Supporting Information

A novel one-step hydrothermal preparation of Ru/Sn\textsubscript{x}Ti\textsubscript{1-x}O\textsubscript{2} Diesel Oxidation Catalysts and Its Low Temperature Performance

Li Fan, Qi Sun, Wei Zheng, Qinyuan Tang, Ting Zhang, Mengkui Tian *

Fig. S1 Effect of different hydrothermal temperature on Ru/Sn\textsubscript{0.67}Ti\textsubscript{0.33}O\textsubscript{2} catalytic CO

Fig. S1 shows the catalytic activities of CO oxidation on the Ru/Sn\textsubscript{0.67}Ti\textsubscript{0.33}O\textsubscript{2} catalysts under the different hydrothermal temperature (140 °C, 180 °C and 220 °C) while the hydrothermal time is 24 h and calcination temperature is 400 °C. It can be seen that catalytic performances of Ru/Sn\textsubscript{0.67}Ti\textsubscript{0.33}O\textsubscript{2} catalysts increased firstly and then tended to be stabilized with the increase of reaction temperature. The T\textsubscript{50} of Ru/Sn\textsubscript{0.67}Ti\textsubscript{0.33}O\textsubscript{2} catalyst to oxidize CO is 180 °C when the hydrothermal temperature at 180 °C, which is lower reaction temperature than other hydrothermal temperature and the conversion of CO reaches 90% at 240 °C. It is attributed to the increase of hydrothermal temperature is beneficial to the growth of solid solution grains, but the excessive hydrothermal temperature will lead to overgrowth of grains and reduce the catalytic oxidation performance. Therefore, the optimal hydrothermal temperature is determined to be 180 °C.
Fig. S2 Effect of different hydrothermal time on Ru/Sn$_{0.67}$Ti$_{0.33}$O$_2$ catalytic CO oxidation

Fig. S2 shows the catalytic activities of CO oxidation on the Ru/Sn$_{0.67}$Ti$_{0.33}$O$_2$ catalyst under the different hydrothermal time (12 h, 24 h and 48 h) while the hydrothermal temperature is 180 °C and calcination temperature is 400 °C. It shows that catalytic performances of Ru/Sn$_{0.67}$Ti$_{0.33}$O$_2$ catalysts increased first and then tended to be stabilized with the increase of reaction temperature. The T$_{50}$ of Ru/Sn$_{0.67}$Ti$_{0.33}$O$_2$ to CO is 180 °C when the hydrothermal time at 24 h, which is lower reaction temperature than other hydrothermal time and the conversion of CO reached 90% at 240 °C. This phenomenon suggests that the increase of hydrothermal time could promote the growth of grains, but too long hydrothermal time will lead to the aging of grains and the reduction of catalytic oxidation efficiency.

Fig. S3 Effect of different calcination temperature on Ru/Sn$_{0.67}$Ti$_{0.33}$O$_2$ catalytic CO oxidation

Fig. S3 shows the catalytic activities of CO oxidation on the Ru/Sn$_{0.67}$Ti$_{0.33}$O$_2$ catalyst under the different calcination temperature (200 °C, 400 °C and 600 °C) while the hydrothermal temperature is 180 °C and hydrothermal time is 24 h. It can be seen that catalytic performances of Ru/Sn$_{0.67}$Ti$_{0.33}$O$_2$ catalysts increased first and then tended to be flat with the increase of reaction temperature. Before reaction
temperature at 200 °C, the activity of Ru/Sn0.67Ti0.33O2 decrease in the order of Ru/Sn0.67Ti0.33O2-C200 > Ru/Sn0.67Ti0.33O2-C400 > Ru/Sn0.67Ti0.33O2-C600. While after reaction temperature 200 °C, the activity of Ru/Sn0.67Ti0.33O2 decrease in the order of Ru/Sn0.67Ti0.33O2-C400 > Ru/Sn0.67Ti0.33O2-C200 > Ru/Sn0.67Ti0.33O2-C600 as shown in Fig.S3. This is because the actual value of O/Ru is higher than the theoretical value at 250-700 °C, Ru is easier to oxidize to RuOx. When the calcination temperature is 400 °C, the conversion of CO reached 90% at 240 °C. Therefore, the optimal calcination temperature is determined to be 400 °C.

According to the above analysis, the preparation conditions of Ru/Sn0.67Ti0.33O2 catalysts including hydrothermal temperature, hydrothermal time and calcination temperature were optimized with CO oxidation. The catalytic activity of Ru/Sn0.67Ti0.33O2 for CO is excellent under the conditions of the hydrothermal temperature at 180 °C, the hydrothermal time at 24 h and calcination temperature at 400 °C, the T50 of Ru/Sn0.67Ti0.33O2 is 180 °C. When the reaction temperature is 240 °C, the conversion of Ru/Sn0.67Ti0.33O2 to CO reaches 90%.

Table S1 Catalytic activity comparison of different catalysts for CO oxidation

Catalyst	Preparation method	T50 (°C)	Space velocity (h⁻¹)	Ref
Ru/C12Al7:O2⁻	solid-state reaction	180	25200	[6]
Pt/Al₂O₃	impregnation	230	17000	[30]
Pt/ZnO	impregnation	245	30000	[30]
Pt/TiO₂	Co-precipitation impregnation	204	60000	[4]
8%CuO/SnO₂	Sol-gel dispersion-precipitation	270	20040	[15]
TiO₂₂-SnO₂	Sol-gel dispersion-precipitation	240	20000	[31]
5CuTiS3	Co-precipitation impregnation	185	30000	[5]
Ce₀.₅Zr₀.₅O₂	hydrothermal	250	43200	[22]
Ce₀.₃Zr₀.₂O₂	hydrothermal	300	43200	[22]
Ce₀.₇Zr₀.₃O₂	hydrothermal	280	43200	[22]
Ce-Ti	Co-precipitation	348	30000	[27]
Ru/Sn0.67Ti0.33O2	hydrothermal impregnation	180	60000	This work

Table S2 Catalytic activity comparison of different catalysts for C₃H₈ oxidation

Catalyst	Preparation method	T50 (°C)	Space velocity(h⁻¹)	Ref
0.5%Ru/ZnAl₂O₄	co-precipitation	480	32000	[28]
1% Ru/ZnAl₂O₄	co-precipitation	500	32000	[28]
1.5% Ru/ZnAl₂O₄	co-precipitation	540	32000	[28]
0.3Pd-0.7Pt/γ-Al₂O₃	impregnation	360	50000	[29]
Catalyst	Preparation method	T_{50} (°C)	Space velocity (h$^{-1}$)	Ref
--------------------------	--------------------	---------------	---------------------------	-----
0.7Pd-0.3Pt/γ-Al$_2$O$_3$	impregnation	325	50000	[29]
Pt/CeO$_2$	co-precipitation	620	50000	[32]
Pt/CeO$_2$	hydrothermal	675	50000	[32]
Pt/Co$_3$O$_4$	co-precipitation	447	6000	[33]
Pd/Al$_2$O$_3$	impregnation	411	30000	[34]
PtPd/Al$_2$O$_3$	impregnation	428	30000	[34]
PtPd/CeAl$_2$O$_3$	impregnation	436	30000	[34]
Ru/Sn$_{0.67}$Ti$_{0.33}$O$_2$	hydrothermal	320	60000	This work