Experimental characterization of Gaussian quantum discord generated by four-wave mixing

Ulrich Vogl, Ryan T. Glasser, Quentin Glorieux, Jeremy B. Clark, Neil Corzo-Trejo, and Paul D. Lett

Quantum Measurement Division, National Institute of Standards and Technology and Joint Quantum Institute, NIST & the University of Maryland, Gaithersburg, Maryland 20899 USA

(Dated: May 9, 2019)

We experimentally determine the quantum discord present in two-mode squeezed vacuum generated by a four-wave mixing process in hot rubidium vapor. The frequency spectra of the discord, as well as the quantum and classical mutual information are also measured. In addition, the effects of symmetric attenuation introduced into both modes of the squeezed vacuum on the discord, the quantum mutual information and the classical correlations are examined experimentally. Finally, we show that due to the multi-spatial-mode nature of the four-wave mixing process, the quantum discord may exhibit sub- or superadditivity depending on which spatial channels are selected.

PACS numbers: 42.50.-p, 03.65.Ud, 42.50.Ex, 42.50.Lc

Quantum communication and computation schemes have been thought to rely on entanglement to offer improvements over classical systems. Entanglement as a necessary resource can be limiting for experimental implementations of such schemes, since entanglement is easily degraded. More recently, a different measure of the degree of quantumness of correlations that a bipartite system contains has been proposed - the quantum discord, which allows an appropriate characterization of the quantumness of mixed states. This quantity is defined as the difference between two classically equivalent expressions for the mutual information, when applied to quantum systems. It has since been shown that the quantum discord is, in some scenarios, a more faithful measure of nonclassicality, as it is sensitive to correlations that are ignored by measures like the inseparability or the logarithmic negativity. This may allow more robust systems for quantum information processing to be recognized.

Despite the rapidly growing body of theoretical works concerning quantum discord, few experiments have investigated the topic. This may be partly due to the fact that analytic procedures to determine discord in experimental systems involving mixed states are not yet as established as for pure states. Here we measure the amount of quantum discord, as well as quantum mutual information and classical mutual information, that are present in twin beams created by the vacuum-seeded four-wave mixing (4WM) process in hot Rb vapor. This is based on experimental reconstruction of the covariance matrix of the system. Additionally, we demonstrate the relative robustness of discord as a nonclassicality measure, as evidenced by the fact that even for vanishing squeezing, non-zero quantum discord still exists. Finally, we show that the multi-spatial-mode nature of 4WM results in dramatically different behavior of the discord depending on which pairs of spatial sub-channels of the system are used.

We begin by summarizing the concept of mutual information as applied to both classical and quantum systems, and introduce the concept of quantum discord. Classical information theory results in two equivalent expressions for the mutual information present in a bipartite system with two random variables A and B, which take on the values a and b, with the probabilities $p_A(a)$ and $p_B(b)$, respectively. The joint probability $p_{AB}(a,b)$ of the system characterizes the correlations between the systems A, B. The two alternative formulations for the mutual information are:

\[I_M(A : B) = H(A) + H(B) - H(A,B) \quad \text{and} \quad J(A : B) = H(B) - H(B|A). \] (1)

Here $H(X) = -\sum p(x) \log_2 p(x)$ is the marginal entropy of the probability distribution for a given result X, $H(A,B)$ is the joint marginal entropy, and $H(B|A)$ is the conditional entropy, describing the average entropies of B conditioned on the alternative outcomes of A following Bayes’s rule. Equation (1) determines the amount of information one can gain about subsystem A upon measurement of subsystem B. Quantum discord results from the fact that the two classical formulations of mutual information generally do not coincide for a state represented by the density matrix ρ_{AB}. In the quantum case, the marginal entropy is replaced by the von Neumann entropy $S(\rho) = -\text{Tr}(\rho \log_2 \rho)$ and yields

\[I_M(\rho_{AB}) = S(\rho_A) + S(\rho_B) - S(\rho_{AB}). \] (2)

The expression for $J(A : B)$ contains the conditional entropy $H(B|A)$, which, when applied to the quantum case results in a term that requires minimization over all possible measurements on subsystem A due to the ambiguity in defining the state of subsystem B before measuring.
subsystem A). In general, for the quantum case $I_M \neq J$, as here measurements on only one subsystem do not give full knowledge about all of the existing correlations. The difference is the discord $D = I_M - J$, given by

$$D(A; B) = H(\rho_A) - H(\rho_B) + \inf_{\lambda_k} \sum_k \rho_{A_k} H(\rho_{B|k}), \quad (3)$$

where the infimum describes the optimization over all possible measurements performed on system A. This term makes it an open problem to find an applicable expression under many experimental situations.

To calculate the quantum discord present in a given system assumptions about the state of the system must be made. We now concentrate on the special case of discord for two-mode Gaussian states, for which an analytic solution for the general case has been given in [5] and, specifically for symmetric squeezed thermal states, in [17]. The formalism requires knowledge of the covariance matrix of the bipartite state. In the following we show explicitly how to derive the quantum discord from experimentally obtainable data, based on the theoretical description of Datta et al. [5].

A two-mode Gaussian state ρ_{AB} can be described by its covariance matrix γ_{AB}, which may be transformed into the standard form $[18,19]$ with diagonal sub-blocks

$$\gamma_{AB} = \begin{pmatrix} n & 0 & c_1 & 0 \\ 0 & n & 0 & -c_2 \\ c_1 & 0 & m & 0 \\ 0 & -c_2 & 0 & m \end{pmatrix}, \quad (4)$$

with the symplectic invariants $I_1 = n^2$, $I_2 = m^2$, $I_3 = c_1c_2$ and $I_4 = (nm - c_1^2)(nm - c_2^2)$ and symplectic eigenvalues

$$d_{\pm} = \sqrt{\Delta \pm \sqrt{\Delta^2 - 4I_4}}, \quad (5)$$

where $\Delta = I_1 + I_2 + 2I_3$.

The values n, m, c_1 and c_2 are experimentally accessible via homodyne and joint-homodyne measurements, as discussed in the following. This allows one to express the quantum mutual information, the classical correlations and the Gaussian quantum discord as a function of the symplectic invariants $[3,17]$:

$$I_M = h(\sqrt{I_1}) + h(\sqrt{I_2}) - h(d_+ - h(d_-), \quad (6)$$

$$J = h(\sqrt{I_1}) - h(\sqrt{E_{AB}^{\text{min}}}), \quad (7)$$

$$D_{A:B}(\gamma_{AB}) = h(\sqrt{I_2}) - h(d_-) - h(d_+) + h(\sqrt{E_{AB}^{\text{min}}})), \quad (8)$$

with

$$E_{AB}^{\text{min}} = \begin{cases} \frac{2I_2^2 - (I_1 - 4I_4)(I_2 - \frac{1}{4}) + 2|I_3|\sqrt{I_2^2 - (I_1 - 4I_4)(I_2 - \frac{1}{4})}}{4(I_2 - \frac{1}{4})^2} & \text{if } \frac{(I_1I_2 - I_4)^2}{(I_1 + 4I_4)(I_2 + \frac{1}{4})} \leq 1, \\
\frac{I_1I_2 - I_4 - \sqrt{I_2^2 + (I_1I_2 - I_4)^2} - 2I_4(I_1I_2 + I_4)}{2I_2} & \text{otherwise}, \end{cases} \quad (9)$$

where $h(x) = (x + \frac{1}{2}) \log_2(x + \frac{1}{2}) - (x - \frac{1}{2}) \log_2(x - \frac{1}{2})$. $D > 1$ is a sufficient condition for demonstrating the entanglement of Gaussian states and $D = 0$ is reached for classical states. A condition arising from the uncertainty relation requires $d_- \geq 1/2$ in order for a state to be physical $[3]$.

The formulation of discord in Eqs. (8,9) allows for direct experimental access via homodyne and dual-homodyne detection $[20,22]$. Two-mode squeezed vacuum is generated in multiple spatial modes by a 4WM process near the $^{85}\text{Rb} \; D_1$ line $|5S_{1/2}, F = 2\rangle \rightarrow |5P_{3/2}\rangle$, at $\lambda \approx 795\text{nm}$ as described in $[24]$ and indicated in Fig. 1.; probe and conjugate modes are generated at $\pm 3\text{GHz}$ relative to the pump. The one-photon detuning is $\delta_1 \approx 800\text{MHz}$ and the two-photon detuning δ_2 is effectively 0MHz, as the detected field is determined by the local oscillator detuning. Bright local oscillator beams are created by seeding a second 4WM process that has
FIG. 2: Frequency spectrum for the extracted discord (red circles), quantum mutual information $I_M(\rho_{AB})$ (green squares), classical correlations $J(\rho_{AB})$ (black diamonds) and squeezing (blue triangles), respectively (the shot noise limit is indicated with a dashed line). These measurements, taken at different RF center-frequencies shown, serve to vary the off-diagonal covariance matrix elements (that depend on the amount of squeezing), while effectively keeping the on-diagonal elements constant (these depend only on the excess noise in each single mode).

The case examined here involves a symmetric two-mode squeezed state which allows for a simple treatment, resulting in direct experimental access to the nonzero matrix elements in Eq. (4). A single homodyne detection of the sum and difference signals of a joint-homodyne detection of both modes, while scanning the path length of each of the modes (symmetric) transmission of each two-mode squeezed vacuum path when attenuated with neutral density filters. I at each point is <2, confirming that the state is inseparable. The theory curves are calculated by using the measured initial squeezing and excess noise at a transmission of one.

The measured spectra of discord, $I_M(\rho_{AB})$, inseparability I, quantum mutual information $I_M(\rho_{AB})$, classical correlations $J(\rho_{AB})$ and squeezing (blue triangles, plotted on a linear scale) versus the symmetric transmission of each two-mode squeezed vacuum path when attenuated with neutral density filters. I at each point is <2, confirming that the state is inseparable. The theory curves are calculated by using the measured initial squeezing and excess noise at a transmission of one.

after normalizing each quantity to the SNL.

We experimentally examine the frequency spectrum of the discord in our system by changing the RF center-frequency at which the measurements are made. The joint quadrature squeezing and the excess noise on the individual probe and conjugate beams are expected to exhibit a somewhat different frequency dependence due to the variation of the extra noise from the 4WM process. The measured spectra of discord, I_M, J, and squeezing are shown in Fig. 2. The noise variance (blue triangles), normalized such that 1 corresponds to the SNL and 0 is perfect squeezing, exhibits excess noise at low frequencies due to technical noise. Optimum squeezing is obtained in the range ≈ 500 kHz to 1 MHz, with decreasing measured squeezing at higher detection frequencies. (All uncertainties shown are one standard deviation, combined statistical and systematic uncertainties. The statistical uncertainty is obtained from the variance on the measured shot noise and excess noise on the single beam measurements and the joint quadrature measurements. In Fig. 2 the uncertainties are shown at only one frequency, but are representative of typical uncertainties.) Though not shown in the plot, there exists nonzero discord for some distance after squeezing has reached zero. The frequency spectrum of the squeezing is largely reflected in the spectra of the discord (red dots), the quantum mutual information (green squares) and the classical correlations (black diamonds), showing that each of these measures are equally good for investigating the qualitative variation of bipartite correlations.

The quantum discord captures information about all of the elements of the covariance matrix. Another measure, the inseparability criterion, defined as $I = \langle \Delta X_2^2 \rangle + \langle \Delta Y_2^2 \rangle$.
(\Delta Y^2_{J}), only contains information about the off-diagonal elements. We now examine how the discord, \(I_M, J, \) and \(I \) scale with the symmetric attenuation of the two-mode squeezed vacuum state. Before the double-homodyne measurement, we symmetrically vary the amount of attenuation in both modes of the two-mode squeezed vacuum state with a neutral density filter. This serves to change all of the elements of the derived covariance matrix in a controllable, symmetric manner. In Fig. 3 we plot the quantum discord (red dots), the inseparability (purple stars), \(I_M \) and \(J \) versus the transmission of the state, where we attenuate both beams identically with neutral density filters. The state is inseparable for all values of transmission measured, according to the criterion of \(I < 2 \). The discord, \(I_M, J \) and \(I \) are all monotonically increasing functions of transmission, and diverge from one another as the transmission is increased. The theoretical curves in Fig. 3 are calculated for varying attenuation (with the standard beam splitter model for losses [25]) at a transmission of one, with no free parameters. While the inseparability and the squeezing (blue triangles) show linear behavior versus attenuation, the discord curve is slightly nonlinear, indicating the influence of the on-diagonal elements of Eq. (4).

The present 4WM system can exhibit multi-spatial-mode twin-beam correlations between the probe and conjugate beams [26]. We now investigate the discord and quantum mutual information that is present between various bimodal sub-channels of the two-mode squeezed vacuum. Our aim is to investigate in this context the subadditivity of information measures and channel capacity [27, 28]. Subadditivity of a channel is defined here as the situation when the discord of the total bipartite channel is smaller than the sum of the discord between two bipartite sub-channels. Superadditivity is then the converse.

Let us define four channels, made up by combinations of one of the regions I and II as the left and right halves of the probe mode, and one of the regions III and IV as the left and right halves of the conjugate mode (as shown in Fig. 4). The correlations between spatial regions in the probe mode and the conjugate mode are expected to be centro-symmetric with respect to the pump beam, as indicated in Fig. 1, which allows us to differentiate between mostly correlated and largely uncorrelated subregions.

We measure the quantum discord, \(D(II; IV) \), present between modes II and IV by cutting the local oscillator beams with a knife-edge, and only allowing these modes to be fed into the dual-homodyne detection system. This serves to project out only modes II and IV. As seen in Fig. 4, the quantum discord present between these two channels, \(D(II; IV) \), is much less than half of the total discord present between the entire, uncut probe and conjugate modes, \(D(I + II; III + IV) \). In this case, the discord is superadditive, or in other words, we have chosen subregions of the beams that are largely uncorrelated. (The same result is obtained with \(D(I; III) \), confirming the spatial symmetry when clipping the beams in this direction). In contrast, the discord between modes II and III, \(D(II; III) \), is significantly more than half of the total discord between the total, uncut modes. In this scenario, the discord behaves subadditively. This subadditive property [27] of the discord may allow for more effectively exploiting the channel capacity of a total system if it is correctly divided into various bimodal sub-channels. This shows that the discord varies dramatically in multi-spatial-mode squeezed vacuum systems, depending on which spatial channels are utilized. Here, when symmetric channels are used, the discord is subadditive with respect to the unaltered system. We also find that when asymmetric channels are chosen, the amount of discord quickly decreases, resulting in superadditive behavior.

Existing theoretical work concerning quantum discord indicates that discord can in principal be employed in various quantum computation and quantum communication schemes to provide enhancements beyond those allowed classically. In particular, many schemes require optical delay and storage of quantum correlations that are always accompanied by some loss and decoherence. The relative robustness of quantum discord with respect to decoherence effects provides motivation to more closely investigate these systems experimentally. Specifically, the present scheme for the determination of discord is applicable if one is interested in the evolution of quantum correlations in systems that involve stored light [29] and fast light [30, 31], where squeezing and entanglement may be easily degraded. Discord as a measure of quantum correlations in mixed bipartite states may offer a means to experimentally test the non-broadcasting theorem for the class of quantum-correlated bipartite states as a simple example of mixed states [32, 33] under fast-light conditions, and how classical and discordant states can be distinguished in this regime. Examining the amount of
discord, rather than squeezing or entanglement, present under these exotic conditions should allow for a more easily experimentally obtainable measure of any “quantumness” that is present in the system.

Acknowledgments

This work was supported by the Air Force Office of Scientific Research. Ulrich Vogl would like to thank the Alexander von Humboldt Foundation. This research was performed while Ryan Glasser held a National Research Council Research Associateship Award at NIST.

[1] H. Ollivier and W. H. Zurek, Quantum Discord: A Measure of the Quantumness of Correlations. Physical Review Letters 88, 017901 (2002).
[2] L. Henderson and V. Vedral. Classical, quantum and total correlations. Journal of Physics A Mathematical General 34, 6899 (2001).
[3] A. Ferraro, L. Aolita, D. Cavalcanti, F. M. Cucchietti and A. Acin. Almost all quantum states have nonclassical correlations. Phys. Rev. A 81, 052318 (2010).
[4] B. Dakić, V. Vedral and C. Brukner. Necessary and Sufficient Condition for Nonzero Quantum Discord. Physical Review Letters 105, 190502 (2010).
[5] G. Adesso and A. Datta. Quantum versus Classical Correlations in Gaussian States. Physical Review Letters 105, 030501 (2010).
[6] K. Modi, H. Cable, M. Williamson and V. Vedral. Quantum Correlations in Mixed-State Metrology. Phys. Rev. X 1, 021022 (2011).
[7] A. Streltsov, H. Kampermann and D. Bruß. Linking Quantum Discord to Entanglement in a Measurement. Phys. Rev. Lett. 106, 160401 (2011).
[8] B. P. Lanyon, M. Barbieri, M. P. Almeida and A. G. White. Experimental Quantum Computing without Entanglement. Phys. Rev. Lett. 101, 200501 (2008).
[9] A. Datta and A. Shaji. Quantum Discord and Quantum Computing – An Appraisal. International Journal of Quantum Information 09, 1787 (2011).
[10] L. Wang, J.-H. Huang, J. P. Dowling and S.-Y. Zhu. Quantum Information Teleportation without Entanglement: Non-Zero Quantum Discord Suffices. ArXiv e-prints 1106.5097 (2011).
[11] M. A. Yurishchev. Quantum discord in spin-cluster materials. Phys. Rev. B 84, 024418 (2011).
[12] R. Auccaise, J. Maziero, L. C. Céleri, D. O. Soares-Pinto, E. R. deAzevedo, T. J. Bonagamba, R. S. Sarthour, I. S. Oliveira and R. M. Serra. Experimentally Witnessing the Quantumness of Correlations. Phys. Rev. Lett. 107, 070501 (2011).
[13] G. Passante, O. Moussa, D. A. Trottier and R. Laflamme. Experimental detection of nonclassical correlations in mixed-state quantum computation. Phys. Rev. A 84, 044302 (2011).
[14] L. S. Madsen, A. Berni, M. Lassen and U. L. Andersen. Experimental Investigation of the Evolution of Gaussian Quantum Discord in an Open System. Phys. Rev. Lett. 109, 030402 (2012).
[15] M. Gu, H. M. Chrzanowski, S. M. Assad, T. Symul, K. Modi, T. C. Ralph, V. Vedral and P. K. Lam. Observing the operational significance of discord consumption. Nature Physics 8, 671 (2012).
[16] R. Blandino, M. G. Genoni, J. Etesse, M. Barbieri, M. G. A. Paris, P. Grangier and R. Tualle-Brouri. Homodyne estimation of Gaussian quantum discord. ArXiv e-prints 1203.1127 (2012).
[17] P. Giorda and M. G. A. Paris. Gaussian Quantum Discord. Phys. Rev. Lett. 105, 020503 (2010).
[18] L.-M. Duan, G. Giedke, J. I. Cirac and P. Zoller. Inseparability Criterion for Continuous Variable Systems. Physical Review Letters 84, 2722 (2000).
[19] C. Weedbrook, S. Pirandola, R. García-Pratón, N. J. Cerf, T. C. Ralph, J. H. Shapiro and S. Lloyd. Gaussian quantum information. Reviews of Modern Physics 84, 621 (2012).
[20] J. Wenger, A. Ourjoumtsev, R. Tualle-Brouri and P. Grangier. Time-resolved homodyne characterization of individual quadrature-entangled pulses. European Physical Journal D 32, 391 (2005).
[21] W. P. Bowen, R. Schmabel, P. K. Lam and T. C. Ralph. Experimental characterization of continuous-variable entanglement. Phys. Rev. A 69, 012304 (2004).
[22] J. Laurat, G. Keller, J. A. Oliveira-Huguenin, C. Fabre, T. Coudreau, A. Serafini, G. Adesso and F. Illuminati. Entanglement of two-mode Gaussian states: characterization and experimental production and manipulation. Journal of Optics B: Quantum and Semiclassical Optics 7, 577 (2005).
[23] V. D’Auria, S. Fornaro, A. Porzio, S. Solimeno, S. Olivares and M. G. A. Paris. Characterization of bipartite Gaussian states from OPO. Physica Scripta 2010, 014018 (2010).
[24] A. M. Marino, R. C. Pooser, V. Boyer and P. D. Lett. Tunable delay of Einstein-Podolsky-Rosen entanglement. Nature (London) 457, 859 (2009).
[25] C. F. McCormick, A. M. Marino, V. Boyer and P. D. Lett. Strong low-frequency quantum correlations from a four-wave-mixing amplifier. Phys. Rev. A 78, 043816 (2008).
[26] V. Boyer, A. M. Marino, R. C. Pooser and P. D. Lett. Entangled Images from Four-Wave Mixing. Science 321, 544 (2008).
[27] N. J. Cerf. Entropic bounds on coding for noisy quantum channels. Phys. Rev. A 57, 3330 (1998).
[28] A. S. Holevo and V. Giovannetti. Quantum channels and their entropic characteristics. Reports on Progress in Physics 75, 046001 (2012).
[29] Q. Glorieux, J. B. Clark, A. M. Marino, Z. Zhou and
P. D. Lett. Temporally multiplexed storage of images in a gradient echo memory. Opt. Express 20, 12350 (2012).

[30] R. T. Glasser, U. Vogl and P. D. Lett. Stimulated Generation of Superluminal Light Pulses via Four-Wave Mixing. Phys. Rev. Lett. 108, 173902 (2012).

[31] U. Vogl, R. T. Glasser and P. D. Lett. Advanced detection of information in optical pulses with negative group velocity. Phys. Rev. A 86, 031806 (2012).

[32] H. Barnum, C. M. Caves, C. A. Fuchs, R. Jozsa and B. Schumacher. Noncommuting Mixed States Cannot Be Broadcast. Phys. Rev. Lett. 76, 2818 (1996).

[33] H. Barnum, J. Barrett, M. Leifer and A. Wilce. Generalized No-Broadcasting Theorem. Phys. Rev. Lett. 99, 240501 (2007).