Comparative study between the use of St. Thomas’ II cardioplegia and del Nido cardioplegia in patients who underwent open-heart surgery.

Satish Vaidya1, Asit Baran Adhikari2, Robin Karmacharya1, Karan Rai2

1Department of CardioVascular and Thoracic Surgery, Dhulikhel Hospital, Dhulikhel, Kavre, Nepal.
2Department of CardioVascular and Thoracic Surgery, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh.

Corresponding Author:
Satish Vaidya
Department of Cardio Vascular and Thoracic Surgery, Dhulikhel Hospital, Dhulikhel, Kavre, Nepal.
E-mail: satish.vaidya.nep@gmail.com
ORCID ID NO: https://orcid.org/0000-0002-7758-8442

Submitted date: 9th February 2020
Accepted date: 8th April 2020

Abstract
Background and Aims: Cardioplegia is used to arrest the heart after the application of an aortic cross-clamp that interrupts the coronary circulation. Commonly used St. Thomas’II cardioplegic solution has to be repeated at short intervals, which may cause additional myocardial injury. So, this study is done to determine whether del Nido (DN) cardioplegia, which has a longer duration of arrest with a single dose, provides equivalent or better myocardial protection as compared to St. Thomas’ II Cardioplegia. Methods: A prospective observational study was done among 100 patients who underwent open-heart surgery with myocardial protection, between September 2016 to August 2018 in Bangabandhu Sheikh Mujib Medical University, Bangladesh. Patients were divided into two groups, group A (n=50) for del Nido cardioplegic and group B (n=50) for St. Thomas’ II cardioplegia. We compared the amount of cardioplegic solution, Aortic cross-clamp time, cardiopulmonary bypass (CPB) time, ischemic time, arrhythmia, spontaneous sinus rhythm after declamping, intraoperative DC shock requirement, postoperative left ventricular ejection fraction, serum potassium level, low cardiac output, cardiac Troponin level I and CK-MB release after 12 hours and 24 hours, presence of myocardial infarction and death. Results: The per-operative variable suggested spontaneous activity during a cardiac arrest was 2% in del Nido and 14% in St. Thomas’ II group (p=0.044). Similarly, during intraoperative phase spontaneous restoration of cardiac activity after the procedure in del Nido was 2.90 ± 1.16 minutes and in St. Thomas’ II was 1.8 ± 0.615 minutes (p=0.001), However total bypass time and ischemic time were not significant. During the postoperative period, Troponin I and CK-MB were measured at 12 hours and 24 hours which were not statistically different in two groups. Postoperatively, low output syndrome was seen among 3 patients in del Nido Group and 4 patients in St. Thomas’ II group (p-value=0.341). Conclusion: This study showed with the use of del Nido cardioplegia provides equivalent myocardial protection to St. Thomas’ II cardioplegia, with the use of only single-dose cardioplegia.

Keywords: delNido solution; St. Thomas’II Solution; Cardioplegia; Myocardial Protection.

DOI: https://doi.org/10.3126/njh.v17i1.28802

Introduction
Cardioplegia is used to arrest the heart after the application of an aortic cross-clamp that interrupts the coronary circulation. Aortic cross-clamping without the use of cardioplegia results in anaerobic metabolism and depletion of myocardial energy stores. Thus, without a reduction in myocardial metabolism, either by
hypothermia or by chemical-induced cardiac arrest, aortic occlusion producing ischemic arrest for more than 15-20 minutes would result in severe myocardial dysfunction. In 1955, Meltrose first described the use of potassium citrate to achieve electro-mechanical diastolic arrest of the heart during cardiac surgery, hence cardioplegia or chemical induced arrest of heart was introduced as a method of myocardial protection. In the context of cardiac surgery, myocardial protection refers to the strategies and techniques used during the surgery to prevent ischemic reperfusion injury. These strategies help lower the heart’s metabolic demands, minimizing myocardial stunning and perioperative necrosis. In 1975 Hearse and associates at St. Thomas’ hospital in London took a slightly different approach to chemical cardioplegia. Rather than using an intracellur solution, these investigators developed a predominantly extracellular formula based on sodium as the primary cation. Emphasis was placed on making the solution as physiological as possible. Specific additives were included to arrest the heart and maintain membrane integrity. The St. Thomas’ solution has been used clinically since 1975 and has gained widespread acceptance. However, it must be administered repeatedly at short intervals during the surgery. In the early 1990s, Dr. Pedro del Nido and his team at the University of Pittsburgh developed a cardioplegic solution to address the specific needs of immature myocardium encountered in neonatal and pediatric cardiac surgery. The solution, now commonly referred to as del Nido cardioplegia, induces a depolarizing arrest during cardiac surgery. Del Nido’s potential practical advantage is the fact that it provides a long period of arrest before a subsequent dose is needed.

Adequate protection of the myocardium during an ischemic arrest is essential for a successful clinical outcome. The optimal method for cardioplegia and myocardial preservation is still under debate, despite the substantial number of experimental and clinical studies that have been published over the years. Myocardial protection during open-heart surgery has been the focus of clinical research for many decades, but the debate regarding the ultimate cardioprotective strategy and the search for the ideal cardioplegic solution is still ongoing. St. Thomas’ II cardioplegia has been used in many cardiac institutes in Bangladesh and also worldwide. However, as the conventional cardioplegic solution it has to be given more frequently to maintain myocardial protection every 25 minutes, which may lead to obscuring of the surgical field by blood, and also increases the ischemic time and procedure time. The study aims to see whether the new del Nido cardioplegic solution provides good myocardial protection with a single dose cardioplegia and helps avoidance of the need for repetitive interruption of the procedure to administer multiple doses of St. Thomas’ II cardioplegia, which leads to shorter cross-clamp times.

Table 1: Composition of St Thomas and del Nido cardioplegia solutions

St. Thomas II Cardioplegia	Del Nido Cardioplegia
Na⁺ 110 mmol/l	Mannitol 20%, 16.3 ml, 3.26g/L
K⁺ 16 mmol/l	Magnesium sulfate 50%, 4 ml, 2g
Mg²⁺ 16 mmol/l	Sodium bicarbonate 8.4%, 13 ml, 13 mEq
Ca²⁺ 1.2 mmol/l	Lidocaine 1%, 13 ml, 130 mg
NaHCO₃ 10 mmol/l	Potassium chloride (2 mEq/ml) 13 ml, 26 mEq

Materials and Methods

Patient Population

This was a prospective observational study conducted at Bangabandhu Sheikh Mujib Medical University, Bangladesh. This study protocol was viewed and reviewed by the Institutional Review Committee for ethical clearance. The sample size for this study was calculated using two proportional methods. A cross-sectional study was done for study design and a systemic randomize sampling method was used to collect the sample. The study includes 100 patients who underwent aortic valve replacement, mitral valve replacement and congenital heart disease cases between September 2016 and August 2018. The patients were divided into two groups based on the type of cardioplegia administration, Group A (n=50) for del Nido cardioplegic and group B (n=50) for St. Thomas’ II cardioplegia.

Cardioplegia Administration

All procedures were performed using a standard general anesthesia protocol, median sternotomy approach, and cardiopulmonary bypass with moderate systemic hypothermia (28 to 32°C). Myocardial protection was achieved with either St. Thomas’ II or del Nido cardioplegia. In both groups, the heart was arrested with an induction dose (20 ml/kg) cardioplegia using antegrade delivery. In addition, repeated doses at 10 ml/kg of St Thomas’ II cardioplegia were given to St. Thomas’ II patients usually after 25 minutes of cardiac arrest. A second dose of del Nido was provided only when the cross-clamp time exceeded 90 minutes.

Comparison variables

We compared per-operative cardiopulmonary bypass (CPB) time, aortic cross-clamp (CC) time, spontaneous activity during cardiac arrest, spontaneous restoration of activity after cardiac surgery in two modalities and cardiac troponin I and CKMB as a marker for myocardial damage, low cardiac output syndrome which was measured using parameters such as a decrease in cardiac index <2.0 L/min/m², systolic blood pressure <90 mmHg and hypoperfusion (cold periphery, clammy skin, confusion, and oliguria) and in-hospital mortality postoperatively.

Statistical Analysis

The data were analyzed using SPSS version 23.0. Continuous variables were reported as mean ± standard deviation and compared using the independent samples t-test. Categorical variables were reported as frequency and percentage of the total group and compared using the χ² test or Fisher’s exact test where applicable. All p-values ≤ 0.05 were considered significant.

Results

Fifty patients were studied in each group. There were no statistical differences in demographic variables among both groups (Table 2). In St. Thomas’ II group 45% of patients underwent aortic valve replacement, 25% underwent mitral valve replacement, 20% underwent double valve replacement and 10% underwent intra-cardiac repair for congenital heart disease. In the del Nido group, 35% of patients underwent aortic valve replacement, 35% underwent mitral valve replacement, 15% underwent double valve replacement and 15% underwent intra-cardiac repair for congenital heart disease. The overall mean age of the patients was 41.75 ± 12.07 years and 40.35 ± 8.66 with a p-value of 0.676.
Comparative study between the use of St. Thomas’ II cardioplegia and del Nido cardioplegia in patients who underwent open-heart surgery.

Table 2: Distribution of patients of both groups by demographic variables

Group	del Nido (n=50)	St. Thomas’ II (n=50)	P-value
Age (In years) Mean±SD	41.75±12.07	40.35±8.66	0.676
Sex	Male 35 (70.0)	25 (50.0)	0.167
	Female 15 (30.0)	25 (50.0)	0.167
BSA (m²)	1.95±0.20	1.50±0.21	0.290

Table 3: Distribution of patients of both groups by Intra-operative variables

Group	del Nido (n=50)	St. Thomas’ II (n=50)	P-value
ECCT (Minutes)	119.35 ± 37.56	106.50 ± 33.34	0.260
XCT (Minutes)	65.45 ± 24.42	56.75 ± 14.13	0.176
Spontaneous Activity during cardiac arrest	01 (2.0)	07 (14.0)	0.044
Spontaneous restoration of activity after surgery (minutes)	2.90 ± 1.16	1.8 ± 0.61	0.001

Table 4: Distribution of patients of both groups by post-operative variables

Group	Del Nido (n=50)	St. Thomas’ II (n=50)	P-value
Troponin I (12 hrs after)(ng/ml)	3.55 ± 1.84	3.05 ± 1.69	0.559
CK-MB (12 hrs after)(IU/L)	16.25 ± 8.45	17.15 ± 9.35	0.751
Troponin I (24 hrs after)(ng/ml)	3.34 ± 2.71	2.30 ± 1.80	0.163
CK-MB (24 hrs after)(IU/L)	18.40 ± 7.82	14.15 ± 9.33	0.127
Low output syndrome	03 (6.0%)	04 (8.0%)	0.341
In Hospital Mortality	1 (2.0%)	1 (2.0%)	1.000

Discussion

Cardioplegic solutions have a key role in protecting the heart from myocardial injury during open-heart surgery.7,8,10 Del Nido solution...
has been used successfully in pediatric cardiac surgery; however, its use in adult cardiac surgery has only recently been described. In this study, demographic variables, risk factors for heart disease, and other preoperative variables were found not significant among two groups, which was consistent with the study done by Yererbakan et al in 2014 among 48 patients. Similarly, the distribution of patients with type of surgery was also not significant. There was no significant difference between the two means in case of per-operative variables: the total bypass time and total cross-clamp time. Spontaneous cardiac activity during the procedure was significantly higher in group B compared to group A which signifies the reduced requirement to administer repeated doses of cardioplegia. A similar study done by O’Blennes et al. 2011, stated that del Nido cardioplegia delayed the return of rhythm during cardiac operation, which was similar findings to our study. 13

Time to the spontaneous restoration of activity after cardiac surgery in group A was higher compared to group B. It signifies that the restoration of cardiac rhythm after the cross-clamp release was comparatively slow in the case of del Nido cardioplegia when compared to the St. Thomas’s II cardioplegia.14 Govinda Pillai and colleagues in 2013 had done a similar study which suggested spontaneous restoration of activity after cardiac surgery in del Nido may be related to Na+ channel blockade with lidocaine, but del Nido cardioplegia also contains slightly more potassium and magnesium, resulting in more pronounced membrane depolarization which also contribute to more effective arrest. Reduced spontaneous activity during the ischemic period should limit the development of intracellular acidosis, which drives the Na+, and subsequently Ca2+, an influx that contributes to ischemia-reperfusion injury. In this regard, Lucas SK et al suggested that St. Thomas’ II cardioplegia due to repeated doses of a cardioplegic solution have an early spontaneous activity after cardiac surgery compared to del Nido cardioplegia which help in better ultrastructural preservation by multiple doses attributed to wash-out of metabolite end products.16

Cardiac Troponin I and CKMB concentration was measured in a serial venous blood sample drawn post-operatively in both groups, 12 hours and 24 hours after aortic cross-clamp release. The amount of Troponin I release and CKMB release were not statistically significant. Mick et al. in 2014 and Yerkerken et al. in 2013 supported the findings that there was no significant difference among the release in Troponin I and CKMB in del Nido cardioplegia solution and St. Thomas’ II cardioplegia solution. In post-operative variables, the low output syndrome developed in 6% in group A and 8% in group B which was also not significant. One each post-operative mortality was present among the groups, one due to post-operative arrhythmia and another due to low cardiac output syndrome.

Lidocaine is the major component of del Nido cardioplegia which is a membrane-stabilizing agent, which causes an increment in Na+ channel blockade and minimizes the potential for a Na+ window current. Similarly, Mg2+ content acts as a Ca2+ antagonist, these are the suggested mechanisms by which del Nido cardioplegia protects the myocardium from high intracellular Ca2+.17 O’Blennes et al. reported that, in isolated aged rat cardiomyocytes, cardiace arrest with del Nido cardioplegia resulted in lower spontaneous activity during ischemia, lower diastolic Ca2+ during ischemia and reperfusion, and avoidance of Ca2+ induced hyper contraction during early reperfusion in comparison with standard cardioplegia.15 A similar study was done later in the setting of aged hearts, where single-dose of del Nido cardioplegia was associated with superior calcium handling of cardiomyocytes, reduced myocardial injury, and improved functional recovery.17

This study demonstrates that a single dose of del Nido cardioplegia can provide a longer duration of cardioplegic arrest compared to St. Thomas’ II cardioplegia with similar myocardial protection both per-operatively and post-operatively.

Conclusion
This study showed that del Nido cardioplegia provides equivalent myocardial protection to St. Thomas’ II cardioplegia during cardiac surgery, with the use of only single-dose cardioplegia it prevents spontaneous activity in the arrested heart, compared to multiple doses in St. Thomas’ II. However spontaneous restoration of cardiac activity after the release of aortic cross-clamp release was slightly longer in del Nido. With regards to other post-operative variables, like the release of Troponin I and CKMB and low cardiac output syndrome were similar in the case of both the groups. So, we conclude that del Nido cardioplegia provides a better alternative to St. Thomas’ II cardioplegia even in longer procedures such as DVR.

Limitation
This study was a single-center study, involving a small sample size, with a short duration of the study. It was confined only to valvular heart disease and congenital heart disease. Only adult patients were included in the study and require the overall age group to confirm the efficacy and safety of the del Nido cardioplegia.

Disclosure
The authors who were members of the editorial team were not involved in any steps in the editing/publication process.

References
1. Hoyer A, Kiefer P, Borger M. Cardioplegia and myocardial protection: time for a reassessment? Journal of thoracic disease 2019; 11: E76–E78. https://doi.org/10.21037/jtd.2019.05.08. PMid:31285915. PMCid:PMC6588763

2. Angeli E, Lueck S, Gargiulo GD. Different strategies of myocardial protection: the age of perfectionism. Journal of thoracic disease 2018; 10: 1211–1213. https://doi.org/10.21037/jtd.2018.02.37. PMid:29707268. PMCid:PMC5906289

3. Melrose DG, Dreyer B, Bentall HH, et al. Elective Cardiac Arrest. The Lancet 1955; 266: 21–23. https://doi.org/10.1016/S0140-6736(55)93381-X

4. Kron I, Smith C. Cardiopulmonary bypass. Operative Cardiac Surgery, Fifth edition 2004; 37–51. https://doi.org/10.1201/97813552-5

5. Das DS, Das K. Comparison of Del Nido and St. Thomas Cardioplegia in adult cardiac surgery. JMSCR 2018;(06(11): 32-36. https://doi.org/10.18535/jmscr/v6i11.06

6. Turer AT, Hill JA. Pathogenesis of Myocardial Ischemia-Reperfusion Injury and Rationale for Therapy. The American Journal of Cardiology 2010; 106: 360–368. https://doi.org/10.1016/j.amjcard.2010.03.032. PMid:20643246. PMCid:PMC2957093

7. Gunnes S, Jynge P. Fundamentals of the Past: Cardioplegia: The First Period Revisited. New Solutions for the Heart 2011; 15–40. https://doi.org/10.1007/978-3-211-85548-5_2

8. Mishra P, Jadhav RB, Mohapatra CKR, et al. Comparison of del Nido cardioplegia and St. Thomas Hospital solution – two types of cardioplegia in adult cardiac surgery. Polish Journal of Thoracic and Cardiovascular Surgery 2012; 60: 614–618. PMid:2314166. PMCid:PMC2957088

Nepalese Heart Journal 2020; Vol 17 (1), 23-27
Comparative study between the use of St. Thomas’ II cardioplegia and del Nido cardioplegia in patients who underwent open-heart surgery.

Journal of Cardio-Thoracic Surgery 2016; 4: 295–299. https://doi.org/10.5114/kitp.2016.64867. PMid:28096823 PMCID:PMC5233756

9. Lomivorotov VV, Efremov SM, Kirov MY, et al. Low-Cardiac-Output Syndrome After Cardiac Surgery. J Cardiothorac Vasc Anesth 2017; 31: 291–308. https://doi.org/10.1053/j.jvca.2016.05.029. PMid:27671216

10. Mick SL, Robich MP, Houghtaling PL, et al. del Nido versus Buckberg cardioplegia in adult isolated valve surgery. The Journal of Thoracic and Cardiovascular Surgery 2015; 149: 626–636. https://doi.org/10.1016/j.jtcvs.2014.10.085 PMid:25483997

11. Ramanathan R, Parrish D, Armour T, et al. Use of del Nido Cardioplegia in Adult Cardiac Surgery. The Thoracic and Cardiovascular Surgeon 2015; 63: 624–627. https://doi.org/10.1055/s-0035-1545260. PMid:25742549

12. Yerebakan H, Sorabella RA, Najjar M, et al. Del Nido Cardioplegia can be safely administered in high-risk coronary artery bypass grafting surgery after acute myocardial infarction: a propensity matched comparison. J Cardiothorac Surg 2014; 9:141. https://doi.org/10.1186/s13019-014-0141-5 PMid:25359427. PMCID:PMC4220058

13. O’Blenes SB, Friesen CH, Ali A, et al. Protecting the aged heart during cardiac surgery: The potential benefits of del Nido cardioplegia. The Journal of Thoracic and Cardiovascular Surgery 2011; 141: 762–770. https://doi.org/10.1016/j.jtcvs.2010.06.004. PMid:20656301

14. O’Brien JD, Darcy O’Brien J, Ferguson JH, et al. Effects of ischemia and reperfusion on isolated ventricular myocytes from young adult and aged Fischer 344 rat hearts. American Journal of Physiology-Heart and Circulatory Physiology 2008; 294: H2174–H2183. https://doi.org/10.1152/ajpheart.00058.2008. PMid:18326796

15. Govindapillai A, Hua R, Rose R, et al. Protecting the aged heart during cardiac surgery: Use of del Nido cardioplegia provides superior functional recovery in isolated hearts. The Journal of Thoracic and Cardiovascular Surgery 2013; 146: 940–948. https://doi.org/10.1016/j.jtcvs.2013.05.032 PMid:23953721

16. Lucas SK, Elmer EB, Flaherty JT, et al. Effect of multiple-dose potassium cardioplegia on myocardial ischemia, return of ventricular function, and ultrastructural preservation. J Thorac Cardiovasc Surg 1980; 80: 102–110. https://doi.org/10.1016/S0022-5223(19)37853-3

17. O’Brien JD, Darcy O’Brien J, Howlett SE, et al. Pediatric Cardioplegia Strategy Results in Enhanced Calcium Metabolism and Lower Serum Troponin T. The Annals of Thoracic Surgery 2009; 87: 1517–1523. https://doi.org/10.1016/j.athoracsur.2009.02.067. PMid:19379896