Preoperative indications for total shoulder arthroplasty predict adverse postoperative complications

Brandon E. Lung, BS a, Shrey Kanjiya, MD b, Michael Bisogno, MD, MBA b, David E. Komatsu, PhD b, Edward D. Wang, MD b,*

a School of Medicine, Stony Brook University, Stony Brook, NY, USA
b Department of Orthopaedics, Stony Brook University, Stony Brook, NY, USA

A R T I C L E I N F O

Keywords:
Shoulder arthroplasty
osteoarthritis
cuff arthropathy
humerus fracture
readmission
postoperative complications
discharge

Level of evidence: Level III, Retrospective Cohort Design using Large Database, Treatment Study

Background: Although studies have shown improved pain, function, and patient satisfaction after total shoulder arthroplasty (TSA), preoperative factors predicting poor outcomes are unexplored. Comparison of postoperative complications between osteoarthritis (OA), cuff arthropathy (CA), and fracture patients is important for identifying at-risk patients.

Methods: Primary TSAs from 2014 to 2016 with preoperative OA, CA, and proximal humerus fractures as indications were queried from the National Surgical Quality Improvement Program database. Short-interval postoperative complications were compared using multivariate binary logistic regression, and postoperative time to discharge between groups was analyzed using univariate analysis of variance with Tukey comparison. Statistical significance was defined as \(P < .05 \) using SPSS software version 23.0 (IBM Corp., Armonk, NY, USA).

Results: Of 9684 TSA cases, the primary indication was OA in 6571 patients, CA in 725 patients, and fractures in 646 patients. Compared with fractures, OA patients had statistically significant lower risk of dislocation, readmission, return to operating room, nonhome discharge, surgical site infection, perioperative bleeding requiring transfusion, and pulmonary embolism (all \(P < .05 \)). Statistically significant lower risk of dislocation, nonhome discharge, and transfusion was also found between CA and fracture patients (all \(P < .03 \)). However, in comparing CA vs. OA as preoperative indications, only postoperative venous thromboembolism (odds ratio, 4.5; \(P = .007 \)) and surgical site infection (odds ratio, 3.7; \(P = .007 \)) were significant. Mean differences in discharge time were significant between both OA and CA groups compared with fractures (\(P < .001 \)), but there was no significance between OA and CA (\(P = .116 \)).

Conclusion: Proximal humerus fracture is a risk factor for increased postoperative complications compared with OA and CA. With new outcomes-based reimbursement models, nonroutine discharge and increased discharge time should be considered in arthroplasty planning.

© 2019 The Author(s). Published by Elsevier Inc. on behalf of American Shoulder and Elbow Surgeons. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
The expanding surgical indications for TSA point to the growing diverse population of patients, pathologic processes, and comorbidities that uniquely affect recovery. For example, patients requiring TSA for revision as opposed to OA or CA have significant differences in inpatient hospital outcomes and risks for surgical site infection (SSI). Prior studies have suggested that complication rates are higher in patients undergoing revision compared with primary TSA as previous soft tissue disruption may be linked to poor arthroplasty outcomes, such as instability, infection, and nonunion after fracture. Even in comparing patients presenting for revision TSA, the cause of revision, whether component loosening or pain, may predict better outcomes than in revisions performed for infection. The increasing rate of shoulder arthroplasty procedures will increase the need for revision surgery, and thus it is even more important to understand factors that contribute to poor outcomes.

Health care economics prioritizes patient satisfaction with cost-effective care. The literature is still unclear about the role of rotator cuff disease as it compares with arthroplasty outcomes for OA and proximal humerus fractures. In assessing preoperative risk factors and hospital course, the role of primary OA, CA, and fracture as modifiers to the postoperative TSA rehabilitation protocol is unclear. Studies have shown that readmission rates for pulmonary embolism (PE) after discharge for TSA are comparable to those after hip arthroplasty. Comparison of length of stay, discharge destination, readmission, infection, and postoperative thrombosis and transfusion rates between patients is important, especially for elderly patients who may benefit from early active rehabilitation and restoration of autonomy as quickly as possible. Moreover, identifying differences in outcomes between surgical indications may minimize the potential for future revision surgery in patients who may benefit from nonoperative treatment.

With the Centers for Medicare and Medicaid Services and Hospital Readmissions Reduction Program creating penalties for postoperative readmission, providers should be aware of patient comorbidities and indications that predict adverse outcomes. Many patients with newly acquired access to health care have increased risk factors for poor outcomes because of the relatively high rates of smoking status, pulmonary disease, and vascular disease. By understanding the role of surgical indications in postoperative outcomes, providers can better stratify and plan for the preoperative management and prevention of complications in at-risk patients that would fall outside a bundled payment model. In identifying OA, CA, fracture, and revision surgery as independent risk factors for increased hospital stay and short-interval postoperative complications, providers can better educate and inform patients on expectations of outcomes and time to discharge according to the primary diagnosis.

Methods

All TSAs from 2014 to 2016 were queried from the American College of Surgeons National Surgical Quality Improvement Program (NSQIP) database. The NSQIP database includes deidentified perioperative data and patient information from >600 hospitals nationwide ranging from small community hospitals to large tertiary academic centers. Clinical information is gathered by trained data reviewers prospectively collecting perioperative information on site through outpatient clinic visits, inpatient provider notes, and direct interviews. During the years 2014–2016, there were 274 collected variables identified for surgical patients; these included demographics, elective status, discharge destination, preoperative laboratory values, operative time, intraoperative complications, and 30-day postoperative complication and readmission rates.

All surgical patients who underwent primary TSAs from 2014 to 2016 with preoperative OA, CA, and proximal humerus fractures as indications for operation were identified and selected with *International Classification of Diseases* codes and *Current Procedural Terminology* (CPT) code 23472, which included both anatomic TSAs and RTSAs. Revision TSA cases involving either the humeral or glenoid component were identified with CPT codes 23473 and 23474. Etiologic factors for revision TSA were identified through *International Classification of Diseases* codes and included dislocation, loosening, infection, fractures, stiffness, rotator cuff disease, and pain. Age, sex, body mass index (BMI), diabetes status, smoking status, steroid use, American Society of Anesthesiologists (ASA) class, operation time, and elective surgery status were compared to assess baseline characteristics. Patients with routine intake of oral or parenteral corticosteroids or immunosuppressant medications within 30 days before surgery were categorized into the steroid group, whereas patients who smoked only cigarettes at any point within the past year before surgery were part of the smoking cohort.

Short-interval postoperative complications, including dislocation, readmission rate, nonroutine discharge, return to the operating room (OR), SSI, PE, deep venous thrombosis (DVT), bleeding requiring red blood cell transfusion, pneumonia, renal insufficiency, cardiac arrest, myocardial infarction, and urinary tract infection, were compared using bivariate and multivariate binary logistic regression. Discharge destination was dichotomized to routine (home) or nonroutine, which included rehabilitation and other care facilities. Reasons for readmission within 30 days of surgery included dislocation, infection, bleeding, pain, thrombosis, pneumonia, urinary tract infection, and cardiac complications. In the cohort of patients who were readmitted, bivariate logistic

Table 1

Patients’ demographic characteristics and comorbidity burden

Baseline characteristics	OA (n = 6570)	CA (n = 725)	Fracture (n = 646)	Revision (n = 673)
Patients	76	8.40	7.50	7.80
Average age (yr)	68.60	70.60	72.40	67.10
Female	53	55	81	56
Average BMI, kg/m²	31.20	31.10	31.40	30.60
Smoking	9.80	11.90	12.80	16.60
Steroid or immunosuppressant use	4.40	5.90	4.30	4.90
ASA class	2.50	2.60	2.70	2.60
Operation time (min)	110	95.50	129	128
Diabetes status	16.60	15.70	25.20	20.60
Not elective	0.70	1.30	27.20	4.70

OA, osteoarthrosis; CA, cuff arthropathy; BMI, body mass index; ASA, American Society of Anesthesiologists. Categorical variables are presented as percentage.
regression analysis was used to compare surgical indication and reason for readmission.

Multivariate binary logistic regression analyses were conducted to determine whether surgical indications of OA, CA, fracture, and revision were independent risk factors for postoperative complications. Regressions were adjusted for age, sex, elective status, BMI, diabetes status, smoking status, and steroid use and reported as odds ratios in relation to the 95% confidence interval. Postoperative time to discharge between surgical groups was analyzed by univariate analysis of variance with Tukey test for multiple comparisons. Statistical significance was defined as \(P < 0.05 \) using SPSS software version 23.0 (IBM Corp., Armonk, NY, USA).

Results

From 2014 to 2016, a total of 8614 patients undergoing TSAs were included in the study, including OA in 76% (\(n = 6570 \)), CA in 8.40% (\(n = 725 \)), fracture in 7.50% (\(n = 646 \)), and revision in 7.80% (\(n = 673 \); Table I). Compared with OA, CA patients were more likely to be older (70.60 vs. 68.60 years), to be ASA class \(>3 \), to undergo shorter operative times, and to be diabetic (all \(P < 0.001 \); Table II). Compared with both OA and CA, fracture patients were more likely to be older and female, to be smokers, to be ASA class \(>3 \), to undergo longer operative times, to be diabetic, and not to have elective surgery (all \(P < 0.013 \)) compared with patients undergoing primary TSA for OA and CA. Patients undergoing primary TSA for fracture were more likely to be older, female, ASA class \(>3 \), and diabetic and not to have elective surgery (all \(P < 0.05 \)) compared with revision patients. There was no difference in steroid use between the various surgical indication groups.

After controlling for age, sex, BMI, smoking, steroid use, ASA class, diabetes, and elective status in adjusted multivariate logistic regression analysis, CA patients were more likely to have postoperative SSI and DVT compared with OA patients (\(P = 0.007, 0.001 \); Table III). Compared with OA and CA patients, fracture patients were at a greater risk for readmission, postoperative dislocation, nonroutine discharge, return to the OR, SSI, PE, and postoperative bleeding requiring transfusion (\(P < 0.022 \); Tables IV-VI). Patients undergoing revision TSA were at a greater risk for readmission, postoperative dislocation, return to the OR, SSI, DVT, and postoperative bleeding requiring transfusion compared with primary OA and CA patients (\(P < 0.013 \); Table VII). Compared with revision, fracture patients were at a greater risk for nonroutine discharge and postoperative bleeding requiring transfusion, but no statistically significant difference was seen in readmission, dislocation, SSI, or DVT rates (Table VIII).

Among patients undergoing revision TSA, the most common reason for revision was prosthetic loosening (31.95%), followed by dislocation (12.78%) and infection, fracture, and rotator cuff disease (5.94%). Patients who underwent revision TSA for a primary diagnosis of infection were more likely to experience postoperative

Table II

Comparison of baseline characteristics	Comparison of surgical indication					
	OA vs. fracture	CA vs. fracture	CA vs. OA	OA/CA vs. revision	Fracture vs. revision	Fracture vs. OA/CA
Average age	\(<0.001 \)	\(0.002 \)	\(<0.001 \)	\(<0.001 \)	\(<0.001 \)	\(<0.001 \)
Female sex	\(<0.001 \)	\(<0.001 \)	\(0.276 \)	\(0.014 \)	\(<0.001 \)	\(<0.001 \)
Average BMI	\(0.070 \)	\(0.029 \)	\(0.139 \)	\(0.006 \)	\(0.755 \)	\(0.100 \)
Smoking	\(0.015 \)	\(0.579 \)	\(0.082 \)	\(<0.001 \)	\(0.053 \)	\(0.024 \)
Steroid or immunosuppressant use	\(0.925 \)	\(0.185 \)	\(0.064 \)	\(0.688 \)	\(0.612 \)	\(0.788 \)
ASA class \(\geq 3 \)	\(<0.001 \)	\(<0.001 \)	\(<0.001 \)	\(<0.001 \)	\(<0.001 \)	\(<0.001 \)
Operation time (min)	\(<0.001 \)	\(<0.001 \)	\(<0.001 \)	\(<0.001 \)	\(<0.001 \)	\(<0.001 \)
Diabetes status	\(<0.001 \)	\(<0.001 \)	\(0.122 \)	\(0.084 \)	\(<0.001 \)	\(<0.001 \)
Not elective	\(<0.001 \)	\(<0.001 \)	\(0.085 \)	\(<0.001 \)	\(<0.001 \)	\(<0.001 \)

Table III

| Bivariate and multivariate analysis of postoperative complications between CA and OA |
|---------------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| | CA (\(n = 725 \), %) | OA (\(n = 6570 \), %) | Bivariate analysis | Multivariate analysis |
| | Odds ratio | \(P \) value | Odds ratio | \(P \) value |
| Readmission | 3.59 | 2.36 | 1.358 (1.008-2.346) | 0.146 | 1.373 (0.901-2.127) | 0.07 |
| Postoperative dislocation | 0.55 | 0.46 | 2.200 (0.420-3.443) | 0.722 | 1.283 (0.348-3.670) | 0.25 |
| Nonroutine discharge | 1.13 | 0.19 | 2.600 (0.967-1.586) | 0.051 | 2.186 (1.207-1.330) | 0.048 |
| Return to OR | 1.38 | 1.05 | 3.377 (0.965-2.650) | 0.071 | 3.377 (0.965-2.650) | 0.071 |
| Postoperative SSI | 0.83 | 0.26 | 3.217 (1.246-8.185) | 0.143 | 3.696 (1.432-9.541) | 0.007 |
| Postoperative PE | 0.55 | 0.27 | 2.010 (0.682-5.983) | 0.205 | 1.891 (0.635-5.630) | 0.253 |
| Postoperative DVT | 0.97 | 0.21 | 4.656 (1.837-11.348) | 0.001 | 4.533 (1.812-11.342) | 0.001 |
| Postoperative bleeding requiring transfusion | 2.34 | 1.60 | 1.478 (0.880-2.482) | 1.199 | 1.286 (0.763-2.173) | 0.343 |
| Postoperative pneumonia | 0.55 | 0.41 | 1.344 (0.469-3.853) | 0.582 | 1.252 (0.433-3.618) | 0.678 |
| Postoperative renal insufficiency | 0.14 | 0.08 | 1.814 (0.122-15.544) | 0.587 | 1.441 (0.165-12.570) | 0.741 |
| Postoperative cardiac arrest | 0.14 | 0.06 | N/A | 0.992 | N/A | 0.992 |
| Postoperative myocardial infarction | 0.41 | 0.17 | 2.478 (0.690-8.901) | 1.64 | 2.035 (0.561-7.387) | 0.280 |
| Postoperative urtic tract infection | 0.55 | 0.52 | 1.066 (0.277-3.014) | 0.903 | 0.940 (0.331-2.667) | 0.907 |

OA, osteoarthritis; CA, cuff arthropathy; OR, operating room; SSI, surgical site infection; PE, pulmonary embolism; DVT, deep venous thrombosis; N/A, not applicable. Significant differences (\(P < 0.05 \)) are indicated with bold text.
SSIs (P < .001), whereas those undergoing revision with a primary diagnosis of dislocation were at a greater risk for postoperative DVT (P = .018; Table IX).

In comparing only patients who were unexpectedly readmitted within 30 days of surgery, revision patients were at a greater risk for readmission for infection compared with OA and CA (P = .012) and fracture patients (P = .008; Table X). Among readmissions, CA patients were more likely to experience readmission for cardiac complications compared with OA patients (P = .028).

Time from operation to discharge was 1.75 days in OA, 1.88 days in CA, and 2.66 days in fracture, and 2.04 days in revision (Fig. 1). Mean differences in discharge time were statistically significant between fracture and all other surgical indications (P < .001). Revision patients had a longer time to discharge compared with OA patients (P < .001).

Discussion

As the landscape of health care economics shifts toward bundled outcomes-based reimbursements, providers must be aware of the differences in TSA postoperative outcomes to be expected between various evolving surgical indications. Patient demographics and associated risk factors are unique to each surgical indication group and affect the recovery process differently. Understanding the risks of adverse outcomes, such as DVT and SSI, is important in our population of aging patients with multiple comorbidities and is the initial step in being able to achieve cost-effectiveness and better use of resources.25

In comparing baseline characteristics between OA, CA, fracture, and revision, surgeons can better inform patients in the consent process and plan for interdisciplinary medical optimization of fracture patients, who are typically older, have a higher ASA class, and are more likely to have diabetes compared with OA and CA patients. The higher percentage of female patients in the fracture group and longer average operative times compared with OA and CA are characteristics that are likely to reflect poor bone stock and surgical technical difficulties of which the surgeon should be aware in predicting future clinical outcomes.27 Whereas there is limited and conflicting literature comparing hemiarthroplasty, internal fixation, and TSA for proximal humerus fractures, our findings of high percentages of ASA class >3, diabetics, and long operative times indicate the importance of counseling fracture patients that short-term TSA complications may reflect comorbidity rather than procedural outcomes.7 The high rates of smoking and younger age of revision patients must be considered in planning for postoperative rehabilitation protocols as smoking has been linked to prosthetic loosening, wound infections, and increased risk for further revision.34,36 The younger age of revision patients in this study is consistent with other studies that found increased risk of revision and primary arthroplasty failure in younger patients.12,13,14,34,36

Although the etiology is still unclear, the increased activity level and complex pathologic process, such as inflammatory arthritis, post-traumatic arthropathy, or capsulorrhaphy arthropathy, seen in Table V

Table V	Bivariate and multivariate analysis of postoperative complications between OA and fracture					
	OA (n = 6570), %	Fracture (n = 646), %	Bivariate analysis	Multivariate analysis		
	Odds ratio	P value	Odds ratio	P value		
Readmission	2.36	6.81	0.331 (0.234-0.467)	<.001	0.413 (0.286-0.657)	<.001
Postoperative dislocation	0.46	2.01	0.223 (0.116-0.430)	<.001	0.202 (0.091-0.445)	<.001
Nonroutine discharge	1.99	35.45	0.182 (0.152-0.219)	<.001	0.378 (0.300-0.476)	<.001
Return to OR	1.05	2.79	0.359 (0.212-0.609)	<.001	0.357 (0.191-0.667)	.001
Postoperative SSI	0.26	0.62	0.416 (0.140-1.241)	.116	0.225 (0.071-0.714)	.011
Postoperative PE	0.27	0.93	0.293 (0.116-0.741)	.009	0.280 (0.102-0.769)	.014
Postoperative DVT	0.21	0.62	0.343 (0.112-1.044)	.060	0.348 (0.096-2.264)	.109
Postoperative bleeding requiring transfusion	1.60	14.55	0.095 (0.071-0.128)	<.001	0.197 (0.117-0.322)	<.001
Postoperative pneumonia	0.41	0.93	0.440 (0.181-1.070)	.070	1.257 (0.366-4.312)	.717
Postoperative renal insufficiency	0.08	0.31	0.245 (0.047-1.267)	.093	0.449 (0.059-3.427)	.440
Postoperative cardiac arrest	0.06	0.31	0.393 (0.044-3.521)	.404	1.898 (0.072-50.024)	.701
Postoperative myocardial infarction	0.17	0.62	0.269 (0.085-0.846)	.025	0.732 (0.151-3.545)	.698
Postoperative urinary tract infection	0.17	1.86	0.275 (0.142-0.533)	<.001	0.764 (0.299-1.954)	.575

OA, osteoarthritis; OR, operating room; SI, surgical site infection; PE, pulmonary embolism; DVT, deep venous thrombosis. Significant differences (P < .05) are indicated with bold text.
young patients are thought to contribute to increased implant failure rates compared with the elderly. Previous reports have found revision arthroplasty outcomes inferior to outcomes after primary shoulder arthroplasty due to soft tissue injury, and this study warrants further discussion and education between the surgeon and young arthroplasty patients about careful postoperative rehabilitation and medical optimization.

Whereas the long-term functional improvements and reoperation rates in CA patients after RTSA remain unclear, there have been no comparisons of short-term complications between OA and CA patients despite the fact that OA and CA represent a majority of arthroplasty indications. Previous reports have found CA associated with pseudoparalysis, anterosuperior escape, and comorbid conditions such as cervical radiculopathy to correlate with poor functional improvements. The greater bleeding rates seen in revision patients. Among revision patients, TSA for prior dislocation is a risk factor for postoperative DVT as an etiologic factor was significantly associated with increased

Table VI

CA (n = 725), %	Fracture (n = 646), %	Bivariate analysis	Multivariate analysis			
		Odds ratio	P value	Odds ratio	P value	
Readmission	3.59	6.81	0.505 (0.309-0.836)	.008	0.615 (0.357-0.961)	.081
Postoperative dislocation	0.55	2.01	0.270 (0.088-0.833)	.023	0.259 (0.078-0.857)	.027
Nonroutine discharge	11.31	35.45	0.226 (0.170-0.300)	<.001	0.394 (0.285-0.544)	<.001
Return to OR	1.38	2.79	0.488 (0.224-1.065)	.072	0.490 (0.211-1.137)	.097
Postoperative SSI	0.83	0.62	1.339 (0.376-4.767)	.652	0.632 (0.224-2.086)	.783
Postoperative PE	0.55	0.93	0.592 (0.166-2.106)	.418	0.529 (0.141-1.987)	.345
Postoperative DVT	0.97	0.62	1.565 (0.456-5.370)	.477	1.576 (0.396-6.272)	.319
Postoperative bleeding requiring transfusion	2.34	14.55	0.141 (0.083-0.239)	<.001	0.253 (0.144-0.447)	<.001
Postoperative pneumonia	0.55	0.93	0.592 (0.166-2.106)	.418	1.573 (0.348-7.112)	.556
Postoperative renal insufficiency	0.14	0.31	0.445 (0.040-4.916)	.509	0.647 (0.045-9.330)	.647
Postoperative cardiac arrest	0.14	0.31	N/A	.992	N/A	.992
Postoperative myocardial infarction	0.41	0.62	0.667 (0.149-2.991)	.597	1.400 (0.238-9.309)	.670
Postoperative urinary tract infection	0.55	1.86	0.293 (0.094-0.913)	.034	0.718 (0.195-2.642)	.619

CA, cuff arthropathy; OR, operating room; SSI, surgical site infection; PE, pulmonary embolism; DVT, deep venous thrombosis; N/A, not applicable.

Significant differences (P < .05) are indicated with bold text.

Table VII

OA/CA (n = 7295), %	Revision (n = 673), %	Bivariate analysis	Multivariate analysis			
		Odds ratio	P value	Odds ratio	P value	
Readmission	2.48	5.05	0.480 (0.330-0.699)	<.001	0.512 (0.347-0.756)	.001
Postoperative dislocation	0.47	2.53	0.181 (0.100-0.325)	<.001	0.188 (0.103-0.342)	<.001
Nonroutine discharge	9.40	10.40	0.883 (0.681-1.145)	.346	0.943 (0.712-1.249)	.682
Return to OR	1.06	3.71	0.277 (0.175-0.473)	<.001	0.306 (0.190-0.492)	<.001
Postoperative SSI	0.32	2.53	0.122 (0.065-0.230)	<.001	0.132 (0.068-0.255)	<.001
Postoperative PE	0.30	0.59	0.506 (0.174-1.472)	.211	0.438 (0.149-1.283)	.132
Postoperative DVT	0.29	1.04	0.321 (0.129-0.798)	.014	0.311 (0.124-0.783)	.013
Postoperative bleeding requiring transfusion	1.67	5.50	0.292 (0.201-0.426)	<.001	0.318 (0.216-0.469)	<.001
Postoperative pneumonia	0.42	0.45	0.953 (0.291-3.126)	.937	1.051 (0.310-3.563)	.936
Postoperative renal insufficiency	0.08	0.00	N/A	.992	N/A	.992
Postoperative cardiac arrest	0.05	0.00	N/A	.992	N/A	.992
Postoperative myocardial infarction	0.19	0.15	1.292 (0.170-9.841)	.805	1.460 (0.187-11.386)	.718
Postoperative urinary tract infection	0.52	1.04	N/A	.992	N/A	.992

OA, osteoarthritis; CA, cuff arthropathy; OR, operating room; SSI, surgical site infection; PE, pulmonary embolism; DVT, deep venous thrombosis; N/A, not applicable.

Significant differences (P < .05) are indicated with bold text.
RTSA has become an increasingly popular option for treating proximal humerus fractures in the elderly as the need for cuff integrity and anatomic tuberosity healing is minimized. However, short-term adverse outcomes are important to consider in this older, female population with inherent risks of anesthesia because compromised vascularity and poor bone quality may necessitate revision surgery. Whereas treatment of proximal humerus fractures varies between conservative management, hemiarthroplasty, and TSA, the increased risk of nonroutine discharge compared with revision patients predicts poorer return to independent mobility and increased costs that should be balanced with lifestyle considerations. In this study, fracture patients are at an increased risk of postoperative bleeding requiring transfusion, which is consistent with prior reports of patients are at an increased risk of postoperative bleeding requiring transfusion, which is consistent with prior reports of patients with similar complication rates, revision rates, and patient-reported outcomes, and this study focuses on short 30-day hospital quality metrics.15,23,33

Conclusions
Overall, this study provides evidence that surgical indication is an independent risk predictor for postoperative readmission, dislocation, nonroutine discharge, postoperative outcomes, and increased time to discharge. Understanding of surgical risk factors is important not only for managing patients' expectations but also for identifying indications that predict costly complications and adverse outcomes. With new outcomes-based reimbursement models, nonroutine discharge and increased discharge time in proximal humerus fracture patients should be considered in arthroplasty planning.

Disclaimer
The authors, their immediate families, and any research foundations with which they are affiliated have not received any financial payments or other benefits from any commercial entity related to the subject of this article.

Table VIII
Bivariate and multivariate analysis of postoperative complications between fracture and revision

Bivariate analysis	Multivariate analysis			
Odds ratio	P value	Odds ratio	P value	
Readmission	1.378 (0.869-2.186)	.173	1.196 (0.723-1.979)	.486
Postoperative dislocation	0.792 (0.382-1.645)	.533	0.936 (0.423-2.071)	.871
Nonroutine discharge	4.731 (3.521-6.356)	<.001	2.351 (1.687-3.278)	<.001
Return to OR	0.743 (0.401-1.375)	.344	0.787 (0.400-1.548)	.488
Postoperative SSI	0.240 (0.800-0.718)	.011	0.492 (0.159-1.523)	.218
Postoperative PE	1.568 (0.440-5.582)	.488	1.371 (0.369-5.091)	.637
Postoperative DVT	0.693 (0.195-2.466)	.571	0.510 (0.118-2.207)	.367
Postoperative bleeding requiring transfusion	2.927 (1.968-4.353)	<.001	1.542 (1.150-2.380)	.045
Postoperative pneumonia	2.094 (0.521-8.407)	.297	0.752 (0.166-3.410)	.712
Postoperative renal insufficiency	N/A	.992	N/A	.992
Postoperative cardiac arrest	N/A	.992	N/A	.992
Postoperative myocardial infarction	4.187 (0.467-37.560)	.201	1.787 (0.175-18.210)	.624
Postoperative urinary tract infection	N/A	.992	N/A	.992

OR, operating room; SSI, surgical site infection; PE, pulmonary embolism; DVT, deep venous thrombosis; N/A, not applicable.

Table IX
Comparison of etiologic factors for revision as independent risk factors for adverse outcomes

Only revision surgery patients	Independent risk factors for adverse outcomes	Postoperative SSI	Postoperative DVT	Nonhome discharge				
Etiologic factor for revision (n = 673)	Odds ratio	P value						
Dislocation (12.78%)	0.908	.899	0.908	.899	7.036	.018	1.479	.250
Loosening (31.95%)	0.949	.212	0.885	.423	0.475	.655	0.759-2.883	.434
Infection (5.94%)	0.000	.998	0.000	.998	0.998	.998	0.367-28.242	.434
Fracture (5.94%)	0.989	.991	0.989	.991	0.989	.991	0.367-28.242	.434
Stiffness (0.59%)	0.000	.999	0.000	.999	0.000	.999	0.000	.999
Rotator cuff disease (5.94%)	0.989	.991	0.989	.991	0.989	.991	1.248	.655
Pain (5.05%)	1.186	.874	0.000	.998	0.000	.999	0.472-3.298	.384
Other (31.79%)	1.180	.874	0.000	.998	0.000	.999	0.123-2.239	.384

SSI, surgical site infection; DVT, deep venous thrombosis. Significant differences (P < .05) are indicated with bold text.
Table X
Bivariate analysis and associated P values of reason for readmission among surgical groups

Reason for readmission	OA Fracture	CA Fracture	Bivariate analysis	
	(n = 155), %	(n = 44), %	Odds ratio	P value
Dislocation	19.35	29.55	0.572 (0.268-1.224)	.150
Infection	10.97	4.55	2.587 (0.574-11.656)	.216
Bleeding	3.23	2.27	1.433 (0.163-12.599)	.745
Pain	2.58	4.55	0.556 (0.098-3.142)	.507
PE or thrombosis	7.10	9.09	0.764 (0.231-2.528)	.659
Pneumonia	10.97	6.82	1.684 (0.470-6.031)	.424
Urinary tract infection	4.52	2.27	2.034 (0.243-16.988)	.512
Cardiac complications	3.87	6.82	0.550 (0.132-2.296)	.412

	CA OA/CA	Fracture	OA/CA Revision	
	(n = 26), %	(n = 44), %	(n = 181), %	(n = 28), %
Dislocation	15.38	19.35	0.758 (0.243-2.363)	.632
Infection	19.23	10.97	5.000 (0.894-27.693)	.067
Bleeding	11.54	3.23	3.913 (0.876-17.487)	.074
Pain	3.85	2.58	1.510 (0.162-14.068)	.717
PE or thrombosis	7.69	7.10	1.091 (0.228-5.230)	.913
Pneumonia	11.54	6.82	1.783 (0.332-9.563)	.500
Urinary tract infection	0.00	2.27	N/A	.998
Cardiac complications	15.38	3.87	2.485 (0.510-12.113)	.290

OA, osteoarthritis; PE, pulmonary embolism; CA, cuff arthropathy; N/A, not applicable.
Significant differences (P < .05) are indicated with bold text.
Table 1

Status	OA	Fracture	Revision	OA	Fracture	Revision
Mean Difference in Time	-0.13771	-0.91963	-0.29209	0.13771	-0.78133	0.29209
Std. Error	0.06948	0.07321	0.07186	0.06948	0.09606	0.07186
Sig.	0.195	0.000	0.143	0.195	0.000	0.143
95% Confidence Interval	-0.3162 to 0.0408	-1.1071 to -0.7309	-0.4767 to -0.1075	-0.3162 to 0.0408	-1.0282 to -0.5345	-0.3986 to 0.0898

The mean difference is significant at the 0.05 level.

References

1. American Academy of Orthopaedic Surgeons. The treatment of glenohumeral joint osteoarthritis: guideline and evidence report. 2009. Available at: http://www.aaos.org/research/guidelines/gl Gosummary.pdf. accessed August 25, 2018.
2. Anakwenze OA, Zoller S, Ahmad CS, Levine WN. Reverse shoulder arthroplasty for acute proximal humerus fractures: a systematic review. J Shoulder Elbow Surg 2014;23:e73–80. https://doi.org/10.1016/j.jse.2013.09.012.
3. Boddapati V, Fu MC, Schairer WW, Gulotta LV, Dines DM, Dines JS. Revision total shoulder arthroplasty is associated with increased thirty-day post-operative complications and wound infections relative to primary total shoulder arthroplasty. J Shoulder Elbow Surg 2018;27:143–9. https://doi.org/10.1016/j.jse.2017.09.016.
4. Carrol BM, Izquierdo R, Vazquez M, Blaine TA, Levine WN, Bigliani LU. Conversion of painful hemiarthroplasty to total shoulder arthroplasty: long-term results. J Shoulder Elbow Surg 2014;13:599–603. https://doi.org/10.1016/j.jse.2004.03.016.
5. Chalmers PN, Keener JD. Expanding roles for reverse shoulder arthroplasty. Curr Rev Musculoskelet Med 2016;9:40–9. https://doi.org/10.1007/s11420-016-9316-0.
6. Cheung EV, Sperling JW, Cofield RH. Revision shoulder arthroplasty for glenoid component loosening. J Shoulder Elbow Surg 2008;17:371–5. https://doi.org/10.1016/j.jse.2007.09.003.
7. Cvitanovich GL, Chalmers PN, Verma NN, Nicholson GP, Romeo AA. Open reduction internal fixation has fewer short-term complications than shoulder arthroplasty for proximal humeral fractures. J Shoulder Elbow Surg 2016;25:624–31. https://doi.org/10.1016/j.jse.2015.09.011.
8. Dailey EA, Czik A, Kasten J, Chapman JR, Lee MJ. Risk factors for readmission of orthopaedic surgical patients. J Bone Joint Surg Am 2013;95:1012–9. https://doi.org/10.2106/JBJS.K.01690.
9. Day JS, Ramsey ML, Lau E, Williams GR. The impact of insulin dependence on short-term postoperative complications in diabetic patients undergoing total shoulder arthroplasty. J Shoulder Elbow Surg 2017;26:2091–6. https://doi.org/10.1016/j.jse.2017.05.027.
10. DeChersy A, Abboud JA, Kelly J, Mody M, Norris T, Ramsey ML, et al. ASA class is a reliable independent predictor of medical complications and mortality following surgery. Int J Surg 2015;18:184–90. https://doi.org/10.1016/j.ijsu.2015.04.015.
11. Deusch A, Abboud JA, Kelly J, Mody M, Norris T, Ramsey ML, et al. Clinical results of revision shoulder arthroplasty for glenoid component loosening. J Shoulder Elbow Surg 2007;16:706–16. https://doi.org/10.1016/j.jse.2007.01.007.
12. Dines JS, Fealy S, Strauss JF, Allen A, Craig EV, Warren RF, et al. Outcomes analysis of revision total shoulder replacement. J Bone Joint Surg Am 2006;88:1494–500. https://doi.org/10.2106/JBJS.D.02946.
13. Farag E, Zingmond D, Krenkel L, Soohoo NF. Factors predicting complication rates after primary shoulder arthroplasty. J Shoulder Elbow Surg 2011;20:557–63. https://doi.org/10.1016/j.jse.2010.11.005.
14. Ferrel JR, Trinh TQ, Fischer RA. Reverse total shoulder arthroplasty versus hemiarthroplasty for proximal humeral fractures: a systematic review. J Orthop Trauma 2015;29:60–8. https://doi.org/10.1097/BOT.00000000000000224.
15. Fesvak BT, Lie SA, Havelin LI, Skredderstuen A, Furnes O. Risk factors for revision after shoulder arthroplasty. 1.252 shoulder arthroplasties from the Norwegian Arthroplasty Register. Acta Orthop 2009;80:83–91.
16. Flurin PH, Roche CP, Wright TM, Marczuk Y, Zuckerman JD. A comparison and correlation of clinical outcome metrics in anatomic and reverse total shoulder arthroplasty. Bull Hosp Jt Dis (2013) 2013;75(Suppl 1):S118–23.
17. Fracture OA | 0.9103 | 0.07321 | 0.07186 | 0.9103 | 0.09606 | 0.07186 |
| Sig. | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| 95% Confidence Interval | 0.1107 to 1.1071 | 0.3986 to 0.0898 | 0.3757 to 0.8782 | 1.0282 to 1.075 |

The mean difference is significant at the 0.05 level.
31. Phillips CB, Barrett JA, Losina E, Mahomed NN, Lingard EA, Guadagnoli E, et al. Incidence rates of dislocation, pulmonary embolism, and deep infection during the first six months after elective total hip replacement. J Bone Joint Surg Am 2003;85-A:20–6.

32. Sajadi KR, Kwon YW, Zuckerman JD. Revision shoulder arthroplasty: an analysis of indications and outcomes. J Shoulder Elbow Surg 2010;19:308–13. https://doi.org/10.1016/j.jse.2009.05.016.

33. Triplet JJ, Everding NG, Levy JC, Formaini NT, O’Donnell KP, Moor MA, et al. Anatomic and reverse total shoulder arthroplasty in patients older than 80 years. Orthopedics 2015;38:e904–10. https://doi.org/10.3928/01477447-20151002-58.

34. Wagner ER, Houdek MT, Schleck CD, Harmsen WS, Sánchez-Sotelo J, Cofield R, et al. The role age plays in the outcomes and complications of shoulder arthroplasty. J Shoulder Elbow Surg 2017;26:1573–80. https://doi.org/10.1016/j.jse.2017.01.020.

35. Wall B, Nové-Josserand L, O’Connor DP, Edwards TB, Walch G. Reverse total shoulder arthroplasty: a review of results according to etiology. J Bone Joint Surg Am 2007;89:1476–85. https://doi.org/10.2106/JBJS.F.00666.

36. Werner BC, Burrus MT, Begho I, Gwathmey FW, Brockmeier SF. Early revision within 1 year after shoulder arthroplasty: patient factors and etiology. J Shoulder Elbow Surg 2015;24:e323–30. https://doi.org/10.1016/j.jse.2015.05.035.

37. Werner BC, Wong AC, Mahony GT, Craig EV, Dines DM, Warren RF, et al. Causes of poor postoperative improvement after reverse total shoulder arthroplasty. J Shoulder Elbow Surg 2016;25:e217–22. https://doi.org/10.1016/j.jse.2016.01.002.

38. White RH, Zhou H, Romano PS. Incidence of symptomatic venous thromboembolism after different elective or urgent surgical procedures. Thromb Haemost 2003;90:446–55. https://doi.org/10.1160/TH03-03-0152.