Genetic diversity and relationships among *Nopalea* sp. and *Opuntia* spp. accessions revealed by RAPD, ISSR and ITS molecular markers

Janieire Dorlamis Cordeiro Bezerra¹· Alberício Pereira de Andrade²· Mailson Monteiro do Rêgo³·
Divan Soares da Silva¹· José Ribamar Silva do Nascimento Júnior¹· Fernando dos Santos Araújo²·
Roberta de Lima Valença²· Elizanilda Ramalho do Rêgo⁴· Angela Maria dos Santos Pessoa⁵·
Riselan de Lucena Alcântara Bruno³· Ariosvaldo Nunes de Medeiros¹

Received: 7 February 2022 / Accepted: 22 March 2022 / Published online: 8 April 2022
© The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract
Background *Dactylopius opuntiae* (Cockerell) (carmine cochineal) is an insect pest highly noxious that has spread through cactus pear crops in the Brazilian semiarid region. Knowledge of diversity and genetic relationships of the cactus pear accessions is fundamental to create new varieties resistant to carmine cochineal. Therefore, this investigation was undertaken to assess the genetic diversity and genetic relationships that existed among cactus pear accessions of *Nopalea* sp. and *Opuntia* spp. with contrasting resistance to *D. opuntiae*.

Methods and results We conducted a molecular analysis in seven cactus pear accessions from the “reference collection” of the Agronomic Institute of Pernambuco, Brazil using RAPD, ISSR and ITS molecular markers. A total of 242 bands were detected from 26 polymorphic primers. The high percentage of polymorphism by RAPD (89.8%), ISSR (81.2%) and ITS (75%) markers suggests that the cactus pear accessions have high genetic diversity. The combined analysis of markers systems enabled the accessions discrimination of about the genus and ploidy, but were incongruous in relation to resistance level to *D. opuntiae*.

Conclusions Genetic diversity, discrimination of about the genus and ploidy was confirmed by merging information from ISSR, RAPD and ITS markers systems. The IPA-200016, IPA-200149, IPA-100004, IPA-200205 accessions are genetically divergent, therefore could be potentially incorporated into any further breeding programs directed to create new varieties of cactus pear resistant to *D. opuntiae*.

Keywords Cactus pear · Carmine cochineal · Plant breeding · Semi-arid

Introduction

The cactus pear *Opuntia* and *Nopalea* are widely cultivated for forage purposes in several arid and semi-arid regions of the world [1]. The succulent stems (cladode) of cactus pear are used to feed domestic ruminants. They are rich in water, sugars, ash, vitamins A and C, but low in crude protein and fiber [2].

In the Brazilian Semi-arid Region, cactus pear became the basic food for domestic ruminants. However, since 2001 the main cultivated varieties of the *Opuntia* (Giant, Round and IPA-20) have been decimated by carmine cochineal

(Dactylopius opuntiae Cockerell), a pest insect that has caused great economic losses to local cattle breeders [3, 4].

The Agronomic Institute of Pernambuco (IPA), a Brazilian research and rural extension agency located in the country semi-arid region, has several accessions of cactus pear with contrasting resistance to carmine cochineal in its germplasm bank [5], but its diversity and genetic relationships have not yet been sufficiently clarified. Therefore, it is vital that the germplasm of this collection is properly characterized, as they will be useful to plan future improvement strategies aimed at creating new varieties resistant to carmine cochineal.

The cactus pear germplasm characterization has been enhanced with the use of polymerase chain reaction (PCR)-based molecular markers such as Inter Simple Sequence Repeat (ISSR) [6] Random Amplified Polymorphic DNA
(RAPD) [6, 7] and Internal Transcribed Spacer (ITS) [8], with applications extensively in studying genetic diversity, genetic relationship, germplasm management and genetic breeding. However, when we study genotypes close related, the analysis of variability could require more than one DNA-based technique, because the markers systems combine can provide extensive coverage of the genome [9]. Combined marker approach was more informative than use of individual markers for diversity analysis in *Mangifera indica* L. [10], Salvia L. [11], *Dyosoma tonkinense* [12], *Dactylis glomerata* L. [9]. In these studies, the increased information content that resulted from the use of combined markers, did indeed provide a better resolution the genetic diversity.

Therefore, the use RAPD, ISSR and ITS combine markers systems presents an alternative method in detection of polymorphism in cactus pear. This investigation was undertaken to assess the genetic diversity and genetic relationships that existed among cactus pear accessions of *Nopalea* sp. and *Opuntia* spp. with contrasting resistance to *D. opuntiae*.

Materials and methods

Sampling of accessions

Seven cactus pear accession (Table 1) from the germplasm bank of the Agronomic Institute of Pernambuco (IPA), Arcoverde city, Pernambuco state, Brazil was evaluated. The classification of chromosome number was based to Majure et al. [13] and the level of resistance to carmine cochineal was based on Silva et al. [14].

Genomic DNA extraction

Genomic DNA was extracted from tissue samples from the young stems epidermis based on the protocol of Doyle and Doyle [15]. The DNA concentration in the samples was estimated by electrophoresis on a 0.8% agarose gel, comparing the fluorescence intensity of the ethidium bromide-stained DNA bands with a known DNA standard (Invitrogen™ 1 Kb Plus DNA Ladder). Ratio absorbance 260/280 and 260/230 nm of more than 1.8 were considered as a standard for purity analysis.

DNA amplification via PCR using RAPD, ISSR and ITS primers

PCR-RAPD reactions were performed using 12 primers (Table 2) from Operon Technologies Inc., Alameda, CA, USA (OP06, OPG07, OPG10, OPC11, OPS03, OPG19, OPA02, OPG03, OPG13, OPG15, OPG06 and OPM12). RAPD reactions were prepared with a final volume of

Marker	Primer	Sequence 5′→ 3′
RAPD	OPG 07	GAA CCT GCG G
RAPD	OPG 10	AGG GCC GTC T
RAPD	OPC 11	AAA GCT GCG G
RAPD	OPS 03	CAG AGG TCC C
RAPD	OPG 19	GTC AGG GGC A
RAPD	OPA 02	TGC CGA GCT G
RAPD	OPG 03	GAG CCC TCC A
RAPD	OPG 13	CTC TCC GGC A
RAPD	OPG 15	ACT GGG ACT C
RAPD	OPG 06	GAA CGG ACT C
RAPD	OPM 12	GGG ACG TTG G
ISSR	UBC 01	ACA CAC ACA CAC ACA CY
ISSR	UBC 02	GAG AGA GAG AGA GAG AT
ISSR	UBC 0857	ACA CAC ACA CAC ACA CYG
ISSR	UBC 808	AGA GAG AGA GAG AGA GC
ISSR	UBC 810	GAG AGA GAG AGA GAG AT
ISSR	UBC 827	AC AC AC AC AC AC AC G
ISSR	UBC 830	TG TG TG TG TG TG TG TG G
ISSR	UBC 842	GA GA GA GA GA GA GA GA YG
ISSR	UBC 849	GT GT GT GT GT GT GT YA
ISSR	UBC 855	AC AC AC AC AC AC AC AC YT
ISSR	UBC 862	AGC AGC AGC AGC AGC AGC
ISSR	UBC 866	CTC CTC CTC CTC CTC CTC CTC
ITS	ITS 1	TCCGTAGGTAACCTGCGG
ITS	ITS 4	TCTCCGCTTTATTGATG

Accession	Specie	Chromosomal number	Resistance level
IPA-100003	*Opuntia ficus-indica* Mill	2n = 88	Susceptible
IPA-200008	*Opuntia atropes* Rose	2n = 22	Tolerant
IPA-200016	*Opuntia stricta* Haw	2n = 66	Resistant
IPA-200149	*Opuntia larreyi*	2n = 44	Resistant
IPA-100004	*Nopalea cochenillifera* Salm-Dyck	2n = 22	Resistant
IPA-200021	*Nopalea cochenillifera* Salm-Dyck	2n = 22	Tolerant
IPA-200205	*Nopalea cochenillifera* Salm-Dyck	2n = 22	Resistant
25 µl containing 50.0 ng DNA, 1× PCR buffer [100 mM Tris-HCl (pH 8.5), 3.0 mM MgCl 2, 200 µM dNTP’s, 1 µM of primer, 1 unit of Taq DNA polymerase] and ultra-pure water to complete the volume. The protocol for DNA amplification, after preliminary tests, consisted of an initial denaturation at 94 °C for 5 min, followed by 35 cycles of denaturation at 94 °C for 1 min; annealing the primers at 40 °C for 1 min; extension at 72 °C for 1 min and final extension at 72 °C for 5 min using a thermal cycler model TC-Plus Techne Bibby Scientific Ltd.

PCR-ISSR reactions were performed using 12 primers (Table 2) from the Nucleic Acid-Protein Service Unit, University of British Columbia, USA (UBC01, UBC02, UBC857, UBC808, UBC810, UBC827, UBC830, UBC842, UBC849, UBC855, UBC862 and UBC866). PCR reactions were prepared with a final volume of 25 µl containing 50.0 ng of DNA, 1× PCR buffer [100 mM Tris-HCl (pH 8.5), 3.0 mM MgCl 2, 200 µM dNTP’s, 1 µM primer, 1.0 unit of Taq DNA polymerase and ultra-pure water to complete the volume.

The protocol for DNA amplification consisted of an initial denaturation of 95 °C for 5 min, followed by 35 cycles of denaturation at 95 °C for 30 s; annealing the primers at 52 °C for 45 s; extension at 72 °C for 2 min and final extension at 72 °C for 5 min using a thermal cycler model TC-Plus Techne Bibby Scientific Ltd.

The ITS region of nuclear ribosomal DNA was amplified using the ITS1 and ITS4 primers (Table 2) suggested by Lyra et al. [8] for molecular studies in cactus pear. PCR reactions were prepared with a final volume of 25 µl containing 20.0 ng of DNA; 1.0 µl 1× PCR buffer [100 mM Tris-HCl (pH 8.5), 0.25 mM dNTP’s, 3.0 mM MgCl 2, 1.0 µM of primers, 1.25 units of Taq DNA polymerase and ultra-pure water to complete the volume. The protocol for DNA amplification consisted of an initial denaturation of 95 °C for 5 min, followed by 30 cycles of denaturation at 95 °C for 30 s; annealing at 62 °C for 1 min; extension at 72 °C for 2 min and final extension at 72 °C for 5 min using a thermal cycler model TC-Plus Techne Bibby Scientific Ltd.

Amplicons separation by gel electrophoresis

Amplicons separation was performed by horizontal electrophoresis in agarose gel (1.5%) with ethidium bromide dye (0.5 µg ml⁻¹). Amplicon migration was performed in 0.5× TBE running buffer (Tris, boric acid, EDTA) at a voltage of 100 V for 120 min. A 100 bp (bp) molecular weight standard (Invitrogen™ 1 Kb Plus DNA Ladder) was used. The gel was visualized under ultraviolet light and photo-documented with the aid of the Gel Logic 112Pro imaging system (Carestream, Rochester, NY).

Data analysis

The bands generated by each primer were classified as monomorphic and polymorphic and their presence/absence computed for all sampled. Subsequently, the total number of amplified bands, number of monomorphic bands, number of polymorphic bands and percentage of polymorphism for each primer were calculated.

The presence/absence data were organized into a binary matrix (1 = presence and 0 = absence) which was used to determine the binary Sokal distance using the Genes software [16]. Using the Sokal binary distance values, a dissimilarity dendrogram was constructed based on Ward clustering method. The definition of the number of groups was performed based on the criterion proposed by Mojena [17] using bootstrap analysis to verify and provide statistical support to the internal nodes of the dendrograms. The validation of the clusters was determined by calculating the cophenetic correlation coefficient [18]. Additionally, a principal component analysis was performed using the Past program [19].

Results

The 26 primers (12 RAPD, 12 ISSR and 2 ITS primers) used for the evaluation of DNA polymorphism in cactus pear accessions produced 242 polymorphic reproducible bands. The amplification patterns of some of the RAPD (OPG15), ISSR (UBC 810) and ITS (ITS 1 and ITS4) primers can be seen in Fig. 1.

RAPD primers amplified from 5 to 12 bands with a mean polymorphism of 90.6% (66.7–100%) and generated 98 bands of which 88 (89.8%) were polymorphic. The ISSR primers amplified from 8 to 19 bands with a mean polymorphism of 78.7% (25–100%) and generated 140 bands, of which 115 (82.1%) were polymorphic. ITS primers amplified 4 bands of which 3 (75%) were polymorphic. These results present that the set of cactus pear accessions has high molecular polymorphism.

The Sokal binary distance between accession pairs ranged from 0.46 to 0.65 with a mean value of 0.57, indicates high genetic dissimilarity between accessions. However, the Nopalea sp. accessions were more similar to each other than the Opuntia spp. accessions. The Nopalea sp. accessions IPA-100004 and IPA-200021 (0.46) were the most similar and IPA-100004 and IPA-100005 (0.52) were the most genetically dissimilar. The Opuntia spp. accessions IPA-200008 and IPA-200149 (0.53) were the most similar and IPA-100004 and IPA-100005 (0.61) were the most genetically dissimilar.

In the cluster analysis, it was found that the cophenetic correlation coefficient obtained from the genetic distance matrix and the cophenetic distance matrix was high and
significant ($r = 0.80; P \leq 0.01$), indicating that there was high consistency in the grouping patterns [18]. Furthermore, the distortion (10.04%; $P \leq 0.01$) and stress (7.10%; $P \leq 0.01$) values according to the Kruskal scale [20] also indicate that the graphical representation of the dissimilarity in the dendrogram was highly faithful to the matrix of dissimilarity.

Taking the dissimilarity of 1.359 as the cutoff point in the dendrogram, the accessions formed two main clusters (Fig. 2). This grouping pattern was consistent with the genus of accessions, as those to *Opuntia* (IPA-100003, IPA-200008, IPA-200016 and IPA-200149) form a distinct grouping of *Nopalea* (IPA-100004, IPA-200021 and IPA-200205) accessions. However, there was no consistent grouping pattern regarding the level of resistance of accessions to *D. opuntiae*, as we found that resistant and susceptible accessions were allocated to similar subgroups (Fig. 2).

The distribution of accessions in the components (CP1 × CP2) of the Principal Component Analysis (Fig. 3) corroborated with the Cluster Analysis, as the accessions were also allocated in groups consistent with gender. There was less dispersion among the *Nopalea* cluster accessions in relation to the cluster formed by *Opuntia* spp. in which the IPA-2000149 and IPA-200008 accessions formed a distinct subgroup of IPA-100003 and IPA-200016.

Discussion

The plant breeding requires a profound knowledge about the diversity and genetic relationships from basic population. Efforts in reaching this goal can be supported by the application of molecular markers. In this study, we used three molecular marker systems (RAPD, ISSR and ITS) to detect genetic polymorphism among forage cactus accessions with contrasting resistance to *D. opuntiae*.

All RAPD and ISSR primers produced consistent and reproducible amplification profiles and with higher informativity than in other similar studies. For example, the average percentage of polymorphic bands revealed by the RAPD (90.6%) and ISSR (78.7%) primers in our study was higher than that verified in the research by Valadez-Moctezuma et al. [6] (RAPD = 37.0%; ISSR = 28.6%) and Tütüncü et al.
[7] (RAPD = 72%). We also demonstrated that being able to detect greater genetic polymorphism of RAPD (90.6%) was higher in relation to ISSR (78.7%) in cactus pear, corroborating the data reported by Valadez-Moctezuma et al. [6]. The high polymorphism of ITS markers (75%) was also similar to that verified by Lyra et al. [8], who were able to discriminate cactus pear accessions in relation to genus, similarly to what was observed in this study.

The high genetic polymorphism detected by RAPD (89.8%), ISSR (82.1%) and ITS (75%) markers and the high dissimilarity between accession pairs (binary Sokal distance) suggest that there is high genetic diversity between accessions being, therefore, a suitable reference set for breeding programs. The high genetic diversity of this set can be explained by its composition that includes different species. The greatest genetic similarity between accessions IPA-100004, IPA-200021 and IPA-200205 is due to the fact that both belong to the species *N. cochenillifera*.

The structuring of accessions in clusters according to genus indicates that the analysis of RAPD, ISSR and ITS markers can also be useful for phylogeny studies in the *Opuntiae* family. The structuring of the accessions was also consistent in relation to the ploidy, because when observing the dendrogram (upper part towards the base) there was an increase in the number of chromosomes in the accessions (22, 44, 66 and 88 chromosomes, respectively). The PCA also supported this, as the IPA-200021, IPA-200149 e IPA-200205 (*N. cochenillifera*) accessions with the lowest ploidy (2n = 22) are grouped into a single group in the lower left part of the graph, while the IPA-200016 (*O. stricta*) and IPA-100,003 (*O. ficus-indica*) accessions with the highest ploidy (2n = 66 and 2n = 88, respectively) are grouped in a single group in the lower right part of the graph. The other accessions IPA-200008 (*O. artropes*) and IPA-200146 (*O. larreiyi*) are forming a group with intermediate ploidy level (2n = 22 and 2n = 44, respectively), in the upper part of the graph. However, this clustering pattern was not consistent with the susceptibility degree to *D. opuntiae*. The development of molecular markers linked to the loci encoding important physiological and morphological traits related to cochineal resistance will allow design of more powerful strategies for early identification of resistant genotypes.

Accession pairs that are resistant to *D. opuntiae* IPA-100004 and IPA-200205 (*Nopalea*) and IPA-200016 and IPA-2000149 (*Opuntia*) are genetically divergent and therefore promising to generate segregating populations for intraspecific and interspecific crossing, respectively. However, the differences in chromosome number between *Opuntia* accessions suggests chromosomal incompatibility (Table 1).

Based on the results, the combined analysis of RAPD, ISSR and ITS molecular markers proved to be a valuable tool to accessing genetic diversity and discriminate cactus pear accessions. We conclude that is an important genetic diversity at the DNA level among the cactus pear accessions from Agronomic Institute of Pernambuco, Brazil, which could be potentially incorporated into any further breeding programs directed to create new varieties of cactus pear resistant to carmine cochineal.

Acknowledgements The authors express their gratitude to the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brazil and Conselho Nacional de Desenvolvimento Científico e Tecnológico for funding scholarships. The authors express their gratitude to the Instituto Agronômico de Pernambuco, Brazil for providing the germplasm and institutional support.

Author contributions JDCB, APA, MMR, RLAB and DSS contributed to the study conception and design. Material preparation, data collection and analysis were performed by JDCBJRSNJ, ERR and AMSP. The first draft of the manuscript was written by JDCB, FSA,RLV and ANM and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Funding This study was funded (scholarship) by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brazil (Finance Code
001) and Conselho Nacional de Desenvolvimento Científico e Tecnológico - Brazil.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Ethical approval This article does not contain any studies with human participants or animals performed by any of the authors.

References

1. Dubeux JCB Jr, Santos MVF, Cunha MV, Santos DC, Souza RTA, Mello ACL, Souza TC (2021) Cactus (Opuntia and Nopalea) nutritive value: a review. Anim Feed Sci Technol 275:114890. https://doi.org/10.1016/j.anifeedsci.2021.114890
2. Thakuria A, Datt C, Shambhvi K, Gajender D, Thamizhan P, Yadav RK (2020) Edible spineless cactus (Opuntia ficus-indica): a promising alternative forage source for livestock. Indian J Dairy Sci 73:185–191. https://doi.org/10.33785/IDDS.2020.v73i03.001
3. Lopes EB, Brito CH, Albuquerque I, Batista JL (2010)Seleção de genótipos de palma forrageira (Opuntia spp. e Nopalea spp.) resistentes à coccionilha-do-carmim (Dactylopius opuntiae Cockery, 1929) na Paraíba, Brasil. Eng Ambien 7:204–215
4. Matos TKB, Guedes JA, Alves EG, Luz LR, Lopes GS, Nascimento RDF, Zocolo GI (2021) Integrated UPLC-HRMS, chemometric tools, and metabolomic analysis of forage palm (Opuntia spp. and Nopalea spp.) to define biomarkers associated with non-susceptibility to carmine cochineal (Dactylopius opuntiae). J Braz Chem Soc 32:1617–1627. https://doi.org/10.21577/0103-5053.20210060
5. Costa AF, Santos DC, Freitas EV, Silva MC, Bezerra JEF, Lira Júnior JS, Moura RJM, Araújo ER, Silva KRG (2021) Conservação e uso de gernoplasm dos BAG do Instituto Agronômico de Pernambuco: forrageiras e fruteiras nativas/exóticas. Rev Rec Gen 7:6–16
6. Valadez-Moctezuma E, Samah S, Luna-Paez A (2015) Genetic diversity of Opuntia spp. varieties assessed by classical marker tools (RAPD and ISSR). Plant Syst Evol 301:737–747. https://doi.org/10.1007/s00606-014-1112-y
7. Tütüncü M, Simsek Ö, Kacar YA, Küden AB (2016) Molecular characterization of Turkish cactus pear (Opuntia spp.) by RAPD markers. J Prof Assoc Cactus 18:65–77
8. Lyra MCCP, Silva MLRB, Mergulhão ACES, Mondragon-Jacobo C, Martínez-Romero E (2015) Molecular studies of forage prickly-pear cactus from the semi-arid of Pernambuco State, Brazil. J Appl Biol Biotechnol 3:1–5. https://doi.org/10.7324/JABB.2015.3201
9. Costa R, Pereira G, Garrido I, Tavares-de-Sousa MM, Espinosa F (2016) Comparison of RAPD, ISSR, and AFLP molecular markers to reveal and classify orchardgrass (Dactylis glomerata L.) germplasm variations. PLoS ONE 11:e0152972. https://doi.org/10.1371/journal.pone.0152972
10. Jena RC, Chand PK (2021) Multiple DNA marker-assisted diversity analysis of Indian mango (Mangifera indica L.) populations. Sci Rep 11:10345. https://doi.org/10.1038/s41598-021-89470-3
11. Sunar S, Korkmaz M, Sişimba MB, AGar G (2020) Determination of the genetic relationships among Salvia species by RAPD and ISSR analyses. Turk J Pharm Sci 17:480–485. https://doi.org/10.4274/tjspalgenes.2018.24572
12. Pham KN, Ninh PT, Pham HT, Nguyen NQ, Hang Do N, Dinh ST (2021) High genetic diversity of Drososma tonkinense revealed by ISSR and RAPD markers. Asian J Plant Sci 20:637–647. https://doi.org/10.3923/ajps.2021.637.647
13. Majure LC, Puente R, Griffith MP, Judd WS, Soltis PS, Soltis DE (2012) Phylogeny of Opuntia spp. (Cactaceae): clade delineation, geographic origins, and reticulate evolution. Am J Bot 99:847–864. https://doi.org/10.10372/ajb.1100375
14. Silva RM, Lima EJ, Santos DC, Bajji CA, Oliveira JTC, Moreira K (2021) Avaliação de indutores de resistência no controle de Dactylopius opuntiae em genótipos de Opuntia spp. Rev Bras Gest Amb Sustent 8:533–542. https://doi.org/10.21438/rbgas.2021081834
15. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15
16. Cruz CD (2016) Genes software-extended and integrated with the R, Matlab and Selegen. Acta Sci Agron 38:547–552. https://doi.org/10.4025/actasciagron.v38i4.32629
17. Mojena R (1977) Hierarchical grouping methods and stopping rules: an evaluation. Comput J 20:359–365. https://doi.org/10.1093/comjnl/20.4.359
18. Sokal RR, Rohlf FJ (1962) The comparison of dendrograms by objective methods. Taxon 11:30–40. https://doi.org/10.12307/1217208
19. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9. https://doi.org/10.7324/JABB.2015.3201
20. Kruskal JB (1964) Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29:1–27. https://doi.org/10.1007/BF02289565

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Authors and Affiliations

Janieire Dorlamis Cordeiro Bezerra1 · Alberício Pereira de Andrade2 · Mailson Monteiro do Rêgo3 · Divan Soares da Silva1 · José Ribamar Silva do Nascimento Júnior1 · Fernando dos Santos Araújo1 · Roberta de Lima Valença2 · Elizanilda Ramalho do Rêgo2 · Angela Maria dos Santos Pessoa3 · Riselane de Lucena Alcântara Bruno3 · Ariosvaldo Nunes de Medeiros1

Janieire Dorlamis Cordeiro Bezerra janieirebezerra@hotmail.com
Alberício Pereira de Andrade albericio3@gmail.com
Mailson Monteiro do Rêgo mailson@cca.ufpb.br
Divan Soares da Silva divan13silva@gmail.com

Springer
