New classification 3 columns theory of lumbar degenerative cascade (literature review)

B. Darwono 1, V. O. Radchenko 2

1 Medical Faculty of Tarumanagara University, Jakarta, Indonesia
2 Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv

Lumbar degeneration is a pathologic condition in the aging spine that changes the bio-mechanic construct of the lumbar mobile segment either single or multi-levels, leading to low back pain syndrome and lead to a deformity/de novo scoliosis. The generally well accepted theory of lumbar degeneration was published by Kirkaldy-Willis, et al (1978), and clearly described the pathologic cascade of lumbar mobile segment, but only involve 2 columns: the anterior column (disc) and middle column (posterior joint/facet). The posterior column degenerative cascade was published by Christian Ingerslev Baastrup (1933). He described about the pathologic changes on spinous processes of lumbar vertebrae and the soft tissues in between them, which was then known as Baastrup’s disease or Kissing Spine. Lacking off to understand the etiology due to a limitation of studies in histologic and radiographic changes at that time, then this theory was forgotten in the clinical practice until the recent Bristol and Auckland study, which were published in European Spine Journal (2012). Their study describes clearly the pathologic cascade of the posterior column that contributing the lumbar degeneration. Based on this 3 columns theory of lumbar degenerative cascade, then a new classification is designed to describe detail of bio-mechanic change in the anterior, middle and posterior column leading to low back pain syndrome and deformity. The justification of surgical treatment to fix and reconstruct the bio-mechanic changes of the 3 columns of lumbar mobile segment could be based on this new classification. Key words: lumbar degeneration, spine, theory of cascade.

Key words: lumbar degeneration, spine, theory of cascade
The lumbar disc herniation theory by McNab and Mc Culloch (1990) describe only the pathology of anterior column (fig. 2). The pathologic grading grading for discopathy by Thompson (fig. 3) also describe the degenerative changes of anterior column, then the degenerative grading of the facet joint by Grogan (fig. 4) and the grading of the osteophyte by Fujiwara (fig. 5), all describe the degenerative changes of the middle column. All these theories have a relationship with the
Degenerative cascade of the three joint complex of Kirkaldy-Willis describing 3 cascades: dysfunction, unstable and stabilization (fig. 6), but only involve the two columns of Roy-Camille, the anterior and middle column.

Christian Ingerslev Baastrup a Danish Radiologist Copenhagen (1855–1950) described the pathologic changes on the spinous processes in the lumbar vertebrae including the soft tissues between them which was mentioned as Kissing spine. A breakdown of the inter-spinous ligament occurs and leading to a development of neo-arthrosis between adjacent spinous processes, characterized by abutment, enlargement, sclerosis and bursa.
But due to a limitation of studies on histologic and radiographic changes in his era, his theory was forgotten in relation with the application in clinical practice.

Later a study of the Kissing spine was done in 2010 by Auckland group and by Bristol group.

The Bristol study (2010) analyze 100 standing X-rays regarding: lumbar lordosis, inter-spinous gap, and lumbar disc height, while the Auckland study analyze 200 CTs with the age ranging between 20–90 years: the abdominal CTs being used for the asymptomatic group and CT myelogram for the symptomatic group.

The result of these observation show that by aging, the width of the spinous process increase 50% (fig. 7), the height increase 30% (fig. 8), thus when the width and height of the spinous process increase as a consequence the lordosis of the lumbar spine decrease (fig. 9), and as a conclusion this study support the Kissing spine theory as described by Baastrup.

The Bristol and Auckland studies also describe 4 types of kissing spine abutment: type 1 end to end, type 2 hypertrophic, type 3 ball and socket, and type 4 oblique (fig. 10). In type 4, the oblique abutment produces a torque across this level creating an inter-segmental rotation also a lateral listhesis and causing a deformity of de novo scoliosis (fig. 11, 12).

Combining the both theory of Kirkaldy-Willis and Baastrup will bring us to a new understanding about the loss of lumbar lordosis, that it is not merely related to disc degeneration but also due to enlargement of the spinous process related to spinous process degenerative cascade (fig. 13).

A new theory is built to give a clear understanding about Lumbar degenerative process: that it may start from either one of the three columns, alone or together, starting from inflammatory to a compressive reactions, change the bio-mechanic construct of the lumbar spine, single or multi-levels and leading to an adult deformity or de novo scoliosis (fig. 14).

A new classification should be designed to give a complete description about various individual cascade of Lumbar degeneration, and as a consequence in the clinical application of evidence based treatment related to this theory: the justification of treatment for various individual cases will be different.

New Classification of Lumbar Degeneration

The new classification is based on the three columns theory of lumbar degeneration, using the radiologic parameters of dynamic lumbosacral X-rays and MRI studies, should describe a complete
assessment of bio-mechanic construct changes involving the three columns, and each column or level might be in different cascade.

Grade 1: involve either one of the three column of SMS, each level or column in different cascade.

Grade 2: involve either 2 columns of SMS, each column or level in different cascade.

Grade 3: involve 3 columns of SMS, each column or level in different cascade.

Case 1: Grade 1
1 column (anterior): 2 levels disc herniation $L_4^\text{IV} - L_5^\text{IV}$, $L_5^\text{V} - S_1$, no instability, no abutment, no facet hypertrophy nor central stenosis (fig. 15).

Case 2: Grade 1
1 column (posterior): 3 levels abutment $L_1^\text{II} - L_3^\text{III}$, $L_3^\text{III} - L_4^\text{IV}$, $L_4^\text{IV} - L_5^\text{V}$, no instability, no facet hypertrophy nor central stenosis (fig. 16).

Case 3: Grade 2
2 Columns (anterior, middle): 2 levels disc herniation $L_4^\text{IV} - L_5^\text{V}$, $L_5^\text{V} - S_1$, 1 level Instability $L_3^\text{III} - L_4^\text{IV}$, 1 level facet hypertrophy and central stenosis $L_4^\text{IV} - L_5^\text{V}$, no abutment (fig. 17).

Case 4: Grade 2
2 Columns (anterior, middle): 1 level disc herniation $L_4^\text{IV} - L_5^\text{V}$, 1 level facet hypertrophy and stenosis $L_4^\text{IV} - L_5^\text{V}$, 2 levels instability $L_3^\text{III} - L_4^\text{IV}$, $L_4^\text{IV} - L_5^\text{V}$, no abutment (fig. 18).

Case 5: Grade 2
2 Columns (anterior, middle): 1 level disc herniation $L_4^\text{IV} - L_5^\text{V}$, 1 level facet hypertrophy and stenosis $L_4^\text{IV} - L_5^\text{V}$, 3 levels instability $L_3^\text{III} - L_4^\text{IV}$, $L_4^\text{IV} - L_5^\text{V}$, $L_5^\text{V} - S_1$, no abutment (fig. 19).
Fig. 18. Justification of treatment: discectomy and decompression $L_{IV} - L_{V}$, stabilization $L_{III} - L_{IV}$, $L_{IV} - L_{V}$

Fig. 19. Justification of treatment: discectomy $L_{IV} - L_{V}$, decompression and stabilization $L_{III} - L_{IV}$, $L_{IV} - L_{V}$, $L_{V} - S_{I}$

Fig. 20. Justification of treatment: discectomy and decompression $L_{II} - L_{III}$, $L_{III} - L_{IV}$, $L_{IV} - L_{V}$, $L_{V} - S_{I}$, decompression of kissing spine abutments $L_{II} - L_{III}$, $L_{III} - L_{IV}$, $L_{IV} - L_{V}$, Stabilization $L_{II} - L_{III}$, $L_{III} - L_{IV}$, $L_{IV} - L_{V}$, $L_{V} - S_{I}$
Case 6: Grade 3

3 Columns (anterior, middle, posterior): 4 levels disc herniation LII–LIII, LIII–LIV, LIV–LV, LV–SI,
4 levels facet hypertrophy LII–LIII, LIII–LIV, LIV–LV, LV–SI, 3 levels abutments LII–LIII, LIII–LIV, LIV–LV,
4 levels instability LII–LIII, LIII–LIV, LIV–LV, LV–SI (fig. 20).

Case 7: Grade 3

3 Columns: 4 levels disc herniation LII–LIII, LIII–LIV, LIV–LV, LV–SI, 4 levels facet hypertrophy LII–LIII, LIII–LIV, LIV–LV, LV–SI, 3 levels abutments LII–LIII, LIII–LIV, LIV–LV, LV–SI, 4 levels instability LII–LIII, LIII–LIV, LIV–LV, LV–SI, 2 levels abutments LIII–LIV, LIV–LV (fig. 21).

Conclusions

The new classification could describe a complete assessment of all the bio-mechanic construct changes involving the three columns of mobile segment and each column in different cascade and different levels.

The new classification can be used as a Guideline to fix and reconstruct all the bio-mechanic construct changes of the mobile segment in lumbar degeneration.

It also can be used as an evidence based consideration to justify the different methods of treatment for various cases of lumbar degeneration.

Conflict of interest. The authors declare the absence of conflict of interest.

References

1. Spinous process morphology: the effect of ageing through adulthood on spinous process size and relationship to sagittal alignment / C. E. Aylott, R. Puna, P. A. Robertson, C. Walker // Eur. Spine. J. — 2012. — Vol. 21 (5). — P. 1007–1012. — DOI: 10.1007/s00586-011-2029-6.
2. Baastrup C. On the spinous processes of the lumbar vertebrae and the soft tissues between them, and on pathological changes in that region / C. Baastrup // Acta Radiol. — 1933. — Vol. 14. — P. 52–54.
3. Anterior lumbar fusion improves discogenic pain at levels of prior posterolateral fusion / W. T. Barrick, J. A. Schofferman, J. B. Reynolds [et al.] // Spine. — 2000. — Vol. 25 (7). — P. 853–857.
4. How much radiographic motion is present after solid fusion / C. M. Bono, M. Bawa, K. White [et al.] : presented at the Annual Meeting of the International Society for the Study of the Lumbar Spine. — Vancouver, BC, 2003.
5. Lumbar interbody fusion using the Brantigan I/F cage for posterior lumbar interbody fusion and the variable pedicle screw placement system: two-year results from a Food and Drug Administration investigational device exemption clinical trial / J. W. Brantigan, A. D. Stefee, M. L. Lewis [et al.] // Spine. — 2000. — Vol. 25 (11). — P. 1437–1446.
6. Darwonpo B. The role of IntraSpine in the treatment of late degenerative problems / B. Darwonpo : COA 2012 Meeting. — Beijing, 2012.
7. Darwonpo B. The role of interlaminar (IntraSpine) in the treatment of early and late degenerative problems / B. Darwonpo : ISMISS. — Turkey, 2013.
8. Darwonpo B. The role of interlaminar (IntraSpine) device in the treatment of early & late degenerative problems / B. Darwonpo : Indonesia Spine Society Meeting. — Palembang, Indonesia, 2013.
10. Darwono B. The role of interlaminar stabilization device (IntraSPINE) in the treatment of early & late degenerative problems / B. Darwono : 13th Annual Meeting PASMIS. — Miyazaki, Japan, 2013.

11. DePalma A. F. Surgery of the lumbar spine / A. F. DePalma, R. H. Rothman / Clin. Orthop. — 1969. — Vol. 63. — P. 162–710.

12. Eck J. C. Adjacent-segment degeneration after lumbar fusion. A review of clinical, biomechanical, and radiologic studies / J. C. Eck, S. C. Humphreys, S. D. Hodges // Am. J. Orthop. — 1999. — Vol. 28. — P. 336–340.

13. Etebar S. Risk factors for adjacent-segment failure following lumbar fixation with rigid instrumentation for degenerative instability / S. Etebar, D. W. Cahill // J. Neurosurg. — 1999. — Vol. 90. — P. 163–169.

14. Frymoyer J. W. Spinal stability and instability: Definitions, classification, and general principles of management / J. W. Frymoyer, M. H. Krag // The Unstable Spine / ed. A. Kahn. — New York : Grune & Stratton, 1986.

15. Frymoyer J. W. Segmental instability. Rationale for treatment / J. W. Frymoyer, D. K. Selby // Spine. — 1985. — Vol. 10. — P. 280–286.

16. The effect of disc degeneration and facet joint osteoarthritis on the segmental flexibility of the lumbar spine / A. Fujiwara, T. H. Lim, H. S. An et al. // Spine. — 2000. — Vol. 25 (23). — P. 3036–3044.

17. The relationship between disc degeneration, facet joint osteoarthritis, and stability of the degenerative lumbar spine / A. Fujiwara, K. Tamai, H. S. An et al. // J. Spinal. Disord. — 2000. — Vol. 13. — P. 444–450.

18. Guizzardi G. DIAM Spinal Stabilization System / G. Guizzardi, P. Petrini // Motion preservation surgery of the spine, Advanced technique and controversies. — Saunders Elsevier, 2007. — P. 519–522.

19. Guizzardi G. Italian Multicentre study on the use of A New Interlaminar Prosthesis (INTRASPINE) in DDD of the lumbar spine / G. Guizzardi, R. Morichi, C. M. Mattioli et al. // Preliminary Report, Deutscher Wierbelsaulenkongress. — Congress Centrum, Ulm, 27–29 November 2008.

20. Guizzardi G. Interspinous versus Interlaminar devices in DDD: Biomechanic Tests / G. Guizzardi, P. Petrini // Deutscher Wierbelsaulenkongress, Internationales Congress Centrum. — Munchen, 10–12 December 2009.

21. Jinkins J. R. Acquired degenerative changes of the intervertebral segments at and suprajacent to the lumbarosacral junction. A Radioanatomic analysis of the nondiskal structures of the spinal column and perispinal soft tissues / J. R. Jinkins // Radiol. Clin. North Am. — 2001. — Vol. 39 (1). — P. 73–99.

22. Adjacent-segment morbidity after Graft ligamentoplasty compared with posterolateral lumbar fusion / M. Kanayama, T. Hasshimoto, K. Shigenubu et al. // J. Neurosurg. — 2001. — Vol. 95 (1 Suppl.). — P. 5–10.

23. Non-fusion surgery for degenerative spondylolisthesis using artificial ligament stabilization: Surgical indication and clinical results / M. Kanayama, T. Hasshimoto, K. Shigenubu et al. // Spine. — 2005. — Vol. 30 (5). — P. 588–592.

24. Regional variations in the compressive properties of lumbar vertebral trabeculae. Effect of disc degeneration / T. S. Keller, T. H. Hanson, A. C. Abram et al. // Spine. — 1989. — Vol. 14. — P. 1012–1019.

25. Pathology and pathogenesis of lumbar spondylosis and stenosis / W. H. Kirkaldy-Willis, J. H. Wedge, K. Yong-Hing, et al. // Spine. — 1978. — Vol. 3. — P. 319–328.

26. Kwong Y. MDCT findings in Baasprut disease: Disease or normal features of the aging spine? / Y. Kwong, N. Roan, K. Latief // AJR Am. J. Roentgenol. — 2011. — Vol. 196 (5). — P. 1156–1159. — DOI: 10.2214/AJR.10.5719.

27. Lee C. K. Accelerated degeneration of the segment adjacent to a lumbar fusion / C. K. Lee // Spine. — 1988. — Vol. 13 (3). — P. 375–377.

28. Lindsey D. P. The effects of an interspinous implant on the kinematics of the instrumented and adjacent levels in the lumbar spine / D. P. Lindsey, K. E. Swanson, P. Fuchs et al. // Spine. — 2003. — Vol. 28 (19). — P. 2192–2197.

29. McAfee P. C. Classification of heterotopic ossification (HO) in the artificial disc replacement / P. C. McAfee, B. W. Cunningham, J. Devine et al. // J. Spinal. Disord. Tech. — 2003. — Vol. 16 (94). — P. 384–389.

30. Molz F. The acute effect of L3/L4 fusion on the motion of vertebrae in a whole lumbar cadaveric spine / F. Molz, J. Partin, J. Kirkpatrick presented at the Annual Meeting of the International Society for the Study of the Lumbar Spine. — Vancouver, BC, 2003.

31. Moore R. J. The origin and fate of herniated lumbarintervertebral disc tissue / R. J. Moore, B. Vernon-Roberts, R. D. Fraser et al. // Spine. — 1996. — Vol. 21 (18). — P. 2149–2155.

32. Mulholland R. C. Rationale, principles and experimental evaluation of the concept of soft stabilization / R. C. Mulholland, D. K. Sengupta // Eur. Spine J. — 2002. — Vol. 11 (Suppl. 2). — P. S198–S205.

33. Dynamic motion study of the whole lumbar spine by video-fluoroscopy / A. Okawa, K. Shinomiyi, H. Komori et al. // Spine. — 1998. — Vol. 23 (916). — P. 1743–1749.

34. Paajanen H. Association of incipient disc degeneration and instability in spondylolisthesis. A magnetic resonance and flexion-extension radiographic study of 20-year-old low back pain patients / H. Paajanen, M. Tertti // Arch. Orthop. Trauma Surg. — 1991. — Vol. 111. — P. 16–19.

35. The outcome of posterolateral fusion in highly selected patients with discogenic low back pain / L. M. Parker, S. E. Murrell, S. D. Boden et al. // Spine. — 1997. — Vol. 21 (16). — P. 1909–1916.

36. Symptomatic spinal stenosis adjacent to a previous lumbar fusion / C. Patel, E. Traumeees, J. Grittlin et al. // Spine J. — 2002. — Vol. 2 (Suppl.). — P. 545S–55S.

37. Pearcy M. D. Lumbar intervertebral disc and ligament deformations measured in vivo / M. D. Pearcy, S. B. Tibrewal // Clin. Orthop. — 1984. — Vol. 191. — P. 281–286.

38. The surgical treatment of the lumbar disc prolapse nucleotomy with additional transpedicular dynamic stabilization versus nucleotomy alone / M. Putzier, S. V. Schneider, J. F. Funk et al. // Spine. — 2005. — Vol. 30 (5). — P. E109–E114.

39. Roy-Camille R. Traitements des fractures du rachis dorsolombaire par la methode de Bohler / R. Roy-Camille, P. Massin // Rev. Chir. Orthop. — 1989. — Vol. 75 (7). — P. 479–489.

40. Schecter N. A. Painful internal disc derangements of the lumbar spine: Discographic diagnosis and treatment by posterior lumbar interbody fusion / N. A. Schecter, M. P. France, C. K. Lee // Orthopaedics. — 1991. — Vol. 14 (4). — P. 447–451.

41. Computer analysis of spinal segment motion in degenerative disc with and without axial loading / J. V. Seligman, S. D. Gertzbein, D. K. Sengupta // Spine. — 2005. — Vol. 30 (9). — P. 566–573.

42. Instantent centre of rotation and intradiscal pressure study to identify load-sharing property of dynamic stabilization devices in the lumbar spine without fusion — a biomechanical study in cadaver spine / D. K. Sengupta, C. K. Demetropoulos, H. N. Herkowitz et al. // Presented at World Spine II. — Chicago, Aug 2003.

43. Intervertebral disc disorganization is related to trabecular bone architecture in the lumbar spine / E. K. Simpson, I. H. Parkinson, B. Manthey et al. // J. Bone Miner. Res. — 2001. — Vol. 16. — P. 681–687.

44. Stoll T. M. The dynamic neutralization system for the spine: Anmulti-center sudy of a novel non-fusion system / T. M. Stoll, G. Dubois, O. Schwarzenbach // Eur Spine J. — 2002. — Vol. 11 (Suppl. 2). — P. 170–178.

45. The effects of an interspinous implant on intervertebral disc...
НОВАЯ КЛАССИФИКАЦИЯ 3-Х КОЛОННОЙ ТЕОРИИ О ДЕГЕНАРТИВНЫХ ЗАБОЛЕВАНИЯХ ПОЗВОНОЧНИКА (ОБЗОР ЛИТЕРАТУРЫ)

Б. Дарвоно 1, В. А. Радченко 2

1 Медицинский факультет университета Таруманагара, Джакарта. Индонезия
2 ГУ «Институт патологии позвоночника и суставов им. проф. М. И. Ситенко НАМН Украины», Харьков

Bambang Darwono: bdarwono@hotmail.com
Volodymyr Radchenko, MD, Prof. in Orthopaedics and Traumatology: volod56@ukr.net

ДО УВАГИ СПЕЦІАЛІСТІВ

ДУ «Інститут патології хребта та суглобів ім. проф. М. І. Ситенка НАМН України» проводить післядипломну підготовку фахівців на курсах інформації та стажування з актуальних питань ортопедії та травматології (ліцензія Міністерства освіти і науки України АЕ № 285527 від 27.11.2013)

Курси для середнього медичного персоналу:

№	Назва	Керівники
1	Функціональні та фізіотерапевтичні методи лікування хворих з ортопедо-травматологічною патологією	Проф. Маколінець В. І.
2	Гіпсово-ортопедична техніка та лікування хворих з ортопедо-травматологічною патологією	Д. м. н. Мателенок Є. М.
3	Лікувальний масаж	Д. м. н. Мезенцев А. О.

Телефон для довідок: (057) 704-14-78