Cancer Type (alphabetical)	GSK-3 Isoform	Function	Type of Study	Reference
Bladder cancer	GSK-3β	Prognostic marker and therapeutic target. Inhibition of GSK-3 resulted in apoptosis. GSK-3 was serving as a tumor promoter. Aberrant nuclear accumulation of GSK-3β in 62% and 91% of noninvasive and invasive human urothelial carcinomas. GSK-3β nuclear staining was associated with poor prognosis.	Human tumor samples and in vitro	[1]
Brain cancer	GSK-3β	Brain-derived neutrophilic factor/TrkB induced phosphorylation of GSK-3β which resulted in its inactivation and contributed to chemotherapeutic drug resistance. GSK-3β was acting as a tumor suppressor.	In vitro	[2]
Brain cancer	GSK-3β	Inhibition of AKT mediated phosphorylation of GSK-3β by an AKT inhibitor reduced cell growth. GSK-3β was acting as a tumor suppressor.	In vitro	[3]
Brain cancer	GSK-3β	GSK3β was linked with increased expression of TP53 and p21^{cip1} in glioblastoma cells with wild-type p53 and with decreased Rb phosphorylation and expression of cyclin-dependent kinase 6. Treatment with GSK-3 inhibitor AR-A014418 sensitized GMB cells to temozolomide. GSK-3β was functioning as a tumor promoter.	Human tumor samples, in vitro studies.	[4]
Brain cancer	GSK-3β	Expression of high levels of GSK-3β was associated with poor prognosis. Treatment with a combination of temozolomide other drugs used to treat brain cancer improved prognosis. GSK-3β was acting as a tumor promoter.	In vitro, in vivo, clinical trial, 7 patients in clinical study	[5]
Brain cancer	Suppression of GSK-3β by miR-101 restored sensitivity to temozolomide in brain cancer.	In vitro, in vivo	[6]	
Tumor Type	Gene	Effect	Sample Details	References
------------------	-----------	--	--	------------
Breast cancer	GSK-3β	GSK-3β was acting as a tumor promoter.		[7]
		GSK-3β expression was associated with MCL1 expression and inactivation.		[7]
		GSK-3β was acting as a tumor suppressor.		[7]
Breast cancer	GSK-3β	High GSK-3β expression was associated with reduced distant relapse-free survival (DRFS). Tissue microarrays of 1,686 patients, low expression in 36%, high expression in 38%. GSK-3β was acting as a tumor promoter.	Human tumor samples.	[8]
Breast cancer	GSK-3β	Inhibition of GSK-3β inhibited tumor growth. GSK-3β was acting as a tumor promoter.	In vitro, in vivo	[9]
		miR-34a binding to the PRKD1 suppressed cancer stemness through the GSK3β-catenin signaling pathway. GSK-3 was acting as a stemness suppressor.	In vitro, in vivo	[10]
Breast cancer	GSK-3β	GSK-3 inhibition by the human THUMP domain-containing protein 1 (THUMPD1)/AKT resulted in SNAIL activation. GSK-3 was acting as a tumor suppressor.	In vitro, in vivo	[11]
Cervical cancer	GSK-3β	High expression of forkhead box M1 (FOXM1) transcription factor was associated with poor prognosis and it activated AKT and inactivated GSK-3β which resulted in higher SNAIL activity and poor prognosis. GSK-3β was acting as a tumor suppressor.	In vitro, human tumor samples	[12]
Colorectal cancer	GSK-3β	Nuclear accumulation of GSK-3β was observed in 39% (33/85) and associated with short overall survival, larger tumor size, distant metastasis and loss of membranous β-catenin. This loss was present in 37% and associated with poor survival. Nuclear expression of GSK-3β and loss of membrane β-catenin were present in CRC with worse	Human tissue microarrays	[13]
Tumor Type	GSK-3β Activity	Additional Details	Ref.	
-----------------------------	---	---	--------	
Colorectal cancer	GSK-3β increased NF-κB expression, inhibition of GSK-3β inhibited growth. GSK-3β was serving as a tumor promoter.	Human tumors and in vitro studies	[14]	
Colorectal cancer	CXCL5 induced ERK/ELK1/SNAIL and AKT/β-catenin, inhibited GSK-3β and promoted cancer metastasis. GSK-3β was serving as a tumor promoter.	In vitro, in vivo. chemokine ELISA arrays from CRC patients	[15]	
Gastric cancer	P-GSK-3β (T216, active) was expressed in 46% of cases and associated with a good prognosis. GSK-3β was serving as a tumor suppressor.	Human tissue arrays containing 281 gastric cancer specimens and in vitro studies	[16]	
Gastric cancer	Higher GSK-3β levels were associated with a better prognosis. GSK-3β was serving as a tumor suppressor.	Gene expression profiling in 63 tumors	[17]	
Hepatocellular carcinoma	59-P-GSK-3β was over-expressed in 50% of tumor tissues and was associated with a poor prognosis. GSK-3β was serving as a tumor suppressor.	178 patients with HCC after curative partial hepatectomy	[18]	
Hepatocellular carcinoma	Protein arginine methyltransferase 9 (PRMT9) activation of PI3K/AKT resulted in decreased GSK-3β activity and increased SNAIL signaling. GSK-3β was serving as a tumor suppressor	In vitro, in vivo, human tumor samples	[19]	
Laryngeal Cancer	Suppression of miR-27a interaction with GSK-3β altered laryngeal differentiation in response to retinoic acid treatment. GSK-3β. GSK-3β was serving as a tumor suppressor.	In vitro, human tumor samples	[20]	
Laryngeal Cancer	Alterations in the Tat-interacting protein 30 (TIP30) tumor suppressor expression resulted in activation of AKT, inactivation of GSK-3β, deregulation of β-catenin and poor prognosis. Low TIP30 staining was observed in 43.8% of patient samples while minimal TIP30 staining in non-tumor cells was observed	In vitro, human tumor samples, 105 laryngeal carcinomas	[21]	
Tumor Type	GSK-3β and GSK-3α	Description	Additional Details	
------------	-------------------	-------------	--------------------	
Leukemia	GSK-3β and GSK-3α	Genetic deletion of GSK-3β in mice led to myelodysplastic disease syndrome (MDS), subsequent deletion of GSK-3α led to AML. Different roles of GSK-3α and GSK-3β in MDS progression into AML. GSK-3α and GSK-3β were acting as tumor suppressors.	Gene knock out studies in mice, gene profiling.	
Leukemia	GSK-3α and GSK-3β	GSK-3 stimulated acute lymphoblastic leukemia with mixed-lineage leukemia gene (MLL) growth by destabilization of the cyclin-dependent kinase inhibitor p27(Kip1). GSK-3 promoted growth, GSK-3 was acting as a tumor suppressor.	In vitro, in vivo, in human AML patients	
Leukemia	GSK-3α	GSK-3α was a target in AML. GSK-3α was serving as a tumor promoter.	Chemical small molecule screening, in vitro, in vivo	
Leukemia	GSK-3α and GSK-3β	GSK-3α and GSK-3β phosphorylation leading to their inhibition correlated with poor prognosis. S21-P-GSK3α and S9-P-GSK-3β positively correlated with phosphorylation of AKT, BAD, and P70S6K, and negatively correlated with β-catenin and FOXO3A. GSK-3α and GSK-3β were serving as tumor suppressors.	In vitro, human patient samples, reverse phase protein analysis (RPPA) in a cohort of 511 AML patients	
Leukemia	GSK-3β and GSK-3α	(GSK-3β) expression was elevated in AML-NK cells and decreased their activity as NK cells. Inhibition of GSK-3 restored NK cytotoxicity by increasing TNF-α production. GSK-3 was serving as a tumor suppressor.	In vitro, in vivo	
Lung cancer	GSK-3β	High levels of TGFβ induced integrin β3/AKT, inhibited GSK-3β activity, and induced SNAIL activity and promoted metastatic potential. GSK-3β was acting as a tumor suppressor.	In vitro, in vivo, clinical data base	
Tumor Type	Protein(s) Involved	Description	Setting	Reference
---------------	--------------------	---	-----------------------------------	-----------
Lung cancer	GSK-3α	CREB induced GSK-3α which promoted lung cancer cell growth. GSK-3α was acting as a tumor promoter.	In vitro, in vivo, human tumors	[28]
Lung cancer	GSK-3α and GSK-3β	Tivantinib was initially thought to be a c-MET inhibitor. Subsequently, GSK-3α and GSK-3β were determined to be targets of tivantinib in lung cancer cells. GSK-3α and GSK-3β were acting as tumor promoters.	In vitro	[29]
Lung cancer (non-small cell)	GSK-3α and GSK-3β	GSK-3β levels were elevated in 41% of human NSCLC samples and led to increased proliferation in comparison to normal tissues. GSK-3β was acting as a tumor promoter.	In vitro, in vivo, 29 human tumor specimens	[30]
Melanoma	GSK-3α	Elevated expression of GSK-3α in 72% of samples, but not GSK-3β. 80% of tumors expressed elevated levels of catalytically active phosphorylated GSK-3α (Y279-P-GSK-3α), but not phosphorylated GSK3β (Y216-P-GSK-3β). Inhibition of GSK-3α induced apoptotic death to retard tumorigenesis. GSK-3α was acting as a tumor promoter.	In vitro, in vivo, 39 human tumor samples.	[31]
Melanoma	GSK-3β	Neuron navigator 2 (NAV2) inhibited GSK-3β which increased β-catenin and SNAIL activity. GSK-3β was acting as a tumor suppressor.	In vitro, in vivo, human tumor samples	[32]
Myeloma	GSK-3α and GSK-3β	Treatment with Thiadiazolidinone (TDZD; a GSK-3 non-competitive inhibitor) resulted in Forkhead transcription factors (FOXO3a) activation. TDZD induced apoptosis in primary myeloma cells but not in normal CD34 cells. GSK-3 was acting as a tumor promoter.	In vitro, human myeloma cells, primary hematopoietic cells	[33]
Neuroblastoma	GSK-3β	Inhibition of GSK-3β with 9-ING-41 suppressed growth via inhibition of XIAP. GSK-3β was acting as a tumor promoter.	In vitro, in vivo	[34]
Oral Cancer	GSK-3β	AKT and GSK-3β expression was associated with a poor prognosis. Phosphorylated Human tumor specimens (118 patient samples)	In vitro	[35]
Cancer Type	Gene Expression	Description	Reference	
--------------------------------	-----------------	---	-----------	
Oral squamous cell cancer	GSK-3α and GSK-3β	Inactive GSK-3β was associated with cervical lymph node (CLN) metastasis. GSK-3β was acting as a tumor suppressor.	In vitro, 179 human patient samples [36]	
Osteosarcoma	GSK-3β	The P2X7 receptor promoted P3K/AKT and β-catenin activity and inhibited GSK-3β. GSK-3β was acting as a tumor suppressor.	In vitro, in vivo, human tumor samples [37]	
Ovarian cancer	GSK-3β	GSK-3 expression was associated with increased tumor growth, poor prognosis and chemoresistance. GSK-3 was functioning as a tumor promoter.	In vitro, in vivo, 71 human tumor samples [38]	
Ovarian cancer	GSK-3β	Constitutively active GSK-3β induced entry into the S phase, increased cyclin D1 expression and facilitated the proliferation of ovarian cancer cells. GSK-3 inhibition prevented the tumor formation of the tumor in nude mice. GSK-3 was acting as a tumor promoter.	In vitro, in vivo [39]	
Pancreatic cancer	GSK-3α and GSK-3β	GSK-3 promoted NF-κB activity. GSK-3β may have been the more important isozyme in regulating in NF-κB. GSK-3β was acting as a tumor promoter.	Human tumors and in vitro studies [40]	
Pancreatic cancer	GSK-3β	Inhibition of GSK-3 activity caused stabilization of β-catenin activity. GSK-3β expression was a strong prognosticator in PDAC. High expression of GSK-3β was associated with better survival. PDAC Patients with GSK-3β expression > than the third quartile (Q3) had a 46% reduced risk of dying of	Immuno-fluorescence on human tumor microarray from 163 patients [41]	
Tumor Type	Isoforms	Description	Ref.	
-----------------------------	----------------	---	-----------------	
Prostate Cancer	Both	GSK-3α and GSK-3β were detected at higher levels in 25/79 and 24/79 tumor samples respectively, in comparison to normal prostatic tissue. GSK-3α was elevated in low Gleason sum score tumors while GSK-3β was expressed in high Gleason tumors, and both isoforms correlated with high expression of the androgen receptor (AR). Treatment with a GSK-3 inhibitor suppressed proliferation. GSK-3 was functioning as a tumor suppressor.	In vitro, in vivo and in 79 human tumor samples [42]	
Renal Cell Carcinoma	GSK-3β	miR-199a downregulated GSK-3β and suppressed growth of RCC. GSK-3β was acting as a tumor promoter.	Human tumor samples and in vitro. [43]	
Renal Cell Carcinoma	GSK-3β	miR-203a targeting GSK-3β was detected at high levels in RCC and associated with a poor prognosis. miR-203a was overexpressed in 27 of 40 (68%) RCC patient samples. GSK-3β was acting as a tumor suppressor.	In vitro, 40 RCC tumor samples. [44]	
Thyroid carcinomas	GSK-3α and GSK-3β	Junctional adhesion molecule A (JAM-A) was downregulated in anaplastic thyroid carcinomas and resulted in increased GSK-3α, GSK-3β, and TP53 phosphorylation.	Human tissue arrays [45]	
Tongue (oral) cancer	GSK-3β	GSK-3β was detected at lower levels in 39% of patient samples in comparison to normal epithelial cells and was associated with reduced survival. In contrast, cyclinD, a target of GSK-3β was detected at higher levels in 65.9% of samples and was associated with a poor prognosis. GSK-3β was acting as a tumor suppressor.	41 Human tissue samples, immunohistochemistry. [46]	

References:
1. Naito, S.; Bilim, V.; Yuuki, K.; Ugolkov, A.; Motoyama, T.; Nagaoka, A.; Kato, T.; Tomita, Y. Glycogen synthase kinase-3β: A prognostic marker and a potential therapeutic target in human bladder cancer. *Clin Cancer Res* **2010**, *16*, 5124–5132.

2. Li, Z.; Tan, F.; Thiele, C.J. Inactivation of glycogen synthase kinase-3β contributes to brain-derived neurotrophic factor-TrkB-induced resistance to chemotherapy in neuroblastoma cells. *Mol Cancer Ther* **2007**, *6*, 3113–3121.

3. Atkins, R.J.; Dimou, J.; Paradiso, L.; Morokoff, A.P.; Kaye, A.H.; Drummond, K.J.; Hovens, C.M. Regulation of glycogen synthase kinase-3 beta (GSK-3β) by the Akt pathway in gliomas. *J Clin Neurosci* **2012**, *19*, 1558–1563.

4. Miyashita, K.; Kawakami, K.; Nakada, M.; Mai, W.; Shakoori, A.; Fujisawa, H.; Hayashi, Y.; Hamada, J.; Minamoto, T. Potential therapeutic effect of glycogen synthase kinase 3β inhibition against human glioblastoma. *Clin Cancer Res* **2009**, *15*, 887–897.

5. Furuta, T.; Sabit, H.; Dong, Y.; Miyashita, K.; Kinoshita, M.; Uchiyama, N.; Hayashi, Y.; Hayashi, Y.; Minamoto, T.; Nakada, M. Biological basis and clinical study of glycogen synthase kinase-3β-targeted therapy by drug repositioning for glioblastoma. *Oncotarget* **2017**, *8*, 22811–22824.

6. Tian, T.; Mingyi, M.; Qiu, X.; Qiu, Y. MicroRNA-101 reverses temozolomide resistance by inhibition of GSK3β in glioblastoma. *Oncotarget* **2016**, *7*, 79584–79595.

7. Ding, Q.; He, X.; Xia, W.; Hsu, J.M.; Chen, C.; Li, L.Y.; Lee, D.F.; Yang, J.Y.; Xie, X.; Liu, J.C.; Hung, M.C. Myeloid cell leukemia-1 inversely correlates with glycogen synthase kinase-3β activity and associates with poor prognosis in human breast cancer. *Cancer Res* **2007**, *67*, 4564–4571.

8. Quintayo, M.A.; Munro, A.F.; Thomas, J.; Kunkler, I.H.; Jack, W.; Kerr, G.R.; Dixon, J.M.; Chetty, U.; Bartlett, J.M.S. GSK3β and cyclin D1 expression predicts outcome in early breast cancer patients. *Breast Cancer Res Treat* **2012**, *136*, 161–168.

9. Ugolkov, A.; Gaisina, I.; Zhang, J.S.; Billadeau, D.D.; White, K.; Kozikowski, A.; Jain, S.; Cristofanilli, M.; Giles, F.; O’Halloran, T.; Cryns, V.L.; Maziar, A.P. GSK-3 inhibition overcomes chemoresistance in human breast cancer. *Cancer Lett* **2016**, *380*, 384–392.

10. Kim, D.Y.; Park, E.Y.; Chang, E.S.; Kang, H.G.; Koo, Y.; Lee, E.J.; Ko, J.Y.; Kong, H.K.; Chun, K.H.; Park, J.H. A novel miR-34a target, protein kinase D1, stimulates cancer stemness and drug resistance through GSK3/β-catenin signaling in breast cancer. *Oncotarget* **2016**, *7*, 14791–14802.

11. Zhang, X.; Jiang, G.; Sun, M.; Zhou, H.; Miao, Y.; Liang, M.; Wang, E.; Zhang, Y. Cytosolic THUMP1 promotes breast cancer cells invasion and metastasis via the AKT-GSK3-β-Snail pathway. *Oncotarget* **2017**, *8*, 13357–13366.

12. He, S.Y.; Shen, H.W.; Xu, L.; Zhao, X.H.; Yuan, L.; Niu, G.; You, Z.S.; Yao, S.Z. FOXM1 promotes tumor cell invasion and correlates with poor prognosis in early-stage cervical cancer. *Gynecol Oncol* **2012**, *127*, 601–610.

13. Salim, T.; Sjölander, A.; Sand-Dejmek, J. Nuclear expression of Glycogen synthase kinase-3β and lack of membranous β-catenin is correlated with poor survival in colon cancer. *Int J Cancer* **2013**, *133*, 807–815.

14. Shakoori, A.; Ugolkov, A.; Zhi, W.Y.; Zhang, B.; Modarressi, M.H.; Billadeau, D.D.; Mai, M.; Takahashi, Y.; Minamoto, T. Deregulated GSK3β activity in colorectal cancer: Its association with tumor cell survival and proliferation. *Biochem Biophys Res Commun* **2005**, *334*, 1365–1373.

15. Zhao, J.; Ou, B.; Han, D.; Wang, P.; Zong, Y.; Zhu, C.; Liu, D.; Zheng, M.; Sun, J.; Feng, H.; Lu, A. Tumor-derived CXCL5 promotes human colorectal cancer metastasis through activation of the ERK/Elk-1/Snail and AKT/GSK3/β-catenin pathways. *Mol Cancer* **2017**, *16*, 70.

16. Cho, Y.J.; Kim, J.H.; Yoon, J.; Cho, S.J.; Ko, Y.S.; Park, J.W.; Lee, H.S.; Lee, H.E.; Kim, W.H.; Lee, B.L. Constitutive activation of glycogen synthase kinase-3β correlates with better prognosis and cyclin-dependent kinase inhibitors in human gastric cancer. *BMC Gastroenterol* **2010**, *10*, 91.

17. Bauer, L.; Langer, R.; Becker, K.; Hafelmeier, A.; Ott, K.; Novotny, A.; Höfler, H.; Keller, G. Expression profiling of stem cell-related genes in neoadjuvant-treated gastric cancer: A NOTCH2, GSK3β and β-catenin gene signature predicts survival. *PloS One* **2012**, *7*, e44566.

18. Qiao, G.; Le, Y.; Li, J.; Wang, L.; Shen, F. Glycogen synthase kinase-3β is associated with the prognosis of hepatocellular carcinoma and may mediate the influence of type 2 diabetes mellitus on hepatocellular carcinoma. *PloS One* **2014**, *9*, e105624.

19. Jiang, H.; Zhou, Z.; Jin, S.; Xu, K.; Zhang, H.; Xu, J.; Sun, Q.; Wang, J.; Xu, J. PRMT9 promotes hepatocellular carcinoma invasion and metastasis via activating PI3K/Akt/GSK-3β/Snail signaling. *Cancer Sci* **2018**, *109*, 1414–1427.

20. Chen, S.; Sun, Y.Y.; Zhang, Z.X.; Li, Y.H.; Xu, Z.M.; Fu, W.N. Transcriptional suppression of microRNA-27a contributes to laryngeal cancer differentiation via GSK-3β-involved Wnt/β-catenin pathway. *Oncotarget* **2017**, *8*, 14708–14718.
21. Zhu, M.; Yin, F.; Yang, L.; Chen, S.; Chen, R.; Zhou, W.; Fan, X.; Jia, R.; Zheng, H.; Zhao, J.; Guo, Y. Contribution of TIP30 to chemoresistance in laryngeal carcinoma. *Cell Death Dis* **2014**, *5*, e1468.

22. Guezguez, B.; Almakadi, M.; Benoit, Y.D.; Shapovalova, Z.; Rahimig, S.; Fiebig-Comyn, A.; Casado, F.L.; Tanasijevic, B.; Bresolin, S.; Masetti, R.; Doble, B.W.; Bhatia, M. GSK3 Deficiencies in Hematopoietic Stem Cells Initiate Pre-neoplastic State that Is Predictive of Clinical Outcomes of Human Acute Leukemia. *Cancer Cell* **2016**, *29*, 61–74.

23. Wang, Z.; Smith, K.S.; Murphy, M.; Piloto, O.; Somervaille, T.C.P.; Cleary, M.L. Glycogen synthase kinase 3 in MLL leukemia maintenance and targeted therapy. *Nature* **2008**, *453*, 1205–1209.

24. Banerji, V.; Frumm, S.M.; Ross, K.N.; Li, L.S.; Schinzel, A.C.; Hahn, C.K.; Kakoza, R.M.; Chow, K.T.; Ross, L.; Alexe, G.; Tolliday, N.; Ingulizian, H.; Galinsky, I.; Stone, R.M.; DeAngelo, D.J.; Roti, G.; Aster, J.C.; Hahn, W.C.; Kung, A.L.; Stegmaier, K. The intersection of genetic and chemical genomic screens identifies GSK-3α as a target in human acute myeloid leukemia. *J Clin Invest* **2012**, *122*, 935–947.

25. Ruvolo, P.P.; Qu, Y.H.; Coomes, K.R.; Zhang, N.; Neeley, E.S.; Ruvolo, V.R.; Hail, N.; Borthakur, G.; Konopleva, M.; Andreoff, M.; Kornblau, S.M. Phosphorylation of GSK3α/β correlates with activation of AKT and is prognostic for poor overall survival in acute myeloid leukemia patients. *BBA Clin* **2015**, *4*, 59–68.

26. Parameswaran, R.; Ramakrishnan, P.; Moreton, S.A.; Xia, Z.; Hou, Y.; Lee, D.A.; Gupta, K.; Delima, M.; Beck, R.C.; Wald, D.N. Repression of GSK3 restores NK cell cytotoxicity in AML patients. *Nat Commun* **2016**, *7*, 11154.

27. Bae, G.Y.; Hong, S.K.; Park, J.R.; Kwon, O.S.; Kim, K.T.; Koo, J.H.; Oh, E.; Cha, H.J. Chronic TGFβ stimulation promotes the metastatic potential of lung cancer cells by Snail protein stabilization through integrin β3-Akt-GSK3β signaling. *Oncotarget* **2016**, *7*, 25366-25376.

28. Park, S.A.; Lee, J.W.; Herbst, R.S.; Koo, J.S. GSK-3α is a novel target of CREB and CREB-GSK-3α signaling participates in cell viability in lung cancer. *PloS One* **2016**, *11*, e0153075.

29. Remsing Rix, L.L.; Kuenzi, B.M.; Luo, Y.; Remily-Wood, E.; Kinose, F.; Wright, G.; Li, J.; Koomen, J.M.; Haura, E.B.; Lawrence, H.R.; Rix, U. GSK3 alpha and beta are new functionally relevant targets of tivantinib in lung cancer cells. *ACS Chem Biol* **2014**, *9*, 353–358.

30. Vincent, E.E.; Elder, D.J.E.; O’Flaherty, L.; Pardo, O.E.; Dzien, P.; Phillips, L.; Morgan, C.; Pawade, J.; May, M.T.; Sohail, M.; Hetzel, M.R.; Seckl, M.J.; Tavaré, J.M. Glycogen synthase kinase 3 protein kinase activity is frequently elevated in human non-small cell lung carcinoma and supports tumour cell proliferation. *PloS One* **2014**, *9*, e114725.

31. Madhunapantula, S.V.; Sharma, A.; Gowda, R.; Robertson, G.P. Identification of glycogen synthase kinase 3α as a therapeutic target in melanoma. *Pigment Cell Melanoma Res* **2013**, *26*, 886–99.

32. Hu, W.; Li, X.; Cheng, R.; Ke, J.; Liu, Y.; Ma, M.; Cao, Y.; Liu, D. NAV2 facilitates invasion of cutaneous melanoma cells by targeting SNAI2 through the GSK-3β/β-catenin pathway. *Arch Dermatol Res* **2019**, *311*, 399–410.

33. Zhou, Y.; Uddin, S.; Zimmerman, T.; Kang, J.A.; Ulaszek, J.; Wickrema, A. Growth control of multiple myeloma cells through inhibition of glycogen synthase kinase-3. *Leukemia and Lymphoma* **2008**, *49*, 1945–53.

34. Ugolkov, A.V.; Bondarenko, G.I.; Dubrovskiy, O.; Berbegall, A.P.; Navarro, S.; Nogueira, R.; O’Halloran, T.V.; Hendrix, M.J.; Giles, F.J.; Mazar, A.P. 9-ING-41, a small-molecule glycogen synthase kinase-3 inhibitor, is active in neuroblastoma. *Anticancer Drugs* **2018**, *29*, 717–724.

35. Matsuo, F.S.; Andrade, M.F.; Loyola, A.M.; da Silva, S.J.; Silva, M.J.B.; Cardoso, S.V.; de Faria, P.R. Pathologic significance of AKT, mTOR, and GSK3β proteins in oral squamous cell carcinoma-affected patients. *Virchows Arch* **2018**, *472*, 983–997.

36. Mishra, R.; Nagini, S.; Rana, A. Expression and inactivation of glycogen synthase kinase 3 alpha/ beta and their association with the expression of cyclin D1 and p53 in oral squamous cell carcinoma progression. *Mol Cancer* **2015**, *14*, 20.

37. Zhang, Y.; Cheng, H.; Li, W.; Wu, H.; Yang, Y. Highly-expressed P2X7 receptor promotes growth and metastasis of human HO8/MNNG osteosarcoma cells via PI3K/Akt/GSK3β/β-catenin and mTOR/HIF1α/VEGF signaling. *Int J Cancer* **2019**, *145*, 1068–1082.

38. Fu, Y.; Wang, X.; Cheng, X.; Ye, F.; Xie, X.; Lu, W. Clinicopathological and biological significance of aberrant activation of glycogen synthase kinase-3 in ovarian cancer. *Oncotargets Ther* **2014**, *7*, 1159–1168.

39. Cao, Q.; Lu, X.; Feng, Y.J. Glycogen synthase kinase-3β positively regulates the proliferation of human ovarian cancer cells. *Cell Res* **2006**, *16*, 671–677.

40. Mamaghani, S.; Patel, S.; Hedley, D.W. Glycogen synthase kinase-3 inhibition disrupts nuclear factor-kappaB activity in pancreatic cancer, but fails to sensitize to gemcitabine chemotherapy. *BMC Cancer* **2009**, *9*, 132.
41. Ben-Josef, E.; George, A.; Regine, W.F.; Abrams, R.; Morgan, M.; Thomas, D.; Schaefer, P.L.; DiPetrillo, T.A.; Fromm, M.; Small, W.; Narayan, S.; Winter, K.; Griffith, K.A.; Guha, C.; Williams, T.M. Glycogen Synthase Kinase 3 Beta Predicts Survival in Resected Adenocarcinoma of the Pancreas. *Clin Cancer Res* 2015, 21, 5612–5618.

42. Darrington, R.S.; Campa, V.M.; Walker, M.M.; Bengoa-Vergniory, N.; Gorrono-Etxebarria, I.; Uysal-Onganer, P.; Kawano, Y.; Waxman, J.; Kypta, R.M. Distinct expression and activity of GSK-3α and GSK-3β in prostate cancer. *Int J Cancer* 2012, 131, E872–83.

43. Tsukigi, M.; Bilim, V.; Yuuki, K.; Ugolkov, A.; Naito, S.; Nagaoka, A.; Kato, T.; Motoyama, T.; Tomita, Y. Re-expression of miR-199a suppresses renal cancer cell proliferation and survival by targeting GSK-3β. *Cancer Lett* 2012, 315, 189–197.

44. Hu, G.; Lai, P.; Liu, M.; Xu, L.; Guo, Z.; Liu, H.; Li, W.; Wang, G.; Yao, X.; Zheng, J.; Xu, Y. miR-203a regulates proliferation, migration, and apoptosis by targeting glycogen synthase kinase-3β in human renal cell carcinoma. *Tumor Biol* 2014, 35, 11443–11453.

45. Orlandella, F.M.; Mariniello, R.M.; Iervolino, P.L.C.; Auletta, L.; De Stefano, A.E.; Ugolini, C.; Greco, A.; Mirabelli, P.; Pane, K.; Franzese, M.; Denaro, M.; Basolo, F.; Salvatore, G. Junctional adhesion molecule-A is down-regulated in anaplastic thyroid carcinomas and reduces cancer cell aggressiveness by modulating p53 and GSK3 α/β pathways. *Mol Carcinog* 2019, 58, 1181–1193.

46. Goto, H.; Kawano, K.; Kobayashi, I.; Sakai, H.; Yanagisawa, S. Expression of cyclin D1 and GSK-3beta and their predictive value of prognosis in squamous cell carcinomas of the tongue. *Oral Oncol* 2002, 38, 549–556.
| Molecule | Result | Reference |
|----------|--------|-----------|
| Lithium chloride | Lithium chloride inhibited GSK-3 which suppressed proliferation in Eca-109 human esophageal cancer cells. GSK-3 was functioning as a tumor promoter. | [1] |
| AR-A014418 | Treatment with GSK-3β inhibitor AR-A014418 sensitized GMB cells to temozolomide. GSK-3β was functioning as a tumor promoter. | [2] |
| BIO | BIO induced apoptosis, cell cycle arrest in glioblastoma cells. | [3] |
| Tideglusib, AZD1080, and BIO | These GSK-3 inhibitors suppressed GSK-3 mediated phosphorylation of substrates involved in proliferation such as c-MYC in KRAS-dependent tumors. | [4] |
| ABC1183 | ABC1183 inhibited GSK-3α and GSK-3β. ABC1183 inhibited the growth of a numerous cancer cell lines by decreasing cell survival by inducing G2/M arrest by altering GSK-3 and WNT/β-catenin signaling. | [5] |
| SB21673 | SB21673 inhibits GSK-3α and GSK-3β. c-JUN degradation was enhanced by SB21673 and breast cancer tumorigenesis was inhibited. | [6] |
| SB216763, GSK inhibitor XIII, and AR-A014418 | SB216763 and the GSK inhibitor III suppressed AR-transcriptional activity as well as AR expression in prostate cancer cells. In contrast, AR-A014418 stimulated proliferation. | [7] |
| Lithium chloride, SB216763, and GSK-3 IX (BIO) | Treatment of MLL LSC with GSK-3 inhibitors resulted in reversion of MLL LSCs to a pre-LSC stage and reduced their growth. | [8] |
| GSK-3 IX (BIO) and SB216763 | Inhibition of GSK-3 suppressed maintenance of MLL leukemia. | [9] |
| GSK3-IX | The GSK-3α and GSK-3β inhibitor GSK3-IX inhibited MLL leukemia maintenance and growth. | [9] |
| GS87 | GS87 is a novel GSK-3 inhibitor that was isolated upon screening for more optimal effective inhibitors that induce AML differentiation. GS87 inhibits both GSK-3α and GSK-3β. | [10] |
| Thiazolidinone (TDZD) | TDZD is a non-competitive inhibitor of GSK-3. Treatment of primary myeloma cells with TDZD resulted in apoptosis in primary myeloma cells but not in normal CD34 cells. | [11] |
| Combination of GSK-3 inhibitors with immunotherapy | | |
| SB415286 and CD8+ CTLs | GSK-3 inhibitor treatment of CD8+ T cells inhibited TBX21 (T-bet) expression and decreased PD-1 expression and increased cytolytic T cell responses. | [12] |
| LY2090314, tideglusib, SB415286 GSK-3 inhibitors and NK cells | Treatment of NK cells with GSK-3 inhibitors LY2090314, tideglusib or SB415286, increased TNF-α levels and cytotoxicity towards AML cells. | [13] |
| SB216763 and GMB-specific CAR-T cells | Treatment with GSK-3 inhibitor of antigen specific CAR-T cells lowered PD-1 expression and promoted long term survival, memory and tumor elimination. | [14] |
| Enzastaurin | Enzastaurin was initially developed as a PKC-β inhibitor. One of its targets is GSK-3. It has been examined in clinical | [15] |
studies with various cancer types, often in combination with bevacizumab.

SB415286 or LiCl and TRAIL	Inhibition of GSK-3 enhanced the induction of apoptosis mediated by TRAIL in gastric cancer cells.

Combination of GSK-3 inhibitors with chemotherapy

CHIR9021 and paclitaxel	Effects of combination of the GSK-3 inhibitor CHIR9021 and paclitaxel on lung cancer.

SB415286, RO 318220, lithium chloride and paclitaxel	SB415286 inhibits both GSK-3α and GSK-3β. RO 318220 inhibits PKC and GSK-3. More mitotic arrest was observed when GSK-3 inhibitors were combined with paclitaxel than in the absence of the GSK-3 inhibitors.

LY2090314 and nab-paclitaxel	LY2090314 suppressed TAK1 levels. LY2090314 plus nab-paclitaxel combined treatment increased the survival of mice in orthotopic pancreatic tumor models.

AR-A014418, TDZD-8, 9-ING-41 and Camptosar	AR-A014418, TDZD-8, and 9-ING-41 suppressed neuroblastoma growth, 9-ING-41 was most effective. The combination of 9-ING-41 and Camptosar was effective in suppressing tumor growth of xenografts.

9-ING-41, 9-ING-87 and irinotecan	Treatment with GSK-3 inhibitors and the chemotherapeutic drug irinotecan reduced drug resistance in a breast cancer PDX model.

AR-A014418 and gemcitabine	GSK-3 inhibitor suppressed some of the genes induced by gemcitabine that are involved in drug resistance of PDAC cells.

Combination of GSK-3 inhibitors with other inhibitors or agonists

9-ING-41 and either chloroquine and bafilomycin	9-ING-41 have been examined either by itself or in combination with autophagy inhibitors chloroquine and bafilomycin on RCC lines

lithium chloride, SB216763, inhibitor IX (BIO) and NF-κB inhibitors PDTC parthenolide, or BAY 11-7082 and chemotherapeutic drugs.	Combining GSK-3, NF-κB inhibitors and certain chemotherapeutic drugs resulted in increased osteosarcoma death both in vitro and in animal xenograft studies.

AR-A014418 and Troglitazone	Treatment of prostate cancer cells with GSK-3 inhibitor and PPAR agonist suppressed NF-κB activity increased cell death.

6BIO and AR-ASO	6BIO improved the targeting of antisense oligonucleotide (ASO) inhibitor and resulted in increased inhibition of AR signaling.

AR-A014418, 5-chloro-2,4-dihydroxypyridine (CDHP) and 5FU	GSK-3β inhibitor AR-A014418 induced head and neck cancer stem cells [CD44 (high)/ESA (low)] to undergo mesenchymal-to-epithelial transition (MET) back to CD44 (high)/ESA (high) cells. Furthermore, this combined treatment induced the cells to differentiate.

Inhibitors originally developed to target other signaling molecules which also target/inhibit GSK-3 activity

Tivantinib	Tivantinib was initially developed as a c-MET inhibitor but it was subsequently determined to target GSK-3α and GSK-3β in lung cancer cells.

GDC-0941	GDC-0941 is a PI3K inhibitor. It increased the sensitivity of GBM cells to radiotherapy and reduced chemoresistance to temzolomide.

AktX, Lithium chloride	AktX is an AKT inhibitor. The effects AktX and lithium chloride on brain cancer cells were determined. AktX
Zidovudine	Zidovudine is an anti-viral drug. Treatment of drug resistant pancreatic cells with zidovudine re-sensitized the cells to gemcitabine. Zidovudine suppressed the AKT/GSK-3/SNAIL pathway. [31]
Doxazosin	Doxazosin is an antihypertensive drug. It was observed to inhibit PI3K/AKT signaling in GBM by upregulation of active GSK-3β and TP53. Treatment with doxazosin was associated with low neurotoxicity. [32]
Erlotinib, SU11274, XAV939, everolimus	EGFR, c-MET, WNT, mTORC1 blocker treatments in various combinations overcame drug resistance of NSCLC cells. [33]
miR-101, temozomide	Suppression of GSK-3β by miR-101 inhibits GSK-3β expression and restored sensitivity to temozomide in brain cancer cells. [34]

Nutraceuticals/Natural Products which may alter GSK-3 activity

Curcumin	Curcumin suppressed Syk activity which inhibited AKT and induced GSK-3 activity and inhibited B lymphoma growth. [35]
Curcumin and Tetrahydrocurcumin	Curcumin induced GSK-3 activity and inhibited WNT/β-catenin signaling and suppressed azoxymethane-induced colon carcinogenesis. [36]
Berberine	Berberine inhibited AKT which resulted in GSK-3 activity in melanoma cells treated with alpha melanocyte stimulating hormone (α-MSH). Berberine suppressed induction of microphthalmia-associated transcription factor (MITF) and tyrosinase activity. [37]
Berberine and lapatinib	Combining berberine with the dual EGFR and HER receptor inhibitor lapatinib decreased lapatinib-resistance of breast cancer cells. Treatment with berberine and lapatinib induced higher levels of ROS and increased GSK-3 activity and decreased c-MYC levels. [38]
Resveratrol	Resveratrol increased GSK-3 activity which suppressed WNT/β-catenin signaling and decreased invasion and migration in breast cancer cells. [39]
Apocynin	The effects of apocynin and resveratrol on pancreatic cancer cells were mediated by decreased levels of phosphorylated GSK-3β and ERK1/2 present in the nucleus. [40]
Microsclerodermin A	Microsclerodermin A inhibited NF-κB activity in PDAC. Potential involvement of GSK-3. [41]
Caffeine	Caffeine inhibited JB6 mouse epidermal cells proliferation by suppression of AKT and activation of GSK-3. [42]
Indirubin	Indirubin inhibited GSK-3 and cyclin dependent kinase activity in leukemia cells. Indirubin may have competed for the ATP binding sites in the kinase domains of the proteins. [43]
Tetrandrine	Tetrandrine inhibited AKT which resulted in GSK-3 activation in colon cancer cells. [44]
Differentiation-inducing factor-1	Differentiation-inducing factor-1 inhibited AKT and induced GSK-3 activity in colon cancer cells which resulted in apoptosis. [45]
The effects of dioscin on proliferation were examined with osteosarcoma cells. Dioscin inhibited AKT activity which resulted in GSK-3 activation. [46]

Nimbolide inhibited PI3K activity in oral cancer cells which resulted in increased GSK-3 activity and inhibition of cytoprotective autophagy. [47]

Oridonin increased GSK-3 expression which resulted in c-MYC degradation and growth inhibition and apoptosis in leukemia cells. [48]

Apicidin resistance in HCC may result from decreased GSK-3 activity and increased WNT/β-catenin activity. [49]

Wogonin inhibits cell growth and induces apoptosis by inhibiting the expression of GSK-3β in lung cancer cells. [50]

Sulforaphane treatment resulted in induction of miR-19 and suppression of GSK-3β and increased WNT/β-catenin expression. [51]

Butyrate induced ROS and miR-22/SIRT1 pathway in hepatic cancer cells which resulted in suppression of AKT, increased PTEN and GSK-3 and apoptosis. [52]

Ursolic acid treatment of ovarian carcinoma cells with ursolic acid resulted in inhibition of GSK-3 and induction of apoptosis. [53]

Gambogenic acid stimulated GSK-3 activity and inhibited growth in GBM cells. [54]

References:
1. Wang, J.S.; Wang, C.L.; Wen, J.F.; Wang, Y.J.; Hu, Y.B.; Ren, H.Z. Lithium inhibits proliferation of human esophageal cancer cell line Eca-109 by inducing a G2/M cell cycle arrest. World J Gastroenterol. 2008, 14, 3982-3989.
2. Miyashita, K.; Kawakami, K.; Nakada, M.; Mai, W.; Shakoori, A.; Fujisawa, H.; Hayashi, Y.; Hamada, J.; Minamoto, T. Potential therapeutic effect of glycogen synthase kinase 3β inhibition against human glioblastoma. Clin. Cancer Res. 2009, 15, 887-897.
3. Acikgoz, E.; Guler, G.; Camlar, M.; Oktem, G.; Aktug, H. Glycogen synthase kinase-3 inhibition in glioblastoma multiforme cells induces apoptosis, cell cycle arrest and changing biomolecular structure. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 209, 150-164.
4. Kazi, A.; Xiang, S.; Yang, H.; Delitto, D.; Trevino, J.; Jiang, R.H.Y.; Ayaz, M.; Lawrence, H.R.; Kennedy, P.; Sebti, S.M. GSK3 suppression upregulates beta-catenin and c-Myc to abrogate KRas-dependent tumors. Nature Commun. 2018, 9, 5154.
5. Schrecengost, R.S.; Green, C.L.; Zhuang, Y.; Keller, S.N.; Smith, R.A.; Maines, L.W.; Smith, C.D. In Vitro and In Vivo Antitumor and Anti-Inflammatory Capabilities of the Novel GSK3 and CDK9 Inhibitor ABC1183. J. Pharmacol. Exp. Ther. 2009, 36, 107-116.
6. Shao, J.; Teng, Y.; Padia, R.; Hong, S.; Noh, H.; Xie, X.; Mumm, J.S.; Dong, Z.; Ding, H.F.; Cowell, J.; Kim, J.; Han, J.; Huang, S. COP1 and GSK3β cooperate to promote c-Jun degradation and inhibit breast cancer cell tumorigenesis. Neoplasia 2013, 15, 1075-1085.
7. Rinnab, L.; Schultz, S.V.; Diesch, J.; Schmid, E.; Kufer, R.; Hautmann, R.E.; Spindler, K.D.; Cronauer M.V. Inhibition of glycogen synthase kinase-3 in androgen-responsive prostate cancer cell lines: are GSK inhibitors therapeutically useful? Neoplasia 2008, 10, 624-634.
8. Yeung, J.; Esposito, M.T.; Gandillet, A.; Zeisig, B.B.; Griessinger, E.; Bonnet, D.; So, C.W. beta-Catenin mediates the establishment and drug resistance of MLL leukemic stem cells. Cancer Cell. 2010, 18, 606-618.
9. Wang, Z.; Smith, K.S.; Murphy, M.; Piloto, O.; Somervaille, T.C.; Cleary, M.L. Glycogen synthase kinase 3 in MLL leukaemia maintenance and targeted therapy. Nature 2008, 455, 1205-1209.
R. Analysis of the role of GSK3 in the mitotic checkpoint.

K3 restores NK cell cytotoxicity in AML patients.

akefield, J.G.; Pardo, O.E.; Seckl, M.J.; Tavare J.M.

CDHP and GSK3beta inhibitors.

Mackenzie, I.C. Elevation in 5

potential combinatorial anti

Troglitazone, a PPAR agonist, inhibits human prostate cancer cell growth through inactivation of NFkappaB

Ban, J.O.; Oh, J.H.; Son, S.M.; Won, D.; Song, H.S.; Han, S.B.; Moon, D.C.; Kang, K.W.; Song, M.J.; Hong, J.T.

3beta inhibition sensitizes pancreatic cancer cells to gemcitabine.

J. Gastroenterol. 2012, 47, 321-333.

26. Anraku, T.; Kuroki, H.; Kazama, A.; Bilim, V.; Tasaki, M.; Schmitt, D.; Mazar, A.; Giles, F.J.; Ugolkov, A.; Tomita, Y. Clinically relevant GSK-3beta inhibitor 9-ING-41 is active as a single agent and in combination with other antitumor therapies in human ovarian cancer. J. Nat. Cancer Inst. 2012, 104, 749-763.
28. Remsing Rix, L.L.; Kuenzi, B.M.; Luo, Y.; Remily-Wood, E.; Kinose, F.; Wright, G.; Li, J.; Koomen, J.M.; Haura, E.B.; Lawrence, H.R.; Rix, U. GSK3 alpha and beta are new functionally relevant targets of tivantinib in lung cancer cells. *ACS Chem. Biol.* 2014, 9, 353-358.

29. Shi, F.; Guo, H.; Zhang, R.; Liu, H.; Wu, L.; Wu, Q.; Liu, J.; Liu, T.; Zhang, Q. The PI3K inhibitor GDC-0941 enhances radiosensitization and reduces chemoresistance to temozolomide in GBM cell lines. *Neuroscience*. 2017, 346, 298-308.

30. Atkins, R.J.; Dimou, J.; Paradiso, L.; Morokoff, A.P.; Kaye, A.H.; Drummond, K.J.; Hovens, C.M. Regulation of glycogen synthase kinase-3 beta (GSK-3β) by the Akt pathway in gliomas. *J. Clin. Neurosci.* 2012, 19, 1558–1563.

31. Namba, T.; Kodama, R.; Moritomo, S.; Hoshino, T.; Mizushima, T. Zidovudine, an anti-viral drug, resensitizes gemcitabine-resistant pancreatic cancer cells to gemcitabine by inhibition of the Akt-GSK3beta-Snail pathway. *Cell Death Dis.* 2015, 6, e1795.

32. Gaelzer, M.M.; Coelho, B.P.; de Quadros, A.H.; Hoppe, J.B.; Terra, S.R.; Guerra, M.C.; Usach, V.; Guma, F.C.; Gonçalves, C.A.; Setton-Avruj, P.; et al. Phosphatidylidyinositol 3-Kinase/AKT Pathway Inhibition by Doxazosin Promotes Glioblastoma Cells Death, Upregulation of p53 and Triggers Low Neurotoxicity. *PLoS One*. 2016, 11, e0154612.

33. Botting, G.M.; Rastogi, I.; Chhabra, G.; Nlend, M.; Puri, N. Mechanism of resistance and novel targets mediating resistance to EGFR and c-Met tyrosine kinase inhibitors in non-small cell lung cancer. *PLoS ONE* 2015, 10, e0136155.

34. Tian, T.; Mingyi, M.; Qiu, X.; Qiu, Y. MicroRNA-101 reverses temozolomide resistance by inhibition of GSK3β in glioblastoma. *Onco Targets.* 2016, 7, 79584-79595.

35. Gururajan, M.; Dasu, T.; Shahidain, S.; Jennings, C.D.; Robertson, D.A.; Rangnekar, V.M.; Bondada, S. Spleen tyrosine kinase (Syk), a novel target of curcumin, is required for B lymphoma growth. *J. Immunol.* 2007, 178, 111-121.

36. Lai, C.S.; Wu, J.C.; Yu, S.F.; Badmaev, V.; Nagabhushanam, K.; Ho, C.T.; Pan, M.H. Tetrahydrocurcumin is more effective than curcumin in preventing azoxymethane-induced colon carcinogenesis. *Mol. Nutr. Food Res.* 2011, 55, 1819-1828.

37. Song, Y.C.; Lee, Y.; Kim, H.M.; Hyun, M.Y.; Lim, Y.Y.; Song, K.Y.; Kim, B.J. Berberine regulates melanin synthesis by activating PI3K/AKT, ERK and GSK3β in B16F10 melanocytes *Int. J. Mol. Med.* 2015, 35, 1011-1016.

38. Zhang, R.; Qiao, H.; Chen, S.; Chen, X.; Dou, K.; Wei, L.; Zhang, J. Berberine reverses lapatinib resistance of HER2-positive breast cancer cells by increasing the level of ROS. *Cancer Biol. Ther.* 2016, 17, 925-934.

39. Tsai, J.H.; Hsu, I.S.; Lin, C.L.; Hong, H.M.; Pan, M.H.; Way, T.D.; Chen, W.J. 3,5,4′-Trimethoxy stalbene, a natural methoxylated analog of resveratrol, inhibits breast cancer cell invasiveness by downregulation of PI3K/Akt and Wnt/β-catenin signaling cascades and reversal of epithelial-mesenchymal transition. *Toxicol. Appl. Pharmacol.* 2013, 272, 746-756.

40. Kato, A.; Naiki, A.; Nakazawa, T.; Hayashi, K.; Naitoh, I.; Miyabe, K.; Shimizu, S.; Kondo, H.; Nishi, Y.; Yoshida, M.; Umemura, S.; Hori, Y.; Mori, T.; Tsutsumi, M.; Kuno, T.; Suzuki, S.; Kato, H.; Ohara, H.; Joh, T.; Takahashi, S. Chemopreventive effect of resveratrol and apocynin on pancreatic carcinogenesis via modulation of nuclear phosphorylated GSK3β and ERK1/2. *Oncotarget* 2015, 6, 42963-42975.

41. Guzman, E.A.; Maers, K.; Roberts, J.; Kemami-Wangun, H.V.; Harmody, D.; Wright, A.E. The marine natural product microsclerodermin A is a novel inhibitor of the nuclear factor kappa B and induces apoptosis in pancreatic cancer cells. *Invest. New Drugs* 2015, 33, 86-94.

42. Hashimoto, T.; He, Z.; Ma, W.Y.; Schmid, P.C.; Bode, A.M.; Yang, C.S.; Dong, Z. Caffeine inhibits cell proliferation by G0/G1 phase arrest in J82 cells. *Cancer Res.* 2004, 64, 3344-3349.

43. Wang, Y.; Hoi, P.M.; Chan, J.Y.; Lee, S.M. New perspective on the dual functions of indirubins in cancer therapy and neuroprotection. *Anticancer Agents Med. Chem.* 2014, 14, 1213-1219.

44. Chen, X.; Ren, K.H.; He, H.W.; Shao, R.G. Involvement of PI3K/AKT/GSK3beta pathway in tetradrine-induced G1 arrest and apoptosis. *Cancer Biol. Ther.* 2008, 7, 1073-1078.

45. Jingushi, K.; Nakamura, T.; Takahashi-Yanaga, F.; Matsuzaki, E.; Watanabe, Y.; Yoshihara, T.; Morimoto, S.; Sasaguri, T. Differentiation-inducing factor-1 suppresses the expression of c-Myc in the human cancer cell lines. *J. Pharm. Sci.* 2013, 121, 103-109.
46. Liu, W.; Zhao, Z.; Wang, Y.; Li, W.; Su, Q.; Jia, Q.; Zhang, J.; Zhang, X.; Shen, J.; Yin, J. Dioscin inhibits stem-cell-like properties and tumor growth of osteosarcoma through Akt/GSK3/beta-catenin signaling pathway. *Cell Death Dis.* 2018, 9, 343.

47. Sophia, J.; Kiran Kishore T.K.; Kowshik, J.; Mishra, R.; Nagini, S. Nimbolide, a neem limonoid inhibits Phosphatidyl Inositol-3 Kinase to activate Glycogen Synthase Kinase-3beta in a hamster model of oral oncogenesis. *Sci. Rep.* 2016, 6, 22192.

48. Huang, H.L.; Weng, H.Y.; Wang, L.Q.; Yu, C.H.; Huang, Q.J.; Zhao, P.P.; Wen, J.Z.; Zhou, H.; Qu, L.H. Triggering Fbw7-mediated proteasomal degradation of c-Myc by oridonin induces cell growth inhibition and apoptosis. *Mol. Cancer Ther.* 2012, 11, 1155-1165.

49. Tu, C.C.; Cheng, L.H.; Hsu, H.H.; Chen, L.M.; Lin, Y.M.; Chen, M.C.; Lee, N.H.; Tsai, F.J.; Huang, C.Y.; Wu, W.J. Activation of snail and EMT-like signaling via the IKKalpha/NF-kappaB pathway in Apicidin-resistant HA22T hepatocellular carcinoma cells. *Chin. J. Physiol.* 2013, 56, 326-333.

50. Chen, X.M.; Bai, Y.; Zhong, Y.J.; Xie, X.L.; Long, H.W.; Yang, Y.Y.; Wu, S.G.; Jia, Q.; Wang, X.H. Wogonin has multiple anti-cancer effects by regulating c-Myc/SKP2/Fbw7alpha and HDAC1/HDAC2 pathways and inducing apoptosis in human lung adenocarcinoma cell line A549. *PLoS ONE* 2013, 8, e79201.

51. Zhu, J.; Wang, S.; Chen, Y.; Li, X.; Jiang, Y.; Yang, X.; Li, Y.; Wang, X.; Meng, Y.; Zhu, M.; Ma, X.; Huang, C.; Wu, R.; Xie, C.; Geng, S.; Wu, J.; Zhong, C.; Han, H. miR-19 targeting of GSK3beta mediates sulforaphane suppression of lung cancer stem cells. *J. Nutr. Biochem.* 2017, 44, 80-91.

52. Pant, K.; Yadav, A.K.; Gupta, P.; Islam, R.; Saraya, A.; Venugopal, S.K. Butyrate induces ROS-mediated apoptosis by modulating miR-22/SIRT1 pathway in hepatic cancer cells. *Redox Biol.* 2017, 12, 340-349.

53. Song, Y.H.; Jeong, S.J.; Kwon, H.Y.; Kim, B.; Kim, S.H.; Yoo, D.Y. Ursolic acid from Oldenlandia diffusa induces apoptosis via activation of caspases and phosphorylation of glycogen synthase kinase 3 beta in SK-OV-3 ovarian cancer cells. *Biol. Pharm. Bull.* 2012, 35, 1022-1028.

54. Chen, H.B.; Zhou, L.Z.; Mei, L.; Shi, X.J.; Wang, X.S.; Li, Q.L.; Huang, L. Gambogenic acid-induced time- and dose-dependent growth inhibition and apoptosis involving Akt pathway inactivation in U251 glioblastoma cells. *J. Nat. Med.* 2012, 66, 62-69.

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).