Investigation on Biological Properties of Dental Implant by Ce-TZP/Al₂O₃/HA Bio-nano-composites

M. Yousefpour¹,², N. Askari², H. Abdollah-Pour¹, A. Amanzadeh² and N. Riahi²

Introduction

Hydroxyapatite (HA, Ca₁₀(PO₄)₆(OH)₂), Zirconia (ZrO₂) and Alumina (Al₂O₃) are known as important implant materials [1-3]. HA has often been considered as a candidate for use in load-bearing applications due to its high hardness and wear resistance, while ZrO₂ exhibits higher strength and fracture toughness and the composite consisting of the two has higher ductility and fracture toughness than each constituent [4-11]. Some interest has been paid to composites comprising of hydroxyapatite and another phase of high mechanical properties and bio-inertness, such as alumina and zirconia [13]. Cerium oxide or Ceria (Ce₂O₃) is used to stabilize the tetragonal polycrystalline structure of zirconia at room temperature, the product called Ceria-partially stabilized zirconia (Ce-TZP), Al₂O₃ and Hydroxyapatite (HA) powders proposed to use for medical application. The first step, nano-powders of Ce-TZP and Al₂O₃ were blended by fast milling machine. Then, nano-powder of HA was added to the alumina - zirconia (ZA) mixture from 10 to 40 vol%, and homogenized again. In final step, mixed powder was cold pressed and sintered at1600°C for 120 min. Crystal phase of the sintered samples were characterized by X-ray diffraction (XRD), the density and bending strength were measured and cellular response test was performed with osteoblastic cell-lines by MG63 cell-lines and the morphology of the proliferated cells was observed with FESEM too.

From the strength and cellular response evaluations of samples, specimens with 30 vol% HA showed the best result, also XRD patterns confirmed this results.

Abstract

Early years, bio-nano-composites materials are interesting in advanced engineering applications fields. In order to, biological properties of the 10Ce-TZP/Al₂O₃ nano-composite was evaluated by the addition of HA nanopowder for medical applications. In this research, a bio-nano-composite consisting of CeO₂-stabilized zirconia (Ce-TZP), Al₂O₃ and Hydroxyapatite (HA) powders proposed to use for medical application. The first step, nano-powders of Ce-TZP and Al₂O₃ were blended by fast milling machine. Then, nano-powder of HA was added to the alumina - zirconia (ZA) mixture from 10 to 40 vol%, and homogenized again. In final step, mixed powder was cold pressed and sintered at1600°C for 120 min. Crystal phase of the sintered samples were characterized by X-ray diffraction (XRD), the density and bending strength were measured and cellular response test was performed with osteoblastic cell-lines by MG63 cell-lines and the morphology of the proliferated cells was observed with FESEM too.

Keywords: Biocompatibility; Nanocomposite; Cellular response; Osteoblast

Experimental

For this study, we used of Al₂O₃, HA and ZrO₂ nanopowders synthesized by sol-gel, chemical precipitation and hydrothermal methods (with particle sizes 112,9,12 nm respectively). The process Schematic is given in Figure 1.

As is observed ZA nano-composite powders were prepared by fast milling machine (sharifi co. Iran) of 70 vol% 10Ce-TZP and 30 vol% Al₂O₃ powder in ethanol for 8 hr. Obtained powder was mixed with HA (up to 40vol%) in ethanol by fast milling machine again for 8 hr. Mixed slurry was dehydrated, crushed and sieved, and uniaxial cold pressed at a pressure of 200 MPa by universal test machine (Zwick roll-Z100). Cold pressed samples were sintered at 1600°C for 2 hr by electrical furnace (Vecstar). The density of the samples was measured by the Archimedes method [ASTM B311-08]. Crystalline phase analysis was performed by XRD (Bruker model D8). The bending strength was measured by means of three-point bend test with universal test machine (Zwick roll-Z100) [ASTM C1674-08].

In order to investigate the proliferation behavior on the ZA–HA composites, the samples used for cell tests were prepared from disc specimens with 10mm diameter that after polishing both sides with diamond slurries down to 1 mm, the specimens were washed and sterilized at 121°C for 20 minutes. The samples were placed in a 24 well tissue culture plate and seeded with 25μl of the 3x10³ cells/cm² MG63 (National Cell Bank of Iran-no NCBI C…) cell density suspension.
Cells were allowed to adhere for 2 hours then flooded with 1 ml of Dulbecco’s modified Eagle’s medium (DMEM, Gibco-USA), 2 mM L-glutamine (Gibco), 100 IU/ml of penicillin and 100 µg/ml of streptomycin (Gibco) supplemented with 10% fetal bovine serum (FBS, Gibco-USA) and placed back into the incubator. The fabricated specimens, including pure HA as a positive control, were placed into a 24-well plate, which was followed by plating on all the discs.

The cells were cultured for 7 days in a humidified incubator under an atmosphere of 5% CO₂ at 37°C. After detaching the cells from the specimens with a trypsin-EDTA solution (0.25% trypsin, 0.05% EDTA; Gibco) and staining with 0.4% trypan blue, the living cells were counted using a hemocytometer (Paul Marienfeld GmbH & Co-Germany). Each set of tests was performed in triplicate.

For observation the morphology of the proliferated cells with FESEM (Hitachi s-4160) cells were cultured for 5 days as above then fixation with glutaraldehyde(2.5%), dehydration with graded ethanol (50%, 60%, 70%, 80%, 90% and 100%).

The results were expressed as means with standard errors. The data were then analyzed by one-way ANOVA, followed by the post hoc paired Student’s two-tailed t-test. The significance levels were notified significant (*, if p<0.05) and highly significant (**, if p<0.01) in the tables.

Results

Figure 2 shows the densities of the ZA nano-composites containing various amounts of HA. Compared to the theoretical density, which was calculated by the rule of mixture, the density of the specimens with a low HA content almost matched with the theoretical value. However, as the amounts of HA were increased, the discrepancy between the measured and theoretical densities increased.

Figure 3 illustrates the XRD patterns of different composite materials. When no HA was added, only peaks corresponding to ZrO₂ and Al₂O₃ are present, as shown in Figure (3-a). With addition of 10, 20, 30 and 40 vol% HA (Figure (3-b-c-d-e), respectively), as well as the peaks corresponding to HA, TCP peaks, were also detected, that TCP component was originated from the reaction between HA and ZrO₂. The bending strengths of the nano-composites are shown in Figure 4, as the HA content was increased up to 40vol% the strength decreased of 850 to 137 MPa.

Biocompatibility tests are in progress. Figure 5 illustrates Cell proliferation results on the specimens after 7 days culture. The number of cells was significantly increased by the addition of 10% HA to the ZA (ANOVA, p<0.05). The number of cells increased steadily with further addition of HA (ANOVA, p<0.001). When 40% HA was added to the ZA, the proliferation rate on that specimen became comparable to that on the pure HA means of wells±S.D.
Discussion

As a bio-inert implant material, ZA nano-composite is considered to have sufficient strength. However, its biocompatibility such as satisfactory osseointegration and faster bone regeneration has to be improved by the addition of calcium phosphates such as HA, and TCP. [1,4]. TCP component was originated from the reaction between HA and ZrO$_2$. Both HA and TCP are formed of calcium and phosphate component, which are essential to satisfactory osseointegration and faster bone regeneration to be achieved [4,7]. Just as shown in the XRD patterns, intensities of the HA and TCP peaks increased steadily with increasing HA content.

Conclusion

Hydroxyapatite (HA)-zirconia-alumina (ZA) bio-nano-composites were produced by mechanical blending of separately synthesized nano-scaled powder. Composite materials were characterized by phase analysis and cellular response test. From mechanical and biological properties evaluation of the 10Ce-TZP/Al$_2$O$_3$/HA bio-nano composites, specimens with 30 vol% of HA, was found to be the optimal composition for biological applications.

Acknowledgement

Authors of paper, gratefully thank Semnan University, Qazvin Imam Khomeini International University and Pasteur Institute of Iran for the research support.

References

1. Rapacz-Kmita A, Slosarczyk A, Paszkiewicz Z, Paszkiewicz C (2004) Phase stability of hydroxyapatite-zirconia(HAP-ZrO$_2$) composites for bone replacement. J Molecular Structure 704: 333-340.
2. Benzaid R, Chevalier J, Saâdaoui M, Fantozzi G, Nawa M, et al. (2008) Fracture toughness, strength and slow crack growth in a ceria stabilized zirconia-alumina nanocomposite for medical application. Biomaterials 29: 3636-3641.
3. Sung YM, Kim DH (2003) Crystallization characteristics of yttria-stabilized zirconia/hydroxyapatite composite nano powder. J Crystal Growth 254: 411-417.
4. Kong YM, Bae CJ, Lee SH, Kim HW, Kim HE (2005) Improvement in biocompatibility of ZrO$_2$. Al$_2$O$_3$/HA nanocomposite by addition of HA. Biomaterial 26: 509-517.
5. Miao X, Chen Y, Guo H, Khor KA (2004) Spark plasma sintered hydroxyapatite- yttria stabilized zirconia composites. J Ceramics International 30: 1793-1796.
6. Yoshida K, Hashimoto K, Toda Y, Udagawa S, Kanazawa T (2006) Fabrication of structure-controlled hydroxyapatite/zirconia composite. J Eur Cer Soc 26: 515-518.
7. Rapacz-Kmita A, Slosarczyk A, Paszkiewicz Z (2006) Mechanical properties of
HAP-ZrO$_2$ composites. J Eur Cer So 26: 1481-1488.
8. Khalil KA, Kim SW, Kim HY (2007) Consolidation and mechanical properties of nanostructured hydroxyapatite-(ZrO$_2$+3mol%Y$_2$O$_3$) bioceramics by high-frequency induction heat sintering. J Material science and engineering A 456: 368-372.
9. Chiu CY, Hsu HC, Tuan WH (2007) Effect of zirconia addition on the microstructural evolution of porous hydroxyapatite. J Ceramics International 33: 715-718.
10. Evis Z, Doremus RH (2007) Effect of YF on hot-pressed hydroxyapatite and monoclinic zirconia composites. Materials Chemistry and Physics 105: 76-79.
11. Rapacz-Knita A, Šlósarczyk A, Paszkiewicz Z (2005) Hap- ZrO$_2$ composite coatings prepared by plasma spraying for biomedical applications. J Ceramics International 31: 567-571.
12. Santos C, Souza RC, Daguanjo JKM, Elias CN, Rogero SO (2007) Development of ZrO$_2$- Al$_2$O$_3$ bioceramic composites. Congresso brasileiro de ceramica.
13. Li W, Gao L (2003) Fabrication of HAP- ZrO$_2$(3Y) nanocomposite by SPS. Biomaterials 24: 537-940.
14. Tsukuma K, Shimada M (1985) Strength, fracture toughness and Vickers hardness of CeO$_2$-stabilized tetragonal ZrO$_2$ polycrystals(Ce-TZP). J Materials Science 20: 1178-1184.
15. Yang G, Li JC, Wang GC, Min SL, Chen TC, et al. (2006) Investigation on strengthening and toughenin mechanisms of Ce-TZP/Al$_2$O$_3$ nano-composites. J Metallurgical and Materials A 37: 1969-1975.
16. Fischer J, Stawarczyk B (2007) Compatibility of machined Ce-TZP/Al$_2$O$_3$ nanocomposite and a veneering ceramic. J Dental materials 23: 1500-1505.
17. Bhaduri S, Bhaduri SB (1997) Enhanced low temperature toughness of Al$_2$O$_3$- ZrO$_2$ nano/nano composites. J Nanostructure Materials 8: 755-763.