On systems of nonlinear equations

M. Eshaghi Gordji, A. Ebadian, M. B. Ghaemi and J. Shokri

Department of Mathematics, Semnan University, Semnan, Iran
Department of Mathematics, Urmia University, Urmia, Iran
Department of Mathematics, Iran University of Science and Technology, Tehran, Iran
E-mail: madjid.eshaghi@gmail.com, a.ebadian@urmia.ac.ir, mghaemi@iust.ac.ir, j.shokri@urmia.ac.ir

Abstract

In this paper, we introduce an iterative numerical method to solve systems of nonlinear equations. The third-order convergence of this method is analyzed. Several examples are given to illustrate the efficiency of the proposed method.

Mathematics Subject Classification: 34A34; 37C25.

Keywords: Systems of nonlinear equations; Newton’s method; Third-order convergence.

1 Introduction

Let us consider the problem of finding a real zero of the nonlinear system \(F(x) = 0 \) which \(F : \mathbb{R}^n \rightarrow \mathbb{R}^n \). As notation throughout this paper, \(\alpha \in \mathbb{R}^n \) will denote the true solution of the nonlinear system \(F(x) = 0 \). More precisely Newton’s method may has used as the approximation of the following indefinite integral, arising from Newton’s theorem \([1]\),

\[
f(x) = f(x_n) + \int_{x_n}^{x} f'(t)dt,
\]

for nonlinear equation \(f(x) = 0 \). Noor\([2]\) by using the combination of midpoint quadrature rule and Trapezoidal rule for integral \((1)\) has introduced following iterative process for solving \(f(x) = 0 \),

\[
x_{n+1} = x_n - \frac{4f(x_n)}{f'(x_n) + 2f'(\frac{x_n + y_n}{2}) + f'(y_n)},
\]

where

\[
y_n = x_n - \frac{f(x_n)}{f'(x_n)}.
\]

Now, corresponding to \((1)\), for nonlinear system \(F(x) = 0 \) is written, Ortega\([3, 4]\):

\[
F(x) = F(x_n) + \int_{x_n}^{x} F'(t)dt,
\]
then we can extend the discussion to solve system of nonlinear equations $F(x) = 0$, so similar to (2), the following iterative process for solving $F(x) = 0$ is obtain as,

$$x_{n+1} = x_n - 4 \left[F'(x_n) + 2F'\left(\frac{x_n + y_n}{2}\right) + F'(y_n) \right]^{-1} F(x_n), \quad n = 0, 1, \ldots,$$

where

$$y_n = x_n - F'(x_n)^{-1} F(x_n).$$

where $F'(x_n)^{-1}$ is the Jacobian Matrix of the function F evaluated in x_k. we call this iterative process Midpoint-Trapezoidal Newton’s method (MTN). In this paper, we analyze (MTN) in details and prove its third-order convergent theorem. Also, we have comparisons with some other variants of Newton’s method by numerical examples.

2 Description of the methods

Let $F : \Omega \subseteq \mathbb{R}^n \to \mathbb{R}^n$ be sufficiently differentiable function and α be a zero of the system of nonlinear equations $F(x) = 0$. From (2) as following

$$F(x) = F(x_n) + \int_{x_n}^{x} F'(t)dt,$$

we saw in the previous section that by using rectangular rule for above integral, classical Newton’s method (CN) is obtained as following

$$x_{n+1} = x_n - F'(x_n)^{-1} F(x_n),$$

where $F'(x)^{-1}$ is the Jacobian matrix of the function F evaluated in x. If an estimation of (3) is made by means of the trapezoidal rule and $x = \alpha$ is taken, then

$$0 \approx F(x_n) + \frac{1}{2}[F(x_n) + F(\alpha)](\alpha - x_n),$$

is obtained and a new approximation x_{n+1} of α is given by

$$x_{n+1} = x_n - 2[F'(x_n) + F'(x_{n+1})]^{-1} F(x_n).$$

For solving of the implicit form problem that this equation involve, we use the $(n + 1)$th approximation of Newton method in right side,

$$x_{n+1} = x_n - 2[F'(x_n) + F'(y_n)]^{-1} F(x_n), \quad n = 0, 1, \ldots,$$

where

$$y_n = x_n - F'(x_n)^{-1} F(x_n).$$
This iterative method will be called \textit{Trapezoidal Newton’s method} (TN). By using harmonic mean in (3) and \(x = \alpha \) is taken, we have

\[0 \approx F(x_n) + \frac{2F(\alpha)F(x_n)}{F(x_n) + F(\alpha)}(\alpha - x_n), \]

and the following iterative approximation is obtained

\[x_{n+1} = x_n - \frac{1}{2}F(y_n)^{-1}F(x_n)^{-1}[F(x_n) + F(y_n)]F(x_n), \quad n = 0, 1, \ldots, \]

where

\[y_n = x_n - F'(x_n)^{-1}F(x_n), \]

this variant of Newton’s method is called \textit{Harmonic Newton’s method} (HN). If the midpoint rule is used to estimate integral (3) and \(x = \alpha \) is taken, it is obtained one

\[0 \approx F(x_n) + F\left(\frac{x_n + \alpha}{2}\right)(\alpha - x_n), \]

then, by a approximation \(x_{n+1} \) of \(\alpha \),

\[x_{n+1} = x_n - F'\left(\frac{x_n + y_n}{2}\right)^{-1}F(x_n), \]

so, an alternative of Newton’s method is obtained as following

\[x_{n+1} = x_n - F'\left(\frac{x_n + y_n}{2}\right)^{-1}F(x_n), \quad n = 0, 1, \ldots, \]

where

\[y_n = x_n - F'(x_n)^{-1}F(x_n), \]

this variant of Newton’s method is called \textit{Midpoint Newton’s method} (MN).

Now, if the integral (3) is estimated using the combination of midpoint quadrature rule and Trapezoidal rule and by considering \(x = \alpha \), we have

\[0 \approx F(x_n) + \frac{1}{4}\left[F'(x_n) + 2F\left(\frac{x_n + \alpha}{2}\right) + F'(\alpha)\right](\alpha - x_n), \]

so, a new approximation \(x_{n+1} \) of \(\alpha \) is concluded as following:

\[x_{n+1} = x_n - 4\left[F'(x_n) + 2F\left(\frac{x_n + \alpha}{2}\right) + F'(\alpha)\right]^{-1}F(x_n), \]

by using again the \((n+1)\)th iteration of Newton’s method in the right side of this equation, the implicit problem is avoided. Then

\[x_{n+1} = x_n - 4\left[F'(x_n) + 2F\left(\frac{x_n + y_n}{2}\right) + F'(y_n)\right]^{-1}F(x_n), \quad n = 0, 1, \ldots, \quad (4) \]

is deduced, where

\[y_n = x_n - F'(x_n)^{-1}F(x_n). \]

This iterative process is called \textit{Midpoint-Trapezoidal Newton’s method} (MTN).

In the next section we prove that, (MTN) has third-order convergence. The convergence of the other variants of Newton’s methods can be proved analogously.
3 Main result

In this section the third-order convergence of Midpoint-Trapezoidal Newton’s method (MTN) is proven by following theorem.

Theorem 3.1 Let $F : \Omega \subseteq \mathbb{R}^n \rightarrow \mathbb{R}^n$, is k-times Fréchet differentiable in convex Ω containing the root α of $F(x) = 0$. The Midpoint-Trapezoidal Newton’s method has third-order convergence.

Proof: The Taylor’s expansion for any $x, x_n \in \Omega$, \cite{1}:

$$F(x) = F(x_n) + F'(x_n)(x - x_n) + \frac{1}{2!} F''(x_n)(x - x_n)^2 + \frac{1}{3!} F^{(3)}(x_n)(x - x_n)^3 + \cdots + \frac{1}{k!} F^{(k)}(x_n)(x - x_n)^k + \cdots,$$

with $x = \alpha$ and defining $e_n = x_n - \alpha$ we have:

$$F(\alpha) = F(x_n) + F'(x_n)(\alpha - x_n) + \frac{1}{2!} F''(x_n)(\alpha - x_n)^2 + \frac{1}{3!} F^{(3)}(\alpha - x_n)^3 + \cdots + \frac{1}{k!} F^{(k)}(\alpha - x_n)^k + \cdots,$$

$$= F(x_n) - F'(x_n)e_n + \frac{1}{2!} F''(x_n)(\alpha - x_n)^2 - \frac{1}{3!} F^{(3)}(\alpha - x_n)^3 + \cdots + (-1)^k \frac{1}{k!} F^{(k)}(x_n)e_n^k + \cdots.$$

For $k = 3$ and from $F(\alpha) = 0$ we have:

$$F(x_n) = F'(x_n)e_n - \frac{1}{2!} F''(x_n)e_n^2 + \frac{1}{3!} F^{(3)}(x_n)e_n^3 + O(\|e_n\|^4). \quad (5)$$

From (5) we can write the product $F'(x_n)^{-1}F(x_n)$ as following:

$$F'(x_n)^{-1}F(x_n) = F'(x_n)^{-1} \left(F'(x_n)e_n - \frac{1}{2} F''(x_n)e_n^2 + O(\|e_n\|^3) \right),$$

or

$$F'(x_n)^{-1}F(x_n) = e_n - \frac{1}{2} F'(x_n)^{-1} F''(x_n)e_n^2 + O(\|e_n\|^3) \quad (6)$$

From iterative process of (MTN) \cite{1} we have:

$$\left[F'(x_n) + 2F'(\frac{x_n + y_n}{2}) + F'(y_n) \right] e_{n+1} = \left[F'(x_n) + 2F'(\frac{x_n + y_n}{2}) + F'(y_n) \right] e_n - 4F(x_n). \quad (7)$$

To continue we need the Taylor’s expansion of $F'(x_n - \theta F'(x_n)^{-1}F(x_n))e_n$ as following:

$$F'(x_n - \theta F'(x_n)^{-1}F(x_n))e_n = F'(x_n)e_n - \theta F''(x_n)F'(x_n)^{-1}F(x_n)e_n + \frac{1}{2}\theta^2 F^{(3)}(x_n)(F'(x_n)^{-1}F(x_n))^2e_n + O(\|e_n\|^4)$$

by using (6) in above equation, we can write:

$$F'(x_n - \theta F'(x_n)^{-1}F(x_n))e_n = F'(x_n)e_n - \theta F''(x_n) \left(e_n - \frac{1}{2} F'(x_n)^{-1} F''(x_n)e_n^2 + O(\|e_n\|^3) \right) e_n$$

$$+ \frac{1}{2}\theta^2 F^{(3)}(x_n) \left(e_n - \frac{1}{2} F'(x_n)^{-1} F''(x_n)e_n^2 + O(\|e_n\|^3) \right)^2 e_n + O(\|e_n\|^4)$$

$$= F'(x_n)e_n - \theta F''(x_n)e_n + \frac{1}{2}\theta^2 F^{(3)}(x_n)e_n + O(\|e_n\|^4)$$

$$= F'(x_n)e_n - \theta F''(x_n)e_n + \frac{1}{2}\theta^2 F^{(3)}(x_n)e_n + O(\|e_n\|^4)$$
and for this prove that the order of convergence is three, then the proof is complete.

\[
F'(x_n - \theta F'(x_n)^{-1} F(x_n))e_n
= F'(x_n)^{-1}e_n - \theta F''(x_n)e_n^2 + \frac{\theta^2}{2} F''(x_n)F'(x_n)^{-1} F''(x_n)e_n^3
+ \frac{\theta^2}{2} F^{(3)}(x_n)e_n^3 + O(\|e_n\|^4),
\]

(8)

using (8) for \(\theta = \frac{1}{2}\) and \(\theta = 1\), it is obtained, respectively:

\[
F'(\frac{x_n+y_n}{2}) = F'(x_n - \frac{1}{2} F'(x_n)^{-1} F(x_n))e_n
= F'(x_n)e_n - \frac{1}{2} F''(x_n)e_n^2 + \frac{1}{4} F''(x_n)F'(x_n)^{-1} F''(x_n)e_n^3
+ \frac{1}{8} F^{(3)}(x_n)e_n^3 + O(\|e_n\|^4),
\]

(9)

and (for \(\theta = 1\))

\[
F'(y_n) = F'(x_n - F'(x_n) F(x_n))e_n = F'(x_n)e_n - F''(x_n)e_n^2
+ \frac{1}{2} F''(x_n)F'(x_n)^{-1} F''(x_n)e_n^3 + \frac{1}{2} F^{(3)}(x_n)e_n^3 + O(\|e_n\|^4).
\]

(10)

by using (5), (9) and (10), we can write right hand of Eq. (7) as following:

\[
\left(F'(x_n) + 2F'(\frac{x_n+y_n}{2}) + F'(y_n) \right)e_n - 4F(x_n)
= \left\{ F'(x_n)e_n + 2 \left(F'(x_n)e_n - \frac{1}{2} F''(x_n)e_n^2
\quad + \frac{1}{4} F''(x_n)F'(x_n)^{-1} F''(x_n)e_n^3
\quad + \frac{1}{8} F^{(3)}(x_n)e_n^3 + O(\|e_n\|^4) \right) \right\}
+ \left\{ F'(x_n)e_n - F''(x_n)e_n^2 + \frac{1}{2} F''(x_n)F'(x_n)^{-1} F''(x_n)e_n^3
\quad + \frac{1}{2} F^{(3)}(x_n)e_n^3 + O(\|e_n\|^4) \right\} - 4 \left\{ F'(x_n)e_n - \frac{1}{2} F''(x_n)e_n^2 + \frac{1}{2} F^{(3)}(x_n)e_n^3 \right\}
= F''(x_n)F'(x_n)^{-1} F''(x_n)e_n^3 - \frac{1}{24} F^{(3)}(x_n)e_n^3 + O(\|e_n\|^4)
= \left(F''(x_n)F'(x_n)^{-1} F''(x_n) - \frac{1}{24} F^{(3)}(x_n) \right)e_n^3 + O(\|e_n\|^4)
\]

so using deduced result, from Eq. (7) we obtain:

\[
\left(F'(x_n) + 2F'(\frac{x_n+y_n}{2}) + F'(y_n) \right)e_{n+1}
= \left(F''(x_n)F'(x_n)^{-1} F''(x_n) - \frac{1}{24} F^{(3)}(x_n) \right)e_n^3 + O(\|e_n\|^4).
\]

this prove that the order of convergence is three, then the proof is complete. \(\square\)

4 Numerical examples

In this section we will check the effectiveness of MTN (1) and other iterative methods in section 2. All computations are done by using mathematica, stopping criteria
\[|x_{n+1} - x_n| + |F(x_n)| \leq \epsilon \] is used for computer programs. We use \(\epsilon \leq 10^{-14} \).

\[
(a) \begin{cases} \quad 4 - x_2 + x_1 \cos(x_2) = 0 \\ x_1 + x_2 - 1 = 0 \end{cases}
\]

\[
(b) \begin{cases} \quad 2x_1^2 - x_1x_2 - 5x_1 + 1 = 0 \\ x_1\tan(x_1^2 + x_2) = 0 \end{cases}
\]

\[
(c) \begin{cases} \quad x_1 + 2x_2 - 3 = 0 \\ 2x_1^2 + x_2^2 - 5 = 0 \end{cases}
\]

\[
(d) \begin{cases} \quad \ln(x_1^2) - 2\ln(x_1) - 2 = 0 \\ x_1\tan(x_1^2 + x_2) = 0 \end{cases}
\]

\[
(e) \begin{cases} \quad x_1 + x_2 - \cos(x_2) = 0 \\ 3x_1 - x_2 - \sin(x_2) = 0 \end{cases}
\]

\[
(f) \begin{cases} \quad x_1^2 + x_2^2 + x_3^2 = 9 \\ x_1x_2x_3 - 1 = 0 \\ x_1 + x_2 - x_3^2 = 0 \end{cases}
\]

\[
(g) \begin{cases} \quad \cos(x_2) - \sin(x_1) = 0 \\ (x_3)^{x_1} - \frac{1}{x_2} = 0 \\ e^{x_1} - x_2^2 = 0 \end{cases}
\]

\[
(h) \begin{cases} \quad x_2x_3 + x_4(x_2 + x_3) = 0 \\ x_1x_3 + x_4(x_1 + x_3) = 0 \\ x_1x_2 + x_4(x_1 + x_2) = 0 \\ x_1x_2 + x_1x_3 + x_2x_3 = 1 \end{cases}
\]

Approximations of \(x_i \)'s for examples (a)-(e).

\(F(x) \)	\(x_0 \)	Method	Approximated solution	Iteration	Error estimation
\((a) \)	\((1, 2) \)	\(CN \)	\((-1.00000000, 1.00000000)\)	9	\(9.33 \times 10^{-15} \)
\(\quad \)	\(\)	\(TN \)	\((-3.00000000, 1.00000000)\)	5	\(9.10 \times 10^{-14} \)
\(\quad \)	\(\)	\(MN \)	\((-5.00000000, 1.00000000)\)	6	\(3.55 \times 10^{-15} \)
\(\quad \)	\(\)	\(HN \)	\((-4.00000000, 1.00000000)\)	5	\(1.64 \times 10^{-14} \)
\(\quad \)	\(\)	\(TMN \)	\((-6.00000000, 1.00000000)\)	5	\(1.64 \times 10^{-14} \)
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
\(\)	\(\)	\(\)			
Approximations of x_is for examples (f)-(h).

Table 2

$F(x)$	x_0	Method	Approximated solution	Iteration	Error estimation
(f)	(2, 2, 0.5)	CN	$(-2.090295, 2.140258, -0.223525)$	8	8.88×10^{-16}
		TN	$(-2.090295, 2.140258, -0.223525)$	5	8.88×10^{-16}
		MN	$(-2.090295, 2.140258, -0.223525)$	5	9.02×10^{-16}
		HN	$(-2.090295, 2.140258, -0.223525)$	6	1.78×10^{-15}
		MTN	$(-2.090295, 2.140258, -0.223525)$	5	9.02×10^{-16}
(g)	(−2.5, 1, 1)	CN	$(0.909569, 0.661227, 1.575834)$	10	6.82×10^{-14}
		TN	No convergence		
		MN	$(0.909569, 0.661227, 1.575834)$	5	8.48×10^{-14}
		HN	No convergence		
		MTN	No convergence		
(h)	(0.5, 0.5, 0.5, 0.2)	CN	$(0.5773, 0.5773, 0.5773, -0.2886)$	5	2.22×10^{-16}
		TN	$(0.5773, 0.5773, 0.5773, -0.2886)$	4	1.11×10^{-16}
		MN	$(0.5773, 0.5773, 0.5773, -0.2886)$	4	1.11×10^{-16}
		HN	$(0.5773, 0.5773, 0.5773, -0.2886)$	6	1.31×10^{-13}
		MTN	$(0.5773, 0.5773, 0.5773, -0.2886)$	4	1.11×10^{-16}

References

[1] J.E. Dennis, R.B. Schnable, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice Hall, 1983.

[2] M.A. Noor, New iterative methods for nonlinear equations, Appl. Math. Comput. (2006), doi:10.1016/j.amc.2006.05.146..

[3] J.M. Ortega, Numerical Analysis. A Second Course, SIAM, 1990.

[4] J.M. Ortega, W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, Inc., 1970.