Adipose tissue-derived extracellular vesicles (EVs) are at the center of the budding field of EV signaling in metabolic regulation for their strong regulatory effects on local and systemic metabolism. This essay will highlight seminal studies in adipose tissue EV research, critically assess current adipose tissue EV research strategies and discuss the obstacles the field faces moving forward.

Adipose tissue (AT) EVs are sourced by directly isolating EVs from adipose tissue or from harvesting culture media from incubating AT explants. This highly heterogeneous population of EVs derives mainly from adipocytes but also endothelial cells, fibroblasts, macrophages and other immune cells. Like all EVs, AT EVs are phospholipid-enclosed vesicles loaded with bioactive molecules spanning miRNAs, mRNAs, DNA, proteins, lipids, and metabolites. As such, these EVs can have potent signaling effects on receiving cells. Pioneering studies demonstrated that EVs isolated from human and mouse AT explants and immortalized adipocytes induced inflammation and insulin resistance in myocytes and hepatocytes, with more pronounced effects if the AT came from obese subjects. This data has held up over time as a recent study has shown that both human plasma- and subcutaneous AT-derived small EVs (sEVs) from obese humans with nonalcoholic fatty liver disease induce insulin resistance in primary myotubes and hepatocytes. Although early studies did explore the effect of AT EVs on systemic metabolism by injecting purified EVs into mice, it was not until the study by Thomou et. al. that a significant role for circulating adipocyte-derived EVs was established in vivo. This study used a mouse model where dicer was knocked out specifically in adipocytes to suppress miRNA processing. The result was a significant reduction in the level of most EV-associated miRNAs in circulation. Furthermore, these adipocyte-derived miRNAs were shown to regulate gene expression in the liver. AT tissue macrophages were also found to release miRNA-containing EVs that effect systemic metabolism when injected into mice. Soon after, the first studies to demonstrate EV-mediated crosstalk between cells in adipose tissue in vivo were published. The first used genetically labeled adipocyte membranes and tagged endothelial cell caveolin-1 to demonstrate a robust exchange of cellular material between cells within adipose tissue in mice. This was found to be through EVs and was regulated by feeding and fasting. The second study demonstrated that adipocyte EVs are lipid-filled and are taken up by local macrophages in vivo. These EVs functioned as a source of lipid for macrophages but also promoted differentiation of bone marrow stem cells into adipose tissue macrophage-like cells. Together, these studies made a strong case for the existence of an unexplored network of signaling that regulates metabolism within the AT and between the AT and other organs.

The unique challenges of isolating adipose tissue EVs

There are important aspects of AT EV research that should be considered when assessing data that demonstrates a physiological effect of EVs. Firstly, adipose tissue has unique biophysical...
properties that contribute to challenges for clean tissue EV isolation. Adipose tissue is a soft connective tissue that is primarily composed of lipid-filled adipocytes surrounded by a dense but malleable extracellular matrix. Support cells like endothelial cells, fibroblasts and immune cells contribute to this specialized microenvironment that allows for remodeling of the extracellular matrix and rapid expansion or contraction of the tissue depending on the nutrient supply. In the obese state adipocytes become engorged with lipid and prone to apoptosis. Obese adipose tissue is characterized by excessive collagen deposition and inflammation that makes for a rigid and less dynamic tissue. Isolation of EVs from tissues in general requires a collagenase digestion step to liberate the cells and solubilize the interstitial fluid where the EVs are found. The digested sample is centrifuged to pellet stromal cells and float adipocytes so that the interstitial fluid can be harvested (Fig. 1). The key to a pure EV isolation is to ensure the cells remain unbroken during the process so that no intracellular vesicles contaminate the EV preparation. Adipocytes are fragile when separated from the extracellular matrix and so they tend to rupture, particularly if the sample is from obese mice where adipocytes are severely hypertrophied (Fig. 1). Evidence of ruptured adipocytes is oil floating on the top of the sample after centrifugation, which appears distinctly different from the floating, intact adipocytes. Special care must be taken to optimize the digestion conditions to maximize the trade-off between EV yield and purity. This concept is also true for the culturing of primary adipocytes for EV harvesting. Because adipocytes float on the surface of the culture media they are unstable and prone to de-differentiating or rupturing. This should be a serious consideration in studies that media they are unstable and prone to de-differentiating or vesting. Because adipocytes is also true for the culturing of primary adipocytes for EV harvest to maximize the trade-off between EV yield and purity. This concept is distinctly different from the

The barriers to studying EVs in physiology

Technical issues aside, the principal factor holding the field back from a comprehensive understanding of all EVs in physiology is our lack of in vivo model systems to track and modulate EV production in a cell-type specific way. Ideally this would be done in an inducible manner as to study the kinetics and dynamics of EV production and signaling. Most of the EV functional readouts in the field rely on injection of EVs into mice, or treatment of a cell type with EVs purified from a donor cell type. One cannot argue against the potential artifacts created by exposing cells or organs to large doses of cell-type-specific EVs that may never occur under physiological conditions. Without knowledge of the cell type EV release dynamics, half-life kinetics, preference for retention of EVs in the tissue of the producing cell versus entry
into the blood, and cell targeting, it is challenging to estimate the true physiological effect of a cell type-specific EV population. It is important to note that EVs are considered a strong candidate for therapeutic treatment of various diseases or drug delivery13. Therefore, injections or treatments of what may be supraphysiological levels of EVs may provide valuable information about the therapeutic potential (Fig. 2).

The biggest hurdle for manipulation of endogenous EV production is finding a target protein or pathway that will do so with minimal disruption to cellular processes unrelated to EVs. For example, knocking out ESCRT proteins effectively suppresses EV production, but these proteins are also involved in various other intracellular trafficking processes in the cell14 making it challenging to assign any effect to EVs and not disruption of cell function. Tools that are sensitive enough to track endogenous EVs are also needed. Great strides have been taken to track EVs in zebrafish models which have already offered insights into EV dynamics15, however, establishing mammalian models are more challenging. A common approach is to genetically label the plasma membrane or an EV-enriched protein, like tetraspansins, with a fluorescent tag. This approach seems to be effective for tracking of EVs in the tissue13,10 but is not sensitive enough to track endogenous EV targeting to other organs. Injections of fluorescent, luminescent or radioabeled EVs are effective for biodistribution studies (Fig. 2), but again, the risk is artifacts produced by injection of supraphysiological levels of EVs.

Outlook
These challenges are not trivial to solve, but with collaboration and creativity the field will surmount these obstacles. Even now, with the available tools there is exciting and foundational work being done that is leading us closer to understanding how AT EVs contribute to physiological and pathophysiological processes.

References
1. Flaherty, S. E. 3rd et al. A lipase-independent pathway of lipid release and immune modulation by adipocytes. Science 363, 989–993 (2019).
2. Deng, Z. B. et al. Adipose tissue exosome-like vesicles mediate activation of macrophage-induced insulin resistance. Diabetes 58, 2498–2505 (2009).
3. Kranendonk, M. E. et al. Human adipocyte extracellular vesicles in reciprocal signaling between adipocytes and macrophages. Obes. (Silver Spring) 22, 1296–1308 (2014).
4. Kranendonk, M. E. et al. Effect of extracellular vesicles of human adipose tissue on insulin signaling in liver and muscle cells. Obes. (Silver Spring) 22, 2216–2223 (2014).
5. Eguchi, A. et al. Microparticles release by adipocytes act as “find-me” signals to promote macrophage migration. PLoS One 10, e0123110 (2015).
6. Fuchs, A. et al. Associations among adipose tissue inflammation, inflammation, exosomes and insulin sensitivity in people with obesity and nonalcoholic fatty liver disease. Gastroenterology 161, 968–981 e912 (2021).
7. Thomou, T. et al. Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature 542, 450–455 (2017).
8. Ying, W. et al. Adipose tissue macrophage-derived exosomal mirnas can modulate in vivo and in vitro insulin sensitivity. Cell 171, 372–384 e312 (2017).
9. Crewe, C. et al. An endothelial-to-adipocyte extracellular vesicle axis governed by metabolic state. Cell 175, 695–708 e613 (2018).
10. Crescilleti, R., Lasser, C. & Lotvall, J. Identification and characterization of extracellular vesicle subpopulations from tissues. Nat. Protoc. 16, 1548–1580 (2021).
11. Harms, M. J. et al. Mature human white adipocytes cultured under membranes maintain identity, function, and can transdifferentiate into brown-like adipocytes. Cell Rep. 27, 213–225 e215 (2019).
12. Clement, E. et al. Adipocyte extracellular vesicles carry enzymes and fatty acids that stimulate mitochondrial metabolism and remodeling in tumor cells. EMBO J. 39, e102523 (2020).
13. Murphy, D. E. et al. Extracellular vesicle-based therapeutics: natural versus engineered targeting and trafficking. Exp. Mol. Med. 51, 1–12 (2019).
14. Vietri, M., Radulovic, M. & Stemkark, H. The many functions of ESCRTs. Nat. Rev. Mol. Cell Biol. 21, 25–42 (2020).
15. Verweij, F. J., Hyenne, V., Van Niel, G. & Goetz, J. Extracellular vesicles: catching the light in Zebrafish. Trends Cell Biol. 29, 770–776 (2019).
16. Neckels, V. N. et al. A transgenic inducible GFP extracellular-vesicle reporter (TIGER) mouse illuminates neonatal cortical astrocytes as a source of immunomodulatory extracellular vesicles. Sci. Rep. 9, 3094 (2019).

Acknowledgements
This work was supported the National Institutes of Health grant R00 DK122019.

Competing interests
The author declares no competing interests.

Additional information
Correspondence and requests for materials should be addressed to Clair Crewe.

Peer review information
Communications Biology thanks Emanuele Cocucci and Alireza Fazeli for their contribution to the peer review of this work. Primary Handling Editors: Gregory J Lavius and Eve Rogers.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.