Development of the R263K Mutation to Dolutegravir in an HIV-1 Subtype D Virus Harboring 3 Class-Drug Resistance

N. Ahmed,1 S. Flavell,1 B. Ferns,2 D. Frampton,3 S. G. Edwards,1 R. F. Miller,1,4 P. Grant,4 E. Nastouli,5,6 and R. K. Gupta1,2

1Mortimer Market Centre, Central and North West London NHS Foundation Trust, London, United Kingdom; 2Department of Population, Policy and Practice, UCL GOS Institute of Child Health, London, United Kingdom; 3Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom; 4Centre for Clinical Research in Infection and Sexual Health, Institute for Global Health, University College London, London, London, United Kingdom; 5Department of Clinical Virology, University College London Hospitals NHS Foundation Trust, London, United Kingdom; 6Department of Population, Policy and Practice, UCL GOS Institute of Child Health, London, United Kingdom

Dolutegravir (DTG), a second-generation integrase strand-transfer inhibitor (INSTI), is equivalent or superior to current non-nucleotide reverse transcriptase inhibitors (NNRTIs), protease inhibitors (PIs), and first-generation INSTI-based antiretroviral regimens (ARVs). It has the potential to make big improvements in HIV globally and within patients. This is perhaps the most "precious" HIV drug available. The integrase mutation R263K has been observed in tissue culture experiments and in patients treated with dolutegravir monotherapy in clinical trials. Globally, adherence and monitoring may be less than optimal and therefore DTG resistance more common. This is particularly important in low–middle-income countries, where patients may remain on failing regimens for longer periods of time and accumulate drug resistance. Data on this mutation in non–subtype B infections do not exist. We describe the first report of the R263K integrase mutation in a dolutegravir-exposed subtype D–infected individual with vertically acquired HIV. We have used deep sequencing of longitudinal samples to highlight the change in resistance over time while on a failing regimen. The case highlights that poorly adherent patients should not be offered dolutegravir even as part of a combination regimen and that protease inhibitors should be used preferentially.

Keywords. adolescents; ARVs; dolutegravir; HIV; resistance.

Received 25 October 2018; editorial decision 29 November 2018; accepted 9 December 2018.
Correspondence: R. K. Gupta, MBBS, PhD, UCL Department of Infection, 90 Gower St, London WC1E 6BT, UK (rkgupta@ucl.ac.uk).

Open Forum Infectious Diseases©
©The Author(s) 2018. Published by Oxford University Press on behalf of Infectious Diseases Society of America. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
DOI: 10.1093/ofid/ofy329

CASE REPORT

A 22-year-old East African woman with vertically acquired HIV had been diagnosed shortly after birth. Her baseline viral load (VL) was 375,000 copies/mL, her CD4 was 150 cells/mm³, and she had subtype D infection. At diagnosis, zidovudine monotherapy was commenced. Didanosine was added...
2 years later, and she was switched to stavudine, lamivudine, and nelfinavir at 3 years of age. The VL dropped to 700 copies/mL; however, it rebounded to 6000 copies/mL at that time, a first resistance test showed M184V and D30N mutations. The patient then received zalcitabine, abacavir, and amprenavir. Subsequently, she maintained poor virological control despite changing antiretrovirals three times, with NNRTIs introduced during these changes (Table 1). Poor adherence continued until 11 years of age, when virological suppression was achieved with maraviroc, etravirine, and twice-daily darunavir/ritonavir. Subsequently, she disengaged from care, with inconsistent attendance over a period of 8 years. On re-engagement in care, her VL was 1610 copies/mL, and her CD4 was 104 cells/mm³.

At that time, resistance testing showed NRTI (M184V, T69D, T215V, T215Y, D67N, K219Q), NNRTI (Y181C, Y188L, H221Y) and PI (L10I, D30N, K20T, L33F, K43T, N88D) resistance, with PI resistance to nelfinavir. Integrase polymorphisms (17N, 256E, 112V, 201I, 234I) were detected. Maraviroc, etravirine, and darunavir/ritonavir (twice daily) were restarted. This regimen was simplified to darunavir/ritonavir and maraviroc, and subsequently to darunavir/ritonavir monotherapy once virological suppression was achieved. Six months later, the VL rebounded to 8600 copies/mL, and DTG 50 mg once a day was added. Poor engagement continued for 18 months; at this later time, inte grase resistance testing showed the R263K mutation conferring low-level resistance to DTG and raltegravir, with intermediate resistance to elvitegravir. R263K was confirmed by next-generation sequencing (NGS) using an analysis percentage minority variant threshold of >20%. To avoid accumulation of integrase resistance mutations with ongoing poor adherence, she was switched to tenofovir, darunavir/ritonavir. Follow-up NGS sequencing 3 months after the first resistance test showed the R263K mutation at <5% in a sample with a VL of 61 000 copies/mL.

Reasons for poor adherence and disengagement over time included drug adverse reactions and pill burden, a lack of family support, and lack of finances to attend outpatient appointments. The patient reported low mood, which reduced her motivation to take ARVs and engage in care. Despite multiple strategies to facilitate adherence, this patient declined psychological and mental health support.

DISCUSSION

The World Health Organization has recommended that countries consider a change from efavirenz-based regimens to dolutegravir-based regimens where pretreatment drug resistance to NNRTI has exceeded 15% [16, 17]. If DTG scale-up is to occur, drug resistance to DTG in different HIV subtypes needs to be monitored. Although at present significant DTG resistance in sub-Saharan populations is very rare [18], it has been documented recently in a heavily experienced patient who had previously failed raltegravir. We report occurrence of the R263K integrase mutation 18 months into treatment with DTG in the context of vertically acquired subtype D infection. This mutation is known to reduce viral fitness, and its loss was associated with an increase in viral load [19]. Further surveillance for dolutegravir resistance is warranted globally.

| Table 1. Summary of Antiretroviral History |

Age, y	Antiretrovirals	VL on Starting ARVs	VL After Starting ARVs	Resistance Test on Regimen
0	AZT	375 000	-	
2	AZT, DDI	-	375 000	
3	D4T, 3TC, NFV	-	700	M184V, D30N
4	DDC, ABC, AMP	6000	-	
6	D4T, DDI, NVP	-	31 000	
8	DDI, EFV, NVP	17 000	25 000	
10	TIP, TDF, FTC	34 000	<50	
18	MVC, ETV, DRV/RIT	1610	1610	M184V, T69D, T215V, D67N, K219Q, Y181C, Y188L, H221Y, L10I, D30N, K20T, L33F, K43T, N88D
	MVC, DRV/RIT	-	<50	
	DRV/RIT	<50		
	DRV/RIT, DTG (ODI)	8600	8600	R263K INT 60.8%, L32F PR 99.7%, N88D PR 99.7%, D30N PR 99.9%, K43T PR 99.8%, D67N PR 99.7%, T215S PR 99.7%, K219Q PR 99.7%, T69D PR 99.7%, Y181C PR 99.7%, Y188L PR 99.7%, H221Y PR 99.7%, L10I PR 99.7%
20	DRV/RIT, TDF	99 000	99 000	R263K INT 20.7%, K20T PR 99.7%, L32F PR 99.7%, N88D PR 99.9%, D30N PR 99.8%, K43T PR 99.7%, D67N PR 99.7%, T215S PR 99.7%, K219Q PR 99.7%, T69D PR 99.7%, Y181C PR 99.7%, Y188L PR 99.7%, H221Y PR 99.7%

% refers to abundance by ultradepth sequencing for the last 2 time points.

Abbreviations: 3TC, lamivudine; ABC, abacavir; AMP, amprenavir; AZT, zidovudine; D4T, stavudine; DDC, zalcitabine; DDI, didanosine; DRV/RIT, darunavir/ritonavir; EFV, efavirenz; ETV, etravirine; FTC, emtricitabine; INT, integrase; MVC, maraviroc; NFV, nelfinavir; NGS, next-generation sequencing; NVP, nevirapine; OD, once a day; PI, protease inhibitor; RT, reverse transcriptase; TDF, tenofovir; TIP, tipranavir.
Acknowledgments

Potential conflicts of interest. All Authors: No reported conflicts. All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Conflicts that the editors consider relevant to the content of the manuscript have been disclosed.

References

1. Kandel CE, Walmsley SL. Dolutegravir - a review of the pharmacology, efficacy, and safety in the treatment of HIV. Drug Des Devel Ther 2015; 9:3547–55.
2. Blanco JL, Marcelin AG, Katlama C, Martinez E. Dolutegravir resistance mutations: lessons from monotherapy studies. Curr Opin Infect Dis 2018; 31:237–45.
3. Castagna A, Maggiolo F, Penco G, et al; VIKING-3 Study Group. Dolutegravir in antiretroviral-experienced patients with raltegravir- and/or elvitegravir-resistant HIV-1: 24-week results of the phase III VIKING-3 study. J Infect Dis 2014; 210:354–62.
4. Lepik KJ, Harrigan PR, Yip B, et al. Emergent drug resistance with integrase strand transfer inhibitor-based regimens. AIDS 2017; 31:1425–34.
5. Wueting IEA, Lungu C, Rijnders BJA, et al. HIV-1 resistance dynamics in patients failing dolutegravir maintenance monotherapy. J Infect Dis 2018; 218(5):688–97.
6. Malot I, Subra F, Charpentier C, et al. Mutations located outside the integrase gene can confer resistance to HIV-1 integrase strand transfer inhibitors. MBio 2017; 8:e00922-17.
7. Eron JJ, Clotet B, Durant J, et al; VIKING Study Group. Safety and efficacy of dolutegravir in treatment-experienced subjects with raltegravir-resistant HIV type 1 infection: 24-week results of the VIKING study. J Infect Dis 2013; 207:740–8.
8. Gupta RK, Hill A, Sawyer AW, et al. Virological monitoring and resistance to first-line highly active antiretroviral therapy in adults infected with HIV-1 treated under WHO guidelines: a systematic review and meta-analysis. Lancet Infect Dis 2009; 9:409–17.
9. Gupta RK, Hill A, Sawyer AW, et al. Virological monitoring and resistance to first-line highly active antiretroviral therapy in adults infected with HIV-1 treated under WHO guidelines: a systematic review and meta-analysis. Lancet Infect Dis 2009; 9:409–17.
10. Gregson J, Kaleebu P, Marconi VC, et al. Occult HIV-1 drug resistance to thymidine analogues following failure of first-line tenofovir combined with a cytosine analogue and nevirapine or efavirenz in sub-Saharan Africa: a retrospective multi-centre cohort study. Lancet Infect Dis 2017; 17:296–304.
11. Gupta RK, Gregson J, Parkin N, et al. HIV-1 drug resistance before initiation or re-initiation of first-line antiretroviral therapy in low-income and middle-income countries: a systematic review and meta-regression analysis. Lancet Infect Dis 2018; 18:346–55.
12. WHO. Guidelines on the public health response to pretreatment HIV drug resistance. 2017. http://who.int/hiv/pub/guidelines/hivdr-guidelines-2017/. Accessed 28 July 2018.
13. Chaouchi N, Wallon C, Taieb J, et al. Interferon-alpha-mediated prevention of in vitro apoptosis of chronic lymphocytic leukemia B cells: role of bcl-2 and c-myc. Clin Immunol Immunopathol 1994; 73:197–204.