目的：カイラル対称性の破れとインスタントン、モノポールの関係を QCD の第一原理計算から定量的に示す。
内容：モノポール生成演算子を作用させて、モノポールを加えた QCD 真空を生成する。真空のゲージ場から、カイラル対称性を満たす、オーバーラップフェルミオンのディラック演算子を計算して、固有値問題を解き、固有値のゼロモードの数から QCD 真空中のインスタントンの数を計算する。そして、モノポールとインスタントンの関係を定量的に示す。
結果：磁荷数 +1 を持つモノポールと磁荷数 -1 を持つ反モノポールの一対が、一つのインスタントンを作ることを、解析計算による我々の予想と比較することによって、以下の図のように、異なる格子体積（左図）と異なる格子間隔（右図）の QCD 真空を使って示した。インスタントンは、カイラル対称性の破れと密接に関係しているので、現在、カイラル凝縮、パイオン崩壊定数、クォーク質量などの計算をしている。

使用した計算機：SX-ACE、汎コンクラスタ。
SX-ACEでの計算：ベクトル化率 99%以上、計算メモリ 10~30 [GB]、4並列。