CHARACTERIZATION OF AFFINE \mathbb{G}_m-SURFACES OF HYPERBOLIC TYPE

ANDRIY REGETA

ABSTRACT. In this note we extend the result from [LRU20] and prove that if S is an affine non-toric \mathbb{G}_m-surface of hyperbolic type that admits a \mathbb{G}_a-action and X is an affine irreducible variety such that Aut(X) is isomorphic to Aut(S) as an abstract group, then X is a \mathbb{G}_m-surface of hyperbolic type. Further, we show that a smooth Danielewski surface $D_p = \{xy = p(z)\} \subset \mathbb{A}^3$, where p has no multiple roots, is determined by its automorphism group seen as an ind-group in the category of affine irreducible varieties.

1. Introduction and main results

In this note we work over the field of complex numbers \mathbb{C} and assume all varieties to be irreducible. We denote the multiplicative and additive group of \mathbb{C} respectively by \mathbb{G}_m and \mathbb{G}_a, and call a variety that admits a regular \mathbb{G}_m-action/\mathbb{G}_a-action to be a \mathbb{G}_m-variety/\mathbb{G}_a-variety.

Affine \mathbb{G}_m-surfaces appear in three types with respect to the dynamical behavior of the \mathbb{G}_m-action: parabolic, corresponding to the case with infinitely many fixed points, elliptic, where an attractive fixed point exists, and hyperbolic, with finitely many non-attractive fixed points. In addition, in the case of a non-toric affine \mathbb{G}_m-surface S, the dynamical type of S does not depend on the choice of the \mathbb{G}_m-action ([FZ05a, Corollary 4.3]). [LRU22, Theorem 1.2] shows that if there exists a group isomorphism of automorphism groups of normal affine \mathbb{G}_m-surfaces S and S' with S being also a non-toric \mathbb{G}_a-surface, then S and S' have the same dynamical type. We generalize this statement for the hyperbolic dynamical type, which can be viewed as a rigidity result, and observe that it does not extend to parabolic and elliptic dynamical types in Remark 1.

Theorem 1. Let S and X be affine \mathbb{G}_m-varieties with S being also a normal non-toric \mathbb{G}_a-surface. If there exists a group isomorphism $\varphi: \text{Aut}(S) \to \text{Aut}(X)$, then $\dim X = 2$. Moreover, if X is normal, then X is also a hyperbolic non-toric \mathbb{G}_m-surface.

Remark 1. The only elliptic \mathbb{G}_m-surfaces S that admit a \mathbb{G}_a-action are toric, thus Theorem 1 does not extend to this case. Indeed, by [Lie10, Lemma 1.10] S admits a root subgroup (see Section 2.4) in its automorphism group with respect to a subtorus of Aut(S) induced by the \mathbb{G}_m-action. Hence, by [FZ05b, Theorem 3.3] S is toric. Moreover, at the end of this note, Example 1 demonstrates that Theorem 1 does not extend to the parabolic case.

One of the most important class of hyperbolic \mathbb{G}_m-surfaces are Danielewski surfaces which were originally studied in [Dan89] with the aim to find a counterexample for the generalized version of Zariski Cancellation Problem. A smooth Danielewski
surface D_p is $\{(x, y, z) \in \mathbb{A}^3 \mid xy = p(z)\}$, where p is a polynomial without multiple roots.

Remark 2. [Da04, Lemma 2.10] shows that D_p and D_q are isomorphic if and only if there exists an automorphism F of $\mathbb{C}[z]$ such that $\frac{F(p)}{q} \in \mathbb{C}^*$. In particular if $\deg p = \deg q = 2$, then D_p and D_q are isomorphic.

We call a surface D_p generic if there is no affine automorphism of the affine line \mathbb{C} that permutes the roots of p. For two generic surfaces D_p and D_q with $\deg p \geq 3$ and $\deg q \geq 3$ there is an isomorphism $\text{Aut}(D_p) \cong \text{Aut}(D_q)$ of abstract groups. Indeed, in [ML90, Theorem and Remark (3) on p. 256] and more precisely in [KL16, Theorem 2.7] it is shown that for a generic Danielewski surface D_p, we have $\text{Aut}(D_p) \cong (\mathbb{C}[x] \ast \mathbb{C}[y]) \rtimes (\mathbb{G}_m \times \mathbb{Z}/2\mathbb{Z})$ and the semidirect product structure does not depend on $p(z)$ (see also [LR20, Remark 7]). On the other hand, by [LR20, Theorem 3] $\text{Aut}(D_p)$ and $\text{Aut}(D_q)$ are isomorphic as ind-groups (see Section 2.1 for details) if and only if D_p is isomorphic to D_q as a variety. In this paper we prove the following result.

Theorem 2. Let X be an affine irreducible variety. Assume $\text{Aut}(X)$ is isomorphic to $\text{Aut}(D_p)$ as an ind-group, then X is isomorphic to D_p as a variety.

Acknowledgements. I am thankful to Roland Pucek who has read the text and suggested a number of improvements.

2. Preliminaries

2.1. Ind-groups. The notion of an ind-group goes back to Shafarevich, who called them infinite dimensional groups, see [Sh66]. We refer to [FK18] and [KPZ15] for basic notions.

Definition 1. An ind-variety is a set V together with an ascending filtration $V_0 \subset V_1 \subset V_2 \subset \ldots \subset V$ such that the following is satisfied:

(1) $V = \bigcup_{k \in \mathbb{N}} V_k$;

(2) each V_k has the structure of an algebraic variety;

(3) for all $k \in \mathbb{N}$ the subset $V_k \subset V_{k+1}$ is closed in the Zariski topology.

A morphism between two ind-varieties $V = \bigcup_{k \in \mathbb{N}} V_k$ and $W = \bigcup_{l \in \mathbb{N}} W_l$ is a map $\phi: V \to W$ such that for each $k \in \mathbb{N}$ there is an $l \in \mathbb{N}$ such that $\phi(V_k) \subset W_l$ and such that the induced map $V_k \to W_l$ is a morphism of algebraic varieties. Isomorphisms of ind-varieties are defined in the usual way.

An ind-variety $V = \bigcup_{k \in \mathbb{N}} V_k$ has a natural topology: a subset $S \subset V$ is called closed, respectively open, if $S_k := S \cap V_k \subset V_k$ is closed, respectively open, for all k. A closed subset $S \subset V$ has the natural structure of an ind-variety. It is called an ind-subvariety if each variety V_k is affine. In the sequel we consider only affine ind-varieties and for simplicity we call them just ind-varieties.

A set theoretical product of ind-varieties admits a natural structure of an ind-variety. This allows us to introduce the following definition.

Definition 2. An ind-variety G is called an ind-group if the underlying set G is a group such that the map $G \times G \to G$, defined by $(g, h) \mapsto gh^{-1}$, is a morphism of ind-varieties.
Note that any closed subgroup H of G, i.e., H is a subgroup of G and is a closed subset, is again an ind-group under the closed ind-subvariety structure on G. A closed subgroup H of an ind-group G is an algebraic subgroup if H is an algebraic subset of G i.e., H is a closed subset of some G_i, where $G_1 \subset G_2 \subset \ldots$ is a filtration of G.

The next result can be found in [FK18, Section 5].

Proposition 1. Let X be an affine variety. Then $\text{Aut}(X)$ has the structure of an ind-group such that for any algebraic group G, a regular G-action on X induces an ind-group homomorphism $G \to \text{Aut}(X)$.

For example, if $X = \mathbb{A}^n$, the ind-group filtration of $\text{Aut}(\mathbb{A}^n)$ is given by

$\text{Aut}(\mathbb{A}^n)_d = \{f = (f_1, \ldots, f_n) \in \text{Aut}(\mathbb{A}^n) \mid \deg f = \max_i f_i \leq d, \deg f^{-1} \leq d\}$.

The following observation will turn out to be useful in the proof of Theorem 1:

Lemma 1 (Lemma 2.4, [LRU22]). Let X be an affine variety and let $U \subset \text{Aut}(X)$ be a commutative subgroup that coincides with its centraliser. Then U is a closed subgroup of $\text{Aut}(X)$.

The next statement follows from [CRX19, Theorem B] (see also [RvS21, Corollary 3.2]). We will need it in the proof of Theorem 1.

Proposition 2. Let X be an affine variety and let G be a commutative connected closed subgroup of $\text{Aut}(X)$. Then G is the countable union of an increasing filtration by commutative connected algebraic subgroups of $\text{Aut}(X)$.

2.2. Algebraic and divisible elements.

We call an element f in a group G divisible by n if there exists an element $g \in G$ such that $g^n = f$. An element is called divisible if it is divisible by all $n \in \mathbb{Z}^+$. An element f in the automorphism group of an affine variety X is algebraic if it is contained in an algebraic subgroup G of $\text{Aut}(X)$ with respect to its ind-group structure.

In the proof of Theorem 1 we will need the following result that follows from [LRU22, Theorem 3.1] and [LRU22, Corollary 2.6] and that connects the notions of divisibility and algebraicity in the automorphism group of an affine surface.

Proposition 3. Let S be an affine irreducible algebraic surface. Then the following two conditions are equivalent:

1. there exists a $k > 0$ such that f^k is divisible;
2. f is algebraic.

2.3. Lie algebras of vector fields.

We denote by $\text{Vec}(X)$ the Lie algebra of vector fields on an affine variety X. A vector field $\nu \in \text{Vec}(X)$ is called locally nilpotent if for any $f \in \mathcal{O}(X)$ there exists $s \in \mathbb{N}$ such that $\nu^s(f) = 0$. By $\langle \text{LNV}(X) \rangle$ we denote the Lie subalgebra of $\text{Vec}(X)$ generated by all locally nilpotent vector fields. We have the following lemma.

Lemma 2 (Lemma 1, [LR20]). Let X and Y be affine algebraic varieties and let $\varphi: \text{Aut}(X) \to \text{Aut}(Y)$ be a homomorphism of ind-groups. Then φ induces the homomorphisms of Lie algebras

$d\varphi: \langle \text{LNV}(X) \rangle \to \langle \text{LNV}(Y) \rangle$.

Moreover, if φ is an isomorphism, then the homomorphism $d\varphi$ is also the isomorphism.
2.4. **Root subgroups.** In this section we describe root subgroups of the automorphism group $\text{Aut}(X)$ of an affine variety X with respect to a subtorus.

Definition 3. Let $T \subset \text{Aut}(X)$ be a subtorus in $\text{Aut}(X)$, i.e. a closed algebraic subgroup isomorphic to a torus. A closed algebraic subgroup $U \subset \text{Aut}(X)$ isomorphic to \mathbb{G}_a is called a root subgroup with respect to T if the normalizer of U in $\text{Aut}(X)$ contains T. Such an algebraic subgroup U corresponds to a non-trivial \mathbb{G}_a-action on X, whose image in $\text{Aut}(X)$ is normalized by T.

Assume $U \subset \text{Aut}(X)$ is a root subgroup with respect to T. Since T normalizes U, we can define an action $\varphi: T \to \text{Aut}(U)$ of T on U given by $t.u = t \circ u \circ t^{-1}$ for all $t \in T$ and $u \in U$. Moreover, since $\text{Aut}(U) \simeq \mathbb{G}_m$, such an action corresponds to a character of the torus $\mu: T \to \mathbb{G}_m$, which does not depend on the choice of an isomorphism between \mathbb{G}_m and $\text{Aut}(U)$. Such a character is called the weight of U. The subgroup of $\text{Aut}(X)$ generated by algebraic subgroups T and U is isomorphic to $\mathbb{G}_a \rtimes_{\mu} T$.

Assume that the algebraic torus T acts linearly and rationally on a vector space A of countable dimension. We say that A is multiplicity-free if the weight spaces A_{μ} are all of dimension less or equal than one for every character $\mu: T \to \mathbb{G}_m$ of the torus T. In the proof of Theorem 1 we will use the following lemma that is due to Kraft:

Lemma 3 (Lemma 5.2, [Kr17]). Let X be a normal affine variety and let $T \subset \text{Aut}(X)$ be a torus. If there exists a root subgroup $U \subset \text{Aut}(X)$ with respect to T such that $O(X)^U$ is multiplicity-free, then $\dim T \leq \dim X \leq \dim T + 1$.

Let X be an affine variety and consider a nontrivial algebraic action of \mathbb{G}_a on X, given by $\lambda: \mathbb{G}_a \to \text{Aut}(X)$. If $f \in O(X)$ is a \mathbb{G}_a-invariant regular function, then the modification $f \cdot \lambda$ of λ is defined in the following way (see [FK18, Section 8.3]):

$$(f \cdot \lambda)(s)x = \lambda(f(x)s)x$$

for $s \in \mathbb{C}$ and $x \in X$. This is again a \mathbb{G}_a-action. If X is irreducible and $f \neq 0$, then $f \cdot \lambda$ and λ have the same invariants. If $U \subset \text{Aut}(X)$ is a closed algebraic subgroup isomorphic to \mathbb{G}_a and if $f \in O(X)^U$ is a U-invariant, then similarly as above we define the modification $f \cdot U$ of U. Pick an isomorphism $\lambda: \mathbb{G}_a \to U$ and set

$$f \cdot U = \{(f \cdot \lambda)(s) \mid s \in \mathbb{G}_a\}.$$

If $U \subset \text{Aut}(X)$ is a root subgroup with respect to T and $f \in O(X)^U$ is a T-semi-invariant, then $f \cdot U$ is again a root subgroup with respect to T.

2.5. **Hyperbolic surfaces.** We will use the next two lemmas proved in [LRU22] in the proof of Theorem 1.

Lemma 4 (Lemma 4.16, [LRU22]). A non-toric \mathbb{G}_m-surface S admits root subgroups of different weights if and only if S is hyperbolic. Furthermore, in this case all root subgroups have different weights.

Lemma 5 (Lemma 4.15, [LRU22]). Let S be a non-toric normal affine \mathbb{G}_m-surface and denote by $T \subset \text{Aut}(S)$ the subgroup isomorphic to \mathbb{G}_m induced by the \mathbb{G}_m-action. Let $H \subset \text{Aut}(S)$ be an abelian subgroup containing only algebraic elements such that $T \subset H$. Then there exists a finite group F such that $H \simeq T \times F$.
3. Proof of Theorem 1

Assume \(\varphi: \text{Aut}(S) \to \text{Aut}(X) \) is an isomorphism of groups. Denote by \(T \) a one-dimensional subtorus of \(\text{Aut}(S) \), i.e. \(T \subset \text{Aut}(S) \) is an algebraic subgroup isomorphic to \(\mathbb{G}_m \). Further, denote by \(Z \) a maximal abelian subgroup of the centralizer of \(T \) in \(\text{Aut}(S) \) that contains \(T \). The group \(Z \) coincides with its centralizer in \(\text{Aut}(S) \) which in turn implies that \(Z \subset \text{Aut}(S) \) is closed (see Lemma 1). We claim that \(Z \) is a countable extension of \(T \). Indeed, otherwise if \(Z \) is an uncountable extension of \(T \), then the connected component \(Z^0 \) is again an uncountable extension of \(T \) (as \(Z^0 \subset Z \) is a countable index subgroup) and by Proposition 2 \(Z \) contains a two-dimensional commutative non-unipotent algebraic subgroup which is not possible as \(S \) is non-toric (see [LRU22, Lemma 4.17]). Further, since \(\varphi(Z) \) coincides with its centralizer in \(\text{Aut}(X) \), \(\varphi(Z) \subset \text{Aut}(X) \) is closed and \(\varphi(Z)^0 \) is a union of commutative algebraic groups (see Proposition 2).

By assumption \(S \) admits a regular \(\mathbb{G}_a \)-action. Hence, \(\text{Aut}(S) \) contains a root subgroup with respect to \(T \) (see for example [Lie10, Lemma 1.10]). Choose a root subgroup \(U \subset \text{Aut}(S) \) with respect to \(T \). Note that the weight of the root subgroup \(U \) is non-zero since \(S \) is non-toric (see [LRU22, Lemma 4.17]).

Claim 1. The subgroup \(\varphi(U) \subset \text{Aut}(X) \) is closed.

The subgroup \(U \subset \text{Aut}(S) \) is normalized by \(T \) and in particular, there is \(t_0 \in T \) such that

\[
t_0 \circ u \circ t_0^{-1} = u^2,
\]

where \(u \in U \). We claim that

\[
U = \{ u \in \text{Aut}(S) \mid t_0 \circ u \circ t_0^{-1} = u^2 \}.
\]

Indeed, if there is some \(h \in \text{Aut}(S) \setminus U \) such that \(t_0 \circ h \circ t_0^{-1} = h^2 \), then the group generated by \(t_0 \) normalizes the group generated by \(h \). Hence, \(T = \langle t_0 \rangle \) normalizes \(\langle h \rangle \). Observe that \(\langle h \rangle \) is one-dimensional algebraic subgroup since otherwise \(\langle h \rangle \) would contain a two-dimensional commutative non-unipotent algebraic subgroup which contradicts the assumption that \(S \) is non-toric (see [LRU22, Lemma 4.17]). Hence, \(\langle h \rangle^0 \simeq \mathbb{G}_a \) (see [LRU22, Lemma 4.10]). In another words, \(\langle h \rangle^0 \subset \text{Aut}(S) \) is the root subgroup with respect to \(T \). Since all root subgroups of \(\text{Aut}(S) \) with respect to \(T \) have different weights (see Lemma 4) we have that \(\langle h \rangle^0 \subset U \) which proves (1). The Claim 1 follows from (1).

Claim 2. \(\varphi(U) = \varphi(U)^0 \).

As \(T \) acts transitively on \(U \setminus \{ \text{id}_S \} \) by conjugations, it follows that \(\varphi(T) \) acts transitively on \(\varphi(U) \setminus \{ \text{id}_X \} \) by conjugations. Note that \(\varphi(U)^0 \setminus \{ \text{id}_X \} \) is a subset of \(\varphi(U) \setminus \{ \text{id}_X \} \) that is left invariant under the \(\varphi(T) \)-action. As \(\varphi(U) \) is uncountable and \(\varphi(U)^0 \) has countable index in \(\varphi(U) \), it follows that \(\varphi(U)^0 \setminus \{ \text{id}_X \} \) is non-empty. Hence, \(\varphi(U)^0 \setminus \{ \text{id}_X \} = \varphi(U) \setminus \{ \text{id}_X \} \) and thus \(\varphi(U)^0 = \varphi(U) \). This proves Claim 2.

Claim 3. \(\overline{\varphi(T)}^0 \) is isomorphic to \(\mathbb{G}_m \).

The subgroup \(\overline{\varphi(T)}^0 \subset \text{Aut}(X) \) is closed. Moreover, \(\varphi(T) \) acts on \(\varphi(U) \) by conjugations and hence, \(\overline{\varphi(T)}^0 \) acts on \(\varphi(U)^0 = \varphi(U) \) by conjugations. By Proposition 2 the subgroups \(\overline{\varphi(T)}^0, \varphi(U) \subset \text{Aut}(X) \) are the unions of commutative connected algebraic groups \(\bigcup_{i \geq 1} G_i \) and \(\bigcup_{i \geq 1} H_i \) respectively. Moreover, since \(\varphi(U) \) does not
contain elements of finite order, $H_i \simeq \mathbb{G}_a$ for each $i \geq 1$. Assume there is $k \in \mathbb{N}$ such that G_k contains an algebraic subgroup $K \simeq \mathbb{G}_a$. Then it follows from the Lie-Kolchin Theorem (see [Hum75, §17.6]) that there is $l \in \mathbb{N}$ and $v \in H_l$ such that K fixes v. Equivalently, $\varphi^{-1}(K)$ fixes $\varphi^{-1}(v) = u \in U$.

All elements of $\varphi^{-1}(K)$ are divisible which in turn implies that all elements of $\varphi^{-1}(K)$ are algebraic (see Proposition 3). Hence, by Lemma 5 the commutative subgroup $\varphi^{-1}(K) \subset \text{Aut}(S)$ is a subgroup of $T \times F$ for some finite group F. Since all divisble elements of $T \times F$ are contained in T we conclude that $\varphi^{-1}(K) \subset T$. Further, because $\varphi^{-1}(K)$ fixes $\varphi^{-1}(v) = u \in U$ it follows that $T = \varphi^{-1}(K)$ acts trivially on $(u) = U$ which is not the case. Therefore, $G_i \simeq \mathbb{G}_a^r$ for some $r_i \in \mathbb{N}$. Moreover, since all elements of \mathbb{G}_a^r are divisible, similarly as above, $\varphi^{-1}(G_i) \subset T$. Hence, there is no copy of $(\mathbb{Z}/p\mathbb{Z})^2$ in $\varphi^{-1}(G_i)$, where $p > 1$ and $i \in \mathbb{N}$. This implies that $G_i \simeq \mathbb{G}_m$ for any i and we conclude that $\varphi(T) \simeq \mathbb{G}_m$.

Claim 4. $\varphi(T)$ is isomorphic to \mathbb{G}_m and $\varphi(U)$ is isomorphic to \mathbb{G}_a.

We first claim that $\varphi(T) = \varphi(T)$. Indeed, since all elements of $\varphi^{-1}(\varphi(T))$ are divisible, by Proposition 3 they are all algebraic. By Lemma 5 the group $\varphi^{-1}(\varphi(T))$ is a subgroup of $T \times F$ for some finite group F. Moreover, since all divisble elements of $T \times F$ are contained in T we conclude that $\varphi^{-1}(\varphi(T)) \subset T$ or equivalently $\varphi(T) \subset \varphi(T)$. Because both $\varphi(T)$ and $\varphi(T)$ act on $\varphi(U) \setminus \{\text{id}_X\}$ transitively with finite kernels, it follows that the subgroup $\varphi(T) \subset \varphi(T)$ has a finite index. Finally, because $\varphi(T)$ and $\varphi(T)$, seen as abstract groups, are isomorphic to \mathbb{G}_m, the torsion subgroups of $\varphi(T)$ and $\varphi(T)$ coincide and we conclude that $\varphi(T) = \varphi(T) \simeq \mathbb{G}_m$. Since $\varphi(T)$ acts on $\varphi(U) \setminus \{\text{id}_X\}$ transitively with a finite kernel, $\varphi(U)$ is a one-dimensional algebraic group which implies that $\varphi(U) \simeq \mathbb{G}_a$ (see [LRU22, Lemma 4.10]).

Claim 5. $\varphi(T)$ acts on the invariant ring $\mathcal{O}(X)^{\varphi(U)}$ multiplicity freely.

Assume towards a contradiction that $f, g \in \mathcal{O}(X)^{\varphi(U)}$ are linearly independent $\varphi(T)$-semi-invariants of the same $\varphi(T)$-weight. Hence, the subgroups $f \cdot \varphi(U)$ and $g \cdot \varphi(U)$ of $\text{Aut}(X)$ are root subgroups with respect to $\varphi(T)$ with the same weight. Then $\varphi^{-1}(f \cdot \varphi(U))$ and $\varphi^{-1}(g \cdot \varphi(U))$ are root subgroups with respect to $\varphi^{-1}(\varphi(T)) = T$. Indeed, $\varphi^{-1}(f \cdot \varphi(U)) \setminus \{\text{id}_S\}$ is a T-orbit and hence is a quasi-affine curve in $\text{Aut}(S)$. Therefore, $\varphi^{-1}(f \cdot \varphi(U)) = (\varphi^{-1}(f \cdot \varphi(U)) \setminus \{\text{id}_S\}) \circ (\varphi^{-1}(f \cdot \varphi(U)))$ is an algebraic subgroup of $\text{Aut}(S)$ that is normalized by algebraic torus T. Finally, by [LRU22, Lemma 4.10] $\varphi^{-1}(f \cdot \varphi(U)) \simeq \mathbb{G}_a$ and analogously $\varphi^{-1}(g \cdot \varphi(U)) \simeq \mathbb{G}_a$.

By Lemma 4 root subgroups $\varphi^{-1}(f \cdot \varphi(U))$ and $\varphi^{-1}(g \cdot \varphi(U))$ with respect to T have different weights which means that T acts on $\varphi^{-1}(f \cdot \varphi(U))$ and $\varphi^{-1}(g \cdot \varphi(U))$ with different kernels. This contradicts the assumption that $f \cdot \varphi(U)$ and $g \cdot \varphi(U)$ are $\varphi(T)$-root subgroups with the same weight. The claim follows.

Since $\varphi(T)$ acts on the invariant ring $\mathcal{O}(X)^{\varphi(U)}$ multiplicity freely, by Lemma 3 dim $X \leq 2$. Moreover, we claim that dim $X \neq 1$. Indeed, if dim $X = 1$, then since X admits an action of $\varphi(U) \simeq \mathbb{G}_a$, X is isomorphic to the affine line \mathbb{A}^1. Hence, $\text{Aut}(X = \mathbb{A}^1)$ is a two-dimensional algebraic group. But this is not possible since there is a non-trivial semi-invariant $f \in \mathcal{O}(S)^U$ and then $f \cdot U$ is a root subgroup of $\text{Aut}(S)$ with respect to T that is different from U. Therefore, by Claim 5 $\varphi(U)$ and
$\varphi(f \cdot U)$ are root subgroups of $\text{Aut}(X)$ with respect to $\varphi(T)$, i.e. $\text{Aut}(X)$ contains a three-dimensional algebraic subgroup $\varphi(T) \times (\varphi(U) \times \varphi(f \cdot U))$. This proves that $\dim X = 2$. Finally, by [LRU22, Theorem 1.3] X is non-toric and by [LRU22, Theorem 1.2] X is a hyperbolic $\varphi(T) \simeq \mathbb{G}_m$-surface.

4. PROOF OF THEOREM 2

In the first paragraph of the proof of [Sie96, Proposition 1] it is shown that the Lie algebra of vector fields of a singular affine variety X is non-simple. The same proof is suitable for the next statement. For the convenience of the reader we provide the detailed proof.

Proposition 4. Assume X is a singular affine variety and assume that $\langle \text{LNV}(X) \rangle$ is non-trivial. Then the Lie algebra $\langle \text{LNV}(X) \rangle$ is not simple.

Proof. Denote by $I \subset \mathcal{O}(X)$ the ideal corresponding to the singular locus of X. By [Sei67, Theorem 5] any vector field $\mu \in \text{Vec}(X)$ preserves I, i.e. $\mu(I) \subset I$. Hence, $\mu(I^k) \subset I^k$ for any $k \in \mathbb{N}$. Denote by

$$\langle \text{LNV}(X, I^k) \rangle = \{ \nu \in \langle \text{LNV}(X) \rangle \mid \nu(\mathcal{O}(X)) \subset I^k \}.$$

This is the ideal of the Lie algebra $\langle \text{LNV}(X) \rangle$ since

$$[\nu, \mu](f) = \nu(\mu(f)) - \mu(\nu(f)) \in I^k,$$

where $f \in \mathcal{O}(X)$, $\nu \in \langle \text{LNV}(X, I^k) \rangle$ and $\mu \in \langle \text{LNV}(X) \rangle$. It is clear that for a big enough k, $\langle \text{LNV}(X, I^k) \rangle \subset \langle \text{LNV}(X) \rangle$ is proper. Finally, $\langle \text{LNV}(X, I^k) \rangle$ is non-zero. Indeed, assume μ a locally nilpotent vector field on X and $f \in I$. Hence, there exists $l \in \mathbb{N}$ such that $\mu^l(f) = 0$ and $g = \mu^{-1}(f) \neq 0$. This means that $\mu(g) = 0$. Note that $g \in I$ by [Sei67, Theorem 5]. Therefore, $g^k \mu$ is a locally nilpotent vector field and $g^k \mu(\mathcal{O}(X)) \subset I^k$. □

Proof of Theorem 2. Let $\varphi: \text{Aut}(D_p) \to \text{Aut}(X)$ be an isomorphism of ind-groups. By Lemma 2 φ induces the isomorphism of Lie algebras

$$d\varphi: \langle \text{LNV}(D_p) \rangle \to \langle \text{LNV}(X) \rangle.$$

By [LR20, Theorem 1] $\langle \text{LNV}(D_p) \rangle$ is simple. Hence, from Proposition 4 it follows that X is smooth. Moreover, by Theorem 1 $\dim X = 2$. Now by [LR20, Theorem 1] X is isomorphic to some D_q for some polynomial q and by [LR20, Theorem 3] X is isomorphic to D_p. □

Example 1. Consider the product $\mathbb{A}^1 \times C$, where C is a non-rational affine curve with the trivial automorphism group and no non-constant invertible regular functions. The surface $\mathbb{A}^1 \times C$ is a \mathbb{G}_m-surface of parabolic type as each point of curve C is the fixed \mathbb{G}_m-point. Assume Z is an affine variety with the trivial automorphism group that contains no rational curves and admits no non-constant invertible regular functions. We claim that $\text{Aut}(\mathbb{A}^1 \times C)$ and $\text{Aut}(\mathbb{A}^1 \times Z)$ are isomorphic as ind-groups.

Let $\varphi: \mathbb{A}^1 \times Z \to \mathbb{A}^1 \times Z$ be an automorphism of $\mathbb{A}^1 \times Z$. Assume $z \in Z$. The image $\varphi(\mathbb{A}^1 \times \{ z \})$ is a subvariety of $\mathbb{A}^1 \times Z$ isomorphic to \mathbb{A}^1. Since Z does not contain rational curves, $\varphi(\mathbb{A}^1 \times \{ z \}) = \mathbb{A}^1 \times \{ z' \}$ for some $z' \in Z$. Therefore, φ induces an automorphism of Z which is trivial by assumption. So, $\varphi(x, z) = (\psi(x, z), z)$, where $\psi: \mathbb{A}^1 \times Z \to \mathbb{A}^1$ is a regular function. For each $z \in Z$, ψ induces an isomorphism of \mathbb{A}^1. Hence, $\psi(x) = f(z)x + g(z)$, where $f, g \in \mathcal{O}(Z)$. Moreover,
since there are no non-constant invertible regular functions on \mathbb{Z}, $f \in \mathbb{C}^* = \mathbb{C} \setminus \{0\}$.

We conclude that

$$\text{Aut}(\mathbb{A}^1 \times \mathbb{Z}) = \{(x, z) \mapsto (fx + g(z), z) \mid f \in \mathbb{C}^*, g \in \mathcal{O}(\mathbb{Z})\} \simeq \mathbb{G}_m \ltimes \mathcal{O}(\mathbb{Z})$$

and analogously

$$\text{Aut}(\mathbb{A}^1 \times \mathbb{C}) = \{(x, c) \mapsto (fx + g(c), c) \mid f \in \mathbb{C}^*, g \in \mathcal{O}(\mathbb{C})\} \simeq \mathbb{G}_m \ltimes \mathcal{O}(\mathbb{C})$$

These two groups are isomorphic as ind-groups since there is an isomorphism of ind-groups $\phi: \mathcal{O}(\mathbb{Z}) \rightarrow \mathcal{O}(\mathbb{C})$. This proves the claim.

References

[CRX19] S. Cantat, A. Regeta, and J. Xie, Families of commuting automorphisms, and a characterization of the affine space, arXiv:1912.01567 to appear in Amer. J. Math.

[Da04] D. Daigle, Locally nilpotent derivations and Danielewski surfaces, Osaka J. Math. 41, (2004), 37–80.

[Dan89] W. Danielewski, On a cancellation problem and automorphism groups of affine algebraic varieties, Preprint, Warsaw (1989).

[FZ05a] H. Flenner and M. Zaidenberg, On the uniqueness of \mathbb{C}^*-actions on affine surfaces, Affine algebraic geometry, 97–111, Contemp. Math., 369, Amer. Math. Soc., Providence, RI, 2005.

[FZ05b] H. Flenner and M. Zaidenberg, Locally nilpotent derivations on affine surfaces with a \mathbb{C}^*-action, Osaka J. Math. 42 (2005), no. 4, 931–974.

[FK18] J.-P. Furter and H. Kraft, On the geometry of the automorphism groups of affine varieties, arXiv:1809.04175

[Hum75] James E. Humphreys, Linear algebraic groups, Springer-Verlag, New York-Heidelberg, 1975, Graduate Texts in Mathematics, No. 21.

[KPZ15] S. Kovalenko, A. Perepechko, and M. Zaidenberg, On automorphism groups of affine surfaces, Advanced Studies in Pure Mathematics 75, Algebraic Varieties and Automorphism Groups pp. 207–280.

[Kr17] H. Kraft, Automorphism Groups of affine varieties and a characterization of affine n-space, Trans. Moscow Math. Soc.78(2017), 171–186.

[KL16] F. Kutzschebauch and M. Leuenberger, Lie algebra generated by locally nilpotent derivations on Danielewski surfaces, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) Vol. XV (2016), 183–207.

[LR20] M. Leuenberger and A. Regeta, Vector Fields and Automorphism Groups of Danielewski Surfaces, to appear in Int. Math. Res. Not., doi:10.1093/imrn/rnaa189

[Lie10] Alvaro Liendo, Affine T-varieties of complexity one and locally nilpotent derivations, Transform. Groups 15 (2010), no. 2, 389–425.

[LRU22] A. Liendo, A. Regeta and C. Urech, Characterization of affine toric varieties by their automorphism groups, arXiv:1805.03991 to appear in Ann. Sc. Norm. Super. di Pisa.

[LRU20] A. Liendo, A. Regeta and C. Urech, On the characterization of Danielewski surfaces by their automorphism group, Transform. Groups, Vol.25, No. 4, 2020.

[ML90] L. Makar-Limanov, On groups of automorphisms of a class of surfaces, Israel J. Math. Vol. 69, Issue 2, (1990), 250–256.

[RvS21] A. Regeta and I. van Santen, Characterizing Affine Toric Varieties via the Automorphism Group, arXiv:2112.04784

[Sh66] I.R. Shafarevich, On some infinite-dimensional groups, Rend. Mat. Appl. (5) 25 (1966), 208–212.

[Sei67] A. Seidenberg, Differential ideals in rings of finitely generated type, Amer. J. Math. 89(1967), 22–42.

[Sie96] T. Siebert, Lie algebras of derivations and affine algebraic geometry over fields of characteristic 0, Math. Ann. 305 (1996), no. 2, 271–286.

Institut für Mathematik, Friedrich-Schiller-Universität Jena, Jena 07737, Germany

Email address: andriyregeta@gmail.com