Bioprospecting Sponge-Associated Microbes for Antimicrobial Compounds

Anak Agung Gede Indraningrat 1,2, Hauke Smidt 1 and Detmer Sipkema 1,*

1 Laboratory of Microbiology, Wageningen University, Dreijenplein 10, Wageningen 6703 HB, The Netherlands; anak1.indraningrat@wur.nl (A.A.G.I.); hauke.smidt@wur.nl (H.S.)
2 Department of Biology, Faculty of Mathematics and Science Education, Institut Keguruan dan Ilmu Pendidikan Persatuan Guru Republik Indonesia (IKIP PGRI) Bali, Jl. Seroja Tonja, Denpasar 80238, Indonesia
* Correspondence: detmersipkema@wur.nl; Tel.: +31-0317-483113

Academic Editor: Kirsten Benkendorff
Received: 29 February 2016; Accepted: 26 April 2016; Published: 2 May 2016

Abstract: Sponges are the most prolific marine organisms with respect to their arsenal of bioactive compounds including antimicrobials. However, the majority of these substances are probably not produced by the sponge itself, but rather by bacteria or fungi that are associated with their host. This review for the first time provides a comprehensive overview of antimicrobial compounds that are known to be produced by sponge-associated microbes. We discuss the current state-of-the-art by grouping the bioactive compounds produced by sponge-associated microorganisms in four categories: antiviral, antibacterial, antifungal and antiprotozoal compounds. Based on in vitro activity tests, identified targets of potent antimicrobial substances derived from sponge-associated microbes include: human immunodeficiency virus 1 (HIV-1) (2-undecyl-4-quinolone, sorbicillactone A and chartarutine B); influenza A (H1N1) virus (truncatol M); nosocomial Gram positive bacteria (thiopeptide YM-266183, YM-266184, mayamycin and kocurin); Escherichia coli (sydonic acid), Chlamydia trachomatis (naphthacene glycoside SF2446A2); Plasmodium spp. (manzamine A and quinolone 1); Leishmania donovani (manzamine A and valinomycin); Trypanosoma brucei (valinomycin and staurosporine); Candida albicans and dermatophytic fungi (saadamycin, 5,7-dimethoxy-4-p-methoxylphenylcoumarin and YM-202204). Thirty-five bacterial and 12 fungal genera associated with sponges that produce antimicrobials were identified, with Streptomyces, Pseudovibrio, Bacillus, Aspergillus and Penicillium as the prominent producers of antimicrobial compounds. Furthermore culture-independent approaches to more comprehensively exploit the genetic richness of antimicrobial compound-producing pathways from sponge-associated bacteria are addressed.

Keywords: antimicrobial compounds; sponges; sponge-associated microbes

1. Introduction

Antimicrobial resistance (AMR) is an emerging global threat, decreasing the possibilities for prevention and treatment of infectious diseases caused by viruses, bacteria, parasites and fungi [1,2]. A global surveillance report by the World Health Organization (WHO) [2] indicated an increase of morbidity and mortality of infectious diseases due to AMR, which could lead to a world-wide economic loss of up to 100 trillion US dollars (USD) in 2050 as the result of a 2%-3% reduction in the gross domestic product (GDP) [1]. A conservative estimation is that AMR now annually attributes to 700,000 deaths globally, with a potential leap to 10 million in 2050 [1]. AMR is a response of microorganisms against antimicrobial compounds, which can arise via several mechanisms such as chromosomal mutations [1], binding site modifications [2] or horizontal transfer of genes conferring resistance [3]. For several pathogenic bacteria such as Staphylococcus aureus [4],
The emergence of multi drug resistant (MDR) strains has been reported, which make infections with these strains increasingly difficult to treat with currently available antibiotics [3].

In the context of the arms race between humans and infectious agents, the discovery and development of new types of antimicrobial compounds with pronounced bioactivity and clinical significance are urgent [4,5]. The efforts to modify existing drugs are often not effective to overcome the mutation rate of pathogens and do not lead to the introduction of new classes of antimicrobial compounds [6]. The terrestrial environment has been the main focus of microbial-derived drug discovery since the first report on Penicillin in 1929 [7], followed by the booming of new classes of antibiotics in 1960s [8]. Although novel antimicrobials are still being discovered from the soil niche, e.g., turbomycin A and B [9] and teixobactin [10], there are issues with de-replication, which significantly reduces the discovery rate of new compounds from heavily screened environments [11].

In comparison with soils, the marine environment has been largely neglected for discovery of antibiotics until recently, mainly because of accessibility issues, but yet hold a huge biodiversity and potential novelty of antimicrobial compounds [12]. Of many marine organisms, sponges (phylum Porifera) are considered as the most prolific source of therapeutic compounds as these animals harbour a large variety of secondary metabolites, many of which are beneficial for human health purposes [13–17]. The “Supply Issue” is the main obstacle to exploit the biological activity of sponges’ metabolites since a large quantity of biomaterial is required for experimental purposes [13]. Interestingly, in recent years an increasing number of studies highlighted that many active substances from sponges are of bacterial origin due to similarity to chemical structures found in terrestrial microorganisms [13–15]. Furthermore, several studies have reported a wide diversity of antimicrobial activities from sponge-associated microbes, which make these microbial communities a valuable source for novel antimicrobials [14,16–20].

This review highlights the current knowledge of antimicrobial compounds produced by sponge-associated microbes. Our definition of “antimicrobial” is not limited to antibacterial agents, but also includes compounds active against viruses, fungi and infectious protozoa. For each of the four biological activities, a few substances are highlighted because of their high activity, along with the most complete overview to date of other known compounds with antimicrobial activity from sponge-associated microorganisms. To compare different bioactive compounds and crude extracts, inhibitory concentrations of substances reviewed have been as much as possible expressed in the same unit (µg/mL). Original articles use minimum inhibitory concentrations (MIC), half maximum inhibitory concentrations (IC$_{50}$) and the concentration of a drug that give the half-maximal response (EC$_{50}$). As they are not easily converted, we stucked to the original measures.

Moreover, we analyzed the distribution of bacterial and fungal genera associated with sponges that have been reported to produce antimicrobial compounds to identify the most prolific genera. In addition, the potential for application of metagenomics to complement culture-dependent antimicrobial screening strategies is also discussed.

2. Antiviral Compounds

New antiviral compounds are needed due to the increased occurrence of diseases caused by viral infections and because of antiviral escape strategies [21]. Marine organisms, and sponges in particular, have been shown to be a valuable source for antivirals. For example, the discovery of the nucleosides spongothymidine and spongouridine from the sponge *Tethya crypta* was the basis for the compound Ara-A (vidarabine) that is active against the herpes simplex virus [21–24].

Screening of sponge-associated microbes yielded several prospective anti-HIV-1 (human immunodeficiency virus-1) compounds (Table 1 and Figure 1). Bultel-Poncé et al. [25] isolated *Pseudomonas* sp. 1531-E7 from the marine sponge *Homophymia* sp. resulting in the discovery of the antiviral compound 2-undecyl-4-quinolone (1) (Figure 1). The compound had an IC$_{50}$ concentration as low as 10^{-3} µg/mL in vitro against HIV-1. Bringmann et al. [26] elucidated the chemical structure
of sorbicillactone A (2) which was isolated from Penicillium chrysogenum, a fungus associated with the sponge Ircinia fasciculata. Sorbicillactone A displayed cytoprotective effects on HIV-1-infected cells of the human cell line H9 at concentrations of 0.1–1 µg/mL. In addition, in vitro testing using H9 cells indicated that sorbicillactone A reduced the appearance of the HIV-1 protein up to 70% at a concentration of 0.3 µg/mL [26]. The sponge-associated fungus Stachybotrys chartarum MXH-X73 produces the compound stachybotrin D (3), which exhibited anti-HIV-1 activity by targeting reverse transcriptase [27]. At EC₅₀ concentrations from 2.73 µg/mL to 10.51 µg/mL, stachybotrin D was active not only against the wild type HIV-1 but also against several non-nucleoside reverse transcriptase inhibitor (NNRTI) resistant HIV-1 strains. Li et al. [28] reported identification of three other anti-HIV-1 compounds from Stachybotrys chartarum: chartarutine B, G, and H. Of these three chartarutine compounds, chartarutine B (4) showed the lowest concentration that resulted in 50% inhibition of HIV-1 (IC₅₀ of 1.81 µg/mL), followed by chartarutine G (IC₅₀ of 2.05 µg/mL) and chartarutine H (IC₅₀ of 2.05 µg/mL), respectively.

Sponge-associated microbes have also been found to produce anti-influenza compounds (Table 1). Zhao et al. [29] elucidated 14 new isoprenylated cyclohexanols coined as truncateols A-N from the sponge-associated fungus Truncatella angustata, and these compounds were tested in vitro against the influenza A (H1N1) virus. Truncateols C, E and M displayed bioactivity against H1N1, with truncateol M (5) being the most potent inhibitor, as shown by its IC₅₀ value of 2.91 µg/mL. This inhibitory concentration was almost six fold lower than that of the positive control oseltamivir at 14.52 µg/mL. Truncateol M was predicted to be active at the late stage of the virus infection, likely during the assembly or release step of the virion [29] due to resemblance of the inhibition patterns observed for neuraminidase-inhibitor drugs, e.g., zanamivir and oseltamivir [30]. In addition, the presence of a chlorine atom in the chemical structure of truncateol M is of particular interest since halogenation often enhances bioactivity of a given compound [31,32].
Table 1. Bioactive compounds with antiviral activity from sponge-associated microbes.

Sponge	Origin (Depth)	Microorganism	Phylum	Compound	Property	Target	Reference
Homophymia sp.	Touho, New Caledonia (ND)	Pseudomonas sp. 1531-E7	Proteobacteria	2-undecyl-4-quinolone	IC₅₀ (10⁻³ µg/mL)	HIV-1	[25]
Ircinia fasciculata	Bight of Fetovaia, Italy (17.5 m)	Penicillium chrysogenum	Ascomycota	Sorbicillactone A	Reducing protein expression and activity of reverse transcriptase (0.3-1 µg/mL)	HIV-1	[26]
Xestospongia testudinaria	Paracel Islands (ND)	Stachybotrys chartarum MXH-X73	Ascomycota	Stachybotrin D	EC₅₀ (3.71 µg/mL)	HIV-1	[27]
Xestospongia testudinaria	Paracel Islands (ND)	Stachybotrys chartarum MXH-X73	Ascomycota	Stachybotrin D	EC₅₀ (10.51 µg/mL)	NNRTI resistant HIV-1 RT-L100I, K103N	[27]
Xestospongia testudinaria	Paracel Islands (ND)	Stachybotrys chartarum MXH-X73	Ascomycota	Stachybotrin D	EC₅₀ (5.87 µg/mL)	NNRTI resistant HIV-1 RT-L100I, K103N	[27]
Xestospongia testudinaria	Paracel Islands (ND)	Stachybotrys chartarum MXH-X73	Ascomycota	Stachybotrin D	EC₅₀ (2.73 µg/mL)	NNRTI resistant HIV-1 RT-L100I, K103N	[27]
Niphates sp.	Beibuwan Bay, China (10 m)	Stachybotrys chartarum	Ascomycota	Chartarutine B	IC₅₀ (1.81 µg/mL)	HIV-1	[28]
Niphates sp.	Beibuwan Bay, China (10 m)	Stachybotrys chartarum	Ascomycota	Chartarutine G	IC₅₀ (0.35 µg/mL)	HIV-1	[28]
Niphates sp.	Beibuwan Bay, China (10 m)	Stachybotrys chartarum	Ascomycota	Chartarutine H	IC₅₀ (0.35 µg/mL)	HIV-1	[28]
Amphimedon sp.	Yongxin island, China (10 m)	Truncatella angustata	Ascomycota	Truncateol M	IC₅₀ (2.91 µg/mL)	H1N1	[29]
Capsellpora sp.	Sanya, China (ND)	Epicoccum sp. JJY40	Ascomycota	Pyronepolyene C-glucoside iso-D8646-2-6	IC₅₀ (56.06 µg/mL)	H1N1	[33]
Capsellpora sp.	Sanya, China (ND)	Epicoccum sp. JJY40	Ascomycota	Pyronepolyene C-glucoside, 8646-2-6	IC₅₀ (62.07 µg/mL)	H1N1	[33]
Unidentified	Naozhou Sea, China (ND)	Aspergillus terreus MXH-23	Ascomycota	Butyrolactone III	Percentage of inhibition (53.9% ± 0.53% at 50 µg/L)	H1N1	[34]
Unidentified	Naozhou Sea, China (ND)	Aspergillus terreus MXH-23	Ascomycota	5-[(3,4-dihydro-2,2-dimethyl-2H-1-benzopyran-6-yl)(methyl)-3-hydroxy-4(4-hydroxyphenyl)-2H1-furanone]	Percentage of inhibition (57.8% ± 1.99% at 50 µg/L)	H1N1	[34]
Unidentified	Paracel Islands (ND)	Aspergillus sydowi ZSDS1-F6	Ascomycota	(Z)-5-(Hydroxy(methyl)2-(60-methylhept-20-en-20-y1)-phenol	IC₅₀ (14.30 µg/mL)	H3N2	[35]
Unidentified	Paracel Islands (ND)	Aspergillus sydowi ZSDS1-F6	Ascomycota	Diorcinol	IC₅₀ (15.31 µg/mL)	H3N2	[35]
Table 1. Cont.

Unidentified Paracel slands (ND)	Aspergillus sydowii ZSDS1-F6	Ascomycota	Cordyol C	IC₅₀ (19.33 µg/mL)	H3N2	[35]
Unidentified Paracel Islands (ND)	Stachybotrys sp. HH1 ZSDS1F1-2	Ascomycota	Stachybotrytisphenone B	IC₅₀ (10.2 µg/mL)	Enterovirus 71 (EV71)	[36]
Unidentified Paracel Islands (ND)	Stachybotrys sp. HH1 ZSDS1F1-2	Ascomycota	Griseofulvin A	IC₅₀ (16.94 µg/mL)	Enterovirus 71 (EV71)	[36]
Unidentified Paracel Islands (ND)	Stachybotrys sp. HH1 ZSDS1F1-2	Ascomycota	3,6,9-Trihydroxy-1-methylxanthone	IC₅₀ (10.4 µg/mL)	Enterovirus 71 (EV71)	[36]
Petromica citrina Saco do Poço, Brazil (5–15 m)	Bacillus sp. B555	Firmicutes	Unidentified	IC₅₀ (27.35 µg/mL) EC₅₀ (>500 µg/mL)	Bovine viral diarrhea	[37]
Petromica citrina Saco do Poço, Brazil (5–15 m)	Bacillus sp. B584	Firmicutes	Unidentified	IC₅₀ (10.24 µg/mL) EC₅₀ (277 µg/mL)	Bovine viral diarrhea	[37]
Petromica citrina Saco do Poço, Brazil (5–15 m)	Bacillus sp. B616	Firmicutes	Unidentified	IC₅₀ (47 µg/mL) EC₅₀ (1508 µg/mL)	Bovine viral diarrhea	[37]

Table 1 is organised according to the target viruses. IC₅₀: half maximum inhibitory concentration; EC₅₀: the concentration of a drug that give the half-maximal response; ND: not determined; HIV: human immunodeficiency virus; H1N1 and H3N2 are influenza A virus subtypes.
3. Antibacterial Compounds

The screening procedure for antibacterial activity often includes both Gram positive and Gram negative target strains, including, e.g., Staphylococcus spp., Streptococcus spp., Bacillus spp., Clostridium spp., Escherichia spp., and Pseudomonas spp. From a medical point of view, these genera receive attention because they are well represented among the causative agents for human infectious diseases, such as pneumonia, urinary tract and blood stream infections [38,39]. Microbial isolates from marine sponges have been shown to exhibit bioactivity against a wide spectrum of pathogenic bacteria (Table 2). The novel thiopeptide antibiotics YM-266183 (6) and YM-266184 (7) (Figure 2), which were isolated from the sponge-associated bacterium Bacillus cereus QN03323, showed antibacterial activity against nosocomial infectious Gram positive bacteria in vitro [40,41]. Both YM-266183 and YM-266184 effectively inhibited Staphylococcus aureus and vancomycin-resistant Enterococcus faecium as indicated by minimal inhibition concentration (MIC) values as low as 0.025 µg/mL. In addition, compound YM-266184 was found particularly active against methicillin resistant Staphylococcus aureus (MRSA) with a MIC of 0.39 µg/mL. Compound YM-266183 also inhibited MRSA but required a two-fold higher concentration of the pure compound. Bioactivity of these thiopeptides was also observed against Streptococcus epidermidis and Enterococcus spp. (Table 2). The compound kocurin (8) was identified from three sponge-associated actinobacteria: Kocuria marina F-276,310, Kocuria palustris F-276,345, and Micrococcus yunnanensis F-256,446 [42,43]. Kocurin is a new member of the thiazyol peptide family and exhibited anti-MRSA activity with an MIC of 0.25 µg/mL, which to date is the most potent anti-MRSA compound reported from sponge-associated microbes. Scheenemaan et al. [44] isolated Streptomycetes sp. HB202 from the sponge Haliclona simulans, which lead to discovery of the polyketide mayamycin. In vitro assays with mayamycin (9) showed bioactivity against S. aureus and MRSA with IC₅₀ values of 1.16 µg/mL and 0.58 µg/mL respectively, along with an IC₅₀ of 0.14 µg/mL against Staphylococcus epidermidis [45].

Although many studies on antibacterial activity from sponge-associated microbes included Gram negative strains (Table 2), reports on pronounced antibacterial compounds active against Gram negative bacteria are limited in comparison to those that inhibit Gram positive strains. One of the examples of an inhibitor of a Gram negative bacterium is the compound naphthacene glycoside SF2446A2 (10) isolated from Streptomycetes sp. RV15 that was originally obtained from the marine sponge Dysidea tupha [46]. Naphthacene glycoside SF2446A2 (10) inhibited the Gram-negative bacterium Chlamydia trachomatis at an IC₅₀ value of 2.81 ± 0.24 µg/mL. Reimer et al. [46] underlined that compound 10 not only effectively inhibited the formation of chlamydial inclusion bodies during the primary infection but also affected the ability of C. trachomatis in producing viable progeny during the developmental cycle. Chlamydia trachomatis is an obligate intracellular Gram negative bacterium which is a leading cause of sexually transmitted diseases, and currently no methods are available to treat this infectious microorganism [46,47]. Li et al. [48] isolated four new bisabolane-typesesquiterpenoids: aspergiterpenoid A, (−)-sydonol, (−)-sydonic acid, (−)-5-(hydroxymethyl)-2-(2′,6′,6′-trimethyltetrahydro-2H-pyran-2-yl)phenol and a known compound (Z)-5-(Hydroxymethyl)-2-(6′-methylhept-2′-en-2′-yl)phenol from a sponge-associated Aspergillus sp. (Table 2). Of these five substances, the compound sydonic acid (11) exhibited the lowest MIC value against Escherichia coli at 1.33 µg/mL. This is the lowest inhibition concentration against E.coli reported from a compound produced by sponge-associated microbes although the inhibition concentration is still higher than the positive control ciprofloxacin (0.21 µg/mL) (Table 2).

Pruksakorn et al. [49] reported three prospective anti-tuberculosis compounds: trichoderin A (12), A1 and B from the sponge-associated fungus Trichoderma sp. 05F148. Both under standard aerobic growth and dormancy-inducing hypoxic conditions, these three compounds inhibited Mycobacterium smegmatis, M. bovis BCG, and M. tuberculosis H37Rv with MIC values in the range of 0.02–2.0 µg/mL. Of these three compounds, trichoderin A was the most potent compound indicated by the lowest MIC values against those Mycobacterium strains. Additional analysis revealed that bioactivity of trichoderin A is based on its ability to inhibit adenosine triphosphate (ATP) synthesis.
of mycobacteria [50]. Compounds such as trichoderin A are particularly important because in many cases, pathogens such as Campylobacter spp., Helicobacter pylori, and Legionella pneumophila are difficult to treat due to the fact that they are present in a dormant state [51]. Such physiologically inactive cells highly contribute to the need for prolonged antibiotic treatments, which may lead to the emergence of resistant strains [52,53].

Figure 2. Chemical structures of the antibacterial compounds YM-266183 (6), YM-266184 (7), kocurin (8), mayamycin (9), naphthacene glycoside SF2446A2 (10), sydonic acid (11) and trichoderin A (12).
Table 2. Bioactive compounds with antibacterial activity from sponge-associated microbes.

Sponge Origin (Depth)	Microorganism	Phylum	Compound	Property	Target	References	
Halichondria japonica Iriomote island, Japan (ND)	Bacillus cereus QNO3233	Firmicutes	Thiopeptide YM-266183	MIC (0.025 µg/mL)	*S. aureus*	[40,41]	
Halichondria japonica Iriomote island, Japan (ND)	Bacillus cereus QNO3323	Firmicutes	Thiopeptide YM-266184	MIC (0.025 µg/mL)	*S. aureus*	[40,41]	
Halichondria panicea Kiel Fjord, Baltic Sea, Germany (ND)	Streptomyces sp. HB202	Actinobacteria	Mayamycin	IC₅₀ (1.16 µg/mL)	*S. aureus*	[45]	
Sphacinospongia vagabunda Red Sea (ND)	Micrococcus sp. ECG4	Actinobacteria	Microcuside A	MIC (12.42 µg/mL)	*S. aureus*	NCTC 8325	[54]
Isodictya setifera Ross island, Antarctica (30–40 m)	Pseudomonas aeruginosa	Proteobacteria	Phenazine-1-carboxylic acid	MIC (>4.99 µg/mL)	*S. aureus*	[55]	
Hymeniacidon perleve Bohai Sea, China (ND)	Aspergillus versicolor MF359	Ascomycota	5-Methoxydihydrosterigmatocystin	MIC (12.5 µg/mL)	*S. aureus*	[56]	
Melophilus sp. Lau group, Fiji islands (10 m)	Penicillium sp. FF001	Ascomycota	Citrinin	MIC (1.95 µg/mL)	*S. aureus*	[57]	
Petrosia sp. Jeju island, Korea (20 m)	Aspergillus versicolor	Ascomycota	Averantin	MIC (3.13 µg/mL)	*S. aureus*	SG511	[58]
Petrosia sp. Jeju island, Korea (20 m)	Aspergillus versicolor	Ascomycota	Nidurufin	MIC (6.25 µg/mL)	*S. aureus*	SG511	[58]
Petrosia sp. Jeju island, Korea (20 m)	Aspergillus versicolor	Ascomycota	Averantin and nidurufin	MIC (3.13 µg/mL)	*S. aureus*	285	[58]
Petrosia sp. Jeju island, Korea (20 m)	Aspergillus versicolor	Ascomycota	Nidurufin	MIC (3.13 µg/mL)	*S. aureus*	503	[58]
Hymeniacidon perleve Nam-i island, China (ND)	Pseudoalteromonas piscicida NJ6-3-1	Ascomycota	Norharman (beta-carboline alkaloid)	MIC (50 µg/mL)	*S. aureus*	[59]	
Halichondria panicea Bogil island, Korea (ND)	Eschscholzia sp.	Ascomycota	Chlorohydroaspyrones A	MIC (62.5 µg/mL)	*S. aureus*	[60]	
Halichondria panicea Bogil island, Korea (ND)	Eschscholzia sp.	Ascomycota	Chlorohydroaspyrones B	MIC (62.5 µg/mL)	*S. aureus*	[60]	
Azinella sp. South China Sea, China (ND)	Eupenicillium sp.	Ascomycota	αβ-Dehydrocurvularin	MIC (375 µg/mL)	*S. aureus*	[61]	
Haliclona sp. Cagarras Archipelago, Brazil (4-20 m)	Pseudomonas fluorescens H40, H41 and Pseudomonas aeruginosa H51	Proteobacteria	Diketopiperazine	MIC (512 µg/mL)	*S. aureus*	[62]	
Spongia officinalis Southeast Coast India (10–15 m)	Streptomyces sp. MAPS15	Actinobacteria	2-pyrrolidone	MIC (500 µg/mL)	*S. aureus*	PC6	[63]
Dysidea herbacea Koror, Republic Palau (1 m)	Oscillatoria spongiae	Cyanobacteria	2-(2',4'-dibromophenyl)-4,6-dibromophenol	ND	*S. aureus*	[64]	
Hyrtios altum Aragusuku island, Japan (ND)	Vibrio sp.	Proteobacteria	Trisindoline	DOI (10 mm)	*S. aureus*	[65]	
Xestospongia testudinaria Bidong Island, Malaysia (ND)	Serratia marcescens IBRL USM 84	Proteobacteria	Prodigiosin	DOI (<9 mm)	*S. aureus*	[66]	
Table 2. Cont.

Unidentified	Location	Actinobacteria	Compound	MIC/DOI	Source	
Nocardopsis sp.	South China Sea (10 m)	1,6-Dihydroxyphenazine	DOI (25 ± 0.6 mm)	S. aureus SJ51	[67]	
Bacillus subtilis	Banyuls-sur-Mer, France (5-15 m)	1,6-Dimethoxyphenazine	DOI (21 ± 0.1 mm)	S. aureus SJ51	[68]	
Bacillus subtilis	West Coast of India (10 m)	Indole	DOI (7-10 mm)	S. aureus	[69]	
Bacillus licheniformis	West Coast of India (10 m)	3-Phenylpropionic	DOI (4-6 mm)	S. aureus		
Curvularia lunata	Bali Bata National Park, Indonesia (ND)	1,3,8-Trihydroxy-6-methoxyanthraquinone (lunatin)	DOI (10 mm)	S. aureus	[70]	
Streptomyces sp.	Vizhinjam coast, India (10–15 m)	Unidentified	MIC (68 ± 2.8 µg protein/mL)	S. aureus	[73]	
Aspergillus flavus	Kovalam Coast, India (5-10 m)	Unidentified	DOI (3-5 mm)	S. aureus	[74]	
Aspergillus fesae	Cagarras Archipelago, Brazil (4-20 m)	Unidentified	DOI (27 mm)	S. aureus	[75]	
Pseudomonas fluorescens	Cagarras Archipelago, Brazil (4-20 m)	Unidentified	DOI (20 mm)	S. aureus	[76]	
Pseudomonas fluorescens	Cagarras Archipelago, Brazil (4-20 m)	Unidentified	DOI (23 mm)	S. aureus	[77]	
Pseudomonas aeruginosa	Cagarras Archipelago, Brazil (4-20 m)	DOI (20 mm)	S. aureus	[77]		
Pseudomonas aeruginosa	Cagarras Archipelago, Brazil (4-20 m)	DOI (30 mm)	S. aureus	[77]		
Species	Location	Isolated Bacteria	Community	Source Material	Species	Reference
-------------------------	-------------------------------	--	--------------------------	-----------------	----------	-----------
Pseudoceratina clavata	Heron Island, Great Barrier Reef (14 m)	*Salinispora* sp. M102, M403, M412, M413, M414, SW10, SW15 and SW17	Actinobacteria Unidentified	DOI (>5 mm)	S. aureus	[79]
Pseudoceratina clavata	Heron Island, Australia (14 m)	*Salinispora* sp. SW02	Actinobacteria Unidentified	DOI (>5 mm)	S. aureus	[79]
Dendrilla nigra	Southeast coast of India (ND)	*Streptomyces* sp. BITL7	Actinobacteria Unidentified	DOI (16 mm)	S. aureus	[80]
Mycale sp.	GALEI Port, Fujian, China (ND)	*Streptomyces* sp. HNS004, HNS010	Firmicutes Unidentified	DOI (15–30 mm)	S. aureus	[81]
Mycale sp.	GALEI Port, Fujian, China (ND)	*Vibrio* sp. HNS022, HNS029	Proteobacteria Unidentified	DOI (15–30 mm)	S. aureus	[81]
Mycale sp.	GALEI Port, Fujian, China (ND)	*Streptomyces* sp. HNS054	Actinobacteria Unidentified	DOI (15–30 mm)	S. aureus	[81]
Mycale sp.	GALEI Port, Fujian, China (ND)	*Bacillus* sp. HNS005	Firmicutes Unidentified	DOI (10–15 mm)	S. aureus	[81]
Mycale sp.	GALEI Port, Fujian, China (ND)	*Colobia* sp. HNS027, *Streptomyces* sp. HNS047, HNS056, *Nocardiopsis* sp. HNS048, HNS051, HNS055, *Nocardiia* sp. HNS052	Actinobacteria Unidentified	DOI (10–15 mm)	S. aureus	[81]
Mycale sp.	GALEI Port, Fujian, China (ND)	*Bacillus* sp. HNS015	Firmicutes Unidentified	DOI (8–10 mm)	S. aureus	[81]
Mycale sp.	GALEI Port, Fujian, China (ND)	*Pseudomonas* sp. HNS021	Proteobacteria Unidentified	DOI (8–10 mm)	S. aureus	[81]
Mycale sp.	GALEI Port, Fujian, China (ND)	*Colobia* sp. HNS023, *Vibrio* sp. HNS038, *Lebrenzia* sp. HNS033, *Streptomyces* sp. HNS049, *Nocardiopsis* sp. HNS058	Actinobacteria Unidentified	DOI (8–10 mm)	S. aureus	[81]
Table 2. Cont.

Unidentified	Location	Species	Class	Unidentified	DOI (mm)	S. aureus
Streptomyces sp. RV15	Rovinj, Croatia (3–20 m)	Actinobacteria	Unidentified	DOI (17 mm)	S. aureus [82]	
Dietzia sp. EGe7	Rovinj, Croatia (3–20 m)	Actinobacteria	Unidentified	DOI (13 mm)	S. aureus [82]	
Microbacterium sp. EGe9	Rovinj, Croatia (3–20 m)	Actinobacteria	Unidentified	DOI (13 mm)	S. aureus [82]	
Micromonospora sp. RV115	Rovinj, Croatia (3–20 m)	Actinobacteria	Unidentified	DOI (12 mm)	S. aureus [82]	
Rhodococcus sp. EC33	Rovinj, Croatia (3–20 m)	Actinobacteria	Unidentified	DOI (12 mm)	S. aureus [82]	
Rubrobacter sp. RV113	Rovinj, Croatia (3–20 m)	Actinobacteria	Unidentified	DOI (9 mm)	S. aureus [82]	

| Suberites carnosus | Lough Hyne, Co. Cork, Ireland (15 m) | Arthrobacter sp. W13C1 | Actinobacteria | Unidentified | ND | S. aureus [83] |
| Pseudovibrio sp. W13S4, W13S21, W13S23, W13S26, W13S3 | Lough Hyne, Co. Cork, Ireland (15 m) | Proteobacteria | Unidentified | ND | S. aureus [83] |

Aplysina aerophoba and Aplysina cavernicola	Marseille and Banyuls sur Mer, France (ND)	Bacillus SB6, SB17, Enterococcus SB91	Firmicutes	Unidentified	DOI (12–16 mm)	S. aureus [84]
Aplysina aerophoba and Aplysina cavernicola	Marseille and Banyuls sur Mer, France (ND)	Arthrobacter SB95	Actinobacteria	Unidentified	DOI (12–16 mm)	S. aureus [84]
Aplysina aerophoba and Aplysina cavernicola	Marseille and Banyuls sur Mer, France (ND)	unidentified low G + C Gram positive SB122 and SB144	Unidentified	Unidentified	DOI (12–16 mm)	S. aureus [84]
Aplysina aerophoba and Aplysina cavernicola	Marseille and Banyuls sur Mer, France (ND)	α-Proteobacteria SB6, SB85, SB63, SB89, SB197, SB202, SB207, SB214	Proteobacteria	Unidentified	DOI (12–16 mm)	S. aureus [84]
Dysidea granulosa	Kavaratti Island, India (ND)	Enterobacter sp. TTAG	Proteobacteria	Unidentified	DOI (22 mm)	S. aureus [85]
Petrosia ficiformis	Paraggi, Ligurian Sea, Italy (8 m)	Rhodococcus sp. E1	Actinobacteria	Unidentified	ND	S. aureus [86]

Unidentified	Location	Species	Class	Unidentified	MIC (µg/mL)	methicillin-resistant Staphylococcus aureus (MRSA)
Bacillus cereus QNO3323	Iriomote island, Japan (ND)	Firmicutes	Thiopeptide YM-266183	MIC (0.78 µg/mL)	MRSA [40,41]	
Bacillus cereus QNO3323	Iriomote island, Japan (ND)	Firmicutes	Thiopeptide YM-266184	MIC (0.39 µg/mL)	MRSA [40,41]	
Streptomycetes sp. HB202	Kiel Fjord, Baltic Sea, Germany (ND)	Actinobacteria	Mayamycin	IC50 (0.58 µg/mL)	MRSA [45]	
Penicillium sp. FF001	Lau group, Fiji islands (10 m)	Ascomycota	Citrinan	MIC (3.90 µg/mL)	MRSA [57]	
Exophiala sp.	Bogil island, Korea (ND)	Ascomycota	Chlorohydroaspirones A	MIC (125 µg/mL)	MRSA [59]	
Exophiala sp.	Bogil island, Korea (ND)	Ascomycota	Chlorohydroaspirones B	MIC (62.5 µg/mL)	MRSA [59]	
Pseudomonas spp. RHLB 12	Gulf of Mannar, India (ND)	Proteobacteria	Chromophore compound	DOI (4 mm) at 50 µM	MRSA [87]	
Table 2. Cont.

Sample Code	Geographic Location	Isolated Organism	Phylum	Family	DOI	MRSA Status
Xestospongia testudinaria	Bidong Island, Malaysia (ND)	Serratia marcescens	Proteobacteria	Prodigiosin	DOI (22.5 mm)	MRSA [66]
Halichondria sp.	West Coast of India (10 m)	Bacillus licheniformis	Firmicutes	Indole 3-phenylpropionic	DOI (4-6 mm)	MRSA [69]
Halichondria sp.	Cagarras Archipelago, Brazil (4–20 m)	Pseudomonas fluorescens H40	Proteobacteria		Unidentified	MRSA [77]
Halichondria sp.	Cagarras Archipelago, Brazil (4–20 m)	Pseudomonas fluorescens H41	Proteobacteria		Unidentified	MRSA [77]
Halichondria sp.	Cagarras Archipelago, Brazil (4–20 m)	Pseudomonas aeruginosa H51	Proteobacteria		Unidentified	MRSA [77]
Axinella dissimilis	Guirrag Sound, Kilkieran Bay, Ireland (15 m)	Pseudovibrio Ad30	Proteobacteria		Unidentified	ND MRSA [78]
Halichondria simulans	Guirrag Sound, Kilkieran Bay, Ireland (15 m)	Streptomyces sp. SM2 and SM4	Actinobacteria		Unidentified	ND MRSA [88]
Halichondria simulans	Cagarras Archipelago, Brazil (4–20 m)	Pseudomonas fluorescens H40	Proteobacteria		Unidentified	DOI (20 mm) community-associated MRSA [77]
Halichondria simulans	Cagarras Archipelago, Brazil (4–20 m)	Pseudomonas fluorescens H41	Proteobacteria		Unidentified	DOI (22 mm) community-associated MRSA [77]
Halichondria simulans	Cagarras Archipelago, Brazil (4–20 m)	Pseudomonas aeruginosa H51	Proteobacteria		Unidentified	DOI (43 mm) community-associated MRSA [77]
Petromica citrina	Cagarras Archipelago, Brazil (4–20 m)	Bacillus pumilus PC31	Firmicutes		Unidentified	DOI (40 mm) community-associated MRSA [77]
Clathrina aurea	Cagarras Archipelago, Brazil (4–20 m)	Pseudovibrio ascidiaceicola Ca31	Proteobacteria		Unidentified	DOI (17 mm) community-associated MRSA [77]
Paraleucilla magna	Cagarras Archipelago, Brazil (4–20 m)	Pseudovibrio ascidiaceicola Pm31	Proteobacteria		Unidentified	DOI (25 mm) community-associated MRSA [77]
Mycale microeignata	Cagarras Archipelago, Brazil (4–20 m)	Pseudovibrio denitrificans Mm37	Proteobacteria		Unidentified	DOI (20 mm) community-associated MRSA [77]
Appenina aerophoba	Banyuls-sur-Mer, France (15 m)	Bacillus subtilis A202	Firmicutes		Iturin	ND multi drug-resistant S. aureus [68]
Halichondria panicea	Bogil Island, Korea (ND)	Exophiala sp.	Ascomycota	Chlorohydroaspyrones A	MIC (125 µg/mL) multi drug-resistant S. aureus [60]	
Halichondria simulans	Guirrag Sound, Kilkieran Bay, Ireland (15 m)	Bacillus subtilis MMA7	Firmicutes	Subtilomycin	ND heterogeneous vancomycin intermediate S. aureus (hVISA) [71]	
Axinella dissimilis	Guirrag Sound, Kilkieran Bay, Ireland (15 m)	Pseudovibrio Ad30	Proteobacteria		Unidentified	ND hVISA [78]
Species	Location	Strain/Species/Strain Description	Taxonomy	MIC/DOI	Reference	
-------------------------------	-----------------------------------	-----------------------------------	-----------------	---------	-----------	
Haliclona simulans	Gurraig Sound, Kilkieran, Ireland	*Streptomyces sp.* SM2 and SM4	Proteobacteria	ND	[88]	
Melophus sp.	Lau group, Fiji islands (10 m)	*Penicillium sp.* FF001	Ascomycota	MIC	[57]	
Halichondria panicea	Baltic Sea (ND)	*Streptomyces sp.* HB202	Actinobacteria	IC₅₀	[45]	
Halichondria panicea	Kiel Fjord, Baltic Sea, Germany	*Streptomyces sp.* HB202	Actinobacteria	IC₅₀	[89]	
Asinella corrugata	Arvoredo Biological Marine Reserve, Brazil (ND)	*Penicillium sp.*	Ascomycota	Dipeptide cis-cyclo(leucyl-tyrosyl) reducing 85% of biofilm formation at 1000 µg/mL	[91]	
unidentified sponge	Vizhijam coast (10–12 m)	*Aspergillus clavatus MFD15	Ascomycota	MIC (800 ± 10 µg/mL)	[91]	
Spongia officinalis	Southeast Coast India (10–15 m)	*Streptomyces sp.* MAPS15	Actinobacteria	MIC (500 µg/mL)	[63]	
Xestospongia testudinaria	Bidong Island, Malaysia (ND)	*Serratia marcescens IBRL USM 84	Proteobacteria	DOI (<9 mm)	[66]	
Aplysina aerophoba	Banyuls-sur-Mer, France (5–15 m)	*Bacillus subtilis A184*	Firmicutes	ND	[68]	
Aplysina aerophoba	Banyuls-sur-Mer, France (5–15 m)	*Bacillus subtilis A190*	Firmicutes	ND	[68]	
Haliclona sp.	Cagarras Archipelago, Brazil (4–20 m)	*Pseudomonas fluorescens H40*	Proteobacteria	DOI (35 mm)	[77]	
Haliclona sp.	Cagarras Archipelago, Brazil (4–20 m)	*Pseudomonas fluorescens H41*	Proteobacteria	DOI (30 mm)	[77]	
Clathrina aurea	Cagarras Archipelago, Brazil (4–20 m)	*Pseudovibrio ascidiaceicola*	Proteobacteria	DOI (28 mm)	[77]	
Petromica citrina	Cagarras Archipelago, Brazil (4–20 m)	*Bacillus pumilis Pc31*	Firmicutes	DOI (45 mm)	[77]	
Clathrina aurantium	Cagarras Archipelago, Brazil (4–20 m)	*Pseudovibrio ascidiaceicola*	Proteobacteria	DOI (25 mm)	[77]	
Paraleucilla magna	Cagarras Archipelago, Brazil (4–20 m)	*Pseudovibrio ascidiaceicola*	Proteobacteria	DOI (35 mm)	[77]	
Species	Location	Isolate(s)	Class/Order	Resistance/Properties	Reference	
--	---	--	----------------------	---	-----------	
Mycale microsigmatosa	Cagarras Archipelago, Brazil (4-20 m)	*Pseudovibrio denitrificans* Mm37	Proteobacteria	Unidentified	[77]	
Pseudoceratina clavata	Heron Island, Australia (14 m)	*Salinispora sp.* M102, M403, M412, M413, M414, SW10, SW15, SW17	Actinobacteria	Unidentified	[79]	
Pseudoceratina clavata	Heron Island, Australia (14 m)	*Salinispora sp.* SW02	Actinobacteria	Unidentified	[79]	
Callyspongia diffusa	Bay of Bengal, India (10-15 m)	*Streptomyces sp.* CPS 13	Actinobacteria	Unidentified	[92]	
Haliclona sp.	Cagarras Archipelago, Brazil (4-20 m)	*Pseudomonas fluorescens* H40	Proteobacteria	Unidentified	[77]	
Haliclona sp.	Cagarras Archipelago, Brazil (4-20 m)	*Pseudomonas fluorescens* H41	Proteobacteria	S. epidermidis 5% (susceptible to amp, cip, pen, lef)	[77]	
Haliclona sp.	Cagarras Archipelago, Brazil (4-20 m)	*Pseudomonas aeruginosa* H51	Proteobacteria	S. epidermidis 5%	[77]	
Petromica citrina	Cagarras Archipelago, Brazil (4-20 m)	*Bacillus pumilus* Pc31	Firmicutes	Unidentified	[77]	
Petromica citrina	Cagarras Archipelago, Brazil (4-20 m)	*Bacillus pumilus* Pc32	Firmicutes	Unidentified	[77]	
Clathrina aurea	Cagarras Archipelago, Brazil (4-20 m)	*Pseudovibrio ascidiaceicola* Cc31	Proteobacteria	Unidentified	[77]	
Paraleucilla magna	Cagarras Archipelago, Brazil (4-20 m)	*Pseudovibrio ascidiaceicola* Pm31	Proteobacteria	S. epidermidis 5%	[77]	
Mycale microsigmatosa	Cagarras Archipelago, Brazil (4-20 m)	*Pseudovibrio denitrificans* Mm37	Proteobacteria	Unidentified	[77]	
Xestospongia testudinaria	Weizhou coral reef, China (ND)	*Aspergillus* sp.	Ascomycota	(Z)-5-(Hydroxymethyl)-2-((6'-methylhept-2'-en-2'-yl)phenol	Staphylococcus albus	[48]
Haliclona sp.	Cagarras Archipelago, Brazil (4-20 m)	*Pseudomonas fluorescens* H40	Proteobacteria	Unidentified	[77]	
Haliclona sp.	Cagarras Archipelago, Brazil (4-20 m)	*Pseudomonas fluorescens* H41	Proteobacteria	S. haemolyticus	[77]	
Haliclona sp.	Cagarras Archipelago, Brazil (4-20 m)	*Pseudomonas aeruginosa* H51	Proteobacteria	S. haemolyticus	[77]	
Table 2. Cont.

Species	Location	Isolate	Family	Taxon	DOI (mm)	Susceptibilities
Petromica citrina	Cagarras Archipelago, Brazil (4–20 m)	Bacillus	Firmicutes	Unidentified DOI (40 mm)	S. haemolyticus [77]	
Petromica citrina	Cagarras Archipelago, Brazil (4–20 m)	Bacillus	Firmicutes	Unidentified DOI (40 mm)	S. haemolyticus [77]	
Clathrina aurea	Cagarras Archipelago, Brazil (4–20 m)	Pseudovibrio ascidiaceicola Ca31	Proteobacteria	Unidentified DOI (38 mm)	S. haemolyticus [77]	
Pseudovibrio ascidiaceicola	Cagarras Archipelago, Brazil (4–20 m)	Pseudovibrio ascidiaceicola Pm31	Proteobacteria	Unidentified DOI (40 mm)	S. haemolyticus [77]	
Mycale microsigmatosa	Cagarras Archipelago, Brazil (4–20 m)	Pseudovibrio denitrificans Mm37	Proteobacteria	Unidentified DOI (43 mm)	S. haemolyticus [77]	
Haliclona sp.	Cagarras Archipelago, Brazil (4–20 m)	Pseudomonas fluorescens H40	Proteobacteria	Unidentified DOI (19 mm)	S. haemolyticus 109s (susceptible to amp, gen, oxa, pen) [77]	
Haliclona sp.	Cagarras Archipelago, Brazil (4–20 m)	Pseudomonas fluorescens H41	Proteobacteria	Unidentified DOI (15 mm)	S. haemolyticus 109s [77]	
Petromica citrina	Cagarras Archipelago, Brazil (4–20 m)	Bacillus	Firmicutes	Unidentified DOI (31 mm)	S. haemolyticus 109s [77]	
Petromica citrina	Cagarras Archipelago, Brazil (4–20 m)	Bacillus	Firmicutes	Unidentified DOI (36 mm)	S. haemolyticus 109s [77]	
Clathrina aurea	Cagarras Archipelago, Brazil (4–20 m)	Pseudovibrio ascidiaceicola Ca31	Proteobacteria	Unidentified DOI (23 mm)	S. haemolyticus 109s [77]	
Paraleucilla magna	Cagarras Archipelago, Brazil (4–20 m)	Pseudovibrio ascidiaceicola Pm31	Proteobacteria	Unidentified DOI (30 mm)	S. haemolyticus 109s [77]	
Mycale microsigmatosa	Cagarras Archipelago, Brazil (4–20 m)	Pseudovibrio denitrificans Mm37	Proteobacteria	Unidentified DOI (20 mm)	S. haemolyticus 109s [77]	
Haliclona sp.	Cagarras Archipelago, Brazil (4–20 m)	Pseudomonas fluorescens H40	Proteobacteria	Unidentified DOI (31 mm)	Staphylococcus hominis [77]	
Haliclona sp.	Cagarras Archipelago, Brazil (4–20 m)	Pseudomonas fluorescens H41	Proteobacteria	Unidentified DOI (28 mm)	S. hominis [77]	
Haliclona sp.	Cagarras Archipelago, Brazil (4–20 m)	Pseudomonas aeruginosa H51	Proteobacteria	Unidentified DOI (37 mm)	S. hominis [77]	
Petromica citrina	Cagarras Archipelago, Brazil (4–20 m)	Bacillus	Firmicutes	Unidentified DOI (41 mm)	S. hominis [77]	
Petromica citrina	Cagarras Archipelago, Brazil (4–20 m)	Bacillus	Firmicutes	Unidentified DOI (43 mm)	S. hominis [77]	
Clathrina aurea	Cagarras Archipelago, Brazil (4–20 m)	Pseudovibrio ascidiaceicola Ca31	Proteobacteria	Unidentified DOI (23 mm)	S. hominis [77]	
Paraleucilla magna	Cagarras Archipelago, Brazil (4–20 m)	Pseudovibrio ascidiaceicola Pm31	Proteobacteria	Unidentified DOI (25 mm)	S. hominis [77]	
Table 2. Cont.

Species	Location	Associated Bacteria	Taxonomy	DOI (mm)	Antibiotic Resistance
Mycale microsigmatosa	Cagarras Archipelago, Brazil (4–20 m)	*Pseudovibrio denitrificans* Mm37	Proteobacteria Unidentified	DOI (24 mm)	S. hominis [77]
Haliclona sp.	Cagarras Archipelago, Brazil (4–20 m)	*Pseudomonas fluorescens* H40	Proteobacteria Unidentified	DOI (25 mm)	S. hominis 79s (susceptible to amp, pen) [77]
Haliclona sp.	Cagarras Archipelago, Brazil (4–20 m)	*Pseudomonas fluorescens* H41	Proteobacteria Unidentified	DOI (27 mm)	S. hominis 79s
Petromica citrina	Cagarras Archipelago, Brazil (4–20 m)	*Bacillus pumilus* Pc31	Firmicutes Unidentified	DOI (35 mm)	S. hominis 79s
Petromica citrina	Cagarras Archipelago, Brazil (4–20 m)	*Bacillus pumilus* Pc32	Firmicutes Unidentified	DOI (30 mm)	S. hominis 79s
Clathrina aurita	Cagarras Archipelago, Brazil (4–20 m)	*Pseudovibrio ascidiaceicola* Ca31	Proteobacteria Unidentified	DOI (25 mm)	S. hominis 79s
Paraleucilla magna	Cagarras Archipelago, Brazil (4–20 m)	*Pseudovibrio ascidiaceicola* Pm31	Proteobacteria Unidentified	DOI (25 mm)	S. hominis 79s
Mycale microsigmatosa	Cagarras Archipelago, Brazil (4–20 m)	*Pseudovibrio denitrificans* Mm37	Proteobacteria Unidentified	DOI (28 mm)	S. hominis 79s
Xestospongia testudinaria	Bidong Island, Malaysia (ND)	*Serratia marcescens* IBRL USM 84	Proteobacteria Prodigiosin	DOI (<9 mm)	*Staphylococcus saprophyticus* [66]
Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	*Streptomyces* sp. HB202	Actinobacteria Mayamycin	IC50 (3.71 µg/mL)	*Staphylococcus lentus* [45]
Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	*Streptomyces* sp. HB062	Actinobacteria Unidentified	ND	S. lentus [44]
Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	*Streptomyces* sp. HB117	Actinobacteria Unidentified	ND	S. lentus [44]
Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	*Streptomyces* sp. HB122	Actinobacteria Unidentified	ND	S. lentus [44]
Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	*Streptomyces* sp. HB132	Actinobacteria Unidentified	ND	S. lentus [44]
Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	*Streptomyces* sp. HB138	Actinobacteria Unidentified	ND	S. lentus [44]
Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	*Streptomyces* sp. HB149	Actinobacteria Unidentified	ND	S. lentus [44]
Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	*Streptomyces* sp. HB184	Actinobacteria Unidentified	ND	S. lentus [44]
Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	*Streptomyces* sp. HB253	Actinobacteria Unidentified	ND	S. lentus [44]
Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	*Streptomyces* sp. HB272	Actinobacteria Unidentified	ND	S. lentus [44]
Table 2. Cont.

Marine sponge	Collection site	Isolated strain	Taxonomic class	Phylogenetic group	Molecular markers	MIC	Source
Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	*Streptomyces* sp. HB288	Actinobacteria	Unidentified	ND	S. lentus	[44]
Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	*Streptomyces* sp. HB298	Actinobacteria	Unidentified	ND	S. lentus	[44]
Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	*Streptomyces* sp. HB328	Actinobacteria	Unidentified	ND	S. lentus	[44]
Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	*Streptomyces* sp. HB375	Actinobacteria	Unidentified	ND	S. lentus	[44]
Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	*Streptomyces* sp. HB383	Actinobacteria	Unidentified	ND	S. lentus	[44]
Dendrilla nigra	Southwest Coast of India (10-12 m)	*Nocardopsis dassonvillei* MAD08	Actinobacteria	Unidentified	MIC (600 µg/mL)	Staphylococcus sp.	[93]
Halichondria japonica	Iriomote island, Japan (ND)	*Bacillus cereus* QNO3323	Firmicutes	Thiopeptide YM-266183	MIC (1.56 µg/mL)	Multi drug-resistant Strep. epidermidis	[40,41]
Halichondria japonica	Iriomote island, Japan (ND)	*Bacillus cereus* QNO3323	Firmicutes	Thiopeptide YM-266184	MIC (1.2 µg/mL)	MRSE	[40,41]
Aplysina aerophoba	Banyuls-sur-Mer, France (5-15 m)	*Bacillus subtilis* A202	Firmicutes	Iturin	ND	Multi drug-resistant S. epidermidis	[68]
Dysidea granulosa	Kavaratti Island, India (ND)	*Enterobacter* sp. TTAG	Proteobacteria	Unidentified	DOI (23 mm), MIC crude extract (5 mg/mL)	Streptococcus sp.	[68]
Petrosia sp.	Jeju island, Korea (20 m)	*Aspergillus versicolor*	Ascomycota	Averantin	MIC (0.78 µg/mL)	Streptococcus pugenae 308A	[58]
Petrosia sp.	Jeju island, Korea (20 m)	*Aspergillus versicolor*	Ascomycota	Nidurufin	MIC (3.13 µg/mL)	Streptococcus pugenae 77A	[58]
Petrosia sp.	Jeju island, Korea (20 m)	*Aspergillus versicolor*	Ascomycota	Nidurufin	MIC (6.25 µg/mL)	Streptococcus pugenae 77A	[58]
Halichondria sp.	West Coast of India (10 m)	*Bacillus licheniformis* SAB1	Firmicutes	Indole	DOI (1-3 mm)	Streptococcus pugenae	[69]
Halichondria sp.	West Coast of India (10 m)	*Bacillus licheniformis* SAB1	Firmicutes	3-Phenylpropionic	DOI (4-6 mm)	Streptococcus pugenae	[69]
Haliclona simulans	Curragean Sound Kilkieran Bay, Ireland (15 m)	*Streptomyces* sp. SM2 and SM4	Actinobacteria	Unidentified	ND	Streptococcus pneumoniae	[88]
Callyspongia diffusa	Bay of Bengal, India (10-15 m)	*Saccharomonospora* sp. CPI 9	Actinobacteria	Unidentified	ND	haemolytic Streptococcus sp (6-3)	[92]
Halichondria japonica	Iriomote island, Japan (ND)	*Bacillus cereus* QNO3323	Firmicutes	Thiopeptide YM-266183	MIC (1.56 µg/mL)	Bacillus subtilis ATCC 633	[40,41]
Halichondria japonica	Iriomote island, Japan (ND)	*Bacillus cereus* QNO3323	Firmicutes	Thiopeptide YM-266184	MIC (1.56 µg/mL)	B. subtilis ATCC 633	[40,41]
Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	*Streptomyces* sp. HB202	Actinobacteria	Mayamycin	IC₅₀ (3.71 µg/mL)	B. subtilis	[45]
Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	*Streptomyces* sp. HB202	Actinobacteria	Streptophenazines G	IC₅₀ (3.49 ± 0.38 µg/mL)	B. subtilis	[89]
Table 2. Cont.

Halichondria panacea	Kiel Fjord, Baltic Sea, Germany (ND)	Streptomyces sp. HB202	Actinobacteria	Streptophenazines K	IC₅₀ (9.18 ± 2.89 µg/mL)	B. subtilis	
	Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	Streptomyces sp. HB084	Actinobacteria	Unidentified	ND	B. subtilis
	Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	Streptomyces sp. HB095	Actinobacteria	Unidentified	ND	B. subtilis
	Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	Streptomyces sp. HB096	Actinobacteria	Unidentified	ND	B. subtilis
	Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	Streptomyces sp. HB105	Actinobacteria	Unidentified	ND	B. subtilis
	Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	Streptomyces sp. HB107	Actinobacteria	Unidentified	ND	B. subtilis
	Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	Streptomyces sp. HB116	Actinobacteria	Unidentified	ND	B. subtilis
	Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	Streptomyces sp. HB117	Actinobacteria	Unidentified	ND	B. subtilis
	Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	Streptomyces sp. HB118	Actinobacteria	Unidentified	ND	B. subtilis
	Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	Streptomyces sp. HB122	Actinobacteria	Unidentified	ND	B. subtilis
	Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	Streptomyces sp. HB132	Actinobacteria	Unidentified	ND	B. subtilis
	Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	Streptomyces sp. HB138	Actinobacteria	Unidentified	ND	B. subtilis
	Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	Streptomyces sp. HB181	Actinobacteria	Unidentified	ND	B. subtilis
	Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	Streptomyces sp. HB184	Actinobacteria	Unidentified	ND	B. subtilis
	Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	Streptomyces sp. HB202	Actinobacteria	Unidentified	ND	B. subtilis
	Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	Streptomyces sp. HB253	Actinobacteria	Unidentified	ND	B. subtilis
	Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	Streptomyces sp. HB272	Actinobacteria	Unidentified	ND	B. subtilis
	Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	Streptomyces sp. HB298	Actinobacteria	Unidentified	ND	B. subtilis
	Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	Streptomyces sp. HB328	Actinobacteria	Unidentified	ND	B. subtilis
Species	Location	Isolate	Bacterial Class	Antimicrobial Activity			
-----------------------	---	------------------	----------------	--			
Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	*Streptomyces* sp. HB375	Actinobacteria	Unidentified, ND, B. subtilis [44]			
Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	*Streptomyces* sp. HB383	Actinobacteria	Unidentified, ND, B. subtilis [44]			
Callipoma sp.	Kyung-Po beach, Korea (12 m)	*Brevibacterium* sp. KMD 003	Actinobacteria	6-Hydroxymethyl-1-phenazine-carboxamide MIC (5.06 µg/mL), B. subtilis [64]			
		Brevibacterium sp. KMD 003		1,6-Phenazinedimethanol MIC (4.80 µg/mL), B. subtilis [64]			
Haliclona simulans	Gurnag Sound, Kilkieran Bay, Ireland (15 m)	*Streptomyces* sp. SM8	Actinobacteria	Mixture Kitamycin A or B and Antimycin A3 or A7 MIC (7.42 µg/mL), B. subtilis [95]			
				Antimycin A2, A8, A11 or A17 MIC (9.40 µg/mL), B. subtilis [95]			
				Antimycin A3 or A7, MIC (400 µg/mL), B. subtilis [95]			
Hymeniacidon perleve	Bohai Sea, China (ND)	*Aspergillus* versicolor MF359	Ascomycota	5-Methoxydihydrostreptomycin MIC (3.125 µg/mL), B. subtilis [56]			
Hymeniacidon perleve	Nanji island, China (ND)	*Pseudalteromonas* piciicida NJ6-3-1	Proteobacteria	Norharman (beta-carboline alkaloid) MIC (50 µg/mL), B. subtilis [59]			
				(-)-Sydonic acid MIC (0.66 µg/mL), B. subtilis [48]			
				(-)-5-(Hydroxymethyl)-2-(6'-methylhept-2'-en-2'-yl)phenol MIC (2.33 µg/mL), B. subtilis [48]			
Xestospongia testudinaria	Weizhou coral reef, China (ND)	*Aspergillus* sp.	Ascomycota	2-(2'-2',4'-Dibromophenyl)-4,6-dibromophenol ND, B. subtilis [64]			
Dysidea herbacea	Koror, Republic Palau (1 m)	*Oscillatoria* sp.	Cyanobacteria	2-(2'-2',4'-Dibromophenyl)-4,6-dibromophenol ND, B. subtilis [64]			
Hyrtios altum	Aragusuku island, Japan (ND)	*Vibrio* sp.	Proteobacteria	Trisiodihaline DOI (17 mm), B. subtilis [65]			
Xestospongia testudinaria	Bidorong Island, Malaysia (ND)	*Serratia marcescens* IBRL, USM 84	Proteobacteria	Prodigiosin DOI (<9 mm), B. subtilis [66]			
Niphates olemda	Bali Bata National Park, Indonesia (ND)	*Curculiostrum* lunata	Ascomycota	1,2,8-Trimethoxy-6-methoxyhdroxiquinone (lunatin) DOI (9 mm), B. subtilis [70]			
				Bisanthraquinone cytoskyrin A DOI (12 mm), B. subtilis [70]			
Hymeniacidon perleve	Nanji island, China (ND)	*Pseudomonas* sp. NJ6-3-1	Proteobacteria	Unidentified, ND, B. subtilis [74]			
Axinella dissimilis	Gurnag Sound, Kilkieran Bay, Ireland (15 m)	*Pseudodiplospira* AdX30	Proteobacteria	Unidentified, ND, B. subtilis [78]			
Pseudoceratina chlorata	Heron Island, Great Barrier Reef (14 m)	*Salinispora* sp. M102, M403, M412, M413, M414, SW02, SW10, SW 15 and SW 17	Actinobacteria	Unidentified, ND, B. subtilis [79]			
Table 2. Cont.

Dendrilla nigra	**Southeast coast of India (ND)**	**Streptomyces sp. BTL7**	**Actinobacteria**	**Unidentified**	**DOI (15 mm)**	**B. subtilis**	
Mycale sp.	**Galei Port, Fujian, China (ND)**	**Bacillus sp. HNS004, HNS005**	**Firmicutes**	**Unidentified**	**DOI (8-10 mm)**	**B. subtilis**	
Mycale sp.	**Galei Port, Fujian, China (ND)**	**Pseudomonas sp. HNS021, HNS027, Vibrio sp. HNS038**	**Proteobacteria**	**Unidentified**	**DOI (8-10 mm)**	**B. subtilis**	
Mycale sp.	**Galei Port, Fujian, China (ND)**	**Labrevecia sp. HNS063, Streptomyces sp. HNS047, Nocardiopsis sp. HNS046, HNS053, HNS056, Cobetia sp. HNS023**	**Actinobacteria**	**Unidentified**	**DOI (8-10 mm)**	**B. subtilis**	
Mycale sp.	**Galei Port, Fujian, China (ND)**	**Bacillus sp. HNS005, HNS010**	**Firmicutes**	**Unidentified**	**DOI (10-15 mm)**	**B. subtilis**	
Mycale sp.	**Galei Port, Fujian, China (ND)**	**Streptomyces sp. HNS049, HNS056**	**Actinobacteria**	**Unidentified**	**DOI (10-15 mm)**	**B. subtilis**	
Mycale sp.	**Galei Port, Fujian, China (ND)**	**Vibrio sp. HNS022, HNS028**	**Firmicutes**	**Unidentified**	**DOI (15-30 mm)**	**B. subtilis**	
Mycale sp.	**Galei Port, Fujian, China (ND)**	**Streptomyces sp. HNS054**	**Actinobacteria**	**Unidentified**	**DOI (15-30 mm)**	**B. subtilis**	
Sigmadocia fibulatus	**Hare Island, India (5-10 m)**	**Bacillus sp. SC3**	**Firmicutes**	**Unidentified**	**ND**	**B. subtilis**	
Amphilectus fucorum	**Lough Hyne, Ireland (6-15 m)**	**Pseudovibrio sp. 113V**	**Proteobacteria**	**Unidentified**	**ND**	**B. subtilis**	
Eurypon major	**Lough Hyne, Ireland (6-15 m)**	**Pseudovibrio sp. 107L, 108L, 109L**	**Proteobacteria**	**Unidentified**	**ND**	**B. subtilis**	
Suberites carnosus	**Lough Hyne, Co. Cork, Ireland (15 m)**	**Arthrobacter sp. W13C11**	**Actinobacteria**	**Unidentified**	**ND**	**B. subtilis**	
Suberites carnosus	**Lough Hyne, Co. Cork, Ireland (15 m)**	**Pseudovibrio sp. W13S4, W13S21, W13S26, W13S31**	**Unidentified**	**ND**	**B. subtilis**		
Halioclis similans	**Garraig Sound, Kilkieran Bay, Ireland (15 m)**	**Streptomyces sp. SM2 and SM4**	**Actinobacteria**	**Unidentified**	**ND**	**B. subtilis**	
Isodictya setifera	**Ross island, Antarctica (30-40 m)**	**Pseudomonas aeruginosa**	**Proteobacteria**	**Phenazine-1-carboxylic acid and phenazine-1-carboxamide**	**MIC (<0.49 µg/mL)**	**Bacillus cereus**	
Xestospongia testudinaria	**Weizhou coral reef, China (ND)**	**Aspergillus sp.**	**Ascomycota**	**(Z)-5-(Hydroxymethyl)2-β'-methylhept-2'-en-2'-y1pheno1**	**MIC (2.33 µg/mL)**	**B. cereus**	
Xestospongia testudinaria	**Bidong Island, Malaysia (ND)**	**Serratia marcescens IBRL USM 84**	**Proteobacteria**	**Prodigiosin**	**DOI (10-14 mm)**	**B. cereus**	
Dendrilla nigra	**Vizhinjam coast, India (10-15 m)**	**Streptomyces sp. MS005**	**Actinobacteria**	**Unidentified**	**MIC (46 ± 1.62 µg protein/mL)**	**B. cereus**	
Asinella disimilis	**Garraig Sound, Kilkieran Bay, Ireland (15 m)**	**Pseudovibrio Ad30**	**Proteobacteria**	**Unidentified**	**ND**	**B. cereus**	
Name	Location	Isolate(s)	Taxonomy	Compound	Activity	Reference	
-----------------------------	-----------------------------------	--	--	---------------------------	--------------------	-----------	
Dendrilla nigra	Southeast coast of India (ND)	Streptomyces sp. BTL7	Actinobacteria	Unidentified	DOI (16 mm)	[80]	
Haliclona simulans	Gurraig Sound Kilkieran Bay, Ireland (15 m)	Streptomyces sp. SM2 and SM4	Actinobacteria	Unidentified	ND	[88]	
Xestospongia testudinaria	Bidong Island, Malaysia (ND)	*Serratia marcescens IBRL USM 84	Proteobacteria	Prodigiosin	DOI (10-14 mm)	[66]	
Xestospongia testudinaria	Bidong Island, Malaysia (ND)	*Serratia marcescens IBRL USM 84	Proteobacteria	Prodigiosin	DOI (<9 mm)	[66]	
unidentified	South China Sea (10 m)	**Nocardiapys sp.** 13-33-15 and 15-12-13	Actinobacteria	**1,6-Dihydroxyphenazine**	**DOI (16 ± 0.5 mm)**	**[67]**	
Aplysina aerophoba	Banyuls-sur-Mer, France (5-15 m)	*Bacillus subtilis* A184	Firmicutes	Surfactin, iturin, fengycin	ND	[68]	
Aplysina aerophoba	Banyuls-sur-Mer, France (5-15 m)	*Bacillus subtilis* A190	Firmicutes	Surfactin	ND	[68]	
Aplysina aerophoba	Banyuls-sur-Mer, France (5-15 m)	*Bacillus subtilis* A202	Firmicutes	Iturin	ND	[68]	
Haliclona simulans	Gurraig Sound Kilkieran Bay, Ireland (15 m)	*Bacillus subtilis* MMA7	Firmicutes	Subtilomycin	ND	[71]	
Dysidea aurata	Mediterranean sea (ND)	*Actinomycetopsis* sp. EC49	Actinobacteria	1,6-Dihydroxyphenazine (result of the co-culture)	DOI (11 mm)	**Bacillus sp.** P25	[98]
Spheciospongia vagabunda	Red Sea (ND)	*Nocardiapys* sp. RV163					
Callyspongia diffusa	Bay of Bengal, India (10-15 m)	*Streptomyces* sp. CPI 13	Actinobacteria	Unidentified	DOI (6.6 mm)	**Bacillus sp.**	[92]
Callyspongia diffusa	Bay of Bengal, India (10-15 m)	*Micromonospora* sp. CPI 12	Actinobacteria	Unidentified	DOI (8 mm)	**Bacillus sp.**	[92]
Halichona sp.	Cagarras Archipelago, Brazil (4-20 m)	*Pseudomonas fluorescens* H40	Proteobacteria	Unidentified	DOI (19 mm)	**Entenococcus faecalis**	[77]
Halichona sp.	Cagarras Archipelago, Brazil (4-20 m)	*Pseudomonas fluorescens* H41	Proteobacteria	Unidentified	DOI (17 mm)	**E. faecalis**	[77]
Halichona sp.	Cagarras Archipelago, Brazil (4-20 m)	*Pseudomonas aeruginosa* H51	Proteobacteria	Unidentified	DOI (32 mm)	**E. faecalis**	[77]
Clathrina aura	Cagarras Archipelago, Brazil (4-20 m)	*Pseudorhizobium asadiaciella* Ca31	Proteobacteria	Unidentified	DOI (11 mm),	**E. faecalis**	[77]
Paraleucilla magna	Cagarras Archipelago, Brazil (4-20 m)	*Pseudorhizobium asadiaciella* Pm31	Proteobacteria	Unidentified	DOI (12 mm),	**E. faecalis**	[77]
Mycale microsigmatosa	Cagarras Archipelago, Brazil (4-20 m)	*Pseudorhizobium densitricans* Mm37	Proteobacteria	Unidentified	DOI (14 mm)	**E. faecalis**	[77]
Table 2. Cont.

Species	Location	Isolate	Family	Genus	DOI (mm)	Species	MIC (µg/mL)	Reference	
unidentified	Rovinj, Croatia (3–20 m)	Streptomyces	Actinobacteria	Unidentified	DOI (11 mm)	E. faecalis	[82]		
unidentified	Rovinj, Croatia (3–20 m)	Microbacterium	Actinobacteria	Unidentified	DOI (9 mm)	E. faecalis	[82]		
unidentified	Rovinj, Croatia (3–20 m)	Micromonospora	Actinobacteria	Unidentified	DOI (10 mm)	E. faecalis	[82]		
unidentified	Rovinj, Croatia (3–20 m)	Rhodococcus	Actinobacteria	Unidentified	DOI (8 mm)	E. faecalis	[82]		
Halocondria japonica	Iriomote island, Japan (ND)	Bacillus cereus	Firmicutes	Unidentified	DOI (11 mm)	Thiopeptide YM-266183	MIC (0.1 µg/mL)	E. faecalis CAY 04_3	[40,41]
Halocondria japonica	Iriomote island, Japan (ND)	Bacillus cereus	Firmicutes	Unidentified	DOI (9 mm)	Thiopeptide YM-266184	MIC (0.025 µg/mL)	E. faecalis CAY 04_3	[40,41]
Sphheciospongia vagabunda	Red Sea (ND)	Micrococcus	Actinobacteria	Unidentified	DOI (11 mm)	Microhaside A	MIC (9.55 µg/mL)	E. faecalis JH212	[54]
Halocondria japonica	Iriomote island, Japan (ND)	Bacillus cereus	Firmicutes	Unidentified	DOI (11 mm)	E. faecalis SAE (susceptible to van)	E. faecalis	[77]	
Clathrina aures	Cagarras Archipelago, Brazil (4–20 m)	Pseudomonas fluorescens	Proteobacteria	Unidentified	DOI (20 mm)	E. faecalis SAE	[77]		
Mycale microsignatosa	Cagarras Archipelago, Brazil (4–20 m)	Pseudotrethrix denitrificans	Proteobacteria	Unidentified	DOI (12 mm)	E. faecalis SAE	[77]		
Halocondria japonica	Iriomote island, Japan (ND)	Bacillus cereus	Firmicutes	Unidentified	DOI (11 mm)	Thiopeptide YM-266183	MIC (0.025 µg/mL)	E. faecalis SAE	[77]
Halocondria japonica	Iriomote island, Japan (ND)	Bacillus cereus	Firmicutes	Unidentified	DOI (11 mm)	Thiopeptide YM-266184	MIC (0.05 µg/mL)	Vancomycin-Resistant E. faecium CAY 09_2	[40,41]
Halocondria japonica	Iriomote island, Japan (ND)	Bacillus cereus	Firmicutes	Unidentified	DOI (11 mm)	Thiopeptide YM-266183	MIC (0.025 µg/mL)	Vancomycin-Resistant E. faecium CAY 09_2	[40,41]
Melophus sp.	Lau group, Fiji islands (10 m)	Penicillium	Ascomycota	Citrinin	MIC (1.95 µg/mL)	Vancomycin-resistant E. faecium	[57]		
Haloconida similis	Curragh Sound Kilkieran Bay, Ireland (15 m)	Bacillus subtilis	Firmicutes	Subtilomycin	ND	E. faecium	[71]		
Haloconida sp.	Cagarras Archipelago, Brazil (4–20 m)	Pseudomonas fluorescens	Proteobacteria	Unidentified	DOI (18 mm)	E. faecium	[77]		
Haloconida sp.	Cagarras Archipelago, Brazil (4–20 m)	Pseudomonas aeruginosa	Proteobacteria	Unidentified	DOI (21 mm)	E. faecium	[77]		
Haloconida sp.	Cagarras Archipelago, Brazil (4–20 m)	Pseudomonas aeruginosa	Proteobacteria	Unidentified	DOI (30 mm)	E. faecium	[77]		
Dragmacidonreticulatus	Cagarras Archipelago, Brazil (4–20 m)	Bacillus pumilus	Firmicutes	Unidentified	DOI (20 mm)	E. faecium	[77]		
Petromica citrina	Cagarras Archipelago, Brazil (4–20 m)	Bacillus pumilus	Firmicutes	Unidentified	DOI (23 mm)	E. faecium	[77]		
Petromica citrina	Cagarras Archipelago, Brazil (4–20 m)	Bacillus pumilus	Firmicutes	Unidentified	DOI (20 mm)	E. faecium	[77]		
Clathrina aures	Cagarras Archipelago, Brazil (4–20 m)	Pseudotrethrix asiadiacicotector	Proteobacteria	Unidentified	DOI (22 mm)	E. faecium	[77]		
Table 2. Cont.

Species	Environment	Isolate/Strain	Kingdom	Phylum	Class	Genus	Species	MIC/MNC/NC (µg/mL)	Sensitivity
Glycera magnifica	Cagarras Archipelago, Brazil (4-20 m)	*Pseudovibrio*	Proteobacteria	Unidentified	DOI (20 mm)	*E. faecium*	[77]		
Mycale microsigmatosa	Cagarras Archipelago, Brazil (4-20 m)	*Pseudovibrio*	Proteobacteria	Unidentified	DOI (15 mm)	*E. faecium*	[77]		
Axinella dissimilis	Gurraig Sound, Kilieran Bay, Ireland (15 m)	*Pseudovibrio*	Proteobacteria	Unidentified	ND	*E. faecium*	[78]		
Axinella dissimilis	Gurraig Sound, Kilieran Bay, Ireland (15 m)	*Pseudovibrio*	Proteobacteria	Unidentified	ND	Vancomycin-resistant *Enterococcus* sp.	[78]		
Callyspongia sp.	Kyung-Po beach, Korea (12 m)	*Brevibacterium*	Actinobacteria	6-Hydroxymethyl-1-phenazine-carboxamide	MIC (1.26 µg/mL)	*Enterococcus hirae*	[94]		
Haliclona sp.	Cagarras Archipelago, Brazil (4-20 m)	*Pseudomonas*	Proteobacteria	Unidentified	DOI (22 mm)	*Enterobacter cloacae*	[77]		
Haliclona sp.	Cagarras Archipelago, Brazil (4-20 m)	*Pseudomonas*	Proteobacteria	Unidentified	DOI (25 mm)	*E. cloacae*	[77]		
Haliclona sp.	Cagarras Archipelago, Brazil (4-20 m)	*Pseudomonas*	Proteobacteria	Unidentified	DOI (18 mm)	*E. cloacae*	[77]		
Callyspongia diffusa	Southwest Coast of India (6-7 m)	*Shewanella algae*	Proteobacteria	1,6-Phenazinedimethanol	MIC (1.20 µg/mL)	*E. hirae*	[94]		
Haliclona sp.	Cagarras Archipelago, Brazil (4-20 m)	*Pseudomonas*	Proteobacteria	Unidentified	DOI (19 mm)	*E. cloacae AE* (susceptible to amp, cef, fos, let)	[77]		
Haliclona sp.	Cagarras Archipelago, Brazil (4-20 m)	*Pseudomonas*	Proteobacteria	Unidentified	DOI (12 mm)	*E. cloacae AE*	[77]		
Haliclona sp.	Cagarras Archipelago, Brazil (4-20 m)	*Pseudomonas*	Proteobacteria	Unidentified	DOI (23 mm)	*E. cloacae AE*	[77]		
Petromica citrina	Cagarras Archipelago, Brazil (4-20 m)	*Bacillus*	Firmicutes	Unidentified	DOI (20 mm)	*E. cloacae AE*	[77]		
Petromica citrina	Cagarras Archipelago, Brazil (4-20 m)	*Bacillus*	Firmicutes	Unidentified	DOI (20 mm)	*E. cloacae AE*	[77]		
Haliclona sp.	Cagarras Archipelago, Brazil (4-20 m)	*Pseudomonas*	Proteobacteria	Unidentified	DOI (28 mm)	*Enterobacter hafniae*	[77]		
Haliclona sp.	Cagarras Archipelago, Brazil (4-20 m)	*Pseudomonas*	Proteobacteria	Unidentified	DOI (21 mm)	*E. hafniae*	[77]		
Haliclona sp.	Cagarras Archipelago, Brazil (4-20 m)	*Pseudomonas*	Proteobacteria	Unidentified	DOI (23 mm)	*E. hafniae*	[77]		
Petromica citrina	Cagarras Archipelago, Brazil (4-20 m)	*Bacillus*	Firmicutes	Unidentified	DOI (18 mm)	*E. hafniae*	[77]		
Axinella dissimilis	Gurraig Sound, Kilieran Bay, Ireland (15 m)	*Pseudovibrio*	Proteobacteria	Unidentified	ND	*Enterobacter aerogenes*	[78]		
Organism	Source	Isolated Bacteria	Isolated Compounds	MIC (µg/mL)	Reference				
----------	--------	-------------------	-------------------	-------------	-----------				
Xestospongia testudinaria	Weizhou coral reef, China (ND)	Aspergillus sp.	(−)-Sydonic acid	1.33	[48]				
			(Z)-5-(Hydroxymethyl)-2-[(6S)-methylhept-2-en-2-yl]phenol	2.33					
			Aspergiterpenoid A	4.72					
			(−)-Sydonol	5.04					
Halocordia japonica	Iriomote island, Japan (ND)	Bacillus cereus QNO3323	Thiopeptide YM-266183	>100	[40,41]				
			Thiopeptide YM-266184	>100					
Unidentified sponge	Vizhijam coast (10–12 m)	Aspergillus clavatus MFD15	1H-1,2,4-Triazole-3-carboxaldehyde-5-methyl	2-Pyrrolidone					
			800						
Spongia officinalis	Southeast Coast India (10–15 m)	Streptomyces sp. MAPS15	E. coli PC1	400	[63]				
Dysidea herbasca	Koror, Republic Palau (1 m)	Oscillatoria spongialis	E. coli	2-(2′,4′-Dibromophenyl)-4,6-dibromophenol					
			E. coli	ND					
Hryptios altum	Aragusuku island, Japan (ND)	Vibrio sp	Trisandoline	DOI (16 mm)					
			Prodigiosin	DOI (≤9 mm)					
Xestospongia testudinaria	Bidong Island, Malaysia (ND)	Serratia marcescens IBRL USM 84	E. coli	2-Pyrrolidone					
			E. coli	400					
Unidentified	South China Sea (10 m)	Nocardopsis sp. 13-33-15 and 13-12-13	E. coli SJ42	1,6-Dihydroxyphenazin					
			E. coli SJ42	DOI (8 ± 0.4 mm)					
Aplysina aerophoba	Banyuls-sur-Mer, France (5–15 m)	Bacillus subtilis A184	E. coli	Surfactin					
			E. coli	Iturin Fengycin					
			E. coli	ND					
Aplysina aerophoba	Banyuls-sur-Mer, France (5–15 m)	Bacillus subtilis A190	E. coli	Surfactin					
			E. coli	ND					
Niphates olemda	Bali Bata National Park, Indonesia (ND)	Curvularia lunata	E. coli HBI-101	1,3,8-Trithydroxy-6-methoxyantraquinone (lanatin)					
			E. coli HBI-101	DOI (11 mm)					
Niphates olemda	Bali Bata National Park, Indonesia (ND)	Curvularia lunata	E. coli	Bisanthraquinone cytoskyrin A					
			E. coli	DOI (11 mm)					
Niphates olemda	Bali Bata National Park, Indonesia (ND)	Curvularia lunata	E. coli HBI-101	1,3,8-Trithydroxy-6-methoxyantraquinone (lanatin)					
			E. coli HBI-101	DOI (10.5 mm)					
Niphates olemda	Bali Bata National Park, Indonesia (ND)	Curvularia lunata	E. coli HBI-101	Bisanthraquinone cytoskyrin A					
			E. coli HBI-101	DOI (9 mm)					
Polymastia boletiformis, Axinella dissimilis and Haliclonia simulans	Gurraig Sound, Kilkieran Bay, Ireland (15 m)	Pseudovibrio sp. W64, W69, W89, W74	E. coli	Tropolodithiacid					
			E. coli	DOI (> 2 mm)					
Table 2. Cont.

Polymastia boletiformis, Axinella dissimilis and Haliclona simulans	Polynemus sp.	Proteobacteria	Unidentified	DOI (2–2 mm)	E. coli
Gurraig Sound, Kilkieran Bay, Ireland (15 m)	Pseudovibrio sp. JIC5, JIC6, JIC17, W62, W65, W71, W99, WC43, W85, W78, W94, W96, WME1, WM33, WM34, WM48, WC13, WC21, WC22, WC30, WC32, WC41, HC6, HMMA3	Proteobacteria	Unidentified	DOI (>2 mm)	E. coli

Dendrilla nigra	Southwest Coast of India	Nocardiopsis dassonvillei MAD08	Actinobacteria	Unidentified	MIC (300 µg/mL)	E. coli PC1
Axinella dissimilis	Gurraig Sound, Kilkieran Bay, Ireland (15 m)	Pseudovibrio sp. Ad30	Proteobacteria	Unidentified	DOI (1-3 mm)	E. coli

| Hydmaniacodon perleve | Nandi Island, China (ND) | Pseudomonas sp. NJ6-3-1 | Proteobacteria | Unidentified | DOI (15 mm) | E. coli |

| Callip sponsa | Kovalam Coast, India (5-10 m) | Aspergillus flavus GL815344 | Ascomycota | Unidentified | DOI (42 mm) | E. coli |

| Haliclona sp. | Cagarras Archipelago, Brazil (4-20 m) | Pseudomonas fluorescens H40 | Proteobacteria | Unidentified | DOI (22 mm) | E. coli |

| Haliclona sp. | Cagarras Archipelago, Brazil (4-20 m) | Pseudomonas fluorescens H41 | Proteobacteria | Unidentified | DOI (25 mm) | E. coli |

| Haliclona sp. | Cagarras Archipelago, Brazil (4-20 m) | Pseudomonas aeruginosa H51 | Proteobacteria | Unidentified | DOI (18 mm) | E. coli |

| Batrmecia citrina | Cagarras Archipelago, Brazil (4-20 m) | Bacillus pumilus P31 | Proteobacteria | Unidentified | DOI (16 mm) | E. coli |

| Micromonospora | Cagarras Archipelago, Brazil (4-20 m) | Micromonospora CPI 12 | Actinobacteria | Unidentified | DOI (7.5 mm) | E. coli |

| Axinella dissimilis | Gurraig Sound, Kilkieran Bay, Ireland (15 m) | Pseudovibrio sp. Ad30 | Proteobacteria | Unidentified | DOI (10-15 mm) | E. coli |

| Callip sponsa | Bay of Bengal, India (10-15 m) | Micromonospora sp. CPI 12 | Actinobacteria | Unidentified | DOI (26 mm) | E. coli |

| Sigmadocia fibulatus | Hare Island, India (5-10 m) | Bacillus sp. SC3 | Firmicutes | Unidentified | DOI (2-2 mm) | E. coli |
Table 2. Cont.

Organism	Location	Isolate(s)	Phylum	Unidentified (DOI)	Reference			
Aplysina aerophoba and *Aplysina cavernicola*	Marseille and Banyuls sur Mer, France (ND)	Bacillus SB8, SB17	Firmicutes	Unidentified (DOI 12–16 mm)	[84]			
Aplysina aerophoba and *Aplysina cavernicola*	Marseille and Banyuls sur Mer, France (ND)	*Enterococcus* SB91	Proteobacteria	Unidentified (DOI 12–16 mm)	[84]			
Aplysina aerophoba and *Aplysina cavernicola*	Marseille and Banyuls sur Mer, France (ND)	*Arthrobacter* SB95	Actinobacteria	Unidentified (DOI 12–16 mm)	[84]			
Aplysina aerophoba and *Aplysina cavernicola*	Marseille and Banyuls sur Mer, France (ND)	unidentifed low G + C Gram positive SB122 and SB144		Unidentified (DOI 12–16 mm)	[84]			
Aplysina aerophoba and *Aplysina cavernicola*	Marseille and Banyuls sur Mer, France (ND)	α-Proteobacteria SB6, SB55, SB63, SB89, SB156, SB197, SB202, SB207, SB214,	Proteobacteria	Unidentified (DOI 12–16 mm)	[84]			
Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	*Streptomyces* sp. HB107	Actinobacteria	ND	[44]			
Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	*Streptomyces* sp. HB132	Actinobacteria	ND	[44]			
Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	*Streptomyces* sp. HB253	Actinobacteria	ND	[44]			
Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	*Streptomyces* sp. HB298	Actinobacteria	ND	[44]			
Amphilectus fucorum	Lough Hyne, Ireland (8–15 m)	*Pseudovibrio* sp. 117V, 115 V and 112 V		Unidentified (ND)	[97]			
Amphilectus fucorum	Lough Hyne, Ireland (8–15 m)	*Pseudovibrio* sp. 113V		Unidentified (ND)	[97]			
Eurypon major	Lough Hyne, Ireland (8–15 m)	*Pseudovibrio* sp. 107L, 108L, 109L		Unidentified (ND)	[97]			
Haliclona simulans	Gurraig Sound Kilkieran Bay, Ireland (15 m)	*Streptomyces* sp. SM2 and SM4		Unidentified (DOI 25 mm)	[88]			
Dysidea granulosa	Kavaratti Island, India (ND)	*Enterobacter* sp. TTAG		Unidentified (ND)	[85]			
Calyptraea diffusa	Southwest Coast of India (6–7 m)	*Shewanella* alga VCDB KC623651		Unidentified (DOI 10 mm)	[99]			
Haliclonia sp.	Cagarras Archipeloago, Brazil (4–20 m)	*Pseudomonas* fluorescens H40	Proteobacteria	Unidentified (DOI 20 mm)	[77]			
Haliclonia sp.	Cagarras Archipeloago, Brazil (4–20 m)	*Pseudomonas* fluorescens H41	Proteobacteria	Unidentified (DOI 17 mm)	[77]			
Haliclonia sp.	Cagarras Archipeloago, Brazil (4–20 m)	*Pseudomonas* aeruginosa H51	Proteobacteria	Unidentified (DOI 20 mm)	[77]			
Petromica citrina	Cagarras Archipeloago, Brazil (4–20 m)	*Bacillus* pumilus P33	Firmicutes	Unidentified (DOI 35 mm)	[77]			
Species	Location	Bacteria	Genus	Species	Taxonomy	Growth Zone	MIC/IC50	Reference
----------------------------	-----------------------------------	-----------------------------------	------------------------------	---------	----------	-------------	----------	-----------
Petromica citrina	Cagarras Archipelago, Brazil (4–20 m)	*Bacillus pumilus* PC32	Firmicutes	Unidentified	DOI (39 mm)	E. coli 54AE	[77]	
Clathrina aura	Cagarras Archipelago, Brazil (4–20 m)	*Pseudovibrio ascidiaceicola* Ca31	Proteobacteria	Unidentified	DOI (15 mm)	E. coli 54AE	[77]	
Paraleucilla magna	Cagarras Archipelago, Brazil (4–20 m)	*Pseudovibrio ascidiaceicola* Pm31	Proteobacteria	Unidentified	DOI (21 mm)	E. coli 54AE	[77]	
Mycale microsagittosa	Cagarras Archipelago, Brazil (4–20 m)	*Pseudovibrio denitrificans* Mm37	Proteobacteria	Unidentified	DOI (25 mm)	E. coli 54AE	[77]	
Petrelasma ficoformis	Panaggy, Ligurian Sea, Italy (8 m)	*Pseudoalteromonas* sp. F6	Proteobacteria	Unidentified	ND	*Escherichia faecalis*	[86]	
Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	*Streptomyces* sp. HB202	Actinobacteria	*Mayamycin*	IC50 (1.16 µg/mL)	*Klebsiella pneumonia*	[45]	
Spongia officinalis	Southeast Coast, India (10–15 m)	*Streptomyces* sp. MAPS15	Actinobacteria	2-Pyrrolidone	MIC (700 µg/mL)	*K. pneumonia PC7*	[63]	
Haliclona sp.	Cagarras Archipelago, Brazil (4–20 m)	*Pseudomonas fluorescens* H40	Proteobacteria	Unidentified	DOI (25 mm)	*K. pneumonia*	[77]	
Haliclona sp.	Cagarras Archipelago, Brazil (4–20 m)	*Pseudomonas fluorescens* H41	Proteobacteria	Unidentified	DOI (24 mm)	*K. pneumonia*	[77]	
Dendrilla nigra	Southeast coast of India (ND)	*Streptomyces* sp. BTL7	Actinobacteria	Unidentified	DOI (<10 mm)	*K. pneumonia*	[80]	
Calypsochonia diffusa	Bay of Bengal, India (10–15 m)	*Streptomyces* sp. CPI 13	Actinobacteria	Unidentified	DOI (9.2 mm)	*K. pneumonia*	[92]	
Calypsochonia diffusa	Bay of Bengal, India (10–15 m)	*Saccharomonospora* sp. CPI 3	Actinobacteria	Unidentified	DOI (6.3 mm)	*K. pneumonia*	[92]	
Dipsida granulosa	Cagarras Archipelago, Brazil (4–20 m)	*Entrobacter* sp. TTAG	Proteobacteria	Unidentified	DOI (22 mm)	*K. pneumonia*	[85]	
Haliclona sp.	Cagarras Archipelago, Brazil (4–20 m)	*Pseudomonas fluorescens* H40	Proteobacteria	Unidentified	DOI (18 mm)	*K. pneumonia 52 AE*	[77]	
Haliclona sp.	Cagarras Archipelago, Brazil (4–20 m)	*Pseudomonas fluorescens* H41	Proteobacteria	Unidentified	DOI (15 mm)	*K. pneumonia 52 AE*	[77]	
Haliclona sp.	Cagarras Archipelago, Brazil (4–20 m)	*Pseudomonas aeruginosa* H51	Proteobacteria	Unidentified	DOI (21 mm)	*K. pneumonia 52 AE*	[77]	
Haliclona sp.	Cagarras Archipelago, Brazil (4–20 m)	*Pseudomonas fluorescens* H40	Proteobacteria	Unidentified	DOI (16 mm)	*K. pneumonia 19AE* (susceptible to amp, atm, caz, cpd, fox)	[77]	
Haliclona sp.	Cagarras Archipelago, Brazil (4–20 m)	*Pseudomonas fluorescens* H41	Proteobacteria	Unidentified	DOI (20 mm)	*K. pneumonia 19AE*	[77]	
Haliclona sp.	Cagarras Archipelago, Brazil (4–20 m)	*Pseudomonas aeruginosa* H51	Proteobacteria	Unidentified	DOI (32 mm)	*K. pneumonia 19AE*	[77]	
Haliclona sp.	Cagarras Archipelago, Brazil (4–20 m)	*Pseudomonas fluorescens* H40	Proteobacteria	Unidentified	DOI (20 mm)	*Neisseria gonorrhoeae*	[77]	
Table 2. Cont.

Haliclona sp.	Cagarras Archipelago, Brazil (4-20 m)	Pseudomonas fluorescens H41	Proteobacteria	Unidentified	DOI (27 mm)	N. gonorrhoeae [77]
Haliclona sp.	Cagarras Archipelago, Brazil (4-20 m)	Pseudomonas aeruginosa H51	Proteobacteria	Unidentified	DOI (52 mm)	N. gonorrhoeae [77]
Petromica citrina	Cagarras Archipelago, Brazil (4-20 m)	Bacillus pumilus Pc31	Firmicutes	Unidentified	DOI (28 mm)	N. gonorrhoeae [77]
Petromica citrina	Cagarras Archipelago, Brazil (4-20 m)	Bacillus pumilus Pc32	Firmicutes	Unidentified	DOI (29 mm)	N. gonorrhoeae [77]
Haliclona sp.	Cagarras Archipelago, Brazil (4-20 m)	Pseudomonas fluorescens H40	Proteobacteria	Unidentified	DOI (24 mm)	N. gonorrhoeae 4277 (susceptible to pen) [77]
Haliclona sp.	Cagarras Archipelago, Brazil (4-20 m)	Pseudomonas fluorescens H41	Proteobacteria	Unidentified	DOI (24 mm)	N. gonorrhoeae 4277 [77]
Haliclona sp.	Cagarras Archipelago, Brazil (4-20 m)	Pseudomonas aeruginosa H51	Proteobacteria	Unidentified	DOI (32 mm)	N. gonorrhoeae 4277 [77]
Petromica citrina	Cagarras Archipelago, Brazil (4-20 m)	Bacillus pumilus Pc31	Firmicutes	Unidentified	DOI (32 mm)	N. gonorrhoeae 4277 [77]
Petromica citrina	Cagarras Archipelago, Brazil (4-20 m)	Bacillus pumilus Pc32	Firmicutes	Unidentified	DOI (32 mm)	N. gonorrhoeae 4277 [77]
Haliclona sp.	Cagarras Archipelago, Brazil (4-20 m)	Pseudomonas fluorescens H40	Proteobacteria	Unidentified	DOI (24 mm)	N. gonorrhoeae 4957 (susceptible to cip) [77]
Haliclona sp.	Cagarras Archipelago, Brazil (4-20 m)	Pseudomonas fluorescens H41	Proteobacteria	Unidentified	DOI (29 mm)	N. gonorrhoeae 4957 [77]
Haliclona sp.	Cagarras Archipelago, Brazil (4-20 m)	Pseudomonas aeruginosa H51	Proteobacteria	Unidentified	DOI (36 mm)	N. gonorrhoeae 4957 [77]
Petromica citrina	Cagarras Archipelago, Brazil (4-20 m)	Bacillus pumilus Pc31	Firmicutes	Unidentified	DOI (23 mm)	N. gonorrhoeae 4957 [77]
Petromica citrina	Cagarras Archipelago, Brazil (4-20 m)	Bacillus pumilus Pc32	Firmicutes	Unidentified	DOI (23 mm)	N. gonorrhoeae 4957 [77]
Haliclona sp.	Cagarras Archipelago, Brazil (4-20 m)	Pseudomonas fluorescens H40	Proteobacteria	Unidentified	DOI (20 mm)	N. gonorrhoeae 5728 (cip, pen, het) [77]
Haliclona sp.	Cagarras Archipelago, Brazil (4-20 m)	Pseudomonas fluorescens H41	Proteobacteria	Unidentified	DOI (19 mm)	N. gonorrhoeae 5728 [77]
Haliclona sp.	Cagarras Archipelago, Brazil (4-20 m)	Pseudomonas aeruginosa H51	Proteobacteria	Unidentified	DOI (46 mm)	N. gonorrhoeae 5728 [77]
Petromica citrina	Cagarras Archipelago, Brazil (4-20 m)	Bacillus pumilus Pc31	Firmicutes	Unidentified	DOI (29 mm)	N. gonorrhoeae 5728 [77]
Petromica citrina	Cagarras Archipelago, Brazil (4-20 m)	Bacillus pumilus Pc32	Firmicutes	Unidentified	DOI (32 mm)	N. gonorrhoeae 5728 [77]
Haliclona sp.	Cagarras Archipelago, Brazil (4-20 m)	Pseudomonas fluorescens H40	Proteobacteria	Unidentified	DOI (18 mm)	N. gonorrhoeae 5729 (susceptible to azm, pen, het) [77]
Table 2. Cont.

Organism	Location	Bacteria	Group	DOI (mm)	Organism	
Haliclona sp. Cagarras Archipelago, Brazil (4–20 m)	Pseudomonas fluorescens H41	Proteobacteria	Unidentified	DOI (16 mm)	N. gonorrhoeae 5729 [77]	
Haliclona sp. Cagarras Archipelago, Brazil (4–20 m)	Pseudomonas aeruginosa H51	Proteobacteria	Unidentified	DOI (35 mm)	N. gonorrhoeae 5729 [77]	
Petromica cirrina Cagarras Archipelago, Brazil (4–20 m)	Bacillus pumilus Pc31	Firmicutes	Unidentified	DOI (25 mm)	N. gonorrhoeae 5729 [77]	
Petromica cirrina Cagarras Archipelago, Brazil (4–20 m)	Bacillus pumilus Pc32	Firmicutes	Unidentified	DOI (32 mm)	N. gonorrhoeae 5729 [77]	
Haliclona sp. Cagarras Archipelago, Brazil (4–20 m)	Pseudomonas fluorescens H40	Proteobacteria	Unidentified	DOI (20 mm)	N. gonorrhoeae 6002 (susceptible to tet) [77]	
Haliclona sp. Cagarras Archipelago, Brazil (4–20 m)	Pseudomonas fluorescens H41	Proteobacteria	Unidentified	DOI (26 mm)	N. gonorrhoeae 6002 [77]	
Petromica cirrina Cagarras Archipelago, Brazil (4–20 m)	Bacillus pumilus H51	Proteobacteria	Unidentified	DOI (28 mm)	N. gonorrhoeae 6002 [77]	
Petromica cirrina Cagarras Archipelago, Brazil (4–20 m)	Bacillus pumilus Pc32	Firmicutes	Unidentified	DOI (28 mm)	N. gonorrhoeae 6002 [77]	
Haliclamaocculata Gulf of Mannar, India (ND)	Bacillus licheniformis T6-1	Firmicutes	Fluorophore compound	DOI (6 mm) at 50 µM	Salmonella typhi [87]	
Dysidea granulosa	Kavaratti Island, India (ND)	Enterobacter sp. TTAG	Proteobacteria	Unidentified	DOI (19 mm)	S. typhi [85]
Callipogonia diffusa	Southeast Coast of India (6-7 m)	Shewanella alga VCD8 KC62851	Proteobacteria	Unidentified	DOI (11 mm)	S. typhi [99]
Dendrilla nigra	Southeast coast of India (ND)	Streptomycetes sp. BTL7	Actinobacteria	Unidentified	DOI (16 mm)	S. typhi [85]
Axinella dissimilis	Garraig Sound, Kilkieran Bay, Ireland (15 m)	Pseudovibrio sp. W64, W69, W89, W74	Proteobacteria	Unidentified	ND	Salmonella typhimurium [78]
Polymastia boletiformis, Axinella dissimilis and Haliclona simulans	Garraig Sound, Kilkieran Bay, Ireland (15 m)	Pseudovibrio sp. W64, W69, W89, W74	Proteobacteria	Unidentified	ND	Salmonella typhimurium [72]
Polymastia boletiformis, Axinella dissimilis and Haliclona simulans	Garraig Sound, Kilkieran Bay, Ireland (15 m)	Pseudovibrio sp. HC5, W63, W65, W71, W99, W96, WM40, WC32, WC41, HC6	Proteobacteria	Unidentified	DOI (≥2 mm)	S. typhimurium [72]
Polymastia boletiformis, Axinella dissimilis and Haliclona simulans	Garraig Sound, Kilkieran Bay, Ireland (15 m)	Pseudovibrio sp. W10, W62, WC43, W85, W78, W94, WM31, WM34, WC33, WC21, WC30	Proteobacteria	Unidentified	DOI (≥1 mm)	S. typhimurium [72]
Haliclama sp.	Cagarras Archipelago, Brazil (4–20 m)	Pseudomonas fluorescens H40	Proteobacteria	Unidentified	DOI (21 mm)	Salmonella enterica [77]
Haliclama sp.	Cagarras Archipelago, Brazil (4–20 m)	Pseudomonas fluorescens H41	Proteobacteria	Unidentified	DOI (17 mm)	S. enterica [77]
Haliclama sp.	Cagarras Archipelago, Brazil (4–20 m)	Pseudomonas aeruginosa H51	Proteobacteria	Unidentified	DOI (25 mm)	S. enterica [77]
Table 2. Cont.

Species	Location	Isolated Bacteria	Source/Target	MIC or IC50 Value	Reference
Clathrina aurea	Cagarras Archipelago, Brazil (4-20 m)	Pseudovibrio ascidiaceicola Ca31	Proteobacteria	Unidentified	[77]
Paraleucilla magna	Cagarras Archipelago, Brazil (4-20 m)	Pseudovibrio ascidiaceicola Pm31	Proteobacteria	Unidentified	[77]
Mycale microsigmatosa	Cagarras Archipelago, Brazil (4-20 m)	Pseudovibrio denitrificans Mm37	Proteobacteria	Unidentified	[77]
Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	Streptomyces sp. HB202	Actinobacteria	Mayamycin IC50 (1.16 µg/mL)	[45]
Halichondria sp.	Cagarras Archipelago, Brazil (4-20 m)	Pseudomonas fluorescens H40, H41 and Pseudomonas aeruginosa H51	Proteobacteria	Diketopiperazine cyclo-(L-Leu-L-Pro) MIC (512 µg/mL)	[62]
Halichondria sp.	West Coast of India (10 m)	Bacillus licheniformis Sab1	Firmicutes	Indole DOI (4-6 mm)	[69]
Halichondria sp.	West Coast of India (10 m)	Bacillus licheniformis Sab1	Firmicutes	3-Phenylpyrroline DOI (4-6 mm)	[69]
Halichondria sp.	Cagarras Archipelago, Brazil (4-20 m)	Pseudomonas fluorescens H40	Proteobacteria	Unidentified	[77]
Petrovima citrina	Cagarras Archipelago, Brazil (4-20 m)	Bacillus pumilus Pc31	Firmicutes	Unidentified	[77]
Petrovima citrina	Cagarras Archipelago, Brazil (4-20 m)	Bacillus pumilus Pc32	Firmicutes	Unidentified	[77]
Halichondria sp.	Cagarras Archipelago, Brazil (4-20 m)	Pseudomonas aeruginosa H51	Proteobacteria	Unidentified	[77]
Clathrina aurea	Cagarras Archipelago, Brazil (4-20 m)	Pseudovibrio ascidiaceicola Ca31	Proteobacteria	Unidentified	[77]
Paraleucilla magna	Cagarras Archipelago, Brazil (4-20 m)	Pseudovibrio ascidiaceicola Pm31	Proteobacteria	Unidentified	[77]
Mycale microsigmatosa	Cagarras Archipelago, Brazil (4-20 m)	Pseudovibrio denitrificans Mm37	Proteobacteria	Unidentified	[77]
Axinella dissimilis	Gurraig Sound, Kilkieran Bay, Ireland (15 m)	Pseudovibrio Ad30	Proteobacteria	ND	[78]
Dendrilla nigra	Southeast coast of India (ND)	Streptomyces sp. BTL7	Actinobacteria	Unidentified	[80]
Callyspongia diffusa	Bay of Bengal, India (10-15 m)	Streptomyces sp. CPI 13	Actinobacteria	Unidentified	[92]
Callyspongia diffusa	Bay of Bengal, India (10-15 m)	Micromonospora sp. CPI 12	Actinobacteria	Unidentified	[92]
Callyspongia diffusa	Bay of Bengal, India (10-15 m)	Saccharomonospora sp. CPI 9	Actinobacteria	Unidentified	[92]
Callyspongia diffusa	Bay of Bengal, India (10-15 m)	Saccharomonospora sp. CPI 3	Actinobacteria	Unidentified	[92]
Table 2. Cont.

Species	Location	Bioactive Compound	MIC (μg/mL)	Source	
Haliclona sp.	Cagarras Archipelago, Brazil (4–20 m)	*Pseudomonas aeruginosa* H51	Unidentified	DOI (32 mm)	*P. aeruginosa* 3AE (susceptible to atm, tsp) [77]
Haliclona sp.	Cagarras Archipelago, Brazil (4–20 m)	*Pseudomonas aeruginosa* H40	Unidentified	DOI (20 mm)	*P. aeruginosa* 3AE [77]
Clathria aurea	Cagarras Archipelago, Brazil (4–20 m)	*Pseudovibrio ascidiaceicola* Ca31	Unidentified	DOI (14 mm)	*P. aeruginosa* 3AE [77]
Paraleucilla magna	Cagarras Archipelago, Brazil (4–20 m)	*Pseudovibrio ascidiaceicola* Ps13	Unidentified	DOI (12 mm)	*P. aeruginosa* 3AE [77]
Mycale microsigmata	Cagarras Archipelago, Brazil (4–20 m)	*Pseudovibrio denitrificans* Mm37	Unidentified	DOI (15 mm)	*P. aeruginosa* 3AE [77]
Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	*Streptomyces* sp. HB107	Actinobacteria	Unidentified	*P. fluorescens* [44]
Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	*Streptomyces* sp. HB202	Actinobacteria	Unidentified	*P. fluorescens* [44]
Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	*Streptomyces* sp. HB107	Unidentified	ND	*P. fluorescens* [44]
Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	*Streptomyces* sp. HB138	Unidentified	ND	*P. fluorescens* [44]
Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	*Streptomyces* sp. HB272	Unidentified	ND	*P. fluorescens* [44]
Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	*Streptomyces* sp. HB289	Unidentified	ND	*P. fluorescens* [44]
Callyspongia sp.	Kyung-Po beach, Korea (12 m)	*Breithiobacterium* sp. KMD 003	Actinobacteria	6-Hydroxymethyl-1-phenazine-carboxamide	*Micrococcus luteus* [94]
Isodictya setifera	Ross Island, Antarctica (30–40 m)	*Pseudomonas aeruginosa*	Proteobacteria	Phenazine-1-carboxylic acid and phenazine-1-carboxamide	*M. luteus* [55]
Dendrilla nigra	Southeast coast of India (ND)	*Streptomyces* sp. BTL7	Actinobacteria	Unidentified	*M. luteus* [80]
Callyspongia diffusa	Bay of Bengal, India (10–15 m)	*Saccharomonospora* sp. CPI 9	Actinobacteria	1,6-Dihydroxyphenazine	*M. luteus* [92]
Callyspongia diffusa	Bay of Bengal, India (10–15 m)	*Saccharomonospora* sp. CPI 3	Unidentified	DOI (6.6 mm)	*M. luteus* [92]
Xestospongia testudinaria	South China Sea (10 m)	*Nocardopsis* sp. 13-33-15 and 13-12-13	Actinobacteria	1,6-Dihydroxyphenazine	*M. luteus* [87]
Xestospongia testudinaria	South China Sea (10 m)	*Nocardopsis* sp. 13-33-15 and 13-12-13	Actinobacteria	1,6-Dimethoxyphenazine	*M. luteus* [87]
Xestospongia testudinaria	Weizhou coral reef, China (ND)	*Aspergillus* sp.	Ascomycota	(−)-Sydonic acid	*Micrococcus tetragenus* [48]
Table 2. Cont.

Organism	Location	Isolate	Microorganism	Genus	IC50 (µg/mL)		
Xestospongia testudinaria	Weizhou coral reef, China (ND)	Aspergillus sp.	Ascomycota	(Z)-5-(Hydroxymethyl)-2-(6'-methylhept-2'-en-2'-yl)phenol	M. tetragenus	[48]	
Xestospongia testudinaria	Weizhou coral reef, China (ND)	Aspergillus sp.	Ascomycota	Aspergiterpenoid A	M. tetragenus	[48]	
Xestospongia testudinaria	Weizhou coral reef, China (ND)	Aspergillus sp.	Ascomycota	(–)-Sydonol	M. tetragenus	[48]	
Xestospongia testudinaria	Bidong Island, Malaysia (ND)	Serratia marcescens IBRL USM 84	Proteobacteria	Prodigiosin	Micrococcus sp.	[66]	
Petrosia ficiformis	Paraggi, Ligurian Sea, Italy (8 m)	Rhodococcus sp. E1	Actinobacteria	Unidentified	ND	Micrococcus sp.	[86]
Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	Streptomyces sp. HB202	Actinobacteria	Mayamycin	Brevibacterium epidermidis	[45]	
Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	Streptomyces sp. HB202	Actinobacteria	Mayamycin	Dermabacter hominis	[45]	
Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	Streptomyces sp. HB202	Actinobacteria	Mayamycin	Propionibacterium acnes	[45]	
Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	Streptomyces sp. HB202	Actinobacteria	Mayamycin	Xanthomonas campestris	[45]	
Dysidea tupha	Rovinj, Croatia (ND)	Streptomyces sp. RV15	Actinobacteria	Naphthaene glycoside SF2446A2	Chlamydia trachomatis	[46]	
unidentified	ND	Trichoderma sp. 05F48	Ascomycota	Trichodermin A	M. smegmatis	[49]	
unidentified	ND	Trichoderma sp. 05F48	Ascomycota	Trichodermin A	M. smegmatis	[49]	
unidentified	ND	Trichoderma sp. 05F48	Ascomycota	Trichodermin A	M. smegmatis	[49]	
unidentified	ND	Trichoderma sp. 05F48	Ascomycota	Trichodermin A	M. bovis BCG	[49]	
unidentified	ND	Trichoderma sp. 05F48	Ascomycota	Trichodermin A	M. tuberculosis H37rv	[49]	
unidentified	ND	Trichoderma sp. 05F48	Ascomycota	Trichodermin A	M. tuberculosis H37rv	[49]	
unidentified	ND	Trichoderma sp. 05F48	Ascomycota	Trichodermin A	M. tuberculosis H37rv	[49]	
Xestospongia testudinaria	Weizhou coral reef, China (ND)	Aspergillus sp.	Ascomycota	(–)-Sydonic acid	V. parahaemolyticus	[48]	
Asbestopluma hypogea	La Ciotat, France (17 m)	Streptomyces sp. SICA	Actinobacteria	Unidentified	ND	V. parahaemolyticus	[100]
Mycale sp.	Gulei Port, Fujian, China (ND)	Bacillus sp. HNS010	Firmicutes	Unidentified	DOI (8–10 mm)	V. parahaemolyticus	[81]
Table 2. Cont.							

Mycale sp.	Gulei Port, Fujian, China (ND)	Coilotha sp. HNS023; Noctiluopsis HNS055; HNS058	Actinobacteria	Unidentified	DOI (8-10 mm)	V. parahaemolyticus [81]	
Mycale sp.	Gulei Port, Fujian, China (ND)	Streptomyces sp. HNS054	Actinobacteria	Unidentified	DOI (10-15 mm)	V. parahaemolyticus [81]	
Phorbas tenacior	Mediterranean Sea, Marseille, France (15 m)	Citricoccus sp. P1S7	Actinobacteria	Unidentified	DOI (3-6 mm)	V. parahaemolyticus [101]	
Phorbas tenacior	Mediterranean Sea, Marseille, France (15 m)	Pseudovibrio sp. P1Ma4 and Vibrio sp. P1MaNa1	Proteobacteria	Unidentified	DOI (2-3 mm)	V. parahaemolyticus [101]	
Xestospongia testudinaria	Weizhou coral reef, China (ND)	Aspergillus sp.	Ascomycota	SD-3 (1.33 µg/mL)	V. parahaemolyticus [101]		
Haliclona simulans	Guillaum Sound, Kilkieran Bay, Ireland (15 m)	Bacillus subtilis MMA7	Firmicutes	Subtilomycin	ND	V. anguillarum [71]	
Polymastia boletiformis, Axinella dissimilis and Haliclona simulans	Guillaum Sound, Kilkieran Bay, Ireland (15 m)	Pseudovibrio sp. W64,	Proteobacteria	Tropodithietic acid	DOI (3-4 mm)	V. anguillarum [72]	
Polymastia boletiformis, Axinella dissimilis and Haliclona simulans	Guillaum Sound, Kilkieran Bay, Ireland (15 m)	Pseudovibrio sp. W69, W99,	Proteobacteria	Tropodithietic acid	DOI (2-2 mm)	V. anguillarum [72]	
Polymastia boletiformis, Axinella dissimilis and Haliclona simulans	Guillaum Sound, Kilkieran Bay, Ireland (15 m)	Pseudovibrio sp. W74	Proteobacteria	Tropodithietic acid	DOI (3-2 mm)	V. anguillarum [72]	
Polymastia boletiformis, Axinella dissimilis and Haliclona simulans	Guillaum Sound, Kilkieran Bay, Ireland (15 m)	Pseudovibrio sp. JC6, JC17, WM33, WC15, WC22	Proteobacteria	Unidentified	DOI (3-1 mm)	V. anguillarum [72]	
Polymastia boletiformis, Axinella dissimilis and Haliclona simulans	Guillaum Sound, Kilkieran Bay, Ireland (15 m)	Pseudovibrio sp. W62, W71, WC43, WC78, W94, W96, WM38, WC13, WC21, WC30, WC32, WC41, WMMA3	Proteobacteria	Unidentified	DOI (3-2 mm)	V. anguillarum [72]	
Phorbas tenacior	Mediterranean Sea, Marseille, France (15 m)	Citricoccus sp. P1S7	Actinobacteria	Unidentified	DOI (3-6 mm)	V. anguillarum [101]	
Callyspongia diffusa	Southwest Coast of India (6-7 m)	Streptomyces sp. VCD8 KGC623651	Proteobacteria	Unidentified	DOI (10 mm)	V. anguillarum [99]	
Dendrilla nigra	Southeast coast of India (ND)	Streptomyces sp. BTL7	Actinobacteria	Unidentified	DOI (5 mm), MIC (176 g protein/mL)	V. anguillarum [80]	
Phorbas tenacior	Mediterranean Sea, Marseille, France (15 m)	Citricoccus sp. P1S7	Actinobacteria	Unidentified	DOI (3-6 mm)	V. anguillarum [101]	
Species	Location	Organism(s)	Bacteria/Phylum	Metabolite	DOI (mm)	Reference	
-----------------------------	---------------------------------	---	--	-------------------------------------	----------	-----------	
Dysidea herbacea	Koror, Republic Palaua (1 m)	*Oscillatoria spongiae*	Cyanobacteria	2-(2',4'-Dibromophenyl)-4,6-dibromo-	ND	[64]	
Halichondria sp.	West Coast of India (10 m)	*Bacillus licheniformis* SABI	Firmicutes	4,4'-Oxybis(3-phenylpropionic acid)	DOI (4-6 mm)	[69]	
Mycate sp.	Gaeli Port, Fujian, China (ND)	*Vibrio sp.* HNS02, HNS029, Stretomyces sp. HNS049, HNS054, Nocardopsis sp. HNS055	Proteobacteria	Unidentified VI (8-10 mm)	V. harveyi	[81]	
Callipogonia diffusa	Southwest Coast of India (6-7 m)	*Vibrio sp.* HNS02, HNS029, Stretomyces sp. HNS049, HNS054, Nocardopsis sp. HNS055	Proteobacteria	Unidentified VI (14 mm)	V. harveyi	[98]	
Asbestopluma hypogea	La Ciota, France (17 m)	*Streptomyces sp.* SICA	Actinobacteria	Unidentified VI (3-5 mm)	V. sp. 2SW	[100]	
Asbestopluma hypogea	La Ciota, France (17 m)	*Streptomyces sp.* SICA	Actinobacteria	Unidentified VI (3-5 mm)	V. sp. 2SW	[100]	
Xestospongia testudinaria	Bidong Island, Malaysia (ND)	*Serratia marcescens* IBRL, USM 84	Proteobacteria	Prodigiosin VI (10-14 mm)	A. tumefaciens	[66]	
Asbestopluma aerophoba	Banyuls-sur-Mer, France (5-15 m)	*Bacillus subtilis* A184	Firmicutes	Surfactin iturin fengycin VI (ND)	ND	[68]	
Hymeniacidon porleve	Nani Island, China (ND)	*Pseudomonas sp.* NJ6-3-1	Proteobacteria	Unidentified VI (3-5 mm)	tumefaciens	[74]	
Xestospongia testudinaria	Bidong Island, Malaysia (ND)	*Serratia marcescens* IBRL, USM 84	Proteobacteria	Prodigiosin VI (10-14 mm)	A. tumefaciens	[66]	
Halichona sp.	Cagarras Archipelago, Brazil (4-20 m)	*Pseudomonas fluorescens* H40	Proteobacteria	Unidentified VI (20 mm)	humannii	[77]	
Halichona sp.	Cagarras Archipelago, Brazil (4-20 m)	*Pseudomonas fluorescens* H40	Proteobacteria	Unidentified VI (20 mm)	humannii	[77]	
Halichona sp.	Cagarras Archipelago, Brazil (4-20 m)	*Pseudomonas fluorescens* H40	Proteobacteria	Unidentified VI (19 mm)	Acinetobacter calcoaceticus	[77]	
Halichona sp.	Cagarras Archipelago, Brazil (4-20 m)	*Pseudomonas fluorescens* H41	Proteobacteria	Unidentified VI (18 mm)	calcoaceticus	[77]	
Halichona sp.	Cagarras Archipelago, Brazil (4-20 m)	*Pseudomonas aeruginosa* H51	Proteobacteria	Unidentified VI (30 mm)	calcoaceticus	[77]	
Petromica citrina	Cagarras Archipelago, Brazil (4-20 m)	*Bacillus pumilus* Pc31	Firmicutes	Unidentified VI (35 mm)	calcoaceticus	[77]	
Petromica citrina	Cagarras Archipelago, Brazil (4-20 m)	*Bacillus pumilus* Pc32	Firmicutes	Unidentified VI (30 mm)	calcoaceticus	[77]	
Clathrina aurea	Cagarras Archipelago, Brazil (4-20 m)	*Pseudovibrio acidoviscida* Ca31	Proteobacteria	Unidentified VI (18 mm)	calcoaceticus	[77]	
Paraleucilla magna	Cagarras Archipelago, Brazil (4-20 m)	*Pseudovibrio acidoviscida* Pm31	Proteobacteria	Unidentified VI (23 mm)	calcoaceticus	[77]	
Mycate microsigmatosa	Cagarras Archipelago, Brazil (4-20 m)	*Pseudovibrio densitriaticus* Mm37	Firmicutes	Unidentified VI (23 mm)	calcoaceticus	[77]	
Table 2. Cont.

Species	Location	Isolate/Strain	Taxonomy	Metabolite	DOI (mm)	Reference
Petromica citrina	Cagarras Archipelago, Brazil (4-20 m)	Bacillus pumilus Pc31	Firmicutes	Unidentified	DOI (45 mm)	[77]
Petromica citrina	Cagarras Archipelago, Brazil (4-20 m)	Bacillus pumilus Pc32	Firmicutes	Unidentified	DOI (45 mm)	[77]
Halichondria sp.	West Coast of India (10 m)	Bacillus licheniformis SAR1	Firmicutes	Indole	DOI (1-3 mm)	[69]
Halichondria sp.	West Coast of India (10 m)	Bacillus licheniformis SAR1	Firmicutes	3-Phenylpropionic	DOI (4-6 mm)	[69]
Xestospongia testudinaria	Bulong Island, Malaysia (ND)	Serratia marcescens IBRL USM 84	Proteobacteria	Prodigiosin	DOI (<9 mm)	[66]
Aplysina aerophoba	Banyuls-sur-Mer, France (5-15 m)	Bacillus subtilis A184	Firmicutes	Surfactin Iturin Fengycin	ND	Ceribacter michiganensis [68]
Aplysina aerophoba	Banyuls-sur-Mer, France (5-15 m)	Bacillus subtilis A190	Firmicutes	Surfactin	ND	Ceribacter michiganensis [68]
Aplysina aerophoba	Banyuls-sur-Mer, France (5-15 m)	Bacillus subtilis A202	Firmicutes	Iturin	ND	Ceribacter michiganensis [68]
Aplysina aerophoba	Banyuls-sur-Mer, France (5-15 m)	Bacillus subtilis A184	Firmicutes	Surfactin Iturin Fengycin	ND	Proteus vulgaris [68]
Aplysina aerophoba	Banyuls-sur-Mer, France (5-15 m)	Bacillus subtilis A202	Firmicutes	Iturin	ND	Proteus vulgaris [68]
Callyspongia diffusa	Southwest Coast of India (6-7 m)	Sheanella algei VCD8 KC628631	Proteobacteria	Unidentified	DOI (10 mm)	Proteus vulgaris [99]
Callyspongia diffusa	Bay of Bengal, India (10-15 m)	Micromonospora sp. CPI 12	Actinobacteria	Unidentified	DOI (8 mm)	Proteus mirabilis [92]
Callyspongia diffusa	Bay of Bengal, India (10-15 m)	Saccharomonospora sp. CPI 9	Actinobacteria	Unidentified	DOI (6 mm)	Proteus mirabilis [92]
Dysidea aurata	Mediterranean sea (ND)	Actinomycetes sp. EG49	Actinobacteria	1,6-Dihydroxyphenazine (result of co-culture)	DOI (15 mm)	Actinomycetes sp. EG49 [98]
Spheciospongia vagabunda	Red Sea (ND)	Nocardia sp. RV163	Actinobacteria			
Halichondria simulans	Gurraig Sound Kilkieran Bay, Ireland (15 m)	Bacillus subtilis MMA7	Firmicutes	Subtilomycin	ND	Listeria monocytogenes [71]
Axinella dissimilis	Gurraig Sound, Kilkieran Bay, Ireland (15 m)	Pseudovibrio Ad30	Proteobacteria	Unidentified	ND	Listeria monocytogenes [71]
Halichondria simulans	Gurraig Sound Kilkieran Bay, Ireland (15 m)	Streptomyces sp. SM2 and SM4	Actinobacteria	Unidentified	ND	Listeria monocytogenes [88]
Halichondria simulans	Gurraig Sound Kilkieran Bay, Ireland (15 m)	Bacillus subtilis MMA7	Firmicutes	Subtilomycin	ND	Listeria innocua [71]
Halichondria simulans	Gurraig Sound Kilkieran Bay, Ireland (15 m)	Bacillus subtilis MMA7	Firmicutes	Subtilomycin	ND	Clostridium spongens [71]
Table 2. Cont.

Axinella dissimilis	**Gurraig Sound, Kilkieran Bay, Ireland (15 m)**	**Pseudovibrio Ad30**	**Proteobacteria**	**Unidentified**	**ND**	**Clostridium perfringens**	[78]

| **Axinella dissimilis** | **Gurraig Sound, Kilkieran Bay, Ireland (15 m)** | **Pseudovibrio Ad30** | **Proteobacteria** | **Unidentified** | **ND** | **Clostridium difficile** | [78] |

| **Dendrilla nigra** | **Southeast coast of India (15 m)** | **Streptomyces sp. BTL7** | **Actinobacteria** | **Unidentified** | **DOI (10 mm)** | **Clostridium botulinum** | [88] |

| **Haliclona simulans** | **Gurraig Sound, Kilkieran Bay, Ireland (15 m)** | **Streptomyces sp. SM2 and SM4** | **Actinobacteria** | **Unidentified** | **ND** | **Clostridium difficile** | [88] |

| **Haliclona simulans** | **Gurraig Sound, Kilkieran Bay, Ireland (15 m)** | **Bacillus subtilis MMA7** | **Firmicutes** | **Subtilomycin** | **ND** | **Lactobacillus lactis** | [71] |

| **Callyspongia diffusa** | **Southwest Coast of India (6–7 m)** | **Shewanella algae VCDB KC623651** | **Firmicutes** | **Unidentified** | **DOI (10 mm)** | **L. lactis** | [98] |

| **Haliclona simulans** | **Gurraig Sound, Kilkieran Bay, Ireland (15 m)** | **Bacillus subtilis MMA7** | **Firmicutes** | **Subtilomycin** | **ND** | **Alphomomas sp.** | [71] |

| **Polymastia boletiformis, Axinella dissimilis and Haliclona simulans** | **Gurraig Sound, Kilkieran Bay, Ireland (15 m)** | **Pseudovibrio sp. W64, W69, W89, W74** | **Proteobacteria** | **Tropodithietic acid** | **DOI (>4 mm)** | **Yersinia ruckerri** | [72] |

| **Polymastia boletiformis, Axinella dissimilis and Haliclona simulans** | **Gurraig Sound, Kilkieran Bay, Ireland (15 m)** | **Pseudovibrio sp. JIC5, JIC17, W10, W62, W63, W65, W71, W99, W85, W96, WM31, WM34, WM40, WC13, WC22, WC30, WC32, WC41, HC6** | **Proteobacteria** | **Unidentified** | **DOI (>4 mm)** | **Y. ruckerri** | [72] |

| **Polymastia boletiformis, Axinella dissimilis and Haliclona simulans** | **Gurraig Sound, Kilkieran Bay, Ireland (15 m)** | **Pseudovibrio sp. WC43, W79, W94, WM32, WC21, HMMA3** | **Proteobacteria** | **Unidentified** | **DOI (>4 mm)** | **Y. ruckerri** | [72] |

| **Polymastia boletiformis, Axinella dissimilis and Haliclona simulans** | **Gurraig Sound, Kilkieran Bay, Ireland (15 m)** | **Pseudovibrio sp. WC6, WC15** | **Proteobacteria** | **Unidentified** | **DOI (>1 mm)** | **Y. ruckerri** | [72] |

| **Polymastia boletiformis, Axinella dissimilis and Haliclona simulans** | **Gurraig Sound, Kilkieran Bay, Ireland (15 m)** | **Pseudovibrio sp. JIC6, JIC17, W10, W62, W65, W71, W85, WM31, WM34, WM40, WC13, WC22, WC41, HC6** | **Proteobacteria** | **Tropodithietic acid** | **DOI (>4 mm)** | **Edwardsiella tarda** | [72] |

| **Polymastia boletiformis, Axinella dissimilis and Haliclona simulans** | **Gurraig Sound, Kilkieran Bay, Ireland (15 m)** | **Pseudovibrio sp. W64, W69, W89** | **Proteobacteria** | **Tropodithietic acid** | **DOI (>2 mm)** | **E. tarda** | [72] |

| **Polymastia boletiformis, Axinella dissimilis and Haliclona simulans** | **Gurraig Sound, Kilkieran Bay, Ireland (15 m)** | **Pseudovibrio sp. JIC5, W63, W99** | **Proteobacteria** | **Unidentified** | **DOI (>4 mm)** | **E. tarda** | [72] |

| **Polymastia boletiformis, Axinella dissimilis and Haliclona simulans** | **Gurraig Sound, Kilkieran Bay, Ireland (15 m)** | **Pseudovibrio sp. JIC6, JIC17, W10, W62, W65, W71, W85, W96, WM31, WM34, WM40, WC13, WC22, WC41, HC6** | **Proteobacteria** | **Unidentified** | **DOI (>2 mm)** | **E. tarda** | [72] |
Table 2. Cont.
Polypodium boletiformis, Axinella dissimilis and Haliclona simulans
Polypodium boletiformis, Axinella dissimilis and Haliclona simulans
Polypodium boletiformis, Axinella dissimilis and Haliclona simulans
Polypodium boletiformis, Axinella dissimilis and Haliclona simulans
Polypodium boletiformis, Axinella dissimilis and Haliclona simulans
Polymastia boletiformis, Axinella dissimilis and Haliclona simulans
Polymastia boletiformis, Axinella dissimilis and Haliclona simulans
Polymastia boletiformis, Axinella dissimilis and Haliclona simulans
Polymastia boletiformis, Axinella dissimilis and Haliclona simulans
Polymastia boletiformis, Axinella dissimilis and Haliclona simulans
Haliclona sp.
Haliclona sp.
Haliclona sp.
Haliclona sp.
Table 2. Cont.

Species	Location	Bacillus sp.	Firmicutes	Unidentified	DOI (mm)	Corynebacterium sp.				
Haliclona sp.	Cagarras Archipelago, Brazil (4–20 m)	Bacillus flexus H42	Firmicutes	Unidentified	DOI (21 mm)	Corynebacterium fini				
Dragmacidon reticulatus	Cagarras Archipelago, Brazil (4–20 m)	Bacillus pumilus D031	Firmicutes	Unidentified	DOI (20 mm)	Corynebacterium fini				
Petromica cirrina	Cagarras Archipelago, Brazil (4–20 m)	Bacillus pumilus P31	Firmicutes	Unidentified	DOI (46 mm)	Corynebacterium fini				
Petromica cirrina	Cagarras Archipelago, Brazil (4–20 m)	Bacillus pumilus P32	Firmicutes	Unidentified	DOI (42 mm)	Corynebacterium fini				
Clathrina aurea	Cagarras Archipelago, Brazil (4–20 m)	Pseudovibrio ascidiaceicola Ca31	Proteobacteria	Unidentified	DOI (31 mm)	Corynebacterium fini				
Paraleucilla magna	Cagarras Archipelago, Brazil (4–20 m)	Pseudovibrio ascidiaceicola Pm31	Proteobacteria	Unidentified	DOI (24 mm)	Corynebacterium fini				
Paraleucilla magna	Cagarras Archipelago, Brazil (4–20 m)	Pseudovibrio ascidiaceicola Pm52	Proteobacteria	Unidentified	DOI (15 mm)	Corynebacterium fini				
Mycale microsigmatosa	Cagarras Archipelago, Brazil (4–20 m)	Pseudovibrio desitriescens Mm37	Proteobacteria	Unidentified	DOI (34 mm)	Corynebacterium fini				
Clathrina aurea	Cagarras Archipelago, Brazil (4–20 m)	Pseudomonas fluorescens H40	Proteobacteria	Unidentified	DOI (17 mm)	S. marcescens				
Haliclona sp.	Cagarras Archipelago, Brazil (4–20 m)	Pseudomonas fluorescens H41	Proteobacteria	Unidentified	DOI (18 mm)	S. marcescens				
Haliclona sp.	Cagarras Archipelago, Brazil (4–20 m)	Pseudomonas aeruginosa H51	Proteobacteria	Unidentified	DOI (20 mm)	S. marcescens				
Clathrina aurea	Cagarras Archipelago, Brazil (4–20 m)	Pseudovibrio ascidiaceicola Ca31	Proteobacteria	Unidentified	DOI (13 mm)	Stenotrophomonas maltophilia				
Paraleucilla magna	Cagarras Archipelago, Brazil (4–20 m)	Pseudovibrio ascidiaceicola Pm31	Proteobacteria	Unidentified	DOI (13 mm)	S. maltophilia				
Mycale microsigmatosa	Cagarras Archipelago, Brazil (4–20 m)	Pseudovibrio desitriescens Mm37	Proteobacteria	Unidentified	DOI (15 mm)	S. maltophilia				
Haliclona sp.	Cagarras Archipelago, Brazil (4–20 m)	Pseudomonas fluorescens H40	Proteobacteria	Unidentified	DOI (19 mm)	Citrobacter freundii				
Haliclona sp.	Cagarras Archipelago, Brazil (4–20 m)	Pseudomonas aeruginosa H51	Proteobacteria	Unidentified	DOI (16 mm)	C. freundii				
Haliclona sp.	Cagarras Archipelago, Brazil (4–20 m)	Pseudomonas fluorescens H41	Proteobacteria	Unidentified	DOI (26 mm)	C. freundii				
Paraleucilla magna	Cagarras Archipelago, Brazil (4–20 m)	Pseudovibrio ascidiaceicola Pm31	Proteobacteria	Unidentified	DOI (10 mm)	C. freundii				
Xestospongia testudinaria	Weizhou coral reef, China (ND)	Aspergillus sp.	Ascomycota	(-)-Sydonic acid	MIC (0.66 µg/mL)	Sarcomyx lutea				
Dysidea herbecia	Koror, Republic Palau (1 m)	Oscillatorium spongillae	Cyanobacteria	2-(2',4',4'-Dibromophenyl)-4,6-dibromophenol	ND	Synechococcus sp.				
Location	Sample Source	Organism	Genus	Species	Actinobacteria	Unidentified	MIC (µg protein/mL)	Unidentified	Biofilm bacterium	Reference
----------------------------------	---------------	-------------------	-----------------------	-----------------------	-----------------	--------------	--------------------	--------------	-------------------	-----------
Asbestopluma hypogea	La Ciotat, France (17 m)	Streptomyces sp. SICA	Actinobacteria	Unidentified	ND	Ruegeria sp. S138W	[100]			
Asbestopluma hypogea	La Ciotat, France (17 m)	Streptomyces sp. SICA	Actinobacteria	Unidentified	ND	Sulfitobacter sp. S16SW	[100]			
Asbestopluma hypogea	La Ciotat, France (17 m)	Streptomyces sp. SICA	Actinobacteria	Unidentified	ND	Pseudoalteromonas distincta	[100]			
Phorbas tenacior	Mediterranean Sea, Marseille, France (15 m)	Citricoccus sp.P157	Actinobacteria	Unidentified	3–6 mm	P. distincta	[101]			
Phorbas tenacior	Mediterranean Sea, Marseille, France (15 m)	Pseudovibrio sp. P1Ma4 and Vibrio sp. P1MaNaal1	Proteobacteria	Unidentified	2–3 mm	P. distincta	[101]			
Dendrilla nigra	Vizhinjam coast, India (10–15 m)	Streptomyces sp. MS0051	Actinobacteria	Unidentified	MIC (32 ± 0.61 µg protein/mL)	unidentified biofilm bacterium EB1	[73]			
Dendrilla nigra	Vizhinjam coast, India (10–15 m)	Streptomyces sp. MS0051	Actinobacteria	Unidentified	MIC (34 ± 2.18 µg protein/mL)	unidentified biofilm bacterium EB4	[73]			
Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	Streptomyces sp. HB107	Actinobacteria	Unidentified	ND	Xanthomonas campestris	[44]			
Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	Streptomyces sp. HB132	Actinobacteria	Unidentified	ND	X. campestris	[44]			
Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	Streptomyces sp. HB138	Actinobacteria	Unidentified	ND	X. campestris	[44]			
Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	Streptomyces sp. HB202	Actinobacteria	Unidentified	ND	X. campestris	[44]			
Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	Streptomyces sp. HB253	Actinobacteria	Unidentified	ND	X. campestris	[44]			
Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	Streptomyces sp. HB291	Actinobacteria	Unidentified	ND	X. campestris	[44]			
Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	Streptomyces sp. HB298	Actinobacteria	Unidentified	ND	X. campestris	[44]			
Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	Streptomyces sp. HB132	Actinobacteria	Unidentified	ND	Erwinia amylovora	[44]			
Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	Streptomyces sp. HB202	Actinobacteria	Unidentified	ND	E. amylovora	[44]			
Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	Streptomyces sp. HB320	Actinobacteria	Unidentified	ND	E. amylovora	[44]			
Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	Streptomyces sp. HB328	Actinobacteria	Unidentified	ND	E. amylovora	[44]			
Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	Streptomyces sp. HB100	Actinobacteria	Unidentified	ND	Ralstonia solanacearum	[44]			
Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	Streptomyces sp. HB107	Actinobacteria	Unidentified	ND	R. solanacearum	[44]			
Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	Streptomyces sp. HB117	Actinobacteria	Unidentified	ND	R. solanacearum	[44]			
Species	Location	Isolate	Phylum	Identification	DOI (mm)	Source	Reference			
-------------------------	---------------------------------	-----------------------------	---------------	----------------	----------	---	-----------			
Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	Streptomyces sp. HB142	Actinobacteria	Unidentified	ND	*R. solanacearum*	[44]			
Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	Streptomyces sp. HB156	Actinobacteria	Unidentified	ND	*R. solanacearum*	[44]			
Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	Streptomyces sp. HB238	Actinobacteria	Unidentified	ND	*R. solanacearum*	[44]			
Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	Streptomyces sp. HB253	Actinobacteria	Unidentified	ND	*R. solanacearum*	[44]			
Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	Streptomyces sp. HB254	Actinobacteria	Unidentified	ND	*R. solanacearum*	[44]			
Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	Streptomyces sp. HB272	Actinobacteria	Unidentified	ND	*R. solanacearum*	[44]			
Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	Streptomyces sp. HB274	Actinobacteria	Unidentified	ND	*R. solanacearum*	[44]			
Halichondria panicea	Kiel Fjord, Baltic Sea, Germany (ND)	Streptomyces sp. HB375	Actinobacteria	Unidentified	ND	*R. solanacearum*	[44]			
Pseudoceratina clavata	Heron Island, Great Barrier Reef (14 m)	Salinispora sp. M101	Actinobacteria	Unidentified	DOI (>5 mm)	unidentified marine bacterial isolate SW09	[79]			
Pseudoceratina clavata	Heron Island, Great Barrier Reef (14 m)	Salinispora sp. M102, M403, M413	Actinobacteria	Unidentified	DOI (>5 mm)	unidentified marine bacterial isolate SW09	[79]			
Pseudoceratina clavata	Heron Island, Great Barrier Reef (14 m)	Salinispora sp. M412	Actinobacteria	Unidentified	DOI (>5 mm)	unidentified marine bacterial isolate SW09	[79]			
Pseudoceratina clavata	Heron Island, Great Barrier Reef (14 m)	Salinispora sp. M414, SW10, SW 15 and SW 17	Actinobacteria	Unidentified	DOI (>5 mm)	unidentified marine bacterial isolate SW09	[79]			
Pseudoceratina clavata	Heron Island, Great Barrier Reef (14 m)	Salinispora sp. SW02	Actinobacteria	Unidentified	DOI (>5 mm)	unidentified marine bacterial isolate SW09	[79]			
Pseudoceratina clavata	Heron Island, Great Barrier Reef (14 m)	Salinispora sp. SW02	Actinobacteria	Unidentified	DOI (>5 mm)	unidentified marine bacterial isolate SW09	[79]			
Pseudoceratina clavata	Heron Island, Great Barrier Reef (14 m)	Salinispora sp. SW02	Actinobacteria	Unidentified	DOI (>5 mm)	unidentified marine bacterial isolate SW09	[79]			
Pseudoceratina clavata	Heron Island, Great Barrier Reef (14 m)	Salinispora sp. SW02	Actinobacteria	Unidentified	DOI (>5 mm)	unidentified marine bacterial isolate SW09	[79]			
Pseudoceratina clavata	Heron Island, Great Barrier Reef (14 m)	Salinispora sp. SW02	Actinobacteria	Unidentified	DOI (>5 mm)	unidentified marine bacterial isolate SW09	[79]			
Pseudoceratina clavata	Heron Island, Great Barrier Reef (14 m)	Salinispora sp. SW02	Actinobacteria	Unidentified	DOI (>5 mm)	unidentified marine bacterial isolate SW09	[79]			
Pseudoceratina clavata	Heron Island, Great Barrier Reef (14 m)	Salinispora sp. M101	Actinobacteria	Unidentified	DOI (>5 mm)	unidentified marine bacterial isolate SW09	[79]			
Table 2. Cont.

Pseudoceratina clavata	Heron Island, Great Barrier Reef (14 m)	Salinispora sp. M102, M403, M413	Actinobacteria	Unidentified	DOI (>5 mm)	unidentified bacterial isolate DE05 (γ-proteobacteria)	[79]
Pseudoceratina clavata	Heron Island, Great Barrier Reef (14 m)	Salinispora sp. M412	Actinobacteria	Unidentified	DOI (>5 mm)	unidentified bacterial isolate DE05 (γ-proteobacteria)	[79]
Pseudoceratina clavata	Heron Island, Great Barrier Reef (14 m)	Salinispora sp. M414, SW10, SW 15 and SW 17	Actinobacteria	Unidentified	DOI (>5 mm)	Unidentified bacterial isolate DE05 (γ-proteobacteria)	[79]
Pseudoceratina clavata	Heron Island, Great Barrier Reef (14 m)	Salinispora sp. SW02	Actinobacteria	Unidentified	DOI (>5 mm)	Unidentified bacterial isolate DE05 (γ-proteobacteria)	[79]

Table 2 is organised according to the target bacteria. IC₅₀: half maximum inhibitory concentration; MIC: minimum inhibitory concentration; DOI: diameter of inhibition; ND: not determined. Susceptible to [77]: amp = ampicillin; atm = aztreonam; azm = azithromycin; caz = ceftazidimine; cef = cefalotin; chl = chloramphenicol; cip = ciprofloxacin; cpd = cefpodoxime; fox = cefoxitin; gen = gentamicin; oxa = oxacillin; pen = penicillin; sxt = trimethoprim/sulfamethoxazole; tet = tetracycline; tzp = piperacillin/tazobactam; van = vancomycin.
4. Antifungal Activity

The incidence rate of fungal infections has increased significantly over the past decades. This is mainly caused by clinical use of antibacterial drugs and immunosuppressive agents after organ transplantation, cancer chemotherapy, and advances in surgery [102,103]. Several fungal species that often cause human infections include Candida albicans, Candida glabrata, Cryptococcus neoformans and Aspergillus fumigatus [102,104,105]. The story becomes more complex as many of these pathogenic fungi develop resistance against available antifungal drugs, which will prolong duration of treatments [106].

Screening for antifungals is often focused on finding compounds active against Candida albicans, the prominent agent for candidiasis (Table 3). Invasive candidiasis is accounted as the most common nosocomial fungal infection resulting in an average mortality rate between 25%–38% [103]. El-Gendy et al. [107] isolated Streptomyces sp. Hedaya 48 from the sponge Aplysina fistularis and identified two compounds: the novel compound saadamycin (13) and the known compound 5,7-dimethoxy-4-p-methoxylphenylcoumarin (14) (Figure 3). Bioassays indicated that both saadamycin and 5,7-dimethoxy-4-p-methoxylphenylcoumarin displayed pronounced antifungal activity against Candida albicans with MIC values of 2.22 µg/mL and 15 µg/mL, respectively. In addition, both compounds displayed bioactivity against some pathogenic dermatophytes (skin-infecting fungi), such as Epidermophyton floccosum, Trichophyton rubrum, Trichophyton mentagrophytes, Microsporum gypseum, Aspergillus niger, Aspergillus fumigatus, Fusarium oxysporum, and Cryptococcus humicolus (Table 3). Further analysis showed that saadamycin displayed a more potent bioactivity indicated by a 3875 fold lower MIC than that of the reference compound, miconazole, whereas 5,7-dimethoxy-4-p-methoxylphenylcoumarin was around a 200 fold more potent than miconazole.

Antifungal activity was also detected from the sponge-associated fungus Phoma sp. Q60596. The sponge-derived fungus produced a new lactone compound, YM-202204 (15) [108], which was effective against C. albicans (IC80 of 6.25 µg/mL), along with Cryptococcus neoformans (IC80 of 1.56 µg/mL), Saccharomyces cerevisiae (IC80 of 1.56 µg/mL) and Aspergillus fumigatus (IC80 of 12.5 µg/mL). Furthermore, Nagai et al. [108] showed that YM-202204 was able to block the glycoprophatidylinositol (GPI) anchor, an important structure for protein attachment in the membrane of eukaryotic cells and one of the targets in developing antifungal drugs [109,110].
Table 3. Bioactive compounds with antifungal activity from sponge-associated microbes.

Sponge	Origin (Depth)	Microorganism	Phylum	Compound	Property	Target	Reference
Aplysina fistularis	Sharm El-Sheikh, Egypt (ND)	Streptomyces sp. Hedaya48	Actinobacteria	Saadamycin	MIC (2.22 µg/mL)	C. albicans	[107]
Aplysina fistularis	Sharm El-Sheikh, Egypt (ND)	Streptomyces sp. Hedaya48	Actinobacteria	5,7-Dimethoxy-4-p-methoxyphenylcoumarin	MIC (15 µg/mL)	C. albicans	[107]
Halichondria japonica	Iriomote island, Japan (ND)	Phoma sp. Q60596	Ascomycota	YM-202204	IC₅₀ (6.25 µg/mL)	C. albicans	[108]
Haliclona simulans	Graig Sound Kilkieran Bay, Ireland (15 m)	Streptomyces sp. SM8	Actinobacteria	Antimycin A2, A8, A11, or A17	MIC (210 µg/mL)	C. albicans	[95]
Haliclona simulans	Graig Sound Kilkieran Bay, Ireland (15 m)	Streptomyces sp. SM8	Actinobacteria	Antimycin A3 or A7	MIC (80 µg/mL)	C. albicans	[95]
Haliclona simulans	Graig Sound Kilkieran Bay, Ireland (15 m)	Streptomyces sp. SM8	Actinobacteria	Antimycin A2, A8, A11, or A17, antimycin A3 or A7	MIC (90 µg/mL)	C. albicans	[95]
Halichondria sp.	West Coast of India (10 m)	Bacillus sp. SAB1	Firmicutes	3-Phenylpropionic acid	DOI (7–10 mm) at 50 µg/disk	C. albicans	[69]
Halichondria sp.	West Coast of India (10 m)	Bacillus sp. SAB1	Firmicutes	4,4’-Oxybis(3-phenylpropionic acid)	DOI (4–6 mm) at 50 µg/disk	C. albicans	[69]
Xestospongia exigua	Bali Sea, Indonesia (ND)	Penicillium cf. montanense	Ascomycota	Xestodecalactone B	MIC (28.03 µg/disk)	C. albicans	[111]
unidentified	Iriomote island, Japan (ND)	Streptomyces sp. Ni-80	Actinobacteria	Urauchinycins A and B	MIC (10 µg/mL)	C. albicans	[112]
Haliclona sp.	Tateyama, Japan (ND)	Streptomyces humbergensis	Actinobacteria	Unidentified	DOI (5 mm)	C. albicans	[113]
Haliclona sp.	Tateyama, Japan (ND)	Streptomyces jarenssis	Actinobacteria	Unidentified	DOI (11 mm)	C. albicans	[113]
unidentified	Nagura Bay, Ishigaki, Japan (ND)	Streptomyces albifluorae	Actinobacteria	Unidentified	DOI (16 mm)	C. albicans	[113]
unidentified	Nagura Bay, Ishigaki, Japan (ND)	Streptomyces variabilis	Actinobacteria	Unidentified	DOI (19 mm)	C. albicans	[113]
unidentified	Nagura Bay, Ishigaki, Japan (ND)	Streptomyces latenspurus	Actinobacteria	Unidentified	DOI (24 mm)	C. albicans	[113]
Sphacelospongia ragahunda	Rovinj, Croatia (3–20 m)	Actinokineospora sp. EG49	Actinobacteria	Unidentified	DOI (12 mm)	C. albicans	[82]
Dysidea tupha	Rovinj, Croatia (3–20 m)	Streptomyces sp. RV15	Actinobacteria	Unidentified	DOI (4–6 mm)	C. albicans	[82]
Sigmodiacis filubatus	Hare Island, India (5-10 m)	Bacillus sp. SC3	Firmicutes	Unidentified	DOI (15 mm)	C. albicans	[96]
Sigmodiacis filubatus	Hare Island, India (5-10 m)	Pseudomonas sp. SC11	Proteobacteria	Unidentified	DOI (7 mm)	C. albicans	[96]
Echinodictyum sp.	Hare Island, India (5-10 m)	Idiomarina baltica SA7	Proteobacteria	Unidentified	DOI (10 mm)	C. albicans	[96]
Spheciospongia vagabunda	Hare Island, India (5-10 m)	Staphylococcus equorum SB11	Firmicutes	Unidentified	DOI (10 mm)	C. albicans	[96]
Aplysina aerophoba	Banyuls-sur-Mer, France (5-15 m)	Bacillus subtilis A184	Firmicutes	Surfactin, iturin, and fengycin	ND	C. albicans	[68]
Organism	Location	Bacteria	Proteobacteria	Actinobacteria	MIC (µg/mL)	Pathogen	
----------	----------	----------	----------------	---------------	-------------	----------	
Aplysina aerophoba	Banyuls-sur-Mer, France (5–15 m)	Bacillus subtilis A190	Firmicutes	Surfactin	ND	C. albicans [68]	
Aplysina aerophoba	Banyuls-sur-Mer, France (5–15 m)	Bacillus subtilis A202	Firmicutes	Iturin	ND	C. albicans [68]	
Leucosolenia sp.	Lough Hyne, Co. Cork, Ireland (15 m)	Vibrio sp. SC-C1-5	Proteobacteria	Unidentified	ND	C. albicans [83]	
Leucosolenia sp.	Lough Hyne, Co. Cork, Ireland (15 m)	Vibrio sp. BSw21697	Proteobacteria	Unidentified	ND	C. albicans [83]	
Leucosolenia sp.	Lough Hyne, Co. Cork, Ireland (15 m)	Vibrio splendidus LGP32	Proteobacteria	Unidentified	ND	C. albicans [83]	
Leucosolenia sp.	Lough Hyne, Co. Cork, Ireland (15 m)	Bacillus amyloliquefaciens	Proteobacteria	Unidentified	ND	C. albicans [83]	
Leucosolenia sp.	Lough Hyne, Co. Cork, Ireland (15 m)	Vibrio sp. SC-C1-5	Proteobacteria	Unidentified	ND	C. albicans [83]	
Leucosolenia sp.	Lough Hyne, Co. Cork, Ireland (15 m)	Vibrio splendidus LGP32	Proteobacteria	Unidentified	ND	C. albicans [83]	
Leucosolenia sp.	Lough Hyne, Co. Cork, Ireland (15 m)	Bacillus amyloliquefaciens	Proteobacteria	Unidentified	ND	C. albicans [83]	
Leucosolenia sp.	Lough Hyne, Co. Cork, Ireland (15 m)	Vibrio splendidus LGP32	Proteobacteria	Unidentified	ND	C. albicans [83]	
Leucosolenia sp.	Lough Hyne, Co. Cork, Ireland (15 m)	Vibrio splendidus LGP32	Proteobacteria	Unidentified	ND	C. albicans [83]	
Leucosolenia sp.	Lough Hyne, Co. Cork, Ireland (15 m)	Vibrio splendidus LGP32	Proteobacteria	Unidentified	ND	C. albicans [83]	
Leucosolenia sp.	Lough Hyne, Co. Cork, Ireland (15 m)	Vibrio splendidus LGP32	Proteobacteria	Unidentified	ND	C. albicans [83]	
Leucosolenia sp.	Lough Hyne, Co. Cork, Ireland (15 m)	Vibrio splendidus LGP32	Proteobacteria	Unidentified	ND	C. albicans [83]	
Leucosolenia sp.	Lough Hyne, Co. Cork, Ireland (15 m)	Vibrio splendidus LGP32	Proteobacteria	Unidentified	ND	C. albicans [83]	
Leucosolenia sp.	Lough Hyne, Co. Cork, Ireland (15 m)	Vibrio splendidus LGP32	Proteobacteria	Unidentified	ND	C. albicans [83]	
Aplysina fistularis	Sharm El-Sheikh, Egypt (ND)	Streptomyces sp. Hedaya48	Actinobacteria	Saadamycin	MIC (5 µg/mL)	T. rubrum [107]	
Aplysina fistularis	Sharm El-Sheikh, Egypt (ND)	Streptomyces sp. Hedaya48	Actinobacteria	5,7-Dimethoxy-4-p-methoxylphenylcoumarin	MIC (7.5 µg/mL)	T. rubrum [107]	
Aplysina fistularis	Sharm El-Sheikh, Egypt (ND)	Streptomyces sp. Hedaya48	Actinobacteria	Saadamycin	MIC (1.5 µg/mL)	T. mentagrophytes [107]	
Aplysina fistularis	Sharm El-Sheikh, Egypt (ND)	Streptomyces sp. Hedaya48	Actinobacteria	5,7-Dimethoxy-4-p-methoxylphenylcoumarin	MIC (90 µg/mL)	T. mentagrophytes [107]	
Aplysina fistularis	Sharm El-Sheikh, Egypt (ND)	Streptomyces sp. Hedaya48	Actinobacteria	Saadamycin	MIC (1.25 µg/mL)	M. gypseum [107]	
Aplysina fistularis	Sharm El-Sheikh, Egypt (ND)	Streptomyces sp. Hedaya48	Actinobacteria	5,7-Dimethoxy-4-p-methoxylphenylcoumarin	MIC (100 µg/mL)	M. gypseum [107]	
Table 3. Cont.

Sample Location	Organism	Taxonomy	Compound	MIC/IC₅₀	Pathogen	Reference
Aplysina fistularis Sharm El-Sheikh, Egypt (ND)	Streptomyces sp. Hedaya48	Actinobacteria	Saadamycin	MIC (1.0 µg/mL)	Epidermophyton floccosum	[107]
Aplysina fistularis Sharm El-Sheikh, Egypt (ND)	Streptomyces sp. Hedaya48	Actinobacteria	5,7-Dimethoxy-4-p-methoxylphenylcoumarin	MIC (50 µg/mL)	Fusarium oxysporum	[107]
Aplysina fistularis Sharm El-Sheikh, Egypt (ND)	Streptomyces sp. Hedaya48	Actinobacteria	Saadamycin	MIC (1.2 µg/mL)	F. oxysporum	[107]
Aplysina fistularis Sharm El-Sheikh, Egypt (ND)	Streptomyces sp. Hedaya48	Actinobacteria	5,7-Dimethoxy-4-p-methoxylphenylcoumarin	MIC (22 µg/mL)	Cryptococcus humicolus	[107]
Aplysina fistularis Sharm El-Sheikh, Egypt (ND)	Streptomyces sp. Hedaya48	Actinobacteria	Saadamycin	MIC (5.16 µg/mL)	Cryptococcus neoformans	[108]
Aplysina fistularis Sharm El-Sheikh, Egypt (ND)	Streptomyces sp. Hedaya48	Actinobacteria	5,7-Dimethoxy-4-p-methoxylphenyl-coumarin	MIC (10 µg/mL)	A. fumigatus	[107]
Halichondria japonica Iriomote island, Japan (ND)	Phoma sp. Q60596	Ascomycota	YM-202204	IC₅₀ (1.56 µg/mL)	A. fumigatus	[108]
Aplysina fistularis Sharm El-Sheikh, Egypt (ND)	Streptomyces sp. Hedaya48	Actinobacteria	Saadamycin	MIC (1.6 µg/mL)	Aspergillus fumigatus	[107]
Leucosolenia sp. Lough Hyne, Co. Cork, Ireland (15 m)	Staphylococcus saprophyticus	Firmicutes	Unidentified	ND	A. fumigatus	[83]
Leucosolenia sp. Lough Hyne, Co. Cork, Ireland (15 m)	Staphylococcus sp. HJBR03	Firmicutes	Unidentified	ND	A. fumigatus	[83]
Leucosolenia sp. Lough Hyne, Co. Cork, Ireland (15 m)	Vibrio litoralis MANCO2P	Proteobacteria	Unidentified	ND	A. fumigatus	[83]
Leucosolenia sp. Lough Hyne, Co. Cork, Ireland (15 m)	Vibrio sp. SC-C1-5	Proteobacteria	Unidentified	ND	A. fumigatus	[83]
Leucosolenia sp. Lough Hyne, Co. Cork, Ireland (15 m)	Vibrio sp. BSw21667	Proteobacteria	Unidentified	ND	A. fumigatus	[83]
Leucosolenia sp. Lough Hyne, Co. Cork, Ireland (15 m)	Vibrio splendidus LGP32	Proteobacteria	Unidentified	ND	A. fumigatus	[83]
Leucosolenia sp. Lough Hyne, Co. Cork, Ireland (15 m)	Bacillus amyloliquefaciens	Firmicutes	Unidentified	ND	A. fumigatus	[83]
Aplysina fistularis Sharm El-Sheikh, Egypt (ND)	Streptomyces sp. Hedaya48	Actinobacteria	Saadamycin	MIC (1.0 µg/mL)	Aspergillus niger	[107]
Halichondria sp. West Coast of India (10 m)	Bacillus sp. SAB1	Firmicutes	3-Phenylpropionic acid	DOI (1–3 mm) at 50 µg/disc	A. niger	[69]
Halichondria sp. West Coast of India (10 m)	Bacillus sp. SAB1	Firmicutes	4’-Oxybsu(3-phenylpropionic acid)	DOI (4-6 mm) at 50 µg/disc	A. niger	[69]
Halichondria sp. West Coast of India (10 m)	Bacillus sp. SAB1	Firmicutes	3-Phenylpropionic acid	DOI (4-6 mm) at 50 µg/disc	Rhodotorula sp.	[69]
Table 3. Cont.

Halichondria sp.	West Coast of India (10 m)	Bacillus sp. SAB1	Firmicutes	4,4′-Oxybis(3-phenylpropionic acid) DOI (7–10 mm) at 50 µg/disc	Rhodotorula sp. [69]	
Halichondria japonica	Iriomote island, Japan (ND)	Phoma sp. Q60596	Ascomycota	YM-202204 IC₅₀ (1.56 µg/mL)	Saccharomycyes cerevisiae [108]	
Hymeniacidon perleve	Nanji island, China (ND)	Pseudomonas strain N6-3-1	Proteobacteria	Norharman (a beta-carboline alkaloid) DOI (3–5 mm)	S. cerevisiae [59]	
Hymeniacidon perleve	Nanji island, China (ND)	Bacillus megaterium N6-3-2	Firmicutes	Unidentified DOI (3–5 mm)	S. cerevisiae [59]	
Leucosolenia sp.	Lough Hyne, Co. Cork, Ireland (15 m)	Vibrio litoralis MANO22P	Proteobacteria	Unidentified	ND	S. cerevisiae [83]
Leucosolenia sp.	Lough Hyne, Co. Cork, Ireland (15 m)	Vibrio sp. SC-C1-5	Proteobacteria	Unidentified	ND	S. cerevisiae [83]
Leucosolenia sp.	Lough Hyne, Co. Cork, Ireland (15 m)	Vibrio sp. BSv21697	Proteobacteria	Unidentified	ND	S. cerevisiae [83]
Leucosolenia sp.	Lough Hyne, Co. Cork, Ireland (15 m)	Vibrio splendidus LGP32	Proteobacteria	Unidentified	ND	S. cerevisiae [83]
Leucosolenia sp.	Lough Hyne, Co. Cork, Ireland (15 m)	Bacillus amyloliquefaciens	Firmicutes	Unidentified	ND	S. cerevisiae [83]
Pannonicia sp.	Sdot-Yam, Israel (ND)	Aspergillus insuetus	Ascomycota	Insuetolides A MIC (60.09 µg/mL)	Neurospora crassa [114]	
Pannonicia sp.	Sdot-Yam, Israel (ND)	Aspergillus insuetus	Ascomycota	(E,E)-6-(60,70-Dihydroxy-20,40-octadienoyl)-strobilactone A MIC (69.97 µg/mL)	N. crassa [114]	
Pannonicia sp.	Sdot-Yam, Israel (ND)	Aspergillus insuetus	Ascomycota	(E,E)-6-(60,70-Dihydroxy-20,40-octadienoyl)-strobilactone A	MIC (71.79 µg/mL)	N. crassa [114]
Myxilla incrustans	The Caribbean Island of Dominica (ND)	Microsphaeropsis sp.	Ascomycota	Microsphaeropsin ND	Eurotium repens [115]	
Myxilla incrustans	The Caribbean Island of Dominica (ND)	Microsphaeropsis sp.	Ascomycota	(R)-Mellein ND	E. repens [115]	
Myxilla incrustans	The Caribbean Island of Dominica (ND)	Microsphaeropsis sp.	Ascomycota	(3R,4R)-Hydroxymellein ND	E. repens [115]	
Myxilla incrustans	The Caribbean Island of Dominica (ND)	Microsphaeropsis sp.	Ascomycota	4,8-Dihydroxy-3,4-dihydro-2H-naphthalen-1-one ND	E. repens [115]	
Ectyoplasia ferox	The Caribbean Island of Dominica (ND)	Coniothyrium sp.	Ascomycota	(3R)-6-Methoxymellein ND	E. repens [115]	
Ectyoplasia ferox	The Caribbean Island of Dominica (ND)	Coniothyrium sp.	Ascomycota	(3R)-6-Methoxy-7-chloromellein ND	E. repens [115]	
Ectyoplasia ferox	The Caribbean Island of Dominica (ND)	Coniothyrium sp.	Ascomycota	(p-Hydroxyphenyl) ethanol ND	E. repens [115]	
Ectyoplasia ferox	The Caribbean Island of Dominica (ND)	Coniothyrium sp.	Ascomycota	Phenylenethanol ND	E. repens [115]	
Table 3. Cont.

Species	Location	Genus	Class	Compound Name	Concentration	Pathogen
Myxilla incrustans	The Caribbean Island of Dominica (ND)	Microsphaeropsis sp.	Ascomycota	Microsphaeropsin	ND	*U. violacea*
Myxilla incrustans	The Caribbean Island of Dominica (ND)	Microsphaeropsis sp.	Ascomycota	(R)-Mellein	ND	*U. violacea*
Myxilla incrustans	The Caribbean Island of Dominica (ND)	Microsphaeropsis sp.	Ascomycota	(3R,4R)-Hydroxymellein	ND	*U. violacea*
Myxilla incrustans	The Caribbean Island of Dominica (ND)	Microsphaeropsis sp.	Ascomycota	4,8-Dihydroxy-3,4-dihydro-2H-naphthalen-1-one	ND	*U. violacea*
Ectyoplasia ferox	The Caribbean Island of Dominica (ND)	Coniothyrium sp.	Ascomycota	(3R)-6-Methoxymellein	ND	*U. violacea*
Ectyoplasia ferox	The Caribbean Island of Dominica (ND)	Coniothyrium sp.	Ascomycota	(p-Hydroxyphenyl) ethanol	ND	*U. violacea*
Ectyoplasia ferox	The Caribbean Island of Dominica (ND)	Coniothyrium sp.	Ascomycota	(3S)-(3',5'-Dihydroxyphenyl)butan-2-one	ND	*U. violacea*
Ectyoplasia ferox	The Caribbean Island of Dominica (ND)	Coniothyrium sp.	Ascomycota	(3S)-(3',5'-Dihydroxyphenyl)butan-2-one	ND	*Mycotypha microspora*

Table 3 is organised according to the target fungi. IC_{50}: half maximum inhibitory concentration; IC_{80}: 80% inhibitory concentration; MIC: minimum inhibitory concentration; DOI: diameter of inhibition; ND: not determined.
5. Antiprotozoal Activity

Malaria, caused by *Plasmodium* spp. infections, represents the most devastating protozoal disease worldwide, and results in both mortality and economic loss, mainly in developing countries [116]. Developing drugs with a better therapeutic profile against the parasite is one of the key aims of current malaria research, which includes screening for antimalarial substances from marine organisms [117,118].

Manzamine A (16) (Figure 4), first reported by Sakai and co-workers [119] from the sponge *Haliclona* sp., is a promising substance against *Plasmodium* spp. Initially, its antitumor property was of main interest, but subsequently diverse antimicrobial activities such as: anti-HIV, antibacterial, and antifungal were identified from the compound [120]. Currently the antimalaria properties of manzamine A are considered its most promising bioactivity. Manzamine A was shown to inhibit *P. falciparum* D6 and W3 clonal cell lines that are sensitive and resistant against the antimalarial chloroquine [121], with IC$_{50}$ values of 0.0045 and 0.008 µg/mL, respectively [122]. Furthermore, *in vivo* screening by Ang et al. [116] showed that manzamine A at concentration of 0.008 µg/mL inhibited 90% growth of the parasite *Plasmodium berghei* that causes malaria in rodents. In addition, Rao et al. reported [122] that manzamine A displayed anti-*Leishmania* activity, indicated by IC$_{50}$ and IC$_{90}$ values of 0.9 µg/mL and 1.8 µg/mL, respectively, against *Leishmania donovani*.

Isolation of manzamine A from several other sponge species [120] raised the hypothesis that it was of microbial origin [123,124]. Hill et al. [125] confirmed this hypothesis by isolating *Micromonospora* sp. M42 as the microbial producer of manzamine A from the Indonesian sponge *Acanthostrongylophora ingens*. A series of analyses using molecular-microbial community analysis, and Matrix Assisted Laser Desorption Ionization-Mass Spectrometry (MALDI-MS) corroborated that indeed the strain *Micromonospora* sp. M42 synthesizes manzamine A [126,127]. Considering the therapeutic potential of manzamine A for treating malaria and leishmaniasis, *Micromonospora* sp. M42 could be a sustainable provider of the substance, because the “Sponge Supply Problem” has been overcome [127]. Moreover, identification of several manzamine-derivatives e.g. manzamine E, F, J, and 8-hydroxymanzamine A, from marine sponges which displayed antibacterial, antifungal and antiprotozoal activity [122,124], could also lead to isolation of associated microbial producers in the future.

Pimentel-Elardo et al. [128] identified three compounds with anti-*Leishmania* and anti-*Trypanosoma* activity from a sponge-associated *Streptomyces* sp, namely the cyclic depsipeptide valinomycin (17), the indolocarbazole alkaloid staurosporine (18) and butenolide (19) (Table 4). Valinomycin and staurosporine inhibited the growth of *L. major* with IC$_{50}$ values of 0.12 µg/mL and 1.24 µg/mL, respectively. In addition, the three compounds displayed bioactivity against *Trypanosoma brucei* with IC$_{50}$ values of 0.0036 µg/mL for valinomycin, 0.0051 µg/mL for staurosporine and 7.92 µg/mL for butenolide.

Scopel et al. [129] isolated two sponge-associated fungi, namely *Hypocrea lixii* F02 and *Penicillium citrinum* F40 (Table 4) that were active against the protozoal parasite *Trichomonas vaginalis*, which causes trichomoniasis, a sexually transmitted disease [130]. Culture filtrates of both isolates inhibited *T. vaginalis* ATCC 30236 and fresh clinical isolates, including the metronidazole-resistant TV-LACM2, with MIC values of 2.5 mg/mL. Further observation indicated that culture filtrates of these two fungi had no haemolytic effect against mammalian cells, which is one of the important criteria to further develop anti-protozoal drugs [129].
Table 4. Bioactive compounds with antiprotozoal activity from sponge-associated microbes.

Sponge	Origin (Depth)	Microorganism	Phylum	Compound	Property	Target	References
Homophymia sp.	Toudho, New Caledonia (ND)	*Pseudomonas* sp. 1531-E7	Proteobacteria	2-Undecyl-4-quinolone	IC₅₀ (1 μg/mL)	*Plasmodium falciparum*	[25]
Acanthostrengylophora ingens	Manado, Indonesia (ND)	*Micrococcus* sp. M42	Actinobacteria	Manzamine A	IC₅₀ (0.0045 μg/mL)	*P. falciparum*	[124–127]
Hyattella intestinalis	Palk strait, Tamil Nadu, India (ND)	unidentified bacterial isolate THB20	Unidentified	Unidentified	IC₅₀ (41.88 μg/mL)	*P. falciparum*	[131]
Redia intestinalis	Palk strait, Tamil Nadu, India (ND)	unidentified bacterial isolate THB23	Unidentified	Unidentified	IC₅₀ (28.80 μg/mL)	*P. falciparum*	[133]
Stylissa carteri	Palk strait, Tamil Nadu, India (ND)	unidentified bacterial isolate THB14	Unidentified	Unidentified	IC₅₀ (20.73 μg/mL)	*P. falciparum*	[134]
Clathria indica	Palk strait, Tamil Nadu, India (ND)	unidentified bacterial isolate THB1	Unidentified	Unidentified	IC₅₀ (11.98 μg/mL)	*P. falciparum*	[135]
Acanthostrongylophora ingens	Manado, Indonesia	*Micromonospora* sp. M42	Actinobacteria	Manzamine A	IC₅₀ (6.29 μg/mL)	*Trypanosoma brucei*	[82]
Aplysina aerophoba	Rovinj, Croatia (3–20 m)	*Micromonospora* sp. RV115	Actinobacteria	Diazepinomicin	Percentage of growth inhibition (48%)	*T. brucei*	[82]
Spheciospongia vagabunda	Rovinj, Croatia (3–20 m)	*Actinomycetes* sp. EG49	Actinobacteria	Unidentified	Percentage of growth inhibition (30%)	*T. brucei*	[82]
unidentified	Rovinj, Croatia (3–20 m)	Brevibacterium sp. EG10	Actinobacteria	Unidentified	Percentage of growth inhibition (28%)	*T. brucei*	[82]
unidentified	Rovinj, Croatia (3–20 m)	*Gordonia* sp. EG50	Actinobacteria	Unidentified	Percentage of growth inhibition (19%)	*T. brucei*	[82]
Dysidea tupha	Rovinj, Croatia (3–20 m)	*Kocuria* sp. RV89	Actinobacteria	Unidentified	Percentage of growth inhibition (19%)	*T. brucei*	[82]
Dysidea avus	Mediterranean sea (ND)	*Nicardipsis* sp. RV763	Actinobacteria	1,6-Dihydroxyxyprenazine (produced from co-culture)	IC₅₀ (4.03 μg/mL)	*T. brucei*	[98]
Spheciospongia vagabunda	Red Sea (ND)	*Actinomycetes* sp. EG49	Actinobacteria	Actinosporin A	IC₅₀ (19.19 μg/mL)	*T. brucei*	[137]
Aplysina aerophoba	Rovinj, Croatia (3–20 m)	*Streptomyces* sp. 34	Actinobacteria	Valinomycin	IC₅₀ (0.0036 μg/mL)	*T. brucei*	[128]
Axinella aerophoba	Rovinj, Croatia (3–20 m)	*Streptomyces* sp. 22	Actinobacteria	Valinomycin	IC₅₀ (0.0036 μg/mL)	*T. brucei*	[128]
Todarion sp.	Rovinj, Croatia (3–20 m)	*Streptomyces* sp. 11	Actinobacteria	Staurosporine	IC₅₀ (0.0051 μg/mL)	*T. brucei*	[128]
Tethya sp.	Rovinj, Croatia (3–20 m)	*Streptomyces* sp. T03	Actinobacteria	Butenolide	IC₅₀ (7.92 μg/mL)	*T. brucei*	[128]
Petrosia ficiformis	Milos, Greece (ND)	*Streptomyces* sp. SBT344	Actinobacteria	Unidentified	IC₅₀ (<10 μg/mL)	*T. brucei*	[138]
Sarcotragus foetidus	Milos, Greece (ND)	*Modestobacter* sp. SBT694	Actinobacteria	Unidentified	IC₅₀ (<10 μg/mL)	*T. brucei*	[138]
Phorbas tenacior	Crete, Greece (ND)	*Micromonospora* sp. SBT697	Actinobacteria	Unidentified	IC₅₀ (14.87 μg/mL)	*T. brucei*	[138]
Family	Species	Location	Microorganism	Unidentified	IC_{50} (µg/mL)	T. brucei brucei	
------------------------	-------------------------------------	---------------------------------	-----------------------------	--------------	-----------------	------------------	
Petrosia ficiformis	Milos, Greece (ND)	Streptomyces sp. SBT348	Actinobacteria	Unidentified	16.52	[138]	
Ircinia variabilis	Milos, Greece (ND)	Geodermatophilus sp. SBT361	Actinobacteria	Unidentified	18.60	[138]	
Spiritastrella cunctatrix	Milos, Greece (ND)	Rhodococcus sp. SBT367	Actinobacteria	Unidentified	19.97	[138]	
Axinella polyoides	Banyuls-sur-Mer, France (ND)	Streptomyces axinellae Pol001T	Actinobacteria	Tetracycin 1	26.02	[139]	
Axinella polyoides	Banyuls-sur-Mer, France (ND)	Streptomyces axinellae Pol001T	Actinobacteria	Tetracycin 2	40.35	[139]	
Axinella polyoides	Banyuls-sur-Mer, France (ND)	Streptomyces axinellae Pol001T	Actinobacteria	Tetracycin 3	23.18	[139]	
Axinella polyoides	Banyuls-sur-Mer, France (ND)	Streptomyces axinellae Pol001T	Actinobacteria	Tetracycin 4	32.17	[139]	
Axinella polyoides	Banyuls-sur-Mer, France (ND)	Streptomyces axinellae Pol001T	Actinobacteria	Tetracycin B	17.20	[139]	
Axinella aerea	Croatia (3–20 m)	Streptomyces sp. 34	Actinobacteria	Valinomycin	0.12	Leishmania major	
Axinella aerea	Croatia (3–20 m)	Streptomyces sp. 22	Actinobacteria	Valinomycin	0.12	L. major	
Tedarum sp.	Croatia (3–20 m)	Streptomyces sp. 11	Actinobacteria	Staurosporine	1.24	L. major	
Axinella polyoides	Banyuls-sur-Mer, France (ND)	Streptomyces axinellae Pol001T	Actinobacteria	Tetracycin 3	31.72	L. major	
Spheciospongia vagabunda	Croatia (3–20 m)	Actinomycetopsis sp. EG49	Actinobacteria	growth inhibition (48%)	L. major	[82]	

Table 4 is organised according to the target protozoa. IC_{50}: half maximum inhibitory concentrations; MIC: minimum inhibitory concentration; ND: not determined.
Mar. Drugs 2016, 14, x 56 of 79

Figure 4. Chemical structures of the antiprotozoal compounds manzamine A (16), valinomycin (17), staurosporine (18) and butenolide (19).

6. Discussion

6.1. Antimicrobial Compounds from Sponge-Associated Microbes: What We Learned So Far

Bioprospecting is the effort to discover natural compounds with therapeutic and biological applications [140]. In line with this definition, sponge-associated microbes offer a huge potential as the source of antimicrobial substances as shown by many microbial isolates being reported to inhibit pathogenic reference strains in vitro and to synthesize active substances against one or several groups of infectious agents. Based on our review, antimicrobial compounds produced by sponge-associated microbes with the most pronounced bioactivity include: 2-undecyl-4-quinolone, sorbicillactone A, stachybotrin D and chartarutine B against HIV-1; truncateol M against H1N1 M; YM-266183, YM-266184, kocurin, mayamycin, sydonic acid, naphthacene glycoside SF2446A2 and trichoderin A against a variety of bacterial strains; saadamycin and YM-202204 against fungi; manzamine-A against malaria; and valinomycin against Trypanosoma. In this case the most pronounced activity is solely based on reported inhibition data and does not yet take potential side effects into account. Therefore the most promising compounds may be ones that have higher IC$_{50}$ values, but cause less side effects. As these data are not available for the majority of the reported compounds, we have focused on the most potent compounds.

Sponge-associated bacteria and fungi are the two groups of microorganisms that have been found to produce antimicrobial compounds (Figure 5). The large majority of the antimicrobial compounds found in sponge-associated microbiota is produced by bacteria (90%), while fungi account for approximately 10% of the compounds reported. Sponge-associated bacteria derived antimicrobial compounds were found from 35 genera (Figure 5B). At a higher taxonomic level, these 35 bacterial genera can be classified into the four phyla Actinobacteria, Proteobacteria, Firmicutes and Cyanobacteria with percentages of 48.8%, 36.6%, 11.4% and 0.4% respectively. In contrast,
sponge-associated fungi that have been found to produce antimicrobials are affiliated solely to the phylum Ascomycota.

Figure 5. Distribution of sponge-associated microorganisms found to produce antimicrobial compounds: (A) Bacteria and Fungi; (B) Bacterial genera; and (C) Fungal genera. Figure 5 was made based on the summary of the taxonomic affiliations of sponge-associated microbes (N = 272) that were found to produce antimicrobials.
Streptomyces is the most prominent genus as indicated by 30% of sponge bacteria-derived compounds. Streptomyces has become a main target for screening for bioactive compounds both from terrestrial and marine environments due to the high diversity of secondary metabolites they produce [141,142]. Of the many sponge-associated Streptomyces isolates reported, Streptomyces sp. HB202 and Streptomyces sp. RV15 are of particular interest in term of producing antibacterial compounds. Streptomyces sp. HB202, isolated from the sponge Halichondria panicea has been documented to produce three antibacterial substances: mayamycin, streptophenazine G and K, which are mainly active against Gram positive pathogenic bacteria (Table 2). Streptomyces sp. RV15, on the other hand, produces the compound naphthacene glycoside which up to now is the only anti-Chlamydia reported from sponge-associated microbes [46]. In addition, the report on crude extract inhibition of Streptomyces sp. RV15 against S. aureus and E. faecalis [82] may give a hint to discover other antibacterial substances from this strain. Streptomyces sp. Hedaya48 is currently the most potent sponge-associated bacterial isolate for antifungal activities with the production of saadamycin and 5,7-dimethoxy-4-p-methoxylphenylcoumarin [107]. In addition, isolation of the anti-Trypanosoma and anti-Leishmania compounds valinomycin, staurosporine and butenolide from Streptomyces sp. 43, 21 and 11 [128], affirms Streptomyces as the currently most prominent producer of antimicrobial substances from sponges.

Pseudovibrio follows as the second most prolific bacterial genus isolated from sponges (20%) with respect to antimicrobial activities. Reports on Pseudovibrio ssp. are concentrated on antibacterial activity and are mainly based on screening of crude extracts. Up to now, tropidithetic acid is the only antibacterial compound that has been identified from Pseudovibrio [72]. Although representing a lower percentage of the sponge-associated bacteria found to produce antimicrobials than Streptomyces and Pseudovibrio, 9% of the currently known bioactives was found to be produced by sponge-associated Bacillus ssp., with activities against viruses, bacteria and fungi. Bacillus cereus QNO3323 is currently the most prominent antimicrobial producer from this genus with the very potent thioproteptides YM-266183 and YM-266184 that are active against Gram positive bacteria.

Sponge-associated Ascomycota found to produce antimicrobials can be further classified into 12 genera. Of these 12 fungal genera, Aspergillus (30%) and Penicillium (23%) are currently the two most prominent groups of sponge-associated fungi reported as antimicrobial producers. This finding is not surprising since both Aspergillus and Penicillium are known prolific producers of secondary metabolites from other sources [143]. Aspergillus versicolor [58] and an unidentified Aspergillus sp. isolated from the sponge Xestospongia testudinaria [48] showed a strong antibacterial activity as indicated by potent inhibition of pathogenic bacteria. The antimicrobial activities found from sponge-associated Penicillium ssp. are particular remarkable as it is the only fungal genus that is found to produce antivirals, antibacterials antifungals and antiprotozoals. Penicillium chrysogenum [26] and Penicillium sp. FF01 [57] are to the most promising sponge-associated Penicillium isolates for which anti-HIV activity (sorbicillactone) and antibacterial activity (citrinin) were reported, respectively. Sponge-derived Stachybotrys ssp. are only known for antiviral activity, particularly against HIV and enterovirus 71 (EV71), and there are no reports of other antimicrobial activities. Generally, although the number of produced antimicrobials is outnumbered by those of sponge-associated bacteria, sponge-associated fungi should be considered as an important reservoir of antimicrobial compounds.

When the chemical structures of sponge-microbe-derived compounds are considered, a rather diverse array of structures is observed, including peptides, terpenoids, phenazines, indoles, phenoles and polyketides. Sixty percent of the antivirals from sponge-associated microbes are ketone derivatives (quinolone, sorbicillactone, isoindolinone, butyrolactone, furanone, xanthone, methanone, phenone). Peptide derivatives constitute 19% of the total identified antibacterial substances and roughly 12.5% from the total antimicrobial compounds reviewed here. Phenazine derivatives are the second most frequently isolated class of antibacterial compounds from sponge-associated microbes (15%) as exemplified in this review by the antibacterial compounds streptophenazine [89], phenazine alkaloid antibiotics [55], 6-hydroxymethyl-1-phenazine-carboxamide and 1,6-phenazinedimethanol [94].
Phenazine is a nitrogen-containing heterocyclic compound with a wide range of biological activities [67,144], and several studies from terrestrial environments and chemically synthesized phenazines have been reported as antiviral [145], antibacterial [146], and antimalaria [147]. Moreover, this group of compounds is attractive for therapeutic application since their structures are relatively small and hence can easily reach tissues and organs [67,148].

6.2. Discovering Antimicrobial Compounds from Sponge-Associated Microbes: From Culture-Dependent to Culture-Independent Methods

Isolation of antimicrobial producers provides a valuable basis for assessing the biotechnological potential of sponge-associated microbes. In a wider perspective, however, only a small fraction of this sponge-microbial community has been isolated under laboratory conditions leaving the majority resistant to in vitro growth with current cultivation approaches [15,149,150]. Several studies have focused on improving cultivability of sponge-associated microbes. Some of the approaches include using low nutrient media [151], floating filter cultures [152], employing different carbon sources, e.g., lectin [153], sponge extracts [152], and in situ cultivation using a diffusion growth chamber [154]. Furthermore, flow-cytometry and density gradient centrifugation have been applied to separate sponge cells from their associated bacteria to enrich the inoculum [155,156]. Additionally, co-cultivation through mixing of two or more microbial isolates in vitro [157] is an approach proposed to discover more natural compounds from sponge-associated microbes. The idea behind co-culture lies in the fact that many biosynthetic gene clusters found in microorganisms remain cryptic under standard laboratory conditions, and co-cultivation might provide a possibility to activate these silent genes [158,159]. As an example, the co-culture by Dashti et al. [98] of the sponge-associated Actinobacteria, Actinokinespora sp. EG49 and Nocardiopsis sp. RV163, resulted in isolation of the antibacterial compound 1,6-dihydroxyphenazine, which was not found from the individual isolates. However, even if the cultivability of sponge-associated microbes is improved, there is a long way ahead to reach a point that we will be able to isolate and routinely cultivate 50% of the microbes that are found in sponges. At the same time, the advance of genetic and molecular studies has resulted in the development of tools to study genes, transcripts and proteins by directly analyzing environmental DNA, RNA and proteins, thus bypassing cultivation procedures [157]. In relation to screening for antimicrobial activity, metagenomics has been applied to identify antimicrobials of uncultivated microorganisms from terrestrial environments, such as the antimycobacterial nocardamine, the putative antibacterial activity of terragines A–E [160], violacein that is active against S. aureus, Bacillus sp. and Streptococcus sp. [161] and a polyketide with activity against the yeast Saccharomyces cerevisiae [162].

Two main metagenomic approaches, functional screening and sequence homology-based methods, are generally distinguished [163]. Functional screening relies on detection of the metabolic activities of metagenomic library clones without requiring any prior sequence information [163–165]. Gillespie et al. [9] applied function-based metagenomics with E. coli as expression host, to identify the antibiotics turmoyycin A and B from a soil sample. MacNeil et al. [166] identified the antimicrobial indirubin by constructing a BAC (bacterial artificial chromosome) library in E.coli. Yung et al. [167] reported two hydrolytic enzymes from fosmid clones CcAb1 and CcAb2, which were derived from a metagenome of the sponge Cymbastela concentrica using E. coli as the host. Both fosmid clones inhibited the growth of Bacillus sp. with an inhibition diameter of 20 mm, and clone CcAb1 showed additional inhibition of S. aureus and an Alteromonas sp. with diameters of inhibition of 50 mm and 60 mm, respectively. Further phylogenetic analysis showed that active genes encoding for these enzymes were of microbial origin [167]. He et al. [168] constructed a fosmid library of the sponge Discoderma calyx using E. coli as the host and identified antimicrobial activity of the enzyme 3-hydroxypalmitic acid against B. cereus and C. albicans. In addition, using the same approach He et al. [169] observed an active clone, pDC113, that displayed a clear inhibition zone against B. cereus. Subsequently, 11 cyclodipeptides were identified from this clone. Generally, it can be stated that although a number of antimicrobials have been discovered through functional screening of metagenomic libraries from
sponges, the expression of large gene clusters such as those encoding (polyketide synthase (PKS) and (non-ribosomal peptide synthetase (NRPS) is still a difficult hurdle to take. Several key elements need to be considered to achieve successful expression of biosynthetic gene clusters; namely mobilizing the biosynthetic pathway into a suitable vector, selecting an appropriate heterologous host and stably maintaining the gene clusters in the host [170]. The size of many of these gene clusters requires the use of cloning vectors that can accept large inserts, such as fosmids, or BACs if the required insert size is over 100 kb [171]. Selection of heterologous expression systems in particular is a crucial factor before applying functional metagenomics to identify antimicrobials, because expression hosts are microbes as well and especially clones that express genes encoding for enzymes involved in production of antimicrobials may therefore be non-viable. Ongley et al. [170] pointed out some considerations in selecting an expression host such as relatedness to the native producer, availability of genetic tools and precursors, a high growth rate, and suitability for fermentation at a large scale. *E. coli*, the most commonly used expression host, has limitations for expressing parts of metagenomes because, e.g., of the sheer size of some gene clusters, genes with deviating codon usage, incompatible regulatory elements, lack of biosynthesis precursors or unavailability of posttranslational modifications [165,172]. Therefore, in order to make screening for antimicrobials through metagenomic libraries more efficient, it is of utmost importance to diversify the suite of expression hosts used. Several non-*E. coli* hosts, such as Agrobacterium tumefaciens, Bacillus subtilis, Burkholderia graminis, Caulobacter vibrioides, Pseudoalteromonas haloplanktis, Pseudomonas putida,Ralstonia metallidurans, Rhizobium leguminosarum, Streptomyces avermitilis, S. albus, Pseudomonas putida, Sulfolobus solfataricus, Thermus thermophilus, Thioacapsa roseopersicina and Saccharopolyspora sp. have been developed and should be more seriously considered as expression hosts when performing metagenomic screenings for antimicrobials [165,172,173].

Sequence-based screening, on the other hand, requires information on the sequence of genes involved in the production of a natural product as guidance to search for similar sequences in a sequenced metagenomic library or scaffolds reconstructed from direct metagenomic sequencing [165]. Homology-based screening is suitable to identify a compound with highly conserved biosynthesis pathways, e.g., those mediated by PKS and NRPS [174]. Piel and colleagues [175–179] applied this method, and identified the antitumor polyketide onnamide from uncultivated bacteria of the sponge *T. swinhoei*. Sequence-based screening was applied by Fisch [180] to unravel the complete pathway of the polyketide psymberin that was found to possess a potent antitumor activity, from uncultivated sponge-associated microbes. By sequence-based screening of metagenomic libraries, Schirmer et al. [181] reported diverse polyketide gene clusters in microorganisms from the sponge Discodermia dissoluta. The development of techniques that yield longer read lengths, such as Pacific Biosciences (PacBio) RS II SMRT (Single Molecule Real-Time) sequencing technology, in which a single read can be extended over 10 kbp [182], can be instrumental in increasing the accuracy in assembling large gene clusters. Application of PacBio for secondary metabolite gene clusters has been reported by Alt and Wilkinson [183], who identified the 53,253 bp genomic fragment encoding the transacyltransferase (trans-AT) polyketide synthase (PKS) from a marine *Streptomyces* sp responsible for the production of the antibiotic anthracimycin (atc). Furthermore, using *Streptomyces coelicolor* as heterologous expression host, the authors confirmed production of anthracimycin [183]. Furthermore, single-cell analysis by combining cell separation and fluorescence-assisted cell sorting (FACS) could be a strategy to overcome the complexity of the microbial community in sponges since this method can be used to select for genomes from microbes that are present in low abundance in the sponge leading to a simplified reconstruction of secondary metabolite gene clusters present in these bacteria [184]. This strategy has been applied by Wilson et al. [185] for resolving the gene clusters encoding the machinery needed for the production of the polytheonamides produced by the candidate genus *Entotheonella* from the sponge *Theonella swinhoei*.

Inspired by these examples, homology-based screening could be further exploited to identify biosynthesis gene sequences that could lead to the identification of novel antimicrobial substances from
Nature’s excessive diversity. Moreover, application of homology-based screening can benefit from publicly available metagenomic sequencing data and prediction tools for analyzing biosynthesis gene clusters, e.g., AntiSMASH (Antibiotics and Secondary Metabolite Analysis Shell) [186,187]. Application of sequence-based screening, however, is limited by the fact that the found sequences need to be related to known compounds, inherently limiting the potential for novelty. Furthermore, information on gene sequences is no guarantee that the acquisition of a complete gene pathway has been obtained [188]. Therefore, sequence-based methagenomics should ideally be complemented by chemical analysis to confirm whether the predicted compound exists and is fully functional (Figure 6).

Figure 6. General overview of the strategies used to discover antimicrobial compounds from sponge-associated microorganisms.

7. Conclusions and Outlook

Sponge-associated microbes already offer a rich source of potent antimicrobial compounds against viruses, bacteria, protozoa and fungi, and currently available compounds are predominantly active against HIV-1, H1N1, nosocomial Gram positive bacteria, Escherichia coli, Plasmodium spp, Leishmania donovani, Trypanosoma brucei, Candida albicans and dermatophytic fungi. Streptomyces, Pseudovibrio, Bacillus, Aspergillus and Penicillium are the microbial genera associated with sponges from which potent antimicrobial compounds are most frequently isolated. However, none of the antimicrobial compounds highlighted in this review have been successfully marketed as pharmaceuticals. To clearly translate bioactivity of these important compounds it is crucial to further unravel their mode of actions and measure their level of toxicity, since the majority of these studies has been focused on in vitro bioassays and elucidation of the chemical structures only.

The known versatility of antimicrobial activities found in sponge-associated microorganisms could easily be expanded even without considering additional sponge sampling campaigns. Bioactivity screens of identified compounds or undefined sponge extracts is often restricted to a specific antimicrobial activity. The selection, for instance, relies on the specific research activities of the
groups involved in isolating the microbes [117]. Consequently, it is probably safe to assume that other potent antimicrobial properties from many sponge isolates and their bioactive compounds remain undetected. Therefore, known antimicrobial compounds and producer strains are a valuable source for additional antimicrobial activities screenings using different target types (viruses, bacteria, fungi, protozoa and beyond). In addition, sponge-derived strain collections that comprise isolates that tested negative for antimicrobial activity at first may have done so, because the compound of interest is not produced under standard laboratory conditions. Exposure of these strains to potential microbial targets may lead to recovery of bioactivity that would otherwise go unnoticed.

Ideally, researchers who isolate microbes from sponges will deposit them to publicly available culture collections so that laboratories with complementary expertise and interests could benefit and screen the deposited isolates for different antimicrobial activities. This will make exchange of materials and knowledge that can be obtained much more efficient. Importantly, a fair agreement on intellectual property rights needs to be established for translating this into reality. Lastly, the revolutionary advance of next generation sequencing technologies combined with more diversified heterologous expression systems (Figure 6) are expected to open up the large unexplored reservoir of antimicrobials produced by yet uncultivated sponge-associated microbes.

Acknowledgments: Anak Agung Gede Indraningrat receives a PhD fellowship from the Indonesia Endowment Fund for Education (LPDP), grant number 20140812021537. This work was also supported by the EC grant “BluePharmTrain” (grant agreement no. 607786).

Author Contributions: Anak Agung Gede Indraningrat and Detmer Sipkema conceived the idea for the review, Anak Agung Gede Indraningrat compiled literatures, drew figures, and wrote the manuscript. Detmer Sipkema and Hauke Smidt checked and improved the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations. Review on Antimicrobial Resistance: Chaired by Jim O’Neill. 2014. Available online: http://amr-review.org/Publications (accessed on 1 September 2015).
2. Antimicrobial Resistance Global Report on Surveillance. World Health Organization, Geneva, Switzerland, 2014. Available online: http://www.who.int/drugresistance/documents/surveillance_report/en/ (accessed on 1 September 2015).
3. Davies, J.; Davies, D. Origins and Evolution of Antibiotic Resistance. Microbiol. Mol. Biol. Rev. 2010, 74, 417–433. [CrossRef] [PubMed]
4. Aminov, R.I. A brief history of the antibiotic era: Lessons learned and challenges for the future. Front. Microbiol. 2010, 1, 1–7. [CrossRef] [PubMed]
5. Moellering, R.C., Jr. Discovering new antimicrobial agents. Int. J. Antimicrob. Agents 2011, 37, 2–9. [CrossRef] [PubMed]
6. Projan, S.J. Why is big Pharma getting out of antibacterial drug discovery? Curr. Opin. Microbiol. 2003, 6, 427–430. [CrossRef] [PubMed]
7. Fleming, A. On the antibacterial action of cultures of a Penicillium, with special reference to their use in the isolation of B. influenzae. Br. J. Exp. Pathol. 1929, 10, 226–236. [CrossRef]
8. White, R.J. The Early History of Antibiotic Discovery: Empiricism Ruled. In Antibiotic Discovery and Development; Dougherty, T.J., Pucci, M.J., Eds.; Springer: New York, NY, USA, 2012.
9. Gillespie, D.E.; Brady, S.F.; Bettermann, A.D.; Cianciotto, N.P.; Liles, M.R.; Rondon, M.R.; Clardy, J.; Goodman, R.M.; Handelsman, J. Isolation of Antibiotics Turbomycin A and B from a Metagenomic Library of Soil Microbial DNA. Appl. Environ. Microbiol. 2002, 68, 4301–4306. [CrossRef] [PubMed]
10. Ling, L.L.; Schneider, T.; Peoples, A.J.; Spoering, A.L.; Engels, I.; Conlon, B.P.; Mueller, A.; Schaberle, T.F.; Hughes, D.E.; Epstein, S.; et al. A new antibiotic kills pathogens without detectable resistance. Br. Dent. J. 2015, 517, 455–459. [CrossRef] [PubMed]
11. Taylor, P.L.; Wright, G.D. Novel approaches to discovery of antibacterial agents. Anim. Health Res. Rev. 2008, 9, 237–246. [CrossRef] [PubMed]
12. Hughes, C.C.; Fenical, W. Antibacterials from the Sea. *Chem. Eur. J.* 2010, 16, 12512–12525. [CrossRef] [PubMed]
13. Thoms, C.; Schupp, P. Biotechnological potential of marine sponges and their associated bacteria as producers of new pharmaceuticals (part II). *J. Int. Biotechnol. Law* 2005, 2, 257–264. [CrossRef]
14. Fuerst, J.A. Diversity and biotechnological potential of microorganisms associated with marine sponges. *Appl. Microbiol. Biot.* 2014, 98, 7331–7347. [CrossRef] [PubMed]
15. Taylor, M.W.; Radax, R.; Steger, D.; Wagner, M. Sponge-associated microorganisms: Evolution, ecology, and biotechnological potential. *Microbiol. Mol. Biol. R.* 2007, 71, 295–347. [CrossRef] [PubMed]
16. Laport, M.S.; Santos, O.C.S.; Muricy, G. Marine Sponges: Potential Sources of New Antimicrobial Drugs. *Curr. Pharm. Biotechnol.* 2009, 10, 86–105. [CrossRef] [PubMed]
17. Thomas, T.R.A.; Kavlekar, D.P.; LokaBharathi, P.A. Marine drugs from sponge-microbe association—A review. *Mar. Drugs* 2010, 8, 1417–1468. [CrossRef] [PubMed]
18. Santos-Gandelman, J.F.; Giambiagi-deMarval, M.; Oelemann, W.M.R.; Laport, M.S. Biotechnological Potential of Sponge-Associated Bacteria. *Curr. Pharm. Biotechnol.* 2014, 15, 143–155. [CrossRef] [PubMed]
19. Graça, A.P.; Viana, F.; Bondoso, J.; Correia, M.I.; Gomes, L.A.G.R.; Humanes, M.; Reis, A.; Xavier, J.; Gaspar, H.; Lage, O. The antimicrobial activity of heterotrophic bacteria isolated from the marine sponge *Erylus deficiens* (Astrophorida, Geodiidae). *Front. Microbiol.* 2015, 6. [CrossRef]
20. Hoppers, A.; Stoudemire, J.; Wu, S.; Lopanik, N.B. Antibiotic activity and microbial community of the temperate sponge, *Haliclona sp.* J. *Appl. Microbiol*. 2015, 118, 419–430. [CrossRef] [PubMed]
21. Sagar, S.; Kaur, M.; Minneman, K.P. Antiviral Lead Compounds from Marine Sponges. *Mar. Drugs* 2010, 8, 2619–2638. [CrossRef] [PubMed]
22. Bergmann, W.; Feeney, R.J. The isolation of a new thymine pentoside from sponges. *J. Am. Chem. Soc.* 1950, 72, 2809–2810. [CrossRef]
23. Bergmann, W.; Feeney, R.J. Contributions to the Study of Marine Products. XXXII. The nucleosides of sponges. I. *J. Org. Chem.* 1951, 16, 981–987. [CrossRef]
24. Yasuhara-Bell, J.; Lu, Y. Marine compounds and their antiviral activities. *Antiviral Res.* 2010, 86, 231–240. [CrossRef] [PubMed]
25. Bultel-Poncé, V.; Berge, J.-P.; Debitus, C.; Nicolas, J.-L.; Goutot, M. Metabolites from the sponge-associated bacterium *Pseudomonas* species. *Mar. Biotechnol.* 1999, 1, 384–390. [CrossRef] [PubMed]
26. Bringmann, G.; Lang, G.; Muhlbacher, J.; Schaumann, K.; Steffens, S.; Rytkö, P.G.; Hentschel, U.; Morschhauser, J.; Müller, W.E.G. Sorbicillactone A: A structurally unprecedented bioactive novel-type alkaloid from a sponge-derived fungus. *Prog. Mol. Subcell. Biol.* 2003, 37, 231–253. [PubMed]
27. Ma, X.H.; Lo, L.T.; Zhu, T.J.; Ba, M.Y.; Li, G.Q.; Gu, Q.Q.; Guo, Y.; Li, D.H. Phenylspirodrimanes with B inhibitory and anti-influenza A viral (H1N1) activities from the sponge-associated fungus *Epicoccum sp.* *Appl. Microbiol. Biot.* 2010, 70, 7010–7015. [CrossRef] [PubMed]
28. Li, Y.; Liu, D.; Cen, S.; Proksch, P.; Lin, W. Isoindolinone-type alkaloids from the sponge-derived fungus *Stachybotrys chartarum* MXH-X73. *J. Nat. Prod.* 2013, 76, 2298–2306. [CrossRef] [PubMed]
29. Zhao, Y.; Li, J.; Wang, W.; Gu, Q.Q.; Zhu, T.J.; Li, D.H. Pyronepolyene C-glucosides with NF-kappa B inhibitory and anti-influenza A viral (H1N1) activities from the sponge-associated fungus *Epicoccum sp.* *J. Ocean Univ. China* 2014, 13, 1067–1070. [CrossRef]
35. Wang, J.F.; Lin, X.P.; Qin, C.; Liao, S.R.; Wan, J.T.; Zhang, T.Y.; Liu, J.; Fredimoses, M.; Chen, H.; Yang, B.; et al. Antimicrobial and antiviral sesquiterpenoids from sponge-associated fungus, *Aspergillus sydowii* ZSDS1-F6. *J. Antibiot.* 2014, 67, 581–583. [CrossRef] [PubMed]

36. Wang, J.F.; Lin, X.P.; Qin, C.; Liao, S.R.; Wan, J.T.; Zhang, T.Y.; Liu, J.; Fredimoses, M.; Chen, H.; Yang, B.; et al. Antimicrobial and antiviral sesquiterpenoids from sponge-associated fungus *Aspergillus sydowii* ZSDS1-F6. *J. Antibiot.* 2014, 67, 581–583. [CrossRef] [PubMed]

37. Bastos, J.C.S.; Kohn, L.K.; Fantinatti-Garboggi, F.; Padilla, M.A.; Flores, E.F.; da Silva, B.P.; de Menezes, C.B.A.; Arns, C.W. Antiviral Activity of *Bacillus* sp. Isolated from the Marine Sponge *Petromica citrina* against Bovine Viral Diarrhea Virus, a Surrogate Model of the Hepatitis C Virus. *Viruses* 2013, 5, 1219–1230. [CrossRef] [PubMed]

38. Inweregbu, K.; Dave, J.; Pittard, A. Nosocomial infections. *Cont. Educ. Anaesth. Crit. Care Pain* 2005, 5, 14–17. [CrossRef]}

39. Weinstein, R.A.; Gaynes, R.; Edwards, J.R.; System, N.N.I.S. Overview of Nosocomial Infections Caused by Gram-Negative Bacilli. *Clin. Infect. Dis.* 2005, 41, 848–854. [CrossRef] [PubMed]

40. Nagai, K.; Kamigiri, K.; Arao, N.; Suzumura, K.; Kawano, Y.; Yamaoka, M.; Zhang, H.P.; Watanabe, M.; Suzuki, K. YM-266183 and YM-266184, novel thiopeptide antibiotics produced by *Bacillus cereus* isolated from a marine sponge—I. Taxonomy, fermentation, isolation, physico-chemical properties and biological properties. *J. Antibiot.* 2003, 56, 123–128. [CrossRef] [PubMed]

41. Suzumura, K.; Yokoi, T.; Funatsu, M.; Nagai, K.; Tanaka, K.; Zhang, H.P.; Suzuki, K. YM-266183 and YM-266184, novel thiopeptide antibiotics produced by *Bacillus cereus* isolated from a marine sponge—I. Structure elucidation. *J. Antibiot.* 2003, 56, 129–134. [CrossRef] [PubMed]

42. Palomo, S.; Gonzalez, I.; de la Cruz, M.; Martin, J.; Tormo, J.R.; Anderson, M.; Hill, R.T.; Vicente, F.; Reyes, F.; Genilloud, O. Sponge-derived *Kocuria* and *Micrococcus* spp. as sources of the new thiazolyl peptide antibiotic kocurin. *Mar. Drugs* 2013, 11, 1071–1086. [CrossRef] [PubMed]

43. Schneemann, I.; Kajahn, I.; Olhendorf, B.; Zinecker, H.; Erhard, A.; Nagel, K.; Wiese, J.; Hentschel, U.; Abdelmohsen, U.R. Inhibitory activities of the marine streptomycete-derived compound SF2446A2 against *Halichondria panicea*. *Appl. Environ. Microbiol.* 2010, 76, 3702–3714. [CrossRef] [PubMed]

44. Schneemann, I.; Kajahn, I.; Ohlendorf, B.; Zinecker, H.; Erhard, A.; Nagel, K.; Wiese, J.; Imhoff, J.F. Comprehensive investigation of marine Actinobacteria associated with the sponge *Halichondria panicea*. *Appl. Environ. Microbiol.* 2010, 76, 3702–3714. [CrossRef] [PubMed]

45. Reimer, A.; Blohm, A.; Quack, T.; Grevelding, C.G.; Kozjak-Pavlovic, V.; Rudel, T.; Hentschel, U.; Abdelmohsen, U.R. Inhibitory activities of the marine streptomycete-derived compound SF2446A2 against *Chlamydia trachomatis* and *Schistosoma mansoni* mansoni. *J. Antibiot.* 2015. [CrossRef] [PubMed]

46. Vasilevsky, S.; Greub, G.; Nardelli-Haeffler, D.; Baud, D. Genital *Chlamydia trachomatis*: Understanding the Roles of Innate and Adaptive Immunity in Vaccine Research. *Clin. Microbiol. Rev.* 2014, 27, 346–370. [CrossRef] [PubMed]

47. Li, D.; Xu, Y.; Shao, C.-L.; Yang, R.-Y.; Zheng, C.-J.; Chen, Y.-Y.; Fu, X.-M.; Qian, P.-Y.; She, Z.-G.; de Voogd, N.J.; et al. Antibacterial Bisabolane-Type Sesquiterpenoids from the Sponge-Derived Fungus *Aspergillus* sp. *Mar. Drugs* 2012, 10, 234–241. [CrossRef] [PubMed]

48. Pruksakorn, P.; Arai, M.; Kotoku, N.; Vilchéze, C.; Baughn, A.D.; Moodley, P.; Jacobs, W.R., Jr.; Kobayashi, M. Trichoderins, novel aminolipopeptides from a marine sponge-derived *Trichoderma* sp., are active against dormant mycobacteria. *Bioorg. Med. Chem. Lett.* 2010, 20, 3658–3663. [CrossRef] [PubMed]

49. Pruksakorn, P.; Arai, M.; Liu, L.; Moodley, P.; Jacobs, W.R., Jr.; Kobayashi, M. Action-Mechanism of Trichoderin A, an Anti-dormant Mycobacterial Aminolipopeptide from Marine Sponge-Derived *Trichoderma* sp. *J. Biol. Pharm. Bull.* 2011, 34, 1287–1290. [CrossRef] [PubMed]

50. Oliver, J.D. Recent findings on the viable but nonculturable state in pathogenic bacteria. *FEMS Microbiol. Rev.* 2010, 34, 415–425. [CrossRef] [PubMed]

51. Coates, A.R.M.; Hu, Y. Novel approaches to developing new antibiotics for bacterial infections. *Br. J. Pharmacol.* 2007, 152, 1147–1154. [CrossRef] [PubMed]
53. Coates, A.R.M.; Hu, Y. Targeting non-multiplying organisms as a way to develop novel antimicrobials. *Trends Pharmacol. Sci.* 2008, 29, 143–150. [CrossRef] [PubMed]

54. Eltamany, E.E.; Abdelmohsen, U.R.; Ibrahim, A.K.; Hassanean, H.A.; Hentschel, U.; Ahmed, S.A. New antibacterial xanthone from the marine sponge-derived *Micrococcus* sp. EG45. *Bioorg. Med. Chem. Lett.* 2014, 24, 4939–4942. [CrossRef] [PubMed]

55. Jayatilake, G.S.; Thornton, M.P.; Leonard, A.C.; Grimwade, J.E.; Baker, B.J. Metabolites from an Antarctic sponge-associated bacterium, *Pseudomonas aeruginosa*. *J. Natl. Prod.* 1996, 59, 293–296. [CrossRef] [PubMed]

56. Song, F.H.; Ren, B.; Chen, C.X.; Yu, K.; Liu, X.R.; Zhang, Y.H.; Yang, N.; He, H.T.; Liu, X.T.; Dai, H.Q.; et al. Three new stigmatocystin analogues from marine-derived fungus *Aspergillus versicolor* MF359. *Appl. Microbiol. Biol.* 2014, 89, 3753–3758. [CrossRef] [PubMed]

57. Subramani, R.; Kumar, R.; Prasad, P.; Aalbersberg, W. Cytotoxic and antibacterial substances against multi-drug resistant pathogens from marine sponge symbiont: Citrinin, a secondary metabolite of *Penicillium* sp. *Asian Pac. J. Trop. Biomed.* 2013, 3, 291–296. [CrossRef]

58. Lee, Y.; Li, H.; Hong, J.; Cho, H.; Bae, K.; Kim, M.; Kim, D.-K.; Jung, J. Bioactive metabolites from the sponge-derived fungus *Aspergillus versicolor*. *Arch. Pharm. Res.* 2010, 33, 231–235. [CrossRef] [PubMed]

59. Zheng, L.; Chen, H.; Han, X.; Lin, W.; Yan, X. Antimicrobial screening and active compound isolation from marine bacterium Nj6-3-1 associated with the sponge Hymeniacidon perleve. *World J. Microbiol. Biotechnol.* 2005, 21, 201–206. [CrossRef]

60. Zhang, D.; Yang, X.; Kang, J.S.; Choi, H.D.; Son, B.W. Chlorohydroaspyrones A and B, Antibacterial Aspyrone Derivatives from the Marine-Derived Fungus *Exophiala* sp. *J. Nat. Prod.* 2008, 71, 1458–1460. [CrossRef] [PubMed]

61. Xie, L.; Ouyang, Y.; Zou, K.; Wang, G.; Chen, M.; Sun, H.; Dai, S.; Li, X. Isolation and Difference in Anti- *Staphylococcus aureus* Bioactivity of Curvularin Derivates from Fungus *Eupenicillium* sp. *Appl. Biochem. Biotechnol.* 2009, 159, 284–293. [CrossRef] [PubMed]

62. Santos, O.C.S.; Soares, A.R.; Machado, F.L.S.; Romanos, M.T.V.; Muricy, G.; Giambiagi-de-Marval, M.; Laport, M.S. Investigation of biotechnological potential of sponge-associated bacteria collected in Brazilian coast. *Lett. Appl. Microbiol.* 2015, 60, 140–147. [CrossRef] [PubMed]

63. Sathiyanarayanan, G.; Gandhimathi, R.; Sabarathnam, B.; Seghal Kiran, G.; Selvin, J. Optimization and production of pyrrolidone antimicrobial agent from marine sponge-associated *Streptomyces* sp. MAPS15. *Bioprocess. Biosyst. Eng.* 2014, 37, 561–573. [CrossRef] [PubMed]

64. Unson, M.D.; Holland, N.D.; Faulkner, D.J. A brominated secondary metabolite synthesized by the cyanobacterial symbiont of a marine sponge and accumulation of the crystalline metabolite in the sponge tissue. *Mar. Biol.* 1994, 119, 1–11. [CrossRef]

65. Kobayashi, M.; Aoki, S.; Gato, K.; Matsunami, K.; Kurosu, M.; Kitagawa, I. Marine Natural-Products. XXXIV. Trisindoline, a New Antibiotic Indole Trimer, Produced by a Bacterium of *Vibrio* sp. Separated from the Marine Sponge *Hyrtyos-Altum*. *Chem. Pharm. Bull.* 1994, 42, 2449–2451. [CrossRef] [PubMed]

66. Ibrahim, D.; Nazari, T.F.; Kassim, J.; Lim, S.-H. Prodigiosin—An antibacterial red pigment produced by *Serratia marcescens* IBRL USM 84 associated with a marine sponge *Xestospongia testudinaria*. *J. Appl. Pharm. Sci.* 2014, 4, 1–6.

67. Karuppiah, V.; Li, Y.; Sun, W.; Feng, G.; Li, Z. Functional gene-based discovery of phenazines from the actinobacteria associated with marine sponges in the South China Sea. *Appl. Microbiol. Biotechnol.* 2015. [CrossRef] [PubMed]

68. Pabel, C.T.; Vater, J.; Wilde, C.; Franke, P.; Hofemeister, J.; Adler, B.; Bringmann, G.; Hacker, J.; Hentschel, U. Antimicrobial activities and matrix-assisted laser desorption/ionization mass spectrometry of *Bacillus* isolates from the marine sponge *Aplysina aerophoba*. *Mar. Biotechnol.* 2003, 5, 424–434. [CrossRef] [PubMed]

69. Devi, P.; Wahidullah, S.; Rodrigues, C.; Souza, L.D. The Sponge-associated Bacterium *Bacillus licheniformis* SAB1: A Source of Antimicrobial Compounds. *Mar. Drugs* 2010, 8, 1203–1212. [CrossRef] [PubMed]

70. Jadulco, R.; Brauers, G.; Edrada, R.A.; Ebel, R.; Wray, V.; Proksch, P. New Metabolites from Sponge-Derived Fungi *Curvularia lunata* and *Cladosporium herbarum* II. *J. Natl. Prod.* 2002, 65, 730–733. [CrossRef]

71. Phelan, R.W.; Barret, M.; Cotter, P.D.; O’Connor, P.M.; Chen, R.; Morrissey, J.P.; Dobson, A.D.W.; O’Gara, F.; Barbosa, T.M. Subtilomycin: A New Lantibiotic from *Bacillus subtilis* Strain MMA7 Isolated from the Marine Sponge *Haliclona simulans*. *Mar. Drugs* 2013, 11, 1878–1898. [CrossRef] [PubMed]
72. Harrington, C.; Reen, F.; Mooij, M.; Stewart, F.; Chabot, J.-B.; Guerra, A.; Glöckner, F.; Nielsen, K.; Gram, L.; Dobson, A.; et al. Characterisation of Non-Autoinducing Tropolodithietic Acid (TDA) Production from Marine Sponge *Pseudovibrio* Species. *Mar. Drugs* 2014, 12, 5960–5978. [CrossRef] [PubMed]

73. Selvin, J. Exploring the Antagonistic Producer Streptomyces MS051: Implications of Polyketide Synthase Gene Type II and a Ubiquitous Defense Enzyme Phospholipase A2 in the Host Sponge *Dendrilla nigra*. *Curr. Microbiol.* 2009, 58, 459–463. [CrossRef] [PubMed]

74. Zheng, L.; Yan, X.; Xu, J.; Chen, H.; Lin, W. *Hymeniacidon perleve* associated bioactive bacterium *Pseudomonas* sp. NJ-6-3-1. *Appl. Biochem. Microbiol.* 2005, 41, 29–33. [CrossRef]

75. Meenupriya, J.; Thangaraj, M. Isolation and molecular characterization of bioactive secondary metabolites from *Callisyospongia* spp. associated fungi. *Asian Pac. J. Trop. Med.* 2010, 3, 738–740. [CrossRef]

76. Ye, L.; Santos-Gandelman, J.; Hardoim, C.P.; George, I.; Cornelis, P.; Laport, M. Antibacterial activity and mutagenesis of sponge-associated *Pseudomonas* fluorescens H41. *Antonie Leeuwenhoek* 2015, 108, 117–126. [CrossRef] [PubMed]

77. Santos, O.C.S.; Pontes, P.V.M.L.; Santos, J.F.M.; Muricy, G.; Giambiagi-deMarval, M.; Laport, M.S. Isolation, characterization and phylogeny of sponge-associated bacteria with antimicrobial activities from Brazil. *Res. Microbiol.* 2010, 161, 604–612. [CrossRef] [PubMed]

78. O’Halloran, J.A.; Barbosa, T.M.; Morrissey, J.P.; Kennedy, J.; O’Gara, F.; Dobson, A.D.W. Diversity and antimicrobial activity of *Pseudovibrio* spp. from Irish marine sponges. *J. Appl. Microbiol.* 2011, 110, 1495–1508. [CrossRef] [PubMed]

79. Kim, T.K.; Garson, M.J.; Fuerst, J.A. Marine actinomycetes related to the “Salinospora” group from the Great Barrier Reef sponge *Pseudoceratina clavata*. *Environ. Microbiol.* 2005, 7, 509–518. [CrossRef] [PubMed]

80. Selvin, J.; Joseph, S.; Asha, K.R.T.; Manusha, W.A.; Sangeetha, V.S.; Jayaseema, D.M.; Antony, M.C.; Vinitha, A.J.D. Antibacterial potential of antagonistic *Streptomyces* sp. isolated from marine sponge *Dendrilla nigra*. *FEMS Microb. Ecol.* 2004, 50, 117–122. [PubMed]

81. Su, P.; Wang, D.-X.; Ding, S.-X.; Zhao, J. Isolation and diversity of natural product biosynthetic genes of cultivable bacteria associated with marine sponge *Mycale* sp. from the coast of Fujian, China. *Can. J. Microbiol.* 2014, 60, 217–225. [CrossRef] [PubMed]

82. Abdelmohsen, U.R.; Pimentel-Elardo, S.M.; Hanora, A.; Radwan, M.; Abou-El-Ela, S.H.; Ahmed, S.; Hentschel, U. Isolation, Phylogenetic Analysis and Anti-infective Activity Screening of Marine Sponge-Associated Actinomycetes. *Mar. Drugs* 2010, 8, 399–412. [CrossRef] [PubMed]

83. Flemer, B.; Kennedy, J.; Margassery, L.M.; Morrissey, J.P.; O’Gara, F.; Dobson, A.D.W. Diversity and antimicrobial activities of microbes from two Irish marine sponges, *Suberites carnosus* and *Leucosolenia* sp. *J. Appl. Microbiol.* 2012, 112, 289–301. [CrossRef] [PubMed]

84. Hentschel, U.; Schmid, M.; Wagner, M.; Fieseler, L.; Gernert, C.; Hacker, J. Isolation and phylogenetic analysis of bacteria with antimicrobial activities from the Mediterranean sponges *Aplysina cavernicola*, *Mycale* sp. from the coast of Fujian, China. *Can. J. Microbiol.* 2005, 51, 142–146. [CrossRef]

85. Gopi, M.; Kumaran, S.; Kumar, T.T.A.; Deivasigamani, B.; Alagappan, K.; Prasad, S.G. Antibacterial potential of sponge endosymbiont marine *Enterobacter* sp. at Kavaratti Island, Lakshadweep archipelago. *Asian Pac. J. Trop. Med.* 2012, 5, 459–463. [CrossRef] [PubMed]

86. Chelossi, E.; Milanese, M.; Milano, A.; Pronzato, R.; Riccardi, G. Characterisation and antimicrobial activity of epibiotic bacteria from *Petrosia ficiformis* (Porifera, Demospongiae). *J. Exp. Mar. Biol. Ecol.* 2004, 309, 21–33. [CrossRef]

87. Skariyachan, S.; Rao, A.G.; Patil, M.R.; Saikia, B.; Bharadwaj Kn, V.; Rao Gs, J. Antimicrobial potential of metabolites extracted from bacterial symbionts associated with marine sponges in coastal area of Gulf of Mannar Biosphere, India. *Lett. Appl. Microbiol.* 2014, 58, 231–241. [CrossRef] [PubMed]

88. Kennedy, J.; Baker, P.; Piper, C.; Cotter, P.; Walsh, M.; Mooij, M.; Bourke, M.; Rea, M.; O’Connor, P.; Ross, R.P.; et al. Isolation and Analysis of Bacteria with Antimicrobial Activities from the Marine Sponge *Haliclona simulans* Collected from Irish Waters. *Mar. Biotechnol.* 2009, 11, 384–396. [CrossRef] [PubMed]

89. Kunz, A.L.; Labes, A.; Wiese, J.; Bruhn, T.; Bringmann, G.; Imhoff, J.F. Nature’s Lab for Derivatization: New and Revised Structures of a Variety of Streptophenazines Produced by a Sponge-Derived *Streptomyces* Strain. *Mar. Drugs* 2014, 12, 1699–1714. [CrossRef] [PubMed]
108. Nagai, K.; Kamigiri, K.; Matsumoto, H.; Kawano, Y.; Yamaoka, M.; Shimoi, H.; Watanabe, M.; Suzuki, K. YM-202204, a new antifungal antibiotic produced by marine fungus Phoma sp. J. Antibi. 2002, 55, 1036–1041. [CrossRef] [PubMed]

109. McLellan, C.A.; Whitesell, L.; King, O.D.; Lancaster, A.K.; Mazitschek, R.; Lindquist, S. Inhibiting GPI Anchor Biosynthesis in Fungi Stresses the Endoplasmic Reticulum and Enhances Immunogenicity. ACS Chem. Biol. 2012, 7, 1520–1528. [CrossRef] [PubMed]

110. Butts, A.; Krysan, D.J. Antifungal Drug Discovery: Something Old and Something New. PLoS Pathog. 2012, 8. [CrossRef] [PubMed]

111. Edrada, R.A.; Heubes, M.; Brauers, G.; Wray, V.; Berg, A.; Grafe, U.; Wohlfarth, M.; Muhlbacher, J.; Schinazi, R.F.; Hamann, M.T. New manzamine alkaloids with activity against infectious and tropical parasitic diseases from an Indonesian sponge. J. Natl. Prod. 2005, 68, 142–162. [CrossRef] [PubMed]

112. Fattorusso, E.; Taglialatela-Scafati, O. Marine Antimalarials. Mar. Drugs 2009, 7, 130–152. [CrossRef] [PubMed]

113. Makino, K.; Shiraishi, K.; Takahashi, A.; Honda, K.; Inada, H.; Ishida, T.; Yamazaki, K. New antimicrobial substances from marine sponges of the genera Xestospongia and Microsphaeropsis. J. Natl. Prod. 1999, 62, 114–118. [CrossRef] [PubMed]

114. Ang, K.K.H.; Holmes, M.J.; Higa, T.; Hamann, M.T.; Shin-ya, K. Diversity, Salt Requirement, and Antibiotic Production of Actinobacteria Isolated from Marine Sponges. Actinomycetologica 2010, 24, 18–23. [CrossRef]

115. Holler, U.; Konig, G.M.; Wright, A.D. Three new metabolites from marine-derived fungi of the genera Coniolthyrium and Microsphaeropsis. J. Natl. Prod. 1999, 62, 114–118. [CrossRef] [PubMed]

116. Ang, K.K.H.; Holmes, M.J.; Higa, T.; Hamann, M.T.; Kara, U.A.K. In vivo antimalarial activity of the beta-carboline alkaloid manzamine A. Antimicrob. Agents Chem. 2000, 44, 1645–1649. [CrossRef]

117. Kobayashi, M.; Chen, Y.-J.; Aoki, S.; In, Y.; Ishida, T.; Kitagawa, I. Four new betacarbolines isolated from two Okinawan marine sponges of Xestospongia sp. and Haliclona sp. Tetrahedron 1995, 51, 3727–3736. [CrossRef]

118. Sakai, R.; Higa, T.; Jefford, C.W.; Bernardinelli, G. Manzamine A, a novel antitumor alkaloid from a sponge. J. Am. Chem. Soc. 1986, 108, 6404–6405. [CrossRef]

119. Radwan, M.; Hanora, A.; Khalifa, S.; Abou-El-Ela, S.H. Manzamines. Cell Cycle 2012, 11, 1765–1772. [CrossRef] [PubMed]

120. Eyase, F.L.; Akala, H.M.; Johnson, J.D.; Walsh, D.S. Inhibitory Activity of Ferroquine, versus Chloroquine, against Western Kenya Plasmodium falciparum Field Isolates Determined by a SYBR Green I in Vitro Assay. Am. J. Trop. Med. Hyg. 2011, 85, 984–988. [CrossRef] [PubMed]

121. Rao, K.V.; Santarsiero, B.D.; Mesecar, A.D.; Schinazi, R.F.; Tekwani, B.L.; Hamann, M.T. New manzamine alkaloids with activity against infectious and tropical parasitic diseases from an Indonesian sponge. J. Natl. Prod. 2003, 66, 823–828. [CrossRef] [PubMed]

122. Kobayashi, M.; Chen, Y.-J.; Aoki, S.; In, Y.; Ishida, T.; Kitagawa, I. Four new betacarbolines isolated from two Okinawan marine sponges of Xestospongia sp. and Haliclona sp. Tetrahedron 1995, 51, 3727–3736. [CrossRef]

123. Hill, R.T.; Hamann, M.; Peraud, O.T.; Kasanah, N. Manzamine Producing Actinomycetes. U.S. Patent 20050244938 A1, 3 November 2005.

124. Butts, A.; Krysan, D.J. Antifungal Drug Discovery: Something Old and Something New. PLoS Pathog. 2012, 8. [CrossRef] [PubMed]

125. Hill, R.T.; Hamann, M.; Peraud, O.T.; Kasanah, N. Manzamine Producing Actinomycetes. U.S. Patent 20050244938 A1, 3 November 2005.

126. Peraud, O. Isolation and Characterization of a Sponge-Associated Actinomycete that Produces Manzamines. University of Maryland, 2006. Available online: http://drum.lib.umd.edu/handle/1903/4114 (accessed on 1 September 2015).

127. Waters, A.L.; Peraud, O.; Kasanah, N.; Sims, J.; Kothalawala, N.; Anderson, M.A.; Abbas, S.H.; Rao, K.V.; Jupally, V.R.; Kelly, M.; et al. An analysis of the sponge Acanthostrongylophora igens’ microbiome yields an actinomycete that produces the natural product manzamine A. Front. Mar. Sci. 2014, 1. [CrossRef]
128. Pimentel-Elardo, S.M.; Kozytska, S.; Bugni, T.S.; Ireland, C.M.; Moll, H.; Hentschel, U. Anti-Parasitic Compounds from Streptomyces sp. Strains Isolated from Mediterranean Sponges. *Mar. Drugs* **2010**, *8*, 373–380. [CrossRef] [PubMed]

129. Scopel, M.; dos Santos, O.; Frasson, A.P.; Abraham, W.-R.; Tasca, T.; Henriques, A.T.; Macedo, A.J. Anti-*Trichomonas vaginalis* activity of marine-associated fungi from the South Brazilian Coast. *Exp. Parasitol.* **2013**, *133*, 211–216. [CrossRef] [PubMed]

130. Petrin, D.; Delgaty, K.; Bhatt, R.; Garber, G. Clinical and microbiological aspects of *Trichomonas vaginalis*. *Clin. Microbiol. Rev.* **1998**, *11*, 99. [PubMed]

131. Inbaneson, S.J.; Ravikumar, S. *In vitro* antiplasmodial activity of marine sponge *Hyattella intestinalis* associated bacteria against *Plasmodium falciparum*. *Asian Pac. J. Trop. Biomed.* **2011**, *1*, S100–S104. [CrossRef]

132. Inbaneson, S.J.; Ravikumar, S. *In vitro* antiplasmodial activity of marine sponge *Stylissa carteri* associated bacteria against *Plasmodium falciparum*. *Asian Pac. J. Trop. Dis.* **2012**, *2*, 370–374. [CrossRef]

133. Inbaneson, S.J.; Ravikumar, S. *In vitro* antiplasmodial activity of marine sponge *Clathria indica* associated bacteria against *Plasmodium falciparum*. *Asian Pac. J. Trop. Biomed.* **2012**, *2*, S1090–S1095. [CrossRef]

134. Abdelmohsen, U.R.; Cheng, C.; Viegelmann, C.; Zhang, T.; Grkovic, T.; Ahmed, S.; Quinn, R.J.; Hentschel, U.; Edrada-Ebel, R. Dereplication Strategies for Targeted Isolation of New Antitrypanosomal Actinosporins A and B from a Marine Sponge Associated-Actinokineospora sp. EG49. *Mar. Drugs* **2014**, *12*, 1220–1244. [CrossRef] [PubMed]

135. Abdelmohsen, U.R.; Szesny, M.; Othman, E.M.; Schirmeister, T.; Grond, S.; Stopper, H.; Hentschel, U. Antioxidant and Anti-Protease Activities of Diazepinomicin from the Sponge-Associated *Micromonospora* Strain RV115. *Mar. Drugs* **2012**, *10*, 2208–2221. [CrossRef] [PubMed]

136. Cheng, C.; MacIntyre, L.; Abdelmohsen, U.R.; Horn, H.; Polymenakou, P.N.; Edrada-Ebel, R.; Hentschel, U. Biodiversity, Anti-Trypanosomal Activity Screening, and Metabolomic Profiling of Actinomycetes Isolated from Mediterranean Sponges. *PLoS ONE* **2015**, *10*, e0138528. [CrossRef] [PubMed]

137. Pimentel-Elardo, S.M.; Buback, V.; Gulder, T.A.M.; Bugni, T.S.; Reppart, J.; Bringmann, G.; Ireland, C.M.; Schirmeister, T.; Hentschel, U. New Tetromycin Derivatives with Anti-Trypanosomal and Protease Inhibitory Activities. *Mar. Drugs* **2011**, *9*, 1682–1697. [CrossRef] [PubMed]

138. Ashforth, E.J.; Fu, C.Z.; Liu, X.Y.; Dai, H.Q.; Song, F.H.; Guo, H.; Zhang, L.X. Bioprospecting for antituberculosis leads from microbial metabolites. *Natl. Prod. Rep.* **2010**, *27*, 1709–1719. [CrossRef] [PubMed]

139. Seipke, R.F.; Kaltenpoth, M.; Hutchings, M.I. *Streptomyces* as symbionts: An emerging and widespread theme? *FEMS Microbiol. Rev.* **2012**, *36*, 862–876. [CrossRef] [PubMed]

140. Traxler, M.F.; Kolter, R. Natural products in soil microbe interactions and evolution. *Natl. Prod. Rep.* **2015**, *32*, 956–970. [CrossRef] [PubMed]

141. Keller, N.P.; Turner, G.; Bennett, J.W. Fungal secondary metabolism—From biochemistry to genomics. *Nat. Rev. Microbiol.* **2005**, *3*, 937–947. [CrossRef] [PubMed]

142. Laursen, J.B.; Nielsen, J. Phenazine Natural Products: Biosynthesis, Synthetic Analogues, and Biological Activity. *Chem. Rev.* **2004**, *104*, 1663–1686. [CrossRef] [PubMed]

143. Wang, W.; Prévillot, P.; Morin, N.; Mounir, S.; Cai, W.; Siddiqui, M.A. Hepatitis C viral IRES inhibition by phenazine and phenazine-like molecules. *Bioorg. Med. Chem. Lett.* **2000**, *10*, 1151–1154. [CrossRef]

144. Mavrodi, D.V.; Mavrodi, O.V.; Parejko, J.A.; Bonsall, R.F.; Kwak, Y.S.; Paulitz, T.C.; Thomashow, L.S.; Weller, D.M. Accumulation of the Antibiotic Phenazine-1-Carboxylic Acid in the Rhizosphere of Dryland Cereals. *Appl. Environ. Microb.* **2012**, *78*, 804–812. [CrossRef] [PubMed]

145. Makgatho, M.E.; Anderson, R.; O’Sullivan, J.F.; Egan, T.J.; Freese, J.A.; Cornelius, N.; van Rensburg, C.E.J. Tetramethylpiperidine-substituted phenazines as novel anti-plasmodial agents. *Drug Dev. Res.* **2000**, *50*, 195–202. [CrossRef]

146. Gao, X.; Lu, Y.; Xing, Y.; Ma, Y.; Lu, J.; Bao, W.; Wang, Y.; Xi, T. A novel anticancer and antifungus phenazine derivative from a marine actinomycete BM-17. *Microbiol. Res.* **2012**, *167*, 616–622. [CrossRef] [PubMed]
149. Hentschel, U.; Piel, J.; Degnan, S.M.; Taylor, M.W. Genomic insights into the marine sponge microbiome. *Nat. Rev. Microbiol.* 2012, 10, 641–675. [CrossRef] [PubMed]

150. Schippers, K.J.; Sipkema, D.; Osinga, R.; Smidt, H.; Pomponi, S.A.; Martens, D.E.; Wijffels, R.H. Cultivation of sponges, sponge cells and symbionts: Achievements and future prospects. *Adv. Mar. Biol.* 2012, 62, 273–337. [PubMed]

151. Ozturk, B.; de Jaeger, L.; Smidt, H.; Sipkema, D. Culture-dependent and independent approaches for identifying novel halogenases encoded by *Crambe crambe* (marine sponge) microbiota. *Sci. Rep. UK* 2013, 3. [CrossRef]

152. Sipkema, D.; Schippers, K.; Maalcke, W.J.; Yang, Y.; Salim, S.; Blanch, H.W. Multiple Approaches To Enhance the Cultivability of Bacteria Associated with the Marine Sponge *Haliclona* (gellius) sp. *Appl. Environ. Microb.* 2011, 77, 2130–2140. [CrossRef] [PubMed]

153. Muller, W.E.G.; Zahn, R.K.; Kurelec, B.; Lucu, C.; Muller, I.; Uhlenbruck, G. Lectin, a Possible Basis for Symbiosis between Bacteria and Sponges. *J. Bacteriol.* 1981, 145, 548–558. [PubMed]

154. Steinert, G.; Whitfield, S.; Taylor, M.; Thoms, C.; Schupp, P. Application of Diffusion Growth Chambers for the Cultivation of Marine Sponge-Associated Bacteria. *Mar. Biotechnol.* 2014, 16, 594–603. [CrossRef] [PubMed]

155. Zhang, F.; Blasiak, L.C.; Karolin, J.O.; Powell, R.J.; Geddes, C.D.; Hill, R.T. Phosphorus sequestration in the form of polyphosphate by microbial symbionts in marine sponges. *Proc. Natl. Acad.Sci. USA* 2015, 112, 4381–4386. [CrossRef] [PubMed]

156. Unson, M.D.; Faulkner, D.J. Cyanobacterial Symbiont Biosynthesis of Chlorinated Metabolites from Dysidea-Herbacea (Porifera). *Experientia* 1993, 49, 349–353. [CrossRef]

157. Milshteyn, A.; Schneider, J.S.; Brady, S.F. Mining the Metabiome: Identifying Novel Natural Products from Microbial Communities. *Chem. Biol.* 2014, 21, 1211–1223. [CrossRef] [PubMed]

158. Marmann, A.; Aly, A.; Lin, W.; Wang, B.; Proksch, P. Co-Cultivation—A Powerful Emerging Tool for Enhancing the Chemical Diversity of Microorganisms. *Mar. Drugs* 2014, 12, 1043. [CrossRef] [PubMed]

159. Bertrand, S.; Bohni, N.; Schnee, S.; Schumpp, O.; Gindro, K.; Wolfender, J.-L. Metabolite induction via microbial symbiont co-culture: A potential way to enhance chemical diversity for drug discovery. *Biotechnol. Adv.* 2014, 32, 1180–1204. [CrossRef] [PubMed]

160. Wang, G.-Y.-S.; Graziani, E.; Waters, B.; Pan, W.; Li, X.; McDermott, J.; Meurer, G.; Saxena, G.; Andersen, R.J.; Davies, J. Novel Natural Products from Soil DNA Libraries in a Streptomycete Host. *Organ. Lett.* 2001, 3, 2401–2404. [CrossRef]

161. Brady, S.F.; Chao, C.J.; Handselman, J.; Clardy, J. Cloning and heterologous expression of a natural product biosynthetic gene cluster from eDNA. *Organ. Lett.* 2001, 3, 1981–1984. [CrossRef]

162. Chung, E.J.; Lim, H.K.; Kim, J.C.; Choi, G.J.; Park, E.J.; Lee, M.H.; Chung, Y.R.; Lee, S.W. Forest soil metagenome gene cluster involved in antifungal activity expression in *Escherichia coli*. *Appl. Environ. Microb.* 2008, 74, 723–730. [CrossRef] [PubMed]

163. Simon, C.; Daniel, R. Metagenomic Analyses: Past and Future Trends. *Appl. Environ. Microb.* 2011, 77, 1153–1161. [CrossRef] [PubMed]

164. Wilson, M.C.; Piel, J. Metagenomic Approaches for Exploiting Uncultivated Bacteria as a Resource for Novel Biosynthetic Enzymology. *Chem. Biol.* 2013, 20, 636–647. [CrossRef] [PubMed]

165. Piel, J. Approaches to Capturing and Designing Biologically Active Small Molecules Produced by Uncultured Microbes. *Annu. Rev. Microbiol.* 2011, 65, 431–453. [CrossRef] [PubMed]

166. MacNeil, I.A.; Tiong, C.L.; Minor, C.; August, P.R.; Grossman, T.H.; Loiacono, K.A.; Lynch, B.A.; Phillips, T.; Narula, S.; Sundaramoorthi, R.; et al. Expression and isolation of antimicrobial small molecules from soil DNA libraries. *J. Mol. Microb. Biotech.* 2001, 3, 301–308.

167. Yung, P.Y.; Burke, C.; Lewis, M.; Kjelleberg, S.; Thomas, T. Novel Antibacterial Proteins from the Microbial Communities Associated with the Sponge *Cymbastela concentrica* and the Green Alga *Ulva australis*. *Appl. Environ. Microb.* 2011, 77, 1512–1515. [CrossRef] [PubMed]

168. He, R.; Wakimoto, T.; Egami, Y.; Kenmoku, H.; Ito, T.; Asakawa, Y.; Abe, I. Heterologously expressed β-hydroxyl fatty acids from a metagenomic library of a marine sponge. *Bioorg. Med. Chem. Lett.* 2012, 22, 7322–7325. [CrossRef] [PubMed]

169. He, R.; Wang, B.C.; Wakimoto, T.; Wang, M.Y.; Zhu, L.C.; Abe, I. Cyclodipeptides from Metagenomic Library of a Japanese Marine Sponge. *J. Brazil. Chem. Soc.* 2013, 24, 1926. [CrossRef]
170. Ongley, S.E.; Bian, X.Y.; Neilan, B.A.; Muller, R. Recent advances in the heterologous expression of microbial natural product biosynthetic pathways. Natl. Prod. Rep. 2013, 30, 1121–1138. [CrossRef] [PubMed]
171. Baltz, R.H. Molecular engineering approaches to peptide, polyketide and other antibiotics. Nat. Biotechnol. 2006, 24, 1533–1540. [CrossRef] [PubMed]
172. Dobson, A.W.; Jackson, S.; Kennedy, J.; Margasserly, L.; Fleming, B.; O’Leary, N.; Morrissey, J.; O’Gara, F. Marine Sponges—Molecular Biology and Biotechnology. In Springer Handbook of Marine Biotechnology; Kim, S.-K., Ed.; Springer Berlin Heidelberg: Heidelberg, Germany, 2015; pp. 219–254.
173. Baltz, R.H. Streptomyces and Saccharopolyspora hosts for heterologous expression of secondary metabolite gene clusters. J. Ind. Microbiol. Biot. 2010, 37, 759–772. [CrossRef] [PubMed]
174. Kennedy, J.; Marchesi, J.R.; Dobson, A.D.W. Metagenomic approaches to exploit the biotechnological potential of the microbial consortia of marine sponges. Appl. Microbiol. Biotechnol. 2007, 75, 11–20. [CrossRef] [PubMed]
175. Piel, J. A polyketide synthase-peptide synthetase gene cluster from an uncultured bacterial symbiont of Paederus beetles. Proc. Natl. Acad. Sci. USA 2002, 99, 14002–14007. [CrossRef] [PubMed]
176. Piel, J.; Hui, D.; Wen, G.; Butzke, D.; Platzer, M.; Fusetani, N.; Matsunaga, S. Antitumor polyketide biosynthesis by an uncultivated bacterial symbiont of the marine sponge Theonella swinhoei. Proc. Natl. Acad. Sci. USA 2004, 101, 16222–16227. [CrossRef] [PubMed]
177. Piel, J.; Hui, D.Q.; Fusetani, N.; Matsunaga, S. Targeting modular polyketide synthases with iteratively acting acyltransferases from metagenomes of uncultured bacterial consortia. Environ. Microbiol. 2004, 6, 921–927. [CrossRef] [PubMed]
178. Piel, J.; Wen, G.; Platzer, M.; Hui, D. Unprecedented Diversity of Catalytic Domains in the First Four Modules of the Putative Pederin Polyketide Synthase. ChemBioChem. 2004, 5, 93–98. [CrossRef] [PubMed]
179. Piel, J.; Butzke, D.; Fusetani, N.; Hui, D.; Platzer, M.; Wen, G.; Matsunaga, S. Exploring the Chemistry of Uncultivated Bacterial Symbionts: Antitumor Polyketides of the Pederin Family. J. Natl. Prod. 2005, 68, 472–479. [CrossRef] [PubMed]
180. Fisch, K.M.; Gurgui, C.; Heycke, N.; van der Sar, S.A.; Anderson, S.A.; Webb, V.L.; Taudien, S.; Platzer, M.; Rubio, B.K.; Robinson, S.J.; et al. Polyketide assembly lines of uncultivated sponge symbionts from structure-based gene targeting. Nat. Chem. Biol. 2009, 5, 494–501. [CrossRef] [PubMed]
181. Schirmer, A.; Gadkari, R.; Reeves, C.D.; Ibrahim, F.; DeLong, E.F.; Hutchinson, C.R. Metagenomic analysis reveals diverse polyketide synthase gene clusters in microorganisms associated with the marine sponge Discodermia dissoluta. Appl. Environ. Microb. 2005, 71, 4840–4849. [CrossRef] [PubMed]
182. Schmitt, S.; et al. An environmental bacterial taxon with a large and distinct metabolic repertoire. Nature 2004, 428, 2468–2479. [CrossRef] [PubMed]
183. Alt, S.; Wilkinson, B. Biosynthesis of the Novel Macrolide Antibiotic Anthracimycin. Ac. Chem. Biol. 2015, 10, 2468–2479. [CrossRef] [PubMed]
184. Podar, M.; Abulencia, C.B.; Walcher, M.; Hutchison, D.; Zengler, K.; Garcia, J.A.; Holland, T.; Cotton, D.; Hauser, L.; Keller, M. Targeted access to the genomes of low-abundance organisms in complex microbial communities. Appl. Environ. Microb. 2007, 73, 3205–3214. [CrossRef] [PubMed]
185. Wilson, M.C.; Mori, T.; Ruckert, C.; Uria, A.R.; Helf, M.J.; Takada, K.; Garnett, C.; Steffens, U.A.E.; Heycke, N.; Schmitt, M.; et al. An environmental bacterial taxon with a large and distinct metabolic repertoire. Nature 2014, 506, 58. [CrossRef] [PubMed]
186. Banik, J.J.; Brady, S.F. Recent application of metagenomic approaches toward the discovery of antimicrobials and other bioactive small molecules. Curr. Opin. Microbiol. 2010, 13, 603–609. [CrossRef] [PubMed]
187. Medema, M.H.; Blin, K.; Cimermancic, P.; de Jager, V.; Zakrzewski, P.; Fischbach, M.A.; Weber, T.; Takano, E.; Breitling, R. antiSMASH: Rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res. 2011, 39, W339–W346. [CrossRef] [PubMed]
188. Yun, J.; Ryu, S. Screening for novel enzymes from metagenome and SIGEX, as a way to improve it. Microb. Cell Fact. 2005, 4, 8. [CrossRef] [PubMed]