Acute Toxicity of Chlorantraniliprole to Freshwater Fish

Channa punctatus (Bloch)

Nagaraju Bantu1*, Venkata Rathnamma Vakita2

1Department of Biochemistry, Acharya Nagarjuna University, Guntur-522510, A.P, India
2Department of Zoology, Acharya Nagarjuna University, Guntur-522510, A.P, India
*Corresponding Author: nagaraju.bantu301@gmail.com

Copyright © 2013 Horizon Research Publishing All rights reserved.

Abstract
Environmental protection has attracted the attention of the wide cross-section of people all over the world which has now become a global issue amongst scientists and researchers working in this area. The aim of the present study was to determine the acute toxicity of chlorantraniliprole insecticide to the fresh water fish Channa punctatus (Bloch). Experimental fish were exposed to different concentrations of chlorantraniliprole between range 0, 1, 2, 3, 4, 5, 6, 8, 10, 12, 13, 14, 15, 16 and 17 mg/L^-1 for 96 h in test container. The 96h LC50 value of chlorantraniliprole on the fish was found to be 14.424 mg/L^-1. The variation in the lethal concentration values is due to its dependence upon various factors viz., sensitivity to the toxicant, its concentration and duration of exposure. Further study needs the processes by which these chemicals affect physiology and pathological changes and of fish and their bio-concentration and bio-accumulation in fish tissues.

Keywords
Global Issue, Acute Toxicity, Chlorantraniliprole, Concentration And Channa Punctatus

1. Introduction
Environmental protection has attracted the attention of the wide cross-section of people all over the world which has now become a global issue amongst scientists and researchers working in this area. Pesticidal pollution constitutes the most dangerous health hazard apart from creating adverse effects on fish production. As the fishes are economically important non-target organisms, they are quite sensitive to a wide variety of toxicants and are used as pollution indicator in the water-quality management.

Coragen 18.5% SC is a new chemical insecticide product, the active substance is chlorantraniliprole; Formulation: Suspension concentrate; CAS number 500008-45-7, IUPAC-name: 3-bromo-4′-chloro-1-(3-chloro-2-pyridyl)-2′-methyl-6′-(methylcarbamoyl)pyrazole-5-carboxanilide). The basic mechanism of action for most pesticides is proved to be an alteration in the transfer of a signal along a nerve fiber and across the synapse from one nerve to another or from nerve to a muscle fiber. The signal is transferred across the synapse to the next nerve cell by the release of neurotransmitters such as acetylcholine (AChE). The biochemical processes represent the most sensitive and relatively early events of pollutant damage. Thus, it is important that pollutant effects be determined and interpreted in biochemical terms, to delineate mechanisms of pollutant action, and possibly ways to mitigate adverse effects [1]. Many of workers have been used the acute toxicity tests of pesticides on fish to acquire rapid estimates of the concentrations that caused direct, irreversible harm to test organism [1].

In the present study, an attempt has been made to analyze the toxicity of the chlorantraniliprole 18.5% SC (Suspension concentrate) on the freshwater fish Channa punctatus (Bloch). The result is expressed as the lethal dose (LD) in the case of terrestrial organism and as lethal concentration in the case of aquatic organisms. Since some members of population may prove to be excessively susceptible and others may prove to be very resistant to the dose or the concentration of the toxicant that affects 50% of the population under consideration is expressed as LD50 or LC50 values, which is statistically calculated on the basis of the observed percentage of mortality at different concentrations of the pesticides.

2. Materials and Methods
The freshwater fish Channa punctatus size 12-13 cm and weight 18-20 g were brought from a local waterbodies at Nandivelugu, Guntur district of Andhra Pradesh, India. The fish were acclimatized to the laboratory conditions at...
28±2°C for 15 days. If in any batch, mortality exceeds 5% during acclimatization, that entire batch of fish was discarded. Insecticide was purchased from local market in Guntur of Andhra Pradesh. The water used for acclimatization and conducting experiments was clear unchlorinated ground water and the hydrographic conditions of water are shown in the Table 1. The stock solutions for the above were prepared by dissolving the chlorantraniliprole 18.5% SC in unchlorinated ground water according to Finney probit[3].

2.1. Acute Toxicity Tests

The containers of the test media are of 15 L capacity, where in each test five containers were used and each container consisted of 10 fish. The mortality rate was taken into consideration and while taking the data, dead fish was removed immediately. Pilot experiments were conducted to choose the mortality range between 10% and 100%. Basing on the pilot experiments, the experiments were conducted to determine the toxicity indifferent concentrations (0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 14, 15, 16 and 17mg/L-1 for 96h with compound Anthracitic diamides, in semi-static system).

The data of each concentration was pooled up to calculate the LC50 values. The un-weighted regression method of probit analysis and SPSS v20.0 was used to calculate the LC50 values [3]. According to [4, 17] the sample water is clear, colorless and odorless. The following results are in mg/L-1.

3. Results and Discussion

In the present investigation the test species, *Channa punctatus* has shown differential toxicity level with the function of period. This shows that the more is the duration period the less is the concentration required. The observed percentage of mortality of *Channa punctatus* for chlorantraniliprole in static tests continuous for different hours and different concentrations were shown in Table 2, 3, 4 & 5. The observed LC values and 95% confidence limits in static tests were shown in Table 5.

Table 1. Chemical analysis of water used for experiments

Parameter	Value
Tt Turbidity	8 silica units
Electrical conductivity at 28°C	816 Micro ohms/cm
pH at 28°C	8.1
i) Phenolphalene	Nil
ii) Methyl orange as CaCO₃	472
Total Hardness	320
Calcium Hardness	80
Magnesium Hardness	40
Nitrite nitrogen (as N)	Nil
Sulphate (as SO₄)	Trace
Chloride (as Cl)	40
Fluoride (as F)	1.8
Iron (as Fe)	Nil
Dissolved oxygen	8-10 ppm
Temperature	28 ± 2°C

Table 2. Parameter Estimates of the probit analyses for *Channa punctatus*

Parameter	Estimate	Std. Error	Z	Sig.	95% Confidence Interval
concentration	28.676	5.227	5.486	.000	18.431 - 38.921
Intercept	-33.238	6.037	-5.506	.000	-39.275 - -27.201

a. PROBIT model: PROBIT (p) = Intercept + BX (Covariates X are transformed using the base 10.000 logarithm.)

Table 3. Chi-Square Test for 96 h LC50 value of *Channa punctatus*

Test	Chi-Square	df	Sig.
Pearson Goodness-of-Fit Test	2.825	7	.901*

a. Since the significance level is greater than .150, no heterogeneity factor is used in the calculation of confidence limits.
b. Statistics based on individual cases differ from statistics based on aggregated cases.
Table 4. Log concentration, observed responses in fish *Channa punctatus*

Number	Concentration	Number of exposed fish	Observed Responses	Expected Responses	Residual
1	1.079	10	0	.110	-.110
2	1.097	10	1	.978	.022
3	1.114	10	2	2.048	-.048
4	1.130	10	3	3.551	-.551
5	1.146	10	5	5.261	-.261
6	1.161	10	6	6.871	-.871
7	1.176	10	8	8.149	-.149
8	1.190	10	10	9.017	.983

Table 5. Confidence Limits for fish *Channa punctatus* at different concentrations

Point	95% Confidence Limits for concentration	95% Confidence Limits for log(concentration)\(^a\)				
	Concentration	Lower Bound	Upper Bound	Concentration	Lower Bound	Upper Bound
LC\(_1\)	11.966	10.796	12.598	1.078	1.033	1.100
LC\(_2\)	12.231	11.162	12.811	1.087	1.048	1.108
LC\(_3\)	12.402	11.400	12.950	1.093	1.057	1.112
LC\(_4\)	12.532	11.582	13.056	1.098	1.064	1.116
LC\(_5\)	12.639	11.731	13.143	1.102	1.069	1.119
LC\(_6\)	12.731	11.859	13.219	1.105	1.074	1.121
LC\(_7\)	12.812	11.972	13.285	1.108	1.078	1.123
LC\(_8\)	12.885	12.074	13.346	1.110	1.082	1.125
LC\(_9\)	12.952	12.167	13.402	1.112	1.085	1.127
LC\(_10\)	13.014	12.253	13.454	1.114	1.088	1.129
LC\(_11\)	13.272	12.611	13.675	1.123	1.101	1.136
LC\(_12\)	13.481	12.896	13.861	1.130	1.110	1.142
LC\(_13\)	13.664	13.139	14.030	1.136	1.119	1.147
LC\(_14\)	13.829	13.353	14.191	1.141	1.126	1.152
LC\(_15\)	13.985	13.547	14.351	1.146	1.132	1.157
LC\(_16\)	14.134	13.726	14.513	1.150	1.138	1.162
LC\(_17\)	14.279	13.892	14.680	1.155	1.143	1.167
LC\(_18\)	14.424	14.049	14.856	1.159	1.148	1.172
LC\(_19\)	14.570	14.199	15.043	1.163	1.152	1.177
LC\(_20\)	14.720	14.345	15.244	1.168	1.157	1.183
LC\(_21\)	14.877	14.490	15.462	1.173	1.161	1.189
LC\(_22\)	15.044	14.639	15.702	1.177	1.165	1.196
LC\(_23\)	15.227	14.794	15.973	1.183	1.170	1.203
LC\(_24\)	15.432	14.964	16.285	1.188	1.175	1.212
LC\(_25\)	15.676	15.158	16.664	1.195	1.181	1.222
LC\(_26\)	15.987	15.399	17.159	1.204	1.187	1.235
LC\(_27\)	16.063	15.457	17.282	1.206	1.189	1.238
LC\(_28\)	16.147	15.520	17.417	1.208	1.191	1.241
LC\(_29\)	16.239	15.590	17.567	1.211	1.193	1.245
LC\(_30\)	16.342	15.667	17.736	1.213	1.195	1.249
LC\(_31\)	16.461	15.755	17.931	1.216	1.197	1.254
LC\(_32\)	16.601	15.859	18.164	1.220	1.200	1.259

\(a=\log_{10}\)
The toxicity of a pesticide could vary from species to species. The variation is due to differential tolerance of animals to pesticide exposure [5, 6], reported that toxic effect of the organophosphate pesticide phosphamidon in thiourea medium, on the freshwater fish, *Sarotherodon mossambica*, the LC₅₀ values of phosphamidon treatment such as 5.0869, 4.0598, 3.0520, 2.3784 for 24, 48, 72, 96h respectively and phosphamidon in 0.03% thiourea medium such as 5.1105, 3.5650, 2.4940, 1.7330 for 24, 48, 72, 96h [7]. Reported the 96h LC₅₀ value of a neem biopesticide (Triology) on the grass carp fish, *Ctenopharyngodon idella* and was found to be 112ppm. The 96hrs LC₅₀ values of diazinon on different fishes reported from tenth to several tens of mg/L⁻¹. A value of diazinon 96 hrs LC₅₀ was 0.8 mg/L⁻¹ for guppy (*Poecilia reticulate*) and for zebra fish (*Brachydanio rerio*) was 8 mg/L⁻¹. Which were all previously described by earlier workers in crayfish [8-10], has estimated LC₅₀ value as 4 ppm for organophosphate quinolphos when exposed to *Oreochromis mossambicus*.

In the present study, the 96h LC₅₀ value of chlorantraniliprole on the fish *Channa punctatus* was found to be 14.424mg/L⁻¹. The variation in the LC values is due to its dependence upon various factors viz., sensitivity to the toxicant, its concentration and duration of exposure.

3.1. Behavioral studies

In the present study of test organism *Channa punctatus* showed normal behavior in control group but jerky movements, hyper secretion of mucus, opening mouth for gasping, losing scales, hyperactivity were observed experimental group. Behavioral characteristics are obviously sensitive indicators of toxicant effect. In toxic medium of chloroantraniliprole the fish sank to bottom of the test chamber and independency in swimming. Subsequently fish moved to the corners of the test chambers, which can be viewed as avoidance behavior of the fish to the toxicant. In the toxic environment fish exhibited irregular, erratic, darting swimming movements and loss of equilibrium followed by hanging vertically in water. The above symptoms are due to inhibition of AChE activity leading to accumulation of acetylcholine in cholinergic synapses ensuing hyperstimulation. And inhibition of AChE activity is a typical characteristic of organophosphate compounds [11, 12]. Increase in opercular movement was initially observed but later decreased with increase of exposure period. They slowly became lethargic, restless, and secreted excess mucus all over the body. Intermittently some of the fish were hyper excited resulting in erratic movements. An excess secretion of mucous in fish forms a non-specific response against toxicants, thereby probably reducing toxicant contact. It also forms a barrier between the body and the toxic medium, so as to minimize its irritating effect, or to scavenge it through epidermal mucus. Similar observations were made by [13, 14, and 19] following RPR-V (a novel phosphorothionate pesticide) exposure to euryhaline fish, *Oreochromis mossambicus*. Gulping air and swimming at the water surface (surfacing phenomenon) were observed also with mucus secretion on the body in both the lethal and sublethal exposure periods. [14], reported that fish in sub lethal concentration were found under stress but that was not fatal. Reported that the abnormal changes in the fish exposed to lethal concentration cypermethrin are time dependent. [15, 20] Observed that the fish is exposed to cypermethrin, Rimon; erratic swimming, hyper and hypoactive, imbalance in posture, increase in surfacing activity, opercular movement, gradual loss in equilibrium, spreading of excess of mucus all over the surface of the body. Fishes exhibited a number of behavioral changes when they were exposed to different concentrations. The opercular movement of fishes initially
increases and then gradually decreases. Decreased opercular movement probably helps in reducing absorption of pesticide through gills. Abnormal swimming and loss of muscular coordination which may be due accumulation of acetylcholine in synaptic and neuromuscular junctions observed by [16-18]. It is necessary, to select behavioral indices for monitoring that relates to the organisms behavior in the field in order to derive a more accurate assessment of the hazards that a contaminant may pose in natural systems.

4. Conclusion

From the above acute toxicity investigation, we conclude that pesticide Chlorantraniliprole were highly toxic to fish C.punctatus based on the observed LC$_{50}$ values and had a impact on behavior and respiratory responses in fish C.punctatus in lethal concentrations.

REFERENCES

[1] G.Begum.Carbofuran insecticide induced biochemical Alterations in liver and muscle tissues of the fish, Clarias batrachus (Linn) and recovery response. Aquatic Toxicol 2004; 66:83-92.

[2] Pandey S, Kumar R, Sharma S, Nagpure N.S, Srivastava S.K and Verma M.S. Acute toxicity bioassays of mercuric chloride and Malathion on air-breathing Fish Channa punctatus (Bloch). Ecotoxicology and Environmental Safety 2005; 61:114-120.

[3] Finney D.J. Probit analysis 3ed. Cambridge University Press; 1971.

[4] APHA. American Public Health Association. Standard methods for examination of water including bottom sediments and sludges. Standard Methods, (19th ed.),2005; p. 874.

[5] Chambers JE, and Yarbrough JD. Parathion and methyl parathion toxicity to insecticide-resistant and susceptible mosquito fish (Gambusia affinis). Bull. Environ. Contam. Toxicol 1974; 11:315.

[6] Inbamani N, and Sreenivasan R. Effect phosphamidon toxicity and pesticidal Histopathology of the fish Sarotherodon mossambica. J. Ecotoxicol. Environ. Mont 1998; 8: 85-95.

[7] Hassanein HM.A, Okail HA and Mohamed NK.Biochemical changes in proteins and DNA in due to environmental Ctenopharyngodon idella pollution with the biocides (Trilogy). 10 ICCA, Garyounis University, Benghazi, Libya 2007; 18-21.

[8] Adedeji OB, Oadeedje A, Adeyemo SA and Agbede. Acute toxicity of diazinon to African catfish (Clarias gariepinus). African Journal of Biotechnol 2008; 7:651-654.

[9] Barbee GC, McClain WR, Lanka SK Stout MJ. Acute toxicity of chlorantraniliprole to non-target crayfish (Procambarus clarkii) associated with rice-crayfish cropping systems. Pest management 2010; 66:996-1001.

[10] Mathivanan R.Effects of sublethal concentration of Quinolphos on selected respiratory and biochemical parameters in the freshwater fish Oreochromis mossambicus. J. Ecotoxicol. Environ. Monit 2004; 14:57-64.

[11] Dembele K, Haubrue E and Gaspar C.Concentration effects of selected insecticides on brain acetyl choline in the common carp Cyprinus carpio. Ecotoxicology and Environmental Safety.2000; 45: 49-54.

[12] Timchalk C, Nolan RJ, Mendrala AL, Dittenber DA, Brzak KA, Mattsson JL. A physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model for the organophosphate insecticide chlorpyrifos in rats and humans. Toxicol Sci 2000; 66(1):34–53.

[13] Rao JV.Toxic effects of novel organophosphorus insecticide (RPR-V) on certain biochemical parameters of euryhaline fish, Oreochromis mossambicus. Pesticide Biochemistry and Physiology 2006; 86: 78-84 .

[14] Shivakumar R, Kuri, RC, Mushigeri SB and David M. Effect of Endosulfan to freshwater fish, Ctenopharyngodon idellus. J. Ecotoxicol. Environ. Monit 2005; 15:113-116.

[15] David M, Shivakumar R, Mushigeri, S.B. and Kuri RC. Blood glucose and glycogen levels as indicators of stress in the freshwater fish, under fenvalerate intoxication. J. Ecotoxicol. Environ. Monit.2005; 15: 01-05

[16] Rao JV, Begum G, Pallela G, Usman PK and Rao RN. Changes in behavior and brain acetylcholinesterase activity in mosquito fish Gambusia affinis in relation to sublethal exposure of chlorpyrifos .Int.J.Environ.Res.PublicHealth 2005; 34:478-483.

[17] Edwards CA. Environmental pollution by pesticides. Ed. C.A. Edwards. Plenum Press, 1973; 542 pp.

[18] Prasanth MS, David M and Mathed SG. Behavioral changes in freshwater fish Cirrhinus mirgala (Hamilton) exposed to cypermethrin. J. Ecotoxicol. Environ. Monit 2005; 26; 141-144.

[19] Tripathi PK, Srivastava VK and Singh A.Toxic effects of Dimethoate (organophosphate) on metabolism and enzyme system of freshwater teleost fish Channa punctatus. Asian Fisheries Society, Manila, Philippines, Asian Fisheries Science 2003; 16:349-359.

[20] Nagaraju B, Sudhakar P, Anitha A, Haribabu G and Rathnamma V.V. Toxicity evaluation and behavioural studies of freshwater fish exposed to Rimon. International Journal of Research in Pharmaceutical and Biomedical sciences2011; 2:2229-3701.