Current status of laparoscopic and robotic ventral mesh rectopexy for external and internal rectal prolapse

Jan J van Iersel, Tim JC Paulides, Paul M Verheijen, John W Lumley, Ivo AMJ Broeders, Esther CJ Consten

Abstract
External and internal rectal prolapse with their affiliated rectocele and enterocele, are associated with debilitating symptoms such as obstructed defecation, pelvic pain and faecal incontinence. Since perineal procedures are associated with a higher recurrence rate, an abdominal approach is commonly preferred. Despite the description of greater than three hundred different procedures, thus far no clear superiority of one surgical technique has been demonstrated. Ventral mesh rectopexy (VMR) is a relatively new and promising technique to correct rectal prolapse. In contrast to the abdominal procedures of past decades, VMR avoids posterolateral rectal mobilisation and thereby minimizes the risk of postoperative constipation. Because of a perceived acceptable recurrence rate, good functional results and low mesh-related morbidity in the short to medium term, VMR has been popularized in the past decade. Laparoscopic or robotic-assisted VMR is now being progressively performed internationally for correcting rectal prolapse. In this article, an outline of the current status of laparoscopic and robotic ventral mesh rectopexy for the treatment of internal and external rectal prolapse is presented.

Key words: Laparoscopic ventral mesh rectopexy; Robot; Rectal prolapse; External rectal prolapse; Internal rectal prolapse; Rectocele; Mesh erosion; Obstructed defecation; Faecal incontinence; Biological mesh

© The Author(s) 2016. Published by Baishideng Publishing Group Inc. All rights reserved.
van Iersel JJ et al. Current status of laparoscopic and robotic ventral mesh rectopexy

avoids posterolateral rectal mobilization and the risks of an anastomosis, corrects the middle compartment, improves anorectal function and shows acceptable recurrence rates. In this article, a synopsis of the current status of laparoscopic and robotic ventral mesh rectopexy for the treatment of internal and external rectal prolapse is presented.

van Iersel JJ, Paulides TJC, Verheijen PM, Lumley JW, Broeders IAMJ, Consten ECJ. Current status of laparoscopic and robotic ventral mesh rectopexy for external and internal rectal prolapse. World J Gastroenterol 2016; 22(21): 4977-4987. Available from: URL: http://www.wjgnet.com/1007-9327/full/v22/i21/4977.htm DOI: http://dx.doi.org/10.3748/wjg.v22.i21.4977

INTRODUCTION

Prolapse of the posterior compartment of the pelvic floor, including rectal prolapse (RP) and its affiliated rectocele and enterocoele, is associated with socially debilitating symptoms such as obstructed defecation, pelvic pain and faecal incontinence[1-3]. In the past decades, multiple surgical techniques have been described for RP. There is consensus that perineal procedures are associated with a higher recurrence rate and therefore, an abdominal approach, when possible, is preferred[4,5]. The majority of the abdominal procedures, however, include posterolateral mobilization of the rectum resulting in new-onset or worsening postoperative constipation[6].

In the search to reduce postoperative constipation, ventral mesh rectopexy (VMR) was developed[6]. In this procedure, the rectum is mobilized ventrally and attached to the sacral promontory with a mesh. By avoiding posterolateral rectal mobilization, autonomic nerves are spared and the risk of postoperative constipation is minimised. By lifting the middle compartment of the pelvic floor, correction of other frequently accompanying pelvic prolapses and celes is achieved.

Laparoscopic or robotic-assisted VMR is being progressively performed internationally and several articles and guidelines propose the procedure as the treatment of choice for RP[7-10]. This topic highlights summarises and assesses current evidence on laparoscopic and robotic ventral mesh rectopexy (LVMR/RVMR) for the treatment of internal and external rectal prolapse (IRP/ERP).

SELECTION OF USED LITERATURE

Studies presenting a homogeneous group of patients with rectal prolapse syndromes treated with VMR (laparoscopic or robotic) as described by D’Hoore et al[11], avoiding posterolateral mobilization and using a synthetic mesh were selected. Laparoscopic and robotic outcomes had to be displayed separately. Studies describing a heterogeneous group were excluded. Articles using a biological mesh are described separately.

COMPPLICATIONS

Laparoscopic

Since the introduction of laparoscopic surgery, complications following rectopexy have reduced significantly[12]. Over the years, many studies have been published investigating surgical complications after LVMR. Most were small case series, but recently a large cohort of 919 patients with a median follow-up of 33.9 mo was published[13]. For this topic highlight, we have included 24 studies showing postoperative complication rates from 0% to 23.5% (Table 1). This extensive variation can be explained by the different ways in scoring morbidity between studies, especially for minor complications. Therefore, we have divided complications in minor and major groups according to the Clavien-Dindo (CD) classification[13]. Major complications, requiring surgical intervention (CD ≥ 3), are more relevant and in most cases directly ascribed to the VMR. Such complications were demonstrated from 0% to 7.7% of patients, which is acceptable and comparable to other minimal-invasive abdominal pelvic floor procedures[14]. Perioperative mortality is very low and occurred from 0% to 1.1%. Conversion is rare and was described from 0% to 5.9% with one study reporting a rate of ten percent. The majority of the conversions were due to extensive intra-abdominal adhesions.

Robotic

Three studies using synthetic mesh discussed the complication rate following RVMR (Table 1). Robotic surgery showed a non-significant minimal advantage in terms of intra- and postoperative complications compared to LVMR, described in a meta-analysis of these three studies[15]. However, studies were small and follow-up was short. Very recently, a randomised controlled trial (RCT) comparing the two techniques demonstrated a non-significant equality in complication rates[16].

SYNTHETIC MESH-RELATED COMPLICATIONS

Laparoscopic

The use of mesh in pelvic floor surgery has been subject for debate in recent years. Considerable commotion arose in response to the US Food and Drug Administration (FDA) report in 2011 where a high number of mesh-related adverse events associated with transvaginal pelvic organ prolapse repair were described[17]. The systematic review of Abed et al[18], showing a mesh erosion rate of 10.3% (110 studies, range 0%-29.7%) within 12 mo after transvaginal pelvic organ prolapse repair, confirmed these concerns.
The contemporary literature present a low incidence of mesh-related morbidity following VMR, but studies discussing this issue are limited. A pooled analysis of 11 observational studies (n = 767) demonstrated a 0.7% rate for mesh-related complications after LVMR in 2012[19]. Recently a multicentre study, including 2203 patients from databases of five hospitals over a 14-year period, described 45 patients (2%) developing mesh erosion (42 synthetic, 3 biologic) after a median of 23 mo[20]. However, underestimation is probable because of the retrospective character and a lack of systematic follow-up of this study. In general, mesh complication rates from 0% to 6.7% with mesh erosion percentages between 0 and 3.7% are described in other articles[3,13,14]. Most articles report vaginal mesh erosions, but intrarectal mesh migration following LVMR is not uncommon. The study of Evans et al[21] showed approximately half of the mesh erosions were rectal (17/45, 0.8%) and a similar percentage was described in other articles[20,21,22,23]. Recognized risk factors for developing mesh erosion are smoking, steroids, poorly regulated diabetes mellitus, pelvic hematoma, pelvic infection and a history of pelvic irradiation or pelvic surgery[19,23]. The multicentre study also suggested that mesh erosions were more frequently associated with LVMR for IRP (P = 0.02) and polyester mesh (P = 0.00006)[20].

Robotic

Only four studies mentioned examination for synthetic mesh-related complications following RVMR and all reported a rate of zero percent[26-29]. The follow-up, however, was short varying from 3 to 23 mo.

FUNCTIONAL OUTCOME

Laparoscopic - ERP

LVMR, with a limited anterior dissection, was introduced to avoid rectal denervation associated with damage to the parasympathetic fibres of the inferior hypogastric plexus. The RCT of Speakman et al[40] showed that preservation, rather than division, of the lateral ligaments is associated with less postoperative constipation. Meta-analyses confirmed this specific finding and demonstrate that VMR seems to be related to less constipation postoperatively as compared with other abdominal techniques (posterior mesh rectopexy, Ripstein, Orr-Loygue)[5,41].

An ERP is a circumferential full-thickness protrusion of the rectum through the anal verge. A recent consensus report, by a panel of international experts,
Table 2 Functional results following laparoscopic and robotic ventral mesh rectoepxy with synthetic mesh

Indication ERP	n	Median FU (mo)	Improvement OD	P value Improvement FI	Median gain CCCS	P value	Median gain CCIS	P value		
D’Hoore et al[8], 2004	42	61	84.2%. De novo 4.8%	-	90.3%	-	-	13		
Auguste et al[9], 2006	54	12	70%. De novo	-	72.4%	-	-	5.8		
Verdaasendonk et al[10], 2006	13	7	66%	-	69%	-	-	-		
Cristaldi et al[11], 2007	63	18	78%	-	90%, De novo	5	< 0.0001	32 (FISI)	< 0.0001	
Boons et al[12], 2010	58	19	72%	-	83%, De novo	5	< 0.0001	36 (FISI)< 0.0001		
Formine/Janke et al[13], 2013	36	30	57.9%	0.01	76.2%	< 0.001	-	-		
Randall et al[14], 2014	190	29	-	-	93%	-	-	8		
Gosselink et al[15], 2015	41	12	-	-	50%	< 0.01	4.8	< 0.01		
Tsunoda et al[16], 2015	19	12	52%	-	62%	7	< 0.0001	23 (FISI)< 0.0001		
Consten/van Iersel et al[17], 2015	242	33.9	63.3%	< 0.0001	73.2%	< 0.0001	-	-		
Tsunoda et al[18], 2016	31	12	-	-	61%	5	0.05	22 (FISI)< 0.0001		
Indication IRP and/or rectocele										
Collinson et al[19], 2007	30	3	83%	-	92%	-	-	9		
Collinson et al[20], 2010	75	12	86%	-	85%	-	-	7		
Wong et al[21], 2011	84	29	45%	< 0.001	20%	< 0.05	-	-		
Formine/Janke et al[22], 2013	197	30	76.9%	< 0.001	65.4%	< 0.001	-	-		
Gosselink et al[23], 2013	72	12	-	-	92%	-	-	5		
Gosselink et al[24], 2015	50	12	-	-	48%	< 0.01	3.1	< 0.01		
Tsunoda et al[25], 2015	25	12	55%	-	63%	-	6	< 0.0001		
Tsunoda et al[26], 2015	26	16	-	-	63%	-	7	24 (FISI)< 0.0001		
Consten/van Iersel et al[27], 2015	242	33.9	61%	< 0.0001	73.2%	< 0.0001	-	-		
Indication both ERP and IRP and/or rectocele										
van den Esscher et al[28], 2008	1 ERP, 16 IRP	38	-	-	-	-	+2.7 (ODS)	0.09	-	
Lauretta et al[29], 2012	2 ERP, 28 IRP	13.9	92.8%	-	85.7%	9.1 (ODS)	< 0.05	7.1	< 0.05	
Baderk-Ammoudi et al[30], 2013	11 ERP, 37 IRP	33	68%	< 0.0001	-	-	17 (ODS)	< 0.0001	4	< 0.0001
Maggiori et al[31], 2013	33	42	72%	De novo 7%	-	90%	-	-	8	
Mackenzie et al[32], 2014	149 ERP, 487 IRP	21	56.7%, De novo 1.4%	0.119	89.7%, De novo 1%	0.040	12 (ODS)	< 0.001	-	
Owais et al[33], 2014	18 ERP, 50 IRP	42	82%	-	82%	-	12.5 (ODS)	< 0.001	4	< 0.001
Robotic vs Laparoscopic studies - various indications										
De Hoog et al[34], 2009	20 ERP R	23.4	-	-	-	-	3.2	< 0.001		
Mantoo et al[35], 2013	23 ERP, 51 IRP L, 12 ERP, 32 IRP R	14 (ODS)	0.04	4	0.604					

1 Mean instead of median; 2 One patient was excluded from further analysis, therefore n = 13 instead of n = 14 was used; 3 Functional data were complete in 58 of 65 patients; 4The results of Formine/Janke et al, Gosselink et al, Tsunoda and Consten and van Iersel et al are displayed per indication; 5Postoperative functional data were fulfilled in 44 of 59 patients; 6Mean ODS score was 2.7 higher after surgery meaning function deteriorated postoperatively; 7 Pre- and postoperative ODS scores were available for 36 patients; 8 Of the 33 patients (ERP n = 20, IRP n = 13) 3 lost to follow-up. For the remainder of patients the surgical indication was not given; 9Based on 602 patients; 10 Based on 276 patients; 11 Only men included; 12 A modified version of the D’Hoore rectoepxy used; 13 Not specified whether mean of median was used; 14 Estimation based on bar chart. OD: Obstructed defecation; FI: Faeal incontinence; ODS: Obstructed defecation syndrome score; L: Laparoscopic; R: Robot; RP: Internal rectal prolapse; ERP: External rectal prolapse; CCCS: Cleveland clinic constipation score; CCIS: Cleveland clinic incontinence score.

van Iersel JJ et al. Current status of ventral mesh rectoepxy

Table 2 (10)[20,33,34,43,44]. Laparoscopic studies showed improvement of obstructed defecation from 52% to 84.2% (P < 0.01; P < 0.0001) (6,12,21,23,33,34,42-44] with a median gain of the Cleveland Clinic Constipation Score (CCCS) (35) between 4.8 and 7 points (P < 0.01; P < 0.0001, Table 2) (20,33,34,43,44). Obstructed defecation de novo was noted in 4.8% to 17.6% of patients (6,12,21,23,31,33,42-44). There was a median gain of the Cleveland Clinic Incontinence
Score (CCIS)\(^\text{[45]}\) of 8 to 13 (P < 0.001 - P < 0.0001)\(^\text{[6,31]}\) and one study reports a mean CCIS gain of 5.8 points\(^\text{[21]}\). The median Faecal Incontinence Severity Index (FISI)\(^\text{[47]}\) benefit varied from 12 to 36 points (P < 0.01 - P < 0.0001)\(^\text{[29,33,44,44]}\). Two studies demonstrated new-onset faecal incontinence with an incidence of 1.5% and 3.2% in patients\(^\text{[43,44]}\).

Laparoscopic - ERP and/or IRP and/or rectocele

An IRP is a telescopic infolding of the rectal wall during defecation. IRP is most commonly classified by the Oxford rectal prolapse grade differentiating between an intrarectal (grade 1 and 2) and intra-anal (grade 3 and 4) intussusception\(^\text{[46]}\). An Oxford grade 3 or 4 IRP, in combination with significant functional complaints failing to conservative therapy, is considered an indication for VMR\(^\text{[9,10]}\). The expert panel stated that VMR could also be performed for a complex rectocele of more than 3-4 cm\(^\text{[9]}\). However, a rectocele frequently exists with an IRP (80%) and, therefore, an isolated rectocele is rare (10%)\(^\text{[49]}\). LVMR for IRP and/or rectocele showed improvement of obstructed defecation from 55% to 86% (P < 0.001 - P < 0.0001)\(^\text{[12,23,33,50-52]}\) with a median CCIS decrease between 3.1 and 9 points (P < 0.01 - P < 0.0001, Table 2)\(^\text{[28,29,33,50,51]}\). Improvement of faecal incontinence with 20% to 92% of patients (P > 0.05 - P < 0.0001)\(^\text{[12,23,29,33,50-52]}\) and a median gain of FISI of 16 to 25 points (P < 0.01 - P < 0.0001) was observed in multiple cohorts\(^\text{[28,29,33,34,50,51]}\). None of the studies performing LVMR for IRP and/or rectocele described new-onset functional complaints.

Studies including both ERP and IRP and/or rectocele as indication for surgery showed 56.7% to 92.8% (P = 0.119 - P < 0.0001)\(^\text{[24-26,32,53]}\) improvement for obstructed defecation complaints with a median advantage of 9.1 to 17 points in obstructed defecation syndrome (ODS) score (P < 0.05 - P < 0.0001, Table 2)\(^\text{[24-26,52]}\). One report described a non-significant deterioration in ODS score postoperatively\(^\text{[64]}\). A decrease in faecal incontinence complaints is reported from 82% to 90% of patients\(^\text{[24-26,32,53]}\) with a median CCIS gain of 4 to 8 points (P < 0.05 - P < 0.0001)\(^\text{[24-26,32,53]}\). Literature demonstrated new-onset complaints of obstructed defecation between 1.4% and 7% of patients, with one report showing a de novo faecal incontinence rate of one percent\(^\text{[28,32]}\).

Robotic

To date, only two studies using synthetic mesh discuss functional outcomes following RVMR (Table 2)\(^\text{[33,39]}\). The laparoscopic cohort of de Hoog et al\(^\text{[30]}\) included various mobilizations and was excluded. The RVMR series of this study showed a median CCIS gain of 3.2 points, which was lower than other studies performing LVMR for ERP (Table 2). Mantoo et al\(^\text{[38]}\), performing LVMR and RVMR for various indications, noted a significantly greater improvement for obstructed defecation after RVMR. Median gain of CCIS was non-significantly equivalent between the two techniques. Both improvement of obstructed defecation and faecal incontinence was in line with the literature on LVMR for various indications (Table 2). Functional outcome was not described in the recent RCT of Mäkelä-Kaikkonen et al\(^\text{[46]}\). However, this RCT did show a non-significant difference in postoperative residual rectoceles on MRI in favour of the robot compared with laparoscopy (8% vs 33%, P = 0.26). This may result in a better functional outcome for patients suffering obstructed defecation, but these outcome measures need to be evaluated at a longer follow-up.

RECURRANCE

Laparoscopic - ERP

With the introduction of minimally invasive surgery, recurrence rates with rectal prolapse surgery remained low and equivalent to those of open surgery\(^\text{[55,56]}\). In the nineties, three small trials suggested that preservation of the lateral ligaments might result in a higher recurrence rate\(^\text{[11]}\). Tou et al\(^\text{[11]}\) speculated this was due to the limited mobilization of the rectum. Nonetheless, to date, numerous non-randomised observational studies, with increasing follow-up, quote acceptable recurrence rates following VMR. From 2004 until presently, recurrence percentages following LVMR for ERP range between 1.5% to 9.7%, with one small cohort (n = 13) reporting a rate of 15.4% (Table 3). Several reviews demonstrate comparable recurrence rates with various rectal mobilisations and abdominal techniques\(^\text{[5,22,41]}\). In addition, a multicentre, pooled analysis of 643 patients from 15 centres undergoing abdominal surgery for ERP, showed that the method of rectopexy did not influence the recurrence rate\(^\text{[57]}\).

Variation in recurrence usually reflects differences of follow-up between studies. Articles reporting on LVMR for ERP described a time interval to presentation of recurrence between 10 and 91 mo after surgery. Most recurrences developed within the first 36 mo, but not all studies reported this time interval (Table 3). Little is known about risk factors for developing a recurrence following VMR. Mackenzie et al\(^\text{[32]}\) found the only predictor of recurrence was the use of polyester mesh which generated a twofold increase in recurrence rate, with an odds ratio of 1.96 (P = 0.017), as compared with the most commonly used polypropylene graft.

Laparoscopic - ERP and/or IRP and/or rectocele

Three studies, performing LVMR for IRP and/or rectocele, quoted recurrence rates between 5.3 and 7.1 percent. Literature, including all rectal prolapse syndromes, reported recurrence percentages between 2.6% to 14.3%. The time interval between LVMR for various indications and recurrence varied from 10 to 139 mo (Table 3).
Table 3 Recurrence rates following laparoscopic and robotic ventral mesh rectopexy with synthetic mesh n (%)

Indication ERP	n	FU (median)	Recurrence	Type of recurrence	Presentation of recurrence (mo)
D’Hoore et al.[36], 2004	42	61	2 (4.8)	2 ERP	54, 91
Verdaasdonk et al.[37], 2006	13	7	2 (15.4)	2 ERP	-
Auguste et al.[38], 2006	54	12	4 (7.4)	3 ER, 1 IR	26 (7.54)
D’Hoore et al.[39], 2006	109	5	5 (4.6)	4 ERP, 1 enterocele	-
Cristaldi et al.[40], 2007	68	18	1 (1.7)	ERP	-
Booms et al.[41], 2010	69	19	1 (1.5)	ERP	12
Wijffels et al.[42], 2011	80	23	2 (2.5%)	2 ERP	6, 16
Faucheron et al.[43], 2012	175	74/60	2 (3%)	2 ERP	6, 24
Randall et al.[44], 2012	190	29	9 (4.7)	1 ERP, 8 IR	25, 30, 31, 60*
Gosselink et al.[45, 2015]	41	12	1 (2.3)	ERP	12
Tsuchida et al.[46], 2016	31	25	3 (9.7)	3 IR	10, 17, 31
Indication IRP and/or rectocele					
Collinson et al.[47], 2010	75	12	4 (5.3)	4 IR	-
Wong et al.[48], 2011	84	29	6 (7.1)	6 rectocele	-
Gosselink et al.[49], 2015	50	12	3 (5.8)	3 IR	-
Indication both ERP and IRP and/or rectocele					
Laureta et al.[50], 2012	2 ERP, 28 IR	13.9*	1 (3.3)	1 IR	19
Formnits Jenks et al.[51], 2013	36 ERP, 197 IR	30	6 (2.6)	-	-
Badrek-Arnoudt et al.[52], 2013	11 ERP, 37 IR	33	4 (8.3)	4 IR	22 (median)
Maggioni et al.[53], 2013	33*	42	2 (6.7)	2 rectocele	11, 14
Mackenzie et al.[54], 2014	149 ERP, 487 IR	21	60 (9.4)	-	-
Owais et al.[55], 2014	18 ERP, 60 IR	42	2 (2.9)	2 IR	-
Constant/van Iersel et al.[56], 2015	242 ERP, 677 IR	33.9/120	68 (14.3)*	15 ERP, 53 IR	24.1 (139.4)*
Tsuchida et al.[57], 2015	19 ERP, 25 IR	26	2 (3.4)	2 IR	10, 15
Robotic vs Laparoscopic - various indications					
De Hoog et al.[58], 2009	20 ERP robot	23.4	4 (20)	-	-
Wong et al.[59], 2011	23 IRP lap	12	1 (4.3)	Rectocele	3
15 IRP robot	1 (6.7)	Rectocele	7		
Wong et al.[60], 2011	40 IRP lap	6	0 (0)	-	-
23 IRP robot	0 (0)	-	-		
Mantoo et al.[61], 2013[59]	23 ERP, 51 IRP lap	16	6 (8)	-	-
12 ERP, 32 IRP robot	3 (7)	-	-		
Mäkelä-Kaikkonen et al.[62], 2014	14 ERP, 6 IRP lap	3	1 (5)	-	-
13 ERP, 7 ERP robot	0 (0)	-	-		

1One patient was excluded from further analysis, therefore n = 13 instead of n = 14 is used; 2Mean (range); 3Recurrence percentage is KM estimate at 60 and 120 mo of follow-up; 4The results of Gosselink et al. are displayed per indication; 5Study group included the first 44 cases from Slawik et al.[36]; 6Only 4 time intervals are described; 7Mean instead of median; 8Of the 33 patients (ERP n = 20, n = 13 IR) 3 lost to follow-up. For the remainder of patients the surgical indication was not given; 9Only men included; 10A modified version of the D’Hoore rectopexy used; 11Not specified whether mean of median was used. Lap: Laparoscopic; IRP: Internal rectal prolap; ERP: External rectal prolap.

Robotic

The contemporary literature comparing LVMR with RVMR show similar recurrence rates between the two techniques (Table 3). Recurrence percentages vary from 0 to 7 for the robotic and 0 to 8 for the laparoscopic inclusions and were comparable to observational LVMR studies. One additional study from the de Hoog et al.[39] noted a recurrence rate of 20% for the robotic, and 26.7% for the laparoscopic cohort. The laparoscopic series also included Well’s procedures and therefore these results were excluded for analysis (Table 3).

MULTI-COMPARTMENT PROLAPSE

Pelvic floor dysfunction is regularly characterised by multi-visceral pelvic organ prolapse[58]. With an ageing population, the prevalence of uni- and multi-visceral pelvic organ prolapse will increase[59-61]. A growing number of articles discuss a multidisciplinary approach for multi-compartment prolapse, but only two studies avoid posterolateral rectal mobilization[62,63]. The first report, describing an open recto-vagino-vesicopexy, presented an improvement with constipation in 77% (P = 0.001), faecal incontinence in 69% (P = 0.005) and urinary incontinence in 50% (P = 0.18) of all patients respectively after 12 mo[62]. Two (8%) patients developed new-onset urinary incontinence. Slawik et al.[63], performing a laparoscopic sacro-colpo-rectopexy, described an improvement in 91% of patients with faecal incontinence and a reduction in median CCIS of 10 points after six months. Obstructed defecation resolved in 80% of patients, but 7% of these underwent an additional bowel resection. New-onset obstructed defecation occurred in 3.8%, and urinary incontinence in 2.5% of patients respectively. No patient developed a recurrence after a median follow-up of 54 mo. Thus far, no robotic studies describing a
multi-compartmental approach with a limited anterior rectal dissection are published.

BIOLOGICAL MESH
Concerns over synthetic mesh-related complications such as erosion, dyspareunia, fistulation and stricturing have led to the introduction of a more expensive biological equivalent. The biological mesh is characterised by degradation of the graft and regeneration of host tissue\(^{[64]}\). In theory, this degradation could decrease the chance of erosion and chronic infection. Conversely, the partial resolution of the material may lead to a higher recurrence rate. In 2013, a systematic review by Smart et al\(^{[19]}\) was published comparing 11 studies (767 patients) receiving synthetic mesh with two studies (99 patients) using a biologic graft. An erosion rate of less than one percent, with no difference identified between synthetic and biological mesh (0.7% vs 0%, \(P = 1.0\%\)) was described. There was no significant difference in other mesh-related complications or short-term recurrence (3.7% vs 4.0%, \(P = 0.78\)). The multicentre study of Evans et al\(^{[20]}\) and two recent biological mesh studies\(^{[65,66]}\) (4 and 20 mo follow-up) showed similar rates of mesh erosion. However, Franceschilli et al\(^{[66]}\) reported a much higher percentage prolapse recurrence rate of 14% after a mean follow-up of 20 mo. Improvement with obstructed defecation was described from 82% to 92% with a mean gain of CCCS between 9 and 13 points (\(P = 0.02 - P < 0.0001\))\(^{[65-68]}\). Reduction in faecal incontinence complaints occurred in 73% and 85% of patients with a mean gain in FISI score between four and 6 points (\(P = 0.01 - P = 0.001\))\(^{[65-68]}\). One report demonstrated a median gain in CCIS of approximately 10 points (\(P = 0.0002\))\(^{[65-68]}\).

Wahed et al\(^{[67]}\) was the only study describing new-onset complaints (4.6% with constipation and 3.1% with faecal incontinence). Only one study comparing and matching biological and synthetic mesh for LVMR (29 vs 29) exists, demonstrating no significant difference in mesh-related complications, recurrence or functional outcome after a median follow-up of 15.4 mo\(^{[30]}\).

Mehmood et al\(^{[69]}\), comparing 34 LVMR with 17 RVMR patients using biological mesh, demonstrated a minor significant advantage in median CCIS gain for LVMR (10 vs 9.5, \(P = 0.02\)). Conversely, a non-significant benefit in favour of the robot was seen in a reduction of the FISI (32 vs 35, \(P = 0.3\)). Both the functional outcomes of the robotic and the laparoscopic cohort compared favourably to other studies describing LVMR for ERP (Table 2). No recurrences or mesh-related complications were seen in either cohort after 12 mo. There is a lack of high-level comparative evidence with long-term follow-up for biological mesh, which demonstrates any significant difference in graft-related morbidity and recurrence rates. When more data becomes available, the choice of the mesh may be influenced by cost or possible comorbidity. In a recent publication a panel of experts suggested that biological grafts may be a better option in the following circumstances: young patients, women of reproductive age, diabetics, smokers, patients with a history of previous pelvic radiation or sepsis, inflammatory bowel disease, and in cases of intraoperative breach of the rectum or vagina\(^{[9]}\).

DISCUSSION
LVMR has become popularised in the past decade and is the preferred technique for treating rectal prolapse syndromes by many surgeons, especially in Europe. The procedure is becoming increasingly applied with robotic assistance. The robot enhances visualisation and manoeuvrability to improve complicated procedures in the deep pelvis, such as dissection and intracorporeal suturing\(^{[70]}\). Robotic surgery has proven to be more expensive in the short-term, but may lead to an overall reduction of costs due to enhanced ergonomics for the surgeon\(^{[11,71,72]}\). However, a long-term cost-effectiveness analysis of LVMR vs RVMR has not been performed.

The current evidence shows that LVMR and RVMR are safe procedures in terms of intraoperative, post-operative and mesh-related complications. Both LVMR and RVMR generate an acceptable recurrence rate and satisfactory improvement of functional outcome, with only one small laparoscopic cohort reporting an overall non-significant deterioration with obstructed defecation after surgery\(^{[54]}\). There may be a trend towards a better outcome for obstructed defecation following RVMR as compared with LVMR, but the level of evidence is low\(^{[16,38]}\). LVMR and RVMR show similar good results for improvement of faecal incontinence. Based on the currently available data, no superiority for either technique can be determined. As compared with other observational studies describing an abdominal approach to treat rectal prolapse syndromes, VMR shows similar recurrence rates and less constipation postoperatively\(^{[5,22,41]}\). Circumsection is required interpreting these results, however. Heterogeneity between the articles in patient selection and outcomes measured makes it difficult to draw conclusions from the current literature. In addition, follow-up has been relatively short and lacks a systematic approach for the majority of studies, especially the robotic series. Since pelvic floor dysfunction increases with age, long-term follow-up is required to assess functional outcome and recurrence. The true mesh erosion rate can only be obtained with adequately powered, long term studies incorporating a vaginal and anorectal examination for every patient. Thus far, only level 3 evidence exists with a paucity of RCTs and case controlled trials. There are no results of comparative studies including VMR available. In a recent critical appraisal, Lundby and Laurberg expressed their concerns about the rapid implementation of LVMR for obstructed defecation syndrome based on the contemporary evidence\(^{[73]}\).
High-level comparative evidence is necessary to overcome these doubts and to determine the value of VMR in the definitive treatment of rectal prolapse syndromes.

FUTURE RESEARCH

This review focusses solely on VMR, but more than three hundred different procedures to treat rectal prolapse syndromes have been described. Thus far, no technique has been shown to be superior. This was confirmed by an international survey in 2012, showing no uniformity of surgical procedure. The survey demonstrated, inter alia, that more than 20% of the surgeons preferred stapled transanal resection of the rectum (STARR) for the treatment of IRP. Festen et al suggested an IRP associated with fecal incontinence should be treated with LVR and an IRP in combination with obstructed defecation with STARR or LVR. At present, one Italian trial is comparing LVMR with STARR for obstructed defecation syndrome. In addition, there are eight ongoing surgical trials, of which five are mentioned by the cochrane study of Tou et al, two comparing LVMR with Delorme’s procedure for ERs, one investigating the outcomes of LVMR versus laparoscopic posterior rectopexy without mesh, one comparing laparoscopic resection rectopexy (RR) with laparoscopic fixation rectopexy, one assessing the difference between standard mesh rectopexy with ventral rectopexy, one studying the efficacy of LVMR for the treatment of chronic constipation and two examining LVMR versus RVMR. The trial by Mäkelä-Kaikkonen et al has presented its short-term results, but long-term outcomes are awaited. The survey also shows VMR and RR are the two most common abdominal procedures for RP. RR was developed to reverse the symptoms of rectal denervation inertia which is associated with traditional posteriorlateral rectal mobilization, but introduces the risks of a pelvic anastomosis. Three trials, comparing (predominantly open) abdominal rectopexy with and without sigmoid resection, described that RR was associated with less postoperative constipation but with a higher complication rate. There is a need for a well-designed and adequately powered RCT comparing these two techniques laparoscopically or robotically-assisted. Lastly, high-quality evidence for the choice of a specific mesh type, either synthetic or biological, is required. The authors do acknowledge the slow recruitment and logistical difficulties of performing such trials, however.

CONCLUSION

Ventral mesh rectopexy (laparoscopic and robotic) appears a safe and effective procedure to correct different rectal prolapse syndromes with a low morbidity rate, acceptable long-term recurrence rates and a good functional outcome.

REFERENCES

1. Bordeianou L, Hicks CW, Kaiser AM, Alavi K, Sudan R, Wise PE. Rectal prolapse: an overview of clinical features, diagnosis, and patient-specific management strategies. J Gastrointest Surg 2014; 18: 1059-1069 [PMID: 24352613 DOI: 10.1007/s11605-013-2427-7]
2. Beck DE, Allen NL. Rectocele. Clin Colon Rectal Surg 2010; 23: 90-98 [PMID: 2129626; DOI: 10.1055/s-0030-1254295]
3. McNevis MS. Overview of pelvic floor disorders. Surg Clin North Am 2010; 90: 195-205, Table of Contents [PMID: 20109643 DOI: 10.1016/j.suc.2009.10.003]
4. Schiedeck TH. Schwander O, Scheele J, Farke S, Bruch HP. Rectal prolapse: which surgical option is appropriate? Langenbecks Arch Surg 2005; 390: 8-14 [PMID: 15004753 DOI: 10.1007/s00423-004-0459-x]
5. Madiba TE, Baig MK, Wexner SD. Surgical management of rectal prolapse. Arch Surg 2005; 140: 63-73 [PMID: 10.001/archsurg.140.1.63]
6. D’Hoore A, Cadoni R, Penninckx F. Long-term outcome of laparoscopic ventral rectopexy for total rectal prolapse. Br J Surg 2004; 91: 1500-1505 [PMID: 15499644 DOI: 10.1002/bjs.4779]
7. Gouvas N, Georgiou PA, Agalianos C, Tan E, Tekkis P, Dervenis C, Xynos E. Ventral colporectopexy for overt rectal prolapse and obstructed defaecation syndrome: a systematic review. Colorectal Dis 2015; 17: 034-046 [PMID: 25189620 DOI: 10.1111/1275-1]
8. Panis Y. Laparoscopic ventral rectopexy: resection or no resection? That is the question. Tech Coloproctol 2014; 18: 611-612 [PMID: 24840243 DOI: 10.1007/s10151-014-1161-9]
9. Mercer-Jones MA, D’Hoore A, Dixon AR, Lepor H, Lindsey I, Mellgren A, Stevenson AR. Consensus on ventral rectopexy: report of a panel of experts. Colorectal Dis 2014; 16: 82-88 [PMID: 24034860 DOI: 10.1111/1470-5009.12415]
10. Roovers JP, Everhardt E, Dietz V, Milani AL, Meier AH, Consten EC, Futterer JJ, Felt-Bersma RJ, Sleijker-tHove MC, Steenstra Touissant T, van Rijn CA, Vlemmix F, Notten K, Van Iersel JJ, van Barneveld Kyh TA. Dutch national guideline prolapse (NVOG) 2014
11. Tou S, Brown SR, Nelson RL. Surgery for complete (full-thickness) rectal prolapse in adults. Cochrane Database Syst Rev 2015; 11: CD001758 [PMID: 2699079 DOI: 10.1002/14651858.CD001758. pub3]
12. Consten EC, van Iersel JJ, Verheijen PM, Broders IA, Wolthuis AM, D’Hoore A. Long-term Outcome After Laparoscopic Ventral Mesh Rectopexy: An Observational Study of 919 Consecutive Patients. Am Surg 2015; 262: 742-747; discussion 747-748 [PMID: 26583661 DOI: 10.1097/SLA.0000000000001401]
13. Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg 2004; 240: 205-213 [PMID: 15273542 DOI: 10.1097/01.sla.0000133083.54934.4ae]
14. Pan K, Zhang Y, Wang Y, Wang Y, Xu H. A systematic review and meta-analysis of conventional laparoscopic sacrocolpopexy versus robot-assisted laparoscopic sacrocolpopexy. Int J Gynaecol Obstet 2016; 132: 284-291 [PMID: 26797199 DOI: 10.1016/j.ijgo.2015.08.008]
15. Rondelli F, Bugiantella W, Villa F, Sanguinetti A, Boni M, Mariani E, Avenia N. Robot-assisted or conventional laparoscopic rectopexy for rectal prolapse? Systematic review and meta-analysis. Int J Surg 2014; 12 Suppl 2: S153-S159 [PMID: 25157988 DOI: 10.1016/j.ijsu.2014.08.359]
16. Mäkelä-Kaikkonen J, Rautio T, Pääkkö E, Biancari F, Ohtonen P, Mäkelä J. Robot-assisted versus laparoscopic ventral rectopexy for external, internal rectal prolapse and enterocele: a randomised controlled trial. Colorectal Dis 2016; Epub ahead of print [PMID: 26919191 DOI: 10.1111/1470-5009.12309]
17. Food and Drug Administration. FDA safety communication: Urogynecologic Surgical Mesh: Update on the Safety and
Effectiveness of Transvaginal Placement for Pelvic Organ Prolapse. Rev Lit Arts Am 2011; Assessed 2016-04-06. Available from: URL: http://www.fda.gov/downloads/medicaldevices/safety/alertsummaries/ucm262760.pdf

Abed H, Raino DD, Lowenstein L, Balk EM, Clemmons JL, Rogers RG; Systematic Review Group of the Society of Gynecologic Surgeons. Incidence and management of graft erosion, wound granulation, and dyspareunia following vaginal prolapse repair with graft materials: a systematic review. Int Urogynecol J 2011; 22: 789-798 [PMID: 21424785 DOI: 10.1007/s00192-011-1384-5]

Smart NJ, Pathak S, Boorman P, Daniels IR. Synthetic or biological mesh use in laparoscopic ventral mesh rectopexy—a systematic review. Colorectal Dis 2013; 15: 650-654 [PMID: 23517144 DOI: 10.1111/col12129]

Evans C, Stevenson AR, Silieri P, Mercer-Jones MA, Dixon AR, Cunningham C, Jones OM, Lindsay I. A Multicenter Collaboration to Assess the Safety of Laparoscopic Ventral Rectopexy. Dis Colon Rectum 2015; 58: 799-807 [PMID: 26169360 DOI: 10.1097/DCR.0000000000000402]

Auguste T, Dubreuil A, Bost R, Bonau B, Faucheron JL. Technical and functional results after laparoscopic rectopexy to the promontory for complete rectal prolapse. Prospective study in 54 consecutive patients. Gastroenterol Clin Biol 2006; 30: 659-663 [PMID: 16088187 DOI: 10.1016/S0399-8320(06)73257-2]

Samaranayake CB, Luo C, Plank AW, Merrie AE, Plank LD, Bisset IP. Systematic review on ventral rectopexy for rectal prolapse and intussusception. Colorectal Dis 2010; 12: 504-512 [PMID: 19438880 DOI: 10.1111/j.1463-1318.2009.01934.x]

Formijne Jonkers HA, Poierri N, Draaisma WA, Broeders IA, Consten EC. Laparoscopic ventral rectopexy for rectal prolapse and symptomatic rectocele: an analysis of 245 consecutive patients. Colorectal Dis 2013; 15: 695-699 [PMID: 23406289 DOI: 10.1111/col12113]

Lauretta A, Bellomo RE, Galanti F, Tonizzo CA, Infantino A. Laparoscopic low ventral rectocolopexy (LLVR) for rectal and rectogenital prolapse: surgical technique and functional results. Tech Coloproctol 2012; 16: 477-483 [PMID: 23104551 DOI: 10.1007/s10151-012-0918-2]

Badrek-Amoudi AH, Roe T, Mahey K, Carter H, Mills A, Dixon AR. Laparoscopic ventral mesh rectopexy in the management of solitary rectal ulcer syndrome: a cause for optimism? Colorectal Dis 2013; 15: 575-581 [PMID: 23107777 DOI: 10.1111/col12077]

Maggioli L, Bregatnol F, Ferron M, Panis Y. Laparoscopic ventral rectopexy: a prospective long-term evaluation of functional results and quality of life. Tech Coloproctol 2013; 17: 431-436 [PMID: 23345041 DOI: 10.1007/s10151-013-0973-3]

Tranchart H, Valverde A, Goasguen N, Gravié JF, Mosnier H. Conservative treatment of intrarectal mesh migration after ventral rectopexy: a prospective control study. Int J Colorectal Dis 2009; 24: 1201-1206 [PMID: 19588158 DOI: 10.1007/s00384-009-0766-3]

Verdaasdonk EG, Bueno de Mesquita JM, Stassen LP. Laparoscopic rectovaginopexy for rectal prolapse. Tech Coloproctol 2006; 10: 318-322 [PMID: 17115316 DOI: 10.1007/10151-006-0300-3]

Cristaldi M, Collinson R, Boons P, Cunningham C, Lindsey I. Laparoscopic anterior rectopexy: a new approach that still cures rectal prolapse, but also improves preoperative constipation without inducing new-onset constipation. Dis Colon Rectum 2007; 50: 721

Vijffers NAT, Rijnboutt M, Ohtonen P, Mäkelä J. Robotic-assisted and laparoscopic ventral mesh rectopexy versus conventional laparoscopic versus robot-assisted rectopexy for rectal prolapse: a matched-pairs study of operative details and complications. Tech Coloproctol 2014; 18: 151-155 [PMID: 23839795 DOI: 10.1007/s10151-013-1042-7]

Mantoo S, Podevin J, Regenet N, Rigaud J, Lehur PA, Meurette G. Is robotic-assisted ventral mesh rectopexy superior to laparoscopic ventral mesh rectopexy in the management of obstructed defaecation? Colorectal Dis 2013; 15: e649-e475 [PMID: 23895633 DOI: 10.1111/col12251]

de Hoog DE, Heemskerk J, Nieman FH, van Gemert WG, Baeten CG, Bouvy ND. Recurrence and functional results after open versus conventional laparoscopic versus robot-assisted rectopexy for rectal prolapse: a case-control study. Int J Colorectal Dis 2009; 24: 1201-1206 [PMID: 19588158 DOI: 10.1007/s00384-009-0766-3]

Cadeddu F, Silieri P, Grande M, De Luca E, Franceschelli L, Miloò G. Focus on abdominal rectopexy for full-thickness rectal prolapse: meta-analysis of literature. Tech Coloproctol 2012; 16: 37-53 [PMID: 22170252 DOI: 10.1007/s10151-011-0798-x]

Verdaasdonk EG, Bueno de Mesquita JM, Stassen LP. Laparoscopic rectovaginopexy for rectal prolapse. Tech Coloproctol 2006; 10: 318-322 [PMID: 17115316 DOI: 10.1007/10151-006-0300-3]

Cristaldi M, Collinson R, Boons P, Cunningham C, Lindsey I. Laparoscopic anterior rectopexy: a new approach that still cures rectal prolapse, but also improves preoperative constipation without inducing new-onset constipation. Dis Colon Rectum 2007; 50: 721

Boons P, Collinson R, Cunningham C, Lindsey I. Laparoscopic ventral rectopexy for external rectal prolapse improves constipation and avoids de novo constipation. Colorectal Dis 2010; 12: 526-532 [PMID: 19486104 DOI: 10.1111/j.1463-1318.2009.01859.x]

Agachan F, Chen T, Pfeiffer J, Reissman P, Wexner SD. A constipation scoring system to simplify evaluation and management of constipated patients. Dis Colon Rectum 1996; 39: 681-685 [PMID: 8649657]

Jorge JM, Wexner SD. Etiology and management of fecal incontinence. Dis Colon Rectum 1993; 36: 77-97 [PMID: 8416784]

Rockwood TH, Church JM, Fleshman JW, Kane RL, Marvantonis C, Thorson AG, Wexner SD, Bliss D, Lowry AC. Patient and surgeon ranking of the severity of symptoms associated with fecal incontinence: the fecal incontinence severity index. Dis Colon Rectum 1999; 42: 1525-1532 [PMID: 10613469 DOI: 10.1007/ BF02236199]

Wijffers NAT, Collinson R, Cunningham C, Lindsey I. What is the natural history of internal rectal prolapse? Colorectal Dis 2010; 12: 822-830 [PMID: 19508530 DOI: 10.1111/j.1463-1318.2009.01891.x]

Wijffers NAT. PhD thesis: Rectal prolapse: enlightenment of the obscure. 2012. Available from: URL: http://www.wjgnet.com
van Iersel JJ et al. Current status of ventral mesh rectopexy and/or faecal incontinence in patients with internal rectal prolapse: a critical appraisal of the first 100 cases. Tech Coloproctol 2015; 19: 209-219 [PMID: 25577276 DOI: 10.1007/s10151-014-1255-4]

Wahed S, Ahmad M, Mohiuddin K, Katory M, Mercer-Jones M. Short-term results for laparoscopic ventral rectopexy using biological mesh for pelvic organ prolapse. Colorectal Dis 2012; 14: 1242-1247 [PMID: 22176656 DOI: 10.1111/j.1463-1318.2011.02921.x]

Sileri P, Franceschilli L, de Luca E, Lazzaro S, Angelucci GP, Fiaschetti V, Pascenici C, Gaspari AL. Laparoscopic ventral rectopexy for internal rectal prolapse using biological mesh: postoperative and short-term functional results. J Gastrointest Surg 2012; 16: 622-628 [DOI: 10.1007/s11605-011-1793-2]

Mehmood RK, Parker J, Bhuvinanin L, Qasem E, Mohammed AA, Zeeshan M, Grugel K, Carter P, Ahmad S. Short-term outcome of laparoscopic versus robotic ventral mesh rectopexy for full-thickness rectal prolapse. Is robotic superior? Int J Colorectal Dis 2014; 29: 1113-1118 [PMID: 24965859 DOI: 10.1007/s00384-013-1937-4]

Gurland B. Ventral mesh rectopexy: is this the new standard for surgical treatment of pelvic organ prolapse? Dis Colon Rectum 2014; 57: 1446-1447 [PMID: 25380013 DOI: 10.1097/DCR.0000000000000248]

Jensen CC, Madow RD. Value of robotic colorectal surgery. Br J Surg 2016; 103: 12-13 [PMID: 26768097 DOI: 10.1002/bjs.9393]

Heemskerk J, de Hoog DE, van Gemert WG, Baeten CG, Greve JW, Bouvy ND. Robot-assisted vs. conventional laparoscopic rectopexy for rectal prolapse: a comparative study on costs and time. Dis Colon Rectum 2007; 50: 1825-1830 [PMID: 17690936 DOI: 10.1053/j.iscr.007-007-917-2]

Lundby L, Laurberg S. Laparoscopic ventral mesh rectopexy for obstructed defecation syndrome: time for a critical appraisal. Colorectal Dis 2015; 17: 102-103 [PMID: 25382580 DOI: 10.1111/codi.12830]

Formijne Jonkers HA, Draaisma WA, Wexner SD, Broeders IA, Beemelman WA, Lindsey I, Consten EC. Evaluation and surgical treatment of rectal prolapse: an international survey. Colorectal Dis 2013; 15: 115-119 [PMID: 22726304 DOI: 10.1111/j.1463-1318.2013.03135.x]

Festen S, van Geloven AA, D’Hoore A, Lindsey I, Gerhards MF. Controversy in the treatment of symptomatic internal rectal prolapse: suspension or resection? Surg Endosc 2011; 25: 2000-2003 [PMID: 21401669 DOI: 10.1007/s00464-010-0150-4]

NCT01899209. Randomized controlled trial to compare STARR vs. Laparoscopic Ventricle Rectopexy for Obstructed Defecation Syndrome. Accessed 2016-03-09. Available from: URL: https://clinicaltrials.gov/ct2/show/NCT01899209

NCT02601326. Randomized controlled trial to compare Laparoscopic Ventral mesh Rectopexy vs. Delorme’s procedure in Management of Complete Rectal Prolapse. Accessed 2016-03-09. Available from: URL: https://clinicaltrials.gov/ct2/show/NCT02601326

DKRS00000482. Randomized controlled trial to compare Delorme vs. laparoscopic resection rectopexy for total rectal prolapse. Accessed 2016-03-09. Available from: URL: http://www.dkrs.de/DRKS00000482

NCT00946205. Randomized controlled trial to compare Laparoscopic posterior rectopexy without mesh vs. laparoscopic anterior mesh rectopexy for rectal prolapse. Accessed 2016-03-09. Available from: URL: http://clinicaltrials.gov/ct2/show/NCT00946205

ACTRN12605000748617. Randomised controlled trial of laparoscopic rectopexy for rectal prolapse compared with fixation rectopexy for rectal prolapse. Accessed 2016-03-09. Available from: URL: https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=85

Tarquini R, Ruglio G, Celentano GA V, Giglio MC, Sollazzo LB V. Anterior Mesh Rectopexy in the Treatment of Rectal Prolapse: A Single Institution Experience [abstract]. Eur Surg Res 2010; 45: 158-167, 183, abstract 60

ISRCTN11747152. Trial investigating the efficacy of LVMR
for the treatment of chronic constipation. Accessed 2016-04-06. Available from: URL: https://ukctg.nihr.ac.uk/trials/trial-details/trial-details/trialNumber=ISRCTN11747152

83 NCT01346436. Randomized controlled trial to compare laparoscopic with robotic rectopexy for the Treatment of Complex Pelvic Floor Dysfunction. Accessed 2016-03-09. Available from: URL: https://clinicaltrials.gov/ct2/show/NCT01346436

84 D’Hoore A, Penninckx F. Laparoscopic ventral recto(colpo)pexy for rectal prolapse: surgical technique and outcome for 109 patients. Surg Endosc 2006; 20: 1919-1923 [PMID: 17031741 DOI: 10.1007/s00464-005-0485-y]

85 Wijffels N, Cunningham C, Dixon A, Greenslade G, Lindsey I. Laparoscopic ventral rectopexy for external rectal prolapse is safe and effective in the elderly. Does this make perineal procedures obsolete? Colorectal Dis 2011; 13: 561-566 [PMID: 2084638 DOI: 10.1111/j.1463-1318.2010.02242.x]

86 Faucheron J, Voirin D, Riboud R, Waroquet PA, Noel J. Laparoscopic anterior rectopexy to the promontory for full-thickness rectal prolapse in 175 consecutive patients: short- and long-term follow-up. Dis Colon Rectum 2012; 55: 660-665 [PMID: 22595845 DOI: 10.1097/DCR.0b013e318251612e]

87 Tsunoda A, Ohta T, Kiyasu Y, Kusanagi H. Laparoscopic ventral rectopexy for rectoanal intussusception: postoperative evaluation with proctography. Dis Colon Rectum 2015; 58: 449-456 [PMID: 25751802 DOI: 10.1097/DCR.0000000000000328]

88 Altomare DF, Spaazzafumo L, Rinaldi M, Dodi G, Ghiselli R, Piloni V. Set-up and statistical validation of a new scoring system for obstructed defaecation syndrome. Colorectal Dis 2008; 10: 84-88 [PMID: 17441968 DOI: 10.1111/j.1463-1318.2007.01262.x]

89 Renzi A, Izzo D, Di Sarno G, Izzo G, Di Martino N. Stapled transanal rectal resection to treat obstructed defecation caused by rectal intussusception and rectocele. Int J Colorectal Dis 2006; 21: 661-667 [PMID: 16411114 DOI: 10.1007/s00384-005-0066-5]

90 Whitehead WE, Chassade S, Corazziari E, Kumar D. Report of an international workshop on management of constipation. Gastroenterol Int 1991; 4: 99-113

91 Riss S, Glockler M, Abrahamowicz M LA. The ODS score - a novel instrument to evaluate patients with obstructed defecation. Eur Surg ACA Acta Chir Austria 2006; 38: 96-97 [DOI: 10.1007/s10353-006-0249-5]

92 Wong MT, Abet E, Rigaud J, Frampas E, Lehur PA, Meurette G. Minimally invasive ventral mesh rectopexy for complex rectocele: impact on anorectal and sexual function. Colorectal Dis 2011; 13: e320-e326 [PMID: 21689355 DOI: 10.1111/j.1463-1318.2011.02688.x]
