Towards a progression of health literacy skills: Establishing the HLS-Q12 cutoff scores

CURRENT STATUS: POSTED

Øystein Guttersrud
OsloMet - storbyuniversitetet

οystein.guttersrud@naturfagsenteret.no CORRESPONDING AUTHORNORCID: https://orcid.org/0000-0001-8771-1021

Christopher Le
Norwegian Directorate of health

Kjell Sverre Pettersen
Oslo Metropolitan University

Sølvi Helseth
Oslo Metropolitan University

Hanne Søberg Finbråten
Inland Norway University of Applied Sciences; Oslo Metropolitan University

DOI: 10.21203/rs.2.13456/v2

SUBJECT AREAS
Health Policy

KEYWORDS
Benchmarking, Cut-off scores, Health literacy, HLS-EU-Q47, HLS-Q12, Proficiency scale, Progression, Rasch Measurement Theory, Standard setting
Abstract
Background The self-reported European Health Literacy Survey Questionnaire (HLS-EU-Q47) is a widely used measure for population health literacy. Based on confirmatory factor analyses and Rasch modelling, the short form HLS-Q12 was developed to meet the Rasch unidimensional measurement model expectations. After its publication, there was a worldwide call to identify HLS-Q12 cutoff scores and establish clearly delineated standards regarding the skills assessed. This study therefore aims to identify the HLS-Q12 scores associated with statistically distinct levels of proficiency and to construct a proficiency scale that may indicate what individuals typically know and can do at increasingly sophisticated levels of health literacy.

Methods We applied the unidimensional Rasch measurement model for polytomous items to responses from 900 randomly sampled individuals and 388 individuals with type 2 diabetes. Using Rasch based item calibration, we constructed a proficiency scale by locating the ordered item thresholds along the scale. By applying Wright’s method for the maximum number of strata, we determined the cutoff scores for significantly different levels. By directly referring to item content that people who achieved the cutoff scores viewed as ‘easy’, we suggested what these gradually more advanced levels of health literacy might mean in terms of item content.

Results Analysing the population sample, we identified statistically distinct levels of health literacy at the empirically identified cutoff scores 27, 33 and 39. We confirmed them by analysing the responses from individuals with diabetes. Using item calibration, the resulting HLS-Q12 proficiency scale expresses typical knowledge and skills at these three statistically distinct levels. The scale’s cumulative nature indicates what it may mean qualitatively to move from low to high health literacy.

Conclusions By identifying levels of health literacy, we may initiate the improvement of current models of health literacy. Determining how to adapt information to patients’ health literacy level is a possible clinical outcome. A substantial methodological outcome is the inevitability of Rasch modelling in measurement. We found that Wright’s method identified rating scale cutoff scores consistently across independent samples. To reveal sources of potential biases, threats to validity and imprecision of benchmarks, replication of our study in other contexts is required.
Background
Research recognises that limited health literacy (HL) has major consequences for health outcomes [1–3]. In order to improve quality in health services, reduce inequalities in health and promote factors that enhance health, the Norwegian Ministry of Health and Care Services published a national strategy for HL in May 2019 [4]. To support the strategy and establish knowledge-based HL policy and practice, the Ministry commissioned the Norwegian Directorate of Health to map HL in the Norwegian population as part of the upcoming HLS19 survey. The survey was initiated by the Action Network on Measuring Population and Organizational Health Literacy (M-POHL), an organisation under the umbrella of the European Health Information Initiative (EHII) of WHO Europe [5].

The M-POHL network's internationally coordinated HL surveys are positioned to become Europe's premier yardstick for evaluating the efficiency of health policies. By identifying the characteristics of health literate populations, M-POHL allows governments to identify effective knowledge-based policies and compare good practices that may address health disparities and reduce inequalities in HL, regionally, nationally and internationally.

M-POHL is firmly committed to the continuing development of their comprehensive and widely used self-reported European Health Literacy Survey questionnaire (HLS-EU-Q47). The questionnaire was applied in a population study in eight European countries in 2011 [1] and in Norway in 2014–2015 [6, 7]. An accumulated body of corroborating evidence showed that the HLS-EU-Q47 data is not unidimensional [6–11], which gave rise to a controversy that led to the publication of the HLS-Q12 short form [7]. Subsequent to its publication, there has been an international request to establish the HLS-Q12 cutoff scores for different HL levels.

We estimate the HLS-Q12 cutoff scores by applying Wright's sample-independent method for the maximum number of statistically distinct strata [12] to the population data we collected in 2014. To ensure the quality and utility of the results, we evaluate our empirically derived cutoff scores by repeating the analysis in a sample drawn from a population with chronic disease (type 2 diabetes) in 2015.

To describe what people, who reach the different cutoff scores typically know and can do, we need to
construct a proficiency scale by directly referring to HLS-Q12 item content, that is, we need to
construct a Wright map based on ordered item thresholds [13]. This proficiency scale may indicate
what it means to move from one level to the next in terms of HLS-Q12 item content.

The objective of this paper is therefore to report how we identified the HLS-Q12 cutoff scores and how
we developed the HLS-Q12 proficiency scale of increasingly sophisticated and cumulative levels of HL.
The results of these two distinct but related processes will help us address the following research
questions:

What are the HLS-Q12 cutoff scores for statistically distinct levels of health literacy?
In terms of HLS-Q12 item content, what do individuals who achieve the cutoff scores typically know,
and what can they do?

Definitions and conceptual models of health literacy

Definitions of HL address the lifelong learning perspective—the development of individual skills to
access, appraise and apply health information essential to making appropriate health decisions [14–
18]. Broader definitions consider HL an interaction between the proficiency of individuals and the
demands of health services and systems [14, 19, 20], such as knowing how to navigate health
systems and communicating with health personnel.

Conceptual models of population or ‘public’ HL [21] reflect an analysis of aspects of the HL construct.
Conceptual models of HL also consider factors and covariates that predict an individual's HL, and such
models view HL itself as a critical determinant of health outcomes.

Basic skills or ‘fundamental literacy’ [19], such as oral skills [14, 22], reading and numeracy [14, 23–
25], writing [14] and digital skills [26], are viewed as key aspects of HL. Other key aspects are media
literacy [27], the ability to use health information to make knowledge-based decisions [23] and the
ability to interact with [28] and navigate the health system [22, 29]. In their systematic review,
Sørensen et al. [18] pointed out that HL has a wide range of aspects and that there is a high degree of
variation among the conceptual models of HL. They concluded that Nutbeam’s model [30], which
refers to the three categories—functional, interactive and critical HL—summarises many key aspects
of HL. Their claim is supported by the fact that other conceptual models, like Kickbusch and Maag [31]
and Manganello [27], take on a similar approach. Based on a literature review, Sørensen et al. [18]
proposed the integrated conceptual model of health literacy, which may be narrowed down to three health domains, *health care, disease prevention* and *health promotion*, and four cognitive domains, *access, understand, appraise* and *apply health information*. However, few of the available definitions and conceptual models of HL identify levels or stages of HL. This is a major challenge to policy-makers who aim to bridge HL gaps and promote equity by improving health education and simplifying health services. Our study therefore responds to this challenge.

Methods

Sampling

In November 2014, responses from 900 randomly sampled individuals aged 16 and above were collected in Norway using computer-assisted telephonic interviews. The international survey agency Ipsos collected the data according to the standardised interview protocol for the HLS-EU-Q47 [8]. In March 2015, responses from 388 individuals with type 2 diabetes aged 18 and above were collected in Norway using a paper-and-pencil version of the 47-item HLS-EU-Q47. The sample was drawn from the member list of the Norwegian Diabetes Association, who offered a geographically stratified sample. In this paper, we base our analyses on the 12-item short form HLS-Q12 [6, 7]. Finbråten et al. [6, 7] thoroughly described the sampling procedures and sample characteristics.

The unidimensional Rasch measurement model for polytomously scored items

Model requirements and properties: The concept of measurement implies a linear continuum of some kind. Psychological performances result from measures that have neither an absolute zero point nor equal units of measurement. In fact, we are hampered by the fact that there exists no unit by which to measure. Rasch measurement models [32], which satisfy axioms of conjoint measurement [33–37], construct measures with equal-interval properties, an arbitrary zero point and ‘logit’ as unit from ordered data, such as rating-scales [38]. Conceptually, Rasch modelling involves selecting a measurement model, applying it to the data and examining the data-model fit. Rasch models require local independence [39], monotonicity [40] and homogeneity or parallel item characteristic curves [40, 41], and they have the *properties* of sufficiency [42], additivity [36, 43], separability [44] and specific objectivity or invariance [45, 46].

Unidimensional Rasch models: The unidimensional Rasch model [32] for dichotomous items $log(p/(1-p))$
(\(p\)) = \(\beta_n - \delta_i\) models the probability \(p\) of a correct response as the distance between the proficiency \(\beta_n\) of individuals and the item difficulty or item threshold \(\delta_i\). The partial credit model (PCM; [47]) is a straightforward generalisation of the unidimensional Rasch model applied to polytomous data, such as pairs of increasing adjacent rating scale response categories.

Item thresholds and proficiency: Applying the PCM to the HLS-Q12 4-point rating scale, which consists of the categories very difficult (1), difficult (2), easy (3) and very easy (4), each item \(i\) is assigned three \(j\) ‘uncentralised item thresholds’, \(\delta_{ij}\), and each individual \(n\) is assigned a proficiency estimate \(\beta_n\)—the most likely point estimate based on their HLS-Q12 score. A standard error (\(SE\)) quantifies the precision of this estimate, where low \(SE\) means that the random error is small and that the person measure is more reliable. \(SE\) is a reciprocal of the Fisher information, where high Fisher information indicates that the maximum is sharp, that is, that there are few nearby values with a similar log-likelihood.

Overall data–model fit, variance, reliability and strata

Comparing observed proportions to model expected probabilities, the RUMM2030 statistical software package [48] assesses the overall data–model fit using the summary fit chi-square (\(\chi^2\)) statistic, which translates to the mean square statistic (\(\chi^2/df\), expected value = 1.0 for perfect data–model fit). For large sample sizes, the root mean square error of approximation (RMSEA = \(\sqrt{((\chi^2/df)-1N-1)}\), expected value = 0.0 for perfect data–model fit) might be calculated as a supplementary statistic to determine data–model fit [49]. When applying the PCM, the additional assumption of ordered thresholds is vital. RUMM reports a proficiency estimate (\(\beta\)) with associated \(SE\) for each observed HLS-Q12 score, ranging from 12 to 48 points, and the standard deviation (\(sd\)) of the distribution of these person proficiency estimates. Because we assign a proficiency estimate with \(SE\) to each respondent or person, we can estimate the average \(SE\) known as the root mean squared error (RMSE = \(\sqrt{1N\sum_i 1NSE_i^2}\) = MSE), where RUMM reports the mean squared error (\(MSE\)) as mean error variance. RUMM also reports the estimated ‘true’ population variance of proficiency estimates (\(SD^2 = sd^2—RMSE^2\)) and, when there is complete data, the traditional reliability index (Cronbach’s \(\alpha = SD^2/sd^2\)). Applying Wright’s sample-
independent method for the maximum number of statistically distinct strata [12], we can estimate the associated Wright strata reliability = \(\text{Strata}^2 / (1 + \text{Strata}^2) \).

The HLS-Q12 scale

The three health domains and the four cognitive domains of the integrated conceptual model of health literacy [18] form a 3 x 4 matrix, which constitutes a 12-cell matrix. This matrix or scaffold supported the item development of the HLS-EU-Q47 (Table 1).

Applying confirmatory factor analyses and Rasch modelling, Finbråten et al. [6, 7] developed the 12-item HLS-Q12 scale from the 47-item HLS-EU-Q47 by deleting items that displayed differential item functioning (DIF; [50]) for available person factors (gender, age and education level), items that displayed unordered response categories or reversed thresholds [51] and redundant items.

Redundant items were identified as the qualitatively least relevant items from pairs of dependent items (response dependency; [52]). If more than one item was still left in a ‘cell’ in the 3 x 4 matrix, the least relevant item(s) were deleted based on qualitative evaluation of item content. The purpose was to obtain a conceptually balanced scale [53], consisting of 12 items in line with the 3 x 4 matrix, which met the Rasch model expectations. Finally, the principal component analysis (PCA)/t-test protocol [54, 55] was used to test whether the HLS-Q12 scale was sufficiently unidimensional.

Applying this method, a PCA of Rasch residuals was used to identify two subsets of the items; each person was assigned a proficiency estimate on each subset and the two estimates were compared using dependent t-tests to account for the dependence between the two measures. The HLS-Q12 scale was interpreted as unidimensional, because approximately only 5% of these t-tests were significant. The process of establishing the HLS-Q12 and the psychometric properties of the HLS-Q12 items are thoroughly described in Finbråten et al. [6, 7].

<PLEASE INSERT TABLE 1 HERE>

Standard setting: the process of establishing benchmark cutoff scores

Conventional standard setting methods, such as the Nedelsky, Angoff and the Bookmark method [56] do not directly apply to rating-scale items typical for the HLS-Q12 questionnaire. However, Wright's sample-independent method for the maximum number of statistically distinct strata [12] identifies
significantly distinct cutoff scores based on Rasch modelling. The Wright method therefore applies to rating-scale item formats with integer scoring models and is efficient in terms of costs and time commitments. However, the cutoff scores are ‘found’ by estimation; they are not ‘set’ by experts. Because the purpose of the HLS-Q12 proficiency scale is to express proficiency *not* relative to other respondents (norm-referenced) but in terms of HL skills with reference to HLS-Q12 item content at three proficiency levels, the Wright method is applicable. Three proficiency levels may serve diverse purposes, such as formative patient education, mapping of patients’ HL in health services, controlling information for accountability and population health studies. In addition, the HLS-Q12 *continuous* person proficiency estimates can serve as the data for subsequent statistical analysis, such as regression analysis, where HL is the dependent variable.

After calibrating the HLS-Q12 items, we computed the person proficiency estimate and SE corresponding to every possible HLS-Q12 sum score. Having the SEs, we can easily compute the number of statistically distinct levels of performance by using Wright's method [12]. By starting at the lowest proficiency estimate and advancing by twice the SE, we can identify the lowest score of the next proficiency level by locating the lowest sum score that is outside the confidence interval upper bound. We repeat the procedure until there is no room for another level. These score sums define ‘benchmark cutoff scores’ for statistically distinct proficiency levels.

Developing a proficiency scale: the process of item mapping

Using dichotomously scored items, we map the item on the continuum at the place where the item information is maximised, that is, at the item location. Individuals with proficiency estimates matching the item location have a response probability value of .50. Thus, we map an item at the continuum where we would expect respondents to have the skills underlying the item.

For polytomously scored items like constructed response items, Huynh [57] suggested using the location of each separate integer score, that is, the item thresholds. Transferring this idea to the HLS-Q12 rating scale items, the second item threshold, which locates the standing on the latent trait where the typical response is ‘easy’, is the location where we would expect respondents to typically have the skills underlying the item. Using item mapping, we can then anchor the second
uncentralised HLS-Q12 item thresholds along the measurement scale. A generalisation of the skills associated with the items anchoring at or below a Wright cutoff score may help us formulate preliminary labels for the cutoff points in terms of HLS-Q12 item content.

Results
Identifying the HLS-Q12 cutoff scores for statistically distinct levels of proficiency
The HLS-Q12 displayed good overall data-model fit (Mean square ≈ 1.0 and RMSEA ≈ 0.0) and sufficient reliability (Wright strata reliability = 0.94) for both samples (see overall statistics in Table 2).

The lowest observed HLS-Q12 sum score in the population sample was 20 points (equivalent to the proficiency estimate $\beta = -2.39$ logits, $SE = 0.50$). Using pooled SE ($-2.39 + 2*SQRT(0.50^2 + 0.49^2)$ = -0.99), we found that the sum score of 27 points ($\beta = -0.76$, $SE = 0.49$) lies outside the confidence interval upper bound for 20 points (-0.99 < 0.76). Therefore, 27 points is a minimum measure for 'proficiency level 1' or benchmark 1. Repeating the procedure, we found that the HLS-Q12 sum scores of 27, 33, 39 and 46 represent cutoff scores for statistically distinct levels of proficiency in HL.

We revised and confirmed the empirically identified cutoff scores 27, 33 and 39 among individuals with diabetes, where the lowest observed HLS-Q12 sum score was 21 points ($\beta = -2.32$, $SE = 0.53$). Because the sum scores 44 and 45 points were not observed in the diabetes sample, we could not strictly confirm the upper cutoff score at 46 points.

<PLEASE INSERT TABLE 2 HERE>

Describing the HLS-Q12 cutoff scores in terms of HLS-Q12 item content
The endorsability of the third response category ‘easy’ for a specific HLS-Q12 item corresponds to the difficulty of the second item threshold within that item. The difficulty of the second item threshold within each of the HLS-Q12 items q23, q32, q43 and q14—a total of four thresholds or difficulties—were all located below benchmark 1 ($\delta_{13} = -0.76$, equivalent to a sum score of 27 points). Therefore, skills auditing implies that individuals who achieve benchmark 1 typically view it as ‘easy’ to ‘understand why they need health screenings’ (q23), ‘find information on healthy activities such as exercise, healthy food and nutrition’ (q32), ‘judge which everyday behaviour is related to health’
and ‘follow the instructions on medication’ (q14). Based on an interpretation of content for items q23, q32, q43 and q14, we suggest the following generalised label for individuals who achieve level 1:

Individuals with an HLS-Q12 score of 27 or above can typically access, understand and apply health information relevant to staying healthy.

Likewise, the difficulty of the second score step within each of the items q2, q7, q44, q18, q30 and q38—a total of six difficulties—were located below benchmark 2 ($\delta_{13} = 0.74$, equivalent to a sum score of 33 points) but above benchmark 1. Skills auditing implies that individuals who achieve benchmark 2 *typically* can ‘find information on treatments of illnesses that concern them’ (q2), ‘understand what to do in a medical emergency’ (q7), ‘make decisions to improve their health’ (q44), ‘find information on how to manage mental health problems like stress or depression’ (q18), ‘decide how they can protect themselves from illness based on advice from family and friends’ (q30) and ‘understand information on food packaging’ (q38). Based on an interpretation of content for items q2, q7, q44, q18, q30 and q38, we suggest the following generalised label for individuals who reach level 2:

Individuals with an HLS-Q12 score of 33 or above can typically access, appraise, understand and apply health information and advice relevant to enhancing physical and mental health.

Individuals who reach benchmark 3 *typically* master the knowledge and skills associated with items q10 and q28—the HLS-Q12 items that are hardest to endorse. It follows that the second score step within each of these items is located below benchmark 3 ($\beta_{n} = 2.19$, equivalent to a sum score of 39 points). This means that individuals who reach level 3 can typically ‘judge if the information on health risks in the media is reliable’ (q28) and ‘judge the advantages and disadvantages of different treatment options’ (q10). The ability to choose between treatments might indicate that individuals at level 3 can identify suitable and optimal care, that is, navigate within the healthcare system and navigate between healthcare services [29]. Few items anchor at the highest level, so the following label for level 3 should be taken with a pinch of salt:

Individuals with an HLS-Q12 score of 39 or above can typically access, appraise, understand and apply health information and advice relevant to making informed healthcare choices by critically evaluating health claims and
judiciously comparing treatments.

It is vital to recognise that the HLS-Q12 proficiency scale is constructed such that individuals even at the bottom of a proficiency level typically master the knowledge and skills associated with that level. The HLS-Q12 proficiency scale also describes or labels the three identified levels of HL and hence indicates what it may mean to move from one level to the next in terms of HLS-Q12 item content. Further, the HLS-Q12 proficiency scale is cumulative: individuals scoring at level 3 (sum score ≥ 39) also have the knowledge and skills associated with performances at level 2 (33 ≤ sum score ≤ 38) and level 1 (27 ≤ sum score ≤ 32). Individuals who perform below level 1 (12 ≤ sum score ≤ 26) may, for example, understand why they need health screenings (q23), such as screenings for diabetic retinopathy if they have type 2 diabetes. However, they do not possess a repertory of knowledge and skills that may help them reduce the risk of injury, stay healthy and prevent illness. We have no evidence that the HLS-Q12 proficiency levels may resemble the HLS-EU-Q47 emotive terms problematic, sufficient and excellent HL. Therefore, we do not recommend interpreting scores below 33 as indicators of limited HL. Policy-makers and others should align our preliminary proficiency level labels with external factors before deciding whether a specific score is sufficient.

Estimating the proportion of individuals who reach each level of proficiency

A key finding is that more people with diabetes performed below level 1 (8%) than did people in the population sample (2%). Another key finding is that a higher proportion of the population sample performed at level 2 (41%) compared to the diabetes sample (34%). The proportions of individuals in the population sample who performed at levels 1 and 3 (46% and 11%, respectively) were quite similar to the proportions of individuals with diabetes (45% and 13%, respectively).

Discussion

When applying the data-model fit statistic RMSEA, we may compare the estimated value to target values from simulation studies. Extant simulation studies [49] propose that a RMSEA value below 0.024 indicates minor data-model deviation, when using 10 polytomous items with 5 response categories (i.e., 40 thresholds). In our study we used 12 polytomous items with 4 response categories (i.e., 36 thresholds). Even though our two observed RMSEA values differ to some extent (0.006 in the population sample and 0.016 in the diabetes sample), they may both indicate very good data-model
fit. This claim is strengthened as the overall data-model fit statistic mean square indicates very good fit for both our samples ($\chi^2/df \approx 1.0$). A rather low mean error variance ($RMSE^2$), which implies relatively large ‘true’ variance and thereby sufficient reliability or ‘power to separate between persons with different proficiency’ in both our samples, led us to conclude that the HLS-Q12 is quite effective. Applying Wright's method for the maximum number of strata, we located the benchmark cutoff scores for statistically distinct levels of HL at the HLS-Q12 cutoff scores of 27, 33 and 39, and we found that Wright's method yielded consistent results on repeated applications in two Norwegian independent samples (population sample and sample of persons with diabetes). Using item mapping based on Rasch calibration of rating scale items, we developed a proficiency scale that indicates the likely knowledge and skills typical of people who achieve each benchmark. We found that individuals who reach these cumulative levels of HL can typically access, appraise, understand and apply information relevant to staying healthy (level 1), improving health (level 2), and critically evaluating health claims and judiciously comparing treatments (level 3), respectively. The resulting proficiency scale may initiate a description of progression in HL in our two Norwegian samples—what it may mean qualitatively to move from low to high HL. Future descriptions of progression in HL would strengthen contemporary models of HL.

The newly published Norwegian strategy for HL [4] responds to the growing body of international literature documenting the magnitude of limited HL [14]. A key finding is that 8% of individuals with diabetes scored less than 27 points and performed below level 1. By interpreting the content of the HLS-Q12 items, we can say that these individuals may have difficulties acting on health information relevant to preventing and managing diabetes-related conditions.

However, a thought-provoking result is that some Norwegian medical doctors engage in the poor practice of assuming that patients with low HL will get help from their family and friends at home (item q30) if they do not understand or cannot read the written health information provided [58]. This is a kind of nonsequitur, because applying advice from family and friends is associated with HL at level 2. However, a patient's opportunity to benefit from his or her right to choose a personally preferred method of treatment may have passed when he or she finally receives such help from
family or friends, because the doctor might already have decided to undertake what doctors perceive as the most appropriate treatment. Patients of Norwegian healthcare services have a statutory right to choose a treatment institution and choose among the prudent methods of treatment available [58]. Nevertheless, to navigate the available healthcare systems and services, patients need the ability to critically evaluate claims about treatment quality and methods of treatment and judiciously compare such claims—a skill associated with navigation literacy and high levels of HL. This may mean that very few people are proficient at benefiting from the statutory right described above.

Because the short form HLS-Q12 was developed by reducing the 47-item questionnaire HLS-EU-Q47 to a 12-item scale based on Rasch modelling and confirmatory factor analysis [6, 7], we see few sources of potential bias and few threats to internal validity. By applying a recognised statistical method for identifying cutoff scores [12] and by confirming these values by analysing responses from two independent Norwegian samples, we believe the HLS-Q12 cutoff scores are accurate and precise in samples that are comparable to our two Norwegian samples.

At present, robust measurement properties combined with brevity make HLS-Q12 preferable to HLS-EU-Q47 for monitoring HL in individuals and in populations. However, a limitation of our study is that we based our analyses on only two Norwegian samples. When assessing HL across countries or groups from different cultural and linguistic backgrounds, groups at the same level of HL may not display the same probability of affirming the items. If this is the case, it would be reasonable to conclude that these items display differential item functioning (DIF) and that cultural and linguistic backgrounds would confound the measurement of HL.

The degree to which DIF threatens the external validity and generalisability of our findings across cultures remains unresolved. However, the upcoming M-POHL international study will determine whether HLS-EU-Q47 and its short forms, like HLS-Q12, yield comparative results. The M-POHL study will also identify causal factors associated with HL. Another issue that remains unresolved is the extent to which the HLS-Q12 proficiency levels can predict future ‘success’ in terms of staying healthy, improving health and making informed healthcare choices throughout the life course.

Conclusion
The HLS-Q12 scale displays acceptable measurement properties. Using Rasch-based item calibration and person measurement, we mapped the items and estimated benchmark cutoff scores based on two Norwegian samples. The resulting HLS-Q12 proficiency scale expresses typical knowledge and skills at three statistically distinct levels of health literacy (HL) in the two Norwegian samples. The scale’s cumulative nature indicates what it may mean to move from one level to the next in terms of HLS-Q12 item content, and it may therefore indicate individuals’ typical knowledge and skills at increasingly sophisticated levels of HL. The resulting proficiency scale may initiate a description of progression in HL in the Norwegian context—what it means qualitatively to move from low to high HL. Our suggestion for how to construct increasingly sophisticated levels of HL has important theoretical outcomes, because a future description of progression in HL will extend the integrated conceptual model of health literacy developed by Sørensen et al. [18]. Recognising that there is a significant gap between ‘avoiding injury and staying healthy’ (level 1), on one hand, and ‘knowing how to improve mental and physical health’ (level 2), on the other, may inform policy-makers seeking to address health disparities. Our study also demonstrates the superiority of Rasch modelling when it comes to identifying benchmark cutoff scores and describing possible proficiency levels.

Designed for constructing measurement in Norwegian samples, the efficient HLS-Q12 scale enables clinicians to gather information about an individual’s HL quickly. The goal may be to immediately tailor health information, adapt communication and inform interventions at the personal level. The formative aspects of being able to identify people’s HL, and knowing which skills they need to develop to improve HL, will have substantial clinical value for health personnel involved in patient education. The HLS-Q12 can potentially facilitate researchers’ attempts to evaluate risk factors and provide recommendations for resource allocation at the local level or to establish standards for comparing population HL at the global level. Researchers may select the unidimensional short form HLS-Q12 or the multidimensional HLS-EU-Q47, depending on whether they require to construct measurement.

List Of Abbreviations

DIF: differential item functioning

HL: health literacy
M-POHL: The Action Network on Measuring Population and Organizational Health Literacy

PCA: Principal Component Analysis of Rasch residuals

PCM: Partial Credit Model

RMSE: Root Mean Square Error (the average measurement error variance of person proficiency estimates)

RMSEA: Root Mean Square Error of Approximation (a chi-square based supplementary data-model fit index for accommodating large sample sizes)

RUMM: Rasch Unidimensional Measurement Model (refers to RUMM2030 software)

sd: the sample or ‘observed’ standard deviation of person proficiency estimates

SD: the population or ‘true’ standard deviation of person proficiency estimates

SE: Standard Error of person proficiency estimate

Declarations

Ethics approval and consent to participate

This study was approved by the Norwegian Social Science Data Service (NSD), ref. 38,917. According to NSD this study did not require ethics approval from an ethics committee. Participation was voluntary, and respondents were anonymous and aged 16 years or above. Using telephone interviews, verbal informed consent was obtained from the participants. NSD approved the procedure.

Consent for publication

Not applicable

Availability of data and materials

The data sets are available from HSF (hanne.finbraten@inn.no) upon reasonable request.

Competing interests

The authors declare that they have no competing interests.

Funding

The Norwegian Nurses’ Organisation, Inland Norway University of Applied Sciences and the Public Health Nutrition research group at Oslo Metropolitan University funded the data collection. The funders had no role in the data collection other than funding the telephone interviews carried out by the survey agency Ipsos.

Authors’ contributions
ØG did the analyses and drafted the manuscript. All authors (ØG, CL, KSP, SH and HSF) contributed in the process of revising and approving the final manuscript. HSF and KSP initiated the data collection. All authors have read and approved the manuscript, and agreed to submit the manuscript to BMC Health services research.

Acknowledgements
The authors thank Kristine Sørensen and the HLS-EU Consortium for their permission to report on the short form HLS-Q12, which is based on the HLS-EU-Q47.

References
1. Sørensen K, Pelikan JM, Rothlin F, Ganahl K, Slonska Z, Doyle G, Fullam J, Kondilis B, Agrafiotis D, Uiters E et al. Health literacy in Europe: comparative results of the European health literacy survey (HLS-EU). Eur J Public Health. 2015;25(6):1053–1058.
2. Berkman ND, Sheridan SL, Donahue KE, Halpern DJ, Crotty K. Low health literacy and health outcomes: an updated systematic review. Ann Intern Med. 2011;155(2):97.
3. Bostock S, Steptoe A. Association between low functional health literacy and mortality in older adults: longitudinal cohort study. BMJ. 2012;344:e1602.
4. Ministry of Health and Care Services. Strategi for å øke helsekompetansen i befolkningen [Strategy to increase health literacy in the population]. Ministry of Health and Care Services. Oslo; 2019.
5. Dietscher C, Pelikan J, Bobek J, Nowak, P. The Action Network on Measuring Population and Organizational Health Literacy (M-POHL). A network under the umbrella of the WHO European Health Information Initiative (EHII). Public Health Panorama. 2019;5(1): 65–71.
6. Finbråten HS, Pettersen KS, Wilde-Larsson B, Nordström G, Trollvik A, Guttersrud Ø. Validating the European Health Literacy Survey Questionnaire in people with type 2 diabetes. Latent trait analyses applying multidimensional Rasch modelling and confirmatory factor analysis. J Adv Nurs. 2017;73(11):2730–2744.
7. Finbråten HS, Wilde-Larsson B, Nordström G, Pettersen KS, Trollvik A, Guttersrud Ø. Establishing the HLS-Q12 short version of the European Health Literacy Survey Questionnaire: latent trait analyses applying Rasch modelling and confirmatory factor analysis. BMC Health Serv Res. 2018;18(1):506.
8. Sørensen K, Van den Broucke S, Pelikan JM, Fullam J, Doyle G, Slonska Z, Kondilis B, Stoffels V, Osborne RH, Brand H. Measuring health literacy in populations: illuminating the design and development process of the European Health Literacy Survey Questionnaire (HLS-EU-Q). BMC Public Health. 2013;13(1):948.

9. Duong TV, Lin I-F, Sørensen K, Pelikan JM, Van Den Broucke S, Lin Y-C, Chang PW. Health Literacy in Taiwan A Population-Based Study. Asia Pac J Public Health. 2015;27(8):871–880.

10. Nakayama K, Osaka W, Togari T, Ishikawa H, Yonekura Y, Sekido A, Matsumoto M. Comprehensive health literacy in Japan is lower than in Europe: a validated Japanese-language assessment of health literacy. BMC Public Health. 2015;15(1):505.

11. Huang Y-J, Chen C-T, Lin G-H, Wu T-Y, Chen S-S, Lin L-F, Hou W-H, Hsieh C-L. Evaluating the European Health Literacy Survey Questionnaire in Patients with Stroke: A Latent Trait Analysis Using Rasch Modeling. Patient. 2018;11(1):83–93.

12. Wright BD. Separation, reliability and skewed distributions: statistically different levels of performance. Rasch Measurement Transactions. 2001;14(4):786.

13. Van Wyke J, Andrich D. A typology of polytomously scored mathematics items disclosed by the Rasch model: implications for constructing a continuum of achievement. In: Report No 2 ARC Linkage Grant LP0454080. Maintaining Invariant Scales in State, National and International Level Assessments. Perth, Western Australia. Murdoch University; 2006.

14. Nielsen-Bohlman L, Panzer A, Kindig D. Health Literacy: A prescription to end confusion. Washington, DC: Institute of Medicine of the National Academies. National Academies Press; 2004.

15. Ad hoc committee on health literacy for the Council on Scientific Affairs. Health Literacy Report of the Council on Scientific Affairs. JAMA. 1999;281(6):552–557.

16. Nutbeam D. Health promotion glossary. Health Promot Int. 1998;13(4):349–364.

17. Mancuso JM. Health literacy: a concept/dimensional analysis. Nurs Health Sci. 2008;10(3):248–255.

18. Sørensen K, Van den Broucke S, Fullam J, Doyle G, Pelikan J, Slonska Z, Brand H: Health literacy and public health: A systematic review and integration of definitions and models. BMC Public Health. 2012;12(1):1–13.
19. Zarcadoolas C, Pleasant A, Greer DS. Elaborating a definition of health literacy: a commentary. J Health Commun. 2003;8(S1):119-120.

20. Kwan B, Frankish J, Rootman I, Zumbo B, Kelly K, Begoray D, Kazanjian A, Mullet J, Hayes M. The development and validation of measures of “Health Literacy” in different populations. UBC Institute of Health Promotion Research and University of Victoria Community Health Promotion Research; 2006.

21. Freedman DA, Bess KD, Tucker HA, Boyd DL, Tuchman AM, Wallston KA. Public health literacy defined. Am J Prev Med. 2009;36(5):446-451.

22. Paasche-Orlow MK, Wolf MS. The causal pathways linking health literacy to health outcomes. Am J Health Behav. 2007;31(1):S19-S26.

23. Speros C. Health literacy: concept analysis. J Adv Nurs. 2005;50(6):633-640.

24. Yost KJ, Webster K, Baker DW, Choi SW, Bode RK, Hahn EA. Bilingual health literacy assessment using the Talking Touchscreen/la Pantalla Parlanchina: Development and pilot testing. Patient Educ Couns. 2009;75(3):295-301.

25. Stocks NP, Hill CL, Gravier S, Kickbusch L, Beilby JJ, Wilson DH, Adams RJ. Health literacy - a new concept for general practice? Aust Fam Physician. 2009;38(3):144.

26. Norman CD, Skinner HA. eHealth literacy: essential skills for consumer health in a networked world. J Med Internet Res. 2006;8(2):e9.

27. Manganello JA. Health literacy and adolescents: a framework and agenda for future research. Health Educ Res. 2007;23(5):840-847.

28. Ishikawa H, Yano E. Patient health literacy and participation in the health-care process. Health Expectations 2008;11(2):113-122.

29. Gui X, Chen Y, Pine KH. Navigating the Healthcare Service Black Box: Individual Competence and Fragmented System. Proceedings of the ACM on Human-Computer Interaction. 2018;2(CSCW):61.

30. Nutbeam D. Health literacy as a public health goal: a challenge for contemporary health education and communication strategies into the 21st century. Health Promot Int. 2000;15(3):259-267.

31. Kickbusch I, Maag D. Health literacy. In: Quah S, editor. International Encyclopedia of Public Health. 2008;204-211.
32. Rasch G. Probabilistic Models for Some Intelligence and Attainment Tests. Expanded edn. Chicago: University of Chicago Press; 1960.

33. Luce RD, Tukey JW. Simultaneous conjoint measurement: A new type of fundamental measurement. J Math Psychol. 1964;1(1):1–27.

34. Brogden H. The Rasch model, the law of comparative judgment and additive conjoint measurement. Psychometrika. 1977;42(4):631–634.

35. Karabatsos G. The Rasch model, additive conjoint measurement, and new models of probabilistic measurement theory. J Appl Meas. 2001;2(4):389–423.

36. Perline R, Wright BD, Wainer H. The Rasch model as additive conjoint measurement. Appl Psychol Meas. 1979;3(2):237–255.

37. Scheiblechner H. Additive conjoint isotonic probabilistic models (ADISOP). Psychometrika. 1999;64(3):295–316.

38. Linacre JM, Wright BD. Constructing Linear Measures from Counts of Qualitative Observations. In: Fourth International Conference on Bibliometrics, Informetric and Scientometrics. Berlin, Germany; 1993.

39. Marais I, Andrich D. Formalizing dimension and response violations of local independence in the unidimensional Rasch model. J Appl Meas. 2008;9(3):200–215.

40. Kreiner S. The Rasch model for dichotomous items. In: Christensen KB, Kreiner S, Mesbah M, editors. Rasch Models in Health. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2013. p. 5–25.

41. de Gruijter DNM, van der Kamp LJ T. Statistical test theory for the behavioral sciences. New York, USA: Chapman and Hall/CRC; 2007.

42. Andersen EB. Sufficient statistics and latent trait models. Psychometrika. 1977;42(1):69–81.

43. Andrich D. Distinctions between assumptions and requirements in measurement in the social sciences. In: Keats JA, Taft R, Heath RA, Lovibond SH, editors. Mathematical and theoretical systems. North Holland: Elsevier Science Publishers BV; 1989. p. 7–16.

44. Rasch G. On Specific Objectivity: An attempt at Formalizing the Request for Generality and Validity of Scientific Statements. Danish Yearbook of Philosophy. 1977;(14):58–94.
45. Stenner AJ. Specific objectivity - local and general. Rasch Measurement Transactions. 1994;8(3):374.

46. Andrich D. Rasch models for measurement. Newbury Park, CA: Sage; 1988.

47. Masters GN. A Rasch model for partial credit scoring. Psychometrika. 1982;47(2):149-174.

48. Andrich D, Sheridan B, Luo G. Rasch unidimensional measurement model. RUMM2030. RUMM Laboratory Pty Ltd.; 2003

49. Tennant A, Pallant JF. The root mean square error of approximation (RMSEA) as a supplementary statistic to determine fit to the Rasch model with large sample sizes. Rasch Measurement Transactions. 2012;25(4):1348-1349.

50. Andrich D, Hagquist C. Real and Artificial Differential Item Functioning in Polytomous Items. Educ Psychol Meas. 2014;75(2):185-207.

51. Hagquist C, Andrich D. Is the sense of coherence-instrument applicable on adolescents? A latent trait analysis using Rasch-modelling. Pers Individ Dif. 2004;36(4):955-968.

52. Andrich D, Humphry SM, Marais I. Quantifying local, response dependence between two polychotomous items using the Rasch model. Appl Psychol Meas. 2012;36(4):309-324.

53. Guttersrud Ø, Petterson KS. Young adolescents’ engagement in dietary behaviour—the impact of gender, socio-economic status, self-efficacy and scientific literacy. Methodological aspects of constructing measures in nutrition literacy research using the Rasch model. Public Health Nutr. 2015;18(14):2565–2574.

54. Smith Jr EV. Detecting and evaluating the impact of multidimensionality using item fit statistics and principal component analysis of residuals. J Appl Meas. 2002;3(2):205–231.

55. Hagell P. Testing rating scale unidimensionality using the principal component analysis (PCA)/t-test protocol with the Rasch model: the primacy of theory over statistics. Open J Stat. 2014;4:456–465.

56. Cizek GJ, Bunch MB. Standard setting: A guide to establishing and evaluating performance standards on tests. Thousand Oaks, CA: SAGE Publications Ltd; 2007.

57. Huynh H. On score locations of binary and partial credit items and their applications to item mapping and criterion-referenced interpretation. J Educ Behav Stat. 1998;23(1):35–56.
Le C. Pasientmedvirkning i praksis? En studie om implementering av systematisk vurdering av pasienters Health Literacy i helse- og omsorgstjenestene. [Patient Participation in Practice? A Study of Implementing Routine Patients' Health Literacy Assessment in Health and Care Services]. Master Thesis. Trondheim, Norway: Norwegian University of Science and Technology; 2019.

Tables

Table 1 The 12 items of the HLS-Q12 scale. The item numbering refers to HLS-EU-Q47.
Item	Healt	Cogn	Wording
q2	Health care access	find information on treatments of illnesses that concern you?	
q7	understand	understand what to do in a medical emergency?	
q10	appraise	judge the advantages and disadvantages of different treatment options?	
q14	apply	follow the instructions on medication?	
q18	Disease prevention access	find information on how to manage mental health problems like stress or depression?	
q23	understand	understand why you need health screenings?	
q28	appraise	judge if the information on health risks in the media is reliable?	
q30	apply	decide how you can protect yourself from illness based on advice from family and friends?	
q32	Health promotion access	find information on healthy activities, such as exercise, healthy food and nutrition?	
q38	understand	understand information on food packaging?	
q43	appraise	judge which everyday behaviours are related to health?	
q44	apply	make decisions to improve your health?	

Note. The items share the short stem “On a scale from very difficult to very easy, how easy would you say it is to:” and have a four-point rating scale anchored with the phrases 1 = very difficult, 2 = difficult, 3 = easy, 4 = very easy. The items are categorised according to three health domains and
four cognitive domains. Bold types in items q32 and q43 refer to our revising of original items.

Table 2 HLS-Q12 data-model fit statistics and statistics for proficiency estimates, reliability, and strata

Variable	Sample	
	Population (N = 699)	Diabetes (N = 238)
Item-trait interaction ChiSq	$\chi^2(df = 108) = 111.1, p = 0.40$	$\chi^2(df = 36) = 38.2, p = 0.37$
Mean square (χ^2/df)	1.029	1.061
RMSEA ()	0.006	0.016
Observed variance (sd^2)	1.098	2.732
Mean error variance (RMSE2)	0.256	0.337
Estimated true variance (SD2)	0.843	2.396
Cronbach's alpha ($\alpha = SD^2/sd^2$)	0.77	0.88
HLS-Q12 cutoff scores	27, 33, 39, 46	27, 33, 39, not obs.
Wright strata reliability	0.94	0.94

Note. As we identified cutoff scores based on a one-to-one correspondence between HLS-Q12 sum scores and proficiency estimates, only cases with complete data who displayed no floor or ceiling effects were entered into the analysis. The variables reported in Table 2 are described in the ‘Overall data-model fit, variance, reliability and strata’ section.