Supplemental Information

Overfishing drives over one-third of all
sharks and rays toward a global extinction crisis

Nicholas K. Dulvy, Nathan Pacoureaux, Cassandra L. Rigby, Riley A. Pollom, Rima W. Jabado, David A. Ebert, Brittany Finucci, Caroline M. Pollock, Jessica Cheok, Danielle H. Derrick, Katelyn B. Herman, C. Samantha Sherman, Wade J. VanderWright, Julia M. Lawson, Rachel H.L. Walls, John K. Carlson, Patricia Charvet, Kinattumkara K. Bineesh, Daniel Fernando, Gina M. Ralph, Jay H. Matsushiba, Craig Hilton-Taylor, Sonja V. Fordham, and Colin A. Simpfendorfer
A Sharks & Chimaeras

Bythaelurus alcockii
Parmaturus bigus
Bythaelurus bachi
Apristurus rivelis
Bythaelurus vivakii
Parmaturus macmillani
Apristurus spongius
Bythaelurus naylori
Apristurus duriophisii
Holothuria aquamarina
Apristurus callidus
Apristurus bruneus
Galatea gracile
Bythaelurus ovakii
Squalimodalatias garrãldi
Coreolymnosus macracanthus
Chimaera dideae
Apristurus aligerus
Etmopterus lalae
Figaro striatus
Cephaloscyllium cooii
Etmopterus mollerii
Bythaelurus alveari
Etmopterus unicorii
Planonanus indicus
Chimaera owatensis
Etmopterus brachyrhynchus
Chimaera orientalis
Squalus bahianus
Chimaera bocaccianus
Cephaloscyllium signatum
Scoliodon cyanurus
Squalus blainvillei
Hydrolycus barbouri
Chimaera jordani
Cephaloscyllium exoptyum
Squalus biceps
Ctenophorus westraliensis
Chimaera willetti
Haliacampus quagga
Hemichis albostris
Squalus albostris
Squalus mahe
Squalimodalatias sherwoodi
Rhacthimaera africana
Squalus quinimunis
Cephaloscyllium quicomum
Squalus alleni
Galeus gracilis
Cephaloscyllium pictum
Hydrolycus afrianius
Scoliodon hackai
Squalus libralis
Asymomus furulitus
Somniosus longus
Parmaturus nigraurostris
Chirigaleus australis
Squalus mendedus
Parascyllium australicus
Scoliodon ceyrosi
Chirigaleus asper
Squalimodalatias albocauda
Heterorhina ramalheira
Pithura kajao
Parascyllium elogatuem
Heterorhina ornamentalis
Alamadurus macrura
Gogolea novemvri
Echimanthus cookii
Heterorhina francisci
Chiloscyllium caeruleopunctatum
Pleacmyx annua
Carcharhinus humanus
Orectolobus relictus

B Rays

Criuina durbamenensis
Notoraja sapphirina
Brochiraja heuresa
Apristurus microspinifera
Notoraja lana
Fenestrastra macracanthi
Leucoraja elainaeae
Amblyraja reversa
Pavonara arenaria
Brochiraja leviiflora
Notoraja hirudicata
Bathyraja ishikawai
Brochiraja abalabata
Narcine nigricans
Smobatis flicata
Urolophus kasmirii
Notoraja ochromerma
Bathyraja abyssicola
Fenestrastra sibogae
Smobatis caerleae
Leucoraja campagnoi
Heterorhinc mola
Heterorhinc bentusii
Brochiraja aenigma
Brochiraja viticucuta
Brochiraja aspersa
Brochiraja spinifera
Criuina andamanica
Orbiantha philii
Dipturus johannisdavisi
Arhynchobatis aspersimus
Dipturus exquidenticus
Dipturus melanoscapus
Narine insidita
Dipturus lanceostratus
Inepta westraliensis
Amblyraja georgiana
Dipturus strechynius
Neotygon kuhlii
Bathyraja shuntovi
Dentiraja falicara
Torpedo fuscomaculata
Narine occullata
Amblyraja lae
Rhobnatos nudifolialis
Hemobyra parvorniga
Discopyge castelaci
Hemobyra yemenensis
Dentiraja fenderi
Raja hawegi
Acroteriobatis ocellatus
Dipturus longicornis
Rhinobatos holocryhnus
Zapteyns exasperata
Dipturus argentinensis
Rhinobatos omentalis
Hemitrygon paraenigma
Torpedo sinuspersici
Homobatus melas
Dipturus angusti
Aetomylaeus asperrimus
Dipturus argentinensis
Acroteriobatis omanensis
Rhinobatos saussureanus
Raja jozi
Dipturus johannisdavisi
Rhinobatos indoensis
Dipturus melanospilus
Makararaja chindwiaiensis
Dasyatis toxum
Rhinobatos ausini
Raja pita
Arhynchobatis aspersimus
Megatrygon microps
Rhinobatos neglecta
Uragymus acraheithron

Probability of being each IUCN Red List Category

LC
NT
VU
EN
CR
Cut-off
Figure S1. Predicted Red List category of 142 Data Deficient chondrichthians from Cumulative Link Mixed-effects Models, related to Figure 4.

(A) Sharks and chimaeras.

(B) Rays. A 50% probability was used to classify species into IUCN categories, and this is shown with a grey line. The top model included maximum size (cm) and median depth (m) as fixed effects.
Disproportionate coastal chondrichthyans are disproportionately threatened in the tropics and subtropics, related to Figure 5. Disproportionate is defined by greater than 50% and greater than 75% of species are threatened per cell.
Unique threat	Intentional (target catch)	Unintentional catch	Both intentional & unintentional	Scale total
Subsistence/small scale	0.4% (4)	1.9% (21)	1.7% (19)	4.0% (44)
Large-scale	0.6% (7)	34.5% (377)	1.4% (15)	36.5% (399)
Both subsistence & industrial	0.0% (0)	31.2% (340)		
Intentionality total	1.0% (11)	67.5% (738)		

Combined threats	Intentional (target catch)	Unintentional catch	Scale total
Subsistence/small scale	28.0% (306)	62.4% (681)	63.6% (694)
Large-scale	21.4% (233)	95.2% (1,040)	96.0% (1,049)
Intentionality total	32.5% (355)	99.0% (1,082)	

For unique threats, species are scored only when coded for the unique threat or the column or row pairwise combination. For the combined threats, species can be coded for up to all four combinations.

Table S1. Percent of all 1,091 species under exploitation classified by intentionality (intentional vs. unintentional) and scale of the fishery (subsistence/small-scale vs. large-scale) separated by unique and pairwise, and combined threats, Related to Figure 3.
Data-sufficient Chondrichthysans ($n = 1,178$)

Fixed effects	logLik	AIC	ΔAIC	AIC weight	Coefficient estimates	Standard Error	Random effect variance / standard deviation
Maximum Size	-1230.72	2473.44	87.42	9.01e-20	0.76	0.18	2.32 / 1.52
Median Depth	-1212.21	2436.42	50.39	9.87e-12	-1.50	0.20	2.15 / 1.47
Maximum Size + Median Depth + Geographic Range	-1185.01	2386.02	0.00	8.66e-01	1.09 -1.97 +0.45	0.19	1.02 / 1.01

Data-sufficient sharks ($n = 528$)

Fixed effects	logLik	AIC	ΔAIC	AIC weight	Coefficient estimates	Standard Error	Random effect variance / standard deviation
Maximum Size	-529.30	1070.61	11.83	1.70e-03	0.91	0.29	1.68 / 1.30
Median Depth	-530.42	1072.84	14.06	5.56e-04	-0.74	0.27	2.26 / 1.50
Maximum Size + Median Depth	-522.39	1058.77	0.00	6.30e-01	1.21 -1.03	0.29	1.32 / 1.15
Maximum Size + Median Depth + Geographic Range	-521.94	1059.87	1.10	3.63e-01	1.08 -1.10 +0.29	0.32	1.30 / 1.14

Data-sufficient rays ($n = 598$)
	LogLik	AIC	ΔAIC	p(ΔAIC)	p(ΔAIC)
Maximum Size	-667.43	1346.85	76.71	1.61e-17	0.78
Median Depth	-647.75	1307.50	37.36	5.64e-09	2.08
Maximum Size + Median Depth	-627.07	1270.14	0.00	7.31e-01	1.26
Maximum Size + Median Depth + Geographic Range	-627.07	1270.14	0.00	7.31e-01	1.26

LogLik = log likelihood, AIC = Akaike Information Criterion, ΔAIC = difference in AIC from top model.

Table S2. Cumulative Link Mixed-effects Models of the life history and distributional covariates of IUCN status, Related to Figure 4. Separated for all data-sufficient chondrichthyans, sharks, and rays. The models are of the form \(p(\text{IUCN status}) = \) biological and ecological traits, random effect = taxonomic family.
Fixed Effects	AUC values						
	CR	EN	VU	NT	LC	thr	Mean
Size	0.703	0.650	0.554	0.456	0.816	0.675	0.636
Depth	0.717	0.669	0.656	0.505	0.831	0.755	0.676
Range	0.569	0.627	0.561	0.203	0.815	0.638	0.555
Size+Depth	**0.778**	**0.732**	**0.668**	**0.634**	**0.840**	**0.805**	**0.730**
Size+Range	0.699	0.653	0.557	0.458	0.815	0.676	0.637
Depth+Range	0.728	0.711	0.674	0.542	0.835	0.783	0.698
Size+Depth+Range	0.771	0.735	0.675	0.620	0.840	0.806	0.728

The Area Under the Curve (AUC) score represents the probability of a model predicting the correct category, with scores closer to 1 represent high accuracy and those closer to 0.5 representing low predictive accuracy. To choose the model with the highest overall predictive accuracy across categories, the mean AUC of all five categories was calculated. We also calculated the average AUC across the three threatened categories.

Table S3. Predictive model accuracy for chondrichthyan extinction risk, Related to Figure 4.

Each model included the IUCN category or as the response variable, and additive combinations of maximum linear dimension (cm), median depth (m) and geographic range as fixed effects, and taxonomic Family as a random effect to account for phylogenetic non-independence.
Common name	Latin name	Species number	Threatened species number	Threatened species (%)	p-value*
Devil Rays	Mobulidae	9	9	100.0	0.0001
Giant Guitarfishes	Glaucostegidae	6	6	100.0	0.0028
Pelagic Eagle Rays	Aetobatidae	5	5	100.0	0.0074
Sawfishes	Pristidae	5	5	100.0	0.0074
Wedgefishes	Rhinidae	10	9	90.0	0.0010
Hammerhead Sharks	Sphynidae	9	8	88.9	0.0023
Weasel Sharks	Hemigaleidae	8	7	87.5	0.0056
Gulper Sharks	Centrophoridae	15	11	73.3	0.0053
Eagle Rays	Myliobatidae	18	13	72.2	0.0030
Requiem Sharks	Carcharhinidae	57	39	68.4	0.0000
Guitarfishes	Rhinobatidae	34	23	67.7	0.0004
Angel Sharks	Squatinidae	22	13	59.1	0.0325
Stingrays	Dasyatidae	91	51	56.0	0.0002

*p-value derived from a one-tailed binomial test of the probability that the percent threatened is significantly greater than for all chondrichthyans (37.5%) at the 0.05 level. The families with five or more species are in descending ordered with the greatest percent of threatened species uppermost.

Table S4. Most speciose threatened families of chondrichthyans, with species richness, the number and percent of species threatened, Related to Figure 5.
Theme	Scope	Participants	Dates	Location	Funding
Taxonomic	Sawfishes	28	21-24th May 2012	London, UK	NOAA Award NA12NMF4690058 from Fisheries Headquarters Program Office (FHQ); SOSF project #204, the Mohamed bin Zayed Species Conservation Fund, project #11252587. Further support was provided by IUCN SSC Sub-Committee for Species Conservation Planning, Environment Agency-Abu Dhabi, Chester Zoo, North West Group of Fauna and Flora International, Flying Sharks, Global Ocean, and Dallas World Aquarium.
Regional	Northeast Pacific wide-ranging	28	21st March 2014	Seattle, USA	Seattle Aquarium
Regional	Northeast Atlantic, Mediterranean Sea, & Black Seas	19	12-15th May 2014	Plymouth, UK	European Commission (Directorate General for the Environment Service Contract No. 070307/2011/607526/SER/B.3) and the IUCN Centre for Mediterranean Cooperation (IUCN-Med)
Taxonomic	Devil Ray	17	9-13th June 2014	Durban, South Africa	SOSF project #235; US State Department IUCN contribution
Regional	Australia	26	16-20th February 2015	Townsville, Australia	Fisheries Research and Development Corporation (FRDC)
Regional	Northeast Pacific endemics	11	15th July 2015	Reno, USA	N/A
Regional	Arabian Seas Region	25	5-11th Feb. 2017	Abu Dhabi, UAE	Environment Agency, Abu Dhabi, SOSF Grant # 370. Additional financial support was provided by IFAW, and CMS Sharks MoU
Type	Region	Participants	Date	Location	Organiser
--------------	-------------------------------	--------------	-------------------------------	----------------------	-------------------------------
Regional	Sub-Equatorial Africa	17	23-25th April 2018	Grahamstown, South Africa	Shark Conservation Fund
Regional	Southwest Atlantic	21	31st May to 1st June 2018	João Pessoa, Brazil	Shark Conservation Fund
Taxonomic	Chimaeras	5	10-11th June 2018	João Pessoa, Brazil	Shark Conservation Fund
Habitat	Pelagic sharks & rays	15	5-9th Nov. 2018	Dallas, USA	Shark Conservation Fund
Regional	Eastern Central and Southeast Pacific	22	4-8th February 2019	Cali, Columbia	Shark Conservation Fund
Regional	Northwest & Western Central Atlantic	21	16-21 June 2019	The Bahamas	Shark Conservation Fund
Regional	Northwest Pacific	17	25-30th August 2019	Nagasaki, Japan	Shark Conservation Fund
Habitat	Deepsea	15	18-22 Nov. 2019	Vancouver, Canada	Shark Conservation Fund
Regional	Southeast Asia	29	13 2-hour calls, 15th April to 28th May 2020	Virtual	Shark Conservation Fund
Regional	West Africa	37	10 2-hour calls, 7th July to 5th August 2020	Virtual	Shark Conservation Fund

CMS Sharks MoU- Convention of Migratory Species Sharks Memorandum of Understanding, IFAW - International Fund for Animal Welfare, NOAA - US Department of Commerce, National Oceanic and Atmospheric Administration/National Marine Fisheries Service, SOSF - Save Our Seas Foundation.

Table S5. Red List workshops by theme and scope detailing participant numbers, dates, location, and funding sources, Related to STAR Methods.
Aaron Carlisle	Dave Kulka	John Carlson	Momodou Jallow
Aaron Lobo	David Allen	Jonathan Smart	Momodou Sidibeh
Abdoulaye Ba	David Morgan	Joost Pompert	Monika Böhmer
Abraham Basani Sianipar	David Ebert	Jorge Morales	Nathan Pacoureaux
Adam Barnett	David Robinson	Jorge Nunes	Nicholas Dulvy
Adrian Guttridge	Dawit Tesfamichael	Juan Carlos Pérez Jiménez	Nikola Simpson
Adriana Cevallos	Dayv Lowry	Juan Martín Cuevas	Olaf Ormseth
Ahmad Ali	Dennis Tanay	Julia Lawson	Oscar Miguel Lasso-Alcalá
Alberto González	Dharmadi	Julia Spaet	Paola Mejía-Falla
Alec Moore	Diego Cardenosa	Julie Neer	Oscar Sosa-Nishizaki
Alejandra Briones	Dwi Ariyoga Gautama	Justin Cordova	Patricia Charvet
Alen Soldo	Dyhia Belhabib	Justine Dossa	Paula Carlson
Alessandro Ponzo	Ed Farrell	Karen Crow	Peter Kyne
Alex Tamo	Edwin Grandcourt	Kat Gledhill	Phil Doherty
Ali Hood	Elena Buscher	Katalin Csatadi	Rachel Cavanagh
Alifa Haque	Elisa Areano	Katelyn Hermann	Rachel Graham
Alistair Harry	Eloisa Espinoza	Kelly van Hees	Rachel Walls
Alvaro Abella	Emmanuel Chartrain	Kelsi Chiquillo	Ranny Yuneni
Amie Bräutigam	Enzo Acuña	Ken Graham	Rhett Bennett
Ana Nieto	Eric Schneider	Kerry Sink	Richard Sherley
Ana-Lucia Furtado Soares	Evgeny Romanov	Kerstin Forsberg	Riley Polom
Andrea Launer	Fábio Motta	Khadeeja Ali	Rima Jabado
Name	Name	Name	Name
-------------------------------	-------------------------------	-------------------------------	-------------------------------
Andrea Marshall	Fabrizio Serena	KK Bineesh	Rob Leslie
Andrea Pauly	Fahmi	Kristian Metcalfe	Rodrigo Barreto
Andrés Felipe Navia	Fereidoon Owfi	Kristin Walovich	Romney McPhie
Andrew Chin	Framoudou Doumbouya	KV Akhilesh	Rory McAuley
Ania Budziak	Francesco Ferretti	Kwang-Ming Lui	Ryan Freedman
Annie Pek Kiok Lim	Francis Neat	Laura Paesch	Samantha Sherman
Antt Maung	Francisco Concha	Leontine Baje	Santiago Montealegre-Quijano
Aristide Takoukam	Francisco Marcante Santana	Lewis Barnett	Sara Ratão
Armelle Jung	George Burgess	Lindsay Davidson	Sarah Fowler
Ashkay Tanna	Getulio Rincon	Luc Badji	Sarah Gravel
Atsuko Yamauchi	Gina Ralph	Lucy Harrison	Sarah Lewis
Bamikole Williams	Godefroy De Bruyne	Lucy Keith-Diagne	Sarika Singh
Baraka Kuguru	Grant Johnson	Luciana Ferreria	Shannon Barry
Barry Bruce	Guido Leurs	Ly Seyha	Shawn Larson
Beatriz Naranjo	Guillermo Porrinos	Lyle Squire	Sho Tanaka
Breanna Machuca	Giuseppe Notartolo-di-Sciara	Malcolm Francis	Simona Cló
Brendan Talwar	Gustavo Chiaramonte	Mamadou Dia	Sonja Fordham
Brit Finucci	Guy Stevens	Manuel Duriel	Sophy McCully Philips
Brooke Anderson	Hajime Ishihara	Maria del Pilar Blanco-Parra	Stela Fernando
Cameron Provost	Heather Koldeway	Marina Garcia	Stiven Pires
Carlos Bustamante	Helen Yan	Mario Espinoza	Susan Smith
Carmen Santos	Henning Winker	Mark Erdmann	Tariq Al Mamari
Cassie Rigby	Hollie Booth*	Mark Stanley-Price	Tassapon Krajangdara*
Catarina Pien	Hsuan-Ching (Hans) Ho	Martin Clark	Terry Walker
--------------	----------------------	-------------	-------------
Chante Davis	Hua Hsun Hsu	Martin Hall	Thomas Farrugia
Charlene da Silva	Ian Jacobsen	Mary O'Malley	Tooraj Valinassab
Charlie Huveneers	Igbal ElHassan	Mathieu Ducroq	Van Quang Vo
Chip Cotton	Igor Volvenko	Matthew Gollock	Vicente Faria
Choong-Hoon Jeong	Isabelle Ender	Matt McDavitt	Vicky Vasquez
Chris Chabot	Issah Seidu	Maximin Djondo	Wade Smith
Chris Lowe	Itzigery Burgos	Meaghen McCord	Wade VanderWright
Chris Mull	James Kemp	Megan Van der Bank	Will White
Christine Dudgeon	Jean Utzurrum	Melissa Nehmans	William Smyth
Cindy Tribuzio	Jenny Bigman	Melita Samoily	Xiao Chen
Colin Simpfendorfer	Jess Cheok	Mia Comeros-Raynal	Ximena Vélez-Zuazo
Connor White	Jessica Jang	Michelle Heupel	Yasuko Semba
Cristopher Avalos	Jie Zhang	Mika Diop	Yury Dyldin
Daniel Fernando	Jim Ellis	Moazzam Khan	Zoe Crysler
Danielle Derrick	Joe Bizzarro	Mohammad Hassan Ali	

*denotes significant contribution in absentia

We also thank these five volunteers: Shamsa Al Hameli, Karen K. Frazer, Sarah Gravel, Romney McPhie, and Pedro Warner. We ask forgiveness for any names that may have been inadvertently omitted or misspelled.

Table S6. List of 243 Red List Assessment workshop participants ordered alphabetically by first name, Related to STAR Methods.
Latin binomial	Previous taxonomic concept	Revised taxonomic concept
Aetobatus flagellum	EN (2006)	EN (2020)
Aetobatus narinari	NT (2006)	EN (2020)
Aetomylaeus nichofii	VU (2003)	VU (2015)
Bathytoshia brevicaudata	LC (2015)	LC (2020)
Bathytoshia centroura	LC (2007)	VU (2019)
Bathytoshia lata	LC (2007)	VU (2020)
Bythaelurus lutarius	DD (2004)	DD (2018)
Carcharhinus dussumieri	NT (2003)	EN (2018)
Carcharhinus porosus	DD (2006)	CR (2019)
Centrophorus granulosus	VU (2006)	EN (2019)
Cephaloscyllium fasciatum	DD (2010)	CR (2019)
Cephaloscyllium umbratile	DD (2007)	NT (2019)
Chiloscyllium plagiosum	NT (2006)	NT (2020)
Chimaera ogilbyi	VU (2015)	NT (2019)
Dipturus chilensis	VU (2007)	EN (2019)
Ginglymostoma cirratum	DD (2006)	VU (2019)
Glaucostegus cemiculus	EN (2007)	CR (2018)
Glaucostegus typus	VU (2003)	CR (2018)
Glyphis gangeticus	CR (2007)	CR (2021)
Gymnura micrura	DD (2006)	NT (2020)
Hexanchus nakamurai	DD (2008)	NT (2019)
Species	Status 1	Status 2
---------------------------------	----------	----------
Himantura uarnak	VU (2015)	EN (2020)
Hypanus americanus	DD (2006)	NT (2019)
Lamiopsis temminckii	EN (2008)	EN (2020)
Mobula hypostoma	DD (2008)	EN (2018)
Mobula mobular	EN (2014)	EN (2018)
Myliobatis tenuicaudatus	LC (2003)	LC (2015)
Narke japonica	VU (2019)	VU (2021)
Neotrygon kuhlii	DD (2015)	DD (2017)
Platyrhina sinensis	VU (2008)	EN (2019)
Pliotrema warreni	NT (2004)	LC (2019)
Pristis pristis	CR (2005)	CR (2013)
Psammobatis normani	LC (2019)	LC (2020)
Raja miraletus	LC (2003)	LC (2019)
Rajella fyllae	LC (2008)	LC (2019)
Rhinobatos schlegelii	DD (2004)	CR (2019)
Scoliodon laticaudus	NT (2005)	NT (2020)
Scyliorhinus canicula	LC (2008)	LC (2020)
Scyliorhinus haeckelii	DD (2004)	DD (2019)
Scyliorhinus torazame	LC (2008)	LC (2020)
Sinobatis borneensis	LC (2008)	LC (2020)
Squalus blainville	DD (2008)	DD (2020)
Squalus megalops	DD (2003)	LC (2019)
Squalus mitsukurii	DD (2007)	EN (2019)
Species	Status 1	Status 2
-----------------------	----------	----------
Squatina dumeril	DD (2006)	LC (2017)
Squatina guggenheim	EN (2007)	EN (2018)
Taeniura lymma	NT (2005)	LC (2020)
Telatrygon zuguei	NT (2006)	VU (2019)
Tetronarce nobiliana	DD (2004)	LC (2020)
Tetronarce tremens	LC (2019)	LC (2021)

Table S7. Species that underwent a revision in taxonomic concept since the first assessment, but that we have not classified as Not Evaluated because a species with this name was previously assessed, Related to STAR Method.