Learning Structured Predictors from Bandit Feedback for Interactive NLP

Artem Sokolov◊,* , Julia Kreutzer*, Christopher Lo†,* , Stefan Riezler‡,*

*Computational Linguistics & ‡IWR, Heidelberg University, Germany
†Dept. of Mathematics, Tufts University, USA
◊Amazon Development Center, Germany
Example: Learning SMT from Human Post-Edits

Data:
- Cost of professional translators
- Required editor expertise
- Slow in general

Learning:
- Unclear mapping of post-edits to SMT operations, reachability
- Editors omit/add information, rewrite from scratch
- Small total number of post-edits

Resulting model:
- Mismatch between human editors and real users

Ideally we need:
- Weaker-than-post-edit feedbacks that are easy to directly elicit from users
- Fast learning
Example: Learning SMT from Human Post-Edits

- **Data:**
 - cost of professional translators
 - required editor expertise
 - slow in general
Example: Learning SMT from Human Post-Edits

Data:
- cost of professional translators
- required editor expertise
- slow in general

Learning:
- unclear mapping of post-edits to SMT operations, reachability
- editors omit/add information, rewrite from scratch
- small total number of post-edits

Ideally we need:
- weaker-than-post-edit feedbacks that are easy to directly elicit from users
- fast learning
Example: Learning SMT from Human Post-Edits

- **Data:**
 - cost of professional translators
 - required editor expertise
 - slow in general

- **Learning:**
 - unclear mapping of post-edits to SMT operations, reachability
 - editors omit/add information, rewrite from scratch
 - small total number of post-edits

- **Resulting model:**
 - mismatch between human editors and real users
Example: Learning SMT from Human Post-Edits

- **Data:**
 - cost of professional translators
 - required editor expertise
 - slow in general

- **Learning:**
 - unclear mapping of post-edits to SMT operations, reachability
 - editors omit/add information, rewrite from scratch
 - small total number of post-edits

- **Resulting model:**
 - mismatch between human editors and real users

Ideally we need

- weaker-than-post-edit feedbacks
- that are easy to directly elicit from users
- fast learning
Online Bandit Learning

1. observe input structure x_t
2. propose output structure y_t
3. receive feedback to y_t (e.g. task loss, but not the true y)
4. update parameters
Online Bandit Learning

1. observe input structure x_t
2. propose output structure y_t
3. receive feedback to y_t (e.g. task loss, but not the true y)
4. update parameters

Learner does not know correct structure nor what would have happened if it had predicted differently
How to Learn from User Feedback?

Online Bandit Learning

1. observe input structure x_t
2. propose output structure y_t
3. receive feedback to y_t (e.g. task loss, but not the true y)
4. update parameters

Learner does not know correct structure nor what would have happened if it had predicted differently

‘One-armed bandits’ (slot machines)

- have to find a machine that gives you most money
- can try only one machine per time
- exploration/exploitation dilemma
learning from bandit feedback

- goal: minimize expected regret for selecting an arm
- set of arms is usually small \cite{auer2002a,auer2002b}
- this work: exponential set of arms (outputs)
- stochastic assumptions on the input but not on the feedback + context
- **learning from bandit feedback**
 - goal: minimize expected regret for selecting an arm
 - set of arms is usually small
 Auer et al. (2002b,a)
 - this work: exponential set of arms (outputs)
 - stochastic assumptions on the input but not on the feedback + context

- **reinforcement learning**
 - goal: maximize expected reward in an MDP
 - closest approach: policy gradient
 Sutton et al. (2000)
 - this work can be seen as one-state MDP
 - action = structured output
Related work

- **learning from bandit feedback**
 - goal: minimize expected regret for selecting an arm
 - set of arms is usually small [Auer et al. (2002b,a)]
 - this work: exponential set of arms (outputs)
 - stochastic assumptions on the input but not on the feedback + context

- **reinforcement learning**
 - goal: maximize expected reward in an MDP
 - closest approach: policy gradient [Sutton et al. (2000)]
 - this work can be seen as one-state MDP
 - action = structured output

- **pairwise preference learning**
 - full information setting
 - analyzed under zero order optimization [Yue and Joachims (2009); Agarwal et al. (2010)]
 - this work: stochastic first-order optimization approach
Many potential NLP applications:

- numerical judgments on output quality
 - action learning Branavan et al. (2009)
 - machine translation Sokolov et al. (2015)
 - requires impractically many feedback
 - numerical feedback is hard to elicit
Many potential NLP applications:

- numerical judgments on output quality
 - action learning Branavan et al. (2009)
 - machine translation Sokolov et al. (2015)
 - requires impractically many feedback
 - numerical feedback is hard to elicit

This Work

- extending previous work with focus on
 1. learning speed: by strong convexification of the objective
 2. elicitation: by learning from pairwise preferences
- ‘banditize’ two new objectives
- empirical evaluation on several NLP tasks
Problem Setup

- underlying Gibbs distribution

\[p_w(y|x) \propto e^{w^\top \phi(x,y)} \]

- \(\Delta_y(y'; x) \) – loss for predicting \(y' \) instead of \(y \)

- expected loss (aka risk) \(J(w) = \mathbb{E}_{p(x,y)p_w(y'|x)} \left[\Delta_y(y') \right] \)

Och (2003); Gimpel and Smith (2010); Yuille and He (2012)
underlying Gibbs distribution

\[p_w(y|x) \propto e^{w^\top \phi(x,y)} \]

\(\Delta_y(y'; x) \) – loss for predicting \(y' \) instead of \(y \)

expected loss (aka risk) Och (2003); Gimpel and Smith (2010); Yuille and He (2012)

\[J(w) = \mathbb{E}_{p(x,y)} p_w(y'|x) \left[\Delta_y(y') \right] \]

Full Information

expected loss is replaced by empirical risk minimization

\[J(w) = \frac{1}{T} \sum_{t=0}^{T} \mathbb{E}_{p_w(y'|x_t)} \Delta_y(y') p_w(y'|x_t) \]

continuous and differentiable, although typically non-convex

most approaches rely on gradient techniques

need to know gold-standard \(y_t \) to calculate \(\Delta_y(y') \) and

evaluate it for all \(y' \) in the expectation
what to do if the gold-standard y_t is unknown and
we cannot evaluate all candidates y'?
- what to do if the gold-standard y_t is unknown and
- we cannot evaluate all candidates y'?
- pass the evaluation of $\Delta(y')$ to the user (dropping y_t in the subscript)
- replace gradient with its unbiased estimate
what to do if the gold-standard y_t is unknown and we cannot evaluate all candidates y'?

- pass the evaluation of $\Delta(y')$ to the user (dropping y_t in the subscript)
- replace gradient with its unbiased estimate

Learning with Bandit Information

1: Input: learning rate γ
2: Initialize w_0
3: for $t = 0, \ldots, T$ do
4: Observe x_t
5: Sample $\tilde{y}_t \sim p_{w_t}(y|x_t)$
6: Obtain feedback $\Delta(\tilde{y}_t)$
7: Update $w_{t+1} = w_t - \gamma s_t$
8: Choose a solution \hat{w} from the list \{w_0, \ldots, w_T\}
Bandit Information

- what to do if the gold-standard y_t is unknown and
- we cannot evaluate all candidates y'?
- pass the evaluation of $\Delta(y')$ to the user (dropping y_t in the subscript)
- replace gradient with its unbiased estimate

Learning with Bandit Information

1: Input: learning rate γ
2: Initialize w_0
3: for $t = 0, \ldots, T$ do
4: Observe x_t
5: Sample $\tilde{y}_t \sim p_{w_t}(y|x_t)$ simultaneous exploration/exploitation
6: Obtain feedback $\Delta(\tilde{y}_t)$
7: Update $w_{t+1} = w_t - \gamma s_t$
8: Choose a solution \hat{w} from the list $\{w_0, \ldots, w_T\}$
what to do if the gold-standard y_t is unknown and we cannot evaluate all candidates y'?
- pass the evaluation of $\Delta(y')$ to the user (dropping y_t in the subscript)
- replace gradient with its unbiased estimate

Learning with Bandit Information

1: Input: learning rate γ
2: Initialize w_0
3: **for** $t = 0, \ldots, T$ **do**
4: Observe x_t
5: Sample $\tilde{y}_t \sim p_{w_t}(y|x_t)$ **simultaneous exploration/exploitation**
6: Obtain feedback $\Delta(\tilde{y}_t)$
7: Update $w_{t+1} = w_t - \gamma s_t$
8: Choose a solution \hat{w} from the list $\{w_0, \ldots, w_T\}$

$$\mathbb{E}_x \mathbb{E}_{\tilde{y}}[s_t] = \nabla_w J$$
Instantiation for the expected loss Branavan et al. (2009); Sokolov et al. (2015)

\[J(w) = \mathbb{E}_x \mathbb{E}_y [\Delta(y)] \]
\[\tilde{y} \sim p_w(y|x) \]
\[s_t = \Delta(\tilde{y})(\phi(x, \tilde{y}) - \mathbb{E}_y[\phi(x, y)]) \]
Instantiation for the expected loss \cite{Branavan:2009,Sokolov:2015}

\[
J(w) = \mathbb{E}_x \mathbb{E}_y [\Delta(y)]
\]

\[
\tilde{y} \sim p_w(y|x)
\]

\[
s_t = \Delta(\tilde{y}) (\phi(x, \tilde{y}) - \mathbb{E}_y [\phi(x, y)])
\]

- non-convex stochastic first-order optimization
- converges to a local minimum \cite{Polyak:1973}
- iteration complexity is $O(\varepsilon^{-2})$ \cite{Ghadimi:2012}

i.e. number of steps until $\mathbb{E}[\|\nabla J(w_t)\|^2] \leq \varepsilon$
Convergence

Instantiation for the expected loss Branavan et al. (2009); Sokolov et al. (2015)

\[J(w) = \mathbb{E}_x \mathbb{E}_y [\Delta(y)] \]
\[\tilde{y} \sim p_w(y|x) \]
\[s_t = \Delta(\tilde{y}) (\phi(x, \tilde{y}) - \mathbb{E}_y [\phi(x, y)]) \]

- non-convex stochastic first-order optimization
- converges to a local minimum Polyak and Tsypkin (1973)
- iteration complexity is \(O(\varepsilon^{-2}) \) Ghadimi and Lan (2012)
 i.e. number of steps until \(\mathbb{E}[\|\nabla J(w_t)\|^2] \leq \varepsilon \)

1 for easier feedback elicitability:
 - pairwise preference loss

2 for faster convergence: (strongly) convexify the loss to get \(O(\varepsilon^{-1}) \)
 complexity
 - cross-entropy loss
1 Pairwise Loss

\[
J(w) = \mathbb{E}_x \mathbb{E}_{\langle y_i, y_j \rangle} [\Delta(\langle y_i, y_j \rangle)]
\]

\[
\langle \tilde{y}_i, \tilde{y}_j \rangle \sim p_w(\langle y_i, y_j \rangle | x) \propto e^{w^\top (\phi(x, y_i) - \phi(x, y_j))}
\]

\[
s_t = \Delta(\langle \tilde{y}_i, \tilde{y}_j \rangle) (\phi(x, \langle \tilde{y}_i, \tilde{y}_j \rangle) - \mathbb{E}_{\langle y_i, y_j \rangle} [\phi(x, \langle y_i, y_j \rangle)])
\]
Pairwise Loss

\[J(w) = \mathbb{E}_x \mathbb{E}_{\langle y_i, y_j \rangle} [\Delta(\langle y_i, y_j \rangle)] \]

\[\langle \tilde{y}_i, \tilde{y}_j \rangle \sim p_w(\langle y_i, y_j \rangle | x) \propto e^{w^\top (\phi(x, y_i) - \phi(x, y_j))} \]

\[s_t = \Delta(\langle \tilde{y}_i, \tilde{y}_j \rangle)(\phi(x, \langle \tilde{y}_i, \tilde{y}_j \rangle) - \mathbb{E}_{\langle y_i, y_j \rangle}[\phi(x, \langle y_i, y_j \rangle)]) \]

→ arguably easier for users to judge (binary judgment) Thurstone (1927)

→ but it’s just expected loss on pairs, so still \(\mathcal{O}(\varepsilon^{-2}) \) complexity
1. Pairwise Loss

\[
J(w) = \mathbb{E}_x \mathbb{E}_{\langle y_i, y_j \rangle} [\Delta(\langle y_i, y_j \rangle)]
\]

\[
\langle \tilde{y}_i, \tilde{y}_j \rangle \sim p_w(\langle y_i, y_j \rangle|x) \propto e^{w^\top (\phi(x,y_i) - \phi(x,y_j))}
\]

\[
s_t = \Delta(\langle \tilde{y}_i, \tilde{y}_j \rangle)(\phi(x, \langle \tilde{y}_i, \tilde{y}_j \rangle) - \mathbb{E}_{\langle y_i, y_j \rangle} [\phi(x, \langle y_i, y_j \rangle)])
\]

→ arguably easier for users to judge (binary judgment) Thurstone (1927)

→ but it’s just expected loss on pairs, so still \(O(\varepsilon^{-2})\) complexity

2. Cross-Entropy

\[
J(w) = \mathbb{E}_x \mathbb{E}_{g(y)} [-\log p_w(y|x)], \text{ gain function } g(y) = 1 - \Delta(y)
\]

\[
\tilde{y} \sim p_w(y|x)
\]

\[
s_t = \frac{1 - \Delta(\tilde{y})}{p_w(\tilde{y}|x)} (-\phi(x, \tilde{y}) + \mathbb{E}_y[\phi(x, y)])
\]
1 Pairwise Loss

\[J(w) = \mathbb{E}_x \mathbb{E}_{\langle y_i, y_j \rangle} [\Delta(\langle y_i, y_j \rangle)] \]

\[\langle \tilde{y}_i, \tilde{y}_j \rangle \sim p_w(\langle y_i, y_j \rangle | x) \propto e^{w^\top (\phi(x,y_i) - \phi(x,y_j))} \]

\[s_t = \Delta(\langle \tilde{y}_i, \tilde{y}_j \rangle) (\phi(x, \langle \tilde{y}_i, \tilde{y}_j \rangle) - \mathbb{E}_{\langle y_i, y_j \rangle} [\phi(x, \langle y_i, y_j \rangle)]) \]

⇒ arguably easier for users to judge (binary judgment) Thurstone (1927)
⇒ but it’s just expected loss on pairs, so still \(O(\varepsilon^{-2}) \) complexity

2 Cross-Entropy

\[J(w) = \mathbb{E}_x \mathbb{E}_{g(y)} [-\log p_w(y|x)], \text{ gain function } g(y) = 1 - \Delta(y) \]

\[\tilde{y} \sim p_w(y|x) \]

\[s_t = \frac{1 - \Delta(\tilde{y})}{p_w(\tilde{y}|x)} \left(- \phi(x, \tilde{y}) + \mathbb{E}_y [\phi(x, y)] \right) \]

⇒ can be made strongly convex by adding a regularizer
⇒ expecting faster \(O(\varepsilon^{-1}) \) convergence
⇒ this loss upper bounds the expected loss, if \(g(y) \) is a distribution
⇒ but in the bandit setup normalizing is not possible
task	features	structure	task loss Δ	dataset
text class.	sparse	4 classes	error rate	RCV1
word OCR	dense	CRF	Hamming F1	Taskar et al. (2003) CoNLL-2000
NP-chunking	sparse	bigram-CRF		
SMT	dense	n-best list	BLEU	EuroParl→NewsComm
	sparse	hypergraph		
Experiments

task	features	structure	task loss	dataset
text class.	sparse	4 classes	error rate	RCV1
word OCR	dense	CRF	Hamming F1	Taskar et al. (2003) CoNLL-2000
NP-chunking	sparse	bigram-CRF		
SMT	dense	n-best list	BLEU	EuroParl→NewsComm
	sparse	hypergraph		

Setup

- simulated bandit feedback by evaluating task loss against gold-standard structures without revealing them to the learner
- constant learning rates in most experiments, ℓ_2-regularization, momentum, annealing
- empirical convergence assessed as the # of steps before overfitting on dev
- test results for the best model found on dev (under MAP inference, averaged)
Results

task	loss/gain	full information	partial information				
		expected loss	pairwise	cross-entropy			
Text classification	0/1 ↓	percep., $\lambda = 10^{-6}$	0.040	0.031	0.083	0.035	
CRF							
Word OCR (dense)	Hamming ↓	likelihood	0.099	0.261	0.332	0.257	
Chunking (sparse)	F1-score ↑	likelihood	0.935	0.923	0.914	0.891	
SMT							
News (n-best list, dense)		BLEU ↑	0.259	0.284	0.269	0.275	0.276
News (hypergraph, sparse)			0.265	0.283	0.267	0.273	0.271
Results

task	loss/gain	full information	partial information		
		expected loss	pairwise	cross-entropy	
Text classification	0/1 ↓	percep., $\lambda = 10^{-6}$ 0.040	0.031	0.083	0.035
CRF					
Word OCR (dense)	Hamming ↓	likelihood 0.099	0.261	0.332	0.257
Chunking (sparse)	F1-score ↑	likelihood 0.935	0.923	0.914	0.891
SMT					
News (n-best list, dense)	BLEU ↑	0.259 0.284	0.269	0.275	0.276
News (hypergraph, sparse)		0.265 0.283	0.267	0.273	0.271
Results

task	loss/gain	full information	partial information			
		expected loss	pairwise	cross-entropy		
Text classification	0/1 ↓	percep., $\lambda = 10^{-6}$	0.040	0.031	0.083	0.035
CRF						
Word OCR (dense)						
Chunking (sparse)						
SMT						
News (n-best list, dense)						
News (hypergraph, sparse)						

task	loss/gain	full information	partial information			
		expected loss	pairwise	cross-entropy		
Text classification	0/1 ↓	percep., $\lambda = 10^{-6}$	0.040	0.031	0.083	0.035
CRF						
Word OCR (dense)						
Chunking (sparse)						
SMT						
News (n-best list, dense)						
News (hypergraph, sparse)						
Results

task	loss/gain	full information	partial information		
			expected loss		
			pairwise		
			cross-entropy		
Text classification	0/1 ↓	percep., $\lambda = 10^{-6}$	0.040		
			0.031	0.083	0.035
CRF	Hamming ↓	likelihood	0.099		
	F1-score ↑	likelihood	0.935		
			0.261	0.332	0.257
Chunking (sparse)			0.923	0.914	0.891
SMT	BLEU ↑	in-domain	0.259	0.284	
			0.269	0.275	0.276
			0.267	0.273	0.271

Out-of-domain: in-domain

Theory

$O(\epsilon^{-2})$ $O(\epsilon^{-2})$ $O(\epsilon^{-1})$
Results

task	loss/gain	full information	partial information
Text classification	0/1 ↓	percep., $\lambda = 10^{-6}$	0.040
		expected loss pairwise cross-entropy	0.031 0.083 0.035
CRF			
Word OCR (dense)	Hamming ↓	likelihood	0.099
Chunking (sparse)	F1-score ↑	likelihood	0.935
		out-of-domain in-domain	
SMT			
News (n-best list, dense)	BLEU ↑		
News (hypergraph, sparse)			
Results

task	loss/gain	full information	partial information			
		expected loss	pairwise	cross-entropy		
Text classification	0/1 ↓	0.040	0.031	0.083	0.035	
CRF						
Word OCR (dense)						
Chunking (sparse)						
			0.099	0.261	0.332	0.257
			0.935	0.923	0.914	0.891
SMT						
News (n-best list, dense)						
News (hypergraph, sparse)						
			0.259	0.269	0.275	0.276
			0.284	0.267	0.273	0.271

Iterations to meet stopping criterion on dev data

theory	\(\mathcal{O}(\varepsilon^{-2})\)	\(\mathcal{O}(\varepsilon^{-2})\)	\(\mathcal{O}(\varepsilon^{-1})\)
task \ loss	expected loss	pairwise	cross-entropy
Text classification	2.0M	0.5M	1.1M
CRF	14.4M	9.3M	37.9M
Word OCR	7.5M	4.7M	5.9M
Chunking	3.8M	1.2M	1.2M
SMT	370k	115k	281k
Possible reasons

- different hidden constants in the $O(\cdot)$ notations
- in particular, high variance σ^2

\[\mathbb{E}[\|\nabla J(w_T)\|^2] \propto \frac{L^2}{T} + \text{const} \cdot \frac{L\sigma}{\sqrt{T}} \]

Ghadimi and Lan (2012)
Why the unexpected convergence speed?

Possible reasons

- different hidden constants in the $O(\cdot)$ notations
- in particular, high variance σ^2

\[
\mathbb{E}[\|\nabla J(w_T)\|^2] \propto \frac{L^2}{T} + \text{const} \cdot \frac{L\sigma}{\sqrt{T}} \quad \text{Ghadimi and Lan (2012)}
\]

We empirically estimated (same T and γ, SMT hypergraph task):

- average gradient norm $\langle \|s_T\|^2 \rangle$
- Lipschitz constant L of the gradient ∇J as $\max_{t, t'} \frac{\|s_t - s_{t'}\|}{\|w_t - w_{t'}\|}$
- variance σ^2 as $\max_{t=0,...,T} \|s_t - \frac{1}{T} \sum_{t=0}^{T} s_t\|^2$

	$\langle \|s_T\|^2 \rangle$	L	σ^2
expected loss	0.02 ± 0.03	11 ± 12	0.7 ± 0.9
pairwise	$2e-6 \pm 3e-8$	0.08 ± 0.01	0.0008 ± 0.0000
cross-entropy	3.04 ± 0.02	0.62 ± 0.2	677 ± 115
Possible reasons

- different hidden constants in the $O(\cdot)$ notations
- in particular, high variance σ^2

\[
\mathbb{E}[\|\nabla J(w_T)\|^2] \propto \frac{L^2}{T} + \text{const} \cdot \frac{L\sigma}{\sqrt{T}}
\]

Ghadimi and Lan (2012)

We empirically estimated (same T and γ, SMT hypergraph task):

- average gradient norm $\langle \|s_T\|^2 \rangle$
- Lipschitz constant L of the gradient ∇J as $\max_{t,t'} \frac{\|s_t-s_{t'}\|}{\|w_t-w_{t'}\|}$
- variance σ^2 as $\max_{t=0,...,T} \|s_t - \frac{1}{T} \sum_{t=0}^{T} s_t\|^2$

$\langle \|s_T\|^2 \rangle$	L	σ^2	
expected loss	0.02±0.03	11±12	0.7±0.9
pairwise	2e-6±3e-8	0.08±0.01	0.0008±0.0000
cross-entropy	3.04±0.02	0.62±0.2	677±115
two new objectives for learning structured predictors from weak feedback

- applicable to cases with no gold-standard structures and only feedback available

consistent advantage of pairwise feedback

- surprising, since theory predicts the fastest convergence for strongly convex losses
- can be explained by empirical factors: variance, Lipschitz constant

additionally, pairwise learning requires only relative feedback (good for users)
- **two new objectives** for learning structured predictors from weak feedback
 - applicable to cases with no gold-standard structures and only feedback available

- consistent **advantage of pairwise feedback**
 - surprising, since theory predicts the fastest convergence for strongly convex losses
 - can be explained by empirical factors: variance, Lipschitz constant

- additionally, pairwise learning requires only [relative feedback](#) (good for users)

Thank you!

Acknowledgements:

[DFG](#) Deutsche Forschungsgemeinschaft

[Amazon](#)
SMT hypergraph re-decoding on the development set
averaged over 3 independent runs

- pairwise ranking reaches peak performance fastest
- still large variance of cross-entropy learning (despite clipping)
Metaparameters

Task	Expected Loss	Pairwise	Cross-Entropy
Text classification	$\gamma_t = 1.0$	$\gamma_t = 10^{-0.75}$	$\gamma_t = 10^{-1}$
OCR	$T_0 = 0.4, \gamma_t = 10^{-3.5}$	$T_0 = 0.1, \gamma_t = 10^{-4}$	$\lambda = 10^{-5}, k = 10^{-2}, \gamma_t = 10^{-6}$
Chunking	$\gamma_t = 10^{-4}$	$\gamma_t = 10^{-4}$	$\lambda = 10^{-6}, k = 10^{-2}, \gamma_t = 10^{-6}$
News (n-best, dense)	$\gamma_t = 10^{-5}$	$\gamma_t = 10^{-4.75}$	$\lambda = 10^{-4}, \mu = 0.99, \gamma_t = 10^{-6}/\sqrt{t}$
News (h-graph, sparse)	$\gamma_t = 10^{-5}$	$\gamma_t = 10^{-4}$	$\lambda = 10^{-6}, k = 5 \cdot 10^{-3}, \gamma_t = 10^{-6}$

Table: Metaparameter settings determined on *dev* sets for constant learning rate γ_t, temperature coefficient T_0 for annealing under the schedule $T = T_0/\sqrt{3\text{epoch} + 1}$, momentum coefficient $\min\{1 - 1/(t/2 + 2), \mu\}$, clipping constant k used to replace $p_{w_t}(\tilde{y}_t|x_t)$ with $\max\{p_{w_t}(\tilde{y}_t|x_t), k\}$, ℓ_2 regularization constant λ. Unspecified parameters are set to zero.
Dueling Bandits (Moses, n-best)

	full information	bandit information
in-domain SMT	0.2854	0.2731 ± 0.001
out-domain SMT	0.2579	0.2705 ± 0.001
dueling bandits	0.2731 ± 0.001	
expected loss	0.2705 ± 0.001	

![Graph showing corpus-BLEU vs iteration](image-url)

- **Dueling BanditStruct**
- **out-domain SMT**

The graph illustrates the performance of different translation methods over iterations. The corpus-BLEU scores are plotted against iteration counts, demonstrating how each method performs over time.
Agarwal, A., Dekel, O., and Xiao, L. (2010). Optimal algorithms for online convex optimization with multi-point bandit feedback. In *COLT*, Haifa, Israel.

Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002a). Finite-time analysis of the multiarmed bandit problem. *Machine Learning*, 47:235–256.

Auer, P., Cesa-Bianchi, N., Freund, Y., and Schapire, R. E. (2002b). The nonstochastic multiarmed bandit problem. *SIAM J. on Computing*, 32(1):48–77.

Branavan, S., Chen, H., Zettlemoyer, L. S., and Barzilay, R. (2009). Reinforcement learning for mapping instructions to actions. In *ACL*, Suntec, Singapore.

Ghadimi, S. and Lan, G. (2012). Stochastic first- and zeroth-order methods for nonconvex stochastic programming. *SIAM J. on Optimization*, 4(23):2342–2368.

Gimpel, K. and Smith, N. A. (2010). Softmax-margin training for structured log-linear models. Technical Report CMU-LTI-10-008, Carnegie Mellon University, Pittsburgh, PA.

Och, F. J. (2003). Minimum error rate training in statistical machine translation. In *HLT-NAACL*, Edmonton, Canada.
Polyak, B. T. and Tsypkin, Y. Z. (1973). Pseudogradient adaptation and training algorithms. Automation and remote control, 34(3):377–397.

Sokolov, A., Riezler, S., and Urvoy, T. (2015). Bandit structured prediction for learning from user feedback in statistical machine translation. In MT Summit XV, Miami, FL.

Sutton, R. S., McAllester, D., Singh, S., and Mansour, Y. (2000). Policy gradient methods for reinforcement learning with function approximation. In NIPS, Vancouver, Canada.

Taskar, B., Guestrin, C., and Koller, D. (2003). Max-margin markov networks. In NIPS, Vancouver, Canada.

Thurstone, L. L. (1927). A law of comparative judgement. Psychological Review, 34:278–286.

Yue, Y. and Joachims, T. (2009). Interactively optimizing information retrieval systems as a dueling bandits problem. In ICML, Montreal, Canada.

Yuille, A. and He, X. (2012). Probabilistic models of vision and max-margin methods. Frontiers of Electrical and Electronic Engineering, 7(1):94–106.