MicroRNA Expression Signatures of Bladder Cancer Revealed by Deep Sequencing

Yonghua Han1,2, Jiahao Chen3, Xiaokun Zhao4, Chaozhao Liang5, Yong Wang2,6, Liang Sun2,6, Zhimao Jiang2,6, Zhongfu Zhang2,6, Ruilin Yang2,7, Jing Chen2,6, Zesong Li2,6, Aifa Tang2,6, Xianxin Li1,6, Jiongxian Ye2,6, Zhichen Guan1,6, Yaoting Gui2,6, Zhiming Cai1,2,6*

1 Department of Urology, Peking University Shenzhen Hospital, Shenzhen, China, 2 Guangdong Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen, China, 3 Beijing Genomics Institute at Shenzhen, Shenzhen, China, 4 Department of Urology, Second Xiangya Hospital, Central South University, Changsha, China, 5 Department of Urology, First Affiliated Hospital, Anhui Medical University, Hefei, China, 6 Institute of Urology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China, 7 Shantou University Medical College, Shantou, China, 8 Department of Urology, Second People’s Hospital of Shenzhen, Shenzhen, China

Abstract

Background: MicroRNAs (miRNAs) are a class of small noncoding RNAs that regulate gene expression. They are aberrantly expressed in many types of cancers. In this study, we determined the genome-wide miRNA profiles in bladder urothelial carcinoma by deep sequencing.

Methodology/Principal Findings: We detected 656 differentially expressed known human miRNAs and miRNA antisense sequences (miRNA*s) in nine bladder urothelial carcinoma patients by deep sequencing. Many miRNAs and miRNA*s were significantly upregulated or downregulated in bladder urothelial carcinoma compared to matched histologically normal urothelium. hsa-miR-96 was the most significantly upregulated miRNA and hsa-miR-490-5p was the most significantly downregulated one. Upregulated miRNAs were more common than downregulated ones. The hsa-miR-183, hsa-miR-200b–205, hsa-miR-200c–141 and hsa-miR-17–92 clusters were significantly upregulated. The hsa-miR-143–145 cluster was significantly downregulated. hsa-miR-182, hsa-miR-183, hsa-miR-200a, hsa-miR-143 and hsa-miR-195 were evaluated by Real-Time qPCR in a total of fifty-one bladder urothelial carcinoma patients. They were aberrantly expressed in bladder urothelial carcinoma compared to matched histologically normal urothelium (p < 0.001 for each miRNA).

Conclusions/Significance: To date, this is the first study to determine genome-wide miRNA expression patterns in human bladder urothelial carcinoma by deep sequencing. We found that a collection of miRNAs were aberrantly expressed in bladder urothelial carcinoma compared to matched histologically normal urothelium, suggesting that they might play roles as oncogenes or tumor suppressors in the development and/or progression of this cancer. Our data provide novel insights into cancer biology.

Introduction

Bladder cancer is one of the most prevalent malignancies in the world. About 357,000 bladder cancer cases were newly diagnosed and 145,000 cancer-related deaths were estimated in 2002 [1]. Urothelial carcinoma of the bladder, the most common histopathologic type of bladder cancer, has a variety of genetic and phenotypic characteristics. Many factors, such as chromosomal anomalies, genetic polymorphisms, genetic and epigenetic alterations, contribute to tumorigenesis and progression of urothelial carcinoma of the bladder [2].

MicroRNAs (miRNAs) are endogenous, noncoding RNA molecules of about 22 nucleotides in length that regulate gene expression [3]. They join the RNA-induced silencing complex to regulate their targeted messenger RNA (mRNA) by repressing mRNA translation and/or directing mRNA cleavage [4]. miRNAs play important roles in normal development, cell growth, differentiation, and apoptosis in mammals [5].

More than half miRNA genes are located in cancer-associated genomic regions or in fragile sites [6]. Aberrantly expressed miRNAs have been shown to be associated with many types of cancers. Both losses and gains of miRNA function contribute to cancer development. miRNAs act as oncogenes or tumor suppressors [7]. Most importantly, different cancer types, stages or differentiation states have unique miRNA expression profiles, suggesting that miRNAs can function as novel biomarkers for cancer diagnosis [8,9].

Several previous researches used miRNA microarrays with limited and varied probes to profile the miRNA expression in...
miRNAs in Bladder Cancer

Results

Overview of miRNA profiles

Known miRNA expression files between bladder urothelial carcinoma and matched histologically normal urothelium from each patient were compared to find out the differentially expressed miRNAs. The expression of miRNAs in paired samples were shown by calculating log2Ratio. The procedures are shown as below: (1) Normalize the expression of miRNAs in two samples (tumor versus normal) to get the expression of transcript per million (TPM). Normalized expression = Actual miRNA count/Total count of clean reads*1000000. (2) Calculate fold-change and p value from the normalized expression. Then Calculate log2-Ratio. Fold-change = log2Ratio (tumor/normal). We determined 656 differentially expressed known human miRNAs and miRNA antisense sequences (miRNA*s) in miRBase14.0 in nine bladder urothelial carcinoma patients (Table S1).

We identified a great number of miRNAs and miRNA*s that were significantly upregulated or downregulated in these patients and could discriminate bladder urothelial carcinoma from matched normal urothelium. hsa-miR-96 (log2Ratio = 4.664328) was the most significantly upregulated miRNA and hsa-miR-490-5p (log2Ratio = −5.79794) was the most significantly downregulated one (Table 1). Selected differentially expressed miRNAs were validated by Real-Time qPCR. The Real-Time qPCR findings correlated well with the sequencing analysis. The comparison between Real-Time qPCR findings and deep sequencing results is shown in Figure 1. The counts of upregulated and downregulated miRNAs varied in different patients. Upregulated miRNAs were more common than downregulated ones (Figure 2). Additionally, we identified a remarkable divergence of expression levels between miRNA and paired miRNA*. The expression levels of miRNAs were usually higher than that of paired miRNA*s (Figure 3).

Besides the known miRNAs and miRNA*s, 92 novel miRNA sequence candidates were detected in our study (Table S2). Most of them were expressed at very low levels and only in certain samples. Their expression patterns and possible roles need further investigation.

Expression of clustered miRNAs

We found that a collection of deregulated miRNA clusters were expressed. The hsa-miR-183, hsa-miR-200b−429, hsa-miR-200c−141 and hsa-miR-17−92 clusters were significantly upregulated. The hsa-miR-143−145 cluster was significantly downregulated.

Real-Time qPCR validation

hsa-miR-182, hsa-miR-183, hsa-miR-200a, hsa-miR-143 and hsa-miR-195 were evaluated by Real-Time qPCR in a total of fifty-one bladder urothelial carcinoma patients. hsa-miR-182, hsa-miR-183 and hsa-miR-200a were overexpressed hsa-miR-143 and hsa-miR-195 were underexpressed in bladder urothelial carcinoma compared to matched histologically normal urothelium (p<0.001 for each miRNA) (Table S3).

Table 1. A collection of deregulated miRNAs detected by deep sequencing in nine bladder carcinoma patients.

	Upregulated in cancer	Downregulated in cancer	
miRNA	log2Ratio\(^{a}\)	miRNA	log2Ratio\(^{b}\)
hsa-miR-96	4.664327577	hsa-miR-490-5p	−5.79794
hsa-miR-182	4.095720336	hsa-miR-99a	−5.11761
hsa-miR-183	3.820320401	hsa-miR-490-3p	−4.93958
hsa-miR-429	3.071280539	hsa-miR-125b-2*	−4.68986
hsa-miR-141	3.040138264	hsa-miR-99a	−4.00745
hsa-miR-200c	2.789096641	hsa-miR-133a	−4.20124
hsa-miR-200a	2.77846432	hsa-miR-1	−3.97239
hsa-miR-200b	2.747966283	hsa-miR-125b	−3.32189
hsa-miR-18a	2.527819159	hsa-miR-145	−3.15196
hsa-miR-7	2.553138	hsa-miR-195	−2.11536
hsa-miR-25*	2.398581	hsa-miR-143*	−2.93729
hsa-miR-19b	2.075886368	hsa-miR-145*	−2.78189
hsa-miR-19a	2.05391435	hsa-let-7c	−2.51985
hsa-miR-17	1.732520894	hsa-miR-100	−2.37375
hsa-miR-20a	1.644846659	hsa-miR-143	−2.53496

\(^{a}\)Bladder urothelial carcinoma versus matched histologically normal urothelium, False discovery rate (FDR)=0.1%, p<0.01.

\(^{b}\)Validation results of the five miRNAs indicated that the deep sequencing data correlated well with the Real-Time qPCR results.

Figure 1. The comparison between deep sequencing data and Real-Time qPCR results. For the comparison between deep sequencing data and Real-Time qPCR results, hsa-miR-182, hsa-miR-183, hsa-miR-200a, hsa-miR-143 and hsa-miR-195 determined to be differentially expressed in bladder urothelial carcinoma compared to matched histologically normal urothelium in nine patients by deep sequencing were validated using Real-Time qPCR. The heights of the bars represent standard errors. The validation results of the five miRNAs indicated that the deep sequencing data correlated well with the Real-Time qPCR results. doi:10.1371/journal.pone.0018286.g001

Figure 2. The comparison between expression changes (tumor/normal) in expression across the nine patients for each miRNA. The counts of changes (tumor/normal) in expression across the nine patients for each miRNA. The bars represent standard errors. The validation results of the five miRNAs indicated that the deep sequencing data correlated well with the Real-Time qPCR results. doi:10.1371/journal.pone.0018286.g001

Figure 3. The expression of clustered miRNAs.

bladder cancer and their results did not always indicate consistent results [10–13]. To better understand the role of miRNAs in bladder cancer development and progression, comprehensive analysis of the expression and abundance of miRNAs in this cancer is required. With the merit of the high-throughput deep sequencing technology, genome-wide cancer miRNAs can be quantitatively and accurately determined. Here, we present the genome-wide miRNA profiles in nine pairs of snap-frozen bladder urothelial carcinoma and matched histologically normal urothelium by deep sequencing. We found that a collection of miRNAs were aberrantly expressed in bladder urothelial carcinoma compared to matched histologically normal urothelium, several of which were evaluated by Real-Time qPCR in a total of fifty-one bladder urothelial carcinoma patients.
Figure 2. The counts of upregulated and downregulated miRNAs. Many miRNAs were determined to be significantly upregulated or downregulated in bladder urothelial carcinoma compared to matched histologically normal urothelium in nine patients by deep sequencing. The counts of upregulated and downregulated miRNAs varied across the nine patients. In eight out of nine bladder urothelial carcinoma patients upregulated miRNAs were more common than downregulated ones. In only one patient (Patient No. B13), upregulated miRNAs were less common than downregulated ones. doi:10.1371/journal.pone.0018286.g002

Discussion

The development of high throughput deep sequencing technology provides the possibility of a near complete view of miRNA profiles. Deep sequencing technology has the potential to identify novel tissue specific miRNAs [14]. It determines the absolute abundance of miRNAs and can discover novel miRNAs that have been missed by common cloning and sequencing methods [15].

Deep sequencing technology is superior to microarrays which play roles together. The hsa-miR-200 family of miRNAs (hsa-miR-200a/b/c, hsa-miR-141 and hsa-miR-429) were overexpressed in bladder cancer. The hsa-miR-2006–429 cluster is located on chromosome 1 and the hsa-miR-206–141 cluster is located on chromosome 12. The coexpression pattern of these clusters suggests that they might be controlled by common factors and play roles together. hsa-miR-200b, hsa-miR-200a and hsa-miR-429 miRNAs are encoded by a single polycistronic transcript and negatively regulated by ZEB1 and SIP1 [20]. TGFβ 1 can downregulate the hsa-miR-200 family leading to the upregulation of ZEB1 and ZEB2 [21]. The hsa-miR-200 family are also overexpressed in ovarian and cervical cancers [22–24], suggesting this miRNA family are oncogenic in several cancers. The hsa-miR-17-92 cluster is located on chromosome 13 and acts as oncogenes. E2F1 and E2F3 can directly activate the transcription of these miRNAs [25]. The hsa-miR-143–145 cluster is located on chromosome 5 and downregulated in many cancers, including bladder cancers and their cell lines [13,26]. Our findings provided more evidence to support that the hsa-miR-143–145 cluster is tumor-suppressive in bladder cancer.

In this study, Real-Time qPCR was performed to evaluate the expression patterns of hsa-miR-182, hsa-miR-183, hsa-miR-200a, hsa-miR-141 and hsa-miR-375 in a total of fifty-one bladder urothelial carcinoma patients. hsa-miR-182, hsa-miR-183 and hsa-miR-200a were overexpressed hsa-miR-143 and hsa-miR-195 were underexpressed in bladder urothelial carcinoma compared to matched histologically normal urothelium. These findings supported our deep sequencing analysis.

We compared our results to published data to search for independent external validations. hsa-miR-182, hsa-miR-183 and hsa-miR-224 are upregulated and hsa-miR-1, hsa-miR-143, hsa-miR-145, hsa-miR-127 and hsa-miR-29c are downregulated in bladder urothelial carcinoma compared to matched histologically normal urothelium [27]. Our deep sequencing results were largely consistent with these findings. The upregulation of hsa-miR-182 and hsa-miR-183 and the downregulation of hsa-miR-143 were found in bladder urothelial carcinoma compared to matched histologically normal urothelium.
miRNAs in Bladder Cancer

Patient samples

Written informed consent was obtained from all patients and the study was approved by the Institutional Review Board of Peking University Shenzhen Hospital. Fifty-one patients with bladder urothelial carcinoma who received partial or radical cystectomy were included in the study. Of these patients, nine were used for initial deep sequencing analysis of miRNAs and forty-two were used for an extra evaluation. Bladder urothelial carcinoma was diagnosed histopathologically. Bladder urothelial carcinoma and matched histologically normal urothelium from each subject were snap-frozen in liquid nitrogen immediately after resection. Detailed information of nine bladder urothelial carcinoma patients in deep sequencing set is summarized in Table S4.

Materials and Methods

Patient samples

Written informed consent was obtained from all patients and the study was approved by the Institutional Review Board of Peking University Shenzhen Hospital. Fifty-one patients with bladder urothelial carcinoma who received partial or radical cystectomy were included in the study. Of these patients, nine were used for initial deep sequencing analysis of miRNAs and forty-two were used for an extra evaluation. Bladder urothelial carcinoma was diagnosed histopathologically. Bladder urothelial carcinoma and matched histologically normal urothelium from each subject were snap-frozen in liquid nitrogen immediately after resection. Detailed information of nine bladder urothelial carcinoma patients in deep sequencing set is summarized in Table S4.

RNA Extraction

When the proportion of cancer cells in a tissue section was greater than 80%, the frozen block was subjected to RNA extraction. Total RNA was extracted from fifty-one pairs of snap-frozen bladder urothelial carcinoma and matched histologically normal urothelium using TRizol reagent (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s protocol. The RNA integrity was evaluated by Agilent 2100 BioAnalyzer (Agilent Technologies, Palo Alto, CA, USA).

miRNA sequencing and analysis

Eighteen small RNA libraries prepared from nine pairs of snap-frozen bladder urothelial carcinoma and matched histologically normal urothelium were constructed, amplified and sequenced. Total RNA was used for miRNA sequencing. After 5’adapter and 3’adapter were ligated to small RNAs, Reverse transcription was performed. Then PCR was performed and PCR products were purified. Lastly, miRNA libraries were constructed and sequenced by the Illumina Cluster Station and Genome Analyze (Illumina Inc, CA, USA) at Beijing Genomics Institute at Shenzhen according to the manufacturer’s protocol.

Low quality reads were removed and adapter sequences were accurately clipped with the aid of a dynamic programming algorithm before further analysis. After elimination of duplicate reads, the remaining reads of at least 18 nt were mapped to a human reference genome (hg19) using SOAP V2.0 [30]. To identify sequence tags originating from coding exons, repeats, rRNA, tRNA, snRNA, and snoRNA, UCSC RefGene, Repeat-

Table 2. Overlapping findings between published data and current results.

Control	miRNA upregulated in cancer	miRNA downregulated in cancer	Reference
Urothelium from normals	hsa-miR-193a-3p, hsa-miR-21,	hsa-miR-143, hsa-miR-145,	[13]
	hsa-miR-20a, hsa-miR-184,	hsa-miR-126*, hsa-miR-26a,	
	hsa-miR-492	hsa-miR-125b, hsa-miR-29a	
Urothelium from normals	hsa-miR-223, hsa-miR-26b,		[10]
	hsa-miR-185, hsa-miR-203,		
	hsa-miR-23a, hsa-miR-205		
Urothelium from normals		hsa-miR-133a, hsa-miR-133b,	[28]
		hsa-miR-195, hsa-miR-145,	
		hsa-miR-125b	
Matched urotheliuma	hsa-miR-182, hsa-miR-183,	hsa-miR-1, hsa-miR-101,	[27]
	hsa-miR-224, hsa-miR-196a,	hsa-miR-143, hsa-miR-145,	
	hsa-miR-10a, hsa-miR-203	hsa-miR-127, hsa-miR-29c	
Matched urotheliumb		hsa-miR-143	[26]

aMatched histologically normal urothelium from bladder urothelial carcinoma patients.
doi:10.1371/journal.pone.0018286.t002
miRNAs in Bladder Cancer

Masker, NCBI Refseq data and the ncRNA annotations compiled from the NCBI Genbank data (http://www.ncbi.nih.gov/) were used. To identify novel miRNA genes, all hairpin-like RNA structures encompassing small RNA tags were identified using MIREAP (http://sourceforge.net/projects/mireap).

Real-time qPCR confirmation and statistical methods

Three overexpressed (hsa-miR-182, hsa-miR-183 and hsa-miR-200a) and two underexpressed miRNAs (hsa-miR-143 and hsa-miR-195) were evaluated in all of the patients included in this study. These miRNAs were selected because they were significantly deregulated in the initial deep sequencing analysis. snRNA U6 was used as the endogenous control. Real-time qPCR was performed using the All-in-OneTM miRNA qRT-PCR Detection Kit (GeneCopoeia Inc, Rockville, MD, USA). 10 μg of total RNA was converted to cDNA according to the manufacturer's protocol. PCR was performed in a total reaction volume of 20 μl, including 10 μl of 2x All-in-OneTM qPCR Mix, 2 μl of Universal Adaptor PCR Primer (2 μM), 10 μl of All-in-OneTM qPCR Primer (2 μM), 2 μl of First-Strand cDNA (diluted in 1:5), 50× ROX Reference Dye, 0.4 μl and 3.6 μl double-distilled water. The reactions were performed and analyzed using the ABI PRISM 7000 Fluorescent Quantitative PCR System (Applied Biosystems, Foster City, CA, USA). PCR reactions were performed for cancer and normal cDNA in triplicate for each set. The cycling parameters for PCR were as follows: (1) an initial denaturation step of 15 min at 95°C; (2) 40 cycles, with 1 cycle consisting of 15 s at 95°C, 20 s at 55°C, and 30 s at 70°C. The catalog numbers of All-in-OneTM miRNA qPCR Primers are listed in Table S5.

Quantitative PCR System (Applied Biosystems, Foster City, CA, USA). PCR reactions were performed for cancer and normal cDNA in triplicate for each set. The cycling parameters for PCR were as follows: (1) an initial denaturation step of 15 min at 95°C; (2) 40 cycles, with 1 cycle consisting of 15 s at 95°C, 20 s at 55°C, and 30 s at 70°C. The catalog numbers of All-in-OneTM miRNA qPCR Primers are listed in Table S5. The median in each triplicate was used to calculate relative miRNA concentrations (ΔCt = CtmedianmiRNA − CtmedianU6). Expression fold changes were calculated using 2ΔΔCt methods [31]. The miRNA expression differences between cancer and control were analysed using Student’s t test within SPSS (Version 16.0 SPSS Inc.). A value of p<0.05 was considered as statistically significant.

Supporting Information

Table S1 miRNAs were differentially expressed between bladder urothelial carcinoma and matched histologically normal urothelium. (XLS)

Table S2 The sequences of novel miRNA candidates were detected in bladder urothelial carcinoma and matched histologically normal urothelium. (XLS)

Table S3 Delt-Ct values of Real-Time qPCR in fifty-one bladder urothelial carcinoma patients. (DOC)

Table S4 Patient information in deep sequencing set. (DOC)

Table S5 Primer catalog. (DOC)

Acknowledgments

We thank all the donors who participated in this program, all our coworkers who contributed to the construction of the Urologic Tissue Bank at Peking University Shenzhen Hospital and all those who devoted to the deep sequencing service at Beijing Genomics Institute at Shenzhen.

Author Contributions

Conceived and designed the experiments: YH ZC ZG YG. Performed the experiments: YH Jiahao C. ZL AT JY Jing C. ZZ RY XL CL LS YW XZ JZ. Analyzed the data: YH Jiahao C. ZL AT JY Jing C. ZZ RY XL CL LS YW XZ JZ ZC ZG YG. Wrote the manuscript: YH. Revised the manuscript and gave final approval of the version to be published: ZC ZG YG.

References

1. Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global Cancer Statistics, 2002. CA Cancer J Clin 55: 74–108.
2. Kim WJ, Bae SC (2008) Molecular biomarkers in urothelial bladder cancer. Cancer Sci 99: 646–652.
3. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294: 853–858.
4. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281–297.
5. Alvarez-Garcia I, Miska E (2005) MicroRNA functions in animal development. Cell 116: 281–297.
6. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yu, et al. (2004) MicroRNA profiling in human solid tumors reveals tissue-specific expression and potential targets for cancer therapy. Can Res 64(10): 3022–3026.
7. Liu J, Ziyi G, Jiahao C, Zongyi L, Xuebing F, et al. (2008) MicroRNA profiling in kidney and bladder cancers. Urol Oncol 25(5): 387–92.
8. Stenvang J, Silahtaroglu AN, Lindow M, Elmen J, Kauppinen S (2008) The regions involved in cancers. Proc Natl Acad Sci USA 101: 2999–3004.
9. Carlo M, Croce (2009) Causes and consequences of microRNA dysregulation in cancer. Nature Review Genetics 10: 704–714.
10. Sterngav J, Silahtaroglu AN, Lindow M, Elmen J, Kauppinen S (2008) The utility of LNA in microRNA-based cancer diagnostics and therapeutics. Semin Cancer Biol 18: 89–102.
11. Lee JW, Choi CH, Choi JJ, Park YA, Kim SJ, et al. (2008) Altered MicroRNA expression ratio defining the invasive phenotype in bladder tumors. Cancer Sci 99: 646–652.
12. Wang G, Zhang H, He H, Tong W, Wang B, et al. (2010) Up-regulation of microRNA in bladder tumor tissue is not common. Int Urol Nephrol 42(1): 95–102.
13. Raponi M, Dossey L, Jatkoe T, Wu X, Chen G, et al. (2009) MicroRNA classifiers for predicting prognosis of squamous cell lung cancer. Cancer Res 69(14): 5776–83.
14. Schafer A, Jung M, Mollenkopf HJ, Wagner I, Stephan C, et al. (2010) Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma. Int J Cancer 126(3): 1166–76.
15. Creighton CJ, Reid JJ, Gumate PH (2009) Expression profiling of microRNAs by deep sequencing. Brief Bioinform 10(5): 490–7.
16. Rosenfeld N, Bhat R, Meiri E, Rosenwald S, Spector Y, et al. (2008) MicroRNAs accurately identify cancer tissue origin. Nat Biotechnol 26(4): 462–9.
17. Wyman SK, Parkin RK, Mitchell PS, Fritz BK, O'Briant K, et al. (2009) Repertoire of microRNAs in epithelial ovarian cancer as determined by next generation sequencing of small RNA cDNA libraries. PLoS ONE 4: e5111.
18. Lee JW, Choi CH, Jiahao C, Park WA, Kim SJ, et al. (2008) Altered MicroRNA expression in cervical carcinomas. Clin Cancer Res 14: 2535–2542.
19. Witten D, Tibshirani R, Gu SG, Fire A, Liu WO (2010) Ultra-high throughput sequencing-based small RNA discovery and discrete statistical biomarker analysis in a collection of cervical tumours and matched controls. BMC Biology 8: 56.
20. Mendell JT (2008) miRiad roles for the miR-17-92 cluster in development and disease. Cell 133(2): 217–225.
28. Ichimi T, Enokida H, Okuno Y, Kunimoto R, Chiyomaru T, et al. (2009) Identification of novel microRNA targets based on microRNA signatures in bladder cancer. Int J Cancer 125(2): 345–352.

29. Hartmann A, Moser K, Kriegmair M, Hofstetter A, Hofstadter F, et al. (1999) Frequent genetic alterations in simple urothelial hyperplasias of the bladder in patients with papillary urothelial carcinoma. Am J Pathol 154(3): 721–7.

30. Li R, Yu C, Li Y, Lam TW, Yiu SM, et al. (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25(15): 1966–7.

31. Schmittgen TD, Lee EJ, Jiang J, Sarkar A, Yang L, et al. (2008) Real-time PCR quantification of precursor and mature microRNA. Methods 44: 31–38.