HPLC METHODS OF FEXOFENADINE QUANTITATIVE ANALYSIS IN RABBITS’ LIVER

P.Yu. Mylnikov, I.V. Chernykh, A.V. Shchulkin, N.M. Popova, E.N. Yakusheva

Ryazan State Medical University n. a. Acad. Pavlov
9, Vysokovoltnaya St., Ryazan, Russia, 390026

E-mail: p34-66@yandex.ru

Received 19 November 2019 Review (1) 2 December 2019 Review (2) 20 December 2019 Accepted 30 December 2019

The investigation of pharmacokinetics of marker substrates of carrier protein P-glycoprotein (Pgp, ABCB1-protein) including fexofenadine, is one of the methods of its functional activity evaluation.

The aim of the study was to work out the HPLC methods of the quantitative determination of fexofenadine in rabbits’ liver.

Materials and methods. The quantitative determination of fexofenadine was performed using Stayer chromatographic system (Akvilon, Russia) with UVV 104 ultraviolet detector. Reverse-phased chromatographic column Luna C18 100Å (250*4.6) was used with 5 µm granulation at 45°C. The concentration of fexofenadine was determined by methods of absolute peak area calibration.

Results. The work was conducted in the isocratic mode. The composition of the mobile phase consisted of deionized water, acetonitrile and glacial acetic acid at the ratio of 267.4:120:4.33 brought to pH=6.7 with triethylamine.

The sample processing was in the form of homogenization of 500 mg of ground liver in 500 µl of purified water with the subsequent centrifugation (1750 g) and selection of the supernatant. The proteins were precipitated by acetonitrile (2.5 ml) acidified with 375 µl of hydrochloric acid by shaking at 500 rev/min.

The supernatant was transported into a separate test tube, where methylene chloride, diethyl ether and ethyl acetate were added (2 ml each). Then the solution was again shaken for 10 minutes (500 rev/min). After that, the solution was centrifuged (1750 g) and the supernatant was evaporated on a rotor-vacuum evaporator at 50°C. 300 µl of the mobile phase was added to the dry residue, and 100 µl was injected into the chromatograph.

The method was validated in the linear range from 3 to 60 µg/g of fexofenadine with the acceptable intra- and intercycle accuracy, precision and stability. The method was tested on rabbits after the intravenous administration of fexofenadine at the dose of 11 mg/kg.

Conclusion. The HPLC methods of fexofenadine quantitative determination in the hepatic tissue of rabbits has been worked out. It can be used for the evaluation of the functional activity of Pgp in preclinical studies.

Keywords: P-glycoprotein, ABCB1-protein, fexofenadine, chromatography, pharmacokinetics, rabbits, liver

Abbreviations: Pgp – P-glycoprotein, HPLC – high performance liquid chromatography, rev/min – revolutions per minute

ВЭЖХ-МЕТОДИКА КОЛИЧЕСТВЕННОГО АНАЛИЗА ФЕКСОФЕНАДИНА В ПЕЧЕНИ КРОЛИКОВ

П.Ю. Мыльников, И.В. Черных, А.В. Щулькин, Н.М. Попова, Е.Н. Якушева

Федеральное государственное бюджетное образовательное учреждение высшего образования «Рязанский государственный медицинский университет имени академика И.П. Павлова» Министерства здравоохранения Российской Федерации
390026, Россия, Рязань, Высоковольтная, 9

E-mail: p34-66@yandex.ru

Получено 19.11.2019 Рецензия (1) 02.12.2019 Рецензия (2) 20.12.2019 Принята к печати 30.12.2019

For citation: P.Yu. Mylnikov, I.V. Chernykh, A.V. Shchulkin, N.M. Popova, E.N. Yakusheva. HPLC methods of fexofenadine quantitative analysis in rabbits’ liver. Pharmacy & Pharmacology. 2020;8(1):40-47. DOI: 10.19163/2307-9266-2020-8-1-40-47
© П.Ю. Мыльников, И.В. Черных, А.В. Щулькин, Н.М. Попова, Е.Н. Якушева, 2020

Для цитирования: П.Ю. Мыльников, И.В. Черных, А.В. Щулькин, Н.М. Попова, Е.Н. Якушева. ВЭЖХ-методика количественного анализа фексофенадина в печени кроликов. Фармация и фармакология. 2020;8(1):40-47. DOI: 10.19163/2307-9266-2020-8-1-40-47
Исследование фармакокинетики маркерных субстратов белка-транспортера гликопротеина-Р (Pgp, ABCB1-белка), к которым относится фексофенадин, является одним из способов оценки его функциональной активности.

Цель. Разработка ВЭЖХ-методики количественного определения фексофенадина в печени кроликов.

Материалы и методы. Количественное определение фексофенадина осуществляли с использованием хроматографической системы Stayer (г.Ахвилоны, Россия) с УФ детектором UV 104. Применяли обращенно-фазную хроматографическую колонку Lux C18 100Å (250×4,6) с зернистостью 5 мкл при температуре 45°С. Определение концентрации фексофенадина проводили методом абсолютной калибровки по площади пиков.

Результаты. Исследование проводили в изоэлектрическом режиме. Состав подвижной фазы: вода деминерализованная, ацетонитрил и ледяная уксусная кислота в соотношении 267,4:120:4,33, доведенные третиэтиловым до рН 6,7. Пробоподготовка включала в гомогенизацию 500 мг измельченной печени в 500 мкл воды очищенной с последующим центрифугированием (1750 г) и отбором надосадочного жидкости. Осаждение белка осуществлялось ацетонитрилом (2,5 мл), подкисленным 375 мкл кислоты хлороводородной путем встряхивания на приборе Shaker (500 об./мин). Надосадочный слой переносили в отдельную пробирку, добавляли по 2 мл метилена хлористого, эфира диэтилового и этилацетата и повторно встряхивали 10 мин (при 500 об./мин). Затем центрифугировали (1750 г) и упакивали супернатант на роторно-вакуумном испарителе при 50°С. К сухому остатку добавляли 300 мкл подвижной фазы и 100 мкл инжектировали в хроматограф. Метод был валидирован в линейном диапазоне от 3 до 60 мкг/г фексофенадина с приемлемой внутри- и межцикловой точностью, прецизионностью и стабильностью. Методика была апробирована на кроликах после внутривенного введения им фексофенадина в дозе 11 мг/кг массы.

Заключение. Разработана ВЭЖХ-методика количественного определения фексофенадина в ткани печени кроликов, которая может использоваться для оценки функциональной активности Pgp в доклинических исследованиях.

Ключевые слова: гликопротеин-Р, ABCB1-белок, фексофенадин, хроматография, фармакокинетика, кролик, печень

Список сокращений: Pgp – гликопротеин-Р; ABCB1-белок; фексофенадин, хроматография, фармакокинетика, кролик, печень

INTRODUCTION

P-glycoprotein (Pgp, ABCB1-protein) is an efflux ATP-dependent membrane carrier protein that removes exogenous and endogenous substances of the lipophilic nature from cells into the intercellular space [1, 2]. Pgp possesses a wide substrate specificity and transports a range of medical substances: cardiac glycosides, hypotensive, antiarrhythmic, antiepileptic drugs, anticoagulants, cytostatics and other groups of drugs [3].

Being localized on the apical surface of enterocytes of small and large intestines, this transporter prevents absorption of the substrates in the endothelial cells of histohematic barriers.

It prevents their penetration into the barrier organs, on the biliary surface of hepatocytes and on the apical surface of epitheliocytes of renal tubules. Pgp promotes excretion of the substrates into bile and urine, respectively [1, 4]. Thus, Pgp plays an important role in pharmacokinetics of the drugs, which are its substrates: controls their absorption, distribution and excretion.

Functioning of Pgp can differ under the influence of many factors (hypoxic influences, hormonal level, drugs consumption), which may induce the development of undesired medical reactions in case of inhibition of the transporter, or reduction of effectiveness of the conduct-ed pharmaceutical therapy if its activity increases [5, 6].

A study of Pgp functional activity will permit to optimize a medicinal treatment and to predict interactions between medical drugs [7]. One of the evaluation methods of Pgp functioning in vivo, is the examination of pharmacokinetics of its marker substrates in dynamics [6, 8]. A marker substrate is a substance, its pharmacokinetics (absorption, distribution and excretion) is determined by the tested carrier protein [6]. As a marker substrate of Pgp, H₂Histaminolytic drug of the 3rd generation – fexofenadine – is used.

An HPLC method with UV detection is a universal method of the quantitative analysis available at any laboratory, in contrast to the method of mass-spectrophotometric detection. There are known HPLC methods of fexofenadine concentration determination in blood plasma and in the homogenate of the brain that are used for testing a functional activity of Pgp at the level of the whole organism and in the blood-brain barrier [9–13]. However, in the studied literature, no HPLC methods of quantitative analysis of fexofenadine in the liver that could make it possible to evaluate the activity of the transporter of this localization and its role in the interactions between drugs at the stage of excretion, have been found.

THE AIM of the study was to develop the HPLC methods for the quantitative analysis of the Pgp marker substrate – fexofenadine – in the liver of rabbits.

MATERIALS AND METHODS

Animals

In the study, male rabbits of the Chinchilla breed weighing 3200–3500 g were used. The animals had been taken from the Kasimov-miacro breeding nursery (Kasimov, Ryazan region) and had the required veterinary certificates. After delivery from the nursery, the animals were examined by a veterinarian, kept in quarantine for 14 days, and after that they were placed to the convec-tion vivarium of Ryazan State Medical University [14].

Each rabbit was kept in an individual cage on a litter for laboratory animals by lamplight with 12 daylight hours. The temperature in the room was maintained at 22±1°C, the relative air humidity was 45–65% [14]. The animals were fed in correspondence with State Standard P 50258-92. All the experiments with the animals were conducted in compliance with the international rules (Directive 86/609/EEC) and with the rules of Good Labo-
A quantitative determination of fexofenadine in the liver homogenate was carried out using Stayer chromatographic system (Akvilon, Russia) with ultraviolet spectrophotometric detector UV 104 equipped with a 100 µl loop injector PEEK and an autosampler 7725i (Rheodyne, USA) with a 220 nm wavelength. A reversed-phase chromatographic column Luna C18 100Å (250*4.6) was used with 5 µm graining at 45°C. The samples were injected to the chromatograph loop with Microsyringes (Germany).

In the work, the following auxiliary equipment was used: Diax 9000 tissue grinder (Heidolph, Germany), Elmi CM 6M centrifuge (Elmi, Latvia), Vodolei D301 de-ionizer (Akvilon, Russia), VV-Micro rotor-vacuum evaporator (Heidolph, Germany), a device for shaking test tubes Shaker S 3.01 (Elmi, Latvia), Vortex laboratory medical shaker (Elmi, Latvia).

Materials

As a standard substance, fexofenadine hydrochloride was used (Sigma, Lot: R032H0, USA having the quality certificate ensuring 99.2% content of fexofenadine hydrochloride).

For the extraction of fexofenadine from the liver homogenate and preparation of the mobile phase, the following reagents were used: acetonitrile “for HPLC” (Merck, Germany), CP hydrochloric acid (Ekos-1, Russia), CP glacial acetic acid (Ekos-1, Russia), triethylamine “for HPLC” (Lab-Skan, Poland), methylene chloride “for HPLC” (Lab-Skan, Poland), ethyl acetate (Lab-Skan, Poland), diethyl ether (Lab-Skan, Poland), acetonitrile (Sigma, Lot: R032H0, USA having the quality certificate ensuring 99.2% content of fexofenadine hydrochloride). Ethanol was used to prepare the solutions.

The extraction of fexofenadine from the liver homogenate was carried out using Stayer chromatographic system (Akvilon, Russia) with ultraviolet spectrophotometric detector UV 104 equipped with a 100 µl loop injector PEEK and an autosampler 7725i (Rheodyne, USA) with a 220 nm wavelength. A reversed-phase chromatographic column Luna C18 100Å (250*4.6) was used with 5 µm graining at 45°C. The samples were injected to the chromatograph loop with Microsyringes (Germany).

In the work, the following auxiliary equipment was used: Diax 9000 tissue grinder (Heidolph, Germany), Elmi CM 6M centrifuge (Elmi, Latvia), Vodolei D301 de-ionizer (Akvilon, Russia), VV-Micro rotor-vacuum evaporator (Heidolph, Germany), a device for shaking test tubes Shaker S 3.01 (Elmi, Latvia), Vortex laboratory medical shaker (Elmi, Latvia).

Results and Discussion

Conditions of Chromatography

The study was conducted in the isocratic mode. The composition of the mobile phase was the following: a mixture of deionized water, acetonitrile and glacial acetic acid at the rate of 267.4:120:4.33, brought to pH=6.7 with triethylamine. In these conditions, the flow rate was 1.0 ml/min and the retention time of fexofenadine was 17.14±0.79 min.

Sample Processing

In the process of working out the HPLC methods of quantitative analyses of the substances in the organs, it was rather problematic to achieve a high degree of their extraction from the cells, and the sample purity. It is very important since a high content of ballast compounds may lead to the contamination of the chromatographic column and considerably reduce the life of the pre-column filter.

In the work, the sample processing used for extraction of fexofenadine from the brain tissue of rats [11] based on precipitation of bioorganic molecules in the homogenate of the organ by addition of acetonitrile, has been conducted right from the beginning. Despite a high degree of the fexofenadine extraction from the liver cells, the visual evaluation of the obtained sample revealed a considerable turbidity of the solution, which evidenced the presence of compounds of a high molecular weight.

The methods of fexofenadine extraction from blood plasma [10], which consisted in adding a mixture of equal amounts of diethyl ether, methylene chloride and ethyl acetate to the acidified plasma, also led to obtaining a contaminated sample. Therefore, after the attempts to purify it by centrifuging, a stage of precipitation of proteins with acetonitrile had been added before the extraction.
In the course of the work, the extent of the fexofenadine extraction from the liver homogenate, was checked in conditions of acidic, neutral and alkaline reactions of the medium. The most reproducible data were obtained when the extraction of fexofenadine was conducted from the acidified water-acetonitrile extract with the use of the mixture of diethyl ether, ethyl acetate and methylene chloride.

Further on, the extractability of fexofenadine from the water-acetonitrile extract was tested with different volumes of organic phases. The increase in the volume to 6 ml, led to an insignificant increase in the extent of fexofenadine extraction, therefore, a further increase in the amount of the extracting agents, was irrational. As a result, the following conditions of sample processing appeared the most optimal ones. Homogenization of 500 mg of the liver ground up with scissors, was conducted in 500 µl of purified water at 26 000 rev/min on Diax 9000 homogenizer within 1 min with subsequent centrifuging at 1750 g and separation of the supernatant. Precipitation of proteins was carried out with acetonitrile (2.5 ml) acidified with 375 µl of hydrochloric acid by shaking it on a Shaker device at 500 rev/min for 10 min.

The supernatant was transferred to a separate tube, where 2 ml of methylene chloride, diethyl ether and ethyl acetate were added, with re-shaking of the solution at 500 rev/min for 10 min. Then the solution was centrifuged at 1750 g for 10 min and the supernatant was evaporated on a rotary-vacuum evaporator at 50°C. The extraction coefficient of fexofenadine was 42.4%. 300 µl of the mobile phase was added to the dry residue, and 100 µl was injected into the chromatograph.

These conditions of sample processing permitted to achieve a reproducible coefficient of fexofenadine extraction, sufficient for the construction of calibration curves and calculation of the main validation characteristics of the methods.

Parameters of applicability of chromatographic system

The number of theoretical plates were more than 3100, the peak asymmetry coefficient was not more than 1.2.

Selectivity of chromatographic methods

The successive analysis of the sample with the concentration of fexofenadine equal to 60 µg/g and that of the pure liver homogenate sample after the sample processing, showed no peaks on the chromatogram of the intact homogenate corresponding to the peaks of the target substance by the retention time. The samples of the obtained chromatograms are presented in Figure 1. The coefficient of separation (resolution) of the fexofenadine peak and of the nearest peak of the coextractive substances, was calculated as the difference between the retention times of the mentioned peaks divided by the sum of their widths at half heights. The parameter was more than 2.

Calibration curve

To construct calibration curves, 6 standard fexofenadine solutions in the rabbits’ liver homogenate of the following concentrations were prepared: 3, 12, 24, 36, 48 and 60 µg/g.

They were analyzed with the calibration graph construction showing the dependence of the concentration of a substance on the area of its chromatographic peak (Fig. 2).

This procedure was conducted 3 times – before each following stage of chromatography, which was necessary, according to the recommendations [15–17]. The following regression equations were obtained:

\[y = 0.0086 + 1.425, R^2 = 0.9981; \]
\[y = 0.0095 + 1.3598, R^2 = 0.9989; \]
\[y = 0.0092 + 1.1568, R^2 = 0.9995. \]

Calibration curves with their respective regression equations were used for calculation of accuracy and precision between the cycles in the given methods.

The correlation coefficients were more than 0.99. The deviations of the concentrations of calibration samples from nominal values calculated using three levels of linear dependence, are presented in Table 1.

Accuracy and Precision

Accuracy and precision were evaluated by the analysis of the samples of intact rabbits’ liver homogenate with adding a standard fexofenadine solution to obtain the concentrations of 3, 12, 24 and 48 µg/g.

The precision values (relative to the standard deviation) and the accuracy values (a relative error) corresponded to the accepted norms (not more than 20% for the lower limit of the quantitative determination and not more than 15% for other points) [15–17] (Table 2).
Figure 1 – Chromatogram of liver homogenate sample
Note: A – intact homogenate of liver; B - with addition of fexofenadine standard up to the concentration of 3 µg/g

Figure 2 – Calibration curve of interdependence in fexofenadine concentration in the liver homogenate and its chromatographic peak area

Figure 3 – Concentration of fexofenadine in the liver after its intravenous administration at the dose of 11 mg/kg (n=3 for each time point, M±SD)
Table 1 – Deviations of concentrations of fexofenadine calibration samples from nominal values calculated by equations of linear dependences

Nominal concentration, µg/g	Graph 1	Graph 2	Graph 3			
	Calculated concentration, µg/g	Accuracy, %	Calculated concentration, µg/g	Accuracy, %	Calculated concentration, µg/g	Accuracy, %
3	3.56	18.57	3.53	17.53	3.41	13.65
12	10.63	11.46	11.50	4.13	11.28	6.03
24	24.06	0.26	23.23	3.20	24.53	2.20
36	37.25	3.48	36.51	1.42	36.02	0.07
48	47.57	0.90	48.86	1.79	48.68	1.41
60	59.21	1.31	59.27	1.22	60.02	0.03

Table 2 – Accuracy and precision of methods of fexofenadine quantitative determination in rabbits’ liver homogenate within and between cycles

Nominal Concentration, µg/g	Mean Concentration, µg/g	Mean Accuracy, %	SD	Precision, %
				Within cycles
3	3.52	17.20	0.053	1.52
12	10.85	9.60	0.23	2.16
24	23.80	5.35	1.45	6.09
48	44.92	6.42	0.94	2.10
				Between cycles
3	3.37	12.35	0.14	4.02
12	10.82	9.81	0.44	4.07
24	25.29	5.38	1.16	4.57
48	48.99	4.17	2.35	4.79

Stability

The stability of standard fexofenadine solutions was evaluated by their three-fold chromatography after three frost/defrost cycles and dilution to the concentration of 10 µg/ml. Each frost cycle lasted 24 hours at −29°C in the frost chamber followed by defrost at the room temperature for 2 hours. No reliable differences were found out between the fexofenadine concentrations before and after the described manipulations.

To evaluate the stability of fexofenadine in rabbits’ liver homogenate kept in the frozen state, the samples were prepared in the concentration of 48 µg/g. Half of the samples were analyzed immediately after the preparation, and the rest of them were prepared after storage in the frozen condition within 60 days. 3 independent samples from each party were examined. The mean concentration was 46.44 µg/g, the mean accuracy was 3.26%.

Sample Transfer

In the successive analysis of the sample with the fexofenadine concentration of 48 µg/g and the sample of the blank liver homogenate, no peaks were present in the chromatogram of the pure (intact) liver homogenate corresponding to the fexofenadine peak by the retention time, which evidenced the absence of the sample transfer.

Approval of Methods

A study of pharmacokinetics of Pgp marker substrates, is a leading method in the investigation of functioning of the protein carrier in vivo [14]. The concentration determination of the marker substrate in blood after its single peroral administration, characterizes the functional activity of Pgp at the level of the whole organism [6]. However, a more complete and tissue-specific evaluation of functioning of Pgp, requires the use of methods permitting to study the functional activity of the transporter locally in the organs responsible for absorption, distribution and excretion of substances. This is done by a quantitative determination of the concentration of marker substrates in different organs and tissues [11, 19].

As a marker substrate, fexofenadine possesses a number of advantages: it does not undergo biotransformation, does not cumulate in an organism, it possesses a wide range of therapeutic effects, rarely causes side effects, it is available in price and can be bought from pharmacies without prescription [6, 9, 10]. This drug is primarily excreted with bile (80%) [20], therefore a method of its quantitative distribution in the liver permits evaluation of the functional activity of the transporter in this organ. An increase in the concentration of fexofenadine in the liver, indicates inhibition of the functional activity of Pgp, the reduction of its level evidences the induction of the activity of this transporter.
Rabbits are recommended as a test system for the investigation of functioning Pgp in vivo since these animals have the highest homology between amino acid sequences with the transporter of a human being [21]. Pgp of rabbits and humans is coded by one \textit{mdr1} gene, and not by two (\textit{mdr1} and \textit{mdr2}) like in other rodents (mice and rats) [22–24]. Besides, the mechanisms of regulation of the transporter are similar in a human being and a rabbit [21, 25].

To test the developed methods, the concentration of fexofenadine in the rabbits’ liver was analyzed 5, 10, 15, 30, 60 minutes after its intravenous administration at the dose of 11 mg/kg.

Concentrations of fexofenadine in the liver homogenate were 30.4±0.88, 26.3±3.17, 17.5±2.90, 19.5±1.49 μg/g, respectively (Fig. 3). It confirms the possibility of using the developed methods for the determination of concentrations of the substance under study in the rabbits’ liver and for the subsequent analysis of functioning of the carrier protein Pgp.

CONCLUSION

Thus, HPLC methods was for quantitative determination of fexofenadine in the hepatic tissue of rabbits has been worked out. It is characterized by efficiency, sensitivity, specificity, high resolution, reproducibility and linearity in the range of the concentrations that can be used for the evaluation of the functional activity of Pgp in preclinical trials.

FINANCIAL SUPPORT

This work was supported by a grant from the Russian Foundation for Basic Research No. A 18-015-00259.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHORS’ CONTRIBUTION

All the authors have equally contributed to the research work.

REFERENCES

1. Sharon FJ. The P-glycoprotein multidrug transporter. 2011;150:161–78. DOI: 10.1042/bse0500161
2. Mollazadeh S, Sahebkar A, Hadizadeh F, Behravan J, Arabzadeh S. Structural and functional aspects of P-glycoprotein and its inhibitors. Life Sci. 2018;214:118–23. DOI: 10.1016/j.lfs.2018.10.048
3. Kukes VG, Grachev SV, Sychev DA, Ramenskaya GV. Metabolizm lekarstvennykh sredstv. Nauchnyye osnovy personalizirovannoy mediciny: rukovodstvo dlya vrachey \textit{[The metabolism of drugs. The Scientific Basics of Personalized Medicine: A Guide for Physicians]}. Moscow: GEO-TAR-MEDIA; 2008. 304 p. Russian.
4. Chufan EE, Sim HM, Ambudkar SV. Molecular basis of the polyspecificity of P-glycoprotein (ABCB1): recent biochemical and structural studies. Adv Cancer Res. 2015;125:71–96. DOI: 10.1016/bs.acr.2014.10.003
5. Chernykh IV, Shchulkin AV, Gatsanoga MV, Popova NM, Yessenina AS, Gradinar MM, Yakusheva EN. Funktsion-
al’nya aktivnost’ glikoproteina-P na fone ishemii golov-
nogogo mozga \textit{[Functional activity of P-glycoprotein with underlyng brain ischemia]}. Nauka molodykh – Eruditio Ju
va 2015;125:71–96. DOI: 10.1016/bs.acr.2014.10.003
6. Yakusheva EN, Sychev DA, Shchulkin AV, Chernykh IV, Gatsanoga MV. Otsenka prinadelzhnosti lekarstvennykh preparatov k ingibitoram i induktoram belka–transportera glikoproteina-P v eksperimente in vivo \textit{[In vivo assessment of drugs belonging to inhibitors and inducers of P-glycoprotein]}. Exp and Clin Pharmacol. 2018;81(1):17–23. Russian.
7. Metodicheskie rekomendatsii po izucheniyu biotransformatssi i transporterov novykh lekarstvennykh sredstv: dizayn issledovanii, analizdannyykh. Rukovodstvo po ek-
spertizte lekarstvennykh sredstv. Tom III. \textit{[Guidelines for the study of biotransformation and transporters of new drugs: research design, data analysis. Guidelines for the examination of medicines. Vol. III]}. Moscow: Grif i K; 2014. 343 p. Russian.
8. U.S. Food and Drug Administration, Center for Drug Evaluation an\textit{d} Research. Guidance for industry: drug interaction studies\textit{study design, data analysis, implications for dosing, and labeling recommendations [cited 2018 Jan 15]. Available at: http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm292362.pdf
9. Ramenskaya GV, Skuridina EA, Krasnykh LM. Razrabotka metodiki kolicheshestvennogo opredeleniya markera aktiv-
nosti P-glikoproteina feksofendina v plazme krovi \textit{[Develop-
ing a method for the quantitative determination of the P-glycoprotein activity marker fexofenadine in blood plasma]}. Pharm Chem J. 2006;40(12):47–50. Russian.
10. Yakusheva EN, Chernykh IV, Shulkin AV, Gatsanoga MV. Razrabotka metodiki kolichestvennogo analiza feksofendina v plazme krovi \textit{[Design of HPLC methods of fexofen-
adine quantitative analysis in blood plasma]}. Pharmacokinetics and pharmacodynamics. 2017;2:35–8. Russian.
11. Chernykh IV, Shchulkin AV, Mylinikov PV, Gatsanoga MV, Pop-
ova NM, Yakusheva EN. Metod analiza funktsional’nyx aktiv-
nosti glikoproteina-P v gematoentsefalicheskom bar’yere \textit{[Method of analysis of functional activity of P-glycoprotein in the blood-brain barrier]}. Neurochem J. 2019;36(1):84–8. DOI: 10.1134/S1027813319010060. Russian.
12. Bosilkovska M, Smer CF, Déglon J, Rebsamen M, Staub C, Daye P, Walder B, Desmeules JA, Daali Y. Greene cock-
tail for cytochrome p450 and P-glycoprotein activity asssessment using dried blood spots. Clin Pharmacol Ther. 2014;96(3):349–59. DOI: 10.1038/cpt.2014.83.
13. Muppavarapu R, Guttikar S, Rajappan M, Kamarajan K, Mullangi R. Sensitive LC-MS/MS-ESI method for simulta-
neous determination of montelukast and fexofenadine in human plasma: application to a bioequivalence study. Biomed Chromatogr. 2014; 28(8):1048–1056. DOI: doi.org/10.1002/bmc.3114
14. Belozertseva IV, Blinov DV, Krasil'shchikova MS. Rukovodstvo po soderzhaniyu i ispol'zovaniyu laboratornykh zhivotnykh. Vos'moye izdaniye [Guidelines for the maintenance and use of laboratory animals. Eighth edition]. Moscow: IRBIS; 2017. 336 p. Russian.

15. Izhucheniyе bioekvivalentnosti vosproizvedennykh lekarstvennykh sredstv. Rukovodstvo po ekspertize lekarstvennykh sredstv. Tom I [The study of bioequivalence reproduced drugs. Guidelines for the examination of medicines. Vol. I]. Moscow: Grif i K; 2013. 28p. Russian.

16. Guidance for Industry. Bioanalytical Method Validation. U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center for Veterinary Medicine (CVM); London, 2013. 28p.

17. Guideline on bioanalytical method validation. European Medicines Agency. Committee for medicinal products for human use: London; 2011. [cited 2018 Jan 15] [23 p]. Available from: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-bioanalytical-method-validation_en.pdf

18. Epstein NA. Otsenka prigodnosti (validatsiya) vezhkh metodik v farmatsevticheskom analize (obzor) [Suitability evaluation (validation) HPLC methods in pharmaceutical analysis (review)]. Pharm Chem J. 2004;38(4):40–56. Russian.

19. Yakusheva EN, Chernykh IV, Shulkin AV, Gatsanoga MV. Metodika opredeleniya prinadlezhnosti lekarstvennykh sredstv k chislu substratov glikoprotein-P [Methods of identification of drugs as P-glycoprotein substrates]. IP Pavlov Russian Medical Biological Herald. 2015;23(3):49–53. Russian.

20. Molimard M, Diquet B, Benedetti MS. Comparison of pharmacokinetics and metabolism of desloratadine, fexofenadine, levocetirizine and miizolastine in humans. Fund & Clin Pharmacol. 2004;18(4):399–411. DOI: 10.1111/j.1472-8206.2004.00254.x

21. Ballent M, Willems MR, Mate L, Mushar AS, Virkel G, Sallolvitz J, Schroder B, Lanusse C, Lifschitz A. P-glycoprotein in sheep liver and small intestine: gene expression and transport efflux activity. J Vet Pharmacol Ther. 2013;36(6):576–82. DOI: 10.1111/jvp.12040

22. Hagenbuch B, Gao B, Meier P]. Transport of Xenobiotics Across the Blood-Brain Barrier. News Physiol Sci. 2002;17:231–4. DOI: 10.1152/nips.01402.2002

23. van Veen HW, Margolies A, Muller M, Higgins CF, Konings WN. The homodimeric ATP-binding cassette transporter LmrA mediates multidrug transport by an alternating two-site (two-cylinder engine) mechanism. EMBO J. 2000;19:2503–14.

24. Le Cluysell EL. Pregnane X receptor: molecular basis for special differences in CYP3A induction by xenobiotics. Chem Biol Interact. 2001;134(3):283–9.

25. Moore LB, Maglich JM, McKee DD, Wisely B, Willson TM, Kliwer SA, Lambert MH, Moore JT. Pregnane X receptor (PXR), constitutive androstane receptor (CAR), and benzoate X receptor (BXR) define three pharmacologically distinct classes of nuclear receptors. Mol endocrin. 2002;16(5):977–86. DOI: 10.1210/mend.16.5.0828

AUTHORS

Pavel Yu. Mylnikov – Assistant, Department of Pharmacology with a course of pharmacy, Faculty of Continuing Professional Education, Ryazan State Medical University n. a. Acad. Pavlov. ORCID: 0000-0001-7829-2494. E-mail: pavelmynikov@mail.ru.

Ivan V. Chernykh – Candidate of Sciences (Biology), Head of the Department of Pharmaceutical Chemistry, Ryazan State Medical University n. a. Acad. Pavlov. ORCID: 0000-0002-5618-7607. E-mail: ivchernykh88@mail.ru.

Aleksey V. Shchulkin – Candidate of Sciences (Medicine), Associate Professor of the Department of Pharmacology with a course of pharmacy, Faculty of Continuing Professional Education, Ryazan State Medical University n. a. Acad. Pavlov. ORCID: 0000-0003-1688-0017. E-mail: alekseyshulkin@rambler.ru

Natalia M. Popova – Candidate of Sciences (Medicine), Assistant Professor of the Department of Pharmacology with a Pharmacy Course, Faculty of Continuing Professional Education, Ryazan State Medical University n. a. Acad. Pavlov, Ryazan, Russia. ORCID: 0000-0002-5166-8372. E-mail: p34-66@yandex.ru

Elena N. Yakusheva – Doctor of Sciences (Medicine), Professor, Head of the Department of Pharmacology with a Pharmacy Course, Faculty of Continuing Professional Education, Ryazan State Medical University n. a. Acad. Pavlov. ORCID: 0000-0001-6887-4888. E-mail: e.yakusheva@rzgmu.ru.