Expression of messenger molecules and receptors in rat and human sphenopalatine ganglion indicating therapeutic targets
Steinberg, Anna; Frederiksen, Simona D.; Blixt, Frank W; Warfvinge, Karin; Edvinsson, Lars

Published in:
Journal of Headache and Pain

DOI:
10.1186/s10194-016-0664-3
10.1186/s10194-016-0677-y

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Steinberg, A., Frederiksen, S. D., Blixt, F. W., Warfvinge, K., & Edvinsson, L. (2016). Expression of messenger molecules and receptors in rat and human sphenopalatine ganglion indicating therapeutic targets. DOI: 10.1186/s10194-016-0664-3, 10.1186/s10194-016-0677-y
Expression of messenger molecules and receptors in rat and human sphenopalatine ganglion indicating therapeutic targets

Anna Steinberg1,4*, Simona D Frederiksen2, Frank W Blixt2, Karin Warfvinge2,3 and Lars Edvinsson2,3

Abstract

Background: Migraine and Cluster Headache (CH) are two primary headaches with severe disease burden. The disease expression and the mechanisms involved are poorly known. In some attacks of migraine and in most attacks of CH, there is a release of vasoactive intestinal peptide (VIP) originating from parasympathetic cranial ganglia such as the sphenopalatine ganglion (SPG). Patients suffering from these diseases are often deprived of effective drugs. The aim of the study was to examine the localization of the botulinum toxin receptor element synaptic vesicle glycoprotein 2A (SV-2A) and the vesicular docking protein synaptosomal-associated protein 25 (SNAP25) in human and rat SPG. Additionally the expression of the neurotransmitters pituitary adenylate cyclase activating polypeptide (PACAP-38), nitric oxide synthase (nNOS), VIP and 5-hydroxtryptamine subtype receptors (5-HT1B,1D,1F) were examined.

Methods: SPG from adult male rats and from humans, the later removed at autopsy, were prepared for immunohistochemistry using specific antibodies against neurotransmitters, 5-HT1B,1D,1F receptors, and botulinum toxin receptor elements.

Results: We found that the selected neurotransmitters and 5-HT receptors were expressed in rat and human SPG. In addition, we found SV2-A and SNAP25 expression in both rat and human SPG. We report that all three 5-HT receptors studied occur in neurons and satellite glial cells (SGCs) of the SPG. 5-HT1B receptors were in addition found in the walls of intraganglionic blood vessels.

Conclusions: Recent focus on the SPG has emphasized the role of parasympathetic mechanisms in the pathophysiology of mainly CH. The development of next generation’s drugs and treatment of cranial parasympathetic symptoms, mediated through the SPG, can be modulated by treatment with BoNT-A and 5-HT receptor agonists.

Keywords: Sphenopalatine ganglion, Botox receptors, BoNT-A, Parasympathetic signaling transmitters, 5-HT receptor agonists
Background
Migraine and Cluster Headache (CH) are two primary headaches with severe disease burden. In particular, CH is an extremely painful disorder characterized by periods (clusters) of recurrent, unilateral attacks of excruciating pain with a retro-orbital maximum and attacks lasting from 15–180 min [1]. CH usually appears between 20 and 40 years of age and during its active phase the attacks occur from once every second day to 8 times a day. Most patients show ipsilateral symptoms such as conjunctival injection, lacrimation, nasal congestion, rhinorrhea and forehead/facial sweating, indicating an ipsilateral parasympathetic dysfunction which has been proven by co-release of the parasympathetic messenger molecule VIP [2].

The mechanisms involved in migraine and CH are considered to differ but also share some aspects [3]. Cranial autonomic symptoms (CAS), i.e. parasympathetic symptoms, occur in both migraine and CH patients [4–6], indicating involvement of the trigemino-autonomic reflex with increased parasympathetic outflow [5–7], mediated through the sphenopalatine ganglion (TG) [11]. Incubation with BoNT-A was shown to reduce the inflammation response elicited by organ culture of the TG.

In human SPG the parasympathetic signaling transmitters in neural cell bodies consist mainly of VIP, PACAP, acetylcholine (ACh) and NOS [10].

Onabotulinumtoxin A (BoNT-A), more commonly known by the trade name Botox®, comes from Clotstridium botulinum. It works by blocking the release of the neurotransmitter ACh, which has been found in SPG [11], by cleaving SNAP25, a protein necessary for ACh release from vesicles in nerve endings [12]. However, it is unknown if SNAP25, and SV-2A, are expressed in the SPG. A previous study from our group has shown the presence of SV-2A and SNAP25 in rat trigeminal ganglion (TG) [11]. Incubation with BoNT-A was shown to reduce the inflammation response elicited by organ culture of the TG.

Triptans are 5-hydroxytryptamine (5-HT) receptor agonists with a high affinity for the 5-HT1B/1D/1F receptors, which generally are effective for aborting headache attacks of both migraine and CH. The multiple mechanism of action for 5-HT1B/1D receptors includes vasoconstriction, inhibition of the release of vasoactive neurotransmitters by trigeminal nerves as well as inhibition of nociceptive neurotransmission [13, 14]. 5-HT1F receptors are characterized by lack of vasoconstrictive properties [15]. 5-HT1B/1D receptors have been localized in the human TG [14–16]. Activation of those receptors seems to be one of the triptans modes of action. Early clinical studies showed effects in CH [2], thus triptans might have a direct effect on human SPG.

The aim of the present work was to examine if rat and human SPG contain the SV2-A and SNAP25 proteins and, by extension, if BoNT-A might have a mechanism of action in SPG. Secondly, we aimed at investigating the expression of 5-HT1B,1D,1F receptors and the SPG neurotransmitters (PACAP-38, nNOS and VIP). This will provide novel and greater understanding of the action mechanisms in the SPG and could increase the possibility for future drug developments for CH.

Methods
Wistar or Sprague-Dawley male rats (n_Wistar = 9, n_Sprague-Dawley = 10, weight = approx. 250 g) were euthanized by CO2 inhalation followed by decapitation. The SPG was carefully dissected out, close to the time of euthanasia, by initially making an incision over the zygomatic bone. The zygomatic bone was cut at both extremities and removed. The exposed deep masseter muscle was removed. The fifth cranial nerve trunk was revealed, carefully cut, and pulled posteriorly. The SPG, situated against the dorsal part of the maxillary bone, is thereby disclosed. The entire ganglion was carefully dissected and placed in 4 % paraformaldehyde for 2–4 h, followed by incubation overnight in Sörensen’s phosphate buffer (pH 7.2) containing 10 % and 25 % sucrose in turn. Thereafter, the tissue was embedded in Yazulla embedding medium (30 % egg albumin and 3 % gelatin in distilled water) and 10 μm cryosections were cut in a cryostat (Thermo Scientific Microm HM560). The sections were stored at −20 °C until use.

The human SPG was collected at autopsy, within 48 h post-mortem, from three patients. The patients were without disorders related to the central nervous system. The specimens were fixed in 4 % paraformaldehyde followed by sucrose-cryoprotection in 10 % sucrose Tyrode solution. The tissue samples were kept at −80 °C until embedding and cryo-sectioning. The study followed the guidelines of the European Communities Council (86/609/ECC) and was approved by the Committee of the Animal Research of University of Szeged (I-74-12/2012) and the Scientific Ethics Committee for Animal Research of the Protection of Animals Advisory Board (XL/352/2012). The rat study was approved by the Regional Ethical Committee on Animal Research, Malmö/Lund, Sweden. (M43-07).

Hematoxylin-Eosin (HE)
Cryosections of rat and human SPG were stained using Hematoxylin (Htx) and Eosin dyes (Htx 4 min, Eosin 1 min). The staining was done in order to examine the morphology and condition of the tissue.
Immunohistochemistry

Rat and human sections were washed in phosphate buffered saline (PBS) containing 0.25 % TritonX (PBS-T) once for 15 min followed by application of the primary antibody (Table 1) with incubation overnight at +4 °C in moisturized incubation chambers. The following day, the sections were washed twice in PBS-T for 15 min prior to incubation with secondary antibodies (Table 2) for 1 h in room temperature. Finally, the sections were washed 2x15 min and mounted with Vectashield mounting medium containing 4',6-diamidino-2-phenylindole (DAPI) (Vector Laboratories, Burlingame CA, USA). Two out of three human samples were subjected to antigen retrieval by 30–60 min incubation at room temperature and at +75 °C in citrate buffer (10 mM sodium citrate, pH 6) prior to immunohistochemistry.

Double stainings were exclusively performed in rat SPG. The protocol described above was repeated twice and done sequentially. Each staining was performed three times to ensure reproducibility. Omission of primary antibodies served as negative controls. The sections were examined in an epifluorescence microscope (Nikon 80i, Tokyo, Japan) equipped with a Nikon DS-2MV camera. Finally, images were processed using Adobe Photoshop CS3 (v0.0 Adobe Systems, Mountain View, CA).

Results

Hematoxylin Eosin staining

HE staining of the SPG is shown in Fig. 1. The staining revealed neurons of different sizes, enveloped by a single layer of SGCs. These neuron/SGC units were intermingled between fibers. The morphology of the different rat SPGs was in general good, though minor tissue shrinkage was observed in some of the SPGs. Human SPG showed in general somewhat more shrinkage of the tissue.

Rat SPG

Neurotransmitters

PACAP-38 immunoreactivity was found in neurons and fibers, but individual differences were observed; not all animals displayed neuronal stainings. PACAP-38 immunoreactivity was found in the SGCs in all animals (Fig. 2a). nNOS was expressed in the cytoplasm of the neurons and in intraganglionic nerve fibers in a pearl-like manner around the neurons (Figs. 2b). In contrast to the homogeneous pattern of cytoplasmic stainings observed with PACAP-38 and nNOS immunohistochemistry, VIP immunoreactivity was found in a granular manner close to the neuronal nuclei, resembling endoplasmatic reticulum staining (Fig. 2c). By and large, VIP, PACAP-38 and nNOS were localized in the SPG neurons, while PACAP-38 alone was expressed in the SGCs.

5-HT receptors

The 5-HT\(_{1B}\) receptor expression was found in numerous neurons and fibers, in addition to the vessel walls (Fig. 2d). 5-HT\(_{1D}\) and 5-HT\(_{1F}\) immunoreactivities were seen in many neurons and nerve fibers, but not in the vessel walls (Fig. 2e and f).

Table 1	Overview of the primary antibodies
Product	PACAP-38
Host	Rabbit
Dilution	1:500
Detects	Human and rat PACAP-38
Company	Peninsula Laboratories, LLC, San Carlos, CA, USA
Product	nNOS
Host	Mouse
Dilution	1:2500
Detects	NOS derived from brain
Company	Sigma Aldrich, St. Louis, MO, USA
Product	VIP (M-19)
Host	Goat
Dilution	1:100
Detects	C-terminus of mouse VIP
Company	Santa Cruz Biotechnology, Santa Cruz, CA, USA
Product	SNAP-25
Host	Rabbit
Dilution	1:100
Detects	N-terminus of human SNAP-25
Company	Sigma-Aldrich, St. Louis, MO, USA
Product	SV-2A
Host	Rabbit
Dilution	1:1000
Detects	Amino acids 1–100 of rat SV2A
Company	Abcam, Cambridge, UK
Product	S-HT\(_{1B}\)
Host	Rabbit
Dilution	1:100
Detects	Amino acids 8–26 and 263–278 of SHT\(_{1B}\)
Company	Abcam, Cambridge, UK
Product	S-HT\(_{1D}\)
Host	Rabbit
Dilution	1:100
Detects	Amino acids 1–18 and 251–267 of rat SHT\(_{1D}\)
Company	Abcam, Cambridge, UK
Product	S-HT\(_{1F}\)
Host	Rabbit
Dilution	1:200
Detects	N-terminus extracellular domain of human 5HT\(_{1F}\)
Company	Acris Antibodies, San Diego, CA, USA

Table 2	Overview of the secondary antibodies
Product	Alexa Flour 488
Host	Donkey
Against	Anti-goat
Dilution	1:400
Company	Invitrogen, CA, USA
Product	Alexa Flour 594
Host	Goat
Against	Anti-mouse
Dilution	1:200
Company	Invitrogen, CA, USA
Product	Alexa Flour 594
Host	Donkey
Against	Anti-rabbit
Dilution	1:400
Company	Jackson Immunoresearch Laboratories, Inc., West Grove, PA, USA
Product	FITC
Host	Donkey
Against	Anti-rabbit
Dilution	1:100
Company	Jackson Immunoresearch Laboratories, Inc., West Grove, PA, USA
Product	FITC
Host	Goat
Against	Anti-rabbit
Dilution	1:100
Company	Cayman Chemical, Ann Arbor, MI, USA
Fig. 1 Hematoxylin-Eosin. The staining demonstrates neurons (arrow) and satellite glial cells (arrow heads) surrounding the neurons forming distinct units.

Fig. 2 Rat SPG immunohistochemistry. a PACAP-38 immunohistochemistry. PACAP-38 was found in neurons (thin arrows), fibers (arrow heads), and very intense in the SGCs (thick arrows). b nNOS was expressed in the cytoplasm of many of the neurons (thin arrows), negative neurons were also found (asterisk). In addition, immunoreactive pearl-like fibers were observed (arrow head). c VIP immunoreactivity was disclosed in a granular manner close to the neuronal nuclei, resembling endoplasmatic reticulum staining (arrows). d Serotonin receptor 5-HT\textsubscript{1A} expression was found most neurons (thin arrows) and fibers (arrow heads), in addition to the vessel walls (thick arrows). e 5-HT\textsubscript{1D} immunoreactivity was seen in many neurons (arrows) and nerve fibers (arrow heads). f 5-HT\textsubscript{1F} immunoreactivity was seen in many neurons (arrows) and nerve fibers (arrow heads). g SNAP25 immunoreactivity was found in neurons (thin arrows) in the same granular pattern as described for VIP above. In addition, nerve fibers were immunoreactive (arrow heads). h SV2-A immunoreactivity was exclusively found in the SGCs (arrows).
SNAP25 and SV2-A
SNAP25 immunoreactivity was found in most neurons in the same granular pattern as described for VIP above, but not in SGCs. In addition, nerve fibers were immunoreactive (Fig. 2g). SV2-A immunoreactivity was only found in the SGCs (Fig. 2h).

Double stainings
Co-localizations were found on one hand between nNOS and 5-HT1B (Fig. 3a), 5-HT1D (Fig. 3b), 5-HT1F (Fig. 3c) and SNAP25 (Fig. 3d) on the other. SV2-A did not co-localize with either nNOS (Fig. 3e) or VIP in neurons (Fig. 3f).
Summary of immunohistochemistry results are shown in Fig. 4.

Human SPG
Individual differences were observed between the human samples in all stainings; two of the three specimens needed antigen retrieval to get the antibodies to recognize the antigen. In addition, many neurons in the human material contained intense autofluorescent lipofuscin in their cytoplasm.

Neurotransmitters
PACAP-38 immunoreactivity was disclosed in some neurons, in nerve fibers and in vessel walls (Fig. 5a). nNOS immunoreactivity was found in neurons (Fig. 5b).

5-HT receptors
5-HT1B immunoreactivity was found in most neurons, in some fibers and in vessel walls (Fig. 5d and e). 5-HT1D immunoreactivity was seen in neurons and fibers (Fig. 5f and g). 5-HT1F immunoreactivity was not observed in the human material (using the available antibodies).

SNAP25 and SV2-A
SNAP25 immunoreactivity was exclusively observed in SGSs (Fig. 5h and i), while the SV2-A immunoreactivity was confined to neurons (Fig. 5j and k).

Discussion
The present study is the first to examine the co-expression of signalling molecules and receptor elements in human and rat SPG. It is well known that triptans have clinically positive effects on acute pain in CH [17]. Thus, we asked the question if 5-HT1B, 5-HT1D and 5-HT1F receptors are expressed in neurons and SGCs in
Importantly, we report that 5-HT$_{1B}$, 5-HT$_{1D}$ and 5-HT$_{1F}$ receptors are expressed on most neurons in the rat SPG, which correlates well with the clinical effectiveness of triptans in CH. Here we demonstrate that all three 5-HT receptor subtypes occur in neurons and SGCs of the rat SPG. However, the 5-HT$_{1F}$ receptor was only found in rodent material, possibly due to the antigenic properties of the used antibody. In addition 5-HT$_{1B}$ receptors occur in the intraganglionic blood vessels, putatively indicating a possible vasomotor role.

Previous studies have revealed expression of the parasympathetic signaling transmitters VIP, PACAP and nNOS in rat and human SPG. The results in the present study are in concert with these earlier studies. We found that both species contain SV2-A and SNAP25, elements involved in ACh neurotransmission, which has not been described earlier, however with a mixed expression. In rat, SNAP25 was expressed in neurons and fibers, but with SV2-A in the SGCs. In humans, SNAP25 was expressed in the SGCs, but SV2-A in the neurons. SNAP25 was mainly seen in the SGCs, while in man the neurons expressed Botox receptors elements SV2-A (opposite in rat). This could indicate that some effect of BoNT-A could occur in SPG provided it reaches this structure. The anatomical proximity of facial/temporal

Neuron green: PACAP 38, nNOS,VIP, 5-HT 1B,1D,1F SNAP25.

SGC red: PACAP 38, SV2-A

SPG. Importantly, we report that 5-HT$_{1B}$, 5-HT$_{1D}$ and 5-HT$_{1F}$ receptors are expressed on most neurons in the rat SPG, which correlates well with the clinical effectiveness of triptans in CH. Here we demonstrate that all three 5-HT receptor subtypes occur in neurons and SGCs of the rat SPG. However, the 5-HT$_{1F}$ receptor was only found in rodent material, possibly due to the antigenic properties of the used antibody. In addition 5-HT$_{1B}$ receptors occur in the intraganglionic blood vessels, putatively indicating a possible vasomotor role. Previous studies have revealed expression of the parasympathetic signaling transmitters VIP, PACAP and nNOS in rat and human SPG. The results in the present study are in concert with these earlier studies. We found that both species contain SV2-A and SNAP25, elements involved in ACh neurotransmission, which has not been described earlier, however with a mixed expression. In rat, SNAP25 was expressed in neurons and fibers, but with SV2-A in the SGCs. In humans, SNAP25 was expressed in the SGCs, but SV2-A in the neurons. SNAP25 was mainly seen in the SGCs, while in man the neurons expressed Botox receptors elements SV2-A (opposite in rat). This could indicate that some effect of BoNT-A could occur in SPG provided it reaches this structure. The anatomical proximity of facial/temporal injection sites of BoNT-A in the PREEMPT protocol is much closer to the SPG than to the TG. The significance of the differential expression of SNAP25 and SV2-A is unclear but perhaps the localization of the receptor elements might suggest a potential target site of botulinum toxin if it has access to the receptor site.

Treatment with BoNT-A in adults with chronic migraine (CM) has shown safety and efficacy [20, 21]. Pilot studies of SPG injection of BoNT-A for treatment of CM as well as in chronic CH (CCH) have showed promising results [22, 23]. A previous study has shown presence of SV-2A and SNAP25 protein with same location in the TG [11]. The present results illustrate a possible site/ mechanism of action for BoNT-A in CH. There is however no data available for an effect of BoNT-A in CH. The work provides anatomical rationale for this possibility, and given the proximity of the SPG to injection sites used in BoNT-A therapy it might be considered at least. Recent work has focused on neuromodulation of the SPG using e.g. specific SPG stimulation [24, 25].

An issue for the present work is if BoNT-A has a theoretical possibility to work as medical prophylaxis in CH. Earlier studies have shown varying results regarding BoNT-A as prophylactic treatment for CH. Twelve CCH patients were included in an open study where BoNT-A was given as an add-on therapy, i.e. prior prophylactic medication was continued [26]. BoNT-A was injected according to a standardised protocol, ipsilateral to the pain. Four of the twelve patients showed improvement [26]. A pilot study where BoNT-A was injected towards the SPG in CCH patients showed at least 50 % reduction of attack frequency in five out of ten patients [27]. So far, no randomised, placebo-controlled study regarding BoNT-A and treatment of CH has been performed.

Triptans were early found to abort CH attacks [28–30]. It was not until fairly recently that Ivanusic (2011) reported 5-HT$_{1D}$ receptor immunoreactivity in nerve terminals around neurons in the rat SPG. These fibers were all CGRP positive and thus sensory in nature. They were traced back to the TG. Csati et al. (2012) showed CGRP positive fibers also in the human SPG, which agrees well with the present study.

Triptans are 5-HT$_{1B}$/1D receptor agonists with high affinity for 5-HT$_{1B}$/1D receptors, which are generally effective for aborting attacks in both migraine and CH. The multiple mechanism of action for 5-HT$_{1B}$/1D receptors includes vasoconstriction, inhibition of the release of vasoactive neuropeptides by trigeminal nerves as well as inhibition of nociceptive neurotransmission [13, 14]. Both 5-HT$_{1B}$/1D receptors have been localized in the human TG [14, 16]. Activation of those receptors seems to be one of the triptans modes of action.
Fig. 5 Human SPG immunohistochemistry.

- **a** PACAP-38 immunoreactivity was found in some neurons (thin arrows), in fibers (thick arrow) and vessel walls (thin arrow head). Yellow represents autofluorescent lipofuscin in the neurons (thick arrow head).
- **b** nNOS immunoreactivity was found in the neurons (thin arrows) and vessel walls (thin arrow head). **Thick arrow points** at a negative cell. Yellow; autofluorescent lipofuscin (thick arrow head).
- **c** and **d** 5-HT_{1B} immunoreactivity was found in most neurons (thin arrows), and in some fibers (thin arrow heads) and vessel walls (thick arrow). **Asterisk** indicates a negative cell. Yellow; autofluorescent lipofuscin (thick arrow head).
- **e** and **f** 5-HT_{1D} immunoreactivity was seen in neurons (thin arrows) and fibers (thin arrow heads). Yellow; autofluorescent lipofuscin (thick arrow head).
- **g** and **h** SNAP25 immunoreactivity was exclusively found in SGCs (thin arrow heads). Yellow; autofluorescent lipofuscin (thick arrow head).
- **i** and **j** SV2-A immunoreactivity was confined to neurons (thin arrows). **Asterisk** indicates a negative cell. Yellow; autofluorescent lipofuscin (thick arrow head).

The same magnifications are used throughout the panel (**c**-**j**).
Triptans might have a direct effect on human SPG. So far, the issue has to be answered. We showed 5-HT1B and 5-HT1D immunoreactivity in SPG neurons, which suggests a role in modifying the activity in SPG. The variability in the 5-HT1F expression is likely due to low specificity of these antibodies species. This issue is under current development.

Some limitations of our study need to be addressed. The human material is restricted to three SPG obtained at autopsy, due to difficulties to obtain those structures. Further, although the material has been carefully processed, we cannot exclude postmortem changes. In addition, our findings are purely anatomical and the question as to function may be addressed in subsequent work.

Conclusion

Theoretically, our work provides anatomical indication, that both triptans and BoNT-A may have an effect on the SPG. Further randomised, placebo-controlled studies regarding especially BoNT-A treatment of CH are warranted. In addition this study also provides evidence for triptan effects in the SPG.

Acknowledgements

Supported by the Swedish Research Council (grant no 5958).

Authors’ contributions

LE designed the study, FB dissected the rats, SF and KW carried out the immunohistochemistry. AS wrote the first draft of the manuscript and all authors participated in the writing process. All authors read and approved the final manuscript.

Competing interest

The authors declare that they have no competing interests.

Author details

1. Karolinska Institutet, Department of Clinical Neuroscience, Division of Neurology, Karolinska University Hospital Solna, 171 76 Stockholm, Sweden.
2. Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, Lund, Sweden.
3. Department of Clinical Experimental Research, Glostrup Hospital, University of Copenhagen, Glostrup, Denmark.
4. Department of Neurology, Karolinska University Hospital Solna, S-171 76 Stockholm, Sweden.

Received: 1 August 2016 Accepted: 9 August 2016
Published online: 01 September 2016

References

1. The International Classification of Headache Disorders, 3rd edition (beta version). Cephalalgia 2013;35:29–808
2. Goadsby PJ, Edvinsson L (1994) Human in vivo evidence for trigeminovascular activation in cluster headache. Neuropeptide changes and effects of acute attacks therapies. Brain 117(Pt 3):427–434
3. Matharu M, May A (2008) Functional and structural neuroimaging in trigeminal autonomic cephalalgias. Curr Pain Headache Rep 12:132–7
4. Lai T, Fuh JL, Wang SJ (2009) Cranial autonomic symptoms in migraine: characteristics and comparison with cluster headache. J Neurol Neurosurg Psychiatry 80(10):1116–9
5. Obermann M, Yoon MS, Dommes P et al (2007) Prevalence of trigeminal autonomic symptoms in migraine: a population-based study. Cephalalgia 27:504–9
6. Barbanti P, Fabbriini G, Burs B et al (2002) Unilateral cranial autonomic symptoms in migraine. Cephalalgia 22:256–9
7. Dora B (2003) Migraine with cranial autonomic features and strict unilaterality. Cephalalgia 23:561–2
8. Schoenen J, Jensen R, Lanteri-Minet M, Lainez MJA, Gaul C, Goodman AM, Caparo A, May A (2013) Stimulation of the sphenopalatine ganglion (SPG) for cluster headache treatment. Pathway CH-1: A randomized, sham-controlled study. Cephalalgia 33:816–30
9. Bahra A, May A, Goadsby PJ (2002) Cluster headache: a prospective clinical study with diagnostic implications. Neurology 58:534–61
10. Edvinsson L, Uddman R (2005) Neurobiology in primary headaches. Brain Res Rev 48(3):438–56
11. Edvinsson L, Warfvinge K, Edvinsson L (2015) Modulation of inflammatory mediators in the trigeminal ganglion by botulinum neurotoxin type A: an organ culture study. J Headache Pain 16:555
12. Humeau Y, Doussau F, Grant NJ, Pouliain B (2000) How botulinum and tetanus neurotoxins block neurotransmitter release. Biochimie 82:427–46
13. Goadsby P, Hargreaves RJ (2000) Mechanisms of action of serotonin 5-HT1B/D agonists: insights into migraine pathophysiology using rizatriptan. Neurology 55:59–14
14. Tepper S, Rapoport AM, Sheffell FD (2002) Mechanisms of action of the 5-HT1B/1D receptor agonists. Arch Neurol 59:1084–8
15. Mtsikostas D, Teft-Hansen P (2012) Targeting to 5-HT1F receptor subtype for migraine treatment: lessons from the past, implications for the future. Cent Nerv Syst Agents Med Chem 12(4):241–9
16. Hou M, Kanje M, Longmore J, Tajt J, Uddman R, Edvinsson L (2001) 5-HT(1B) and 5-HT(1D) receptors in the human trigeminal ganglion: co-localization with calcitonin gene-related peptide, substance P and nitric oxide synthase. Brain Res 909:112–120
17. May A (2005) Cluster headache: pathogenesis, diagnosis, and management. Lancet 366(9488):843–853
18. Csati A, Tajt J, Kunz A, Tuka B, Edvinsson L, Warfvinge K (2012) Distribution of vasoactive intestinal peptide, pituitary adenylate cyclase-activating peptide, nitric oxide synthase, and their receptors in human and rat sphenopalatine ganglion. Neuroscience 202:158–168
19. Uddman R, Tajt J, Möller S, Sundler F, Edvinsson L (1999) Neuronal messengers and peptide receptors in the human sphenopalatine and otic ganglia. Brain Res 826:193–199
20. Aurora S, Dodick DW, Turkel CC, DeGryse RE, Silberstein SD, Lipton RB et al (2010) OnabotulinumtoxinA for treatment of chronic migraine: results from the double-blind, randomized, placebo-controlled phase of the PREEMPT 1 trial. Cephalalgia 30(7):793–803
21. Diener H, Dodick DW, Aurora SK, Turkel CC, DeGryse RE, Silberstein SD, Lipton RB et al (2010) OnabotulinumtoxinA for treatment of chronic migraine: results from the double-blind, randomized, placebo-controlled phase of the PREEMPT 2 trial. Cephalalgia 30(7):804–14
22. Bratbak D, Nordgård S, Stovner LJ, Linde M, Folvik M, Bugten V, Tronvik E (2016) Pilot study of sphenopalatine injection of onabotulinumtoxinA for the treatment of intractable chronic cluster headache. Cephalalgia 36(6):503–9
23. Bratbak D, Nordgård S, Stovner LJ, Linde M, Dodick DW, Aschehoug I, Folvik M, Tronvik E. Pilot study of sphenopalatine injection of onabotulinumtoxinA for the treatment of intractable chronic migraine. Cephalalgia 2016
24. Khan S, Schoenen J, Ashina M (2014) Sphenopalatine ganglion neuromodulation in migraine: what is the rationale? Cephalalgia 3:582–91
25. Jürgens T, Barlese M, May A, Lainez JM, Schoenen J, Gaul C, Goodman AM, Caparo A, Jensen RH. Long-term effectiveness of sphenopalatine ganglion stimulation for cluster headache. Cephalalgia 2016.Epub ahead of print.
26. Sostak P, Krause P, Fördereuther S, Reinsich V, Straube A (2007) Botulinum toxin type-A therapy in cluster headache: an open study. J Headache Pain 8:236–241
27. Bratbak D, Nordgård S, Stovner LJ, Linde M, Folvik M, Bugten V, Tronvik E. Pilot study of sphenopalatine injection of onabotulinumtoxinA for the treatment of intractable chronic cluster headache. Cephalalgia 2015
28. Ebkoom K, Krabbe A, Micelli G, Prusinski A, Cole JA, Pilgrim AJ, Noronha D, Micelli G (1995) Cluster headache attacks treated for up to three months with subcutaneous sumatriptan (6 mg). Sumatriptan Cluster Headache Long-term Study Group. Cephalalgia 15(5):446
29. Ebkoom K, Monstad I, Prusinski A, Cole JA, Pilgrim AJ, Noronha D (1993) Subcutaneous sumatriptan in the acute treatment of cluster headache: a dose comparison study. Acta Neurol Scand 88:63–69
30. Gobbel H, Lindner V, Heine A, Ribbat M, Deuschl G (1998) Acute therapy for cluster headache with sumatriptan: findings of a one-year long-term study. Neurology 51:908–11