Editorial: Natural compounds as scaffolds for the discovery of new anti-cancer drugs: Focus on terpenoids and flavonoids

Valeria P. Sülsen1,2*, Constantinos M. Athanassopoulos3, José M. Padrón4 and Rodrigo E. Tamura5

1Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)—Universidad de Buenos Aires, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Junín, Buenos Aires, Argentina, 2Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Farmacognosia, Junín, Buenos Aires, Argentina, 3Department of Chemistry, University of Patras, Patras, Greece, 4BioLab, Instituto Universitario de Bio-Órganica Antonio González (IUBO-AG), Universidad de La Laguna, La Laguna, Spain, 5Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, SP, Brazil

KEYWORDS
sesquiterpene lactones, diterpenoids, flavonoids, tumor, neoplasm, anti-cancer, natural compounds

Editorial on the Research Topic
Natural compounds as scaffolds for the discovery of new anti-cancer drugs: Focus on terpenoids and flavonoids

Cancer is a leading cause of death worldwide and it is estimated that there were nearly 10 million deaths in 2020 due to cancer (WHO, 2022). This disease is characterized by an abnormal proliferation of tumor cells in the body, resistance to cell death and other hallmarks that lead to the development of a tumor mass with potential to metastasize and spread to the body. Although chemotherapy is one of the best treatments for cancer, the drugs currently in use have serious side effects and have shown increasing resistance. For this reason, it is necessary to look for new, more effective and selective drugs with fewer adverse effects.

Natural products have played an important role in the discovery and development of new drugs. Many of the drugs that are currently used in therapeutics originate from natural compounds. Despite advances and the development of synthetic pharmaceutical chemistry, drugs derived from natural sources continue to hold a prominent position. The great chemical diversity they present determines that there is a greater possibility of finding new molecules with unique structures and potential biological activities (Davison and Brimble, 2019).

More than 60% of the agents available to treat cancer are connected to natural sources (Newman and Cragg, 2020). Examples include vincristine, vinblastine, podophyllotoxin, paclitaxel, among others.

Natural compounds such as terpenoids and flavonoids have attracted the interest of many researchers. Sesquiterpene lactones and diterpenoids have shown to be promising groups for the development of potential antitumor agents due to their preferential
selectivity over certain tumors and cell lines additionally acting on specific signaling pathways (Laurella et al., 2022; Deng et al., 2022; Guo et al., 2022). Flavonoids have demonstrated a preventive effect in the development and progress of cancer and metastasis (Guo et al., 2022; Ferreira et al., 2022). These compounds have also been shown to improve the effectiveness of current chemotherapies.

Our Research Topic collected studies on natural compounds as scaffolds for the discovery of new anticancer drugs, focusing on terpenoids and flavonoids, phytochemical groups of great interest. Natural compounds as well as semisynthetic derivatives with activity on any type of cancer has been considered.

In this sense, Orozco Barocio et al. evaluated the effect of Lophocereus schottii extract and fractions on murine lymphoma cells. L. schottii is a cactus used in the Mexican traditional medicine as anticancer. The authors demonstrated that the extract and fractions have antiproliferative activity against L5178Y cells. The polar fraction showed the best effect (IC50 = 15 μg/ml), being three times more active than cyclophosphamide. The analysis of the fraction by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) revealed the presence of flavonoids, alkaloids, terpenoids and sterols.

On the other hand, Yang et al., demonstrated that Platycodon grandiflorum immunomodulates T cells, reduces the expression of the inhibitory receptor programmed death-1 (PD-1) on the surface of CD8+ T cells and shows cytotoxic activity on non-small cell lung cancer (NSCLC). In vitro studies showed that P. grandiflorum inhibited the growth of LLC, H1975, A549, CT26, and B16-F10 cell lines. In the in vivo assay P. grandiflorum slowed down the process of tumor development, reducing tumor growth and increasing the survival. The antitumor effect of the combination of Platycodon D and Platycodon D3 has also been confirmed.

Paoniflorin is a terpene glycoside that has anticancer properties. Wang et al. studied the mechanisms of paoniflorin in epithelial-to-mesenchymal transition (EMT) and angiogenesis in glioblastoma cells. The authors demonstrated that this compound inhibited EMT via downregulating c-Met signaling. Paoniflorin also showed anti-angiogenic effects by suppressing cell proliferation, migration, invasion and tube formation. Additionally, this compound induced autophagy activation involving mTOR/P70S6K/S6 signaling and promoted c-Met autophagic degradation. Paoniflorin also suppressed mesenchymal makers and inhibited angiogenesis on an in vivo model.

Finally, Dey et al. reviewed the anticancer potential of the diterpenoid quinone salvicine. This compound has been demonstrated to be active both in vitro and in vivo and also on multidrug-resistant (MDR) cells. Salvicine decreases lung metastatic formation in the MDA-MB-435 lung cancer cell line. Several studies have shown that salvicine-induced ROS play an important role in the anticancer-mediated signaling pathway. This compound would act as a modulator of Topoisomerase II and ROS signaling cascade. The authors highlight the potential of salvicine as an alternative option for cancer treatment.

In conclusion, this Research Topic has provided some new studies and reviews in the field of anticancer natural products. Activity of extracts and natural compounds as well as the description of their mechanisms of action have been described. Flavonoids and terpenoids are natural compounds that have been considered of great interest for anticancer drug development. These molecules can target different cancer hallmarks, inhibiting proliferation, angiogenesis and invasion, modulating cancer cell cycle, promoting programmed cell death and having immunomodulatory activities directed against different tumor cells. Further exploration, supported by broad interdisciplinary studies (medicinal chemistry, pharmacology, molecular, and cellular biology) should be conducted with these two phytochemical groups in order to contribute to find new therapeutic options to fight against cancer.

Author contributions

All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.

Acknowledgments

The editors want to acknowledge the authors for their contributions to this Research Topic. We would also like to thank the staff of Frontiers in Pharmacology and Frontiers in Oncology for given us the possibility of editing this Research Topic.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
References

Davison, E. K., and Brimble, M. A. (2019). Natural product derived privileged scaffolds in drug discovery. *Curr. Opin. Chem. Biol.* 52, 1–8. doi:10.1016/j.copba.2018.12.007

Deng, Z. F., Bakunina, I., Yu, H., Han, J., Dömling, A., Ferreira, M. U., et al. (2022). Research progress on natural diterpenoids in reversing multidrug resistance. *Front. Pharmacol.* 13, 815603. doi:10.3389/fphar.2022.815603

Ferreira, M., Costa, D., and Sousa, Â. (2022). Flavonoids-based delivery systems towards cancer therapies. *Bioengineering* 9 (5), 197. doi:10.3390/bioengineering9050197

Guo, M., Jin, J., Zhao, D., Rong, Z., Cao, L. Q., Li, A. H., et al. (2022). Research advances on anti-cancer natural products. *Front. Oncol.* 12, 866154. doi:10.3390/fonc2022.866154

Laurella, L. C., Mirakian, N. T., García, M. N., Grasso, D. H., Sülsen, V. P., Papademetrio, D. L., et al. (2022). Sesquiterpene lactones as promising candidates for cancer therapy: Focus on pancreatic cancer. *Molecules* 27 (11), 3492. doi:10.3390/molecules27113492

Newman, D. J., and Cragg, G. M. (2020). Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. *J. Nat. Prod.* 83 (3), 770–803. doi:10.1021/acs.jnatprod.9b01285

World Health Organization (2022). Cancer. Available at: https://www.who.int/news-room/fact-sheets/detail/cancer (Accessed June 20, 2022).