Brassinosteroid-mediated pesticide detoxification in plants: A mini-review

Anket Sharma1,2*, Vinod Kumar1,2, Rakesh Kumar2, Babar Shahzad1, Ashwani Kumar Thukral1 and Renu Bhardwaj1

Abstract: To protect crops from pests, pesticides are used. Pesticides also cause toxicity to crop plants and persist in plant parts in the form of pesticide residues. Brassinosteroids (BRs) are known for their protective role in plants under various abiotic stresses like heavy metal, drought, temperature, pesticide etc. BRs ameliorate pesticide toxicity in intact plants by activating the antioxidative defence system. BRs also enhance the degradation of pesticides that leads to reduction in pesticide residues in plant parts. Present review gives an updated information about the protective roles of BRs in plants and the underlying mechanisms under pesticide stress.

Subjects: Agriculture & Environmental Sciences; Botany; Plant Biology

Keywords: brassinosteroids; pesticide detoxification; pesticide residues; oxidative stress; antioxidative defence system

1. Introduction

Plants are attacked by various pests, resulting in reduction of yield as well as the quality of crops, and to check these pests, various pesticides are utilized (Goh, Yiu, Wong, & Rajan, 2011). However, the extensive use of pesticides may cause toxicity to plants which may impair the plant metabolism and may persist in plant parts in the form of pesticide residues (Table 1, Sharma, Bhardwaj, Kumar, & Thukral, 2016; Xia et al., 2009; Zhou et al., 2015). Plants detoxify pesticides by enzyme mediated three phased detoxification system (Cherian & Oliveira, 2005; Coleman, Blake-Kalff, & Davies, 1997). First of all the activation of pesticides is catalysed by enzymes P450 monooxygenase, peroxidase and carboxylesterase. After this, conjugation of activated pesticides to glutathione and glucose is catalysed by glutathione-S-transferase and UDP-glycosyltransferase respectively. Finally less toxic pesticide metabolites are stored in the vacuoles/apoplast.

Brassinosteroids (BRs) are plant polyhydroxysteroids which were discovered by Grove et al. (1979). BRs are distributed throughout the plant kingdom and are present in small concentrations in young plant parts including the pollens (Clouse & Sasse, 1998; Gupta, Bhardwaj, Nagar, & Kaur, 2004; Kanwar, Poonam, & Bhardwaj, 2015). Approximately sixty types of BRs have been identified (Haubrick & Assmann, 2006), out of which 24-epibrassinolide (EBR, C28H48O6, Figure 1) and
Table 1. Persistence of pesticides in various plant parts

Pesticide	Plant	Application mode	Concentration (pesticide applied)	Plant part analyzed	Time after treatment (Days)	Residues detected (mg Kg⁻¹)	References
Acetamiprid	Brassica juncea L.	Spray	40 g ai ha⁻¹	Young plant	1	0.42	Pramanik, Bhattacharyya, Dutta, Dey, and Bhattacharyya (2006)
					7	0.01	
Capsicum annuum L.	Spray	40 g ai ha⁻¹	Fruits	1	0.03	Sanyal, Chakma, and Alam (2008)	
					7	0.009	
Atrazine	Oryza sativa L.	Hoagland medium	0.8 mg L⁻¹	Leaves	2	2.94	Zhang, Lu, Zhang, Tan, and Yang (2014)
					6	4.26	
β-Cyfluthrin	Cajanus cajan L.	Spray	25 g ai ha⁻¹	Green pods	1	13.73	Mukherjee, Gopal, and Mathur (2007)
					10	3.45	
	Cicer aretinum L.	Spray	25 g ai ha⁻¹	Green pods	1	5.98	Chahil, Mandal, Sahoo, Battu, and Singh (2014)
					10	1.22	
		Spray	36 g ai ha⁻¹	Leaves	1	0.57	Mandal, Chahil, Sahoo, Battu, and Singh (2010)
					5	0.06	
					10	1.22	Mandal, Chahil, Sahoo, Battu, and Singh (2010)
					5	0.10	
	Solanum melongena L.	Spray	25 g ai ha⁻¹	Fruits	1	0.23	Sinha and Gopal (2002)
					7	0.11	
		Spray	36 g ai ha⁻¹	Fruits	1	0.08	Mandal, Chahil, Sahoo, Battu, and Singh (2010)
					5	0.01	
Chlorpyrifos	Capsicum annuum L.	Spray	1,000 g ai ha⁻¹	Fruits	1	1.30	Jyot, Mandal, Battu, and Singh (2013)
					7	0.47	
Cypermethrin	Brassica oleracea L. var. Snowball 16	Spray	100 g ai ha⁻¹	Heads	1	0.86	Singh, Singh, and Battu (1990)
					3	0.08	
					Leaves	0.35	
					3	0.08	
	Capsicum annuum L.	Spray	100 g ai ha⁻¹	Fruits	1	0.28	Jyot et al. (2013)
					7	0.12	
Deltamethrin	Brassica oleracea L. var. Snowball 16	Spray	24 g ai ha⁻¹	Heads	1	0.13	Singh et al. (1990)
					2	0.06	
					Leaves	0.09	
					2	0.04	

(Continued)
Pesticide	Plant	Application mode	Concentration (pesticide applied)	Plant part analyzed	Time after treatment (Days)	Residues detected (mg Kg⁻¹)	References
Fenvalerate	B. oleracea L. var. Snowball 16	Spray	100 g ai ha⁻¹	Heads	1	1.07	Singh et al. (1990)
				Leaves	3	0.25	
					1	0.25	
					3	0.03	
Flubendiamide	Abelmoschus esculentus L.	Spray	48 g ai ha⁻¹	Fruits	1	0.41	Das, Mukherjee, and Das (2012)
	Brassica oleracea L.	Spray	48 g ai ha⁻¹	Head	1	0.41	Mohapatra et al. (2010)
	Cicer arietinum L.	Spray	96 g ai ha⁻¹	Leaves	1	0.86	Singh et al. (2011)
					5	0.22	
	Cucumis anguria L.	Spray	120 g ai ha⁻¹	Fruits	1	1.03	Paramasivam, Selvi, and Chandrasekaran (2014)
	Lycopersicon esculentum L.	Spray	100 g ai ha⁻¹	Fruits	1	0.31	Paramasivam and Banerjee (2012)
			96 g ai ha⁻¹	Fruits	1	0.08	Kooner, Sahoo, Singh, and Battu (2010)
					3	0.22	
Fipronil	C. annuum L.	Spray	80 g ai ha⁻¹	Fruits	1	1.01	Xavier et al. (2014)
	Saccharum officinarum L.	Sand	300 g ai ha⁻¹	Leaves	7	0.66	Mandal and Singh (2014)
					45	0.16	
Imidacloprid	Beta vulgaris atissima D.	Seed	900 μg⁻¹ seed	Leaves	21	15.2	Westwood, Bean, Dewar, Bromilow, and Chamberlain (1998)
					97	0.5	
	Brassica campestris L.	Spray	40 g ai ha⁻¹	Herbage	1	1.86	Kumar and Dikshit (2001)
					15	0.17	
		Seed	10 g ai Kg⁻¹ seed	Herbage	30	5.39	
					82	0.33	

(Continued)
Pesticide	Plant	Application mode	Concentration (pesticide applied)	Plant part analyzed	Time after treatment (Days)	Residues detected (mg Kg⁻¹)	References	
B. juncea L.	Spray	40 g ai ha⁻¹	Leaves	1	2.98	10	0.90	Mukherjee and Gopal (2000)
B. oleracea L. var. capitata	Spray	40 g ai ha⁻¹	Leaves	1	6.14	10	0.97	Gajbhiye, Gupta, and Gupta (2004)
B. oleracea L. var. Golden acre	Spray	40 g ai ha⁻¹	Leaves	2	0.18	5	0.03	
B. oleracea L. var. Ketki	Spray	40 g ai ha⁻¹	Leaves	2	0.32	5	0.03	
C. aretinum L.	Spray	84 g ai ha⁻¹	Leaves	1	0.72	5	0.34	Chahil et al. (2014)
Cucumis sativus L.	Spray	60 g ai ha⁻¹	Fruits	1	2.54	7	1.01	Hassanzadeh, Esmaili Sar, and Bomramifar (2012)
	Spray	125 g ai ha⁻¹	Fruits	1d	0.37	15	0.03	Nasr, Abbassy, Marzouk, and Mansy (2014)
L. esculentum L.	Spray	100 g ai fe⁻¹	Leaves	1	2.35	7	0.76	Romeh, Mekky, Ramadan, and Hendawi (2009)
			Fruits	1	0.58	7	0.25	
Oryza sativa L.	Spray	80 g ai ha⁻¹	Leaves	7	9.40	45	0.59	Akoijam and Singh (2014)
Punica granatum L.	Spray	54 g ai ha⁻¹	Peel	1	0.33	7	0.11	Kodam, Deore, and Umate (2014)
			Whole fruit	7	0.25	7	0.05	
Pesticide	Plant	Application mode	Concentration (pesticide applied)	Plant part analyzed	Time after treatment (Days)	Residues detected (mg Kg\(^{-1}\))	References	
----------------------	---------------------------	------------------	-----------------------------------	--------------------	-----------------------------	-----------------------------------	----------------------------------	
Saccharum officinarum L.	Soil	Spray	80 g ai ha\(^{-1}\)	Leaves	7	12.99	Sharma and Singh (2014)	
					45	2.37		
Solanum melongena L.	Spray		84 g ai ha\(^{-1}\)	Fruits	1	0.25	Mandal et al. (2010)	
					5	0.13		
			40 g ai ha\(^{-1}\)	Fruits	1	2.37	Mukherjee and Gopal (2000)	
					10	0.37		
Vitis vinifera L.	Spray		160 g ai ha\(^{-1}\)	Fruit	1	1.02	Mohapatra et al. (2011)	
Zea mays L.	Seed		1.0 mg\(^{-1}\) seed	Roots	45	0.29	Donnarumma et al. (2011)	
					60	0.12		
				Leaves	45	0.013		
					60	0.005		
				Stem	45	0.008		
					60	0.006		
Penconazole	*Lycopersicon esculentum* L.	Spray	10 g ai fe\(^{-1}\)	Leaves	1	1.22	Romeh et al. (2009)	
					7	0.50		
				Fruits	1	0.17		
					7	0.12		
Profenofos	*L. esculentum* L.	Spray	540 g ai fe\(^{-1}\)	Leaves	1	26.06	Romeh et al. (2009)	
					7	0.33		
				Fruits	1	3.47		
					7	1.28		
Tetraconazoil	*Cucumis sativus* L.	Spray	50 g ai ha\(^{-1}\)	Fruits	1	0.10	Nasr et al. (2014)	
					11	0.002		
Thioclopid	*L. esculentum* M	Spray	96 g ai ha\(^{-1}\)	Fruits	1	0.14	Kooner et al. (2010)	
					3	0.05		
28-homobrassinolide (HBR, C_{29}H_{50}O_{6}, Figure 1) have been widely used for physiological studies (Vardhini & Anjum, 2015). BRs are reported to play an important role for the recovery of plants under abiotic stress conditions like salts, heavy metals and pesticides by activating the antioxidative defence system of the plants (Bajguz, 2009; Krishna, 2003; Shahzad et al., 2018; Sharma, Bhardwaj, & Pati, 2015; Sharma, Kumar, Thukral, & Bhardwaj, 2016). Additionally, exogenous application of BRs has also been observed to enhance the activities of enzymes involved in three phased pesticide detoxification system mentioned above (Xia et al., 2009; Zhou et al., 2015). BRs also modulate the expression of genes involved in pigment and secondary metabolite biosynthesis under pesticide stress (Sharma, Thakur, et al., 2016). Keeping in mind about the role of BRs in pesticide stress management, the present review explains BR-regulated pesticide detoxification in plants.

2. Climatic/environmental factors and BRs
The main factor which is an integral part of climate change is the CO_{2} concentration in the environment. It is believed that CO_{2} interacts with BRs, resulting in the regulation of plant growth. Interaction between CO_{2} and BRs increase the plant growth, sugar and starch contents, and regulates various the activities of enzymes involved in various photosynthetic and Benson-Calvin cycle by regulating the genes encoding them in cucumber. These genes encodes various enzymes include ribulose-1,5-bisphosphate carboxylase/oxygenase, ribulose-1,5-bisphosphate carboxylase/oxygenase activase, sedoheptulose-1,7-bisphosphatase), ribulose-5- phosphate kinase, triose-3-phosphate isomerase, glyceral-3-phosphate kinase, fructose-1,6-bisphosphatase (Jiang et al., 2012). Environmental factors like light and temperature are involved in the regulation of gene expression in tobacco plants after interacting with BRs. There exist a direct interaction between BR-activated transcript factor (BZR1), and dark and heat transcription factor i.e. phytochrome interacting factor 4 (PIF4). This interaction after perceiving environmental signals is responsible for the regulation of various genes involved in modulation of plant metabolism to regulate these climatic factors (Oh, Zhu, & Wang, 2012). It has been noticed that BRs produced under Ni heavy metal stress, further enhanced the resistance of mustard plants. They regulated the antioxidative defense system of plants to counterattack the toxicity of heavy metals (Kanwar et al., 2012). Arsenic toxicity has also been reported to regulate the biosynthesis of BRs in mustard plants (Kanwar et al., 2015). Under other climatic conditions like drought, BRs interact with other plant growth regulators (PGRs) to regulate biochemical processes of plants (Yuan et al., 2010). Moreover, crosstalk of BRs with other PGRs like auxins, abscisic acid, cytokinins, ethylene, gibberellins, salicylic acid etc. is also responsible for BR-mediated regulation of various plant metabolic processes (Choudhary, Yu, Yamaguchi-Shinozaki, Shinozaki, & Tran, 2012).

Pesticides are absorbed by plants through roots or leaf surface. There are many environmental factors like temperature, precipitation and physiochemical characteristics of soil, which affect the uptake of pesticides and their metabolism in plants (Finlayson & MacCarthy, 1973). These absorbed pesticides may get metabolized by the internal detoxification system of plants or they get accumulated in various plant parts resulting in pesticide bio-magnification (Mwevura, 2000). Since BRs are known to protect plants from various environmental factors like temperature, drought, soil-salt...
3. Pesticide toxicity in plants

Pesticides cause toxicity to plants by means of chlorosis, necrosis and vein discoloration, leading to retarded growth and development by reducing photosynthetic efficiency, nitrogen and carbon metabolism (Kaňa et al., 2004). Pesticide application was also reported to inhibit photosynthesis by negatively affecting the plant photosystems (Xia et al., 2006). In rice seedlings, imidacloprid and chlorpyrifos were reported to reduce the root length, shoot length, fresh weight and protein content. These pesticides were also reported to degrade the chlorophyll pigment (Sharma, Bhardwaj, & Pati, 2012, 2013). Sharma et al. (2015) reported that imidacloprid and chlorpyrifos cause oxidative stress to rice seedlings by generating reactive oxygen species (ROS) like superoxide anions and hydrogen peroxide (H_2O_2). In tomato plants, Zhou et al. (2015) also reported the enhanced levels of H_2O_2 after the application of chlorothalonil pesticide. Moreover, NADPH oxidases are involved in the production of reactive oxygen species (Kaur, Sharma, Guruprasad, & Pati, 2014). Additionally, $RBOH1$ (respiratory burst oxidase homologue 1) has been reported to regulate the levels of H_2O_2 in tomato plants under pesticide stress (Zhou et al., 2015). In cucumber plants, phytotoxic effects of various pesticides were studied by Xia et al. (2006). They observed that application of pesticides negatively affects the photosynthetic machinery of cucumber plants, resulting in reduced photosynthetic rate (Pn), stomatal conductance (Gs) and intercellular CO2 (Ci). These researchers also reported the inhibitory effects of pesticides on quantum efficiency (F_v/F_m) as well as quantum efficiency (φ) of PS II. Siddiqui and Ahmed (2006) studied the effect of six different pesticides (topsin-M, demacron, benlate, cypermethrin, dimethride and chlorosulfuron) on soybean plants. They found that at higher concentrations (0.5 and 0.75 g L$^{-1}$), these pesticides cause declined relative growth rate and crop growth rate. Reduced total phenol and ascorbic acid contents in potatoes were observed after the application of imidacloprid pesticide (Chauhan, Agrawal, & Srivastava, 2013). Application of pesticides (mancozeb, flusilazol, dithianon, pirimicarb) on apple tree was reported to inhibit the photosynthesis (Untiedt & Blanke, 2004). In mustard plants reduction in photosynthesis was noticed by Sharma, Kumar, Singh, Thukral and Bhardwaj (2016) after imidacloprid insecticide application. In *Saccharina japonica*, application of diuron pesticide resulted in retarded growth, decreased carotenoid and chlorophyll content, optimal quantum yield and maximum electron transport rate (Kumar, Choo, Yeo, Seo, & Han, 2010). Studies carried out by Sharma, Kumar, Kohli, Thukral, and Bhardwaj (2015a), Sharma, Kumar, Singh, Thukral, and Bhardwaj (2015b) reported the decreased levels of various phytochemicals after the application of imidacloprid pesticide in *Brassica juncea* plants. In response to pesticide toxicity, plants have the mechanism to detoxify pesticides, discussed already in introduction. Additionally, recent studies carried out by Huang, Lu, Zhang, Luo, and Yang (2016) demonstrated that laccase encoding genes in rice were involved in the degradation of atrazine and isoproturon. They also reported that laccase activity was increased in pesticide treated plants, in comparison to control plants, which confirmed the possible role of laccases in pesticide detoxification. Lu et al. (2016) reported the role of DNA methylation in the detoxification of atrazine in rice by regulating the genes like *CYP70IA8*.

4. Physiological and abiotic stress protecting roles of BRs

Important roles played by BRs in physiology of plants include process of cell elongation and differentiation, development of pollen tube, differentiation of vascular bundles, reassembling of nucleic acids resulting in protein formation, activation of antioxidative defense system of plants and regulation of photosynthesis (Sasse, 2003; Sharma et al., 2015; Xia et al., 2006; Yu et al., 2004). In dicots, BRs are reported to enhance the elongation of epicotyls, hypocotyls and peduncles, whereas in monocots, they increase the elongation of coleoptiles and mesocotyls (Clouse, 1996; Mandava, 1988).
BRs like EBR and HBR have been observed to play an important role in promotion of seed germination (Sasse, Smith, & Hudson, 1995; Sharma & Bhardwaj, 2007). The percentage of germination was observed to increase in *Cicer arietinum* and *Triticum aestivum* after seed application of HBR (Ali, Hayat, & Ahmad, 2005; Hayat & Ahmad, 2003). Increase in yield, carbonic anhydrase activity and net photosynthetic rate was observed when HBR was applied exogenously to *B. juncea* plants (Hayat, Ahmad, Mobin, Hussain, & Fariduddin, 2000). The net photosynthetic rate was reported to be enhanced by the application of BRs in various plant species including *B. juncea, C. sativus, G. max, O. sativa* and *V. radiata* (Fariduddin, Ahmad, & Hayat, 2003; Farooq et al., 2009; Hayat, Ali, Aiman Hasan, & Ahmad, 2007; Sharma, Kumar, Singh, Thukral, Bhardwaj, 2016; Xia et al., 2006; Zhang, Zhai, Tian, Duan, & Li, 2008).

BRs also play a role in stimulation of flowering in *Arabidopsis thaliana* (Domagalska, Sarnowska, Nagy, & Davis, 2010). Deluc et al. (2007) found significant role of brassinosteroids in fruit ripening. Pilati et al. (2007) concluded that accumulation of BRs during the process of fruit development can lead to the ripening of fleshy fruits. Many researchers have also reported the enhanced ripening of cucumber, grapes, rice, tomato and yellow passion fruit after the application of BRs (Fu et al., 2008; Fujii & Saka, 2001; Gomes et al., 2006; Symons et al., 2006; Vardhini & Rao, 2002).

BRs are also reported to affect the expression of other genes that plays important role in plant defense as well as biosynthesis of other plant growth regulators (Bari & Jones, 2009). Several studies have documented their important role in protecting plants from adverse environmental stress conditions like drought, heavy metals, pesticides, salinity and viruses (Krishna, 2003; Kanwar et al., 2012, 2013, 2014; Özdemir, Bor, Demiral, & Türkkan, 2004; Sharma, Thakur, et al., 2016; Wachsman, López, Ramírez, Galagovsky, & Coto, 2000). Recent studies carried out by Derevyanchuk, Litvinovskaya, Khripach, Martinec, and Kravets (2015) have demonstrated the role of EBR in modulation of respiration in *A. thaliana* under salt stress. BRs help in amelioration of the toxic effects of various abiotic stress conditions in plants by activating the antioxidative defense system (Vardhini & Anjum, 2015). Moreover, physiological roles of BRs in plants have also been extensively reviewed by Clouse (2015). Figure 2 shows various abiotic stresses which are regulated by BRs.

Figure 2. Brassinosteroids modulate plant responses under different abiotic stresses.
5. Amelioration of pesticide toxicity by BRs in plant systems

As a consequence of pesticide toxicity, plant growth and development are negatively affected due to generation of reactive oxygen species. However, in response to this pesticide stress, plants internal defence system (antioxidative defence system) gets activated to cope up with pesticide toxicity. Moreover, BR application further triggers this antioxidative defence system of plant, resulting in enhancing resistance of plants to pesticide toxicity (Figure 3). In cucumber plants, exogenous application of 24-EBL resulted in increased photosynthetic rate and stomatal conductance, which were earlier negatively affected by pesticide application (Xia et al., 2006). They reported that 0.48 g L⁻¹ chlorpyrifos application decreased photosynthetic rate and stomatal conductance by 81.01 and 71.97% respectively when compared to control plants. However the application of 24-EBL enhanced photosynthetic rate and stomatal conductance by 395 and 277% respectively when compared to chlorpyrifos treated plants. These researchers also observed that application of 24-EBL significantly increased the quantum efficiency of PSII and phytochemical quenching co-efficient. Sharma, Kumar, Singh, Thukral, Bhardwaj (2016) also observed the recovery of growth and photosynthetic parameters in *B. juncea* plants raised from 24-EBL treated seeds and grown under imidacloprid toxicity. Antioxidative defence system of plants gets activated under pesticide stress (Sharma et al., 2012, 2013, 2015; Xia et al., 2009; Zhou et al., 2015). 24-EBL and 28-HBL were reported to enhance the activities of antioxidative enzymes like superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), glutathione peroxidase (GPX), glutathione reductase (GR), dehydroascorbate reductase (DHAR), monodehydroascorbate reductase (MDHAR), and contents of protein, proline, under chlorpyrifos (CPF) and imidacloprid (IMI) pesticide stress in rice seedlings (Sharma et al., 2012, 2013, 2015). They also noticed the stimulatory effect of 24-EBL and 28-HBL on overall growth of rice seedlings under CPF and IMI toxicity. Expression and activities of enzymes involved in enzyme mediated pesticide detoxification system were reported to enhance after the application of BRs (Xia et al., 2009; Zhou et al., 2015). Seed treatment of 24-EBL (before sowing) has been also reported to significantly enhance the levels of various phytochemicals which were earlier decreased by the application of IMI pesticide in *Brassica juncea* plants (Sharma et al., 2015a, 2015b). Contents of non-enzymatic antioxidants like polyphenols, ascorbic acid, tocopherol and glutathione were also observed to enhance in *Brassica juncea* plants raised from seeds soaked in 100 nM 24-EBL before sowing in IMI (250, 300 and 350 mg IMI Kg⁻¹ soil) supplemented soils (Sharma, Kumar, Thukral, Bhardwaj, 2016b). Recent studies carried out by Sharma, Thakur, et al. (2016), Sharma, Kumar, Kanwar, Thukral, and Bhardwaj (2017) has reported that exogenous applied EBR enhanced the contents of organic acids.
(citric, fumaric, malic, and succinic acid) by modulating the expression of genes involved in their metabolism (CS-citrate synthse, FH-fumarate hydratase, SUCLG1-succinyl Co-A ligase, SDH-succinate dehydrogenase, and MS-malate synthase) in *B. juncea* seedlings under pesticide toxicity. Moreover, expression of PAL (phenylalanine ammonialyase) was also observed to be regulated by the application of EBR under pesticide stress. BRs are also known to recover the elemental composition of Indian mustard plants under IMI toxicity (Sharma, Kumar, Kanwar, Thukral, & Bhardwaj, 2016). Recently, recovery in amino acid and protein content was reported by Sharma, Kumar, Thukral, and Bhardwaj (2017) in the green leaves of Indian mustard plants which were germinated from seeds treated with 24-EBL and grown in soil containing IMI.

6. Role of BRs in reducing pesticide residues

Exogenous application of BRs can significantly reduce the pesticide residues in intact plants (Sharma, Bhardwaj, Kumar, Thukral, 2016; Sharma, Kumar, Bhardwaj, & Thukral, 2017; Sharma, Thakur, et al., 2017; Zhou et al., 2015). This might be due to the BR-regulated expression of various genes encoding key enzymes involved in pesticide detoxification including GST, P450 monooxygenase, POD and carboxylesterase (Sharma, Thakur, Kumar, Kesavan, Thukral, & Bhardwaj 2017; Xia et al., 2009). A significant decline in IMI residues were seen in seedlings, green leaves and pods of *Brassica juncea* after the seed pre-sowing treatment with 24-EBL and grown in solutions/soils amended with IMI (Sharma, Bhardwaj, Kumar, Thukral, 2016; Sharma, Kumar, Bhardwaj, & Thukral, 2017; Sharma, Thakur, Kumar, Kesavan, Thukral, & Bhardwaj 2017). Reduction in CHT residues in tomato plants and grape-vine were observed by Zhou et al. (2015) and Wang et al. (2017) after the exogenous application of 24-EBL. Xia et al. (2009) studied that, 24-EBL application reduced the pesticide residues (chlorpyrifos, carbenazim, cypermethrin and chlorothalonil) in cucumber plants by more than 30%. They further reported that reduced pesticide residues were accompanied by the enhanced activity of antioxidative enzymes including peroxidase (POD), glutathione-s-transferase (GST) and glutathione reductase (GR). These researchers also observed that exogenous 24-EBL application significantly enhanced the expression of *P450* (P450 monooxygenase), GST and MRP (Multidrug resistance associated protein) genes responsible for pesticide detoxification in plants. BRs triggered the pesticide degradation in intact plants by 34 to 71% (chlorpyrifos in cucumber, tea, rice, broccoli and chinese cabbage, phoxim in tea and chinese chives, chlorothalonil in tomato, celery, strawberry and asparagus, omethoate in cucumber, cypermethrin in cucumber, tea, chinese cabbage and broccoli, carbofuran in garlic and chinese chives, and 3-hydroxycarbofuran in chinese chives) (Zhou et al., 2015). They also reported that 24-EBL enhanced the expression of genes under chlorothalonil (CHT) pesticide stress in tomato plants. Recently, it has been reported that mitogen activated protein kinase (MAPK) and nitric oxide (NO) play an important role in BR-mediated pesticide detoxification (Yin et al., 2016). They also demonstrated that SimPK1 and SimPK2 were regulated by EBR resulting in the metabolism of CHT pesticide. EBR was also noticed to regulate the activities of GST, nitrate reductase, S-nitrosoglutathione reductase and contents of S-nitrosothiol and glutathione accompanied with the reduction of CHT residues in tomato plants.

7. Conclusions and future prospects

On the basis of various reports explaining the role of BRs in pesticide detoxification and amelioration of toxicity, it is concluded that BRs hold strong future prospects in crop protection and can decrease the levels of pesticide residues in food crops. Additionally, total transcriptome sequencing/genome wide expression studies after the application of BRs in plants under pesticide toxicity can add new information to better understanding the protective roles of BRs. Moreover, studying important secondary metabolites and stress signalling pathways can help to understand the exact mechanism behind the responses of plants to pesticide stress. Further, crosstalk studies among different plant growth regulators under pesticide stress can add more information to pesticide stress management in plants.
Acknowledgements
Department of Science and Technology, Government of India, New Delhi is duly acknowledged for providing INSPIRE fellowship to A. Sharma.

Funding
The authors received no direct funding for this research.

Author details
Anket Sharma1,2
E-mail: anketsharma@gmail.com
ORCID ID: http://orcid.org/0000-0002-5251-9045
Vinod Kumar1
E-mail: vinodverma507@gmail.com
Rakesh Kumar1
E-mail: raakysh@gmail.com
Babar Shahzad3
E-mail: bs_tahir786@yahoo.com
Ashwani Kumar Thukral1
E-mail: akthukral.gndu@gmail.com
Renu Bhardwaj1
E-mail: renubhrdwaj82@gmail.com

1 School of Land and Food, University of Tasmania, Hobart, Tasmania, Australia.
2 Department of Botany, DAV University, Sarmastpur, Jalandhar 144012, Punjab, India.
3 School of Land and Food, University of Tasmania, Hobart, Tasmania, Australia.

Funding
The authors received no direct funding for this research.

References
Akoijam, R., & Singh, B. (2014). Persistence and metabolism of imidacloprid in rice. Bulletin of Environmental Contamination and Toxicology, 92(5), 609–615. https://doi.org/10.1007/s00128-014-1190-5
Ali, R., Hoyat, S., & Ahmad, A. (2009). Response of germinating seeds of Cicer arietinum to 28-homobrassinolide and/or potassium. General and Applied Plant Physiology, 31(1–2), 55–63.
Böjüz, A. (2009). Brassinosteroid enhanced the level of asbiscic acid in Chlorella vulgaris subjected to short-term heat stress. Journal of Plant Physiology, 166(8), 882–886. https://doi.org/10.1016/j.jplph.2008.10.004
Bari, R., & Jones, J. D. (2009). Role of plant hormones in plant defence responses. Plant Molecular Biology, 69(4), 473–488. https://doi.org/10.1007/s11103-008-9435-0
Chahil, G. S., Mandal, K., Sahoo, S. K., Battu, R. S., & Singh, B. (2014). Risk assessment of β-cyfluthrin and imidacloprid in chickpea pods and leaves. Ecotoxicology and Environmental Safety, 101, 177–183. https://doi.org/10.1016/j.ecoenv.2013.12.010
Chauhan, S. S., Agrawal, S., & Srivastava, A. (2013). Effect of imidacloprid insecticide residue on biochemical parameters in potatoes and its estimation by HPLC. Asian Journal of Pharmaceutical and Clinical Research, 6, 114–117.
Cherian, S., & Oliveira, M. M. (2005). Transgenic plants in phytoremediation: recent advances and new possibilities. Environmental Science & Technology, 39(24), 9377–9390. https://doi.org/10.1021/es0511341
Choudhary, S. P., Yu, J. Q., Yamaguchi-Shinozaki, K., Shinozaki, K., & Tran, L. S. P. (2012). Benefits of brassinosteroid crosstalk. Trends in Plant Science, 17(10), 594–605. https://doi.org/10.1016/j.tplants.2012.05.012
Clouse, S. D. (1996). Molecular genetic studies confirm the role of brassinosteroids in plant growth and development. The Plant Journal, 10(1), 1–8. https://doi.org/10.1046/j.1365-313X.1996.1010001.x
Clouse, S. D. (2015). A history of brassinosteroid research from 1970 through 2005: Thirty-five years of phytochemistry, physiology, genes, and mutants. Journal of Plant Growth Regulation, 34(4), 828–844. https://doi.org/10.1007/s10046-015-9540-7
Clouse, S. D., & Sasse, J. M. (1998). Brassinosteroids: Essential regulators of plant growth and development. Annual Review of Plant Physiology and Plant Molecular Biology, 49(1), 427–451. https://doi.org/10.1146/annurev.arplant.49.1.427
Clement, J., Blake-Koff, M., & Davies, E. (1997). Detoxification of xenobiotics by plants: Chemical modification and vacuolar compartmentation. Trends in Plant Science, 2(4), 144–151. https://doi.org/10.1016/S1360-1385(97)01019-4
Das, S. K., Mukherjee, L. & Das, S. K. (2012). Dissipation of flubendiamide in/on okra (Abelmoschus esculentus (L.) Moench) fruits. Bulletin of Environmental Contamination and Toxicology, 88(3), 381–384. https://doi.org/10.1007/s00128-011-0491-9
Deluc, G. L., Grimplet, J., Wheatley, M. D., Tillett, R. L., Quilici, D., Osborne, C., ... Craker, L. E. (2007). Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development. BMC Genomics, 8(1), 429. doi:10.1186/1471-2164-8-429
Derevyanchuk, M., Litvinovskaya, R., Khripach, V., Martinec, J., Derevyanchuk, M., Litvinovskaya, R., Khripach, V., Martinec, J., ... & Moench, J. (2007). Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development. BMC Genomics, 8(1), 429. doi:10.1186/1471-2164-8-429
Fariduddin, Q., Ahmad, A., & Hayat, S. (2003). Photosynthetic parameters in potatoes and its estimation by HPLC. Asian Journal of Pharmaceutical and Clinical Research, 6, 114–117.
https://doi.org/10.1016/j.jplph.2008.10.004
Furiduddin, Q., Ahmad, A., & Hayat, S. (2003). Photosynthetic response of Vigna radiata to pre-sowing seed treatment with 28-homobrassinolide. Photosynthetica, 41(2), 307–310. https://doi.org/10.1023/B:PHOT.0000011968.79057.b1
Foroug, M., Wahid, A., & Basra, S. M. A. (2009). Improving water use efficiency in wheat by application of 24-epibrassinolide. Journal of Agronomy and Crop Science, 195(4), 262–269. https://doi.org/10.1111/j.1439-037X.2009.0195.issue-4
Finlayson, D. G., & MacCarthy, H. R. (1973). Pesticide residues in plants. In C. A. Edwards (Ed.), The chemistry and biology of pesticides (pp. 57–86). London and New York: Plenum Press. https://doi.org/10.1007/978-1-4615-8942-6
Fu, F. Q., Mao, W. H., Shi, K., Zhou, Y. H., Asami, T., & Yu, J. Q. (2008). A role of brassinosteroids in early fruit development in cucumber. Journal of Experimental Botany, 59(9), 2299–2308. https://doi.org/10.1093/jxb/ern093
Fujii, S., & Sako, H. (2001). Distribution of assimilates to each organ in rice plants exposed to a low temperature at the ripening stage, and the effect of brassinolide on the distribution. Plant Production Science, 4(2), 136–144. https://doi.org/10.1023/a:1013633620339

Gajbhiye, V. T., Gupta, S., & Gupta, R. K. (2004). Persistence of imidacloprid in/on cabbage and cauliflower. Bulletin of Environmental Contamination and Toxicology, 72(2), 283–288. https://doi.org/10.1007/s00128-003-9103-7

Goh, W. L., Yu, P. H., Wong, S. C., & Rajan, A. (2011). Safe use of chlorpyriphos for insect pest management in leaf mustard (Brassica juncea L. Coss). Journal of Food Agriculture and Environment, 9, 1064–1066.

Gomes, M. D. M. A., Composstrini, E., Leel, N. R., Viana, A. P., Ferreira, T. M., do Nascimento Siqueira, L. … Zullo, M. A. T. (2006). Brassinosteroid analogue effects on the yield of yellow passion fruit plants (Passiflora edulis f. flavicarpa). Scientia Horticulturae, 110(3), 235–240. https://doi.org/10.1016/j.scienta.2006.06.030

Grove, M. D., Spencer, G. F., Rohwedder, W. K., Mandava, N., Kadam, D. R., Deore, B. V., & Umate, S. M. (2014). Residues and dissipation of imidaclopid in pomegranate fruits. Journal of Environmental Science and Pollution Research, 21(3), 6397–6406. https://doi.org/10.1007/s11356-014-4658-5

Hassanzadeh, N., Esmaili Sari, A., & Bahramifar, N. (2012). Interactive effects of CO2 enrichment and brassinosteroids on primary barley (Hordeum vulgare L) leaves. Pesticide Biochemistry and Physiology, 78(3), 161–170.

Kanwar, M. K., Bhardwaj, R., Arora, P., Chowdhary, S. P., Sharma, P., & Kumar, S. (2012). Plant steroid hormones produced under Ni stress are involved in the regulation of metal uptake and oxidative stress in Brassica juncea L. Chemosphere, 86(1), 41–49. https://doi.org/10.1016/j.chemosphere.2011.08.048

Kanwar, M. K., Bhardwaj, R., Chowdhary, S. P., Arora, P., Sharma, P., & Kumar, S. (2013). Isolation and characterization of 24-Epibrassinolide from Brassica juncea L and its effects on Ni ion uptake, antioxidant defense of Brassica plants and in vitro cytotoxicity. Acta Physiologica Plantarum, 35(4), 1351–1362. https://doi.org/10.1007/s11738-012-1175-7

Kaur, G., Sharma, A., Guruprasad, K., & Pati, P. K. (2014). Versatile roles of plant NADPH oxidases and emerging concepts. Biotechnology Advances, 32(3), 551–563. https://doi.org/10.1016/j.biotechadv.2014.02.002

Khan, T. A., Fariduddin, Q., & Yusuf, M. (2015). Lycopersicon esculentum under low temperature stress: An approach toward enhanced antioxidants and yield. Environmental Science and Pollution Research, 22, 14178–14188. https://doi.org/10.1007/s11356-015-4658-5

Kooner, R., Sahoo, S. K., Singh, B., & Battu, R. S. (2015). Dissipation kinetics of flubendiamide and thioclorpid on tomato (Lycopersicon esculentum Mill) and soil. Quality Assurance and Safety of Crops & Foods, 2(1), 36–40. https://doi.org/10.11111/ISSN1757-817X

Krishna, P. (2003). Brassinosteroid-mediated stress responses. Journal of Plant Growth Regulation, 22(4), 289–297. https://doi.org/10.1007/s10344-003-0058-z

Kumar, K. S., Choo, K. S., Yeo, S. S., Seo, Y., & Han, T. (2010). Effects of the phenylurea herbicide diuron on the physiology of Saccharina japonica ares. Toxicology and Environmental Health Sciences, 23(3), 188–199. https://doi.org/10.1007/s11356-010-9224-6

Kumar, R., & Dikshit, A. K. (2003). Assessment of imidacloprid in Brassica environment. Journal of Environmental Science and Health, Part B, 38(5), 619–629. https://doi.org/10.1081/FC-100106190

Lu, Y. C., Peng, S. J., Zhang, J. J., Luo, F., Zhang, S., & Yang, H. (2010). Genome-wide identification of DNA methylation provides insights into the association of gene expression in rice exposed to pesticide atrazine. Scientific Reports, 6, 328. doi:10.1038/srep01895

Mandal, K., Chahil, G. S., Sahoo, S. K., Battu, R. S., & Singh, B. (2010). Dissipation kinetics of β-Cyfluthrin and imidacloprid in brinjal and soil under subtropical conditions of Punjab, India. Bulletin of Environmental Contamination and Toxicology, 84(2), 225–229. https://doi.org/10.1007/s00128-009-9903-5

Mandal, K., & Singh, B. (2014). Persistence and metabolism of Fipronil in sugarcane leaves and juice. Bulletin of Environmental Contamination and Toxicology, 92(2), 220–224. https://doi.org/10.1007/s00128-013-1176-3

Mandova, N. B. (1988). Plant growth-promoting brassinosteroids. Annual Review of Plant Physiology and Plant Molecular Biology, 39(1), 23–52. doi:10.1146/annurev.pp.39.060188.000323
Sharma, I., Bhardwaj, R., & Pati, P. K. (2013). Stress modulation response of 24-epibrassinolide against imidacloprid in an elite indica rice variety Pusa Basmati-1. Pesticide Biochemistry and Physiology, 105(2), 144–153. https://doi.org/10.1016/j.pestbp.2013.01.004

Sharma, I., Bhardwaj, R., & Pati, P. K. (2015). Exogenous application of 28-homobrassinolide modulates the dynamics of salt and pesticides induced stress responses in an elite rice variety Pusa Basmati-1. Journal of Plant Growth Regulation, 34(3), 509–518. https://doi.org/10.1007/s10248-015-9486-9

Sharma, P., & Bhardwaj, R. (2007). Effects of 24-epibrassinolide on growth and metal uptake in Brassica juncea L. under copper metal stress. Acta Physiologiae Plantarum, 29(3), 259–263. https://doi.org/10.1007/s11738-007-0032-7

Sharma, S., & Singh, B. (2016). Persistence of imidacloprid and its major metabolites in sugarcane leaves and juice following its soil application. International Journal of Environmental Analytical Chemistry, 94(4), 319–331. https://doi.org/10.1080/03067319.2013.853759

Sharma, A., Thakur, S., Kumar, V., Kanwar, M. K., Kesavan, A. K., Thukral, A. K., ... Ahmad, P. (2016). Pre-sowing seed treatment with 24-epibrassinolide ameliorates pesticide stress in Brassica juncea L. through the modulation of stress markers. Frontiers. Plant Science, 7, 1569. https://doi.org/10.3389/fpls.2016.01569

Sharma, A., Thakur, S., Kumar, V., Kesavan, A. K., Thukral, A. K., & Bhardwaj, R. (2017). 24-epibrassinolide stimulates imidacloprid detoxification by modulating the gene expression of Brassica juncea L. BMC Plant Biology, 17(1), 5336. https://doi.org/10.1186/s12870-017-1003-9

Siddiqui, Z. S., & Ahmed, S. (2006). Combined effects of pesticide on growth and nutritive composition of soybean plants. Pakistan Journal of Botany, 38(3), 721–733.

Singh, G., Sohoo, S. K., Tokkar, R., Battu, R. S., Singh, B., & Chahil, G. S. (2011). Residual behaviour and risk assessment of flubendiamide on Chickpea (Cicer arietinum L.). Chemosphere, 84(10), 1416–1421. https://doi.org/10.1016/j.chemosphere.2011.04.065

Singh, P. P., Singh, B., & Battu, R. S. (1990). Residues of cypermethrin, fenvalerate and deltamethrin on cauliflower. Phytoparasitica, 18(2), 153–158. https://doi.org/10.1007/BF02981232

Sinha, S., & Gopal, M. (2002). Evaluating the safety of β-cyfluthrin insecticide for usage in eggplant (Solanum melongena L.) crop. Bulletin of Environmental Contamination and Toxicology, 68(3), 400–405.

Symons, G. M., Davies, C., Shavrukov, Y., Dry, I. B., Reid, J. B., & Thomas, M. R. (2006). Grapes on steroids. Brassinosteroids are involved in grape berry ripening. Plant Physiology, 140(1), 150–158.

Untiedt, R., & Blanke, M. M. (2004). Effects of fungicide and insecticide mixtures on apple tree canopy photosynthesis, dark respiration and carbon economy. Crop Protection, 23(10), 1001–1006. https://doi.org/10.1016/j.cropro.2004.02.012

Vardhini, B. V., & Anjum, N. A. (2013). Brassinosteroids make plant life easier under abiotic stresses mainly by modulating major components of antioxidant defense system. Frontiers in Environmental Science, 2, 67. doi:10.3389/fenvs.2014.00067

Vardhini, B. V., & Rao, S. S. R. (2002). Acceleration of ripening of tomato pericarp discs by brassinosteroids. Phytochemistry, 61(7), 843–847. https://doi.org/10.1016/S0031-9422(01)00223-6

Wachsmann, M. B., López, E. M., Ramírez, J. A., Galagovsky, L. R., & Coto, C. E. (2000). Antiviral effect of brassinosteroids against herpes virus and arenaviruses. Antiviral Chemistry and Chemotherapy, 11(1), 71–77. https://doi.org/10.1177/095633020001100107

Wang, Z., Jiang, Y., Peng, X., Xu, S., Zhang, H., Gao, J., & Xi, Z. (2017). Exogenous 24-epibrassinolide regulates antioxidant and pesticide detoxification systems in grapevine after chlorothalonil treatment. Plant Growth Regulation, 81(3), 465–466. https://doi.org/10.1007/s10725-016-2022-6

Westwood, F., Bean, K. M., Dewar, A. M., Bromilow, R. H., & Chamberlain, K. (1998). Movement and persistence of [14C] imidacloprid in sugar-beet plants following application to pelleted sugar-beet seed. Pesticide Science, 52(2), 97–103. https://doi.org/10.1002/PS.31090-9061(199802)52:2<1.CO;2-F

Xavier, G., Chandran, M., George, T., Beeeii, S. N., Mathew, T. B., Paul, A., ... Rajith, R. (2014). Persistence and effect of processing on reduction of fipronil and its metabolites in chili pepper (Capsicum annum L.) fruits. Environmental Monitoring and Assessment, 186(9), 5429–5437. https://doi.org/10.1007/s10661-014-3792-8

Xia, X. J., Huang, Y. Y., Wang, L., Huang, L. F., Yu, Y. L., Zhou, Y. H., & Yu, J. Q. (2006). Pesticides-induced depression of photosynthesis was alleviated by 24-epibrassinolide pretreatment in Cucumis sativus L. Pesticide Biochemistry and Physiology, 86(1), 42–48. https://doi.org/10.1006/pbep.2006.0105

Xia, X. J., Zhang, Y., Wu, J. X., Wang, J. T., Zhou, Y. H., Shi, K., ... Yu, J. Q. (2009). Brassinosteroids promote metabolism of pesticides in cucumber. Journal of Agricultural and Food Chemistry, 57(18), 8406–8413. https://doi.org/10.1021/jf901915s

Yin, Y. L., Zhou, Y., Zhou, Y. H., Shi, K., Zhou, J., Yu, Y., ... Xia, X. J. (2016). Interplay between mitogen-activated protein kinase and nitric oxide in brassinosteroid-induced pesticide metabolism in Solanum lycopersicum. Journal of Hazardous Materials, 316, 221–231. https://doi.org/10.1016/j.jhazmat.2016.04.070

Yu, J. Q., Huang, F. H., Hu, W. H., Zhou, Y. H., Mao, W. H., Ye, S. F., & Nougues, S. (2004). A role for brassinosteroids in the regulation of photosynthesis in Cucumis sativus. Journal of Experimental Botany, 55(399), 1135–1143. https://doi.org/10.1093/jxb/erh124

Yuan, G. F., Ju, C. G., Li, Z., Sun, B., Zhang, L. P., Liu, N., & Wang, Q. M. (2010). Effect of brassinosteroids on drought resistance and abscisic acid concentration in tomato under water stress. Scientia Horticulturae, 126(2), 103–108. https://doi.org/10.1016/j.scienta.2010.06.014

Zhang, M., Zhai, T., Tian, X., Duan, L., & Li, Z. (2008). Brassinolide alleviated the adverse effect of water deficits on photosynthesis and the antioxidant of soybean (Glycine max L.). Plant Growth Regulation, 56(3), 257–264. https://doi.org/10.1007/s10725-008-9305-4

Zhou, Y., Xia, X., Wu, G., Wang, J., Wu, J., Wang, M., ... Gan, J. (2017). Brassinosteroids play a critical role in the regulation of pesticide metabolism in crop plants. Scientific Reports, 5, 31. doi:10.1038/srep09018
