NOTES

Improved Specificity of a Multiplex Immunoassay for Quantitation of Anti-Diphtheria Toxin Antibodies with the Use of Diphtheria Toxoid

Pieter G. M. van Gageldonk,¹* Christina von Hunolstein,² Fiona R. M. van der Klis,¹ and Guy A. M. Berbers¹

Laboratory for Infectious Diseases and Screening, National Institute of Public Health and the Environment, Bilthoven, Netherlands,¹ and Istituto Superiore di Sanità, Rome, Italy²

Received 14 April 2011/Returned for modification 4 May 2011/Accepted 17 May 2011

To assess vaccine-related immunogenicity in large-scale immunosurveillance and vaccine studies, several rapid and simple bead-based fluorescent multiplex immunoassays (MIA; Luminox technology) have been developed (2, 3, 5, 7, 8, 11, 12). Besides a good correlation with the enzyme-linked immunosorbent assay (ELISA), additional advantages such as increased sensitivity and sample throughput, small sample volumes and antigen quantities make the MIA a fast alternative to the ELISA. Recently, we reported the development and successful application of a MIA for the simultaneous determination of serum (and plasma) antibodies to diphtheria, tetanus, and Bordetella pertussis (DTaP4) (1, 6, 13, 15).

However, in a recent external quality assurance (EQA) study for diphtheria serology (4), organized by the diphtheria surveillance network (DIPNET), we observed that a considerable number of serum samples from the EQA panel had a higher anti-diphtheria toxin (Dtx) response in our DTaP4 MIA than in the reference assay, the Vero cell neutralization test (NT), and our ELISA-based toxin binding inhibition assay (ToBI). In contrast, the ToBI showed a high correlation (R = 0.92) with the NT reference assay in this study. Similar discrepancies between MIA and ToBI for samples from another serum panel (H11005) of the second cross-sectional population-based surveillance study in the Netherlands (14). The DIPNET NT was performed as described by Di Giovine et al. (4). The ToBI and DTaP4 MIA were performed as previously described (6, 15), and competitive MIA experiments were performed by comparing homologous inhibition with noninhibited measurements.

In the DIPNET EQA panel, 33/141 samples showed a ≥3-fold increase in anti-Dtx concentrations with the MIA compared to that shown with the ToBI (R = 0.752) (Fig. 1A), and 32/141 samples showed this increase with the MIA compared to that shown with the NT (R = 0.680) (Fig. 1B). A similar result for a subset of samples from the serosurveillance study was also found (16/96 samples with ≥3-fold increase; R = 0.678) (data not shown), mainly in individuals older than 20 years of age. These results were in contrast to those obtained using serum panels from vaccine studies and routine diagnostic samples, which yielded a good correlation (R ranging from 0.948 and 0.961) (15). Remarkably, as previously reported for the DTaP4 MIA (15), comparable correlations between ToBI and MIA were confirmed for antibody levels against tetanus toxoid, both for the EQA sera as well as for the samples from the serosurveillance study (R = 0.964 and 0.967, respectively).

Homologous inhibition experiments revealed that for a number of samples, the anti-Dtx response consisted partly of a nonspecific binding to toxin. The competitive Dtx MIA results for the EQA panel substantially improved the correlation with the ToBI (R = 0.902) (Fig. 1C), which was confirmed by samples from the serosurveillance study (data not shown). Since a competitive MIA is laborious, antigen-consuming, and less reproducible, different approaches to improve the specificity of the Dtx MIA were explored. Simple changes to the sample buffer (introduction of Brij-35 [Sigma-Aldrich, St. Louis, MO] and antibody-depleted human serum [Valley Biomedicals, Winchester, VA] in different concentrations) did not adequately improve the results. Altering the antigen presentation by coupling poly-L-lysine-conjugated (3) diphtheria toxin...
to the beads did not affect the specificity and even reduced the specific response. Conjugation of the vaccine antigen diphtheria toxoid (Netherlands Vaccine Institute, Bilthoven, Netherlands) to the beads considerably improved the overall correlation of the MIA with the ToBI for both panels ($R = 0.911$ and 0.955, respectively) (Fig. 2A and B). Retesting the original serum panels used in the MIA setup with these toxoid-conjugated beads also resulted in an improved correlation with ToBI ($R = 0.98$) and a shift of the regression line toward the line of identity. For only a small number of samples of the EQA panel, some nonspecific binding remained ($9/141$ samples with a ≥ 3-fold increase in MIA versus ToBI and in MIA versus NT), while in the subset of samples from the serosurveillance study, this number turned out to be negligible ($1/96$ samples). Homologous inhibition using the diphtheria toxoid could only partially resolve this remaining overestimation, indicating that this binding was not specific for toxin or toxoid.

An intrinsic problem of the Luminex technology for serological assays has been reported by Waterboer et al. (17), who found that human sera might contain (heterophile) antibodies (9) that directly bind to Luminex beads, resulting in a nonspecific background. The proportion of these “bead binders” seemed to depend on the origin of the sera. They found that serum preincubation with “background inhibitors” polyvinyl alcohol (PVA) (P8136; Sigma-Aldrich, St. Louis, MI) and polyvinylpyrrolidone (PVP) (PVP-360; Sigma-Aldrich) and a proprietary reagent, Super ChemiBlock (CBS-K; Chemicon International Inc.), could significantly reduce this nonspecific background. Addition of PVX (0.5% [wt/vol] PVA plus 0.8% [wt/vol] PVP) to the sample buffer of the diphtheria toxoid MIA suppressed the remaining nonspecific binding of the EQA samples in our case (MIA versus ToBI, $R = 0.962$; MIA versus NT, $R = 0.915$) (Fig. 2C and D), while a combination of PVX plus 2.5% (wt/vol) CBS-K did not further improve the correlation. The resulting correlation between the diphtheria toxoid MIA and NT was similar to that of the ToBI and NT in the EQA panel ($R = 0.92$) (4). Besides this good quantitative agreement, the improved MIA also showed a high qualitative agreement with the NT and ToBI, since no negative sera were identified as positive and vice versa (Table 1).

Importantly, this nonspecific background was not observed for the other antigens of the DTaP4 MIA, both in the panels described here and in other studies (1, 6, 13). In fact, addition of PVX to the sample buffer of the MIA only marginally improved the correlation with the ToBI for tetanus (EQA panel), and no effect of PVX on the pertussis MIA was found. Nonspecific binding in the DTaP4 MIA seemed restricted to the diphtheria toxin response, especially in adult sera. The observation that this nonspecific binding is found mainly in adults might be caused by a difference in antibody avidity between adult sera and vaccinees. This nonspecific binding is most likely caused by changes in the structure of the toxin when conjugated to Luminex beads. Due to the covalent conjugation, some conformational changes in the structure of diphtheria toxin might occur, which make it more susceptible for nonspecific binding of antibodies. The significant reduction in nonspecific binding after conjugation of diphtheria toxoid supports the idea that formaldehyde inactivation of
diphtheria toxin improves the stability of the tertiary structure (10), making it less susceptible for nonspecific binding. In addition, the use of toxoid rather than toxin further improved the conjugation reproducibility of the DTaP4 MIA. However, the optimized coverage of the bead surface with toxoid could not fully prevent “bead binding” in some specific samples.

In conclusion, the specificity of the previously described DTaP4 multiplex immunoassay for the quantitation of antidiphtheria antibodies could be improved by conjugation of diphtheria toxoid to the beads, rather than that of toxin. Furthermore, addition of PVX to the sample buffer to reduce possible bead binding is strongly recommended.

We thank Corine Nellestijn (Laboratory for Infectious Diseases and Screening, National Institute of Public Health and the Environment, Bilthoven, Netherlands) for analytical support and Bernard Metz (Netherlands Vaccine Institute, Bilthoven, Netherlands) for kindly providing diphtheria toxoid.

TABLE 1. Qualitative agreement between the diphtheria toxoid MIA plus PVX and the ToBI and Vero cell NT

Result	% diagnostic agreement	No. of samples with indicated MIA result		
	Positive	Equivocal	Negative	
ToBI	89	47	7	0
	1	52	7	
	0	1	26	
NT	76	49	22	0
	0	34	9	
	0	3	24	

a Diphtheria antitoxin levels in individual serum samples were classified as positive, i.e., having the full protective level of circulating antitoxin (>0.1 IU/ml); equivocal, having partial protective levels of antitoxin (0.01 to 0.09 IU/ml); or negative, providing no protection (<0.01 IU/ml) (4).

REFERENCES

1. de Greeff, S. C., et al. 2010. Seroprevalence of pertussis in The Netherlands: evidence for increased circulation of Bordetella pertussis. PLoS One 5:e14183.

2. de Voer, R. M., R. M. Schepp, F. G. Versteegh, F. R. van der Klis, and G. A. Berbers. 2009. Simultaneous detection of Haemophilus influenzae type b polysaccharide-specific antibodies and Neisseria meningitidis serogroup A, C, Y, and W-135 polysaccharide-specific antibodies in a fluorescent-bead-based multiplex immunoassay. Clin. Vaccine Immunol. 16:433–436.

3. de Voer, R. M., et al. 2008. Development of a fluorescent-bead-based mul-
tiplex immunoassay to determine immunoglobulin G subclass responses to Neisseria meningitidis serogroup A and C polysaccharides. Clin. Vaccine Immunol. 15:1188–1193.

4. Di Giovine, P., et al. 2010. External quality assessment for the determination of diphtheria antitoxin in human serum. Clin. Vaccine Immunol. 17:1282–1290.

5. Elberse, K. E., I. Tcherniaeva, G. A. Berbers, and L. M. Schouls. 2010. Optimization and application of a multiplex bead-based assay to quantify serotype-specific IgG against Streptococcus pneumoniae polysaccharides: response to the booster vaccine after immunization with the pneumococcal 7-valent conjugate vaccine. Clin. Vaccine Immunol. 17:674–682.

6. Hendriks, L. H., G. A. Berbers, R. H. Veenhoven, E. A. Sanders, and A. M. Buisman. 2009. IgG responses after booster vaccination with different pertussis vaccines in Dutch children 4 years of age: effect of vaccine antigen content. Vaccine 27:6530–6536.

7. Lal, G., P. Balmer, H. Joseph, M. Dawson, and R. Borrow. 2004. Development and evaluation of a tetraplex flow cytometric assay for quantitation of serum antibodies to Neisseria meningitidis serogroups A, C, Y, and W-135. Clin. Diagn. Lab. Immunol. 11:272–279.

8. Lal, G., et al. 2005. Development and validation of a nonaplex assay for the simultaneous quantitation of antibodies to nine Streptococcus pneumoniae serotypes. J. Immunol. Methods 296:135–147.

9. Martins, T. B., B. M. Pasi, C. M. Litwin, and H. R. Hill. 2004. Heterophile antibody interference in a multiplexed fluorescent microsphere immunoassay for quantitation of cytokines in human serum. Clin. Diagn. Lab. Immunol. 11:325–329.

10. Metz, B., et al. 2007. Quality control of routine, experimental and real-time aged diphtheria toxoids by in vitro analytical techniques. Vaccine 25:6863–6871.

11. Pickering, J. W., et al. 2002. A multiplexed fluorescent microsphere immunoassay for antibodies to pneumococcal capsular polysaccharides. Am. J. Clin. Pathol. 117:589–596.

12. Reder, S., M. Riffelmann, C. Becker, and C. H. Wirsing von Konig. 2008. Measuring immunoglobulin G antibodies to tetanus toxin, diphtheria toxin, and pertussis toxin with single-antigen enzyme-linked immunosorbent assays and a bead-based multiplex assay. Clin. Vaccine Immunol. 15:744–749.

13. Steens, A., et al. 2010. High tetanus antitoxin antibody concentrations in the Netherlands: a seroepidemiological study. Vaccine 28:7803–7809.

14. van der Klis, F. R., L. Mollema, G. A. Berbers, H. E. de Melker, and R. A. Coutinho. 2009. Second national serum bank for population-based seroprevalence studies in the Netherlands. Neth. J. Med. 67:301–308.

15. van Gageldonk, P. G., F. G. van Schaijk, F. R. van der Klis, and G. A. Berbers. 2008. Development and validation of a multiplex immunoassay for the simultaneous determination of serum antibodies to Bordetella pertussis, diphtheria and tetanus. J. Immunol. Methods 335:79–89.

16. Reference deleted.

17. Waterboer, T., P. Sehr, and M. Pawlita. 2006. Suppression of non-specific binding in serological Luminex assays. J. Immunol. Methods 309:200–204.