Abstract

In this paper, we describe our submission to the 'Text Complexity DE Challenge 2022' shared task on predicting the complexity of German sentences. We compare performance of different feature-based regression architectures and transformer language models. Our best candidate is a fine-tuned German Distilbert model that ignores linguistic features of the sentences. Our model ranks 7th place in the shared task.¹

1 Introduction

Texts are a basic form of human information exchange. Too high of a text complexity, however, can result in text comprehension failures (Bormuth, 1966) and therefore miscommunication. Text complexity and readability assessment are a long known problem and several computational approaches and metrics have been proposed (Dascalu, 2012; Hancke et al., 2012; Collins-Thompson, 2014), relying on different linguistic features and primarily aiming at English.

Among other application objectives, an adequate, quantificational metric for text complexity can be of high benefit to the educational domain (as a means of providing textual material according to student levels), writing support systems (as feedback) or for other natural language processing tasks like estimating the complexity of the output of text simplification systems or chatbots. Most related tasks focus either on the prediction of complex words (Paetzold and Specia, 2016; Shardlow et al., 2021) or the assessment of readability levels (Collins-Thompson, 2014). However, the goal of the 'Text Complexity DE 2022' shared task is the prediction of an empirically determined complexity score called 'Mean Opinion Score' (MOS) for German sentences. Overall, our best model is ranked on the 7th place out of 10. In the following, we present the approach and results of our team "HHUplexity" in more detail.

1.1 Shared Task Data

The training data (Naderi et al., 2019) for the shared task contains 1000 sentences from 25 Wikipedia texts. The development data and test data contain 100 and 210 sentences, respectively, for which the document distribution is not known. The sentences were rated by German language learners (between CEFR level A and B) on a 7 point Likert-scale regarding their complexity (1 – very easy to 7 – very complex). The arithmetic mean of these ratings is the target score – MOS score – of the shared task. 7.6% of the training samples are rated as very easy (score = 1), whereas 20.3% are rated as rather complex (score > 4) and 3.4% have a score higher than 5.

The root mean squared error (RMSE) after third order mapping as well as a more balanced RMSE score (RMSE_mapped) are used to evaluate the predicted MOS scores (Mohtaj et al., 2022).

2 Method

Our main approach is to combine hand-crafted features with text embeddings of language models. Therefore, we have calculated several features as described in subsection 2.1. To compare the effect of these features in combination with language models, we follow two baseline approaches: i) training different regression models with the features (see subsection 2.2), and ii) fine-tuning language models without features (see subsection 2.3). Afterwards, we combine the features with the language models in a multimodal model (see subsection 2.4).

2.1 Features

We calculate 349 features of seven main categories: features based on length, readability assessment features, features based on language proficiency, morphological features, syntactic features, morphosyn-
we find that 78% of the features have a significant Pearson correlation with the MOS target value (p-value < 0.05). Of those 66% have a weak correlation ($0.4 \leq |p| < 0.6$) and 12% a strong correlation ($0.6 \leq |p|$).

However, several features are absolute count features such as e.g. syllables or character count that depend on sentence length. If one transforms these features into proportional features the rate of features having a significant Pearson correlation with the MOS target value drops to 57%.

Features based on Length. As basic features to estimate the complexity of a sentence, we consider the length of the sentence (in words, syllables and characters) and the length of the words (in syllables and characters).

Readability Assessment Features. The length of words and sentences can also be jointly used to estimate text complexity within traditional readability formulas for texts, e.g., Flesch Reading Ease score or Flesch-Kincaid Grade Level. The established readability metrics have been calculated for the original German sentences as well as for automatically translated English sentences (altogether 24 features). It turns out that the German scores correlate better than or equally well as the English scores with the exception of the Dale-Chall Readability Score. While Dale-Chall shows no significant correlation with the MOS-values for the German sentences it correlates with $r = 0.392$ for the English sentences.

It turns out that these quite simple formulas lead to the features with the strongest MOS-correlations. Only four significant features have a Pearson correlation r-value above 0.7 of which three are established readability scores: Linsear Write Formula with $r = 0.745$, difficult words with $r = 0.741$, and Automated Readability Index (ARI) with $r = 0.706$, and number of words $r = 0.701$.

Lexical Features and Features based on Language Proficiency. Even if a word is short, it can be still unknown to a user and, therefore, difficult to understand. In our work, we include some

Feature	Syntactic	Morphophotactic
number of words	max. depth of the dependency parse tree	number of words
number of types	max. $&$ avg. distance between tokens in the parse tree	number of types
number of characters	max. $&$ avg. distance between verbs and verb particles in the parse tree	number of characters
number of syllables	avg. length of NP & VP & PP	number of syllables
max. word length in characters	\pm projective parse tree	max. word length in characters
avg. word length in characters	\pm head of the parse tree is a noun or verb	avg. word length in characters
number of sentences	\pm one child of the head of the parse tree is a subject	number of sentences

Feature	Morphophotactic
Flesch Reading Ease Score	ratio of all tokens of coordinating $&$ subordinating clauses
Flesch-Kincaid Grade Level	ratio of tokens marking relative clauses
Dale-Chall Readability Score	ratio of tokens marking prepositional phrases
Linsear Write Formula	ratio of tokens marking referential phrases
Automated Readability Index	ratio of words that are in the vocabulary lists for CEFR levels A1, A2, $&$ B1

Reading	Syntactic
ratio of negations $&$ negated words	ratio of words that are in the vocabulary lists for CEFR levels A1, A2, $&$ B1
ratio of compound words $&$ nouns	lexical complexity based on ranks of German FastText embeddings
number of nominalizations	avg. lemma frequency $&$ rank (based on deCOW)
N-gram frequencies	cosine similarity between original sentence and backtranslated sentences
ratio of nouns in cases	max. and avg. rank in the German FastText embeddings
number of verbs, auxiliaries, nouns, pronouns	type-token ratio
ratio of coarse-grained POS-tags	label of target group and their softmax scores predicted by a fine-tuned model
ratio of fine-grained POS-tags (STTS)	on this labeling task
noun-to-verb ratio	lexical complexity based on ranks of German FastText embeddings
number of stop words	avg. imageability and concreteness score
ratio of function words	lexical complexity based on ranks of German FastText embeddings
ratio of named entities	avg. lemma frequency $&$ rank (based on deCOW)

Table 1: Overview table of all features per category. The symbols stand for the papers in which the features were introduced: \bullet Scarton et al. (2018), \checkmark Martin et al. (2018), \clubsuit Kauchak et al. (2014), \spadesuit Gasperin et al. (2009), \diamondsuit Collins-Thompson (2014), \spadesuit Stoddon and Kallmeyer (2020).
lexical and language proficiency-based features to estimate the complexity of a sentence based on the choice of words. Simple words are often frequent and complex words more infrequent, so word frequency might help to estimate the complexity of a sentence (Martin et al., 2018; Collins-Thompson, 2014). We follow two approaches, first, we obtain the frequency and rank per lemma based on the deCOW-corpus (Bildhauer and Schäfer, 2014) and build the average of them per sentence. Second, we measure the lexical complexity based on the word ranks in the German FastText Embeddings as well as obtaining the highest and average position of the tokens in the sentence.

Additionally, we select vocabulary lists per CEFR level A1, A2, B1 by the Goethe institute3 and measure the ratio of words in the input sentence that can be found in the CEFR vocabulary lists. Vocabulary lists for other CEFR levels have not been available. The correlations with the empirical MOS-values indicate that the study participants judging the complexity are familiar with the vocabulary up to the B1 level. All three correlations (ratio of A1 / A2 / B1 vocabulary words) are negative and lie in the range $-0.35 \leq r \leq -0.4$. That is the higher the proportion of A1/A2/B1 vocabulary words, the less complex the participants judged the sentence.

Morphological Features. Besides the length and the choice of the words, a morphological analysis of words can be helpful to assess the complexity of the sentences. For example, some morphemes can drastically change the meaning of a word, e.g., negation prefixes ("irr-" or "un-"), nominalization suffixes ("-heit" or "-keit"), or one-token compound nouns ("Staubecken", "Dampfschiff"). Therefore, we calculate the number of nominalizations, negations based on a fix list of affixes, count the number of n-grams4, as well as the ratio of compounded words5. Furthermore, we include the ratio of nouns per case, as the genitive is often difficult to understand. The non-ngram morphological features exhibit a significant but weak correlation with the MOS-values.

Syntactic Features. Besides an analysis of the words, an analysis of the structure of a sentence can give additional insights into its complexity because some syntactic structures take longer to process and comprehend (Gibson, 1998). To reflect syntactic complexity in our features, we measure the maximum depth of the dependency parse tree, maximum and average distances between words and number of clauses.6 Based on Gasperin et al. (2009), we add the average length of noun, verb, and prepositional phrases, and whether the sentence is written in active or passive voice and indicative or subjunctive mood. Furthermore, we check some regularities in the parse tree based on Stodden and Kallmeyer (2020) (see Table 1). Based on the parse tree, we also count the ratio of multi-word expressions and ratio of all tokens of some clauses (see Table 1). Maximum tree depth has the strongest correlation ($r = 0.583$) with the MOS-values. Tree width features like average NP or VP length show a moderate positive correlation as well ($r \approx 0.4$). A negative correlation is found for the number of clauses normalized by sentence length ($r = -0.46$).

Morphosyntactic Features. Part-of-speech (POS) tags combine some morphological information with syntactic information, therefore we use the number and ratio of coarse-grained / fine-grained POS tags and noun-to-verb ratio to estimate the sentence complexity as similar as in Gasperin et al. (2009) and Kauchak et al. (2014). Following Collins-Thompson (2014), we also include the ratio of function words and stop words to all tokens as a feature. However, none of these features has a moderate or strong correlation with the MOS-score.

Psycholinguistic Features. In readability literature, psycholinguistic-based features are often named as relevant features (Collins-Thompson, 2014; Davoodi and Kosseim, 2016). In our work, we obtain the imageability and concreteness of each word per sentence based on the Concreteness and imageability lexicon MEGA.HR-Crossling (Ljubešić, 2018) and measure the average per sentence as another feature. Both of these features do not show a moderate or strong correlation which might be due to the absence of the words of the sentences in the chosen resources.

Perplexity Feature. We calculate the perplexity of the sentence with "GerPT-2"7. The higher the perplexity score, the harder to predict the seen sen-

3https://www.goethe.de/de/spr/kup/prf/prf.html
4We consider all uni-grams in the training data (char vocab), and top k n-grams for k=20, n=2, 3, 4, 5.
5The compounded words are obtained by https://github.com/repodiac/german_compound_splitter.
6The number of clauses is heuristically derived by the clause-splitting method described in Dönische (2020).
7https://huggingface.co/benjamin/gerpt2
tence and the more unlikely is the input sentence for the model. Hence, we hypothesize, the higher the perplexity score, the more uncommon/complex is the sentence. For the training data the hypothesis can be confirmed but only by a weak correlation ($r = 0.214$).

Translation-based Features. The idea is to test whether translation difficulties indicate higher MOS-values. Therefore, with GoogleTranslator the sentences have been translated into English, Turkish, Hungarian, Chinese, and Georgian and backtranslated into German. These languages vary in their morphological and syntactic similarity and in their degree of genetic relationship to German. For the original and the backtranslated sentences contextualized embedding vectors have been determined with a transformer language model8. Finally, the cosine similarity for the sentence pairs has been calculated and added as a feature. It turns out that only Georgian leads to a non significant feature (p-value = 0.08), all others are significantly correlating with the MOS-values indeed only weakly. The highest correlation is found for Chinese Simplified with $r = 0.146$ and $p = 0.00$.

Text Level. We fine-tune a 3-class text level classifier on the Lexica corpus (Hewett and Stede, 2021), a dataset with German Wikipedia texts for three different target groups: younger children, children and adults. From this dataset we sample roughly 38k sentences (taken from roughly 1650 different texts), and fine-tune a German BERT model9 to predict one of the three labels: child, youth, adult. The fine-tuned language model is applied to the shared task dataset and the softmax scores for the three labels, as well as the predicted labels are used as additional text level features. All four text level features have a rather high moderate correlation with the MOS values: softmax adult $r = 0.589$, softmax youth $r = -0.447$, softmax child $r = -0.519$, and predicted label $r = 0.565$. The correlations show that the study participants judge sentences as less complex if they have a higher probability of being labeled as ‘child’ or ‘youth’ and as more complex the higher the probability of the label ‘adult’ is. This indicates that the German language proficiency level of the participants is in between the youth and the adult level.

2.2 Predicting MOS from features

We have compared different methods to predict MOS based on the features from the previous section. To choose an appropriate model architecture and hyperparameters, we train and test models on a 5-fold crossvalidation split of the shared task training data for which MOS scores are available. We compare linear regression models with different regularization (Ridge, ElasticNet), and XGBoost (Chen and Guestrin, 2016). Because XGBoost achieved the best crossvalidation performance by a margin of > 0.05 RMSE compared to the other models, we only report results for this model. Using the same 5-fold crossvalidation split, the best hyperparameters are determined. The best model is an XGBoostRegressor10 with n_estimators=2500, a learning rate of eta=.005, and a max_depth of 5. This model achieves a RMSE of .545 (RMSE mapped .502) on the final test data.

2.3 Fine-tuning

We have explored fine-tuning a language model directly on the regression task using Huggingface’s AutoModelForSequenceClassification for various models available on Huggingface including English, German and multilingual versions of BERT (Devlin et al., 2019) and DistilBERT (Sanh et al., 2019). To select the best pre-trained model, we have trained on 900 sentences of the training data and evaluated RMSE on the remaining 100. With a learning rate of 2×10^{-5} and 5 epochs. Trading smaller batch sizes for more steps led to better results where 10 did better than 30 or 50.

![Architecture of the multimodal model](https://docs.getml.com/1.1.0/api/getml.predictors.XGBoostRegressor.html)

Figure 1: Architecture of the multimodal model that combines BERT embeddings with feature vectors

8https://huggingface.co/Sahajtomar/German-semantic

9https://huggingface.co/deepset/gbert-base

10https://docs.getml.com/1.1.0/api/getml.predictors.XGBoostRegressor.html
2.4 Multimodal model

To combine text embeddings and numerical features, we have written a custom version of Huggingface’s DistilbertForSequenceClassification heavily inspired by Multimodal-Toolkit (Gu and Budhkar, 2021). BERT embeddings and text features are combined by a feedforward neural network, the architecture of which is displayed in Figure 1.

3 Results

Model	RMSE
XGBoost no ngrams	.545
XGBoost all feats	.639
ElasticNet no ngrams	.672
ElasticNet all feats	.659
Ridge no ngrams	.669
Ridge all feats	.713
bert-base-cased	.601
bert-base-german-cased	.552
bert-base-german-dbmdz-cased	.638
bert-base-multilingual-cased	.565
distilbert-base-cased	.600
distilbert-base-german-cased	.486
xlm-roberta-base	.511
distilbert-base-german-cased multimodal	.622

Table 2: Results for all models. Boldface results indicate performance on test data via a submission to the evaluation system. In all other cases, the performance is measured on a randomly selected held-out split of the training data. The first line separates regression models and fine-tuned language models, and the second line separates the multimodal model.

Results are presented in Table 2. For feature-based predictors, features and target MOS scores are transformed by removing the mean and scaling to unit variance. We find that gradient-boosting methods (XGBoost) work significantly better than linear models with ElasticNet or Ridge regularization. As shown in Table 2, the ablation of n-gram features clearly drops the RMSE score for XGBoost and Ridge regularization (> 0.04). XGBoost without n-gram features achieves a RMSE mapped score of .502 on the test data. For fine-tuned models, distilbert-base-german-cased was trained on 990 sentences with batch size 10 and 5 epochs. The submitted result reached .486 RMSE (.473 RMSE mapped) on test data. When combining a transformer language model and features (subsection 2.4), we found that our implementation did not manage to improve results over the fine-tuning baseline. The best submission for this method reached .622 RMSE (.524 RMSE mapped). A smaller feature set based on their importance might improve the results, similar as shown for the ablation of n-gram features with XGBoost and Ridge regularization (see Table 2).

3.1 Distribution of predictions

Figure 2: Distribution of MOS scores in the training data (70 bins).

On crossvalidated results, we find that many of our models do not predict the Gaussian distribution of MOS scores with an additional peak at the low end (Figure 2). All models correctly identify the mean scores of the general dataset, but generally tend to predict MOS scores of a lower standard deviation. Across feature-based models, the standard deviation of predicted scores on validation data is approximately 20% smaller than the standard deviation of the gold labels. We do not know the true labels of the validation and testing shared task data, but assume that this systematic error is also present in our submissions for these datasets.

4 Conclusion

In our contribution to the shared task, we have compared predictions based on linguistic features with an approach based on transfer learning, i.e., fine-tuning a language model. We find that even though linguistic features achieve relatively high correlation with the MOS scores, they are outperformed by a "simple" fine-tuned transformer language model.

References

Felix Bildhauer and Roland Schäfer. 2014. Decow14 lemma frequency list.

John R. Bormuth. 1966. Readability: A new approach. Reading Research Quarterly, 1(3):79–132.

Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A scalable tree boosting system. In Proceedings of
