Bounding the Mostar index

ˇStefko Miklavič1 Johannes Pardey2 Dieter Rautenbach2 Florian Werner2

1 University of Primorska, Institute Andrej Marušič, Koper, Slovenia
 stefko.miklavic@upr.si
2 Institute of Optimization and Operations Research, Ulm University, Ulm, Germany
 {johannes.pardey,dieter.rautenbach,florian.werner}@uni-ulm.de

Abstract

Došlić et al. defined the Mostar index of a graph G as
$$ Mo(G) = \sum_{uv \in E(G)} |n_G(u, v) - n_G(v, u)|, $$
where, for an edge uv of G, the term $n_G(u, v)$ denotes the number of vertices of G that have a smaller distance in G to u than to v. They conjectured that $Mo(G) \leq \frac{148}{27} n^3$ for every graph G of order n. As a natural upper bound on the Mostar index, Geneson and Tsai implicitly consider the parameter $Mo^*(G) = \sum_{uv \in E(G)} (n - \min\{d_G(u), d_G(v)\})$. For a graph G of order n, they show that $Mo^*(G) \leq \frac{5}{27}(1 + o(1))n^3$.

We improve this bound to $Mo^*(G) \leq \left(\frac{2}{\sqrt{3}} - 1\right)n^3$, which is best possible up to terms of lower order. Furthermore, we show that $Mo^*(G) \leq \left(\frac{2}{\sqrt{\Delta}} + \left(\frac{\Delta}{n}\right)^2\right)n^3$ provided that G has maximum degree Δ.

Keywords: Mostar index; distance unbalance

1 Introduction

Došlić et al. [9] defined the Mostar index $Mo(G)$ of a (finite and simple) graph G as
$$ Mo(G) = \sum_{uv \in E(G)} |n_G(u, v) - n_G(v, u)|, $$
where, for an edge uv of G, the term $n_G(u, v)$ denotes the number of vertices of G that have a smaller distance in G to u than to v. Since its introduction in 2018 the Mostar index has already incited a lot of research, mostly concerning sparse graphs and trees [3,7,16,17,20], chemical graphs [5,6,14,15,21], and hypercube-related graphs [12,19], see also the recent survey [2].

Došlić et al. [9] conjectured that $S_{n/3,2n/3}$ has maximum Mostar index among all graphs of order n (cf. [9, Conjecture 20]), where n is a multiple of 3, and $S_{k,n-k}$ denotes the split graph that arises from the disjoint union of a clique C of order k and an independent set I of order $n-k$ by adding all possible edges between C and I. Note that
$$ Mo(S_{n/3,2n/3}) = \frac{4}{27}(1 - o(1))n^3 = 0.148(1 - o(1))n^3. $$

As observed in [9] the Mostar index of a graph G of order n is less than $\frac{n^3}{2}$, each of its less than $\frac{n^2}{2}$ edges contributes less than n to $Mo(G)$. Geneson and Tsai [13] improved this trivial upper bound to
\[\frac{2}{3^n}(1 + o(1))n^3 \approx 0.2083(1 + o(1))n^3. \] They actually show this upper bound for the parameter

\[Mo^*(G) = \sum_{uv \in E(G)} (n - \min\{d_G(u), d_G(v)\}), \]

where \(d_G(u) \) denotes the degree of a vertex \(u \) in \(G \). The parameter \(Mo^*(G) \) is a natural upper bound on \(Mo(G) \): If \(uv \) is an edge of \(G \) with \(n_G(u, v) \geq n_G(v, u) \), then \(n_G(v, u) \geq |\{v\}| = 1 \) and \(n_G(u, v) \leq |V(G) \setminus (N_G[v] \setminus \{u\})| = n - d_G(v) \), where \(N_G[v] \) denotes the closed neighborhood of \(v \) in \(G \). We obtain

\[|n_G(u, v) - n_G(v, u)| = n_G(u, v) - n_G(v, u) \leq n - 1 - d_G(v) < n - \min\{d_G(u), d_G(v)\}, \]

and, hence,

\[Mo(G) \leq Mo^*(G) \text{ for every graph } G. \]

As our first main result, we prove the following.

Theorem 1. If \(G \) is a graph of order \(n \), then

\[Mo^*(G) \leq \left(\frac{2}{\sqrt{3}} - 1 \right) n^3 \leq 0.1548n^3. \]

Theorem 1 is best possible up to terms of lower order, which means that we cannot prove Conjecture 20 from [9] by considering only \(Mo^*(G) \): Starting with a complete bipartite graph whose smaller partite set contains about a \(\gamma = \frac{\sqrt{3} - 1}{2} \approx 0.366 \) fraction of all vertices, and recursively inserting in that smaller partite set a further complete bipartite graph whose smaller partite set contains about a \(\gamma \) fraction of its vertices yields a recursive construction of a graph \(G \) of order \(n \) with \(Mo^*(G) = \left(\frac{2}{\sqrt{3}} - 1 \right) (1 - o(1))n^3 \). Note that the complement of the constructed graph is the disjoint union of cliques of approximate orders \(\gamma^i(1 - \gamma)n \) for \(i = 0, 1, 2, 3, \ldots \). Inspecting the proof of Theorem 1 reveals that the above recursive construction of the (approximately) extremal graphs is quite natural for \(Mo^* \), which is a rather unusual and mathematically pleasing feature of this new parameter.

Our second main result relies on a linear programming approach that we introduced in [18], where we determined essentially best possible upper bounds on the Mostar index of bipartite graphs and split graphs.

Theorem 2. If \(G \) is a graph of order \(n \) and maximum degree \(\Delta \), then

\[Mo^*(G) \leq \left(2 \left(\frac{\Delta}{n} \right)^2 + \left(\frac{\Delta}{n} \right) - 2 \left(\frac{\Delta}{n} \right)^2 \right) n^3. \]

The bound in Theorem 2 is increasing in \(\Delta/n \) and improves Theorem 1 only for \(\Delta \) up to about 0.725n. Before we proceed to Section 2 where we prove our two theorems, we discuss further results and possible approaches.

It is easy to see that \(Mo(G) = irr(G) \) for graphs \(G \) of order \(n \) and diameter at most 2, where

\[irr(G) = \sum_{uv \in E(G)} |d_G(u) - d_G(v)| \]

is the *irregularity* introduced by Albertson [11]. As he showed that \(irr(G) \leq \frac{3}{\pi} n^3 \), Conjecture 20 from [9] follows immediately for graphs of diameter at most 2. This suggests the approach to show that, for every order \(n \), some graph \(G \) maximizing the Mostar index among all graphs of order \(n \) has a universal vertex. This, in turn, suggests considering the effect on the Mostar index of adding missing
edges to some given graph. Unfortunately, adding edges can have considerable non-local effects on the contribution of individual edges to the Mostar index. Nevertheless, examples suggest that suitable missing edges whose addition to a given graph G might have a controllable effect on the Mostar index of G can be identified using the following partial orientation of G:

For every edge uv of G with $n_G(u, v) > n_G(v, u)$, orient uv from v to u.

This orientation is acyclic in the following sense: As observed in [14][10], we have $n_G(u, v) - n_G(v, u) = \sigma_G(v) - \sigma_G(u)$ for every edge uv of G, where $\sigma_G(x) = \sum_{y \in V(G)} \text{dist}_G(x, y)$, and $\text{dist}_G(x, y)$ denotes the distance in G between the vertices x and y. Now, if $C : u_1u_2 \ldots u_{\ell}u_1$ is a cycle in G such that the edge $u_\ell u_1$ is oriented from u_ℓ to u_1 and, for every $i \in [\ell - 1]$, the edge u_iu_{i+1} is either oriented from u_i to u_{i+1} or is not oriented at all, then $\sum_{uv \in E(C)} |n_G(u, v) - n_G(v, u)|$ should be strictly positive, yet

$$\sum_{uv \in E(C)} |n_G(u, v) - n_G(v, u)| = \sum_{i=1}^{\ell-1} \left(n_G(u_{i+1}, u_i) - n_G(u_i, u_{i+1}) \right) + \left(n_G(u_1, u_\ell) - n_G(u_\ell, u_1) \right) = \sum_{i=1}^{\ell-1} \left(\sigma_G(u_i) - \sigma_G(u_{i+1}) \right) + \left(\sigma_G(u_1) - \sigma_G(u_\ell) \right) = 0,$$

that is, no such cycle exists in G. We believe that adding missing edges between vertices of zero outdegree and vertices of zero indegree in this partial orientation might have a controllable effect on the Mostar index of G. Unfortunately, we have not been able to quantify this intuition sufficiently well.

The approach of Geneson and Tsai [13] actually allows to obtain upper bounds on $\text{Mo}^*(G)$ depending on the degree sequence of G: Let the graph G have n vertices, m edges, and vertex degrees $d_1 \leq d_2 \leq \ldots \leq d_n$. Let $V(G) = \{u_1, \ldots, u_n\}$ be such that $d_G(u_i) = d_i$ for every $i \in \{1, 2, \ldots, n\}$. Furthermore, for every such i, let e_i be the number of neighbors of u_i in $\{u_{i+1}, \ldots, u_n\}$. Now, $m = \sum_{i=1}^n e_i$, and $\text{Mo}^*(G) = \sum_{i=1}^n e_i(n - d_i) = nm - \sum_{i=1}^n e_i d_i$. Clearly, for every i, we have

$$\max\{0, d_i - i + 1\} =: e_i^- \leq e_i^+ := \min\{d_i, n - i\},$$

which easily implies $\sum_{i=1}^n e_i d_i \geq s := \sum_{i=1}^{k-1} e_i^+ d_i + \sum_{i=k}^n e_i^- d_i$, where k is the smallest integer with $m \leq \sum_{i=1}^k e_i^+ + \sum_{i=k+1}^n e_i^-$. Altogether, we obtain $\text{Mo}^*(G) \leq nm - s$, where n, m, and s only depend on the degree sequence of G. The Mostar index of trees of given degree sequences has been studied in [7].

2 Proofs of Theorems 1 and 2

In the present section we prove our two main results.

Proof of Theorem 1 The proof is by induction in n. For $n = 1$, the graph G has no edge, $\text{Mo}^*(G) = 0$, and the statement is trivial. Now, let $n > 1$, and let the graph G of order n be chosen in such a way that

(i) $\text{Mo}^*(G)$ is as large as possible,
(ii) subject to (i), the graph G has as many edges as possible, and

(iii) subject to (i) and (ii), the term $\sum_{u \in V(G)} d_G^2(u)$ is as large as possible.

For a linear ordering $\pi : u_1, u_2, \ldots, u_n$ of the vertices of G, an edge $u_i u_j$ with $i < j$ is called a forward edge at u_i. For $i \in [n]$, let d^+_i be the number of forward edges at u_i. Note that d^+_i depends on the specific choice of π.

Now, choose $\pi : u_1, u_2, \ldots, u_n$ such that

(iv) $d_G(u_1) \leq d_G(u_2) \leq \ldots \leq d_G(u_n)$, and

(v) subject to (iv), the term $w(\pi) = \sum_{i=1}^{n} (n-i)d^+_i$ is as large as possible.

Claim 1. If $d_G(u_i) = d_G(u_{i+1})$ for some $i \in [n-1]$, then $d^+_i \geq d^+_{i+1}$.

Proof of Claim 1 Suppose, for a contradiction, that $d^+_i < d^+_{i+1}$. Let the linear ordering π' arise from π by exchanging u_i and u_{i+1}. If u_i and u_{i+1} are not adjacent, then

$$w(\pi') - w(\pi) = (n-i)d^+_{i+1} + (n-i-1)d^+_i - (n-i)d^+_{i+1} - (n-i-1)d^+_i > 0,$$

and, if u_i and u_{i+1} are adjacent, then

$$w(\pi') - w(\pi) = (n-i)(d^+_{i+1} + 1) + (n-i-1)(d^+_i - 1) - (n-i)d^+_{i+1} - (n-i-1)d^+_i = d^+_{i+1} - d^+_i + 1 > 0.$$

Since π' satisfies (iv), we obtain a contradiction to condition (v) in the choice of π. □

Claim 2. If $d_G(u_i) < d_G(u_{i+1})$ for some $i \in [n-1]$, then $d^+_i \geq d^+_{i+1}$.

Proof of Claim 2 Suppose, for a contradiction, that $d^+_i < d^+_{i+1}$. This implies the existence of a forward edge $u_{i+1} u_j$ at u_{i+1} for which u_i is not adjacent to u_j.

Let $G' = G - u_{i+1} u_j + u_i u_j$.

In order to lower bound $Mo^*(G') - Mo^*(G)$, we consider the contributions of the different edges.

- The edge $u_{i+1} u_j$ of G contributes $n - d_G(u_{i+1})$ to $Mo^*(G)$.

- The edge $u_i u_j$ of G' contributes $n - (d_G(u_i) + 1)$ to $Mo^*(G')$.

- Each of the $d^+_{i+1} - 1$ forward edges of G at u_{i+1} that are distinct from $u_{i+1} u_j$ contributes one more to $Mo^*(G')$ than to $Mo^*(G)$.

- Each of the d^+_i forward edges of G at u_i contributes at most one less to $Mo^*(G')$ than to $Mo^*(G)$.

Note that, if u_i and u_{i+1} are adjacent, then the edge between them is one of these forward edges.

- All remaining edges contribute at least as much to $Mo^*(G')$ as to $Mo^*(G)$.
Since $\Mo^*(G') \leq \Mo^*(G)$ by the choice of G, these observations imply

\[
0 \geq \Mo^*(G') - \Mo^*(G) \\
\geq - \left(n - d_G(u_{i+1}) \right) + \left(n - \left(d_G(u_i) + 1 \right) \right) + (d_{i+1}^+ - 1) - d_i^+ \\
= \left(d_G(u_{i+1}) - d_G(u_i) - 1 \right) + (d_{i+1}^+ - d_i^+ - 1) \geq 0,
\]
and, hence,

\[
d_G(u_{i+1}) = d_G(u_i) + 1 \quad \text{and} \quad d_{i+1}^+ = d_i^+ + 1.
\]

If u_i and u_{i+1} are adjacent, then, by \ref{ef0a}, the forward edge u_iu_{i+1} at u_i contributes the same to $\Mo^*(G')$ as to $\Mo^*(G)$, which implies the contradiction $\Mo^*(G') - \Mo^*(G) > 0$. Hence, the vertices u_i and u_{i+1} are not adjacent.

Let $G^+ = G + u_iu_j$ and $G^- = G - u_{i+1}u_j$.

In order to lower bound $\Mo^*(G^+) - \Mo^*(G)$, we consider the contributions of the different edges.

- The edge u_iu_j of G^+ contributes $n - (d_G(u_i) + 1)$ to $\Mo^*(G^+)$.
- Each of the d_i^+ forward edges of G at u_i contributes one less to $\Mo^*(G^+)$ than to $\Mo^*(G)$.
- Each of the d_j^+ forward edges of G at u_j contributes at most one less to $\Mo^*(G^+)$ than to $\Mo^*(G)$.
- All remaining edges contribute at least as much to $\Mo^*(G^+)$ as to $\Mo^*(G)$.

Together, these observations imply

\[
\Mo^*(G^+) - \Mo^*(G) \geq n - d_G(u_i) - 1 - d_i^+ - d_j^+. \tag{3} \label{ef1}
\]

In order to upper bound $\Mo^*(G) - \Mo^*(G^-)$, we consider the contributions of the different edges.

- The edge $u_{i+1}u_j$ of G contributes $n - d_G(u_{i+1})$ to $\Mo^*(G)$.
- Each of the $d_{i+1}^+ - 1 \geq d_i^+$ forward edges of G at u_{i+1} that are distinct from $u_{i+1}u_j$ contributes one less to $\Mo^*(G)$ than to $\Mo^*(G^-)$.
- Each of the d_j^+ forward edges of G at u_j contributes one less to $\Mo^*(G)$ than to $\Mo^*(G^-)$.
- All remaining edges contribute at most as much to $\Mo^*(G)$ as to $\Mo^*(G^-)$.

Together, these observations imply

\[
\Mo^*(G) - \Mo^*(G^-) \leq n - d_G(u_i) - 1 - d_i^+ - d_j^+. \tag{4} \label{ef2}
\]

Combining \ref{ef1} and \ref{ef2}, and using the specific choice of G, we obtain the contradiction

\[
0 > \Mo^*(G^+) - \Mo^*(G) \geq \Mo^*(G) - \Mo^*(G^-) \geq 0.
\]
By Claims 1 and 2 we have \(d_i^+ \geq d_2^+ \geq \ldots \geq d_n^+ \). \{claim3\}

Claim 3. If \(u_i \) and \(u_j \) are adjacent for some \(1 \leq i < j \leq n-1 \), then \(u_i \) is adjacent to \(u_{j+1}, \ldots, u_n \).

Proof of Claim 3 Suppose, for a contradiction, that \(u_i \) is adjacent to \(u_j \) but not to \(u_{j+1} \) for some \(1 \leq i < j \leq n-1 \).

Let \(G' = G - u_iu_j + u_iu_{j+1} \).

In order to lower bound \(Mo^*(G') - Mo^*(G) \), we consider the contributions of the different edges.

- Each of the \(d_j^+ \) forward edges of \(G \) at \(u_j \) contributes one more to \(Mo^*(G') \) than to \(Mo^*(G) \).
- Each of the \(d_{j+1}^+ \) forward edges of \(G \) at \(u_{j+1} \) contributes at most one less to \(Mo^*(G') \) than to \(Mo^*(G) \).
- All remaining edges contribute at least as much to \(Mo^*(G') \) as to \(Mo^*(G) \).

Since \(Mo^*(G') \leq Mo^*(G) \) by the choice of \(G \), these observations imply

\[
0 \geq Mo^*(G') - Mo^*(G) \geq d_j^+ - d_{j+1}^+ \geq 0,
\]

that is, we have \(Mo^*(G') = Mo^*(G) \). Note that \(G' \) has the same number of edges as \(G \) but that

\[
\sum_{u \in V(G)} d_{G'}^2(u) - \sum_{u \in V(G)} d_G^2(u) = (d_G(u_j) - 1)^2 + (d_G(u_{j+1}) + 1)^2 - d_G(u_j)^2 - d_G(u_{j+1})^2
\]

\[
= 2(d_G(u_{j+1}) - d_G(u_j)) + 2 > 0,
\]

which implies a contradiction to condition (iii) in the choice of \(G \). \(\square \)

Let \(\delta = d_G(u_1) \). By Claim 2 the neighborhood of \(u_1 \) in \(G \) is \(V(G) \setminus I \), where \(I = \{ u_1, \ldots, u_{n-\delta} \} \). If \(u_iu_j \) is an edge of \(G \) for \(1 \leq i < j \leq n-\delta \), then Claim 2 implies \(d_i^+ \geq n-j+1 \geq \delta + 1 \), which implies the contradiction \(d_G(u_1) = d_i^+ \geq d_j^+ \geq \delta + 1 \). Hence, the set \(I \) is independent. Since each vertex in \(I \) has degree at least \(\delta \), and \(V \setminus I \) contains exactly \(\delta \) vertices, it follows that each vertex in \(I \) has degree exactly \(\delta \), and that there are all possible \(\delta(n-\delta) \) edges in \(G \) between \(I \) and \(V \setminus I \).

Let \(H = G - I \) and \(x = \frac{\delta}{n} \).

Using

\[
\delta - \min\{d_H(u), d_H(v)\} = n - \min\{d_G(u), d_G(v)\}
\]

for every edge \(uv \) of \(H \),

induction, and

\[
\max \left\{ x(1-x)^2 + \left(\frac{2}{\sqrt{3}} - 1 \right) x^3 : x \in [0,1] \right\} = \frac{2}{\sqrt{3}} - 1,
\]

we obtain

\[
Mo^*(G) = \delta(n-\delta)^2 + Mo^*(H)
\]

\[
\leq \delta(n-\delta)^2 + \left(\frac{2}{\sqrt{3}} - 1 \right) \delta^3
\]

\[
= \left(x(1-x)^2 + \left(\frac{2}{\sqrt{3}} - 1 \right) x^3 \right) n^3
\]

\[
\leq \left(\frac{2}{\sqrt{3}} - 1 \right) n^3,
\]

which completes the proof. \(\square \)
We proceed to the proof of Theorem \[2\] Let \(G \) be a graph of order \(n \) and maximum degree at most \(\Delta \) for positive integers \(n \) and \(\Delta \) with \(\Delta \leq n - 1 \).

Let \(I = \{0, 1, \ldots, \Delta\} \), and let \(G \) have

- \(x_i, n \) vertices of degree \(i \) for every \(i \in I \), and
- \(y_{i,j}, n^2 \) edges between vertices of degree \(i \) and vertices of degree \(j \) for every \(i, j \in I \) with \(i \leq j \).

Double-counting the edges incident with vertices of degree \(i \) in \(G \) implies

\[
x_i n = 2y_{i,i} n^2 + \sum_{j \in I, j < i} y_{j,i} n^2 + \sum_{j \in I, j < j} y_{i,j} n^2.
\]

We obtain

\[
Mo^*(G) \leq \sum_{i,j \in I, i \leq j} (n - i) y_{i,j} n^2 \leq \text{OPT}(P) n^3,
\]

where \(\text{OPT}(P) \) denotes the optimal value of the following linear program \((P)\):

\[
\max \quad \sum_{i,j \in I, i \leq j} (1 - \frac{i}{n}) y_{i,j}
\]

\[
\text{s.t.h.} \quad \sum_{i \in I} x_i = 1, \quad 2y_{i,i} + \sum_{j \in I, j < i} y_{j,i} + \sum_{j \in I, j < j} y_{i,j} - \frac{i}{n} x_i = 0 \quad \text{for every} \ i \in I, \quad \text{and} \ x_{i,i}, y_{i,j} \geq 0 \quad \text{for every} \ i, j \in I \text{ with } i \leq j.
\]

The dual of \((P)\) is the following linear program \((D)\):

\[
\min \quad p
\]

\[
\text{s.t.h.} \quad q_i + q_j \geq 1 - \frac{i}{n} \quad \text{for every} \ i, j \in I \text{ with } i \leq j, \quad p \geq \frac{i}{n}q_i \quad \text{for every} \ i \in I, \quad \text{and} \ p, q_i \in \mathbb{R} \quad \text{for every} \ i \in I.
\]

For our argument, we actually only need the weak duality inequality chain for \((P)\) and \((D)\), which holds for all pairs of feasible solutions of \((P)\) and \((D)\):

\[
\sum_{i,j \in I, i \leq j} (1 - \frac{i}{n}) y_{i,j} \leq \sum_{i,j \in I, i \leq j} (q_i + q_j) y_{i,j} + \sum_{i \in I} \left(p - \frac{i}{n}q_i \right) x_i
\]

\[
= \sum_{i \in I} x_i p + \sum_{i \in I} q_i \left(2y_{i,i} + \sum_{j \in I, j < i} y_{j,i} + \sum_{j \in I, j < j} y_{i,j} - \frac{i}{n} x_j \right)
\]

\[
= p.
\]

Theorem \[2\] follows by combining \((5)\), weak duality \(\text{OPT}(P) \leq \text{OPT}(D) \), and the following lemma.

Lemma 3. \(\text{OPT}(D) \leq p_{\Delta} \) for \(p_{\Delta} = 2 \left(\frac{\Delta}{n} \right)^2 + \left(\frac{\Delta}{n} \right) - 2 \left(\frac{\Delta}{n} \right) \sqrt{\left(\frac{\Delta}{n} \right)^2 + \left(\frac{\Delta}{n} \right)} \).

Proof. Since \((D)\) is a minimization problem, it suffices to provide a feasible solution with objective function value \(p_{\Delta} \). Therefore, let \(p = p_{\Delta}, \ q_0 = 1, \) and \(q_i = \frac{i}{n}p \) for every \(i \in I \setminus \{0\} \). Note that this ensures the dual constraint \(p \geq \frac{i}{n}q_i \) for every \(i \in I \). Since \(q_i \) is decreasing for \(i \geq 1 \), and \(\frac{i}{n} \in [0, \frac{\Delta}{n}] \),
we have $q_j \geq \frac{\Delta}{n} p$ for $j \in I$, and the dual constraint

$$q_i + q_j \geq 1 - \frac{i}{n} \text{ for every } i, j \in I \text{ with } i \leq j$$

holds provided that

$$\frac{p}{x} + x + \frac{\Delta}{n} p \geq 1 \text{ for } x \in (0, \frac{\Delta}{n}].$$

The function $x \mapsto \frac{p}{x} + x$ for $x \in (0, \infty)$ assumes its minimum of $2\sqrt{p}$ at \sqrt{p}. Hence, (7) holds provided that $2\sqrt{p} + \frac{\Delta}{n} p = 1$. It is easy to verify that this holds indeed for $p = p\Delta$, which completes the proof. \qed

References

[1] M. Albertson, The irregularity of a graph, *Ars Combin.* 46 (1997) 219–225.

[2] A. Ali and T. Došlić, Mostar index: results and perspectives, *Appl. Math. Comput.* 404 (2021) Paper No. 126245.

[3] Y. Alizadeh, K. Xu, and S. Klavžar, On the Mostar index of trees and product graphs, *Filomat* 35 (2021) 4637–4643.

[4] M. Aouchiche and P. Hansen, On a conjecture about Szeged index, *European J. Combin.* 31 (2010) 1662–1666.

[5] H. Chen, H. Liu, Q. Xiao, and J. Zhang, Extremal phenylene chains with respect to the Mostar index, *Discrete Math. Algorithms Appl.* 13 (2021) Paper No. 2150075.

[6] K. Deng and S. Li, Extremal catacondensed benzenoids with respect to the Mostar index, *J. Math. Chem.* 58 (2020) 1437–1465.

[7] K. Deng and S. Li, On the extremal values for the Mostar index of trees with given degree sequence, *Appl. Math. Comput.* 390 (2021) Paper No. 125598.

[8] K. Deng and S. Li, On the extremal Mostar indices of trees with a given segment sequence, *Bull. Malays. Math. Sci. Soc.* 45 (2022) 593–612.

[9] T. Došlić, I. Martinjak, R. Škrekovski, S. Tipurić Spužević, and I. Zubac, Mostar index, *J. Math. Chem.* 56 (2018) 2995–3013.

[10] A. Dobrynin and I. Gutman, On a graph invariant related to the sum of all distances in a graph, *Publ. Inst. Math. (Beograd) (N.S.)* 56 (1994) 18–22.

[11] P. Erdős and T. Gallai, Graphs with prescribed degrees of vertices (in Hungarian), *Mat. Lapok* 11 (1960) 264–274.

[12] Ö. Eğecioğlu, E. Saygı, and Z. Saygı, The Mostar index of Fibonacci and Lucas cubes, *Bull. Malays. Math. Sci. Soc.* 44 (2021) 3677–3687.

[13] J. Geneson and S.-F. Tsai, Peripherality in networks: theory and applications, *J. Math. Chem.* 60 (2022) 1021–1079.
[14] N. Ghanbari and S. Alikhani, Mostar index and edge Mostar index of polymers, *Comput. Appl. Math.* 40 (2021) Paper No. 260.

[15] M. Ghorbani and S. Rahmani, The Mostar index of fullerenes in terms of automorphism group, *Facta Univ. Ser. Math. Inform.* 35 (2020) 151–165.

[16] F. Hayat and B. Zhou, On cacti with large Mostar index, *Filomat* 33 (2019) 4865–4873.

[17] F. Hayat and B. Zhou, On Mostar index of trees with parameters, *Filomat* 33 (2019) 6453–6458.

[18] Š. Miklavič, J. Pardey, D. Rautenbach, and F. Werner, Maximizing the Mostar index for bipartite graphs and split graphs, arXiv 2210.03399.

[19] M. Mollard, A relation between Wiener index and Mostar index for daisy cubes, *Discrete Math. Lett.* 10 (2022) 81–84.

[20] A. Tepeh, Extremal bicyclic graphs with respect to Mostar index, *Appl. Math. Comput.* 355 (2019) 319–324.

[21] Q. Xiao, M. Zeng, Y. Tang, H Hua, and H. Deng, The hexagonal chains with the first three maximal Mostar indices, *Discrete Appl. Math.* 288 (2021) 180–191.