TaxoCom: Topic Taxonomy Completion with Hierarchical Discovery of Novel Topic Clusters

Dongha Lee¹, Jiaming Shen², SeongKu Kang³, Susik Yoon¹, Jiawei Han¹, Hwanjo Yu³
¹University of Illinois at Urbana-Champaign, IL, USA ²Google Research, NY, USA ³Pohang University of Science and Technology, Republic of Korea
{donghal, susik, hanj}@illinois.edu, jmshen@google.com, {seongku, hwanjoyu}@postech.ac.kr

ABSTRACT

Topic taxonomies, which represent the latent topic (or category) structure of document collections, provide valuable knowledge of contents in many applications such as web search and information filtering. Recently, several unsupervised methods have been developed to automatically construct the topic taxonomy from a text corpus, but it is challenging to generate the desired taxonomy without any prior knowledge. In this paper, we study how to leverage the partial (or incomplete) information about the topic structure as guidance to find out the complete topic taxonomy. We propose a novel framework for topic taxonomy completion, named TaxoCom, which recursively expands the topic taxonomy by discovering novel sub-topic clusters of terms and documents. To effectively identify novel topics within a hierarchical topic structure, TaxoCom devises its embedding and clustering techniques to be closely-linked with each other: (i) locally discriminative embedding optimizes the text embedding space to be discriminative among known (i.e., given) sub-topics, and (ii) novelty adaptive clustering assigns terms into either one of the known sub-topics or novel sub-topics. Our comprehensive experiments on two real-world datasets demonstrate that TaxoCom not only generates the high-quality topic taxonomy in terms of term coherency and topic coverage but also outperforms all other baselines for a downstream task.

CCS CONCEPTS
• Information systems → Document topic models; Ontologies; Clustering and classification;

KEYWORDS
Topic taxonomy completion, Hierarchical topic discovery, Novelty detection, Text embedding, Text clustering

ACM Reference Format:
Dongha Lee¹, Jiaming Shen², SeongKu Kang³, Susik Yoon¹, Jiawei Han¹, Hwanjo Yu³. 2022. TaxoCom: Topic Taxonomy Completion with Hierarchical Discovery of Novel Topic Clusters. In Proceedings of the ACM Web Conference 2022 (WWW ’22), April 25–29, 2022, Virtual Event, Lyon, France. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3485447.3512002

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France © 2022 Association for Computing Machinery. ACM ISBN 978-1-4503-9096-5/22/04. https://doi.org/10.1145/3485447.3512002

Figure 1: An example of topic taxonomy completion. The known (i.e., given) sub-topics and novel sub-topics are colored in grey and yellow, respectively.

1 INTRODUCTION

Finding the latent topic structure of an input text corpus, also known as hierarchical topic discovery [7, 18, 33, 42, 47], has been one of the most important problems for information extraction and semantic analysis of text data. Recently, several studies have focused on topic taxonomy construction [33, 47], which aims to generate a tree-structured taxonomy whose node corresponds to a conceptual topic; each node of the topic taxonomy is defined as a cluster of semantically coherent terms representing a single topic. Compared to a conventional entity (or term-level) taxonomy, this cluster-level taxonomy is more appropriate for representing the topic hierarchy of the target corpus with high coverage and low redundancy. To identify hierarchical topic clusters of terms, they mainly performed clustering on a low-dimensional text embedding space where textual semantic information is effectively encoded.

However, their output topic taxonomy seems plausible by itself but often fails to match with the complete taxonomy designed by a human curator, because they rely on only the text corpus in an unsupervised manner. To be specific, their quality (e.g., coverage and accuracy) highly depends on the number of sub-topic clusters (i.e., child nodes), which has to be manually controlled by a user. In addition, it is sensitive to the topic imbalance in the document collection, which makes it difficult to find out minor topics. In the absence of any information about the topic hierarchy, the unsupervised methods intrinsically become vulnerable to these problems.

On the other hand, for some other text mining tasks or NLP applications, several recent studies have tried to take advantage of auxiliary information about the latent topic structure [13, 21, 23–26, 34]. Most of them focus on utilizing a hierarchy of topic surface
names as additional supervision, because it can be easily given as a user’s interests or prior knowledge. Specifically, they retrieve the top-\(K\) relevant terms to each topic [21, 26] or train a hierarchical text classifier using unlabeled documents and the topic names [24, 34]. Despite their effectiveness, their major limitation is that they are only able to consider the known topics included in the given topic hierarchy. That is, the coverage of the obtained results is strictly limited to the given topics. Since it is very challenging for a user to be aware of a full topic structure, a naive solution to incorporate a user-provided hierarchy of topic names into the topic taxonomy is likely to only partially cover the text corpus.

To tackle this limitation, we introduce a new problem setting, named topic taxonomy completion, to construct a complete topic taxonomy by making use of additional topic information assumed to be partial or incomplete. Formally, given a text corpus and its partial hierarchy of topic names, this task aims to identify the term clusters for each topic, while discovering the novel topics that do not exist in the given hierarchy but exist in the corpus. Figure 1 illustrates a toy example of our task, where the novel topics (e.g., arts and hockey) are correctly detected and placed in the right position within the taxonomy. This task can be practically applied not only for the case that a user’s incomplete knowledge is available, but also for incremental management of the topic taxonomy. In case that the document collection is constantly growing, and so are their topics, the out-dated topic taxonomy of the previous snapshot can serve as the partial hierarchy to capture emerging topics.

The technical challenges of this task can be summarized as follows. First, novel topics should be identified by considering the hierarchical semantic relationship among the topics. In Figure 1, the topic hockey is not novel in terms of the root node, because it obviously belongs to its known sub-topic sports. However, hockey should be detected as a novel sub-topic of sports as it does not belong to any of the known sport sub-categories (i.e., soccer and baseball). Second, the granularity of novel sub-topics and that of known sub-topics need to be kept similar with each other, to achieve the consistency of semantic specificity among sibling nodes. In Figure 1, the root node should insert a single novel sub-topic arts, rather than two novel sub-topics music and dance, based on the semantic specificity of its known sub-topics (i.e., politics and sports).

In this work, we propose TaxoCom, a hierarchical topic discovery framework to complete the topic taxonomy by recursively identifying novel sub-topic clusters of terms. For each topic node, TaxoCom performs (i) text embedding and (ii) text clustering, to assign the terms into one of either the existing child nodes (i.e., known sub-topics) or newly-created child nodes (i.e., novel sub-topics). It first optimizes locally discriminative embedding which enforces the discrimination among the known sub-topics [21, 26] by using the given topic surface names; this helps to make a clear distinction between known and novel sub-topic clusters as well. Then, it performs novelty adaptive clustering which separately finds the clusters on novel-topic terms and known-topic terms, respectively. In particular, TaxoCom selectively assigns the terms into the child nodes, referred to as anchor terms, while filtering out general terms based on their semantic relevance and representativeness.

Extensive experiments on real-world datasets demonstrate that TaxoCom successfully completes a topic taxonomy with missing (i.e., novel) topic nodes correctly inserted. Our human evaluation quantitatively validates the superiority of topic taxonomies generated by TaxoCom, in terms of the topic coverage as well as semantic coherence among the topic terms. Furthermore, TaxoCom achieves the best performance among all baseline methods for a downstream task, which trains a weakly supervised text classifier by using the topic taxonomy instead of document-level labels.

2 RELATED WORK

Topic Taxonomy Construction. Early work on hierarchical topic discovery mainly focused on generative probabilistic topic models, such as hierarchical Latent Dirichlet Allocation (hLDA) [1] and hierarchical Pachinko Allocation Model (hPAM) [28]. They describe the topic hierarchy in a generative process and then estimate parameters by using inference algorithms, including variational Bayesian inference [2] and collapsed Gibbs sampling [10]. With the advances in text embedding techniques, several recent studies started to employ hierarchical clustering methods on a term embedding space, where textual semantic information is effectively captured. By doing so, they can construct a topic taxonomy whose node corresponds to a term cluster representing a single topic. Specifically, to find out hierarchical topic clusters, TaxoGen [47] recursively performed text embedding and clustering for each sub-topic cluster, and NetTaxo [33] additionally leveraged network-motifs extracted from text-rich networks. However, since all of them are unsupervised methods that primarily utilize the input text corpus, the high-level architecture of their output taxonomies does not usually match well with the one designed by a human.

Entity Taxonomy Expansion. Recently, there have been several attempts to construct the entity (or term-level) taxonomy from a text corpus by expanding a given seed taxonomy [14, 20, 35–37, 44, 45]. Note that the main difference of an entity taxonomy from a topic (or cluster-level) taxonomy is that its node represents a single entity or term, so it mainly focuses on the entity-level semantic relationships. They basically discover new entities that need to be inserted into the taxonomy, by learning the “is-a” (i.e., hypernym-hyponym) relation of parent-child entity pairs in the seed taxonomy. To infer the “is-a” relation of an input entity pair, they train a relation classifier based on entity embeddings [37], a pre-trained language model [14], and graph neural networks (GNNs) [35]. Despite their effectiveness, the entity taxonomy cannot either show the semantic relationships among high-level concepts (i.e., topics or term clusters) or capture term co-occurrences in the documents; this makes its nodes difficult to correspond to the topic classes of documents. Therefore, they are not suitable for expanding the latent topic hierarchy of documents, rather be useful for enhancing a knowledge base.

Novelty Detection for Text Data. Novelty (or outlier) detection for text data, which aims to detect the documents that do not belong to any of the given (or inlier) topics, has been researched in a wide range of NLP applications. They define the novel-ness (or outlier-ness) based on how far each document is located from semantic regions representing the normality. To this end, most unsupervised detectors measure the local/global density [4, 31] or estimate the normal data distribution [19, 30, 48] in a low-dimensional space.
3 PROBLEM FORMULATION

3.1 Concept Definition

Definition 1 (Topic taxonomy). A topic taxonomy \(\mathcal{H} \) refers to a tree structure about the latent topic hierarchy of terms \(T \) and documents \(D \). Each node \(c \in \mathcal{H} \) is described by a cluster of terms \(\mathcal{T}_c(\subset T) \) representing a single conceptual topic. The most representative term for the node becomes a center term \(t_c \in \mathcal{T}_c \) usually regarded as the topic surface name. The child nodes of each topic node correspond to its sub-topics.\(^3\) For each node \(c \), the set of its \(K_c \) child nodes is denoted by \(S_c(\subset \mathcal{H}) = \{s_{c,1}, \ldots, s_{c,K_c}\} \).

3.2 Topic Taxonomy Completion

Definition 2 (Topic taxonomy completion). The inputs are a text corpus \(D \), its term set \(T \),\(^4\) and a partial hierarchy \(\mathcal{H}^0 \) of topic surface names.\(^5\) The goal of topic taxonomy completion is to complete the topic taxonomy \(\mathcal{H}(\supset \mathcal{H}^0) \) so that it can cover the entire topic structure of the corpus, being guided by the given topic hierarchy. For each node in the taxonomy \(c \in \mathcal{H} \), it finds out the set of topic terms \(\mathcal{T}_c \) that are semantically coherent. In other words, the given topic hierarchy is extended into a larger one by identifying and inserting new topic nodes, while allocating each term into either one of the existing nodes (\(\in \mathcal{H}^0 \)) or newly-created nodes (\(\in \mathcal{H}(\mathcal{H}^0) \)).

Figure 1 shows an example of topic taxonomy completion for a news corpus. Similar to unsupervised topic taxonomy construction \([33, 47]\), our task works on the set of unlabeled documents whose topic information (e.g., topic class label) is not available. The main difference is that a partial topic hierarchy is additionally provided, which can be a user’s incomplete prior knowledge or an out-dated topic taxonomy of a growing text collection. From the perspective that the given hierarchy serves as auxiliary supervision for discovering the entire topic structure, this task can be categorized as a weakly supervised hierarchical topic discovery.

4 TAXOCOM: PROPOSED FRAMEWORK

4.1 Overview

The proposed TaxoCom framework recursively expands the given hierarchy in a top-down approach. Starting from the root node, TaxoCom performs (i) text embedding and (ii) text clustering for each node, to find out sub-topic clusters corresponding to its child nodes. The key challenge here is to identify the term clusters for known (i.e., given) sub-topics as well as novel sub-topics, which cannot be covered by any of the known sub-topics, by leveraging the initial hierarchy as weak supervision.

- **Locally discriminative embedding:** TaxoCom optimizes the embedding space for the terms assigned to the current node \(\mathcal{T}_c(\subset T) \). Utilizing the topic surface names in the given hierarchy, the term embedding vectors are enforced to be discriminative among the known sub-topics, so as to effectively compute the sub-topic membership of each term.
- **Novelty adaptive clustering:** By using the term embeddings, TaxoCom determines whether each term belongs to the known sub-topics or not based on its sub-topic membership. Then, it performs clustering which assigns each term into either one of the known sub-topics or novel sub-topics.

The taxonomy is expanded by inserting the obtained novel sub-topic clusters as the child nodes of the current node. To fully utilize the documents relevant to \(\mathcal{T}_c \) for both embedding and clustering, TaxoCom also produces the sub-corpus for each topic node \(D_c(\subset D) \) by assigning the documents into one of the sub-topics.\(^6\)

Figure 2 illustrates the overall process of TaxoCom.

4.2 Locally Discriminative Text Embedding

The goal of the embedding step is to obtain the low-dimensional embedding space that effectively encodes the textual similarity (or distance) among the terms assigned to a target topic node. However, as pointed out in \([11, 33, 47]\), the global embedding space trained on the entire text corpus is not good at capturing the distinctiveness among the topics, especially for lower-level topics. For this reason, TaxoCom adopts the two strategies: (i) **local embedding** \([11]\), which utilizes the subset of the entire corpus containing only the documents relevant to a target topic (e.g., the documents assigned to a specific topic node), and (ii) **keyword-guided discriminative embedding** \([21, 26]\), which additionally minimizes the semantic correlation among the pre-defined topics by utilizing their keyword sets.

4.2.1 **Local embedding.** To enhance the discriminative power of term embeddings at lower levels of the taxonomy by effectively capturing their finer-grained semantic information, TaxoCom employs the local embedding \([11]\) that uses the sub-corpus only relevant to the current topic \(c \) instead of the entire corpus. The most straightforward way to get the sub-corpus is simply using the set of documents assigned to the topic \(c \), denoted by \(D_c(\subset D) \). For the lower-level topics, however, it is more likely to include a small number of documents, which are not enough to accurately tune the embeddings. For this reason, TaxoCom retrieves more relevant documents and uses them together with \(D_c \). Using the center term embedding of the topic \(c \) as a query, it retrieves the top-M closest terms and collects all the documents containing the terms.

4.2.2 **Keyword-guided discriminative embedding.** TaxoCom basically employs a spherical text embedding framework \([22]\) to directly capture the semantic coherence among the terms into the directional (i.e., cosine) similarity in the spherical space. Compared to other text embedding techniques learned in the Euclidean space \([3, 27, 29]\), the spherical embedding is particularly effective

\(^1\)The topic labels of training documents are available for a supervised setting \([8, 12, 16, 46]\), and only topic names are provided for a weakly supervised setting \([15]\).

\(^2\)The terms “child nodes” and “sub-topics” are used interchangeably in this paper.

\(^3\)This term set can be automatically extracted from the input text corpus.

\(^4\)This problem setting presumes that a single representative term of a topic node (e.g., topic name) can be easily given as minimum guidance to complete the topic taxonomy.

\(^5\)Although a document can cover multiple topics, we assign it into the most relevant sub-topic to exploit textual information from the topic sub-corpus during the process.
for term clustering and similarity search, because it eliminates the discrepancy between its training procedure and practical usage.

The main objective of our text embedding is to maximize the probability (or likelihood) defined above, the objective of our text embedding in Equation (1) is summarized as follows.

\[
\mathcal{L}_{\text{emb}} = -\sum_{i \in T} \sum_{t_i \in \mathcal{K}_{c,i}} \sum_{t_j \in \text{cw}(t_i,d)} \sum_{d \in \mathcal{D}} \log p(t_j|t_i) - \log \sum_{t_i \in \mathcal{K}_{c,i}} p(t_i|\mathcal{K}) + \log \sum_{s_{c,i} \in \mathcal{S}} p(s_{c,i}|s_{c,i}),
\]

where \(\text{cw}(t_i,d)\) is the set of surrounding terms included in a local context window for a term \(t_i\) in a document \(d\).

Each probability (or likelihood) in Equation (1) is modeled by using the embedding vector of each term \(t_i\) and sub-topic \(s_{c,k}\) (denoted by boldface letters \(t_i\) and \(s_{c,k}\), respectively). \(p(t_i|s_{c,k})\) is defined by the von Mises-Fisher (vMF) distribution, which is a spherical distribution centered around the sub-topic embedding vector \(s_{c,k}\).

\[
p(t_i|s_{c,k}) = \text{vMF}(t_i; s_{c,k}; \kappa_{s_{c,k}}) = \exp(\kappa_{s_{c,k}} \cos(t_i,s_{c,k}))
\]

where \(\kappa_{s_{c,k}} \geq 0\) is the concentration parameter, \(C_{s_{c,k}}\) is the normalization constant, and the mean direction of each vMF distribution is modeled by the sub-topic embedding vector \(s_{c,k}\). The probability of term co-occurrence, \(p(t_j|t_i)\), as well as that of inter-topic correlation, \(p(s_{c,j}|s_{c,i})\), is simply defined by using the cosine similarity, i.e., \(p(t_j|t_i) \propto \exp(\cos(t_j,t_i))\) and \(p(s_{c,j}|s_{c,i}) \propto \exp(\cos(s_{c,j},s_{c,i}))\).

Combining a max-margin loss function [9, 22, 40, 41] with the probability (or likelihood) defined above, the objective of our text embedding in Equation (1) is summarized as follows.

\[
\begin{aligned}
&\sum_{d \in \mathcal{D}} \sum_{t_i \in \mathcal{K}_{c,i}} \sum_{t_j \in \text{cw}(t_i,d)} \left[t_i^T t_j - t_i^T t_j + m \right] + \sum_{s_{c,i} \in \mathcal{S}} \left[s_{c,i}^T t_i - m \right] \\
- &\sum_{s_{c,i} \in \mathcal{S}} \sum_{t_j \in \text{cw}(t_i,d)} \left(\log(C_{s_{c,k}} + \kappa_{s_{c,k}} t_i^T t_j) + 2 t_i^T s_{c,k} < m \right) \left(t_i^T s_{c,k} \right)
\end{aligned}
\]

s.t. \(\forall t_i, t_j \in T_{c,i}, \|t_i\| = \|t_j\| = 1, \kappa_{c} \geq 0 \),

where \([z]_+ = \max(z, 0)\) and \(m\) is the margin size. Similar to previous work on text embedding [27, 29], a term \(t_i\) has two independent embedding vectors as the target term \(t_i\) and the context term \(t_j\), and the negative terms \(t_j\) are randomly selected from the vocabulary.

4.3 Novelty Adaptive Text Clustering

4.3.1 Novel-topic term identification

The first step for novelty adaptive clustering is to determine whether each term can be assigned to one of the given sub-topics or not. In other words, it distinguishes the terms that are relevant to the given sub-topics, referred to as known-topic terms \(T_{c,k}^k\) from the terms that cannot be covered by them, referred to as novel-topic terms \(T_{c,n}^n\). Since the vMF distributions for the given sub-topics are already modeled in the embedding space (Section 4.2), they can be utilized for computing the confidence score that indicates how confidently each term belongs to one of the given sub-topics. Specifically, the sub-topic membership of a term is defined by the softmax probability of its distance from each vMF distribution (i.e., sub-topic embedding vector), and the maximum softmax value is used as the confidence [12, 16]. In the end, the novelty score of each term is defined as follows.

\[
\text{score}_{\text{nov}}(t) = 1 - \max_{s_{c,k} \in \mathcal{S}} \frac{\exp(\cos(t,s_{c,k})/T)}{\sum_{s_{c,k} \in \mathcal{S}} \exp(\cos(t,s_{c,k})/T)}
\]

where \(T\) is the temperature parameter that controls the sharpness of the distribution. Using the novelty threshold \(\tau_{\text{nov}}\), the terms for the node \(c\) is divided into the set of known-topic terms and novel-topic terms according to their novelty score.

\[
\begin{aligned}
T_{c,k}^k &= \{ t \mid \text{score}_{\text{nov}}(t) < \tau_{\text{nov}}, t \in T_{c,i} \} \\
T_{c,n}^n &= \{ t \mid \text{score}_{\text{nov}}(t) \geq \tau_{\text{nov}}, t \in T_{c,i} \}
\end{aligned}
\]
The novelty threshold is determined based on the number of the sub-topics K_c, i.e., $τ_{nov} = (1 - 1/K_c)^β$ where $β ≥ 1$ is the hyperparameter to control the boundary of known-topic terms. Note that a larger $β$ value incurs a smaller threshold value, which allows to identify a larger number of novel-topic terms, and vice versa. The novelty score ranges in $[0, 1]$ because of the softmax on similarities with K_c known sub-topics in Equation (4).

4.3.2 Spherical term clustering. TaxoCom discovers the term clusters which cover both the known and novel sub-topics. Namely, it assigns each known-topic term $t ∈ T_c$ into one of the existing sub-topics S_c, and simultaneously, assigns each novel-topic term $t ∈ T_c^n$ into one of the newly-identified novel sub-topics N_c. Finally, it outputs the sub-topic cluster assignment variables $\{z_t | t ∈ T_c\}$.

Known-topic term clustering. In terms of known-topic terms T_c, TaxoCom allocates each term into its closest known sub-topic in the embedding space; i.e., $z_t = \arg\max_{s_c,k ∈ S_c} \cos(t, s_c,k)$.

Novel-topic term clustering. Unlike known sub-topics whose embedding vector s_c,k and center term vector $t_{c,k}$ are available for clustering, there does not exist any information about novel sub-topics. For this reason, TaxoCom performs K_c^n-means spherical clustering [6] on the novel-topic terms T_c^n, thereby obtaining the mean vector and center term of each cluster. The number of novel sub-topic clusters K_c^n is determined to balance the semantic specificity among clusters, which will be discussed in Section 4.3.4.

4.3.3 Anchor term selection. The initial term clustering results from Section 4.3.2 contain the cluster assignment variable of all the terms, but not every term of a topic necessarily belongs to one of its sub-topics. For example, the term game in the topic node sports does not belong to any of its child nodes, representing specific sport sub-categories, such as tennis, baseball, and soccer. Thus, it is necessary to carefully mine the set of anchor terms, which are apparently relevant to each sub-topic s_c,k.

To this end, TaxoCom defines the significance score of a term by considering both its semantic relevance to each sub-topic cluster, denoted by $rel(t, s_c,k)$, and the representativeness in the corresponding sub-corpus $D_{s_c,k}$, denoted by $rep(t, s_c,k)$.

$$\text{score}_{sig}(t) = \max_{s_c,k ∈ S_c \cup N_c} \left[\text{rel}(t, s_c,k) \times \text{rep}(t, s_c,k) \right].$$

To be specific, the semantic relevance is computed by the cosine similarity between their embedding vectors, while the representativeness is obtained based on the term frequency in the sub-corpus. By doing so, it can make use of both information from the embedding space and the term occurrences.

$$\text{rel}(t, s_c,k) = \cos(t, s_c,k)$$

$$\text{rep}(t, s_c,k) = (\text{int}(t, s_c,k) \times \text{dis}(t, s_c,k) \times \text{pop}(t, s_c,k))^{1/3}. \tag{7}$$

For mining the representativeness from the sub-corpus $D_{s_c,k}$, TaxoCom collects the documents by aggregating the cluster assignment of their terms based on the TF-idf weights. That is, a document chooses its sub-topic cluster based on how many terms are assigned
to each sub-topic cluster considering their importance as well. The cluster assignment of a document z_d is defined as follows.

$$z_d = \arg\max_{s_c,k ∈ S_c \cup N_c} \sum_{t ∈ T_c} \|z_t = s_c,k\| \cdot \text{tf}(t, d) \cdot \text{idf}(t). \tag{8}$$

Motivated by context-aware semantic online analytical processing (CaseOLAP) [38], the representativeness is defined as a function of three criteria: (i) Integrity - A term with high integrity refers to a meaningful and understandable concept. This score can be simply calculated by the state-of-the-art phrase mining technique, such as SegPhrase [17] and AutoPhrase [32]. (ii) Distinctiveness - A distinctive term has relatively strong relevance to the sub-corpus of the target sub-topic, distinguished from its relevance to other sub-corpora of sibling sub-topics. The distinctiveness score is defined by using the BM25 relevance measure. $\text{dis}(t, s_c,k) = \exp(\text{BM25}(t, D_{s_c,k}))/ (1 + \sum_{s_c,k' ∈ S_c \cup N_c} \exp(\text{BM25}(t, D_{s_c,k'})))$.

(iii) Popularity - A term with a high popularity score appears more frequently in the sub-corpus of the target sub-topic than the others, $\text{pop}(t, s_c,k) = \log(\text{tf}(t, D_{s_c,k}) + 1)/\log(\sum_{t' \in T_c} \text{tf}(t', D_{s_c,k}))$. Finally, TaxoCom only keeps the anchor terms whose significance score is larger than the threshold $τ_{sig}$, after filtering out the general terms that are less informative to represent each sub-topic.

$$T_{s_c,k} = \{t | z_t = s_c,k, \text{score}_{sig}(t) ≥ τ_{sig}, ∀ t ∈ T_c\}. \tag{9}$$

4.3.4 Novel sub-topic cluster refinement. Using the set of anchor terms, TaxoCom estimates the vMF distribution (i.e., mean vector and concentration parameter) for each sub-topic cluster in the embedding space. This final step is designed to choose the proper number of novel clusters K_c^n (in Section 4.3.2), with the help of the estimated concentration values indicating the semantic specificity of each sub-topic cluster. Formally, it selects the K_c^n value so that it can minimize the standard deviation of all the concentrations, i.e., $\arg\min_{K_c^n} \text{std}(\{x_{s_c,k} | ∀ s_c,k ∈ S_c \cup N_c\})$. In this process, to measure the standard deviation based on the identified novel sub-topics N_c for each K_c^n value, a part of the clustering step (from Section 4.3.2 to 4.3.4) are repeated. Notably, TaxoCom is capable of automatically finding the total number of sub-topics, by harmonizing the semantic specificity of novel sub-topics with that of known sub-topics, whereas unsupervised methods for topic taxonomy construction rely on a user’s manual selection.

5 EXPERIMENTS

5.1 Experimental Settings

5.1.1 Datasets. For our experiments, we use two real-world datasets collected from different domains, NYT3 and arXiv3, and they have a two-level hierarchy of topic classes. Thus, we regard the hierarchies as the ground-truth provided by a human curator, and use them to evaluate the completeness of topic taxonomies. For both datasets, the number of documents for each topic class is not balanced, and AutoPhrase [32] is used to tokenize raw texts of each document. The statistics are summarized in Table 1.

To investigate the effect of an initial topic hierarchy, we consider three scenarios using different partial topic hierarchies with different completeness. Each partial hierarchy is generated by randomly

3The news articles are crawled by using https://developer.nytimes.com/

3The abstracts of arXiv papers are crawled from https://arxiv.org/
5.2 Quantitative Evaluation

5.2.1 Human evaluation on the quality of topic taxonomy. First, we assess the quality of topic taxonomies by using human domain knowledge. To this end, we recruit 10 doctoral researchers as evaluators, and ask them to perform two tasks that examine the following aspects of a topic taxonomy.\(^\text{10}\) (i) Term coherency indicates how strongly the terms in a topic node are semantically coherent. Similar to previous topic model evaluations [33, 43], the top-10 terms of each topic node are presented to human evaluators, and they are requested to identify how many terms are relevant to their common topic (or center term). The coherency is defined by the ratio of the number of relevant terms over the total number of presented terms. (ii) Topic completeness quantifies how completely the set of topic nodes covers the ground-truth topics. For each level, every topic name in the ground-truth topic hierarchy is given as a query, and the set of output topic nodes becomes the support set. Human evaluators are asked to rate the score \(\epsilon\) \([0,1]\) how confidently the query belongs to one of the topics in the support set (i.e., similarity with the semantically closest support topic). The completeness is defined by the average score for all the queries.

In Table 3, TaxoCom significantly outperforms all the baselines in terms of both the measures.\(^\text{11}\) For topic completeness, the weakly supervised methods beat the unsupervised methods by a large margin, because their output topic taxonomy at least covers all the topics in the given topic hierarchy. Notably, TaxoCom gets higher scores than JoSH and CoRel, which implies that it more accurately discovers ground-truth topics deleted from the full hierarchy. In addition, TaxoCom is ranked first for the term coherency, as it captures strongly the terms in a topic node are semantically coherent. Similariy the terms in a topic node are semantically coherent. Similariy the terms in a topic node are semantically coherent.

5.2.2 Weakly supervised document classification using topic taxonomy. Next, we indirectly evaluate each output topic taxonomy by making use of a downstream task that takes a topic taxonomy as its input. We compare the performance of WeSHClass [24], a weakly supervised hierarchical text classifier trained by using only unlabeled documents and the hierarchy of target classes (with the class-specific keywords), rather than document-level class labels. Specifically, we use the topic taxonomy obtained by TaxoCom and the baseline methods as the hierarchy of target classes, and its top-10 topic terms serve as the class-specific keywords. We measure the

Table 1: The statistics of the datasets.

Corpus	Avg-Length	#Topics	#Documents	#Terms
NYT	739.8	5 → 26	13,081	25,245
arXiv	123.5	3 → 48	230,018	24,148

Table 2: The topic classes deleted from the original topic hierarchy. \(\rightarrow\) denotes all the sub-topics.

\(\mathcal{H}_a\)	\(\mathcal{H}_b\)	\(\mathcal{H}_c\)
arts→movies	business→stocks	arts→music
politics→abortion,budget,insurance	math→CA,DS,GR,RT	politics→gun control,military
sports→baseball,hockey	physics→chem-ph,gen-ph	science(→ *)
arts→music	cs→AL, CV, DC, GT, IT	cs(→ *)
physics→atom-ph,flu-dyn	math→CO,DG,PR	math→CO,DG,PR

\(^{10}\)They are allowed to use web search engines when encountering unfamiliar terms.

\(^{11}\)We first test the inter-rater reliability on ranks of the methods. We obtain the Kendal coefficient of 0.97/0.91 (NYT) and 0.94/0.89 (arXiv) respectively for the coherence and completeness, which indicates the consistent assessment of the 10 evaluators.
Table 5: Performance of the weakly supervised document classifier (i.e., WeSHClass [24]), trained by using the output topic taxonomy of each method.

Given \(\mathcal{H} \)	Methods	NYT	arXiv				
	NMI	MacroF1	MicroF1	NMI	MacroF1	MicroF1	
\(\mathcal{H}_a \)	hLDA	0.4886	-	-	0.2348	-	
	TaxoGen	0.7198	-	-	0.4307	-	
\(\mathcal{H}_b \)	JoSH	0.6815	0.4251	0.6334	0.3172	0.1115	0.1389
	CoRel	0.7074	0.5036	0.6345	0.4141	0.2927	0.3301
	TaxoCom	0.7630	0.6205	0.7980	0.4391	0.3494	0.3928
\(\mathcal{H}_c \)	JoSH	0.6099	0.3086	0.4339	0.3753	0.1446	0.1767
	CoRel	0.6524	0.3958	0.5260	0.4449	0.3196	0.3702
	TaxoCom	0.7520	0.5414	0.7738	0.4818	0.3795	0.4428

Table 4: Performance for document-level novelty detection.

Given \(\mathcal{H} \)	LE	DE	NYT	arXiv					
	P	R	F1	P	R	F1			
\(\mathcal{H}_a \)	✔	✔	✔	0.5833	0.6483	0.6141	0.2962	0.6440	0.4058
\(\mathcal{H}_b \)	✔	✔	✔	0.6355	0.6298	0.6526	0.4235	0.5668	0.4848
\(\mathcal{H}_c \)	✔	✔	✔	0.7033	0.6924	0.6978	0.4715	0.6664	0.5523
	✔	✔	✔	0.7878	0.7176	0.7511	0.5510	0.8424	0.6662
	✔	✔	✔	0.7308	0.5719	0.6417	0.2743	0.5514	0.3864
	✔	✔	✔	0.7508	0.5725	0.6496	0.2994	0.5824	0.3955
	✔	✔	✔	0.8082	0.5806	0.6758	0.3679	0.5330	0.4353
	✔	✔	✔	0.8470	0.7852	0.8149	0.5399	0.5042	0.5214
	✔	✔	✔	0.4900	0.6930	0.5144	0.4723	0.8315	0.6024
	✔	✔	✔	0.5318	0.7358	0.6174	0.4321	0.7925	0.5593
	✔	✔	✔	0.4532	0.7210	0.5566	0.5721	0.8527	0.6848
	✔	✔	✔	0.8761	0.7798	0.8251	0.6222	0.8808	0.7293

normalized mutual information (NMI) between predicted document topic labels and ground-truth ones in terms of clustering, as well as MacroF1 and MicroF1 in terms of classification.12

Table 4 reports that WeSHClass achieves the best NMI and F1 scores when being trained using the output topic taxonomy of TaxoCom. The final classification performance of WeSHClass is mainly affected by (i) the keyword (i.e., top-10 terms) coverage for each topic class and (ii) the topic coverage for the entire text corpus. As analyzed in Section 5.2.1, TaxoCom generates more complete topic taxonomies compared to JoSH and CoRel, which helps WeSHClass to learn the discriminative features for a larger number of ground-truth topic classes in each dataset. Besides, since the topic terms retrieved by TaxoCom captures additionally the representativeness in the topic-relevant documents, they become more informative and accurate class-specific keywords for training WeSHClass, which eventually leads to better performances. In conclusion, the higher quality taxonomy of TaxoCom can provide much more useful supervision for the downstream task on unlabeled documents.

12In case of topic taxonomies generated by weakly supervised methods, to measure the F1 scores based on document-level topic class labels, we manually find the one-to-one mapping from identified novel topic nodes to the deleted ground-truth topic classes.

5.2.3 Binary discrimination between known-topic and novel-topic documents. For each partial topic hierarchy, we provide an ablation analysis on the novelty detection performance of TaxoCom, to validate the effectiveness of the embedding techniques: local embedding (LE) and keyword-guided discriminative embedding (DE). Note that there do not exist term-level novelty labels, we instead use document-level novelty labels indicating whether a document belongs to one of the deleted ground-truth topic classes or not. In other words, we indirectly evaluate the capability of novel topic detection based on the topic assignment of documents, obtained by Equation (8). We consider precision, recall, and F1 score as the evaluation metrics. For a fair comparison, we select the optimal hyperparameter value \(\beta \in \{1.5, 2.0, 2.5, 3.0\} \) to determine the novelty threshold (in Equation (4)) of the ablated methods.

In Table 5, TaxoCom that adopts both LE and DE performs the best for distinguishing novel-topic documents from known-topic counterparts. Particularly, DE considerably improves the novelty detection performance, by collecting the given topic names from the sub-tree rooted at each node and utilizing them as the keywords for the topic, as discussed in Section 4.2.2. In summary, LE and DE optimize the embedding space further discriminative among known sub-topics, and it is helpful to enhance the binary discrimination between known and novel sub-topics as well.

5.3 Qualitative Analysis

5.3.1 Case study on topic taxonomy. We qualitatively examine the output taxonomy of TaxoCom. Figure 4 shows that TaxoCom expands the topic taxonomy while preserving the high-level design of the given topic hierarchy \(\mathcal{H}_c \). To be specific, in case of NYT, it successfully identifies not only the first-level missing topic \(\text{science} \) but also the second-level ones including \(\text{music}, \text{football}, \text{and soccer} \). We observe that several center terms of novel topic nodes do not exactly match with the ground-truth topic names, such as \(\text{spacecraft-cosmos} \) (NYT), \(\text{data processing-computer science} \) (arXiv), and \(\text{fluid mechanics-fluid dynamics} \) (arXiv). Nevertheless, it is obvious that they represent the same conceptual topic of some documents in the text corpus, in light of the terms assigned to them.
Figure 4: The output topic taxonomy of TaxoCom, where H_E is given as the initial topic hierarchy. Double-lined boxes represent the newly inserted topic nodes. Dataset: NYT (Upper) and arXiv (Lower).

Figure 5: Topic terms retrieved by CoRel and TaxoCom.

Furthermore, we compare the topic nodes (and their anchor terms) identified by TaxoCom and CoRel. In Figure 5, several topic terms of CoRel are too general to belong to the topic (marked in red), whereas TaxoCom selectively filters the topic-relevant terms by taking advantage of topic sub-corpus. In Table 6, CoRel often finds redundant topics semantically overlapped with a known sub-topic (marked in black), whereas TaxoCom selectively filters the topic-relevant terms identified by TaxoCom and CoRel. In Figure 5, several topic terms of CoRel are too general to belong to the topic (marked in red), whereas TaxoCom selectively filters the topic-relevant terms identified by TaxoCom and CoRel. In Figure 5, several topic terms of CoRel are too general to belong to the topic (marked in red), whereas TaxoCom selectively filters the topic-relevant terms identified by TaxoCom and CoRel. In Figure 5, several topic terms of CoRel are too general to belong to the topic (marked in red), whereas TaxoCom selectively filters the topic-relevant terms identified by TaxoCom and CoRel. In Figure 5, several topic terms of CoRel are too general to belong to the topic (marked in red), whereas TaxoCom selectively filters the topic-relevant terms identified by TaxoCom and CoRel. In Figure 5, several topic terms of CoRel are too general to belong to the topic (marked in red), whereas TaxoCom selectively filters the topic-relevant terms identified by TaxoCom and CoRel. In Figure 5, several topic terms of CoRel are too general to belong to the topic (marked in red), whereas TaxoCom selectively filters the topic-relevant terms identified by TaxoCom and CoRel. In Figure 5, several topic terms of CoRel are too general to belong to the topic (marked in red), whereas TaxoCom selectively filters the topic-relevant terms identified by TaxoCom and CoRel. In Figure 5, several topic terms of CoRel are too general to belong to the topic (marked in red), whereas TaxoCom selectively filters the topic-relevant terms identified by TaxoCom and CoRel. In Figure 5, several topic terms of CoRel are too general to belong to the topic (marked in red), whereas TaxoCom selectively filters the topic-relevant terms identified by TaxoCom and CoRel. In Figure 5, several topic terms of CoRel are too general to belong to the topic (marked in red), whereas TaxoCom selectively filters the topic-relevant terms identified by TaxoCom and CoRel. In Figure 5, several topic terms of CoRel are too general to belong to the topic (marked in red), whereas TaxoCom selectively filters the topic-relevant terms identified by TaxoCom and CoRel. In Table 6, CoRel often finds redundant topics semantically overlapped with a known sub-topic (marked in black), whereas TaxoCom selectively filters the topic-relevant terms identified by TaxoCom and CoRel.

5.3.2 Visualization of discriminative embedding space. We also visualize our spherical embedding space for the NYT dataset, when H_E is given as the partial topic hierarchy. Figure 3 shows the embedding space plotted by t-SNE [39] for (i) the root node and (ii) the sports node. In the left figures, the anchor terms assigned in multiple sub-topics are marked in different colors, while each center term and the non-anchor terms are plotted as black asterisks and white circles, respectively. We annotate the center term of the novel clusters that correspond to the novel topic nodes (i.e., science, football, and soccer) presented in Section 5.3.1. On the other hand, the right figures illustrate the binary discrimination between known-topic and novel-topic terms, determined based on the novelty score (Equation (4)). Our confidence-based novelty score is effective to detect novel-topic terms (and their dense clusters) clearly distinguishable from known-topic terms in the embedding space.

6 CONCLUSION

This paper studies a new problem, named topic taxonomy completion, which aims to complete the topic taxonomy initiated with a user-provided partial hierarchy. The proposed TaxoCom framework performs the hierarchical discovery of novel sub-topic clusters; it
employs the text embedding and clustering tailored for effective discrimination between known sub-topics and novel sub-topics. The extensive experiments show that TaxoCom successfully outputs the high-quality topic taxonomy which accurately matches with the ground-truth topic hierarchy.

In future work, we would like to enhance the center term of novel topic nodes so that it can best summarize the high-level concepts of its sub-topic clusters. To this end, it would be interesting to (i) incorporate relation extraction techniques and (ii) employ a pre-trained language model; this could be a bridge technique between an entity taxonomy and a topic taxonomy, with a comprehensive understanding of entities, relations, documents, and topics.

ACKNOWLEDGMENTS

This work was supported by the IITP grant (No. 2018-0-00584, 2019-0-01906), the NRF grant (No. 2020R1A2B5B03097210), the Technology Innovation Program (No. 20014926), and the Korea Health Technology R&D Project (HI18C383). It was also supported by US DARPA KAIROS Program (No. FA8750-19-2-1004), SocialSim Program (No. W911NF-17-C-0099), INCAS Program (No. HR001121C0165), National Science Foundation (IIS-19-56151, IIS-19-001906), the NRF grant (No. 2020R1A2B5B03097210), and the Korea SocialSim Program (No. W911NF-17-C-0099), and the Korea Health Technology R&D Project (HI18C383). This work was supported by the IITP grant (No. 2018-0-00584, 2019-0-01906), the NRF grant (No. 2020R1A2B5B03097210), the Technology Innovation Program (No. 20014926), and the Korea Health Technology R&D Project (HI18C383). This work was supported by the IITP grant (No. 2018-0-00584, 2019-0-01906), the NRF grant (No. 2020R1A2B5B03097210), the Technology Innovation Program (No. 20014926), and the Korea Health Technology R&D Project (HI18C383). This work was supported by the IITP grant (No. 2018-0-00584, 2019-0-01906), the NRF grant (No. 2020R1A2B5B03097210), the Technology Innovation Program (No. 20014926), and the Korea Health Technology R&D Project (HI18C383). This work was supported by the IITP grant (No. 2018-0-00584, 2019-0-01906), the NRF grant (No. 2020R1A2B5B03097210), the Technology Innovation Program (No. 20014926), and the Korea Health Technology R&D Project (HI18C383). This work was supported by the IITP grant (No. 2018-0-00584, 2019-0-01906), the NRF grant (No. 2020R1A2B5B03097210), the Technology Innovation Program (No. 20014926), and the Korea Health Technology R&D Project (HI18C383). This work was supported by the IITP grant (No. 2018-0-00584, 2019-0-01906), the NRF grant (No. 2020R1A2B5B03097210), the Technology Innovation Program (No. 20014926), and the Korea Health Technology R&D Project (HI18C383). This work was supported by the IITP grant (No. 2018-0-00584, 2019-0-01906), the NRF grant (No. 2020R1A2B5B03097210), the Technology Innovation Program (No. 20014926), and the Korea Health Technology R&D Project (HI18C383). This work was supported by the IITP grant (No. 2018-0-00584, 2019-0-01906), the NRF grant (No. 2020R1A2B5B03097210), the Technology Innovation Program (No. 20014926), and the Korea Health Technology R&D Project (HI18C383). This work was supported by the IITP grant (No. 2018-0-00584, 2019-0-01906), the NRF grant (No. 2020R1A2B5B03097210), the Technology Innovation Program (No. 20014926), and the Korea Health Technology R&D Project (HI18C383). This work was supported by the IITP grant (No. 2018-0-00584, 2019-0-01906), the NRF grant (No. 2020R1A2B5B03097210), the Technology Innovation Program (No. 20014926), and the Korea Health Technology R&D Project (HI18C383).
A SUPPLEMENTARY MATERIAL

A.1 Pseudo-code of TaxoCom

Algorithm 1 describes the overall process of our framework for topic taxonomy completion. Starting from the root node (Line 2), TaxoCom recursively performs text embedding and clustering for each topic node (Lines 5 and 6) to find out multiple sub-topic term clusters. Based on the clustering result, it expands the current topic taxonomy by inserting novel sub-topic nodes (Line 8). In the end, TaxoCom outputs the complete topic taxonomy (Line 10).}

\begin{algorithm}
\caption{The overall process of TaxoCom.}
\begin{algorithmic}[1]
\STATE $H \leftarrow H^0$
\STATE $q \leftarrow \text{queue}((\{H^0\}, \text{rootNode}, T, D))$
\WHILE {not q.isEmpty()}
\STATE $(c, T_c, D_c) \leftarrow q.\text{pop}()$ \COMMENT{Current node}
\STATE $E_c \leftarrow \text{EMBEDDING}(T_c, D_c; H)$ \COMMENT{Section 4.2}
\STATE $R_c \leftarrow \text{CLUSTERING}(E_c, T_c, D_c; H)$ \COMMENT{Section 4.3}
\FOR {$(s, T_s, D_s) \in R_c$}
\STATE $H.\text{updateChildNodes}(c, (s, T_s, D_s))$
\STATE $q.\text{push}((s, T_s, D_s))$
\ENDFOR
\ENDWHILE
\STATE \text{return} H
\end{algorithmic}
\end{algorithm}

A.2 Implementation Details

We implement the main recursive process (Section 4.1) and the novelty adaptive clustering (Section 4.3) by using Python, and the locally discriminative embedding (Section 4.2) is written in C for efficient optimization based on multi-threaded parallel computation. For the other baselines, we employ the official author codes of hLDA13, TaxoGen14, JoSH15, and CoRel16.

For \textit{novelty adaptive clustering} of TaxoCom, we set $\beta = 1.5, 3.0$ (for the first-level and second-level topic nodes, respectively) in the novelty threshold τ_{nov} (Equation (4)), and the significance threshold $\tau_{\text{sig}} = 0.3$ (Equation (9)), without further tuning for each dataset or initial topic hierarchy. For \textit{locally discriminative embedding} of TaxoCom, we set the margin $M = 0.3$ (Equation (3)), and the number of neighbor terms $M = 100$ (Section 4.2.1) to retrieve the sub-corpus which are used for tuning the embedding space, i.e., top-100 closest term of each center term.

For all the embedding-based methods (i.e., TaxoGen, JoSH, CoRel, and TaxoCom) that optimize the Euclidean space or spherical space, we fix the number of negative terms (for each positive term pair) to 2 during the optimization. For hLDA, we set (i) the smoothing parameter over document-topic distributions $\alpha = 0.1$, (ii) the concentration parameter in the Chinese Restaurant Process $\gamma = 1.0$, and (iii) the smoothing parameter over topic-word distributions $\eta = 1.0$. For TaxoGen, we follow the parameter setting provided by [47]; i.e., the number of child nodes is set to 5.

A.3 Constructed Topic Taxonomy

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{taxonomy.png}
\caption{The output taxonomy of TaxoCom, where \mathcal{H}_0 is given as the initial topic hierarchy. Double-lined boxes represent the novel topic nodes.}
\end{figure}

Figures 6 and 7 show the topic taxonomies generated by TaxoCom, where \mathcal{H}_a and \mathcal{H}_b are given as the initial topic hierarchy, respectively.17 The center terms (i.e., topic names) and topic terms are presented without any post-processing such as manual filtering or selection that requires human labor. Due to the space limit, the figures omit most of the second-level known topic nodes (i.e., the topics already included in \mathcal{H}_a or \mathcal{H}_b), rather focus on newly inserted novel topic nodes. Note that the initial topic hierarchies are generated by random node drop of the ground-truth topic hierarchy: a single first-level topic (in case of \mathcal{H}_a) and a portion of second-level topics (in case of \mathcal{H}_b) is deleted, as listed in Table 2.

We can observe that TaxoCom effectively detects the deleted topic nodes and places them in the right position within the topic taxonomy. In other words, the output taxonomies more completely cover the topic structure of each dataset, compared to the initial topic hierarchy, \mathcal{H}_a or \mathcal{H}_b. The recursive clustering process of TaxoCom implicitly forces the hierarchical semantic relationship of parent-child node pairs, while clearly distinguishing novel sub-topic clusters from known sub-topic clusters based on the score of how confidently each term belongs to one of the known sub-topics (Equation 4). As discussed in Section 5.3.1, some center terms of identified novel topic nodes do not match with the ground-truth topic names. In spite of the minor mismatch, we can easily figure...

17The output taxonomies started from \mathcal{H}_b is presented in Figure 4.
Figure 7: The output taxonomy of TaxoCom, where \mathcal{H}_b is given as the initial topic hierarchy. Double-lined boxes represent the novel topic nodes.

out the one-to-one mapping from the novel topics to the deleted ground-truth topics; for example, films-movies, stock market-stocks, insurer-insurance (NYT), and natural sciences-physics, accelerator-accelerator physics, atoms-atomic physics (arXiv).