Generalized quasi-topological gravities: the whole shebang

Pablo Bueno¹, Pablo A Cano², Robie A Hennigar³, Mengqi Lu⁴ and Javier Moreno²,⁵,∗

¹ CERN Theoretical Physics Department, CH-1211 Geneva 23, Switzerland
² Instituut voor Theoretische Fysica, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven, Belgium
³ Departament de Física Quàntica i Astrofísica, Institut de Ciències del Cosmos, Universitat de Barcelona, Martí Franquès 1, E-08028 Barcelona, Spain
⁴ Department of Physics and Astronomy, University of Waterloo, Waterloo N2L 3G1, Ontario, Canada
⁵ Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla, 4059 Valparaíso, Chile

E-mail: francisco.moreno.g@mail.pucv.cl

Received 28 March 2022; revised 19 September 2022
Accepted for publication 11 November 2022
Published 5 December 2022

Abstract

Generalized quasi-topological gravities (GQTGs) are higher-curvature extensions of Einstein gravity in D-dimensions. Their defining properties include possessing second-order linearized equations of motion around maximally symmetric backgrounds as well as non-hairy generalizations of Schwarzschild’s black hole characterized by a single function, $f(r) \equiv -g_{tt} = g^{-1}_{rr}$, which satisfies a second-order differential equation. In (Bueno et al 2020 Class. Quantum Grav. 37 015002) GQTGs were shown to exist at all orders in curvature and for general D. In this paper we prove that, in fact, $n-1$ inequivalent classes (as far as static and spherically symmetric solutions are concerned) of order-n GQTGs exist for $D \geq 5$. Amongst these, we show that one—and only one—type of densities is of the quasi-topological kind, namely, such that the equation for $f(r)$ is algebraic. Our arguments do not work for $D = 4$, in which case there seems to be a single unique GQT density at each order which is not of the quasi-topological kind. We compute the thermodynamic charges of the most general D-dimensional order-n GQTG, verify that they satisfy the first law and provide evidence that they can be entirely written in terms of the
embedding function which determines the maximally symmetric vacua of the theory.

Keywords: higher-curvature gravity, generalized quasi-topological gravity, black hole thermodynamics

Contents

1. Introduction 3
2. Generalized quasi-topological gravities 4
 2.1. Definitions 5
3. How many types of GQTGs are there? 7
 3.1. At most \((n+1)\) order-\(n\) densities 7
 3.2. At most \((n-1)\) order-\(n\) densities 9
 3.3. Uniqueness of quasi-topological densities 11
 3.4. Exactly \((n-1)\) order-\(n\) densities 11
4. Black hole thermodynamics 15
 4.1. The first law for general GQTGs 15
 4.2. A unified picture of the thermodynamics? 17
5. Final comments 19
Data availability statement 20
Acknowledgments 20
Appendix. Explicit covariant densities for \(n = 4, 5, 6\) in \(D = 5, 6\) 20
References 29
1. Introduction

Higher-curvature theories of gravity play an important role in theoretical physics. On one hand, higher derivatives seem necessary to obtain a consistent quantum description of gravity. For example, string theory and effective field theory approaches predict an infinite tower of higher-curvature corrections to the usual Einstein–Hilbert action \[1\–5\], while other approaches introduce a finite number of higher-curvature terms to restore certain desirable properties, e.g. renormalizability \[6\–8\]. On the other hand, studying higher-curvature theories can provide insight on the special or universal properties of gravitational theory. This program has been especially fruitful in the holographic context, where deformations of the gravitational theory correspond to deformations of the dual conformal field theory (CFT). In this way, it has been possible to provide evidence for universal relationships that hold within holography and beyond \[9\–19\].

In this work we are specifically interested in the structural aspects of a class of theories known as generalized quasi-topological gravities (GQTGs). Schematically, we write the action of these theories as

\[
S = \frac{1}{16\pi G} \int d^Dx \sqrt{|g|} \left[\frac{(D-1)(D-2)}{L^2} + R + \sum_{n=2} \sum_{i_n} L_{(n-1)}^{(n)} \mu_{i_n}^{(n)} R_{i_n}^{(n)} \right], \tag{1}
\]

where \(R_{i_n}^{(n)}\) are densities constructed from \(n\) Riemann tensors and the metric, the \(\mu_{i_n}\) are dimensionless couplings, \(L\) is some length scale, and \(i_n\) is an index running over all independent GQTG invariants of order \(n\). For this action, the field equations can be expressed as

\[
\mathcal{E}_{ab} = P_{a}^{\ cde} R_{bcde} = \frac{1}{2} g_{ab} \mathcal{L} - 2 \nabla_c \nabla_d P_{acdb} = 0, \quad \text{with} \quad P^{abcd} \equiv \frac{\partial \mathcal{L}}{\partial R^{abcd}}, \tag{2}
\]

where \(\mathcal{L}\) is the Lagrangian of the theory. For a general theory polynomial in curvature tensors, it is clear that the field equations can contain forth-order derivatives of the metric. The defining property of GQTGs is that they allow for spherically symmetric solutions of the Schwarzschild-like form characterized by a single function \(f(r)\), where \(g_{tt} g_{rr} = -1\), with \(f(r)\) satisfies at most a second-order equation. Then, the static spherically symmetric (SSS) black holes of the theory have the form

\[
ds^2 = -f(r)dr^2 + \frac{dr^2}{f(r)} + r^2 d\Omega_{(D-2)}^2, \tag{3}
\]

with \(f(r)\) satisfying an equation that contains at most second derivatives.

GQTGs can be further subdivided into different classes depending on the character of the field equations on spherically symmetric and other backgrounds. The most important subclass being Lovelock gravity \[20, 21\], for which the equations on spherically symmetric backgrounds are algebraic in the metric function \(f(r)\), and second-order for any metric. Lovelock gravities are also the most constrained. Besides Einstein gravity, there exists no Lovelock theory in \(D = 4\), and in general a Lovelock theory of order \(n\) in curvature is non-trivial only when \(D \geq 2n + 1\). A second subclass of the GQTG family are quasi-topological gravities \[22–26\]. For quasi-topological gravities, the field equations for spherically symmetric black holes are algebraic, as for Lovelock theory. However, on general backgrounds the equations of motion will be fourth-order. Quasi-topological gravities are less constrained in the sense that they exist in any spacetime dimension \(D \geq 5\) for any order in curvature cubic or higher, as explicitly constructed in \[27\]. These possibilities do not fully exhaust the space of possible theories, and there exist remaining GQTGs for which the field equations for spherically symmetric black holes are fourth-order. The defining property of these GQTGs is that they allow for spherically symmetric solutions of the Schwarzschild-like form characterized by a single function \(f(r)\), where \(g_{tt} g_{rr} = -1\), with \(f(r)\) satisfies at most a second-order equation. Then, the static spherically symmetric (SSS) black holes of the theory have the form

\[
ds^2 = -f(r)dr^2 + \frac{dr^2}{f(r)} + r^2 d\Omega_{(D-2)}^2, \tag{3}
\]

with \(f(r)\) satisfying an equation that contains at most second derivatives.
holes is a second-order differential equation for $f(r)$ [28–32]—these theories can exist even in $D = 4$.

GQTGs have by now been the subject of quite intensive investigation, e.g. [16, 18, 25, 28–87], and many of the interesting properties of these theories are now well-understood. Here we summarize some particularly relevant ones:

(a) When linearized around any maximally symmetric background, their equations are identical to the Einstein gravity ones, up to a redefinition of the Newton constant—in other words, they only propagate the usual transverse and traceless graviton in the vacuum [25, 28–33].

(b) They possess non-hairy black hole solutions fully characterized by their Arnowitt-Deser-Misner (ADM) mass/energy and whose thermodynamic properties can be obtained from an algebraic system of equations.

(c) Although the defining property pertains to SSS black holes, certain subsets of GQTGs allow for reduction of order in the field equations for other metrics, such as Taub-NUT/Bolt [39], slowly-rotating black holes [59, 83], near extremal black holes [50], and cosmological solutions [43–45, 72].

(d) In the context of gravitational effective field theory, any higher-curvature theory can be mapped, via field redefinition, into some GQTG [27, 52].

(e) We can consider arbitrary linear combinations of GQTG densities and the corresponding properties hold, which means, in particular, that GQTG theories have a well-defined and continuous Einstein gravity limit, corresponding to setting all higher-curvature couplings to zero.

(f) Extensions away from pure metric theories, including scalars or vector fields, while preserving the main properties are possible [65, 77, 87].

Our purpose here is to complete the study of structural aspects of GQTGs. In [27] we proved existence of GQTGs at all orders of curvature and in all dimensions $D \geq 4$. In this manuscript, we will address how many distinct/inequivalent GQTGs exist at each order in curvature and in each dimension. Note that by ‘equivalent GQTGs’ we mean theories which give rise to the same equations for the metric functions in the case of a SSS ansatz or, in other words, theories which differ from each other by densities whose equations of motion are trivially satisfied by SSS metrics. The organization of the manuscript is as follows. We begin in section 2 by reviewing in more detail the defining properties of GQTGs and introducing notation that will be used throughout. Then, in section 3, we provide a simple argument that gives an upper bound on the number of possible distinct GQTGs. We then refine this upper bound into an exact result, showing that at order n in curvature there are $n - 1$ distinct GQTGs, provided $D > 4$, while there is a single unique family provided $D = 4$. In section 4 we compute the thermodynamic charges for any possible GQTG, and verify that they satisfy the first law. Intriguingly, we find good evidence that the thermodynamics for GQTGs can be written entirely in terms of the embedding function for the given family of theories, which determines the maximally symmetric vacua of the theory. We collect a number of useful results and expressions in the appendix.

2. Generalized quasi-topological gravities

We start in this section with a quick review of the defining properties of GQTGs and some notation. Our discussion here closely follows that of [27]. We also introduce the notion of inequivalent GQTG densities which will be important for the rest of the paper. Roughly speaking,
we will say that two GQTG densities of a fixed curvature order \(n \) are inequivalent if they give rise to different equations for the metric function \(f(r) \).

2.1. Definitions

A general SSS metric can be written in terms of two undetermined functions \(N(r) \) and \(f(r) \) as

\[
\text{ds}_{N,f}^2 = -N(r)^2 f(r) dr^2 + \frac{dr^2}{f(r)} + r^2 d\Omega_{(D-2)}^2,
\]

where \(d\Omega_{(D-2)}^2 \) is the metric of the \((D-2) \)-dimensional round sphere. Essentially all our discussion extends straightforwardly to the cases in which the horizon is planar or hyperbolic instead. The formulas below will include those as well, the different cases being parametrized by a constant \(k \) taking values \(k = 1, 0, -1 \) for spherical, planar and hyperbolic horizons respectively.

For a given curvature invariant of order \(n \), \(\mathcal{R}_{(n)} \), we define \(L_{N,f} \) and \(S_{N,f} \) as the effective Lagrangian and on-shell action which result from evaluating \(\sqrt{|g|} \mathcal{R}_{(n)} \) in the ansatz (4)

\[
L_{N,f} \equiv N(r) r^{D-2} \mathcal{R}_{(n)} \big|_{N,f}, \quad S_{N,f} \equiv \Omega_{(D-2)} \int dr \int dr L_{N,f},
\]

where we integrated over the angular directions, \(\Omega_{(D-2)} \equiv 2\pi^{\frac{D-4}{2}} / \Gamma(\frac{D-4}{2}) \). We will define \(L_f \equiv L_{1,f} \) and \(S_f \equiv S_{1,f} \), namely, the expressions obtained from setting \(N = 1 \) in \(L_{N,f} \). Now, solving the full nonlinear equations of motion for a metric of the form (4) can be shown to be equivalent to solving the Euler–Lagrange equations of \(S_{N,f} \) associated to \(N(r) \) and \(f(r) \) [33, 88, 89], namely,

\[
\mathcal{E}^a^b |_{N,f} \equiv \left. \frac{1}{\sqrt{|g|}} \frac{\delta S}{\delta g^{ab}} \right|_{N,f} = 0 \quad \Leftrightarrow \quad \delta S_{N,f} = \frac{\delta S_{N,f}}{\delta N} = 0.
\]

We say that \(\mathcal{R}_{(n)} \) is a GQTG density if the Euler–Lagrange equation of \(f(r) \) associated to \(L_f \) vanishes identically, i.e. if

\[
\frac{\delta S_f}{\delta f} = 0, \quad \forall f(r).
\]

This is the same as asking \(L_f \) to be a total derivative,

\[
L_f = T'_0,
\]

for some function \(T_0(r, f(r), f'(r)) \).

The equation satisfied by \(f(r) \) for a given GQTG density can be obtained from the variation of \(L_{N,f} \) with respect to \(N(r) \) as

\[
\frac{\delta S_{N,f}}{\delta N} \bigg|_{N=1} = 0 \quad \Leftrightarrow \quad \text{equation of } f(r).
\]

As explained in [32], whenever equation (8) holds, the effective Lagrangian \(L_{N,f} \) takes the form

\[
L_{N,f} = N T'_0 + N'T_1 + N''T_2 + \mathcal{O}(N'^2/N),
\]

where \(T_1, T_2 \) are functions of \(f(r) \) and its derivatives, and \(\mathcal{O}(N'^2/N) \) is a sum of terms all of which are at least quadratic in derivatives of \(N(r) \). Integrating by parts it follows that

\[
S_{N,f} \equiv \Omega_{(D-2)} \int dr \int dr \left[N(T_0 - T_1 + T_2)' + \mathcal{O}(N'^2/N) \right].
\]
The existence of multiple types of GQTG densities was first pointed out in [32] and sometimes we will refer to this equation as the ‘integrated equation’ of genuine GQTG densities of order \(n \) (as far as SSS solutions are concerned), if the quotient of their integrated equations is not a constant, genuine GQTG densities can be asked fixing that condition (\(N \) of subcases).

In fact, there are two possibilities as far as the number of derivatives of the integrated equation exclusively involves \(f(r) \) and \(f''(r) \), so the equation is algebraic instead of differential. We shall call theories of the former class ‘genuine’ GQTGs. Theories of the latter class are called quasi-topological gravities, and they include Einstein and Lovelock theories as subcases.

Now, a natural question is: given a fixed spacetime dimension \(D \) and a curvature order \(n \), are the integrated equations corresponding to different genuine GQTG densities \(\{ R_{(n)}^I, R_{(n)}^{II}, \ldots, R_{(n)}^V \} \) proportional to each other — i.e. are the functional dependences on \(r, f(r), f'(r) \) and \(f''(r) \) of the equations identical—for the various densities? If not, how many inequivalent contributions to the equation of \(f(r) \) are there at a given order in curvature? Analogous questions can be asked fixing \(D \) and \(n \) for theories belonging to the quasi-topological class. Given two genuine GQTG densities of order \(n \), we will say they are ‘inequivalent’ (as far as SSS solutions are concerned) if the quotient of their integrated equations is not a constant,

\[
R_{(n)}^I \text{ inequivalent from } R_{(n)}^{II} \iff \frac{F_{R_{(n)}^I}(r, f(r), f'(r), f''(r))}{F_{R_{(n)}^{II}}(r, f(r), f'(r), f''(r))} \neq \text{constant.} \tag{14}
\]

Otherwise we will say they are ‘equivalent’. Given two quasi-topological gravities of order \(n \), we would perform an analogous definition,

\[
Z_{(n)}^I \text{ inequivalent from } Z_{(n)}^{II} \iff \frac{F_{Z_{(n)}^I}(r, f(r))}{F_{Z_{(n)}^{II}}(r, f(r))} \neq \text{constant.} \tag{15}
\]

But we will show later that, in fact, all quasi-topological gravities of a given order are equivalent. That will not be the case for genuine GQTGs, in whose case we will prove that there exist \((n-2)\) inequivalent densities for \(D \geq 5 \).

\[\text{Sometimes we will refer to this equation as the ‘integrated equation’ of } f(r) \text{ to emphasize the fact that it follows from integrating once (on } r) \text{ the only non-vanishing component of the actual equations of motion of the theory evaluated on the single-function SSS ansatz.}\]

\[\text{The existence of multiple types of GQTG densities was first pointed out in [18], where two inequivalent quintic densities were explicitly constructed in } D = 6.\]
3. How many types of GQTGs are there?

In this section we prove that there exist exactly \((n−2)\) inequivalent genuine GQTG densities and a single inequivalent quasi-topological one at a given curvature order \(n\) in \(D \geq 5\). In \(D = 4\) there are no quasi-topological theories and we argue that our proof for the existence of \((n−2)\) genuine GQTG densities fails in that case, illustrating the fact that a single genuine GQTG density exists in \(D = 4\) for \(n \geq 3\).

3.1. At most \((n+1)\) order-\(n\) densities

Let us start our study by putting an upper bound on the possible number of inequivalent GQTG densities existing at a given curvature order \(n\). As argued in [94], evaluated on a metric of the form (3), the Riemann tensor can be written as

\[
R_{cd} = 2 \left[-AT_{[c}^{[a} T_{d]}^{b]} + 2BT_{[c}^{[a} \sigma_{d]}^{b]} + \psi \sigma_{[c}^{[a} \sigma_{d]}^{b]} \right],
\]

where \(\sigma_a^b\) and \(T_a^b\) are projectors on the angular and \((t,r)\) directions, respectively.\(^8\) On the other hand, the dependence on the radial coordinate appears exclusively through the three functions \(A\), \(B\) and \(\psi\), which read

\[
A \equiv \frac{f′(r)}{2}, \quad B \equiv -\frac{f′(r)}{2r}, \quad \psi \equiv \frac{k-f(r)}{r^2},
\]

where \(k = 1, 0, 1\) for spherical, planar and hyperbolic horizons respectively.

Now, GQTG densities are built from contractions of the metric and the Riemann tensor, so any order-\(n\) density of that type will become some polynomial of those objects when evaluated on (3), namely,

\[
S |_f = \sum_{l=0}^{n} \sum_{k=0}^{l} c_{k,l} B^l \psi^{l-k} A^{n-1},
\]

for some constants \(c_{k,l}\). The idea is now to determine the most general constants \(c_{k,l}\) consistent with the GQTG requirement, which asks \(r^{D−2}S|_f\) to be a total derivative, i.e.

\[
r^{D−2}S|_f = T_0(r).
\]

Note that imposing this condition on equation (18) and finding the compatible values of \(c_{k,l}\) does not guarantee that the corresponding GQTG densities actually exist, as this does not provide an explicit construction of covariant curvature densities. Doing this does impose, nonetheless, a necessary condition which all actual densities must satisfy. Given a GQTG density, \(S\), it is useful to define the object \(\tau(r)\) through the relation

\[
T_0 \equiv r^{D−1}, \quad \text{so that} \quad S|_f = \frac{1}{r^{D−2}} \frac{d}{dr} \left[r^{D−1} \tau(r)\right].
\]

In a sense, \(\tau(r)\) is the fundamental building block as long as on-shell GQTG densities are concerned. Observe that since

\[
\sum_i \alpha_i S|_f = \frac{1}{r^{D−2}} \frac{d}{dr} \left[r^{D−1} \sum_i \alpha_i \tau_i(r)\right],
\]

linear combinations of the \(\tau_i\) give rise to linear combinations of GQTG densities in an obvious way.

\(^8\) These satisfy \(T^a_b T^b_c = T^c_a, \sigma^a_b \sigma^b_c = \sigma^c_a, \sigma^a_b T^b_c = 0, \delta^a_c \sigma^b_c = 2, \delta^a_c \sigma^b_a = (D−2), \delta^a_c = T^a_b + \sigma^a_b\).
Now, imposing (19) on densities of the form equation (18), we find that there are \((n+1)\) independent possible densities at a given order \(n\). In terms of the \(\tau(r)\), the possibilities turn out to be simply given by \(\tau = \tau_{(n,j)}\), where we define
\[
\tau_{(n,j)} \equiv \psi^{n-j} B^j, \quad \text{where} \quad j = 0, 1, \ldots, n.
\] (22)

The corresponding putative on-shell densities read\(^9\)
\[
S_{(n,j)} \equiv \frac{1}{r^{D-2}} \frac{d}{dr} \left[r^{D-1} \tau_{(n,j)} \right], \quad j = 0, 1, \ldots, n.
\] (23)

Observe that the resulting possibilities are such that \(A\) only appears either to the power 1 or to the power 0 when expanding \(S_{(n,j)}\), which is like restricting the sum in \(l\) appearing in (18) to \(l = \{n, n-1, n\}\). It follows that any GQTG density in any number of dimensions and at any order in curvature must necessarily be expressible as a linear combination of the above densities when evaluated on the single-function SSS ansatz, namely
\[
S|_f = \frac{1}{r^{D-2}} \frac{d}{dr} \left[r^{D-1} \sum_{j=0}^{n} \alpha_{(n,j)} \tau_{(n,j)}(r) \right],
\] (24)
for certain constants \(\alpha_{(n,j)}\).

Using the methods developed in [27]—see section 5 of that work—it is possible to compute the field equations for the putative theory (24) despite the fact that a covariant form of the action is not known. The integrated equation for the metric function \(f(r)\) corresponding to a putative density \(S_{(n,j)}\) is given, in the notation of equation (12), by\(^10\)
\[
F_{(n,j)} = \frac{(-1)^{j+1}}{2^{j+1}} r^{D-2-j-2n} (k-f)^{n-j-1} (f')^{j-2} \times [f'[j(D-1+j-2n)(k-f)f - (j-1)r(k+(n-j-1)f)f'] + j(j-1)r(k-f)f f''].
\] (25)

Observe that this simplifies considerably both for \(j = 0\) and \(j = 1\). In those cases the dependence on \(f'\) and \(f''\) disappears and one finds algebraic equations for \(f(r)\),
\[
F_{(n,0)} = -\frac{r^{D-2n}}{2} (k-f)^{n-1} [k+(n-1)f],
\]
\[
F_{(n,1)} = \frac{(D-2n) r^{D-2n}}{4} (k-f)^{n-1} f.
\] (26)

An obvious question at this point is: which of these possible densities actually corresponds to the Einstein–Hilbert one, if any. In that case we have \(n = 1\), and the two possible densities and their integrated equations of motion read, respectively,
\[
S_{(1,0)} = -\frac{1}{r^2} [(D-3)(f-k)+rf'], \quad F_{(1,0)} = -\frac{r^{D-3}k}{2},
\] (27)
\[
S_{(1,1)} = -\frac{1}{2r^2} [(D-2)rf' + r^2 f''], \quad F_{(1,1)} = \frac{(D-2)r^{D-3}f}{4}.
\] (28)

\(^9\) Note that for the objects \(S_{(n,j)}\) we omit \(|_f\). By this we mean that we literally define \(S_{(n,j)}\) to be the expression that appears on the right-hand side. Actual densities evaluated on the single-function SSS ansatz will reduce to linear combinations of the \(S_{(n,j)}\).

\(^10\) So, for a linear combination of densities, the equation would read \(\sum_j \alpha_{(n,j)} F_{(j)} = C\) where \(C\) is an integration constant related to the mass of the solution.
Now, the corresponding expressions for the Einstein–Hilbert action (i.e. for a density given by the Ricci scalar $S_{\text{m}} \equiv R$) read
\begin{align}
S_{\text{m}|r} &= -\frac{1}{r^2} \left[(D-2)(D-3)(f-k) + 2(D-2)f' + r^2 f'' \right], \\
F_{\text{m}} &= -(D-2)(f-k)r^{D-3}.
\end{align}

Hence, none of the putative densities coincides with the Einstein–Hilbert one. Rather, it is a linear combination of the two which does, namely,
\begin{equation}
S_{\text{m}|r} = (D-2)S_{(1,0)} + 2S_{(1,1)}.
\end{equation}

Even though our approach has selected two possible independent densities susceptible of giving rise to GQTG densities at linear order in curvature, there (obviously) exists a unique possibility corresponding to an actual density, given by the Ricci scalar, which therefore is given by a linear combination of the two. While the $n = 1$ case is somewhat special, this already illustrates the fact that our upper bound of $(n+1)$ densities at order n is not tight and can be improved. For higher n, the only known examples of densities which give rise to algebraic integrated equations for $f(r)$ are Lovelock and quasi-topological gravities. From our perspective, at a given order n in D dimensions, all available Lovelock and quasi-topological gravities for such n and D are ‘equivalent’ as far as the equation of $f(r)$ is concerned, which means that they should correspond to a fixed linear combination of $S_{(n,0)}$ and $S_{(n,1)}$. In the next subsections we argue that, indeed, the bound of $(n+1)$ densities can be lowered to at most $(n+1)$ GQTG densities of order $n \geq 2$. While amongst the $(n+1)$ candidates identified here there are two which produce algebraic equations, we will see that only a linear combination of the two survives, precisely corresponding to the known Lovelock and quasi-topological case. The additional putative $(n-2)$ densities would give rise to distinct second-order differential equations for $f(r)$.

3.2. At most $(n-1)$ order-n densities

In order to lower our upper bound on the number of available GQTG densities existing at a given order, we can impose some further conditions on our candidate on-shell densities $S_{(n,i)}$. The first condition comes from imposing that the equations of motion associated to them admit maximally symmetric solutions. When evaluated on such backgrounds, the equations of motion of actual higher-curvature densities reduce to an algebraic equation which involves the cosmological constant, the curvature scale of the background (e.g. the AdS radius) as well as the higher-curvature couplings. More precisely, consider a gravitational Lagrangian consisting of a linear combination of generic higher-curvature densities of the form given in equation (1). The result for the equations of motion when evaluated for
\begin{equation}
f(r) = \frac{r^2}{L^2} + k,
\end{equation}
which corresponds to pure AdS$_D$ with radius L, is given by
\begin{equation}
\frac{\mu^{D-1}}{16\pi G} \left[\frac{(D-2)}{L^2} \frac{(D-2)}{L^2} + \sum_{n=2}^{(n-1)} \sum_{l} \frac{L^{2(n-1)}_{2l}}{L_{2l}^n} \mu^{(n)}_{l} \alpha^{(n)}_{l} \right] = 0,
\end{equation}
for certain constants $\alpha^{(n)}_{l}$. Interestingly, as we will see below, this same equation which determines the vacua, also appears to play a key role in the thermodynamics of black holes in the theory. Naturally, the solution for Einstein gravity is simply $L^2 = L^2_{\text{AdS}}$, which relates the action scale to the AdS radius in the usual way.
Now, what happens when we consider the integrated equations of a linear combination of candidate on-shell GQTG densities, each contributing as in equation (25), on such a background? It turns out that the result \(\sum_{j=0}^{n} \alpha_{(n,j)} F_{(n,j)} \) contains two different kinds of terms, one which goes with a power of \(r^{D-1} \), and one which goes with a power of \(r^{D-3} \). As we have seen, actual densities contribute with a single power of the type \(r^{D-1} \), so we must impose that the second kind of term is absent for our putative densities. Removing such a piece amounts to imposing the condition
\[
\sum_{j=0}^{n} \alpha_{(n,j)} (2n - Dj) = 0.
\]
(33)
Hence, we learn that not all the candidate densities can be independent and we reduce the number from \((n+1) \) to \(n \).

There is another condition we can easily impose on our candidate densities. As explained in the first section, GQTG densities have second-order linearized equations around general maximally symmetric backgrounds. This is in contradistinction to most higher-curvature gravities, whose linearized equations involve up to four derivatives of the metric—see e.g. [95] for general formulas. Suppose then that we consider a small radial perturbation on AdS space such that the metric function becomes
\[
f(r) = \frac{r^2}{L^2} + k + \epsilon h(r),
\]
(34)
where \(\epsilon \ll 1 \). Now, observe that in our general discussion, the integrated equation of motion for a GQTG density, \(F_{(n)} \), has been integrated once (on \(r \)) with respect to the actual equations of motion of the corresponding density. Hence, the fact that the actual (linearized) equations of motion for GQTG densities are second order for any perturbation on a maximally symmetric background implies that the integrated equations cannot contain terms involving \(h'''(r) \) (or more derivatives) at leading order in \(\epsilon \). If they did, the actual linearized equations would involve terms of the form \(-\epsilon h''''(r) \), in contradiction with the linearized second-order behavior. With this in mind, our strategy now is to insert equation (34) in a linear combination of integrated equations for our candidate on-shell densities (25) and impose that no terms involving \(h''(r) \) appear at leading order in \(\epsilon \). By doing so, we find an additional (remarkably simple) condition, which reads
\[
\sum_{j=0}^{n} \alpha_{(n,j)} j(j-1) = 0.
\]
(35)
Imposing it further reduces the number of independent densities from \(n \) to \((n-1) \). Hence, we conclude that in \(D \) dimensions there exist at most \((n-1) \) inequivalent GQTG theories of order \(n \). Later in subsection 3.4 we will prove that in fact there exist exactly \((n-1) \) inequivalent densities for \(D \geq 5 \). There are many possible ways to choose a basis of on-shell densities so that equations (33) and (35) are implemented. For instance, we may choose for the \(\tau(r) \) functions defined in equation (20)
\[
\tau_{(n)}^{\text{QG}} \equiv (2n - D) \tau_{(n,0)} - 2n \tau_{(n,1)},
\]
(36)
\[
\tau_{(n,j)}^{\text{QG}} \equiv (j - 1)(Dj - 4n) \tau_{(n,j+1)} + [2D(1 - j^2) - 4n(1 - 2j)] \tau_{(n,j)} + j[D(j+1) - 4n] \tau_{(n,j-1)},
\]
(37)
with \(j = 2, \ldots, n-1 \), where we isolated the quasi-topological (QT) class combination in the first line—see next subsection.
Naturally, constructing actual covariant densities of each of the classes is a non-trivial problem on its own. Explicit formulas for order-n GQTG densities in arbitrary dimensions $D \geq 4$ as well as for order-n QT densities in $D \geq 5$ were presented in [27]. However, these cases only exhausted 2 of the $(n - 1)$ classes which we show to exist for $D \geq 5$ in the present paper (one of the genuine GQTG types and the quasi-topological one). In appendix we present explicit formulas for the $(n - 2)$ different types of GQTG densities for $n = 4, 5, 6$ in $D = 5$ and $D = 6$.

3.3. Uniqueness of quasi-topological densities

As mentioned above, quasi-topological densities are a subclass of GQTGs characterized by having an algebraic (as opposed to second-order differential) integrated equation of motion for the metric function $f(r)$ [22–26]. Theories of that kind are required to satisfy an additional condition besides (7), namely [27]

$$\left[\frac{D - 2}{r} \frac{\partial}{\partial f''} + \frac{d}{dr} \frac{\partial}{\partial f''} + \frac{(D - 3)}{2} \frac{\partial}{\partial f''} + \frac{r d \frac{\partial}{\partial f'}}{2 \partial f'} - r \frac{\partial}{\partial f'} \right] Z|_f = 0,$$

(38)

which is equivalent to enforcing that the term $\nabla^d P_{abcd}$ from the field equations vanishes on a SSS metric ansatz. Imposing this condition on a general linear combination of our candidate densities (24) severely constrains the values of the α_j, and we find that $\tau^{QT}_{(n)}$ as defined in equation (36) is in fact the only possibility. Hence, we learn that the only combination of putative densities compatible with the quasi-topological condition is given by

$$Z_n|_f = \frac{1}{r^{D-2}} \frac{d}{dr} \left[r^{D-1} \left((2n - D)\tau_{(n,0)} - 2n\tau_{(n,1)} \right) \right].$$

(39)

Now, quasi-topological gravities with precisely this structure were shown to exist in [27] at all orders in n and for all $D \geq 5$. Therefore, we conclude that the only possible on-shell structure of a quasi-topological density is given by (39). There are no additional inequivalent quasi-topological densities besides the known ones: if a given higher-curvature density possesses second-order linearized equations around maximally symmetric backgrounds and admits black hole solutions satisfying $g_{tt}g_{rr} = -1$, and such that the equation for $f(r)$ is algebraic, then, the equation which determines such a function is uniquely determined to be

$$F_{Z_n} = \frac{(D - 2n)}{2} r^{D-2n-1} (k - f)^n.$$

(40)

This naturally includes the subcases of Einstein and Lovelock gravities.

3.4. Exactly $(n - 1)$ order-n densities

Let us finally proceed to prove that there exist exactly $(n - 1)$ inequivalent GQTG densities of order n in dimensions higher than four.

Consider the following combination of `on-shell densities’

$$S_p^{(k)} = \sum_{i=0}^{p} \alpha_p^{(k)} S_{p,i}, \quad k = 1, \ldots, k_p \equiv \max (1, p - 1),$$

(41)

where the $S_{p,i}$ are defined in equation (23) and where we assume the constants $\alpha_p^{(k)}$ to satisfy the constraints found in subsection 3.2, namely,

$$\sum_{j=0}^{p} \alpha_p^{(k)} (2p - Dj) = 0, \quad \sum_{j=0}^{p} \alpha_p^{(k)} (j - 1) = 0.$$

(42)
At each curvature order p, there are k_p linearly independent solutions and the index k labels each of them.

Now, let us assume that for $p = 1, 2, \ldots, n$ we have proven that all of these on-shell densities correspond to the evaluation of actual higher-curvature densities on the single-function SSS ansatz. Namely, there exists a set of Lagrangians $\mathcal{R}_p^{(k)}$ such that

$$\mathcal{R}_p^{(k)}|_{f_i} = S_p^{(k)} , \quad p = 1, \ldots, n , \quad k = 1, \ldots, k_p . \quad (43)$$

With this in mind, let us now consider an order-$(n+1)$ density built from a general linear combination of products of all these lower-order densities, i.e.

$$\mathcal{R}_{n+1} = \sum_{m=1}^{n+1} \sum_{k=1}^{k_n} \sum_{k'=1}^{k_{n+1-m}} C_{m,k,k'} \mathcal{R}_m^{(k')} \mathcal{R}_{n+1-m}^{(k')} , \quad (44)$$

where we introduced the constants $C_{m,k,k'}$.

We can ask now: is it possible to generate n inequivalent GQTGs of order $(n+1)$ in this way? In order to answer this question, let us evaluate \mathcal{R}_{n+1} on the single-function SSS ansatz and try to obtain all the possible on-shell GQTGs structures. The evaluation yields

$$\mathcal{R}_{n+1} |_{f_i} = \sum_{m=1}^{n+1} \sum_{k=1}^{k_n} \sum_{k'=1}^{k_{n+1-m}} \sum_{j=0}^{n+1-m} \alpha_m^{(k)} \alpha_{n+1-m,j}^{(k')} C_{m,k,k'} S_m S_{(n+1-m,j)} , \quad (45)$$

$$= \sum_{m=1}^{n+1} \sum_{j=0}^{n+1-m} \mathcal{C}_{m,j} S_m S_{(n+1-m,j)} , \quad (46)$$

where we defined

$$\mathcal{C}_{m,j} \equiv \sum_{k=1}^{k_n} \sum_{k'=1}^{k_{n+1-m}} \alpha_m^{(k)} \alpha_{n+1-m,j}^{(k')} C_{m,k,k'} . \quad (47)$$

Now, since we are summing over all the $\alpha_{n,j}$ satisfying (42) and $C_{m,k,k'}$ is an arbitrary tensor, note that this equality is equivalent to demanding that $\mathcal{C}_{m,j}$ is an arbitrary tensor satisfying the following constraints

$$\sum_{j=0}^{n+1-m} \mathcal{C}_{m,j} [2(n+1-m) - D_j] = 0 , \quad \sum_{j=0}^{n+1-m} \mathcal{C}_{m,j} j (j-1) = 0 , \quad (48)$$

$$\sum_{i=0}^{m} \mathcal{C}_{m,i} [2m - Di] = 0 , \quad \sum_{i=0}^{m} \mathcal{C}_{m,i} i (i-1) = 0 . \quad (49)$$

In this way, we do not need to make reference to the $\alpha_{n,j}^{(k)}$ anymore.

Next, it is convenient to rearrange the sum in the following form, in terms of the index $l \equiv i + j$,

$$\mathcal{R}_{n+1} |_{f_i} = \sum_{n+1}^{n} \sum_{m=1}^{n+1-m} \mathcal{C}_{m,j} S_m S_{(n+1-m,j)} \quad (50)$$

$$= \sum_{l=0}^{n+1-m} \sum_{m=1}^{n+1-m} \theta(l-j) \theta(j + m - l) \mathcal{C}_{m,l-j} S_m S_{(n+1-m,j)} , \quad (51)$$

12
where \(\theta(x) \equiv 1 \) if \(x \geq 0 \) and \(\theta(x) \equiv 0 \) if \(x < 0 \). Observe that the effect of the theta functions is to enforce that \(i \geq 0 \) and \(i \leq m \), respectively, which in equation (46) is explicit from the \(i \) sum.

Expanding the product \(S(m, l - j)S(n + 1 - m, j) \) we get the following expression,

\[
\mathcal{R}_{n+1} = \sum_{l=0}^{n} \sum_{m=1}^{n+1-m} \sum_{j=0}^{m+1-m} \theta(l-j)\theta(j+m-l) \mathcal{C}_{m+l-j}
\]

\[
\times \Bigg[\alpha_{l,m,j} B^2 \left(\psi^1 \right)^{l+j-n} + \beta_{l,m,j} B^2 \left(\psi^2 \right)^{l+j-n} + \gamma_{l,m,j} B \left(\psi^3 \right)^{l+j-n} + \sigma_{l,m,j} n \left(B^2 \right)^2 \left(\psi^4 \right)^{l+j-n} \Bigg],
\]

(52)

where

\[
\alpha_{l,m,j} = -4(j - l + m)(-1 + j + m - n),
\]

(53)

\[
\beta_{l,m,j} = -2 \left[1 - 4j^2 - 5l + 4m + D(-1 + l - n) + 4(l - m)(m - n) + n + 4j(1 + l - 2m + n) \right],
\]

(54)

\[
\gamma_{l,m,j} = (-1 + D - 2j + 2l - 2m)(-3 + D + 2j + 2m - 2n),
\]

(55)

\[
\sigma_{l,m,j} = 2 \left[2j^2 - j(1 + 2l - 2m + n) + l(1 - m + n) \right],
\]

(56)

\[
\zeta_{l,m,j} = -4j^2 + l(-3 + D + 2m - 2n) - 2j(1 + 2l - 2m + n),
\]

(57)

\[
\omega_{l,m,j} = -j(l - l).
\]

(58)

Finally, this can be recast as follows,

\[
\mathcal{R}_{n+1} = \sum_{l=0}^{n+1} \left\{ \Gamma_l \mathcal{C}_l \left(\psi^1 \right)^{l+j-n} + \Upsilon_l \mathcal{C}_l \left(\psi^2 \right)^{l+j-n} + \Omega_l \mathcal{C}_l \left(\psi^3 \right)^{l+j-n} \right\},
\]

where

\[
\Gamma_l = \sum_{m=1}^{n} \sum_{j=0}^{n+1-m} \left[\theta(l - 2 - j)\theta(l + m - l + 2) \mathcal{C}_{m,l-2-j} \alpha_{l-2,m,j}
\right.

\[
+ \theta(l - 1 - j)\theta(j + m - l + 1) \mathcal{C}_{m,l-1-j} \beta_{l-1,m,j} + \theta(l - j)\theta(j + m - l) \mathcal{C}_{m,l-j} \gamma_{l,m,j} \right],
\]

(59)

\[
\Upsilon_l = \sum_{m=1}^{n} \sum_{j=0}^{n+1-m} \left[\theta(l - 1 - j)\theta(j + m - l + 1) \mathcal{C}_{m,l-1-j} \sigma_{l-1,m,j}
\right.

\[
+ \theta(l - j)\theta(j + m - l) \mathcal{C}_{m,l-j} \zeta_{l,m,j} \right],
\]

(60)

\[
\Omega_l = \sum_{m=1}^{n} \sum_{j=0}^{n+1-m} \theta(l - j)\theta(j + m - l) \mathcal{C}_{m,l-j} \omega_{l,m,j}.
\]

(61)
Now, in order for this to be a GQTG we must have

\[
\tilde{\mathcal{R}}_{n+1}(f) = S_{n+1}^{(k)} = \sum_{l=0}^{\frac{n+1}{2}} \alpha_{n+1,k}^{(k)} S_{n+1,l}^{(k)}
\]

\[
= \sum_{l=0}^{\frac{n+1}{2}} \alpha_{n+1,l}^{(k)} B^{l-1} \psi^{n-l} (1 + B \psi (D + 2 l - 2 n - 3))
\]

\[
= \sum_{l=0}^{\frac{n+1}{2}} \left[B^{l} \psi^{n-l+1} \left(\alpha_{n+1,l}^{(k)} (D + 2 l - 2 n - 3) - \alpha_{n+1,l}^{(k)} \right)
\]

\[
- 2 B l (l - n - 1) \right]
\]

\[
- \alpha_{n+1,l+1}^{(k)} \right]
\]

\[
\right.
\]

for some coefficients \(\alpha_{n+1,l}^{(k)} \). Therefore, we have the equations

\[
\Gamma_l = \alpha_{n+1,l}^{(k)} (D + 2 l - 2 n - 3) - \alpha_{n+1,l-1}^{(k)} 2 (l - n - 2),
\]

\[
\Upsilon_l = \alpha_{n+1,l}^{(k)}
\]

\[
\Omega_l = 0,
\]

for \(l = 0, \ldots, n+1 \). In addition, the coefficients \(\alpha_{n+1,l}^{(k)} \) should satisfy the constraints

\[
\sum_{l=0}^{\frac{n+1}{2}} \alpha_{n+1,l}^{(k)} (2n + 2 - Dl) = 0,
\]

\[
\sum_{l=0}^{\frac{n+1}{2}} \alpha_{n+1,l}^{(k)} (l - 1) = 0,
\]

but note that these must arise as consistency conditions in order for the system of equations to have solutions. Then, the question is whether the system of equations for the tensor \(C_{m,i,j} \) given by equations (48), (49), (66)–(68) has solutions for any value of the \(\alpha_{n+1,l}^{(k)} \) satisfying the constraints (69). If that is the case, then we have proven the existence of \(n \) different GQTGs at order \(n+1 \) which, as we saw earlier, is the maximum possible number of GQTGs at that order.

The number of equations to be solved for fixed \(n \)—namely, the number of equations required for establishing the existence of \(n \) densities of order \(n+1 \)—and the number of unknowns \((C_{m,i,j}) \) read, respectively

\[
\# \text{equations} = \frac{12 + n(11 + 3n)}{2}, \quad \# \text{unknowns} = \frac{n(n + 2)(n + 7)}{6}.
\]

The former is greater than the latter as long as \(n < 5.10421 \) and smaller for greater values of \(n \). Observe that while the number of equations grows as \(\sim n^2 \), the number of unknowns grows as \(\sim n^3 \). Here, the number of unknowns is the number of constants available to be fixed in order for the GQTG conditions to be satisfied, and so having more unknowns than equations means that we have more than enough freedom to impose all the conditions. Hence, as long as we are able to show that the \((n-1) \) different classes of GQTG exist for \(n \leq 6 \) using other methods, this result shows that they will generally exist for \(n > 6 \). In practice, solving this system of equations explicitly for any \(n \geq 6 \) and \(D \) is challenging. Nevertheless, the resolution for explicit values of \(n \) and \(D \) is straightforward with the help of a computer algebra system.
Doing this, we have checked that there is a solution for any consistent value of the $c^{(k)}_{n+1,j}$ in any D as long as $n \geq 6^{11}$.

In sum, our results here imply that, if $(n-1)$ inequivalent GQTGs exist for $n = 1, \ldots, 6$, then, $(n-1)$ inequivalent densities will exist for every order $n \geq 6$. In appendix we have provided explicit examples of all the inequivalent classes of GQTGs up to $n = 6$ for $D = 5, 6$, so this proves that there are $(n-1)$ inequivalent GQTGs at every order $n \geq 2$ in those cases. The construction of explicit $n \leq 6$ densities of all the different classes for other values of D can be analogously performed (although it requires some non-trivial computational effort in each case) so we are highly confident that our results apply for general $D \geq 7$ as well.

On the other hand, note that our argument here does not work in $D = 4$. Indeed, we have found no evidence for the existence of additional inequivalent GQTGs (besides the one known prior to this paper $^{27, 29, 30, 33}$) up to order 6 in that case. This strongly suggests that in $D = 4$ there is a single type of GQTG at every curvature order although a rigorous proof of this fact would require some additional work.

4. Black hole thermodynamics

In this section we study thermodynamic aspects of GQTGs in an as general as possible fashion. First we show that the first law of black hole mechanics is satisfied by the black hole solutions of general GQTGs. Then, we will show that thermodynamic magnitudes of at least one class of genuine GQTGs can be, similarly to the Lovelock and quasi-topological cases, expressed in terms of the characteristic polynomial which embeds maximally symmetric backgrounds in the theory and the on-shell Lagrangian.

4.1. The first law for general GQTGs

Here we wish to understand the first law of thermodynamics for all possible GQTGs. We will begin by working directly with equation (25), without imposing the constraints on the couplings given in equations (33) and (35) at this time. The integrated field equations of the putative theory can be written in the form

$$\sum_{n=0}^{n_{\text{max}}} \sum_{j=0}^{n} \alpha_{n,j} F_{(n,j)} = -\frac{8 \pi GM}{\Omega_{D-2}},$$

(71)

where the parameter M is the black hole mass $^{90-93}$. At a black hole horizon, where $f(r_+) = 0$, the above equation can be expanded to yield the following constraints:

$$M = \frac{\Omega_{D-2} n_{\text{max}}}{16 \pi G} \sum_{n=0}^{n_{\text{max}}} \sum_{j=0}^{n} \alpha_{n,j} (j-1) k^{n-j} f_+^{D-2n-1} (-2 \pi r_+ T)^j,$$

(72)

$$0 = \sum_{n=0}^{n_{\text{max}}} \sum_{j=0}^{n} \alpha_{n,j} (D-2n+j-1) k^{n-j} (-2 \pi r_+ T)^j f_+^{D-2n-2},$$

(73)

where the temperature satisfies $T = f'(r_+) / (4 \pi)$. The first equation gives the black hole mass in terms of the temperature T and the horizon radius r_+, while the second provides a relationship between T and r_+.

11 In practice, we have checked this explicitly for $n = 6$ and general D and for $n = 7, \ldots, 20$ in $D = 5, 6, 7$.

15
The other ingredient we need is the black hole entropy. This should be computed according to Wald’s formula \[S = -2\pi \int_{\mathcal{H}} d^{D-2}x \sqrt{\mathcal{H}} P_{ab} \varepsilon^{cd} \varepsilon_{cd}, \] where \(\varepsilon_{ab} \) is the binormal to the horizon \(\mathcal{H} \). Using the technology introduced in [27], this can be computed without knowledge of the covariant form of the Lagrangian. The key insight is that the tensor \(P_{abcd} \) can be computed from the on-shell Lagrangian and must take the form \[P_{abcd} = P_1 \mathcal{T}^{[ab} T^{cd]} + P_2 \mathcal{T}^{[ab} \sigma^{cd]} + P_3 \sigma^{[ab} \sigma^{cd]}, \] where \[P_1 \equiv -\frac{\partial R(n)}{\partial f} \bigg|_{f}, \quad P_2 \equiv -\frac{r}{D-2} \frac{\partial R(n)}{\partial f} \bigg|_{f}, \quad P_3 \equiv -\frac{r^2}{(D-2)(D-3)} \frac{\partial R(n)}{\partial f} \bigg|_{f}. \] For the case of the SSS black holes considered here, the horizon binormal is given by \(\varepsilon_{ab} = 2 r_{[ab]} \) with \(r^a \) and \(t^b \) the unit spacelike and timelike normal vectors. A calculation then gives \[S = -4 \pi \Omega \frac{D-2}{2} \left[\frac{\partial \mathcal{L}}{\partial f} \right]_{r=r_+} \] \[= \frac{\Omega D-2}{8 G} \sum_{n=0}^{n_{\text{max}}} \sum_{j=0}^{n} \alpha_{n,j} k^{n-j} (-2 \pi r_+ T)^{j-1} r_+^{D-2n}. \] It is then straightforward to show that the first law of thermodynamics \[dM = TdS \] holds independent of any conditions placed on the couplings \(\alpha_{n,j} \). This fact is somewhat surprising because, as discussed earlier, it is only when certain constraints are obeyed by the couplings that a genuine, covariant construction for the Lagrangian can be built based on curvature invariants. However, these same constraints are unnecessary to obtain a valid first law.

Despite the fact that the coupling constraints are not necessary to obtain a valid first law, it is still possible to understand them from a thermodynamic perspective. For this, the natural starting point is the free energy, which reads \[F = \frac{\Omega D-2}{16 \pi G} \sum_{n,j} \alpha_{n,j} k^{n-j} (-2 \pi T)^{j-1} r_+^{D-2n+j}. \] From the free energy, the equation that relates the temperature and horizon radius can be obtained according to \[\frac{\partial F}{\partial r_+} = 0, \] while the mass and entropy can then be verified to follow in the usual way. The constraints on the couplings enforce the following conditions on the free energy:

\[F - T \frac{\partial F}{\partial T} - \frac{r_+}{D-1} \frac{\partial F}{\partial r_+} \bigg|_{2\pi T r_+ = -k} = 0, \] \[\frac{\partial^2 F}{\partial T^2} \bigg|_{2\pi T r_+ = -k} = 0. \]
where it is to be noted that the derivatives here are to be computed without assuming any relationship between \(r_+ \) and \(T \).

These expressions above, phrasing the coupling constraints in as properties of the free energy, can be reinterpreted as statements about massless hyperbolic black holes. The static black hole with metric function

\[
f(r) = -1 + \frac{r^2}{L^2}
\]

is pure AdS space in a particular slicing. In terms of the parameters we have been using, this corresponds to \(k = -1 \), \(r_+ = L \), and \(T = 1/(2 \pi L) \), therefore satisfying the condition \(2 \pi T r_+ = -k \). In this language, as we will see explicitly below, the first of the two constraints on the free energy actually ensures that the mass of this black hole vanishes. The second constraint on the free energy does not have as direct of an interpretation in terms of the thermodynamic properties of this black hole, but one could imagine it is a statement about fluctuations.

4.2. A unified picture of the thermodynamics?

Lovelock and quasi-topological gravities are, by comparison to alternatives, rather simple extensions of general relativity, especially in the context of SSS black holes. Within our parameterization, the coupling constants \(\alpha_n \), \(j \) to achieve the on-shell Lagrangian for Lovelock and quasi-topological theories amounts to the choice (83). For these theories, as has long been known in the case of Lovelock [98–100], the field equations for a SSS black hole take the form

\[
M = \frac{(D - 2) \Omega_{D-2} r^{D-1}}{16 \pi G L^2} h(y), \quad y \equiv \frac{(f(r) - k)L^2}{r^2}.
\]

The function \(h(x) \) appearing here is the same function that determines the vacua of the theory, i.e. the field equations for the maximally symmetric solutions of the theory. This ‘embedding function’ or ‘characteristic polynomial’ is related to the Lagrangian of the theory evaluated on a maximally symmetric background [16, 95]

\[
h(x) = \frac{16 \pi G L^2}{(D-1)(D-2)} \left[L(x) - \frac{2}{D} x L'(x) \right],
\]

where here \(x \) is related to the curvature of the maximally symmetric background according to

\[
R_{ab}^{cd} = -\frac{2x\delta_{[a}^e \delta_{b]}^d}{L^2},
\]

and \(L(x) \) corresponds to the Lagrangian of the theory evaluated for the curvature (86).

The fact that the field equations can be written in terms of the embedding function naturally leads to some simple and universal expressions for black hole thermodynamics:

\[
M = \frac{(D - 2) \Omega_{D-2} r^{D-1}}{16 \pi G L^2} h(y_+), \quad y_+ \equiv \frac{-kL^2}{r_+^2},
\]

\[
S = \frac{4 \pi \Omega_{D-3} L^2 r^{D-2}}{D(D-1)} L'(y_+).
\]
\[0 = (D - 1)kh(y_+) - 2y_+(2\pi r_+ T + k)h'(y_+), \] (88)

which can be used to isolate for the temperature, if desired.

It is natural to wonder whether similar relationships hold for the more complicated GQT theories, or whether this result for Lovelock and quasi-topological theories was an artefact of their simplicity. Here we will provide evidence that this is indeed possible, though the situation is more involved than the Lovelock and quasi-topological cases.

Consider the family of theories identified according to the following choices of couplings:

\[\alpha_{n,n-j} = \frac{(D-4)^{j-1}n![(n-j-2)D-4(n-2)]}{2^n j!(n-j)! (n-2)!} \alpha_{n,n} . \] (89)

In general dimensions, this corresponds to the family of theories for which an explicit covariant formulation was identified in [27]. These couplings satisfy the necessary constraints (33) and (35), and in addition define a family of GQTG theories for which the free energy can be written as,

\[F = - \frac{(D-2)\Omega_{D-2}r_+^{D-1}}{16\pi GL^2}h(x_+) - \frac{4L^2 r_+^{D-3}}{D^2(D-1)}[(D-2)k + (D-4)\pi r_+ T] \mathcal{L}'(x_+) \] (90)

where

\[x_+ \equiv \frac{8\pi TL^2}{r_+ D} - \frac{(D-4)\pi L^2}{r_+^2 D} . \] (91)

From this form of the free energy, the full thermodynamic properties for this class of theories can be derived. We obtain for the mass and relationship between the temperature and horizon radius the following two results:

\[M = \frac{(D-2)\Omega_{D-2}r_+^{D-1}}{16\pi GL^2}h(x_+) - \frac{(D-2)\Omega_{D-2}r_+^{D-3}}{4\pi GD}[2\pi r_+ T + k]h'(x_+)
+ \frac{(D-4)\Omega_{D-2}L^4r_+^{D-5}}{D^3(D-1)}[2\pi r_+ T + k]^2 \mathcal{L}''(x_+), \] (92)

\[0 = (D-1)(D-2)h(x_+) - \frac{2(D-2)^2L^2}{r_+^2 D}[2\pi r_+ T + k]h'(x_+)
- \frac{8(D-4)L^5}{D^3(D-1)r_+^4}[2\pi r_+ T + k]^2 (16\pi G\mathcal{L}'(x_+)), \] (93)

while the entropy can be simply obtained from the above according to \(S = (M - F)/T \).

It is a bit interesting that the thermodynamic properties of black holes can be encoded in terms of the embedding function \(h(x) \) and the Lagrangian of the theory \(\mathcal{L}(x) \) evaluated on an auxiliary maximally symmetric vacuum spacetime with curvature given by \(x_+/L^2 \). There is one case where this result is somewhat natural, and this is the case of massless hyperbolic black holes where \(f = -1 + \ell^2/L^2 \). Of course, this choice of metric function amounts to a pure AdS space in a particular slicing. One has \(k = -1, T = 1/(2\pi L_h) \), and \(x_+ = L^2/L_h^2 \). In this case, the only non-trivial field equation demands that \(h(x_+) = 0 \), which in turn demands that \(M = 0 \).

Next, note that considerable simplification occurs in \(D = 4 \). In this case, the situation reduces to that first studied in [33]. In that case, the couplings are given by
\[\alpha_{n-1} = -\frac{n}{n-2} \alpha_{n}, \quad \alpha_{2,j} = 0 \quad \forall j, \quad \text{and} \quad \alpha_{n,j} = 0 \]

\forall j \neq n, n-1, \forall n \geq 3. \quad (94)

The thermodynamic relations in this case simplify to

\[M = \frac{\Omega_{D-2} r_p^2}{8 \pi G L^2} h(x_+) - \frac{\Omega_{D-2} r_p}{8 \pi G} [2 \pi r_+ T + k] h'(x_+), \]

\[S = \frac{\Omega_{D-2} kr_p L^2}{6 T} L'(x_+) - \frac{\Omega_{D-2} r_p}{8 \pi GT} [2 \pi r_+ T + k] h'(x_+), \]

and the constraint that determines the temperature in terms of the horizon radius reads

\[0 = -\frac{3}{2} \frac{r_p^2}{L^2} h(x_+) + [2 \pi r_+ T + k] h'(x_+). \quad (97) \]

It seems likely that the thermodynamics of each family of GQTG can be obtained in this way, though we will leave that full analysis for future work. Nonetheless, we can make a few general remarks, based on the connection with massless hyperbolic black holes. For any given family of GQTGs, the mass must have a term proportional to \(h(x) \) followed by a series of terms with powers that vanish for the massless hyperbolic black hole. For example, the simplest possibility would be \((2 \pi r_+ T + k) \) raised to various powers, multiplying derivatives of \(h \) and \(L \). Similarly, the entropy must have a term proportional to \(L'(x) \), followed by a series of terms that vanish for the massless hyperbolic black hole, just as above. Lastly, the argument \(x \) must be a function of \(r_+ \), \(T \) and \(k \) that limits to \(L^2/L_+^2 \) for the massless hyperbolic black hole. For example, allowing for a linear dependence on the parameters, the most general option is the one-parameter family

\[x_+ = \frac{2 \pi TL^2 \beta}{r_+} + \frac{(\beta - 1)kL^2}{r_p^2}. \quad (98) \]

This linear relationship recovers the result for Lovelock/quasi-topological gravity (with \(\beta = 0 \)) and the GQTG family we have presented above (with \(\beta = 4/D \)). Preliminary calculations have suggested that other GQTG families may require a more complicated dependence than this.

5. Final comments

In this work, we have completed the structural analysis of GQTGs, proving that at order \(n \) in curvature there exist \(n - 1 \) distinct GQTGs provided \(D \geq 4 \). In the case of \(D = 4 \), our results strongly suggest that there is a single (unique up to addition of trivial densities) GQTG family corresponding to that identified in [33]. To achieve this, we first derived an upper bound, based on the fact that an on-shell GQTG density must be a polynomial in the three independent terms appearing in the Riemann curvature for a SSS background. This upper bound, which holds independent of any knowledge of the covariant form of the densities, was then refined by demanding of the putative theories additional properties that must hold for a true covariant density. Finally, we proved the refined estimate to be exact using arguments based on recurrence formulas, like those introduced in [27]. In order for our argument to hold, it is required that \(n - 1 \) densities exist for \(n = 2, 3, 4, 5, 6 \), which then implies existence for all \(n > 6 \). Such \(n - 1 \) densities for the lowest curvature orders can be constructed explicitly for \(D \geq 5 \) but not for \(D = 4 \), in which case we have verified that there is always a unique density for every \(n = 2, \ldots, 6 \). The argument for higher \(n \) then fails for \(D = 4 \). While it could in principle be possible that additional inequivalent densities exist in \(D = 4 \) for higher orders—and our construction involving products of lower-order densities was not general enough to capture them—we find this possibility highly unlikely.
In addition, we have provided a basic analysis of the thermodynamic properties of black holes in all possible theories, confirming that the first law is satisfied. Perhaps the most interesting result in this direction is the strong evidence that the thermodynamics of black holes in any GQTG may be expressible in terms of the same function that determines the vacua of the theory, just like in Lovelock and quasi-topological gravities. Why the thermodynamics of black holes in these theories is encoded in the curvature of some auxiliary maximally symmetric space remains mysterious to us, and may be worth further investigation. More pragmatically, such closed-form and universal expressions provide a simple means by which the thermodynamics could be studied when an infinite number of higher-curvature corrections are simultaneously included.

As a by-product, our work has identified \((n-2)\) hitherto unknown families of GQTGs in \(D > 4\). Going forward, it would be interesting to understand how the properties of black hole solutions differ between these different families, or whether there exist universal features, such as occurs in \(D = 4\) [33]. Moreover, the methods we have used to upper bound the number of distinct theories may generalize to allow for a similar analysis to be carried out when there is non-minimal coupling between gravity and matter fields.

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

Acknowledgments

In some cases, calculations performed in the manuscript have been facilitated by Maple and Mathematica, utilizing the specialized packages GRTensor and xAct [101]. The work of P B was partially supported by the Simons foundation through the It From Qubit Simons collaboration. The work of P A C is supported by a postdoctoral fellowship from the Research Foundation—Flanders (FWO Grant 12ZH121N). The work of R A H is supported physically by planet Earth through the electromagnetic and gravitational interactions, and received the support of a fellowship from ‘la Caixa’ Foundation (ID 100010434) and from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No 847 648’ under fellowship code LCF/BQ/PI21/11 830 027. The work of J M is funded by the Agencia Nacional de Investigación y Desarrollo (ANID) scholarship No. 21190234 and by Pontificia Universidad Católica de Valparaíso.

Appendix. Explicit covariant densities for \(n = 4, 5, 6\) in \(D = 5, 6\)

In this appendix we present explicit GQT covariant densities of each of the \((n-2)\) existing types for \(n = 4, 5, 6\) in \(D = 5\) and \(D = 6\).

At quartic order, examples of representatives of the two inequivalent classes of GQT densities in \(D = 5\) are (we use Roman numbers to label the different types)

\[
S_{D=5,n=4}^{I} = + 12 R^{abcd} R_{ab}^{ef} R_{c d}^{g h} R_{e f}^{g h} + 3 R^{abcd} R_{a}^{e f} R_{b d}^{g h} R_{c}^{g h}^{d} + 6 R^{abcd} R_{a}^{e f} R_{b c}^{d} R_{e f}^{d} R_{g h}^{d} - 9 R^{abcd} R_{a}^{e f} R_{b c}^{d} R_{e f}^{d} R_{g h}^{d} + R R_{a}^{c d} R_{b}^{e f} R_{c d}^{e f}.
\]
\[
S^{\text{II}}_{[D=5,n=4]} = 4 R^{abcd} R_{ab}^a R_{cd}^c R_{dgh}^d + 30 R^{abcd} R_{ab}^a R_{cde}^c R_{gh}^d + 3 R^{ab} \tau^d R_{a}^{de} R_{b}^{ef} R_{cf}^c R_{e}^{df} + \text{other terms}
\]

which evaluated on the single-function ansatz reduce to linear combinations of \(S_{(4,j)} |_r \), as defined in equation (23), with

\[
\tau^1_{[D=5,n=4]} = 4 \tau(4,1) + 12 \tau(4,3) - 6 \tau(4,4),
\]

\[
\tau^2_{[D=5,n=4]} = 6 \tau(4,2) - \tau(4,4),
\]

respectively. It is straightforward to check that both satisfy conditions equations (33) and (35). In \(D = 6 \), we find

\[
S^{\text{I}}_{[D=6,n=4]} = 15 R^{abcd} R_{ab}^a R_{ce}^c R_{dgh}^d + 20 R^{abcd} R_{ab}^a R_{cde}^c R_{gh}^d - 4 R^{abcd} R_{ab}^a R_{eg}^e R_{f}^f + 36 R^{abcd} R_{ab}^a R_{e}^b R_{fgd}^d + 48 R^{ab} R_{ab}^a R_{cde}^c R_{def}^d + 8 R^{ab} R_{ab}^a R_{e}^b R_{f}^d
\]

\[
S^{\text{II}}_{[D=6,n=4]} = 5 R^{abcd} R_{ab}^a R_{ce}^c R_{dgh}^d - 28 R^{abcd} R_{ab}^a R_{cde}^c R_{gh}^d - 20 R^{abcd} R_{ab}^a R_{eg}^e R_{f}^f + 52 R^{abcd} R_{ab}^a R_{e}^b R_{fgd}^d - 16 R^{ab} R_{ab}^a R_{cde}^c R_{def}^d + 8 R^{ab} R_{ab}^a R_{e}^b R_{f}^d
\]

and for those

\[
\tau^1_{[D=6,n=4]} = \tau(4,4) - 2 \tau(4,3) - 2 \tau(4,1),
\]

\[
\tau^2_{[D=6,n=4]} = \tau(4,4) - 4 \tau(4,3) - 6 \tau(4,2),
\]

At quintic order, examples of the three inequivalent classes read

\[
S^{\text{I}}_{[D=5,n=5]} = 3235 R^5 - 28409 R^3 R^b R^a + 46980 R^2 R^a R^b R^c R^d - 93522 R^a R^b R^c R^d R^e R^f + 11928 R^a R^b R^c R^d R^e + 98700 R^a R^b R^c R^d R^e R^f + 2870 R^a R^b R^c R^d R^e R^f + 52080 R^a R^b R^c R^d R^e R^f R^g R^h + 151200 R^a R^b R^c R^d R^e R^f R^g R^h + 137655 R^a R^b R^c R^d R^e R^f R^g R^h - 23940 R^a R^b R^c R^d R^e R^f R^g R^h,
\]
\[
S^{II}_{D=5,n=5} = + 10505 R^5 - 98197 R^3 R_a R_b R_c R_d + 242460 R^2 R_a R_b R_c R_d
- 362526 R_{ab} R_{cd} R_{de}
+ 7784 R_a R_b R_c R_d R_e + 77700 R_{ab} R_{cd} R_e R_{de}
+ 1120 R^3 R_{ab} R_{cd} R_{de}
+ 139440 R_a R_b R_c R_d R_e R_f - 173880 R_{ab} R_{cd} R_{ef} R_{de}
+ 19495 R_{ab} R_{cd} R_{ef} R_{de} + 12355 R_{ab} R_{cd} R_{ef} R_{de}
- 104580 R_a R_b R_c R_d R_e R_f - 15120 R_{ab} R_{cd} R_{ef} R_{de}
- 3780 R_{ab} R_{cd} R_{ef} R_{de} + 11340 R_b R_a R_c R_d R_e R_f,
\]
\[
S^{III}_{D=5,n=5} = - 108751900 R^5 + 1026499979 R^3 R_a R_b R_c
- 2724816480 R^2 R_a R_b R_c R_d
+ 3743976918 R_{ab} R_{cd} R_{ef} R_{de} - 981715812 R_a R_b R_c R_d R_e R_f
+ 241948812 R_{ab} R_{cd} R_{ef} R_{de} + 11124379 R^3 R_{ab} R_{cd}
+ 2523150 R_{ab} R_{cd} R_{ef} R_{de} - 1472147016 R_a R_b R_c R_d R_e R_f
+ 442592640 R_{ab} R_{cd} R_{ef} R_{de}
- 1009017009 R_{ab} R_{cd} R_{ef} R_{de}
- 19666439 R_{ab} R_{cd} R_{ef} R_{de}
+ 1327705722 R_a R_b R_c R_d R_e R_f
- 7998480 R_{ab} R_{cd} R_{ef} R_{de}
+ 151439400 R_{ab} R_{cd} R_{ef} R_{de}
- 197676360 R_a R_b R_c R_d R_e R_f
+ 35700000 R_{ab} R_{cd} R_{ef} R_{de}
+ 12183960 R_{ab} R_{cd} R_{ef} R_{de}
- 89250 R_{ab} R_{cd} R_{ef} R_{de},
\]

And for them

\[
\tau^{I}_{D=5,n=5} = + 2 \tau_{(5,0)} - \tau_{(5,1)} - 12 \tau_{(5,2)} - 10 \tau_{(5,3)} + 2 \tau_{(5,4)} + 3 \tau_{(5,5)},
\]
\[
\tau^{II}_{D=5,n=5} = - 5 \tau_{(5,0)} + 4 \tau_{(5,1)} + 18 \tau_{(5,2)} + 4 \tau_{(5,3)} - 5 \tau_{(5,4)},
\]
\[
\tau^{III}_{D=5,n=5} = + 45 \tau_{(5,0)} - 46 \tau_{(5,1)} + 44 \tau_{(5,2)} - 3 \tau_{(5,3)}.
\]

For \(D = 6\), we find

\[
S^{I}_{D=6,n=5} = - 123946191482880 R_a R_b R_c R_d R_e R_f
+ 1472406237369312 R_a R_b R_c R_d R_f R_e
- 1080277675306560 R_a R_b R_c R_d R_f R_e
+ 162174148310040 R_a R_b R_c R_d R_e
- 11444059832562 R^5 + 1702982503075584 R_a R_b R_c R_d R_e R_f
+ 75220642409760 R_{ab} R_{cd} R_{ef}
+ 12994390356246 R (R_{ab} R_{cd} R_{ef})^2
- 941724825600 R_a R_b R_c R_d R_e R_f,
\]
\[-1826681030324352 R_{ab} R_{cd} \]
\[= 1161324617394816 R_{ab} R_{cd} R_{ef} \]
\[+ 402058236112056 R_{ab} R_{cd} R_{ef} \]
\[+ 796036321619712 R_{ab} R_{cd} R_{ef} \]
\[+ 226245709813248 R_{ab} R_{cd} R_{ef} \]
\[+ 2713887813611520 R_{ab} R_{cd} R_{ef} \]
\[+ 544183705126331520 R_{ab} R_{cd} R_{ef} \]
\[+ 851693811394560 R_{ab} R_{cd} R_{ef} \]
\[+ 907514990067712 R_{ab} R_{cd} R_{ef} \]
\[+ 3948156540352000 R_{ab} R_{cd} R_{ef} \]
\[+ 496958473622415360 R_{ab} R_{cd} R_{ef} \]
\[+ 360680518636185600 R_{ab} R_{cd} R_{ef} \]
\[+ 5671103624384000 R_{ab} R_{cd} R_{ef} \]
\[+ 4236457006581120 R_{ab} R_{cd} R_{ef} \]
\[+ 605795373316331520 R_{ab} R_{cd} R_{ef} \]
\[+ 25066678861324800 R_{ab} R_{cd} R_{ef} \]
\[+ 2911274422692480 R_{ab} R_{cd} R_{ef} \]
\[+ 923551990334400 R_{ab} R_{cd} R_{ef} \]
\[+ 654135376602562560 R_{ab} R_{cd} R_{ef} \]
\[+ 38407859216215680 R_{ab} R_{cd} R_{ef} \]
\[+ 128301089938030080 R_{ab} R_{cd} R_{ef} \]
\[+ 24795754993141760 R_{ab} R_{cd} R_{ef} \]
\[+ 54410152259543040 R_{ab} R_{cd} R_{ef} \]
\[+ 91594209986695680 R_{ab} R_{cd} R_{ef} \]
\[+ 1855713735622656000 R_{ab} R_{cd} R_{ef} \]
\[+ 2983978700100403200 R_{ab} R_{cd} R_{ef} \]
\[+ 3268733794655431040 R_{ab} R_{cd} R_{ef} \]
\[= 113245541360640 R_{ab} R_{cd} R_{ef} \]
\[+ 1060631652273624 R_{ab} R_{cd} R_{ef} \]
\[+ 903602985933600 R_{ab} R_{cd} R_{ef} \]
\[+ 127080097757820 R_{ab} R_{cd} R_{ef} \]
\[+ 1791407446201728 R_{ab} R_{cd} R_{ef} \]
\[+ 6558378452200 R_{ab} R_{cd} R_{ef} \]
\[+ 17709732531387 R_{ab} R_{cd} R_{ef} \]
\[+ 3780034053120 R_{ab} R_{cd} R_{ef} \]
\[+ 2136457519124544 R_{ab} R_{cd} R_{ef} \]
\[+ 1548204355449792 R_{ab} R_{cd} R_{ef} \]
\[-341027462136492 \, R_a^b R_d^e R_{ab}^{cd} R_{ef}^{cd} R_{de}^{cd} R^{cd} + 601767492758784 \, R_{ab}^{cd} R_{de}^{cd} R_{ef}^{cd} R_{de}^{cd} \]
\[-195741719323776 R_{ab}^{cd} R_{de}^{cd} R_{ef}^{cd} R_{de}^{cd} \]
\[-686045879580672 R_{ab}^{cd} R_{de}^{cd} R_{ef}^{cd} R_{de}^{cd} \]
\[-409211547264000 R_{ab}^{cd} R_{de}^{cd} R_{ef}^{cd} R_{de}^{cd} \]
\[-4137732154183680 R_{ab}^{cd} R_{de}^{cd} R_{ef}^{cd} R_{de}^{cd} \]
\[-8161945395342336 R_{ab}^{cd} R_{de}^{cd} R_{ef}^{cd} R_{de}^{cd} \]

and for them
\[
\tau_{[D=6, n=5]}^1 = \tau(5, 5) - 10 \tau(5, 2), \quad (116)
\]
\[
\tau_{[D=6, n=5]}^II = \tau(5, 3) - 3 \tau(5, 2) + \tau(5, 1), \quad (117)
\]
\[
\tau_{[D=6, n=5]}^III = \tau(5, 4) - \tau(5, 3) - 3 \tau(5, 2). \quad (118)
\]

At order six we have four inequivalent GQT classes. Representatives in \(D = 5\) are given by

\[
S_{[D=5, n=6]}^I = -73164000 \left(R_{ab} R_{cd} \right)^3 - 1714893120 \left(R_{ab} R_{cd} \right)^3 R_{de} - 367404865 R_{ab} R_{cd} R_{de} + 317404865 R_{ab} R_{cd} R_{de} + 248125440 R_{ab} R_{cd} R_{de} + 170805000 R_{ab} R_{cd} R_{de} - 452092811 R_{ab} R_{cd} R_{de} + 139080000 R_{ab} R_{cd} R_{de} + 35080000 \left(R_{ab} R_{cd} \right)^3 - 445474968 R_{ab} R_{cd} R_{de} - 87720000 \left(R_{ab} R_{cd} \right)^3 + 84746910 R_{ab} R_{cd} R_{de} + 2407239480 R_{ab} R_{cd} R_{de} + 88583040 R_{ab} R_{cd} R_{de} + 410141550 R_{ab} R_{cd} R_{de} + 564422400 R_{ab} R_{cd} R_{de} + 61305000 R_{ab} R_{cd} R_{de} + 727920000 \left(R_{ab} R_{cd} \right)^3 - 578160000 R_{ab} R_{cd} R_{de} + 137140000 \left(R_{ab} R_{cd} \right)^3 - 1518169692 R_{ab} R_{cd} R_{de} + 17518169692 R_{ab} R_{cd} R_{de} - 3724380325 R_{ab} R_{cd} R_{de} - 4324380325 R_{ab} R_{cd} R_{de} + 400229864 R_{ab} R_{cd} R_{de} + 1651814400 R_{ab} R_{cd} R_{de} \]

(119)
\[S^{\text{III}}_{[D=5, n=6]} = -859300000 \left(R_{ab} \right)^3 - 25179802560 R_{ab} \left(R_{bc} - R_{cd} \right) R_{de} - 19703296676 R_{ab} \left(R_{bc} - R_{cd} \right) R_{de} R_{fg} - 19703296676 R_{ab} \left(R_{bc} - R_{cd} \right) R_{de} R_{fg} + 4227840144 R_{bc} R_{cd} R_{de} R_{fg} - 4975158595 R_{ab} \left(R_{bc} - R_{cd} \right) R_{de} R_{fg} + 5123673672 R_{bc} R_{cd} R_{de} R_{fg} - 1331589120 R_{bc} R_{cd} R_{de} R_{fg} + 2222415000 \left(R_{bc} R_{de} R_{fg} \right)^2 R_{ab} + 6346768033 R_{bc} R_{de} R_{fg} R_{ab} R_{cd} R_{de} R_{fg} + 1019618087 R_{ab} R_{cd} R_{de} R_{fg} + 1819320000 R_{bc} R_{cd} R_{de} R_{fg} R_{ab} R_{cd} R_{de} R_{fg} - 450800000 \left(R_{ab} \right)^3 - 33156269520 R_{ab} \left(R_{bc} - R_{cd} \right) R_{de} R_{fg} + 6081896904 R_{bc} R_{cd} R_{de} R_{fg} + 4158600000 \left(R_{bc} - R_{cd} \right) R_{de} R_{fg} R_{ab} \left(R_{bc} - R_{cd} \right) R_{de} R_{fg} + 1060299930 R_{bc} R_{cd} R_{de} R_{fg} R_{ab} + 34472700840 R_{bc} R_{cd} R_{de} R_{fg} R_{ab} + 834145920 R_{bc} R_{cd} R_{de} R_{fg} R_{ab} + 5503384650 R_{bc} R_{cd} R_{de} R_{fg} R_{ab} + 6734419200 R_{bc} R_{cd} R_{de} R_{fg} R_{ab} + 809475000 R_{bc} R_{cd} R_{de} R_{fg} R_{ab} + 151092000000 R_{bc} R_{cd} R_{de} R_{fg} R_{ab} + 9162000000 R_{bc} R_{cd} R_{de} R_{fg} R_{ab} - 120 \]
For $D = 6$ we find

$$
\mathcal{S}_{(D=6,n=6)} = - 555694015 R^b_{ab} R^d \mathcal{R}^4 + 27464642 \mathcal{R}^6
+ 877183464 R^a_{ab} R^b_{ab} \mathcal{R}^2 R^c_{ab} de
- 96706560 R^a_{ab} R^b_{ab} R^c_{ab} R^d_{ac} de
+ 163995000 (R^b_{ab} R^d_{cd})^2 R^a_{abcd} R^b_{abcd}
- 407173621 R^b_{ab} R^d_{cd} R^a_{abcd} R^b_{abcd} + 62048819 R^2 R^a_{abcd} R^b_{abcd}
- 292440000 R^e_{de} (R^a_{abcd} R^b_{abcd})^2 + 28222875 R^2 (R^a_{abcd} R^b_{abcd})^2
+ 97600000 (R^a_{abcd} R^b_{abcd})^3 - 4629108240 R^a_{ab} R^b_{de} R^c_{cd} R^d_{ef} de
- 1045548648 R^a_{ab} R^b_{de} R^c_{cd} R^d_{ef} be
+ 2409000000 (R^a_{ab} R^b_{de} R^c_{cd} R^d_{ef})^2
+ 280021410 R^a_{ab} R^b_{de} R^c_{cd} R^d_{ef}
+ 6317083080 R^a_{ab} R^b_{de} R^c_{cd} R^d_{ef} R^a_{de} \\
- 655655040 R^a_{ab} R^b_{de} R^c_{cd} R^d_{ef} R^a_{de} R^e_{ef} R^a_{de} R^b_{de} \\
- 1401052050 R^a_{ab} R^b_{de} R^c_{cd} R^d_{ef} R^a_{de} R^e_{ef} R^a_{de} R^b_{de}
+ 664070400 R^a_{ab} R^b_{de} R^c_{cd} R^d_{ef} R^a_{de} R^e_{ef} R^a_{de} R^b_{de}
- 46575000 R^a_{ab} R^b_{de} R^c_{cd} R^d_{ef} R^a_{de} R^e_{ef} R^a_{de} R^b_{de}
+ 1414800000 R^d_{abcd} R^e_{de} R^f_{gh} R^i_{jk} / R^a_{de} R^b_{de}
- 1832400000 R^a_{ab} R^b_{de} R^c_{cd} R^d_{ef} R^a_{de} R^b_{de} R^c_{cd} R^d_{ef} R^a_{de} R^b_{de};
$$

(122)

And the corresponding $\tau(r)$ are given by

$$
\tau^{I}_{(D=5,n=6)} = (6,0) + \tau(6,0) + 12 \tau(6,5) - 8 \tau(6,6),
\tag{123}
$$

$$
\tau^{II}_{(D=5,n=6)} = -5 \tau(6,2) - 16 \tau(6,5) + 11 \tau(6,6),
\tag{124}
$$

$$
\tau^{III}_{(D=5,n=6)} = -5 \tau(6,3) - 3 \tau(6,5) + 3 \tau(6,6),
\tag{125}
$$

$$
\tau^{IV}_{(D=5,n=6)} = +15 \tau(6,4) - 2(6 \tau(6,5) - 6 \tau(6,6)).
\tag{126}
$$

For $D = 6$ we find

$$
\mathcal{S}_{(D=6,n=6)} = - 14096679060821760 R^a_{ab} R^b_{ab} R^c_{cd} R^d_{de} R^e_{ef} R^f_{gf} R^g_{gh}
+ 14852647970900544 R^a_{ab} R^b_{ab} R^c_{cd} R^d_{de} R^e_{ef} R^f_{gf} R^g_{gh}
- 5617985150718012 (R^a_{ab} R^b_{ab})^2 R^2
- 1124843605416416 R^a_{ab} R^b_{ab} R^c_{cd} R^d_{de} R^e_{ef} R^f_{gf} R^g_{gh}
+ 1005726172300248 R^a_{ab} R^b_{ab} R^c_{cd} R^d_{de} - 29156254184830 R^6
- 1438756007591232 R^a_{ab} R^b_{ab} R^c_{cd} R^d_{de}
+ 2380028275859520 R^a_{ab} R^b_{ab} R^c_{cd} R^d_{de}
+ 1254308457170736 R^a_{ab} R^b_{ab} R^c_{cd} R^d_{de}
- 168004022190642 R^a_{ab} R^b_{ab} R^c_{cd} R^d_{de}
+ 3230088574927500 R^a_{ab} R^b_{ab} R^c_{cd} R^d_{de}
- 607399901908371 R^2 (R^a_{ab} R^b_{ab})^2
- 721416483693312 R^a_{ab} R^b_{ab} R^c_{cd} R^d_{de}.
$$
\[S_{[D=6, n=6]}^{II} = -31836692340236160 R_{ab} b c R_{ac} R_{de} R_{de} R_{ed} R_{ed} + 34439506371202464 R_{ab} c d R_{ac} R_{de} R_{de} R_{ed} R_{ed} + 13557698416858564 (R_{ab} c d R_{ac} R_{de} R_{de} R_{ed} R_{ed} R_{ed})^2 R^5 + 2849781769779440 R_{ab} c d R_{ac} R_{de} R_{de} R_{ed} R_{ed} R_{ed} + 2611991351109630 R_{ab} c d R_{ac} R_{de} R_{de} R_{ed} R_{ed} R_{ed} R_{ed} + 88399029128845 R^6 + 3677104626840832 R_{ab} c d R_{ac} R_{de} R_{de} R_{ed} R_{ed} R_{ed} R_{ed} + 613289436576969600 R_{ab} c d R_{ac} R_{de} R_{de} R_{ed} R_{ed} R_{ed} R_{ed} + 3157451844617752 R_{ab} c d R_{ac} R_{de} R_{de} R_{ed} R_{ed} R_{ed} R_{ed} + 443112471667562 R_{ab} c d R_{ac} R_{de} R_{de} R_{ed} R_{ed} R_{ed} R_{ed} + 7146998363226150 R_{ab} c d R_{ac} R_{de} R_{de} R_{ed} R_{ed} R_{ed} R_{ed} + 1314167139538110 R^5 \]

\[(R_{ab} c d R_{ac} R_{de} R_{de} R_{ed} R_{ed} R_{ed})^2 R^3 + 1314167139538110 R^5 \]

\[(R_{ab} c d R_{ac} R_{de} R_{de} R_{ed} R_{ed} R_{ed})^2 R^3 + 1314167139538110 R^5 \]

\[(R_{ab} c d R_{ac} R_{de} R_{de} R_{ed} R_{ed} R_{ed})^2 R^3 + 1314167139538110 R^5 \]

\[(R_{ab} c d R_{ac} R_{de} R_{de} R_{ed} R_{ed} R_{ed})^2 R^3 + 1314167139538110 R^5 \]
+ 1133891404354368 \ R_{ab}^d \ R^{de} \ R_{de}^{bc} \ R_{abc}^{bc} \\
- 682346981951712 \ R_{ab}^{de} \ R_a^{de} \ R_{ef}^{de} \\
+ 9376966635379200 \ R_{ab}^{ef} \ R_a^{ef} \ R_{ef}^{ab} \\
- 8990642116684800 \ R_{ab}^{ef} \ R_a^{ef} \ R_{ef}^{ab} \\
- 629935980830232 \ R_a^{ef} \ R_b^{ef} \ R_{ab}^{ef} \\
+ 1901604108792960 \ R_{ab}^{ef} \ R_a^{ef} \ R_{ef}^{ab} \\
+ 3847116811602240 \ R_a^{ef} \ R_b^{ef} \ R_{ab}^{ef} \\
- 10134930764312640 \ R_a^{ef} \ R_b^{ef} \ R_{ab}^{ef} \\
- 2178824133657600 \ R_{ab}^{ef} \ R_{abc}^{ef} \\
+ 304956123151680 \ R_{ab}^{ef} \ R_{abc}^{ef} \\
- 1895257162656000 \ R_{ab}^{ef} \ R_{abc}^{ef} \\
+ 125972646836000 \ R_{ab}^{ef} \ R_{abc}^{ef} \\
- \tau_1^{I} = \tau(6,6) - 15 \tau(6,2) + 4 \tau(6,1) \\
- \tau_1^{II} = \tau(6,5) - 10 \tau(6,2) + 3 \tau(6,1) \\
- \tau_1^{III} = \tau(6,4) - 6 \tau(6,2) + 2 \tau(6,1) \\
- \tau_1^{IV} = \tau(6,3) - 3 \tau(6,2) + \tau(6,1)

and for them

References

[1] Callan C G Jr, Martinec E J, Perry M J and Friedan D 1985 Strings in background fields Nucl. Phys. B 262 593–609
[2] Zwiebach B 1985 Curvature squared terms and string theories Phys. Lett. B 156 315
[3] Bergshoeff E A and de Roo M 1989 The quartic effective action of the heterotic string and supersymmetry Nucl. Phys. B 328 439–68
[4] Gross D J and Witten E 1986 Superstring modifications of Einstein’s equations Nucl. Phys. B 277 1
[5] Gross D J and Sloan J H 1987 The quartic effective action for the heterotic string Nucl. Phys. B 291 41–89
[6] Stelle K S 1977 Renormalization of higher derivative quantum gravity Phys. Rev. D 16 953–69
[7] Stelle K S 1978 Classical gravity with higher derivatives Gen. Rel. Grav. 9 353–71
[8] Starobinsky A A 1980 A new type of isotropic cosmological models without singularity Phys. Lett. B 91 99–102
[9] Myers R C and Sinha A 2011 Holographic c-theorems in arbitrary dimensions J. High Energy Phys. JHEP01(2011)125
[10] Myers R C and Sinha A 2010 Seeing a c-theorem with holography Phys. Rev. D 82 046006
[11] Perlmutter E 2014 A universal feature of CFT Rényi entropy J. High Energy Phys. JHEP03(2014)117
[12] Mezei M 2015 Entanglement entropy across a deformed sphere Phys. Rev. D 91 045038
[13] Bueno P, Myers R C and Witczak-Krempa W 2015 Universality of corner entanglement in conformal field theories Phys. Rev. Lett. 115 021602
[14] Bueno P, Myers R C and Witczak-Krempa W 2015 Universal corner entanglement from twist operators J. High Energy Phys. JHEP09(2015)091
[15] Chu C-S and Miao R-X 2016 Universality in the shape dependence of holographic Rényi entropy for general higher derivative gravity J. High Energy Phys. JHEP12(2016)036
[16] Bueno P, Cano P A, Hennigar R A and Mann R B 2019 Universality of squashed-sphere partition functions Phys. Rev. Lett. 122 071602
[17] Li Y-Z, Lü H and Mai Z-F 2018 Universal structure of covariant holographic two-point functions in massless higher-order gravities J. High Energy Phys. JHEP10(2018)063
[18] Bueno P, Cano P A, Hennigar R A, Penas V A and Ruipérez A 2020 Partition functions on slightly squashed spheres and flux parameters J. High Energy Phys. JHEP04(2020)123
[19] Bueno P, Cano P A, Murcia A and Sánchez A R 2022 A universal feature of charged entanglement entropy (arXiv:2203.04325)
[20] Lovelock D 1970 Divergence-free tensorial concomitants Aequ. Math. 4 127–38
[21] Lovelock D 1971 The Einstein tensor and its generalizations J. Math. Phys. 12 498–501
[22] Oliva J and Ray S 2010 A new cubic theory of gravity in five dimensions: black hole, Birkhoff’s theorem and C-function Class. Quantum Grav. 27 225002
[23] Myers R C and Robinson B 2010 Black holes in quasi-topological gravity Class. Quantum Grav. 27 225002
[24] Ahmed J, Hennigar R A, Mann R B and Mir M 2017 Quintessential quartic quasi-topological quartet J. High Energy Phys. JHEP05(2017)134
[25] Cisterna A, Guajardo L, Hassaine M and Oliva J 2017 Quintic quasi-topological gravity J. High Energy Phys. JHEP04(2017)066
[26] Bueno P, Cano P A and Hennigar R A 2020 (Generalized) quasi-topological gravities at all orders Class. Quantum Grav. 37 015002
[27] Bueno P and Cano P A 2016 Einsteinian cubic gravity Phys. Rev. D 94 104005
[28] Hennigar R A and Mann R B 2017 Black holes in Einsteinian cubic gravity Phys. Rev. D 95 064055
[29] Bueno P and Cano P A 2016 Four-dimensional black holes in Einsteinian cubic gravity Phys. Rev. D 94 124051
[30] Hennigar R A, Kubizňák D and Mann R B 2017 Generalized quasitopological gravity Phys. Rev. D 95 104042
[31] Bueno P and Cano P A 2017 On black holes in higher-derivative gravities Class. Quantum Grav. 34 175008
[32] Bueno P and Cano P A 2017 Universal black hole stability in four dimensions Phys. Rev. D 96 024034
[33] Dey A, Roy P and Sarkar T 2018 On holographic Rényi entropy in some modified theories of gravity J. High Energy Phys. JHEP04(2018)098
[34] Feng X-H, Huang H, Mai Z-F and Lu H 2017 Bounce universe and black holes from critical Einsteinian cubic gravity Phys. Rev. D 96 104034
[35] Hennigar R A 2017 Criticality for charged black branes J. High Energy Phys. JHEP09(2017)082
[36] Hennigar R A, Poshteh M B J and Mann R B 2018 Shadows, signals and stability in Einsteinian cubic gravity Phys. Rev. D 97 064041
[37] Bueno P, Cano P A and Ruipérez A 2018 Holographic studies of Einsteinian cubic gravity J. High Energy Phys. JHEP03(2018)150
[38] Bueno P, Cano P A, Hennigar R A and Mann R B 2018 NUTs and bolts beyond Lovelock J. High Energy Phys. JHEP10(2018)095
[39] Bueno P, Cano P A, Hennigar R A and Mann R B 2018 NUTs and bolts beyond Lovelock J. High Energy Phys. JHEP10(2018)095
[40] Poshteh M B J and Mann R B 2019 Gravitational lensing by black holes in Einsteinian cubic gravity Phys. Rev. D 99 024035
[41] Mir M, Hennigar R A, Ahmed J and Mann R B 2019 Black hole chemistry and holography in generalized quasi-topological gravity J. High Energy Phys. JHEP08(2019)068
[42] Mir M and Mann R B 2019 On generalized quasi-topological cubic-quartic gravity: thermodynamics and holography J. High Energy Phys. JHEP07(2019)012
[43] Arciniega G, Edelstein J D and Jaime L G 2020 Towards geometric inflation: the cubic case Phys. Lett. B 802 135272
[44] Cisterna A, Grandi N and Oliva J 2020 On four-dimensional Einsteinian gravity, quasi-topological gravity, cosmology and black holes Phys. Lett. B 805 135435
[45] Arciniega G, Bueno P, Cano P A, Edelstein J D, Hennigar R A and Jaime L G 2020 Geometric inflation Phys. Lett. B 802 135242
[46] Mehdizadeh M R and Ziaie A H 2019 Traversable wormholes in Einsteinian cubic gravity Mod. Phys. Lett. A 35 2050017
[47] Erices C, Papantonopoulos E and Saridakis E N 2019 Cosmology in cubic and $f(P)$ gravity Phys. Rev. D 99 123527
[48] Emond W T and Moynihan N 2019 Scattering amplitudes, black holes and leading singularities in cubic theories of gravity J. High Energy Phys. JHEP12(2019)019
[49] Jiang J and Li X-W 2019 Adjusted complexity equals action conjecture Phys. Rev. D 100 066026
[50] Cano P A and Perenigués D 2020 Extremal rotating black holes in Einsteinian cubic gravity Phys. Rev. D 101 044016
[51] Burger D J, Emond W T and Moynihan N 2020 Rotating black holes in cubic gravity Phys. Rev. D 101 084009
[52] Bueno P, Cano P A, Moreno J and Murcia A 2019 All higher-curvature gravities as generalized quasi-topological gravities (arXiv:1906.00987)
[53] Frassino A M and Rocha J V 2020 Charged black holes in Einsteinian cubic gravity and nonuniqueness Phys. Rev. D 102 024035
[54] Zangeneh M K and Kazemi A 2020 Topological Born–Infeld charged black holes in Einsteinian cubic gravity Eur. Phys. J. C 80 794
[55] Marciu M 2020 Note on the dynamical features for the extended $f(P)$ cubic gravity Phys. Rev. D 103 03534
[56] Quiros I, García-Salcedo R, Gonzalez T, Martínez J L M and Nucamendi U 2020 Global asymptotic dynamics of cosmological Einsteinian cubic gravity Phys. Rev. D 102 024035
[57] Pookkilath M C, De Felice A and Starobinsky A A 2020 Anisotropic instability in a higher order gravity theory J. Cosmol. Astropart. Phys. JCAP07(2020)041
[58] Marciu M 2020 Dynamical aspects for scalar fields coupled to cubic contractions of the Riemann tensor Phys. Rev. D 102 023517
[59] Adair C, Bueno P, Cano P A, Hennigar R A and Mann R B 2020 Slowly rotating black holes in Einsteinian cubic gravity Phys. Rev. D 102 084001
[60] Khodabakhshi H, Giaino A and Mann R B 2020 Einstein quartic gravity: shadows, signals and stability Phys. Rev. D JCAP102(2020)044038
[61] Edelstein J D, Vázquez Rodríguez D and Vilar López A 2020 Aspects of geometric inflation J. Cosmol. Astropart. Phys. 12 040
[62] Konoplya R A, Zinhailo A F and Stuchlík Z 2020 Quasinormal modes and Hawking radiation of black holes in cubic gravity Phys. Rev. D 102 044023
[63] Khan Z, Rani S, Jawad A and Mustafa G 2020 Analysis of cubic gravity through cosmic aspects Int. J. Geom. Meth. Mod. Phys. 17 2050134
[64] Khodabakhshi H and Mann R B 2021 Gravitational lensing by black holes in Einstein quartic gravity Phys. Rev. D 103 024017
[65] Cano P A and Murcia A 2020 Electromagnetic quasi-topological gravities J. High Energy Phys. 10 125
[66] Cano P A and Murcia A 2021 Resolution of Reissner–Nordström singularities by higher-derivative corrections Class. Quantum Grav. 38 075014
[67] Quiros I, De Arcia R, García-Salcedo R, Gonzalez T, Linares Cedeño F X and Nucamendi U 2021 On the quantum origin of inflation in the geometric inflation model Phys. Rev. D 103 064043
[68] Edelstein J D, Mann R B, Rodríguez D V and Vilar López A 2021 Small free field inflation in higher curvature gravity J. High Energy Phys. JHEP01(2021)029
[69] Jiménez J B and Jiménez-Cano A 2021 On the strong coupling of Einsteinian cubic gravity and its generalisations J. Cosmol. Astropart. Phys. JCAP01(2021)069
[70] Cáceres E, Castillo Vásquez R and Vilar López A 2021 Entanglement entropy in cubic gravitational theories J. High Energy Phys. JHEP05(2021)186
[71] Mustafa G, Xia T-C, Hussain I and Shamir M F 2020 Spherically symmetric static wormhole models in the Einsteinian cubic gravity Int. J. Geom. Meth. Mod. Phys. 17 2050214
[72] Cano P A, Fransen K and Hertog T 2021 Novel higher-curvature variations of R^2 inflation Phys. Rev. D 103 103531
[73] Fierro O, Mora N and Oliva J 2021 Slowly rotating black holes in quasitopological gravity Phys. Rev. D 103 064004
[74] Bhattacharjee S 2021 Energy conditions in f(P) gravity (arXiv:2103.08444)
[75] Bhattacharjee S 2021 Baryogenesis in f(P) gravity Int. J. Mod. Phys. A 36 27
[76] Jawad A and Maqsood S 2021 Gravitationally induced particle creation in cubic gravity Int. J. Geom. Meth. Mod. Phys. 18 2150106
[77] Bueno P, Cano P A, Moreno J and van der Velde G 2021 Regular black holes in three dimensions Phys. Rev. D 104 L021501
[78] Li Y-Z, Lu H and Ma L 2021 Hidden relations of central charges and OPEs in holographic CFT J. High Energy Phys. JHEP11(2021)135
[79] Ghosh R, Deb Nath U and Chakraborty S 2021 Reconstructions of f(P) gravity from (m,n) type ordinary and entropy-corrected holographic and Pilgrim dark energy models Int. J. Mod. Phys. A 36 2150198
[80] Bakhtiarizadeh H R 2021 Charged rotating black strings in Einsteinian cubic gravity (arXiv:2111.02663)
[81] Sardar A and Deb Nath U 2022 Reconstruction of extended f(P) cubic gravity from other modified gravity models Phys. Dark Univ. 35 100926
[82] Bakhtiarizadeh H R 2021 Charged rotating black strings in Einsteinian quartic gravity (arXiv:2112.11825)
[83] Gray F, Hennigar R A, Kubiznak D, Mann R B and Srivastava M 2021 Generalized Lense–Thirring metrics: higher-curvature corrections and solutions with matter (arXiv:2112.07649)
[84] Jaime L G and Arciniega G 2022 A unified geometric description of the Universe: From inflation to late-time acceleration without an inflaton nor a cosmological constant Phys. Lett. B 827 136939
[85] Bueno P, Cano P A, Llorens Q, Moreno J and van der Velde G 2022 Aspects of three-dimensional higher-curvature gravities (arXiv:2201.07266)
[86] Edelstein J D, Grandi N and Sánchez A R 2022 Holographic superconductivity in Einsteinian cubic gravity (arXiv:2202.05781)
[87] Cano P A, Murcia A, Sánchez A R and Zhang X 2022 Higher-derivative holography with a chemical potential (arXiv:2202.10473)
[88] Palais R S 1979 The principle of symmetric criticality Commun. Math. Phys. 69 19–30
[89] Deser S and Tekin B 2003 Shortcuts to high symmetry solutions in gravitational theories Class. Quantum Grav. 20 4877–84
[90] Arnowitt R L, Deser S and Misner C W 1960 Canonical variables for general relativity Phys. Rev. 117 1595–602
[91] Arnowitt R, Deser S and Misner C W 1960 Energy and the criteria for radiation in general relativity Phys. Rev. 118 1100–4
[92] Arnowitt R L, Deser S and Misner C W 1961 Coordinate invariance and energy expressions in general relativity Phys. Rev. 122 997
[93] Deser S and Tekin B 2003 Energy in generic higher curvature gravity theories Phys. Rev. D 67 084009
[94] Deser S and Ryzhov A V 2005 Curvature invariants of static spherically symmetric geometries Class. Quantum Grav. 22 3315–24
[95] Bueno P, Cano P A, Min V S and Visser M R 2017 Aspects of general higher-order gravities Phys. Rev. D 95 044010
[96] Wald R M 1993 Black hole entropy is the Noether charge Phys. Rev. D 48 3427–31
[97] Iyer V and Wald R M 1994 Some properties of Noether charge and a proposal for dynamical black hole entropy Phys. Rev. D 50 846–64
[98] Boulware D G and Deser S 1985 String generated gravity models Phys. Rev. Lett. 55 2656
[99] Wheeler J T 1986 Symmetric solutions to the Gauss-Bonnet extended Einstein equations Nucl. Phys. B 268 737–46
[100] Wheeler J T 1986 Symmetric solutions to the maximally Gauss-Bonnet extended Einstein equations Nucl. Phys. B 273 732
[101] Martin-Garcia J M xact: Efficient tensor computer algebra for mathematica (available at: http://xact.es/)