7-2020

Allopatric and Sympatric Drivers of Speciation in Alviniconcha Hydrothermal Vent Snails

Corinna Breusing
University of Rhode Island, cbreusing@uri.edu

Shannon B. Johnson

Verena Tunnicliffe

David A. Clague

Robert C. Vrijenhoek

See next page for additional authors

Follow this and additional works at: https://digitalcommons.uri.edu/gsofacpubs

Citation/Publisher Attribution
Corinna Breusing, Shannon B Johnson, Verena Tunnicliffe, David A Clague, Robert C Vrijenhoek, Roxanne A Beinart, Allopatric and Sympatric Drivers of Speciation in Alviniconcha Hydrothermal Vent Snails, Molecular Biology and Evolution, Volume 37, Issue 12, December 2020, Pages 3469–3484, https://doi.org/10.1093/molbev/msaa177

This Article is brought to you for free and open access by the Graduate School of Oceanography at DigitalCommons@URI. It has been accepted for inclusion in Graduate School of Oceanography Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons-group@uri.edu.
Allopatric and Sympatric Drivers of Speciation in Alviniconcha Hydrothermal Vent Snails

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 License.

Authors
Corinna Breusing, Shannon B. Johnson, Verena Tunnicliffe, David A. Clague, Robert C. Vrijenhoek, and Roxanne A. Beinart

This article is available at DigitalCommons@URI: https://digitalcommons.uri.edu/gsofacpubs/752
Allopatric and Sympatric Drivers of Speciation in Alviniconcha Hydrothermal Vent Snails

Corinna Breusing,‡,1 Shannon B. Johnson,‡,2 Verena Tunnicliffe,3 David A. Clague,2 Robert C. Vrijenhoek,2 and Roxanne A. Beinart 1

1Graduate School of Oceanography, University of Rhode Island, Narragansett, RI
2Monterey Bay Aquarium Research Institute, Moss Landing, CA
3Department of Biology and School of Earth and Ocean Sciences, University of Victoria, Victoria, BC, Canada

†These authors contributed equally to this work.

*Corresponding author: E-mail: corinnabreusing@gmail.com.

Associate editor: Li Liu

New Sanger sequences for Alviniconcha and Ifremeria hosts and symbionts are available in GenBank under accession numbers MT131487–MT131781 (COI), MT130994–MT131149 (12S), MT146898–MT147385 (H3), MT148092–MT148633 (ATPSa), MT148634–MT149209 (ATPSb), MT147386–MT148091 (EF1a), and MT137388–MT137420 (16S). 16S amplicon sequences have been deposited in the Sequence Read Archive under BioProject numbers PRJNA473256, PRJNA473257, PRJNA610289, and PRJNA610290.

Abstract

Despite significant advances in our understanding of speciation in the marine environment, the mechanisms underlying evolutionary diversification in deep-sea habitats remain poorly investigated. Here, we used multigene molecular clocks and population genetic inferences to examine processes that led to the emergence of the six extant lineages of Alviniconcha snails, a key taxon inhabiting deep-sea hydrothermal vents in the Indo-Pacific Ocean. We show that both allopatric divergence through historical vicariance and ecological isolation due to niche segregation contributed to speciation in this genus. The split between the two major Alviniconcha clades (separating A. boucheti and A. marisindica from A. kojimai, A. hessleri, and A. strummeri) probably resulted from tectonic processes leading to geographic separation, whereas the splits between co-occurring species might have been influenced by ecological factors, such as the availability of specific chemosynthetic symbionts. Phylogenetic origin of the sixth species, Alviniconcha adamantis, remains uncertain, although its sister position to other extant Alviniconcha lineages indicates a possible ancestral relationship. This study lays a foundation for future genomic studies aimed at deciphering the roles of local adaptation, reproductive biology, and host–symbiont compatibility in speciation of these vent-restricted snails.

Key words: Alviniconcha, speciation, allopatric divergence, ecological isolation, deep-sea hydrothermal vents, chemosynthetic symbionts.

Introduction

How novel species evolve in response to environmental pressures remains a fundamental question in evolutionary biology (Schluter 1998). New species can originate through a number of mechanisms, including geographic isolation (allopatric speciation) and formation of reproductive barriers due to localized natural selection (sympatric speciation) (Darwin 1859; Mayr 1942; Dobzhansky 1951; Coyne and Orr 2004; Schluter 2009). The evolution of new species commonly occurs as a result of ecological or mutation-order speciation (Schluter 2009). Ecological speciation theory predicts that reproductive isolation should evolve between populations adapting to different environments (Mayr 1942) and is a consequence of divergent selection on functional traits enabling specialization for distinct ecological niches (Rundle and Nosil 2005; Schluter 2009). Habitat isolation can occur at different spatial scales that range from "macrospatial" (a form of allopatric speciation, where gene flow between populations is absent due geographic separation) to "microspatial" (where distinct populations co-occur geographically but rarely interbreed because of adaptations to different ecological niches) (Coyne and Orr 2004). By contrast, mutation-order speciation happens when reproductive isolation evolves due to random fixation of alleles in two populations that face the same selective pressures (Mani and Clarke 1990; Schluter 2009; Nosil and Flaxman 2011). Evolutionary divergence under this scenario is unlikely (though not impossible) if gene flow is present (Schluter 2009; Nosil and Flaxman 2011), whereas ecological speciation is common with or without gene flow (Schluter 2009; Nosil and Flaxman 2011; Feder 2011).
et al. 2012; Campbell et al. 2018). Additional processes including inter-specific hybridization and host–microbe associations have received less attention but are now accepted as significant drivers of speciation (Schuler et al. 2016).

Our current understanding of speciation mechanisms in animals stems mostly from evolutionary research on terrestrial and freshwater organisms, whereas less is known about speciation in oceanic environments, in particular deep ocean basins (Miglietta et al. 2011). Processes that lead to evolutionary divergence in marine systems may differ from other environments given that physical barriers are less pronounced and deep-sea habitats might have been less affected by past climatic fluctuations (Miglietta et al. 2011; but see Vrijenhoek 2013), at least over much of the Cenozoic. Nonetheless, deep-sea hydrothermal vents provide an exception to other deep-sea environments due to their global but island-like distribution and their relative instability on ecological and geological time scales (Vrijenhoek 2013). The dense animal communities living in these habitats are exposed to highly variable and extreme environmental conditions, and many of the invertebrates are sustained through obligate symbiosis with chemosynthetic bacteria (Dubilier et al. 2008). The phylogenetically and ecologically closely related snail genera *Alviniconcha* and *Ifremeria* (Gastropoda: Abyssochrysoidea) are among the dominant inhabitants of Indo-Pacific hydrothermal vents. The genus *Ifremeria* is monotypic and apparently restricted to Western Pacific vents in the Manus, Lau, and North Fiji basins. In contrast, the broadly distributed genus *Alviniconcha* comprises six species (Johnson et al. 2015): *Alviniconcha kojimai* and *Alviniconcha boucheti* co-occur in the Manus, Lau, and North Fiji basins; *Alviniconcha strummeri* is known from the southern Lau Basin; *Alviniconcha hessleri* and *Alviniconcha adamantis* appear to be endemic to the Mariana Back-Arc and Volcanic Arc, respectively; and *Alviniconcha marisindica* occurs along the Central Indian Ridge (fig. 1 and table 1).

*Alviniconcha* and *Ifremeria* are nutritionally dependent on horizontally transmitted, chemosynthetic sulfide-oxidizing endosymbionts that are acquired from a diverse community of environmental bacteria and are harbored within vacuoles in the gill filaments (Windoffer and Giere 1997; Suzuki, Sasaki, Suzuki, Nogi, et al. 2006; Trembath-Reichert et al. 2019). Except for *A. boucheti* and *A. marisindica*, which are constrained to symbionts of the class Campylobacteria (formerly Epsilonproteobacteria; Waite et al. 2017), all other *Alviniconcha* species and *Ifremeria nautilae* typically host Gammaproteobacteria symbionts (Urakawa et al. 2005; Suzuki, Sasaki, Suzuki, Nogi, et al. 2005; Suzuki, Sasaki, Suzuki, Nogi, et al. 2005; Suzuki, Kojima, Sasaki, et al. 2006; Suzuki, Kojima, Watanabe, et al. 2006; Beinart et al. 2012). In zones of sympatry, the two snail genera occupy relatively narrow ranges of chemical and thermal conditions that are well within their physiological tolerance limits and that do not support maximal rates for chemoautotrophic growth (Sen et al. 2013). This observation suggests that interspecies competition is an important factor determining the realized niche of these snails (Sen et al. 2013). Beinart et al. (2012) proposed that host niche utilization is strongly influenced by the availability and metabolic capacity of locally dominant symbiont phylotypes. In their study of co-occurring *Alviniconcha* species from the Lau Basin, they showed that the distribution and abundance of host–symbiont combinations (holobionts) followed a latitudinal gradient in vent geochemistry, wherein *A. boucheti* holobionts dominated at northern localities characterized by high end-member concentrations of sulfide and hydrogen ($\sim 3.5–7$ mM and $\sim 100–500$ $\mu$M, respectively), *A. kojimai* holobionts dominated at midlatitude localities characterized by medium end-member concentrations ($\sim 2.5–4$ mM and $\sim 50–100$ $\mu$M, respectively), and *A. strummeri* holobionts dominated at southern localities characterized by low end-member concentrations of these reductants ($\sim 1–3$ mM and $35–135$ $\mu$M, respectively). These broad-scale patterns of

![Map of sampling localities for the six *Alviniconcha* species analyzed in this study.](https://academic.oup.com/mbe/article-lookup/10.1093/molbev/msaa177)
Table 1. Geographic Coordinates, Depths, Years of Sampling, and Number of Samples for Each Vent Site Investigated in This Study.

| Dive #       | Locality                   | Abbr. | Latitude     | Longitude    | Depth (m) | Year |
|-------------|---------------------------|-------|--------------|--------------|-----------|------|
| H-1773      | Vailulu’u Seamount         | –14°12.610' | –16°02.776' | 678         | 2019     |
| H-1773      | Lau Basin                  |       |              |              |           |      |
| R-1918/1919 | Niua South                 | NS    | –15°09.885'  | –17°34.468'  | 1,156–1,164 | 2016 |
| J2-140/141  | Kilo Moana                | KM    | –20°03.222'  | –17°08.009'  | 2,620     | 2005 |
| J2-142      | Tow Cam                   | TC    | –20°19.076'  | –17°08.258'  | 2,714     | 2005 |
| R-1933      | Tai Moana                 | THM   | –20°40.409'  | –17°10.848'  | 2,273–2,280 | 2016 |
| R-1922/1931 | ABE                        | ABE   | –20°45.700'  | –17°11.500'  | 2,130–2,155 | 2016 |
| J2-143/144  | Tu’i Malila               | TM    | –21°59.431'  | –17°34.146'  | 1,845     | 2005 |
| R-1924–1930 |                             |       |              |              |           |      |
| J2-149/150  | White Lady                | WL    | –16°59.398'  | 173°54.953'  | 1,970     | 2005 |
| J2-151/152  | Mussel Hill               | MH    | –16°59.410'  | 173°54.970'  | 1,973     | 2005 |
| J2-153      | White Rhino               | WR    | –16°59.446'  | 173°54.862'  | 1,978     | 2005 |
| J2-42       | Snail Site                | SN    | 12°57.250'   | 143°37.200'  | 2,863     | 2003 |
| J2-185/185S | Forecast                  | FC    | 13°23.680'   | 143°55.207'  | 1,447–1,475 | 2006 |
| Su-47       | Perseverance              |       | 15°28.810'   | 144°30.462'  | 3,090     | 2016 |
| Su-41/44    | Hafa Adai                 |       | 16°57.669'   | 144°52.017'  | 3,274–3,278 | 2016 |
| Su-40       | Burke                     |       | 18°10.954'   | 144°43.193'  | 3,651     | 2016 |
| Su-39       | Alice Main                |       | 18°12.619'   | 144°42.438'  | 3,611     | 2016 |
| S-140/141   | Alice Springs             |       | 18°12.800'   | 144°42.400'  | 3,589     | 1992 |
| Su-37       | Illium                    |       | 18°12.815'   | 144°42.450'  | 3,582     | 2016 |
| J2-193      | E. Diamante Seamount      | EDS   | 15°56.570'   | 145°40.880'  | 351–357   | 2004 |
| J2-36       | Chamorro Seamount         |       | 20°49.287'   | 144°42.423'  | 920       | 2016 |
| MQ-309      | Roman Ruins               |       | –3°43.238'   | 151°40.519'  | 1,685     | 2011 |
| MQ-306      | Snow Cap                  |       | –3°43.684'   | 151°40.158'  | 1,647     | 2011 |
| ST-28/30    | Solwara 8-2               | SW8   | –3°43.824'   | 151°40.458'  | 1,710     | 2008 |
| ST-9        | Solwara 1-4               | SW1   | –3°47.436'   | 152°05.472'  | 1,530     | 2008 |
| ST-11       | Solwara 1-5               | SW1   | –3°47.370'   | 152°05.778'  | 1,490     | 2008 |
| ST-17       | Solwara 1-6               | SW1   | –3°47.370'   | 152°05.616'  | 1,480     | 2008 |
| MQ-314      | North Su                  |       | –3°47.965'   | 152°06.089'  | 1,187–1,199 | 2011 |
| MQ-316      |                             |       |              |              |           |      |
| ST-38       | South Su-7                | SSU   | –3°48.564'   | 152°06.144'  | 1,300     | 2008 |
| ST-40       | South Su-8                | SSU   | –3°48.492'   | 152°06.186'  | 1,350     | 2008 |
| KI-27/60    | Nifoea                    | VA    | –18°08.000'  | 169°31.000'  | 1,900     | 2013 |
| J2-301      | Edmunds                   | ED    | –23°31.600'  | 69°21.600'   | 3,289     | 2001 |
| J2-297      | Kairei                    | KA    | –25°52.980'  | 70°35.820'   | 2,432     | 2001 |

Note.—Submersibles: H, Hercules; J2, Jason II; S, Shinkai 6500; Su, SubBastian; R, Ropos; ST, ST212; KI, Kiel 6000; MQ, Marum Quest.

microbe-associated habitat segregation suggest that the endosymbionts might have played a significant role in the diversification of these gastropods.

Despite their phylogenetic and ecological affinities, *Ifremeria* and *Alviniconcha* have undergone remarkably different degrees of speciation. In the present study, we used fossil-calibrated molecular phylogenies and population genetic analyses based on mitochondrial and nuclear markers to obtain insights into allopatric and sympatric mechanisms that led to the high degree of diversification in the genus *Alviniconcha*. To assess the role of allopatric isolation, we compared the phylogenetic divergence events among the Abyssochrysoidea with Mesozoic and Cenozoic geological events of the Indo-Pacific Ocean basins and examined genetic subdivision within several broadly distributed species.

To determine evidence for sympatric isolation, we compared the time-calibrated phylogenies with the diversity and phylogenetic relationships of the snails’ chemosynthetic endosymbionts and assessed the potential for hybridization among co-occurring *Alviniconcha* species.

### Results

#### Gene Networks

Haplotype networks for the two mitochondrial genes, COI and 12S, indicated complete sorting among lineages for the six *Alviniconcha* species and their sister taxon *I. nautilei* (fig. 2), as previously reported (Johnson et al. 2015). The COI sequences from *Alviniconcha* and *Ifremeria* differed by at least 75 mutations, whereas pairs of *Alviniconcha* species differed by
25–48 mutations. The smallest divergence was observed between *A. kojimai* and *A. hessleri* and the largest between *A. strummeri* and *A. adamantis*. Sequence divergence was lower for the 12S locus, with a maximum of 19 substitutions between *Alviniconcha* species pairs (fig. 2). The nuclear markers generally confirmed species identities as seen with the mitochondrial loci, although they were less diagnostic due to varying degrees of incomplete lineage sorting and smaller divergence between sequences (fig. 2). Shared polymorphisms were particularly evident between *A. kojimai* and *A. hessleri*, as well as between *A. boucheti* and *A. marisindica*, whereas *A. strummeri* and *A. adamantis* had higher amounts of private alleles.

**Population Structure and Admixture**

Structure analyses distinguished the six previously described *Alviniconcha* species (Johnson et al. 2015) based on mitochondrial and nuclear markers (fig. 3 and supplementary fig. S1, Supplementary Material online). Runs including the mitochondrial COI gene provided in general higher resolution of population genetic subdivision than runs based on nuclear loci alone (supplementary figs. S1–S6, Supplementary Material online).
Therefore, we report results from the combined marker set in the manuscript, but Structure plots for all $K$ values and marker combinations can be found in the supplementary figures S1–S6, Supplementary Material online.

Although the most parsimonious grouping following the method by Evanno et al. (2005) was $K = 2$, visual inspections of higher $K$ values (Meirmans 2015) showed clear distinctions of up to eight clusters, indicating population structure within the sympatric species $A. boucheti$, $A. kojimai$, and $A. strummeri$ (fig. 3 and supplementary figs. S1–S4, Supplementary Material online). For all three species, significant genetic variation among individuals within vent localities was observed (fig. 3).

$A. boucheti$ comprised six genetically connected clusters that were broadly partitioned across four geographic regions: 1) Vanuatu and Manus Basin, 2) Kilo Moana (Lau Basin), White Lady, and Mussel Hill (North Fiji Basin), 3) Niua FC SN, 4) W8/S W1 TC/T HM WK WR, 5) KA ED THM TM WL WR, 6) A. boucheti A. hessleri A. kojimai A. strummeri A. adamantis A. marisindica.
South and ABE (Lau Basin), and 4) White Rhino (North Fiji Basin). Alviniconcha kojimai was represented by four genetic clusters that were subdivided across the 1) Manus Basin and 2) North Fiji Basin, with Lau Basin populations showing similarities to both of these groups. Alviniconcha strummeri exhibited less genetic partitioning, with the Tu’i Malila locality

Table 2. Results from ABBA–BABA Tests (D statistics).

| Outgroup       | P3         | P2         | P1         | # ABBA | # BABA | D       | Z    | P Value |
|----------------|------------|------------|------------|--------|--------|---------|------|---------|
| A. adamantis   | A. boucheti| A. strummeri| A. kojimai | 11     | 20     | −0.93   | NA   | 0.33    |
| A. boucheti    | A. strummeri| A. hessleri| A. kojimai | 0      | 4      | NA      | NA   | 0.95    |

NOTE.—ABBA and BABA sites are parsimony informative sites that result in discordances between gene trees and species trees due to the presence of incomplete lineage sorting

Phylogenetics of Endosymbionts

Molecular Bayesian analyses of the full-length 16S rRNA revealed geographical partitioning for the endosymbionts of Alviniconcha and Ifremeria, suggesting that symbiont phylogenotypes associated with I. nautilei, A. boucheti, and A. kojimai were genetically distinct between the Lau, Manus, and North Fiji basins (fig. 5). The endosymbionts of I. nautilei were most closely related to free-living Thiolapillus brandeum and the Gammaproteobacteria symbiont of A. hessleri. Together, these bacterial groups formed a neighboring clade to the group of A. kojimai (Beinart et al. 2012) and free-living Thiomicrospira and Hydrogenovibrio (fig. 5A). In both the Lau and Manus basins, A. kojimai additionally hosted Campylobacteria lineages that were also found in A. boucheti. The endosymbionts of A. adamantis formed a distinct clade that was most closely related to the “γ-Lau” group present in A. strummeri (Beinart et al. 2012).

Alviniconcha marisindica and A. boucheti were the only species that harbored predominantly Campylobacter symbionts (fig. 5B). Although A. marisindica contained a single 16S rRNA phylogotype related to free-living Sulfurovum, A. boucheti associated with distinct Campylobacteria lineages that were related to free-living Sulfurimonas, with one exception: A. boucheti from American Samoa harbored a phylotype that was most closely related to the A. marisindica symbiont. Character traces of symbiont type identified the Gammaproteobacteria endosymbiosis as the ancestral condition given that the evolutionary older host species harbored only Gammaproteobacteria (fig. 6). By contrast, the Campylobacteria endosymbiosis appears to be a derived trait that evolved multiple times independently.

Symbiont Phylotypic Diversity and Partitioning

Amplicon sequencing of the 16S V4–V5 hypervariable regions generated an average of 21,302 paired-end reads/sample. These were reduced to ∼9,613 reads/sample after read merging. Sequence denoising resulted in 85 zero-radius operational taxonomic units (ZOTUs), 11 of which were verified as Alviniconcha or Ifremeria endosymbions. Oligotyping of amplicon reads comprising these symbiont ZOTUs identified a total of 23 symbiont 16S rRNA oligotypes in the data set. For 337 snail samples, we were able to obtain both host species identities and 16S oligotypes. Only these individuals were,

3474

Downloaded from https://academic.oup.com/mbe/article/37/12/3469/5870836 by guest on 14 January 2021
In most cases, we did not have sufficient sample sizes to reveal potential within-basin structuring of the Gammaproteobacteria or Campyllobacteria symbiont types, with the exception of the A. hessleri symbionts, which seemed to form two latitudinal clusters (fig. 8).

Partial Mantel tests supported the described patterns, indicating significant correlations between symbiont and host genetic distances \((r = 0.76\); \(P = 1e-04\)) as well as between symbiont genetic distance and geographic distance \((r = 0.55\); \(P = 1e-04\)). By contrast, no association between host genetic distance and geographic distance was found.

**Discussion**

In the present study, we performed fossil-calibrated phylogenetic reconstructions and population genetic analyses to illuminate mechanisms of speciation in provannid snails of the genus *Alviniconcha*, which are dominant members of deep-sea hydrothermal vent ecosystems in the Western Pacific and Indian Ocean.

Major tectonic and climatic changes in the Indo-Pacific during the Mesozoic and Cenozoic probably played a central role in the speciation processes observed in provannid snails. These events may have led to allopatric speciation in new environmental niches, contributing to the diversification of the genus *Alviniconcha*. Further studies are needed to better understand the interplay between tectonic activity, climate change, and speciation in these fascinating marine snails.
role for geographic isolation during the early evolution of *Alviniconcha* snails. Our fossil-calibrated phylogeny indicates that *Ifremeria* and *Alviniconcha* split 96–131 Ma close to the peak of the Aptian oceanic anoxic event (Li et al. 2008). Although anoxic events led to widespread declines of marine biodiversity, they also created novel opportunities for habitat

**FIG. 5.** Phylogenies of the (A) Gammaproteobacteria and (B) Campylobacteria symbiont lineages. Node labels indicate node support probabilities, whereas scale bars show the expected number of substitutions per nucleotide site. Color codes are based on host species identities as shown in figures 1 and 2.
specialization and allopatric speciation within oxygen-depleted deep-sea environments, such as hydrothermal vents (Rogers 2000). Similarly, expansion of oxygen minimum zones might have contributed to the evolution of the most recent common ancestor of extant Alviniconcha, which originated during the upper Eocene (~50 Ma) shortly after the Paleocene–Eocene Thermal Maximum, another period that was characterized by increasing anoxia in the deep sea. Around the same time, the Philippine Sea Plate developed above the Manus hotspot, and a wide deep-water passage connected the Indian and Pacific Oceans (Hall et al. 1995; Hall 2002; see figs. 14–25 in Hall 2002). This passage started to narrow around 30 Ma and eventually closed 25 Ma, when the Australian Plate subducted under the Philippine Sea Plate and created physical barriers to dispersal (Gaina and Müller 2007).

Gradual vanishing of the Indo-Pacific deep-water connection is consistent with the timing of the most recent common ancestors of the two major Alviniconcha clades and likely promoted their diversification: 1) A. marisindica and A. boucheti (~30–46 Ma) and 2) A. hessleri, A. kojimai, and A. strummeri (~18–31 Ma). A variety of along-arc splitting and rifting events in the Miocene to Pliocene subsequently led to the formation of the North Fiji Basin (~12 Ma), Mariana Back-Arc Basin (~7 Ma), and Lau Basin (~5 Ma) (Hall 2002; Crawford et al. 2003; Straub et al. 2015). Evolution of the North Fiji Basin and Mariana Back-Arc Basin corresponds well with the divergence of A. hessleri and A. kojimai (~10 Ma), suggesting a potentially allopatric origin of these lineages that might have allowed A. hessleri to invade deep-water vent sites of the Mariana Back-Arc, where it is nowadays an endemic species. Alviniconcha adamantis is the only other Alviniconcha species that occurs in the Mariana region, but it is restricted to shallow vents on volcanoes of the Izu-Bonin-Mariana Arc, which have been active in some form for 40 My (Stern et al. 2003). Interestingly, the phylogenetic position of A. adamantis was not well supported and formed a basal branch to the two other clades of Alviniconcha. Although we do not have enough data to determine its placement, the A. adamantis lineage might be ancestral to other Alviniconcha lineages. If true, this genus might have followed a gradual transition from shallow to deep-water vent sites, as has been proposed for bathymodiolin mussels (e.g., Jones et al. 2006; Miyazaki et al. 2010; but see Thubault et al. 2013).

Although our results suggest that splits between some Alviniconcha species involved geographic subdivision, allopatric divergence alone might be insufficient to explain all instances of speciation. For example, A. boucheti, A. kojimai, and A. strummeri live sympatrically in the Lau Basin, and A. boucheti and A. kojimai also coinhabit vents in the North Fiji and Manus basins. For both of these species, genetic structure analyses indicated varying degrees of genetic...

**Fig. 6.** Analysis of endosymbiont trait evolution in Alviniconcha. Associations with Gammaproteobacteria lineages represent the ancestral condition, whereas the Campylobacteria endosymbiosis is a derived state.

**Fig. 7.** (A) Fractional abundances and (B) phylogenetic relationships of symbiont 16S V4–V5 oligotypes in Alviniconcha (163 specimens) and Ifremeria (173 specimens).
subdivision not only among but also within disparate back-arc basins. However, based on recent biophysical models for the Western Pacific region (Mitarai et al. 2016), ocean circulation should support within-basin connectivity, especially for species that are assumed to have planktotrophic larvae with high dispersal potentials, such as *Alviniconcha* (Warén and Bouchet 1993). These contrasting findings suggest that antagonistic ecological factors might exert strong selection against immigrants with maladapted phenotypes, thereby counterbalancing the homogenizing effect of dispersal and allowing speciation in the presence of gene flow. The present genetic data do not allow us to confidently distinguish whether the observed speciation patterns occurred during primary sympatry or resulted from secondary colonization following allopatry. At least the ancestors of *A. kojimai* and *A. strummeri* likely co-occurred in the predecessor of the modern Manus Basin and, thus, may have evolved sympatrically. Nevertheless, opening of the younger Lau and North Fiji basins could have allowed for brief geographic separation (<5–10 Ma), if species invaded these regions asynchronously.

Hydrothermal vents are environmentally dynamic habitats that offer ample opportunities for niche segregation along steep thermal and geochemical gradients. Geochemical patchiness and the availability and/or fitness of symbiont phylotypes (rather than functional host anatomy) are believed to affect spatial partitioning among *Alviniconcha* species in the Eastern Lau Spreading Center (Beinart et al. 2012; Laming et al. 2020). *Alviniconcha bouketii*, which typically hosts Campylobacteria symbionts, was most abundant at northern vent localities characterized by high sulfide and hydrogen concentrations. On the other hand, *A. kojimai* and *A. strummeri*, which usually host Gammaproteobacteria symbionts, were more frequent at southern vent localities with lower sulfide and hydrogen concentrations. Functional differences among the symbiont types combined with genetically based host–symbiont specificities could explain the broad-scale segregated distribution of these species and might have provided a mechanism for their diversification. Free-living chemosynthetic Campylobacteria are known to encode sulfide-oxidizing enzymes that are most effective at high H2S concentrations (Han and Perner 2015), providing a selective advantage over Gammaproteobacteria at sulfide-rich vents (Nakagawa and Takai 2008; Yamamoto and Takai 2011; Patwardhan et al. 2018). Recent physiological experiments and transcriptomic analyses imply that this might also be the case for the Lau Basin *Alviniconcha* symbionts (Breusing et al. 2020). Possible relationships between vent geochemistry, symbiont phylotypes, and host species have not been similarly explored in other back-arc basins. Nevertheless, the PACMANUS and Vienna Woods vent fields in the Manus Basin are known to exhibit physicochemical gradients similar to those found in the Lau Basin (Reeves et al. 2011), providing comparable opportunities for symbiont-related niche differentiation. Our partial Mantel tests and NMDS analyses involving *Alviniconcha* species from the Lau and Manus basins, and the Mariana Back-Arc revealed a significant association of symbiont genotypes with host species and vent localities, suggesting that symbiont-mediated habitat segregation might be common in chemosynthetic vent snail symbioses.

Together, our host phylogenetic and bacterial phylotype analyses imply a possible role for endosymbionts in...
Alviniconcha speciation. For instance, A. boucheti and A. marisindica comprise a monophyletic clade associated predominantly with Campylobacteria symbionts. A trace of character trait evolution indicated that Campylobacteria endosymbionts were acquired in the most recent common ancestor of these two host species, possibly prior to geological events that contributed to splitting of the A. boucheti–A. marisindica clade. It is possible that a switch to a new symbiont type offered novel ecological opportunities, thereby promoting adaptive divergence from the Gammaproteobacteria-dominated Alviniconcha lineages. Both A. boucheti and A. marisindica associate with symbionts related to free-living Sulfurovum, whereas A. boucheti also associates with symbionts of the genus Sulfurimonas, indicating that the Sulfurovum endosymbiosis might be the evolutionarily older condition in these two host species. Speciation due to symbiont-driven niche expansion has been proposed for deep-sea mytilid mussels, with similar time intervals of diversification as observed for provannid snails (Lorion et al. 2013). Interestingly, geographic partitioning of the A. boucheti symbiont phylotypes corresponded broadly with the genetic structure of the host populations. Although we cannot exclude the hypothesis that these covarying patterns were mediated by geographic segregation, gene flow between basins is expected on evolutionary time scales (Mitara et al. 2016); therefore, genetically based host–symbiont specificities might also shape the diversification of both partners.

Presently, no substantive evidence exists for past hybridization between broadly co-occurring A. boucheti and A. kojimai (although future genomic studies may provide other insights into this question). Host–symbiont incompatibilities might contribute to hybrid dysgenesis, a scenario that has been described in insect–microbe symbioses (e.g., Feder et al. 1994; Brucker and Bordenstein 2012, 2013). Although A. kojimai occurs in association with Campylobacteria symbionts, these observations were relatively rare, indicating a bias toward a Gammaproteobacteria endosymbiosis (Beinart et al. 2012). Microbial symbionts are currently considered the most disregarded element in animal and plant evolution (Shropshire and Bordenstein 2016). A recent study has shown that both transmission mode and symbiont function influence the degree of host dependence that can ultimately lead to major evolutionary transitions and innovations (Fisher et al. 2017). Although strong host dependence is usually correlated with vertical transmission mode, the same effect can be achieved in horizontally transmitted symbioses if symbionts provide an essential nutritional benefit (Fisher et al. 2017). Consequently, although further studies are needed to characterize the role of symbionts in host speciation, their impact is likely of particular significance in chemosynthetic symbioses where host fitness is tightly linked to symbiont metabolism, such as hydrothermal vents, cold seeps, and coral reefs.

An alternative, though not mutually exclusive, scenario for sympatric speciation in Alviniconcha could be rapid reproductive isolation and sexual selection. In many organisms, including marine snails of the genera Halolit and Tegula, egg and sperm proteins are under strong positive selection and evolve at an accelerated rate that could ultimately split populations into reproductively isolated species (Galindo et al. 2003; Panhuis et al. 2006; Hellberg et al. 2012). Subsequent inter-specific gene flow could be reduced further due to assortative mating, which is often observed in gastropods with internal fertilization (Johannesson et al. 2008; Zahradník et al. 2008). Although little is known about the reproductive biology of Provannidae, internal fertilization is the implied reproductive mode in this family (Gustafson and Lutz 1994).

Our study suggests that both geographical and ecological divergence (followed by putative reproductive isolation) played significant roles in the evolutionary diversification of the six extant Alviniconcha lineages at Indo-Pacific hydrothermal vents. It remains to be determined why the same phenomena did not similarly affect speciation within the genus Ifremeria, which is represented by only a single species. The bounded hypothesis on diversification proposes that the evolution of new species is constrained by competition for available niche space (e.g., Rabosky 2009; Price et al. 2014; Larcombe et al. 2018) and that an increase in the number of species within one clade may be compensated by a decline in another (Ricklefs 2010). Given that Ifremeria has similar ecological requirements as Alviniconcha (Podowski et al. 2010), it is possible that competitive exclusion and niche filling might have limited diversification within this genus. Future genomic and ecological studies may be helpful to illuminate some of these questions and to assess the relative importance of host–symbiont incompatibilities, local adaptation, and reproductive barriers in the evolutionary history of these gastropods.

Materials and Methods

Sample Collection and DNA Methods

Snail samples were collected from 32 localities in the Western Pacific and Indian Oceans (table 1). DNA extraction, general polymerase chain reaction (PCR) conditions, amplicon purification, and DNA sequencing used methods that were reported for provannid snails (Johnson et al. 2010, 2015). Twelve primer sets were used to amplify three mitochondrial (COI, mt-12S, and mt-16S) and seven nuclear (H3, 28S-D1, 28S-D6, 18S, ATPSa, ATPSb, and EF1a) DNA targets from vent snail hosts as well as the 16s rRNA locus from the snails’ chemosynthetic symbionts (table 3). The 16s rRNA gene of gill endosymbionts of two A. adamantis and five I. nautilei individuals was cloned prior to Sanger sequencing (Goffredi et al. 2007) with 24 colonies per individual. All PCR products were diluted in 40–50 μl of sterile water and purified with a Multiscreen HTS PCR 96 vacuum manifold system (Millipore Corp., Billerica, MA). PCR products were sequenced bidirectionally on an ABI 3130XL sequencer with BigDye Terminator v3.1 chemistry (Life Technologies Corp., Carlsbad, CA) and primers used in PCR. Samples from American Samoa were added late to the study and were only included in phylogenetic analyses of the symbionts. Forward and reverse sequences were trimmed, merged, and manually curated in Geneious Prime (http://www.geneious.com; last accessed July 24, 2020).
Heterozygous sites at nuclear loci were phased with Phase v2.1.1 (Stephens and Donnelly 2003) as in Breusing et al. (2015).

Haplotype Networks, Genetic Structure, and Admixture

Haplotype networks for two mitochondrial genes (COI, 12S) and four nuclear genes (H3, EF1a, ATPSa, and ATPSb) were constructed in Popart v1.7 (http://popart.otago.ac.nz; last accessed July 24, 2020) with the median-joining algorithm as in Breusing et al. (2019).

Structure v3.5 (Pritchard et al. 2000) was applied to investigate the number of genetic clusters $K$ in the total Alviniconcha sample set and to test for contemporary admixture in the co-occurring species A. boucheti, A. kojimai, and A. strummeri. Analyses were run for all six species together as well as for each species separately using 1) mitochondrial and nuclear data and 2) nuclear data only. Allelic information was provided as a number code. Inter-specific Structure analyses were based on five (COI, H3, EF1a, ATPSa, and ATPSb) and four genetic loci (H3, EF1a, ATPSa, and ATPSb), respectively. The same genetic markers were used in intra-specific analyses, except that we excluded the H3 locus given that it was essentially monomorphic within Alviniconcha populations. Model runs and settings for Structure generally followed Breusing et al. (2016) with ten repetitions for each $K$ between 1 and 8 for inter-specific analyses and between 1 and 6 for intra-specific analyses. We subsequently used Clumpak v.1.1 (Kopelman et al. 2015) to integrate results across independent runs for each $K$ value and determine the optimal clustering solution. We initially used the $\Delta K$ method (Evanno et al. 2005) to objectively infer the number of genetic clusters in the data set. However, as this method is biased toward identifying the uppermost hierarchical level of population structure (i.e., lowest parsimonious $K$ value) (Cullingham et al. 2020), we visually inspected all $K$ plots for biologically meaningful structuring and chose the highest $K$ value where genetic subdivision could be observed (Meirmans 2015).

To distinguish hybridization from incomplete lineage sorting in the sympatric species A. boucheti, A. kojimai, and A. strummeri, we performed two ABBA–BABA tests on the concatenated nuclear gene alignments of 90 snail individuals using HybridCheck (Ward and van Oosterhout 2016). Gene flow was assessed between 1) A. boucheti (P3) and A. kojimai/A. strummeri (P1 + P2) and 2) A. strummeri (P3) and A. kojimai/A. hessleri (P1 + P2), with A. adamantis and A. boucheti as outgroups, respectively. Sequences from I. nautilei were not used because of missing data. Jackknife sampling was performed on four blocks of 305 bp (i.e., the approximate size of each nonlinked locus).

Fossil-Calibrated Phylogeny of the Abyssochrysidae

All Alviniconcha species were included in a fossil-calibrated phylogenetic reconstruction of the Abyssochrysidae with the program Beast v2.5.7 (Bouckaert et al. 2014). Fossil calibrations included the divergence of Neptuna amianta and N. antiqua, which have probably been separated since the earliest appearance of the genus in the Late Eocene, 33–37 Ma (Amano 1997), as well as Provanna and Desbruyeresia, which are known from Cenomanian (Cretaceous) seep deposits in Japan, 93–100 Ma (Kaim et al. 2008). These estimates can be considered a minimum age of the split between the genera. As sequences for the nuclear DNA markers EF1a, ATPSa, and ATPSb could not be obtained for fossil samples, only ribosomal and mitochondrial markers plus the nuclear H3 locus were used for analysis (table 3). New sequences for all species of Alviniconcha from several localities were added to existing alignments from Johnson et al. (2010, 2015) with default parameters using Muscle executed in Geneious Prime (http://www.geneious.com; last accessed July 24, 2020). Fragments of the 16S mtRNA and 12S mtRNA loci that had been previously excluded due to alignment ambiguities with more distantly related taxa were informative and therefore

---

**Table 3. PCR Primers and Methods for Gene Loci Used in Alviniconcha spp. and Ifermeria nautilei.**

| Locus | Product | Primers | Reference | Methods | Length |
|-------|---------|---------|-----------|---------|--------|
| **Mitochondrial** | | | | | |
| COI | Cytochrome-c-oxidase subunit-I | HCO/LCO | Folmer et al. (1994) | a | ~650–1,200 |
| mt-16S | 16S mitochondrial RNA | 16SAR/BR | Palumbi (1996) | Fast PCR | ~500 |
| mt-12S | 12S mitochondrial RNA | 12SF/R | Kocher et al. (1989) | Fast PCR | ~440 |
| **Nuclear** | | | | | |
| 28S-D1 | 28S ribosomal RNA subunit-D1 | 28SD1F/R | Colgan et al. (2000) | Fast PCR | ~350 |
| 28S-D6 | 28S ribosomal RNA subunit-D6 | 28SD6F/R | McArthur and Koop (1999) | Fast PCR | ~450 |
| 18S | 18S ribosomal RNA | 18S1F/4R | Giribet et al. (1996) | Fast PCR | ~550 |
| H3 | Histone-3 | H3F/R | Colgan et al. (2000) | Fast PCRb | ~330 |
| ATPSa | ATP synthetase subunit a | ATPSaF/R | Jarman et al. (2002) | Fast PCR | ~410–750 |
| ATPSb | ATP synthetase subunit b | atvATPSbF/R | This studyc | Fast PCR | ~400–500 |
| EF1a | Elongation factor 1 a | EF1F/R | Colgan et al. (2007) | Fast PCR | ~400 |
| **Symbiont** | | | | | |
| 16S | Symbiont 16S rRNA | 27F/1492R | Lane (1991) | d | ~1,500 |

---

*a*PCR program: 95 °C/10 min; 35 × [94 °C/1 min, 55 °C/1 min, 72 °C/1 min], extension at 72 °C/7 min.

*b*Touchdown and Fast PCR: AmpliTaq Gold Fast PCR Master Mix, UP (Life Technologies Corp.) and the protocol for the Taq supplied by the manufacturer of the Veriti thermal cycler with an annealing temperature at 50 °C (Life Technologies Corp.).

*c*Modified after Jarman et al. (2002). ATPSb-AlviniF: 5'-TACGCCCTCGGAGATCCCGT-3' and ATPSb-AlviniR: 5'-CRGGGGGYTCRRTTTCATCT-3'.

*d*PCR program: 95 °C/10 min; 25 × [92 °C/1 min, 53 °C/1 min, 72 °C/1 min], extension at 72 °C/7 min.
A. adamantis and then aligned with Sina v1.2.11 (Pruesse et al. 2012) against New 16S Phylogenetic Analyses of Snail Endosymbionts included within the genera Alviniconcha and Ifremeria. For the rest of the Abyssochrysidae, these regions are represented as missing data. For each locus and species, the most common allele was chosen as representative sequence for phylogenetic reconstructions. jModelTest v2 (Darriba et al. 2012) was used to identify the best fitting evolutionary model for each gene and to partition the data for phylogenetic analyses. Concatenated gene trees were estimated based on a relaxed, lognormal clock with a Yule tree prior, a GTR + I + Γ substitution model as well as unlinked base frequencies and rates. The Markov chain Monte Carlo chains were run for 200 million generations, with parameters sampled every 5,000 generations. We used Tracer v1.7.1 (Rambaut et al. 2018) to determine if effective sample sizes were adequate for all parameters and if analyses had reached convergence. Node dates were calibrated as a normal distribution around the timing of genera splits.

A StarBeast v2.5.7 (Bouckaert et al. 2014) species tree was estimated including only the genera Alviniconcha and Ifremeria as replicate individuals for more distantly related taxa were missing. These estimated trees included at least one individual from each population per species or replicates from a single population. Species trees were calculated based on 1) the same loci used for the concatenated gene tree as well as 2) all available genetic markers (i.e., including the nuclear genes EF1α, ATPSa, and ATPSb). Phylogenetic reconstructions were performed with loci unlinked by partition, a GTR + I + Γ site model with empirical frequencies, an uncorrelated lognormal clock, an analytical population size integration model, and a Yule tree prior. Markov chain Monte Carlo analyses were run for 200 million generations, with a tree sampled every 10,000 generations, a burnin of 1,000 and 10 initialization steps. All analyses were run multiple times and results assessed in Tracer, FigTree v1.44 (http://tree.bio.ed.ac.uk/software/figtree/; last accessed July 24, 2020), and Densitree v2.2.1 (Bouckaert 2010).

Phylogenetic Analyses of Snail Endosymbionts

New 16S rRNA endosymbiont sequences from the gills of A. adamantis and I. nautilei were compared against the NCBI nonredundant database. The new sequences were then aligned with Sina v1.2.11 (Pruesse et al. 2012) against the global Silva 16S rRNA alignment with available 16S rRNA endosymbiont sequences from GenBank for Alviniconcha species, I. nautilei, and other representative chemosynthetic taxa (Beinart et al. 2012, 2015). Phylogenetic trees for the Gammaproteobacteria and Campylobacteria symbionts were constructed with MrBays v3.2.7a (Altekar et al. 2004) under a GTR + I + Γ substitution model in the Cipres Science Gateway v3.3 (Miller et al. 2010). Two sets of three heated chains and one cold chain were run for 1,100,000 generations and sampled every 100 generations. The first 100,000 generations were discarded as burnin. Reference sequences of Nautilia lithotropha (NR_025497) and Beggiatoa alba (NR_041726) were used as outgroups for the Campylobacteria and Gammaproteobacteria trees, respectively. Ancestral endosymbiosis traits were identified with Mesquite v2.75 (Maddison WP and Maddison DR 2011).

High-Throughput 16S V4–V5 Amplicon Sequencing and Analysis

The 16S V4–V5 hypervariable region was investigated to assess symbiont phylotypic variation in relation to host species and geographic location. After overnight lysis in protease K, DNA from RNA Later (Thermo Fisher Scientific, Inc.) preserved gill samples was extracted with the Zymo Quick DNA 96 Plus kit (Zymo Research, Inc.) and further cleaned with the ZR-96 Clean-up kit (Zymo Research, Inc.) following the manufacturer’s protocols. Barcoded amplicon libraries (515 samples and 62 negative controls) targeting a ∼375-bp fragment were prepared using the primer pairs 515F/926R (Walters et al. 2015) and sequenced on an Illumina MiSeq platform with a 2× 250-bp protocol at the Argonne National Laboratory (Lemont, IL). Host species identity was determined based on morphology (Ifremeria) or molecular barcoding of the mitochondrial COI gene (Alviniconcha).

After quality-checking the demultiplexed reads with FastQC v0.11.5 (Andrews 2010; http://www.bioinformatics.babraham.ac.uk/projects/fastqc/; last accessed July 24, 2020), we clipped adapters with Trimmomatic v0.36 (Bolger et al. 2014) and followed the Usearch v11 (Edgar 2010) pipeline for analysis. Reads were merged allowing lengths >300 bp, and then filtered applying a maximum error rate of 0.001, a quality threshold of 20, and a minimum length of 300 bp. The fastq_x_uniques and uniqose3 commands were used to dereplicate, denoise, and cluster the reads into ZOTUs, whereas the otu_tab command was used to generate the OTU table. Taxonomy was assigned to each ZOTU in Qiime2 (https://qiime2.org last accessed July 24, 2020) with a Naïve Bayes classifier that we trained against the target 16S V4–V5 region using the Silva 132 99% reference database. Ambiguous annotations were resolved using BlastN searches (Altschul et al. 1990). Recent studies have shown that well-to-well contamination accounts on average for 2.37% of reads in high biomass samples that were processed at the Argonne National Laboratory (Minich et al. 2019). Consequently, for further analysis, we removed ZOTUs that had <2.37% abundance in a sample, ignored all ZOTUs that were not annotated as vent snail endosymbionts and we excluded all samples with <1,000 symbiont reads. To identify any unrecovered phyloype variation, we analyzed the filtered symbiont read set with the Oligotyping v2.0 method (Eren et al. 2013) based on 24 informative nucleotide positions. Only oligotypes with at least 2.37% abundance in a sample (–q), 100 supporting reads (–M), and occurrence in more than one individual (–q) were considered. We further excluded reads that had base quality scores <20 in the nucleotide positions of interest (–q).

Nonmetric multidimensional scaling and diversity analyses for the final symbiont oligotype data set were performed with the PhyloSeq package in R v3.5.2 (McMurdie and Holmes 2013; R Core Team 2018) based on weighted Unifrac distances on log-transformed read counts. We also performed partial Mantel tests using the Vegan package (Oksanen et al. 2019) to identify relationships between Alviniconcha host and symbiont genetic distances and geography based on Pearson’s product–moment correlations. Pairwise host
Neptunea genetic distances were calculated for mitochondrial COI sequences based on Kimura’s two-parameter model (Kimura 1980). For geographic distances, we determined the geodesics between vent sites using the Geosphere package (Hijmans 2019).

**Supplementary Material**

Supplementary data are available at Molecular Biology and Evolution online.

**Acknowledgments**

We thank the able captains, crews, and pilots of the R/V *Melville* (ROV Jason II), the R/V Yokosuka (HOV Shinkai 6500), the R/V Sonne (ROV Kiel 6000 and Marum Quest), the R/V *Nautilus* (ROV Hercules) as well as the RVs *Thomas G. Thompson* and *Falkor* (ROV Roperos and Sub*bastian* for supporting the sample collections that made this study possible. We further thank Nautilus Minerals and Cindy Van Dover who contributed specimens of *Alviniconcha* and *I. nautili* from the Manus Basin and Geoff Wheat for samples from the Mariana Back-Arc Basin. Anders Warén is gratefully acknowledged for helpful comments on the manuscript. This work was supported through grants of the United States National Science Foundation (Grant Nos. OCE-1536331, 1819530, and 1736932 to R.A.B.), the Natural Sciences and Engineering Research Council of Canada and the National Geographic Society (to V.T.), and the Ocean Exploration Trust and the National Oceanic and Atmospheric Administration – Office of National Marine Sanctuaries (Grant No. NA18NOS4290215). S.B.J., D.A.C., and R.C.V. were supported by a grant from the David and Lucile Packard Foundation to the Monterey Bay Aquarium Research Institute.

**Author Contributions**

S.B.J. designed the study with advice from R.C.V., conducted laboratory work, performed the fossil-calibrated phylogenetic analyses, and edited the manuscript. C.B. analyzed host population genetic structure, symbiotype diversity, and phylogenetic relationships and wrote the paper. V.T., R.A.B., and R.C.V. contributed study specimens and manuscript edits. C.B. analyzed host population genetic models predict the presence of “phantom” stepping stones connecting Mid-Atlantic Ridge vent ecosystems. *Curr Biol* 26(17):2257–2267.

Breusing C, Johnson SB, TunnellCliffe V, Vrijenhoek RC. 2015. Population structure and connectivity in Indo-Pacific deep-sea mussels of the *Bathyomus santemderinum* complex. *Conserv Genet* 16(6):1415–1430.

Breusing C, Johnson SB, Vrijenhoek CR, Young CR. 2019. Host hybridization as a potential mechanism of lateral symbiont transfer in deep-sea vesicomyid clam. *Mol Ecol* 28(21):4697–4708.

Breusing C, Mitchell J, Delaney J, Sylva SP, Seewald JS, GIRQUS PR, Beinart RA. 2020. Physiological dynamics of chemosynthetic symbionts in hydrothermal vent snails. *iSME J*. doi: 10.1038/s41396-020-0707-2.

Brucker RM, Bordenstein SR. 2012. Speciation by symbiosis. *Trends Ecol Evol* 27(8):443–451.

Brucker RM, Bordenstein SR. 2013. The hologenomic basis of speciation: gut bacteria cause hybrid lethality in the genus *Nasonia*. *Science* 341(6146):667–669.

Campbell CR, Poelstra JW, Yoder AD. 2018. What is speciation genetics? The roles of ecology, gene flow, and genomic architecture in the formation of species. *Biol J Linn Soc* 124(4):561–583.

Colgan DJ, Ponder WF, Beacham E, Macaranas J. 2007. Molecular phylogenetics of *Caenogastropoda* (*Gastropoda: Mollusca*). *Mol Phylogenet Evol* 42(3):717–737.

Colgan DJ, Ponder WF, Egger PE. 2000. Gastropod evolutionary rates and phylogenetic relationships assessed using partial 28S rDNA and histone H3 sequences. *Zool Scr.* 29(1):29–63.

Coyne JA, Orr HA. 2004. Speciation. *Sunderland* (MA): *Sinauer Associates, Inc.*

Crawford WC, Hildebrand JA, Dorman LM, Webb SC, Wiens DA. 2003. *Tonga Ridge and Lau Basin crustal structure from seismic refraction data*. *J Geophys Res* 108(B4):2195.

Cullingham CI, Miller JM, Peery RM, Dupuis JR, Malenfant RM, Gorrell JC, Janes JK. 2020. Confidently identifying the correct *K* value using the Δ*K* method: when does *K* = 2? *Mol Ecol* 29(5):862–869.

Darrida D, Taboada GL, Doallo R, Posada D. 2012. *jModelTest* 2: more models, new heuristics and parallel computing. *Nat Methods* 9(8):772.

Darwin C. 1859. On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. 1st ed. *London*: John Murray.

Dobzhansky T. 1951. *Genetics and the origin of species*. 3rd ed. New York: Columbia University Press.

Dubilier N, Bergin C, Lott C. 2008. Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. *Nat Rev Microbiol*. 6(10):725–740.

Edgar RC. 2010. Search and clustering orders of magnitude faster than BLAST. *Bioinformatics* 26(19):2460–2461.

Eren AM, Maignet L, Sul WJ, Murphy LG, Grim SL, Morrison HC, Sogin ML. 2013. Oligotyping: differentiating between closely related microbial taxa using 16S rRNA gene data. *Methods Ecol Evol* 4(12):1111–1119.
Evanno G, Regnaut S, Goudet J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. *Mol Ecol*. 14(8):2611–2620.

Feder JL, Egan SP, Nosil P. 2012. The genomics of speciation with-gene-flow. *Trends Genet*. 28(7):342–350.

Feder JL, Opp SB, Vilazo B, Reynolds K, Go W, Spisak S. 1994. Host fidelity is an effective premating barrier between sympatric races of the apple maggot fly. *Proc Natl Acad Sci U S A*. 91(17):7990–7994.

Fisher RM, Henry LM, Cornwallis CK, Kiers ET, West SA. 2017. The evolution of host–symbiont dependency. *Nat Commun*. 8(1):15973.

Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. *Mol Mar Biol Biotechnol*. 3(5):294–299.

Gaina C, Müller D. 2007. Cenozoic tectonic and depth/age evolution of the Indonesian Gateway and associated back-arc basins. *Earth Sci Rev*. 83(3–4):177–203.

Galindo BE, Vacquier VD, Swanson WJ. 2003. Positive selection in the egg receptor for abalone sperm lysin. *Proc Natl Acad Sci U S A*. 100(8):4639–4643.

Giribet G, Carranza S, Baguna J, Riutort M, Ribera C. 1996. First molecular evidence for the existence of a Tardigrada + Arthropoda clade. *Mol Biol Evol*. 13(1):76–84.

Goffredi SK, Johnson SB, Vrijenhoek RC. 2007. Genetic diversity and selection sperm and egg proteins. *The Evolutionary Process of Deep-Sea Hydrothermal Vents and Cold Methane/Sulfide Seeps*. In: Young CM, Eckelbarger KJ, editors. Reproduction, larval biology, and recruitment of the deep-sea benthos. New York: Columbia University Press. p. 76–97.

Hall R. 2002. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. *J Asian Earth Sci*. 20(4):353–431.

Hall R, Ali JR, Anderson CD, Baker SJ. 1995. Origin and motion history of the Philippine Sea Plate. *Tectonophysics*. 251(1–4):229–250.

Han Y, Perner M. 2015. The globally widespread genus *Sulfurimonas*: versatile energy metabolisms and adaptations to redox fronts. *Front Microbiol*. 6:989.

Hellberg ME, Dennis AB, Arbour-Reilly P, Aagaard JE, Swanson WJ, 2012. The *Tegula* tango: a coevolutionary dance of interacting, positively selected sperm and egg proteins. *Evolution* 66(6):1681–1694.

Hijmans RJ. 2019. geosphere: spherical trigonometry. R package version 1.5-10. Available from: https://CRAN.R-project.org/package=geosphere.

Jarman SN, Ward RD, Elliott NG. 2002. Oligonucleotide primers for PCR amplification of coelomate introns. *Mar Biotechnol.* 4(4):347–355.

Johannsson K, Havenhand JN, Jonsson PR, Lindegarth M, Sundin A, Hollander J. 2008. Male discrimination of female mucous trails permits assortative mating in a marine snail species. *Evolution* 62(12):3178–3184.

Johnson SB, Warén A, Lee RW, Kano Y, Kaim A, Davis A, Strong EE, Vrijenhoek RC. 2010. *RubySpiroa*, a new genus and two new species of bone-eating deep-sea snails with ancient habits. *Biol Bull*. 219(2):166–177.

Johnson SB, Warén A, Tunnilliffe V, Van Dober C, Wheat CG, Schultz TF, Vrijenhoek RC. 2015. Molecular taxonomy and naming of five cryptic species of *Alviniconcha* snails (Gastropoda: Abyssochrysoidea) from hydrothermal vents. *Syst Biodivers*. 13(3):278–295.

Jones WJ, Won YJ, Maas PAY, Smith PJ, Lutz RA, Vrijenhoek RC. 2006. Evolution of habitat use by deep-sea mussels. *Mar Biol*. 148(4):841–851.

Kaim A, Jenkins RG, Warén A. 2008. Provanid and provanid-like gastropods from the Late Cretaceous cold seeps of Hokkaido (Japan) and the fossil record of the Provannidae (Gastropoda: Abyssochrysoidea). *Zool J Linn Soc*. 154(3):421–436.

Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. *J Mol Evol*. 16(2):111–120.

Kocher TD, Thomas WK, Meyer A, Edwards SV, Pääbo S, Villablanca FX, Wilson AC. 1989. Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. *Proc Natl Acad Sci U S A*. 86(16):6196–6200.

Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I. 2015. Clumpack: a program for identifying clustering modes and packaging population structure inferences across *K*. *Mol Ecol Resour*. 15(3):1179–1191.

Laming SR, Hourdez S, Cambon-Bonavita M-A, Pradillon F. 2020. Classical and computed tomographic anatomical analyses in a not-so-cryptic *Alviniconcha* species complex from hydrothermal vents in the SW Pacific. *Front Zool*. 17(1):12.

Lane DJ. 1991. 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M, editors. Nucleic acid techniques in bacterial systematics. New York: John Wiley and Sons. p. 115–147.

Larcombe MJ, Jordan GL, Bryant D, Higgins S. 2018. The dimensionality of niche space allows bounded and unbounded processes to jointly influence diversification. *Nat Commun*. 9(1):4258.

Li Y-X, Bralower TJ, Montaño PE, Osleger DA, Arthur MA, Bice DM, Herbert TD, Erba E, Premoli Silva I. 2008. Toward an orbital chronology for the early Aptian Oceanic Anoxic Event (OAE1a, ~120 Ma). *Earth Planet Sci Lett*. 271(1–4):88–100.

Lorion J, Kiel S, Faure B, Kawato M, Ho SY, Marshall B, Tsuchida S, Miyazaki J, Fujwara Y. 2013. Adaptive radiation of chemosymbiotic deep-sea mussels. *Proc Biol Sci*. 280(1707):20131243.

Maddison WP, Maddison DR. 2011. Mesquite: a modular system for evolutionary analysis. Version 2.75. Available from: http://mesquiteproject.org.

Mani GS, Clarke BC. 1990. Mutational order: a major stochastic process in evolution. *Proc Biol Sci*. 240:29–37.

Maye R. 1942. Systematics and the origin of species. New York: Columbia University Press.

McArthur AG, Koop BF. 1999. Partial 28S rDNA sequences and the antiquity of hydrothermal vent endemis for gastropods. *Mol Phylogenet Evol*. 13(2):255–274.

McMurdie PJ, Holmes S. 2013. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. *PLoS One*. 8(4):e61217.

Meirmans PG. 2015. Seven common mistakes in population genetics and how to avoid them. *Mol Ecol*. 24(13):3223–3231.

Miglittet MP, Fauci A, Santini F. 2011. Speciation in the sea: overview of the symposium and discussion of future directions. *Integr Comp Biol*. 51(3):449–455.

Miller MA, Pfeiffer W, Schwartz T. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE). New Orleans (LA). p. 1–8.

Minch JJ, Sanders JG, Amir A, Humphrey G, Gilbert JA, Knight R. 2019. Quantifying and understanding well-to-well contamination in microbiome research. *mSystems*. 4(4):e00186.

Mitarai S, Watanabe H, Nakajima Y, Shchepetkin AF, McWilliams JC. 2016. Quantifying dispersal from hydrothermal vent fields in the western Pacific Ocean. *Proc Natl Acad Sci U S A*. 113(11):2976–2981.

Miyazaki JI, Fujita L, de Oliveira Martins Y, Matsumoto H, Fujiwara Y, Takai K, 2008. Deep-sea vent chemoautotrophs: diversity, biochemistry and ecological significance. *FEMS Microbiol Ecol*. 65(1):1–14.

Nelson K, Fisher CR. 2000. Absence of cospeciation in deep-sea vestimentiferan tube worms and their bacterial endosymbionts. *Symbiosis*. 28:1–15.

Nosil P, Flaxman SM. 2011. Conditions for mutation-order speciation. *Proc Biol Sci*. 278(1704):399–407.

Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P. 2019. vegan: community ecology package. R package version 2.5-6. Available from: https://CRAN.R-project.org/package=vegan.
