Recent progress in theoretical nuclear physics related to large-scale scientific facilities

ZHAO EnGuang1,2* & WANG Fan1,2,3

1Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China;
2Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator, Lanzhou 730000, China;
3Department of Physics, Nanjing University, CPNPC, Nanjing 210093, China

Received July 21, 2011; accepted September 13, 2011

Several large-scale scientific facilities (LSSF) are running and several others are under construction in China. Recent progress made by Chinese scientists in theoretical study of nuclear physics related to these facilities is reviewed. The emphasis is put on the topics covered in the issue entitled “Special Topics on Some Theoretical Nuclear Physics Aspects Related to Large-scale Scientific Facilities” (in Sci China Ser G-Phys Mech Astron, Vol. 52, No. 10, 2009).

large-scale scientific facility, nuclear physics, theory

The progress in nuclear physics is usually driven by the development of new accelerators, new detectors, and other advanced facilities. Worldwide there are many big facilities which are running or being constructed [1–6].

In recent years, several large-scale scientific facilities (LSSF) for nuclear science have been upgraded and constructed in China. The updated Beijing Spectrometer III (BES-III) at Beijing Electron Position Collider II (BEPCII) is a unique and powerful facility for the study of charmonium physics, D-physics, spectroscopy of light hadrons, and tau-physics in the energy range up to 4 GeV [7]. The Cooling Storage Ring of Heavy Ion Research Facility in Lanzhou (HIRFL-CSR) [8–10] was completed in 2007, which aims at the exploration of physics with radioactive ion beams, including the structure of unstable nuclei, isospin dependence of nuclear matter, heavy-ion fusion reactions, superheavy nuclei synthesis, hadronic physics, physics of high-energy density matter, physics of highly charged ions, and applications. Recently direct mass measurements of short-lived $A = 2Z - 1$ nuclides 63Ge, 65As, 67Se, and 71Kr were carried out at HIRFL-CSR and these results have a great impact on nucleosynthesis in the rp process [11–14]. Shanghai Synchrotron Radiation Facility (SSRF) [15], which was finished and commissioned in April 2009, and Daya Bay nuclear power complex in China [16] also provides many opportunities for nuclear science.

Based on these and many other facilities in the world, the Chinese scientists have made many important contributions to the understanding of atomic nuclei and hadrons from the theoretical side. In order to introduce the major achievements by Chinese scientists in the field of theoretical nuclear physics, the editorial board of Science in China Series G: Physics, Mechanics and Astronomy has invited a number of the major players in the research of nuclear theory in China to contribute to a special issue entitled “Special Topics on Some Theoretical Nuclear Physics Aspects Related to Large-scale Scientific Facilities” (in Sci China Ser G-Phys Mech Astron, Vol. 52, No. 10, 2009).

In this paper, we present the scientific remarks on the work presented in this special issue and further progress made based on them.

1 Remarks and discussion

1.1 Hadron spectroscopy and decay properties

The spectroscopy study has played and is still playing impor-
1.2 The equation of state and thermodynamics of nuclear matter

The isospin dependence of in-medium nuclear effective interactions and the equation of state (EOS) of isospin asymmetric nuclear matter, particularly its isospin-dependent term or the density dependence of the nuclear symmetry energy are very important for understanding not only the structure of radioactive nuclei, the reaction dynamics induced by rare isotopes, and the liquid-gas phase transition in asymmetric nuclear matter, but also many critical issues in astrophysics. Particularly, the investigation of EOS for cold and dense strongly interacting matter and its consequences for the possible phases of quantum chromodynamics (QCD) plays a crucial role in the study of neutron stars in astrophysics.

A phenomenological momentum-independent model is constructed to describe the EOS for isospin asymmetric nuclear matter, especially the density dependence of the nuclear symmetry energy \(E_{\text{sym}}(\rho) \) [20]. This model can reasonably describe the general properties of the EOS for symmetric nuclear matter and the symmetry energy predicted by both the sophisticated isospin and momentum dependent MDI model and the Skyrme-Hartree-Fock approach. It also helps to determine the nuclear matter symmetry energy and the symmetry energy coefficient in the mass formula [21].

Based on the updated UrQMD transport model [22], the effect of the symmetry potential energy on the two-nucleon Hanbury-Brown-Twiss (HBT) correlation is investigated with the help of the coalescence program for constructing clusters, and the CRAB analyzing program of the two-particle HBT correlation [23]. An obvious nonlinear dependence of the neutron-proton (or neutron-neutron) HBT correlation function \(C_{\text{np,nn}} \) at small relative momenta on the stiffness factor \(\gamma \) of the symmetry potential energy is found. It is also found that both the symmetry potential energy at low densities and the conditions of constructing clusters at the late stage of the whole process influence the two-nucleon HBT correlation with the same power.

Based on the method proposed in [24], the EOS of QCD at zero temperature and finite quark chemical potential is calculated under the hard-dense-loop (HDL) approximation [25]. A comparison between the EOS under HDL approximation and the cold, perturbative EOS of QCD proposed in [26, 27] is made. It is found that when \(\mu \) is less than 4.7 GeV, the pressure density calculated using HDL approximation is much larger than that calculated using perturbation theory. This enhancement of the obtained pressure density with respect to that of perturbation theory can be regarded as a possible explanation for the strong coupled QGP. It is also expected that the obtained EOS can be applied in the study of neutron stars.

The thermodynamics of strange quark matter with density dependent bag constant is studied self-consistently in the framework of the general ensemble theory and the MIT bag model [28]. In this work, an additional term is found in the expression of pressure. With the additional term, the zero pressure locates exactly at the lowest energy state, indicating that the treatment is a self-consistently thermodynamic one. The self-consistent EOS of strange quark matter in both the normal and color-flavor-locked phase is derived. They are both softer than the inconsistent ones. Strange stars in both the normal and color-flavor locked phase have smaller masses and radii. It is also interesting to find that the energy density at a star surface is much higher than that in the inconsistent treatment for both phases. Consequently, the surface properties and the corresponding observational properties of strange stars in this treatment are different from those in the inconsistent treatment.

1.3 Structure and reactions of exotic nuclei

Thanks to the development of radioactive ion beam (RIB) facilities, new exciting discoveries have been made by exploring hitherto inaccessible regions in the nuclear chart. Theoretically much efforts has focused on the structure and dynamics of exotic nuclei.

The proton radioactivity half-lives of spherical proton emitters are investigated within a generalized liquid drop model (GLDM) [29, 30], including the proximity effects between nuclei in a neck and the mass and charge asymme-
try [31]. The penetrability is calculated in the WKB approximation and the assault frequency is estimated by the quantum mechanical method considering the structure of the parent nucleus. The spectroscopic factor is taken into account in half-life calculations, which is obtained by employing the relativistic mean field (RMF) theory [32–36]. The half-lives within the GLDM are compared with the data and other theoretical values. The results show that the GLDM works quite well for spherical proton emitters when the assault frequency is estimated by the quantum mechanical method and the spectroscopic factor is considered.

The direct proton capture and resonance proton capture properties of stellar reactions $^{22}\text{Mg}(p,\gamma)^{23}\text{Al}$ and $^{26}\text{Si}(p,\gamma)^{27}\text{P}$ are studied by employing a mean-field potential obtained from the Skyrme-Hartree-Fock (SHF) model [37]. Calculations with the SHF potential reproduce well the loosely-bound structure of the ground states as well as the widths of the resonant states in these nuclei. With the obtained potential the reaction rates of direct proton capture and resonance proton capture to nuclei ^{23}Al and ^{27}P are estimated. The effect of the ^{27}P loosely-bound structure on the S factor of the direct proton capture is also discussed.

The microscopic mechanism of four experimentally observed bands in ^{172}Tm is investigated [38] using the particle-number conserving (PNC) method in the framework of the cranked shell model (CSM) with monopole and quadrupole paring interactions [39, 40]. The experimental results, including the moments of inertia and angular momentum alignments of four bands in ^{172}Tm are reproduced well by the particle-number conserving calculations. The ω variation of the occupation probability of each cranked orbital and the contribution to moment of inertia from each cranked orbital are analyzed. Other unobserved low-lying bands of 2-quasiparticles in ^{172}Tm are predicted. The CSM-PNC method is also used to study the recently observed high-spin rotational bands in odd-A nuclei $^{247,249}\text{Cm}$ and ^{249}Cf [41].

The relativistic consistent angular-momentum projected shell model (ReCAPS) [42, 43] is used in the study of the structure and electromagnetic transitions of the low-lying states in the $N=Z$ nucleus ^{52}Fe [44]. The model calculations show a reasonably good agreement with the data. The backbending at $I^\pi=12^+$ is reproduced and the energy level structure suggests that neutron-proton interactions play important roles.

The configuration-fixed deformation constrained relativistic mean field approach with time-odd component [45, 46] has been applied to investigate the ground state properties of ^{33}Mg [47] with effective interaction PK1 [48]. The ground state of ^{33}Mg has been found to be prolate deformed, $\beta_2 = 0.23$, with the odd neutron in 1/2[330] orbital and the energy -251.85 MeV which is close to the data -252.06 MeV. The magnetic moment $-0.9134 \mu_N$ is obtained with the effective electromagnetic current which well reproduces the data $-0.7456 \mu_N$ self-consistently without introducing any parameters. The energy splittings of time reversal conjugate states, the neutron current, the energy contribution from the nuclear magnetic potential, and the effect of core polarization are discussed in detail.

The ground state properties of La isotopes are investigated [49] with the reflection asymmetric relativistic mean field (RAS-RMF) model [50]. The calculation results of binding energies and the quadrupole moments are in good agreements with the experiment. The “kink” on the isotope shifts is observed at $A = 139$ where the neutron number is the magic number $N = 82$. It is also found that the octupole deformations may exist in the La isotopes with mass number $A \sim 145–155$.

1.4 Synthesis of superheavy elements (SHE) via heavy ion fusion reactions

The synthesis of SHE has been a hot topic in nuclear physics for decades. Many isotopes of SHE with $Z = 103$ to 118 have been produced by heavy-ion fusion reactions in experiments [51–54] and the elements with Z up to 112 have been named. In the heavy ion research facility at Lanzhou (HIRFL) China, two new super-heavy nuclides, ^{259}Db and ^{265}Bh, were also produced [55, 56] and an experiment was carried out recently which aims at repeating the synthesis of ^{271}Ds [57]. The production cross section and the corresponding lifetime of SHE decrease rapidly as the charge number Z increases. To understand the mechanism of the heavy-ion fusion reaction and to guide future experiments, many theoretical efforts have been made.

In a series of studies, Wang et al. [58–62] proposed an empirical barrier distribution for a unified description of the fusion cross sections of light and medium-heavy fusion systems, the capture cross sections of the reactions leading to superheavy nuclei, and the large-angle quasi-elastic scattering cross sections based on the Skyrme energy-density functional approach. By examining the barrier distributions in detail, it is found that the fusion cross sections depend more strongly on the shape of the left side of the barrier distribution while the quasi-elastic scattering cross sections depend more strongly on the right side [63]. Furthermore, by combining these studies and the HIVAP calculations for the survival probability, the formation probability of the compound nucleus is deduced from the measured evaporation residue cross sections for cold and hot fusion reactions.

In order to understand the fusion hindrance in nuclear reactions of heavy systems, a two-step model was proposed [64–66]. The fusion hindrance is studied on mass-asymmetric systems using the liquid drop model with the two-center parameterization [67]. Following the idea that the fusion hindrance exists only if the liquid drop barrier (saddle point) is located at the inner side of the contact point after overcoming the outer Coulomb barrier, the reactions in which two barriers are overlapped with each other are determined. It is shown that there are many systems where the fusion hindrance does not exist for the atomic number of pro-
jectile or target nuclei $Z \leq 43$, while for $Z > 43$, all of the mass-symmetric reactions are fusion-hindered. Further study shows that the fusion hindrance also exists in the neck evolution [68] and the neck and the radial degrees of freedom might both be hampered by an inner potential barrier on their path between the contact configuration to the compound nucleus [69].

The production of superheavy nuclei with $Z = 108 - 116$ via hot fusion reactions of the neutron-rich projectiles with 238U target is systematically studied [70]. The results show that the production cross sections of superheavy nuclei do not decrease monotonously as the atomic number Z increasing. The cross sections of the superheavy nuclei at $Z = 112$ and 115 are enhanced as compared with the whole Z-trend in synthesis of the superheavy nuclei, which clearly illustrates that the reactions with large negative Q-value and shell correction are more favorable to synthesize superheavy nuclei [71].

The shell effect is included in the improved isospin dependent quantum molecular dynamics (QMD) model in which the shell correction energy of the system is calculated using the deformed two-center shell model [72,73]. This improved QMD model is used to calculate the capture cross sections of fusion reactions of heavy systems [74]. A switch function is introduced to connect the shell correction energy of the projectile and the target with that of the compound nucleus during the dynamical fusion process. It is found that the calculated capture cross sections reproduce the data quantitatively at the energy near the Coulomb barrier. The capture cross sections for reaction 35Br$_{17}$ + 208Pb \rightarrow 288X are also calculated and discussed.

1.5 Shape driven effects of Λ hyperon

Following the original work on the study of the shape-driven effects of Λ [75], Zhou et al. studied the deformations of light Λ hypernuclei with an extended nonrelativistic deformed Skyrme-Hartree-Fock approach with realistic modern nucleonic Skyrme forces, pairing correlations, and a microscopic Lambda-nucleon interaction derived from Brueckner-Hartree-Fock calculations [76]. Compared to the large effect of an additional Λ particle on nuclear deformation in the light soft nuclei within relativistic mean field method [77], this effect is much smaller in the nonrelativistic mean-field approximation. These results have inspired further studies of the shape driven effects of Λ hyperon in atomic nuclei [78–80].

1.6 Randomness of matrix elements of the nuclear shell model Hamiltonian

The randomness of matrix elements of the nuclear shell model Hamiltonian is an interesting topic [81–83]. Shen et al. studied the general behavior of matrix elements of the nuclear shell model Hamiltonian [84]. It is found that nonzero off-diagonal elements exhibit a regular pattern, if one sorts the diagonal matrix elements from smaller to larger values. The correlation between eigenvalues and diagonal matrix elements for the shell model Hamiltonian is more remarkable than that for random matrices with the same distribution unless the dimension is small.

1.7 A new collective Hamiltonian from the SCC method

A new collective Hamiltonian up to the fourth order for a multi-O(4) model is derived for the first time [85] based on the self-consistent collective-coordinate (SCC) method [86, 87], which is formulated in the framework of the time-dependent Hartree-Bogoliubov (TDHB) theory. This collective Hamiltonian is valid for the spherical case where the HB equilibrium point of the multi-O(4) model is spherical as well as for the deformed case where the HB equilibrium points are deformed. Its validity is tested numerically in both the spherical and deformed cases. Numerical simulations indicate that the low-lying states of the collective Hamiltonian and the transition amplitudes among them mimic fairly well those obtained by exactly diagonalizing the Hamiltonian of the multi-O(4) model.

1.8 Nuclear shape phase transition

In recent years, quantum phase transition in atomic nuclei is an interesting topic [88–91]. Zhang et al. [92] studied systematically the evolution behaviors of some energy ratios, E_2 transition rate ratios and isomer shift in the nuclear shape phase transitions. It is found that the quantities sensitive to the phase transition and independent of free parameter(s) are approximately particle number N scale invariant around the critical point of the first order phase transition, similar to that in the second order phase transition.

2 Summary and perspectives

Theoretical nuclear physics based on large-scale scientific facilities (LSSF) is one of the fastest developing subjects. Recent progress made by Chinese scientists in theoretical study of nuclear physics related to these facilities is reviewed. The emphasis is put on those topics covered in the issue entitled “Special Topics on Some Theoretical Nuclear Physics Aspects Related to Large-scale Scientific Facilities” (in Sci China Ser G-Phys Mech Astron, Vol. 52, No. 10, 2009).

Now several new facilities are under construction or being proposed in China, e.g. the China Spallation Neutron Source (CSNS) [93], the accelerator-driven system [94], the Beijing Rare Ion Beam Facility (BRIF) [95] and the China Advanced Rare Ion Beam Facility (CARIF) [96]. We believe that more important progress will be made in near future.

This work was supported by the National Natural Science Foundation of China (10875157, 10975100, and 10979066), National Basic Research Program of China (2007CB815000), and Chinese Academy of Sciences (KJCX2-EW-N01, KJCX2-SW-N17, and KJCX2-YW-N32).
1 Thoennessen M. Plans for the facility for rare isotope beams. Nucl Phys A, 2010, 834: 688c–693c
2 Sturm C, Sharkov B, Stöcker H. 1, 2, 3 ... FAIR! Nucl Phys A, 2010, 834: 682c–687c
3 Gales S. SPIRAL2 at GANIL: Next generation of ISOL facility for intense secondary radioactive ion beams. Nucl Phys A, 2010, 834: 717c–723c
4 Motobayashi T. RIKEN RI beam factory—Recent results and perspectives. Nucl Phys A, 2010, 834: 707c–712c
5 Sawada S. J-PARC facility. Nucl Phys A, 2010, 834: 701c–706c
6 Nuclear Physics Brief-writing Committee of the Canadian Institute of Nuclear Physics. Current and Future Research Directions in Nuclear Physics in Canada, 2010
7 Asner D M, Barnes T, Bijan J M, et al. Physics at BES-III. arXiv: 0809.1869 [hep-ex], 2008
8 Xia J W, Zhan W L, Wei B W, et al. The heavy ion cooler-storage-ring project (HIRFL-CSR) at Lanzhou. Nucl Instrum Methods Phys Res A, 2002, 488: 11–25
9 Zhan W, Xu H, Xiao G, et al. Progress in HIRFL-CSR. Nucl Phys A, 2010, 834: 694c–700c
10 Mei B, Tu X, Wang M, et al. A high performance time-of-flight detector applied to isochronous mass measurement at CSRe. Nucl Instrum Methods Phys Res A, 2010, 624: 1097c–1102c
11 Xu H S, Tu X L, Yuan Y J, et al. First mass measurement of short-lived nuclides at HIRFL-CSR. Chinese Sci Bull, 2009, 54: 4749–4752
12 Tu X L, Xu H S, Wang M, et al. Direct mass measurements of short-lived A = 22 – 1 nuclides 62Ge, 65As, 67Se, and 71Kr and their impact on nucleosynthesis in the rp process. Phys Rev Lett, 2011, 106: 112501
13 Sun Y. Nuclear masses near the proton drip-line and their impact on nucleosynthesis in explosive stars. Chinese Sci Bull, 2009, 54: 4594–4595
14 Sun Y. A small difference in nuclear mass could make a big impact in the cosmos. Chinese Sci Bull, 2011, 56: 1677–1683
15 Shanghai Synchrotron Radiation Facility (SSRF). http://ssrf.sinap.ac.cn/english
16 Daya Bay Collaboration. A precision measurement of the neutrino mixing angle θ_{13} using reactor antineutrinos at Daya Bay. arXiv: hep-ex/0701029v1, 2007
17 Liu B C, Zou B S. Mass and K-coupling of the $\Lambda(1535)$. Phys Rev Lett, 2006, 96: 042002
18 An C S, Zou B S. Strong decays of $\Lambda(1550)$ in an extended chiral quark model. Sci China Ser G-Phys Mech Astron, 2009, 52: 1452–1457
19 Wu J J, Molina R, Oset E, et al. Prediction of narrow Λ' and Λ'' resonances with hidden charm above 4 GeV. Phys Rev Lett, 2010, 105: 202001
20 Chen L W. A phenomenological equation of state for isospin asymmetric nuclear matter. Sci China Ser G-Phys Mech Astron, 2009, 52: 1494–1505
21 Chen L W. Nuclear matter symmetry energy and the symmetry energy coefficient in the mass formula. Phys Rev C, 2011, 83: 044308
22 Li Q, Li Z, Stöcker H. Probing the symmetry energy and the degree of isospin equilibrium. Phys Rev C, 2006, 73: 051601
23 Li Q F, Shen C W. Difficulties in probing density dependent symmetry potential with the HBT interferometry. Sci China Ser G-Phys Mech Astron, 2009, 52: 1530–1535
24 Zong H S, Sun W M. Calculation of the equation of state of QCD at finite chemical and zero temperature. Phys Rev D, 2008, 78: 054001
25 Sun W M, Jiang Y, Zong H S. The equation of state of QCD under hard-dense-loop approximation. Sci China Ser G-Phys Mech Astron, 2009, 52: 1513–1517
26 Fraga E S, Pisarski R D, Schaffner-Bielich J. Small, dense quark stars from perturbative QCD. Phys Rev D, 2001, 63: 121702
27 Fraga E S, Pisarski R D, Schaffner-Bielich J. New class of compact stars at high density. Nucl Phys A, 2002, 702: 217–223
28 Zhu M F, Liu G Z, Yu Z, et al. Thermodynamics of strange quark matter with the density-dependent bag constant. Sci China Ser G-Phys Mech Astron, 2009, 52: 1506–1512
29 Royer G. Alpha emission and spontaneous fission through quasimolecular shapes. J Phys G: Nucl Phys, 2000, 26: 1149–1170
30 Zhang H, Zuo W, Li J, et al. Alpha decay half-lives of new superheavy nuclei within a generalized liquid drop model. Phys Rev C, 2006, 74: 017304
31 Zhang H F, Wang Y J, Dong J M, et al. Theoretical study on spherical proton emission. Sci China Ser G-Phys Mech Astron, 2009, 52: 1536–1541
32 Serot B D, Walecka J D. The relativistic nuclear many-body problem. Adv Nucl Phys, 1986, 16: 1–327
33 Reinhard P G. The relativistic mean-field description of nuclei and nuclear dynamics. Rep Prog Phys, 1989, 52: 439–514
34 Ring P. Relativistic mean field theory in finite nuclei. Prog Part Nucl Phys, 1996, 37: 193–263
35 Vretenar D, Afanasev A, Lalazissis G, et al. Relativistic Hartree-Bogoliubov theory: Static and dynamic aspects of exotic nuclear structure. Phys Rep, 2005, 409: 109–135
36 Meng J, Toki H, Zhou S G, et al. Relativistic continuum Hartree-Bogoliubov theory for ground-state properties of exotic nuclei. Prog Part Nucl Phys, 2006, 57: 470–503
37 Qi C, Du R Z, Gao Y, et al. Theoretical studies of proton capture reactions in A–25 proton-rich nuclei. Sci China Ser G-Phys Mech Astron, 2009, 52: 1464–1470
38 Chen B R, Li T, Liu S X. The low-lying rotational bands of the neutron-rich nucleus 172Tm. Sci China Ser G-Phys Mech Astron, 2009, 52: 1542–1547
39 Zeng J Y, Lei Y A, Jia T H, et al. Blocking effect and odd-even differences in the moments of inertia of rare-earth nuclei. Phys Rev C, 1994, 50: 746–756
40 Zeng J Y, Jia T H, Zhao Z J. Reduction of nuclear moment of inertia due to pairing interaction. Phys Rev C, 1994, 50: 1388–1397
41 Zhang Z H, Zeng J Y, Zhao E G, et al. Particle-number conserving analysis of rotational bands in 247,249Sm and 249Fr. Phys Rev C, 2011, 83: 011304R
42 Li Y S, Long G L. Relativistic consistent angular-momentum projected shell-model: Relativistic mean field. Commun Theor Phys, 2004, 41: 429–434
43 Li Y S, Long G L. Relativistic consistent angular-momentum projected shell-model: Angular-momentum projection. Commun Theor Phys, 2004, 41: 579–582
44 Li Y S, Long G L. The relativistic consistent angular-momentum projected shell-model study of the N = Z nucleus 94Fe. Sci China Ser G-Phys Mech Astron, 2009, 52: 1471–1476
45 Li J, Yoo J M, Meng J. Deformation constrained relativistic mean-field approach with fixed configuration and time-odd component. Chin Phys C, 2009, 33: 98–100
46 Meng J, Peng J, Zhang S Q, et al. Possible existence of multiple chiral doulbets in 168Rh. Phys Rev C, 2006, 73: 037303
47 Li J, Zhang Y, Yao J, et al. Magnetic moments of 31Mg in the time-odd relativistic mean field approach. Sci China Ser G-Phys Mech Astron, 2009, 52: 1586–1592
48 Long W, Meng J, Giai N V, et al. New effective interactions in relativistic mean field theory with nonlinear terms and density-dependent meson-nucleon coupling. Phys Rev C, 2004, 69: 034319
49 Wang N, Guo L. Ground state properties of La isotopes in reflection asymmetric relativistic mean field theory. Sci China Ser G-Phys Mech Astron, 2009, 52: 1574–1578
50 Geng L S, Meng J, Toki H. Reflection asymmetric relativistic mean field approach and its application to the octupole deformed nucleus 238Ra. Chin Phys Lett, 2007, 24: 1865–1868
51 Hofmann S, Münzenberg G. The discovery of the heaviest elements. Rev Mod Phys, 2000, 72: 733–767
52 Morita K, Morimoto K, Kaji D, et al. Experiment on the synthesis of element 113 in the reaction 206Bi(209Zn,n)278113. J Phys Soc Jpn, 2004, 73: 2593–2596
53 Oganessian Y. Heaviest nuclei from 48Ca-induced reactions. J Phys G: Nucl Phys, 2007, 34: R165–R242
54 Oganessian Y T, Abdullin F S, Bailey P D, et al. Synthesis of a new element with atomic number Z = 117. Phys Rev Lett, 2010, 104: 142502
55 Gan Z, Qin Z, Fan H, et al. A new alpha-particle-emitting isotope 258Db. Eur Phys J A, 2001, 10: 21–25
56 Gan Z G, Guo J S, Wu X L, et al. New isotope 265Bh. Eur Phys J A, 2004, 20: 385–387
57 Zhang Z Y, Gan Z G, Ma L, et al. Observation of superheavy nuclide 271Ds. 2011. Submitted to Chinese Physics Letters
58 Liu M, Wang N, Li Z, et al. Applications of Skyrme energy-density functional to fusion reactions spanning the fusion barriers. Nucl Phys A, 2006, 768: 80–98
59 Wang N, Wu X, Li Z, et al. Applications of Skyrme energy-density functional to fusion reactions for synthesis of superheavy nuclei. Phys Rev C, 2006, 74: 044604
60 Wang N, Li Z, Scheid W. Systematic study of fusion barriers. J Phys G: Nucl Part Phys, 2007, 34: 1935
61 Wang N, Zhao K, Scheid W, et al. Fusion-fission reactions with a modified Woods-Saxon potential. Phys Rev C, 2008, 77: 014603
62 Wang N, Scheid W. Quasi-elastic scattering and fusion with a modified Woods-Saxon potential. Phys Rev C, 2008, 78: 014607
63 Wang N, Liu M, Yang Y X. Heavy-ion fusion and scattering with Skyrme energy density functional. Sci China Ser G-Phys Mech Astron, 2009, 52: 1554–1573
64 Abe Y. Reaction dynamics of synthesis of superheavy elements. Eur Phys J A, 2002, 13: 143–148
65 Abe C, Kosenko G, Abe Y. Two-step model of fusion for the synthesis of superheavy elements. Phys Rev C, 2002, 66: 061620R
66 Shen C, Abe Y, Boilley D, et al. Isospin dependence of reactions 48Ca+244–251Bk. Int J Mod Phys E, 2008, 17: 66–79
67 Shen C W, Abe Y, Li Q F, et al. Analysis of the fusion hindrance in mass-symmetric heavy ion reactions. Sci China Ser G-Phys Mech Astron, 2009, 52: 1455–1463
68 Wang X L, Shen C W, Li Q F, et al. Fusion hindrance in the neck evolution of symmetric nuclear reactions. Sci China Phys Mech Astron, 2011, 54: 470–473
69 Shen C, Boilley D, Li Q, et al. Fusion hindrance in reactions with very heavy ions: Border between normal and hindered fusion. Phys Rev C, 2011, 83: 054620
70 Liu Z H, Bao J D. Synthesis of superheavy nuclei with 238U target. Sci China Ser G-Phys Mech Astron, 2009, 52: 1482–1486
71 Liu Z H, Bao J D. Q-value effects on the production of superheavy nuclei. Phys Rev C, 2006, 74: 057602
72 Zhang F S, Feng Z Q, Jin G M. Importance of shell correction energy on synthesis of superheavy nuclei. Int J Mod Phys E, 2006, 15: 1601–1611
73 Bian B A, Zhang F S, Zhou H Y. Entrance channel mass asymmetry dependence of compound nucleus formation. Phys Lett B, 2008, 665: 314–317
74 Du S S, Bian B A, Liu M, et al. Shell effect and capture cross sections in the synthesis of superheavy nuclei. Sci China Ser G-Phys Mech Astron, 2009, 52: 1489–1493
75 Zhou X R, Schulze H J, Sagawa H, et al. Hypernuclei in the deformed Skyrme-Hartree-Fock approach. Phys Rev C, 2007, 76: 034312
76 Zhou X R, Cui J W, Wei N. Nonrelativistic mean-field description of the deformation of A hypernuclei. Sci China Ser G-Phys Mech Astron, 2009, 52: 1548–1553
77 Win M T, Hagic K. Deformation of Lambda hypernuclei. Phys Rev C, 2008, 78: 054311
78 Win M T, Hagic K, Koike T. Shape of Lambda hypernuclei in the (β, γ) deformation plane. Phys Rev C, 2011, 83: 014301
79 Lu B N, Zhao E G, Zhou S G. Quadrupole deformation (β, γ) of light A hypernuclei in a constrained relativistic mean field model: Shape evolution and shape polarization effect of the A hyperon. Phys Rev C, 2011, 84: 014328
80 Yao J M, Li Z P, Hagic K, et al. Impurity effect of Lambda hyperon on collective excitations of atomic nuclei. Nucl Phys A, 2011, 868-869: 12–24
81 Zhao Y M, Arima A, Yoshinaga N. Many-body systems interacting via a two-body random ensemble. I. Angular momentum distribution in the ground states. Phys Rev C, 2002, 66: 064322
82 Zhao Y M, Arima A, Yoshinaga N. Many-body systems interacting via a two-body random ensemble. II. Average energy of each angular momentum. Phys Rev C, 2002, 66: 064323
83 Zhao Y M, Arima A, Yoshinaga N. Regularities of many-body systems interacting by a two-body random ensemble. Phys Rev, 2004, 400: 1–66
84 Shen J J, Zhao Y M. How random are matrix elements of the nuclear shell model Hamiltonian? Sci China Ser G-Phys Mech Astron, 2009, 52: 1477–1481
85 Gu J Z, Kobayasi M. Application of the SCC method to the multi-O(4) model: The collective Hamiltonian. Sci China Ser G-Phys Mech Astron, 2009, 52: 1518–1529
86 Marumori T, Hayashi A, Tomoda T, et al. Concept of a collective subspace associated with the invariance principle of the Schrödinger equation. Prog Theor Phys, 1980, 63: 1576–1598
87 Marumori T, Maskawa T, Sakata F, et al. Self-consistent collective-coordinate method for the large-amplitude nuclear collective motion. Prog Theor Phys, 1980, 64: 1294–1314
88 Iachello F, Zamfir N V. Quantum phase transitions in mesoscopic systems. Phys Rev Lett, 2004, 92: 212501
89 Meng J, Zhang W, Zhou S G, et al. Shape evolution for Sm isotopes in relativistic mean-field theory. Eur Phys J A, 2005, 25: 23–27
90 Zhang Y, Hou Z F, Liu Y X. Distinguishing a particle number scale invariant feature of first order from a second order nuclear shape phase transition in the interacting boson model. Phys Rev C, 2007, 76: 011305
91 Li Z P, Niksic T, Vretenar D, et al. Microscopic analysis of order parameters in nuclear quantum phase transitions. Phys Rev C, 2009, 80: 061301
92 Zhang Y, Hou Z F, Liu Y X. Particle number scale invariant feature of the states around the critical point of the first order nuclear shape phase transition. Sci China Ser G-Phys Mech Astron, 2009, 52: 1579–1585
93 China Spallation Neutron Source (CSNS). http://csns.ihep.ac.cn/english/index.htm
94 Zhan W L. Roadmap of ADS development in China, 2010. International Workshop on Accelerator Driven Sub-critical System (ADS), July 7-8, Beijing
95 Liu W, Li Z, Bai X, et al. BRIF and CARIF progress. Sci China Phys Mech Astron, 2011, 54 (Suppl. 1): 14–17

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.