A DICHOTOMY FOR THE STABILITY OF ARITHMETIC PROGRESSIONS

MICHAEL BOSHARNITZAN AND JON CHAIKA

Abstract. Let \(H \) stand for the set of homeomorphisms \(\phi : [0, 1] \to [0, 1] \). We prove the following dichotomy for Borel subsets \(A \subset [0, 1] \):

- either there exists a homeomorphism \(\phi \in H \) such that the image \(\phi(A) \) contains no 3-term arithmetic progressions;
- or, for every \(\phi \in H \), the image \(\phi(A) \) contains arithmetic progressions of arbitrary finite length.

In fact, we show that the first alternative holds if and only if the set \(A \) is meager (a countable union of nowhere dense sets).

1. Definitions

Let \(\mathbb{R}, \mathbb{Q} \) denote the sets of real and rational numbers, respectively. By an AP (arithmetic progression) we mean a finite strictly increasing sequence in \(\mathbb{R} \) of the form \(x = (x + kd)_{k=0}^{n-1} \), with \(d > 0 \) and \(n \geq 3 \). The convention is sometimes abused by identifying the sequence \(x \) with the set of its elements. An AP is completely determined by its first term \(x = \min x \), its length \(n = |x| \) and its step (difference) \(d > 0 \).

A subset \(S \subset \mathbb{R} \) is called FAP (free of APs) if it does not contain 3-term APs.

A subset \(S \subset \mathbb{R} \) is called RAP (rich in APs) if it contains APs of arbitrary large finite length.

Denote by \(H \) the set of homeomorphisms \(\phi : [0, 1] \to [0, 1] \) of the unit interval. The result presented in the abstract can be restated as follows.

Theorem 1. Let \(S \subset [0, 1] \) be a Borel subset. Then exactly one of the following two assertions holds:

1. (either) there exists a \(\phi \in H \) such that \(\phi(S) \) is FAP;
2. (or) \(\phi(S) \) is RAP for every \(\phi \in H \).

Moreover, (1) holds if and only if \(S \) is meager.

Recall some basic relevant definitions. Let \(S \subset \mathbb{R} \). A set \(S \) is called nowhere dense if its closure \(\overline{S} \subset \mathbb{R} \) has empty interior. \(S \) is called meager (a set of first category), if it is a countable union of nowhere dense sets. \(S \) is called residual, or co-meager, if \(\mathbb{R}\setminus S \) is meager; \(S \) is called residual in a subinterval \(X \subset \mathbb{R} \) if the complement \(X \setminus S \) is meager. Finally, \(S \) is called the set of second category if it is not meager.

The following proposition lists some “largeness” properties of a set \(A \subset \mathbb{R} \) which force it to be RAP. Denote by \(\lambda \) the Lebesgue measure on \(\mathbb{R} \).

Proposition 1 (Classes of RAP sets). Let \(A \subset \mathbb{R} \). Then \(S \) is RAP if \(S \) belongs to at least one of the following four classes:

- \(E_1 = \{ S \subset \mathbb{R} \mid S \text{ is Lebesgue measurable with } 0 < \lambda(S) \leq \infty \} \),
- \(E_2 = \{ S \subset \mathbb{R} \mid S \text{ is residual in some interval } X \subset \mathbb{R} \text{ of positive length} \} \),
- \(E_3 = \{ S \subset \mathbb{R} \mid S \text{ is winning in Schmidt’s game} \} \),
- \(E_4 = \{ S \subset \mathbb{R} \mid S \text{ is Borel and not meager} \} \).

Date: March 2013.

Key words and phrases. Meager subset, arithmetic progressions, homeomorphism.

The authors were supported in part by NSF Grants DMS-1102298, DMS-1004372.
Proof. For a set $S \in \mathcal{E}_1$, one easily produces APs near any its Lebesgue density point. The argument for the classes E_2 and E_3 is even easier because residual subsets and the class E_3 are closed under finite (and even countable) intersections.

Finally, the sets $S \in \mathcal{E}_4$ are RAP because $\mathcal{E}_4 \subset \mathcal{E}_2$. (A Borel subset $S \subset \mathbb{R}$ of second category must be residual in some subinterval, see e.g. Proposition 3.5.6 and Corollary 3.5.2 in [5] page 108)).

Note that the the problems of finding finite or countable configurations F in sets $S \subset \mathbb{R}$, under various “largeness” metric assumptions on S, has been considered by several mathematicians.

Following Kolountzakis [3], a set F is called universal for a class E of subsets of reals if $F \ll S$ for all $S \in \mathcal{E}$. Henceforth $F \ll S$ means that S contains an affine image of F, i.e. that $aF + b \subset S$, for some $a, b \in \mathbb{R}$, $a > 0$. For example, S is RAP iff $\{1, 2, \ldots, n\} \ll S$ for all $n \geq 1$; S is FAP iff $\{1, 2, 3\} \ll S$.

Every finite subset of reals is universal for all the classes \mathcal{E}_k, $1 \leq k \leq 4$. Every bounded countable subset is universal for the classes \mathcal{E}_k, $2 \leq k \leq 4$.

An old question of Erdős is whether there is an universal infinite set $F \subset \mathbb{R}$ for the class \mathcal{E}_1 (of sets of positive measure). The question is still open even though some families of countable sets F are shown not to contain universal functions, see Kolountzakis [3], Paul and Laczkovich [6] and references there. In [6] an elegant combinatorial characterization of universal sets F (for the class \mathcal{E}_1) is given which reproduces earlier results in the subject.

Keleti [2] constructed a compact set $A \subset [0, 1]$ of Hausdorff dimension 1 which is FAP; on the other hand, Laza and Pramanik in [4] showed that under certain assumptions (on the Fourier transform of supported measure) compact sets of fractional dimension close to 1 must contain 3-term APs (i.e., cannot be FAP). We refer to [4] for survey of related questions.

The central result of the paper, Theorem 1, completely characterizes the topological (rather than metric) properties of a Borel set $S \subset \mathbb{R}$ which guarantee it to be RAP. This theorem is an immediate consequence of the following proposition and the fact that the sets $S \in \mathcal{E}_1$ must be RAP (Proposition 1).

Proposition 2. For every meager subset $C \subset [0, 1]$, there is a map $\phi \in \mathcal{H}$, $\phi : [0, 1] \to [0, 1]$, such that $\phi(C)$ is FAP.

A stronger version of Proposition 2 (Proposition 3) is presented and proved in the next section.

2. Proofs of Propositions 2 and 3

Denote by \mathcal{C} the Banach space of continuous maps $f : [0, 1] \to \mathbb{R}$ equipped with the norm

$$\|f\| = \|f\|_\infty = \max_{x \in [0, 1]} |f(x)|.$$

Denote by \mathcal{F} and \mathcal{H}^+ the following subsets of \mathcal{C}:

$$\mathcal{F} = \{f \in \mathcal{C} \mid f \text{ is non-decreasing with } f(0) = 0; f(1) = 1\},$$

$$\mathcal{H}^+ = \{f \in \mathcal{F} \mid f \text{ is injective}\} = \{f \in \mathcal{H} \mid f \text{ is increasing on } [0, 1]\}.$$

The set \mathcal{F} is a closed subset of \mathcal{C}, while \mathcal{H}^+ is residual in \mathcal{F}. (Indeed,

$$\mathcal{H}^+ = \bigcap_{0 < a < b < 1} F_{a,b}, \quad F_{a,b} = \{f \in \mathcal{F} \mid f(a) < f(b)\}$$

where \mathbb{Q} stands for the set of rationals, and $F_{a,b}$ are open dense subsets of \mathcal{F}).

The following proposition is a stronger version of Proposition 2

Proposition 3. Let $C \subset [0, 1]$ be a meager subset. Then, for residual subset of $\phi \in \mathcal{H}^+$, the image $\phi(C)$ is FAP (has no 3-term APs).

Since a meager set is a countable union of nowhere dense sets, it is enough to prove the above proposition under the weaker assumption that C is nowhere dense. Indeed, a meager set C has a representation in the form $C = \bigcup_{i=1}^\infty C_i$ where C_i are nowhere dense. Then the unions $U_k = \bigcup_{i=1}^k C_i$ form a nested sequence of nowhere dense sets, and $\phi(U_k)$ are.
A DICHOTOMY FOR THE STABILITY OF ARITHMETIC PROGRESSIONS

3

Let

(2.4) \(\mathcal{H}_\varepsilon(C) = \{ \phi \in \mathcal{H}^+ \mid \phi(C) \) has no 3-term APs of step \(d \geq \varepsilon \}. \)

In the proof of Proposition 3 we need the following lemma. Its proof is provided in the end of the next section.

Lemma 1. Let \(C \subset [0, 1] \) be a nowhere dense subset and \(\varepsilon > 0 \). Then \(\mathcal{H}_\varepsilon(C) \) contains a dense open subset of \(\mathcal{H}^+ \). In particular, \(\mathcal{H}_\varepsilon(C) \) is residual in \(\mathcal{H}^+ \).

Proof of Proposition 3 assuming Lemma 1. We may assume that \(C \) is nowhere dense (see the sentence following Proposition 3). We may also assume that \(C \) is compact (otherwise replacing \(C \) by its closure \(\overline{C} \)).

By Lemma 1 each of the sets \(\mathcal{H}_\varepsilon(C), \varepsilon > 0, \) is residual in \(\mathcal{H}^+ \). It follows that the set \(\mathcal{H}_0(C) = \bigcap_{k=1}^{\infty} \mathcal{H}_{1/k}(C) \) is residual. It is also clear that, for \(\phi \in \mathcal{H}_0(C) \), the images \(\phi(C) \) are FAP.

This completes the proof of Proposition 3. \(\square \)

3. **Proof of Lemma 1**

First we prepare some auxiliary results.

Lemma 2. Let \(C \subset [0, 1] \) be a nowhere dense set, let \(f \in \mathcal{H}^+ \) and let \(\varepsilon > 0 \) be given. Then there exists \(g \in \mathcal{H}^+ \) such that \(\|g - f\| < \varepsilon \) and the set \(g(C) \) has no 3-term APs with step \(d \geq \varepsilon \).

Proof. Without loss of generality, we assume that \(\varepsilon < 1/2 \). Pick an integer \(r \geq 3 \) such that \(r\varepsilon > 1 \).

Since \(C \) is nowhere dense, so is \(f(C) \), and one can select \(r-1 \) points \(x_1, x_2, \ldots, x_{r-1} \in (0, 1) \setminus f(\overline{C}) \),

\[
0 = x_0 < x_1 < x_2 < \ldots < x_{r-1} < x_r = 1,
\]

partitioning the unit interval into \(r \) subintervals \(X_k = (x_{k-1}, x_k) \), each shorter than \(\varepsilon \):

\[
0 < |X_k| = x_{k+1} - x_k < \varepsilon \quad (1 \leq k \leq r).
\]

Then one selects non-empty open subintervals \(Y_k = (y_k^-, y_k^+) \subset X_k \), \(1 \leq k \leq r \), in such a way that the following four conditions are met:

\[
(3.1) \quad \begin{align*}
& (c1) \quad f(C) \subset \bigcup_{k=1}^r \bar{Y}_k, \\
& (c2) \quad x_{k-1} < y_k^- < y_k^+ < x_k \quad \text{(i.e., \(\bar{Y}_k \subset X_k \)), \ for \(2 \leq k \leq r-1 \)}, \\
& (c3) \quad 0 = x_0 = y_1^- < y_1^+ < x_1, \ \text{and} \\
& (c4) \quad x_{r-1} < y_r^- < y_r^+ = x_r = 1.
\end{align*}
\]

That is, between \(Y_j \) and \(Y_{j+1} \) there exists \(x_j \notin f(\overline{C}) \) and \(|Y_j| < |X_j| < \varepsilon \) for all \(j \).

Set \(p_1 = 0, p_r = 1 \) and then select the \(r-2 \) points \(p_k \in Y_k, \ 2 \leq k \leq r-1, \) so that the set \(P = \{p_k\}_{k=1}^r \) contain no 3-term APs. Then the sequence \(\{p_k\}_{k=1}^r \) is strictly increasing, and

\[
d = \min_{1 \leq m < n < k \leq r} |p_m + p_k - 2p_n| > 0.
\]

Next, for \(1 \leq k \leq r \), we select open subintervals \(Z_k \subset Y_k \), each shorter than \(\frac{d}{4} \), with \(p_k \subset \bar{Z}_k \).

Define \(u \in \mathcal{H} \) to be the homeomorphism \([0, 1] \to [0, 1] \) which affinely contracts \(\bar{Y}_k \) to \(\bar{Z}_k \) and affinely expands the gaps between the intervals \(\bar{Y}_k \) to fill it in. Note that

\[
(3.2) \quad |u(x) - x| < \varepsilon, \quad \text{for} \quad x \in \bigcup_{k=1}^r \bar{Y}_k,
\]

because \(x \in \bar{Y}_k \) implies \(u(x) \in \bar{Y}_k \) and hence \(|u(x) - x| \leq |Y_k| < |X_k| < \varepsilon \).

Since \(u(x) - x \) is linear on each of the \((r-1) \) gaps between the intervals \(\bar{Y}_k \), the inequality extends to the whole unit interval: \(\|u(x) - x\| < \varepsilon \).

Define \(g \in \mathcal{H} \) as the composition \(g(x) = (u \circ f)x = u(f(x)) \). Then

\[
\|g - f\| = \|u \circ f - f\| = \|u(x) - x\| < \varepsilon.
\]
It remains to show that \(g(C) \) has no 3-term APs with step \(d \geq \varepsilon \). In view of (3.1),

\[
\bigcup_{k=1}^{r} \tilde{Z}_k = h\left(\bigcup_{k=1}^{r} \tilde{Y}_k \right) \supset h(f(C)) = g(C),
\]

so it would suffice to proof that \(\bigcup_{k=1}^{r} \tilde{Z}_k \) has no 3-term APs with step \(d \geq \varepsilon \).

Assume to the contrary that such an AP exists, say \(a_1, a_2, a_3 \), with \(d = a_2 - a_1 = a_3 - a_2 \geq \varepsilon \). Let \(a_i \in \tilde{Z}_{k_i} \), for \(i = 1, 2, 3 \). These \(k_i \) are uniquely determined, and since \(|Z_{k_i}| < |X_{k_i}| < \varepsilon \leq d\), we have \(k_1 < k_2 < k_3 \). Taking in account that \(|a_i - p_{k_i}| \leq |Z_{k_i}| < \delta/4\), we obtain

\[
|a_1 + a_3 - 2a_2| \geq |p_{k_1} + p_{k_3} - 2p_{k_2}| - (|a_1 - p_{k_1}| + |a_3 - p_{k_3}| + 2|a_2 - p_{k_2}|) > \delta - 4 \cdot \frac{\delta}{4} = 0,
\]
a contradiction with the assumption that \(a_1, a_2, a_3 \) forms an AP. □

Corollary 1. Let \(C \subset [0, 1] \) be a nowhere dense set. Then for all \(\varepsilon > 0 \), the sets \(\mathcal{H}_\varepsilon(C) \) (defined by (2.4)) are dense in \(\mathcal{H}^+ \).

Proof. Note that the sets \(\mathcal{H}_\varepsilon(C) \) are monotone in \(\varepsilon > 0 \): \(\mathcal{H}_{\varepsilon_2}(C) \subset \mathcal{H}_{\varepsilon_1}(C) \) if \(0 < \varepsilon_2 < \varepsilon_1 \).

By the previous lemma (Lemma 2), all sets \(\mathcal{H}_\varepsilon(C) \) are \(\varepsilon \)-dense. Then, for a given \(\varepsilon > 0 \), the set \(\mathcal{H}_\varepsilon(C) \) is \(\delta \)-dense for every positive \(\delta < \varepsilon \) (because even the smaller set \(\mathcal{H}_{\delta_3}(C) \subset \mathcal{H}_\varepsilon(C) \) is \(\delta \)-dense). This argument completes the proof of Corollary 1. □

Lemma 3. Let \(C \subset [0, 1] \) be a compact nowhere dense set, let \(g \in \mathcal{H} \) and let \(\varepsilon > 0 \) be given. Assume that the set \(g(C) \) has no 3-term APs with step \(d \geq \varepsilon \). Then there exists a \(\delta > 0 \) such that for all \(h \in \mathcal{H} \) such that \(\|h - g\| < \delta \) the sets \(h(C) \) have no 3-term APs with step exceeding \(2\varepsilon \).

Proof. Let

\[
M = \{(x_1, x_2, x_3) \in g(C)^3 \mid x_2 - x_1 \geq \varepsilon \text{ and } x_3 - x_2 \geq \varepsilon \}.
\]

Then \(M \) is compact, and \(F: M \to \mathbb{R} \) defined by \(F(x_1, x_2, x_3) = |x_1 + x_3 - 2x_2| \) assumes its minimum

\[
\gamma = \min_{x \in M} F(x) > 0
\]

which is positive because \(g(C) \) has no 3-term APs with step \(d \geq \varepsilon \). Take \(\delta = \min(\varepsilon/2, \gamma/5) \).

Assume to the contrary that for some \(h \in \mathcal{H} \) with \(\|h - g\| < \delta \), the set \(h(C) \) contains an AP with step \(d' > 2\varepsilon \), i.e. that there are \(c_1, c_2, c_3 \in C \) such that

\[
h(c_3) - h(c_2) = h(c_2) - h(c_1) > 2\varepsilon.
\]

Then, for both \(i = 1, 2 \), we have

\[
g(c_{i+1}) - g(c_i) > h(c_{i+1}) - h(c_i) - 2\delta > 2\varepsilon - 2\delta \geq \varepsilon,
\]

whence \((g(c_1), g(c_2), g(c_3)) \in M \) and hence

\[
\gamma \leq F(g(c_1), g(c_2), g(c_3)) = \|g(c_1) + g(c_3) - 2g(c_2)\| \leq \|h(c_1) + h(c_3) - 2h(c_2)\| + 4\delta = 0 + 4\delta \leq \frac{\delta}{\varepsilon} \gamma < \gamma,
\]
a contradiction. □

Proof of Lemma 1. It follows from Lemma 3 that there is an (intermediate) open subset \(U \subset \mathcal{H}^+ \) such that

\[
\mathcal{H}_\varepsilon(C) \subset U \subset \mathcal{H}_{2\varepsilon}(C) \subset \mathcal{H}^+.
\]

This set \(U \) is dense in \(\mathcal{H}^+ \) because its subset \(\mathcal{H}_\varepsilon(C) \) is (by Corollary 1). Thus the set \(\mathcal{H}_{2\varepsilon}(C) \) contains an open dense subset \(U \subset \mathcal{H}^+ \). Since \(\varepsilon > 0 \) is arbitrary, the proof is complete. □
REFERENCES

[1] A. Kechris, Classical Descriptive Set Theory, Graduate Texts in Mathematics 156, 1995 Springer-Verlag, New York.
[2] T. Keleti, A 1-dimensional subset of the reals that intersects each of its translates in at most a single point, Real Anal. Exchange 24:2 (1998/99), 843–844.
[3] M. N. Kolountzakis, Infinite patterns that can be avoided by measure, Bull. London Math. Soc. 29 (1997), no. 4, 415–424.
[4] I. Laba and M. Pramanik, Arithmetic progressions in sets of fractional dimension, GAFA Vol.19 (2009), 429–456.
[5] C. T. McMullen, Winning sets, quasiconformal maps and Diophantine approximation, GAFA Vol.20 (2010), no. 3, 726–740.
[6] H. Paul and M. Laczkovich, A visit to the Erdős problem, Proc. Amer. Math. Soc. 126 (1998), no. 3, 819–822.
[7] W. S. Schmidt, On badly approximable numbers and certain games, Trans. Amer. Math. Soc. 123 (1966), 178–199.
[8] S. M. Srivastava, A course on Borel Sets, Graduate Texts in Mathematics 180, 1998 Springer-Verlag, New York.

Department of Mathematics, Rice University, Houston, TX 77005, USA
E-mail address: michael@rice.edu

Department of Mathematics, University of Chicago, 5734 S. University Avenue, Chicago, IL 60637, USA
E-mail address: jonchaika@gmail.com