Survey of The Main Pests Infesting Squash Plants and Its Relation with The Planting Dates at Assiut Governorate

Abou El-Saad, A.K., M. Z. Embarak* and A. A. A. Salem
Plant Protection Research Institute, Agricultural Research Center, Dokki, Giza, Egypt
Email: magedzahe@yahoo.com

ARTICLE INFO
Article History
Received:25/9/2020
Accepted:10/11/2020

Keywords:
Piercing sucking pests – Survey – Population fluctuation – Planting dates – Squash

ABSTRACT
Field experiments were conducted in Assiut Governorate during two successive seasons 2018 and 2019; to survey the phytophagous pests inhabiting squash plants, in addition, to study the relationship between the main pests namely; melon aphid, Aphis gossypii (Glover); whitefly, Bemisia tabaci (Genn.); two-spotted spider mite, Tetranychus urticae Koch; Onion thrips, Thrips tabaci (Lind.) and green leafhopper, Empoasca decipiens (Paoli) and its infestation of the winter, summer and nili squash plantations during 2018 and 2019 growing seasons.

The results revealed clearly twenty species of phytophagous pests belonging to twelve families and seven orders inhibiting winter, summer, and nili squash plantations were encountered by using the plant samples method. Data also, revealed that the summer squash plantation received a higher average number with the aforementioned main pests, followed by nili and winter squash plantations; also, the whitefly, B. tabaci ranked first in the highest average number of individuals followed by a two-spotted spider mite, T. urticae; green leafhopper, E. decipiens; melon aphid, A. gossypii, and onion thrips, T. tabaci infestation to winter, summer and nili squash plantations during 2018 and 2019 growing seasons.

It can be concluded that severe injury of the main pests; A. gossypii, B. tabaci, T. urticae, T. tabaci and E. decipiens to the squash plants can be avoided by using the winter plantation date followed by nili and summer plantation dates.

INTRODUCTION

Squash (Cucurbita pepo L.) is one of the most important vegetable crops used as human food cultivated in Egypt and many countries of the world. The cultivated area with this crop increased during the last two decades especially in new reclaimed regions in both open and protected plantations. Through the growing season, squash plants are suffering from severe infestations with different phytophagous pests from seedling until harvest such as the melon aphid, A. gossypii (Glover); the whitefly, B. tabaci (Genn.); the two-spotted spider mite, T. urticae Koch; the onion thrips, T. tabaci (Lind.) and the green leafhopper, E. decipiens (Paoli) which caused extensive damage not only by sucking plant juice but also by the transmission of phytopathogenic and in decreased the yield. Confirmed results were reported by some investigators such as; Mohamed (2011), Hassan et al. (2013), El-Dars et al. (2013), Al-Kiridis (2016), Al-Ghamdi et al. (2018), Hegab (2018), and Saad (2020).
MATERIALS AND METHODS

The experiments were conducted in the graduate youth lands at Arab El-Awamer, Abnob, Assiut Governorate throughout three successive winter, summer, and nili plantations during 2018 and 2019 growing seasons. An area of about one carat was sown with squash seeds (*Cucurbita pepo* L.) on half January, May and September months for winter, summer and nili plantations respectively during 2018 and 2019 growing seasons. The experimental design used was completely randomized blocks with three replicates. All recommended agricultural practices were applied during the growing seasons except using chemical control. Weekly samples of 10 leaves from each replicate (in addition to observations) were taken randomly about after three weeks from planting date and continued to harvesting time. The collected leaves were transferred to the laboratory into plastic bags for identification of phytophagous pests and counting the numbers of the main pests; aphid (adults and nymphs); whitefly (immature stages); two-spotted spider mite (moving stages); onion thrips (adults and nymphs) and green leafhopper (adults and nymphs) by the aid of a binocular microscope. Obtained data were statistically analyzed by applying the analysis of variance (ANOVA) and the least significant difference (L.S.D.) at a probability level of 0.05.

RESULTS AND DISCUSSION

Survey the Phytophagous Pests Inhabiting Squash Plants:

Data Table (1) indicates the presence of 20 species of phytophagous pests belonging to twelve families and 7 orders inhabiting squash plants through the winter, summer and nili plantations during 2018 and 2019 growing seasons. Order Hemiptera (Heteroptera) ranked first in the number of species inhabiting squash plants (8 species), followed by Diptera (4 species), Coleoptera (3 species), Acari & Lepidoptera (2 species/each) and Thysanoptera recorded one species, found on previous three squash plantations during two successive seasons 2018 and 2019.

Table 1: A partial taxonomic list of phytophagous pests recovered from squash plants during 2018 and 2019 growing seasons at Assiut Governorate.
The present findings agree with obtained by, Amro (2008) who recorded twenty-one arthropod species belonging to 18 genera, 11 families and four orders were encountered by using the sweeping net method inhabiting sweet melon, cucumber, and squash vegetables during 2005 and 2006 successive seasons, Hagrass et al. (2008) who indicated that 56 species of mites belonging to 44 genera and 24 families were collected from cantaloupe and squash vegetables during 2000 and 2001 growing seasons and Ibrahim et al. (2017) who recorded ten insect pests belonging to nine families and six orders on cucumber. Also, Habashi & Faris (2005), Allam (2014), Abdel-Rahman et al. (2016) and El-Mesawy (2018).

The Main Pests Infesting Squash Plants:
1-Melon Aphid, *A. gossypii* (Glover):

Data obtained in Table (2) cleared that the infestation of aphid on squash plantations (winter, summer and nili) during two successive seasons, 2018 and 2019.

1- Winter Plantation:

The infestation of aphid to squash plants started from 1st week of February and continued until the 4th week of April during the 2018 and 2019 growing seasons. Regardless of squash plants and seasons, the highest average numbers of aphid were recorded on squash plants that occurred on 1st and 2nd weeks of April (38.00 and 40.67) during 2018 and 2019 growing seasons, respectively. Also, the highest average numbers monthly of *A. gossypii* were 94.67 recorded during April followed by 37.33 in March and 3.00 in February; and 106.00 recorded during April followed by 61.67 in March and 4.67 in February during 2018 and 2019 growing seasons, respectively.

2- Summer Plantation:

The infestation of *A. gossypii* to squash plants started from the 1st and 2nd weeks of June and continued until the 4th week of August during 2018 and 2019 growing seasons. Also, the highest average numbers monthly of aphid were 104.67 recorded during August followed by 62.99 in July and 5.33 in June; and 118.00 recorded during August followed by 74.66 in July and 7.33 in June during 2018 and 2019 successive seasons, respectively. The highest average numbers of *A. gossypii* recorded on squash plants occurred on the 1st and 2nd weeks of August (39.00 and 41.67) during 2018 and 2019 growing seasons, respectively.

3- Nili Plantation:

The infestation of aphid to squash plants started from the 1st and 2nd weeks of October and continued until the 4th week of December during 2018 and 2019 growing seasons, respectively. Also, the highest average numbers of *A. gossypii* were recorded on squash plants that occurred in the 2nd week of October (37.33 and 41.67) during the 2018 and 2019 growing seasons, respectively. The highest average numbers monthly of aphid were 109.00 recorded during October followed by 44.33 in November and 4.33 in December, and 121.66 recorded during October followed by 54.01 in November and 5.67 in December during two seasons 2018 and 2019, respectively. These results are in partial agreement with those obtained by, Metwally et al. (1995) who recorded that the aphid, *A. gossypii* started to infest summer squash plantation more early when the plants reached two weeks in age during 1991 and 1992 growing seasons, Kamel et al. (2000) who indicated that, *A. gossypii* infest cantaloupe summer plantation during 1995 and 1996 successive seasons, Meligi (2009) stated that the aphid increased in the 4th week of August and 1st week of September during nili plantation 2004 season, and increased in the 2nd week of May during 2005 season in summer plantation, El-Lakwah et al. (2011) who indicated that the infestation of aphid on cucumber plants were reach its maximum on 28th October and 10th November during 2007 and 2008 seasons, respectively, Ghallab et al. (2011) who indicated that the population dynamic of *A. gossypii* on cucumber plants are exhibited one peak on May 25th during 2009 season, Mohamed (2011) who revealed that the population density of *A. gossypii* (nymphs and
adults) on squash plants increased by delaying planting date (May, 1st) during the two successive seasons, 2009 and 2010, Shalaby et al. (2013) recorded that the highest relative abundance of aphid individuals on cucumber on October 15th during 2008 and 2009 seasons, Awadalla et al. (2018) who stated that the aphid recorded highest seasonal abundance on squash plants in the 3rd week of March and 2nd week of June during 2014 and 2015 seasons and Ismail (2018) who stated that aphid occurred in the 4th week of July and August during the first season, 2015 and in the second season 2016 it peaked in the 4th week of July and 3rd week of August on Okra plants.

It could be concluded from the aforementioned obtained results, the highest general mean numbers of *A. gossypii* recorded on squash plants were (172.99 and 199.99) in summer plantations followed by (157.66 and 181.34) in nili plantations and (135.00 and 172.34) in winter plantations.

Table 2: Average numbers of the melon aphid, *Aphis gossypii* (Glover) (adult & nymph) inhabiting winter, summer and nili squash plantations during 2018 and 2019 growing seasons.

Season 2018	Winter plantation	Summertime plantation	Nilli plantation	Winter plantation	Summertime plantation	Nilli plantation
Date	Av. num.	Date	Av. num.	Date	Av. num.	Date
Feb. 5	0.33	June 6	0.67	Oct. 7	29.00	Feb. 6
12	0.33	13	1.00	14	37.33	13
19	0.67	20	1.33	21	22.00	20
26	1.67	27	2.33	28	20.67	27
Mean	3.00	Mean	5.33	Mean	109.00	Mean
March 5	2.67	July	4	8.33	Nov. 4	17.00
12	6.33	11	11.00	11	11.00	13
19	11.00	18	18.33	18	9.33	20
26	17.33	25	25.33	25	7.00	27
Mean	37.33	Mean	62.99	Mean	44.33	Mean
April 2	38.00	Aug. 1	39.00	Dec. 2	2.33	April 3
9	29.00	8	34.67	9	1.00	10
16	19.67	15	22.00	16	0.67	17
23	8.00	22	9.00	23	0.33	24
Mean	94.67	Mean	104.67	Mean	4.33	Mean
G. mean	135.00	G. mean	172.99	G. mean	157.66	G. mean

Season 2019	Winter plantation	Summertime plantation	Nilli plantation	Winter plantation	Summertime plantation	Nilli plantation
Date	Av. num.	Date	Av. num.	Date	Av. num.	Date
Feb. 6	0.67	June 8	1.33	Oct. 9	41.67	Feb. 6
12	0.67	15	1.67	Oct. 16	32.33	16
19	1.00	22	1.33	23	24.33	23
26	2.33	29	3.00	30	23.33	30
Mean	4.67	Mean	7.33	Mean	121.66	Mean
March 6	8.00	July 6	10.33	Nov. 6	19.67	March 6
12	12.67	13	14.00	13	13.67	13
19	18.67	20	21.33	20	11.67	20
26	22.33	27	29.00	27	9.00	27
Mean	36.17	Mean	45.33	Mean	54.01	Mean
April 3	31.33	Aug. 3	38.33	Oct. 4	3.33	April 3
9	40.67	10	41.67	11	1.67	11
16	23.33	17	25.67	18	1.00	18
23	10.67	24	12.33	25	0.67	25
Mean	94.67	Mean	104.67	Mean	4.33	Mean
G. mean	135.00	G. mean	172.99	G. mean	157.66	G. mean

LSDo.05 3.861 4.591

II-Whitefly, *B. tabaci* (Genn.):

Average numbers of the whitefly, *B. tabaci* infesting squash plantations (winter, summer and nili) during 2018 and 2019 growing seasons were represented in Table (3).

1- Winter Plantation:

As shown in Table (3), the infestation of *B. tabaci* to squash plants started from 1st week of February and continued until the 4th week of April during 2018 and 2019 growing seasons. Also, the highest average numbers of whitefly were recorded on squash plants occurred on the 2nd and 3rd weeks of April (172.00 and 179.00) during 2018 and 2019 growing seasons, respectively, and the highest average numbers monthly of *B. tabaci* were 529.67 recorded during April followed by 239.67 in March and 37.00 in February; and 558.33 recorded during April followed by 251.68 in March and 45.00 in February during 2018 and 2019 growing seasons, respectively.

2- Summer Plantation:

The infestation of whitefly to squash plants started from the 1st and 2nd weeks of June and continued until the 4th week of August during 2018 and 2019 growing seasons, respectively. Also, the highest average numbers monthly of *B. tabaci* were 547.33 recorded during August followed by 259.33 in July and 45.34 in June; and 596.67 recorded in August...
followed by 277.01 in July and 55.33 in June during 2018 and 2019 growing seasons, respectively. The highest average numbers of whitefly recorded on squash plants occurred on the 1st and 3rd weeks of August (184.33 and 193.00) during 2018 and 2019 growing seasons, respectively.

3. Nili Plantation:

The infestation of whitefly to squash plants started from the 1st and 2nd weeks of October and continued until the 4th week of December during 2018 and 2019 growing seasons, respectively. Also, the highest average numbers of B. tabaci were recorded on squash plants that occurred in the 3rd and 2nd weeks of October (173.00 and 180.00) during 2018 and 2019 growing seasons, respectively. The highest average numbers monthly of B. tabaci were 535.00 recorded during October followed by 242.00 in November and 37.99 in December; and 562.33 recorded during October followed by 255.68 in November and 49.00 in December during two seasons 2018 and 2019, respectively.

Table 3: Average numbers of the whitefly, Bemisia tabaci (Genn.) immature stages) inhabiting winter, summer and nili squash plantations during 2018 and 2019 growing seasons.

Winter plantation	Summer plantation	Nili plantation	Winter plantation	Summer plantation	Nili plantation						
Date	Av. num.										
Feb. 5	2.33	June 6	3.67	Oct. 7	111.33	Feb. 6	3.33	June 8	5.33	Oct. 9	180.00
12	3.00	13	4.67	14	140.67	13	4.67	15	6.67	16	147.33
19	11.00	20	14.00	21	173.00	20	13.33	22	16.33	23	121.00
26	20.67	27	23.00	28	110.00	27	23.67	29	27.00	30	114.00
Mean	37.00	Mean	45.34	Mean	535.00	Mean	45.00	Mean	55.33	Mean	562.33
March 5	23.33	July 4	30.67	Nov. 4	101.00	March 6	29.67	July 6	34.00	Nov. 6	105.67
12	42.67	11	47.33	11	70.00	13	45.67	13	50.67	13	72.67
19	68.67	18	81.00	18	43.67	20	71.67	20	85.67	20	46.67
26	101.00	25	100.33	25	27.33	27	104.67	27	106.67	27	30.67
Mean	239.67	Mean	259.33	Mean	242.00	Mean	251.68	Mean	277.01	Mean	255.68
April 2	115.67	Aug. 1	184.33	Dec. 2	21.00	April 3	120.00	Aug. 3	126.00	Oct. 4	24.67
9	142.00	8	156.67	9	11.33	10	146.33	10	162.00	11	14.33
16	137.67	15	108.00	16	33.33	17	179.00	17	193.00	18	5.67
23	104.33	22	98.33	23	2.33	24	113.00	24	115.67	25	4.33
Mean	529.67	Mean	547.33	Mean	37.99	Mean	599.33	Mean	596.67	Mean	49.00
G. mean	806.34	G. mean	852.00	G. mean	814.99	G. mean	855.01	G. mean	929.01	G. mean	867.01

These results are in partial agreement with those obtained by some investigators such as; Metwally et al. (1995) who recorded that the immature stages of B. tabaci occurred in high numbers on nili squash leaves through all the period of its growing seasons, 1991 and 1992 showing two peaks of population activity, and whitefly started to infest summer squash more early when the plants reached two weeks in age during the two seasons; Kamel et al. (2000) who indicated that B. tabaci infest cantaloupe summer plantation whereas peak occurred during the 4th week of May, 3rd week of June and 3rd week of July during 1995 and 1996 growing seasons; El-Khayat et al. (2010) recorded that the numbers of B. tabaci were increased in April, 30th on cowpea plants during 2007 and 2008 growing seasons; El-Lakwah et al. (2011) indicated that the infestation with whitefly on cucumber plants were reach its maximum on 28th October and 20th October during 2007 and 2008 successive seasons, respectively; Abdalla and Al-Habsy (2013) who stated that the B. tabaci showing two peaks occurred in the 2nd week of March and 4th week of April on broad bean plants during 2011 and 2012 growing seasons; Shalaby et al. (2013) who indicated that the whitefly obviously clear that the heaviest infestation rates on cucumber on September 15th during 2008 and 2009 successive seasons; Awadalla et al. (2018) who recorded that the B. tabaci reached highest
numbers in August during 2014 and 2015 growing seasons, and Ismail (2018) stated that whitefly showed four peaks in the 1st and 4th weeks of July and in the 1st week of August and September during 2015 season, in the second season 2016 it peaked in the 1st week of August and September on okra plants.

It could be concluded from the previously obtained results, the highest general mean numbers of whitefly recorded on squash plants were (852.00 and 929.01) in summer plantation followed by (814.99 and 867.01) in nili plantation and (806.34 and 855.01) in winter plantation.

III-The Two-Spotted Spider Mite, *T. urticae* Koch:

Data obtained in Table (4) cleared that the infestation of mite on squash plantations (winter, summer, and nili) during 2018 and 2019 successive seasons.

1. Winter Plantation:
The infestation of *T. urticae* to squash plants started from 1st week of February and continued until the 4th week of April during 2018 and 2019 growing seasons. Regardless of squash plants and seasons, the highest average numbers of mite were recorded on squash plants that occurred on the 1st and 2nd weeks of April (81.33 and 93.00) during 2018 and 2019 growing seasons, respectively. Also, the highest average numbers monthly of *T. urticae* were 230.34 recorded during April followed by 154.01 in March and 10.00 in February; and 285.00 recorded during April followed by 163.34 in March and 13.00 in February during 2018 and 2019 seasons, respectively.

2. Summer Plantation:
The infestation of mite to squash plants started from the 1st and 2nd weeks of June and continued until the 4th week of August during 2018 and 2019 seasons, respectively. Also, the highest average numbers monthly of *T. urticae* were 297.33 recorded during August followed by 174.67 in July and 12.00 in June; and 316.33 recorded during August followed by 191.66 in July and 18.68 in June during two seasons, 2018 and 2019 respectively. The highest average numbers of the mite recorded on squash plants occurred on the 1st and 2nd weeks of August (98.00 and 101.33) during the 2018 and 2019 growing seasons, respectively.

3. Nili Plantation:

As shown in Table (4) the infestation of *T. urticae* to squash plants started from the 1st and 2nd weeks of October and continued until the 4th week of December during 2018 and 2019 growing seasons, respectively. Also, the highest average numbers of mite were recorded on squash plants occurred on the 3rd and 2nd weeks of October (91.00 and 94.00) during 2018 and 2019 seasons, respectively, and the highest average numbers monthly of the mite were 304.67 recorded during October followed by 128.33 in November and 10.67 in December; and 316.00 recorded during October followed by 140.34 in November and 17.00 in December during 2018 and 2019 seasons, respectively.

Similar results were obtained by Ahmed (2003) who stated that the two-spotted spider mite, *T. urticae* infest squash plants from October 2000 to August 2001; Meligi (2009) who indicated that the population density of *T. urticae* increased in the 4th week of August during 2004 season in nili plantation, increased in 1st and 2nd weeks of May during 2005 season, in the summer plantation and increased in 2nd and 3rd weeks of August during 2005 season in the summer plantation; El-Khayat et al. (2010) indicated that the numbers of different stages of *T. urticae* were increased by delaying the planting date on April 30th on cowpea plants during 2007 and 2008 successive seasons; Ghallab et al. (2011) who revealed that the population density of spider mite on cucumber exhibited two peaks, at the end of April and in the mid of May during 2009 season; Shalaby et al. (2013) who indicated that the average numbers of *T. urticae* recorded the highest relative abundance on October 15th on cucumber during 2008 and 2009 growing seasons, and Abou El-Saad (2015) who revealed that the two mites, *T. urticae* and *T. cucurbitacearum* inhabiting squash plants and peaked on 4th week of
April during 2013 and 2014 successive seasons.

It could be concluded from the aforementioned obtained results, the highest general mean numbers of *T. urticae* recorded on squash plants were (484.00 and 526.67) in summer plantation followed by (443.67 and 473.34) in nili plantation and (394.35 and 461.34) in winter plantation.

Table 4: Average numbers of the two-spotted spider mite, *Tetranychus urticae* Koch (moving stages) inhabiting winter, summer and nili squash plantations during 2018 and 2019 growing seasons.

Season 2018	Season 2019										
Winter plantation	**Winter plantation**										
Date	**Av. num.**										
Feb. 5	1.00	June 6	1.33	Oct. 7	62.33	Feb. 6	1.67	June 8	2.67	Oct. 9	94.00
12	1.67	13	2.67	14	68.67	13	2.33	15	3.67	16	85.33
19	3.00	20	3.67	21	91.00	20	4.00	22	5.67	23	69.00
26	4.33	27	4.33	28	82.67	27	5.00	29	6.67	30	67.67
Mean	**10.00**	**Mean**	**12.00**	**Mean**	**304.67**	**Mean**	**13.00**	**Mean**	**16.88**	**Mean**	**316.00**
March 5	17.00	July 4	17.33	Nov. 4	44.00	March 6	18.67	July 6	21.33	Nov. 6	46.00
12	28.67	11	36.00	11	38.00	13	31.67	13	39.33	13	42.00
19	42.67	18	52.67	18	39.33	20	45.00	20	57.33	20	32.67
26	65.67	25	68.67	25	16.00	27	68.00	27	73.67	27	19.67
Mean	**154.01**	**Mean**	**174.67**	**Mean**	**128.33**	**Mean**	**163.34**	**Mean**	**191.66**	**Mean**	**140.34**
April 2	81.33	Aug. 1	98.00	Dec. 2	4.33	April 3	84.33	Aug. 3	93.00	Oct. 4	6.00
9	62.67	8	88.67	9	2.67	10	93.00	10	101.33	11	5.00
16	49.67	15	73.67	16	2.00	17	66.67	17	77.33	18	3.33
23	36.67	22	37.00	23	1.67	24	41.00	24	44.67	25	2.67
Mean	**230.34**	**Mean**	**297.33**	**Mean**	**10.67**	**Mean**	**285.00**	**Mean**	**316.33**	**Mean**	**17.00**
G. mean	394.35	G. mean	484.00	G. mean	443.67	G. mean	461.34	G. mean	526.67	G. mean	473.34
LSD0.05	10.961	12.116									

IV-Onion Thrips, *T. tabaci* (Lind.)

Data obtained in Table (5) cleared that the infestation of thrips on squash plantations (winter, summer and nili) during two successive seasons 2018 and 2019.

1. **Winter Plantation:**

As shown in Table (5), the infestation of *T. tabaci* to squash plants started from 1st week of February and continued until the 4th week of April during two successive seasons. Also, the highest average numbers of thrips were recorded on squash plants occurred on 1st and 2nd weeks of March (24.67 and 28.00) during 2018 and 2019 growing seasons, respectively, and the highest average numbers monthly of onion thrips were 67.01 recorded during March followed by 30.00 in February and 21.00 in April; and 76.33 recorded during March followed by 39.01 in February and 28.01 in April during 2018 and 2019 growing seasons, respectively.

2- **Summer Plantation:**

The infestation of onion thrips to squash plants started from the 1st and 2nd weeks of June and continued until the 4th week of August during 2018 and 2019 seasons, respectively. Also, the highest average numbers monthly of *T. tabaci* were 92.67 recorded during July followed by 42.67 in June and 26.00 in August; and 102.67 recorded in July followed by 53.33 in June and 34.00 in August during 2018 and 2019 successive seasons, respectively. The highest average numbers of thrips recorded on squash plants occurred on the 1st and 2nd weeks of July (33.67 and 36.00) during 2018 and 2019 growing seasons, respectively.

3- **Nili Plantation:**

The infestation of *T. tabaci* to squash plants started from the 1st and 2nd weeks of October and continued until the 4th week of December during 2018 and 2019 seasons, respectively. Also, the highest average number of thrips was recorded on squash plants that
occurred in the 3rd and 2nd weeks of October (26.00 and 29.00) during 2018 and 2019 growing seasons, respectively. The highest average numbers monthly of onion thrips were 72.66 recorded during October followed by 37.33 in November and 17.34 in December; and 84.67 recorded during October followed by 44.67 in November and 26.01 in December during growing seasons, 2018 and 2019 respectively.

Similar results were obtained by some investigators such as, Metwally et al. (1995) recorded that the \textit{T. tabaci} started to infest summer squash more early when the plants reached two weeks in age during 1991 and 1992 growing seasons; Kamel et al. (2000) who revealed that, three peaks of thrips were recorded by late May-early June, the 2nd half of June and 2nd & 3rd weeks of July on squash summer plantation during 1995 and 1996 successive seasons; Meligi (2009) who stated that incidence of \textit{T. tabaci} on cucumber and squash plants, whereas the population density increased in 4th week of August during 2004 season in the nilli plantation, increased in the 1st week of June during 2005 season in the summer plantation and increased in the 3rd week of September during 2005 season in the nilli plantation; Ghallab et al. (2011) who indicated that the population dynamic of thrips showed two active periods on 6 April and 26 April during 2009 season; Mohamed (2011) who revealed that the \textit{T. tabaci} recorded highest infestation on May, 1st during 2009 and 2010 seasons; Awadalla et al. (2018) who stated that the highest relative abundance of onion thrips occurred in March plantation on squash plants during 2014 and 2015 seasons, and Ismail (2018) who revealed that the \textit{T. tabaci} peaked in the 4th week of August and 2nd week of September during 2015 season and in the second season 2016 it peaked in the 5th week of August on okra plants.

It could be concluded from the previously obtained results, the highest general mean numbers of \textit{T. tabaci} recorded on squash plants were (161.34 and 190.00) in summer plantation followed by (127.33 and 155.35) in nilli plantation and (118.01 and 143.35) in winter plantation.

Table 5: Average numbers of the onion thrips, \textit{Thrips tabaci} (Lind.) (adult & nymph) inhabiting winter, summer, and nilli squash plantations during 2018 and 2019 growing seasons.

Season 2018	Winter plantation	Summer plantation	Nilli plantation	Season 2019	Winter plantation	Summer plantation	Nilli plantation								
Date	Av. num.	Date	Av. num.	Date	Av. num.	Date	Av. num.	Date	Av. num.	Date	Av. num.	Date	Av. num.	Date	Av. num.
Feb. 5	3.00	June 6	3.00	Oct. 7	13.00	Feb. 6	4.00	June 8	5.00	Oct. 9	29.00				
12	6.67	13	11.00	14	15.33	13	8.67	15	14.00	16	21.00				
19	7.00	20	12.67	21	26.00	20	8.67	22	15.00	23	18.67				
26	13.33	27	16.00	28	18.33	27	17.67	29	19.33	30	16.00				
Mean	30.00	Mean	42.67	Mean	72.66	Mean	39.01	Mean	53.33	Mean	84.67				
March 4	24.67	July 4	33.67	Nov. 4	12.00	March 6	20.00	July 6	30.00	Nov. 6	14.33				
12	18.00	11	26.67	11	9.00	13	28.00	13	36.00	13	9.67				
19	12.67	18	18.33	18	9.00	20	15.00	20	20.67	20	11.00				
26	11.67	25	14.00	25	7.33	27	13.33	27	16.00	27	9.67				
Mean	67.01	Mean	92.67	Mean	37.33	Mean	76.33	Mean	102.67	Mean	44.67				
April 2	8.00	Aug. 1	9.33	Dec. 2	5.67	April 3	10.00	Aug. 3	11.67	Oct. 4	7.67				
9	5.00	8	7.00	9	5.33	10	6.67	10	9.00	11	7.67				
16	3.00	15	6.00	16	3.67	17	6.67	17	8.00	18	5.67				
23	3.00	22	3.67	23	2.67	24	4.67	24	5.33	25	5.00				
Mean	21.00	Mean	26.00	Mean	17.34	Mean	28.01	Mean	34.00	Mean	26.01				
G. mean	118.01	G. mean	161.34	G. mean	127.33	G. mean	143.35	G. mean	190.00	G. mean	155.35				

LSD 0.05 3.372 4.051
V-The Green Leafhopper, *E. decipiens* (Paoli):

Data obtained in Table (6) cleared that the infestation of *E. decipiens* on squash plantations (winter, summer and nili) during 2018 and 2019 successive seasons.

1- Winter Plantation:

The infestation of *E. decipiens* to squash plants started from 1\(^{st}\) week of February and continued until the 4\(^{th}\) week of April during 2018 and 2019 growing seasons. Regardless of squash plants and season, the highest average numbers of *E. decipiens* were recorded on squash plants that occurred on the 3\(^{rd}\) and 4\(^{th}\) weeks of March (39.00 and 42.00) during 2018 and 2019 growing seasons, respectively. Also, the highest average numbers monthly of the green leafhopper were 133.01 recorded during March followed by 79.33 in April and 34.34 in February; and 145.00 recorded during March followed by 90.34 in April and 42.00 in February during 2018 and 2019 seasons, respectively.

2- Summer Plantation:

The infestation of *E. decipiens* to squash plants started from the 1\(^{st}\) and 2\(^{nd}\) weeks of June and continued until the 4\(^{th}\) week of August during 2018 and 2019 successive seasons, respectively. Also, the highest average numbers monthly of *E. decipiens* were 171.68 recorded during July followed by 89.67 in August and 46.34 in June; and 184.67 recorded during July followed by 118.33 in August and 56.67 in June during 2018 and 2019 successive seasons, respectively. The highest average numbers of the leafhopper recorded on squash plants occurred in the 3\(^{rd}\) and 4\(^{th}\) weeks of July (53.67 and 56.67) during 2018 and 2019 growing seasons, respectively.

3- Nili Plantation:

As shown in Table (6), the infestation of *E. decipiens* to squash plants started from the 1\(^{st}\) and 2\(^{nd}\) weeks of October and continued until the 4\(^{th}\) week of December during 2018 and 2019 growing seasons, respectively. Also, the highest average numbers of the green leafhopper were recorded on squash plants that occurred on 3\(^{rd}\) and 2\(^{nd}\) weeks of October (40.67 and 43.00) during 2018 and 2019 growing seasons, respectively, and the highest average numbers monthly of *E. decipiens* were 146.67 recorded during October followed by 93.67 in November and 28.66 in December; and 156.00 recorded during October followed by 106.00 in November and 37.00 in December during 2018 and 2019 successive seasons, respectively. The present results are in harmony with those obtained by, Metwally *et al.* (1995) stated that the initial appearance of the green leafhopper, *E. decipiens* varied from one year first and second seasons, 1991 and 1992 on squash plants, the seasonal activity of jassid was restricted in the second half of summer squash growing season of 1992; Abdalla & Al-Habashy (2013) who indicated that, one peak occurred at the 2\(^{nd}\) week of March for jassid on the broad bean during 2011 and 2012 seasons; Awadalla *et al.* (2018) who stated that the highest relative abundance of *E. decipiens* occurred in March plantation on squash plants during 2014 and 2015 successive seasons, and Ismail (2018) who revealed that the jassid *E. lybica* peaked in the 3\(^{rd}\) week of July, 4\(^{th}\) week of August and 2\(^{nd}\) week of September during 2015 growing season, while in the season of 2016 it peaked in the 2\(^{nd}\) week of August and 1\(^{st}\) week of September occurred on okra plants.

It could be concluded from the aforementioned results, the highest general mean numbers of *E. decipiens* recorded on squash plants were (307.69 and 359.67) in summer plantation followed by (269.00 and 299.00) in nili plantation and (246.68 and 277.34) in winter plantation.

All in all, in the two seasons of study, the highest infestation with whitefly for winter, summer, and nili squash plantations ranked first followed by the mite, green leafhopper, aphid, and thrips. Also, the summer plantation had the highest population density of the previous main pests followed by nili and winter plantations during two seasons of the study. Therefore, severe injury of the previous main pests to squash plants can be avoided by using
the winter plantation followed by nili and summer plantation.

Table 6: Average numbers of the green leafhopper, *Empoasca decipiens* (Paoli) (adult & nymph) inhabiting winter, summer and nili squash plantations during 2018 and 2019 growing seasons.

Winter plantation	Season 2018	Nili plantation	Winter plantation	Summer plantation	Nili plantation
Date	Av. num.	Date	Av. num.	Date	Av. num.
Feb. 5	2.33	June 6	2.67	Oct. 7	34.00
12	3.67	13	4.67	14	37.33
19	10.67	20	15.33	21	40.67
26	17.67	27	23.67	28	34.67
Mean	34.34	46.34	146.67	Mean	42.00
March 2	24.67	July 4	31.67	Nov. 4	32.33
12	32.67	11	39.67	11	26.00
19	39.00	18	53.67	18	18.67
26	36.67	25	46.67	25	16.67
Mean	133.01	171.68	93.67	Mean	145.00
April 2	32.67	Aug. 1	42.67	Dec. 2	12.33
9	22.33	8	20.33	9	10.33
16	15.33	15	14.00	16	3.67
23	9.00	22	12.67	23	2.33
Mean	79.33	89.67	28.66	Mean	90.34
G. mean	246.68	G. mean	307.69	G. mean	260.00
LSD.o.05	6.826	7.761	30.00	184.67	106.00

Acknowledgment

The authors wish to express their thanks to the owners for supplying with study land area and allow to us not using pesticides.

REFERENCES

Abdalla, A.A. and A.Z.N. Al-Habshy (2013). Population dynamics of certain homopterous insects infesting broad bean plants in Sharkia Governorate, *Egypt. Zagazig Journal of Agricultural Research*, Vol. 40 No. (5): 955-963.

Abdel-Rahman, M.A.A.; M.M.A. Ali; A.M.A. Awad; A.M.H. Shafee and G.H. Abdel-Rahman (2016). Co-existence of pests and their associated predators inhabiting cantaloupe plants, *Cucumis melo* L. in Assiut, *Egypt. Assiut University Bulletin Environment Research*, Vol. 19 (2).

Abou El-Saad, A.K. (2015). Mites inhabiting three vegetable crops in Assiut Governorate. *Journal of Plant Protection and Pathology, Mansoura University*, Vol. 6 (2): 399-406.

Ahmed, N.F.R. (2003). Studies on arthropods inhabiting cucurbits and beans. M.Sc. Thesis, Faculty of Agriculture, Cairo University, 105 pp.

Al-Ghamdi, A.; S. Otaibi and S.M. Sayed (2018). Field evaluation of indigenous predaceous insect, *Chrysoperla carnea* (Steph.) (Neuroptera: Chrysopidae), fitness in controlling aphids and whiteflies in two vegetables crops. *Egyptian Journal of Biological Pest Control*, Vol. 28 (20): 1-8.

Al-Kiridis, L.A. (2016). Biological responses of *Aphis gossypii* (Glover) to different squash (*Cucurbita pepo* L.) varieties and two acaricides application. *Journal of Entomology, Vol. 13* (5): 187-192.

Allam, I.A.Y. (2014). Some mite and insect species harbouring okra and squash plants in Upper Egypt. M.Sc. Thesis, Faculty of Agriculture, Assiut University, 194 pp.

Amro, M.A.M. (2008). Population fluctuation of certain arthropod pests inhabiting selected cucurbit varieties and their resistance status to the main sap sucking pests. *Egyptian
Survey of The Main Pests Infesting Squash Plants and Its Relation with The Planting Dates

Awadalla, S.S.; H.A.K. El-Sherafi; M.E. El-Nagar and M.G. El-Mesawy (2018). Effect of planting dates of the main pests attacking squash plants in Mansoura region. *Journal of Agriculture Research*, Vol. 86 (2): 697-709.

El-Dars, F.M.S.; M.A. Rizk and S.S. Takla (2013). Determination of chlorofenapyr residues in squash during crop production cycle. *Egyptian Academy Journal of Biological Sciences*, Vol. 5 (1): 27-32.

El-Khayat, E.F.; F.A. El-Lakwah; G.H.H. Rady; M.M.A. Ghallab and B.S. Wahba (2010). Impact of planting dates on infestation of cowpea plants with some pests. *Egyptian Journal of Agriculture Research*, Vol. 88 (4): 1107-1120.

El-Lakwah, F.A.; H.A. Abd El-Wahab; M.M. Kattab; M.M. Azab and M.S. El-Ghanam (2011). Population dynamics of some pests infesting nili cucumber plantations in relation to certain ecological factors. *Egyptian Journal of Agriculture Research*, Vol. 89 (1): 137-153.

El-Mesawy, M.G.E. (2018). Studies of the main insect and mites pests infesting some cucurbit crops and their natural enemies. Ph.D. Thesis, Faculty of Agriculture, Mansoura University.

Ghallab, M.M.A.; N.H. Habashi; A.K.F. Iskandar and M.A. Rizk (2011). Sensitivity of four cucumber cultivars to some piercing sap sucking pests infestation and their impact on yield. *Egyptian Journal of Agriculture Research*, Vol. 89 (4): 1363-1373.

Habashi, N.H. and F.S. Faris (2005). Relationship between abundance of common weeds in fields of some vegetable crops and population of the associated two-spotted spider mite, *Tetranychus urticae* Koch. *Zagazig Journal of Agriculture Research*, Vol. 32 (5): 1709-1726.

Hagras, A.E.; M.E. El-Nagar; A.M. El-Nagar and W.M.R. Abou-Zeid (2008). Incidence of mites inhabiting some field crops in two localities at Dakahlia Governorate. *Egyptian Journal of Agriculture Research*, Vol. 86 (1): 353-367.

Hassan, M.F.; A.F. ElBahrawy; G.A. El-Kady; R.I.A. Abo-Shnaf and M.S. Kamel (2013). Phytophagous mites and their natural enemies associated with common vegetables at Ismailia Governorate. *Acarines*, Vol. 7: 71-74.

Hegab, M.A.M. (2018). Ecological studies of certain piercing sucking insects infesting squash plants and relation with their chemical constituents. *Egyptian Academy Journal of Biological Sciences*, (A. Entomology) Vol. 11 (6): 11-20.

Ibrahim, I.L.; M.M. Abdel-Ghaffar; O.A. Abdel-Fattah and H.M. Khattab (2017). Effects of certain environmental factors on population fluctuation of *Aphis gossypii* in cucumber fields at Assiut Governorate. *Annals of Agricultural Sciences Moshtohor*, Vol. 55 (3): 657-664.

Ismail, H.A. (2018). The main sucking insect pests and their associated predators on okra plants. *Zagazig Journal of Agriculture Research*, Vol. 45 (4): 1257-1271.

Kamel, M.H.M.; S.I. Sherif and R.M. El-Dabi (2000). Population fluctuation of three sap sucking insects on cantaloupe summer plantations. *Egyptian Journal of Agriculture Research*, Vol. 78 (3): 1041-1048.

Meligi, E.M.F.E. (2009). Studies on pests, predators and true spiders on cucumber and squash. M.Sc. Thesis, Faculty of Agriculture, El-Fayoum University, 180 pp.

Metwally, E.M.; S.S.M. Hassanein and A.F.E. Hafsch (1995). Seasonal population activity of sucking pests infesting common bean and squash plants at Gemmeza region, Gharbia Governorate, *Egyptian Journal of Agriculture Research*, Vol. 73 (3): 653-667.

Mohamed, M.A. (2011). Effect of planting dates on infestation with certain pests and yield parameters of squash plants. *Egyptian Journal of Agriculture Research*, Vol. 89 (4): 1353-1362.
Saad, H.M. (2020). Effect of treated squash plants by cytokinin hormone (CKs) on the infestation by *Bemisia tabaci* and *Tetranychus urticae*. *Egyptian Academic Journal of Biological Sciences, (A. Entomology)*, Vol. 13 (1): 33-40.

Sahalaby, F.F.; F.A. Ali; A.A. Hafez and H.M. Saad (2013). Planting date in relation to insect and animal pests attacking cucumber plants under protected cultivation at Giza Governorate. *Egyptian Journal of Agriculture Research*, Vol. 91 (4): 1347-1360.

ARABIC SUMMARY

حصر الآفات الرئيسية التي تصيب نباتات الكوسة وعلاقتها بمواعيد الزراعة في محافظة أسيوط

أيمن كامل أبو السعد – ماجد زاهي إمبارك - علاء الدين عبد القادر أحمد

معهد بحوث وقاية النباتات – مركز البحوث الزراعية – الدقي – الجيزة - مصر

تعتبر الكوسة من أهم محاصيل الحقل القرعية، حيث تزرع في الحقل المفتوح وفي الصوب البلاستيكية، وقد أزدادت المساحة المزرعة بها في السنوات الأخيرة خاصة في أراضي الاستصلاح الجديدة وذلك من أجل الاستهلاك المحلي.

تصاب الكوسة بالعديد من الآفات الرئيسية مثل المَنَّ، الذبابة البيضاء، الأكاروس، التربس والجاسيد، وتسبب هذه الآفات خسائر تؤثر على جودة المحصول النهائي.

أظهرت الدراسة الحالية خلل التوستين 2018 و2019 والتي أجريت في أراضي شربان الكوسة - أسيوط حصر لتوصليات الأر ل التوا دة على الكوسة، بالإضافة إلى العلاقة بين هذه الآفات الرئيسية وعروات الكوسة الشتوية والصيفية والنيلية، وكان ملخص النتائج كالتالي:

أظهرت نتائج الحصر لتوصليات الأر ل، تواجد عشرون نوعاً يتبع 12 عائلة تابعة لسبعة رتب حشرية متواجدة على عروات الكوسة الثلاثة خلال عامي الدراسة.

أما أظهرت الدراسة أن نباتات الكوسة في العروة الصيفية سجلت أعلى متوسط إصابة بالآفات الرئيسية، بينما العروة النيلية ثم العروة الشتوية سجلت أقل إصابة.

كما لوحظ أن الذبابة البيضاء سجلت أعلى متوسط تعداد فيعيا الأكاروس، الجاسيد، البنّ والتربيس سجل أقل تعداد خلال عروات الكوسة الثلاثة في عامي 2018 و2019.

ومن النتائج المتحصل عليها يجب أن تؤخذ في الاعتبار عند وضع برامج المكافحة المتكاملة لهذه الآفات الرئيسية التي تصيب نباتات الكوسة.