Fuzzy matrix game: A fast approach using artificial hybrid neural-net logic-gate switching circuit

Ankan Bhaumik · Sankar Kumar Roy

Accepted: 14 June 2022 / Published online: 16 July 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Introducing neuro-fuzzy concept in decision-making problems, makes a new way in artificial intelligence and expert systems. Sometimes, neural networks are used to optimize certain performances. In general, knowledge acquisition becomes difficult when problem’s variables, constraints, environment, decision maker’s attitude and complex behavior are encountered with. A sense of fuzziness prevails in these situations, sometimes numerically and sometimes linguistically. Neural networks (or neural nets) help to overcome this problem. Neural networks are explicitly and implicitly hyped to draw out fuzzy rules from numerical information and linguistic information. Logic-gate and switching circuit mobilize the fuzzy data in crisp environment and can be used in artificial neural network, also. Game theory has a tremendous scope in decision making; consequently, decision makers’ hesitant characters play an important role in it. In this paper, a game situation is clarified under artificial neural network through logic-gate switching circuit in hesitant fuzzy environment with a suitable example, and this concept can be applied in future for real-life situations.

Keywords
Artificial neural networks · Logic gates · Fuzzy matrix games · Takagi–Sugeno model

Abbreviations
IFS Intuitionistic fuzzy set
IFN Intuitionistic fuzzy number
HFS Hesitant fuzzy set
LPP Linear programming problem
ANN Artificial neural network
TSK Takagi–Sugeno–Kang
FGSC-ANN Fuzzy logic gate switching circuit-oriented artificial neural network

1 Introduction
Basic decision-making issues related to game hypotheses have large-scale implementations in science, engineering, management science and sociology. Fuzzy set (FS) (Zadeh 1965) gives assistance to a brilliant and wonderful role to investigate the inner situations of issues identified with regular day-to-day existence’s. Although it has a few constraints to deal with imprecise information, hazy and murky data when various kinds of fuzziness, murkiness and unpredictability yield up at the same time. Analysts have nurtured the fuzzy sets and stretched out the FS to intuitionistic fuzzy set (IFS) (Atanassov 1986), hesitant fuzzy set (HFS) (Torra 2010), etc. HFS effectively actualized the problems’ environments where FS, IFS flunk to depict issues about fuzziness, uncertainty. HFS portrays a group of values from [0, 1] instead of single one to every member of corresponding set.

Artificial neural frameworks or artificial neural nets are physical cell frameworks generally able to acquire, store and use exploratory information toward knowledge. The learning is acquired in stable mappings inserted in network framework. Neurons or nodes are the basic unit or element of net. In brain-neuron system, i.e., in neural net systems, activity starts at networks’ polarization, then the firing rate of neuron is considered through a set of input connections using synapses on cells and the corresponding dendrite; then neurons are given internal resting space and consequently neuron’s axonal projections are done. In artificial neural nets, every processing element is marked by an activity level, an output cost or value, a group of input links, a bias cost, i.e., an artificial resting...
stage of corresponding neuron, and a bunch of output links. Each of these characteristics of the unit is expressed mathematically by means of real numbers. Thus, every connection possesses weight, may be positive or negative, i.e., synaptic influence which decides the impact of the approaching contribution on the enactment level of the unit. Weights determine excitatory or inhibitory initiation. Artificial neural network may be classified as the generalization of brain-style computational methods in mathematical sciences, mainly in applied sciences. McCulloch and Pitts (1943) and Hebb (1949) originated the idea of brain-style computation. Minsky and Papert (1969) proposed artificial intelligence as symbol processing.

Contemporarily, von Neumann and Morgenstern (1944) pioneered Game Theory. A game constitutes with players, their turns and returns. These turns are called strategies and returns and quantitatively are termed as payoffs. Players assume pure strategies randomly, and when with some probabilities, these strategies are defined to be mixed one. Matrix game and related duality hypothesis in linear programming problem (LPP) have a linkage in crisp form of intricacies of issues, yet reality wants various dubious natures. Because of the vulnerability, imprecision attributes of frameworks in question and the vagueness, ambiguity of adjudications of decision players, we understand inclusion of aversion, hesitance environments in game problems. Campos (1989) first illuminated fuzzy matrix game. Li (2013, 2014) solved matrix games with fuzzy payoffs. Bhaumik et al. (2017), Bhaumik and Roy (2021), Bhaumik et al. (2021), Jana and Roy (2019), Roy and Mula (2016) and Roy and Jana (2021) have been published on fuzzy game theory.

Hirota and Pedrycz (1993) discussed on logic-based neural networks. Neural nets have been applied in fuzzy logic-system, soft-computing (cf. Buckley and Hayashi 1992, 1995; Jang 1993; Lin and Lee 1991), function approximation (Wu and Er 2000), fuzzy modeling (cf. Sugeno and Yasukawa 1993; Takagi and Sugeno 1985), etc., but hybrid-neural net has not been applied in matrix game using logic-gate switching circuits. Also, matrix game under hesitant triangular intuitionistic fuzzy environment has not been discussed using neural net in literature. These can be considered as the research gaps from the others in literature. The main aims of this study are as follows:

(i) To construct a game model using artificial neural nets.
(ii) To apply switching circuit gates in neural nets.
(iii) To compute a quick geometric way for defuzzification of a set of hesitant fuzzy elements.

The rest of the paper is set as: Preliminaries related to triangular intuitionistic fuzzy set, triangular norm and conorm, hesitant fuzzy set are talked about in short in Sect. 2. Section 3 describes classical matrix game shortly. In Sect. 4, we discuss on neural network model with two subsections: one for biological neural network and another for artificial neural network, briefly. In Sect. 5, logic-gate switching circuits are defined with the elementary gate operators, and in Sect. 6, we develop fuzzy logic-gate switching circuit-oriented artificial neural network model. Matrix games with artificial neural network and logic-gate switch are described in Sect. 7. A numerical problem is simulated and exercised in Sect. 8. Section 9 is confined under the consideration of results and the corresponding discussion to the problem having some comparative analyses with others, and Sect. 10 finishes up this work with extent of future research scopes.

2 Preliminaries

We introduce here the basic definitions and some properties on triangular intuitionistic fuzzy set, triangular norm and conorm, and hesitant fuzzy set.

Let X denotes a universe of discourse. A fuzzy set \tilde{A} in X is distinguished by a membership function $\mu_{\tilde{A}} : X \to [0, 1]$. A fuzzy set \tilde{A} in X can be demonstrated as follows:

$$\tilde{A} = \{(x, \mu_{\tilde{A}}(x)) : \mu_{\tilde{A}}(x) \in [0, 1], \ x \in X\}.$$

Membership degrees $\mu_{\tilde{A}}(x)$ of \tilde{A} are crisp numbers.

Definition 2.1 Triangular IFN (Li 2013): An IF number $\tilde{A} = (\langle \varphi, \psi, \varphi \rangle; \epsilon_{\varphi}, \rho_{\varphi})$ having membership & non-membership degrees of an element $x = \varphi$ in \tilde{A}, being ϵ_{φ} and ρ_{φ}, is said to be triangular IFN if its membership and non-membership functions, respectively, are defined as pursues:

$$\Phi_{\tilde{A}}(x) = \begin{cases} \epsilon_{\varphi} \left(\frac{x-\varphi}{\varphi-\psi} \right), & \text{if } \varphi \leq x < \varphi, \\ \epsilon_{\varphi}, & \text{if } x = \varphi, \\ \epsilon_{\varphi} \left(\frac{\psi-x}{\psi-\varphi} \right), & \text{if } \varphi < x \leq \psi, \\ 0, & \text{if } x < \varphi \ or \ x > \psi, \end{cases} \quad (1)$$

and

$$\Phi_{\tilde{A}}(x) = \begin{cases} \rho_{\varphi} \left(\frac{\psi-x+\rho_{\varphi}(x-\varphi)}{\psi-\varphi} \right), & \text{if } \varphi \leq x < \varphi, \\ \rho_{\varphi}, & \text{if } x = \varphi, \\ \rho_{\varphi} \left(\frac{x-\psi+\rho_{\varphi}(\psi-x)}{\psi-\varphi} \right), & \text{if } \varphi < x \leq \psi, \\ 1, & \text{if } x < \varphi \ or \ x > \psi. \end{cases} \quad (2)$$

Here, ϵ_{φ} and ρ_{φ}, in Eqs.(1) and (2), satisfy the conditions: $0 \leq \epsilon_{\varphi} \leq 1, 0 \leq \rho_{\varphi} \leq 1, 0 \leq \epsilon_{\varphi} + \rho_{\varphi} \leq 1$. Also,
\[\pi_A(x) = 1 - \phi_A(x) - \Phi_A(x) \] is defined as intuitionistic fuzzy index of an element \(x \in A \).

Arithmetic Operations on Triangular IFNs: Let \(\hat{\phi} = (\langle \phi, \psi, \varphi \rangle; \epsilon_\phi, \rho_\psi, \rho_\varphi) \) and \(\hat{\vartheta} = (\langle \theta, \delta, \sigma \rangle; \epsilon_\theta, \rho_\delta, \rho_\sigma) \) appear for two triangular IFNs, then the addition, subtraction, multiplication, division and scalar multiplication of the numbers are conveyed as below:

Addition:

\[\hat{\phi} + \hat{\vartheta} = (\langle \phi + \theta, \psi + \delta, \varphi + \sigma \rangle; \epsilon_\phi + \epsilon_\theta, \rho_\psi + \rho_\delta, \rho_\varphi + \rho_\sigma) . \tag{3} \]

Subtraction:

\[\hat{\phi} - \hat{\vartheta} = (\langle \phi - \theta, \psi - \delta, \varphi - \sigma \rangle; \epsilon_\phi - \epsilon_\theta, \rho_\psi - \rho_\delta, \rho_\varphi - \rho_\sigma) . \tag{4} \]

Multiplication:

\[\hat{\phi} \otimes \hat{\vartheta} = \begin{cases} (\langle \phi \varphi, \psi \theta, \varphi \sigma \rangle; \epsilon_\phi \epsilon_\psi \epsilon_\varphi, \rho_\phi \rho_\psi \rho_\varphi), & \text{if } \hat{\phi} > 0, \hat{\vartheta} > 0, \\ (\langle \phi \varphi, \psi \theta, \varphi \sigma \rangle; \epsilon_\phi \epsilon_\psi \epsilon_\varphi, \rho_\phi \rho_\psi \rho_\varphi), & \text{if } \hat{\phi} < 0, \hat{\vartheta} < 0, \\ (\langle \phi \varphi, \psi \theta, \varphi \sigma \rangle; \epsilon_\phi \epsilon_\psi \epsilon_\varphi, \rho_\phi \rho_\psi \rho_\varphi), & \text{if } \hat{\phi} > 0, \hat{\vartheta} < 0. \end{cases} \tag{5} \]

Division:

\[\hat{\phi} \div \hat{\vartheta} = \begin{cases} (\langle \phi \varphi / \theta, \psi \theta / \varphi \rangle; \epsilon_\phi \epsilon_\psi \epsilon_\varphi, \rho_\phi \rho_\psi \rho_\varphi), & \text{if } \hat{\phi} > 0, \hat{\vartheta} > 0, \\ (\langle \phi \varphi / \theta, \psi \theta / \varphi \rangle; \epsilon_\phi \epsilon_\psi \epsilon_\varphi, \rho_\phi \rho_\psi \rho_\varphi), & \text{if } \hat{\phi} < 0, \hat{\vartheta} < 0, \\ (\langle \phi \varphi / \theta, \psi \theta / \varphi \rangle; \epsilon_\phi \epsilon_\psi \epsilon_\varphi, \rho_\phi \rho_\psi \rho_\varphi), & \text{if } \hat{\phi} < 0, \hat{\vartheta} > 0. \end{cases} \tag{6} \]

where “\(\land \)” and “\(\lor \)” individually denote min and max operators in fuzzy sense.

Scalar Multiplication: For any real number \(k \),

\[k\hat{\phi} = (\langle k\phi, k\psi, k\varphi \rangle; \epsilon_\phi, \rho_\psi, \rho_\varphi), \text{ if } k \geq 0, \]

\[(k\hat{\phi}, k\psi, k\varphi) = (\epsilon_\phi, \rho_\psi, \rho_\varphi), \text{ if } k < 0. \tag{7} \]

where the assumption of \(\hat{\phi} > 0 \) or \(< 0 \) is decided by the extension principle of fuzzy set (Li 2013).

t-norm and t-conorm are two sorts of operations in fuzzy sets. They are otherwise called as triangular norm and triangular conorn, respectively.

Definition 2.2 Triangular norm (Fuller 2000): A mapping \(T \) is a triangular norm such that \(T : [0, 1] \times [0, 1] \rightarrow [0, 1], \forall x, y, x_1, y_1, z \in [0, 1] \), with the following conditions as axioms:

2.2.1: \(T(x, 0) = 0, T(x, 1) = x \); Boundary condition.

2.2.2: \(T(x, y) = T(y, x) \); Condition for symmetry.

2.2.3: \(T(x, T(y, z)) = T(T(x, y), z) \); Condition for associativity.

2.2.4: \(T(x, y) \leq T(x_1, y_1) \) if \(x \leq x_1, y \leq y_1 \); Condition for monotonicity.

Definition 2.3 Triangular co-norm (Fuller 2000): A mapping \(T \) is a triangular co-norm such that \(T : [0, 1] \times [0, 1] \rightarrow [0, 1], \forall x, y, x_1, y_1, z \in [0, 1] \), with the following conditions as axioms:

2.3.1: \(T(x, 0) = x, T(x, 1) = 1 \); Boundary condition.

2.3.2: \(T(x, y) = T(y, x) \); Condition for symmetry.

2.3.3: \(T(x, T(y, z)) = T(T(x, y), z) \); Condition for associativity.

2.3.4: \(T(x, y) \leq T(x_1, y_1) \) if \(x \leq x_1, y \leq y_1 \); Condition for monotonicity.

Definition 2.4 Complement of fuzzy set: Considering a fuzzy sentence \(p \), we describe its complement as some sentence fulfilling the uniformity: \(M^c(p) = W - M(p) \), where \(M^c(p) \) means \(M(p) \)'s complementary set; \(W \) is the entire set of sentences; \(M \) is a membership function that partners \(p \) with the members of \(M(p) \).

Definition 2.5 Hesitant Fuzzy Set (Torra 2010): Based on reference set \(X, A_{HF} \) is defined to be a hesitant fuzzy set described by the function \(h_A(x) \). Here, \(h_A(x) \) is applied to \(X \) and gives a subset of \([0, 1], \) i.e., \(A_{HF} = \{ (x, h_A(x)) : x \in X \} \) where \(h_A(x) \) is named as hesitant fuzzy element (HFE), an essential unit of HFS is a set fitted with various merits in \([0, 1]\) representing the conceivable membership degrees to component \(x \in X \).

Example 2.1 \(A_{HF} = \{ (x_1, 0.1, 0.4, 0.3), (x_2, 0.3, 0.35), (x_3, 0.2, 0.4, 0.6, 0.69, 0.8) \} \) is a HFS; \(\{ x_1, x_2, x_3 \} \subset X \), a reference set and \(h_A(x_1) = \{ 0.1, 0.4, 0.3 \}, h_A(x_2) = \{ 0.3, 0.35 \}, h_A(x_3) = \{ 0.2, 0.4, 0.6, 0.69, 0.8 \} \) are hesitant fuzzy elements.

Property 2.1: Considering \(h, h_1 \) and \(h_2 \) as three HFEs, a few tasks are characterized by Torra (2010) as pursues:

2.1.1: \(h^c = \{ 1 - y : y \in h \} \), complement of \(h \);

2.1.2: \(h_1 \cup h_2 = \{ y_1 \lor y_2 : y_1 \in h_1, y_2 \in h_2 \} \);

2.1.3: \(h_1 \cap h_2 = \{ y_1 \land y_2 : y_1 \in h_1, y_2 \in h_2 \} \);

Furthermore, in order to aggregate hesitant fuzzy information, Xu and Xia (2011) defined some new operations on \(h, h_1 \) and \(h_2 \) with \(\lambda > 0 \) as below:

2.1.4: \(h_1 \oplus h_2 = \{ y_1 + y_2 - y_1 y_2 : y_1 \in h_1, y_2 \in h_2 \} \);

2.1.5: \(h_1 \odot h_2 = \{ y_1 y_2 : y_1 \in h_1, y_2 \in h_2 \} \);

2.1.6: \(h^\lambda = \{ y^\lambda : y \in h \} \);

2.1.7: \(\lambda h = \{ 1 - (1 - y)^\lambda : y \in h \} \).
3 Classical matrix game

In this part, we describe some basics on classical game theory. A matrix game is communicated as $A = (a_{ij})$ where $i = 1, 2, \ldots, p$, $j = 1, 2, \ldots, q$ with components as real numbers and the corresponding matrix is termed as payoff matrix. We think about two players. Players I and II play row i and column j, individually, we characterize, and the results to players I and II are a_{ij} and $-a_{ij}$, respectively, in case of zero-sum concept. Strategies that advantage player’s individual adjustments are picked by players. Expecting the game with arrangement of unadulterated techniques S_1 and S_2 and that of blended or mixed strategies X and Y for players I and II individually, we characterize, fixing $S_1 = \{a_1, a_2, \ldots, a_p\}$, $S_2 = \{\beta_1, \beta_2, \ldots, \beta_q\}$, $X = \{(X_1, X_2, \ldots, X_p)^T : \sum_{i=1}^{p} X_i = 1, X_i \geq 0, i = 1, 2, \ldots, p\}$, $Y = \{(Y_1, Y_2, \ldots, Y_q)^T : \sum_{j=1}^{q} Y_j = 1, Y_j \geq 0, j = 1, 2, \ldots, q\}$.

Here $X_i (i = 1, 2, \ldots, p)$ and $Y_j (j = 1, 2, \ldots, q)$ are probabilities in which the players I and II sort-out their pure strategies $\alpha_i \in S_1 (i = 1, 2, \ldots, p)$ and $\beta_j \in S_2 (j = 1, 2, \ldots, q)$ individually and game is enunciated as $G \equiv (X, Y, A)$.

Basically, we wish to get the most favorable strategy(ies) for players’ and the value of considered game. The estimation of the game is characterized to be the maximum ensured gain to maximizing player I or the minimum conceivable loss to minimizing player II, and here the best strategic procedures are utilized by both players. If a player records the most exceedingly awful potential results of all things considering his or her prospective strategies, the individual in question will pick that strategy, the most reasonable for the person in question. This idea is observed as maximin and minimax principle. When maximin for player I and minimax for player II be equal, then the existence of a saddle point in corresponding game is certified (von Neumann and Morgenstern 1944 noted the term saddle point).

Expect that player I uses any mixed strategy from X. Clearly, player I’s normal increase floor is $\min(X'AY)$ and if shortly be denoted by v, we need to maximize v, state v^* for certain $X^* \in X$, as $v(X^*) = \max(\min(\sum_{i=1}^{p} a_{ij}X_i : j = 1, 2, \ldots, q)$). Such X^* and v^*, respectively, called player I’s maximin strategy and game value, are obtained from the accompanying LPP in Model 1 as:

Model 1

\[
\begin{align*}
\text{maximize} & \quad v \\
\text{subject to} & \quad \sum_{i=1}^{p} a_{ij}X_i \geq v \quad (j = 1, 2, \ldots, q), \\
& \quad \sum_{i=1}^{p} X_i = 1, \\
& \quad X_i \geq 0 \quad (i = 1, 2, \ldots, p).
\end{align*}
\]

What’s more, with same contention, player II’s optimal or minimax strategy, say $Y^* \in Y$, and game value, state w^* are depicted from Model 2 as:

Model 2

\[
\begin{align*}
\text{minimize} & \quad w \\
\text{subject to} & \quad \sum_{j=1}^{q} a_{ij}Y_j \leq w \quad (i = 1, 2, \ldots, p), \\
& \quad \sum_{j=1}^{q} Y_j = 1, \\
& \quad Y_j \geq 0 \quad (j = 1, 2, \ldots, q).
\end{align*}
\]

4 Neural network model

4.1 Biological network system

A typical neuron or nerve cell belongs to the vertebrate nervous system which contains the nucleus (genetic informer) and offers to two sorts of cell processes, axon and dendron. Axon acts as transmitting element or output element, whereas dendron as input element. Branches of the axon of one neuron communicate with signals to other neuron at a site called the synapse. Synapses are the elementary signal processing devices.

Though the brain with its nervous system makes up for the slow rate of operation with a few factors, the brain is an exceptionally perplexing, nonlinear, parallel data handling framework. From early stage of childhood to adult stage, synapses are modified gradually through the learning process. And these motivate the scientists to use neural networks and the related sciences in artificial intelligence like pattern recognition, perception and motor controlling in fuzzy sets and systems. Thus neural networks motivate to generate fuzzy rules from examples (cf. Sugeno and Yasukawa 1993; Wang and Mendel 1992).

4.2 Artificial neural network

In mathematics, biological structures of neural systems influence mathematical modeling to construct network functions as forward and backward calculations. And this leads to artificial neural network (ANN). ANN was found its roots almost 75 years ago in the works of McCulloch and Pitts (1943) and later by others (cf. Buckley and Hayashi 1992, 1995; Kwan and Cai 1994).

Definition 4.1 Artificial neural network (ANN): ANNs are physical cell frameworks which can acquire, store and use experimental information, knowledge and complex utiliar-
Fuzzy matrix game: a fast approach using artificial hybrid... 9129

ian relations by summing up from a restricted amount of preparing data.

Definition 4.2 Hybrid neural net (Fuller 2000): In a simple net, as picturesquely in Fig. 1, all input criteria like signals as well as weights are reals. Signals interact with weights and pass through one to another layer using sigmoidal function. This straightforward neural net with increase, expansion and sigmoidal function is called regular (or standard) neural net. If triangular-norm, triangular-conorm or their combination is employed and used in next layer we call it hybrid neural net.

Definition 4.3 Fuzzy hybrid neural net: When weights are crisp and signals are fuzzy, then hybrid neural net is termed as fuzzy hybrid neural net. A fuzzy hybrid neural net may not use multiplication, addition and sigmoidal function.

In ANN, signal flows or transfers on the basis of the net’s activity, sometimes, termed as an activation or transfer function. The output of the flow persists if the value of activation function remains greater than some parameters, say, the threshold level.

Definition 4.4 Max fuzzy neuron (Kwan and Cai 1994): The signal X_i interfaced with the weight W_i produces $p_i = W_i X_i$, $i = 1, 2$. The input value p_i is aggregated utilizing the most extreme conorm $z = \max\{p_1, p_2\} = \max\{W_1 X_1, W_2 X_2\}$, and the j-th yield of the neuron is registered by $y_j = g_j(f(z - \theta)) = g_j(f(\max\{W_1 X_1, W_2 X_2\} - \theta))$, where f is an initiation capacity and θ is known as the threshold level.

Definition 4.5 Min fuzzy neuron (Kwan and Cai 1994): The signal X_i communicated with the weight W_i produces $p_i = W_i X_i$, $i = 1, 2$. The input value p_i is amassed utilizing the minimum norm $z = \min\{p_1, p_2\} = \min\{W_1 X_1, W_2 X_2\}$, and the j-th output of neuron is processed by $y_j = g_j(f(z - \theta)) = g_j(f(\min\{W_1 X_1, W_2 X_2\} - \theta))$, where f and θ are the same as in Definition 4.4.

In this paper, we consider Max fuzzy neuron and Min fuzzy neuron with t-norm and t-conorm in processing of the problem’s solution (Fig. 2).

5 Logic-gate switching circuit

In algebra of switching circuits, electrical or electronic switching circuits are depicted mathematically or planned to get an outline for circuit having some criteria. In switching circuits, we can consider conductor–non-conductor, charged–uncharged, decidedly and contrarily polarized components. These days, semi-conductor components in switching circuits have more importance. In specific situation, switches are meant as so-called gates, or combination of gates. This can be treated as emblematic portrayal. In this way a gate (or combination of gates) is a polynomial p which has the elements x_i for each i. We depict the gate as an acknowledgement of a switching function. In the event that, as for worth, $p = 1$ (or 0), we have current (or no current) through switching circuit p. Examples of switching gates with properties as output are given in Fig. 3 (X_is are treated here as input variables).

Since human thinking nowadays is not confined within 1-0 logical concept, a consequent fuzzy approach tends the switching circuit output toward linguistic variables like fuzzy sets. So the output in switching circuit also collaborates the crisp and fuzzy concept.

![Fig. 1](image1.png) A simple neural network model

![Fig. 2](image2.png) Max fuzzy and Min fuzzy neuron nets

![Fig. 3](image3.png) Examples of some special gates
6 Fuzzy logic-gate switching circuit-oriented artificial neural network (FGSC-ANN) model

Here, we discuss the steps algorithmically to collaborate the fuzzy data through the artificial neural net. From the collected data, the required optimal value is obtained applying following Algorithm 1.

Algorithm 1: Construction of FGSC-ANN using fuzzy numbers.

Step 1.1: Collection of input data.
Step 1.2: Weight assign with input-data according to problem, if required.
Step 1.3: Weighted-data summation.
Step 1.4: Summed data are divided with two switches, namely, original and corresponding NOT gate.
Step 1.5: All combinations are get together.
Step 1.6: All combined data set forms a geometrical figure, may be any polygon.
Step 1.7: Each vertex of the polygon is ranked according to their distances from centroid of the polygon.
Step 1.8: Signal flows through the minimum distance.
Step 1.9: Optimum vertex is obtained.

7 ANN-based fuzzy matrix game

In ANNs, weighted interconnections are established by mathematical formulation, termed as rules. Rules are basically governed by two approaches, crisp approach and fuzzy approach. A mathematical model when uses fuzzy set in a way is termed as a fuzzy approach of model rather than the crisp set-oriented approach. When ambiguous, uncertain, imprecise conditions are applied in the crisp set-oriented approach. When ambiguous, uncer-

Rules:

R_1: If x is X_1 and y is Y_1 then z is a_{11}, i.e., the output is (X_1, Y_1, a_{11})
R_2: If x is X_2 and y is Y_1 then z is a_{21}, i.e., the output is (X_2, Y_1, a_{21})
R_3: If x is X_1 and y is Y_2 then z is a_{12}, i.e., the output is (X_1, Y_2, a_{12})
R_4: If x is X_2 and y is Y_2 then z is a_{22}, i.e., the output is (X_2, Y_2, a_{22})

If all of a_{11}, a_{12}, a_{21} and a_{22} are assumed as fuzzy numbers, the fuzzy game in matrix form can be written as the following with X_1, X_2 as player I’s strategies and Y_1, Y_2 are that for player II.

$$G = \begin{pmatrix} Y_1 & Y_2 \\ X_1 & (a_{11} & a_{12}) \\ X_2 & (a_{21} & a_{22}) \end{pmatrix}$$

Here, for example, the payoff a_{11} emerged as the outcome when player I plays his/her strategy X_1 and player II plays Y_1.

Consider player I’s strategies have weights w_1 and w_2 and player II’s strategies have weights w_3 and w_4, respectively. Therefore, according to the concept of game theory, discussed in Sect. 3, we must have

$$\begin{cases} f_1 = w_1 a_{11} X_1 + w_2 a_{21} X_2 \geq v_1; \\ f_2 = w_1 a_{12} X_1 + w_2 a_{22} X_2 \geq v_1; \\ g_1 = w_3 a_{11} Y_1 + w_4 a_{12} Y_2 \leq v_{11}; \\ g_2 = w_3 a_{21} Y_1 + w_4 a_{22} Y_2 \leq v_{11}. \end{cases}$$

Assuming that each rectangular game has a solution and assuming v_1 and v_{11} to be the game values for players I
Consider the existence of two business houses H_1 and H_2, respectively, which are to be optimized. So, in Figs. 4 and 5, f_1, f_2 and g_1, g_2 are the combined form in Max fuzzy neuron and Min fuzzy neuron, respectively, according to the existence of the saddle point(s) or can be summed according to the non-existence of saddle point to derive the optimum results through Algorithm 2.

Algorithm 2: Construction of matrix game solution.

Step 2.1: Construction of rules of the matrix game according to the strategies of the players.

Step 2.2: Combination of rules to form the payoffs of the matrix game.

Step 2.3: Application of the concept of the saddle point or mixed strategy to the matrix game.

Algorithm 3: Construction of ANN-logic gate-switching circuit-oriented matrix game solution.

Step 3.1: Follow Algorithm 1, stepwise.

Step 3.2: Follow Algorithm 2, stepwise.

8 Numerical simulation

Consider the existence of two business houses H_1 and H_2. By selling their products, both these houses are aiming to increase their profits in terms of market shares. One wishes to maximize his gain and the other aims to cut his loss. The two houses consider various strategies. House H_1 considers

$$X_1: \text{Advertisement},$$

$$X_2: \text{Reducing the printed price. And house } H_2 \text{ chooses}$$

$$Y_1: \text{Attracting packaging features},$$

$$Y_2: \text{Giving promotion-pack to customers free of cost.}$$

Again we consider that these two houses have their own managing bodies which call meetings regularly (say, every three months or every six months) to put some weights on their decisions. The decisions after each meeting may vary from the previous meeting’s decisions or not. So, hesitant environment arises. Both the houses have efforts to increase their market shares considering the fact that when one house profits, the other loses. So the outcome, after applying strategies, is the profit percentage of the houses in terms of market shares. If we consider this problem as a game issue with two players I and II representing houses H_1 and H_2, respectively, then the payoff matrix is as follows:

$$\tilde{G} = \begin{pmatrix} Y_1 & Y_2 \\ X_1 & \tilde{C}_{11} & \tilde{C}_{12} \\ X_2 & \tilde{C}_{21} & \tilde{C}_{22} \end{pmatrix}$$

Here, player I has strategies X_1 and X_2; player II has Y_1 and Y_2. And the payoff elements are hesitant triangular intuitionistic fuzzy elements \tilde{C}_{ij}, $i, j = 1, 2$ with their corresponding weights, separated by second semicolon, given below:

$$\tilde{C}_{11} = \{(5.7, 7.7, 9.3); 0.7, 0.2\}; 0.4, \{(5.7, 9); 0.6, 0.3\}; 0.3, \{(5.7, 7.7, 9); 0.8, 0.1\}; 0.3\};$$

$$\tilde{C}_{12} = \{(8, 9, 10); 0.6, 0.3\}; 0.5, \{(8.3, 9.7, 10); 0.7, 0.2\}; 0.3, \{(7, 9, 10); 0.6, 0.2\}; 0.2\};$$

$$\tilde{C}_{21} = \{(8.33, 9.67, 10); 0.6, 0.4\}; 0.4, \{(3.5, 7); 0.6, 0.3\}; 0.4, \{(6.5, 8.6, 10); 0.4, 0.5\}; 0.2\};$$

$$\tilde{C}_{22} = \{(6.5, 8.2, 9.3); 0.8, 0.1\}; 0.3, \{(7, 9, 10); 0.7, 0.2\}; 0.4, \{(6.3, 8.3, 9.7); 0.7, 0.2\}; 0.3\}.$$

Here, $\tilde{C}_{12} = \{(8, 9, 10); 0.6, 0.3\}; 0.5, \{(8.3, 9.7, 10); 0.7, 0.2\}; 0.3, \{(7, 9, 10); 0.6, 0.2\}; 0.2\}$ indicates that if player I assumes X_1 and player II considers Y_2, then the profit will be 90% with minimum 80% to maximum 100% having 6% positive chance and 3% pessimistic chance if the managing body gives 5% weight to their decisions. In the following meeting the decisions remain same and no problem arises, but if weight is given 3%, then the profit percentage is 97, lying between 83 and 100 having 7% positive chance. The remaining member of the set can be depicted likewise.

Now, using the regular neural net structure, we combine the data in hesitant fuzzy set and using the mean averaging operator, we get from $\tilde{C}_{11}, x_1 = \{5.49, 7.49, 9.12\}; 0.6, 0.3\}$. Similarly the others are obtained as:

$$\begin{align*}
x_2 &= \{7.89, 9.21, 10.00\}; 0.6, 0.3 \\
x_3 &= \{5.83, 7.58, 8.80\}; 0.4, 0.5 \\
x_4 &= \{6.64, 8.55, 9.70\}; 0.7, 0.2 \\
\end{align*}$$

Since every switching circuit has two inputs as ‘on’ and ‘off,’ we consider the x_i as ‘on’ and the \tilde{x}_i as ‘off’ to maintain the circuit rational. This consideration is important on the basis of neural net since in the course of passing signal from
one neuron to another, only the predefined/prefixed neuron is in on mode, and others are in off mode.

\[
\begin{align*}
\bar{x}_1 &= \langle (0.88, 2.51, 4.51); 0.3, 0.6 \rangle \\
\bar{x}_2 &= \langle (0.00, 0.79, 2.11); 0.3, 0.6 \rangle \\
\bar{x}_3 &= \langle (1.20, 2.42, 4.17); 0.5, 0.4 \rangle \\
\bar{x}_4 &= \langle (0.30, 1.45, 3.36); 0.2, 0.7 \rangle
\end{align*}
\]

Now, using the multiplication operations on triangular intuitionistic fuzzy numbers using Eq. (5), we compute the values of the following sixteen combinations:

\[
\begin{align*}
x_1 x_2 x_3 x_4, & \quad \bar{x}_1 x_2 x_3 x_4, \quad x_1 \bar{x}_2 x_3 x_4, \quad x_1 x_2 \bar{x}_3 x_4, \quad x_1 x_2 x_3 \bar{x}_4, \\
x_1 x_2 x_3 x_4, & \quad \bar{x}_1 x_2 x_3 x_4, \quad \bar{x}_1 x_2 x_3 \bar{x}_4, \quad \bar{x}_1 x_2 x_3 x_4, \quad \bar{x}_1 x_2 \bar{x}_3 x_4, \\
x_1 x_2 \bar{x}_3 x_4, & \quad \bar{x}_1 x_2 \bar{x}_3 x_4, \quad \bar{x}_1 x_2 x_3 \bar{x}_4, \quad \bar{x}_1 x_2 x_3 x_4, \quad \bar{x}_1 x_2 x_3 x_4, \quad \bar{x}_1 x_2 \bar{x}_3 x_4,
\end{align*}
\]

For example, \(\bar{x}_1 x_2 x_3 x_4 = \langle (12.14, 254.08, 1333.51); 0.2, 0.7 \rangle \) and the others.

These set of values of sixteen fuzzy numbers can be assigned as sixteen vertices of a solid figure as in Fig. 6.

Now, inspired from the articles (cf. Coupland and John 2008; Wu et al. 2012), the centroid of the figure is computed using the formulae: \(\sum_i n_y, \quad i = 1 \) or \(n \) Here, \(n = 16 \) and \(\mathbb{V} \) denotes the vertices (in Figs. 6 and 7, denoted by \(A_s \) and \(B_t \); \(s, t = 1, \ldots, 8 \)).

The centroid of the figure is the triangular fuzzy number \((1153.25, 624.99, 1747.43); 0.2, 0.7\). Now, computing the Euclidean distances of all vertices from the centroid, the shortest distance arises for the vertex \(\bar{x}_1 x_2 x_3 x_4 \) and the farthest for the vertex \(x_1 x_2 x_3 x_4 \). Now considering the vertex \(\bar{x}_1 x_2 x_3 x_4 \), we form the payoff matrix, given in TABLE 1.

Considering player I’s strategies have weights \(w_1 = 0.5 \), \(w_2 = 0.5 \) and player II’s strategies have weights \(w_3 = 0.5 \), \(w_4 = 0.5 \), respectively, and using Definition 43, 44 and 45,

Max fuzzy neuron \{Min fuzzy neuron\} = max{min\{w_3 a_{11}, w_4 a_{12}\}, min\{w_3 a_{21}, w_4 a_{22}\}} = (0.5)(2.63), and Min fuzzy neuron \{Max fuzzy neuron\} = min\{max\{w_1 a_{11}, w_2 a_{21}\}, \\
max\{w_1 a_{12}, w_2 a_{22}\}\} = (0.5)(2.63). Thus, we get Max fuzzy neuron \{Min fuzzy neuron\} = Min fuzzy neuron \{Max fuzzy neuron\}.

The existence of the saddle point gives the strategy sets for players I and II, respectively, \(X_1 \) and \(Y_1 \), and the value of the game in triangular intuitionistic fuzzy form is \((0.88, 2.51, 4.51); 0.3, 0.6\).

But, considering player I’s strategies have weights \(w_1 = 0.6 \), \(w_2 = 0.4 \) and player II’s strategies have weights \(w_3 = 0.5 \), \(w_4 = 0.5 \), respectively, we obtain, Max fuzzy neuron \{Min fuzzy neuron\} = max{min\{w_3 a_{11}, w_4 a_{12}\}, min\{w_3 a_{21}, w_4 a_{22}\}} = max{min\{1.315, 4.515\}, min\{1.295, 4.145\}} = 1.315, and Min fuzzy neuron \{Max fuzzy neuron\} = min{max\{w_1 a_{11}, w_2 a_{21}\}, max\{w_1 a_{12}, w_2 a_{22}\}} = min{max\{1.578, 1.036\}, max\{5.418, 3.316\}} = 1.578. And we again get Max fuzzy neuron \{Min fuzzy neuron\} \neq Min fuzzy neuron \{Max fuzzy neuron\}, but we infer that the defuzzified crisp value \(V \) of the game satisfies \(1.315 \leq V \leq 1.578 \). If we consider the weights \(w_1 = 0.9 \), \(w_2 = 0.1 \), \(w_3 = 0.25 \), \(w_4 = 0.75 \), then using Definition 43, 44 and 45, we derive, Max fuzzy neuron \{Min fuzzy neuron\} = max{min\{w_3 a_{11}, w_4 a_{12}\}, min\{w_3 a_{21}, w_4 a_{22}\}} = 0.658, and Min fuzzy neuron \{Max fuzzy neuron\} = min{max\{w_1 a_{11}, w_2 a_{21}\}, max\{w_1 a_{12}, w_2 a_{22}\}} = 2.371.

Payoff matrices for player I and player II are diverse because of different weights, earmarked for the strategies of the players, and consequently we get different values of the game. But in each cases, optimal strategies for player I from player I’s payoff matrix and optimal strategies for player II from corresponding payoff matrix are, respectively: \((X^*_1, X^*_2) = (1, 0), (Y^*_1, Y^*_2) = (1, 0) \). If we consider different weights to different strategies, we get the different resolutions. The whole procedure is picturesquely represented in Fig. 7 (Here, \(a_{ij} \) is hesitant triangular IF numbered-set and \(k_{a_{ij}} \) are its members), where the game model is performed through Algorithm 2.

9 Results and discussion

In this work, we contemplate fuzzy matrix game with respect to ANN and fuzzy logic gate switching circuit. Defuzzification technique using the centroid concept is applied and achieved a fine result to the matrix game problems.

Here we notice that the weights assigned to the strategies of the players or decision makers, when changed, give an interesting resolution. As the weights are changed, the crisp value of the game is changed, simultaneously. When we consider player I’s strategies with weights \(w_1 = 0.5 \), \(w_2 = 0.5 \) and player II’s strategies with weights \(w_3 = 0.5 \), \(w_4 = 0.5 \),

![Fig. 6 A solid three-dimensional figure with sixteen vertices](image-url)
respectively, we see the crisp value of the game as 1.315 and the profits in terms of market shares are 25.1% with minimum 8.8% and maximum 45.1% in addition with 3% optimistic and 6% pessimistic chance. But if we apply the weights as \(w_1 = 0.6, w_2 = 0.4, w_3 = 0.5, w_4 = 0.5 \), we observe that the crisp game value lies between 1.315 and 1.578 with fuzzy value of the game within \((0.88, 2.51, 4.51); 0.3, 0.6 \) and \((1.20, 2.42, 4.17); 0.5, 0.4 \) with corresponding weights. This significantly suggests that the value of a decision, here game, depends upon the decision makers’, here players’, choices of weights of the alternatives, here strategies, of the game.

9.1 Comparative analysis

Our proposed study, in comparison with others, has some significant advantages. Our study is based on hesitant fuzzy sets and elements by considering artificial neural network and logic gate switching circuits. This kind of idea has not been thought of before. For this reason, the result-relative comparison is beyond the scope. The superiority of the proposed study can be obtained from the following discussions.

(i) Esfahlani et al. (2019) considered the intuitive neuro-rehabilitation video game employing the fusion of artificial neural network (ANN), inverse kinematics and fuzzy logic algorithms. Particularly, this paper manifests an approach to rectify incorrect positioning through real-time visual feedback on the screen of video game. But in our proposed study, we have considered the extended version of fuzzy sets as hesitant fuzzy sets. We have developed game model using artificial neural nets applying switching circuit gates in neural nets by defuzzifying of hesitant fuzzy elements.

(ii) Abu-Khalaf et al. (2008) in their paper presented an application of neural networks to find closed-form representation of feedback strategies for a zero-sum game that appears in the \(H_\infty \) control. Uncertain environments are not considered in this paper, whereas, in our proposed study, hesitant fuzzy environment is assumed in real-life problematic situations.

(iii) In the paper by Mansoori et al. (2019), the fuzzy constrained matrix game problems were assumed in triangular fuzzy numbers using the concepts of recurrent neural network (RNN). In our proposed work, we have considered artificial hybrid neural-net logic-gate switching circuit in fuzzy matrix game under hesitant triangular intuitionistic fuzzy environment.
10 Conclusion

A few articles have been publicized using game theory in different fields (cf. Bhaumik et al. 2020; Jana and Roy 2018; Roy and Bhaumik 2018; Roy 2010; Sadeghi and Zandieh 2011) successfully. Hesitant fuzzy concept is also an important tool to represent the decision makers’ hesitant characteristics and successfully has been applied in different aspects (cf. Chen and Xu 2014; Chen et al. 2013; Rodriguez et al. 2012; Torra and Narukawa 2009; Yu et al. 2013). The major objectives of this work, to explore the potentiality of the neuro-fuzzy systems in modeling game phenomenon and to access its behavioral structures through artificial neural network and logic-gate switching circuits, are fulfilled. From the model description, our suggested methodology is unique in the following manners:

(i) This is (probably) the main endeavor to explain fuzzy matrix game using max fuzzy neuron and min fuzzy neuron in hybrid fuzzy neural network.
(ii) This is the fast approach to combine the hesitant fuzzy elements using neural network.
(iii) The applied defuzzification method is unique in the sense that it can be applied easily.
(iv) In future research works, this model can be applied in marketing, finance, medical sciences, engineering, etc.

The analysis of the results indicates that the rendition of FGSC-ANN model in game theory would be significantly improved if the input data are transformed into the normal or real domain prior to model formulation. The results of the proposed study highly encourage the researchers with a suggestion that ANN is viable for modeling daily life problems in the light of game theory.

Funding The authors have not disclosed any funding.

Data Availability Enquiries about data availability should be directed to the authors.

Declarations

Conflict of interest The authors would like to announce that there is no conflict of interest.

Ethical approval This article does not contain any examinations with human members or creatures performed by any of the others.

References

Abu-Khalaf M, Lewis FL, Huang J (2008) Neurodynamic programming and zero-sum games for constrained control systems. IEEE Trans Neural Netw 19(7):1243–1252. https://doi.org/10.1109/TNN.2008.2000204

Atanassov KT (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst 20:87–96

Azam N, Yao JT (2015) Interpretation of equilibria in game-theoretic rough sets. Inform Sci 295:586–599. https://doi.org/10.1016/j.ins.2014.10.046

Bhaumik A, Roy SK (2021) Intuitionistic interval-valued hesitant fuzzy matrix games with a new aggregation operator for solving management problem. Granul Comput 6:359–375. https://doi.org/10.1007/s41066-019-00191-5

Bhaumik A, Roy SK, Li DF (2017) Analysis of triangular intuitionistic fuzzy matrix games using robust ranking. J Int Fuzzy Syst 33:327–336. https://doi.org/10.3233/JIFS-161631

Bhaumik A, Roy SK, Weber GW (2020) Hesitant interval-valued intuitionistic fuzzy-linguistic term set approach in Prisoner’s dilemma game theory using TOPSIS: a case study on human-trafficking. Cent Euro J Opera Res 28:797–816. https://doi.org/10.1007/s10100-019-00638-9

Bhaumik A, Roy SK, Li DF (2021) (α, β, γ)-cut set based ranking approach to solving bi-matrix games in neutrosophic environment. Soft Comput 25:2729–2739. https://doi.org/10.1007/s00500-020-03532-6

Buckley JJ, Hayashi Y (1992) Fuzzy neural nets and applications. Fuzzy Syst AI 1:11–41

Buckley JJ, Hayashi Y (1995) Neural nets for fuzzy systems. Fuzzy Sets Syst 71:265–276. https://doi.org/10.1016/0165-0114(94)00282-C

Campos L (1989) Fuzzy linear programming models to solve fuzzy matrix games. Fuzzy Sets Syst 32:275–289. https://doi.org/10.1016/0165-0114(89)90260-1

Chen N, Xu ZS (2014) Properties of interval-valued hesitant fuzzy sets. J Int Fuzzy Syst 27:143–158. https://doi.org/10.3233/IFS-130985

Chen N, Xu ZS, Xia MM (2013) Interval-valued hesitant preference relations and their applications to group decision making. Knowl Based Syst 37:528–540. https://doi.org/10.1016/j.knosys.2012.09.009

Coupland S, John R (2008) A fast geometric method for defuzzification of type-2 fuzzy sets. IEEE Trans Fuzzy Syst 16:929–941. https://doi.org/10.1109/TFUZZ.2008.924345

Collins WD, Hu C (2008) Studying interval valued matrix games with fuzzy logic. Soft Comput 12:147–155. https://doi.org/10.1007/s00500-007-0207-6

Esfahlani SS, Butt J, Shirvani H (2019) Fusion of artificial intelligence in neuro-rehabilitation video games. IEEE Access 7:102617–102627. https://doi.org/10.1109/ACCESS.2019.2926118

Fuller R (2000) Introduction to neuro-fuzzy systems. Physica-Verlag, Heidelberg. https://doi.org/10.1007/978-3-7908-1852-9

Hebb DO (1949) The organization of behavior. Wiley, New York

Hirotka K, Pedrycz W (1993) Logic-based neural networks. Inf Sci 71:99–130. https://doi.org/10.1016/0020-0255(93)90067-V

Jang JSR (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23:665–684

Jana J, Roy SK (2018) Solution of matrix games with generalised trapezoidal fuzzy payoffs. Fuzzy Inform Eng 10:213–224. https://doi.org/10.1080/16168658.2018.1517975

Jana J, Roy SK (2019) Dual hesitant fuzzy matrix games: based on new similarity measure. Soft Comput 23(1):8873–8886. https://doi.org/10.1007/s00500-019-03846-1

Kwan HK, Cai Y (1994) A fuzzy neural network and its application to pattern recognition. IEEE Trans Fuzzy Syst 3:185–193. https://doi.org/10.1109/91.298447

Li DF (2013) An effective methodology for solving matrix games with fuzzy payoffs, IEEE Trans Cybern 34:610–621. https://doi.org/10.1109/TSMCB.2012.2212885

Li DF (2014) Decision and game theory in management with intuitionistic fuzzy sets. Stud Fuzzin Soft Comput 336:1–459. https://doi.org/10.1007/978-3-642-40712-3
Lin CT, Lee CSG (1991) Neural network based fuzzy logic control and decision system. IEEE Trans Comps 40:1320–1336
Mamdani EH, Assilian S (1975) An experiment in linguistic synthesis with a fuzzy logic controller. Int J Man Mach Stud 7:1–13. https://doi.org/10.1016/S0020-7373(75)80002-2
Mansoori A, Eshaghehzad M, Effati S (2019) Recurrent neural network model: a new strategy to solve fuzzy matrix games. IEEE Trans Neural Netw Learn Syst 30(8):2538–2547. https://doi.org/10.1109/TNNLS.2018.2885825
McCulloch WS, Pitts WA (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5:115–133
Minsky M, Papert S (1969) Perceptrons. MIT Press, Cambridge
von Neumann J, Morgenstern O (1944) Theory of games and economic behavior. Princeton University Press, Princeton
Rodriguez RM, Martinez L, Herrera F (2012) Hesitant fuzzy linguistic term sets for decision making. IEEE Trans Fuzzy Systs 20:109–119. https://doi.org/10.1109/TFUZZ.2011.2170076
Roy SK, Bhaumik A (2018) Intelligent water management: a triangular type-2 intuitionistic fuzzy matrix games approach. Water Resour Manag 32:949–968. https://doi.org/10.1007/s11269-017-1848-6
Roy SK, Mula P (2016) Solving matrix game with rough payoffs using genetic algorithm. Oper Res Int J 16:117–130. https://doi.org/10.1007/s12351-015-0189-6
Roy SK (2010) Game theory under MCDM and fuzzy set theory. VDM (Verlag Dr. Muller), Berlin
Roy SK, Jana J (2021) The multi-objective linear production planning games in triangular hesitant fuzzy sets. Sadhana 46:176. https://doi.org/10.1007/s12046-021-01683-4
Sadeghi A, Zandieh M (2011) A game theory-based model for product portfolio management in a competitive market. Expt Syst Appl 38:7919–7923. https://doi.org/10.1016/j.eswa.2010.11.054
Sugeno M, Yasukawa T (1993) A fuzzy-logic based approach to qualitative modeling. IEEE Trans Fuzzy Syst 1:7–31. https://doi.org/10.1109/TFUZZ.1993.390281
Takagi T, Sugeno M (1985) Fuzzy identification of systems and its application to modeling and control. IEEE Trans Syst Man Cybern 15:116–132. https://doi.org/10.1109/TSMC.1985.6313399
Tang M, Li Z (2020) A novel uncertain bimatrix game with Hurwicz criterion. Soft Comput 24:2441–2446. https://doi.org/10.1007/s00500-018-03715-4
Torra V (2010) Hesitant fuzzy sets. Int J Int Syst 25:529–539. https://doi.org/10.1002/int.20418
Torra V, Narukawa Y (2009) On hesitant fuzzy sets and decision. In: Proceedings 18th IEEE international conference fuzzy systs, pp 1378–1382. https://doi.org/10.1109/FUZZY.2009.5276884
Wang LX, Mendel JM (1992) Generating fuzzy rules by learning from examples. IEEE Trans Syst Man Cybern 22:1414–1427. https://doi.org/10.1109/21.199466
Wu S, Er MJ (2000) Dynamic fuzzy neural networks—a novel approach to function approximation. IEEE Trans Syst Man Cybern Part B 30:358–364. https://doi.org/10.1109/3477.836384
Wu HJ, Su YK, Lee SJ (2012) A fast method for computing the centroid of a type-2 fuzzy set. IEEE Trans Syst Man Cybern Part B 42:764–777. https://doi.org/10.1109/TSMCB.2011.2177085
Xia M (2019) Methods for solving matrix games with cross-evaluated payoffs. Soft Comput 23:11123–11140. https://doi.org/10.1007/s00500-018-3664-1
Xu ZS, Xia MM (2011) Distance and similarity measures for hesitant fuzzy sets. Inf Sci 181:2128–2138. https://doi.org/10.1016/j.ins.2011.01.028
Yu DJ, Zhang WY, Xu YJ (2013) Group decision making under hesitant fuzzy environment with application to personnel evaluation. Knowl Based Syst 52:1–10. https://doi.org/10.1016/j.knosys.2013.04.010
Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353. https://doi.org/10.1016/S0019-9958(65)90241-X

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.