Analysis of N-glycan profile of Arabidopsis alg3 cell culture

Ratna Sariyatun1, Hiroyuki Kajiura1,2, Juthamard Limkul1, Ryo Misaki1,2, Kazuhito Fujiyama1,2,3,*

1International Center for Biotechnology, Osaka University, Suita, Osaka 565-0871, Japan; 2Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka 565-0871, Japan; 3Osaka University Cooperative Research Station in Southeast Asia (OU: CRS), Faculty of Science, Mahidol University, Bangkok 10400, Thailand

*E-mail: fujiyama@icb.osaka-u.ac.jp Tel: +81-6-6879-7453 Fax: +81-6-6879-7454

Received September 2, 2021; accepted October 25, 2021 (Edited by S. Takahashi)

Abstract N-Glycosylation is essential for protein stability, activity and characteristics, and is often needed to deliver pharmaceutical glycoproteins to target cells. A paucimannosidic structure, Man3GlcNAc2 (M3), has been reported to enable cellular uptake of glycoproteins through the mannose receptor (MR) in humans, and such uptake has been exploited for the treatment of certain diseases. However, M3 is generally produced at a very low level in plants. In this study, a cell culture was established from an Arabidopsis alg3 mutant plant lacking asparagine-linked glycosylation 3 (ALG3) enzyme activity. Arabidopsis alg3 cell culture produced glycoproteins with predominantly M3 and GlcNAc-terminal structures, while the amount of plant-specific N-glycans was very low. Pharmaceutical glycoproteins with these characteristics would be valuable for cellular delivery through the MR, and safe for human therapy.

Key words: alg3, Arabidopsis, N-glycosylation, paucimannose.

Plant cell cultures have emerged as a potential alternative production system for recombinant biopharmaceuticals. Plant cell cultures require only simple medium, free of animal-derived products, and thus offer better cost-effectiveness and safety than eukaryotic platforms (Hellwig et al. 2004; Santos et al. 2016; Xu et al. 2011). Plant cells are capable of performing post-translational modifications in a manner similar to mammalian cells, thereby allowing recombinant proteins to be properly folded and assembled (Moustafa et al. 2016). On the other hand, plant cell cultures share characteristics with microbial and mammalian systems, such as allowing contained, controlled, and sterile conditions that meet the criteria for Good Manufacturing Practice (GMP) of biopharmaceutical production (Santos et al. 2016). Notably, plant cell cultures have a good track record for the production of biopharmaceuticals, as evidenced by the approval of carrot cell-produced β-glucocerebrosidase (Elelyso) by the US Food and Drug Administration (FDA), as well as the numerous plant cell-produced recombinant therapeutic glycoproteins currently in clinical trials. Compared to the whole-plant systems, plant cell cultures offer a major advantage in enabling the secretion of products into the culture medium, thus mediating easier and more cost-effective downstream purification.

N-Glycosylation is essential for the stability, activity, and pharmacodynamics of glycoproteins (Seeberger and Cummings 2015). To date, differences between human and plant N-glycosylation have been viewed as a hurdle in the use of plant cells for the production of pharmaceutical glycoproteins. Plants generate β1,2-xylose (Xyl) and core α1,3-fucose (Fuc) residues on N-glycans, which are absent in humans, thus raising concerns about the potential for immunogenic reaction upon parenteral administration of plant-made biopharmaceuticals in humans (Gomord et al. 2010). Elimination of plant-specific N-glycans (β1,2-Xyl and α1,3-Fuc) is necessary to ensure the safety of plant-produced biopharmaceuticals. Moreover, minimalizing the glycan heterogeneity is important for obtaining consistent product efficacy. The latter has remained a hurdle even in the well-established mammalian cell expression system (Goochee et al. 1991; Sethuraman and Stadheim 2006). Therefore, it is necessary to develop a plant cell line capable of producing homogenous N-glycans that lack plant-specific structures in order to optimize the use of plant cell cultures for the production of pharmaceutical protein therapeutics.

Abbreviations: ALG3, asparagine-linked glycosylation 3; Fuc, fucose; Glc, glucose; GlcNAc, N-acetylglucosamine; GMP, Good Manufacturing Practice; HPLC, high-performance liquid chromatography; HRP, horseradish peroxidase; MALDI-TOF, matrix-assisted laser desorption ionization time-of-flight; Man, mannose; MR, mannose receptor; MS, mass spectrometry; MS, Murashige and Skoog; PA, 2-pyrimidinamine; RP, reversed-phase; SF, size-fractionation; Xyl, xylose.

This article can be found at http://www.jspcmb.jp/

Published online December 18, 2021
Glycan analysis of Arabidopsis alg3 culture

Previous studies showed that the Arabidopsis asparagine-linked glycosylation 3 (alg3) plant produced more homogenous N-glycans with predominantly unique mannose (Man)-terminal structures and lower amounts of plant-specific N-glycans compared to the wild-type (WT) plant (Henquet et al. 2008; Kajiura et al. 2010). This mutant plant lacks the activity of ALG3, a membrane-bound α,1,3-mannosyltransferase which transfers a Man from a sugar nucleotide dolichol-Man to lipid-linked Man₃GlcNAc₂ (M₅ER; GlcNAc, N-acetylglucosamine) on the ER luminal side. The N-glycan characteristics of the alg3 plant could also be passed down to the recombinant protein produced therein (Henquet et al. 2011). Notably, the alg3 plant also produced a considerable amount of the paucimannosidic structure, Man₃GlcNAc₂ (M₃; 30.7–31.1%), which is normally lacking in plants (Kajiura et al. 2010). M₃ could enable the cellular delivery of glycoproteins via the Man receptor (MR) in humans, with the binding of M₃ to MR outperforming other structures with more Man residues (Shen et al. 2016; Van Patten et al. 2007). Therefore, the ability of Arabidopsis alg3 cells to produce M₃ could be valuable for the production of therapeutic glycopolypeptides requiring MR for delivery, such as in the enzyme replacement therapies for Gaucher disease, Wolman disease, and cholesteryl ester storage disease (Du et al. 2005; Limkul et al. 2016). Meanwhile, the lower amount of plant-specific N-glycans is essential to prevent potential immunogenic reaction upon administration of the therapeutic glycoproteins in humans.

In this study, an Arabidopsis alg3 suspension cell culture was generated from the Arabidopsis alg3 plant, and the N-glycan profile was characterized. Briefly, the leaves from the Arabidopsis alg3 plant were sterilized, sectioned, and transferred onto Murashige and Skoog (MS) medium plates for callus induction. After about a month in the dark at 25°C, the calli were transferred into liquid MS medium and incubated in the dark at 25°C on a rotary shaker at 120 rpm until becoming a suspension cell culture. The suspension cell culture was maintained by weekly transfer of a 20 ml aliquot into 100 ml of fresh liquid MS medium.

To confirm the alg3 mutation, plant genomic DNA was extracted by the cetyltrimethylammonium bromide (CTAB) method (Aboul-Maaty and Oraby 2019). T-DNA insertion in the alg3 gene was then checked by polymerase chain reaction (PCR) using primers 6 (5′-TCTCTTTAATGTTGTGGCAT-3′) and Lbd1 (5′-CCACGTTCTTAAATAGTGACT-3′) (Kajiura et al. 2010). The T-DNA insertion in Arabidopsis alg3 cell culture was confirmed (Figure 1A). Seven-day-old cells were harvested from Arabidopsis WT and alg3 cell cultures, then dissolved in 20 mM Tris-HCl pH 7.5 containing 10 mM EDTA, sonicated for 1 min, and centrifuged at 12,000×g for 20 min at 4°C. The supernatant was collected as the intracellular protein extract for the detection of plant-specific N-glycans by Western blot using anti-horseradish peroxidase (HRP) antibody (Limkul et al. 2016). Compared to the WT culture, the Arabidopsis alg3 cell culture contained a very low amount of plant-specific N-glycans (Figure 1C).

Intracellular N-glycans of the alg3 cell culture were deduced by a combination of high-performance liquid chromatography (HPLC) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis. Briefly, 7-day-old cells were harvested, then ground in liquid N₂. The thawed cell homogenate was centrifuged at 12,000×g for 20 min at 4°C. Glycoproteins in the the supernatant were precipitated using acetone, then lyophilized. Glycans from glycoproteins were released by hydrazinolysis at 100°C for 10 h, and subsequently labelled with 2-pyrimidinamine (PA) (Misaki et al. 2001). The PA-labelled glycans were purified using the phenol-chloroform method to remove excessive PA reagents. The purified PA-labelled N-glycan sample was then separated by reversed-phase (RP)- and size-fractionation (SF)-HPLCs, followed by MALDI-TOF MS analysis (Kajiura et al. 2010). The intracellular N-glycans of Arabidopsis
WT cell culture contained predominantly plant-specific (67.1%) and high-Man (M5, M7A, M8A, M9; 26.4%) structures, similar to the WT plant (plant-specific: 71.4%; high-Man: 28.6%). On the other hand, the alg3 cell culture produced mainly M3 (28.5%) and GlcNAc-terminal structures without plant-specific N-glycans, including Gn1M3 (14.7%), Gn1M3 (22.1%), and Gn2M3 (34.0%) (Table 1, Figure 2, Supplementary Table S1). Similar to the alg3 plant, no high-Man structures were detected in the alg3 cell culture. While M4 ER, M5ER, and GlcM5ER were found in the alg3 plant, only M5 ER (0.7%) was detected in the alg3 cell culture. Interestingly, plant-specific N-glycans were absent in the alg3 cell culture, whereas they were produced in considerable amounts in the alg3 plant (39.7%).

Due to the low amounts of secreted glycoproteins in the Arabidopsis WT and alg3 cell cultures, analyses of the extracellular N-glycans were performed using different approach. The media of 7-day-old cell cultures were collected and glycoproteins were precipitated using acetone. The proteins were separated by SDS-PAGE and stained using CBB (Figure 1D). Protein bands were excised and destained, followed by reduction, alkylation, and trypsin digestion prior to N-glycan analysis using nanoLC-MS/MS (Limkul et al. 2016). Protein identification was conducted using MASCOT (https://www.matrixscience.com/index.html). Glycoproteins secreted from Arabidopsis WT and alg3 cell cultures were identified (Supplementary Table S2), and the N-glycans were characterized (Table 2, Supplementary Table S3). WT cell culture carried predominantly plant-specific structures (41.6–100%), mainly M3XF, GnM3XF, and Gn2M3XF. Smaller amounts of plant-specific N-glycans were observed at site N547 of GDPDL4, which might have been due to the protein conformation, which does not allow efficient attachments of the xylosyltransferase (XylT) and fucosyltransferases (FucTA and B). On the other hand, secreted glycoproteins from the Arabidopsis alg3 cell culture carried mostly M3 (24.5–62.0%) and GnM3 (24.3–70.7%). The GnM3 was the sum of both Gn1M3 and Gn1M3, since the nanoLC-MS/MS analysis could not distinguish between these two isomers. Notably, plant-specific N-glycan was not observed among the glycoproteins secreted from the alg3 cell culture.

It is noteworthy that the N-glycan profiles between Arabidopsis WT plant and cell culture as well as between the alg3 plant and cell culture are rather different (Table 1). This may occur because of dedifferentiation process from whole plant into suspension-cultured cells. Similar phenomena were observed in analyses of Ricinus communis seeds and callus (Kimura and Takagi 1998) and also between tobacco plant and BY2 cell culture (Oxley et al. 1996; Palacpac et al. 1999).
Previously, we observed that the Arabidopsis *alg3* plant produced a lower level of plant-specific N-glycans (39.7%) compared to the WT (71.4%) (Kajiura et al. 2010). This is because N-acetylglucosaminyltransferase-I (GnT-I) has a lower affinity for the M3 (Strasser et al. 2005) to produce Gn1M3, a substrate for XylT and FucTs to generate plant-specific N-glycans. Surprisingly, once the *alg3* plant was developed into a suspension cell culture, plant-specific N-glycans were hardly detected (Tables 1, 2). Instead, GlcNAc-terminal structures (Gn1M3, Gn1M3, and Gn2M3) were produced at much amount. It is intriguing to understand the lack of plant-specific N-glycans in the *alg3* cell culture despite the substantial amounts of GlcNAc-terminal structures, which are substrates for XylT and FucTs. One possible explanation is that the majority of Gn1,M3 might be processed by N-acetylglucosaminyltransferase-II (GnT-II), rather than XylT and FucTs, because GnT-II localizes in the cis-medial Golgi, while XylT and FucTs reside in the medial and medial-trans Golgi, respectively (Strasser 2016; Yoo et al. 2015). This suggests that in the *alg3* cells, GnT-II acts early in the cis Golgi on the Gn1,M3 resulting from GnT-I activity on M3, whereas in the WT cells the substrate for GnT-II is available later, after GnT-I generates a GnM5 structure and Golgi-α-mannosidase II (GM-II) cleaves the terminal Man to generate Gn1,M3 (Supplementary Figure S1). The action of GnT-II would inhibit further attachment of plant-specific N-glycans (Yoo et al. 2015), which agrees well with our previous study showing lower XylT activity towards Gn2M3, and lower FucT activity towards N-glycans without the β1,2-Xyl (Kajiura et al. 2012). However, the remarkable reduction of plant-specific N-glycans was not observed in the *alg3* plant, probably because GnT-II activity in the plant is lower than XylT and FucTs (Yoo et al. 2015). Elucidation of the molecular mechanisms (e.g., gene expression and enzyme activity analyses) responsible for this difference would be necessary.

Our analyses of intra- and extracellular glycoproteins of Arabidopsis *alg3* cell culture indicated that M3 and GlcNAc-terminal structures were predominant. It is known that Man and GlcNAc are recognized by MR, and indeed M3 and Gn2M3 have been shown to enable cellular uptake of therapeutic glycoprotein in vitro (Hintze et al. 2020). Thus, the Arabidopsis *alg3* cell culture should be a suitable host for producing biopharmaceuticals with cellular delivery through the MR pathway.

Acknowledgements

This work was supported by the Ministry of Education,
Culture, Sports, Science and Technology (MEXT), Japan in the Biotechnology Global Human Resource Development Program. This research was conducted by Ratna Sariyatun in partial fulfilment of the requirements for a Ph.D.

References

Aboul-Maaty N AF, Oraby HAS (2019) Extraction of high-quality genomic DNA from different plant orders applying a modified CTAB-based method. *Bull Natl Res Cent* 43: 25

Du H, Levine M, Ganesa C, Witte DP, Cole ES, Grabowski GA (2005) The role of mannosylated enzyme and the mannose receptor in enzyme replacement therapy. *Am J Hum Genet* 77: 1061–1074

Gomord V, Fitcheotte A-C, Menu-Bouaouiche L, Saint-Jore-Dupas C, Plascon C, Michaud D, Faye L (2010) Plant-specific glycosylation patterns in the context of therapeutic protein production. *Plant Biotechnol J* 8: 564–587

Gooche CF, Gramer MJ, Andersen DC, Bahr JB, Rasmussen JR (1991) The oligosaccharides of glycoproteins: Bioprocess factors affecting oligosaccharide structure and their effect on glycoprotein properties. *BioTechnology* 9: 1347–1355

Hellwig S, Drossard J, Twyman RM, Fischer R (2004) Plant cell cultures for the production of recombinant proteins. *Nat Biotechnol* 22: 1415–1422

Henquet M, Eigenhuijzen J, Hesselink T, Spiegel H, Schreuder M, Henquet M, Eigenhuijzen J, Hesselink T, Spiegel H, Schreuder M, Hellwig S, Drossard J, Twyman RM, Fischer R (2004) Plant cell cultures for the production of recombinant proteins. *Nat Biotechnol* 22: 1415–1422

Henquet M, Egenhuijzen J, Hesselink T, Spiegel H, Schreuder M, van Duijn E, Cordewener J, Depicker A, van der Krol A, Bosch D (2011) Characterization of the single-chain Fv-Fc antibody MBP10 produced in *Arabidopsis alg3* mutant seeds. *Transgenic Res* 20: 1033–1042

Henquet M, Lehe L, Schreuder M, Rouwendal G, Molthoff J, Helsper J, van der Krol S, Bosch D (2008) Identification of the gene encoding the α1,3-mannosyltransferase (ALG3) in *Arabidopsis* and characterization of downstream N-glycan processing. *Plant Cell* 20: 1652–1664

Hintze S, Limmer S, Dabrowska-Schlepp P, Berg B, Kriehoff N, Busch A, Schaaf A, Meinke P, Schoser B (2020) Moss-derived human recombinant GAA provides an optimized enzyme uptake and recovery of mannose receptor-mediated delivery of moss-made α-galactosidase A efficiently corrects enzyme deficiency in Fabry mice. *J Inherit Metab Dis* 39: 293–303

Strasser R (2016) Plant protein glycosylation. *Glycobiology* 26: 926–939

Strasser R, Stadlmann J, Svoboda B, Altmann F, Glössl J, Mach L (2005) Molecular basis of N-acetylgalactosaminyltransferase I deficiency in *Arabidopsis thaliana* plants lacking complex N-glycans. *Biochim Biophys Acta* 1737: 385–391

Van Patten SM, Hughes H, Huff MR, Piepenhagen PA, Waire J, Qiu H, Ganesa C, Reczek D, Ward PV, Kutzko JP, et al. (2007) Effect of mannose chain length on targeting of glucocerebrosidase for enzyme replacement therapy of Gaucher disease. *Glycobiology* 17: 467–478

Xu J, Ge X, Dolan MC (2011) Towards high-yield production of pharmaceutical proteins with plant cell suspension cultures. *Biotechnol Adv* 29: 278–299

Yoo JY, Ko KS, Seo H-K, Park S, Fanata WID, Harmoko R, Ramasamy NK, Thulasinathan T, Mengiste T, Lim J-M, et al. (2015) Limited addition of the 6-arm β1,2-linked N-acetylgalactosamine (GlcNAc) residue facilitates the formation of the largest N-glycan in plants. *J Biol Chem* 290: 16560–16572