A Mathematical Programming Approach for Product Selection with Multiple Criteria

U Janjarassuk¹ and S Puengrusme²

¹ Faculty of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
² Stamford International University, Bangkok 10110, Thailand

E-mail: udom.ja@kmitl.ac.th

Abstract. Product selection is very important for customer who looks for functionalities of the product. To get the best product with the available budget, multiple criteria should be considered simultaneously while making decision. In this paper, we propose a multi-objective decision model for selecting the most suitable product for the customers. The model is tested by using a real case of power unit selection in studio recording, and the results are presented.

1. Introduction
The decision making of choosing a right product for the customer can be difficult due to multiple factors involved in the decision process. For examples, the variety of product, the decision making criteria, the available budget, the product requirement, and etc. Some of these factors are often conflict to each other. For example, a feature-rich product is usually more expensive.

In general, the decision making process is commonly divided into seven steps. It starts with identifying the decision, gathering the relevant information, and identifying the alternatives. The next steps are evaluating the evidence and then choosing among alternatives. Finally, the corresponding action is taken, and the result of the decision is reviewed.

Decision making tools can be used to simplify the decision making process and to help decision makers for making better decision. Decision making tools are widely used in many areas. Among them, the decision tree is probably the most commonly used method in decision analysis. It can be used to help decision makers identify the most valuable choice to the goal. The decision tree uses a flowchart-like structure to track for the possible decisions and their consequences. Each option is "tested" to evaluate its expected value (or utility) and the option with the highest expected value is selected. The analytic hierarchy process (AHP) and the analytic network process (ANP) are widely used for multi-criteria decision making [1] in different areas such as strategic planning [2], material or equipment selection [3,4], aircraft type selection [5], nuclear power plant selection [6], and etc. They provide a comprehensive framework for structuring the decision problem in a hierarchical structure (in AHP) or in a complex interrelationships among decision levels and attributes (in ANP) by using pairwise comparisons that represent the dominance of one element over another. A numerical weight is derived for each element to allow calculation of the final numerical priority for each of the decision alternatives. Multi-objective programming is another widely used tool in multiple criteria decision making for identifying optimal solutions to decision problems which involve more than one objective. Applications of multi-objective programming include product design [7], product line design and supplier selection [8], material selection [9], and etc.
2. Problem statement

In this paper, we consider a product selection problem where customers are faced with making decision to choose the right product among many alternatives. Multiple criteria are considered in this problem including price and product requirements. In particular, we consider a power unit selection problem in studio recording for this study. There are fifteen products or alternatives to choose from depending on customer’s application or needs. The objective (or goal) is to maximize customer’s satisfaction or preferences based on his/her available budget subject to customer’s product requirements (product features). Table 1 shows the features of each product and the short description of each feature is provided in Table 2.

Product/Feature	Price	Amp	Outlets	Surge Protection	Noise Filtering	Over-voltage Protection	Voltage Regulation	Power Boost	Power Sequencing	UPS	Isolation	Indicator	USB Charger	Software Control
M-15X E	3,780	10	11	Standard	RFT+EMI	-	-	-	-	Yes	-	-	-	-
PL-15C E	11,000	10	11	SMP	LFT	EVS	-	-	-	Yes	Yes	-	-	-
PL-PRO DMC E	14,000	10	11	SMP	LFT	EVS	-	-	-	Yes	Yes	-	-	-
PL-PRO DMC III	22,500	10	11	SMP	LFT	EVS	-	Yes	Yes	Yes	Yes	-	-	-
CN-3600 SE	14,000	10	9	SMP	LFT	EVS	-	Yes	Yes	Yes	Yes	-	-	-
P-23000 IT E	22,500	10	9	SMP	LFT	EVS	-	Yes	Yes	Yes	Yes	-	-	-
P-14000 AR E	44,100	6	11	SMP	LFT	EVS	True RMS	-	-	Yes	Yes	Yes	-	-
P-9000 AR E	126,000	30	31	SMP	LFT	EVS	True RMS	-	-	Yes	Yes	Yes	-	-
F1500-UPS E	54,000	7	10	SMP	LFT	EVS	AVR	Yes	Yes	Yes	Yes	Yes	-	-
IT-REF 16IE1	146,200	16	12	SMP	LFT+HP	EVS	-	Yes	Yes	Yes	Yes	Yes	-	-
ELITE-16FTE1	43,000	16	12	SMP	LFT	EVS	-	Yes	Yes	Yes	Yes	-	-	-
ELITE-10E1	28,373	10	8	SMP	LFT	EVS	-	-	-	Yes	-	-	-	-
AC-210A E	6,300	10	2	SMP	LFT	EVS	-	-	-	Yes	-	-	-	-

Table 2: Description of the product features

No.	Features	Description
1	Price	The price of the product
2	Amp	The current rating of the product
3	Outlets	The number of outlets
4	Surge protection	The type of surge protection
5	Noise filtering	The type(s) of noise filtering technology
6	Over-voltage protection	The type of over-voltage protection
7	Voltage regulation	The type of voltage regulation technology
8	Power boost	Whether the product provides power boost feature
9	Power sequencing	Whether the product provides power sequencing feature
10	UPS	Whether the product provides energy storage (UPS)
11	Isolation	Whether the product provides isolation circuits for different equipment
12	Indicator	Whether the product provides system monitoring indicator
13	USB charger	Whether the product provides built-in USB charger
14	Software control	Whether the product can be controlled by software

3. Mathematical model

To solve the product selection problem, we define set, index, decision variable and parameters as follows.

3.1. Set

\[P = \text{Set of product} \]
\(C = \) Set of criteria
\(F = \) Set of features

3.2. Index
\(i = \) Index of product
\(j = \) Index of criteria
\(k = \) Index of features

3.3. Variable
\(x_i = \begin{cases}
0, & \text{if product } i \text{ is not selected} \\
1, & \text{if product } i \text{ is selected}
\end{cases} \)

3.4. Parameter
\(b = \) available budget
\(w_j = \) weight associated with criteria \(j \)
\(c_{ij} = \) score of product \(i \) associated with criteria \(j \)
\(p_i = \) price of product \(i \)
\(r_k = \) requirement of feature \(k \)
\(s_{ik} = \) specification of product \(i \) associated with feature \(k \)

3.5. Mathematical model
The following mathematical model is proposed.

\[
\max \sum_{i \in P} \sum_{j \in C} w_j c_{ij} x_i \quad (1)
\]
\[
\sum_{i \in P} p_i x_i \leq b \quad (2)
\]
\[
\sum_{i \in P} x_i \leq 1 \quad (3)
\]
\[
s_{ik} x_i \geq r_k x_i, \quad \forall i \in P, k \in F \quad (4)
\]
\[
x_i \in \{0,1\}, \quad \forall i \in P \quad (5)
\]

Equation (1) is the objective function where the customer satisfaction is maximized for the selected product based on the weight of each criterion. Equation (2) ensures that the total price is within the available budget. Equation (3) enforces that at most one product can be selected. Equation (4) ensures that the selected product has met the customer’s requirements. Note that the decision variable \(x_i \) on both sides of the inequality is mandatory to ensure that the inequality is feasible for the unqualified product \(x_i = 0 \). Equation (5) defines that the decision variable \(x_i \) is binary for each product \(i \).

4. Experiments and results
In this section, we present experiment for testing the proposed model and the results. Five customers are asked to answer a given set of questions to obtain his/her product requirements and preferences of the product. Four criteria, i.e., price, equipment protection, noise, and
voltage regulation are considered in this experiment. The features of the products are collected from the product manuals. The score of each product which associated with each criterion is provided by the experts of the field.

Table 3 shows the results gathered from the customer surveys as well as the solutions from the proposed model. The recommendations from the expert according to each customer’s requirement are also provided for comparison.

Table 3: Results from customer surveys and product recommendations

Question	Result from customers	Recommendation from proposed model	Recommendation from expert
1. What is your budget?	<= 50,000	ELITE-16 PFE I	PL-PRODMCE
2. What is your equipment current rating?	<= 10	P-6900 AR E	P-6900 AR E
3. What is your maximum number of equipment	<= 9	F1500-UPS E	F1500-UPS E
4. What level of equipment protection is required? (i.e. surge and over-voltage protections)	medium	F1500-UPS E	F1500-UPS E
5. What level of sound quality (protection from noise) do you prefer?	very high	F1500-UPS E	F1500-UPS E
6. How often do you require for power boost?	medium	F1500-UPS E	F1500-UPS E
7. Do you need power sequencing?	No	-	PL-PRODMCE
8. Do you need energy storage? (UPS)	Not required	-	PL-PRODMCE
9. How important is power isolation to your equipment?	very low	-	PL-PRODMCE
10. Do you care about the status of the power system?	No	-	PL-PRODMCE
11. Do you need built-in USB charger?	No	-	PL-PRODMCE
12. Do you need software control for the power unit?	No	-	PL-PRODMCE

From Table 3, we can see that the suggested products from the model agree with the suggestions from the expert in Case 2 and Case 3. In Case 1 however, the model selects a more expensive product which has better features compared to the one suggested by the expert. While the more expensive alternative is still within the customer’s budget, this product has a power boot feature which is rated very high in the customer survey. In contrast, the expert suggests a more economical alternative based on his experience that the ‘PL-PRODMCE E’ is sufficient enough for most users in this level. In Case 4, the model cannot suggest any alternative since there is no product that could meet the customer’s requirements. On the other hand, the expert suggests a combination of three products to the customer which in turn provide solution to the customer. In Case 5, the model suggests a less expensive alternative to the customer compared to the suggestions from the expert (see prices in Table 1). The explanation is that there are no significant differences of the features based on the criteria provided by the customer. In contrast, the suggestions from the expert are based on his personal preferences.

5. Conclusion

In this paper, we proposed a mathematical programming model to solve the product selection problem where multiple criteria are considered in the objective function. The model is tested by using a real case in studio recording for selecting a suitable power unit. We compared the results from the model with the recommendations from the expert. The results are well applicable but with limitation for recommendation with combination of the products.

References

[1] Zopounidis C and Pardalos P M 2010 Handbook of Multicriteria Analysis (Springer Science & Business Media)

[2] Görener A 2012 Comparing AHP and ANP: An Application of Strategic Decisions Making in a Manufacturing Company 3 15
[3] Rao R V 2007 Material Selection for a Given Engineering Application Decision Making in the Manufacturing Environment: Using Graph Theory and Fuzzy Multiple Attribute Decision Making Methods Springer Series in Advanced Manufacturing (London: Springer London) pp 53–69

[4] Dağdeviren M 2008 Decision making in equipment selection: an integrated approach with AHP and PROMETHEE J Intell Manuf 19 397–406

[5] Dožić S, Lutovac T and Kalić M 2018 Fuzzy AHP approach to passenger aircraft type selection Journal of Air Transport Management 68 165–75

[6] Locatelli G and Mancini M 2012 A framework for the selection of the right nuclear power plant International Journal of Production Research 50 4753–66

[7] Shidpour H, Shahrokhi M and Bernard A 2013 A multi-objective programming approach, integrated into the TOPSIS method, in order to optimize product design; in three-dimensional concurrent engineering Computers & Industrial Engineering 64 875–85

[8] Deng S, Aydin R, Kwong C K and Huang Y 2014 Integrated product line design and supplier selection: A multi-objective optimization paradigm Computers & Industrial Engineering 70 150–8

[9] Zhou C-C, Yin G-F and Hu X-B 2009 Multi-objective optimization of material selection for sustainable products: Artificial neural networks and genetic algorithm approach Materials & Design 30 1209–15