Drug Discovery: Recent Progress and the Future

Review

Adeno Associated Virus (AAV) as a Tool for Clinical and Experimental Delivery of Target Genes into the Mammalian Retina

Tesshu Hori, Masashi Fukutome, and Chieko Koike

Abstract

With an increasing number of identified causative genes, the widespread use of gene therapy is quickly becoming feasible. Once a target gene is selected, it is important to have a cell delivery method that is both specific and efficient. Cell type specificity and high efficiency is particularly important for the treatment of retinal degeneration, since viruses are efficient gene delivery vehicles for the nervous system, but often bring with them non-specific infections. In this review, we focus on adeno-associated virus (AAV). Over the last few decades, AAV has become a leading choice for safe gene delivery, in part due to its replication deficiency in cells without a helper virus. Here, we summarize the tropism of recombinant AAV (rAAV) for various types of mammalian retinal neurons in relation to capsid serotype and administration method. We also include our recent findings on an AAV serotype that AAV was specifically infected mouse cone photoreceptors when delivered by subretinal administration.

Key words mammalian retina; adeno associated virus; gene therapy

1. INTRODUCTION

AAV was initially discovered as a contaminant of an adenovirus stock preparation. Since AAVs are unable to replicate without helper virus co-infection, they are a useful tool for gene therapy in treating neurodegenerative disorders where further cell injury or death is to be avoided. Conveniently, AAVs can be handled at the biological safety level 1 (BSL1). The AAV genome contains three genes for Replication (Rep), Capsid (Cap) and Assembly (aap) that are flanked by inverted terminal repeats (ITRs), which are required for genome replication and packaging. The Rep gene encodes 4 proteins, Rep40, Rep52, Rep68, and Rep72, that are involved in viral replication. The aap gene encodes the assembly activating protein (AAP), which is required for capsid assembly, in an alternate reading frame within the Cap gene sequence. The Cap gene encodes the three structural proteins, VP1, VP2 and VP3, that make up the icosahedral capsid which mediates cell binding and internalization. Currently, there are known to be 13 AAV serotypes (AAV1–AAV13) which differ in the structures of their capsids. The serotypes have variable cell tropisms. AAV2, AAV3, AAV5 and AAV6 were obtained from human cells, whereas AAV1, AAV4, AAV7, AAV8, AAV9, AAV10, AAV11, AAV12 and AAV13 were from non-primate cells. For cell-specific gene delivery, researchers typically use the recombinant AAV2 genome but vary the capsid serotype into which it is incorporated.

2. THE RETINA AS THEAPEUTIC TARGET

Vision is one of the most important senses for our QOL. In addition, the retina is superficially located and easy to access in isolation from other organs. Hence, retinal diseases resulting from gene mutation are an attractive target for gene therapy. The retina contains five neurons types; photoreceptors (PR), bipolar cells (BC), horizontal cells (HC), amacrine cells (AC), and ganglion cells (GC), and one type of glia, the Müller cell (MG) (Fig. 1). The PRs first convert light into an electrical signal, and play an indispensable role in mediating form vision. The human retina does not have a uniform distribution of PRs. Instead, cone PRs, which mediate color and high acuity vision in bright light, are concentrated in the fovea. The fovea is devoid of rod photoreceptors, which become numerically dominant outside this central retinal region. An example of a retinal disease that has been recently addressed with gene therapy is Leber’s congenital amarosisis (LCA). LCA accounts for more than 5% of all inherited retinopathies and is estimated to affect 1 in 8100 to 1 in 30000 live births. LCA is one of the most severe forms of inherited retinal disease involving both rod and cone PRs, as well as the retinal pigment epithelium (RPE). The causative gene for LCA2 is RPE65, which encodes an RPE-specific 65kDa protein that functions as a retinoid isomerohydrolase to convert all cis-retinyl esters to 11-cis retinol following phototransduction. A phase 1 trial demonstrated the benefits and safety of delivering to LCA2 patients RPE65 cDNA by rAAV to the subretinal space. Gene therapy with RPE65 cDNA successfully improves visual acuity, as more recently demonstrated in a Phase 3 trial. LCA2 is preferable for gene therapy trials since the target gene is small and degeneration is slower, which leads to a favorable therapeutic window.
Other inherited diseases, such as Stargardt disease and Usher IB syndrome, are purely degenerative and caused by larger genes; therefore, AAV gene therapies for these are now under investigation and in clinical trials.22

3. TROPISM OF RECOMBINANT AAV IN THE MAMMALIAN RETINA AND AS AN EXPERIMENTAL TOOL FOR INFECTING SPECIFIC RETINAL CELL TYPES

Since genome sequences are highly conserved among the serotypes, the AAV2 genome is used as the basis for recombination and packaged with capsids from one of the 13 different serotypes to generate recombinant pseudotypes, such as AAV2/x (where ‘x’ is the number of the capsid serotype). So far only AAV2/2 has been utilized for clinical trials involving retinal gene therapy. The use of recombinant AAV (rAAV) as a gene delivery tool is limited by its ability to accommodate insert genes which, when flanked by ITRs, should have a single strand length not exceeding 4.7kb. If the recombinant gene size is larger than that of the primary AAV genome, viral production yields or transgene recombination are reduced.23,24

3.1. Specific Expression of Target Genes by the Use of rAAV2/2

Experimental studies show that rAAV serotypes have different tropisms in the mammalian retina. These differences can potentially be exploited to target cell delivery without specific promoters. Here we comprehensively summarize the data for rAAV serotype tropism in the mouse retina, and in other species to a limited extent, taking into account the location of the injection site, which may be either intravitreal or subretinal.

AAV2/2 is the most commonly studied serotype for gene transfer. AAV2/2 can infect various retinal cell types. In the mouse, subretinal administration—that is, injection between the PRs and RPE—of rAAV2/2 results in dominant infection of RPE cells and PRs, whereas intravitreal injection results in the infection of Müller cells and GCs (Table 1). In the ground squirrel, intravitreal injection of a capsid-mutated AAV2/2, in which 6 tyrosines are replaced by phenylalanines, produces selective infection of BCs.25 Further selectivity can be obtained by including a cell specific promoter, but promoters are not available for all retinal cell subtypes, and when promoters are included, this may cause the viral genome to exceed a length of 4.7kb. In the mouse, it is possible enhance selective expression by using promoter-driven Cre lines. The gene of interest is then flanked by loxP prior to incorporation into the rAAV. Using several Cre driver mouse lines, the expression of target genes into AC or GC types was successful.26 Enhanced neuron type selectivity can be obtained by breeding mouse lines in which two different promoters each drive the expression of a different recombinase, leading to a small intersectional population of neurons. This population can then be accessed by incorporating dual flanking into the rAAV.27

3.2. Differential Tropism of rAAV Based on Serotypes

rAAV2/1, 2/2, and 2/5 are the primary serotypes that have been examined for their tropism in the mouse retina. rAAVs were administered subretinally and intravitreally into adult mice, and rAAV2/5 were reported to be infected in the RPE and PRs. However, rAAV2/1 were restricted in the RPE by subretinal administration. rAAV2/2 transduced to the inner retina by intravitreal injection.28 After these initial studies in early 2000, detailed localization studies were eventually performed. Following postnatal injection of rAAVs day 7 (P7) into the retina subretinally, rAAV2/1 transduced to RPE, whereas rAAV2/2 and 2/5 transduced to RPE and PRs. rAAV2/2 efficiently transduced to the inner retina by intravitreal injection.29 A study in adult rats showed the results of intravitreal injection of rAAV2/1, 2/2, 2/3, 2/4, 2/5, 2/6, 2/7, and 2/8. With the exception of rAAV2/6, all serotypes showed a preference to transduce to GCL, whereas rAAV2/6 showed diverged infection profiles.30 Subretinal administration at postnatal day 0 mice were performed for rAAV2/1, 2/2, 2/5, 2/8, 2/9, 2/10 and 2/11. rAAV2/5 transduced PR cells and rAAV2/9 transduced most of the retinal layers except BC and MGs. rAAV2/1, rAAV2/2, rAAV2/8, rAAV2/9 and rAAV2/10 transduced HC3 and GCs.31 (Table 1)

3.3. Naive and Engineered rAAVs That Transduce to Cone PR

Previous reports suggest that rAAV2/6 transduces the RPE in the adult retina following subretinal administration but is not expressed in PRs.32 We recently tested for the expression pattern of AAV2/6 following subretinal administration in the adult mouse and found a different result. Namely, rAAV2/6 preferentially infected cone PRs. We also observed that rAAV2/6 infected rods and inner retinal cells, but the expression frequency was much lower than in cones (Hori et al., in preparation).

Recently, cone PR specific transduction by engineered rAAV with specific promoters was reported. rAAV2 was designed as a special delivery tool to transduce target genes into cone PR using cone arrestin promoters (mCAR), synthentic human red opsin promoters (PR2.1 and PR1.7), and an engineered variant of rAAV2, rAAV2-7m8, in which a heptamer peptide (LGETTRP) was inserted into a loop IV of AAV2 to enhance retinal transduction properties.33–35 rAAV2-7m8 exhibits high efficiency in infecting the inner retinal layer by intravitreal injection. Although subretinal administration is of concern regarding retinal detachment and subsequent retinal degeneration, rAAV2-7m8 peripheral subretinal administration
Species	Mouse (adult)	Mouse (P0)	Rat (adult)	Rat (P0)	Dog	Monkey
RPE	AAV2/1 (eff)	AAV2/1 (pri)	AAV2/4 (res)	AAV2/1 (well)	AAV2/4 (res)	AAV2/4 (res)
	(res)	(eff)		(well)	(eff)	(eff)
	AAV2/2 (pri)	AAV2/2 (well)		AAV2/2 (well)	AAV2/2 (well)	AAV2/2 (eff)
	(eff)	(well)		(well)	(eff)	(eff)
	AAV2/5 (pri)	AAV2/5 (well)		AAV2/5 (well)	AAV2/5 (well)	AAV2/7 (eff)
	(sca)	(well)		(well)	(sca)	(eff)
	AAV2/6 (No other)	AAV2/6 (well)		AAV2/6 (well)	AAV2/6 (well)	AAV2/8 (eff)
	(sca)	(well)		(well)	(sca)	(eff)
	AAV2/8 (eff)	AAV2/8 (well)		AAV2/8 (well)	AAV2/8 (well)	AAV2/9 (eff)
	(eff)	(well)		(well)	(eff)	(eff)
	AAV2/9 (eff)	AAV2/9 (well)		AAV2/9 (well)	AAV2/9 (well)	AAV2/9 (eff)
	(eff)	(well)		(well)	(eff)	(eff)
PR	AAV2/2 (eff)	AAV2/1 (Rod; 65.5%, Cone; 80.8%)	AAV2/2 (over 20%)	AAV2/2 (over 50%)	AAV2/2 (cone; about 30%)	
	(sca)	AAV2/5 (Rod; 84.5%, Cone; 92.2%)	AAV2/5 (over 20%)	AAV2/5 (over 50%)	AAV2/7 (rod; eff, cone; about 40%)	
	AAV2/7 (eff)	AAV2/9 (over 50%)	AAV2/7 (sca)	AAV2/7 (over 20%)	AAV2/8 (rod; eff, cone; about 20%)	
	(eff)		AAV2/11 (Rod; 70.0%, Cone; 56.3%)	AAV2/11 (Rod; 84.5%, Cone; 92.2%)	AAV2/9 (cone; about 40%)	
	AAV2/8 (eff)		AAV2/10 (rod; eff, cone; about 20%)	AAV2/10 (rod; eff, cone; about 20%)	AAV2/9 (cone; about 40%)	
	(eff)		AAV2/11 (rod; eff, cone; about 20%)	AAV2/11 (rod; eff, cone; about 20%)	AAV2/9 (cone; about 40%)	
HC	AAV2/8 (eff)	AAV2/1 (47.9%)	AAV2/2 (78.2%)	AAV2/2 (78.2%)	AAV2/4 (21%)	
BC	AAV2/6 (21%)	AAV2/4 (about 20%)	AAV2/6 (22%)	AAV2/6 (22%)	AAV2/2	
MG	AAV2/1 (some)	AAV2/1 (pri)	AAV2/2 (over 40%)	AAV2/2 (over 40%)	AAV2/1 (over 50%)	
	(eff)	(eff)	AAV2/4 (about 20%)	AAV2/4 (about 20%)	AAV2/1 (over 50%)	
	AAV2/2 (eff, pre)	AAV2/2 (over 40%)	AAV2/6 (25%)	AAV2/6 (25%)	AAV2/2	
AC	AAV2/8 (eff)	AAV2/9 (34.8%)	AAV2/4 (about 20%)	AAV2/4 (about 20%)	AAV2/1 (over 50%)	
GC	AAV2/2 (eff, pre)	AAV2/2 (46.9%)	AAV2/2 (over 60%)	AAV2/2 (over 60%)	AAV2/2	
	(eff)	AAV2/2 (46.9%)	AAV2/2 (over 60%)	AAV2/2 (over 60%)	AAV2/2	
	AAV2/8 (eff)	AAV2/8 (40.7%)	AAV2/8 (over 50%)	AAV2/8 (over 50%)	AAV2/2	
	(eff)	AAV2/8 (40.7%)	AAV2/8 (over 50%)	AAV2/8 (over 50%)	AAV2/2	
	AAV2/9 (eff)	AAV2/9 (82.0%)	AAV2/9 (over 50%)	AAV2/9 (over 50%)	AAV2/2	
	(eff)	AAV2/9 (82.0%)	AAV2/9 (over 50%)	AAV2/9 (over 50%)	AAV2/2	
	AAV2/10 (eff)	AAV2/10 (72.1%)	AAV2/10 (over 50%)	AAV2/10 (over 50%)	AAV2/2	
	(eff)	AAV2/10 (72.1%)	AAV2/10 (over 50%)	AAV2/10 (over 50%)	AAV2/2	

We followed descriptions of efficiency to respective reports. eff; efficiently, res; restricted, pri; primarily, sca; scattered, pre; predominantly.
led to high therapeutic gene expression and visual acuity.35

4. CONCLUSION

rAAV studies have significantly contributed to progress in the retinal studies for both clinical and experimental usage. To further restrict expression and to improve efficiency of rAAV, especially for use in human gene therapy, the trend is to select for cell-type specific promoters, to test and engineer the various capsid serotypes for enhanced tropism and expression levels, and to preferentially use intravitreal rather than subretinal administration. rAAV may further be employed for manipulating target genes via clustered regularly interspaced short palindromic repeats (CRISPR)-based genome techniques.36

Conflict of Interest The authors declare no conflict of interest.

REFERENCES

1) Hastie E, Samulski RJ. Adeno-associated virus at 50: a golden anniversary of discovery, research, and gene therapy success—a personal perspective. \textit{Hum. Gene Ther.}, \textbf{26}, 257–265 (2015).
2) Kinoshita M, Isa T. Potential of Optogenetics for the Behavior Manipulation of Non-human Primates. \textit{Optogenetics}. Springer, Tokyo, pp. 279–290 (2015).
3) Day TP, Byrne LC, Flannery JG, Schaffer DV. Screening for Neurotrophic Antibodies Against Natural and Engineered AAV Capsids in Nonhuman Primate Retinas. \textit{Retinal Gene Therapy}. Vol. 1715, Humana Press, New York, NY, pp. 239–249 (2018).
4) Srivastava A. \textit{In vivo} tissue-tropism of adeno-associated viral vectors. \textit{Current Opinion in Virology}, \textbf{21}, 75–80 (2016).
5) Hoggan MD, Blacklow NR, Rowe WP. Studies of small DNA viruses found in various adenovirus preparations: physical, biological, and immunological characteristics. \textit{Proc. Natl. Acad. Sci. U.S.A.}, \textbf{55}, 1467–1474 (1966).
6) Bantel-Schaal U, zur Hausen H. Characterization of the DNA of a defective human parvovirus isolated from a genital site. \textit{Virology}, \textbf{134}, 52–63 (1984).
7) Rutledge EA, Halbert CL, Russell DW. Infectious clones and vectors derived from adenovirus-associated virus (AAV) serotypes other than AAV type 2. \textit{J. Virol.}, \textbf{72}, 309–319 (1998).
8) Parks WP, Melnick JL, Rongey R, Mayor HD. Physical assay and growth cycle studies of a defective adeno-satellite virus. \textit{J. Virol.}, \textbf{1}, 171–180 (1967).
9) Gao G-P, Alvira MR, Wang L, Calcedo R, Johnston J, Wilson JM. Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. \textit{Proc. Natl. Acad. Sci. U.S.A.}, \textbf{99}, 11854–11859 (2002).
10) Gao G, Vandenbergh LH, Alvira MR, Lu Y, Calcedo R, Zhou X, Wilson JM. Clades of adeno-associated viruses are widely disseminated in human tissues. \textit{J. Virol.}, \textbf{78}, 6381–6388 (2004).
11) Mori S, Wang L, Takeuchi T, Kanda T. Two novel adeno-associated viruses from cynomolgus monkey: pseudotyping characterization of capsid protein. \textit{Virology}, \textbf{330}, 375–383 (2004).
12) Schmidt M, Govindasamy L, Afione S, Kaludov N, Agbandje-McKenna M, Chiorini JA. Molecular characterization of the heparin-dependent transduction domain on the capsid of a novel adeno-associated virus isolate, AAV(VR-942). \textit{J. Virol.}, \textbf{82}, 8911–8916 (2008).
13) Cremers FPM, Boom CJF, Bujakowska K, Zetz C. Special issue introduction: inherited retinal disease: novel candidate genes, genotype-phenotype correlations, and inheritance models. \textit{Genes}, \textbf{9}, 215 (2018).
14) Chung DC, Traboulsi EI. Leber congenital amaurosis: clinical correlations with genotypes, gene therapy trials update, and future directions. \textit{J. Aapos}, \textbf{13}, 587–592 (2009).
15) Hamel CP, Tsilou E, Pfeffer BA, Hooks JJ, Detrick B, Redmond TM. Molecular cloning and expression of RPE65, a novel retinal pigment epithelium-specific microsomal protein that is post-transcriptionally regulated in \textit{vitro}. \textit{J. Biol. Chem.}, \textbf{268}, 15751–15757 (1993).
16) Morimura H, Fishman GA, Grover SA, Fulton AB, Berson EL, Dryja TP. Mutations in the RPE65 gene in patients with autosomal recessive retinitis pigmentosa or Leber congenital amaurosis. \textit{Proc. Natl. Acad. Sci. U.S.A.}, \textbf{95}, 3088–3093 (1998).
17) Moseley G, Chen Y, Takahashi Y, Wu BX, Ma J-X. RPE65 is the isomerohydrolase in the retinoid visual cycle. \textit{Proc. Natl. Acad. Sci. U.S.A.}, \textbf{102}, 12413–12418 (2005).
18) Jin M, Li S, Moghrabi WN, Sun H, Travis GH. RPE65 is the retinoid isomerase in bovine retinal pigment epithelium. \textit{Cell}, \textbf{122}, 449–459 (2005).
19) Bainbridge JWB, Smith AJ, Barker SS, Robbie S, Henderson R, Balagakan K, Viswanathan A, Holder GE, Stockman A, Tyler N, Petersen-Jones S, Bhattacharya SS, Thrasher AJ, Fitzke FW, Carter BJ, Rubin GS, Moore AI, Ali RR. Effect of gene therapy on visual function in leber’s congenital amaurosis. \textit{N. Engl. J. Med.}, \textbf{358}, 1222–1230 (2008).
20) Hauswirth WW, Aleman TS, Kaushal S, Cideciyan AV, Schwartz SB, Wang L, Conlon TJ, Boyle SL, Flotte TR, Byrne BJ, Jacobson SG. Treatment of leber congenital amaurosis due to rpe65mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial. \textit{Hum. Gene Ther.}, \textbf{19}, 979–990 (2008).
21) Russell S, Bennett J, Wellman JA, Chung DC, Yu Z-F, Tillman A, Witters J, Pappas J, Eleci O, McCague S, Cross D, Marshall KA, Walshire J, Kehoe TL, Reichert H, Davis M, Raffini L, George LA, Hudson FP, Dingledie L, Zhu X, Haller JA, Sohn EH, Mahajan VB, Pfeifer W, Weckmann M, Johnson C, Gewaily D, Drack A, Stone E, Wachtel K, Simonelli F, Leroy BP, Wright JF, High KA, Maguire AM. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. \textit{Lancet}, \textbf{390}, 849–860 (2017).
22) Trapani I, Auricchio A. Seeing the light after 25 years of retinal gene therapy. \textit{Trends Mol. Med.}, \textbf{24}, 669–681 (2018).
23) Dong B, Nakai H, Xiao W. Characterization of genome integrity for oversized recombinant aav vector. \textit{Mol. Ther.}, \textbf{18}, 87–92 (2010).
24) Wu Z, Yang H, Colosi P. Effect of genome size on AAV vector packaging. \textit{Mol. Ther.}, \textbf{18}, 80–86 (2010).
25) Light AC, Zhu Y, Shi J, Sazik S, Lindstrom S, Davidson L, Li X, Chiado VA, Hauswirth WW, Li W, DeVries SH. Organizational motifs for ground squirrel cone bipolar cells. \textit{J. Comp. Neuro}, \textbf{520}, 2883–2889 (2012).
26) Zhu Y, Xu J, Hauswirth WW, DeVries SH. Genetically targeted binary labeling of retinal neurons. \textit{J. Neurosci.}, \textbf{34}, 7845–7861 (2014).
27) Jo A, Xu J, Deniz S, Cherian S, DeVries SH, Zhu Y. Intersectional strategies for targeting amacrine and ganglion cell types in the mouse retina. \textit{Front. Neural Circuits}, \textbf{12}, 66 (2018).
28) Auricchio A, Kobinger G, Anand V, Hildinger M, O’Connor E, Maguire AM, Wilson JM, Bennett J. Exchange of surface proteins impacts on viral vector cellular specificity and transduction characteristics: the retina as a model. \textit{Hum. Mol. Genet.}, \textbf{10}, 3075–3081 (2001).
29) Pang FJ, Lauramore A, Deng W-T, Li Q, Doyle TJ, Chiody V, Li J, Hauswirth WW. Comparative analysis of \textit{in vivo} and \textit{in vitro} AAV vector transduction in the neonatal mouse retina: effects of serotype and site of administration. \textit{Vision Res.}, \textbf{48}, 377–385 (2008).
30) Hellström M, Ruitenberg MJ, Pollett MA, Ehlerdt EM, Twisk J, Verhaagen J, Harvey AR. Cellular tropism and transduction properties of seven adeno-associated viral vector serotypes in adult retina.
after intravitreal injection. *Gene Ther.*, **16**, 521–532 (2009).

31) Watanabe S, Sanuki R, Ueno S, Koyasu T, Hasegawa T, Furukawa T. Tropisms of AAV for subretinal delivery to the neonatal mouse retina and its application for in vivo rescue of developmental photoreceptor disorders. *PLOS ONE*, **8**, e54146 (2013).

32) Yang GS, Schmidt M, Yan Z, Lindbloom JD, Harding TC, Donahue BA, Engelhardt JF, Kotin R, Davidson BL. Virus-mediated transduction of murine retina with adeno-associated virus: effects of viral capsid and genome size. *J. Virol.*, **76**, 7651–7660 (2002).

33) Dalkara D, Byrne LC, Klimczak RR, Visel M, Yin L, Merigan WH, Flannery JG, Schaffer DV. In vivo-directed evolution of a new adeno-associated virus for therapeutic outer retinal gene delivery from the vitreous. *Sci. Transl. Med.*, **5**, 189ra76 (2013).

34) Khabou H, Desrosiers M, Winckler C, Fouquet S, Auregan G, Bemelmans AP, Sahel JA, Dalkara D. Insight into the mechanisms of enhanced retinal transduction by the engineered AAV2 capsid variant-m8. *Biotechnol. Bioeng.*, **113**, 2712–2724 (2016).

35) Khabou H, Garita-Hernandez M, Chaffiol A, Reichman S, Jaillard C, Brazhnikova E, Berlin S, Forster V, Desrosiers M, Winckler C, Goureau O, Picaud S, Duebel J, Sahel JA, Dalkara D. Noninvasive gene delivery to foveal cones for vision restoration. *JCI Insight*, **3**, 96029 (2018).

36) Yu W, Wu Z. In vivo applications of CRISPR-based genome editing in the retina. *Front. Cell Dev. Biol.*, **6**, 53 (2018).

37) Allocca M, Mussolino C, Garcia-Hoyos M, Sanges D, Iodice C, Pettillo M, Vandenberghhe LH, Wilson JM, Marigo V, Surace EM, Auricchio A. Novel adeno-associated virus serotypes efficiently transduce murine photoreceptors. *J. Virol.*, **81**, 11372–11380 (2007).

38) Weber M, Rabinowitz J, Provost N, Conrath H, Folliot S, Briot D, Chérèl Y, Chenuaud P, Samulski J, Moullier P, Rolling F. Recombinant adeno-associated virus serotype 4 mediates unique and exclusive long-term transduction of retinal pigmented epithelium in rat, dog, and nonhuman primates after subretinal delivery. *Mol. Ther.*, **7**, 774–781 (2003).

39) Lekherz C, Maguire A, Tang W, Bennett J, Wilson JM. Novel AAV serotypes for improved ocular gene transfer. *J. Gene Med.*, **10**, 375–382 (2008).

40) Igarashi T, Miyake K, Asakawa N, Miyake N, Shimada T, Taka-hashi H. Direct comparison of administration routes for aav8-mediated ocular gene therapy. *Curr. Eye Res.*, **38**, 569–577 (2013).

41) Harvey AR, Kamphuis W, Eggers R, Symons NA, Blits B, Niclou S, Boer GJ, Verhaagen J. Intravitreal injection of adeno-associated viral vectors results in the transduction of different types of retinal neurons in neonatal and adult rats: a comparison with lentiviral vectors. *Mol. Cell. Neurosci.*, **21**, 141–157 (2002).

42) Vandenberghe LH, Bell P, Maguire AM, Xiao R, Hopkins TB, Grant R, Bennett J, Wilson JM. AAV9 targets cone photoreceptors in the nonhuman primate retina. *PLOS ONE*, **8**, e53463 (2013).

43) Yin L, Greenberg K, Hanter JI, Dalkara D, Kolstad KD, Masella BII, Wolfe R, Visel M, Stone D, Libby R, DiStefano D Jr, Schaefer D, Flannery J, Williams DR, Merigan WH. Intravitreal injection of AAV2 transduces macaque inner retina. *Invest. Ophthalmol. Vis. Sci.*, **52**, 2775–2783 (2011).