Management of Internal Hernia in Neonates with Multiple Heart Diseases: A Case Report

Riana P. Tamba
Department of Surgery, Faculty of Medicine Universitas Indonesia, rianatamba@gmail.com

Andi Wiradeni
Department of Surgery, Faculty of Medicine Universitas Indonesia, wiradeni83@gmail.com

Follow this and additional works at: https://scholarhub.ui.ac.id/nrjs

Part of the Surgery Commons

Recommended Citation
Tamba, Riana P. and Wiradeni, Andi (2021) "Management of Internal Hernia in Neonates with Multiple Heart Diseases: A Case Report," *The New Ropanasuri Journal of Surgery*. Vol. 6 : No. 1, Article 8.
DOI: 10.7454/nrjs.v6i1.1102
Available at: https://scholarhub.ui.ac.id/nrjs/vol6/iss1/8

This Case Report is brought to you for free and open access by the Faculty of Medicine at UI Scholars Hub. It has been accepted for inclusion in The New Ropanasuri Journal of Surgery by an authorized editor of UI Scholars Hub.
Management of Internal Hernia in Neonates with Multiple Heart Diseases: A Case Report

Riana P. Tambu, Andi Wirademi

Department of Surgery, Faculty of Medicine Universitas Indonesia

Abstract

Internal hernia is a rare clinical entity. In all cases, less than 1% found as the cause of intestinal obstruction. However, delayed treatment of internal hernia may lead to necrosis of the intestines. Neonates with congenital heart disease may be at increased risk of morbidity and mortality than another concurrent disease.

A male infant was delivered with a Cesarean section due to a congenital disorder of umbilical hernia, ventricular septal defect, and aortic transposition. The infant was born full-term with a 2,515 g birth weight and 3, 5, 7 APGAR score, positive ventilation, and intubation proceeded. Prostaglandin E1 10 mcg/kg/minute, packed blood cell, and thrombocyte concentrate was administered preoperatively. The patient underwent laparotomy for intestinal resection on day-3; the necrotic intestine was found starting 70 cm from ligament of Treitz to midsection of the transverse colon. Postoperatively, the stoma was vital, and we no

Key words: congenital heart diseases, internal hernia, laparotomy, intestinal resection, necrosis

Introduction

According to autopsy studies, internal hernia occurs in less than one percent of the population studied; however, it accounted for approximately 0.5 to 5.8% of all cases of intestinal obstruction. Internal hernia occurred in less than 0.01% of infants with jejunoileal atresia or stenosis, with an incidence rate of 1.3 - 2.25 cases per 10,000 live births in Spain, Latina America, and France. In other states in North America, incidence rates may increase up to 2.9 cases per 10,000 live births. From previous studies, infants with congenital heart disease are at higher risk of morbidity and mortality compared to the healthy infants.

Other case reports had described intestinal necrosis on internal hernia cases incidentally found during abdominal surgery; thus, requiring additional resection during the same period. Felizes et al. had reported a neonate with internal hernia diagnosed intraoperatively; resection of the ileum (21 cm long) was performed due to ileal necrosis. Saka et al. had reported five patients requiring ileal resection due to intestinal necrosis associated with an internal hernia (all of the cases were diagnosed intraoperatively) with varying lengths of small intestines preserved, ranging from 150 to 200 cm. Additionally, Galazka et al. had performed ileal and liver resection on neonates with internal hernia due to liver penetration of the hernia. Diagnosis of multiple congenital anomalies, particularly of the intestine and heart, are extremely rare; we present a case report of a male infant diagnosed with congenital umbilical cord hernia with multiple congenital heart defects.

Case illustration

A male infant was delivered on cesarean section due to congenital umbilical cord hernia, ventricular septal defect, and aortic transposition in dr. Cipto Mangunkusumo General Hospital. The infant was born full-term at 38th gestational week with 2,515 g birth weight. The infant was found to be cyanotic with poor respiratory effort; the APGAR scores were 3, 5, and 7. He received positive pressure ventilation for five minutes but did not show improvement. Intubation was performed with FiO2 45% and oxygen saturation down to 60%. The ileal loop had invaginated the umbilical defect with the enlarged left and right scrotum. The skin color of the scrotum was within normal ranges.

In the first three hours of life, the infant was diagnosed with the umbilical cord and bilateral scrotal hernia and referred to pediatric surgery. On the 1st day of surgical care, the meconium passed out, and inserted orogastric tube produce reddish fluid. The umbilical hernia had reddish fluid content. The tissue viability of invaginated ileal loop was hard to assess.

Figure 1. The first presentation. Ileal loop invaginated the umbilical defect, enlarged right and left scrotum, no abnormal scrotum skin color.

To this finding, he has planned a surgical procedure. The ventilator was set to SIMV mode, with PEEP 5, FiO2 21%, and 69-70% oxygen
of hypervascularity on the mesentery, rapid elongation of the mesentery, and increased pressure from colon towards the mesentery during the herniation of fetal midgut to the yolk sac. The subject of this study underwent laparotomy surgery on the third day after the diagnosis of intestinal obstruction.

The surgical procedure proceeded following the transfusion of packed red cells and platelet concentrate. The case series by Hirata et al. had also reported delayed surgical procedures. Similar age of diagnosis and management had been given in comparison to the study. Prostaglandin E1 and pulmonary artery banding had been performed to manage the existing congenital cardiac anomaly before the intestinal management on the 10th day of life.

In comparison, Hirata et al. had performed the surgery as early as possible. We have delayed the surgery due to the patient's age; as a comparison, the infant managed by the other case report was older. Thus, the infant was eligible for emergency operation.

Laparotomic intestinal resection was performed in this study. It was performed 70 cm from the ligament of Treitz to the midsection of the transverse colon and stoma. The surgical procedure was like the cases treated by Hirata et al., laparotomic resection of ascending colon and stoma.

Necrosis of the intestine, in this case, was caused probably due to increased pressure on the vascular system of the mesentery (from internal hernia entering the mesentery defect) that supplies the ascending colon. The intestinal loop entering through the mesentery defect was pinched out. Despite the increased pressure, the tissue in Hirata's case had remained viable. In contrast, the ileal loop was necrosized in our study due to prolonged strangulation from delayed surgery. Prompt surgical management for intestinal obstruction in infants with multiple heart disease was essential. Delayed surgery may eventually lead to the spreading of necrosis to other intestinal tissue.

Multiple factors should be of one's consideration before deciding on intestinal anastomosis, including local and systemic factors. Local factors consist of vascularization, surgical technique, and risk of bacterial contamination. Systemic factors include nutritional status, tissue perfusion, and oxygenation. 8

We create the stoma as the systemic condition was unsuitable due to inadequate perfusion and oxygenation of the intestinal tissue. The ventilator was fitted on PC-AC mode during the surgery, PEEP 5, FIO2 30%, and 70–85% oxygen saturation. In the Hirata reports, the stoma was created due to the exact reason in this case. During the surgery, the infant showed increased C-reactive protein levels (1.04 x 105 mcg/L) and metabolic acidosis (pH 6.982 with base excess of 19.9).

Postoperatively, the stoma vital and produces, and the patients had been given an oral diet. However, the infant died after the 14th postoperative day due to respiratory failure from hospital-acquired pneumonia. In contrast, the case reported by Hirata et al. had died on the 96th postoperative day due to extensive fasting and recurrent infection. Neonates with congenital heart disease may experience recurrent respiratory tract infection due to increased blood flow to the lungs, thus adversely affecting the lungs' immune system. 9

This study is the second study that had reported a case of intraoperative diagnosis of internal hernia on a neonate with multiple heart disease and the first study that had reported on a neonate with normal birth weight (2,515 g).

Internal hernia is an uncommon disease. The author only found one case report as a reference (level of evidence IV according to criteria from Center of Evidence-Based Medicine University of Oxford 2010).

Conclusions

Internal hernias in neonates with multiple heart diseases are extremely rare. Neonates with multiple heart diseases may often have unstable conditions.
clinical parameters that lead to inadequate tissue perfusion and oxygenation; thus, intestinal resection and stoma creation must be performed immediately to prevent necrosis and additional stress on the cardiovascular system. Delayed surgery in our case might be associated extending necrosis and subsequent worsening patients’ condition.

Disclosure

Authors declare no conflict of interest

References

1. Batsis JD, Okito O, Melzer JA, Cunningham SJ. Internal Hernia as a Cause for Intestinal Obstruction in a Newborn. J Emerg Med. 2015;49(3):277-80. doi:10.1016/j.jemermed.2015.04.030
2. Azizkhan RG, Frischer JS. Jejunoileal atresia and stenosis. In: Coran AG. Ped Surg. 2012;7(1):1059-71.
3. Felizes A, Morgado M, Janeiro M, Gonçalves M. Congenital transmesenteric hernia presenting as neonatal ascites. J Pediatr Surg Case Reports. 2018;28(2018):30-2. doi:10.1016/j.epsc.2017.09.014
4. Moon SB. Treves’ field transmesenteric hernia causing acute small bowel obstruction in a 9-year-old girl. J Pediatr Surg Case Reports. 2015;3(12):527-29. doi:10.1016/j.epsc.2015.10.011
5. G. G. Ghahremani. Internal abdominal hernias. Surg Clin. 1984;64(2):393-406
6. Galazka P, Sadej N, Reszczynska, Dornagala M, et al. Intrahepatic intestinal loop through a congenital mesenteric hernia. J Pediatr Surg Case Reports. 2017. doi: 10.1016/j.epsc.2017.07.014
7. Surgical abdomen due to intestinal obstruction. In: Kaiser GL. Symp and signs in pediatr surg. 2012;(1):292-3. doi:10.1007/978-3-642-31161-1
8. Aguayo P, Ostlie DJ. Duodenal and intestinal atresia. In: Holcomb GW, Murphy P, Ostlie DJ. Ashcraft’s Pediatr Surg. 2014;6:414-27. doi:10.1016/B978-1-4160-6127-4.X0001-8
9. Mentessidou A, Saxena AK. Disorders of intestinal rotation and fixation. In: Lima M. Pediatr digest surg. 2017;1:245-54. doi:10.1007/978-3-319-40525-4
10. Gingaleswki CA. Other causes of intestinal obstruction. In: O'Neill JA, Grosfeld JL. Ped surg. 2006;6(1):1358-68