We read with interest the recent work by Schleier et al\(^1\) demonstrating consequences of impaired α4β7 integrin-dependent gut homing of intestinal macrophages on wound healing, which fits well with our own observations we have made in a case of congenital infantile intractable diarrhea linked to impaired integrin receptors in intestinal epithelia (α6β6). Specifically, a male dizygotic twin was delivered dystrophic (1715 g)
at 36 weeks of gestational age and developed intractable diarrhoea within the following 2 months, contrary to his twin brother. Severe systemic infection or parasitosis was ruled out, but subsequently low-serum IgG and severe neutropenia occurred due to consumption of neutrophils during the prolonged diarrhoea. Eventually, he developed cholestatic hepatopathy and thrombocytopenia and died of uncontrollable GI, dernal haemorrhages and hepatic failure at 7 months of age. Extensive diagnostics included biopsies of liver, muscle, bone marrow, small intestine, the exclusion of known congenital diarrhoea reasons and immunodeficiencies by leucocyte FACS, CD40L expression, WASP staining, et cetera with no results. Familial anamnesis revealed similar fatalities of a sister and further cousins from the patient’s known generation within their first year of life due to intractable diarrhoea (figure 1A; 5 fatalities/16 infants).

Using whole exome sequencing on both twins and parents we identified a single-nucleotide polymorphism (SNP) in the integrin beta-6-subunit-encoding gene (ITGB6G1312A|rs61737764) leading to a valine to methionine substitution (ITGB6V438M). The heterodimeric αβ6 receptor participates in mediating cell-cell and cell-extracellular matrix interactions. Further SNPs fitting to autosomal-recessive inheritance were improbable candidates due to lacking phenotype conformity (DSG4C1568T) or relatively high population frequency (TTC3G2771A). Next, we analysed the relevance of ITGB6V438M by structural simulation, cell-based interaction studies, immunohistochemistry and ITGB6 knockdown in zebrafish. Anti-αβ6 monoclonal immunohistochemistry revealed diminished intestinal αβ6,6,8,9 which correlated with enriched LTBP1, possibly influencing TGF-β1 activation from its latent precursor (figure 1B). Evolutionary ITGB6V438 conservation within a hydrophilic motif in mammalian integrin β6 and human integrins β3, β5 and β6 emphasises its relevance (figure 2A).

Comparative structure inspection on PDB ID 4UM8|ITGB6(wt)9 suggests that ITGB6V438M could affect the conformational transition between the inactive bent stage and the activated open conformation by establishing additional intramolecular hydrogen bonds (figure 2B1–3).4,10 Possibly impairing proper αβ6 subunit interactions. To study the impact of ITGB6V438M on heterodimerisation we used fluorescent two-hybrid assays in hamster cells. Both subunits colocalised when ITGB6(wt)-GFP2 and ITGAV-RFP were cotransfected (figure 2C, top), but not when ITGB6V438M-GFP2 was cotransfected with ITGAV-RFP (figure 2C, bottom). Finally, ITGB6 morpholino injection led to altered tailfin epithelia recovery after standardised injuries in zebrafish embryos with significant delays in wound recovery when morpholinos were used at 0.3, 0.6 or 0.9 mM after 24 hours and increased mortality after 48 hours above 0.9 mM, supporting a role of ITGB6 in tissue integrity (figure 2D1–5). We propose that improper conformational transition of αβ6 integrin receptors affects intestinal tissue integrity and barrier function explaining both diarrhoea and haemorrhages.

Patrick Weil,1 Rhea van den Bruck,2 Thomas Ziegenhal,2,3 Stefan Jurane,3 Daniel Goedde,4 Valerie Orth,5 Stefan Wirth,6 Andreas C Jenke 1,6, Jan Postberg1

1Clinical Molecular Genetics and Epigenetics, Centre for Biomedical Education and Research (ZBAF), HELIOS University Hospital Wuppertal, Witten/Herdecke University, Wuppertal, Germany
2Department of Paediatrics, HELIOS University Hospital Wuppertal, Wuppertal, Germany
3Chair of Biochemistry, Theodor-Boveri-Institute at the Biocenter, University of Würzburg, Würzburg, Germany
4Department of Pathology, HELIOS University Hospital Wuppertal, Wuppertal, Germany
5Department of Surgery II, HELIOS University Hospital Wuppertal, Wuppertal, Germany
6Department of Neonatology and General Pediatrics, Children’s Hospital Kassel, Kassel, Germany

Correspondence to Professor Andreas C Jenke and Professor Jan Postberg, Witten/Herdecke University, Alfred-Herrhausen Str. 50, 58455 Witten, Germany; andreas.jenke@uni-wh.de, jan.postberg@uni-wh.de

Acknowledgements We thank the children and their parents for their participation in this study. We further thank Paul Weinreb, Biogen, Cambridge, MA, USA, for donating anti-αβ6 mAbs (clone 6.2A1), Philipp Schreiner, Silvia Vogel, Frauke Schuster and Hubert Zimigli for their support and scientific input. We thank the Vereinigung Rheinisch-Westfälischer Kinder- und Jugendärzte und Kinderchirurgen eV (RWKJK) for awarding this study.

Contributors ACJ, SW and FvdB collected the patient material. ACJ and JP performed the study design and coordinated the experiments. PW performed the exome sequencing and the in silico analysis. PW and VO performed the cell culture studies. DG performed the immunohistochemistry. TZ and SJ performed the zebra fish studies. ACJ and JP wrote the manuscript.

Figure 1 (A) Pedigree tree: patient (arrow) and known relatives. Red: verified ITGB6G1312A|rs61737764. (B) Immunohistochemistry/H&E stain on parallel target/control tissue sections using anti-human αβ6 (6.2A1) or anti-human LTBP1 (Antibodies Online/ABIN1807165).
αβ6 headpiece subdomains participate in dimerisation. (B2) Magnified view demonstrating exposed V438 localisation at the αβ6 hybrid domain surface. (B3) Simulation of V438M substitution caused additional H bonds (green lines) bridging the hybrid domain and the N-terminal β6 domain. (C) F2H assay results. Top quartet: ITGB6(wt)-GFP (bait/green) enrichment at nuclear binding matrix. (Bottom quartet) Using ITGB6V438M-GFP no ITGB6-RFP colocalisation was observed, suggesting impaired interaction. (D) Zebrafish tailfin wound healing after ITGB6 knockdown. (D1–3) Standardised quartet: Using ITGB6V438M-GFP (prey/red) indicated RFP (prey/red) indicated colocalisation of ITGAV-RFP (prey/red) indicated RFP (prey/red) indicated.colocalisation of ITGAV-RFP (prey/red) indicated RFP (prey/red) indicated.compared to ITGB6(wt)-GFP. (D4) Mortality after morpholino application. (D5) Delayed wound area recovery within 24 hours suggests impaired wound healing on ITGB6 knockdown.

Funding This work was supported by HELIOS Research Center, Berlin, Germany (HRC IDs 009694 and 060721).

Disclaimer The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.