Introduction
Studies employing serological, DTH or conventional PCR techniques suggest a vast proportion of Leishmania infected individuals living in regions endemic for Visceral Leishmaniasis (VL) remain asymptomatic. This study was designed to assess whether quantitative PCR (qPCR) can be used for detection of asymptomatic or early Leishmania donovani infection and as a predictor of progression to symptomatic disease.

Methods:
The study included 1469 healthy individuals living in endemic region (EHC) including both serology-positive and -negative subjects. TaqMan based qPCR assay was done on peripheral blood of each subject using kDNA specific primers and probes.

Results:
A large proportion of EHC 511/1469 (34.78%) showed qPCR positivity and 56 (3.81% of 1469 subjects) had more than 1 calculated parasite genome/ml of blood. However, the number of individuals with parasite load above 5 genomes/ml was only 20 (1.36% of 1469). There was poor agreement between serological testing and qPCR (k = 0.1303), and 42.89% and 31.83% EHC were qPCR positive in seropositive and seronegative groups, respectively. Ten subjects had developed to symptomatic VL after 12 month of their follow up examination, of which eight were initially positive according to qPCR and among these, five had high parasite load.

Discussion:
Thus, qPCR can help us to detect significant early parasitaemia, thereby assisting us in recognition of potential progressors to clinical disease. This test could facilitate early intervention, decreased morbidity and mortality, and possibly interruption of disease transmission.
Author Summary

Anthroponotic VL caused by *Leishmania donovani* in the Indian subcontinent accounts for 70% of the world burden of VL. Among the estimated 100,000 cases of VL acquired annually in India, 90% occur in the state of Bihar. Leishmania infection can result in either symptomatic or asymptomatic infection. *L. donovani* infection can also manifest as post-kala azar dermal leishmaniasis, a chronic cutaneous form thought to provide the reservoir for anthroponotic transmission of VL in regions endemic for this parasite species. We hypothesized that, in areas endemic for *L. donovani*, asymptomatic infections might also play a crucial role in disease transmission. This study describes use of quantitative PCR (qPCR) to determine the infection status in individuals living in an endemic region of India. We hypothesized that parasite load estimation by qPCR of peripheral blood cells among healthy individuals living in the endemic region might reveal the true frequency of infections through direct evidence of parasitemia. We reasoned this test would detect both asymptomatic non-progressors as well as asymptomatic individuals who will progress to fully symptomatic VL. Serologic testing by ELISA or DAT showed poor agreement with molecular detection of parasite DNA by qPCR, suggesting the tests differentiate between infection and immune response. Amongst ten healthy individuals who progressed to VL, only six were serologically positive whereas eight were initially qPCR positive, among whom five had high parasite loads in their blood. Thus, deployment of qPCR technique to estimate the presence and level of parasitemia in healthy individuals from Leishmania endemic regions may contribute to early case detection, thereby reducing morbidity and mortality. Consistent with the goals of the VL control and elimination program, this early intervention approach could help interrupt disease transmission.

Methods for parasite detection [10,11,12]. This could reflect the inability of serology to distinguish past from ongoing infection, and therefore might result in overestimation of the number of infected asymptomatic individuals.

A large proportion of infected individuals are reportedly asymptomatic according to both serology and PCR surveys in India and nearby endemic countries [13]. Recent epidemiological reports from Brazil, Spain, and France have shown that detectable parasite DNA is present in the blood of asymptomatic infected individuals [14,15,16]. qPCR based epidemiological studies in the Mediterranean region have described a threshold and reference value for asymptomatic infection [17]. A similar study from our population in Bihar suggested the equivalent of 5 *L. donovani* parasite genomes detected/ml of blood is the threshold for clinical symptoms of VL to occur [18]. Data from our prior work in India suggest that serologic status is not a good predictor of conversion to symptomatic VL. Indeed, only 3.48% of seropositive individuals converted to active VL, whereas the conversion rate was 2.57% among seronegative individuals from the same endemic region [19]. We therefore investigated the potential for molecular quantification of parasite genome equivalents in blood as a more sensitive measure of asymptomatic infection likely to progress to disease.

Early case detection and treatment are the most important control measures for Leishmaniasis. Thus, the inability to identify individuals with asymptomatic infection, and among these to discern the individuals that are likely to progress to disease, presents a problem for clinical management. In response to this need, the current study constitutes a comparison of qPCR, serological testing with direct agglutination test (DAT), and the rK39 ELISA as predictors of progression from asymptomatic infection to fully symptomatic VL. We performed this study in a population of individuals living in the highly endemic Muzaffarpur region of the state of Bihar, India.

Materials and Methods

Study site and sample collection

The work was carried out in the Department of Medicine, Banaras Hindu University, Varanasi and at its field site Kala-Azar Medical Research Centre, Muzaffarpur, Bihar and villages of Muzaffarpur district. The study was approved by the Ethics Committee of the Institute of Medical Sciences, Banaras Hindu University, the University of Iowa and the National Institutes of Health. The IRB at Banaras Hindu University is registered with the US NIH. Written informed consent was obtained from each participating individual.

Sample collection

The study was carried out in villages of Muzaffarpur district, which is endemic for VL. To identify individuals who had recently seroconverted, an epidemiological sero-survey was performed for two consecutive years (2009 to 2012). Villages from which large numbers of VL cases originated were identified from hospital records at Kala Azar Medical Research Centre. The research team enrolled all consenting adults age 18 and above in these villages. In the first survey, serology was done using DAT and rK39 ELISA from figure prick blood collected on filter paper. All individuals who were seronegative on the first survey were selected for testing for seroconversion by DAT and rK39 during the second serosurvey conducted 12 months later. To extract blood leukocyte DNA, two ml of blood were collected in the citrate-containing tubes from 401 recent seroconverters (seropositive) as well as 1068 randomly selected seronegative individuals within 15 days of serologic test. Buffy coat cells were isolated, and were transported from Muzaffarpur on ice to the central laboratory in Varanasi and stored at −20°C until use. 36 nonendemic healthy person’s blood were also taken for qPCR assay.

Serological test (DAT/ELISA) and molecular test (qPCR)

Sera were eluted from filter papers containing finger prick blood and used to perform serology by DAT and rK39 ELISA as described previously [20,21]. Individuals who are either DAT or rK39 ELISA positive were considered seropositive.

DNA was extracted using the QI Amp DNA mini kit (Qiagen, Hilden Germany) as per the manufacturer’s instructions. Only those DNA samples that had an optical density (OD) 260/280 ratio of 1.8–2.0 and an OD 260/230 ratio >1.5 by spectrophotometer measurements (ND-2000 spectrophotometer; Thermo Scientific, Waltham, MA, USA) were taken for qPCR experiments. The TaqMan based qPCR assay was performed in a final volume of 10 μL containing 5 μL TaqMan master mixture (2×) [Applied Biosystems (ABI), Carlsbad, CA, USA], 4 μL of DNA template and 0.25 μL (5 μM) of forward and reverse primer and 0.375 μL of probe (Integrated DNA Technologies, Coralville, IA, USA) (Table 1). Primer-probe sequences are listed in Table 1. Amplification was conducted in a 7500 Real-Time PCR system [Applied Biosystems (ABI), Carlsbad, CA, USA]. The standard curve method for absolute quantification of parasite numbers was used as described...
previously [9]. All assays included no-DNA template controls, as well DNA from a negative control unexposed healthy subject. Cutoff values to consider a test positive were Cyclic threshold (Ct) value of 39. According to the standard curve, 0.001 parasite genome equivalents in the well corresponded to a CT value of 39.

Table 1. Taqman primers and probe for detection of Leishmania DNA in endemic healthy controls.

Primers	Probe	
kDNA4 forward	GGGTGCAAAATCCCCGTCA	ACCCCAGTTTCGGCCCCG
kDNA4 reverse	CCCGGCCCTATTTTACCCA	

Sequences correspond to the kDNA4 minicircle DNA primers and probe [21].
doi:10.1371/journal.pntd.0003366.t001

Fig. 1. Flow chart of study of serology in endemic healthy control individuals (EHC) from baseline serosurvey (year 1) to identification of progressors. SP – seropositive; SN – seronegative; QP – qPCR positive (CT cutoff 39); QN – qPCR negative; VL – progressors to symptomatic visceral leishmaniasis.
doi:10.1371/journal.pntd.0003366.g001
Results

Statistical analysis

Data analysis was done by non parametric Mann-Whitney test using SPSS 16 (IBM, Somers, NY, USA) and Prism (Graph pad software).

Discussion

In this study Leishmania DNA was detected in large proportions of both seropositive and seronegative endemic healthy groups (Fig. 1). In contrast, to nonendemic healthy who were negative for the test. Similar findings were reported in a study of L. infantum infection, a cause of VL in the Mediterranean and in Latin America [17]. In one of our earlier study we showed that the parasite load in individuals with acute symptomatic VL due to L. donovani was at least 20, and at day 30 of treatment was >1.12 genome equivalents/ml [9]. In other study we found 5 parasite genome/ml of blood as the threshold value to differentiate asymptomatic from symptomatic [18]. Mary et al. cited a persistent level of more than 1 parasite/ml as a risk for relapse of L. infantum disease [17]. Our ability to quantify the parasite load in asymptomatic individuals led us to examine a potential threshold for progression to active infection in previously uninfected individuals.

A positive serologic test for L. donovani in individuals living in endemic regions who have no symptoms of VL could indicate prior exposure without substantial active infection, ongoing asymptomatic infection which will not lead to disease, or early infection that will progress. In this situation it would be extremely valuable to perform additional diagnostic testing that could be used as a marker of infection, and also be capable of differentiating those likely to progress from those at low risk for progression to disease. Given our results suggesting the magnitude of parasitemia

Table 2. Parasitemia range in blood buffy coat samples from healthy controls from endemic or nonendemic regions.

	Range of parasite genome equivalents in blood cells from individuals with non-zero results of parasite qPCR							
	positive	negative	>0–<1	1–5	5–10	11–100	101–1000	>1000
Seropositive EHC (n = 401)	171 (42.6%)	230	149 (*1)	16 (*1)	2 (*1)	1 (*1)	3 (2*)	0
Seronegative EHC (n = 1068)	340 (31.8%)	728 (2*)	306 (*1)	24	5 (*1)	4	1	0
Seronegative NEHC (n = 36)	zero	all	-	-	-	-	-	-

*converted into VL.

doi:10.1371/journal.pntd.0003366.t002
is related to the risk of disease, a quantitative test such as the qPCR reported herein represents a candidate test for this distinction.

Both our study and the reported study of *L. infantum* parasitemia cite very low numbers of parasite genome equivalents in the blood as indicative of infection. It is important to appreciate the distinction between the calculated number of parasite genomes is not equivalent to the actual number of parasites in a ml of drawn blood. We previously reported that the number of kDNA copies varies between amastigotes and promastigotes, and that copy number is highly variable between strains of the same parasite species [22]. Given this variability as well as the fact that there is an anticipated loss of DNA in the extraction process itself, one can assume that the numbers of genomes quantified on a standard curve will be relatively quantitative compared to comparison samples treated in the same manner. However one cannot draw conclusions about the absolute numbers of parasites present in the subject based on these relative numbers. It is nonetheless important to use a standard DNA so as to obtain as equivalent quantitative measures between assays as possible.

A study of asymptomatic *L. donovani* infection in Nepal cited poor agreement between serological and molecular tests, i.e. DAT and routine PCR [5]. Our study similarly showed a lack of agreement between serology and qPCR (k = 0.1303). Herein 42.8% or 31.6% of healthy subjects from the endemic neighborhood who were seropositive or seronegative, respectively, contained *Leishmania* specific DNA in their blood (Fig. 2.). Potential reasons that seropositive individuals might become qPCR negative could include degradation and clearance of *Leishmania* DNA after infection, corresponding with development of protective immunity. A positive qPCR test in seronegative individuals could occur if the individual was bitten by a *Leishmania* infected sand fly, but every immunity has not yet developed or antibody levels are too low to be detectable by the methods employed. Analogous to infection with hepatitis B, it is possible that parasite DNA, detected by PCR of peripheral blood, could be the first marker of the infection prior to antibody seroconversion. Consistent with this hypothesis, during canine infection in Nepal cited [23].

Quantification on the standard curve revealed that among qPCR positives, 56 subjects (10.95% of total qPCR positive) had more than one parasite genome/ml of blood, and among them 20 (3.91%) had five or more parasites (Table 2.). Although progression to disease occurred both in seropositive and seronegative groups, 8/10 (80%) of those converting to clinical VL were qPCR positive and 5/10 (50%) had relatively high parasite loads. This suggests that asymptomatic individuals who have high parasite load may be more likely to progress to disease than individuals whose parasite loads are low (Table 3.). Other reports of asymptomatic infection suggest that parasite DNA does not often persist for more than one year, but that rarely detectable asymptomatic infection may last for decades [24]. Further their follow up is necessary to know their conversion into symptomatic cases or they remain asymptomatic.

Our recent serological study from same population area shows there is an increased risk of progressing to disease among individuals with high titers of DAT or rk39 serology [21]. Although our study suggested that DAT/ELISA titers are less sensitive and specific than qPCR with high parasite load for detection of progressors, neither approach was perfect. It may be that a combination of qPCR to detect the presence and quantity of parasite nucleic acid, coupled with serology to identify individuals with very high titers, may be a practical and sensitive means of detecting infection, for use in early case detection. The qPCR measure serves as well as an effective tool to monitor clinical management. Early case detection and treatment are the most important control measures for leishmaniasis. In anthroponotic leishmaniasis in which humans are the only reservoir, early detection by qPCR should also be explored as a means of identifying individuals who might also pose a reservoir for disease transmission.

Limitations of qPCR include high initial investment, relatively higher cost per test compared to serology. Requirement of skilled personnel can be another limiting factor, however, if completely equipped and manned central laboratories are established at strategic locations to cater to one or several districts, a reliable diagnosis can be provided to population living in endemic regions for VL which will give more possibility of identification of symptomatic condition of VL disease in infected persons.

Supporting Information

S1 Checklist STROBE Checklist.
Author Contributions
Conceived and designed the experiments: SS JC MS MEW. Performed the experiments: MS TS AKS AC BS. Analyzed the data: SS JC MS MEW. Wrote the paper: SS JC MS MEW MS TS AKS AC BS. Contributed reagents/materials/analysis tools: SS JC MEW.

References

1. Alvar J, Velez ID, Bern C, Herrera M, Desjeux P, et al. (2012) Leishmaniasis worldwide and global estimates of its incidence. PLoS One 7: e35671.
2. Swaminathan CS, Shortt HE, Anderson LA (2000) Transmission of Indian kala-azar to man by the bites of Phlebotomus argentipes, ann and brun. 1942. Indian J Med Res 123: 475–477.
3. Dinesh DS, Kar SK, Kishore K, Palit A, Verma N, et al. (2000) Screening sandflies for natural infection with Leishmania donovani, using a non-radioactive probe based on the total DNA of the parasite. Ann Trop Med Parasitol 94: 447–451.
4. Sundar S, Agrawal S, Rai M, Maharia MK, Murray HW (2001) Treatment of Indian visceral leishmaniasis with single or daily infusions of low dose liposomal amphotericin B: randomised trial. BMJ 323: 419–422.
5. Ostyn B, Gidwani K, Khanal B, Picado A, Chappuis F, et al. (2011) Incidence of symptomatic and asymptomatic Leishmania donovani infections in high-endemic foci in India and Nepal: a prospective study. PLoS Negl Trop Dis 5: e12194.
6. Das VN, Siddiqui NA, Verma RB, Topno RK, Singh D, et al. (2011) Asymptomatic infection of visceral leishmaniasis in hyperendemic areas of Vaishali district, Bihar, India: a challenge to kala-azar elimination programmes. Trans R Soc Trop Med Hyg 105: 661–666.
7. Stauch A, Sarkar RR, Picado A, Ostyn B, Sundar S, et al. (2011) Visceral leishmaniasis in the Indian subcontinent: modelling epidemiology and control. PLoS Negl Trop Dis 5: e14005.
8. Topno RK, Das VN, Ranjan A, Pandey K, Singh D, et al. (2010) Asymptomatic infection with visceral leishmaniasis in a disease-endemic area in Bihar, India. Am J Trop Med Hyg 83: 502–506.
9. Sudarshan M, Weirather JL, Wilson ME, Sundar S (2011) Study of parasite kinetics with anti-leishmanial drugs using real-time quantitative PCR in Indian visceral leishmaniasis. J Antimicrob Chemother 66: 1753–1755.
10. Badaro R, Reed SG, Carvalho EM, Sampaoio D, Reed SG, et al. (1986) New molecular and serological markers of Leishmania donovani infection in healthy individuals from endemic areas of Bihar, India. Trop Med Int Health 18: 548–554.
11. Badaro R, Jones TC, Carvalho EM, Sampaoio D, Reed SG, et al. (1986) New perspectives on a subclinical form of visceral leishmaniasis. J Infect Dis 154: 1003–1011.
12. Moral L, Rubio EM, Moya M (2002) A leishmanin skin test survey in the human population of the Alacanti region (Spain): implications for the epidemiology of Leishmania infantum infection in southern Europe. Trans R Soc Trop Med Hyg 96: 129–132.
13. Srivastava P, Gidwani K, Picado A, Van der Auwera G, Tiwary P, et al. (2013) Molecular and serological markers of Leishmania donovani infection in healthy individuals from endemic areas of Bihar, India. Trop Med Int Health 18: 548–554.
14. Badaro R, Jones TC, Carvalho EM, Sampaoio D, Reed SG, et al. (1986) New perspectives on a subclinical form of visceral leishmaniasis. J Infect Dis 154: 1003–1011.
15. Moral L, Rubio EM, Moya M (2002) A leishmanin skin test survey in the human population of the Alacanti region (Spain): implications for the epidemiology of Leishmania infantum infection in southern Europe. Trans R Soc Trop Med Hyg 96: 129–132.
16. Biglino A, Bella C, Concaldi E, Trisciuoglio A, Romano A, et al. (2010) Asymptomatic Leishmania infantum infection in an area of northwestern Italy (Piedmont region) where such infections are traditionally nonendemic. J Clin Microbiol 48: 131–136.
17. Mary C, Faraut F, Drogoul MP, Xinidorit B, Schleinitz N, et al. (2006) Reference values for Leishmania infantum parasitemia in different clinical presentations: quantitative polymerase chain reaction for therapeutic monitoring and patient follow-up. Am J Trop Med Hyg 75: 858–863.
18. Sudarshan M, Sundar S (2014) Parasite load estimation by qPCR differentiates between asymptomatic and symptomatic infection in Indian Visceral Leishmaniasis. Diagn Microbiol Infect Dis. 80:40–2.
19. Gidwani K, Kumar R, Rai M, Sundar S (2009) Longitudinal seroepidemiological study of visceral leishmaniasis in hyperendemic regions of Bihar, India. Am J Trop Med Hyg 80: 345–346.
20. Hasker E, Kansal S, Malaviya P, Gidwani K, Picado A, et al. (2013) Latent infection with Leishmania donovani in highly endemic villages in Bihar, India. PLoS Negl Trop Dis 7: e2053.
21. Hasker E, Malaviya P, Gidwani K, Picado A, Ostyn B, et al. (2014) Strong association between Serological Status and Probability of Progression to Clinical Visceral Leishmaniasis in Prospective Cohort Studies in India and Nepal. PLoS Negl Trop Dis 8: e2657.
22. Weirather JL, Jessenmo SM, Gaustad S, Sundar S, Kang M, et al. (2011) Serial quantitative PCR assay for detection, species discrimination, and quantification of Leishmania spp. in human samples. J Clin Microbiol 49: 3982–3994.
23. Fialah E, Khambomahmadi M, Khahbari S, Farschchan M, Farajnii A, et al. (2011) Serological survey and comparison of two polymerase chain reaction (PCR) assays with enzyme-linked immunosorbent assay (ELISA) for the diagnosis of canine visceral leishmaniasis in dogs. African Journal of Biotechnology 10: 648–656.
24. Guercara P, Ramirez JL, Rojas E, Seorza JV, Gonzalez N, et al. (1993) Leishmania braziliensis in blood 30 years after cure. Lancet 341: 1341.