Abstract
Brucellosis is a multisystemic zoonosis caused by the bacteria of the genus Brucella particles or direct contact with infected animal parts. Due to the involvement of various organ systems, its clinical spectrum is wide. Neurobrucellosis occurs in 3-13% of all brucellosis cases and rarer in children. Involvement of various cranial nerves may be seen very rarely as a component of neurobrucellosis. We present here a case of a 3-year-old girl with sixth cranial nerve palsy that occurred during treatment for brucellosis. Our patient is the first pediatric neurobrucellosis case with isolated 6th nerve palsy in English-language literature. Neurobrucellosis should be considered in the differential diagnosis of patients of any age with unexplained neurological symptoms living in endemic regions.

Keywords
Pediatric, Neurobrucellosis, Abducens Nerve Palsy
Introduction
Brucellosis is a multisystemic zoonosis caused by the bacteria of the genus Brucella. It is a worldwide health concern but endemic in certain geographic parts of the world such as the Mediterranean countries, Central Asia, Middle East and certain regions of South America. Brucellae are facultative intracellular, non-motile, Gram-negative coccobacilli. Transmission is through consumption of unpasteurised milk and milk products, inhalation of aerosolised particles or direct contact with infected animal parts [1]. Due to the involvement of various organ systems, neurobrucellosis occurs in 3-13% of all brucellosis cases. Neurobrucellosis can have a variety of clinical and radiological manifestations such as acute, subacute or chronic meningitis, meningoencephalitis, meningovascular complications, multifocal white matter disease, intradural or epidural abscesses, arachnoiditis, ruptured myotic aneurysm, hydrocephalus, presudotumor cerebri, parkinsonism, polyradiculopathy (especially lumbosacral), mononeuropathy, compressive myelopathy due to spondylitis, cerebellar syndrome, calcification in basal ganglia, 2nd, 6th, 7th and 8th cranial nerve palsies [2-4]. Involvement of various cranial nerves may be seen very rarely as a component of neurobrucellosis. We present here a 3-year-old girl with sixth cranial nerve palsy that occurred during treatment for brucellosis.

Case Report
She was initially admitted to another hospital 10 days before admission to our clinic with fever, vomiting, fatigue. On the fifth day of treatment, patient was referred to our clinic because of developing bilateral strabismus. Her personal history revealed that they as a family consumed cheese prepared from unpasteurized milk and that her grandmother had received treatment for brucellosis too. Her physical examination was normal except findings of bilateral abducens nerve palsy. She developed strabismus, she was unable to fixate her eyes on anything and she had difficulty reaching objects and grasping them. Her blood leucocyte count was 15.200/mm³ (the differential 44% neutrophiles, 52% lymphocytes, 4% monocytes), hemoglobin 11.2 g/L, thrombocyte count 369.000/mm³, erythrocyte sedimentation rate 23 mm/hour and C-reactive protein level was 4.8 mg/dl (0-5 mg/dl). Her blood chemistry was normal. Serum agglutination test was positive for Brucella at 1/320. Her blood culture was negative. Her personal history revealed that they as a family consumed cheese prepared from unpasteurized milk and that her grandmother had received treatment for brucellosis too. The patient was diagnosed with neurobrucellosis due to evident brucella infection and concurrent 6th nerve palsy. She was started on trimethoprim-sulphamethoxazole, rifampicin, cephraxione and gentamicin. She was consulted with ophthalmology department. She had no papillary stasis on fundus examination. Her examination was normal except findings of bilateral abducens nerve palsy. Cranial Magnetic Resonance Image (MRI) was normal. Lumbar puncture was performed. The cerebral spinal fluid (CSF) was colorless. Microscopic examination of CSF showed 10 cells per mm³. CSF glucose and protein levels were normal. CSF culture abd brucella agglutination tests yielded negative results. After three days of treatment, her eye movements were completely normal. Her family was screened for brucellosis too. Her mother and 13-month-old brother had brucellosis too and were given treatment. She was hospitalized for two weeks and sent home with oral rifampicin and Trimethoprim Sulphamethoxazole (TMP-SMX) treatment due for 3 months. She was complaint-free and her physical examination was normal at one-month follow-up visit.

Our patient is the first pediatric neurobrucellosis case with isolated 6th nerve palsy in English-language literature. Neurobrucellosis should be considered in the differential diagnosis of patients of any age with unexplained neurological symptoms living in endemic regions.

Discussion
Brucellosis is an infectious disease with a wide clinical spectrum that can involve any organ system in human body. Neurobrucellosis is the involvement of central nervous system in brucellosis. It is either due to direct invasion by bacteria or autoimmune reactions to bacterial toxins [5,6]. Neurobrucellosis can present itself in various clinical manifestations as acute, subacute or chronic meningitis, meningoencephalitis, meningovascular complications, multifocal white matter disease, intradural or epidural abscess, arachnoiditis, ruptured myotic aneurysms, hydrocephalus, parkinsonism, polyradiculopathy (especially lumbosacral), mononeuropathy, compressive myelopathy due to spondylitis, myelitis, cerebellar syndrome, calcification of basal ganglia, 2nd, 6th, 7th, 8th cranial nerve palsies [1,7,8]. Isolated cranial nerve involvement is especially rare, with 7th cranial nerve being the most common [9,10]. 6th cranial nerve is the most frequently involved cranial nerve in case reports from Turkey, followed by 7th and 8th [11,12]. There are a few case reports of isolated cranial nerve involvement due to brucellosis in adults in the literature [13-16]. Neurological complications of brucellosis in adults have been classified in two groups. The first is an acute toxic-febrile state, usually non-specific (e.g. headache and neuropsychiatric manifestations) that occur in systemic (bacteraemic or Brucella serological tests are positive) forms of the disease, and the second is that of actual invasion and localization of the pathogen in the CNS [9]. Our case seemed to be in the first group because she had high grade fever, vomiting and fatigue when 6th cranial nerve palsy developed, although the pathogen could not be shown in cerebrospinal fluid. In a case published by Yılmaz et al, the patient developed 6th nerve palsy on the eleventh day of treatment and no pathogen could be shown in CSF [13]. The inability to show any pathogen in CSF may be due to patients having received treatment in advance. Neurobrucellosis is diagnosed by either serological tests and/or culture positivity. Neurobrucellosis is diagnosed by showing the pathogen in CSF culture, the presence of antibodies in CSF and presence of meningeal involvement [17]. But it is not always possible to show the pathogen in CSF. Ceran et al. have taken four criteria into consideration for diagnosis of neurobrucellosis in a study of 18 patients. These criteria were presence of neurological symptoms in the absence of another disease, isolation of bacteria from blood and other body, positivity of standard tube agglutination (STA) titers in serum and/or cerebrospinal fluid (CSF) and presence of CSF findings revealing chronic meningitis (lymphocytic pleocytosis, increased protein level, decreased glucose level). Presence of any of these four criteria was sufficient for the diagnosis [18]. In our case clinical history, symptoms and laboratory findings with the presence of 6th cranial nerve palsy supported the diagnosis of neurobrucellosis. However, CSF agglutination test and culture were both negative. There is no consensus on optimal treatment regimen of neurobrucellosis. Different antibiotic combinations and durations...
of treatment were reported in different studies. Treatment with combinations of two or three antibiotics for at least three months is advised. Rifampicin, TMP-SMX, ceftriaxone and aminoglycosides are the preferred antibiotics as combinations [17,18].

Our patient was diagnosed with brucellosis under the light of clinical history, physical examination findings and laboratory results. Accompanying 6th nerve palsy led to the diagnosis of neurobrucellosis. The patient was given ceftriaxone, rifampicin and TMP-SMX. Ceftriaxone treatment was continued for fourteen days. Rifampicin and TMP-SMX combination treatment was planned to be continued for a total of three months. On first month follow-up, the patient was free of any complaints. Neurobrucellosis is rare in adults, but even rarer in children. And there are a few adult cases with abducens nerve palsy due to neurobrucellosis, but no pediatric cases. Our patient is the first pediatric neurobrucellosis case with isolated 6th nerve palsy. Finally, neurobrucellosis should be considered in the differential diagnosis of patients of any age with unexplained neurological symptoms living in endemic regions.

References
1. Young EJ. Brucella species. In: Mandell GL, Bennett JE, Dolin R (eds). Principles and practice of infectious disease (5th ed). Vol. 2. Philadelphia: Churchill Livingstone, 2000:2386-93.
2. Al Deeb S, Yacob B, Sharif HS, Phdike JG. Neurobrucellosis: Clinical characteristics, diagnosis and outcome. Neurology, 1989; 39: 498-501.
3. Young EJ. Brucella species. Mandell GL, Bennett JF, Dolin R (eds). In: Principles and Practice of Infectious Diseases (6th ed). Philadelphia: Churchill Livingstone, 2005; 2669-74.
4. Lubani MM, Dudin KI, Araj GF, Manandhar DS. Neurobrucellosis in children. Pediatr Infect Dis J. 1989; 8:79-82.
5. Karabay O, Yörük M. Brucella Enfeksiyonları. 3. Türkiye Zoonotik Hastalıklar Sempozyumu, 19 Ekim 2012, Ankara.
6. Okuyucu EE, Yılmazer S, Dede HÖ, Melek İ., Duman T. Bir Nörobruselloz Olgusu. Journal of Turkish Cerebrovascular Diseases 2011;17:2; 73-6.
7. Shakir RA, Al-Din ASN, Araj GF, Lulu AR, Mouas AR. Clinical categories of neurobrucellosis Brain 1987,110:213 -23.
8. Mclean DR, Russel N, Khan YM. Neurobrucellosis.Clinical and therapeutic features. Clin Infect Dis. 1992; 15:582-90.
9. Pascau J, Combarros O, Polo JM, Bericano J. Localized CNS brucellosis report of 7 cases. Acta Neurol Scand 1988;78:282-9.
10. Gouider R, Melini M, Gargouri A, el Bahri F, et al. Neurological manifestations indicative of brucellosis. Rev Neurol 1999;155:215-8.
11. Yetkin MA, Bulut C, Erdinc FS, Oral B, Tulek N. Evaluation of the clinical presentations in neurobrucellosis. Int J Infect Dis 2006;10:446-52.
12. Bodur H, Erbay A, Akinci E,Colpan A, Cevik MA, Balaban N. Neurobrucellosis in an endemic area of brucellosis. Scand J Infect Dis 2003;35:94 –7.
13. Yilmaz M, Ozaras R, Mert A, Ozturk R, Tabak F. Abducens nerve palsy during treatment of brucellosis. Clin Neurol Neurosurg 2003;105:218-20.
14. Karakumun Goksel B, Yerdelen D, Karatas M, Peit A, Demiroglu YZ, Kizilkilic O, et al. Abducens nerve palsy and optic neuritis as initial manifestation in brucellosis. Scand J Infect Dis 2003;35:94 –7.
15. Esra Özkavukcu, Zeynep Tuncay, Ferda Selçuk, İlhan Erden An unusual case of neurobrucellosis presenting with unilateral abducens nerve palsy: clinical and MRI findings Diagn Interv Radiol 2009; 15:236–8.
16. Sahin E,Yilmaz A,Ersoz G,Lügaz M, and Kayar A, Multiple Cranial Nerve Involvement Caused by Brucella melitensis South Med J.2009;102:855-7.
17. Işıkay S, Yılmaz K. Brucellosis in a Child with Febrile Convulsion: A Case Report. J Pediatr Inf 2011;5:26-8.
18. Cihan N,Turkoglu R, Erdem I, Inan A, Engin D, Tizeli H et al. Neurobrucellosis;