Wireless Communications with Reconfigurable Intelligent Surface: Path Loss Modeling and Experimental Measurement

Wankai Tang, Ming Zheng Chen, Xiangyu Chen, Jun Yan Dai, Yu Han, Marco Di Renzo, Yong Zeng, Shi Jin, Qiang Cheng, and Tie Jun Cui

Abstract

Reconfigurable intelligent surfaces (RISs) comprised of tunable unit cells have recently drawn significant attentions due to their superior capability in manipulating electromagnetic waves. In particular, RIS-assisted wireless communications have the great potential to achieve significant performance improvement and coverage enhancement in a cost-effective and energy-efficient manner, by properly programming the reflection coefficients of the unit cells of RISs. In this paper, the free-space path loss models of RIS-assisted wireless communications are developed for different scenarios by studying the physics and electromagnetic nature of RISs. The proposed models, which are first validated through extensive simulation results, reveal the relationships between the free-space path loss of RIS-assisted wireless communications and the distances from the transmitter/receiver to the RIS, the size of the RIS, the near-field/far-field effects of the RIS, and the radiation patterns of antennas and unit cells. In addition, three fabricated RISs (metasurfaces) are utilized to further corroborate theoretical findings through experimental measurements conducted in a microwave anechoic chamber. The measurement results match well with the modeling results, thus validating the proposed free-space path loss models for RIS, which may pave the way for further theoretical studies and practical applications in this field.

Index Terms

Path loss, reconfigurable intelligent surface, metasurface, intelligent reflecting surface, large intelligent surface, wireless propagation measurements.

W. Tang, X. Chen, Y. Han, Y. Zeng, and S. Jin are with the National Mobile Communications Research Laboratory, Southeast University, Nanjing, China.

M. Z. Chen, J. Y. Dai, Q. Cheng, and T. J. Cui are with the State Key Laboratory of Millimeter Waves, Southeast University, Nanjing, China.

M. Di Renzo is with Paris-Saclay University (L2S - CNRS, CentraleSupelec, University Paris Sud), Paris, France.
I. INTRODUCTION

It is foreseen that the commercial service of the fifth-generation (5G) of mobile communications will be launched on a worldwide scale from 2020. Massive multiple-input multiple-output (MIMO) base stations (BSs) with full-digital transceivers are being commercially deployed and tested in several countries [1]. Meanwhile, the success of millimeter wave (mmWave) trials and testbeds across the world ensures that mmWave wireless communications will be realized by 2020 [2]. As the two key technologies of the 5G physical layer, massive MIMO and mmWave will significantly increase the network capacity and resolve the spectrum shortage issue in current cellular communication systems [3]. On the other hand, the International Telecommunication Union (ITU) predicted that the exponential growth of the global mobile data traffic will continue, which will reach 5 zettabytes (ZB, 1 ZB = 10^{21} Bytes) per month by 2030 [4]. The ever-increasing traffic demands are driven by the emerging data-intensive applications, such as virtual reality, augmented reality, holographic projection, autonomous vehicle, tactile Internet, to name a few, which can hardly be offered by 5G. Therefore, there has been increasing research interest from both academia and industry towards the sixth-generation (6G) of mobile communications.

Looking forward to future 6G wireless communication technologies, one possibility is to further extend the spectrum to terahertz (THz) band [5] and the antenna array scale to ultra-massive MIMO (UM-MIMO) [6] [7], which can further boost the spatial diversity and expand the available spectrum resources. Besides, artificial intelligence (AI), orbital angular momentum (OAM) multiplexing, visible-light communications (VLC), blockchain-based spectrum sharing, quantum computing, etc., to name just a few, are being actively discussed as potential enabling technologies for 6G mobile communication systems [8]. Furthermore, reconfigurable intelligent surfaces (RISs)\(^1\) which are an emerging technology to manipulate electromagnetic waves, have drawn significant attentions due to their capability in tailoring electromagnetic waves across a wide frequency range, from microwave to visible light. RIS technology is enabled by metasurfaces comprised of sub-wavelength unit cells with tunable electromagnetic responses, such as amplitude, phase, polarization and frequency, which can be controlled by external signals in a real-time reconfigurable manner during the light-matter interaction [9]–[11]. Their programmable electromagnetic properties make RISs especially appealing for wireless communications.

\(^1\)Also known as intelligent reflecting surfaces (IRSs) and passive large intelligent surfaces (LISs) in the literature.
Recently, we have witnessed fast growing research effort on wireless communication using RISs. RISs have been utilized to realize new wireless transceiver architectures in [12]–[15], which may bring a paradigm-shift on the transceiver design and reduce the hardware cost of future wireless communication systems. Moreover, RISs can artificially reshape the electromagnetic wave propagation environment [16]. In current wireless communication systems, the wireless environment, i.e., the physical objects that influence the propagation of the electromagnetic waves, is uncontrollable. During the research and design processes of wireless communication systems, one can only design transceivers, signal processing algorithms, and transmission protocols to adapt to the radio environment. RISs, on the other hand, may in principle make the wireless environment controllable and programmable, thus bringing unprecedented new opportunities for enhancing the performance of wireless communication systems [17] [18].

Against this background, various RIS-assisted wireless communication systems have recently been studied, by providing cost-effective and energy-efficient solutions that offer performance improvements and coverage enhancement in wireless networks. [19]. For example, [20] showed that, by jointly optimizing active and passive beamforming in an RIS-assisted wireless network, the energy consumption and the coverage performance can be significantly improved. The joint beamforming design was also investigated for improving the physical layer security [21] [22]. The authors of [23]–[25] optimized the achievable rate of RIS-assisted systems in different communication scenarios. The energy efficiency of RIS-based downlink multi-user MISO systems was maximized in [26] [27]. Energy harvesting performance, ergodic spectral efficiency, symbol error probability, and outage probability of RIS-assisted wireless communications were derived and optimized in [28]–[31]. The comparison with relays was carried out in [32]. The impact of hardware imperfections, like discrete phase-shift and phase-dependent amplitude, were studied in [29] [33] [34].

However, the major limitation of existing research on RIS-assisted wireless communications is the lack of tractable and reliable physical and electromagnetic models for the RISs. Most of the existing research works are based on simplistic mathematical models that regard the RIS as a diagonal matrix with phase shift values. The responses of the RISs to the radio waves have not yet been extensively studied from the physics and electromagnetic point of view, which may lead to relatively simplified algorithm designs and performance predictions. To the best of the authors’ knowledge, in particular, there is no experimentally validated path loss model for RIS-assisted wireless communications, even in the simple free-space propagation environment. The path loss
models used in most existing works do not consider physical factors such as the size of the RISs, and the near-field/far-field effects of the RISs. Therefore, channel measurements are urgently needed, which may provide authentic information on the path loss of RIS-assisted wireless communications for researchers working in this emerging research field. Motivated by these conditions, we develop the free-space path loss models of RIS-assisted wireless communications in different scenarios based on the physics and electromagnetic nature of the RISs. We validate them by using numerical simulations, and we also conduct the channel measurements through fabricated RISs in an anechoic chamber to practically corroborate our findings. In particular, our main contributions are summarized as follows:

1) We introduce a system model for RIS-assisted wireless communications from the perspective of electromagnetic theory, which takes into account important physical factors like the physical dimension of the RISs, and the radiation pattern of the unit cells. A general formula is derived to characterize the free-space path loss of RIS-assisted wireless communications.

2) Based on the derived general formula, we propose three free-space path loss models for RIS-assisted wireless communications, which capture three relevant scenarios and unveil the relationships between the free-space path loss of RIS and the distances from the transmitter/receiver to the RIS, the size of the RIS, the near-field/far-field effects of the RIS, as well as the radiation patterns of antennas and unit cells.

3) We report the world’s first experimental results that assess and validate the path loss of RIS-assisted wireless communications. Three different RISs (metasurfaces) of various size are utilized in the measurements. The measurement results are shown to be in good agreement with the modeling results. Besides, the power consumption of the RISs and the effect of the incident angle are also measured and discussed.

II. PRELIMINARIES

This section reviews several basic concepts, which will be used in the free-space path loss modeling of RIS-assisted wireless communications in the next section.

A. Far Field and Near Field

The far field and near field are two different regions of the electromagnetic (EM) field around an antenna or antenna array. When a transmitter is sufficiently far away from an antenna array, the spherical wave generated by the transmitter can be approximately regarded as a plane wave
at the antenna array side. Specifically, when the maximum phase difference of the received signal on the antenna array does not exceed \(\frac{\pi}{8} \), the transmitter is in the far field of the antenna array \([35]\). Based on this assumption, the boundary of the far field and the near field \(^2\) of the antenna array is defined as \(L = \frac{2D^2}{\lambda} \), where \(L \), \(D \) and \(\lambda \) denote the distance between the transmitter and the center of the antenna array, the largest dimension of the antenna array and the wave length of the signal, respectively \([35]\). It’s worth noting that when the transmitter is replaced by a receiver, the above definition remains the same due to the reciprocity of the antenna array. We will use the same definition of the far field and near field for the RIS in the next section. When the distance between the transmitter/receiver and the center of the RIS is less than \(\frac{2D^2}{\lambda} \), the transmitter/receiver is considered to be in the near field of the RIS. Otherwise, they are in the far field of the RIS.

B. Power Radiation Pattern and Gain

The power radiation pattern defines the variation of the power radiated or received by an antenna as a function of the direction away from the antenna, which allows us to visualize where the antenna transmits or receives the maximum power. The normalized power radiation pattern can be written as a function \(F(\theta, \varphi) \) in the spherical coordinate system as shown in Fig. 1. An example of normalized power radiation pattern is the following

\[
F(\theta, \varphi) = \begin{cases}
\cos^3 \theta & \theta \in \left[0, \frac{\pi}{2}\right], \varphi \in [0, 2\pi] \\
0 & \theta \in \left(\frac{\pi}{2}, \pi\right], \varphi \in [0, 2\pi]
\end{cases}
\]

(1)

The specific normalized power radiation pattern represented by (1) is only a function of the elevation angle \(\theta \) and is maximized when \(\theta = 0 \), which indicates that the corresponding antenna has maximum gain towards the direction of \(\theta = 0 \). The term antenna gain describes how much power is transmitted or received in the direction of peak radiation relative to that of an isotropic antenna, which, by assuming 100\% antenna efficiency, can be written as \([36]\)

\[
Gain = \frac{4\pi}{\int_{\varphi=0}^{\pi} \int_{\theta=0}^{\pi} F(\theta, \varphi) \sin \theta d\theta d\varphi}.
\]

(2)

\(^2\)The near field of an antenna array includes two regions: reactive near field and radiating near field. When the distance from the antenna array is less than \(\frac{\lambda}{2} \), we are in the reactive near field. When the distance is larger than \(\frac{\lambda}{2} \) and less than \(\frac{2D^2}{\lambda} \), we are in the radiating near field \([35]\). The near field in this paper exclusively refers to the radiating near field.
Consider the antenna with power radiation pattern described by (1) as an example, its gain is equal to 8 (9.03 dBi) under the assumption of 100% radiation efficiency, which means that the power transmitted or received in the direction of peak radiation ($\theta = 0$) is 9.03 dB higher than that of an isotropic antenna. In the next section, we will use the definition of normalized power radiation pattern not only for the antennas of the transmitter and receiver, but also for the unit cells of the RIS in the free-space path loss modeling of RIS-assisted wireless communications.

III. FREE-SPACE PATH LOSS MODELING OF RIS-ASSISTED WIRELESS COMMUNICATIONS

In this section, we describe the overall system model and develop the free-space path loss model for RIS-assisted wireless communications in different scenarios.

A. System Model

We consider a general RIS-assisted single-input single-output (SISO) wireless communication system as shown in Fig. 2. Since this paper aims to study the free-space path loss modeling of RIS-assisted wireless communications, the direct path between the transmitter and the receiver is ignored in the rest of the paper. The RIS is placed in the x-y plane of a Cartesian coordinate system, and the geometric center of the RIS is aligned with the origin of the coordinate system. Let N and M denote the number of rows and columns of the regularly arranged unit cells of the RIS, respectively. The size of each unit cell along the x axis is d_x and that along the y axis is d_y, which are usually of subwavelength scale within the range of $\frac{\lambda}{10}$ and $\frac{\lambda}{2}$. $F(\theta, \varphi)$ is the normalized power radiation pattern of the unit cell, which reveals the dependence of the incident/reflected power density of the unit cell on the incident/reflected angle. G is the gain of the unit cell, which is defined by (2) and is only related to the normalized power radiation pattern $F(\theta, \varphi)$ of the unit cell. $U_{n,m}$ denotes the unit cell in the n^{th} row and m^{th} column with the programmable reflection coefficient $\Gamma_{n,m}$. The center position of $U_{n,m}$ is $((m-\frac{1}{2})d_x, (n-\frac{1}{2})d_y, 0)$, where $m \in \left[1 - \frac{M}{2}, \frac{M}{2}\right]$.
and \(n \in \left[1 - \frac{N}{2}, \frac{N}{2} \right] \), assuming that both of \(N \) and \(M \) are even numbers. We use the symbols \(d_1 \), \(d_2 \), \(\theta_t, \varphi_t, \theta_r \) and \(\varphi_r \) to represent the distance between the transmitter and the center of the RIS, the distance between the receiver and the center of the RIS, the elevation angle and the azimuth angle from the center of the RIS to the transmitter, the elevation angle and the azimuth angle from the center of the RIS to the receiver, respectively. Let \(r^t_{n,m}, r^r_{n,m}, \theta^t_{n,m}, \varphi^t_{n,m}, \theta^r_{n,m}, \varphi^r_{n,m} \) represent the distance between the transmitter and \(U_{n,m} \), the distance between the receiver and \(U_{n,m} \), the elevation angle and the azimuth angle from \(U_{n,m} \) to the transmitter, the elevation angle and the azimuth angle from \(U_{n,m} \) to the receiver, respectively.

The following key result presents the connection between the received signal power of the receiver and the various parameters described above in RIS-assisted wireless communication systems.

Theorem 1. The received signal power in RIS-assisted wireless communications is as follows

\[
P_r = P_t \frac{G_t G_r G d_x d_y \lambda^2}{64\pi^3} \left[\sum_{m=1-\frac{M}{2}}^{\frac{M}{2}} \sum_{n=1-\frac{N}{2}}^{\frac{N}{2}} \sqrt{F_{\text{combine}}(\theta_r, \varphi_r)} \frac{\Gamma_{n,m}}{r^t_{n,m} r^r_{n,m}} e^{-j2\pi (r^t_{n,m} + r^r_{n,m})} \right]^2,
\]

(3)
where $F_{\text{combine}} = F^{tx}(\theta_{n,m}^{tx}, \varphi_{n,m}^{tx}) F(\theta_{n,m}^{t}, \varphi_{n,m}^{t}) F(\theta_{n,m}^{r}, \varphi_{n,m}^{r}) F^{rx}(\theta_{n,m}^{rx}, \varphi_{n,m}^{rx})$, which accounts for the effect of the normalized power radiation patterns on the received signal power.

Proof: See Appendix A.

Theorem 1 reveals that the received signal power is proportional to the transmitted signal power, the gains of the transmitting/receiving antennas, the gain of the unit cell, the size of the unit cell, the square of the wave length. In addition, Theorem 1 also indicates that the received signal power is related to the normalized power radiation patterns of the transmitting/receiving antennas and unit cells, the reflection coefficients of the unit cells, and the distances between the transmitter/receiver and the unit cells. However, their specific relationships are not that straightforward, which needs further analysis and discussions in the rest of this paper. Theorem 1 also shows that the RIS-assisted wireless communication systems are transmitter-receiver reciprocal, since the same signal power can be received if the roles of the transmitter and the receiver are exchanged, which is an especially important property in the uplink and downlink design of time division duplexing (TDD) wireless communication systems.

Fig. 3. Two scenarios of RIS-assisted wireless communications. (a) RIS-assisted beamforming. (b) RIS-assisted broadcasting.

In this paper, we develop the free-space path loss models for RIS-assisted wireless communications in different scenarios, which can be classified into two categories: RIS-assisted beamforming and RIS-assisted broadcasting as shown in Fig. 3. In the RIS-assisted beamforming scenario, the received signal power is maximized for specific user. On the other hand, in the RIS-assisted broadcasting scenario, the signal evenly covers all users in a specific area. We regard (3) as the general formula. As each considered scenario depends on the design of the reflection coefficients of the unit cells, as well as the near-field/far-field effects of the RIS, (3)
will be further discussed in different cases to draw more insights on the free-space path loss of RIS-assisted wireless communications.

B. Far Field Beamforming Case

The signals reflected by all the unit cells of RIS to the receiver can be aligned in phase to enhance the received signal power, which makes RIS especially appealing for beamforming applications. Therefore, it is important to study the free-space path loss in the RIS-assisted beamforming scenario. The case where both of the transmitter and receiver are in the far field of the RIS is first discussed as follows.

Proposition 1. Assume that the directions of peak radiation of both the transmitting and receiving antennas point to the center of the RIS, and all the unit cells of the RIS share the same reflection coefficient $\Gamma_{n,m} = Ae^{j\phi}$. The received signal power in the far field case can be written as

$$P_r = P_t \frac{G_t G_r GM^2 N^2 d_x d_y \lambda^2 F(\theta_t, \varphi_t) F(\theta_r, \varphi_r) A^2}{64\pi^3 d_1^2 d_2^2} \times \left| \frac{\text{sinc} \left(\frac{M\pi}{\lambda} (\sin \theta_t \cos \varphi_t + \sin \theta_r \cos \varphi_r) d_x \right) \text{sinc} \left(\frac{N\pi}{\lambda} (\sin \theta_t \sin \varphi_t + \sin \theta_r \sin \varphi_r) d_y \right) \text{sinc} \left(\frac{\pi}{\lambda} (\sin \theta_t \sin \varphi_t + \sin \theta_r \sin \varphi_r) d_y \right) \text{sinc} \left(\frac{\pi}{\lambda} (\sin \theta_t \cos \varphi_t + \sin \theta_r \cos \varphi_r) d_x \right) \text{sinc} \left(\frac{\pi}{\lambda} (\sin \theta_t \sin \varphi_t + \sin \theta_r \sin \varphi_r) d_y \right) }{64\pi^3 d_1^2 d_2^2 P_t} \right|^2 \quad (4)$$

If $\theta_r = \theta_t$ and $\varphi_r = \varphi_t + \pi$, (4) is maximized as

$$P_{r\text{max}} = \frac{G_t G_r GM^2 N^2 d_x d_y \lambda^2 F(\theta_t, \varphi_t) F(\theta_r, \varphi_r) A^2}{64\pi^3 d_1^2 d_2^2} P_t. \quad (5)$$

The path loss corresponding to (5) is

$$PL_{\text{beam, farfield}} = \frac{64\pi^3 (d_1 d_2)^2}{G_t G_r GM^2 N^2 d_x d_y \lambda^2 F(\theta_t, \varphi_t) F(\theta_r, \varphi_r) A^2}. \quad (6)$$

Proof: See Appendix B.

Proposition 1 is more insightful compared with the general formula (5) in Theorem 1 and equation (4) is referred to as the far-field formula. Proposition 1 reveals that the free-space path loss of RIS-assisted wireless communications is proportional to $(d_1 d_2)^2$ in the far field case. The free-space path loss is also related to the unit cells’ normalized power radiation pattern $F(\theta, \varphi)$, which is fixed once the RIS is designed and fabricated. Furthermore, when the reflection coefficients of all the unit cells are the same, the RIS performs specular reflection, that is, the incident signal is mainly reflected towards the mirror direction ($\theta_r = \theta_t$ and $\varphi_r = \varphi_t + \pi$).
The above analysis assumes that all the unit cells share the same reflection coefficient. The design of $\Gamma_{n,m}$ is discussed in the following proposition, which enables the RIS to beamform the reflected signal to the receiver in any desired direction $(\theta_{\text{des}}, \varphi_{\text{des}})$ through intelligent reflection.

Proposition 2. Assume that the directions of peak radiation of both the transmitting and receiving antennas point to the center of the RIS, and the reflection coefficients of all the unit cells share the same amplitude value A and different phase shift $\phi_{n,m}$ ($\Gamma_{n,m} = Ae^{j\phi_{n,m}}$). The received signal power through intelligent reflection in the far field case can be written as

$$
Pr = P_t \frac{G_t G_r GM^2 N^2 d_x d_y \lambda^2 F(\theta_t, \varphi_t) F(\theta_r, \varphi_r) A^2}{64\pi^3 d_z^3 d_y^2}
\times \left| \frac{\text{sinc} \left(\frac{M\pi}{\lambda} (\sin \theta_t \cos \varphi_t + \sin \theta_r \cos \varphi_r + \delta_1) \right) \text{sinc} \left(\frac{N\pi}{\lambda} (\sin \theta_t \sin \varphi_t + \sin \theta_r \sin \varphi_r + \delta_2) \right)}{\text{sinc} \left(\frac{\pi}{\lambda} (\sin \theta_t \cos \varphi_t + \sin \theta_r \cos \varphi_r + \delta_1) \right) \text{sinc} \left(\frac{\pi}{\lambda} (\sin \theta_t \sin \varphi_t + \sin \theta_r \sin \varphi_r + \delta_2) \right)} \right|^2.$$

(7)

where $\delta_1(m - \frac{1}{2}) d_x + \delta_2(n - \frac{1}{2}) d_y = \frac{\lambda \phi_{n,m}}{2\pi}$.

When $\theta_r = \theta_{\text{des}}$ and $\varphi_r = \varphi_{\text{des}}$ as desired, (7) is maximized as

$$P_r^{\text{max}} = P_t \frac{G_t G_r GM^2 N^2 d_x d_y \lambda^2 F(\theta_t, \varphi_t) F(\theta_{\text{des}}, \varphi_{\text{des}}) A^2}{64\pi^3 d_z^3 d_y^2},$$

(8)

when $\delta_1 = - \sin \theta_t \cos \varphi_t - \sin \theta_{\text{des}} \cos \varphi_{\text{des}}$ and $\delta_2 = - \sin \theta_t \sin \varphi_t - \sin \theta_{\text{des}} \sin \varphi_{\text{des}}$. The corresponding design of $\phi_{n,m}$ is

$$\phi_{n,m} = \text{mod} \left(\frac{2\pi}{\lambda} (\delta_1 \left(m - \frac{1}{2} \right) d_x + \delta_2 \left(n - \frac{1}{2} \right) d_y), 2\pi \right)$$

$$= \text{mod} \left(- \frac{2\pi}{\lambda} \left(\left(\sin \theta_t \cos \varphi_t + \sin \theta_{\text{des}} \cos \varphi_{\text{des}} \right) \left(m - \frac{1}{2} \right) d_x + \left(\sin \theta_t \sin \varphi_t + \sin \theta_{\text{des}} \sin \varphi_{\text{des}} \right) \left(n - \frac{1}{2} \right) d_y \right), 2\pi \right).$$

(9)

Proof: See Appendix B.

According to the phase shift design described by (9) of Proposition 2, the incident signal from direction (θ_t, φ_t) to the RIS can be manipulated to reflect towards any desired direction $(\theta_{\text{des}}, \varphi_{\text{des}})$ in the far field case, which is referred to as intelligent reflection. Besides, (4) and (7) also indicate that the free-space path loss of RIS-assisted wireless communication has the same scaling law for specular reflection and intelligent reflection in the far-field beamforming case.

The intelligent reflection here refers to intelligently controlling the reflection nature of the RIS by properly programming the reflection coefficients of the unit cells of the RIS.
C. Near Field Beamforming Case

In the previous subsection, the path loss analyses for the RIS-assisted beamforming assume that both of the transmitter and the receiver are in the far field of the RIS. The case study where the transmitter and/or the receiver are in the near field of the RIS is discussed in this subsection, which enables the RIS to focus the reflected signal to the receiver by properly design the reflection coefficients \(\Gamma_{n,m} \).

Proposition 3. Assume that the reflection coefficients of all the unit cells share the same amplitude value \(A \) and different phase shifts \(\phi_{n,m} \) and that the RIS-assisted wireless communication system operates in the near field case. The received signal power is written as follows

\[
P_r = P_t \frac{G_t G_r G d_x d_y \lambda^2 A^2}{64 \pi^3} \left| \sum_{m=1-M}^{M} \sum_{n=1-N}^{N} \sqrt{F_{\text{combine}}} e^{-j(2\pi r_{t,m} r_{r,m} - \lambda \phi_{n,m})} \right|^2. \tag{10}
\]

For the desired receiver at \((x_r, y_r, z_r)\), (10) is maximized as

\[
P_r^{\text{max}} = P_t \frac{G_t G_r G d_x d_y \lambda^2 A^2}{64 \pi^3} \left| \sum_{m=1-M}^{M} \sum_{n=1-N}^{N} \sqrt{F_{\text{combine}}} r_{t,m} r_{r,m} \right|^2, \tag{11}
\]

when

\[
\phi_{n,m} = \text{mod} \left(\frac{2\pi (r_{t,m} + r_{r,m})}{\lambda}, 2\pi \right). \tag{12}
\]

The path loss corresponding to (11) is

\[
P_{L_{\text{near field}}}^{\text{beam}} = \frac{64 \pi^3}{G_t G_r G d_x d_y \lambda^2 A^2} \left| \sum_{m=1-M}^{M} \sum_{n=1-N}^{N} r_{t,m} r_{r,m} \right|^2. \tag{13}
\]

Proof: See Appendix B. \(\blacksquare\)

Proposition 3 gives the phase gradient design of the RIS for the maximization of the received signal power in the near field case and equation (11) is referred to as the near-field beamforming formula. Proposition 3 also formulates the free-space path loss of RIS-assisted wireless communication in the near field beamforming case. However, its dependence on \(d_1 \) and \(d_2 \) can not be directly inferred from (13), which will be further discussed based on the simulation results in the next section.
D. Near Field Broadcasting Case

The studies conducted in the previous subsections assume that the RIS is employed for beamforming, and, then, the received power is maximized for one specific user. The scenario where the RIS is utilized for broadcasting is discussed in this subsection. When the transmitter is in the near field of the RIS, it means that the transmitter is relatively near to the RIS, thus the electromagnetic wave transmitted to the RIS can be regarded as spherical wave as discussed in Section II. If the RIS is large enough (for example, both of its length and width are 10 times larger than the wavelength), then the incident spherical wave will form a circular and divergent phase gradient on the RIS surface, which is due to the different transmission distances from the transmitter to each unit cell of the RIS.

Proposition 4. The received signal power through the reflection of a RIS of large electrical size in the near field broadcasting case can be approximately formulated as follows

\[
P_r \approx \begin{cases}
\frac{G_t A_r \Gamma^2}{4\pi(d_1 + d_2)^2} P_t, & (\theta_r, \varphi_r) \in \Omega \cap \Omega_t \\
0, & (\theta_r, \varphi_r) \notin \Omega \cap \Omega_t
\end{cases}
\]

where \(|\Gamma_{n,m}| = |\Gamma| = A\), and the solid angle \(\Omega\) is enclosed by the extension lines from the mirror image of the transmitter (\(\text{Tx}_{\text{mirror}}\)) to the edge of the RIS, as illustrated in Fig. 4. The solid angle \(\Omega_t\) is formed by the main lobe of the transmitting antenna of \(\text{Tx}_{\text{mirror}}\). If the elevation angle \(\theta_r\) and the azimuth angle \(\varphi_r\) of the receiver are within the intersection of \(\Omega\) and \(\Omega_t\), the receiver can receive the reflected signal from RIS, otherwise it can hardly receive any signal.

The free-space path loss in the near-field broadcasting scenario can be formulated as

\[
PL_{\text{broadcast nearfield}} \approx \frac{16\pi^2(d_1 + d_2)^2}{G_t G_r \lambda^2 A^2}.
\]

Proof: In the near field broadcasting case, the free-space path loss of RIS-assisted wireless communications can also be characterized by the general formula [3] in Theorem 1. In addition, a more insightful result can be obtained by using the approximation based on geometric optics, which is typically employed in ray tracing. For the convenience of analysis, assume that all the unit cells of the RIS share the same reflection coefficient here. As shown in Fig. 4 the mirror image of the transmitter, namely \(\text{Tx}_{\text{mirror}}\), can be obtained by taking the RIS as the symmetric plane. The signal transmission process is equivalent to that the signal is transmitted from \(\text{Tx}_{\text{mirror}}\) and received by the receiver after travelling distance \((d_1 + d_2)\), thus we can get Proposition 4 according to the conventional free-space path loss model [37].
Fig. 4. Near field broadcasting case of RIS-assisted wireless communication in the view of geometrical optics.

Proposition 4 indicates that when the transmitter is in the near field of a RIS with large electrical size and $\Gamma_{n,m}$ is not designed for beamforming, the free-space path loss of RIS-assisted wireless communications is proportional to $(d_1 + d_2)^2$, instead of $d_1^2d_2^2$ as for the far-field case. Similarly, when the receiver is in the near field of the RIS, the same result holds according to the transmitter-receiver reciprocity property revealed by Theorem 1. Formula (14) is referred to as the near-field broadcasting formula, which describes the relationship between the received and transmitted signal power of RIS-assisted wireless communications in the near field broadcasting case, and is more insightful compared with the general formula (3) in Theorem 1.

E. Path Loss Model Summary

Based on the modeling results above, the free-space path loss models of RIS-assisted wireless communications in different scenarios are summarized in Table I.

TABLE I: Free-Space Path Loss Models of RIS-assisted Wireless Communications in Different Scenarios.

Applications	Conditions	Path Loss	Notes
Beamforming	Transmitter and receiver are in the far field of RIS	(6)	$\phi_{n,m}$ are designed as in (9)
Beamforming	Transmitter and/or receiver are in the near field of RIS	(13)	$\phi_{n,m}$ are designed as in (12)
Broadcasting	Transmitter and/or receiver are in the near field of RIS	(15)	RIS requires large electrical size

IV. Validation of Path Loss Models via Numerical Simulations

Numerical simulations are conducted based on the general formula (3) to verify the far-field formula (4), the near-field beamforming formula (11), the near-field broadcasting formula (14), and their corresponding path loss formulas (6), (13) and (15), respectively. Three different RISs
and two different antennas (corresponding to those used in our measurements, described in Section V) are utilized in the simulations, with their parameters specified in Table II.

TABLE II: The Parameters of Three Different RISs and Two Different Antennas Utilized in Simulations.

Name	Parameters		
Large RIS1	\(N = 100, M = 102, d_x = d_y = 0.01 \text{ m},	\Gamma_{n,m}	= A = 0.9, F(\theta, \varphi) \) is defined by (1), operating frequency \(f = 10.5 \text{ GHz}, \lambda = c/f = 0.0286 \text{ m}, 2D_x^2 = \frac{2MNd_xd_y}{x} = 71.4 \text{ m}. \)
Large RIS2	\(N = 50, M = 34, d_x = d_y = 0.01 \text{ m},	\Gamma_{n,m}	= A = 0.9, F(\theta, \varphi) \) is defined by (1), operating frequency \(f = 10.5 \text{ GHz}, \lambda = c/f = 0.0286 \text{ m}, 2D_x^2 = \frac{2MNd_xd_y}{x} = 11.9 \text{ m}. \)
Small RIS	\(N = 8, M = 32, d_x = d_y = 0.012 \text{ m},	\Gamma_{n,m}	= A = 0.7, F(\theta, \varphi) \) is defined by (1), operating frequency \(f = 4.25 \text{ GHz}, \lambda = c/f = 0.07 \text{ m}, 2D_x^2 = \frac{2MNd_xd_y}{x} = 1 \text{ m}. \)
X-band horn antenna	\(F^{tx}(\theta, \varphi) = F^{rx}(\theta, \varphi) = \cos^2 \theta \) when \(\theta \in [0, \frac{\pi}{2}] \), \(F^{tx}(\theta, \varphi) = F^{rx}(\theta, \varphi) = 0 \) when \(\theta \in \left(\frac{\pi}{2}, \pi \right] \). \(G_t = G_r = 21 \text{ dB} \) according to (2) under the assumption that the radiation efficiency is 100%. The operating frequency is \(f = 10.5 \text{ GHz} \).		
C-band horn antenna	\(F^{tx}(\theta, \varphi) = F^{rx}(\theta, \varphi) = \cos^3 \theta \) when \(\theta \in [0, \frac{\pi}{2}] \), \(F^{tx}(\theta, \varphi) = F^{rx}(\theta, \varphi) = 0 \) when \(\theta \in \left(\frac{\pi}{2}, \pi \right] \). \(G_t = G_r = 14.5 \text{ dB} \) according to (2) under the assumption that the radiation efficiency is 100%. The operating frequency is \(f = 4.25 \text{ GHz} \).		

The electrical sizes of the RISs are \(35\lambda \times 35.7\lambda \) for the large RIS1, \(17.5\lambda \times 11.9\lambda \) for the large RIS2, and \(1.36\lambda \times 5.44\lambda \) for the small RIS, respectively.

A. \textit{RIS-assisted Beamforming}

1) \textit{Specular Reflection in the Far Field Beamforming Case:} \(P_t = 0 \text{ dBm}, \theta_t = \frac{\pi}{4}, \varphi_t = \pi, \angle \Gamma_{n,m} = \phi_{n,m} = 0 \). The large RIS1 and X-band antennas are employed in the simulation. When \(d_1 \) and \(d_2 \) are both greater than 71.4 m, the far field condition of RIS1 is fulfilled. The small RIS and C-band antennas are also employed in the simulation under the same conditions. When \(d_1 \) and \(d_2 \) are both larger than 1 m, the far field condition of the small RIS is fulfilled. Fig. 5(a) and Fig. 6(a) show the simulated received signal power distribution in various directions in the large RIS1 case and the small RIS case, respectively. It can be seen that the received signal power is maximized when \(\theta_r = \frac{\pi}{4} \) and \(\varphi_r = 0 \), which indicates that both of the large RIS1 and the small RIS specularly reflect the incident signal. Moreover, the larger the electrical size of the RIS is, the more concentrated the power of the reflected signal. As shown in Fig. 5(b) and Fig. 6(b), the far-field formula (4) matches well with the general formula (3), which validates that the free-space path loss is compliant with (6) under the scenario of RIS-assisted beamforming through specular reflection of RIS in the far field case.
Fig. 5. Simulation results of RIS-assisted beamforming through specular reflection of large RIS1 in the far field case. (a) Received signal power distribution when $d_1 = d_2 = 100$ m. (b) Received signal power in the specular direction versus d_1 and d_2.

Fig. 6. Simulation results of RIS-assisted beamforming through specular reflection of small RIS in the far field case. (a) Received signal power distribution when $d_1 = 3.5$ m and $d_2 = 10$ m. (b) Received signal power in the specular direction versus d_1 and d_2.

2) Intelligent Reflection in the Far Field Beamforming Case: $P_t = 0$ dBm, $\theta_t = \frac{\pi}{4}$, $\varphi_t = \pi$.

The large RIS1 and X-band antennas are employed in the simulation, and the phase shifts $\phi_{n,m}$ are designed to steer the reflected signal to a desired direction of $\theta_{des} = \frac{\pi}{3}$ and $\varphi_{des} = \frac{7\pi}{4}$ according to (9). The small RIS and C-band antennas are also employed in the simulation, and $\phi_{n,m}$ are designed to steer the reflected signal to a desired direction of $\theta_{des} = \frac{\pi}{6}$ and $\varphi_{des} = 0$.

Fig. 7(a) and Fig. 8(a) show that the received signal power is maximized when $\theta_r = \frac{\pi}{3}$, $\varphi_r = \frac{7\pi}{4}$ and $\theta_r = \frac{\pi}{6}$, $\varphi_r = 0$, respectively, which indicates that both of the large RIS1 and the small RIS successfully reflect the incident signal to the desired direction. As shown in Fig. 7(b) and Fig. 8(b), the far-field formula (7) with phase design matches well with the general formula (3), which validates that the free-space path loss adheres to (6) under the scenario of RIS-assisted beamforming through intelligent reflection of RIS in the far field case.
Fig. 7. Simulation results of RIS-assisted beamforming through intelligent reflection of large RIS1 in the far field case. (a) Received signal power distribution case when $\theta_{des} = \pi/6$, $\phi_{des} = 7\pi/4$, $d_1 = 100$ m, $d_2 = 100$ m. (b) Received signal power in the desired direction versus d_1 and d_2.

Fig. 8. Simulation results of RIS-assisted beamforming through intelligent reflection of small RIS in the far field case. (a) Received signal power distribution when $\theta_{des} = \pi/6$, $\phi_{des} = 0$, $d_1 = 3.5$ m, $d_2 = 10$ m. (b) Received signal power in the desired direction versus d_1 and d_2.

3) Intelligent Reflection in the Near Field Beamforming Case: $P_t = 0$ dBm, $\theta_t = \pi/4$, $\phi_t = \pi$. The large RIS1 and X-band antennas are employed in the simulation, and $\phi_{n,m}$ are designed to focus the reflected signal towards the desired receiver at a certain location of $d_2 = 100$ m, $\theta_r = \pi/4$ and $\phi_r = 0$ according to (12). The transmitter is in the near field of RIS1. Fig. 9(a) shows the power distribution of the simulated received signal when $d_1 = 3.5$ m and $d_2 = 100$ m. It can be observed that the reflected signal has been successfully focused to the desired receiver ($d_2 = 100$ m, $\theta_r = \pi/4$ and $\phi_r = 0$) by applying (12). Fig. 9(b) shows that as d_1 increases, the near-field beamforming formula (11) fits better with the far-field formula (4), although the transmitter is in the near field of the RIS. This is because, when both d_1 and d_2 increase, the distances between the transmitter/receiver and each unit cell become more similar, and the RIS is gradually covered by the main lobe of the transmitting/receiving antenna. Therefore, (11) can...
be written as

\[P_{r}^{\max} \approx P_{t} G_{t} G_{r} G_{d} d_{x} d_{y} \frac{\lambda^{2} A^{2} M^{2} N^{2} F(\theta_{t}, \varphi_{t}) F(\theta_{r}, \varphi_{r})}{64 \pi^{3} d_{1}^{2} d_{2}^{2}}, \tag{16} \]

by applying \(F_{tx}^{\kappa}(\theta_{n,m}^{tx}, \varphi_{n,m}^{tx}) \approx 1, \) \(F_{rx}^{\kappa}(\theta_{n,m}^{tx}, \varphi_{n,m}^{tx}) \approx 1, \) \(F(\theta_{n,m}, \varphi_{n,m}) \approx F(\theta_{t}, \varphi_{t}), \) \(F(\theta_{n,m}, \varphi_{n,m}) \approx F(\theta_{r}, \varphi_{r}), \) \(r_{n,m}^{t} \approx d_{1}, \) and \(r_{n,m}^{r} \approx d_{2} \) into (11). Formula (16) is exactly the same as (5), which reveals that the free-space path loss gradually approaches (6) under the RIS-assisted beamforming scenario in the near field case when both \(d_{1} \) and \(d_{2} \) increase. The above conclusion also holds for the small RIS as it is not related to the size of RIS.

Fig. 9. Simulation results of RIS-assisted beamforming through intelligent reflection of larger RIS1 in the near field case. (a) Received signal power distribution when \(d_{1} = 3.5 \text{ m} \) and the desired receiver is at \(d_{2} = 100 \text{ m}, \theta_{r} = \frac{\pi}{4} \) and \(\varphi_{r} = 0 \). (b) Received signal power of the desired receiver versus \(d_{1} \) and \(d_{2} \).

B. RIS-assisted Broadcasting

1) Specular Reflection in the Near Field Broadcasting Case: \(P_{t} = 0 \text{ dBm}, \theta_{t} = \frac{\pi}{4}, \varphi_{t} = \pi, \) \(\angle \Gamma_{n,m} = \phi_{n,m} = 0. \) The large RIS1 and X-band antennas are employed in the simulation. When \(d_{1} \) or \(d_{2} \) is less than 71.4 m, the near field condition of the large RIS1 is fulfilled. Fig. 10(a) shows the simulated received signal power distribution in various directions when \(d_{1} = 2 \text{ m} \) and \(d_{2} = 100 \text{ m} \). It can be seen that a specific area which is defined as solid angle \(\Omega \cap \Omega_{t} \) in (14) is lit up. As shown in Fig. 10(b), the near-field broadcasting formula (14) fits well with the general formula (3) when \(d_{1} = 1 \text{ m}, 2 \text{ m}, \) and \(3.5 \text{ m}, \) which reveals that the free-space path loss follows (15) under the scenario of RIS-assisted broadcasting through specular reflection of a large RIS in the near field case. In addition, the general formula curve gradually moves from the near-field broadcasting formula curve to the far-field formula curve as \(d_{1} \) increases as shown in Fig. 10(c)-(e), which indicates a transition process between the near field and the far field of the RIS. It is worth noting that the curves of the far-field formula and the near-field broadcasting
formula almost overlap when \(d_1 = 28 \) m. Therefore, we redefine the boundary of the far field and the near field of the RIS as \(L_{\text{bound}} \), by letting (6) equals to (15) as

\[
\frac{G_d G_t G_m^2 N^2 d_x d_y \lambda^2 F(\theta_t, \varphi_t) F(\theta_r, \varphi_r) A^2}{64 \pi^2 L_{\text{bound}}^2 d_2^2} = \frac{G_d G_t \lambda^2 A^2}{16 \pi^2 (L_{\text{bound}} + d_2)^2}.
\]

When \(d_2 \) is much larger than \(L_{\text{bound}} \) (the receiver is in the far field of RIS), (17) is solved as

\[L_{\text{bound}} \approx MN \sqrt{\frac{G d_x d_y F(\theta_t, \varphi_t) F(\theta_r, \varphi_r)}{4 \pi}}. \]

For the large RIS1 simulation, \(L_{\text{bound}} \) equals to 28.77 m, which is in good agreement with Fig. 10(d). In the rest of the paper, (18) is referred to as the boundary of the far field and the near field for RIS-assisted wireless communications.

Fig. 10. Simulation results of RIS-assisted broadcasting through specular reflection of large RIS in the near field case. (a) Received signal power distribution when \(d_1 = 2 \) m and \(d_2 = 100 \) m. (b) Received signal power of the broadcasted receiver versus \(d_1 \) for \(d_2 = 1 \) m, 2 m, and 3.5 m. (c)-(e) Received signal power of the broadcasted receiver versus \(d_1 \) for \(d_2 = 3.5 \) m, 28 m, and 50 m, respectively.

2) Intelligent Reflection in the Near Field Broadcasting Case: \(P_t = 0 \) dBm, \(\theta_t = 0 \). The large RIS2 and X-band antennas are employed in the simulation. \(\phi_{n,m} \) are designed to steer the reflected signal towards two desired directions: \(\theta_{\text{des}} = \frac{\pi}{4}, \varphi_{\text{des}} = 0 \) and \(\theta_{\text{des}} = \frac{\pi}{4}, \varphi_{\text{des}} = \pi \). \(\phi_{n,m} = 0 \) when \(\text{mod}(m, 4) = 0 \) or 1 and \(\phi_{n,m} = \pi \) when \(\text{mod}(m, 4) = 2 \) or 3. Fig. 11(a)
shows the received signal power distribution in various directions when $d_1 = 1$ m and $d_2 = 100$ m. It can be observed that the large RIS2 successfully shapes the reflected signal into the two desired directions for broadcasting at the same time. As shown in Fig. 11(b), the near-field broadcasting formula (14) fits relatively well with the general formula (3), which reveals that the free-space path loss also follows (15) under the scenario of RIS-assisted broadcasting through intelligent reflection of large RIS in the near field case.

Fig. 11. Simulation results of RIS-assisted broadcasting through intelligent reflection of large RIS in the near field case. (a) Received signal power distribution when $d_1 = 1$ m and $d_2 = 100m$. (b) Received signal power of the broadcasted receiver versus d_1 and d_2 when $d_1 = 0.5$ m and 1 m.

C. Path Loss Simulation Summary

The numerical simulations have verified the free-space path loss models of RIS-assisted wireless communications summarized in Table I via the general formula (3). In addition, the boundary of the far field and the near field of the RIS is redefined in (18), which can be used to determine whether the transmitter/receiver is in the near or far field of the RIS.

V. VALIDATION OF PATH LOSS MODELS VIA EXPERIMENTAL MEASUREMENTS

Experimental measurements are carried out to further validate the free-space path loss models of RIS-assisted wireless communications derived in the previous sections. We set up the free-space path loss measurement system in a microwave anechoic chamber and utilize three different metasurfaces to act as the RIS in different scenarios.

A. Measurement Setup

Fig. 12 illustrates our free-space path loss measurement system for RIS-assisted wireless communications, which is composed of a metasurface, RF signal generator (Agilent E8267D), Tx horn antenna, RF signal analyzer (Agilent N9010A), Rx horn antenna and accessories
such as cables and blocking object (electromagnetic wave-absorbing materials). The RF signal generator provides the RF signal with a constant power to the Tx horn antenna, which illuminates the metasurface through distance d_1. The signal reflected by the metasurface propagates over distance d_2, and is received by the Rx horn antenna and the RF signal analyzer, which gives the measurement result of the received signal power. Because multipath propagations are greatly suppressed in the microwave anechoic chamber and the blocking object cuts off the direct path between the Tx antenna and the Rx antenna, the received signal mainly comes from the reflection of the RIS, which ensures the feasibility of the free-space path loss measurements of RIS-assisted wireless communications. Since d_1 and d_2 need to be flexibly changed during the measurement to study the relationship of the path loss as a function of d_1 and d_2, we utilize the two aisles perpendicular to each other in the anechoic chamber and place the metasurface at the junction of the two aisles. The angles between the metasurface and the two aisles are both 45 degrees, which indicates that the metasurface performs specular reflection for most of our measurements. In addition, we also measured an intelligent reflection scenario, in which the incident wave is perpendicular to the metasurface and the reflected wave is manipulated into two directions simultaneously.

Fig. 12. Free-space path loss measurement system of RIS-assisted wireless communications: (a) diagram. (b) photo.

Fig. 13 shows the metasurfaces, X-band horn antennas, and C-band horn antennas utilized in the free-space path loss measurements in different scenarios. Their main parameters are consistent with those used for the simulations described in Table II at the beginning of Section IV.
Fig. 13. Photographs of the metasurfaces and horn antennas utilized for the free-space path loss measurements of RIS-assisted wireless communications. (a) the large RIS1. (b) the large RIS2. (c) the small RIS. (d) horn antennas.

B. Measurement Results

We utilize the two large RISs and the small RIS to measure the free-space path loss loss in the RIS-assisted broadcasting and beamforming scenarios, respectively. The \(L_{bound} \) (boundary between the far field and the near field) of the large RIS1, the large RIS2 and the small RIS is 28.77 m, 4.8 m and 0.866 m according to (18), respectively. This makes it possible to measure the path loss in the near field case of the two large RISs and in the far field case of the small RIS, as the area of the microwave anechoic chamber is about 6 m \(\times \) 5 m.

1) Specular Reflection of Large RIS1 in the Near Field Broadcasting Case: Let all the unit cells of the large RIS1 have the same reflection coefficient by applying a same control voltage (0 V) to them. The transmit power is fixed to 0 dBm and the large RIS1 specularly reflects the incident signal as depicted in Fig.12(a). Fig.14 illustrates the measured received signal power versus \(d_1 \) and \(d_2 \), from which we can observe that the measurement results are in good agreement with the theoretical general formula (3) and the proposed near-field broadcasting formula (14).
The measurement results practically validate that the free-space path loss of RIS-assisted wireless communication follows (15) under the scenario of specular reflection through a large RIS in the near field broadcasting case. The path loss is proportional to \((d_1 + d_2)^2\). It should be noted that in order to fairly compare the measurement result with the theoretical models, we measured the actual value of \(G_t G_r A_r G_{\text{line loss}}\) (the product of the Tx antenna gain, Rx antenna gain, Rx antenna effective aperture, and cable loss) and substituted it into the proposed theoretical formulas.

Fig. 14. Measurement results of specular reflection through the large RIS1 in the near field broadcasting case. (a) received signal power versus \(d_2\) when \(d_1 = 1\)m. (b) received signal power versus \(d_2\) when \(d_1 = 2\)m.

2) Intelligent Reflection of Large RIS2 in the Near Field Broadcasting Case: The incident wave is perpendicular to the large RIS2 and the reflected wave is reflected towards two paths \((\theta_r = \frac{\pi}{4}, \varphi_r = \pi \text{ and } \theta_r = \frac{\pi}{4}, \varphi_r = 0)\) simultaneously, as sketched in Fig. 15(a). Fig. 15(b) illustrates the measured received signal power along the two paths versus \(d_2\) when \(d_1 = 1\)m. We can see that the trend of the two measurement curves are exactly the same as that of the proposed theoretical curves, and the difference between them is only about 3 dB, which may be caused by the measurement imperfections. For example, the metasurface is not completely perpendicular to the ground, which causes the deviation of the reflected wave angle. The measurement results validate that the free-space path loss of RIS-assisted wireless communication follows (15) under the scenario of intelligent reflection through a large RIS in the near field broadcasting case.

3) Specular Reflection of Small RIS in the Far Field Beamforming Case: Let all the unit cells of the small RIS have the same reflection coefficient by applying a same control voltage (0 V) to them. The transmit power is fixed to 0 dBm and the small RIS specularly reflects the incident signal to the direction of \(\theta_r = \frac{\pi}{4} \text{ and } \varphi_r = 0\), along which we measured the received signal power as depicted in Fig. 12. Fig. 16 illustrates the measured received signal power versus
d_1 and d_2. We observe that the measurement results are in good agreement with the theoretical general formula (3) and the proposed far-field formula (4). The difference between them is only about 2 dB, which may be caused by the measurement imperfections. The measurement results practically validate that the free-space path loss of RIS-assisted wireless communication follows (6) under the scenario of specular reflection through RIS in the far field beamforming case. The free-space path loss is proportional to $(d_1d_2)^2$ when the RIS-assisted wireless communications aim to achieve beamforming in the far field case.

![Measurement Setup](image)

Fig. 15. Measurement photograph and results of intelligent reflection through the large RIS2 in the near field broadcasting case. (a) Photograph. (b) Received signal power along the two paths versus d_2 when $d_1 = 1$ m.

![Measurement Results](image)

Fig. 16. Measurement results of specular reflection through the small RIS in the far field beamforming case. (a) Received signal power versus d_2 when $d_1 = 1$ m. (b) Received signal power versus d_2 when $d_1 = 2$ m.

4) On the Sensitivity of Phase Regulation to the Incident Angle: The general formula (3) reveals that RIS-assisted wireless communication systems are transmitter-receiver reciprocal, which is based on the assumption that $\Gamma_{n,m}$ is not sensitive to the changes of the incident angle.
θ_t. If $\Gamma_{n,m}$ is sensitive to θ_t, especially if its phase $\phi_{n,m}$ is sensitive to θ_t, the channel reciprocity of RIS-assisted wireless communications will not hold anymore. We measured the relationship between the control voltage and the phase shift of the unit cells of our small RIS under different incident angles as plotted in Fig. [17]. It can be observed that the used RIS is highly sensitive to the incident angle. Therefore, it is necessary to develop metasurfaces that are insensitive to the incident angle, thus ensuring channel reciprocity in RIS-assisted wireless communications.

![Fig. 17. Relationship between the control voltage and the phase shift of the unit cells of the used small RIS.](image)

5) Power Consumption of the RISs: The power consumption of our small RIS is almost zero. The small RIS here is a kind of varactor-diode-based programmable metasurface and it is almost passive because the current in the varactor diodes of the unit cells is negligible when it is working. The power consumption of the two large RISs is related to the states of their unit cells. The large RISs here are a kind of PIN-diode-based programmable metasurface. The phase shift of each unit cell can be adjusted between 0 and π by electrically controlling the “on” and “off” state of the PIN diode of each unit cell. When the PIN diode is off, the unit cell does not consume any energy. When the PIN diode is on, on the other hand, the power consumption of one unit cell is about 0.33 mW. For example, the total power consumption of the large RIS2 is 0.280 W when it performs the intelligent reflection described above. It should be noted that the above discussions are only for the power consumptions of the metasurfaces themselves. The controller which provides the control voltages to the unit cells of the metasurface also consumes energy, and its power consumption is related to the controller’s circuit design. For example, the power consumption of the controller for the small RIS here is about 0.72 W, while that for the large RIS2 is about 10 W.
VI. Conclusion

In this paper, we have theoretically developed the free-space path loss models of RIS-assisted wireless communications based on the electromagnetic and physics properties of the RISs. The general formula which yields the free-space path loss of RIS-assisted wireless communications in different scenarios was first proposed. Subsequently, three more insightful free-space path loss models have been derived, namely the far-field formula, the near-field beamforming formula and the near-field broadcasting formula, to characterize the free-space path loss of RIS-assisted beamforming and broadcasting, respectively. In addition, the boundary of the far field and the near field regimes of RIS-assisted wireless communications has been discussed according to the numerical simulations. Moreover, free-space path loss measurements of RIS-assisted wireless communications have been conducted in a microwave anechoic chamber by considering different scenarios. The measurement results match quite well with the modeling results, which validates the proposed path loss models. This work may help researchers in analyzing and simulating the performance of various RIS-assisted wireless communication systems for application to future wireless networks.

Appendix A

Proof of Theorem 1

The power of the incident signal into unit cell $U_{n,m}$ can be expressed as

$$P_{in}^{n,m} = \frac{G_t P_t}{4\pi r_{n,m}^t} F^{tx}(\theta_{n,m}^{tx}, \varphi_{n,m}^{tx}) F(\theta_{n,m}^t, \varphi_{n,m}^t) \, dx \, dy, \quad (19)$$

and the electric field of the incident signal into $U_{n,m}$ is given by

$$E_{in}^{n,m} = \sqrt{\frac{2 Z_0 P_{in}^{n,m}}{d_x d_y}} e^{-j 2\pi r_{n,m}^t / \lambda}, \quad (20)$$

where Z_0 is the characteristic impedance of the air, and $r_{n,m}^t$ can be written as

$$r_{n,m}^t = \sqrt{(x_t - (m-1/2) d_x)^2 + (y_t - (n-1/2) d_y)^2 + z_t^2}. \quad (21)$$

According to the law of energy conservation, for the unit cell $U_{n,m}$, the power of the incident signal times the square of the reflection coefficient is equal to the total power of the reflected signal, thus we have

$$P_{in}^{n,m} \Gamma_{n,m}^2 = P_{reflect}^{n,m}, \quad (22)$$
where P_{reflect} is the total reflected signal power of the unit cell $U_{n,m}$, and the reflection coefficient can be written as

$$\Gamma_{n,m} = A_{n,m} e^{j\phi_{n,m}}, \quad (23)$$

where $A_{n,m}$ and $\phi_{n,m}$ represent the controllable amplitude and phase shift of $U_{n,m}$, respectively.

The power of the reflected signal received by the receiver from $U_{n,m}$ can be expressed as

$$P_{r}^{n,m} = \frac{G P_{\text{reflect}}}{4\pi r_{n,m}^2} F\left(\theta_{n,m}, \varphi_{n,m}\right) F_{\text{rx}}\left(\theta_{n,m}, \varphi_{n,m}\right) A_{r}, \quad (24)$$

where A_{r} represents the aperture of the receiving antenna, and $r_{n,m}$ can be written as

$$r_{n,m}^r = \sqrt{(x_r - \left(\frac{m-1}{2}\right)d_x)^2 + (y_r - \left(\frac{n-1}{2}\right)d_y)^2 + z_r^2}. \quad (25)$$

By combining (19), (22) and (24), the electric field of the reflected signal received by the receiver from $U_{n,m}$ is obtained as

$$E_{n,m}^r = \sqrt{\frac{2Z_0P_{n,m}^r}{A_r}} e^{-j2\pi r_{n,m}^r/\lambda} e^{-j2\pi r_{n,m}^r/\lambda} = \sqrt{\frac{Z_0P_r G_t G_d d_y}{8\pi^2}} \frac{\Gamma_{n,m}}{r_{n,m}^r r_{n,m}^r} e^{-j2\pi (r_{n,m}^r + r_{n,m}^r)/\lambda}. \quad (26)$$

The total electric field of the received signal is the superposition of the electric fields reflected by all unit cells toward the receiver, which can be written as

$$E^r = \sum_{m=1}^{M/2} \sum_{n=1}^{N/2} E_{n,m}^r. \quad (27)$$

The received signal power of the receiver is

$$P_r = \frac{|E^r|^2}{2Z_0} A_r, \quad (28)$$

where the aperture of the receiving antenna can be written as

$$A_r = \frac{G_r \lambda^2}{4\pi}. \quad (29)$$

We obtain Theorem 1 by substituting (26), (27), and (29) into (28).
APPENDIX B

Proof of Proposition 1

The position of the transmitter in Fig. 2 is

\[(x_t, y_t, z_t) = (d_1 \sin \theta_t \cos \varphi_t, d_1 \sin \theta_t \sin \varphi_t, d_1 \cos \theta_t).\] (30)

By combining (21) and (30), when the transmitter is in the far field of the RIS, \(r_{t,n,m}^t\) can be further expressed as

\[r_{t,n,m}^t = \sqrt{\left(d_1 \sin \theta_t \cos \varphi_t - (m - \frac{1}{2})d_x \right)^2 + \left(d_1 \sin \theta_t \sin \varphi_t - (n - \frac{1}{2})d_y \right)^2 + (d_1 \cos \theta_t)^2} \approx d_1 - \sin \theta_t \cos \varphi_t(m - \frac{1}{2})d_x - \sin \theta_t \sin \varphi_t(n - \frac{1}{2})d_y,\] (31)

Similarly, the position of the receiver in Fig. 2 is

\[(x_r, y_r, z_r) = (d_2 \sin \theta_r \cos \varphi_r, d_2 \sin \theta_r \sin \varphi_r, d_2 \cos \theta_r).\] (32)

By combining (25) and (32), when the receiver is in the far field of the RIS, \(r_{r,n,m}^r\) can be further expressed as

\[r_{r,n,m}^r = \sqrt{\left(d_2 \sin \theta_r \cos \varphi_r - (m - \frac{1}{2})d_x \right)^2 + \left(d_2 \sin \theta_r \sin \varphi_r - (n - \frac{1}{2})d_y \right)^2 + (d_2 \cos \theta_r)^2} \approx d_2 - \sin \theta_r \cos \varphi_r(m - \frac{1}{2})d_x - \sin \theta_r \sin \varphi_r(n - \frac{1}{2})d_y,\] (33)

In the far field case, \((\theta_{t,n,m}^t, \varphi_{t,n,m}^t)\) and \((\theta_{r,n,m}^r, \varphi_{r,n,m}^r)\) can be approximated as \((\theta_t, \varphi_t)\) and \((\theta_r, \varphi_r)\), respectively. In addition, as assuming that the direction of peak radiation of both the transmitting antenna and receiving antenna point to the center of the RIS, we have \(F^{tx}(\theta_{t,n,m}^t, \varphi_{t,n,m}^t) \approx 1\) and \(F^{rx}(\theta_{r,n,m}^r, \varphi_{r,n,m}^r) \approx 1\) in the far field case.

By substituting (31) and (33) into the general formula (3), the received signal power can be further written as

\[P_r \approx P_t \frac{G_t G_r G d_x d_y \lambda^2}{64\pi^3} \left| \sum_{m=1}^{M} \sum_{n=1}^{N} \sqrt{\frac{1}{2}} F(\theta_t, \varphi_t) F(\theta_r, \varphi_r) \Gamma_{n,m} \frac{e^{-j2\pi\alpha}}{d_1 d_2} \right|^2 = P_t \frac{G_t G_r G d_x d_y \lambda^2 F(\theta_t, \varphi_t) F(\theta_r, \varphi_r)}{64\pi^3 d_1^2 d_2^2} \left| \sum_{m=1}^{M} \sum_{n=1}^{N} \Gamma_{n,m} e^{j2\pi(d_1 + d_2 - \alpha)} \right|^2,\] (34)

where \(\alpha = d_1 - \sin \theta_t \cos \varphi_t(m - \frac{1}{2})d_x - \sin \theta_t \sin \varphi_t(n - \frac{1}{2})d_y + d_2 - \sin \theta_r \cos \varphi_r(m - \frac{1}{2})d_x - \sin \theta_r \sin \varphi_r(n - \frac{1}{2})d_y.\)
As all the unit cells of RIS share the same reflection coefficient \(A e^{j \phi} \), (34) can be written as

\[
P_r = P_t \frac{G_t G_r G_d x d_y \lambda^2 F(\theta_t, \varphi_t) F(\theta_r, \varphi_r) A^2}{64 \pi^3 d_1^2 d_2^2} |\beta|^2;
\]

where

\[
\beta = \sum_{m=1-M/2}^{M/2} \sum_{n=1-N/2}^{N/2} e^{j 2 \pi (\sin \theta_t \cos \varphi_t + \sin \theta_r \cos \varphi_r) \left(m - \frac{1}{2} \right) dx + (\sin \theta_t \sin \varphi_t + \sin \theta_r \sin \varphi_r) \left(n - \frac{1}{2} \right) dy}.
\]

Define \(u = \frac{2 \pi}{\lambda} (\sin \theta_t \cos \varphi_t + \sin \theta_r \cos \varphi_r) dx \) and \(v = \frac{2 \pi}{\lambda} (\sin \theta_t \sin \varphi_t + \sin \theta_r \sin \varphi_r) dy \), then (36) can be rewritten as

\[
\beta = \sum_{m=1-M/2}^{M/2} \sum_{n=1-N/2}^{N/2} e^{j (m-1)u} e^{j (n-1)v} = \sum_{m=1-M/2}^{M/2} e^{j (m-1)u} \sum_{n=1-N/2}^{N/2} e^{j (n-1)v}.
\]

By applying the formula of the sum of the geometric progression, (37) can be rewritten as

\[
\beta = \frac{e^{-j \frac{M u}{2}} - e^{j \frac{M u}{2}}}{e^{-j \frac{u}{2}} - e^{j \frac{u}{2}}} \frac{\sin \left(\frac{N u}{2} \right)}{\sin \left(\frac{u}{2} \right)} = MN \frac{\sin \left(\frac{M u}{2} \right) \sin \left(\frac{N v}{2} \right)}{\sin \left(\frac{u}{2} \right) \sin \left(\frac{v}{2} \right)} = MN \frac{\sin \left(\frac{M u}{2} \right) \sin \left(\frac{N v}{2} \right)}{\sin \left(\frac{u}{2} \right) \sin \left(\frac{v}{2} \right)}
\]

(38)

By plugging (38) into (35), the received signal power in the far field case can be obtained as stated in (4). When \(\sin \theta_t \cos \varphi_t + \sin \theta_r \cos \varphi_r = 0 \) and \(\sin \theta_t \sin \varphi_t + \sin \theta_r \sin \varphi_r = 0 \), that is, \(\theta_r = \theta_t \) and \(\varphi_r = \varphi_t + \pi \), (4) is maximized as stated in (5).

Proof of Proposition 2

For the intelligent reflection in the far field case, by substituting \(\Gamma_{n,m} = A e^{j \phi_{n,m}} \) into (34), we have

\[
P_r = P_t \frac{G_t G_r G_d x d_y \lambda^2 F(\theta_t, \varphi_t) F(\theta_r, \varphi_r) A^2}{64 \pi^3 d_1^2 d_2^2} |\tilde{\beta}|^2;
\]

where

\[
\tilde{\beta} = \sum_{m=1-M/2}^{M/2} \sum_{n=1-N/2}^{N/2} e^{j 2 \pi (\sin \theta_t \cos \varphi_t + \sin \theta_r \cos \varphi_r + \delta_1) \left(m - \frac{1}{2} \right) dx + \left(\sin \theta_t \sin \varphi_t + \sin \theta_r \sin \varphi_r + \delta_2 \right) \left(n - \frac{1}{2} \right) dy}.
\]

Define \(\tilde{u} = \frac{2 \pi}{\lambda} (\sin \theta_t \cos \varphi_t + \sin \theta_r \cos \varphi_r + \delta_1) dx \) and \(\tilde{v} = \frac{2 \pi}{\lambda} (\sin \theta_t \sin \varphi_t + \sin \theta_r \sin \varphi_r + \delta_2) dy \), where \(\delta_1 \left(m - \frac{1}{2} \right) dx + \delta_2 \left(n - \frac{1}{2} \right) dy = \frac{\lambda \phi_{n,m}}{2 \pi} \), (40) can be rewritten as

\[
\tilde{\beta} = \sum_{m=1-M/2}^{M/2} \sum_{n=1-N/2}^{N/2} e^{j (m-1)\tilde{u}} e^{j (n-1)\tilde{v}} = \sum_{m=1-M/2}^{M/2} e^{j (m-1)\tilde{u}} \sum_{n=1-N/2}^{N/2} e^{j (n-1)\tilde{v}}.
\]
Similarly, by applying the formula of the sum of the geometric progression, the received signal power can be obtained as (7), which is maximized when
\[
\sin \theta_t \cos \varphi_t + \sin \theta_r \cos \varphi_r + \delta_1 = 0
\]
and
\[
\sin \theta_t \sin \varphi_t + \sin \theta_r \sin \varphi_r + \delta_2 = 0.
\]

Proof of Proposition 3

By substituting \(\Gamma_{n,m} = A e^{j \phi_{n,m}} \) into the general formula (3), (10) can be simply obtained. For the desired receiver at \((x_r, y_r, z_r)\), (10) is maximized as (11) when
\[
2\pi(r_{n,m}^r + r_{n,m}^t) - \lambda \phi_{n,m} = 0,
\]
which can be further expressed as (12).

REFERENCES

[1] Huawei, “Asia-Pacific leads 5G innovation, Huawei enables sustainable development of a digital economy,” Sep. 2019. [Online]. Available: https://www.huawei.com/en/press-events/news/2019/9/huawei-5th-asia-pacific-innovation-day.

[2] T. S. Rappaport et al., “Wireless communications and applications above 100 GHz: Opportunities and challenges for 6G and beyond,” IEEE Access, vol. 7, pp. 78729-78757, Jun. 2019.

[3] Y. Zeng and R. Zhang, “Millimeter wave MIMO with lens antenna array: A new path division multiplexing paradigm,” IEEE Trans. Commun., vol. 64, no. 4, pp. 1557-1571, Apr. 2016.

[4] F. Tariq, M. R. A. Khandaker, K.-K. Wong, M. Imran, M. Bennis, and M. Debbah, “A speculative study on 6G,” [Online]. Available: https://arxiv.org/abs/1902.06700

[5] I. F. Akyildiz, C. Han, and S. Nie, “Combating the distance problem in the millimeter wave and terahertz frequency bands,” IEEE Commun. Mag., vol. 56, no. 6, pp. 102-108, Jun. 2018.

[6] C. Han, J. M. Jornet, and I. F. Akyildiz, “Ultra-massive MIMO channel modeling for graphene-enabled terahertz-band communications,” Proc. IEEE VTC Spring, Jun. 2018, pp. 15.

[7] S. Hu, F. Rusek, and O. Edfors, “Beyond massive MIMO: The potential of data transmission with large intelligent surfaces,” IEEE Trans. Signal Process., vol. 66, no. 10, pp. 274658, May. 2018.

[8] Z. Zhang et al., “6G wireless networks: Vision, requirements, architecture, and key technologies,” Vehicular Technology Magazine, vol. 14, no. 3, pp. 28-41, Sep. 2019.

[9] T. J. Cui et al., “Information metamaterials and metasurfaces,” J. Mater. Chem. C., no. 15, pp. 3644-3668, May 2017.

[10] J. Zhao et al., “Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems,” National Sci. Rev., vol. 6, no. 2, pp. 231-238, Mar. 2019.

[11] L. Zhang et al., “Space-time-coding digital metasurfaces,” Nat. Commun., vol. 9, Oct. 2018.

[12] W. Tang, X. Li, J. Y. Dai, S. Jin, Y. Zeng, Q. Cheng, and T. J. Cui, “Wireless communications with programmable metasurface: Transceiver design and experimental results,” China Commun., vol. 16, no. 5, pp. 46-61, May 2019.

[13] W. Tang, J. Y. Dai, M. Chen, X. Li, Q. Cheng, S. Jin, K.-K. Wong, and T. J. Cui, “Programmable metasurface-based RF chain-free 8PSK wireless transmitter,” Electron. Lett., vol. 55, no. 7, pp. 417-420, Apr. 2019.

[14] W. Tang et al., “Wireless communications with programmable metasurface: New paradigms, opportunities, and challenges on transceiver design,” [Online]. Available: https://arxiv.org/abs/1907.01956.

[15] J. Y. Dai et al., “Wireless communications through a simplified architecture based on time-domain digital coding metasurface,” Adv. Mater. Technol., vol. 4, no. 7, pp. 18, Jul. 2019.

[16] M. Di Renzo et al., “Smart radio environments empowered by reconfigurable AI meta-surfaces: An idea whose time has come,” EURASIP J. Wireless Commun. Netw., vol. 2019, no. 1, p. 129, May 2019.
[17] Q. Wu and R. Zhang, “Towards smart and reconﬁgurable environment: Intelligent reﬂecting surface aided wireless network,” *IEEE Commun. Mag.*, to appear. [Online]. Available: https://arxiv.org/abs/1905.00152.

[18] C. Liaskos, S. Nie, A. Tsioliaridou, A. Pitsillides, S. Ioannidis, and I. F. Akyildiz, “A new wireless communication paradigm through software-controlled metasurfaces,” *IEEE Commun. Mag.*, vol. 56, no. 9, pp. 162-169, Sep. 2018.

[19] E. Basar, M. Di Renzo, J. De Rosny, M. Debbah, M. Alouini, and R. Zhang, “Wireless communications through reconﬁgurable intelligent surfaces,” *IEEE Access*, vol. 7, pp. 116753-116773, Aug. 2019.

[20] Q. Wu and R. Zhang, “Intelligent reﬂecting surface enhanced wireless network via joint active and passive beamforming,” *IEEE Trans. Wireless Commun.*, early access, Aug. 2019, pp. 1–16.

[21] M. Cui, G. Zhang and R. Zhang, “Secure wireless communication via intelligent reﬂecting surface,” *IEEE Wireless Commun. Lett.*, vol. 8, no. 5, pp. 1410-1414, Oct. 2019.

[22] J. Chen, Y.-C. Liang, Y. Pei and H. Guo, “Intelligent reﬂecting surface: A programmable wireless environment for physical layer security,” *IEEE Access*, vol. 7, pp. 82599-82612, Jun. 2019.

[23] M. Jung, W. Saas, M. Debbah, and C. S. Hong “On the optimality of reconﬁgurable intelligent surfaces (RISs): Passive beamforming, modulation, and resource allocation,” [Online]. Available: https://arxiv.org/abs/1910.00968.

[24] S. Li, B. Duo, X. Yuan, Y.-C. Liang, and M. D. Renzo, “Reconﬁgurable intelligent surface assisted UAV communication: Joint trajectory design and passive beamforming” [Online]. Available: https://arxiv.org/abs/1908.04082.

[25] H. Guo, Y.-C. Liang, J. Chen, and E. G. Larsson, “Weighted sum-rate optimization for intelligent reﬂecting surface enhanced wireless networks,” [Online]. Available: https://arxiv.org/abs/1905.07920.

[26] C. Huang, A. Zappone, G. C. Alexandropoulos, M. Debbah, and C. Yuen, “Reconﬁgurable intelligent surfaces for energy efﬁciency in wireless communication,” *IEEE Trans. Wireless Commun.*, vol. 18, no. 8, pp. 4157-4170, Aug. 2019.

[27] C. Huang, G. C. Alexandropoulos, A. Zappone, M. Debbah, and C. Yuen, “Energy efﬁcient multi-user MISO communication using low resolution large intelligent surfaces,” in *Proc. IEEE Global Commun. Conf.*, Abu Dhabi, UAE, Dec. 2018.

[28] C. Pan et al., “Intelligent reﬂecting surface aided MIMO broadcasting for simultaneous wireless information and power transfer,” [Online]. Available: https://arxiv.org/abs/1908.04863v3.

[29] Y. Han, W. Tang, S. Jin, C.-K. Wen, and X. Ma, “Large intelligent surface-assisted wireless communication exploiting statistical CSI,” *IEEE Trans. Veh. Technol.*, vol. 68, no. 8, pp. 8238-8242, Aug. 2019.

[30] E. Basar, “Transmission through large intelligent surfaces: A new frontier in wireless communications,” in *Proc. Eur. Conf. Netw. Commun. (EuCNC)*, Valencia, Spain, Jun. 2019, pp. 112-117.

[31] M. Jung, W. Saad, Y. Jang, G. Kong and S. Choi, “Reliability analysis of large intelligent surfaces (LISs): Rate distribution and outage probability,” *IEEE Wireless Commun. Lett.*, early access, Aug. 2019, pp. 14.

[32] K. Ntontin et al., “Reconﬁgurable intelligent surfaces vs. relaying: Differences, similarities, and performance comparison,” [Online]. Available: https://arxiv.org/abs/1908.08747.

[33] Q. Wu and R. Zhang, “Beamforming optimization for intelligent reﬂecting surface with discrete phase shifts,” in *Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP)*, Brighton, U.K., May 2019, pp. 7830-7833.

[34] S. Abeyswickrama, R. Zhang, and C. Yuen, “Intelligent reﬂecting surface: Practical phase shift model and beamforming optimization,” [Online]. Available: https://arxiv.org/abs/1907.06002.

[35] Y. Huang and K. Boyle, *Antennas: from theory to practice*. Chichester: Wiley, 2008.

[36] W. L. Stutzman and G. A. Thiele, *Antenna theory and design*. New York: Wiley, 1998.

[37] A. Goldsmith, *Wireless Communications*. Cambridge, U.K.: Cambridge University Press, 2005.