A FUBINI RULE FOR ∞-COENDS

FOSCO LOREGIAN

Abstract. We prove a Fubini rule for ∞-co/ends of ∞-functors $F : \mathcal{C} \times \mathcal{C} \to \mathcal{D}$. This allows to lay down “integration rules”, similar to those in classical co/end calculus, also in the setting of ∞-categories.

Contents

1. Introduction 1
2. The Fubini rule 3
References 5

1. Introduction

In [Lur17, §5.2.1] (we shorten the reference to this source to “HA” from now on, and similarly we call simply “T” the reference [Lur09]) the author introduces the definition of twisted arrow ∞-category of an ∞-category; in [GHN15] this paves the way to the definition of co/end for a ∞-functor $F : \mathcal{C} \times \mathcal{C} \to \mathcal{D}$. Here we briefly recall how this construction works.

Definition 1.1. Let $\epsilon : \Delta \to \Delta$ be the functor $[n] \mapsto [n] \ast [n]^p$. The edgewise subdivision $\text{esd}(X)$ of a simplicial set S is defined to be the composite $\epsilon^* S$. If \mathcal{C} is an ∞-category, we define $\text{Tw}(\mathcal{C})$ to be the simplicial set $\epsilon^* \mathcal{C}$. The n-simplices of $\text{Tw}(\mathcal{C})$ are, in particular, determined as

$$\text{Tw}(\mathcal{C})_n \cong \text{sSet}([n], \text{Tw}(\mathcal{C})) = \text{sSet}([n] \ast [n]^p, \mathcal{C}).$$

Date: Tuesday 19th February, 2019.
Remark 1.2. In dimension 0 and 1, the \(n \)-simplices of \(\text{Tw}(\mathcal{C}) \) correspond respectively to edges \(f \) of \(\mathcal{C} \) and to commutative squares
\[
\begin{array}{ccc}
\downarrow s & \downarrow g \\
\downarrow f & \downarrow t
\end{array}
\]
The canonical natural transformations given by the embedding of \([n], [n]^o\) in the join entail that there is a well-defined projection map \(\Sigma_\mathcal{C} : \text{Tw}(\mathcal{C}) \to \mathcal{C}^o \times \mathcal{C} \). Note that from HA.5.2.1.11 we deduce that \(\Sigma_\mathcal{C} \) is the right fibration HA.5.2.1.3 (this entails that if \(\mathcal{C} \) is an \(\infty \)-category, then \(\text{Tw}(\mathcal{C}) \) is also an \(\infty \)-category) classified by \(\text{Map} : \mathcal{C}^o \times \mathcal{C} \to \mathcal{S} \).

If the \(\infty \)-category \(\mathcal{C} \) is of the form \(\mathcal{N}(A) \) for some category \(A \), \(\text{Tw}(\mathcal{C}) \) corresponds to the nerve of the classical twisted arrow category of \(A \), as defined in [ML98, IX.6.3].

Definition 1.3. Let \(F : \mathcal{C}^o \times \mathcal{C} \to \mathcal{D} \) be a functor; when it exists, the **end** of \(F \) is the limit
\[
\int^\mathcal{C} F := \lim_{\text{Tw}(\mathcal{C})} (F \cdot \Sigma)
\]
Dually, when it exists, the **coend** of \(F \) is the colimit
\[
\int_\mathcal{C} F := \colim_{\text{Tw}(\mathcal{C})} (F \cdot \Sigma)
\]
It is clear that a sufficient condition for \(\int^\mathcal{C} F \) to exists is that \(\mathcal{D} \) is cocomplete, and dually a sufficient condition for \(\int_\mathcal{C} F \) to exist is that \(\mathcal{D} \) is complete.

[GHN15] employs this notation to prove [ibi, Thm. 1.1] that

Theorem 1.4. Suppose \(F : \mathcal{C} \to \mathcal{C}_{\text{at}_{\infty}} \) is a functor of \(\infty \)-categories,

1. LC1) if \(\mathcal{E} \to \mathcal{C} \) is a cocartesian fibration associated to \(F \). Then \(\mathcal{E} \) is the lax colimit\(^1\) of the functor \(F \).
2. LC2) if \(\mathcal{E} \to \mathcal{C} \) is a cartesian fibration associated to \(F \). Then \(\mathcal{E} \) is the oplax colimit of the functor \(F \).

\(^1\)The lax colimit of \(F : \mathcal{C} \to \mathcal{C}_{\text{at}_{\infty}} \) is defined by the coend
\[
\int^\mathcal{C} \mathcal{C}_{/C} \times F(C)
\]
Dually, the oplax colimit of \(F \) is defined by the coend
\[
\int_\mathcal{C} \mathcal{C}_{/C} \times F(C)
\]
where in both cases the weights are the slice \(\infty \)-categories of T.1.2.9.2 and T.1.2.9.5.
Lemma 1.5. Let \mathcal{C} be a small ∞-category, and \mathcal{D} be a presentable ∞-category; then \mathcal{D} is tensored and cotensored over $\mathcal{S} = N(Kan)$. This entails that there is a two-variable adjunction

\[
\mathcal{D}^o \times \mathcal{D} \xrightarrow{\text{Map}} \mathcal{S} \cong \mathcal{S} \times \mathcal{D} \xrightarrow{\otimes} \mathcal{D} \cong \mathcal{S} \times \mathcal{D} \xrightarrow{\odot} \mathcal{D}
\]

such that

\[
\mathcal{D}(X \odot D, D') \cong \mathcal{S}(X, \mathcal{D}(D, D')) \cong \mathcal{D}(D, X \odot D).
\]

From the existence of these isomorphisms it is clear that

\[\begin{align*}
V \odot (W \odot D) & \cong W \odot (V \odot D) \cong (V \times W) \odot D, \\
V \odot (W \odot D) & \cong W \odot (V \odot D) \cong (V \times W) \odot D
\end{align*}\]

(1.1) (1.2)

2. The Fubini Rule

Lemma 2.1. Let $F : \mathcal{C}^o \times \mathcal{C} \rightarrow \mathcal{D}$ be a ∞-functor and \mathcal{C}, \mathcal{D} ∞-categories as in the assumptions of Lemma 1.5. Then

- $F \mapsto \int_C F$ is functorial, and it is a left adjoint;
- $F \mapsto \int_C F$ is functorial, and it is a right adjoint.

Proof. We only prove the first statement for coends; the other one is dual.

Since $\int_C F = \text{colim}_{\text{Tw}(\mathcal{C})}(F \cdot \Sigma)$ acts on F as a composition of ∞-functors, it is clearly functorial; then in the diagram

\[
\int_C : [\mathcal{C}^o \times \mathcal{C}, \mathcal{D}] \xrightarrow{\Sigma^*} \text{colim}_{\text{Tw}(\mathcal{C})} \xrightarrow{\text{colim}_{\text{Tw}(\mathcal{C})}} \mathcal{D}
\]

the composition $\int_C = \text{colim}_{\text{Tw}(\mathcal{C})} \cdot \Sigma^*$ is a left adjoint because it is a composition of left adjoints ($c = t^*$ is the constant functor inverse image of the terminal map $\text{Tw}(\mathcal{C}) \rightarrow *$). Dually, the left adjoint to the end functor \int_C is given by $\text{Lan}_c \cdot c(D)$. \qed

Loosely speaking, the Fubini rule for co/ends asserts that when the domain of a functor $F : \mathcal{A}^o \times \mathcal{A} \rightarrow \mathcal{D}$ results as a product $(\mathcal{C} \times \mathcal{E})^o \times (\mathcal{C} \times \mathcal{E})$, then the co/ends of F can be computed as “iterated integrals”

\[\begin{align*}
\int_{(C,E)} F & \cong \int \int \int_{C,E} F \\
\int_{(C,E)} F & \cong \int \int \int_{C,E} F
\end{align*}\]

(2.1) (2.2)

These identifications hide a slight abuse of notation, that is worth to make explicit in order to avoid confusion: thanks to Lemma 2.1 the three objects of (2.1) can be
thought as images of F along certain functors, and the Fubini rule asserts that they are linked by canonical isomorphisms; we can easily turn these functors into having the same type by means of the cartesian closed structure of $sSet$:

\[(2.3)\]
\[
\begin{align*}
\int^C &= \left[\mathcal{C}^0 \times \mathcal{C}^0 \times \mathcal{E}^0 \times \mathcal{E}, \mathcal{D} \right] \cong \left[\mathcal{C}^0 \times \mathcal{C}, \left[\mathcal{C}^0 \times \mathcal{E}, \mathcal{D} \right] \mathcal{E} \right] \rightarrow \mathcal{D}
\end{align*}
\]

\[(2.4)\]
\[
\begin{align*}
\int^E &= \left[\mathcal{C}^0 \times \mathcal{C} \times \mathcal{E}^0 \times \mathcal{E}, \mathcal{D} \right] \cong \left[\mathcal{E}^0 \times \mathcal{E}, \left[\mathcal{E}^0 \times \mathcal{C}, \mathcal{D} \right] \mathcal{C} \right] \rightarrow \mathcal{D}
\end{align*}
\]

\[(2.5)\]
\[
\int^{(C,E)} = \left[\mathcal{C}^0 \times \mathcal{C} \times \mathcal{E}^0 \times \mathcal{E}, \mathcal{D} \right] \cong \left[\left(\mathcal{C} \times \mathcal{E} \right)^0 \times \left(\mathcal{C} \times \mathcal{E} \right), \mathcal{D} \right] \rightarrow \mathcal{D}.
\]

(of course, we can provide similar definitions for the iterated end functor).

Once that this has been clarified, we can deduce the isomorphisms (2.1) and (2.2) from the fact that the three functors \int^C, \int^E, $\int^{(C,E)}$ have right adjoints isomorphic to each other, and hence they must be isomorphic themselves.

Theorem 2.2 (Fubini rule for co/ends). Let $F : \mathcal{C}^0 \times \mathcal{C} \times \mathcal{E} \times \mathcal{E} \rightarrow \mathcal{D}$ be a ∞-functor. Then the ∞-functors \int^C, \int^E, $\int^{(C,E)}$ of (2.3), (2.4), (2.5) are naturally isomorphic.

In order to prove 2.2 we need a preliminary observation characterizing the right adjoint to $\int^C : \left[\mathcal{C}^0 \times \mathcal{C}, \mathcal{D} \right] \rightarrow \mathcal{D}$.

Lemma 2.3. The functor $R = \text{Ran}_\Sigma(c\langle _ \rangle)$ acts “cotensoring with mapping space”: more precisely, the functor $RD : \mathcal{C}^0 \times \mathcal{C} \rightarrow \mathcal{D}$ is isomorphic to the functor

\[\begin{align*}
(C, C') &\mapsto \text{Map}_\mathcal{E}(C, C') \triangleleft D
\end{align*}\]

Dually, the functor $L = \text{Lan}_\Sigma(c\langle _ \rangle)$ acts “tensoring with mapping space”: more precisely, the functor $LD : \mathcal{C}^0 \times \mathcal{C} \rightarrow \mathcal{D}$ is isomorphic to the functor

\[\begin{align*}
(C, C') &\mapsto \text{Map}_\mathcal{E}(C, C') \triangleright D
\end{align*}\]

Proof. We only prove the first statement for coends; the other one is dual.

Being $c(D)$ the constant functor on $D \in \mathcal{D}$, the pointwise formula for right Kan extensions (see [Cis, 6.4.9] for the fact that “Ran are limits”) yields that the desired limit consists of cotensoring with the slice category $(C, C')/\Sigma$ regarded as a simplicial
set (in the Kan-Quillen model structure); now, if we consider the diagram

\[
\begin{array}{ccc}
\text{Map}_C(C,C') \xrightarrow{\sim} (C,C')/\Sigma & \xrightarrow{} & \text{Tw}(\mathcal{C}) \\
\Delta^0 \xrightarrow{\sim} (\mathcal{C}^\alpha \times \mathcal{C})_{(C,C')/} & \xrightarrow{} & \mathcal{C}^\alpha \times \mathcal{C}
\end{array}
\]

expressing the fiber of \(\Sigma \), i.e. the mapping spaces \(\text{Map}_C(C,C') \), as suitable pullbacks, we can easily see that \((\mathcal{C}^\alpha \times \mathcal{C})_{(C,C')/} \) is contractible in Kan-Quillen (it has an initial object), hence, in the \(\infty \)-category of spaces, the object \((C,C')/\Sigma \) exhibits the same universal property of \(\text{Map}_C(C,C') \). Since the functor \(\mathcal{D} \) preserves Kan-Quillen weak equivalences, it turns out that

\[
\text{Ran}_\Sigma(c(D)) \cong (C,C')/\Sigma \mathcal{D} \cong \text{Map}_C(C,C') \mathcal{D},
\]

and this concludes the proof. \(\square \)

Proof of 2.2. The Fubini rule now follows from uniqueness of adjoints (T.5.2.1.3, T.5.2.1.4): in diagram

\[
\begin{array}{ccc}
\lambda F \int^C \int^E F \xrightarrow{\sim} \lambda D. \lambda CC'. \lambda EE'. \text{Map}_C(C,C') \mathcal{D} \left(\text{Map}_E(E,E') \mathcal{D} \right) & \xrightarrow{} & \lambda D. \lambda CC'. \lambda EE'. \text{Map}_C(C,C') \mathcal{D} \left(\text{Map}_E(E,E') \mathcal{D} \right) \\
\| & & \| \\
\lambda F \int^E \int^C F \xrightarrow{\sim} \lambda D. \lambda EE'. \lambda CC'. \text{Map}_E(E,E') \mathcal{D} \left(\text{Map}_C(C,C') \mathcal{D} \right) & \xrightarrow{} & \lambda D. \lambda EE'. \lambda CC'. \text{Map}_E(E,E') \mathcal{D} \left(\text{Map}_C(C,C') \mathcal{D} \right) \\
\| & & \| \\
\lambda D. \lambda CEC'C'E' \left(\text{Map}_C(C,C') \times \text{Map}_E(E,E') \right) \mathcal{D} \left((C,E),(C',E') \right) & \xrightarrow{\sim} & \text{Map}_C \times E \left((C,E),(C',E') \right) \mathcal{D}
\end{array}
\]

the vertical isomorphisms on the right are justified by (1.2). A completely analogous argument, using (1.1) instead, and the left adjoints given by tensoring with the derived mapping space, gives the Fubini rule for (2.2). \(\square \)

Acknowledgements. This document was partially written during the author’s stay at MPIM. An initial draft of Lemma 2.3’s proof has been tweaked by S. Ariotta in a private conversation.

References

[Cis] Denis-Charles Cisinski, *Higher categories and homotopical algebra*, http://www.mathematik.uni-regensburg.de/cisinski/CatLR.pdf.
[GHN15] David Gepner, Rune Haugseng, and Thomas Nikolaus, *Lax colimits and free fibrations in ∞-categories*, arXiv preprint arXiv:1501.02161 (2015).

[Lur09] J. Lurie, *Higher Topos Theory*, Annals of Mathematics Studies, vol. 170, Princeton University Press, Princeton, NJ, 2009.

[Lur17] ———, *Higher algebra*, online version September 18, 2017.

[ML98] S. Mac Lane, *Categories for the working mathematician*, second ed., Graduate Texts in Mathematics, vol. 5, Springer-Verlag, New York, 1998.

Fosco Loregian
Max Planck Institute for Mathematics
Vivatsgasse 7, 53111 Bonn — Germany
floare@mpim-bonn.mpg.de