Dietary calcium or phosphorus deficiency impairs the bone development by regulating related calcium or phosphorus metabolic utilization parameters of broilers

Tingting Li,*1 Guanzhong Xing,†1 Yuxin Shao,† Liyang Zhang,† Sufen Li,‡ Lin Lu,† Zongping Liu,§ Xiudong Liao,†2 and Xugang Luo*,2

*Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, P. R. China; †Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China; ‡College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, P. R. China; and §College of Veterinary Medicine, Yangzhou University, Yangzhou 225000, P. R. China

ABSTRACT An experiment was conducted to investigate the effect of dietary calcium (Ca) or phosphorus (P) deficiency on bone development and related Ca or P metabolic utilization parameters of broilers. A total of 504 one-day-old Arbor Acres male broilers were randomly assigned to 1 of 4 treatments with 7 replicates of 18 birds per replicate in a completely randomized design. A 2 (Ca levels: 1.00 and 0.35%) × 2 (nonphytate P [NPP] levels: 0.45 and 0.23%) factorial arrangement of treatments was adopted in the 21-day trial. The 4 treatments were the Ca- and P-adequate diet (1.00% Ca and 0.45% NPP), the Ca-deficient diet (0.35% Ca and 0.45% NPP), the P-deficient diet (1.00% Ca and 0.23% NPP), and the Ca- and P-deficient diet (0.35% Ca and 0.23% NPP). The greatest impact on tibia bone mineral density, bone breaking strength, and ash content was in the P-deficient diets, especially in broilers fed with the Ca-adequate diet, whereas adequate P and reduced Ca reduced (P < 0.05) these parameters compared with adequate Ca and P, but not to the same level as P deficiency. Furthermore, dietary Ca or P deficiency, especially adequate Ca and P deficiency decreased (P < 0.05) serum P, 25-hydroxyvitamin D3 (25-OHD3) contents, and tibia ash Ca and P contents but increased (P < 0.05) the serum Ca content and tibia alkaline phosphatase (ALP) activity compared with adequate Ca and P. The results from this study indicated that the bone development and Ca or P metabolic utilization parameters of broilers were the most sensitive ones to dietary P deficiency, followed by dietary Ca deficiency or Ca and P deficiencies. Dietary P deficiency impaired the bone development by increasing serum Ca content and tibia ALP activity but decreasing serum P, 25-OHD3 contents, and tibia ash Ca and P contents of broilers. Dietary Ca deficiency impaired bone development by increasing serum Ca content, tibia ALP activity, and tibia ash P content but decreasing serum P, 25-OHD3 contents, and tibia ash Ca content of broilers.

Key words: calcium deficiency, phosphorus deficiency, bone development, metabolic utilization parameter, broiler

INTRODUCTION

As essential minerals, calcium (Ca) and phosphorus (P) play important and extensive roles in nucleic acid synthesis, energy metabolism, muscle contraction, enzyme activity, signal transduction, and bone mineralization (Li et al., 2017). Considering that these 2 minerals are major inorganic components of bone, the deficiency in Ca or P could result in leg weakness and, if severe enough, increase morbidity and mortality (Edwards, 2000; Venalainen et al., 2006). Over the past decades, constant improvements in genetic selection and nutrition have led to a fast growth rate in broilers. Unfortunately, early fast growth rate in broilers generally exacerbates skeletal diseases (such as rickets) associated with dietary inadequate supply or imbalances of Ca and P (Williams et al., 2000a, b; Dinev, 2012; Shao et al., 2019b).

Many studies have demonstrated that severe Ca or P deficiency could cause poor mineralization (Jiang et al., 2013; Valable et al., 2017). Bone development indices,
such as bone mineral density (BMD), bone breaking strength (BBS), and bone ash content, are commonly used response indices for assessing bone mineralization of broilers (Onyango et al., 2003; Park et al., 2003; Kim et al., 2006). In addition, Ca and P concentrations in serum and bones can reflect the changes of Ca and P homeostasis, and their contents within a normal range are important for normal physiological function and optimal bone mineralization (Proszkowiec-Weglarz and Angel, 2013). As a Ca and P metabolic regulator, vitamin D₃ is involved in the absorption and utilization of Ca and thus required for normal growth and bone development in chickens (Christakos et al., 2011; Garcia et al., 2013; Shao et al., 2019c). Generally, 25-hydroxyvitamin D₃ (25-OHD₃) is the storable and stable form of vitamin D₃ in the circulation of chickens (Klasing, 1998). Alkaline phosphatase (ALP) is a hydrolase involved in the process of Ca and P deposition during bone mineralization and formation (Li et al., 2014), and its activity is directly related to the rate of bone mineralization in broilers (Tilgar et al., 2008; Shao et al., 2019a). However, it is still not clear whether the influence of dietary Ca or P deficiency on the bone development is related to the aforementioned Ca or P metabolic utilization parameters (Ca and P concentrations in serum and bone, serum 25-OHD₃, and ALP activities in serum and bone) of broilers. It was hypothesized that dietary Ca or P deficiency might impair the bone development of broilers by regulating related Ca or P metabolic utilization parameters. Therefore, the objective of the present study was to investigate the effect of dietary Ca or P deficiency on growth performance, bone development, and related Ca or P metabolic utilization parameters of broilers to test the aforementioned hypothesis.

MATERIAL AND METHODS

All experimental procedures were approved by the Animal Management Committee (in charge of animal welfare issue) of Institute of Animal Science, Chinese Academy of Agricultural Sciences (Beijing, China) and performed in accordance with the guidelines. Ethical approval on animal survival was given by the Animal Ethics Committee of Institute of Animal Science, Chinese Academy of Agricultural Sciences.

Experimental Design and Treatments

A completely randomized design involving a 2 (dietary Ca levels) × 2 (dietary nonphytate P [NPP] levels) factorial arrangement of treatments was used in this experiment. The 2 dietary Ca levels were a normal Ca level of 1.00% and a low Ca level of 0.35%. The 2 dietary NPP levels were a normal NPP level of 0.45% and a low NPP level of 0.23%. Thus, there were a total of 4 dietary treatments, including the Ca- and P-adequate diet (1.00% Ca + 0.45% NPP), the Ca-deficient diet (0.35% Ca + 0.45% NPP), the P-deficient diet (1.00% Ca + 0.23% NPP), and the Ca- and P-deficient diet (0.35% Ca + 0.23% NPP).

Table 1. Composition and nutrient levels of experimental diets (as-fed basis).

Items	Ca levels, %	NPP levels, %		
	1.00	0.35		
	%	%		
Ingredients, %				
Corn	53.42	53.42	53.42	
Soybean meal	38.10	38.10	38.10	
Soybean oil	4.42	4.42	4.42	
NaCl¹	0.30	0.30	0.30	
CaHPO₄	1.82	0.50	-	
Ca(H₂PO₄)₂	1.32	2.00	0.23	
Limestone	0.30	0.30	0.30	
L-Dh-Methionine	0.32	0.32	0.32	
Premix²	0.32	0.32	0.32	
Sand	-	0.64	1.79	
Nutrient composition, %				
Metabolizable energy, MJ/kg	12.6	12.6	12.6	
Crude protein³	22.42	22.11	22.17	22.07
Lysine	1.12	1.12	1.12	1.12
Methionine	0.61	0.61	0.61	0.61
Methionine + Cysteine	0.90	0.90	0.90	0.90
Ca⁴	0.95	0.97	0.36	0.34
Total P⁵	0.60	0.48	0.71	0.46
Non-phytate P (NPP)⁶	0.41	0.27	0.43	0.24

¹Feed grade.
²Provided per kilogram of diets: 15,000 IU vitamin A (all-retinol acetate); 1,450 IU cholecalciferol; 24 IU vitamin E (all-rac-2-tocopherol acetate); 3 mg vitamin K (menadione sodium bisulfate); 3 mg thiamin (thiamin mononitrate); 9.6 mg riboflavin; 3 mg vitamin B₆; 0.018 mg vitamin B₁₂; 15 mg pantothenic acid calcium; 20 mg niacin; 1.5 mg folic acid; 0.15 mg biotin; 700 mg choline (choline chloride); 8 mg Cu (CuSO₄·5H₂O); 110 mg Mn (MnSO₄·H₂O); 40 mg Fe (FeSO₄·7H₂O); 60 mg Zn (ZnSO₄·7H₂O); 0.35 mg I (KI); 0.15 mg Se (Na₂SeO₃); 50 mg chlorotetracycline.
³Washed building sand without Ca and P, which was used to adjust amounts of CaHPO₄, Ca(H₂PO₄)₂, and limestone.
⁴Analyzed values. Each value based on triplicate determinations. The others were calculated values.
⁵Adjusted to 90% of phosphorus requirement.
⁶Adjusted to 95% of non-phytate phosphorus requirement.

Table: Composition and nutrient levels of experimental diets (as-fed basis).
and feed intake per cage were measured at 21 D of age to calculate average daily gain, average daily feed intake, and feed-to-gain ratio (F/G) from 1 to 21 D of age.

Sample Collections and Preparations

Samples of the diets and tap water were collected for analyses of Ca, P, or dietary crude protein contents. At 7, 14, and 21 D of age, 4, 3, and 2 birds close to the average weight of the replicate were selected for collection of blood and tibias, respectively. Blood samples of 5 mL were collected from the wing vein, 10-mL tubes without an anticoagulant and immediately centrifuged for 10 min at 3,000 × g at 4°C for analyses of serum Ca, P, 25-OHD₃ contents, and ALP activity. And then, the selected birds from each replicate cage were subsequently stunned using an electrical stunner (40 V: alternating current, 400 Hz for 5 s) and immediately exsanguinated. The right and left tibias were freed from adhering tissue, sealed in plastics bags, and stored at −20°C until further analysis. The right tibias were used for determining the BMD, BBS, and percentages of ash, Ca, and P. The left tibias were used to analyze the ALP activity. To reduce individual biological variation, the samples from the selected birds in each replicate cage were pooled into one sample in equal ratios before analysis.

Determination of the Serum Ca, P, 25-OHD₃ Contents, and ALP Activity

Serum was thawed and analyzed for the Ca content using a microplate reader with Ca assay kits (Nanjing Jiancheng Bioengineering Institute, Nanjing, China). Serum P contents were determined by the molybdenum blue method (Goldenberg and Fernandez, 1966). The 25-OHD₃ level in serum was determined by the method of ELISA with the assay kits (Nanjing Jiancheng Bioengineering Institute). The left tibias were grinded, homogenized, and then sonicated and centrifuged at 1,000 × g for 10 min at 4°C to harvest the supernatants for ALP activity analysis. The ALP activities in serum and the tibia were measured using a microplate reader with ALP assay kits (Nanjing Jiancheng Bioengineering Institute).

Determination of the Tibia BMD, BBS, and Ash Content

The frozen tibiae were thawed at room temperature for 2 h and then stripped of all soft tissues. The tibia BMD (Liu et al., 2017; Jing et al., 2018) was determined by dual-energy X-ray absorptiometry. The tibia BBS was determined by a 3-point bending test (HDPE/3PB Texture Analyzers, West Sussex, UK). The tibia bone of the broilers on days 7, 14, or 21 was put on a fulcrum point with 2.0, 2.5, or 3.0 cm apart, respectively. The loading point was located in the midpoint of fulcrum points. The breaking force was determined by the shear test at a speed of 5 mm/min with a 50 kg loading cell until fracture occurred (Crenshaw et al., 1981; Shim et al., 2012; Sadeq et al., 2018). The ultimate tibia breaking force was directly obtained from the loaded-deformation curve recorded by a computerized monitor (Jiang et al., 2016; Liu et al., 2017). The tibia bone was dried using an oven at 105°C for 24 h and then defatted with fresh diethyl ether for 48 h. The fat-free, dried bone was finally ashed using a muffle furnace at 550°C for 16 h. The tibia ash content was expressed on a dried and defatted weight basis of tibia.

Determination of the Dietary and Tibia Ca and P Contents

Concentrations of Ca in diets and tibia ash were determined by inductively coupled plasma spectroscopy (Model IRIS Intrepid II; Thermo Jarrell Ash, Waltham, MA) as described by Li et al. (2011). Total P concentrations in diets and tibia ash were determined by the spectrophotometric method (Procedure 3.4.11; AOAC, 2000). Diets were analyzed for phytate P as per the ferric precipitation method (Rutherford et al., 2004; Leytem et al., 2008).

Statistical Analyses

Data from the present study were subjected to two-way ANOVA using the general linear model procedure of SAS 9.4 (SAS Institute Inc., Cary, NC). The model included the main effects of dietary Ca level, dietary NPP level, and their interaction. The replicate cage content was the experimental unit. Differences among means were tested by the least significant difference method, and the statistical significance was set at P < 0.05.

RESULTS

Dietary Ca and NPP Contents

The analyzed Ca and NPP contents in experimental diets are presented in Table 1. Analyzed values generally agree with calculated values.

Growth Performance and Mortality

The broilers fed with the P-deficient diet had the lowest (P < 0.05) average daily feed intake and average daily gain, as well as the highest (P < 0.05) feed-to-gain ratio and mortality as compared with those fed with the Ca- and P-adequate diet, Ca-deficient diet, or Ca- and P-deficient diet. The detailed data about the growth performance and mortality of broilers have been published in our previous article (Shao et al., 2019b).

Tibia BMD, BBS, and Ash Content

The interaction between Ca and the NPP level affected (P < 0.05) BMD, BBS, and ash content in tibiae on days 7, 14, and 21 (Table 2). The broilers fed with the Ca- and P-adequate diet had higher (P < 0.05) BMD,
BBS, and ash content in tibia on days 7, 14, and 21 than those fed with the Ca- or P-deficient diets, and broilers fed with the P-deficient diet at adequate Ca had lower (P < 0.05) BMD, BBS, and ash content in tibia on days 7, 14, and 21 than those fed with the Ca- and P-deficient diet. All of the tibia development parameters of broilers were more sensitive to P deficiency, especially at adequate Ca and this was followed by the Ca- and P-deficient diet and then the Ca-deficient diet.

Serum Ca, P, 25-OHD₃ Contents, and ALP Activity

Decreasing dietary Ca level decreased (P < 0.05) serum ALP on days 7, 14, and 21 as well as serum P content on day 14 (Table 3). The interaction between Ca and the NPP level had effects (P < 0.05) on serum Ca and 25-OHD₃ contents on days 7, 14, and 21 as well as serum P content on days 7 and 21 but had no effects (P > 0.05) on serum ALP activity on days 7, 14, and 21 as well as serum P content on day 14 (Table 3). In general, broilers fed with the Ca- and P-adequate diet had lower (P < 0.05) serum Ca when compared with broilers fed with the P-deficient diet. Serum Ca was similar (P > 0.05) in broilers fed with the Ca- and P-adequate diet and Ca- and P-deficient diet on days 14 and 21, whereas P deficiency in Ca-adequate diets resulted in an increase (P < 0.05) in serum Ca. Serum 25-OHD₃ was inversely related with serum Ca. Compared with broilers fed with the P-deficient diet or Ca-deficient diet, birds fed with the Ca- and P-deficient diet had increased (P < 0.05) serum P on days 7 and 21 but still had lower (P < 0.05) serum P than those fed with the Ca- and P-adequate diet on day 21. Overall, the broilers fed with the P-deficient diet had the highest serum Ca content and the lowest serum P and 25-OHD₃ contents compared with the broilers fed with the Ca-deficient, Ca- and P-deficient, or Ca- and P-adequate diets.

Discussion

Fast-growing broilers are more susceptible to bone development abnormalities resulting from inadequate

Table 2. Effects of dietary Ca and NPP levels on tibia BMD, BBS, and ash content of broilers¹

	1.00	0.35	SEM	P-value		
Ca levels, %	0.45²	0.23²	0.45²	0.23²	0.0001	
NPP levels, %	0.0001					
Day 7	0.043^d	0.072^b	0.067^a	0.001	<0.0001	
Tibia BMD, g/cm²	0.094^a	0.043^d	0.072^b	0.067^a	0.001	<0.0001
Tibia BBS, kg	3.77^a	2.33^b	1.90^c	0.09	<0.0001	
Tibia ash content, %	47.9^a	40.3^b	38.9^b	0.7	<0.0001	
Day 14	0.0001					
Tibia BMD, g/cm²	0.160^c	0.101^b	0.096^a	0.001	<0.0001	
Tibia BBS, kg	10.59^c	4.99^c	3.55^b	0.28	<0.0001	
Tibia ash content, %	50.4^a	40.5^b	39.1^b	0.5	<0.0001	
Day 21	0.0001					
Tibia BMD, g/cm²	0.201^c	0.124^b	0.130^b	0.004	<0.0001	
Tibia BBS, kg	18.9^c	8.04^b	8.87^b	0.50	<0.0001	
Tibia ash content, %	50.1^a	40.0^b	40.9^b	0.7	<0.0001	

¹Abbreviations: BMD, bone mineral density; BBS, bone breaking strength; NPP, nonphytate P.

²Data represented the means of 7 replicate cages (n = 7).
Table 3. Effects of dietary Ca and NPP levels on serum Ca, P, and 25-OHD3 contents and ALP activity of broilers

NPP levels, %	Ca levels, %	SEM	Ca level1, %	SEM	NPP level1, %	SEM	P-value		
	1.00				0.35				
0.45	1.79a	0.04	1.99	0.03	1.33	0.03	0.79		
0.23	2.19b		2.00		2.07		0.003		
					0.001				
							0.0001		
0.45	2.06b	0.08	1.43	0.05	1.66	0.05	0.012		
0.23	1.94b		1.65		1.42		0.06		
					0.006				
0.45	249a	30	216	21.5	178	21.5	0.42		
0.23	166c		166		237				
					0.42				
					0.42				
0.45	24.0	0.7	21.5	0.49	0.31				
0.23	19.5		21.5		<0.0001				
					0.03				
Day 7	Serum Ca, mmol/L	24.4	18.4	23.5	20.6b	0.7	21.4	22.1	0.49
Serum P, mmol/L	1.00		0.35						
Serum ALP, U/L	207		291						
Serum 25-OHD3, ng/mL	24.4								
Day 14	Serum Ca, mmol/L	2.17	2.17	2.19a	2.00b	0.08	2.16	2.38	0.08
Serum P, mmol/L	1.34		1.34						
Serum ALP, U/L	106		106						
Serum 25-OHD3, ng/mL	31.7								
Day 21	Serum Ca, mmol/L	2.26	2.26	2.17a	2.17b	0.08	2.11	2.38	0.08
Serum P, mmol/L	1.30		1.30						
Serum ALP, U/L	54		54						
Serum 25-OHD3, ng/mL	31.4								

*Means within a row lacking a common superscript differ (P < 0.05).

1Abbreviations: 25-OHD3, 25-hydroxyvitamin D3; ALP, alkaline phosphatase; NPP, nonphytate P.

2Data represented the means of 7 replicate cages (n = 7).

3Data represented the means of 12 replicate cages (n = 14).
a normal serum P level and simultaneously increasing serum Ca level (Proszkowiec-Weglarcz and Angel, 2013). Therefore, the severely depressed tibia ash Ca content might be due to the increased bone resorption for maintaining serum Ca homeostasis, which could partly explain the elevated serum Ca level. These findings suggested that dietary Ca or P deficiency might impair the bone development by disturbing Ca and P homeostasis of broilers. However, the tibia ash Ca and P contents seemed to change little over time, possibly because the tibia ash Ca and P contents are relative values and less affected by age of birds than their absolute values (Shastak et al., 2012; Shao et al., 2019a).

A variety of factors, such as 25-OHD3 and ALP, could regulate the Ca and P metabolic utilization and homeostasis in serum and bone of animals. As a metabolite of vitamin D3, 25-OHD3 is involved in the absorption and utilization of Ca and P and thus required for proper bone and eggshell mineralization in chickens. In the present study, dietary Ca deficiency in P-adequate diets or P-deficiency in Ca-adequate diets decreased serum 25-OHD3 content, suggesting that dietary Ca or P deficiency might directly weaken the 25-hydroxylation of vitamin D3 with a decreased serum 25-OHD3 level (Berlin and Bjorkhem, 1988). Low serum 25-OHD3 level has been associated with an increased risk of fracture, osteoporosis, and rickets in humans (Raghuramulu and Reddy, 1980; Bahlous et al., 2009; Ohta et al., 2014). The study in children showed that serum 25-OHD3 level was positively associated with BMD, and low 25-OHD3 level could result in low BMD (Fu et al., 2016). Therefore, dietary Ca or P deficiency might impair the bone development by depressing serum 25-OHD3 level of broilers. It is reported that Ca and P absorption is stimulated as part of adaptive mechanism to Ca or P restriction (Rousseau et al., 2016). Therefore, the present study showed that the serum 25-OHD3 increased as age of broilers when fed with Ca- or P-deficient diets, which might be related to adaptive mechanism to enhance Ca or P absorption by increasing 25-OHD3. In addition, as a bone formation–related enzyme, the ALP was involved in the process of Ca and P deposition of bone, and its activity is usually elevated when bone formation rates increased (Tilgar et al., 2008). In the present study, we found that the ALP activity decreased as birds age, suggesting that bone formation rate might progressively decrease with age of broilers. However, an increase in ALP activity is also usually associated with poor bone mineralization (Sarac and Saygili, 2007). As per our results, inadequate supply of Ca or P was associated with an increase in tibia ALP activity. One explanation for this phenomenon is that inadequate supply of Ca or P decreased the serum P level and the P available for bone mineralization, thereby leading to activation of ALP (Haraikawa et al., 2012; Christmann et al., 2016). Liu et al. (2017) also found that serum ALP activity of broilers was linearly increased as the dietary NPP level decreased. Similar results in humans showed that bone ALP activity was negatively correlated with intake of Ca and P (Haraikawa et al., 2012). Therefore, the

Table 4. Effects of dietary Ca and NPP levels on tibia ALP activity and ash Ca and P contents of broilers.	Ca levels, %	NPP levels, %																
Ca level3, %	SEM	Ca level3, %	SEM	NPP level3, %	SEM	NPP level3, %	SEM	Ca	NPP	Ca	NPP	Ca	NPP					
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---				
Day 7	Thia ALP, U/g protein	0.45	0.23	0.45	0.23	0.45	0.23	0.45	0.23	0.45	0.23	0.45	0.23	0.45	0.23			
Thia ash Ca content, %	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
Thia ash P content, %	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00			
Day 14	Thia ALP, U/g protein	0.45	0.23	0.45	0.23	0.45	0.23	0.45	0.23	0.45	0.23	0.45	0.23	0.45	0.23			
Thia ash Ca content, %	0.45	0.23	0.45	0.23	0.45	0.23	0.45	0.23	0.45	0.23	0.45	0.23	0.45	0.23	0.45	0.23		
Thia ash P content, %	0.45	0.23	0.45	0.23	0.45	0.23	0.45	0.23	0.45	0.23	0.45	0.23	0.45	0.23	0.45	0.23		
Day 21	Thia ALP, U/g protein	0.45	0.23	0.45	0.23	0.45	0.23	0.45	0.23	0.45	0.23	0.45	0.23	0.45	0.23	0.45	0.23	
Thia ash Ca content, %	0.45	0.23	0.45	0.23	0.45	0.23	0.45	0.23	0.45	0.23	0.45	0.23	0.45	0.23	0.45	0.23		
Thia ash P content, %	0.45	0.23	0.45	0.23	0.45	0.23	0.45	0.23	0.45	0.23	0.45	0.23	0.45	0.23	0.45	0.23	0.45	0.23

| a-dMeans within a row lacking a common superscript differ (P < 0.05). | 1Abbreviations: ALP, alkaline phosphatase; NPP, nonphytate P. | 2Data represented the means of 7 replicate cages (n = 7). | 3Data represented the means of 12 replicate cages (n = 14). |
previous results indicated that dietary Ca or P deficiency might impair the bone development by elevating tibia ALP activity of broilers.

Skeletal health could be adversely influenced by diets with an imbalance of the Ca: NPP ratio. The results from our recent study showed that the growth performance and rickets incidence of broilers were the most sensitive ones to dietary P deficiency, followed by dietary Ca deficiency or Ca and P deficiencies (Shao et al., 2019b). Furthermore, the results from the present study showed that the P-deficient diet had lower tibia ash content than those fed with the Ca-deficient diet. The previous study showed that the effect of the P-deficient diet was exacerbated with the increasing concentration of Ca in the diet (Driver et al., 2005). However, dietary Ca was shown to have a modest influence on tibia ash content at high NPP concentration (Bradbury et al., 2014). The possibility is that broilers might be more willing to over consume NPP to reach a Ca target than over consuming Ca to reach an NPP intake in case with dietary Ca or P deficiency (Bradbury et al., 2014; Wilkinson et al., 2014).

In conclusion, the results from the present study indicated that the bone development and Ca or P metabolic utilization parameters of broilers were the most sensitive ones to dietary P deficiency, followed by dietary Ca deficiency or Ca and P deficiencies. Dietary Ca or P deficiency impaired the bone development by regulating related Ca or P metabolic utilization parameters of broilers.

ACKNOWLEDGEMENTS

The present study was financially supported by the National Key R&D Program of China (project no. 2017YF0502200; Beijing, P. R. China), the Key Program of the National Natural Science Foundation of China (Project no. 31630073; Beijing, P. R. China), the Agricultural Science and Technology Innovation Program (project no. ASTIP-IAS09; Beijing, P. R. China), and the Earmarked Fund for Hebei Chicken Innovation Team of Modern Agro-industry Technology Research System (project no. HBCT2018150203 and HBCT2018150206; Shijiazhuang, P. R. China).

Conflict of Interest Statement: All authors declare that there is no conflict of interest.

REFERENCES

AOAC. 2000. Official Methods of Analysis, 17th ed. AOAC International, Gaithersburg, MD.

Bahlous, A., N. Farjallah, K. Bouzid, A. Klouz, A. Mohsni, H. Sahli, M. Lakhal, S. Sallami, and J. Abdelmoula. 2009. Hypovitaminosis D in Tunisian osteoporotic postmenopausal women and the relationship with bone fractures. Tunis. Med. 87:188–190.

Bent, L. T., and I. Bjerkel. 1991. Effect of calcium intake on serum levels of 25-hydroxyvitamin D3. Eur. J. Clin. Invest. 18:52–55.

Bradbury, E. J., S. J. Wilkinson, G. M. Cronin, P. C. Thomson, M. R. Bedford, and A. J. Coviesion. 2014. Nutritional geometry of calcium and phosphorus nutrition in broiler chicks. Growth performance, skeletal health and intake arrays. Animal 8:1071–1079.

Christakos, S., P. Dhawan, A. R. Porta, L. J. Mady, and T. Seth. 2011. Vitamin D and intestinal calcium absorption. Mol. Cell. Endocrinol. 347:25–29.

Christmann, V., C. J. Gradussen, M. N. Körnun, N. Roeleveld, J. B. V. Gouwdever, and A. P. V. Heijst. 2016. Changes in biochemical parameters of the calcium-phosphorus homeostasis in relation to nutritional intake in very-low-birth-weight infants. Nutrients 8:E764.

Crenshaw, T. D., E. R. Peo, A. J. Lewis, and B. D. Moser. 1981. Bone strength as a trait for assessing mineralization in swine: a critical review of techniques involved. J. Anim. Sci. 53:827–835.

Dinev, I. 2012. Clinical and morphological investigations on incidence of forms of rickets and their association with other pathologicak states in broiler chickens. Res. Vet. Sci. 92:273–277.

Driver, J. P., G. M. Pesti, R. J. Bakalli, and H. M. Edwards. 2005. Effects of calcium and nonphytate phosphorus concentrations on phytase efficacy in broiler chicks. Poult. Sci. 84:1406–1417.

Edwards, H. M. 2000. Nutrition and skeletal problems in poultry. Poult. Sci. 79:1018–1023.

Fu, Y., Y. Hu, Z. Qin, Y. Zhao, Z. Yang, Y. Li, G. Liang, H. Lv, H. Hong, and Y. Song, et al. 2016. Association of serum 25-hydroxyvitamin D status with bone mineral density in 0–7 year old children. Osteoporat 7:80811–80819.

Haraikawa, M., R. Tanabe, N. Sogabe, A. Sugimoto, Y. Kawanura, T. Michigami, T. Hosoi, and M. Goseki-Sone. 2012. A study of the association between serum bone-specific alkaline phosphatase and serum phosphorus concentration or dietary phosphorus intake. J. Nutr. Sci. Vitaminol. 58:442–445.

Garcia, A. F., A. E. Murakami, C. R. Duarte, I. C. Rojas, K. P. Picoli, and M. M. Puzotti. 2013. Use of vitamin D3 and its metabolites in broiler chicken feed on performance, bone parameters and meat quality. Asian-australas. J. Anim. Sci. 26:408–415.

Goldenberg, H., and A. Fernandez. 1966. Simplified method for the estimation of inorganic phosphorus in body fluids. Clin. Chem. 12:871–882.

Hurwitz, S., I. Plavnik, A. Shapiro, E. Wax, H. Talpaz, and A. Bar. 1995. Calcium metabolism and requirements of chicks are affected by growth. J. Nutr. 125:2679–2686.

Huygebaert, G. 1996. The response of broiler chicks to phase feeding for P, Ca and phytase. Arch. Geflugelkdl. 60:132–141.

Jiang, S., L. Cui, C. Shi, X. Ke, J. Luo, and J. Hou. 2013. Effects of dietary energy and calcium levels on performance, egg shell quality and bone mineral density in hens. Vet. J. 198:252–258.

Jiang, Y., L. Lu, S. F. Li, L. Wang, L. Y. Zhang, S. B. Liu, and X. G. Luo. 2016. An optimal dietary non-phytate phosphorus level of feeders fed a conventional corn-soybean meal diet from 4 to 6 weeks of age. Animal 10:1626–1634.

Jing, M., S. Zhao, A. Rogiewicz, B. A. Slominski, and J. D. House. 2018. Assessment of the minimal available phosphorus needs of laying hens: Implications for phosphorus management strategies. Poult. Sci. 97:2400–2410.

Kim, D. W., L. M. Donabon, A. D. Mitchell, L. F. Kubena, D. J. Nisbet, and S. C. Ricke. 2006. Effects of alalfa and fructooligosaccharide on molting parameters and bone qualities using dual energy X-ray absorptiometry and conventional bone assays. Poult. Sci. 85:15–20.
Klassing, K. C. 1998. Comparative avian nutrition. Pages 277–329 in Nutrition and Metabolism of Vitamins. University Press, Cambridge, UK.

Leytem, A. B., B. P. Willing, and P. A. Thacker. 2008. Phytase utilization and phosphorus excretion by broiler chickens fed diets containing cereal grains varying in phytate and phytate content. Anim. Feed Sci. Tech. 146:160–168.

Li, C., F. Geng, X. Huang, M. Ma, and X. Zhang. 2014. Phosvitin phosphorus is involved in chicken embryo bone formation through dephosphorylation. Poult. Sci. 93:3065–3072.

Li, Y. C., D. R. Ledoux, T. L. Voum, V. Raboy, and D. Ertl. 2000. Effects of low phytic acid corn on phosphorus utilisation, performance, and bone mineralisation in broiler chicks. Poult. Sci. 79:1444–1450.

Li, S. F., Y. X. Lin, L. Lu, L. Xi, Z. Y. Wang, S. F. Hao, L. Y. Zhang, K. Li, and X. G. Luo. 2011. An estimation of the manganese requirement for broilers from 1 to 21 days of age. Biol. Trace. Elem. Res. 143:939–948.

Li, X. H., D. G. Zhang, and W. L. Bryden. 2017. Calcium and phos- phorus metabolism and nutrition of poultry: are current diets formulated in excess? Anim. Prod. Sci. 57:2304–2310.

Liu, S. B., X. D. Liao, L. Lu, S. F. Li, L. Y. Zhang, L. Jiang, and X. G. Luo. 2017. Dietary non-phytate phosphorus requirement of broilers fed a conventional corn-soybean meal diet from 1 to 21 d of age. Poult. Sci. 96:151–159.

NRC. 1994. Nutrient requirements of poultry, 9th ed. Natl. Acad. Press, Washington, DC.

Ohta, H., Y. Uemura, T. Nakamura, M. Fukunaga, Y. Ohashi, T. Hosoi, S. Mori, T. Sugimoto, E. Itoi, H. Orimo, and M. Shiraki. 2014. Serum 25-hydroxyvitamin D level as an independent determinant of quality of life in osteoporosis with a high risk for fracture. Clin. Ther. 36:225–235.

Onyango, E. M., P. Y. Hester, R. Stroshine, and O. Adeola. 2003. Bone density as an indicator of percentage tibia ash in broiler chicks fed varying dietary calcium and phosphorus levels. Poult. Sci. 82:1787–1791.

Park, S. Y., S. G. Birkhold, L. F. Kubena, D. J. Nisbet, and S. C. Ricke. 2003. Effect of storage condition on bone breaking strength and bone ash in laying hens at different stages in production cycles. Poult. Sci. 82:1688–1691.

Proszkowiec-Weglarz, M., and R. Angel. 2013. Calcium and phosphorus metabolism in broilers: effect of homeostatic mechanism on calcium and phosphorus digestibility. J. Appl. Poult. Res. 22:609–627.

Raghuramulu, N., and V. Reddy. 1980. Serum 25-hydroxy-vitamin D levels in malnourished children with rickets. Arch. Dis. Child. 55:285–287.

Rama Rao, S. V., M. V. L. N. Raju, M. R. Reddy, P. Pavani, G. S. Sunder, and R. P. Sharma. 2003. Dietary calcium and non-phytate phosphorus interaction on growth, bone mineralization and mineral retention in broiler starter chicks. Asian-australas. J. Anim. Sci. 16:719–725.

Rousseau, X., A. S. Valable, M. P. Létourneau-Montminy, N. Méme, E. Godet, M. Magnin, Y. Nys, M. J. Duclos, and A. Narcy. 2016. Adaptive response of broilers to dietary phosphorus and calcium restrictions. Poult. Sci. 95:2849–2860.

Rutherford, S. M., T. K. Chung, P. C. Morel, and P. J. Moughan. 2004. Effect of microbial phytase on ileal digestibility of phytate phosphorus, total phosphorus, and amino acids in a low-phosphorus diet for broilers. Poult. Sci. 83:61–68.

Sadeq, S. A. M., S. B. Wu, M. Choet, and R. A. Swick. 2018. Influence of trace mineral sources on broiler performance, lymphoid organ weights, apparent digestibility, and bone mineralization. Poult. Sci. 97:3176–3182.

Sarac, F., and F. Saygili. 2007. Causes of high bone alkaline phos- phatase. Biotechnol. Biotechnol. EQ. 21:194–197.

Shafey, T. M., M. W. McDonald, and R. A. Pym. 1990. Effects of dietary calcium, available phosphorus and vitamin D on growth rate, food utilisation, plasma and bone constituents and calcium and phosphorus retention of commercial broiler strains. Br. Poult. Sci. 31:587–602.

Shao, Y. X., G. M. Sun, S. M. Cao, L. Lu, L. Y. Zhang, X. D. Liao, and X. G. Luo. 2019a. Bone phosphorus retention and bone development of broilers at different ages. Poult. Sci. 98:2114–2121.

Shao, Y. X., G. Z. Xing, L. Y. Zhang, L. Lu, S. F. Li, X. D. Liao, and X. G. Luo. 2019b. Effects of dietary calcium or phosphorus defici- ency on growth performance, rickets incidence characters and tibia histological structure of broilers during 1 to 21 days of age. Clin. J. Anim. Nutr. 31:2107–2118.

Shao, Y. X., Q. Wen, S. M. Zhang, L. Lu, L. Y. Zhang, X. D. Liao, and X. G. Luo. 2019c. Dietary supplemental vitamin D3 enhances phosphorus absorption and utilization by regulating gene expres- sion of related phosphate transporters in the small intestine of broilers. Br. J. Nutr. 121:9–21.

Shastak, Y., M. Witzig, K. Hartung, W. Bessei, and M. Rodehutscord. 2012. Comparison and evaluation of bone measurements for the assessment of mineral phosphorus sources in broilers. Poult. Sci. 91:2210–2220.

Shapiro, R., and R. P. Heaney. 2003. Co-dependence of calcium and phosphorus for growth and bone development under conditions of varying deficiency. Bone 32:532–540.

Shim, M. Y., A. B. Karnuah, A. D. Mitchell, N. B. Anthony, G. M. Pesti, and S. E. Aggrey. 2012. The effects of growth rate on leg morphology and tibia breaking strength, mineral density, mineral content, and bone ash in broilers. Poult. Sci. 91:1790–1795.

Tilgar, V., P. Kılıças, V. Viitas, and S. J. Reynolds. 2008. The rate of bone mineralization in birds is directly related to alkaline phosphatase activity. Physiol. Biochem. Zool. 81:106–111.

Valable, A. S., A. Narcy, M. J. Duclos, C. Pomar, G. Page, Z. Nasir, M. Magnin, and M. P. Létourneau-Montminy. 2017. Effects of dietary calcium and phosphorus deficiency and subsequent recovery on broiler chicken growth performance and bone characteristics. Animal 12:1–9.

Venalainen, E., J. Valaja, and T. Jalava. 2006. Effects of dietary metabolisable energy, calcium and phosphorus on bone mineralisation, leg weakness and performance of broiler chickens. Br. Poult. Sci. 47:301–310.

Wilkinson, S. J., E. J. Bradbury, M. R. Bedford, and A. J. Cowieson. 2014. Effect of dietary nonphytate phosphorus and calcium concentra- tion on calcium appetite of broiler chicks. Poult. Sci. 93:1695–1703.

Williams, B., D. Waddington, S. Solomon, and C. Farquharson. 2000a. Dietary effects on bone quality and turnover, and Ca and P metabolism in chickens. Res. Vet. Sci. 69:81–87.

Williams, B., S. Solomon, D. Waddington, B. Thorp, and C. Farquharson. 2000b. Skeletal development in the meat-type chicken. Br. Poult. Sci. 41:141–149.