Elastohydrodynamic relaxation of soft and deformable microchannels

Gabriel Guyard,1,2,3 Frédéric Restagno,3 and Joshua D. McGraw1,2,*

1Gulliver CNRS UMR 7083, PSL Research University, ESPCI Paris, 10 rue Vauquelin, 75005 Paris, France
2IPGG, 6 rue Jean-Culon, 75005 Paris, France
3Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405, Orsay, France

(Dated: November 8, 2022)

Hydrodynamic flows in compliant channels are of great interest in physiology and microfluidics. In these situations, elastohydrodynamic coupling leads to: (i) a nonlinear pressure-vs.-flow-rate relation, strongly affecting the hydraulic resistance; and (ii), because of the compliance-enabled volume storage, a finite relaxation time under a step-wise change in pressure. This latter effect remains relatively unexplored, even while the time scale can vary over a decade in typical situations. In this study we provide time-resolved measurements of the relaxation dynamics for thin and soft, rectangular microfluidic channels. We describe our data using a perturbative lubrication approximation of the Stokes equation coupled to linear elasticity, while taking into account the effect compliance and resistance of the entrance. The modeling allows to completely describe all of the experimental results. Our work is relevant for any microfluidic scenario wherein a time-dependent driving is applied and provides a first step in the dynamical description of compliant channel networks.

To force the movement of fluid through a channel, a pressure drop must be applied across its ends. If the bounding walls of this simple flow domain are compliant, a pressure-induced deformation can strongly affect the flow as compared to the non-compliant case. This elastohydrodynamic coupling is often encountered, and the pipe-flow case is referred to as soft hydraulics [1]. Particularly, the flow modification can give a non-linear pressure-vs.-flow-rate relation [2–3], with the flow resistance changing by an order of magnitude or more. Upon a pressure change, however, the relaxation to a new deformation profile is not instantaneous. The pipe thus settles into a new configuration over a little-investigated, pressure-dependent time scale at the focus of this Letter.

Elastohydrodynamics (EHD) was historically studied in the context of lubrication of rough, solid contacts [4–6], often for heavy mechanical applications and remains a key ingredient in modern tribology [7]. Conversely, the lubrication of soft materials has attracted increasing attention in the last decades [8–12] due in part to its relevance in biology and microtechnologies. Examples include joint lubrication [13], eyelid wiper mechanics [14], and the deformation of blood vessels under flow-induced pressure [15–19]. At microscales, EHD interactions may affect the transport of blood cells [20] because of the emergent lift forces arising from the fluid-mediated soft-substrate deformation [21].

Concerning soft technologies, microfluidics is of significant interest [22]. Indeed, microchannels are typically made with soft elastomers — e.g. polydimethylsiloxane (PDMS) — allowing for fast prototyping, design fidelity, and transparency [23–24]. Compliance is a key attribute for applications such as organ-on-a-chip [25–26] or wearable technologies [27–28]. Targeted actuation of deformable pipes also allows to generate and manipulate flows at the scale of a single channel [29–31], or in complex networks [32] as in the plant kingdom [33]. Finally, soft components can be used as pressure-controlled valves serving as building blocks for the logic gate components in state-of-the-art microdevices [34–36].

While many soft-hydraulics studies focus on the steady state, compliance is also expected to have dynamic effects. This deformability leads to volume storage capacity [37], schematically indicated in Fig. 1(a), which in addition to changing the resistance of a narrow channel, implies a characteristic response time of the system by analogy with electronics [38–39], see Fig. 1(b). This dynamic response was used for example to attenuate parasitic fluctuations in syringe-pump driven flows [40], and limits the production rate in stop-flow lithography [41].

With dynamical aspects of soft hydraulics already finding applications, it is imperative to characterize the temporal response of compliant microchannels. Here we experimentally and theoretically investigate the response of thin, soft microfluidic channels to step-wise pressure perturbations. We use an EHD model in the lubrication limit applied to such devices. As previously [2–3, 42], this approach allows to rationalise the nonlinear relation between pressure and flow rate. Performing a perturbation analysis and, crucially, specifying the capacitance and resistance of the peripheral components, the pressure-dependent relaxation dynamics of the entire experimental system is revealed. Our approach includes an asymptotic analysis of the general high- and low-pressure limits, along with the full crossover requiring complete specification of the microsystem.

The microfluidic chips used here consisted of rectangular channels with length \( L = 4.0 \text{ cm} \) between the inlet/outlet centers of radius \( d_c = 1.0 \text{ mm} \) (cf. the Supplemental Material, SM §S.1 at Ref. [43], for a full list of symbols). The channel widths were \( w = \{200, 500, 1000, 2000\} \text{ µm} \), with uncertainty of order a
The state was reached; a selection of raw data is also shown. Equivalently, the flow sensor modeled as an ideal resistance $r_0$, the pressure sensor as a capacitance $c_0$, and the soft channel as a series of infinitesimal resistances and capacities in a transmission line. Considering the one dimensional limit since $h_0 \ll w \ll L$, we denote $h(x,t)$ the time-dependent height of the microchannels.

Figure 1. (a) Schematics of the microfluidic setup, including a flow sensor, a pressure sensor and a soft channel. (b) Equivalent electronic circuit, the flow sensor modeled as an ideal resistance $r_0$, the pressure sensor as a capacitance $c_0$, and the soft channel as a series of infinitesimal resistances and capacities as in a transmission line. (c) Shifted, imposed $p_{in}$ and measured $p_0$ and $q$ as a function of $t$, with long-time values of $p_{in,\infty} = 1301 \text{ mbar}$, $p_0,\infty = 862 \text{ mbar}$ and $q_\infty = 1058 \text{ nL/min}$.

Figure 2 shows the scaled relation between the dimensionless, steady-state flow rate $Q_\infty = q_\infty r_c/p^*$ as a function of the dimensionless steady-state inlet pressure $P_{0,\infty} = p_0,\infty/p^*$ for channels of the indicated widths. The solid line indicates the model of Eq. 5. Error bars are smaller than symbol size; insets show fitting parameters $p^*$ and $r_c$.
to the surrounding material along the center line: we consider a local, linear elastic response of the height profile to the pressure field. Even though the former equation introduces the unknown fields $h(x, t)$ and $p(x, t)$, an elastic model is needed to connect the height profile to the pressure field. Even though the height profile varies in both the streamwise $x$ and transverse $y$ directions, as detailed by Christov and coworkers, we consider a local, linear elastic response of the surrounding material along the center line:

$$h(x, t) = h_0 + \frac{w}{E^*} p(x, t),$$

(2)

neglecting possible viscous losses in the PDMS. To close the problem, we consider the boundary conditions. At the outlet we simply have $p(L, t) = 0$. At the inlet, we account for the peripheral sensors. Using the classic analogy between microfluidics and electronics, the setup is akin to the circuit depicted in Fig. 2. The flow sensor, composed of a thin hard glass capillary, is modeled as an ideal resistance $r_0$. The pressure sensor, including deformable parts, is modeled with a negligibly-resistant capacity $C_0 = \frac{d\Omega}{dp_0}$ where $\Omega$ is the volume of fluid stored in the sensor with pressure playing the role of the electric potential. Flux conservation then reads as the electrical current flowing through a resistance and the discharge current of a capacitor on one side, and the current at the entrance of a non-linear transmission line (cf. Ref. [52]) on the other:

$$\frac{p_{m} - p_0}{r_0} - c_0 \frac{dp_0}{dt} = \left( -\frac{w h^3}{12 \eta} \frac{\partial^2 p}{\partial x^2} \right) \bigg|_{x=0}. \quad (3)$$

Non-dimensionlizing, we take: $h = h_0 H$, $x = LX$, $t = \tau_c T$ with $\tau_c = 12 \muw L^2 / h_0^3 E^*$ as in Ref. [41], and pressures take the form $p = p^* P$. Combining Eq. 1 and Eq. 2 we obtain the elastohydrodynamic equation for the pressure field within the chip:

$$\partial_T P = \partial_X \left[ (1 + P)^3 \partial_X P \right]. \quad (4)$$

In the steady state, with a constant inlet pressure $P_{0,\infty}$ and null outlet pressure, a single integration of Eq. 4 gives $P_{\infty}(X) = \left[ (1 - X)((1 + P_{0,\infty})^4 - 1) + 1 \right]^{1/4} - 1$. From this pressure profile, we compute the steady flux $Q_{\infty}$ using the square-bracketed term of Eq. 4:

$$Q_{\infty} = \frac{1}{4} \left[ (1 + P_{0,\infty})^4 - 1 \right] = \frac{1}{4} \Pi, \quad (5)$$

having introduced $\Pi = (1 + P_{0,\infty})^4 - 1$. Equation 4 has a similar form to the expressions given previously [35, 42], and we note the excellent agreement between this model (black line) and the data of Fig. 2.

Addressing the time-dependent problem now, we linearize Eq. 4 introducing $\delta P(X, T) = P(X, T) - P_{\infty}(X)$. At $O(\delta P^1)$ and after the linear change of variables $\tilde{X} = (1 - X)\Pi + 1$ and $\tilde{T} = \Pi^2 T$, we obtain:

$$\partial_{\tilde{T}} \delta P = \partial_{\tilde{X}} \left[ \tilde{X}^{3/4} \delta P \right]. \quad (6)$$

Looking for separable solutions of Eq. 6 we propose $\delta P(X, \tilde{T}) = A(\tilde{X}) B(\tilde{T})$. Using the boundary condition for $\delta P = 0$ at $\tilde{X} = 1$, we obtain $B_\lambda(\tilde{T}) = \exp(-\lambda \tilde{T})$, confirming the experimentally observed exponential pressure decay; determining the eigenvalues $\lambda$ remains. For the spatial part, we have [53] $A_\lambda(\tilde{X}) = a_\lambda \tilde{X}^{-1/4} C_{\frac{5}{2}} \left( \frac{8 \sqrt{\tilde{X}}}{5} \tilde{X}^{5/8} \right)$, where $a_\lambda$ is an integration constant. The function $C_{\nu}$ is a linear combination of Bessel functions, here of the form $C_{\nu}(x) = Y_{\frac{5}{2}} \left( \frac{8 \sqrt{x}}{5} \right) J_{\nu}(x) - J_{\nu} \left( \frac{8 \sqrt{x}}{5} \tilde{X}^{5/8} \right)$, satisfying $p(L, t) = 0$.

For the boundary condition at the channel entrance, the full solution $P_{\infty}(X) + \delta P(X, \tilde{T})$ can be injected into the dimensionless version of Eq. 3. Such a substitution gives a constraining equation on the eigenvalues, $\lambda$, after evaluation at $\tilde{X}_0 = 1 + \Pi$, i.e. the channel entrance:

$$\frac{1}{\mathcal{R} \tilde{X}_0^{3/8}} \left( \mathcal{T} \sqrt{\lambda \Pi} - \frac{1}{\sqrt{\lambda \Pi}} \right) = \frac{C_{\frac{5}{2}} \left( \frac{8 \sqrt{\tilde{X}_0}}{5} \tilde{X}_0^{5/8} \right)}{C_{\frac{5}{2}} \left( \frac{8 \sqrt{\tilde{X}_0}}{5} \tilde{X}_0^{5/8} \right)}, \quad (7)$$

with $\mathcal{R} = r_0 / r_c$ and $\mathcal{T} = \tau_0 / \tau_c$ where $\tau_0 = r_0 c_0$ is the inlet time scale. Recalling that the experimentally measured pressure relaxations of Fig. 3 are well described...
by simple exponential decays, and denoting \( \lambda_2 \) smallest eigenvalue satisfying Eq. 7, the experimentally measured time scale is then assumed to be

\[
\frac{\tau_1}{\tau_c} = \frac{1}{\Pi^2 \lambda_2^{-1}(\Pi, R, T)},
\]

in accordance with the definition of \( \tilde{T} \). This relation shows that the relaxation time scale is a function of the pressure through \( \Pi \), and in particular depends on the details of the input resistance and capacitance, here reflected through the dimensionless \( R \) and \( R \).

We are not aware of analytic solutions for Eq. 7; nevertheless, the asymptotic behavior can be assessed. At low pressure, there is no significant channel deformation \((p_0 \ll p^*)\) such that the chip is an ideal resistance. We do not expect the relaxation time to be pressure dependent in this limit. Conversely at high pressure, the defor-

mation makes the resistance of the chip pressure dependent.

According to Eq. 5, we have a chip resistance, and thus a relaxation time satisfies

\[
\Pi \tau = \frac{1}{\beta^2} \Pi^3,
\]

\[
\tau = \frac{1}{\beta^2 \Pi^3},
\]

Here, \( \beta \) satisfies \( T \beta^2 - R \beta \cot(\beta) - 1 = 0 \) and \( T \beta/R = J_{\frac{1}{4}}(8/5)/J_{\frac{1}{4}}(8/5) \) in the low- and high-II limits; we also note that \( T \) and \( R \) may differ in these limits.

For intermediate pressures, Eq. 8 is solved numerically for prescribed values of \( \{\Pi, R, T\} \), thus necessitating characterizations of the input \( r_0 \) and \( c_0 \). The former was determined by measuring \( p_{n,\infty} \) versus \( q_{\infty} \) in the presence of the flow meter only. The data (SM §S.V) are well described by a straight line, giving \( r_0 = 2.50 \pm 0.01 \) kPa/s/NL, consistent with a rigid glass capillary of diameter 25 \( \mu \)m and length 2.4 cm filled with water of viscosity \( \eta = 1.0 \) mPa/s [47]. The value of \( \eta_0 \) is assessed by plugging the circuit at the pressure sensor outlet and removing the microchannel, assuming that the resulting relaxation time satisfies \( \tau_0 = r_0 c_0 \). The inset of Fig. 4 shows \( \tau_0 \) as a function of \( p_{n,\infty} \) for such a plugged experiment, indicating a clearly nonlinear inlet capacity.

Assuming that the non-trivial capacity at the channel inlet is dominated by trapped air, we use the ideal gas law to estimate \( c_0 = c_1(1 + p_{n,\infty}/p_{atm})^{-2} + c_2 \). Here \( p_{atm} = 101 \) kPa is the atmospheric pressure, \( c_1 = \Omega_{s}/p_{atm} \), with \( \Omega_s \), the trapped air volume at atmospheric pressure. The second term, \( c_2 \), describes any other linear capacity, is assumed to be connected to the atmosphere and is thus in parallel with \( c_1 \). The solid line in the inset provides an excellent fit using this ideal-gas-like inlet capacity, with \( c_1 = 20.9 \pm 0.1 \) nL kPa\(^{-1} \) and \( c_2 = 0.2 \pm 0.1 \) nL kPa\(^{-1} \) \( \ll c_1 \). The value of \( c_1 \) corresponds to a resting gas volume of 2.1 \( \mu \)L, which compares reasonably to the internal volume of the pressure sensor of 7.5 \( \mu \)L as provided by the manufacturer.

Making a full test of the model for our complete microfluidic system, Figure 4 shows the normalized relaxation time \( \tau_0/\tau_c \) as a function of \( p_{n,\infty} \) for all channel widths used here. The solid lines represent the numerical solution of the problem (Eqs. 7 and 8), where Eq. 7 is solved numerically using the aforementioned ideal resistance value and the ideal-gas, pressure-dependent capacitance. For this data the best-fitting values were \( c_1 = 8.6 \pm 0.4 \) nL kPa\(^{-1} \) and \( c_2 = 2.1 \pm 0.2 \) nL kPa\(^{-1} \), respectively. Here the larger value of \( c_2 \) corresponds well to the linear capacity of the circular channel inlet, approximated by \( c_2 \approx d_0^2/E^* \approx 1 \) nL kPa\(^{-1} \). The smaller value of \( c_1 \) suggests that less air was trapped compared to the calibration. We additionally show the asymptotic behaviors, where the equations for prefactors \( \beta \) were solved graphically using the limiting values of \( T \) and \( R \).

In conclusion, we have used time-resolved pressure and flow-rate measurements to characterize the relaxation dynamics of compliant microfluidic channels. We recover the well-known, quartic pressure-flow-rate relation for straight, rectangular channels. Additionally, we measured a full series of pressure-dependent relaxation time
scales resulting from step-wise pressure perturbations in a series of chip widths. Our main results are: (i) the chip inlet impedance cannot be neglected; and (ii), there is a strong pressure dependence on the relaxation time scale that cannot be simply predicted by dimensional analysis. A perturbation analysis of the lubrication-approximated microflow problem, coupled to a linear elasticity of the channel walls and considering the inlet impedance, accounts fully for the measured time scales. In a more general context, ours is a simple unit of any potential compliant flow network. Our analysis could thus be exploited in a broad range of micro-biological, and micro-technological contexts already finding applications.

The authors thank Ivan C. Christov, Thomas Salez, Stéphane Jouenne and Andreas Carlson for fruitful discussions. The authors benefited from the financial support of the Agence Nationale de la Recherche (ANR) under the CoPinS (ANR-19CE06-0021) grant, and of the Institut Pierre-Gilles de Gennes (Equipex ANR-10-EQPX-34 and Labex ANR-10-LABX-31), PSL Research University (Idex ANR-10-IDEX-0001-02). Total Energies is also gratefully acknowledged for financial support under contract TOTAL DS3700 – CNRS 2019200804.

* joshua.mcgraw@cnrs.fr

[1] I. C. Christov, Journal of Physics: Condensed Matter 34, 063001 (2021).
[2] T. Gervais, J. El-Ali, A. Günther, and K. F. Jensen, Lab on a Chip 6, 500 (2006).
[3] I. C. Christov, V. Cognet, T. C. Shidhore, and H. A. Stone, Journal of Fluid Mechanics 841, 267 (2018).
[4] R. Strieber, Kugellager für beliebige Belastungen (Springer, 1901).
[5] R. Gohar and A. Cameron, Nature 200, 458 (1963).
[6] K. Johnson, J. Greenwood, and S. Poon, Wear 19, 91 (1972).
[7] J. Hansen, M. Björling, and R. Larsson, Scientific Reports 10, 22250 (2020).
[8] S. Leroy and E. Charlaix, Journal of Fluid Mechanics 674, 389 (2011).
[9] Y. Wang, C. Dhong, and J. Frechet, Physical review letters 115, 248302 (2015).
[10] B. Saintyves, T. Jules, T. Salez, and L. Mahadevan, Proceedings of the National Academy of Sciences 113, 5847 (2016).
[11] Z. Zhang, V. Bertin, M. Arshad, E. Raphaël, T. Salez, and A. Maali, Phys. Rev. Lett. 124, 054502 (2020).
[12] V. Bertin, Y. Amarouchene, E. Raphaël, and T. Salez, Journal of Fluid Mechanics 933, A23 (2022).
[13] S. Jahn, J. Seror, and J. Klein, Annual Review of Biomedical Engineering 18, 235 (2016).
[14] M. Jones, G. Fulford, C. Please, D. McElwain, and M. J. Collins, Bulletin of Mathematical Biology 70, 323 (2008).
[15] K. Perktold and G. Rappitsch, Journal of biomechanics 28, 845 (1995).
[16] C. A. Figueroa, I. E. Vignon-Clementel, K. E. Jansen, T. J. Hughes, and C. A. Taylor, Computer methods in applied mechanics and engineering 195, 5685 (2006).
[17] M. Heil and A. L. Hazel, Annual review of fluid mechanics 43, 141 (2011).
[18] M. Hirschhorn, V. Tchankaleishvili, R. Stevens, J. Rossano, and A. Throckmorton, Medical engineering & physics 78, 1 (2020).
[19] C. A. Taylor, T. J. Hughes, and C. K. Zarins, Annals of biomedical engineering 26, 975 (1998).
[20] H. S. Davies, D. Débarre, N. El Amri, C. Verdier, R. P. Richter, and L. Bureau, Physical review letters 120, 198001 (2018).
[21] J. M. Sistoheim and L. Mahadevan, Phys. Rev. Lett. 92, 245009 (2004).
[22] H. Xia, J. Wu, J. Zheng, J. Zhang, and Z. Wang, Lab on a Chip 21, 1241 (2021).
[23] Y. Xia and G. M. Whitesides, Annual Review of Materials Science 28, 153 (1998).
[24] K. Raj M and S. Chakraborty, Journal of Applied Polymer Science 137, 48958 (2020).
[25] D. Huh, B. D. Matthews, A. Mammoto, M. Montoya-Zavala, H. Y. Hsin, and D. E. Ingber, Science 328, 1662 (2010).
[26] J. U. Lind, T. A. Busbee, A. D. Valentine, F. S. Pasqualini, H. Yuan, M. Yadid, S.-J. Park, A. Kotikian, A. P. Nemith, P. H. Campbell, et al., Nature materials 16, 303 (2017).
[27] S. Xu, Y. Zhang, L. Jia, K. E. Mathewson, K.-I. Jang, J. Kim, H. Fu, X. Huang, P. Chava, R. Wang, et al., Science 344, 70 (2014).
[28] J. C. Yeo, C. T. Lim, et al., Lab on a Chip 16, 4082 (2016).
[29] D. P. Holmes, B. Tavakol, G. Froehlicher, and H. A. Stone, Soft Matter 9, 7049 (2013).
[30] F. J. Meigel, P. Cha, M. P. Brenner, and K. Alim, Physical Review Letters 123, 228103 (2019).
[31] E. Virot, V. Spandan, L. Niu, W. M. Van Rees, and L. Mahadevan, Physical Review Letters 125, 058102 (2020).
[32] J. W. Rocks, A. J. Liu, and E. Katifori, Physical Review Letters 126, 028102 (2021).
[33] K. Park, A. Tixier, M. Paludan, E. Østergaard, M. Zwierieck, and K. H. Jensen, Phys. Rev. Fluids 6, 123101 (2021).
[34] B. Mosadegh, C.-H. Kuo, Y.-C. Tung, Y.-s. Torisawa, T. Bersano-Begey, H. Tavana, and S. Takayama, Nature physics 6, 433 (2010).
[35] J. A. Weaver, J. Melin, D. Stark, S. R. Quake, and M. A. Horowitz, Nature Physics 6, 218 (2010).
[36] T. V. Nguyen, P. N. Duncan, T. V. Nguyen, and E. E. Hui, Proceedings of the National Academy of Sciences 110, 18104 (2013).
[37] D. C. Leslie, C. J. Easley, E. Seker, J. M. Karlinsky, M. Utz, M. R. Begley, and J. P. Landers, Nature Physics 5, 231 (2009).
[38] K. W. Oh, K. Lee, B. Ahn, and E. P. Furlani, Lab on a Chip 12, 515 (2012).
[39] D. J. Preston, P. Rothemund, H. J. Jiang, M. P. Nemitz, J. Rawson, Z. Suo, and G. M. Whitesides, Proceedings of the National Academy of Sciences 116, 7750 (2019).
[40] Z. Jiao, J. Zhao, Z. Chao, Z. You, and J. Zhao, Microfluidics and Nanofluidics 23, 1 (2019).
[41] D. Endukuri, S. S. Gu, D. C. Pregibon, T. A. Hatton, and P. S. Doyle, Lab Chip 7, 818 (2007).
The supplementary material contains a full list of symbols, a selection of raw data for the time-dependence of flow rate and pressures; asymptotic analysis of the eigenvalue equation; and flow sensor calibration data, see [URL to be input by the publisher].

Y. Xia and G. M. Whitesides, Angewandte Chemie International Edition 37, 550 (1998).

X. Wang and I. C. Christov, Physics of Fluids 33, 102004 (2021).

We note that the infinitely thick limit is expected when the thickness of the upper, flexible wall is roughly twice the width of the channel, which is always the case here. With the reported value \( \nu = 0.495 \), we have \( E^* \approx 2.44E_Y \).

H. Bruus, *Theoretical Microfluidics* (Oxford University Press, 2008).

A. I. Panou, K. G. Papadokostaki, P. A. Tarantili, and M. Sanopoulou, European Polymer Journal 49, 1803 (2013).

P. Tabeling, *Introduction to Microfluidics*, 1st ed. (Oxford University Press, 2010).

A. Oron, S. H. Davis, and S. G. Bankoff, Reviews of modern physics 69, 931 (1997).

V. Placet and P. Delobelle, Journal of Micromechanics and Microengineering 25, 035009 (2015).

B. K. Wunderlich, U. A. Kleßinger, and A. R. Bausch, Lab Chip 10, 1025 (2010).

H. Bruus, *Theoretical Microfluidics* (Oxford University Press, 2008).

A. I. Panou, K. G. Papadokostaki, P. A. Tarantili, and M. Sanopoulou, European Polymer Journal 49, 1803 (2013).

P. Tabeling, *Introduction to Microfluidics*, 1st ed. (Oxford University Press, 2010).

A. Oron, S. H. Davis, and S. G. Bankoff, Reviews of modern physics 69, 931 (1997).

V. Placet and P. Delobelle, Journal of Micromechanics and Microengineering 25, 035009 (2015).

B. K. Wunderlich, U. A. Kleßinger, and A. R. Bausch, Lab Chip 10, 1025 (2010).

DLMF, “NIST Digital Library of Mathematical Functions,” http://dlmf.nist.gov/, Release 1.1.5 of 2022-03-15, F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds.

A. Müller, M. C. Wapler, and U. Wallrabe, Soft Matter 15, 779 (2019).