BI2536, a potent and selective inhibitor of polo-like kinase 1, in combination with cisplatin exerts synergistic effects on gastric cancer cells

GUODONG LIAN¹, LEPING LI¹, YULONG SHI¹, CHANGQING JING¹, JINGLEI LIU¹, XIAOBO GUO¹, QINGQING ZHANG², TIANYU DAI³, FEI YE⁴, YANYAN WANG⁵ and MAN CHEN⁶

¹Department of Gastrointestinal Surgery, ²Statistics and Medical Record Management Section, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021; ³Clinical Medical College of Jining Medical University, Jining, Shandong 272067, P.R. China; ⁴Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; ⁵Biological Engineering School of Dalian Polytechnic University, Dalian, Liaoning 116034; ⁶Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China

Received May 18, 2017; Accepted December 15, 2017
DOI: 10.3892/ijo.2018.4255

Abstract. BI2536 is a highly selective and potent inhibitor of polo-like kinase 1 (PLK1). In this study, we aimed to determine whether BI2536 and cisplatin can synergistically inhibit the malignant behavior of gastric cancer cells. For this purpose, the expression of PLK1 in gastric cancer cells was determined. The effects of BI2536, cisplatin, and the combination of BI2536 and cisplatin on gastric cancer cell viability, invasion, cell cycle arrest and apoptosis were assessed. Furthermore, the expression of cell cycle-regulated proteins was examined. Moreover, the differentially expressed proteins between the SGC-7901 and SGC-7901/DDP (cisplatin-resistant) cells, and the enriched signaling pathways were analyzed by protein pathway array following treatment with BI2536 (IC₅₀) for 48 h. Our results revealed that PLK1 was upregulated in the SGC-7901/DDP (cisplatin-resistant) gastric cancer cells compared with the SGC-7901 cells. BI2536 enhanced the inhibitory effect of cisplatin on SGC-7901 cell viability and invasion. BI2536 induced G₂/M arrest in SGC-7901 and SGC-7901/DDP cells. BI2536 promoted cisplatin-induced gastric cancer SGC-7901/DDP cell apoptosis. It also induced the differential expression of 68 proteins between the SGC-7901 and SGC-7901/DDP cells, and these differentially expressed proteins were involved in a number of cellular functions and signaling pathways, such as cell death, cell development, tumorigenesis, the cell cycle, DNA duplication/recombination/repair, cellular movement, and the Wnt/β-catenin and mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK)/ribosomal S6 kinase 1 (RSK1) signaling pathways. On the whole, our findings suggest that BI2536 and cisplatin synergistically inhibit the malignant behavior of SGC-7901/DDP (cisplatin-resistant) gastric cancer cells.

Introduction

Gastric cancer is a malignant tumor that is common worldwide and has a poor prognosis (1,2). The 5-year survival rate of patients with gastric cancer is <10% (3). The majority of patients are diagnosed at an advanced stage (4), and few efficacious treatment options are available for patients with this late stage of the disease (5). Surgical therapy combined with adjuvant chemotherapy is the primary treatment option for gastric cancer. It has been demonstrated that the single administration of traditional chemotherapeutic drugs, such as cisplatin and fluorouracil is only 10-20% efficacious in the treatment of gastric cancer (6). Even when combined with new drugs, such as docetaxel, irinotecan and oxaliplatin, the optimum reaction rate is <50% (7). Currently, an early diagnosis coupled with a good treatment strategy is considered an effective approach for the treatment of gastric cancer. The use of biomarkers has been confirmed to be a less invasive method for gastric cancer diagnosis (8). Moreover, targeted therapies for the treatment of gastric cancer have attracted increasing attention (9). However, there is still a lack of effective targeted therapies for the treatment of this disease.

Polo-like kinases (PLKs) are associated with oncogenesis in several types of cancer (10). PLKs exist in 4 isoforms,
PLK1-4; however, only one of these isoforms, PLK1, is involved in centrosome maturation, chromosome segregation, bipolar spindle formation and cytokinesis execution (11). It has been reported that PLK1 exhibits oncogenic potential in gastric cancer (12). The inhibition of PLK1 following transfection with PLK1 siRNA and folate deficiency have been shown to synergistically inhibit the growth of gastric cancer cell lines (13). Moreover, a high PLK1 expression and DNA aneuploidy have been shown to correlate with a poor prognosis in patients with gastric cancer (14). PLK1 plays a key role in carcinogenesis and represents a promising target in the treatment of cancer (15,16). PLK1 inhibitors have recently emerged as a feasible strategy for the treatment of cancer (11). BI2536 is a highly selective and potent inhibitor of PLK1, which always disrupts spindle assembly, bipolar spindle formation and cytokinesis execution (11). It has been reported that PLK1 exhibits oncogenic potential in gastric cancer cells treated with BI2536 (IC50) and apoptosis were investigated. Differentially expressed in regulating gastric cancer cell viability, migration, invasion at least to the best of our knowledge.

Our findings may provide new insight into the targeted therapy for this disease.

Materials and methods

Drugs and treatments. BI2536 (cat. no. 50-873-3) and cisplatin (cat. no. 50-901-13218) were purchased from Thermo Fisher Scientific (Waltham, MA, USA) and diluted in dimethyl sulfoxide (DMSO) in accordance with the manufacturer's instructions.

Cell culture. The human gastric cancer cell lines, AGS, BGC-823, Hs746T, N87, KATOIII, SGC-7901 and SGC-7901/DDP (a cisplatin-resistant cell line), were obtained from the Molecular Pathology Laboratory at Mount Sinai Medical Center (New York, NY, USA). The BGC-823, SGC-7901 and SGC-7901/DDP cells were cultured in RPMI-1640 medium supplemented with 10% fetal bovine serum (FBS; Gibco, Grand Island, NY, USA). The AGS cells were grown in Ham's F12 medium. The Hs746T cells were cultured in DMEM containing 10% FBS. The KATOIII cells were maintained under standard culture conditions for 2-3 weeks. When the colonies were visible to the naked eye, the culture dish was washed twice with phosphate-buffered saline (PBS). The colonies were then fixed with 4% paraformaldehyde for 15 min, followed by staining with crystal violet (Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA) for 20 min. Under a microscope (Nikon Eclipse TS100; Nikon Instruments, Badhoevedorp, The Netherlands) the colonies that comprised at least 10 cells were counted.

Cell invasion assay. Cell invasion was evaluated using Transwell chambers (8-µm pore size; Corning Inc., Corning, NY, USA) coated with serum-free RPMI-1640 medium containing Matrigel (Sigma-Aldrich, Shanghai, China). In brief, the SGC-7901 and SGC-7901/DDP cells (5x104 cells) were suspended in 300 µl of PBS and 20 µl of RNase A was then added to treat the cells. The lower chamber was filled with RPMI-1640 medium containing 20% FBS as a chemoattractant. Following incubation for 2 h at 37°C, the non-invading cells were removed using cotton swabs, and the invading cells were stained with 1% crystal violet for 30 min. The invading cells in different fields were then counted using a light microscope (Nikon Model Eclipse TS100LEDMV; Nikon Corp., Tokyo, Japan).

Cell cycle analysis. The cells (1x10⁶ cells/ml) were collected, washed twice with ice-cold PBS, and fixed with 75% ice-cold ethanol. After washing with ice-cold PBS again, the cells were suspended in 300 µl of PBS and 20 µl of RNase A was then added, followed by incubation of the cells for 30 min at 37°C. Subsequently, the cells were stained with 400 µl of propidium iodide (PI) for 45 min in the dark. Cell cycle analysis at 488 nm was performed using a FACSCalibur flow cytometer (BD Biosciences, San Jose, CA, USA).

Cell apoptosis analysis. Cell apoptosis was assessed by flow cytometry after Annexin V and PI staining (BD Pharmingen, San Diego, CA, USA). In brief, the cells (1x10⁶ cells/ml) were harvested and resuspended in 1X Annexin V-binding buffer.
Subsequently, 5 µl of Annexin V-FITC was added, and the cells were incubated for 15 min away from light, followed by the addition of 10 µl of PI and incubation of the cells for 5 min at 4°C. Cell apoptosis was then analyzed using a FACSCalibur flow cytometer (BD Biosciences).

Western blot analysis. The cells were lysed with 1X cell lysis buffer (Cell Signaling Technology, Danvers, MA, USA). Using a Pierce BCA protein assay kit (Pierce, Rockford, IL, USA), the protein concentration was adjusted to 1 µg/µl. An equal amount of protein extract was separated by 10% sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The blots were then transferred onto nitrocellulose membranes (Bio-Rad, Hercules, CA, USA). The membranes were then blocked in 5% non-fat milk in 1X TBST (1X: 10 mM Tris-HCl, pH 7.5, 0.1% Tween-20 for 1 h. Primary antibodies to PLK1 (1:1,000; cat. no. sc-5585; Santa Cruz Biotechnology, Inc.), p-Cdc2 (1:1,000; cat. no. 9111; Cell Signaling Technology), cyclin B1 (1:1,000; cat. no. sc-594), p-cdc25c (1:1,000; cat. no. sc-327) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) (1:1,000; sc-32233) (all from Santa Cruz Biotechnology, Inc.) were added, followed by incubation of the membranes overnight at 4°C. GAPDH served as an internal control. Subsequently, the membranes were probed with horseradish peroxidase (HRP)-labeled secondary antibodies (1:10,000; all from Santa Cruz Biotechnology, Inc.) for 1 h, Immun-Star™ HRP Peroxide Buffer and Immun-Star™ HRP Luminol Enhancer (cat. no. 94547; Bio-Rad) were added followed by incubation of the membranes for 4 min. Chemiluminescence signals were then analyzed with the ChemiDoc XRS system (Bio-Rad). The same membranes were then washed twice with 1X TBST buffer and used to detect other primary antibodies, as described above. The signal intensity of each protein was analyzed using Quantity One software 4.5.0 (Bio-Rad). To reduce the variations caused by total protein loading amount, transferring and blotting efficiency, ‘global median subtraction’ was used to normalize the background subtracted intensity. The normalized expression of each protein = the average intensity of each protein in all samples x (the signal intensity of each protein/the total intensity of all proteins in the same blot membrane).

Protein pathway array (PPA) analysis. The cells were lysed with 1X cell lysis buffer, and equal amounts of protein extracts were separated by 10% SDS-PAGE, as described above. The blots were then transferred onto nitrocellulose membranes (Bio-Rad). After blocking in 3% bovine serum albumin (BSA) for 1 h, the membranes were fixed on a western blotting manifold (Mini-PROTEAN II Multiscreen apparatus, cat. no. 170-4017; Bio-Rad) containing 20 channels. A total of 286 protein-specific or phosphorylation-specific antibodies (Table I) were used in the multiplex immunoblot. To each channel (1-19), a mixture of two antibodies dissolved in the blocking buffer was added, followed by incubation of the membranes overnight at 4°C; BSA without any antibody was added to channel 20. Following incubation with HRP-conjugated secondary anti-rabbit (1:10,000; cat. no. sc-2371) or anti-goat (1:10,000; cat. no. sc-2370) or anti-mouse antibodies (1:10,000; cat. no. sc-2345) (all from Santa Cruz Biotechnology, Inc.) for 1 h, Immun-Star™ HRP Peroxide Buffer and Immun-Star™ HRP Luminol Enhancer (cat. no. 94547; Bio-Rad) were added followed by incubation of the membranes for 4 min. Chemiluminescence signals were then analyzed with the ChemiDoc XRS system (Bio-Rad). The same membranes were then washed twice with 1X TBST buffer and used to detect other primary antibodies, as described above. The signal intensity of each protein was analyzed using Quantity One software 4.5.0 (Bio-Rad). To reduce the variations caused by total protein loading amount, transferring and blotting efficiency, ‘global median subtraction’ was used to normalize the background subtracted intensity. The normalized expression of each protein = the average intensity of each protein in all samples x (the signal intensity of each protein/the total intensity of all proteins in the same blot membrane).

Statistical analysis. All in vitro experiments were repeated 3 times and PPA was performed twice. All measurement data are expressed as the means ± SD. The differences between groups were calculated using the Student’s t-test or one-way ANOVA. Further comparison between groups was performed using a Tukey post-hoc test. Statistical analyses were performed using SPSS 17.0 (SPSS Inc., Chicago, IL, USA). Unsupervised hierarchical clustering analysis was performed using the BRB ArrayTools Software V3.3.0. The significant pathway for the differentially expressed proteins was analyzed using Ingenuity Pathway Analysis (IPA) software. A value of P<0.05 was considered to indicate a statistically significant difference.

Results

PLK1 is upregulated in SGC-7901/DDP gastric cancer cells. As shown in Fig. 1, PLK1 was upregulated in the SGC-7901. DDP (cisplatin-resistant) gastric cancer cells compared with the SGC-7901 cells. Thus, we further explored the function of the PLK1 inhibitor, BI2536, in gastric cancer cells.

BI2536 enhances the inhibitory effects of cisplatin on the viability and colony-forming ability of the SGC-7901/DDP cells. As shown in Fig. 2A and B, cisplatin and BI2536 significantly inhibited the viability of the 7 gastric cancer cell lines in a dose-dependent manner. The highest chemosensitivity to cisplatin was observed in the BGC-823 and SGC-7901
Table I. List of antibodies included in the protein pathway array.

Antibodies specific for phosphorylation	Antibodies specific for non-phosphorylation
p-AKT (Ser473)	14-3-3 β
(Thr218/Tyr220)	cSHMT
p-β-catenin (Ser33/37/Thr41)	Akt
p-GSK-3α/β (Ser21/9)	Cyclin B1
p-CDC2 (Tyr15)	Cyclin D1
p-FAK (Tyr397)	HMG-1
p-p53 (Ser392)	HNF-3α
p-p44/42 MAPK (Thr202/Tyr204)	Hoxc11
p-p70 S6 kinase (Tyr389)	H-Ras
p-PKCα/β II (Thr638/641)	HIF-3α
p-PKCa (Thr505)	HIF-1α
p-PTEN (Ser380)	HIF-2α
p-Rb (Ser780)	HIF3
p-Rb (Ser807/811)	HIF-MT
p-p807/811	HIF-1
Antibodies specific for non-phosphorylation	banquet
14-3-3 β	Akt
α-tubulin	Cyclin B1
ADAM8	Cyclin D1
ADAM10	CytoKeratin 18
ADH	CytoKeratin 19
AIM2	DACH1
Akt	DARPP-32
Annexin I	DBD2
ASPC1	DHRFR
ASC-R	DMntl
ATF-1	Dpyd
Aurora A/AIK	DRG1
Autotaxin	E2A
Axin	E2F1
β3-tubulin	EG5
β-catenin	EGFR
Bad	Endoglin
Bak	ENT1
Bcl-2	Ep-CAM
Bcl-6	Calpain 2
Bcl-xL	Calpastatin
BECN1	Calretinin
BID	CaMKKα
BMP-2	CARD12
Calpain 2	Caspase-1
Calpain 2	Cathepsin B
Calpain 2	CD10
Calpain 2	CD33
Calpain 2	Cdc2 p34
Calpain 2	Cdc25B
Calpain 2	Cdc25C
Calpain 2	Cdc42
cells, the IC₅₀ values of which were 2 and 6 µM, respectively. Notably, BI2536 (IC₅₀) significantly enhanced the inhibitory effects of cisplatin on the viability of the gastric cancer cells, particularly by improving the chemosensitivity of SGC-7901/DDP to cisplatin (Fig. 2C). Therefore, a colony formation assay was then performed using the SGC-7901 and SGC-7901/DDP cells in order to verify the effects of BI2536 and cisplatin on cell viability. As shown in Fig. 2D and E, BI2536 (IC₅) alone did not inhibit colony formation compared with the controls (P>0.05); however, cisplatin (IC₅₀) significantly inhibited colony formation (P<0.05), particularly in the SGC-7901 cells (P<0.01). Following co-treatment with BI2536 (IC₅) and cisplatin (IC₅₀), the results revealed that BI2536 (IC₅) significantly enhanced the inhibitory effects of cisplatin on the colony-forming ability of the SGC-7901/DDP cells (P<0.01), but not that of the SGC-7901 cells (P>0.05).

BI2536 enhances the inhibitory effects of cisplatin on the invasive ability of the SGC-7901/DDP cells. We further determined the effects of BI2536 and cisplatin on gastric cancer cell invasion (Fig. 3). The results revealed that BI2536 (IC₅₀) did not inhibit the invasive ability of the SGC-7901 and SGC-7901/DDP cells (P>0.05), although cisplatin (IC₅₀) significantly inhibited the invasive ability of the cells (P<0.05). Moreover, following treatment with a combination of BI2536 (IC₅₀) and cisplatin (IC₅₀), only the inhibitory effects of cisplatin on the invasiveness of the SGC-7901/DDP cells, but not that of the SGC-7901 cells (P>0.05), were enhanced (P<0.01).

BI2536 significantly induces G₂/M arrest in the SGC-7901/DDP cells. In the cell cycle analysis, the SGC-7901 cells were treated with 1, 5 and 10 nM BI2536 for 72 h, and the SGC-7901/DDP cells were treated with 5, 10 and 20 nM BI2536 for 24 h. The results of flow cytometry revealed that BI2536 significantly induced G₂/M arrest in both the SGC-7901 and SGC-7901/DDP cells (P<0.05) (Fig. 4A and B). We further determined the expression of key proteins involved in the G₂/M cell cycle, including p-Cdc2, cyclin B1 and p-Cdc25C by western blot analysis (Fig. 4C and D). We found that PLK1 expression was not significantly altered following treatment with various concentrations of BI2536 in both the SGC-7901 and SGC-7901/DDP cells (P>0.05). Notably, compared with the control group, BI2536 treatment resulted in the decreased expression of p-Cdc25C and in the increased expression of p-Cdc2 and cyclin B1 in the SGC-7901/DDP cells in a dose-dependent manner (P<0.01) (Fig. 4D), while the expression levels of these proteins exhibited no significant changes in the SGC-7901 cells (P>0.05).

BI2536 promotes cisplatin-induced SGC-7901/DDP cell apoptosis. Flow cytometry was also performed to determine the effects of BI2536 on gastric cancer cell apoptosis. Following treatment with various concentrations of BI2536 for 24 h, the proportions of SGC-7901 and SGC-7901/DDP cells

Table I. Continued.

Protein	Cdk2	Cdk4	Cdk6	Cdx2	c-Fms/CSF-1R	Chk1	c-1AP2	CRK-7	Clusterin	COL1A2	Connexin 43	Cox-2	CREB
	FKHR	FLIPS/L	Fli-3/Flik-2	FOXM1	FTα	FUS/TLS	Fusin	Galectin-3	GLP-1R	Glutamine synthetase	GSTP1	MMP-43	
	LSD1	L-Selectin	Mesp	Maspin	Fα	MDM2	Mesothelin	MetAP-2	MetRS	MGr1-Ag	MMP-2	MMP-7	
	PERK	PKCa	PKCe	PLK	MAT Iiβ	PRL-3	PSM	PSTPIP1	PTEN	Rab 7	Raf-B	RAGE	
	uPAR	V-ATPase H	VEGF	VCAM-1	PRL-3	PSCA	Vimentin	Wnt-1	WT1	XIAP	YB-1	RANKL	

The phosphorylation-specific antibodies were purchased from Cell Signaling Technology (Danvers, MA, USA), except for p-PKCα (Ser657) which was from Upstate Biotechnology (Lake Placid, NY, USA), and p-Met (Ytr1234), p-c-Jun kinase (G-7) and p-FAK (Ytr397) which were from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA, USA). The non-phosphorylation-specific antibodies, including Stat1, HER2/ErbB2, β-catenin, p44/42 mitogen-activated protein kinase [MAPK; extracellular signal regulated kinase (Erk)1/2], Akt, Notch4, eIF4B, NF-xB p50, cAMP responsive element binding, estrogen receptor α, Bcl-xL, RIP, aurora A/AIK, matrix metalloproteinase (MMP)-9 and Snail were purchased from Cell Signaling Technology; X-linked inhibitor of apoptosis (XIAP) and glycogen synthase kinase (GSK) were from BD Biosciences (San Jose, CA, USA); transforming growth factor (TGF)-β was from R&D Systems (Minneapolis, MN, USA); Hsp90 was from Enzo Life Sciences (Farmingdale, NY, USA); hypoxia-inducible factor (HIF)-2α was from Novus Biologicals (Littleton, CO, USA); cytokeratin 18 was from Dako Corp. (Carpinteria, CA, USA); fumarylacetoacetate hydrolase (FAH) was from Proteintech Group (Chicago, IL, USA); keratin 10 was from Covance Research Products (Berkeley, CA, USA); G protein of vesicular stomatitis virus was from Abcam (Cambridge, MA, USA); the other antibodies were from Santa Cruz Biotechnology, Inc.
undergoing early apoptosis were all significantly increased (P<0.05) (Fig. 5A and B). Furthermore, we found that cisplatin significantly induced SGC-7901 and SGC-7901/DDP cell apoptosis when used in combination with BI2536 (IC20) (P<0.05) (Fig. 5C and D). Notably, BI2536 (IC20, 20 nM) significantly promoted cisplatin-induced SGC-7901/DDP cell apoptosis (P<0.05) (Fig. 5D).

BI2536 induces the differential expression of signaling proteins between the SGC-7901 and SGC-7901/DDP cells. We applied PPA analysis to analyze the differentially expressed proteins between the SGC-7901 and SGC-7901/DDP cells following treatment with BI2536 (IC50) for 48 h. We found that 68 proteins were differentially expressed when compared with the controls (Fig. 6A). IPA analysis also revealed that the differentially expressed proteins induced by BI2536 treatment were involved in many cell functions and signaling pathways, such as cell death, cell development, tumorigenesis, the cell cycle, DNA duplication/recombination/repair, cellular movement, and in the Wnt/β-catenin and mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK)/ribosomal S6 kinase 1 (RSK1) signaling pathways (Fig. 6B).

Discussion

Cisplatin is a common and effective anticancer drug; however, its use is limited due to its related side-effects, such as renal, gastrointestinal and neurological toxicities (21). Therefore, to
improve the antitumor efficacy of cisplatin and reduce cisplatin-induced side-effects, further studies are warranted in order to aid the development of small-molecule drugs. In the present study, we combined the PLK1 inhibitor, BI2536, with cisplatin to treat gastric cancer cells and to determine whether BI2536 and cisplatin can synergistically inhibit the malignant behavior of gastric cancer cells. The results revealed that BI2536 enhanced the cisplatin-induced inhibitory effects on SGC-7901/DDP cell viability and invasion. BI2536 induced G2/M arrest in the SGC-7901/DDP cells by decreasing the expression of p-Cdc25C and increasing the expression of p-Cdc2 and cyclin B1. BI2536 promoted cisplatin-induced SGC-7901/DDP cell apoptosis. Moreover, BI2536 induced the differential expression of 68 proteins between the SGC-7901 and SGC-7901/DDP cells, and these differentially expressed proteins were involved in several cell functions and signaling pathways, such as the Wnt/β-catenin and MEK/ERK/RSK1 signaling pathways.

In many anticancer treatments, the G2/M checkpoint is an effective target site for molecular targeted therapy and chemotherapy sensitization (22,23). There are data to suggest that mammalian PLK1 plays a regulatory role at the cell cycle G2 checkpoint (24,25). PLK1 has been implicated in mitotic entry via the activation of Cdc25C (26). PLK1 has also been identified as a target that can sensitize cells to traditional chemotherapeutic drugs in the treatment of cancer (27,28). In addition, a high degree of G2/M arrest induced by PLK1 inhibition has been found to be associated with radiosensitization in various cancer cell lines (29). The combination of MS275 and BI2536 has been shown to synergistically inhibit cell growth and to induce G2/M phase arrest in A549 non-small cell lung cancer cells (30). Gleixner et al demonstrated that the inhibitory effect of BI2536 on CML cell growth was associated with mitotic arrest, particularly G2/M arrest, and consecutively resulted in apoptosis (31). In this study, BI2536 enhanced the cisplatin-induced inhibitory effects on SGC-7901 cell viability and invasive ability. BI2536 induced G2/M arrest in the SGC-7901/DDP cells by decreasing the expression of p-Cdc25C and increasing the expression of p-Cdc2 and cyclin B1. BI2536 promoted cisplatin-induced SGC-7901/DDP cell apoptosis. Taken together, we speculate that the combination of cisplatin and BI2536 can synergistically inhibit cell growth, induce G2/M phase arrest, and consecutively induce the apoptosis of SGC-7901/DDP cells.

Furthermore, we applied PPA analysis to examine the differentially expressed proteins between the SGC-7901 and SGC-7901/DDP cells following treatment with BI2536 (IC50) for 48 h. A total of 68 proteins were found to be differentially expressed, which were involved in signaling pathways, such as the Wnt/β-catenin and MEK/ERK/RSK1 signaling pathways. It has been reported that Wnt/β-catenin signaling plays a key role in regulating the self-renewal of gastric cancer stem cells, and salinomycin treatment may be used for the treatment of gastric cancer by targeting Wnt/β-catenin signaling (32). The inhibition of the Wnt/β-catenin pathway by niclosamide has been shown to result in decreased cellular proliferation and increased cell death in gastric cancer (33). In addition, ERK/RSK1 activation by growth factors can delay the cell cycle at the G2 phase, thus reducing mitotic aberrations and maintaining genomic integrity (34). Notably, PLK1 is involved in mitotic arrest via the inhibition of the MEK/ERK/RSK1 cascade (35). Although the association between BI2536 and the Wnt/β-catenin or MEK/ERK/RSK1 signaling pathways has not yet been verified experimentally, our results provide an important indication pertaining to BI2536 likely promoting...
the chemotherapeutic sensitivity of SGC-7901/DDP cells to cisplatin via the involvement of the Wnt/β-catenin or MEK/ERK/RSK1 signaling pathways.

The strengths of our study were that BI2536 and cisplatin synergistically inhibited the malignant behavior of the SGC-7901/DDP (cisplatin-resistant) gastric cancer cells, which may provide a broader perspective for improving the chemotherapeutic sensitivity of cancer cells to cisplatin. Despite the clear strength of our study, however, some limitations merit further consideration. Firstly, there were no significant effects of BI2536 treatment alone on cell viability, migration and apoptosis, which limited the clinical application of BI2536. Secondly, the synergistic effects of BI2536 and cisplatin were not verified using gastric cancer primary cells or an in vivo xenograft model of SGC7901 and SGC7901/DDP cells. Further research is still required in order to verify the synergistic interaction between BI2536 and cisplatin in gastric cancer primary cells. Thirdly, we did not analyze PLK1 expression according to the information of the The Cancer Genome Atlas (TCGA) and Cancer Cell Line Encyclopedia (CCLE) databases. Further studies are required to investigate the role of PLK1 in SGC7901 and SGC7901/DDP gastric cancer cells using siRNA-mediated gene knockdown. Fourthly, signaling pathways were only analyzed by PPA. The expression of Wnt/β-catenin and MEK/ERK/RSK1 signaling pathway-related proteins were not determined by qPCR or

Figure 4. BI2536 induces G2/M arrest in SGC-7901 and SGC-7901/DDP gastric cancer cells. (A and B) Flow cytometry demonstrated that BI2536 significantly induced G2/M arrest in the SGC-7901 and SGC-7901/DDP cells. (C and D) The expression of key proteins involved in the G2/M cell cycle, including p-Cdc2, cyclin B1 and p-Cdc25C was examined by western blot analysis. Error bars indicate the means ± SD and the symbol * indicates a statistically significant difference (**P<0.01). PLK1, polo-like kinase 1.
Figure 5. BI2536 promotes cisplatin-induced SGC-7901/DDP gastric cancer cell apoptosis. (A and B) Flow cytometry demonstrated the effects of BI2536 on SGC-7901 and SGC-7901/DDP cell apoptosis. (C) Flow cytometry demonstrated the effects of the combination of various concentrations of cisplatin (0, 0.25, 0.5, 1 and 2 µM) and BI2536 (2 nM) on SGC-7901 and SGC-7901/DDP cell apoptosis. (D) Flow cytometry demonstrated the effects of the combination of various concentrations of cisplatin (0, 2.5, 5, 10 and 20 µM) and BI2536 (20 nM) on SGC-7901 and SGC-7901/DDP cell apoptosis. Error bars indicate the means ± SD, and the symbols * and # indicate a statistically significant difference compared with the corresponding control group. *p<0.05, **p<0.01 and ***p<0.001.
western blot analysis in treated samples. Fifthly, we only used MTT assay to determine changes in cell viability, which only monitored the ATP-dependent metabolic activity. To better detect the synergistic effects of BI2536 and cisplatin on cell proliferation, BrdU DNA proliferation assay should also be performed to monitor the number of cellular divisions and DNA synthesis. Finally, we only analyzed the differentially expressed proteins between the SGC-7901 and SGC-7901/DDP cells following treatment with BI2536 (IC_{50}) for 48 h. The key mechanisms involved in the combined effects of BI2536 and cisplatin treatment in regulating the malignant behavior of gastric cancer cells remain largely unknown. Therefore, further studies are still required in order to verify our observations.

In conclusion, the findings of the present study suggest that BI2536 and cisplatin synergistically inhibit the malignant behavior of SGC-7901/DDP (cisplatin-resistant) gastric cancer cells. BI2536 may enhance the chemotherapeutic sensitivity of SGC-7901/DDP cells to cisplatin via the involvement of the Wnt/β-catenin or MEK/ERK/RSK1 signaling pathways. The development of a PLK1 inhibitor may thus be an effective strategy for the treatment of gastric cancer.

Acknowledgements

This study was supported by the National Natural Science Foundation of China (grant nos. 81572355 and 81702363).
Competing interests

The authors declare that they have no competing interests.

References

1. de Martel C, Forman D and Plummer M: Gastrointestinal cancer. Epidemiology and risk factors. Gastroenterol Clin North Am 42: 219-240, 2013.
2. Daniyal M, Ahmad S, Ahmad M, Asif HM, Akram M, Ur Rehman S and Sultana S: Risk factors and epidemiology of gastric cancer in Pakistan. Asian Pac J Cancer Prev 16: 4821-4824, 2015.
3. Otsu H, Iimori M, Ando K, Saeki H, Aishima S, Oda Y, Morita M, Zha X, Huang L, Yang M, Jingmin OU, Chen D and Fei Z: Study of gastric cancer. World J Gastroenterol 20: 1635-1649, 2014.
4. Yasui W, Oue N, Ito R, Kuraoka K and Nakayama H: Search for new biomarkers of gastric cancer through serial analysis of gene expression and its clinical implications. Cancer Sci 95: 385-392, 2004.
5. Lordick F, Kang YK, Chung HC, Salman P, Oh SC, Bodoky G, van der Auwera J, Strobel A, Mayerhofer M, et al: A fine-needle aspirate-based vulnerability assay identifies polo-like kinase-1 as a mediator of gemcitabine resistance in pancreatic cancer. Mol Cancer Ther 9: 311-318, 2010.
6. van Vugt MA, Smits VA, Klompaker R and Medema RH: Inhibition of Plk1 in breast cancer in vivo, a novel target for cancer therapy. Proc Natl Acad Sci U S A 108: 20520-20525, 2011.
7. Chopra P, Sethi G, Dastidar SG and Ray A: Polo-like kinases (Plks) and cancer. Oncogene 24: 287-291, 2005.
8. Köhne CH, Wils JA and Wilke HJ: Developments in the treatment of gastric cancer. Expert Opin Investig Drugs 19: 27-43, 2010.
9. Catalano V, Labianca R, Beretta GD, Gatta G, de Braud F and Van Cutsem E: Gastric cancer. Crit Rev Oncol Hematol 71: 127-164, 2009.
10. Kim SA, Kwon SM, Jho YH and Ahn SG: The antitumor effect of Plk1 siRNA in gastric carcinoma cell lines. Oncogene 24: 287-291, 2005.
11. Tran T, Zhang B, Feng Y, Wang X, Yang L, Yang H, Zhou F and Song J: Cancer stem cells proliferation and salinomycin treatment. Cell Death Dis 5: e1039, 2014.
12. van Vugt MA and Medema RH: Polo-like kinase-1 is a target of the DNA damage response. J Cell Sci 124: 1975-1984, 2011.
13. van Vugt MA and Medema RH: Whether or not Plk1 can be used in the clinic. Gastroenterol Clin North Am 42: 219-240, 2013.
14. Chou T and Martin N: CompuSyn for drug combinations: PC software and user's guide: A computer program for quantitation of synergism and antagonism in drug combinations, and the determination of IC50 and ED50 values. CompuSyn, Paramus, NJ, 2005.
15. Pace A, Savarese A, Picaro M, Maresca V, Pacetti U, Del Monte G, Birocco A, Leonetti C, Jandolo B, Cognetti F, et al: Neuroprotective effect of vitamin E supplementation in patients treated with cisplatin chemotherapy. J Clin Oncol 21: 927-931, 2003.
16. Kawabe T: G2 checkpoint abrogators as anticancer drugs. Mol Cancer Ther 3: 513-519, 2004.
17. van Vugt MA, Medema RH: Getting in and out of mitosis with Polo-like kinase-1. Oncogene 24: 2844-2859, 2005.
18. Kim SA, Kwon SM, Yoon JH and Ahn SG: The antitumor effect of Plk1 siRNA in gastric carcinoma cell lines. Oncogene 24: 287-291, 2005.
19. Lénárt P, Petronczki M, Steegmaier M, Di Fiore B, Lipp JJ, Hoffmann M, Rettig WJ, Kraut N and Peters JM: The small-molecule inhibitor BI 2536 reveals novel insights into mitotic roles of polo-like kinase 1. Curr Biol 17: 304-315, 2007.
20. van Vugt MA, Smits VA, Klompaker R and Medema RH: Inhibition of Polo-like kinase-1 by DNA damage occurs in an ATM- or ATR-dependent fashion. J Biol Chem 276: 41656-41660, 2011.
21. van Vugt MA and Medema RH: Getting in and out of mitosis with Polo-like kinase-1. Oncogene 24: 2844-2859, 2005.
22. Kim SA, Kwon SM, Jho YH and Ahn SG: The antitumor effect of Plk1 siRNA in gastric carcinoma cell lines. Oncogene 24: 287-291, 2005.
23. van Vugt MA and Medema RH: Getting in and out of mitosis with Polo-like kinase-1. Oncogene 24: 2844-2859, 2005.
24. Liu YF, Chen YJ and Chen CL: MS275 synergistically inhibits the growth of gastric carcinoma cell lines. Oncogene 24: 304-315, 2007.
25. van Vugt MA, Smits VA, Klompaker R and Medema RH: Inhibition of Polo-like kinase-1 by DNA damage occurs in an ATM- or ATR-dependent fashion. J Biol Chem 276: 41656-41660, 2011.
26. van Vugt MA and Medema RH: Getting in and out of mitosis with Polo-like kinase-1. Oncogene 24: 2844-2859, 2005.
27. Kim SA, Kwon SM, Yoon JH and Ahn SG: The antitumor effect of Plk1 siRNA in gastric carcinoma cell lines. Oncogene 24: 287-291, 2005.
28. van Vugt MA, Smits VA, Klompaker R and Medema RH: Inhibition of Polo-like kinase-1 by DNA damage occurs in an ATM- or ATR-dependent fashion. J Biol Chem 276: 41656-41660, 2011.
29. van Vugt MA and Medema RH: Getting in and out of mitosis with Polo-like kinase-1. Oncogene 24: 2844-2859, 2005.
30. Kim SA, Kwon SM, Jho YH and Ahn SG: The antitumor effect of Plk1 siRNA in gastric carcinoma cell lines. Oncogene 24: 287-291, 2005.
31. van Vugt MA, Smits VA, Klompaker R and Medema RH: Inhibition of Polo-like kinase-1 by DNA damage occurs in an ATM- or ATR-dependent fashion. J Biol Chem 276: 41656-41660, 2011.
32. van Vugt MA and Medema RH: Getting in and out of mitosis with Polo-like kinase-1. Oncogene 24: 2844-2859, 2005.
33. Kim SA, Kwon SM, Jho YH and Ahn SG: The antitumor effect of Plk1 siRNA in gastric carcinoma cell lines. Oncogene 24: 287-291, 2005.
34. van Vugt MA, Smits VA, Klompaker R and Medema RH: Inhibition of Polo-like kinase-1 by DNA damage occurs in an ATM- or ATR-dependent fashion. J Biol Chem 276: 41656-41660, 2011.
35. van Vugt MA and Medema RH: Getting in and out of mitosis with Polo-like kinase-1. Oncogene 24: 2844-2859, 2005.
36. Kim SA, Kwon SM, Jho YH and Ahn SG: The antitumor effect of Plk1 siRNA in gastric carcinoma cell lines. Oncogene 24: 287-291, 2005.
37. van Vugt MA, Smits VA, Klompaker R and Medema RH: Inhibition of Polo-like kinase-1 by DNA damage occurs in an ATM- or ATR-dependent fashion. J Biol Chem 276: 41656-41660, 2011.
38. van Vugt MA, Smits VA, Klompaker R and Medema RH: Inhibition of Polo-like kinase-1 by DNA damage occurs in an ATM- or ATR-dependent fashion. J Biol Chem 276: 41656-41660, 2011.
39. van Vugt MA, Smits VA, Klompaker R and Medema RH: Inhibition of Polo-like kinase-1 by DNA damage occurs in an ATM- or ATR-dependent fashion. J Biol Chem 276: 41656-41660, 2011.