Spin squeezing can improve atomic precision measurements beyond the standard quantum limit (SQL), and unitary spin squeezing is essential for improving atomic clocks. We report substantial and nearly unitary spin squeezing in 171Yb, an optical lattice clock atom. The collective nuclear spin of $\sim 10^3$ atoms is squeezed by cavity feedback, using light detuned from the system’s resonances to attain unitarity. The observed precision gain over the SQL is limited by state readout to 6.5(4) dB, while the generated states offer a gain of 12.9(6) dB, limited by the curvature of the Bloch sphere. Using a squeezed state within 30% of unitarity, we demonstrate an interferometer that improves the averaging time over the SQL by a factor of 3.7(2). In the future, the squeezing can be simply transferred onto the optical-clock transition of 171Yb.

Optical lattice clocks (OLCs) employ ensembles of cold trapped atoms to reach unprecedented fractional accuracy at the level of 10^{-18} [1–5]. Such clocks now operate near the standard quantum limit (SQL) set by quantum projection noise, where the precision of a sensor improves as \sqrt{N} with the number of atoms N. Spin squeezed states (SSSs) [6–22] are many-body entangled states that can overcome the SQL [8,23]. They have simple Gaussian quasiprobability distributions with reduced (squeezed) and enhanced (antisqueezed) quantum noise, respectively, along two orthogonal directions of the collective atomic spin. While for fixed-bandwidth applications the precision depends on the squeezing alone, André, Sørensen, and Lukin [24] have shown that for optimized clocks the antisqueezed direction eventually leaks into the measurement, reducing the gain in precision. In practice, the amount of antisqueezing typically far exceeds the squeezing, and this mechanism can dramatically reduce the precision gain to the point where, e.g., the state with the highest inferred squeezing of 20 dB (and an antisqueezing of 39 dB) [20] would improve the precision of a clock by a mere 2 dB [25]. Thus, nearly unitary (area-preserving) squeezing is of high importance for future clock applications. Furthermore, of the most common OLC atoms, spin squeezing in Sr, Ca, Mg, or Hg has not been demonstrated so far, and Yb has only been weakly squeezed by ~ 2 dB [10].

In this Letter, we demonstrate for the first time near-unitary optical spin squeezing, as well as the first substantial squeezing in an OLC atom. The observed metrological gain of up to 6.5(4) dB is limited by the state detection, while subtraction of the independently determined measurement noise implies that the generated SSSs offer 12.9(6) dB of metrological gain and 15.9(6) dB of spin noise suppression. Under conditions where the squeezing is unitary within 30%, and nearly optimal for clock applications, we demonstrate an interferometer with a factor of 3.7(2) reduction in averaging time over the SQL. In the future, the demonstrated squeezing between the two nuclear sublevels $|m = \pm \frac{1}{2}\rangle$ of the electronic ground state 1S_0 of 171Yb can be directly used in the OLC by transferring the population of one of the two sublevels into the 3P_0 excited clock state with an optical π pulse [26].

Optical spin squeezing methods rely on the collective interaction of the atomic ensemble with a light field, where for superior performance the atom-light interaction is enhanced by a cavity [15,19,20]. One method that does not require the detection of light, which in practice is always imperfect, is cavity feedback squeezing [14,21,27]: The spin quantum noise tunes the cavity frequency such that the amount of light circulating inside the cavity depends on the S_z component of the collective atomic spin. The light then acts back onto another component S_y of the atomic spin through the light shift, creating $S_y - S_z$
quantum correlations and atomic entanglement in the process. In cavity feedback squeezing, any information contained in the light field results in the nonunitary evolution of the atomic system [28]. Recently, Zhang et al. [29] pointed out that the process can be made more unitary by detuning the probe light far from cavity resonance. Although this decreases the squeezing strength per photon, it also hides the information about the atomic state in the photon shot noise, thereby enhancing the squeezing. In the present work, we are making use of this idea, but in a resonant regime of vacuum Rabi splitting rather than a dispersive cavity shift [29], resulting in further improved squeezing and more resilience to technical noise. In addition, we implement spin squeezing on an almost closed optical transition, which removes a squeezing limit due to Raman scattering between the spin states [19,30] and allows us for the first time to create SSSs that are limited by the curvature of the Bloch sphere for the collective atomic spin (see Fig. 1).

Laser-cooled 171Yb atoms are prepared in a mag-net-wavelength optical-lattice trap inside an optical cavity. The atom-light interaction is characterized by an effective single-atom cooperativity $\eta = 1.8(1)$ and collective cooperativity $N\eta \approx 1800$, where $N \approx 1000$ is the effective atom number (see Ref. [31] and Supplemental Material [32] for details). The value of the effective cooperativity η is confirmed in an independent measurement.

We perform squeezing between the nuclear sublevels $|\uparrow\rangle \equiv |m_1 = 1\rangle$ and $|\downarrow\rangle \equiv |m_1 = -1\rangle$ of the electronic 1S_0 ground state of 171Yb. The collective spin state can be represented on a Bloch sphere with radius $S = N/2$ [43]. The cavity frequency is tuned to be nearly resonant with the $|\uparrow\rangle \rightarrow |\uparrow\rangle$ atomic transition. N_\uparrow atoms in the state $|\uparrow\rangle$ induce a vacuum Rabi splitting $\gamma_{\uparrow} = \sqrt{N_\uparrow \kappa \Gamma}$ of the atom-cavity resonance [Fig. 1(c)], where κ and Γ are the cavity and atomic linewidth, respectively. There is also a small dispersive effect from the N_\downarrow atoms in the state $|\downarrow\rangle$, suppressed by the Zeeman splitting in the excited $|\uparrow\rangle$ state, with $\Delta_z \gg \Gamma, \kappa$ [see Fig. 1(b)]; this effect is included in our theoretical model (see Supplemental Material [32] for details).

Since the cavity is primarily coupled to the population N_\uparrow of the state $|\uparrow\rangle$, S_c is determined by detecting N_\uparrow via a measurement of the Rabi splitting $2\gamma_{\uparrow}$, swapping the populations of $|\uparrow\rangle$ and $|\downarrow\rangle$ with a radio frequency π pulse, and remeasuring the Rabi splitting to give N_\downarrow. From N_\uparrow and N_\downarrow, we determine $S_c = (N_\uparrow - N_\downarrow)/2$, and $S = (N_\uparrow + N_\downarrow)/2$ using the two-transition atomic model and the separately measured cavity parameters (see Supplemental Material [32]). The primary quantity of interest, denoted by $\sigma^2 \equiv 2(D_{S_c}^2)/S$, is the spin variance $(D_{S_c})^2$ normalized to the noise of the coherent spin state (CSS) $(D_{S_c})^2_{\text{CSS}} = S/2$. The SQL corresponds to $\sigma^2 = 1$.

The measured spin variance σ^2 is the sum of the variances of the atomic state $\sigma^2_{S_0}$ and the measurement

![Image](https://via.placeholder.com/150)

FIG. 1. (a) Experimental setup. A one-dimensional optical-lattice trap at $\lambda = 759$ nm (red) traps the atoms. Light at $\lambda = 556$ nm (green), whose transmission is detected using a dichroic mirror (D) and a single-photon counter (SPC), is used for squeezing and probing. (b) Relevant energy levels of 171Yb with ground state $|1\rangle, I = \frac{1}{2}$ and excited state $|\uparrow\rangle$, $F = \frac{3}{2}$. The Zeeman splitting in $|\rangle, F = \frac{3}{2}$ is $\Delta_z/(2\pi) = 18.5$ MHz for a magnetic field $B_z = 13.6$ G along the cavity axis. (c) Cavity transmission spectrum showing vacuum Rabi splitting for $N_\eta = 1800$ as well as the two squeezing light pulses ω_{11} and ω_{12}. (d) Simplified representation of the squeezing and measurement sequence. (e) Quasiprobability distributions for a CSS (red) and SSS (blue).
squeezing process more unitary with respect to the transmitted light but also reduces the squeezing per photon and the interferometer contrast [see Fig. 4(b)]. Furthermore, fluctuations in the trapped atom number result in fluctuations of the squeezing strength, since the vacuum Rabi splitting depends on N_\uparrow rather than S_z. We cancel this effect by squeezing with bichromatic light inside and outside the Rabi peaks [see Fig. 1(c)], so that the combined squeezing is independent of the total atom number. Besides the squeezing, the intracavity light also shifts the phase of the state, which we cancel by a spin echo sequence with two bichromatic pulses (see Supplemental Material [32] for a detailed description).

The generated SSS is reconstructed by rotating it by an angle α about its average spin vector and then detecting the spin projection $S_z(\alpha)$ along the z axis [see Fig. 1(d)]. The measurement is repeated more than 100 times for each α. The normalized spin variance $\sigma^2(\alpha) = 2[\Delta S_z(\alpha)]^2/S$ along the direction α is displayed in Fig. 2 for several different powers of the squeezing light. As a given SSS is rotated, the projected variance dips below the CSS noise until the rotation angle α reaches α_m, where the short axis of the uncertainty ellipse lies along the z axis. Beyond α_m, the variance grows until the antisqueezing quadrature is oriented along z for $\alpha = \alpha_m + \pi/2$.

To compare the data to a theoretical model, we first consider the polar angle of the spin vector, defined as $\alpha \equiv \arcsin[S_z(\alpha)/S]$. Its variance $(\Delta \alpha)^2$, normalized to the variance $(\Delta \theta)_{CSS}^2 = (2S)^{-1}$ of the CSS, is given by

$$\frac{(\Delta \alpha)^2}{(\Delta \theta)_{CSS}^2} = 1 - 2 \sin 2\alpha + (F + Q^2)\sin^2\alpha. \quad (1)$$

Here, Q is the dimensionless shearing strength [see Fig. 1(e)], defined as the normalized light-induced phase shift $\phi = \Delta \theta_{CSS}$ experienced by a spin displaced by one standard deviation of the CSS from the equator, $S_z = \pm \sqrt{S}/2$ [14]. The other dimensionless parameter F quantifies the excess broadening (in variance units) compared to a pure SSS or CSS, which have $F = 0$. (For an explicit expression for Q and F, see Supplemental Material [32].)

From Eq. (1), we find the minimum (ξ^2_+) and maximum (ξ^2_-) variances of the normalized spin angle α,

$$\xi^2_{\pm} = \frac{1}{2} \left[2 + F + Q^2 \pm \sqrt{4Q^2 + (F + Q^2)^2} \right]. \quad (2)$$

obtained at angles $\alpha_{\pm} = \arctan[\pm \sqrt{4Q^2 + (F + Q^2)^2} - (F + Q^2)^2/(2Q)]$ and $\alpha_\uparrow = \alpha_m + \pi/2$, respectively. The normalized uncertainty area of the SSS ellipse is given by $A = \xi_+ \xi_- = \sqrt{1 + F}$. The relation between $(\Delta \alpha)^2$ and the normalized spin variance $\sigma^2(\alpha)$ of $S_z(\alpha)$ is given by $\sigma^2(\alpha) = S[1 - \exp(-\Delta \alpha/S)]$. For the CSS and the SSS quadrature ξ^2_v, the approximation $\sigma^2(\alpha) \approx (\Delta \alpha)^2$ holds, while the antisqueezed quadrature ξ^2_- is reduced by the curvature of the Bloch sphere.

The solid lines in Fig. 2 are obtained by fitting the data to $\sigma^2(\alpha) + \sigma^2_\uparrow$ with F and Q as the only fitting parameters, while σ^2_\uparrow is the previously measured detection limit. We find good agreement between the model and the data, allowing us to extract both the shearing strength Q and the excess broadening F. In Fig. 3, we plot Q and F versus the number p_t of transmitted photons during the optical squeezing. For negligible technical noise, we expect both Q and F to be proportional to p_t (see Supplemental Material [32]). The solid lines in Fig. 3 represent the predicted linear behavior of Q and F obtained from an analytical model of the system without any free parameters (see Supplemental Material [32]); the dotted line includes the effect of finite measurement quality $\sigma^2_\uparrow = -9.4$ dB, which affects the measurement of the squeezed quadrature $\xi^2_v < 1$, and hence F, but not Q. The model without any free parameters agrees remarkably well with the measured Q and F, indicating the absence of major technical limitations other than the finite state detection quality σ^2_\uparrow.

The attainable metrological gain depends not only on the reduced spin noise ξ^2_v, but also on the signal $\langle \hat{S} \rangle$ [8], which determines the contrast C of an interferometric measurement. The dominant loss of contrast is due to the scattering of photons into free space during squeezing, which projects atoms into $|\uparrow\rangle$ or $|\downarrow\rangle$. The measured Ramsey contrast as a function of Q is shown in Fig. 4, together with the a priori prediction $C = C_0 \exp(-(Q/\hat{Q} + Q^2/2)/N)$ with the initial contrast $C_0 = 0.97$ in the absence of squeezing as the only fitting parameter. Here, $\hat{Q} = 0.050(3)$ is the independently measured shearing strength.
per scattered photon. The term Q/\tilde{Q} arises from photon scattering into free space, while the second, smaller term accounts for the SSS wrapping around the Bloch sphere.

The metrological gain of a squeezed state is then given by the Wineland parameter $\xi_W = \xi^2/\sigma^2$ [8]. Figure 4(a) shows ξ_W, the measured spin noise reduction ξ^2, and the inferred squeezing $\xi_{st}^2 = \xi^2 - \sigma^2$ of the state after subtraction of the measurement resolution σ^2. For $Q \gtrsim 6$, the measured squeezing ξ^2 saturates at σ^2_F; $Q = 6.3$ also optimizes the Wineland parameter at $\xi_W^2 = -6.5(4)$ dB. The inferred squeezing ξ_{st}^2 is consistent with the prediction from the model with no free parameters (solid red line), which is limited by the Bloch sphere curvature to $\xi^2_{st} = -15.9(6)$ dB. To our knowledge, this is the first time that the limitation of spin squeezing due to the curvature of the Bloch sphere [6] has been observed. The inferred metrological gain without readout noise is $\xi_W^2 = -12.9(6)$ dB.

Finally, we directly demonstrate an interferometric measurement with a precision beyond the SQL by implementing a Ramsey sequence with a squeezed, nearly uncertainty-limited input state ($Q = 3.8$, area $A = \sqrt{1+F} = 1.3$). The state is chosen to provide a nearly optimum precision gain in the interferometer and in a future OLC [25]; see Fig. 4(a). We rotate the squeezed state by $\alpha = \pi/2 - \alpha_-$ to align the minimal uncertainty along the phase axis, allow the state to evolve for a Ramsey time $\tau_R = 1.5$ ms, and apply a final $\pi/2$ rotation to map the accumulated phase onto S_z. In Fig. 4(c), we compare the phase Allan deviation of the SSS (red squares) with that of the CSS (black circles). The Allan deviation for both CSS and SSS Ramsey sequences is derived from 90 sequential measurements. The precision of the CSS interferometer is accurately described by the SQL (black dashed line). The SSS reaches a given precision 4 times faster than a system at the SQL. The main limitation to longer integration times is magnetic field noise (see Supplemental Material [32]).

In conclusion, we have demonstrated near-unitary cavity feedback squeezing. Our measurements agree with a model without free parameters that predicts both the area and shape of the squeezed state. The results presented here can be further improved upon in several ways: State detection with a larger applied magnetic field will reduce the Raman scattering and improve the measured spin noise and metrological gain. Alternatively, one can use a squeezing-unsqueezing method [21,45] that is not limited by the detection quality and that is also insensitive to the curvature of the Bloch sphere. The intrinsic squeezing of $\xi^2 = -16$ dB is already more than halfway (on a logarithmic scale) between the SQL and the ultimate Heisenberg limit.
at $\epsilon_{H}^2 = -30\text{ dB}$ for $N = 10^3$ atoms. The squeezing performance depends only on the collective cooperativity $N\eta$ and, by placing the ensemble at a location in the cavity with higher single-atom cooperativity at constant $N\eta$, i.e., for a small atom number, the demonstrated performance could already be quite close to the Heisenberg limit. Furthermore, the absolute squeezing will improve with increased collective cooperativity in proportion to $N\eta$. We expect that the spin squeezing can be transferred from the nuclear spin directly to the optical π pulse, thus enabling optical-clock operation beyond the SQL. Finally, unitary squeezing can also be used to enable quantum information processing with Gaussian states [46,47].

We thank Monika Schleier-Smith, James Thompson, and Mikhail Lukin for valuable discussions. This work was supported by NSF, DARPA, ONR, and the NSF Center for Ultracold Atoms (CUA). S. C. acknowledges support as a SNF Early Postdoc.Mobility fellow. B. B. acknowledges the support of the Banting Postdoctoral Fellowship.

[1] A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, Rev. Mod. Phys. 87, 637 (2015).
[2] I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, Nat. Photonics 9, 185 (2015).
[3] S. L. Campbell, R. B. Hutson, G. E. Marti, A. Goban, N. Darkwah Oppong, R. L. McNally, L. Sonderhouse, J. M. Robinson, W. Zhang, B. J. Bloom, and J. Ye, Science 358, 90 (2017).
[4] W. F. McGrew, X. Zhang, R. J. Fasano, S. A. Schäffer, K. Beloy, D. Nicolodi, R. C. Brown, N. Hinkley, G. Milan, M. Schioppo, T. H. Yoon, and A. D. Ludlow, Nature (London) 564, 87 (2018).
[5] G. E. Marti, R. B. Hutson, A. Goban, S. L. Campbell, N. Poli, and J. Ye, Phys. Rev. Lett. 120, 103201 (2018).
[6] M. Kitagawa and M. Ueda, Phys. Rev. A 47, 5138 (1993).
[7] D. J. Wineland, J. J. Bollinger, W. M. Itano, F. L. Moore, and D. J. Heinzen, Phys. Rev. A 46, R6797 (1992).
[8] D. J. Wineland, J. J. Bollinger, W. M. Itano, and D. J. Heinzen, Phys. Rev. A 50, 67 (1994).
[9] J. Ma, X. Wang, C.-P. Sun, and F. Nori, Phys. Rep. 509, 89 (2011).
[10] T. Takano, M. Fuyama, R. Namiki, and Y. Takahashi, Phys. Rev. Lett. 102, 033601 (2009).
[11] J. Appel, P. J. Windpassinger, D. Oblak, U. B. Hoff, N. Kjærgaard, and E. S. Polzik, Proc. Natl. Acad. Sci. U.S.A. 106, 10960 (2009).
[12] J. Estève, C. Gross, A. Weller, S. Giovanazzi, and M. Oberthaler, Nature (London) 455, 1216 (2008).
[13] M. F. Riedel, P. Böhi, Y. Li, T. W. Hänsch, A. Sinatra, and P. Treutlein, Nature (London) 464, 1170 (2010).
[14] I. D. Leroux, M. H. Schleier-Smith, and V. Vuletić, Phys. Rev. Lett. 104, 073602 (2010).
[15] M. H. Schleier-Smith, I. D. Leroux, and V. Vuletić, Phys. Rev. Lett. 104, 073604 (2010).
[16] C. D. Hamley, C. Gervin, T. Hoang, E. Bookjans, and M. S. Chapman, Nat. Phys. 8, 305 (2012).
[17] J. G. Bohnet, B. C. Sawyer, J. W. Britton, M. L. Wall, A. M. Rey, M. Foss-Feig, and J. J. Bollinger, Science 352, 1297 (2016).
[18] H. Bao, J. Duan, P. Li, X. Lu, W. Qu, S. Jin, M. Wang, I. Novikova, E. Mikhailov, K.-F. Zhao, H. Shen, and Y. Xiao, arXiv:1811.06945.
[19] K. C. Cox, G. P. Greve, J. M. Weiner, and J. K. Thompson, Phys. Rev. Lett. 116, 093602 (2016).
[20] O. Hosten, N. J. Engelsen, R. Krishnakumar, and M. A. Kasevich, Nature (London) 529, 505 (2016).
[21] O. Hosten, R. Krishnakumar, N. J. Engelsen, and M. A. Kasevich, Science 352, 1552 (2016).
[22] R. J. Sewell, M. Koschorreck, M. Napolitano, B. Dubost, N. Behbood, and M. W. Mitchell, Phys. Rev. Lett. 109, 253605 (2012).
[23] L. Pezzè, A. Smerzi, M. K. Oberthaler, R. Schmied, and P. Treutlein, Rev. Mod. Phys. 90, 035005 (2018).
[24] A. André, A. S. Sørensen, and M. D. Lukin, Phys. Rev. Lett. 92, 230801 (2004).
[25] B. Braverman, A. Kawasaki, and V. Vuletić, New J. Phys. 20, 103019 (2018).
[26] N. D. Lemke, A. D. Ludlow, Z. W. Barber, T. M. Fortier, S. A. Diddams, Y. Jiang, S. R. Jefferts, T. P. Heavner, T. E. Parker, and C. W. Oates, Phys. Rev. Lett. 103, 063001 (2009).
[27] M. H. Schleier-Smith, I. D. Leroux, and V. Vuletić, Phys. Rev. A 81, 021804(R) (2010).
[28] I. D. Leroux, M. H. Schleier-Smith, H. Zhang, and V. Vuletić, Phys. Rev. A 85, 013803 (2012).
[29] Y.-L. Zhang, C.-L. Zou, X.-B. Zou, L. Jiang, and G.-C. Guo, Phys. Rev. A 91, 033625 (2015).
[30] M. Saffman, D. Oblak, J. Appel, and E. S. Polzik, Phys. Rev. A 79, 023831 (2009).
[31] A. Kawasaki, B. Braverman, E. Pedrozo-Peñafiel, C. Shu, S. Colombo, Z. Li, O. Özel, W. Chen, L. Salvi, A. Heinz, D. Levonian, D. Akamatsu, Y. Xiao, and V. Vuletić, Phys. Rev. A 99, 013437 (2019).
[32] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.122.223203 for additional information, which includes Refs. [33–42].
[33] A. Kawasaki, B. Braverman, Q. Yu, and V. Vuletić, J. Phys. B 48, 155302 (2015).
[34] H. Tanji-Suzuki, I. D. Leroux, M. H. Schleier-Smith, M. Cetina, A. T. Grier, J. Simon, and V. Vuletić, in Advances in Atomic, Molecular, and Optical Physics, edited by P. B. E. Arimondo and C. Lin (Academic, New York, 2011), Vol. 60, pp. 201–237.
[35] M. G. Raizen, R. J. Thompson, R. J. Brecha, H. J. Kimble, and H. J. Carmichael, Phys. Rev. Lett. 63, 240 (1989).
[36] P. Münstermann, T. Fischer, P. Maunz, P. W. H. Pinkse, and G. Rempe, Phys. Rev. Lett. 82, 3791 (1999).
[37] E. J. Davis, G. Bentsen, L. Homeier, T. Li, and M. H. Schleier-Smith, Phys. Rev. Lett. 122, 010405 (2019).
[38] B. Braverman, Cavity quantum electrodynamics with ensembles of ytterbium-171, Ph.D. thesis, Massachusetts Institute of Technology, 2018, https://dspace.mit.edu/handle/1721.1/120364.
[39] H. K. Cummins, G. Llewellyn, and J. A. Jones, Phys. Rev. A 67, 042308 (2003).
[40] M. Bando, T. Ichikawa, Y. Kondo, and M. Nakahara, J. Phys. Soc. Jpn. 82, 014004 (2013).
[41] B. Braverman, A. Kawasaki, E. Pedrozo-Peñafiel, C. Shu, S. Colombo, Z. Li, and V. Vuletić (to be published).
[42] A. Kawasaki, Towards spin squeezed 171Yb atomic clock beyond the standard quantum limit, Ph.D. thesis, Massachusetts Institute of Technology, 2017, https://dspace.mit.edu/handle/1721.1/115002.
[43] J. Hu, W. Chen, Z. Vendeiro, H. Zhang, and V. Vuletić, Phys. Rev. A 92, 063816 (2015).
[44] Z. Chen, J. G. Bohnet, J. M. Weiner, K. C. Cox, and J. K. Thompson, Phys. Rev. A 89, 043837 (2014).
[45] E. Davis, G. Bentsen, and M. Schleier-Smith, Phys. Rev. Lett. 116, 053601 (2016).
[46] C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, Rev. Mod. Phys. 84, 621 (2012).
[47] T. Opatrný, Phys. Rev. Lett. 119, 010502 (2017).