Case analysis of crossed pontine-cerebellar diaschisis in acute stroke patients

Abstract. Background. Stroke is the second leading global cause of death behind the heart diseases, accounting for 11.8% of total deaths worldwide. The Monakow concept of diaschisis describes neurophysiological changes that occur distant to focal brain lesion. Diaschisis plays a significant role in the severity of acute neurological deficit and spontaneous stroke recovery. However, currently there are not enough published prospective hospital-based cohort studies that report and analyze clinical characteristics of crossed pontine-cerebellar diaschisis in acute stroke patients. The purpose of this study is to determine the features of the clinical manifestations of crossed pontine-cerebellar diaschisis after acute cerebral stroke.

Materials and methods. We prospectively recruited 124 acute stroke patients, who were admitted to a single department at an academic tertiary care hospital in Kyiv, Ukraine. The primary outcome was the combined incidence of stroke and diaschisis. In the secondary analyses, we evaluated pathophysiological, anatomical, and clinical features, specific to crossed pontine-cerebellar diaschisis in a cohort of acute stroke patients. Results. Among 124 selected acute stroke patients admitted to the department, 42 (33.9%) persons were diagnosed with different forms of diaschisis. Crossed pontine-cerebellar diaschisis was detected in 5 patients. We described clinical manifestations and analyzed pathophysiological features of crossed pontine-cerebellar diaschisis in acute stroke patients.

Conclusions. The main mechanism of crossed pontine-cerebellar diaschisis is an interruption of ponto-cerebellar pathway from proper nuclei of cerebellum, caused by lesion in the pons.

Keywords: crossed pontine-cerebellar diaschisis; cerebellar stroke; cerebellum; remote diaschisis; forms of diaschisis; clinical manifestations; diagnosis; case report

Introduction

Stroke remains a leading cause of long-term disability and premature death worldwide [1–9] with the highest death rates in Eastern Europe and a number of low- and middle-income countries [10–16]. Recent studies have placed the Monakow concept of diaschisis that described remote effects of focal brain damage at the center of the understanding of brain function [17–22]. Diaschisis plays a significant role in the severity of acute neurological deficit and spontaneous stroke recovery [23]. However, currently there are not enough published prospective hospital-based cohort studies that report and analyze clinical characteristics of crossed pontine-cerebellar diaschisis in acute stroke patients.

Purpose: to determine the features of the clinical manifestations of crossed pontine-cerebellar diaschisis after acute cerebral stroke and to improve the efficiency of its diagnosis by comparing the obtained data with the results of the magnetic resonance imaging (MRI) findings.

Materials and methods

We have previously reported in detail the materials and methods of this prospective, hospital-based, cohort study of acute ischemic stroke patients (n = 124) [20–26]. All study participants were admitted to the department of cerebrovascular diseases at the University Hospital within the first 24 hours after the stroke occurred. All stroke cases were reviewed by at least two board-certified neurologists trained in cerebrovascular diseases. Clinical history, 12-lead electrocardiogram, blood testing, carotid ultrasound, head computed tomography and brain MRI, magnetic resonance angiography.
graphy were obtained within 24–72 hours after the onset of symptoms and in dynamics during the period of maximum severity of symptoms for all study participants. A chest radiograph was done if pulmonary disease or heart failure were suspected. Stroke was defined according to criteria of the World Health Organization, American Heart Association/American Stroke Association guidelines for adult stroke and was confirmed by neuroimaging [27, 28]. The etiology of stroke was classified according to the TOAST (Trial of ORG 10172 in Acute Stroke Treatment) criteria [29]. The National Institutes of Health Stroke Scale, modified Rankin scale, and the Barthel index were determined for all participants. Secondary stroke prevention was prescribed according to the American Heart Association/American Stroke Association and the European Stroke Organisation guidelines immediately after the stroke diagnosis was made [30–36]. Stroke education programs containing information about stroke, how to prevent a second one, rehabilitation options, and encouraging survivors to live their best lives were provided to all study participants [15, 37–40].

Parametric and non-parametric statistic methods were applied. The log-rank test was used for univariate comparisons of event-free survival between groups. A two-sided \(p < 0.05 \) was considered significant for all analyses. All statistical analyses were performed using IBM SPSS Statistics Version 22.

Results and discussion

In total, 124 patients aged 28 to 84 years with acute ischaemic stroke were screened. Among them, 42 patients (22 men and 20 women; mean age 60.8 years) diagnosed with the remote diaschisis were included in the study group. The localization of a primary brain lesion in this group was as follows: brain hemisphere (\(n = 31 \)), pons Varolii (\(n = 5 \)), cerebellar hemisphere (\(n = 6 \)).

Considering the localization of primary brain lesion and secondary dysfunction of neighboring brain structures, we have described and analyzed clinical manifestations and characteristics of cerebrosplinal, commisural, crossed cerebellar, and crossed cerebellar hemispheric diaschisis [21, 24–26]. In this article, we analyzed clinical manifestations and course of crossed pontine-cerebellar diaschisis.

The crossed pontine-cerebellar diaschisis was diagnosed in 5 of 124 screened acute stroke patients. All five patients with crossed pontine-cerebellar diaschisis had unilateral pontine infarction. Lesions, verified by MRI, were located in the upper rostral region of the pons (\(n = 2 \)) and in the middle rostral region of the pons (\(n = 3 \)). All these lesions were in the area of the blood supply of small paramedian arteries, departing from the main artery. Hemodynamically, significant stenosis of extra- or intracranial vessels was not detected in these patients.

Two patients had clinical features, which corresponded to the ventral infarction of the pons Varolii. Three patients demonstrated neurological deficit relevant to the ventral-segmental infarction. Corticopontine fibers and motor pathways (cortical–cerebral, cortical–nuclear), which terminate in the pontine nuclei, are located near the ventral part of the pons. At the upper and middle part of the pons, the fibers of the pyramidal path are scattered into bundles by transversely extending fibers of the ponto-cerebellar pathway. As a part of the middle cerebellar peduncles, it goes to the cortex of the opposite hemisphere of the cerebellum. Therefore, all patients with the lesion in the upper and middle pons showed mild contralateral motor hemiparesis and/or ataxic hemiparesis, facial-brachial monoparesis. However, dizziness, dysarthria, ataxia of the upper extremities with dysmetria, adiadochokinesis, and intentional tremor were prevalent. Dominant symptoms were caused by ipsilateral ischemic lesion in the superior cerebellar artery territory.

Concurrent development of pontine infarction and ischemic lesion in the cerebellar hemisphere contralateral to the pontine infarction was caused by crossed pontine-cerebellar diaschisis (Fig. 1).

Pontine infarction and heterolateral diaschisis (hemispheric cerebellar diaschisis with a lesion in the superior cerebellar artery territory) can be explained as follows: interruption of impulses along the cortico-ponto-cerebellar pathway above the second neuron’s cross (i.e., interruption of the ponto-cerebellar pathway from proper cerebellar nuclei) caused by lesion in the pons.

These are the characteristics of neurological manifestations and course of different forms of remote diaschisis. Diagnosis of manifestations of different types of diaschisis should be comprehensive and include dynamic clinical neurological assessment after a stroke, the sequence of occurrence/growth of neurological deficit, and the regularity of restoration of lost functions. However, it might be very dif-
ficult to diagnose cerebellar infarction based only on neurological symptoms. The gold standard of early and accurate diagnosis of cerebellar infarction includes such methods of neuroimaging as: MRI, diffusion-weighted magnetic resonance imaging, positron emission tomography, and single-photon emission computed tomography. Those methods allow clinicians to identify circulatory-metabolic or structural disorders not only in the primary focus of the stroke, but also in the areas remote to it. MRI should be repeated in dynamics, especially during the period of growing neurological deficit. Undoubtedly, it is necessary to perform ultrasound examination of the major vessels of the head and transcranial Doppler ultrasound, electroencephalography.

Conclusions

The von Monakow concept proves that stroke is not only a focal lesion in a certain area of the brain, but is also a circulatory and neurometabolic dysfunction of the entire brain, cortical structures, subcortical formations, and remote anatomical structures that are functionally connected with the foci of brain lesion via conduction system. The clinical manifestations of cerebral stroke were often determined not only by the localization of the main stroke, but also by the phenomenon of diaschisis in the contralateral hemisphere of the brain or cerebellum. Diagnosis of diaschisis manifestations after cerebral stroke should be based on a comprehensive, dynamic assessment of neurological deficit. The sequence of occurrence and regression of this deficit should be based on electrophysiological and neuroimaging findings.

Conflicts of interests. Authors declare no conflicts of interests that might be construed to influence the results or interpretation of their manuscript.

Author contributions: S.M. Vynychuk — study concept and design, interpretation of data, data acquisition; O.Ye. Fartushna — article concept and design, literature overview, data acquisition, interpretation of data, and drafting the article.

References

1. Benjamin E.J. On behalf of the American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics 2018 update: a report from the American Heart Association / E.J. Benjamin, S.S. Virani, C.W. Callaway [et al.] // Circulation. — 2018. — Vol. 137(12). — P. e67-e492.

2. Fartushna O.Ye. Brain injury in patients with acute TIA: clinical features in different TIA subtypes / O.Ye. Fartushna, S.M. Vynychuk // Международный неврологический журнал. — 2017. — № 3(89). — С. 13-18.

3. Feigin V.L. Global burden of stroke / V.L. Feigin, B. Norrving, G.A. Mensah // Circulation Research. — 2017. — № 120(3). — P. 439-448.

4. Lees R. Vascular cognitive impairment/vascular dementia. The pattern of cognitive impairment in stroke survivors with carotid stenosis / R. Lees, F. Grmagne, O. Fartushna, N.M. Broomfield, T.J. Quinn, K. Dani, K. Forbes, J. Dawson // International Journal of Stroke. — 2014. — № 9. — P. 323-324.

5. Wilkins E. European cardiovascular disease statistics 2017 / E. Wilkins, L. Wilson, K. Wickramasinghe [et al.]. — Brussels: European Heart Network, 2017. — 188 p.

6. Евтушенко С.К. Новые факторы риска развития инсульта у лиц молодого возраста / С.К. Евтушенко, Д.А. Филимонов, И.С. Евтушенко // Журнал неврологии и психиатрии им. С.С. Корсакова. Спецвыпуск. — 2015. — Т. 115, № 12. — С. 3-12.

7. Виничук С.М. Ранняя реабилитация после госпиталев ишемических поражений мозгового кровообращения / С.М. Виничук, О.Є. Фартушна // Міжнародний неврологічний журнал. — 2016. — № 8(86). — С. 34-39.

8. Фартушна О.Є. Виявлення та усунення васкулярних чинників ризику — важливий напрямок первинної профілактики транзиторних ішемічних атак та/чи інсульту / О.Є. Фартушна, С.М. Виничук // Український медичний часопис. — 2015. — № 11(105). — С. 23-27.

9. Фартушна О.Є. Актуальність проблеми цереброваскулярних захворювань, транзиторних ішемічних атак та відсокованих їх діагностики в системі охорони здоров’я в Україні / О.Є. Фартушна, М.М. Прокопів // Проблеми військової охорони прави: Зб. наук. праць Української військово-медичної академії / За ред. проф. Білого В.Я. — Київ: УВМА, 2006. — С. 286 с.

10. Фартушна О.Є. Епідеміологія транзиторних ішемічних атак і інсульту / О.Є. Фартушна, М.М. Прокопів // Проблеми військової охорони праці: Зб. наук. праць Української військово-медичної академії / За ред. проф. Білого В.Я. — Київ: УВМА, 2006. — С. 335-342.

11. World Stroke Organization. Facts and Figures about Stroke. — Режим доступу: http://www.world-stroke.org/component/content/article/16-forpatients/84-facts-and-figures-about-stroke

12. World Stroke Organization. Facts and Figures about Stroke. — Режим доступу: http://www.world-stroke.org/component/content/article/16-forpatients/84-facts-and-figures-about-stroke

13. Виничук С.М. Гострий ішемічний інсульт / С.М. Виничук, М.М. Прокопів. — Київ: Наукова думка, 2006. — 286 с.

14. Фартушна О.Є. Епідеміологія цереброваскулярних заболівань і організація помощи больним з мозговим інсультом в Україні // Український вісник психоневрології. — 2017. — Т. 25, № 1(90). — С. 22-24.

15. Фартушна О.Є. Транзиторні ішемічні атаки / О.Є. Фартушна, С.М. Виничук. — Київ: ВД «Авіцена», 2014. — 216 с.

16. Фартушна О.Є. Епідеміологія транзиторних ішемічних атак в структурі гострих порушень мозкового кровообігу в Україні та інших країнах / О.Є. Фартушна, С.М. Віничук // Український неврологічний журнал. — 2017. — № 5(91). — С. 105-111.

17. Carrera E. Diaschisis: past, present, future / E. Carrera, G. Tononi // Brain. — 1911. — Vol. 137(9). — P. 2408-2422.

18. Finger S. The von Monakow concept of diaschisis: origins and perspectives / S. Finger, P.J. Koehler, C. Jagella // Archiv Neurologie. — 2004. — Vol. 61. — P. 283-288.

19. Seitz R.J. The role of diaschisis in stroke recovery / R.J. Seitz, N.P. Azari, U. Knorr [et al.]. // Stroke. — 1999. Sep. — № 30(9). — P. 1844-50.

20. Vynychuk S.M. Diaschisis: brief historical review / S.M. Vynychuk, O.Ye. Fartushna // Міжнародний неврологічний журнал. — 2018. — № 4(98). — С. 6-10.
Цель исследования: определение особенностей клинических проявлений перекрестного понтинно-мозжечкового диашиза у пациентов с острым ишемическим инсультом.

Резюме. Актуальность. Инсульт является второй по частоте причиной смертности в мире после сердечно-сосудистых заболеваний. Концепция диашиза Монакова описывает нейрофизиологические изменения, которые происходят вдали от очага повреждения головного мозга и играют значительную роль в формировании неврологических проявлений инсульта.

Результаты. Среди 124 обследованных больных инсультом, поступивших в отделение цереброваскулярных заболеваний, когортное исследование 124 пациентов с острым ишемическим инсультом, включая 66 женщин (53,2%) и 58 мужчин (46,8%), средний возраст 64,5 ± 14,6 лет, средний балл NIHSS 10 ± 5,1, среди 124 обследованных больных инсультах, поступивших в отделение цереброваскулярных заболеваний, когортное исследование 124 пациентов с острым ишемическим инсультом, включая 66 женщин (53,2%) и 58 мужчин (46,8%), средний возраст 64,5 ± 14,6 лет, средний балл NIHSS 10 ± 5,1, были определены следующие характеристики перекрестного понтинно-мозжечкового диашиза у пациентов с острым ишемическим инсультом.
Клінічний аналіз випадків перехресного понтинно-мозочкового діашизу в пацієнтів із гострим ішемічним інсультом

Резюме. Актуальність. Інсульт є другою за частотою причиною смертності у світі після серцево-судинних захворювань. Концепція діашизу Монакова описує нейрофізіологічні зміни, що відбуваються на відстані від осередкового ураження головного мозку і відіграють значну роль у вираженості гострого неврологічного дефіциту в пацієнтів із інсультом. Проте на сьогодні опубліковано недостатньо перспективних клінічних досліджень, у яких проаналізовано характеристики перехресного понтинно-мозочкового діашизу із гострим інсультом.

Мета дослідження: визначення особливостей клінічних проявів перехресного понтинно-мозочкового діашизу в пацієнтів із гострим ішемічним інсультом.

Матеріали та методи. Ми провели проспективне госпітальне когортне дослідження 124 пацієнтів із гострим ішемічним інсультом, які надійшли до відділення цереброваскулярних захворювань Олександрівської клінічної лікарні м. Києва протягом перших 24 годин з моменту розвитку інсульту. Усі пацієнти пройшли комплексне клініко-неврологічне, лабораторне, ультразвукове і нейровізуалізаційне обстеження.

Результати. Серед 124 обстежених хворих із гострим ішемічним інсультом перехресний понтинно-мозочковий діашиз був діагностований у 5 осіб. Ми проаналізували патофізіологічні, анатомічні та клінічні особливості перехресного понтинно-мозочкового діашизу.

Висновки. Унілатеральні інфаркти верхнього і середнього відділів моста поєднувалися з вогнищем ішемії (діашиз) в контралатеральній півкулі мозочка, призводячи до перехресного понтинно-мозочкового діашизу, що виникає від розривання проходження імпульсу від очага інфаркту в мості до перехрещення волокон, що йдуть поперечно від ядер мозочка до контралатеральної півкулі мозочка.

Ключові слова: перехресний понтинно-мозочковий діашиз; інсульт мозочка; мозочка; дистантний діашиз; форми діашизу; клінічні прояви; діагностика; клінічний випадок