Endovascular treatment and cognitive outcome after anterior circulation ischemic stroke

Simona Lattanzi1*, Michela Coccia2, Alessandra Pulcini1, Claudia Cagnetti3, Federica Lucia Galli2, Laura Villani2, Serena Campa3, Mauro Dobran4, Gabriele Polonara3, Maria Gabriella Ceravolo2 & Mauro Silvestrini1

The impact of reperfusion therapies on cognition has been poorly explored and little knowledge exists. We explored the influence of endovascular treatment (EVT) on cognitive outcome in patients with anterior circulation ischemic stroke. Patients presenting with ischemic stroke due to anterior large vessel occlusion who underwent intravenous thrombolysis (IVT) alone or EVT plus IVT were recruited. Cognitive abilities were evaluated at 6 months from stroke through a neuropsychological test battery. A total of 88 patients with a mean age of 66.3 ± 12.9 years were included, of which 38 treated with IVT alone and 50 with IVT plus EVT. Compared to patients treated with IVT alone, patients who received EVT plus IVT performed significantly better at the neuropsychological tests exploring executive functions, attention, abstract reasoning, visuospatial ability, visual and verbal and memory. At multivariable regression analysis, the EVT was independently associated with the 6-month cognitive performance after the adjustment for age, sex, admission National Institutes of Health Stroke Scale score, systolic blood pressure, glucose level, Alberta Stroke Program Early CT score, side of stroke, site of occlusion, and Back Depression Inventory score [Stroop Test Word Reading: adjβ = 13.99, 95% confidence interval (CI) 8.47–19.50, p < 0.001; Stroop Test Colour Naming: adjβ = 6.63, 95% CI 2.46–10.81, p = 0.002; Trail Making Test-A: adjβ = – 92.98, 95% CI – 153.76 to – 32.20, p = 0.003; Trail Making Test-B: adjβ = – 181.12, 95% CI – 266.09 to – 96.15, p < 0.001; Digit Span Test Forward: adjβ = 1.44, 95% CI 0.77–2.10, p < 0.001; Digit Span Test Backward: adjβ = 1.10, 95% CI 0.42–1.77, p = 0.002; Coloured Progressive Matrices: adjβ = 5.82, 95% CI 2.71–8.93, p < 0.001; Rey Complex Figure Test-Copy: adjβ = 6.02, 95% CI 2.74–9.30, p < 0.001; Rey Complex Figure Test-Immediate recall: adjβ = 6.00, 95% CI 2.34–9.66, p = 0.002; Rey Complex Figure Test-Delayed recall: adjβ = 5.73, 95% CI 1.95–9.51, p = 0.003; Rey Auditory Verbal Learning Test-Immediate recall: adjβ = 12.60, 95% CI 6.69–18.52, p < 0.001; Rey Auditory Verbal Learning Test-Delayed recall: adjβ = 1.85, 95% CI 0.24–3.45, p = 0.025]. Patients treated with EVT plus IVT had better cognitive performance than patients treated with IVT alone at 6 months from anterior circulation ischemic stroke.

Cognitive impairment is a common consequence after stroke1,2. It is closely related to disability, dependency and institutionalization, and it is a major determinant of poor quality of life in stroke survivors3–5. So far, the impact of reperfusion therapies on cognition has been poorly explored and little knowledge exists. Indeed, physical recovery represents the main endpoint in stroke trials, whereas cognitive outcome is generally overlooked6,7. The aim of this study was to investigate the effect of the endovascular treatment (EVT) on cognitive functioning in patients with ischemic stroke due to proximal arterial occlusion of the anterior circulation by comparing the 6-month neuropsychological performance in patients treated with intravenous thrombolysis (IVT) alone and IVT plus EVT.

1Neurological Clinic, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Via Conca 71, 60020 Ancona, Italy. 2Neurorehabilitation Clinic, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy. 3Clinic of Neuroradiology, Marche Polytechnic University, Ancona, Italy. 4Clinic of Neurosurgery, Marche Polytechnic University, Ancona, Italy. 5email: alferelattanzisimona@gmail.com
Results

A total of 186 out of 1095 patients admitted to our Stroke Unit for ischemic stroke underwent IVT alone or IVT plus EVT for a proximal arterial occlusion of the anterior circulation (Fig. 1). Fifty-four patients were excluded due to history of prior stroke/dementia (n = 7), death (n = 26), and unavailability of neuropsychological assessment as lost to follow-up (n = 21). The comparison of baseline characteristics between the patients with 6-month neuropsychological assessment and those who were excluded due to lack of follow-up did not show significant differences (Supplementary Table S1). Among the patients (n = 132) who underwent neuropsychological evaluation at 6 months from stroke, 44 patients were further excluded from the full cognitive performance testing since they presented with aphasia (n = 24) and neglect (n = 20). The characteristics of the patients excluded due to the impairment in language and visuo-spatial inattention domains are shown in Supplementary Table S2.

Accordingly, 88 patients were included in the analysis, of which 38 treated with IVT alone and 50 with IVT plus EVT. Patients did not receive EVT due to stroke occurrence before full implementation of EVT delivery at the site (n = 21), mild neurologic deficit at onset (n = 8), successful opening of occlusion/marked improvement of neurological deficit by IVT (n = 8), and very elderly (n = 1).

The mean age of the patients was 66.3 ± 12.9 years and 31 (35.2%) were females; 45 (51.1%) patients had right and 43 (48.9%) left hemisphere stroke. Baseline demographic and clinical characteristics of the study cohort according to the treatment group are shown in Table 1. No statistically significant differences in the prevalence of vascular risk factors and stroke severity emerged among the two groups, with the exception of serum glucose levels and NIHSS score at admission, which were higher among the patients treated with IVT plus EVT.

The scores obtained by the patients in the neuropsychological tests performed at 6 months from stroke are summarized in Table 2. Patients treated with IVT alone obtained lower (worse) scores at the SCWT, DST, CPM, RCFT-C, RCFT-I, RCFT-D, RAVLT-I and RAVLT-D and higher (worse) scores at the TMT-A and TMT-B. Patients in the IVT group had also higher (worse) scores on the BDI in comparison to patients treated with IVT plus EVT [8.0 (2.0–11.0) versus 3.5 (0.0–9.0); p = 0.096] and higher (worse) scores on the mRS [3.0 (1.0–4.0) versus 1.0 (0.0–2.0); p < 0.001] in comparison to patients treated with IVT plus EVT.

The results of the regression analysis are shown in Table 3. The acute stroke treatment resulted a significant predictor of 6-month cognitive outcome being the EVT plus IVT associated with better cognitive performances, before and after the adjustment for potential confounding factors (Table 3). None of the multivariate models suffered from collinearity (variance inflation factors ranged from 1.10 to 2.05).

Figure 1. Patient selection flow diagram. EVT endovascular treatment, IVT intravenous thrombolysis.
Demographics	IVT (n = 30)	IVT plus EVT (n = 50)	p value
Age (years)	67.2 (11.4)	65.6 (14.1)	0.562a
Male sex	29 (76.3)	28 (56.0)	0.048b
Education (years)	8 [5–13]	8 [8–13]	0.104c
Clinical history			
Current smoking	8 (21.1)	11 (22.0)	0.915a
Hypertension	25 (65.8)	31 (62.0)	0.714a
Diabetes mellitus	3 (13.2)	5 (10.0)	0.644a
Dyslipidaemia	23 (60.5)	22 (44.1)	0.124a
Coronary artery disease	4 (10.5)	10 (20.0)	0.229a
Admission assessment			
Systolic BP (mmHg)	150 [140–160]	150 [140–160]	0.352c
Serum glucose (mg/dl)	106 [89–120]	129 [109–140]	<0.001c
NIHSS score	10.2 (5.7)	15.8 (4.0)	<0.001c
ASPECTS value	9 [8–10]	8 [7–10]	0.158c
Location of intracranial occlusion			0.122a
Internal carotid artery	3 (7.9)	3 (6.0)	
Internal carotid artery terminus	–	4 (8.0)	
Middle cerebral artery			
First segment	22 (57.9)	34 (68.0)	
Second segment	11 (29.0)	9 (18.0)	
Anterior cerebral artery A1	2 (5.3)	–	

Table 1. Baseline characteristics of patients. Data are mean (SD) or median [IQR] for continuous variables, and n (%) for categorical variables. ASPECT Alberta Stroke Program Early CT, BP blood pressure, EVT endovascular treatment, IQR interquartile range, IVT intravenous thrombolysis, NIHSS National Institutes of Health Stroke Scale, SD standard deviation. a Two-sample t test. b Chi-squared test. c Mann–Whitney test. d Associated internal carotid artery and middle cerebral artery occlusion (tandem occlusion).

Stroop test	IVT (n = 38)	IVT plus EVT (n = 50)	p value
Word reading	33.4 (16.0)	41.5 (11.1)	0.006a
Colour naming	18.4 (10.9)	23.2 (7.8)	0.018a
Trail making test			
Part A	90.5 [36.0–307.0]	36.0 [27.0–87.0]	0.005a
Part B	233.5 [57.0–562.0]	73.0 [41–227]	0.003a
Digit span test			
Forward	4.8 [3.1–5.3]	5.2 [4.3–5.8]	0.018a
Backward	3.2 [2.0–4.3]	4.1 [3.3–5.0]	0.005a
Coloured Progressive Matrices	25.0 [18.5–31.0]	28.8 [24.5–33.5]	0.016a
Rey complex figure test			
Copy	28.0 [21.4–30.6]	30.5 [27.0–31.5]	0.007a
Immediate recall	18.0 [12.6–24.6]	24.3 [18.4–28.1]	0.016a
Delayed recall	16.9 [8.7–20.6]	18.6 [13.7–26.5]	0.022a
Rey auditory verbal learning test			0.081a
Immediate recall	22.9 (11.3)	32.9 (13.7)	<0.001a
Delayed recall	7.0 (4.1)	8.6 (3.0)	0.038a

Table 2. Cognitive performance at 6 months from stroke. Data are mean (SD) or median [IQR]. Higher values indicate worse performance for the Trail Making Tests and better performance for all the other cognitive tests. EVT endovascular treatment, IVT intravenous thrombolysis. a Two-sample t test. b Mann–Whitney test.
independence in comparison to standard medical care in patients with strokes due to large vessels occlusions. Efficacious in lowering the risk of mortality, reduces the severity of disability and increases the rate of functional recovery. EVT has the potentiality to favorably influence the post-stroke cognitive recovery. Indeed, the mRS—the most widely used tool for assessing long-term functional outcome, remains invariant to the type of treatment and encompasses both cognitive and non-cognitive domains. The current study extends the findings of the recent randomized controlled trials and provides evidence that the early recanalization of the occluded vessels is the main mechanism underlying the beneficial effects of the reperfusion therapies: it can restore flow to the ischemic penumbra and prevent its transformation into necrotic tissue. Significant differences, however, exist between pharmacological intravenous fibrinolysis and mechanical thrombectomy at broadened therapeutic window had higher scores in Mini-Mental State Examination tests at the 90 days follow-up than those receiving standard therapy. Although both tests can assess multiple cognitive abilities, they represent global screening tools for detecting cognitive impairment rather than instruments to thoroughly evaluate the neuropsychological domains. Moreover, the very small differences in total scores observed between the treatment arms and the lack of data about the individual items of both tests make difficult the clinical interpretation of the findings.

Discussion

The main finding of this study was the better 6-month cognitive outcome observed in patients with stroke due to proximal large vessel occlusion who underwent IVT combined with EVT than IVT alone. At the follow-up visit, patients treated with IVT plus EVT performed better in the tests exploring executive functions and attention, abstract reasoning, constructive ability, and visuospatial and verbal memory. The early recanalization of the occluded vessels is the main mechanism underlying the beneficial effects of the reperfusion therapies: it can restore flow to the ischemic penumbra and prevent its transformation into necrotic tissue. Significant differences, however, exist between pharmacological intravenous fibrinolysis and mechanical thrombectomy at broadened therapeutic window had higher scores in Mini-Mental State Examination tests at the 90 days follow-up than those receiving standard therapy. Although both tests can assess multiple cognitive abilities, they represent global screening tools for detecting cognitive impairment rather than instruments to thoroughly evaluate the neuropsychological domains. Moreover, the very small differences in total scores observed between the treatment arms and the lack of data about the individual items of both tests make difficult the clinical interpretation of the findings.

Table 3

Dependent variable	Unadjusted	Adjusted \(a \)				
	\(\beta \)	95% CI	\(p \)	\(\beta \)	95% CI	\(p \)
Stroop test word reading	8.16	2.40 to 13.91	0.006	13.99	8.47 to 19.50	<0.001
Stroop test colour naming	4.81	0.85 to 8.77	0.018	6.63	2.46 to 10.81	0.002
Trail making test-A	−113.49	−167.85 to −59.14	<0.001	−92.98	−153.76 to −32.20	0.003
Trail making test-B	−174.63	−254.64 to −94.62	<0.001	−181.12	−266.09 to −96.15	<0.001
Digit span test forward	0.79	0.19 to 1.39	0.011	1.44	0.77 to 2.10	<0.001
Digit span test backward	0.97	0.37 to 1.58	0.002	1.10	0.42 to 1.77	0.002
Coloured progressive matrices	3.81	0.75 to 6.87	0.015	5.82	2.71 to 8.93	<0.001
Rey complex figure test-copy	3.52	0.50 to 6.53	0.023	6.02	2.74 to 9.30	<0.001
Rey complex figure test-immediate recall	4.38	0.75 to 8.01	0.019	6.00	2.34 to 9.66	0.002
Rey complex figure test-delayed recall	4.44	1.18 to 7.69	0.008	5.73	1.95 to 9.51	0.003
Rey auditory verbal learning test-immediate recall	10.06	4.61 to 15.51	<0.001	12.60	6.69 to 18.52	<0.001
Rey auditory verbal learning test-delayed recall	1.60	0.09 to 3.11	0.038	1.85	0.24 to 3.45	0.025

Footnotes

\(a \) Adjustment for age, sex, admission NIHSS score, systolic BP, glucose level, ASPECT score, side of stroke, site of occlusion, BDI score.
The main strengths of the current study included the comparison of patients who underwent treatment with rt-PA alone versus rt-PA combined with mechanical thrombectomy, which allowed to minimize the heterogeneity in baseline patients’ characteristics and time onset-to-treatment and, hence, estimate the actual effect deriving from the EVT. The exclusion of patients presenting with aphasia or neglect from the comprehensive neuropsychological assessment allowed to obtain a more reliably evaluation of the neuropsychological performance as results in cognitive tests are significantly affected and confounded by the presence of deficits in the domains of language and visuo-spatial inattention. Finally, the 6-month interval from stroke to follow-up can be considered a sufficiently long time for the acute stroke effects to subside, and the real-world setting of the research increased the generalizability of the findings to routine clinical practice. Nonetheless, some study shortcomings need to be considered. The retrospective analysis of data collected at a single academic center could have led to selection bias and findings need to be validated in independent cohorts. The relatively small sample size prevented subgroup analyses and no data on health-related quality of life have been considered at the follow-up. Additionally, no specific information regarding treatment success, including reperfusion rates, follow-up infarct volumes or hemorrhage rates have been considered, and further studies designed to comprehensively assess these parameters as well as the relationship between infarct location and test scores are warranted.

Conclusion
The growing number of stroke survivors has increased the interest in long-term sequelae and prediction of cognitive outcome. In this regard, treatment with EVT plus IVT can result in better cognitive performance than IVT alone in patients with anterior circulation ischemic stroke.

Methods
Study participants. We retrospectively identified consecutive patients with anterior circulation ischemic stroke, admitted to the Stroke Unit of the Marche Polytechnic University (Ancona, Italy) from January 2012 to June 2019, who were treated with IVT alone and IVT plus EVT, and underwent neuropsychological assessment at 6 months from the index event as part of routine care. The site serves in the region as referral comprehensive stroke center (hub) for mechanical thrombectomy for large vessel occlusion according to a drip-and-ship organizational model of stroke care. Patients were included if they had intracranial proximal arterial occlusion in the anterior circulation [intracranial carotid artery (ICA) or middle cerebral artery (M1/M2) or anterior cerebral artery (A1/A2)] demonstrated by vascular imaging (computed tomographic angiography or magnetic resonance angiography or digital subtraction angiography), received IVT within 4.5 h and started EVT within 6.0 h after the onset of stroke. IVT consisted of the administration of recombinant tissue plasminogen activator (rt-PA) at the dose of 0.9 mg/kg (maximum 90 mg: 10% bolus followed by a 60-min infusion). EVT consisted of mechanical thrombectomy with aspiration catheters alone, stent-retrievers alone, or both, depending on occlusion type and interventionist’s choice.

Data about demographic, vascular risk factors, medical history, baseline stroke severity according to the National Institutes of Health Stroke Scale (NIHSS) score, admission systolic blood pressure (BP) and serum glucose were collected, as previously detailed. The ischemic lesion extension was estimated according to the Alberta Stroke Program Early CT Score (ASPECTS) on head computed tomography (CT) performed in emergency prior to IVT administration. Patients with a neurological or psychiatric history, pre-stroke modified Rankin Scale (mRS) score > 2, patients who did not perform the neuropsychological evaluation at 6 months from stroke and those who presented aphasia or neglect at the 6-month evaluation according to the Aphasia Neural Psychological Examination (ANE) (language and visuo-spatial inattention) were not included.

Neuropsychological assessment. The neuropsychological assessment was administered by a trained examiner at a single session 6 months after stroke using standardized cognitive tests at the Clinic of Neuropsychiatry of the Marche Polytechnic University as part of clinical care. Scores obtained in the following neuropsychological tests were considered in the current analysis as representative of different cognitive domains: Stroop Colour and Word Test (SCWT), Trail Making Test parts A (TMT-A) and B (TMT-B), Digit Span Test (DST) (executive functions and attention), Coloured Progressive Matrices (CPM) (abstract reasoning), Rey Complex Figure Test Copy (RCFT-C) (visuospatial ability), Rey Complex Figure Test immediate (RCFT-I) and delayed recall (RCFT-D) (visual memory), Rey Auditory Verbal Learning Test immediate (RAVLT-I) and delayed recall (RAVLT-D) (verbal memory). All test scores were corrected according to normative values; the score ranges of the cognitive tests are summarized in Supplementary Appendix SI. Post-stroke depressive symptoms and functional abilities were assessed with the Beck Depression Inventory (BDI) and mRS.

Statistical analysis. Values were presented as mean ± standard deviation (SD) or median (interquartile range [IQR]) for continuous variables and as the number (%) of subjects for categorical variables. Univariate comparisons were made through the Student t test, Mann–Whitney test, or Chi-squared test, as appropriate. Linear regressions were performed to assess the influence of treatment (IVT alone versus IVT plus EVT) on scores obtained in each cognitive test, adjusting for pre-specified potential confounding factors (age, sex, admission NIHSS score, systolic BP, glucose level, ASPECT score, side of stroke, site of occlusion, BDI score). The collinearity between exposure variables was assessed with the variance inflation index. Results were considered significant for p values < 0.05 (two sided). Data analysis was performed using STATA/IC 13.1 statistical package (StataCorp LP, Texas, USA).
Standard protocol approvals, registrations, and patient consents. The study was approved by the Ethics Committee of the Marche Polytechnic University and conducted according to the Declaration of Helsinki. Informed consent was obtained from any patient or the legal representative.

Data availability
Anonymized data will be shared by request from any qualified investigator.

References
1. Leśniak, M., Bak, T., Czepiel, W., Seniów, I. & Ćałonkowska, A. Frequency and prognostic value of cognitive disorders in stroke patients. Dement. Geriatr. Cogn. Disord. 26, 356–363 (2008).
2. Pendlebury, S. T. & Rothwell, P. M. Prevalence, incidence, and factors associated with pre-stroke and post-stroke dementia: A systematic review and meta-analysis. Lancet Neurol. 8, 1006–1018 (2009).
3. Nys, G. M. et al. The prognostic value of domain-specific cognitive abilities in acute first-ever stroke. Neurology 64, 821–827 (2005).
4. Nys, G. M. et al. Early cognitive impairment predicts long-term depressive symptoms and quality of life after stroke. J. Neural. Sci. 247, 149–156 (2006).
5. Patel, M. D., Coshall, C., Rudd, A. G. & Wolfe, C. D. Cognitive impairment after stroke: Clinical determinants and its associations with long-term stroke outcomes. J. Am. Geriatr. Soc. 50, 700–706 (2002).
6. McKevitt, C. et al. Self-reported long-term needs after stroke. Stroke 42, 1398–1403 (2011).
7. Pollock, A., St George, R., Fenton, M. & Firkins, L. Top ten research priorities relating to life after stroke. Lancet Neurol. 11, 209 (2012).
8. Kumar, G., Goyal, M. K., Sahota, P. K. & Jain, R. Penumbra, the basis of neuroimaging in acute stroke treatment: Current evidence. J. Neural. Sci. 288, 13–24 (2010).
9. Saqquar, M. et al. Site of arterial occlusion identified by transcranial Doppler predicts the response to intravenous thrombolysis for stroke. Stroke 38, 948–954 (2007).
10. De Silva, D. A. et al. The benefits of intravenous thrombolysis relate to the site of baseline arterial occlusion in the Echoplanar Imaging Thrombolytic Evaluation Trial (EPITHET). Stroke 41, 295–299 (2010).
11. Paciaroni, M. et al. Systemic thrombolysis in patients with acute ischemic stroke and Internal Carotid Artery Occlusion: The ICARO study. Stroke 43, 125–130 (2012).
12. Jansen, O., von Kummer, R., Forsting, M., Hacke, W. & Sartor, K. Thrombolytic therapy in acute occlusion of the intracranial internal carotid artery bifurcation. Am. J. Neuroradiol. 16, 1977–1986 (1995).
13. Goyal, M. et al. Endovascular thrombectomy after large-vessel ischaemic stroke: A meta-analysis of individual patient data from five randomised trials. Lancet 387, 1723–1731 (2016).
14. Benjamin, E. J. et al. Heart disease and stroke statistics-2017 update: A report from the American Heart Association. Circulation 135, e166–e603 (2017).
15. Lattanzi, S. et al. Neurocognitive functioning and cerebrovascular reactivity after carotid endarterectomy. Neurology 90, e307–315 (2018).
16. Lattanzi, S. et al. Predictors of cognitive functioning after carotid revascularization. J. Neural. Sci. 405, 116435 (2019).
17. Feigin, V. L., Lawes, C. M., Bennett, D. A. & Anderson, C. S. Stroke epidemiology: A review of population-based studies of incidence, prevalence, and case-fatality in the late 20th century. Lancet Neurol. 2, 43–53 (2003).
18. Johinen, H. et al. Post-stroke cognitive impairment is common even after successful clinical recovery. Eur. J. Neural. 22, 1288–1294 (2015).
19. Stoyw, R. J., O'Neill, M. H., McKay, A. J. & Wong, D. K. Are cognitive screening tools sensitive and specific enough for use after stroke? A systematic literature review. Stroke 45, 3129–3134 (2014).
20. Lope-Cancio, E. et al. Endovascular treatment improves cognition after stroke: A secondary analysis of REVASCAT trial. Neurology 88, 245–251 (2017).
21. Xu, G. et al. Cognitive function and prognosis of multimodal neuroimaging-guided thrombectomy on mild to moderate anterior circulation infarction patients with broadened therapeutic window: A prospective study. Eur. Neural. 78, 257–263 (2017).
22. Wall, K. J., Cumming, T. B. & Copland, D. A. Determining the association between language and cognitive tests in poststroke aphasia. Front. Neural. 8, 149 (2017).
23. Deményere, N. et al. Domain-specific versus generalized cognitive screening in acute stroke. J. Neural. 263, 306–315 (2016).
24. Tatemichi, T. K. et al. Dementia after stroke is a predictor of long-term survival. Stroke 25, 1915–1919 (1994).
25. Woo, J., Kay, R., Yuen, Y. K. & Nicholls, M. G. Factors influencing long-term survival and disability among three-month stroke survivors. Neuroepidemiology 11, 143–150 (1994).
26. Wityk, R. J., Pessin, M. S., Kaplan, R. F. & Caplan, L. R. Serial assessment of acute stroke using the NIH Stroke Scale. Stroke 25, 362–365 (1994).
27. Lattanzi, S. et al. The P-wave terminal force in embolic strokes of undetermined source. J. Neural. Sci. 375, 175–178 (2017).
28. Lattanzi, S. et al. Prediction of outcome in embolic strokes of undetermined source. J. Stroke Cerebrovasc. Dis. 29, 104486 (2020).
29. Lattanzi, S. et al. Clinical phenotypes of embolic strokes of undetermined source. Neural. Sci. https://doi.org/10.1007/s10072-020-04700-2 (2020).
30. Barber, P. A., Demchuk, A. M., Zhang, J. & Buchan, A. M. Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy. ASPECTS Study Group. Alberta Stroke Programme Early CT Score. Lancet 355, 1670–1674 (2000).
31. Banks, J. L. & Marotta, C. A. Outcomes validity and reliability of the modified Rankin scale: Implications for stroke clinical trials: A literature review and synthesis. Stroke 38, 1091–1096 (2007).
32. Capasso, R. & Miceli, G. Esame Neuropsicologico per l’Afasia (ENPA) (Springer, Berlin, 2001).
33. Mancuso, M. et al. Italian standardization of the Apples Cancellation Test. Neurol. Sci. 36, 1233–1240 (2015).
34. Barbarotto, R. et al. A normative study on visual reaction times and two Stroop colour-word tests. Ital. J. Neurol. Sci. 19, 161–170 (1998).
35. Giovagnoli, A. R. et al. Trail Making Test: Normative values from 287 normal adult controls. Ital. J. Neurol. Sci. 17, 305–309 (1996).
36. Monaco, M., Costa, A., Caltagirone, C. & Carlesimo, G. A. Forward and Backward span for verbal and visuo-spatial data: Standardization and normative data from an Italian adult population. Neural. Sci. 34, 749–754 (2013).
37. Basso, A., Capitani, E. & Laiacona, M. Raven’s coloured progressive matrices: Normative values on 305 adult normal controls. Funct. Neural. 2, 189–194 (1987).
38. Le Osterrister, P. A. test de copie d’une figure complexe: Contribution a l’étude de la perception et de la memoire. Arch. Psychol. 30, 286–350 (1944).
39. Carlesimo, G. A., Caltagirone, C. & Gainotti, G. The Mental Deterioration Battery: Normative data, diagnostic reliability and qualitative analyses of cognitive impairment. The Group for the Standardization of the Mental Deterioration Battery. *Eur. Neurol.* **36**, 378–384 (1996).

40. Ghisi, M., Flebus, G. B., Montano, A., Sanavio, E. & Sica, C. Beck Depression Inventory—II (BDI-II) *Manuale* (Organizzazioni Speciali, Florence, 2006).

Author contributions
S.L.: study concept and design, analysis and interpretation of data, writing and critical revision of the manuscript for important intellectual content. M.C., A.P., E.L.G., L.V., S.C., M.D., G.P., M.G.C.: acquisition of data, analysis and interpretation. M.S.: study concept and design, critical revision of the manuscript for important intellectual content, study supervision. All authors reviewed the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-020-75609-1.

Correspondence and requests for materials should be addressed to S.L.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020