Determination of approximate quantum labels based on projections of the total angular momentum on the molecule-fixed axis

Eamon K. Conway

Center for Astrophysics | Harvard & Smithsonian, Atomic and Molecular Physics Division, Cambridge, MA, USA. 02138

Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom

Iouli E. Gordon

Center for Astrophysics | Harvard & Smithsonian, Atomic and Molecular Physics Division, Cambridge, MA, USA. 02138

Oleg L. Polyansky

Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom

Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Street, Nizhny Novgorod, 603950, Russia

Jonathan Tennyson

Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom

Abstract

Molecular line lists, particularly those computed for high temperature applications, often have very few states assigned local quantum numbers. These are often important components for accurately determining line shape parameters required for radiative transfer simulations. The projection of the total angular momentum onto the molecule fixed axis (k) is investigated in the Radau internal coordinate system to determine when it can be considered a good quantum number. In such a coordinate system, when the square of the k^{th} component of the wavefunction is greater than one half, then we can
classify \(k \) as a good quantum number in accordance with the theorem of Hose and Taylor. Furthermore, it is demonstrated that when this holds true, oblate and prolate quantum labels \(K_a \) and \(K_c \) can reliably be predicted. This is demonstrated for the water and ozone molecules.

1. Motivation

High resolution molecular spectroscopy routinely labels transitions and hence energy levels with quantum numbers which specify the (sometime approximate) constants of motion for the system. These labels are a mixture of rigorous (symmetry) constants of motion and more approximate labels which are usually derived from the underlying model. These quantum labels are important for inter-comparison, identification of states, physical understanding, obtaining both rigorous and approximate selection rules and a variety of other uses some of which are discussed below.

For small molecules, spectroscopic data is increasingly being generated using variational nuclear motion programs. While these programs in general use the rigorous quantum numbers to simplify the solution of the nuclear motion Schrödinger equation, there is no guarantee that the zeroth order model used by these programs will yield the approximate quantum numbers generally used. The DVR3D [1] suite of programs use variational methods to solves the exact nuclear-motion Schrödinger equation within the Born-Oppenheimer approximation for triatomic molecules. DVR3D has been used used in the calculation of numerous line lists, some of the most notable are \(\text{H}_2\text{S} \) [2], \(\text{CO}_2 \) [3], \(\text{HCN} \) [4], \(\text{SO}_2 \) [5], \(\text{H}_3^+ \) [6] and of course \(\text{H}_2\text{O} \) [7]. The ExoMol [8, 9] project has seen numerous high temperature line lists [7, 10, 11] developed for use in applications where high temperatures are expected, such as exoplanets, cool stars and combustion experiments.

In DVR3D the molecules with like atoms can be treated in the \(C_{2v} \) symmetry representation and four states are possible: \(A_1, A_2, B_1 \) and \(B_2 \). Vibrational symmetry and the parity quantum labels are selectively chosen based on the eigenstate of interest. The DVR3D setup only provides these rigorous quantum labels such as the total angular momentum (\(J \)), rotationless parity (\(p \)) and interchange symmetry (\(q \)).

In general, it is useful to assign states with more generic/local labels, such as for asymmetric top species the rotational quantum labels \(K_a \) and \(K_c \), along with vibrational quanta \(\nu_1, \nu_2 \) and \(\nu_3 \) symbolizing symmetric stretch, bend
and asymmetric stretch, respectively. These quantum labels become particularly important in the determination of line shape parameters, which can be a function of the vibrational quanta that are exchanged in a transition [12, 13], as well as being dependent on the change in rotational quanta. Indeed it is well established that it is the rotational quantum numbers \((J, K_a, K_c)\), which are most important for characterizing line broadening parameters [14, 15]. Quantum labels can be used to transfer information between different isotopologues [16, 17], providing the symmetry is conserved on isotopic substitution. These labels can also serve as unique fingerprints in line lists which can contain thousands if not millions or billions of transitions that we often see in high temperature line lists. In such high temperature line lists that have an enormous quantity of transitions, numerous states do not have any local quantum labels and hence lack important spectroscopic information. While rigorous dipole selection rules depend on the total angular momentum \(J\) and parity considerations, there are strong propensity rules which usually favour small changes in \(K_a\), making assigning values to this number particularly important.

Šmydke and Császár [18] showed that vibrational labels could be automatically assigned to variationally calculated states by computing reduced-density matrices. The procedure was shown to be highly reliable up to approximately 25 000 cm\(^{-1}\). Other variational programs/methods [19, 20] that solve the Schrödinger equation make use of different basis sets that can be used to assign an approximate label on the degree of vibrational excitation [21, 22]. Other methods have also been proposed for providing the approximate vibrational labels [23, 24, 25, 26]. There has, however, been little work performed on assigning rotational quantum numbers from variational wavefunctions. However, it should be recognised that for molecules which go from bent to linear it has been demonstrated [27] that it is not possible to characterize all states using a single set of quantum numbers.

MARVEL (Measured Active Rotation Vibration Energy Levels) [28] is an algorithmic procedure where high-quality spectroscopic information on a particular molecule is analyzed in a spectroscopic network [29] with the aim of creating an accurate set of empirical energy levels. Variational line lists can often be complete, or at least very extensive, thereby possessing many, if not all energy levels for a molecule, although transition frequencies are less precise than their experimental counterparts. For those well studied molecules such as water, where numerous experiments have observed a single transition, it can become very difficult determining what is the preferred set of data.
In such cases, the MARVEL algorithm can use all known information of the molecule to determine the best set of data. This procedure has been hugely successful for many molecules \[30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42\] and for some, can determine energy levels to kHz precision \[43\]. For triatomic systems (or larger), the MARVEL approach is currently limited to those molecules where the knowledge of local quantum labels is extensive. If energy levels could reliably be labelled with local quantum labels in variational calculations, the MARVEL algorithm could perhaps be adapted to include such results. Similar considerations effect the use of effective Hamiltonians, which are based on expansions in local quantum numbers, and are increasingly being used in combination with variational calculations, see Refs. \[3, 44\].

HITRAN \[45\], HITEMP \[46\], GEISA \[47\] and ExoMol \[9\] are examples of spectroscopic databases widely used in remote sensing, atmospheric modeling and exoplanetary research. The line lists are comprised of experimental measurements, variational calculations and semi-empirical models such as effective-Hamiltonians. Variational calculations do not rely on experimental results, although they can be used to improve accuracy \[48, 47, 49\], while the semi-empirical data are correlated with the pre-existence of experimental data (to model/fit). As such, a large portion of data can be variational in nature and not labelled with local quantum numbers. The existence of local quantum numbers can improve the accuracy of line shape parameters and thus the global accuracy of the line lists that possess variational data.

The Radau coordinate system is one such option that is available in DVR3D and it has been shown to be an excellent choice, where the value of \(k\), the projection of \(J\) on the molecule-fixed \(z\)-axis is found to be better than the value of \(k\) obtained in the Eckart embedding \[50\]. It remains to be seen as to whether this result can be further exploited to determine if it can be used to approximate local quantum labels.

The Hose-Taylor Theorem \[51\] gives the condition on when two states can be uniquely assigned quantum labels and is dependent on the overlap of the states’ wavefunctions. In this work, we will investigate the wavefunctions of the DVR3D program and apply the results of the Hose-Taylor Theorem to determine what unique quantum label(s) can be assigned when it holds true.
2. Methods

The Hose-Taylor Theorem \[51\] states that if we have two quantum states Ψ and Φ, and if Ψ and Φ are normalized and if the following inequality holds true

\[
|\langle \Phi | \Psi \rangle|^2 > \frac{1}{2}
\]

then there is a one-to-one transformation between the two states, i.e. we can uniquely assign local quantum numbers. Despite being such an important result, it has been little used in the field of molecular spectroscopy. Fortunately, the wavefunctions (basis functions) used in DVR3D are indeed normalized and hence, they satisfy the normalization condition required by the theorem.

The DVR3D \[1\] program solves the Schrödinger equation using a discrete variable representation (DVR) approach in three dimensions. The wavefunctions in the radial direction (R_1, R_2) are described by associated-Laguerre polynomials, while associated-Legendre polynomials are used in the angular coordinate (θ). Within the DVR, we will use α, β and γ to represent the quadrature points in R_1, R_2 and θ. We will also consider Radau coordinates, where it has been shown that the value of k, the projection of J, the total angular momentum, onto the body fixed axis, in this system is a better choice of k when compared to the traditional Eckart value \[50\]. The process of developing the body-fixed Hamiltonian in a Radau coordinate system is described thoroughly in references \[52, 53, 54, 55, 56, 57\].

In our Radau coordinate system, the wavefunction can be written as

\[
\Psi = \sum_{k=p}^{J} \sum_{\alpha\beta\gamma} \Psi_{J,k}^{\alpha\beta\gamma}
\]

where p describes the rotationless parity of the system and takes values zero (e state) or one (f state); the total parity is given by $(-1)^{(J+1)}$. Another rigorous quantum number is the symmetry of the wavefunction with respect to interchange of identical nuclei, described by q; of course this label is only valid for molecular systems consisting of two identical atoms having the form AB_2.

In terms of conventional asymmetric top quantum numbers, the parity of the wavefunction can be given by $p = (-1)^{J+K_a+K_c}$ \[58\]. Therefore, a particular value of K_a (or equivalently K_c) we can determine the value for
K_c (or equivalently K_a) if we know the rotationless parity p. Also, the label q can also be deduced from the expression $(-1)^{\nu_3+K_a+K_c}$ where ν_3 is the quanta of asymmetric stretch.

If we hypothesize that, for a single value (per energy level) of $k \in (p, p + 1, ..., J)$, this chosen k can be considered a good quantum number if its wavefunction satisfies the Hose-Taylor theorem. In other words, if the following condition is true

$$\sum_{\alpha\beta\gamma} (\Psi_{J,k}^{J,k})^2 > \frac{1}{2}$$

then we can uniquely assign k a local quantum number.

The objective of this study is to prove this statement by determining what local quantum number k represents (if any) when the Hose-Taylor theorem is satisfied. We will investigate this theory for two important, non-linear gaseous triatomic molecules: water and ozone.

For water, states will be calculated based on our recently published global potential energy surface (PES) [48]. The upper energy threshold is dissociation (41 145.94 cm$^{-1}$) [59] and we consider states with a value of the total angular momentum less than or equal to 30. In total, this gives 806 317 states to analyze.

For ozone, we will consider the PES from Polyansky et al. [60]. For these calculations, we consider a $J = 50$ upper bound and set the upper limit of the energies to the dissociation threshold of 8563.5 cm$^{-1}$. Using these thresholds, we are left with 192 812 states.

3. Results

Considering the water molecule first, for every state possessing an energy below dissociation, we calculate the value of k that gives the largest value of $\sum_{\alpha\beta\gamma} (\Psi_{J,k}^{J,k})^2$. Of the 806 317 states, we are only interested in those that satisfy Eq. (3). In total, there are 68 985 of these, which represents almost 10% of the total number of states. For these, the remaining task is to determine what k physically corresponds to. Without too much investigation, it becomes obvious that k is a good approximate to K_a (discussed below). To obtain the respective value of K_c, it can be determined from Eq. (4). This is possible as there are always two choices of K_c for every K_a (with the exception of $J = K_a = 0$) and we know the value of p and J.

$$p = (-1)^{J+K_a+K_c}$$
In Figure 1(a), the number of possible assignments made per value of J against what is provided in MARVEL [17] (for the main water isotopologue) is plotted. The differences are quite substantial. The latest edition of MARVEL [17] has 19 200 states available and as already explained, these are determined from experimentally measured transitions frequencies. All of these 19 200 states have local quantum assignments. Here, we manage to assign 68 985 calculated energies with accurate and reliable values of (K_a, K_c). This is almost four times the number of assigned states available in MARVEL. For $J = 4$, we manage to label 7666 energy levels with values of K_a and K_c, while for the same J, MARVEL has approximately 919 levels, representing a factor seven increase. One needs to remember, however, that the MARVEL levels also have vibrational quanta associated with them, while the theoretical states do not.

It is interesting to investigate the distribution of the assignments with respect to energy. To do this, bins are created in increments of 5000 cm$^{-1}$ and the number of possible assignments are placed in the respective bin, see Table 1. In Figure 1(b), the distribution of assignments are plotted for several different J values as a function of the bins (lower value of each bin is plotted). As energy and/or J increase, it becomes less probable to assign a value of K_a. For increasingly larger values of the total angular momentum, the number of states assignable via this method gradually reduces.

Table 1: Dependence of state energy on the distribution of assignments made possible for water by the Hose-Taylor theorem [51] for $J \leq 15$.

Bin Range	Total # States	Assigned States
0-5000	745	652
5000-10 000	2963	2431
10 000-15 000	7087	5291
15 000-20 000	13 334	8211
20 000-25 000	22 340	10 649
25 000-30 000	34 728	11 372
30 000-35 000	51 947	10 725
35 000-40 000	76 502	9129
40 000-41 145	37817	2940

In Figure 2 the total number of MARVEL states are plotted over the 68
610 states that we could uniquely label. Our predicted quantum labels directly overlap those values from MARVEL, proving our values are reliable and accurate. It is interesting to note the substantial amount of extra coverage in the regions where MARVEL lacks data, mostly in the visible (beyond approximately 20 000 cm\(^{-1}\)) and with \(\tau = (K_a - K_c) > 0\). We cannot explain why the majority of assigned states appear to have \(\tau = (K_a - K_c) > 0\), all we can assume at this stage is that \(k\) becomes less well defined for \(\tau = (K_a - K_c) << 0\), i.e, large values of \(K_c\) corresponding to a highly oblate water molecule.
Figure 2: Our calculated states with $\sum_{\alpha\beta\gamma} (\Psi_{\alpha_\beta\gamma}^{J,k})^2 > 0.5$ and MARVEL states superimposed.

Ozone is a significantly more rigid molecule than water. Of the 192,812 calculated states, 169,840 of these have a value of k that satisfies Eqn. 3, which represents an 88% success rate. As of yet, there has not been a MARVEL release on ozone, so we instead compare to the states available in the ozone line list within the HITRAN2016 database that have values of total angular momentum less than or equal to 50 (note the HITRAN2016 line list extends to $J=87$). It should be noted that every state in the HITRAN2016 line list has been assigned vibrational and rotational quanta. In Figure 3(a), the 169,840 calculated states are plotted with those states in the HITRAN2016 line list. Our predicted quantum labels match the HITRAN2016 labels with a high degree of accuracy, evident from the overlap present in Figure 3(a). Unlike water, the number of states satisfying the Hose-Taylor theorem do not reduce in the limit of $K_c >> K_a$. However, for much higher values of J, this may indeed occur.

In Figure 3(b), the ratio of the number of assignable states to the total number of states calculated per J is plotted for ozone. For $J = 50$, over 65% of calculated states are assignable, while for the water molecule, at $J = 50$ less than 1% of states were assignable. The noise present in Figure 3(b) is likely a consequence of us truncating the calculated states at the dissociation
Figure 3: (a) Calculated O_3 states with $\sum_{\alpha\beta\gamma} (\Psi_{\alpha\beta\gamma}^{J,k})^2 > 0.5$ and HITRAN2016 [61] states superimposed. (b) The ratio of assigned states to the total number of available states (per J) as a function of increasing J.

limit, which we took to be the upper limit of energies in the HITRAN2016 line list.

The DVR3D program suite has been updated and the code available on the ExoMol GitHub repository. Upon running the `rotlev3b.f90` code, used to calculate wavefunctions, aside from writing the wavefunction files, it will simultaneously write out the values of K_a and K_c that satisfy the Hose-Taylor theorem together with the square of the wavefunction for that value of k.

4. Conclusion

We have demonstrated how the Hose-Taylor theorem [51] can be used with variational calculations to assign the rotational labels K_a and K_c for asymmetric top molecules using water and ozone as examples. The DVR3D program suite was used to calculate energy levels in a discrete variable representation in a Radau coordinate system. In principle, the theory should be applicable to any molecule regardless of its symmetry. Setting the maximum value of the total angular momentum for water and ozone molecules to 30 and 50 respectively, the Hose-Taylor theorem was used to assign K_a and K_c labels to almost 70 000 and 170 000 states for water and ozone respectively. The results indicate that for heavier, more rigid molecules, the quantity of assignable states increases. The Hose-Taylor theorem can be used to significantly improve our knowledge of local quantum labels for many molecules and ultimately increase the quality of spectroscopic information available.
Acknowledgement

Funding from the NASA AURA grant NNX17AI78G is acknowledged. This work was supported by the UK Natural Environment Research Council under grants NE/N001508/1 and the European Research Council under ERC Advanced Investigator grant 8838302.

References

[1] J Tennyson, M A Kostin, P Barletta, G J Harris, O L Polyansky, J Ramalal, and N F Zobov. DVR3D: a program suite for the calculation of rotation-vibration spectra of triatomic molecules. Comput. Phys. Commun., 163:85–116, 2004.

[2] A. A. A. Azzam, S. N. Yurchenko, J. Tennyson, and O. V. Naumenko. ExoMol line lists XVI: A Hot Line List for H$_2$S. MNRAS, 460:4063–4074, 2016.

[3] E. J. Zak, J. Tennyson, O. L. Polyansky, L. Lodi, S. A. Tashkun, and V. I. Perevalov. A room temperature CO$_2$ line list with ab initio computed intensities. J. Quant. Spectrosc. Radiat. Transf., 177:31–42, 2016.

[4] V. Yu. Makhnev, A. A. Kyuberis, N. F. Zobov, L. Lodi, J. Tennyson, and O. L. Polyansky. High accuracy ab initio calculations of rotation-vibration energy levels of the HCN/HNC system. J. Phys. Chem. A, 122:1326–1343, 2018.

[5] D. S. Underwood, J. Tennyson, S. N. Yurchenko, Xinchuan Huang, David W. Schwenke, Timothy J. Lee, S. Clausen, and A. Fateev. ExoMol line lists XIV: A line list for hot SO$_2$. MNRAS, 459:3890–3899, 2016.

[6] I I Mizus, O L Polyansky, Laura K. McKemmish, J Tennyson, A Alijah, and N F Zobov. A global potential energy surface for H$_3^+$. Mol. Phys., 117:1663–1672, 2019.

[7] O. L. Polyansky, A. A. Kyuberis, N. F. Zobov, J. Tennyson, S. N. Yurchenko, and L. Lodi. ExoMol molecular line lists XXX: a complete high-accuracy line list for water. MNRAS, 480:2597–2608, 2018.
[8] Jonathan Tennyson, Sergei N. Yurchenko, Ahmed F. Al-Refaie, Emma J. Barton, Katy L. Chubb, Phillip A. Coles, S. Diamantopoulou, Maire N. Gorman, Christian Hill, Aden Z. Lam, Lorenzo Lodi, Laura K. McKemmish, Yueqi Na, Alec Owens, Oleg L. Polyansky, T Rivlin, Clara Sousa-Silva, Daniel S. Underwood, Andrey Yachmenev, and Emil Zak. The ExoMol database: molecular line lists for exoplanet and other hot atmospheres. *J. Mol. Spectrosc.*, 327:73–94, 2016.

[9] J Tennyson, S N Yurchenko, A. F. Al-Refaie, V. H. J. Clark, K. L. Chubb, E. K. Conway, A. Dewan, M. N. Gorman, C. Hill, A. E. Lynas-Gray, T. Mellor, L. K. McKemmish, A. Owens, O. L. Polyansky, M. Semenov, W. Somogyi, G. Tinetti, A. Upadhyay, I. Waldmann, Y. Wang, S. Wright, and O. P. Yurchenko. The 2020 release of the ExoMol database: molecular line lists for exoplanet and other hot atmospheres. *J. Quant. Spectrosc. Radiat. Transf.*, 255:107228, 2020.

[10] S. N. Yurchenko, Thomas M. Mellor, Richard S. Freedman, and J. Tennyson. ExoMol molecular line lists XXXIX: Ro-vibrational molecular line list for CO$_2$. *MNRAS*, 496:5282–5291, 2020.

[11] Katy L Chubb, Jonathan Tennyson, and Sergey N Yurchenko. ExoMol molecular line lists - XXXVII: spectra of acetylene. *Monthly Notices of the Royal Astronomical Society*, 493(2):1531–1545, 2020.

[12] L. Regalia and E. Cousin and R.R. Gamache and B. Vispoel and S. Robert and X. Thomas. Laboratory measurements and calculations of line shape parameters of the H$_2$O–CO$_2$ collision system. *J. Quant. Spectrosc. Radiat. Transf.*, 231:126 – 135, 2019.

[13] Bastien Vispoel and Robert R. Gamache. Reduced matrix elements in semi-classical line shape calculations: Application to H$_2$O-H$_2$. *Journal of Physics: Conference Series*, 1289:012023, 2019.

[14] B. A. Voronin, T. P. Mishina, N. N. Lavrentyeva, T. Y. Chesnokova, V. E. Zuev, M. J. Barber, and J. Tennyson. Estimate of the $J'J''$ dependence of water vapor line broadening parameters. *J. Quant. Spectrosc. Radiat. Transf.*, 111:2308–2314, 2010.

[15] Q. Ma, R. H. Tipping, and N. N. Lavrentieva. Pair identity and smooth variation rules applicable for the spectroscopic parameters of H$_2$O transitions involving high-J states. *Mol. Phys.*, 109:1925–1941, 2011.
[16] O. L. Polyansky, A. A. Kyuberis, L. Lodi, J. Tennyson, R. I. Ovsyannikov, and N.F. Zobov. ExoMol molecular line lists XIX: high accuracy computed line lists for H_2^{17}O and H_2^{18}O. *MNRAS*, 466:1363–1371, 2017.

[17] T. Furtenbacher, R. Tóbiás, J. Tennyson, O. L. Polyansky, A. A. Kyuberis, R. I. Ovsyannikov, N. F. Zobov, and A. G. Császár. W2020: A Database of Validated Rovibrational Experimental Transitions and Empirical Energy Levels Part II. H_2^{17}O and H_2^{18}O with an Update to H_2^{16}O. *J. Phys. Chem. Ref. Data*, 49:043103, 2020.

[18] Jan Šmydke and Attila G. Császár. On the use of reduced-density matrices for the semi-automatic assignment of vibrational states. *Molecular Physics*, 117(13):1682–1693, 2019.

[19] D. W. Schwenke. Variational calculations of rovibrational energy levels and transition intensities for tetratomic molecules. *J. Phys. Chem.*, 100:2867–2884, 1996.

[20] Sergei N. Yurchenko, Walter Thiel, and Per Jensen. Theoretical ROVibrational Energies (TROVE): A robust numerical approach to the calculation of rovibrational energies for polyatomic molecules. *J. Mol. Spectrosc.*, 245:126–140, 2007.

[21] S. N. Yurchenko, W. Thiel, S. Patchkovskii, and P. Jensen. Theoretical evidence for the formation of rotational energy level clusters in the vibrational ground state of PH_3. *Phys. Chem. Chem. Phys.*, 7:573–582, 2005.

[22] H. Partridge and D. W. Schwenke. The determination of an accurate isotope dependent potential energy surface for water from extensive ab initio calculations and experimental data. *J. Chem. Phys.*, 106:4618–4639, 1997.

[23] Christof Jung and Howard S. Taylor. Assignment and extracting dynamics from experimentally and theoretically obtained spectroscopic Hamiltonians in the complex spectral and classically chaotic regions. *J. Phys. Chem. A*, 111:3047–3068, 2007.

[24] Edit Matyus, Csaba Fabri, Tamas Szidarovszky, Gabor Czako, Wesley D. Allen, and Attila G. Csaszar. Assigning quantum labels to
variationally computed rotational-vibrational eigenstates of polyatomic molecules. *J. Chem. Phys.*, 133:034113, 2010.

[25] Tamas Szidarovszky, Csaba Fabri, and Attila G. Csaszar. The role of axis embedding on rigid rotor decomposition analysis of variational rovibrational wave functions. *J. Chem. Phys.*, 136:174112, 2012.

[26] Tina Mathea and Guntram Rauhut. Assignment of vibrational states within configuration interaction calculations. *J. Chem. Phys.*, 152:194112, 2020.

[27] M. S. Child, T. Weston, and J. Tennyson. Quantum monodromy in the spectrum of H$_2$O and other systems: new insight into the level structures of quasi-linear molecules. *Mol. Phys.*, 96:371–379, 1999.

[28] T. Furtenbacher, A. G. Császár, and J. Tennyson. MARVEL: measured active rotational-vibrational energy levels. *J. Mol. Spectrosc.*, 245:115–125, 2007.

[29] A. G. Császár and T. Furtenbacher. Spectroscopic networks. *J. Mol. Spectrosc.*, 266:99 – 103, 2011.

[30] L. K. McKemmish, A. M. Syme, J. Borsovzyk, S. N. Yurchenko, J Tennyson, T. Furtenbacher, and A. G. Csaszar. Incorporating new experiments in diatomic spectral databases: An update to the 12C$_2$ MARVEL database and ExoMok line list of 12C$_2$. *MNRAS*, 497:1081–1097, 2020.

[31] Yixin Wang, A Owens, J Tennyson, and S N Yurchenko. MARVEL analysis of the measured high-resolution rovibronic spectra of the calcium monohydroxide radical (CaOH). *ApJS*, 248:9, 2020.

[32] D. Darby-Lewis, H. Shah, D. Joshi, F. Khan, M. Kauwo, N. Sethi, P. F. Bernath, T. Furtenbacher, R. Tobias, A. G. Csaszar, and J. Tennyson. MARVEL analysis of the measured high-resolution spectra of NH. *J. Mol. Spectrosc.*, 362:69–76, 2019.

[33] Laura K. McKemmish, Jasmin Borsovzyk, Katie L. Goodhew, Samuel Sheppard, Aphra F. V. Bennett, Alfie D. J. Martin, Amrik Singh, Callum A. J. Sturgeon, Tibor Furtenbacher, Attila G. Császár, and Jonathan Tennyson. MARVEL analysis of the measured high-resolution spectra of 90Zr16O. *ApJ*, 867:33, 2018.
[34] K. L. Chubb, O. V. Naumenko, S. Keely, S. Bartolotto, S. MacDonald, M. Mukhtar, A. Grachov, J. White, E. Coleman, Shui-Ming Hu, Anwen Liu, A. Z. Fazliev, E. R. Polovtseva, V. M. Horneman, A. Campargue, T. Furtenbacher, A. G. Császár, S. N. Yurchenko, and J. Tennyson. MARVEL analysis of the measured high-resolution rovibrational spectra of H$_2$S. *J. Quant. Spectrosc. Radiat. Transf.*, 218:178 – 186, 2018.

[35] K. L Chubb, M. Joseph, J. Franklin, N. Choudhury, T. Furtenbacher, A. G. Császár, G. Gaspard, P. Oguoko, A. Kelly, S. N. Yurchenko, J. Tennyson, and C. Sousa-Silva. MARVEL analysis of the measured high-resolution spectra of C$_2$H$_2$. *J. Quant. Spectrosc. Radiat. Transf.*, 204:42–55, 2018.

[36] L. K. McKemmish, T. Masseron, S. Sheppard, E. Sandeman, Z. Schofield, T. Furtenbacher, A. G. Császár, J. Tennyson, and C. Sousa-Silva. MARVEL analysis of the measured high-resolution spectra of 48Ti16O. *ApJS*, 228:15, 2017.

[37] Tibor Furtenbacher, István Szabó, Attila G. Császár, Peter F. Bernath, Sergei N. Yurchenko, and Jonathan Tennyson. Experimental energy levels and partition function of the 12C$_2$ molecule. *ApJS*, 228:44, 2016.

[38] A. R. Al Derzi, T. Furtenbacher, S. N. Yurchenko, J. Tennyson, and A G. Császár. MARVEL analysis of the measured high-resolution spectra of 14NH$_3$. *J. Quant. Spectrosc. Radiat. Transf.*, 161:117–130, 2015.

[39] Csaba Fáбри, Edit Mátyus, Tibor Furtenbacher, László Nemes, Béla Mihály, Tímea Zoltáni, and Attila G Császár. Variational quantum mechanical and active database approaches to the rotational-vibrational spectroscopy of ketene, H$_2$CCO. *J. Chem. Phys.*, 135:094307, 2011.

[40] Tibor Furtenbacher, Tamás Szidarovszky, Csaba Fáбри, and Attila G Császár. MARVEL analysis of the rotational–vibrational states of the molecular ions H$_3$D$^+$ and D$_2$H$^+$. *Phys. Chem. Chem. Phys.*, 15:10181–10193, 2013.

[41] Tibor Furtenbacher, Tamás Szidarovszky, Edit Mátyus, Csaba Fáбри, and Attila G Császár. Analysis of the Rotational–Vibrational States of the Molecular Ion H$_3^+$. *J. Chem. Theory Comput.*, 9:5471–5478, 2013.
[42] T. Furtenbacher, M. Horváth, D. Koller, P. Sólyom, A. Balogh, I. Balogh, and A. G. Császár. MARVEL analysis of the measured high-resolution rovibronic spectra and definitive ideal-gas thermochemistry of the 16O$_2$ molecule. *J. Phys. Chem. Ref. Data*, 48:023101, 2019.

[43] Roland Tobias, Tibor Furtenbacher, Iran Simko, Attila G. Csaszar, Meissa L. Diouf, Frank M. J. Cozijn, Joey M. A. Staa, Edcel J. Salumbides, and Wim Ubachs. Spectroscopic-network-assisted precision spectroscopy and its application to water. *Nature Comms.*, 11:1708, 2020.

[44] D. Jacquemart, V. Yu. Makhnev, N. F. Zobov, J. Tennyson, and O. L. Polyansky. Synthesis of *ab initio* and effective Hamiltonian line lists for ozone. *J. Quant. Spectrosc. Radiat. Transf.*, 2021. submitted.

[45] I. E. Gordon and et al. The HITRAN 2016 molecular spectroscopic database. *J. Quant. Spectrosc. Radiat. Transf.*, 203:3–69, 2017.

[46] L.S. Rothman, I.E. Gordon, R.J. Barber, H. Dothe, R.R. Gamache, A. Goldman, V.I. Perevalov, S.A. Tashkun, and J. Tennyson. HITEMP, the high-temperature molecular spectroscopic database. *J. Quant. Spectrosc. Radiat. Transf.*, 111:2139 – 2150, 2010.

[47] N. Jacquinet-Husson, R. Armante, N. A. Scott, A. Chédin, L. Crépeau, C. Boutammine, A. Bouhdaoui, C. Crevoisier, V. Capelle, C. Boonne, N. Poulet-Crovisier, A. Barbe, D. Chris Benner, V. Boudon, L. R. Brown, J. Buldyreva, A. Campargue, L. H. Coudert, V. M. Devi, M. J. Down, B. J. Drouin, A. Fayt, C. Fittschen, J.-M Fland, R. R. Gamache, J. J. Harrison, C. Hill, Ø. Hodnebrog, S. M Hu, D. Jacquemart, A. Jolly, E. Jiménez, N. N. Lavrentieva, A. W. Liu, L. Lodi, O. M. Lyulin, S. T. Massie, S. Mikhailenko, H. S. P. Müller, O. V. Naumenko, A. Nikitin, C. J. Nielsen, J. Orphal, V. I Perevalov, A. Perrin, E. Polovtseva, A. Predoi-Cross, M. Rotger, A. A. Ruth, S. S Yu, K. Sung, S. A. Tashkun, J. Tennyson, Vl. G. Tyuterev, J. Vander Auwera, B. A. Voronin, and A. Makie. The 2015 edition of the GEISA spectroscopic database. *J. Mol. Spectrosc.*, 327:31–72, 2016.

[48] E. K. Conway, I. E. Gordon, J. Tennyson, O. L. Polyansky, S. N. Yurchenko, and K.V. Chance. A semi-empirical potential energy sur-
face and line list for H$_2^{16}$O extending into the near-ultraviolet. *Atmos. Chem. Phys.*, 20:10015–10027, 2020.

[49] I. I. Bubukina, O. L. Polyansky, N. F. Zobov, and S. N Yurchenko. Optimized semiempirical potential energy surface for H$_2^{16}$O up to 26000 cm$^{-1}$. *Optics Spectrosc.*, 110:160–166, 2011.

[50] János Sarka, Bill Poirier, Viktor Szalay, and Attila G. Császár. On neglecting coriolis and related couplings in first-principles rovibrational spectroscopy: considerations of symmetry, accuracy, and simplicity. *Scientific Reports*, 10(1):4872, 2020.

[51] Gabriel Hose and Howard S. Taylor. Quantum kolmogorov-arnold-moser-like theorem: Fundamentals of localization in quantum theory. *Phys. Rev. Lett.*, 51:947–950, Sep 1983.

[52] J. Tennyson and B. T. Sutcliffe. Ab initio vibrational-rotational spectrum of potassium cyanide: KCN. *Mol. Phys.*, 46:97–109, 1982.

[53] J. Tennyson and B. T. Sutcliffe. The ab initio calculation of the vibrational-rotational spectrum of triatomic systems in the close-coupling approach, with KCN and H$_2$Ne as examples. *J. Chem. Phys.*, 77:4061–4072, 1982.

[54] B. T. Sutcliffe and J. Tennyson. A generalised approach to the calculation of ro-vibrational spectra of triatomic molecules. *Mol. Phys.*, 58:1053–1066, 1986.

[55] B. T. Sutcliffe and J. Tennyson. Variational methods for the calculation of ro-vibrational energy levels of small molecules. *J. Chem. Soc.*, 83:1663–1674, 1987.

[56] B. T. Sutcliffe, S. Miller, and J. Tennyson. An effective computational approach to the calculation of vibration-rotation spectra of triatomic molecules. *Comput. Phys. Commun.*, 51:73–82, 1988.

[57] B. T. Sutcliffe and J. Tennyson. A general treatment of vibration-rotation coordinates for triatomic molecules. *Intern. J. Quantum Chem.*, 39:183–196, 1991.
[58] J. Tennyson, N. F. Zobov, R. Williamson, O. L. Polyansky, and P. F. Bernath. Experimental energy levels of the water molecule. *J. Phys. Chem. Ref. Data*, 30:735–831, 2001.

[59] P. Maksyutenko, T. R. Rizzo, and O. V. Boyarkin. A direct measurement of the dissociation energy of water. *J. Chem. Phys.*, 125:181101, 2006.

[60] Oleg L. Polyansky, Nikolai F. Zobov, Irina I. Mizus, Aleksandra A. Kyu-beris, Lorenzo Lodi, and Jonathan Tennyson. Potential energy surface, dipole moment surface and the intensity calculations for the 10 μm, 5 μm and 3 μm bands of ozone. *J. Quant. Spectrosc. Radiat. Transf.*, 210:127–135, 2018.

[61] I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcislo, S. Yu, and E. J. Zak. The *HITRAN* 2016 molecular spectroscopic database. *J. Quant. Spectrosc. Radiat. Transf.*, 203:3–69, 2017.