The influence on the blastoderm fate map of maternal-effect genes that affect the antero-posterior pattern in *Drosophila*

Marek Mlodzik, Catherine M. De Montrion,^1^ Yasushi Hiromi,^2^ Henry M. Krause, and Walter J. Gehring

Biozentrum, University of Basel, CH-4056 Basel, Switzerland

The polarity and the spatial coordinates of the egg and the developing embryo are largely specified by maternal-effect genes. Mutations in several of these genes cause deletions of head structures and, in some cases, their replacement by posterior structures. Here, we analyze embryos derived from females with mutations in the loci *exuperantia (exu)*, *torso (tor)*, *trunk (trk)*, and *bicoid (bcd)*. The effects of these mutations can be monitored at the blastoderm stage, when the outlines of the body plan are laid down, by the visualization of RNA or protein products of genes that are expressed in a spatially restricted pattern. We have used antisera and/or cloned DNA probes to detect the localization of the gene products of the segmentation genes *fushi tarazu (ftz)* and *hairy (h)*. In *exu*⁻ embryos, *Deformed (Dfd)* and *caudal (cad)* probes were also used as markers of the anterior and posterior ends, respectively. We find that *exu*, a mutation leading to head defects, has a pronounced long-range effect on the fate map, enlarging the region of the thoracic anlagen in the anterior direction and compressing the abdominal anlagen. In contrast, *tor* and *trk* do not change the fate map over the entire embryo but have more localized effects. In embryos derived from *bcd* mothers, head and thoracic structures are missing and replaced by a duplicated telson, the most posterior structure. These changes can be detected in the blastoderm as an anterior shift of the posterior anlagen and the formation of a posterior *ftz* stripe at the anterior end.

[Key Words: Maternal-effect genes; in situ hybridization; protein localization; fate map; segmentation genes; *exuperantia*]

Received March 2, 1987; revised version accepted June 10, 1987.
[Schüpbach and Wieschaus 1986a,b] show defects in head formation and duplication of posterior structures at the anterior end. However, this duplication does not comprise any ectodermal structures that are visible in the larval cuticle, as is the case for bic and bicoi [bcd] mutations [Bull 1966; Nüsslein-Volhard 1977; Frohnhofer and Nüsslein-Volhard 1986; Mohler and Wieschaus 1986]. Only endodermal tissues, such as the posterior midgut and (in some of the embryos), the Malpighian tubules, are duplicated.

Another class of maternal loci leads to deletions at both poles, that is, the anterior as well as the posterior end, and no duplications are present. Two loci, namely torso [tor] and trunk [trk] [Schüpbach and Wieschaus 1986a,b], belong to this class. The anterior defects of this class lead to similar, although not identical, deletions of head structures [Schüpbach and Wieschaus 1986a,b] that closely resemble those found in exu, but there is no replacement by posterior structures. A number of different explanations for how these pattern deletions occur are possible. One of them would assume strictly localized gene products or determinants that specify the structures that are missing in the mutant embryo. Alternatively, there may be long-range effects of these gene products affecting large regions of the fate map, and the entire fate map or parts of it might be shifted either in the anterior or posterior direction. These genes are presumably active prior to the cellular blastoderm when the nuclei still form a syncytium and diffusion is not limited by cell membranes.

The study of the spatial expression of the segmentation genes fushi tarazu [ftz] and hairy [h] has allowed us to investigate these possibilities. Both of these genes are expressed in seven stripes (out of phase with each other) along the antero-posterior axis [Hafen et al. 1984; Ingham et al. 1985], reflecting the overall blastoderm fate map of the developing embryo. Here we analyze the influence of exu− on the fate map by monitoring the expression of ftz and h at the RNA and/or protein level. In addition, the homeotic genes Deformed [Dfd] and caudal [cad] serve as markers for the anterior and posterior ends, respectively. These results are then compared with embryos derived from tor, trk, and bcd females, using immunolocalization of the ftz protein. Our results show clearly that all of these maternal mutations change the blastoderm fate map but have different effects on the fate map at the anterior and posterior poles. At least exu and bcd exert long-range effects on the fate map.

Results

Cuticular phenotypes of the maternal-effect mutants

All the mutants we have used in our study represent a typical phenotype of the respective locus and have been
described in detail elsewhere (Frohnhofer and Nusslein-Volhard 1986; Schupbach and Wieschaus 1986b). Here, we briefly outline these descriptions to facilitate the interpretation of our results. Figure 1A shows a larval cuticle pattern of a wild-type first instar larva, and Figure 1C, the cuticular pattern of a typical larva that has developed from an exuQR/exuV1 transheterozygote mother. The median tooth (labrum) is absent, and the pharyngeal head skeleton is reduced. All the thoracic and abdominal segments are developed normally and cannot be distinguished from wild type. In embryos derived from tor and trk mothers, the median tooth (labrum) is always absent, and the pharyngeal arms of the mouth skeleton, including the dorsal bridge, are reduced. More posterior head structures are always present. At the posterior end

of the same embryos, the structures of the telson (tuft, anal pads, and spiracles with filzk6rper), the eighth, and parts of the seventh abdominal segments are always missing, so that tor or trk embryos end posteriorly, with a patch of denticles corresponding to the anterior part of A7 (Fig. 1B; for detailed description, see Schupbach and Wieschaus 1986b). In Figure 1, D–F, a comparison of the head structures of wild type, exu, and tor larvae is shown. In embryos derived from bcd mothers (strong allele), not only the head structures but also the thorax is missing; they are replaced by a complete telson of opposite polarity. In bcd, the anterior abdomen also shows segment defects (for detailed description, see Frohnhofer and Nusslein-Volhard 1986). We do not know whether the alleles used in this study (see Materials and

Figure 2. Expression of ftz in wild-type and exu embryos, as monitored by in situ hybridization. Bright-field and corresponding dark-field photomicrographs show longitudinal sections of embryos from wild-type (A,B) or exuQR/exuV1 mothers (C,D). (A,C) Embryos of early stage 14; (B,D) embryos of late stage 14. Anterior points to the left. Note the difference between the anterior extension of ftz transcripts in wild-type (A,B) and exu embryos (C,D). The size of the embryos is 0.5 mm.
null alleles; however, they are the strongest alleles available and represent the characteristic phenotype described for each particular locus.

Analysis of exu embryos by monitoring the expression of segmentation genes

Transcripts from the *ftz* gene can be visualized one division prior to the formation of the cellular blastoderm (stage 13; see Foe and Alberts 1983). At this stage, the domain of *ftz* expression is fairly homogeneous and in wild-type embryos is located between 15% and 65% egg length (EL; 0% represents posterior pole of the embryo) [Hafen et al. 1984; Weir and Kornberg 1985; see also Figure 2A]. During the following, the last, nuclear division and the beginning of cellularization, a distinctive striped pattern of the *ftz* expression evolves, resulting by midstage 14 in seven bands of *ftz* transcripts along the antero-posterior axis (Fig. 2B; Hafen et al. 1984). These bands are roughly evenly sized and spaced, with the exception of the most posterior stripe, which is slightly broader. Using antisera against the *ftz* protein, seven distinct bands of cells expressing the *ftz* protein can be detected in late stage-14 embryos along the antero-posterior axis [Fig. 5A; Carroll and Scott 1985].

In embryos derived from *exu* mothers (*exu*QR/*exu*P), we detect a dramatic alteration of *ftz* expression from its very beginning. The domain of *ftz* expression is enlarged at stage 13, and transcripts can be detected between 15% and 85% EL [Fig. 2C], sometimes extending even more anteriorly to approximately 90% EL. The final pattern of *ftz* transcripts is changed as well [Fig. 2D]. As in wild type, seven bands are detectable, but they extend at the anterior pole to 85% EL, and the size and spacing of the two anterior bands are changed markedly. The first band is usually broader (7–9 cells) than in wild type (3–4 cells). The space between the first and second bands is very wide (16–18 cells), and the second band is almost three times wider than in wild type (~9 cells). The posterior five bands (3–7) show no dramatic change concerning their size, but they are shifted slightly to more posterior positions than in wild-type embryos [see Fig. 2D]. These results are confirmed by in situ hybridization on whole-mount embryos. Figure 3 shows hybridization to a wild-type and an *exu*− embryo. Very similar stripe patterns can be observed if embryos derived from *exu* mothers are stained with antisera against the *ftz* protein [Fig. 5D–F; a wild-type control embryo is shown in Fig. 5A]. In *exu*− embryos, the most anterior *ftz* stripe was observed to be of variable size, ranging between 3 and 10 cells [Fig. 5D–F].

To confirm and refine these observations concerning the alterations of the fate map, we have also analyzed the pattern of *h* by in situ hybridization in *exu*− embryos. In stage-14 embryos, the expression of *h* is resolved into a pattern of seven bands, between 20% and 75% EL, that are roughly out of phase with those of *ftz*, and an additional antero-dorsal patch (0 domain) can be detected [see Fig. 4A; Ingham et al. 1985]. In embryos obtained from *exu* mothers, this pattern clearly reveals changes in the blastoderm fate map similar to those de-

Figure 3. Dark-field photomicrographs of whole-mount embryos analyzed by in situ hybridization. (A) Wild-type whole-mount embryo hybridized to a *ftz* probe. (B) Embryo derived from *exu*QR/*exu*P mothers hybridized to the same probe as in A. Anterior points to the left. The bar represents 0.1 mm.

ducted by the *ftz* probe. The seven bands are now expressed between 20% and approximately 95% EL, and the 0 domain is absent [Fig. 4B]. The most anterior of the seven *h* bands now extends to 95% EL, whereas in wild-type embryos, the antero-dorsal patch is present. The following posterior stripes are shifted slightly posteriorly, similar to the *ftz* stripes.

Comparison of exu with other maternal-effect mutants affecting head development

To compare the changes occurring at the cellular blastoderm in embryos derived from *exu* mothers to those of embryos of *tor* or *trk* mothers, we have monitored *ftz* protein distribution. The expression of *ftz* does not extend as far anteriorly in *tor*− or *trk*− as in *exu*− embryos. In both *tor*− and *trk*− embryos, the anterior margin of *ftz* expression lies at approximately 68% EL [Fig. 5B, C; cf. *exu*− embryos, Fig. 5D–F], just posterior to the cephalic furrow, which is a marginal change compared to 65% EL in the wild type. The following bands tend as far anteriorly in *tor*− and *trk*− as in *exu*− embryos. Sometimes in *tor*− embryos, the second band was observed to be one cell broader, and the third band slightly narrower [Fig. 5B]. Comparing the anterior *ftz* pattern in *tor*− and *trk*− embryos with the wild-type pattern, the changes are minute, certainly not as obvious as those seen in *exu*− embryos.

However, we also detected differences in the *ftz* pattern between *tor*− and *trk*− embryos at the posterior end. As mentioned before, bands 2–5 are almost indistinguishable from the wild-type pattern, but posterior to band 5, *tor*− and *trk*− embryos vary both from wild type and from each other. In both cases, band 7, the most pos-
Maternal effect on blastoderm fate map

Figure 4. Expression of h in wild-type [A] and exu− [B] embryos as monitored by in situ hybridization. Bright-field and corresponding dark-field photomicrographs of sagittal sections through stage-14 embryos are shown. Anterior points to the left, and dorsal, up. The size of the embryos is 0.5 mm.

Figure 5. Expression of the ftz protein in embryos at the blastoderm stage derived from transheterozygous tor, trk, and exu mothers. (A) Wild-type control embryo. (B) Embryo from torWK/torPM mother. (C) Embryo from trkRA/trkPM mother. Note the difference at the posterior end between B and C. (D–F) Embryos derived from exuQR/exuPM mothers. Note the variability in the anterior ftz band between the exu− embryos. The anterior end of all embryos points to the left, and dorsal is up. The bar represents 0.1 mm.
terior, is completely absent, which is in agreement with the phenotype of the larval cuticle. Band 6 shows different localization in tor−, as compared with trk− embryos. The tor− pattern is consistent from embryo to embryo. Band 6 resembles a cap at the posterior pole (except for pole cells) and has its anterior margin at approximately 17% EL (Fig. 5B). However, in embryos derived from trk mothers, the anterior border of band 6 begins at approximately 22% EL and extends to 10% EL. The band is about 8–10 cells wide (narrower than in tor embryos), and there is no ftz expression in the most posterior part of the embryo. In addition, there is also some variability among individual tor and trk embryos. Very similar results have been obtained by staining for β-galactosidase (β-Gal) to monitor ftz expression, using the upstream regulatory sequences of ftz to control β-Gal activity (Y. Hiromi and W.J. Gehring, unpubl.; see also next section).

The most extensive anterior deletions (and duplications) of the maternal-effect mutants analyzed are caused by mutations at the bcd locus. In bcd− embryos, the changes in ftz protein accumulation are very prominent [Fig. 6]. Only five to six ftz bands can be observed in these mutant embryos, and only the most posterior stripe has approximately the same size as in wild type, but it is shifted, to some extent, anteriorly as well. The next two anterior bands (most likely corresponding to bands 5 and 6 in wild type) are clearly shifted anteriorly by 10–15% so that the stripe corresponding to band 5 in wild type is located around 40–45% EL in bcd− embryos [Fig. 6]. Between approximately 55% and 73% EL, we always observe one broad region of ftz expression [13–15 cells wide]; this could correspond to a broadened band 3, sometimes fused with band 4 (see below). Most likely, we do not detect any ftz expression that corresponds to bands 1 and 2 in wild type, which is in agreement with the lack of thoracic structures in the larval cuticle on embryos derived from bcd mothers carrying a strong mutant allele [Frohnhöfer and Nüsslein-Volhard 1986]. In a fraction of the embryos, an additional ftz stripe [two to three cells wide] can be resolved between this broad region and the posterior three ftz bands [Fig. 6A], which can be partially missing [Fig. 6B] or completely absent [Fig. 6C]. At the anterior end of bcd− embryos, we detect a new ftz band that most likely corresponds to a duplicated most posterior stripe.

ftz expression in exu double mutants with the zygotic gap loci

It has been shown that 6 kb of ftz upstream regulatory sequences are sufficient to generate the ftz pattern when fused to the bacterial β-Gal gene and transferred by P-element transformation into the Drosophila genome. Activity staining for β-Gal in this fly strain shows a "normal" ftz pattern [Hiromi et al. 1985]. Crossing the transformed lines into a mutant background then makes it possible to analyze the ftz pattern in particular mutants (Y. Hiromi and W.J. Gehring, in prep. and unpubl.).

We have used this approach to analyze the effects of maternal and zygotic gap genes in exu− embryos on ftz expression. Two maternal-effect genes of the grandchildless-knirps group, namely staufen [stau] and vasa [vas] [Schüpbach and Wieschaus 1986b], and the zygotic gap genes hunchback [hb; Lehmann and Nüsslein-Volhard 1987] and knirps [kni; Nüsslein-Volhard and Wieschaus 1980] have been analyzed in combination with exu− mutants. stau− and vas− embryos abolish (almost) completely the development of abdominal structures and, in addition, in stau− embryos, anterior head structures are also deleted [Schüpbach and Wieschaus 1986b]. hb is mainly required for correct gnathal and thoracic development and for formation of abdominal segments A7–A8 [for detailed phenotypic description, see Lehmann and Nüsslein-Volhard 1987] and kni is required for the development of abdominal segments A2–A7 [Nüsslein-Volhard and Wieschaus 1980].

The β-Gal activity staining pattern in exu− embryos shows the same alterations in relation to the wild-type pattern as observed by in situ hybridization and/or anti-
Maternal effect on blastoderm fate map

body detection [Fig. 7B; cf. β-Gal staining in wild-type embryos, Fig. 7A].

The patterns observed in exu,kni and exu,hb double mutants demonstrate clearly that both hb and kni have an additive effect to exu on ftz expression, leading essentially to the same changes of the ftz pattern in exu+ and exu− backgrounds, except for the general shift toward the anterior pole of the two anterior bands in exu− embryos [Fig. 7D,F]. The kni− pattern (stripes 3–6, fused to one broad band) and the hb− pattern (stripes 1–3 and

Figure 7. Expression of β-Gal under ftz control elements in mutant embryos. The embryos are all in gastrula stages; anterior always points to the left, and dorsal, up. [A] Wild-type control embryo. The ftz stripes are numbered from anterior to posterior 1–7. [B] Embryo derived from exuQR/exu P1 mother. [C] Homozygous kniuDaS embryo from heterozygous balanced parents. [D] Embryo derived from exuQR/exu P1 mother, having a kniuDaS/knuuDaS genotype. [E] Homozygous hb14921/hb14921 embryo from heterozygous balanced parents. [F] Embryo derived from exuQR/exu P1 mothers having a hb14921 genotype. [B–F] The ftz stripes are numbered according to A. (E,F): anterior patch, [A], is located where stripes 1–3 are found in wild-type embryos. [G] Embryo derived from exuQR/exu P1; stauHL/stauHL mother. (H) Embryo derived from exuQR/exu P1; vasPS/vasPS mother. The horizontal bar represents 0.1 mm.
6–7, fused to broad regions of expression) remain the same [Fig. 7C,E, respectively]. Very similar results for the two zygotic mutants have been published previously with antibody staining (Carroll and Scott 1986). However, in double mutants of exu and stau [Fig. 7G] and exu and vas [Fig. 7H], the ftz staining patterns cannot be explained by either additive or epistatic effects. Embryos derived from exu,stau females show ftz expression all over the embryo between 20% and 80% EL [Fig. 7G], and in embryos derived from exu,vas mothers, ftz is expressed in two patches at 20–30%, and 70–80% EL [Fig. 7H]. Using the same constructs in double mutants with tor and stau or tor and vas, the β-Gal staining patterns under ftz control elements can be explained by an additive effect (Y. Hiromi and W.J. Gehring, unpubl.). Similar effects for both types of double mutants have been observed by the analysis of the larval cuticle (Schübich and Wieschaus 1986b).

Expression of Dfd and cad in exu− embryos

To analyze the changes at the anterior end in embryos derived from exu females, namely the extent of the reduction of head structures and of the posterior duplication, we also used Dfd, a homeotic gene required for head development, and cad, a homeotic gene expressed in the most posterior abdominal region and in the posterior midgut, as probes for in situ hybridization.

Figure 8 shows in situ distribution of Dfd transcripts in embryos derived from wild-type and exu mothers. In wild-type embryos, Dfd hybridizes to one band of approximately six cells at the position of the cephalic furrow [Fig. 8A; McGinnis et al. 1984; Chadwick and Mcginnis 1987]. This partially overlaps with the anlagen of the mandibular and maxillary segments. In embryos derived from exu females, the band of Dfd expression is shifted toward the anterior pole and lies at about 90–95% EL [Fig. 8B], showing that the anlagen for the posterior head segments lie much more anteriorly than in wild type. This shift persists throughout the embryonic development of exu− embryos [data not shown].

Figure 9 shows cad RNA localization during early and late embryogenesis. cad RNA distribution during early embryogenesis is not affected in embryos derived from exu mothers. The RNA forms an antero-posterior gradient in late syncytial blastoderm, as seen in wild-type embryos [Fig. 9A] (Levine et al. 1985; Mlodzik et al. 1985; Mlodzik and Gehring 1987). After cellularization, transcripts are detected in one posterior band (four to five cells) at the very end of the germ band, as in wild-type embryos (Fig. 9B). At the germ-band extension stage, cad transcripts can be detected not only in ectodermal tissue, the most posterior abdominal segment and the hindgut primordia, but also in endodermal tissue, the posterior midgut rudiment (Levine et al. 1985; Mlodzik et al. 1985). In embryos derived from exu females, the endodermal cad expression starts to be duplicated at the anterior pole during the same developmental stage and becomes more pronounced after germ-band retraction. Figure 9D shows an exu− embryo about 14 hours after fertilization, where two domains of cad RNA in the endoderm can be detected. A comparison to a wild-type embryo of approximately the same stage demonstrates this abnormal duplication in the anterior part [Fig. 9C,D].

Conclusions

It has been shown previously that maternal mutants of the grandchildless-knirps group, which affect the formation of the abdomen, have similar abdominal deletions but show very different alterations of the ftz pattern [Carroll et al. 1986]. Here we demonstrate that mutations in the maternal-effect genes, exu, tor, trk, and bcd, change the fate map at the blastoderm stage. The phenotypic deletions in the larval head in exu− embryos and tor− or trk− embryos are similar, although not identical; the observed changes in the anterior half of the blastoderm fate map, however, are completely different. tor− and trk− embryos show only a marginal anterior shift of the most anterior ftz band from 65% EL in wild type to

Figure 8. Localization of Dfd transcripts in blastoderm embryos. Bright- and corresponding dark-field photomicrographs of longitudinal sections are shown. [A] Wild type. [B] Embryo from exuΔexu+ mother. Anterior points to the left. The size of the embryos is 0.5 mm.
68% EL in the mutants; exu leads to a shift up to 85–90% EL. This clear difference is not obvious from the larval phenotype but is certainly more obvious by comparing gastrulation patterns at the anterior end (Schüpbach and Wieschaus 1986b). Absence of exu activity or gene product(s) shows a more pronounced long-range effect on the blastoderm fate map than the other two genes, that is, the expression of Dfd is effected severely in exu embryos (Fig. 8). exu activity also seems to be required directly or indirectly for the induction of an anterior midgut invagination. Schüpbach and Wieschaus (1986b) have shown that a posterior midgut invagination replaces the anterior one in exu embryos, and in Figure 9 we show that cad is expressed not only in posterior regions (in the ecto- and endoderm) of exu embryos but in the anterior endoderm as well.

The long-range effects on the blastoderm fate map in exu embryos can be summarized as follows: Posterior head and thoracic structures extend more anteriorly, almost to the very anterior end of the embryo; in contrast, the abdominal pattern (A1 and more posterior structures) is compressed in the posterior half of the embryo. In some embryos, this compression of abdominal structures leads to the lack of resolution of the posterior ftz bands, for example, bands 6 and 7 are partially fused (Fig. 5D). This finding correlates with the observation that minor abdominal defects can be found in some exu embryos at the end of embryogenesis (Schüpbach and

Figure 9. Distribution of cad transcripts in embryos derived from exu mothers. Bright-field and corresponding dark-field photomicrographs are shown. [A] Stage-14 embryo. [B] Early gastrula. [C,D] Embryos after germ-band retraction (~14 hr after fertilization). [C] Wild-type control embryo. [D] exu embryo. Anterior points to the left, and dorsal, up. The size of the embryos is 0.5 mm. (pmg) Posterior midgut.
Wieschaus 1986b). The type of long-range alterations of the fate map in exu- embryos might suggest that exu could be involved in maintaining or localizing anterior determinants or gene product[s] at the anterior end. In the exu- mutant this would not be possible any more, so that this [these] product[s] can diffuse posteriorly, being present in a broader region of the embryo but at lower concentrations, which might be responsible for extension of thoracic values and compression of the abdominal region. Although we do not detect clear differences in cad expression at the RNA level between wild-type and exu- embryos prior to germ-band extension (Fig. 9), we do find some differences for the cad protein distribution in exu- embryos [M. Mlodzik and W.J. Gehring, in prep.], which reflect and confirm the alterations of ftz protein distribution. These effects were not observed in embryos derived from trk or tor mothers.

The phenotypic analysis of bcd- embryos shows the most dramatic changes in the overall body plan of the embryo, particularly in the anterior region [Frohnhöfer and Nüsslein-Volhard 1986], and in parallel, the ftz pattern alterations are also the most severe. Not only are there five to six ftz bands instead of seven, but the anterior band in bcd- embryos is also a duplicated posterior one. This can also be visualized with cad antibody staining [M. Mlodzik and W.J. Gehring, in prep.], where the telson duplication can be detected as early as the cellular blastoderm in the form of a second band of cad protein close to the anterior pole. The differences we observe in the ftz staining pattern within bcd- embryos can be aligned with the detected phenotypic defects; both show deletions or fusions of anterior abdominal segments [Frohnhöfer and Nüsslein-Volhard 1986] and the fragment or absence of a sixth ftz band in the abdominal region (Fig. 6). In addition, embryos derived from bcd females not only show duplication of posterior ectoderm at the anterior pole but also exhibit a very pronounced long-range effect in the abdomen, shifting almost all remaining ftz bands anteriorly. Thus, the lack of bcd- activity allows an anterior shift or expansion of abdominal segments, suggesting that in addition to specifying anterior structures, bcd- activity also inhibits development of abdominal segments [structures] in the anterior half of the embryo [Frohnhöfer and Nüsslein-Volhard 1986]. The finding that the bcd gene shares homology to the homeo box [Frigero et al. 1986] suggests its action being rather direct in the control of development of the head and anterior structures.

The double mutant analysis of exu with the zygotically active gap genes, for example, hb and kni (Fig. 7C–F), indicates that these genes act independently of exu on the altered fate map [cf. Fig. 7C and E with D and F]. However, this is not the case in double mutants of exu with genes from the maternal grandchildless-knirps group, stau, or vas. The staining patterns of these double mutants show neither epistatic nor additive effects but, rather, reflect synergistic interactions between these genes (Fig. 7G and H).

To our surprise, we also detected differences in the posterior ftz pattern between embryos derived from tor and trk females, although analysis of the larval cuticle shows no differences between tor- and trk- embryos. In both mutants, the embryos end with a patch of denticles corresponding to A7 [Schüpbach and Wieschaus 1986b, Fig. 1B], and in both mutants the most posterior wild-type ftz band (7) is completely absent. The sixth ftz band in wild-type embryos overlaps with the border between A6 and A7, being expressed in posterior A6 and anterior A7, corresponding approximately to parasegment 12 [Martinez-Arias and Lawrence 1985]. This expression can be correlated with the pattern in tor- embryos, where the sixth ftz band extends to the very posterior end. However, in embryos derived from trk mothers, the most posterior end (~10%) of the embryo does not express ftz, and the sixth band is anterior to the position in tor- embryos (Fig. 5), which would lead one to expect the formation of a complete denticle band in A7 and possibly naked cuticle at the posterior end in trk- embryos. This, however, has not been observed and suggests that secondary alterations occur after the blastoderm stage.

So far, all the maternal mutants analyzed [Carroll et al. 1987; this paper, Y. Hiromi and W.J. Gehring, unpub.] show a changed ftz pattern at the blastoderm stage. However, these pattern changes are not the same, even if the mutant cuticular phenotypes are very similar or identical, indicating that perhaps the same or similar phenotypes can arise through mutations in different molecular processes. Cloning and molecular analysis of these maternally active genes should provide more information on their interactions with the zygotically active genes, like ftz, and also on interactions between the maternal genes themselves. Our observations on exu- and bcd- embryos clearly show that long-range interactions take place between the maternal gene products that specify the spatial coordinates of the egg.

Materials and methods

Fly stocks and DNA clones

Mutant flies were kept at 25°C on standard Drosophila food. We have used two alleles of exu, namely exuQD and exuPI, two of tor, torWK and torPM, and two of trk, trkRA and trkPI, all generously provided by T. Schüpbach and E. Wieschaus (1986b), and the allele bcdPI for bcd, kindly provided by C. Nüsslein-Volhard [Frohnhöfer and Nüsslein-Volhard 1986]. In addition, for double mutants with exu, we have used the stau and vas alleles, stauH3 and vasPG [Schüpbach and Wieschaus 1986b], the hb allele, hb149PI [Lehmann and Nüsslein-Volhard 1987], and the knirps allele, kni114k [Nüsslein-Volhard and Wieschaus 1980].

The following DNA clones have been used for in situ hybridization: cDNA clone p5PF1 for ftz; D2P8, a cDNA clone of h [kindly provided by D. Ish-Horowicz]; p99 for Dfd [McGinnis et al. 1984], and pSC335 for cad [Mlodzik et al. 1985].

Preparation of embryos and in situ hybridization

Embryos were collected from transheterozygous mothers of the two exu alleles for the appropriate time at 25°C, washed, and dechorionated in 3% sodium—hypochlorite for 2–3 min. Young embryos, 0–8 hr old, were prefixed, demembranated, postfixed, and embedded, as described by Akam and Martinez-Arias.
Frozen sections were prepared, pretreated prior to hybridization, and hybridized, as described by Hafen et al. [1983]. Probes for in situ hybridization were nick-translated with 32P-labeled nucleotides, according to Hafen et al. [1983].

For in situ hybridization to whole-mount embryos, embryos were collected, washed, and dechorionated, as described above. Embryos were then fixed, and the vitelline membrane was removed, as described by Mitchison and Sedat [1983]. Subsequently, embryos were fixed in 4% paraformaldehyde in PBS for 20 min, washed twice for 5 min in PBS, and pretreated for hybridization, as described for frozen sections [Hafen et al. 1983], except that heat treatment (70°C in 2 x SSC) was omitted and all washes were performed in PBS. Embryos were hybridized in an Eppendorf tube on a turning wheel at 37°C in the hybridization buffer, as described by Hafen et al. [1983], for 16–20 hr, washed for 6–8 hr at 37°C in PBS (on turning wheel), and dehydrated by washing several times in ethanol. Following dehydration, embryos were air-dried on subbed slides for approximately 2 hr, covered with emulsion, and exposed for 3–4 weeks.

Immunofluorescence and β-Gal activity assay on whole-mount embryos

Embryos were collected from transheterozygous mutant mothers for the appropriate time at 25°C, washed, and dechorionated, as described for the in situ hybridization. They were then fixed and devitellinized, as described by Deguin et al. [1984], and permeabilized in a PBS solution containing 0.05% each of Triton X-100, NP-40, deoxycholate [DOC], Saponin, and 2 mg/ml bovine serum albumin [BSA]. The antiserum was diluted into PBS containing 5% swine serum, 0.1% Triton X-100, and 0.02% sodium azide. One hundred microliters of a 1 : 50 or 1 : 100 dilution were reacted with 100–200 embryos for 2 hr at room temperature or 4°C overnight. All washes and antibody incubations were performed in this solution. After incubation with the primary antibody, the embryos were washed for 90 min at room temperature, incubated with a 1 : 50 dilution of a swine–anti-rabbit serum coupled to FITC [purchased from Dakopatts] for 90 min, and washed again for 90 min at room temperature. After the final wash, embryos were mounted in Gelvatol [Rodriguez and Deinhardt 1960]. Polyclonal antisera against the ftz full-length protein, expressed and purified from Escherichia coli, were raised in rabbits [H.M. Krause and W.J. Gehring, in prep.].

For β-Gal activity staining, embryos were collected, pretreated, and fixed, as described by Hiromi et al. [1985], and staining was performed using staining solution as described by Simon et al. [1985].

Acknowledgments

We are very grateful to Trudi Schüpbach, Eric Wieschaus, and Christiane Nüsslein-Volhard for generously providing us with the mutant stocks, and David Ish-Horowicz for providing the h probe. We thank Greg Gibson for help with cuticle preparations and comments on the manuscript and Erika Wenger-Marquardt for the efficient typing of it. This work was supported by the Swiss National Science Foundation and the Kantons of Basel. H.M.K. was supported by a grant from the Natural Sciences and Engineering Research Council of Canada; C.M. De M., by the Bourse déduites de France.

References

Akam, M.E. and A. Martinez-Arias. 1985. The distribution of Ultrabithorax transcripts in Drosophila embryos. EMBO J. 4: 1689–1700.

Anderson, K.V. and C. Nüsslein-Volhard. 1984. Information for the dorsal-ventral pattern of Drosophila is stored as maternal mRNA. Nature 311: 223–227.

Boswell, R.E. and A.P. Mahowald. 1985. Tudor, a gene required for assembly of the germ plasm in Drosophila melanogaster. Cell 43: 97–104.

Baker, A.L. 1966. Bicaudal, a genetic factor which affects the polarity of the embryo in Drosophila melanogaster. J. Exp. Zool. 161: 221.

Carroll, S.B. and M.P. Scott. 1985. Localization of the fushi tarazu protein during Drosophila embryogenesis. Cell 43: 47–57.

Carroll, S.B. and M.P. Scott. 1986. Zygotically active genes that affect the spatial expression of the fushi tarazu segmentation gene during early Drosophila embryogenesis. Cell 45: 113–126.

Carroll, S.B., G.M. Winslow, T. Schüpbach, and M.P. Scott. 1986. Maternal control of Drosophila segmentation gene expression. Nature 323: 278–280.

Chadwick, R. and W. McGinnis. 1987. Temporal and spatial distribution of transcripts from the Deformed gene of Droso- phila. EMBO J. 6: 779–789.

Chan, L.-N. and W.J. Gehring. 1971. Determination of blastoderm cells in Drosophila melanogaster. Proc. Natl. Acad. Sci. 68: 2217–2221.

Deguin, R., H. Saumweber, and J.W. Sedat. 1984. Proteins shifting from the cytoplasm into the nuclei during early embryogenesis of Drosophila melanogaster. Dev. Biol. 104: 37–48.

Foe, V.E. and B.M. Alberts. 1983. Studies of nuclear and cytoplasmic behaviour during the five mitotic cycles that precede gastrulation in Drosophila embryogenesis. J. Cell Sci. 61: 31–70.

Frigerio, G., M. Burri, D. Bopp, S. Baumgartner, and M. Noll. 1986. Structure of the segmentation gene paired and the Drosophila PRD gene set as part of a gene network. Cell 47: 735–746.

Frohnhofer, H.G. and C. Nüsslein-Volhard. 1986. Organization of anterior pattern in the Drosophila embryo by the maternal gene bicoid. Nature 324: 120–125.

García-Bellido, A. 1975. Genetic control of wing disc development in Drosophila. In Cell patterning, Ciba Foundation Symposium 29, p. 61. Elsevier, Amsterdam.

Hafen, E., M. Levine, R.L. Gerber, and W.J. Gehring. 1983. An improved in situ hybridization method for the detection of cellular RNAs in Drosophila tissue sections and its application for localizing transcripts of the homeotic Antennapedia gene complex. EMBO J. 2: 617–623.

Hafen, E., A. Kuroiwa, and W.J. Gehring. 1984. Spatial distribution of transcripts from the segmentation gene fushi tarazu during Drosophila embryonic development. Cell 37: 833–841.

Hiromi, Y., A. Kuroiwa, and W.J. Gehring. 1985. Control elements of the Drosophila segmentation gene fushi tarazu. Cell 43: 603–613.

Ingham, P.W., K.R. Howard, and D. Ish-Horowicz. 1985. Transcription pattern of the Drosophila segmentation gene hairy. Nature 318: 439–445.

Lawrence, P.A. and G. Morata. 1977. The early development of mesothoracic compartments in Drosophila: An analysis of cell lineage and fate of assessment of method. Dev. Biol. 56: 40–51.

Lehmann, R. and C. Nüsslein-Volhard. 1986. Abdominal seg- mentation, pole cell formation, and embryonic polarity re- quire the localized activity of oskar, a maternal gene in Dro- sophila. Cell 47: 141–152.
Mlodzik et al.

Lehmann, R. and C. Nüsslein-Volhard. 1987. hunchback, a gene required for segmentation of an anterior and posterior region of the Drosophila embryo. Dev. Biol. 119: 402–417.

Levine, M., K. Harding, C. Wedeen, H. Doyle, T. Hoey, and H. Radomska. 1985. Expression of the homeo box gene family in Drosophila. Cold Spring Harbor Symp. Quant. Biol. 50: 209–222.

Lobs-Schardin, M. 1982. Dicephalic—A Drosophila mutant affecting polarity in follicle organization and embryonic patterning. Wilhelm Roux's Arch. Dev. Biol. 191: 28–36.

MacDonald, P.M. and G. Struhl. 1986. A molecular gradient in early Drosophila embryos and its role in specifying the body pattern. Nature 324: 537–545.

Martinez-Arias, A. and P.A. Lawrence. 1985. Parasegments and compartments in the Drosophila embryo. Nature 313: 639-642.

McGinnis, W., M.S. Levine, E. Hafen, A. Kuroiwa, and W.J. Gehring. 1984. A conserved DNA sequence in homeotic genes of the Drosophila Antennapedia and bithorax complex. Nature 308: 428–433.

Mitchison, T.J. and J.W. Sedat. 1983. Localization of antigenic determinants in whole Drosophila embryos. Dev. Biol. 99: 261–264.

Mlodzik, M. and W.J. Gehring. 1987. Expression of the caudal gene in the germ line of Drosophila: Formation of an RNA and protein gradient during early embryogenesis. Cell 48: 465–478.

Mlodzik, M., A. Fjose, and W.J. Gehring. 1985. Isolation of caudal, a Drosophila homeo box-containing gene with maternal expression, whose transcripts form a concentration gradient at the preblastoderm stage. EMBO J. 4: 2961–2969.

Mohler, J. and E.F. Wieschaus. 1986. Dominant maternal-effect mutations of Drosophila melanogaster causing the production of double abdomen embryos. Genetics 112: 803–822.

Nüsslein-Volhard, C. 1977. Genetic analysis of pattern formation in the embryo of Drosophila melanogaster: Characterization of the maternal-effect mutant bicaudal. Wilhelm Roux’s Arch. Dev. Biol. 183: 249–268.

Nüsslein-Volhard, C. 1979. Maternal effect mutations that alter the spatial coordinates of the embryo of Drosophila melanogaster. In Determination of spatial organization (ed. S. Subtelny and I.R. Kornberg), p. 185. Academic Press, New York.

Nüsslein-Volhard, C. and E. Wieschaus. 1980. Mutations affecting segment number and polarity in Drosophila. Nature 287: 795–801.

Rodriguez, J. and F. Deinhardt. 1960. Preparation of a semipermanent mounting medium for fluorescent antibody studies. Virology 12: 316–317.

Schüpbach, T. and E. Wieschaus. 1986a. Germline autonomy of maternal-effect mutations altering the embryonic body pattern of Drosophila. Dev. Biol. 113: 443–448.

——. 1986b. Maternal effect mutations altering the anterior-posterior pattern of the Drosophila embryo. Wilhelm Roux’s Arch. Dev. Biol. 195: 302–317.

Simon, J.A., C.A. Sutton, R.B. Lobell, R.L. Glaser, and J.T. Lis. 1985. Determinants of heat shock-induced chromosome puffing. Cell 40: 805–817.

Van der Meer, J. 1977. Optical clean and permanent whole-mount preparations for phase contrast microscopy of cuticular structures of insect larvae. Dros. Inf. Serv. 52: 160.

Weir, M.P. and T. Kornberg. 1985. Patterns of engrailed and fushi tarazu transcripts reveal novel intermediate stages in Drosophila segmentation. Nature 318: 433–439.

Wieschaus, E. and W.J. Gehring. 1976. Clonal analysis of primordial disc cells in the early embryo of Drosophila melanogaster. Dev. Biol. 50: 249–263.
The influence on the blastoderm fate map of maternal-effect genes that affect the antero-posterior pattern in *Drosophila*

Genes Dev. 1987, 1:
Access the most recent version at doi:10.1101/gad.1.6.603

References

This article cites 38 articles, 4 of which can be accessed free at:
http://genesdev.cshlp.org/content/1/6/603.full.html#ref-list-1

License

Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here.