Data Article

ACHENY: A standard *Chenopodiaceae* image dataset for deep learning models

Ahmad Heidary-Sharifabada,*, Mohsen Sardari Zarchib, Sima Emadic, Gholamreza Zareid

a Department of Computer Engineering, Maybod Branch, Islamic Azad University, Maybod, Iran
b Department of Computer Engineering, Meybod University, Meybod, Iran
c Department of Computer Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran
d Department of Agronomy, Maybod Branch, Islamic Azad University, Maybod, Iran

Article info

Article history:
Received 5 March 2021
Revised 26 August 2021
Accepted 20 September 2021
Available online 14 October 2021

Keywords:
Biodiversity protection
Chenopodiaceae
Deep learning
Image classification
Plant classification

Abstract

This paper contains datasets related to the “Efficient Deep Learning Models for Categorizing *Chenopodiaceae* in the wild” (Heidary-Sharifabad et al., 2021). There are about 1500 species of *Chenopodiaceae* that are spread worldwide and often are ecologically important. Biodiversity conservation of these species is critical due to the destructive effects of human activities on them. For this purpose, identification and surveillance of *Chenopodiaceae* species in their natural habitat are necessary and can be facilitated by deep learning. The feasibility of applying deep learning algorithms to identify *Chenopodiaceae* species depends on access to the appropriate relevant dataset. Therefore, ACHENY dataset was collected from natural habitats of different bushes of *Chenopodiaceae* species, in real-world conditions from desert and semi-desert areas of the Yazd province of IRAN. This imbalanced dataset is compiled of 27,030 RGB color images from 30 *Chenopodiaceae* species, each species 300-1461 images. Imaging is performed from multiple bushes for each species, with different camera-to-target distances, viewpoints, angles, and natural sunlight in November and December. The collected images are not pre-processed, only are resized to 224 × 224 dimensions which

* Corresponding author

E-mail addresses: ahmad.heidary@maybodiau.ac.ir (A. Heidary-Sharifabad), sardari@meybod.ac.ir (M.S. Zarchi), emadi@iauyazd.ac.ir (S. Emadi), zareigholamreza@maybodiau.ac.ir (G. Zarei).

https://doi.org/10.1016/j.dib.2021.107478
2352-3409/© 2021 Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
can be used on some of the successful deep learning models and then were grouped into their respective class. The images in each class are separated by 10% for testing, 18% for validation, and 72% for training. Test images are often manually selected from plant bushes different from the training set. Then training and validation images are randomly separated from the remaining images in each category. The small-sized images with 64 × 64 dimensions also are included in ACHENY which can be used on some other deep models.

© 2021 Published by Elsevier Inc.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

Specifications Table

Subject	Computer Vision and Pattern Recognition, Deep Learning
Specific subject area	Image classification, Plant classification, Chenopodiaceae species identification
Type of data	Images in RGB color space (JPG).
How data were acquired	Imaging is performed using both Nikon COOLPIX S2800 digital camera with a 1:1 (14.9-megapixel) 3864-by-3864 resolution and Samsung SM-J701F mobile with a 1:1 (3.7-megapixel) 1920-by-1920 resolution.
Data format	Raw (unedited JPEG image files.)
Parameters for data collection	Providing images of Chenopodiaceae species under unconstrained conditions in natural habitat of them.
Description of data collection	Imaging is performed on sunny, cloudy and windy days of November and December at different times in real-world conditions. Images are collected in the natural habitat of Chenopodiaceae species often from various visible organs of multiple bushes.
Data source location	Desert and semi-desert areas of the Yazd province of IRAN. Coordinates (longitude:52° 45′ .. 56° 30′, latitude:29° 48′ .. 33° 30′)
Data accessibility	Mendeley Data https://data.mendeley.com/datasets/fpfty8nn7j/1 doi:10.17632/fpfty8nn7j.1 Code reference doi:10.5281/zenodo.5151446
Related research article	Heidary-Sharifabad Ahmad,Sardari Zarchi Mohsen, Emadi Sima, Zarei Gholamreza, “Efficient Deep Learning Models for Categorizing Chenopodiaceae in the wild”, International Journal of Pattern Recognition and Artificial Intelligence, doi:10.1142/S0218001421520157

Value of the Data

- This dataset is a resource for use by deep learning models and computer vision community and it can be used to advance plant classification researches.
- Automatic environment analysis, including tasks such as plant species recognition, Chenopodiaceae species identification in real-world, and imbalanced plant classification might benefit from this dataset.
- The ACHENY is a complex multiclass image dataset for researchers in the deep learning community for the development of image classification using computer vision methods.
- The first dataset for Chenopodiaceae species images in their natural habitat can be used to contribute biodiversity monitoring for their ecological impacts.
- This image dataset includes uncontrolled conditions with variations include viewpoint, intra-class, inter-class, rotation, illumination, and occlusion.
• ACHENY dataset can serve as a motivation to encourage further research into computer vision methods for plant species identification in the real-world. Researchers can use it during the development of new deep algorithms.

1. Data Description

Chenopodiaceae plants are mainly herbaceous and annual, but among them, there are also perennial, shrub and rarely tree or climber species. Stems and branches are often succulent, sometimes jointed. Leaves are alternate or opposite, exstipulate, herbaceous, succulent or reduced and scale-shaped. Flowers are small, bisexual or monosexual (monoeccious or rarely dioecious), with uniseriate perianth or sometimes without perianth, placed in spike, panicle or cyme inflorescence. Perianths are actinomorphic often green, 4–5, rarely fewer, often enlarged and hardened in fruit, or winged. Stamens are 5 or fewer, ovary superior, 2–5 carpels, unilocular, and has 1 ovule. Fruits are achene, rarely pyxidium [2].

Chenopodiaceae species have spread throughout the world and have ecological and economic significance. In order to protect the biodiversity of Chenopodiaceae species, identifying them in their natural habitats is essential. Automatic plant identification can be performed using deep learning [3]. Applying deep learning techniques depends on the existence of a relevant dataset. Therefore, we collected the ACHENY (Autumn Chenopods of Yazd) dataset containing 27,030 images of 30 different Chenopodiaceae species. This image dataset was collected in real-world uncontrolled conditions using two usual imaging devices during November and December.

In Table 1 details of ACHENY were listed. The scientific name consists of a genus name and species name. To create class name the first 3 letters of species name were joined to the first 3 letters of the genus name. The class name and the natural habitat area of the studied species were also listed. The different numbers of images that were collected for each species were also listed in this table. 10% of collected images for each class were manually separated into test set that is often from distinct bushes from others, 72% randomly were separated to the training set, and the remaining 18% were assigned to the validation set. The images collected were not preprocessed, only they were resized to 224 × 224 dimensions and were placed in the appropriate folders and classes. A small version with 64 × 64 dimension images was also included in the ACHENY. Images with mentioned dimensions included in the ACHENY dataset are applicable to well-known deep models such as EfficientNet [4], VGG-16 [5], and MobileNet [6].

One sample image from each Chenopodiaceae species included in the ACHENY dataset along with its scientific name was shown in Fig. 1.

1. ACHENY dataset classification

The efficiency of ACHENY dataset is investigated by deep learning models. Hence, we propose two different deep learning models to categorize the ACHENY dataset. First, agile nine-layer, convolutional neural network model, which is called Cheno-scratch. This small and lightweight deep model is trained from scratch. In Cheno-scratch architecture, the size of the input image is designed to be 64 × 64 × 3 to reduce computation and make the model faster. Second, a model is obtained from EfficientNet-B1 [4] by fine-tuning, which is previously trained on ImageNet [7], and is named Efficient-ACHENY. Google’s EfficientNet obtain a model by compound scaling up a baseline model [8]. In Efficient-ACHENY the model’s width and depth are scaled up according to the associated input size (224 × 224 × 3) which leads to a high-performing model but it increases computational complexity. The visualization of accuracy and loss time series diagrams based on training epochs are shown in Figs. 2 and 3. The details and hyper-parameters of both proposed models are fully described in the related research paper [1]. The experimental results show that both proposed models can perform Chenopodiaceae species recognition with promising accuracy on ACHENY dataset.
Table 1
ACHENY dataset details.

Row	Genus	Species	Class name	Area name	Coordinates	Collected images #
1	Anabasis	haussknechtii Bge. Ex Boiss.	AnaHau	Around Noodooshan	53° 54' 32° 9'	769
2	Atriplex	canescens (Pursh) Nutt.	AtrCan	Deserts areas around Yazd	54° 21' 31° 53'	1282
3	Atriplex	lentiformis (Torr.) S. Watsd.	AtrLen	Cultivated between Ardakan and Yazd	54° 0' 32° 18'	722
4	Ceratocarpus	arenarius L.	CerAre	Desert areas around Yazd, Ardakan, and Maybod	54° 0' 32° 14'	629
5	Ceratocarpus	leucoclad (Boiss.) Aellen	CerLeu	Around Taft (Shirkooh)	54° 13' 31° 46'	807
6	Chenopodium	album L.	CheAlb	Most areas of Yazd province among farms	54° 21' 31° 53'	652
7	Cornalaca	monacantha Delile	CorMon	Desert lands of Yazd: Between Yazd and Ardakan	53° 53' 32° 3'	1098
8	Girginsonia	oppositiflora (Pall.) Fenzl.	GirOpp	Around Mehriz	54° 26' 31° 34'	310
9	Haloxylon	ammodendron (C. A. Mey.) Bge.	HalAmm	Wide area of Yazd Deserts	54° 21' 31° 53'	929
10	Haloxylon	persicum Bge. Ex Boiss.	HalPer	From Mehriz to Marvast	54° 12' 30° 28'	1160
11	Halostachys	belangeriana (Moq.) Botsch.	HalBel	Abarkuh deserts	53° 15' 31° 7'	628
12	Haloxylon	persicum Bge. Ex Boiss.	HalSub	Around Chadormaloo	53° 43' 32° 23'	967
13	Halocnemum	strobiloeum (Pall.) M. B.	HalStr	Salt marshes around Behabad and Aghda	56° 1' 31° 52'	848
14	Halothamnus	subphyllus (C. A. Mey.) Botsch.	HalSub	Around Chadormaloo	53° 43' 32° 23'	967
15	Hammada	salicornica (Moq.) Iljin	HamSal	Yazd-Bafgh road	55° 24' 31° 37'	1191
16	Kochia	scoparia (L.) Schrad.	KocSco	Often as weed in parks	54° 4' 32° 13'	910
17	Kochia	stellaris Moq.	KocSte	Yazd to Ardakan	54° 1' 32° 3'	851
18	Salsola	abarghuensis Assadi	SalAba	North of Abarkuh desert, around the village of Chah Beigi (endemic of Iran)	53° 15' 31° 23'	733
19	Salsola	dendroides Pall.	SalDen	Between Marwast and Harat	54° 12' 30° 28'	1461
20	Salsola	incanescens C. A. Mey.	SalInc	Around the road of Yazd-Ardakan	54° 21' 31° 54'	1160
21	Salsola	kali L.	SalKal	Often as weed, generally on soils displaced in different areas of Yazd	54° 20' 31° 53'	300
22	Salsola	Kerner (Wol.) Osczak. Botsch.	SalKer	Desert areas around Noodooshan	53° 54' 32° 9'	904
23	Salsola	Praecox Litw.	SalPra	Sand dunes around Ardakan	54° 1' 32° 19'	929
24	Salsola	tomentosa (Moq.) Spach.	SalTom	Across the Yazd desert areas	54° 22' 31° 52'	969
25	Salsola	turcomanica (Litv.) Freitag.	SalTur	Ardakan Around	54° 1' 32° 16'	979
26	Salsola	yazdiana Assadi	SalYaz	Around Kharanagh and Ardakan, Zarrin Rig (endemic of Iran)	54° 40' 32° 21'	1049
27	Seidlitzia	cinerea (Moq.) Bge $ Botsch.	SeiCin	Eastern areas of Yazd	54° 21' 31° 53'	550
28	Seidlitzia	rosmarinus (Ehrenb.) Bge. Ex Boiss.	SeiRos	Beside Yazd-Ardakan Road, Abarkuh desert	53° 16' 31° 8'	1000
29	Suaeda	cuminate (C. A. Mey.) Moq.	SuaAuc	Around Ardakan	54° 3' 32° 19'	1171
30	Suaeda	aegyptiaca (Hassel.) Zohary	SuaAeg	Around Ardakan	54° 3' 32° 20'	734
Fig. 1. One sample image from each Chenopodiaceae species included in the ACHENY dataset.

Fig. 2. Accuracy and loss time series diagrams based on training epochs related to the Cheno-scratch model.
2. Experimental Design, Materials and Methods

1. Camera specification and setting

Imaging is performed using two different cameras:

(a) Nikon COOLPIX S2800 digital camera with a 1:1 (14.9-megapixel) 3864-by-3864 resolution.
(b) Samsung SM-J701F mobile with a 1:1 (3.7-megapixel) 1920-by-1920 resolution.

Both cameras were utilized for image collection in natural light during days.

2. Imaging time and conditions

Studied Chenopodiaceae species often have flowers and fruits in the autumn, hence imaging is performed in November and December in their habitat. Outdoors and nature have many uncontrollable factors affecting images, such as light intensity throughout the day, wind blowing, cloudy skies or sunshine, atmospheric precipitation, foggy air, and so on. Imaging was performed at different times of sunny, cloudy and windy days in natural sunlight. Some other factors also affect acquired images, such as camera-to-target distances, viewing angles, location of light sources, and so on.

3. ACHENY dataset in a repository

The ACHENY dataset is available online at Mendeley repository. It is structured in two main folders (ACHENY_size224 and ACHENY_size64), each main folder contains all species images in three zipped files: test.zip contains test images, train.zip contains training images, and validation.zip contains validation images. In each of these zipped files, there are 30 subfolders that were named class names, each contains images in that class. The ACHENY specification table and figure of sample images are also included in main folder.

Ethics Statement

The work involved neither the use of human subjects nor animal experiments. Data were not collected from social media platforms.
Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships which have, or could be perceived to have, influenced the work reported in this article.

CRediT Author Statement

Ahmad Heidary-Sharifabad: Conceptualization, Methodology, Software, Writing – review & editing; Mohsen Sardari Zarchi: Supervision, Writing – original draft; Sima Emadi: Validation, Investigation; Gholamreza Zarei: Visualization, Data curation, Resources.

Acknowledgments

None.

Supplementary Materials

Supplementary material associated with this article can be found in the online version at doi:10.1016/j.dib.2021.107478.

References

[1] A. Heidary-Sharifabad, M.S. Zarchi, S. Emadi, G. Zarei, Efficient deep learning models for categorizing Chenopodiaceae in the wild, Int. J. Pattern Recognit. Artif. Intell. (2021) 2152015, doi:10.1142/S0218001421520157.
[2] M. Assadi, Flora of Iran, no 38: Chenopodiaceae, 508p, Research Institute of Forests and Rangelands, Iran, 2001.
[3] Y. Sun, Y. Liu, G. Wang, H. Zhang, Deep learning for plant identification in natural environment, Comput. Intell. Neurosci. 2017 (2017) 1–6, doi:10.1155/2017/7361042.
[4] M. Tan, Q. Le. Efficientnet: Rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, PMLR, (2019) 6105–6114.
[5] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, in: Y. Bengio, Y. LeCun (Eds.), 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, Conference Track Proceedings, 2015.
[6] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L.C. Chen, Mobilenetv2: inverted residuals and linear bottlenecks, In: Proceedings of the IEEE conference on computer vision and pattern recognition (2018) 4510–4520.
[7] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, et al., ImageNet large scale visual recognition challenge, Int. J. Comput. Vis. 115 (2015) 211–252, doi:10.1007/s11263-015-0816-y.
[8] A. Heidary-Sharifabad, M.S. Zarchi, S. Emadi, G. Zarei, An efficient deep learning model for cultivar identification of a pistachio tree, Br. Food J. (2021) ahead-of-p, doi:10.1108/BJF-12-2020-1100.