The Mitochondrial b-Cytochromes of the Wild Type and Poky Strains of Neurospora crassa

EVIDENCE FOR A COMPONENT REDUCED ONLY BY DITHIONITE*

(Received for publication, December 4, 1973)

ALAN M. LAMBOWITZ‡ AND WALTER D. BONNER, JR.

From the Department of Biophysics and Physical Biochemistry, Johnson Research Foundation, University of Pennsylvania, Philadelphia, Pennsylvania 19174

SUMMARY

Mitochondria isolated from the wild type and poky strains of Neurospora crassa are shown to contain three b-cytochromes. Two of these—b-561 and b-566 (b-558)—are reduced by physiological substrates, whereas the third (α-peak (25°) at 558 nm) is reduced only by dithionite. The concentration of all three b-cytochromes is much lower in poky than in wild type mitochondria, but the ratio of b-561 to b-566 (b-558) remains 1:1 in both strains. On the other hand, the proportion of “dithionite-reducible” b, measured by potentiometric titrations at wavelength pair 559-540 nm, increases from 30% in wild type to 55 to 60% in poky. The presence of the dithionite-reducible component has been overlooked by other workers leading to an apparently erroneous report that the stoichiometry of b-561 and b-566 (b-558) is 6:1 in poky mitochondria (von Jagow, G., Weiss, H., and Klingenberg, M. (1973) Eur. J. Biochem. 33, 140). The measured midpoint potentials of b-561, b-566 (b-558), and dithionite-reducible b in wild type mitochondria are 78 ± 2, -73 ± 8, and -166 ± 4 mv, respectively. Roughly the same midpoint potentials are found for the b-cytochromes of poky and the results support the idea that, except for contamination, the b-cytochromes are not significantly altered by the poky mutation.

Poky (mi-1) is a cytoplasmically inherited mutant of Neurospora crassa characterized by a slow growth rate, a defect in mitochondrial ribosomal assembly, and deficiencies in several cytochromes (1-4). Most (about two-thirds) of poky’s respiration is mediated by a novel hydroxamic acid-sensitive oxidase system (cyanide and antimycin) and which is resistant to the conventional respiratory inhibitors (cyanide and antimycin) and which is not present constitutively in wild type (5-7). The remaining one-third of poky’s respiration is mediated by the residual cytochrome system. The components of this system are qualitatively similar to those of wild type mitochondria, but with the exception of cytochrome c, they are present at much lower concentrations (2-4, 7). Even so, since the alternate oxidase is nonphosphorylating, the cytochrome system accounts for nearly all of the oxidative phosphorylation in log phase poky cells (6). One matter of controversy that has arisen regarding the poky cytochrome system concerns the number and stoichiometry of the b-cytochromes. On the basis of studies by Lambowitz et al. (4) and von Jagow et al. (7), it is agreed that Neurospora mitochondria contain at least two b-cytochromes, b-561 and b-566 (b-558). Two analogous to components found in animal and higher plant mitochondria, and that these two b-cytochromes are present in equal concentration in the wild type strain judged from low temperature spectra of aerobic, antimycin-treated mitochondria with succinate (conditions for which the b-cytochromes are maximally reduced; see Fig. 1 of Ref. 4). For poky, on the other hand, von Jagow et al., estimating concentrations from spectra of dithionite-reduced mitochondria, reported that the concentration of b-561 was six times that of b-566 (b-558), while in the study of Lambowitz et al., with reduction by succinate plus antimycin, it was estimated that the b-cytochromes were present in equal concentrations (see Fig. 3 of Ref. 4). The result of von Jagow et al. was purported to demonstrate that the stoichiometry of the b-c complex is variable and might also suggest that incorporation of the two b-cytochromes into the mitochondrial membrane is independently regulated. However, the discrepancy is more prosaically explained by the possibility suggested by Lambowitz et al. that

* This work was supported by grants from the National Science Foundation and the Herman Frasch Foundation.
‡ To whom correspondence should be addressed at The Rockefeller University, New York, New York 10021.
Neurospora mitochondria contain additional b-like components reduced only by dithionite. The present paper suggests that the latter is in fact the case and provides spectrophotometric and potentiometric evidence for the presence of a “dithionite-reducible” cytochrome b in both the wild type and poky strains of N. crassa.

MATERIALS AND METHODS

Strains of Neurospora—The wild type strain, RL214a, was derived from the original Lindener wild type (L14) and L25a (8). The poky strains, NSX f- a and NS8 f- A were obtained from Dr. D. Luck, the Rockefeller University. f- is a nuclear gene suppressor of the poky mutant, increasing the growth rate of strains which carry it without restoring the wild type respiratory system (5, 9).

Growth of Cells—Cells were grown in aerated liquid cultures at 25°C in Vogel's minimal medium (10) plus 2% sucrose and were harvested during late exponential phase: 18-20 hours for wild type, 20 to 21 hours for poky f+, and 23 to 24 hours for poky f-.

Reagents—Reagents were of the highest grade available. Antimycin (Calbiochem) and bis-(hexafluoroacetonyl)acetone (1799) (obtained from Dr. P. Heytler, E. I. du Pont de Nemours Co., Wilmington, Del.) were dissolved in absolute ethanol. NADH (Boehringer Mannheim) was dissolved in 0.05 M sodium carbonate. All other reagents were dissolved in distilled water and adjusted to pH 7. Preparation of oxidation-reduction mediator solutions has been described previously (11).

Preparation of Mitochondria—Mitochondria were prepared by osmotic lysis of small enzyme-treated cells followed by two cycles of differential centrifugation (6). The mitochondrial preparations were virtually free of microsomal contamination as judged by the recovery of more than 95% of the mitochondrial protein in a single band following isopycnic sedimentation on discontinuous sucrose gradients of the type used by Douce et al. for the purification of higher plant mitochondria (12). Mitochondrial protein was determined by the method of Lowry et al. (13) using crystalline bovine serum albumin (Miles Laboratories) as a standard.

Spectrophotometric Measurements—Spectra of cytochromes at room temperature and at 77 K were obtained with a scanning split beam spectrophotometer (14). The time course and extent of oxidation and reduction of the cytochromes were measured with a dual wavelength spectrophotometer (15). For purposes of computation in the spectrophotometric experiments, the cytochromes were assumed to be fully oxidized in aerobic mitochondria lacking substrate. The extinction coefficient of cytochrome b was assumed to be 20 mM⁻¹ cm⁻¹ (15).

Potentiometric Titrations—Potentiometric titrations were carried out by the method of Dutton et al. (16) making use of a dual wavelength spectrophotometer in combination with an appropriate electrode system.

RESULTS

Spectrophotometric Resolution of Dithionite-reducible Cytochrome b—The idea that Neurospora mitochondria contain a b-like component reduced only by dithionite was originally based on the observation that total cytochrome b was only about 50% reduced upon anaerobiosis with succinate or NADH (4). Proceeding from this result, it is necessary to distinguish between dithionite-reducible b and 556 (558), since the latter cytochrome has a low midpoint potential and is also known to be incompletely reduced by physiological substrates (4, 7, 17). The approach adopted was to force reduction of b-556 (558) by taking advantage of the large increase in its reducibility which can be induced by antimycin plus oxidant (4, 7, 17, 18). The mechanism of the antimycin effect is unknown, but the dithionite-reducible b does remain oxidized under these conditions so that the effect can be used to resolve the two components. Fig. 1 shows spectra for wild type and poky f+ obtained with this approach by using the dual wavelength spectrophotometer and plotting the difference between the oxidation-reduction level in the presence of dithionite and that in the presence of succinate plus antimycin at different measuring wavelengths (with reference to 540 nm). A and B, spectra for wild type and poky f+ mitochondria, respectively. C, standard double beam trace which was repeated at each wavelength pair. Concentrations were: ATP, 0.17 mM; succinate, 10 mM; bis-hexafluoroacetonyl)acetone (1799), 1.7 μM; and antimycin, 1.5 and 0.48 μg per mg of protein for wild type and poky f+, respectively. Dithionite was added as a few grains of the powder. M, addition of mitochondria. Mitochondrial protein concentrations were 1.4 and 3.4 mg per ml in the wild type and poky f+ spectra, respectively; 1-cm light path, room temperature.

![Fig. 1. Spectra of dithionite-reducible cytochrome b obtained with a dual wavelength spectrophotometer by plotting the difference between the oxidation-reduction level in the presence of dithionite and that in the presence of succinate plus antimycin at different measuring wavelengths (with reference to 540 nm). A and B, spectra for wild type and poky f+ mitochondria, respectively. C, standard double beam trace which was repeated at each wavelength pair. Concentrations were: ATP, 0.17 mM; succinate, 10 mM; bis-hexafluoroacetonyl)acetone (1799), 1.7 μM; and antimycin, 1.5 and 0.48 μg per mg of protein for wild type and poky f+, respectively. Dithionite was added as a few grains of the powder. M, addition of mitochondria. Mitochondrial protein concentrations were 1.4 and 3.4 mg per ml in the wild type and poky f+ spectra, respectively; 1-cm light path, room temperature.](http://www.jbc.org)
The sample in the measuring cuvette was reduced with a few grains of dithionite for wild type and poky f+ mitochondria. Plots to the left shows complete titration data, whereas those to the right show resolution of components using the arithmetic method of Dutton et al. (16). Details of the experimental procedure are given in Refs. 11, 16, and 23. The mitochondria were suspended in standard reaction medium (pH 7.2; see "Materials and Methods") and uncoupled by 2-min soak in ATP (0.17 mM) followed by addition of 1799 (3.3 μM). Titrations were carried out reductively (i.e., by slowly lowering the oxidation-reduction potential). The following oxidation-reduction mediators were present: diaminodiurene (42 μM), phenazine methosulfate (42 μM), phenazine ethosulfate (42 μM), pyocyanine (5 μM), duroquinone (67 μM), and 2-hydroxy-1,4-naphthoquinone (17 μM). Reversibility of the titrations was established by control experiments in which it was found that reoxidation by ferriyanide after completion of a titration gave points lying close to the same titration curve. Other control experiments showed that interference due to absorbance changes of the oxidation-reduction mediators was negligible under the present experimental conditions. Mitochondrial protein concentrations were 2.0 and 4.5 mg per ml for wild type and poky f+, respectively. Components (1), (2), and (3) in the figure are considered to be b-561, b-566 (b-558), and the dithionite-reducible cytochrome b, respectively.

Although the assumed behavior of b-561 is characteristic of this component in all other types of mitochondria (11, 20-22), strictly speaking, the spectrophotometric data do leave open the possibility that *Neurospora* b-561 is only partially reduced by succinate (plus anaerobiosis). In that case, what we have designated dithionite-reducible cytochrome b would simply be the oxidized portion of b-561 rather than a separate component. In order to eliminate this uncertainty and also to obtain a better estimate of the relative concentrations of the different b-cytochromes, we carried out potentiometric titrations on *Neurospora* mitochondria with the technique of Dutton et al. (16). This technique has had wide application in resolving cytochromes which have overlapping spectra but which differ in midpoint potential (11, 16, 22-24). Fig. 3 shows representative titrations for wild type and poky f+ mitochondria at wavelength pair 559-540 nm. Indeed the data for both strains do fall on a curve showing three major components indicative of at least three b-cytochromes. The plots are resolved to the right in Fig. 3, permitting determination of E m values and relative contributions of the different components. Note that the resolved data show good fit to straight lines of slope close to that for l-electron oxidation-reduction reactions (i.e., 60 mv per decade change in concentration ratio; see Refs. 11, 16, and 23) as expected for cytochromes. Table I summarizes the results of several experiments as well as the assignment of the measured E m values to individual cytochromes (b-561, E m = 80 to 90 mv; b-566 (b-558), E m = -50 to -70 mv, dithionite-reducible b, E m = -140 to -170 mv). Assignment of the highest measured E m to b-561 is confirmed by the fact that b-561 is the only b-cytochrome reduced by mild reductants like N,N,N',N'-tetramethyl-p-phenylenediamine dihydrochloride plus ascorbate (7). Similarly, from the spectrophotometric studies (see above and Refs. 4 and 7), it is known that dithionite-reducible b must be the

![Fig. 2](image-url)
Fig. 2. Low temperature difference spectra showing the dithionite-reducible cytochrome b in wild type and poky f+ mitochondria. The sample in the measuring cuvette was reduced with a few grains of dithionite. The reference sample was treated with 10 mM succinate (plus 0.1 mM N,N,N',N'-tetramethyl-p-phenylenediamine dihydrochloride in the case of wild type) and, after anaerobiosis, antimycin was added at a concentration of 10 pg per ml. At the same time, antimycin was added to the measuring cuvette to eliminate the possibility of interference from anti-mycin-induced spectral shifts. The reference sample was then vigorously pipetted to induce a transient aerobic state, ensuring that the cytochrome would simply be the reducible cytochrome b, which have overlapping spectra but which differ in midpoint potential at pH 7.2. and 7), it is known that dithionite-reducible b-561 is confirmed by the fact that b-561 is the only b-cytochrome reduced by mild reductants like N,N,N',N'-tetramethyl-p-phenylenediamine dihydrochloride plus ascorbate (7). Similarly, from the spectrophotometric studies (see above and Refs. 4 and 7), it is known that dithionite-reducible b must be the

![Fig. 3](image-url)
Fig. 3. Representative potentiometric titrations at 559-540 nm for wild type and poky f+ mitochondria. Plots to the left show complete titration data, whereas those to the right show resolution of components using the arithmetic method of Dutton et al. (16). This technique has had wide application in resolving cytochromes which have overlapping spectra but which differ in midpoint potential (11, 16, 22-24). Fig. 3 shows representative titrations for wild type and poky f+ mitochondria at wavelength pair 559-540 nm. Indeed the data for both strains do fall on a curve showing three major components indicative of at least three b-cytochromes. The plots are resolved to the right in Fig. 3, permitting determination of E m values and relative contributions of the different components. Note that the resolved data show good fit to straight lines of slope close to that for l-electron oxidation-reduction reactions (i.e., 60 mv per decade change in concentration ratio; see Refs. 11, 16, and 23) as expected for cytochromes. Table I summarizes the results of several experiments as well as the assignment of the measured E m values to individual cytochromes (b-561, E m = 80 to 90 mv; b-566 (b-558), E m = -50 to -70 mv, dithionite-reducible b, E m = -140 to -170 mv). Assignment of the highest measured E m to b-561 is confirmed by the fact that b-561 is the only b-cytochrome reduced by mild reductants like N,N,N',N'-tetramethyl-p-phenylenediamine dihydrochloride plus ascorbate (7). Similarly, from the spectrophotometric studies (see above and Refs. 4 and 7), it is known that dithionite-reducible b must be the

Component	Wild type	poky f+
b-561	78 ± 2	88 ± 3
(51%)	(33%)	
b-566 (b-558)	-73 ± 8	-50 ± 12
(19%)	(12%)	
Dithionite-reducible cytochrome b	-166 ± 4	-144 ± 3
(30%)	(55%)	

The abbreviation used is: E m, midpoint potential at pH 7.2.
predominant low potential component at the wavelength pair used in the titrations, and also that there should be a smaller contribution from b_{566} (b_{558}). For all three cytochromes the E_m values are in close agreement with those of the analogous b components in animal, yeast, and higher plant mitochondria (11, 16, 22, 23).

An outstanding feature of the potentiometric titrations is that they permit accurate determination of the relative contributions of the different b components. Significantly, the data in Table I show that the proportion of dithionite-reducible b is about twice as great in $poky$ as in wild type mitochondria (50 and 20%, respectively, at the wavelength pair used) while, on the other hand, the ratio of b_{561} to b_{566} (b_{558}) is about the same in the two types of mitochondria. In subsequent experiments, results similar to those for $poky$ were obtained for $poky$ with the dithionite-reducible b contributing about 60% of the total b absorbance and with no change in the ratio of b_{561} to b_{566} (b_{558}).

Discussion

The data presented in this report show that mitochondria from both the wild type and $poky$ strains of *N. crassa* contain at least three b cytochromes: b_{561}, b_{566} (b_{558}), and a dithionite-reducible b. b_{561} and b_{566} (b_{558}) are apparently analogous to components found in animal and plant mitochondria (11, 20-22) and sometimes referred to as b_K and b_R, respectively (20). Some properties of these components in *Neurospora* mitochondria have been discussed previously (4, 7). A dithionite-reducible component has also been reported for some other types of mitochondria, including beef heart (16, 25), yeast (22), and higher plants (11), and in each case, the measured E_m has been found to be about -100 mv (11, 16, 22). For *Neurospora* and higher plants, there is good evidence that the dithionite-reducible b is truly a mitochondrial component (and not a microsomal contaminant) since it is present in very pure mitochondrial preparations. The *Neurospora* mitochondria used in the present work are judged to be free of microsomal contamination by isopycnic sedimentation (see "Materials and Methods"), and it should be added that the gradient-purified mitochondria were tested and found to be identical to those ordinarily used with respect to both the spectrum and concentration of dithionite-reducible b.

The function, if any, of the dithionite-reducible b is not known. The component is considered to be a b-cytochrome on the basis of its characteristic b-cytochrome absorption spectrum (Fig. 2) and its ability to function as a b electron carrier in the potentiometric titrations (Fig. 3). However, the term "cytochrome" also implies that the component function physiologically by shuttling between the Fe$^{3+}$ and Fe$^{2+}$ states and this has not been demonstrated in any system. It should be noted that some types of animal mitochondria (e.g., pigeon heart mitochondria) apparently do not have a dithionite-reducible b (16, 20), a fact which indicates that the component cannot be an essential part of the respiratory chain. Indeed, the relatively high concentration of the dithionite-reducible b in $poky$, which is known to accumulate precursor and nonfunctional forms of other respiratory chain components (20, 27), lends support to the view that it is nascent or damaged cytochrome b. In this regard, it is interesting to note the recent observation of Sato et al. (28) that a component with properties similar to dithionite-reducible b increases in concentration at the expense of the respiratory chain b-cytochromes in L cells treated with ethidium bromide (a substance which blocks formation of functional electron transport systems).

As expected, the concentration of all three b-cytochromes is lower in $poky$ than in wild type mitochondria. However, it can be concluded (a) that the ratio of b_{561} and b_{566} (b_{558}) remains 1:1 in both strains (from spectra of antimycin-treated mitochondria reduced with succinate (4), with support from the potentiometric titrations reported here), and (b) that the dithionite-reducible b is present in more variable concentrations, comprising a greater proportion of the total b in $poky$ than in wild type. The presence of a separate dithionite-reducible component, although suggested previously (4), was overlooked by von Jagow et al. (7) and this oversight probably accounts for the unusually high ratio of b_{561} to b_{566} (b_{558}) which they reported for $poky$ mitochondria. Indeed, it should be added that, apart from interpretation, the data in the von Jagow study agree very well with the concept of a dithionite-reducible component since their spectra also indicate incomplete reduction of cytochrome b by succinate. It is possible, however, that their wild type mitochondria contained somewhat less, and their $poky$ mitochondria somewhat more, dithionite-reducible b than those used in the present work.

The measured E_m values of the three b species are summarized in Table I. As noted in an earlier study, the E_m values measured by the techniques now available may be less accurate than the precision of the measurements suggests (11). However, the data are sufficient to show that there is no gross difference in the E_m values between the wild type and $poky$ strains. This result is in agreement with the earlier generalization that the same b components are present in both strains and that, except with respect to concentration, they are not significantly altered by the $poky$ mutation (4).

The sequence of electron transport reactions in the b region of *Neurospora* is an important problem which must now be approached by kinetic experiments. The contention of von Jagow et al. (7) that the sequence is b_{561} to b_{566} (b_{558}) with the latter cytochrome located directly on the substrate side of "site II" is premature. Moreover, this contention was based primarily on experiments with animal mitochondria purporting to show "heme-heme interaction" between b_{566} (b_{558}) and cytochrome c, and participation of b_{561} (b_{558}) in energy transduction at site II (29-31). Virtually all of this evidence has since been brought into question (32-37, 11, 17). At present, the only evidence bearing on the ordering question in *Neurospora* mitochondria is in fact the potentiometric data in this report and these data suggest that b_{561} (the high potential species) is on the oxygen side of b_{566} (b_{558}).

Acknowledgments—The authors thank Drs. David J. L. Luck, Carolyn W. Slayman, and Mårten K F Wikström for their valuable discussions and criticism and Beatrice A. Winters for very fine technical assistance.

References

1. MITCHELL, M. B., AND MITCHELL, H. K. (1952) Proc. Nat. Acad. Sci. U. S. A. 38, 442-449
2. MITCHELL, M. B., MITCHELL, H. K., AND TISSIERES, A. (1953) Proc. Nat. Acad. Sci. U. S. A. 39, 606-613
3. RIFKIN, M. R., AND LUCK, D. J. L. (1971) Proc. Nat. Acad. Sci. U. S. A. 68, 287-290
4. LAMBOWITZ, A. M., SLAYMAN, C. W., SLAYMAN, C. L., AND BONNER, W. D., Jr. (1972) J. Biol. Chem. 247, 1536-1545
5. LAMBOWITZ, A. M., AND SLAYMAN, C. W. (1971) J. Bacteriol. 108, 1087-1096
6. LAMBOWITZ, A. M., SMITH, E. W., AND SLAYMAN, C. W. (1972) J. Biol. Chem. 247, 4580-4585, 4859-4865
7. VON JAGOW, G., WEISS, H., AND KLINGENBERG, M. (1973) Biochim. Biophys. Acta 33, 140-157
8. Slayman, C. W., and Tatum, E. L. (1964) Biochim. Biophys. Acta 88, 578-592
9. Mitchell, M. B., and Mitchell, H. K. (1956) J. Gen. Microbiol. 14, 84-89
10. Vogel, H. J. (1956) Microbial Genet. Bull. 13, 42
11. Lambowitz, A. M., and Bonner, W. D., Jr. (1974) J. Biol. Chem. 249, 2428-2440
12. Douce, R., Christensen, E. L., and Bonner, W. D., Jr. (1972) Biochim. Biophys. Acta 275, 148-160
13. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951) J. Biol. Chem. 193, 265-275
14. Chance, B. (1957) Methods Enzymol. 4, 273-329
15. Chance, B., and Williams, G. R. (1955) J. Biol. Chem. 217, 395-407
16. Dutton, P. L., Wilson, D. F., and Lee, C. P. (1970) Biochemistry 9, 5077-5082
17. Lambowitz, A. M., and Bonner, W. D., Jr. (1973) Biochem. Biophys. Res. Commun. 52, 703-711
18. Pumphrey, A. M. (1962) J. Biol. Chem. 237, 2384-2390
19. Keilin, D., and Hartree, E. F. (1949) Nature 164, 254-259
20. Sat0, N., Wilson, D. F., and Chance, B. (1971) Biochim. Biophys. Acta 253, 88-97
21. Wikström, M. K. F. (1971) Biochim. Biophys. Acta 253, 332-345
22. Sat0, N., Ohnishi, T., and Chance, B. (1972) Biochim. Biophys. Acta 276, 288-297
23. Dutton, P. L., and Storey, B. T. (1971) Plant Physiol. 47, 282-288
24. Berden, J. A., and Oppendoes, F. R. (1972) Biochim. Biophys. Acta 267, 7-14
25. Chance, B. (1958) J. Biol. Chem. 233, 1223-1229
26. Wagner, R. P. (1969) Science 163, 1026-1031
27. Scott, W. A., and Mitchell, H. K. (1969) Biochemistry 8, 4282-4289
28. Sat0, N., Chance, B., Kato, K., and Kleitmann, W. (1973) Fed. Eur. Biochem. Soc. Lett. 29, 222-226
29. Wilson, D. F., and Dutton, P. L. (1970) Biochem. Biophys. Res. Commun. 39, 59-64
30. Chance, B., Wilson, D. F., Dutton, P. L., and Erecinska, M. (1970) Proc Nat Acad Sci U S A 66, 1175-1182
31. Erecinska, M., Chance, B., Wilson, D. F., and Dutton, P. L. (1972) Proc. Nat. Acad. Sci. U. S. A. 69, 50-54
32. Devaule, D. (1971) Biochim. Biophys. Acta 220, 193-199
33. Caswell, A. H. (1971) Arch. Biochem. Biophys. 144, 445-447
34. Wikström, M. K. F., and Berden, J. A. (1972) Biochem. Biophys. Acta 253, 403-420
35. Wikström, M. K. F., and Berden, J. A. (1973) in Mechanisms in Bioenergetics (Azzone, G. F., Eriester, L., Papa, S., Quagliariello, E., and Siliprandi, N., eds) pp. 545-560, Academic Press, New York
36. Lambowitz, A. M., Bonner, W. D., Jr., and Wikström, M. K. F. (1974) Proc. Nat. Acad. Sci. U. S. A., in press
37. Wikström, M. K. F., and Lambowitz, A. M. (1974) Fed. Eur. Biochem. Soc. Lett., in press
The Mitochondrial \textit{b}-Cytochromes of the Wild Type and \textit{Poky} Strains of \textit{Neurospora crassa} : EVIDENCE FOR A COMPONENT REDUCED ONLY BY DITHIONITE

Alan M. Lambowitz and Walter D. Bonner, Jr.

\textit{J. Biol. Chem.} 1974, 249:2886-2890.

Access the most updated version of this article at \url{http://www.jbc.org/content/249/9/2886}

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 0 references, 0 of which can be accessed free at \url{http://www.jbc.org/content/249/9/2886.full.html#ref-list-1}