Electronic Supplementary Materials

Identification of Putative Novel Class-I Lanthipeptides in Firmicutes: A Combinatorial In Silico Analysis Approach Performed on Genome Sequenced Bacteria and a Close Inspection of Z-geobacillin Lanthipeptide Biosynthesis Gene Cluster of the Thermophilic Geobacillus sp. Strain ZGt-1

Rawana N. Alkhalili 1* and Björn Canbäck 2

1 Biotechnology, Department of Chemistry, Lund University Lund, SE-221 00, Sweden
2 Department of Biology, Lund University, Lund SE-221 00, Sweden; Bjorn.Canback@biol.lu.se
* Correspondence: Rawana.Alkhalili@biotek.lu.se
Table S.1. Amino acid sequences of the unmodified antiSMASH-detected lanthipeptides and the corresponding nucleotide sequences. Sequences in lower case correspond to the leader peptide. The presented gene positions are based on those predicted by antiSMASH and confirmed by BLAST analysis. When the gene start position value is larger than that of the end position, the gene is located on the reverse strand. Entries typed in bold represent data related to the putative novel lanthipeptides.

Bacterial species, strain (lanthipeptide reference number), unmodified aa sequence of lanthipeptide	Bacterial species, strain (lanthipeptide reference number), lanthipeptide nucleotide sequence	RefSeq genome accession number	Start position	End position
Bacillus clausii KSM-K16 mekafldlevhvtkakdvqdpFTSVSFCTPCCGCTGS FNSFCC	>Bacillus clausii KSM-K16 ATGGAAAAAGCTTTTTGACCTTGGATTTGGAA GTAGTACAACAGAAAGCGAAGATGTACA ACCAGATTTCCAAAGCGGTAGTCTGTAC TCTGTTGGCGGGGAAAACGGGTAGCCCTAAA TAGCTTTCTGTGCTGTA	NC_006582	3706418	3706284
Bacillus megaterium QM B1551 (I) mekafldlevhvtkakdvqdpFTSVSFCTPCCGCTGS FNSFCC	>Bacillus megaterium QM B1551 (I) ATGAATAACGTAAGAAACCTTTTTTGTATTA GTAGTACAACAGAAAGCGAAGATGTAC TCTGTTGGCGGGGAAAACGGGTAGCCTAAA TCTGTTGGCGGGGAAAACGGGTAGCCTAAA	NC_014023	137678	137538
Bacillus megaterium QM B1551 (II) mnnvknflvdvqetassdvpqFTSVSFCTPCCGDT GSWNSFCC	>Bacillus megaterium QM B1551 (II) ATGAATAACGTAAGAAACCTTTTTTGTATTA GTAGTACAACAGAAAGCGAAGATGTAC TCTGTTGGCGGGGAAAACGGGTAGCCTAAA	NC_014023	137893	137753
Bacillus subtilis B5n5 meknidflidnnkmmstsevsaqTWATIGKTIVQSVK KCRFTGCGSLGSCSNCN	>Bacillus subtilis B5n5 ATGGAGAAGAATAATATTTTTTGTATTA GTAGTACAACAGAAAGCGAAGATGTAC TCTGTTGGCGGGGAAAACGGGTAGCCTAAA	NC_014976	2428804	2428974
Bacillus subtilis spizizenii TU-B-10 mskdfdldvkskgdshitupKWSESVCTPCCGTYQGLTQCFQITFNCNCKISK	>Bacillus subtilis spizizenii TU-B-10 ATGTCAAAATCGTAAGAAACCTTTTTTGTATTA GTAGTACAACAGAAAGCGAAGATGTAC TCTGTTGGCGGGGAAAACGGGTAGCCTAAA	NC_016047	3414730	3414560
Bacillus thuringiensis serovar finitimus YBT-020 mdknsqfdedlnlyeedysqgqysSWSWGGTNS STSIACSLTNVTEGNCW	>Bacillus thuringiensis_serovar finitimus YBT-020 ATGGAAAAAGCTTTTTGACCTTGGATTTGGAA GTAGTACAACAGAAAGCGAAGATGTACA ACCAGATTTCCAAAGCGGTAGTCTGTAC TCTGTTGGCGGGGAAAACGGGTAGCCCTAAA TAGCTTTCTGTGCTGTA	NC_017200	1205213	1205383
>Bacillus thuringiensis serovar IS5056 (I) mnkelfdldinkkmptemtaqTWTTIVKVSKAVCK TGTCICTTSCSNCK
ATGAATAAAGAACTATTTGATTTAGATATT AATAAGAAAATGGAAACACCTACTGAAAT GACAGCACAAACTTGGAACAACCTACTGAAAT GACAGCACAAACTTTGGAACAACCTACTGAAAT GACAGCACAAACTTTGGAACAACCTACTGAAAT GACAGCACAAACTTTGGAACAACCTACTGAAAT
NC_020394 132195 132040

>Bacillus thuringiensis serovar IS5056 (II) mnkelfdldinkkmptemtaqTWTTIVKVSKAVCK TGTCICTTSCSNCK
ATGAATAAAGAACTATTTGATTTAGATATT AATAAGAAAATGGAAACACCTACTGAAAT GACAGCACAAACTTGGACAACTATTGTTAA AGTCTCAAAGGCTTGTATGAAAAAACAGGAA CTGTATTTTGAATACCTCATTCTCCTAATTG TAAGTAA
NC_020394 132712 132557

>Bacillus thuringiensis serovar IS5056 (III) mdkelfdldinkkmptemtaqTVGTCICTTSCSNCK
ATGAATAAAGAACTATTTGATTTAGATATT AATAAGAAAATGGAAACACCTACTGAAAT GACAGCACAAACTTGGACAACTATTGTTAA AGTCTCAAAGGCTTGTATGAAAAAACAGGAA CTGTATTTTGAATACCTCATTCTCCTAATTG TAAGTAA
NC_020394 133239 133084

>Bacillus thuringiensis serovar IS5056 (IV) mnkelfdldinkkmptemtaqTWTTIVKVSKAVCK TGTCICTTSCSNCK
ATGAATAAAGAACTATTTGATTTAGATATT AATAAGAAAATGGAAACACCTACTGAAAT GACAGCACAAACTTGGACAACTATTGTTAA AGTCTCAAAGGCTTGTATGAAAAAACAGGAA CTGTATTTTGAATACCTCATTCTCCTAATTG TAAGTAA
NC_020394 133674 133519

>Bacillus thuringiensis serovar IS5056 (V) mnkelfdldinkkmptemtaqTWTTIVKVSKAVCK TGTCICTTSCSNCK
ATGAATAAAGAACTATTTGATTTAGATATT AATAAGAAAATGGAAACACCTACTGAAAT GACAGCACAAACTTGGACAACTATTGTTAA AGTCTCAAAGGCTTGTATGAAAAAACAGGAA CTGTATTTTGAATACCTCATTCTCCTAATTG TAAGTAA
NC_020394 134225 134070

>Bacillus thuringiensis YBT 1518 (I) mineknlfdldivqvttatgdvdpqTGTGCCTISACTPGCGNTG SFNSFCCT
ATGATTAATGAAAAAAACCTTTTTGTATATT AATAAGAAAATGGAAACACCTACTGAAAT GACAGCACAAACTTGGACAACTATTGTTAA AGTCTCAAAGGCTTGTATGAAAAAACAGGAA CTGTATTTTGAATACCTCATTCTCCTAATTG TAAGTAA
NC_022873 3953881 3953741

>Bacillus thuringiensis YBT 1518 (II) mineknlfdldivqvttatgdvdpqTGTGCCTISACTPGCGNTG SFNSFCCT
ATGATTAATGAAAAAAACCTTTTTGTATATT AATAAGAAAATGGAAACACCTACTGAAAT GACAGCACAAACTTGGACAACTATTGTTAA AGTCTCAAAGGCTTGTATGAAAAAACAGGAA CTGTATTTTGAATACCTCATTCTCCTAATTG TAAGTAA
NC_022873 3954071 3953931

>Geobacillus kaustophilus HTA426 (I) maklddfdldivkkqdnivqpnTGTCICTTSCSNCK
ATGATTAATGAAAAAAACCTTTTTGTATATT AATAAGAAAATGGAAACACCTACTGAAAT GACAGCACAAACTTGGACAACTATTGTTAA AGTCTCAAAGGCTTGTATGAAAAAACAGGAA CTGTATTTTGAATACCTCATTCTCCTAATTG TAAGTAA
NC_022873 3954071 3953931

>Geobacillus kaustophilus HTA426 (II) maklddfdldivkkqdnivqpnTGTCICTTSCSNCK
ATGATTAATGAAAAAAACCTTTTTGTATATT AATAAGAAAATGGAAACACCTACTGAAAT GACAGCACAAACTTGGACAACTATTGTTAA AGTCTCAAAGGCTTGTATGAAAAAACAGGAA CTGTATTTTGAATACCTCATTCTCCTAATTG TAAGTAA
NC_006510 314934 315104

>Geobacillus kaustophilus HTA426 (II) maklddfdldivkkqdnivqpnTGTCICTTSCSNCK
ATGATTAATGAAAAAAACCTTTTTGTATATT AATAAGAAAATGGAAACACCTACTGAAAT GACAGCACAAACTTGGACAACTATTGTTAA AGTCTCAAAGGCTTGTATGAAAAAACAGGAA CTGTATTTTGAATACCTCATTCTCCTAATTG TAAGTAA
NC_006510 320984 321136
>Geobacillus sp. ZGt-1
maklddfdldivvkqdnivqpnITSKSLCTPGCTG
ILMCLTQNSCVSCNCIRC

>Geobacillus sp. ZGt-1
TGCTTAACGCAAAATTCTTGTGTATCTTGTA

LDPD01000000 2 33624 33794

>Geobacillus thermodenitrificans NG80-2
maklddfdldivvaknevapkgvqpaSGII
CTPTSCATGTLNCQVSLFCCKTC

NC_009328 298823 298994

>Geobacillus thermodenitrificans NG80-2
GTGCTTAACGCAAAATTCTTGTGTATCTTGTAACTCTTGCATTCGATGCTAA

NC_016593 362226 362378

>Geobacillus thermodenitrificans CCB_US3_UF5
maklddfdldivvkqdnivqpnITSKSLPPGLHHR
HLNVLNAKFLCIL

NC_017486 604687 604860

>Geobacillus thermoleovorans CCB_US3_UF5
TGCTTAACGCAAAATTCTTGTGTATCTTGTA

NC_017542 1693817 1693969

Paenibacillus polymyxa CR1
mknqfdldlvvakneveipvqpaSGII
CTPCATGTLNQCVSFLFCCKTC

Paenibacillus polymyxa CR1
NC_023037 174858 1748740

Paenibacillus polymyxa E681
mknqfdldlvvakneveipvqpaSGIICTCPSCATGTL
NCQVSLSFCKTC

Paenibacillus polymyxa E681
NC_014483 1558420 1558572

Paenibacillus polymyxa M1 (I)
mknqfdldlvvakneveipvqpaSGIICTCPSCATGTL
NCQVSLSFCKTC

Paenibacillus polymyxa M1 (I)
NC_017542 1693817 1693969
>Paenibacillus polymyxa M1 (II)
mknqfdldlqvaknevapkevqpaSGLICTPSCATG
TLNQVSLSFCKTC

>Paenibacillus polymyxa SC2 (I)
mknqfdldlqvtksesaskelqadSGIICTPTCLTSIL
NC_017542 1695699 1695851

>Paenibacillus polymyxa SC2 (II)
mknqfdldlqvaknevapkevqpaSGLICTPSCATG
TLNQVSLSFCKTC

>Staphylococcus aureus 11819-97 (I)
mekvldldvqvkannnsndsagdeRITSHSLCTPGCA
KTGSFNSFCC

>Staphylococcus aureus Bmb9393 (I)
mekvldldvqvkannnsndsagdeRITSHSLCTPGCA
KTGSFNSFCC

>Staphylococcus aureus COL (I)
mekvldldvqvkannnsndsagdeRITSHSLCTPGCA
KTGSFNSFCC

>Staphylococcus aureus COL (II)
mekvldldvqvkannnsndsagdeRITSHSLCTPGCA
KTGSFNSFCC

>Staphylococcus aureus 11819-97 (I)
mekvldldvqvkannnsndsagdeRITSHSLCTPGCA
KTGSFNSFCC

>Staphylococcus aureus Bmb9393 (I)
mekvldldvqvkannnsndsagdeRITSHSLCTPGCA
KTGSFNSFCC

>Staphylococcus aureus 11819-97 (II)
mekvldldvqvkannnsndsagdeRITSHSLCTPGCA
KTGSFNSFCC

>Staphylococcus aureus Bmb9393 (II)
mekvldldvqvkannnsndsagdeRITSHSLCTPGCA
KTGSFNSFCC

>Staphylococcus aureus COL (I)
mekvldldvqvkannnsndsagdeRITSHSLCTPGCA
KTGSFNSFCC

>Staphylococcus aureus COL (II)
mekvldldvqvkannnsndsagdeRITSHSLCTPGCA
KTGSFNSFCC

>Staphyloco...
Staphylococcus aureus ED133 (I)
menvldldvqvkakntnidaGDERITSFICGCTPGGK KTGSFSNFCC

Staphylococcus aureus ED133 (II)
mekvldldvqvkgnnntndsagdeGDERITSFICGCTPGDK TGSFSNFCC

Staphylococcus aureus LGA251 (I)
menvldldvqvkakntnidaGDERITSFICGCTPGGK KTGSFSNFCC

Staphylococcus aureus LGA251 (II)
mekvldldvqvkgnnntndsagdeGDERITSFICGCTPGDK TGSFSNFCC

Staphylococcus aureus M1 (I)
mekvldldvqvkannntndsagdeGDERITSFICGCTPGGK KTGSFSNFCC

Staphylococcus aureus M1 (II)
mekvldldvqvkgnnntndsagdeGDERITSFICGCTPGGK TGSFSNFCC

Staphylococcus aureus MSSA476 (I)
mekvldldvqkannntndsagdeGDERITSFICGCTPGGK KTGSFSNFCC

Staphylococcus aureus MSSA476 (II)
mekvldldvqkannntndsagdeGDERITSFICGCTPGGK TGSFSNFCC

Staphylococcus aureus MW2 (I)
mekvldldvqkannntndsagdeGDERITSFICGCTPGGK KTGSFSNFCC

Staphylococcus aureus MW2 (II)
mekvldldvqkannntndsagdeGDERITSFICGCTPGGK TGSFSNFCC

NC_017337

NC_017349

NC_021059

NC_021059

NC_002953

NC_002953

NC_003923

NC_003923
TAGTTTTAACAGCTTCTGTTGTTA
>Staphylococcus aureus NCTC 8325 (I) mekvldldvqkannnsndsgdeRITSHSLCTPGCA
KTGSFNSSFC
NC_007795
1857888
1857745

>Staphylococcus aureus NCTC 8325 (II) lekvldldvqvkgnnntndsagdeRITSHLFCSFGCE
KTGSFNSSFC
NC_007795
1858768
1858625

>Staphylococcus aureus Newman (I) mekvldldvqkannnsndsgdeRITSHSLCTPGCA
KTGSFNSSFC
NC_009641
1914736
1914593

>Staphylococcus aureus Newman (II) mekvldldvqvkgnnntndsagdeRITSHLFCSFGCEK
KTGSFNSSFC
NC_009641
1915616
1915473

>Staphylococcus aureus RF122 (I) menvldldvqkakntdsGDERITSFIGCTPGCG
KTGSFNSSFC
NC_007622
1829509
1829366

>Staphylococcus aureus RF122 (II) mekvldldvqkgnnntndsagdeRITSHLFCSFGCGK
KTGSFNSSFC
NC_007622
1830386
1829366

>Staphylococcus aureus T0131 (I) mekvldldvqkannnsndsgdeRITSHSLCTPGCA
KTGSFNSSFC
NC_017347
1932461
1932318

>Staphylococcus aureus T0131 (II) mekvldldvqkgnnntndsagdeRITSHLFCSFGCEK
KTGSFNSSFC
NC_017347
1933341
1933198

>Staphylococcus aureus TW20 (I) mekvldldvqkannnsndsgdeRITSHSLCTPGCA
KTGSFNSSFC
NC_017331
1978007
1977864

>Staphylococcus aureus TW20 (II) mekvldldvqkgnnntndsagdeRITSHLFCSFGCEK
KTGSFNSSFC
NC_017331
1978887
1978744
AGCGGGTGACGAAAGAATAACTAGCCATC
TTTTTTGTAGCTTTGGTTGTGAAAAGACGGG
TAGTTTTAACAGCTTCTGTTGTTAA

Staphylococcus aureus USA300 FPR3757 (I)
mekvldldvqvkannnsndsagdeRITSHSLCTPGCA
KTGSFNSFCC

Staphylococcus aureus USA300 FPR3757 (II)
mekvldldvqkgnnntndsagdeRITSHLFCSFGCEK
KTGSFNSFCC

Staphylococcus aureus USA300 _TCH1516 (I)
mekvldldvqvkannnsndsagdeRITSHSLCTPGCA
KTGSFNSFCC

Staphylococcus aureus USA300 _TCH1516 (II)
mekvldldvqkgnnntndsagdeRITSHLFCSFGCEK
KTGSFNSFCC

Staphylococcus aureus VC40 (I)
mekvldldvqkmnnntndsagdeRITSHSLCTPGCA
KTGSFNSFCC

Staphylococcus aureus VC40 (II)
mekvldldvqkmnnntndsagdeRITSHLFCSFGCEK
KTGSFNSFCC

Staphylococcus aureus Z172 (I)
mekvldldvqkmnnntndsagdeRITSHSLCTPGCA
KTGSFNSFCC

Staphylococcus aureus Z172 (II)
mekvldldvqkmnnntndsagdeRITSHLFCSFGCEK
KTGSFNSFCC

Streptococcus intermedius B196
msnhddfqldtnkvnfdndq
SIVTGCTGDCLTRHCADNVTKNTGCTVTH
PRCKR

Streptococcus intermedius B196
AGGCGGTTACGAAAGAATAACTAGCCATC
TTTTTTGTAGCTTTGGTTGTGAAAAGACGGG
TAGTTTTAACAGCTTCTGTTGTTAA
NC_00793 1954197 1954054

Staphylococcus aureus USA300 FPR3757 (I)
ATGGAAAAAGTTCTTGATTTAGACGTGCAA
GTTAAAGCAAACAATAACTCAAATGATTC
AGCAGGTGACGAACGTATTACAAGTCATA
GTTTATGTACTCCTGGTTGTGCTAAGACTGG
TAGTTTTAACAGCTTCTGTTGTTAA
NC_00793 1955077 1954934

Staphylococcus aureus USA300 _TCH1516 (I)
ATGGAAAAAGTTCTTGATTTAGACGTGCAA
GTTAAAGCAAACAATAACTCAAATGATTC
AGCAGGTGACGAACGTATTACAAGTCATA
GTTTATGTACTCCTGGTTGTGCTAAGACTGG
TAGTTTTAACAGCTTCTGTTGTTAA
NC_010079 1954906 1954803

Staphylococcus aureus USA300 _TCH1516 (II)
ATGGAAAAAGTTCTTGATTTAGACGTGCAA
GTTAAAGCAAACAATAACTCAAATGATTC
AGCAGGTGACGAACGTATTACAAGTCATA
GTTTATGTACTCCTGGTTGTGCTAAGACTGG
TAGTTTTAACAGCTTCTGTTGTTAA
NC_010079 1955826 1955683

Staphylococcus aureus VC40 (I)
ATGGAAAAAGTTCTTGATTTAGACGTGCAA
GTTAAAGCAAACAATAACTCAAATGATTC
AGCAGGTGACGAACGTATTACAAGTCATA
GTTTATGTACTCCTGGTTGTGCTAAGACTGG
TAGTTTTAACAGCTTCTGTTGTTAA
NC_016912 1815518 1815375

Staphylococcus aureus VC40 (II)
ATGGAAAAAGTTCTTGATTTAGACGTGCAA
GTTAAAGCAAACAATAACTCAAATGATTC
AGCAGGTGACGAACGTATTACAAGTCATA
GTTTATGTACTCCTGGTTGTGCTAAGACTGG
TAGTTTTAACAGCTTCTGTTGTTAA
NC_016912 1816398 1816255

Staphylococcus aureus Z172 (I)
ATGGAAAAAGTTCTTGATTTAGACGTGCAA
GTTAAAGCAAACAATAACTCAAATGATTC
AGCAGGTGACGAACGTATTACAAGTCATA
GTTTATGTACTCCTGGTTGTGCTAAGACTGG
TAGTTTTAACAGCTTCTGTTGTTAA
NC_022604 1976108 1975965

Staphylococcus aureus Z172 (II)
ATGGAAAAAGTTCTTGATTTAGACGTGCAA
GTTAAAGCAAACAATAACTCAAATGATTC
AGCAGGTGACGAACGTATTACAAGTCATA
GTTTATGTACTCCTGGTTGTGCTAAGACTGG
TAGTTTTAACAGCTTCTGTTGTTAA
NC_022604 1978319 1978176

Streptococcus intermedius B196
AGGCGGTTACGAAAGAATAACTAGCCATC
TTTTTTGTAGCTTTGGTTGTGAAAAGACGGG
TAGTTTTAACAGCTTCTGTTGTTAA
NC_022246 590584 590793
The presented gene positions are based on those predicted by antiSMASH 3.0 and confirmed by BLAST analysis.

1 The presented gene positions are based on those predicted by antiSMASH 3.0 and confirmed by BLAST analysis.
2 The presented genome sequence accession number for Geobacillus sp. ZGt-1 belongs to the original genome record; the whole genome shotgun (WGS) project.
Table S.2. The antiSMASH-predicted lanthipeptides whose coding genes have either been unannotated, inaccurately annotated, or annotated as coding for “hypothetical” proteins or generally as “antibiotics”.

Bacterial species, strain (lanthipeptide reference number)	ReSeq genome accession number	Annotation of the predicted lanthipeptide	Identity to experimentally verified lanthipeptide	Reference	
Bacillus subtilis BSN5 (I)	NC_014976	"Hypothetical"	100% subtilomycin	[32], and this study	
Bacillus subtilis spizizenii W23	NC_014479	"Hypothetical"	100% subtilin	This study	
Bacillus thuringiensis serovar finitimus YBT-020	NC_017200	"Hypothetical"	Unannotated	No hits	This study
Bacillus thuringiensis serovar IS5056 (I)	NC_020394	"Hypothetical"	100% thuricin 4A	[31], and this study	
Bacillus thuringiensis serovar IS5056 (II)	NC_020394	"Hypothetical"	100% thuricin 4A	[31], and this study	
Bacillus thuringiensis serovar IS5056 (III)	NC_020394	"Hypothetical"	86% thuricin 4A	[31], and this study	
Bacillus thuringiensis serovar IS5056 (IV)	NC_020394	"Hypothetical"	84% thuricin 4A	[31], and this study	
Bacillus thuringiensis serovar IS5056 (V)	NC_020394	"Hypothetical"	82% thuricin 4A	[31], and this study	
Bacillus thuringiensis YBT 1518 (I)	NC_022873	"Antibiotic protein, putative"	53% gallidermin	This study	
Bacillus thuringiensis YBT 1518 (II)	NC_022873	"Antibiotic protein, putative"	51% gallidermin	This study	
Geobacillus thermoleovorans CCB_US3_UF5	NC_016593	Unannotated	Parly inaccurately annotated gene	79% geobacillin I	This study
Paenibacillus polymyxa CR1	NC_023037	"Subtilin lantibiotic"	94% paenilan	[36, 37], and this study	
Paenibacillus polymyxa E681	NC_014483	"Subtilin lantibiotic"	100% paenilan	[38], and this study	
Paenibacillus polymyxa M1 (I)	NC_017542	Unannotated	"Hypothetical"	64% paenilan	This study
Paenibacillus polymyxa M1 (II)	NC_017542	Unannotated	"Hypothetical"	96% paenilan	This study
Paenibacillus polymyxa SC2 (I)	NC_014622	Partly inaccurately annotated gene	"Hypothetical"	64% paenilan	[30], and this study
Paenibacillus polymyxa SC2 (II)	NC_014622	"Subtilin lantibiotic"	96% paenilan	This study	
Staphylococcus aureus 11819-97 (II)	NC_017351	Unannotated	"Gallidermin/nisin family lantibiotic"	83% BsaA2	This study
Staphylococcus aureus COL (II)	NC_002951	Unannotated	"Gallidermin/nisin family lantibiotic"	79% BsaA2	This study
Staphylococcus aureus ED133 (I)	NC_017337	"Hypothetical"	"Gallidermin/nisin family lantibiotic"	100% BacCH91	This study
Staphylococcus aureus ED133 (II)	NC_017337	"Hypothetical"	"Gallidermin/nisin family lantibiotic"	85% BsaA2	[30], and this study
Staphylococcus aureus M1 (II)	NC_021059	Unannotated	"Gallidermin/nisin family lantibiotic"	83% BsaA2	This study
Staphylococcus aureus MSSA476 (I)	NC_002953	"Putative"	"Gallidermin/nisin family lantibiotic"	100% BsaA2	[8], and this study
The lanthipeptide aa sequence is presented in Table S1.

1 Identity % to experimentally proved lantibiotics is based on BAGEL BLAST, literature, or both.

2 The cited references represent studies where the aa sequence of the respective lanthipeptide (or its core peptide) was determined either based on an in silico analysis or experimental investigation.

3 Incorrectly annotated as subtilin. The aa sequences of the lanthipeptides do not match with that of the experimentally confirmed “lantibiotic subtilin” (AAB91589; WP_003220055) produced by B. subtilis.
Table S3. BLASTp results of the proteins coded by the Z-geobacillin biosynthesis gene cluster of *Geobacillus* sp. strain ZGt-1. blastp was run against the non-redundant protein sequences (nr) database.

Protein	Gene id	Protein description	Accession number	Identity	Query Coverage	E-value	
ZgeoA	6_34	MULTISPECIES: gallidermin/nisin family lantibiotic [Bacillaceae]	WP_011229795	100%	100%	2e-31	
ZgeoB	6_44	MULTISPECIES: lantibiotic biosynthesis protein SpaB [Geobacillus]	WP_014194788	100%	100%	0.0	
ZgeoT	6_45	MULTISPECIES: ABC transporter ATP-binding protein [Geobacillus]	WP_025038888	100%	35%	0.0	
ZgeoC	6_46	MULTISPECIES: lanthionine synthetase C family protein [Geobacillus]	WP_02029663	100%	100%	0.0	
ZgeoR	6_47	Two component transcriptional regulator, winged helix [Geobacillus thermoleovorans CCB_US3_UFS]	AEV17716.1 3	100%	100%	3e-167	
ZgeoK	6_48	MULTISPECIES: sensor histidine kinase [Geobacillus]	WP_011229815	100%	100%	0.0	
ZgeoI	6_49	MULTISPECIES: NisI/SpaI family lantibiotic immunity lipoprotein [Geobacillus]	WP_025039376	100%	100%	8e-102	
ZgeoG	6_50	MULTISPECIES: lantibiotic immunity ABC transporter MutG family permease subunit [Bacillaceae]	WP_004888811 4	100%	100%	1e-170	
ZgeoE	6_52	lantibiotic ABC transporter permease [Geobacillus thermoleovorans B23]	GA	60336 5	100%	100%	2e-175
ZgeoF	6_53	MULTISPECIES: lantibiotic ABC transporter ATP-binding protein [Geobacillus]	WP_008881431	100%	100%	2e-162	

1. Gene identity is presented as contig, and running number of the predicted genes within the contig. The contig numbers are the same as found in the NCBI genome record (LDPD01000000).
2. The low matching identity is explained by the 3288 undetermined nucleotides in the gene sequence.
3. The protein hit has 5 more amino acids at the N-terminal as compared to the antiSMASH 3.0-predicted lanthipeptide.
4. The protein hit has 20 more amino acids at the N-terminal as compared to the antiSMASH 3.0-predicted lanthipeptide.
5. The protein hit has 3 more amino acids at the N-terminal as compared to the antiSMASH 3.0-predicted lanthipeptide.
Table S4. Annotation of the proteins coded by the lanthipeptide biosynthesis gene cluster of *G.kaustophilus* HTA426. As described by NCBI, protein accession numbers with the WP_ prefix represent “non-redundant RefSeq protein records” that are “found in RefSeq genomes from multiple species”. (~) denotes that the presented protein is similar to the corresponding lanthipeptide cluster protein. Locus-tags containing underscores represent annotations of the RefSeq genome records, while those without underscores were derived from the annotations of the original genome records.

Protein coded by a member of the lanthipeptide gene cluster	Accession number	Locus-tag
LanAI	BAD74571	GK0286
	WP_011229795	GK_RS18085
LanAII	BAD74579	GK0294
	~WP_008881441	GK_RS01950
LanB	BAD74585	GK0300
	~WP_014194788	GK_RS18110
LanBII	~WP_014194788	Not annotated on the original genome
		In Refseq: GK_RS01970
LanC	BAD74589	GK0304
	WP_041467776	GK_RS01985
LanT	BAD74588	GK0305
	WP_011229812	GK_RS01980
LanK	BAD74592	GK0307
	WP_011229815	GK_RS01995
LanR	BAD74591	GK0306
	WP_004888888	GK_RS01990
LanI	BAD74594	GK0309
	~WP_008881434	GK_RS02005
LanF	BAD74597	GK0312
	WP_008881431	GK_RS02020
LanE	BAD74596	GK0311
	WP_008881432	GK_RS02015
LanG	BAD74595	GK0310
	WP_0048888811	GK_RS02010

1 The position of the gene annotated on the RefSeq genome differs from that predicted by antiSMASH 3.0. On the RefSeq genome, the position of the gene is (328676..329895), while the position predicted by antiSMASH 3.0 is (328679..329833).
Table S5. Annotation of the proteins coded by the lanthipeptide biosynthesis gene cluster of *G. thermodenitrificans* NG80-2. As described by NCBI, protein accession numbers with the WP_prefix represent “non-redundant RefSeq protein records” that are “found in RefSeq genomes from multiple species”. Locus-tags containing “RS” represent annotations of the RefSeq genome records, while the others were derived from the annotations of the original genome records.

Protein coded by a member of the lanthipeptide gene cluster	Accession number	Locus-tag	
GeoAI	ABO65649	GTNG_0265	
	WP_008881441	GTNG_RS18005	
GeoB	ABO65650	GTNG_0266	
	WP_011886696	GTNG_RS01590	
GeoC	ABO65652	GTNG_0268	
	WP_011886697	GTNG_RS01600	
GeoTI	ABO65651	GTNG_0267	
	WP_008881438	GTNG_RS01595	
GeoK	ABO65654	GTNG_0270	
	WP_011886698	GTNG_RS01610	
GeoR	ABO65653	GTNG_0269	
	WP_008881436	GTNG_RS01605	
GeoI	ABO65655	GTNG_0271	
	WP_011886699	GTNG_RS01615	
GeoF	ABO65658	GTNG_0274	
	WP_011886702	GTNG_RS01630	
GeoE	ABO65657	GTNG_0273	
	WP_011886701	GTNG_RS01625	
GeoG	ABO65656	GTNG_0272	
	WP_041264183	GTNG_RS01620	¹

¹ The position of the gene annotated on the RefSeq genome differs from that annotated on the original genome and predicted by antiSMASH 3.0. On the RefSeq genome, the position of the gene is complement (309209..309997), while based on the original genome annotation, as well as the antiSMASH 3.0, the position of the gene is complement (309209..309823).
Table S6. The set of previously described lanthipeptides that have supported the predictions of antiSMASH.

Bacterial species, strain (lanthipeptide reference number)	Refseq genome accession number	Annotation of the predicted lanthipeptide	Matching lanthipeptide ^2 (100% identical)	Supportive reference ^2
Bacillus clausii KSM-K16	NC_006582	Unannotated	“Gallidermin/nisin family lantibiotic”	- ^3
Bacillus megaterium QM B1551 (I-II)	NC_014023	“Antibiotic protein, putative”	“Gallidermin/nisin family lantibiotic”	- ^3
Bacillus subtilis BSn5	NC_014976	“Hypothetical”	“Hypothetical”	Subtilomycin
Bacillus subtilis spizizenii TU-B-10	NC_016047	Unannotated	“Gallidermin/nisin family lantibiotic”	Entianin
Bacillus subtilis spizizenii W23	NC_014479	“Hypothetical”	“Gallidermin/nisin family lantibiotic”	Subtilin
Bacillus thuringiensis serovar IS5056 (I-V)	NC_020394	“Antibiotic protein, putative”	“Gallidermin/nisin family lantibiotic”	Lanthipeptides of thuricin 4A cluster
Bacillus thuringiensis YBT-1518 (I-II)	NC_022873	“Antibiotic protein, putative”	“Gallidermin/nisin family lantibiotic”	- ^3
Geo bacillus kausophilus HTA426 (I)	NC_005610	“Lantibiotic precursor”	“Gallidermin/nisin family lantibiotic”	- ^3
Geo bacillus kausophilus HTA426 (II)	NC_005610	“Lantibiotic precursor”	“Lantibiotic nisin-A”	- ^3
Geo bacillus thermodenitrificans NG80_2	NC_009328	“Lantibiotic antimicrobial precursor peptide”	“Gallidermin/nisin family lantibiotic”	100% geobacillin I
Lactococcus lactis CV56	NC_017486	“Nisin precursor NisinA”	“Gallidermin/nisin family lantibiotic”	Nisin A
Lactococcus lactis IO	NC_020450	“Lantibiotic antimicrobial precursor”	“Gallidermin/nisin family lantibiotic”	Nisin Z
Paenibacillus polymyxa E681	NC_014483	“Lantibiotic paenilan precursor peptide”	“Gallidermin family protein”	Paenilan
Staphylococcus aureus 1H19-97 (I)	NC_017351	“Lantibiotic gallidermin”	“Gallidermin/nisin family lantibiotic”	BsaA2
Staphylococcus aureus Bm89093 (I)	NC_021670	“Gallidermic/nisin family lantibiotic”	“Gallidermin/nisin family lantibiotic”	BsaA2
Staphylococcus aureus COL (I)	NC_002951	“Lantibiotic epidermin precursor EpiA”	“Gallidermin/nisin family lantibiotic”	BsaA2
Staphylococcus aureus ED133 (I)	NC_017337	“Hypothetical”	“Gallidermin/nisin family lantibiotic”	BacCH91
Staphylococcus aureus ED133 (II)	NC_017337	“Hypothetical”	“Gallidermin/nisin family lantibiotic”	- ^3
Staphylococcus aureus LGA251 (I-II)	NC_017349	“Lantibiotic precursor”	“Gallidermin/nisin family lantibiotic”	- ^3
Staphylococcus aureus M1 (I)	NC_021059	“Lanthionine precursor peptide LanA”	“Gallidermin/nisin family lantibiotic”	BsaA2
Staphylococcus aureus MSSA476 (I)	NC_002953	“Putative isochorismatase”	“Gallidermin/nisin family lantibiotic”	BsaA2
Staphylococcus aureus MW2 (I)	NC_003923	“Hypothetical protein, similar to gallidermin”	“Gallidermin/nisin family lantibiotic”	BsaA2

^2 NCBI, BAGEL BLAST, [15], and [34]
Staphylococcus aureus	NC_007795	“Gallidermin superfamily epiA, putative”	“Gallidermin superfamily epiA, putative”	BsaA2	NCBI, and BAGEL BLAST
Staphylococcus aureus	NC_009641	“Lantibiotic precursor”	“Gallidermin/nisin family lantibiotic”	BsaA2	NCBI, and BAGEL BLAST
Staphylococcus aureus	NC_007622	“Hypothetical”	“Gallidermin/nisin family lantibiotic”	BacCH91	NCBI, [15], and [81]
Staphylococcus aureus	NC_007622	“Hypothetical”	“Gallidermin/nisin family lantibiotic”	- 3	NCBI
Staphylococcus aureus	NC_017347	“Lantibiotic”	“Gallidermin/nisin family lantibiotic”	BsaA2	NCBI, and BAGEL BLAST
Staphylococcus aureus	NC_017331	“Lantibiotic precursor”	“Gallidermin/nisin family lantibiotic”	BsaA2	NCBI, and BAGEL BLAST
Staphylococcus aureus	NC_007793	“Lantibiotic epidermin biosynthesis protein EpiA”	“Gallidermin/nisin family lantibiotic”	BsaA2	NCBI, and BAGEL BLAST
Staphylococcus aureus	NC_010079	“Lantibiotic epidermin EpiA”	“Gallidermin/nisin family lantibiotic”	BsaA2	NCBI, and BAGEL BLAST
Staphylococcus aureus	NC_016912	“Lantibiotic epidermin biosynthesis protein EpiA”	“Gallidermin/nisin family lantibiotic”	BsaA2	NCBI, and BAGEL BLAST
Staphylococcus aureus	NC_022604	“Lanthionine precursor peptide LanA”	“Gallidermin/nisin family lantibiotic”	BsaA2	NCBI, and BAGEL BLAST
Streptococcus intermedius C270	NC_022237	“Hypothetical”	“Gallidermin/nisin family lantibiotic”	- 3	NCBI
Streptococcus pasteurianus ATCC 43144	NC_015600	“Nisin U lantibiotic”	“Gallidermin/nisin family lantibiotic”	- 3	NCBI
Streptococcus pyogenes MGA56180	NC_007296	“Lantibiotic”	“Gallidermin/nisin family lantibiotic”	Streptin	NCBI, BAGEL BLAST, [15], and [84]
Streptococcus pyogenes MGA59429	NC_008021	“Lantibiotic biosynthesis sensor protein”	“Gallidermin/nisin family lantibiotic”	Streptin	NCBI, BAGEL BLAST, and [84]
Streptococcus pyogenes MGA510270	NC_008022	“Lantibiotic srtA precursor”	“Gallidermin/nisin family lantibiotic”	Streptin	NCBI, BAGEL BLAST, [15], and [84]
Streptococcus pyogenes MGA510750	NC_008024	“Lantibiotic srtA precursor”	“Gallidermin/nisin family lantibiotic”	- 3	NCBI, and [15]
Streptococcus suis JS14	NC_017618	Unannotated	“Gallidermin/nisin family lantibiotic”	Suicin 90-1330	NCBI, and [96]
Streptococcus suis SC070731	NC_020526	Unannotated	“Gallidermin/nisin family lantibiotic”	Suicin 90-1330	NCBI, and [96]

1 Identity to experimentally verified lanthipeptide. 2 Supportive reference represents literature study(ies) where the respective lanthipeptide was identified, annotation(s) of the genome deposited in NCBI (RefSeq/GenBank), and/or the results of BAGEL BLAST. 3 (-) indicates that among experimentally verified lanthipeptides, there is not any that has 100% identity to the respective lanthipeptide.
S.2.3.1. Identification of Bacillus-associated lanthipeptide gene clusters

S.2.3.1.1. B. clausii KSM-K16

The nucleotide (nt) sequence of the gene coding for the antiSMASH-predicted lanthipeptide (Table S1) is 100% identical to “ABC_RS22115” annotated on the RefSeq as coding for a class-I lanthipeptide (Table S2). Thus, the RefSeq annotation supports our analysis (Table S6). The core sequence of the predicted lanthipeptide was briefly mentioned by van Heel et al., 2016 [30]. The blastp analysis indicated that the predicted lanthipeptide is 56% identical to clausin (Table 2). We noticed that clausin has not been reported in BAGEL database; therefore, we recommend including it as a class-I lanthipeptide.

S.2.3.1.2. B. megaterium QM B1551

The aa sequences of the two antiSMASH-predicted lanthipeptides are identical, but the nt sequences of their two coding-genes are not (Table S1). The nt sequence of the gene coding for lanthipeptide (I) showed 100% identity to “BMQ_RS27575”, and that coding for lanthipeptide (II) showed 100% identity to “BMQ_RS27580”. These genes have been annotated in the RefSeq record as coding for class-I lanthipeptides (Table S2). Both lanthipeptides showed 56% identity to gallidermin as indicated by BAGEL BLAST (Table 2). It is noteworthy that using BAGEL3, Xin et al., 2015 identified one of the putative lanthipeptides [31] presented in the current study. Thus, the RefSeq annotation and results of Xin et al., 2015 support our analysis (Table S6).

S.2.3.1.3. B. subtilis spizizenii DSM 15029T (TU-B-10)

Our analysis has indicated points that are worth noting, as discussed below.

Using antiSMASH analysis, the gene coding for entianin was predicted (Table S1). In addition to the original and RefSeq genome sequence records of the strain, there is also a record on the entianin gene cluster that belongs to the same strain, separately deposited in NCBI under the accession number (HQ871873). We noticed that the entianin-coding gene has been annotated on the RefSeq as “GYO_RS39160” that codes for a class-I lanthipeptide. On the other hand, the coding gene in the entianin cluster record has been annotated and named as “etnS” coding for “EtnS” (AEK64494). The nt sequences of “GYO_RS39160” and “etnS” are identical and they both code for the same peptide. The two separate records related to the lanthipeptide resulted in having different tags/names for the same gene and its coded lanthipeptide. The entianin cluster (HQ871873) of the strain was sequenced by Fuchs et al. in 2011 [47] and the designation of the strain displayed for the record is DSM 15029. The antimicrobial activity of the entianin cluster has been experimentally proved [47]. On the other hand, the original genome (CP002905) was sequenced by Earl et al. in 2012 [46], whereas the RefSeq genome was annotated in 2017, and the stated designation of the strain for both genome records is (TU-B-10). Accordingly, a re-evaluation of naming the gene and its lanthipeptide product in the RefSeq needs to be considered to match the description of the experimentally-verified entianin cluster (HQ871873). Moreover, since the RefSeq genome record shows only one of the designations of the strain; TU-B-10 while the record of the entianin cluster shows the other designation; DSM 15029, we recommend to present both designations in each record in order to avoid the confusion. Interestingly, the antibacterial activity of entianin has been experimentally confirmed; it is highly active against several Gram-positive bacteria [47].

S.2.3.1.4. B. subtilis spizizenii W23

The nt sequence of the gene coding for the antiSMASH-predicted lanthipeptide (Table S1) is 100% identical to “BSUW23_RS16845” annotated on the RefSeq as coding for a class-I
lanthipeptide (Table S2). The RefSeq annotation thus supports our analysis (Table S6). BAGEL BLAST indicated that the predicted lanthipeptide is 100% identical to subtilin (Table 2; Table S2) and 95% to entianin.

S.2.3.1.5. B. thuringiensis YBT-1518

The antiSMASH analysis indicated that the class-I lanthipeptide cluster coded on the chromosome of strain YBT-1518 has two putative genes coding for two different lanthipeptides. The nt sequence of the gene coding for the predicted lanthipeptide (I) (Table S1) is 100% identical to “YBT1518_RS19670”, and that of the gene coding for lanthipeptide (II) is 100% identical to “YBT1518_RS19675”. Both genes have been annotated on the RefSeq genome as coding for class-I lanthipeptides. The RefSeq annotation thus supports our analysis (Table S6). Based on the analysis using BAGEL BLAST, the predicted lanthipeptides I and II are 53% and 51% identical to gallidermin, respectively (Table 2).

S.2.3.2. Identification of Geobacillus-associated lanthipeptide gene clusters

S.2.3.2.1. G. kaustophilus HTA426

The nt sequence of the gene coding for the antiSMASH-predicted lanthipeptide (I) (Table S1) is 100% identical to “GK_RS18085” annotated on the RefSeq genome as coding for a class-I lanthipeptide. Therefore, the genome annotation supports our results (Table S6). BAGEL BLAST showed that lanthipeptide (I) is 91% identical to the experimentally characterized antimicrobially-active lanthipeptide; geobacillin I (ABO65649) produced by G. thermodenitrificans NG80-2 [34]. Garg et al. 2012 reported the same lanthipeptide for strain HTA426 [34], and this in turn further supports our analysis (Table 2, Table S6).

S.2.3.3. Identification of Lactococcus-associated lanthipeptide gene clusters

S.2.3.3.1. L. lactis strains CV56 and IO-1

The nt sequence of the gene coding for the antiSMASH-predicted lanthipeptide of strain CV56 (Table S1) is 100% identical to “CVCAS_RS03115”, and that coding for the predicted lanthipeptide of strain IO-1 (Table S1) is 100% identical to “LILO_RS03015”. Both genes have been annotated in the RefSeq genome records as coding for class-I lanthipeptides. The RefSeq annotations thus support our analysis (Table S6). BAGEL BLAST showed that the predicted lanthipeptide of strain CV56 is 100% identical to nisin A (Table 2). Our results agree with those of Gao et al., 2011 [35] and Marsh et al., 2010 [15] (Table S6). On the other hand, BAGEL BLAST showed that the predicted lanthipeptide of strain IO-1 is 100% identical to nisin Z (Table 2).

S.2.3.4. Identification of Paenibacillus-associated lanthipeptide gene clusters

S.2.3.4.1. P. polymyx a E681

The nt sequence of the gene coding for the predicted lanthipeptide (Table S1) is 100% identical to “PPE_RS07020”, which has been annotated on the RefSeq as coding for a class-I lanthipeptide (Table S2). The aa sequence of the characterized class-I lanthipeptide; named paenilan produced by strain E681 [36] is identical to that inferred in our study for the same strain (Table S2). This in turn supports our analysis (Table S6). The antibacterial activity of paenilan has been experimentally verified by Park et al. [36].

S.2.3.5. Identification of Staphylococcus-associated lanthipeptide gene clusters
S.2.3.5.1. *S. aureus* 11819-97

The nt sequence of the gene coding for the antiSMASH-predicted lanthipeptide (I) (Table S1) is 100% identical to “MS7_RS09745” annotated on the RefSeq genome as coding for a class-I lanthipeptide. The annotation of the genome thus supports our analysis (Table S6). Moreover, BAGEL BLAST showed that lanthipeptide (I) is 100% identical to BsaA2 (Table 2). The antimicrobial activity of BsaA2 has been experimentally verified in other *S. aureus* strains by Daly et al., 2010 [8].

The nt sequence of the gene coding for the antiSMASH-predicted lanthipeptide (II) (Table S1) is 100% identical to “MS7_RS09750” annotated on the RefSeq genome as coding for a class-I lanthipeptide (Table S2). However, in RefSeq and consequently also in antiSMASH, the start codon has been translated into an incorrect aa in the presented aa sequence. The nt sequence presented in RefSeq and antiSMASH showed the first codon as “TTG”, which codes for the aa leucine (L) and not the reported methionine (M). Therefore, we edited the start aa of the predicted lanthipeptide (II) into the correct one (L) (Table S1). BAGEL BLAST showed that lanthipeptide (II) is 83% identical to BsaA2 (Table 2).

S.2.3.5.2. *S. aureus* COL

The nt sequence of the gene coding for the antiSMASH-predicted lanthipeptide (I) (Table S1) is 100% identical to “SACOL_RS09635” annotated on the RefSeq genome as coding for a class-I lanthipeptide. The annotation of the genome thus supports our analysis (Table S6). Moreover, BAGEL BLAST showed that lanthipeptide (I) is 100% identical to BsaA2 (Table 2). Daly et al., 2010 reported strain COL as a putative producer of BsaA2 [8].

The nt sequence of the gene coding for the antiSMASH-predicted lanthipeptide (II) (Table S1) is 100% identical to “SACOL_RS09645” annotated on the RefSeq genome as coding for a class-I lanthipeptide (Table S2). Again, we made the same correction of the aa as we did for lanthipeptide (II) of strain 11819-97 (Table S1). BAGEL BLAST showed that lanthipeptide (II) is 79% identical to BsaA2 (Table 2).

S.2.3.5.3. *S. aureus* ED133

The nt sequence of the gene coding for the antiSMASH-predicted lanthipeptide (I) (Table S1) is 100% identical to “SAOV_RS09475”, and that of the other predicted gene coding for lanthipeptide (II) (Table S1) is 100% identical to “SAOV_RS09490”. Both genes have been annotated on the RefSeq genome as coding for a class-I lanthipeptide (Table S2), which in turn, supports our analysis (Table S6). Moreover, BAGEL BLAST showed that lanthipeptide (I) is 100% identical to BacCH91 produced by *S. aureus* strain CH91 [81] (Table 2; Table S2). On the other hand, lanthipeptide (II) is 85% identical to BsaA2 (Table 2; Table S2). Only the core sequence of lanthipeptide (II) was very briefly mentioned by van Heel et al., 2016 and was inferred based on an *in silico* analysis [30].

S.2.3.5.4. *S. aureus* M1

The nt sequence of the gene coding for the antiSMASH-predicted lanthipeptide (I) (Table S1) is 100% identical to “BN843_RS09660” annotated on the RefSeq genome as coding for a class-I lanthipeptide. The annotation of the genome thus supports our analysis (Table S6). Moreover, BAGEL BLAST showed that lanthipeptide (I) is 100% identical to BsaA2 (Table 2).

The nt sequence of the gene coding for the antiSMASH-predicted lanthipeptide (II) (Table S1) is 100% identical to “BN843_RS09665” annotated on the RefSeq as coding for a class-I lanthipeptide (Table S2). Here as well, we edited the start aa of the predicted lanthipeptide (II) of...
strain M1 into the correct one (L) instead of M (Table S1). BAGEL BLAST showed that lanthipeptide (II) is 83% identical to BsaA2 (Table 2).

S.2.3.5.5. *S. aureus* MSSA476

The nt sequence of the gene coding for the antiSMASH-predicted lanthipeptide (I) (Table S1) is 100% identical to “SAS1746” which has been annotated on the RefSeq genome as coding for a class-I lanthipeptide (Table S2). The RefSeq genome annotation thus supports our analysis (Table S6). BAGEL BLAST showed that lanthipeptide (I) is 100% identical to BsaA2 (Table 2). Daly *et al.*, 2010 reported strain MSSA476 as a putative producer of BsaA2 [8].

The nt sequence of the gene coding for the antiSMASH–predicted lanthipeptide (II) (Table S1) is 100% identical to “SAS_RS09300” annotated on the RefSeq genome as coding for a class-I lanthipeptide. Here as well, we edited the start aa of the predicted lanthipeptide (II) of strain MSSA476 into the correct one (L) instead of M (Table S1). BAGEL BLAST showed that lanthipeptide (II) is 83% identical to BsaA2 (Table 2).

S.2.3.5.6. *S. aureus* MW2

The nt sequence of the gene coding for the antiSMASH-predicted lanthipeptide (I) (Table S1) is 100% identical to “MW_RS09420” annotated on the RefSeq as coding for a class-I lanthipeptide. Therefore, the RefSeq annotation supports our analysis (Table S6). BAGEL BLAST showed that lanthipeptide (I) is 100% identical to BsaA2 (Table 2). Daly *et al.*, 2010 reported strain MW2 as a putative producer of BsaA2 [8].

The nt sequence of the gene coding for the antiSMASH-predicted lanthipeptide (II) (Table S1) is 100% identical to “MW_RS09425” annotated on the RefSeq as coding for a class-I lanthipeptide. Here as well, we edited the start aa of the predicted lanthipeptide (II) of strain MW2 into the correct one (L) instead of M (Table S1). BAGEL BLAST showed that lanthipeptide (II) is 83% identical to BsaA2 (Table 2).

S.2.3.5.7. *S. aureus* NCTC 8325

The nt sequence of the gene coding for the antiSMASH-predicted lanthipeptide (I) (Table S1) is 100% identical to “SAOUHSC_01953” annotated on the RefSeq genome as coding for a class-I lanthipeptide. The annotation of the genome thus supports our analysis (Table S6). BAGEL BLAST showed that lanthipeptide (I) is 100% identical to BsaA2 (Table 2). Daly *et al.*, 2010 reported strain NCTC 8325 as a producer of BsaA2 [8].

S.2.3.5.8. *S. aureus* RF122

The nt sequence of the gene coding for the antiSMASH–predicted lanthipeptide (I) (Table S1) is 100% identical to “SAB_RS08990” annotated on the RefSeq genome as coding for a class-I lanthipeptide (Table S2), which thus supports our analysis (Table S6). Based on the analysis using BAGEL BLAST, lanthipeptide (I) is 100% identical to BacCH91, and 81% identical to BsaA2. Moreover, our results agree with the findings of Marsh *et al.*, 2010 [15].

The nt sequence of the gene coding for the antiSMASH-predicted lanthipeptide (II) (Table S1) is 100% identical to “SAB_RS08995” annotated on the RefSeq as coding for a class-I lanthipeptide (Table S2). Thus, the RefSeq annotation supports our analysis (Table S6). Based on the analysis using BAGEL BLAST, lanthipeptide (II) is 87% identical to BsaA2. Daly *et al.*, 2010 also reported strain RF122 as a producer of variants of Bsa[8].

S.2.3.5.9. *S. aureus* T0131
The nt sequence of the gene coding for the antiSMASH-predicted lanthipeptide (I) (Table S1) is 100% identical to “SAT0131_RS09535” annotated on the RefSeq genome as coding for a class-I lanthipeptide. The annotation of the genome thus supports our analysis (Table S6). BAGEL BLAST showed that lanthipeptide (I) is 100% identical to BsaA2 (Table 2).

The nt sequence of the gene coding for the antiSMASH-predicted lanthipeptide (II) (Table S1) is 100% identical to “SAT0131_RS09540” annotated on the RefSeq genome as coding for a class-I lanthipeptide. Here as well, we edited the start aa of the predicted lanthipeptide (II) of strain T0131 into the correct one (L) instead of M (Table S1). BAGEL BLAST showed that lanthipeptide (II) is 83% identical to BsaA2 (Table 2).

S.2.3.5.8.10. S. aureus strains USA300_FPR3757 and USA300_TCH1516

The nt sequence of the gene coding for the antiSMASH-predicted lanthipeptide (I) of strain USA300_FPR3757 (Table S1) is 100% identical to “SAUSA300_RS09670”. For strain USA300_TCH1516, the nt sequence of the gene coding for the predicted lanthipeptide (I) (Table S1) is 100% identical to “USA300HOU_RS09705”. Each of “SAUSA300_RS09670” and “USA300HOU_RS09705” has been annotated on the RefSeq genome of the respective strain as coding for a class-I lanthipeptide. The annotation of the genome thus supports our analysis (Table S6). BAGEL BLAST showed that each of the predicted lanthipeptides is 100% identical to BsaA2 (Table 2). Daly et al (2010) reported that the two strains are putative producers of BsaA2 [8].

The nt sequence of the gene coding for the antiSMASH-predicted lanthipeptide (II) of strain USA300_FPR3757 (Table S2) is 100% identical to “SAUSA300_RS09675”, and that of the gene coding for the predicted lanthipeptide (II) of strain “USA300_TCH1516” (Table S2) is identical to “USA300HOU_RS09710”. Here as well, we edited the start aa of the predicted lanthipeptide (II) of both strains into the correct one (L) instead of M (Table S1). BAGEL BLAST indicated that lanthipeptide (II) of each of the strains is 83% identical to BsaA2 (Table 2).

S.2.3.5.8.11. S. aureus Z172

The nt sequence of the gene coding for lanthipeptide (I) (Table S1) is 100% identical to “SAZ172_RS09800” annotated on the RefSeq genome as coding for a class-I lanthipeptide. The annotation of the genome thus supports our analysis (Table S6). BAGEL BLAST showed that lanthipeptide (I) is 100% identical to BsaA2 (Table 2).

The nt sequence of the antiSMASH-predicted lanthipeptide (II) (Table S1) is 100% identical to “SAZ172_RS09810” annotated on the RefSeq genome as coding for a class-I lanthipeptide (Table S2). Here as well, we edited the start aa of the predicted lanthipeptide (II) of strain Z172 into the correct one (L) instead of M (Table S1). BAGEL BLAST showed that lanthipeptide (II) is 83% identical to BsaA2 (Table 2).

S.2.3.5.8.12. other strains

The aa sequence of lanthipeptide (I) is identical in strains Bmb 9393, Newman, TW20, and VC40 (Table S1). The coding genes have been annotated in the RefSeq genome record of strain Bmb 9393, as “SABB_RS10200”; strain Newman as “NWMN_RS09635”; strain TW20, as “SATW20_RS09830”; and strain VC40, as “SAVC_RS08915”. Each of the genes has been annotated as coding for a class-I lanthipeptide. Therefore, the genome annotations support our results (Table S6). Moreover, the predicted lanthipeptides showed 100% identity to the BsaA2, as indicated by BAGEL BLAST (Table 2).

The aa sequence of lanthipeptide (II) in all these strains is identical (Table S1). The coding genes have been annotated in the RefSeq genome records as coding for class-I lanthipeptides. The
nt sequence of the predicted gene coding for lanthipeptide (II) of strain Bmb 9393 is 100% identical to “SABB_RS10205”, that of strain Newman is 100% identical to “NWMN_RS09640”, that of strain TW20 is 100% identical to “SATW20_RS09835”, and that of strain VC40 is 100% identical to “SAVC_RS08920”. Here as well, we edited the start aa of the predicted lanthipeptide (II) of each of these strains into the correct one (L) instead of M (Table S1). The predicted lanthipeptides showed 83% identity to the BsaA2, as indicated by BAGEL BLAST (Table 2).

Furthermore, our analysis indicated that S. aureus strain LGA251 harbours a class-I lanthipeptide cluster coding for two different lanthipeptides. The putative coding genes of lanthipeptides (I) and (II) (Table S1) have been annotated on the RefSeq genome as “SARLGA251_RS09195” and “SARLGA251_RS09200”, each of which has been annotated as coding for a class-I lanthipeptide. Therefore, RefSeq annotations support our analysis (Table S6). BAGEL BLAST indicated that lanthipeptides (I) and (II) showed 81% and 85% identity, respectively, to the BsaA2 of S. aureus (Table 2).

S.2.3.6. Identification of Streptococcus-associated lanthipeptide gene clusters

S.2.3.6.1. S. intermedius C270

The nt sequence of the gene coding for the antiSMASH-predicted lanthipeptide (Table S1) is 100% identical to “SII_RS05025” annotated on the RefSeq as coding for a class-I lanthipeptide (Table S2). The RefSeq annotation, in turn, supports our analysis (Table S6). Based on the analysis using BAGEL BLAST, the predicted lanthipeptide is 81% identical to Nisin F which is produced by L. lactis (Table 2; Table S2).

S.2.3.6.2. S. pasteurianus ATCC 43144

The nt sequence of the gene coding for the lanthipeptide (Table S1) is 100% identical to “SGPB_RS10680” annotated on the RefSeq as coding for a class-I lanthipeptide. The genome annotation, thus, supports our analysis (Table S6) and also confirms the results of Lin et al., 2011. Based on the analysis using BAGEL BLAST, the predicted lanthipeptide is 91% similar to nisin U (Table 2). These results indicate that the antimicrobial potential of the lanthipeptide in strain ATCC 43144 should be of interest to investigate.

S.2.3.6.3. S. pyogenes MGAS9429

The nt sequence coding for the antiSMASH-predicted lanthipeptide (Table S1) is 100% identical to “MGAS9429_RS04535” annotated on the RefSeq genome as coding for a class-I lanthipeptide (Table S2). This in turn supports our analysis (Table S6). Moreover, BAGEL BLAST indicated that the predicted lanthipeptide is 100% identical to streptin (Table 2). Therefore, we suggest considering S. pyogenes strain MGAS2096 as another potential streptin-producer.

S.2.3.6.4. Other strains of S. pyogenes

The aa sequences of the lanthipeptides of strains MGAS6180, MGAS10270 and MGAS10750 are identical (Table S1). The nt sequence of the gene coding for the lanthipeptide of strain MGAS6180 (Table S1) is 100% identical to “M28_RS03970”. That of the gene coding for the lanthipeptide of strain MGAS10270 (Table S1) is 100% identical to “MGAS10270_RS04550”. Finally, the nt sequence of the gene coding for the lanthipeptide of strain MGAS10750 (Table S1) is identical to “MGAS10750_RS04710”. These 3 genes have been annotated in the RefSeq genome records as coding for class-I lanthipeptides. Therefore, our results are supported by the annotation of the genome records of the three strains (Table S6). BAGEL BLAST indicated that the the lanthipeptides of strains MGAS6180 and MGAS10270 are 100% identical to streptin, while
that of strain MGAS10750 is 98% identical to streptin (Table 2). The results of antiSMASH analysis agree with the findings of Marsh et al, 2010 [15].

S.2.3.6.5. S. suis strains JS14 and SC070731

The nt sequences of the gene coding for the antiSMASH-predicted lanthipeptide of strain JS14, and that coding for the lanthipeptide of strain SC070731 are identical (Table S1). The coding genes have been annotated as “SSUJS14_RS10730” on the RefSeq genome of strain JS14, and as “NJAUSS_RS10650” on that of strain SC070731. Each of these genes codes for a class-I lanthipeptide. Therefore, the annotation of the RefSeq genome supports our analysis (Table S6). Each of the predicted lanthipeptides is 100% identical to suicin 90-1330 produced by S. suis strain 90-1330 [96] (Table 2). We noticed that suicin 90-1330 has not been reported in BAGEL databases. Since the lanthipeptide production potential of strains JS14 and SC07073 has not been investigated, we suggest the two strains as potential lanthipeptide producers.

* The section number corresponds to that in the main text but preceded with an “S.” for “supplementary”.

Additional files

- Software source code is available at [http://130.235.46.10/Lanthipeptides/Software/](http://130.235.46.10/Lanthipeptides/)
- Graphical illustrations of the antiSMASH output are available at http://130.235.46.10/Lanthipeptides/