Nonorientable four-ball genus can be arbitrarily large

Joshua Batson

Abstract. The nonorientable four-ball genus $\gamma_4(K)$ of a knot $K \subset S^3$ is the smallest first Betti number of any smoothly embedded, nonorientable surface $F \subset B^4$ bounding K. In contrast to the orientable four-ball genus, which is bounded below by the invariants $\sigma, \tau,$ and s, the best lower bound in the literature on $\gamma_4(K)$ for any K is 3. We prove that

$$\gamma_4(K) \geq \frac{\sigma(K)}{2} - d(S^3_1(K)),$$

where the first term is half the knot signature, and the second is the Heegaard-Floer d-invariant of the integer homology sphere given by -1 surgery on K. In particular, we show that $\gamma_4(T_{2k,2k-1}) = k - 1$.

1. Introduction

One measure of the complexity of a knot $K \subset S^3$ is the complexity, as codified by genus, of the simplest surface which bounds it. For example, the only knot which bounds a genus zero surface embedded in S^3 is the unknot. This definition of complexity depends dramatically on the class of surfaces allowed: orientable or nonorientable, embedded in S^3 or B^4, and for surfaces in B^4, whether or not the embedding is smooth or locally flat. (The genus of a nonorientable surface with boundary is defined to be its first Betti number b_1.) For example, the nonalternating knot 11_{31} from Thistlethwaite’s table bounds an orientable surface of genus 3 in S^3, a smooth orientable surface of genus 2 in B^4, and a locally flat orientable surface of genus 1 in B^4. Certifying the minimality of these surfaces requires a variety of modern and classical knot invariants: the Alexander polynomial Δ has degree 3, Ozsvath-Szabo’s τ-invariant is equal to 2, and the Murasugi signature σ is equal to 1; to construct the final surface, Stominiew found a genus one concordance to a knot with Alexander polynomial 1, which according to a result of Freedman bounds a locally flat disk.

We know that orientable techniques cannot apply verbatim to obstruct nonorientable surfaces because of a simple example: the $2k + 1$-twist torus knot $T_{2,2k+1}$ bounds a Mobius band in S^3, yet the genus k Seifert surface in Figure 1.1 actually has minimal genus even among orientable, locally flat surfaces embedded in B^4 bounding the knot. The global property of orientability, perhaps recast as the existence of a top homology class or a complex structure, is somehow critical to both the proof and truth of the bounds involving Δ, τ, and σ. While some obstructions have been found to particular knots bounding Mobius bands or punctured Klein bottles in B^4 (see GL1 especially for a comprehensive survey), the following question remained open:

Question. Does every knot K bound a punctured $\#^3\mathbb{RP}^2$ smoothly embedded in B^4?

The answer is, perhaps unsurprisingly, “no.”

1http://www.indiana.edu/~knotinfo/
2Gilmer and Livingston [GL1] use Casson-Gordon invariants to construct a family of knots K_n such that K_n does not bound a nonorientable ribbon surface in B^4 of genus less than n.

1
Theorem 1. Suppose that $K \subset S^3$ bounds a smoothly embedded, nonorientable surface $F \subset B^4$. Then

$$b_1(F) \geq \frac{\sigma(K)}{2} - d(S^3_1(K)),$$

where σ denotes the Murasugi signature and d the Heegaard-Floer d-invariant of the integer homology sphere given by -1 surgery on K.

In particular, we show

Theorem 2. Any smoothly embedded surface $F \subset B^4$ bounding the torus knot $T_{2k,3k-1}$ has $b_1(F) \geq k - 1$.

The equivalent question in the topological category remains open.

A moment for notation: the minimal genus of any surface bounding $K \subset S^3$ will be written $g_3(K)$, $g_4(K)$, $g_4^{\text{top}}(K)$, $\gamma_3(K)$, $\gamma_4(K)$, $\gamma_4^{\text{top}}(K)$ depending on whether we allow orientable or nonorientable surfaces (g vs. γ) embedded in S^3 or B^4 (3 vs. 4) smoothly or topologically (no superscript vs. top). Thus for $K = 11_{31}$, we have

$$2g_3(K) = 6 \quad 2g_4(K) = 4 \quad 2g_4^{\text{top}}(K) = 2 \quad \gamma_3(K) = 3 \quad \gamma_4(K) = ? \quad \gamma_4^{\text{top}}(K) = ?$$

This definite value for $\gamma_3(K)$, also called the crosscap genus, is due to Burton and Ozlen, who use integer programming and normal surface theory to construct a triangulation of the knot complement and certify minimal surfaces in it. Geometric techniques can also be used to exactly compute the nonorientable 3-genus of a torus knot $T_{p,q}$ using Gordon and Litherland. Let $$(F, \partial F) \hookrightarrow (B^4, S^3)$$ be an embedded surface bounding a knot K. The normal bundle $\nu(F)$ always admits a nonvanishing section s. On the boundary, $s|_{\partial F}$ provides a framing of K, which we use to define the normal Euler number of F:

$$e(F) := -\text{lk}(K, s(K)).$$
Gluing an orientable Seifert surface Σ for K to F gives a closed surface in B^4 with self-intersection $e(F)$. If F is orientable, then $F \cup \Sigma$ represents an integral homology class and self-intersection can be computed algebro-topologically; since $H_2(B^4,\mathbb{Z}) \cong 0$, $e(F)$ must be zero. If F is nonorientable, then we must compute self-intersection geometrically. Take a transverse pushoff of F, and choose arbitrary orientations in the neighborhood of each intersection point. Together with the orientation of B^4, this allows us to assign signs to each intersection; the sum turns out to be independent of the choice of pushoff and local orientation. It must be even, since we may compute self-intersection algebraically over $\mathbb{Z}/2$, but it needn’t be zero. For example, the Mobius band bounding $T_{2,n}$ has normal Euler number $-2n$.

Let $W(F)$ denote the double cover of B^4 branched over F. Gordon and Litherland [GL2] use the G-signature theorem to show that the quantity

$$\sigma(W(F)) + \frac{e(F)}{2}$$

is independent of the choice of surface F bounding K, and equal to the knot signature $\sigma(K)$. For any such F, then,

$$\left|\sigma(K) - \frac{e(F)}{2}\right| = |\sigma(W(F))| \leq b_2(W(F)) = b_1(F),$$

where the final equality can be proved using elementary algebraic topology.

This inequality is tight for both of the surfaces bounding $T_{2,2k+1}$ in Figure 1.1. The Seifert surface has $e(F) = 0$ and $b_1(F) = 2k$, the Mobius band has $e(F) = -2(2k+1)$ and $b_1(F) = 1$, and $\sigma(T_{2k,2k+1}) = -2k$. In light of the important role played by $e(F)$, it may be clarifying to sort surfaces based on the framing they induce on the knot, and try to compute

$$\gamma_4(K,n) := \min \left\{ \gamma(F) \mid (F,\partial F) \hookrightarrow (B^4,K) \text{ and } e(F) = 2n \right\}.$$

The signature inequality, in this notation, is $\gamma_4(K,n) \geq |\sigma(K) - n|$.

The strategy of this paper is as follows. First, we replace our nonorientable surface in B^4 with an orientable surface in another manifold:

Proposition 3. Let $F \subset B^4$ be a smoothly embedded nonorientable surface with odd b_1 bounding a knot $K \subset S^3$. Then there exists an orientable surface $F' \subset S^2 \times S^2 \setminus B^4$ which still bounds K, and has $b_1(F') = b_1(F) - 1$ and $e(F') = e(F) + 2$.

The construction is similar to one in [Yas].

We then attach a -1-framed 2-handle along K to get a four-manifold W, with boundary $S^2_1(K)$. There is a closed, orientable surface Σ in W, formed by union of F' and the core of the 2-handle. By excising a neighborhood of Σ from W, we get a negative semi-definite cobordism from a circle bundle over Σ to $S^3_1(K)$. The definiteness of W gives us an inequality between the Heegaard-Floer d-invariants of its two boundaries, ultimately yielding:

Theorem 4. Suppose that $K \subset S^3$ bounds a smoothly embedded, nonorientable surface $F \subset B^4$. Then

$$\frac{e(F)}{2} \leq 2d(S^2_1(K)) + b_1(F).$$

That is, $\gamma_4(K,n) \geq n - 2d(S^3_1(K))$.

Combining this theorem with the signature inequality yields Theorem 1, which can be written as

$$\gamma_4(K) \geq \frac{\sigma(K)}{2} - d(S^3_1(K)).$$
The d-invariants of integer homology spheres are in general somewhat difficult to compute, though $d(S^3_1(K))$ can in general be calculated from the filtered Heegaard Floer knot complex $CFK^\infty(K)$ [Pet]. When K admits a lens space surgery, however, these d-invariants can be read off from the Alexander polynomial of K. Using a recursive formula of Murasugi to calculate the signature of torus knots, we are able to prove Theorem 2.1 that $\gamma_4(T_{2k,2k-1}) \geq k - 1$. In fact, we can construct a surface $F_{2k,2k-1}$ for which equality holds.

Proposition 5. The torus knot $T_{2k,2k-1}$ has $\gamma_4(T_{2k,2k-1}) = k - 1$. That is, $T_{2k,2k-1}$ does not bound a punctured #\$k - 2\$RP2 smoothly embedded in B^4, and does bound a punctured #\$k - 1\$RP2.

The surface $F_{2k,2k-1}$ is an example of a more general construction. For each relatively prime p and q, we find a nonorientable surface $F_{p,q}$ in B^4 bounding $T_{p,q}$, whose first Betti number satisfies the recursion $b_1(F_{p,q}) = b_1(F_{p-2t,q-2h}) + 1$ where t and h are the minimal nonnegative representatives of $-q^{-1}$ modulo p and p^{-1} modulo q, respectively. We conjecture that these surfaces always have minimal genus, ie, that $b_1(F_{p,q}) = \gamma_4(T_{p,q})$.

In contrast to the orientable case, where the so-called Milnor conjecture $g_4(T_{p,q}) = g_3(T_{p,q})$ holds, we show that $\gamma_4(T_{p,q}) = 1$ while Teregaito has computed that $\gamma_3(T_{p,q}) = 2$ [Ter].

Acknowledgements. The author would like to thank Peter Ozsváth for many helpful conversations, and Jacob Rasmussen for comments on a draft.

2. Constructing an orientable replacement

In this section, we prove

Proposition 5. Let $F \subset B^4$ be a smoothly embedded nonorientable surface with odd b_1 bounding a knot $K \subset S^3$. Then there exists an orientable surface $F' \subset S^2 \times S^2 \setminus B^4$ which still bounds K, and has $b_1(F') = b_1(F) - 1$ and $e(F') = e(F) + 2$.

Proof. We break the proof into four steps.

Step 1: There is an embedded disk $D \subset B^4$, with boundary contained in F, such that $F \setminus \partial D$ is orientable.

Since F has odd b_1, it is diffeomorphic to a punctured orientable surface boundary-connect summed with a Mobius band (Figure 2.1). Let $C \subset F$ be the core of the Mobius band; note that $F \setminus C$ is orientable. After an ambient isotopy, we may arrange that C lies in the sphere of radius $1/2$, $S^3_{1/2} \subset B^4$, and that F intersects $S^3_{1/2}$ transversely. Think of C as a knot: it bounds some immersed disk D^2 in $S^3_{1/2}$, with clasp and ribbon singularities (Figure 2.2). We may remove the ribbon singularities by pushing the inner immersed segment in towards the centre of the 4-ball. To remove the clasp singularities, we push both immersed segments of the disk off the 1/2-level, one in towards the centre, and the other out towards the boundary. (The ability to push the surface both inwards and outwards is crucial, since a knot on the boundary of the B^4 bounds an embedded disk only if it is slice.) By a small isotopy, we may arrange that this embedded disk D bounding C intersects F' transversely on its interior.

Let N be a small regular neighborhood of D.

Step 2: The intersection $\partial N \cap F$ is the link L shown in Figure 2.3.

N is diffeomorphic to $D \times D^2$, and intersects our surface F in a Mobius band (in the neighborhood of $\partial D = C$) and a collection of disks $pt \times D^2$ (neighborhoods of the transverse intersections of F with the interior of D). If we draw $S^3 = \partial N$ with its standard decomposition into solid tori $S^3 = S^1 \times D^2 \cup_{T_3} D^2 \times S^1$, we see $F \cap \partial N$ as the link L consisting of a $(2k+1)$-cable of the core of the first factor, together with a collection of l longitudes for the second. By construction, L bounds a Mobius band disjoint union a collection of l disks in $N \cong B^4$.

Step 3: \(L \) bounds \(l + 1 \) disjoint embedded disks in \(S^2 \times S^2 \setminus B^4 \)

A handle decomposition for \(S^2 \times S^2 \setminus B^4 \) consists of two zero-framed 2-handles \(H_1 \) and \(H_2 \) attached along a Hopf link in the boundary \(S^3 \), together with a 4-handle. To construct the slice disks for \(L \), we begin with \(|k| + l \) parallel copies of the core of \(H_2 \) and 2 parallel copies of the core of \(H_1 \)—their boundaries form a multi-Hopf link, with components \(U_1, \ldots, U_{|k|+l}, L_1, L_2 \), as in the first frame of Figure 2.4. For each \(1 \leq i \leq |k| \), connect \(U_i \) to \(L_1 \) with a twisted strip, and with one additional twisted strip, connect \(V_1 \) to \(V_2 \). Call the surface consisting of the parallel cores and the strips \(E \), and note that the boundary of \(E \) is isotopic to \(L \). Since each strip connects a distinct disk to \(L_1 \), \(E \), or rather a slightly isotoped copy of \(E \), is a collection of \(l + 1 \) disjoint embedded disks with boundary \(L \).

Step 4: Construct \(F' \), and compute \(b_1(F'') \) and \(e(F') \).

If we excize \(N \) from \(B^4 \), we are left with an orientable surface \(F'' \subset S^3 \times [0,1] \), with boundary \(K \) in \(S^3 \times \{0\} \) and \(L \) in \(S^3 \times \{1\} \). Attach \(S^2 \times S^2 \setminus B^4 \) along \(S^3 \times \{1\} \) to form a larger manifold, still diffeomorphic to \(S^2 \times S^2 \setminus B^4 \). The slice disks \(E \) for \(L \) combine with \(F'' \) to form an orientable surface \(F' \), whose only remaining boundary is the original knot \(K \).
For $k = -7$, $l = 3$, we have drawn the multihopf link bounding a collection of parallel disks, the strips which join them to form E, and the boundary of E, which is isotopic to L.

Since we have removed l disks and an annulus from F, and replaced them with $l + 1$ disks, $b_1(F') = b_1(F) - 1$. It remains to compare the normal Euler numbers. The remaining l unknots, U_1, \ldots, U_l have the same framing induced by E and $F \cap N$. The torus knot component of L is bounded by a Mobius band in $F \cap N$, and by an interesting disk in E. We invite the reader to verify that the induced framings differ by 2, due to the difference between the vertical twisted strip connecting V_1 to V_2 in E and the horizontal one in Mobius band. That is, $e(E) = e(F \cap N) + 2$. Since Euler number, like any self-intersection, is additive, $e(F') = e(F) + 2$. \hfill \Box

For future reference, we note that the homology class $[F'] \in H_2(S^2 \times S^2 \setminus B^4)$ is $(2, m)$, in the basis given by H_1 and H_2, with $m = |k| + l$. Since F' is orientable, its algebraic self-intersection number, $4m$, must be equal to its geometric self-intersection number, $e(F')$.

3. d-invariants

Heegaard Floer homology associates to a 3-manifold Y equipped with a Spinc structure t a suite of $\mathbb{Z}[U]$-modules which fit into a long exact sequence:

$$\cdots \rightarrow HF^-(Y, t) \xrightarrow{i} HF^\infty(Y, t) \xrightarrow{\pi} HF^+(Y, t) \xrightarrow{\delta} HF^-(Y, t) \rightarrow \cdots$$

If $c_1(t)$ is torsion (in which case we also say that t is torsion), then there is a \mathbb{Q}-grading gr on the each of these groups which is respected by i and π. The action of U decreases grading by 2. If Y is a rational homology sphere, then $HF^\infty(Y, t) \cong \mathbb{Z}[U, U^{-1}]$, and every Spinc structure is torsion. In that case, the d-invariant (or correction term) $d(Y, t)$ is the minimal grading of a non-\mathbb{Z}-torsion element of $HF^+(Y, t)$ in the image of π.

If $b_1(Y) > 0$, then there is an additional action of $H := H_1(Y)/\text{Tors}$ on the HF groups, which decreases grading by 1. If for every torsion $t \in \text{Spin}^c(Y)$, $HF^\infty(Y, t) \cong \mathbb{Z}[U, U^{-1}] \otimes_{\mathbb{Z}} \Lambda^* H$, then we say that Y has standard HF^∞. In that case, there are many correction terms, one for each generator of $\Lambda^* H$. We will be concerned with the bottom-most correction term, $d_t(Y, t)$, defined to be the minimal grading of a non-torsion element of $HF^+(Y, t)$ in the image of π and in the kernel of the H-action. The d-invariants terms will be useful to us because of their relationship to definite cobordisms.

Proposition 6. [OS1] Let Y be a closed oriented 3-manifold (not necessarily connected) with standard HF^∞, endowed with a torsion Spin^c structure t. If X is a negative semi-definite four-manifold bounding Y such that the restriction map $H^1(X; \mathbb{Z}) \to H^1(Y; \mathbb{Z})$ is trivial, and s is a Spin^c structure on X restricting to t on Y, then

$$c_1(s)^2 + b_2(X) \leq 4d_t(Y, t) + 2b_1(Y).$$

In the previous section, we constructed an orientable surface $F' \subset S^2 \times S^3 \setminus B^4$ with boundary $K \subset S^3$. Attach a -1-framed 2-handle along K to form a 4-manifold \overline{W} with boundary $S^3_1(K)$ and intersection form

$$Q_{\overline{W}} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}.$$

We may cap off F' with the core of the 2-handle to form a closed surface Σ with genus $g = (b_1(F) - 1)/2$, homology class $(1, 2, m)$, and self-intersection

$$n := 4m - 1 = e(F) + 1 > 0.$$

If we decompose $\overline{W} = \nu(\Sigma) \cup W$, then W will be a negative semi-definite cobordism from $Y_{g,n}$, the Euler number n circle bundle over Σ, to $S^3_1(K)$. Alternatively, we can view W as a negative semi-definite four-manifold with disconnected boundary $Y_{g,n} \amalg S^3_1(K)$. To apply the above proposition, and so prove Theorem 4, we need to understand the homology, HF^∞, and d-invariants of $Y_{g,n}$ and $S^3_1(K)$, and the intersection form on W.

The Gysin sequence for the disk bundle $\nu(\Sigma)$ gives

$$0 \to H^1(\nu(\Sigma)) \xrightarrow{\nu(\Sigma)} H^1(Y_{g,n}) \to H^2(\nu(\Sigma), Y_{g,n}) \xrightarrow{\nu(\Sigma)} H^2(Y_{g,n}) \to H^1(\Sigma) \to 0$$

where $e \in H^2(\nu(\Sigma)) \cong \mathbb{Z}$ is n times the generator. Thus $H^2(Y_{g,n}) \cong \mathbb{Z}^{2g} \oplus \mathbb{Z}/n$. Note that the restriction of $H^1(\nu(\Sigma))$ to $H^1(Y_{g,n})$ is an isomorphism. Since $H^1(\overline{W}) = 0$ (no 1-handles were used in its construction), the Mayer-Vietoris sequence

$$0 \to H^1(\overline{W}) \to H^1(\nu(\Sigma)) \oplus H^1(W) \to H^1(Y_{g,n}) \to H^2(\overline{W}) \to H^2(\nu(\Sigma)) \oplus H^2(W) \to H^2(Y_{g,n})$$

shows that $H^1(W) = 0$, trivially satisfying the restriction hypothesis of Proposition 6. Since $H^2(\overline{W}) \cong \mathbb{Z}^3$ has no 2-torsion, a Spin^c structure on \overline{W} is determined by its first Chern class. Any Spin^c structure on W will give us some inequality between d-invariants, but we will only need to consider a certain Spin^c structure s_i with $PD(c_1(s_i)) = (\pm 1, 2, 2a)$, where

$$a = \frac{2(m - g) - 1 \pm 1}{4}$$

and the sign is chosen so as to make a an integer. The given vector is characteristic for $Q_{\overline{W}}$, so does correspond to a Spin^c structure. Crucially for our later use, $c_1(s_i)$ evaluates to $n - 2g$ on Σ.
To compute the c_1^2 term in the proposition, we decompose the intersection form of W in terms of the \mathbb{Q}-valued intersection forms on $\nu(\Sigma)$ and W; if $c \in H^2(W)$, then

$$Q_W(c) = Q_{\nu(\Sigma)}(c|_{\nu(\Sigma)}) + Q_W(c|_W).$$

A generator of $H^2(\nu(\Sigma), Y_{g,n})$ maps to n times the generator of $H^2(\nu(\Sigma))$ in the gysin sequence above, so $Q_{\nu(\Sigma)} = \left(\frac{1}{n}\right)$. The value of $c|_{\nu(\Sigma)} \in H^2(\nu(\Sigma))$ is determined by integrating it over Σ, giving

$$(3.1) \quad Q_W(c) = \frac{c(\Sigma)}{n} + Q_W(c|_W).$$

In our case,

$$c_1(s_t|_W)^2 = Q_W(c_1(s_t)) = \frac{c_1(s_t), [\Sigma]}{n} = -1 + 8a - \frac{(n - 2g)^2}{n} = -2 \pm 2 - \frac{4g^2}{n}.$$ \hspace{1cm}

The relevant d-invariant of $Y_{g,-n}$ is computed in section 9 of [OS1], for use in their proof of the Thom conjecture. If $n > 2g$, then

$$d_b(Y_{g,-n}, s_t|_{Y_{g,-n}}) = \frac{1}{4} - \frac{g^2}{n} - \frac{n}{4}.$$ \hspace{1cm}

That calculation uses the integer surgeries exact sequence associated to the Borromean knot in $K \subset \#^{2g}S^1 \times S^2$: the $-n$ surgery on K gives $Y_{g,-n}$. Since $\#^{2g}S^1 \times S^2$ has standard HF^∞, so does $Y_{g,-n}$ (cf Proposition 9.4 of [OS1]). Finally, since $S^3(K)$ is an integer homology sphere, it also has standard HF^∞.

We are now ready to prove Theorem 4. By Proposition 6, we have

$$c_1(s_t)^2 + b_2(W) \leq 4d_b(Y_{g,-n}, t) + 4d(S^3_{-1}(K)) + 2b_1(Y_{g,-n}) + 2b_1(S^3_{-1}(K)).$$

After substituting all the values computed above, this reduces to

$$\left(-2 \pm 2 - \frac{4g^2}{n}\right) + 2 \leq 4\left(\frac{1}{4} - \frac{g^2}{n} - \frac{n}{4}\right) + 4d(S^3_{-1}(K)) + 2(2g).$$

If we take the unfavorable sign on \pm, and recall that $b_1(F) = 2g + 1$ and $e(F) + 1 = n$, we get the inequality

$$(3.2) \quad \frac{e(F)}{2} \leq 2d(S^3_{-1}(K)) + b_1(F).$$

This argument relied on a value for $d_b(Y_{g,-n})$ only valid if $n > 2g$, ie, $e(F) + 2 \geq b_1(F)$. Proposition 6 applied to the surgery cobordism $S^3 \to S^3_{-1}(K)$, guarantees that $d(S^3_{-1}(K)) \geq 0$, so if $e(F) + 2 < b_1(F)$, the above inequality is trivially satisfied.

The initial construction of an orientable replacement required that $b_1(F)$ be odd. Luckily, both sides of Equation 3.2 change by the same amount under a positive real 'blow-up.' More precisely, if we connect sum $F \subset B^4$ with the standard embedding of $\mathbb{R}P^2 \subset S^4$ with Euler number $+2$, then both b_1 and $e/2$ increase by 1. One way to construct this $\mathbb{R}P^2$ is to glue together the Mobius band and disk bounding $T_{2,-1}$ (cf the mirror of Figure 1.1 at $k = 0$), then push them off into opposite sides of $S^3 \subset S^4$. If $b_1(F)$ is even, we may apply Equation 3.2 to $F\# \mathbb{R}P^2$, and so deduce it for F.

This completes the proof of Theorem 4 and hence of Theorem 1.

Remark. Our final lower bound on γ_4 is the gap $\frac{\sigma(K)}{4} - d(S^3_{-1}(K))$. For alternating knots, this quantity is nonpositive—in [OS2], Ozsváth and Szabó show that

$$d(S^3_{-1}(K)) = \max\left(0, 2\left[\frac{\sigma(K)}{4}\right]\right).$$
For nonalternating knots, $\frac{\sigma(-)}{2}$ and $d(S^3_{-1}(-))$ can diverge widely, though both invariants satisfy a crossing-change inequality \cite{PET}:

$$\eta(K_+) \leq \eta(K_-) \leq \eta(K_+) + 2.$$

If K becomes alternating after c crossing changes, then $\frac{\sigma(K)}{2} - d(S^3_1(K))$ can be as large as $2c$.

4. Torus Knots

Signatures of torus knots satisfy a recursion relation \cite{MK}. If $\sigma(p, q) := \sigma(T_{-p,q})$, then

$$\sigma(p, q) = \begin{cases}
\sigma(q, p) & \text{if } q > p \\
\sigma(p - 2q, q) + q^2 (-1) & \text{if } 2q < p \ (q \text{ odd}) \\
-\sigma(2q - p, p) + q^2 - 2 (+1) & \text{if } 2q > p \ (q \text{ odd}) \\
p - 1 & \text{if } q = 2 \\
0 & \text{if } q = 1
\end{cases}$$

Let $\sigma_k := \sigma(T_{-2k, 2k-1}) = \sigma(2k, 2k - 1)$. Applying the first and third conditions twice, we arrive at the recursion

$$\sigma_k = 4k - 2 + \sigma_{k-1},$$

whence $\sigma_k = 2k^2 - 2$.

The d-invariants of torus knots are also simple to compute, since they admit lens space surgeries.

Proposition 7. \cite{OS1} Let K be a knot admitting a positive lens space surgery. Then

$$d_{-1/2}(S^3_0(K)) = -\frac{1}{2} \quad \text{and} \quad d_{1/2}(S^3_0(K)) = \frac{1}{2} - 2t_0$$

where if

$$\Delta_K(T) = a_0 + \sum_{j=1}^{d} a_j (T^j + T^{-j})$$

then

$$t_0 = \sum_{j=1}^{d} ja_j.$$

The d-invariants of zero-surgery are related to those of ±1-surgery via Proposition 4.12 of \cite{OS1}:

$$d \left(S^3_{-1}(K) \right) = d_{-1/2} \left(S^3_0(K) \right) + \frac{1}{2} \quad \text{and} \quad d \left(S^3_1(K) \right) = d_{1/2} \left(S^3_0(K) \right) - \frac{1}{2}.$$

Since $T_{p,q}$ admits a positive lens space surgery, we have

$$d \left(S^3_{-1}(T_{p,q}) \right) = -d \left(S^3_1(T_{p,q}) \right) = -\left(d_{1/2} \left(S^3_0(T_{p,q}) \right) - \frac{1}{2} \right) = 2t_0.$$

The Alexander polynomial of $T_{p,q}$ is

$$\Delta_{T_{p,q}}(T) = T^{-(p-1)(q-1)/2} \left(\frac{1 - T}{1 - T^p} \right)^{1/2} \left(\frac{1 - T^q}{1 - T^q} \right)^{1/2}.$$

For torus knots $T_{2k, 2k-1}$, the Alexander polynomial has a simple form:

$$\Delta_{T_{2k, 2k-1}} = \sum_{j=1}^{k-1} T^{j(2k-1)} - T^{j(2k-1)-(k-j)} + T^{-(j(2k-1)-j)},$$

$$- T^{j(2k-1)+(k-j)}.$$
so

\[t_0 = \sum_{j=1}^{k-1} j(2k-1) - (j(2k-1) - (k-j)) = \sum_{j=1}^{k-1} k - j = \frac{k^2 - k}{2}. \]

Hence

\[d \left(S^3_1 (T_{-2k, 2k-1}) \right) = k^2 - k. \]

The relevant difference between signature and \(d \) is

\[\frac{\sigma}{2} - d = k^2 - 1 - (k^2 - k) = k - 1. \]

Of course, the reflection of a surface bounding \(T_{2k, 2k-1} \) bounds \(T_{-2k, 2k-1} \).

Corollary 8. If \(F \subset B^4 \) is a smoothly embedded nonorientable surface bounding \(T_{2k, 2k-1} \subset S^3 \), then \(b_1(F) \geq k - 1 \).

We obtain this lower bound by the following construction. Consider \(T_{p,q} \) as actually lying in a standard torus, as in Figure 4.1. Take any two adjacent strands and join them with a strip, or, equivalently, perform...
an index 1 Morse move merging them. The resulting cobordism is nonorientable, since the strands were parallel; it is a punctured Mobius band. Since the resulting knot still lives on the torus, it must be $T_{r,s}$ for some r and s. The values of r and s can be easily computed by orienting the resulting knot and counting the signed intersection with the horizontal and vertical generators of $H_1(T^2)$. A short calculation shows that

\[r = p - 2t \quad s = q - 2h \]

where $t \equiv -q^{-1} \mod p$, with $0 \leq t < p$, and $h \equiv p^{-1} \mod q$, with $0 \leq h < q$. After an isotopy, $T_{r,s}$ will be in standard, taut form on the torus, and we can repeat the process. Eventually, we arrive at $T_{n,1}$ for some n, which is just an unknot. By concatenating all of these cobordisms, then capping off the final unknot with a disk, we have successfully found a surface $F_{p,q}$ in B^4 bounding $T_{p,q}$.

For example, if $p = 2k$ and $q = 2k - 1$, we have $t = -(-1)^{-1} = 1$ and $h = 1^{-1} = 1$, giving $r = 2k - 2$ and $s = 2k - 3$. Thus $T_{2k,2k-1}$ has a $\chi = -1$ cobordism to $T_{2(k-1),2(k-1)-1}$. Concatenate $k - 1$ of these, then cap off $T_{2,1}$ with a disk to get a closed surface $F_{2k,2k-1} \subset B^4$ bounding $T_{2k,2k-1}$, with $b_1(F_{2k,2k-1}) = k - 1$.

Since the isotopies and Morse moves take place inside of the torus, we can actually embed each of these cobordisms in a thickened torus $T^2 \times [-\epsilon,\epsilon]$ in S^3, where we view the $[-\epsilon,\epsilon]$ direction as a sort of time. The obstruction to embedding all of $F_{p,q}$ in S^3 is that the final disk bounding $T_{n,1}$ cuts through all of the previous layers, unless $n = 0$. To get a surface in S^3, we must continue with these within-torus cobordisms: $T_{n,1} \mapsto T_{n-2,1} \mapsto \cdots$. If n is even, or, equivalently, if pq was even to start, then we do get a surface in S^3. Teragaito has computed $\gamma(T_{p,q})$, and it agrees with $b_1(F)$ [Ter]. For example, $\gamma(T_{2k,2k-1}) = k$. If n is odd, then this construction fails to give a surface in S^3, though a slight modification (cf. [Ter] Remark 4.9) will do.

We conjecture that the surfaces $F_{p,q}$ bounding $T_{p,q}$ are best possible, that $b_1(F_{p,q}) = \gamma_4(T_{p,q})$. Many pairs (p,q) for which the conjecture holds can be certified using the d-invariant bounds of this paper. Similar invariants, derived by considering larger surgeries on the knot, give even more examples. These stronger bounds will be discussed in a forthcoming paper.

References

[GL1] P.M. Gilmer and C. Livingston. The nonorientable 4-genus of knots. *Journal of the London Mathematical Society* 84(2011), 559–577.

[GL2] C.M. Gordon and R.A. Litherland. On the signature of a link. *Inventiones Mathematicae* 47(1978), 53–69.

[MY] H. Murakami and A. Yasuhara. Four-genus and four-dimensional clasp number of a knot. *Proc. Amer. Math. Soc.* 128(2000), 3693–3700.

[MK] K. Murasugi and B. Kurpita. *Knot theory and its applications*. Birkhauser, January 2008.

[OS1] P. Ozsváth and Z. Szabó. Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary. *Advances in Mathematics* 173(2003), 179–261.

[OS2] P. Ozsváth and Z. Szabó. Heegaard Floer homology and alternating knots. *Geometry & Topology* 7(2003), 225–254.

[Pet] T.D. Peters. A concordance invariant from the Floer homology of ±1 surgeries. *arXiv:1003.3038* (2010).

[Ter] M. Teragaito. Crosscap numbers of torus knots. *Topology and its Applications* 138(2004), 219–238.

[Yas] A. Yasuhara. Connecting lemmas and representing homology classes of simply connected 4-manifolds. *Tokyo Journal of Mathematics* 19(1996), 245–261.