The 2009 Europhysics Conference on High Energy Physics, 16-22 July 2009 Krakow, Poland

Commissioning of the ATLAS Liquid Argon Calorimeter

Julien Labbé
(LPSC Grenoble, UJF-CNRS/IN2P3-INPG)
on behalf of the ATLAS LAr Calorimeter group
The Liquid Argon (LAr) Calorimeter of the ATLAS Experiment

- The ATLAS experiment
 - general purpose detector at the LHC, at CERN

- LHC environment
 - proton-proton collisions ($\sqrt{s} = 14$ TeV) every 25 ns
 - ~900 M inelastic collisions per second at design luminosity
 - high interaction rate
 - high radiation doses

- Liquid Argon (LAr) Calorimeter
 - sampling calorimeter
 - intrinsically radiation-hard
 - Very good electromagnetic calorimetry
 - main benchmarks:
 $H \rightarrow \gamma\gamma, Z' \rightarrow ee$
 - identification and measurement over a large dynamic
 (50 MeV \rightarrow TeV : 16 bits)
 - Hermetic jet and transverse missing energy calorimetry
 - Hadronic End-Cap and Forward Calorimeter
The Electromagnetic Calorimeter

- **Hadronic End-Cap [Cu + LAr]**
 - Flat-plat design
 - Coverage: $1.5 < |\eta| < 3.2$
 - Resolution:
 \[
 \frac{\Delta E}{E} = \frac{50\%}{\sqrt{E\,(GeV)}} \oplus 3\%
 \]
 - 4 sampling depths
 \[
 \sim 11 \lambda \text{ in total}
 \]

- **Electromagnetic Calorimeter [Pb + LAr]**
 - Accordion geometry providing an uniform ϕ coverage without crack
 - Barrel + End-cap: $|\eta| < 3.2$
 - Resolution:
 \[
 \frac{\Delta E}{E} = \frac{10\%}{\sqrt{E\,(GeV)}} \oplus 0.7\%
 \]
 - 3 sampling depths ($|\eta| < 2.5$)
 \[
 \sim 22-30 \ X_0 \text{ in total}
 \]
 - + one presampler ($|\eta| < 1.8$)

- **Forward Calorimeter [Cu/W + LAr]**
 - Small LAr gaps between rods and tubes parallel to the beam axis
 - Coverage: $3.1 < |\eta| < 4.9$
 - Resolution:
 \[
 \frac{\Delta E}{E} = \frac{100\%}{\sqrt{E\,(GeV)}} \oplus 10\%
 \]
 - 3 sampling depths
 \[
 1 \text{ EM (Cu)} / 2 \text{ HAD (W)}
 \]
 \[
 \sim 11 \lambda \text{ in total}
 \]
The Hadronic End-Cap Calorimeter

- **Hadronic End-Cap [Cu + LAr]**
 - Flat-plat design
 - Coverage: $1.5 < |\eta| < 3.2$
 - Resolution: \[\frac{\Delta E}{E} = \frac{50\%}{\sqrt{E\,(GeV)}} \oplus 3\% \]
 - 4 sampling depths
 - ~ 11 λ in total

- **Electromagnetic Calorimeter [Pb + LAr]**
 - Accordion geometry providing an uniform ϕ coverage without crack
 - Barrel + End-cap: $|\eta| < 3.2$
 - Resolution: \[\frac{\Delta E}{E} = \frac{10\%}{\sqrt{E\,(GeV)}} \oplus 0.7\% \]
 - 3 sampling depths ($|\eta| < 2.5$)
 - ~ 22-30 X_0 in total
 - + one presampler ($|\eta| < 1.8$)

- **Forward Calorimeter [Cu/W + LAr]**
 - Small LAr gaps between rods and tubes parallel to the beam axis
 - Coverage: $3.1 < |\eta| < 4.9$
 - Resolution: \[\frac{\Delta E}{E} = \frac{100\%}{\sqrt{E\,(GeV)}} \oplus 10\% \]
 - 3 sampling depths
 - 1 EM (Cu) / 2 HAD (W)
 - ~ 11 λ in total

\[\eta = -\ln \left(\tan \frac{\theta}{2} \right) \]
The Forward Calorimeter

- **Hadronic End-Cap [Cu + LAr]**
 - Flat-plat design
 - Coverage: $1.5 < |\eta| < 3.2$
 - Resolution:
 \[
 \frac{\Delta E}{E} = \frac{50\%}{\sqrt{E(\text{GeV})}} \oplus 3\%
 \]
 - 4 sampling depths
 - $\sim 11 \lambda$ in total

- **Electromagnetic Calorimeter [Pb + LAr]**
 - Accordion geometry providing an uniform ϕ coverage without crack
 - Barrel + End-cap: $|\eta| < 3.2$
 - Resolution:
 \[
 \frac{\Delta E}{E} = \frac{10\%}{\sqrt{E(\text{GeV})}} \oplus 0.7\%
 \]
 - 3 sampling depths ($|\eta| < 2.5$)
 - $\sim 22-30 X_0$ in total
 - + one presampler ($|\eta| < 1.8$)

- **Forward Calorimeter [Cu/W + LAr]**
 - Small LAr gaps between rods and tubes parallel to the beam axis
 - Coverage: $3.1 < |\eta| < 4.9$
 - Resolution:
 \[
 \frac{\Delta E}{E} = \frac{100\%}{\sqrt{E(\text{GeV})}} \oplus 10\%
 \]
 - 3 sampling depths
 - 1 EM (Cu) / 2 HAD (W)
 - $\sim 11 \lambda$ in total
LAr EM barrel LAr EM end-cap LAr HAD end-cap LAr forward

Barrel calorimeter in final position within toroid magnets

An end-cap calorimeter prepared to be moved into position
Detector Status as of June 1st 2009

- \(\sim 182\) k channels in total

- Only 0.02\% are permanently dead
 - the problem is expected to be located inside the detector

- \(\sim 0.2\% \) dead readout channels
 - Origin: optical transmitters between front-end and back-end electronics
 - to be fixed next time the access is available

- \(\sim 0.4\% \) need special treatment for calibration
 - limited impact on performances (\(\sim 2\% \) on pulse height)
Ionization Current and Signal Processing

- **Calorimeter**
 - Absorber material initiates shower development
 - LAr medium is ionized
 - Electrodes collect ionized electrons through high voltage

- **Front end boards (FEB)** located on detector
 - amplify and shape
 - 3 gains, ~1:10:100
 - sample and analog store during L1 trigger latency
 - gain select
 - digitize upon L1 trigger accept
 - transmit samples (usually 5) to back end electronic
Energy Reconstruction

- Energy is computed in DSP located in back end crates
 - Each cell is individually calibrated with a charge-injection system

 $E_{cell} = F_{\mu A \rightarrow MeV} \cdot F_{DAC \rightarrow \mu A} \cdot \frac{1}{M_{\text{phys}}} \sum_{i=1}^{M_{\text{ramps}}} R_i \left[\sum_{j=1}^{N_{\text{samples}}} a_j (s_j - p) \right]$

Amplitude variation $< 0.1\%$ between different calibration runs (here all barrel channels)

Pedestals are stable over several months

Variations < 1 to $3\ MeV$ depending on sampling

J. Labbé, Commissioning of the ATLAS Liquid Argon Calorimeter - EPS-HEP 2009
In Situ Commissioning ongoing since 3 years

Year	Description
1994	ATLAS proposal
1995	Detector and physics Technical Design Report
1996	Stand-alone beam tests
1997	Construction
1998	CET Installation
1999	Cosmic data taking
2000	Milestone weeks
2001	LHC
2002	LHC Single beams (Sept. 2008)
2003	140 m
2004	closed collimator as fixed target
2005	LHC Single beams (Sept. 2008)
2006	Cosmic muons Recorded in the LAr calorimeter since 2006
2007	LHC Single beams (Sept. 2008)
2008	LHC Single beams (Sept. 2008)
2009	LHC Single beams (Sept. 2008)

J. Labbé, Commissioning of the ATLAS Liquid Argon Calorimeter - EPS-HEP 2009
Noise studies

- **Noise**
 - Noise is measured for each cell with random trigger events
 - Main contribution: thermal noise of the FEB preamplifier loaded by the detector capacitance
 - Noise varies with η and detector element
 - Incoherent, as coherent, noise are within design requirements

- **Reconstruction of Transverse Missing Energy in LAr**
 \[E_T^{\text{miss}} = \sqrt{\sum E \sin \theta \cos \phi}^2 + \left| \sum E \sin \theta \sin \phi \right|^2 \]
 - In random trigger events
 - consistent with incoherent noise prediction
 - In events triggered by L1Calo (calorimeters – not only LAr)
 - Examination of pulse shapes in the tail of the distribution indicate true cosmic events
Muons are minimum ionizing particles (MIP)

- Small energy deposition in LAr
- The energy deposit follows a Landau distribution
 - here fit convoluted with a Gaussian to take into account electronic noise

Cluster Energy (0.3 < |η| < 0.4)

LArMulID 3x3
Entries: 2295
χ^2/ndf: 31.23 / 34
Prob: 0.6041
Width: 12.69 ± 1.02
MPV: 228.7 ± 1.9
Area: 4.509 ± 0.976
σ_G: 46.05 ± 2.07

3x3
Entries: 2295
χ^2/ndf: 35.5 / 37
Prob: 0.5395
Width: 11.77 ± 1.10
MPV: 260.9 ± 2.3
Area: 4.529 ± 0.974
σ_G: 60.78 ± 2.35

2 cluster methods are studied

- Fitted Gaussian noise (σ_G) and Landau width for 3x3 consistent with expectation

MPV distribution agrees with simulation at the level of 2%

- MPV follows the cell depth as expected for MIP

Response Non-Uniformity

- Most probable value (MPV)

Normalized to this point
Timing Study

- From single beam events
 - Large amount of energy deposited over large portions of LAr
 - High amplitude signals to perform precision timing studies with common reference time

- Time is computed with optimal filtering
 - corrected from expected time of flight
 - Prediction from the calibration pulse and readout path

- Agreement at the level of 2 ns except for the barrel presampler

- From single beam events:
 - Large amount of energy deposited over large portions of LAr
 - High amplitude signals to perform precision timing studies with common reference time

- Time is computed with optimal filtering:
 - corrected from expected time of flight
 - Prediction from the calibration pulse and readout path

- Agreement at the level of 2 ns except for the barrel presampler

- From single beam events:
 - Large amount of energy deposited over large portions of LAr
 - High amplitude signals to perform precision timing studies with common reference time

- Time is computed with optimal filtering:
 - corrected from expected time of flight
 - Prediction from the calibration pulse and readout path

- Agreement at the level of 2 ns except for the barrel presampler
Signal shape

- High energy depositions are used to validate the signal shape of calorimeter response derived from calibration pulse
 - 32 samples cosmic pulse is compared with prediction
 - Agreement better than 2% is observed across the full length of the pulse

\[Q^2 = \frac{1}{nDoF} \sum_{i=0}^{n_{\text{samples}}} \left(\frac{A_i^{\text{data}} - A_i^{\text{pred}}}{\sigma^2_{\text{noise}} + \sigma^2_{\text{pred}}} \right)^2 \]

Pulse shape predicted at ~3%
Pulse shape predicted at ~1.5%

Signal reconstruction in control over the full EM calorimeter coverage.
Electrons from Ionisation in Cosmic Muons [1/2]

- Muon track
 - Transition Radiation Tracker
 - Use tracker to measure the momentum p
 - Transition radiations produce higher signal for electrons
 - Red/blue points are for high/low TRT threshold
 - Ratio red/blue is a reliable discriminant variable for electron identification

- Electron
- Calorimeter
 - Use calorimeter to measure the energy E

- Muon chambers
- Inner detector and calorimeters

J. Labbé, Commissioning of the ATLAS Liquid Argon Calorimeter - EPS-HEP 2009
Electrons from Ionisation in Cosmic Muons [2/2]

- EM cluster ($E_T > 3$ GeV) + loose (downward) track match + electron like shower shape
 - 1314 events

- 1229 events with only 1 track: muon bremsstrahlung candidates

- 85 events with 2 tracks: ionisation electron candidates

- First observation of electrons in the ATLAS detector

- Expected background shape from muon bremsstrahlung candidates

- Measured background

- Expected background shape from muon bremsstrahlung candidates

- Measured background

- ATLAS Preliminary 2008 cosmic-ray data

- All electron candidates
- Electron candidates in background region
- Background fit extrapolated to signal region

- Expected background shape from muon bremsstrahlung candidates

- Measured background
Conclusion

- LAr calorimeter is completely installed with the other sub-detectors in the ATLAS cavern
 - Very few number of dead channels (< 0.02% permanent)
 - Calibration system is exercised regularly
 - Calibration constants are stable

- In situ commissioning of the ATLAS LAr calorimeter ongoing since several years with cosmic muons and single beam data
 - Incoherent and coherent noise of the full calorimeter system is consistent with design requirements
 - MIP energy deposition of cosmic muons has been studied
 - variations follow the cell depth as expected
 - Relative timing is known at the 2 ns level
 - Pulse shape prediction has been validated with data
 - Electron from ionisation identified in cosmic muons events

The commissioning of the ATLAS LAr calorimeter has shown that the detector, calibration system and signal reconstruction infrastructure are fully ready for the LHC collisions (scheduled for autumn 2009)
Complements
The Electromagnetic Calorimeter

- Electromagnetic Calorimeter Pb + LAr
 - Good energy resolution
 \[\frac{\Delta E}{E} = \frac{10\%}{\sqrt{E (GeV)}} \oplus 0.7\% \]
 - Large acceptance
 - Barrel + end-caps: |\eta| < 3.2
 - Accordion geometry: uniform \phi coverage without crack
 - 3 sampling depths (|\eta| < 2.5)
 - + 1 Presampler (|\eta| < 1.8)
 - Fine granularity
 - ~ 174 k channels

\[\eta = -\ln \left(\tan \frac{\theta}{2} \right) \]

\(\eta = 0 \)
\(\eta = 1.475 \)
\(\eta = 3.2 \)

Layer 3 (back)
\(\Delta \eta \Delta \phi = 0.025 \times 0.050 \)

Layer 2 (middle)
\(\Delta \eta \Delta \phi = 0.025 \times 0.025 \)

Layer 1 (front)
\(\Delta \eta \Delta \phi = 0.003 \times 0.1 \)

\(\approx 2-12 \times X_0 \) (\(\eta < 2.5 \))

\(\approx 16 \times X_0 \)

\(\approx 4 \times X_0 \)
The Hadronic End-Cap and Forward Calorimeters

- **Hadronic End-Cap Cu + LAr**
 - Flat-plat design
 - Coverage: $1.5 < |\eta| < 3.2$
 - Resolution:
 \[
 \frac{\Delta E}{E} = \frac{50\%}{\sqrt{E\text{ (GeV)}}} + 3\%
 \]
 - 4 sampling depths
 \[\sim 11 \lambda \text{ in total}\]
 - 5632 channels in total

- **Forward Calorimeter Cu/W + LAr**
 - Small liquid argon gaps between concentric rods and tubes parallel to the beam axis
 - Coverage: $3.1 < |\eta| < 4.9$
 - Resolution:
 \[
 \frac{\Delta E}{E} = \frac{100\%}{\sqrt{E\text{ (GeV)}}} + 10\%
 \]
 - 3 sampling depths
 \[1 \text{ EM (Cu)} / 2 \text{ HAD (W)}\]
 \[\sim 11 \lambda \text{ in total}\]
 - 3504 channels in total
Calibration Constants

pedestals and noise

FEB are read with no input signal to obtain:
- Pedestal
- Noise
- Noise autocorrelation (OFC computation)

Typical RMS values

PEDESTAL

ADC → MeV conversion

$$F = \text{ADC2DAC} \times \text{DAC2}\mu\text{A} \times \mu\text{A2MeV}$$

- Scan input current (DAC)
- Fit DAC vs ADC curve with a first (second) order polynomial, outside of saturation region

DAC

RAMP

response to current pulse

All cells are pulsed with a known current signal:
- A delay between calibration pulses and DAQ is introduced
- The full calibration curve is reconstructed ($\Delta t=1$ns)

DAC

AC

Time (ns)

J. Labbé, Commissioning of the ATLAS Liquid Argon Calorimeter - EPS-HEP 2009
Optimal Filtering Coefficients

\[f(t) = Ag(t - \tau) + n(t) \equiv A \{g(t) - \tau g'(t)\} + n(t) \]

Choose coefficients for the expressions:

\[U = \sum_{k=1}^{N} a_k S_k \]
\[V = \sum_{k=1}^{N} b_k S_k \]

such to minimize \(\sigma_U \) and \(\sigma_V \) with the constraints:

\[\langle U \rangle = A \Rightarrow \sum_{k=1}^{N} a_k g_k = 1 \quad , \quad \sum_{k=1}^{N} a_k g'_k = 0 \]
\[\langle V \rangle = A \tau \Rightarrow \sum_{k=1}^{N} b_k g_k = 0 \quad , \quad \sum_{k=1}^{N} b_k g'_k = -1 \]

\[S_k = A(g_k - \tau g'_k) + n_k \]
\[\langle n_k \rangle = 0 \]
\[\langle n_i n_j \rangle = R_{ij} \]

Noise autocorrelation function

\[\sigma_U^2 = \text{Var}[U] = \sum_{ij} a_i a_j R_{ij} \]
\[\sigma_V^2 = \text{Var}[V] = \sum_{ij} b_i b_j R_{ij} \]
A known exponential current pulse is injected at the MB level...

... and reconstructed through the full readout chain. The actual gain of each readout channel is computed.

The shaper output of the ionisation and calibration signal corresponding to the same injected current is different!

- Injected signal shape
- Different Injection point
Energy Deposited in LHC “splash” Events

Accumulated energy (E_{cell} > 5\sigma) over 100 single beam events

→ Hundreds of TeV deposited
→ Energy flow over the whole EM calorimeter in the four layers
→ Understood \(\eta \) and \(\phi \) structure, top/bottom asymmetry

→ Allow signal reconstruction and timing studies over the total coverage

J. Labbé, Commissioning of the ATLAS Liquid Argon Calorimeter - EPS-HEP 2009
Quality of Physics Pulse Shapes

- The drift time is an important parameter in the physics pulse shape prediction.
- Also sensitive to the purity of the LAr.
- Detailed drift time measurements have been made with \(~350\)k EM barrel cosmic pulses with \(E > 1\) GeV taken in 32 sample readout mode.

- Drift time varies with \(\eta\) as a result of observed \(~100\) \(\mu\)m shifts of electrode within LAr gap.
- Study has concluded the contribution of the gap variation to the response non-uniformity is not larger than 0.3%.
Ionisation Electron Candidates Distributions

Distribution of the energy and pseudo-rapidity measured in the electromagnetic calorimeter for the final 32 ionisation electron candidates.

Note that two candidates have an energy above 50 GeV (and are most likely background).

As expected for electrons from ionisation in the inner detector volume, the energy spectrum shows an accumulation at low energies, near the seed threshold of 3 GeV (in transverse energy) used to build the electromagnetic clusters.
Comparison of shower shapes between electron candidates and Monte-Carlo simulation of 5 GeV projective electrons.
Detector Status as of July 1st 2009 (details)

- **LAr dead readout channels (to be fixed in next shutdown):**
 - EMB: 266 of 109568 (0.243%)
 - EMEC: 129 of 63744 (0.202%)
 - EM tot: 395 of 173312 (0.228%)
 - HEC: 0 of 5632 (0%)
 - FCAL: 0 of 3524 (0%)
 - total: 395 of 182468 (0.216%)

- **LAr permanently dead channels inside detector:**
 - EMB: 18 of 109568 (0.0164%)
 - EMEC: 11 of 63744 (0.0173%)
 - EM tot: 29 of 173312 (0.0167%)
 - HEC: 5 of 5632 (0.0888%)
 - FCAL: 0 of 3524 (0%)
 - total: 34 of 182468 (0.0186%)

- **LAr noisy readout channels (more than 10 sigma above phi average):**
 - EMB: 19 of 109568 (0.0173%)
 - EMEC: 2 of 63744 (0.00314%)
 - EM tot: 21 of 173312 (0.0121%)
 - HEC: 0 of 5632 (0%)
 - FCAL: 1 of 3524 (0.0284%)
 - total: 22 of 182468 (0.0121%)

- **LAr readout channels w/o calibration (constants from phi average of eta neighbours):**
 - EMB: 199 of 109568 (0.182%)
 - EMEC: 350 of 63744 (0.549%)
 - EM tot: 549 of 173312 (0.317%)
 - HEC: 37 of 5632 (0.657%)
 - FCAL: 1 of 3524 (0.0284%)
 - total: 587 of 182468 (0.322%)

- **LAr readout channels with reduced High Voltage (correction factor from 1.01 to 2):**
 - EMB: 7075 of 109568 (6.46%)
 - EMEC: 2936 of 63744 (4.61%)
 - EM tot: 10011 of 173312 (5.78%)
 - HEC: 1017 of 5632 (18.1%)
 - FCAL: 55 of 3524 (1.56%)
 - total: 11083 of 182468 (6.07%)