Association of antioxidant nutraceuticals and acetaminophen (paracetamol): Friend or foe?

Mohamed Abdel-Daim, Abdelrahman Ibrahim Abushouk, Raffaella Reggi, Nagendra Sastry Yarla, Maura Palmery, Ilaria Peluso

Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
Department of Ophthalmology and Micro-Technology, Yokohama City University, Yokohama, Japan
Faculty of Medicine, Ain Shams University, Cairo, Egypt
Department of Physiology and Pharmacology “V. Erspamer”, “Sapienza” University of Rome, Italy
Divisions of Biochemistry & Chemistry, City University of New York School of Medicine, 160 Convent Avenue, New York, NY 10031, USA
Research Center for Food and Nutrition, Council for Agricultural Research and Economics, (CREA-AN), Rome, Italy

Acetaminophen (paracetamol or APAP) is an analgesic and antipyretic drug that can induce oxidative stress-mediated hepatotoxicity at high doses. Several studies reported that antioxidant nutraceuticals, in particular phenolic phytochemicals from dietary food, spices, herbs and algae have hepatoprotective effects. Others, however, suggested that they may negatively impact the metabolism, efficacy and toxicity of APAP. The aim of this review is to discuss the pros and cons of the association of antioxidant nutraceuticals and APAP by reviewing the in vivo evidence, with particular reference to APAP pharmacokinetics and hepatotoxicity. Results from the murine models of APAP-induced hepatotoxicity showed amelioration of liver damage with nutraceuticals coadministration, as well as reductions in tissue markers of oxidative stress, and serum levels of hepatic enzymes, bilirubin, cholesterol, triglycerides and inflammatory cytokines. On the other hand, both increased and decreased APAP plasma levels have been reported, depending on the nutraceutical type and route of administration. For example, studies showed that repeated administration of flavonoids causes down-regulation of cytochrome P450 enzymes and up-regulation of uridine diphosphate glucuronosyltransferases (UGT). Moreover, nutraceuticals can alter the levels of APAP metabolites, such as mercapturate glucuronide, sulfate and cysteine conjugates. Overall, the reviewed in vivo studies indicate that interactions between APAP and nutraceuticals or plant foods exist. However, the majority of data come from animal models with doses of phytochemicals far from dietary ones. Human studies should investigate gene-diet interactions, as well as ethnic variability in order to clarify the pros and cons of co-administering antioxidant nutraceuticals and APAP.

Copyright © 2017, Food and Drug Administration, Taiwan. Published by Elsevier Taiwan LLC. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

There is a growing interest in the scientific community in nutraceuticals, in particular phenolic phytochemicals from dietary food, spices, herbs and algae due to their ability to mitigate oxidative stress, the latter being associated with both disease risk and drug toxicity [1–4]. Dietary phenolic compounds, including flavonoids and non-flavonoids, have well-established preventive effects against oxidative stress-related diseases, including cardiovascular, neurodegenerative diseases and cancers [3,4]. Flavonoids, present in fruits, vegetables, grains and other plant foods, include several subclasses, such as anthocyanins of red fruits, flavonols of tea, cocoa and dark chocolate, flavanones of orange and grapefruit juice, flavones of artichokes, black olives, celery and whole-grain, flavonols of spinach and onions and iso-flavonones of soy products [4,5].

Several studies used murine models to test the hepatoprotective effects of natural products [6,7]. For example, the nutraceutical Spirulina platensis, a filamentous microalga belonging to the class of Cyanobacteria, ameliorated the deltamethrin-induced hepatotoxicity through its antioxidant activity [2]. This effect was evident in its ability to lower the level of the peroxidation marker malondialdehyde (MDA), while increase the content of reduced glutathione (GSH) and the activities of glutathione peroxidase (GPX), superoxide dismutase (SOD) and catalase (CAT) [2].

Acetaminophen (APAP), also known as paracetamol, is the most frequently used analgesic and antipyretic drug. However, it can induce oxidative stress-mediated hepatotoxicity at high doses [6,7]. In the Western countries, APAP overdose is the commonest cause of acute liver injury (ALI) [8]. Despite the hepatoprotective effects of nutraceuticals, it has been reported that flavonoids within phenolic phytochemicals may negatively impact the metabolism, efficacy and toxicity of drugs [5,9], including APAP [10]. Both inductions and inhibitions of the detoxification enzyme glutathione S-transferase (GST) have been reported for flavonoids, depending on their structure, suggesting potential toxicological consequences [10]. Furthermore, flavonoids could interfere with drugs' bioavailability through different mechanisms, such as competition with cytochrome P450 (CYP) enzymes, esterases, uridine diphosphate glucuronosyltransferases (UGT) and transporters, such as P-glycoprotein, multi-drug resistance-associated proteins (MRP), organic anion transport poly-peptides (OATP), breast cancer-resistance protein (BCRP) and monocarboxylate transporters (MCT) [5].

Differences between the long-term supplementation and acute administration have been observed, probably because in addition to being substrates of phase I, II and III drug metabolism/transport systems, flavonoids are also able to modulate their expression through the activation protein-1 (AP-1), the nuclear factor kB (NF-kB), the nuclear factor erythroid 2-related factor 2 (Nrf2), the aryl hydrocarbon receptor (AhR) and the pregnant X receptor (PXR) [9].

In this work, we aimed to discuss the pros and cons of the association of antioxidant nutraceuticals and APAP by reviewing the in vivo evidence, with particular reference to APAP pharmacokinetics and hepatotoxicity.

2. Acetaminophen pharmacokinetics, hepatotoxicity and oxidative stress

APAP is a weak acid with pKa = 9.5, is almost entirely neutral at physiological pH and is rapidly absorbed from the duodenum [11]. It is extensively metabolized in humans, with a half-life in blood of 1.5–3 h after a therapeutic dose. APAP metabolism occurs mainly in the liver through sulfation (25–35% of a therapeutic dose) and glucuronidation (50–70% of a therapeutic dose), by sulfotransferase (SULT, SULT1A1, 1A3/4, and possibly 1E1) and UGT (UGT1A1 and 1A6) enzymes, respectively [11]. Sulfate (Sul)-APAP is excreted in urine and glucuronide (Glu)-APAP in both bile and urine. Despite conjugation is the major route at therapeutic doses, CYP metabolism is important in high-doses induced hepatotoxicity [8].

Biliary excretion of APAP conjugates requires transporters i.e. results from murine models suggested that biliary excretion of both Glu-APAP and Sul-APAP is dependent on MRP2 and BCRP in the canalicular hepatocyte membrane, whereas MRP3 is involved in the basolateral excretion of Glu-APAP and Sul-APAP (in addition to MRP4) [11]. On the other hand, GST is responsible for the enzymatic conjugation of APAP and GSH, while MRP2 is involved in the biliary excretion of GSH-APAP [11]. After a therapeutic dose of APAP, about 5–15% is excreted in urine as a mercapturate (Merc)-APAP or cysteine (Cys)-APAP conjugate (two products of GSH-APAP). The production of these conjugates occurs after phase I metabolism of APAP, which is predominantly mediated by CYP2E1, but other CYP (CYP1A2, 2D6, and 3A4) enzymes have been shown to activate APAP in vitro as well [11].

The metabolic activation of APAP produces reactive oxygen species (ROS) and the N-acetyl-p-benzoquinone imine (NAPQI) that reacts readily with the nucleophilic sulfhydryl groups and depletes GSH [6,11–13]. NAPQI can bind to sulfhydryl groups, spontaneously reacting with GSH and it can also bind to hepatic proteins. The latter is the critical initiating event in cell death, observed during APAP-induced liver injury and GSH depletion. Although agents that prevent or scavenge mitochondrial ROS and peroxynitrite are the most promising for APAP hepatotoxicity [12], the importance of GSH defence against the reactive metabolite (NAPQI) led to introducing N-acetylcysteine (NAC) as an antidote for APAP hepatotoxicity in clinical practice [11].

Moreover, NAPQI forms mitochondrial protein adducts, increasing the production of superoxide radicals. The latter can react with nitric oxide to produce the potent oxidant peroxynitrite [6]. Then, the activation of the mitogen activated protein kinase (MAPK), c-Jun-N-terminal kinase (JNK), the nuclear DNA fragmentation, cell death and the subsequent inflammatory response all amplify the injury [12,13]. Addition of ATP synthase and GPX compromises the generation of ATP through the electron transport chain and interferes with the mitochondrial activity. Further, an inflammatory response is induced by damage-associated molecular patterns (DAMP), released by damaged hepatocytes, activating the resident liver macrophages (Kupffer cells), cytokine/chemokine production and immune cell recruitment [6,13].

Serum alanine aminotransferase (ALT) activity is currently the widely used biomarker for hepatocyte injury, induced by
APAP [8]. However, to confirm the absence of liver injury, patients require an ALT measurement at least 24 h after the overdose was ingested. Furthermore, changes in ALT occur in other conditions (fatty liver disease, viral hepatitis, myocardi-

damage or extreme exercise).

From that, to assess the risk of hepatotoxicity after a single overdose (within 1–2 h), a nomogram is used that plots blood APAP concentration against time after overdose (4 h after overdose absorption is believed to be complete) [8]. On the other hand, APAP-protein adducts persist much longer in serum and their half-life was found to be 1–2 days after an overdose for both children and adults and Cys-APAP has been suggested as a good marker of APAP overdose [8,11]. However, selection of a specific threshold is required because these adducts can be detected in serum after therapeutic doses and a combination of ≥1.1 µM Cys-APAP peak concentration and >1000 U/L ALT has been proposed [11]. Other promising markers for APAP hepatotoxicity in humans include circulating mitochondrial DNA (mtDNA), microRNA-122 (miR-122), cleaved Keratin-18 (apoptosis) and full length K18 (necrosis), the chromatin-binding protein [high-mobility group box-1 (HMGB1)] and the mitochondrial enzyme glutamate dehydrogenase (GLDH), whereas the Kidney injury molecule-1 (KIM-1) has been suggested as a marker of secondary injury to the proximal tubular epithelia after APAP overdose [8].

3. Dietary antioxidants and acetaminophen interactions in animal models

Interactions between APAP and antioxidants could affect both its pharmacokinetics and toxicity. Many studies investigated these effects in mice [14–22] and rats [23–30] (Table 1). A dose-dependent increase in the survival rate of APAP-intoxicated mice was observed when Citrus natsudaidai was administered for 3 days before APAP treatment [17] and a reduction in the APAP-induced histological damages has been reported for many plant extracts administered before [19,20,24,28,29] or after [21,22,25] APAP intoxication. The reduction of centrilobular necrosis and portal veins congestion on histopathological examination, observed with Auricularia polytrichra treatment was accompanied by improvements in plasma total proteins [24]. Besides, inhibition of the APAP-induced increase in serum levels of hepatic enzymes, bilirubin and/or lipids has been observed after treatment with Ganoderma ambimense [15], Pineapple vinegar (Ananas comosus) [16], A. polytrichra [24], Lentinitula edodes [22], Citrullus colocynthis fruits [27], Citrus mac- roptera [28], Opuntia robusta and Opuntia streptacantha [29], Pouteria campechiana [30], Carica papaya leaf and unripe fruit [25], Spirulina platensis [18], green tea polyphenols (GTP) [20] and black tea extract (BTE) [21]. In the cases of S. platensis [18] and GTP [20], decreases in interleukin (IL)-8 [18] and tumor necrosis factor (TNF)-α [20] serum levels were also observed.

However, green tea extract (GTE) had opposite effects when administered either before APAP by 3 h or once for three days followed by APAP on day 4, or following it by 6 h. The pre-treatment inhibited the APAP hepatotoxicity via reducing its protein covalent binding, whereas the post-treatment increased the APAP-hepatotoxicity via GSH depletion [14]. On the contrary, a single i.p dose of BTE, 90 min after APAP injection increased GSH [21] and Pineapple vinegar (A. comosus) by oral gavage for 14 days after seven days of APAP intake increased GSH and GPx [16]. Improvement of the redox status (i.e. increase in antioxidant systems and/or decrease in ROS and peroxidation markers) was also observed with other extracts [15,18,27,29,30]. Therefore, the majority of studies that used antioxidant extracts reported reductions of APAP-induced hepatic injury, except for GTE and GPT that gave contrasting results (Table 1).

Murad and colleagues [21] reported that treatment with thearubigins (TRs) was more hepato-protective than BTE, the latter containing also catechins [3,4]. Other pure nutraceut-

cicals, such as caffeic acid (CA) [31], chlorogenic acid (CGA) [32], eriodictyol [33], ferulic acid (FA) [34], naringenin [35], quercetin [36], resveratrol (RSV) [37–39], rosmarinic acid (RA) [40], syringic acid (SA) [41] have been tested in murine models of APAP-induced hepatotoxicity (Table 2). Caffeic acid [31], naringenin [35], RSV [37] and TRs [21] in mice, as well as RA [40] and SA [41] in rats, reduced APAP-induced histological dam- ages in the liver. This protection was observed both when phytochemicals were administered before [35,40,41] or after [21,31,37] APAP treatment.

In addition, mitigation of oxidative stress (increased anti- oxidants [21,32–35,40,41] or decreased oxidation markers [35,38,40], anti-inflammatory effects (reduction of inflam- matory cytokines) [31,34,38] and improvements in serum liver enzymes and/or bilirubin levels [21,35,38,41] have been reported for many phytochemicals. For naringenin, a dose-dependent effect has been found for intragastric doses ranging between 200 and 800 mg/kg [35]. However, these doses are far from dietary intakes (lemon, orange and grapefruit juices 5–60 mg/100 ml of flavanone; intake of flavanones 70–100 mg/d) and the bioavailability of polyphenols is low [3,4].

Of note, intragastric eriodictyol administration was of less hepatoprotective value than i.p. administration [33]. Among the studies conducted in murine models (Tables 1 and 2), some used i.p. administration and/or doses greater than 100 mg/kg and the results of these studies should be evaluated with caution. Despite these limitations, overall the results on murine models suggest that extracts (Table 1) or phyto- chemicals (Table 2) from plant foods can be hepatoprotective against APAP injury. Within the molecular targets, early growth response 1 protein (Erg 1) [31], Toll-like receptor-4 (TLR4) [34], NF-kB [34], p53 [39], cyclooxygenase (COX)-II [20], BCL2-associated X protein (Bax) [20] and JNK [39] were down-regulated, whereas NrF2 [32], cyclin D1 [39] and proliferating cell nuclear antigen (PCNA) [39] were upregulated.

On the other hand, few studies investigated the effect of antioxidant extracts (Table 1) and phytochemicals (Table 2) on APAP pharmacokinetics and metabolism. Opposite (positive and negative) effects on APAP plasma concentration were observed for Brassicaceae (kale) [23] and Citrus paradise (Grapefruit) juice (GF) [26], respectively. However, GF was administered to Sprague–Dawley rats as a single dose through oral gavage, either 28 or 20 h or 30 min before APAP treatment [26], whereas kale was consumed by specific pathogen-free Sprague–Dawley rats for seven days before APAP, inducing mRNA expression of UGT [23]. These results can be due to various factors, such as the differential response
Table 1 – Protective effects of plant extracts against APAP hepatotoxicity and metabolism.

Animal model	Treatment	Duration	Outcomes	Ref.
Mice, B6C3F1 mice (males), receiving a single oral dose of APAP (150–300 mg/kg)	Green tea extract (GTE) (500 or 1000 mg/kg, via oral gavage)	Either before APAP by 3 h or following it by 6 h or once for three days, followed by APAP on the 4th day	GTE after APAP: hepatotoxicity GTE before APAP: hepatotoxicity	[14]
Mice, BALB/c (males), receiving daily APAP at 250 mg/kg via oral gavage for seven days	Pineapple vinegar (A. comosus) at 0.08 and 2 ml/kg (oral gavage)	14 days after seven days of APAP intake	serum AST, ALT, and triglycerides tissue GSH and GPX tissue CYP and iNOS tissue MDA and ROS tissue GSH and GPX tissue AST and ALT SP 6 and 9%: serum AST, ALT and IL-18 tissue ROS	[16]
Mice, BALB/c (males), receiving a single i.p dose of APAP (350 mg/kg)	Ganoderma amboinense powder (1% and 2% daily, mixed with the standard oral diet)	6 weeks (pretreatment), followed by APAP i.p injection	tissue GSH and GPX tissue CYP and iNOS	[15]
Mice, ICR (males), receiving a single i.p dose of APAP (150 mg/kg)	Spirulina platensis (SP) extract (3, 6 and 9%, oral)	7 days, before APAP injection	tissue ROS	[18]
Mice, ICR (males), receiving a single oral APAP (300 mg/kg)	Citrus natsudaidai (CN: 300 and 1000 mg/kg, orally)	3 days, followed by APAP dose 2 h later	serum AST, ALT, and IL-18	[17]
Mice, Kunming (males), receiving a single i.p dose of APAP (1000 mg/kg) on the 6th day of the experiment	Tea polyphenols (TP) (100, 200 and 400 mg/kg, intra-gastric)	6 days, before APAP injection	tissue MDA and ROS tissue GSH and GPX tissue AST and ALT	[19]
Mice, Specific-pathogen-free (SPF) BALB/c (males), receiving a single i.p dose of APAP (750 mg/kg)	Green tea polyphenols (GTP) (0.25%, in diet)	5 days, before APAP injection	tissue COX-II and Bax. serum ALT and TNF histological damages	[20]
Mice, Swiss albino (males), receiving i.p APAP (300 mg/kg)	Black tea extract (BTE) (3% and 4.5%, i.p.)	A single dose, 90 min after APAP injection	tissue GSH	[21]
Mice, Wistar (males and females), receiving oral APAP at 1 g/kg per day	Lentinula edodes methanolic extract (200 mg/kg, orally)	7 days, 3 h after APAP treatment (for seven days)	histological damages serum AST, ALT, ALP and bilirubin	[22]
Rats, Specific pathogen-free Sprague–Dawley (males), receiving a single oral dose of APAP (25 mg/kg)	Brassicaceae (kale) extract (2 g/kg orally)	7 days, followed by a single APAP on the last day	plasma APAP tissue UGT	[23]
Rats, Sprague–Dawley (males), receiving a single oral dose of APAP (2 g/kg) on the 15th day of the experiment	Auricularia polytricha (AP) aqueous extract (250 and 500 mg/kg, orally once daily)	14 days, followed by APAP on the 15th day	histological damages serum total proteins serum AST, ALT, ALP, LDH, and total cholesterol histological damages	[24]
Rats, Sprague–Dawley (males and females), receiving a single oral dose of APAP at 600 mg/kg	Carica papaya leaf (CPL) and unripe fruit (CPF) aqueous extracts (100 and 300 mg/kg, each orally)	Following APAP administration by 2, 6 and 10 h	serum AST, ALT, ALP and direct bilirubin	[25]
Rats, Sprague–Dawley (males), receiving a single dose of APAP (10 mg/kg) via oral gavage	Citrus paradise (Grapefruit) juice (GF) (10 mg/kg, oral)	A single dose, either 28 or 20 h or 30 min before APAP administration	tissue MDA serum APAP	[26]
Rats, Wistar (males) and albino mice (both sexes), receiving a single oral dose of APAP (2 g/kg)	Citrus colocynthis fruits (MECCF) methanolic extract (300 mg/kg, orally)	7 days, APAP was provided 30 min after the last MECCF dose	tissue SOD and CAT serum AST, ALT and ALP	[27]

(continued on next page)
Table 1

Animal model	Treatment	Duration	Outcomes
Rats, Wistar (males) receiving oral APAP (500 mg/kg)	Citrus macroptera fruit ethanolic extract (EECM)	30 days, in the last seven days it was co-administered with APAP	Total phenolic content: 115 mg GAE/g and a DPPH scavenging activity of 71.6% at 250 mg/ml
Rats, Wistar (males) receiving oral APAP (250 mg/kg)	Pouteria campechiana fruit aqueous extract (PCAE)	Thrice (once every five days)	APAP at 50 mg/kg
Rats, Wistar (males), receiving intra-peritoneal (i.p) Opuntia robusta (Or) and Opuntia streptacantha (Os) fruit extract (800 mg/kg, orally)		5 days, before APAP administration	APAP at 500 mg/kg (single dose)
			APAP at 500 mg/kg (once every five days)

4. Human evidence

Few studies investigated the effects of nutraceuticals and plant foods on APAP pharmacokinetics in humans [42–46] (Table 3). The calculated parameters included maximum concentration (C_max), time of maximum concentration (T_max), area under the time versus concentration curve (AUC) and the plasma half-life. All studies were conducted on healthy subjects and the majority (4/5) of them followed a crossover design. The only longitudinal study reported that the consumption of tablets, containing Spanish black radish, camu camu (Myrciaria dubia), acerola (Malpighia emarginata), honey and manioc root (tapioca) for 4 weeks reduced plasma AUC of both unchanged APAP and APAP metabolites, such as Glu-APAP, Sul-APAP and NAPQI-GSH [42]. Urinary Sul-APAP and Mer-APAP, but not Glu-APAP were higher after 4 weeks of supplementation, when compared to week 0 and urine levels of unchanged APAP increased by 18% (near significance) [42]. Authors suggested that the supplement increased the detoxification of a 1000 mg dose of APAP by the up-regulation of both phase I and phase II enzymes.

On the other hand, Chen et al. [43] reported that the consumption of watercress (Nasturtium officinale R. BY.), a cruciferous vegetable, 10 h before APAP (1000 mg) test did not influence glucuronidation and sulfation metabolic pathways as all the pharmacokinetic parameters regarding Glu-APAP and Sul-APAP remained unchanged. Although the APAP pharmacokinetics were unchanged, the plasma concentrations of oxidative metabolites (Cys-APAP and Mer-APAP) increased, as well as their urinary excretion [43]. Moreover, two days of consuming a standardized herbal extract, containing curcuminoids and piperine did not affect the plasma APAP, Glu-APAP and Sul-APAP levels following a single 325 mg oral dose of APAP, although curcuminoids and piperine were measurable in plasma after enzymatic deconjugation with glucuronidase/sulfatase [44]. All urinary pharmacokinetic parameters of unchanged APAP (Sul-APAP, Cys-APAP and Mer-APAP) did not differ between treatment and placebo groups, whereas the decrease in urinary T_max and the increase in urinary AUC of Glu-APAP were near to significance (p = 0.09 and p = 0.06) [44].

Large inter-individual differences in plasma T_max have been found after intake of APAP 1500 mg and the C_max was reached earlier for six subjects (0.5 h) and much later for two subjects (2 h) with a mean of 65 minutes (min) [45]. The T_max was not significantly different between the rosehip drinks with or without lactobacillus Lp299v, but it was higher (100–110 min) compared to water (65 min) [45]. Reductions in

to different phytochemicals, nutraceuticals' metabolism by gut bacteria, competition for drug metabolism/transport system in the short term and/or gene expression modulation in the long term. When Wistar rats received a combined oral dose of APAP and quercetin or chrysin for 21 days, plasma APAP increased, suggesting that competitive inhibition prevails in this condition [36]. On the other hand, in mice, Pineapple vinegar (A. comosus) [16], tea polyphenols (TP) [19], CGA [32], eriodictyol [33], FA [34] and RSV [39] reduced the APAP metabolism and/or the expression of CYP enzymes.
Animal model	Treatment	Duration	Outcomes	Ref.
Mice C57BL/6 (males), receiving a single oral dose of APAP (300 mg/kg)	Caffeic acid (CA) (10 and 30 mg/kg, oral)	A single dose, 1 h following APAP intake	↓ histological damages	[31]
Mice ICR (males), receiving a single intragastric dose of APAP (300 mg/kg)	Chlorogenic acid (CGA) (10 or 40 mg/kg, orally)	7 days, followed by a single APAP dose, 1 h after the last dose	↓ hepatic CYP2E1 and CYP1A2	[32]
Mice Kunming (males), receiving a single i.p dose of APAP (250 mg/kg)	Eriodictyol (50 or 200 mg/kg, intragastric/i.p., then intravenously)	30 min before APAP injection an intragastric/i.p. dose of eriodictyol. Then another dose was given intravenously at APAP injection.	↓ APAP metabolism via hepatic CYP2E1 and CYP3A11	[33]
Mice BALB/c, receiving a single i.p dose of APAP (350 mg/kg)	Ferulic acid (FA) (10, 30, or 100 mg/kg, orally)	3 doses of FA at 8 h interval before APAP injection	↓ APAP metabolism through hepatic CYP2E1	[34]
Specific-pathogen-free (SPF) MT knockout mice (males), receiving a single subcutaneous dose of APAP (250 mg/kg)	Naringenin (200, 400, and 800 mg/kg, intragastric)	4 days before APAP injection	↓ histological damages	[35]
Rats Wistar (males), receiving a daily oral dose of APAP (100 mg/kg)	Quercetin (5, 10 and 20 mg/kg, oral) or chrysin (50, 100 and 200 mg/kg, oral)	21 days, combined dose of APAP and quercetin or Chrysin	↑ plasma APAP	[36]
C57Bl/6 mice (males), receiving a single i.p APAP dose (300 mg/kg)	Resveratrol (RSV) (50 mg/kg, i.p.)	A single dose, 90 min after APAP	↑ histological damages	[37]
Mice BALB-c (males and females), receiving a single i.p dose of APAP (900 mg/kg)	Resveratrol (RSV) (30 mg/kg, i.p.)	A single dose, following APAP injection	↓ histological damages	[38]
Mice C57BL/6 (males), receiving a single i.p dose of APAP (400 mg/kg)	Resveratrol (RSV) (25, 50, and 100 mg/kg, intragastric)	7 times at 12 h interval, then APAP injection 15 min after last RSV dose	↑ tissue MDA and MPO	[39]
Wistar rats (males), receiving a single i.p dose of APAP (500 mg/kg)	Rosmarinic acid (RA) (10, 50 and 100 mg/kg, intragastric)	7 days after APAP	↑ tissue AST, ALT, and TNF-α	[40]
Rats Wistar (males), receiving a single i.p dose of APAP (750 mg/kg)	Syringic acid (SA) (25, 50, and 100 mg/kg, oral)	6 days, followed by APAP injection on the 7th day	↑ histological damages	[41]
Mice Swiss albino (males), receiving a single i.p dose of APAP (300 mg/kg)	Thearubigins (TRs) (50, 60, and 70 mg/kg, i.p.)	A single dose, 90 min after APAP injection	↑ histological damages	[21]

ALT: alanine aminotransferase; APAP: acetaminophen; AST: aspartate aminotransferase; CAT: catalase; CYP: cytochrome P450; Egr1: early growth response 1 protein; ERK: extracellular-regulated protein kinase; GSH: glutathione; GPX: glutathione peroxidase; GR: glutathione reductase; GSH/GSSG: glutathione-to-oxidized glutathione ratio; IL: interleukin; JNK: c-Jun N-terminal protein kinase; LDH: lactate dehydrogenase; MDA: malondialdehyde; MPO: myeloperoxidase; NF-kB: nuclear factor kappaB; Nrf2: nuclear factor erythroid-2-related factor 2; PCNA: proliferating cell nuclear antigen; SOD: superoxide dismutase; TAC: total antioxidant capacity; TLR4: Toll-like receptor-4; TNF: tumor-necrosis factor. ↓: decrease; ↑: increase; Ref.: reference.
Cmax and AUC were also observed with both rosehip drinks compared to water, especially in the time period up to 90 min. Therefore, the probiotic seems not to influence the rosehip effect on APAP pharmacokinetics [45].

Among the factors that may account for the interindividual differences in APAP pharmacokinetics, Navarro et al. [46] investigated the diet-gene interactions in a crossover study. Healthy subjects, having different polymorphisms in the UGT family, received 1000 mg of APAP orally on days 7 and 14 of each 2-week feeding period and collected saliva and urine over 12 h [46]. A high (≈ 10 servings daily) fruit and vegetable (F&V) diet, including cruciferous vegetables (broccoli, cabbage, and daikon radish sprouts), soy foods (soy milk, veggies slices, tofu, and roasted soy nuts), and citrus fruits (grapefruit and orange juices, orange/grapefruit segments, and dried orange peel) was found to induce UGT, compared to a diet devoid of F&V, with a 2-week washout period between the diet periods [46]. Sex, genotype and/or diet differences were observed in salivary APAP pharmacokinetics and urinary excretion of APAP and its metabolites, as expressed as percentage of the ingested dose [46]. Overall, salivary APAP Cmax was higher after F&V diet, but when stratified by genotype, the effect was significant among subjects having UGT1A6*2/*2 or UGT2B15*1/*2 genotypes, whereas an increase in Tmax was observed only in subjects with the UGT2B15*2/*2 genotype. Besides, Cmax of salivary APAP was higher in women than in men. In women, urinary % APAP was higher, while % Glu-APAP was lower. Moreover, there was a strong sex-diet interaction with significantly higher % Glu-APAP among women, but not among men, consuming the F&V diet, compared with the basal diet. No statistically significant relationship was found between menstrual phase difference and % Glu-APAP response to F&V supplementation. However, the mean difference in % Sul-APAP between the basal and F&V diets was greater among the women who were not in the same phase of cycle during both diets at day 7, was lower with the F&V than with the basal diet in both groups of women and was no longer significant by day 14. However, overall the % Sul-APAP was lower with the F&V diet relative to the basal diet (Table 3).

As for salivary APAP, diet-gene interactions were found in urinary APAP metabolites [46]. After F&V diet, subjects with UGT1A6*1/*1 had higher % APAP and lower Glu-APAP/APAP ratio than those with UGT1A6*1/*2 and UGT1A6*2/*2 genotypes. On the other hand, despite having a higher Glu-APAP/APAP ratio, UGT2B15*1/*1 individuals had approximately a 2-fold higher F&V to basal diet percentage of difference in ratio response, compared with the UGT2B15*1/*2 and UGT2B15*2/*2 individuals. Therefore, diet-genotype interactions exist, as evidenced by the observed increase in APAP glucuronidation and decrease in Sul-APAP formation after selected F&V consumption [46]. Overall, human studies indicate that interactions occur between APAP and nutraceuticals or plant foods. These interactions depend on both subjects’ characteristics and source of phytochemicals.

5. Conclusion

To recapitulate, the reviewed studies indicate that interactions exist between nutraceuticals or plant foods and APAP. Major data came from animal models (Tables 1 and 2),

Table 3 – Effects of nutraceuticals and plant foods on APAP pharmacokinetic in humans.

Study design (subjects)	Treatment	Duration	APAP pharmacokinetic	Ref.
Longitudinal (19 healthy)	Tablets (6 daily); One tablet: 370 mg of Spanish black radish, 15.33 mg camu camu, 18.61 mg acerola, honey, manioc root	4 weeks before APAP	APAP (1000 mg) test: ↓ APAP, Glu-APAP, Sul-APAP and NAPQI-GSH (plasma) ↑ Mer-APAP and Sul-APAP (urine) = APAP (urine) ↔ Glu-APAP (urine)	[42]
Crossover (10 healthy)	Watercress homogenates (equivalent to 50 gm watercress)	10 h before APAP	APAP (1000 mg) test: ↓ Cys-APAP and Mer-APAP (plasma and urine) ↔ APAP, Glu-APAP and Sul-APAP (plasma and urine)	[43]
Crossover (8 healthy)	Herbal extract (standardized 4 g curcuminoids plus 24 mg piperine)	2 days before APAP	APAP (325 mg) test: ↔ APAP, Glu-APAP and Sul-APAP (plasma) ↔ APAP, Sul-APAP, Cys-APAP and Mer-APAP (urine) = Glu-APAP (urine)	[44]
Crossover (18 healthy)	Drinks: rosehip with or without Lp299v (200 ml)	Simultaneously with APAP	APAP (1500 mg) test: ↓ APAP (plasma, versus water, no differences within drinks)	[45]
Crossover UGT polymorphisms (66 healthy)	Diet: F&V = 10 servings daily	14 days before APAP	On day 7 and 14 APAP (1000 mg) test: ↑ APAP (saliva, greater on day 7, UGT1A6*2/*2 and UGT2B15*1/*2 genotypes) ↑ Glu-APAP (urine, among women, most pronounced on day 14) ↓ Sul-APAP (urine, most pronounced on day 7)	[46]

APAP: acetaminophen; Cys: cysteine; F&V: fruit and vegetable; Glu: glucuronide; Lp299v: lactobacillus Lp299v; Mer: mercapturate; NAPQI-GSH: N-acetyl-p-benzoquinone imine-glutathione; Sul: sulfate; UGT: uridine diphosphate glucuronosyltransferases. ↓: decrease; ↔: unchanged; =: near to significance increase; ↑: increase. Ref.: reference.
where both extracts and pure compounds exerted hepatoprotective effects, probably due to their anti-oxidant and anti-inflammatory activities. Furthermore, after treatment with food extracts or pure compounds, modulation of CYP and UGT was found in mice and rats, respectively. In humans (Table 3), both nutraceuticals and the consumption of F&V diet, known to affect phase I and/or phase II metabolism systems, alter APAP pharmacokinetics. In particular, a gene-diet interaction was observed for UGT polymorphisms [46]. Pharmacogenetic profiles have been suggested to have a role in the inter-individual differences in APAP metabolism, the related differences in susceptibility to toxicity and the efficacy of APAP in therapeutics [47].

Although little is known about the influence of race/ethnicity on the metabolism of APAP, Zurlinden et al. [48] recently suggested, by using subpopulation-specific, physiologically-based pharmacokinetic (PBPK) models for Western Europeans and East Asians, that differences in glucuronidation capacity could account for the observed differences in the APAP AUC between the two ethnic groups. Furthermore, it has been reported that faecal bacteria diversify in different ethnic groups [49]. In this context, results from the pseudo germ-free rat model, induced by bacitracin, streptomycin and neomycin treatment, indicated that microbial metabolism affected the plasma concentration of APAP metabolites [50]. In particular, lower AUC(Sul-APAP)/AUC(APAP) ratio and higher AUC of APAP and APAP-glutathione were found in pseudo germ-free rats, compared to the control rats [50]. Therefore, human cross-ethnic studies are needed to evaluate the possible differences in the metabolism, efficacy and toxicity of APAP.

Abbreviation list

Abbreviation	Description
AhR	aryl hydrocarbon receptor
ALI	acute liver injury
ALP	alkaline phosphatase
ALT	alanine aminotransferase
AP-1	activation protein-1
APAP	acetaminophen
AST	aspartate aminotransferase
AUC	area under the time versus curve
Bax	BCL2 associated X protein
BCRP	breast cancer-resistance protein
BTE	black tea extract
CA	caffeic acid
CAT	catalase
CGA	chlorogenic acid
Cmax	maximum concentration
COX	cyclooxygenase
CYP	cytochrome P450
Cys	cysteine
DAMP	damage-associated molecular patterns
Egr1	early growth response 1 protein
ERK	extracellular-regulated protein kinase
F&V	fruit and vegetable
FA	ferulic acid
GFJ	Grapefruit juice
GLDH	glutamate dehydrogenase
Glu	glucuronide
GPX	glutathione peroxidase
GR	glutathione reductase
GSH/GSSG	glutathione-to-oxidized glutathione ratio
GSH	glutathione
GST	glutathione S-transferase
GTE	green tea extract
GTP	green tea polyphenols
HMGB1	high-mobility group box-1
IL	interleukin
iNOS	inducible nitric oxide synthase
JNK	c-Jun N-terminal protein kinase
KIM-1	kidney injury molecule-1
LDH	lactate dehydrogenase
Lp299v	lactobacillus Lp299v
MAPK	mitogen activated protein kinase
MCT	monocarboxylate transporters
MDA	malondialdehyde
Mer	mercapturate
mir	microRNA
MPO	myeloperoxidase
MRP	multi-drug resistance-associated proteins
mtDNA	mitochondrial DNA
NAC	N-acetylcysteine
NAPQI	N-acetyl-p-benzoquinone imine
NAPQI-GSH	N-acetyl-p-benzoquinone imine-glutathione
NF-kB	nuclear factor kappaB
Nrf2	nuclear factor erythroid 2-related factor 2
OATP	organic anion transporting polypeptides
PBPK	physiologically based pharmacokinetic
PCNA	proliferating cell nuclear antigen
PXR	pregnane X receptor
RA	rosmarinic acid
ROS	reactive oxygen species
RSV	resveratrol
SA	syringic acid
SOD	superoxide dismutase
Sul	sulfate
SUL	sulfotransferase
TAC	total antioxidant capacity
TLR4	Toll-like receptor-4
T_m	time of maximum concentration
TNF	tumor-necrosis factor
TP	tea polyphenols
TRs	thearubigins
UGT	uridine diphosphate glucuronosyltransferases

REFERENCES

[1] Abushouk AI, Ismail A, Salem AMA, Afifi AM, Abdel-Daim MM. Cardioprotective mechanisms of phytochemicals against doxorubicin-induced cardiotoxicity. Biomed Pharmacother 2017;90:e46.
[2] Abdelkhaled NK, Ghazy EW, Abdel-Daim MM. Pharmacodynamic interaction of Spirulina platensis and deltamethrin in freshwater fish Nile tilapia, Oreochromis niloticus: impact on lipid peroxidation and oxidative stress. Environ Sci Pollut Res Int 2015;22(4):3023–31.
[3] Yarla NS, Bishayee A, Sethi G, Reddanna P, Kalle AM, Dhananjaya BL, et al. Targeting arachidonic acid pathway by...
natural products for cancer prevention and therapy. Semin Canc Biol 2016;40:41–48.

[4] Del Rio D, Rodriguez-Mateos A, Spencer JP, Tognolini M, Borges G, Crozier A. Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxidants Redox Signal 2013;18(14):1818–92.

[5] Peluso I, Palmyer M, Serafini M. Association of flavonoid-rich foods and statins in the management of hypercholesterolemia: a dangerous or helpful combination? Curr Drug Metabol 2015;16(9):833–46.

[6] Jaeschke H, McGill MR, Williams CD, Ramachandran A. Current issues with acacetaminophen hepatotoxicity—a clinically relevant model to test the efficacy of natural products. Life Sci 2011;88(17–18):737–45.

[7] Eugenio-Perez D, Montes de Oca-Solano HA, Pedraza-Chaverri J. Role of food-derived antioxidant agents against acacetaminophen-induced hepatotoxicity. Pharmaceut Biol 2016;54(10):2340–52.

[8] Viegenthaler AD, Antoine DJ, Dear JW. Target biomarker profile for the clinical management of paracetamol overdose. Br J Clin Pharmacol 2015;80(3):351–62.

[9] Peluso I, Palmyer M. Flavonoids at the pharma-nutrition interface: is a therapeutic index in demand? Biomed Pharmacother 2015;71:102–7.

[10] Bousova I, Skalova L. Inhibition and induction of glutathione S-transferases by flavonoids: possible pharmacological and toxicological consequences. Drug Metab Rev 2012;44(4):267–86.

[11] McGill MR, Jaeschke H. Metabolism and disposition of acacetaminophen: recent advances in relation to hepatotoxicity and diagnosis. Pharm Res 2015;30(9):2174–87.

[12] Du K, Ramachandran A, Jaeschke H. Oxidative stress during acacetaminophen hepatotoxicity: sources, pathophysiological role and therapeutic potential. Redox Biol 2016;10:148–56.

[13] Jaeschke H, Williams CD, Ramachandran A, Bajt ML. Acacetaminophen hepatotoxicity and repair: the role of sterile inflammation and innate immunity. Liver Int 2012;32(1):8–20.

[14] Salminen WF, Yang X, Shi Q, Greenjaw H, Davis K, Ali AA. Green tea extract can potentiate acacetaminophen-induced hepatotoxicity in mice. Food Chem Toxicol 2012;50(5):1439–46.

[15] Hsu CC, Lin KY, Wang ZH, Lin WL, Yin MC. Preventive effect of Ganoderma amboinense on acacetaminophen-induced acute liver injury. Phytomedicine 2008;15(11):946–50.

[16] Mohamad NE, Yeap SK, Lim KL, Yusof HM, Beh BK, Tan SW, et al. Antioxidant effects of pineapple vinegar in reversing of paracetamol-induced liver damage in mice. Chin Med J 2015;103.

[17] Yamaura K, Nakayama N, Shimada M, Ueno K. Protective effects of natsumukan (Citrus natsudaidai) extract on acacetaminophen-induced lethal hepatotoxicity in mice. Pharmacogn Res 2012;4(4):234–6.

[18] Lu J, Ren DF, Wang JZ, Sanada H, Egashira Y. Protection by dietary Spirulina platensis against D-galactosamine–acetaminophen-induced liver injuries. Br J Nutr 2010;103(11):1573–6.

[19] Chen X, Sun CK, Han GZ, Peng JY, Li Y, Liu YX, et al. Protective effect of tea polyphenols against paracetamol-induced hepatotoxicity in mice is significantly correlated with cytochrome P450 suppression. World J Gastroenterol 2009;15(15):1829–35.

[20] Oz HS, Chen TS. Green tea polyphenols downregulate cyclooxygenase and Bcl-2 activity in acacetaminophen-induced hepatotoxicity. Dig Dis Sci 2008;53(11):2980–8.

[21] Murad HA, Habib H, Kamel Y, Alsayed S, Shakweer M, Elshal M. Thearubigins protect against acacetaminophen-induced hepatic and renal injury in mice: biochemical, histopathological, immunohistochemical, and flow cytometry study. Drug Chem Toxicol 2016;39(2):190–8.

[22] Sasidharan S, Aravindran S, Latha LY, Vijenthi R, Saravanan D, Amutha S. In vitro antioxidant activity and hepatoprotective effects of Lentinula edodes against paracetamol-induced hepatotoxicity. Molecules 2010;15(6):4478–89.

[23] Yamasaki I, Uotsu N, Yamaguchi K, Takayanagi R, Yamada Y. Effects of kale ingestion on pharmacokinetics of acacetaminophen in rats. Biomed Res 2011;32(6):357–62.

[24] Chellappan DK, Ganasen S, Batumalai S, Candasamy M, Krishnappa P, Dua K, et al. The protective action of the aqueous extract of Auricularia polytricha in paracetamol induced hepatotoxicity in rats. Recent Pat Drug Deliv Formulation 2016;10(1):72–6.

[25] Awodele O, Yemitan O, Ise P, Ikumawoyi VO. Modulatory potentials of aqueous leaf and unripe fruit extracts of Carica papaya Linn. (Caricaceae) against carbon tetrachloride and acacetaminophen-induced hepatotoxicity in rats. J Intercl Ethnopharmacol 2016;5(1):27–35.

[26] Qinna NA, Ismail OA, Alhussainy TM, Idkaidek NM, Arafat TA. Evidence of reduced oral bioavailability of paracetamol in rats following multiple ingestion of grapefruit juice. Eur J Drug Metab Pharmacokinet 2016;41(2):187–95.

[27] Vakhloedd SN, Fuloria S, Dhanaraj SA, Balaji K, Karupiah S. Evidences of hepatoprotective and antioxidant effect of Citrullus colocynthis fruits in paracetamol induced hepatotoxicity. Pak J Pharm Sci 2015;28(3):951–7.

[28] Paul S, Islam MA, Tanvir EM, Ahmed R, Das S, Rumpa NE, et al. Satkara (Citrus macroptera) fruit protects against acacetaminophen-induced hepatozrenal toxicity in rats. Evid Based Complement Alternat Med 2016;2016:9470954.

[29] Gonzalez-Ponce HA, Martinez-Saldana MC, Rincon-Sanchez AR, Sumaya-Martinez MT, Buist-Homan M, Faber KN, et al. Hepatoprotective effect of Opuntia robusta and Opuntia streptacantha fruits against acacetaminophen-induced acute liver damage. Nutrients 2016;8(10).

[30] Aseervatham GS, Sivasudha T, SasiKumar JM, Christabel PH, Jeyadevi R, Ananth DA. Antioxidant and hepatoprotective potential of Pouteria campechiana on acacetaminophen-induced hepatic toxicity in rats. J Physiol Biochem 2014;70(1):1–14.

[31] Pang C, Shi L, Sheng Y, Zheng Z, Wei H, Wang Z, et al. Caffeic acid attenuated acacetaminophen-induced hepatotoxicity by inhibiting ERK1/2-mediated early growth response-1 transcriptional activation. Chem Biol Interact 2016;260:186–95.

[32] Pang C, Sheng YC, Jiang P, Wei H, Ji LL. Chlorogenic acid prevents acacetaminophen-induced liver injury: the involvement of CYP450 metabolic enzymes and some antioxidant signals. J Zhejiang Univ - Sci B 2015;16(7):602–15.

[33] Ye L, Wang Z, Lan Y, Chen M, Wen C, Hu Y, et al. Ergidiocytol, not its glucuronide metabolites, attenuates acacetaminophen-induced hepatotoxicity. Mol Pharm 2017;14(9):2937–51.

[34] Yuan J, Ge K, Mu J, Rong J, Zhang L, Wang B, et al. Furulic acid attenuated acacetaminophen-induced hepatotoxicity though down-regulating the cytochrome P 2E1 and inhibiting toll-like receptor 4 signaling-mediated inflammation in mice. Am J Transl Res 2016;8(10):4205–14.

[35] Lv Y, Zhang B, Xing G, Wang F, Hu Z. Protective effect of naringenin against acacetaminophen-induced acute liver injury in metallothionein (MT)-null mice. Food Funct 2013;4(2):297–302.

[36] Pingili RR, Pawar AK, Challa SR. Systemic exposure of Paracetamol (acetaminophen) was enhanced by quercetin and chrysos co-administration in Wistar rats and in vitro
model: risk of liver toxicity. Drug Dev Ind Pharm 2015;41(11):1793–800.

[37] Du K, McGill MR, Xie Y, Bajt ML, Jaeschke H. Resveratrol prevents protein nitration and release of endonucleases from mitochondria during acetaminophen hepatotoxicity. Food Chem Toxicol 2015;81:62–70.

[38] Sener G, Toklu HZ, Sehirli AO, Velioglu-Ogunc A, Cetinel S, Gedik N. Protective effects of resveratrol against acetaminophen-induced toxicity in mice. Hepatol Res 2006;35(1):62–8.

[39] Wang Y, Jiang Y, Fan X, Tan H, Zeng H, Wang Y, et al. Hepatoprotective effect of resveratrol against acetaminophen-induced liver injury is associated with inhibition of CYP-mediated bioactivation and regulation of SIRT1-p53 signaling pathways. Toxicol Lett 2015;236(2):82–9.

[40] Hasanein P, Sharifi M. Effects of rosmarinic acid on acetaminophen-induced hepatotoxicity in male Wistar rats. Pharmaceut Biol 2017;55(1):1809–16.

[41] Ramachandran V, Raja B. Protective effects of syringic acid against acetaminophen-induced hepatic damage in albino rats. J Basic Clin Physiol Pharmacol 2010;21(4):369–85.

[42] Evans M, Paterson E, Barnes DM. An open label pilot study to evaluate the efficacy of Spanish black radish on the induction of phase I and phase II enzymes in healthy male subjects. BMC Complement Altern Med 2014;14:475.

[43] Chen L, Mohr SN, Yang CS. Decrease of plasma and urinary oxidative metabolites of acetaminophen after consumption of watercress by human volunteers. Clin Pharmacol Therapeut 1996;60(6):651–60.

[44] Volak LP, Hanley MJ, Masse G, Hazarika S, Harmatz JS, Badmaev V, et al. Effect of a herbal extract containing curcumin and piperine on midazolam, flurbiprofen and paracetamol (acetaminophen) pharmacokinetics in healthy volunteers. Br J Clin Pharmacol 2013;75(2):450–62.

[45] Akerman U, Edvinsson L. Influence of fruit drinks with or without lactobacillus Lp299v on the gastrointestinal uptake of paracetamol in man. BMC Res Notes 2009;2:45.

[46] Navarro SL, Chen Y, Li L, Li SS, Chang JL, Schwarz Y, et al. UGT1A6 and UGT2B15 polymorphisms and acetaminophen conjugation in response to a randomized, controlled diet of select fruits and vegetables. Drug Metabol Dispos 2011;39(9):1650–7.

[47] Zhao L, Pickering G. Paracetamol metabolism and related genetic differences. Drug Metab Rev 2011;43(1):41–52.

[48] Zurlinden TJ, Reisfeld B. Characterizing the effects of race/ethnicity on acetaminophen pharmacokinetics using physiologically based pharmacokinetic modeling. Eur J Drug Metab Pharmacokinet 2017;42(1):143–53.

[49] Dehingia M, Devi KT, Talukdar NC, Talukdar R, Reddy N, Mande SS, et al. Gut bacterial diversity of the tribes of India and comparison with the worldwide data. Sci Rep 2015;5:18563.

[50] Lee SH, An JH, Lee HJ, Jung BH. Evaluation of pharmacokinetic differences of acetaminophen in pseudo germ-free rats. Biopharm Drug Dispos 2012;33(6):292–303.