Natural diversity of potato (Solanum tuberosum) invertases

Astrid M Draffehn, Sebastian Meller, Li Li, Christiane Gebhardt

Abstract

Background: Invertases are ubiquitous enzymes that irreversibly cleave sucrose into fructose and glucose. Plant invertases play important roles in carbohydrate metabolism, plant development, and biotic and abiotic stress responses. In potato (Solanum tuberosum), invertases are involved in ‘cold-induced sweetening’ of tubers, an adaptive response to cold stress, which negatively affects the quality of potato chips and French fries. Linkage and association studies have identified quantitative trait loci (QTL) for tuber sugar content and chip quality that colocalize with three independent potato invertase loci, which together encode five invertase genes. The role of natural allelic variation of these genes in controlling the variation of tuber sugar content in different genotypes is unknown.

Results: For functional studies on natural variants of five potato invertase genes we cloned and sequenced 193 full-length cDNAs from six heterozygous individuals (three tetraploid and three diploid). Eleven, thirteen, ten, twelve and nine different cDNA alleles were obtained for the genes Pain-1, InvGE, InvGF, InvCD141 and InvCD111, respectively. Allelic cDNA sequences differed from each other by 4 to 9%, and most were genotype specific. Additional variation was identified by single nucleotide polymorphism (SNP) analysis in an association-mapping population of 219 tetraploid individuals. Haplotype modeling revealed two to three major haplotypes besides a larger number of minor frequency haplotypes. cDNA alleles associated with chip quality, tuber starch content and starch yield were identified.

Conclusions: Very high natural allelic variation was uncovered in a set of five potato invertase genes. This variability is a consequence of the cultivated potato’s reproductive biology. Some of the structural variation found might underlie functional variation that influences important agronomic traits such as tuber sugar content. The associations found between specific invertase alleles and chip quality, tuber starch content and starch yield will facilitate the selection of superior potato genotypes in breeding programs.

Background

Invertases are ubiquitous enzymes that irreversibly cleave sucrose into the reducing sugars fructose and glucose. Plant invertases not only play an important role in the partitioning of carbon between source tissue (photosynthetic leaves) and heterotrophic sink tissues such as seeds, tubers and fruits, they also function in plant development and in responses to biotic and abiotic stress. Three types of invertase isoenzymes, which are encoded by small gene families, are regularly found in plants. Cell wall-bound acidic invertases cleave sucrose in the apoplastic space (apoplastic invertases). Soluble acid invertases are located in the vacuole (vacuolar invertases), whereas soluble neutral invertases are located in the cytoplasm [1,2].

In the potato (Solanum tuberosum), carbon is stored as starch polymers in tubers. Besides starch, tubers also contain small amounts of sucrose, glucose and fructose. The amounts of starch and sugars present in tubers depend on the genotype and on environmental factors. Storage at low temperature (e.g. 4°C) for several weeks leads to conversion of a small fraction of starch into sugars in tubers, with consequent accumulation of glucose and fructose, in particular [3,4]. This phenomenon of ‘cold-induced sweetening’ is an adaptive response to cold stress, as sugars have long been known to have an osmoprotective function in plants [5]. Invertases,
together with other proteins, play a role in determining the tuber sugar content before and during cold storage. Invertase activity is present in tubers and increases during cold storage [6-8]. Transcripts of vacuolar invertase accumulate in the tubers upon cold storage [9-11] and invertase antisense inhibition changes the hexose to sucrose ratio in the tubers [10]. The content of the reducing sugars glucose and fructose in tubers is an important criterion of quality for the potato processing industry. During deep freezing at high temperatures, reducing sugars and amino acids undergo a non-enzymatic Maillard reaction, which results in a dark brown color and inferior taste of potato chips or French fries due to polyphenol formation [12,13]. With increasing tuber sugar content, the chip color changes from light yellow to brown or even black. Although the enzymatic and biochemical steps in the interconversion between starch and sugars are well known in plants in general and potato in particular, the triggering and the regulation of cold-induced sweetening in potato is not fully understood [3,4,14]. In addition, the impact of natural variation in potato genes involved in carbohydrate metabolism on the quantitative variation of tuber starch and sugar content among different genotypes is completely unknown.

Genetic mapping of quantitative trait loci (QTL) for tuber starch and sugar content on the one hand [15,16] and localization of genes that function in carbohydrate metabolism and transport on the other [17] have pointed to a number of candidate genes, which roughly colocalize with QTL for tuber starch and sugar content [18]. Among these are three independent loci encoding invertase genes. Potato cDNAs encoding apoplastic and vacuolar invertases have been cloned and characterized previously [10,11,19,20]. Using invertase cDNA sequences as molecular markers, these three potato invertase loci have been mapped [17]. The Pain-1 locus on chromosome III encodes a vacuolar invertase, whereas the loci Invap-a and Invap-b on chromosomes X and IX, respectively, encode apoplastic invertases [17]. Two tandemly duplicated genes, InvGE and InvGF, encoding apoplastic invertases have been identified in one genomic fragment of 9 kb [21]. InvGE and InvGF are orthologous to the closely related tomato invertase genes LIN5 and LIN7, respectively, which are also tandemly duplicated and located on tomato chromosome 9 [22]. The Invap-b locus maps to the orthologous position on potato chromosome IX. In view of the colinearity of the genomes of potato and tomato [23], InvGE/InvGF can both be assigned to the Invap-b locus. The locus Invap-a on chromosome X was mapped with the same cDNA probe ‘pCD141’ [20] as Invap-b, and is orthologous to a tomato locus on chromosome 10 encoding the tandemly duplicated invertase genes LIN6 and LIN8 [22]. Genomic sequences of the potato Invap-a and Pain-1 loci have not been reported.

Association mapping in populations of tetraploid potato varieties and breeding clones has revealed ‘single-strand conformation polymorphisms’ (SSCPs) [24] in invertase genes at all three loci, which were associated with tuber starch content, and/or chip color [25,26]. Most significant were associations with SSCP markers derived from the Pain-1 gene on chromosome III [25]. These marker-trait associations are either direct (i.e. allelic variants of the invertase gene itself are causal for the phenotypic variation) or indirect (genes that are physically linked but unrelated to the invertase gene are responsible for the QTL) in effect. In the latter case, the association observed at an invertase locus is the result of linkage disequilibrium between the invertase gene and other, unknown genes in the same haplotype block [27]. Unfortunately, neither QTL linkage mapping down to single-gene resolution [28] nor high-resolution association mapping using thousands of individuals for complex traits such as tuber starch content and chip color is practicable in the cultivated potato. An alternative approach is the direct functional analysis of invertase allelic variants to elucidate their roles in determining variation in tuber starch and sugar content. This requires the cloning and characterization of full-length invertase cDNA alleles from representative potato genotypes, and the identification of cDNA alleles that correspond to the associated SSCP markers. Here we report the results of such a study.

Methods
Plant material
Invertase alleles were cloned from the tetraploid cultivars Satina, Diana and Theresa, and from the diploid S. tuberosum lines H82.337/49 (P18), H80.696/4 (P40) and H81.839/1 (P54) [29]. The tetraploid genotypes were selected from 34 varieties included as standards in the association mapping population ‘ALL’ described in [25], because they possess invertase markers that are associated with tuber starch content (TSC), starch yield (TSY), and chip quality in autumn after harvest (CQA) and after cold storage (CQS) (Table 1). The diploid genotypes were the parents of the mapping populations used to map cold-sweetening QTL [16]. Plants were grown in pots in the greenhouse (day temperature 20-24°C; night temperature 18°C; additional light from 6 am to 9 pm) or in a Saran-house under natural light and temperature conditions from May to September. Leaves and flowers were harvested throughout the growing season. Tubers were harvested from mature plants and stored at 4°C in the dark. Genomic DNAs from 219 members of the association mapping population ALL were used for SNP genotyping. This population consists
of 34 standard varieties and 209 breeding clones from three potato breeding companies. The ALL population has been phenotyped for tuber yield (TY, [dt/ha]), starch content (TSC, [%]), starch yield (TSY, [dt/ha]), and chip quality after harvest in autumn (CQA, score from 1 to 9) and after cold storage at 4°C (CQS, score from 1 to 9) [25].

RNA extraction and cDNA synthesis
Total RNA was extracted from leaves and flowers using the ToTally RNA Isolation Kit (Ambion, Cambridge-shire, UK) following the supplier’s protocol. Total RNA was extracted from tuber tissue powder in liquid nitrogen, using the Plant RNA Isolation Kit from Invitrogen (Karlsruhe, Germany) according to the supplier’s protocol. Total RNA was stored at -80°C. First-strand cDNA was synthesized according to the supplier’s protocol from 2.0 μg of total RNA, using 200 U of Superscript II Reverse Transcriptase (Invitrogen) per reaction and 500 ng of oligo(dT)16-18 (Roche, Mannheim, Germany) as primers. First-strand cDNA was treated with RNase H (Roche, Mannheim, Germany) for 20 min at 37°C. First-strand cDNA (1 μl per reaction) was then used for allele amplification and cloning.

Invertase cDNA allele amplification, cloning and sequencing
Primers spanning the start and stop codons of the invertase genes (Table 2) were designed based on the sequences of GenBank accession numbers L29099, X70368 (Pain-1), AJ133765 (InvGE and InvGF), Z21486 (InvCD111) and Z22645 (InvCD141). Pain-1 alleles were amplified using as template first-strand cDNA from tubers stored for 25 days at 4°C. InvGE and InvGF alleles were amplified from first-strand cDNA templates obtained from leaves and flowers. InvCD11 and InvCD141 alleles were amplified from leaf cDNA templates. Oligonucleotides were purchased from Invitrogen (Karlsruhe, Germany), Sigma-Aldrich Chemie (Taufkirchen, Germany) and Operon Biotechnologies (Köln, Germany). Polymerase chain reactions (PCR) (annealing temperatures 55-65°C, 30-50 cycles) were performed using the Fast Start High Fidelity PCR System (Roche, Mannheim, Germany) or KOD Hot Start DNA Polymerase (Novagen, Darmstadt, Germany) according to the supplier’s protocols. PCR products were purified with the High Pure PCR Purification Kit (Roche, Mannheim, Germany) and ligated into the pGEM®-T/T Easy vector (Promega, Mannheim, Germany) following the supplier’s
protocols. Competent cells of *E. coli* strains DH5α and DH10B (MAX Efficiency™ DH5α™ and ElectroMAX™ DH10B™ competent cells from Invitrogen, Karlsruhe, Germany) were transformed with recombinant plasmids [30]. Transformed strains were cultured according to standard methods [31]. Plasmid DNA was isolated with Plasmid Isolation Mini or Midi Kits (Qia-gen, Hilden, Germany) and sequenced by the DNA Core Facility at the Max-Planck Institute for Plant Breeding Research on Applied Biosystems (Weiterstadt, Germany) ABI PRISM 377, 3100 and 3730 sequencers, using BigDye terminator (v3.1) chemistry. SNPs were identified in multiple sequence alignments (http://multalin.toulouse.inra.fr/multalin/multalin.html). Due to the large number of cDNAs sequenced, most variants were represented at least two times in independent PCRs primed with first-strand cDNA from the same genotype. cDNA alleles were then defined based on the consensus sequences of all clones obtained from an individual genotype. In some cases, the number of full-length cDNA sequences per genotype was low (Table 3). Eleven alleles (*InvGE-Db, InvGE-Sb, InvGE-Te, InvGF-Sb, InvCD141-Sa, InvCD141-Dd2, InvCD141-Td2, InvCD111-Sh, InvCD111-Sc, InvCD111-Ta, InvCD111-P54d*; see Tables S3, S4, S5 and S6 in additional files 1, 2, 3 and 4) were therefore defined based on a single cDNA sequence.

Invertase genomic sequences

The BAC (bacterial artificial chromosome) libraries BA and BC, both constructed from high-molecular-weight genomic DNA of the diploid, heterozygous genotype P6/210 and arrayed on high density filters, were screened by filter hybridization with labeled probes for cDNAs *Pain-1* [10] and *pCD141* [20] as described [32,33]. Positive BACs were confirmed by gene-specific PCR using primers as described above and Southern gel-blot hybridization. Complete BACs were custom sequenced by Eurofins MWG Operon (Ebersberg, Germany) using a 454 platform [34]. In addition, the genes *Pain-1* and *InvCD141* were custom sequenced (GATC Biotech, Konstanz, Germany) by primer walking on the BACs using the dideoxy chain-termination method [35]. Sequencing of the *Pain-1* gene by primer walking was performed on the BAC selected for complete sequencing, whereas the gene *InvCD141* was sequenced using BAC BC37c23. BAC sequences were annotated using the Apollo Genome Annotation and Curation Tool, version 1.9.8 [36].

Phylogenetic tree construction

Phylogenetic trees were generated using the maximum parsimony method based on a Clustal W amino acid alignment [37] of all invertase sequences integrated in the MEGA 4 software [38]. In all, 1000 bootstrapping runs were performed to obtain an estimate of the reliability of each branchpoint.

Table 2 PCR primers used for cDNA allele cloning and amplicon sequencing, product sizes, annealing temperatures.

Gene	Ampli-con	Forward (F) and reverse (R) primers 5’ to 3’	Length [bp]	T_a [°C]
Pain-1	cDNA	F: ATGACCAGCGTACGACAAGG R: GATGAAATTAACTTGTGCAAGGG	1920	55
Exon 1		F: ATGACCAGCGTACGACAAGG R: GTGAAGAATATAAGTGCAAGGG	360	52
Exon 3		F: CACAGGGTACGTCCCTGCAAGGG R: CCCATCCCTTCTTGCAG	861	51
Exon 7		F: CACTCAATTGTGGAGAGCTTGGT R: CAAGTTGGGAAGGAAAGGG	201	59
InvGE	cDNA	F: ATGGAGAATTATTTATGAAAAGCTCTTCTCTTGTGCAAGGG	1761	55
Exon 1		F: GCTCTTCTCTATTGTGGGGTTAG R: TTAAGGAGGTGAAAAATGAAAC	199	56
Exon 6		F: GATAACTAGTAGGAGAGATTTTG R: TGTGAATCTAGTAGCTCATCAG	1743	55
InvGF	cDNA	F: ATGGAGAATTATTTATGAAAAGCTCTTCTCTTGTGCAAGGG	1746	55
Exon 3		F: GCTCAATAGTACATTACATCATCG R: GCAACTGTTATATGTGCA	1023	56
Exon 4		F: GAAGATGGATTCTCTCTATTCAACAG R: CTGAGGGCATCAGAAGACACATAAG	246	56
InvCD111	cDNA	F: ATGGAGAATTATTTATGAAAAGCTCTTCTCTTGTGCAAGGG	1757	55

Draffen et al. BMC Plant Biology 2010, 10:271
http://www.biomedcentral.com/1471-2229/10/271
Table 3 Summary of invertase cDNA allele cloning and SNP identification

Gene	Satina	Diana	Theresa	P40	PS4	P18	Total number	No of different alleles (nucleic acid sequence)	No of different amino acid sequences	No of SNP’s identified	No of amino acid changes
Pain-1	2 (9)	3 (16)	2 (8)	2 (8)	1 (6)	2 (7)	12 (54)	11	6	78	35
InvGE	4 (10)	3 (8)	4 (19)	2 (8)	2 (5)	2 (9)	17 (59)	13	12	137	53
InvGF	4 (14)	2 (4)	2 (4)	2 (4)	2 (10)	1 (2)	13 (38)	10	9	97	26
InvCD141	3 (6)	2 (5)	3 (6)	1 (2)	2 (4)	2 (5)	13 (28)	12	11	102	32
InvCD111	3 (5)	1 (1)	2 (4)	1 (1)	2 (3)	0 (0)	9 (14)	9	8	65	36
Total number	16 (44)	11 (34)	13 (41)	8 (23)	9 (28)	7 (23)	64 (193)	55	46	479	182

SNP genotyping

Amplicons were generated from genomic DNAs of the heterozygous individuals of the ALL population with locus-specific primers (Table 2). The amplicons were purified with ExoSAP-IT® (USB, Cleveland, USA) and custom sequenced at the Core Facility for DNA Analysis of the Max-Planck Institute for Plant Breeding Research. The dideoxy chain-termination sequencing method was employed using an ABI PRISM Dye Terminator Cycle Sequencing Ready Reaction Kit and an ABI PRISM 3730 automated DNA Sequencer (Applied Biosystems, Weiterstadt, Germany). SNPs were identified by sequence alignment and visual examination of the sequence trace files for overlapping base-calling peaks. In each tetraploid individual bi-allelic SNPs were assigned to one of five allelic states (two homozygous and three heterozygous). The SNP allele dosage in heterozygous individuals (1:3, 2:2 or 3:1) was estimated from the relative heights of the overlapping base-calling peaks, both manually and with the Data Acquisition and Analysis Software DAx (Van Mierlo Software Consultancy, Eindhoven, The Netherlands). Pyrosequencing [39] was carried out on a PSQ 96 system (Biotage AB, Uppsala, Sweden) using the PSQ 96 SNP Reagent Kit according to the manufacturer’s protocol. For pyrosequencing of the Pain1_SNPI544 alleles, the following primers were used to generate an amplicon of 252 bp: Forward: 5’-GGAC-CATTGTGGTGTCGGTGTTG-3’, reverse: 5’-(biotin) TCTTCCTCTTCCTTGAGGAGGAAAGC-3’. The sequencing primer was 5’-CGTTGTAAATTGCTGATCA-3’.

Haplotyping

Within the SATlotyper (v.1.0.5) software [40] the SAT solver MiniSat_v1.14_cygwin was used to model haplotypes from unphased SNP data scored in the ALL population. Individuals with missing data for one or more SNPs in the set chosen for haplotyping and individuals with suboptimal quality of the amplicon sequence were excluded from haplotype analysis.

Association test

SNPs were tested for association with the phenotypic values using the general linear model (GLM) procedure in SPSS 15.0 (SPSS GmbH Software, Munich, Germany). The model used was

\[y^* = \text{origin} + \text{marker} + \text{error} \]

where \(y^* \) stands for the adjusted phenotypic means [25]. Origin is a factor (fixed) with four classes to identify the origin of each genotype in the ALL population from one of three breeding companies or from the standard varieties [25]. Marker is a factor (fixed) with five levels, corresponding to the five SNP allele dosages: 0 for allele absent, 1, 2, 3 and 4 for allele present in simplex, duplex, triplex or quadruplex dosage. Population structure has been evaluated and described in [25].

Results

Genomic structure of the invertase loci Pain-1 and Invap-a

Whereas the genomic organization of the tandemly duplicated genes InvGE and InvGF at the Invap-b locus on chromosome IX is already known [21], no genomic sequences of the loci Pain-1 and Invap-a have been reported. We therefore isolated, sequenced and annotated the BAC clones BC149o15 (HQ197978) and BC163l15 (HQ197979), which were selected from BAC libraries based on cross-hybridization with Pain-1 and InvCD141 probes. In addition to 454 sequencing of whole BACs, the genes Pain-1 and InvCD141 were also sequenced by the dideoxy chain-termination method and primer walking. BC149o15 contained one full-length copy of the Pain-1 gene. The Pain-1 sequences obtained from the same BAC by two different sequencing techniques (454 and Sanger sequencing) differed by a six-nucleotide insertion in intron 2. The Pain-1 gene consists of seven exons and six introns and is around 4 kbp long (Figure 1). The BAC clone BC163l15 contained two tandemly duplicated invertase genes, InvCD111 and
InvCD141, which corresponded to the cDNA clones pCD111 and pCD141 [20]. The two genes, 5 and 4.5 kbp in size, are separated by 7.3 kbp and each consists of six exons and five introns (Figure 1). Sanger sequencing of InvCD141 in a third BAC (BC37c23) revealed a gap of around 1 kbp in the assembly of the 454 sequences in intron 2. Besides that, the two sequences differed by five nucleotides. The full annotation of BACs BC149c15 and BC163f15 is shown in Table S1 in additional file 5. The individual genomic sequences of Pain-1, InvCD141 and InvCD111 are available as GenBank accessions HQ110080, HQ110081 and HQ197977, respectively.

Natural diversity of Pain-1 cDNA alleles
Fifty-four full-length cDNA clones were sequenced from tubers of the tetraploid varieties Satina, Diana and Theresa, and the diploid genotypes P18, P40 and P54 that had been stored in the cold. Sequence comparisons identified eleven different cDNA alleles that translated into six amino acid sequences (Table 3). Fifty-eight single-nucleotide polymorphisms (SNPs) were detected when the eleven cDNA alleles were aligned. The inclusion of three soluble acid invertase sequences recovered from the NCBI database (accessions AAA50305 = Stpain1_a from cv Russet Burbank [11], ACC93585 = Stpain1_c from cv Kufri Chipsana and AAQ17074 = Stpain1_b from an unknown genotype) in the alignment uncovered sixteen additional SNPs. Sequencing of exons 1, 3 and 7 of Pain-1 in the 34 standard varieties included in the association mapping population ALL identified four further SNPs. The total of 78 SNPs included one tri-allelic SNP and resulted in amino acid changes at 35 positions, corresponding to 5.5% of the deduced Pain-1 protein sequence (Table 3, Table S2 in additional file 6, Figure S1 in additional file 7). Phylogenetic analysis of the nucleic acid sequences (not shown) separated the cDNA alleles into four similarity groups - a, b, c and d. The group d alleles from the diploid genotype P40 were most divergent from the others (see Table S2 in additional file 6). In order to identify cDNA alleles corresponding to the SSCP markers associated with the tuber traits (Table 1), and to detect any novel SNP-trait associations, we genotyped the ALL

![Figure 1](http://www.biomedcentral.com/1471-2229/10/271)
population for 15 SNPs in exon 3 of \textit{Pain-1} by amplicon sequencing, and for SNP51544 in exon 5 by pyrosequencing. These sixteen SNPs included diagnostic SNP alleles for groups \(a\), \(b\), \(c\) and \(d\) and for some individual alleles, i.e. one of the two alternative nucleotides was specific for an allele group or an individual allele (Table S2 in additional file 6). The SNP alleles \(C_{552}\), \(A_{718}\), \(A_{1544}\) and \(T_{741}\) were diagnostic for allele group \(a\), \(A_{228}\) for group \(b\), \(C_{777}\) and \(G_{1068}\) for group \(c\), and \(T_{991}\) and \(C_{637}\) for group \(d\). Five SNPs present in exon 3 of the cDNA alleles were not detected in the corresponding amplicon sequences (SNPs 534, 723, 834, 852, 927). Conversely, four additional SNPs absent in the cDNA alleles were detected and scored in the amplicon sequences of the ALL population (SNPs 639, 825, 888, 943). The best correspondence between presence/absence of SNP alleles and the associated SSCP markers in the ALL population was found for the SNP alleles in group \(a\) (Table 4). The SNP alleles \(C_{552}\) and \(A_{18}\) corresponded most closely to the SSCP marker \textit{Pain-1-8c}, \(A_{1544}\) to \textit{Pain-1-9a}, and the alleles \(T_{741}\) and \(C_{1143}\) were correlated with \textit{Pain-1-5d}. \(A_{1544}\) was also weakly correlated with \textit{Pain-1-5c}. None of the SNPs corresponded to SSCP marker \textit{Pain-1-5b}. The 16 SNPs were also tested for association with the tuber traits TSC, TY, TSY, CQA and CQS. SNP alleles \(C_{552}\), \(A_{718}\) and \(A_{1544}\) were positively associated with chip quality, tuber starch content and starch yield (lighter chip color, higher tuber starch content and starch yield, Table 5), as were the corresponding SSCP markers \textit{Pain-1-8c} and \textit{Pain-1-9a} [25]. The weak association of SSCP marker \textit{Pain-1-5d} with tuber starch content was confirmed by the corresponding SNP allele \(T_{741}\) (Table 5). The six genotypes used for cDNA cloning represent only a fraction of the genetic diversity of invertases in \textit{S. tuberosum}. To obtain more comprehensive information on the number and frequency of \textit{Pain-1} haplotypes distributed in populations of tetraploid, heterozygous cultivars used in breeding programs, we selected eleven SNPs, which were diagnostic for allele groups \(a\) (SNPs 552, 718 and 1544), \(b\) (SNP528), \(c\) (SNPs 612 and 1068) and \(d\) (SNPs 612 and 637), a novel allele \(x\) not found among the cDNA clones (SNP 825), and the individual alleles \(S a\) (SNP741), \(P18b\) (SNP1050) and \(Stpain1-a\) (SNP639 from cv Russel Burbank). Haplotypes were modeled using SATlotyper [40], a software that infers haplotypes from unphased SNP data in heterozygous polyploids. Fifteen haplotype models with frequencies higher than 1% were obtained based on eleven SNPs scored in 189 individuals of the ALL population (Table 6). The haplotypes \(A\), \(B\) and \(C\) with frequencies higher than 10% accounted for 60% of all chromosomes in the population (4 × 189 = 756), whereas 35% were accounted for by 12 haplotypes with frequencies between 1% and 10%. Among the latter were five haplotypes that included the associated SNP alleles \(C_{552}\), \(A_{718}\), \(A_{1544}\) and \(T_{741}\). Five haplotype models were verified by corresponding cDNA clones, whereas the remaining ten haplotypes were novel (Table 6).

Natural diversity of InvGE and InvGF cDNA alleles at the \textit{Invap-b} locus

Fifty-nine InvGE and thirty-eight InvGF full-length cDNAs were cloned from leaf and flower tissue of the three tetraploid and the three diploid genotypes (Table 3), and subsequently sequenced. In contrast to the reported flower-specific expression of InvGF [21], we found that InvGF was expressed also in leaves. The expression level in leaves was genotype dependent (data not shown).

Comparative sequence analysis of the InvGE cDNAs identified 13 different cDNA alleles encoding 12 amino acid sequences (Table 3, Tables S3 and S4 in additional files 1 and 2). Alignment of the InvGE cDNAs and InvGE from accession AJ133765 (cv Saturna, \textit{StinvGE-c}) [21] identified 133 SNPs (two of them tri-allelic) and two insertions/deletions (indels) of one codon each. Sequencing of the amplicons of exons 1 and 6 in the 34 standard varieties uncovered two additional SNPs. The 135 SNPs plus the two indels resulted in 53 amino acid changes, corresponding to 9.1% of the deduced InvGE protein sequence (Figure S2 in additional file 8). Grouping of the cDNA sequences according to similarity resulted in six groups (Table S3 in additional file 1). Group \(a\) was the most divergent and group \(d\) the most heterogeneous with many allele-specific SNPs. The \(Ta\) allele apparently resulted from recombination with allele \(Sd\). It had been shown previously [26] that Histidine 368 (His368) corresponds to the associated markers InvGE-6f and InvGF-4d, which are in high linkage disequilibrium with each other due to the close physical linkage between InvGE and InvGF. The SNP allele \(A_{1103}\) coding for His368 was specific for allele group \(a\) (Table S3 in additional file 1). The cDNA alleles in InvGE group \(a\) therefore corresponded to the marker InvGE-6f. Ampli-

Table 4 Similarity of distribution in the ALL population between associated Pain-1 SSCP markers and Pain-1 SNP alleles

SNP alleles in group	Control allele in group					
\(C_{552}\)	\(A_{718}\)	\(A_{1544}\)	\(T_{741}\)	\(C_{1143}\)	\(G_{1068}\)	
Pain1-9a	0.63	0.59	0.79	0.29	0.30	0.20
Pain1-8c	0.79	0.73	0.54	0.32	0.33	0.16
Pain1-5c	0.36	0.32	0.50	0.07	0.06	0.17
Pain1-5b	0.01	0.01	0.00	0.02	0.01	0.34
Pain1-5d	0.47	0.51	0.44	0.62	0.65	0.07

1 Jaccard similarity measure
Table 5 Associations of invertase SNP alleles with chip quality (CQA, CQS), tuber starch content (TSC) and/or starch yield (TSY).

Invertase SNP allele	Invertase allele or allele group	SNP allele frequency	CQA F \(^{\uparrow} \)	CQS F \(^{\uparrow} \)	TSC F \(^{\uparrow} \)	TSY F \(^{\uparrow} \)
Pain-1 \(A_{714} \) (C552)	a	0.04	3.421* ↑	8.161*** ↑	8.344*** ↑	6.053** ↑
Pain-1 \(A_{1544} \)	a	0.06	ns	3.947* ↑	10.683*** ↑	5.656** ↑
Pain-1-T841	a	0.03	ns	ns	2.649* ↑	2.923* ↑
InvGF-A86	a, d	0.30	ns	ns	5.006** ↑	4.044** ↑
InvGF-G95 (G106)	a	0.06	ns	4.032* ↑	ns	ns
InvCD141-G765 (A280, T288, T339, A630, C1030, G1031)	Sa	0.14	5.615** ↓	3.850* ↑	6.125** ↓	ns
InvCD141-G1015	e	0.27	ns	4.596** ↑	3.949** ↑	2.706* ↑

1F value; the p value is indicated as \(^{\uparrow} \) (p < 0.05), \(^{**} \) (p < 0.01) or \(^{***} \) (p < 0.001); the arrow indicates the direction of the effect, upwards for a positive (better chip quality, higher starch content, higher starch yield), downwards for a negative effect of the SNP allele, respectively.

2SNP alleles shown in parentheses are in strong linkage disequilibrium with the allele for which the association has been shown, and therefore display similar associations.

due to the presence of the two indels. We therefore amplified and sequenced exon 1 in the ALL population and scored eleven SNPs, which were tested for association with the tuber traits. SNP allele \(G_{95} \), which is diagnostic for alleles \(Sa \) and \(Da \), showed a weak association with CQS, consistent with the association of \(InvGE-6f \) [25]. One new association was found. The SNP allele \(InvGF-A86 \) was positively associated (higher tuber starch content and starch yield) with TSC and TSY (Table 5).

Haplotype analysis of 197 individuals using eight diagnostic SNPs in exon 1 identified 19 haplotypes found at frequencies greater than 1% in the ALL population (Table 7). Haplotypes \(A \) and \(B \) occurred at frequencies higher than 10% and accounted for 39% of all chromosomes (4 × 197 = 788). Fourteen haplotypes with frequencies between 1% and 10% accounted for 60% of the chromosomes, including the associated alleles \(Sa \) and \(Da \). Six haplotype models were compatible with cDNA sequences, whereas the remaining eleven haplotypes were new.

For \(InvGF \), ten cDNA alleles were identified that coded for eight different amino acid sequences (Table 3, Table S4 in additional file 2, Figure S3 in additional file 9). Alignment of the cDNA alleles and \(InvGF \) from accession AJ133765 (cv Saturna, StinvGF-b) [21] revealed 99 SNPs, including three tri-allelic SNPs, which caused amino acid changes at 26 positions, corresponding to 4.5% of the deduced \(InvGF \) protein. Five similarity groups were distinguished. As in the case of \(InvGE \), group \(a \) was the most divergent and group \(d \) was the most heterogeneous. The \(a \) and \(d \) alleles of \(InvGE \) and \(InvGF \) might be part of the same haplotype block. The \(InvGF \) group \(a \) alleles are therefore likely to correspond to the marker \(InvGF-4d \).

Natural diversity of \(InvCD141 \) and \(InvCD111 \) cDNA alleles at the \(Inv_{ap-a} \) locus

Invertase cDNA alleles at the \(Inv_{ap-a} \) locus were cloned from leaf tissue. Fewer clones were sequenced than in the case of the loci \(Pain-1 \) and \(Inv_{ap-b} \). Twelve \(InvCD141 \) cDNA alleles (11 amino acid sequences) were represented among 28 sequences from six genotypes, and 9 \(InvCD111 \) cDNA alleles (8 amino acid sequences) were obtained from 14 sequences of five genotypes (Table 3). Two additional alleles were found in the database: accessions Z21486 (cv Cara, StinvCD111-a) [19] and Z22645 (cv Cara, StinvCD141-d) [20]. One hundred and four SNPs (\(InvCD141 \)) including three tri-allelic SNPs, and 71 SNPs (\(InvCD111 \)) caused 32 and 36 amino acid changes, respectively, equivalent to 5-6% protein diversity (Table 3, Tables S5 and S6 in additional files 3 and 4, Figures S4 and S5 in additional files 10 and 11). Grouping of the cDNA alleles according to similarity resulted in six and four groups for \(InvCD141 \) and \(InvCD111 \), respectively (Tables S5 and S6 in additional files 3 and 4). Sequencing of the amplified exon 3 of \(InvCD141 \) in the ALL population allowed us to score 38 SNPs. SNPs specific for the cDNA allele \(Sa \) (\(T_{288}, T_{339}, T_{543}, A_{630}, C_{1030}, G_{1031}, T_{1096} \)) were all in high linkage disequilibrium with each other. The presence/absence of this \(Sa \)-specific haplotype (Table S5 in additional file 3) in the ALL population corresponded nearly perfectly to the associated SSCP marker \(pCD141-3c \) (Jaccard similarity measure 0.92), indicating that the cDNA allele \(Sa \) corresponds to \(pCD141-3c \). Association analysis of the SNPs confirmed \(Sa \) as an allele that is negatively associated with chip quality and tuber starch content. In addition, one novel, positive association of \(InvCD141-G_{765} \) with CQS, TSC and TSY was detected.
Table 6 Pain-1 haplotype models obtained with Satlotyper.

Haplotype	cDNA allele or allele group	Haplotype frequency	SNP 528 (b)	SNP 552 (a)	SNP 612 (c,d)	SNP 637 (d)	SNP 639 (Stpain1-a)	SNP 718 (a)	SNP 741 (Sa)	SNP 825 (x)	SNP 1050 (P18b)	SNP 1068 (c)	SNP 1544 (a)
A	P18b	0.295	A	T	A	A	C	G	C	T	T	C	C
B	b	0.173	A	T	A	A	C	G	C	T	C	C	C
C	c	0.139	T	T	G	A	C	G	C	T	C	G	C
D		0.049	T	T	G	A	C	G	C	T	C	C	C
E		0.046	A	T	G	G	C	G	C	C	C	C	C
F		0.041	T	T	A	A	C	G	C	T	C	C	C
G		0.038	T	T	A	A	C	G	C	T	T	C	C
H	d	0.036	T	T	G	G	C	G	C	T	C	C	C
I		0.026	A	T	G	A	C	G	C	T	T	C	C
K		0.025	T	T	A	A	C	G	C	T	C	C	A*
L		0.024	T	T	G	A	C	G	C	T	C	G	C
M		0.018	A	C*	A	A	C	A*	C	T	T	C	C
N	Sa	0.017	T	C*	A	A	C	A*	T	T	C	C	A*
O		0.014	T	C*	A	A	C	A*	C	T	C	C	C
P		0.013	A	T	A	A	C	G	T	T	C	C	C

1. cDNA allele or allele group that corresponds to the haplotype.
2. cDNA allele or allele group, for which the SNP is diagnostic, see Table S2 in additional file 6.
Associated SNP alleles are highlighted by *.
Table 7 InvGE haplotype models obtained with Slatotyper.

Haplotype cDNA allele or	Haplotype frequency	SNP 85 (a,d)	SNP 89 (x)	SNP 106 (Sa, Da)	SNP 108 (b)	SNP 132 (StinvGE-c)	SNP 133 (Tf)	SNP 135 (Ta, Sd)	SNP 162 (Td)
A	0.265	G	T	A	T	G	T	T	T
B	0.121	G	T	A	A	T	G	T	T
C	0.099	G	T	A	T	T	C	T	T
D	0.057	A*	T	A	A	T	G	T	T
E	0.043	G	T	A	T	T	G	A	T
F	0.042	A*	T	A	T	T	G	T	T
G	0.039	G	T	G*	T	T	G	T	T
H	0.037	G	A	A	T	T	C	T	T
I	0.027	A*	T	A	A	T	G	A	T
J	0.025	A*	T	G*	T	T	G	T	T
K	0.024	G	T	A	A	T	G	T	T
L	0.020	A*	A	A	T	T	G	T	T
M	0.019	G	T	G*	A	T	G	T	T
N	0.015	G	A	A	T	A	G	T	T
O	0.014	A*	T	A	T	T	G	T	G
P	0.012	G	T	A	T	T	G	T	G

1 cDNA allele or allele group that corresponds to the haplotype.
2 cDNA allele or allele group, for which the SNP is diagnostic (see Table S3 in additional file 1).
Associated SNP alleles are highlighted by *.

Discussion

Analysis of 193 cDNA sequences obtained from three tetraploid and three diploid potato genotypes revealed a high level of natural allelic variation in five potato invertase genes. Fifty-five different full-length cDNA sequences were identified, none of which were previously represented in the databases. Most were genotype specific: only nine were isolated from more than one of the cultivars examined. The average SNP density in cultivated potato is one SNP per 21-24 bp [41,42]. The genes Pain-1 and InvCD111 fell within this range with one SNP per 24 and 25 bp, respectively. The highest variability, with one SNP per 13 bp, was observed in the InvGE gene. InvGF and InvCD141, both with one SNP per 17 bp, also had higher than average variability. A total of 479 SNPs were detected, and nine (1.6%) were tri-allelic. The 55 identified sequence variants represent a minimum estimate of the number of invertase alleles present in the six genotypes. Other alleles may have been missed due to template bias during PCR amplification [40] or because sample sizes were small, e.g. InvCD141 and InvCD111 in some genotypes. The sequence variants encode 46 distinct invertase proteins.

(Table 5). Haplotype modeling based on 192 individuals and ten SNPs resulted in 18 InvCD141 haplotype models (Table 8) with frequencies above 1%. Two haplotypes with frequencies higher than 10% accounted for 27% of all chromosomes in the population (4 × 192 = 768), whereas the remaining 16 haplotypes with frequencies between 1% and 10% accounted for 74% of the chromosomes. Four haplotype models were compatible with cDNA alleles, including the associated allele Sa (haplotype E), whereas the remaining 16 haplotypes were new. Phylogenetic analysis of putative invertase proteins

A phylogenetic tree was constructed based on the amino acid sequences deduced from 46 full-length cDNA sequences of Pain-1, InvGE, InvGF, InvCD141 and InvCD111 (S. tuberosum) and seven tomato invertase genes from S. lycopersicum and S. pennellii (Figure 2). The tree clearly showed five major branches corresponding to the five invertase genes from potato. With the exception of Sillin9 (CAJ19056), which formed a sixth branch, the tomato genes Slpain1-a (AA30874), Splitn5-a (CA885898), Sillin5-a (CA885897), Sillin7-a (AAM22410), Sillin6-a (BAA33150) and Sillin8-a (AAM28822) clustered with the respective orthologous potato genes. The interspecific distances between potato and tomato invertases were larger than the intraspecific distances between potato invertase alleles. Pain-1 was more closely related to the gene pair InvCD111/InvCD141 than to InvGE/InvGF.
that differ from each other by between 4 and 9%. We took various precautions to eliminate sequence variants resulting from mistakes in reverse transcription or PCR. High-fidelity Taq polymerases were used to minimize PCR-derived errors, and cDNAs were cloned from different PCR reactions. Three quarters of the cDNA alleles were supported by at least two cDNA sequences, and alleles were defined based on consensus sequences of all cDNA clones derived from an individual genotype, eliminating singletons (SNPs occurring only once in the multiple sequence alignments). Although we cannot prove that all of the 479 SNPs are authentic, it is highly unlikely that more than a tiny minority of the SNPs observed were generated in the test tube. The generally high level of DNA polymorphism in the genome of *Solanum tuberosum* is well documented [29,33,41,42]. However, very few data are available on the range of natural allelic variation among specific potato genes, particularly across multiple genotypes as studied here. Usually, potato genes are cloned and functionally characterized in a single cultivar. However, five different full-length cDNA clones encoding potato allene oxide synthase 2 (*StAOS2*) have been cloned from three diploid genotypes and functionally characterized [43]. High sequence variability has also been observed among genuine cDNA clones encoding Kunitz-type inhibitors in two tetraploid varieties [44]. The reason for this high genetic plasticity of the cultivated potato can be found in its reproductive biology. Potatoes are clonally propagated on an annual cycle. At much larger intervals (on the order of decades), the vegetative cycle is interrupted by sexual reproduction in the context of breeding programs. These combine heterozygous parental clones, select recombinant seedlings and propagate them again clonally. Switching between clonal and sexual reproduction may have been exploited during potato domestication and evolution, when farmers observed and selected in the field spontaneous hybrid seedlings among their clonally propagated crop [45]. In such a reproductive system, somatic mutations occurring at random during clonal propagation can give rise to cell lineages that eventually enter the germ line. Clonal selection will remove deleterious and favor beneficial somatic mutations [45]. The buffering capacity of a tetraploid genome may also allow the propagation of recessive deleterious mutations. The potato genome therefore represents a rich natural reservoir of mutant genes. In this respect, the potato genome stands in sharp contrast to the genome of its close relative the tomato (*Solanum lycopersicum*). The two genomes are highly colinear, but tomato shows very little intraspecific variation [46].

Table 8 InvCD141 haplotype models obtained with Satlotyper.

Haplotype	cDNA allele or group ¹	Haplotype frequency	SNP 280 (Sa) ²	SNP 426 (Sa, Td3)	SNP 440 (d)	SNP 543 (Sa)	SNP 673 (Se)	SNP 765 (e)	SNP B62 (P18e, Se)	SNP 889 (d)	SNP 1029 (Sb)	SNP 1030 (Sa)
A	d	0.169	G	T	G	C	A	A	A	C	T	G
B	P54e1, P54e2	0.101	G	T	C	C	A	G*	A	A	T	G
C		0.086	G	T	C	C	G	A	G	A	T	G
D		0.073	G	T	C	C	G	G*	G	A	G	G
E	Sa	0.0064	A*	C	C	T*	A	A	A	A	T	C
F		0.060	G	T	C	C	A	G*	A	A	T	G
G	P18c	0.060	G	T	C	C	A	A	A	A	T	G
H		0.058	G	T	C	C	A	G*	A	A	G	G
I		0.058	G	T	C	C	A	G*	A	C	T	G
K		0.048	G	T	C	C	A	A	G	A	T	G
L		0.047	G	C	C	C	A	A	A	C	T	G
M		0.047	G	C	C	C	G	G*	A	A	G	G
N		0.038	G	T	G	C	G	G*	G	A	G	G
O		0.027	G	T	G	T*	A	A	A	A	T	C
P		0.027	A*	T	C	T*	A	A	A	A	T	C
Q		0.019	G	T	C	C	G	A	A	A	T	G
R		0.017	A*	T	C	T*	G	G*	G	A	T	C
S		0.016	A*	C	G	C	A	A	A	C	T	G

¹ cDNA allele or allele group that corresponds to the haplotype.
² cDNA allele or allele group, for which the SNP is diagnostic (see Table S5 in additional file 3). Associated SNP alleles are highlighted by *.
exclusively via seeds. Comparative functional characterization of natural potato invertase alleles - which is now possible, promises to uncover some interesting structure-function relationships. Functional differences between the coding regions of potato invertase alleles may be uncovered by the complementation of a yeast invertase mutant and the biochemical characterization of the heterologous expressed proteins [28]. Differences in the expression of alleles can be detected by quantifying the expression based on allele specific SNPs and pyrosequencing technology (Draffehn et al., manuscript in preparation).

Figure 2 Phylogenetic tree based on the deduced amino acid sequences of allelic variants of potato and tomato invertase genes. Forty-six alleles of Pain1, InvCD111, InvCD141, InvGE and InvGF are described in this study (Tables S2, S3, S4, S5 and S6 in additional files 6, 1, 2, 3 and 4, respectively; Figures S1, S2, S3, S4 and S5 in additional files 7, 8, 9, 10 and 11, respectively). Also included are Stpain1-a (AAA50305), Stpain1-b (BAQ17074), Stpain1-c (AAQ35855), StinvCD141-d (CAA80358), StinvGF-b (CAV74674) and StinvGE-c (CAV76673) from S. tuberosum, Stpain1-a (BAQ38074), SLIN6-a (BAA33150), SLIN8-a (AAM32822), SLIN7-a (AAM24240), SLIN5-a (CAV85897) and SLIN9 (CAV19056) from S. lycopersicum, and SpLIN5-a (CAV85898) from S. pennelli. Bootstrap values are indicated at each branchpoint.
The work reported here was designed to identify full-length cDNA clones encoding invertase alleles that are associated with chip quality, tuber starch content and starch yield [25] for further functional analysis. This goal was achieved for the associated markers Pain1-9a, Pain1-5c, InvGE-6f/InvGF-4d and pCD141-3c, but not for Pain1-5b and Pain1-5c, perhaps because an insufficient number of cDNA clones was analyzed. Alternatively, these SSCP markers might result from intron polymorphism that is not detectable in cDNA sequences. The full range of invertase alleles present in a population of 219 tetraploid individuals can be captured by genotyping 15, 11 and 38 SNPs, respectively, at the three invertase loci. Association analysis of the SNPs identified two new associations, one between the SNP allele InvGE-A85 and TSC and TSY, and the other between InvCD141-G76 and CQS, TSC and TSY (Table 5). The Pain1-a alleles showed the most significant and positive effects on chip quality and tuber starch content. The corresponding SSCP markers also show epistatic interactions with other candidate loci, which increase starch yield [47]. However, the frequency of these alleles in the ALL population was less than 10%. Enrichment of Pain1-a alleles in breeding populations should facilitate the selection of cultivars with improved quality traits. Interestingly, the three SNPs diagnostic for Pain1 alleles of group a (C552, A718 and A1544) differed in their associations. These SNPs are in strong but not absolute linkage disequilibrium with each other. Pain1-C552 and Pain1-A718 were more strongly associated with chip quality after cold storage, whereas Pain1-A1544 was mainly associated with tuber starch content. Whereas the cDNA alleles Pain1-Da, Sa and P18a contained all three SNPs, the allele StPain1-a (AAA50305) contained only A1544. This and the four different haplotype models obtained for these three SNPs (haplotypes K, M, N, O, Table 6) suggest further structural and possibly functional differentiation between the associated Pain1-a alleles, which may be exploitable for marker-assisted selection. Pain1-snp552 causes a synonymous nucleotide change, whereas Pain1-snp718 and Pain1-snp1544 induce non-synonymous changes. Pain1-SNP1544 causes the non-conservative amino acid change Thr515Lys. Whether these differences between the coding sequences or differences in the corresponding promoter regions are causal for possibly functional variation remains to be elucidated.

The direct inference of haplotypes from amplicon sequences requires that loci be homozygous, which is rarely the case in diploid and tetraploid potato genotypes. In amplicon sequences derived from heterozygous loci, the phase of the SNPs is unknown. The SATlotyper software was developed to model haplotypes in polyploid species based on unphased SNP data [40]. Haplotype modeling with a subset of the SNPs scored in the invertase genes Pain-1, InvGE and InvCD141 resulted for each gene in two or three haplotypes with higher frequencies (above 10%) and a large number of minor haplotypes with low frequencies. This haplotype distribution might be typical for nuclear genes of the European potato and a signature of its domestication, introduction and breeding history [48-50]. More genes must be analyzed however, before any general conclusions can be drawn. The occurrence of numerous low-frequency haplotypes is compatible with introgressions from other tuber-bearing Solanum species during 20th-century breeding programs [50] and/or sequence diversification due to fixation of somatic mutations as outlined above. The SNP information will be useful for tracing speciﬁc haplotypes back to their origin.

Haplotype modeling correctly predicted some, but not all cDNA alleles that were obtained experimentally from the cvs Satina, Diana and Theresa and could have been detected based on the chosen SNP set. This is because, based on the analysis of sequence trace files, the SNP allele dosage cannot be scored with complete accuracy in all individuals used for haplotype modeling. A small percentage of scoring errors leads to haplotype artefacts with low frequency. To eliminate such artefacts, we considered only haplotype models with a frequency above 1%. As this is an arbitrary threshold, we cannot exclude the possibility that some of the remaining low-frequency haplotypes are also artefacts. Nevertheless, our results demonstrate that SATlotyper is a valuable tool for the fast identiﬁcation of the major haplotypes present in populations of tetraploid potatoes. The determination of the exact haplotype composition of a tetraploid individual, including rare haplotypes, calls for an allele cloning approach such as that performed in this study.

As in tomato [22], the four genes encoding cell wall-bound acidic invertases in potato are organized in two pairs of tandemly duplicated genes on chromosomes IX and X. The soluble acid invertase is encoded by a single gene on potato chromosome III. The existence of a sixth potato invertase gene is predicted, which is orthologous to the tomato gene SILIN9 located on chromosome 8 (based on the draft genome sequence of tomato provided by “The International Tomato Genome Sequencing Consortium” available at http://solgenomics.net and on personal communication from Gisella Orjeda, Universidad Peruana Cayetano Heredia, Peru). This gene might encode a soluble neutral invertase not characterized so far in potato. The five characterized potato invertase genes are all located within segmental chromosome duplications of unknown size, which show structural conservation with other, distantly related...
plant species [51,52]. Functionally essential parts of an ancestral plant genome might be preserved in such conserved chromosome segments. The important role invertases play in many aspects of plant life is consistent with their location in evolutionarily ancient parts of plant genomes.

Conclusions
Very high natural allelic variation in five potato invertase genes was uncovered by sequence analysis of full length cDNA clones from six different genotypes and SNP analysis in a larger association mapping population. This variability is explained by the potato’s reproductive biology. Some of the structural variation found might be causal for functional variation, which influences important agronomic traits of the potato such as tuber starch and sugar content. The invertase cDNA clones described here are the basis for further functional studies. The associations found between specific invertase alleles and tuber starch content, starch yield and chip quality facilitate the selection of superior potato genotypes in breeding programs. Finally, our results point out that natural variation should be taken into account when conducting molecular and functional characterization of potato genes.

List of abbreviations
ASA: allele specific amplification; BAC: Bacterial artificial chromosome; CQA: Chip quality in autumn; CQS: Chip quality after storage at 4°C; LD: linkage disequilibrium; PCR: Polymerase chain reaction; QTL: Quantitative trait locus; SSCP: single strand conformation polymorphism; TSC: tuber starch content; TSY: tuber starch yield; TY: tuber yield.

Additional material

Acknowledgements
This work was carried out in the Department of Plant Breeding and Genetics headed by Maarten Koornneef and was funded by the Max-Planck Society. The authors thank Ulrike Göbel and Alexander Kerner for help with BAC annotation.

Authors’ contributions
AD carried out the cDNA cloning, the sequence analyses and the haplotype modeling, and participated in the SNP analysis. SM performed the SNP analysis and contributed to the association statistics and haplotype modeling. LL carried out the pyrosequencing. CG conceived the study, participated in its design and coordination, carried out statistical analyses and drafted the manuscript. All authors read and approved the final manuscript.

Received: 2 September 2010 Accepted: 9 December 2010 Published: 9 December 2010

References
1. Rötsch T, González M-C: Function and regulation of plant invertases: sweet sensations. Trends in Plant Science 2004, 9(12):606-613.
2. Tymowska-Lalanne Z, Kreis M, Callow JA: The Plant Invertases: Physiology, Biochemistry and Molecular Biology. In Advances in Biological Research. Volume 28. Academic Press, 1998:71-117.
3. Isherwood FA: Starch-sugar interconversion in Solanum tuberosum. Phytochemistry 1973, 12:2579-2591.
4. Savokinos J: Biochemical and molecular control of cold-induced sweetening in potatoes. American Journal of Potato Research 2001, 78(3):221-236.
5. Müller-Thurgau H: Über Zuckeranhäufung in Pflanzentheilen in Folge niederer Temperatur. Landwirtsch. Jahrb. 17: 1882, 751-828.
6. Richardson DL, Davies HV, Ross HA, Mackay GR: Invertase activity and its relation to hexose accumulation in potato tubers. J Exp Bot 1990, 41(1):95-99.
7. Pressey R: Role of invertase in accumulation of sugars in cold stored potatoes. Am Pot 1969, 46:291-297.
8. Pressey R, Shaw R: Effect of temperature on invertase, invertase inhibitor, and sugars in potato tubers. Plant Physiol 1966, 41:1657-1661.
9. Bagnaresi P, Moschella A, Beretta G, Vitulli F, Ranalli P, Perata P: Heterologous microarray experiments allow the identification of the early events associated with potato tuber cold sweetening. BMC Genomics 2008, 9(1):176.
10. Zetter R, Schüler K, Sonnewald U: Soluble acid invertase determines the hexose-to-sucrose ratio in cold-stored potato tubers. Plant Physiol 1994, 108(2):246-252.
11. Zhou D, Mattoo A, Li N, Imaseki H, Solomos T: Complete nucleotide sequence of potato tuber invertase cDNA. Plant Physiology 1994, 106:397-398.
12. Habib A, Brown HD: The role of reducing sugars and amino acids in browning of potato chips. Food Technol 1957, 11:85-89.
13. Townsend LR, Hope GW: Factors influencing the color of potato chips. Can J Plant Sci 1969, 49:38-64.
14. Frommer WB, Sonnewald U: Molecular analysis of carbon partitioning in solanaceous species. J Exp Bot 1995, 46(287):587-607.
15. Schäfer-Pregl R, Ritter E, Concilio L, Hesselbach J, Lovatti L, Wallmeier B, Thelen H, Salamin F, Gebhardt C: Analysis of quantitative trait loci (QTLs) and quantitative trait alleles (QTA) for potato tuber yield and starch content. Theor Appl Genet 1998, 97(S):834-846.
16. Menendez CM, Ritter E, Schäfer-Pregl R, Wallmeier B, Kalde A, Salamin F, Gebhardt C: Cold sweetening in diploid potato: mapping quantitative trait loci and candidate genes. Genetics 2002, 162(2):1423-1434.
17. Chen X, Salamin F, Gebhardt C: A potato molecular-function map for carbohydrate metabolism and transport. Theor Appl Genet 2001, 102(2):284-295.
18. Gebhardt C, Menendez C, Chen X, Li L, Schäfer-Pregl R, Salamin F: Genomic approaches for the improvement of tuber quality traits in potato. Acta Hort 2005, 684:85-92.
19. Heslehurst PE, Machray GC, Davies HV, Burch L, Waugh R: cDNA cloning and expression of a potato (Solanum tuberosum) invertase. Plant Mol Biol 1993, 22(3):917-922.
20. Hedley PE, Machray GC, Davies BV, Burch L, Waugh R. Potato (Solanum tuberosum) invertase-encoding cDNAs and their differential expression. Gene 1994, 145(2):211-214.
21. Maddison AL, Hedley PE, Meyer RC, Azz N, Davidson O, Machray GC: Expression of tandem invertase genes associated with sexual and vegetative growth cycles in potato. Plant Molecular Biology 1999, 41(6):741-752.
22. Fridman E, Zamir D: Functional divergence of a syntenic invertase gene family in tomato, potato, and Arabidopsis. Plant Physiol 2003, 131(2):603-609.
23. Bonierbale MW, Plaisted RL, Tanksley SD. RFLP Maps Based on a Common Set of Clones Reveal Modes of Chromosomal Evolution in Potato and Tomato. Genetics 1988, 120(4):1095-1103.
24. Orita M, Suzuki Y, Sekiya T, Hayashi K: Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 1989, 5:874-879.
25. Li L, Paulo MJ, Strahwald J, Lübeck J, Hofferbert HR, Tacke E, Junghans H, Wunder J, Draffehn A, van Eeuwijk F, et al: Natural DNA variation at candidate loci is associated with potato chip color, tuber starchy yield and yield starchy yield. Theor Appl Genet 2008, 116:1167-1181.
26. Li L, Strahwald J, Hofferbert HR, Lübeck J, Tacke E, Junghans H, Wunder J, Gebhardt C: DNA variation at the invertase locus insGE/GF is associated with tuber quality traits in populations of potato breeding clones. Genetics 2005, 170(2):813-821.
27. Hirschhorn JN, Daly MJ. Genome-wide association studies for common diseases and complex traits. Nat Rev Genet 2005, 6(2):95-108.
28. Fridman E, Carani F, Liu Y-S, Fernie AR, Zamir D: Zooming in on a quantitative trait for tomato yield using interspecific introgressions. Science 2004, 305(5691):1786-1789.
29. Gebhardt C, Ritter E, Debener T, Schachtschabel U, Walkemeier B, Uhrig H, Salamin F: RFLP analysis and linkage mapping in Solanum tuberosum. Theor Appl Genet 1989, 78:65-75.
30. Hanahan D: Studies on transformation of Escherichia coli with plasmids. J Mol Biol 1983, 166:537-580.
31. Sambrook J, Russell DW: Molecular cloning. A laboratory manual. New York Cold Spring Harbor Lab. Press, 3 2001.
32. Ballvora A, Ercolano MR, Weiss J, Meksem K, Bruggmann R, Oberhagemann P, Salamin F, Gebhardt C: The R1 gene for potato resistance to late blight (Phytophthora infestans) belongs to the leucine zipper/NBS/LRR class of plant resistance genes. Plant J 2002, 30(3):361-371.
33. Ballvora A, Jöcker A, Viehover P, Ishihara H, Paal J, Meksem K, Bruggmann R, Oberhagemann P, Salamin F, Gebhardt C: Comparative sequence analysis of Solanum and Arabidopsis in a hot spot for pathogen resistance on potato chromosome V reveals a patchwork of conserved and rapidly evolving genome segments. BMC Genomics 2007, 8:112.
34. Margulies E, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen Y-J, Chen Z, et al: Genome sequencing in microfabricated high-density picolitre reactors. Nature 2005, 437(7057):376-380.
35. Sanger F, Nicklen S, Coulson AR: DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 1977, 74(12):5463-5467.
36. Lewis SE, Seale SM, Harris N, Gibson M, Leyer V, Richter J, Weel C, Baynttaacrolig I, Birney E, Crosby MA, et al: Apollo: a sequence annotation editor. Genome Biol 2002, 3(12):RESEARCH0082.
37. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, et al: Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23(21):2947-2948.
38. Tamura K, Dudley J, Nei M, Kumar S: MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 2007, 24(5):1596-1599.
39. Ronaghi M, Karamohamed S, Pettersson B, Ihlén M, Nyren P: Real-time DNA sequencing using detection of pyro-phosphate release. Anal Biochem 1996, 242:84-89.
40. NeiMFnd P, Gyotrai G, Baskevich D, Uhlén M, Nyren P: Real-time DNA sequencing using detection of pyro-phosphate release. Anal Biochem 1996, 242:84-89.
41. Rickert AM, Kim JH, Meyer S, Nagel A, Ballvora A, Oefner PJ, Gebhardt C: First-generation SNP/Indel markers tagging loci for pathogen resistance in the potato genome. Plant Biotechnol J 2003, 1(6):399-410.
42. Simko I, Haynes KG, Jones RW: Assessment of linkage disequilibrium in potato genome with single nucleotide polymorphism markers. Genetics 2006, 173(4):2237-2245.