Contradictory Effects of Superoxide and Hydrogen Peroxide on K_{Ca}3.1 in Human Endothelial Cells

Shinkyu Choi, Hye-Young Na, Ji Aee Kim, Sung-Eun Cho, and Suk Hyo Suh

INTRODUCTION

Vascular endothelial cells are in contact with blood cells and vascular smooth muscle cells, and are therefore constantly exposed to reactive oxygen species (ROS) that are released from these cell types on activation [1,2]. Moreover, endothelial cells themselves generate ROS by stimulation with various substances in plasma [1,2]. ROS play a key role in the physiological and pathological processes in endothelial cells; hydrogen peroxide upregulates endothelial NO synthase (eNOS) [3], and serves as an endothelium-derived hyperpolarizing factor (EDHF) that mediates vascular relaxation [4,5]. Conversely, superoxide impacts endothelial function by downregulating the expression of eNOS [3], thus mediating vascular contraction [6,7]. In addition, excessive ROS production damages endothelial cells, leading to endothelial dysfunction [1].

ROS may regulate cellular function by affecting ion channels. ROS were shown to regulate various types of ion channels, such as Ca^{2+}-dependent K^{+} channels [8,9], ATP-sensitive K^{+} channel [9,10], HERG channels [11], and Ca^{2+} channels [12,13], and also affected Ca^{2+} release-activated Ca^{2+} current [14]. In addition, ROS exert complex effects on voltage-dependent K^{+} channels (Kvs). Hydrogen peroxide significantly accelerated the activation kinetics of Kv1.4 and Kv3.4, whereas did not alter Kv1.3, Kv2.1 and Kv2.2 [15]. In addition, hydrogen peroxide negatively shifted the activation curve of Kv1.5 [16]. Conversely, superoxide decreased the strength of the current through this channel [17]. Ca^{2+}-dependent K^{+} channels were activated by hydrogen peroxide [8] or superoxide [9] radicals, resulting in the hyperpolarization of the membrane, or dilation

ABBREVIATIONS: 1-EBIO, 1-ethyl-2-benzimidazolinone; DAPI, 4′,6-diamidino-2-phenylindole dihydrochloride; EDHF, endothelium-derived hyperpolarizing factor; eNOS, endothelial NO synthase; FBS, fetal bovine serum; HUVEC, human umbilical vein endothelial cell; Kv, voltage-dependent K^{+} channel; LPC, lysophosphatidylcholine; NAC, N-acetyl-L-cysteine; pERK, phosphorylated extracellular signal-regulated kinase; ROS, reactive oxygen species; REST, repressor element-1-silencing transcription factor; SOD, superoxide dismutase; TBHP, tert-butyl hydroperoxide; X/XO, xanthine/xanthine oxidase mixture.

Received January 14, 2013, Revised May 15, 2013, Accepted May 20, 2013

Corresponding to: Suk Hyo Suh, Department of Physiology, School of Medicine, Ewha Womans University, 911-1 Mok-6-dong, Yang Chun-gu, Seoul 158-710, Korea. (Tel) 82-2-2650-5722, (Fax) 82-2-2650-5791, (E-mail) shush@ewha.ac.kr

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Korean J Physiol Pharmacol
Vol 17: 181–187, June, 2013
http://dx.doi.org/10.4196/kjpp.2013.17.3.181

Reactive oxygen species (ROS) are generated in various cells, including vascular smooth muscle and endothelial cells, and regulate ion channel functions. K_{Ca}3.1 plays an important role in endothelial functions. However, the effects of superoxide and hydrogen peroxide radicals on the expression of this ion channel in the endothelium remain unclear. In this study, we examined the effects of ROS donors on K_{Ca}3.1 expression and the K^{+} current in primary cultured human umbilical vein endothelial cells (HUVECs). The hydrogen peroxide donor, tert-butyl hydroperoxide (TBHP), upregulated K_{Ca}3.1 expression, while the superoxide donors, xanthine/xanthine oxidase mixture (X/XO) and lysophosphatidylcholine (LPC), downregulated its expression, in a concentration-dependent manner. These ROS donor effects were prevented by antioxidants or superoxide dismutase. Phosphorylated extracellular signal-regulated kinase (pERK) was upregulated by TBHP and downregulated by X/XO. In addition, repressor element-1-silencing transcription factor (REST) was downregulated by TBHP, and upregulated by X/XO. Furthermore, K_{Ca}3.1 current, which was activated by clamping cells with 1 μM Ca^{2+} and applying the K_{Ca}3.1 activator 1-ethyl-2-benzimidazolinone, was further augmented by TBHP, and inhibited by X/XO. These effects were prevented by antioxidants. The results suggest that hydrogen peroxide increases K_{Ca}3.1 expression by upregulating pERK and downregulating REST, and augments the K^{+} current. On the other hand, superoxide reduces K_{Ca}3.1 expression by downregulating pERK and upregulating REST, and inhibits the K^{+} current. ROS thereby play a key role in both physiological and pathological processes in endothelial cells by regulating K_{Ca}3.1 and endothelial function.

Key Words: Ca^{2+}-activated K^{+} channel, Endothelial cells, Hydrogen peroxide, Superoxide
of cerebral arterioles. Both superoxide and hydrogen peroxide radicals enhanced the activity of large-conductance Ca\(^{2+}\)-dependent K\(^-\) channel in rat and cat cerebral arterioles; in contrast, the peroxynitrite radical decreased this activity in rat cerebral arteries [18].

Evidence indicates that KCa3.1 profoundly regulates endothelial function. It mediates a part of the endothelium-derived hyperpolarization response, and contributes to endothelium-dependent relaxation of blood vessels. In addition, KCa3.1 modulates Ca\(^{2+}\) influx in endothelial cells. On inhibition of KCa3.1, Ca\(^{2+}\) influx and endothelium-dependent relaxation effects were abrogated [19]. Thus, KCa3.1 dysregulation causes endothelial dysfunction, and thereby may contribute to vascular diseases such as preeclampsia [20] and Fabry disease [21]. In KCa3.1-deficient mice, the endothelial KCa3.1 current was abolished, leading to a considerable increase in arterial blood pressure and to a mild left ventricular hypertrophy [22]. We previously reported that in α-galactosidase A-knockout mice (an animal model of Fabry disease), endothelial dysfunction is caused by KCa3.1 downregulation and dysfunction [21]. Furthermore, we suggested that KCa3.1 downregulation contributes to the endothelial dysfunction seen in preeclampsia [20]. However, the role of ROS in the regulation of endothelial KCa3.1 has received little attention.

In the present study, we compared the effects of hydrogen peroxide and superoxide radicals on KCa3.1 expression in human umbilical vein endothelial cells (HUVECs). We found that the hydrogen peroxide radical donor TBHP increased KCa3.1 expression by upregulating pERK expression and downregulating represser element-1 silencing transcription factor (REST) expression, and augmented KCa3.1 current. On the other hand, the superoxide donor, xanthine/xanthine oxidase mixture (XOX), or L-α-lipoxyphatidylecholine (LPC) decreased KCa3.1 expression by downregulating pERK expression and upregulating REST expression, and inhibited KCa3.1 current.

METHODS

Cell culture

Endothelial cells were isolated from human umbilical veins by collagenase treatment, as previously described [23]. HUVECs in suspension were plated into 6 well cell culture plates and grown in complete M199 (HyClone, Logan, UT) supplemented with 10% fetal bovine serum (FBS; Life Technologies Corp., Carlsbad, CA), 100 units/ml penicillin, 100 μg/ml streptomycin, 15 μg/ml endothelial cell growth supplement (BD Biosciences, Rockville, MD), 0.1 mM MEM non-essential amino acids (Life Technologies Corp., Carlsbad, CA) and 10 unit/ml heparin. Cultured cells were identified as endothelial cells in origin by their cobble stone appearance at confluence and positive staining with 1,1′dioctadecyl-3,3,3′,3′-tetramethyl-indocarbocyanine perchlorate-labelled acetylated low density lipoprotein (Biomedical Technologies Inc., Stoughton, MA). HUVECs were used up to the second or third passage.

The investigation was approved by local ethics committee, the Institutional Review Board of the Ewha Womans University, and was in accordance with the Declaration of Helsinki.

Real-time PCR and immunoblot analysis

RNA isolation was performed using the RNeasy Mini Kit (Qiagen, Valencia, CA), and RNA was then reverse transcribed using a High Capacity cDNA Archive Kit (Applied Biosystems, Foster City, CA). PCRs were performed on an ABI 7000 sequence detection system (Applied Biosystems) using a SYBR Green PCR Master Mix (Applied Biosystems). Primers for REST were 5'-GTAAGAATCCCTAGTAGGAGGAGA-3' (sense) and 5'-AAGAGGTGGTAAAGGCCCTTGTT-3' (antisense). mRNA expression was normalized to the house-keeping gene, human Gapdh (5-GGCCCTTTAGGA-GTAAAGACC-3' (sense) and 5'-AGGGGTCTACATGCGAAC-CTG-3' (antisense)).

For immunoblot analysis, 30 μg of protein from cell homogenates was subjected to sodium dodecyl sulfate polyacrylamide gel electrophoresis (7.5~12% gels), and proteins were then transferred to a nitrocellulose membrane. Membranes were blocked for 1 hour with TBST (10 mM Tris-HCl, 150 mM NaCl, and 1% Tween 20, pH 7.6) containing 5% bovine serum albumin at room temperature. The blots were incubated for 3 hours with primary antibody against primary KCa3.1 antibody (IK1; Santa Cruz Biotechnology, Santa Cruz, CA), or p-ERK (Cell Signaling Technology, Beverly, MA), followed by incubation with horseradish peroxidase-conjugated secondary antibodies for 1 hour. Bands were visualized by chemiluminescence. Data collection and processing were performed using a luminescent image analyzer LAS-3000 and Image Gauge software (FujiFilm, Tokyo, Japan).

Immunocytochemistry

HUVECs were grown on glass coverslips precoated with 1% gelatin. Cells were incubated overnight at 4°C with a diluted (1 : 50) primary KCa3.1 antibody, washed and incubated for 1 hour at room temperature with a secondary antibody, Alexa Fluor 488 donkey anti-goat IgG (1 : 1,500; Molecular probes, Eugene, OR). After that, the cells were counterstained with 4',6-diamidino-2-phenylindole dihydrochloride (DAPI). The mounted coverslips were viewed under a confocal microscope (Carl Zeiss, Gottingen, Germany) and photographed as described previously [24].

Electrophysiology

The patch-clamp technique was used in whole-cell configurations at room temperature. Whole-cell currents were measured using ruptured patches and monitored in voltage-clamp modes with an EPC-9 (HEKA Elektronik, Lambrecht, Germany). The holding potential was 0 mV and currents were monitored by the repetitive application of voltage ramps from −100 to +100 mV with a 10-second interval (sampling interval 0.5 milliseconds, 650 millisecond duration). The standard external solution contained (in mM): 150 NaCl, 6 KCl, 1.5 CaCl\(_2\), 1 MgCl\(_2\), 10 HEPES, 10 glucose, pH adjusted to 7.4 with NaOH. The pipette solution for whole-cell recording contained (in mM): 40 KCl, 100 K-aspartate, 2 MgCl\(_2\), 0.1 EGTA, 4 Na\(_2\)ATP, 10 HEPES, pH adjusted to 7.2 with KOH. For buffering free Ca\(^{2+}\), the appropriate amount of Ca\(^{2+}\) (calculated using CaBuf software; G. Droogmans, Leuven, Belgium; ftp://ftp.cc.kuleuven.ac.be/pub/droogmans/cabuf.zip) was added in the presence of 5 mM EGTA.
Contradictory Effects of Different ROS on KCa3.1 Expression

Fig. 1. KCa3.1 expression in ROS donor-treated HUVECs. KCa3.1 expression was measured using immunoblot, and relative protein expression was represented as a ratio of the levels in the vehicle-treated group to that in the test group. HUVECs were treated with TBHP (A), X/XO (B), or LPC (C), for 24 h; n=4~7. *p<0.05, **p<0.01 versus vehicle-treated control.

Chemicals

LPC from egg yolk, N-acetyl-L-cysteine (NAC), superoxide dismutase (SOD), TBHP, tempol, tiron and TRAM-34 were purchased from Sigma-Aldrich (St. Louis, MO); DAPI from Molecular Probes (Eugene, OR), X/XO from Calbiochem (Gibbstown, NJ), 1-EBIO from Tocris Bioscience (Ellisville, MO). TRAM-34 and 1-EBIO were applied to the bath solution at 10 μM and 100 μM, respectively. LPC, tempol, tiron, TRAM-34 and 1-EBIO were dissolved in DMSO. The final concentration of DMSO was less than 0.05%.

Statistical analysis

Pooled data are given as mean±SEM. Statistical evaluation of data was performed by Student t test. Values of p <0.05 were considered significant.

RESULTS

Effect of ROS donors on endothelial KCa3.1 expression

We examined whether the ROS donors, TBHP or X/XO, can modulate KCa3.1 expression in endothelial cells. Primary HUVECs were incubated with ROS donors or vehicle for 24 h, followed by western blot analysis of protein expression (Fig. 1). Treatment with the hydrogen peroxide donor TBHP, but not the vehicle, upregulated KCa3.1 expression in a concentration-dependent manner (Fig. 1A). In contrast, treatment with the superoxide donor X/XO, but not the vehicle, downregulated KCa3.1 expression in a concentration-dependent manner (Fig. 1B). In addition, we examined the effects of LPC, a molecule involved in superoxide generation in endothelial cells [3], on KCa3.1 expression (Fig. 1C). Similar to the X/XO effect, treatment with LPC decreased KCa3.1 expression in a concentration-dependent manner. To corroborate these findings we next examined whether ROS donors affected KCa3.1 expression in HUVECs by using immunocytochemical staining to detect expression of KCa3.1 protein (Fig. 2). KCa3.1 expression (indicated by green florescence) was markedly increased in HUVECs treated with TBHP compared to those treated with vehicle (Fig. 2A). In contrast, KCa3.1 expression was markedly lower in HUVECs treated with X/XO than in those treated with vehicle (Fig. 2B). These results, which indicate that KCa3.1 expression is upregulated or downregulated following treatment with TBHP and X/XO, respectively, suggest that the hydrogen peroxide and superoxide radicals exert converse effects on the expression of this ion channel.

Antioxidants prevent ROS donor-induced modulation of KCa3.1 expression

We then examined whether treatment with antioxidants or SOD could prevent the ROS donor- or LPC-induced modulation of KCa3.1 expression. Pre-treatment of HUVECs with the antioxidants tempol, tiron, or NAC prevented TBHP-induced upregulation (Fig. 3A), as well as X/XO-induced downregulation (Fig. 3B) of KCa3.1 expression. Furthermore, LPC-induced KCa3.1 downregulation was abrogated by pre-treatment with SOD (Fig. 3B). In combination, these findings reinforce that KCa3.1 is upregulated by the
Effects of antioxidants on ROS donor-induced KCa3.1 regulation. HUVECs were treated with vehicle or 100 μM TBHP (A), 100 μM/100 mU/ml X/XO (B), or 100 μM LPC (C), for 24 h, with or without pre-treatment with antioxidants (5 μM tempol, 50 μM tiron, or 10 mM NAC), or SOD (1,000 U/ml). The results are mean±SEM of three independent experiments. **p < 0.01 versus TBHP, X/XO or LPC alone.

Fig. 6. Effect of ROS donors on KCa3.1 current in HUVECs. KCa3.1 current was activated by loading cells with 1 μM Ca2+ by using a patch pipette, and treating the cells with 1-EBIO (100 μM). The KCa3.1 currents were normalized to cell capacitance, and the TRAM-34-sensitive current was measured as the KCa3.1 current. (A, B, D, F) Current densities are shown at a membrane potential of +50 mV, and marked by open circles, while I/V relationships were obtained at the points marked by closed circles. (C, F) KCa3.1 current densities at +50 mV; n=6~8 (right panel). *p < 0.05 versus vehicle-treated control.

hydrogen peroxide radical, and downregulated by the superoxide radical.

Effect of ROS donors on pERK and REST

To further evaluate the molecular mechanisms of ROS donor-induced modulation of KCa3.1 expression, we examined whether ROS donors affected the signal transduction pathways involved in KCa3.1 expression, the ERK pathway [25] and REST [26]. We thus assessed the phosphorylation of ERK (pERK) by immunoblot analysis (Fig. 4). TBHP treatment for 24 h significantly increased the levels of pERK in HUVECs (34±4% and 145±30% increase by 25 and 100 μM TBHP, respectively; Fig. 4A). In contrast, pERK levels were significantly reduced in HUVECs treated with X/XO (25 μM/25 mU/ml) for 24 h; n=4~7. *p < 0.05, **p < 0.01, ***p < 0.005 versus vehicle-treated control.

Effect of ROS donors on REST expression in HUVECs. REST expression was measured using real-time PCR and the relative expression of mRNA was expressed as a ratio of the levels in the vehicle-treated group to that in the test group. HUVECs were treated with TBHP (A) or X/XO (B) for 24 h; n=4~7. *p < 0.05, **p < 0.01 versus control.

Effect of ROS donors on KCa3.1 current in HUVECs. KCa3.1 current was activated by loading cells with 1 μM Ca2+ by using a patch pipette, and treating the cells with 1-EBIO (100 μM). The KCa3.1 currents were normalized to cell capacitance, and the TRAM-34-sensitive current was measured as the KCa3.1 current. (A, B, D, F) Current densities are shown at a membrane potential of +50 mV, and marked by open circles, while I/V relationships were obtained at the points marked by closed circles. (C, F) KCa3.1 current densities at +50 mV; n=6~8 (right panel). *p < 0.05 versus vehicle-treated control.
ROS donors modulate KCa3.1 currents in endothelial cells

We next examined whether the ROS donors could modulate KCa3.1 current, which was activated by loading whole cell-clamped HUVECs with 1 μM Ca²⁺, via a patch pipette, and supplementing the medium with the KCa3.1 activator 1-EBIO (100 μM). When the KCa3.1 current reached a steady state, TBHP or X/XO was applied in the external solution. The activated KCa3.1 current was further enhanced by TBHP (Fig. 6A, C), but it was inhibited by X/XO (Fig. 6D, F). The effect of TBHP (Fig. 6B, C), or X/XO (Fig. 6E, F) was inhibited by tempol. These data suggest that KCa3.1 current is augmented by the hydrogen peroxide radical, and inhibited by the superoxide radical.

DISCUSSION

In this study, we show that ROS regulate KCa3.1 expression through the modulation of the ERK and REST pathways, and influence KCa3.1 current production in human endothelial cells. The hydrogen peroxide donor TBHP increases KCa3.1 expression through pERK upregulation and REST downregulation. In contrast, the superoxide donors X/XO and LPC decrease KCa3.1 expression through pERK downregulation and REST upregulation. In addition, KCa3.1 current is augmented by TBHP, and inhibited by X/XO. These findings shed light on the mechanisms underlying ROS-mediated regulation of this ion channel, a process that may be implicated in ROS-induced modulation of endothelial function.

Furthermore, the effects of the ROS donors, TBHP, X/XO, or LPC were nullified by pre-treatment with antioxidants. The upregulation in KCa3.1 expression by the hydrogen peroxide donor TBHP was abrogated by antioxidants, suggesting that this effect is mediated by the hydrogen peroxide radical. In parallel, antioxidant treatment also nullified the ion-channel downregulating effects of the superoxide radical donors X/XO or LPC. LPC suppressed SOD1 and increased catalase expression [3], indicating that LPC increases the production of the superoxide, but not the hydrogen peroxide radical. These results suggest that X/XO- or LPC-induced downregulation of KCa3.1 is mediated by the superoxide radical. Since the ion channel KCa3.1 is an important physiological modulator in the endothelium, these findings suggest that ROS may affect endothelial function by regulating KCa3.1 expression and function.

Superoxide and hydrogen peroxide radicals are generated in vascular endothelial cells by several cellular enzymes, including eNOS, cytochrome P-450, and NADPH oxidases [27]. eNOS was suggested to contribute to ROS production in the endothelium, since acetylcholine-induced hydrogen peroxide radical production was markedly reduced in the blood vessels of eNOS-knockout mice [5], and eNOS activation generates superoxide radicals under the depletion of tetrahydrobiopterin [28,29]. In addition, cytochrome P-450 may be a source of ROS, since the hydrogen peroxide radical was produced in a cytochrome P-450-dependent manner in the coronary arteries of rats [30] and pigs [31]. NADPH oxidases play an important role in the generation of endothelial superoxide radicals. The enzymes are regulated by various stimuli such as shear stress, hypoxia, and hyperlipidemia [2]. Since the production of superoxide radicals promotes generation of hydrogen peroxide radicals through SOD, both free radicals may be produced in endothelial cells in response to various stimuli, and may thereby regulate KCa3.1 expression and its function.

KCa3.1 expression is upregulated by the ERK pathway [25] and downregulated by REST [26]. External stress and physiological stimuli can affect the MAPK pathway by generating ROS [32]. Blood flow regulates KCa3.1 expression; a laminar flow upregulates KCa3.1 by increasing hydrogen peroxide generation, whereas turbulent flow downregulates KCa3.1 by increasing superoxide generation [33,34]. ERK phosphorylation and eNOS expression were inhibited by superoxide donors, but stimulated by the hydrogen peroxide radical donor THBP [3]. Thus, an inhibition of ERK phosphorylation may suppress KCa3.1 expression, as suggested previously [25]. In addition, ROS can activate as well as inactivate transcription factors [35]. The apparent regulation of REST levels and activity by transcriptional and post-transcriptional mechanisms [36] suggest that ROS are likely to regulate REST by affecting transcription factors. In addition, REST can modulate the phosphoinositide-3 kinase-Akt/ERK pathway, since cells lacking REST exhibit increased phosphoinositide-3 kinase signalling [37].

There are many reports on the superoxide or hydrogen peroxide radical-induced modulation of KCa3.1 currents, such as KCa1.1 current [38-40], the voltage-dependent KCa current [16,17], and the ATP-sensitive KCa current [10,38]. However, this is the first report of the superoxide or hydrogen peroxide radical-induced modulation of the current generated through the ion channel KCa3.1. We observed that the hydrogen peroxide radical stimulates KCa3.1 current in cells dialyzed with 5 mM EGTA. It is possible that a hydrogen peroxide radical-induced increase in cytosolic free Ca²⁺ [41,42] could lead to activation of KCa. However, a high intracellular EGTA concentration may buffer the increase in Ca²⁺ induced by ROS. Since KCa3.1 current is activated in a voltage- and cytosolic free Ca²⁺-dependent manner, the augmentation of KCa3.1 current by the hydrogen peroxide radical suggests that this radical increases the sensitivity of KCa3.1 channel to voltage, or cytosolic free Ca²⁺.

In conclusion, the ROS donors TBHP, X/XO, and LPC regulate KCa3.1 expression in HUVECs. In addition, KCa3.1 current is modulated by the ROS donors TBHP, and X/XO. These ROS donor effects on KCa3.1 expression and the KCa current are prevented by pre-treatment with antioxidants. KCa3.1 plays an important role in vasomotor regulation; therefore, modulation of this ion channel in the vascular endothelium may be useful in the treatment of atherosclerosis and endothelial damage.

ACKNOWLEDGEMENTS

This research was supported by a grant of the Korean Health Technology Research and Development Project, Ministry for Health, Welfare and Family Affairs, Republic of Korea (A100955).

REFERENCES

1. Félotou M, Vanhoucke PM. Endothelial dysfunction: a multifaceted disorder (The Wiggers Award Lecture). Am J Physiol Heart Circ Physiol. 2006;291:H985-1002.
2. Li JM, Shah AM. Endothelial cell superoxide generation:
regulation and relevance for cardiovascular pathophysiology. *Am J Physiol Regul Integr Comp Physiol.* 2004;287:R1014-1030.

3. Choi S, Park S, Liang GH, Kim JA, Suh SH. Superoxide generated by glycyrrhetinic acid induces endothelial nitric oxide synthase downregulation in human endothelial cells. *Cell Physiol Biochem.* 2010;25:233-240.

4. Matoba T, Shimokawa H, Kubota H, Morikawa K, Fujitake K, Kunihiro I, Mukai Y, Hirakawa Y, Takeshita A. Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in human mesenteric arteries. *Biochem Biophys Res Commun.* 2002;290:909-913.

5. Matoba T, Shimokawa H, Nakashima M, Hirakawa Y, Mukai Y, Hirano K, Kanaide H, Takeshita A. Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in mice. *J Clin Invest.* 2000;106:1521-1530.

6. Chang KC, Chung SY, Chong WS, Suh JS, Kim SH, Noh HK, Seong BW, Ko HJ, Chun KW. Possible superoxide radical-induced alteration of vascular reactivity in aortas from streptozotocin-treated rats. *J Pharmacol Exp Ther.* 1993;266:992-1000.

7. Kanie N, Kamata K. Contractile responses in spontaneously diabetic mice. I. Involvement of superoxide anion in enhanced contractile response of aorta to norepinephrine in C57BL/KsJ (db/db) mice. *Gen Pharmacol.* 2000;33:139-145.

8. Krippert-Drews P, Haberland C, Fingerle J, Drews G, Lang F. Effects of H2O2 on membrane potential and [Ca2+]i of cultured rat arterial smooth muscle cells. *Biochem Biophys Res Commun.* 1995;206:139-145.

9. Wei EP, Kostos HA, Beckman JS. Mechanisms of cerebral vasodilation by superoxide, hydrogen peroxide, and peroxynitrite. *Am J Physiol.* 1996;271:H1262-1266.

10. Ichinari K, Kakai M, Matsuoka T, Nakashima H, Tanaka H, Direct activation of the ATP-sensitive potassium channel by oxygen free radicals in guinea-pig ventricular cells: its potentiation by MgADP. *J Mol Cell Cardiol.* 1998;28:1867-1877.

11. Tagliatela M, Castaldo P, Iannacone A, Fressi A, Ficker E, Ammusato L. Regulation of the human ether-a-gogo related gene (HERG) K+ channels by reactive oxygen species. *Proc Natl Acad Sci U S A.* 1997;94:11698-11703.

12. Thomas GP, Simms SM, Cook MA, Karmazyn M. Hydrogen peroxide-induced stimulation of L-type calcium current in guinea pig ventricular myocytes and its inhibition by adenosine A1 receptor activation. *J Pharmacol Exp Ther.* 1998;286:1296-1314.

13. Pei ZM, Murata Y, Benning G, Thomine S, Klüsen B, Allen GA, Grill E, Schroeder J, Wu T. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. *Cell Physiol Biochem.* 2000;406:731-734.

14. Löffler FC, Haller H. Nitric oxide synthase downregulation in human endothelial cells. *Am J Physiol Cell Physiol.* 2003;289:C1-11.

15. Löffler FC, Haller H. Oxidative stress and potassium channel function. *Clin Exp Pharmacol Physiol.* 2002;29:305-311.

16. Ahn SC, Seol GH, Kim JA, Suh SH. Characteristics and a functional implication of Ca2+-activated K+ current in mouse aortic endothelial cells. *Pflugers Arch.* 2004;447:426-435.

17. Choi S, Kim JA, Na HY, Kim JE, Park S, Han KH, Kim YD, Suh SH. NADPH oxidase 2-derived superoxide downregulates endothelial KCa3.1 in preeclampsia. *Free Radic Biol Med.* 2011;53:10-21.

18. Jung SC, Suh SH. Globotriaosylceramide leads to KCa3.1 channel dysfunction: a new insight into endothelial dysfunction in Fabry disease. *Cardiovasc Res.* 2011;89:290-299.

19. Si H, Heyken WT, Wolffe SE, Tysiac M, Schubert R, Grigic I, Villanovitch L, Giebing G, Maier T, Gross V, Rader M, de Wit C, Hoyer J, Köhler R. Impaired endothelium-derived hyperpolarizing factor-mediated dilations and increased blood pressure in mice deficient of the intermediate-conductance Ca2+- activated K+ channel. *Circ Res.* 2006;99:537-544.

20. Barlow RS, White RE. Hydrogen peroxide relaxes porcine
coronary arteries by stimulating BKCa channel activity. *Am J Physiol.* 1998;275:H1283-1289.

41. **Dreher D, Junod AF.** Differential effects of superoxide, hydrogen peroxide, and hydroxyl radical on intracellular calcium in human endothelial cells. *J Cell Physiol.* 1995;162:147-153.

42. **Doan TN, Gentry DL, Taylor AA, Elliott SJ.** Hydrogen peroxide activates agonist-sensitive Ca$^{2+}$-flux pathways in canine venous endothelial cells. *Biochem J.* 1994;297:209-215.