A Missed Opportunity to Prevent Subsequent Fractures Confirmed through Trends in the Treatment of Osteoporosis in Patients with Distal Radius and Hip Fractures

CURRENT STATUS: POSTED

Dae-Geun Kim
Soonchunhyang University Gumi Hospital
kuroo25@schmc.ac.kr
Corresponding Author
ORCiD: https://orcid.org/0000-0001-6355-4105

Hae-Dong Jang
Department of Orthopedic Surgery, Soonchunhyang University Bucheon Hospital

Gi-Won Seo
Department of Orthopedic Surgery, Soonchunhyang University Gumi Hospital

Hyun-Uk Lee
Department of Orthopedic Surgery, Soonchunhyang University Gumi Hospital

Hye-Won Nam
Data Science Team, Hanmi Pharm. Co., Ltd.

DOI:
10.21203/rs.2.21943/v1

SUBJECT AREAS
Orthopedics

KEYWORDS
Treatment, Radius fractures, Hip fractures, Osteoporosis
Abstract

Background

A history of osteoporotic fracture (OF) is strongly associated with subsequent OFs. It is important to treat osteoporosis following OFs to prevent subsequent fractures. A distal radius fracture (DRF) is the most common type of OF in people in their 50s and could be a hallmark of future OFs. We compared the rate of osteoporosis treatment within 6 months post-DRF with hip fracture (HF).

Methods

We used data from the Korean Health Insurance Review and Assessment Service nationwide claims database from 2010 to 2016. International Classification of Diseases 10th revision (ICD-10) codes and procedures codes were used to identify patients older than 50 years with newly diagnosed DRFs and HFs. Then the rate of prescription and kinds of osteoporosis medications in these patients were analysed. We also compared the trends in both groups using the Cochran–Armitage trend test.

Results

A database search identified 77,209 DRFs and 72,044 HFs in patient aged 50 years or older from 2011 to 2016. Insufficient DRF and HF patients had osteoporosis medications (17.2% and 34.5%) and the numbers of osteoporosis medication for both DRFs and HFs decreased significantly annually (P <0.0001). Bisphosphonates were used most often, although the use of selective oestrogen receptor modifiers (SERMs) increased gradually in both groups.

Conclusions

Clinicians who treat OFs should treat osteoporosis to prevent subsequent fractures and pay more attention to DRF patients who fail to get proper osteoporosis treatment.

Background

Osteoporosis is an increasing problem, particularly in the elderly [1, 2]. The elderly population growth rate is extremely high in Korea, where the life expectancy of those born in 2015 is close to 85 years for women and 80 for men [3]. Hip fractures (HFs) have high mortality and morbidity and the future [4]. HF prediction model for Korea shows that the elderly HF rate will increase 1.4 times by 2025 [5]. Therefore, physicians who treat osteoporotic fracture (OF) patients should be concerned about
treated osteoporosis after OFs. That is one of the reasons for the fracture liaison service (FLS). Half of all potential HFs could be new and prior fragility fractures, affecting about 16% of the population [6].

The FLS defined adequate treatment and services for patients over 50 years old with fragility fractures, enabling systematic identification and decreasing the risk for subsequent OFs [7].

A distal radius fracture (DRF) is the earliest type of OFs in the fracture cascade and is the most common OF in those in their 50s [8, 9]. Low-energy DRFs are hallmarks of osteoporosis. Therefore, proper management of osteoporosis after DRF is the first step in preventing subsequent OFs in the FLS concept.

Previously, we found that only one-fourth of DRF patients underwent diagnostic examinations for osteoporosis and the annual number of osteoporosis examinations increased slightly, but insignificantly [10]. We wondered how many patients received osteoporosis medication after a DRF compared to HF patients.

In this study, we evaluated the prescription rate and kinds of osteoporosis medications, as proper management of osteoporosis, among Korean patients with DRFs and HFs from 2011 to 2016.

Methods
We used healthcare utilization data from the Korean Health Insurance Review and Assessment Service (HIRA) nationwide claims database, which covers about 97% of the Korean population [11, 12]. The International Classification of Diseases 10th revision (ICD-10) codes and procedure codes were used to identify patients over 50 years old with newly diagnosed DRFs and HFs from 2010 to 2016, as in past studies.

The ICD-10 codes and procedure codes used for DRFs and HFs were as follows. For HRs, the diagnosis codes were S72.0 (fracture of neck of femur) and S72.1 (pertrochanteric fracture) and seven procedures were used: open reduction of fractured extremity-femur, closed pinning-femur, external fixation-pelvis/femur, closed reduction of fractured extremity-pelvis/femur, bone traction, skin traction, and hemiarthroplasty-hip. For DRFs, the diagnosis codes were S52.5 (fracture of lower end of radius) and S52.6 (fracture of lower end of both ulna and radius) and six procedures were used: open reduction of ulna or radius, open reduction of ulna and radius, closed pinning of ulnar or radius,
closed pinning of ulnar and radius, external fixation of forearm bone, and closed reduction of forearm bone.

We included only one record per patient and set the wash-out period to 1 year (2010). Exclusion criteria were multiple fractures, which means high-energy trauma, Paget disease, cancers, and those who had received an osteoporosis medication before the fracture.

The prescription rate and kinds of osteoporosis medications after DRFs and HFs were analysed with using the codes within 6 months post-fracture. We divided these osteoporosis medications into types, such as bisphosphonates and SERMs. We did not include parathyroid hormone or denosumab because these drugs were not covered by the Korean HIRA at that time. We compared the annually sorted result of HFs and DRFs.

Baseline characteristics were analysed with the χ^2 test. We used the Cochran–Armitage trend test to examine trends in osteoporosis diagnosis. The statistical analyses were performed using SAS for Windows (ver. 9.4; SAS Institute, Cary, NC, USA).

Results
The HIRA database search revealed 453,231 HFs from 2010 to 2016; of these, 279,034 were excluded due to duplicated data, death, or patient age under 50 years. After applying the 1-year washout period, 160,487 HFs remained, of which 72,044 that met all of the inclusion criteria were included in the final analyses (Fig. 1). Similarly, we obtained 702,001 DRFs from 2010 to 2016 and 374,073 were excluded for the aforementioned reasons. Applying the washout period, 297,911 DRFs remained, of which 77,209 that met all of the inclusion criteria were included (Fig. 2).

The number of DRFs treated annually decreased over time, from 15,206 in 2011 to 10,778 in 2016 and a similar decreasing trend was observed in HFs, from 14,915 in 2011 to 9,682 in 2016. Of the 77,209 DRF cases, 13,242 (17.2%) received osteoporosis medication within 6 months post-fracture, whereas 24,877 (34.5%) of the 72,044 HF cases received osteoporosis medication. From 2011 to 2016, the prescription rates of osteoporosis medication for both HFs and DRFs decreased significantly ($P < 0.0001$) (Table 1).
Table 1
The prescription rates for osteoporosis medications in hip and distal radius fracture patients older than 50 years within 6 months after the fracture, from 2011 to 2016

Year	Hip fractures	Distal radius fractures								
	Total	Medication	No Medication	P-value	Total	Medication	No Medication	P-value		
2011	14,915	5,228 (35.1%)	9,687 (64.9%)	< 0.0001	15,206	2,754 (18.1%)	12,452 (81.9%)	< 0.0001		
2012	13,822	4,945 (35.8%)	8,877 (64.2%)	14,617	2,660 (18.2%)	11,957 (81.8%)	15,206	2,754 (18.1%)	12,452 (81.9%)	< 0.0001
2013	12,335	4,372 (35.4%)	7,963 (64.6%)	14,061	2,419 (17.2%)	11,642 (82.8%)	15,206	2,754 (18.1%)	12,452 (81.9%)	< 0.0001
2014	11,043	3,744 (33.9%)	7,299 (66.1%)	12,081	1,996 (16.5%)	10,085 (83.5%)	15,206	2,754 (18.1%)	12,452 (81.9%)	< 0.0001
2015	10,247	3,513 (34.3%)	6,734 (65.7%)	10,466	1,744 (16.7%)	8,722 (83.3%)	15,206	2,754 (18.1%)	12,452 (81.9%)	< 0.0001
2016	9,682	3,075 (31.8%)	6,607 (68.2%)	10,778	1,669 (15.5%)	9,109 (84.5%)	15,206	2,754 (18.1%)	12,452 (81.9%)	< 0.0001
Total	72,044	24,877 (34.5%)	47,167 (65.5%)	77,209	13,242 (17.2%)	63,967 (82.8%)	15,206	2,754 (18.1%)	12,452 (81.9%)	< 0.0001

*Exclusive criteria: multiple fractures, Paget disease, cancer, or osteoporosis treatment before the fracture.
*Cochran–Armitage trend test

Tables 2 and 3 show the proportions of patients who received osteoporosis medications within 6 months post-fracture in both HFs and DRFs, according to their baseline characteristics. Females and older patients were more likely to receive medications than males and younger patients. The highest rate for both HFs and DRFs was in those aged 70 to 79 years (40.9% and 30.0%, respectively). More HF patients were prescribed osteoporosis medications in tertiary hospitals (44.9%), while the DRF patients who were treated in hospitals (20.7%) received more medications than those seen at other medical facilities.

Table 2
Baseline characteristics of DRFs from 2011 to 2016

	Medication (n = 11,672)	No Medication (n = 65,537)	Total (n = 77,209)	P-value
Sex				
Male	740 (3.8%)	12,502 (21.6%)	19,236	< 0.0001
Female	12,932 (66.2%)	43,035 (78.4%)	56,967	
Age (y)				
50–59	2,742 (8.4%)	4,370 (18.8%)	7,112	< 0.0001
60–69	4,175 (30.0%)	8,920 (71.5%)	13,095	
70–79	1,751 (28.5%)	4,387 (71.5%)	6,138	
80–89	204 (18.9%)	878 (81.1%)	1,082	
≥ 90				
Type of health insurance	12,352 (16.8%)	61,066 (83.2%)	73,418	< 0.0001
Medical care insurance system	890 (23.5%)	2,901 (76.5%)	3,791	
Medical benefit system	662 (16.2%)	4,239 (23.5%)	4,889 (24.9%)	< 0.0001
Type of medical institute	Tertiary hospital	5,232 (20.7%)	20,066 (79.3%)	
General hospital	3,133 (11.7%)	23,389 (88.3%)	26,522	
Hospital Clinic	4 (12.9%)	27 (87.1%)	31	
Public health care centre	4 (12.9%)	27 (87.1%)	31	

*Exclusive criteria: multiple fractures, Paget disease, cancer, or osteoporosis medication before the fracture.
Table 3
Baseline characteristics of HFs from 2011 to 2016

	Medication (n = 24,877)	No Medication (n = 47,167)	Total (n = 72,044)	P-value
Sex				
Male	5,070 (18.5%)	22,296 (81.5%)	27,366	<0.0001
Female	19,807 (44.3%)	24,871 (55.7%)	44,678	
Age (y)				
50–59	1,028 (13.6%)	6,547 (86.4%)	7,575	<0.0001
60–69	2,687 (26.9%)	7,299 (73.1%)	9,986	
70–79	9,114 (40.9%)	13,165 (59.1%)	22,279	
80–89	2,075 (31.0%)	4,618 (69.0%)	6,693	
≥ 90	22,062 (35.1%)	40,859 (64.9%)	62,921	<0.0001
Type of health insurance				
Medical care insurance	5,403 (44.9%)	6,628 (55.1%)	12,031	<0.0001
Medical benefit system	12,442 (33.8%)	24,395 (69.9%)	36,837	
Type of medical institute				
Tertiary hospital	5,900 (93.7%)	2,304 (86.6%)	8,204	
General hospital	4,521 (91.4%)	2,600 (86.6%)	7,121	
Hospital	3,991 (91.3%)	2,308 (86.2%)	6,299	
Clinic	3,369 (90.0%)	1,533 (96.8%)	4,902	
Public health care centre	2,813 (91.5%)	1,416 (91.2%)	4,229	

*Exclusive criteria: multiple fractures, Paget disease, cancer, or osteoporosis medication before the fracture.

Table 4
The kinds and proportions of osteoporosis medications used in hip and distal radius fracture patients from 2011 to 2016

	Hip fractures	Total fractures						
Year	**Total**	**BP**						
	SERM	**BP + SERM**						
	Total	**BP**						
	SERM	**BP + SERM**						
2011	5,228	4,900 (93.7%)	100 (1.9%)	228 (4.4%)	2,754	2,532 (91.9%)	101 (1.2%)	190 (6.9%)
2012	4,945	4,521 (91.4%)	184 (3.7%)	240 (4.9%)	2,660	2,304 (86.6%)	115 (4.3%)	241 (9.1%)
2013	4,372	3,991 (91.3%)	164 (3.7%)	217 (5.0%)	2,419	2,086 (86.2%)	146 (6.1%)	187 (7.7%)
2014	3,744	3,369 (90.0%)	216 (5.8%)	159 (4.2%)	1,996	1,732 (86.8%)	138 (6.9%)	126 (6.3%)
2015	3,513	3,164 (90.0%)	248 (7.1%)	101 (2.9%)	1,744	1,416 (81.2%)	238 (13.6%)	90 (5.2%)
2016	3,075	2,813 (91.5%)	215 (7.0%)	47 (1.5%)	1,669	1,398 (83.8%)	248 (14.8%)	23 (1.4%)
Total	24,877	22,758 (91.5%)	1,127 (4.5%)	992 (4.0%)	13,242	11,468 (86.6%)	917 (6.9%)	857 (6.5%)

*BP, bisphosphonates; SERM, selective oestrogen receptor modulators

The osteoporosis medications studied included bisphosphonates (alendronate, risedronate, ibandronate, etidronate, and zoledronic acid) and SERMs. Bisphosphonates were used mostly and trends to the increased use of SERMs were observed in both groups.

Discussion
Osteoporosis and OFs (i.e., DRFs, HFs, spine, and humerus fractures) are becoming more important health problems in the elderly [13]. OFs reduce quality of life and cause medical expenses in the elderly [14, 15].

DRFs occur mostly in individuals in their 50 s and 60 s and are predictive of a risk for secondary OF.
Nevertheless, they tend to be less important than hip and spine fractures because of their lower morbidity and mortality [8, 16, 17]. DRFs are the second most common OFs in Korea [18, 19]. As background for the FLS, 50% of the patients who had HFs reported having other fractures, which could be called signal fractures, before their HFs [20, 21]. This means that osteoporosis management after DRFs could be an important intervention to prevent subsequent OFs.

In 2010, 9.9% of HFs, 19.3% of spine fractures, and 5.5% of proximal humerus fractures were managed with osteoporosis medications [22]. Jung et al. analysed the prescription rate of osteoporosis medications after a first OF in Korea from 2008 to 2012 and found that only 19% of men and 42% of women began anti-osteoporosis treatment within 6 months after a first fracture [23]. The percentage of medication use for osteoporosis within 6 months post-DRF was 3.5% in men and 21.9% in women. Among HF patients, 20.1% of men and 45.9% of women received osteoporosis medications. In total, osteoporosis was managed in 18.9% of DRFs and 37.9% of HFs after fractures. Our study revealed that from 2011 to 2016, 17.2% of DRF cases received osteoporosis medication within 6 months post-fracture, whereas 34.5% of HF cases did. Compared to a previous study, we observed a slightly lower prescription rate for osteoporosis medication, but not a big difference. The trend in the prescription rate showed a slight, but significant, decreasing tendency.

As in previous studies [23, 24], females were more likely than males to receive osteoporosis medication after DRFs and HFs. The rate of treatment was highest for those in their 70s for both DRFs and HFs, as was a diagnosis of osteoporosis [10]. Similarly, young males were least likely to receive osteoporosis treatment in our study. Some studies have reported that men who are referred for osteoporosis tend to be with more severe osteoporosis [25], and the mortality rate related with HFs is higher in men than in women [26]. Therefore, physicians need to take care of young males with OFs, particularly DRFs.

The HF patients received more osteoporosis medications in tertiary hospitals, while the DRF patients who were treated in hospital received more medications than those seen at other medical facilities. This might result from the disease entity. Patients with an HF tend to be older and have more comorbidities and complications.
Bisphosphonates were mostly used; however, a gradual increase in the use of SERMs was observed, particularly in DRF patients. Although both DRFs and HRs are OFs, the T-score of bone mineral density sometimes exceeded −2.5. This might be more common in DRFs because DRF patients are younger than HF patients. The increased use of SERMs might result from OFs in individuals with T-scores > −2.5. Because complications of long-term bisphosphonate use are emerging, such as atypical femur fractures [27–29] and osteonecrosis of the jaws [30, 31], many clinicians think that the early use of bisphosphonate might not be ideal.

This study had several limitations. First, the incidence rates of DRFs and HFs calculated based on a medical claims database might be underestimated, in common with previous reports using medical claims databases. Second, we do not know whether the patients actually took the prescribed pills because our study was based on a claims database. Third, the healthcare system can affect the kinds of pills prescribed. Until 2016, parathyroid hormone and denosumab were permitted under very limited conditions. Since then, neither has been allowed for several conditions, so these two medications might have been used more before 2016.

Conclusions
The use of osteoporosis medications after DRFs and HFs is still inadequate for preventing subsequent OFs. Of course, we do not believe that osteoporosis medication alone is the most important treatment for osteoporosis. We emphasize that patients who receive osteoporosis medications should be aware of osteoporosis and additional treatments, such as exercise and dietary and lifestyle modifications.

DRFs could be a hallmark of subsequent hip and spine fractures. Physicians who treat DRFs in patients over 50 years of age should treat osteoporosis accordingly.

Abbreviations
DRF: distal radius fracture; FLS: fracture liaison service; HF: hip fracture; HIRA: Health Insurance Review and Assessment Service; ICD-10: International Classification of Diseases 10th revision; OF: osteoporotic fracture; SERM: selective oestrogen receptor modifier

Declarations

Acknowledgements
This study used the Korean Health Insurance Review and Assessment Service nationwide claims
database (M20190306600). Also, this research was supported by the Soonchunhyang University Research Fund.

Author contributions

The project was coordinated by DGK. DGK and HDJ drafted the manuscript, and together with HWN acquired the data from HIRA and analysed and interpreted the data. DGK, GWS and HUL revised the final draft critically for important intellectual content. All authors read and approved the final manuscript.

Funding

This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Availability of data and materials

The datasets analysed in this study are available from the corresponding author on reasonable request.

Ethics approval and consent to participate

This study was conducted following approval by the Institutional Review Board of Soonchunhyang University Gumi Hospital (IRB number: SCHUH 2019–03).

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details

1Department of Orthopedic Surgery, College of Medicine, Soonchunhyang University Gumi Hospital, Gumi, Korea.

2Department of Orthopedic Surgery, College of Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea.

3Data Science Team, Hanmi Pharm. Co., Ltd., Seoul, Korea.

References
1. Gardner MJ, Flik KR, Mooar P, Lane JM: Improvement in the undertreatment of osteoporosis following hip fracture. *J Bone Joint Surg Am* 2002, 84(8):1342-1348.

2. Teng GG, Curtis JR, Saag KG: Quality health care gaps in osteoporosis: how can patients, providers, and the health system do a better job? *Curr Osteoporos Rep* 2009, 7(1):27-34.

3. Organisation for Economic Co-operation and Development. Education at a glance 2017: OECD indicators. Paris, FR: OECD Publishing; 2017.

4. Cha YH, Ha YC, Yoo JI, Min YS, Lee YK, Koo KH: Effect of causes of surgical delay on early and late mortality in patients with proximal hip fracture. *Arch Orthop Trauma Surg* 2017, 137(5):625-630.

5. Ha YC, Kim TY, Lee A, Lee YK, Kim HY, Kim JH, Park CM, Jang S: Current trends and future projections of hip fracture in South Korea using nationwide claims data. *Osteoporos Int* 2016, 27(8):2603-2609.

6. Mitchell PJ: Fracture Liaison Services: the UK experience. *Osteoporos Int* 2011, 22 Suppl 3:487-494.

7. Cha YH, Ha YC, Lim JY: Establishment of Fracture Liaison Service in Korea: Where Is It Stand and Where Is It Going? *J Bone Metab* 2019, 26(4):207-211.

8. Gong HS, Oh WS, Chung MS, Oh JH, Lee YH, Baek GH: Patients with wrist fractures are less likely to be evaluated and managed for osteoporosis. *J Bone Joint Surg Am* 2009, 91(10):2376-2380.

9. Roh YH, Koh YD, Noh JH, Gong HS, Baek GH: Effect of health literacy on adherence to osteoporosis treatment among patients with distal radius fracture. *Arch Osteoporos* 2017, 12(1):42.

10. Kim DG, Seo GW, Nam HW: Trends in the Diagnosis of Osteoporosis in Patients with Distal Radius Fractures Based on a National Claims Database. *J Bone
11. Park SB, Kim J, Jeong JH, Lee JK, Chin DK, Chung CK, Lee SH, Lee JY: Prevalence and Incidence of Osteoporosis and Osteoporotic Vertebral Fracture in Korea: Nationwide Epidemiological Study Focusing on Differences in Socioeconomic Status. *Spine (Phila Pa 1976)* 2016, 41(4):328-336.

12. Yoon HK, Park C, Jang S, Jang S, Lee YK, Ha YC: Incidence and mortality following hip fracture in Korea. *J Korean Med Sci* 2011, 26(8):1087-1092.

13. Reginster JY, Burlet N: Osteoporosis: a still increasing prevalence. *Bone* 2006, 38(2 Suppl 1):S4-9.

14. Kwon HY, Ha YC, Yoo JI: Health-related Quality of Life in Accordance with Fracture History and Comorbidities in Korean Patients with Osteoporosis. *J Bone Metab* 2016, 23(4):199-206.

15. Kim HY, Ha YC, Kim TY, Cho H, Lee YK, Baek JY, Jang S: Healthcare Costs of Osteoporotic Fracture in Korea: Information from the National Health Insurance Claims Database, 2008-2011. *J Bone Metab* 2017, 24(2):125-133.

16. Freedman BA, Potter BK, Nesti LJ, Cho T, Kuklo TR: Missed opportunities in patients with osteoporosis and distal radius fractures. *Clin Orthop Relat Res* 2007, 454:202-206.

17. Cuddihy MT, Gabriel SE, Crowson CS, Atkinson EJ, Tabini C, O’Fallon WM, Melton LJ, 3rd: Osteoporosis intervention following distal forearm fractures: a missed opportunity? *Arch Intern Med* 2002, 162(4):421-426.

18. Kwon GD, Jang S, Lee A, Park CM, Lee YK, Kim TY, Kim HY, Park EJ, Ha YC: Incidence and Mortality after Distal Radius Fractures in Adults Aged 50 Years and Older in Korea. *J Korean Med Sci* 2016, 31(4):630-634.

19. Yoo JH, Moon SH, Ha YC, Lee DY, Gong HS, Park SY, Yang KH: Osteoporotic
Fracture: 2015 Position Statement of the Korean Society for Bone and Mineral Research. *J Bone Metab* 2015, **22**(4):175-181.

20. Edwards BJ, Bunta AD, Simonelli C, Bolander M, Fitzpatrick LA: *Prior fractures are common in patients with subsequent hip fractures*. *Clin Orthop Relat Res* 2007, **461**:226-230.

21. Gallagher JC, Melton LJ, Riggs BL, Bergstrath E: *Epidemiology of fractures of the proximal femur in Rochester, Minnesota*. *Clin Orthop Relat Res* 1980(150):163-171.

22. Kim TI, Choi JH, Kim SH, Oh JH: *The Adequacy of Diagnosis and Treatment for Osteoporosis in Patients with Proximal Humeral Fractures*. *Clin Orthop Surg* 2016, **8**(3):274-279.

23. Jung Y, Ko Y, Kim HY, Ha YC, Lee YK, Kim TY, Choo DS, Jang S: *Gender differences in anti-osteoporosis drug treatment after osteoporotic fractures*. *J Bone Miner Metab* 2019, **37**(1):134-141.

24. Cadarette SM, Katz JN, Brookhart MA, Levin R, Stedman MR, Choudhry NK, Solomon DH: *Trends in drug prescribing for osteoporosis after hip fracture, 1995-2004*. *J Rheumatol* 2008, **35**(2):319-326.

25. Sawka AM, Adachi JD, Papaioannou A, Thabane L, Ioannidis G, Davison KS, Olszynski WP, Brown JP, Hanley DA, Murray TM et al: *Are there differences between men and women prescribed bisphosphonate therapy in canadian subspecialty osteoporosis practices?* *J Rheumatol* 2004, **31**(10):1993-1995.

26. Center JR, Nguyen TV, Schneider D, Sambrook PN, Eisman JA: *Mortality after all major types of osteoporotic fracture in men and women: an observational study*. *Lancet* 1999, **353**(9156):878-882.

27. Schilcher J, Koeppen V, Aspenberg P, Michaëlsson K: *Risk of atypical femoral
fracture during and after bisphosphonate use. Acta Orthopaedica 2015, 86(1):100-107.

28. Giusti A, Hamdy NAT, Dekkers OM, Ramautar SR, Dijkstra S, Papapoulos SE: Atypical fractures and bisphosphonate therapy: A cohort study of patients with femoral fracture with radiographic adjudication of fracture site and features. Bone 2011, 48(5):966-971.

29. Meier RPH, Perneger TV, Stern R, Rizzoli R, Peter RE: Increasing Occurrence of Atypical Femoral Fractures Associated With Bisphosphonate Use. Archives of Internal Medicine 2012, 172(12):930-936.

30. Ruggiero SL, Fantasia J, Carlson E: Bisphosphonate-related osteonecrosis of the jaw: background and guidelines for diagnosis, staging and management. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2006, 102(4):433-441.

31. Lo JC, O’Ryan FS, Gordon NP, Yang J, Hui RL, Martin D, Hutchinson M, Lathon PV, Sanchez G, Silver P et al: Prevalence of Osteonecrosis of the Jaw in Patients With Oral Bisphosphonate Exposure. Journal of Oral and Maxillofacial Surgery 2010, 68(2):243-253.

Figures
After applying the 1-year washout period, 160,487 HFIs remained, of which 72,044 that met all of the inclusion criteria were included in the final analyses.
Similarly, we obtained 702,001 DRFs from 2010 to 2016 and 374,073 were excluded for the aforementioned reasons. Applying the washout period, 297,911 DRFs remained, of which 77,209 that met all of the inclusion criteria were included.
Figure 3

Osteoporosis medication after DRFs and HFs.