Thirty-two krypton isotopes have been observed so far; the discovery of these isotopes is discussed. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.
1. INTRODUCTION

In this fifth paper in the series of the discovery of isotopes, the discovery of the krypton isotopes is discussed. Previously, the discovery of cerium [1], arsenic [2], gold [3], and tungsten [4] isotopes was discussed. The purpose of this series is to document and summarize the discovery of the isotopes. Guidelines for assigning credit for discovery are (1) clear identification, either through decay-curves and relationships to other known isotopes, particle or γ-ray spectra, or unique mass and Z-identification, and (2) publication of the discovery in a refereed journal. The authors and year of the first publication, the laboratory where the isotopes were produced as well as the production and identification methods are discussed. When appropriate, references to conference proceedings, internal reports, and theses are included. When a discovery includes a half-life measurement, the measured value is compared to the currently adapted value taken from the NUBASE evaluation [5], which is based on ENSDF database [6]. In cases where the reported half-life differed significantly from the adapted half-life (up to approximately a factor of two), we searched the subsequent literature for indications that the measurement was erroneous. If that was not the case, we credited the authors with the discovery in spite of the inaccurate half-life.

2. DISCOVERY OF $^{69–100}$Kr

Thirty-two krypton isotopes from A = 69 – 100 have been discovered so far; these include 6 stable, 11 proton-rich and 15 neutron-rich isotopes. According to the HFB-14 model [7], 115Kr should be the last odd particle stable neutron-rich nucleus and the even particle stable neutron-rich nuclei should continue through 126Kr. Three more neutron-deficient isotopes ($^{66–68}$Kr) are predicted to be stable. Thus, there remain 24 isotopes to be discovered. In addition, it is estimated that 2 additional nuclei beyond the proton dripline could live long enough to be observed [8]. Almost 60% of all possible krypton isotopes have been produced and identified so far.
FIG. A. Krypton isotopes as a function of time they were discovered. The different production methods are indicated. The solid black squares on the right hand side of the plot are isotopes predicted to be bound by the HFB-14 model. On the proton-rich side, the light blue squares correspond to unbound isotopes predicted to have lifetimes larger than $\sim 10^{-9}$ s.

Figure A summarizes the year of first discovery for all krypton isotopes identified by the method of discovery. The range of isotopes predicted to exist is indicated on the right side of the figure. The radioactive krypton isotopes were produced using heavy-ion fusion evaporation (FE), light-particle reactions (LP), neutron-induced fission (NF), neutron-capture reactions (NC), spallation reactions (SP), and projectile fragmentation or fission (PF). The stable isotopes were identified using mass spectroscopy (MS). Heavy ions are all nuclei with an atomic mass larger than $A = 4$ [9]. Light particles also include neutrons produced by accelerators. In the following paragraphs, the discovery of each krypton isotope is discussed in detail.
Blank et al. reported the discovery of the isotopes 69Kr and 70Kr in New Isotopes From 78Kr Fragmentation and the Ending Point of the Astrophysical Rapid-Proton-Capture Process in 1995. They produced the isotopes using SISSI and LISE at the Grand Accélérateur National d’Ions Lourds (GANIL) facility [10]. The discovery was made using projectile fragmentation with 78Kr at 73 MeV/nucleon on a nickel target. “We obtained clear evidence for the existence of the five new isotopes 60Ga, 64As, 69,70Kr, and 74Sr.” Identification of the new isotope was achieved using time of flight and ΔE-E measurements and confirmed by measuring γ decays of known isomers.

Ewan et al. discovered 71Kr in 1981 using the Isotope Separator On Line (ISOLDE) facility at CERN, Switzerland, as reported in Beta-Decay of the $T_z = \frac{1}{2}$ Mirror Nucleus 71Kr [11]. A niobium target was bombarded with 600 MeV protons, followed by mass separation. “Assignment of the β-activity to mass 71 was made by scanning over this mass region with the separator magnet.” The half-life was measured to be 97(9) ms. This value is included in the average for the presently accepted value of 100(3) ms.

First reported in the article A New $N = Z$ Isotope: Krypton 72, Schmeing et al. made the discovery of 72Kr in 1973 using the upgraded Chalk River MP tandem [12]. Production of the isotope occurred by the fusion-evaporation reaction of 16O at 55 MeV with a 58Ni target, 58Ni(16O,2n)72Kr. The reaction products were thermalized in the helium target cell and periodically swept to a shielded counting cell where β-delayed γ-rays were observed. “We determine the half-life of 72Kr to be 16.7±0.6 s.” This agrees with the accepted value of 17.16(18) s. It should be mentioned that within a month of the submission by Schmeing, Davids et al. submitted their results reporting the observation of 72Kr [13].

73Kr was discovered by Hornshøj et al. in 1972 using ISOLDE at CERN and reported in Beta-Delayed Proton Emitter 73Kr [14]. The discovery was made using the spallation of a Zr(OH)$_4$ target by 600 MeV protons. “The nuclide 73Kr has been identified by on-line mass separation as a precursor of β-delayed proton emission.” The measured half-life of 34(4) s is close to the currently accepted value of 28.8(6) s.

74,75Kr were discovered in 1960 by Butement and Boswell and reported in New Neutron Deficient Isotopes of Krypton [15]. The isotopes were produced by way of bombarding a lithium bromide target with 280 MeV protons from the Liverpool Synchrocyclotron. “The half-life of 74Kr was obtained by milking bromine from krypton at successive intervals of either 10 or 12 min and then finding the yield of 74Br by examining the decay curve of each bromine fraction counted through 750 mg/cm2 of aluminium. ... The half-life of 75Kr was obtained by using a similar technique but this time bromine was milked from krypton during successive 5 min periods.” The measured half-lives of 12(1) m and
5.5(4) m agree with the accepted values of 11.5(11) m and 4.29(17) m for 74Kr and 75Kr, respectively. It should be mentioned that Gray et al. discovered 74Kr essentially simultaneously [16]. The two papers were submitted less than a month apart. Gray was apparently not aware of the work by Butement and Boswell.

76Kr

Caretto and Wiig reported the discovery of 76Kr in 1954 in A New Neutron-Deficient Isotope of Krypton. [17]. “While investigating the spallation reactions which occurred when yttrium was bombarded with 150-, 175-, and 240-Mev protons in the Rochester cyclotron, a new krypton isotope, Kr76, with a (9.7 ± 0.5)-hour half-life was observed.” The isotope was identified by measuring their radioactive decay with a NaI(Tl) phosphor and a beta-proportional counter following chemical separation. The measured half-life is near the currently adapted value of 14.8(1) h.

77Kr

77Kr was discovered by Woodward et al. in 1948 at Ohio State University. Discovery of the isotope was reported in the paper Radioactive Kr Isotopes [18]. Enriched samples of 74Se and 76Se were bombarded by α-particles, and β^+ and β^- radiation was measured; “... a strong β^+-activity of 1.1-hour half-life was observed in the enriched Se74 sample but not in the enriched Se76 sample.” Thus 77Kr was formed in the reaction 74Se(α,n). The measured 1.1 h half-life is consistent with the presently accepted value of 74.4(6) m.

78Kr

The discovery of the stable isotope 78Kr was made by Aston in 1920 with a mass spectrograph, and he reported the results in Isotopes and Atomic Weights [19]. Aston identified six separate isotopes of krypton; “Krypton has no fewer than six constituents: 78, 80, 82, 83, 84, and 86. The last five are strong lines most beautifully confirmed by double- and triple-charged clusters, which can be compared with great accuracy against A (4) and CO (28). The 78 line has not yet been confirmed in this way owing to its faintness, but there is no reason to doubt its elemental nature. Krypton is the first element giving unmistakable isotopes differing by one unit only.” Aston published the actual spectra a few months later [20].

79Kr

79Kr was uniquely identified for the first time by Woodward et al. in 1948 at Ohio State University in the same paper describing the discovery of 77Kr: Radioactive Kr Isotopes [18]. Enriched samples of 74Se and 76Se were bombarded by α-particles and β^+ and β^- radiation was measured. “These curves indicate that the 1.4-day krypton period is formed from stable Se76. ... The 1.4-day krypton activity is then assigned to Kr79.” This half-life agrees with the currently accepted value of 35.04(10) h. Earlier half-lives of 18(2) h [21], 34.5(10) h [22], and 33-35 h [23] had been observed, but it had not been possible to make the unique assignment to 79Kr. These earlier observations assigned the activity to either 79Kr or 81Kr.
The discovery of the stable isotope 80Kr was made by Aston in 1920 with a mass spectrograph, and he reported the results in *Isotopes and Atomic Weights* [19]. Aston identified six separate isotopes of krypton: “Krypton has no fewer than six constituents: 78, 80, 82, 83, 84, and 86. The last five are strong lines most beautifully confirmed by double- and triple-charged clusters, which can be compared with great accuracy against A (4) and CO (28). ... Krypton is the first element giving unmistakable isotopes differing by one unit only.” Aston published the actual spectra a few months later [20].

Reynolds reported the discovery of 81Kr in *A New Long-Lived Krypton Activity* in 1950 at Argonne National Laboratory [24]. The discovery was made by distilling krypton from a sample of sodium bromide, which had gone through prolonged exposure to intense neutron radiation. The isotope was first noticed due to an ion bump at mass 81 and, upon further inspection, was identified to be 81Kr. “In addition, a small ion peak was observed at mass 81 which, after the usual tests common to mass spectrometric technique, proved to be due to Kr$^{+}$ and not due to an impurity element or to a rare krypton compound ion such as KrH$^{+}$. ” Reynolds concluded 81Kr decays by way of K-capture with a half-life of $2.1(5) \times 10^5$ y. This half-life agrees with the adapted value of $2.29(11) \times 10^5$ y. The 13.1 s isomers had been observed by Creutz *et al.* in 1940; however, they could assign the observed 13(2) s activity only to either 79Kr or 81Kr [22].

The discovery of the stable isotopes 82Kr, 83Kr, and 84Kr, was made by Aston in 1920 with a mass spectrograph, and he reported the results in *Isotopes and Atomic Weights* [19]. Aston identified six separate isotopes of krypton; “Krypton has no fewer than six constituents: 78, 80, 82, 83, 84, and 86. The last five are strong lines most beautifully confirmed by double- and triple-charged clusters, which can be compared with great accuracy against A (4) and CO (28). ... Krypton is the first element giving unmistakable isotopes differing by one unit only.” Aston published the actual spectra a few months later [20].

In 1943, Born and Seelmann-Eggebert were the first to identify 85Kr in Berlin in their paper *Über die Identifizierung einiger Uranspaltprodukte mit entsprechenden durch (nα)- und (np)-Prozesse erhaltenen Isotopen* [25]. Rubidium and strontium salts were irradiated with neutrons from the high-voltage facility of the Kaiser Wilhelm Institut für Physik and decay curves following chemical separation were measured. “Von diesen sind 83 und 84 stabil, so daß dem 4.6-Std.-Krypton offenbar die Masse 85 zuzuordnen ist. Der Bildung dieses Isotops aus Rubidium würde dann dem Prozeß 85Rb(np)85Kr entsprechen.” (Out of these, 83 and 84 are stable, so that the 4.6 h krypton obviously has to be assigned to mass 85. The production of this isotope from rubidium would thus correspond to the reaction 85Rb(n, p)85Kr.) The half-life of 4.6 h agrees with the accepted value of 4.480(8) h and corresponds to an isomer. A month earlier the authors detected the 4.6 h activity in the neutron-induced fission of uranium without assigning it to a specific mass [26]. Even earlier, in 1937, Snell [21] had also measured a 4.5 h activity, but could not assign it to a specific isotope: “The strong 74-minute and 4.5-hour activities emit
negatives, which shows that they probably belong to krypton 85 and 87.” It also should be mentioned that Clancy had argued to assign the \(^{85}\text{Kr}\) 4 h activity to \(^{87}\text{Kr}\) [23,27].

\(^{86}\text{Kr}\)

The discovery of the stable isotope \(^{86}\text{Kr}\) was made by Aston in 1920 with a mass spectrograph and he reported the results in *Isotopes and Atomic Weights* [19]. Aston identified six separate isotopes of krypton: “Krypton has no fewer than six constituents: 78, 80, 82, 83, 84, and 86. The last five are strong lines most beautifully confirmed by double- and triple-charged clusters, which can be compared with great accuracy against A (4) and CO (28). ... Krypton is the first element giving unmistakable isotopes differing by one unit only.” Aston published the actual spectra a few months later [20].

\(^{87}\text{Kr}\)

In 1943 Born and Seelmann-Eggebert were the first to identify \(^{87}\text{Kr}\) in Berlin in their paper *Über die Identifizierung einiger Uranspaltprodukte mit entsprechenden durch (nα)- und (np)-Prozesse erhaltenen Isotopen* [25]. Rubidium and strontium salts were irradiated with neutrons from the high-voltage facility of the Kaiser Wilhelm Institut für Physik and decay curves following chemical separation were measured. “Widerspruchlos läßt sich unter diesen Voraussetzungen das 75-Min.-Krypton der Masse 87 zuordnen.” (Without objections, the 75 m krypton can be assigned under these circumstances to mass 87.) The half-life of 75 m agrees with the accepted value of 76.3(5) m. A month earlier the authors detected the 75 m activity in the neutron-induced fission of uranium without assigning it to a specific mass [26]. Even earlier, in 1937, Snell [21] had also measured a 74(2) m activity, but could not assign it to a specific isotope: “The strong 74-minute and 4.5-hour activities emit negatives, which shows that they probably belong to krypton 85 and 87.” It also should be mentioned that Clancy had argued to assign the \(^{85}\text{Kr}\) 4 h activity to \(^{87}\text{Kr}\) [23,27].

\(^{88}\text{Kr}\)

Langsdorf discovered \(^{88}\text{Kr}\) in 1939 at the Radiation Laboratory at Berkeley and reported his findings in *Fission Products of Thorium* [28]. “Several long-lived noble gases from thorium irradiated with fast neutrons (9 MeV, from deuterons on beryllium) have been observed. One of these gases is a krypton of 3-hour half-life which decays into an 18-minute rubidium...” The 3 h half-life is consistent with the presently accepted value of 2.84(3) h. The existence of \(^{88}\text{Kr}\) had been noted three months earlier by Heyn *et al.* [29]. However, Heyn only measured the subsequent decay of \(^{88}\text{Rb}\) and inferred that krypton \((^{88}\text{Kr})\) had escaped from the irradiated uranium solution.

\(^{89}\text{Kr}\)

Hahn and Strassmann reported the first identification of \(^{89}\text{Kr}\) in Berlin in the 1943 paper *Über die bei der Urankernspaltung auftretenden aktiven Strontium- und Yttrium-Isotope* [30]. The isotope was observed following neutron irradiation of uranium and a half-life of 2.5 m was measured. “Sicher ist nur, daß das 2.5-Minuten-Krypton über ein 15.4-Minuten-Rubidium in das 55-Tage-Strontium übergeht.” (The only certain assignment is the decay of the 2.5 m krypton, via the 15.4 m rubidium to the 55 d strontium.) Further details were discussed in a subsequent publication [31]. The half-life is close to the
presently accepted value of 3.15(4) m. A krypton activity of 2.5–3 m had already been observed in 1940 by Seelman-Eggebert [32]; however, it could only be linked to a 15.5 m rubidium activity which had been reported by Glasoe and Steigman who at that time had not assigned a mass to the activity [33]. Only a few weeks later Glasoe and Steigman [34] assigned the decay to 89Rb and indirectly implied the existence of 89Kr unaware of the Seelman-Eggebert result: “From the manner in which this Rb activity is obtained it is estimated that the Kr parent must have a period of the order of one to five minutes.”

90Kr

Kofoed-Hansen and Nielsen reported the discovery of 90Kr in 1951 at Copenhagen, Denmark, in Short-Lived Krypton Isotopes and Their Daughter Substances [35]. “Krypton formed in fission of uranium was pumped through a 10-m long tube directly form the cyclotron into the ion source of the isotope separator.” Gamma- and β^--radiation was measured and a half-life of 33 s was determined. This value agrees with the currently accepted value of 32.32(9) s. Dillard et al. reported in two papers of the Manhattan Project Technical Series only a short half-life [36] and an estimated half-life of 25 s [37]. The previously reported half-life of 33 s mentioned by Kofoed-Hansen and Nielsen was only published in an internal report [38].

91–93Kr

Dillard et al. from Argonne National Laboratory reported the discovery of 91Kr, 92Kr, and 93Kr in 1951 as part of the Manhattan Project Technical Series: Determination of Gas Half-Life By The Charged-Wire Technique (II) [37]. “The active isotopes of krypton and xenon produced in neutron-irradiated uranium have been investigated by the charged-wire collection technique.” The measured half-life for 91Kr of 9.8(5) s is close to the accepted value of 8.57(4) s. In two other papers of this technical series the half-life was estimated to be 6 s [36] and 5.7 s [39]. It should be mentioned that in February 1951 Kofoed-Hansen and Nielsen [35] reported a half-life of 10 s for 91Kr. The authors were aware of the results of the Manhattan Project. The observed half-life for 92Kr of 3.0(5) s, which was tentatively assigned to 92Kr is close to the currently accepted value of 1.840(8) s. In the main text of reference [37] the reported half-life of 2.0(5) s for 93Kr was assigned to 95Kr. However, the correct mass of 83 is assigned in a footnote referring to another paper of the Manhattan Project Technical Series [40]. In addition, in a different paper of the series the authors had assigned an estimated half-life of 1-2 s correctly to 93Kr [36]. The quoted half-life is close to the accepted value of 1.286(10) s.

94Kr

Amiel et al. discovered 94Kr in 1972 at the Soreq Nuclear Research Centre, Israel, as reported in Identification of 94Kr and 143Xe, and Measurement of γ-Ray Spectra and Half-Lives of Nuclides in the Mass-Chains 93, 94, and 143 [41]. “The target was irradiated in a thermal-neutron flux of approximately 2×10^8 n cm$^{-2}$ sec$^{-1}$ from an external beam tube of the Israel Research Reactor-1.” The target contained 9 g of U$_3$O$_8$ of 93.3% enriched 235U. 94Kr was identified by β-decay curves measured at the Soreq On-Line Isotope Separator. The measured half-life of 0.20(1) s agrees with the currently adapted value of 0.210(4)s. It should be mentioned that a half-life of 1.4(5) s was reported by Dillard et al. as the krypton parent of a 20 m yttrium isotope. Although this isotope is most likely 94Y ($T_{1/2} = 18.7(1)$ m), Dillard et al. is not credited with the discovery because they were not able to specify the mass directly.
In addition, the measured half-life is significantly larger than the accepted value. We also do not credit the determination of fractional fission yields of 94Kr from nuclear charge distribution measurements in low-energy fission [42] because it was not directly identified and the half-life was not measured.

95Kr

The credit for the discovery of 95Kr is attributed to Bernas et al. in the 1994 paper *Projectile Fission at Relativistic Velocities: A Novel and Powerful Source of Neutron-Rich Isotopes Well Suited for In-Flight Isotopic Separation* [43]. A 750 MeV/nucleon 238U beam accelerated by the GSI UNILAC-SIS accelerator system was used to produce 95Kr in projectile fission on a lead target. The authors do not mention the discovery of 95Kr because its existence had previously been reported. The fractional fission yields of 95Kr were determined from nuclear charge distribution measurements in low-energy fission [42]; however, these measurements are not credited with the discovery because 95Kr was not directly identified and the half-life was not measured. In 1976, Ahrens et al. extracted the half-life of 95Kr ($T_{1/2} = 0.78(3)$ s) from its long-lived decay products using a gas-flow method [44]. However, in 2003 Bergmann et al. [45] measured a significantly shorter half-life of 114(3) ms which raises doubt about the Ahrens measurement: “In particular, the half-lives from the earlier indirect radiochemical measurements ... (quoted by nuclear data evaluators for 95Kr ...) deviate considerably from our results, indicating that these identifications probably were not correct.” Thus, we credit the discovery to Bernas et al. who produced 95Kr after Ahrens et al. but prior to Bergman et al. However, this issue warrants further evaluation.

96Kr

Bernas et al. discovered 96Kr in 1994 at GSI, Germany, as reported in *Projectile Fission at Relativistic Velocities: A Novel and Powerful Source of Neutron-Rich Isotopes Well Suited for In-Flight Isotopic Separation* [43]. The isotope was produced using projectile fission of 238U at 750 MeV/nucleon on a lead target. “Forward emitted fragments from 80Zn up to 155Ce were analyzed with the Fragment Separator (FRS) and unambiguously identified by their energy-loss and time-of-flight.” The experiment yielded 155 individual counts of 96Kr.

$^{97–100}$Kr

97Kr, 98Kr, 99Kr, and 100Kr were discovered by Bernas et al. in 1997 at GSI in Germany and reported in *Discovery and Cross-Section Measurement of 58 New Fission Products in Projectile-Fission of 750·AMeV 238U* [46]. The experiment was performed using projectile fission of 238U at 750 MeV/nucleon on a beryllium target. “Fission fragments were separated using the fragment separator FRS tuned in an achromatic mode and identified by event-by-event measurements of $\Delta E-Bp$-ToF and trajectory.” During the experiment, individual counts for 97Kr (2110), 98Kr (525), 99Kr (32), and 100Kr (3) were recorded. It should be mentioned that an estimated half-life of 1-2 s for 97Kr had been reported during the Manhattan Project [37]. However, this observation was later questioned [42], which is supported by the most recent half-life measurement of 68(7) ms [45].
3. SUMMARY

The activity of five krypton isotopes (79Kr, 81Kr, 85Kr, and 94Kr) was measured before they could be assigned to the specific isotopes. The half-life of 95Kr was accepted to be 780 ms until 27 years later, when it was measured to be significantly shorter (114 ms). Based on this large difference a reassignment of the discovery seemed justified. However, the origin of the measured long half-life should be investigated and the new half-life of 95Kr should be independently confirmed. It is also interesting to note that Krypton was the first element for which adjacent stable isotopes were identified.

Acknowledgments

This work was supported by the National Science Foundation under grants No. PHY06-06007 (NSCL) and PHY07-54541 (REU). MH was supported by NSF grant PHY05-55445.

REFERENCES

1. G.Q. Ginepro, J. Snyder, and M. Thoennessen, At. Data Nucl. Data Tables, in print (2009)
2. A. Shore, A. Fritsch, M. Heim, A. Schuh, and M. Thoennessen, submitted to At. Data Nucl. Data Tables (2009)
3. A. Schuh, A. Fritsch, G.Q. Ginepro, M. Heim, A. Shore, and M. Thoennessen, submitted to At. Data Nucl. Data Tables (2009)
4. A. Fritsch, G.Q. Ginepro, M. Heim, A. Schuh, A. Shore, and M. Thoennessen, submitted to At. Data Nucl. Data Tables (2009)
5. G. Audi, O. Bersillon, J. Blachot, and A.H. Wapstra, Nucl. Phys. A 729, 3 (2003)
6. ENSDF, Evaluated Nuclear Structure Data File, maintained by the National Nuclear Data Center at Brookhaven National Laboratory, published in Nuclear Data Sheets (Academic Press, Elsevier Science).
7. S. Goriely, M. Samyn, and J.M. Pearson, Phys. Rev. C 75, 64312 (2007)
8. M. Thoennessen, Rep. Prog. Phys. 67, 1187 (2004)
9. H.A. Grunder and F.B. Selph, Annu. Rev. Nucl. Sci., 27, 353 (1977)
10. B. Blank, S. Andriamonje, S. Czajkowski, F. Davi, R. Del Moral, J.P. Dufour, A. Fleury, A. Musquere, M.S. Pravikoff, R. Grzywacz, Z. Janas, M. Pfutzner, A. Grewe, A. Heinz, A. Junghans, M. Lewitowicz, J.-E. Sauvestre, and C. Donzaud, Phys. Rev. Lett. 74, 4611 (1995)
11. G.T. Ewan, E. Hagberg, P.G. Hansen, B. Jonson, S. Mattsson, H.L. Ravn, and P. Tidemand-Pettersson, Nucl. Phys. A 352, 13 (1981)
12. H. Schmeing, J.C. Harding, R.L. Graham, J.S. Geiger, and K.P. Jackson, Phys. Lett. 44B, 449 (1973)
13. C.N. Davids and G.R. Goosman, Phys. Rev. C 8, 1029 (1973)
14. P. Hornshøj, K. Wilsky, P.G. Hansen, and B. Jonson, Nucl. Phys. A 187, 637 (1972)
15. F.D.S. Butement and G.G.J. Boswell, J. Inorg. Nucl. Chem. 16, 10 (1960)
16. J.H. Gray III, H.L. Hamester, and A.A. Caretto, Phys. Rev. 120, 977 (1960)
17. A.A. Caretto, JR. and E.O. Wiig, Phys. Rev. 93, 175 (1954)
18. L.L. Woodward, D.A. McCown, and M.L. Pool, Phys. Rev. 74, 761 (1948)
19. F.W. Aston, Nature 105, 8 (1920)
20. F.W. Aston, Nature 105, 617 (1920)
21. A.H. Snell, Phys. Rev. 52, 1007 (1937)
22. E.C. Creutz, L.A. Delsasso, R.B. Sutton, M.G. White, and W.H. Barkas, Phys. Rev. 58, 481 (1940)
23. E.P. Clancy, Phys. Rev. 60, 87 (1941)
24. J.H. Reynolds, Phys. Rev. Lett., 886 (1950)
25. H.J. Born and W. Seelmann-Eggebert, Naturwiss. 31, 86 (1943)
26. W. Seelmann-Eggebert and H.J. Born, Naturwiss. 31, 59 (1943)
27. E.P. Clancy, Phys. Rev. 58, 88 (1940)
28. A. Langsdorf, JR., Phys. Rev. Lett. 52, 205 (1939)
29. F.A. Heyn, A.H.W. Aten, and C.J. Bakker, Nature 143, 516 (1939)
30. O. Hahn and F. Strassmann, Naturwiss. 31, 249 (1943)
31. O. Hahn and F. Strassmann, Zeits. f. Physik 121, 729 (1943)
32. W. Seelmann-Eggebert, Naturwiss. 28, 451 (1940)
33. G.N. Glasoe and J. Steigman, Phys. Rev. 57, 566 (1940)
34. G.N. Glasoe and J. Steigman, Phys. Rev. 58, 1 (1940)
35. O. Kofoed-Hansen and K.O. Nielsen, Phys. Rev. 82, 96 (1951)
36. C.R. Dillard, R.M. Adams, H. Finston, and A. Turkevich, Radiochemical Studies: The Fission Products, Paper 66, p. 616, National Nuclear Energy Series IV, 9, (McGraw-Hill, New York 1951)
37. C.R. Dillard, R.M. Adams, H. Finston, and A. Turkevich, Radiochemical Studies: The Fission Products, Paper 68, p. 624, National Nuclear Energy Series IV, 9, (McGraw-Hill, New York 1951)
38. S. Katcoff and A. Goldstein, Report LA-548, Apr. 11, 1946
39. R. Overstreet and L. Jacobson Radiochemical Studies: The Fission Products, Paper 67, p. 621, National Nuclear Energy Series IV, 9, (McGraw-Hill, New York 1951)
40. B. Selikson and J.M. Siegel, Radiochemical Studies: The Fission Products, Paper 81, p. 699, National Nuclear Energy Series IV, 9, (McGraw-Hill, New York 1951)
41. S. Amiel, H. Feldstein, M. Oron, and E. Yellin, Phys. Rev. C 5, 270 (1972)

42. A.C. Wahl, R.L. Ferguson, D.R. Nethaway, D.E. Troutner, and K. Wolfsberg, Phys. Rev. 126, 1112 (1962)

43. M. Bernas, S. Czajkowski, P. Armbruster, H. Geissel, Ph. Dessagne, C. Donaud, H-R. Faust, E. Hanelt, A. Heinz, M. Hesse, C. Kozhuharov, Ch. Miehe, G. Münzenberg, M. Pfützner, C. Röhl, K.-H. Schmidt, W. Schwab, C. Stéphan, K. Sümerer, L. Tassan-Got, and B. Voss, Phys. Lett. B 331, 19 (1994)

44. H. Ahrens, P. Patzelt, and G. Herrmann, J. Inorg. Nucl. Chem. 76, 191 (1976)

45. U.C Birgmann, C.A. Diget, K. Riiisager, L. Weissman, G. Auböck, J. Cederkäll, L.M. Fraile, H.O.U. Fynbo, H. Gausemel, H. Jeppesen, U. Köster, K.-L. Kratz, P. Möller, T. Nilsson, B. Pfeiffer, H. Simon, K. Van de Vel, J. Äystö, and ISOLDE Collaboration, Nucl. Phys. A 714, 21 (2003)

46. M. Bernas, C. Engelmann, P. Armbruster, S. Czajkowski, F. Ameil, C. Böckstiegel, Ph. Dessagne, C. Donaud, H. Geissel, A. Heinz, Z. Janas, C. Kozhuharov, Ch. Miehé, G. Münzenberg, M. Pfützner, W. Schwab, C. Stéphan, K. Sümerer, L. Tassan-Got, and B. Voss, Phys. Lett. B 415, 111 (1997)
EXPLANATION OF TABLE

TABLE I. Discovery of Krypton Isotopes

Isotope	Krypton isotope
First Author	First author of refereed publication
Journal	Journal of publication
Ref.	Reference
Method	Production method used in the discovery:
	FE: fusion evaporation
	LP: light-particle reactions (including neutrons)
	MS: mass spectroscopy
	NC: neutron-capture reactions
	NF: neutron-induced fission
	SP: spallation
	PF: projectile fragmentation or projectile fission
Laboratory	Laboratory where the experiment was performed
Country	Country of laboratory
Year	Year of discovery
TABLE I. Discovery of Krypton isotopes
See page 13 for Explanation of Tables

This space intentionally left blank
Isotope	First Author	Journal	Ref.	Method	Laboratory	Country	Year
69Kr	B. Blank	Phys. Rev. Lett.	Bla95	PF	GANIL	France	1995
70Kr	B. Blank	Phys. Rev. Lett.	Bla95	PF	GANIL	France	1995
71Kr	G.T. Ewan	Nucl. Phys. A	Ewa81	SP	CERN	Switzerland	1981
72Kr	H. Schmeing	Phys. Lett. B	Sch73	FE	Chalk River	Canada	1973
73Kr	P. Hornshoj	Nucl. Phys. A	Hor72	SP	CERN	Switzerland	1972
74Kr	F.D.S. Butement	J. Inorg. Nucl. Chem.	But60	LP	Liverpool	England	1960
75Kr	F.D.S. Butement	J. Inorg. Nucl. Chem.	But60	LP	Liverpool	England	1960
76Kr	A.A. Caretto	Phys. Rev.	Car54	SP	Rochester	USA	1954
77Kr	L.L. Woodward	Phys. Rev.	Woo48	LP	Ohio State	USA	1948
78Kr	F.W. Aston	Nature	Ast20	MS	Cavendish	UK	1920
79Kr	L.L. Woodward	Phys. Rev.	Woo48	LP	Ohio State	USA	1948
80Kr	F.W. Aston	Nature	Ast20	MS	Cavendish	UK	1920
81Kr	J.H. Reynolds	Phys. Rev. Lett.	Rey50	NC	Argonne	USA	1950
82Kr	F.W. Aston	Nature	Ast20	MS	Cavendish	UK	1920
83Kr	F.W. Aston	Nature	Ast20	MS	Cavendish	UK	1920
84Kr	F.W. Aston	Nature	Ast20	MS	Cavendish	UK	1920
85Kr	H.J. Born	Naturwiss.	Bor43	NC	Berlin	Germany	1940
86Kr	F.W. Aston	Nature	Ast20	MS	Cavendish	UK	1920
87Kr	H.J. Born	Naturwiss.	Bor43	NC	Berlin	Germany	1940
88Kr	A. Langsdorf	Phys. Rev. Lett.	Lan39	NF	Berkeley	USA	1939
89Kr	O. Hahn	Naturwiss.	Hah43	NF	Berlin	Germany	1940
90Kr	O. Kofoed	Phys. Rev. Lett.	Kof51	NF	Copenhagen	Denmark	1951
91Kr	C.R. Dillard	Nat. Nucl. Ener. Ser.	Dil51	NF	Argonne	USA	1951
92Kr	C.R. Dillard	Nat. Nucl. Ener. Ser.	Dil51	NF	Argonne	USA	1951
93Kr	C.R. Dillard	Nat. Nucl. Ener. Ser.	Dil51	NF	Argonne	USA	1951
94Kr	S. Amiel	Phys. Rev. C	Ami72	NF	Soreq	Israel	1972
95Kr	M. Bernas	Phys. Lett. B	Ber94	PF	Darmstadt	Germany	1994
96Kr	M. Bernas	Phys. Lett. B	Ber94	PF	Darmstadt	Germany	1994
97Kr	M. Bernas	Phys. Lett. B	Ber97	PF	Darmstadt	Germany	1997
98Kr	M. Bernas	Phys. Lett. B	Ber97	PF	Darmstadt	Germany	1997
99Kr	M. Bernas	Phys. Lett. B	Ber97	PF	Darmstadt	Germany	1997
100Kr	M. Bernas	Phys. Lett. B	Ber97	PF	Darmstadt	Germany	1997
REFERENCES FOR TABLE

Ami72 S. Amiel, H. Feldstein, M. Oron, and E. Yellin, Phys. Rev. C 5, 270 (1972)
Ast20 F.W. Aston, Nature 105, 8 (1920)
Ber94 M. Bernas, S. Czajkowski, P. Armbruster, H. Geissel, Ph. Dessagne, C. Donzaud, H-R. Faust, E. Hanelt, A. Heinz, M. Hesse, C. Kozhuharov, Ch. Miehé, G. Münzenberg, M. Pfützner, C. Röhl, K.-H. Schmidt, W. Schwab, C. Stéphan, K. Sümmerer, L. Tassan-Got, and B. Voss, Phys. Lett. B 331, 19 (1994)
Ber97 M. Bernas, C. Engelmann, P. Armbruster, S. Czajkowski, F. Ameil, C. Böckstiegel, Ph. Dessagne, C. Donzaud, H. Geissel, A. Heinz, Z. Janas, C. Kozhuharov, Ch. Miehé, G. Münzenberg, M. Pfützner, W. Schwab, C. Stéphan, K. Sümmerer, L. Tassan-Got, and B. Voss, Phys. Lett. B 415, 111 (1997)
Bla95 B. Blank, S. Andriamonje, S. Czajkowski, F. Davi, R. Del Moral, J.P. Dufour, A. Fleury, A. Musquere, M.S. Pravikoff, R. Grzywacz, Z. Janas, M. Pfutzner, A. Grewe, A. Heinz, A. Junghans, M. Lewitowicz, J.-E. Sauvestre, and C. Donzaud, Phys. Rev. Lett. 74, 4611 (1995)
Bor43 H.J. Born and W. Seelmann-Eggebert, Naturwiss. 31, 86 (1943)
But60 F.D.S. Butement and G.G.J. Boswell, J. Inorg. Nucl. Chem. 16, 10 (1960)
Car54 A.A. Caretto, JR. and E.O. Wiig, Phys. Rev. 93, 175 (1954)
Dil51 C.R. Dillard, R.M. Adams, H. Finston, and A. Turkevich, Radiochemical Studies: The Fission Products, Paper 68, p. 624, National Nuclear Energy Series IV, 9, (McGraw-Hill, New York 1951)
Ewa81 G. T. Ewan, E. Hagberg, P.G. Hansen, B. Jonson, S. Mattsson, H.L. Ravn, and P. Tidemand-Petersson, Nucl. Phys. A 352, 13 (1981)
Hah43 O. Hahn and F. Strassmann, Naturwiss. 31, 249 (1943)
Hor72 P. Hornshøj, K. Wilsky, P.G. Hansen, and B. Jonson, Nucl. Phys. A 187, 637 (1972)
Kof51 O. Kofoed-Hansen and K.O. Nielsen, Phys. Rev. 82, 96 (1951)
Lan39 A. Langsdorf, JR., Phys. Rev. Lett. 52, 205 (1939)
Rey50 J.H. Reynolds, Phys. Rev. Lett. 3, 886 (1950)
Sch73 H. Schmeing, J.C. Harding, R.L. Graham, J.S. Geiger, and K.P. Jackson, Phys. Lett. 44B, 449 (1973)
Woo48 L.L. Woodward, D.A. McCown, and M.L. Pool, Phys. Rev. 74, 761 (1948)