Search for $B^0_s \rightarrow \mu^+\mu^-$ and $B^0 \rightarrow \mu^+\mu^-$ decays in pp collisions at $\sqrt{s} = 7$ TeV

The CMS Collaboration

Abstract

A search for the rare decays $B^0_s \rightarrow \mu^+\mu^-$ and $B^0 \rightarrow \mu^+\mu^-$ is performed in pp collisions at $\sqrt{s} = 7$ TeV, with a data sample corresponding to an integrated luminosity of 1.14 fb$^{-1}$, collected by the CMS experiment at the LHC. In both cases, the number of events observed after all selection requirements is consistent with expectations from background and standard-model signal predictions. The resulting upper limits on the branching fractions are $\mathcal{B}(B^0_s \rightarrow \mu^+\mu^-) < 1.9 \times 10^{-8}$ and $\mathcal{B}(B^0 \rightarrow \mu^+\mu^-) < 4.6 \times 10^{-9}$, at 95% confidence level.

Submitted to Physical Review Letters

See Appendix A for the list of collaboration members
In the standard model (SM) of particle physics, flavor-changing neutral current (FCNC) decays are forbidden at tree level and can only proceed through higher-order loop diagrams. The decays $B_{d(s)} \to \ell^+\ell^-$ (where $\ell = e, \mu$), besides involving $b \to s(d)$ FCNC transitions through Penguin and box diagrams, are helicity suppressed by factors of $(m_\ell/m_B)^2$, where m_ℓ and m_B are the masses of the lepton and B meson, respectively. They also require an internal quark annihilation within the B meson that further reduces the decay rate by $(f_B/m_B)^2$, where f_B is the decay constant of the B meson.

The SM-predicted branching fractions, $\mathcal{B}(B^0_s \to \mu^+\mu^-) = (3.2 \pm 0.2) \times 10^{-9}$ and $\mathcal{B}(B^0 \to \mu^+\mu^-) = (1.0 \pm 0.1) \times 10^{-10}$, are significantly enhanced in several extensions of the SM, although in some cases the decay rates are lowered. For example, in the minimal supersymmetric extension of the SM, the rates are strongly enhanced at large values of $\tan \beta$. In specific models involving leptoquarks and in supersymmetric models with non-universal Higgs masses, the $B^0_s \to \mu^+\mu^-$ and $B^0 \to \mu^+\mu^-$ branching fractions can be enhanced by different factors and, therefore, both channels must be studied in parallel. Several experiments have published upper limits at 95% confidence level (CL) on these decays: $\mathcal{B}(B^0_s \to \mu^+\mu^-) < 5.1 \times 10^{-8}$ by D0 [7]; $\mathcal{B}(B^0_s \to \mu^+\mu^-) < 5.8 \times 10^{-8}$ and $\mathcal{B}(B^0 \to \mu^+\mu^-) < 1.8 \times 10^{-8}$ by CDF [8]; $\mathcal{B}(B^0_s \to \mu^+\mu^-) < 5.6 \times 10^{-8}$ and $\mathcal{B}(B^0 \to \mu^+\mu^-) < 1.5 \times 10^{-8}$ by LHCb [9]. CDF recently reported a new limit of $\mathcal{B}(B^0 \to \mu^+\mu^-) < 6.0 \times 10^{-9}$ and an excess of $B^0_s \to \mu^+\mu^-$ events, corresponding to $\mathcal{B}(B^0_s \to \mu^+\mu^-) = (1.8^{+11}_{-9}) \times 10^{-8}$ [10].

In this Letter, a simultaneous search for the $B^0_s \to \mu^+\mu^-$ and $B^0 \to \mu^+\mu^-$ decays is presented, using a data sample of pp collisions at $\sqrt{s} = 7$ TeV, corresponding to an integrated luminosity of (1.14 ± 0.07) fb$^{-1}$, collected in the first half of 2011 by the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC). An event-counting experiment is performed in dimuon mass regions around the B^0 mass, avoiding the possible bias, the signal region was kept blind until after all selection criteria were established. The backgrounds are evaluated from the yields measured in data mass sidebands and from Monte Carlo (MC) simulations for rare hadronic two-body B decays. The MC event samples are generated with PYTHIA 6.409 [11], the unstable particles are decayed via EVTGEN [12], and the detector response is simulated with GEANT4 [13]. Events of the type $B^\pm \to J/\psi K^\mp$, $J/\psi \to \mu^+\mu^-$ are used as a normalization sample to minimize uncertainties related to the $b\bar{b}$ production cross section and to the integrated luminosity. The signal and normalization efficiencies are determined with MC simulation studies. A control sample of reconstructed $B^0 \to J/\psi \phi$, $J/\psi \to \mu^+\mu^-$ events is used to validate the MC simulation (such as the B^0 transverse momentum p_T spectrum) and to evaluate potential effects resulting from differences in fragmentation between B^+ and B^0. The analysis is not affected by multiple pp collisions in the same bunch crossing (pileup) because the spatial vertex resolution is good enough to correctly identify the pp vertex from which signal candidates originate. In the present data set, an average of 5.5 primary vertices are reconstructed per event.

A detailed description of the CMS experiment can be found in Ref. [14]. The main subdetectors used in this analysis are the silicon tracker, composed of pixel and strip layers immersed in a 3.8 T axial magnetic field, and the muon stations, made of gas-ionization detectors embedded in the steel return yoke, and divided into a barrel section and two endcaps. The muons are tracked within the pseudorapidity region $|\eta| < 2.4$, where $\eta = -\ln[\tan(\theta/2)]$ and θ is the polar angle with respect to the counterclockwise beam direction. A muon p_T resolution of about 1.5% is obtained for muons in this analysis. The events are selected with a two-level trigger system. The first level only requires two muon candidates, without an explicit p_T requirement, while the high-level trigger (HLT) uses additional information from the silicon tracker. The HLT selection for the signal data sample requires two muons each with $p_T > 2$ GeV, dimuon...
$p_T > 4$ GeV, invariant mass within $4.8 < m_{\mu\mu} < 6.0$ GeV, and a three-dimensional (3D) distance of closest approach to each other $d_{ca} < 5$ mm.

The normalization ($B^{\pm} \rightarrow J/\psi K^\pm$) and control ($B^0 \rightarrow J/\psi\phi$) samples were collected with HLT requirements gradually tightened as the LHC luminosity increased. This time evolution does not affect the analysis presented here, which uses selection criteria significantly tighter than any trigger requirements. More than 95% of the normalization and control sample events were collected by requiring two muons each with $p_T > 3$ GeV, dimuon $p_T > 6.9$ GeV, invariant mass within $2.9 < m_{\mu\mu} < 3.3$ GeV, $d_{ca} < 5$ mm, and a larger than 0.5% probability of the χ^2 per degree of freedom (dof) of the dimuon vertex fit. Two additional trigger requirements, measured in the transverse plane, significantly reduce the rate of prompt J/ψ candidates: the significance of the flight distance $\ell_{xy} / \sigma(\ell_{xy})$ must be larger than 3, where ℓ_{xy} is the distance between the primary and dimuon vertices and $\sigma(\ell_{xy})$ is its uncertainty; and the pointing angle α_{xy} between the B candidate momentum and the vector from the primary vertex to the dimuon vertex must fulfill $\cos \alpha_{xy} > 0.9$. The average trigger efficiency for events in the signal and normalization samples is about 80%, as determined from MC simulation. The uncertainty on the ratio of trigger efficiencies between the signal and normalization samples is estimated to be 2% by comparing these ratios in simulation studies and in data.

Muon candidates are required to be reconstructed by two different algorithms, one matching silicon-tracker tracks to segments in the muon stations, and the other performing global fits using tracks in both detector systems [15]. The uncertainty on the ratio of muon identification efficiencies between the signal and normalization samples is estimated to be 5%.

The $B \rightarrow \mu^+\mu^-$ candidates require two oppositely charged muons with an invariant mass in the region $4.9 < m_{\mu\mu} < 5.9$ GeV, after constraining their tracks to come from a common vertex. The B candidate momentum and vertex position are used to choose a primary vertex based on the distance of closest approach. Since the background level depends significantly on the pseudorapidity of the B candidate, the events are separated into two categories: the “barrel channel” contains the candidates where both muons have $|\eta| < 1.4$ and the “endcap channel” contains those where at least one muon has $|\eta| > 1.4$. An isolation variable $I = p_T(B)/(p_T(B) + \sum_{trk} p_T)$ is calculated from the transverse momentum of the B candidate $p_T(B)$ and the transverse momenta of all other charged tracks satisfying $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} < 1$, where $\Delta \eta$ and $\Delta \phi$ are the differences in pseudorapidity and azimuthal angle between a charged track and the B candidate momentum. The sum includes all tracks with $p_T > 0.9$ GeV that are consistent with originating from the same primary vertex as the B candidate or have a distance of closest approach $d_{ca} < 0.5$ mm with respect to the B vertex. The minimum distance of closest approach with respect to the B vertex among all tracks in the event, a_{ca}^{min}, is also determined as a complementary isolation variable. Figure [1] illustrates the transverse momentum, the 3D pointing angle α_{3D}, the 3D flight length significance $\ell_{3D}/\sigma(\ell_{3D})$, and the isolation distributions for signal MC and for sideband background data events. The sideband covers the range $4.9 < m_{\mu\mu} < 5.9$ GeV, excluding the signal window $5.2 < m_{\mu\mu} < 5.45$ GeV.

The following selection requirements were optimized for the best expected upper limit using MC signal events and data sideband events. The requirements were established before observing the number of data events in the signal region. The optimized requirements include $p_T > 4.5$ GeV on one muon and $p_T > 4.0$ GeV on the other, B candidate $p_T > 6.5$ GeV, $I > 0.75$, and B-vertex fit χ^2/dof < 1.6. Two requirements are different for the barrel and endcap channels: $\alpha_{3D} < 0.050$ (0.025) and $\ell_{3D}/\sigma(\ell_{3d}) > 15.0$ (20.0) for the barrel (endcap). Furthermore, for events in the endcap there is an additional requirement, $d_{ca}^{min} > 0.15$ mm. The signal efficiencies ϵ_{tot} of these selections are provided in Table [1]. The dimuon mass resolution for signal
Table 1: The event selection efficiencies for signal events ϵ_{tot}, the SM-predicted number of signal events N^{exp}_{signal}, the expected number of combinatorial background events N^{exp}_{comb}, and peaking background events N^{exp}_{peak}, and the number of observed events N_{obs} in the barrel and endcap channels for $B^{0}_{s} \rightarrow \mu^{+}\mu^{-}$ and $B^{0} \rightarrow \mu^{+}\mu^{-}$.

	Barrel	Endcap
ϵ_{tot}	(3.6 ± 0.4) \times 10$^{-3}$	(2.1 ± 0.2) \times 10$^{-3}$
N^{exp}_{signal}	0.065 ± 0.011	0.025 ± 0.004
N^{exp}_{comb}	0.40 ± 0.23	0.53 ± 0.27
N^{exp}_{peak}	0.25 ± 0.06	0.16 ± 0.04
N_{obs}	0	1

Events depends on the pseudorapidity of the B candidate and ranges from 36 MeV for $|\eta| \approx 0$, to 85 MeV for $|\eta| > 1.8$, as determined from simulated signal.

The reconstruction of $B^{\pm} \rightarrow J/\psi K^{\pm} \rightarrow \mu^{+}\mu^{-}K^{-}$ ($B^{0} \rightarrow J/\psi\phi \rightarrow \mu^{+}\mu^{-}K^{+}K^{-}$) candidates requires two oppositely-charged muons with an invariant mass in the range 3.0–3.2 GeV, which are combined with one (two) track(s), assumed to be (a) kaon(s), fulfilling $p_{T} > 0.5$ GeV and $|\eta| < 2.4$. To ensure a well-measured trigger efficiency, the selected candidates must have dimuon $p_{T} > 7$ GeV and the two muons must bend away from each other in the magnetic field (to avoid spurious detector-induced pair correlations). The d_{ch}^{\prime} between all pairs among the three (four) tracks is required to be less than 1 mm. For $B^{0} \rightarrow J/\psi\phi$ candidates the two assumed kaon tracks must have an invariant mass in the range 0.995–1.045 GeV and $\Delta R(K^{+},K^{-}) < 0.25$. The tracks from all decay products are used in the B-vertex fit and only B candidates with an invariant mass in the range 4.8–6.0 GeV are considered. The efficiencies of individual selection criteria agree to better than 4% (6%) between data and MC simulation for the normalization (control) sample. Figure 2 compares several distributions for $B^{0} \rightarrow J/\psi\phi$ candidates between MC simulation and sideband-subtracted data.

The total efficiency for $B^{\pm} \rightarrow J/\psi K^{\pm} \rightarrow \mu^{+}\mu^{-}K^{-}$, including the detector acceptance, is $\epsilon_{tot}^{B^{+}} = (7.7 \pm 0.8) \times 10^{-4}$ and $(2.7 \pm 0.3) \times 10^{-4}$, respectively for the barrel and endcap channels, where statistical and systematic uncertainties are combined. The acceptence has a systematic uncertainty of 4%, estimated by comparing the values obtained with different $b\bar{b}$ production mechanisms (gluon splitting, flavor excitation, and flavor creation). The uncertainty on the event selection efficiency for the $B^{\pm} \rightarrow J/\psi K^{\pm}$ normalization sample is 4%, evaluated from differences between measured and simulated $B^{\pm} \rightarrow J/\psi K^{\pm}$ events. The uncertainty on the signal efficiency (7.9%) is evaluated using the $B^{0} \rightarrow J/\psi\phi$ control sample. The invariant mass distributions are fitted with a Gaussian function for the signal and an exponential (barrel) or a first-degree polynomial (endcap) plus an error function for the background, as shown in Fig. 3. Applying the same selection requirements as for the signal sample, the observed number of $B^{\pm} \rightarrow J/\psi K^{\pm}$ candidates in the barrel (endcap) channel is $N_{obs}^{B^{+}} = 13045 \pm 652 (4450 \pm 222)$. The uncertainty includes a systematic term caused by fit and background parametrization effects, estimated to be 5% from MC studies.

To quantify a possible dependence on the pileup, the efficiencies of the isolation and the flight length significance requirements are calculated as functions of the number of reconstructed primary vertices. No dependence is observed for events with up to 12 primary vertices for the
Figure 1: Comparison of MC signal and sideband data distributions, for the transverse momentum (top left), the 3D pointing angle (top right), the flight length significance (bottom left), and the isolation (bottom right). The MC histograms are normalized to the number of events in the data.
Figure 2: Comparison of measured and simulated $B^0 \rightarrow J/\psi \phi$ distributions, for the transverse momentum (top left), the 3D pointing angle (top right), the flight length significance (bottom left), and the isolation (bottom right). The MC histograms are normalized to the number of events in the data.
normalization and control samples.

The $B^0_s \to \mu^+ \mu^-$ branching fraction is measured separately in the barrel and endcap channels using

$$B(B^0_s \to \mu^+ \mu^-) = \frac{N_S}{N_{\text{obs}}} \frac{f_u}{f_s} \frac{\epsilon_B^{B^+}}{\epsilon_{\text{tot}}} B(B^+),$$

and analogously for the $B^0 \to \mu^+ \mu^-$ case, where N_S is the background-subtracted number of observed $B_d(s) \to \mu^+ \mu^-$ candidates in the signal window (5.3 < $m_{\mu\mu}$ < 5.45 GeV for B^0_s and 5.2 < $m_{\mu\mu}$ < 5.3 GeV for B^0) and ϵ_{tot} is the total signal efficiency of all selection requirements. The ratio of the B^0_s and B^+ meson production fractions is $f_s/f_u = 0.282 \pm 0.037$ and $B(B^+) \equiv B(B^+ \to J/\psi K^+ \to \mu^+ \mu^- K^+) = (6.0 \pm 0.2) \times 10^{-5}$ [16]. (We use $f_s = 0.113 \pm 0.013$ and $f_u = 0.401 \pm 0.013$ from the main section of Ref. [16] and account for the correlations in the ratio.)

Events in the signal window can result from real signal decays, combinatorial background, and "peaking" background from decays of the type $B_d(s) \to hh'$, where h,h' are charged hadrons misidentified as muons. The expected number of signal events, N_{signal}^{\exp}, is calculated assuming the SM branching fraction and is normalized to the B^+ yield. The expected number of combinatorial background events, $N_{\text{comb}}^{\exp} = 3(4)$ in the barrel (endcap), is evaluated by interpolating to the signal window the number of events observed in the sideband regions. The interpolation procedure assumes a flat background shape and has a systematic uncertainty of 4%, evaluated by varying the flight length significance selections and by using a floating slope. The expected number of peaking background events, N_{peak}^{\exp}, is evaluated from MC simulation and muon misidentification rates measured in $K^0_S \to \pi^+ \pi^-$, $\phi \to K^+ K^-$, and $\Lambda \to p \pi^-$ samples [15].

Figure 3: $B^\pm \to J/\psi K^\pm$ invariant mass distributions in the barrel (left) and endcap (right) channels. The solid (dashed) lines show the fits to the data (background).

Figure 4 shows the measured dimuon invariant mass distributions. Three events are observed in the $B^0_s \to \mu^+ \mu^-$ signal windows (two in the barrel and one in the endcap), while only one event is observed in the $B^0 \to \mu^+ \mu^-$ endcap channel. This observation is consistent with the
Figure 4: Dimuon invariant mass distributions in the barrel (left) and endcap (right) channels. The signal windows for B_s^0 and B^0 are indicated by horizontal lines.

SM expectation for signal plus background. Upper limits are determined with the CLs approach [17]. Table 1 shows the values needed for the extraction of the results, separately for the barrel and endcap channels. The obtained upper limits on the branching fractions are $B(B_s^0 \rightarrow \mu^+ \mu^-) < 1.9 \times 10^{-8}$ (1.6×10^{-8}) and $B(B^0 \rightarrow \mu^+ \mu^-) < 4.6 \times 10^{-9}$ (3.7×10^{-9}), at 95% (90%) CL. The median expected upper limits at 95% CL are 1.8×10^{-8} (4.8×10^{-9}) for $B_s^0 \rightarrow \mu^+ \mu^-$ ($B^0 \rightarrow \mu^+ \mu^-$). The background-only p value is 0.11 (0.40) for $B_s^0 \rightarrow \mu^+ \mu^-$ ($B^0 \rightarrow \mu^+ \mu^-$), corresponding to 1.2 (0.27) standard deviations. The p value is 0.053 when assuming a $B_s^0 \rightarrow \mu^+ \mu^-$ signal at 5.6 times the SM value, as reported in Ref. [10].

In summary, a search for the rare decays $B_s^0 \rightarrow \mu^+ \mu^-$ and $B^0 \rightarrow \mu^+ \mu^-$ has been performed on a data sample of pp collisions at $\sqrt{s} = 7$ TeV corresponding to an integrated luminosity of 1.14 fb$^{-1}$. The observed event yields are consistent with those expected adding background and SM signals. Upper limits on the branching fractions have been determined at 90% and 95% CL.

We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST, MAE and RFBR (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA).
References

[1] A. J. Buras, “Minimal flavour violation and beyond: Towards a flavour code for short distance dynamics”, *Acta Phys. Polon. B* **41** (2010) 2487, arXiv:1012.1447.

[2] J. R. Ellis, J. S. Lee, and A. Pilaftsis, “B-Meson Observables in the Maximally CP-Violating MSSM with Minimal Flavour Violation”, *Phys. Rev. D* **76** (2007) 115011, arXiv:0708.2079; doi:10.1103/PhysRevD.76.115011.

[3] S. R. Choudhury, A. S. Cornell, N. Gaur et al., “Signatures of new physics in dileptonic B decays”, *Int. J. Mod. Phys. A* **21** (2006) 2617, arXiv:hep-ph/0504193. doi:10.1142/S0217751X06029491.

[4] J. Parry, “Lepton flavor violating Higgs boson decays, $\tau \to \mu \gamma$ and $B_s \to \mu^+ \mu^-$ in the constrained MSSM+NR with large $\tan \beta$”, *Nucl. Phys. B* **760** (2007) 38, arXiv:hep-ph/0510305. doi:10.1016/j.nuclphysb.2006.10.011.

[5] S. Davidson and S. Descotes-Genon, “Minimal Flavour Violation for Leptoquarks”, *JHEP* **11** (2010) 073, arXiv:1009.1998. doi:10.1007/JHEP11(2010)073.

[6] J. R. Ellis, K. A. Olive, Y. Santoso et al., “On $B_s \to \mu^+ \mu^-$ and cold dark matter scattering in the MSSM with non-universal Higgs masses”, *JHEP* **05** (2006) 063, arXiv:hep-ph/0603136. doi:10.1088/1126-6708/2006/05/063.

[7] D0 Collaboration, “Search for the rare decay $B^0 \to \mu^+ \mu^-$”, *Phys. Lett. B* **693** (2010) 539, arXiv:1006.3469. doi:10.1016/j.physletb.2010.09.024.

[8] CDF Collaboration, “Search for $B^0 \to \mu^+ \mu^-$ and $B^0_d \to \mu^+ \mu^-$ decays with 2 fb^{-1} of $p\bar{p}$ collisions”, *Phys. Rev. Lett.* **100** (2008) 101802, arXiv:0712.1708. doi:10.1103/PhysRevLett.100.101802.

[9] LHCb Collaboration, “Search for the rare decays $B^0 \to \mu^+ \mu^-$ and $B^0_d \to \mu^+ \mu^-$”, *Phys. Lett. B* **699** (2011) 330, arXiv:1103.2465. doi:10.1016/j.physletb.2011.04.031.

[10] CMS Collaboration, “Search for $B^0 \to \mu^+ \mu^-$ and $B^0 \to \mu^+ \mu^-$ Decays with CDF II”, (2011). arXiv:1107.2304.

[11] T. Sjöstrand, S. Mrenna, and P. Z. Skands, “PYTHIA 6.4 Physics and Manual”, *JHEP* **05** (2006) 026, arXiv:hep-ph/0603175. doi:10.1088/1126-6708/2006/05/026.

[12] D. Lange, “The EvtGen particle decay simulation package”, *Nucl. Instrum. Meth. A* **462** (2001) 152. doi:10.1016/S0168-9002(01)00089-4.

[13] Geant4 Collaboration, “Geant4 toolkit for simulation of HEP experiments”, *Nucl. Instrum. Meth. A* **502** (2003) 666. doi:10.1016/S0168-9002(03)00538-2.

[14] CMS Collaboration, “The CMS experiment at the CERN LHC”, *JINST* **3** (2008) S08004. doi:10.1088/1748-0221/3/08/S08004.

[15] CMS Collaboration, “Performance of muon identification in pp collisions at $\sqrt{s} = 7$ TeV”, CMS Physics Analysis Summary CMS-PAS-MUO-10-002, (2010).

[16] Particle Data Group Collaboration, “Review of particle physics”, *J. Phys. G* **37** (2010) 075021. doi:10.1088/0954-3899/37/7A/075021.
[17] A. Read, “Modified frequentist analysis of search results (the CLs method)” Technical Report CERN-OPEN-2000-005, CERN, (2000).
A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
S. Chatrchyan, V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Institut für Höchstenergiephysik der OeAW, Wien, Austria
W. Adam, T. Bergauer, M. Drągicevic, J. Erö, C. Fabjan, M. Friedl, R. Frühwirth, V.M. Ghete, J. Hammer¹, S. Hänsel, M. Hoch, N. Hörmann, J. Hrubec, M. Jeitler, W. Kiesenhofer, M. Kramer, D. Liko, I. Mikulec, M. Pernicka, B. Rahbaran, H. Rohringer, R. Schönbeck, J. Strauss, A. Taurok, F. Teischinger, C. Trauner, P. Wagner, W. Waltenberger, G. Walzel, E. Widl, C.-E. Wulz

National Centre for Particle and High Energy Physics, Minsk, Belarus
V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium
S. Bansal, L. Benucci, E.A. De Wolf, X. Janssen, S. Luyckx, T. Maes, L. Lacibello, S. Ochesanu, B. Roland, R. Rougny, M. Selvaggi, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel

Vrije Universiteit Brussel, Brussel, Belgium
F. Blekman, S. Blyweert, J. D’Hondt, R. Gonzalez Suarez, A. Kalogeropoulos, M. Maes, A. Olbrechts, W. Van Doninck, P. Van Mulders, G.P. Van Onsem, I. Villella

Université Libre de Bruxelles, Bruxelles, Belgium
O. Charaf, B. Clerbaux, G. De Lente, V. Dero, A.P.R. Gay, G.H. Hammad, T. Hreus, P.E. Marage, A. Raval, L. Thomas, G. Vander Marcken, C. Vander Velde, P. Vanlaer

Ghent University, Ghent, Belgium
V. Adler, A. Cimmino, S. Costantini, M. Grunewald, B. Klein, J. Lellouch, A. Marinov, J. Mccartin, D. Ryckbosch, F. Thyssen, M. Tytgat, L. Vael, P. Verwilligen, S. Walsh, N. Zaganidis

Université Catholique de Louvain, Louvain-la-Neuve, Belgium
S. Basegmez, G. Bruno, J. Caudron, L. Cear, E. Cortina Gil, J. De Favereau De Jeneret, C. Delaere, D. Favart, A. Giammanco, G. Grégoire, J. Hollar, V. Lemaitre, J. Liao, O. Militaru, C. Nuttens, S. Ovyn, D. Pagano, A. Pin, K. Piotrzkowski, N. Schul

Université de Mons, Mons, Belgium
N. Beliy, T. Caebergs, E. Daubie

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
G.A. Alves, L. Brito, D. De Jesus Damiao, M.E. Pol, M.H.G. Souza

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
W.L. Aldá Júnior, W. Carvalho, E.M. Da Costa, C. De Oliveira Martins, S. Fonseca De Souza, D. Matos Figueiredo, L. Mundim, H. Nogima, V. Oguri, W.L. Prado Da Silva, A. Santoro, S.M. Silva Do Amaral, A. Sznajder

Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil
C.A. Bernardes², F.A. Dias³, T. Dos Anjos Costa², T.R. Fernandez Perez Tomei, E. M. Gregores², C. Lagana, F. Marinho, P.G. Mercadante², S.F. Novaes, Sandra S. Padula

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
N. Darmenov¹, V. Genchev¹, V. Iaydjiev¹, S. Piperov, M. Rodozov, S. Stoykova, G. Sultanov, V. Tcholakov, R. Trayanov, V. Vutova
University of Sofia, Sofia, Bulgaria
A. Dimitrov, R. Hadijiiska, A. Karadzhinova, V. Kozhuharov, L. Litov, M. Mateev, B. Pavlov, P. Petkov

Institute of High Energy Physics, Beijing, China
J.G. Bian, G.M. Chen, H.S. Chen, C.H. Jiang, D. Liang, S. Liang, X. Meng, J. Tao, J. Wang, J. Wang, X. Wang, Z. Wang, H. Xiao, M. Xu, J. Zang, Z. Zhang

State Key Lab. of Nucl. Phys. and Tech., Peking University, Beijing, China
Y. Ban, S. Guo, Y. Guo, W. Li, Y. Mao, S.J. Qian, H. Teng, B. Zhu, W. Zou

Universidad de Los Andes, Bogota, Colombia
A. Cabrera, B. Gomez Moreno, A.A. Ocampo Rios, A.F. Osorio Oliveros, J.C. Sanabria

Technical University of Split, Split, Croatia
N. Godinovic, D. Leslas, K. Leslas, R. Plestina, D. Polic, I. Puljak

University of Split, Split, Croatia
Z. Antunovic, M. Dzelalija, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, S. Duric, K. Kadija, J. Luetic, S. Morovic

University of Cyprus, Nicosia, Cyprus
A. Attikis, M. Galanti, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis

Charles University, Prague, Czech Republic
M. Finger, M. Finger Jr.

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
Y. Assran, A. Ellithi Kamel, S. Khalil, M.A. Mahmoud, A. Radi

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
A. Hektor, M. Kadaštik, M. Müntel, M. Raidal, L. Rebane, A. Tiko

Department of Physics, University of Helsinki, Helsinki, Finland
V. Azzolini, P. Eerola, G. Fedi, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland
S. Czellar, J. Härkönen, A. Heikkinen, V. Karimäki, R. Kinnunen, M.J. Kortelainen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, T. Mäenpää, E. Tuominiemi, E. Tuovinen, D. Ungaro, L. Wendland

Lappeenranta University of Technology, Lappeenranta, Finland
K. Banzuzi, A. Karjalainen, A. Korpela, T. Tuuva

Laboratoire d’Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS, Annecy-le-Vieux, France
D. Sillou

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France
M. Besancon, S. Choudhury, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, F. Ferri, S. Ganjour, F.X. Gentit, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, E. Locci, J. Malcles, M. Marionneau, L. Millischer, J. Rander, A. Rosowsky, I. Shreyber, M. Titov, P. Verrecchia
T. Hermanns, K. Kaschube, G. Kaussen, H. Kirschenmann, R. Klanner, J. Lange, B. Mura, S. Naumann-Emme, F. Nowak, N. Pietsch, C. Sander, H. Schettler, P. Schleper, E. Schlieckau, M. Schröder, T. Schum, H. Stadie, G. Steinbrück, J. Thomsen

Institut für Experimentelle Kernphysik, Karlsruhe, Germany
C. Barth, J. Bauer, J. Berger, V. Buege, T. Chwalek, W. De Boer, A. Dierlamm, G. Dirkes, M. Feindt, J. Gruschke, C. Hackstein, F. Hartmann, M. Heinrich, H. Held, K.H. Hoffmann, S. Honc, I. Katkov13, J.R. Komaragiri, T. Kuhr, D. Martschei, S. Mueller, Th. Müller, M. Niegel, O. Oberst, A. Oehler, J. Ott, T. Peiffer, G. Quast, K. Rabbertz, F. Ratnikov, N. Ratnikova, M. Renz, C. Saout, A. Scheurer, P. Schieferdecker, F.-P. Schilling, G. Schott, H.J. Simonis, F.M. Stober, D. Troendle, J. Wagner-Kuhr, T. Weiler, M. Zeise, V. Zhukov13, E.B. Ziebarth

Institute of Nuclear Physics “Demokritos”, Aghia Paraskevi, Greece
G. Daskalakis, T. Geralis, S. Kesisoglou, A. Kyriakis, D. Loukas, I. Manolakos, A. Markou, C. Markou, C. Mavrommatis, E. Ntomari, E. Petrakou

University of Athens, Athens, Greece
L. Gouskos, T.J. Mertzimekis, A. Panagiotou, N. Saoulidou, E. Stiliaris

University of Ioánnina, Ioánnina, Greece
I. Evangelou, C. Foudas, P. Kokkas, N. Manthos, I. Papadopoulos, V. Patras, F.A. Triantis

KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary
A. Aranyi, G. Bencze, L. Boldizsar, C. Hajdu1, P. Hidas, D. Horvath14, A. Kapusi, K. Krajczar15, F. Sikler1, G.I. Veres15, G. Vesztergombi15

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, J. Molnar, J. Palinkas, Z. Szillasi, V. Veszpremi

University of Debrecen, Debrecen, Hungary
P. Raics, Z.L. Trocsanyi, B. Ujvari

Panjab University, Chandigarh, India
S.B. Beri, V. Bhatnagar, N. Dingra, R. Gupta, M. Jindal, M. Kaur, J.M. Kohli, M.Z. Mehta, N. Nishu, L.K. Saini, A. Sharma, A.P. Singh, J. Singh, S.P. Singh

University of Delhi, Delhi, India
S. Ahuja, B.C. Choudhary, P. Gupta, A. Kumar, A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, R.K. Shivpuri

Saha Institute of Nuclear Physics, Kolkata, India
S. Banerjee, S. Bhattacharya, S. Dutta, B. Gomber, S. Jain, S. Jain, R. Khurana, S. Sarkar

Bhabha Atomic Research Centre, Mumbai, India
R.K. Choudhury, D. Dutta, S. Kailas, V. Kumar, P. Mehta, A.K. Mohanty1, L.M. Pant, P. Shukla

Tata Institute of Fundamental Research - EHEP, Mumbai, India
T. Aziz, M. Guchait16, A. Gurtu, M. Maity17, D. Majumder, G. Majumder, K. Mazumdar, G.B. Mohanty, A. Saha, K. Sudhakar, N. Wickramage

Tata Institute of Fundamental Research - HECR, Mumbai, India
S. Banerjee, S. Dugad, N.K. Mondal

Institute for Research and Fundamental Sciences (IPM), Tehran, Iran
H. Arfaei, H. Bakhshiansohi18, S.M. Etesami19, A. Fahim18, M. Hashemi, H. Hesari, A. Jafari18,
M. Khakzad, A. Mohammadi²⁰, M. Mohammadi Najafabadi, S. Paktinat Mehdabadi, B. Safarzadeh, M. Zeinali¹⁹

INFN Sezione di Bari, Università di Bari, Politecnico di Bari, Bari, Italy
M. Abbrescia, L. Barbone, C. Calabria, A. Colaleo, N. Creanza, N. De Filippis, M. De Palma, L. Fiore, G. Iaselli, L. Lusito, G. Maggi, M. Manna, B. Marangelli, S. My, S. Nuzzo, N. Pacifico, A. Pompili, P. Guglielmi, F. Romano, G. Roselli, G. Selvaggi, L. Sivestri, R. Trentadue, S. Tupputi, G. Zito

INFN Sezione di Bologna, Università di Bologna, Bologna, Italy
F. Romano, A. Fanfani, P. Capiluppi, A. Benaglia, L. Benussi, S. Bianco, S. Colafranceschi

INFN Sezione di Catania, Università di Catania, Catania, Italy
A.M. Rossi, M. Meneghelli, G. Barbagli, S. Lacaprara

INFN Sezione di Firenze, Università di Firenze, Firenze, Italy
G. Barbagli, V. Ciulli, C. Cinvini, R. D’Alessandro, E. Focardi, S. Frosali, E. Gallo, S. Gonzi, P. Lenzi, M. Meschini, S. Paoletti, G. Sguazzoni, A. Tropiano

INFN Laboratori Nazionali di Frascati, Frascati, Italy
G. Abbiendi, G. Fabbricatore, R. Musenich, A. Benaglia

INFN Sezione di Genova, Genova, Italy
P. Fabbri, F. Fabozzi

INFN Sezione di Milano-Bicocca, Università di Milano-Bicocca, Milano, Italy
A. Benaglia, L. Di Matteo, S. Gennai, A. Ghezzi, S. Malvezzi, A. Martelli, A. Massironi, D. Menasce, L. Moroni, M. Paganoni, D. Pedrini, S. Ragazzi, N. Redaelli, S. Sala, T. Tabarelli de Fatis

INFN Sezione di Napoli, Università di Napoli “Federico II”, Napoli, Italy
S. Buontempo, C.A. Carrillo Montoya, N. Cavallo, A. De Cosa, F. Fabozzi, A.O.M. Iorio, L. Lista, M. Merola, P. Paolucci

INFN Sezione di Padova, Università di Padova, Università di Trento (Trento), Padova, Italy
P. Azzi, N. Bacchetta, P. Bellan, D. Bisello, A. Branca, R. Carlin, P. Checchia, T. Dorigo, U. Dosselli, F. Fanzago, F. Gasparini, U. Gasparini, A. Gozzelino, S. Laprarina, I. Lazzizzera, M. Margoni, M. Mazzucato, A.T. Meneguzzo, M. Nespolo, L. Perrozzi, N. Pozzobon, P. Ronchese, F. Simonetto, E. Torassa, M. Tosi, S. Vanini, P. Zotto, G. Zumerle

INFN Sezione di Pavia, Università di Pavia, Pavia, Italy
P. Baesso, U. Berzano, S.P. Ratti, C. Riccardi, P. Torre, P. Vitulo, C. Viviani

INFN Sezione di Perugia, Università di Perugia, Perugia, Italy
M. Biasini, G.M. Bilei, B. Caponeri, L. Fanò, L. Lariccia, A. Lucaroni, G. Mantovani, M. Menichelli, A. Nappi, F. Romeo, A. Santocchia, S. Taroni, M. Valdata
INFIN Sezione di Pisa, Università di Pisa, Scuola Normale Superiore di Pisa, Pisa, Italy
P. Azzurri, A. Bagliesi, J. Bernardini, B. Boccali, G. Broccolo, R. Castaldi, R.T. D’Agnolo, R. Dell’Orso, F. Fiori, L. Foà, A. Giassi, A. Kraan, F. Ligabue, T. Lomtadze, L. Martinietti, A. Messineo, F. Palla, F. Palmonari, G. Segneri, A.T. Serban, P. Spagnolo, R. Tenchini, G. Tonelli, A. Venturi, P.G. Verdini

INFIN Sezione di Roma, Università di Roma “La Sapienza”, Roma, Italy
L. Barone, F. Cavallari, D. Del Re, E. Di Marco, M. Diemoz, E. Di Marco, M. Grassi, E. Longo, P. Meridiani, S. Nourbakhsh, G. Organtini, F. Pandolfi, R. Paramatti, S. Rahatlou, M. Sigamani

INFIN Sezione di Torino, Università di Torino, Università del Piemonte Orientale (Novara), Torino, Italy
N. Amapane, R. Arcidiacono, S. Argiro, M. Arneodo, C. Biino, C. Bottarelli, N. Cartiglia, R. Castello, M. Costa, N. Demaria, G. Graziano, S. Maselli, E. Migliore, V. Monaco, M. Musich, M.M. Obertino, N. Pastore, M. Pelliccioni, A. Potenza, A. Romero, M. Ruspa, R. Sacchi, V. Sola, A. Solano, A. Staiano, A. Vilela Pereira

INFIN Sezione di Trieste, Università di Trieste, Trieste, Italy
S. Belforte, F. Cossutti, G. Della Ricca, B. Gobbo, M. Marone, D. Montanino, A. Penzo

Kangwon National University, Chunchon, Korea
S.G. Heo, S.K. Nam

Kyungpook National University, Daegu, Korea
S. Chang, J. Chung, D.H. Kim, G.N. Kim, J.E. Kim, D.J. Kong, H. Park, S.R. Ro, D.C. Son, T. Son

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
J.Y. Kim, Z. Kim, S. Song

Konkuk University, Seoul, Korea
H.Y. Jo

Korea University, Seoul, Korea
S. Choi, D. Gyun, B. Hong, M. Jo, H. Kim, J.H. Kim, T.J. Kim, K.S. Lee, D.H. Moon, S.K. Park, E. Seo, K.S. Sim

University of Seoul, Seoul, Korea
M. Choi, S. Kang, H. Kim, C. Park, I.C. Park, S. Park, G. Ryu

Sungkyunkwan University, Suwon, Korea
Y. Cho, Y. Choi, Y.K. Choi, J. Goh, M.S. Kim, B. Lee, J. Lee, S. Lee, H. Seo, I. Yu

Vilnius University, Vilnius, Lithuania
M.J. Bilinskas, I. Grigelionis, M. Janulis, D. Martisiute, P. Petrov, M. Polujanskas, T. Sabonis

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-de La Cruz, R. Lopez-Fernandez, R. Magaña Villalba, J. Martínez-Ortega, A. Sánchez-Hernández, L.M. Villasenor-Cendejas

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, F. Vázquez Valencia
Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
H.A. Salazar Ibarguen

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
E. Casimiro Linares, A. Morelos Pineda, M.A. Reyes-Santos

University of Auckland, Auckland, New Zealand
D. Krofcheck, J. Tam

University of Canterbury, Christchurch, New Zealand
P.H. Butler, R. Doesburg, H. Silverwood

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
M. Ahmad, I. Ahmed, M.H. Ansari, M.I. Asghar, H.R. Hoorani, S. Khalid, W.A. Khan, T. Khurshid, S. Qazi, M.A. Shah, M. Shoaiib

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
G. Brona, M. Cwiok, W. Dominik, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski

Soltan Institute for Nuclear Studies, Warsaw, Poland
T. Frueboes, R. Gokieli, M. Górski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, G. Wrochna, P. Zalewski

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
N. Almeida, P. Bargassa, A. David, P. Faccioli, P.G. Ferreira Parracho, M. Gallinaro, P. Musella, A. Nayak, J. Pela, P.Q. Ribeiro, J. Seixas, J. Varela

Joint Institute for Nuclear Research, Dubna, Russia
S. Afanasiev, I. Belotelov, P. Bunin, M. Gavrilenko, I. Golutvin, A. Kamenev, V. Karjavin, G. Kozlov, A. Lanev, P. Moisenz, V. Palichik, V. Perelygin, S. Shmatov, V. Smirnov, A. Volodko, A. Zarubin

Petersburg Nuclear Physics Institute, Gatchina (St Petersburg), Russia
V. Golovtsov, Y. Ivanov, V. Kim, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev, An. Vorobyev

Institute for Nuclear Research, Moscow, Russia
Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, M. Kirsanov, N. Krasnikov, V. Matveev, A. Pashenkov, A. Toropin, S. Troitsky

Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, M. Erofeeva, V. Gavrilov, V. Kaftanov, M. Kossov, A. Krokhatin, N. Lychkovskaya, V. Popov, G. Safronov, S. Semenov, V. Stolin, E. Vlasov, A. Zhokin

Moscow State University, Moscow, Russia
A. Belyaev, E. Boos, M. Dubinin, L. Dudko, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, A. Markina, S. Obraztsov, M. Perfilov, S. Petrushanko, L. Sarycheva, V. Savrin, A. Snigirev

P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Leonidov, G. Mesyats, S.V. Rusakov, A. Vinogradov

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia
I. Azhgirey, I. Bayshev, S. Bitioukov, V. Grishin, V. Kachanov, D. Konstantinov, A. Korabiev,
V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, L. Tourchanovitch, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic, M. Djordjevic, D. Krpic, J. Milosevic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
M. Aguilar-Benitez, J. Alcaraz Maestre, P. Arce, C. Battilana, E. Calvo, M. Cerrada, M. Chamizo Llatas, N. Colino, B. De La Cruz, A. Delgado Peris, C. Diez Pardos, D. Domínguez Vázquez, C. Fernandez Bedoya, J.P. Fernandez Ramos, A. Ferrando, J. Flix, M.C. Fouz, P. Garcia-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, G. Merino, J. Puerta Pelayo, I. Redondo, L. Romero, J. Sántaloalla, M.S. Soares, C. Willmott

Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, G. Codispoti, J.F. de Trocóniz

Universidad de Oviedo, Oviedo, Spain
J. Cuevas, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, L. Lloret Iglesias, J.M. Vizan Garcia

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
J.A. Brochero Cifuentes, I.J. Cabrillo, A. Calderon, S.H. Chuang, J. Duarte Campderros, M. Felcini, M. Fernandez, G. Gomez, J. Gonzalez Sanchez, C. Jordà, P. Lobelle Pardo, A. Lopez Virto, J. Marco, R. Marco, C. Martinez Rivero, F. Matorras, C. Merino, J. Piedra Gomez, T. Rodrigo, A.Y. Rodriguez-Marrero, A. Ruiz-Jimeno, L. Scodellaro, M. Sobron Sanudo, I. Vila, R. Vilar Cortabitarte

CERN, European Organization for Nuclear Research, Geneva, Switzerland
D. Abbaneo, E. Auffray, G. Auzinger, P. Baillon, A.H. Ball, D. Barney, A.J. Bell, D. Benedetti, C. Bernet, W. Bialas, P. Bloch, A. Bocci, S. Bolognesi, M. Bona, H. Breuker, K. Bunkowski, T. Camporesi, G. Cerminara, T. Christiansen, J.A. Coarasa Perez, B. Curé, D. D’Enterria, A. De Roeck, S. Di Guida, N. Dupont-Sagorin, A. Elliott-Peisert, B. Frisch, W. Funk, A. Gaddi, G. Georgiou, H. Gerwig, D. Gigi, K. Gill, D. Giordano, F. Glege, R. Gomez-Reino Garrido, M. Gouzevitch, P. Govoni, S. Gowdy, R. Guida, L. Guiducci, M. Hansen, C. Hartl, J. Harvey, J. Hegeman, B. Hegner, H.F. Hoffmann, V. Innocente, P. Janot, K. Kaadze, E. Karavakis, P. Lecoq, C. Lourenço, T. Máki, M. Malberti, L. Malgeri, M. Mannelli, L. Masetti, A. Maurissett, F. Mejers, S. Mersi, E. Meschi, R. Moser, M.U. Mozer, M. Mulders, E. Nesvold, M. Nguyen, T. Orimoto, L. Orsini, E. Palencia Cortezon, E. Perez, A. Petrilli, A. Pfeiffer, M. Pierini, M. Pimiä, D. Piparo, G. Polese, L. Quertenmont, A. Racz, W. Reece, J. Rodrigues Antunes, G. Rolandi, T. Rommerskirchen, C. Rovelli, M. Rovere, H. Sakulin, C. Schafer, C. Schwik, I. Segoni, A. Sharma, P. Siegrist, P. Silva, M. Simon, P. Spichas, D. Spiga, M. Spiropulu, M. Stoye, A. Tsirou, P. Vichoudis, H.K. Wöhri, S.D. Worm, W.D. Zeuner

Paul Scherrer Institut, Villigen, Switzerland
W. Bertl, K. Deiters, W. Erdmann, K. Gabathuler, H. Horisberger, Q. Ingram, H.C. Kaestli, S. König, D. Kotlinski, U. Langenegger, F. Meier, D. Renker, T. Rohe, J. Sibille

Institute of Particle Physics, ETH Zurich, Zurich, Switzerland
L. Bäni, P. Bortignon, L. Caminada, B. Casal, N. Chanon, Z. Chen, S. Cittolin, G. Dissertori, M. Dittmar, J. Egerst, K. Freudenreich, C. Grab, W. Hintz, P. Lecomte, W. Lustermann, C. Marchica, P. Martinez Ruiz del Arbol, P. Milenovic, F. Moortgat, C. Nägeli, P. Nef, T. Rommerskirchen, C. Rovelli, M. Rovere, H. Sakulin, C. Schafer, C. Schwik, I. Segoni, A. Sharma, P. Siegrist, P. Silva, M. Simon, P. Spichas, D. Spiga, M. Spiropulu, M. Stoye, A. Tsirou, P. Vichoudis, H.K. Wöhri, S.D. Worm, W.D. Zeuner
Baylor University, Waco, USA
K. Hatakeyama, H. Liu

The University of Alabama, Tuscaloosa, USA
C. Henderson

Boston University, Boston, USA
T. Bose, E. Carrera Jarrin, C. Fantasia, A. Heister, J. St. John, P. Lawson, D. Lazic, J. Rohlf, D. Sperka, L. Sulak

Brown University, Providence, USA
A. Avetisyan, S. Bhattacharya, J.P. Chou, D. Cutts, A. Ferapontov, U. Heintz, S. Jabeen, G. Kukartsev, G. Landsberg, M. Luk, M. Narain, D. Nguyen, M. Segala, T. Sinthuprasith, T. Speer, K.V. Tsang

University of California, Davis, Davis, USA
R. Breedon, G. Breto, M. Calderon De La Barca Sanchez, S. Chauhan, M. Chertok, J. Conway, R. Conway, P.T. Cox, J. Dolen, R. Erbacher, E. Friis, W. Ko, A. Kopecky, R. Lander, H. Liu, S. Maruyama, T. Micheli, M. Nikolic, D. Pellett, J. Robles, B. Rutherford, S. Salur, T. Schwarz, M. Searle, J. Smith, M. Squires, M. Tripathi, R. Vasquez Sierra, C. Veelken

University of California, Los Angeles, Los Angeles, USA
V. Andreev, K. Arisaka, D. Cline, R. Cousins, A. Deisher, J. Duris, S. Erhan, C. Farrell, J. Hauser, M. Ignatenko, C. Jarvis, C. Plager, G. Rakness, P. Schlein1, J. Tucker, V. Valuev

University of California, Riverside, Riverside, USA
J. Babb, A. Chandra, R. Clare, J. Ellison, J.W. Gary, F. Giordano, G. Hanson, G.Y. Jeng, S.C. Kao, F. Liu, H. Liu, O.R. Long, A. Luthra, H. Nguyen, S. Parameswaran, B.C. Shen1, R. Stringer, J. Sturdy, S. Sumowidagdo, R. Wilken, S. Wimpenny

University of California, San Diego, La Jolla, USA
W. Andrews, J.G. Branson, G.B. Cerati, D. Evans, F. Golf, A. Holzner, R. Kelley, M. Lebourgeois, J. Letts, B. Mangano, S. Padhi, C. Palmer, G. Petruckian, H. Pi, M. Pieri, R. Ranieri, M. Sani, V. Sharma, S. Simon, E. Sudano, M. Tadel, Y. Tu, A. Vartak, S. Wasserbaech47, F. Würthwein, A. Yagil, J. Yoo

University of California, Santa Barbara, Santa Barbara, USA
D. Barge, R. Bellan, C. Campagnari, M. D’Alfonso, T. Danielson, K. Flowers, P. Geffert, J. Incandela, C. Justus, P. Kalavase, S.A. Koay, D. Kovalskyi1, V. Krutelyov, S. Lowette, N. McCall, E. Mullin, V. Pavlunin, F. Rebassoo, J. Ribnik, J. Richman, R. Rossin, D. Stuart, W. To, J.R. Vlimant, C. West

California Institute of Technology, Pasadena, USA
A. Apresyan, A. Bornheim, J. Bunn, Y. Chen, M. Gataullin, Y. Ma, A. Mott, H.B. Newman, C. Rogan, K. Shin, V. Timciuc, P. Traczyk, J. Veverka, R. Wilkinson, Y. Yang, R.Y. Zhu

Carnegie Mellon University, Pittsburgh, USA
B. Akgun, R. Carroll, T. Ferguson, Y. Iiyama, D.W. Jang, S.Y. Jun, Y.F. Liu, M. Paulini, J. Russ, H. Vogel, I. Vorobiev

University of Colorado at Boulder, Boulder, USA
J.P. Cumalat, M.E. Dinardo, B.R. Drell, C.J. Edelmaier, W.T. Ford, A. Gaz, B. Heyburn, E. Luiggi Lopez, U. Nauenberg, J.G. Smith, K. Stenson, K.A. Ulmer, S.R. Wagner, S.L. Zang
Cornell University, Ithaca, USA
L. Agostino, J. Alexander, A. Chatterjee, N. Eggert, L.K. Gibbons, B. Heltsley, K. Henriksson, W. Hopkins, A. Khukhunaishvili, B. Kreis, Y. Liu, G. Nicolas Kaufman, J.R. Patterson, D. Puigh, A. Ryd, M. Saelim, E. Salvati, X. Shi, W. Sun, W.D. Teo, J. Thom, J. Thompson, J. Vaughan, Y. Weng, L. Winstrom, P. Wittich

Fairfield University, Fairfield, USA
A. Biselli, G. Cirino, D. Winn

Fermi National Accelerator Laboratory, Batavia, USA
S. Abdullin, M. Albrow, J. Anderson, G. Apollinari, M. Atac, J.A. Bakken, L.A.T. Bauer, A. Beretvas, J. Berryhill, P.C. Bhat, I. Bloch, K. Burkett, J. Butler, V. Chelurutu, H.W.K. Cheung, F. Chlebana, S. Chihangir, W. Cooper, D.P. Eartly, V.D. Elvira, S. Esen, I. Fisk, J. Freeman, Y. Gao, E. Gottschalk, D. Green, K. Gunthoti, O. Gutsche, J. Hanlon, R.M. Harris, J. Hirsclauer, B. Hooberman, H. Jensen, M. Johnson, U. Joshi, R. Khatiwada, B. Klima, K. Kousouris, S. Kunori, S. Kwan, C. Leonidopoulos, P. Limon, D. Lincoln, R. Lipton, J. Lykken, K. Maeshima, J.M. Marraffino, D. Mason, P. McBride, T. Miao, K. Misra, S. Mrenna, Y. Musienko, C. Newman-Holmes, V. O’Dell, J. Pivarski, R. Pordes, O. Prokofyev, E. Sexton-Kennedy, S. Sharma, W.J. Spalding, L. Spiegel, P. Tan, L. Taylor, S. Tkaczuk, L. Uplegger, E.W. Vaandering, R. Vidal, J. Whitmore, W. Wu, F. Yang, F. Yumiceva, J.C. Yun

University of Florida, Gainesville, USA
D. Acosta, P. Avery, D. Bourilkov, M. Chen, S. Das, M. De Gruttola, G.P. Di Giovanni, D. Dobur, A. Drozdetskiy, R.D. Field, M. Fisher, Y. Fu, I.K. Furic, J. Gartner, S. Goldberg, J. Hugon, B. Kim, J. Konigsberg, A. Korytov, A. Krysivnitskaya, T. Kypros, J.F. Low, K. Matchev, G. Mitselmakher, L. Muniz, P. Myeonghun, C. Prescott, R. Remington, A. Rinkevicius, M. Schmitt, B. Scullock, P. Sellers, N. Skhirtladze, M. Snowball, D. Wang, J. Yelton, M. Zakaria

Florida International University, Miami, USA
V. Gaultney, L.M. Lebolo, S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez

Florida State University, Tallahassee, USA
T. Adams, A. Askew, J. Bohenc, J. Chen, B. Diamond, S.V. Gleyzer, J. Haas, S. Hagopian, V. Hagopian, M. Jenkins, K.F. Johnson, H. Prosper, S. Sekmen, V. Veeraraghvan

Florida Institute of Technology, Melbourne, USA
M.M. Baarmand, B. Dorney, M. Hohlmann, H. Kalakhety, I. Vodopiyanov

University of Illinois at Chicago (UIC), Chicago, USA
M.R. Adams, I.M. Anghel, L. Ananashvili, Y. Bai, V.E. Bazterra, R.R. Betts, J. Collner, R. Cavanaugh, C. Dragoiu, L. Gauthier, C.E. Gerber, D.J. Hofman, S. Khaltayan, G.J. Kunde, F. Lacroix, M. Malek, C. O’Brien, C. Silkworth, C. Silvestre, A. Smoronsk, D. Strom, N. Varelas

The University of Iowa, Iowa City, USA
U. Akgun, E.A. Albayrak, B. Bilki, W. Clarida, F. Duru, C.K. Lae, E. McCliment, J.-P. Merlo, H. Mermerkaya, A. Mestvirishvili, A. Moeller, J. Nachtman, C.R. Newsom, E. Norbeck, J. Olson, Y. Onel, F. Ozok, S. Sen, J. Wetzel, T. Yetkin, K. Yi

Johns Hopkins University, Baltimore, USA
B.A. Barnett, B. Blumenfeld, A. Bonato, C. Eskow, D. Fehling, G. Giurgiu, A.V. Gritsan, Z.J. Guo, G. Hu, P. Maksimovic, S. Rappoccio, M. Swartz, N.V. Tran, A. Whitbeck

The University of Kansas, Lawrence, USA
P. Baringer, A. Bean, G. Benelli, O. Grachov, R.P. Kenny Iii, M. Murray, D. Noonan, S. Sanders, J.S. Wood, V. Zhukova

Kansas State University, Manhattan, USA
A.f. Barfuss, T. Bolton, I. Chakaberia, A. Ivanov, S. Khalil, M. Makouski, Y. Maravin, S. Shrestha, I. Svintradze, Z. Wan

Lawrence Livermore National Laboratory, Livermore, USA
J. Gronberg, D. Lange, D. Wright

University of Maryland, College Park, USA
A. Baden, M. Boutemeur, S.C. Eno, D. Ferencek, J.A. Gomez, N.J. Hadley, R.G. Kellogg, M. Kirn, Y. Lu, A.C. Mignerey, K. Rossato, P. Rumerio, F. Santanastasio, A. Skuja, J. Temple, M.B. Tonjes, S.C. Tonwar, E. Twedt

Massachusetts Institute of Technology, Cambridge, USA
B. Alver, G. Bauer, J. Bendavid, W. Busza, E. Butz, L.A. Cali, M. Chan, V. Dutta, P. Everaerts, G. Gomez Ceballos, M. Goncharov, K.A. Hahn, P. Harris, Y. Kim, M. Klute, Y.-J. Lee, W. Li, C. Loizides, P.D. Luckey, T. Ma, S. Nahm, C. Paus, D. Ralph, C. Roland, G. Roland, M. Rudolph, G.S.F. Stephans, F. Stöckli, K. Sumorok, K. Sung, D. Velicanu, E.A. Wenger, R. Wolf, S. Xie, M. Yang, Y. Yilmaz, A.S. Yoon, M. Zanetti

University of Minnesota, Minneapolis, USA
S.I. Cooper, P. Cushman, B. Dahmes, A. De Benedetti, G. Franzoni, A. Gude, J. Haupt, K. Klapoetke, Y. Kubota, J. Mans, N. Pastika, V. Rekovic, R. Rusack, M. Sasseville, A. Singovsky, N. Tambe, J. Turkewitz

University of Mississippi, University, USA
L.M. Cremaldi, R. Godang, R. Kroeger, L. Perera, R. Rahmat, D.A. Sanders, D. Summers

University of Nebraska-Lincoln, Lincoln, USA
K. Bloom, S. Bose, J. Butt, D.R. Claes, A. Dominguez, M. Eads, P. Jindal, J. Keller, T. Kelly, I. Kravchenko, J. Lazo-Flores, H. Malbouisson, S. Malik, G.R. Snow

State University of New York at Buffalo, Buffalo, USA
U. Baur, A. Godshalk, I. Iashvili, S. Jain, A. Kharchilava, A. Kumar, S.P. Shipkowski, K. Smith

Northeastern University, Boston, USA
G. Alverson, E. Barberis, D. Baumgartel, O. Boeriu, M. Chasco, S. Reucroft, J. Swain, D. Trocino, D. Wood, J. Zhang

Northwestern University, Evanston, USA
A. Anastassov, A. Kubik, N. Mucia, N. Odell, R.A. Ofierzynski, B. Pollack, A. Pozdnyakov, M. Schmitt, S. Stoynev, M. Velasco, S. Won

University of Notre Dame, Notre Dame, USA
L. Antonelli, D. Berry, A. Brinkerhoff, M. Hildreth, C. Jessop, D.J. Karmgard, J. Kolb, T. Kolberg, K. Lannon, W. Luo, S. Lynch, N. Marinelli, D.M. Morse, T. Pearson, R. Ruchti, J. Slaunwhite, N. Valls, M. Wayne, J. Ziegler

The Ohio State University, Columbus, USA
B. Bylsma, L.S. Durkin, J. Gu, C. Hill, P. Killewald, K. Kotov, T.Y. Ling, M. Rodenburg, C. Vuosalo, G. Williams

Princeton University, Princeton, USA
N. Adam, E. Berry, P. Elmer, D. Gerbaudo, V. Halyo, P. Hebdy, A. Hunt, E. Laird, D. Lopes
Pegna, D. Marlow, T. Medvedeva, M. Mooney, J. Olsen, P. Piroué, X. Quan, B. Safdi, H. Saka, D. Stickland, C. Tully, J.S. Werner, A. Zuranski

University of Puerto Rico, Mayaguez, USA
J.G. Acosta, X.T. Huang, A. Lopez, H. Mendez, S. Oliveros, J.E. Ramirez Vargas, A. Zatserklyaniy

Purdue University, West Lafayette, USA
E. Alagoz, V.E. Barnes, G. Bolla, L. Borrello, D. Bortoletto, M. De Mattia, A. Everett, A.F. Garfinkel, L. Gutay, Z. Hu, M. Jones, O. Koybasi, M. Kress, A.T. Laasanen, N. Leonardo, C. Liu, V. Maroussov, P. Merkel, D.H. Miller, N. Neumeister, I. Shipsey, D. Silvers, A. Svyatkovskiy, H.D. Yoo, J. Zablocki, Y. Zheng

Purdue University Calumet, Hammond, USA
S. Guragain, N. Parashar

Rice University, Houston, USA
A. Adair, C. Boulahouache, K.M. Ecklund, F.J.M. Geurts, B.P. Padley, R. Redjimi, J. Roberts, J. Zabel

University of Rochester, Rochester, USA
B. Betchart, A. Bodek, Y.S. Chung, R. Covarelli, P. de Barbaro, R. Demina, Y. Eshaq, H. Flacher, A. Garcia-Bellido, P. Goldenzweig, Y. Gotra, J. Han, A. Harel, D.C. Miner, D. Orbaker, G. Petrillo, W. Sakumoto, D. Vishnevskiy, M. Zielinski

The Rockefeller University, New York, USA
A. Bhatti, R. Ciesielski, L. Demortier, K. Goulianos, G. Lungu, S. Malik, C. Mesropian

Rutgers, the State University of New Jersey, Piscataway, USA
S. Arora, O. Atramentov, A. Barker, C. Contreras-Campana, E. Contreras-Campana, D. Duggan, Y. Gershtein, R. Gray, E. Halkiadakis, D. Hidas, D. Hits, A. Lath, S. Panwalkar, R. Patel, A. Richards, K. Rose, S. Schnetter, S. Somalwar, R. Stone, S. Thomas

University of Tennessee, Knoxville, USA
G. Cerizza, M. Hollingsworth, S. Spanier, Z.C. Yang, A. York

Texas A&M University, College Station, USA
R. Eusebi, W. Flanagan, J. Gilmore, A. Gurrola, T. Kamon, V. Khotilovich, R. Montalvo, I. Osipenkov, Y. Pakhotin, A. Safonov, S. Sengupta, I. Suarez, A. Tatarinov, D. Toback

Texas Tech University, Lubbock, USA
N. Akchurin, C. Bardak, J. Damgov, P.R. Dudero, C. Jeong, K. Kovitanggoon, S.W. Lee, T. Libeiro, P. Mane, Y. Roh, A. Sill, I. Volobouev, R. Wigmans, E. Yazgan

Vanderbilt University, Nashville, USA
E. Appelt, E. Brownson, D. Engh, C. Florez, W. Gabella, M. Issah, W. Johns, C. Johnston, P. Kurt, C. Maguire, A. Melo, P. Sheldon, B. Snook, S. Tuo, J. Velkovska

University of Virginia, Charlottesville, USA
M.W. Arenton, M. Balazs, S. Boutle, B. Cox, B. Francis, S. Goadhouse, J. Goodell, R. Hirosky, A. Ledovskoy, C. Lin, C. Neu, J. Wood, R. Yohay

Wayne State University, Detroit, USA
S. Gollapinni, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamiichhane, M. Mattson, C. Milstène, A. Sakharov
University of Wisconsin, Madison, USA
M. Anderson, M. Bachtis, D. Belknap, J.N. Bellinger, D. Carlsmith, M. Cepeda, S. Dasu, J. Efron, L. Gray, K.S. Grogg, M. Grothe, R. Hall-Wilton, M. Herndon, A. Hervé, P. Klabbers, J. Klukas, A. Lanaro, C. Lazaridis, J. Leonard, R. Loveless, A. Mohapatra, I. Ojalvo, W. Parker, I. Ross, A. Savin, W.H. Smith, J. Swanson, M. Weinberg

†: Deceased
1: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
2: Also at Universidade Federal do ABC, Santo Andre, Brazil
3: Also at California Institute of Technology, Pasadena, USA
4: Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
5: Also at Suez Canal University, Suez, Egypt
6: Also at British University, Cairo, Egypt
7: Also at Fayoum University, El-Fayoum, Egypt
8: Also at Ain Shams University, Cairo, Egypt
9: Also at Soltan Institute for Nuclear Studies, Warsaw, Poland
10: Also at Massachusetts Institute of Technology, Cambridge, USA
11: Also at Université de Haute-Alsace, Mulhouse, France
12: Also at Brandenburg University of Technology, Cottbus, Germany
13: Also at Moscow State University, Moscow, Russia
14: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
15: Also at Eötvös Loránd University, Budapest, Hungary
16: Also at Tata Institute of Fundamental Research - HECR, Mumbai, India
17: Also at University of Visva-Bharati, Santiniketan, India
18: Also at Sharif University of Technology, Tehran, Iran
19: Also at Isfahan University of Technology, Isfahan, Iran
20: Also at Shiraz University, Shiraz, Iran
21: Also at Facoltà Ingegneria Università di Roma, Roma, Italy
22: Also at Università della Basilicata, Potenza, Italy
23: Also at Laboratori Nazionali di Legnaro dell’ INFN, Legnaro, Italy
24: Also at Università degli studi di Siena, Siena, Italy
25: Also at Faculty of Physics of University of Belgrade, Belgrade, Serbia
26: Also at University of California, Los Angeles, Los Angeles, USA
27: Also at University of Florida, Gainesville, USA
28: Also at Université de Genève, Geneva, Switzerland
29: Also at Scuola Normale e Sezione dell’ INFN, Pisa, Italy
30: Also at INFN Sezione di Roma; Università di Roma “La Sapienza”, Roma, Italy
31: Also at University of Athens, Athens, Greece
32: Also at The University of Kansas, Lawrence, USA
33: Also at Paul Scherrer Institut, Villigen, Switzerland
34: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
35: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
36: Also at Gaziosmanpasa University, Tokat, Turkey
37: Also at Adiyaman University, Adiyaman, Turkey
38: Also at The University of Iowa, Iowa City, USA
39: Also at Mersin University, Mersin, Turkey
40: Also at Izmir Institute of Technology, Izmir, Turkey
41: Also at Kafkas University, Kars, Turkey
42: Also at Suleyman Demirel University, Isparta, Turkey
43: Also at Ege University, Izmir, Turkey
44: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
45: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
46: Also at INFN Sezione di Perugia; Università di Perugia, Perugia, Italy
47: Also at Utah Valley University, Orem, USA
48: Also at Institute for Nuclear Research, Moscow, Russia
49: Also at Los Alamos National Laboratory, Los Alamos, USA
50: Also at Erzincan University, Erzincan, Turkey