Fungal Planet description sheets: 1182–1283

P.W. Crous1,2, D.A. Cowan3, G. Maggs-Kölling4, N. Yilmaz5, R. Thangavel6, M.J. Wingfield7, M.E. Noordeloos6, B. Dimá7, T.E. Brandrud8, G.M. Jansen9, O.V. Morozova10, J. Vila11, R.G. Shivas12, Y.P. Tan13, S. Bishop-Hurle11, E. Lacey14, T.S. Marney13, E. Larsson15, G. Le Floch16, L. Lombard1, P. Nodet16, V. Hubka17,18, P. Alvarado15, A. Berraf-Tebball20, J.D. Reyes21, G. Delgado22, A. Eichmeier20, J.B. Jordal23, A.V. Kachalkin24,25, A. Kubátová17, J.G. Maciá-Vicente26, E.F. Malysheva10, V. Papp27, K.C. Rajeshkumar28, A. Sharma12, A. Sharma12, M. Spetik20, D. Szabóvá29, M.A. Tomasevskaya25, J.A. Abad30, Z.G. Abad30, A.V. Alexanderova24,31, G. Anand32, F. Arenas33, N. Ashtekar28, S. Balashov34, Á. Bánares35, R. Barocelli36, I. Bera37, A.Yu. Biketov38, C.L. Blomquist39, T. Boekhout4, D. Boertmann40, T.M. Bulyonkova41, T.I. Burgess42, A.J. Carneige43, J.F. Cobo-Díaz46, G. Corrió44, J.H. Cunntingham45, M.O. da Cruz4, U. Damm47, N. Davodian48, A.L.C.M. de A. Santiago49, J. Deanalew50, L.W.S. de Freitas46, K. Dhileepan49, R. Dimitrov50, S. Di Piazza51, S. Fatima28, F. Fuljer52, H. Galera53, A. Ghosh54, A. Giraldo55, A.M. Glushkova54,56, M. Gorczak57,58, D.E. Goulimova50, D. Gramaje59, M. Groenewald1, C.K. Günsch60, A. Gutiérrez33, D. Holdom61, J. Houbrechken1, A.B. Iismaïlov61, L. Istel15, T. Iturriaga62, M. Jeppson15, Ž. Jurjević63, L.B. Kalinina10, V.I. Kapitonov63, I. Kautmanová29, A.N. Khalid64, M. Kin64, L. Kiss12, Á. Kovács38, D. Kurose65, I. Kušan66, S. Lado28, T. Læssøe67, H.B. Lee68, J.J. Luangsa-ard69, M. Lynch15, A.E. Mahamedi70, V.F. Malysheva69, A. Mateos71, N. Matačec66, A. Mešič66, A.N. Miller12, S. Mongksamsrit69, G. Moreno73, A. Morte73, R. Mostowfizadeh-Ghalamfar1, A. Naseer64, A. Navarro-Ródenas33, T.T.T. Nguyen68, W. Noisripoom69, J.E. Ntandu75, J. Nuytinck70, T.A. Pankratov78, J. Pawlska75, J. Pecenka60, T.H.G. Pham31, A. Polhorský79, A. Pošta80, D.B. Raudabaugh80, K. Reschke80, A. Rodriguez39, M. Romero81, S. Roozem-Latham39, J. Roux62, M. Sandoval-Denis1, M. Th. Smith1, T.V. Steinrucken83, T.Y. Svetasheva84, Z. Tkáčec86, E.J. van der Linde85, M. v.d. Vegte86, J. Vauras87, A. Verbeken78, C.M. Visagie2, J.S. Vitelli49, S.V. Volobuev10, A. Weill88, M. Wركزsek89, I.V. Zmitrovich10, E.A. Zvyagina44, J.Z. Groenewald1

Key words
ITS nrDNA barcodes
LSU
new taxa
systematics

Abstract. Novel species of fungi described in this study include those from various countries as follows: Algeria, Phaeoacremonium adelophialidum from Vitis vinifera. Antarctica, Coniochaeta salicifolia as endophyte from healthy leaves of Geijera salicifolia, Eremothecium peggi in fruit of Citrus australis. Microdochium rataeicola from stem of Sporobolus natalensis, Neocalospora rurecinae on stems of Corymbia variegata, Phytophthora kermitii from rhizosphere soil of Pitlitos pyramidalus, Pseudosclerospora endophytes from live leaves of Backhousia citriodora, Pseudosclerospora indica, Pseudosclerospora louiceottiacae and Pseudosclerospora queenslandica on living leaves of Eucalyptus sp. Brazil, Abisidia montepaacoisalis from soil of Chile, Ilyonectria zarorii from soil under Maytenus boaria. Costa Rica, Colletotrichum filamentosum from an unidentified fern. Croatia, Mollisia endogranaulata on deteriorated hardwood. Czech Republic, Acreolus navicularis from tea tag with fruit tea, Neospathotheca buxi as endophyte from Buxus sempervirens, Xeromyces boehmiensis from surface of biscuits with chocolate glaze and filled with jam. France, Entoloma cyanobasale on basic to calcareous soil, Fusarium aconidioides from Trichium aestivum, Fusarium juglandicola from buds of Juglans regia. Germany, Tetrapyla endophytica as endophyte from Microthlaspi perfoliatum roots. India, Castanediella ambae on leaves of Mangifera indica, Lactifluus kandali on soil under Casanopas sp., Penicillium uratokhendenses from soil of Italy, Penicillium ferrariae from compost. Namibia, Beznizeryomyces gobabebensis on leaves of unidentified succulent, Cladosporium stipagrostidis from leaves of Stipa argiotes, Cystoschyzomyces euphratieae from leaves of Euphoria sp., Dematilleta hypolithi from hypolith under a rock, Hysterobrevium walvisbaylicola on leaves of unidentified tree, Knufia hypolithi and Knufia walvisbaylicola from hypolith under a rock, Lapidomyces stipagrostidis from leaves of Stipa argiotes sp., Nothophaeotheca mirabellinas (incl. Nothophaeotheca gen. nov.) on persistent inflorescence remains of Bleschris obmitrata, Paramyrtathomostelea salvaoreae on twigs of Salvadora persica, Preussia procavicaulis on dune of Procvia sp., Sordaria equinica on zebra dung, Volutella salvaoreae on stems of Salvadora persica. Netherlands, Entoloma ammophorum on sandy soil, Entoloma pseudocentrum on nutrient poor (acid) soil, Entoloma pudens on plant debris, amongst grasses. New Zealand, Amorocoleopilomyces neoregeliae from leaf spots of Neoregelia sp., Aquilomyces metrosideri and Septoria callistemonis from stem discoloration and leaf spots of Metrosporidium sp., Cadophora neoregeliae from leaf spots of Neoregelia sp., Flexurozymes asellae (incl. Flexurozymes gen. nov.) and Mollisia asellae from leaf spots of Astelia chathamica, Ophioceras freycinetiae from leaf spots of Freycinetia

© 2021 Naturalis Biodiversity Center & Westerdijk Fungal Biodiversity Institute
You are free to share - to copy, distribute and transmit the work, under the following conditions: Attribution: You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work). Non-commercial: You may not use this work for commercial purposes. No derivative works: You may not alter, transform, or build upon this work. For any reuse or distribution, you must make clear to others the license terms of this work, which can be found at http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode. Any of the above conditions can be waived if you get permission from the copyright holder. Nothing in this license impairs or restricts the author’s moral rights.

ISSN (Online) 1875-9080
https://doi.org/10.3767/persoonia.2021.46.11
Abstract (cont.)

banksi, Phaeosphaeria caricis-seciae from leaf spots of Carex secta. Norway, Cuphophyllum flavipesoides on soil in semi-natural grassland, Entoloma coracis on soil in calcareous Pinus and Tilia forests, Entoloma cyanellacinum on soil semi-natural grasslands, Inocybe norvegica on gravelly soil. Pakistan, Butynoateus pararchinenaris on soil in association with Quercus baloot. Poland, Hyalodendriella bialowiwienzis on debris beneath fallen bark of Norway spruce Picea abies. Russia, Boblitus sibiricus on a moss covered rotting trunk of Populus tremula, Crepidotus wasseri on debris of Populus tremula, Entoloma isoboscanum on soil on calcareous grasslands, Entoloma subcoracias on soil in subalpine grasslands, Hydropus lyciophyti on rotted wood of Betula pendula, Merulipos faginea on fallen dead branches of Fagus orientalis, Metyltrombokia taurica from fruits of Ziziphus jujube, Sullusta praetermissus on soil, Teunia lichenophila as endophyte from Cladonia rangiferina. Slovakia, Hygrocybe fulgens on mowed grassland, Pleuroflammula pannonica from corticated branches of Quercus sp. South Africa, Acrodontium burrowsianum on leaves of unidentified Poaceae, Castaneidiella senegaliae on dead pods of Senegalia axatacantha, Cladophalohora behniae on leaves of Behnia sp., Colлетistrichum clivigenum on leaves of Clivia sp., Diatrype dalbergiae on bark of Dalbergia armata, Falcocladium heteropyricola on leaves of Heteropyxis canescens, Lopadomyces airoidendri as epiphyte on brown stem of Aloidendron dichotomum, Lasonectria sanvieriae and Phaeosphaeropsis sanvieriae on leaves of Sanvieria hyacinthoides, Lylea dalbergiae on Diatrype dalbergiae on bark of Dalbergia armata, Neochaetothyrina syzygii (incl. Neochaetothyrina gen. nov.) on leaves of Syzygium chordatum, Nothophaeomoniella ekebergiae (incl. Nothophaeomoniella gen. nov.) on leaves of Ekebergia pterophylla, Paracycomastochys euphorbiae (incl. Paracycomastochys gen. nov.) on leaf of Euphorbia ingens, Paramycosphaerella pterocarpi on leaves of Pterocarpus angolensis, Paramycosphaerella syzygii on leaf litter of Syzygium chordatum, Pareiteichospora phoenicicola (incl. Pareiteichospora gen. nov.) on leaves of Phoenix reclinata, Seiridium syzygii on leaves of Syzygium sp., Starmella xylofopis from larval feed of an Afrotropical bee Xylocoopa calida, Teratosphaeria comberti on leaf of Combretum kraussii, Teratosphaeria leucaenidii on leaves of Leucaenodon sp., Toxicodiplacium pterocarpi on pods of Pterocarpus angolensis. Spain, Cortinarius bonachei with Quercus ilex in calcareous soils, Cortinarius brunneovolvatus under Quercus ilex subsp. ballota in calcareous soil, Extremopsis radicola (incl. Extremopsis gen. nov.) from root-associated soil in a wet heathland, Russula quintanensis on acidic soils, Tubaria vulcanica on volcanic lapilli material, Tuber zambonelliae on leaf litter of Pinus sylvestris and Betula pubescens. Tanzania, Curvularia tanzanica on insole surface of Cyperus aromaticus. Thailand, Simplicillium niveum on Ophiocordyceps camponoti-leonardi, on underside of unidentified dichotyledon leaf. USA, Calonecrtia californiensis on leaves of Umbellularia californica, Exophiala spinariae from surface sterilised roots of Spartina alterniflora, Neophaeocorymomyces oklahomaensis from outside wall of alcohol distillery. Vietnam, Fistulinella aurantiolavata on soil. Morphological and culture characteristics are supported by DNA barcodes.

Citation: Crous PW, Cowan DA, Maqgs-Kölling, et al. 2021. Fungal Planet description sheets: 1182–1283. Persoonia 46: 313–528. https://doi.org/10.3767/persoonia.2021.46.11.
Effectively published online: 13 July 2021 [Received: 1 May 2021; Accepted: 1 June 2021].
Institution	Address
Institute of Biochemistry, Biological Research Centre of the Eötvös Lóránd Research Network	H-6726 Szeged, Hungary.
California Department of Food and Agriculture, Plant Health and Pest Prevention Services, Plant Pest Diagnostics Lab	3294 Meadowview Road, Sacramento, CA 95832-1448, USA.
Department of Arctic Environment, Aarhus University, Frederiksbergvej 399, DK-4000 Roskilde, Denmark	
A.P. Ershov Institute of Informatics Systems of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia	
Phytophthora Science and Management, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia	
Forest Health, NSW Department of Primary Industries, Level 30, 12 Darcy St, Parramatta NSW 2150, Australia	
National Botanical Conservatory of the Pyrenees and Midi-Pyrénées, Vallon de Salut, BP 70315, 65203 Bagnères-de-Bigorre, France	
Department of Agriculture, Water and the Environment, Canberra 2600, Australian Capital Territory, Australia	
Departamento de Micología Prof. Chaves Batista, Universidade Federal de Pernambuco, Recife, Brazil	
Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806 Görlitz, Germany	
Royal Botanic Gardens Victoria, Birdwood Avenue, Melbourne, Victoria 3004, Australia	
Biosecurity Queensland, Department of Agriculture and Fisheries, Dutton Park 4102, Queensland, Australia	
The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. Georgi Bonchev, Sofia 1113, Bulgaria	
University of Genoa, Department of Earth, Environmental and Life Science, Laboratory of Mycology, Corso Europa 26, 16132 Genoa, Italy	
Petrovice 608, 01353 Petrovice, Slovakia	
Institute of Environmental Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, ul. Zwicki i Wigury 101, 02-89 Warsaw, Poland	
Department of Botany & Microbiology, H.N.B. Garhwal University, Srinagar, Garhwal - 246174, Uttarakhand, India	
Radboud University Medical Centre, Geert Grooteplein Zuid 10, 6525 GA Nijmegen, The Netherlands	
Mechnikov Research Institute for Vaccines and Sera, 105064, Moscow, Maly Kazenny by-street, 5A, Russia	
Institute of Evolutionary Biology, Faculty of Biology, University of Warsaw, Zwicki i Wigury 101, 02-89 Warsaw, Poland	
Botanic Garden, Faculty of Biology, University of Warsaw, Al. Ujazdowskie 4, 00-478 Warsaw, Poland	
Institute of Grapevine and Wine Sciences (ICV), Finca La Grajera Autovía del Camino de Santiago LO-20, Salida 13, 26007, Logroño, Spain	
Duke University, Department of Civil and Environmental Engineering: 121 Hudson Hall, Durham, North Carolina, 27708, USA	
Mountain Botanical Garden, Dagestan Federal Scientific Centre of the Russian Academy of Sciences, 45, M. Gadjiева street, 367000 Makhachkala, Russia	
School of Integrative Plant Science, Cornell University, Ithaca, New York, 14850, USA	
Tobolsk Complex Scientific Station of the Ural Branch of the Russian Academy of Sciences, 626152 Tobolsk, Russia	
Department of Botany, University of the Punjab, Quaid-e-Azam Campus-54590, Lahore, Pakistan	
CABI-UK, Bakemail Lane, Egham, Surrey TW20 9TY, UK	
Laboratory for Biological Diversity, Ruder Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia	
Natural History Museum of Denmark, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, Denmark	
Environmental Microbiology Lab, Department of Agricultural Biological Chemistry, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea	
Plant Microbe Interaction Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Rd., Klong Nueng, Klong Luang, Pathum Thani 12120, Thailand	
Laboratoire de Biologie des Systèmes Microbiens (LBSM), Ecole Normale Supérieure de Kouba, B P 92 18308 Vieux-Kouba, Alger, Algeria	
Sociedad Micológica Extremeña, C/ Sagitario 14, 10001 Cáceres, Spain	
University of Illinois Urbana-Champaign, Illinois Natural History Survey, 1816 South Oak Street, Champaign, Illinois, 61820, USA	
Departamento de Ciencias de la Vida (Unidad Docente de Botánica), Facultad de Ciencias, Universidad de Alcalá, E–28805 Alcalá de Henares, Madrid, Spain	
Department of Plant Protection, Shiraz University, Shiraz, Iran	
National Herbarium of Tanzania, Arusha, Tanzania	
Department of Biology, Research group Mycology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium	
Centre for Health, Nutrition and Food, National Institute of Public Health in Prague, Palackého 3a, 612 42 Brno, Czech Republic	
S.N. Winogradsky Institute of Microbiology, Research Centre of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, pr. 60-letiya Oktyabrya 7/2, Russia	
Pezinska 14, 90301 Senec, Slovakia	
Mycology Research Group, Faculty of Biological Sciences, Goethe University Frankfurt am Main, Max-von-Laue Straße 13, 60438 Frankfurt am Main, Germany	
C/ Don Juan de las Máquinas 5, 08450 Quintana de la Serena, Spain	
Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa	
CSIRO, Dutton Park 4102, Queensland, Australia	
Tula State Lev Tolstoy Pedagogical University, Tula, Russia	
Plant Microbiology, ARC-Plant Health Protection, Private Bag X134, Queenswood 0121, Pretoria, South Africa	
7041JN ‘s Heerenberg, The Netherlands	
Biological Collections of Abo Akademi University, Herbarium, FI-20014 University of Turku, Finland	
UBOCC, ESIAB, Univ. Brest, F-29280 Plouzane, France	
Acknowledgements Leslie W.S. de Freitas and colleagues express their gratitude to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for scholarships provided to Leslie Freitas and for the research grant provided to André Luiz Santiago; their contribution was financed by the projects ‘Diversity of Mucoromycotina’ in the different ecosystems of the Atlantic Rainforest of Pernambuco (FACEPE–First Projects Program PPP/FACEPE/CNPq–APQ–0842-2.12/14) and ‘Biology of conservation of fungi s.l. in areas of Atlantic Forest of Northeast Brazil’ (CNPq/ICMBio 421241/2017-9) H.B. Lee was supported by the Graduate Program for the Undiscovered Taxa of Korea (NIBR2012130202). The study of O.V. Morozova, E.F. Malysheva, V.F. Malysheva, I.V. Zmitrovich, and L.B. Kalinina was carried out within the framework of a research project of the Komarov Botanical Institute RAS (AAAA-A19-11902080079-6) using equipment of its Core Facility Centre ‘Cell and Molecular Technologies in Plant Science’. The work of O.V. Morozova, L.B. Kalinina, T. Yu. Svetasheva, and E.A. Zvyagina was financially supported by Russian Foundation for Basic Research project no. 20-04-00349. E.A. Zvyagina and T.Yu. Svetasheva are grateful to A.V. Alexandria, A.E. Kovalenko, A.S. Baykalova for the loan of specimens, T.Y. James, E.F. Malysheva and V.F. Malysheva for sequencing, J.D. Reyes acknowledges B. Dima for comparing the holotype sequence of Corinarius bonachiei with the sequences in his database, A. Mateos and J.D. Reyes acknowledge L. Quijada for reviewing the phylogeny and S. de la Peña-Lasra and P. Alvarado for their support and help. Vladimir I. Kapitonov and colleagues are grateful to Brigitta Kiss for help with their molecular studies. This study was conducted under research projects of the Tobolik Complex Scientific Station of the Ural Branch of the Russian Academy of Sciences (N AAAA-A19-1190011900112-5). E. Larsson acknowledges the Swedish Taxonomy Initiative, SLU Artdatabanken, Uppsala (dha.2019.4.3-13). The study of D.B. Raudabaugh and colleagues was supported by the Schmidt Science Fellows, in partnership with the Rhodes Trust. Gregorio Delgado is grateful to Michael Manning and Kamash Pillai (Eurofins EMLab P&K) for provision of laboratory facilities. Jose G. Macía-Vicente acknowledges support from the German Research Foundation under grant MA1717/1-1, and from the Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz (LOEWE) of the state of Hesse within the framework of the Cluster for Integrative Fungal Research (IPF). Thanks are also due to the authorities of the Cabaneros National Park and Los Alcornocales Natural Park for granting the collection permit and for support during field work. The study of Alina V. Alexandria was carried out as part of the Scientific Project of the State Order of the Government of Russian Federation to Lomonosov Moscow State University No. 121032300081-7. Michal Gorczak was financially supported by the Ministry of Science and Higher Education through the Faculty of Biology, University of Warsaw intramural grant DSM 0117600-13. M. Gorczak acknowledges M. Klemens for sharing a photo of the Białowieska Forest logging site and M. Senderowicz for help with preparing the illustration. Ivona Kautmanová and D. Szabóvá were funded by the Operational Program of Research and Development and co-financed with the European Fund for Regional Development (EFRD). ITMS 26230120004: ‘Building of research and development infrastructure for investigation of genetic biodiversity of organisms and joining IBOL initiative’. Yu Pei Tan and colleagues thank R. Chen for her technical support. Ernest Lacey thanks the Cooperative Research Centres Projects scheme (CRCFIVE000119) for its support. Suchada Mongkolsatmir and colleagues were financially supported by the Platform Technology Management Section, National Center for Genetic Engineering and Biotechnology (BIOTEC), Project Grant No. P19-50231. Dilnora Gouliamova and colleagues were supported by a grant from the Bulgarian Science Fund (KP-06-H31/19). The research of Timofey A. Pankratov was supported by the Russian Foundation for Basic Research (grant No. 19-04-00297a). Gabriel Moreno and colleagues wish to express their gratitude to L. Monje and A. Pueblas of the Department of Drawing and Scientific Photography at the University of Alcalá for their help in the digital preparation of the photographs, and to J. Rejos, curator of the AH herbarium, for his assistance with the specimens examined in the present study. Vit Hubka was supported by the Charles University Research Centre programme No. 204068. Alena Kubátová was supported by The National Programme on Conservation and Utilization of Microbial Genetic Resources Important for Agriculture (Ministry of Agriculture of the Czech Republic). The Kiti van Waveren Foundation (Rijksbarchariumfonds Dr E. Kitas van Waveren, Leiden, Netherlands) contributed substantially to the costs of sequencing and travelling expenses for M. Noordekoet. The work of B. Dima was supported by the ÚNKP-20-4 New National Excellence Program of the Ministry for Innovation and Technology from the source of the National Research, Development and Innovation Fund, and by the ELTE Thematic Excellence Programme 2020 supported by the National Research, Development and Innovation Office of Hungary (TKP2020-IKA-05). The Norwegian EntoJoma studies received funding from the Norwegian Biodiversity Information Centre (NBIC), and the material was partly sequenced through NorBOL. Gunnhild Martihsen and Katrina Bendiksen (Natural History Museum, University of Oslo, Norway) are acknowledged for performing the main parts of the Entoloma barcoding work. Asunción Morte is grateful to AEI/FEDER, UE (CGL2016-78946-R) and Fundación Séneca - Agencia de Ciencia y Tecnología de la Región de Murcia (20866/PI/18) for financial support. Vladimir Ostry was supported by the Ministry of Health, Czech Republic - conceptual development of research organization (National Institute of Public Health – NIPH, IN 75010330). Konstanze Bensch (Westerdijk Fungal Biodiversity Institute, Utrecht) is thanked for correcting the spelling of various Latin epithets.
Overview *Agaricomycetes* phylogeny – part 1

Consensus phylogram (50 % majority rule) of 279752 trees resulting from a Bayesian analysis of the LSU sequence alignment (170 sequences including outgroup; 948 aligned positions; 553 unique site patterns; 1865000 generations with trees sampled every 10 generations) using MrBayes v. 3.2.7a (Ronquist et al. 2012). Bayesian posterior probabilities (PP) > 0.84 are shown at the nodes and thickened lines represent nodes with PP = 1.00. The scale bar represents the expected changes per site. Families, orders and classes are indicated with coloured blocks to the right of the tree. Culture collection/voucher, GenBank accession (in superscript) and/or Fungal Planet numbers are indicated behind the species names. The tree was rooted to Backusella lamprospera (GenBank MH866118.1) and the taxonomic novelties described in this study for which LSU sequence data were available are indicated in **bold** face. The alignment and tree were deposited in TreeBASE (Submission ID 28129).
Overview Agaricomycetes phylogeny (cont.) – part 2

Suillaceae

Boletaceae

Agaricales

Boletales

Agaricomycetes (continued)
Overview Agaricomycetes phylogeny (cont.) – part 3

Bolbitiaceae
- **Pholotina dasypus** NL-2279
- **Pholotina aeruginosa** WJ27104
- **Bolbitius sibiricus** sp. nov. - Fungal Planet 1228
- **Bolbitius viscosus** PBM3032 (TENN)
- **Bolbitius coprophilus** NL-2640
- **Bolbitius excoriatus** LO23-19
- **Bolbitius paldius** LE<BRUS>
- **Bolbitius bisporus** LO23-10
- **Bolbitius reticulatus** LE<BRUS>
- **Entoloma ameides** G0377
- **Entoloma gleocobasis** G0333
- **Entoloma subserenatum** TB693
- **Entoloma coracis** sp. nov. - Fungal Planet 1241
- **Entoloma azureopallidum** G0348
- **Entoloma saponicum** G1661
- **Entoloma exile** Lueck
- **Entoloma ekaterinae**
- **Porotheleum fimbriatum** FP102067
- **Clitocybula abundans** PBM4340
- **Clitocybula oculus** DAOM 195995
- **Hydropus atramentosus** G0356
- **Hydropus fuliginarius** DAOM196062
- **Hydropus lecythiocystis** sp. nov. - Fungal Planet 1253
- **Hydropus marginellus** OSC 112834
- **Coprinellus radians** SZMC-NL-3986
- **Coprinellus xanthothrix** GLM 45906
- **Coprinellus micaceus** DM1047
- **Coprinellus silvicus** LO17-2
- **Coprinellus aureogranulatus** CBS 973.95
- **Coprinellus domesticus** GLM 45903
- **Coprinellus phaeospora** CBS 895.70
- **Pleuroflammula tuberculosa** PAM02072903
- **Inocybe meridionalis** PBM 3413
- **Inocybe flocculosa** ZRL201517
- **Inocybe sylvicola** TAA172127
- **Inocybe lacera** EL2104
- **Pleuroflammula aberrans** PAM02072903
- **Crepidotus cf. applanatus** PBM 717
- **Crepidotus cesatii** G0306
- **Crepidotus versutus** PBM 856
- **Crepidotus albifrons** LE 287655
- **Crepidotus toboiensis** LE 287655
- **Crepidotus mollis** DM1043
- **Crepidotus euclaytorum** G1749
- **Crepidotus irrigens** B2200

© 2021 Naturalis Biodiversity Center & Westerdijk Fungal Biodiversity Institute
Overview Dothideomycetes (Other orders) phylogeny – part 1

Consensus phylogram (50 % majority rule) of 56 102 trees resulting from a Bayesian analysis of the LSU sequence alignment (179 sequences including outgroup; 832 aligned positions; 37 400 generations with trees sampled every 100 generations) using MrBayes v. 3.2.7a (Ronquist et al. 2012). Bayesian posterior probabilities (PP) > 0.84 are shown at the nodes and thickened lines represent nodes with PP = 1.00. The scale bar represents the expected changes per site. Families and orders are indicated with coloured blocks to the right of the tree. Culture collection/voucher, GenBank accession (in superscript) and/or Fungal Planet numbers are indicated behind the species names. The tree was rooted to Diaporthaceae sp. (GenBank NG_059864.1) and the taxonomic novelties described in this study for which LSU sequence data were available are indicated in bold face. The most basal branch was halved in length to facilitate layout. The alignment and tree were deposited in TreeBASE (Submission ID 28129).
Overview Dothideomycetes (Pleosporales) phylogeny – part 1

Consensus phylogram (50% majority rule) of 91,128 trees resulting from a Bayesian analysis of the LSU sequence alignment (170 sequences including outgroup; 799 aligned positions; 295 unique site patterns; 607,500 generations with trees sampled every 100 generations) using MrBayes v. 3.2.7a (Ronquist et al. 2012). Bayesian posterior probabilities (PP) > 0.84 are shown at the nodes and thickened lines represent nodes with PP = 1.0. The scale bar represents the expected changes per site. Families and orders are indicated with coloured blocks to the right of the tree. Culture collection/voucher, GenBank accession group; 799 aligned positions; 295 unique site patterns; 607,500 generations with trees sampled every 100 generations) using MrBayes v. 3.2.7a (Ronquist et al. 2012).
Overview Dothideomycetes (Pleosporales) phylogeny – part 2
Overview Eurotiomycetes phylogeny – part 1

Consensus phylogram (50 % majority rule) of 146 252 trees resulting from a Bayesian analysis of the LSU sequence alignment (85 sequences including outgroup; 847 aligned positions; 357 unique site patterns; 101 000 generations with trees sampled every 10 generations) using MrBayes v. 3.2.7a (Ronquist et al. 2012). Bayesian posterior probabilities (PP) > 0.84 are shown at the nodes and thickened lines represent nodes with PP = 1.00. The scale bar represents the expected changes per site. Families and orders are indicated with coloured blocks to the right of the tree. Culture collection/voucher, GenBank accession (in superscript) and/or Fungal Planet numbers are indicated behind the species names. The tree was rooted to Diaporthe perjuncta (GenBank NG_059064.1) and the taxonomic novelties described in this study for which LSU sequence data were available are indicated in bold face. The alignment and tree were deposited in TreeBASE (Submission ID 28129).
Overview Eurotiomycetes phylogeny – part 2
Overview Leotiomycetes phylogeny

Consensus phylogram (50 % majority rule) of 408002 trees resulting from a Bayesian analysis of the LSU sequence alignment (90 sequences including outgroup; 826 aligned positions; 283 unique site patterns; 2720000 generations with trees sampled every 10 generations) using MrBayes v. 3.2.7a (Ronquist et al. 2012). Bayesian posterior probabilities (PP) > 0.84 are shown at the nodes and thickened lines represent nodes with PP = 1.00. The scale bar represents the expected changes per site. Families and orders are indicated with coloured blocks to the right of the tree. Culture collection/voucher, GenBank accession (in superscript) or Fungal Planet numbers are indicated behind the species names. The tree was rooted to Xylaria hypoxylon (GenBank AY544648.1) and the taxonomic novelties described in this study for which LSU sequence data were available are indicated in bold face. The most basal branch was halved in length to facilitate layout. The alignment and tree were deposited in TreeBASE (Submission ID 28129).
Overview Mucoromycetes phylogeny

Consensus phylogram (50 % majority rule) of 141,002 trees resulting from a Bayesian analysis of the LSU sequence alignment (22 sequences including outgroup; 660 aligned positions; 319 unique site patterns; 470,000 generations with trees sampled every five generations) using MrBayes v. 3.2.7a (Ronquist et al. 2012). Bayesian posterior probabilities (PP) > 0.84 are shown at the nodes and thickened lines represent nodes with PP = 1.00. The scale bar represents the expected changes per site. The higher taxonomic classification is indicated with coloured blocks to the right of the tree. Culture collection/voucher, GenBank accession (in superscript) or Fungal Planet numbers are indicated behind the species names. The tree was rooted to *Chytridium lagenaria* (GenBank FJ804156.1) and the taxonomic novelty described in this study for which LSU sequence data were available is indicated in **bold** face. The alignment and tree were deposited in TreeBASE (Submission ID 28129).
Overview Pezizomycetes phylogeny

Consensus phylogram (50% majority rule) of 87,002 trees resulting from a Bayesian analysis of the LSU sequence alignment (33 sequences including outgroup; 792 aligned positions; 203 unique site patterns; 290,000 generations with trees sampled every five generations) using MrBayes v. 3.2.7a (Ronquist et al. 2012). Bayesian posterior probabilities (PP) > 0.84 are shown at the nodes and thickened lines represent nodes with PP = 1.00. The scale bar represents the expected changes per site. The family and order are indicated with coloured blocks to the right of the tree. Culture collection/voucher, GenBank accession (in superscript) or Fungal Planet numbers are indicated behind the species names. The tree was rooted to Candida broadrunensis (GenBank KY106372.1) and the taxonomic novelty described in this study for which LSU sequence data were available is indicated in bold face. The alignment and tree were deposited in TreeBASE (Submission ID 28129).
Overview Phytophthora phylogeny

Consensus phylogram (50 % majority rule) of 64,502 trees resulting from a Bayesian analysis of the LSU sequence alignment (25 sequences including outgroup; 1,110 aligned positions; 68 unique site patterns; 215,000 generations with trees sampled every five generations) using MrBayes v. 3.2.7a (Ronquist et al. 2012). Bayesian posterior probabilities (PP) > 0.84 are shown at the nodes and thickened lines represent nodes with PP = 1.00. The scale bar represents the expected changes per site. The higher taxonomic classification is indicated with coloured blocks to the right of the tree. Culture collection/voucher, GenBank accession (in superscript) or Fungal Planet numbers are indicated behind the species names. The tree was rooted to Absidia panacisoli (GenBank NG_063948.1) and the taxonomic novelty described in this study for which LSU sequence data were available is indicated in bold face. The alignment and tree were deposited in TreeBASE (Submission ID 28129).
Overview Saccharomycetes and Tremellomycetes phylogeny

Consensus phylogram (50 % majority rule) of 136502 trees resulting from a Bayesian analysis of the LSU sequence alignment (36 sequences including outgroup; 432 unique site patterns; 910000 generations with trees sampled every 10 generations) using MrBayes v. 3.2.7a (Ronquist et al. 2012). Bayesian posterior probabilities (PP) > 0.84 are shown at the nodes and thickened lines represent nodes with PP = 1.00. The scale bar represents the expected changes per site. The families, orders and classes are indicated with coloured blocks to the right of the tree. Culture collection/voucher, GenBank accession (in superscript) and/or Fungal Planet numbers are indicated behind the species names. The tree was rooted to Backusella lamprospora (GenBank MH866118.1) and the taxonomic novelities described in this study for which LSU sequence data were available are indicated in bold face. The alignment and tree were deposited in TreeBASE (Submission ID 28129).
Overview Sordariomycetes (Falcocladiales, Glomerellales and Hypocreales) phylogeny – part 1

Consensus phylogram (50 % majority rule) of 846978 trees resulting from a Bayesian analysis of the LSU sequence alignment (194 sequences including outgroup; 816 aligned positions; 310 unique site patterns; 56465000 generations with trees sampled every 100 generations) using MrBayes v. 3.2.7a (Ronquist et al. 2012). Bayesian posterior probabilities (PP) > 0.84 are shown at the nodes and thickened lines represent nodes with PP = 1.00. The scale bar represents the expected changes per site. Families and orders are indicated with coloured blocks to the right of the tree. Culture collection/voucher, GenBank accession (in superscript) and/or Fungal Planet numbers are indicated behind the species names. The tree was rooted to Ramularia endophylla (GenBank AY490776.2) and the taxonomic novelties described in this study for which LSU sequence data were available are indicated in bold face. The alignment and tree were deposited in TreeBASE (Submission ID 28129).
Overview Sordariomycetes (Falcocladiales, Glomerellales and Hypocreales) phylogeny (cont.) – part 2
Overview Sordariomycetes (Falcocladiales, Glomerellales and Hypocreales) phylogeny (cont.) – part 3
Overview Sordariomycetes (Other orders) phylogeny

Consensus phylogram (50 % majority rule) of 229,502 trees resulting from a Bayesian analysis of the LSU sequence alignment (79 sequences including outgroup; 81 aligned positions; 293 unique site patterns; 153,000 generations with trees sampled every 10 generations) using MrBayes v. 3.2.7a (Ronquist et al. 2012). Bayesian posterior probabilities (PP) > 0.84 are shown at the nodes and thickened lines represent nodes with PP = 1.00. The scale bar represents the expected changes per site. Families and orders are indicated with colored blocks to the right of the tree. Culture collection/voucher, GenBank accession (in superscript) and/or Fungal Planet numbers are indicated behind the species names. The tree was rooted to Ramularia endophylla (GenBank AV490776.2) and the taxonomic novelties described in this study for which LSU sequence data were available are indicated in bold face. The alignment and tree were deposited in TreeBASE (Submission ID 28129).
Overview Sordariomycetes (Xylariales) phylogeny

Consensus phylogram (50 % majority rule) of 335 trees resulting from a Bayesian analysis of the LSU sequence alignment (63 sequences including outgroup; 800 aligned positions; 192 unique site patterns; 790000 generations with trees sampled every 10 generations) using MrBayes v. 3.2.7a (Ronquist et al. 2012). Bayesian posterior probabilities (PP) > 0.84 are shown at the nodes and thickened lines represent nodes with PP = 1.00. The scale bar represents the expected changes per site. Families and the order are indicated with coloured blocks to the right of the tree. Culture collection/voucher, GenBank accession (in superscript) and/or Fungal Planet numbers are indicated behind the species names. The tree was rooted to Ramularia endophyta (GenBank AV490776.2) and the taxonomic novelties described in this study for which LSU sequence data were available are indicated in bold face. The most basal branch was halved in length to facilitate layout. The alignment and tree were deposited in TreeBASE (Submission ID 28129).
Curvularia tanzanica
Curvularia tanzanica Y.P. Tan, Dhileepan, Ntandu, Kurose & R.G. Shivas, sp. nov.

Etymology. Name refers to Tanzania, the country from which it was collected.

Classification — Pleosporaceae, Pleosporales, Dothideomycetes.

Hyphae pale brown, smooth or verruculose, branched and septate, up to 3–6 µm wide. Conidiophores erect, straight to flexuous, geniculate towards apex, brown, smooth, septate, 50–110 × 3–4 µm, lateral or terminal, unbranched or sparingly branched. Conidiogenous cells intercalary and terminal, brown, smooth to minutely verruculose, polytretic with darkened scars. Conidia cylindrical to narrowly ellipsoidal, straight, rounded.

Notes — Curvularia tanzanica is only known from collections on Cyperus aromaticus (syn: Kyllinga polyphyllya) (Cyperaceae) in Tanzania. Curvularia tanzanica was discovered while searching for plant pathogens on C. aromaticus in its native range in equatorial Africa. The aim of the surveys was to find plant pathogens that may have potential for the biological control of C. aromaticus in northern Queensland, Australia, where the sedge has become an invasive weed in pastures and sugar cane crops. Curvularia tanzanica colonised the floral parts of C. aromaticus that superficially resembled the darkened crustose inflorescences of Sporobolus spp. (Poaceae) covered (and sometimes destroyed) by certain species of Curvularia spp. (Luttrel 1976, Alcorn 1982, Tan et al. 2018).

The multilocus phylogenetic analysis of the ITS and gapdh loci placed C. tanzanica sister to C. gladioli strain CBS 210.79. Based on a blastn search, C. tanzanica differs from C. gladioli in ITS (GenBank LT631345; Identities 558/565 (99%), no gaps) and gapdh (GenBank LT715802; Identities 531/540 (98%), no gaps). Morphologically, C. tanzanica has straight conidia, which differentiates it from C. gladioli (illustrated in Parmelee (1956) as C. trifolii f. sp. gladioli) with curved conidia (the third cell from the base is swollen and convex on one side).

Typos. Tanzania, Korogwe, Msambiasi, S05°07'57" E038°23'10", from inflorescence of Cyperus aromaticus (Cyperaceae), 22 Dec. 2019, J.E. Ntandu, K. Dhileepan, M.D.E. Shivas & R.G. Shivas (holotype BRIP 71771, culture ex-type IMI 507176, ITS, LSU and gapdh sequences GenBank MW396857, MW396841 and MW388669).

Additional material examined. Tanzania, Korogwe, Msambiasi, S05°07'57" E038°23'10", from inflorescence of Cyperus aromaticus (Cyperaceae), 22 Dec. 2019, J.E. Ntandu, K. Dhileepan, M.D.E. Shivas & R.G. Shivas, BRIP 71104, ITS, LSU and gapdh sequences GenBank MW396856, MW396840 and MW388668.

Colour illustrations. Kunjithapatham Dhileepan in sedgeland, eastern Tanzania. Inflorescence of Cyperus aromaticus colonised by Curvularia tanzanica; conidiophores; conidia. Scale bars = 1 mm (inflorescence), 10 µm (others).
Crous PW, Hernández-Restrepo M, Schumacher RK, et al. 2021. New and interesting fungi. 4. Fungal Systematics and Evolution 7: 255–343.

Crous PW, Lennox CL, Sutton BC. 1995. Selenophoma eucalypti and Stigmina robbenensis spp. nov. from Eucalyptus leaves on Robben Island. Mycological Research 99: 648–652.

Crous PW, Luangsard J, Wingfield MJ, et al. 2018a. Fungal Planet description sheets: 785–887. Persoonia 38: 359–417.

Crous PW, Schumacher RK, Braun U. 2004. Opportunistic, human-pathogenic species in the Herpotrichiellaceae are phenotypically similar to saprobic or phytopathogenic species in the Venturiaceae. Studies in Mycology 58: 185–217.

Crous PW, Schumacher RK, Akulov A, et al. 2019a. New and interesting fungi. 2. Fungal Systematics and Evolution 3: 57–134.

Crous PW, Schumacher RK, Wingfield MJ, et al. 2018b. New and interesting fungi. 1. Fungal Systematics and Evolution 1: 169–215.

Crous PW, Shivis RG, Quaedvlieg W, et al. 2014a. Fungal Planet description sheets: 214–280. Persoonia 32: 184–306.

Crous PW, Tanaka K, Summerbell BA, et al. 2011. Additions to the Mycosphaerella complex. IMA Fungus 2: 49–64.

Crous PW, Wingfield MJ, Burgess T, et al. 2016. Fungal Planet description sheets: 695–1041. Persoonia 34: 223–425.

Crous PW, Wingfield MJ, Mansilla JP, et al. 2006. Phylogenetic reassessment of Mycosphaerella spp. and their anamorphs occurring on Eucalyptus. II. Studies in Mycology 55: 99–131.

Crous PW, Wingfield MJ, Schumacher RK, et al. 2014b. Fungal Planet description sheets: 281–319. Persoonia 33: 212–289.

Crous PW, Wingfield MJ, Schumacher RK, et al. 2020b. New and interesting fungi. 3. Fungal Systematics and Evolution 6: 157–231.

Damm U, Cannon PF, Woudenberg JHC, et al. 2012a. The Colletotrichum acutatum species complex. Studies in Mycology 73: 37–113.

Damm U, Cannon PF, Woudenberg JHC, et al. 2012b. The Colletotrichum boninense species complex. Studies in Mycology 73: 1–36.

Damm U, Bou Specifications: 281–319. Persoonia 33: 212–289.

Damm U, Bou Specifications: 281–319. Persoonia 33: 212–289.

Damm U, Bou Specifications: 281–319. Persoonia 33: 212–289.

Damm U, Bou Specifications: 281–319. Persoonia 33: 212–289.
Shoemaker RA, Babcock CE. 1989. Phaeosphaeria. Canadian Journal of Botany 67: 1500–1599.

Shoemaker RA, Babcock CE. 1992. Applanodictyosporous Pleosporales: Clathrospora, Comoclaathis, Graphyllum, Macrospora, and Pilatysporides. Canadian Journal of Botany 70: 1617–1658.

Singer H. 1947. The Boletioidae of Florida with notes on extralimital species III. American Midland Naturalist 37: 1–136.

Smith AH, Hesler LR. 1983. The North American species of Pholiota. Hafner Publishing Co., New York, USA.

Smith AH, Thiers HD. 1964. A contribution toward a monograph of the North American species of Suillus (Boletaceae). Lubrecht & Cramer, Ann Arbor, Michigan.

Souza TF, Dos Santos AO, Da Silva FMA, et al. 2020. Arcopilus amazonicus Shoemaker RA, Babcock CE. 1989. Phaeosphaeria. Canadian Journal of Botany 67: 1500–1599.

Spies CFJ, Moyo P, Halleen F, et al. 2018. Phaeoacremonium species diversity on woody hosts in the Western Cape Province of South Africa. Persoonia 40: 26–52.

Stamatakis A. 2014. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312–1313.

Stankowski M. 2021. Persoonia – Volume 46, 2021

Tanaka K, Hirayama K, Yonezawa H, et al. 2009. Molecular taxonomy of bimucillicous fungus: Tetraplosphaeriae, a new pleoasporalean family with Tetraplospora-like anamorph. Studies in Mycology 64: 175–209.

Tanaka K, Hirayama K, Yonezawa H, et al. 2013. Revision of the Massariaceae (Pleosporales, Dothideomycetes). Studies in Mycology 82: 75–136.

Tanney JB, Seifert KA. 2020. Mollisiales: An overlooked lineage of diverse endophytes. Studies in Mycology 95: 293–380.

Tennakoon DS, Thambugama KM, Wanasinghe DN, et al. 2020. Additions to Phaeosphaeriaceae (Pleosporales): Elatolicgocillum gen. nov., Ophio- sphaerella taiwanensis sp. nov., Phaeosphaeropsis beaucarneae sp. nov. and a new host record of Neosophtoma paeocotoi from Musaceae. MycoKeys 70: 59–88.

Thambugamal KM, Aryanwansa HA, Li Y, et al. 2014. Dothideales. Fungal Diversity 68: 105–158.

Trifinopoulos J, Nguyen L-T, Von Haeseleer A, et al. 2016. W-IQ-TREE: a fast online phylogenetic method for maximum likelihood analysis. Nucleic Acids Research: 44 (W1): W232–W235.

Tsui CKM, Leung YM, Hyde KD, et al. 2001. Three new Ophioceras species (Ascomycetes) from the tropics. Mycosen 42: 321–326.

Tuena A, Currah RS. 2005. Pleomorphic conidiogenes in strains of Knufia cryptophialidica. Canadian Journal of Botany 83: 510–517.

Tuena A, Hambleton S, Currah RS. 2011. The anamorph genus Knufia and its phylogenetically allied species in Coniosporium, Sarcinomyces, and Phaeococcomyces. Nova Hedwigia 89: 523–530.

Tucker CM. 1931. Taxonomy of the genus Phytophthora de Bary. Research Bulletin of the Missouri Agricultural Experiment Station 153: 207.

Tulasne LR, Tulasne C. 1851. Fungi Hypogaei, Histoire et Monographie des Champignons Hypogés. F. Klinckseick (ed.), Paris, France.

Unterreiner WA, Guedian C, Orr MJ, et al. 2011. The phylogenetic position of the lichenicolous ascomycete Capronia pelligrina. Fungal Diversity 49: 225–233.

Vasco-Palacios AM, Lopez-Quintero CA, Franco-Molano AE, et al. 2014. Austroboletus amazonicus sp. nov. and Fistulinella campinaranae var. scrobiculata, two commonly occurring boletes from a forest dominated by Pseudomtones trophenosis (Dipteroxaraceae) in Colombian Amazonia. Mycologia 106: 1004–1014.

Verteben A, Van de Putte K, De Crop E. 2012. New combinations in Lactu- lius, 3: L. subgenera Lactuflorus and Piperata. Myxocoton 120: 443–450.

Verwoerd L, Du Plessis SJ. 1931. Descriptions of some new species of South African fungi and species not previously recorded from South Africa. III. South African Journal of Science 28: 290–297.

Vidal JM, Alvarado P, Lozides M, et al. 2019. A phylogenetic and taxonomic revision of sequestrate Russulaceae in Mediterranean and temperate Europe. Persoonia 42: 127–185.

Videira SIR, Groenewald JZ, Braun U, et al. 2016. All that glitters is not Ra- mularia. Studies in Mycology 83: 49–163.

Videira SIR, Groenewald JZ, Nakashima C, et al. 2017. Mycosphaerellaceae – chaos or clarity? Studies in Mycology 87: 257–421.

Vizzini A. 2008. Novitates. Tubariaeae fam. nov. Rivista di Micologia 51: 174.

Vizzini A, Consiglio G, Marchetti M. 2019. Mythicomyctaceae fam. nov. (Agaricinae, Agaricales) for accommodating the genera Mythicomyces and Stagonclaria, and Simocybe parvispora reconsidered. Fungal Systematics and Evolution 3: 41–56.

Volk A, Saar I, Lodge J, et al. 2020. New species and reports of Cuphophyl- lus from northern North America compared with related Eurasis species. Mycologia 112: 438–452.

Von Arx JA, Guarro J, Figueras MJ. 1986. The ascomyte genus Chaeto- miun. Beihete zur Nova Hedwigia 84: 1–162.

Walsh E, Luo J, Zhang N. 2014. Acidomelania panicula gen. et sp. nov. from switchgrass roots in acidic New Jersey pine barrens. Mycologia 106: 856–864.

Wanasinghe DN, Prukhamaskada C, Hyde KD, et al. 2018. Fungal diversity notes 709–839: taxonomic and phylogenetic contributions to fungal taxa with an emphasis on fungi on Rosaceae. Fungal Diversity 89: 1–236.

Wang GS, Zhou Y, Xue L, et al. 2020. Teunia rosae sp. nov. and Teunia rudbeckiae sp. nov. (Cryptococcaceae, Tremellales), two novel basidiomycetous yeast species isolated from flowers. International Journal of Systematics and Evolutionary Microbiology 70: 5394–5400.

Wang H-J, Glore JB, Scott JA, et al. 1996. Coniochaetones A and B: new antifungal benzopyranones from the coprophilous fungus Coniochaeta saccardi. Tetrahedron Lett 36: 5847–5850.

Wang XW, Houbreken J, Groenewald JZ, et al. 2016. Diversity and taxono- my of Chaetomium and chaetomium-like fungi from indoor environments. Studies in Mycology 84: 145–224.

Watling R. 1975. Observations on the Bolbitiaceae 11: A species of Bolbitius with ornamented basidiospores. Notes from the Royal Botanic Garden. Edinburgh 34: 241–244.

Watling R. 1987. Observations on the Bolbitiaceae – 30. Agaricus callistus Puck. Mycologia 79: 310–313.

Wei DF, Wanasinghe DN, Hyde KD, et al. 2019. The genus Simplicillium. MycoKeys 60: 69–92.

Whitton SR, McKenzie EHC, Hyde KD. 2012. Anamorphic Fungi associated with Pandanaceae. In: Whitton SR, McKenzie EHC, Hyde KD (eds), Fungi associated with Pandanaceae: 125–353. Springer, Dordrecht.

Xia JW, Ma Y-R, Zhang X-G. 2014. New species of Corynnesporopsis and Lylea from China. Sydowia 66: 241–248.

Xie J, Strobel GA, Feng T, et al. 2015. An endophytic Coniochaeta velutina producing broad spectrum antmycotics. Journal of Microbiology and Immunology Genetics 53: 390–397.

Yang X, Tyler BM, Hong C. 2017. An expanded phylogeny for the genus Phytophthora. IMA Fungus 8: 355–384.

Zare R, Gams W. 2001. A revision of the Verticillium section Prostrata. IV. The genera Lecanicillium and Simplicillium gen. nov. Nova Hedwigia 73: 1–50.

Zhang D, Gao F, Jaković I, et al. 2020. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Molecular Ecology Resources 20: 348–355.

Zhang ZF, Liu F, Zhou X, et al. 2017. Culturable mycobacteria from Karst caves in China, with descriptions of 20 new species. Persoonia 39: T–31.