Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Infection control and other stewardship strategies in late onset sepsis, necrotizing enterocolitis, and localized infection in the neonatal intensive care unit

Samia Aleem, Megan Wohlfarth, C. Michael Cotten, and Rachel G. Greenberg

ABSTRACT

Suspected or proven late onset sepsis, necrotizing enterocolitis, urinary tract infections, and ventilator associated pneumonia occurring after the first postnatal days contribute significantly to the total antibiotic exposures in neonatal intensive care units. The variability in definitions and diagnostic criteria in these conditions lead to unnecessary antibiotic use. The length of treatment and choice of antimicrobial agents for presumed and proven episodes also vary among centers due to a lack of supportive evidence and guidelines. Implementation of robust antibiotic stewardship programs can encourage compliance with appropriate dosages and narrow-spectrum regimens.

ARTICLE INFO

Antibiotic use in the Neonatal Intensive Care Unit (NICU)

Antibiotics are the most commonly prescribed medications in the NICU. Antibiotic overuse has been linked to serious adverse outcomes in low birth weight (LBW) infants, including bronchopulmonary dysplasia, necrotizing enterocolitis (NEC), invasive candidiasis, and even death. While the beneficial effects of antibiotics for the treatment of bacterial infections is unquestioned, the duration of treatment in the NICU is often arbitrary and is often based on the physician’s perceived risk of infection, rather than a positive culture. Prolonged therapy (≥ 5 days) in the NICU has been reported in up to 26% of total antibiotic use, despite negative cultures. In that single center report, prolonged therapy in the NICU was mostly provided for suspected pneumonia (16%, 54.3 therapy days per 1000 patient days) and culture-negative sepsis (8%, 28.4 therapy days per 1000 patient days), and the length of treatment varied from 5 to 14 days.

The majority of antibiotic use in the NICU is empiric. Nearly 1/4th of antibiotic courses are inappropriately given in the NICU, and represent 35% of infants who receive intravenous antibiotics after 72 h of age. Due to months-long hospitalizations of the highest risk extremely preterm babies, suspected or proven late-onset sepsis (LOS), NEC, urinary tract infections (UTI), and ventilator associated pneumonia (VAP) occurring after the first postnatal days contribute significantly to the total antibiotic exposures in NICUs. In this article, our objective is to discuss the rationale behind using antibiotics for these conditions, review the evidence for antibiotic choices, dosages, and duration of therapy, and identify strategies to reduce unnecessary antibiotic use.
LOS and meningitis

Epidemiology of LOS: LOS, defined as culture-confirmed infection occurring after the first postnatal week, affects 38% of extremely premature infants in the NICU.12 LOS is acquired by horizontal transmission of pathogens from their environment after birth.13 Gram-positive bacteria are the most common pathogens causing LOS, accounting for over 70% of all cases of LOS in the NICU.12 Other causes of LOS include Gram-negative bacteria, isolated in 17% of LOS cases, and fungal infections, which account for 10% of LOS in very low birth weight (VLBW) infants.27-14 Coagulase negative staphylococci (CoNS) accounts for >50% of all Gram-positive isolates, though mortality associated with CoNS bacteremia is relatively low.12,15 Other Gram-positive pathogens that cause LOS include Staphylococcus aureus, Streptococcus pneumoniae, and Streptococcus pyogenes.16 The average mortality in extremely premature infants with LOS is 26%.12 Mortality is higher in infants with gram-negative infections than infants with gram-positive infections.14,17

Epidemiology and etiology of late-onset meningitis (LOM): Meningitis occurs most frequently in infants under 2 months of age, and is associated with a high risk of mortality and morbidity.18-20 As many as 50% of infants who survive meningitis develop seizures, cognitive deficiencies, motor abnormalities, and hearing and visual impairments.19-22 The incidence of meningitis in developed countries is about 0.3 per 1000 live births, and it occurs in up to 66% of VLBW infants with LOS23,24. The etiologic organisms associated with LOM are similar to that of LOS with gram-positive organisms being the leading cause, followed by gram-negatives and fungal pathogens.23

Need for antibiotic stewardship: Prescribing practices of antibiotics across NICUs vary. The California Perinatal Quality Care Collaborative reported that across units, antibiotic treatment ranges from 2.4% to 97.1% of patient-days. In one study, it was found that 35% of infants receiving antibiotics for over 72 h received them inappropriately.31 The study defined inappropriate antibiotic therapy to include inappropriate initiation, continuation, type, and nonadherence to the Centers for Disease Control and Prevention (CDC) 12-Step program to prevent antimicrobial resistance.11 Forms of misuse of antibiotics in this study included the use of gentamicin for a gentamicin-resistant pathogen, continued use of 2 agents when a single agent is adequate, and the use of a carbapenem for empiric treatment of LOS (without evidence of NEC or multi-drug resistance).31 Cosgrove et al found that 28% of antimicrobial treatments did not follow the CDC’s recommended 12 steps for prevention of antimicrobial resistance leading to the overuse of antibiotics in the NICU.25

The variability in neonatal antimicrobial drug dosing clearly highlights the need for antibiotic stewardship strategies. In a survey of antibiotic guidelines across 44 French NICUs, up to 32 different dosage regimens per drug were identified for 41 antibiotics.26 Another study spanning 89 NICUs from 21 countries in Europe found wide variations in antibiotic dosing, with both under- and over-dosing when compared with the recommendations in the British National Formulary for Children.27 These variations stem from the lack of high quality evidence for dosing in neonates; most neonatal dosing is extrapolated from adult studies and is adjusted based on weight.28,29 This is suboptimal, as infants display distinctly different pharmacokinetics (PK) that vary based on gestational and postnatal age.30 Under-dosing of antibiotics leads to ineffective treatment of infection and promotes the development of microbial resistance, whereas over-dosing results in toxicity and compromised safety.31 Multiple PK studies of antibiotics have been performed in infants to define dosing that optimizes therapeutic exposures for infants (Table 1).

Strategies for antibiotic stewardship: Adoption of preventive strategies to reduce the incidence of LOS and LOM are the first step to reducing prolonged antibiotic use: strategies reported to have the most marked impact involve of a bundle of care focusing on a combination of hand washing, central line management, and infection control practices.32-34 A second key step in appropriate antibiotic use for LOS/LOM is the choice of antibiotic. In a survey of neonatologists’ practice for infants with suspected LOS, 60% of clinicians prescribed vancomycin for empiric therapy.35 The choice of vancomycin is directed by concerns for methicillin-resistant Staphylococcus aureus (MRSA) infection, and the predominance of CoNS in the setting of LOS.36 However, there are multiple studies showing that restricting empirical vancomycin use does not result in increased mortality or morbidity.37-40 Chiu et al reported the effectiveness of implementing a restrictive vancomycin use guideline at 2 tertiary care centers.38 The investigators waited until CoNS susceptibility results were available prior to initiating vancomycin, and were able to safely and successfully decrease vancomycin use without an increase in attributable morbidity or mortality.39 One center retrospectively found no change in mortality or morbidity after changing the standard empiric treatment for LOS from vancomycin and cefotaxime to oxacillin and gentamicin.40 Thus, it is prudent to use an antistaphylococcal penicillin, such as oxacillin or nafcillin, along with an aminoglycoside for the initial empiric treatment of LOS.7,28,38-43 Vancomycin should be considered judiciously in areas where MRSA is prevalent, or if the culture is positive for CoNS.41-43 In the setting of a negative blood culture, with optimal collection technique, discontinuation of antibiotics should be considered.44 The use of biomarkers, such as acute phase reactants, cytokines and chemokines, for the diagnosis of LOS and to guide length of therapy is promising.45 However, most of these biomarkers are non-specific, and would be better used for their negative predictive value.46 If meningitis is suspected, ideally a lumbar puncture should be performed and treatment should be initiated immediately after cerebrospinal fluid is obtained.46 The most commonly prescribed antibiotics for late-onset meningitis are vancomycin, gentamicin, cefotaxime, and ampicillin.47,48 The recommended regimen to treat LOM in infants includes a combination of an antistaphylococcal antibiotic (nafcillin or vancomycin) plus a third-generation cephalosporin with or without aminoglycosides.43,49 Traditionally, infants with meningitis are treated with empirical antibiotics for 14–21 days.43 It is recommended that infants with meningitis caused by Gram-negative bacteria be treated with antibiotics for at least 21 days.50

Lastly, antibiotic stewardship programs can improve appropriate antibiotic use by implementing interventions that decrease infection related mortality and morbidity without
Table 1 – Most commonly used antibiotics in neonatal intensive care units with recommended dosages from the Harriet Lane textbook compared with recommended dosage from pharmacokinetic studies.

Name of antibiotic	FDA approved for use in premature infants	Recommended dosage for infants in Harriet Lane 142	Recommended dosage for infants from pharmacokinetic studies
Ampicillin	Yes	<7 days: 2 kg: 100 mg/kg/day q12 h; >2 kg: 150 mg/kg/day q8 h; ≥7 days: 1.2 kg: 100 mg/kg/day q12 h; 1.2 – 2 kg: 150 mg/kg/day q8 h; >2 kg: 200 mg/kg/day q6 h	≤34 weeks GA: ≤7 days PNA: 50 mg/kg/dose q12 h; ≥8 and <28 days PNA: 75 mg/kg/dose q12 h; ≥34 weeks GA: ≤28 days PNA: 50 mg/kg/dose q8 h
Gentamicin	Yes	0–7 days PNA: 5 mg/kg/dose q48 h; 8–28 days PNA: 4 mg/kg/dose q24 h; ≥35 weeks GA: 4 mg/kg/dose q24 h; q36 h dosing used for infants undergoing whole-body cooling	<37 weeks PMA: 5 mg/kg/dose q48 h; 37 to <40 weeks PMA: 5 mg/kg/dose q36 h; ≥40 weeks PMA: 5 mg/kg/dose q24 h
Vancomycin	Yes	Bactereemia: 10 mg/kg/dose; Meningitis, pneumonia: 15 mg/kg/dose; Intervals: <29 weeks GA: 0–14 days PNA: q18 h; 14–36 weeks GA: 0–14 days PNA: q12 h; 37–44 weeks GA: 0–7 days PNA: q12 h; ≥45 weeks GA: All: q6 h	Birthweight > 700 g: PNA 0–7 days: 16 mg/kg x1, followed by 15 mg/kg/day q8 h; PNA 8–14 days: 20 mg/kg x1, followed by 21 mg/kg/day q8 h; PNA 15–28 days: 23 mg/kg x1, followed by 24 mg/kg/day q8 h; Birthweight 701–1000 g: PNA 0–7 days: 16 mg/kg x1, followed by 21 mg/kg/day q8 h; PNA 8–14 days: 20 mg/kg x1, followed by 27 mg/kg/day q8 h; PNA 15–28 days: 23 mg/kg x1, followed by 42 mg/kg/day q8 h; Birthweight 1001–1500 g: PNA 0–7 days: 16 mg/kg x1, followed by 27 mg/kg/day q8 h; PNA 8–14 days: 20 mg/kg x1, followed by 36 mg/kg/day q8 h; PNA 15–28 days: 23 mg/kg x1, followed by 45 mg/kg/day q8 h; Birthweight 1501–2500 g: PNA 0–7 days: 16 mg/kg x1, followed by 30 mg/kg/day q6 h; PNA 8–14 days: 20 mg/kg x1, followed by 40 mg/kg/day q6 h; PNA 15–28 days: 23 mg/kg x1, followed by 52 mg/kg/day q6 h; Birthweight ≥2500 g: PNA 0–7 days: 16 mg/kg x1, followed by 36 mg/kg/day q6 h; PNA 8–14 days: 20 mg/kg x1, followed by 48 mg/kg/day q6 h; PNA 15–28 days: 23 mg/kg x1, followed by 60 mg/kg/day q6 h; PNA 0–7 days: 50 mg/kg q12 h; PNA > 7 days: GA < 32 weeks: 50 mg/kg q8 h; GA > 32 weeks: 50 mg/kg q6 h
Cefotaxime	Yes	PNA <7 days: 2 kg: 100 mg/kg/day q12 h; ≥2 kg: 100–150 mg/kg/day q8–12 h; PNA >7 days: 1.2 kg: 100 mg/kg/day q12 h; 1.2 – 2 kg: 150 mg/kg/day q8 h; >2 kg: 200 mg/kg/day q6–8 h	PNA 0–7 days: 50 mg/kg q12 h; PNA > 7 days: GA < 32 weeks: 50 mg/kg q8 h; GA > 32 weeks: 50 mg/kg q6 h
Table 1 (continued)

Name of antibiotic	FDA approved for use in premature infants	Recommended dosage for infants in Harriet Lane	Recommended dosage for infants from pharmacokinetic studies
Tobramycin	Yes	≤29 weeks GA: 5 mg/kg/dose q48 h 0–7 days PNA: 5 mg/kg/dose q48 h 8–28 days PNA: 4 mg/kg/dose q36 h >28 days PNA: 4 mg/kg/dose q24 h 30–34 weeks GA: 0–7 days PNA: 4.5 mg/kg/dose q36 h >7 days PNA: 4 mg/kg/dose q24 h ≥35 weeks GA: 4 mg/kg/dose q24 h q36 h dosing used for infants undergoing whole-body cooling	Birthweight <1 kg 0–7 days PNA ≤5 days: 5.5 mg/kg/dose q72 h 8–14 days PNA ≤5 days: 5.5 mg/kg/dose q72 h 15–28 days PNA ≤5 days: 5.5 mg/kg/dose q72 h Birthweight 1–2 kg ≤28 weeks PNA ≤5 days: 5.5 mg/kg/dose q60 h 6–10 days PNA ≤5 days: 5.5 mg/kg/dose q48 h 11–20 days PNA ≤5 days: 5.5 mg/kg/dose q36 h Birthweight >2 kg ≤32 weeks PNA ≤5 days: 5.5 mg/kg/dose q48 h 6–10 days PNA ≤5 days: 5.5 mg/kg/dose q36 h 11–20 days PNA ≤5 days: 5.5 mg/kg/dose q36 h ≥21 days PNA ≤5 days: 5.5 mg/kg/dose q24 h
Clindamycin	Yes	PNA ≤7 days: ≤2 kg: 5 mg/kg/dose q12 h >2 kg: 5 mg/kg/dose q8 h PNA >7 days: ≤1 kg: 5 mg/kg/dose q12 h for PNA 8–14 days, and q8 h for PNA ≥15 days 1–2 kg: 5 mg/kg/dose q8 h >2 kg: 5 mg/kg/dose q6 h	≤28 weeks GA: 100 mg/kg/dose q12 h 7 days PNA: 100 mg/kg/dose q12 h 14 days PNA: 100 mg/kg/dose q12 h Bacteremia: 25 mg/kg/dose q24 h >28 to ≤32 weeks GA: 100 mg/kg/dose q12 h Bacteremia: 25 mg/kg/dose q24 h >32 weeks GA: 100 mg/kg/dose q24 h 25 mg/kg/dose q24 h ≤30 weeks PNA: 100 mg/kg/dose q8 h ≤28 days PNA: 25 mg/kg/dose q8 h ≤35 and <49 weeks PNA: 80 mg/kg/dose q8 h 35 and <49 weeks PNA: 80 mg/kg/dose q4 h
Ceftazidime	Yes	PNA ≤7 days: ≤2 kg: 100 mg/kg/day q12 h ≥2 kg: 100–150 mg/kg/day q8–12 h PNA >7 days: ≤1.2 kg: 100 mg/kg/day q12 h ≥1.2 kg: 150 mg/kg/day q8 h	≤34 weeks PMA: 15 mg/kg x1, followed by 7.5 mg/kg q12 h 34–40 weeks PMA: 15 mg/kg x1, followed by 7.5 mg/kg q8 h 40 weeks PMA: 15 mg/kg x1, followed by 7.5 mg/kg q6 h
Piperacillin/	No	Weight ≤1 kg: PNA ≤14 days: 100 mg/kg/dose q12 h PNA 15–28 days: 100 mg/kg/dose q8 h Weight >1 kg: PNA ≤7 days: 100 mg/kg/dose q12 h PNA 8–28 days: 100 mg/kg/dose q8 h	Loading dose 15 mg/kg x1, followed by 7.5 mg/kg q12 h 34–40 weeks PMA: 15 mg/kg x1, followed by 7.5 mg/kg q8 h 40 weeks PMA: 15 mg/kg x1, followed by 7.5 mg/kg q6 h
Tazobactam		Weight ≤1 kg: PNA ≤14 days: 15 mg/kg x 1 loading dose followed by 7.5 mg/kg/dose q48 h PNA 15–28 days: 15 mg/kg/dose q24 h Weight 1–2 kg: PNA ≤7 days: 15 mg/kg x 1 loading dose followed by 7.5 mg/kg/dose q24–48 h PNA 8–28 days: 15 mg/kg/dose q24 h Weight >2 kg: PNA ≤7 days: 15 mg/kg/dose q24 h PNA 8–28 days: 15 mg/kg/dose q12 h	Loading dose 15 mg/kg x1, followed by 7.5 mg/kg q12 h 34–40 weeks PMA: 15 mg/kg x1, followed by 7.5 mg/kg q8 h 40 weeks PMA: 15 mg/kg x1, followed by 7.5 mg/kg q6 h
Metronidazole	No	Weight ≤1 kg: PNA ≤14 days: 15 mg/kg x 1 loading dose followed by 7.5 mg/kg/dose q48 h PNA 15–28 days: 15 mg/kg/dose q24 h Weight 1–2 kg: PNA ≤7 days: 15 mg/kg x 1 loading dose followed by 7.5 mg/kg/dose q24–48 h PNA 8–28 days: 15 mg/kg/dose q24 h Weight >2 kg: PNA ≤7 days: 15 mg/kg/dose q24 h PNA 8–28 days: 15 mg/kg/dose q12 h	Loading dose 15 mg/kg x1, followed by 7.5 mg/kg q12 h 34–40 weeks PMA: 15 mg/kg x1, followed by 7.5 mg/kg q8 h 40 weeks PMA: 15 mg/kg x1, followed by 7.5 mg/kg q6 h
Amikacin	No	≤29 weeks GA: 0–7 days PNA: 18 mg/kg/dose q48 h 8–28 days PNA: 15 mg/kg/dose q36 h ≥28 days PNA: 15 mg/kg/dose q24 h 30–34 weeks GA: 0–7 days PNA: 18 mg/kg/dose q36 h >7 days PNA: 15 mg/kg/dose q24 h ≥35 weeks GA: 15 mg/kg/dose q24 h q36 h dosing used for infants undergoing whole-body cooling	≤14 days PNA: 16 mg/kg q48 h ≥14 days PNA: 20 mg/kg q42 h Weight 801–1200g ≤14 days PNA: 16 mg/kg q42 h ≥14 days PNA: 20 mg/kg q36 h Weight 1201–2000g ≤14 days PNA: 15 mg/kg q36 h ≥14 days PNA: 18 mg/kg q30 h Weight 2001–2800g ≤14 days PNA: 15 mg/kg q36 h ≥14 days PNA: 18 mg/kg q24 h Weight >2800g ≤14 days PNA: 15 mg/kg q30 h ≥14 days PNA: 18 mg/kg q20 h

FDA: Food and Drug Administration; GA: gestational age; PNA: postnatal age; PMA: postmenstrual age.
increasing antibiotic resistance. One recommended intervention is daily prospective audit and feedback. Daily prospective audit and feedback includes accessing the needs for antimicrobial therapy of a patient to optimize treatment. This intervention involves a relationship between the physician and the prescribing provider such as an infectious disease specialist or a pharmacist specializing in pediatric antibiotic stewardship. In a study conducted by Thampi et al., antibiotic usage measured as days of treatment per 1000 patient-days decreased by 14% with daily prospective audit and feedback. The proportion of admitted babies who received antibiotics also decreased (63% versus 59%). Interventions such as education about the risks of broad-spectrum antibiotic use and adjusting empiric antibiotic regimens have also been found to reduce the use of broad-spectrum antibiotic usage. Nzegwu et al demonstrated a significant reduction in ampicillin days of antibiotic therapy (DOT) when educational methods were combined with prospective audit and feedback. Chiu et al. showed that by creating guidelines for the use of vancomycin, the use of the antibiotic could be decreased by 40–49%. Other methods of intervention include setting hard stops to antibiotic usage and utilizing risk calculators. Tzialis et al. found that DOT was decreased by 27% with the implementation of an automatic stop to antibiotic treatment when cultures are sterile for 48 h, as well as a five-day automatic stop to antibiotic treatment for culture-negative sepsis or suspected pneumonia. Predictive model for risk stratification such as the use of a risk calculator has decreased antibiotic usage for EOS among near-term and full term neonates by 42%. More research into the feasibility of determining the risk of LOS and LOM using a risk calculator is necessary.

NEC

Epidemiology of NEC: NEC is an acquired gastrointestinal inflammatory disease, and is a leading cause of death in extremely low birth weight (ELBW) infants. The incidence of NEC has remained relatively stable and, in some reports, appears to be slightly decreased over the past decade. In extremely preterm infants born between 22 and 28 weeks gestational age, the incidence of NEC increased from 7% in 1993, to 13% in 2008, before decreasing to 9% in 2012. In a recent report of Vermont Oxford Network data, the rate dropped from 6.6% to 4.0% among ELBW inborn infants, and from 10.4% to 6.6% among ELBW inborn infants from 2008 to 2017. Mortality secondary to NEC has also increased over the years, and went from 23% in 2000–2003, to 30% in 2008–2011. Infants who do survive, particularly ELBW infants who undergo surgical intervention, have long-term impairments including growth delay and poor neurodevelopmental outcomes.

Etiology of NEC and rationale for antibiotic therapy: The exact etiology of NEC is unknown and it is considered to be multifactorial in origin. In addition to immaturity of the intestinal function secondary to prematurity, intestinal ischemia, type of enteral feeds, and importantly, aberrant bacterial colonization play a role. In up to 35% of cases of NEC, concurrent bacteremia is documented. Although no specific microorganism has been consistently identified to be causative, a wide range of pathogens are associated with NEC. These include Escherichia coli (E. coli), Klebsiella spp, Enterobacter spp, Pseudomonas spp, Salmonella spp, Clostridium perfringes, Clostridium difficile, Clostridium butyricum, coagulase-negative staphylococci, Enterococcus spp, coronavirus, rotavirus and enterovirus. Early stool colonization with Clostridium perfringes and abnormal duodenal colonization with Enterobacteriaceae among VLBW infants has been associated with later development of NEC.

Poor early antibiotic stewardship may contribute to development of NEC: Premature infants almost universally receive broad-spectrum antibiotics after birth, and many receive prolonged courses to treat culture-positive or presumed culture-negative sepsis. Prolonged exposure to antibiotics early in life increases the risk of abnormal intestinal bacterial colonization. A retrospective cohort analysis of ELBW infants born between 1998 and 2001 admitted in NICHD Neonatal Research Network (NRN) centers found an association between a prolonged initial antibiotic course of ≥5 days and an increased risk of developing NEC. Other smaller studies also supported this association. A more recent study of over 5000 infants from the same network born between 2008 and 2014 did not find a significant association between early prolonged antibiotics of NEC. This is likely related to a decrease in the proportion of early prolonged antibiotics being used, as well as more widespread use of human donor milk, maternal breast milk, and probiotics (Table 2).

Medical therapy for NEC and antibiotic stewardship: Treatment strategy for NEC depends on severity of illness and may be medical or surgical in nature. Medical therapy for NEC includes broad-spectrum antibiotics with coverage for anaerobic bacteria. However, there is a paucity of data guiding the specific medical therapy for NEC, leading to wide practice variation in the antibiotic choice and duration of administration. In a small randomized, controlled trial of 42 premature infants with radiographic evidence of NEC, there was no difference seen in the incidence of intestinal perforations or mortality in those who received a combination of ampicillin, gentamicin, and clindamycin compared with those who only received ampicillin and gentamicin. However, a higher rate of intestinal strictures was found in the group receiving clindamycin. In a retrospective study of 6737 VLBW infants born at Pediatrix Medical Group NICUs, Infants who received anaerobic antibiotics, had a higher rate of intestinal strictures [odds ratio (OR) 1.73; 95% CI, 1.11 – 2.72]. When restricting to infants with surgical NEC, however, anaerobic antimicrobial therapy had less mortality (OR 0.71; 95% CI, 0.52 – 0.95). There was no improvement in outcomes of infants with medical NEC conditional to anaerobic antimicrobial therapy. In a recent retrospective cohort study of 4089 infants using the same database and overlapping infants, investigators used a PK simulation model to determine the effect of the highest estimated clindamycin exposure quartile and found a reduced odds of death with higher clindamycin exposure (OR 0.67; 95% CI 0.46 – 0.98). Alternative treatment regimens have been explored. One randomized controlled trial of 20 infants evaluated the role of oral gentamicin added to parenteral ampicillin and gentamicin. In this study, no significant difference was found in mortality, intestinal perforations or strictures between the comparison groups. One study from the 1980s compared alternative treatment...
regimens in 90 infants with clinical and radiographic evidence of NEC.81 46 infants received ampicillin (100 mg/kg/day) and gentamicin (5 – 7.5 mg/kg/day), while the other 44 infants were treated with cefotaxime (150 mg/kg/day) and vancomycin (30 – 45 mg/kg/day). All antibiotics were administered for 7 – 10 days. Infants with a birthweight <2200 g who received the cefotaxime/vancomycin regimen were less likely to die, and had a lower risk of culture-positive peritonitis.81 Similar outcomes with either antibiotic combination were seen in infants with birthweights ≥2200 g.81 The recently concluded antibiotic safety (SCAMP) trial compared the safety of various antibiotic regimens for complicated intra-abdominal infections, and provides valuable information regarding the safety and efficacy of the most commonly used antimicrobials for NEC.82 This partially randomized trial compared the following antibiotic combinations: ampicillin/gentamicin/metronidazole, ampicillin/gentamicin/clindamycin and

Table 2 – Summary of interventions to prevent necrotizing enterocolitis.
Author and study design

Corpeleijn et al.158; randomized controlled trial
Cristofalo et al.159; randomized controlled trial
Sullivan et al.160; randomized controlled trial
Schanler et al.161; randomized controlled trial
Probiotics
Güney-Varal et al.162; randomized controlled trial
Jacobs et al.163; randomized controlled trial
Braga et al.164; randomized controlled trial
Lin et al.165; randomized controlled trial
Restricting initial empiric antibiotics
Cotten et al.2; retrospective cohort analysis
Alexander et al.22; retrospective case-control analysis
piperacillin-tazobactam/gentamicin. The preliminary results showed that all 3 drug regimens were well tolerated, and no clinically significant difference in adverse events, including death, intestinal strictures or perforations, was observed. Thus, even though antibiotics are the mainstay of therapy for NEC, at present, there is no conclusive evidence to suggest superiority of one anaerobic antimicrobial over the other, despite their widespread use. In the interest of antibiotic stewardship, we recommend using the narrowest appropriate coverage, especially in the setting of positive blood or urine cultures. In many cases, the narrowest appropriate coverage will be ampicillin/gentamicin/metronidazole, which provides coverage against aerobic and anaerobic organisms with some penetration to the central nervous system. The recommended length of broad-spectrum parenteral antibiotic therapy is 7–10 days. However, some centers reportedly administer antibiotics for 10–14 days, which may be excessive in cases of mild disease. Therefore, we recommend limiting antibiotic duration to 7–10 days, and extending it only in cases of clinical deterioration.

Urinary tract infection (UTI)

Epidemiology of UTIs: UTIs are common among infants admitted to the NICU, with an incidence of 3–25% among VLBW infants. UTIs typically occur later during the course of an infant’s NICU hospitalization; they are rarely detected in the first 72 h of age (0–1%), and no cases have been reported to occur in the first 24 h of age, even in premature infants. Structural renal abnormalities increase the risk of neonatal UTIs, an estimated 20% of cases are associated with vesicoureteral reflux (VUR). Term and preterm infants with UTIs commonly present with poor feeding, emesis, lethargy, and fever (≥38°C), and over 50% of preterm infants with UTIs also present with respiratory symptoms, such as tachypnea, hypoxia and apnea. Infants with UTIs are at risk for concomitant bacteremia and meningitis; in one study of infants <121 days of age, 127/976 (13%) episodes of UTI had concurrent bacteremia, and 2/77 (3%) UTI episodes also had meningitis. This concordance is more likely to occur in infants born at <26 weeks gestational age. In ELBW infants, Candida UTIs are associated with death and neurodevelopmental impairments.

Etiologic organisms for UTI in the NICU: Nearly 80% of cases of UTIs are caused by E. coli, making it the most common causative organism in all age groups, including the neonatal period. Male infants with VUR are more likely to present with less common pathogens, such as Enterobacter aerogenes, Pseudomonas aeruginosa, and Klebsiella oxytoca. Studies from NICUs have reported a high incidence of CoNS UTIs. In a large retrospective study of over 500,000 preterm and term infants admitted to the NICU, CoNS was isolated in 14% of catheterized urine cultures in infants with UTIs, and was concordant with a blood culture in 18% of cases. In ELBW infants, Candida UTIs occur commonly. In a prospective cohort study of 1515 ELBW infants (birthweight ≤1000 g), 137 infants were identified as having invasive candidiasis, of which 52/137 (38%) infants were diagnosed with candiduria from urine specimens collected by catheterization or suprapubic aspiration. In a study of hospital-acquired UTIs occurring in infants admitted in the NICU, Candida spp. were responsible for 42% of infections. The mean gestational age of these infants was 26 weeks, which was significantly lower than the gestational age of infants diagnosed with a bacterial UTI (28 weeks).

Diagnosis of UTI: UTIs are variably defined in NICUs. Variable definitions and diagnoses lead to unnecessary antibiotic use, which represents an opportunity to improve antibiotic stewardship in the setting of suspected UTIs. A commonly used definition is the growth of a single known organism from a catheterized urine sample at ≥50,000 colony-forming units (CFU) per milliliter, or ≥10,000 CFU/mL in association with a positive dipstick test or urinalysis. The 3 common methods of collecting urine in infants are: sterile bag collection, urinary catheterization, and suprapubic aspiration. Although sterile bag collection is non-invasive and easy to perform, it does have high contamination rates. A prospective study of children <24 months found that of the 7584 urine cultures obtained, 63% of bagged specimens were contaminated, compared to 9% of samples obtained via catheterization. Given the high false-positive culture prevalence of UTIs with bagged specimens, urethral catheterization and suprapubic aspiration are the preferred methods of collection. However, these methods are more invasive, and given the perceived pain associated with the procedure, along with limited feasibility and relatively lower success rates of performing these in small and critically ill infants, sterile bag collection is used more frequently in clinical practice. This is problematic, as clinicians may find it difficult to ignore a ‘positive’ culture, leading to unnecessary antibiotic treatments. Moreover, the absence of nitrites and leukocyte esterase on dipstick are unreliable in the infant population because of small bladders and frequent micturition. Based on the available data, we recommend obtaining urine via catheterization whenever possible, and avoidance of bag collection for cultures. If the infant is being treated for sepsis regardless of urine culture results, bagged specimens may be considered to help tailor therapy in the presence of bacterial growth.

Treatment of UTI: Before committing to treatment for a UTI, clinicians should take method of urine collection into consideration. Most urine parameters in infants are misleading, leading to misdiagnoses and antibiotic overuse, thus optimizing specimen collection to avoid contaminants provides an opportunity for antibiotic stewardship. Initial management for UTIs in the NICU consists of parenteral broad spectrum therapy, typically ampicillin and gentamicin, or ampicillin and a 3rd generation cephalosporin, followed by narrowing of the regimen based on culture sensitivity results. In the US, the reported incidence of ampicillin resistant neonatal E. coli strains is as high as 75%, and resistance to gentamicin is as high as 12–17%. A retrospective study of 73 cases of neonatal UTIs in Iran reported over 90% resistance of E. coli strains against ampicillin. Despite this, a clinical response was seen in 50% of infants, suggesting discordance between in vivo and in vitro activity, or higher urinary concentration of the drug. The American Academy of Pediatrics (AAP) recommends 7–14 days of antimicrobial therapy for UTIs in children between the ages of 2–24 months. Similar guidelines do not exist for infants less than 2 months of age, especially for those born prematurely and admitted to the NICU. Given the lack of data regarding the safety, bioavailability, and efficacy of oral antibiotics in extremely premature infants, parenteral therapy is preferred for 7–14 days, depending on clinical status and other complications.
Ventilator associated pneumonia (VAP)

Definition of VAP: The CDC defines VAP as an episode of pneumonia in invasively ventilated patients that occurs at least 48 hours after initiation of mechanical ventilation.113 Although this definition does not outline specific criteria for diagnosis in the newborn period, most studies in the NICU also use this definition.114 The exact incidence of VAP in the NICU is difficult to estimate because of the lack of well-established diagnostic criteria in this population. The incidence of VAP in developed countries is reported between 2.7 and 10.9 cases per 1000 ventilator days, whereas in developing countries it may reach up to 37.2 episodes per 1000 ventilator days.115-118 In a study of 12 NICUs, the incidence of VAP in infants weighing less than 1000 was 0 – 21.2 per 1000 ventilator days.119

Epidemiology of VAP: Factors that place infants in the NICU at a higher risk for developing VAP include prolonged mechanical ventilation, and a functionally immature respiratory and immune system. A prospective cohort study of 742 neonates found that low birth weight and mechanical ventilation were the main risk factors for the development of VAP.120 In another prospective cohort study of extremely preterm infants born <28 weeks gestation, with a birthweight < 2000 g, bloodstream infection was found to be an independent risk factor for VAP, after adjustment for the duration of endotracheal intubation.118 Moreover, VAP was also an independent risk factor for mortality. No one particular organism has been linked to VAP. In the above mentioned prospective study of extremely preterm infants, 94% of cases of neonatal VAP were secondary to gram negative organisms.118 Similar findings were reported in a single-center retrospective study of 259 infants in China, in which 82% of the VAP cases were due to gram-negative organisms.121 Other authors have found that VAP is mostly polymicrobial in nature.122 Of note, these studies are limited by the fact that samples were retrieved by endotracheal aspiration as opposed to invasive sampling of the lower respiratory tract, and therefore may represent oropharyngeal colonization instead of true infection.

Diagnosis of VAP: Distinguishing true infection from oropharyngeal colonization is critical in order to avoid unnecessary antibiotic therapy. The lack of diagnostic criteria for VAP in infants makes accurate diagnosis difficult. The CDC criteria have not been validated in infants, making the diagnosis in the newborn period, most studies in the NICU also use this definition.115 The utility of this method has been described in an observational, prospective study of 198 preterm and term infants who were intubated for > 48 h. 16 infants who were clinically suspected to have VAP had a blind BAL performed, and no complications associated with the procedure were reported.115 Moreover, the authors report a lower incidence of polymicrobial etiology, likely related to reduced contamination from a more invasive and sterile technique.115 In another observational study using the NB-BAL technique in ventilated preterm infants, airway neutrophil counts of those diagnosed with VAP or congenital pneumonia were compared to those without infection.129 The median number of neutrophils in infants diagnosed with pneumonia was significantly higher than those without (24 cells/field vs 4 cells/field). This difference was only observed after the first 2 days on mechanical ventilation.129 The authors also performed receiver operator characteristics analysis for neutrophil count to diagnose pneumonia. Within the first 2 days of mechanical ventilation, an airway neutrophil count had moderate accuracy of diagnosing pneumonia, with 4 cells/field having a 90% sensitivity, and 59% specificity for diagnosis. Unfortunately, after 2 days of mechanical ventilation, neutrophil count was found to be no longer reliable.120 The NB-BAL method has not been adopted over tracheal aspirates in neonatal practice, but is a promising and well tolerated method to reduce high false positive rates of VAP, and over-treatment. We recommend avoidance of tracheal aspirates, and instead use of the blind BAL/NB-BAL approach along with the CDC’s diagnostic criteria.113

Treatment for VAP: Given the controversy in diagnosis of neonatal VAP, there is also no clear consensus regarding optimal treatment regimens or duration of antimicrobials. Treatment for VAP involves initial empiric therapy with broad spectrum antibiotics, followed by de-escalation once culture results are available, or discontinuation when VAP is no longer suspected. When selecting initial therapy, clinicians should be aware of the antibiotics that have previously been administered, as well as prior culture results and colonization data. The use of aerosolized antibiotics has been studied comprehensively in pediatric patients with cystic fibrosis. The FDA approval for the use of inhaled tobramycin in children is limited to patients with cystic fibrosis who are known to be colonized with Pseudomonas aeruginosa.130 The advantageous effects of inhaled tobramycin in this population was demonstrated in 2 randomized, multi-centered, placebo-controlled clinical trials. Children who received inhaled tobramycin had significant improvement in lung function, compared to those who did not. Additionally, there was a significant reduction in the number of Pseudomonas aeruginosa colonies in the sputum of children in the treatment group.131 Although inhaled antibiotics are being used in infants, there is little data from this population to support this and its’ use is extrapolated from studies in the pediatric and adult population. Small single center studies have reported successful use of aerosolized colistin in the treatment of Acinetobacter VAP.132,133 Clinical trials are needed to determine the efficacy of inhaled antibiotic therapy in this population. At this time, no guidelines exist regarding empiric coverage or length of treatment for VAP in infants. One
study found that in term and late preterm infants, 4 days of antibiotic therapy along with a 24-h observation period was comparable to 7 days of therapy. The same institution reported a decrease in the days of antibiotic therapy for pneumonia by recommending 5 days of treatment for suspected pneumonia during an antibiotic stewardship intervention study. During the intervention period, there was no increase in short-term clinical safety outcomes. Based on this, in those diagnosed with neonatal VAP, parenteral antimicrobial therapy can be given for 5–7 days, which can be modified based on clinical status and resistance patterns. Therapy should be based on clinical status and culture results, ideally obtained from the lower airways.

Prevention of VAP: The CDC has published guidelines for the prevention of VAP, which are also applicable to the neonatal population. Since most VAPs are caused by oropharyngeal flora, the CDC recommends suctioning of the oropharynx prior to adjustment or removal of the endotracheal tube. Traditional open endotracheal suctioning involves disconnection from the ventilator and is associated with arrhythmias, increased intracranial pressure and mean blood pressures in infants. Closed suction systems were introduced in the 1980s, and have the potential to reduce environmental contamination of the endotracheal tube. On the other hand, closed suctioning may increase risk of bacterial contamination from pooled secretions re-introduced into the system with repeated suctioning. In a randomized study of 133 LBW infants comparing closed and open suctioning systems, no differences were found in the rates of VAP or bloodstream infection between the two groups. At this time, the CDC does not recommend one system over the other. Since prolonged intubation is a risk factor for VAP, reducing days on invasive mechanical ventilation by assessing for extubation readiness, and the use of noninvasive methods are the key to reducing prolonged antibiotic use in those diagnosed with VAP.

Summary and recommendations

- LOS, LOM, NEC, UTIs and VAP are notable late onset infections in the NICU, and approximately 1/4th of antibiotic courses administered during this period are given inappropriately.
- Gram-positive bacteria are the most common pathogens causing LOS and LOM. Initial antibiotic treatment for LOS includes an antistaphylococcal penicillin with an aminoglycoside; in areas where MRSA is prevalent, vancomycin should be considered.
- Meningitis is diagnosed via a lumbar puncture, and treatment of LOM includes a combination of an antistaphylococcal antibiotic plus a third-generation cephalosporin with or without aminoglycosides. Traditional length of treatment is for 14–21 days, and in cases of Gram-negative meningitis is 21 days. The incidence of NEC has slightly decreased over time, and its etiology is considered to be multifactorial, with aberrant bacterial colonization shown to play a role.
- Standard medical therapy for NEC includes broad-spectrum antimicrobials; however, there is a lack of data guiding specific antibiotic choice and duration, and various studies have not shown superiority of one anaerobic microbial over the other.
- We recommend using the narrowest appropriate coverage for the medical treatment of NEC, especially in the setting of positive blood or urine cultures for 7–10 days, and extending it in cases of clinical deterioration.
- The varying diagnostic techniques for UTIs are an opportunity for antibiotic stewardship, and the gold standard for urine collection is via urethral catheterization.
- Initial management for UTIs in the NICU consists of parenteral broad spectrum therapy, typically ampicillin and gentamicin, or ampicillin and a third generation cephalosporin, followed by narrowing of the regimen based on culture sensitivity results. Therapy is preferred for 7–14 days, based on clinical status and other complications.
- The lack of diagnostic criteria for VAP makes accurate diagnosis and treatment difficult. In cases of clinically suspected VAP, we recommend avoidance of routine tracheal aspirations for the diagnosis of VAP. The more recently published blind BAL/NB-BAL approach may offer more specific diagnosis, and the CDC’s diagnostic criteria should also be considered.
- In those diagnosed with VAP, we recommend parenteral antimicrobial therapy for 5–7 days, which can be extended based on clinical status and resistance patterns.
- Comprehensive antibiotic stewardship programs, bundles of preventive care strategies, and improved diagnostic methods are the key to reducing prolonged antibiotic use for these indications.

Funding Source

No funding was secured for this study.

Financial Disclosure

The authors have no financial relationships relevant to this article to disclose.

Declaration of Competing Interest

The authors have no conflicts of interest to disclose.
REFERENCES

1. Hsieh EM, Hornik CP, Clark RH, et al. Medication use in the neonatal intensive care unit. Am J Perinatol. 2014;31(9):811–821.
2. Cotten CM, Taylor S, Stoll B, et al. Prolonged duration of initial empirical antibiotic treatment is associated with increased rates of necrotizing enterocolitis and death for extremely low birth weight infants. Pediatrics. 2009;123(1):58–66.
3. Cotten CM, McDonald S, Stoll B, et al. The association of third-generation cephalosporin use and invasive candidiasis in extremely low birth-weight infants. Pediatrics. 2006;118(2):717–722.
4. Kuppala VS, Meinzen-Derr J, Morrow AL, Schibler KR. Prolonged initial empirical antibiotic treatment is associated with adverse outcomes in premature infants. J Pediatr. 2011;159(5):720–725.
5. Novitsky A, Tuttle D, Locke RG, Saiman L, Mackley A, Paul EE. Antibiotic use for presumed neonatally acquired infections far exceeds that for central-line-associated blood stream infections: an exploratory cri. J Perinatol. 2011;31(8):514–518.
6. Wirtschafter DD, Padilla G, Suh O, Wan K, Trupp D, Fayard EE. Antibiotic use for presumed neonatally acquired infections far exceeds that for central-line-associated blood stream infections: an exploratory cri. J Perinatol. 2011;31(8):514–518.
7. Cantey JB, Wozniak PS, Pruszynski JE, Sanchez PJ. Reducing unnecessary antibiotic use in the neonatal intensive care unit (SCOUT): a prospective interrupted time-series study. Lancet Infect Dis. 2016;16(10):1178–1184.
8. Groshkopf LA, Huskens WC, Sinkowitz-Cochran RL, et al. Use of antimicrobial agents in United States neonatal and pediatric intensive care patients. Pediatr Infect Dis J. 2005;24(9):766–773.
9. Schulman J, Dimand RJ, Lee HC, Duenas GV, Bennett MV, Gould JB. Neonatal intensive care unit antibiotic use. Pediatr. 2015;135(5):826–833.
10. Schulman J, Benitz WE, Profit J, et al. Newborn antibiotic exposures and association with proven bloodstream infection. Pediatrics. 2019;144(5).
11. Patel SJ, Oshadi A, Prasad P, et al. Antibiotic use in neonatal intensive care units and adherence with centers for disease control and prevention 12 step campaign to prevent antimicrobial resistance. Pediatr Infect Dis J. 2009;28(12):1047–1051.
12. Greenberg RG, Kandefer S, Do BT, et al. Late-onset sepsis in extremely premature infants: 2000–2011. Pediatr Infect Dis J. 2017;36(8):774–779.
13. Craft AP, Finer NN, Barrington KJ. Vancomycin for prophylaxis against sepsis in preterm neonates. Cochrane Database Syst Rev. 2000(2):CD001971.
14. Hornik CP, Fort P, Clark RH, et al. Early and late onset sepsis in very-low-birth-weight infants from a large group of neonatal intensive care units. Early Hum Dev. 2012;88(Suppl 2):S69–S74.
15. Cantey JB, Anderson KR, Kalagiri RR, Mallett LH. Morbidity and mortality of coagulase-negative staphylococcal sepsis in very-low-birth-weight infants. World J Pediatr. 2018;14(3):269–273.
16. Zaidi AK, Thaver D, Ali SA, Khan TA. Pathogens associated with neonatal meningitis in the United States. 1998–2007. N Engl J Med. 2011;364(21):2016–2025.
17. Thigpen MC, Whitney CG, Messonnier NE, et al. Bacterial meningitis in the United States, 1998–2007. N Engl J Med. 2011;364(21):2016–2025.
18. Gordon SM, Srinivasan L, Harris MC. Neonatal meningitis: overcoming challenges in diagnosis, prognosis, and treatment with omics. Front Pediatr. 2017;5:139.
19. Okike IO, Johnson AP, Henderson KL, et al. Incidence, etiology, and outcome of bacterial meningitis in infants aged <90 days in the United Kingdom and Republic of Ireland: prospective, enhanced, national population-based surveillance. Clin Infect Dis. 2014;59(10):e150–e157.
20. Lawn JE, Cousens S, Zupan J, Lancet Neonatal Survival Steering Team. 4 million neonatal deaths: when? Where? Why? Lancet. 2005;365(9462):891–900.
21. Mann K, Jackson MA. Meningitis. Pediatr Rev. 2008;29(12):417–429: quiz 430.
22. Stoll BJ, Hansen N, Fanaroff AA, et al. To tap or not to tap: high likelihood of meningitis without sepsis among very low birth weight infants. Pediatrics. 2004;113(5):1181–1186.
23. Heath PT, Okike IO. Neonatal bacterial meningitis: an update. Paediatr Child Health. 2010;20(11):526–530.
24. Cosgrove SE, Patel A, Song X, et al. Impact of different methods of feedback to clinicians after postprescription antimicrobial review based on the centers for disease control and prevention’s 12 steps to prevent antimicrobial resistance among hospitalized adults. Infect Control Hosp Epidemiol. 2007;28(6):641–646.
25. Leroux S, Zhao W, Betremieux P, et al. Therapeutic guidelines for prescribing antibiotics in neonates should be evidence-based: a French national survey. Arch Dis Child. 2015;100(4):394–398.
26. Mutsaft T, Nellis G, Varenhi H, et al. High variability in the dosing of commonly used antibiotics revealed by a Europe-wide point prevalence study: implications for research and dissemination. BMC Pediatr. 2015;15:41.
27. Smits A, Annaert P, Allegaert K. Drug disposition and clinical practice in neonates: cross talk between developmental physiology and pharmacology. Int J Pharm. 2013;452(1–2):8–13.
28. Oesper C, Lutsar I, Mutsaft T, Turner MA, Heath PT, Sharland M. Clinical trials in neonatal sepsis. J Antimicrob Chemother. 2013;68(12):2733–2745.
29. Kontou A, Sarafidis K, Rolildes E. Antimicrobial dosing in neonates. Expert Rev Clin Pharmacol. 2017;10(3):239–242.
30. Patel SJ, Saiman L. Antibiotic resistance in neonatal intensive care unit pathogens: mechanisms, clinical impact, and prevention including antibiotic stewardship. Clin Perinatol. 2010;37(3):547–563.
31. Ng PC, Wong HL, Lyon DJ, et al. Combined use of alcohol hand rub and gloves reduces the incidence of late onset infection in very low birthweight infants. Arch Dis Child Fetal Neonatal Ed. 2004;89(4):F336–F340.
32. Schulman J, Stricof R, Stevens TP, et al. Statewide NICU central-line-associated bloodstream infection rates decline after bundles and checklists. Pediatr. 2011;127(3):436–444.
33. Butler-O’Hara M, D’Angio CT, Hoey H, Stevens TP. An evidence-based catheter bundle alters central venous catheter strategy in newborn infants. J Pediatr. 2012;160(6):e972–e977.e972.
34. Rubin LG, Sanchez PJ, Siegel J, et al. Evaluation and treatment of neonates with suspected late-onset sepsis: a survey of neonatologists’ practices. Pediatrics. 2002;110(4):e42.
35. Mukhopadhyay S, Sengupta S, Puopolo KM. Challenges and opportunities for antibiotic stewardship among preterm infants. Arch Dis Child Fetal Neonatal Ed. 2019;104(3):F327–F332.
36. Ericson JE, Thaden J, Cross HR, et al. No survival benefit with empirical vancomycin therapy for coagulase-negative staphylococcal bloodstream infections in infants. Pediatr Infect Dis J. 2015;34(4):371–375.
37. Chiu CH, Michelow IC, Cronin J, Ringer SA, Ferris TG, Puopolo KM. Effectiveness of a guideline to reduce vancomycin use in the neonatal intensive care unit. Pediatr Infect Dis J. 2011;30(4):273–278.
38. Holzmann-Pazgal G, Khan AM, Northrup TF, Domonoske C, Eisenwald EC. Decreasing vancomycin utilization in a neonatal intensive care unit. Am J Infect Control. 2015;43(11):1255–1257.
40. Karlowicz MG, Buescher ES, Surka AE. Fulminant late-onset sepsis in a neonatal intensive care unit, 1988–1997, and the impact of avoiding empiric vancomycin therapy. Pediatrics. 2000;106(6):1387–1390.

41. Kaufman D, Fairchild KD. Clinical microbiology of bacterial and fungal sepsis in very-low-birth-weight infants. Clin Microbiol Rev. 2004;17(3):638–680: table of contents.

42. Fanos V, Dall’Agnola A. Antibiotics in neonatal infections: a review. Drugs. 1999;58(3):405–427.

43. Sivanandan S, Soraisham AS, Swarnam K. Choice and duration of antimicrobial therapy for neonatal sepsis and meningitis. Int J Pediatr. 2011;2011:712150.

44. Mukhopadhyay S, Puopolo KM. Relevance of neonatal anaerobic blood cultures: new information for an old question. J Pediatric Infect Dis Soc. 2018;7(3):e126–e127.

45. Ng PC, Lam HS. Biomarkers for late-onset neonatal sepsis: cytokines and beyond. Clin Perinatol. 2010;37(3):599–610.

46. Aleem S, Greenberg RG. When to include a lumbar puncture in the evaluation for neonatal sepsis. Neoreviews. 2019;20(3):e124–e134.

47. Cohen-Wolkowiez M, Moran C, Benjamin DK, et al. Early and late onset sepsis in late preterm infants. Pediatr Infect Dis J. 2009;28(12):1052–1056.

48. Stoll BJ, Hansen NI, Fanaroff AA, et al. Late-onset sepsis in very low birth weight neonates: the experience of the NICHD neonatal research network. Pediatrics. 2002;110(1):e285–291.

49. Saez-Llorens X, McCracken GH Jr. Bacterial meningitis in children. Lancet. 2003;361(9375):2139–2148.

50. Tunkel AR, Hartman BJ, Kaplan SL, et al. Practice guidelines for the management of bacterial meningitis. Clin Infect Dis. 2004;39(9):1267–1284.

51. Thampi N, Shah PS, Nelson S, et al. Prospective audit and feedback on antibiotic use in neonatal intensive care: a retrospective cohort study. BMC Pediatr. 2019;19(1):105.

52. de Man P, Verhoeven BA, Verbrugh HA, Vos MG, van den Anker JN. An antibiotic policy to prevent emergence of resistant bacilli. Lancet. 2000;355(9208):973–978.

53. Nzeogwu NI, Rychalsky MR, Nallu LA, et al. Implementation of an antimicrobial stewardship program in a neonatal intensive care unit. Infect Control Hosp Epidemiol. 2017;38(10):1137–1143.

54. Tziaila C, Borghesi A, Serra G, Stronati M, Corsello G. Antimicrobial therapy in neonatal intensive care unit. Ital J Pediatr. 2015;41:27.

55. Dhudasia MB, Mukhopadhyay S, Puopolo KM. Implementation of the sepsis risk calculator at an academic birth hospital. Hosp Pediatr. 2018;8(5):243–250.

56. Patel RM, Kandefer S, Walsh MC, et al. Causes and timing of death in extremely premature infants from 2000 through 2011. N Engl J Med. 2015;372(4):331–340.

57. Horbar JD, Carpenter JH, Badger GJ, et al. Morbidity and mortality of extremely preterm neonates, 1993–2012. JAMA. 2015;314(10):1039–1051.

58. Cotten CM. Modifiable risk factors in necrotizing enterocolitis. Clin Perinatol. 2019;46(1):129–143.

59. Hintz SR, Kendrick DE, Stoll BJ, et al. Neurodevelopmental and growth outcomes of extremely low birth weight infants after necrotizing enterocolitis. Pediatrics. 2005;115(3):696–703.

60. Patel RM, Denning PW. Intestinal microbiota and its relationship with necrotizing enterocolitis. Pediatr Res. 2015;78(3):232–238.

61. Lin PW, Nasr TR, Stoll BJ. Necrotizing enterocolitis: recent scientific advances in pathophysiology and prevention. Semin Perinatol. 2008;32(2):70–82.

62. Kliegman RM, Fanaroff AA. Necrotizing enterocolitis. N Engl J Med. 1984;310(17):1093–1103.

63. de la Crochette MF, Pilouquet H, des Robert C, Darmaun D, Galmiche JP, Roze JC. Early intestinal bacterial colonization and necrotizing enterocolitis in premature infants: the putative role of Clostridium. Pediatr Res. 2004;56(3):366–370.

64. Hoy CM, Wood CM, Hawkey PM, Punts J. Duodenal microflora in very-low-birth-weight neonates and relation to necrotizing enterocolitis. J Clin Microbiol. 2000;38(12):4539–4547.

65. Clark RH, Bloom BT, Spitzer AR, Gerstmann DR. Reported medication use in the neonatal intensive care unit: data from a large national data set. Pediatrics. 2006;117(6):1979–1987.

66. Flannery DD, Ross RK, Mukhopadhyay S, Trumble AC, Puopolo KM, Gerber JS. Temporal trends and center variation in early antibiotic use among premature infants. JAMA Netw Open. 2018;1(1):e180164.

67. Gewolb IH, Schwabke RS, Taciak VL, Harrison TS, Panigrahi P. Stool microflora in extremely low birthweight infants. Arch Dis Child Fetal Neonatal Ed. 1999;80(3):F167–F173.
86. Levy I, Comarasca J, Davidovits M, Klinger G, Sirota L, Linder N. Urinary tract infection in preterm infants: the protective role of breastfeeding. Pediatr Nephrol. 2009;24(3):527–531.

87. Visser VE, Hall RT. Urine culture in the evaluation of suspected neonatal sepsis. J Pediatr. 1979;94(4):635–638.

88. Bonadio W, Maida G. Urinary tract infection in outpatient febrile infants younger than 30 days of age: a 10-year evaluation. Pediatr Infect Dis J. 2014;33(4):342–344.

89. Cleper R, Krause I, Eisenstein B, Davidovits M. Prevalence of vesicoureteral reflux in neonatal urinary tract infection. Clin Pediatr (Philadelphia). 2004;43(7):619–625.

90. Kanellopoulos TA, Salekatos C, Spiliopoulou I, Ellina A, Nikolakopoulou NM, Papanastassiou DA. First urinary tract infection in neonates, infants and young children: a comparative study. Pediatr Nephrol. 2006;21(8):1131–1137.

91. Littlewood JM. 66 infants with urinary tract infection in first month of life. Arch Dis Child. 1972;47(252):218–226.

92. Downey LC, Benjamin DK Jr., Clark RH, et al. Urinary tract infection concordance with positive blood and cerebrospinal fluid cultures in the neonatal intensive care unit. J Perinatol. 2013;33(4):302–306.

93. Wynn JL, Tan S, Gantz MG, et al. Outcomes following candiduria in extremely low birth weight infants. Clin Infect Dis. 2012;54(3):331–339.

94. Zorc JJ, Levine DA, Platt SL, et al. Clinical and demographic factors associated with urinary tract infection in young febrile infants. Pediatrics. 2005;116(3):644–648.

95. Wang SF, Huang FY, Chiu NC, et al. Urinary tract infection in infants less than 2 months of age. Zhonghua Min Guo Xiao Er Ke Yi Xue Hui Za Zhi. 1994;35(4):294–300.

96. Greenhow TL, Hung YY, Herz AM, Losada E, Pantell RH. The changing epidemiology of serious bacterial infections in young infants. Pediatr Infect Dis J. 2014;33(6):595–599.

97. Nowell L, Moran C, Smith PB, et al. Prevalence of renal anomalies after urinary tract infections in hospitalized infants less than 2 months of age. J Perinatol. 2010;30(4):281–285.

98. Benjamin DK Jr., Stoll BJ, Gantz MG, et al. Neonatal candidiasis: epidemiology, risk factors, and clinical judgment. Pediatr. 2010;126(4):e865–e873.

99. Phillips JR, Karlowicz MG. Prevalence of candida species in hospital-acquired urinary tract infections in a neonatal intensive care unit. Pediatr Infect Dis J. 1997;16(2):190–194.

100. Arshad M, Seed PC. Urinary tract infections in the clinic. Clin Perinatol. 2015;42(1):17–28: vii.

101. Hoberman A, Wald ER. Urinary tract infections in young febrile children. Pediatr Infect Dis J. 1997;16(1):11–17.

102. Al-Orifi F, McGillivray D, Tange S, Kramer MS. Urine culture from bag specimens in young children: are the risks too high. J Pediatr. 2000;137(2):221–226.

103. Austin BJ, Bolland C, Gunn TR. Is urethral catherization a successful alternative to suprapubic aspiration in neonates? J Paediatr Child Health. 1999;35(1):34–36.

104. El-Naggar W, Yiu A, Mohamed A, et al. Comparison of pain during two methods of urine collection in preterm infants. Pediatrics. 2010;125(6):1224–1229.

105. Doern CD, Richardson SE. Diagnosis of urinary tract infections in children. J Clin Microbiol. 2016;54(9):2233–2242.

106. Mori R, Yonemoto N, Fitzgerald A, Tullius K, Verrier-Jones K, Lankhaupan M. Diagnostic performance of urine dipstick testing in children with suspected UTI: a systematic review of relationship with age and comparison with microscopy. Acta Paediatr. 2010;99(4):581–584.

107. Ismailli K, Lolin K, Damny N, Alexander M, Lepage P, Hall M. Febrile urinary tract infections in 0- to 3-month-old infants: a prospective follow-up study. J Pediatr. 2011;158(1):91–94.

108. Hasvold J, Bradford L, Nelson C, Harrison C, Attar M, Stillwell T. Gentamicin resistance among Escherichia coli strains isolated in neonatal sepsis. J Neonatal Perinatal Med. 2013;6(2):173–177.

109. Shakir SM, Goldbeck JM, Robison D, Eckerd AM, Chavez-Bueno S. Genotypic and phenotypic characterization of invasive neonatal Escherichia coli clinical isolates. Am J Perinatol. 2014;31(11):975–982.

110. Alizadeh Taheri P, Navabi B, Khatibi E. Frequency and susceptibility of bacteria caused urinary tract infection in neonates: eight-year study at neonatal division of Bahrami children’s hospital, Tehran Iran. Iran J Public Health. 2013;42(10):1126–1133.

111. Williamson JC, Craft DW, Butts JD, Rasch RH. In vitro assessment of urinary isolates of ampicillin-resistant enterococci. Ann Pharmacother. 2002;36(2):246–250.

112. Subcommittee on Urinary Tract Infection SCQOI, Management, Roberts KB. Urinary tract infection: clinical practice guideline for the diagnosis and management of the initial UTI in febrile infants and children 2 to 24 months. Pediatrics. 2011;128(3):595–610.

113. Prevention CffS. Guidelines for preventing health-care-associated pneumonia. 2003; https://www.cdc.gov/mmwr/preview/mmwrhtml/rr5303a1.htm.

114. Baltimore RS. The difficulty of diagnosing ventilator-associated pneumonia. Pediatrics. 2003;112(6 Pt 1):1420–1421.

115. Cernanda M, Aguar M, Brugada M, et al. Ventilator-associated pneumonia in newborn infants diagnosed with an invasive bronchoalveolar lavage technique: a prospective observational study. Pediatr Crit Care Med. 2013;14(1):55–61.

116. National Nosocomial Infections Surveillance S. National Nosocomial Infections Surveillance (NNIS) system report, data summary from January 1992 through June 2004, issued October 2004. Am J Infect Control. 2004;32(8):470–485.

117. S Tripathi GM, Jain A, Kohli N. Study of ventilator associated pneumonia in neonatal intensive care unit: characteristics, risk factors and outcome. Internet J Med Update. 2010;5(1).

118. Apisarnthanarak A, Holzmann-Pazgal G, Hamvas A, Olsen MA, Fraser VJ. Ventilator-associated pneumonia in extremely preterm neonates in a neonatal intensive care unit: characteristics, risk factors, and outcomes. Pediatrics. 2003;112(6 Pt 1):1283–1289.

119. Stover BH, Shulman ST, Bratcher DP, et al. Nosocomial infection rates in US children’s hospitals’ neonatal and pediatric intensive care units. Am J Infect Control. 2001;29(3):152–157.

120. van der Zwert WC, Kaiser AM, van Elburg RM, et al. Nosocomial infections in a Dutch neonatal intensive care unit: surveillance study with definitions for infection specifically adapted for neonates. J Hosp Infect. 2005;61(4):300–311.

121. Yuan TM, Chen LH, Yu HM. Risk factors and outcomes for ventilator-associated pneumonia in neonatal intensive care unit patients. J Perinat Med. 2007;35(4):334–338.

122. Webber S, Wilkinson AR, Lindsell D, Hope PL, Dobson SR, Isaacs D. Neonatal pneumonia. Arch Dis Child. 1990;65(6):207–211.

123. Cordero L, Ayers LW, Miller RR, Seguin JH, Coley BD. Surveillance of ventilator-associated pneumonia in very-low-birthweight infants. Am J Infect Control. 2002;30(1):32–39.

124. Garland JS. Strategies to prevent ventilator-associated pneumonia in neonates. Clin Perinatol. 2010;37(3):629–643.

125. Evans ME, Schaffner W, Federspiel CF, Cotton RB, McKee KT Jr., Stratton CW. Sensitivity, specificity, and predictive value of body surface cultures in a neonatal intensive care unit. JAMA. 1988;259(2):248–252.

126. Cordero L, Sananes M, Dedhiya P, Ayers LW. Purulence and gram-negative bacilli in tracheal aspirates of mechanically ventilated very low birth weight infants. J Perinatol. 2001;21(6):376–381.

127. Booth GR, Al-Hosni M, Ali A, Keenan WJ. The utility of tracheal aspirate cultures in the immediate neonatal period. J Perinatol. 2009;29(7):493–496.

128. Cernanda M, Brugada M, Golombok S, Ventoo M. Ventilator-associated pneumonia in neonatal patients: an update. Neonatology. 2014;105(2):98–107.
Dell’Orto V, Bourgeois-Nicolaos N, Rouard C, et al. Cell count analysis from bronchoscopic bronchoalveolar lavage in preterm infants. J Pediatr. 2018;200:30-37 e32.

Prober CG, Watson PD, Jones J. Technical report: precautions regarding the use of aerosolized antibiotics. Committee on infectious diseases and committee on drugs. Pediatrics. 2000;106(6):E89.

Ramsey BW, Pepe MS, Quan JM, et al. Intermittent administration of inhaled tobramycin in patients with cystic fibrosis. Cystic fibrosis inhaled tobramycin study group. N Engl J Med. 1999;340(1):23–30.

Choudhry S, Ahmad E, Batool A, Raja N. Use of colistin for the treatment of multi drug resistant isolates in neonates. J Pak Med Assoc. 2017;67(8):1157–1160.

Nakwan N, Wannaro J, Thongmak T, et al. Safety in treatment of ventilator-associated pneumonia due to extensive drug-resistant Acinetobacter baumanii with aerosolized colistin in neonates: a preliminary report. Pediatr Pulmonol. 2011;46(1):60–66.

Engle WD, Jackson GL, Sendelbach D, et al. Neonatal pneumonia: comparison of 4 vs 7 days of antibiotic therapy in term and near-term infants. J Perinatol. 2000;20(7):421–426.

Cantey JB, Wozniak PS, Sanchez PJ. Prospective surveillance of antibiotic use in the neonatal intensive care unit: results from the SCOUT study. Pediatr Infect Dis J. 2015;34(3):267–272.

Durand M, Sangha B, Cabal LA, Hoppenbrouwers T, Hodgman JE. Cardiopulmonary and intracranial pressure changes related to endotracheal suctioning in preterm infants. Crit Care Med. 1989;17(6):506–510.

Cordero L, Sananes M, Ayers LW. Comparison of a closed (Trach Care MAC) with an open endotracheal suction system in small premature infants. J Perinatol. 2000;20(3):151–156.

Hollemann-Duray D, Kaupie D, Weiss MG. Heated humidified high-flow nasal cannula: use and a neonatal early extubation protocol. J Perinatol. 2007;27(12):776–781.

Ng SP, Gomez JM, Lim SH, He NK. Reduction of nosocomial infection in a neonatal intensive care unit (NICU). Singapore Med J. 1998;39(7):319–323.

Won SP, Chou HC, Hsieh WS, et al. Handwashing program for the prevention of nosocomial infections in a neonatal intensive care unit. Infect Control Hosp Epidemiol. 2004;25(9):742–746.

Lee CKK. Drug Dosages. In: Hughes HKK, Lauren K, et al., eds. The Johns Hopkins Hospital: The Harriet Lane Handbook, 21, Elsevier; 2018.

Tremoulet A, Le J, Poindexter B, et al. Characterization of the population pharmacokinetics of ampicillin in neonates using an opportunistic study design. Antimicrob Agents Chemother. 2014;58(6):3013–3020.

Le J, Poindexter B, Sullivan JE, et al. Comparative analysis of ampicillin plasma and dried blood spot pharmacokinetics in neonates. Ther Drug Monit. 2018;40(1):103–108.

Bijleveld YA, van den Heuvel MF, Hodiamont CJ, Mathot RA, de Haan TR. Population pharmacokinetics and dosing considerations for gentamicin in newborns with suspected or proven sepsis caused by gram-negative bacteria. Antimicrob Agents Chemother. 2017;61(1).

Sampson MR, Frymoyer A, Rattray B, et al. Predictive performance of a gentamicin population pharmacokinetic model in neonates receiving full-body hypothermia. Ther Drug Monit. 2014;36(5):584–589.

Janssen EJ, Valitalo PA, Allegaert K, et al. Towards rational dosing algorithms for vancomycin in neonates and infants based on population pharmacokinetic modeling. Antimicrob Agents Chemother. 2016;60(2):1013–1021.

Leroux S, Roue JM, Gouyon JB, et al. A population and developmental pharmacokinetic analysis to evaluate and optimize cefotaxime dosing regimen in neonates and young infants. Antimicrob Agents Chemother. 2016;60(11):6626–6634.

Valitalo PA, van den Anker JN, Allegaert K, et al. Novel model-based dosing guidelines for gentamicin and tobramycin in preterm and term neonates. J Antimicrob Chemother. 2015;70(7):2074–2077.

Gonzalez D, Delmore P, Bloom BT, et al. Clindamycin pharmacokinetics and safety in preterm and term infants. Antimicrob Agents Chemother. 2016;60(5):2888–2894.

van den Anker JN, Schoemaker RC, Hop WC, et al. Cefazidime pharmacokinetics in preterm infants: effects of renal function and gestational age. Clin Pharmacol Ther. 1995;58(6):650–659.

van den Anker JN, Schoemaker RC, van der Heijden Bj, Broere HM, Neijens HJ, de Groot R. Once-daily versus twice-daily administration of cefazidime in the preterm infant. Antimicrob Agents Chemother. 1995;39(9):2048–2050.

Cohen-Wolkowicz M, Benjamini DK Jr., Ross A, et al. Population pharmacokinetics of piperacillin using scavenged samples from preterm infants. Ther Drug Monit. 2012;34(3):312–319.

Cohen-Wolkowicz M, Watt KM, Zhou C, et al. Developmental pharmacokinetics of piperacillin and tazobactam using plasma and dried blood spots from infants. Antimicrob Agents Chemother. 2014;58(5):2856–2865.

Cohen-Wolkowicz M, Schoemaker RC, Bloom BT, et al. Determining population and developmental pharmacokinetics of metronidazole using plasma and dried blood spot samples from premature infants. Pediatr Infect Dis J. 2013;32(9):956–961.

De Cock RF, Allegaert K, Schreuder MF, et al. Maturation of the glomerular filtration rate in neonates, as reflected by amikacin clearance. Clin Pharmacokinet. 2012;51(2):105–117.

Smits A, De Cock RF, Allegaert K, Vanhae不够 sbrouch S, Danhof M, Knibbe CA. Prospective evaluation of a model-based dosing regimen for amikacin in preterm and term neonates in clinical practice. Antimicrob Agents Chemother. 2015;59(10):6344–6351.

Corpelein WE, de Waard M, Christmann V, et al. Effect of donor milk on severe infections and mortality in very low-birth-weight infants: the early nutrition study randomized clinical trial. JAMA Pediatr. 2016;170(7):654–661.

Cristofalo EA, Schanler RJ, Blanco CI, et al. Randomized trial of exclusive human milk versus preterm formula diets in extremely premature infants. J Pediatr. 2013;163(6):1592–1595; e1591.

Sullivan S, Schanler RJ, Kim JH, et al. An exclusively human milk-based diet is associated with a lower rate of necrotizing enterocolitis than a diet of human milk and bovine milk-based products. J Pediatr. 2010;156(4):562–567; e561.

Schanler RJ, Shulman RJ, Lau C. Feeding strategies for premature infants: beneficial outcomes of feeding fortified human milk versus preterm formula. Pediatrics. 1999;103(6 Pt 1):1150–1157.

Guney-Varal I, Koksal N, Ozkan H, Dogan P, Mezger L. The efficacy of Bifidobacterium breve and Lactobacillus casei oral supplementation on necrotizing enterocolitis in very-low-birth-weight preterm infants: a double-blind, randomized, controlled trial. J Pediatr. 2015;162(4):693–700.