Evaluation of Deep Learning on an Abstract Image Classification Dataset

Sebastian Stabinger
Sebastian.Stabinger@uibk.ac.at
University of Innsbruck
Technikerstrasse 21a, Innsbruck, Austria

Antonio Rodríguez-Sánchez
Antonio.Rodriguez-Sanchez@uibk.ac.at

Abstract

Convolutional Neural Networks have become state of the art methods for image classification over the last couple of years. By now they perform better than human subjects on many of the image classification datasets. Most of these datasets are based on the notion of concrete classes (i.e. images are classified by the type of object in the image). In this paper we present a novel image classification dataset, using abstract classes, which should be easy to solve for humans, but variations of it are challenging for CNNs. The classification performance of popular CNN architectures is evaluated on this dataset and variations of the dataset that might be interesting for further research are identified.

1. Introduction

Convolutional Neural Networks have become the method of choice for image classification since the system by Krizhevsky et al. [10] won the ImageNet competition in 2012 by a large margin. In 2015 Russakovsky et al. [13] reported the classification accuracy of human subjects, on the same dataset, to be around 94.9% correctly classified images. In the same year, He et al. [7] were the first to present a network that outperformed human subjects on ImageNet. Since then, image classification is often perceived as either solved, or in the process of being solved.

Popular datasets used for image classification like MNIST[11], ImageNet[13], PASCAL[5], and CIFAR10/100[9] all classify the images by the type of a prominent object or feature in the image. We will call such classes concrete classes. Concrete classes have in common that they can be identified by analyzing local features, or the distribution of multiple local features. In this paper, we present a dataset that consists of abstract classes. Abstract classes imply that images can not be classified by simply considering local features. In our case, the two types of classes are identity/non–identity and symmetry/non–symmetry.

2. Related Work

Fleuret et al. [6] have already presented a dataset with abstract classes, using very simple black and white line drawings. This dataset is somewhat reminiscent of the “Bongard problems”, presented by Bongard in 1970 [3] as a set of problems that, according to Bongard, neural networks would never be able to solve (though he did not have simple classification in mind, but a textual description of what separates the two classes). In previous work [17] [16], we have tested different convolutional neural network architectures on the dataset by Fleuret et al. and came to the conclusion that current CNN architectures have shortcomings when shape comparison is needed to distinguish two classes. As Dodge et al. [4] argue, the Fleuret dataset is too simplistic and too far from natural images to draw any practical conclusions from it. Our goal is to present a more realistic dataset, with abstract classes, that is equally hard to classify for CNNs.

3. Dataset

The presented dataset consists of two separate tasks:
Figure 2: Different, tested variations of the identity–task. The left group of images are samples from the identity class. The right group are from the non-identity class with ten pawns that are out of place.

1. The symmetry–task: The system has to decide whether an arrangement of red pawns on a checkerboard is symmetric along one of the mid lines of the checkerboard, or not.

2. The identity–task: The system has to decide whether the arrangement of red pawns on two checkerboards is identical, or not.

There are multiple reasons for selecting these specific tasks:

1. The use of checkerboards, with randomly positioned pawns, allows us to very easily generate random samples, without inadvertently introducing additional, unwanted clues to the dataset. As we could show [16] for the dataset by Fleuret et al. [6], these unintended clues can be used by CNNs to classify images, and might lead to wrong conclusions about what CNNs are able to learn.

2. Although the images have a random component (the position of the pawns on the board), the images are still semi-realistic and show a simplified representation of what might be observable in reality.

3. According to the gestalt principles [19], symmetry is an important property for humans to understand and order the world. It therefore seemed like a good choice for one of the tasks. The identity–task was chosen since the tests on the dataset by Fleuret et al. [6] showed that CNNs have specific weakness when it comes to detecting identity.

Example images for both of these tasks can be seen in Figure 1. The difficulty of both tasks can be controlled in multiple different ways:

1. The number of pawns, breaking the symmetry/identity, can be adjusted. It should be evident that detecting a single, out of place pawn is more difficult than detecting ten pawns that are out of place.

2. The task can be made more challenging by increasing the visual variability of the presented images. We are using three different levels of variability:

 (a) For the lowest amount of variability, the camera position as well as the board positions are fixed. See Figure 2a and Figure 3a for example images.

 (b) For more variability, the camera is randomly moved on a plane, resulting in different board positions for each of the images. Still, in the identity–task, the relative position of the two
(a) Fixed camera position.

(b) Random camera translation.

(c) Random camera position on sphere.

Figure 3: Different, tested variations of the symmetry–task. The left group of images are symmetric. The right group are not symmetric and have ten pawns that are out of place.

For AlexNet and GoogLeNet, the standard implementations provided with the nVidia DIGITS [12] deep learning framework version 5.0.0 using Caffe [8] version 0.15.13 as a back end were used. Since we were not able to train VGG16 on the presented dataset from scratch, we used the predefined network, pre–trained on ImageNet, from the DIGITS model store. All networks were trained using ADAM, with a base learning rate of 1×10^{-5} for 120 epochs. The training was manually stopped in cases where further improvement was not to be expected (e.g. perfect accuracy was already achieved).

For each task, the networks were trained in order of increasing difficulty, and the learned weights were used as initialization for the next, more difficult, task. A network was, for example, trained on the symmetry–task with a fixed camera position and ten out of place pawns. After successful training of this network, the weights were used to initialize the network to be trained on the same task with five out of place pawns. A variation of this approach was presented by Bengio et al. [1] under the name of curriculum learning. This approach was absolutely critical for training some of the more difficult variations of the dataset. We were, for example, not able to achieve a classification accuracy above chance with GoogLeNet on the identity–task with random board positions (Figure 2c) without this curriculum learning approach, despite the fact that we could reach a good classification accuracy of 0.86 using curriculum learning.}

During training, each network was evaluated on the testing set after each epoch, and an accuracy measure was recorded. Accuracy is defined as $\frac{|s_c|}{|s|}$ where $|s|$ is the number of tested samples (i.e. the number of images to be classi-
Table 1: Highest achieved accuracies on the proposed dataset by the tested CNN architectures.

Task	AlexNet	VGG16	GoogLeNet
identity			
fixed position, 10 diff (Fig. 2a)	1.00	1.00	0.99
fixed position, 5 diff	1.00	0.99	0.97
fixed position, 1 diff	0.99	1.00	1.00
camera translation, 10 diff (Fig. 2b)	0.99	0.99	0.99
camera translation, 5 diff	0.98	0.99	0.98
camera translation, 1 diff	0.90	0.98	0.96
random board placement, 10 diff (Fig. 2c)	0.80	0.89	0.95
random board placement, 5 diff	0.73	0.88	0.94
random board placement, 1 diff	0.54	0.69	0.86
camera rotation, 10 diff (Fig. 2d)	0.54	0.64	0.55
camera rotation, 5 diff	0.52	0.63	0.53
camera rotation, 1 diff	0.51	0.54	0.50
symmetry			
fixed position, 10 diff (Fig. 3a)	1.00	1.00	1.00
fixed position, 5 diff	1.00	1.00	1.00
fixed position, 1 diff	0.99	1.00	1.00
camera translation, 10 diff (Fig. 3b)	0.99	1.00	1.00
camera translation, 5 diff	0.98	0.99	0.98
camera translation, 1 diff	0.85	0.99	0.92
camera rotation, 10 diff (Fig. 3c)	0.75	0.85	0.79
camera rotation, 5 diff	0.59	0.80	0.78
camera rotation, 1 diff	0.52	0.59	0.63

$f(s)$ and $|s|$ is the number of correctly classified samples. Since we have two possible classes for all our experiments, a purely random classifier would achieve an accuracy of ≈ 0.5. For each network and task, we report the highest achieved accuracy for all of the evaluations, after each of the 120 training epochs. We thus expect even a random classifier to get a maximum accuracy above 0.5. If we assume an equal probability for both classes, 1000 samples classified per test, and 120 tests, we expect a purely random classifier to achieve a mean maximum accuracy over all 120 evaluations of ≈ 0.54, with a standard deviation of $\approx 6.6 \times 10^{-3}$. These values were determined using simulation.

4.1. Discussion

Table 1 shows the highest achieved accuracy during training. The identity–task with fixed camera position and camera translation (Figure 2a) was solved almost perfectly by all tested network architectures. This is not very surprising, since the same checkerboard positions will always be at the same pixel positions. Thus, the networks can learn a very direct mapping, to check for identity and symmetry.

Somewhat more surprising is the almost perfect performance of all three networks on the dataset variation with random camera translation (Figure 2b). Especially, since the translation of the camera also imparts perspective effects on the images (i.e. if the checkerboard is rendered at the top of the image, it is smaller in comparison to being rendered at the bottom). Still, the relative position of all the checkerboard positions is constant in all the images, up to some scaling factor. This might explain the overall good performance of the networks. AlexNet does perform somewhat worse with only one pawn out of place, but it still reaches a good accuracy of 0.90.

Random board placement and fixed camera angle (Figure 2c) is interesting, since the tested architectures perform very differently on this task. GoogLeNet performs very well, even solving one pawn out of place well above chance. AlexNet performs much worse, and does not solve the one pawn out of place variant at all. VGG16 lies somewhere in the middle. The less than perfect performance is interesting, since human subjects would very likely not consider this task more difficult than the variations with fixed camera position, or camera translation. It could be the case, that features have to be integrated on a more global scope than...
in the other tasks, which leads to diminished performance.

The variant with camera rotation (Figure 2d) was not solved convincingly by any of the architectures. VGG16 performs slightly better than chance, with an accuracy of 0.64 and 0.63 for ten and five out of place pawns, respectively, but it also completely fails with only one out of place pawn. The images that VGG16 can correctly classify predominantly show the checkerboard in a very favorably position (i.e. top-down with little rotation). AlexNet and GoogLeNet perform slightly above chance, with an accuracy of 0.64 and 0.63 for ten and five out of place pawns. VGG16 and GoogLeNet seem to be confused enough by the rest of the training set so that they are not even able to classify these easier images.

The symmetry–task seems to be easier for the networks in general. This likely has two reasons. On one hand, only 64 board positions have to be compared in comparison with 128 positions for the identity–task. On the other hand, the positions to be compared are also spatially closer, especially for the more difficult variations of the dataset.

The variation with fixed camera and board position (Figure 3a) is solved perfectly by all the networks. Added camera translation (Figure 3b) shows a similar pattern to what we have seen for the identity–task. All networks solve this problem more or less perfectly, except for AlexNet, which is only able to achieve an accuracy of 0.85 for one out of place pawn. This suggests that there seems to be a general flaw in the AlexNet architecture for these kinds of problems.

Adding camera rotation (Figure 3c) leads to more variable results. None of the networks perform perfectly, but all of them perform significantly above chance for the variation with ten out of place pawns. VGG16 and GoogLeNet even perform slightly above chance for one out of place pawn.

The experiments reveal a few variations of the dataset that seem to be interesting for further research:

1. Symmetry–task with camera rotation: This variant seems to be at the border of being solvable by current architectures and the difficulty scales well with the number of out of place pawns.

2. Identity–task with random board placement: The network architecture seems to be especially relevant for this task.

3. Identity–task with camera rotation: None of the networks were able to solve any of the variants of this task convincingly, but the fact that VGG16 does perform slightly above chance indicates that it might be possible to create a network architecture that performs much better.

It would be interesting to evaluate these variations of the dataset on additional network architectures, and to analyze how human subjects solve problems of this kind. Our hypothesis is that such problems are generally not solved in a pure feed forward manner by humans, and some attentional mechanisms and iterative processing of the images are required. Attention is defined by the Encyclopedia Britannica as “the concentration of awareness on some phenomenon to the exclusion of other stimuli”. Since brains do have capacity limitations, it is impossible to process all visual information at any given time, as shown by Tsotsos [20]. Therefore, an attentional mechanism has to assign the available resources to task relevant stimuli. We hypothesize that pawn positions are compared not as a whole, but by an iterative switching of attention between smaller areas of the board or boards. To substantiate this hypothesis, we propose to test the classification accuracy and classification speed of human subjects on the same dataset, while also collecting eye tracking data, to get a rough estimate of shifting attention. Processing of the images in this way would hint at the possibility that attention and iterative processes might be more efficient at, or even necessary, for solving the problem classes presented in our dataset.

It would also be interesting to see whether the time humans need to correctly classify an image correlates with the classification performance of a CNN. A human might for example need less time to classify a pawn arrangement if a pawn is misplaced in one of the corners.

It would also be interesting to see whether current CNN architectures that already incorporate some form of attention, as well as a form of iterative processing of images, would perform better on the dataset than the already tested standard architectures. Sermanet et al. [14] have shown that incorporating attention and iterative refinement of class predictions can improve the performance of CNNs.

5. Conclusion

We presented a novel image classification dataset that should be trivial to classify for humans. Nonetheless, certain variations of it are poorly classified by the tested CNN architectures AlexNet, VGG16, and GoogLeNet. We identified three variations of the dataset that might be interesting for further research. Detecting symmetry of pawn positions of a checkerboard, together with camera rotation, is interesting, since it seems to be on the border of what current CNN architectures can solve. Depending on the number of pawns that break the symmetry, it can, or can not be solved. Detecting identity of pawn positions on two randomly positioned checkerboards, with fixed camera position, is the second interesting variation of the dataset. From our perspective, it seems like it should be an easy task for human subjects, but the tested architectures showed highly variable performance. Third, the identity–task, with camera rotation, was not convincingly solved by any of the architectures. We therefore proposed to do additional tests on these specific variations of the dataset. In addition, experiments involving human subjects might be interesting to determine under
which circumstances and by which processes humans are able to classify this dataset. Our hypothesis is that humans use some form of attentional mechanism and iterative processing to solve problems of this kind. We further hypothesize that such an approach is therefore more efficient for the given task at hand, and incorporating these principles might benefit machine learning methods.

We want to thank the reviewers for the helpful comments and proposing further research.

References

[1] Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum learning. In Proceedings of the 26th annual international conference on machine learning, pages 41–48. ACM, 2009. 3

[2] Blender Online Community. Blender - a 3D modelling and rendering package. Blender Foundation, Blender Institute, Amsterdam, 2017. 3

[3] M. M. Bongard. Pattern Recognition. Spartan Books, 1970. 1

[4] S. Dodge and L. Karam. A study and comparison of human and deep learning recognition performance under visual distortions. arXiv preprint arXiv:1705.02498, 2017. 1

[5] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The pascal visual object classes (voc) challenge. International Journal of Computer Vision, 88(2):303–338, June 2010. 1

[6] F. Fleuret, T. Li, C. Dubout, E. K. Wampler, S. Yantis, and D. Geman. Comparing machines and humans on a visual categorization test. Proceedings of the National Academy of Sciences, 108(43):17621–17625, 2011. 1, 2

[7] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE international conference on computer vision, pages 1026–1034, 2015. 1

[8] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093, 2014. 3

[9] A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. 2009. 1

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems, pages 1097–1105, 2012. 1, 3

[11] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. 1

[12] nVidia. DIGITS interactive deep learning gpu training system. https://developer.nvidia.com/digits. Accessed: 2017-07-29. 3

[13] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, et al. Imagenet large scale visual recognition challenge. International Journal of Computer Vision, 115(3):211–252, 2015. 1

[14] P. Sermanet, A. Frome, and E. Real. Attention for fine-grained categorization. arXiv preprint arXiv:1412.7054, 2014. 5

[15] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014. 3

[16] S. Stabinger, A. Rodríguez-Sánchez, and J. Piater. 25 years of cnns: Can we compare to human abstraction capabilities? In International Conference on Artificial Neural Networks, pages 380–387. Springer, 2016. 1, 2

[17] S. Stabinger, A. Rodríguez-Sánchez, and J. Piater. Learning abstract classes using deep learning. In proceedings of the 9th EAI International Conference on Bio-inspired Information and Communications Technologies (formerly BIONETICS) on 9th EAI International Conference on Bio-inspired Information and Communications Technologies (formerly BIONETICS), pages 524–528. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), 2016. 1

[18] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1–9, 2015. 3

[19] D. Todorovic. Gestalt principles. Scholarpedia, 3(12):5345, 2008. revision #91314. 2

[20] J. K. Tsotsos. Analyzing vision at the complexity level. Behavioral and brain sciences, 13(3):423–445, 1990. 5