THE DISCRETE HOMOTOPY PERTURBATION SUMUDU TRANSFORM METHOD FOR SOLVING PARTIAL DIFFERENCE EQUATIONS

FIGEN ÖZPINAR*
Bolvadin Vocational School
Afyon Kocatepe University
Afyonkarahisar, Turkey

FETHI BIN MUHAMMAD BELGACEM
Department of Mathematics
Faculty of Basic Education
PAAET, Al-Ardhiya, Kuwait

Abstract. In this paper, we introduce a combined form of the discrete Sumudu transform method with the discrete homotopy perturbation method to solve linear and nonlinear partial difference equations. This method is called the discrete homotopy perturbation Sumudu transform method (DHPSTM). The results reveal that the introduced method is very efficient, simple and can be applied to other linear and nonlinear difference equations. The nonlinear terms can be easily handled by use of He’s polynomials.

1. Introduction. Partial difference equations are types of difference equations that involve functions of two or more independent variables. Such equations arise in applications involving population dynamics with spatial migrations, chemical reactions, the approximation of solutions of partial differential equations by finite difference methods, random walk problems, the study of molecular orbits, dynamical systems, economics, biology and other fields.

In the early 1990’s, Watugala introduced the Sumudu transform and applied it to solve ordinary differential equations[30, 31, 32]. Belgacem and Karaballi introduced fundamental properties of Sumudu transform[9, 10]. There are several studies in this field[2, 3, 5, 6, 8, 11, 12, 14, 15, 16, 17, 26]. Recently, discrete Sumudu transform was defined in [23].

The homotopy perturbation method was first proposed by He in 1998[19]. Recently, the discrete homotopy perturbation method (DHPM) was used to obtain the numerical solution of Burgers’ equation and heat equation[33].

In this paper, we use discrete homotopy perturbation Sumudu transform method (DHPSTM) including discrete STM and DHPM in order to find solution of linear and nonlinear partial difference equations. Although the HPSTM has been widely applied to solve partial differential equations, to the best of our knowledge until

2010 Mathematics Subject Classification. Primary: 39A14.

Key words and phrases. Discrete homotopy perturbation Sumudu transform method, discrete homotopy perturbation method, homotopy perturbation method, discrete sumudu transform method, Sumudu transform method, partial difference equations.

* Corresponding author: Figen Özpınar.
now, the HPSTM was regarded only for the continuous equations. There is no discrete version HPSTM ever used to solve linear or nonlinear PDEs. This paper proposed the DHPSTM, and finds the DHPSTM has similar advantages of continuous HPSTM. To illustrate the method we apply the DHPSTM to partial difference equations.

2. Preliminaries and notations.

2.1. Discrete Homotopy Perturbation Method (DHPM). Consider the following general partial difference equation

\[A(U_{m,n}) - f_{m,n} = 0, \quad m, n \in \mathbb{N}_0, \quad (1) \]

where \(A \) is a general difference operator. \(f_{m,n} \) is a given discretized function. \(U_{m,n} \) and \(f_{m,n} \) denote discrete approximations of \(U(x,t) \) and \(f(x,t) \) at the mesh point \((mh, n\tau)\), respectively. \(h \) is the space step in \(x \) direction, and \(\tau \) represents the increment in time. In this work we will take \(h = \tau = 1 \).

The operator \(A \) can be divided into two parts, which are \(L \) and \(N \), where \(L \) is a linear and \(N \) is non-linear operator. Therefore Eq(1) can be rewritten as follows:

\[L(U_{m,n}) + N(U_{m,n}) - f_{m,n} = 0. \quad (2) \]

By constructing the homotopy technique to Eq(2), we have a homotopy in the form

\[H(v_{m,n}(p), p) = (1 - p)[L(v_{m,n}(p)) - L(U_{m_0,n})] + p[A(v_{m,n}(p)) - f_{m,n}] = 0, \quad (3) \]

where \(p \in [0, 1] \) is an embedding parameter, \(U_{m_0,n} \) is an initial approximate solution of the original equation, which satisfies the boundary conditions. From Eq(3) we have

\[H(v_{m,n}(0), 0) = L(v_{m,n}(0)) - L(U_{m_0,n}) = 0 \]
\[H(v_{m,n}(1), 1) = A(v_{m,n}(1)) - f_{m,n} = 0 \]

changing the process of \(p \) from zero to unity is just change of \(v_{m,n}(p) \) from \(U_{m_0,n} \) to \(U_{m,n} \).

In topology, that is called homotopy. Assume that the solution of Eq(3) can be written as a series in \(p \):

\[v_{m,n}(p) = v_{m_0,n} + pv_{m_1,n} + p^2v_{m_2,n} + \cdots \quad (4) \]

By setting \(p = 1 \), one can get an approximate solution of Eq(1)

\[U_{m,n} = \lim_{p \to 1} v_{m,n}(p) = v_{m_0,n} + v_{m_1,n} + v_{m_2,n} + \cdots \quad (5) \]

2.2. Discrete Sumudu Transform. Here, we introduce the Discrete Sumudu Transform (DST).

Definition 2.1 ([23]). If \(f : \mathbb{N}_0 \to \mathbb{C} \) is a function, then the discrete Sumudu transform is defined by

\[S_d\{f(k)\}(u) = \frac{1}{u} \sum_{k=0}^{\infty} f(k) \left(\frac{u}{u+1} \right)^{k+1} \quad (6) \]

for all values of \(u \neq -1 \) such that the series converges.

If \(R = \limsup \frac{|f(k)|}{k^2} \), then we have one of the following three cases:

(i) If \(0 < R < \infty \), then the series (6) converges for \(\frac{|u+1|}{u} > R \) and diverges elsewhere;

(ii) If \(R = 0 \), then the series (6) converges for all \(u \) except possibly when \(u = -1 \);

(iii) If \(R = \infty \), the series (6) diverges everywhere.
Below there are some properties of the discrete Sumudu transform:

Lemma 2.2 ([23]). If $S_d\{f(k)\}(u) = F(u)$ for $|\frac{u+1}{u}| > A \geq R$, then for the same values of u

$$S_d\{f(k + 1)\}(u) = \frac{u + 1}{u} F(u) - \frac{f(0)}{u}$$

and in general

$$S_d\{f(k + m)\}(u) = \left(\frac{u + 1}{u}\right)^m F(u) - \sum_{n=0}^{m-1} \frac{\left(u + 1\right)^{m-n-1}}{u^{m-n}} f(n).$$

Lemma 2.3 ([23]). If $S_d\{f(k)\}(u) = F(u)$ for $|\frac{u+1}{u}| > A$, then for the same values of u

$$S_d\{\Delta f(k)\}(u) = \frac{1}{u} \left[F(u) - f(0)\right]$$

and in general

$$S_d\{\Delta^m f(k)\}(u) = u^{-n} \left[F(u) - \sum_{i=0}^{n-1} u^i |\Delta^i f(k)|_{k=0}\right],$$

where $\Delta f(k) = f(k + 1) - f(k)$ and $\Delta^0 f(k) = f(k)$.

2.3. Discrete Homotopy Perturbation Sumudu Transform Method (DHPSTM)

To illustrate this method we consider the partial difference equation of the form

$$\Delta_n U_{m,n} - \phi_{m,n} \Delta^2_m U_{m,n} = g_{m,n}, \quad m, n \in \mathbb{N}_0,$$

with subject to initial condition

$$U_{m,0} = f_m,$$

where $\phi_{m,n}$ and f_m are given discrete functions. $g_{m,n}$ is the source term. The forward partial differences Δ_m and Δ_n are defined as usual, i.e., $\Delta_m U_{m,n} = U_{m+1,n} - U_{m,n}$ and $\Delta_n U_{m,n} = U_{m,n+1} - U_{m,n}$. Second order partial difference is defined by $\Delta^2_m U_{m,n} = \Delta_m (\Delta_m U_{m,n})$ and $\Delta^0_n U_{m,n} = U_{m,n}$. $\Delta^0_n U_{m,n} = U_{m,n}$.

By applying discrete Sumudu transform on both sides of Eq(7) with respect to n, we get

$$S_d\{\Delta_n U_{m,n}\} = S_d\{\phi_{m,n} \Delta^2_m U_{m,n} + g_{m,n}\}$$

$$\frac{1}{u} \left[S_d\{U_{m,n}\} - f_m\right] = S_d\{\phi_{m,n} \Delta^2_m U_{m,n} + g_{m,n}\}$$

Taking the inverse discrete Sumudu transform to Eq(9) we have

$$U_{m,n} = G_{m,n} + S_d^{-1}\{u S_d\{\phi_{m,n} \Delta^2_m U_{m,n}\}\},$$

where $G_{m,n}$ represents the term arising from the source term and the prescribed initial conditions.

According to DHPM, we construct a homotopy in the as following

$$(1 - p)[v_{m,n}(p) - U_{m,0,n}] + p[v_{m,n}(p) - G_{m,n} - S_d^{-1}\{u S_d\{\phi_{m,n} \Delta^2_m v_{m,n}(p)\}\}] = 0$$

or equivalently

$$v_{m,n}(p) = U_{m,0,n} - pU_{m,0,n} + pG_{m,n} + pS_d^{-1}\{u S_d\{\phi_{m,n} \Delta^2_m v_{m,n}(p)\}\} = 0.$$
Let
\[v_{m,n}(p) = \sum_{i=0}^{\infty} p^i v_{m_i,n}, \quad U_{m,0} = U_{m_0,n}. \] (12)

Substituting (12) into (11) and comparing the coefficients of the term with identical powers of \(p \), lead to
\[p^0 : v_{m_0,n} = U_{m_0,n} = U_{m,0} = f_m \]
\[p^1 : v_{m_1,n} = -U_{m_0,n} + G_{m,n} + S_d^{-1}\{uS_d\{\phi_{m,n}\Delta_m^2 v_{m_0,n}\}\} \]
\[p^2 : v_{m_2,n} = S_d^{-1}\{uS_d\{\phi_{m,n}\Delta_m^2 v_{m_1,n}\}\} \]
\[p^3 : v_{m_3,n} = S_d^{-1}\{uS_d\{\phi_{m,n}\Delta_m^2 v_{m_2,n}\}\} \]
\[\vdots \]

When the limit get for \(p \to 1 \), the solutions obtain as following:
\[U_{m,n} = \lim_{p \to 1} \left(\sum_{i=0}^{\infty} p^i v_{m_i,n} \right) \]
\[= v_{m_0,n} + v_{m_1,n} + v_{m_2,n} + \cdots \]
\[= \sum_{i=0}^{\infty} v_{m_i,n}. \] (13)

3. Applications of DHPSTM. In this section, we shall examine some applications of our newly developed method through the following examples.

Example 1. We consider the following partial difference equation
\[\Delta_2 U_{m,n} = \Delta_2^2 U_{m,n}, \quad m,n \in \mathbb{N}_0, \] (14)
with the initial condition
\[U_{m,0} = 5^m. \] (15)

We construct the discrete Sumudu transform with respect to \(n \) for Eq (14) as follows:
\[\frac{1}{u} \left[S_d\{U_{m,n}\} - U_{m,0} \right] = S_d\{\Delta_2^m U_{m,n}\} \]
\[S_d\{U_{m,n}\} = 5^m + uS_d\{U_{m+2,n} - 2U_{m+1,n} + U_{m,n}\} \]
\[U_{m,n} = S_d^{-1}\{5^m + uS_d\{U_{m+2,n} - 2U_{m+1,n} + U_{m,n}\}\}. \]

To solve initial value problem (14)-(15) by DHPSTM, we construct the following homotopy:
\[(1-p)[v_{m,n}(p) - U_{m_0,n}] + p[v_{m,n}(p) - 5^m - S_d^{-1}\{uS_d\{v_{m+2,n}(p) - 2v_{m+1,n}(p) + v_{m,n}(p)\}\}] = 0. \] (16)

Substituting (12) into (16) and comparing the coefficients of the term with identical powers of \(p \), lead to
\[p^0 : v_{m_0,n} - U_{m_0,n} = 0 \]
\[p^1 : v_{m_1,n} + U_{m_0,n} - 5^m - S_d^{-1}\{uS_d\{v_{m+2,n} - 2v_{m+1,n} + v_{m,n}\}\} = 0 \]
\[p^2 : v_{m_2,n} - S_d^{-1}\{uS_d\{v_{m+2,n} - 2v_{m+1,n} + v_{m,n}\}\} = 0 \]
\[p^3 : v_{m3,n} - S_d^{-1}\{uS_d\{v_{m2+2,n} - 2v_{m2+1,n} + v_{m2,n}\}\} = 0 \]
\[\vdots \]
\[p^l : v_{ml,n} - S_d^{-1}\{uS_d\{v_{m_{l-1}+2,n} - 2v_{m_{l-1}+1,n} + v_{m_{l-1},n}\}\} = 0. \]

When the initial value is
\[v_{m0,n} = U_{m,0} = 5^m, \]
then the following recurrence results are obtained
\[v_{m1,n} = 4^2 5^m n \]
\[v_{m2,n} = \frac{4^4 5^m n^{(2)}}{2!} \]
\[v_{m3,n} = \frac{4^6 5^m n^{(3)}}{3!} \]
\[\vdots \]
\[v_{ml,n} = \frac{4^{2l} 5^m n^{(l)}}{l!}, \]

where \(n^{(l)} = n(n-1)(n-2) \cdots (n-l+1) \).

From (13) we have
\[U_{m,n} = \sum_{j=0}^{\infty} v_{mj,n} \]
\[= 4^2 5^m n + \frac{4^4 5^m n^{(2)}}{2!} + \frac{4^6 5^m n^{(3)}}{3!} + \cdots \]
\[= \sum_{j=0}^{\infty} \frac{4^{2j} 5^m n^{(j)}}{j!}. \]

Figure 1 shows the DHPSTM solution of initial value problem (14)-(15) with side view.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure1.png}
\caption{Numerical illustration of solution \(U_{m,n} \) by DHPSTM}
\end{figure}
Example 2. Consider the discrete diffusion equation
\[\Delta_m U_{m,n} = \Delta^2_m U_{m,n} + m \Delta_m U_{m,n} + U_{m,n}, \quad m, n \in \mathbb{N}_0, \] (17)
with subject to initial condition
\[U_{m,0} = m. \] (18)

We construct the following discrete Sumudu transform with respect to \(n \) for Eq(17):
\[
\frac{1}{\ell!} \left[S_d \{ U_{m,n} \} - U_{m,0} \right] = S_d \{ \Delta^2_m U_{m,n} + m \Delta_m U_{m,n} + U_{m,n} \}
\]
\[
S_d \{ U_{m,n} \} = m + u S_d \{ U_{m+2,n} + (m-2)U_{m+1,n} + (2-m)U_{m,n} \}
\]
\[
U_{m,n} = S^{-1}_d \{ m + u S_d \{ U_{m+2,n} + (m-2)U_{m+1,n} + (2-m)U_{m,n} \} \}
\]
\[
U_{m,n} = m + S^{-1}_d \{ u S_d \{ U_{m+2,n} + (m-2)U_{m+1,n} + (2-m)U_{m,n} \} \}.
\]

To solve initial value problem (17)-(18) by DHPSTM, we construct the following homotopy:
\[
(1 - p) [v_{m,n}(p) - U_{m,n}] + p [v_{m,n}(p) - m - S^{-1}_d \{ u S_d \{ v_{m+2,n}(p) + (m-2)v_{m+1,n}(p) + (2-m)v_{m,n}(p) \} \} = 0. \] (19)

Substituting (12) into (19) and comparing the coefficients of the term with identical powers of \(p \), lead to
\[
p^0 : v_{m_0,n} - U_{m_0,n} = 0
\]
\[
p^1 : v_{m_1,n} + U_{m_0,n} - m - S^{-1}_d \{ u S_d \{ v_{m_0+2,n} + (m-2)v_{m_0+1,n} + (2-m)v_{m_0,n} \} \} = 0
\]
\[
p^2 : v_{m_2,n} - S^{-1}_d \{ u S_d \{ v_{m_1+2,n} + (m-2)v_{m_1+1,n} + (2-m)v_{m_1,n} \} \} = 0
\]
\[
p^3 : v_{m_3,n} - S^{-1}_d \{ u S_d \{ v_{m_2+2,n} + (m-2)v_{m_2+1,n} + (2-m)v_{m_2,n} \} \} = 0
\]
\[
\vdots
\]
\[
p^\ell : v_{m_\ell,n} - S^{-1}_d \{ u S_d \{ v_{m_{\ell-1}+2,n} + (m-2)v_{m_{\ell-1}+1,n} + (2-m)v_{m_{\ell-1},n} \} \} = 0.
\]

When the initial value is
\[v_{m_0,n} = U_{m_0,n} = U_{m,0} = m, \]
then the following recurrence results are obtained
\[v_{m_1,n} = 2mn \]
\[v_{m_2,n} = \frac{2^2 m(n)n}{2!} \]
\[v_{m_3,n} = \frac{2^3 m(n)n(n)}{3!} \]
\[\vdots \]
\[v_{m_\ell,n} = \frac{2^\ell m(n)n(\ell)}{\ell!} \]

From (13) we have
\[U_{m,n} = \sum_{j=0}^{\infty} \frac{2^j m(n)n(j)}{j!}. \]

Figure 2 shows the DHPSTM solution of initial value problem (17)-(18) with side view.
Example 3. Consider the discrete nonlinear Burgers’ equation

$$\Delta_n U_{m,n} + U_{m,n} \Delta_m U_{m,n} = \Delta_m^2 U_{m,n}, \quad m, n \in \mathbb{N}_0,$$

with subject to initial condition

$$U_{m,0} = 2m.$$ \hfill (21)

We construct the discrete Sumudu transform with respect to n for Eq(20) as follow

$$\frac{1}{u} \left[S_d\{U_{m,n}\} - U_{m,0}\right] = S_d\{\Delta_m^2 U_{m,n} - U_{m,n} \Delta_m U_{m,n}\} = 2m + u S_d\{U_{m+2,n} - 2U_{m+1,n} + U_{m,n} - U_{m,n}U_{m+1,n} + U_{m,n}^2\}$$

$$U_{m,n} = S_d^{-1}\{2m + u S_d\{U_{m+2,n} - 2U_{m+1,n} + U_{m,n} - U_{m,n}U_{m+1,n} + U_{m,n}^2\}\}$$

To solve initial value problem(20)-(21)by DHPSTM, we construct the following homotopy:

$$(1 - p)[v_{m,n}(p) - U_{m,0,n}] + p[v_{m,n}(p) - 2m - S_d^{-1}\{u S_d\{v_{m+2,n}(p) - 2v_{m+1,n}(p) + v_{m,n}(p) - v_{m,n}(p)v_{m+1,n}(p) + v_{m,n}^2(p)\}\} = 0.$$ \hfill (22)

Substituting (12) into (22) and comparing the coefficients of the term with identical powers of p, lead to

$$p^0 : v_{m_0,n} - U_{m_0,n} = 0$$

$$p^1 : v_{m_1,n} + U_{m_0,n} - 2m - S_d^{-1}\{u S_d\{v_{m_0+2,n} - 2v_{m_0+1,n} + v_{m_0,n} - v_{m_0,n}v_{m+1,n} + v_{m_0,n}^2\}\} = 0$$

$$p^2 : v_{m_2,n} - S_d^{-1}\{u S_d\{v_{m_1+2,n} - 2v_{m_1+1,n} + v_{m_1,n} - v_{m_0,n}v_{m+1,n} + v_{m_1,n}v_{m+1,n} + 2v_{m_0,n}v_{m+1,n}\}\} = 0$$
\[p^3 : v_{m_3,n} - S^{-1}_d \{ uS_d \{ v_{m_2+2,n} - 2v_{m_2+1,n} + v_{m_2,n} - v_{m_0,n}v_{m_2+1,n} \\
- v_{m_1,n}v_{m_1+1,n} - v_{m_2,n}v_{m_0+1,n} + \frac{v_{m_1,n}^2}{2} + 2v_{m_0,n}v_{m_2,n} \} \} = 0 \]

\[: \]

\[p^\ell : v_{m_\ell,n} - S^{-1}_d \{ uS_d \{ \Delta^2_m v_{m_{\ell-1},n} - \sum_{k=0}^{\ell-1} \left(v_{m_k,n}\Delta_m v_{m_{\ell-1-k},n} \right) \} \} = 0. \]

When the initial value is

\[v_{m_0,n} = U_{m_0,n} = U_{m,0} = 2m, \]

then the following recurrence results are obtained

\[v_{m_1,n} = -4mn \]
\[v_{m_2,n} = 8mn^{(2)} \]
\[v_{m_3,n} = -16mn^{(3)} - 8mn^{(2)} \]
\[v_{m_4,n} = 32mn^{(4)} + \frac{160}{3}mn^{(3)} \]

\[: \]

From (13) we have

\[U_{m,n} = v_{m_0,n} + v_{m_1,n} + v_{m_2,n} + v_{m_3,n} + v_{m_4,n} \]
\[= 2m - 4mn + 8mn^{(2)} - 16mn^{(3)} - 8mn^{(2)} + 32mn^{(4)} + \frac{160}{3}mn^{(3)} + \ldots \]

Figure 3 shows the DHPSTM approximate solution of \(U_{m,n} \) with side view.

Figure 3. Numerical illustration of approximate solution \(U_{m,n} \) by DHPSTM

4. Discussions and conclusions. Discrete homotopy perturbation Sumudu transform method is applied successfully for finding exact solutions for linear difference equations and approximate solutions for nonlinear difference equations. The efficiency and accuracy of the proposed method is demonstrated test problems. The results showed that the DHPSTM is extremely simple and easy to handle the nonlinear terms. The basic ideas described, and the general guidelines expanded in this
paper is expected to be further employed to solve other similar linear and nonlinear partial difference equations.

Acknowledgments. The authors are grateful to Professor Abdon Atangana for his helpful comments that contributed to the improvement of this paper. The second author, FBM Belgacem is pleased to acknowledge the continued support of the PAAET Department of Research (PAAET RD).

REFERENCES

[1] R. P. Agarwal, *Difference Equations and Inequalities*, Marcel Dekker, Newyork, 1994.

[2] M. A. Asiru, Further properties of the Sumudu transform and its applications, *International Journal of Mathematical Education in Science and Technology*, **33** (2002), 441–449.

[3] M. A. Asiru, Classroom note: application of the Sumudu to discrete dynamic systems, *International Journal of Mathematical Education in Science and Technology*, **34** (2003), 944–949.

[4] A. Atangana and E. Alabaraoye, Solving a system of fractional partial differential equations arising in the model of HIV infection of CD4+ cells and attractor one-dimensional Keller-Segel equations, *Advances in Difference Equations*, **2013** (2013), 14pp.

[5] A. Atangana and A. Kilicman, The use of Sumudu transform for solving certain nonlinear fractional heat-like equations, *Abstract and Applied Analysis*, **2013** (2013), Article ID 737481, 12 pages.

[6] A. Atangana, Extension of the Sumudu homotopy perturbation method to an attractor for one-dimensional Keller-Segel equations, *Applied Mathematical Modelling*, **39** (2015), 2909–2916.

[7] A. Atangana, On the new fractional derivative and application to nonlinear Fisher reaction diffusion equation, *Applied Mathematics and Computation*, **273** (2016), 948–956.

[8] F. B. M. Belgacem, A. Karaballi and S.L. Kalla, Analytical Investigations of the Sumudu Transform and Applications to Integral Production Equations, *Journal of Mathematical Problems in Engineering*, **3** (2003), 103–118.

[9] F. B. M. Belgacem and A. Karaballi, Sumudu transform fundamental properties investigations and applications, *Journal of Applied Mathematics and Stochastic Analysis*, (2006), Article ID 91083, 23 pages.

[10] F. B. M. Belgacem, Introducing and analysing deeper Sumudu properties, *Nonlinear Studies*, **13** (2006), 23–41.

[11] F. B. M. Belgacem, Sumudu Applications to Maxwells Equations, *PIERS Online*, **5(9)** (2009), 355–360.

[12] F. B. M. Belgacem, Applications with the Sumudu Transform to Bessel Functions and Equ, *App. Math. Sci. (AMS)*, **4(74)** (2010), 3665–3686.

[13] J. Biazar and H. Aminikhah, Exact and numerical solutions for non-linear Burger’s equation by VIM, *Mathematical and Computer Modelling*, **49** (2009), 1394–1400.

[14] H. Bulut, H. M. Baskonus and S. Tuluce, Homotopy perturbation Sumudu transform method for one and two dimensional homogeneous heat equations, *International Journal of Basic and Applied Sciences IJBAS-IJEMS*, **12** (2012), 1–16.

[15] H. Bulut, H. M. Baskonus and S. Tuluce, Homotopy perturbation Sumudu transform method for one-two-three dimensional initial value problems, *New World Sciences Academy*, **7** (2012), 55–65.

[16] H. Bulut, H. M. Baskonus and S. Tuluce, Homotopy perturbation Sumudu transform method for heat equations, *Mathematics in Engineering Science and Aerospace Mesa*, **4** (2013), 49–60.

[17] H. Bulut, H. M. Baskonus and F. B. M. Belgacem, The Analytical solutions of some fractional ordinary differential equations by the Sumudu transform method, *Abstract and Applied Analysis*, (2013), Article ID 203875, 6 pages.

[18] J. M. Burgers, A Mathematical model illustration the theory of turbulence, *Adv. in Appl. Mech.*, **1** (1948), 171–199.

[19] J. H. He, An approximate solution technique depending on an artificial parameter: a special example, *Commun. Nonlinear Sci. Numer. Simulat.*, **3** (1998), 92–97.

[20] J. H. He, A Coupling method of homotopy technique and perturbation technique for nonlinear problems, *Int. J. Non-Linear Mech.*, **35** (2000), 37–43.
[21] J. H. He, Homotopy perturbation method: A new nonlinear analytic technique, *Appl. Math. Comput.*, **135** (2003), 73–79.

[22] J. H. He, An elementary introduction to the homotopy perturbation method, *Comput. Math. Appl.*, **57** (2009), 410–412.

[23] F. Jarad, K. Bayram, T. Abdeljawad and D. Beleanu, On the discrete Sumudu transform, *Romanian Reports in Physics*, **64** (2012), 347–356.

[24] F. Jarad and K. Taş, On Sumudu transform method in discrete fractional calculus, *Abstract and Applied Analysis*, **2012** (2012), Article ID 270106, 16 pages.

[25] F. Jarad, B. Kaymakçalan and K. Taş, A New transform method in nabla discrete fractional calculus, *Advances in Difference Equations*, **2012** (2012), 1–17.

[26] Q. K. Katatbeh and F. B. M. Belgacem, Applications of the Sumudu Transform to Fractional Diff. Equations, *Nonlinear Studies (NSJ)*, **18**(1) (2011), 99–112.

[27] R. E. Mickens, *Nonstandard Finite Difference Models of Differential Equations*, World Publ. Co., Singapore, 1994.

[28] J. J. Mohan and G. V. S. R. Deekshitulu, Solutions of fractional difference equations using S-transform, *Malaya Journal of Matematik*, **3** (2013), 7–13.

[29] J. Singh and D. Kumar, Homotopy perturbation Sumudu transform method for nonlinear equations, *Adv. Theor. Appl. Mech.*, **4** (2011), 165–175.

[30] G. K. Watugala, Sumudu transform: a new integral transform to solve differential equations and control engineering problems, *International Journal of Mathematical Education in Science and Technology*, **24** (1993), 35–43.

[31] G. K. Watugala, Sumudu transform new integral transform to solve differential equations and control engineering problems, *Mathematical Engineering in Industry*, **6** (1998), 319–329.

[32] G. K. Watugala, The Sumudu transform for functions of two variables, *Mathematical Engineering in Industry*, **8** (2002), 293–302.

[33] H. Zhu and M. Ding, The Discrete homotopy perturbation method for solving Burgers’ and heat equations, *J. Inf. and Comput. Sci.*, **11** (2014), 1647–1657.

Received April 2017; revised August 2017.

E-mail address: fozpinar@aku.edu.tr

E-mail address: fmbelgacem@gmail.com