NTNU-2 at SemEval-2017 Task 10: Identifying Synonym and Hyponym Relations among Keyphrases in Scientific Documents

Biswanath Barik, Erwin Marsi
Department of Computer Science
Norwegian University of Science and Technology
{biswanath.barik,emarsi}@ntnu.no

Abstract

This paper presents our relation extraction system for subtask C of SemEval-2017 Task 10: ScienceIE. Assuming that the keyphrases are already annotated in the input data, our work explores a wide range of linguistic features, applies various feature selection techniques, optimizes the hyper parameters and class weights and experiments with different problem formulations (single classification model vs individual classifiers for each keyphrase type, single-step classifier vs pipeline classifier for hyponym relations). Performance of five popular classification algorithms are evaluated for each problem formulation along with feature selection. The best setting achieved an \(F_1 \) score of 71.0% for synonym and 30.0% for hyponym relation on the test data.

1 Problem Description

Task C of ScienceIE at SemEval-2017 (Augenstein et al., 2017) concerns identifying sentence level ‘SYNONYM-OF’ (or ‘same-as’) and ‘HYPONYM-OF’ (‘is-a’) relations among three types of keyphrases: PROCESS (PR), TASK (TA) and MATERIAL (MA) in scientific documents. The ‘SYNONYM-OF’ relation is symmetric, whereas the ‘HYPONYM-OF’ relation is directed. Hyponym relation prediction is thus associated with two ordered subtasks: (1) predicting relations between pairs of keyphrases; (2) predicting the direction of the relation. It is assumed that there are no relations between keyphrase of different types. Automatic identification of synonym/hyponym relations is useful for many NLP applications, e.g. knowledge base completion and ontology construction.

2 Challenges

The relation prediction task of ScienceIE is challenging and quite different from other semantic relation prediction task like SemEval-2010 Task 8 (Hendrickx et al., 2009). In SemEval-2010 Task 8, there are two marked nominals in a sentence and the task is to predict if any of nine semantic relations hold between the nominal pair. Although there are more relations than ScienceIE (9 vs 2), ScienceIE poses different challenges. Instead of single-word nominals, the keyphrases of ScienceIE are arbitrarily large text spans referring to larger syntactico-semantic units. The top part of Table 1 shows the percentage of keyphrases longer than 10 tokens in the training (10.89%), development (8.76%) and test (6.71%) data. The problem with such large text spans is to identify features which best represent the keyphrase and contribute most to the relation prediction task.

Another challenge of ScienceIE is the occurrence of multiple keyphrases in one sentence, producing a large number of possible relations among keyphrase pairs, i.e., \(n(n - 1)/2 \) for \(n \) keyphrases. As most of these are negative instances, the positive and negative classes are imbalanced.

A third challenge is the potentially long distance between keyphrase pairs. The middle part of Table 1 shows that there are 49.2%, 57.68% and 43.77% keyphrase pairs in training, development and test sets respectively which are separated by more than 19 tokens. In addition, a number of other keyphrases can occur in between a pair of related keyphrases, as shown in Table 1.

Finally, the number of synonym and hyponym relations in the training and development datasets is limited. The bottom part of Table 2 shows the frequencies of relations in training and development datasets (ignoring inter-sentence keyphrase relations).
Table 1: Keyphrase related statistics on data sets

keyphrase length (ℓ)	train	dev	test
ℓ = 1 (single word)	8.49	13.13	12.87
2 ≤ ℓ ≤ 5	58.11	58.08	63.44
6 ≤ ℓ ≤ 10	22.51	20.03	16.98
ℓ ≥ 11	10.89	8.76	6.71

inter-keyphrase distance (λ)	train	dev	test
λ = 0 (adjacent)	0.05	0.02	0.06
1 ≤ λ ≤ 10	20.60	16.17	22.24
11 ≤ λ ≤ 20	29.52	26.13	32.94
λ ≥ 20	49.82	57.68	43.77

# intervening keyphrases (n)	train	dev	test
n = 0 (adjacent)	51.40	43.14	55.53
n = 1	23.84	23.95	25.13
n = 2	11.64	12.84	11.30
n = 3	5.64	7.32	4.57
n ≥ 4	7.48	12.72	3.46

Table 2: Relation related statistics on data sets

Relation Type	Dataset	PR	TA	MA	Total
SYNONYM	train	150	11	88	249
SYNONYM	dev	23	1	21	45
HYPONYM	train	188	48	178	414
HYPONYM	dev	41	8	71	120

In both of these problem formulations, synonym is a binary classification problem, whereas the hyponym relation is considered as ternary classification (i.e., forward relation, backward relation and no relation).

Approach-2: Hyponym Relation-Direction Prediction
Since the hyponym relation is directed, another option is to predict its direction separately. Whereas in Approach-1 hyponym relations and their direction were predicted simultaneously as a three class problem, in Approach-2 we have developed two systems – for relation prediction and direction prediction – and connect them in a pipeline. System-3 thus refers to a pipelined classification of hyponym relations.

4 Experiments

Preprocessing
Input text is linguistically analyzed with the Stanford CoreNLP library (Manning et al., 2014), which includes sentence boundary detection, tokenization, lemmatization, part-of-speech (POS) tagging and dependency parsing.

Feature Extraction
Features are extracted for every possible keyphrase pair within a sentence. The feature extraction process depends heavily on contextual information and dependency structures, specifically, the shortest dependency path between two keyphrase heads and the dependency subtree connecting two keyphrases as described in (Liu et al., 2015). The major feature categories are:

- context features: bag-of-word – unigram & bigram, lemma, POS, word-POS combination
- before & after context features: bag-of-word – unigram & bigram, lemma, POS, word-POS combination in certain window sizes
- dependency features: dependency head & dependents of each keyphrase of the considered pair, head of the in-between context, dependency path between two entity heads, ordering of keyphrases in dependency path, dis-
Table 3: Candidate Classification Algorithms

Sl.	Classification Algorithm	Parameters
1	Support Vector Machines (SVM)	C, w, loss
2	Multinomial Naive Bayes (MNB)	Alpha
3	Decision Tree (DT)	split, w, max_feat
4	Random Forest (RF)	n_est., w, criterion
5	k-Nearest Neighbours (kNN)	N, weight

Sl.	Feature Selection Method	Parameters
1	χ²-based feature selection (X2)	k
2	Tree-based feature selection (TR)	ExtraTreesClf
3	Recursive Feature Elim. (REF)	SVM

Classifiers Used

Instead of choosing any particular classification algorithm, we have evaluated five different classifiers with hyper-parameters and class weights tuned for different systems, as listed in the top half of Table 3.

Feature Selection Methods

As shown in Table 1, the keyphrase length (ℓ) and the in-between context length (λ) can be arbitrarily large. As a result, the feature extraction process generates a large number of features, many of which are unlikely to provide any useful information. Therefore we investigated three different feature selection techniques, as shown in the bottom half of Table 3. Among these feature selection techniques, χ²-based feature selection (X2) gave the best result.

Parameter Optimization through CV

The training instances were extracted from 350 training files, indexed by training file name, followed by preprocessing and feature extraction as described above. The class weights, parameters for five classifiers and k (the top-k feature for χ²-based feature selection) were optimized for the three different experimental setups (System 1-3) described below using five fold cross validation with grid search, where training instances from the same training file are always in the same fold. Our implementation relied on classifiers, feature selection methods and CV grid search from Scikit-learn.

System-1

We ran CV experiments to optimize settings for the separate relation prediction tasks: synonym_process (SP), synonym_task (ST), synonym_material (SM), hyponym_process (HP), hyponym_task (HT) and hyponym_material (HM). For each task, we optimized the hyper-parameters of five classifiers as shown in Table 3. The performance of the best classifier was then evaluated on the development dataset. For the hyponym relation, we optimized on the micro-average score over the forward and backward relation.

System-2

System-2 consists of a combination of one synonym classifier and one hyponym classifier.

System-3

Hyponym relations and their directions were predicted by separate classifiers connected in a pipeline. Parameters were therefore optimized for relation and direction prediction separately. The synonym predictions of System-3 result from the combination of the synonym classifier of 1-4 and 2 where any keyphrase pair predicted by either classifier 1-4 or classifier 2 is considered as synonym.

5 Results

Table 4 shows the result of System 1-3 on development data, while Table 5 shows performance on test data. According to Table 4, the combined performance of individual classifiers (of System-1) for synonym (SM-SP-ST) and hyponym (HM-HP-HT) is 77% and 29%, which is slightly lower than the corresponding performance of System-2. This is consistent with performance on the test data. On the other hand, the pipeline of System-3 shows a lower score than System-1 and System-2 for the hyponym relation.

5.1 Error Analysis

We have analyzed the mistakes produced by System 1-3 and found the following frequent error categories:

- **synonyms** - The synonyms with pattern KEYPHRASE1 (KEYPHRASE2 in abbrevi-
Table 4: Result of individual classifiers where hyponym relations are considered as three class problem with micro average of positive classes

Sys	Relation	Clf	Pr	Re	F₁
1	SM	SVM	0.93	0.62	0.74
1-2	SP	DT	0.78	0.78	0.78
1-3	ST	DT	1.00	1.00	1.00
1-4	SM-SP-ST	SVM-DT-DT	0.84	0.71	0.77
1-5	HM	RF	0.39	0.21	0.27
1-6	HP	SVM	0.51	0.27	0.35
1-7	HT	SVM	0.04	0.10	0.06
1-8	HM-HP-HT	RF-SVM-SVM	0.40	0.23	0.29
2	Syno	SVM	0.80	0.77	0.81
2	Hypo	DT	0.37	0.28	0.32
3	Syno 1-4+2	SVM	0.84	0.79	0.81
3	Rel	SVM	0.64	0.35	0.45
3	Dir	SVM	0.73	0.72	0.72
3	Rel → Dir	SVM-SVM	0.36	0.21	0.26

Table 5: Result of synonym and hyponym relation of System 1-3 on test data

System	Hyponym	Synonym	Pr	Re	F₁	Pr	Re	F₁
1	0.34	0.24	0.28	0.71	0.62	0.66		
2	0.35	0.26	**0.30**	0.82	0.57	0.67		
3	0.31	0.18	0.23	0.78	0.65	**0.71**		

6 Conclusion

We have described our system for predicting synonym and hyponym relations between keyphrases within a feature-based supervised learning framework. We have developed three systems for the synonym and hyponym prediction tasks. Experiments showed that with a relatively small dataset, training a single classifier for synonym and hyponym works slightly better than training separate classifiers for each keyphrase type. We also found that a pipeline of classifiers for relation and direction prediction of hyponym relations is not effective compared with predicting relation and direction simultaneously. As future work, we can investigate the performance of neural-network-based relation classification approaches (specifically Convolution and Recurrent Neural Networks).

References

Isabelle Augenstein, Mrinal Kanti Das, Sebastian Riedel, Lakshmi Nair Vikraman, and Andrew McCallum. 2017. SemEval 2017 Task 10: ScienceIE - Extracting Keyphrases and Relations from Scientific Publications. In Proceedings of the International Workshop on Semantic Evaluation. Vancouver, Canada.

Biswanath Barik, Erwin Marsi, and Pinar Öztürk. 2017. Extracting Causal Relations among Complex Events in Natural Science Literature. In Proceedings of the 22nd International Conference on Natural Language & Information Systems (NLDB). Liege, Belgium.

Razvan C Bunescu and Raymond J Mooney. 2005. A shortest path dependency kernel for relation extraction. In Proceedings of the conference on human language technology and empirical methods in natural language processing. pages 724–731.

Iris Hendrickx, Su Nam Kim, Zornitsa Kozareva, Preslav Nakov, Diarmuid O Séaghdha, Sebastian Padó, Marco Pennacchiotti, Lorenza Romano, and Stan Szpakowicz. 2009. Semeval-2010 task 8: Multi-way classification of semantic relations between pairs of nominals. In Proceedings of the Workshop on Semantic Evaluations: Recent Achievements and Future Directions. pages 94–99.

Yang Liu, Furu Wei, Sujian Li, Heng Ji, Ming Zhou, and Houfeng Wang. 2015. A dependency-based neural network for relation classification. arXiv preprint arXiv:1507.04646.

Christopher D Manning, Mihai Surdeanu, John Bauer, Jenny Rose Finkel, Steven Bethard, and David McClosky. 2014. The stanford corenlp natural language processing toolkit. In ACL (System Demonstrations). pages 55–60.

Bryan Rink and Sandra Harabagiu. 2010. UTD: Classifying semantic relations by combining lexical and semantic resources. In Proceedings of the 5th International Workshop on Semantic Evaluation, pages 256–259.