Supporting Information for:

Loading of Coal Tar in Polymeric Nanoparticles as a Potential Therapeutic Modality for Psoriasis

Suhair Sunoqrot a*, Mohammad Niazi a,b, Mohammad A. Al-Natour b, Malak Jaber b, and Luay Abu-Qatouseh b

a Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
b Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 11196, Jordan

*Corresponding Author:
Suhair Sunoqrot, PhD
Associate Professor of Pharmaceutics
Department of Pharmacy
Faculty of Pharmacy
Al-Zaytoonah University of Jordan
P.O. Box 130, Amman 11733, Jordan
Phone: +962-6-4291511 Ext. 197
Fax: +962-6-4291432
Email: suhair.sunoqrot@zuj.edu.jo
Figure S1. (A) Photographs of freshly prepared formulations of CT NPs (F1, F2, and F3) and empty PLGA NPs (F4); (B) Photograph of the failed formulation (F3).
HPLC method validation

The analytical method for CT was validated according to the “Guidance for Industry, Bioanalytical Method Validation, FDA” and International Conference on Harmonization (ICH) guidelines using quality control (QC) samples. To ensure and evaluate the method's validity and integrity, the linearity, accuracy, precision, limit of detection (LOD), limit of quantitation (LOQ), stability, selectivity, and robustness of the method were evaluated. Three QC samples were prepared from a CT standard stock solution in ACN (1 mg/mL) and were categorized as Low (30 μg/mL), Mid (250 μg/mL), and High (1000 μg/mL) QC.

Linearity

Linearity was determined by constructing calibration curves using eight concentrations: 10, 50, 100, 250, 500, 750, 1000, and 1250 μg/mL. The calibration curves were created by plotting the peak areas of the freshly prepared samples versus concentration, and the regression analysis was performed using Microsoft Excel. A correlation coefficient (R^2) of 0.999 was acknowledged as evidence of an acceptable fit of the data to the regression line.

Intra-day accuracy and precision

Six replicate injections of three different concentrations (30, 250 and 1000 μg/mL) for CT were used to evaluate the intra-day accuracy and precision. The concentrations were calculated using the regression equation of the calibration curve. The mean deviation from the actual value was accepted as the measure of accuracy, which was calculated according to Equation (1):

\[
\text{Accuracy} \% = 100 - \frac{(\text{True concentration} - \text{mean of measured concentrations})}{\text{True concentration}} \times 100\%
\]

Equation (1)

Precision was calculated according to Equation (2):
\[CV \% = \frac{SD \text{ of measured concentrations}}{Mean \text{ of measured concentrations}} \times 100\% \] (2)

Inter-day accuracy and precision

QC samples for CT were used over three days to evaluate the inter-day accuracy and precision. The concentrations were calculated by applying the calibration curve's regression equation. The mean deviation from the actual value served as the measure of the accuracy. Accuracy and precision were calculated according to Equation (1) and Equation (2), respectively.

LOD and LOQ

LOQ was determined based on the SD of response and slope where the SD of y-intercepts of regression lines were used as the standard deviation according to ICH guidelines. The LOD and LOQ were calculated using Equation (3) and Equation (4), respectively:

\[LOD = \frac{3.3 \times SD}{\text{Slope}} \] (3)

\[LOQ = \frac{10 \times SD}{\text{Slope}} \] (4)

Stability

Benchtop stability was studied by measuring QC samples' recovery over 6, 12, 24, and 48 h. The recovery of the samples was calculated using Equation (5):

\[\text{Stability} \% = 100 - \frac{\text{Mean at initial time} - \text{Mean after a specific time}}{\text{Mean at initial time}} \] (5)

Selectivity

The method selectivity was determined by screening six different injections of the blank, PLGA, PLGA NPs, PLGA-CT mixture, and CT NPs to ensure no interference between the analyte (CT) and other ingredients.
Robustness

The effect of small variations in flow rate (± 5%) and column temperature (± 5°C) was assessed in terms of number of theoretical plates and asymmetry. The capacity factor (K'), number of theoretical plates (N), and asymmetry (As) were calculated using Equation (6), Equation (7), and Equation (8), respectively:

$$K' = \frac{t_r-t_0}{t_0}$$ \hspace{1cm} (6)

$$N = \frac{16}{\left(W_b\right)^2}$$ \hspace{1cm} (7)

$$As = \frac{B}{A}$$ \hspace{1cm} (8)

Where t_r is the retention time of the analyte, t_0 is “the dead time” or the retention time of non-retained compounds, w_b is the peak width at the base, B is the distance between peak maximum and peak front, and A is the distance between peak maximum and peak-end at 10% of peak height.
Validation results

Upon HPLC method development, CT could be detected at 270 nm using ACN as a mobile phase delivered at 0.5 mL/min. The CT peak appeared at 6.44 min, as illustrated in Figure S2.

![HPLC-UV chromatogram](image)

Figure S2. The HPLC-UV chromatogram of a sample containing CT using ACN delivered at a rate of 0.5 mL/min and detected at 270 nm.

Linearity

Calibration curves were established by injecting eight freshly prepared standard solutions of CT over the range of 10–1250 μg/mL and plotting peak areas versus CT concentration of each standard solution (Figure S3). The linearity parameters of six calibration curves for CT are listed in Table S1. The R² value for these curves were in the range 0.9974–0.9993, indicating that the method used was linear.
Figure S3. Representative CT standard calibration curve.

Table S1. Linearity parameters of CT calibration curves.

Calibration curves	Concentration of CT (µg/mL)									
	10	50	100	250	500	750	1000	1250		R²
1 Peak area	91888	224119	466427	1242000	2394607	3488765	4691450	5672038	0.9993	
2 Peak area	97686	243834	493491	1242862	2478780	3603773	4829683	5784358	0.9990	
3 Peak area	96365	255419	489108	1235313	2424479	3508064	4572539	5568071	0.9989	
4 Peak area	95304	261533	522571	1299718	2514564	3560007	4522547	5546518	0.9975	
5 Peak area	96274	258739	491374	1227435	2658166	3760077	4976863	6079580	0.9989	
6 Peak area	96172	270560	548894	1335942	2614810	4051265	5032802	6117442	0.9974	
Mean peak area	95615	252367	501978	1263878	2514234	3661992	4770981	5794668	0.9989	

Accuracy and precision

As shown in Table S2. The method's intra-day accuracy ranged from 85.64 to 99.90%, and the intra-day precision ranged from 0.47 to 2.49%. In Table S3, the method's inter-day accuracy ranged from 88.96 to 103.50%, and the inter-day precision ranged from 2.72 to 4.73%. These
results indicate an accurate and precise method of analysis according to the guidelines, where CV% of inter and intra-day precision and the accuracy percentages did not exceed 15% over the three determined concentrations.

Table S2. Intra-day accuracy and precision for CT.

Analyzed on day	QC Low (30 μg/mL)	QC Mid (250 μg/mL)	QC High (1000 μg/mL)
Day 1			
30.31	265.00	912.44	
30.35	266.23	913.33	
30.41	268.24	910.67	
30.27	267.94	956.48	
32.45	268.74	912.41	
30.01	268.49	901.04	
Mean concentration	**30.63**	**267.44**	**917.73**
Precision (CV%)	**2.49**	**0.47**	**1.80**
Accuracy (%)	**102.12**	**106.98**	**91.77**

Table S3. Inter-day accuracy and precision for CT.

Day of analysis	Coal tar concentration		
	QC Low (30 μg/mL)	QC Mid (250 μg/mL)	QC High (1000 μg/mL)
Day 1			
	30.31	265.00	912.44
	30.35	266.23	913.33
	30.41	268.24	910.67
	30.27	267.94	956.48
	32.45	268.74	912.41
	30.01	268.49	901.04
Day 2			
	27.39	259.28	889.00
	27.42	257.98	903.04
	27.42	259.45	893.30
	27.29	258.96	895.64
	27.39	259.01	905.17
	27.70	259.26	890.59
Day 3			
	28.55	249.66	865.50
	28.65	249.20	855.82
	28.53	250.19	862.36
	28.48	249.91	851.51
	28.87	250.05	846.08
	28.80	250.12	847.91
Mean concentration	**28.90**	**258.76**	**889.57**
Precision (CV%)	**4.73**	**2.72**	**3.12**
Accuracy (%)	**96.35**	**103.50**	**88.96**
LOD and LOQ

After applying Equation (3) and Equation (4), the LOQ for CT was found to be 1.2 µg/mL, which was much lower than the lowest concentrations used throughout this study (Table S4).

Table S4. LOD and LOQ values using the SD and slope method.

Parameter	Result
LOD (µg/mL)	0.4
LOQ (µg/mL)	1.2
Peak Height (mAU)	10.0
SD	587.1
Slope	4560.7
Average of intercept	53892

Selectivity

The maximum concentration of each of the additives used during sample preparation was analyzed and tested for any interference. The chromatograms in Figure S4 to Figure S8 show that there were no interfering peaks from these materials at the retention time of CT. Accordingly, the method was determined to be selective for the analyte.

Figure S4. The HPLC-UV chromatogram of a blank sample using ACN delivered at a rate of 0.5 mL/min and detected at 270 nm.
Figure S5. The HPLC-UV chromatogram of a sample containing PLGA dissolved in ACN delivered at a rate of 0.5 mL/min and detected at 270 nm.

Figure S6. The HPLC-UV chromatogram of a sample containing a physical mixture of CT and PLGA dissolved in ACN delivered at a rate of 0.5 mL/min and detected at 270 nm.

Figure S7. The HPLC-UV chromatogram of a sample containing blank PLGA NPs dissolved in ACN delivered at a rate of 0.5 mL/min and detected at 270 nm.
Figure S8. The HPLC-UV chromatogram of a sample containing CT-loaded PLGA NPs dissolved in ACN delivered at a rate of 0.5 mL/min and detected at 270 nm.

Stability

The results of the benchtop stability of CT samples are shown in Table S5 and indicate that the QC samples at the three different concentrations were all stable for 48 h at room temperature.

QC sample	Stability %				
	T₀	T₆	T₁₂	T₂₄	T₄₈
Low QC (30 μg/mL)	100	105.911	100.1748	97.72656	99.1815846
Mid QC (250 μg/ml)	100	100.6381	101.563	99.05587	100.24489
High QC (1000 μg/mL)	100	100.5171	101.1568	98.86149	100.129452

Robustness

For the evaluation of robustness, six replicates of the high QC sample were tested for capacity factor (K'), number of theoretical plates (N), and asymmetry (As) at each variation. The results are shown in Table S6:

S11
Table S6. Results of robustness study.

Parameter studied	Average of 6 replicates	\(K' \)	\(N \)	\(As \)	\(Rt \)
Nominal conditions	4575824	1.40	2241	0.99	6.44
Flow rate (0.45 mL/min)	4629832	1.40	2241	0.99	6.44
Flow rate (0.55 mL/min)	4647498	1.40	2587	0.98	6.41
Column 1	4523754	1.50	2454	0.94	6.44
Column 2	4626953	1.50	2395	1.10	6.44
Wavelength 275 nm	4661157	1.40	2415	0.99	6.44
Wavelength 265 nm	4663967	1.40	2351	0.98	6.44
Temperature 30 °C	4398172	1.50	2495	1.10	6.44
Temperature 20 °C	4462841	1.40	2456	1.02	6.44

A higher \(K' \) value indicates that the sample is positively retained and firmly bound to the column's stationary phase. Values between 1 and 10 are considered acceptable. As demonstrated in Table S6, \(K' \) values were above 1 with the nominal condition and after slight variations were made, indicating good retention of the analyte as compared to the non-retained compound. The number of theoretical plates (\(N \)) measures the HPLC column's peak dispersion, reflecting the column performance. In general, \(N \) values should be more than 2000. The higher the \(N \) values, the narrower peaks and better resolution are obtained. \(N \) was more than 2000 for the nominal condition and throughout all the variations, indicating the excellent performance of the column. In an ideal situation, peaks should be symmetrical; however, due to various effects, peaks may often show a tailing behavior or a fronting peak shape, which presents a problem with resolution and quantitation of the peaks within a chromatogram. The accuracy of quantitation decreases with the increase in peak tailing because of the difficulties encountered in determining the peak end and the area under the peak. It is recommended to keep \(As \) values ≤ 1.2. This was achieved with the nominal condition and after variations were made to the method. Accordingly, the results indicated that the method was rigid and robust to small variations.