Contributions of partial noise sources to overall noise of domestic appliance

M Bisták¹, Š Medvecký¹, I Gajdáč¹ and J Ún格尔²

¹University of Zilina, Faculty of Mechanical Engineering, Univerzitna 2, 01026 Žilina, Slovakia
²Ceit Engineering Services, s.r.o., Univerzitna 8413/6, 010 08 Žilina, Slovakia

E-mail: marek.bistak@fstroj.uniza.sk

Abstract. This article describes a method to identify partial sources of noise and their respective effects on the overall noise level of a clothes dryer. The focus is on the major sources of noise and options to control their noise levels so that the resulting declaration program produces as effective as possible acoustic improvement, while maintaining the desired drying performance, as indicated by the manufacturer in the rating plate. A rating plate is the main informative indicator allowing a consumer to compare performances of various competitor products.

1. Introduction
Comparing or analysing the acoustic performance of a clothes dryer during operation is a difficult assignment, which is particularly due to variations in operating conditions during a drying cycle. It is, therefore, important to identify all partial sources of noise and their individual contributions to the overall noise level of the domestic appliance generated during its operation.

2. Design of experiments for the objective assessment of effects of individual sources of noise
The measurements were performed in a certified acoustic laboratory and their aim was to assess noise emissions generated by the sources of noise in the dryer. In the first step, before the measurement itself, vibration sensors were attached to the independently driven electrical devices of the appliance to establish their operating states. Then, the declared measurement was made as an important basis for the assessment of both the overall noise level and the contributions of the various sources of noise [1].

Laboratory: Acoustic anechoic chamber
Measuring system: PULSE system, B & K 3053-B-120
Microphones: B&K 4190
Calibrator: B&K 4231
Accelerometers: B&K 4517
Acoustic camera: Noise Inspector
Declaration program: Cotton Eco
Weight of laundry: 9.00 kg
Figure 1. Appliance placed in an acoustic anechoic chamber.

Based on the measurement, the different sources of noise in the domestic appliance were identified and classified into two categories:

Primary, from motor operation:
- Motor
- Radial drying fan
- Drum rotation
- Laundry tumbling in the drum

Secondary, from other electrical devices with an independent drive:
- Compressor
- Pump
- Axial cooling fan

The first category comprises a combination of the various components of noise and noise from the motor, which is inherent to its drive. As this combined with the spinning of the drum, an increase in noise was observed due to the laundry tumbling in the drum.

The second category includes electrical devices operated by an independent drive that are integrated in the electric appliance. Such devices are operated by a control unit switching the devices according to the drying logics of the particular chosen dryer programme.

The declared measurement values served as the main state indicators for both categories and as a basis for the design of an external control unit and the measurement plan. [6, 7]

Table 1. Secondary noise source measurement plan.

| Secondary sources of noise | Measurement # |
|----------------------------|---------------|
|                            | 1  | 2 | 3 |
| Compressor                 | On | Off | Off |
| Axial fan                  | Off | On | Off |
| Pump                       | Off | Off | On |

2.1. Preparation of the measurement exercise

The preparatory work involved adjustment of the electrical appliance and of its control and mechanical components to allow the measurement of each individual source as well as of the combinations of sources [4].
3. Measurement of partial sources of noise

For the primary sources, interventions in the appliance assembly were necessary in addition to external control, including disconnection of the dryer drum belt and of the radial drying fan. The measured values were statistically processed in order to obtain values for the accessory sources of noise components, such as the motor noise component of the noise from the spinning drum.

The comparison of secondary noise sources was easy since the external control allowed measurement of both individual partial sources and their combinations. [8]
The measurement demonstrated that the primary sources of noise were making the highest contribution to the overall noise level of the dryer. During a drying cycle, the secondary sources increased the overall noise level by 0.2 to 0.5 dB(A). Therefore, any efforts to reduce noisiness should be focused on the primary noise sources. [5]

**Table 2.** Specific acoustic performance levels of primary noise sources.

| Primary source of noise                  | dB(A) |
|------------------------------------------|-------|
| Motor                                    | 59.9  |
| Drum rotation                            | 52.9  |
| Main fan                                 | 58.2  |
| Laundry tumbling in the drum             | 61.9  |

The values measured for the partial sources will provide useful inputs for the designing of noise control enclosures and insulations. Their appropriate placement will be determined with the help of measurement by an acoustic camera.

### 3.1. Design of noise control measures

Besides the frequency spectrum which clearly determines the noise damping material to be used, another important input for the design of noise control measures is the transmission paths of sound from the appliance. The best way to identify them is by using an acoustic camera. The employment of such device will prevent loss of materials for the manufacturer, in addition to allowing many effective configurations, for example, for the placement of soundproofing insulation on the panel of the product.

**Figure 5.** Engine mounting in the clothes dryer housing.

**Figure 6.** Record from an acoustic camera at 630 Hz of the appliance with covers.
In order to directly suppress sound transmission from the different partial sources of noise, it is necessary to perform acoustic holography of the appliance without covers so that the different noise sources are easier to identify [2, 3].

Figure 7. Record from an acoustic camera at 1600 Hz of the appliance without covers.

When all sources of noise and their sound transmission paths have been identified, noise reduction theories should be defined and modifications recommended to the manufacturer. A detailed analysis of primary sources revealed that:

The tumbling of laundry has a knocking effect on the drum surface, which generates vibrations of the drum. The sound passes through the housing panels and openings and propagates to the surroundings.

Electromagnetic forces inside the motor produce 100 Hz and 200 Hz frequencies within the frequency spectra of motor vibrations. Vibrations pass through the motor mounting to the housing. The motor fan also generates a broadband noise. Further, it was found out that vibrations are transmitted from the motor to its belt and then to the drum.

The noise from the secondary sources (compressor, front fan) generates vibrations with lower frequencies which are transmitted through the housing to the environment. The partial sources are also relevant to overall noise reduction. [9, 10]

4. Conclusion
An analysis of individual, partial sources of noise in domestic appliances is highly important for the finding of overall noise reduction options. Once identified, the noise reduction efforts in production may then be focused on the major noise sources that have the highest bearing on the overall noise level. This will help to minimise costs of the sound dumping modifications of an appliance. Customers may significantly influence the manufacturers’ efforts to reduce noisiness of their appliances: noise levels are shown in rating plates of appliances and thus comparable across competing products. Manufacturing companies that invest substantial amounts in noise reduction measures in appliances will, naturally, reflect those costs in prices. This implies that buyers have a marked influence on the noise reduction trends and approaches.

Acknowledgments
This article is a result of the implementation of the “Innovation Technology Knowledge Centre for Innovation of Production Systems in Industry and Services” project (ITMS code: 26220220155), supported by the Research & Development Operational Programme co-funded by the European Regional Development Fund.
References

[1] STN EN 60704-1 2010: Acoustics. Household and Similar Electrical Appliances – Test Code for the Determination of Airborne Acoustical Noise – Part 1: General Requirements

[2] Poljak S and Gajdáč I 2014 Acoustic Camera, Journal about the Automotive Industry, Mechanical Engineering and Economics 7(3) 86-87

[3] Poljak S and Gajdáč I 2014 Acoustic Camera and Her Utilize in the Praxis, Technológ 6(3) 23-26

[4] Kohár R and Hrček S (2014) Dynamic Analysis of Rolling Bearings with Elastic Cage, In: Ševčik L, Lepšík P, Petrů M, Mašín I, Martonka R (Eds.) Modern Methods of Construction Design, LNME, pp. 249-254, Springer

[5] Bisták M, Medvecký Š, Kohár R and Hrček S 2016 The Jib Crane Structural Design using the TRIZ Method, 57th International Conference of Machine Design Departments ICMD, Železná Ruda, Czech Republic, September 7-9, pp. 9-14

[6] Tomasikova M, Gajdosik T, Lukac M and Brumercik F 2017 Simulation of Planetary Gearbox, Communications Scientific Letters of the University of Žilina 19(2A) 48-53

[7] Jedliński Ł, Caban J, Krzywonos L, Wierzbicki S and Brumercik F 2015 Application of Vibration Signal in the Diagnosis of IC Engine Valve Clearance, Journal of Vibroengineering 17(1) 175-187

[8] Weis P, Kučera L, Pecháč P and Močilán M 2017 Modal Analysis of Gearbox Housing with Applied Load, Procedia Engineering 192(2017) 953-958

[9] Kučera L and Gajdosík T 2014 The Vibrodiagnostics of Gear, In: Ševčik L, Lepšík P, Petrů M, Mašín I and Martonka R (Eds.) Modern Methods of Construction Design, LNME, pp. 113-118, Springer

[10] Lukac M, Brumercik F, Krzywonos L and Krzysiak Z 2017 Transmission System Power Flow Model, Communications: Scientific Letters of the University of Žilina 19(2) 48-53