Electrospun Cu-doped In$_2$O$_3$ hollow nanofibers with enhanced H$_2$S gas sensing performance

Yu ZHANGa,†, Shuai HANa,†, Mingyuan WANGb,†, Siwei LIUa, Guiwu LIUa,*, Xianfeng MENGa, Ziwei XUa, Mingsong WANGa, Guanjun QIAOa

aSchool of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
bSEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, School of Electrical Science and Engineering, Southeast University, Nanjing 210096, China

Received: July 12, 2021; Revised: September 28, 2021; Accepted: October 1, 2021
© The Author(s) 2021.

Abstract: One-dimensional nanofibers can be transformed into hollow structures with larger specific surface area, which contributes to the enhancement of gas adsorption. We firstly fabricated Cu-doped In$_2$O$_3$ (Cu–In$_2$O$_3$) hollow nanofibers by electrospinning and calcination for detecting H$_2$S. The experimental results show that the Cu doping concentration besides the operating temperature, gas concentration, and relative humidity can greatly affect the H$_2$S sensing performance of the In$_2$O$_3$-based sensors. In particular, the responses of 6%Cu–In$_2$O$_3$ hollow nanofibers are 350.7 and 4201.5 to 50 and 100 ppm H$_2$S at 250 °C, which are over 20 and 140 times higher than those of pristine In$_2$O$_3$ hollow nanofibers, respectively. Moreover, the corresponding sensor exhibits excellent selectivity and good reproducibility towards H$_2$S, and the response of 6%Cu–In$_2$O$_3$ is still 1.5 to 1 ppm H$_2$S. Finally, the gas sensing mechanism of Cu–In$_2$O$_3$ hollow nanofibers is thoroughly discussed, along with the assistance of first-principles calculations. Both the formation of hollow structure and Cu doping contribute to provide more active sites, and meanwhile a little CuO can form p–n heterojunctions with In$_2$O$_3$ and react with H$_2$S, resulting in significant improvement of gas sensing performance. The Cu–In$_2$O$_3$ hollow nanofibers can be tailored for practical application to selectively detect H$_2$S at lower concentrations.

Keywords: electrospinning; Cu-doped In$_2$O$_3$; hollow nanofibers; H$_2$S detection

1 Introduction

Hydrogen sulfide (H$_2$S) is a highly toxic reducing gas, which can pose major hazards to the living environment and health of human being. The main sources of H$_2$S gas are oil and gas wells, crude oil refining, coal gasification plants, decomposition of sulfur-containing organic matter, and food processing industries [1–3]. Continuous exposure to H$_2$S at a concentration of over 10 ppm will cause serious health hazards, such as coma, severe poisoning, rapid apnea, and inactivation of the olfactory system, etc. [4,5]. If the H$_2$S concentration exceeds 250 ppm, it will endanger life and even bring about death [6,7]. Therefore, the effective detection and monitoring of H$_2$S is particularly important, so that it poses a great challenge for researchers to develop high-performance H$_2$S sensors.
In recent years, metal oxide semiconductors (MOSs), such as ZnO, In$_2$O$_3$, SnO$_2$, TiO$_2$, CuO, and WO$_3$ [8–13], have been widely used for detecting various gases (involving NO$_2$ [14], CO [15], H$_2$S [16], Cl$_2$ [17], ethanol [18], acetone [19], etc.) due to the advantages of high sensitivity, good selectivity, fast response and recovery characteristics, and long-term stability [20]. Among them, In$_2$O$_3$, as a typical n-type semiconductor material, possesses high sensitivity and selectivity in the detection of H$_2$S owing to its wide bandgap of ~3.6 eV, good electrical conductivity, and excellent catalytic activity [1,3,21]. Considering that In$_2$O$_3$ is suitable for gas sensors, there are demands for more accurate response to the gas to be detected and improved selectivity in identifying the target gas. According to the previous reports, there are three main technical means to enhance the gas sensing performance of In$_2$O$_3$: (i) modulating the material morphology to achieve larger specific surface area [22,23]; (ii) elemental doping to cause changes in the grain size and energy band structure of the material [24,25]; (iii) compounding with other semiconductor materials to build heterogeneous structures [26,27]. Actually, all the three aspects are essentially designed to provide more active sites. For instance, Wei et al. [25] synthesized La-doped In$_2$O$_3$ (La–In$_2$O$_3$) hollow microspheres using a hydrothermal process, and obtained the highest response of 17.8 to 10 ppm H$_2$S, which is approximately 4.8 times higher than that of pristine In$_2$O$_3$ at 200 °C. Li et al. [27] fabricated a bamboo-like CuO/In$_2$O$_3$ heterostructure via a solvothermal method, and achieved the response of 229.3 to 5 ppm H$_2$S, which can be mainly attributed to the severe sulfation of CuO by H$_2$S, as a result of that the resistance value cannot be restored naturally. At present, the related investigations on In$_2$O$_3$-based H$_2$S gas sensors are still not extensive, and some H$_2$S sensors present the disadvantages of low sensitivity, difficulty in recovering the resistance, and poor stability. Especially for the H$_2$S sensors with high response value, the complete recovery mostly requires a thermal pulse assistance or high temperature environment exceeding 500 °C [27,28]. Hence, further explorations are needed to solve these problems.

The options of material morphology and additives are particularly critical for the enhancement of gas sensing performance. The hollow nanofibers or nanotubes are gradually attracting the attention of researchers, since these hollow structures with high aspect ratio show excellent promise for gas sensing application. For instance, Zeng et al. [23] synthesized pearl-necklace-shaped In$_2$O$_3$ nanotubes by electrospinning and calcination, indicating a higher response of 38.3 to 100 ppm formaldehyde, and the shorter response and recovery time (6 and 16 s, respectively) compared with the corresponding non-hollow In$_2$O$_3$ nanofibers. Noted that the p-type CuO-based H$_2$S sensors can show the enhanced sensing performance by establishing p–n heterojunctions and sulfation reaction. For instance, Park et al. [29] synthesized highly porous SnO$_2$–CuO hollow nanofibers using a combination of electrospinning and annealing, showing an extremely high response of 1395 to 5 ppm H$_2$S at 200 °C and short response time of about 5.27 s. In short, hollow nanofibers are of great significance for the improvement of gas sensing performance, and especially few investigations on H$_2$S sensor based on In$_2$O$_3$ hollow nanofibers were explored.

In this study, pristine In$_2$O$_3$ and Cu-doped In$_2$O$_3$ (Cu–In$_2$O$_3$) hollow nanofibers were prepared by electrospinning and calcination. The Cu doping concentration and the operating temperature of the sensor were optimized to improve its gas sensing performance to H$_2$S. The as-fabricated pristine In$_2$O$_3$ and Cu–In$_2$O$_3$ hollow nanofibers were eventually used to detect H$_2$S gas at concentrations of 1–100 ppm at 150–300 °C. Meanwhile, the selectivity of 6%Cu–In$_2$O$_3$ to H$_2$S was investigated experimentally. Finally, the mechanism of gas sensitivity enhancement of Cu–In$_2$O$_3$ hollow nanofibers was discussed by incorporating the first-principles calculations. The Cu–In$_2$O$_3$ hollow nanofiber sensor can achieve high response to H$_2$S, and its excellent sensing performance will increase potential as an efficient candidate for gas sensors. Likewise, our work overcomes the problem that it is difficult for H$_2$S gas sensors with high response to recover naturally.

2 Experimental

2.1 Chemical reagents

All the chemicals, involving indium nitrate (In(NO$_3$)$_3$·4.5H$_2$O), copper nitrate trihydrate (Cu(NO$_3$)$_2$·3H$_2$O), N,N-dimethylformamide (DMF), and polyvinylpyrrolidone (PVP) ($M_w = 1,300,000$), were obtained commercially from Sinopharm Chemical Reagent Co., Ltd. and Aladdin Chemistry Co., Ltd., which were of analytical-reagent grade and directly used without any purification.
2.2 Preparation of pristine In$_2$O$_3$ and Cu–In$_2$O$_3$ hollow nanofibers

The pristine In$_2$O$_3$ hollow nanofibers were prepared by a combination of electrospinning and calcination processes. In(NO$_3$)$_3$$\cdot$4.5H$_2$O (0.4 g) was firstly dissolved in a solution composed of ethanol (5.5 mL) and DMF (4.5 mL) by stirring for 30 min to obtain a homogeneous electrospin solution, and then PVP (0.8 g) was added into the above solution and stirred vigorously at room temperature for 12 h. Subsequently, the as-prepared precursor solution was moved into a 10 mL syringe using a stainless steel needle of Ø0.4 mm. The voltage was maintained at 15 kV during the spinning process, the distance between the needle tip and the collector was ~15 cm, and the injection rate of the syringe was 0.6 mL/h. After electrospinning, the nanofibers on the silicone oil paper were collected and then dried at 60 $^\circ$C for 12 h. Finally, the as-obtained nanofibers were calcined at 500 $^\circ$C for 2 h in air.

The preparation of x$\%$Cu–In$_2$O$_3$ (x = 2, 4, 6, 8) hollow nanofibers was performed by an identical process to that of pristine In$_2$O$_3$ hollow nanofibers except the different addition amount of Cu(NO$_3$)$_2$$\cdot$3H$_2$O together with In(NO$_3$)$_3$$\cdot$4.5H$_2$O, where x is the nominal molar ratio of Cu to In. Figure 1 shows the schematic of preparation and formation of Cu–In$_2$O$_3$ hollow nanofibers.

2.3 Material characterization

The crystal structures and phase composition of the as-fabricated nanofibers were characterized by X-ray diffraction (XRD; Bruker D8 Advance, Cu K$_\alpha$, λ = 1.5418 Å) in the 2θ range of 15°–70°. The structures of pristine In$_2$O$_3$ and x$\%$Cu–In$_2$O$_3$ were refined based on the In$_2$O$_3$ (ICSD Code #14387) model using the Rietveld type method supported by the FullProf software, as a result of that the corresponding lattice constants can be obtained. The morphologies and microstructures of the as-fabricated materials were observed and analyzed by scanning electron microscopy (SEM; FEI, Nova Nano 450) and high-resolution transmission electron microscopy (HRTEM; JEOL JEM 2100F, 200 kV) coupled with selected area electron diffraction (SAED) and energy-dispersive spectroscopy (EDS). The N$_2$ adsorption–desorption isotherms were acquired using an adsorption instrument (Micrometrics, ASAP 2460), and the specific surface area was calculated by the Brunauer–Emmett–Teller (BET) method. X-ray photoelectron spectroscopy (XPS; Thermo Scientific K-Alpha) measurements were performed for surface element analysis.

2.4 Gas-sensor fabrication and performance test

The as-fabricated pristine In$_2$O$_3$ and x$\%$Cu–In$_2$O$_3$ nanofibers (~2 mg) were uniformly dispersed in ethanol (50 μL) by ultrasonic vibration for 30 min, and then a pipette (10 μL) was used to apply the resulting pastes on the surfaces of alumina substrates (i.e., Pt-coated alumina electrodes). Here, the Pt-coated alumina electrodes were purchased from Wuhan Huachuang Ruike Technology Co., Ltd., China. Afterwards, the nanofiber-coated substrates were dried in an oven for 60 min to remove ethanol, and aged in a furnace at 250 $^\circ$C for 24 h to improve the stability of the sensitive materials. The as-obtained substrates were put into the dynamic four-channel gas sensor test system (SD101) to test the performance index of the gas sensors towards the target gases. The gas sensor test system consists of five components: gases source, test electrodes, a four-channel co-mingled gas flow control module, an aluminum alloy test chamber, and a data acquisition system, as shown in Fig. S1 in the Electronic Supplementary Material (ESM). Here, N$_2$ serves as the base gas for 100 ppm target gases (H$_2$S, NO$_2$, NH$_3$, and SO$_2$) in the measurement.

Fig. 1 Schematic of preparation and formation of Cu–In$_2$O$_3$ hollow nanofibers.
According to the formula $\rho = m/v$, the stacking density of pristine In$_2$O$_3$ and Cu–In$_2$O$_3$ hollow nanofibers on the electrode is estimated to be ~0.64 g/cm3, where ρ is the stacking density, m is the mass of nanofiber coating on the electrode, and v is the volume of the coating. Typically, for an n-type semiconductor the response (R) of a sensor is specified as R_s/R_p, and the response/recovery time (τ_{re}/τ_{rec}) is defined as the one required for 90% change in sensor resistance in the target gas and air, respectively.

2.5 Computational method

In this work, all the calculations were performed based on the density functional theory (DFT) as implemented in the VASP code [30]. The Perdew–Burke–Ernzerhof (PBE) of generalized gradient approximation (GGA) was chosen as the exchange–correction functional [31]. The kinetic energy cutoff was selected to be 450 eV and a $3 \times 3 \times 1$ k-points mesh was sampled. A vacuum space of \geq 30 Å was set in the unit cell to minimize the interactions of the system and its replicas derived from the periodic boundary conditions [32]. The van der Waals interactions were amended by analyzing the interactions of pristine In$_2$O$_3$ or 6%Cu–In$_2$O$_3$ nanofibers with gas molecules using vdW-D3 [33]. All the atomic structures were completely relaxed until the force on each atom was less than 0.01 eV/Å. The energy convergence criteria were set to be 10^{-4} eV. After structure optimization, the unit cell parameters of pristine In$_2$O$_3$ were $a = 14.60$ Å, $b = 14.60$ Å, $c = 30$ Å, $\alpha = 90.00^\circ$, $\beta = 90.0099^\circ$, $\gamma = 120.00^\circ$. To be basically consistent with the experiment and ensure the accuracy and validity of calculation, the (111) surface of In$_2$O$_3$ (In$_{32}$O$_{72}$) was adopted and the 6%Cu–In$_2$O$_3$ structure was In$_{18}$Cu$_2$O$_{72}$. The adsorption energy (E_{ads}) was calculated using Eq. (1) [34]:

$$E_{ads} = E_{gas@slab} - E_{slab} - E_{gas} \quad (1)$$

where $E_{gas@slab}$, E_{slab}, and E_{gas} are the energies of the total system (gas adsorbed on the slab, pristine In$_2$O$_3$ or 6%Cu–In$_2$O$_3$), the slab of pristine In$_2$O$_3$ or 6%Cu–In$_2$O$_3$, and the adsorbed gas molecules, respectively.

3 Results and discussion

3.1 Structure and morphology

Figure 2(a) shows the XRD patterns of pristine In$_2$O$_3$ and Cu–In$_2$O$_3$ hollow nanofibers. The XRD patterns of all the samples well correspond to the characteristic peaks of cubic In$_2$O$_3$ (JCPDS No. 06-0416), and no peaks derived from Cu-related compounds are observed as the amount of Cu doping is below 6%. This is due to the fact that most of the Cu$^{2+}$ ions enter the In$_2$O$_3$ lattice to cause lattice distortion, without formation of new products. On the other hand, it is difficult to detect the low concentration of CuO by the X-ray diffraction. However, a visible characteristic peak (111) of CuO except the (002) appears while introducing 8% Cu$^{2+}$. Moreover, the main diffraction peak indexed to the (222) crystal plane of the Cu–In$_2$O$_3$ hollow nanofibers shifts slightly toward the larger diffraction angle compared with the XRD pattern of pristine In$_2$O$_3$ hollow nanofibers (Fig. 2(b)). This is because Cu$^{2+}$ (0.72 Å) with a smaller ion radius enters into the In$_2$O$_3$ lattice instead of In$^{4+}$ (0.81 Å) ions with a larger ion radius, which can cause the lattice spacing to shrink, resulting in the lattice contraction. The Rietveld refinement profile for 6%Cu–In$_2$O$_3$ based on the cubic crystal structure (space group, $Ia\bar{3}$) reveals that the final agreement factors converge to R_p 10.5%, R_{exp} 11.8%, and R_{exp} 4.55% (Fig. 2(c)). The lattice constant decreases monotonously with the Cu doping concentration increasing (Fig. 2(d)), and the similar results were reported [35,36]. The above results indicate that a large portion of Cu$^{2+}$ ions is doped into the In$_2$O$_3$ lattice and a small portion is applied to generate CuO.

The SEM images of pristine In$_2$O$_3$ and x%Cu–In$_2$O$_3$ hollow nanofibers indicate the hollow structure, as shown in Fig. 3. The surface rough of In$_2$O$_3$ hollow nanofibers is gradually decreased with the Cu doping concentration increasing from 0 to 8%, and the 8%Cu–In$_2$O$_3$ hollow nanofibers are broken into the shorter ones with visible fracture (Fig. 3(f)). Meanwhile, the diameter and wall thickness of In$_2$O$_3$ hollow nanofibers decrease in varying degrees with the Cu doping concentration increasing. In particular, the diameters and average wall thickness of pristine In$_2$O$_3$ hollow nanofibers are of ~200–400 nm and 20 nm, respectively, and the diameter of 6%Cu–In$_2$O$_3$ hollow nanofibers is ~150–180 nm. Hence, the doping of Cu can reduce the diameter of In$_2$O$_3$ nanofibers. Actually, the finer hollow nanofibers can provide more adsorption sites for gas, which is more conducive to the improvement of gas sensitivity. The formation of the hollow structure is due to the Kirkendall effect that occurs during the heat treatment, where atoms are exchanged with vacancies.
Fig. 2 (a) XRD patterns of pristine In$\textsubscript{2}$O$_3$ and Cu–In$\textsubscript{2}$O$_3$ nanofibers with various Cu doping concentrations. (b) Enlarged XRD patterns at 2θ of 28°–38°. (c) Rietveld refinement profile for 6%Cu–In$_2$O$_3$. (d) Variation of lattice constant with the Cu doping concentration.

Fig. 3 SEM images of (a) pristine In$_2$O$_3$, (b) 2%Cu–In$_2$O$_3$, (c) 4%Cu–In$_2$O$_3$, (d, e) 6%Cu–In$_2$O$_3$, and (f) 8%Cu–In$_2$O$_3$ hollow nanofibers. The SEM image at lower left corner of (a) denotes the pristine In$_2$O$_3$ precursor nanofibers before calcination.

after the removal of PVP, with In and Cu atoms forming In$_2$O$_3$ and CuO, and diffusing rapidly toward the surface [29,37], as shown in Fig. 1. On the other hand, the formation of the hollow structure is also related to the rate of temperature increase. Actually, the high rate of temperature increase can cause the high decomposition rate of PVP. The rate of gas release is greater than that of gas diffusion through the fiber surface as the decomposition rate of PVP is higher, so that the increase of internal pressure of the fiber is higher than that of
the external pressure, resulting in the formation of hollow nanofibers [38].

The 6%Cu–In2O3 hollow nanofibers were further characterized by using HRTEM, SAED, and EDS mapping, as shown in Fig. 4. The HRTEM image (Fig. 4(b)) reveals that the lattice fringe spacings of 0.29 and 0.41 nm correspond to the (222) and (211) crystal planes of In2O3, respectively. Based on the previous reports [27,36], the crystal plane corresponding to a lattice fringe spacing of 0.25 nm is the CuO (002). The SAED pattern (Fig. 4(c)) corresponds to the (211), (222), (400), (332), (431), (440), (622), (741), and (844) crystal planes of In2O3 and the (002) and (422) crystal planes of CuO, which can be attributed to the fact that excessive Cu2+ ions diffuse into the surface of In2O3 hollow nanofibers to form CuO nanoparticles. The EDS elemental mapping results indicate the homogeneous distribution of In, O, and Cu elements in the Cu-doped hollow nanofibers (Figs. 4(e)–4(g)).

Figure 5 shows the nitrogen adsorption–desorption isotherms and BJH pore size distributions of pristine In2O3 and 6%Cu–In2O3 hollow nanofibers. The calculated specific surface area of 6%Cu–In2O3 nanofibers is 71.6 m²/g, which is higher than that of pristine In2O3 nanofibers (60.7 m²/g). Note that this specific surface area value is much larger than those (< 40 m²/g) of other In2O3-based hollow nanofibers or nanotubes [39–41]. The pore sizes (calculated by BJH equation) on the walls of pristine In2O3 and 6%Cu–In2O3 nanofibers are distributed in ~2–55 and 2–70 nm, respectively (insets of Fig. 5), indicating that the Cu doping can cause the slight enlargement of pore on the wall.

![Fig. 4](image-url) (a, d) TEM and (b) HRTEM images, and the corresponding (c) SAED pattern and (e–g) EDS elemental mapping of 6%Cu–In2O3 hollow nanofibers.
To examine the surface elemental compositions and chemical states of the pristine In$_2$O$_3$ and 6%Cu–In$_2$O$_3$ hollow nanofibers, XPS analysis was performed, as shown in Fig. 6. The two survey spectra show that the pristine In$_2$O$_3$ nanofibers are only composed of In, O, and C elements, while there is also Cu element in 6%Cu–In$_2$O$_3$ nanofibers, which further proves the presence of Cu element (Fig. 6(a)). In the spectra of In 3d (Fig. 6(b)), the peak positions of In 3d$_{5/2}$ and In 3d$_{3/2}$ move from 444.38 to 444.48 eV and from 451.98 to 452.08 eV after the Cu doping, respectively, due to the electron transfer from In$_2$O$_3$ to CuO [26]. For the O 1s spectra (Fig. 6(c)), three fitting peaks can be obtained by Gauss fitting, and these binding energies are located at 530.09, 531.21, and 532.49 eV for pristine In$_2$O$_3$ and 530.19, 531.55, and 532.73 eV for 6%Cu–In$_2$O$_3$, which can be assigned to lattice oxygen (O$_L$), oxygen vacancy (O$_V$), and chemically adsorbed oxygen (O$_C$), respectively [38]. The percentages of O$_L$, O$_V$, and O$_C$ in the pristine In$_2$O$_3$ are 34.30%, 20.51%, and 45.19%, while those of O$_L$, O$_V$, and O$_C$ in the 6%Cu–In$_2$O$_3$ are 34.48%, 36.80%, and 28.72%, respectively.
indicating that the number of oxygen vacancies in the 6%Cu–In2O3 nanofibers is higher than that in the pristine In2O3 nanofibers. The increased oxygen vacancies can provide much more adsorption sites, thus enhancing the sensitivity of the sensor [41,42]. The binding energies of Cu 2p peak (Fig. 6(d)) are around 933.35 and 952.96 eV, corresponding to Cu 2p3/2 and Cu 2p1/2, respectively, with the binding energy difference of ~19.61 eV. Furthermore, there are strong satellite peaks of Cu2+, demonstrating that the Cu element exists in the form of Cu2+ [27].

3.2 Gas sensing properties

As we know, the operating temperature is one of the crucial indexes to evaluate the performance for MOS-based gas sensors, and it can highly affect the adsorption and desorption of gases and surface interactions. To determine the optimum operating temperature, the pristine In2O3 and Cu–In2O3 hollow nanofibers were tested for response to 100 ppm H2S at 150–300 °C, as shown in Fig. 7(a). Obviously, the optimum operating temperature is 250 °C, and the responses of Cu–In2O3 nanofiber based sensors to H2S are far higher than that of pristine In2O3 nanofibers within the test temperature range. In particular, the response of 6%Cu–In2O3 nanofiber based sensor is the highest (4201.5) while employing the optimum operating temperature, which is over 100 times higher than that of pristine In2O3 nanofibers within the test temperature range. The responses of all the sensors to H2S gradually increase with the temperature increasing from 150 to 250 °C, and then decrease with the temperature increasing from 250 to 300 °C. This is because the gas adsorption capacity becomes weaker at higher temperatures, allowing for easy desorption before surface reactions occur, as a result of that the response decreases in varying degrees with the further increase of temperature [43].

The responses of pristine In2O3 and 6%Cu–In2O3 nanofiber based sensors to H2S at different concentrations (1–100 ppm) were also investigated at 250 °C, and the dynamic response/recovery curves are shown in Figs. 7(b) and 7(c). As expected, the response increases with the gas concentration increasing. The responses of pristine In2O3 and 6%Cu–In2O3 based sensors to 1, 3, 5, 10, 20, 50, 80, 100 ppm H2S are 1.2, 1.5, 1.7, 2.8, 5.6, 14.04, 19.8, 29.3 and 1.5, 4.2, 9, 15.1, 46.22, 316.7, 862.2, 4201.5, respectively. Especially, the responses of 6%Cu–In2O3 based sensor to 50 and 100 ppm H2S are 22 and 143 times higher than those of pristine In2O3 (Fig. S2 in the ESM). The resistance of 6%Cu–In2O3 is significantly higher than that of the pristine In2O3, which is conducive to the increase of response. It is difficult for the resistance to recover after the pristine In2O3 interacts with H2S, leading to the decreasing resistance with the increase of gas concentration. Although the resistance of 6%Cu–In2O3 nanofiber based sensor can be restored, it takes a long time, namely that the recovery time is over 400 s at 100 ppm.

Figure 7(d) presents the response versus gas concentration for the pristine In2O3 and 6%Cu–In2O3 hollow nanofiber based sensors. For the pristine In2O3 based sensors, the response shows a linear relationship with the concentration of H2S. However, for 6%Cu–In2O3 based sensors, the response is increased dramatically after 20 ppm, which is mainly related to the reversible chemical reaction of CuO with H2S [44], the role of oxygen vacancy, and the reaction of surface oxygen ions with H2S, as discussed below. Figure 7(e) shows their variations of response time with the H2S concentration, where the response time is calculated from the two dynamic curves (Figs. 7(b) and 7(c)). As expected, the response time decreases with the gas concentration increasing, and the response time of the 6%Cu–In2O3 based sensor is significantly less than that of the pristine In2O3 at each concentration of H2S. The response time of the 6%Cu–In2O3 is 24 and 18 s while employing 50 and 100 ppm H2S, which is 20 and 12 s less than that of the pristine In2O3 based sensor, respectively (Fig. S2 in the ESM). The response and recovery time of 6%Cu–In2O3 based sensor for 1 ppm H2S is ~125 and 175 s, respectively. Moreover, the response time is shortened rapidly as the gas concentration exceeds 5 ppm.

Good selectivity is one of the basic requirements for a gas sensor to avoid the interference of other gases during the sensing process. To investigate their selectivity, the responses of pristine In2O3 and 6%Cu–In2O3 based sensors to 100 ppm H2S and other gases, involving NO2, NH3, SO2, ethanol, and acetone, were recorded at 250 °C. It reveals that the response (4201.5) of 6%Cu–In2O3 based sensor to H2S is remarkably superior to other gases, exhibiting excellent selectivity (Fig. 7(f)).

We also checked the current–voltage (I–V) characteristics of 6%Cu–In2O3 based sensor at various temperatures in air. As shown in Fig. S3 in the ESM, the I–V curves of 6%Cu–In2O3 are linear, indicating the formation of ohmic contact between the 6%Cu–In2O3 and Pt electrode [44]. Moreover, the reciprocal of slope (i.e., resistance) decreases with the temperature
increasing, which is in good agreement with the characteristic of n-type semiconductor.

Humidity is also an essential aspect to be considered for gas sensors in practical applications. The effect of humidity on the sensing performance of 6%Cu–In2O3 based sensor was investigated, as shown in Figs. 8(a) and 8(b). The response to 20 ppm H2S shows a decreasing trend as the relative humidity is increased from 0 to 65%. This is due to the reduced interaction between the sensing material and H2S gas, since more water molecules are adsorbed on the nanofiber surface under higher humidity, weakening the adsorption of H2S on the sensing material [45,46]. In particular, the response still remains 29.3 (~60% of the initial value) as the relative humidity arrives at 65%, indicating that the 6%Cu–In2O3 based sensor can be used to detect H2S under higher humidity.

Whether in scientific research or industrial production, the reproducibility and stability at the optimum operating temperature of sensors are essential for accurate monitoring of the target gas. Figure 8(c) illustrates the reproducibility of the 6%Cu–In2O3 based sensor for consecutive exposure and removal of 50 ppm H2S (5 cycles), indicating that the sensor performs well in 5-cycle test with response of 350.7 ± 38.6 (Fig. 8(d)). The sensor also has a good stability in sensing performance due to no obvious fluctuation in the variations of resistance and response/recovery rate during sensing. Moreover, the response of 6%Cu–In2O3 based sensor to 50 ppm H2S for continuous 33 days presents a non-significant decrease (Fig. 8(e)), showing good long-term stability.

Table 1 lists the responses and response time of In2O3-based sensors to 50 and 100 ppm H2S at ≥ 150 °C for sensing performance comparison. As shown in Table 1, the response of In2O3-based sensors to 50 ppm H2S at 200–300 °C varies from 1.08 to 350.7, with the response time of ~2–60 s, indicating that the as-fabricated 6%Cu–In2O3 based sensor has the highest response to 50 ppm H2S. Similarly, the response of 6%Cu–In2O3 based sensor to 100 ppm H2S is far higher than those of other In2O3-based sensors except the comparable value of Mg–In2O3 nanotubes. In short, the as-fabricated 6%Cu–In2O3 based sensor has the highest response to H2S under the comparable conditions compared with the reported In2O3-based sensors. Thus, the Cu–In2O3 hollow nanofibers fabricated by a combination of electrospinning and subsequent calcination have a promising application prospect in H2S gas sensing.
Fig. 8 (a, b) Responses of 6%Cu–In2O3 based sensor to 20 ppm H2S at various relative humidity. (c, d) Reproducibility and (e) long-term stability of 6%Cu–In2O3 based sensor to 50 ppm H2S at 250 °C.

Material	Morphology	Temp. (℃)	Conc. (ppm)	Response Rf/Rg	τres (s)	Ref.
In2O3	Porous thin film	300	50	25	16	[47]
In2O3	Nanocubes	268.5	50	125	2	[48]
In2O3	Nanocrystals	270	50	149	2	[49]
In2O3	Nanocrystals	270	100	−185	2	[49]
ZnO/In2O3	Nanorods	300	50	−1.08	—	[50]
ZnO/In2O3	Nanorods	300	100	−1.1	750	[50]
La–In2O3	Hollow microspheres	200	50	50.3	−48	[25]
Pt–In2O3	Nanofibers	200	50	100	−60	[51]
Pt–In2O3	Nanofibers	200	100	−300	−60	[51]
Au–In2O3	Nanowires	300	50	301.5	35	[52]
Eu–In2O3	Nanobelts	260	100	5.74	11	[53]
Cu–In2O3	Hollow spheres	371	100	7.5	—	[54]
Pd–In2O3	Hollow spheres	371	100	8.7	—	[54]
Mg–In2O3	Nanotubes	150	100	2241.6	—	[55]
6%Cu–In2O3	Hollow nanofibers	250	50	350.7	24	This work
6%Cu–In2O3	Hollow nanofibers	250	100	4201.5	19	

3.3 Sensing mechanism

There are many factors affecting the gas sensing behavior of 6%Cu–In2O3 based sensor, and the reasons for the improved sensing performance are mainly reflected in the following aspects.

(1) The increase of oxygen vacancy concentration derived from the Cu doping. The substitution of Cu2+ ions for In3+ ions can generate additional oxygen vacancies, and meanwhile defects involving oxygen vacancies can dominate the physical and chemical properties of oxide materials and serve as the preferred adsorption
sites for gas molecules [24,37]. So, the as-prepared Cu–In$_2$O$_3$ has great advantages in gas adsorption. Moreover, the doped hollow nanofibers have larger specific surface area, which can significantly promote surface interactions by providing more active adsorption sites, resulting in the enhancement of gas-sensitive response.

(2) The redox reactions occurred on the material surface.

(i) The reaction of adsorbed oxygen with H$_2$S. When the n-type In$_2$O$_3$ is exposed to air, O$_2$ in the air can capture electrons in the conduction band of In$_2$O$_3$ with certain energy, forming electron depletion layer on the surface. Under the operating temperature (250 °C), there are mainly oxygen ions in the forms of O$^-$ and O$_2^-$ adsorbed on the 6%Cu–In$_2$O$_3$ nanofibers [9,56], so that the H$_2$S is oxidized to H$_2$O and SO$_2$ by the oxygen ions when exposed to H$_2$S (Fig. 9(a)), and meanwhile electrons are released. The sensing reactions are shown in Eqs. (2) and (3):

$$\text{H}_2\text{S}(g) + 3\text{O}^-(\text{ads}) \rightarrow \text{H}_2\text{O}(g) + \text{SO}_2(g) + 3e^- \quad (2)$$

$$2\text{H}_2\text{S}(g) + 3\text{O}_2^-(\text{ads}) \rightarrow 2\text{H}_2\text{O}(g) + 2\text{SO}_2(g) + 3e^- \quad (3)$$

The electrons are released into the conduction band of In$_2$O$_3$ in this process, so the resistance tends to decrease.

(ii) The reaction of CuO with H$_2$S. According to previous reports [29,57], CuO can be converted to Cu$_2$S when the 6%Cu–In$_2$O$_3$ based sensor is exposed to H$_2$S at a temperature of over 200 °C. The resistance of the material can decrease rapidly because Cu$_2$S has high electrical conductivity, and the chemical reaction is shown in Eq. (4):

$$6\text{CuO}(s) + 4\text{H}_2\text{S}(g) \rightarrow 3\text{Cu}_2\text{S}(g) + 4\text{H}_2\text{O}(g) + \text{SO}_2(g) \quad (4)$$

Once air is passed through to remove H$_2$S, Cu$_2$S will be oxidized slowly by the atmospheric oxygen and the resistance will begin to recover, the following reaction (Eq. (5)) will occur.

$$\text{Cu}_2\text{S}(s) + 2\text{O}_2(g) \rightarrow 2\text{CuO}(s) + \text{SO}_2(g) \quad (5)$$

However, the generation of too much Cu$_2$S can make the resistance difficult to recover to the original state in air, as a result of that the response tends to decrease when the Cu doping concentration exceeds 6%.

(3) Formation of p–n heterojunction. The electrons in In$_2$O$_3$ and holes in CuO flow in opposite directions due to the inhomogeneous carrier concentration as the p-type CuO is in contact with n-type In$_2$O$_3$ [58,59]. During this process, the energy band bends until the Fermi energy level (E_F) of the two materials reaches equilibrium, forming p–n heterojunctions with the electron depletion layer at the CuO/In$_2$O$_3$ interface (Fig. 9(b)). The p–n heterojunction can exhibit high resistance state, and offer a greater range of resistance drop for 6%Cu–In$_2$O$_3$ based sensor in H$_2$S gas, thus enhancing the gas sensing performance.

Fig. 9 Schematic illustrations of (a) the gas sensing mechanism of Cu-doped In$_2$O$_3$ nanofibers and (b) the formation of CuO/In$_2$O$_3$ heterojunction.
The first-principles calculations based on VASP were conducted with DFT to explain the gas adsorption mechanism of 6%Cu–In$_2$O$_3$(111) from the atomic scale. Although CuO can react with H$_2$S, here we ignore the role of CuO in the chemical reaction and only investigate the doping effect of Cu. We calculated the adsorption energies of the six gases with different atoms adsorbed on the In and Cu sites on the surface of the constructed model. Figures 10(a)–10(d) show the structural models with the adsorption energy for H$_2$S gas, and the other gas adsorption structural models are shown in Fig. S4 in the ESM. The calculated adsorption energies and charge transfer (Δq) of the six gases (H$_2$S, NO$_2$, SO$_2$, NH$_3$, ethanol, and acetone) on the surface of pristine In$_2$O$_3$(111) and 6%Cu–In$_2$O$_3$(111) nanofibers are listed in Fig. 10(e) and Table S1 in the ESM. Compared with the pristine In$_2$O$_3$ nanofibers, the adsorption energy of the four gas molecules (H$_2$S, NO$_2$, NH$_3$, and acetone) on the 6%Cu–In$_2$O$_3$(111) increase in varying degrees except the two comparable values of SO$_2$ and ethanol, and especially that of H$_2$S increases sharply from 2.22 to 3.88 eV, indicating that the gas adsorption capacity of H$_2$S gas is greatly enhanced by the Cu doping, which can contribute to the high response and selectivity. Moreover, from the perspective of charge transfer, H$_2$S loses the maximum electron of 0.73e as donor to the 6%Cu–In$_2$O$_3$ when the target gas is adsorbed on the 6%Cu–In$_2$O$_3$(111) (Table S1 in the ESM), showing the highest response and good selectivity of 6%Cu–In$_2$O$_3$ to H$_2$S (Fig. 7(f)). However, the H$_2$S molecules are dissociated during the adsorption of H$_2$S on 6%Cu–In$_2$O$_3$ (Figs. 10(c) and 10(d)). This is because H$_2$S is strongly reductive and H$_2$S undergoes deprotonation reaction through the action of S atoms and Cu$^{2+}$ to form HS and H [60], leading to the increase in the adsorption energy as well, which contributes to the high selectivity of 6%Cu–In$_2$O$_3$ to H$_2$S.

Moreover, the reason why the Cu doping can promote the sensing performance of In$_2$O$_3$ is explained. Actually, the gas adsorption can alter the work function (W) of materials. So, the work function induced by gas adsorption has become a promising way to describe the change of current densities to evaluate the sensor properties [61], and the current density in vacuum is described by [62]:

$$j = AT^2 \exp\left(-\frac{W}{kT}\right)$$

where A, T, and W represent the Richardson constant (A/m2), temperature (K), and work function (eV), respectively. There is a negative correlation between W. Figure 10(f) shows the work function of In$_2$O$_3$(111) and 6%Cu–In$_2$O$_3$(111) before and after H$_2$S adsorption.

![Fig. 10](image-url) Top and side views of the configurations for (a, b) H$_2$S adsorbed on In$_2$O$_3$(111), (c, d) H$_2$S adsorbed on 6%Cu–In$_2$O$_3$(111), obtained by DFT calculations. (e) Adsorption energy of different gas molecules adsorbed on In$_2$O$_3$(111) and 6%Cu–In$_2$O$_3$(111). (f) Work function of In$_2$O$_3$(111) and 6%Cu–In$_2$O$_3$(111) before and after H$_2$S adsorption.

www.springer.com/journal/40145
the current density and work function. The calculated work functions are shown in Fig. 10(f), indicating that the work function of In$_2$O$_3$(111) is 6.27 eV and that the work function reduces to 6.11 eV after Cu doping. So, it is easier for electrons to move from the inside to the surface of the substrate, which is benefit for gas adsorption of 6% Cu–In$_2$O$_3$(111). When H$_2$S is adsorbed on In$_2$O$_3$(111) (H$_2$S@In$_2$O$_3$(111)), the work function keeps basically unchanged. However, the work function decreases by 0.34 eV when H$_2$S is adsorbed on 6% Cu–In$_2$O$_3$(111) (H$_2$S@6%Cu–In$_2$O$_3$(111)). Furthermore, the calculated DOSs indicate that the In$_2$O$_3$(111) shows the semiconductor properties, with the bandgap of 0.76 eV (Fig. 11(a)). After the Cu doping, the bandgap of Cu–In$_2$O$_3$(111) decreases to 0.11 eV (Fig. 11(b)), and much impurity levels are introduced around Fermi level (0 eV). When H$_2$S is adsorbed on In$_2$O$_3$(111), the bandgap of H$_2$S@In$_2$O$_3$(111) basically keeps consistent with that of In$_2$O$_3$(111), only with the movement of the Fermi level, and the s orbit of H atom and p orbit of H atom only contribute to the deep levels of the valence band (Fig. 11(c)). Specially, when H$_2$S is adsorbed on Cu–In$_2$O$_3$(111), a sharp peak appears at Fermi level due to the orbitals’ hybridization of d orbital of Cu and p orbital of S. Therefore, the Cu doping can promote the sensing performance of In$_2$O$_3$ to H$_2$S (Fig. 11(d)).

4 Conclusions

In this study, the pristine and Cu–In$_2$O$_3$ hollow nanofibers were prepared by a two-step method involving electrostatic spinning and annealing. A large portion of Cu$^{2+}$ ions are doped into the In$_2$O$_3$ lattice and a small portion are applied to generate CuO while employing 6% Cu doping. The 6% Cu doping can make the surface of nanofibers smooth, homogenize and refine the diameter of nanofibers, increase the specific surface area to a certain extent, and especially enhance the formation of oxygen vacancies. Gas sensing experiments and DFT calculations (involving the adsorption energy, work function, and DOS) demonstrate the excellent selectivity and sensing performance of 6% Cu-doped In$_2$O$_3$ to H$_2$S. The response of 6% Cu–In$_2$O$_3$ sensor can reach 350.7 and 4201.5 to 50 and 100 ppm H$_2$S at the optimum operation temperature of 250 °C, and the response time is only 24 and 19 s, respectively. In particular, the response of 6% Cu–In$_2$O$_3$ sensor to 1 ppm H$_2$S at the optimum operation temperature of 250 °C is 24 and 19 s, respectively.
H$_2$S reaches 1.5. Moreover, its response to 20 ppm H$_2$S gradually decreases from ~50 to 30 with the relative humidity increasing from 0 to 65%. The 6%Cu–In$_2$O$_3$ hollow nanofiber based sensor presents excellent sensing performance to H$_2$S gas owing to the following aspects: (1) the increase of oxygen vacancy concentration derived from the Cu doping; (2) the redox reactions of adsorbed oxygen and CuO with H$_2$S on the material surface; and (3) the formation of p–n heterojunction. This work can provide a promising approach to achieve high-performance In$_2$O$_3$-based gas sensor for H$_2$S detection.

Acknowledgements

This work was supported by the Key Research and Development Plan (BE20190094), Qing Lan Project ([2016]15), Six Talent Peaks Project (TD-XCL-004), and Graduate Research and Innovation Projects (5561220038) of Jiangsu Province. We are grateful for computational support from the High Performance Computing Platform of Jiangsu University, the Big Data Center of Southeast University, and the Advanced Computing East China Sub-center.

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s40145-021-0546-2.

References

[1] Kumar V, Majhi SM, Kim KH, et al. Advances in In$_2$O$_3$-based materials for the development of hydrogen sulfide sensors. Chem Eng J 2021, 404: 126472.

[2] Ali FIM, Awad F, Greish YE, et al. Hydrogen sulfide (H$_2$S) gas sensor: A review. IEEE Sens J 2019, 19: 2394–2407.

[3] Mirzaei A, Kim SS, Kim HW. Resistance-based H$_2$S gas sensors using metal oxide nanostructures: A review of recent advances. J Hazard Mater 2018, 357: 314–331.

[4] Annanouch FE, Haddi Z, Vallejos S, et al. Aerosol-assisted CVD-grown WO$_3$ nanoneedles decorated with copper oxide nanoparticles for the selective and humidity-resilient detection of H$_2$S. ACS Appl Mater Interfaces 2015, 7: 6842–6851.

[5] Zhu LY, Yuan KP, Yang JH, et al. Hierarchical highly ordered SnO$_2$ nanobowl branched ZnO nanowires for ultrasensitive and selective hydrogen sulfide gas sensing. Microsyst Nanoeng 2020, 6: 30.

[6] Wang MS, Luo Q, Hussain S, et al. Sharply-precipitated spherical assembly of ZnO nanosheets for low temperature H$_2$S gas sensing performances. Mater Sci Semicond Process 2019, 100: 283–289.

[7] Reja SI, Sharma N, Gupta M, et al. A highly selective fluorescent probe for detection of hydrogen sulfide in living systems: In vitro and in vivo applications. Chem A Eur J 2017, 23: 9872–9878.

[8] Zhu L, Zeng W. Room-temperature gas sensing of ZnO-based gas sensor: A review. Sens Actuat A: Phys 2017, 267: 242–261.

[9] Ma JW, Fan HQ, Zheng XK, et al. Facile metal-organic frameworks-templated fabrication of hollow indium oxide microstructures for chlorine detection at low temperature. J Hazard Mater 2020, 387: 122017.

[10] Li R, Chen S, Lou Z, et al. Fabrication of porous SnO$_2$ nanowires gas sensors with enhanced sensitivity. Sens Actuat B 2017, 252: 79–85.

[11] Liu SW, Wang MY, Liu GW, et al. Enhanced NO$_2$ gas-sensing performance of 2D Ti$_2$CO$_2$/TiO$_2$ nanocomposites by in situ formation of Schottky barrier. Appl Surf Sci 2021, 567: 150747.

[12] Chethana DM, Thanuca TC, Mahesh HM, et al. Synthesis, structural, magnetic and NO$_2$ gas sensing property of CuO nanoparticles. Ceram Int 2021, 47: 10381–10387.

[13] Liu D, Ren XW, Li YS, et al. Nanowires-assembled WO$_3$ nanomesh for fast detection of ppb-level NO$_2$ at low temperature. J Adv Ceram 2020, 9: 17–26.

[14] Wang MS, Jin CC, Luo Q, et al. Sol-gel derived TiO$_2$-carbon composites with adsorption-enhanced photocatalytic activity and gas sensing performance. Ceram Int 2020, 46: 18608–18613.

[15] Xiong Y, Tang ZL, Wang Y, et al. Gas sensing capabilities of TiO$_2$ porous nanoceramics prepared through premature sintering. J Adv Ceram 2015, 4: 152–157.

[16] Tan J, Hussain S, Ge CX, et al. ZIF-67 MOF-derived unique double-shelled CoO$_2$/NiCoO$_2$ nanocages for superior gas-sensing performances. Sens Actuat B: Chem 2020, 303: 127251.

[17] Ma JW, Fan HQ, Zhao N, et al. Synthesis of In$_2$O$_3$ hollow microspheres for chlorine gas sensing using yeast as bio-template. Ceram Int 2019, 45: 9225–9230.

[18] Song LF, Dou KP, Wang RR, et al. Sr-doped cubic In$_2$O$_3$/rhombohedral In$_2$O$_3$ homojunction nanowires for highly sensitive and selective breath ethanol sensing: Experiment and DFT simulation studies. ACS Appl Mater Interfaces 2020, 12: 1270–1279.

[19] Liu W, Xie YL, Chen TX, et al. Rationally designed mesoporous In$_2$O$_3$ nanofibers functionalized Pt catalysts for high-performance acetone gas sensors. Sens Actuat B: Chem 2019, 298: 126871.

[20] Araújo ES, Leão VNS. TiO$_2$/WO$_3$ heterogeneous structures prepared by electrospinning and sintering steps: Characterization and analysis of the impedance variation to humidity. J Adv Ceram 2019, 8: 238–246.

[21] Shen YB, Zhong XX, Zhang J, et al. In-situ growth of
mesoporous In$_2$O$_3$ nanorod arrays on a porous ceramic substrate for ppb-level NO$_2$ detection at room temperature. *Appl Surf Sci* 2019, **498**: 143873.

[22] Tao ZH, Li YW, Zhang B, et al. Synthesis of urchin-like In$_2$O$_3$ hollow spheres for selective and quantitative detection of formaldehyde. *Sens Actuat B: Chem* 2019, **298**: 126889.

[23] Zeng XG, Li S, He Y, et al. Gas sensors based on pearl-necklace-shaped In$_2$O$_3$ nanotubes with highly enhanced formaldehyde-sensing performance. *J Mater Sci: Mater Electron* 2019, **30**: 18362–18373.

[24] Zhao CH, Gong HM, Niu GQ, et al. Electrospun Ca-doped In$_2$O$_3$ nanotubes for ethanol detection with enhanced sensitivity and selectivity. *Sens Actuat B: Chem* 2019, **299**: 126946.

[25] Wei DD, Jiang WH, Gao HY, et al. Facile synthesis of La-doped In$_2$O$_3$ hollow microspheres and enhanced hydrogen sulfide sensing characteristics. *Sens Actuat B: Chem* 2018, **276**: 413–420.

[26] Sun YJ, Zhao ZT, Suematsu K, et al. Rapid and stable detection of carbon monoxide in changing humidity atmospheres using clustered In$_2$O$_3$/CuO nanospheres. *ACS Sens* 2020, **5**: 1040–1049.

[27] Li SH, Xie LL, He M, et al. Metal-organic framework-derived bamboo-like CuO/In$_2$O$_3$ heterostructure for high-performance H$_2$S gas sensor with Low operating temperature. *Sens Actuat B: Chem* 2020, **310**: 127828.

[28] Liang XS, Kim TH, Yoon JW, et al. Ultrasensitive and ultraselective detection of H$_2$S using electrospun CuO-loaded In$_2$O$_3$ nanofiber sensors assisted by pulse heating. *Sens Actuat B: Chem* 2015, **209**: 934–942.

[29] Park KR, Cho HB, Lee J, et al. Design of highly porous SnO$_2$–CuO nanotubes for enhancing H$_2$S gas sensor performance. *Sens Actuat B: Chem* 2020, **302**: 127179.

[30] Momma K, Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. *J Appl Cryst* 2011, **44**: 1272–1276.

[31] Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. *Phys Rev Lett* 1996, **77**: 3865–3868.

[32] Grimme S. Accurate description of van der Waals complexes by density functional theory including empirical corrections. *J Comput Chem* 2004, **25**: 1463–1473.

[33] Seixas L, Carvalho A, Castro Neto AH. Atomically thin dilute magnetism in Co-doped phosphorene. *Phys Rev B* 2015, **91**: 155138.

[34] Wang MY, Li LH, Zhao GH, et al. Influence of the surface decoration of phosphorene with Ag nanoclusters on gas sensing properties. *Appl Surf Sci* 2020, **504**: 144374.

[35] Vikrant K, Kumar V, Ok YS, et al. Metal-organic framework (MOF)-based advanced sensing platforms for the detection of hydrogen sulfide. *TrAC Trends Anal Chem* 2018, **105**: 263–281.

[36] Zhang C, Huan YC, Sun DJ, et al. Synthesis and NO$_2$ sensing performances of CuO nanoparticles loaded In$_2$O$_3$ hollow spheres. *J Alloys Compd* 2020, **842**: 155857–155866.

[37] Koo BR, Oh ST, Ahn HJ. Camphene effect for morphological change of electrospun SnO$_2$ nanofibres: From dense to fibre-in-hollow and to hollow nanostructures. *Mater Lett* 2016, **178**: 288–291.

[38] Zhang XL, Song DL, Liu Q, et al. Designed synthesis of Ag-functionalized Ni-doped In$_2$O$_3$ nanorods with enhanced formaldehyde gas sensing properties. *J Mater Chem C* 2019, **7**: 7219–7229.

[39] Zhou JY, Bai JL, Zhao H, et al. Gas sensing enhancing mechanism via doping-induced oxygen vacancies for gas sensors based on indium tin oxide nanotubes. *Sens Actuat B: Chem* 2018, **265**: 273–284.

[40] Liang QH, Zou XX, Chen H, et al. High-performance formaldehyde sensing realized by alkaline-earth metals doped In$_2$O$_3$ nanotubes with optimized surface properties. *Sens Actuat B: Chem* 2020, **304**: 127241.

[41] Bai JL, Wang Q, Wang YR, et al. Role of nickel dopant on gas response and selectivity of electrospun indium oxide nanotubes. *J Colloid Interface Sci* 2020, **560**: 447–457.

[42] Ri JS, Li XW, Shao CL, et al. Sn-doping induced oxygen vacancies on the surface of the In$_2$O$_3$ nanofibers and their promoting effect on sensitive NO$_2$ detection at low temperature. *Sens Actuat B: Chem* 2020, **317**: 128194.

[43] Wan K, Wang D, Wang F, et al. Hierarchical In$_2$O$_3$@SnO$_2$ core–shell nanofiber for high efficiency formaldehyde detection. *ACS Appl Mater Interfaces* 2019, **11**: 45214–45225.

[44] Vuong NM, Chinh ND, Huy BT, et al. CuO-decorated ZnO hierarchical nanostructures as efficient and established sensing materials for H$_2$S gas sensors. *Sci Rep* 2016, **6**: 26736.

[45] Chen KK, Lu H, Li G, et al. Surface functionalization of porous In$_2$O$_3$ nanofibers with Zn nanoparticles for enhanced low-temperature NO$_2$ sensing properties. *Sens Actuat B: Chem* 2020, **308**: 127716.

[46] Hittini W, Abu-Hani AF, Reddy N, et al. Cellulose-Copper Oxide hybrid nanocomposites membranes for H$_2$S gas detection at low temperatures. *Sci Rep* 2020, **10**: 2940.

[47] Wang YY, Duan GT, Zhu YD, et al. Room temperature H$_2$S gas sensing properties of In$_2$O$_3$ micro/nanostructured porous thin film and hydrolyzation-induced enhanced sensing mechanism. *Sens Actuat B: Chem* 2016, **228**: 74–84.

[48] Xu JQ, Wang XH, Shen JN. Hydrothermal synthesis of In$_2$O$_3$ for detecting H$_2$S in air. *Sens Actuat B: Chem* 2006, **115**: 642–646.

[49] Xu JQ, Wang XH, Li C. Electrochemical-deposited In$_2$O$_3$ nanocrystals for H$_2$S detecting in air. *Electrochem Solid-State Lett* 2006, **9**: H53.

[50] Park S, Kim H, Jin C, et al. Enhanced gas sensing properties of multiple networked In$_2$O$_3$-core/ZnO-shell nanorod sensors. *J Nanosci Nanotechnol* 2013, **13**: 3427–3432.

[51] Zheng W, Lu XF, Wang W, et al. Assembly of Pt nanoparticles on electrospun In$_2$O$_3$ nanofibers for H$_2$S detection. *J Colloid Interface Sci* 2009, **338**: 366–370.

[52] Liu B, Xu YM, Li K, et al. Pd-catalyzed reaction-producing...
intermediate S on a Pd/In$_2$O$_3$ surface: A key to achieve the enhanced CS$_2$-sensing performances. ACS Appl Mater Interfaces 2019, 11: 16838–16846.

[53] Chen WW, Liu YK, Qin ZJ, et al. A single Eu-doped In$_2$O$_3$ nanobelt device for selective H$_2$S detection. Sensors 2015, 15: 29950–29957.

[54] Kim SJ, Hwang IS, Kang YC, et al. Design of selective gas sensors using additive-loaded In$_2$O$_3$ hollow spheres prepared by combinatorial hydrothermal reactions. Sensors: Basel 2011, 11: 10603–10614.

[55] Zhao CH, Huang BY, Xie EQ, et al. Improving gas-sensing properties of electrospun In$_2$O$_3$ nanotubes by Mg acceptor doping. Sens Actuat B: Chem 2015, 207: 313–320.

[56] Wang C, Wang W, He K, et al. Pr-doped In$_2$O$_3$ nanocubes induce oxygen vacancies for enhancing triethylamine gas-sensing performance. Front Mater Sci 2019, 13: 174–185.

[57] Ma LG, Ai XQ, Lu YZ, et al. Facile and novel in situ low-temperature growth of Cu$_2$S nanoarrays based on Cu substrates. Appl Phys A 2019, 125: 373.

[58] Borouz Z, Ghorbani M, Mohammadpour R, et al. Importance of N–P–N junction in H$_2$S sensing process of SnO$_2$–CuO heterostructures: A theoretical macroscopic approach. IEEE Sens J 2021, 21: 7123–7129.

[59] Sun LM, Zhuang Y, Yuan YS, et al. Nitrogen-doped carbon-coated CuO–In$_2$O$_3$ p–n heterojunction for remarkable photocatalytic hydrogen evolution. Adv Energy Mater 2019, 9: 1902839.

[60] Sun SJ, Zhang DS, Li CY, et al. DFT study on the adsorption and dissociation of H$_2$S on CuO(111) surface. RSC Adv 2015, 5: 21806–21811.

[61] Stegmeier S, Fleischer M, Tawil A, et al. Sensing mechanism of room temperature CO$_2$ sensors based on primary amino groups. Sens Actuat B: Chem 2011, 154: 270–276.

[62] Beheshtian J, Peyghan AA, Bagheri Z. Detection of phosgene by Sc-doped BN nanotubes: A DFT study. Sens Actuat B: Chem 2012, 171–172: 846–852.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.