Discovery of a very cool object with extraordinarily strong Hα emission

D. Barrado y Navascués,¹ M. R. Zapatero Osorio¹, E. L. Martín², V. J. S. Béjar³, R. Rebolo³,⁴ and R. Mundt⁵

¹ Laboratorio de Astrofísica Espacial y Física Fundamental, INTA, PO Box 50727, 28080 Madrid, Spain
² Institute of Astronomy, University of Hawaii at Manoa, 2680 Woodlawn Drive, Honolulu, HI 96822, USA
³ Instituto de Astrofísica de Canarias, 38205 La Laguna, Tenerife, Spain
⁴ Consejo Superior de Investigaciones Científicas, CSIC, Spain
⁵ Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany

Received 22 July 2002 / Accepted 27 August 2002

Abstract. We report on the finding of the strongest Hα emission – pseudoequivalent width of 705 Å – known so far in a young, late type dwarf. This object, named as S Ori 71, is a substellar candidate member of the 1–8 Myr star cluster σ Orionis. Due to its overluminous location in color-magnitude diagrams, S Ori 71 might be younger than other cluster members, or a binary of similar components. Its mass is in the range 0.021–0.012 M_\odot, depending on evolutionary models and possible binarity. The broad Hα line of S Ori 71 appears asymmetric, indicative of high velocity mass motions in the Hα forming region. The origin of this emission is unclear at the present time. We discuss three possible scenarios: accretion from a disk, mass exchange between the components of a binary system, and emission from a chromosphere.

Key words. open clusters and associations: individual: σ Orionis – stars: low-mass, brown dwarfs – stars: individual: S Ori 71 – stars: pre-main sequence

1. Introduction

Both mass accretion and chromospheric activity have Hα emission as a signature. Chromospheric activity appears as a consequence of the low density, the inverted temperature profile and the strong magnetic field present in K- and M-type dwarfs. Other Balmer lines, as well as Ca H&K and the Ca infrared triplet can appear in emission too. The activity detected in some brown dwarfs (objects incapable of burning hydrogen stably, with masses below 0.075 M_\odot, Chabrier et al. 2000 and references therein) have, probably, this origin (Martín et al. 1999a), although so far there is no theoretical model capable of explaining this phenomenology (e.g., Mohanty et al. 2002). In addition, the Hα emission line of these cool objects often has an intrinsic variability, and strong flares are commonly detected in M dwarfs. On the other hand, accretion can appear in interacting binaries (during the transfer process of material) or in accreting objects with circumstellar disks, such as the young T Tauri stars. These pre-main sequence stars are normally classified as classical T Tauri (CTT) stars or weak-line T Tauri (WTT) stars. The first group is characterized by strong Hα emission (larger than 10 or 20 Å, Appenzeller & Mundt 1989; Martín 1997), asymmetric and broad Hα profiles (sometimes with double peaks), presence of forbidden emission lines (arising from shocks produced by jets and outflows), blue/UV and infrared excesses, and a strong Li I 6708 Å line in absorption (indicative of youth). On the contrary, WTT stars lack most of these properties due to the absence of an active disk, and show smaller Hα emissions while keeping strong lithium lines. In addition, WTT stars display a lower degree of variability (e.g., Herbst et al. 2002).

The σ Orionis cluster (Walter et al. 1997) is a young (1–8 Myr, Zapatero Osorio et al. 2002a) stellar association with low reddening ($E(B−V) = 0.05$, Lee 1968), and located at a Hipparcos distance of 352±166 pc. Many substellar members of this cluster show Hα emission in their optical spectra (Barrado y Navascués et al. 2002, and references therein). This paper presents the discovery of a brown dwarf with likely membership in σ Orionis, which has the strongest Hα emission line ever detected in a T Tauri late-type star or active very cool object. We discuss the origin of this extraordinary emission.

2. Observations and analysis

The object studied in this paper, named S Ori 71, was discovered in an optical I/Z survey using LRIS at the 10-m Keck I telescope, USA (Zapatero Osorio et al. 2002b).
Table 1. Photometric and spectroscopic data of S Ori 71 (S Ori J053900.2–023706). Photometric errors: ±0.10 mag.

RA (J2000)	Dec	Ic	Ic – J	SpT.	pW (Hα)	Teff	log L/L⊙	Mass (single)	Mass (binary)
(h m s)	(° ′ ″)				(Å)	(K)	(M⊙)	(M⊙)	(M⊙)
05 39 00.2	–02 37 06	20.02	2.88	L0 ± 0.5	705 ± 75	2200–2500	–2.66 ± 0.15	0.014–0.021	0.012–0.017

Fig. 1. Spectra of S Ori 71 (this paper) and PC 0025+0047. Two enlargements of the Hα line of S Ori 71 are also shown. a) Contour diagram for the 2-D spectrum. Note the asymmetry. Dashed lines correspond to zero level, whereas the peak of the Hα line is at 431 counts. Each contour corresponds to a step of 50 counts. b) 1-D spectrum – solid line – and a comparison with the instrumental profile – dotted line.

3. Hα emission and its origin

S Ori 71 displays a broad, incredibly strong Hα emission as compared to other similar type objects. Two blow-ups of the object’s spectrum around Hα are depicted in Fig. 1: panel a illustrates the asymmetry of the line in a 2-D plot, while the comparison to the instrumental profile (sky line) is provided in panel b. This broad Hα emission is probably a result of the electron scattering in the Hα formation region as observed in some T Tauri stars (Stahl & Wolf 1980). Figure 1 also includes two spectra of the field dwarf PC 0025+0047 taken from Martín et al. (1999a). With M9.5 spectral type, this field object shows a persistent and variable Hα emission. The line pseudo-equivalent widths (pEWs) of the two spectra of the figure are ~200 Å and 400 Å, although Martín et al. (1999a) have reported Hα variability in the range 100–400 Å in a 4 yr timespan. Other few object fields with similar spectral types also have strong Hα emissions up to $pEW \sim 400 \text{ Å}$ (Liebert et al. 1999; Burgasser et al. 2002). However, the emission of S Ori 71 ($pEW = 705 \pm 75 \text{ Å}$) stands out due to its huge intensity. Table 2 summarizes the properties of several objects with similar spectral classes both in the field and in the σ Orionis cluster. To our knowledge, in addition to these objects, the largest Hα pEWs correspond to more massive and warmer sources, like LkHα 101, an unusual F-type CTT star (Cohen & Kuhi 1979; Herbig & Bell 1988), and XZ Tau, V573 Ori, HO Lup, Sz 123, Sz 69, Sz 102, WZ Cha and PT Mon, all of them with K and early-M classes and Hα pEWs = 220–377 Å.
We have also compared the Hα pEWs of σ Orionis stellar and substellar cluster members (Bežár et al. 1999; Barrado y Navascués et al. 2001; Zapatero et al. 2002a, 2002c) to those values of CTT stars of Orion with less than 1 Myr (Herbig & Bell 1988), WTT stars (Alcalá et al. 1996, 2000), and very low mass stars and brown dwarfs of the α Persei cluster (70–95 Myr, Prosser et al. 1994; Stauffer et al. 1999). Fine details are given in Barrado y Navascués et al. (2002). While Hα emission in CTT stars is very likely originated in accretion disks surrounding the central object, older stars are believed to show less intense Hα emission as a consequence of chromospheric activity and rotation. Resulting from the comparison, we note that besides the very young age of the σ Orionis cluster, Orion CTT stars have stronger Hα values of CTT stars of Orion with less than 1 Myr (Herbig & Bell 1988; Alcalá et al. 1996, 2000; Martin 1998; Herbig 1998; Ardila et al. 2000).

If we consider the ratio between the Hα luminosity of the object to its bolometric luminosity, as shown in Fig. 3, S Ori 71 appears to be more active than any other known brown dwarf (log \(L(\text{H}\alpha)/L_{\text{bol}}\) = −2.69 ± 0.16). In very young star forming regions, strong Hα emission is generally due to disk accretion, and it may be accompanied by emission of forbidden lines, like [O I] at 6300 & 6364 Å, [N II] at 6548 & 6583 Å, and [S II] at 6717 & 6731 Å, which result from jets and outflows. Other lines indicating activity, such as He i at 6678 Å, are not seen. We can impose upper limits of 1–2 Å to the pEW of these lines from our spectrum.

The fact that S Ori 71 could be a binary formed by similar mass objects, as previously discussed, adds a new possibility to the origin of the Hα emission. Some matter transfer might take place between the components if they are close enough to each other (as proposed by Burgasser et al. 2000 for a T spectral type brown dwarf that has a persistent line emission). However, more data are needed to assess the reliability of this suggestive scenario. In addition, we have considered the possibility of S Ori 71 being an interacting binary formed by one compact object and a very small object. In this case, S Ori 71 would not belong to the σ Orionis cluster. In order to reproduce the observed photometric data of our object, it would be composed of a 0.09 M⊙ main sequence star and a ~0.5 M⊙ white dwarf (τ ≥ 2 Gyr) in a very short orbit. However, our optical spectrum does not show any evidence for a contribution from a hot companion (the white dwarf).

It might be possible to classify S Ori 71 as a a CTT substellar analog (i.e., accreting from a surrounding disk), based both on the strength of Hα and its asymmetric profile. It would be very interesting to study the object’s K-band and mid-infrared emission and see if there is any flux excess, which would confirm the presence of the disk. At the present time and with the
available data, we cannot rule out any possible scenario. A further explanation would be the case of an interacting binary with mass exchange or a common chromosphere/corona where magnetic loops would connect both objects and would experience frequent reconnections, producing the very strong Hα emission. The geometry of these loops would be distorted as both components orbit around each other (specially if there is not synchronization between the orbital and the rotational periods), producing a magnification of the magnetic fields by compressing the magnetic lines, and resulting in abrupt releases of energy during flare-like events. Additional infrared, X-ray and radio data would be very valuable to provide new insights on the origin of the Hα emission of objects like S Ori 71.

Acknowledgements. We thank the ESO staff at Paranal. Financial support was provided by the Spanish “Programa Ramón y Cajal” and AYA2001-1124-CO2 programs.

References
Alcalá, J. M., Chavarría, K. C., & Terranegra, L. 1996, A&A, 330, 1017
Alcalá, J. M., Covino, E., Torres, G., et al. 2000, A&A, 353, 186
Appenzeller, I., & Mundt, R. 1989, A&A Rev., 1, 291

Ardila, D., Martín, E. L., & Basri, G. 2000, AJ, 120, 479
Baraffe, I., Chabrier, G., Allard, F., & Hauschildt, P. H. 1998, A&A, 337, 403
Barrado y Navascués, D., Zapatero Osorio, M. R., Béjar, V. J. S., et al. 2001, A&A, 377, L9
Barrado y Navascués, D., et al. 2002, in prep.
Basri, G., & Martín, E. L. 1999, ApJ, 510, 266
Béjar, V. J. S., Zapatero Osorio, M. R., & Rebolo, R. 1999, ApJ, 521, 671
Béjar, V. J. S., Martín, E. L., Zapatero Osorio, M. R., et al. 2001, ApJ, 556, 830
Burgasser, A., Kirkpatrick, J. D., Reid, I. N., et al. 2000, AJ, 120, 473
Burgasser, A., Liebert, J., Kirkpatrick, J. D., & Gizis, J. E. 2002, AJ, 123, 2744
Burrows, A., Marley, M., Hubbard, W. B., et al. 1997, ApJ, 491, 856
Chabrier, G., Baraffe, I., Allard, F., & Hauschildt, P. 2000, ApJ, 542, L119
Cohen, M., & Kuhé, L. V. 1979, ApJS, 41, 743
D’Antona, F., & Mazzitelli, I. 1997, in Cool Stars in Clusters and Associations, ed. R. Pallavicini, & G. Micela, Mem. Soc. Astron. It., 68 (4), 807
Herbig, G. H., & Bell, K. R. 1988, Lick Observatory Bulletin, Lick Observatory
Herbig, G. H. 1998, ApJ, 497, 736
Herbst, W., Mundt, R., Bailer-Jones, C. A. L., et al. 2002, A&A, submitted
Kirkpatrick, J. D., Reid, I. N., Liebert, J., et al. 1999, ApJ, 519, 802
Lee, T. A. 1968, ApJ, 152, 1913
Leggett, S. K., Golimowski, D. A., Fan, X., et al. 2002, ApJ, 564, 452
Liebert, J., Kirkpatrick, J. D., Reid, I. N., & Fisher, M. D. 1999, ApJ, 519, 345
Martín, E. L. 1997, A&A, 321, 492
Martín, E. L. 1998, AJ, 115, 351
Martín, E. L., Basri, G., & Zapatero Osorio, M. R. 1999a, AJ, 118, 1005
Martín, E. L., Delfosse, X., Basri, G., et al. 1999b, AJ, 118, 2466
Martín, E. L., & Ardila, D. 2001, AJ, 121, 2758
Martín, E. L., Zapatero Osorio, M. R., Barrado y Navascués, D., et al. 2001, ApJ, 558, L117
Mohanty, S., Basri, G., Shu, F., et al. 2002, ApJ, 571, 469
Prosser, C. F. 1994, AJ, 107, 1422
Randich, S., Schmitt, J. H. M. M., Prosser, C. F., et al. 1996, A&A, 305, 785
Stahl, O., & Wolf, B. 1980, A&A, 90, 338
Stauffer, J. R., Barrado y Navascués, D., Bouvier, J., et al. 1999, ApJ, 517, 219
Walter, F. M., Wolk, S. J., Freyberg, M., & Schmitt, J. H. M. M. 1997, Mem. Soc. Astron. It., 68, 1081
Zapatero Osorio, M. R., Béjar, V. J. S., Rebolo, R., et al. 1999, ApJ, 524, L115
Zapatero Osorio, M. R., Béjar, V. J. S., Martín, E. L., et al. 2000, Science, 290, 103
Zapatero Osorio, M. R., Béjar, V. J. S., Pavlenko Ya., et al. 2002a, A&A, 384, 937.
Zapatero Osorio, M. R., Béjar, V. J. S., Martín, E. L., et al. 2002b, ApJ, in press
Zapatero Osorio, M. R., Béjar, V. J. S., Martín, E. L., et al. 2002c, ApJ, 569, L99