A COHERENT TIMING SOLUTION FOR THE NEARBY ISOLATED NEUTRON STAR RX J1308.6+2127/RBS 1223

D. L. KAPLAN and M. H. VAN KERKWIJK

ApJ Letters in Press

ABSTRACT

We present a phase-connected timing solution for the nearby isolated neutron star RX J1308.6+2127 (RBS 1223). From dedicated Chandra observations as well as archival Chandra and XMM-Newton data spanning a period of five years, we demonstrate that the 10.31-sec pulsations are slowing down steadily at a rate of $\dot{P} = 1.120(3) \times 10^{-13}$ s$^{-1}$. Under the assumption that this is due to magnetic dipole torques, we infer a characteristic age of 1.5 Myr and a magnetic field strength of 3.4×10^{13} G. As with RX J0720.4−3125, the only other radio-quiet thermally emitting isolated neutron star for which a timing solution has been derived, the field strength is roughly consistent with what was inferred earlier from the presence of a strong absorption feature in its X-ray spectrum. Furthermore, for both sources the characteristic age is in excess of the cooling age inferred from standard cooling models. The sources differ, however, in their timing noise: while RX J0720.4−3125 showed considerable timing noise, RX J1308.6+2127 appears relatively stable.

1. INTRODUCTION

The sample of nearby, radio-quiet, isolated neutron stars discovered by ROSAT (for a review, e.g., Haberl 2004) is of particular interest because of the unambiguous presence of strong, broad absorption features in the X-ray spectra of most sources. Since the spectra appear thermal, these features almost certainly arise in the neutron-star atmospheres. The features have usually been interpreted under the assumption of a pure hydrogen composition (not unlike, given the short settling times for neutron stars) and a strong magnetic field (as suggested by the long, 3–10 s spin periods; Heyl & Hernquist 1998), with the absorption reflecting either the proton cyclotron line or transitions between bound states of neutral hydrogen (e.g., Haberl et al. 2003; van Kerkwijk et al. 2004).

In order to help determine the nature of the absorption features, as well as to elucidate what sets the isolated neutron stars apart from young rotation-powered pulsars, we have started a program to obtain phase-connected timing solutions, and use these to estimate ages and magnetic field strengths. Earlier, we presented our first results, for RX J0720.4−3125 (Kaplan & van Kerkwijk 2005); here, we consider a second source, RX J1308.6+2127.

RX J1308.6+2127 (also known as RBS 1223 and 1RXS J130848.6+212708) was identified as a possible nearby isolated neutron star by Schweppe et al. (1999). The identification was confirmed with the detection of a 5.16-s X-ray periodicity (Hambaryan et al. 2002) and a very faint ($V \approx 28$ mag) probable optical counterpart with no radio emission.

1 Pappalardo Fellow; MIT Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 37-664D, Cambridge, MA 02139, USA; dlk@space.mit.edu
2 Department of Astronomy and Astrophysics, University of Toronto, 60 St. George Street, Toronto, ON M5S 3H8, Canada; mhvk@astro.utoronto.ca

We do not use data from ROSAT observation 703848, since we, like Hambaryan et al. (2002) and Schweppe et al. (2003), found there were insufficient counts to extract a period or an arrival time.
event lists to the level-2 stage following standard procedures and the latest calibration set (CALDB version 3.1.0). For the ACIS data, we extracted events within 1" of the source with energies between 0.2 and 2.0 keV, and then applied a clock correction of 284 μs [Davis, Holmes, & Myers 2003]. For the HRC data, we extracted zeroth-order events from a circle with radius of 11.3, and first-order events using the standard LETG spectral extraction windows, but limited to 10 A ≤ λ ≤ 65 A. Finally, we used the axbary program to barycenter all of the events (using the X-ray position: α$_{2000}$ = 13h08m48.27s, δ$_{2000}$ = +21°27′06″8′′; Kaplan et al. 2002b).

For the XMM-Newton data, we used the standard procedures emchain and epchain (XMM-SSAS version 6.5.0) to reprocess the observations. Next, we extracted events within 37.5" of the source position (using standard quality and pattern selections) with energies from 0.12 keV to 1.2 keV, and used barycen to convert the arrival times to the solar-system barycenter. And finally, for the ROSAT HRI data, we extracted the events within 12.5" of the source. We barycentered these using the FT00LS programs ABC and BCT, and converted the event times from Coordinated Universal Time (UTC) to Barycentric Dynamical Time (TDB) using the corrections supplied in Col (2001, p. 14).

3. Timing Analysis

Our goal is to use times-of-arrival (TOAs) to infer a phase-coherent timing solution in which each cycle of the source is accounted for. To measure TOAs, we need an initial reference period. We determined this from the ACIS CC data-sets using a Z$_2^0$ test [Buccheri et al. 1983], which combines power from the 10.31-s fundamental with that from the 5.16-s harmonic (we could not detect significant power in any higher harmonics). We calculated Z$_2^0$ for both the individual sets of four observations (observations 5522–5525 and 5526–5529) as well as for the eight observations combined. The overall Z$_2^0$ spectrum has a single, well-defined peak, and all possible aliases are at considerably lower significances. The measured period is $P = 0.31252293(9)$ s (here and below, numbers in parentheses indicate the formal 1σ uncertainties in the last digit unless otherwise indicated).

Using the period derived above, we constructed binned light curves (with 16 phase bins) for all of the observations. Unlike RX J0720.4–3125, RX J1308.6+2127 has non-sinusoidal pulsations and hence determining TOAs by fitting a single sinusoid would be inappropriate. Instead we fit for both the first harmonic and fundamental, with a possible phase shift between them:

$$N_i = A \sin(2\pi(f_0 t_i + \phi_0)) + r_2 \sin(4\pi(f_0 t_i + \phi_0 + \Delta \phi_2)) + C,$$

where N_i is the number of counts in bin i, $f_0 = 0.096969481$ Hz is the frequency of the fundamental from above, t_i the time of bin i on the interval $[0, P)$, and the parameters are amplitude A, phase ϕ_0, amplitude ratio r_2, phase offset $\Delta \phi_2$, and constant offset C. As can be seen in Figure 1 this model provides a good fit to even the highest-quality lightcurves, which are those derived from the long EPIC-PN observations. The inferred phase offset and relative amplitude are similar for both observations, with $\Delta \phi_2 \approx 0.03$, and $r_2 \approx 2.8$.

Assuming that the pulse profile is not varying, we measured arrival times for all of the data using the above model, but with $\Delta \phi_2$ and r_2 fixed at 0.03 and 2.8, respectively, which generally provides a good fit to the light curves (see Fig. 1 for the EPIC-PN data).
resulting arrival times are listed in Table 1. Here, we assigned these times to the time of the maximum of the model lightcurve that follows the lowest minimum and is nearest to the middle of the observation (see Fig. 1; this is the spectrally harder maximum from Schwope et al. 2005). For completeness, we note that the TOAs derived using the above model are consistent with those one would find using a simpler model consisting of only the first harmonic (i.e., a sinusoid at P = 5.16 s): the mean absolute difference is 0.2σ.

We determined a timing solution from the TOAs using an iterative procedure, as in Kaplan & van Kerkwijk (2005). We started with the Chandra ACIS CC TOAs and found that we were able to fit these without the need for a frequency derivative and with no cycle ambiguity, consistent with the power spectrum analysis. However, between the first ACIS CC TOA and the preceding TOA (Chandra HRC) there is a gap of 320 days and we found that a constant-frequency model led to a poor fit (χ² = 202.7 for 7 degrees of freedom). Including a frequency derivative ˙ν, the cycle count over the gap became ambiguous by ±1 cycle. The three possibilities—2685550, 2688551, and 2683552 cycles—lead to three possible solutions for ˙ν: 2.1×10⁻¹⁵ Hz s⁻¹, 1.0×10⁻¹⁵ Hz s⁻¹, and −1.1×10⁻¹⁵ Hz s⁻¹. Fortunately, the addition of the remaining data eliminates the first two of those solutions: with the XMM-Newton TOAs (and the remaining ACIS point), they have χ² = 439.1 and 1107.6 with TOA rms of 0.041 s and 0.099 s, respectively, while the third has χ² = 18.7 with a TOA rms of 0.010 s (all for 14 degrees of freedom).

The timing solution derived from the Chandra and XMM-Newton TOAs is presented in Table 2. As indicated by the value of χ², the data are well reproduced by simple spin-down: the addition of a cubic (i ˙ν) term leads to only an insignificant reduction in χ², from 18.7 to 18.6, and the inferred value of ˙ν = −7(15) × 10⁻²⁶ Hz s⁻² is consistent with zero.

Unlike the Chandra and XMM-Newton data, however, the ROSAT HRI point is slightly discrepant from the fit in Table 2 exceeding it by 0.15(3) cycles. If we include it in the fit, the overall solution does not change drastically (ν becomes −1.050(2) × 10⁻¹⁵ Hz s⁻¹) and the deviation does decrease to 0.11(3) cycles, but the overall χ² increases to 43.5 for 15 degrees of freedom (with a TOA rms of 0.0271 s). The deviation could be intrinsic (a glitch, timing noise, precession, changes in pulse profile), but might also be instrumental, perhaps related to differences in energy responses between the different instruments. Unfortunately, the sampling is too sparse to determine a unique solution. As an example, we show in Figure 2 a cubic fit that matches the HRI point reasonably well, with χ² = 22.5 for 14 degrees of freedom, TOA rms of 0.011 s, and ˙ν = −2.5(5) × 10⁻²⁵ Hz s⁻². We stress, however, that, in essence, this solution approximates the Chandra and XMM-Newton data with a ˙ν = 0 model and then adjusts ˙ν to pass through the HRI point. Hence, it does not gives much additional insight.

4. DISCUSSION & CONCLUSIONS

The spin period and spin-down rate we derive for RX J1308.6+2127 are quite similar to those of RX J0720.4−3125, the only other isolated neutron star with a timing solution (Kaplan & van Kerkwijk 2007), placing both of them above the pulsar “death-line” in a P− ˙P diagram despite their lack of radio emission (Kaplan et al. 2002a, 2003). Hence, assuming both spin down by magnetic dipole radiation, RX J1308.6+2127 and RX J0720.4−3125 have similar inferred magnetic field strengths (B_dip = 3.4 and 2.4 × 10¹³ G, respectively), characteristic ages (τ_char = 1.5 and 1.9 Myr), and spin-down luminosities (˙E = 4.0 and 4.7 × 10³⁰ ergs s⁻¹). Both sources also have thermal X-ray spectra with temperatures of ~1 × 10⁶ K, but superposed on these are rather different absorption features: in RX J1308.6+2127, the absorption feature is centered near or below 300 eV and is very wide and strong, with an equivalent width of >150 eV (Haberl et al. 2003); in RX J0720.4−3125, on the other hand, no absorption was apparent until 2004, when an absorption feature with only a slightly higher energy but much smaller equivalent width (~40 eV) appeared (Haberl et al. 2004, de Vries et al. 2004). If the magnetic fields, line energies,
and blackbody temperatures are all similar, what would account for the significant difference in line strength?

The interpretation of the absorption lines is still a matter of debate. For RX J1308.6+2127, Haberl et al. (2003) suggested proton cyclotron absorption in a field of $\sim 10^{13}$ G, which could match both the energy and strength of the observed feature (for a gravitational redshift of $z = 0.3$, the observed line energy would be at 100–300 eV). As the feature in RX J0720.4–3125 was so much weaker but at a similar energy, van Kerkwijk et al. (2003) argued that for that source the proton cyclotron line was below the observed band and that the absorption was due to the $0 \rightarrow 2$ transition between tightly-bound states of neutral hydrogen in a $\sim 2 \times 10^{13}$ G field.

Qualitatively, the field strengths inferred from our timing measurements agree with the above expectations: the field of RX J1308.6+2127 is stronger than that of RX J0720.4–3125, while a weaker field would be expected if the absorption in both sources were due to the same mechanism. Quantitatively, a larger difference between the two sources was expected. However, this discrepancy may simply reflect orientation and/or substructure in the magnetic field—higher-order multipoles near the surface would affect the emission properties but not the spin-down rate. Such effects may also be responsible for the difference in pulse profile: double-peaked for RX J1308.6+2127, and sinusoidal for RX J0720.4–3125. Phase-resolved X-ray spectroscopy coupled with observations of more sources are probably the best ways to disentangle these effects, and efforts are underway (e.g., Haberl et al. 2004; Schwope et al. 2005).

Another open issue is that the characteristic ages of RX J0720.4–3125 and now RX J1308.6+2127 are three to four times larger than the values of ~ 0.5 Myr one would expect for simple cooling models (Hevl & Hernquist 1998; Kaplan et al. 2002; Zane et al. 2002), and, in the case of RX J0720.4–3125, tracing the object back along its trajectory to a likely birth location (Motch, Zavlin, & Haberl 2003; Kaplan 2004). Indeed, this age discrepancy may extend to the other isolated neutron stars discovered by ROSAT: all have similar temperatures and thus likely similar cooling ages, and most also have similar periods (3–10 s) and, based on the similar energies at which they show X-ray absorption features (0.3–0.7 keV), similar magnetic field strengths, implying similar characteristic ages.

We first consider whether the discrepancy could result from the characteristic age being an overestimate. In general, for a spin-down torque $\propto \nu$, the pulsar’s spin-down age is given by $t_{\text{sd}} = P/[(n-1)\dot{P}] \left[1 - (P_0/P)^{n-1}\right]$, where P_0 is the initial spin period and $n = \nu \dot{\nu}/\dot{\nu}^2$ is the “braking index,” equal to 3 under the assumption of magnetic dipole radiation (e.g., Manchester & Taylor 1977, p. 111). For $P_0 \ll P$ and $n = 3$, one recovers the characteristic age $\tau_{\text{char}} \equiv P/2\dot{P}$, but if P_0 is not much smaller than the current period P, the characteristic age is an overestimate. While we cannot exclude the required birth periods of $7–8$ s, there is as yet no concrete indication that neutron stars are born with periods longer than 100 ms (e.g., Kaspi & Helfand 2002; Gotthelf et al. 2003).

For RX J0720.4–3125, this led us to discuss the possibility that the neutron star formed in a binary system and accreted matter before being ejected in a second supernova; at ejection, the neutron star would still be hot from the accretion, but spinning slowly (Kaplan & van Kerkwijk 2003). A variation on this model would involve accretion from a residual debris disk such as that recently discovered around the anomalous X-ray pulsar 4U 0142+61 (Wang, Chakrabarty, & Kaplan 2005), but this assumes that the accretion disk persists for a sufficient time and can affect the spin-down of the neutron stars, both of which are far from clear. In either case, if accretion played a role, it might explain why the spectral properties of the isolated neutron stars are rather different from those of the radio pulsar population.

Unfortunately, the above solution for the age discrepancy is not unique. First, it is possible that the spin-down was not due to a constant dipole but that the magnetic field decayed (effectively, this implies $n > 3$). Second, the cooling age could be incorrect due to non-standard cooling. For instance, the energy released by magnetic field decay might keep a neutron star hotter (Hevl & Kulkarni 1998; note, however, that these authors do not expect significant effects for the field strengths we infer) and longer cooling times are also expected for a light neutron star (Yakovlev et al. 2003). A prolonged cooling timescale seems somewhat unlikely in light of the kinematic age estimates, though it should be kept in mind that these may also not be unique: for RX J0720.4–3125, several different birth places are possible (Motch et al. 2003; Kaplan 2004).

Finally, when fitted with just a simple spin-down model, RX J0720.4–3125 showed significant timing residuals of 0.31 s (root-mean-square), much larger than the uncertainties on the TOAs. In contrast, for RX J1308.6+2127 the root-mean-square residuals are only 0.010 s (excluding the HRI point), consistent with measurement errors. Since the sources were observed with the same instruments, and have similar spectral shapes, the differences in timing behaviors are likely not instrumental. Instead, they may well reflect the fact that
both the spectrum and pulse profile of RX J0720.4−3125 are varying with time (de Vries et al. 2004; Vink et al. 2004), while RX J1308.6+2127 appears to be stable.

We acknowledge support through Chandra grant GO5-6050A.

REFERENCES

Buccheri, R. et al. 1983, A&A, 128, 245
Cox, A. N. 2000, Allen’s Astrophysical Quantities, 4th edn. (New York: AIP)
Davis, W., Holmes, J., & Myers, R. 2003, in Proc. 2003 Chandra Calibration Workshop (Cambridge: CXC), http://cxc.harvard.edu/cw/proceedings/03proc/
de Vries, C. P., Vink, J., Mendez, M., & Verbunt, F. 2004, A&A, 415, L31
Garmire, G. P., Bautz, M. W., Ford, P. G., Nousek, J. A., & Ricker, G. R. 2003, Proc. SPIE, 4851, 28
Gotthelf, E. V., Halpern, J. P., & Seward, F. D. 2005, ApJ, 627, 390
Haberl, F. 2004, Advances in Space Research, 33, 638, (astro-ph/0302540)
Haberl, F., Schwope, A. D., Hambaryan, V., Hasinger, G., & Motch, C. 2003, A&A, 403, L19
Haberl, F., Zavlin, V. E., Trümper, J., & Burwitz, V. 2004, A&A, 419, 1077
Hambaryan, V., Hasinger, G., Schwope, A. D., & Schulz, N. S. 2002, A&A, 381, 98
Heyl, J. S. & Hernquist, L. 1998, MNRAS, 297, L69
Heyl, J. S. & Kulkarni, S. R. 1998, ApJ, 506, L61
Kaplan, D. L. 2004, Ph.D. Thesis, California Institute of Technology
Kaplan, D. L., Kulkarni, S. R., & van Kerkwijk, M. H. 2002a, ApJ, 579, L29
Kaplan, D. L., Kulkarni, S. R., van Kerkwijk, M. H., & Marshall, H. L. 2002b, ApJ, 570, L79
Kaplan, D. L. & van Kerkwijk, M. H. 2005, ApJ, 628, L45
Kaplan, D. L., van Kerkwijk, M. H., Marshall, H. L., Jacoby, B. A., Kulkarni, S. R., & Frail, D. A. 2003, ApJ, 590, 1008
Kaspi, V. M. & Helfand, D. J. 2002, in ASP Conf. Ser. 271: Neutron Stars in Supernova Remnants, ed. P. O. Slane & B. M. Gaensler (San Francisco: ASP), 3, (astro-ph/0201183)
Kraft, R. P. et al. 1997, Proc. SPIE, 3114, 85
Manchester, R. N. & Taylor, J. H. 1977, Pulsars (San Francisco: W. H. Freeman, c1977.)
Motch, C., Zavlin, V. E., & Haberl, F. 2003, A&A, 408, 323
Schwope, A. D., Hambaryan, V., Haberl, F., & Motch, C. 2005, A&A, 441, 597
Schwope, A. D., Hasinger, G., Schwarz, R., Haberl, F., & Schmidt, M. 1999, A&A, 341, L51
Strüder, L. et al. 2001, A&A, 365, L18
Turner, M. J. L. et al. 2001, A&A, 365, L27
van Kerkwijk, M. H., Kaplan, D. L., Durant, M., Kulkarni, S. R., & Paerels, F. 2004, ApJ, 608, 432
Vink, J., de Vries, C. P., Méndez, M., & Verbunt, F. 2004, ApJ, 609, L75
Wang, Z., Chakrabarty, D., & Kaplan, D. L. 2005, Nature, in press
Yakovlev, D. G., Gnedin, O. Y., Kaminker, A. D., Levenfish, K. P., & Potekhin, A. Y. 2004, Advances in Space Research, 33, 523, (astro-ph/0306133)
Zane, S., Haberl, F., Cropper, M., Zavlin, V. E., Lumb, D., Sembay, S., & Motch, C. 2002, MNRAS, 334, 345
Zombeck, M. V., David, L. P., Harnden, F. R., & Kearns, K. 1995, Proc. SPIE, 2518, 304