FINITE C^∞-ACTIONS ARE DESCRIBED BY ONE VECTOR FIELD

F.J. TURIEL AND A. VIRUEL

Abstract. In this work one shows that given a connected C^∞-manifold M of dimension ≥ 2 and a finite subgroup $G \subset \text{Diff}(M)$, there exists a complete vector field X on M such that its automorphism group equals $G \times \mathbb{R}$ where the factor \mathbb{R} comes from the flow of X.

1. Introduction

This work fits within the framework of the so called Inverse Galois Problem: working in a category \mathcal{C} and given a group G, decide whether or not there exists an object X in \mathcal{C} such that $\text{Aut}_\mathcal{C}(X) \cong G$.

This metaproblem has been addressed by researchers in a wide range of situations from Algebra [2] and Combinatorics [4], to Topology [3]. In the setting of Differential Geometry, Kojima shows that any finite group occurs as $\pi_0(\text{Diff}(M))$ for some closed 3-manifold M [8, Corollary page 297], and more recently Belolipetsky and Lubotzky [1] have proven that for every $m \geq 2$, every finite group is realized as the full isometry group of some compact hyperbolic m-manifold, so extending previous results of Kojima [8] and Greenberg [5].

Here we consider automorphisms of vector fields. Although it is obvious that the automorphism group of a vector field is never finite, we show that a given finite group of diffeomorphisms can be determined by a vector field. More precisely:

Theorem. Consider a connected C^∞ manifold M of dimension $m \geq 2$ and a finite subgroup G of diffeomorphisms of M. Then there exists a complete G-invariant vector field X on M, such that the map

$$G \times \mathbb{R} \to \text{Aut}(X)$$

$$(g, t) \mapsto g \circ \Phi_t$$

is a group isomorphism, where Φ and $\text{Aut}(X)$ denote the flow and the group of automorphisms of X respectively.

Authors are partially supported by MEC-FEDER grant MTM2010-18089, and JA grants FQM-213 and P07-FQM-2863.
Recall that, for any $m \geq 2$, every finite group G is a quotient of the fundamental group of some compact, connected C^∞-manifold M' of dimension m. Therefore G can be regarded as the group of desk transformations of a connected covering $\pi : M \to M'$ and $G \leq \text{Diff}(M)$. Consequently the result above solves the Galois Inverse Problem for vector fields. Thus:

Corollary 1. Let G be a finite group and $m \geq 2$, then there exists a connected C^∞-manifold M of dimension m and a vector field X on M such that $\pi_0(\text{Aut}(X)) \cong G$.

Our results fit into the C^∞ setting, but it seems interesting to study the same problem for other kind of manifolds and, among them, the topological ones. Namely: given a finite group \tilde{G} of homeomorphisms of a connected topological manifold \tilde{M} prove, or disprove, the existence of a continuous action $\tilde{\Phi} : \mathbb{R} \times \tilde{M} \to \tilde{M}$ such that:

1. $\tilde{\Phi}_t \circ g = g \circ \tilde{\Phi}_t$ for any $g \in \tilde{G}$ and $t \in \mathbb{R}$.
2. If f is a homeomorphism of \tilde{M} and $\tilde{\Phi}_s \circ f = f \circ \tilde{\Phi}_s$ for every $s \in \mathbb{R}$, then $f = g \circ \tilde{\Phi}_t$ for some $g \in \tilde{G}$ and $t \in \mathbb{R}$ that are unique.

This work, reasonably self-contained, consists of five sections, the first one being the present Introduction. The others are organized as follows. In Section 2 some general definitions and classical results are given. Section 3 is devoted to the main result of this work (Theorem 1) and its proof. The extension of Theorem 1 to manifolds with non-empty boundary is addressed in Section 4. The manuscript ends with an Appendix where a technical result needed in Section 4 is proven.

For the general questions on Differential Geometry the reader is referred to [7] and for those on Differential Topology to [9].

2. Preliminary notions

Henceforth all structures and objects considered are real C^∞ and manifolds without boundary, unless another thing is stated. Given a vector field Z on a m-manifold M the group of automorphisms of Z, namely $\text{Aut}(Z)$, is the subgroup of diffeomorphisms of M that preserve Z, that is

$$\text{Aut}(Z) = \{ f \in \text{Diff}(M) : f_*(Z(p)) = Z(f(p)) \text{ for all } p \in M \}.$$

On the other hand, recall that a *regular trajectory* is the trace of a non-constant maximal integral curve. Thus any regular trajectory is oriented by the time in the obvious way and,
FINITE C^∞-ACTIONS ARE DESCRIBED BY ONE VECTOR FIELD

if it is not periodic, its points are completely ordered. As usual, a singular trajectory is a singular point of Z.

If $Z(p) = 0$ and Z' is another vector field defined around p then $[Z', Z](p)$ only depends on $Z'(p)$; thus the formula $Z'(p) \to [Z', Z](p)$ defines an endomorphism of T_pM called the linear part of Z at p. For the purpose of this work, we will say that $p \in M$ is a source (respectively a sink) of Z if $Z(p) = 0$ and its linear part at p is the product of a positive (negative) real number by the identity on T_pM.

A point $q \in M$ is called a rivet if

(a) q is an isolated singularity of Z,
(b) around q one has $Z = \psi \tilde{Z}$ where ψ is a function and \tilde{Z} a vector field with $\tilde{Z}(q) \neq 0$.

Note that by (b) a rivet is the ω-limit of exactly one regular trajectory, the α-limit of another one and an isolated singularity of index zero.

Consider a singularity p of Z; let $\lambda_1, \ldots, \lambda_m$ be the eigenvalues of the linear part of Z at p and μ_1, \ldots, μ_k the same eigenvalues but only taking each of them into account once regardless of its multiplicity. Assume that μ_1, \ldots, μ_k are rationally independent; then $\lambda_j - \sum_{\ell=1}^m i_\ell \mu_\ell \neq 0$ for any $j = 1, \ldots, m$ and any non-negative integers i_1, \ldots, i_m with $\sum_{\ell=1}^m i_\ell \geq 2$, and a theorem of linearization by Sternberg (see [10] and [9]) shows the existence of coordinates (x_1, \ldots, x_m) such that $p \equiv 0$ and $Z = \sum_{j=1}^m \lambda_j x_j \partial/\partial x_j$. That is the case of sources ($\lambda_1 = \ldots = \lambda_m > 0$) and sinks ($\lambda_1 = \ldots = \lambda_m < 0$).

By definition, the outset (or unstable manifold) R_p of a source p will be the set of all points $q \in M$ such that the α-limit of its Z-trajectory equals p. One has:

Proposition 1. Let p be a source of a complete vector field Z. Then R_p is open and there exists a diffeomorphism from R_p to \mathbb{R}^m that sends p to the origin and Z to a $\sum_{j=1}^m x_j \partial/\partial x_j$ for some $a \in \mathbb{R}^+$. In other words, there exist coordinates (x_1, \ldots, x_m), whose domain R_p is identified to \mathbb{R}^m, such that $p \equiv 0$ and $Z = a \sum_{j=1}^m x_j \partial/\partial x_j$, $a \in \mathbb{R}^+$.

Indeed, let Φ_t be the flow of Z; consider coordinates (y_1, \ldots, y_m) such that $p \equiv 0$ and $Z = a \sum_{j=1}^m y_j \partial/\partial y_j$. Up to dilation and with the obvious identifications, one may suppose that S^{m-1} is included in the domain of these coordinates. Then $R_p = \{\Phi_t(y) \mid t \in \mathbb{R}, y \in S^{m-1}\} \cup \{0\}$ and it suffices to send the origin to the origin and each $\Phi_t(y)$ to $e^{at}y$ for constructing the required diffeomorphism.
Remark 1. Observe that $R_p \cap R_q = \emptyset$ when p and q are different sources of Z.

Given a regular trajectory τ of Z with α-limit a source p, by the **linear α-limit of τ** one means the (open and starting at the origin) half-line in the vector space T_pM that is the limit, when $q \in \tau$ tends to p, of the half-line in T_qM spanned by $Z(q)$. From the local model around p follows the existence of this limit; moreover if Z is multiplied by a positive function the linear α-limit does not change.

By definition, a **chain** of Z is a finite and ordered sequence of two or more different regular trajectories, each of them called a **link**, such that:

(a) The α-limit of the first link is a source.

(b) The ω-limit of the last link is not a rivet.

(c) Between two consecutive links the ω-limit of the first one equals the α-limit of the second one. Moreover this set consists in a rivet.

The **order of a chain** is the number of its links and its α-limit and linear α-limit those of its first link.

For sake of simplicity, here countable includes the finite case as well. One says that a subset Q of M **does not exceed dimension** ℓ, or it can be **enclosed in dimension** ℓ, if there exists a countable collection $\{N_\lambda\}_{\lambda \in \Lambda}$ of submanifolds of M, all of them of dimension $\leq \ell$, such that $Q \subset \bigcup_{\lambda \in \Lambda} N_\lambda$. Note that the countable union of sets whose dimension do not exceed dimension ℓ does not exceed dimension ℓ too. On the other hand, if $\ell < m$ then Q has measure zero so empty interior.

Given a m-dimensional real vector space V, a family $\mathcal{L} = \{L_1, \ldots, L_s\}$, $s \geq m$, of half-lines of V is named in **general position** if any subfamily of \mathcal{L} with m elements spans V.

Now consider a finite group $H \subset GL(V)$ of order k. A family \mathcal{L} of half-lines of V is named a **control family with respect to** H if:

(a) $h(L) \in \mathcal{L}$ for any $h \in H$ and $L \in \mathcal{L}$.

(b) There exists a family \mathcal{L}' of \mathcal{L} with $km + 1$ elements, which is in general position, such that $H \cdot \mathcal{L}' = \{h(L) \mid h \in H, L \in \mathcal{L}'\}$ equals \mathcal{L}.

Lemma 1. Let \mathcal{L} be a control family with respect to H and φ an element of $GL(V)$. If φ sends each orbit of the action of H on \mathcal{L} into itself, then $\varphi = ah$ for some $a \in \mathbb{R}^+$ and $h \in H$.
Indeed, as for every \(L \in \mathcal{L}' \) there is \(h' \in H \) such that \(\varphi(L) = h'(L) \), there exist a subfamily \(\mathcal{L}'' = \{L_1, \ldots, L_{m+1}\} \) of \(\mathcal{L}' \) and a \(h \in H \) such that \(\varphi(L_j) = h(L_j), j = 1, \ldots, m+1. \) Therefore \(h^{-1} \circ \varphi \) sends \(L_j \) into \(L_j, j = 1, \ldots, m+1, \) and because \(\mathcal{L}'' \) is in general position \(h^{-1} \circ \varphi \) has to be a multiple of the identity. Since every \(L_j \) is a half-line this multiple is positive.

3. The main result

This section is devoted to prove the following result on finite groups of diffeomorphisms of a connected manifold.

Theorem 1. Consider a connected manifold \(M \) of dimension \(m \geq 2 \) and a finite group \(G \subset \text{Diff}(M) \). Then there exists a complete vector field \(X \) on \(M \), which is \(G \)-invariant, such that the map

\[
(g, t) \in G \times \mathbb{R} \rightarrow g \circ \Phi_t \in \text{Aut}(X)
\]

is a group isomorphism, where \(\Phi \) denotes the flow of \(X \).

Consider a Morse function \(\mu: M \rightarrow \mathbb{R} \) that is \(G \)-invariant, proper and non-negative, whose existence is assured by a result of Wasserman (see the remark of page 150 and the proof of Corollary 4.10 of [11]). Denote by \(C \) the set of its critical points, which is closed, discrete (that is without accumulation points in \(M \)) so countable. As \(M \) is paracompact, there exists a locally finite family \(\{A_p\}_{p \in C} \) of disjoint open set such that \(p \in A_p \) for every \(p \in C \).

Lemma 2. There exists a \(G \)-invariant Riemannian metric \(\tilde{g} \) on \(M \) such that if \(J(p): T_pM \rightarrow T_pM, p \in C, \) is defined by \(H(\mu)(p)(v, w) = \tilde{g}(p)(J(p)v, w) \), where \(H(\mu)(p) \) is the hessian of \(\mu \) at \(p \), then:

1. If \(p \) is a maximum or a minimum then \(J(p) \) is a multiple of the identity.
2. If \(p \) is a saddle, that is \(H(\mu)(p) \) is not definite, then the eigenvalues of \(J(p) \) avoiding repetitions due to the multiplicity are rationally independent.

Proof. We start constructing a 'good' scalar product on each \(T_pM, p \in C \). If \(p \) is a minimum [respectively maximum] one takes \(H(\mu)(p) \) [respectively \(-H(\mu)(p) \)]. When \(p \) is a saddle consider a scalar product \(\langle \cdot, \cdot \rangle \) on \(T_pM \) invariant by the linear action of the isotropy group \(G_p \) of \(G \) at \(p \). In this case as \(J(p) \) is \(G_p \)-invariant (of course here \(J(p) \) is defined with respect to \(\langle \cdot, \cdot \rangle \)), \(T_pM = \bigoplus_{j=1}^{k} E_j \) and \(J(p)|_{E_j} = a_j Id_{E_j} \) where each \(E_j \) is \(G_p \)-invariant, \(a_j \neq 0, \langle E_j, E_\ell \rangle = 0 \) and \(a_j \neq a_\ell \) if \(j \neq \ell \).
Besides one may suppose a_1,\ldots,a_k rationally independent by taking, if necessary, a new scalar product $\langle \cdot, \cdot \rangle'$ such that $\langle E_j, E_\ell \rangle' = 0$ when $j \neq \ell$ and $\langle \cdot, \cdot \rangle'_{|E_j} = b_j \langle \cdot, \cdot \rangle_{|E_j}$ for suitable scalars b_1,\ldots,b_k.

In turns this family of scalar products on $\{T_pM\}_{p \in C}$ can be construct G-invariant. Indeed, this is obvious for maxima and minima since μ is G-invariant. On the other hand, if $C' \subset C$ is a G-orbit consisting of saddles take a point p in C', endow T_pM with a 'good' scalar product and extend to C' by means of the action of G.

It is easily seen, through the family $\{A_p\}_{p \in C}$, that of all these scalar products on $\{T_pM\}_{p \in C}$ extend to a Riemannian metric \tilde{g} on M. Finally, if \tilde{g} is not G-invariant consider $\sum_{g \in G} g^*(\tilde{g})$.

Let Y be the gradient vector field of μ with respect to some Riemannian metric \tilde{g} as in Lemma 2. We will assume that Y is complete by multiplying, if necessary, \tilde{g} by a suitable G-invariant positive function (more exactly by $e^{(Y \cdot \rho)^2}$ where ρ is a G-invariant proper function).

Since μ is non-negative and proper, the α-limit of any regular trajectory of Y is a local minimum or a saddle of μ, whereas its ω-limit is empty, a local maximum or a saddle of μ.

Now $Y^{-1}(0) = C$ and, by the Sternberg’s Theorem, around each $p \in C$ (note that the linear part of Y at p equals $J(p): T_pM \to T_pM$ defined in Lemma 2) there exist a natural $1 \leq k \leq m-1$ and coordinates (x_1,\ldots,x_m) such that $p \equiv 0$ and $Y = \sum_{j=1}^{m} \lambda_j x_j \partial/\partial x_j$ where $\lambda_1,\ldots,\lambda_k > 0$ and $\lambda_{k+1},\ldots,\lambda_m < 0$, or $Y = a \sum_{j=1}^{m} x_j \partial/\partial x_j$ where $a > 0$ if p is a source (that is a minimum of μ) and $a < 0$ if p is a sink (a maximum of μ).

Let I be the set of local minima of μ, that is the set of sources of Y, and $S_i, i \in I$, the outset of i relative to Y. Obviously G acts on the set I.

Lemma 3. In M the family $\{S_i\}_{i \in I}$ is locally finite and the set $\bigcup_{i \in I} S_i$ dense.

Proof. First notice that $\mu(S_i)$ is low bounded by $\mu(i)$. But I is a discrete set and μ a non-negative proper Morse function, so in every compact set $\mu^{-1}((\infty,a])$ there are only a finite number of elements of I. Therefore $\mu^{-1}((\infty,a])$ and of course $\mu^{-1}(\infty,a)$ only intersect a finite number of S_i. Finally, observe that $M = \bigcup_{a \in \mathbb{R}} \mu^{-1}(\infty,a)$.

If the α-limit of the Y-trajectory of q is a saddle s, with the local model given above there exists $t \in \mathbb{Q}$ such that $\Phi_t(q)$ is close to s and $x_{k+1}(\Phi_t(q)) = \ldots = x_{m}(\Phi_t(q)) = 0$. Since the submanifold given by the equations $x_{k+1} = \ldots = x_{m} = 0$ has dimension $\leq m-1$ and \mathbb{Q} and
the set of saddles are countable, it follows that the set of points coming from a saddle may be enclosed in dimension \(m - 1 \) and its complementary, that is \(\bigcup_{i \in I} S_i \), has to be dense. \(\square \)

The vector field \(Y \) has no rivets since all its singularities are isolated with index \(\pm 1 \), therefore it has no chain; moreover the regular trajectories are not periodic.

For each \(i \in I \), let \(\mathcal{L}_i \) be a control family on \(T_i M \) with respect to the action of the isotropy group \(G_i \) of \(G \) at \(i \), such that if \(g(i) = i' \) then \(g \) transforms \(\mathcal{L}_i \) in \(\mathcal{L}_{i'} \). These families can be constructed as follows: for every orbit of the action of \(G \) on \(I \) choose a point \(i \) and \(k_i m + 1 \) different half-lines in general position, where \(k_i \) is the order of \(G_i \); now \(G_i \)-saturate this first family for giving rise to \(\mathcal{L}_i \). For other points \(i' \) in the same orbit choose \(g \in G \) such that \(g(i) = i' \) and move \(\mathcal{L}_i \) to \(i' \) by means of \(g \).

Let \(\mathcal{L} \) be the set of all elements of \(\mathcal{L}_i \), \(i \in I \). By Proposition [1] each element of \(\mathcal{L} \) is the linear \(\alpha \)-limit of just one trajectory of \(Y \); let \(\mathcal{T} \) be the set of such trajectories. Clearly \(G \) acts on \(\mathcal{T} \), since \(Y \) and \(\mathcal{L} \) are \(G \)-invariant, and the set of orbits of this action is countable. Therefore this last one can be regarded as a family \(\{ P_n \}_{n \in \mathbb{N}'} \) where \(\mathbb{N}' \subset \mathbb{N} - \{0, 1\} \), each \(P_n \) is a \(G \)-orbit and \(P_n \neq P_{n'} \) if \(n \neq n' \).

In turns, in each \(T \in P_n \) one may choose \(n - 1 \) different points in such a way that if \(T' = g(T) \) then \(g \) sends the points considered in \(T \) to those of \(T' \). Denoted by \(W_n \) the set of all points chosen in the trajectories of \(P_n \).

Since \(\{ S_i \}_{i \in I} \) is locally finite (Lemma [3]), the set \(W = \bigcup_{n \in \mathbb{N}} W_n \) is discrete, countable, closed and \(G \)-invariant. Therefore there exists a \(G \)-invariant function \(\psi : M \to \mathbb{R} \), which is non negative and bounded, such that \(\psi^{-1}(0) = W \). Set \(Y = \varphi Z \). One has:

(a) \(G \) is a subgroup of \(\text{Aut}(X) \).

(b) \(X^{-1}(0) = Y^{-1}(0) \cup W \), the rivets of \(X \) are just the points of \(W \) and \(X \) has no periodic regular trajectories.

(c) \(X \) and \(Y \) have the same sources, sinks and saddles. Moreover if \(R_i \), \(i \in I \), is the \(X \)-outset of \(i \) , then \(R_i \subset S_i \) and \(\bigcup_{i \in I} (S_i - R_i) \subset \bigcup_{T \in P_n, n \in \mathbb{N}'} T \), so \(\{ R_i \}_{i \in I} \) is locally finite and \(\bigcup_{i \in I} R_i \) is dense.

(d) Let \(C_T, T \in P_n, n \in \mathbb{N}' \), be the family of \(X \)-trajectories of \(T - W \) endowed with the order induced by that of \(T \) as \(Y \)-trajectory. Then \(C_T \) is a chain of \(X \) of order \(n \) whose rivets are the points of \(T \cap W \) and whose \(\alpha \)-limit and linear \(\alpha \)-limit are those of \(T \). Besides \(C_T, T \in P_n \), are the only chain of \(X \) of order \(n \).
As each \(P_n \) is a \(G \)-orbit in \(\mathcal{T} \), the group \(G \) acts on the set of chains of \(X \) and every \(\{C_T \mid T \in P_n\} \) is an orbit. Thus \(G \) acts transitively on the set of \(\alpha \)-limit and on that of linear \(\alpha \)-limit of the chains \(C_T, T \in P_n \). Recall that:

Lemma 4. Any map \(\varphi : \mathbb{R}^k \to \mathbb{R}^s \) such that \(\varphi(ay) = a\varphi(y) \), for all \((a, y) \in \mathbb{R}^+ \times \mathbb{R}^k \), is linear.

Remark 2. As it is well known, the foregoing lemma does not hold for continuous maps (in this work maps are \(C^\infty \) unless another thing is stated).

Proposition 2. Given \(f \in \text{Aut}(X) \) and \(i \in I \) there exists \((g, t) \in G \times \mathbb{R} \) such that \(f = g \circ \Phi_t \) on \(R_i \).

Proof. Consider \(n \in \mathbb{N} \) such that \(i \) is the \(\alpha \)-limit of some chain of order \(n \). Then \(f(i) \) is the \(\alpha \)-limit of some chain of order \(n \) and there exists \(g \in G \) such that \(g(i) = f(i) \); therefore \((g^{-1} \circ f)(i) = i \), which reduces the problem, up to change of notation, to consider the case where \(f(i) = i \).

Note that every \(L \in \mathcal{L}_i \) is the linear \(\alpha \)-limit of some \(T \in \mathcal{T} \), so the linear \(\alpha \)-limit of \(C_T \); moreover \(\mathcal{L}_i \) is the family of linear \(\alpha \)-limit of all chains starting at \(i \). As \(f \) sends chains starting at \(i \) into chains starting at \(i \) because \(f \) is an automorphism of \(X \), follows that \(f_\ast(i) \) sends \(\mathcal{L}_i \) into itself.

On the other hand, since for any \(T \in P_n \) one has \(f(C_T) = C_{T'} \) where \(T' \) belongs to \(P_n \) as well, it has to exists \(h \in G \) that sends the linear \(\alpha \)-limit of \(C_T \) to the linear \(\alpha \)-limit of \(C_{T'} \). But both chains start at \(i \) so \(h \in G_i \), which implies that \(f_\ast(i) \) preserves each orbit of the action of \(G_i \) on \(\mathcal{L}_i \). From Lemma [1] follows that \(f_\ast(i) = c h_\ast(i) \) with \(c > 0 \) and \(h \in G_i \). Therefore considering \(h^{-1} \circ f \) we may suppose, up to a new change of notation, that \(f_\ast(i) = c \text{Id}, c > 0 \).

Now Proposition [1] allows us to regard \(f \) on \(R_i \) as a map \(\varphi : \mathbb{R}^m \to \mathbb{R}^m \) that preserves the vector field \(X = a \sum_{j=1}^m x_j \partial/\partial x_j, a \in \mathbb{R}^+ \). But this last property implies that \(\varphi(bx) = b \varphi(x) \) for any \(b \in \mathbb{R}^+ \) and \(x \in \mathbb{R}^m \); therefore \(\varphi \) is linear (Lemma [4]). Since \(f_\ast(i) = c \text{Id} \) one has \(\varphi = c \text{Id}, c > 0 \); that is to say \(\varphi \) and \(f_{|R_i} \) equal \(\Phi_t \) for some \(t \in \mathbb{R} \). \(\square \)

Given \(f \in \text{Aut}(X) \), consider a family \(\{(g_t, t_i)\}_{i \in I} \) of elements of \(G \times \mathbb{R} \) such that \(f = g_t \circ \Phi_{t_i} \) on each \(R_i \). We will show that \(f = g \circ \Phi_t \) for some \(g \in G, t \in \mathbb{R} \).

Lemma 5. If all \(g_t \) are equal then all \(t_i \) are equal too.
Proof. The proof reduces to the case where all \(g_i = e_G \) (neutral element of \(G \)) by composing \(f \) on the left with a suitable element of \(G \). Obviously \(f = \Phi_{t_i} \) on \(R_i \).

Assume that the set of these \(t_i \) has more than one element. Fixed one of them, say \(t \), set \(D_1 \) the union of all \(R_i \) such that \(t_i = t \) and \(D_2 \) the union of all \(R_i \) such that \(t_i \neq t \). Since \(\{ R_i \}_{i \in I} \) is locally finite and \(\bigcup_{i \in I} R_i \) dense, the family \(\{ R_i \}_{i \in I} \) is locally finite too and \(\bigcup_{i \in I} R_i = M \).

Thus \(D_1 \) and \(D_2 \) are closed and \(M = D_1 \cup D_2 \). On the other hand if \(p \in D_1 \cap D_2 \) then \(\Phi_t(p) = \Phi_{t_i}(p) \) for some \(t \neq t_i \), so \(\Phi_{t-t_i}(p) = p \) and \(X(p) = 0 \) since \(X \) has no periodic regular trajectories, which implies that \(D_1 \cap D_2 \) is countable. Consequently \(M - D_1 \cap D_2 \) is connected. But \(M - D_1 \cap D_2 = (D_1 - D_1 \cap D_2) \cup (D_2 - D_1 \cap D_2) \) where the terms of this union are non-empty, disjoint and closed in \(M - D_1 \cap D_2 \), contradiction.

Choose an \(i_0 \in I \). Composing \(f \) on the left with a suitable element of \(G \) we may assume \(g_{i_0} = e_G \). On the other hand, \(f \) sends each orbit of the actions of \(G \) on \(I \) into itself because the points of every orbit are just the starting points of the chains of order \(n \) for some \(n \in \mathbb{N}' \). Thus \(f \) equals a permutation on each orbit of \(G \) in \(I \) and there exists \(\ell > 0 \) such that \(f^\ell \) is the identity on these orbits; for instance \(\ell = r! \) where \(r \) is the order of \(G \).

Now suppose that \(f^\ell = h_i \circ \Phi_{s_i} \) on \(R_i \), \(i \in I \). Then \(h_i \in G_i \). Since the order of \(G_i \) divides that of \(G \) one has \(f^{r \ell} = \Phi_{r \ell s_i} \) on \(R_i \). In short, there exists a natural number \(k > 0 \) such that \(f^k = \Phi_{u_i} \) on \(R_i \), and by Lemma 5 one has \(f^k = \Phi_u \) on every \(R_i \) for some \(u \in \mathbb{R} \).

In turns, composing \(f \) with \(\Phi_{-u/k} \) we may assume, without lost of generality, that \(f^k = Id \) on \(M \).

On \(R_{i_0} \) one has \(f^k = \Phi_{kt_{i_0}} \), so \(t_{i_0} = 0 \) and \(f = Id \). But \(f \) spans a finite group of diffeomorphisms of \(M \), which assure us that \(f \) is an isometry of some Riemannian metric \(\hat{g} \) on \(M \). Recall that isometries on connected manifolds are determined by the 1-jet at any point. Therefore from \(f = Id \) on \(R_{i_0} \) follows \(f = Id \) on \(M \).

In other words the map \((g, t) \in G \times \mathbb{R} \to g \circ \Phi_t \in \text{Aut}(X) \) is an epimorphism. Now the proof of Theorem \(\text{[I]} \) will be finished showing that it is an injection.

Assume that \(g \circ \Phi_t = Id \) on \(M \). As \(g' = e_G \) follows \(\Phi_{rt} = Id \) whence \(t = 0 \) because \(X \) has no periodic regular trajectories. Thus \(g = e_G \).

Remark 3. From the proof of Theorem \(\text{[I]} \) above, follows that this theorem holds for \(X' = \rho X \) where \(\rho \colon M \to \mathbb{R} \) is any \(G \)-invariant positive bounded function. Indeed, reason as before with \((\rho \psi)Y \) instead of \(\psi Y \).
4. Actions on manifolds with boundary

Let P be an m-manifold with non-empty boundary ∂P. First recall that there always exist a manifold \tilde{P} without boundary and a function $\tilde{\varphi} : \tilde{P} \to \mathbb{R}$ such that zero is a regular value of $\tilde{\varphi}$ and P diffeomorphic to $\tilde{\varphi}^{-1}((-\infty, 0])$; so let us identify P and $\tilde{\varphi}^{-1}((-\infty, 0])$.

Now assume that G is a finite subgroup of $\text{Diff}(P)$, P is connected and $m \geq 2$. Then G sends ∂P to ∂P and M to M; thus by restriction G becomes a finite subgroup of $\text{Diff}(M)$.

Let X' be a vector field as in the proof of Theorem 1 with respect to M and $G \subset \text{Diff}(M)$. By Proposition 3 in the Appendix (Section 5) applied to M and X', there exists a bounded function $\varphi : \tilde{P} \to \mathbb{R}$, which is positive on M and vanishes elsewhere, such that the vector field $\varphi X'$ on M prolongs by zero to a (differentiable) vector field on \tilde{P}.

Lemma 6. For every $g \in G$ the vector field X_g equal to $(\varphi \circ g)X'$ on M and vanishing elsewhere is differentiable.

Proof. Obviously X_g is smooth on $\tilde{P} - \partial P$. Now consider any $p \in \partial P$. As $g : P \to P$ is a diffeomorphism, there exist an open neighborhood A of p on \tilde{P} and a map $\hat{g} : A \to \tilde{P}$ such that $\hat{g} = g$ on $A \cap P$. Shrinking A allows to assume that $B = \hat{g}(A)$ is open, $\hat{g} : A \to B$ is a diffeomorphism and $A - \partial P$ has two connected components A_1, A_2 with $A_1 \subset M$ and $A_2 \subset \tilde{P} - P$; note that $\hat{g}(A_1) \subset M$, $\hat{g}(A_2) \subset \tilde{P} - P$ and $\hat{g}(A \cap \partial P) \subset \partial P$.

Thus $(X_g)|_A = \hat{g}^{-1}(X_{\varphi})|_B$ since X' is G-invariant. □

On P set $X = \sum_{g \in G} X_g$. Then $X|_{\partial P} = 0$ and $X|_M = \rho X'$ where $\rho = \sum_{g \in G} (\varphi|_M) \circ g$. Clearly $\rho : M \to \mathbb{R}$ is positive bounded and G-invariant, so by Remark 3 Theorem 1 also holds for $X|_M$. Moreover X is complete on P.

If $f : P \to P$ belongs to $\text{Aut}(X)$ then $f|_M$ belongs to $\text{Aut}(X|_M)$ and $f = g \circ \Phi_t$ on M and by continuity on P. In other words, Theorem 1 also holds for any connected manifold P, of dimension ≥ 2, with non-empty boundary.

5. Appendix

In this appendix we prove Proposition 3 that was needed in the foregoing section. First consider a family of compact sets $\{K_r\}_{r \in \mathbb{N}}$ in an open set $A \subset \mathbb{R}^n$, such that $K_r \subset \tilde{K}_{r+1}$, $r \in \mathbb{N}$, and $\bigcup_{r \in \mathbb{N}} K_r = A$.
Lemma 7. Given a family of positive continuous functions $\{f_r : A \rightarrow \mathbb{R}\}_{r \in \mathbb{N}}$ there exists a function $f : A \rightarrow \mathbb{R}$ vanishing on $\mathbb{R}^n - A$ and positive on A such that, whenever $r \in \mathbb{N}$, one has $f \leq f_j$, $0 \leq j \leq r$, on $A - K_r$.

Proof. One may assume $f_0 \geq f_1 \geq \ldots \geq f_r \geq \ldots$ by taking $\min\{f_0, \ldots, f_r\}$ instead of f_r if necessary. Consider functions $\varphi_r : \mathbb{R}^n \rightarrow [0, 1] \subset \mathbb{R}$, $r \in \mathbb{N}$, such that each $\varphi_r^{-1}(0) = K_{r-1} \cup (\mathbb{R}^n - K_{r+1})$ [as usual $K_j = \emptyset$ if $j \leq -1$].

Let D be a partial derivative operator. Multiplying each f_r by some $\varepsilon_r > 0$ small enough allows to suppose, without loss of generality, $\varphi_r \leq f_r/2$ on A and $|D\varphi_r| \leq 2^{-r}$ on \mathbb{R}^n for any D of order $\leq r$.

Set $f = \sum_{r \in \mathbb{N}} \varphi_r$. By the second condition on functions φ_r, whenever \tilde{D} is a partial derivative operator the series $\sum_{r \in \mathbb{N}} \tilde{D}\varphi_r$ uniformly converges on \mathbb{R}^n, which implies that f is differentiable. On the other hand it is easily checked that $f(\mathbb{R}^n - A) = 0$, $f > 0$ on A and $f \leq f_r \leq \ldots \leq f_0$ on $A - K_r$.

One will say that a function defined around a point p of a manifold is flat at p if its ∞-jet at this point vanishes. Note that given a function ψ on a manifold and a function $\tau : \mathbb{R} \rightarrow [0, 1] \subset \mathbb{R}$ flat at the origin and positive on $\mathbb{R} - \{0\}$ (for instance $\tau(t) = e^{-1/t^2}$ if $t \neq 0$ and $\tau(0) = 0$), then $\tau \circ \psi$ is flat at every point of $(\tau \circ \psi)^{-1}(0) = \psi^{-1}(0)$ and $\text{Im}(\tau \circ \psi) \subset [0, 1]$.

Lemma 8. Consider an open set A of a manifold M and a function $f : A \rightarrow \mathbb{R}$. Then there exists a function $\varphi : M \rightarrow \mathbb{R}$ vanishing on $M - A$ and positive on A, such that the function $\hat{f} : M \rightarrow \mathbb{R}$ given by $\hat{f} = \varphi f$ on A and $\hat{f} = 0$ on $M - A$ is differentiable.

Proof. The manifold M can be seen as a closed imbedded submanifold of some \mathbb{R}^n. Let $\pi : E \rightarrow M$ be a tubular neighborhood of M. If the result is true for $\pi^{-1}(A)$ and $f \circ \pi : \pi^{-1}(A) \rightarrow \mathbb{R}$, by restriction it is true for A and f. In other words, it suffices to consider the case of an open set A of \mathbb{R}^n.

We will say that a function $\psi : A \rightarrow \mathbb{R}$ is neatly bounded if, for each point p of the topological boundary of A and any partial derivative operator D, there exists an open neighborhood B of p such that $|D\psi|$ is bounded on $A \cap B$. First assume that f is neatly bounded. Let $\varphi : \mathbb{R}^n \rightarrow \mathbb{R}$ be a function that is positive on A and flat at every point of $\mathbb{R}^n - A$; then φ satisfies Lemma \[\square \]
Indeed, only the points $p \in (\bar{A} - A)$ need to be examined. Consider an natural $1 \leq j \leq n$; since $\int_0^\infty \varphi = 0$ near p one has $\varphi(x) = \sum_{i=1}^n (x_i - p_i) \hat{\varphi}_i(x)$ and from the definition of partial derivative follows that $(\partial \hat{f}/\partial x_j)(p) = 0$. Thus $\partial \hat{f}/\partial x_j = (\partial \varphi/\partial x_j)f + \varphi \partial f/\partial x_j$ on A and $\partial \hat{f}/\partial x_j = 0$ on $\mathbb{R}^n - A$, which shows that f is C^1.

Since obviously the function $\partial f/\partial x_j$ is neatly bounded and $\partial \varphi/\partial x_j$ is flat on $\mathbb{R}^n - A$, the same argument as before applied to $(\partial \varphi/\partial x_j)f$ and $\varphi \partial f/\partial x_j$ shows that f is C^2 and, by induction, the differentiability of f.

Let us see the general case. On A the continuous functions $|Df| + 1$, where D is any partial derivative operator, rise to a countable family of continuous positive functions $g_0, 0, g_1, 0, \ldots$. Let $\{K_r\}_{r \in \mathbb{N}}$ be a collection of compact sets such that $K_r \subset K_{r+1}$, $r \in \mathbb{N}$, and $\bigcup_{r \in \mathbb{N}} K_r = A$. By Lemma [\ref{lem:countable}] there exists a function $\rho : \mathbb{R}^n \to \mathbb{R}$ vanishing on $\mathbb{R}^n - A$ and positive on A such that $\rho \leq g_j^{-1}, 0 \leq j \leq r$, on $A - K_r, r \in \mathbb{N}$.

For every $k \in \mathbb{N}$ let $\lambda_k : \mathbb{R} \to \mathbb{R}$ be the function defined by $\lambda_k(t) = t^{-k}e^{-1/t}$ if $t > 0$ and $\lambda_k(t) = 0$ elsewhere. Then the function $\tilde{f} = \lambda_0(\rho/2)f$ is neatly bounded on A. Indeed, consider any $p \in (\bar{A} - A)$ and any partial derivative operator D. Then $D\tilde{f}$ equals a linear combination, with constant coefficients, of products of some partial derivatives of ρ, a function $\rho^{-k}e^{-2/\rho} = \lambda_k(\rho)e^{-1/\rho}$ and some partial derivative $D'f$. On the other hand, there always exists a natural ℓ such that $\rho \leq g_{\ell} \leq |D'f| + 1$. But near p one has $e^{-1/\rho} |D'f| \leq \rho |D'f| \leq \rho \rho \leq 1$; therefore $D\tilde{f}$ is bounded close to p.

Finally, take a function $\hat{\varphi} : \mathbb{R}^n \to \mathbb{R}$ positive on A and flat at every point of $\mathbb{R}^n - A$ and set $\varphi = \hat{\varphi}\lambda_0(\rho/2)$. \hfill \Box

Proposition 3. Consider a vector field X on an open set A of a manifold M. Then there exists a bounded function $\varphi : M \to \mathbb{R}$, which is positive on A and vanishes on $M - A$, such that the vector field \hat{X} on M defined by $\hat{X} = \varphi X$ on A and $\hat{X} = 0$ on $M - A$ is differentiable.

Proof. Regard M as a closed imbedded submanifold of some \mathbb{R}^n; let $\pi : E \to M$ be a tubular neighborhood of M. Then there exists a vector field X' on $\pi^{-1}(A)$ such that $X' = X$ on A and, by restriction of the function, it suffices to show our result for X' and $\pi^{-1}(A)$. That is to say, we may suppose, without loss of generality, that A is an open set of \mathbb{R}^n.

In this case on A one has $X = \sum_{j=1}^n f_j \partial/\partial x_j$. Applying Lemma [\ref{lem:sum}] to every function f_j yields a family of functions $\varphi_1, \ldots, \varphi_n$. Now it is enough setting $\varphi = \varphi_1 \cdots \varphi_n$.

Finally, if φ is not bounded take $\varphi/(\varphi + 1)$ instead of φ. \hfill \Box
FINITE C∞-ACTIONS ARE DESCRIBED BY ONE VECTOR FIELD

References

[1] M. Belolipetsky, A. Lubotzky, Finite groups and hyperbolic manifolds, Invent. Math. 162 (2005), 459–472.
[2] I. Bumagin, D.T. Wise, Every group is an outer automorphism group of a finitely generated group, J. Pure Appl. Algebra 200 (2005), 137–147.
[3] C. Costoya, A. Viruel, Every finite group is the group of self homotopy equivalences of an elliptic space, preprint arXiv:1106.1087
[4] R. Frucht, Herstellung von Graphen mit vorgegebener abstrakter Gruppe, Compositio Math. 6 (1938), 239–250.
[5] L. Greenberg, Maximal groups and signatures, Ann. Math. Stud., vol. 79, pp. 207–226. Princeton University Press 1974.
[6] M.S. Hirsch Differential Topology, GTM 33, Springer 1976.
[7] S. Kobayashi, K. Nomizu Foundations on Differential Geometry, vol. I, Interscience Publishers 1963.
[8] S. Kojima, Isometry transformations of hyperbolic 3-manifolds, Topology and its Appl. 29 (1988), 297–307.
[9] R. Roussarie, Modèles locaux de champs et de formes, Astérisque, vol. 30, Société Mathématique de France 1975.
[10] S. Sternberg, On the structure of local homeomorphisms of euclidean n-spaces II, Amer. J. Math. 80 (1958), 623–631.
[11] A. Wasserman, Equivariant differential topology, Topology 8 (1969), 127–150.

(F.J. Turiel) Departamento de Álgebra, Geometría y Topología, Facultad de Ciencias, Campus de Teatinos, s/n, 29071-Málaga, Spain
E-mail address, F.J. Turiel: turiel@uma.es

(A. Viruel) Departamento de Álgebra, Geometría y Topología, Facultad de Ciencias, Campus de Teatinos, s/n, 29071-Málaga, Spain
E-mail address, A. Viruel: viruel@uma.es