The unresponsive use of antibiotics led to the appearance of multiple drug-resistant bacteria strains. Studying the mechanism by which bacteria can resist antibiotics, the so called quorum sensing and biofilm formation, enabled the researchers to find bioactive compounds, derived from eukaryotes and prokaryotes. The disrupt of this mechanism is called quorum sensing inhibitors or quorum quenchers. This article provides an overview on the current research done on such bioactive compounds, the possible use of them as antibiotic alternatives, what are the advantage and disadvantages, the source from which it has been extracted, and how it may succeed to overcome bacterial resistance. The recommendation of researchers is to use some of these natural antimicrobial compounds combined to lower doses of antibiotics for treatment, the fastest way to limit the adverse effects of the exploitation of antibiotics and to avoid bacterial resistance.

Keywords: Bacterial resistance, Antimicrobial adjuvants, Antimicrobial enzymes, Antimicrobial peptides, Essential oils, Phytobiotic.
Table 1: History of The Development of Antibiotic Resistance [16]

Years	Developed	Showed bacterial resistance
Before 1935	Sulfonamides	Sulfonamides
1941–1945	B-lactam (penicillin)-streptomycin	B-lactam (penicillin)
1946–1950	Chloramphenicol-tetracycline colistin	Tetracycline
1951–1955	Erythromycin	Streptomycin-chloramphenicol colistin
1956–1960	Vancomycin	Vancomycin
1961–1965	Cephalosporins-quinolones	Cephalosporins and quinolones
1966–1970		Erythromycin-vancomycin
1986–1990		Oxazolidinones (linezolid)
1996–2000		Oxazolidinones (linezolid)
2001–2005		

Enzymes

More than 2000 different enzymes are currently known. They are produced by pancreatic ribonuclease and regulated by hormone-sensitive lipase.

Enzymes were grouped into six classes known as oxidoreductase, transferases, hydrolases, lyases (synthases), isomerases, and ligases.

At present, there are several commercial hydrolase preparations, effective against microbial biofilm, such as Spezyme GA300, Pandion, Resinase AX2, and Paradigm. The substrates for the hydrolases are peptidoglycan, the cell wall component which is responsible for the bacterial cell wall rigidity. Degradation of the cell wall leads to cell lysis due to disturbed osmotic pressure inside the cell. Gram-negative bacteria are less sensitive to bacteriolytic enzymes than Gram-positive bacteria due to differences in the cell wall structure.

Proteases are protein hydrolyzing enzymes, out of which subtilisins that are used widely for the control of biofilm in industry [42]. Lysostaphin is a metalloendopeptidase hydrolyzing enzyme. It cleaves Staphylococci cell walls including methicillin-resistant S. aureus (MRSA) [43]. Administration of lysostaphin in combination with oxacillin or vancomycin enhanced the antimicrobial effect against MRSA [44].

Among the polysaccharide hydrolyzing enzymes; lysozymes, alginate lyses, dispersin B and amylases were reported. Lysozyme immobilized in chitosan was effective in inhibiting food spoilage microorganisms [45].

Alpha-amylase hydrolyzes existing biofilms of S. aureus [46]. Combination of proteases and amylases was effective in removing a Pseudomonas fluorescens biofilm [47].

The peroxidases, such as lactoperoxidases and myeloperoxidases, use the H₂O₂ to oxidize halides (bromide, chlorine, and iodine) and isocyanate producing more potent antimicrobial compounds active against invading pathogens [48].

Antimicrobial Enzymes Derived from Bacteria

Quorum quenching enzymes that have an ability to degrade QS signal acylated homoserine lactone (AHL) autoinducers are AHL-lactonases, AHL-acylase, decarboxylases, and deaminase [9]. These enzymes were derived from different kinds of bacteria such as Actinobacteria, Rhodococcus, Arthrobacter, Streptomyces, Firmicutes, Bacillus, Oceanobacillus, Anaebaena, Cyanobacteria, Proteobacteria, Alteromonas, Comamonas, Halomonas, Hyphomonas, P. aeruginosa, K. pneumoniae, Raistonia, and Stappia [49-52]. The mentioned organisms have either AHL-acylase or -lactonase enzymes while Rhodococcus erythropolis might be the only organism which has both enzymes [53,54]. Interestingly, Bacillus thuringiensis does not produce the QS signal AHL but produce AHL-lactonase [55]. Microorganisms that produce bacteriolytic enzymes (e.g., streptomyces) usually express a complex of several cell wall degrading enzymes with different specificities.

Lipase enzymes are considered an innovative and environmentally friendly approach for biofilm control due to their lytic and dispersal activities. Most of lipase enzymes used in industries are of microbial origin. It catalyzes the hydrolysis of esters for long chain aliphatic acids; several microorganisms produce lipases such as sakuray, fungi, actinomycetes, yeast, bacteria, and archaea. Bacterial lipases include Bacillus, Penicillium, Staphylococcus, Pseudomonas, and Aspergillus [56].

Antimicrobial Enzymes Derived from Bacteriophage

Bacteriophages are viruses that replicate inside infected bacteria and then release endolysins, called lytic system, to weaken the bacterial cell wall resulting in bacterial lysis to come out and spread to infect other bacterial cells. Endolysins, such as glucosidase, endopeptidase, amidase,
and transglycosylase, showed bacteriolytic activity against Listeria monocytogenes, Bacillus anthracis, Staphylococcus, and Clostridium butyricum [4]. Furthermore, they can clear some Gram-positive bacterial infections such as Enterococcus faecalis and Clostridium perfringens, [58]. The pairing of an antibiotic with a bacteriophage adjuvant is currently used and available in Georgia. Combination of ciprofloxacin and a lytic phage cocktail is currently produced by PhagBioBioDerm, in a biodegradable polymer matrix. Amidase PAL, and endopeptidase CplI from phage CplI are synergistically capable to control the systemic pneumococcal disease [59,60]. Endolysins separated from phage phi3626 can treat Clostridium contaminations [61]. The type PAL of endolysin can kill the Streptococcus Group A. The type LYSK endolysins kill Staphylococcus, especially methicillin safe S. aureus [62]. Endolysins PlyV12 demonstrates a decent lytic movement against vancomycin, safe E. faecium, Enterococci, and E. faecalis [63].

Antimicrobial Enzymes Derived from Animal

Quorum quenching enzymes have been isolated from animals such as rats, mice, and zebrafish. Porcine kidney acylase I inactivated QS signals and prevented the formation of biofilm in Pseudomonas putida and Aeromonas hydrophila [64]. Mammalian paraoxonases have hydrolytic action on esters and lactones [65]. Mammalian type of lactonases differs from that derived from bacteria as the first type needs calcium ion to be active [65]. Epithelial cells of human have the ability to inactivate the autoinducer, AHLs, synthesized by P. aeruginosa [66].

Foods such as chicken breast, turkey patties, beef steak, beef patties, and homemade cheeses revealed inhibition for the Gram-positive bacteria autoinducer (AI-2) activity by 84.4–99.8% [67]. These QSIs vary in their effect on the expression of virulence-related genes [68].

Pancreatic lipase enzymes catalyze fatty acid synthesis in bacteria; therefore, it can serve as a potential antibacterial agent that is effective against many bacterial strains [69]. Lactonase, AHL acylase, and oxidoreductases are from mammalian paraoxonase. They are QSIs and can modulate P. aeruginosa infection [70].

Antimicrobial Enzymes Derived from Plants

Laccases, are QSIs enzymes, have been found in plant extracts derived from fruit, flowers, leaves, and bark of Laurus nobilis, Combretum alibiforum, and Sonchus oleraceus [71,72]. Allinase and thio enzyme group separated from garlic and other medicinal plants act as QSIs [73,74]. Lactonase presents in clover, lotus, legumes, peas, yam beans, and alfalfa showed AHL degrading abilities [75,76]. Papaya (Carica papaya L.) is rich in cysteine protease enzyme which has a crucial role in many vital antimicrobial processes in living organisms [77].

Quorum Quenching Enzymes Derived from Marine Organisms

Algae like Laminaria digita has bromoperoxidase enzyme that has QQ activity by oxidation process to AHL signal group [30C, HSL] [78]. Delisea pulchra contain halogenerated furonanes which similar in shape to bacterial AHLs and can block the receptors (LuxR) and hinder QS process [79,80].

Alginic lyses are enzymes, found in algae, invertebrates, and marine microorganisms, used in combination with gentamicin to control P. aeruginosa in the respiratory tracts of patients with cystic fibrosis [81-83].

Antimicrobial Digestive Enzymes

Digestive enzymes supplemented to improve the feed efficiency ratio and stimulate the absorption of nutrients, also affect on the bacterial population in the alimentary tract [84]. Some of these enzymes such as carbohydrates and phytases were synthesized and are commercially sold as feed additives to monogastric animal [85]. These enzymes will affect on the nourishment of intestinal flora which will compete the other pathogenic or harmful types of bacteria [84]. Furthermore, when xylanase and lysozyme enzymes were added to broiler chicken diet, it minimized the gastrointestinal lesions of C. perfringens in the ileum [86,87].

In conclusion, combination of certain types of enzymes, polysaccharide-degrading enzymes, D/Nases, proteases, and anti-quorum sensing enzymes, is required for successful control of microbial infections. Unfortunately, industrial enzyme production is somewhat expensive, especially for biomedical applications where pure enzymes are required [88].

ANTIMICROBIAL PEPTIDES (AMPs)

AMPs are found among all living organisms as a component of the innate immune response [90,89]. Most of the reported AMPs were of animal origin such as glycin/arginine-rich peptides, tachyplesin, brevinin peptides, and alpha- and beta-defensins [91]. In plants, few AMPs have been isolated from seeds, roots, stems, flowers, and leaves from various species and have demonstrated activities against different pathogens such as viruses, fungi, bacteria, protozoa, and parasites. Thionins, defensins, lipid transfer proteins, puroindolines, and snakins were different groups of AMPs reported in plants [92]. >880 different AMPs with the same biological activity to the naturally occurring AMPs have been designed and engineered from natural nucleic acid sequences [93] or selected from online combinatorial libraries [94].

Bacterial resistance against AMPs is apparently more difficult to be emerged in comparison with existing antibiotics as they have several targets and several modes of actions [95]. However, some bacteria developed resistance against human AMPs during evolution [96,97]. Hence, plant AMPs could be better than human ones because they rarely contact human pathogens to induce such resistance. AMPs range from 4 to about 40 amino acids in length, engineered AMPs are identical to natural ones and all of them are hydrophobic and cationic in nature. It plays its role inducing changes in membrane permeabilization, destabilization, inhibition of macromolecules synthesis, intracellular translocation of the peptide, and inhibition of DNA/RNA/protein synthesis [98]. As polycationic peptides, AMPs interact electrostatically with negatively charged bacterial surface structures including lipoteichoic acids, and then, they interact with the lipid bilayers of the cytoplasmic membrane forming transmembrane pores and resulting in weakening of the membrane [99]. AMPs exert its effect on microbial plasma membranes, within few seconds of addition. Then, after, within 1 h, bacterial membrane vesiculation, fragmentation release of DNA, cell aggregation, and destruction of cell morphology were noted. Thus, AMPs should rapidly pass through outer membrane thick proteoglycan layer of Gram-positive bacteria and the lipopoly saccharide layer of Gram-negative bacteria [100].

It is apparent not always biomembrane permeabilization is required for AMPs activity as it can translocate inside microbial membranes as well. This translocation results in membrane leakage and may occur at low concentrations of AMP before inducing permeabilization. For example, both the defensin cryptidin-4 of human and the AMP magnin 2 offrog translocate across bacterial cell wall bilayers within average 10 min [101,102].

AMPs Derived from Bacteria

The bacterial enzymes peptide synthetases produce the AMPs such as polymyxin, gramicidin, bacitracin, and sugar peptide. The polypeptide polymyxin is obtained from Bacillus polymyxa. It is effective against different pathogenic bacterial species such as P. aeruginosa, Salmonella, Escherichia coli, and K. pneumoniae. The polypeptide bactericidin is effective against Gram-negative cocci and spirochetes. Bacteriocin has been used commercially as feed additive for animals combined with bacitracin methylene salicylic acid and zinc [103]. There are several products of bacteriocins such as nisin, fermentcine, subtacin, plantacin, helvetcin, lactacin, and sakacin that have antimicrobial effect against resistant pathogenic strains [104]. Bacteriocin can kill bacterial cell by interfering its protein metabolism on molecular bases.
Many bacteriocins are applied as bacteriostatic in food products [105] as it can inhibit foodborne pathogens such as Clostridium botulinum, S. aureus, Bacillus spp., L. monocytogenes, and E. faecalis [106,107].

AMPS derived from plants

Major AMPS reported in plants were 5–13 kDa. Such small AMPS were shown to demonstrate good antibacterial activity against some bacteria such as S. aureus, E. coli, K. pneumoniae, and P. aeruginosa. Plant AMPS like other AMPS have higher activity against Gram-positive than Gram-negative bacteria [108-110]. Different kinds of antimicrobial substances were reported such as saponins [111], canavanine, and some important antifungal defenses [112]. Antimicrobial activity of AMPS obtained from wheat endosperm was reported against S. aureus and Micrococcus luteus [113]; other studies showed that extracts of AMPS from different germinating and ungerminated seeds of Pisum sativum, Punica granatum, Coccos nucifera L., and Phaseolus vulgaris showed broad spectrum of antibacterial activity against Micrococcus luteus, S. aureus, Staphylococcus epidermidis, Salmonella typhi, K. pneumoniae, E. coli, Proteus vulgaris, Pasteurella multocida, and P. aeruginosa [114].

AMPS derived from marine organism

Marine green growth is rich in peptides and high assorted proteins [115]. Crypteins, the recently produced peptides, have novel therapeutic effect [116,117]. Brown seaweed Saccharina longissiris is rich in AMPs (>10 kDa MW) resulting from trypsin enzymatic hydrolysis and extracted using HPLC. Other substractions of peptide precursors were identified such as ubiquitin, leucine, and histone that play a part of the innate immune defense of the seaweed [118].

PLANT EXTRACT & ESSENTIAL OILS (EOS)

Plant materials, known as phytobiotics, have been introduced in animal nutrition as antioxidative, antimicrobial, anti-inflammatory, and anti-parasitic factors [119,120]. The phytobiotic compounds were classified into phenolics/polyphenols, alkaloids, terpenoids/EOS, and lectins/polypeptides [121]. Plant extracts exert the antimicrobial effect at MIC 100–1000 µg/ml in vitro [122]. These phytobiotics have different modes of action against pathogens. First, tannins act by iron deprivation and enzymes interactions [123]. Second, cryptolepine may act as DNA intercalator and an inhibitor of topoisomerase enzyme [124]. Third, saponins act on the bacterial membrane by binding with sterols causing membrane damages and deformity of cells [125]. In the same time, some plant compounds act as QSI as their chemical structure is like those of AHL so can bind its receptors (LuxR/LasR) [126]. Furthermore, degradation of AHL signal takes place under the effect of γ-aminobutyric acid which promotes the bacteriolytic enzyme, lactonae [127]. Flavonoids such as kaempferol, naringenin, quercetin, and apigenin work as QSIs by inhibition of the QS autoinducers, HA-1 or AI-2, mediated bioluminescence in Vibrio harveyi [128]. Catechins produced by herbal plants like tea can stimulate AHL-lactonase and clear the plasmid of E. coli [129]. Furocoumarin and rosamarinic acid present in grapefruit juice and the roots of sweet basil corrupt the biofilm formation by E. coli and P. aeruginosa, respectively [130,131]. Thymol is currently used in combination with vancomycin and EDTA as antimicrobial [132]. Furthermore, the combined effect of the antibiotic, tobramycin, and some plant extracts (cinnamaldehyde and baicalin hydrate as QSI) was effective to clear the infected lungs with Burkholderia cenocepacia and P. aeruginosa [133-135]. The usage of EO to combat epidemic infection was done by Emtenan.

CONCLUSIONS & RECOMMENDATION

We have to put in mind that alternatives to antibiotics should be non-toxic, easily excreted from the body and have low residues, not stimulate bacterial resistance, be stable and do not decompose inside GIT, do not cause environmental pollution, have good taste, and kill the pathogen without destroying the normal flora.

Actually, till present, there is no antibiotic alternative that meets all the above-mentioned criteria. All proteinaceous compounds, such as feed enzymes and AMPS that have been put into market as well as bacteriophage lysins, enzymatic biofilm inhibitors, and quorum quenching enzymes under development, are naturally unstable and easily degraded in the digestive tract. On the other hand, antibiotics can directly kill bacteria or inhibit with better antibacterial effect than all antibiotic replacements. Antibiotics are made by single and relatively pure active ingredient with consistency, high stability, and quality ensured by good manufacturing practice. However, researchers appreciate the combination of more than antimicrobial compound to avoid the development of bacterial resistance. Combination of biofilm inhibitors with antibiotics showed good results than when used sporadic. Hence, we have to put in mind that we have to use the natural antimicrobials to prevent than to cure disease or in combination to antibiotics as adjuvant to improve its function and waiting for updates from scientific research.

AUTHORS’ CONTRIBUTIONS

Emtenan Mohamed is specialized in veterinary medicine and her area of interest is to find natural product that may improve animal health and decrease the risk of disease. Enas is specialized in enzymology. Hence, both authors shared in throwing light on most antimicrobial products and the last updates in this respect. Editing and scientific revision were done by Emtenan.

CONFLICTS OF INTEREST STATEMENT

Authors declared that there is no competing interest between them.

REFERENCES

1. Kalia VC, Rani A, Lai S, Cheema S, Raut CP. Combing databases reveals potential antibiotic producers. Expert Opin Drug Discov 2007; 2:211-24.
2. Rasmussen TB, Skindersoe ME, Bjarnsholt T, Phipps RK, Christensen KB, Jensen PO. Identity and effects of quorum-sensing inhibitors produced by Penicillium species. Microbiology 2005;151:1325-40.
3. Bjarnsholt T, Jensen PO, Burmølle M, Hentzer M, Haagensen JA, Hougen HP. Pseudomonas aeruginosa tolerance to tobramycin, hydrogen peroxide and polymorphonuclear leucocytes is quorum-sensing dependent. Microbiology 2005;151:373-83.
4. Low LY, Yang C, Perego M, Osterman A, Liddington RC. Structure and lytic activity of a Bacillus anthracis prophage endolysin. J Biol Chem 2005;280:35433-9.
5. Koch C, Hoiby N. Diagnosis and treatment of cystic fibrosis. Respiraion 2000;67:239-47.
6. Olsen JA, Severinen N, Rasmussen T, Hentzer M, Givskov M, Nielsen J. Synthesis of new 3- and 4-substituted analogues of acyl homoserine lactone quorum sensing autoinducers. Bioorg Med Chem Lett 2002;12:325-8.
7. Huna N, Shankar P, Kushwah J, Bhushan A, Joshi J, Mukherjee T.
8. Nielsen J. Synthesis of new 3- and 4-substituted analogues of acyl homoserine lactone quorum sensing autoinducers. Bioorg Med Chem Lett 2002;12:325-8.
Diversity and polymorphism in AHL-lactonase gene (aiiA) of *Bacillus*. J Microbiol Biotechnol 2011;21:1001-11.
8. Jamuna Bai A, Rai VR. Bacterial quorum sensing system and food industry. Compr Rev Food Sci Food Safety 2011;10:184-94.
9. Kalia VC, Purohit HJ. Quenching the quorum sensing system: Potential antibacterial drug targets. Crit Rev Microbiol 2011;37:121-40.
10. Drenkard E. Antimicrobial resistance of *Pseudomonas aeruginosa* biofilms. Microbes Infect 2003;5:1213-9.
11. Zeng Z, Qian H, Cao L, Tan H, Huang Y, Xue X. Virtual screening for novel quorum sensing inhibitors to eradicate biofilm formation of *Pseudomonas aeruginosa*. Appl Microbiol Biotechnol 2008;79:119-26.
12. Bassetti M, Ginochio F, Mikulka M. New treatment options against gram-negative bacteria. Crit Care 2011;15:215.
13. Bhattacharjee K, Kavitha N, Nishikawa M, Mahajan Y. Nanotechnology solutions to combat Superbugs, Nanowerk; 2013. Available from: http://www.nanowerk.com/spotlight/spidot-32188.php.
14. Hu Y, Shamaei-Toosi A, Liu Y, Coates A. A new approach for the discovery of antibiotics by targeting non-multiplying bacteria: A novel topical antibiotic for staphylococcal infections. PLoS One 2010;5:e11818.
15. Enright MC, Robinson DA, Randle G, Feil EJ, Grundmann H, Spratt BG, et al. The evolutionary history of methicillin-resistant *Staphylococcus aureus* (MRSA). Proc Natl Acad Sci U S A 2002;99:7687-92.
16. Springer B, Kidan YG, Prammananan T, Ellrott K, Böttger EC, Sander P, et al. Mechanisms of streptomycin resistance: Selection of mutations in the 16S rRNA gene conferring resistance. Antimicrob Agents Chemother 2001;45:2877-84.
17. Vranakis I, Giotiakakis I, Psaroulaki A, Sandalakis V, Tselentis Y, Georga K. Proteome studies of bacterial antibiotic resistance mechanisms. J Proteomics 2014;97:88-99.
18. Kester JC, Fortune SM. Persisters and beyond: Mechanisms of phenotypic drug resistance and drug tolerance in bacteria. Crit Rev Biochem Mol Biol 2014;49:91-101.
19. Woo PC, To AP, Lau SK, Yuen KY. Facilitation of horizontal transfer of the communal gene pool. Philos Trans R Soc Lond B Biol Sci 2009;364:2275-89.
20. Martinez JL, Baquer F. Mutation frequencies and antibiotic resistance: Opportunities for new targeted therapies. Adv Drug Deliv Rev 2005;57:1451-70.
21. Norman A, Hansen LH, Sørensen SJ. Conjugative plasmids: Vessels of the communal gene pool. Philos Trans R Soc Lond B Biol Sci 2009;364:2275-89.
22. Cirz RT, Chin JK, Andes DR, de Crécy-Lagard V, Craig WA, Martinez JL, et al. High-level and low-level development of resistance. Nat Rev Microbiol 2014;12:35-48.
23. Miao J, Pungale RC, Paskaleva EE, Hwang EE, Kane RS, Linhardt RJ, et al. Lysozyme-functionalyzed cellulose fibers with antibiofilm activities. Biofouling 2014;30:215-21.
24. Liao J, Pengue RC, Sander P, Linhardt RJ, et al. Development of biofilm-resistant *Pseudomonas aeruginosa* biofilm on dialysis catheters and adherence to human cells. Kidney Int 2003;63:340-5.
25. Jiang Y, Shamaei-Tousi A, Liu Y, Coates A. A new approach for the discovery of antibiotics by targeting non-multiplying bacteria: A novel topical antibiotic for staphylococcal infections. PLoS One 2010;5:e11818.
26. Ramirez MS, Tomalisky ME. Aminoglycoside modifying enzymes. J Microbiol 2005;43:101-9.
27. Wright GD. Bacterial resistance to antibiotics: Enzymatic degradation and modification. Adv Drug Deliv Rev 2005;57:1451-70.
28. Wilson DN. Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nat Rev Microbiol 2012;10:35-48.
29. Li XZ, Nikaido H. Efflux-mediated drug resistance in bacteria: An up-to-date. Drugs 2009;69:1555-63.
30. Poole K, Russell A, Lambert P. Mechanisms of antimicrobial resistance: opportunities for new targeted therapies. Adv Drug Deliv Rev 2005;57:1443-5.
31. Wilson DN. Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nat Rev Microbiol 2012;10:35-48.
32. Akeson MN, Lee SB. Molecular mechanisms of antibacterial multidrug resistance. Cell 2007;128:1037-50.
33. Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, et al. Bad bugs, no drugs: No ESKAPE! An update from the infectious diseases society of America. Clin Infect Dis 2009;48:1-2.
34. Miller AA, Miller PF. Emerging trends in Antibacterial Discovery: Answering the Call to Arms. Norfolk, UK: Caister Academic Press; 2011. Available from: https://www.caister.com/hsp/pdf/pdf/antibacterial-discovery.pdf.
35. Humna N, Shankar P, Kushwah J, Bhusan A, Joshi J, Mukherjee T. Diversity and polymorphism in AHL-lactonase gene (aiiA) of *Bacillus*. J Microbiol Biotechnol 2011;21:1001-11.
36. Carlier A, Chevrot R, Dessaux Y, Faure D. The assimilation of gamma-butyrolactone in *Agrobacterium tumefaciens* C58 interferes with the accumulation of the N-acyl-homoserine lactone signal. Mol Plant Microbe Interact 2001;14:111-7.
37. Fan X, Bai L, Zhu L, Yang L, Zhang X. Marine algae-derived bioactive peptides for human nutrition and health. J Agric Food Chem 2014;62:9211-22.
38. Markoshoiliv A, Tsitlanadze G, Katsarava R, Morris JG Jr, Sulakvelidze A, et al. A novel sustained-release matrix based on biodegradable poly (ester amides) and impregnated with bacteriophages and an antibiotic shows promise in management of infected venous stasis ulcers and other poorly healing wounds. Int J Dermatol 2002;41:453-8.
39. Balaban N, Gov Y, Bider A, Booder JT. Prevention of *Staphylococcus aureus* biofilm on dialysis catheters and adherence to human cells. Kidney Int 2003;63:340-5.
40. Giacometti A, Cirioni O, Ghiselli R, Dell’Acqua G, Orlando F, D’Amato G. RNAIII-inhibiting peptide improves efficacy of clinically used antibiotics in a murine model of staphylococcal sepsis. Peptides 2005;26:169-75.
41. Rasmussen TB, Skindersoe ME, Bjarnsholt T, Pihlpp RK, Christensen KB, Jensen PO. Identity and effects of quorum-sensing inhibitors produced by *Penicillium* species. Microbiology 2005;151:325-40.
42. Bjarnsholt T, Jensen PO, Burmølle M, Hentzer M, Haagensen JA, Hougen HP. *Pseudomonas aeruginosa* tolerance to tobramycin, hydrogen peroxide and polymorphonuclear leukocytes is quorum-sensing dependent. Microbiology 2005;151:373-83.
43. Longhi C, Scurcough LG, Paggioli F, Cellini A, Carpentieri A, Seganti L, et al. Protease treatment affects both invasion ability and biofilm formation in *Listeria monocytogenes*. Microb Pathog 2008;45:45-52.
44. Oualali-Lagac N, Martial-Gros A, Bonneau M, Blum LJ. “Escherichia coli-milk” biofilm removal from stainless steel surfaces: Synergism between ultrasonic waves and enzymes. Biofouling 2003;19:159-68.
45. Leroy C, Delbarre C, Ghilbeaut F, Compere C, Combes D. Effects of commercial enzymes on the adhesion of a marine biofilm-forming bacterium. Biofouling 2008;24:11-22.
46. Klauing JE, Kamendulis LM, Hoccevar BA. Oxidative stress and oxidative damage in carcinogenesis. Toxicol Pathol 2010;38:96-109.
47. Romero M, Martinez-Canedo AB, Otero A. Determination of whether quorum quenching is a common activity in marine bacteria by analysis of cultivable bacteria and metagenomic sequences. Appl Environ Microbiol 2012;78:6345-8.
48. Kalia VC, Purohit HJ. Quenching the quorum sensing system: Potential antibacterial drug targets. Crit Rev Microbiol 2011;37:121-40.
49. Dong YH, Zhang LH. Quorum sensing and quorum-quenching enzymes. J Microbiol 2005;43:101-9.
50. Azmi W. Arthrobacter as biofactory of therapeutic enzymes. Int J Pharm Pharm Sci 2018;11:1.
51. Park SY, Hwang BJ, Shin MH, Kim JA, Kim HK, Lee JK, et al. N-acylhomoserine lactonase producing *Rhodococcus* sp. with different AHL-degrading activities. FEMS Microbiol Lett 2006;261:102-8.
52. Ueno S, Oger PM, Chapelle E, Adeline MT, Faure D, Dessaux Y. A *Rhodococcus* quA-encoded enzyme defines a novel class of large-spectrum quorum-quenching lactonases. Appl Environ Microbiol 2008;74:1357-66.
53. Bentley SD, Chater KF, Cerdeño-Tárraga AM, Challis GL, Thomson NR, James KD. Complete genome sequence of the model bacterium *Escherichia coli K-12* strain MG1655. Nature 2002;416:1417.
54. Kumar S, Kikon K, Upadhyay A, Kanwar SS, Gupta R. Production, purification, and characterization of lipase from thermophilic and alkaliphilic *Bacillus* coagulans BTS-3. Protein Expr Purif 2005;36:285-90.
58. Fenton M, Ross P, McAuliffe O, O’Mahony J, Coffey A. Recombinant microbacteriophage lysins as antibacterials. Bioeng Bugs 2010;1:9-16.

59. Fischetti VM. Bacillus enzymes: Novel anti-infectives. Trends Microbiol 2005;13:491-6.

60. Loeffler JM, Djurkovic S, Fischetti VA. Phage lytic enzyme cpl-1 as a novel antimicrobial for pneumococcal bacteremia. Infect Immun 2003;71:6199-204.

61. Courchene NM, Parisien A, Lan CQ. Production and application of bacteriophage and bacteriophage-encoded lysins. Recent Pat Biotechnol 2009;3:37-45.

62. O’Flaherty S, Ross RP, Coffey A. Bacteriophage and their lysins for elimination of infectious bacteria. FEMS Microbiol Rev 2009;33:301-19.

63. Zhang HB, Wang C, Zhang LH. The quorum degradation system of Agrobacterium tumefaciens is regulated by starvation signal and stress alarmones (pHipSpp). Mol Microbiol 2004;52:1389-401.

64. Paul D, Kim YS, Fonnumas K, Kweon JH. Application of quorum quenching to inhibit biofilm fermentation. Environ Eng Sci 2010;8:1267-79. Available from: https://www.link.springer.com/article/10.1007/s00253-010-2521-7.

65. Teibert JF, Horke S, Haines DC, Chouaiby SE, Fischetti VA, Kramer GL. Dominant role of paraoxonases in inactivation of the Pseudomonas aeruginosa quorum-sensing signal N-(3-oxododecanoyl)-L-homoserine lactone. Infect Immun 2008;76:2512-9.

66. Widmer KW, Dowd SE, Pillai SD. Differential expression of virulence-related genes in A. salmonicida serotype typhimurium luxS mutant in response to autoinducer Al-2 and poultry meat-derived Al-2 inhibitor. Foodborne Pathog Dis 2007;4:5-15.

67. Sharma R, Chisti Y, Banerjee UC. Production, purification, characterization, and applications of lipases. Biotechnol Adv 2001;19:627-62.

68. Ozer EA, Pezzulo A, Shih DM, Chun C, Furlong C, Luisi AJ. Human and murine paraoxonase 1 are host modulators of Pseudomonas aeruginosa quorum-sensing. FEMS Microbiol Lett 2005;253:29-37.

69. Dong YH, Zhang LH. Quorum sensing and quorum-quenching enzymes. J Microbiol 2005;43:101-9.

70. Teibert JF, Horke S, Haines DC, Chowdhary PK, Xiao J, Kramer GL. Dominant role of paraoxonases in inactivation of the Pseudomonas aeruginosa quorum-sensing signal N-(3-oxododecanoyl)-L-homoserine lactone. Infect Immun 2008;76:2512-9.

71. Stoltz DA, Ozer EA, Ng C, JY, Reddy SS, Luisi AJ. Paraoxonase-2 deficiency enhances Pseudomonas aeruginosa quorum sensing in murine tracheal epithelia. Am J Physiol Lung Cell Mol Physiol 2007;292:A522-9.

72. Yung F, Wang LH, Wang J, Dong YH, Hu JY, Zhang LH. Quorum quenching enzyme activity is widely conserved in the sera of Mammalian species. FEBS Lett 2005;579:3713-7.

73. Widmer KW, Jesudhasan PR, Dowd SE, Pillai SD. Differential expression of virulence-related genes in A. salmonicida serotype typhimurium luxS mutant in response to autoinducer Al-2 and poultry meat-derived Al-2 inhibitor. Foodborne Pathog Dis 2007;4:5-15.

74. Adonizio A, Kong KF, Mathee K. Inhibition of quorum sensing-dependent. Microbiology 2005;151:373-83.

75. Bjarnsholt T, Jensen PØ, Burmølle M, Hentzer M, Haagensen JA, et al. Bacteriophage and their lysins for elimination of infectious bacteria. FEMS Microbiol Rev 2009;33:301-19.

76. Zhang HB, Wang C, Zhang LH. The quorum quenching system of Agrobacterium tumefaciens is regulated by starvation signal and stress alarmones (pHipSpp). Mol Microbiol 2004;52:1389-401.

77. Teibert JF, Horke S, Haines DC, Chouaiby SE, Fischetti VA, Kramer GL. Dominant role of paraoxonases in inactivation of the Pseudomonas aeruginosa quorum-sensing signal N-(3-oxododecanoyl)-L-homoserine lactone. Infect Immun 2008;76:2512-9.

78. Stoltz DA, Ozer EA, Ng C, JY, Reddy SS, Luisi AJ. Paraoxonase-2 deficiency enhances Pseudomonas aeruginosa quorum sensing in murine tracheal epithelia. Am J Physiol Lung Cell Mol Physiol 2007;292:A522-9.

79. Yung F, Wang LH, Wang J, Dong YH, Hu JY, Zhang LH. Quorum quenching enzyme activity is widely conserved in the sera of Mammalian species. FEBS Lett 2005;579:3713-7.

80. Widmer KW, Jesudhasan PR, Dowd SE, Pillai SD. Differential expression of virulence-related genes in A. salmonicida serotype typhimurium luxS mutant in response to autoinducer Al-2 and poultry meat-derived Al-2 inhibitor. Foodborne Pathog Dis 2007;4:5-15.

81. Sharma R, Chisti Y, Banerjee UC. Production, purification, characterization, and applications of lipases. Biotechnol Adv 2001;19:627-62.

82. Ozer EA, Pezzulo A, Shih DM, Chun C, Furlong C, Luisi AJ. Human and murine paraoxonase 1 are host modulators of Pseudomonas aeruginosa quorum-sensing. FEMS Microbiol Lett 2005;253:29-37.

83. Dong YH, Zhang LH. Quorum sensing and quorum-quenching enzymes. J Microbiol 2005;43:101-9.

84. Al-Hussaini R, Mahasneh AM. Microbial growth and quorum sensing controlled virulence factor production in Pseudomonas aeruginosa. J Microbiol Res 2006;19:627-62.

85. Zhang HB, Wang C, Zhang LH. The quorum quenching system of Agrobacterium tumefaciens is regulated by starvation signal and stress alarmones (pHipSpp). Mol Microbiol 2004;52:1389-401.

86. Teibert JF, Horke S, Haines DC, Chouaiby SE, Fischetti VA, Kramer GL. Dominant role of paraoxonases in inactivation of the Pseudomonas aeruginosa quorum-sensing signal N-(3-oxododecanoyl)-L-homoserine lactone. Infect Immun 2008;76:2512-9.

87. Stoltz DA, Ozer EA, Ng C, JY, Reddy SS, Luisi AJ. Paraoxonase-2 deficiency enhances Pseudomonas aeruginosa quorum sensing in murine tracheal epithelia. Am J Physiol Lung Cell Mol Physiol 2007;292:A522-9.

88. Yung F, Wang LH, Wang J, Dong YH, Hu JY, Zhang LH. Quorum quenching enzyme activity is widely conserved in the sera of Mammalian species. FEBS Lett 2005;579:3713-7.

89. Widmer KW, Jesudhasan PR, Dowd SE, Pillai SD. Differential expression of virulence-related genes in A. salmonicida serotype typhimurium luxS mutant in response to autoinducer Al-2 and poultry meat-derived Al-2 inhibitor. Foodborne Pathog Dis 2007;4:5-15.

90. Sharma R, Chisti Y, Banerjee UC. Production, purification, characterization, and applications of lipases. Biotechnol Adv 2001;19:627-62.

91. Teibert JF, Horke S, Haines DC, Chouaiby SE, Fischetti VA, Kramer GL. Dominant role of paraoxonases in inactivation of the Pseudomonas aeruginosa quorum-sensing signal N-(3-oxododecanoyl)-L-homoserine lactone. Infect Immun 2008;76:2512-9.

92. Stoltz DA, Ozer EA, Ng C, JY, Reddy SS, Luisi AJ. Paraoxonase-2 deficiency enhances Pseudomonas aeruginosa quorum sensing in murine tracheal epithelia. Am J Physiol Lung Cell Mol Physiol 2007;292:A522-9.

93. Yung F, Wang LH, Wang J, Dong YH, Hu JY, Zhang LH. Quorum quenching enzyme activity is widely conserved in the sera of Mammalian species. FEBS Lett 2005;579:3713-7.

94. Widmer KW, Jesudhasan PR, Dowd SE, Pillai SD. Differential expression of virulence-related genes in A. salmonicida serotype typhimurium luxS mutant in response to autoinducer Al-2 and poultry meat-derived Al-2 inhibitor. Foodborne Pathog Dis 2007;4:5-15.

95. Adonizio A, Kong KF, Mathee K. Inhibition of quorum sensing-controlled virulence factor production in Pseudomonas aeruginosa by South Florida plant extracts. Antimicrob Agents Chemother 2003;47:15-22.

96. Matsuzaki K, Sugishita K, Harada M, Fujihara M, Taniyama K, et al. Bacteriophage and their lysins for elimination of infectious bacteria. FEMS Microbiol Rev 2009;33:301-19.

97. Adonizio A, Kong KF, Mathee K. Inhibition of quorum sensing-controlled virulence factor production in Pseudomonas aeruginosa by South Florida plant extracts. Antimicrob Agents Chemother 2003;47:15-22.
106. Rodríguez JM, Martínez MI, Kok J. Pediocin PA-1, a wide-spectrum bacteriocin from lactic acid bacteria. Crit Rev Food Sci Nutr 2002;42:21-34.

107. Tahiri I, Desbiens M, Benech R, Kheade E, Lacroux C, Thibault S, et al. Purification, characterization and amino acid sequencing of divergicin M35: a novel class IIa bacteriocin produced by Carnobacterium divergens M35. Int J Food Microbiol 2004;97:123-36.

108. Peschel A, Sahli HG. The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat Rev Microbiol 2006;4:529-36.

109. Thomma BP, Cummpe BP, Thiessen K. Plant defensins. Planta 2002;216:193-202.

110. Porteiles R, Ayza C, Borras O. Basic insight on plant defensins. Biotechnol Appl 2006;23:75-8.

111. Avato P, Bucci R, Tava A, Vitali C, Rosato A, Biaya Z, et al. Antimicrobial activity of saponins from Medicago sp.: Structure-activity relationship. Phytother Res 2006;20:454-7.

112. Gao AG, Hakimi SM, Mittanck CA, Wu Y, Woerner BM, Stark DM. Fungal pathogen protection in potato by expression of a plant defensin peptide. Nat Biotechnol 2000;18:1307-10.

113. Kumar DV, Sati OP, Tripathi MK, Kumar A. Isolation, characterization and antimicrobial activity at diverse dilution of wheat puroindoline protein. World J Agric Sci 2009;5:297-300. Available from: https://www.pdfs.semanticscholar.org/af1a0/055173c6823beb0a410ab6e67a3d30ca234fd.html.

114. Saima R, Azra K. Isolation and characterization of peptide(s) from Pisum sativum having antimicrobial activity against various bacteria. Pak J Bot 2011;43:1-8. Available from: https://www.pdfs.semanticscholar.org/5530/6e02a38161d084b6b64b8350a5df4fbf29fd.pdf.

115. Ng JH, Ilag LL. Cryptic protein fragments as an emerging source of peptide drugs. Drugs 2006;9:343-6.

116. Fan X, Bai L, Zhu L, Yang L, Zhang X. Marine algae-derived bioactive peptides and human nutrition and health. J Agric Food Chem 2014;62:9211-22.

117. Nair R, Chhabdavayy R, Chanda S. Marine algae: Screening for a potent antibacterial agent. J Herb Pharmacother 2007;7:73-86.

118. Beaulieu L, Bondu S, Doiron K, Rioux LE, Turgeon SL. Characterization of antimicrobial activity from protein hydrolysates of the macroalgae Saccharina long cruris and identification of peptides implied in bioactivity. J Funct Foods 2015;17:685-97.

119. Vondrusková H, Slanová R, Trčková M, Zralý Z, Pavlík I. Alternatives to antibiotic growth promoters in prevention of diarrhoea in weaned piglets: A review. Vet Med 2010;55:199-224.

120. Hashemi SR, Davoodi H. Herbal plants and their derivatives as growth and health promoters in animal nutrition. Vet Res Commun 2011;35:169-80.

121. Windisch W, Schelle K, Plitzner C, Koeismayr A. Use of phytochemicals as feed additives for swine and poultry. J Anim Sci 2008;86:E140-8.

122. Simões M, Bennett RN, Rosa EA. Understanding antimicrobial activities of phytochemicals against multidrug resistant bacteria and biofilms. Nat Prod Rep 2009;26:746-57.

123. Scalbert A. Antimicrobial properties of tannins. Phytochemistry 1991;30:3875-83.

124. Karou D, Savadogo A, Canini A, Yameogo S, Montesano C, Simpore J. Antibacterial activity of alkaloids from Sida acuta. Afr J Biotechnol 2011;10:55:199-224.

125. Morrissey JP, Osbourn AE. Fungal resistance to plant antibiotics as a mechanism of pathogenesis. Microbiol Mol Biol Rev 1999;63:708-24.

126. Vikram A, Jayaprakashka GK, Jesudhasan PR, Pillai SD, Patil BS. Suppression of bacterial cell-cell signalling, biofilm formation and type III secretion system by citrus flavonoids. J Appl Microbiol 2010;109:711-18.

127. Chevrot R, Rosen R, Haudecoeur E, Cirou A, Sphel BJ, Ron E, et al. GABA controls the level of quorum-sensing signal in Agrobacterium tumefaciens. Proc Natl Acad Sci U S A 2006;103:7460-4.

128. Vandepuette OM, Kiembrechso M, Rajaonson S, Diallo B, Mol A, El Jaziri M, Rytkönti M, et al. Identification of catechin as one of the flavonoids from Combretum albiflorum bark extract that reduces the production of quorum-sensing-controlled virulence factors in Pseudomonas aeruginosa PA01. Appl Environ Microbiol 2010;76:243-53.

129. Zhao WH, Hu ZQ, Hara Y, Shimamura T. Inhibition by epigallocatechin gallate (EGCG) of conjugative plasmid transfer in Escherichia coli. J Infect Chemother 2001;7:195-7.

130. Girennavar B, Cepeda ML, Soni KA, Vikram A, Jesudhasan P. Jayaprakashka GK. Grapefruit juice and its furocoumarins inhibit autolysin and biofilm formation in bacteria. Int J Food Microbiol 2011;145:204-8.

131. Chauhan MK, Malik S. Evaluation of phytochemicals and synergistic interaction between plant extracts and antibiotics for efflux pump inhibitory activity against Salmonella enterica serovar typhimurium strains. Int J Pharm Sci 2016;8:7-11.

132. Nair R, Chhabdavayy R, Chanda S. Marine algae: Screening for a potent antibacterial agent. J Herb Pharmacother 2007;7:73-86.

133. Brandmann G, Cos P, Maes L, Nellis HJ, Coenye T. Quorum sensing inhibitors increase the susceptibility of bacterial biofilms to antibiotics in vitro and in vivo. Antimicrob Agents Chemother 2015;59:265-61.

134. Brandmann G, Hillaert U, Van Calenbergh S, Nellis HJ, Coenye T. Use of quorum sensing inhibitors to interfere with biofilm formation and development in Burkholderia multivorans and Burkholderia cenocepacia. Res Microbiol 2009;160:144-51.

135. Yang L, Rytkönti M, Jakobsen TH, Hentzer M, Bjerkaasht M, Giskev M. Computer-aided identification of recognized drugs as Pseudomonas aeruginosa quorum-sensing inhibitors. Antimicrob Agents Chemother 2009;53:2432-43.

136. Warnke PH, Becker ST, Podschun R, Sivananthan S, Springer IN, Rüsso PA, et al. The importance of multidrug-resistant strains: Renaissance of antimicrobial essential oils as a promising force to fight hospital-acquired infections. J Craniomaxillofac Surg 2009;37:392-7.

137. Mulyaningsih S, Sporer F, Zimmermann S, Reichling J, Wink M. Synergistic properties of the terpenoids aromadendrene and 1,8-cineole from the essential oil of Eucalyptus globulus against antibiotic-susceptible and antibiotic-resistant pathogens. Phytomedicine 2010;17:1061-6.

138. van Vuuren SF, Suliman S, Viljoen AM. The antimicrobial activity of four commercial essential oils in combination with conventional antimicrobials. Lett Appl Microbiol 2002;35:169-80.

139. Lambeth RJ, Skandamis PN, Coote PJ, Nychas GJ. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J Appl Microbiol 2001;91:453-62.

140. Iwami Y, Kawaiara K, Kojima I, Myasawa H, Kakuta H, Mayanagi H, et al. Typhoid fever. Lett Appl Microbiol 2001;33:46-7.

141. Turgis M, Han J, Caillet S, Lacroix M. Antimicrobial activity of Oregano. J Biol Chem 2004;279:17061-6.

142. Su, NA, Khan N, Ashraf K, et al. Essential oil, thymol and carvacrol. J Appl Microbiol 2001;91:453-62.

143. Hanafi and Daniai Asian J Pharm Clin Res, Vol 12, Issue 4, 2019, 15-21

144. Hanafi and Daniai Asian J Pharm Clin Res, Vol 12, Issue 4, 2019, 15-21