INTRODUCTION: Acute leukemias are a heterogeneous group of malignancies with varying clinical, morphological, immunological and molecular characteristics. Many distinct types are known to carry predictable prognosis and warrant specific therapies. Distinction between lymphoid and myeloid leukemias is crucially important as treatment/prognosis differs a lot.

Examinations of peripheral smear/bone marrow aspirates using Romanowsky stained film at many times are not conclusive to identify the malignant cell line in leukemia.

Leukocyte cytochemistry encompasses the techniques which are used to identify diagnostically useful enzymes or other substances in the cytoplasm of haemopoietic cells, specially useful for the study of immature cells because conventional morphology as seen in Romanowsky stained films at times is very difficult to ascertain its differentiation features, thus they are particularly useful in identifying the lineage and stage of maturation of both normal and neoplastic haemopoietic cells.

Currently, flow cytometry is considered the gold standard for ascertaining the lineage of leukemic cells. In India, Flow Cytometry has been used mostly in the premier ICMR/CSIR/DBT/National Aids Control Organization (NACO) research lab, few tertiary centers and private/highly specialized commercial centers.
The cost varies depending upon the type of test for lymphoma-leukemia; starting from Rs. 3,500 and will increase further depending upon the panel used. Considering the fact that at present flowcytometry is either not available or beyond the capacity of poor patients in India, this study was carried out with the aim that cytochemistry will be more cost effective for diagnosis of leukemia. Leishman’s stained peripheral blood/Bone marrow smears of the leukemia and suspected leukemia were stained with special cytochemical stains viz; myeloperoxidase, periodic acid schiff, alkaline phosphates and non-specific esterase.

MATERIAL AND METHODS: The study was conducted after approval from institutional ethical committee in the Department of Pathology, Gandhi Medical College, Bhopal from Oct 2013 to Nov 2014.

73 cases were selected from in and out patient departments of Gandhi Medical College and associated Hamidia Hospital Bhopal having provisional diagnosis of acute leukemia and leucoproliferative disorder so on basis of leishman stained smears-Peripheral/bone marrow. Thorough case history and clinical examination as per predefined Performa with Hemoglobin estimation, WBC count, Platelet count and various hematological indices were evaluated using automated analyzer.

Peripheral blood/bone marrow smear was made on clean glass slides with fresh blood samples; smears were fixed and stained by leishmans stain. Smears prepared on clean glass slides, fixed by methanol and stained for various cytochemical stains (MPO, PAS, NES, NAP). For all the special stains, commercially available kits (Leucognost) were used.

OBSERVATIONS: The present study comprises 73 cases of suspected Leukemia taken from Department of Pathology, Gandhi Medical College, and associated Hamidia Hospital Bhopal between Oct. 2013 to Nov. 2014. The observations made in this study are as follows.

Type of Leukemias	No. of Patients	Percentages
ALL	23	31.51%
AML	11	15.07%
CML	35	47.95%
CLL	1	1.37%
Undiagnosed	3	4.11%
Total	**73**	

Table 1: Type of Leukemias

Out of 73 cases on final diagnosis, 23 cases (31.51%) were of Acute Lymphoblastic Leukemias, 11 cases (15.07%) were of Acute Myeloblastic Leukemias, 35 cases (47.97%) were of Chronic Myeloid Leukemias, 1 case (1.37%) was of Chronic Lymphocytic Leukemia and 3 cases (4.11%) remained undiagnosed.

Sex	No. Of Patients	Percentages
Male	31	42.47%
Female	42	57.53%
Total	**73**	**100%**

Table 2: Sex Distribution
Out of 73 cases - 31 cases (42.47%) were Male and 42 cases (57%) were Female.

Age in years	No. of patients	Percentage
0 - 15	18	24.66%
16 - 30	21	28.77%
31 - 45	19	26.03%
>45	15	20.55%
Total	73	

Table 3: Age Distribution

Out of 73 cases – 18 cases (24.66%) were of age group 0 to 15 years, 21 cases (28.77%) were of age group 16 to 30 years, 19 cases (26.03%) were of age group 31 to 45 years and 15 cases (20.55%) were of above 45 years.

Age in Years	ALL	AML	CML	CLL
0 - 15	13	2	3	0
16 - 30	5	4	9	0
31 - 45	3	4	13	0
>45	2	1	10	1

Table 4: Age distribution of cases

Acute Lymphoblastic Leukemia is more common (56.52%) in age group of 0 to 15 years. Acute Myeloblastic Leukemia, Chronic Myeloid Leukemia and Chronic Lymphocytic Leukemia are more common 9(81.81%), 32(91.42%) and 1(100%) in age group above 15 years.

Sex	ALL	AML	CML	CLL
Male	15	4	10	0
Female	8	7	25	1

Table 5: Sex distribution of cases

Acute Lymphoblastic Leukemia showed male (65.22%) preponderance whereas Acute Myeloblastic Leukemia, Chronic Myeloid Leukemia showed female (63.64%), (71.43%) preponderance. Only one female case of Chronic Lymphocytic Leukemia was seen.

Hb in gram%	ALL	AML	CML	CLL
< 6	13	8	2	0
6.1 – 9	9	3	12	0
9.1 - 12	1	0	18	1
Above 12	0	0	3	0

Table 6: Distribution of Hemoglobin in cases

In Acute Lymphoblastic Leukemia and Acute Myeloblastic Leukemia most of the cases (56.52% and 72.73%) had less than 6 gm% Hb. In Chronic Myeloid Leukemia only 5.71% cases had
severe anemia, while 34.29% and 51.43% had moderate and mild anemia respectively. In Chronic Lymphocytic Leukemia patient had mild anemia.

TLC	ALL	AML	CML	CLL				
Less than 4000	9	39.13%	7	63.64%	1	2.86%	0	0
4001-11000	6	26.09%	0	0	2	5.71%	0	0
11001-50000	6	26.09%	2	18.18%	9	25.71%	1	100.00%
50001-100000	0	0	0	5	14.29%	0	0	
100001-200000	1	4.35%	2	18.18%	6	17.14%	0	0
Above 200000	1	4.35%	0	0	12	34.29%	0	0

Table 7: Total Leukocyte Count in cases

In Acute Lymphoblastic Leukemia and Acute Myeloblastic Leukemia 39.13% and 63.64% of cases showed count less than 4000 /cu mm respectively. While in Chronic Myeloid Leukemia most of cases (91.43%) showed leukocytosis.

Platelet Count/cu mm	ALL	AML	CML	CLL				
<50000	16	69.57%	11	100.00%	1	2.86%	0	0
50000-1 lac	3	13.04%	0	0	0	0		
1lac-1.5lacs	1	4.35%	0	0	1	2.86%	0	0
Above 1.5 lacs	3	13.04%	0	0	33	94.29%	1	100.00%

Table 8: Platelet Count in cases

Most of the cases (82.61% and 100%) of Acute Leukemia had moderate to severe thrombocytopenia. Whereas in Chronic Leukemia most of cases had platelet above 1lakh/cu mm.

Sub-classification	No. of patient	Percentage
AML(M1)	2	18.18%
AML(M2)	1	9.09%
AML(M3)	4	36.36%
AML(M5)	1	9.09%
AML(M6)	1	9.09%
AML(M7)	2	18.18%
Total	11	

Table 9: Sub-classification Acute Myeloid Leukemia

Most common subtype of Acute Myeloid Leukemia was M3 subtype which comprised 36.36% of cases.
Myeloblast of AML and CML showed positive (coarse brown black granules) staining with MPO in more than 3% of blasts in all cases except one in which NSE stain was positive. Whereas ALL and CLL were negative for MPO stain. The lymphoblast of ALL and CLL showed positive (block positive) PAS staining. Whereas myeloblasts of AML and CML were negative. The NAP scoring was done in all (35) cases of CML and the range of NAP score was 0 to 10. Undiagnosed 3 cases were negative for all (MPO, PAS, NSE) stain.

Table 10: Number of cases with cytochemical positive staining

Table 11: Distribution of cases (morphology only v/s morphology with cytochemistry)

DISCUSSION: In present study 73 cases of leukemias were studied 34 cases (46.58%) and 36 cases (49.32%) were of acute and chronic leukemias respectively and 3 cases (4.11%) were undiagnosed. Out of which 23 cases (31.51%) were of Acute Lymphoblastic Leukemias, 11 cases (15.07%) were of Acute Myeloid Leukemias, 35 cases (47.97%) were of Chronic Myeloid Leukemias, 1 case (1.37%) was of Chronic Lymphocytic Leukemia.
In our study predominant cases were of CML (47.97%) which correlates with Chatterjee et al, Advani et al, Rani et al, Kushawaha et al, Shome et al, Dicosta et al, Rathee et al study. However Prakash et al and Verghese et al show ALL predominance which could be due to population bias. The second predominant cases were of ALL (31.51%) in our study which correlates with study of Advani et al and Dicosta et al. In present study Acute Lymphoblastic Leukemia was more common (56.52%) in children than Acute Myeloid Leukemias (18.18%). Same was observed by Neglia JP et al (1988), and Ribera JM et al (2009).

In Acute Myeloblastic Leukemias an adult predominance (81.81%) was observed in this study which correlates with study of Boros, L. and Bennett, J.M., Khalid Hassan Nadeem Ikram, Sajid Hussain Shah, and Greer John P, Baer Maria.R, Kinney Marsha.C.

Reference	Region (PERIOD OF STUDY)	No. of cases	ALL	AML	CML	CLL
Chatterjee et al¹	Calcutta (1949–1961)	544	22.5	32.5	35.9	5.9
Advani et al²	Mumbai (1960–1975)	1126	30	13	40	9
Prakash et al³	Pondicherry (1970–1979)	278	35	29.5	30.8	3.2
Rani et al⁴	Delhi (1970–1979)	490	15.5	30.8	45.3	5.7
Verghese et al⁵	Kerala (1980–1983)	1016	39.2	19.6	16.4	1.9
Kushawaha et al⁶	Lucknow (1971–1984)	970	9.3	38.7	48	2.6
Shome et al⁷	Chandigarh (1975–1983)	820	24	29.3	36.7	8.8
Dicosta et al⁸	Mumbai (1975–1984)	242	36	22	38	2
Rathee et al⁹	Haryana (2008-2012)	650	17.2	33.8	39	10
Our study	Bhopal (2013-2014)	73	31.51	15.07	47.97	1.37

Frequency (in percentage) of various Leukemias in India

Reference

Reference	Study
Neglia, J.P., and Robison, 1988	In children, acute lymphoblastic leukemia (80%) is more common than acute myeloid leukemia
Ribera JM, Oriol A. 2009	Acute lymphoblastic leukemia (ALL) is the most frequently diagnosed malignancy in children, representing nearly one third of all pediatric cancers
Our study	Acute Lymphoblastic Leukemia is more common (56.52%) in age group of 0 to 15 years

Reference

Reference	Study
Boros, L. and Bennett, J. M (1984)	AML occurs twice as often as ALL, the vast majority of cases occurring in adults
Khalid Hassan Nadeem Ikram, Sajid Hussain Shah (1994)	AML was observed more commonly in adults (79%) as compared to children (21%), whereas ALL was commoner in children (72%) as compared to in 28% amongst adults.
Greer John P, Baer Maria.R, Kinney Marsha.C (2009)	AML accounts for less than 15% of cases of leukemia in children below 10 years, 25-30% between 10-15 years, and in adults, it accounts for 80-90% of cases of acute leukemias.
Our study	Acute Myeloblastic Leukemias an adult predominance (81.81%)
In Acute Lymphoblastic Leukemia and Acute Myeloblastic Leukemia most of the cases (56.52%) and (72.73%) had severe anemia. In Chronic Myeloid Leukemia only 5.71% cases had severe anemia, while 34.29% and 51.43% had moderate and mild anemia respectively. In Chronic Lymphocytic Leukemia patients had mild anemia.

FAB type	Sultan et al (250) 1981	Miguel et al (120) 1986	Chessells* et al (112) 1986	Alvi et al (26) 1990	Chaudhry et al (54) 1993	Khalid Hassan (81) 1994	Present Study (11)
M1	21	13	10	15.3	13	18.5	18.18
M2	32	14	26	35	44.4	23.9	9.09
M3	16	14	6	15.3	11.1	11.1	36.36
M4	16	22	22	19.2	24	29.6	0
M5	12	21	24	11.5	3.7	11.1	9.09
M6	3	7	9	3.7	3.7	1.2	9.09
M7	0	0	0	0	0	1.2	18.18

Table compares the distribution of FAB types of AML in the present study with some previous studies (in percentage)

*study conducted on childhood AML.

Sub classification of AML was done which showed 36.36% cases of M3, 18.18% cases of M1 and M7, 9.09% cases of M2, M5, and M6. In present study there were no cases belonging to M0 and M4 subtype which not correlates with any of above mention studies it may be due to number of cases. In present study four special staining procedures were done after making a provisional diagnosis (on morphology) of leukemias by leishman stain. Stain used Myeloperoxidase, Periodic acid Schiff, Non-specific Esterase and alkaline phosphates. On special staining we found Myeloblasts of AML and CML showed positive (coarse brown black granules) staining with MPO in more than 3% of blasts in all cases except one in which NSE stain was positive. Whereas ALL and CLL were negative for MPO stain.

The lymphoblasts of ALL and CLL showed positive (block positive) PAS staining. Whereas myeloblasts of AML and CML were negative. The NAP scoring was done in all (35) cases of CML and the range of NAP score was 0 to 10. Undiagnosed 3 cases were negative for all (MPO, PAS, NSE) stain. They were advised for flow-cytometry, immunophenotyping for which they were referred to higher center.
In our study out of 73 cases 52 cases were diagnosed on the basis of morphology only, but with combined use of cytochemistry along with morphology 70 cases (96%) were diagnosed. 3 cases (4%) were undiagnosed even after cytochemistry, for which immunophenotyping is required and they were referred to the higher centers. This is similar to Belurkar S et al.20 [Cytochemical analysis of leukemia by (PAS, MPO, SBB), when coupled with morphology rendered the diagnosis in >80% of our acute leukemia cases.], Mhawek et al.21 [included Sudan-black, specific esterase (Alfa-naphthyl ASD chloroacetate esterase), non-specific esterase (Alfa-naphthyl butyrate esterase), Periodic acid-Schiff, and acid phosphatase. Definite diagnoses were made for all 10 of their AML cases, whereas diagnoses were possible in only 79.4% patients with ALL when only morphology and cytochemical staining were used.]

Thus in a setting of lack of facilities for immunophenotyping as in majority of centers in the underdeveloped and developing countries, morphology combined with cytochemical staining still serves the best purpose in diagnosis of acute leukemias. (More than 96% cases were diagnosed confirmatively in our series.

CONCLUSION: Acute leukemias being a heterogeneous group of malignancies varying in clinical, morphologic, immunologic and molecular characteristics and also in prognosis & specific therapy. Flow-cytometry is considered the gold standard for diagnosis but being costly and not available in majority of the centers in developing countries including India, so alternative methods which are cheaper and easily performable can be adapted for diagnosis. In the present study only 71% cases (52 out of 73) were diagnosed on the basis of only morphology in which 12 cases (16%) of ALL, 07 cases (10%) of AML, 32cases (44%) of CML, 01case (1%) of CLL while combined with cytochemistry 96% cases (70 out of 73) were diagnosed, thus 18 more cases were diagnosed with addition of cytochemistry out of which 11, 04 & 03 cases were of ALL, AML & CML respectively.

Thus cytochemical analysis coupled with morphology can serve the purpose in the diagnosis of leukemias till immune-phenotyping and cytogenetics becomes available for everyone.

Figure 1: Bone marrow smear of AML (M2) showing MPO positive myeloblast (Oil immersion -100x)
Figure 2: Bone marrow smear of ALL (L2) showing PAS positive Lymphoblast of variable size (oil immersion -100x)

Figure 3: Peripheral smear showing alkaline phosphatase positive neutrophils (Oil immersion-100x).

REFERENCES:

1. Chatterjea JB, Ghose S, Ray RN."Incidence of Leukemia. An analysis of 544 cases studied in Calcutta." J Assoc Phy Ind, 1962; 10: 673–76.
2. Advani SH, Jussawala DJ, Nagaraj RD, Gangadharan P, Shetty PA. "A study of 1226 leukemia cases-Epidemiologic and end result analysis." The Indian J of Cancer, 1979; 16: 8–17.
3. Prakash S, Ramamurthi GR, Aurora AL". Leukemias at Pondicherry". Ind J Cancer, 1981 18: 1-6.
4. Rani S, Beohar PC, Mohanty TK, Mathur MD." Leukemic Pattern in Delhi – A Ten year study of 490 cases." Indian J of Cancer, 1982; 19: 81–6.
5. Varghese PR, Elayidom NB, Joseph CD, Kumar S. "Epidemiological observations on leukaemia in Kerala (A study of 1016 cases over three years)". Ind J Haematol, 1984; 2: 15-17.
6. Kushwaha MRS, Bagchi M, Mehrotra RML." Leukemia at Lucknow- a study of 200 cases." Ind J Cancer, 1978; 15: 28–34.
7. Shome DK, Ghosh K, Mohanty D, Das K. "Leukaemia in North West India. Acta Haematol," 1985; 73: 244.
8. Dicosta GG, Siddique HM, Pradhan RM, Gupte SS. "Pattern of leukemias: a ten year incidence study of 242 cases." J Postgraduate Med, 1989; 35: 191.
9. Radha Rathee, Minakshi Vashist, Ashok Kumar, Sunita Singh. "Incidence of Acute and Chronic forms of Leukemia in Haryana." International Journal of Pharmacy and Pharmaceutical Sciences ISSN-0975-1491. Vol. 6, Issue 2, 2014.
10. Neglia, if', and Robison, LL. "Epidemiology of the childhood acute leukemias." Pediatr. Clin. North Am., 1988; 35: 675-692.
11. Ribera JM, Oriol A. "Acute lymphoblastic leukemia in adolescents and young adults." Hematol Oncol Clin North Am. 2009; 23(5): 1033–42.
12. Boros, L. and Bennett, J.M. "Acute myeloid leukemia in: Haematology I - Leukemias". J.M. Goldman and HO. Preisler (ed). Isted. London, Butterworth and Company Ltd., 1984, pp. 104-35.
13. Khalid Hassan Nadeem Ikram, Sajid Hussain Shah. "A Morphological Pattern of 234 Cases of Leukemias" J Pak Med Assoc. 1994 Jun; 44(6): 145-8.
14. Greer John P, Baer Maria. R, Kinney Marsha. C, "Acute Myeloid Leukemia in Adults", Chapter 79 in "Wintrobe's Clinical Hematology." 12TH edition, Williams and Wilkins, vol 2, 2009, 1844.
15. Sultan, C., Deregnaucourt, J., Ko, Y.W., et al "Distribution of 250 cases of acute myeloid leukemia (AML) according to the FAD classification and response to therapy." Br,J, Haematol, 1981; 47:545-51.
16. Miguel, J. F. S., Gonzalez, M., Canizo, M.C., et al" Surface marker analysis in acute myeloid leukemia and correlation with FAB classification." Br. J. Haematol, 1986; 64: 547-60.
17. Cheasella, 3.85., O\'Callaghan, U. and Hardiaty, R.M. "Acute myeloid leukemia in childhood: clinical feature and prognosis". Br.J. Haematol. 1986; 63: 555-64.
18. Alvi, ILA. Saleem, M., Ahmad, P., etal. "A study of hundred cases of acute leukemia in Northern Pakistan with reference to French-American-British (FAB) cooperative group classification". F1, 1990; 87-92.
19. Chaudhry, M.T., Tavyab, M. and Farooqui, I.A. Acute non-lymphoblastic leukemia in adults. J. Pak. Med. Aaaoc, 1993; 43: 259- 61.
20. Belurkar S, Mantravadi H, Manohar C, Kurien A. "Correlation of morphologic and cytochemical diagnosis with flowcytometric analysis in acute leukemia." J Can Res Ther 2013; 9:71-9.
21. Mhawech P, Buffone GJ, Khan SP, Gresik MV. "Cytochemical staining and flow cytometry methods applied to the diagnosis of acute leukemia in the pediatric population: An assessment of relative usefulness." J Pediatr Hematol Oncol 2001; 23:89-92.
AUTHORS:
1. Rajnikant Ahirwar
2. Rajendra Kumar Nigam
3. Reeni Malik
4. Suhas Kothari
5. Rubal Jain

PARTICULARS OF CONTRIBUTORS:
1. Post Graduate, Department of Pathology, Gandhi Medical College, Bhopal.
2. Professor, Department of Pathology, Gandhi Medical College, Bhopal.
3. Professor and HOD, Department of Pathology, Gandhi Medical College, Bhopal.
4. Associate Professor, Department of Pathology, Gandhi Medical College, Bhopal.
5. Post Graduate, Department of Pathology, Gandhi Medical College, Bhopal.

NAME ADDRESS EMAIL ID OF THE CORRESPONDING AUTHOR:
Dr. Rajnikant Ahirwar, P-112/4, Military Colony, Bhopal.
E-mail: drrajnikantahirwar@gmail.com

Date of Submission: 13/04/2015.
Date of Peer Review: 23/07/2015.
Date of Acceptance: 03/08/2015.
Date of Publishing: 07/08/2015.

FINANCIAL OR OTHER COMPETING INTERESTS: None