Some Applications of Augmentation Quotients

Deepak Gumber
School of Mathematics and Computer Applications
Thapar University, Patiala - 147 004, India
E-mail: dkgumber@yahoo.com

Abstract
We give some applications of augmentation quotients of free group rings in group theory.

2000 Mathematics Subject Classification: 16S34, 20C07.

Keywords: integral group ring, augmentation quotient, subgroups determined by ideals.

1 Introduction

Let ZG denote the integral group ring of a group G and $\Delta(G)$ its augmentation ideal. Let $\{\gamma_n(G)\}_{n \geq 1}$ be the lower central series of G. We also write G' for $\gamma_2(G) = [G, G]$, the derived group of G. When G is free, then integral group ring is known as free group ring. Let $\Delta_n(G)$ denote the n-th associative power of $\Delta(G)$ with $\Delta_0(G) = ZG$. The additive abelian group $\Delta_n(G)/\Delta_{n+1}(G)$ is known as the n-th augmentation quotient and has been intensively studied during the last forty years. Vermani[7] has given a notable survey article about work done on augmentation quotients. In this short note we are interested in the applications of augmentation quotients in group theory. Henceforth, unless or otherwise stated, F is a free group and R is a normal subgroup of F. Hurley and Sehgal[4] identified the subgroup $F \cap (1 + \Delta^2(F)\Delta^n(R))$ for all $n \geq 1$ and then using the fact that $\Delta(F)\Delta^m(R)/\Delta^2(F)\Delta^n(R)$ is free abelian for all $n \geq 1$ [1], they showed that the group $\gamma_{n+1}(R)/\gamma_{n+2}(R)\gamma_{n+1}(R \cap F')$ is a free abelian group for all $n \geq 1$. Gruenberg [1, Lemma III.5] proved that $\Delta^n(F)\Delta^m(R)/\Delta^{n+1}(F)\Delta^m(R)$ is a free abelian group for all $m, n \geq 1$. When R is an arbitrary subgroup of F, Karan and Kumar [5] proved that the groups $\Delta^n(F)\Delta^m(R)/\Delta^{n+1}(F)\Delta^m(R)$, $\Delta^n(F)\Delta^m(R)/\Delta^{n-1}(F)\Delta^{n+1}(R)$ and $\Delta^n(F)\Delta^m(R)/\Delta^n(F)\Delta^{m+1}(R)$ are free abelian for all $m, n \geq 1$. They gave the complete description of all these groups and explicit bases of first two groups. As a consequence of their results they proved that $R'/[R', R \cap F']$ is a free abelian group. Gumber et. al. [2] proved that $\Delta^p(R)\Delta^q(R)/\Delta^p(R)\Delta^q(R)\Delta^{n+1}(F)\Delta^q(R)$ is free abelian for all $p, q, n \geq 1$ and as a consequence showed that $\gamma_3(R)/\gamma_4(R)[R \cap F', R \cap F', R]$ is a free abelian.
Proof of Theorem A

Theorem 2.3 is free abelian. Then containing \(\Delta \) of the transversal \(S \)

Lemma 2.2 \[\begin{align*}
\phi & \text{ maps } \Delta^1(U) \text{ onto } \Delta^1(\Gamma(H)) \text{ for all } \Gamma \in G. \end{align*} \]

Theorem 2.1 For \(m \geq 2 \), let \(L^{(m)} = \sum_{n \geq m} L_n. \)

\[\Delta^{n-1}(G)\Delta(H) + \Delta^{n-2}(G)\Delta(H) + \cdots + \Delta(G)\Delta(\gamma_{n-1}(G)) + \Delta(\gamma_n(G)) \oplus L^{(n)}. \]

Let \(U \) be a group and \(W \) be a left transversal of a subgroup \(V \) of \(U \) with \(1 \in W \). Then every element of \(U \) can be uniquely written as \(wv, w \in W, v \in V \).

Let \(\phi : ZU \to ZV \) be the onto homomorphism of right \(ZV \)-modules which on the elements of \(U \) is given by \(\phi(wv) = v, w \in W, v \in V \). The homomorphism \(\phi \) maps \(\Delta(U)J \) onto \(\Delta(V)J \) for every ideal \(J \) of \(ZV \). In particular, by the choice of the transversal \(S \) of \(H \) in \(G \), we have \(\phi \mid L^{(n)} = 0 \). The homomorphism \(\phi \) is usually called the filtration map.

We shall also need the following results:

Lemma 2.2 \[\begin{align*}
\text{Let } G \text{ be a group, } K \text{ a subgroup of } G, \text{ and } J \text{ an ideal of } ZG \text{ containing } \Delta^2(K). \text{ Then } G \cap (1 + J + \Delta(K)) = (G \cap (1 + J))K. \end{align*} \]

Theorem 2.3 \[\begin{align*}
\text{Let } G \text{ be a group with a normal subgroup } H \text{ such that } G/H \text{ is free abelian. Then } G \cap (1 + \Delta^n(G) + \Delta(G)\Delta(H)) = \gamma_n(G)H' \text{ for all } n \geq 1. \end{align*} \]

3 Proof of Theorem A

To avoid repeated and prolonged expressions, we write

\[\begin{align*}
A &= \Delta^4(R) + \Delta^2(R)\Delta(R \cap F') + \Delta(R)\Delta([R, R \cap F']) \\
B &= \Delta^3(R) + \Delta^3(R)\Delta(R \cap F') + \Delta^2(R)\Delta([R, R \cap F']).
\end{align*} \]
Proposition 3.1 \(R \cap (1 + \Delta^3(R) + \Delta(R)\Delta(R \cap F') + \Delta([R, R \cap F'])) = [R, R \cap F']. \)

Proof. Proof is easy and follows by Lemma 2.2 and Theorem 2.3.

Proposition 3.2 \(R \cap (1 + A) = \gamma_4(R)[R, R \cap F', R \cap F']. \)

Proof. Since \(\gamma_4(R) - 1 \subset \Delta^3(R) \) and \([R, R \cap F', R \cap F'] - 1 \subset \Delta^2(R)\Delta(R \cap F') + \Delta(R)\Delta([R, R \cap F']) \), it follows that \(\gamma_4([R, R \cap F', R \cap F'] \subset R \cap (1 + A) \). For the reverse inequality, we let \(w \in R \) such that \(w - 1 \in A \) and proceed to show that \(w \equiv 1 \pmod{\gamma_4(R)[R, R \cap F', R \cap F']} \). Since \(R/R \cap F' \) is free-abelian, using Theorem 2.1 repeatedly we have

\[
A = \Delta(\gamma_4(R)) + L^{(4)} + \Delta(R)\Delta^2(R \cap F') + \Delta(R')\Delta(R \cap F') + L^{(2)}\Delta(R \cap F') + \Delta(R)\Delta([R, R \cap F']).
\]

Now since \(R \cap (1 + A) \subset R \cap F' \), using the filtration map \(\phi : ZR \to Z(R \cap F') \), it follows that

\[
R \cap (1 + A) \subset (R \cap F') \cap (1 + \Delta^3(R \cap F') + \Delta(R')\Delta(R \cap F') + \Delta([R, R \cap F']) + \Delta(\gamma_4(R)))
\]

\[
\subset (R \cap F') \cap (1 + \Delta^3(R \cap F') + \Delta(R')\Delta(R \cap F') + \Delta([R, R \cap F']) + \Delta(\gamma_4(R)))
\]

\[
\subset [R, R \cap F', R \cap F'] \gamma_4(R)
\]

where last equality follows by Theorem 2.4 and second last equality follows by Lemma 2.3.

Proposition 3.3 \(R \cap (1 + B) = \gamma_5(R)[R, R \cap F', R \cap F', R \cap F'][[R, R \cap F'], [R, R \cap F']]. \)

Proof. As in the above proposition, it is sufficient to prove that if \(w \in R \) is such that \(w - 1 \in B \), then

\[
w \equiv 1 \pmod{\gamma_5(R)[R, R \cap F', R \cap F', R \cap F'][[R, R \cap F'], [R, R \cap F']].}
\]

Using Theorem 2.1 repeatedly, we have

\[
\Delta^5(R) + \Delta^3(R)\Delta(R \cap F') + \Delta^2(R)\Delta([R, R \cap F'])
\]

\[
= \Delta(R)\Delta(\gamma_4(R)) + \Delta(\gamma_5(R)) + L^{(5)} + \Delta(R)\Delta^3(R \cap F') + L^{(2)}\Delta^2(R \cap F') + \Delta(R)\Delta(R' \cap F') + \Delta(\gamma_3(R))\Delta(R \cap F') + L^{(3)}\Delta(R \cap F') + \Delta(R)\Delta(R \cap F') + \Delta([R, R \cap F']) + \Delta(R')\Delta([R, R \cap F']) + L^{(2)}\Delta([R, R \cap F']).
\]

3
Applying filtration map \(\phi : ZR \to Z(R \cap F') \), we have

\[
R \cap (1 + \Delta^3(R) + \Delta^2(R) \Delta(R \cap F') + \Delta^2(R) \Delta([R, R \cap F'])) = (R \cap F') \cap (1 + \Delta^4(R \cap F') + \Delta(R') \Delta^2(R \cap F') + \Delta(\gamma_3(R)) \Delta(R \cap F') + \Delta^2(R \cap F') \Delta([R, R \cap F'])) + \Delta(R') \Delta([R, R \cap F']) \gamma_5(R)
\]

Now since \(R \cap F' / R' \) is free-abelian, a use of similar arguments with left replaced by right and the left \(ZR' \)-homomorphism \(\phi : Z(R \cap F') \to ZR' \) implies that

\[
(R \cap F') \cap (1 + \Delta^4(R \cap F') + \Delta(R') \Delta^2(R \cap F') + \Delta(\gamma_3(R)) \Delta(R \cap F')) + \Delta(R') \Delta([R, R \cap F']) \gamma_5(R) = \gamma_5(R)[R, R \cap F', R \cap F', R \cap F']([R, R \cap F'], [R, R \cap F']).
\]

Proof of Theorem A: From [6], it follows that

\[
\Delta^3(F) \cap \Delta^2(R) = \Delta^3(R) + \Delta(R) \Delta(R \cap F') + \Delta(R) \Delta([R, R \cap F']),
\]

and since \(\Delta(R)ZF \) is a free right \(ZF \)-module [3, Proposition I.1.12], we have

\[
\Delta^m(R) \Delta^3(F) \cap \Delta^{m+2}(R) = \Delta^{m+3}(R) + \Delta^{m+1}(R) \Delta(R \cap F') + \Delta^m(R) \Delta([R, R \cap F'])
\]

for all \(m \geq 0 \). The natural homomorphism

\[
\eta : \Delta^{m+2}(R) \to \Delta^m(R) \Delta^2(F) / \Delta^m(R) \Delta^3(F)
\]

has \(ker \phi = \Delta^{m+3}(R) + \Delta^{m+1}(R) \Delta(R \cap F') + \Delta^m(R) \Delta([R, R \cap F']) \) in view of the above intersection. Thus \(\Delta^{m+2}(R) / \Delta^{m+3}(R) + \Delta^{m+1}(R) \Delta(R \cap F') + \Delta^m(R) \Delta([R, R \cap F']) \) is free-abelian. Again, the homomorphism

\[
\theta : \gamma_{m+2}(R) \to \Delta^{m+2}(R) / \Delta^{m+3}(R) + \Delta^{m+1}(R) \Delta(R \cap F') + \Delta^m(R) \Delta([R, R \cap F'])
\]

defined as \(x \to (x - 1) \), \(x \in \gamma_{m+2}(R) \) has \(ker \theta \) equal to

\[
\gamma_{m+2}(R) \cap (1 + \Delta^{m+3}(R) + \Delta^{m+1}(R) \Delta(R \cap F') + \Delta^m(R) \Delta([R, R \cap F'])).
\]

Therefore

\[
\gamma_{m+2}(R) \cap (1 + \Delta^{m+3}(R) + \Delta^{m+1}(R) \Delta(R \cap F') + \Delta^m(R) \Delta([R, R \cap F'])),
\]

is free-abelian for all \(m \geq 0 \). The proof now follows by putting \(m = 0, 1, 2 \) in the above group and using Propositions 3.1, 3.2, and 3.3 respectively.
References

[1] Gruenberg K.W., Cohomological Topics in Group Theory, Lecture Notes in Mathematics, Springer, Berlin, 143 (1970).

[2] D.K. Gumber, R. Karan and I. Pal, Some augmentation quotients of integral group rings, Proc. Indian Acad. Sci. (Math. Sci.) 118 (2010), 537-546.

[3] N. Gupta, Free group rings, Contemporary Math., Amer. Math. Soc. 66 (1987).

[4] T. Hurley and S. Sehgal, Groups related to fox subgroups, Comm. Algebra 28 (2000) 1051-1059.

[5] R. Karan and D. Kumar, Augmentation quotients of free group rings, Algebra Colloq. 12 (2005) 597-606.

[6] R. Karan, D. Kumar and L.R. Vermani, Some intersection theorems and subgroups determined by certain ideals in integral group rings-II, Algebra Colloq. 9 (2002), 135-142.

[7] L.R. Vermani, Augmentation quotients of integral group rings, Groups-Koria’94 (Pusan), de Gruyter, Berlin (1995) 303-15.

[8] L.R. Vermani, A. Razdan and R. Karan, Some remarks on subgroups determined by certain ideals in integral group rings, Proc. Indian Acad. Sci. (Math. Sci.) 103 (1993), 249-256.

[9] K.I. Tahara, L.R. Vermani and Atul Razdan, On generalized third dimension subgroups, Canad. Math. Bull. 41 (1998), 109-117.