alpha^2\]
\[= 4m - 4\cot^2(\sqrt{2}r) = 0.\]
From (6.2), it becomes \(2m + 2 = 0\), which gives us a contradiction. Accordingly, it completes our Corollary 2 given in the introduction.
REFERENCES

[1] D. V. Alekseevskii, Compact quaternion spaces, *Func. Anal. Appl.*, 2 (1966), 106-114.
[2] J. Berndt and Y.J. Suh, Real hypersurfaces in complex two-plane Grassmannians, *Monatsh. Math.*, 127 (1999), 1-14.
[3] J.T. Cho, CR structures on real hypersurfaces of a complex space form, *Publ. Math. Debrecen*, 54 (1999), 473-487.
[4] J.T. Cho, Levi parallel hypersurfaces in a complex space form, *Tsukuba J. Math.*, 30 (2006), 329-344.
[5] I. Jeong, M. Kimura, H. Lee and Y.J. Suh, Real hypersurfaces in complex two-plane Grassmannians with generalized Tanaka-Webster Reeb parallel shape operator, *Monatsh. Math.*, 171, (2013), 357-376.
[6] I. Jeong, H. Lee and Y.J. Suh, Levi-Civita and generalized Tanaka-Webster covariant derivatives for real hypersurfaces in complex two-plane Grassmannians (submitted).
[7] I. Jeong, Machado, Carlos J. D. Pérez and Y. J. Suh, Real hypersurfaces in complex two-plane Grassmannians with D^1-parallel structure Jacobi operator, *Inter. J. Math.*, 22 (2011), no. 5, 655-673.
[8] H. Lee, Y.S. Choi, and C. Woo, Hopf hypersurfaces in complex two-plane Grassmannians with Reeb parallel shape operator, *Bull. Malaysian Math. Soc.* (in press).
[9] H. Lee and Y.J. Suh, Real hypersurfaces of type B in complex two-plane Grassmannians related to the Reeb vector, *Bull. Korean Math. Soc.*, 47 (2010), no. 3, 551-561.
[10] C.J.G. Machado and J.D. Pérez, Real hypersurfaces in complex two-plane Grassmannians some of whose Jacobi operators are ξ-invariant, *Internat. J. Math.*, 23 (2010), 1250002 (12pages).
[11] C.J.G. Machado and J.D. Pérez, On the structure vector field of a real hypersurface in complex two-plane Grassmannians, *Cent. Eur. J. Math.*, 10 (2010), 451-455.
[12] J.D. Pérez and F.G. Santos, Real hypersurfaces in complex projective space whose structure Jacobi operator is cyclic-Ryan parallel, *Kyungpook Math. J.*, 49 (2009), 211-219.
[13] J.D. Pérez and Y.J. Suh, The Ricci tensor of real hypersurfaces in complex two-plane Grassmannians, *J. Korean Math. Soc.*, 44 (2007), 211-235.
[14] J.D. Pérez and Y.J. Suh, On the Ricci tensor of a real hypersurface in complex two-plane Grassmannians (submitted).
[15] J.D. Pérez and Y.J. Suh, Generalized Tanaka-Webster and covariant derivatives on a real hypersurface in a complex projective space (submitted).
[16] J.D. Pérez and Y.J. Suh, and Y. Watanabe. Generalized Einstein real hypersurfaces in complex two-plane Grassmannians. *J. Geom. Phys.*, 60 (2010), 1806-1818.
[17] Y.J. Suh, Real hypersurfaces in complex two-plane Grassmannians with commuting Ricci tensor, *J. Geom. Phys.*, 60 (2010), 1792-1805.
[18] Y.J. Suh, Real hypersurfaces in complex two-plane Grassmannians with parallel Ricci tensor, *Proc. Royal Soc. Edinb. A.*, 142 (2012), 1309-1324.
[19] Y.J. Suh, Real hypersurfaces in complex two-plane Grassmannians with Reeb parallel Ricci tensor, *J. Geome. Phys.*, 64 (2013), 1-11.

HYUNJIN LEE
THE CENTER FOR GEOMETRY AND ITS APPLICATIONS,
POHANG UNIVERSITY OF SCIENCE & TECHNOLOGY,
POHANG 790-784, REPUBLIC OF KOREA

E-mail address: lhjibis@hanmail.net

YOUNG JIN SUH AND CHANGHWA WOO
DEPARTMENT OF MATHEMATICS,
KYUNGPook NATIONAL UNIVERSITY,
DAEGU 702-701, REPUBLIC OF KOREA

E-mail address: yjsuh@knu.ac.kr
E-mail address: legalgwch@knu.ac.kr