This paper presents an efficient program for checking Mendelian consistency in a pedigree. Since pedigrees may contain incomplete and/or erroneous information, geneticists need to pre-process them before performing linkage analysis. Removing superfluous genotypes that do not respect the Mendelian inheritance laws can speed up the linkage analysis. We have described in a formal way the Mendelian consistency problem and algorithms known in literature. The formalization helped to polish the algorithms and to find efficient data structures. The performance of the tool has been tested on a wide range of benchmarks. The results are promising if compared to other programs that treat Mendelian consistency.

keywords: abstract interpretation

1 Introduction

Geneticists employ the so-called *linkage analysis* to relate genotypic information with their corresponding phenotypic information. Genotypes are organized in data structures called *pedigrees*, that besides genetic data, record which individuals mate and their offspring. Since pedigrees may contain incomplete and/or erroneous information, geneticists need to pre-process them before performing linkage analysis. Moreover, in many cases, we cannot know any genetic information for some individuals (for instance because they refuse to or cannot be analyzed) and we would like to know which are their possible genotypes. Therefore, we would like to pre-process the pedigree by removing some candidate genotypes, in such a way that the remaining genotypes respect the classical Mendelian laws. When the pedigree is composed by thousands of individuals, this consistency checking need to be automated. The first notable contribution in the pedigree consistency check is the algorithm proposed by Lange and Goradia in 1987 \[6\]. The algorithm takes as input a pedigree with a list of genotypes associated to every individual, and perform genotypes elimination by removing from the lists the genotypes that lead to Mendelian inconsistencies. The algorithm performs a fixpoint iteration by processing one nuclear family at a time. This algorithm is optimal (in the sense that it removes all the genotypes that lead to Mendelian inconsistencies, and only them) when the pedigree has no loops. An example of loop in a pedigree is when two individuals that mate have an ancestor in common. An algorithm that is optimal even in the presence of loops has been proposed by O’Connell and Weeks in 1999 \[8\]. In brief, the algorithm selects the loop breakers (that is the individuals that, if duplicated, remove the loop) and perform the Lange Goradia algorithm for every combination of the genotypes of the loop breakers. Unfortunately, it has been proven \[1\] that the consistency check on pedigrees with marker data containing at least three alleles is a NP-hard problem.

The remainder of the paper is organized as follows. Firstly, we formalize the problem of genotype elimination (Section 2) and the algorithms of Lange-Goradia (Section 2.1) and O’Connell and Weeks.
Then, we describe the implementation of Celer (Section 3). Section 4 describes the performances of Celer on a large set of benchmarks. Then, we compare our program with other existing software (Section 5). Finally, we conclude and suggest some directions for future works.

2 Mendelian consistency algorithms

A pedigree contains parental and genetic information about a set of individuals. Pedigrees are usually represented in a graphical way by drawing a circle for every female individual and a box for every male individual. Inside the circle (or the box) there can be some data regarding the individual (for instance genetic information, or affection status). Parental relations are represented by lines that connect to a node (the so called marriage node). Arrows depart from the marriage nodes to the children of the couple. In Figure 1 we report the graph of a pedigree composed by 11 individuals. For each individual, we report his/her identification number (id from now on) and his/her possible genotypes.

We collect the parental structure in a triple \((I, f, m)\) where \(I\) is the set of individuals and \(f\) and \(m\) are two partial functions from \(I\) into \(I\) mapping a subset \(\text{dom } f = \text{dom } m \subseteq I\) of individuals to their father and mother, respectively. The individuals that do not have parents in the pedigree are called founders. For the pedigree of Fig. 1 the founders are the individuals with id in \(\{1, 2, 3, 6\}\).

We suppose that we are looking at a single locus. The possible alleles in the locus are in the set \(\mathcal{A}\), ranged by uppercase case letters \(A, B, C, \ldots\). Let \(\mathcal{G}\) be the set of unordered pairs of elements in \(\mathcal{A}\). Since we consider the genotypes \((A, B)\) and \((B, A)\) as equivalent, the genotype of each individual will be an element of the set \(\mathcal{G}\). A fully specified genetic map of a pedigree \((I, f, m)\) is an element \(h\) of \(I \rightarrow \mathcal{G}\). We say that a fully specified map (fsmap from now on) is Mendelian if the genotypes of every non-founder individual is such that one of its allele is derived from the mother and the other from the father. It is often useful to check for Mendelian consistency in a subset of the individuals in the pedigree. Since the Mendelian conditions involve an individual and both his parents, it makes sense to consider those subsets that contain either both or none of the parents of each individual in the subset. Given a pedigree \((I, f, m)\) we say that \(S \subseteq I\) is a regular subset of \(I\) if, for each \(i \in \text{dom } f \cap S\), we have that \(f(i) \in S \iff m(i) \in S\). Intersections and unions of regular subsets are again regular subsets. For instance, in the pedigree of Fig. 1 the set \(\{3, 4, 7, 8, 9, 11, 12\}\) is an example of a regular subset of the individuals.

We can also define a function \(\text{mate}: \mathcal{G} \times \mathcal{G} \rightarrow \mathcal{P}(\mathcal{G})\) that, given two genotypes, returns the set of Mendelian genotypes that can be generated by selecting one allele from each one. We have (remember that we use unordered pairs):

\[
\text{mate}((A, B)(C, D)) = \{(A, C), (A, D), (B, C), (B, D)\}
\]

With the help of function \(\text{mate}\), we can now express more precisely when a fsmap is Mendelian on a regular subset of individuals:

Definition 1 (Mendelian consistency). Let \(P = (I, f, m)\) be a pedigree and let \(S\) be a regular subset of \(I\). The fully specified map \(h\) is Mendelian on \(S\) if and only if for every individual \(i \in S\) such that \(f(i) \in S\) and \(m(i) \in S\), we have \(h(i) \in \text{mate}(h(f(i)), h(m(i)))\).

We say that an fsmap \(h\) on a pedigree \(P = (I, f, m)\) is Mendelian if it is Mendelian on \(I\). The reader can verify that the fsmap in Fig. 1 is Mendelian.

Since in general we do not know precisely the genotype of each individuals, only partially specified maps will be available. A partially specified map \(H\) (psmap from now on) records for every individual of the pedigree the genotypes it may have according to our information (e.g. because we have collected
some genetic data or we have observed the phenotype). A psmap H is an element of the set $I \rightarrow \mathcal{G}(\mathcal{F})$. We can introduce a partial order relation \sqsubseteq on set \mathcal{M}. We say that map H_1 is more precise than or equal to map H_2, and we write $H_1 \sqsubseteq H_2$, if and only if, for every individual $i \in I$, $H_1(i) \subseteq H_2(i)$. With an abuse of notation we identify any fully specified map h with the partially specified map that maps $\{h(i)\}$ to every individual $i \in I$. Thus we write $h \sqsubseteq H$ to mean that, for every individual i, $h(i) \in H(i)$. All psmaps such that $H(i) = \emptyset$ for any $i \in I$ describe an inconsistent situation where no possible assignment of genotypes is compatible with the available information. We identify all these psmaps and denote them by \bot, the psmap that maps \emptyset to all individuals in I. We denote by $\mathcal{M} = (I \rightarrow \mathcal{G}(\mathcal{F}))/\bot$ the set obtained by this identification. The set \mathcal{M} is a complete lattice, with least upper bound \sqcap given by pointwise union. The greatest lower bound \sqcup is obtained in two steps: first, the pointwise intersection is computed; then, if any individual is mapped to \emptyset in the previous step, the result is taken to be \bot.

In psmaps we are interested in those genotypes, taken from the sets of each individual, that can be used to build a Mendelian fsmap.

Definition 2 (Consistent genotype). Let $P = (I,f,m)$ be a pedigree and let S be a regular subset of I. Given a psmap H and an individual $i \in I$, we say that genotype $g \in H(i)$ is consistent on S iff there exists an fsmap $h \sqsubseteq H$ with $h(i) = g$ such that h is Mendelian on S.

A psmap H is consistent on S if all $g \in H(i)$, for all $i \in I$, are consistent on S.

A pedigree consistency algorithm can be seen as a function that takes a psmap and returns another psmap where some inconsistent genotypes have been removed. More precisely, we define function filter_S: $\mathcal{M} \rightarrow \mathcal{M}$ such that $\text{filter}_S(H) = H' \sqsubseteq H$ and H' is consistent on S.

We say that a psmap H on a pedigree (I, f, m) is fixed on a set $S \subseteq I$ if $H(i)$ is a singleton set for all $i \in S$.

Example 3. Let $i \in I$ be a non-founder in the pedigree (I, f, m) and assume the psmap H is fixed on $\{f(i), m(i)\}$. Thus $H(f(i)) = \{g_f\}$ and $H(m(i)) = \{g_m\}$. Let us compute $H' = \text{filter}_{\{f(i), m(i), i\}}(H)$. Consider $G = H(i) \cap \text{mate}(g_f, g_m)$. If $G \neq \emptyset$ then $H' = H[G/i]$, otherwise $H' = \bot$.

Let S and T be two regular subsets of I. We may want to obtain $\text{filter}_{S,T}(H)$ from $\text{filter}_S(H)$ and $\text{filter}_T(H)$, which may be simpler to compute. A candidate composition is $\text{filter}_S(H) \sqcap \text{filter}_T(H)$, since

![Figure 1: An example of a pedigree](image_url)
this operation keeps the genotypes which are consistent on both S and T. However, in general, we only have $\text{filter}_{S,T}(H) \subseteq \text{filter}_S(H) \cap \text{filter}_T(H)$, and the relation may be strict. Nonetheless, it can be easily seen that the equality holds whenever H is fixed on $S \cap T$.

A useful function in the definition of consistency check algorithms is function $\text{split}_T : \mathcal{M} \rightarrow \mathcal{P}(\mathcal{M})$. Given any $S \subseteq I$, $\text{split}_T(H)$ is the set of all psmaps $F \subseteq H$ such that F is equal to H on $I \setminus S$ and is fixed on S. Thus, if $S = \{x_1, \ldots, x_n\}$, then for each $(g_1, \ldots, g_n) \in H(x_1) \times \cdots \times H(x_n)$ we have a psmap $F \in \text{split}_T(H)$ such that $F(x_i) = g_i$ for all $1 \leq i \leq n$ and $F(x) = H(x)$ for all $x \notin S$. If $P = (I, f, m)$ is a pedigree and H is a psmap on it, we have the following relation for all $T, S \subseteq I$ (where S is regular)

$$\bigcup_{F \in \text{split}_T(H)} \text{filter}_T(F) = \text{filter}_T(H).$$

2.1 The Lange-Goradia algorithm

The idea of the Lange-Goradia algorithm is to remove all the genotypes of an individual i that are inconsistent on any nuclear family to which i belongs. This is accomplished by looking at one nuclear family at a time. Let H be a psmap for a pedigree (I, f, m). If $S = \{x, y, k_1, \ldots, k_n\} \subseteq I$ is a nuclear family where x and y are the parents and k_1, \ldots, k_n are the children, then each pair (g_x, g_y) of genotypes in $H(x) \times H(y)$ is examined in turn, checking that $\text{mate}(g_x, g_y) \cap H(k_i) \neq \emptyset$ for all the children k_i with $i = 1, \ldots, n$. If this is the case, then g_x, g_y, and all genotypes in $\text{mate}(g_x, g_y) \cap H(k_i)$ for each children k_i are consistent on S. All genotypes that are not found to be consistent after all pairs of genotypes in $H(x) \times H(y)$ have been examined are certainly inconsistent on S and, thus, also inconsistent, so they can be safely removed. More formally, we can say that the algorithm computes $\bigcup_{F \in \text{split}_T(I)} \text{filter}_S(F)$ (note that a nuclear family is
a regular subset of I), which is equal to filter\(S(H)\) according to (1). For each \(F \in \text{split}_{\{x,y\}}(H)\), filter\(S(F)\) is computed as \(\cap_{i=1}^{n} \text{filter}_{\{x,y,k_i\}}(F)\). This is equal to filters\(S(F)\) since \(F\) is fixed on \(\{x,y\} = \cap_{i=1}^{n} \{x,y,k_i\}\). Finally, \(\text{filter}_{\{x,y,k_i\}}(F)\) is computed as in Example 3 for each \(1 \leq i \leq n\).

The algorithm is iterated on all nuclear families until no new genotypes are removed. If \(H_1\) is the psmap obtained at the end of the algorithm and \(g \in H(i)\) for any \(i \in S\), then \(g\) is consistent on all nuclear families to which \(i\) belongs. Let us call \(\text{LG}: \mathcal{M} \rightarrow \mathcal{M}\) the function that maps an input psmap \(H\) to the output psmap \(\text{LG}(H)\) according to the Lange-Goradia algorithm. In general, \(\text{filter}_I(H) \subseteq \text{LG}(H)\) and the relation may be strict, i.e., the algorithm may not eliminate all inconsistent genotypes. As shown by Lange and Goradia 6, a sufficient condition for \(\text{filter}_I(H) = \text{LG}(H)\) is the absence of loops in the pedigree. As an example, consider the pedigree of Figure 2. The pedigree contains loops, since there are individuals that mate that have an ancestor in common (for instance individuals 12 and 13 are both descendant of individual 8). Therefore, it is not guaranteed that the result of Lange-Goradia (Figure 2(b)) contains only consistent genotypes. In fact, consider individual 9. Although the genotype \((B,B)\) is not consistent, the Lange-Goradia algorithm cannot eliminate it. To see that it is not possible to find a Mendelian fsmooth that is ⊑ of that depicted in Figure 2(a), consider individual 15. One of his alleles is \(A\). Since his alleles must come from individuals 7, 8, and 9, at least one of those individuals must have allele \(A\). Individuals 7 and 8 do not contain it, thus 9 must have \(A\) as allele, and we can eliminate \((B,B)\).

We will see in the next subsection that the O’Connell and Weeks algorithm is able to eliminate \((B,B)\) from individual 9.

2.2 The O’Connell and Weeks algorithm

The O’Connell and Weeks algorithm 8 is able to remove all inconsistent genotypes from a psmap. The algorithm has the same input of the Lange-Goradia algorithm: a pedigree \(P = (I,f,m)\) and a psmap \(H \in \mathcal{M}\). Let us call \(\text{OCW}: \mathcal{M} \rightarrow \mathcal{M}\) the function that maps an input psmap \(H\) to the output psmap \(\text{OCW}(H)\) according to the O’Connell and Weeks algorithm.

First, a suitable set \(B \subseteq I\) of loop breakers is found. A loop breaker is an individual that is involved in a loop in the pedigree and set \(B\) must contain such an individual for each loop in the pedigree.

A new pedigree \(\overline{P} = (I \cup B, \overline{f}, \overline{m})\) is built, where \(\overline{B}\) contains a new individual \(\overline{b}\) for each \(b \in B\), \(\overline{f}\) is undefined for all \(\overline{b} \in B\), is equal to \(f\) for all \(x\) such that \(f(x) \notin B\), and \(\overline{f}(x) = \overline{f}(x)\) for all \(f(x) \in B\) (and similarly for \(\overline{m}\)). Thus, \(\overline{P}\) is obtained from \(P\) by breaking all loops. Then, for each \(F \in \text{split}_g(H)\) a psmap \(\overline{F}\) on \(\overline{P}\) is built, where \(\overline{F}(x) = F(x)\) for all \(x \in I\) and \(\overline{F}(B) = \overline{F}(B)\) for all \(b \in B\). Finally, \(\text{LG}(\overline{F})\) is computed for all \(\overline{F}\) and all output psmaps thus obtained are joined. Since \(\overline{P}\) contains no loops, we have \(\overline{F}' = \text{LG}(\overline{F}) = \text{filter}_{\{I,\overline{P}\}}(\overline{F})\) for all \(\overline{F}\). It is easy to see that it is \(F' = \overline{F}'(B) = \overline{F}'(B)\) for all \(b \in B\) and that this implies that the restriction of \(\overline{F}'\) to \(I\) is consistent on \(I\). Indeed, if \(F'\) is the restriction of \(\overline{F}'\) to \(I\) we have \(F' = \text{filter}_I(F)\).

We note that there is no need to actually build pedigree \(\overline{P}\), since \(\text{LG}(F)\) will produce the same result as \(\text{LG}(\overline{F})\) whenever \(F\) is fixed on \(B\). Thus we can simply define

\[
\text{OCW}(H) = \bigcup_{F \in \text{split}_g(H)} \text{LG}(F). \tag{2}
\]

For each \(F \in \text{split}_g(H)\) we have \(\text{LG}(F) = \text{filter}_I(F)\), thus we obtain \(\text{OCW}(H) = \text{filter}_I(H)\) from (1).

Fig. 3 shows a block-diagram representation of the O’Connell and Weeks algorithm. Note that eq. (2) corresponds to the part of the diagram from the split block onwards. The initial LG block is not necessary for the completeness of the algorithm, but is introduced in order to try to reduce the cost of the rest of
As an example, consider the pedigree depicted in Figure 2(b). The pedigree contains various loops that can be broken, for instance, by choosing individuals 8 and 12 as loop breakers. This choice leads to three applications of the Lange-Goradia algorithm to the pedigree of Fig. 2(b) in which the individual 12 is typed as (A, C), (B, C), and (C, C), respectively. The three runs have as results the psmaps depicted in Figure 4. The union of these three psmaps gives as results the psmap depicted in Figure 2(c). We can note that genotypes (B, B) and (B, C) have been eliminated from individual 9.

3 The Celer tool

We have implemented the O’Connell and Weeks algorithm in a tool named Celer. Celer has been developed in C++ and is able to perform genotype elimination. Using a command-line switch, it is possible to select either Lange-Goradia or O’Connell and Weeks’s algorithm. Celer receives as input a pedigree in pre-LINKAGE format, and writes the processed pedigree in a human-readable form. Moreover, it is also possible to have a DOT-file as output, that can be processed with Graphviz [3] to obtain a graphical representation of the resulting pedigree.

3.1 Parental information

In the design of our application, we kept the genotypic information separated from the parental information. During the parsing of the file, parental relations are stored in a redundant set of data structures (list of nuclear families in the pedigree, list of partners of each individual, list of families each individual belongs to, etc.). These data structures allow to recover all the parental relations needed by the consistency algorithms in a fast way. For instance, during the Lange-Goradia algorithm, to avoid unnecessary iterations, we set up a working list of the families to be processed. When the genotypes set of an individual changes, we insert in the working list only the families the individual belongs to.

3.2 Genotypes set as bitmaps

Our efficient implementation uses bitmaps to represent elements of $\mathcal{P}(\mathcal{G})$ (individual of a psmap). When the set contains few genotypes, a bitmap needs more space than other alternatives such as binary search trees. On the contrary, this slight drawback is counter-balanced by many advantages. First of all, the
Figure 4: An example of the applications of the O'Connell and Weeks: from the pedigree in Fig 2(b) the individuals 8 and 12 are chosen as loop breakers, leading to three applications of the Lange-Goradia algorithms whose results are depicted in this figure.

operations of search, insertion and deletion from subset of G can be completed in constant time. Moreover, when the maximum number of alleles is known in advance, bitmaps can avoid the use of dynamic memory, thus speeding up the operations of copy and allocation/deallocation. Union and intersection of set of genotypes can be implemented with bitwise logical operations. Even the iteration of all the genotypes in a set can be implemented efficiently by calculating the least significant bit in a word.

We chose to represent alleles with unsigned integers in the range $[0, N - 1]$, where N is the maximum number of alleles. With this choice, elements of $\wp(G)$ are triangular bitmaps with N rows. When $N = 32$, the n-th word of the matrix represents the subset of G composed by genotypes with n as the first allele, and $k < n$ as the second allele. In this way, it is easy to build bit masks for manipulating sets of genotypes.

As an example, consider the optimization suggested in [8]. To speed up the initial application of the Lange-Goradia algorithm, O’Connell and Weeks suggest to pre-process the pedigree by removing those genotypes that can be easily identified as superfluous by looking at a single parent-child pair. For instance, when a child is fully specified with alleles (A, B), it is possible to remove from its parents all the genotypes that do not contain at least one from A and B. With the genotype set represented as a bitmap, it is sufficient to clear all the bits that are not in words A, B and in columns A, B. The C++ code of this operation can be found in Figure 5.

Concluding, the bitmap has been a key choice for speeding up all the consistency algorithms.

3.3 Loop breakers selection

We have seen that the O’Connell and Weeks algorithm executes the Lange-Goradia algorithm once for every combination of the genotypes of the loop breakers. Therefore, the selection of loop breakers greatly
```cpp
void bitmap::reduce_parent_child(int A, int B) {
    // A is always less or equal than B
    unsigned int allele_mask;
    if (A == B) { // homozygous individual
        allele_mask = (1 << A);
        unsigned int i;
        for (i=0; i<A;++i) {
            data[i] &= allele_mask;
        }
        i++; // leave A-th word untouched
        for (; i<32;++i) {
            data[i] &= allele_mask;
        }
    } else {
        allele_mask = (1 << A) | (1 << B);
        unsigned int i;
        for (i=0; i<A;++i) {
            data[i] &= allele_mask;
        }
        ++i; // leave A-th word untouched
        for (; i<B;++i) {
            data[i] &= allele_mask;
        }
        ++i; // leave B-th word untouched
        for (; i<32;++i) {
            data[i] &= allele_mask;
        }
    }
}
```

Figure 5: The C++ code for the optimization suggested by O’Connell and Weeks. When an individual is typed we remove from his/her children (and parents) the genotypes that do not contain at least one of his/her alleles. In the code, A and B are the alleles of the typed individual.
affects the total running time of the O’Connell and Weeks’s algorithm. In Celer, we chose to apply the selection strategy suggested by Becker et al. [2]. The idea of the selection algorithm is to prefer to choose the individuals that break more loops at a time, and to avoid the ones that have a long list of genotypes. Becker et al. show that this problem is equivalent to the calculus of the minimum spanning tree of a directed graph. The graph to be analyzed can be obtained from the parental graph by removing all the individuals (and corresponding marriage nodes) that do not belong to any loop. This reduction of the graph must be put in place whenever a new loop breaker is chosen. The individuals in this graph are labelled with the result of a function \(f \) that estimates the cost of the selection of the corresponding loop breaker. The function \(f \): \(\mathcal{M} \times I \rightarrow \mathbb{Z}^+ \) is defined as \(f(H,i) = \log(\#H(i))/d(i) \), where \(\#H \) denotes the cardinality of set \(H \) and \(d(i) \) is the number of neighbours of individual \(i \) in the graph. The intended meaning of the function \(d \) is to be a heuristic estimate of the number of loop the individual belongs to. We implemented the spanning tree calculus with a modified version of the classical algorithm by Kruskal [5]. In fact, in this case, the function \(f \) (and in particular \(d \)) must be recalculated because the graph is reduced whenever a new loop breaker is found. However, since the cost of selection is only increasing, the greedy methodology of the spanning tree algorithm can be preserved.

It is easy to see that, by definition of split, given \(S,T \in I \) and \(H \in \mathcal{M} \), with \(T \subseteq S \) and \(H \) fixed on \(T \), it holds \(\text{split}_S(H) = \text{split}_{S \setminus T}(H) \). Therefore, in the split phase, we discard all the loop breakers that have a single genotype.

3.4 Recursive vs non recursive reduction

To reduce the number of Lange-Goradia reductions (one for every combination of the genotypes of the loop breakers), O’Connell and Weeks suggest to use a recursive version of their algorithm. Instead of calculating all the combinations and applying the Lange-Goradia reduction, they adopt a backtracking methodology and execute a Lange-Goradia reduction whenever a loop breaker genotype is fixed. The algorithm can be expressed by the following pseudo-code. In the pseudo-code, given a function \(f \), we denote with \(f[x/y] \) the function \(f' \) defined as \(f'(z) = f(z) \) if \(z \neq x \), and \(y \) otherwise. This notation is used for updating the The rationale behind this approach is to avoid a brute-force exploration of the results of

```plaintext
Algorithm 1 The recursive version of the O’Connell and Weeks algorithm
1: OCWR(P, B, H)
2: if \( B = \emptyset \) then
3:     return \( H \)
4: else
5:     \( R \leftarrow \bot \)
6:     select an individual \( i \in B \)
7:     for \( g \in H(i) \) do
8:         \( H' \leftarrow H[i/g] \)
9:         \( R \leftarrow R \sqcup \text{OCWR}(P, B \setminus i, \text{LG}(H')) \)
10: end for
11: return \( R \)
12: end if
```

However, our experiments show that this approach does not pay off when coping with large pedigrees and few combinations to explore. In fact, all the pmaps that are on the recursion call stack must be initialized and copied, thus leading to an increased use of memory. When the number
Table 1: The three benchmarks used

Name	Individuals	Generations	% Founders	Avg Family size
HOPS	221	12	21.72%	1.52
APE	4921	15	3.23%	1.82
QMSIM	8420	10	4.99%	2.00

of individuals is not high and there are many combinations to explore, the recursive version is better than the non recursive one.

4 Performances of Celer

We have tested Celer with three different pedigrees. Following the methodology described in [10], we have simulated genetic data by picking founder alleles from the uniform distribution, applying randomly the Mendelian laws down the pedigree to calculate non-founder alleles, and, finally, deleting the genotype information of some individuals.

The first pedigree we considered is composed by 221 individuals. It is a human pedigree that traces the ancestors of two individuals affected by hypophosphatasia (HOPS). The pedigree comes from the Hutterite population living in North America, and it has been used previously in [7][10].

We analyzed 100 datasets for each combination of the number of alleles (5, 7, 10, 12, 15, 17, 20, 25, 30), and of the ratio of untyped individual (5, 10, 20, 30, and 50 percent), for a total of 4500 datasets.

Then, we tested a larger pedigree composed by 4921 individuals. This pedigree was also studied in [10] and has been simulated with the method of Gasbarra et al. [4]. It has been used as a benchmark for the tool Allelic Path Explorer (APE). The pedigree contains 159 founders, and 75 percent of individuals were inbred. Again, simulating genetic data, we have created 100 datasets for each combination of number of alleles and each ratio of untyped individuals.

The last pedigree we tested is even bigger. It is composed by 8420 individuals and has been generated with the tool QMSIM [12]. It is composed of 10 generations. The founders are 420 individuals (400 females and 20 males). We have tested the performance of Celer on a Intel Core 2 Duo 3.00 GHz machine equipped with 2GB of RAM and running Ubuntu Linux 9.10 (kernel version 2.6.31-21).

Figure 6 shows the execution time of Celer when the Lange-Goradia algorithm is executed. We have put the number of alleles on the x axis and there is a line for every percentage of untyped individuals in the pedigree. Every dot in the graph refers to the average execution time of the 100 datasets for each combination number of alleles-ratio of untyped individual. We have used a logarithmic scale on the y axis, and therefore the linear trend corresponds to an exponential growth of the execution time when the number of alleles is raised. We can note that, even though the QMSIM pedigree is composed by a larger number of individuals than APE, the execution times are significantly lower. This could be due to its simple and regular parental structure (see Table 1 for a comparison). We have measured a very low variance among the same 100 datasets, except when the number of alleles is high and the percentage of untyped individual is set to 50%. This effect is particularly evident in benchmark APE. We reported in Figure 6(d) the mean, and the first three quartiles of the execution times of Celer, when the ratio of untyped individuals is 50% and the alleles are between 20 and 30.

We have also tested the same benchmarks when Celer executes the O’Connell and Weeks algorithm. However, in many cases, the loop breakers selection algorithm is able to find only loop breakers that have a single genotype. In this case, as we have seen in Section 3.3, the O’Connell and Weeks algorithm
Figure 6: The performance of Celer when the Lange-Goradia algorithm is applied: HOPS 6(a), APE 6(b) and QMSIM 6(c). In 6(d) we show the quartile for the benchmark APE when the ratio of untyped individuals is set to 50%, where we noticed a significant variance.
is equivalent to the Lange-Goradia. With a low rate of untyped individuals, the number of loop breakers (from now on we consider only the loop breakers with more than one genotype) is different from zero only in some sporadic cases, and thus the average execution time of the O’Connell and Weeks is very similar to the Lange-Goradia one (the only difference being the loop breaker selection procedure). We report in Table 2 the average number of loop breakers and the number of cases generated by the split function. As shown in the table, there is the risk of a combinatorial explosion. When the ratio of unknown individuals has been set to 50%, we could not complete the O’Connell and Weeks analysis within 30 minutes of computations for 3 out of the 900 pedigrees of the HOPS benchmark and 8 out of 900 of the QMSIM benchmark, and for all the pedigrees of the APE benchmark.

In Figure 7 we have plotted the average executions of the O’Connell Weeks algorithm run on the benchmarks HOPS and QMSIM when only half of the individuals are typed. We can note that the recursive version of the algorithm dominates the non-recursive version. However, the gap between the twos is very small in QMSIM, due to the overhead of the backtracking procedure that nearly counter-balances the advantage of executing fewer Lange-Goradia iterations.

Table 2: The number of loop breakers and the number of cases generated by the split functions. The mean marked with (*) have been calculated excluding testcases with combinatorial explosion (4 for HOPS, 8 for QMSIM).

Benchmark	% unknown	Avg LB	Max LB	Avg Cases	Max Cases
HOPS	<50%	0.0200	2	0.04	10
	50%	1.7622	10	686*	4.66 ·10^6
QMSIM	<50%	0.1175	6	0.18	240
	50%	2.6978	19	955*	2.24 ·10^8
APE	<50%	0.1175	4	0.19	32
	50%	8.398	172	4.02 ·10^67	3.61 ·10^70

Figure 7: The execution times of the O’Connell and Weeks algorithm for HOPS 7(a) and QMSIM 7(b), when only half of the individuals in the pedigree are typed.
5 Comparison with other software

O’Connell and Weeks have implemented their algorithms in the Pedcheck program [9]. Pedcheck is able to check Mendelian consistency in pedigree with different levels of accuracy (and therefore with different computational requirements). Level 1 analysis is able to discover simple errors related to a single nuclear family (a child and parent’s alleles are incompatible, more than 4 alleles in a sibship, or 3 if there is a homozygous child). Level 2 correspond to Lange-Goradia algorithm. Level 3 and 4 provide a basic support to error correction. Level 3 identifies the so-called critical genotypes (that is the individuals that, if left untyped, make the pedigree consistent). Level 4 requires to know the frequencies of the alleles to estimate the most probable corrections.

At this time Celer is more precise than Pedcheck as regards to genotype elimination, but it does not offer error correction capabilities. Celer is more precise because it can also perform O’Connell and Weeks algorithm that we have seen is more precise than the Lange-Goradia algorithm. Moreover, when Pedcheck is applied to large pedigrees, even the Level 2 (Lange-Goradia) phase, takes a considerable amount of time. For example, consider the QMSIM benchmarks (8420 individuals and 4000 families). Even with only 10% of untyped individuals and 5 alleles, Pedcheck needs about 10 minutes of computation, while our program executes the Lange-Goradia algorithm in less than 20 milliseconds. We performed the same tests that we used on our tool and we found that Pedcheck could complete the analysis in times comparable with ours only on the HOPS benchmark. We report in Figure 8 the average execution times of Celer (with the Lange-Goradia algorithm) and Pedcheck (level 2 analysis) for the HOPS benchmarks and ratio of untyped individuals varying from 10 to 50%. We can see that Celer always outperforms Pedcheck.

Mendelsoft [11] is another tool that is able to check Mendelian consistency and perform error correction. Sanchez et al. model the Mendelian consistency problem with soft constraint networks and use a generic weighted constraint network (WCN) solver. In this way, they are not limited to a single error and can also correct pedigree with multiple errors. They evaluate their tool with random and real pedigrees composed of thousands of individuals and containing many errors. Even if we cannot directly compare Mendelsoft with Celer (that does not have error correction capabilities), we can note that the memory requirements of the WCN solver are very high. We have tested Mendelsoft with a machine equipped with 2GB of RAM and in many cases the program crashed because the amount of virtual memory was not sufficient. In particular, for the HOPS pedigree, Mendelsoft do not complete with this amount of RAM when the number of alleles is above 12.

6 Conclusions and future works

We have described the design and implementation of Celer, a program that performs genotype elimination. The design of the program has been aided by a formal description of the problem that highlighted the critical aspects of the algorithms and helped us to find the best data structures. We have measured the performances of the program and we have found that Celer is able to cope with large pedigrees. In the future, we would like to improve the working list selection algorithm of the Lange-Goradia elimination procedure and to test different loop breakers selection algorithms on highly-looped pedigrees, such as the one found in the APE test cases.
Figure 8: Comparison with Pedcheck
References

[1] Luca Aceto, Jens A. Hansen, Anna Ingólfsdóttir, Jacob Johnsen & John Knudsen (2004): The complexity of checking consistency of pedigree information and related problems. J. Comput. Sci. Technol. 19(1), pp. 42–59.

[2] Ann Becker, Dan Geiger & Alejandro A Schäffer (1998): Automatic selection of loop breakers for genetic linkage analysis. Human heredity 48(1).

[3] J. Ellson, E.R. Gansner, E. Koutsofios, S.C. North & G. Woodhull (2003): Graphviz and Dynagraph – Static and Dynamic Graph Drawing Tools. In: M. Junger & P. Mutzel, editors: Graph Drawing Software, Springer-Verlag, pp. 127–148.

[4] Dario Gasbarra, Mikko J. Sillanpää & Elja Arjas (2005): Backward simulation of ancestors of sampled individuals. Theoretical Population Biology 67(2), pp. 75 – 83. Available at http://www.sciencedirect.com/science/article/B6WXD-4F6F67C-1/2/134b19fb4e742340bb5b97813e0308b8

[5] Jr. Kruskal, Joseph B. (1956): On the Shortest Spanning Subtree of a Graph and the Traveling Salesman Problem. Proceedings of the American Mathematical Society 7(1), pp. 48–50. Available at http://www.jstor.org/stable/2033241

[6] K. Lange & T.M. Goradia (1987): An Algorithm for Automatic Genotype Elimination. Am. J. Human Genetics 40, pp. 250–256.

[7] Y. Luo & S. Lin (2003): Finding starting points for Markov chain Monte Carlo analysis of genetic data from large and complex pedigrees. Genet. Epidemiol. 25(1), pp. 14–24.

[8] J. R. O’Connell & D. E. Weeks (1999): An optimal algorithm for automatic genotype elimination. Am. J. Human Genetics 65(6), pp. 1733–1740.

[9] Jeffrey R. O’Connell & Daniel E. Weeks (1998): PedCheck: A Program for Identification of Genotype Incompatibilities in Linkage Analysis. The American Journal of Human Genetics 63(1), pp. 259 – 266. Available at http://www.sciencedirect.com/science/article/B8JDD-4R1WP1V-17/2/b556d7a79c50d44c4f200e65a4eac506

[10] Matti Pirinen & Dario Gasbarra (2006): Finding Consistent Gene Transmission Patterns on Large and Complex Pedigrees. IEEE/ACM Trans. Comput. Biol. Bioinformatics 3(3), pp. 252–262.

[11] Marti Sanchez, Simon Givry & Thomas Schiex (2008): Mendelian Error Detection in Complex Pedigrees Using Weighted Constraint Satisfaction Techniques. Constraints 13(1-2), pp. 130–154.

[12] Mehdi Sargolzaei & Flavio S. Schenkel (2009): QMSim: a large-scale genome simulator for livestock. Bioinformatics 25(5), pp. 680–681. Available at http://dx.doi.org/10.1093/bioinformatics/btp045