THE FIRST SIMULTANEOUS SIGN CHANGE AND NON-VANISHING OF HECKE EIGENVALUES OF NEWFORMS

SANOLI GUN, BALESH KUMAR AND BIPLAB PAUL

ABSTRACT. Let \(f \) and \(g \) be two distinct newforms which are normalized Hecke eigenforms of weights \(k_1, k_2 \geq 2 \) and levels \(N_1, N_2 \geq 1 \) respectively. Also let \(a_f(n) \) and \(a_g(n) \) be the \(n \)-th Fourier-coefficients of \(f \) and \(g \) respectively. In this article, we investigate the first sign change of the sequence \(\{a_f(p^\alpha)a_g(p^\beta)\} \) where \(p \) is a prime number. We further study the non-vanishing of the sequence \(\{a_f(n)a_g(n)\} \) and derive bounds for first non-vanishing term in this sequence. We also show, using ideas of Kowalski-Robert-Wu and Murty-Murty, that there exists a set of primes \(S \) of natural density one such that for any prime \(p \in S \), the sequence \(\{a_f(p^\alpha)a_g(p^\beta)\} \) has no zero elements. This improves a recent work of Kumari and Ram Murty. Finally, using \(\mathfrak{B} \)-free numbers, we investigate simultaneous non-vanishing of coefficients of \(m \)-th symmetric power \(L \)-functions of non-CM forms in short intervals.

1. INTRODUCTION

For positive integers \(k \geq 2, N \geq 1 \), let \(S_k(N) \) be the space of cusp forms of weight \(k \) for the congruence subgroup \(\Gamma_0(N) \) and \(S_k^{new}(N) \) be the subspace of \(S_k(N) \) consisting of newforms. We investigate arithmetic properties of Fourier-coefficients of \(f \in S_k^{new}(N) \) which are normalized Hecke eigenforms. This question has been studied extensively by several mathematicians. In recent works, Kowalski, Lau, Soundararajan and Wu [15] and later Matomäki [22] showed that any \(f \in S_k^{new}(N) \) which is a normalized Hecke eigenform is uniquely determined by the signs of their Hecke eigenvalues at primes. In this article, we investigate simultaneous sign change and non-vanishing of Hecke eigenvalues of such forms. More precisely, for \(z \in \mathcal{H} := \{z \in \mathbb{C} : \text{Im}(z) > 0\} \), \(q := e^{2\pi i z} \), let

\[
\begin{align*}
\begin{align*}
(f(z) = \sum_{n=1}^{\infty} a_f(n)q^n &\in S_k^{new}(N_1) \quad \text{and} \quad g(z) = \sum_{n=1}^{\infty} a_g(n)q^n \in S_k^{new}(N_2) \\
\end{align*}
\end{align*}
\]

be two newforms which are normalized Hecke eigenforms. Here we study first sign change and non-vanishing of the sequence \(\{a_f(n)a_g(n)\} \).

The question of simultaneous sign change for arbitrary cusp forms was first studied by Kohnen and Sengupta [14] under certain conditions which were later removed by the first

2010 Mathematics Subject Classification. 11F30, 11F11.

Key words and phrases. newforms, first simultaneous sign change, simultaneous non-vanishing, Rankin-Selberg method, \(\mathfrak{B} \)-free numbers.
author, Kohnen and Rath [9]. In the later paper, the authors prove infinitely many sign change of the sequence \(\{a_f(n)a_g(n)\}_{n \in \mathbb{N}} \). Here we prove the following theorem.

Theorem 1. Let \(N_1, N_2 \) be square-free, \(N := \text{lcm}[N_1, N_2] \) and \(f \in S^\text{new}_{k_1}(N_1) \), \(g \in S^\text{new}_{k_2}(N_2) \) be two distinct normalized Hecke eigenforms with Fourier expansions as in (1). Then there exists a prime power \(p^\alpha \) with \(\alpha \leq 2 \) and

\[
p^\alpha \ll \max \left\{ \exp(c \log^2(\sqrt{q(f)} + \sqrt{q(g)})), \left[N^2 \left(1 + \frac{k_2 - k_1}{2}\right) \left(\frac{k_1 + k_2}{2}\right)\right]^{1+\epsilon} \right\}
\]

such that \(a_f(p^\alpha)a_g(p^\alpha) < 0 \). Here \(c > 0 \) is an absolute constant and \(q(f), q(g) \) are analytic conductors of Rankin-Selberg \(L \)-functions of \(f \) and \(g \) respectively.

We use Rankin-Selberg method and an idea of Iwaniec, Kohnen and Sengupta [12] to prove Theorem 1. This theorem can be thought of as a variant of Strum’s result about distinguishing two newforms by their Fourier-coefficients. This result can be compared with the results of Lau-Liu-Wu [19], Kohnen [13], Kowalski-Michel-Vanderkam [16], Ram Murty [25] and Sengupta [32].

Next we investigate sign changes of the sequence \(\{a_f(n)a_g(n^2)\}_{n \in \mathbb{N}} \) in short intervals. This question of sign change for the sequence \(\{a_f(n)a_g(n)\}_{n \in \mathbb{N}} \) in short intervals was considered by Kumari and Ram Murty (see [18, Theorem 1.6]). Here we prove the following.

Theorem 2. Let

\[
f(z) = \sum_{n=1}^{\infty} a_f(n)q^n \in S^\text{new}_{k_1}(N_1) \quad \text{and} \quad g(z) = \sum_{n=1}^{\infty} a_g(n)q^n \in S^\text{new}_{k_2}(N_2)
\]

be two distinct normalized Hecke eigenforms. For any sufficiently large \(x \) and any \(\delta > \frac{17}{18} \), the sequence \(\{a_f(n)a_g(n^2)\}_{n \in \mathbb{N}} \) has at least one sign change in \((x, x + x^\delta)\). In particular, the number of sign changes for \(n \leq x \) is \(\gg x^{1-\delta} \).

Sign changes of Hecke eigenvalues implies non-vanishing of Hecke eigenvalues. The question of non-vanishing of Hecke eigenvalues has been studied by several mathematicians. One of the fundamental open problem in this area is a question of Lehmer which predicts that \(\tau(n) \neq 0 \) for all \(n \in \mathbb{N} \), where \(\tau(n) \) is the Ramanujan’s \(\tau \)-function defined as follows;

\[
\Delta(z) := \sum_{n=1}^{\infty} \tau(n)q^n := q \prod_{n=1}^{\infty} (1-q^n)^4.
\]

It is well known that \(\Delta(z) \in S_{12}(1) \) is the unique normalized Hecke eigenform. We now investigate non-vanishing of the sequence \(\{a_f(p^m)a_g(p^m)\}_{m \in \mathbb{N}} \) and our first theorem in this direction is the following.
Theorem 3. Let
\[f(z) = \sum_{n=1}^{\infty} a_f(n)q^n \in S^{new}_{k_1}(N_1) \quad \text{and} \quad g(z) = \sum_{n=1}^{\infty} a_g(n)q^n \in S^{new}_{k_2}(N_2) \]
be two distinct normalized Hecke eigenforms. Then for all primes \(p \) with \((p, N_1N_2) = 1 \), the set
\[\{ m \in \mathbb{N} \mid a_f(p^m)a_g(p^m) \neq 0 \} \]
has positive density.

The first author along with Kohnen and Rath (see Theorem 3 of [9]) showed that for infinitely many primes \(p \), the sequence \(A_p := \{ a_f(p^m)a_g(p^m) \}_{m \in \mathbb{N}} \) has infinitely many sign changes and hence in particular, \(A_p \) has infinitely many non-zero elements. Theorem 3 shows that for all primes \(p \) with \((p, N_1N_2) = 1 \), the non-zero elements of the sequence \(A_p \) has positive density and hence does not follow from Theorem 3 of [9]. Our next theorem strengthens Theorem 1.2 of Kumari and Ram Murty [18].

Theorem 4. Let
\[f(z) = \sum_{n=1}^{\infty} a_f(n)q^n \in S^{new}_{k_1}(N_1) \quad \text{and} \quad g(z) = \sum_{n=1}^{\infty} a_g(n)q^n \in S^{new}_{k_2}(N_2) \]
be two distinct normalized non-CM Hecke eigenforms. Then there exists a set \(S \) of primes with natural density one such that for any \(p \in S \) and integers \(m, m' \geq 1 \), we have
\[a_f(p^m)a_g(p^{m'}) \neq 0. \]

Now we shall consider the question of the first simultaneous non-vanishing which is analogous to the question considered in Theorem 1. Our result here is as follows.

Theorem 5. Let
\[f(z) = \sum_{n=1}^{\infty} a_f(n)q^n \in S_{k_1}(N_1) \quad \text{and} \quad g(z) = \sum_{n=1}^{\infty} a_g(n)q^n \in S_{k_2}(N_2) \]
be two distinct normalized Hecke eigenforms. Further assume that \(N := \text{lcm}[N_1, N_2] > 12 \). Then there exists a positive integer \(1 < n \leq (2 \log N)^4 \) with \((n, N) = 1 \) such that
\[a_f(n)a_g(n) \neq 0. \]

Further, when \(N \) is odd, then there exists an integer \(1 < n \leq 16 \) with \((n, N) = 1 \) such that
\[a_f(n)a_g(n) \neq 0. \]

Note that \(a_f(1)a_g(1) = 1 \neq 0 \) but we are trying to find the first natural number \(n > 1 \) with \((n, N) = 1 \) for which \(a_f(n)a_g(n) \neq 0 \) which we call the first non-trivial simultaneous non-vanishing. Though first simultaneous sign change (see [19], also Theorem 1 above) implies first
non-trivial simultaneous non-vanishing but the bound proved in Theorem 5 is much stronger for first non-trivial simultaneous non-vanishing.

The paper is organized as follows. In the next section, we introduce notations and briefly recall some preliminaries. In sections 3 to 7, we provide proofs of theorems mentioned in the introduction. Finally, in the last section, using \(\mathbb{B} \)-free numbers, we deduce certain results about simultaneous non-vanishing of coefficients of symmetric power \(L \)-functions of non-CM forms in short intervals.

2. Notation and Preliminaries

Throughout the paper, \(p \) denotes a prime number and \(\mathcal{P} \) denotes the set of all primes. We say that a subset \(S \subset \mathcal{P} \) has natural density \(d(S) \) if the limit

\[
\lim_{x \to \infty} \frac{\# \{ p \in \mathcal{P} : p \leq x \text{ and } p \in S \}}{\# \{ p \in \mathcal{P} : p \leq x \}}
\]

exists and equal to \(d(S) \). For any non-negative real number \(x \), we denote the greatest integer \(n \leq x \) by \(\lceil x \rceil \). Let \(A \) be a subset of the set of natural numbers. Then we say the density of the set \(A \) is \(d(A) \) if the limit

\[
\lim_{x \to \infty} \frac{\# \{ n \leq x : n \in A \}}{\# \{ n \leq x \}}
\]

exists and equal to the real number \(d(A) \). For any \(n, m \in \mathbb{N} \), we shall denote the greatest common divisor of \(n \) and \(m \) by \((n,m) \).

For a normalized Hecke eigenform \(f \in S_{k}^{new}(N) \) with Fourier expansion

\[
f(z) = \sum_{n \geq 1} a_{f}(n)q^{n},
\]

we write

\[
\lambda_{f}(n) := \frac{a_{f}(n)}{n^{(k-1)/2}}.
\]

From the theory of Hecke operators, we know

\[
\lambda_{f}(1) = 1 \quad \text{and} \quad \lambda_{f}(m)\lambda_{f}(n) = \sum_{d|(m,n),(d,N)=1} \lambda_{f}\left(\frac{mn}{d^2}\right).
\]

Also by a celebrated work of Deligne, we have

\[
|\lambda_{f}(n)| \leq d(n) \quad \text{for all } (n,N) = 1,
\]

where \(d(n) \) denotes the number of positive divisors of \(n \).

The following result of Kowalski-Robert-Wu [17, Lemma 2.3] (see also Murty-Murty [26, Lemma 2.5]) plays an important role in the proof of Theorem 4.
Lemma 6. Let
\[f(z) := \sum_{n=1}^{\infty} a_f(n)q^n \in S_{k}^{new}(N) \]
be a normalized non-CM Hecke eigenform. For \(\nu \geq 1 \), let
\[P_{f,\nu} := \{ p \in \mathcal{P} \mid p \nmid N \text{ and } \lambda_f(p^\nu) = 0 \}. \]
Then for any \(\nu \geq 1 \), we have
\[#(P_{f,\nu} \cap [1, x]) \ll_{f, \delta} x \frac{(\log x)^{1+\delta}}{x}, \]
for any \(x \geq 2 \) and \(0 < \delta < 1/2 \). Here the implied constant depends on \(f \) and \(\delta \). Let
\[P_f := \bigcup_{\nu \in \mathbb{N}} P_{f,\nu}. \]
Then for any \(x \geq 2 \) and \(0 < \delta < 1/2 \), we have
\[#(P_f \cap [1, x]) \ll_{f, \delta} x \frac{(\log x)^{1+\delta}}{x}, \]
where the implied constant depends only on \(f \) and \(\delta \).

We now recall some well known properties of Rankin-Selberg \(L \)-function associated with \(f \in S_{k_1}^{new}(N_1) \) and \(g \in S_{k_2}^{new}(N_2) \) which are normalized Hecke eigenforms. Suppose that \(k_1 \leq k_2 \). One can now define the Rankin-Selberg \(L \)-function as follows
\[R(f, g; s) := \sum_{n \geq 1} \lambda_f(n)\lambda_g(n)n^{-s}, \]
which is absolutely convergent for \(\Re(s) > 1 \) and hence it defines a holomorphic function there. Let \(M := \gcd(N_1, N_2) \) and \(N := \text{lcm}[N_1, N_2] \) be square-free. By the work of Rankin \cite{29} (see also \cite{27}, page 304), one knows that the function \(\zeta_N(2s)R(f, g; s) \) is entire if \(f \neq g \), where \(\zeta_N(s) \) is defined by
\[\zeta_N(s) := \prod_{p \mid N} (1 - p^{-s})^{-1} \quad \text{for } \Re(s) > 1. \]
(5)

We also have the completed Rankin-Selberg \(L \)-function
\[R^*(f, g; s) := (2\pi)^{-2s} \Gamma(s + \frac{k_2 - k_1}{2})\Gamma(s + \frac{k_1 + k_2}{2} - 1) \prod_{p \mid M} (1 - c_p p^{-s})^{-1} \zeta_N(2s)R(f, g; s) \]
with \(c_p = \pm 1 \) depending on the forms \(f \) and \(g \). It is well known by the works of Ogg (see \cite{27} Theorem 6) and Winnie Li (see \cite{20} Theorem 2.2) that the completed Rankin-Selberg \(L \)-function satisfies the functional equation
\[R^*(f, g; s) = N^{1-2s} R^*(f, g; 1-s). \]
(7)
3. Proof of Theorem 1

Throughout this section, we assume that \(N_1 \) and \(N_2 \) are square-free and \(f \in S_{k_1}^{\text{new}}(N_1) \), \(g \in S_{k_2}^{\text{new}}(N_2) \) are two distinct normalized Hecke eigenforms with \(1 < k_1 \leq k_2 \). In order to prove Theorem 1, we need to prove the following Propositions.

Proposition 7. For square-free integers \(N_1, N_2 \), let \(f \in S_{k_1}^{\text{new}}(N_1) \), \(g \in S_{k_2}^{\text{new}}(N_2) \) be normalized Hecke eigenforms with \(f \neq g \) and let \(N := \text{lcm}[N_1, N_2] \) and \(M := (N_1, N_2) \). Then for any \(t \in \mathbb{R} \) and \(\epsilon > 0 \), one has

\[
\zeta_N(2 + 2\epsilon + 2it)R(f, g; 1 + \epsilon + it) \ll \epsilon \quad \text{for all} \quad \epsilon > 0,
\]

and

\[
\zeta_N(-2\epsilon + 2it)R(f, g; -\epsilon + it) \ll \epsilon \quad \text{for all} \quad \epsilon > 0,
\]

where \(\zeta_N(s) \) is defined in (5).

Proof. Since \(\zeta_N(2 + 2\epsilon + 2it) \) and \(R(f, g; 1 + \epsilon + it) \) are absolutely convergent for \(\Re(s) > 1 \), we have the first inequality. To derive the second inequality, we use functional equation. From the functional equation (7), we have

\[
(8) \quad \zeta_N(2 - 2s) \cdot R(f, g; 1 - s) = (2\pi)^{2s} \cdot N^{2s - 1} \cdot \frac{\Gamma(s + \frac{k_2 - k_1}{2})}{\Gamma(1 - s + \frac{k_2 - k_1}{2})} \cdot \frac{\Gamma(s + \frac{k_1 + k_2}{2} - 1)}{\Gamma(-s + \frac{k_1 + k_2}{2})} \cdot \prod_{p|M} \frac{1 - c_p p^{s-1}}{1 - c_p p^{-s}} \cdot \zeta_N(2s) \cdot R(f, g; s).
\]

Using Stirling’s formula (see page 57 of [10]), we have

\[
\left| \frac{\Gamma(1 + \frac{k_2 - k_1}{2} + \epsilon + it)}{\Gamma(\frac{k_2 - k_1}{2} - \epsilon + it)} \right| \ll \epsilon \left(1 + \frac{k_2 - k_1}{2} \right)^{1+2\epsilon} |1 + it|^{1+2\epsilon}
\]

and

\[
\left| \frac{\Gamma(k_1 + k_2 + \epsilon + it)}{\Gamma(k_1 + k_2 - 1 - \epsilon + it)} \right| \ll \epsilon \left(\frac{k_1 + k_2}{2} \right)^{1+2\epsilon} |1 + it|^{1+2\epsilon}.
\]

For all \(t \in \mathbb{R} \), we also have

\[
\left| \prod_{p|M} (1 - c_p p^{-1-\epsilon-it})^{-1} \right| = \left| \prod_{p|M} \sum_{m \geq 0} (c_p p^{-1-\epsilon-it})^m \right| \leq \prod_{p|M} \sum_{m \geq 0} (p^{-1-\epsilon})^m \ll 1
\]

and

\[
\left| \prod_{p|M} (1 - c_p p^{\epsilon+it}) \right| = \prod_{p|M} |1 - c_p p^{\epsilon+it}| \leq \prod_{p|M} (1 + p^\epsilon) \leq \prod_{p|M} p^{1+\epsilon} \ll M^{1+2\epsilon}.
\]

Putting \(s = 1 + \epsilon + it \) in (8) and using the above estimates along with the first inequality, we get the second inequality. \(\square \)

The next proposition provides convexity bound for Rankin-Selberg \(L \)-function \(R(f, g; s) \).
Proposition 8. For square-free integers \(N_1, N_2\), let \(f \in S^\text{new}_{k_1}(N_1)\), \(g \in S^\text{new}_{k_2}(N_2)\) be normalized Hecke eigenforms with \(f \neq g\) and \(N := \text{lcm}[N_1, N_2]\). Then for any \(t \in \mathbb{R}, \epsilon > 0\) and \(1/2 < \sigma < 1\), one has
\[
R(f, g; \sigma + it) \ll \epsilon \, N^{2(1-\sigma+\epsilon)} \left(1 + \frac{k_2 - k_1}{2}\right)^{1-\sigma+\epsilon} \left(\frac{k_1 + k_2}{2}\right)^{1-\sigma+\epsilon} (3 + |t|)^{2(1-\sigma+\epsilon)}.
\]

To prove this proposition, we shall use the following strong convexity principle due to Rademacher.

Proposition 9 (Rademacher [28]). Let \(g(s)\) be continuous on the closed strip \(a \leq \sigma \leq b\), holomorphic and of finite order on \(a < \sigma < b\). Further suppose that
\[
|g(a + it)| \leq E|P + a + it|^\alpha, \quad |g(b + it)| \leq F|P + b + it|^\beta,
\]
where \(E, F\) are positive constants and \(P, \alpha, \beta\) are real constants that satisfy
\[
P + a > 0, \quad \alpha \geq \beta.
\]
Then for all \(a < \sigma < b\) and for all \(t \in \mathbb{R}\), we have
\[
|g(\sigma + it)| \leq (E|P + \sigma + it|^\alpha) \frac{b-a}{\beta-a} (F|P + \sigma + it|^\beta) \frac{2}{\beta-a}.
\]

We are now ready to prove Proposition 8.

Proof. We apply Proposition 9 with
\[
a = -\epsilon, \quad b = P = 1 + \epsilon, \quad F = C_2,
\]
\[
E = C_1 \, N^{2+4\epsilon} \left(1 + \frac{k_2 - k_1}{2}\right)^{1+2\epsilon} \left(\frac{k_1 + k_2}{2}\right)^{1+2\epsilon}, \quad \alpha = 2 + 4\epsilon, \quad \beta = 0,
\]
where \(C_1, C_2\) are absolute constants depending only on \(\epsilon\). Thus for any \(-\epsilon < \sigma < 1 + \epsilon\), we have
\[
\zeta_N(2\sigma + 2it)R(f, g; \sigma + it) \ll \epsilon \left[N^{\frac{2+4\epsilon}{1+2\epsilon}} \left(1 + \frac{k_2 - k_1}{2}\right) \left(\frac{k_1 + k_2}{2}\right)^{1-\sigma+\epsilon} (1 + \sigma + \epsilon + |t|)^{2(1-\sigma+\epsilon)}\right].
\]

Note that for \(1/2 < \sigma < 1 + \epsilon\), one knows
\[
|\zeta_N(2\sigma + 2it)|^{-1} \ll \epsilon \log \log(N + 2) \cdot |1 + it|^{\epsilon}.
\]
Combining all together, we get Proposition 8. \(\square\)

As an immediate corollary, we have

Corollary 10. For square-free integers \(N_1, N_2\), let \(f \in S^\text{new}_{k_1}(N_1)\), \(g \in S^\text{new}_{k_2}(N_2)\) be normalized Hecke eigenforms with \(f \neq g\) and \(N := \text{lcm}[N_1, N_2]\). Then for any \(t \in \mathbb{R}\) and any \(\epsilon > 0\), one has
\[
R(f, g; 3/4 + it) \ll \epsilon \left[N^2 \left(1 + \frac{k_2 - k_1}{2}\right) \left(\frac{k_1 + k_2}{2}\right)^{1/4+\epsilon} (3 + |t|)^{1/2+\epsilon}\right].
\]
Proposition 11. For square-free integers N_1, N_2, let $f \in S_{k_1}^{new}(N_1)$, $g \in S_{k_2}^{new}(N_2)$ be normalized Hecke eigenforms with $f \neq g$ and $N := \text{lcm}[N_1, N_2]$. Then for any $\epsilon > 0$, one has

$$\sum_{\substack{n \leq x, \\ (n, N) = 1, n \text{ square-free}}} \lambda_f(n)\lambda_g(n) \log^2(x/n) \ll \epsilon \left[N^2 \left(1 + \frac{k_2 - k_1}{2} \right) \left(\frac{k_1 + k_2}{2} \right) \right]^{1/4+\epsilon} x^{3/4}. $$

Proof. For any $\epsilon > 0$, we know by Deligne’s bound that

$$\lambda_f(n)\lambda_g(n) \ll \epsilon n^\epsilon. $$

Hence by Perron’s summation formula (see page 56 and page 67 of [24]), we have

$$\sum_{\substack{n \leq x, \\ (n, N) = 1, n \text{ square-free}}} \lambda_f(n)\lambda_g(n) \log^2(x/n) = \frac{1}{\pi i} \int_{1+\epsilon+i\infty}^{1+\epsilon-i\infty} R^b(f, g; s) \frac{x^s}{s^3} ds$$

where

$$R^b(f, g; s) = \prod_{p \mid N} \left(1 + \frac{\lambda_f(p)\lambda_g(p)}{p^s} \right), \quad \Re(s) > 1. $$

Further

$$R(f, g; s) = R^b(f, g; s)H(s), $$

where $H(s)$ has an Euler product which converges normally for $\Re(s) > 1/2$. Now we shift the line of integration to $\Re(s) = 3/4$. Observing that there are no singularities in the vertical strip bounded by the lines with $\Re(s) = 1 + \epsilon$ and $\Re(s) = 3/4$ and using Proposition 8 along with (11), we have

$$\sum_{\substack{n \leq x, \\ (n, N) = 1, n \text{ square-free}}} \lambda_f(n)\lambda_g(n) \log^2(x/n) = \frac{1}{\pi i} \int_{3/4-\infty}^{3/4+i\infty} R^b(f, g; s) \frac{x^s}{s^3} ds.$$

The above observations combined with Corollary 10 then implies that

$$\sum_{\substack{n \leq x, \\ (n, N) = 1, n \text{ square-free}}} \lambda_f(n)\lambda_g(n) \log^2(x/n) \ll \epsilon N^{1/2+\epsilon} \left(1 + \frac{k_2 - k_1}{2} \right)^{1/4+\epsilon} \left(\frac{k_1 + k_2}{2} \right)^{1/4+\epsilon} x^{3/4}. $$

This completes the proof of the proposition. \(\square\)

Our next lemma will play a key role in proving Theorem 1.

Lemma 12. For square-free integers N_1, N_2, let $f \in S_{k_1}^{new}(N_1)$, $g \in S_{k_2}^{new}(N_2)$ be normalized Hecke eigenforms with $f \neq g$ and $N := \text{lcm}[N_1, N_2]$. Also assume that for any $\alpha \leq 2$, $\lambda_f(p^\alpha)\lambda_g(p^\alpha) \geq 0$ for
all $p^k \leq x$. Then for $x \geq \exp(c \log^2(\sqrt{q(f)} + \sqrt{q(g)}))$, we have

$$\sum_{n \leq x, \atop (n,N)=1, n \text{ square-free}} \lambda_f(n)\lambda_g(n) \gg \frac{x}{\log^2 x}.$$

Here $q(f), q(g)$ are analytic conductors of Rankin-Selberg L-functions of f and g respectively with

(12) $q(f) \leq k_1^2 N_1^2 \log \log N_1$ and $q(g) \leq k_2^2 N_2^2 \log \log N_2$

and $c > 0$ is an absolute constant.

Proof. Using Hecke relation (3), for any prime $(p,N) = 1$, we know that

$$\lambda_f(p^2)\lambda_g(p^2) = [\lambda_f(p)\lambda_g(p)]^2 - \lambda_f(p)^2 - \lambda_g(p)^2 + 1.$$

By hypothesis $\lambda_f(p^2)\lambda_g(p^2) \geq 0$ for all $p \leq \sqrt{x}$. Hence for any $p \leq \sqrt{x}$ and $(p,N) = 1$, we have

$$\lambda_f(p)^2\lambda_g(p)^2 \geq \lambda_f(p)^2 + \lambda_g(p)^2 - 1.$$

This implies that

$$\sum_{p \leq \sqrt{x}, \atop (p,N)=1} \lambda_f(p)^2\lambda_g(p)^2 \geq \sum_{p \leq \sqrt{x}, \atop (p,N)=1} \lambda_f(p)^2 + \sum_{p \leq \sqrt{x}, \atop (p,N)=1} \lambda_g(p)^2 - \sum_{p \leq \sqrt{x}, \atop (p,N)=1} 1.$$

Using standard analytic techniques and prime number theorem for Rankin-Selberg L-functions of f and g respectively (see [11], pages 94-95, 110-111 for further details), we see that

$$\sum_{p \leq \sqrt{x}, \atop (p,N)=1} \lambda_f(p)^2\lambda_g(p)^2 \geq c_1 \frac{\sqrt{x}}{\log x}$$

provided $x \geq \exp(c \log^2(\sqrt{q(f)} + \sqrt{q(g)}))$, where $c, c_1 > 0$ are absolute constants and $q(f), q(g)$ are as in equation (12). Using the hypothesis

$$\lambda_f(p)\lambda_g(p) \geq 0 \quad \text{and} \quad \lambda_f(p^2)\lambda_g(p^2) \geq 0$$

for all $p, p^2 \leq x$ and assuming that $x \geq \exp(c \log^2(\sqrt{q(f)} + \sqrt{q(g)}))$, we have

$$\sum_{n \leq x, \atop (n,N)=1, n \text{ square-free}} \lambda_f(n)\lambda_g(n) \geq \frac{1}{2} \sum_{p,q \leq \sqrt{x}, \atop (pq,N)=1, \atop p \neq q} \lambda_f(pq)\lambda_g(pq)$$

$$= \frac{1}{2} \left(\sum_{p \leq \sqrt{x}, \atop (p,N)=1} \lambda_f(p)\lambda_g(p) \right)^2 - \frac{1}{2} \sum_{p \leq \sqrt{x}, \atop (p,N)=1} \lambda_f(p)^2\lambda_g(p)^2.$$
Now using Deligne’s bound, we get
\[
\sum_{\substack{n \leq x, \\ (n,N) = 1, \\ n \text{ square-free}}} \lambda_f(n)\lambda_g(n) \geq \frac{1}{2} \left(\sum_{p \leq \sqrt{x}, \\ (p,N) = 1} \lambda_f(p)\lambda_g(p) \frac{\lambda_f(p)\lambda_g(p)}{4} \right)^2 - 8 \sum_{p \leq \sqrt{x}, \\ (p,N) = 1} 1
\]
\[
= \frac{1}{32} \left(\sum_{p \leq \sqrt{x}, \\ (p,N) = 1} \lambda_f(p)^2\lambda_g(p)^2 \right)^2 + O \left(\frac{\sqrt{x}}{\log x} \right)
\]
\[
\gg \frac{x}{\log^2 x}.
\]
This completes the proof of the lemma. □

We are now in a position to complete the proof of Theorem 1.

Proof. Assume that \(\lambda_f(p^\alpha)\lambda_g(p^\alpha) \geq 0\) for all \(p^\alpha \leq x\) with \(\alpha \leq 2\). By Lemma 12, we see that
\[
\sum_{n \leq x/2, \\ (n,N) = 1, \\ n \text{ square-free}} \lambda_f(n)\lambda_g(n) \log^2(x/n) \gg \sum_{n \leq x/2, \\ (n,N) = 1, \\ n \text{ square-free}} \lambda_f(n)\lambda_g(n) \gg \frac{x}{\log^2 x}
\]
provided \(x \geq \exp(c \log^2(\sqrt{q(f)} + \sqrt{q(g)}))\), where \(c > 0, q(f), q(g)\) are as in Lemma 12. Now comparing (10) and (13), for any \(\epsilon > 0\), we have
\[
x \ll \epsilon^* \max \left\{ \exp(c \log^2(\sqrt{q(f)} + \sqrt{q(g)})), \left[N^2 \left(1 + \frac{k_2 - k_1}{2} \right) \left(\frac{k_1 + k_2}{2} \right) \right]^{1+\epsilon} \right\},
\]
where \(c, q(f), q(g)\) are as before. Here we have used Lemma 4 of Choie and Kohnen. This completes the proof of Theorem 1. □

4. PROOF OF THE THEOREM 2

We now state a Lemma which we shall use to prove Theorem 2.

Lemma 13. Let \(\{a_n\}_{n \in \mathbb{N}}\) and \(\{b_m\}_{m \in \mathbb{N}}\) be two sequences of real numbers such that
\[
\begin{align*}
(1) \quad a_n &= O(n^{\alpha_1}), \quad b_m = O(m^{\alpha_2}), \\
(2) \quad \sum_{n,m \leq x} a_nb_m &\ll x^\beta, \\
(3) \quad \sum_{n,m \leq x} a_n^2b_m^2 &= cx + O(x^\gamma),
\end{align*}
\]
where \(\alpha_1, \alpha_2, \beta, \gamma \geq 0\) and \(c > 0\) such that \(\max\{\alpha_1 + \alpha_2 + \beta, \gamma\} < 1\). Then for any \(r\) satisfying
\[
\max\{\alpha_1 + \alpha_2 + \beta, \gamma\} < r < 1,
\]
there exists a sign change among the elements of the sequence \(\{a_nb_m\}_{n,m \in \mathbb{N}}\) for \(n, m \in [x, x^r]\). Consequently, for sufficiently large \(x\), the number of sign changes among the elements of the sequence \(\{a_nb_m\}_{n,m \in \mathbb{N}}\) with \(n, m \leq x\) are \(\gg x^{1-r}\).
Proof. Suppose that for any \(r \) satisfying
\[
\max\{\alpha_1 + \alpha_2 + \beta, \gamma\} < r < 1,
\]
the elements of the sequence \(\{a_nb_m\}_{n,m \in \mathbb{N}} \) have same signs in \([x, x + x^r]\). This implies that
\[
x^r \ll \sum_{x \leq n, m \leq x + x^r} a_n^2 b_m^2 \ll x^{\alpha_1 + \alpha_2} \sum_{x \leq n, m \leq x + x^r} a_n b_m \ll x^{\alpha_1 + \alpha_2 + \beta},
\]
which is a contradiction. This completes the proof of the Lemma. \(\square \)

Lemma \([13]\) can be thought of as a generalization of a Lemma of Meher and Ram Murty (see \([23, \text{Theorem 1.1}]\)) when \(b_1 = 1 \) and \(b_m = 0 \) for all \(m > 1 \). We are now in a position to prove Theorem \([2]\).

Proof. In order to apply Lemma \([13]\) we need to verify the following conditions for the elements of the sequence \(\{\lambda_f(n) \lambda_g(n^2)\}_{n \in \mathbb{N}} \). Note that

1. Ramanujan-Deligne bound implies that
\[
\lambda_f(n) \lambda_g(n^2) = O(n^\epsilon)
\]
for all \(n \in \mathbb{N} \).
2. By a recent work of Lü \([21, \text{Theorem 1.2(2)}]\) (see also Kumari and Ram Murty \([18]\)), one has
\[
\sum_{n \leq x} \lambda_f(n) \lambda_g(n^2) \ll x^{5/7} (\log x)^{-\theta/2},
\]
where \(\theta = 1 - \frac{8}{3\pi} = 0.1512 \ldots \)
3. In the same paper, Lü (see \([21, \text{Lemma 2.3(ii)}]\)) as well as Kumari and Ram Murty \([18]\) also proved that
\[
\sum_{n \leq x} \lambda_f(n)^2 \lambda_g(n^2)^2 = cx + O(x^{17/15 + \epsilon}),
\]
where \(c > 0 \).

Theorem \([2]\) now follows from Lemma \([13]\) by choosing \(a_n = \lambda_f(n) \) and \(b_m := \lambda_g(m^2) \) for all \(m, n \in \mathbb{N} \) and considering the sequence \(\{a_nb_n\}_{n \in \mathbb{N}} \). \(\square \)

5. PROOF OF THE THEOREM \([3]\)

Using equation \([4]\), one can write
\[
\lambda_f(p) = 2 \cos \alpha_p \quad \text{and} \quad \lambda_g(p) = 2 \cos \beta_p
\]
with \(0 \leq \alpha_p, \beta_p \leq \pi\). Using the Hecke relation (3) for any prime \((p, N_1N_2) = 1\), one has

\[
\lambda_f(p^m) = \begin{cases}
(14) \quad (-1)^m(m + 1) & \text{if } \alpha_p = \pi; \\
m + 1 & \text{if } \alpha_p = 0; \\
\sin((m+1)\alpha_p) \sin \alpha_p & \text{if } 0 < \alpha_p < \pi.
\end{cases}
\]

and

\[
\lambda_g(p^m) = \begin{cases}
(15) \quad (-1)^m(m + 1) & \text{if } \beta_p = \pi; \\
m + 1 & \text{if } \beta_p = 0; \\
\sin((m+1)\beta_p) \sin \beta_p & \text{if } 0 < \beta_p < \pi.
\end{cases}
\]

Theorem 5 now follows from the following four cases.

Case (1): When \(\alpha_p = 0\) or \(\pi\) and \(\beta_p = 0\) or \(\pi\), then by the equation (14) and equation (15), we see that

\[
\{m \in \mathbb{N} \mid a_f(p^m)a_g(p^m) \neq 0\} = \mathbb{N}.
\]

In this case all elements of the sequence \(\{a_f(p^m)a_g(p^m)\}_{m \in \mathbb{N}}\) are non-zero.

Case (2): Suppose that at least one of \(\alpha_p, \beta_p\), say \(\alpha_p = 0\) or \(\pi\) and \(\beta_p \in (0, \pi)\). If \(\beta_p/\pi \notin \mathbb{Q}\), there is nothing to prove. Now if \(\beta_p/\pi = r/s\) with \((r, s) = 1\), then we have

\[
\#\{m \leq x \mid a_f(p^m)a_g(p^m) \neq 0\} = \#\{m \leq x \mid a_g(p^m) \neq 0\} = \lfloor x \rfloor - \left\lfloor \frac{x}{s} \right\rfloor.
\]

Hence the set \(\{m \mid a_f(p^m)a_g(p^m) \neq 0\}\) has positive density.

Case (3): Suppose that \(\alpha_p = \beta_p \in (0, \pi)\), i.e. \(\alpha_p/\pi = \beta_p/\pi \in (0, 1)\). If \(\alpha_p/\pi \notin \mathbb{Q}\), then \(a_f(p^m)a_g(p^m) \neq 0\) for all \(m \in \mathbb{N}\) as \(\sin m\alpha_p \neq 0\) for all \(m \in \mathbb{N}\). If \(\alpha_p/\pi \in \mathbb{Q}\), say \(\alpha_p/\pi = t/s\), where \(r, s \in \mathbb{N}\) with \((r, s) = 1\), then we have \(\sin m\alpha_p = 0\) if and only if \(m\) is an integer multiple of \(s\) and hence

\[
\#\{m \leq x : a_f(p^m)a_g(p^m) \neq 0\} = \lfloor x \rfloor - \left\lfloor \frac{x}{s} \right\rfloor.
\]

Hence the set in (2) has positive density.

Case (4): Assume that \(\alpha_p, \beta_p \in (0, \pi)\) with \(\alpha_p \neq \beta_p\). If both \(\alpha_p/\pi, \beta_p/\pi \notin \mathbb{Q}\), then there is nothing to prove. Next suppose that one of them, say \(\alpha_p/\pi \in \mathbb{Q}\) with \(\alpha_p/\pi = t/s\) with \((r, s) = 1\) and \(\beta_p/\pi \notin \mathbb{Q}\). Then we have

\[
\#\{m \leq x : a_f(p^m)a_g(p^m) \neq 0\} = \#\{m \leq x : a_f(p^m) \neq 0\} = \lfloor x \rfloor - \left\lfloor \frac{x}{s} \right\rfloor.
\]

Hence the set in (2) has positive density.

Now let both \(\alpha_p/\pi, \beta_p/\pi \in \mathbb{Q}\). If \(\alpha_p/\pi = r_1/s_1\) and \(\beta_p/\pi = r_2/s_2\) with \((r_i, s_i) = 1\), for \(1 \leq i \leq 2\), then

\[
\#\{m \leq x : a_f(p^m)a_g(p^m) \neq 0\} = \#\{m \leq x : a_f(p^m) \neq 0\} \cap \{m \leq x : a_g(p^m) \neq 0\}.
\]
Note that both s_1 and s_2 can not be 2 as otherwise $\alpha_p = \beta_p$. Since
\[
\#\{m \leq x : a_f(p^m)a_g(p^m) = 0\} = \#\{m \leq x : a_f(p^m) = 0\} \cup \{m \leq x : a_g(p^m) = 0\} \\
\leq \left\lfloor \frac{x}{s_1} \right\rfloor + \left\lceil \frac{x}{s_2} \right\rceil,
\]
the set in (2) has positive density. This completes the proof of Theorem 3.

6. PROOF OF THEOREM 4

Using Lemma 6, we see that for any $x \geq 2$ and $0 < \delta < 1/2$
\[
\#\{p \leq x : a_f(p^m) = 0 \text{ for some } m \geq 1\} \ll_{f,\delta} \frac{x}{(\log x)^{1+\delta}},
\]
where the implied constant depends only on f and δ. We have the same estimate for the form g as well. Therefore for any $x \geq 2$ and $0 < \delta < 1/2$, we have
\[
\#\{p \leq x : a_f(p^m)a_g(p^{m'}) = 0 \text{ for some } m, m' \geq 1\} \ll_{f,g,\delta} \frac{x}{(\log x)^{1+\delta}},
\]
where the implied constant depends on f, g and δ. Hence
\[
\#\{p \leq x : a_f(p^m)a_g(p^{m'}) \neq 0 \text{ for all } m, m' \geq 1\} \\
= \pi(x) - \#\{p \leq x : a_f(p^m)a_g(p^{m'}) = 0 \text{ for some } m, m' \geq 1\},
\]
where $\pi(x)$ denotes the number of primes up to x. Now using prime number theorem as well as the identity (16), we have
\[
\#\{p \leq x : a_f(p^m)a_g(p^{m'}) \neq 0 \text{ for all } m, m' \geq 1\} \sim \frac{x}{\log x}.
\]
Hence the set
\[
\{p \in \mathcal{P} : a_f(p^m)a_g(p^{m'}) \neq 0 \text{ for any integers } m, m' \geq 1\}
\]
has natural density 1.

7. PROOF OF THEOREM 5

We keep the notations in this section as in section 5. To prove Theorem 5, we start by proving the following Proposition.

Proposition 14. Let
\[
f(z) = \sum_{n=1}^{\infty} a_f(n)q^n \in S_{k_1}(N_1) \quad \text{and} \quad g(z) = \sum_{n=1}^{\infty} a_g(n)q^n \in S_{k_2}(N_2)
\]
be two distinct normalized Hecke eigenforms. Then for any prime p with $(p, N_1N_2) = 1$, there exists an integer m with $1 \leq m \leq 4$ such that $a_f(p^m)a_g(p^m) \neq 0$.
Proof. Note that $a_f(p^m)a_g(p^m) \neq 0$ is equivalent to $\sin(m+1)\alpha_p \sin(m+1)\beta_p \neq 0$. If $a_f(p)a_g(p) \neq 0$, then we are done. Now suppose $a_f(p)a_g(p) = 0$, then either $a_f(p) = 0$ or $a_g(p) = 0$.

Case (1): If $a_f(p) = 0 = a_g(p)$, then $\alpha_p = \beta_p = \pi/2$. Hence we have

$$a_f(p^2)a_g(p^2) = p^{k_1+k_2-2} \neq 0.$$

Case (2): Suppose that at least one of $a_f(p), a_g(p) \neq 0$. Without loss of generality assume that $a_f(p) = 0$ and $a_g(p) \neq 0$, then $\alpha_p = \pi/2$ and $\beta_p \neq \pi/2$. Now if $\beta_p = 0$ or π, then $a_g(p^2) = 3p^{k_2-1}$. Hence we have

$$a_f(p^2)a_g(p^2) = -3p^{k_1+k_2-2} \neq 0.$$

If $\beta_p \notin \{0,\pi/2,\pi\}$, then this implies that $a_g(p^2) = p^{(k_2-1)}\frac{\sin 3\beta_p}{\sin \beta_p}$. Now if $a_f(p^2)a_g(p^2) = 0$, then $\beta_p \in \{\pi/3,2\pi/3\}$ as $0 < \beta_p < \pi$. Then we have

$$\frac{a_f(p^4)a_g(p^4)}{p^{2(k_1+k_2-2)}} = \frac{2}{\sqrt{3}} \sin \frac{5\pi}{2} \sin \frac{5\pi}{3} \quad \text{or} \quad \frac{a_f(p^4)a_g(p^4)}{p^{2(k_1+k_2-2)}} = \frac{2}{\sqrt{3}} \sin \frac{5\pi}{2} \sin \frac{10\pi}{3}.$$

Since neither $\sin(5\pi/2)\sin(5\pi/3)$ nor $\sin(5\pi/2)\sin(10\pi/3)$ is equal to zero, this completes the proof of Proposition 14. \hfill \Box

Proof. We now complete the proof of the first part of Theorem 5 by showing the existence of a prime $p \leq 2 \log N$ with $(p, N) = 1$ and then using Proposition 14. We know by a theorem of Rosser and Schoenfeld (see [30, p. 70]) that

$$\sum_{p \leq x} \log p > 0.73x \quad \text{for all} \quad x \geq 41.$$

Using this, one can easily check that

$$\sum_{p \leq x} \log p > \frac{x}{2} \quad \text{for all} \quad x \geq 5.$$

Now consider the following product

$$\prod_{p \leq 2 \log N} p = \exp \left(\sum_{p \leq 2 \log N} \log p \right) > N,$$

which confirms the existence of such a prime. Proof of the second part of Theorem 5 follows immediately by applying Proposition 14. \hfill \Box
8. **\mathcal{B}-FREE NUMBERS AND SIMULTANEOUS NON-VANISHING IN SHORT INTERVALS**

In this section, we first list certain properties of \mathcal{B}-free numbers and their distribution in short intervals to derive simultaneous non-vanishing of Hecke eigenvalues. Erdős [8] introduced the notion of \mathcal{B}-free numbers and showed the existence of these numbers in short intervals.

Definition 1. Let us assume that

$$\mathcal{B} := \{b_1, b_2, \ldots\} \subset \mathbb{N}$$

be such that

$$(b_i, b_j) = 1 \text{ for } i \neq j \text{ and } \sum_{i \geq 1} \frac{1}{b_i} < \infty.$$

One says that a number $n \in \mathbb{N}$ is \mathcal{B}-free if it is not divisible by any element of the set \mathcal{B}.

The distribution of \mathcal{B}-free numbers in short intervals has been studied by several mathematicians (see [3], [31], [34], [35], [37]). Balog and Ono [4] were first to use \mathcal{B}-free numbers to study non-vanishing of Hecke eigenvalues.

For a non-CM cusp form $f \in S_k(N)$ with Fourier coefficients $\{a_f(n)\}_{n \in \mathbb{N}}$, Serre (see [33, page 383]) defined the function

$$i_f(n) := \max \{m \in \mathbb{N} | a_f(n + j) = 0 \text{ for all } 0 < j \leq m\}$$

which is now known as gap function. Alkan and Zaharescu [1] proved that

$$i_{\Delta}(n) \ll_{\Delta} n^{1/4+\epsilon}$$

for Ramanujan Δ-function. Kowalski, Robert and Wu [17], using distribution of \mathcal{B}-free numbers in short intervals showed that

$$i_f(n) \ll_f n^{7/17+\epsilon}$$

where $f \in S_k^{new}(N)$ is any normalized Hecke eigenform. Recently, Das and Ganguly [6] showed that

$$i_f(n) \ll_f n^{1/4+\epsilon}$$

for any $f \in S_k(1)$.

In this article, we will study simultaneous non-vanishing of Hecke eigenvalues using \mathcal{B}-free numbers. This question was first considered by Kumari and Ram Murty [18]. We now introduce the set of \mathcal{B}-free numbers as constructed by Kowalski, Robert and Wu [17]. These numbers will play an important role in our work.

Let \mathfrak{P} be a subset of \mathcal{P} such that

$$(17) \quad \#(\mathfrak{P} \cap [1, x]) \ll \frac{x^\rho}{(\log x)^{\eta_x}}$$
where \(\rho \in [0, 1] \) and \(\eta_{\rho} \)'s are real numbers with \(\eta_1 > 1 \). Let us define
\[
(18) \quad \mathcal{B}_\mathcal{P} := \mathcal{P} \cup \{ p^2 \mid p \in \mathcal{P} - \mathcal{P} \}.
\]
Write \(\mathcal{B}_\mathcal{P} = \{ b_i \mid i \in \mathbb{N} \} \). Note that \((b_i, b_j) = 1 \) for all \(b_i, b_j \in \mathcal{B}_\mathcal{P} \) with \(b_i \neq b_j \). To show \(\sum_{i \in \mathbb{N}} \frac{1}{b_i} < \infty \), it is enough to show that \(\sum_{p \in \mathcal{P}} \frac{1}{p} < \infty \). Applying equation (17) and partial summation formula, one has
\[
\sum_{p \leq x} \frac{1}{p} = \frac{1}{x} \sum_{p \leq x} 1 + \int_2^x \frac{1}{t^2} \left(\sum_{p \leq t} 1 \right) dt \ll \mathcal{P} \frac{x^{\rho - 1}}{(\log x)^{\eta_{\rho}}} + \int_2^x t^{\rho - 2} \left(\log t \right)^{\eta_{\rho}} dt \ll \mathcal{P} 1.
\]

With these notations, Kowalski, Robert and Wu (see Corollary 10 of [17]) proved the following Theorem.

Theorem 15 (Kowalski, Robert and Wu). For any \(\epsilon > 0 \), \(x \geq x_0(\mathcal{P}, \epsilon) \) and \(y \geq x^{\theta(\rho) + \epsilon} \), we have
\[
\# \{ x < n \leq x + y \mid n \text{ is } \mathcal{B}_\mathcal{P}-\text{free} \} \gg \mathcal{P} \epsilon y,
\]
where
\[
(19) \quad \theta(\rho) := \begin{cases}
\frac{1}{4} & \text{if } 0 \leq \rho \leq \frac{1}{3}; \\
\frac{10\rho}{19\rho+7} & \text{if } \frac{1}{3} < \rho \leq \frac{9}{17}; \\
\frac{3\rho}{4\rho+3} & \text{if } \frac{9}{17} < \rho \leq \frac{15}{28}; \\
\frac{5}{16} & \text{if } \frac{15}{28} < \rho \leq \frac{5}{8}; \\
\frac{22\rho}{24\rho+29} & \text{if } \frac{5}{8} < \rho \leq \frac{9}{10}; \\
\frac{7\rho}{9\rho+8} & \text{if } \frac{9}{10} < \rho \leq 1.
\end{cases}
\]

We now study simultaneous non-vanishing in short arithmetic progression using the distribution of \(\mathcal{B} \)-free numbers. The question of the distribution of \(\mathcal{B} \)-free numbers in short arithmetic progression was first considered by Alkan and Zaharescu [2]. In this direction, Wu and Zhai (see Proposition 4.1 of [36]) have the following result about distribution of \(\mathcal{B} \)-free numbers in short arithmetic progression.

Theorem 16 (Wu and Zhai). Let \(\mathcal{B}_\mathcal{P} \) be as in (18). For any \(\epsilon > 0 \), \(x \geq x_0(\mathcal{P}, \epsilon) \), \(y \geq x^{\psi(\rho) + \epsilon} \) and \(1 \leq a \leq q \leq x^{\epsilon} \) with \((a, q) = 1 \), one has
\[
\# \{ x < n \leq x + y \mid n \text{ is } \mathcal{B}_\mathcal{P}-\text{free and } n \equiv a(\text{mod } q) \} \gg \mathcal{P} \epsilon y/q,
\]
where
\[
(20) \quad \psi(\rho) := \begin{cases}
\frac{29\rho}{46\rho+19} & \text{if } \frac{190}{323} < \rho \leq \frac{166}{173}; \\
\frac{17\rho}{26\rho+12} & \text{if } \frac{166}{173} < \rho \leq 1.
\end{cases}
\]

Using above results, we now have the following non-vanishing Theorem for certain multiplicative function.
Theorem 17. Let $f : \mathbb{N} \to \mathbb{C}$ be a multiplicative function and let $N \geq 1$ be a positive integer. Define
\begin{equation}
\Psi_{f,N} := \{ p \in \mathcal{P} \mid f(p) = 0 \} \cup \{ p \in \mathcal{P} \mid p | N \}.
\end{equation}
Also assume that $\Psi_{f,N}$ satisfies condition (17). Then

1. For any $\epsilon > 0$, $x \geq x_0(\Psi_{f,N}, \epsilon)$ and $y \geq x^{\theta(\rho)+\epsilon}$, we have
$$\# \{ x < n \leq x + y \mid (n,N) = 1, n \text{ square-free and } f(n) \neq 0 \} \gg \Psi_{f,N}, \epsilon, y,$$
where $\theta(\rho)$ is as in (19).

2. For any $\epsilon > 0$, $x \geq x_0(\Psi_{f,N}, \epsilon)$, $y \geq x^{\psi(\rho)+\epsilon}$ and $1 \leq a \leq q \leq x^\epsilon$ with $(a,q) = 1$, we have
$$\# \{ x < n \leq x + y : (n,N) = 1, n \text{ square-free}, n \equiv a(mod \ q) \text{ and } f(n) \neq 0 \} \gg \Psi_{f,N}, \epsilon, y/q,$$
where $\psi(\rho)$ is as in (20).

Proof. Define
$$\mathcal{B}_{\Psi_{f,N}} := \mathcal{P} \cup \{ p^2 \mid p \in \mathcal{P} - \Psi_{f,N} \}.$$

Then first part of Theorem 17 now follows from Theorem 15. Applying Theorem 16, we get the second part of Theorem 17. □

As an immediate corollary, we have

Corollary 18. Let E_1/\mathbb{Q} and E_2/\mathbb{Q} be two non-CM elliptic curves which have the same conductor N. Let
$$L(E_i,s) = \sum_{n=1}^{\infty} a_{E_i}(n)n^{-s}, \quad i = 1,2$$
be their Hasse-Weil L-functions. If $f_{E_i}(z) = \sum_{n=1}^{\infty} a_{E_i}(n)q^n$ for $i = 1,2$ are the associated weight two newforms, then

1. For any $\epsilon > 0$ and $y \geq x^{33/94+\epsilon}$, we have
$$\# \{ x < n \leq x + y \mid n \text{ square-free and } a_{E_1}(n)a_{E_2}(n) \neq 0 \} \gg_{E_1,E_2,\epsilon} y.$$

2. For any $\epsilon > 0$, $x \geq x_0(E_1, E_2, \epsilon)$, $y \geq x^{87/214+\epsilon}$ and $1 \leq a \leq q \leq x^\epsilon$ with $(a,q) = 1$, we have
$$\# \{ x < n \leq x + y \mid (n,N) = 1, n \text{ square-free and } n \equiv a(mod \ q) \text{ and } a_{E_1}(n)a_{E_2}(n) \neq 0 \} \gg_{E_1,E_2,\epsilon} y/q.$$

Proof. Let $\pi_E(x)$ be the number of supersingular primes up to x for a non-CM elliptic curve E/\mathbb{Q}. By the work of Elkies [7], we have
$$\# \{ p \leq x : a_E(p) = 0 \} \ll_E x^{3/4}.$$

Considering $f(n) := a_{E_1}(n)a_{E_2}(n)$, one easily sees that $\Psi_{f,N}$ satisfies condition (17) with $\rho = 3/4$ and $\eta_\rho = 0$. Now by using Theorem 17, we get the Corollary. □
Kumari and Ram Murty have proved similar results for non-CM cusp forms which are newforms and normalized Hecke eigenforms of weight \(k > 2 \).

As a second corollary, we have the following simultaneous non-vanishing result for coefficients of symmetric power \(L \)-functions.

To state the corollary, we need to introduce few more notations. Let \(f \in S^\text{new}_k(N) \) be a normalized Hecke eigenform with Fourier coefficients \(\{a_f(n)\}_{n \in \mathbb{N}} \). Set \(\lambda_f(n) = a_f(n)/n^{(k-1)/2} \) and suppose that for \(p \nmid N \), \(\alpha_{f,p}, \beta_{f,p} \) are the Satake \(p \)-parameter of \(f \). Then the un-ramified \(m \)-th symmetric power \(L \)-function of \(f \) is defined as follows:

\[
L_{\text{unr}}(\text{sym}^m f, s) := \prod_{p \mid N} \prod_{0 \leq j \leq m} (1 - \alpha_{f,p}^j \beta_{f,p}^{m-j} p^{-s})^{-1} = \sum_{n \geq 1} \lambda_f^{(m)}(n)n^{-s}.
\]

We now have the following corollary.

Corollary 19. Let \(f \in S^\text{new}_k(N_1) \) and \(g \in S^\text{new}_k(N_2) \) be normalized non-CM Hecke eigenforms. Let \(N := \text{lcm}[N_1, N_2] \). Then

1. For any \(\epsilon > 0 \), \(x \geq x_0(f, g, \epsilon) \) and \(y \geq x^{7/17+\epsilon} \), we have
 \[
 \#\{x < n \leq x + y : n \text{ is square-free and } \lambda_f^{(m)}(n)\lambda_g^{(m)}(n) \neq 0\} \gg_{f,g,\epsilon} y.
 \]
2. For any \(\epsilon > 0 \), \(x \geq x_0(f, g, \epsilon) \), \(y \geq x^{17/38+\epsilon} \) and \(1 \leq a \leq q \leq x^{\epsilon} \) with \((a, q) = 1 \), we have
 \[
 \#\{x < n \leq x + y : (n, N) = 1, n \text{ square-free, } n \equiv a(mod \, q) \text{ and } \lambda_f^{(m)}(n)\lambda_g^{(m)}(n) \neq 0\} \gg_{f,g,\epsilon} y/q.
 \]

Proof. Let

\[\mathfrak{P}_{f,g,m} := \{p \in \mathcal{P} : p \mid N \text{ or } \lambda_f^{(m)}(p)\lambda_g^{(m)}(p) = 0\} \]

Since \(\lambda_f^{(m)}(p) = \lambda_f(p^m) \), using Lemma 6 we see that \(\mathfrak{P}_{f,g,m} \) satisfies condition [17]. Note that \(f(n) := \lambda_f^{(m)}(n)\lambda_g^{(m)}(n) \) is a multiplicative function and hence we can apply Theorem [17] to complete the proof of Corollary 19.

Remark 8.1. Note that Corollary [19] implies simultaneous non-vanishing of Hecke eigenvalues in sparse sequences. More precisely, let \(f \in S^\text{new}_k(N_1) \) and \(g \in S^\text{new}_k(N_2) \) be normalized non-CM Hecke eigenforms. Also let \(N := \text{lcm}[N_1, N_2] \). Then

1. For any \(\epsilon > 0 \), \(x \geq x_0(f, g, \epsilon) \) and \(y \geq x^{7/17+\epsilon} \), we have
 \[
 \#\{x < n \leq x + y : (n, N) = 1, n \text{ square-free and } \lambda_f(n^m)\lambda_g(n^m) \neq 0\} \gg_{f,g,\epsilon} y.
 \]
2. For any \(\epsilon > 0 \), \(x \geq x_0(f, g, \epsilon) \), \(y \geq x^{17/38+\epsilon} \) and \(1 \leq a \leq q \leq x^{\epsilon} \) with \((a, q) = 1 \), we have
 \[
 \#\{x < n \leq x + y : (n, N) = 1, n \text{ square-free, } n \equiv a(mod \, q) \text{ and } \lambda_f(n^m)\lambda_g(n^m) \neq 0\} \gg_{f,g,\epsilon} y/q.
 \]

Acknowledgments: The authors would like to thank Jyoti Sengupta for bringing to their notice the paper of Lau-Liu-Wu [19]. The authors would also like to thank Purusottam Rath for going through an earlier version of the paper.
REFERENCES

[1] E. Alkan and A. Zaharescu, Nonvanishing of the Ramanujan tau function in short intervals, Int. J. Number Theory 1 (2005), no. 1, 45–51.
[2] E. Alkan and A. Zaharescu, \(\mathcal{B}\)-free numbers in short arithmetic progressions, J. Number Theory 113 (2005), 226–243.
[3] G. Bantle and F. Grupp, On a problem of Erdős and Szemerédi, J. Number Theory 22 (1986), 280–288.
[4] A. Balog and K. Ono, The Chebotarev density theorem in short intervals and some questions of Serre, J. Number Theory 91 (2001), 356–371.
[5] Y. Choie and W. Kohnen, The first sign change of Fourier coefficients of cusp forms, Amer. J. Math. 131 (2009), no. 2, 517–543.
[6] S. Das and S. Ganguly, Gaps between non-zero Fourier coefficients of cusp forms, Proc. Amer. Math. Soc. 142 (2014), 3747–3755.
[7] N. Elkies, Distribution of supersingular primes, In Journées Arithmétiques (1989), Astérisque, (1992), 127–132.
[8] P. Erdős, On the difference of consecutive terms of sequences defined by divisibility properties, Acta Arith. 12 (1966/1967), 175–182.
[9] S. Gun, W. Kohnen and P. Rath, Simultaneous sign change of Fourier-coefficients of two cusp forms, Arch. Math. (Basel) 105 (2015), no. 5, 413–424.
[10] A. E. Ingham, The distribution of prime numbers, Cambridge University Press, Cambridge, 1990.
[11] H. Iwaniec and E. Kowalski, Analytic Number Theory, American Mathematical Society, 2004.
[12] H. Iwaniec, W. Kohnen and J. Sengupta, The first negative Hecke eigenvalue, Int. J. Number Theory 3 (2007), 355–363.
[13] W. Kohnen, On Hecke eigenvalues of newforms, Math. Ann. 329 (2004), no. 4, 623–628.
[14] W. Kohnen and J. Sengupta, Signs of Fourier coefficients of two cusp forms of different weights, Proc. Amer. Math. Soc. 137 (2009), no. 11, 3563–3567.
[15] E. Kowalski, Y. K. Lau, K. Soundararajan and J. Wu, On modular signs, Math. Proc. Cambridge Philos. Soc. 149 (2010), no. 3, 389–411.
[16] E. Kowalski, P. Michel and J. Vanderkam, Rankin-Selberg L-functions in the level aspect, Duke Mathematical Journal 114 (2002), 123–191.
[17] E. Kowalski, O. Robert and J. Wu, Small gaps in coefficients of L-functions and \(\mathcal{B}\)-free numbers in short intervals, Rev. Mat. Iberoamericana, 23 (2007), no. 1, 281–326.
[18] M. Kumari and M.R. Murty, Simultaneous non-vanishing and sign changes of Fourier coefficients of modular forms, submitted.
[19] Y-K. Lau, J. Liu and J. Wu, Sign changes of the coefficients of automorphic L-functions, Number Theory: Arithmetic in Shangri-La, edited by S. Kanemitsu, H. Li, and J. Liu, 141–181. Hackensack, NJ: World Scientific Publishing Co. Pvt. Ltd., 2013.
[20] W-C Winnie Li, L-series of Rankin type and their functional equations, Math. Ann. 244 (1979), 135–166.
[21] G. Lù, Sums of absolute values of cusp form coefficients and their application, J. Number Theory, 139 (2014), 29–43.
[22] K. Matomäki, On signs of Fourier coefficients of cusp forms, Math. Proc. Cambridge Philos. Soc. 152 (2012), no. 2, 207–222.
[23] J. Meher and M. R. Murty, Sign changes of Fourier coefficients of half-integral weight cusp forms, Int. J. Number Theory, 10 (2014), No. 4, 905–914.
[24] M. Ram Murty, Problems in analytic number theory, Graduate Texts in Mathematics 206, Springer-Verlag, New York, 2001.
[25] M. R. Murty, Congruences between modular forms, Analytic Number Theory, Kyoto, (1996), 309–320, London Math., Soc., Lecture Notes, Ser., 247, Cambridge University Press, Cambridge, (1997).
[26] M. R. Murty and V. K. Murty, Odd values of Fourier coefficients of certain modular forms, Int. J. Number Theory, 3 (2007), no. 3, 455–470.
[27] A.P. Ogg, On a convolution of L-series, Invent. Math. 7 (1969), 297–312.
[28] H. Rademacher, On the Phragmén-Lindelöf theorem and some applications, Math. Z. 72 (1959), 192–204.
[29] R.A. Rankin, Contributions to the theory of Ramanujan's function $\tau(n)$ and similar arithmetical functions II. Proc. Cambridge Philos. Soc. 35 (1939), 357–372.
[30] J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64–94.
[31] P. Sargos, and J. Wu, Multiple exponential sums with monomials and their applications in number theory, Acta Math. Hungar. 87 (2000), 333–354.
[32] J. Sengupta, Distinguishing Hecke eigenvalues of primitive cusp forms, Acta Arith. 114 (2004), no. 1, 23–34.
[33] J.P. Serre, Quelques applications du théorème de densité de Chebotarev, Inst. Hautes Études Sci. Publ. Math. 54 (1981), 323–401.
[34] E. Szemerédi, On the difference of consecutive terms of sequences defined by divisibility properties. II, Acta Arith. 23 (1973), 359–361.
[35] J. Wu, Nombres B-libres dans les petits intervalles, Acta Arith. 65 (1993), 97–116.
[36] J. Wu and W. Zhai, Distribution of Hecke eigenvalues of newforms in short intervals, Q. J. Math., 64(2) (2013), 619–644.
[37] W. G. Zhai, Number of B-free numbers in short intervals, Chinese Sci. Bull. 45 (2000), 208–212.

(Sanoli Gun, Balesh Kumar and Biplab Paul) INSTITUTE OF MATHEMATICAL SCIENCES, HOMI BHABHA NATIONAL INSTITUTE, C.I.T CAMPUS, TARAMANI, CHENNAI 600 113, INDIA.

E-mail address: sanoli@imsc.res.in
E-mail address: baleshk@imsc.res.in
E-mail address: biplabpaul@imsc.res.in