Magnetic moment of rare earth elements in $R_2Fe_{14}B$ estimated with $\mu^+\text{SR}$

Jun Sugiyama1, Kazutoshi Miwa1, Hiroshi Nozaki1, Yuji Kaneko1, Bassam Hitti2,
Donald Arseneau2, Gerald D Morris2, Eduardo J. Ansaldo3, and Jess H. Brewer2,4

1Toyota Central Research & Development Laboratories Inc., Nagakute, Aichi 480-1192, Japan
2TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 Canada
3Department of Physics & Engineering Physics, University of Saskatchewan, Saskatoon, SK, S7N 5E2 Canada
4Department of Physics & Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 Canada

(Dated: May 2, 2019)

The ferromagnetic (FM) nature of Nd$_2$Fe$_{14}$B has been investigated with muon spin rotation and relaxation ($\mu^+\text{SR}$) measurements on an aligned, sintered plate-shaped sample. A clear muon spin precession frequency ($\nu_{\mu\text{SR}}$) corresponding to the static internal FM field at the muon site showed an order parameter-like temperature dependence and disappeared above around 582 K ($\sim T_C$). This indicated that the implanted muons are static in the Nd$_2$Fe$_{14}$B lattice even at temperatures above around 600 K. Using the predicted muon site and local spin densities predicted by DFT calculations, the ordered Nd moment (M_{Nd}) was estimated to be 3.31 μ_B at 5 K, when both M_{Fe} and M_{Nd} are parallel to the c-axis and $M_{\text{Fe}} = 2.1 \mu_B$. Furthermore, M_R in $R_2Fe_{14}B$ with $R = Y$, Ce, Pr, Sm, Gd, Tb, Dy, Ho, Er, and Tm was estimated from J_0 values reported in earlier $\mu^+\text{SR}$ work, using the FM structure proposed by neutron scattering and the same muon site and local spin density as in Nd$_2$Fe$_{14}$B. Such estimations yielded M_R values consistent with those obtained by the other methods.

PACS numbers: 76.75.+i, 75.50.Ee, 71.15.Mb

I. INTRODUCTION

Among many permanent magnet materials, Nd$_2$Fe$_{14}$B and related intermetallic compounds2 are known to be very suitable for industrial applications, due to their high saturation magnetization ($M_s = 16$ kG), large energy product ($H_cM_s = 64$ MGOe) and relatively low cost compared with that of Sm$_2$Fe$_{17}$N$_3$3. Furthermore, although the Curie temperature (T_C) is 592 K for Nd$_2$Fe$_{14}$B, the Nd$_2$Fe$_{14}$B phase does not decompose until 1428 K, resulting in flexibility of its synthesis process. Therefore, Nd$_2$Fe$_{14}$B and related compounds are widely used for high performance motors in many devices, electric vehicles and audio speakers.

In the ferromagnetic (FM) phase, past neutron scattering measurements suggested a collinear spin structure at room temperature4, in which both Fe and Nd moments (M_{Nd} & M_{Fe}) are aligned parallel along the [001] direction. The magnitude of the ordered M_{Fe} was almost saturated even at 300 K, i.e. $\sim 2.2 \mu_B$, while M_{Nd} was initially thought to be below 1 μ_B3. The other neutron work reported that $M_{\text{Fe}} = 2.32(3) \mu_B$ and $M_{\text{Nd}} = 2.2 \mu_B$, but the recent work revealed that $M_{\text{Fe}} = 1.9(1) \mu_B$ and $M_{\text{Nd}} = 1.5(1) \mu_B$6. Then, more detailed magnetization measurements at 4 K on $R_2Fe_{14}B$ with $R = La, Y, \ldots$ revealed that $M_{\text{Fe}} = 2.1 \mu_B$2, leading to $M_{\text{Nd}} = 3.2 \mu_B$. In addition, Nd-NMR measurements suggested that $M_{\text{Nd}} = 2.7 \mu_B$ at 4.2 K7. An X-ray magnetic circular dichroism (XMCD) study on $R_2Fe_{14}B$8 implied that the ordered $M_{R}\parallel$ are very close to the values obtained from gJ of 4f electrons, where J is the quantum number of the total angular momentum and g is the Landé factor. This means that $M_{\text{Nd}} \sim 3.3 \mu_B$.

FIG. 1: The crystal structure of Nd$_2$Fe$_{14}$B in tetragonal symmetry with space group $P4_2/mnm$ drawn by VESTA10. Large red and yellow spheres show Nd at two different sites, medium blue and green spheres show Fe at six different sites, and small orange spheres show B. Very small pink spheres represent the muon site (0.6744,0.8840,0) predicted by first principles calculations (see text).

Furthermore, the FM spin structure in Nd$_2$Fe$_{14}$B was found to change at 135 K($\sim T_{SR}$) due to a spin reorientation transition from a high-temperature phase with $M \parallel [001]$ to a low-temperature phase with M canted along the [110] direction by magnetization measurements$^{11-14}$. Initially, a collinear FM structure with a canting angle $\theta = 30.6^\circ$ at 4.2 K was proposed based on magnetization measurements on a single crystal sample15, where θ is the angle of M from the [001] direction to the [110] direction. However, both Mössbauer16
and XMCD17 measurements suggested a non-collinear spin structure below T_{SRT}. That is, $\theta_{\text{Fe}}^{\text{Moss}} = 27^\circ$ and $\theta_{\text{Nd}}^{\text{Moss}} = 58^\circ$ at 4.2 K, while $\theta_{\text{Fe}}^{\text{XMCD}} = 28^\circ$ and $\theta_{\text{Nd}}^{\text{XMCD}} = 40^\circ$ at 4.2 K. The continuation of XMCD work18 indicated the formation of a further noncollinear spin structure among the Nd moments at temperatures between 80 K and T_{SRT}, at which $\theta_{\text{Nd,at}} \sim 80^\circ$ and $\theta_{\text{Nd,4s}} \sim 25^\circ$.

In order to further elucidate the FM ground state of Nd\textsubscript{2}Fe\textsubscript{14}B, we need another technique sensitive to internal magnetic field(s) (H_{int}) in solids. Unfortunately, neutron scattering is unlikely to be useful for investigating the magnetic nature of ferromagnets, because relatively weak magnetic diffraction peaks always overlap with strong nuclear Bragg peaks. Indeed, the estimated M_{Nd} with neutron ranges from 1 to 2.2 μ_B4,6, which is rather small compared with those obtained with the other techniques. On the other hand, a positive muon spin rotation and relaxation ($\mu^+\text{SR}$) provides information on the local magnetic environments at the site(s) of the implanted muons, which usually locate at the interstitial site with the minimum electrostatic potential, regardless of magnetic order and/or disorder19,20.

In fact, immediately after the discovery of the Nd\textsubscript{2}Fe\textsubscript{14}B system, a $\mu^+\text{SR}$ experiment was performed at the Paul Sherrer Institut21,22 using powder $R_2\text{Fe}_14\text{B}$ samples with $R = Y$, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, and Tm in the temperature range between 300 and 4.2 K. The $\mu^+\text{SR}$ spectra obtained in zero external field (ZF) exhibited a clear oscillation with one precession frequency for all the samples, indicating both the formation of static FM order and a single muon lattice site. However, since it was very difficult to determine the correct muon site(s) in the lattice, the muon site was assumed to be a tetrahedral site with two Fe and two Nd nearest neighbors, based on the Mössbauer and neutron data of Nd\textsubscript{2}Fe\textsubscript{14}B19,20. In addition, the lack of information on the local spin density at the muon site made it virtually impossible to estimate the magnitude of M_R. As a result, the past $\mu^+\text{SR}$ result is unlikely to be recognized as a crucial work for elucidating the magnetic ground state of Nd\textsubscript{2}Fe\textsubscript{14}B.

We have therefore attempted to measure the $\mu^+\text{SR}$ spectra for Nd\textsubscript{2}Fe\textsubscript{14}B up to above T_C to know the variation of H_{int} with temperature and to predict muon site(s) in the lattice with density functional theory (DFT) calculations. Using the predicted muon site and the measured local spin density at the muon site, the magnitude of M_{Nd} was clearly estimated even below T_{SRT}. Furthermore, using the past $\mu^+\text{SR}$ data for $R_2\text{Fe}_14\text{B}$ and the predicted muon site, we have obtained a systematic change in M_R with the number of $4f$ electrons in R.

II. EXPERIMENTAL

Aligned sintered plates of Nd\textsubscript{2}Fe\textsubscript{14}B were prepared from jet-milled fine powder with the composition of 31.8Nd-0.98B-0.10Cu-0.90Co-0.15Al-0.05Ga-66.02Fe (wt%). The mean particle size of the powder was about 6 μm. The powders were then pressed under a magnetic field of 1.8 T followed by uniaxial pressing with 15 MPa. The pressed powders were sintered at 1293-1353 K for 4 hours in vacuum ($<10^{-2}$ Pa). Finally, the sintered powder $8 \times 8 \times 8$ mm3 cube was sliced into 1 mm thick plates with the aligned c-axis perpendicular to the plane. The preparation and characterization of the sintered sample are explained in more detail elsewhere24.

The $\mu^+\text{SR}$ time spectra were measured on the M20 surface muon beam line using the LAMPF spectrometer of the CMMS facility at TRIUMF in Canada. Four plates with $8 \times 8 \times 1$ mm3 were arranged onto a sample holder with their \hat{c} axes parallel to the beam direction (z) as defined in Fig. 2. For measurements in the T range between 1.8 and 300 K, the samples were attached to a low-background sample holder in a liquid-He flow-type cryostat with 0.05 mm thick Al-coated Mylar tape. For measurements in the T range between 300 and 600 K, the samples were fixed onto a silver plate by a 50 μm thick titanium foil, which is sandwiched between a second silver plate with a 16×16 mm2 square aperture through which incoming muons passed. For the former setup, there is essentially no background signal, while for the latter case the $\mu^+\text{SR}$ signal naturally includes a background signal from muons stopped in the surrounding silver plate.

The $\mu^+\text{SR}$ spectra were obtained in either zero applied field (ZF) or transverse field (TF) with four positron detectors [backward (B), forward (F), up (U) and down (D)] arranged as shown in Fig. 2. The initial direction of the muon polarization [\textbf{$S_{\mu}(0)$}] relative to the plane of the plates was set by a Wien filter spin rotator. Here TF means the applied field is perpendicular to \textbf{$S_{\mu}(0)$}, i.e. TF$\parallel y$ in this study. The experimental techniques are described in more detail elsewhere19,20. The resulting

FIG. 2: (Color online) Geometry of the $\mu^+\text{SR}$ experiment in TRIUMF: four counters [backward (B), forward (F), up (U) and down (D)] detect decay positrons emitted in the $-z$, $+z$, $+x$ and $-x$ directions, respectively. The initial muon spin direction \textbf{$S_{\mu}(0)$} is in the $+x$ direction ($\parallel \hat{a}$ of the plates) for spin-rotated (SR) mode (a) or in the $-z$ direction ($\parallel \hat{c}$) for non-spin-rotated (NSR) mode (b). Thus if the internal magnetic field (H_{int}) is parallel to \hat{c}, only U and D counters will detect a muon spin oscillation, and that only in SR mode; but if $H_{\text{int}} \perp \hat{c}$, only B and F counters in NSR mode will show an oscillatory signal. Using both configurations, one can estimate the magnetic anisotropy in the sample.
\(\mu^+\text{SR} \) data were analyzed with \textit{musrfit}25.

The distributions of electrostatic potential and local spin density were predicted by DFT calculations with a generalized gradient approximation (GGA) plus on-site Coulomb interaction (U), as described in Sec. III B.

III. RESULTS

A. \(\mu^+\text{SR}\)

Figure 3 shows the ZF-\(\mu^+\text{SR} \) time spectra for the sintered align \(\text{Nd}_2\text{Fe}_{14}\text{B} \) plate sample recorded at (a) 300 K and (b) 2 K in two different configurations: a non-spin-rotated (NSR) mode \(|S_\mu(0)\parallel\hat{c}| \) shown in red and a spin-rotated (SR) mode \(|S_\mu(0)\perp\hat{c}| \) shown in green. The solid lines represent the best fits using Eq. (1).

\[
A_0P_{ZF}(t) = A_{FM}\exp(-\lambda_{FM}t)\cos(\omega_{FM}t + \phi_{FM}) + A_{tail}\exp(-\lambda_{tail}t).
\]

Here \(A_0\) is the initial asymmetry, \(P_{ZF}(t)\) is the muon spin depolarization function in ZF, \(A_{FM}\) and \(A_{tail}\) are the asymmetries associated with the two signals, \(\lambda_{FM}\) and \(\lambda_{tail}\) are their exponential relaxation rates, \(\omega_{FM}(\equiv \omega_{\mu}/2\pi)\) is the muon Larmor frequency corresponding to the quasi-static internal FM field, and \(\phi_{FM}\) is the initial phase. At each temperature, the two spectra were fitted using common \(\lambda_{FM}\) and \(f_{FM}\).

Such fits yielded \(A_{FM}^{S\parallel c} = 0.208(7)\), \(A_{FM}^{S\perp c} = 0.021(5)\), \(\lambda_{FM} = 30.6(1.3)\ \mu\text{s}^{-1}\), \(f_{FM} = 153.3(2)\ MHz\), \(\phi_{FM}^{S\parallel c} = \) \(\phi_{FM}^{S\perp c} = \ldots\)

Figure 4: (color online) The temperature dependences of (a) the muon spin precession frequency \(f_{FM}\), (b) the magnification of the \(f_{FM}(T)\) curve to show the anomaly at around 135 K, (c) the exponential relaxation rate \(\lambda_{FM}\), and (d) the ratio between \(\lambda_{FM}\) and \(f_{FM}\) for the \(\text{Nd}_2\text{Fe}_{14}\text{B} \) sample. The data were obtained by fitting the ZF-\(\mu^+\text{SR} \) spectrum with Eq. (1).
applied TF is very small compared with $H_{21,22}$ together with that of f_{try} (combination of an exponentially relaxing cosine oscillation transition and below the vicinity of that besides the temperatures around a spin reorientation at temperatures between 150 and 550 K. This means that T is almost zero below 250 K within the accuracy of $\mu^+\text{SR}$.

Figure 4 shows the temperature dependences of $f_{\text{FM}}, \lambda_{\text{FM}}$, and $\lambda_{\text{FM}}/f_{\text{FM}}$ for the Nd$_2$Fe$_{14}$B sample. The $f_{\text{FM}}(T)$ curve exhibits an order parameter-like temperature dependence and f_{FM} disappears at temperatures above around 582 K ($= T_{C \text{SR}}$), which is slightly lower than T_C in literatures, i.e. 592 K12. Here it should be noted that $T_{C \text{SR}}$ is estimated from the data obtained in ZF, while the other techniques require the application of a large external magnetic field, which naturally enhances FM order. The $f_{\text{FM}}(T)$ curve also shows a sharp local maximum at 135 K ($= T_{\text{SR}}$), indicating a change in the local FM environment caused by a spin reorientation transition.

As temperature increases from 2 K, λ_{FM} decreases slightly up to 100 K, then suddenly increases up to 150 K, and then decreases again towards T_C with an increasing slope ($d\lambda_{\text{FM}}/dT$). However, below the vicinity of T_C, λ_{FM} rapidly increases with temperature, and then suddenly drops to zero at T_C; that is, a critical behavior is observed below the vicinity of T_C.

It should be noted that $\lambda_{\text{FM}}/f_{\text{FM}}$, which corresponds to the normalized field distribution width, is almost temperature independent at temperatures below 100 K and at temperatures between 150 and 550 K. This means that besides the temperatures around a spin reorientation transition and below the vicinity of T_C; H_{int} in the FM phase depends only on the magnitude of the ordered moments. These results suggest that muons are stable in the Nd$_2$Fe$_{14}$B lattice until $T_{C \text{SR}}$. The present result reproduces those in past $\mu^+\text{SR}$ work carried out below room temperature21,22.

In order to estimate T_C more correctly, Fig. 5 shows the temperature dependence of the weak transverse asymmetry (A_{TF}) measured with TF=50 Oe in the vicinity of T_C, together with that of f_{FM}. Here, "weak" means that the applied TF is very small compared with H_{int} caused by FM order. The $wTF-$$\mu^+\text{SR}$ spectrum was fitted by a combination of an exponentially relaxing cosine oscillation due to muon spin precession in TF and Eq. (1):

$$A_0 P_{\text{TF}}(t) = A_{\text{TF}} \exp(-\lambda_{\text{TF}} t) \cos(\omega_{\text{TF}} t + \phi_{\text{TF}}) + A_{\text{FM}} \exp(-\lambda_{\text{FM}} t) \cos(\omega_{\text{FM}} t + \phi_{\text{FM}}) + A_{\text{tail}} \exp(-\lambda_{\text{tail}} t).$$

(2)

At temperatures $T \gg T_C$, $A_{\text{FM}} = A_{\text{tail}} = 0$; at temperatures $T \ll T_C$, $A_{\text{TF}} = 0$. From the middle point of a step-like change in the $A_{\text{TF}}(T)$ curve, T_C is estimated as 581.57(14) K, because A_{TF} is proportional to the volume fraction of paramagnetic phases in a sample. The finite value of A_{TF} below T_C (≈ 0.06) is from muons stopped in the surrounding silver plate.

B. DFT calculations

First-principles calculations based on a density functional theory (DFT)26,27 have been performed to determine the muon site in Nd$_2$Fe$_{14}$B. A self consistent field (SCF) calculation is carried out using the ultrasoft pseudopotential method28,29, where the on-site Coulomb interaction for localized Nd-4f electrons is taken into consideration using the DFT $+$ U method30,31. The obtained pseudo SCF charge density is transformed into an all electron form with the projector augmented wave operators32, from which the muon occupation site is estimated by the electrostatic potential analysis. The program used for the DFT calculations is an original code developed by one of the authors (K. M.), which has been successfully applied for various materials$^{33-37}$.

The cutoff energies of plane waves are set to be 25 and 200 hartrees for the pseudo wavefunctions and the charge density, respectively. The $4 \times 4 \times 4$ k-point mesh is adopted for the Brillouin zone integration. The generalized gradient approximation38 is used for the exchange-correlation functional. The effective Coulomb and exchange parameters for Nd-4f orbitals are assumed to be $U = 5$ eV39 and $J = 0.5$ eV, respectively.

Table I shows the result of the structural relaxation in which atomic positions as well as lattice constants are fully optimized. The calculated parameters are in good agreement with the experimental ones40. Figure 6(a) depicts the electrostatic potential: The muon site is found to be $8i$ (0.6745, 0.8838, 0) which is located near the center of a square base of a pyramid composed of Nd-3Fe-B atoms. As shown in Fig. 6(b), the spin density at the muon site is negligibly small, $\rho_{\text{spin}} = -2 \times 10^{-3} \mu_B/\text{bohr}^3$, which is eventually zero. It
should be noted that the DFT calculations with $U = 0$ provides very similar muon site and local spin density to those predicted with $U = 5$ eV. This means that the two significant parameters, i.e. the muon site and ρ_{spin}, are not sensitive to U in the Nd$_2$Fe$_{14}$B lattice.

TABLE I: Crystallographic parameters of ferromagnetic Nd$_2$Fe$_{14}$B

Space group: $P4_2/mnm$ (No. 136). Lattice constants: $a = 8.797$ Å, $c = 12.149$ Å (Calc.), and $a = 8.795$ Å, $c = 12.188$ Å (Expt.).

site	Calc.	Expt.a	
	x	y	z
Nd1	0.2313	0.7687	0
Nd2	0.3570	0.3570	0
Fe1	0.0373	0.3599	0.3239
Fe2	0.0675	0.2754	0.1270
Fe3	0.0980	0.0980	0.2950
Fe4	0.3180	0.3180	0.2542
Fe5	0.0	0	0.1143
Fe6	0.1236	0.1236	0
B	-0.25	-0.26	

aReference 40

On the contrary, the ordered magnetic moment of each element varies with U (Table II). More correctly, the introduction of $U = 5$ eV reduces M_{Nd} by 10%, while the change in M_{Fe} is about 1%. The magnitude of M_{Fe} at each site is comparable to the reported ones (see Table III). This indicates the importance of the magnitude of U for estimating M_{Nd} by DFT calculations.

TABLE II: The ordered magnetic moment of each element in Nd$_2$Fe$_{14}$B predicted by DFT calculations without and with $U = 5$ eV.

site	GGA M (μ_B)	GGA+U M (μ_B)
Nd1	2.92	2.74
Nd2	3.01	2.72
Fe1	2.25	2.28
Fe2	2.20	2.22
Fe3	2.09	2.17
Fe4	2.68	2.68
Fe5	2.03	2.03
Fe6	2.32	2.36
B	-0.25	-0.26

IV. DISCUSSION

A. Nd$_2$Fe$_{14}$B

For non-magnetized ferromagnetic materials in zero applied field, the internal magnetic field at a muon site (H_{μ}) is represented by20,41-43:

$$H_{\text{FM}} = H_{\mu}$$

![Contour plots for Nd$_2$Fe$_{14}$B in the (001) plane.](a) Electrostatic potential Φ_E and (b) spin density $m = \rho_{\text{spin}} = \rho^{\uparrow} - \rho^{\downarrow}$. The muon site is indicated by black circles.

This field is connected to the muon-spin precession frequencies through the muon gyromagnetic ratio $[f = H_{\gamma \mu} / (2\pi) = 0.013553 \text{ (MHz/Oe)} \times H \text{ (Oe)}]$ leading to

$$f_{\text{FM}} = f_{\mu} = f_{\text{dip}} + f_{\text{L}} + f_{\text{hf}}$$

where H_{dip} is the dipolar field, H_{L} is the Lorentz field, H_{hf} is the hyperfine field, and f_{μ}, f_{L}, and f_{hf} are the corresponding muon spin precession frequencies. Furthermore, H_{L} and H_{hf} are connected to the saturated magnetization (M_s) and the local spin density at the muon sites (ρ_{spin}) as follows:

$$H_{\text{dip}} = -\frac{1}{4\pi\mu_0} \nabla \left(\frac{m \cdot r}{r^3} \right),$$

$$H_{\text{L}} = \frac{4\pi}{3} M_s.$$
More correctly, both Fe and Nd moments are thought to change from the [001] to the [110] direction towards the [110] direction from the [001] canted from the [001] direction to the [110] direction with a canting angle (θ) of 27° for Fe and 55-66° for Nd; and (c) $\theta = 27°$ for Fe and Nd at the 4g site, but $\theta = 73-84°$ for Nd at the 4f site. In (b), a collinear FM spin arrangement — i.e. $\theta_{Fe} = \theta_{Nd} = 27°$ — is also shown with a broad black line.

$$H_{hf} = \frac{8\pi}{3} \times \rho_{spin}(r_{\mu}). \quad (5)$$

In order to estimate H_{hf} (f_{dip}), we use the results of neutron diffraction4 and Mössbauer44 measurements for the magnitude and direction of the Fe moments. Assuming that the magnitude of the ordered M_{Fe} is 2.1 μ_B, H_{hf} at the muon site is easily calculated as a function of the Nd moment using crystal structural data with dipole.45

We start by considering a collinear FM structure along the c-axis, that is, $M_{Fe} \parallel [001]$ and $M_{Nd} \parallel [001]$. Since $4\pi M_s = 18.5$ kOe at 5 K (see Table IV)22, $H_{hf} = (0, 0, 6.2$ kOe) from Eq. (5). Moreover, $H_{hf} = (0, 0, 0)$ because of the absence of any local spin density at the muon site. Consequently, we obtain the relationship between $|H_{\mu}| = H_{\mu}^{calc}$ and the magnitude of the Nd moment (M_{Nd}), as seen in Fig. 7(a). Here, the measured value of f_{μ} (f_{exp}) is 152.6(2) MHz at 2.2 K, which is very close to the reported value (156 MHz) at 5 K. Thus, in order to explain H_{μ}^{exp}, M_{Nd} is uniquely determined as 3.31 μ_B. This is almost equivalent to M_{Nd} estimated from magnetization measurements, i.e. $M_{Nd} = 3.2$ μ_B, confirming the reliability of the predicted muon site from DFT calculations. From the data at room temperature, i.e. $4\pi M_s = 16.0$ kOe at 295 K and $H_{\mu}^{exp} = 151(2)$ MHz at 300 K, we also obtain that $M_{Nd} = 3.01$ μ_B.

Although we assumed that $M_{Fe} = 2.1$ μ_B, M_{Nd} estimated with the above procedure is found to increase linearly with M_{Fe} (see Fig. 8). On the contrary, Fig. 8 provides an acceptable range for M_{Fe} as 2.0 $\leq M_{Fe} \leq 2.15$ μ_B, when M_{Nd} ranges between 3.0 and 3.5 μ_B. Furthermore, we assumed that M_{Fe} is identical for all the Fe sites. However, experimental studies and DFT calculations reported that M_{Fe} at each site deviates slightly from 2.1 μ_B. In order to know the effect of such deviations on the estimation of M_{Nd}, the relationship between H_{μ} and M_{Nd} is also shown for the two cases in Fig. 7(a) and six cases in Table III. This indicates that the four estimations for M_{Fe}, i.e. exp2, exp3, calc2, and calc3, provide unusually large M_{Nd} under the collinear FM structure along the c-axis.

By contrast, at low temperatures the spin orientation is reported to change from the [001] to the [110] direction below T_{SRT} = 135 K11-14. The corresponding anomaly is clearly seen in the $f_{Fe}(T)$ and $\lambda_{Fe}(T)$ curves [Fig. 4]. More correctly, both Fe and Nd moments are thought to be canted towards the [110] direction from the [001] direction, based on both first principles calculations and Fe K-edge x-ray magnetic circular dichroism (XMCD) measurements.17 The canting angle (θ) was estimated to be 27° for Fe ($\theta_{Fe} = 27°$) and 58° for Nd ($\theta_{Nd} = 58°$) at 4.2 K. Figure 7(b) shows the relationship between H_{μ} and M_{Nd} for several θ_{Nd} values. The μ^+ SR result clearly
excludes a collinear structure, in which $\theta_{\text{Fe}} = \theta_{\text{Nd}} = 27^\circ$, as an FM ground state. On the other hand, non-collinear structures provide a more plausible M_{Nd}, particularly when $\theta_{\text{Nd}} \sim 60^\circ$. If we assume that $M_{\text{Nd}} = 3.2 \mu_B$, θ_{Nd} should be 63°, which is very close to the value reported by XMC (58\%).

Dipole field calculations provide that the magnetic anisotropy at the muon site (Θ) is 16 deg at temperatures below T_{SRT}, while $\Theta = 0$ deg at temperatures above T_{SRT}. Making comparison with the experimental result ($\Theta(300 \, \text{K}) = 7(4)\text{deg}$ and $\Theta(2 \, \text{K}) = 6(4)\text{deg}$), the experimental accuracy of Θ was likely to be overestimated. This is probably due to the fact that $S_{\mu}(0)$ for NSR mode is deviated from the z direction by about 10 deg to eliminate the other particles in the muon beam. Nevertheless, we should note that the above estimation for M_{Nd} is based only on the magnitude of f_{μ}, and as a result, the estimated value is not affected by the alignment of the sample.

Another XMCD study at low temperatures18 proposed the possibility of a non-collinear spin arrangement among the Nd moments. That is, $\theta_{\text{Nd}} \sim 25^\circ$ for the Nd ions at the $4g$ site, but $\theta_{\text{Nd}} \sim 80^\circ$ for the Nd ions at the $4f$ site. Figure 7(c) shows the dependence of H_{μ} on M_{Nd} as $\theta_{\text{Nd}}(4f)$ changes from 73 to 84°. The calculations also predict that $\theta_{\text{Nd}} = 82^\circ$ for $M_{\text{Nd}} = 3.2 \mu_B$, which looks consistent with the proposed arrangement. However, we should note that there are eight crystallographically equivalent muon sites (8i) in the Nd$_2$Fe$_{14}$B lattice. Moreover, such a non-collinear spin arrangement among the Nd moments produces two different H_{μ}s at each $8i$ site — namely, $H_{\mu} = 11270$ Oe for four of the sites and 11655 Oe for the other four sites. Although the difference of the two H_{μ}s (about 4%) is too small to observe two distinct muon precession frequencies in the ZF-μ^+SR spectrum, such a split naturally increases the field distribution width, resulting in an increased relaxation rate λ_{FM}. In reality, λ_{FM} and $\lambda_{\text{FM}}/f_{\text{FM}}$ at 2 K are smaller than those at room temperature [Fig. 4(b)]. This clearly excludes the model of a non-collinear spin arrangement among the Nd moments from the FM ground state for Nd$_2$Fe$_{14}$B. Since the $\lambda_{\text{FM}}(T)$ curve exhibits a broad maximum at around T_{SRT} [see Fig. 4(b)], such a non-collinear spin arrangement among the Nd moments could appear in a limited temperature range particularly below the vicinity of T_{SRT}. Even for this case, the predicted Θ is the same to that for the collinear spin arrangement among the Nd moments, i.e. 16 deg. Therefore, Θ provides no crucial information on the spin arrangement in Nd$_2$Fe$_{14}$B within the present accuracy.

B. R_2Fe$_{14}$B

Although we have measured μ^+SR spectra only for Nd$_2$Fe$_{14}$B, both H_{μ} and M_{μ} were reported for the other R_2Fe$_{14}$B compounds with $R = Y, \text{Ce, Pr, Sm, Gd, Tb, Dy, Ho, Er, and Tm}$ (see Table IV)21,22. Since 4f electrons are well localized at the R site, it is reasonable to assume the same muon site in R_2Fe$_{14}$B as in Nd$_2$Fe$_{14}$B. Concerning the spin arrangement in the FM phase, the easy direction of magnetization at base temperature2 revealed that both M_{Fe} and M_{R} are parallel to the [001] direction in R_2Fe$_{14}$B with $R = Y, \text{Ce, Pr, Sm, Gd, Tb, Dy, Ho, and Tm}$, but they are parallel to the [100] direction in R_2Fe$_{14}$B with $R = \text{Sm, Er, and Tm}$. We also assume that $M_{\text{Fe}} = 2.1 \mu_B$ in R_2Fe$_{14}$B regardless of R.

Using the structural data of each compound, Fig. 9 shows the relationship between H_{μ} and M_{Fe}. For Y_2Fe$_{14}$B, M_μ is estimated to be almost zero (0.11 μ_B), as expected for Y^{3+}. In fact, the recent photoelectron spectroscopic analysis result on Nd$_2$Fe$_{14}$B51,52 revealed that the valence state of Nd ions is very close to $3+$. While there is, to our knowledge, no XPS work on Y$_2$Fe$_{14}$B. The parabolic shape with a minimum at $M_\mu = 0$ [Fig. 9(b)]. For Sm$_2$Fe$_{14}$B, $H_{\mu}^{\text{exp}} < H_{\mu}^{\text{calc}}$ in the whole possible range of M_{Sm}, leading tentatively to $M_{\text{Sm}} = 0$. This implies that the FM spin structure is slightly different from the proposed one53. For Er_2Fe$_{14}$B and Tm_2Fe$_{14}$B, there are two intersections between the $H_{\mu}^{\text{exp}}(M_{\text{R}})$ and $H_{\mu}^{\text{calc}}(M_{\text{R}})$ curves. This means that two values are available for M_{Er} and M_{Tm}. However, neutron diffraction measurements proposed that M_{Er} is antiparallel to $M_{\text{Fe}}54-56$. Therefore, a negative value is selected for M_{Er} and M_{Tm}, that is, -9.94 and $-9.54 \mu_B$, respectively.

For Gd_2Fe$_{14}$B, Th_2Fe$_{14}$B57, Dy$_2$Fe$_{14}$B58, and Ho$_2$Fe$_{14}$B59, M_{μ} [001], M_{R} [001], and M_{R} is antiparallel to M_{Fe}. Indeed, H_{μ}^{exp} is reproduced only when $M_{\text{R}} < -9 \mu_B$ [Fig. 9(c)]. As a result, we obtain that $M_{\text{Gd}} = -9.48 \mu_B$, $M_{\text{Tb}} = -11.4 \mu_B$, $M_{\text{Dy}} = -12.6 \mu_B$, and $M_{\text{Ho}} = -10.3 \mu_B$.

Finally, Fig. 10 shows the relationship between M_{R} and the expected magnetic moment (gJ) derived from Landé g factor and the quantum number of the total angular moment (J) for free R^{3+} ions. M_{R} estimated with the magnetization measurements ($M_{\text{R}}^{\text{Mag}}$) is almost equivalent to gJ^2, suggesting the presence of stronger exchange field to the 4f moments than the crystal field2. On the other hand, the slope of the $M_{\text{R}}^{\text{SR}}(gJ)$ curve estimated with μ^+SR is steeper than that for the $M_{\text{R}}^{\text{Mag}}$ curve, mainly because $|M_{\mu}^{\text{SR}}| > |M_{\mu}^{\text{Mag}}|$ for the heavy rare earth elements. Although the reason for this discrepancy is not clear at present, we should note that μ^+SR is very sensitive to local magnetic environments. Recently, not only for Nd$_2$Fe$_{14}$B but also for Ho$_2$Fe$_{14}$B, a non-collinear spin structure for the Ho moment is proposed with neutron using a single crystal sample59. This implies the possibility that such non-collinear structure appears in the other R_2Fe$_{14}$B at low temperatures, which
would affect the magnitude of $M_{\mu}^{\mu SR}$. It would be thus an interesting subject to reconfirm the magnetic structure in R_2Fe$_{14}$B at low temperatures using a high quality sample. Finally, this work clearly demonstrates the unique power of a combination of μ^+SR and DFT calculations for determining the magnetic moments of rare earth elements through the observation of local H_{int}.

V. SUMMARY

We have studied the internal magnetic field in a sintered Nd$_2$Fe$_{14}$B permanent magnet sample with a positive muon spin rotation and relaxation (μ^+SR) technique, which provides microscopic magnetic information at the muon site. Combining the μ^+SR data with the result of DFT calculations for predicting the muon site in the lattice, the magnitude of the ordered Nd moment was clearly estimated both for a collinear ferromagnetic structure at room temperature and a canted ferromagnetic structure at 2 K. Furthermore, a similar estimation for the ordered moment of the rare earth elements in R_2Fe$_{14}$B provided reasonable values consistent with those reported by magnetization and Mössbauer measurements. μ^+SR has been widely used for investigating a magnetic nature in antiferromagnetic, spin-glass, and/or paramagnetic materials, in which both the Lorentz field and hyperfine field are usually zero and, as a result, the dipole field is predominant. On the contrary, the present work demonstrates that a combination of μ^+SR and DFT calculations further expands the research field into ferromagnetic materials.

VI. ACKNOWLEDGMENTS

We thank the staff of TRIUMF (especially the CMMS) for help with the μ^+SR experiments. This work was supported by Japan Society for the Promotion Science (JSPS) KAKENHI Grant No. JP18H01863.

* Electronic address: juns@triumf.ca; Present address: CROSS Neutron Science and Technology Center, Tokai, Ibaraki 319-1106, Japan

1 M. Sagawa, S. Fujimura, N. Togawa, H. Yamamoto, and...
TABLE IV: The internal magnetic field detected with $\mu^+\text{SR}^{22}$, the saturated magnetization2, the magnetic moment of R (M_R) estimated with $\mu^+\text{SR}$ ($M_R^{\mu\text{SR}}$), and M_R proposed with magnetization measurements at 4 K (M_R^{Mag}), and g_J, where g is the Landé g-factor and J is the quantum number of the total angular momentum.

$R_2\text{Fe}_{14}\text{B}$	H_μ (MHz)	H_μ (kOe)	$3H_L = 4\pi M_s$ (kOe)	$M_R^{\mu\text{SR}} (\mu_B)$	$M_R^{\text{Mag}} (\mu_B)$	g_J
La	204.5	19.07	15.9	0.11	—	0
Ce	189.6	14.0	14.7	0.66	—	0
Pr	162.5	11.97	18.4	2.79	3.1	3.20
Nd	152.6	11.26	18.5	3.31	3.2	3.27
Sm	63.0	4.65	16.7	~ 0	1.0	0.72
Eu	—	—	—	—	—	0
Gd	374.0	27.60	9.2	-9.48	-6.8	7.0
Tb	405.2	29.90	6.6	-11.4	-9.1	9.0
Dy	429.0	31.65	5.7	-12.6	-10.1	10.0
Ho	388.0	28.60	5.7	-10.3	-10.1	10.0
Er	157.2	11.58	6.6	-9.94	-9.3	9.0
Tm	154.6	11.41	9.2	-9.57	-6.7	7.0
Yb	—	—	~ 12	—	-4.2	4.0
Lu	—	—	14.7	—	—	0

FIG. 10: The relationship between the magnetic moment of the rare earth element (M_R) and expected magnetic moments (gJ). For heavy rare earth elements, negative value of gJ is used, because M_R is antiparallel to M_{Fe}.

Y. Matsuura, Journal of Applied Physics 55, 2083 (1984).
J. F. Herbst, Rev. Mod. Phys. 63, 819 (1991).
J. Coey and H. Sun, Journal of Magnetism and Magnetic Materials 87, L251 (1990).
J. F. Herbst, J. J. Croat, F. E. Pinkerton, and W. B. Yelon, Phys. Rev. B 29, 4176 (1984).
D. Givord, H. S. Li, and F. Tasset, Journal of Applied Physics 57, 4100 (1985).
A. Teplykh, Y. Chukalkin, S. Lee, S. Bogdanov, N. Kudrevatykh, E. Rosenfeld, Y. Skryabin, Y. Choi, A. Andreev, and A. Pirogov, Journal of Alloys and Compounds 581, 423 (2013).
E. Potenziani II, Journal of Applied Physics 58, 2764 (1985).
C. Niedermayer, A. Golnik, E. Recknagel, A. Weidinger, A. J. Yaouanc, P. L’Heritier, D. Fruchart, J. I. Budnick, and K. H. J. Buschow, Hyperfine Interactions 64, 405 (1991).

L. Ferreira, R. Guillen, P. Vulliet, A. Yaouanc, D. Fruchart, P. Wolters, P. L’Heritier, and R. Fruchart, Journal of Magnetism and Magnetic Materials 53, 145 (1985).

Y. Takada, Y. Kameko, K. Fukumoto, N. Miyamoto, A. Manabe, S. Imada, and S. Suga, R&D Review of Toyota CRDL 43, 33 (2012).

A. Suter and B. Wojek, Physics Procedia 30, 69 (2012).

P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).

D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).

K. Miwa, Phys. Rev. B 84, 094304 (2011).

A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, Phys. Rev. B 52, R5467 (1995).

K. Miwa, Phys. Rev. B 97, 075143 (2018).

P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).

K. Miwa and A. Fukumoto, Phys. Rev. B 65, 155114 (2002).

K. Miwa, N. Ohba, S.-i. Towata, Y. Nakamori, and S.-i. Orimo, Phys. Rev. B 69, 245120 (2004).

J. Sugiyama, K. Mukai, H. Nozaki, M. Harada, M. Månsso, K. Kamazawa, D. Andreica, A. Amato, and A. D. Hillier, Phys. Rev. B 87, 024409 (2013).

K. Miwa, Phys. Rev. B 97, 075143 (2018).

J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

A. Alam, M. Khan, R. W. McCallum, and D. D. Johnson, Applied Physics Letters 102, 042402 (2013).

H.-S. Li, R. Mohanty, A. Raman, and C. Grenier, Journal of Magnetism and Magnetic Materials 162, 301 (1996).

S. Barth, E. Albert, G. Heiduk, A. Möslang, A. Weidinger, E. Recknagel, and K. H. J. Buschow, Phys. Rev. B 33, 430 (1986).

A. Schenck and F. N. Gygax, Handbook of Magnetic Materials (Elsevier, Amsterdam, 1995), vol. 9, chap. 2.

J. Sugiyama, H. Nozaki, M. Månsso, K. Prøsa, D. Andreica, A. Amato, M. Isobe, and Y. Ueda, Phys. Rev. B 85, 214407 (2012).

M. Rosenberg, P. Deppe, M. Wójcik, and H. Stadelmeier, Journal of Applied Physics 57, 4124 (1985).

K. M. Kojima, J. Yamanobe, H. Eisaki, S. Uchida, Y. Fudamoto, I. M. Gat, M. I. Larkin, A. Savici, Y. J. Uemura, P. P. Kyriakou, et al., Phys. Rev. B 70, 094402 (2004).

R. Fruchart, P. L’Heritier, P. D. de Reotier, D. Fruchart, P. Wolters, J. M. D. Coey, L. P. Ferreira, R. Guillen, P. Vulliet, and A. Yaouanc, Journal of Physics F: Metal Physics 17, 483 (1987).

H. V. Noort, D. D. Mooij, and K. Buschow, Journal of the Less Common Metals 115, 155 (1986).

S. S. Jaswal, Phys. Rev. B 41, 9697 (1990).

K. Hummler and M. Fähnle, Phys. Rev. B 53, 3290 (1996).

H. Moriya, H. Tsuchiura, and A. Sakuma, Journal of Applied Physics 105, 07A740 (2009).

J. Wang, L. Liang, L. Zhang, L. Sun, and S. Hirano, Journal of Applied Physics 116, 163917 (2014).

B. I. Min, J.-S. Kang, J. H. Hong, J. I. Jeong, Y. P. Lee, S. D. Choi, W. Y. Lee, C. J. Yang, and C. G. Olson, Phys. Rev. B 48, 6217 (1993).

H. Hiroyoshi, H. Yamauchi, Y. Yamaguchi, Y. Yamamoto, Y. Nakagawa, and M. Sagawa, Solid State Communications 54, 41 (1985).

W. B. Yelon and J. F. Herbst, Journal of Applied Physics 59, 93 (1986).

R. Davis, R. Day, and J. Dunlop, Solid State Communications 56, 181 (1985).

M. Yamada, Y. Yamaguchi, H. Kato, H. Yamamoto, Y. Nakagawa, S. Hiroswa, and M. Sagwa, Solid State Communications 56, 663 (1985).

J. F. Herbst, C. D. Fuerst, and W. B. Yelon, Journal of Applied Physics 73, 5884 (1993).

J. F. Herbst and W. B. Yelon, Journal of Applied Physics 57, 2343 (1985).

P. Wolters, S. Miraglia, D. Fruchart, S. Hiroswa, M. Sagawa, J. Bartolome, and J. Pannetier, Journal of the Less Common Metals 162, 237 (1990).