Diagnostic classification of endosonography for differentiating colorectal ulcerative diseases: A new statistical method

En-Qi Qiu, Wen Guo, Tian-Ming Cheng, Yong-Li Yao, Wei Zhu, Si-De Liu, Fa-Chao Zhi

AIM
To establish a classification method for differential diagnosis of colorectal ulcerative diseases, especially Crohn’s disease (CD), primary intestinal lymphoma (PIL) and intestinal tuberculosis (ITB).

METHODS
We searched the in-patient medical record database for confirmed cases of CD, PIL and ITB from 2008 to 2015 at our center, collected data on endoscopic ultrasound (EUS) from randomly-chosen patients who formed the training set, conducted univariate logistic regression analysis to summarize EUS features of CD, PIL and ITB, and created a diagnostic classification method. All cases found to have colorectal ulcers using EUS were obtained from the endoscopy database and formed the test set. We then removed the cases which were easily diagnosed, and the remaining cases formed the perplexing test set. We re-diagnosed the cases in the three sets using the classification method, determined EUS diagnostic accuracies, and adjusted the classification accordingly. Finally, the re-diagnosing
Some gastrointestinal diseases, including Crohn’s disease (CD), primary intestinal lymphoma (PIL) and intestinal tuberculosis (ITB), can lead to colorectal ulcers, are difficult to differentiate and usually require entirely different treatments. Their architecture on resection histology can be easily distinguished at low magnification. Endoscopic ultrasound (EUS) can demonstrate bowel wall structural changes and identify lesions under the mucosa, which are valuable signs in the above-mentioned diseases. However, there are few reports available regarding the value of EUS in the differential diagnosis of these three diseases. We attempted to create an EUS diagnostic classification method for CD, PIL, ITB and other colorectal ulcerative diseases.

INTRODUCTION

Fifty-three gastrointestinal diseases, including Crohn’s disease (CD), primary intestinal lymphoma (PIL) and intestinal tuberculosis (ITB), can lead to colorectal ulcers. Their architecture can be difficult to differentiate and usually require entirely different treatments. Some of these diseases, such as CD, PIL and ITB, are difficult to differentiate from other diseases. However, there are few reports available regarding the value of EUS in the differential diagnosis of these three diseases. We attempted to create an EUS diagnostic classification method for CD, PIL, ITB and other colorectal ulcerative diseases.

RESULTS

In total, 272 CD, 60 PIL and 39 ITB cases were diagnosed from 2008 to 2015 based on the in-patient database, and 200 CD, 30 PIL and 20 ITB cases were randomly chosen to form the training set. The EUS features were summarized as follows: CD: Thickened submucosa with a slightly high echo level and visible layer; PIL: Absent layer and diffuse hypoechoic mass; and ITB: Thickened mucosa with a high or slightly high echo level and visible layer. The test set consisted of 77 CD, 30 PIL, 23 ITB and 140 cases of other diseases obtained from the endoscopy database. Seventy-four cases were excluded to form the perplexing test set. After adjustment of the classification, EUS diagnostic accuracies for CD, PIL and ITB were 83.6% (209/250), 97.2% (243/250) and 85.6% (214/250) in the training set, and were 89.3% (241/270), 97.8% (264/270) and 84.1% (227/270) in the test set, and were 86.7% (170/196), 98.0% (192/196) and 85.2% (167/196) in the perplexing set, respectively.

CONCLUSION

The EUS features of CD, PIL and ITB are different. The diagnostic classification method is reliable in the differential diagnosis of colorectal ulcerative diseases.

MATERIALS AND METHODS

Training set: Collection of EUS data

We searched our in-patient medical record database for patients who underwent EUS at our center from 2008 to 2015 and were confirmed to have CD, PIL or ITB, and found 272 cases of CD, 60 cases of PIL and 39 cases of ITB. We randomly chose 200 CD, 30 PIL and 20 ITB cases to form the training set, and summarized the EUS features. EUS images and written reports of these cases were obtained from the endoscopy database. The EUS data were recorded according to the following eight parameters: (1) Total bowel wall thickness (TWT, in mm); (2) Changes in layers (thickened, thinned or disappeared), including the mucosa (M), submucosa (SM), muscularis propria (MP) and serosa (S); (3) Echo level of lesions or changed layers, including Level 1 (echo level of normal SM), Level 2 (between Levels 1 and 3), Level 3 (echo level of liver), Level 4 (between Levels 3 and 5), Level 5 (echo level of normal MP), and Level 6 (echo level of fluid); (4) Echo homogeneity, including homogeneous and heterogeneous; in addition, an independent option of “diffuse lesion” was included; (5) Definition of layer borderlines, including clear, unclear and invisible; (6) Integrity of the S, including smooth, non-smooth and interrupted; (7) Special EUS bowel wall feature, including “cobblestone sign” (multiple thickened SM-like masses close to each other, with an intact M), vascular structures with a diameter > 2 mm in SM; and (8) Extra-luminal presentation, including nearby enlarged lymph nodes, abscesses, ascites, sinus and fistulae.

Training set: Creation of a diagnostic classification method

All data on these parameters were analyzed using univariate logistic regression analysis of EUS features of CD, PIL and ITB. This classification method is useful for diagnosing these three diseases in daily EUS practice.
The tendency scores formed the EUS diagnostic classification as follows: (1) All scores of each matched option were summed for each disease to obtain three tendency scores for CD, PIL, and ITB, respectively; (2) When the parameters “layers changed” and “layer borders” both met the option “disappeared”, only one point was added or subtracted; (3) The highest scoring disease was considered as the new EUS diagnosis; if the highest score was < 2 or was non-unique, the diagnosis was “other diseases”; and (4) When a sign unique to one disease (special sign) was detected, this disease was considered as the diagnosis directly, without including the score.

Test set: Reassessment of EUS diagnoses

We assessed the cases which formed the test set to evaluate the accuracy of EUS in differentiating colorectal ulcerative diseases. The search option “endoscopic findings” and key word “ulcer” were used to identify all cases of ulcers diagnosed by EUS at our center from 2008 to 2015. All EUS images of these cases were obtained from the endoscopy database. The EUS images (without written report) for each case were placed in the patient file, and then copied to two blinded researchers by another researcher.

The cases were deleted before being copied when they met the following conditions: (1) Appearance in the training set; (2) Having an obvious visible epithelial or subepithelial tumor in the images; and (3) Having images that did not provide enough information on the eight parameters mentioned above.

Two endosonographers re-evaluated the EUS images in each case and recorded the data according to the eight parameters. If the data for one case recorded by the two endosonographers were inconsistent, the difference was resolved through discussion. The new EUS diagnoses in the test set were then established using the classification method.

Test set: Confirming actual diagnoses

We consulted the clinical and out-patient databases, and the endoscopy database, to determine the final diagnosis of each case in the test set. Cases were excluded if the final diagnosis was not successfully obtained or the clinical data were incomplete. The diagnoses of all patients were confirmed by one of the following four methods: Endoscopic biopsy pathology; Surgical pathology; Experimental treatment; or Other clinical methods (imaging modalities, special signs, laboratory examinations). Endoscopic biopsy specimens were obtained by forceps, endoscopic mucosal resection, endoscopic submucosal dissection and EUS-guided fine needle aspiration. Experimental treatment referred to: (1) CD: Infliximab, mesalazine or glucocorticoid treatment for at least 6 mo; (2) ITB: Quadruple anti-TB therapy for at least 2 mo; and (3) Other enteritis: Anti-infection (infective enteritis), immunosuppressant (autoimmune diseases) and tailored treatments (ischemic, drug and radiation enteritis). After the experimental treatment, final diagnoses were established if the symptoms were relieved, and colorectal ulcers were healed and did not reappear within 6 mo.

All cases: Evaluation of EUS diagnostic accuracies

The EUS and actual diagnoses in all cases were compared. The overall EUS diagnostic accuracy, sensitivity and specificity were calculated. We excluded the cases easily diagnosed in the test set and calculated the EUS diagnostic accuracy in the remaining cases (perplexing test set). Finally, the classification was adjusted and the diagnostic accuracies were recalculated. All processes are shown in Figure 1.

Statistical analysis

All data were analyzed using SPSS (Statistical Product and Service Solutions 13.0.0.246, International Business Machines Corporation, Armonk, NY, United States). Measurement data (age, TWT) are presented as the mean ± SD. Multiple comparisons of groups were analyzed using the LSD-t test for TWT. Enumeration data (case number) are presented as a proportion, and comparisons of groups were analyzed using univariate logistic regression analysis. P < 0.05 was considered statistically significant.

RESULTS

Patient data

The data on sex and age obtained from all cases are shown in Table 1.

EUS changes in TWT, stratification and echo level

The data on mean TWT in the three diseases are shown in Table 2. TWT in the PIL group was greater than that in the other two groups (P < 0.05). The case numbers and proportions of each option in each group are shown in Table 3.

Special bowel wall signs and extra-luminal presentations

The frequencies and proportions of special bowel wall signs and extra-luminal EUS images are shown in Table 4.
Figure 1 Flowchart of the study. The cases diagnosed with PIL previously were rediagnosed as cancer when the echo of the lesion was heterogeneous; cases were diagnosed with PIL when a diffuse echo was detected. CD: Crohn’s disease; ITB: Intestinal tuberculosis; OR: Odds ratio; PIL: Primary intestinal lymphoma.

EUS diagnostic classification

The ORs and \(P \) values from univariate logistic regression analysis, and the corresponding scores of each option set according to the above-mentioned rules, are listed in Table 5. An option was not shown in the table if all \(P \) values were unavailable or were > 0.05. The options scoring +1 and -1 are summarized in Table 6. Classical EUS patterns of the three diseases are shown in...
Diagnostic accuracies in the training set
Using the classification method, we obtained the concordance between EUS and final diagnoses. The diagnostic accuracies for CD, PIL and ITB were 83.6% (209/250), 95.6% (239/250) and 91.2% (228/250), sensitivities were 79.5% (159/200), 73.3% (22/30) and 70.0% (14/20) and specificities were 100.0% (50/50), 98.6% (217/220) and 93.0% (214/230), respectively.

Diagnostic accuracies in the test set
We collected EUS data on 752 cases from the endoscopy database, and 482 of these cases were excluded according to the exclusion criteria described in the Materials and Methods. The remaining 270 cases consisted of 77 CD, 30 PIL, 23 ITB and 140 patients with other diseases, including 30 cases of ulcers after endoscopic surgery, 29 cases of ulcerative colitis, 22 cases of colorectal cancer, 16 cases of nonspecific enteritis, 12 cases of infective colitis, 9 cases of radiation-induced bowel injury, 7 cases of ischemic enteritis, 6 cases of solitary ulcer, 3 cases of Bechet’s disease, and 6 cases of multiple myeloma, abdominal-type allergic purpura, esoinophilic gastroenteritis, congenital megacolon, inflammatory granuloma after trauma, and indeterminate colitis, respectively. Using the classification methods, we yielded an accuracy for CD, PIL and ITB of 98.6% (217/220), 95.6% (237/240), and 91.2% (228/250), with no change in the CD and ITB groups. In the test set, the accuracies of CD, PIL and ITB improved to 89.3% (241/270), 97.8% (237/240) and 91.2% (228/250), respectively.

EUS diagnostic accuracies after adjusting the classification
The adjustments were as follows: (1) The cases diagnosed as PIL previously were re-diagnosed as cancer (other diseases) when the echo of the lesion was heterogeneous; and (2) One case was diagnosed as PIL when a diffuse lesion echo was detected, without including any other factors. The accuracies increased after adjustment in the three sets. In the training set, the accuracies for CD, PIL and ITB changed to 97.2% (243/250), 90.0% (273/300) and 92.8% (216/220), respectively, with no change in the CD and ITB groups. In the test set, the accuracies of CD, PIL and ITB improved to 98.3% (241/270), 97.8% (244/270) and 84.1% (227/270), respectively, with no change in the CD and ITB groups. In the test set, the accuracies of CD, PIL and ITB changed to 97.2% (243/250), 90.0% (273/300) and 92.8% (216/220), respectively, with no change in the CD and ITB groups.

Table 2 Comparison of the mean total wall thickness in Crohn’s disease, primary intestinal lymphoma and intestinal tuberculosis

Diseases	TWT, mm	Mean ± SD	P value
CD	2.7-19.4	8.48 ± 2.90	< 0.001
PIL	3.7-29.6	13.49 ± 6.38	0.002
ITB	3.2-22.0	10.19 ± 6.14	0.080

Data was analyzed by the LSD-t test. The difference was significant (P = 0.05). CD: Crohn’s disease; ITB: Intestinal tuberculosis; PIL: Primary intestinal lymphoma; TWT: Total wall thickness.

Table 3 Common endoscopic ultrasound parameters of the bowel wall in Crohn’s disease, primary intestinal lymphoma and intestinal tuberculosis (n %)

	CD	PIL	ITB
Thickened layers			
None	6 (3.0)	0 (0)	2 (10.0)
M	21 (10.5)	5 (16.7)	14 (70.0)
SM	160 (80.0)	2 (6.7)	0 (0)
M + SM	4 (2.0)	0 (0)	1 (5.0)
SM + MP	3 (1.5)	0 (0)	0 (0)
All	2 (1.0)	0 (0)	0 (0)
Layers disappeared	4 (2.0)	23 (76.7)	3 (15.0)
Thinned layers			
SM	0 (0)	0 (0)	6 (30.0)
M/SM border			
Clear	85 (42.5)	3 (10.0)	8 (40.0)
Unclear	117 (58.5)	4 (13.3)	9 (45.0)
Invisible	4 (2.0)	23 (76.7)	3 (15.0)
SM/MP border			
Clear	157 (78.3)	3 (10.0)	12 (60.0)
Unclear	41 (21.5)	4 (13.3)	5 (25.0)
Invisible	2 (1.0)	23 (76.7)	3 (15.0)
Echo level of main lesion or changed layer			
1 (hyperechoic)	14 (7.0)	0 (0)	4 (20.0)
2	166 (83.0)	0 (0)	12 (60.0)
3 (medium)	3 (1.5)	3 (10.0)	1 (5.0)
4	11 (5.5)	5 (16.7)	1 (5.0)
5 (hypoechoic)	6 (3.0)	22 (73.3)	2 (10.0)
Echo homogeneity			
Homogeneous	87 (43.5)	23 (76.7)	5 (25)
Heterogeneous	106 (53)	7 (23.3)	13 (65)
Diffuse lesion	3 (1.5)	26 (86.7)	0 (0)
Sensal integrity			
Smooth	185 (92.5)	14 (46.7)	15 (75)
Non-smooth	9 (4.5)	2 (6.7)	4 (20)
Interrupted	6 (3)	14 (46.7)	1 (5)

1Absent layers were included in the thickened layers because when the layers disappeared it was impossible to recognize the thickness change; Seven CD and two ITB cases were excluded because the thickness of the layers was too small and the echo homogeneity was difficult to determine. The options without matched cases are not given. CD: Crohn’s disease; ITB: Intestinal tuberculosis; M: Muscosa; MP: Muscularis propria; PIL: Primary intestinal lymphoma; SM: Submucosa.
DISCUSSION
EUS can detect lesions which cannot be identified by white light endoscopy\cite{16-20}, and allows observation of the bowel wall structure\cite{21}. EUS is also used for the treatment of complications and follow-up studies\cite{22-27}. This study investigated the differential diagnosis of CD, PIL and ITB using EUS. We created an EUS diagnostic classification method by reviewing and summarizing previous articles on pathology at low magnification and EUS data.

The EUS features of CD included thickened SM, visible layer borders, and the echo level of the SM ranging between hyperechoic and medium echoic\cite{15,26}. Significantly thickened SM was closely associated with severe edema and lymphangiectasia\cite{28}, which lowered the echo level of SM by increasing the sonolucency, and is always observed in resected CD bowels at low magnification. Invisible stratification is hardly seen, unless the illness is extremely severe. This sign was detected in only 4 cases in our study. We also found that the lesion was involved in the S and interrupted in 6 severe CD cases, which seemed impossible if CD was not complicated by malignancy. We suggest that severe fibrosis occurred in the bowels, making the S deformed, causing echo artifacts. Some studies have reported that vessels in the SM with a diameter > 2 mm were a specific EUS sign of CD\cite{29-32}. This was not detected in the PIL and ITB cases in the training set; thus, the other specific signs of CD, such as fistulae, in this study were considered independent differentiation factors accordingly. In the test set, fistulae were found in only 2 cases. One was due to necrosis of lymphoma, and the other was due to Anastomotic leakage.

The diagnostic sensitivity (77.9\%) was not high. In total, 17 CD cases were misdiagnosed, 12 cases due to thickened M and 5 cases due to the collapse stratification or low-level echo caused by severe inflammation or infection. Five of these twelve cases with small TWT (< 5 mm) were in the early stage, resulting in incorrect recognition of thickened layers. The other 7 misdiagnosed cases were caused by two reasons which are commonly seen at the start of the disease - difficulty in scanning ulcers on the ileocecal valve and disturbance due to pseudopolyps.

The EUS features of PIL included invisible layer borders, thus layer thickening was impossible to identify; the lesions were diffusely hypoechoic. The lymphoma cells derived from M or SM were always densely packed\cite{33,34} and tight with rare stromal cells, making the lesion echo diffusely hypoechoic and homogenous. We found that several cases just had thickened M (5/30 = 16.7\%) or SM (2/30 = 6.7\%) with visible layer borders, which were quite different from the majority. These PIL cases were in the early stage, and the stratification had not yet been destroyed.

In the present study, low sensitivity (60.0\%) was
observed before adjustment and these early cases were excluded. If a diffusely hypoechoic lesion was the only diagnostic consideration, 9 misdiagnosed PIL cases would have the correct diagnoses, increasing the sensitivity to 90% without a decrease in specificity.

On the other hand, echo level in PIL is lower and more homogeneous than in cancer, which is a useful clue for differential diagnosis. We re-diagnosed several previously diagnosed PIL cases as cancer, further improving the specificity with little change in accuracy of previously diagnosed PIL cases. We also followed these two principles (adjustments) in daily practice when faced with the same conditions.

The EUS features of ITB included M thickening, the echo level of M being hyperechoic or a little higher than medium level, and visible layer borders [37,38]. Thus, the M bears the brunt of invasion and subsequent inflammation, and then becomes thickened. In contrast, the SM does not thicken. Some studies have shown that SM is thin or sometimes interrupted due to inflammation and scarring [38,39]. This could be a differentiation factor for CD and other forms of enteritis. However, we observed this sign in only 30% of ITB cases. Furthermore, we also found thinned SM in 3 cases with other diseases (radiation-induced bowel injury, solitary ulcer, ulcers after surgery). Similar to CD, the layer borders of the bowel in ITB were visible, except in the very few cases with severe inflammation. In addition, similar to CD, the S was interrupted in fewer ITB cases, possibly for the same reason. Several cases with non-smooth S were complicated by TB peritonitis.

A sensitivity of 78.3% showed that almost one-fourth of ITB cases were misdiagnosed using the classification method. This may be due to the small number of cases, which provided poor reliability of the summarized EUS features of ITB. Moreover, the possibility of confusion between ITB and common enteritis exists with this method which lacks specificity [39]. In total, 15 cases of nonspecific enteritis were misdiagnosed as ITB. Our confidence in diagnosing ITB using EUS in daily practice does not match the high diagnostic accuracy of ITB observed in this study. High diagnostic accuracies for CD and PIL greatly increased the specificity of ITB due to the few cases of ITB (approximately 12% of total cases).

In this study, we created a classification method based on univariate logistic regression analysis and the algorithm reported by Lee et al [40] and Mao et al [41]. In general, when \(P < 0.05 \) is an option, the score increases if OR is \(> 1 \) and decreases if OR is \(< 1 \); when \(P \geq 0.05 \), the score did not change. When a pathological option was not statistically significant \((P \geq 0.05) \) but the proportion was greater than 50% and OR \(> 1 \) in a disease \((i.e. \) echo level 2 in ITB), one point should be added because this option is a clue in distinguishing a pathological state from a normal state, and still showed the tendency to the disease, although it was not powerful enough to differentiate the three diseases. In contrast, the score was zero even when a non-pathological option met the score-raising condition, because the option could not be used to identify whether the state was pathological.

The reasons for some of the rules used in the classification are as follows: (1) The cause of an infinitesimal OR and an unavailable \(P \) value was a zero
case number, which is a strong clue for ruling out a disease; thus, the score was -1 when this condition was met; (2) The borders disappear with the layer disappearance; therefore, when the parameters “layers changed” and “layer borders” both met the option “disappeared”, only one point should be added or subtracted; (3) Special signs are the specific symbols of a disease. In general, special signs belong to different diseases and would not be seen in an independent case, such as in the three sets. If this occurs, such as an ITB case with a fistula, our classification mode would not be applicable. However, this situation is rare

Table 5 Univariate logistic regression analysis of endoscopic ultrasound parameters

Parameters	CD OR	CD P value	PIL OR	PIL P value	ITB OR	ITB P value	Score
Layer changed (discrete variable)							
M normal	67.81	< 0.001	0.02	< 0.001	0.04	< 0.001	-1
M thickened	0.23	< 0.001	0.85	0.75	18.56	< 0.001	-1
SM normal	0.22	< 0.001	0.82	0.708	24.75	< 0.001	-1
SM thickened	92.38	< 0.001	0.02	< 0.001	0.02	< 0.001	1
MP normal	29.87	< 0.001	0.01	< 0.001	0.85	0.804	0
S normal	53.08	< 0.001	0.01	< 0.001	0.75	0.668	0
Layer disappeared	0.01	< 0.001	141.29	< 0.001	1.45	0.576	-1
Layer borders (discrete variable)							
M/SM clear	2.62	0.009	0.15	0.003	1.08	0.878	0
M/SM unclear	3.55	< 0.001	0.13	< 0.001	0.82	0.668	1
SM/MP clear	8.52	< 0.001	0.03	< 0.001	0.66	0.379	0
SM/MP invisible	0.01	< 0.001	141.29	< 0.001	1.45	0.576	1
Echo level (discrete variable)							
1 (hyperechoic)	0.87	0.807	In	N/A	3.86	0.03	0
2	15.46	< 0.001	In	N/A	0.58	0.253	1
3 (medium)	0.18	0.026	6	0.023	1.96	0.541	-1
4	0.11	1.217	3.47	0.03	0.7	0.74	0
5 (hyperechoic)	0.03	< 0.001	72.87	< 0.001	0.8	0.775	-1
Echo homogeneity (discrete variable)							
Homogeneous	0.6	0.115	4.57	< 0.001	0.36	0.058	0
Heterogeneous	1.69	0.102	0.26	0.003	1.92	0.179	1
Diffuse lesion	0.01	< 0.001	470.17	< 0.001	In	N/A	-1
Serosa integrity (discrete variable)							
Smooth	9.62	< 0.001	0.08	< 0.001	0.45	0.148	0
Non-smooth	0.35	0.055	1.14	0.87	4.98	0.012	0
Interrupted	0.07	< 0.001	26.62	< 0.001	0.55	0.573	0
Emerge	0.12	0.015	16.77	0.003	In	N/A	-1

Table 6 Tendency scores of endoscopic ultrasound options in Crohnʼs disease, primary intestinal lymphoma and intestinal tuberculosis

Parameters	CD	PIL	ITB
+1	SM thickened	Layer disappeared	M thickened
	M/SM unclear	Homogeneous and diffuse Lesion echo	Echo level 3-5
	Echo level 2	Interrupted S	Heterogeneous Echo
	Heterogeneous Lesion echo	Multiple and emerged lymph nodes	Non-smooth S
-1	M thickened	Layer disappeared	M normal
	SM normal	Homogeneous	SM thickened
	Layer disappeared	Visible layer borders	Diffuse lesion echo
	Echo level 3 and 5	Echo level 1 and 2	Lymph nodes emerged
	Diffuse lesion echo	Heterogeneous echo level	Smooth S
	Interrupted S		
	Serosa emerged		

The reference category of CD, PIL and ITB was non-CD (PIL & ITB), non-PIL (CD & ITB), and non-ITB (CD & PIL), respectively. The options with statistical insignificance in the three diseases are not given. The right section shows the scores of each option for each disease. CD: Crohn’s disease; In: Infinitesimal; ITB: Intestinal tuberculosis; M: Mucosa; MP: Muscularis propria; N/A: Not available; PIL: Primary intestinal lymphoma; S: Serosa; SM: Submucosa.
in clinical practice; and (4) The highest score of < 2 suggests that the EUS pattern is not found in the three diseases. A non-unique highest score indicates a difficult case; thus, the diagnosis would be “other diseases”.

There were limitations to this study. There was an attempt to eliminate interference from the original written reports when dealing with the test set. The images were analyzed without written reports; therefore, it was difficult to determine the location of the lesion and to match the EUS images to white light endoscopic images. However, this problem can be solved easily in clinical practice, and the diagnostic accuracy may be even higher in the real situation.

ARTICLE HIGHLIGHTS

Research background
Some gastrointestinal diseases, including Crohn’s disease (CD), primary intestinal lymphoma (PIL) and intestinal tuberculosis (ITB), can lead to colorectal ulcers, are difficult to differentiate, and usually require entirely different treatments. Their architecture on resection histology can be easily distinguished at low magnification. Endoscopic ultrasound (EUS) can demonstrate bowel wall structural changes, and identify lesions under the mucosa.

Research motivation
There are few reports available regarding the value of EUS in the differential diagnosis of these three diseases. The authors attempted to explore the EUS diagnostic accuracy of these diseases and to create a new reliable diagnostic method.

Research objectives
The authors attempted to create an EUS diagnostic classification method which can be used for accurately differentiating CD, PIL, ITB and other colorectal ulcerative diseases.

Research method
The authors searched the in-patient medical record database for confirmed cases of CD, PIL and ITB from 2008 to 2015 at our center, and collected data on EUS from randomly-chosen patients who formed the training set. All cases found to have colorectal ulcers using EUS were obtained from the endoscopy database and formed the test set. The authors then removed the cases which were easily diagnosed, and the remaining cases formed the perplexing test set. The authors conducted univariate logistic regression analysis on the training set to summarize EUS features of CD, PIL and ITB, and created a diagnostic classification method, rediagnosed the cases in the training set, test set and perplexing set using the classification method, and determined EUS diagnostic accuracies. The authors analyzed the origin of the problems, which were reflected from the diagnostic accuracy, adjusted the classification then repeated the rediagnosing and accuracy-calculating steps, obtaining a result which was closer to the facts.

Research results
The EUS features of CD, PIL and ITB are different. The diagnostic classification method, as a new statistical method, is reliable in the differential diagnosis of colorectal ulcerative diseases. But, the case numbers of PIL and ITB were too small.

Research conclusions
EUS is good for differentiating CD, PIL and ITB; An EUS classification system for differentiating CD, PIL and ITB; A new statistical method and an original scoring system.

Research perspectives
The authors will increase the number of ITB and PIL to obtain a higher reliability of the classification method, and will perform a multicenter study.

REFERENCES
1 Klessl R, Neurath MF. Advanced endoscopy imaging in inflammatory bowel diseases. Gastrointest Endosc 2017; 85:496-508 [PMID:27816496 DOI: 10.1016/j.gie.2016.10.034]
2 Tontini GE, Wiedbrauck F, Cavallo F, Koulaouzidis A, Marino R, Pastorelli L, Spina L, McAlindon ME, Leoni P, Vitagliano P, Cadoni S, Rondonotti E, Vecchi M. Small-bowel capsule endoscopy with panoramic view: results of the first multicenter, observational study (with videos). Gastrointest Endosc 2017; 85:401-408 [PMID: 27515129 DOI: 10.1016/j.gie.2016.07.063]
3 Sato S, Yao K, Yao T, Schlemper RJ, Matsu T, Sakurai T, Iwashita A. Colonoscopy in the diagnosis of intestinal tuberculosis in asymptomatic patients. Gastrointest Endosc 2004; 59:362-368 [PMID: 27515129 DOI: 10.1006/gie.2003.02716-0]
4 Kucharzki M, Karczewski J, Mańkowska-Wierzbicka D, Karmelita-Katulska K, Kaczmarek E, Iwanik K, Rzymski P, Grzymislawski M, Linke K, Dobrowolska A. Usefulness of Endoscopic Indices in Determination of Disease Activity in Patients with Crohn’s Disease. Gastroenterol Res Pract 2016; 2016:7896478 [PMID: 26997952 DOI: 10.1155/2016/7896478]
5 Elrichmann M, Wietzke-Braun P, Dhar S, Nikolaus K, Arlt A, Behge J, Kuehbacher T, Wittermeyer L, Balschun K, Klapper W, Schreiber S, Fritscher-Ravens A. Endoscopic ultrasound of the colon for the differentiation of Crohn’s disease and ulcerative colitis in comparison with healthy controls. Aliment Pharmacol Ther 2014; 39:823-833 [PMID: 24612000 DOI: 10.1111/apt.12671]
6 Wu D, Li JN, Qian JM. Endoscopic Diagnosis and Treatment of Precancerous Colorectal Lesions in Patients with Inflammatory Bowel Disease: How Does the Latest SCENIC International Consensus Interpret with Our Clinical Practice? J Transl Int Med 2017; 5:4-7 [PMID: 28680833 DOI: 10.1515/jtm-2017-0008]
7 Min YL, Ouyang Q, Zhou ZF, Pu P, Chen DY. Histological pathologic study on Crohn’s disease and intestinal tuberculosis (in Chinese). Linchuan Neike Zazhi 2002; 2:109-111
8 Malmstrom ML, Saffiou A, Vilmann P, Klausen TW, Gøgenur I. Endoscopic ultrasound for staging of colonic cancer proximal to the rectum: A systematic review and meta-analysis. Endosc Ultrasound 2016; 5:307-314 [PMID:27803903 DOI: 10.4103/2303-9027.191610]
9 Ustundag Y, Fasaroli P. Are rigid probes sufficient to provide reliable data for rectal cancer staging? Endosc Ultrasound 2015; 4:270 [PMID:26374591 DOI: 10.4103/2303-9027.163023]
10 Ge N, Sun S. Endoscopic ultrasonography: An all in one technique vibrates virtually around the whole internal medical field. J Transl Int Med 2014; 2:104-106 [DOI: 10.4103/2224-4018.141829]
11 Okasha HH, Amin M, Ezzat R, El-Nady M, Nagy A. Small bowel intussusception induced by a jejunal gastrointestinal stromal tumor diagnosed by endoscopic ultrasonography. Endosc Ultrasound 2016; 5:346-347 [PMID:27803910 DOI: 10.4103/2303-9027.191683]
12 Bhutani MS, Annangi S, Koduru P, Aggarwal A, Suzuki R. Diagnosis of cystic lymphangioma of the colon by endoscopic ultrasound: Biopsy is not needed! Endosc Ultrasound 2016; 5:335-338 [PMID:27803907 DOI: 10.4103/2303-9027.191668]
13 Leighton D, Oudjhane K, Ben Mohammed H. The stenocavicular joint in trauma: retrosternal dislocation versus epiphysial fracture. Pediatr Radiol 1989; 20:126-127 [PMID:2602005 DOI: 10.1007/2303-9027.135748]
14 Makino T, Kannura S, Sasaki F, Nasu Y, Funakawa K, Tanaka A, Arima S, Nakazawa J, Taguchi H, Hashimoto S, Numata M, Uto H, Tsuobouchi H, Ido A. Preoperative classification of submucosal...
fibrosis in colorectal laterally spreading tumors by endoscopic ultrasonography. *Endosc Int Open* 2015; 3: E363-E367 [PMID: 26357682 DOI: 10.1055/s-0034-1391782]

15 **Qiu EQ et al.** EUS classification of colorectal ulcers and treatment of inflammatory bowel disease in China. *Neike Lilun Shijian* 2013; I: 61-75

16 **Hann VS, Yang JM, Xu LH, Nie LM, Zhao ZS.** Endoscopic ultrasound in the diagnosis and management of inflammatory bowel disease. *Endoscopy* 1999; 31: 152-157 [PMID: 10223365 DOI: 10.1055/s-1999-13664]

17 **Gast P, Belaïche J.** Rectal endosonography in inflammatory bowel disease: differential diagnosis and prediction of remission. *Endoscopy* 1999; 31: 158-166 [PMID: 10223366 DOI: 10.1055/s-1999-13665]

18 **Wakefield AJ, Sankey EA, Dhillon AP, Sawyerr AM, More L, Sim R, Pittilo RM, Rowles PM, Hudson M, Lewis AA.** Granulomatous vasculitis in Crohn’s disease. *Gastroenterology* 1991; 100: 1279-1287 [PMID: 2013373 DOI: 10.1016/0016-5085(91)90779-K]

19 **Cangir A, Vietti TJ, Gehan EA, Burgert EO Jr, Thomas P, Tefft M, Nesbit ME, Kissane J, Pritchard D.** Ewing’s sarcoma metastatic at diagnosis. Results and comparisons of two intergroup Ewing’s sarcoma studies. *Cancer* 1990; 66: 887-893 [PMID: 2201433 DOI: 10.1186/1471-230X-11-13]

20 **El-Zahabi LM, Jamali FR, El-Hajj II, Naja M, Salem Z, Shamseddine A, El-Saghir NS, Zaatari G, Geera F, Soweid AM.** The value of EUS in predicting the response of gastric mucosa-associated lymphoid tissue lymphoma to Helicobacter pylori eradication. *Gastroenterost Endosc* 2007; 65: 89-96 [PMID: 17185085 DOI: 10.1016/j.gie.2006.05.009]

21 **Sczizas D, Ntanasis-Stathopoulos I, Tsilimigras DI, Sioulas AD, Moris D, Spartalis E, Scotinistis I, Papanikolaou AS.** The role of Endoscopic Ultrasound in the Diagnosis and Management of Primary Gastric Lymphoma. *Gastroenterol Res Pract* 2017; 2017: 2397430 [PMID: 28400819 DOI: 10.1155/2017/2397430]

22 **Rana SS, Bhasin DK, Rao C, Srinivasan R, Singh K.** Tuberculosis presenting as Dysphagia: clinical, endoscopic, radiological and endosonographic features. *Endosc Ultrasound* 2013; 2: 92-95 [PMID: 24949371 DOI: 10.1016/2033-9027.117693]

23 **Han XM, Yang JM, Xu LH, Nie LM, Zhao ZS.** Endoscopic ultrasonography in esophageal tuberculosis. *Endoscopy* 2008; 40: 701-702 [PMID: 18680881 DOI: 10.1055/s-2008-1077479]

24 **Rathi P, Gambhire P.** Abdominal Tuberculosis. *J Assoc Physicians India* 2016; 64: 38-47 [PMID: 27730779]

25 **Shimizu S, Tada M, Kawai K.** Endoscopic ultrasonography in inflammatory bowel diseases. *Gastroenterost Endosc Clin N Am* 1995; 5: 851-859 [PMID: 8535634]

26 **Sharma V, Rana SS, Chhabra P, Sharma R, Gupta N, Bhasin DK.** Primary esophageal tuberculosis mimicking esophageal cancer with vascular involvement. *Endosc Ultrasound* 2016; 5: 61-62 [PMID: 26879170 DOI: 10.1016/2033-9027.157924]

27 **Lee YJ, Yang SK, Byeon JS, Myung SJ, Chang HS, Hong SS, Kim KJ, Lee GH, Jung HY, Hong WS, Kim JH, Min YI, Chang SJ, Yu CS.** Analysis of colonicoscopic findings in the differential diagnosis between intestinal tuberculosis and Crohn’s disease. *Endoscopy* 2006; 38: 592-597 [PMID: 16673312 DOI: 10.1055/s-2006-924996]

28 **Mao R, Liao WD, He Y, Ouyang CH, Zhu ZH, Yu C, Long SH, Chen YJ, Li ZP, Wu XP, Lv NH, Hu P, Chen M.** Computed tomographic enterography adds value to colonoscopy in differentiating Crohn’s disease from intestinal tuberculosis: a potential diagnostic algorithm. *Endoscopy* 2015; 47: 322-329 [PMID: 25675175 DOI: 10.1055/s-0034-1391230]
