Pancreatic cyst development: insights from von Hippel-Lindau disease

Sophie J van Asselt1,2, Elisabeth GE de Vries2, Hendrik M van Dullemen3, Adrienne H Brouwers4, Annemiek ME Walenkamp2, Rachel H Giles5 and Thera P Links1*

Abstract
Pancreatic cysts are a heterogeneous group of lesions, which can be benign or malignant. Due to improved imaging techniques, physicians are more often confronted with pancreatic cysts. Little is known about the origin of pancreatic cysts in general. Von Hippel-Lindau (VHL) disease is an atypical ciliopathy and inherited tumor syndrome, caused by a mutation in the VHL tumor suppressor gene encoding the VHL protein (pVHL). VHL patients are prone to develop cysts and neuroendocrine tumors in the pancreas in addition to several other benign and malignant neoplasms. Remarkably, pancreatic cysts occur in approximately 70% of VHL patients, making it the only hereditary tumor syndrome with such a discernible expression of pancreatic cysts. Cellular loss of pVHL due to biallelic mutation can model pancreatic cystogenesis in other organisms, suggesting a causal relationship. Here, we give a comprehensive overview of various pVHL functions, focusing on those that can potentially explain pancreatic cyst development in VHL disease. Based on preclinical studies, cilia loss in ductal cells is probably an important early event in pancreatic cyst development.

Keywords: Cilia, Cytoskeleton, Pancreatic cysts or serous cystadenomas, VHL tumor suppressor protein, von Hippel-Lindau disease

Review
Introduction
Pancreatic cysts are frequent, with a prevalence of 2.4 to 13.5% in patients without known pancreatic disease. Due to increased use of cross-sectional imaging techniques, physicians are more frequently confronted with pancreatic cysts [1]. Various types of pancreatic cysts can occur, which can be benign or have malignant potential. An expectative policy is accepted for benign cysts and surgery is indicated for malignant lesions. Currently, accurate diagnostics are not available to identify malignant cysts [1]. Despite the need for mechanistic insight, little is known about the origin and pathophysiology of pancreatic cysts in general.

Von Hippel-Lindau (VHL) disease (MIM #193300) is a rare hereditary tumor syndrome that results from a germ-line mutation in the VHL gene. The reported incidence is 1 per 36,000 live births and a >90% penetrance is present by the age of 65 years [2]. VHL disease can lead to the development of hemangioblastomas of the central nervous system, retinal angiomas, endolymphatic sac tumors, epididymis or broad ligament cystadenomas, renal cysts and renal cell carcinomas (RCCs), pheochromocytomas, pancreatic cysts and pancreatic neuroendocrine tumors (pNETs) [3] (Figure 1). Currently, RCC and hemangioblastomas are the main causes of death [4,5]. VHL patients undergo screening for early detection of manifestations [6]. Understanding the role of the VHL gene in the oxygen-sensing pathway in the tumor micro-environment of RCC has led to major pharmaceutical successes through targeted therapies for many cancer types, such as humanized antibodies targeting vascular endothelial growth factor (VEGF), mTOR- and VEGF receptor tyrosine kinase inhibitors [7]. As a result, first-line treatment of metastasized RCCs has entirely changed in the last decade.

pNETs are present in 10 to 17% of VHL patients [8,9] and pancreatic cysts occur in about 70% [10,11]. Because of this high prevalence, it is worthwhile examining the early cellular events that result in pancreatic cysts in VHL disease, reflecting insight into pancreatic cystic disorders...
in general. In this review, we conduct a complete overview of pVHL functions to explain cellular events involved in cyst development in the context of VHL. Based on knockout mouse models, we discuss the consequences of Vhlh loss in the pancreas and the origin of pancreatic cysts.

Pancreatic involvement in VHL disease

VHL pancreatic cysts include simple cysts and serous cystadenomas. In addition to these cysts pNETs occur in VHL patients, which can have malignant potential [10]. One autopsy series of 50 VHL patients showed a prevalence of 72% for pancreatic cysts [11]. In the largest clinical study describing pancreatic involvement, 158 VHL patients underwent abdominal computed tomography scan at least once. Pancreatic involvement was observed in 77% of patients: 71% had simple cysts, 15% had serous cystadenomas and 10% had pNETs, which coincided with pancreatic cysts in 11 cases (69%) [10]. In VHL patients, a broad heterogeneity is present regarding pancreatic cyst involvement: isolated cystadenomas and small cysts occur, whereas in some patients cystic growth replaces almost the entire pancreas (Figure 2) [10,12-16].

Data is limited about clinical consequences of VHL pancreatic cysts. One study [10] and numerous case-reports [12,13,17-23] have recorded clinical problems, of which compression of the biliary tract was most frequently reported (Table 1). Intervention was indicated in only 3% of VHL patients [10]. No evidence exists for an association between endocrine or exocrine pancreatic insufficiency and cyst involvement. Moreover, no cases have been described of malignant pancreatic cysts in VHL disease. Nineteen cases with a pancreatic serous cystadenoma mixed with a pNET were reported [10,14-16,24,25], but no relationship exists between presence of pancreatic cysts and pNETs. Conclusively, pancreatic cysts in VHL disease are not associated with malignancy and sporadically cause problems [26].

VHL disease classification

The clearest genotype-phenotype correlation is exemplified by type 2 VHL, typically characterized by a VHL missense mutation and presence of pheochromocytomas [27,28]. Type 1 VHL is more frequently characterized by a VHL truncating mutation and absence or rare occurrence of pheochromocytomas. Type 2 VHL alleles can be further subdivided based on absence or presence of RCC; called VHL type 2A and type 2B, respectively [28,29]. A pheochromocytoma-only subtype has also been described: VHL type 2C [30]. Pancreatic involvement occurs in both VHL type 1 and type 2B, although it is unclear whether it occurs in the rare VHL types 2A and 2C [31].
The VHL gene

The VHL gene was identified in 1993 [32] and is a tumor suppressor gene; somatic inactivation of the wild-type allele or loss of heterozygosity (LOH) of the VHL gene is often observed prior to development of VHL-associated lesions [33,34]. Consisting of three exons, the human VHL gene is located on chromosome 3 (3p26-p25), encoding a 213-amino acid pVHL (30 kDa VHLp30) and a 160-amino acid shorter form (19 kDa VHLp19) [35,36]. The role of VHL in the oxygen-sensing pathway is its best-characterized function: cellular normoxic conditions enable the pVHL E3 ubiquitin ligase complex to target the α-subunit of hypoxia inducible factor (HIF) for proteosomal degradation. During hypoxia, pVHL is not able to bind HIF-α, resulting in accumulation of un-ubiquitinated HIF-α, which then translocates to the nucleus. This stimulates the transcription of various genes, including VEGF [37].

Since pVHL is still capable of functioning within the E3 ubiquitin ligase complex in VHL type 2C [38], other pVHL functions must be present to induce tumorigenesis. Indeed, VHL also regulates the assembly of the extracellular matrix (ECM) [39-45], and recent studies have shown that pVHL regulates the microtubule cytoskeleton, particularly plus-end stability [46-54].

Sporadic pancreatic serous cystadenomas

Data suggest that VHL loss through LOH of chromosome 3p might be a common mechanism initiating cystogenesis in sporadic pancreatic cystadenomas [55,56]. Recently, whole-exome sequencing was performed in various sporadic pancreatic cysts [57]. Seven out of eight serous cystadenomas lost chromosome 3p alleles, and in four, VHL gene mutations were found. This further supports that VHL loss initiates cystogenesis in pancreatic cystadenomas. Given that loss of the VHL locus was the only recurrent lesion identified, these data indicate that VHL loss alone could be sufficient for this development. Interestingly, in this same study, intraductal papillary mucinous neoplasms, mucinous cystic neoplasms, and solid pseudopapillary neoplasms did not show alterations in 3p alleles. In these lesions other genes encoding E3 ubiquitin ligases were involved, pointing to protein turnover as an underlying mechanistic theme [57].

pVHL regulates cellular architecture

Most *in vitro* studies exploring the influence of pVHL on the cytoskeleton have been performed in RCC cell lines. To the best of our knowledge, no comparable studies have been performed with pancreatic cell lines. Since somatic LOH of wild-type VHL allele has been verified in pancreatic cysts in VHL [58], we reviewed the existing literature based on RCC cell line studies to gain insight into the effect of pVHL on pancreatic cell regulation and cyst development. Figure 3 represents a schematic overview of pVHL functions which might also explain pancreatic cyst development in VHL disease.

pVHL and the extracellular matrix

The ECM consists of proteins including collagen, fibronectin and laminin. Fibronectin plays a major role in the spread and migration of cells by binding them to the ECM. Integrins are cell surface receptors that mediate cell-cell and cell-ECM attachment [59]. pVHL promotes cell adhesion to the ECM [40]. VHL inactivation in RCC cells, mouse embryos and mouse embryo fibroblasts impair the ability to form a fibronectin assembly [39]. Fibrillar adhesions are essential to form a fibronectin assembly. Despite sufficient fibronectin, VHL−/− RCC cells fail to construct β1-integrin fibrillar adhesions due to deficient integrin regulation [41]. In RCC cell lines with wild-type VHL, collagen IV interacts with pVHL [42]. More specifically, pVHL binds the collagen IVα2 chain, part of the triple helix collagen IV; whereas in RCC cells with mutant pVHL this interaction fails [43]. This results in a reduction of collagen IV binding, resulting in altered cell morphology [44].
in loss of collagen network \textit{in vitro} and collagen remodeling \textit{in vivo} (Figure 4) [42]. Collagen IV associates with fibronectin, suggesting that the previously observed interaction between pVHL and fibronectin is indirect [43].

In a xenograft model using RCC cell lines, VHL-ECM, VHL-HIF or both pathways were inactivated. \textit{VHL}−/−786−0 cells expressing HIF-2α failed to assemble an ECM. \textit{VHL}+/+ cells retrovirally infected to produce proteasome-resistant HIF-2α, were still able to assemble an ECM, indicating that it is independent of VHL-HIF regulation. Alternatively in VHL type 2C cells, mutant pVHL regulates HIF normally, but interferes with ECM assembly [45]. Xenograft tumors from VHL type 2C cells were hypervascular and invasive, similar to tumors originating from \textit{VHL}−/−786−0 cells. In contrast, xenografts derived from \textit{VHL}+/+ cells engineered to stabilize HIF-2α resulted in tumors with lower microvessel density and invasiveness, despite higher VEGF expression [45]. Kurban \textit{et al.} suggested that a strong collagen IV network, dependent on pVHL, naturally suppresses tumorigenesis [45].

\textbf{pVHL and cell polarity}

Epithelial cells have asymmetric specification of membrane domains. Asymmetry and polarization are regulated by partitioning defective proteins (PAR) and atypical protein kinase C (aPKC). The PAR3-PAR6-aPKC complex is essential for establishing the apical membrane domain and junction structures of epithelial cells [60]. In addition, this complex is involved in formation of the apical lumen in three-dimensional cultures [61].

The pVHL ubiquitin ligase complex targets the active form of aPKC for degradation, analogous to HIF-α [62]. \textit{VHL} mutant cells fail to form intercellular junctions, resulting in loss polarity [44]. This may be due to deregulation of active aPKC. Moreover, pVHL associates with the PAR3-PAR6-aPKC complex [50]. In a follicular epithelial model in \textit{Drosophila}, loss of wild-type \textit{vhl} resulted in epithelial disorganization, microtubule destabilization and subsequent aPKC mislocalization [63] (Figure 4). Duchi \textit{et al.} concluded that loss of \textit{VHL} \textit{in vivo} can destabilize strict planar cell polarity control, resulting in architectural changes permissive to cyst development [63].

\textbf{pVHL and microtubule dynamics}

Microtubules are polymerized filaments composed of α- and β-tubulin monomers. Microtubules continuously shrink at their “minus-ends” and grow at their “plus-ends” [64]. pVHL promotes microtubule stabilization by reducing tubulin turnover [46,47,54]; it binds microtubules through kinesin-2 [48]. \textit{In vitro} inhibition of tubulin GTP-ase activity by pVHL at microtubule plus-ends contributes to this stability, which is compromised by \textit{VHL} patient-associated mutant alleles [54]. Furthermore, cellular inactivation of pVHL results in spindle misorientation, spindle checkpoint weakening and chromosomal instability attributed to microtubule instability [53]. Interestingly, pVHL directs growth of microtubule orientation towards the outer plasma membrane [50].

\textbf{pVHL and cilia}

Microtubules form the backbone of cilia, which project from the apical cell surface. Cilia sense outside the cell and...
are involved in signaling pathways. Intraflagellar transport of ciliary components is required for ciliary functions, which is powered by kinesin-2. The heterotrimeric motor kinesin-2 comprises motor subunits of kinesin superfamily protein 3 (KIF3A, KIF3B) and kinesin-associated protein 3 (KAP3) [65]. pVHL binds KIF3A and KAP3 of kinesin-2 [48], and in the cell, mobility of pVHL is at least partially regulated by kinesin-2 [49].

In renal tissue from VHL patients, cilia are lost in cysts, while cilia are still present in normal tissue [51]. Accordingly, RCC cell lines with or without reconstitution of wild-type VHL, show that pVHL contributes to ciliary maintenance and stability [51,52]. Cilia loss in kidney tubules due to pVHL dysfunction likely results from disoriented microtubule growth and decreased microtubule stability [50], and is associated with renal cyst development.
It has not been confirmed that pancreatic cysts in VHL patients are the consequence of cilia loss. However, in a pancreatic-specific Kif3a knock-out mouse model, cyst development was attributed to cilia loss (see “Cilia loss in pancreatic cells in vivo”) [66]. Therefore, it is likely that pancreatic cysts in VHL are a result of similar consequences.

Histopathology of the pancreas in VHL

Embryonic epithelial cells that express the transcription factor pancreatic and duodenal homeobox 1 (Pdx1) give rise to pancreatic tissue, consisting of exocrine (acinar and duct) and endocrine (islet) cells [67]. Centro-acinar cells are duct cells, which connect acini with intralobular ducts. Recently centro-acinar cells were isolated based on specific expression of aldehyde dehydrogenase 1. *In vitro*, centro-acinar cell suspensions were able to proliferate with a capacity to differentiate into both exocrine and endocrine cells [68]. Centro-acinar cells might therefore act as facultative progenitor cells in the mature pancreas for acinar, duct and islet cells (Figure 5).

Histology of pancreatic cysts and pNETs

Pancreatic cysts and pNETs in VHL disease have distinct features. pNETs have a solid, trabecular and/or glandular architecture with stromal collagen bands and neurosecretory dense core granules [69], which are absent in VHL pancreatic cysts [58]. Immunohistochemical staining for chromogranin A, S-100, synaptophysin and neuron-specific enolase showed positive expression in VHL pNETs [69]. Pancreatic cysts stained negative for chromogranin A and S-100 [58]. The histology of 119 pancreatic cysts was examined in detail from nine VHL patients [58]. All demonstrated a mixture of clear and/or amphophilic glycogen-rich epithelial cells, endothelial cells and smooth muscle cells. Cysts contained and were surrounded by fibrous tissue. In both pNETs and pancreatic cysts, LOH of VHL wild-type allele was confirmed [58,69].

The pancreas in VHL mouse models

Constitutional inactivation of Vhlh results in embryonic lethality at 10.5 to 12.5 days of gestation, due to placental vasculogenesis defects [70]. To investigate the development of VHL-associated pancreatic manifestations, conditional mouse models have been generated using Cre/LoxP technology [71]. In other mouse models Vhlh, Hif-1α or both, were conditionally inactivated in pancreatic β-cells in order to investigate the role of pVHL in glucose metabolism [72-75].

In the first study [71], the Vhlh gene was inactivated in pancreatic progenitor cells by driving Cre recombinase with the Pdx-1 promoter. Postnatal death was observed in the Pdx1-Cre;Vhlh f/f mice (n = 22), of which 18 were dead within five days. Histological analyses by pathologists blinded for genotypes showed no abnormalities. However, five individual Pdx1-Cre;Vhlh f/f mice survived longer. At 6 to 7 months of age, no pancreatic abnormalities were found in two Pdx1-Cre;Vhlh f/f mice. The remaining three were sacrificed at 16 to 18 months of age. At this time point, pancreatic tissue was replaced by fat deposition and

![Diagram of pancreatic progenitor or Pdx-cells](http://www.ciliajournal.com/content/2/1/3)
pancreatic cysts, and microcystic adenomas were present. The epithelial lining and endothelial cells of the microcystic adenomas expressed cytokeratin MAK6 and CD31, respectively, comparable to findings of pancreatic cysts in VHL patients [58]. In Pdx1-Cre;Vhlh f/f mice, all pancreatic islets were characterized by complex and dilated hypervascularity. Some islets had a small, abnormally shaped appearance and others were hyperplastic [71]. In another study Pdx1-Cre;Vhlh f/f mice were born in the normal Mendelian frequencies. At 12 months of age no cysts or tumors were seen, but a slightly increased pancreatic vascularization was present, compared to control mice [73].

In other knock-out mouse models the Vhlh gene was inactivated by targeting endocrine pancreatic cells for Cre recombinase [71]. In mice with conditional Vhlh inactivation of endocrine α-cells or β-cells, no pancreatic abnormalities were observed (n = 16). Deletion of Vhlh alleles in α- or β-cells was confirmed by polymerase chain reaction analysis [71]. However, others did find increased vascularization in islets in conditional Vhlh knock-out mice in β-cells [73-75]. Additionally, disrupted islet morphology with α-cells scattered throughout the islets were found in Vhlh knock-out mice in β-cells [75]. In all these models, no pNETs were observed. Table 2 shows an overview of knock-out mouse models, serving as a VHL pancreatic model.

Origin of pancreatic lesions in VHL

Whether pNETs originate from exocrine or endocrine cells remains unknown [76]. In pancreatic tissue of 13 VHL patients who underwent surgery because of pNETs, microadenomas were found ranging from 1 to 25 per patient. Expression of cyclin D1, carbonic anhydrase 9 and HIF-1α suggests that these microadenomas occur due to LOH of VHL in clonal lesions, which might be an early stage of pNETs. Most microadenomas were located close to acinar cells, but were also found close to duct or islet cells [76].

In contrast, evidence exists that pancreatic serous cystadenomas originate from duct cells. In these cysts and duct cells, co-expression of cytokeratin patterns is present, as determined immunohistochemically [77,78]. Moreover, of 38 serous cysts including two VHL-related, 70% stained positive for mucin 6 [79], which is also expressed in duct and essentially centro-acinar cells [80]. This suggests a ductal/centro-acinar origin for pancreatic serous cysts [79].

Cilia loss in pancreatic cells in vivo

A study with conditionally inactivated Kif3a in pancreatic tissue in mice suggests that pancreatic cysts originate from duct cells, as a result of cilia loss [66]. Pdx1-Creearly;Kif3a f/f mice were sacrificed at different time points: at two days postnatal, loss of acini was observed and enhancement of lumen between acinar cells and interstitial cells in acini; at 15 days progressive lumen between acini and duct dilation were found. These pathologies all progressed with age and led to acinar tissue being replaced by adipose tissue, severe fibrosis, fluid-filled cysts and extensive ductal dilation (age 6 to 12 months). Cilia were lacking in all pancreatic cells. To further identify the cells of origin, conditional knock-out mice were developed for Kif3a inactivation in islet cells only, as well as in islet and acinar cells. In mice lacking Kif3a in islet cells, no morphological abnormalities were observed. Cilia were only present in duct and reduced in islet cells, suggesting that pancreatic cysts originate from ductal cells [66].

Conclusions

We argue that VHL disease can serve as an excellent model to improve the understanding of pathophysiology

Table 2 VHL (related) pancreatic knock-out mouse models

Reference [No.]	Knock-out gene(s)	Target cells	Age (months)	Pancreatic manifestations
[71]	Vhlh	Progenitor	6-8	None
[73]	Vhlh	Progenitor	12	Increased pancreatic vascularization
[71]	Vhlh	Progenitor	16-18	Cysts, microcystic adenomas, fat depositions, abnormal shaped and hyper-vascular islet cells
[71]	Vhlh	Endocrine α	10-23	None
[71]	Vhlh	Endocrine β	15	None
[73]	Vhlh	Endocrine β	12	Increased vasculatization in islets
[72]	Vhlh	Endocrine β	6.5	None
[72]	Vhlh; Hif-1α	Endocrine β	6.5	None
[74]	Vhlh	Endocrine β	N/A	Increased vasculatization in islets
[75]	Vhlh	Endocrine β	2	Increased vasculatization and α-cells scattered throughout the islets
[66]	Kif3a	Progenitor	2	Compromised acinar tissue
[66]	Kif3a	Progenitor	12	Fibrosis, ductal dilation, cysts
of pancreatic cysts in general. In vitro studies support a role for pVHL in microtubule stabilization and subsequent cilia maintenance. Loss of cilia is directly related to renal cyst development in VHL and in other renal cystic syndromes [51]. Other cell aspects are also involved; pVHL influences assembly of the extracellular matrix as well as the cytoskeleton, including cell polarity.

In Pdx1-Cre;Vhlh f/f mice with pancreatic-specific loss of Vhlh, pancreatic cysts were observed after 16 to 18 months [71]. Conditional Kif3a knock-out in pancreatic duct cells in mice also resulted in cysts, but changes were already observed after 2 days [66]. Assuming that cysts mainly result from cilia loss, these data suggest that loss of additional alleles might be necessary for Vhlh-driven pancreatic cyst development. In contrast, exome sequencing of sporadic human pancreatic serous cysts only found chromosome 3p loss/VHL mutations as recurrent genetic lesions, suggesting that VHL loss is sufficient for pancreatic cyst development. The high prevalence of pancreatic cysts in patients with VHL disease supports this notion. Differences in findings might be attributed to differences in species, since in general mice seem to be relatively resistant to VHL loss when compared to humans [81], indicating that in humans VHL loss alone might be sufficient for pancreatic serous cyst development.

Monogenic diseases like VHL provide insights which can be translated to pancreatic cysts in general. Better understanding and identification of genes regarding pancreatic cyst development will probably provide new directions for diagnostics, follow-up and treatment options. Future studies should focus more on VHL and also other E3 ubiquitin ligase genes, which appear to be involved in pancreatic cysts.

Abbreviations

αPKC: Atypical protein kinase C; ECM: Extracellular matrix; HIF: Hypoxia inducible factor; KAP: Kinesin-associated protein; LOH: Loss of heterozygosity; PAR: Partitioning defective proteins; Pdx1: Pancreatic and duodenal homeobox 1; pNET: Pancreatic neuroendocrine tumor; pVHL: von Hippel-Lindau protein; RCC: Renal cell carcinoma; VEGF: Vascular endothelial growth factor; VHL: von Hippel-Lindau.

Competing interests

The authors declare that they have no competing interests.

Authors’ contribution

SA: planning/conducting the review, collecting and analysis/interpretation of literature, drafting the manuscript. EV: analysis/interpretation of literature, critical review and revision of the manuscript. RG: analysis/interpretation of literature, drafting the manuscript. AB: critical review and revision of the manuscript. AW: critical review and revision of the manuscript. HD: critical review and revision of the manuscript. All authors read and approved the final manuscript.

Acknowledgments

Supported by Grant 2008–4188 from the Dutch Cancer Society and a grant from the VHL Family Alliance. RHG acknowledges support from EU FP7/2009 241955 “SYSCILIA”. The work was independent of the funding. We would like to thank Esther M van Straten for assistance of illustration of Figure 4.

Author details

1 Department of Endocrinology, University of Groningen, University Medical Center Groningen, PO Box 30.001, 9700 RB, Groningen, The Netherlands.
2 Department of Medical Oncology, University of Groningen, University Medical Center Groningen, PO Box 30.001, 9700 RB, Groningen, The Netherlands.
3 Department of Gastroenterology, University of Groningen, University Medical Center Groningen, PO Box 30.001, 9700 RB, Groningen, The Netherlands.
4 Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, PO Box 30.001, 9700 RB, Groningen, The Netherlands.
5 Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands.

Received: 7 December 2012 Accepted: 16 January 2013
Published: 5 February 2013

References

1. de Jong K, Bruno MJ, Fockens P (2012) Epidemiology, diagnosis, and management of cystic lesions of the pancreas. Gastroenterol Res Pract 2012:147465.
2. Maher ER, Iselius L, Yates JR, Littler M, Benjamin C, Harris R, Sampson J, Williams A, Ferguson-Smith MA, Morton N (1991) Von Hippel-Lindau disease: a genetic study. J Med Genet 28:443–447.
3. Lonser RR, Glenn GM, Walther M, Chew EY, Libutti SK, Linehan WM, Oldfield EH (2003) von Hippel-Lindau disease. Lancet 361:2059–2067.
4. Maher ER, Yates JR, Harris R, Benjamin C, Harris R, Moore AT, Ferguson-Smith MA (1990) Clinical features and natural history of von Hippel-Lindau disease. Q J Med 77:1151–1163.
5. Neumann HP, Eggert HR, Scheremet R, Schumacher M, Mohajer M, Walhlook AO, Volk B, Hettmannspurger U, Regler P, Schollmeyer P (1992) Central nervous system lesions in von Hippel-Lindau syndrome. J Neurol Neurosurg Psychiatry 55:898–901.
6. The Handbook (2012), http://www.vhl.org/patients-caregivers/resources/vhl-handbooks/.
7. Baldeijnis MM, van Vlodrop IJ, Vermeulen PB, Soetekouw PM, van Engeland M, de Bruine AP (2010) VHL and HIF signalling in renal cell carcinogenesis. J Pathol 221:125–138.
8. Biansfield JA, Choyke L, Morita SY, Choyke PL, Pingpank JF, Alexander HR, Seidel G, Shvatuck Y, Yuldasheva N, Eugeni M, Bartlett DL, Glenn GM, Middelton L, Linehan WM, Libutti SK (2007) Clinical, genetic and radiographic analysis of 108 patients with von Hippel-Lindau disease (VHL) manifested by pancreatic neuroendocrine neoplasms (PNETs). Surgery 142:814–819.
9. Ercik Z, Ploeckinger U, Cascon A, Hoffmann MM, van Duicler L, Winter A, Kammel G, Bacher J, Sullivan M, Jersmann B, Fischer L, Raffel A, Knofel WT, Schott M, Baumann T, Schaefer O, Kech T, Baum RP, Melos I, Muresan M, Peczukowska M, Januszewicz A, Kupisi K, Toney A, Fasshauer M, Langrehr J, von Wussow P, Agaimy A, Schlimok G, Lemberts R, VHL-ICT Consortium, German NET Registry et al (2010) Systematic comparison of sporadic and syndromic pancreatic islet cell tumors. Endocr Relat Cancer 17:875–883.
10. Hammel PR, Vilgrain V, Terris B, Penfornis A, Sauvanet A, Correas JM, Chauveau D, Balian A, Beigelman C, O’Toole D, Bernades P, Ruzinowski P, Richard S (2000) Pancreatic involvement in von Hippel-Lindau disease. The Groupe Francophone d’Etude de la Maladie de von Hippel-Lindau. Gastroenterology 119:1087–1095.
11. Horton WA, Wong V, Elridge R (1976) Von Hippel-Lindau disease: clinical and pathological manifestations in nine families with 50 affected members. Arch Intern Med 136:769–777.
12. Cheng TY, Su CH, Shyr YM, Lui WY (1997) Management of pancreatic lesions in von Hippel-Lindau disease. World J Surg 21:307–312.
13. Kanno A, Satoh K, Hamada S, Hirata M, Masamune A, Motoi F, Egawa S, Unno M, Ishida K, Kimura K, Shuin T, Shimosegawa T (2011) Serum cystic neoplasms of the whole pancreas in a patient with von Hippel-Lindau syndrome. Intern Med 50:1293–1298.
14. Hough DM, Stephens DH, Johnson CD, Binkovitz LA (1994) Pancreatic lesions in von Hippel-Lindau disease: prevalence, clinical significance, and CT findings. AJR Am J Roentgenol 162:1091–1094.
15. Mukhopadhyay B, Sahdev A, Monson JP, Besser GM, Reznik RH, Chew SL (2002) Pancreatic lesions in von Hippel-Lindau disease. Clin Endocrinol (Oxf) 57:603–608.
16. Delman KA, Shapiro SE, Jonach EW, Lee JE, Curley SA, Evans DB, Perrier ND (2006) Abdominal visceral lesions in von Hippel-Lindau disease: incidence and clinical behavior of pancreatic and adrenal lesions at a single center. World J Surg 30:665–669

17. Beerman NM, Fromkess JJ, Carey LC, Thomas FB (1982) Pancreatic cystadenoma in von-Hippel-Lindau disease: an unusual cause of pancreatic and common bile duct obstruction. J Clin Gastroenterol 4:537–540

18. Jackman FR (1984) Polycystic pancreas: Lindau's disease. J R Coll Surg Edinb 29:121–122

19. Deboever G, Dewulf F, Maertens J (1992) Common bile duct obstruction due to pancreatic involvement in the von Hippel-Lindau syndrome. Am J Gastroenterol 87:1866–1868

20. Issar SK, Kumar N, Sachdeva AK, Jain P, Puri SK (1996) von Hippel-Lindau syndrome presenting as obstructive jaundice with involvement of pancreas in two siblings. Trop Gastroenterol 17:30–32

21. Kunzli BM, Shrihandaie SV, Buchler MW, Friess H (2004) Pancreatic lesions in von Hippel-Lindau syndrome: a report of case. Surg Today 34:626–630

22. Boujaoude J, Samaha E, Honen K, Noun R, Abbous B, Ghorra C, Sayegh R (2007) A benign cause of obstructive jaundice with von Hippel-Lindau disease. A case report and review of the literature. JOP 8:790–794

23. Gupta R, Chettri D, Sharma A, Duseja A, Dhiman RK, Chawla YK, Kalra N, Gupta A, Behera A (2008) Pancreatic cysts causing biliary obstruction in von Hippel-Lindau syndrome. JOP 9:313–316

24. Baek SY, Kang BC, Choi HY, Lee SW (2000) Pancreatic serous cystadenoma associated with islet cell tumour. Br J Radiol 73:83–86

25. Agarwal N, Ghosh S, Dass J, Asero R, Rathi V (2009) Diffuse pancreatic serous cystadenoma associated with neuroendocrine carcinoma: a case report and review of literature. JOP 10:55–58

26. Charlesworth M, Verbeke CS, Falk GA, Walsh M, Smith AM, Morris-Stiff G (2007) A benign cause of obstructive jaundice with von Hippel-Lindau disease. Trop Gastroenterol 17:30–32

27. Gupta R, Chettri D, Sharma A, Duseja A, Dhiman RK, Chawla YK, Kalra N, Gupta A, Behera A (2008) Pancreatic cysts causing biliary obstruction in von Hippel-Lindau syndrome. JOP 9:313–316

28. Baek SY, Kang BC, Choi HY, Lee SW (2000) Pancreatic serous cystadenoma associated with islet cell tumour. Br J Radiol 73:83–86

29. Zbar B, Linehan WM, Lubensky IA (2000) Histopathology and molecular genetics of von-Hippel-Lindau disease-causing pVHL mutations correlate with patterns of tumourigenesis in von Hippel-Lindau disease. Hum Mol Genet 10:1029–1038

30. Ohn M, Yauch RL, Lonergan KM, Whaley JM, Stemmer-Rachamimov AO, Louis DN, Gavin BJ, Kley N, Kaelin WG Jr, Iliopoulos O (1998) The von Hippel-Lindau tumor suppressor protein is required for proper assembly of an extracellular fibronectin matrix. Mol Cell 1:59–66

31. Komada M, Suzuki K, Kato Y, Okuda H, Shuin T (2001) von Hippel-Lindau protein promotes the assembly of actin and vinculin and inhibits cell motility. Cancer Res 61:4184–4189

32. Esteban-Barragan MA, Avila P, Alvarez-Tejado M, Gutierrez MD, Garcia-Pardo A, Sanchez-Madrid F, Landazuri MO (2002) Role of the von-Hippel-Lindau tumor suppressor gene in the formation of beta1-integrin fibrillar adhesions. Cancer Res 62:2929–2936

33. Maher ER, Yates JR, Ferguson-Smith MA (1990) Statistical analysis of the two-stage mutation model in von Hippel-Lindau disease. Hum Mutat 1:157–167

34. Crossey PA, Foster K, Richards FM, Phipps ME, Latif F, Tory K, Jones MH, Stringer S, Reid C, Nettesheim G, Zbar B, Stukenberg P, Litt P, Linehan WM, Lubensky IA, Gorina S, Lin A (2001) Decreased expression of von Hippel-Lindau tumor suppressor protein in pancreatic cystadenoma associated with neuroendocrine carcinoma: a case report and review of literature. JOP 10:55–58

35. Charlesworth M, Verbeke CS, Falk GA, Walsh M, Smith AM, Morris-Stiff G (2007) A benign cause of obstructive jaundice with von Hippel-Lindau disease. Trop Gastroenterol 17:30–32

36. Iliopoulos O, Ohh M, Kaelin WG Jr (1998) pVHL19 is a biologically active product of the von-Hippel-Lindau gene arising from internal translation start site. Proc Natl Acad Sci U S A 95:8817–8822

37. Iliopoulos O, Ohh M, Kaelin WG Jr (1998) pVHL19 is a biologically active product of the von-Hippel-Lindau gene arising from internal translation start site. Proc Natl Acad Sci U S A 95:8817–8822

38. Clifford SC, Cockman ME, Pugh CW, Edelman M, Kessler B, Bullock AN, Ratcliffe PJ, Masson N (2007) Interaction of hydroxylated collagen IV with the von-Hippel-Lindau tumor suppressor. J Biol Chem 282:13264–13269

39. Deboever G, Dewulf F, Maertens J (1992) Common bile duct obstruction due to pancreatic involvement in the von Hippel-Lindau syndrome. Am J Gastroenterol 87:1866–1868

40. Issar SK, Kumar N, Sachdeva AK, Jain P, Puri SK (1996) von Hippel-Lindau syndrome presenting as obstructive jaundice with involvement of pancreas in two siblings. Trop Gastroenterol 17:30–32

41. Kunzli BM, Shrihandaie SV, Buchler MW, Friess H (2004) Pancreatic lesions in von Hippel-Lindau syndrome: a report of case. Surg Today 34:626–630

42. Crossey PA, Foster K, Richards FM, Phipps ME, Latif F, Tory K, Jones MH, Stringer S, Reid C, Nettesheim G, Zbar B, Stukenberg P, Litt P, Linehan WM, Lubensky IA, Gorina S, Lin A (2001) Decreased expression of von Hippel-Lindau tumor suppressor protein in pancreatic cystadenoma associated with neuroendocrine carcinoma: a case report and review of literature. JOP 10:55–58

43. Charlesworth M, Verbeke CS, Falk GA, Walsh M, Smith AM, Morris-Stiff G (2007) A benign cause of obstructive jaundice with von Hippel-Lindau disease. Trop Gastroenterol 17:30–32

44. Iliopoulos O, Ohh M, Kaelin WG Jr (1998) pVHL19 is a biologically active product of the von-Hippel-Lindau gene arising from internal translation start site. Proc Natl Acad Sci U S A 95:8817–8822

45. Charlesworth M, Verbeke CS, Falk GA, Walsh M, Smith AM, Morris-Stiff G (2007) A benign cause of obstructive jaundice with von Hippel-Lindau disease. Trop Gastroenterol 17:30–32

46. Iliopoulos O, Ohh M, Kaelin WG Jr (1998) pVHL19 is a biologically active product of the von-Hippel-Lindau gene arising from internal translation start site. Proc Natl Acad Sci U S A 95:8817–8822

47. Iliopoulos O, Ohh M, Kaelin WG Jr (1998) pVHL19 is a biologically active product of the von-Hippel-Lindau gene arising from internal translation start site. Proc Natl Acad Sci U S A 95:8817–8822

48. Iliopoulos O, Ohh M, Kaelin WG Jr (1998) pVHL19 is a biologically active product of the von-Hippel-Lindau gene arising from internal translation start site. Proc Natl Acad Sci U S A 95:8817–8822

49. Iliopoulos O, Ohh M, Kaelin WG Jr (1998) pVHL19 is a biologically active product of the von-Hippel-Lindau gene arising from internal translation start site. Proc Natl Acad Sci U S A 95:8817–8822

50. Iliopoulos O, Ohh M, Kaelin WG Jr (1998) pVHL19 is a biologically active product of the von-Hippel-Lindau gene arising from internal translation start site. Proc Natl Acad Sci U S A 95:8817–8822

51. Iliopoulos O, Ohh M, Kaelin WG Jr (1998) pVHL19 is a biologically active product of the von-Hippel-Lindau gene arising from internal translation start site. Proc Natl Acad Sci U S A 95:8817–8822

52. Iliopoulos O, Ohh M, Kaelin WG Jr (1998) pVHL19 is a biologically active product of the von-Hippel-Lindau gene arising from internal translation start site. Proc Natl Acad Sci U S A 95:8817–8822
of multiple cysts and microcystic (serous) adenomas of the pancreas in von Hippel-Lindau patients. Am J Pathol 157:1615–1621

59. Cotran RS, Kumar V, Collins T (1999) Tissue repair: cellular growth, fibrosis and wound healing. In: Cotran RS, Kumar V, Collins T (eds) Robbins pathologic basis of disease. WB Saunders Company, Philadelphia, pp 89–112

60. Suzuki A, Ohno S (2006) The PAR-aPKC system: lessons in polarity. J Cell Sci 119:979–987

61. Martin-Belmonte F, Gassama A, Gatta A, Yu W, Rescher U, Gerke V, Mostov K (2007) PTEN-mediated apical segregation of phosphoinositides controls epithelial morphogenesis through Cdc42. Cell 128:383–397

62. Okuda H, Saitoh K, Hirai S, Iwai K, Takaki Y, Baba M, Minato N, Ohno S, Shuin T (2001) The von Hippel-Lindau tumor suppressor protein mediates ubiquitination of activated atypical protein kinase C. J Biol Chem 276:43611–43617

63. Duchi S, Fagnozchi L, Cavaliere V, Hsauna A, Gargiulo G, Hsu T (2010) Drosophila Vhl tumor-suppressor gene regulates epithelial morphogenesis by promoting microtubule and aPKC stability. Development 137:1493–1503

64. Mofrad MR, Kamm RD (2006) Introduction, with the biological basis for cell mechanics. In: Mofrad MR, Kamm RD (eds) Cytoskeletal mechanics: models and measurements, 1st edn. Cambridge University Press, Cambridge, pp 1–17

65. D’Angelo A, Franco B (2009) The dynamic cilium in human diseases. Pathogenetics 2:3

66. Cano DA, Sekine S, Hrebek M (2006) Primary cilia deletion in pancreatic epithelial cells results in cyst formation and pancreatitis. Gastroenterology 131:1856–1869

67. Pan FC, Wright C (2011) Pancreas organogenesis: from bud to plexus to gland. Dev Dyn 240:530–565

68. Rovira M, Scott SG, Liss AS, Jensen J, Thayer SP, Leach SD (2010) Isolation and characterization of centroacinar/terminal ductal progenitor cells in adult mouse pancreas. Proc Natl Acad Sci U S A 107:75–80

69. Lubensky IA, Pack S, Ault D, Vortmeyer AO, Libutti SK, Choyke PL, Wolther MM, Linehan WM, Zhuang Z (1998) Multiple neuroendocrine tumors of the pancreas in von Hippel-Lindau disease patients: histopathological and molecular genetic analysis. Am J Pathol 153:223–231

70. Gnarra JR, Ward JM, Porter FD, Wagner JR, Devor DE, Grinberg A, Emmert-Buck MR, Westphal H, Klausner RD, Linehan WM (1997) Defective placental vasculogenesis causes embryonic lethality in VHL-deficient mice. Proc Natl Acad Sci U S A 94:9102–9107

71. Shen HC, Adam A, Ylaya K, Wilson A, He M, Lorang D, Hewitt SM, Pechhold K, Harlan DM, Lubensky IA, Schmidt LS, Linehan WM, Libutti SK (2009) Deciphering von Hippel-Lindau (VHL/Vhl)-associated pancreatic manifestations by inactivating Vhl in specific pancreatic cell populations. PLoS One 4:e4897

72. Zehetner J, Danzer C, Collins S, Eckhardt K, Gerber PA, Ballaschieter M, Galanovnikis J, Shimomura K, Ashcroft FM, Thoren B, Rorsman P, Krek W (2008) PKHL is a regulator of glucose metabolism and insulin secretion in pancreatic beta cells. Genes Dev 22:3135–3146

73. Cantley J, Selman C, Shulda D, Abramov AY, Forstreuter F, Esteban MA, Clare R, Lingard SJ, Clements M, Harten SK, Asare-Anane H, Batterham RL, Herrero PL, Persaud SJ, Duchen MR, Maxwell PH, Withers DJ (2009) Deletion of the von Hippel-Lindau gene in pancreatic beta cells impairs glucose homeostasis in mice. J Clin Invest 119:125–135

74. Puri S, Cano DA, Hrebek M (2009) A role for von Hippel-Lindau protein in pancreatic beta-cell function. Diabetes S843–844

75. Choi D, Cai FP, Schroer SA, Wang L, Woo M (2011) Vhl is required for normal pancreatic beta cell function and the maintenance of beta cell mass with age in mice. Lab Invest 91:527–538

76. Penigry M, Hammel P, Corcos O, Larochelle O, Giraud S, Richard S, Sauvanet A, Belghiti J, Ruszniewski P, Bedossa P, Couvelard A (2009) Pancreatic endocrine microadenomatosis in patients with von Hippel-Lindau disease: characterization by VHL/HIF pathway proteins expression. Am J Surg Pathol 33:739–748

77. Alpert LC, Truong LD, Bossart MI, Spjut HJ (1988) Microcystic adenoma (serous cystadenoma) of the pancreas: A study of 14 cases with immunohistochemical and electron-microscopic correlation. Am J Surg Pathol 12:251–263

78. Egawa N, Malillet B, Schroder S, Mukai K, Koppelg G (1994) Serous oligocystic and ill-demarcated adenoma of the pancreas: a variant of serous cystic adenoma. Virchows Arch 424:13–17

79. Busine MP, DeVimere L, Degand P, Dieu MC, Gosselin B, Copin MC, Aubert JP, Porchet N (2000) Developmental mucin gene expression in the gastrotrudinal tract and accessory digestive glands. II. Duodenum and liver, gallbladder, and pancreas. J Histochem Cytochem 48:1667–1676

80. Kosmahl M, Wagner J, Peters K, Sipos B, Koppelg G (2004) Serous cystic neoplasms of the pancreas: an immunohistochemical analysis revealing alpha-inhibin, neuron-specific enolase, and MUC6 as new markers. Am J Surg Pathol 28:339–346

81. Hsu T (2012) Complex cellular functions of the von Hippel-Lindau tumor suppressor gene: insights from model organisms. Oncogene 31:2247–2257