TOPOLOGICAL CLASSIFICATION OF ZERO-DIMENSIONAL \mathcal{M}_ω-GROUPS

Taras Banakh

Abstract. A topological group G is called an \mathcal{M}_ω-group if it admits a countable cover \mathcal{K} by closed metrizable subspaces of G such that a subset U of G is open in G if and only if $U \cap K$ is open in K for every $K \in \mathcal{K}$.

It is shown that any two non-metrizable uncountable separable zero-dimensional \mathcal{M}_ω-groups are homeomorphic. Together with Zelenyuk’s classification of countable k_ω-groups this implies that the topology of a non-metrizable zero-dimensional \mathcal{M}_ω-group G is completely determined by its density and the compact scatteredness rank $r(G)$ which, by definition, is equal to the least upper bound of scatteredness indices of compact scattered subspaces of G.

In [Ze] (see also [PZ, §4.3]) E.Zelenyuk has proven that the topology of a countable topological k_ω-group G is completely determined by its compact scatteredness rank $r(G)$ which, by definition, is equal to the least upper bound of scatteredness indices of compact scattered subsets of G. In this note we extend this Zelenyuk’s classification result onto the class of punctiform \mathcal{M}_ω-groups.

Let us recall that a topological space X is scattered if every non-empty subset of X has an isolated point. For a scattered space X its scatteredness index $i(X)$ is defined as the smallest ordinal α such that the α-th derived set $X^{(\alpha)}$ of X is finite. Derived sets $X^{(\beta)}$ of X are defined by transfinite induction: $X^{(0)} = X$, $X^{(1)}$ is the set of all non-isolated points of X; $X^{(\beta+1)} = (X^{(\beta)})^{(1)}$ and $X^{(\beta)} = \bigcap_{\gamma < \beta} X^{(\gamma)}$ if β is a limit ordinal. It can be easily shown that $i(X) < \omega_1$ if X is a hereditarily Lindelöf scattered topological space (in particular, a countable compactum). For a topological space X let

$$r(X) = \sup \{i(K) : K \text{ is a compact scattered subset of } X\}$$

be the compact scattered rank of X.

A topological space X is defined to be a k_ω-space (resp. an \mathcal{M}_ω-space) if X admits a countable cover \mathcal{K} by compact Hausdorff subspaces (resp. by closed metrizable subspaces) of X such that a subset U of X is open in X if and only if $U \cap K$ is open in K for every $K \in \mathcal{K}$. A space X is called an \mathcal{MK}_ω-space if X is both

1991 Mathematics Subject Classification. 54H11, 22A05, 54G12, 54F45.
Research supported in part by grant INTAS-96-0753.
a k_ω-space and an \mathcal{M}_ω-space. A topological group G is called a k_ω-group (resp. \mathcal{MK}_ω-group, \mathcal{M}_ω-group) if its underlying topological space is k_ω-space (resp. an \mathcal{MK}_ω-space, an \mathcal{M}_ω-space). Since each countable compactum is metrizable, we conclude that each countable k_ω-space is an \mathcal{MK}_ω-space. On the other hand, according to Theorem 4 of [Ba], every non-metrizable \mathcal{M}_ω-group is homeomorphic to the product $H \times D$, where H is an open \mathcal{MK}_ω-subgroup in G and D is a discrete space.

Following [En$_2$, 1.4.3], we say that a topological space X is punctiform if it contains no connected compact subspace containing more than one point. Each punctiform σ-compact space is zero-dimensional [En$_2$, §1.4]. On the other hand, there exist strongly infinite-dimensional separable complete-metrizable punctiform spaces [En$_2$, 6.2.4]. Given a topological space X by $d(X)$ its density is denoted.

Main Theorem. The topology of a non-metrizable punctiform \mathcal{M}_ω-group is completely determined by its density and its compact scatteredness rank. In other words, two non-metrizable punctiform \mathcal{M}_ω-groups G, H are homeomorphic if and only if $d(G) = d(H)$ and $r(G) = r(H)$.

To prove this theorem we need to make first some preliminary work. We say that a topological space X carries the direct limit topology with respect to a tower $X_1 \subset X_2 \subset X_3 \subset \ldots$ of subsets of X (this is denoted by $X = \varinjlim X_n$) if $X = \bigcup_{n=1}^{\infty} X_n$ and a subset $U \subset X$ is open if and only if $U \cap X_n$ is open in X_n for every $n \in \mathbb{N}$.

Since the union of any two compact (resp. closed metrizable) subspaces in a topological space is compact (resp. closed and metrizable, see [En$_1$, 4.4.19]), we get the following

Lemma 1. A topological space X is an \mathcal{M}_ω-space (an \mathcal{MK}_ω-space) if and only if X carries the direct limit topology with respect to a tower $X_1 \subset X_2 \subset \ldots$ of closed metrizable (compact) subsets of X.

Under a Cantor set we understand a zero-dimensional metrizable compactum without isolated points.

Lemma 2 [Ke, 6.5]. Each uncountable metrizable compactum contains a Cantor set.

According to a classical theorem of Brouwer [Ke, 7.4], each Cantor set is homeomorphic to the Cantor cube $2^\omega = \{0, 1\}^\omega$. It is well known that the Cantor cube is universal for the class of metrizable zero-dimensional compacta. In fact, it is universal is a stronger sense, see [vE], [Po].

Lemma 3. Suppose A is a closed subset of a zero-dimensional metrizable compactum B. Every embedding $f : A \to 2^\omega$ such that $f(A)$ is nowhere dense in 2^ω extends to an embedding $\bar{f} : B \to 2^\omega$.

Given a cardinal τ denote by $(2^\tau)^\infty = \varinjlim (2^\tau)^n$ the direct limit of the tower

$$2^\tau \subset (2^\tau)^2 \subset (2^\tau)^3 \subset \ldots$$
consisting of finite powers of the Cantor discontinuum 2^τ (here $(2^\tau)^n$ is identified with the subspace $(2^\tau)^n \times \{\ast\}$ of $(2^\tau)^{n+1}$, where \ast is any fixed point of 2^τ).

Using Lemma 3 by standard “back-and-forth” arguments (see [Sa]) one may prove

Lemma 4. A space X is homeomorphic to $(2^\omega)^\infty$ if and only if X is a zero-dimensional \mathcal{M}_ω-space satisfying the following property:

(SU) every embedding $f : B \to X$ of a closed subspace B of a zero-dimensional metrizable compactum A may be extended to an embedding $\bar{f} : A \to X$.

Now we are able to prove a “separable” version of Main Theorem.

Theorem. Every non-metrizable uncountable separable punctiform \mathcal{M}_ω-group is homeomorphic to $(2^\omega)^\infty$.

Proof. Suppose G is a non-metrizable uncountable separable punctiform \mathcal{M}_ω-group. It follows from Theorem 4 of [Ba] that G is an \mathcal{M}_ω-group. Then G, being σ-compact and punctiform, is zero-dimensional, see [En2, §1.4]. According to Lemma 4, to show that G is homeomorphic to $(2^\omega)^\infty$ it remains to verify the property (SU) for the group G.

Fix any embedding $f : B \to G$ of a closed subspace of a metrizable zero-dimensional compactum A. By the continuity of the multiplication \ast on G, the set $f(B)^{-1} \ast f(B) = \{f(b)^{-1} \ast f(b') : b, b' \in B\} \subset G$ is compact. It follows from Theorem 4 of [Ba] that there exists a sequence $(x_n)_{n=1}^{\infty} \subset G$ converging to the neutral element e of G and such that $x_n \notin f(B)^{-1} \ast f(B)$ for every $n \in \mathbb{N}$. This implies that $f(B)$ is a nowhere dense subset in the compactum $f(B) \ast S_0$, where $S_0 = \{e\} \cup \{x_n : n \in \mathbb{N}\}$. Next, since the \mathcal{M}_ω-group G is uncountable and σ-compact, it contains an uncountable metrizable compactum which in its turn, contains a Cantor set $C \subset G$ according to Lemma 2. Without loss of generality, $C \ni e$. It can be easily shown that the compactum $f(B) \ast S_0 \ast C$ has no isolated point and contains $f(B)$ as a nowhere dense subset. Since $f(B) \ast S_0 \ast C$ is a zero-dimensional metrizable compactum without isolated points, it is homeomorphic to the Cantor cube 2^ω, which allows us to apply Lemma 3 to produce an embedding $\bar{f} : A \to f(B) \ast S_0 \ast C \subset G$ extending the embedding f. Thus the space G satisfies the condition (SU) and G is homeomorphic to $(2^\omega)^\infty$. □

Lemma 5. If G is a non-metrizable \mathcal{M}_ω-group, then $r(G) \leq \omega_1$. Moreover, $r(G) = \omega_1$ if and only if G contains a Cantor set.

Proof. Suppose G is a non-metrizable \mathcal{M}_ω-group. Write $G = \lim_{\leftarrow} M_i$, where $M_1 \subset M_2 \subset \ldots$ of a tower of closed metrizable subspaces of G with $G = \bigcup_{i=1}^{\infty} M_i$. It follows that each scattered compactum $K \subset G$ is contained in some M_i and being metrizable and scattered, is countable, see Lemma 2. Consequently, $r(K) < \omega_1$ for every such $K \subset G$. Hence $r(G) \leq \omega_1$.

If G contains a Cantor set C, then $r(G) \geq r(C) \geq \omega_1$ because C, being universal in the class of zero-dimensional metrizable compacta, contains copies of all
countable compacta (whose scatteredness indices run over all countable ordinals, see [Ke, 6.13]).

Assume finally that \(r(G) = \omega_1 \). According to Theorem 4 of [Ba], \(G \) is homeomorphic to the product \(H \times D \) of an \(\mathcal{KM}_{\omega} \)-group \(H \subset G \) and a discrete space \(D \). Clearly, \(\omega_1 = r(G) = r(H \times D) = r(H) \). Write \(H = \lim_{\to} K_i \), where \(K_1 \subset K_2 \subset \ldots \) is a tower of metrizable compacta in \(H \). One of these compacta is uncountable (otherwise we would get \(r(H) = \sup \{ r(K_i) : i \in \mathbb{N} \} < \omega_1 \), a contradiction with \(r(H) = \omega_1 \)). Consequently, the group \(H \) contains a Cantor set \(C \), see Lemma 2. □

Proof of Main Theorem. Suppose \(G_1, G_2 \) are two non-metrizable \(\mathcal{M}_{\omega} \)-groups with \(r(G_1) = r(G_2) \) and \(d(G_1) = d(G_2) \). By Theorem 4 of [Ba], for every \(i = 1, 2 \) the space \(G_i \) is homeomorphic to the product \(H_i \times D_i \), where \(H_i \subset G_i \) is an \(\mathcal{KM}_{\omega} \)-group and \(D_i \) is a discrete space. Since \(d(G_1) = d(G_2) \) and the spaces \(H_1, H_2 \) are separable, we may assume that \(|D_1| = |D_2| \) (if \(d(G_1) = d(G_2) \) is countable, then replacing \(H_i \) by \(G_i \), we may assume that \(|D_1| = |D_2| = 1 \)). Thus to prove that the groups \(G_1 \) and \(G_2 \) are homeomorphic, it suffices to verify that the groups \(H_1 \) and \(H_2 \) are homeomorphic. Observe that \(r(G_i) = r(H_i \times D_i) = r(H_i) \) for \(i = 1, 2 \) and hence \(r(H_1) = r(H_2) \).

If \(r(H_1) = r(H_2) < \omega_1 \), then by Lemmas 2 and 6, the \(\mathcal{KM}_{\omega} \)-groups \(H_1 \) and \(H_2 \) are countable and by Zelenyuk’s theorem [Ze], they are homeomorphic. If \(r(H_1) = r(H_2) = \omega_1 \), then we may apply Theorem and Lemmas 2, 5 to conclude that both groups \(H_1 \) and \(H_2 \) are homeomorphic to \((2^\omega)^\omega \). □

A topological space \(X \) is defined to be an AE(0)-space if every continuous map \(f : B \to X \) from a closed subset of a zero-dimensional compact Hausdorff space \(A \) can be extended to a continuous map \(\bar{f} : A \to X \).

Conjecture. An uncountable zero-dimensional \(k_{\omega} \)-group \(G \) is homeomorphic to \((2^\omega)^\omega \times 2^\kappa \) for some cardinals \(\tau \leq \kappa \) if and only if \(G \) is an AE(0)-space.

References

[Ba] T. Banakh, On topological groups containing a Fréchet-Urysohn fan, Matem. Studii 9:2 (1998), 149–154.
[vE] F. van Engelen, Homogeneous zero-dimensional absolute Borel sets (CWI Tracts), North-Holland, Amsterdam, 1986.
[En1] R. Engelking, General topology, PWN, Warsaw, 1977.
[En2] R. Engelking, Theory of dimensions, finite and infinite, Heldermann Verlag, Lemgo, 1995.
[Ke] A.S. Kechris, Classical descriptive set theory, Springer-Verlag, 1995.
[Po] J. Pollard, On extending homeomorphisms on zero-dimensional spaces, Fund. Math. 67 (1970), 39–48.
[PZ] I. Protasov, E.Zelenyuk, Matem. Studii. Monograph Series (1999), VNTL, Lviv.
[Sa] K. Sakai, On \(R^\infty \)-manifolds and \(Q^\infty \)-manifolds, Topol. Appl. 18 (1984), 69–79.
[Ze] E. Zelenyuk, Group topologies determined by compacta(in Russian), Mat. Stud. 5 (1995), 5–16.

Department of Mathematics, Lviv National University, Universytetska 1, 79000, Lviv, Ukraine

E-mail address: tbanakh@franko.lviv.ua