A new blow-up criterion for the $N - abc$ family of Camassa-Holm type equation with both dissipation and dispersion

Abstract: In this paper, we investigate the Cauchy problem for the $N - abc$ family of Camassa-Holm type equation with both dissipation and dispersion. Furthermore, we establish the blow-up result of the positive solutions in finite time under certain conditions on the initial datum. This result complements the early one in the literature, such as [E. Novruzov, Blow-up phenomena for the weakly dissipative Dullin-Gottwald-Holm equation, J. Math. Phys. 54 (2013), no. 9, 092703, DOI 10.1063/1.4820786] and [Z.Y. Zhang, J.H. Huang, and M.B. Sun, Blow-up phenomena for the weakly dissipative Dullin-Gottwald-Holm equation revisited, J. Math. Phys. 56 (2015), no. 9, 092701, DOI 10.1063/1.4930198].

Keywords: blow-up, $N - abc$ family of Camassa-Holm type equation, dissipation, dispersion

1 Introduction

Differential equations and dynamical modeling have attracted some attention from many researchers as a result of their potential applications in fields of biology [3–6], physics [7–9], engineering [10, 11], information technology and so forth [12–14]. Since the seminal work by Camassa and Holm [15], Camassa-Holm type equations have been intensively investigated. In this paper, we consider the Cauchy problem for the $N - abc$ family of Camassa-Holm type equation with both dissipation and dispersion

$$\begin{align*}
 u_t - u_{txx} - cu^N u_{xxx} - bu^{N-1}u_x u_{xx} + au^N u_x + k(1 - \partial_x^2)u_x + \lambda(1 - \partial_x^2)u &= 0, \quad x \in \mathbb{R}, \quad t > 0, \\
 u(x, 0) &= u_0(x), \quad x \in \mathbb{R},
\end{align*}$$

where $N \in \mathbb{Z}^+$, $N \geq 2$, $k, \lambda \geq 0$, and k, λ are dissipation and dispersion coefficients respectively. a, b, c are positive constants and $a = b + c$.

*Corresponding Author: Zaiyun Zhang: School of Mathematics, Hunan Institute of Science and Technology, Yueyang, 414006, Hunan, China; Key Laboratory of Data science and Smart Education, Ministry of Education, Hainan Normal University, Haikou 571158, China; E-mail: zhangzaiyun1226@126.com

Limei Li, Chunhua Fang, Fan He: School of Mathematics, Hunan Institute of Science and Technology, Yueyang, 414006, Hunan, China

Chuangxia Huang: Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering, and School of Mathematics and Statistics, Changsha University of Science and Technology, Changsha, 410004, Hunan Province, China

Wen Zhu: Key Laboratory of Data Science and Smart Education, Ministry of Education, Hainan Normal University, Haikou 571158, China

Open Access. © 2020 Zaiyun Zhang et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 License.
When \(c = 1, a = b + 1, k = \lambda = 0 \), the first equation of (1.1) becomes
\[
u_t - u_{txx} - u^N u_{xxxx} - bu^{N-1}u_x u_{xx} + (b+1)u^N u_x = 0, \quad x \in \mathbb{R}, \ t > 0.
\]
(1.2)

Eq. (1.2) was first investigated by Himonas and Holliman [16] and they proved the local well-posedness and the nonuniform dependence of its Cauchy problem in Sobolev space \(H^s \) with \(s > \frac{3}{2} \). In [17], Zhou and Mu studied the persistence properties of strong solutions and the existence of its weak solutions of (1.2). Later on, Himonas and Mantzavinos [18] showed well-posedness in \(H^s \) with \(s > \frac{3}{2} \). They also provided a sharpness result on the data-to-solution map and proved that it is not uniformly continuous from any bounded subset of \(H^s \) into \(C([0, T); H^s) \). Eq. (1.2) was also studied by Barostichi, Himonas and Petronilho [19] and they exhibited a power series method in abstract Banach spaces equipped with analytic initial data, and established a Cauchy-Kovalevsky type theorem.

It is important to note that (1.1) is an evolution equation with \((N + 1)\)-order nonlinearities and includes three famous integrable dispersive equations: the Camassa-Holm (CH) equation, the Degasperis-Procesi (DP) equation and the Novikov equation (NE).

As \(c = 1, N = 1, b = 2, a = 3, k = \lambda = 0 \), (1.1) becomes the well-known CH equation. The local well-posedness of Cauchy problem of the CH equation has extensively been investigated in [20]. It was shown that there exist global strong solutions to the CH equation [20] and finite time blow-up strong solutions to the CH equation [20, 21]. The existence and uniqueness of global weak solutions to the CH equation were studied in [22].

As \(c = 1, N = 1, b = 3, a = 4, k = \lambda = 0 \), (1.1) reads the DP equation in [23]. It is another integrable peakon model with quadratic nonlinearity, but with \(3 \times 3 \) Lax pairs [24]. The local well-posedness, global existence and blow-up phenomena of the DP equation was studied in [25–28].

As \(c = 1, N = 2, b = 3, a = 4, k = \lambda = 0 \), (1.1) reads the NE in [29], which is also integrable peakon model with \(3 \times 3 \) Lax pairs and the peakon solution \(u(x, t) = \sqrt{\alpha} e^{-|x-ct|} \) with \(c > 0 \). The most difference between the NE and the CH and DP equations is that the former one has cubic nonlinearity and the latter ones have quadratic nonlinearity. The local well-posedness, global existence and blow-up phenomena of the NE was studied in [29–34].

It is well known that it is difficulty to avoid energy dissipation in a real world. Thus it is reasonable to study the model with energy dissipation in propagation of nonlinear waves, see [35–38]. Recently, Wu and Yin [39] investigated the blow-up, blow-up rate and decay of solutions to the weakly dissipative periodic CH equation (i.e (1.1) with \(N = 1, c = 1, b = 2, a = 3, k = 0 \)). Thereafter, they also studied the blow-up and decay of solutions to weakly dissipative non-periodic CH equation (i.e (1.1) with \(N = 1, c = 1, b = 3, a = 4, k = 0 \) [40]. Hu and Yin [41] investigated the blow-up, blow-up rate of solutions to weakly dissipative periodic rod equation. Later on, Hu [42] discussed the global existence and blow-up phenomena for a weakly dissipative periodic two component CH system. Zhou, Mu and Wang [43] considered the weakly dissipative gcH equation (i.e (1.1) with \(c = 1, a = b + 1, k = 0 \)). Recently, Novruzov [1] studied the Cauchy problem for the weakly dissipative Dullin-Gottwald-Holm (DGH) equation (i.e (1.1) with \(N = 1, c = 1, b = 2, a = 3 \)) and establish certain conditions on the initial datum to guarantee that the corresponding positive strong solutions blow up in finite time. The same equation for arbitrary solution has been considered in [44]. Authors showed the simple conditions on the initial data that lead to the blow-up of the solutions in finite time or guarantee that the solutions exist globally. Later on, Zhang et al. [2] improved the results of [1]. In [45], Novruzov extended the obtained "blow-up" result to the DGH equation under some conditions on the initial data. This issue is extensively studied, e.g. in [46–48].

2 Preliminaries

In this section, we recall some useful results in order to achieve our aim.
Let us first present the local well-posedness of Cauchy problem for (1.1). Thus, we can rewrite (1.1) in the equivalent form. Let \(y = u - u_{xx} \). Then (1.1) becomes

\[
\begin{align*}
 y_t + y_x(cu^N + k) + \frac{b}{N}y(u^N)_x + \lambda y &= 0, \quad x \in R, \quad t > 0, \\
 u(x, 0) &= u_0(x), \quad x \in R.
\end{align*}
\] (2.1)

Notice that \(G(x) = \frac{1}{2}e^{-|x|} \) is the kernel of \((1 - \partial_x^2)^{-1}\). Then \((1 - \partial_x^2)^{-1}f = G \ast f \) for all \(f \in L^2(R) \) and \(G \ast y = u \). Hence, (2.1) can be reformulated in the form as follows:

\[
\begin{align*}
 u_t + (cu^N + k)u_x + \partial_x G \ast h + G \ast h &= 0, \quad x \in R, \quad t > 0, \\
 u(x, 0) &= u_0(x), \quad x \in R,
\end{align*}
\] (2.2)

where

\[
\begin{align*}
 h &= \frac{b}{N+1}u^{N+1} + \frac{3cN - b}{2}u^{-1}u_x^2 - \lambda u, \\
 g &= \frac{(N-1)(b - cN)}{2}u^{N-2}u_x^3 + \lambda u.
\end{align*}
\]

The local well-posedness of Cauchy problem for (1.1) with the initial data \(u_0(x) \in H^s, \ s > \frac{1}{2} \), can be obtained by applying the Kato’s theory, see [2, 49]. It is easy to see that some results hold for (1.1). So, we omit the further details and show corresponding result directly.

Lemma 2.1. Given \(u_0(x) \in H^s, \ s > \frac{1}{2} \), there exist a maximal \(T = T(u_0, k) > 0 \) and a unique solution \(u \) to (1.1), such that \(u = u(\cdot, u_0) \in C([0, T); H^s(R)) \cap C^1([0, T]; H^{s-1}(R)) \). Moreover, the solution depends continuously on the initial data, i.e., the mapping

\[
u_0 \rightarrow u(\cdot, u_0) : H^s \rightarrow C([0, T); H^s(R)) \cap C^1([0, T); H^{s-1}(R))
\]
is continuous and the maximal time of existence \(T > 0 \) can be chosen to be independent of index \(s \).

The following lemma gives necessary and sufficient condition for the blow-up of the solution.

Lemma 2.2. Given \(u_0(x) \in H^s, \ s > \frac{1}{2} \), then the solution \(u \) of (1.1) blows up in the finite time \(T < +\infty \), if and only if

\[
\lim_{t \to T^-} \inf \left\{ \inf_{x \in R} u(t, \cdot) \right\} \rightarrow +\infty,
\]
or

\[
\lim_{t \to T^-} \inf \left\{ \inf_{x \in R} u_x(t, \cdot) \right\} \rightarrow +\infty.
\]

Proof. Indeed, the above result follows by standard manner in [49]. Assume \(u_0 \in H^s \) for some \(s \in N, \ s \geq 2 \). Multiplying both sides of the first equation of (2.1) by \(2y = 2u - 2u_{xx} \) and integrating by parts with respect to \(x \), we get

\[
\begin{align*}
 2\int_{\mathbb{R}} yy_t dx + 2\int_{\mathbb{R}} y y_x (cu^N + k) dx &= 2\int_{\mathbb{R}} \frac{b}{N}y^2(u^N)_x dx + 2\lambda \int_{\mathbb{R}} y^2 dx = 0,
\end{align*}
\]

that is,

\[
\begin{align*}
 2\int_{\mathbb{R}} yy_t dx &= -2c\int_{\mathbb{R}} yy_x u^N dx - 2\int_{\mathbb{R}} \frac{b}{N}y^2(u^N)_x dx - 2k\int_{\mathbb{R}} yy_x dx - 2\lambda \int_{\mathbb{R}} y^2 dx \\
 &= (1 - \frac{2b}{N})\int_{\mathbb{R}} y^2(u^N)_x dx - 2\lambda \int_{\mathbb{R}} y^2 dx \\
 &= (N - 2b)\int_{\mathbb{R}} y^2 u^{N-1} u_x dx - 2\lambda \int_{\mathbb{R}} y^2 dx,
\end{align*}
\] (2.3)

which implies the following result:

- If \(\|u\|_{L^\infty} \) and \(\|u_x\|_{L^\infty} \) are bounded on \([0, T]\), that is, there exists a positive constant \(K \), such that \(\|u\|_{L^\infty}, \|u_x\|_{L^\infty} \leq K \).

Then, based on the above arguments and noticing (2.3), we have

\[
\frac{d}{dt} \int_{\mathbb{R}} y^2 dx \leq C(K^N + 1) \int_{\mathbb{R}} y^2 dx,
\] (2.4)

where \(C \) is a positive constant. On one hand, we observe that

\[
\|u\|_{H^s}^2 \leq \|y\|_{L^2}^2 \leq 2\|u\|_{H^s}^2.
\] (2.5)
Using the Gronwalls inequality, from (2.4) and (2.5), we obtain

$$||u||_{H^2}^2 \leq ||y||_{L^2}^2 \leq 2e^{C(R^s+1)}||u_0||_{L^2}^2,$$

which implies that the H^2-norm of the solution to Eq. (2.1) does not blow up in a finite time. On the other hand, by Sobolev’s imbedding theorem, if

$$\lim \inf_{t \to T} \inf_{x \in R} u(t, \cdot) \to +\infty, \text{ or } \lim \inf_{t \to T} \inf_{x \in R} u_s(t, \cdot) \to +\infty.$$

Then the solution will blow up in a finite time. By density argument, we know that Lemma 2.2 holds for all $s > \frac{1}{2}$. Thus, this finishes the proof of Lemma 2.2.

Remark 2.1. When $N = 1, 2$, we refer to the proof of Theorem 3.1 in [30]. In this sense, when $N \geq 2$, this result improves their results.

Remark 2.2. Lemma 2.2 covers Lemma 5.1 in [50].

Consider now the following initial value problem

$$\begin{align*}
q_t(t, x) &= cu^N(t, x) + k, x \in R, t \in [0, T), \\
u(x, 0) &= u_0(x), x \in R,
\end{align*}$$

(2.6)

where $u(x, t)$ is the corresponding strong solution to (1.1).

After simple computations and solving (2.6), we get the following lemma.

Lemma 2.3. Let $u_0(x) \in H^s, s \geq 3$, and let $T > 0$ be the maximal existence time of the solution u to (1.1). Then, we have

$$y(t, q_t(t, x))q_x^b(t, x) = y_0(x)e^{-\lambda t}$$

which implies

$$e^{-\lambda t}||y_0||_{L^\infty}^\frac{n}{b} = ||y||_{L^\infty}^\frac{n}{b}.$$

In particular, if $N = 2b$, we have

$$e^{-\lambda t}||y_0||_{L^2} = ||y||_{L^2}.$$

Proof. It follow from (1.1) and (2.1) that

$$\begin{align*}
\frac{d}{dt} y(t, q_t(t, x))q_x^b(t, x) &= (y_t + y_xq_t)q_x^b + \frac{b}{N}yq_{x}^{b-1} q_t \\
&= (y_t + y_xq_t)q_x^b + \frac{b}{N}yq_{x}^{b-1}(u^N)xq_x \\
&= (y_t + y_x(cu^N + k) + \frac{b}{N}y(u^N)_xq_x^b \\
&= -\lambda yq_x^b,
\end{align*}$$

which implies

$$y(t, q_t(t, x))q_x^b(t, x) = y_0(x)e^{-\lambda t}.$$

Thus, setting $\xi = q(t, x)$, we arrive at

$$e^{-\lambda t}||y_0||_{L^\infty}^\frac{n}{b} = ||y(t, q(t, \cdot))q_x^b(t, \cdot)||_{L^\infty}^\frac{n}{b} = \int_R |y(t, q(t, x))q_x^b(t, x)|dx = \int_R |y(t, \xi)|^\frac{n}{b}d\xi.$$

Obviously, letting $N = 2b$ leads to $e^{-\lambda t}||y_0||_{L^2} = ||y||_{L^2}$. This completes the proof of Lemma 2.3.

Finally, let us now give the following lemma which will be used in the sequel.

Lemma 2.4. Let $u_0(x) \in H^s, \ s \geq 3, c = \frac{b}{N+1}$ and let $T > 0$ be the maximal existence time of the solution u to (1.1). Then, we have

$$||u||_{H^1} = e^{-2\lambda t}||u_0||_{H^1}.$$
Proof. Multiplying both sides of Eq. (2.1) by \(u \), we get
\[
\int_R u y_t dx + c \int_R u u^N y_x dx + k \int_R u y_x dx + b \int_R u(u^N)_x y dx + \lambda \int_R u y dx = 0. \tag{2.7}
\]
Noticing that
\[
k \int_R u y_x dx = 0
\]
and
\[
c \int_R u u^N y_x dx + b \int_R u(u^N)_x y dx = (c - b/N + 1) \int_R (u^N) u_x y dx = 0,
\]
we obtain
\[
\frac{1}{2} \frac{d}{dt} \int_R (u^2 + u_x^2) dx + \lambda \int_R (u^2 + u_x^2) dx = 0 \Leftrightarrow \frac{d}{dt} ||u||^2_{H^1} + 2\lambda ||u||^2_{H^1} = 0,
\]
which implies the desired result in the lemma.

3 Main result

We are now in position to state our main result.

Theorem 3.1. Let \(b = c(N + 1) \). \(u_0(x) \in H^s \), \(s \geq 3 \), is such that \(y_0 = (1 - \partial^2_x)u_0 \) satisfies \(y_0(x) \leq 0 \) on \([x_0, \infty) \) for some point \(x_0 \in R \) and condition
\[
(\int_{x_0}^{\infty} |u_0|^{1-a} e^{x_0-x} dx)^{\frac{1}{a-1}} < \frac{1 + \alpha}{2(\lambda v^N + \lambda(\alpha - 1))} \tag{3.1}
\]
is satisfied. Then the corresponding positive solution \(u(t, x) \) to (1.1) blows up in finite time. Here
\[
\nu \leq \sqrt{\frac{1}{2} ||u_0||_{H^1}}, 1 < \alpha < 2.
\]

Proof. We shall give the proof by contradiction. We assume that it is not true and solutions exist globally. That is, there exists constant \(C \) such that \(u_x \geq -C \) (due to Lemma 2.2).

Observing that \(u = G \ast y \) with \(G(x) = \frac{1}{2} e^{-|x|}, x \in R \), we have
\[
u(t, x) = \frac{1}{2} e^{-x} \int_{-\infty}^{x} e^{\xi} y(t, \xi) d\xi + \frac{1}{2} e^{x} \int_{x}^{\infty} e^{-\xi} y(t, \xi) d\xi,
\]
\[
u_x(t, x) = \frac{1}{2} e^{-x} \int_{-\infty}^{x} e^{\xi} y(t, \xi) d\xi + \frac{1}{2} e^{x} \int_{x}^{\infty} e^{-\xi} y(t, \xi) d\xi.
\]
So, we have
\[
u_x(t, x) = u(t, x) + e^{x} \int_{x}^{\infty} e^{-\xi} y(t, \xi) d\xi.
\]
For \(t \in [0, T) \), \(q(t, \cdot) \) is the increasing diffeomorphism of the line. From Lemma 2.3, we deduce that \(y(t, x) \leq 0 \), \(x \geq q(t, x_0) \). Hence, we conclude that \(-u_x(t, x) \succeq u(t, x) \geq 0 \), for \(x \geq q(t, x_0) \). Due to \(u_x \succeq -C \), we get
\[
C \succeq -u_x(t, x) \succeq u(t, x) > 0. \tag{3.2}
\]
Differentiating (2.2) with respect to \(x \) and noticing that
\[
\partial^2_x G \ast f = G \ast f - f,
\]
we have
\[\frac{d}{dt}(-u_x) = (c - \frac{3N-b}{2})u^{N-1}u_x^2 + cu^nu_{xx} - k(-u_x)_x - \frac{b}{N+2}u^{N+1} + G \ast h + \partial_x G \ast g + \lambda u_x = 0. \] (3.3)

Multiplying (3.3) by \((1-\alpha)e^{-\alpha}(u_x)^a(1 < \alpha < 2)\) and integrating over \((q(t, x_0), \theta) (\theta < \infty)\), we have
\[
(1-\alpha) \int_{q(l,x_0)}^\theta (u_x)^a e^{-\alpha} \frac{d}{dt}(-u_x) \, dx
- (1-\alpha)c \int_{q(l,x_0)}^\theta (u_x)^a (-u_x)_x e^{-\alpha} \, dx
= (1-\alpha) \int_{q(l,x_0)}^\theta \left[(\lambda u - \frac{b}{N+2})u^{N+1}(-u_x)^2 - \alpha e^{-\alpha} \right] \, dx
- (1-\alpha) \int_{q(l,x_0)}^\theta \left[(\alpha e^{-\alpha} - \lambda u)(-u_x)_x \right] \, dx
+ \lambda(1-\alpha) \int_{q(l,x_0)}^\theta u(-u_x)^a e^{-\alpha} \, dx
\]

Next, we shall estimate \(I_j(j = 1, 2, \ldots, 7)\) in (10). First, integrating by parts, we have
\[
I_2 = -(1-\alpha)c \int_{q(l,x_0)}^\theta \left[(\lambda u - \frac{b}{N+2})u^{N+1}(-u_x)_x e^{-\alpha} \right] \, dx
- (1-\alpha) \int_{q(l,x_0)}^\theta \left[(\alpha e^{-\alpha} - \lambda u)(-u_x)_x \right] \, dx
+ \lambda(1-\alpha) \int_{q(l,x_0)}^\theta u(-u_x)^a e^{-\alpha} \, dx
\]

By (3.2) and \(\|G\|_2 \leq \|\partial_x G\|_{L^1} = 1\), we get
\[
I_5 = -(1-\alpha) \int_{q(l,x_0)}^\theta \left[(\lambda u - \frac{b}{N+2})u^{N+1}(-u_x)_x e^{-\alpha} \right] \, dx
+ \lambda(1-\alpha) \int_{q(l,x_0)}^\theta u(-u_x)^a e^{-\alpha} \, dx
\]

Substituting (3.5)-(3.9) into (3.4) and observing that
\[q(t, x_0) = cu^N(q(t, x_0)) + k \] (by (2.6)),
we conclude
\[
\frac{d}{dt} \int_{q(l,x_0)} u(-u_x)^a e^{-\alpha} \, dx \leq [(1-\alpha) - c - N - c + (1-\alpha) \frac{(N-1)(b-cN)}{2} \int_{q(l,x_0)}^\theta u^{N+1}(-u_x)^2 e^{-\alpha} \, dx
+ \lambda(1-\alpha) \int_{q(l,x_0)}^\theta u(-u_x)^a e^{-\alpha} \, dx
\]

Let \(\beta = k - \lambda(\alpha - 1)\). By \(c = \frac{b}{N+2} \iff b = c(N+1)\) (see Lemma 2.4) and \(0 < u \leq \|u\|_{L^\infty}\), we have
\[
\frac{d}{dt} \int_{q(l,x_0)} u(-u_x)^a e^{-\alpha} \, dx + \beta \int_{q(l,x_0)} e^{-\alpha} \, dx \leq \gamma \int_{q(l,x_0)} e^{-\alpha} \, dx
\] (3.10)
Note that $\gamma = c(N + 1)\|u\|_{L^\infty}^{N-1}$.

Setting
\[
J(t) = \frac{\theta}{q(t,x_0)} (-u_x)^{1-a} e^{-x} dx,
\]
\[
K(t) = \left(\int_{q(t,x_0)}^{\theta} e^{-x} dx \right)^{-1} = (e^{-q(t,x_0)} - e^{-\theta})^{-1}.
\]

By (2.6), we have
\[
K = (e^{-q(t,x_0)} - e^{-\theta})^{-1} = (e^{-c \int_{t}^{\theta} u^\alpha(r,q(t,x_0))dr - kt - x_0} - e^{-\theta})^{-1}
\leq (e^{-c t \max u^\alpha - kt - x_0} - e^{-\theta})^{-1}.
\]

Note that θ can be taken to be a sufficient large. Due to
\[
\frac{2 - a}{1 - a} < 0 \big(1 < a < 2 \big)
\]
and
\[
\int_{q(t,x_0)}^{\theta} K(t) e^{-x} dx = 1
\]
and by Jensen’s inequality, we arrive at
\[
\left(\int_{q(t,x_0)}^{\theta} (-u_x)^{1-a} K(t) e^{-x} dx \right)^{\frac{2-a}{1-a}} \leq \int_{q(t,x_0)}^{\theta} (-u_x)^{2-a} K(t) e^{-x} dx.
\]

Thus, we conclude that
\[
\frac{d}{dt} I + \beta J \leq -\gamma \frac{1+a}{2} \frac{1}{K} \int_{q(t,x_0)}^{\theta} (-u_x)^{2-a} e^{-x} dx
\leq -\gamma \frac{1+a}{2} \int_{q(t,x_0)}^{\theta} (-u_x)^{1-a} Ke^{-x} dx \frac{1}{K}^{\frac{a}{2-a}}
\leq -\gamma \frac{1+a}{2} \frac{1}{K} \frac{e^{\theta t}}{t^{\frac{a}{2-a}}}.
\]

Multiplying both sides of (3.11) by $\frac{e^{\theta t}}{t^{\frac{a}{2-a}}}$, we obtain
\[
\frac{d}{dt} \int_{q(t,x_0)}^{\theta} e^{\frac{\beta}{\alpha-1} t} + \frac{\beta}{\alpha-1} \int_{q(t,x_0)}^{\theta} \leq -\gamma \frac{1+a}{2(\alpha-1)} \frac{1}{K} \frac{1}{t^{\frac{a}{2-a}}}.
\]

That is,
\[
\frac{d}{dt} \frac{e^{\theta t}}{t^{\frac{a}{2-a}}} \leq -\gamma \frac{1+a}{2(\alpha-1)} \frac{e^{\theta t}}{K} \left(\frac{1}{t^{\frac{a}{2-a}}} \right).
\]

Integrating with respect to t, we have
\[
e^{\frac{\beta}{\alpha-1} t} \leq -\gamma \frac{1+a}{2} \int_{0}^{t} \frac{e^{\theta t}}{K} \left(\frac{1}{t^{\frac{a}{2-a}}} \right) d\tau + e^{\frac{\beta}{\alpha-1} t}(0).
\]

Noticing that θ can tend to ∞, we obtain
\[
L(t) \leq e^{-\frac{\alpha}{2-a}} t \left[-\gamma \frac{1+a}{2} \int_{0}^{t} \frac{e^{\theta t}}{e^{\frac{\beta}{\alpha-1} (\alpha-1)}} d\tau + L(0) \right],
\]
where $L(t) = \int_{q(t,x_0)}^{\theta} (-u_x)^{1-a} e^{-x} dx$.

(3.12)
Hence, from (3.13), we have
\[L^\tau\gamma \leq e^{-\frac{\beta}{\alpha}\tau} \left[-\frac{1}{2} e^{\frac{\beta}{2}\tau} \int_0^T e^{\frac{\beta}{2}\tau} \cdot \frac{1}{\alpha} d\tau + L^\tau\gamma(0) \right] \]
\[\leq e^{-\frac{\beta}{\alpha}\tau} \left[-\frac{1}{2} e^{\frac{\beta}{2}\tau} \int_0^T e^{\frac{\beta}{2}\tau} \cdot \frac{1}{\alpha} d\tau + L^\tau\gamma(0) \right] \]
\[= e^{-\frac{\beta}{\alpha}\tau} \left[-\frac{1}{2} e^{\frac{\beta}{2}\tau} \int_0^T e^{\frac{\beta}{2}\tau} \cdot \frac{1}{\alpha} d\tau + L^\tau\gamma(0) \right] \]
\[\leq e^{-\frac{\beta}{\alpha}\tau} \left[-\frac{1}{2} e^{\frac{\beta}{2}\tau} \cdot e^{\alpha/\gamma} \right] , \]
where \(\nu \leq \sqrt{\frac{1}{2}||u_0||^2} \) by Lemma 2.4.

On the other hand,
\[\frac{1}{2} e^{-\frac{\beta}{2}\tau} \cdot e^{\frac{\beta}{2}\tau} = \frac{1}{2} \rightarrow \frac{1}{2} \cdot e^{-\frac{\beta}{2}\tau} \cdot e^{\frac{\beta}{2}\tau} = \frac{1}{2} \alpha - \frac{1}{2} \frac{1}{e^{\alpha/\gamma}} \]
and by condition (3.1). Thus, we get
\[L^\tau\gamma(0) \leq \frac{(1 + \alpha)^{\gamma}}{2(cv^N + \lambda(\alpha - 1))} e^{\frac{\beta}{2}\tau} . \]

Hence, from (3.13), we have \(L \to 0 \) as
\[t \to \frac{1}{cv^N + \lambda(\alpha - 1)} \ln\left[1 - \frac{2}{(1 + \alpha)^{\gamma}} \right] L^\tau\gamma(0)(cv^N + \lambda(\alpha - 1)) e^{\frac{\beta}{2}\tau}] \]
That is, there exists a sequence \((t_n, x_n) \) such that \(-u_x(t_n, x_n) \to -\infty \) as \(t \to T \) which contradicts with (3.2).
Thus, our main result is completed.

Acknowledgement: This work was supported by Scientific Research Fund of Hunan Provincial Education Department Nos.18A325, 17A087, 17B113, 17C0711, NNSF of China Grant Nos. 11671101, 11926205, Natural Science Foundation of Hainan Province No. 119M5036. Also, this work was partially supported by Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering of Changsha University of Science and Technology Grant No. 018MMAEZD191 and NNSF of China Grant Nos. 71471020, 51839002.

References

[1] E. Novruzov, Blow-up phenomena for the weakly dissipative Dullin-Gottwald-Holm equation, J. Math. Phys. 54 (2013), no. 9, 092703, DOI 10.1063/1.4820786.
[2] Z.Y. Zhang, J.H. Huang, and M.B. Sun, Blow-up phenomena for the weakly dissipative Dullin-Gottwald-Holm equation revisited, J. Math. Phys. 56 (2015), no. 9, 092701, DOI 10.1063/1.4930198.
[3] C. Huang, H. Zhang, J. Cao, and H. Hu, Stability and Hopf bifurcation of a delayed prey-predator model with disease in the predator, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 29 (2019), no. 7, 1950091, DOI 10.1142/S0218127419500913.
[4] H. Hu, X. Yuan, L. Huang, and C. Huang, Global dynamics of an SIRS model with demographics and transfer from infectious to susceptible on heterogeneous networks, Math. Biosci. Eng. 16 (2019), no. 5, 5729–5749, DOI 10.3934/mbe.2019286.
[5] C. Huang, H. Zhang, and L. Huang, Almost periodicity analysis for a delayed Nicholson’s blowflies model with nonlinear density-dependent mortality term, Commun. Pure Appl. Anal. 18 (2019), no. 6, 3337–3349, DOI 10.3934/cpaa.2019150.
[6] C. Huang, Y. Qiao, L. Huang, and R. Agarwal, Dynamical behaviors of a food-chain model with stage structure and time delays, Adv. Differential Equations 2018 (2018), no. 186, DOI 10.1186/s13661-018-1589-8.
[7] H. Hu, T. Yi, and X. Zou, On spatial-temporal dynamics of a Fisher-KPP equation with a shifting environment, Proc. Amer. Math. Soc. 148 (2020), no. 1, 213–221, DOI 10.1090/proc/14659.
[8] H. Hu and X. Zou, Existence of an extinction wave in the fisher equation with a shifting habitat, Proc. Amer. Math. Soc. 145 (2017), no. 11, 4763–4771, DOI 10.1090/proc/13687.
[9] J. Wang, C. Huang, and L. Huang, Discontinuity-induced limit cycles in a general planar piecewise linear system of saddle-focus type, Nonlinear Anal. Hybri. 33 (2019), 162–178, DOI 10.1016/j.nahs.2019.03.004.
Zaiyun Zhang, Limei Li, Chunhua Fang, Fan He, Chuangxia Huang, and Wen Zhu

K. Zhu, Y. Xie, and F. Zhou, *Pullback attractors for a damped semilinear wave equation with delays*, Acta Math. Sci. Ser. B Engl. Ed. 34 (2018), no. 7, 1131–1150, DOI 10.1007/s10114-018-7420-3.

C. Huang, Z. Yang, T. Yi, and X. Zou, *On the basins of attraction for a class of delay differential equations with non-monotone bistable nonlinearities*, J. Differential Equations 256 (2014), no. 7, 2101–2114, DOI 10.1016/j.jde.2013.12.015.

Y. Tan, C. Huang, B. Sun, and T. Wang, *Dynamics of a class of delayed reaction-diffusion systems with Neumann boundary condition*, J. Math. Anal. Appl. 458 (2018), no. 2, 1115–1130, DOI 10.1016/j.jmaa.2017.09.045.

Y. Zuo, Y. Wang, and X. Liu, *Adaptive robust control strategy for rhombus-type lunar exploration wheeled mobile robot using wavelet transform and probabilistic neural network*, Comput. Appl. Math. 37 (2018), no. 1, 314–337, DOI 10.1007/s40314-017-0538-6.

C. Huang, J. Cao, F. Wen, and X. Yang, *Stability analysis of SIM model with distributed delay on complex networks*, PlosOne 11 (2016), no. 8, e0158813, DOI 10.1371/journal.pone.0158813.

R. Camassa and D.D. Holm, *An integrable shallow water equation with peaked solitons*, Phys. Rev. Lett. 71 (1993), no. 11, 1661–1664, DOI 10.1103/physrevlett.71.1661.

A. Himonas and C. Holliman, *The Cauchy problem for a generalized Camassa-Holm equation*, Adv. Differential Equations 19 (2013), no. 1/2, 161–200, DOI 10.1007/s10114-013-9396-9.

S. Zhou and C. Mu, *The properties of solutions for a generalized b family equation with peakons*, J. Nonlinear Sci. 23 (2013), no. 5, 863–889, DOI 10.1007/s00332-013-9171-8.

A. Himonas and D. Mantzavinos, *The Cauchy problem for a 4-paramater family of equations with peakon traveling waves*, Nonlinear Anal. 133 (2016), no. 1, 161–199, DOI 10.1016/j.na.2015.12.012.

R. Barostichi, A. Himonas, and G. Petronilho, *The power series method for nonlinear and nonlocal evolution equations*, J. Math. Anal. Appl. 443 (2016), no. 2, 834–847, DOI 10.1016/j.jmaa.2016.05.061.

A. Constantin and J. Escher, *Well-posedness, global existence, and blow up phenomena for a periodic quasi-linear hyperbolic equation*, Comm. Pure Appl. Math. 51 (1998), no. 5, 475–504, DOI 10.1002/(SICI)1097-0312(199805)51:5.0.CO;2-5.

A. Constantin and J. Escher, *Wave breaking for nonlinear nonlocal shallow water equations*, Acta Math. 181 (1998), no. 2, 229–243, DOI 10.1007/BF02392586.

Z. Xin and P. Zhang, *On the weak solutions to a shallow water equation*, Comm. Pure Appl. Math. 53 (2000), no. 11, 1411–1433, DOI 10.1002/1097-0312(200011)53:11<1411:AID-CPA4>3.0.CO;2-5.

A. Degasperis and M. Procesi, *Asymptotic integrability and perturbation theory*, World Sci. Publ., River Edge, NJ, 1 (1999), no. 1, 23–37, DOI 10.1142/S0121828399000027.

A. Degasperis, D.D. Holm, and A.N.W. Hone, *A new integral equation with peakon solutions*, Theor. Math. Phys. 133 (2002), no. 2, 1463–1474, DOI 10.1023/A:1021186408422.

J. Escher, Y. Liu, and Z. Yin, *Global weak solutions and blow-up structure for the Degasperis-Procesi equation*, J. Funct. Anal. 241 (2006), no. 2, 257–485, DOI 10.1016/j.jfa.2005.03.022.

J. Escher, Y. Liu, and Z. Yin, *Shock waves and blow-up phenomena for the periodic Degasperis-Procesi equation*, Indiana Univ. Math. J. 56 (2007), no. 1, 87–117, DOI 10.1512/iumj.2007.56.3040.

A.A. Himonas, C. Holliman, and K. Grayshan, *Norm inflation and ill-posedness for the Degasperis-Procesi equation*, Comm. PDE 39 (2014), no. 12, 2198–2215, DOI 10.1080/03605302.2014.942737.

Z. Yin, *On the Cauchy problem for an integrable shallow water equation with peakons*, Illinois J. Math. 47 (2003), no. 3, 649–666, DOI 10.1215/ijm/1258138186.

V. Novikov, *Generalizations of the Camassa-Holm equation*, J. Phys. A 42 (2009), no. 34, 342002, DOI 10.1088/1751-8113/42/34/342002.

X. Wu and Z. Yin, *Well-posedness and global existence for the Novikov equation*, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 11 (2012), no. 3, 707–727.

W. Yan, Y. Li, and Y. Zhang, *The Cauchy problem for the integrable Novikov equation*, J. Differential Equations 253 (2012), no. 1, 298–318, DOI 10.1016/j.jde.2012.03.015.

W. Yan, Y. Li, and Y. Zhang, *The Cauchy problem for the Novikov equation*, NoDEA Nonlinear Differential Equations Appl. 20 (2013), no. 3, 1157–1169, DOI 10.1007/s00035-012-0202-1.

A.A. Himonas and C. Holliman, *The Cauchy problem for the Novikov equation*, Nonlinearity 25 (2012), no. 2, 449–479, DOI 10.1088/0951-7715/25/2/449.

Y. Liu and Z. Yin, *Global existence and blow-up phenomena for the Degasperis-Procesi equation*, Commun. Math. Phys. 267 (2006), no. 3, 801–820, DOI 10.1007/s00220-006-0882-5.

Z.Y. Zhang, Z.H. Liu, X.J. Miao, and Y.Z. Chen, *Global existence and uniform decay for wave equation with dissipative term and boundary damping*, Comput. Math. Appl. 59 (2010), no. 2, 1003–1018, DOI 10.1016/j.camwa.2009.09.008.

Z.Y. Zhang, Z.H. Liu, X.J. Miao, and Y.Z. Chen, *Global existence and uniform stabilization of a generalized dissipative Klein-Gordon equation type with boundary damping*, J. Math. Phys. 52 (2011), no. 2, 023502, DOI 10.1063/1.3544046.

Z.Y. Zhang, Z.H. Liu, and X.Y. Gan, *Global existence and general decay for a nonlinear viscoelastic equation with nonlinear localized damping and velocity-dependent material density*, Appl. Anal. 92 (2013), no. 10, 2021–2148, DOI 10.1080/00036811.2012.716509.

Z.Y. Zhang, X.J. Miao, and D.M. Yu, *On solvability and stabilization of a class of hyperbolic hemivariational inequalities in elasticity*, Funkcialaj Ekvacioj 54 (2011), no. 2, 297–314, DOI 10.1619/fesi.54.297.
A new blow-up criterion for the $N - abc$ family

[39] S. Wu and Z. Yin, Blow-up, blow-up rate and decay of the solution of the weakly dissipative Camassa-Holm equation, J. Math. Phys. 47 (2006), no. 1, 013504, DOI 10.1063/1.2158437.

[40] S. Wu and Z. Yin, Blow-up and decay of the solution of the weakly dissipative Degasperis-Procesi equation, SIAM J. Math. Anal. 40 (2008), no. 2, 475–490, DOI 10.1137/07070855X.

[41] Q. Hu and Z. Yin, Blowup and blowup rate of solutions to a weakly dissipative periodic rod equation, J. Math. Phys. 50 (2009), no. 8, 083503, DOI 10.1063/1.3187786.

[42] Q. Hu, Global existence and blow-up phenomena for a weakly dissipative periodic 2-component Camassa-Holm system, Appl. Anal. 92 (2013), no. 2, 398–410, DOI 10.1080/00036811.2011.621893.

[43] S. Zhou, C. Mu, and L. Wang, Well-posedness, blow-up phenomena and global existence for the generalized b-equation with higher-order nonlinearities and weak didipation, Discrete Contin. Dyn. Syst. Ser. A 34 (2014), no. 2, 843–867, DOI 10.1007/s00030-012-0202-1.

[44] E. Novruzov and A. Hagverdiyev, On the behavior of the solution of the dissipative Camassa-Holm equation with the arbitrary dispersion coefficient, J. Differential Equations 257 (2014), no. 12, 4525–4541, DOI 10.1016/j.jde.2014.08.016.

[45] E. Novruzov, Blow-up of solutions for the dissipative Dullin-Gottwald-Holm equation with arbitrary coefficient, J. Differential Equations 261 (2016), no. 2, 1115–1127, DOI 10.1016/j.jde.2016.03.034.

[46] E. Novruzov, Local-in-space blow-up criteria for a class of nonlinear dispersive wave equations, J. Differential Equations 263 (2016), no. 9, 5773–5786, DOI 10.1016/j.jde.2017.06.031.

[47] E. Novruzov, On blow-up phenomena for the weakly dissipative Camassa-Holm equation, J. Eng. Math. 77 (2012), no. 1, 187–195, DOI 10.1007/s10665-012-9544-2.

[48] E. Novruzov and B. Yazar, On blow-up criteria for a class of nonlinear dispersive wave equations with dissipation, Monatsh. Math. 188 (2019), no. 1, 163–181, DOI 10.1007/s00605-017-1102-6.

[49] L. Tian, G. Gui, and Y. Liu, On the Cauchy problem and the scattering problem for the Dullin-Gottwald-Holm equation, Commun. Math. Phys. 257 (2005), no. 3, 667–701, DOI 10.1007/s00220-005-1356-z.

[50] A. Himonas and R. Thompson, Persistence properties and unique continuation for a generalized Camassa-Holm equation, J. Math. Phys. 55 (2014), no. 9, 091503, DOI 10.1063/1.4895572.