Direct prediction of bioaccumulation of organic contaminants in plant roots from soils with machine learning models based on molecular structures

Supplementary Information

Feng Gao¹, Yike Shen², J. Brett Sallach³, Hui Li⁴, Cun Liu⁵*, Yuanbo Li⁶*

¹ Department of Genetics, School of Medicine, Yale University, New Haven, Connecticut 06510, United States

² Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States

³ Department of Environment and Geography, University of York, Heslington, York, YO10 5NG, United Kingdom

⁴ Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, 48823, United States

⁵ Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, P.R. China

⁶ State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China

* Corresponding authors. Tel.: 86-25-86881179, fax: 86-25-86881000 (C Liu); Tel.: 86-10-62815938, fax: 86-10-62896114 (Y Li)

E-mail address: liucun@issas.ac.cn (C Liu), liyuanbo@caas.cn (Y Li).
ECFP and Morgan Fingerprint: The idea behind ECFP fingerprint traces back to the Morgan algorithm, which assigns a unique, sequential atom numbering for molecules through an iterative process until every atom identifier is unique, then the intermediate atom identifiers are discarded. However, ECFP has made a few changes to the Morgan algorithm. ECFP fingerprint is defined as the set of initial atom identifiers, and all identifiers after each iteration up to the limit of \(n \) iterations. As \(n \) increases, this fingerprint set includes all identifiers found in both previous iterations and the current one. For example, ECFP fingerprint for \(n = 0 \) consists of the set of unique atom identifiers; with \(n = 1 \), it augments current set with identifiers computed by examining each atom and its immediate neighbors and assigning a new unique number; with \(n = 2 \), new identifiers for neighbors of neighbors are further included. This whole set defines the extended-connectivity fingerprint.

![Chemical structures](image)

Fig. S1 Chemical structures of 2,2',3,4,4',5',6'-heptabromodiphenyl ether, 2,2',3,3',4,5,5',6,6'-nonabromodiphenyl ether and Aldrin
Table S1: Clustering results based on chemical structures.

Group 0 (32)	Group 1 (16)	Group 2 (15)	Group 3 (9)
Penconazole, Aldrin, Dieldrin, p-DCB (1,4-DCB), 1,2,4-TCB, alpha-HCH, HCB, o,p'-DDE, p,p'-DDE, o,p'-DDD, p,p'-DDD, o,p'-DDT, p,p'-DDT, PCB 101, PCB 153, PCB 138, PCB 180, 1,2,3,5-TeCB, Pentachlorobenzene, Arazine, Galaxolide, Tonalide, Triclocarban, Triclosan, alpha-endosulfan, Endosulfan sulfate, Heptachlor, Heptachlor epoxide, Imidacloprid, Acetamiprid, Tebuconazole, Difenoconazole	BDE-100, BDE-153, BDE-154, BDE-17 BDE-183 BDE-206, BDE-209, BDE-28, BDE-47, BDE-99, BDE-6, BDE-85, BDE-191, BDE-197, BDE-208, BDE-207	Phenanthrene, Anthracene, Fluoranthene, Benzo[a]pyrene, Pyrene, Naphthalene, Acenaphthene, Benzo[a]anthracene, Chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, Dibenzo [a,h] anthracene, Benzo [g,h,i] perylene, Benzo [e]pyrene, Indeno [1,2,3-cd] pyrene	m-DCB (1,3-DCB), o-DCB (1,2-DCB), Fluorene, Di(2-ethylhexyl) phthalate, alpha-HBCD, Trimethoprim, Carbamazepine, Tricyclazole, Azoxytrobin

Table S2: Similarity comparison of each molecular pair in the dataset (attached in a separate spreadsheet)
Gradient Boosting Regression Tree: Gradient boosting regression tree model is a prediction model that utilizes multiple weak learners to perform regression tasks. Given input features x_i and target y_i, the model calculates:

$$\hat{y}_i = F_M(x_i) = \sum_{m=1}^{M} h_m(x_i)$$

Here h_m are the weak learners, which are decision trees in this study. \hat{y}_i are the predicted values through the model.

Gradient boosting regression tree model is built in a greedy way:

$$F_M(x_i) = F_{M-1}(x_i) + h_m(x)$$

where the newly added tree $h_m(x)$ is fitted in order to minimize a sum of *loss* given the previous ensemble F_{M-1}:

$$h_m = \arg\min L_m = \arg\min \sum_{i=1}^{n} loss(y_i, F_{M-1}(x_i) + h(x_i))$$

Here *loss* is the loss function chosen according to specific tasks. For regression tasks, a mean squared error loss function can be used. In other words, during the gradient descent procedure, a new tree that can reduce the loss is added to the model to correct or improve the final output of the model.

Impurity feature importance: The basic idea is that for individual decision trees, they perform feature selection by selecting appropriate split points. Therefore, the more often a feature is used in the split points of a tree, the more important that feature is. This notion of importance can be extended to decision tree ensembles by simply averaging the impurity-based feature importance
of each tree. However, one drawback of impurity feature importance is that it is biased towards high cardinality features.

Partial Dependence Plot: Partial dependence plot can be used to show the marginal effect of one feature on the predicted outcome of a machine learning model. The influences of changes of $\log K_{ow}$, f_{om}, f_{lipid} and MW in forms of their z-scored values on the predicted $logRCF_{soil}$ were shown in Fig. S1. For example, the predicted $logRCF_{soil}$ first remain almost unchanged when f_{lipid} is smaller than -1.2. Then $logRCF_{soil}$ decreased as z-scored value of f_{lipid} increased between -1.2 and -0.9. $logRCF_{soil}$ then increased when f_{lipid} is larger than -0.9 and decreased again when f_{lipid} is larger than -0.4. The relationship between $logRCF_{soil}$ and other corresponding property descriptor variables are even more complicated, showing much more complicated relationships than simple linearity.
Fig. S2 Partial dependence plot of four property descriptors: (a) $\log K_{ow}$; (b) f_{lipid}; (c) MW; (d) f_{om}.
Table S3: RCF_{soil} dataset

Compounds	log Kow	fom (%)	MW	SMILES	flip (%)	log RCF-water	log RCF-soil	Citation	Plant
Penconazole	3.72	0.97	284.18	CCCC(CN1C=NC=N1)C2=C(C=C(C=C(2)Cl)Cl	1.10	1.57	-0.03	Jiang et al., 2016	Wheat
Penconazole	3.72	3.26	284.18	CCCC(CN1C=NC=N1)C2=C(C=C(C=C(2)Cl)Cl	1.10	1.66	-0.19	Jiang et al., 2016	Wheat
Penconazole	3.72	5.03	284.18	CCCC(CN1C=NC=N1)C2=C(C=C(C=C(2)Cl)Cl	1.10	1.63	-0.30	Jiang et al., 2016	Wheat
Penconazole	3.72	1.59	284.18	CCCC(CN1C=NC=N1)C2=C(C=C(C=C(2)Cl)Cl	1.10	1.47	-0.13	Jiang et al., 2016	Wheat
Penconazole	3.72	2.60	284.18	CCCC(CN1C=NC=N1)C2=C(C=C(C=C(2)Cl)Cl	1.10	1.46	-0.25	Jiang et al., 2016	Wheat
Aldrin	5.66	3.60	364.9	C1C2C=CC1C3C2C4(C=C(C3(C4(C1Cl)Cl)Cl)Cl)Cl	0.24	1.63	-1.38	Harris and Sans, 1967	Carrot
Aldrin	5.66	66.50	364.9	C1C2C=CC1C3C2C4(C=C(C3(C4(C1Cl)Cl)Cl)Cl)Cl	0.24	1.35	-2.92	Harris and Sans, 1967	Carrot
Dieldrin	4.55	1.40	380.9	C1C2C3(C1C4C2O4)C5(C=C(C3(C5(C1Cl)Cl)Cl)Cl)Cl	0.24	1.23	-0.60	Harris and Sans, 1967	Carrot
Dieldrin	4.55	3.60	380.9	C1C2C3(C1C4C2O4)C5(C=C(C3(C5(C1Cl)Cl)Cl)Cl)Cl	0.24	1.25	-0.99	Harris and Sans, 1967	Carrot
Dieldrin	4.55	66.50	380.9	C1C2C3(C1C4C2O4)C5(C=C(C3(C5(C1Cl)Cl)Cl)Cl)Cl	0.24	1.22	-2.29	Harris and Sans, 1967	Carrot
Dieldrin	4.55	3.60	380.9	C1C2C3(C1C4C2O4)C5(C=C(C3(C5(C1Cl)Cl)Cl)Cl)Cl	0.10	0.91	-1.33	Harris and Sans, 1967	Radish
Dieldrin	4.55	66.50	380.9	C1C2C3(C1C4C2O4)C5(C=C(C3(C5(C1Cl)Cl)Cl)Cl)Cl	0.10	0.92	-2.59	Harris and Sans, 1967	Radish
Compound	4.55	3.60	380.9	C1C2C3C(C1C4C2O4)C5(C(=C(C3(C5(0.10	0.69	-1.56	Harris and Sans, 1967	Turnips
------------	-------	-------	-------	-----------------	-------	-------	-------	---------------------	-------
m-DCB (1,3-DCB)	3.44	2.82	147	C1=CC(=C(C=C1Cl)Cl	0.34	1.00	0.22	Zhang et al., 2005	Spinach
m-DCB (1,3-DCB)	3.44	0.78	147	C1=CC(=C(C=C1Cl)Cl	0.34	0.83	0.61	Zhang et al., 2005	Spinach
m-DCB (1,3-DCB)	3.44	1.41	147	C1=CC(=C(C=C1Cl)Cl	0.24	0.45	-0.03	Zhang et al., 2005	Carrot
m-DCB (1,3-DCB)	3.44	0.78	147	C1=CC(=C(C=C1Cl)Cl	0.24	0.11	-0.12	Zhang et al., 2005	Carrot
m-DCB (1,3-DCB)	3.44	2.82	147	C1=CC(=C(C=C1Cl)Cl	0.09	0.19	-0.59	Zhang et al., 2005	Radish
m-DCB (1,3-DCB)	3.44	0.78	147	C1=CC(=C(C=C1Cl)Cl	0.09	0.07	-0.15	Zhang et al., 2005	Radish
p-DCB (1,4-DCB)	3.37	2.82	147	C1=CC=CC(C1Cl)Cl	0.34	0.85	0.14	Zhang et al., 2005	Spinach
p-DCB (1,4-DCB)	3.37	1.41	147	C1=CC=CC(C1Cl)Cl	0.34	0.29	-0.12	Zhang et al., 2005	Spinach
p-DCB (1,4-DCB)	3.37	1.41	147	C1=CC=CC(C1Cl)Cl	0.09	0.04	-0.38	Zhang et al., 2005	Radish
o-DCB (1,2-DCB)	3.38	0.78	147	C1=CC=C(C=C1Cl)Cl	0.34	0.87	0.70	Zhang et al., 2005	Spinach
o-DCB (1,2-DCB)	3.38	0.78	147	C1=CC=C(C=C1Cl)Cl	0.24	0.17	0.00	Zhang et al., 2005	Carrot
o-DCB (1,2-DCB)	3.38	0.78	147	C1=CC=C(C=C1Cl)Cl	0.09	-0.01	-0.18	Zhang et al., 2005	Radish
1,2,4-TCB	4.02	2.82	181.4	C1=CC=C(C=C1Cl)Cl	0.34	0.90	-0.41	Zhang et al., 2005	Spinach
1,2,4-TCB	4.02	1.41	181.4	C1=CC=C(C=C1Cl)Cl	0.34	0.90	-0.10	Zhang et al., 2005	Spinach
Compound	LogP	MW	Molecular Structure	pIC50	pIC50	pIC50	Ref	Plant Type	
---------------------------	-------	-------	--	-------	-------	-------	--------------	------------	
1,2,4-TCB	4.02	181.4	C1=CC(=C(C=C1Cl)Cl)Cl	0.17	0.96	-0.35	Zhang et al., 2005	Celery	
1,2,4-TCB	4.02	181.4	C1=CC(=C(C=C1Cl)Cl)Cl	0.17	0.81	-0.20	Zhang et al., 2005	Celery	
1,2,4-TCB	4.02	181.4	C1=CC(=C(C=C1Cl)Cl)Cl	0.17	0.67	-0.08	Zhang et al., 2005	Celery	
1,2,4-TCB	4.02	181.4	C1=CC(=C(C=C1Cl)Cl)Cl	0.24	0.59	-0.41	Zhang et al., 2005	Carrot	
1,2,4-TCB	4.02	181.4	C1=CC(=C(C=C1Cl)Cl)Cl	0.09	0.36	-0.94	Zhang et al., 2005	Radish	
1,2,4-TCB	4.02	181.4	C1=CC(=C(C=C1Cl)Cl)Cl	0.09	0.24	-0.76	Zhang et al., 2005	Radish	
Fluorene	4.18	166.22	C1C2=CC=CC=C2C3=CC=CC=C31	0.10	0.92	-1.59	Cai et al., 2008	Radish	
Phenanthrene	4.46	178.23	C1=CC=C2C(=C1)C=C3=C3=CC=CC=C3	0.10	1.34	-1.45	Cai et al., 2008	Radish	
Phenanthrene	4.46	178.23	C1=CC=C2C(=C1)C=C3=C3=CC=CC=C3	0.10	1.32	-1.05	Cai et al., 2008	Radish	
Anthracene	4.54	178.23	C1=CC=C2C=C3C=CC=CC3=C3=C2=C1	0.10	0.71	-1.63	Cai et al., 2008	Radish	
Anthracene	4.54	178.23	C1=CC=C2C=C3C=CC=CC3=C3=C2=C1	0.10	0.71	-2.15	Cai et al., 2008	Radish	
Fluoranthene	5.16	202.25	C1=CC=C2C(=C1)C=C3=C3=CC=C3	0.10	1.56	-0.72	Cai et al., 2008	Radish	
Benzo[a]pyrene	6.34	252.3	C1=CC=C2C3=C4C(=CC2=C1)C=CC5=C4(=CC=C5)C=C3	0.10	1.62	-2.52	Cai et al., 2008	Radish	
Di(2-ethylhexyl) phthalate	7.60	390.6	CCCCC(CCC)COC(=O)C1=CC=CC=C1C(=O)OCC(CCC)CCCC	0.10	2.80	-1.94	Cai et al., 2008	Radish	
Di(2-ethylhexyl) phthalate	7.60	390.6	CCCCC(CCC)COC(=O)C1=CC=CC=C1C(=O)OCC(CCC)CCCC	0.10	2.98	-2.40	Cai et al., 2008	Radish	
Phenanthrene	4.46	178.23	C1=CC=C2C(=C1)C=C3=C3=CC=CC=C3	0.32	0.57	-1.27	Gao et al., 2005	Ryegrass	

S9
Substance	Concentration	Temperature	LogKow	LogP	Ref.	Plant						
Phenanthrene	4.46	1.45	178.23	0.68	Gao et al., 2005	Chinese cabbage						
Phenanthrene	4.46	1.45	178.23	0.32	Gao et al., 2005	Amaranth						
Pyrene	5.18	1.45	202.25	0.32	Gao et al., 2005	Ryegrass						
Pyrene	5.18	1.45	202.25	0.68	Gao et al., 2005	Chinese cabbage						
alpha-HCH	3.81	6.36	290.83	0.10	Mikes et al., 2009	Radish						
HCB	5.50	6.36	284.8	0.10	Mikes et al., 2009	Radish						
o,p'-DDE	5.76	6.36	318	0.10	Mikes et al., 2009	Radish						
p,p'-DDE	5.91	6.36	318	0.10	Mikes et al., 2009	Radish						
o,p'-DDD	5.82	6.36	320	0.10	Mikes et al., 2009	Radish						
p,p'-DDD	5.69	6.36	320	0.10	Mikes et al., 2009	Radish						
o,p'-DDT	6.19	6.36	354.5	0.10	Mikes et al., 2009	Radish						
p,p'-DDT	5.98	6.36	354.5	0.10	Mikes et al., 2009	Radish						
PCB 101	6.50	6.36	326.4	0.10	Mikes et al., 2009	Radish						
PCB 153	6.90	6.36	360.9	0.10	Mikes et al., 2009	Radish						
PCB 138	6.69	6.36	360.9	0.10	Mikes et al., 2009	Radish						
Compound	BDE	pIC50	logKow	BDE	pIC50	logKow						
----------	-----	-------	--------	-----	-------	--------						
PCB 180	7.20	6.36	395.3	0.10	2.40	-2.07						
BDE-100	7.24	3.19	564.7	0.53	2.61	-1.66						
BDE-100	7.24	3.19	564.7	0.56	2.76	-1.51						
BDE-100	7.24	1.90	564.7	0.70	2.88	-1.17						
BDE-100	7.24	1.90	564.7	0.53	2.84	-1.21						
BDE-100	7.24	1.90	564.7	0.56	2.67	-1.37						
BDE-100	7.24	0.98	564.7	0.70	2.69	-1.07						
BDE-100	7.24	0.98	564.7	0.53	2.70	-1.05						
BDE-100	7.24	0.98	564.7	0.56	2.84	-0.92						
BDE-153	7.90	3.19	643.6	0.70	2.95	-1.92						
BDE-153	7.90	3.19	643.6	0.56	3.64	-1.23						
BDE-153	7.90	1.90	643.6	0.70	3.19	-1.45						
BDE-153	7.90	1.90	643.6	0.53	3.39	-1.25						
BDE-153	7.90	1.90	643.6	0.56	3.37	-1.27						
Compound	BDE	DTE	DP	Structure	Log Kow	Log P	log D	Huang et al., 2011	Plant Type			
----------	-----	-----	----	-----------	--------	------	------	-------------------	------------			
BDE-153	7.90	0.98	643.6	C1=C(C(=CC(=C1Br)Br)Br)OC2=CC(=C(C=C2Br)Br)Br	0.70	3.30	-1.05	Pumpkin				
BDE-153	7.90	0.98	643.6	C1=C(C(=CC(=C1Br)Br)Br)OC2=CC(=C(C=C2Br)Br)Br	0.53	3.34	-1.01	Maize				
BDE-153	7.90	0.98	643.6	C1=C(C(=CC(=C1Br)Br)Br)OC2=CC(=C(C=C2Br)Br)Br	0.56	3.14	-1.21	Ryegrass				
BDE-154	7.82	3.19	643.6	C1=C(C=C(C(=C1Br)Br)Br)OC2=CC(=C(C=C2Br)Br)Br	0.70	3.52	-1.27	Pumpkin				
BDE-154	7.82	3.19	643.6	C1=C(C=C(C(=C1Br)Br)Br)OC2=CC(=C(C=C2Br)Br)Br	0.53	3.59	-1.20	Maize				
BDE-154	7.82	1.90	643.6	C1=C(C=C(C(=C1Br)Br)Br)OC2=CC(=C(C=C2Br)Br)Br	0.70	3.34	-1.23	Pumpkin				
BDE-154	7.82	1.90	643.6	C1=C(C=C(C(=C1Br)Br)Br)OC2=CC(=C(C=C2Br)Br)Br	0.53	3.24	-1.33	Maize				
BDE-154	7.82	1.90	643.6	C1=C(C=C(C(=C1Br)Br)Br)OC2=CC(=C(C=C2Br)Br)Br	0.56	3.16	-1.41	Ryegrass				
BDE-154	7.82	0.98	643.6	C1=C(C=C(C(=C1Br)Br)Br)OC2=CC(=C(C=C2Br)Br)Br	0.70	3.14	-1.15	Pumpkin				
BDE-154	7.82	0.98	643.6	C1=C(C=C(C(=C1Br)Br)Br)OC2=CC(=C(C=C2Br)Br)Br	0.53	3.22	-1.06	Maize				
BDE-154	7.82	0.98	643.6	C1=C(C=C(C(=C1Br)Br)Br)OC2=CC(=C(C=C2Br)Br)Br	0.56	3.14	-1.14	Ryegrass				
BDE-17	5.74	3.19	406.89	C1=CC=C(C(=C1)OC2=C(C=C(C=C2)Br)Br)Br	0.70	1.82	-1.09	Pumpkin				
BDE-17	5.74	3.19	406.89	C1=CC=C(C(=C1)OC2=C(C=C(C=C2)Br)Br)Br	0.53	1.84	-1.08	Maize				
BDE-17	5.74	3.19	406.89	C1=CC=C(C(=C1)OC2=C(C=C(C=C2)Br)Br)Br	0.56	1.68	-1.24	Ryegrass				
Compound	Molecular Weight	LogP	Notes									
----------	------------------	------	-------									
BDE-17	5.74	1.90										
	406.89		Huang et al., 2011 Pumpkin									
BDE-17	5.74	1.90										
	406.89		Huang et al., 2011 Maize									
BDE-17	5.74	1.90										
	406.89		Huang et al., 2011 Ryegrass									
BDE-17	5.74	0.98										
	406.89		Huang et al., 2011 Pumpkin									
BDE-183	8.27	3.19										
	722.5		Huang et al., 2011 Pumpkin									
BDE-183	8.27	3.19										
	722.5		Huang et al., 2011 Maize									
BDE-183	8.27	3.19										
	722.5		Huang et al., 2011 Ryegrass									
BDE-183	8.27	1.90										
	722.5		Huang et al., 2011 Pumpkin									
BDE-183	8.27	1.90										
	722.5		Huang et al., 2011 Maize									
BDE-183	8.27	0.98										
	722.5		Huang et al., 2011 Pumpkin									
BDE-183	8.27	0.98										
	722.5		Huang et al., 2011 Maize									
BDE-183	8.27	0.98										
	722.5		Huang et al., 2011 Ryegrass									
BDE-206	8.47	3.19										
	880.3		Huang et al., 2011 Pumpkin									
Compound	Mulliken Charge	Delta Mulliken Charge	Log P	Source	Plant							
----------	----------------	-----------------------	-------	--------	-------							
BDE-206	8.47	3.19	880.3	0.53	4.43	-0.95	Huang et al., 2011	Maize				
BDE-206	8.47	3.19	880.3	0.56	3.78	-1.60	Huang et al., 2011	Ryegrass				
BDE-206	8.47	1.90	880.3	0.70	3.13	-1.74	Huang et al., 2011	Pumpkin				
BDE-206	8.47	1.90	880.3	0.53	3.37	-1.50	Huang et al., 2011	Maize				
BDE-206	8.47	1.90	880.3	0.56	3.18	-1.69	Huang et al., 2011	Ryegrass				
BDE-209	8.70	0.98	959.2	0.70	4.31	-1.28	Huang et al., 2011	Pumpkin				
BDE-209	8.70	3.19	959.2	0.53	4.11	-1.48	Huang et al., 2011	Maize				
BDE-209	8.70	3.19	959.2	0.56	4.21	-1.38	Huang et al., 2011	Ryegrass				
BDE-209	8.70	1.90	959.2	0.70	3.86	-1.50	Huang et al., 2011	Pumpkin				
BDE-209	8.70	1.90	959.2	0.53	3.82	-1.54	Huang et al., 2011	Maize				
BDE-209	8.70	1.90	959.2	0.56	3.72	-1.64	Huang et al., 2011	Ryegrass				
BDE-28	5.94	3.19	406.89	0.53	1.96	-1.13	Huang et al., 2011	Maize				
BDE-28	5.94	1.90	406.89	0.53	1.95	-0.92	Huang et al., 2011	Maize				
BDE-28	5.94	1.90	406.89	0.56	2.07	-0.80	Huang et al., 2011	Ryegrass				
----------	-------	-------	-------	----------	----------	----------	----------	-------	----------	------------	------------	------------
BDE-47	6.81	3.19	485.79	C1=CC(=C(C=C1Br)Br)OC2=C(C=C(C=C2)Br)Br	0.70	3.09	-0.80	Huang et al., 2011	Pumpkin			
BDE-47	6.81	3.19	485.79	C1=CC(=C(C=C1Br)Br)OC2=C(C=C(C=C2)Br)Br	0.53	3.00	-0.88	Huang et al., 2011	Maize			
BDE-47	6.81	3.19	485.79	C1=CC(=C(C=C1Br)Br)OC2=C(C=C(C=C2)Br)Br	0.56	2.99	-0.89	Huang et al., 2011	Ryegrass			
BDE-47	6.81	1.90	485.79	C1=CC(=C(C=C1Br)Br)OC2=C(C=C(C=C2)Br)Br	0.70	3.02	-0.64	Huang et al., 2011	Pumpkin			
BDE-47	6.81	1.90	485.79	C1=CC(=C(C=C1Br)Br)OC2=C(C=C(C=C2)Br)Br	0.53	2.90	-0.75	Huang et al., 2011	Maize			
BDE-47	6.81	1.90	485.79	C1=CC(=C(C=C1Br)Br)OC2=C(C=C(C=C2)Br)Br	0.56	2.92	-0.73	Huang et al., 2011	Ryegrass			
BDE-47	6.81	0.98	485.79	C1=CC(=C(C=C1Br)Br)OC2=C(C=C(C=C2)Br)Br	0.70	2.45	-0.92	Huang et al., 2011	Pumpkin			
BDE-47	6.81	0.98	485.79	C1=CC(=C(C=C1Br)Br)OC2=C(C=C(C=C2)Br)Br	0.53	2.32	-1.05	Huang et al., 2011	Maize			
BDE-99	7.32	3.19	564.7	C1=CC(=C(C=C1Br)Br)OC2=CC(=C=C2Br)Br)Br	0.70	3.27	-1.07	Huang et al., 2011	Pumpkin			
BDE-99	7.32	3.19	564.7	C1=CC(=C(C=C1Br)Br)OC2=CC(=C=C2Br)Br)Br	0.53	3.26	-1.08	Huang et al., 2011	Maize			
BDE-99	7.32	3.19	564.7	C1=CC(=C(C=C1Br)Br)OC2=CC(=C=C2Br)Br)Br	0.56	3.23	-1.11	Huang et al., 2011	Ryegrass			
BDE-99	7.32	1.90	564.7	C1=CC(=C(C=C1Br)Br)OC2=CC(=C=C2Br)Br)Br	0.70	3.21	-0.90	Huang et al., 2011	Pumpkin			
BDE-99	7.32	1.90	564.7	C1=CC(=C(C=C1Br)Br)OC2=CC(=C=C2Br)Br)Br	0.53	3.06	-1.06	Huang et al., 2011	Maize			
BDE-99	7.32	1.90	564.7	C1=CC(=C(C=C1Br)Br)OC2=CC(=C=C2Br)Br)Br	0.56	2.85	-1.27	Huang et al., 2011	Ryegrass			
Compound	m/z	Retention Time	Mass	Name	Purity	Solvent	Source	Species				
--------------	-----	----------------	------	---	--------	---------	-------------------------	---------				
BDE-99	7.32	0.98	564.7	C1=CC(=C(C=C1Br)Br)OC2=CC(=C(C=C2Br)Br)Br	0.70	2.85	-0.98	Pumpkin				
BDE-99	7.32	0.98	564.7	C1=CC(=C(C=C1Br)Br)OC2=CC(=C(C=C2Br)Br)Br	0.53	2.78	-1.05	Maize				
BDE-99	7.32	0.98	564.7	C1=CC(=C(C=C1Br)Br)OC2=CC(=C(C=C2Br)Br)Br	0.56	2.94	-0.88	Ryegrass				
alpha-HBCD	5.38	1.85	641.7	C1C[C@H]([C@H]CC[C@H]([C@H]CC[C@H]([C@H]1Br)Br)Br)Br)	1.10	1.74	-0.61	Wheat				
Dieldrin	4.55	13.28	380.9	C1C2C3C(C1C4C2O4)C5(C(=C(C3(C5(Cl)Cl)Cl)Cl)Cl)Cl	0.53	1.99	-0.82	Maize				
Dieldrin	4.55	0.69	380.9	C1C2C3C(C1C4C2O4)C5(C(=C(C3(C5(Cl)Cl)Cl)Cl)Cl)Cl	0.53	2.03	0.52	Maize				
Dieldrin	4.55	0.86	380.9	C1C2C3C(C1C4C2O4)C5(C(=C(C3(C5(Cl)Cl)Cl)Cl)Cl)Cl	0.53	2.01	0.38	Maize				
Dieldrin	4.55	6.55	380.9	C1C2C3C(C1C4C2O4)C5(C(=C(C3(C5(Cl)Cl)Cl)Cl)Cl)Cl	0.53	1.96	-0.54	Maize				
Dieldrin	4.55	1.21	380.9	C1C2C3C(C1C4C2O4)C5(C(=C(C3(C5(Cl)Cl)Cl)Cl)Cl)Cl	0.53	2.00	0.22	Maize				
Dieldrin	4.55	8.97	380.9	C1C2C3C(C1C4C2O4)C5(C(=C(C3(C5(Cl)Cl)Cl)Cl)Cl)Cl	0.53	2.01	-0.64	Maize				
1,4-DCB	3.37	3.55	147	C1=CC(=CC=C1Cl)Cl	1.00	1.72	1.03	Barely				
1,2,4-TCB	4.02	3.55	181.4	C1=CC(=C(C=C1Cl)Cl)Cl	1.00	1.98	0.65	Barely				
1,2,3,5-TeCB	4.59	3.55	215.9	C1=C(C=C(C=C1Cl)Cl)Cl	1.00	2.39	0.75	Barely				
Compound	5.03	3.55	250.3	C1=C(C(=C(C1Cl)Cl)Cl)Cl	1.00	2.07	0.03	Scheunert et al., 1994	Barely			
-------------------------	------	------	-------	--------------------------	------	------	------	------------------------	----------------------			
Hexachlorobenzene	5.50	3.55	284.8	C1=C(C(=C(C1Cl)Cl)Cl)Cl	1.00	2.27	-0.09	Scheunert et al., 1994	Barely			
Naphthalene	3.36	5.31	128.17	C1=CC=C2C=CC2=C1	1.14	0.88	-0.42	Tao et al., 2009	Wheat			
Naphthalene	3.36	1.41	128.17	C1=CC=C2C=CC=C2=C1	1.14	0.72	-0.01	Tao et al., 2009	Wheat			
Naphthalene	3.36	4.33	128.17	C1=CC=C2C=CC=C2=C1	1.14	1.06	-0.16	Tao et al., 2009	Wheat			
Naphthalene	3.36	2.71	128.17	C1=CC=C2C=CC=C2=C1	1.14	1.18	0.17	Tao et al., 2009	Wheat			
Naphthalene	3.36	5.71	128.17	C1=CC=C2C=CC=C2=C1	1.14	0.73	-0.61	Tao et al., 2009	Wheat			
Naphthalene	3.36	2.60	128.17	C1=CC=C2C=CC=C2=C1	1.14	0.98	-0.02	Tao et al., 2009	Wheat			
Naphthalene	3.36	4.81	128.17	C1=CC=C2C=CC=C2=C1	1.14	0.82	-0.44	Tao et al., 2009	Wheat			
Naphthalene	3.36	2.67	128.17	C1=CC=C2C=CC=C2=C1	1.14	0.84	-0.17	Tao et al., 2009	Wheat			
Naphthalene	3.36	4.74	128.17	C1=CC=C2C=CC=C2=C1	1.14	1.08	-0.18	Tao et al., 2009	Wheat			
Naphthalene	3.36	4.16	128.17	C1=CC=C2C=CC=C2=C1	1.14	1.10	-0.10	Tao et al., 2009	Wheat			
Acenaphthene	3.92	4.33	154.21	C1CC2=CC=CC3=C2C1=CC=C3	1.14	1.67	-0.11	Tao et al., 2009	Wheat			
Acenaphthene	3.92	2.71	154.21	C1CC2=CC=CC3=C2C1=CC=C3	1.14	1.56	-0.02	Tao et al., 2009	Wheat			
Acenaphthene	3.92	5.71	154.21	C1CC2=CC=CC3=C2C1=CC=C3	1.14	1.21	-0.68	Tao et al., 2009	Wheat			
Acenaphthene	3.92	2.60	154.21	C1CC2=CC=CC3=C2C1=CC=C3	1.14	1.47	-0.09	Tao et al., 2009	Wheat			
Acenaphthene	3.92	3.47	154.21	C1CC2=CC=CC3=C2C1=CC=C3	1.14	1.16	-0.53	Tao et al., 2009	Wheat			
Acenaphthene	3.92	5.31	154.21	C1CC2=CC=CC3=C2C1=CC=C3	1.14	1.49	-0.38	Tao et al., 2009	Wheat			
Acenaphthene	3.92	3.47	154.21	C1CC2=CC=CC3=C2C1=CC=C3	1.14	1.23	-0.46	Tao et al., 2009	Wheat			
Acenaphthene	3.92	6.22	154.21	C1CC2=CC=CC3=C2C1=CC=C3	1.14	1.26	-0.68	Tao et al., 2009	Wheat			
Acenaphthene	3.92	4.81	154.21	C1CC2=CC=CC3=C2C1=CC=C3	1.14	1.51	-0.31	Tao et al., 2009	Wheat			

S17
Compound	Mean	Median	Weight	Molecular Formula	Octanol/Water	Soil/Water	Source	Crop	
Acenaphthene	3.92	2.67	154.21	C1CC2=CC=CC3=C2C1=CC=C3	1.14	1.39	-0.18	Tao et al., 2009	Wheat
Acenaphthene	3.92	4.74	154.21	C1CC2=CC=CC3=C2C1=CC=C3	1.14	1.57	-0.25	Tao et al., 2009	Wheat
Acenaphthene	3.92	4.16	154.21	C1CC2=CC=CC3=C2C1=CC=C3	1.14	1.37	-0.39	Tao et al., 2009	Wheat
Fluorene	4.18	1.41	166.22	C1C2=CC=CC=C2C3=CC=CC=C3	1.14	1.51	-0.04	Tao et al., 2009	Wheat
Fluorene	4.18	4.33	166.22	C1C2=CC=CC=C2C3=CC=CC=C3	1.14	1.76	-0.28	Tao et al., 2009	Wheat
Fluorene	4.18	5.71	166.22	C1C2=CC=CC=C2C3=CC=CC=C3	1.14	1.61	-0.55	Tao et al., 2009	Wheat
Fluorene	4.18	3.47	166.22	C1C2=CC=CC=C2C3=CC=CC=C3	1.14	1.59	-0.35	Tao et al., 2009	Wheat
Fluorene	4.18	5.31	166.22	C1C2=CC=CC=C2C3=CC=CC=C3	1.14	1.73	-0.40	Tao et al., 2009	Wheat
Fluorene	4.18	3.47	166.22	C1C2=CC=CC=C2C3=CC=CC=C3	1.14	1.46	-0.48	Tao et al., 2009	Wheat
Fluorene	4.18	6.22	166.22	C1C2=CC=CC=C2C3=CC=CC=C3	1.14	1.53	-0.66	Tao et al., 2009	Wheat
Fluorene	4.18	4.81	166.22	C1C2=CC=CC=C2C3=CC=CC=C3	1.14	1.88	-0.20	Tao et al., 2009	Wheat
Fluorene	4.18	2.67	166.22	C1C2=CC=CC=C2C3=CC=CC=C3	1.14	1.71	-0.12	Tao et al., 2009	Wheat
Fluorene	4.18	4.16	166.22	C1C2=CC=CC=C2C3=CC=CC=C3	1.14	1.72	-0.30	Tao et al., 2009	Wheat
Phenanthrene	4.46	5.31	178.23	C1=CC=C2C(=C1)C=CC3=CC=CC=C3	1.14	1.67	-0.74	Tao et al., 2009	Wheat
Phenanthrene	4.46	1.41	178.23	C1=CC=C2C(=C1)C=CC3=CC=CC=C3	1.14	1.67	-0.16	Tao et al., 2009	Wheat
Phenanthrene	4.46	4.33	178.23	C1=CC=C2C(=C1)C=CC3=CC=CC=C3	1.14	2.05	-0.27	Tao et al., 2009	Wheat
Phenanthrene	4.46	2.71	178.23	C1=CC=C2C(=C1)C=CC3=CC=CC=C3	1.14	1.98	-0.14	Tao et al., 2009	Wheat
Phenanthrene	4.46	5.71	178.23	C1=CC=C2C(=C1)C=CC3=CC=CC=C3	1.14	1.64	-0.80	Tao et al., 2009	Wheat
Phenanthrene	4.46	2.60	178.23	C1=CC=C2C(=C1)C=CC3=CC=CC=C3	1.14	1.96	-0.14	Tao et al., 2009	Wheat
Compound	Concentration 1	Concentration 2	MW	Formula 1	Concentration 3	Concentration 4	MW	Concentration 5	Concentration 6
-----------	----------------	----------------	----	-----------	----------------	----------------	----	----------------	----------------
Phenanthrene	4.46	3.47	178.23	C1=CC=C2C(=C1)C=C3=CC=CC=C3	1.14	1.68	-0.54	Tao et al., 2009	Wheat
Phenanthrene	4.46	5.31	178.23	C1=CC=C2C(=C1)C=C3=CC=CC=C3	1.14	1.85	-0.56	Tao et al., 2009	Wheat
Phenanthrene	4.46	6.22	178.23	C1=CC=C2C(=C1)C=C3=CC=CC=C3	1.14	1.75	-0.72	Tao et al., 2009	Wheat
Phenanthrene	4.46	4.81	178.23	C1=CC=C2C(=C1)C=C3=CC=CC=C3	1.14	2.01	-0.36	Tao et al., 2009	Wheat
Phenanthrene	4.46	2.67	178.23	C1=CC=C2C(=C1)C=C3=CC=CC=C3	1.14	1.89	-0.22	Tao et al., 2009	Wheat
Phenanthrene	4.46	4.74	178.23	C1=CC=C2C(=C1)C=C3=CC=CC=C3	1.14	1.89	-0.47	Tao et al., 2009	Wheat
Phenanthrene	4.46	4.16	178.23	C1=CC=C2C(=C1)C=C3=CC=CC=C3	1.14	1.89	-0.41	Tao et al., 2009	Wheat
Anthracene	4.54	5.31	178.23	C1=CC=C2C=C3=C=C3=CC=CC2=C1	1.14	1.62	-0.87	Tao et al., 2009	Wheat
Anthracene	4.54	1.41	178.23	C1=CC=C2C=C3=C=C3=CC2=C1	1.14	1.69	-0.22	Tao et al., 2009	Wheat
Anthracene	4.54	2.71	178.23	C1=CC=C2C=C3=C=C3=CC2=C1	1.14	1.95	-0.24	Tao et al., 2009	Wheat
Anthracene	4.54	5.71	178.23	C1=CC=C2C=C3=C=C3=CC2=C1	1.14	1.82	-0.70	Tao et al., 2009	Wheat
Anthracene	4.54	2.60	178.23	C1=CC=C2C=C3=C=C3=CC2=C1	1.14	1.67	-0.51	Tao et al., 2009	Wheat
Anthracene	4.54	3.47	178.23	C1=CC=C2C=C3=C=C3=CC2=C1	1.14	1.97	-0.34	Tao et al., 2009	Wheat
Anthracene	4.54	5.31	178.23	C1=CC=C2C=C3=C=C3=CC2=C1	1.14	2.10	-0.39	Tao et al., 2009	Wheat
Anthracene	4.54	3.47	178.23	C1=CC=C2C=C3=C=C3=CC2=C1	1.14	1.35	-0.95	Tao et al., 2009	Wheat
Anthracene	4.54	6.22	178.23	C1=CC=C2C=C3=C=C3=CC2=C1	1.14	1.89	-0.66	Tao et al., 2009	Wheat
Anthracene	4.54	4.81	178.23	C1=CC=C2C=C3=C=C3=CC2=C1	1.14	2.15	-0.29	Tao et al., 2009	Wheat
Anthracene	4.54	4.74	178.23	C1=CC=C2C=C3=C=C3=CC2=C1	1.14	2.09	-0.35	Tao et al., 2009	Wheat
Compound	n	m/z	molar mass	F-IR-MS	F-IR-MS	Retention Time	Source	Plant	
-------------------	----	------	------------	-----------	-----------	---------------	-------------	--------	
Anthracene	4.54	4.16	178.23	C1=CC=C2=C3=C=CC3=CC2=C1	1.14	2.09	-0.29	Tao et al., 2009	Wheat
Fluoranthene	5.16	1.41	202.25	C1=CC=C2(C=CC1)C3=CC=CC4=C3C2=CC=C4	1.14	2.54	0.01	Tao et al., 2009	Wheat
Fluoranthene	5.16	4.33	202.25	C1=CC=C2(C=CC1)C3=CC=CC4=C3C2=CC=C4	1.14	2.59	-0.43	Tao et al., 2009	Wheat
Fluoranthene	5.16	5.71	202.25	C1=CC=C2(C=CC1)C3=CC=CC4=C3C2=CC=C4	1.14	2.69	-0.45	Tao et al., 2009	Wheat
Fluoranthene	5.16	3.47	202.25	C1=CC=C2(C=CC1)C3=CC=CC4=C3C2=CC=C4	1.14	2.66	-0.26	Tao et al., 2009	Wheat
Fluoranthene	5.16	5.31	202.25	C1=CC=C2(C=CC1)C3=CC=CC4=C3C2=CC=C4	1.14	2.66	-0.45	Tao et al., 2009	Wheat
Pyrene	5.18	1.41	202.25	C1=CC=C2=C3=C=CC3=C=CC4=CC(=C43)C=C2	1.14	2.42	-0.13	Tao et al., 2009	Wheat
Pyrene	5.18	4.33	202.25	C1=CC=C2=C3=C=CC3=C=CC4=CC(=C43)C=C2	1.14	2.54	-0.50	Tao et al., 2009	Wheat
Pyrene	5.18	5.71	202.25	C1=CC=C2=C3=C=CC3=C=CC4=CC(=C43)C=C2	1.14	2.63	-0.53	Tao et al., 2009	Wheat
Pyrene	5.18	3.47	202.25	C1=CC=C2=C3=C=CC3=C=CC4=CC(=C43)C=C2	1.14	2.66	-0.28	Tao et al., 2009	Wheat
Pyrene	5.18	5.31	202.25	C1=CC=C2=C3=C=CC3=C=CC4=CC(=C43)C=C2	1.14	2.53	-0.60	Tao et al., 2009	Wheat
Pyrene	5.18	6.22	202.25	C1=CC=C2=C3=C=CC3=C=CC4=CC(=C43)C=C2	1.14	2.66	-0.53	Tao et al., 2009	Wheat
Benzo[a]anthracene	5.61	1.41	228.3	C1=CC=C2=C(C=CC1)C=C3=CC4=CC=C=C=C=C=C=C4=C=C32	1.14	3.09	0.11	Tao et al., 2009	Wheat
Benzo[a]anthracene	5.61	4.33	228.3	C1=CC=C2=C(C=CC1)C=C3=CC4=CC=C=C=C=C=C=C4=C=C32	1.14	3.03	-0.44	Tao et al., 2009	Wheat

S20
Compound	Value 1	Value 2	Value 3	Formula	Charge 1	Charge 2	Charge 3	References	Crop
Benzo[a]anthracene	5.61	5.31	228.3	C1=CC=C2C(=C1)C=CC3=CC4=CC=C=C=C=C4=C=C32	1.14	2.84	-0.72	Tao et al., 2009	Wheat
Benzo[a]anthracene	5.61	3.47	228.3	C1=CC=C2C(=C1)C=CC3=CC4=CC=C=C=C=C4=C=C32	1.14	3.03	-0.35	Tao et al., 2009	Wheat
Chrysene	5.73	5.31	228.3	C1=CC=C2C(=C1)C=CC3=CC2=CC4=CC=CC=C43	1.14	2.44	-1.23	Tao et al., 2009	Wheat
Chrysene	5.73	1.41	228.3	C1=CC=C2C(=C1)C=CC3=CC2=CC4=CC=CC=C43	1.14	3.18	0.08	Tao et al., 2009	Wheat
Chrysene	5.73	5.71	228.3	C1=CC=C2C(=C1)C=CC3=CC2=CC4=CC=CC=C43	1.14	3.19	-0.52	Tao et al., 2009	Wheat
Chrysene	5.73	3.47	228.3	C1=CC=C2C(=C1)C=CC3=CC2=CC4=CC=CC=C43	1.14	3.16	-0.33	Tao et al., 2009	Wheat
benzo[b]fluoranthene	5.78	3.47	252.3	C1=CC=C2C3=C4C(=CC=C3)C5=CC=C5C4=CC2=C1	1.14	2.73	-0.81	Tao et al., 2009	Wheat
benzo[b]fluoranthene	5.78	6.22	252.3	C1=CC=C2C3=C4C(=CC=C3)C5=CC=C5C4=CC2=C1	1.14	2.82	-0.98	Tao et al., 2009	Wheat
benzo[b]fluoranthene	5.78	4.81	252.3	C1=CC=C2C3=C4C(=CC=C3)C5=CC=C5C4=CC2=C1	1.14	2.93	-0.76	Tao et al., 2009	Wheat
benzo[b]fluoranthene	5.78	2.67	252.3	C1=CC=C2C3=C4C(=CC=C3)C5=CC=C5C4=CC2=C1	1.14	3.23	-0.20	Tao et al., 2009	Wheat
benzo[b]fluoranthene	5.78	4.16	252.3	C1=CC=C2C3=C4C(=CC=C3)C5=CC=C5C4=CC2=C1	1.14	2.96	-0.66	Tao et al., 2009	Wheat
benzo[k]fluoranthene	6.20	4.33	252.3	C1=CC=C2C=C3C4=CC=CC5=C4C(=CC=C=C)C5C3=CC2=C1	1.14	2.67	-1.39	Tao et al., 2009	Wheat
benzo[k]fluoranthene	6.20	2.71	252.3	C1=CC=C2C=C3C4=CC=CC5=C4C(=CC=C=C)C5C3=CC2=C1	1.14	3.14	-0.71	Tao et al., 2009	Wheat
benzo[k]fluoranthene	6.20	5.71	252.3	C1=CC=C2C=C3C4=CC=CC5=C4C(=CC=C=C)C5C3=CC2=C1	1.14	3.14	-1.04	Tao et al., 2009	Wheat
Compound	Mass	LogP	Retention Time	CAS Registry	Ref	Type			
-------------------------	------	------	----------------	--------------	-----	------			
Benzo[k]fluoranthene	252.3	3.47	6.20	6.20	Tao et al., 2009	Wheat			
Benzo[k]fluoranthene	252.3	5.31	6.20	6.20	Tao et al., 2009	Wheat			
Benzo[k]fluoranthene	252.3	3.47	6.20	6.20	Tao et al., 2009	Wheat			
Benzo[k]fluoranthene	252.3	6.22	6.20	6.20	Tao et al., 2009	Wheat			
Benzo[k]fluoranthene	252.3	4.74	6.20	6.20	Tao et al., 2009	Wheat			
Benzo[a]pyrene	252.3	5.31	6.41	6.41	Tao et al., 2009	Wheat			
Benzo[a]pyrene	252.3	4.33	6.41	6.41	Tao et al., 2009	Wheat			
Benzo[a]pyrene	252.3	5.71	6.41	6.41	Tao et al., 2009	Wheat			
Benzo[a]pyrene	252.3	3.47	6.41	6.41	Tao et al., 2009	Wheat			
Benzo[a]pyrene	252.3	6.22	6.41	6.41	Tao et al., 2009	Wheat			
Dibenzo[a,h]anthracene	278.3	4.33	6.75	6.75	Tao et al., 2009	Wheat			
Dibenzo[a,h]anthracene	278.3	2.71	6.75	6.75	Tao et al., 2009	Wheat			
Dibenzo[a,h]anthracene	278.3	2.60	6.75	6.75	Tao et al., 2009	Wheat			
Dibenzo[a,h]anthracene	278.3	3.47	6.75	6.75	Tao et al., 2009	Wheat			

Tao et al., 2009
Wheat
Compound	Log P	Octanol/Water	Molecular Weight	Molecular Structure	Delta G	Delta H	Delta S	Source	Crop
Dibenzo[a,h]anthracene	6.75	5.31	278.3	C1=CC=C2C(=C1)C=CC3=CC4=C(C=C5)C5=CC=CC=C54C=C32	1.14	3.15	-1.55	Tao et al., 2009	Wheat
Dibenzo[a,h]anthracene	6.75	3.47	278.3	C1=CC=C2C(=C1)C=CC3=CC4=C(C=C5)C5=CC=CC=C54C=C32	1.14	3.41	-1.10	Tao et al., 2009	Wheat
Benzo[g,h,i]perylene	6.90	1.41	276.3	C1=CC2=C3C(=C1)C4=CC=CC5=C4C6=C(C=C5)C=C(CC=C36)C=C2	1.14	3.06	-1.22	Tao et al., 2009	Wheat
Benzo[g,h,i]perylene	6.90	2.71	276.3	C1=CC2=C3C(=C1)C4=CC=CC5=C4C6=C(C=C5)C=C(CC=C36)C=C2	1.14	3.57	-0.99	Tao et al., 2009	Wheat
Benzo[g,h,i]perylene	6.90	5.71	276.3	C1=CC2=C3C(=C1)C4=CC=CC5=C4C6=C(C=C5)C=C(CC=C36)C=C2	1.14	3.62	-1.25	Tao et al., 2009	Wheat
Benzo[g,h,i]perylene	6.90	2.60	276.3	C1=CC2=C3C(=C1)C4=CC=CC5=C4C6=C(C=C5)C=C(CC=C36)C=C2	1.14	3.18	-1.36	Tao et al., 2009	Wheat
Benzo[g,h,i]perylene	6.90	5.31	276.3	C1=CC2=C3C(=C1)C4=CC=CC5=C4C6=C(C=C5)C=C(CC=C36)C=C2	1.14	3.20	-1.65	Tao et al., 2009	Wheat
Atrazine	2.71	3.55	215.68	CCNC1=NC(=NC(=N1)Cl)NC(C)C	1.00	0.80	0.08	Trapp et al., 1990	Barely
1,2,4-Trichlorobenzene	3.98	3.55	181.4	C1=CC(=C(C=C1Cl)Cl)Cl	1.00	1.28	0.03	Trapp et al., 1990	Barely
1,2,3,5-Tetrachlorobenzene	4.59	3.55	215.9	C1=C(C=C(C=C1Cl)Cl)Cl	1.00	2.15	0.23	Trapp et al., 1990	Barely
Dieldrin	4.55	3.55	380.9	C1C2C3C(C1C4C2O4)C5(C=C(C3(C5(Cl)Cl)Cl)Cl)Cl	1.00	1.98	-0.26	Trapp et al., 1990	Barely
Hexachlorobenzene	5.50	3.55	284.8	C1(=C(C=C(C=C1Cl)Cl)Cl)Cl	1.00	2.87	0.07	Trapp et al., 1990	Barely
2,4,6,2',4'-PCB	5.92	3.55	326.4	C1=CC(=C(C=C1Cl)Cl2=CC(=C(C=C2Cl)Cl)Cl)Cl	1.00	3.20	0.07	Trapp et al., 1990	Barely
Compound	Log P	Henry's law coefficient	Henry's constant	Source	Plant				
-------------------	--------	-------------------------	-----------------	---------------------------	---------				
DDT	6.36	3.55	354.5						
Phenanthrene	4.46	2.00	178.23						
Anthracene	4.54	2.00	178.23						
Fluoranthene	5.16	2.00	202.25						
Pyrene	5.18	2.00	202.25						
Benzo[a]anthracene	5.61	2.00	228.3						
Chrysene	5.73	2.00	228.3						
Benzo[e]pyrene	6.44	2.00	252.3						
Benzo[b]fluoranthene	5.78	2.00	252.3						
Benzo[k]fluoranthene	6.20	2.00	252.3						
Benzo[a]pyrene	6.41	2.00	252.3						
Dibenz[a,h]anthracene	6.75	2.00	278.3						
Benz[phi]perylene	6.90	2.00	276.3						
Compound	Carrot	Barely	Radish	Carrot	Barely	Radish			
------------------	--------	--------	--------	--------	--------	--------			
Indeno[1,2,3-cd]pyrene	6.70	5.90	5.90	5.70	5.70	4.90			
Galaxolide	2.00	1.55	13.80	1.55	1.55	3.80			
Galaxolide	258.4	258.4	289.5	289.5	289.5	315.6			
Tonalide	0.24	1.00	0.24	1.00	1.00	0.10			
Tonalide	2.43	1.66	1.26	1.74	1.74	0.91			
Triclocarban	6.29	4.80	4.80	4.80	4.80	0.91			
Triclosan	276.3	258.4	289.5	289.5	289.5	315.6			
Triclosan	0.24	1.00	0.24	1.00	1.00	0.24			
Triclosan	2.43	1.69	1.26	1.74	1.74	0.91			
Triclosan	0.24	1.00	0.24	1.00	1.00	0.24			
Triclosan	0.24	1.00	0.24	1.00	1.00	0.24			
Trimethoprim	0.91	0.91	0.91	0.91	0.91	0.91			
Carbamazepine	2.45	1.72	236.27	1.72	1.72	236.27			
BDE-66	0.24	0.24	0.24	0.24	0.24	0.24			
BDE-66	0.24	0.24	0.24	0.24	0.24	0.24			
BDE-66	0.24	0.24	0.24	0.24	0.24	0.24			
BDE-66	0.24	0.24	0.24	0.24	0.24	0.24			

Kipoupolou et al., 1999
Macherius et al., 2012
Wu et al., 2012
Pannu et al., 2012
Proser et al., 2014
Proser et al., 2014
Boxall et al., 2006
Carter et al., 2014
Huang et al., 2011
Huang et al., 2011
Huang et al., 2011

BDE-66	6.29	3.19	485.79	C1=CC(=C(C\text{=C1}O\text{C}2=C(C=C(C=C2)Br \hspace{1cm} \text{Br})Br)Br)Br	0.70	-0.93	Huang et al., 2011	Pumpkin
BDE-66	6.29	3.19	485.79	C1=CC(=C(C\text{=C1}O\text{C}2=C(C=C(C=C2)Br \hspace{1cm} \text{Br})Br)Br)Br	0.53	-0.84	Huang et al., 2011	Maize
BDE-66	6.29	3.19	485.79	C1=CC(=C(C\text{=C1}O\text{C}2=C(C=C(C=C2)Br \hspace{1cm} \text{Br})Br)Br)Br	0.56	-0.95	Huang et al., 2011	Ryegrass
BDE-66	6.29	0.98	485.79	C1=CC(=C(C\text{=C1}O\text{C}2=C(C=C(C=C2)Br \hspace{1cm} \text{Br})Br)Br)Br	0.70	-2.08	Huang et al., 2011	Pumpkin
BDE-66	6.29	0.98	485.79	C1=CC(=C(C\text{=C1}O\text{C}2=C(C=C(C=C2)Br \hspace{1cm} \text{Br})Br)Br)Br	0.53	-1.77	Huang et al., 2011	Maize
BDE-66	6.29	0.98	485.79	C1=CC(=C(C\text{=C1}O\text{C}2=C(C=C(C=C2)Br \hspace{1cm} \text{Br})Br)Br)Br	0.56	-1.72	Huang et al., 2011	Ryegrass
BDE-85	6.69	1.90	564.7	C1=CC(=C(C\text{=C1}Br)Br)OC2=C(C(\text{=C(C=C}2)Br)Br)Br	0.70	-1.43	Huang et al., 2011	Pumpkin
BDE-85	6.69	1.90	564.7	C1=CC(=C(C\text{=C1}Br)Br)OC2=C(C(\text{=C(C=C}2)Br)Br)Br	0.53	-1.40	Huang et al., 2011	Maize
BDE-85	6.69	1.90	564.7	C1=CC(=C(C\text{=C1}Br)Br)OC2=C(C(\text{=C(C=C}2)Br)Br)Br	0.56	-1.33	Huang et al., 2011	Ryegrass
BDE-85	6.69	3.19	564.7	C1=CC(=C(C\text{=C1}Br)Br)OC2=C(C(\text{=C(C=C}2)Br)Br)Br	0.70	-1.17	Huang et al., 2011	Pumpkin
BDE-85	6.69	3.19	564.7	C1=CC(=C(C\text{=C1}Br)Br)OC2=C(C(\text{=C(C=C}2)Br)Br)Br	0.53	-1.01	Huang et al., 2011	Maize
BDE-85	6.69	3.19	564.7	C1=CC(=C(C\text{=C1}Br)Br)OC2=C(C(\text{=C(C=C}2)Br)Br)Br	0.56	-1.24	Huang et al., 2011	Ryegrass
BDE-85	6.69	0.98	564.7	C1=CC(=C(C\text{=C1}Br)Br)OC2=C(C(\text{=C(C=C}2)Br)Br)Br	0.70	-1.14	Huang et al., 2011	Pumpkin
BDE-85	6.69	0.98	564.7	C1=CC(=C(C\text{=C1}Br)Br)OC2=C(C(\text{=C(C=C}2)Br)Br)Br	0.53	-1.10	Huang et al., 2011	Maize
Compound	Mass (amu)	Intensity (arb. units)	Retention Time (min)	Spectrum	References	Plant Species		
BDE-85	6.69	0.98	564.7	C1=C(C=C(C1Br)Br)OC2=C(C(=C(C=C2Br)Br)Br)Br	0.56	-1.06	Huang et al., 2011	Ryegrass
BDE-191	7.49	3.19	722.5	C1=C(C=C(C1Br)Br)BrOC2=C(C(=C(C=C2Br)Br)Br)Br	0.70	-1.05	Huang et al., 2011	Pumpkin
BDE-191	7.49	3.19	722.5	C1=C(C=C(C1Br)Br)BrOC2=C(C(=C(C=C2Br)Br)Br)Br	0.53	-0.82	Huang et al., 2011	Maize
BDE-191	7.49	3.19	722.5	C1=C(C=C(C1Br)Br)BrOC2=C(C(=C(C=C2Br)Br)Br)Br	0.56	-0.91	Huang et al., 2011	Ryegrass
BDE-191	7.49	1.90	722.5	C1=C(C=C(C1Br)Br)BrOC2=C(C(=C(C=C2Br)Br)Br)Br	0.70	-0.83	Huang et al., 2011	Pumpkin
BDE-191	7.49	1.90	722.5	C1=C(C=C(C1Br)Br)BrOC2=C(C(=C(C=C2Br)Br)Br)Br	0.53	-0.85	Huang et al., 2011	Maize
BDE-191	7.49	1.90	722.5	C1=C(C=C(C1Br)Br)BrOC2=C(C(=C(C=C2Br)Br)Br)Br	0.56	-1.06	Huang et al., 2011	Ryegrass
BDE-191	7.49	0.98	722.5	C1=C(C=C(C1Br)Br)BrOC2=C(C(=C(C=C2Br)Br)Br)Br	0.70	-1.44	Huang et al., 2011	Pumpkin
BDE-191	7.49	0.98	722.5	C1=C(C=C(C1Br)Br)BrOC2=C(C(=C(C=C2Br)Br)Br)Br	0.53	-1.04	Huang et al., 2011	Maize
BDE-191	7.49	0.98	722.5	C1=C(C=C(C1Br)Br)BrOC2=C(C(=C(C=C2Br)Br)Br)Br	0.56	-1.20	Huang et al., 2011	Ryegrass
BDE-197	7.90	3.19	801.4	C1=C(C=C(C1Br)Br)BrOC2=C(C(=C(C=C2Br)Br)Br)Br	0.70	-1.43	Huang et al., 2011	Pumpkin
BDE-197	7.90	3.19	801.4	C1=C(C=C(C1Br)Br)BrOC2=C(C(=C(C=C2Br)Br)Br)Br	0.53	-1.38	Huang et al., 2011	Maize
BDE-197	7.90	3.19	801.4	C1=C(C=C(C1Br)Br)BrOC2=C(C(=C(C=C2Br)Br)Br)Br	0.56	-1.19	Huang et al., 2011	Ryegrass
BDE-197	7.90	1.90	801.4	C1=C(C=C(C1Br)Br)BrOC2=C(C(=C(C=C2Br)Br)Br)Br	0.70	-1.08	Huang et al., 2011	Pumpkin

S27
| Compound |
| --- | --- | --- | --- | --- |
| **BDE-197** | 7.90 | 1.90 | 801.4 | \(C_1=\text{C}(=\text{C}(\text{=C}(\text{=C}1\text{Br})\text{Br})\text{Br})\text{OC}2=\text{C}(\text{=}\text{C}(\text{=}\text{C}2\text{Br})\text{Br})\text{Br})\text{Br} \) | 0.53 | -1.18 | Huang et al., 2011 | Maize |
| **BDE-197** | 7.90 | 1.90 | 801.4 | \(C_1=\text{C}(=\text{C}(\text{=}\text{C}1\text{Br})\text{Br})\text{Br})\text{OC}2=\text{C}(\text{=}\text{C}(\text{=}\text{C}2\text{Br})\text{Br})\text{Br})\text{Br} \) | 0.56 | -1.49 | Huang et al., 2011 | Ryegrass |
| **BDE-197** | 7.90 | 0.98 | 801.4 | \(C_1=\text{C}(=\text{C}(\text{=}\text{C}1\text{Br})\text{Br})\text{Br})\text{OC}2=\text{C}(\text{=}\text{C}(\text{=}\text{C}2\text{Br})\text{Br})\text{Br})\text{Br} \) | 0.70 | -1.32 | Huang et al., 2011 | Pumpkin |
| **BDE-197** | 7.90 | 0.98 | 801.4 | \(C_1=\text{C}(=\text{C}(\text{=}\text{C}1\text{Br})\text{Br})\text{Br})\text{OC}2=\text{C}(\text{=}\text{C}(\text{=}\text{C}2\text{Br})\text{Br})\text{Br})\text{Br} \) | 0.53 | -1.42 | Huang et al., 2011 | Maize |
| **BDE-197** | 7.90 | 0.98 | 801.4 | \(C_1=\text{C}(=\text{C}(\text{=}\text{C}1\text{Br})\text{Br})\text{Br})\text{OC}2=\text{C}(\text{=}\text{C}(\text{=}\text{C}2\text{Br})\text{Br})\text{Br})\text{Br} \) | 0.56 | -1.68 | Huang et al., 2011 | Ryegrass |
| **BDE-208** | 8.30 | 3.19 | 880.3 | \(C_1=\text{C}(=\text{C}(\text{=}\text{C}1\text{Br})\text{Br})\text{Br})\text{OC}2=\text{C}(\text{=}\text{C}(\text{=}\text{C}2\text{Br})\text{Br})\text{Br})\text{Br} \) | 0.70 | -2.02 | Huang et al., 2011 | Pumpkin |
| **BDE-208** | 8.30 | 1.90 | 880.3 | \(C_1=\text{C}(=\text{C}(\text{=}\text{C}1\text{Br})\text{Br})\text{Br})\text{OC}2=\text{C}(\text{=}\text{C}(\text{=}\text{C}2\text{Br})\text{Br})\text{Br})\text{Br} \) | 0.70 | -2.16 | Huang et al., 2011 | Pumpkin |
| **BDE-208** | 8.30 | 1.90 | 880.3 | \(C_1=\text{C}(=\text{C}(\text{=}\text{C}1\text{Br})\text{Br})\text{Br})\text{OC}2=\text{C}(\text{=}\text{C}(\text{=}\text{C}2\text{Br})\text{Br})\text{Br})\text{Br} \) | 0.53 | -2.13 | Huang et al., 2011 | Maize |
| **BDE-208** | 8.30 | 1.90 | 880.3 | \(C_1=\text{C}(=\text{C}(\text{=}\text{C}1\text{Br})\text{Br})\text{Br})\text{OC}2=\text{C}(\text{=}\text{C}(\text{=}\text{C}2\text{Br})\text{Br})\text{Br})\text{Br} \) | 0.56 | -2.34 | Huang et al., 2011 | Ryegrass |
| **BDE-208** | 8.30 | 0.98 | 880.3 | \(C_1=\text{C}(=\text{C}(\text{=}\text{C}1\text{Br})\text{Br})\text{Br})\text{OC}2=\text{C}(\text{=}\text{C}(\text{=}\text{C}2\text{Br})\text{Br})\text{Br})\text{Br} \) | 0.70 | -2.30 | Huang et al., 2011 | Pumpkin |
| **BDE-208** | 8.30 | 0.98 | 880.3 | \(C_1=\text{C}(=\text{C}(\text{=}\text{C}1\text{Br})\text{Br})\text{Br})\text{OC}2=\text{C}(\text{=}\text{C}(\text{=}\text{C}2\text{Br})\text{Br})\text{Br})\text{Br} \) | 0.53 | -2.30 | Huang et al., 2011 | Maize |
| **BDE-208** | 8.30 | 0.98 | 880.3 | \(C_1=\text{C}(=\text{C}(\text{=}\text{C}1\text{Br})\text{Br})\text{Br})\text{OC}2=\text{C}(\text{=}\text{C}(\text{=}\text{C}2\text{Br})\text{Br})\text{Br})\text{Br} \) | 0.56 | -2.40 | Huang et al., 2011 | Ryegrass |
| **BDE-207** | 8.30 | 3.19 | 880.3 | \(C_1=\text{C}(=\text{C}(\text{=}\text{C}1\text{Br})\text{Br})\text{Br})\text{OC}2=\text{C}(\text{=}\text{C}(\text{=}\text{C}2\text{Br})\text{Br})\text{Br})\text{Br} \) | 0.70 | -1.26 | Huang et al., 2011 | Pumpkin |
| **BDE-207** | 8.30 | 3.19 | 880.3 | \(C_1=\text{C}(=\text{C}(\text{=}\text{C}1\text{Br})\text{Br})\text{Br})\text{OC}2=\text{C}(\text{=}\text{C}(\text{=}\text{C}2\text{Br})\text{Br})\text{Br})\text{Br} \) | 0.53 | -1.49 | Huang et al., 2011 | Maize |

S28
Chemical	Mass	RT	P/V	Concentration	Reference	Plant	
BDE-207	8.30	3.19	880.3	0.56	-1.60	Huang et al., 2011	Ryegrass
	8.30	1.90	880.3	0.70	-2.60	Huang et al., 2011	Pumpkin
	8.30	1.90	880.3	0.53	-2.15	Huang et al., 2011	Maize
	8.30	0.98	880.3	0.70	-2.01	Huang et al., 2011	Pumpkin
	8.30	0.98	880.3	0.53	-1.74	Huang et al., 2011	Maize
alpha-endosulfan	0.50	8.80	406.9	0.56	-1.92	Huang et al., 2011	Ryegrass
endosulfan sulfate	0.56	8.80	422.9	0.10	-0.61	GONZALEZ et al., 2003	leek
dieldrin	0.72	8.80	380.9	0.10	-0.66	GONZALEZ et al., 2003	leek
heptachlor	0.72	8.80	373.3	0.10	0.22	GONZALEZ et al., 2003	leek
heptachlor epoxide	0.62	8.80	389.3	0.10	-0.87	GONZALEZ et al., 2003	leek
Imidacloprid	0.57	3.05	255.66	0.53	-0.31	Wang et al., 2020	Maize
Acetamiprid	0.80	3.05	222.67	0.53	-0.18	Wang et al., 2020	Maize
Tricyclazole	1.70	3.05	189.24	0.53	-0.24	Wang et al., 2020	Maize

S29
Table S4: Parameters tuned with five-fold cross validation in GBRT model.

Parameter	Values
N_estimators	100, 200, 250, 500, 750, 1000
Max depth	2, 3, 4, 5, 6

Pseudocode for model 5-fold cross validation:

Define sets of model hyperparameters P for evaluation

Divide data into K = 5 equal folds

For fold i in the K folds:

- Set fold i as test set

 Perform feature selection based on remaining 4 folds
For parameter combination \(p \) from \(P \):

Set 12.5% of the data from remaining 4 folds as validation set (10% of overall dataset)

Train model on the left 87.5% of data from remaining 4 folds

Evaluate model performance on validation set

if model has better performance on validation set:

Evaluate and update model performance on test set

Calculate the average performance on \(K=5 \) folds