New Methods for Solving Large Scale Linear Programming Problems in the Windows and Linux computer operating systems

Saeed Ketabchi † Hossein Moosaei ‡ Hossein Sahleh ‡ and Mohammad Hedayati §

May 2, 2014

This paper will be published in Appl. Math. Inf. Sci. Vol. 7 No. 1 (2013)

Abstract

In this study, calculations necessary to solve the large scale linear programming problems in two operating systems, Linux and Windows 7 (Win), are compared using two different methods. Relying on the interior-point methods, linear-programming interior point solvers (LIPSOL) software was used for the first method and relying on an augmented Lagrangian method-based algorithm, the second method used the generalized derivative. The performed calculations for various problems show the produced random in the Linux operating system (OS) and Win OS indicate the efficiency of the performed calculations in the Linux OS in terms of the accuracy and using of the optimum memory.

Key words and phrases: Augmented Lagrangian method, Generalized Newton method, Linux operating system, LIPSOL, Windows operating system.

1 Introduction

Linear programming (LP) is an important class of optimization problems and is used extensively in economics, operations research, engineering, and many other fields.

*Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Guilan, P.O. Box 1914, Rasht, Iran, sketabchi@guilan.ac.ir
†Corresponding author, Department of Mathematics, University of Bojnord, Bojnord, Iran, Email: hmoosaei@gmail.com,
‡Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Guilan, Email: sahleh@guilan.ac.ir
§Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Guilan, Email: mb.hedayati@gmail.com
In this paper we consider the primal linear programming in the standard form

\[f_\ast = \min_{x \in X} c^T x, \quad X = \{ x \in \mathbb{R}^n : Ax = b, \ x \geq 0 \}, \quad (P) \]

where \(A \in \mathbb{R}^{m \times n}, c \in \mathbb{R}^n, \) and \(b \in \mathbb{R}^m \) are given, \(x \) is primal variable, \(0_i \) denotes the \(i \)-dimensional zero vector. In this work we present two methods for solving problem (P). The first method -which is a Matlab-based package for solving linear programs by interior-Point methods- is LIPSOL (the function linprog in Matlab). The second method is based on augmented Lagrangian method. [3, 4, 6, 12]

Initially, some problems with different sizes are produced randomly through providing generated problem and then calculations are done in the Win OS. Though the second algorithm enjoys a higher efficiency than MATLAB LINPROG according to the results, it cannot solve the large-scale problems. Now, the operating system is changed from the Win to the Linux and the produced problems are solved using both methods in the Linux OS. It can be observed that the unsolved problems by the Win OS are solved by the Linux OS. These results show the higher efficiency and flexibility of the Linux OS than the Win OS to make calculations and to solve large scale problems using various methods.

This paper is organized as follows. Augmented Lagrangian method is discussed in the section 2. In Section 3, some examples on various randomly generated problems are provided to illustrate the efficiency and validity of our proposed method. Concluding remarks are given in Section 4.

In this work by \(A^\top \) and \(\| . \| \) we mean the transpose of matrix \(A \) and Euclidean norm respectively and \(a_+ \) replaces negative components of the vector \(a \), by zeros.

2 Augmented Lagrangian Method

In this section we consider problem (P). Assume that the solution set \(X_\ast \) of primal problem (P) is nonempty, hence the solution set \(U_\ast \) of dual problem is also nonempty, and \(x \in \mathbb{R}^n \) be an arbitrary vector. Next Theorem tells us that we can get a solution of the dual problem of (P) from the unconstrained minimization problem.

Theorem 2.1 Assume that the solution set \(X_\ast \) of problem (P) is nonempty. Then there exists \(\alpha_\ast > 0 \) such that for all \(\alpha \geq \alpha_\ast \) the unique least \(2 \)-norm projection \(x \) of a point \(\bar{x} \) onto \(X_\ast \) is given by \(x = (\bar{x} + \alpha(A^\top u(\alpha) - c))_+ \) where \(u(\alpha) \) is a point attaining the minimum in the following problem:

\[\min_{u \in \mathbb{R}^m} \Phi(u, \alpha, \bar{x}), \quad (1) \]
where $\Phi(u, \alpha, \bar{x}) = -b^T u + \frac{1}{2\alpha} \| (\bar{x} + \alpha(A^T u - c))^+ \|^2$. In addition, for all $\alpha > 0$ and $x \in X_*$, the solution of the convex, quadratic problem (1), $u_* = u(\alpha)$ is an exact solution of the dual problem i.e. $u(\alpha) \in U_*$. The proof is given in [3].

Now, we describe how can be solved the unconstrained optimization problem (1). The function $\Phi(u, \alpha, \bar{x})$ is augmented Lagrangian function for the dual of the linear programming (P) (see [1]),

$$f_* = \max_{u \in U} b^T u, \quad U = \{u \in \mathbb{R}^m : A^T u \leq c\} \quad (D)$$

The function $\Phi(u, \alpha, \bar{x})$ is piecewise quadratic, convex, and just has the first derivative, but it is not twice differentiable. Suppose u and $s \in \mathbb{R}^m$, for gradient of $\Phi(u, \alpha, \bar{x})$ we have

$$\| \nabla \Phi(u, \alpha, \bar{x}) - \nabla \Phi(s, \alpha, \bar{x}) \| \leq \| A \| \| A^T \| \| u - s \|,$$

this means $\nabla \Phi$ is globally Lipschitz continues with constant $K = \| A \| \| A^T \|$. Thus for this function generalized Hessian exist and is defined the $m \times m$ symmetric positive semidefinite matrix [5, 7, 8, 9]

$$\nabla^2 \Phi(u, \alpha, \bar{x}) = AD(z)A^T,$$

where $D(z)$ denotes an $n \times n$ diagonal matrix with i-diagonal element z_i equals to 1 if $(\bar{x} + \alpha(A^T u(\alpha) - c))^+_i > 0$ and equal to 0 otherwise. Therefore we can use generalized Newton method for solving this problem and to obtain global termination we must use a line-search algorithm (see [10]). In the following algorithm we apply the generalized Newton method with a line-search based on the Armijo rule [2].

Algorithm 2.2 Generalized Newton method with the Armijo rule

Choose any $u_0 \in \mathbb{R}^m$ and $\epsilon \geq 0$

$i = 0$;

while $\| \nabla \Phi(u_i) \| \| \epsilon \| \geq \epsilon$

Choose $\alpha_i = \max\{s, s\delta, s\delta^2, \ldots\}$ such that

$\Phi(u_i) - \Phi(u_i + \alpha_i d_i) \geq -\alpha_i \mu \nabla \Phi(u_i) d_i,$

where $d_i = -\nabla^2 \Phi(u_i)^{-1} \nabla \Phi(u_i)$, $s > 0$ be a constant, $\delta \in (0, 1)$ and $\mu \in (0, 1)$.

$u_{i+1} = u_i + \alpha_i d_i$

$i = i + 1$;

end
In this algorithm, the generalized Hessian may be singular, thus we used a modified Newton direction as following:

\[-(\nabla^2 \Phi(u_i) + \delta I_m)^{-1}\nabla \Phi(u_i),\]

where \(\delta\) is a small positive number (\(\delta = 10^{-4}\)), and \(I_m\) is the identity matrix of \(m\) order.

Now we introduce the following iterative process (multiplies method for the dual LP problem \((D)\)):

\[
\begin{align*}
 u^{k+1} &= \arg \min_{u \in \mathbb{R}^n} \{-b^T u + \frac{1}{2\alpha} \| (x^k + \alpha(A^T u - c))_+ \|^2, \\
 x^{k+1} &= (x^k + \alpha(A^T u^{k+1} - c))_+,
\end{align*}
\]

where \(x^0\) is an arbitrary starting point and the solution of the problem \((2)\) has been obtained by algorithm \((2.2)\).

Theorem 2.3 Let the solution set \(X_*\) of the problem \((P)\) be nonempty. Then, for all \(\alpha > 0\) and an arbitrary initial \(x^0\) the iterative process \((2)\), \((3)\) converges to \(x_* \in X_*\) in finite number of step \(k\) and the primal normal solution \(\hat{x}_*\) was obtained after the first iteration from above process, i.e. \(k = 1\). Furthermore, \(u_* = u^{k+1}\) is an exact solution of the dual problem \((D)\).

The proof of the finite global convergence is given in [1]

3 Numerical results

In this section we present some numerical results on various randomly generated problems to the problem \((P)\). The problems are generated using the following MATLAB code:

```matlab
%lp: Generate random solvable lp: min c’x s.t. Ax = b ;x>=0, %Input: m,n,d(ensity); Output: A,b,c; (x, u): primal-dual solution
m=input('Enter m:')
n=input('Enter n:')
d=input('Enter d:')
pl=inline('(abs(x)+x)/2')
A=sprand(m,n,d);A=100*(A-0.5*spones(A)); x=sparse(10*pl(rand(n,1)));
u=spdiags((sign(pl(rand(m,1)-rand(m,1)))),0,m,m)*(rand(m,1)-rand(m,1));
```
\[b = Ax; c = A'u + \text{spdiags}((\text{ones}(n,1)-\text{sign}(pl(x))),0,n,n) \cdot 10 \cdot \text{ones}(n,1); \]

\[\text{format short e;} \left[\text{norm}(Ax-b), \text{norm}(pl(A'u-c)), c'x-b'u \right]. \]

The test problem generator generates a random matrix \(A \) for a given \(m, n \) and density \(d \) and the vector \(b \). The elements of \(A \) are uniformly distributed between \(-50\) and \(+50\). In all computations were performed, our variant augmented Lagrangian method and the generalized Newton method and Armijo line search, were implemented in MATLAB code. We used \textit{Core 2 Duo 2.53 GHz} with main memory \textit{4 GB}. The computation results are shown in Table(1) and Table(2). We present comparison between the method is based on \textit{LIPSOL} (see [11]) in MATLAB (\textit{linprog}) and our algorithm (\textit{lpf}) in Windows and Linux. Computational results show that, some of the unsolved problems in the Win OS are solved in the Linux OS.

The starting vector used in all following examples is \(x^0 = 0 \). In all solved examples \(\alpha = 10/d^{0.5}, \text{tol} = 10^{-10} \). The total times of computations in each example is given the third column of the table. The accuracy of optimality conditions of LP problems are in the last three columns.

4 Conclusion

Two methods have been offered in this paper to solve linear programming problem. Initially, some problems are produced randomly and then they will be solved by two offered methods in the Win OS. Though the second algorithm enjoys a higher efficiency than MATLAB LINPROG according to the results, it cannot solve the large-scale problems. Then the produced problems are solved using the both methods in the Linux OS, the results show that some of the unsolved problems in the Win OS are solved in the Linux OS.
Table 1: Comparison of **linprog** and **lpf** in Win

| m, n, d | **time(sec)** | $\|x^\ast\|$ | $\|Ax^\ast - b\|_\infty$ | $\|(A^T u^\ast - c)_+\|_\infty$ | $|c^T x^\ast - b^T u^\ast|$ |
|-----------|---------------|---------------|----------------------------|--------------------------------|----------------------------|
| 800, 1000, 1 | linprog | Out of memory | | | |
| | lpf | 26.06 | 1.3250e + 001 | 4.6280e − 009 | 1.3358e − 012 | 2.2695e − 008 |
| 1000, 1200, 1 | linprog | Out of memory | | | |
| | lpf | 45.91 | 1.3072e + 001 | 5.8478e − 009 | 1.7586e − 012 | −1.6425e − 008 |
| 800, 10000, 1 | linprog | Out of memory | | | |
| | lpf | 97.20 | 9.0806e + 000 | 1.1331e − 008 | 5.6843e − 013 | 8.8519e − 008 |
| 2000, 30000, 0.1 | linprog | Out of memory | | | |
| | lpf | 162.51 | 3.2136e + 001 | 1.2335e − 008 | 5.79e − 013 | 5.82e − 007 |
| 3000, 40000, 0.1 | linprog | Out of memory | | | |
| | lpf | 87.35 | 1.3993e + 001 | 8.2518e − 009 | 8.5265e − 013 | 4.9171e − 008 |
| 10000, 15000, 0.01 | linprog | Out of memory | | | |
| | lpf | 814.07 | 1.1705e + 005 | 4.0059e − 007 | 1.00e − 007 | 1.82e − 001 |
| 100, 10000000, 0.01 | linprog | Out of memory | | | |
| | lpf | 218.86 | 4.3655e − 001 | 2.0084e − 007 | 7.1054e − 015 | −2.8666e − 007 |
Table 2: Comparison of *linprog* and *lpf* in Linux

| m, n, d | *time*(sec) | $\|x^*\|$ | $\|Ax^* - b\|_\infty$ | $\|(A^T u^* - c)_+\|_\infty$ | $|c^T x^* - b^T u^*|$ |
|---------------------|-------------|------------|------------------------|-------------------------------|-----------------------|
| 800, 1000, 1 | linprog | 45.84 | 1.8190e + 01 | 3.4152e - 10 | 8.01e - 13 |
| | lpf | 23.83 | 1.3250e + 01 | 4.6280e - 09 | 1.3358e - 12 |
| 1000, 1200, 1 | linprog | *Out of memory* | | | |
| | lpf | 44.59 | 1.3072e + 01 | 5.8478e - 09 | 1.7586e - 12 |
| 800, 10000, 1 | linprog | *Out of memory* | | | |
| | lpf | 90.41 | 9.0806e + 00 | 1.1331e - 08 | 5.6843e - 13 |
| 2000, 30000, 0.1 | linprog | 161.72 | 3.2136e + 01 | 9.4724e - 10 | 5.78e - 13 |
| | lpf | 34.65 | 13.372 | 3.9063e - 09 | 6.8212e - 13 |
| 3000, 4000, 0.1 | linprog | 291.53 | 2.3014e + 01 | 6.4369e - 10 | 1.02e - 12 |
| | lpf | 113.95 | 1.3993e + 01 | 8.2518e - 09 | 8.5265e - 13 |
| 10000, 15000, 0.01 | linprog | *Out of memory* | | | |
| | lpf | 3243.50 | 1.4390e + 01 | 6.0431e - 09 | 3.1264e - 13 |
| 10000, 150000, 0.01 | linprog | *Out of memory* | | | |
| | lpf | 4215.10 | 5.5538e + 01 | 1.1173e + 05 | 1.1108e - 01 |
| 100, 10000000, 0.01 | linprog | 212.72 | 1.1705e + 05 | 4.4343e - 07 | 1.00e - 07 |
| | lpf | 140.01 | 4.3655e - 01 | 2.0084e - 07 | 7.1054e - 15 |
References

[1] Antipin A S. Nonlinear programming methods based on primal and dual augmented Lagrangian. Moscow:Institute for System Studies, 1979.

[2] Armijoo L. Minimazation of functions havinig Lipschitz-continus first partial derivetives. Pacifice Journal of Mathematics, 1966, 16: 1–3.

[3] Evtushenko Yu G, Golikov A I, Mollaverdi N. Augmented Lagrangian method for large-scale linear programming problems. Optimization Methods and Software, 2005, 20: 515–524.

[4] Evtushenko Yu G, Golikov A I. The augmented Lagrangian function for the Linear programming problems. Dynamics of non- homogeneous systems, Ed. YuSPopkov,Russian Academy of Sciences Institute for System Analysis, 1998, 2:63–67.

[5] Hiriart-Urruty J B, Strodiot J J, Nguyen V H. Generalized Hessian matrices and second-order optimality condions for problems c^{l1} data. Applied Mathematics and Optimazation, 1984, 11:43–56.

[6] Jinchuan Zhou, Xiuhua Xu, Jingyong Tang. New Multiplier Algorithm for Nonlinear Programming with Inequality Constraints. Appl. Math. Inf. Sci. 6, No. 2 , 337-343 (2012).

[7] Kanzow C, Qi H, Qi l. On the minimum norm soloution of linear programes. Journal of Optimazition Theory and Applications, 2003, 116:333–345.

[8] Mangasarian O L. A Newton Method for Linear Programming. Journal of Optimization Theory and Applications, 2004, 121:1–18.

[9] Mangasarian O L. A Finite Newton Method for Classification. Optimization Methods and Software, 2002, 17:913–930.

[10] Nocedal J, Wright S J. Numerical Optimization. Springer Science, 1999.

[11] Zhang Y. Solving Large-Scale Linear Programs by Interior-Point Methods Under the MATLAB Environment. Department of Mathematics and Statistics, University of Maryland, Baltimore County,Baltimore, MD, Technical Report TR96-01, July, 1995.

[12] Zhi-Feng Pang, Baoli Shi and Lihong Huang. A Projected Gradient Method for a High-order Model in Image Restoration Problems. Appl. Math. Inf. Sci. 6, No. 3, 515-524 (2012).