Adapt or Die: Targeting Unique Transmission-Stage Biology for Malaria Elimination

Mariëtte E. van der Watt¹, Janette Reader¹,2 and Lyn-Marié Birkholtz¹,2*

¹ Institute for Sustainable Malaria Control, School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa, ² Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa

Plasmodium parasites have a complex life cycle that includes development in the human host as well as the Anopheles vector. Successful transmission of the parasite between its host and vector therefore requires the parasite to balance its investments in asexual replication and sexual reproduction, varying the frequency of sexual commitment to persist within the human host and generate future opportunities for transmission. The transmission window is extended further by the ability of stage V gametocytes to circulate in peripheral blood for weeks, whereas immature stage I to IV gametocytes sequester in the bone marrow and spleen until final maturation. Due to the low gametocyte numbers in blood circulation and with the ease of targeting such life cycle bottlenecks, transmission represents an efficient target for therapeutic intervention. The biological process of Plasmodium transmission is a multistage, multifaceted process and the past decade has seen a much deeper understanding of the molecular mechanisms and regulators involved. Clearly, specific and divergent processes are used during transmission compared to asexual proliferation, which both poses challenges but also opportunities for discovery of transmission-blocking antimalarials. This review therefore presents an update of our molecular understanding of gametocyte and gamete biology as well as the status of transmission-blocking activities of current antimalarials and lead development compounds. By defining the biological components associated with transmission, considerations for the development of new transmission-blocking drugs to target such untapped but unique biology is suggested as an important, main driver for transmission-blocking drug discovery.

Keywords: antimalarials, gamete, gametocyte, malaria, Plasmodium, sexual commitment, transmission blocking

Abbreviations: ABS, asexual blood stage; AP2-G, Apetala 2-G; CCp, complement control protein; CDPK1, calcium dependent protein kinase 1; EDC, exo-erythrocytic developmental cycle; EF2, Elongation factor 2; GDV-1, gametocyte development 1; HKMT, histone lysine methyltransferases; HP1, heterochromatin protein 1; IDC, intra-erythrocytic developmental cycle; IMC, inner membrane complex; GEXP, gametocyte exported proteins; MDV-1, male development protein 1; NPP, new permeation pathways; PEG3, protein of early gametocyte 3; PMT, phosphoethanolamine methyltransferase; STEVOR, subtelomeric variable open reading frame.
INTRODUCTION

Amongst infectious diseases, malaria has caused one of the most longstanding global health burdens ever. The impact of malaria on public health systems and socio-economic growth remains hard felt in several developing countries, with the World Health Organization (WHO) Africa region still carrying 94% of the global malaria burden. Concerted global efforts aimed towards malaria elimination did result in a 28% reduction in global malaria morbidity and 43% reduction in mortality, with countries such as Algeria, Argentina, China, and El Salvador now newly certified as malaria-free. Unfortunately, aside from these successes, global progress has stalled since 2015. In 2020 alone, there were approximately 241 million cases in 85 malaria-endemic countries with an estimated 627 000 deaths (WHO, 2021). Alarmingly, increases in both incident rates (9%) and the number of fatalities (12%) were observed year-on-year due to compounding factors, not least of which were disruptions experienced in clinical services caused by the ongoing COVID-19 pandemic (WHO, 2021). Although most of the gains against this disease are the result of highly effective vector control strategies, the efficacy of these is also under threat and effective elimination of the disease must rely on multipronged approaches. These include using tools to target the parasite pool as causative agent for disease, with innovations including vaccines such as RTS.S recently approved by the WHO for use in children under five (Laurens, 2020), and using antimalarial agents for additional applications aside from their continued chemotherapeutical use. This importantly also includes transmission-blocking capabilities, although the majority of clinically used antimalarials do not have this ability mostly due to differences associated with the variant biology of the different life cycle forms of malaria parasites (Burrows et al., 2017; Birkholtz et al., 2022). This therefore motivates strategies towards the discovery of transmission-blocking antimalarial agents, focused on targeting unique transmission-associated biology; both as the focus of this review.

PLASMODIUM SPP. AND TRANSMISSION TO MOSQUITOES

Infectious diseases caused by parasites represent some of the most complex and complicated biological systems, the least of which is malaria. This disease requires intricate interplay of three entities – the human host (with all its genotypic and social complexities), ~40 dominant malaria transmission species of Anopheles mosquitoes and parasitic protozoa of the genus Plasmodium. Not only can six species of Plasmodium cause various severity of disease in humans [including P. falciparum, P. vivax, P. malariae, P. ovale (with subspecies P. ovale curtisi and P. ovale wallikeri), and zoonotic P. knowlesi and P. cynomolgi, (Ngotho et al., 2019)], but these parasites have some of the most complex life cycles yet characterized. An infection in humans is initiated when as few as 100 sporozoites of the 10^7 available in the salivary gland of a feeding female Anopheles mosquito are injected into the skin of a human as it takes a blood meal (Graumans et al., 2020). These sporozoites are the result of sporogony in a mature oocyst that formed in an infective mosquito after 6-12 days (Figure 1). Upon inoculation, sporozoites glide through the dermis into peripheral blood circulation within 30 min and migrate to the liver sinusoids to infect hepatocytes within 2 min, followed by the initiation of exo-erythrocytic schizogony (Prudencio et al., 2006). This characterizes the first obligate intracellular auxotroph stage as a true hallmark of parasitism. Succeeding ~14 rounds of replication in the liver during the asexual, exo-erythrocytic developmental cycle (EDC, Figure 1), mass cytokinesis occurs followed by the release of $\sim 10^4$ of hepatic merozoites from a single sporozoite into the bloodstream. Blood stage infection is established when these merozoites invade erythrocytes, thus initiating the asexual 48 h intra-erythrocytic developmental cycle (IDC, Figure 1). A single, haploid merozoite evolves into a ring-stage parasite within 6 h post-invasion (hpi) (Butler et al., 2014; Van Biljon et al., 2018), followed by development into metabolically active trophozoites (Teng et al., 2009). Schizogony commences when the single trophozoite nucleus begins to divide into two daughter nuclear bodies around 33-36 hpi and results in a polyploid, multi-nucleated syncytium (Gerald et al., 2011; Van Biljon et al., 2018; Simon et al., 2021). Erythrocyte rupture occurs at 42-48 hpi, releasing 8-24 merozoites per schizont (Bannister and Mitchell, 2003; Gerald et al., 2011) and each released merozoite proceeds to infect a new erythrocyte, allowing for persistent cycles of infection. This coordinated, rapid amplification results in a massive population expansion for the parasite, reaching up to 10^{11} parasites per infected, untreated, immune-naïve individual, and is enabled by the ability of the parasite to evade the immune system, efficiently use its intracellular microenvironment for cellular growth (‘tropho’ for nourishment) and asexual replication (schizogony). This highly coordinated replication cycle is associated with malaria pathology in humans.

Possibly the most extraordinary and important biological feat associated with the parasite’s life cycle is its ability to differentiate to ensure transmission, and therefore continued spread of the disease and guaranteed survival of the organism (Figure 1). In a terminal differentiative process, only a small sub-population of asexual parasites (<10%) commit to sexual differentiation during an IDC, thereby ensuring the remaining proliferating parasites are available to seed subsequent differentiation and cause continuous transmission. This initiates gametocytogenesis to ensure transmission, a process requiring only 10^7 mature male and female gametocytes in an average 1-2 µL Anopheles blood meal. It is during this process that these gametocytes are activated, and male gametocytes respond to the changed environment to undergo an extraordinary 3 mitotic divisions, forming 8 axonemes in <20 min (in a process called exflagellation) as one of the best examples of the ability of eukaryotic cells to respond rapidly to signaling events (Figure 1). Although most Plasmodium spp. form gametocytes within ~24-48 h, in the most important human malaria parasite, P. falciparum, gametocytes uniquely develop through five
morphologically, biochemically and physiologically distinct stages in 10-12 days (Figure 1) (Sinden et al., 1977; Dixon and Tilley, 2021). This prolonged development is unique to the *Laverania* [*falciparum* and *reichenowi* (Ngotho et al., 2019)]. Additionally, gametocytogenesis in *P. falciparum* is associated with tissue sequestration of immature forms around erythroblastic islands in e.g. the bone marrow parenchyma (Venugopal et al., 2020), which is mechanistically different to asexual parasite infected erythrocyte sequestration to host cells in both *P. falciparum* and other rodent spp (Tiburcio et al., 2013). Lastly, prolonged survival of mature forms [mean lifespan ~5.5 days, *in vivo* circulation of up to 55 days (Bousema et al., 2010)] also conceptually contributes to the sustained transmission success that is achieved by *P. falciparum*.

P. falciparum stage I gametocytes resemble the rounded, asexual trophozoite but can be distinguished from these since hemozoin crystals do not form punctate clusters in stage I gametocytes (Brancucci et al., 2018) and there are no knobs on the host cell (Figure 1). Stage II gametocytes mark the start of drastic morphological changes, and these adopt a lemon shape with mononuclear content. As stage II to stage III transition occurs, the gametocyte (including its nucleus and mitochondria) elongates to a length to width of ratio ~2:1, facilitated by extensive ultrastructural changes, with one side flattening while the opposite side curves forming an elongated D-shape (top hat shape) (Parkyn Schneider et al., 2017; Dixon and Tilley, 2021). The nuclear elongation (maximal in stage III, retracts in stage V) is clear from 3D analysis performed through serial block-face scanning electron microscopy (EM) (Parkyn Schneider et al., 2017) and reiterated in a study of gametocyte nuclear pore proteins, visualized by fluorescence microscopy (Boltryk et al., 2021).
Sexual dimorphism now also becomes more pronounced with small differences microscopically observable between the sexes, including the larger nucleus of the male and the cytoplasm of the female now containing more mitochondria (detectable through fluorescent probes) and extensive endoplasmic reticulum (ER), Golgi vesicles and dense spherules (the latter observed by electron microscopy) compared to the male. Stage IV gametocytes are maximally elongated with a crescent banana shape (length to width ratio of 4:1) with aciculate ends; this differentiates them from mature stage V male and female gametocytes (macro- and microgametocytes). These retain the characteristic falciform crescent shape from which the species falciparum derives its name (‘falx’ meaning sickle or curved shape and ‘parere’ to ‘bring forth’). These mature stages have characteristic rounded ends and a length to width ratio of 3:1; the host erythrocyte is reduced to a thin background layer referred to as a Laveran’s bib. Female gametocytes are distinguished from males as they are slightly more curved and have concentrated nuclear material, well developed ER, mitochondria and apicoplast in preparation for development as zygote. Membrane-bound osmiophilic bodies are visible in both sexes as distinct vesicle-like structures and allow release of the gametocytes from the erythrocytes during gametogenesis.

TARGETING TRANSMISSION FOR MALARIA ELIMINATION

Interventions that will inhibit the formation of gametocytes, and thereby transmission, are required to contribute to malaria elimination strategies (Leroy et al., 2014; Birkholtz et al., 2016; Sinden, 2017; Delves et al., 2018a; Birkholtz et al., 2022). There are multiple reasons why human to mosquito transmission of Plasmodium is an attractive target for intervention. Gametocytes represent a targetable population bottleneck (Sinden, 2017); they are present in the pharmacologically accessible blood compartment; mature, stage V gametocytes can persist for days and mature sexual parasites are extracellular for ~24 h in the mosquito, creating a significant window during which to target the parasite for therapeutic/immune destruction. Transmission-blocking antimalarials would drastically reduce the parasite reservoir (even in high-transmission settings), could target the significant proportion of asymptomatic parasite carriers and, possibly the most enticing, could protect the lifespan of antimalarials that kill asexual blood stages (ABS) if used in combination, by preventing the spread of resistant parasites against the ABS active antimalarial (Delves et al., 2018a; Birkholtz et al., 2022).

Clear differentiation between P. falciparum gametocytes and ABS explains why most ABS antimalarials are inactive against mature gametocyte stages and therefore not useful to block transmission. Currently, whilst primaquine, methylene blue and atovaquone can target malaria transmission, each have concerns ranging from toxicity in certain populations (Howes et al., 2012; Goncalves et al., 2016) to a very narrow target parasite population (e.g., atovaquone targeting ookinetes). The search for new compounds targeting the transmissible stages have been skewed towards compounds targeting biology important to proliferation of the ABS and large screening campaigns have mostly prioritized hits based on ABS activity as primary filter – with transmission-blocking activity seen as advantageous additional activity for dual-active antimalarials. However, if the same molecular activity is targeted in both ABS and gametocytes/gametes, and resistance develops against such antimalarial hit, spread of resistance is a real threat (Witmer et al., 2021). Alternative strategies towards identifying antimalarial hits with transmission-blocking activity include de novo screening against either mature gametocytes or gametes (Miguel-Blanco et al., 2017; Delves et al., 2018b; Reader et al., 2021). This has revealed novel chemotypes associated with targetable biology in these stages. In principle, our broader understanding of the unique biology of gametocytes and gametes (Delves, 2012; Meibalan and Marti, 2017; Josling et al., 2018; Ngotho et al., 2019; Schneider and Reece, 2021; Usui and Williamson, 2021) therefore present a major, unexplored avenue to discover new antimalarials, and with the toolkit associated with transmission-blocking screens now well established (Delves et al., 2018a; Birkholtz et al., 2022), these should be exploited with renewed effort (Sinden et al., 2012; Leroy et al., 2014; Nilsson et al., 2015; Delves et al., 2018a). Open areas worth investigating include the commitment phase, early differentiation processes during immature gametocytogenesis, maturation of stage V gametocytes and gametogenesis itself, although the latter will rely on irreversibly compromising (sterilizing) mature stage V gametocytes, as these will be the target of intervention in humans.

COMMITMENT TO SEXUAL DIFFERENTIATION

Commitment to sexual differentiation marks the key decision point at which the parasite responds to signals to ‘adapt or die’ i.e., to transmit or not. This irreversible and binomial decision is variable and can take place within the same IDC cycle, whereby merozoites entering erythrocytes either directly initiate gametocytogenesis at low frequency (same cycle conversion), or complete another round of asexual replication after which daughter merozoites released from the committed schizont invade erythrocytes and only then initiate gametocytogenesis (next cycle conversion) (Bancells et al., 2019). This depends on the temporal expression of factors responsible for sexual differentiation. In either situation, the merozoite progeny of a single schizont will become either all male or all female gametocytes, resulting in the biased production of committed schizonts and the 4:1 (female: male) sex ratio of P. falciparum (Silvestrini et al., 2000; Smith et al., 2000).

Commitment is a clear example of eukaryotic processes employed by Plasmodium in response to external factors, the majority of which are related to host or environmental stressors that the parasite can sense and that forces it into sexual commitment in a classic mechanism of species survival (Paul et al., 2002; Talman et al., 2004; Sowunmi et al., 2008). These
signals include high parasitemia or increased pathology experienced in the host [anemia or hemolysis, high lymphocyte or reticulocyte densities (Gautret et al., 1996; Trager et al., 1999), and immune pressure (Ono et al., 1986)] or external factors including co-infections (Menezes et al., 2018). But nutrient sensing is one of the main external factors inducing commitment. LysoPC restriction (a phosphatidyl choline, PC, abundant in serum) induces gametocyte production in vitro (Brancucci et al., 2017) due to the complete reliance of ABS on PC for conversion into lipid membranes through the Kennedy pathway. When LysoPC is depleted, ABS parasites can only survive for a single asexual cycle by using phosphoethanolamine (PE) methyltransferase (PfPMT) to produce PC via the trimethylation of PE (Witola et al., 2008; Brancucci et al., 2018).

Molecular role players downstream of LysoPC sensing that regulate gametocytogenesis have been somewhat elucidated and include *P. falciparum* gametocyte development 1 (PfGDV-1) as the key role player in gametocytogenesis, specific to *P. falciparum* and divergent from rodent *Plasmodium* spp. (Brancucci et al., 2017). PfGDV-1 regulates expression of the transcription factor PfAP2-G from the apicomplexan-specific Apetala2 transcription factor family (Eksi, 2012; Filarsky et al., 2018), by evicting heterochromatin protein 1 (PfHP1) from the histone post-translational modification (PTM) H3K9me3 site upstream of ap2-g (Filarsky et al., 2018), a mark that is maintained by histone deacetylase 2 (PfHda2). PfGDV-1 is itself regulated by an antisense RNA mechanism (Broadbent et al., 2015), and AP2-G can regulate its own transcription through feedback inhibition (Kafseck et al., 2014; Sinha et al., 2014). A key outstanding question is how these metabolites link to the maintenance of heterochromatin that controls the frequency of ap2-g activation. One connection is the requirement of S-adenosylmethionine (SAM) for both histone methylation (H3K9me3) and PE methylation by PfPMT. With PfPMT likely consuming 3x the amount of SAM under PC restricting conditions, H3K9me3 may not be maintained (Neveu et al., 2020a), thereby lifting the heterochromatic restriction on the ap2-g locus.

Can Sexual Commitment be Targeted?

Commitment to gametocytogenesis can seemingly be increased *in vivo* due to drug treatment including the presence of steroid hormones (Lingnau et al., 1993), fansidar (Puta and Manyando, 1997), chloroquine, sulphadoxine-pyrimethamine (Talman et al., 2004) and other antimalarials (Peatley et al., 2009; Portugaliza et al., 2020). This has often raised a concern as to potential increased transmission of the parasite under sub-optimal treatment conditions. Indeed, quantitative data on sexual commitment rates after drug (including antimalarials) exposure indicated elevated sexual commitment as a general stress response at a narrow window around the IC50, and in the case of melquine and pyrimethamine, resulted in a net increase in gametocyte production (Thommen et al., 2022). Whether this translates to therapeutic induction of gametocytes is unclear, but it would be a concern if antimalarials are not used at effective doses, as can often be the case in some endemic regions.

The question then remains if there are any druggable processes during commitment that would prevent the initiation of the evolutionary escape process? With the involvement of PfPMT, the Kennedy pathway and epigenetic modulators, one could foresee potential for small molecule interventions. However, beyond the above evidence of drugs inducing gametocytogenesis when used on ABS parasites, no reports of drugs preventing gametocyte commitment by targeting the molecular role players are available, possibly due to the difficulty associated with detecting committed ring and schizont stages that precludes large scale investigations. The development of new *P. falciparum* reporter lines to detect commitment (Thommen et al., 2022) may open up investigations of new antimalarial leads blocking this process. Genetic manipulation have indeed resulted in several gametocyte deficient cell lines [e.g. gdv1 (Tiburcio et al., 2021), ap2-g (Kafseck et al., 2014) and pmt (Bobenchik et al., 2011)], validating the importance of these regulators to gametocytogenesis and opening up potential avenues for intervention. Enzymes involved in *Plasmodium* spp. Kennedy pathway are of interest. PfPMT can be inhibited on a protein level by MMV019918 (Vallone et al., 2018), hexadecyltrimethylammonium, docdecyltrimethylammonium and amodiaquine (Bobenchik et al., 2010; Garg et al., 2015) although whole cell inhibition data is lacking. Choline kinase (CK) is essential to *P. berghei* blood stages (Aoyama et al., 2004; Witola et al., 2008; Decamps et al., 2010) and structural mimics of choline cause selective inhibition of CK (Witola and Ben Mamoun, 2007; Alberge et al., 2009).

Based on the strong involvement of epigenetic regulation of PfAP-2G activation and the key H3K9me3/ac balance, it would be interesting to investigate if inhibitors of e.g. histone lysine methyltransferases (HKMTs) such as BIX01294 (that prevents ABS proliferation and gametocyte viability [Malmquist et al., 2015; Coetzee et al., 2020]), histone demethylases such as JIB-04 or ML324 (active against mature gametocytes (Matthews et al., 2020; Reader et al., 2021)), or hydroxamate-based HDACi (with potent antiplasmodial activity and limited cytotoxicity (Coetzee et al., 2020; Vanheer et al., 2020), also prevent gametocyte conversion and commitment.

Whether targeting any of these processes will in any form translate to compounds with therapeutic advantage is questionable. Indeed, such a compound will not clear ABS parasites, and will not prevent gametocyte maturation and transmission, unless commitment can be entirely halted before same cycle conversion occurs. Sole inhibition of commitment is therefore not a justifiable profile, and commitment-blocking activity will likely only be considered as an additional advantage of compounds with ABS activity, although the contribution of such added activity to overall efficacy (either as ABS cure or transmission-blocking active) is difficult to quantify.

THE EARLY PHASE OF GAMETOCYTE DIFFERENTIATION AND DEVELOPMENT

Once committed to gametocytogenesis, the early phase of gametocyte differentiation is marked by massive ultrastructural and functional adaptations in the associated immature (stage I-
IV) gametocytes. Importantly, to avoid splenic clearance and elude the host immune system, immature gametocytes sequester in the extravascular space (erythroblastic islands) of the bone marrow parenchyma and in the spleen (Neveu et al., 2020b). The bone marrow provides a nutrient-rich, anaerobic environment with the relative distribution of fatty acids, including LysoPC, in the bone marrow, that differs greatly from that in serum (Brancucci et al., 2017).

Morphologically, early stage I-III P. falciparum gametocytes are characterized by the increased presence of food vacuoles, extended polyribosomes, and the deposition of a network of subpellicular inner membranes (the inner membrane complex, IMC), to form the characteristic D-shape of stage III, subtended by a dense deposition of microtubules (MT), actin and formin-1 (Figure 2) (Dixon and Tilley, 2021). The IMC and MT network associates with glideosome components (GAP50, GAP45 and MTIP) and membrane trafficking proteins, PhIL1 and PIP (Parkyn Schneider et al., 2017). Immature P. falciparum gametocytes further actively remodel the host erythrocyte, thereby exposing antigens for cell-cell interactions (Messina et al., 2018), distinct from those used by ABS. Active protein export in P. falciparum immature gametocytes is exemplified by the upregulation of gametocyte exported proteins (GEXP) (Silvestrini et al., 2010), a third of which belong to the Plasmodium helical interspersed subtelomeric (PHIST) protein family (Sargeant et al., 2006) with known roles in host cell remodeling and protein trafficking (Warncke et al., 2016). Immature gametocytes also export rhoptry proteins to increase permeability and activate (reversibly) new permeation pathways (NPP) that mediate nutrient uptake in immature gametocytes (Bouyer et al., 2020). Taken together, these changes result in increased stiffness in the immature gametocyte to allow mechanical retention in the bone marrow and avoid splenic clearance.

On a molecular level, immature gametocytes are substantially distinguished from ABS by divergent sex- and stage-specific transcriptomes (Lopez-Barragan et al., 2011; Lasonder et al., 2016; Van Biljon et al., 2019). PfGEXP5 is the earliest detected gametocyte marker expressed in an AP2-G independent manner (Tiburcio et al., 2015), but AP2-G dependent gametocyte-specific markers include Pf616, Pf2725, Pf14.744, Pf14.745, Pf14.748 and ETRAMP10.3/PEG4 (Kafsack et al., 2014), in addition to 308 other markers expressed in committed schizonts and early gametocytes (Pelle et al., 2015). The molecular role players associated with transcriptional reprogramming during immature gametocyte development have been somewhat
elucidated, and include transcription factors like AP2-G2 (essential to maturation in these immature (Singh et al., 2021)), whilst increased expression implicates factors such as PfMyb1 and MYCBP (a c-Myc binding protein) in sex-specific gene regulation. Post-commitment epigenetic regulators include unique histone methylation repressive marks associated with repression of ABS related genes (Coetzee et al., 2017; Connacher et al., 2021; Von Gruning et al., 2022), the upregulation of putative chromatin remodelers like ISWI and SNF2L (Poran et al., 2017) and expansion of HP1 occupancy (Fraschka et al., 2018) and use of repressive histone PTMs (e.g. H3K36me2/3) for a resultant heterochromatic nature (Connacher et al., 2022). The conversion to commitment is further evident in changes in mRNA dynamics with subsets of gametocyte-specific transcripts stabilized in these early stages, and ABS related mRNAs undergoing active decay (Painter et al., 2017).

The transcriptional reprogramming manifests on a metabolic level, firstly to adapt the gametocyte to aerobic energy production and secondly, to enable lipid biosynthesis towards eventual fertilization. This switch is most likely due to the gametocytes’ move to the hypoxic hematopoietic bone marrow where host-derived glutamine is the main carbon source (Srivastava et al., 2017). Whilst ABS parasites rely mostly on glycolysis for energy production, during early gametocyteogenesis, metabolism moves to become more fermentative and occurs partly through the tricarboxylic acid (TCA) cycle and aerobic energy production via the electron transport chain (ETC) (Macrae et al., 2013). This is exemplified by the upregulation of 15/16 transcripts involved in TCA metabolism (Lasonder et al., 2016; Van Biljon et al., 2019), the presence of a large, branched mitochondrion and a 7-fold increase in the activity of cytochrome b (Crofts, 2004). The gametocyte lipidome also differs significantly from other life cycle stages with a clear enrichment (>8-fold) in phosphatidylserine (PS), ceramides and dihydroceramides in gametocytes (Lamour et al., 2014; Gulati et al., 2015).

Male-specific proteins (those required for later genome replication in preparation for exflagellation) appear earlier at stage I/II development (Van Biljon et al., 2019). Sex-specific proteins include Pfβ377, involved in osmosphilic body production produced from stage III and important to females (Alano et al., 1995; Severini et al., 1999b; de Koning-Ward et al., 2008), Pfspa4 - a 6-cysteine domain protein expressed exclusively in females from stage II (Van Schaijk et al., 2006) and Pfβ25 and CCP4 as female-specific surface protein (Schneider et al., 2015; Meerstein-Kessel et al., 2018). Although PfMDV-1/PEG3 (male development protein 1 and protein of early gametocyte 3, respectively) is expressed in both sexes and its expression is regulated by PfAP2-G2 (Xu et al., 2020), disruption of Pfmdv-1 results in a dramatic reduction in functionally mature male gametocytes and partially perturbed mosquito infectivity (Furuya et al., 2005). Pfβ48/45 is expressed from stage II (Lobo et al., 1999) and its ablation reduces male fertility (Van Schaijk et al., 2006) whereas PfPu2 is a regulatory protein whose deletion results in aberrant male gametocyte differentiation (Miao et al., 2010).

Targeting Immature Gametocytes

Targeting the process of early gametocyte sequestration and differentiation could have a dramatic impact on transmission and provides motivation for further investigation into the mechanisms parasites use to establish themselves in the bone marrow microenvironment. The majority of antimalarials with ABS activity will retain their activity on immature gametocytes if a similar biology/protein is targeted e.g., hemoglobin metabolism, which is only active until stage III development (Plouffe et al., 2016). This could therefore prevent any development beyond the immature stages. However, in some cases (e.g., the 4-aminoquinolines targeting heme metabolism, which is inactive by stage IV), there is a loss in activity and the effective concentration targeting immature gametocytes is higher than that required to kill the ABS; in some cases this is even more pronounced in stage IV gametocytes (Table 1) (Plouffe et al., 2016).

In this scenario, if any immature gametocytes are formed, and cannot be effectively targeted, they will continue to seed mature gametocytes. Since only 20 parasites/µL can result in an infective mosquito (Usui and Williamson, 2021), this poses a high risk to transmission-blocking activity. Additionally, if the same biology is targeted between ABS and immature gametocytes, and resistance develops in the ABS stages to a particular antimalarial, this would be transferred to the immature stage, rendering the antimalarial completely ineffective as transmission-blocking active and resulting in spread of resistant parasites. Lastly, several ABS targeting antimalarials are completely ineffective against immature stages (e.g., pyrimethamine and atovaquone), and data on the activity of some frontrunner and development compounds like Ganapladic (KAF156, an imidazolopiperazine targeting protein secretion (Kuhlen et al., 2014)), P218 (a pyrimidine targeting dihydrofolate reductase ([Posaypisit et al., 2021]) and MMV183 [a panthothenate targeting acetyl coA synthetase (Schalkwijk et al., 2019)], are lacking.

Several antimalarial frontrunners retain activity against immature gametocytes with inhibition of Na+ homeostasis by targeting the cation transporting ATPase PfATP4 (e.g., Cipargamin, KAF246), protein synthesis through inhibition of elongation factor PfEF2 (e.g. M5717) and the phosphatidylinositol (PI)-4 kinase (PfPI4K) inhibitor MMV390048 (Paquet et al., 2017), resulting in some of the most potent compounds in development currently (Table 1). Their almost equipotent activity between ABS and immature gametocytes is imminently useful to block gametocytegenesis. This is also thought to be mediated by the NPP, still active in immature gametocytes (Bouyer et al., 2020).

As immature gametocytes are associated with transcriptional reprogramming, metabolic adaptations, and ultrastructural changes, any of these processes become appealing from an inhibitory perspective (Figure 2). However, aside from the compounds with additional ABS activity, for which targets have been elucidated, very few target-specific indicators have been described in these immature stages. But extrapolations from genetic validation of the essential nature of some of the processes involved in these early phases of gametocytegenesis could provide an avenue worth exploring to validate druggability of
these processes. For instance, the genetic validation of the importance of PhIL1, PIP1 (and 3) and α-tubulin II to early gametocyte structural changes (Parkyn Schneider et al., 2017; Dixon and Tilley, 2021), mark these as potential drug targets, although no evidence of successful inhibition of homologues to these structural proteins is available. By contrast, the actin filaments that polarize to the opposite ends of the cell and co-localize with the actin nucleation factor, formin-1, are sensitive to cytochalasin-D, affecting bone marrow and spleen sequestration in *P. berghei* gametocytes, suggesting actin is required for tissue homing and the gametocytes’ subsequent return to circulation (De Niz et al., 2018).

MATURATION OF GAMETOCYTES TO TRANSMISSIBLE FORMS

The ultimate step in gametocyte development and differentiation requires the parasite to mature to be transmissible. Stage V gametocytes therefore change in shape to become less rigid to allow the parasite to return to the blood circulatory system and secondly, they adapt metabolically to survive in the human host for prolonged periods. The deformability switch leading to the release of stage V gametocytes from bone marrow or splenic retention is mediated by loosening of the IMC and disruption/partial disruption of associated proteins and with the loss of the MT network and STEVOR proteins (Dearnley et al., 2012; Tiburcio et al., 2013; Nilsson et al., 2015; Dixon and Tilley, 2021).

Metabolically, mature gametocytes do not metabolize hemoglobin and slow their flux through glycolysis. These parasites remain metabolically active but now, like typical eukaryotic cells, utilize glutaminolysis for oxidative metabolism through the TCA cycle for energy production (MacRae et al., 2013; Lamour et al., 2014) (Figure 3). This is underscored by distinct changes in the mature gametocyte transcriptome and metabolome. These shifts highlight the requirement of mature gametocytes to prepare for the challenging environment in the mosquito, where the energy demands are high, and efficiency is vital for transmission. Transcriptional reprogramming therefore results in ~20-25% of the *Plasmodium* genome expressed specifically in the sexual stages (Lasonder et al., 2016; van Biljon et al., 2019), creating an epigenetically-mediated transcriptionally poised state (Coetzee et al., 2017; von Gruning et al., 2022) including translational repression of...
female-associated transcripts (Lasonder et al., 2016). Regulators of translation like DOZI and CITH mediate the storage of mRNA transcripts in the form of ribonucleoprotein complexes within female gametocytes for rapid translation during female gamete activation. mRNA targets are bound by P/PuF2, the disruption of which results in translation and the increased production of the associated protein (Miao et al., 2013). Those transcripts not stabilized are regulated by the CAF1/CCR4/NOT complex causing mRNA decay and thereby translational repression (Figure 3) (Hart et al., 2019; Hart et al., 2021).

Genes transcribed later in gametocytogenesis relate to the processes specific to maturation and include the switch from sequestration to peripheral circulation (deformability), as well as processes involved in readying the parasite for transmission to the mosquito (protein synthesis for locomotion, host cell entry and actin depolymerization) (van Biljon et al., 2019). The marked expansion of mitochondrial numbers and the exclusive presence of cristae observed in mature gametocytes (Evers et al., 2021) correlate with a 40-fold increase in ETC components (Evers et al., 2021) and upregulation of TCA associated genes (Eksi et al., 2006), both involved in the motility and viability of exflagellating gametes.

This is evident in upregulation of actin depolymerization factors 1 and 2, leading to increased cellular deformability, enrichment of cholesterol esters and dihydrospingomyelin in female gametocytes; the latter crucial for both sexes’ viability (Ridgway et al., 2022) and an up to 60-fold enrichment in diacylglycerol and triacylglycerol, associated with the presence of fatty acid-rich and osmiophilic bodies (including PE & PC) at the gametocyte periphery (Tran et al., 2016). These serve as energy storage to fuel the increases in protein and phospholipid biosynthesis during gametogenesis and subsequent fertilization (Bouyer et al., 2022). However, if resistance develops against these compounds, it would likely be transmitted as the compounds would lose efficacy against mature gametocytes as well. This could be resolved by combination therapies where a compound targeting specific biology associated with gametocytes are combined with compounds targeting proliferative processes in ABS. Conceptually, this would protect the ABS component from resistance spread. However, with this strategy, it is essential to target unique biology in gametocytes. Such potential targets include the deformability of mature gametocytes, where the two light chains of the myosin motor PMyoA, PELC and MTIP were shown to be essential and could be starting points for the development of novel antimalarials targeting the glideosome (Moussaoui et al., 2020) (Figure 3). Additional targets around deformability include cAMP signaling and STEVOR dephosphorylation with inhibition of phosphodiesterase by sildenafil citrate or PKA inhibition by KT5720 and H89 changing the flexibility of gametocytes (Ramdani

Targeting Mature Gametocytes

Transmission-blocking requires compounds to either kill or substantially compromise (sterilize) mature gametocytes, such that drugs delivered to affected humans will prevent transmission (Birkholz et al., 2022). However, most ABS actives – which typically target proliferative processes – are inactive on mature gametocytes, simply because the underlying biology is so markedly different or alternatively, uptake into mature gametocytes may be compromised due to inactive NPPs (Bouyer et al., 2020). Indeed, as indicated above, mature gametocytes are not quiescent but rather metabolically more like normal eukaryotic cells than the ABS, which are more alike cancerous cells with high metabolic flux through glycolysis and induction of the Warburg effect, resulting in fermentative states (Salcedo-Sora et al., 2014).

Protein synthesis, protein secretion, ion homeostasis and lipid metabolism remain powerful processes to target with M5717, GNF179, Cipargamin (KA609) & KAF246, and MMV390048, respectively, displaying transmission-blocking activities at concentrations amenable to therapeutic indices (Table 2). However, if resistance develops against these compounds, it would likely be transmitted as the compounds would lose efficacy against mature gametocytes as well. This could be resolved by combination therapies where a compound targeting specific biology associated with gametocytes are combined with compounds targeting proliferative processes in ABS. Conceptually, this would protect the ABS component from resistance spread. However, with this strategy, it is essential to target unique biology in gametocytes. Such potential targets include the deformability of mature gametocytes, where the two light chains of the myosin motor PMyoA, PELC and MTIP were shown to be essential and could be starting points for the development of novel antimalarials targeting the glideosome (Moussaoui et al., 2020) (Figure 3).
et al., 2015). Ceramides and complex sphingolipids regulate membrane fluidity and increase in abundance during maturation. Two compounds targeting dhCer (ceramide precursor) synthase and displaying gametocytocidal activity were recently identified (Gulati et al., 2015), suggesting that lipid synthesis might be a viable target in mature gametocytes.

Gametocyte-specific biology that is currently under investigation include a renewed focus on mitochondrial respiration, although the differentiation associated with TCA and the ETC in gametocytes have to be taken into account (Van Biljon et al., 2019; Evers et al., 2021), which explains the lack of activity of dihydroorotate inhibitors (e.g. DSM265). Targeting of cytochrome bc1 seems highly dependent on structural motifs of antimalarial compounds either biding the oxidative (Qo) site and a reductive (Qi) site (Fisher et al., 2020). Atovaquone binds the Qo site but this does not change gametocyte viability and atovaquone activity only manifests in ookinete formation (Jeevaratnam et al., 2021) (Table 2). This potency emphasizes the importance of the TCA cycle in mature gametocytes for primary energy metabolism (Macrae et al., 2013; Lamour et al., 2014) and marking this as a prime targetable process, currently being investigated by the Medicine for Malaria Venture (Stickles et al., 2015a; Stickles et al., 2015b). Several other hit compounds are being used to explore such transmission-specific biology including histone demethylase inhibitors ML324 and JIB-04 (Table 2) (Matthews et al., 2020; Reader et al., 2021), and compounds with polypharmacology in protists including the protonophore SQ109 (Reader et al., 2021).

GAMETOGENESIS TO FORM OOCYSTS IN THE MOSQUITO VECTOR

In an extraordinary feat of biology, gametogenesis in *Plasmodium* is a result of finetuned responses to environmental signals associated with host to vector environmental changes, including a 5°C temperature drop, presence of xanthurenic acid and pH increase (7.2 to 8) (Arai et al., 2001). This results in rapid activation of DNA synthesis/replication, protein synthesis, axoneme assembly and egress within the male gametocyte, as well as protein synthesis and egress in the female gametocyte (Delves, 2012). Fertilization requires active motility, cell-to-cell recognition and membrane fusion, whereas ookinete development is dependent on vegetative growth, protein synthesis and motility (Delves, 2012).

The subsequent activation of guanylyl cyclase (GCα) and cyclic guanosine 3', 5'-monophosphate (cGMP) signaling is crucial to activation of protein kinase G (PKG) as key role player in gametogenesis and egress (Kuehn and Pradel, 2010; Balestra et al., 2021), the signal transduction of which occurs, in part, through the multipass membrane protein ICM1 (Balestra et al., 2021) (Figure 4). The PKG mediated cascade (including involvement of PPPI4K and phosphatidinositol 4-phosphate 5-kinase, PIP5K) results ultimately in opening of IP3-gated calcium channels on the ER and a resultant increase in intracellular Ca2+ (Bennink et al., 2016). Activation of several sex-specific CDPKs ensues (Brochet et al., 2021), including CDPK1-mediated release of DOZI, CITH and PjPu2 for translation in female gametes and CDPK4 to activate cyclins and cyclin-dependent kinases for cell division in male gametes (Kumar et al., 2021) (Figure 4). The latter is mediated by successive S and M cell cycle phases (Raabe et al., 2009; Meibalan and Marti, 2017). The high energy demands of replicating, motile male gametes are satisfied through exclusive reliance on glycolysis (Talman et al., 2014; Srivastava et al., 2016).

Egress is mediated by the osmiophilic body proteins Pjfg377, PjMDV-1 and gamete egress and sporozoite survival (GEST) protein (De Koning-Ward et al., 2008; Bargieri et al., 2016), as well as the egress vesicle proteins, perforin-like protein (PPLP2) that mediates the formation of pores in the erythrocyte membrane (Sologub et al., 2011) (Figure 4). Cysteine and serine proteases

Table 2 | Summary of key antimalarials, front-runner and development compounds as well as investigative hits with in vitro activity (< 5 µM) against *P. falciparum* mature gametocytes.

Compound	IC50 (nM) Stg V	Target	Ref
Mefloquine (+RS)	158	80S ribosome	Plouffe et al., 2016
ELQ-300	72	Cytochrome bc1(Qi)	Nilsen et al., 2013
Cipargamin (KAE609)	100*	mTOR / PI3K	Van Pelt-Koops et al., 2012
KAF246	2	mTOR / PI3K	Rottmann et al., 2010; Plouffe et al., 2016
MS717 (DDD498)	9	PIP2 / protein synthesis	Rottmann et al., 2010; Plouffe et al., 2016
MMV390048	140	PIP4K	Paquet et al., 2017
AZD-0156	236	PIP4K	Reader et al., 2021
KDU691	150	mTOR / PI3K	McNamara et al., 2013
ML324	77	Pjfm3	Reader et al., 2021
JIB-04	3630	mTOR / PI3K	Matthews et al., 2020
Methylene blue	258	Glutathione reductase	Buchholtz et al., 2008; Plouffe et al., 2016
GNF179	3	Protein secretory pathway	Plouffe et al., 2016
Bimirapant	135	Unknown (caspase 3 inhibitor)	Reader et al., 2021
MMV1581558	130	Unknown (Adenosine A3 receptor)	Reader et al., 2021
MMV1580843	108	Unknown (MmpL3 in Mtb)	Reader et al., 2021
SQ109	104	Unknown (MmpL3 in Mtb)	D’Alessandro et al., 2016
Epoxomicin	6.6	jb2 and 5 proteasome subunits	(D’Alessandro et al., 2016)

*% inhibition of gametocyte viability 500 nM.
(falcipain-1, plasmspein IX, plasmeplaein X, SERA-6, SERA-7, and PPSUB3), MTRAP and PDPAP2 are involved in PVM and erythrocyte membrane rupture, and aspartic proteases in gamete round-up (Munsamy et al., 2018). Egress is followed by exflagellation, mediated by the male-specific axoneme assembly (flagellum formation) proteins (e.g., the armadillo repeat protein PF16, Kinesin 8B, SAS-6 (Straschil et al., 2010; Depoix et al., 2020); MAP2 and CDC20 (Kumar et al., 2021); cytoskeletal proteins α-tubulin II and actin II (Elena et al., 2011) and PjMR5 (Eksi et al., 2006). Mutual recognition and male and female gamete attachment are mediated by P230, Pfs48/45, Pfs47 (Van Dijk et al., 2010), complement control CCP proteins (Baker, 2010) and Pb115 (Liu et al., 2019) (Figure 4).

After fertilization, the resultant zygote develops into an ookinete with pronounced energy requirements through oxidative phosphorylation and the glycolytic pathway (Delves et al., 2019). HAP2 (Kuehn and Pradel, 2010) and protein disulphide isomerase (PDI) (Angrisano et al., 2019) are responsible for nuclear fusion, and genome tetraploidy in the resulting zygote is mediated by NIMA-related kinases, NEK-2 and NEK-4 (Pradel, 2007). The mature ookinete is motile and capable of cell invasion, which is mediated by glideosome machinery under the regulation of AP-O (Singh et al., 2021b) and involving cGMP mediated signaling (Gao et al., 2018) and kinases such as PKG, CDPK1, CDPK3, and PK7 (Singh et al., 2021a) (Figure 4).

Targeting Parasite Development in the Mosquito

Since gametogenesis involves re-activation of processes that were targetable during ABS development (such as DNA replication) as well as male and female specific events, targeting of gametogenesis and oocyst formation have been the topic of much discussion. Indeed, several screening cascades places gamete formation or downstream oocyst formation as primary endpoints to identify transmission-blocking antimalarials, with the potential broader hit detection capacities compared to gametocytocidal screens that will not be able to detect compounds that do not affect their viability but only compromise mature gametocytes, thereby sterilizing them for downstream fertilization (Delves et al., 2019). In fact, the
transmission-blocking activity of any compound active on mature gametocytes has to be validated on oocyst formation (Birkholtz et al., 2022). Importantly, this must consider natural oocyst densities, which then prioritizes development candidates M5717, MMV048 and KAE609 as the most effective for transmission-blocking (Table 3) (Dechering et al., 2017). Compounds with sole gametocidal or sporontocidal activity will be challenging to develop since they would need an extraordinarily long human serum half-life to still be effective once taken up into the mosquito vector. Strategies focused on direct delivery to mosquitoes is currently seen as only viable alternative (Paton et al., 2019).

As expected, signaling cascades associated with gametogenesis are inherently targetable, with PDE and PKG on the forefront, both being essential to gametogenesis and chemically targeted by Zaprinast, (Mcrobert et al., 2008) and imidazopyridines such as ML10 (Mcrobert et al., 2008; Taylor et al., 2010; Baker et al., 2017; Baker et al., 2020), respectively (Table 3). Ca²⁺ homeostasis is inherently targetable with several CDPKs having been investigated; CDPK1 with imidazopyridazines (Lemercier et al., 2009; Chapman et al., 2009; Chapman et al., 2014); CDPK4 by bumped kinase inhibitors (Huang et al., 2016) and pyrazolopyrimidine derivatives (Vidadala et al., 2014). This extends to CDPK3 and PK7 during fertilization, with other activities such as PDI and PDE also potentially important (Angrisano et al., 2019). Targeting energy metabolism is important in the metabolically active ookinetes and oocysts, as evident by sporonticides atovaquone and ELQ-300 as potent inhibitors of cytochrome bc1 (Table 3) and recent evidence also points to the importance of targeting cytoskeletal proteins such as Pfs16 (Yahiya et al., 2021) that plays a role during the immediate phase of microgametogenesis with DDD01035881 (Delves et al., 2018b).

CONCLUSION AND FUTURE DIRECTIONS

The vast expansion of our understanding of the processes mediating transmission and survival of malaria parasites over the years has led to the identification of many potential targets. Table 3 summarizes key antimalarials, front-runner and development compounds as well as investigative hits with in vitro activity (>70% inhibition, or < 5 µM IC₅₀) against male and female gametes, as well as oocyst formation.

Compound	Gametes (%)	TRA%	Target	Ref
Chlorproguanil	–	100	DNA replication/ transcription	(Vos et al., 2015)
Cycloguanil	96	0		(Delves et al., 2013)
P218	4	99		(Vos et al., 2015; Posayapisit et al., 2021)
Pyrimethamine	94	0		(Vos et al., 2015; Vos et al., 2015)
Atovaquone	12	12	100 Cytochrome bc1 (Qo)	(Vos et al., 2015; Vos et al., 2015)
ELS-300	100	0		(Vos et al., 2015)
Cycloheximide	100	0	100 Unknown	(Vos et al., 2015; Vos et al., 2015)
KD5891	–	100		(Vos et al., 2015)
MMV590048	90	0	100 PIP4K	(Paquet et al., 2017)
AZD-0156	84	65	1.8% PEF2	(Baragana et al., 2015)
M5717 (DDD498)	–	1.8	Protein secretory pathway	(Plouffe et al., 2016)
GNF179	–	100		(Kühn et al., 2014)
Ganalplacide (KAF156)	–	90	1.8% PEF2	(Baragana et al., 2015)
ML324	93	0	95% PIP3	(Reader et al., 2021)
JIB-04	10	80		(Matthews et al., 2020)
ML10	–	41	100 PKG	(Baker et al., 2017)
MMV030084	141	6		(Vanaerschot et al., 2020)
Methylene blue	98	0	99 Glutathione reductase	(Dechering et al., 2015)
Epoxomicin	–	100		(Czasny et al., 2009)
B0X10294	120	727	100 jβ2 and 5 subunits of the proteasome	(Malmquist et al., 2015)
SJ733	–	–		(Dechering et al., 2017)
KAE609 (NDT609)	–	100	100 SPTP4	(Van Pett-Koop et al., 2012)
Binapant	75	78	100 Caspase 3	(Reader et al., 2021)
MMV1581558	79	80	100 Unknown (Adenosine A3 receptor)	(Delves et al., 2013; Vos et al., 2015)
MMV1580843	70	84	100 Unknown	(Delves et al., 2021)
SQ109	53	80	100 Unknown (MmpL3 in Mtb)	(Dechering et al., 2019)
TMCDC-137173	78	21	25% Unknown (MmpL3 in Mtb)	(Dechering et al., 2019)
TMCDC-134114	99	0	56% Unknown	(Vos et al., 2015)
DDD01035881	540	>10	100 Pfs16	(Dechering et al., 2018b)
DDD01028074	220	>10	100 Unknown	(Vos et al., 2015)
the past decade has provided a deep insight into the possibilities and challenges associated with the identification and development of transmission-blocking interventions. ‘Omics data clearly indicates the importance of transcriptional reprogramming that manifests as metabolic adaptations and is initiated during commitment but evidently established in immature gametocytes and progressing during maturation to result in differentiated sexual parasites. Although such ‘blueprints’ are inherently informative, we are far from understanding the regulatory mechanisms involved but we do understand the involvement of epigenetic, transcriptional, and post-transcriptional mechanisms. New developments in inducible gene manipulation systems will allow a deeper investigation of the importance of gametocyte-specific regulators (Tiburcio et al., 2019), and this information could be translated to identify druggable candidates for guided, target-based discovery of novel transmission-blocking chemotypes. Additionally, the use of proteomics to identify and validate drug targets in gametocytes have been developed (Dziekan et al., 2019; Yahiya et al., 2021), yet, we are far from a streamlined drug target identification and mode-of-action platform for gametocytes similar to the extensive pipeline used to characterize ABS actives (Yang et al., 2021). Indeed, if any of the new transmission-selective hits are to be further developed, this area needs investment and development. Knowledge of a transmission-blocking compound’s target is particularly needed to allow combinations with ABS actives with a different target to have any success in preventing spread of resistance. If we are successful in identifying unique transmission-blocking antimalarials, it is envisaged that they could be used as add-on to current therapeutic strategies in combination with ABS actives or can be used as stand-alone treatments to clear gametocyte carriers of parasites. Innovations such as alternative culture conditions for gametocytogenesis to more closely reflect the in vivo environment associated with P. falciparum gametocyte development; humanized mouse models of P. falciparum transmission to evaluate efficacy of transmission-blocking actives; adipo formulations for long-lasting release of gametocytocidal drugs, or compounds targeting the parasite when delivered directly to the mosquito vector, may indeed be promising to prevent the spread of malaria parasites and hence this disease.

AUTHOR CONTRIBUTIONS

L-MB conceived the work and MvdW, JR, and L-MB wrote and edited the paper. All authors contributed to the article and approved the submitted version.

ACKNOWLEDGMENTS

L-MB acknowledges the South African Medical Research Council Strategic Health Innovation Partnership and the Department of Science and Innovation South African Research Chairs Initiative, administered through the South African National Research Foundation (UID 84627). Research is supported by a BMGF Grand Challenges Africa grant (GCA/ DD2/Round10/021/001) and by the Medicines for Malaria Venture as Global Test Centre for stage-specific gametocytocidal assays to L-MB. The UP ISMC acknowledges the South African Medical Research Council (SA MRC) as Collaborating Centre for Malaria Research. Figures were generated in BioRender.com under a standard academic license.

REFERENCES

Alano, P., Read, D., Bruce, M., Aikawa, M., Kaido, T., Tegoshi, T., et al. (1995). *M. (2019). Male-Specific Protein Disulphide Isomerase Function is Essential for Transmission and a Vulnerable Target for Intervention.* *Sci. Rep.* 9, 18300. doi: 10.1038/s41598-019-54613-0

Ansell, K. H., Jones, H. M., Whalley, D., Hearn, A., Taylor, D. L., Patin, E. C., et al. (2014). *Biochemical and Antiparasitic Properties of Inhibitors of the* *Plasmodium Falciparum* *Calcium-Dependent Protein Kinase Pfcdp1.* *Antimicrob. Agents Chemother.* 58, 6032–6043. doi: 10.1128/AAC.02959-14

Aoyama, C., Llora-Batlle, O., Poran, A., Notzel, C., Rovira-Graells, N., Elemento, M. B., et al. (2017). *A Potent Series Targeting the Malarial* *GDP-Dependent Protein Kinase Clears Infection and Blocks Transmission.* *Nat. Commun.* 8, 430. doi: 10.1038/s41467-017-00572-x

Balestra, A. C., Koussis, K., Klages, N., Howell, S. A., Flynn, H. R., Bantscheff, M., et al. (2021). *Ca(2+) Signals Critical for Egress and Gametogenesis in Malaria Parasites Depend on a Multipass Membrane Protein That Interacts With PKG.* *Sci. Adv.* 7, 1–17. doi: 10.1126/sciadv.abe5396

Bancells, C., Llora-Batlle, O., Poran, A., Notzel, C., Rovira-Graells, N., Elemento, O., et al. (2019). Revisiting the Initial Steps of Sexual Development in the Malaria Parasite *Plasmodium Falciparum.* *Nat. Microbiol.* 4, 144–154. doi: 10.1038/s41564-018-0291-7

Bannister, L., and Mitchell, G. (2003). The Ins, Outs and Roundabouts of Malaria. *Trends Parasitol.* 19, 209–213. doi: 10.1016/S1471-4922(03)00086-2

Baragana, B., Hallyburton, I., Lee, M. C., Norcross, N. R., Grimaldi, R., Otto, T. D., et al. (2015). A Novel Multiple-Stage Antimalarial Agent That Inhibits Protein Synthesis. *Nature* 522, 315–320. doi: 10.1038/nature14451

Bargi, D. Y., Thiberge, S., Tay, C. L., Carey, A. F., Rantz, A., Hischen, F., et al. (2016). *Plasmodium Merozoite TRAP Family Protein Is Essential for Vacuole

...
the Malaria Parasite. Cell Microbiol. 13, 1714–1730. doi: 10.1111/j.1462-5882.2011.01652.x

Delves, M. J. (2012). Plasmodium Cell Biology Should Inform Strategies Used in the Development of Antimalarial Transmission-Blocking Drugs. Future Med. Chem. 4, 2251–2263. doi: 10.4155/fmc.12.182

Delves, M. J., Angrisano, F., and Blagborough, A. M. (2018a). Antimalarial Transmission-Blocking Interventions: Past, Present, and Future. Trends Parasitol. 34, 735–746. doi: 10.1016/j.pt.2018.07.001

Delves, M., Lafuente-Monasterio, M. J., Upton, L., Ruecker, A., Leroy, D., Gamo, F. J., et al. (2019). Fueling Open Innovation for Malaria Transmission-Blocking Drugs: Hundreds of Molecules Targeting Early Parasite Mosquito Stages. Front. Microbiol. 10, 2134. doi: 10.3389/fmicb.2019.02134

Delves, M. J., Miguel-Blanco, C., Matthews, H., Molina, I., Ruecker, A., Yahiya, S., et al. (2018b). A High Throughput Screen for Next-Generation Leads Targeting Malaria Parasite Transmission. Nat. Commun. 9, 3005. doi: 10.1038/s41467-018-05777-2

Delves, M. J., Ruecker, A., Strachil, U., Lelièvre, J., Marques, S., López-Barragán, M. J., et al. (2013). Male and Female Plasmodium Falciparum Mature Gametocytes Show Different Responses to Antimalarial Drugs. Antimicrob. Agents Chemother. 57, 3268–3274. doi: 10.1128/AAC.02325-13

De Niz, M., Meibalan, E., Mejia, P., Ma, S., Brancucci, N. M. B., Agop-Nersesian, D., Dixon, M. W. A., and Tilley, L. (2021). Identifying Purine Nucleoside Phosphorylase as the Target of Quinine Using Morphology and haemoglobin digestion.
Sequestration During Malaria Infection. *Genome Med.* 7, 19. doi: 10.1186/s13073-015-0133-7

Plouffe, D. M., Wind-M, D., Xu, A. Y., Meister, S., Li, F., Patra, K., et al. (2016). High-Throughput Assay and Discovery of Small Molecules That Interrupt Malaria Transmission. *Cell Host Microbe* 19, 114–126. doi: 10.1016/j.chom.2015.12.001

Poran, A., Notzel, C., Ald, O., Mencia-Trinchant, N., Harris, C. T., Gurman, M. L., et al. (2017). Single-Cell RNA Sequencing Reveals a Signature of Sexual Commitment in Malaria Parasites. *Nature* 551, 95–99. doi: 10.1038/nature24288

Portugaliza, H. P., Miyazaki, S., Geurten, F. J., Pell, C., Rosanas-Urgell, A., Janse, C. J., et al. (2020). Artemisinin Exposure at the Ring or Trophozoite Stage Impacts Malaria Parasites Sex. *Front. Immunol.* 11, 658616. doi: 10.3389/fimmu.2021.658616

Sinden, R. E. (2017). Developing Transmission-Blocking Strategies for Malaria Control. *PLoS Pathog.* 13, e1006336. doi: 10.1371/journal.ppat.1006336

Sinden, R. E., Canning, E. U., Bray, R. S., and Smalley, M. E. (1997). Gametocyte and Gamete Development in *Plasmodium Falciparum*. *Proc. Natl. Acad. Sci. U. S. A.* 94, 1437–1448. doi: 10.1074/mcp.M90047-MCP200

Simon, C. S., Sturmer, V. S., and Guizetti, J. (2021). How Many Is Enough? - Challenges of Multinucleated Cell Division in Malaria Parasites. *Front. Cell. Infect. Microbiol.* 11, 1005. doi: 10.3389/fcimb.2021.658616

Srivastava, A., Evans, K. J., Sexton, A. E., Schoon, A. G., and Hapini, C. T. (2008). Analysis of Sex-Specific Metabolism of *Plasmodium Falciparum* of Mice and Humans. *Am. J. Trop. Med. Hyg.* 71, 744. doi: 10.4269/ajtmh.2004.71.739

Sinden, R. E., Carpenter, R., Drakely, C., and Leroy, D. (2012). The Biological Sex Development of *Plasmodium*: The Design and Implementation of Transmission-Blocking Strategies. *Malar. J.* 11, 70. doi: 10.1186/1475-2875-11-70

Singh, S., Santos, J. M., Orchard, L. M., Yamada, N., Van Biljon, R., Painter, H. J., et al. (2021b). The PfAP2-G2 Transcription Factor is a Critical Regulator of Gametocyte Maturation. *Mol. Microbiol.* 115, 1005–1024. doi: 10.1111/mmm.14676

Singh, M. Suryanush, Kanika, Singh, G., Dubey, A., and Chaitanya, R. K. (2021a). Plasmodium’s Journey Through the Anopheles Mosquito: A Comprehensive Review. *Biochemie* 181, 176–190. doi: 10.1016/j.bios.2020.12.009

Sinha, A., Hughes, K. R., Modryznka, K. K., Otto, T. D., Pfander, C., Dickens, N. J., et al. (2014). A Cascade of DNA-Binding Proteins for Sexual Commitment and Development in *Plasmodium*. *Nature* 507, 253–257. doi: 10.1038/nature12970

Smith, T. G., Lourenco, P., Carter, R., Walliker, D., and Ranford-Cartwright, L. C. (2000). Commitment to Sexual Differentiation in the Human Malaria Parasite, *Plasmodium Falciparum*. *Parasitology* 121 (Pt 2), 127–133. doi: 10.1017/S003118200001625X

Solough, L., Kuehn, A., Kern, S., Przyborowski, J., Schillig, R., and Pradel, G. (2011). Malaria Proteases Mediate Inside-Out Egress of Gametocytes From Red Blood Cells Following Parasite Transmission to the Mosquito. *Cell Microbiol.* 13, 897–912. doi: 10.1111/j.1462-5822.2011.01588.x

Sowunmi, A., Balogun, S. T., Gbotosho, G. O., and Hapini, C. T. (2008). *Plasmodium Falciparum* Gametocyte Sex Ratios in Children With Acute, Symptomatic, Uncomplicated Infections Treated With Amodiaquine. *Malaria J.* 7, 1–13. doi: 10.1186/1475-2875-7-169

Srivastava, A., Evans, K. J., Sexton, A. E., Schoofield, L., and Creek, D. J. (2017). Metabolomics-Based Elucidation of Active Metabolic Pathways in *Plasmodium*-derived Reticulocytes. *J. Protozool. Res.* 16, 1492–1505. doi: 10.1015/j.jprotozool.6b00902

Srivastava, A., Philip, N., Hughes, K. R., Modryznka, K. K., Otto, T. D., Pfander, C., Dickens, N. J., et al. (2016). Stage-Specific Changes in Plasmodium Metabolism Required for Differentiation and Adaptation to Different Host and Vector Environments. *PLoS Pathog.* 12, e1006094. doi: 10.1371/journal.ppat.1006094

Stickles, A. M., De Almeida, M. J., Morrissey, J. M., Sheridan, K. A., Forquer, I. P., Nilson, A., et al. (2015a). Subtle Changes in Endochin-Like Quinolone Structure Alter the Site of Inhibition Within the Cytochrome Bc1 Complex of *Plasmodium Falciparum*. *Antimicrob. Agents Chemother.* 59, 1977–1982. doi: 10.1128/AAC.01419-14

Stickles, A. M., Ting, L. M., Morrissey, J. M., Li, Y., Mather, M. W., Meermeyer, E., et al. (2015b). Inhibition of Cytochrome Bc1 as a Strategy for Single-Dose, Multi-Stage Antimalarial Therapy. *Am. J. Trop. Med. Hyg.* 92, 1195–1201. doi: 10.4269/ajtmh.14-0553

Strachil, U., Talman, A. M., Ferguson, D. J., Bunting, K. A., Xu, Z., Bailes, E., et al. (2010). The Armadillo Repeat Protein PF16 is Essential for Flagellar Structure and Function in Plasmodium Male Gametes. *PLoS One* 5, e12901. doi: 10.1371/journal.pone.0012901

Talman, A. M., Paul, R. E., Sokhna, C. S., Domarle, O., Ariey, F., Trape, J. F., et al. (2004). Influence of Chemotherapy on the *Plasmodium Gametocyte* Sex Ratio of Mice and Humans. *Am. J. Trop. Med. Hyg.* 71, 739–744. doi: 10.4269/ajtmh.2004.71.739
Vanheer, I. N., Zhang, H., Lin, G., and Kafack, B. F. C. (2020). Activity of Epigenetic Inhibitors Against Plasmodium Falciparum Asexual and Sexual Blood Stages. Antimicrob. Agents Chemother. 64, 1–6. doi: 10.1128/AAC.02523-19

Van Pelt-Koops, J. C., Pett, H. E., Graumann, W., van der Vege-Bolmer, M., Van Gemert, G. J., Rottmann, M., et al. (2012). The Spiroindolone Drug Candidate NITD609 Potentially Inhibits Gametocytogenesis and Blocks Plasmodium Falciparum Transmission to Anopheles Mosquito Vector. Antimicrob. Agents Chemother. 56, 3544–3548. doi: 10.1128/AAC.06377-11

Van Schaik, B. C., Van Dijk, M. R., Van De Vege-Bolmer, M., Van Gemert, G. J., Van Dooren, M. W., Eksi, S., et al. (2006). Pf47: Paralog of the Male Fertility Factor Pf54/45, is a Female Specific Surface Protein in Plasmodium Falciparum. Mol. Biochem. Parasitol. 149, 216–222. doi: 10.1016/j.molbiopara.2006.05.015

Venugopal, K., Hentzschel, F., Valkunias, G., and Marti, M. (2020). Plasmodium Asexual Growth and Sexual Development in the Haematopoeitic Niche of the Host. Nat. Rev. Microbiol. 18, 177–189. doi: 10.1038/s41579-019-0306-2

Vidadala, R. S., Ojo, K. K., Johnson, S. M., Zhang, L., Leonard, S. E., Mitra, A., et al. (2014). Development of Potent and Selective Plasmodium Falciparum Calcium-Dependent Protein Kinase 4 (PfCDPK4) Inhibitors That Block the Transmission of Malaria to Mosquitoes. Eur. J. Med. Chem. 74, 562–573. doi: 10.1016/j.ejmech.2013.12.048

Von Gruning, H., Coradin, M., Mendoza, M. R., Reader, J., Sidoli, S., Garcia, B. A., et al. (2012). Plasmodium Helical Interspersed Subtelomeric (PHIST) Proteins, at the Center of Host Cell Remodeling. Microbiol. Mol. Biol. Rev. 80, 905–927. doi: 10.1128/MMBR.00114-16

WHO (2021). World Malaria Report 2021 (Geneva).
this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 van der Watt, Reader and Birkholts. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.