Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Short communication

Characterization of two novel ADP ribosylation factors from giant freshwater prawn *Macrobrachium rosenbergii* and their responses to WSSV challenge

Zheng-Feng Ding a,c,1, Jie Ren a,1, Jing-Min Tan a, Zheng Wang a, Shao-Wu Yin a, Ying Huang a, Xin Huang a, Wen Wang a, Ji-Feng Lan b,**, Qian Ren a,**

a Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China
b College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
c Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing 210017, China

A R T I C L E I N F O

Article history:
Received 2 September 2014
Revised 10 October 2014
Accepted 13 October 2014
Available online 22 October 2014

Keywords:
Macrobrachium rosenbergii ADP ribosylation factor WSSV RNAI

A B S T R A C T

ADP-ribosylation factors (Arfs) are small GTP-binding proteins that have an essential function in intracellular trafficking and organelle structure. To date, little information is available on the Arfs in the economically important giant freshwater prawn *Macrobrachium rosenbergii* and their relationship to viral infection. Here we identified two Arf genes from *M. rosenbergii* (*MrArf1* and *MrArf2*) for the first time. Phylogenetic analysis showed that *MrArf1*, together with *MjArf1* from shrimp *Marsupenaeus japonicus* belonged to Class I Arfs. By contrast, *MrArf2* didn’t not match any of the Arf classes of I/II/III, although it could be clustered with an Arf protein from *M. japonicas* called *MjArfn*, which may represent an analog of the Arf. *MrArf1* was ubiquitously expressed in all the examined tissues, with the highest transcription level in the hepatopancreas, whereas *MrArf2* was only highly expressed in the hepatopancreas and exhibited very low levels in the heart, stomach, gills and intestine. The expression level of *MrArf1* in the gills was down-regulated post 24 h WSSV challenge, and reached the maximal level at 48 h. *MrArf1* in the hepatopancreas went up from 24 to 48 h WSSV challenge. *MrArf2* transcript in the gill also went down at 24 h and then was upregulated at 48 h WSSV challenge. *MrArf2* increased significantly in the hepato-pancreas 24 h after infection and then went down at 48 h WSSV challenge. RNAI results showed that knockdown of *MrArf1* or *MrArf2* could inhibit the expression of the envelope protein gene vp28 of the WSSV. So, it could be speculated that *MrArf1* and *MrArf2* might play important roles in the innate immune system against WSSV infection.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Within years after its first discovery in Asia in the early 1990s, the white spot syndrome virus (WSSV) developed into an epizootic disease. WSSV is currently found in most crustacean farming areas in the world, where it causes large economic losses to the aquaculture industry. Aside from its economic effect, the disease also poses a threat to natural marine and freshwater ecology (Jiravanichpaisal et al., 2004; Nambi et al., 2012). As such, understanding the molecular mechanism of the innate immune defense against virus infection is imperative. Recent studies have demonstrated that the small GTPases found in shrimp participate in antiviral immunity by regulating phagocytosis (Liu et al., 2009; Wu et al., 2007). In *Drosophila* S2 cells (Schneider line 2), Ran protein, a small Ras-like GTPase, was involved in the regulation of phagocytosis against *Drosophila* C virus (DCV). Some members of the ADP ribosylation factors (Arfs) found in mammals (*D’Souza-Schorey and Chavrier, 2006; Nie et al., 2003*) and the shrimp *Marsupenaeus japonicas* (Ma et al., 2010; Wang et al., 2009; Zhang et al., 2010), which are classified with small GTP-binding proteins (~21 kDa), are involved in virus infection. The relationship between various Arfs and virus invasion is thus worth investigating.

Arfs are small, ubiquitously expressed GTP-binding proteins best known for their role in membrane trafficking (Beck et al., 2011; *D’Souza-Schorey and Chavrier, 2006; Popoff et al., 2011; Sannerud et al., 2011*) and in regulating actin cytoskeleton assembly (Myers et al., 2009; Popoff et al., 2011). Without a doubt, the theory that Arfs are involved in virus invasion is thus worth investigating.

http://dx.doi.org/10.1016/j.dci.2014.10.006
0145-305X/© 2014 Elsevier Ltd. All rights reserved.
and Casanova, 2008). The six mammalian Arfs are divided into three classes based on their amino-acid identity. Class I contains Arf1, Arf2, and Arf3; class II contains Arf4 and Arf5; and class III contains only Arf6. Class I and class II Arfs are mainly concentrated in the Golgi apparatus, although they also function in endosomal compartments. By contrast, Arf6 is primarily localized in the plasma membrane and is a subset of the endosomes. A large body of evidence indicates that Arfs promote the biogenesis of carrier vesicles by nucleating the assembly of coat protein complexes in the sites of vesicle formation (Cheung et al., 2014; Myers and Casanova, 2008).

However, different Arfs seem to possess various intracellular localizations and functions, which depend on the specific membrane they bind according to their recruitment of diverse groups of proteins. Such specificities can be defined by determining which regulators bind Arf proteins (Donaldson and Honda, 2005; Sun et al., 2011). The binding of Arfs to membranes appears to be essential for viral replication (Belov et al., 2007a), and they cycle between GTP- and GDP-bound states. In the former cycle, the activated form Arf-GTP is bound to the membrane; in the latter cycle, Arf-GDP is released by the cellular GTPase activity into the cytoplasm.

During the evolutionary interplay between virus infection and host defense, the Arf-dependent secretion pathway may be involved in anti-virus action through secretion of interferons and presentation of viral antigens by MHC I (Ma et al., 2010; Molla et al., 1991). The pathway of secretion or endocytosis can easily be made to cause viral immune evasion and virus propagation, and Arfs can be recruited to the specific target membrane to induce disintegration of intracellular membranes and formation of specific vesicles by viral proteins mediating their interactors (Belov et al., 2007b). Arf1 was reported to have important roles in the regulation of viral RNA replication and the production of infectious hepatitis C virus (HCV), a kind of plus-strand RNA virus (Matto et al., 2011). GFB1, a kind of Arf GEFs, was crucial for the RNA replication of coxsackievirus B3 (CVB3) (Lanke et al., 2009). In addition to the function in the viral RNA replication, class II Arf proteins (Arf4 and Arf5) played important roles in the secretion of dengue virus (DENV) (Kudelko et al., 2012). Mouse hepatitis coronavirus (MHV) replication was dependent on the GFB1-mediated Arf1 activation (Verheije et al., 2008). The replication of plant RNA virus also needed the participation of Arf1 (Hyodo et al., 2013). The previous research showed that Arfs were related to RNA virus replication and secretion; however, the relationship between Arfs and DNA virus infection was rarely reported. WSSV is a double stranded DNA virus and MrArf4 from M. japonicus was significantly up-regulated with the propagation of WSSV (Zhang et al., 2010). The relatively low expression level of MrArf4 in WSSV-resistant shrimp may suggest its roles in WSSV invasion (Ma et al., 2010).

Compared with the extensive studies on shrimp Rab proteins (Attasart et al., 2009; Ongvarrasopone et al., 2011; Ye et al., 2012), Arfs were rarely studied. In this study, two Arf genes (MrArf1 and MrArf2) were identified for the first time from M. rosenbergii, an economically important crustacean in the aquaculture industry (Mohanakumar Nair et al., 2006). The expression level of MrArfs were up-regulated with the WSSV propagation, which might preliminarily indicate the roles of MrArfs in WSSV infection.

2. Materials and methods

2.1. Animals, tissue collection and immune challenge by WSSV

M. rosenbergii (about 15 g each) were purchased from an aquaculture market in Zhenjiang, Jiangsu Province, China. The prawns were acclimatized in freshwater tanks under laboratory conditions at room temperature (25 °C). The prawns were divided into a control group and an experimental group designated as WSSV-challenged group. The WSSV inoculum was prepared following the previous paper (Wu et al., 2007). In brief, it was extracted from virus-infected M. japonicus by homogenizing muscle in TN buffer (20 mM Tris-HCl, 400 mM NaCl, pH 7.4). Then the tissue homogenates were centrifuged at 2000×g for 10 min. The supernatant was diluted 100 times with 0.9% NaCl and was subsequently filtered through 0.45 μm filter. About 100 μl of filtrate (10^6 WSSV copies/ml) was injected into the lateral area of the fourth abdominal segment of the prawns using a syringe with 29-gauge needle. The hepatopancreas and gills of the prawns challenged with WSSV at 0, 24, and 48 h (3 prawns at each time) were collected for RNA extraction. Tissues (i.e., heart, hepatopancreas, gills, stomach, and intestine) were also collected for RNA extraction.

2.2. Total RNA isolation, cDNA synthesis

The total RNA was extracted from the above-mentioned tissues using an EasyPure RNA Kit (TransGen, Beijing, China) according to the manufacturer’s protocols respectively. The concentration of RNA were measured using Nanodrop (Thermo). For the qRT-PCR analysis, the first-strand cDNA was synthesized using a PrimeScript™ RT Reagent Kit (Perfect Real Time) (Takara, Dalian, China) with the primer oligo dT primer. For cloning the 3′ fragments of MrArfs, the first strand cDNA was synthesized using 3′-Full RACE Core Set Ver. 2.0 (Takara, Dalian, China) according to the manufacturer’s protocol using 3′ RACE Adaptor primer for cloning the 5′ fragments of MrArfs, 5′-RACE-Ready cDNA was produced using a Clontech SMARTer™ RACE CDNA amplification kit from TAKARA (Dalian, China). The detailed methods were according to the manufacturer’s instructions with 5′-CDS Primer A (T25VN, N=A, C, G, or T; V = A, G, or C), SMARTer IIA oligo (AAGCAGTGGTATCAACGCGAGTGACXXXX, X=undisclosed base in the proprietary SMARTer oligo sequence).

2.3. Cloning of the full-length cDNA of MrArf1 and MrArf2

Two EST fragments (MrArf1 and MrArf2) similar to Arf genes were found from the hepatopancreas transcriptome data. The EST sequences of the two genes were obtained from the hepatopancreas transcriptome data. The EST sequences of the two genes were obtained from the hepatopancreas transcriptome data. The EST sequences of the two genes were obtained from the hepatopancreas transcriptome data.
deduced protein prediction were obtained using ExPaSy (http://www.expasy.org/). Signal sequence and domain prediction were performed using SMART (http://www.smart.embl-heidelberg.de/). MEGA 4.0 and GENDOC were used for the multiple alignments of MrArf1 and MrArf2 from *M. rosenbergii*. MEGA 4.0 was also used for constructing a phylogenetic tree and NJ (Neighbor-Joining) method was selected for the phylogenetic analysis (Kumar et al., 2008).

2.5. Real-time PCR

The tissue distribution of MrArf1 and MrArf2 at mRNA level in the heart, hepatopancreas, gills, stomach, and intestine was analyzed using Taqman probe qRT-PCR. The primers were (MrArf1-RT-F: 5′-CCAACTCTTATGACAGCTT-3′, MrArf1-RT-R: 5′-TTTCACCAATTCCGCAGTT-3′; TaqMan fluorogenic probe: 5′-FAM-ACCCAGCAGCATCTAACCCCACCA-Eclipse-3′; MrArf2-RT-F: 5′-CCTCTTGAGGGACCATATTTC-3′, MrArf2-RT-R: 5′-CATACACGAGAGGGCAAGTAG-3′; TaqMan fluorogenic probe: 5′-FAM-GGCCCACTTCCTCATC-3′-Eclipse-3′). The GAPDH from the prawns were also amplified as the reference gene using primers as follows (GAPDH-F: 5′-AGCTCTTCAACAGTAGAAG-3′; GAPDH-R: 5′-GAGTACTTCTCCAAGTTCA-3′; TaqMan fluorogenic probe: 5′-FAM-CAAGGCCGGAGCCGAGTACATC-Eclipse-3′). The time-course analysis of MrArf1 and MrArf2 in the hepatopancreas and gills of *M. rosenbergii* challenged with WSSV at 0, 24, and 48 h was performed using qRT-PCR methods with primers identical to those used during the tissue distribution analysis. A 2× Premix Ex Taq™ (Probe qPCR) (Takara, Dalian, China) was used in the qRT-PCR experiment following the manufacturer’s instructions. The methods were undertaken as described by a previously published paper (Liu et al., 2009). All samples were repeated in triplicates in the qRT-PCR analysis. The data were calculated using 2ΔΔCt methods (Livak and Schmittgen, 2001) and were subjected to statistical analysis. An unpaired sample t-test was conducted, and the difference was considered significant if P < 0.05.

2.6. RNA interference assay

DsRNA preparation: Gene-specific primers for MrArf1, MrArf2 and green fluorescent protein (GFP) were incorporated with the T7 promoter at their 5′-ends (RnAi-Arf1-F, 5′-GGC TAC TAC GCA CTA TGA TAG GAT ACT GCA GCC CCC CCC GAT CTT T-3′; RnAi-Arf1-R, 5′-GGC TAA TAC GAC TCA TAT GCT CCT CCA-3′; RnAi-Arf2-F, 5′-GGGC TAA TAC GAC TCA TAT GCT CCT CCA-3′; RnAi-Arf2-R, 5′-GGG TAA TAC GAC TCA TAT GCT CCT CCA-3′; RnAi-GFP-F, 5′-GGC TAA TAC GAC TCA TAT GCT CCT CCA-3′; RnAi-GFP-R, 5′-GGG TAA TAC GAC TCA TAT GCT CCT CCA-3′). The primer sets were used to amplify the corresponding PCR products as templates for dsRNA synthesis. The dsRNA was synthesized using T7 polymerase (Fermentas, USA) following the previous method (Wang et al., 2009).

The Giant Freshwater Prawn was randomly divided into four groups. All Giant Freshwater Prawn in this assay were kept in tanks at about 22 °C. The first group was injected with 80 μg of dsMrArf1 RNA. The second group was injected with 80 μg of dsMrArf2 RNA. The third group was injected with 80 μg of dsMrGFP RNA. The dsRNA preparation: Gene-specific primers for *M. japonicus* Arf1 (MrArf1), Arf2 (MrArf2), and green fluorescent protein (GFP) were incorporated with the T7 promoter at their 5′-ends (MrArf1-F: 5′-CCAATCTCTTTAAGGGCCTTTTTG-3′, MrArf1-R: 5′-TTTCACCAATTCCGCAGTTAAG-3′; TaqMan fluorogenic probe: 5′-FAM-ACCCAGCAGCATCTAACCCCACCA-Eclipse-3′; MrArf2-RT-F: 5′-CCTCTTGAGGGACCATATTTC-3′, MrArf2-RT-R: 5′-CATACACGAGAGGGCAAGTAG-3′; TaqMan fluorogenic probe: 5′-FAM-GGCCCACTTCCTCATC-3′-Eclipse-3′) and the 3′ UTR of MrArf2 was 1364 bp in length with a 537-bp ORF encoding a protein with 178 amino acids. The 5′ and 3′ UTRs of MrArf2 were 147 and 686 bp, respectively. The molecular weights of MrArf1 and MrArf2 were 20.7 and 19.9 kDa, respectively, and their pi values were 6.15 and 5.93, respectively. Each of them had an ARF domain (Supplement 1A and 1B). BLAST P analysis showed that MrArf1 was 100% identical with the ADP-ribosylation factor 1 from *M. japonicus* (MjArf1). However, the coding region CDNA sequence of MrArf1 was only 86% identical with that of MjArf1. The 3′ UTR of MrArf2 was 141 bp and 686 bp, respectively. The molecular weights of MrArf1 and MrArf2 were 20.7 and 19.9 kDa, respectively, and their pi values were 6.15 and 5.93, respectively. Each of them had an ARF domain (Supplement 1A and 1B). BLAST P analysis showed that MrArf1 was 100% identical with the ADP-ribosylation factor 1 from *M. japonicus* (MjArf1). However, the coding region CDNA sequence of MrArf1 was only 86% identical with that of MjArf1. The 3′ UTR of MrArf2 and MjArf1 were 64.3% identical to each other. In contrast to that of MjArf1, the 3′ UTR of MrArf1 had many extra insertions of nucleotides. Blast P analysis showed that MrArf2 shared 60% identity with MjArf1. The coding region of MrArf2 was 64% identical with that of MjArf1.

3. Results and discussion

3.1. Cloning of full-length cDNA of MrArf1 and MrArf2

Ran, Rab, and Rho proteins, members of small GTPases found in crustaceans, are involved in innate defense response (He et al., 2004; Liu et al., 2009; Pan et al., 2005; Wu et al., 2007). Arfs in mammalian cells participate in virus assembly, replication, and release (Belov et al., 2007a). Some of the Arfs of the shrimp *M. japonicus* are engaged in virus–host interaction events (Ma et al., 2010; Wang et al., 2009; Zhang et al., 2010). These findings suggest that investigating whether or not Arf GTPases in the giant freshwater prawn *M. rosenbergii* are involved in innate immunity against WSSV is noteworthy.

The sequencing of the transcriptome of the hepatopancreas and intestine of the freshwater prawns using the Solexa methods resulted in two different EST sequences similar to the Arf gene, which were designated as MrArf1 and MrArf2. The full-length cDNA of MrArf1 was 1819 bp, including a 132-bp 5′ untranslated region (UTR), a 549-bp open reading frame (ORF) encoding 182 amino acid proteins and a 1138-bp 3′ UTR. MrArf2 was 1364 bp in length with a 537-bp ORF encoding a protein with 178 amino acids. The 5′ and 3′ UTRs of MrArf1 were 141 bp and 686 bp, respectively. The molecular weights of MrArf1 and MrArf2 were 20.7 and 19.9 kDa, respectively, and their pi values were 6.15 and 5.93, respectively. Each of them had an ARF domain (Supplement 1A and 1B). BLAST P analysis showed that MrArf1 was 100% identical with the ADP-ribosylation factor 1 from *M. japonicus* (MjArf1). However, the coding region CDNA sequence of MrArf1 was only 86% identical with that of MjArf1. The 3′ UTR of MrArf2 and MjArf1 were 64.3% identical to each other. In contrast to that of MjArf1, the 3′ UTR of MrArf1 had many extra insertions of nucleotides. Blast P analysis showed that MrArf2 shared 60% identity with MjArf1. The coding region of MrArf2 was 64% identical with that of MjArf1.

The multiple alignment of the MrArf1 with other Arf1s showed that the Arf1 proteins were highly conserved and had an N-terminal myristoylation site of G. The protein sequences of P loop (GLDAAGK), switch regions (GEIVT/ATIPTIGF, DVGGQDKIRPLWRHY), and interswitch region (NVETVEYKNISFTVW) from different Arf1s were nearly the same (Supplement 2A). MrArf2 also had an N-terminal myristoylation site of G. However, the protein sequences of P loop (GLDGVGKT), switch regions (GKVQVTIPITGF, DPISSHKMRPLWRHY), and interswitch region (NVETVEYKNISFTVW) of MrArf2 (Supplement 2B) were different from those of the MjArf1 protein.

Phylogenetic analysis showed that the Arf proteins from different species could be divided into 4 different classes. Class I consists of Arf1, Arf2 and Arf3. MrArf1 from giant freshwater prawns and MjArf1 from shrimp *M. japonicus* belong to class I. Class II contains Arf4 and Arf5. MjArf4 and insect Arfs belong to class II. Arf5 proteins constitute class III. MrArf2 is not clustered into these 3 classes and MrArf2 and MjArf2 belong to a unique class (Supplement 3).

The Arf proteins are ubiquitously expressed and well conserved in all eukaryotes with remarkable fidelity (D’Souza-Schorey and Chavrier, 2006; Li et al., 2004). The amino acid conservation among Arfs is striking, and the distinct clusters of class-specific residues may indicate unique interactions with regulators and effectors. Investigating these interactions will be challenging, but will reveal...
the full range of Arf functions in cells. Our results help lay the foundation for such future undertaking.

3.3. Tissue distribution of MrArf1 and MrArf2

qRT-PCR was used to examine the tissue distribution of MrArf1 and MrArf2. The results showed that MrArf1 was expressed in all analyzed tissues, including heart, hepatopancreas, gills, stomach, and intestine. The transcription level was significantly higher in the hepatopancreas than in the others (Supplement 4A). MrArf2 was only highly expressed in the hepatopancreas (Supplement 4B). MjArf1, MjArfn, and MjArf4 are all extensively expressed genes (Ma et al., 2010; Zhang et al., 2010). The characterization of the high conservation of protein sequences of shrimp Arfs and their constitutive and widespread expression in tissues may indicate that shrimp Arfs have important roles.

3.4. Transcriptional analysis of MrArf1 and MrArf2 after WSSV infection

Given our hypothesis that MrArf1 and MrArf2 are WSSV related, their gene transcriptional differential expressions during WSSV infection were evaluated. The results displayed a distinguished up-regulation of MrArf1 and MrArf2 post WSSV challenge, demonstrating that MrArf1 and MrArf2 can significantly be triggered by WSSV infection. Specific evidence was also presented to verify our hypothesis that MrArf1 and MrArf2 have a pivotal function in WSSV-related prawn innate immunity. However, MrArf1 and MrArf2 transcription patterns were distinct from those of Arf1, Arf4, and Arfn in the hepatopancreas of M. japonicus, which were up-regulated and quickly reached the highest level only 6 h after infection. In our study, MrArf1 reached the maximal level 48 h after infection (Fig. 1A and 1C). The MrArf2 transcript in the gills was significantly down-regulated at

![Graph A](https://via.placeholder.com/204)

![Graph B](https://via.placeholder.com/204)

![Graph C](https://via.placeholder.com/204)

![Graph D](https://via.placeholder.com/204)

Fig. 1. Analysis of MrArf1 and MrArf2 expression in gills (A, B) and hepatopancreas (C, D) from the giant freshwater prawns M. rosenbergii challenged with WSSV using qRT-PCR methods.
first 24 h after infection (Fig. 1B) but up-regulated and reached the highest value at 48 h. In hepatopancreas, the highest value at 48 h. In hepatopancreas, the envelope protein gene of the WSSV was obviously inhibited when Arf1 expression was inhibited by small interfering RNA (siRNA) (Matto et al., 2011). Simultaneous depletion of class II Arf (Arf4 and Arf5) blocked dengue flavivirus secretion (Kudelko et al., 2012). The roles of Arfs in DNA virus infection was less reported. Centaurin-α1 is a shrimp GTPase activating protein (GAP) of Arf6 and it notably decreased in WSSV-resistant shrimps (Wang et al., 2009). Other member of Rab family, such as Rab27a, is required for human cytomegalovirus assembly (Fraile-Ramos et al., 2010). So, it could be speculated that MrArf1 and MrArf2 (members of Rab family) might play important roles in the innate immune system against WSSV infection.

Acknowledgments

The current study was supported by the National Natural Science Foundation of China (Grant Nos. 31101926, 31107120, 31402332), The National Natural Science Foundation of Jiangsu Province (BK20131401, BK20131453), Natural Science Fund of Colleges and Universities in Jiangsu Province (13KJB240002), High level talents of Nanjing Normal University Foundation (2012104XQ0101), NSFC for Talents Training in Basic Science (J1103507), Jiangsu Agriculture and Science and Technology Innovation Fund (JASTIF) CX (12)3066, and Project for Aquaculture in Jiangsu Province (Nos. PJ2011-65, Y2013-45; D2013-5-3; D2013-5-4).

Appendix: Supplementary material

Supplementary data to this article can be found online at doi:10.1016/j.dci.2014.10.006.

References

Attasart, P., Kaewkhwai, R., Chimwai, C., Kongphom, U., Namramoon, O., Panjim, S., 2009. Inhibition of white spot syndrome virus replication in Penaeus monodon by combined silencing of viral r2 and shrimp PmRab7. Virus Res. 145, 127–133.

Beck, R., Prinz, S., Diestelkötter-Bachert, P., Röhling, S., Adolf, F., Hoehner, K., et al., 2011. Coatomer and dimeric ADP ribosylation factor 1 promote distinct steps in membrane scission. J. Cell Biol. 194, 753–777.

Belov, G.A., Habbersett, C., Franco, D., Ehrenfeld, E., 2007a. Activation of cellular Arf GTPases by poliovirus protein 3C correlates with virus replication. J. Virol. 81, 9259–9267.

Belov, G.A., Altan-Bonnet, N., Kotvunovych, G., Jackson, C.L., Lippincott-Schwartz, J., Ehrenfeld, E., 2007b. Hijacking components of the cellular secretory pathway for replication of poliovirus RNA. J. Virol. 81, 558–567.

Cheung, H.N.M., Dunbar, C., Möröt, G.M., Cheng, W.H., Chan, H.Y.E., Miller, C.C., et al., 2014. FEF5 interacts with ADP-ribosylation factor 6 to promote neurite outgrowth. FASEB J. 28, 337–349.

Donaldson, J., Honda, A., 2005. Localization and function of Arf family GTPases. Biochem. Soc. Trans. 33, 639–642.

D’Souza-Schorey, C., Chavrier, P., 2006. ARF proteins: roles in membrane traffic and beyond. Nat. Rev. Mol. Cell. Bio. 7, 347–358.

Fraile-Ramos, A., Cepeda, V., Elstak, E., van der Sluijs, P., 2010. Rab27a is required for human cytomegalovirus assembly. PLoS ONE 5, e15318.

He, N., Liu, H., Xu, X., 2004. Identification of genes involved in the response of haemocytes of Penaeus japonicus by suppression subtractive hybridization (SSH) following microbial challenge. Fish Shellfish Immunol. 17, 121–128.

Hyodo, K., Mine, A., Taniguchi, T., Kaido, M., Mise, K., Taniguchi, H., et al., 2013. ADP ribosylation factor 1 plays an essential role in the replication of a plant RNA virus. J. Virol. 87, 163–176.

Jiravanichpaisal, P., Söderhall, K., Söderhall, I., 2004. Effect of water temperature on the immune response and infectivity pattern of white spot syndrome virus (WSSV) in freshwater crayfish. Fish Shellfish Immunol. 17, 265–275.

Kudelko, M., Braut, J.-B., Kwok, K., Li, M.Y., Pardigon, N., Peiris, J.M., et al., 2012. Class II ADP-ribosylation factors are required for efficient secretion of dengue viruses. J. Biol. Chem. 287, 767–779.

Kumar, S., Nei, M., Dudley, J., Tamura, K., 2008. MEGA: biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief. Bioinform. 9, 299–306.

Lanke, K.H., van der Schaar, H.M., Belov, G.A., Feng, Q., Duijsings, D., Jackson, C.L., et al., 2009. GBF1, a guanine nucleotide exchange factor for Arf, is crucial for coxsackievirus B3 RNA replication. J. Virol. 83, 11940–11949.

Li, Y., Kelly, W.G., Logsdon, J.M., Schurko, A.M., Harfe, B.D., Hill-Harfe, K.L., et al., 2004. Functional genomic analysis of the ADPribosylation factor family of GTPases: phylogeny among diverse eukaryotes and function in C. elegans. FASEB J. 18, 1834–1850.
Liu, W., Han, F., Zhang, X., 2009. Ran GTPase regulates hemocytic phagocytosis of shrimp by interaction with myosin. J. Proteome Res. 8, 1198–1206.

Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2$^{-\Delta\Delta Ct}$ method. Methods 25, 402–408.

Ma, J., Zhang, M., Ruan, L., Shi, H., Xu, X., 2010. Characterization of two novel ADP ribosylation factors from the shrimp Marsupenaeus japonicus. Fish Shellfish Immunol. 29, 956–962.

Matto, M., Sklan, E.H., David, N., Melamed-Book, N., Casanova, J.E., Glenn, J.S., et al., 2011. Role for ADP ribosylation factor 1 in the regulation of hepatitis C virus replication. J. Virol. 85, 946–956.

Mohanakumaran Nair, C., Salin, K., Raju, M., Sebastian, M., 2006. Economic analysis of monosex culture of giant freshwater prawn (Macrobrachium rosenbergii De Man): a case study. Aquac. Res. 37, 949–954.

Molla, A., Paul, A.V., Wimmer, E., 1991. Cell-free, de novo synthesis of poliovirus. Science 254, 1647–1651.

Myers, K.R., Casanova, J.E., 2008. Regulation of actin cytoskeleton dynamics by Arf-family GTPases. Trends Cell Biol. 18, 184–192.

Nambi, K.N., Majeed, S.A., Raj, N.S., Taju, G., Madan, N., Vimal, S., et al., 2012. In vitro white spot syndrome virus (WSSV) replication in explants of the heart of freshwater crab, Paratelphusa hydrodomous. J. Virol. Methods 183, 186–195.

Nie, Z., Hirsch, D.S., Randazzo, P.A., 2003. Arf and its many interactors. Curr. Opin. Cell Biol. 15, 396–404.

Ongvarrasopone, C., Saejja, P., Chanakulniyom, M., Panyim, S., 2011. Inhibition of Taura syndrome virus replication in Litopenaeus vannamei through silencing the lvRab7 gene using double-stranded RNA. Arch. Virol. 156, 1117–1123.

Pan, D., He, N., Yang, Z., Liu, H., Xu, X., 2005. Differential gene expression profile in hepatopancreas of WSSV-resistant shrimp (Penaeus japonicus) by suppression subtractive hybridization. Dev. Comp. Immunol. 29, 103–112.

Popoff, V., Langer, J.D., Beckmann, I., Hellwig, A., Kahn, R.A., Brügger, B., et al., 2011. Several ADP-ribosylation factor (Arf) isoforms support COPII vesicle formation. J. Biol. Chem. 286, 35634–35642.

Sannierud, R., Declerck, I., Peric, A., Raemaekers, T., Menendez, G., Zhou, L., et al., 2011. ADP ribosylation factor 6 (ARF6) controls amyloid precursor protein (APP) processing by mediating the endosomal sorting of BACE1. Proc. Natl. Acad. Sci. U.S.A. 108, E559–E568.

Sun, W., Vanhooke, J.L., Sondek, J., Zhang, Q., 2011. High-throughput fluorescence polarization assay for the enzymatic activity of GTPase-activating protein of ADP-ribosylation factor (ARFGAP). J. Biolum. Screen. 16, 717–723.

Verheije, M.H., Raaben, M., Mari, M., te Lintelo, E.G., Reggiori, F., van Kopveeld, F.J., et al., 2008. Mouse hepatitis coronavirus RNA replication depends on GBF1-mediated ARF1 activation. PLoS Pathog. 4, e1000088.

Wang, H., Ma, J., Ruan, L., Xu, X., 2009. Cloning of a centaurin-α1 like gene MjCent involved in WSSV infection from shrimp Marsupenaeus japonicus. Fish Shellfish Immunol. 26, 279–284.

Wang, J., Du, J., Jin, Q., 2014. Class I ADP-ribosylation factors are involved in enterovirus 71 replication. PLoS ONE 9, e99768.

Wu, W., Zong, R., Xu, J., Zhang, X., 2007. Antiviral phagocytosis is regulated by a novel Rab-dependent complex in shrimp Penaeus japonicus. J. Proteome Res. 7, 424–431.

Ye, T., Tang, W., Zhang, X., 2012. Involvement of Rab6 in the regulation of phagocytosis against virus infection in invertebrates. J. Proteome Res. 11, 4834–4846.

Zhang, M., Ma, J., Lei, K., Xu, X., 2010. Molecular cloning and characterization of a class II ADP ribosylation factor from the shrimp Marsupenaeus japonicus. Fish Shellfish Immunol. 28, 128–133.