On the QKD relaying models

Quoc-Cuong Le and Patrick Bellot

Institut TELECOM, Telecom ParisTech, Paris, France

37-39 rue Dareau, 75014 Paris, France

(Dated: March 26, 2008)

Abstract

We investigate Quantum Key Distribution (QKD) relaying models. Firstly, we propose a novel quasi-trusted QKD relaying model. The quasi-trusted relays are defined as follows: (i) being honest enough to correctly follow a given multi-party finite-time communication protocol; (ii) however, being under the monitoring of eavesdroppers. We develop a simple 3-party quasi-trusted model, called Quantum Quasi- Trusted Bridge (QQTB) model, to show that we could securely extend up to two times the limited range of single-photon based QKD schemes. We also develop the Quantum Quasi-Trusted Relay (QQTR) model to show that we could securely distribute QKD keys over arbitrarily long distances. The QQTR model requires EPR pair sources, but does not use entanglement swapping and entanglement purification schemes as proposed in1,2,3. Secondly, we show that our quasi-trusted models could be improved to become untrusted models in which the security is not compromised even though attackers have full controls over some relaying nodes. We call our two improved models the Quantum Untrusted Bridge (QUB) and Quantum Untrusted Relay (QUR) ones. The QUB model works on single photons and allows securely extend up to two times the limited QKD range. The QUR model works on entangled photons but does not use entanglement swapping and entanglement purification operations. This model allows securely transmit shared keys over arbitrarily long distances without dramatically decreasing the key rate of the original QKD schemes.
I. INTRODUCTION

The limited range of Quantum Key Distribution (QKD) link is one of the most headache-questions to many researchers for a long time. The earliest QKD protocol is the BB84 protocol that had been proposed by Bennett and Brassard in 1984. After, this protocol was proven to be unconditionally secure, and promised the vast potentially worthful applications. As the cost due of its extremely good security, unfortunately, QKD owns undesirable restrictions over range and rate. This explains why there are few practical QKD applications so far. Today, improving QKD range’s approaches can be roughly divided into two categories. The first one is improvements over direct QKD links, for instance, perfecting quantum devices as quantum sources and quantum detectors. The second one is QKD relaying methods that allow to securely relay QKD keys. This paper addresses the latter one. We will assume that we work with perfect quantum devices, free-error quantum channels to focus on the “relaying” aspect.

Our main contributions are:

1. The proposal of a new concept called “quasi-trusted relay” that seems reasonable in realistic scenarios,

2. The Quantum Quasi-Trusted Bridge (QQTB) model that allows to securely extend up to two times the QKD range without invoking entanglement-based operations,

3. The Quantum Quasi-Trusted Relay (QQTR) model that allows to securely distribute shared keys over arbitrarily long distances without invoking entanglement swapping and entanglement purification operations,

4. The Quantum Untrusted Bridge (QUB) model that allows to securely extend up to two times the QKD range without invoking entanglement-based operations,

5. The Quantum Untrusted Relay (QUR) model that allows to securely distribute shared keys over arbitrarily long distances without invoking entanglement swapping and entanglement purification as proposed in

The remainder is organized as follows. Section gives an overview of previous works on QKD relaying models and introduces our motivation. Section reminds some background concept and also makes some propositions that are used in our proposed models. We define
our “quantum quasi-trusted” concept in Section IV. Section V develops the Quantum Quasi-Trusted Bridge (QQTB) model that is capable of securely doubling the range of single-photon based QKD schemes. Section VI develops the Quantum-Trusted Relay (QQTR) model that is capable of securely distributing shared keys over arbitrarily long distances. Section VII develops the Quantum Untrusted Bridge (QUB) model that is capable of securely doubling the range of single-photon based QKD schemes, in releasing all constraints of the relaying node. Section VIII develops the Quantum Untrusted Relay (QUR) model that is capable of securely distributing shared keys over arbitrarily long distances, in releasing all constraints of relaying nodes. We conclude in Section IX.

II. RELATED WORK AND MOTIVATION

1. Related work.

Since the range of QKD is limited, QKD relaying methods are necessary. This becomes indispensable when one aims at building QKD networks as in the last recent years. All QKD relaying methods so far introduce some undesirable drawbacks. The most practical method is based on trusted model. This method has been applied in two famous QKD networks, DAPRA and SECOCQ11,12,13,14. In this method, all the relaying nodes must be assumed perfectly secured. Such an assumption is critical since passive attacks or eavesdropping on intermediate nodes are very difficult to detect. A few number of intermediate nodes could lead to a great vulnerability in practice. Consequently, one wants to limit the number of trusted nodes in QKD networks.

One could claim that the idea of the quasi-trusted QKD relaying model is not new. The works in15,16,17 were indeed based on such an idea. However, the “quasi-trusted” property was characterized differently and had been analyzed in a different context: each node was assumed to be trusted with a high probability $p \sim 1$, and the main focus was the security behavior of the global system that consists of a great number of nodes. In this paper, we propose a very different concept of “quasi-trusted” that is characterized by: (i) being honest enough to correctly follow a given multi-party finite-time communication protocol; (ii) however, being under the monitoring of eavesdroppers.

Theoretically, the most strong QKD relaying model so far is the one that is based on
entanglement swapping (QS) operation. This QS-based relaying model allows to achieve an arbitrarily long-distance QKD. The idea is roughly described as follows. One first incrementally build a more long distance EPR pair from two less long distance EPR pairs by a number of complicated quantum operations as entanglement purification, entanglement swapping, etc. The goal of this step is to create EPR pairs shared between the two target nodes (origin and destination) that are in an arbitrarily long distance far away. Then, these two nodes could do an entanglement-based BB84 protocol to establish the secret key. Besides the capacity over arbitrarily long distances, another advantage of the QS-based relaying model is that this model allows to effectively detect eavesdropping at relaying nodes. Indeed, this model could be considered as untrusted-model.

2. Motivation.

Although the QS-based relaying model gives a very beautiful result in theory, working on entangled photons is not easy in practice. In compared with single-photon approaches, entanglement-based ones seem to be surcharged by the quickly unavoidable decoherence of entangled photons over transmission and in time. This fact encourages us looking for new relaying methods that restrict the use of entangled photons, or at least effectively decrease the time conserving entangled photons to get more easy in practical implementations.

Therefore, we first propose the Quantum Quasi-Trusted Bridge (QQTB) model that is capable of doubling the limited QKD range without invoking entanglements. Then, we propose the Quantum Quasi-Trusted Relay (QQTR) model that could be considered as an extended-QQTB version. The QQTR model is capable of securely distributing shared keys over arbitrarily long distances. This model works with entangled photons, but does not need invoke entanglement swapping and entanglement purification as proposed in. As a result, we could effectively decrease the time required for conserving the coherence of entangledphotons in compared to previous works. However, the most originality of our works is two untrusted models: the Quantum Untrusted Bridge (QUB) and Quantum Untrusted Relay (QUR) ones. The QUB and QUR models have the same capacity with the QQTB and QQTR ones in the range point of view, respectively. However, the QUB and QUR models allow to deal with untrusted intermediate nodes as models proposed in. That means that the origin and the destination could effective detect eavesdropping even though attackers
have the full controls over some intermediate nodes.

III. BACKGROUND

We remind some background concepts and make some propositions that are used to build our four models in the rest of this paper.

A. The controlled-NOT (C-NOT) gate

\[|x\rangle \quad \bullet \quad |x\rangle \]
\[|y\rangle \quad \bigcirc \quad |x \oplus y\rangle \]

FIG. 1: The two-qubit controlled-NOT (C-NOT) gate, also called the XOR gate.

Our models need use the quantum controlled-NOT (C-NOT) gate (see Fig. 1). The BB84 protocol does not need use this gate, however, entanglement swapping and entanglement purification operation require this gate\(^{18,19}\). In fact, the C-NOT gate is one of the most popular two-qubit quantum gates\(^{20,21}\). Without loss of generality, we will work only with the C-NOT gate that operates in basis \(|+\rangle\) with two corresponding basis states \(|0\rangle\) and \(|1\rangle\). By definition, this gate flips the second (target) qubit if the first (control) qubit is \(|1\rangle\) and does nothing if the control qubit is \(|0\rangle\).

Proposition 1. If two input qubits are basis states of one sole basis, then:

1. For the case of the input basis being \(|+\rangle\), the XOR of two input qubits appears at the second output (exactly as described in Fig. 1).

2. For the case of the input basis being \(|\times\rangle\), the XOR of two input qubits appears at the first output (not as described in Fig. 1).

Proof: The two basis states of the basis \(|+\rangle\) are \(|0\rangle\) and \(|1\rangle\), corresponding to logical values \(0_L\) and \(1_L\), respectively. Consequently, the two basis states of the basis \(|\times\rangle\) are \(\frac{|0\rangle + |1\rangle}{\sqrt{2}}\) and \(\frac{|0\rangle - |1\rangle}{\sqrt{2}}\), corresponding to logical values \(0_L\) and \(1_L\), respectively. As mentioned above, the C-NOT gate operates in basis \(|+\rangle\).
If the two input qubits are in basis $|+\rangle$, then by the definition of the C-NOT gate we have:

$$
|0_L\rangle.|0_L\rangle = |0\rangle.|0\rangle \iff_{CNOT} |0\rangle.|0\rangle = |0_L\rangle.|0_L\rangle
$$

$$
|0_L\rangle.|1_L\rangle = |0\rangle.|1\rangle \iff_{CNOT} |0\rangle.|1\rangle = |0_L\rangle.|1_L\rangle
$$

$$
|1_L\rangle.|0_L\rangle = |1\rangle.|0\rangle \iff_{CNOT} |1\rangle.|1\rangle = |1_L\rangle.|1_L\rangle
$$

$$
|1_L\rangle.|1_L\rangle = |1\rangle.|1\rangle \iff_{CNOT} |1\rangle.|0\rangle = |1_L\rangle.|0_L\rangle
$$

Obviously, the XOR appears at the second output for the case of the input basis being $|+\rangle$, exactly as described in Fig. [1].

We now observe the case in which two input qubits are in basis $|\times\rangle$.

$$
|0_L\rangle.|0_L\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}} \cdot \frac{|0\rangle + |1\rangle}{\sqrt{2}} \iff \frac{1}{2}(|0\rangle.(|0\rangle + |1\rangle) + |1\rangle.(|1\rangle + |0\rangle)) = |0_L\rangle.|0_L\rangle
$$

$$
|1_L\rangle.|0_L\rangle = \frac{|0\rangle - |1\rangle}{\sqrt{2}} \cdot \frac{|0\rangle + |1\rangle}{\sqrt{2}} \iff \frac{1}{2}(|0\rangle.(|0\rangle + |1\rangle) - |1\rangle.(|1\rangle + |0\rangle)) = |1_L\rangle.|0_L\rangle
$$

$$
|0_L\rangle.|1_L\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}} \cdot \frac{|0\rangle - |1\rangle}{\sqrt{2}} \iff \frac{1}{2}(|0\rangle.(|0\rangle - |1\rangle) + |1\rangle.(|1\rangle - |0\rangle)) = |1_L\rangle.|1_L\rangle
$$

$$
|1_L\rangle.|1_L\rangle = \frac{|0\rangle - |1\rangle}{\sqrt{2}} \cdot \frac{|0\rangle - |1\rangle}{\sqrt{2}} \iff \frac{1}{2}(|0\rangle.(|0\rangle - |1\rangle) - |1\rangle.(|1\rangle - |0\rangle)) = |0_L\rangle.|1_L\rangle
$$

We realize that the C-NOT gate now changes the roles of two input qubits. If the second qubit is 1_L (in basis $|\times\rangle$) then it flips the first qubit (in basis $|\times\rangle$). Otherwise, it does nothing. The XOR (in basis $|\times\rangle$) is at the first output in this case, not as described in Fig. [1].

Proposition 2. If the two input qubits of the C-NOT gate are basis states in the different basis (one in $|+\rangle$ and other in $|\times\rangle$), then

1. If the first and second qubits are basis states in basis $|\times\rangle$ and $|+\rangle$, respectively, then the output is an entanglement.

2. If the first and second qubits are basis states in basis $|+\rangle$ and $|\times\rangle$, respectively, then the C-NOT gate does nothing.

Proof: If the first (control) and second (target) qubits are the basis states in basis $|\times\rangle$ and $|+\rangle$, respectively, then we have:
\[
\frac{|0\rangle + |1\rangle}{\sqrt{2}} |0\rangle \rightarrow \frac{1}{\sqrt{2}} (|0\rangle|0\rangle + |1\rangle|1\rangle) \quad \frac{|0\rangle - |1\rangle}{\sqrt{2}} |0\rangle \rightarrow \frac{1}{\sqrt{2}} (|0\rangle|0\rangle - |1\rangle|1\rangle) \\
\frac{|0\rangle + |1\rangle}{\sqrt{2}} |1\rangle \rightarrow \frac{1}{\sqrt{2}} (|0\rangle|1\rangle + |1\rangle|0\rangle) \quad \frac{|0\rangle - |1\rangle}{\sqrt{2}} |1\rangle \rightarrow \frac{1}{\sqrt{2}} (|0\rangle|1\rangle - |1\rangle|0\rangle)
\]

Obviously, the output is an entanglement, more precisely, one of four Bell states if the first and second qubits are in basis \(|\times\rangle\) and \(|+\rangle\), respectively.

If the control and target qubits are the basis states in basis \(|+\rangle\) and \(|\times\rangle\), respectively, then we have:

\[
|0\rangle, \frac{|0\rangle + |1\rangle}{\sqrt{2}} \rightarrow \frac{1}{\sqrt{2}} (|0\rangle|0\rangle + |0\rangle|1\rangle) = |0\rangle, \frac{|0\rangle + |1\rangle}{\sqrt{2}} \\
|0\rangle, \frac{|0\rangle - |1\rangle}{\sqrt{2}} \rightarrow \frac{1}{\sqrt{2}} (|0\rangle|0\rangle - |0\rangle|1\rangle) = |0\rangle, \frac{|0\rangle - |1\rangle}{\sqrt{2}} \\
|1\rangle, \frac{|0\rangle + |1\rangle}{\sqrt{2}} \rightarrow \frac{1}{\sqrt{2}} (|1\rangle|1\rangle + |1\rangle|0\rangle) = |1\rangle, \frac{|0\rangle + |1\rangle}{\sqrt{2}} \\
|1\rangle, \frac{|0\rangle - |1\rangle}{\sqrt{2}} \rightarrow \frac{1}{\sqrt{2}} (|1\rangle|1\rangle - |1\rangle|0\rangle) = -|1\rangle, \frac{|0\rangle - |1\rangle}{\sqrt{2}} = |1\rangle, \frac{|0\rangle - |1\rangle}{\sqrt{2}}
\]

Obviously, the C-NOT does nothing in this case.

B. A simple quantum circuit

FIG. 2: The pair \((|a_i\rangle, |b_i\rangle)\) passes through a C-NOT gate operating in basis \(|+\rangle\) before being measured independently: the first output qubit is measured in basis \(|\times\rangle\) and the second one is measured in basis \(|+\rangle\).

In fact, we use the C-NOT gate to build a simple quantum circuit as described in Fig. 2. It has two inputs and two outputs. The two input qubits first pass through a C-NOT gate operating in basis \(|+\rangle\), and then are measured independently by two quantum detectors that operate in different basis \(|\times\rangle\) and \(|+\rangle\) (see Fig. 2). The two outputs are classical bits 0 or 1. We can directly deduce from Proposition 1 to the following proposition.
Proposition 3. If two input qubits are basis states of one sole basis, then the quantum circuit as described in Fig. 2 does an irreversible XOR operation. This circuit reveals no more information than the logical XOR of two logical inputs. Indeed,

1. If two input qubits $|a⟩$ and $|b⟩$ are in the same basis $|+⟩$, then the second output is $(a_L \oplus b_L)$ and the first output is either 0 or 1 with equal probabilities (50% for each one), where a_L and b_L are logical values of states $|a⟩$ and $|b⟩$ in basis $|+⟩$, respectively.

2. If two input qubits $|a⟩$ and $|b⟩$ are in the same basis $|×⟩$ then the first output is $(a_L \oplus b_L)$ and the second output is either 0 or 1 with equal probabilities (50% for each one), where a_L and b_L are logical values of states $|a⟩$ and $|b⟩$ in basis $|×⟩$, respectively.

C. EPR pairs - Bell states

A Bell state (or an EPR pair) is defined as a maximally entangled quantum state of two qubits. These qubits could be spatially separated, however, they always exhibit perfect correlations. Assume that Alice and Bob share one of four Bell states $|Φ^+⟩ = \frac{1}{\sqrt{2}}(|↑_A↑_B⟩ + |↓_A↓_B⟩)$. If Alice and Bob measure their qubits in any common basis at their spatially separated sites, then Alice will get a random logical output either 0 or 1 with each probability of 50% and the output of Bob is always parallel with that of Alice (i.e. the same value).

If we focus on the logical values then we could describe four Bell states that form an orthogonal basis for the quantum state of two qubits as follows:

$$|Φ^±⟩ = |0_L0_L⟩ \pm |1_L1_L⟩ \quad |Ψ^±⟩ = |0_L1_L⟩ \pm |1_L0_L⟩$$

IV. QUANTUM QUASI-TRUSTED (QQT) RELAYS

Let us observe a three-party communication scenario as follows. The origin Alice wants to establish a secret key with the destination Bob. They want to achieve unconditional security. However, the distance between them exceeds the limited range of QKD. Carol is an intermediate node that could share QKD links with Alice and Bob. It seems reasonable to assume that Carol is honest enough to correctly follow a given three-party communication
protocol even though she is eavesdropped by the malicious person Eve. In such a scenario, we call Carol a quasi-trusted relay.

Definition 1 (QQT relay). A Quantum Quasi-Trusted (QQT) relay is a person or a station that can execute simple quantum operations as measurement, C-NOT, etc., and holds the following conditions:

1. **Finite-Time Trust:** The relay is honest enough to correctly implement a given finite-time communication protocol. After having done the protocol, the relay could be corrupted.

2. **Under eavesdropping:** The relay could be always under the monitoring of eavesdroppers.

Our quasi-trusted relay definition is simple but very important since we will use it to build the Quantum Quasi-Trusted Bridge (QQTB) and Quantum Quasi-Trusted Relay (QQTR) models in the next of this paper.

V. QUANTUM QUASI-TRUSTED BRIDGE (QQTB) MODEL

A. Description

Definition 2 (QQTB model). The QQT-bridge (QQTB) model is a three-party communication model in which the QQT relay Carol acts as a bridge that helps two long-distance nodes Alice and Bob to securely establish a shared key. The Fig. 3 roughly describes a QQTB model.

The QQTB model uses an implicit assumption that Eve cannot eavesdrop the origin Alice and the destination Bob. Such a assumption is trivial since if the origin or the destination is eavesdropped then there is no solution for Alice and Bob. Our definition of the QQTB model also implies that Eve is allowed to execute classical and quantum attacks over the channels Alice-Carol and Carol-Bob, even over Carol’s site. At the first glance, we realize that the most dangerous vulnerability is from the Carol’s site. Indeed, although the two channels Alice-Carol and Carol-Bob could be secured by QKD (see Fig. 3), if information appears in clear at the Carol’s site then Eve could get it without leaving any trace by eavesdropping.
FIG. 3: QKD bridge: Alice and Bob are out of the QKD range, they want to use Carol as a bridge to communicate securely the shared key.

B. Protocols

The problem is how we could design secure three-party communication protocols that satisfy the constraints of the QQTB model, implicitly, that hold the conditions of the QQT relay (see Definition 1). We develop a simple idea that is based on the one-time pad un-breakable encryption scheme. The idea could be described as follows. We try to create the situation in which Alice, Carol and Bob own three pads A, C, B, respectively. These pads hold $C = A \oplus B$ (a bit-wise XOR operation). Note that Carol owns C and knows no more than $C = A \oplus B$. When Alice wants to send to Bob a secret key K, she sends $K \oplus A$ to Carol. Carol receives $K \oplus A$, computes $K \oplus A \oplus C = K \oplus B$, and sends the result to Bob. Bob receives $K \oplus B$, computes $K \oplus B \oplus B$ to obtain K. In such a situation, even though Carol owns $C = A \oplus B$, she cannot reveal K. Besides, the key K is unconditional secured over channel since we use the one-time pad scheme. Obviously, Carol holds the under eavesdropping condition (see Definition 1) and could be developed to become a QQT bridge.

We will begin with a classical protocol that illustrates our approach. This protocol is not secure. Then we turn into quantum world to see how quantum mechanics could help.

1. The Insecure Quasi-Trusted Bridge (IQTB) protocol:

The protocol consists of the following steps.

1. Alice securely sends to Carol a random m-bit string A by a QKD link.

2. Bob securely sends to Carol a random m-bit string B by a QKD link.

3. Carol receives A and B, computes $C = A \oplus B$ (XOR operation).

4. Carol deletes A and B in her memory device.
5. Transmitting the secret key:

- Alice randomly creates the m-bit key K, sends $K \oplus A$ to Carol.
- Carol receives $K \oplus A$, computes $K \oplus A \oplus C = K \oplus B$, then sends the result to Bob.
- Bob receives $K \oplus B$, computes $K \oplus B \oplus B$ to obtain K.

What is insecure in this protocol? The step 4 seems helpful in face with the finite-time trusted condition of the quasi-trusted bridge: after having done the protocol, even though Carol is corrupted the key K is not compromised. But this is not so! Nobody can sure that in the one hand Carol still does correctly the protocol but in the other hand she makes copies of A and B, maybe only for her curiousness purpose. And then, when the protocol has been yet finished, she could be corrupted and gives these copies to Eve. Consequently, the key K is compromised. More seriously, the protocol cannot hold the under-eavesdropping condition (see Definition I). Indeed, if Eve could monitor Carol’s memory devices, then she can make herself copies of A and B. If A or B is compromised then the key K is compromised, consequently.

Now, we propose the Quantum Quasi-Trusted Bridge (QQTB) protocols that really help Alice and Bob to securely establish the shared key K through the bridge Carol. These protocols could defeat drawbacks of the previous protocol.

2. The Quantum Quasi-Trusted Bridge (QQTB) Protocol:

The protocol consists of 4 main steps.

Step 1: Preparing, exchanging, and measuring qubits.

1. Alice creates $2n$ random bits and chooses the random $2n$-bit string b_A. For each bit i, she creates a state in basis $|+\rangle$ or $|\times\rangle$ if $b_A[i] = 0$ or $b_A[i] = 1$, respectively. Alice sends the resulting qubits $|a_1, a_2, ..., a_{2n}\rangle$ to Carol.

2. Similarly, Bob creates a random $2n$-bit value, the random $2n$-bit string b_B and the corresponding qubits $|b_1, b_2, ..., b_{2n}\rangle$. Then, he sends $|b_1, b_2, ..., b_{2n}\rangle$ to Carol.

3. Carol receives two $2n$-qubit strings from Alice and Bob in a synchronous manner. It
means that she receives one by one for all the $2n$ pairs $(|a_i\rangle, |b_i\rangle)$. On the arrival of a pair, Carol randomly turns into either Check-Mode (CM) or Message-Mode (MM).

- In the CM, Carol measures independently both $|a_i\rangle$ and $|b_i\rangle$ in a randomly chosen basis $|+\rangle$ or $|\times\rangle$. She gathers both two resulting bits and keeps track of their corresponding basis. Note that in this mode Carol does not use the quantum circuit described as Fig. 2.

- In the MM, Carol first leads $|a_i\rangle, |b_i\rangle$ to two inputs of a C-NOT gate, and then measures the two outputs in two different basis: the first one in $|\times\rangle$ and the second one in $|+\rangle$ as described in Fig. 2. She randomly chooses one out of two outputs to keep the measured value and the corresponding basis. She discards the other one.

At the end of the receiving process, the CM and MM’s choices roughly result in two n-position strings: the check-position string $CP = cp_1, \ldots, cp_n$ and the message-position string $MP = mp_1, \ldots, mp_n$.

Step 2: Checking for the presence of Eve.

1. For the channel between Alice and Carol: Alice and Carol communicate their basis used in the check-positions CB and the corresponding values. They discard positions where their basis are different. They compare values at remaining positions. If some of these values agree, they conclude that the channel was compromised. In this case, they inform to Bob to abort the whole protocol.

2. For the channel between Bob and Carol: Bob and Carol communicate their basis used in the check-positions CB and the corresponding values. They discard positions where their basis are different. They compare values at remaining positions. If some of these values agree, they conclude that the channel was compromised. In this case, they inform to Alice to abort the whole protocol.

Step 3: Creating the pads for Alice, Carol and Bob.

1. Alice, Carol and Bob announce their basis used in positions $MB = mp_1, \ldots, mp_n$.

2. If their basis are different at mp_i, then they discard this position and the corresponding values.
3. The values of the remaining positions result in three pads \(A = A_1, \ldots, A_m; C = C_1, \ldots, C_m; B = B_1, \ldots, B_m \) for Alice, Carol and Bob, respectively. These pads hold \(C_i = A_i \oplus B_i, i \in [1, \ldots, m], m \sim \frac{n}{4}. \)

Step 4: Transmitting the key \(K. \)

1. Alice creates the random \(m \)-bit key \(K. \) She sends \(K \oplus A \) to Carol.

2. Carol receives from Alice \(K \oplus A \), does a XOR operation over it and her pad, then sends the result to Bob. Since \(C = A \oplus B \), the result of the XOR operation is \(K \oplus A \oplus C = K \oplus B. \)

3. Bob receives \(K \oplus B \), computes \(K \oplus B \oplus B \) to obtain \(K. \)

We show now why this protocol is secure. At the step 1, when a pair \((|a_i\rangle, |b_i\rangle) \) synchronously arrives to Carol, she randomly turns into either the Check-Mode (CM) or the Message-Mode (MM). Since Eve does not know in advance the choices of Carol, she cannot treat differently the pairs \((|a_i\rangle, |b_i\rangle) \). Therefore, the error-rate on the check bits must behave like that on the message bits. In the other hand, the error-check procedures in the channels (Alice, Carol) and (Carol, Bob) are done exactly as that of the BB84 protocol. By that, the QQTB protocol’s security is exactly the security of the BB84 protocol. This implies that the QQTB protocol is unconditionally secure. Readers being interested in security proof of BB84 are invited to read \(^5,^6,^7,^8\).

One can claim that Carol could unintentionally select some choices of CM or MM before arrivals of \((|a_i\rangle, |b_i\rangle) \). If Eve knows these choices by eavesdropping, then she avoids the pairs in CM and attacks on the pairs in MM. This makes security compromised. We propose another protocol that can tolerate such a mistake of Carol.

3. The modified-QQTB Protocol:

The protocol consists of 5 main steps.

Step 1: Preparing, exchanging, and measuring qubits.

1. Alice creates \(2n \) random bits and chooses the random \(2n \)-bit string \(b_A \). For each bit \(i \), she creates a state in a basis \(|+\rangle \) or \(|\times\rangle \) for \(b_A[i] = 0 \) or \(b_A[i] = 1 \), respectively. Alice sends the resulting qubits \(|a_1, a_2, \ldots, a_{2n}\rangle \) to Carol.
2. Similarly, Bob creates a random 2^n-bit value, the random 2^n-bit string b_B and the corresponding qubits $|b_1, b_2, ..., b_{2n}\rangle$. Then, he sends $|b_1, b_2, ..., b_{2n}\rangle$ to Carol.

3. Carol receives two 2^n-qubit strings from Alice and Bob in a synchronous manner. It means that she receives one by one for 2^n pairs $(|a_i\rangle, |b_i\rangle)$. For each pair, Carol first leads $|a_i\rangle$, $|b_i\rangle$ to the C-NOT gate and then measures two output qubits in two different basis: the first one in $|\times\rangle$ and the second one in $|+\rangle$ as described in Fig. 2. Then, she randomly chooses one out of two outputs to keep the measured value and the corresponding basis. She discards the other one.

Step 2: Sifting.

1. Alice, Carol and Bob announce their basis.

2. If their basis are different at the position i, then they discard this position.

3. The values of the remaining positions result in three $2m$-bit strings $a = a_1, ..., a_{2m}; c = c_1, ..., c_{2m}; b = b_1, ..., b_{2m}$ for Alice, Carol and Bob, respectively. Theoretically, these three strings hold $c_i = a_i \oplus b_i, i \in [1, 2m], 2m \sim \frac{2^n}{4}$.

Step 3: Checking for the presence of Eve.

1. Alice, Carol, Bob randomly agree m out of $2m$ positions to check the presence of Eve. This results in two m-position strings: the check-position string $CP = c_{p_1}, ..., c_{p_m}$ and the message-position string $MP = m_{p_1}, ..., m_{p_m}$.

2. Alice, Carol, Bob announce their values $a_{cp_i}, b_{cp_i}, c_{cp_i}$, respectively, in check-positions cp_i. They check if $c_{cp_i} = a_{cp_i} \oplus b_{cp_i}$ or not. If some of negative checks, they abort the protocol.

Step 4: Creating the pads for Alice, Carol and Bob.

1. The values in m message-positions result in three m-bit pads $A = A_1, ..., A_m; C = C_1, ..., C_m; B = B_1, ..., B_m$ for Alice, Carol and Bob, respectively. These pads hold $C_i = A_i \oplus B_i, i \in [1, ..., m], m \sim \frac{n}{4}$.

Step 5: Transmitting the key K.

1. Alice creates the random m-bit key K. She sends $K \oplus A$ to Carol.
2. Carol receives $K \oplus A$ from Alice, does a XOR operation over it and her pad, then sends the result to Bob. Since $C = A \oplus B$, the result of the XOR operation is $K \oplus A \oplus C = K \oplus B$.

3. Bob receives $K \oplus B$, computes $K \oplus B \oplus B$ to obtain K.

This protocol makes sure that measurements are done before check-position and message-position choices. The classical information that could be eavesdropped by Eve on the Carol site now does not reveal any information of K. We must show that the protocol is secure in faced against Eve's attacks over channel. From our three-party communication model, we build a virtual two-party communication between Anna and Borris in which:

1. Anna plays the roles of both Alice and Bob.

2. Borris plays the role of Carol.

3. The virtual channel between Anna and Borris consists of both two real channels (Alice, Carol) and (Carol, Bob).

Let Anna and Borris do our modified QQTB protocol. We realize that Anna and Borris do a variant of the BB84 protocol that takes the same principles. Anna codes a classical bit by non-orthogonal quantum states $|q_1\rangle|q_2\rangle$, where $|q_1\rangle, |q_2\rangle$ are simultaneously in basis $|+\rangle$ or $|\times\rangle$. Borris receives a classical bit by measuring $|q_1 \oplus q_2\rangle$ in a random basis $|+\rangle$ or $|\times\rangle$. If his basis choice is right then the receiving value is exactly $q_1 \oplus q_2$. Otherwise, the receiving bit has a probability of 50% to be right. Eve cannot attack such a conjugate code without introducing more disturbances over channel. By estimating the disturbance, we could detect the presence of Eve over the virtual channel. This implies that we can make sure either the channels (Alice, Carol) and (Carol, Bob) are attacked or not as in the BB84 protocol. In other words, our modified QQTB protocol is unconditionally secure. Readers being interested in security proof of BB84 are invited to read\[5,6,7,8\].

4. *The enhanced-QQTB Protocol:*

In the modified-QQTB, we realize that if Alice and Bob use a common basis at the position i, then the quantum circuit at the Carol site gives no more information than the logical XOR
of two logical values of Alice and Bob. Therefore, no need to force Carol randomly choosing to keep one output (one measuring basis) before Alice and Bob announcing publicly their basis. The enhanced-QQTB protocol is very similar to the modified-QQTB and. But it could improve the secret-bit rate up to two times.

The enhanced QQTB consists of 5 steps.

Step 1: Preparing, exchanging, and measuring qubits.

- Alice, Carol, Bob do as in the modified QQTB protocol. However, instead of keeping only one output, Carol keeps informations of both two outputs.

Step 2: Sifting.

- Alice and Bob announce their basis: if the basis are different at the position i, then Alice, Bob, and Carol discard the position i.
- For each remaining position i, Carol keeps only informations (value and basis) of either the first output or the second one if the common basis used by Alice and Bob is $|\times\rangle$ or $|+\rangle$, respectively. She discards informations of the other one.
- Now, the values of the remaining positions result in three $2m$-bit strings $a = a_1, \ldots, a_{2m}; c = c_1, \ldots, c_{2m}; b = b_1, \ldots, b_{2m}$ for Alice, Carol and Bob, respectively. Theoretically, these three strings hold $c_i = a_i \oplus b_i, i \in [1, 2m], 2m \sim \frac{2n}{2}$.

Step 3: Checking for the presence of Eve.

- Alice, Carol, and Bob do exactly as in the modified QQTB protocol.

Step 4: Creating the pads for Alice, Carol and Bob.

- Alice, Carol, and Bob do exactly as in the modified QQTB protocol.

Step 5: Transmitting the key K.

- Alice, Carol, and Bob do exactly as in the modified QQTB protocol.

Note that the security of enhanced QQTB protocol is exactly that of the modified QQTB protocol since the quantum circuit at the Carol site reveals no more than the XOR result and the qubit measurements are always done before Alice and Bob revealing theirs basis. Eve always deals with unknown states as in the modified-QQTB protocol. Therefore, the
enhanced-QQTB protocol also gives unconditional security. However, the number of secret bits obtained from the enhanced QQTB protocol is two time bigger than that of the modified QQTB protocol (see m in the step 2).

VI. QUANTUM QUASI-TRUSTED RELAY (QQTR) MODEL

A. Is it possible to extend QQTB model over arbitrarily long distance?

The information theory states that Alice and Bob cannot publicly agree a common secret unless they pre-possess a secret key that has the length at least equal to that of the secret 2. The quantum mechanic opens a new door that allows Alice and Bob to achieve their goal. Indeed, the quantum no-cloning theorem states that it is impossible to make a perfect copy of an unknown quantum state. This implies that eavesdropping on quantum channels will introduce some detectable disturbance. By estimating the error rates, Alice and Bob can effectively detect the presence of the eavesdropper Eve.

In this paper, we study quantum models that work with perfect quantum devices, quantum free-error channels, and without quantum memory devices. Note that although the quantum channels are assumed free-error, we should take into account the degradations of single-photon energy and entangled-photon coherence over transmission. We assume that our quantum devices are perfect if and only if the single-photon energy and the entangled-photon coherence are above some given thresholds. In QQTB model, we implicitly address single photon schemes to avoid difficulties arising from entanglement decoherence. The question is whether we could extend this model based on single photon up to an arbitrarily long distance? We observe the scenario in which there is Dave in the right of Bob. Now Bob plays the role of quasi-trusted relay as Carol. The goal is that Alice could convey a secret to Dave, not to Bob. Assume that the distances between Alice, Carol, Bob and Dave are the critical distances of single-photon transmission over that transmitted qubits are correctly detected. In other words, Alice cannot send directly a single photon to Bob or Dave, and Dave cannot send directly a single photon to Carol or Alice. Therefore, Alice and Dave cannot make together a quantum contact at one unique intermediate location as the spirit of the QQTB model. In the other hand, any classical contact is no help. Therefore, we could conclude that the single-photon based QQTB model cannot extend more than two time of
the limited QKD range. This makes the senses of the word “bridge” in the QQTB model: two bridges cannot be build successively.

B. Quantum Quasi-Trusted Relay (QQTR) model

1. QQTR model’s description.

We take into account EPR pairs to build our QQTR model. As mentioned in Section II, we try to limit the time keeping EPR pairs to avoid difficulties arising from entanglement decoherence. Such a motivation makes our works distinguished from the works presented in \(^1\)\(^2\)\(^3\).

The QQTR model is roughly described as Fig.4.

![Diagram](image)

FIG. 4: Bell 1,.., Bell N are EPR-pair sources. Carol 1, .., Carol N act as Carol in the enhanced-QQTB protocol.

2. QQTR protocol.

Between Alice and Bob we arrange \(N\) Carols (\(C_1, .., C_N\) for short) and \(N + 1\) Bells (\(B_1, .., B_{N+1}\) for short) as described in Fig.4. This creates \(2N + 2\) segments. Without loss of generality, we assume that the length of segments are the same and the segment length allows our quantum devices working correctly and effectively on entanglement coherence and single-photon detection.

Our QQTR protocol consists of 5 steps:

Step 1: Preparing, exchanging, and measuring qubits.

1. For \(B_1, .., B_{N+1}\), each prepares \(n\) Bell states \((|\Phi^\pm\rangle)^n\).

2. \(B_1\) sends the first half of each Bell state to Alice (the previous), the second half to \(C_1\) (the next). \(B_{N+1}\) sends the first half of each Bell state to \(C_N\) (the previous), the
second half to Bob (the next). For \(i \in [2, N] \), \(B_i \) sends the first half of each Bell state to \(C_{i-1} \) (the previous), the second half to \(C_i \) (the next).

3. Each \(C_i, i \in [1, N] \), receives \(2n \) qubits from \(B_i \) and \(B_{i+1} \) in a synchronous manner. This means that she receives \(n \) times, and for each time she leads the qubit from \(B_i \) and the qubit from \(B_{i+1} \) to the first and second inputs of the quantum circuit as described in Fig. 2. Then, she keeps informations (the measured value and the corresponding basis) of both two outputs. Briefly, \(C_i \) acts exactly as Carol in the enhanced-QQTB protocol.

4. Alice and Bob receive \(n \) qubits for each one. They randomly choose basis to measure their qubits, independently.

Step 2: Sifting.

1. Alice and Bob announce their \(n \) basis used.

2. If the basis are different at the position \(i \), then Alice, Bob, \(C_1, ..., C_N \) discard this position.

3. For each remaining position \(i \), \(C_1, ..., C_N \) keep only informations (value and basis) of either the first output or the second output if the common basis of Alice and Bob is \(|\times\rangle\) or \(|+\rangle\), respectively. They discard informations of the other one.

4. The values of the remaining positions result in \(N + 2 \) \(2m \)-bit strings \(a = a_1, a_{2m}; c(i) = c(i)_1, ..., c(i)_{2m}, i = 1..N; b = b_1, ..., b_{2m} \) for Alice, \(C_1, ..., C_N \), and Bob, respectively. These \(N + 2 \) strings should hold \(\bigoplus_{j=1}^{N} c(i)_j = a_i \oplus b_i, i \in [1, 2m], 2m \sim \frac{n}{2} \).

Step 3: Checking for the presence of Eve.

1. Alice, Bob, and \(C_1, ..., C_N \) randomly agree \(m \) out of \(2m \) positions to check the presence of Eve. This results in two \(m \)-position strings: the check-position string \(CP = cp_1, ..., cp_m \) and the message-position string \(MP = mp_1, ..., mp_m \).

2. Alice, Bob, \(C_1, ..., C_N \) announce values in check-position \(a = a_{cp_1}, ..., a_{cp_m}; b = b_{cp_1}, ..., b_{cp_m}; c(i) = c(i)_{cp_1}, ..., c(i)_{cp_m}, i = 1..N \), respectively. They check if \(\bigoplus_{i=1}^{N} c(i)_{cp_j} = a_{cp_j} \oplus b_{cp_j} \) or not. If some of negative checks, they abort the protocol.
Step 4: Creating the pads for Alice, C_1, \ldots, C_N, and Bob.

1. The values in m message-positions result in $N + 2$ m-bit pads $P^A = P_1^A, \ldots, P_m^A$; $P^{C(i)} = P_1^{C(i)}, \ldots, P_m^{C(i)}, i \in [1, N]$; and $P^B = P_1^B, \ldots, P_m^B$ for Alice, C_1, \ldots, C_N, and Bob, respectively. These pads hold $\bigoplus_{i=1}^{N} P^{C(i)} = P^A \oplus P^B$.

Step 5: Transmitting the key K.

1. Alice creates the random m-bit key $K, m \sim \frac{n}{4}$. She sends $K \oplus P^A$ to C_1.

2. For i from 1 to $N - 1$, C_i receives $K \oplus P^A \oplus \bigoplus_{j=1}^{i-1} P^{C(j)}$, does a XOR operation over it and her pad, then sends the result to C_{i+1}.

3. C_N receives $K \oplus P^A \oplus \bigoplus_{j=1}^{N-1} P^{C(j)}$, does a XOR operation over it and her pad, then sends the result to Bob

4. Bob receives $K \oplus P^A \oplus \bigoplus_{j=1}^{N} P^{C(j)}$, computes $K \oplus P^A \oplus P^B \oplus \bigoplus_{j=1}^{N} P^{C(j)} = K$.

C. Correctness and security

1. **Correctness.**

One could claim that is it true that $\bigoplus_{j=1}^{N} c(i)_j = a_i \oplus b_i, i \in [1, 2m], 2m \sim \frac{n}{2}$ in the step 2 (sifting) of the QQTR protocol?

We first look at 5 sites: Alice, B_1, C_1, B_2, C_2. We focus on the effect of the quantum circuit (see Fig. [2]) on the site C_1. This circuit acts on $|\Phi^+\rangle_{1,2}, |\Phi^+\rangle_{3,4}$ coming from B_1, B_2. The subscripts stand for the particle (qubit) numbering. Without loss of generality, we assume that after having discarded positions of different basis, the common basis is $|+\rangle$. This implies that C_1, as all C_2, \ldots, C_N, keep the result of the second output, and discard the first output of the quantum circuit. When the qubits 2, 3 go through the C-NOT gate, we have:

$$|\Phi^+\rangle_{1,2} |\Phi^+\rangle_{3,4} = \frac{1}{2} (|0000\rangle_{1234} + |0011\rangle_{1234} + |1100\rangle_{1234} + |1111\rangle_{1234})$$

$$\mapsto_{CNOT_{2,3}} \frac{1}{2} (|0\rangle_1 |00\rangle_{23} |0\rangle_4 + |0\rangle_1 |01\rangle_{23} |1\rangle_4 + |1\rangle_1 |11\rangle_{23} |0\rangle_4 + |1\rangle_1 |10\rangle_{23} |1\rangle_4)$$
The qubits 2, 3 are measured in basis $|\times\rangle, |+\rangle$, respectively. This makes the states $|\Phi^+\rangle_{1,2}, |\Phi^+\rangle_{3,4}$ collapsed into a mixed state either $\frac{1}{2}(|00\rangle + |11\rangle)$ or $\frac{1}{2}(|01\rangle + |10\rangle)$ depending on the logical value of the second output being 0 or 1, respectively. Note that if one gets the logical values of both two outputs then he can know exactly the qubits 1, 4 being in what state (one out of four pure states $|00\rangle, |01\rangle, |10\rangle, |11\rangle$). However, the first output is measured in basis $|\times\rangle$ and results in a random bit. This means that the logical value of the qubit 2 is deleted by a quantum manner. C_1 gets only the logical XOR result of the qubits 2, 3 that is capable of tracking the parity of the qubits 1, 4. Indeed, if the XOR value is 0 or 1, the global state of two qubits 1, 4 is either $\frac{1}{2}(|00\rangle + |11\rangle)$ or $\frac{1}{2}(|01\rangle + |10\rangle)$ that has the logical parity either 0 or 1, respectively.

Therefore, when the quantum circuit of C_1 has finished, we have a situation that could be described as follows. We denote the qubits 1, 4 by $|a\rangle$ and $|x_1\rangle$, respectively. Alice owns $|a\rangle$. The qubit $|x_1\rangle$ is transmitted to C_2 to enter, as the first input, into the quantum circuit at C_2. C_1 owns a classical bit $c(1)$ that hold $c(1) = a \oplus x_1$ provided that $|a\rangle$ and $|x_1\rangle$ are measured afterward in $|+\rangle$. We now observe the quantum circuit at C_2.

$$|x_1\rangle |\Phi^+\rangle_{5,6} = \frac{1}{\sqrt{2}}(|x_1\rangle |00\rangle_{56} + |x_1\rangle |11\rangle_{56})$$

$$\mapsto_{\text{CNOT}_{x_1,5}} \frac{1}{\sqrt{2}}(|x_1\rangle |x_1\rangle_{5}|0\rangle_{6} + |x_1\rangle |x_1 + 1\rangle_{5}|1\rangle_{6}$$

After measurements are done at the two outputs, we have the following situation. We denote the remaining half of the EPR pair (the qubit 6) by $|x_2\rangle$. $|x_2\rangle$ is transmitted to C_3. C_1 owns the classical value $c(2)$ that holds $c(2) = x_1 \oplus x_2$ since the qubits 5, 6 are parallel.

The quantum circuits at the sites C_3 to C_N do similarly as that at C_2. This results in: $c(i) = x_{i-1} \oplus x_i, i \in [2, N]$. Note that Bob owns $|x_N\rangle = |b\rangle$. Finally, when Alice and Bob measure their qubits, we have:

$$c(1) = a \oplus x_1; \quad c(i) = x_{i-1} \oplus x_i \text{ for } i \in [2, N - 1]; \quad c(N) = x_{N-1} \oplus b$$

Obviously, we have $\bigoplus_{i=1}^{N} c(i) = a \oplus b$.

2. **Security.**

We distinguish possible attack types of Eve.
1. Type 1: Quantum attack on sites Bell 1,.., Bell N+1 ($B_1,.., B_{N+1}$).

2. Type 2: Quantum attack on sites Carol 1, .., Carol N ($C_1,.., C_N$).

3. Type 3: Quantum attack on channel. Eve could do quantum attacks on $2n+2$ segments between Alice and Bob.

4. Type 4: Classical attack, eavesdropping on sites $C_1,.., C_N$.

The attack Type 1 implies imperfect EPR sources: the qubit pairs could be entangled with Eve’s probes. In\cite{1}, fortunately, Lo and Chau have proven that we can effectively check perfect EPR sources by executing random-hashing verification schemes. As a result, we could conclude that our QQTR protocol is secure faced to this attack type.

As Carol in the enhanced-QQTB protocol, $C_1,.., C_N$ reveal no information than the XOR results. Their choices of the first or the second output depend on the randomness of the basis choices of Alice and Bob. This implies that all the single states (qubits) in the channels (attack type 3) and the $C_1,.., C_N$ (attack type 2) are unknown states for Eve. By the no-cloning theorem, Eve will make additional disturbances if she attacks on these states. In the step 3 of the QQTR protocol, we check the presence of Eve as the checking scheme of the enhanced-QQTB protocol. Therefore, we could conclude that our QQTR protocol is secure face to the attack types 2 and 3.

Our protocol also is secure with the attack type 4 since the classical values a, b were not revealed outside of Alice and Bob. The knowledge of $c(1),.., c(N)$ cannot deduce exactly the values of a, b. Here, we can say that the main idea of the QQTR protocol is exactly that of the single-photon QQTB protocols. This is the spirit of our “quasi-trusted” model.

VII. QUANTUM UNTRUSTED BRIDGE (QUB) MODEL

3. Model description.

The QUB model is very similar to the QQTB one (see Section \ref{sec:QQTB}). However, in this model we release the “finite-time trusted” condition of the intermediate node Carol. Instead, we require that Alice and Bob must effectively detect the case in which Carol tries to cheat. This implies that Eve could have full control on the Carol site or in the other word she plays the role of Carol (see Fig. \ref{fig:QUB}). We must design a protocol that allows Alice and Bob
to effectively detect to discard the cases in which Eve does not correctly follow the protocol
and tries to read the transmitting keys.

![QKD link](Alice) ≤(Eve) ≥(QKD link) ≥(Bob)

FIG. 5: Alice and Bob are out of the QKD range. They must securely transmit shared keys through
Eve. This implies that they must effectively detect to discard the cases in which Eve tries to read
the transmitting keys.

4. The QUB protocol.

The protocol consists of 5 main steps.

Step 1: Preparing, exchanging, and measuring qubits.

1. Alice creates $2n$ random bits and chooses the random $2n$-bit string b_A. For each bit i,
 she creates a state in a basis $|+\rangle$ or $|\times\rangle$ for $b_A[i] = 0$ or $b_A[i] = 1$, respectively. Alice
 sends the resulting qubits $|a_1, a_2, ..., a_{2n}\rangle$ to Carol.

2. Similarly, Bob creates a random $2n$-bit value, the random $2n$-bit string b_B and the
 corresponding qubits $|b_1, b_2, ..., b_{2n}\rangle$. Then, he sends $|b_1, b_2, ..., b_{2n}\rangle$ to Carol.

3. Carol receives two $2n$-qubit strings from Alice and Bob in a synchronous manner. It
 means that she receives one by one for $2n$ pairs $(|a_i\rangle, |b_i\rangle)$. For each pair, Carol first
 leads $|a_i\rangle, |b_i\rangle$ to the C-NOT gate and then measures two output qubits in two different
 basis: the first one in $|\times\rangle$ and the second one in $|+\rangle$ as described in Fig. 2

4. Carol sends the values obtained at both two outputs to Alice and Bob. The role of
 Carol stops here.

Step 2: Sifting.

1. Alice and Bob communicate their basis.

2. If their basis are different at the position i, then they discard this position.
3. At a remaining position i, they keep only the second output or the first output of Carol for the common basis (at position i) being $|+\rangle$ or $|\times\rangle$, respectively. This reduces a half of the value string came from Carol at both the sites of Alice and Bob.

4. Therefore, the values of the remaining positions result in three $2m$-bit strings $a = a_1, ..., a_{2m}; c = c_1, ..., c_{2m}; b = b_1, ..., b_{2m}$ where Alice keeps two string a, c and Bob keeps two strings b, c. Theoretically, these three strings hold $c_i = a_i \oplus b_i, i \in [1, 2m], 2m \sim \frac{2n}{2}$.

Step 3: Checking for the presence of Eve.

1. Alice, Bob randomly agree m out of $2m$ positions to check the presence of Eve. This results in two m-position strings: the check-position string $CP = cp_1, .., cp_m$ and the message-position string $MP = mp_1, .., mp_m$.

2. Alice, Bob announce their values a_{cp_i}, b_{cp_i}, respectively, in check-positions cp_i. They check if $c_{cp_i} = a_{cp_i} \oplus b_{cp_i}$ or not. If some of negative checks, they abort the protocol.

Step 4: Creating the pads for Alice, Bob.

1. The values in m message-positions result in three m-bit pads $A = A_1, .., A_m; C = C_1, .., C_m; B = B_1, .., B_m$ where Alice holds two strings A, C and Bob holds two strings B, C. Note that $C_i = A_i \oplus B_i, i \in [1, .., m], m \sim \frac{n}{2}$.

Step 5: Transmitting the key K.

1. Alice creates the random m-bit key K. She sends $K \oplus A \oplus C = K \oplus B$ to B.

2. Bob receives $K \oplus B$, computes $K \oplus B \oplus B$ to obtain K.

5. **Security.**

 Note that the quantum circuit of Carol gives no more information than one XOR result either in basis $|+\rangle$ or $|\times\rangle$, appearing at the second output or the first one, depending on the common basis of Alice and Bob being $|+\rangle$ or $|\times\rangle$, respectively. In the modified-QQTB and enhanced-QQTB protocols, since Carol participates in the check process, she could cheat Alice and Bob. In the QUB protocol, Carol must announce her values before she knows the choices of basis of Alice and Bob. This implies that the quantum states of Alice and
Bob are really unknown to Carol. If she does not correctly follow the protocol, then her measured values must introduce some more errors. Note that Carol must always introduce one correct XOR result of two unknown states came from Alice and Bob, provided the Alice and Bob’s choices of basis is the same. This allows the step 3 of the protocol effectively detect malicious operations of Carol.

VIII. QUANTUM UNTRUSTED RELAY (QUR) MODEL

6. Model description.

The QUR model is very similar to the QQTR one (see Section VI). However, this model releases the “finite-time trusted” condition of the intermediate nodes Carol. Instead, we require that Alice and Bob must effectively detect to discard the cases in which Carol does not correctly follow the protocol and tries to read the transmitting keys. In the other word, the QUR model works with untrusted intermediate nodes.

7. QQTR protocol.

Between Alice and Bob we arrange N Carols ($C_1, ..., C_N$ for short) and $N+1$ Bells ($B_1, ..., B_{N+1}$ for short) as described in Fig.4. This creates $2N + 2$ segments. Without loss of generality, we assume that the length of segments are the same and the segment length allows our quantum devices working correctly and effectively with entanglement coherence and single-photon. All is similar to those of the QQTR model (see Section VI).

The QUR protocol consists of 5 steps:

Step 1: Preparing, exchanging, and measuring qubits.

1. For $B_1, ..., B_{N+1}$, each prepares n Bell states ($|\Phi^+\rangle^n$).

2. B_1 sends the first half of each Bell state to Alice (the previous), the second half to C_1 (the next). B_{N+1} sends the first half of each Bell state to C_N (the previous), the second half to Bob (the next). For $i \in [2, N]$, B_i sends the first half of each Bell state to C_{i-1} (the previous), the second half to C_i (the next).

3. Alice and Bob receive n qubits for each one. They randomly choose basis to measure their qubits, independently.
4. Each $C_i, i \in [1, N]$, receives $2n$ qubits from B_i and B_{i+1} in a synchronous manner. This means that she receives n times, and for each time she leads the qubit from B_i and the qubit from B_{i+1} to the first and second inputs of the quantum circuit as described in Fig. 2. Then, she sends both two output values to Alice and Bob. Briefly, C_i acts exactly as Carol in the QUB protocol.

5. Alice and Bob receive $N 2n$-bit strings from $C_1, ..., C_N$, and informations about positions and basis corresponding.

6. The roles of $B_1, ..., B_{N+1}, C_1, ..., C_N$ stop here.

Step 2: Sifting.

1. Alice and Bob announce their basis.

2. If the basis are different at the position i, then Alice, Bob discard this position.

3. For each remaining position i, Alice and Bob do on N strings came from $C_1, ..., C_N$ as follows. They keep only the value of either the first output or the second output if their common basis is $|\times\rangle$ or $|+\rangle$, respectively.

4. The values of the remaining positions result in $N + 2 2m$-bit strings $a = a_1, .., a_{2m}; c(i) = c(i)_1, ..., c(i)_{2m}$, $i = 1..N; b = b_1, .., b_{2m}$ where Alice holds $N + 1$ string $a, c(1), ..., c(N)$ and Bob holds $N + 1$ string $b, c(1), ..., c(N)$. These $N + 2$ strings should hold $\bigoplus_{j=1}^{N} c(i)_j = a_i \oplus b_i, i \in [1, 2m], 2m \sim \frac{n}{2}$.

Step 3: Checking for the presence of Eve.

1. Alice and Bob randomly agree m out of $2m$ positions to check the presence of Eve. This results in two m-position strings: the check-position string $CP = cp_1, .., cp_m$ and the message-position string $MP = mp_1, .., mp_m$.

2. Alice and Bob announce values in check-position $a = a_{cp_1}, .., a_{cp_m}; b = b_{cp_1}, .., b_{cp_m}; c(i) = c(i)_{cp_1}, .., c(i)_{cp_m}, i = 1..N$, respectively. They check if $\bigoplus_{i=1}^{N} c(i)_{cp_j} = a_{cp_j} \oplus b_{cp_j}$ or not. If some of negative checks, they abort the protocol.

Step 4: Creating the pads for Alice and Bob.
1. The values in m message-positions result in $N + 2$ m-bit pads $P^A = P^A_1, ..., P^A_m$;

\[P^{C(i)} = P^{C(i)}_1, ..., P^{C(i)}_m, i \in [1, N]; \text{ and } P^B = P^B_1, ..., P^B_m \]

where Alice holds $N + 1$ pads $P^A, P^{C(1)}, ..., P^{C(N)}$ and Bob holds $N + 1$ pads $P^B, P^{C(1)}, ..., P^{C(N)}$. These pads hold $\bigoplus_{i=1}^N P^{C(i)} = P^A \oplus P^B$.

Step 5: Transmitting the key K.

1. Alice creates the random m-bit key K, $m \sim \frac{n}{4}$. She sends $K \oplus P^A \bigoplus_{i=1}^N P^{C(i)}$ to Bob.

2. Bob receives $K \oplus P^A \bigoplus_{i=1}^N P^{C(i)}$, computes $K \oplus P^A \oplus P^B \bigoplus_{i=1}^N P^{C(i)} = K$.

8. Correctness.

The QUR protocol is based on the QQTR protocol, therefore, the correctness is exactly the same.

9. Security.

Note that the random coincidences of basis choices between Alice and Bob determine the computation basis of EPR states. By the fact that $C_1, ..., C_N$ must announce their measurement values before they know the basis of Alice and Bob, we have successfully removed the cheating possibility of $C_1, ..., C_N$ as analyzed in the security discussion of the QUB protocol. Besides, our check process could also detect imperfect EPR source as that of the modified Lo-Chau BB84 protocol presented in 5. In brief, our QUT protocol has the same security level as the other EPR pair based BB84 protocol.

IX. CONCLUSION

We developed quasi-trusted and untrusted models for relaying QKD keys. We distinguished protocols that are based on single photon and entangled photons. Our motivation is to avoid difficulties arising from conserving the quantum entanglement that is unavoidable dramatically decreased in time. The heart of our works is the quantum circuit as described as Fig. 2. This circuit receives two states and gives no more information than the XOR result of two input states, provided that the two input states are prepared in a common
basis. In particular, the common basis in one out of two conjugated basis determines the XOR result appearing at either the first output or the second output. This allows effectively detect malicious operations on relaying nodes.

Our results are very significant. These allow extend the range up to two time for single photon based QKD and up to un arbitrarily long distances for entanglement based QKD. Particularly, our entanglement-based protocols could keep almost totally the secret-key rate of the original BB84 protocol. Our protocols do not require having quantum devices that could keep entangled coherence in long time.

X. ACKNOWLEDGMENT

We would like to thank Minh-Dung Dang for helpful discussions.

1 Dür, W., Briegel, H.J., Cirac, J.I., Zoller, P.: Quantum repeaters based on entanglement purification. Phys. Rev. A 59 (January 1999) 169–181
2 Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distance (February 2008) http://arxiv.org/abs/quant-ph/9803006v5
3 Collins, D., Gisin, N., Riedmatten, H.D.: Quantum relays for long distance quantum cryptography. Journal of Modern Optics 52 (March 2005) 735–753
4 Bennett, C., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: Proc. of IEEE Int. Conf. on Computers, Systems, and Signal Processing, Bangalore, India (December 1984) 175–179
5 Shor, P., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85 (July 2000) 441–444
6 Lo, H.K.: A simple proof of the unconditional security of quantum key distribution. Journal of Physics A 34 (September 2001) 6957–6967
7 Chau, H.: Practical scheme to share a secret key through an up to 27.6% bit error rate quantum channel. Phys. Rev. A 66 (December 2002) 060302
8 Mayer, D.: Unconditional security in quantum cryptography. Journal of the ACM 48 (May 2001) 351–406
9 Elliott, C., Pearson, D., Troxel, G.: Quantum cryptography in practice. In: Proc. of the Conf. on Applications, Technologies, Architectures, and Protocols for Computer Communications, Karlsruhe, Germany (August 2003) 227–238

10 Kimura, T., al.: Single-photon interference over 150-km transmission using silica-based integrated-optic interferometers for quantum cryptography criterion. Japanese Journal of Applied Physics. 43 (September 2004) L1217–L1219

11 Elliott, C.: Building the quantum network. New Journal of Physics 4 (July 2002) 46.1–46.12

12 Elliott, C., al.: Current status of the DARPA quantum network (March 2005) http://arxiv.org/abs/quant-ph/0503058v2

13 Alléaume, R., al.: Architecture, Security and Topology of a global Quantum key distribution Network. In: IEEE/LEOS Summer Topical Meeting on Quantum Communications in Telecom Networks, Quebec (July 2006)

14 Alléaume, R., al.: Secoqc white paper on quantum key distribution and cryptography (January 2007) http://arxiv.org/abs/quant-ph/0701168

15 Le, Q.C., Bellot, P., Demaille, A.: Stochastic Routing in Large Grid Shaped Quantum Networks. In: Proc. of the 5th Int. Conf. on Computer Sciences, Research Innovation and Vision for the Future, Hanoi, Vietnam (March 2007) 166–174

16 Le, Q.C., Bellot, P., Demaille, A.: On the security of Quantum Networks: a proposal framework ans its capacity. In: Proc. of the Int. Conf. on New Technologies, Mobility, and Security, Paris, France (May 2007) 385–396

17 Le, Q.C., Bellot, P., Demaille, A.: Towards the world-wide quantum network. In: Proc. of the 4th Information Security Practice and Experience Conference (LNCS 4991), Sydney, Australia (April 2008) 218–232

18 Sergienko, A.V.: Quantum Communications and Cryptography. CRC Press (2006)

19 Furuta, K., Muratani, H., Isogai, T., Yonemura, T.: Analyzing the effectiveness of the quantum repeater (August 2006) http://arxiv.org/abs/quant-ph/0608143v1

20 Ekert, A., Hayden, P., Inamori, H.: Basic concepts in quantum computation (November 2000) http://arxiv.org/abs/quant-ph/0011013

21 Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press (2000)

22 Shannon, C.: Communication theory of secrecy of systems. Bell System Technical Journal
