Влияние криоконсервированной сыворотки кордовой крови и экстракта плаценты на заживление холодовых ран

Реферат: Изучена динамика планиметрических и микробиологических показателей холодовых ран при лечении криоконсервированной сывороткой кордовой крови (КСКК) и экстрактом плаценты (ЭП). Холодовые раны моделировали у крыс линии Сфинкс криоинструментом с диаметром аппликатора 8,0 мм, при температуре –195°C и экзпозиции 60 с. Кровь вынимали на 3-и сутки после криореабилитации через день внутримышечно по 0,1 мл/кг массы тела (всего 5 инъекций). На 7-е сутки после введения КСКК или ЭП площадь ран уменьшалась в 2,8 или 1,9 раза. Площадь ран у крыс, не получавших лечение, уменьшалась лишь на 9-е сутки. На 21-е сутки эксперимента площадь ран у животных после лечения ЭП была в 3,3 раза меньше, чем у нелеченных, а применение КСКК приводило к полной эпителизации ран. Введение КСКК и ЭП способствовало очищению ран от микробиоорганизмов. Количество микробов в ранах у крыс, получавших КСКК или ЭП, уменьшалось, начиная с 7-х суток наблюдения в 3,4 или 1,9 раза. На 21-е сутки эксперимента количество микробиоорганизмов в ранах животных на фоне терапии КСКК было в 8,4 раза меньше, чем в контроле, в то же время лечение КСКК приводило к иррадикации ран от патогенной микрофлоры. Таким образом, показано выраженное стимулирующее влияние КСКК и ЭП на процессе репарации ран. Представленные результаты открывают перспективу включения КСКК в протоколы лечения ран.

Ключевые слова: крыса, раны, репарация, криоконсервированная сыворотка кордовой крови, экстракт плаценты.

Abstract: The dynamics of planimetric and microbiological indices of cold wounds during therapy with cryopreserved cord blood serum (CCBS) and placenta extract (PE) has been studied. Cold wounds were modelled in Sphinкс using the cryodevice with 8.0 mm applicator, temperature of –195°C and 80 sec exposure. Injections were started on day 3 following cryoredistraction intramuscularly each other day by 0.1 ml/kg of body mass (5 injections in general). On day 7 after CCBC or PE introduction the wound area decreased 2.8 or 1.9 times, correspondingly. Wound area in non-treated animals decreased only to day 9. On day 21 the wound area in animals with PE treatment was 3.3 times smaller, than in non-treated ones, and CCBC application resulted in full epithelization of wounds. Application of CCBC and PE contributed to elimination of microbes in wounds. Number of germs in wounds of rats which were treated with CCBC or PE decreased starting from 7th day of observation (3.4 or 1.9 fold, correspondingly). On day 21 the number of germs in wounds of rats treated with PE was 8.4 times less than in control, and in case of CCBC no patogenic microflora was present. Thus, an expressed stimulation effect of CCBS and PE on wound healing was shown. The presented results offer the prospect to include the CCMA into the wound treatment protocols.

Key words: skin, cold wounds, reparation, cryopreserved cord blood serum, placental extract.
Лечение пациентов с локальной холодовой травмой является актуальной задачей современной клинической медицины [7]. Низкотемпературное повреждение кожи возникает как вследствие атмосферных явлений, так и в результате медицинского применения холода. Деструктивное влияние низких температур – основной лечебный фактор криохирургии. Привлекательность криохирургических методик для лечения заболеваний кожи обусловлена их высокой эффективностью, меньшей по сравнению с лазерными и хирургическими методами травматичностью [5, 20].

На процессы саногенеза, возникающие в ответ на повреждение и направленные на восстановление анатомической и функциональной целостности повреждённых тканей – заживление раны, влияют различные факторы как общего, так и местного характера, в том числе степень её инфицирования и виды микроорганизмов [1, 8, 19]. Скорость заживления – итоговый показатель эффективности лечения ран, определяющий время нетрудоспособности пациента. Поиск способов сокращения длительности заживления ран является важной проблемой современной хирургии. Одним из таких способов может быть включение в протоколы лечения терапевтических агентов природного происхождения, которые содержат комплекс биологически активных веществ, обладают системным регуляторным воздействием на процессы саногенеза – естественных регуляторов метаболических процессов. В качестве таких агентов можно рассматривать криоконсервированную сыворотку кordовой крови (КСКК), воздействие которой на метаболические процессы отмечено в работах Б.П. Введенского и соавт. [3], Я.А. Поповича и соавт. [13], а также медицинский препарат из фармакотерапевтической группы средств, влияющих на метаболические процессы, – экстракт плаценты (ЭП).

Цель работы – изучение динамики планиметрических и микробиологических показателей холодовых ран у крыс при лечении КСКК и ЭП.

Материалы и методы

Работу выполнили на крысах Сфинкс в соответствии с требованиями комитета по биоэтике ИПКИК НАН Украины, согласованными с директивой Европейского парламента и Совета Европейского союза от 22.09.2010 [18]. Холодовые раны моделировали на латеральной поверхности бедра способом, описанным в работе Е.О. Богатыревой и соавт. [2], в нашей модификации. Применяли криоинструмент диаметром аппликатора 8,0 мм (температура −195°C, время экспозиции 60 с). Животные были разделены на 3 группы по 10 особей.

The therapy of patients with local cold injury is an actual task in current clinical medicine [8]. The low temperature skin injury might occur as a result of either atmospheric phenomena or medical cold application. Destructive effect of low temperatures is the main therapeutic factor in cryosurgery. Cryosurgical techniques for treating skin diseases are attractive due to their high efficiency and lower traumatic injuries as compared to laser and surgical techniques [18, 20].

Processes of sanogenesis resulting from the injury and targeted to recover the anatomical and functional integrity of damaged tissues, i. e. wound healing, are affected by various factors of both general and local characters, in particular the degree of its contamination and microbial species [1, 14, 17]. The healing rate is a total index of wound healing efficiency, determining the time of patients disability. Searching the ways to reduce a wound healing time is an important task in current surgery. One of these ways may be the supplementation of treatment protocols with therapeutic agents of natural origin, containing a combination of biologically active substances with systemic regulatory impact on sanogenesis processes: natural regulators of metabolic processes. As we believe such agents include the cryopreserved cord blood serum (CCBS), the effect of which on metabolic processes was emphasised in papers of B.P. Vvedensky et al. [19], Ya.A. Popovich et al. [13], as well as placenta extract (PE), a medical product from pharmacotherapeutic group of agents affecting metabolic processes.

The research was aimed to study the dynamics of planimetric and microbiological indices of cold wounds in the rats treated with CCBS and PE.

Materials and methods

The research was performed in Sphinx rats according to the requirements of Bioethics Committee of the Institute for Problems of Cryobiology and Cryomedicine of NAS of Ukraine agreed with the Guidelines of European Parliament and the Council of the European Union of September 22, 2010 [6]. Cold wounds were modelled on lateral femoral surface using the technique described previously [4] with our modification. The cryodevice with 8.0 mm applicator diameter (temperature of −195°C, 60 sec exposure time) was used. The animals were divided into 3 groups by 10 animals in each. In the control group (CG) the rats received the physiological saline, in experimental groups 1 and 2 (EG-1, EG-2) the animals got CCBS and PE, respectively. The administration protocol corresponded to the instruction for applying medical immune biological preparation ‘Cryocell-Cryocord’ (Interdepartmental Scientific Center of Cryobiology and Cryomedicine of National Academy of Sciences, Academy of Medical Sciences and the Ministry of
в каждой. В контрольной группе (КГ) крысам вводили физиологический раствор, в экспериментальной группе 1 (ЭГ-1) – КСКК, в экспериментальной группе 2 (ЭГ-2) – ЭП. Схема введения соответствовала инструкции для применения медицинского иммунобиологического препарата «Криоцелл-криокорд» (ГП «Межведомственный научный центр криобиологии и криомедицины НАН, АМН и МОЗ Украины»), содержащего сыворотку коровой крови. Инъекции начинали на 3-й сутки после криодеструкции через день внутримышечно по 0,1 мл/кг массы тела (всего 5 инъекций). Дозировку рассчитывали, как описано в работе Ю.Р. Рыболовлевой и соавт. [16]. Применяли КСКК, хранящуюся в низкотемпературном банке ИПКиК НАН Украины, и медицинский препарат «Экстракт плаценты» («Биофарма», Украина).

Планиметрические показатели ран изучали на 3-и, 7-й, 9-й, 14-й и 21-й сутки. Для объективизации оценки динамики заживления холодовых ран в ходе эксперимента рассчитывали абсолютные и относительные планиметрические показатели. Измерение площади ран проводили на цифровых изображениях с помощью программы «Adobe Photoshop CS3» («Adobe Systems», США). Процент уменьшения площади (ПУП) раны от исходного рассчитывали по формуле: ПУП = (S₀ – S)/S₀ × 100%, где S₀ – исходная средняя площадь ран на начале лечения, S – средняя площадь ран на момент измерения [4]. Скорость заживления (СЗ) ран вычисляли по формуле: СЗ = (ПУПᵢ – ПУПᵢ₋₁)/T, где ПУПᵢ – процент уменьшения площади ран от исходной на момент измерения; ПУПᵢ₋₁ – процент уменьшения площади ран при предыдущем измерении; T – количество дней между измерениями [4].

Микробиологическое изучение холодовых ран осуществляли на 7-й, 14-й и 21-й сутки эксперимента. Подготовку материала к посеву и посев произошли в соответствии с требованиями, изложенными в нормативных документах по работе с микроорганизмами [10, 11, 15]. Забор фрагментов тканей из под лейкоцитарно-фибринозного струго раны производили с соблюдением правил аспектики и определяли массу каждого биоптата. Полученные биоптаты измельчали в гомогенизаторах и помещали в стеклянные пробирки, в которые добавляли по 5 мл стерильного физиологического раствора. Пробирки встряхивали на механической качалке (350 об/мин) в течение 30 мин. Из полученных суспензий тканей готовили серийные разведения на физиологическом растворе, которые в дальнейшем высевали в объеме 0,2 мл на чашки Петри с ростовыми средами: мясо-пептонным, 5%–м кровяным, шоколадным, желточно-солевым агарами, анаэробным гемагаром, агаром МакКонки, Health of Ukraine, Ukraine), containing the cord blood serum. Injections started from day 3 after cryodestruction, were performed each other day, intramuscularly by 0.1 ml/kg of body weight within 10 days. The dosage was calculated as reported by Yu.R. Rybolovlev et al. [16]. The experimental medical products were the CCBS, stored at the low temperature bank of the Institute for Problems of Cryobiology and Cryomedicine of NAS of Ukraine, and commercial medical product Placenta Extract (Biofarma, Ukraine).

Wound planimetric indices were studied to days 3, 7, 9, 14 and 21. To provide impartial evaluation of cold wound healing dynamics during experiment we calculated the absolute and relative planimetric indices. The wound area was measured in digital images using the Adobe Photoshop CS3 software (Adobe Systems, USA). The percentage of area reduction (PAR) of wound from initial one was calculated by the formula: PAR = (S₀ – S)/S₀ × 100%; S₀ was initial average wound area at the beginning of therapy, S was average wound area at the time of measurement [9]. The healing rate (HR) of wounds was calculated by the following formula: HR = (PARᵢ – PARᵢ₋₁)/T; where PARᵢ was the percentage of area reduction of wounds from initial one at the time of measurement; PARᵢ₋₁ was the percentage of area reduction of wounds during previous measurement; T was a number of days between measurements [4].

Cold wounds were microbiologically studied to day 7, 14 and 21 of the experiment. The material was prepared for inoculation and then seeded according to the requirements stated in the practical guidelines for handling with microorganisms [2, 3, 15]. Tissue fragments from fibrin-leukocyte wound crust were taken under aseptic conditions, the weight for each biotic specimen was determined. The obtained biotic specimens were disintegrated in homogenizers and placed into glass vials, supplemented with 5 ml of sterile physiological saline. The vials were shaken with a mechanical shaker (350 rpm) for 30 min. Serial dilutions in physiological saline were prepared from obtained tissue suspensions, thereafter 0.2 ml were transferred for seeding to Petri dishes filled with following growth media: meat-peptone, 5% blood, chocolate, and vitelline-salt agars, anaerobic hem agar, MacConkey agar, and agarized Sauvouraud medium [8, 10, 12]. Platings in anaerobic hem agar and a part of those in 5% blood agar were cultured in anaerobic jar for 4 days at 37°C in oxygen-free gas medium. The ‘GasPak EZ’ system (Dickinson and Co, USA) was used to create anaerobic conditions. Inoculations in chocolate agar were cultured within a day at 37°C in atmosphere with 6–8% CO₂. Those in Sauvouraud medium were cultured for 48 hours at 30°C. All other ones were cultured at 37°C for a day.
агаризированной средой Сабуру [7, 9, 12]. Посевы на анаэробный гемагар и часть посевов на 5%-й кровяной агар культивировали в анаэробостате в течение 4-х суток при температуре 37°C в газовой среде без кислорода. Для создания анаэробных условий использовали систему «Gaspak EZ» («Dickinson and Company», США). Посевы на шоколадный агар культивировали в течение суток при температуре 37°C в атмосфере с 6–8% СО₂. Посевы на среду Сабуру культивировали в течение 48 ч при температуре 30°C. Все остальные посевы культивировали при температуре 37°C в течение суток.

После инкубирования проб оценивали выросшие макроколонии микроорганизмов на агаризированных ростовых средах и пересчитывали количество микробных клеток на 1 г тканей, взятых из раны и прилегающих к ней тканей [10, 11]. Колонии подсчитывали на тех чашках, в которых их рост был изолированным. Идентификацию выросших колоний микроорганизмов проводили в соответствии с установленными рекомендациями [7, 10, 11].

Статистическую обработку осуществляли с помощью пакета программ «Excel 2003» («Microsoft», США), «SPSS v. 10.0» («SPSS Inc.», США). Данные выражали в виде среднего ± среднеквадратичное отклонение. Для оценки значимости различий между выборками использовали непараметрический критерий Манна-Уитни, значимыми считали различия при p < 0,05.

Результаты и обсуждение

Репаративные процессы, возникающие после ранений кожи, носят универсальный характер и не зависят от вида повреждающего агента. Заживление любой раны имеет сходную динамику [17], что определяет возможность применения объективных критериев оценки раневого процесса, вне зависимости от вида раны. Очищение раны, уменьшение и ликвидация отека, гиперемии и инфильтрации в области раны, появление и развитие грануляционной ткани, контракция и эпителизация раневой поверхности являются наиболее демонстративными клиническими признаками, характеризующими течение раневого процесса, которые напрямую зависят от количества и вида микроорганизмов в ране.

Известно, что участок крионекроза, располагающегося на коже, через несколько дней превращается в сухую корочку, которая, в зависимости от размеров разрушенного участка, отторгается через 2–3 недели [14]. Все это время крионекроз испытывает роль защищающей рану биологической повязки, поэтому хирургическая обработка или другие манипуляции с ранами нами не проводились.

Результаты измерения площади ран после криоповреждения кожи у экспериментальных жи-

Following the incubation of the samples the macrocolonies of microorganisms grown on agarized growth media were assessed and a number of microbial cells per 1 g of tissue taken from wound and adjacent tissues was calculated [2, 3]. Colonies were counted in those dishes, where the visible clusters of growing bacteria were found. The grown colonies of microorganisms were identified in accordance with the formal recommendations [2, 3, 8].

Statistical processing was performed using the Excel 2003 (Microsoft, USA), and SPSS v.10.0 (SPSS Inc., USA) software package. The data were presented as mean ± standard deviation. The significance of the differences between samplings was estimated by non-parametric Mann-Whitney U-test, the differences were assumed as significant at p < 0.05.

Results and discussion

Reparative processes, occurring in skin injuries are universal and independent on a damaging agent type. Healing of any wound has a similar dynamics [5], providing the possibility to apply the objective criteria for assessing wound process irrespective of a wound type. The wound detersion, reduction and elimination of edema, hyperemia, and infiltration in wound area, the appearance and development of granulation tissue, contraction and epithelization of wound surface are the most obvious clinical signs, characterising the wound process course, which directly depend on the amount and type of microorganisms in a wound.

It is known that a site of skin-located cryonecrosis transforms in a few days into a dry crust rejected in 2–3 weeks, depending on a size of destroyed site [11]. All this time the cryonecrosis accomplishes the role of protecting biological dressing, therefore neither surgical treatment nor other manipulations with wounds were done.

The results of wound area measurement after skin cryoinjury in experimental animals are shown in Table 1. Proceeding from the features of cold wound reparative dynamics in different groups, the values of PAR and HR of wounds were calculated between such observation terms, when the statistically significant differences in a wound area were recorded. The wounds area in CG animals to day 7 was not significantly different from those to day 3 after cryodestruction of investing tissues. At the same time the CCBS and PE treatment resulted in a significant decrease of the studied index.

The CCBS and PE application led to a decrease in wound area by 2.8 and 1.9 times, respectively. The wound PAR in the animals of the mentioned groups was 63.6 and 46.9, respectively. Statistically significant decrease (1.6 fold) of wound area in non-treated rats was recorded only to day 9 after cryodestruction, that
вотных показаны в табл. 1. Исходя из особенностей динамики репарации холодовых ран в разных группах, значения ПУП и С3 ран рассчитывались между сроками наблюдения, когда были зафиксированы статистически значимые отличия в площади ран. На 7-е сутки площадь ран у животных КГ значительно не отличалась от площади ран на 3-и сутки после выполнения криодеструкции покровных тканей. В то же время применение КСКК и ЭП приводило к значительному уменьшению изучаемого показателя.

После введения КСКК площадь ран уменьшалась в 2,8 раза, лечения ЭП – в 1,9 раза. При этом ПУП ран у животных в указанных группах составил 63,6 и 46,9 соответственно. Статистически значимое уменьшение (в 1,6 раза) площади ран у крыс, не получавших лечение, было зафиксировано лишь на 9-е сутки после криодеструкции, что свидетельствует о тяжести низкотемпературного повреждения тканей. В указанный срок наблюдения площадь ран в экспериментальных группах была значительно меньше, чем в контрольной: в 2,8 и 1,4 раза на фоне применения КСКК и ЭП соответственно. При этом ПУП ран в ЭГ-1 составил 78,0, а у крыс, которым вводили физиологический раствор или ЭП, значимого изменения площади ран с 7-х по 9-е сутки не зафиксировано.

На 14-е сутки эксперимента площадь ран в ЭГ-1 была меньше, чем в КГ в 6,1 раза, а ПУП ран равнялся 91,5. В ЭГ-2 площадь ран уменьшилась в 2,1 раза, ПУП составил 74,8. Площадь ран животных КГ с 9-х по 14-е сутки не изменялась, значимые отличия зафиксированы только между показателями на 7- и 14-е сутки наблюдения, ПУП ран за этот отрезок времени равнялся 48,2.

На 21-е сутки эксперимента раны у крыс, которым вводили КСКК, полностью эпителиализировались. По сравнению с результатами в КГ, применение ЭП приводило к уменьшению площади ран в 3,3 раза, ПУП был равен 91,7. У нелеченных животных площадь ран к указанному сроку наблюдения уменьшилась на 72,8%.

Как показано на рисунке, введение КСКК и ЭП сопровождалось существенным влиянием на динамику С3 ран. Максимальная С3 ран в экспериментальных группах 1 и 2 отмечалась с 3-х по 7-е сутки эксперимента и составляла 15,9 и 11,7%/сутки соответственно. В дальнейшем С3 уменьшалась. Так, с 7-х по 9-е сутки у животных, получавших КСКК, она была равна 7,2%/сутки, а у животных, которым вводили ЭП, – 4,9%/сутки. В период с 9-х по 14-е сутки С3 составляла в ЭГ-1 2,7, а ЭГ-2 – 3,6%/сутки, а с 14-х по 21-е сутки – 1,2 и 2,4%/сутки.

У крыс, не получавших лечение, С3 ран также уменьшалась с течением времени. В период с 3-х

Таблица 1. Площадь холодовых ран (мм²) у животных (M ± σ) после введения КСКК и ЭП

Сутки	КГ	ЭГ-1	ЭГ-2
3	168,1 ± 20,9		
7	137,8 ± 19,1	61,2 ± 8,3	89,3 ± 13,12
9	104,1 ± 16,9	37,0 ± 4,813	72,7 ± 9,412
14	87,1 ± 14,2	14,2 ± 1,813	42,3 ± 7,1133
21	45,8 ± 6,91	13,9 ± 1,713	

Примечание. Отличия статистически значимы по сравнению: 1 – с контрольной группой; 2 – ЭГ-1; 3 – соответствующей группой на предыдущий срок наблюдения; p ≤ 0,05.

Note. The differences are statistically significant if compared with:
1 – control group; 2 – EG-1; 3 – corresponding group in previous observation terms; p ≤ 0,05.

testified to the severity of low temperature injury in tissues. Within this observation period the areas of wounds in experimental groups were significantly lower than in the control group: by 2.8 and 1.4 times after CCBS and PE administration, respectively. The wound PAR in EG-1 was 78.0, and in the rats received either physiological saline or PE no significant changes in wound area from days 7 to 9 was recorded.

To day 14 of the experiment the wound area in EG-1 was 6.1 times lower than in CG, and the wound PAR was equal to 91.5. In the EG-2 the wound area reduced by 2.1 times, the PAR was 74.8. The wound area in CG animals remained unchanged from days 9 to 14, the significant differences were found only between the indices of days 7 and 14 of observation, the wound PAR within this time period was 48.2.

To day 21 of the experiment the wounds in the rats received CCBS were completely epithelialized. If comparing with the results in CG the PE application resulted in a reduction of wound area in 3.3 times, the PAR was equal to 91.7. To the mentioned observation term the wound area in non-treated animals was reduced by 72.8%.

The Figure shows that administration of CCBS and PE was accompanied by a significant effect on wound HR dynamics. The maximum wound HR in experimental groups 1 and 2 was observed from day 3 to 7 of the experiment and was equal to 15.9 and 11.7%/day, respectively. Later the HR decreased. In particular, from days 7 to 9 in the CCBS-treated animals it reached 7.2%/day, and in PE treated rats it was 4.9%/day. Within the period from day 9 to 14 the HR in EG-1 and
по 9-е сутки эксперимента она была равна 6,3%/сутки, с 7-х по 14-е сутки – 4,3%/сутки, а с 14-х по 21-е сутки – 3,5%/сутки.

В связи с этим, что в работе использовали животных, лишенных шерстного покрова, эпителиализация ран носила характер краевой. Известно, что наполнение эпителия со стороны здоровой кожи возможно только на поверхность грануляционной ткани [8]. Исходя из чего результаты, полученные в группе животных с введением КСКК, подтверждают адекватное развитие грануляционной ткани и косвенно свидетельствуют об активации местных иммунных реакций.

Любая рана является «открытыми воротами» для внедрения патогенных микроорганизмов. Нежизнеспособные ткани в ране, сосудистые и прочие нарушения, вызванные травмой, способствуют размножению микробной флоры, которая, в свою очередь, приводит к развитию воспаления и сопутствующему ему каскаду морфофункциональных нарушений на местном и системном уровнях. Нарушение местных иммунных процессов замедляет эрадикацию раны от патогенных микроорганизмов. Таким образом, очищение раны замедляется, что препятствует ее эпителизации.

Изучение микробиологических показателей холодовых ран выявило, что у крыс КГ на 7-е сутки наблюдения количество колониобразующих единиц (КОЕ) в 1 г биоптата раны составляло 5,7×10^9. У животных, получавших КСКК, бактериальная обсемененность равнялась (1,66×10^9) КОЕ/г, что в 3,4 раза меньше, чем в КГ. Введение ЭП также способствовало очищению ран от микроорганизмов — бактериальная обсемененность составляла (3,02×10^10) КОЕ/г, что в 1,9 раза меньше, чем в КГ.

Позитивное влияние КСКК и ЭП на 1-е сутки эксперимента проявлялось дальнейшим уменьшением количества микроорганизмов в ранах. Так, показатель бактериальной обсемененности у животных контрольной группы составлял (6,3×10^7) КОЕ/г; у крыс, пролеченных КСКК и ЭП, — (6,92×10^7) и (3,76×10^10) КОЕ/г, соответственно. Таким образом, по сравнению с данными в контрольной группе, бактериальная обсемененность ран при лечении ЭП была меньше в 1,7 раза, а количество КОЕ в ранах животных, получавших КСКК, снижалось почти на два порядка (в 91 раз).

Сходная динамика изучаемых показателей сохранялась и на 21-е сутки эксперимента. Бактериальная обсемененность ран у крыс контрольной группы составляла (1,95×10^6) КОЕ/г, введение ЭП сопровождалось уменьшением количества микроорганизмов до (2,32×10^4) КОЕ/г (в 8,4 раза). Лечение КСКК приводило к эрадикации ран от патогенной микрофлоры.

EG-2 was 2.7 and 3.6%/day, but from day 14 to 21 it was 1.2 and 2.4%/day, respectively.

In non-treated rats the wound HR was also reduced with the course of time. Within the period from day 3 to 9 of the experiment it was 6.3%/day, from day 7 to 14 and from 14 to 21 it was 4.3%/day and 3.5%/day respectively.

Due to the fact that in this research we used the coat-deprived animals, the wound epithelialization had a marginal character. It is known that the creep of epithelium on the side of healthy skin is only possible if granulation tissue surface is present [17]. Proceeding from this fact the results obtained in the group of CCBS treated animals confirm an adequate development of granulation tissue and indirectly testify to the activation of local immune responses.

Any wound is the 'open gates' for pathogenic microorganisms entering. Presence of non-viable tissues in the wound, vascular and other trauma-induced disorders, contribute to microflora propagation, which, in its turn, leads to development of inflammation and accompanying cascade of morphofunctional disorders at a local and systemic levels. Disorder in local immune processes slows down the wound eradication from pathogenic microorganisms. Consequently the wound cleansing is slowed down, thereby preventing its epithelialization.

The study of microbial indices of cold wounds demonstrated that in CG rats to day 7 of observation the number of colony-forming units (CFUs) in 1 g of biopic...
Результатам изучения динамики изменения площади холодовых ран и микробной обсемененности тканей соответствует изменение видового состава раневой микрофлоры (табл. 2). На 7-е сутки наблюдения во всех группах ткани ран были инфицированы стафилококками, энтерококками, бактериями семейства Enterobacteriaceae и аспорогенными анаэробными бактериями. На 14-е сутки видовой состав микрофлоры из ран у животных контрольной группы не изменился. У крыс из ЭГ-2 произошла эрадикация тканей от Staphylococcus capitis, Serratia marcescens, Providencia alcalifaciens, а у крыс ЭГ-1 – от S. capitis, Enterococcus faecalis, S. marcescens, P. alcalifaciens, Streptococcus pyogenes. На 21-е сутки из тканей холодовых ран животных контрольной группы были выделены: Staphylococcus aureus, E. faecalis, Proteus vulgaris, S. pyogenes, Fusobacterium necrophorum, Peptostreptococcus spp. Из тканей ран крыс, пролеченных ЭП, выделены S. aureus, P. vulgaris, S. pyogenes, F. necrophorum, Peptostreptococcus spp. В посевах из биоптатов у животных, которым вводили КСКК, рост микрофлоры отсутствовал.

Таблица 2. Видовой состав микрофлоры в холодовых ранах экспериментальных животных после введения КСКК и ЭП

Выделившие микрогранники	КГ	CG	ЭГ-1	EG-1	ЭГ-2	EG-2
S. aureus	+	+	+	+	+	+
S. capitis	+	-	+	-	+	-
S. casiolyticus	+	-	+	-	+	-
E. faecalis	+	+	+	-	+	-
E. coli	+	-	+	-	+	-
C. pneumoniae	+	-	+	-	+	-
P. vulgaris	+	+	+	-	+	-
S. marcescens	+	-	+	-	+	-
P. alcalifaciens	+	-	+	-	+	-
S. pyogenes	+	+	+	-	+	-
F. necrophorum	+	+	+	-	+	-
Peptostreptococcus spp	+	+	+	-	+	-

Срок наблюдения, сутки	Observation term, days
7	14

In the CCBS treated animals a bacterial contamination was equal to (1.66×10⁷) CFUs/g, that was 3.4 times lower than in CG. The PE introduction also contributed to wound cleaning from microorganisms: bacterial contamination was (3.02×10⁷) CFUs/g, that was 1.9 times lower than in the CG.

Positive effect of CCBS and PE introduction observed to day 14 of the experiment was further manifested in a decreased number of microorganisms found in wounds. In particular, the index of bacterial contamination in the control group animals was (6.3×10⁷) CFU/g, and in the rats treated with CCBS and PE it made (6.92×10⁷) and (3.76×10⁷) CFU/g, respectively. By other words, if comparing with the data in the control group the bacterial contamination of wounds during PE therapy was 1.7 times lower, and the CFUs number in the wounds of CCBS animals decreased by almost two orders (91 times).

Similar dynamics of the studied indices remained to day 21 of the experiment as well. Bacterial contamination of wounds in the control group rats was (1.95×10⁷) CFUs/g, the PE administration was accompanied by a decrease in microorganism number down to (2.32×10⁶) CFUs/g (in 8.4 times). The CCBS therapy resulted in wound eradication from pathogenic organisms.

A change in species composition of wound microflora corresponds to the results of studying the dynamics of change in cold wound area and microbial contamination of tissues (Table. 2). To day 7 of observation in all the groups the wound specimens were infected with Staphylococi, Enterococi, bacteria of Enterobacteriaceae family and asporogenous anaerobic ones. To day 14 the species composition of microflora from the wounds of control group animals remained unchanged. In EG-2 rats the tissue eradication from Staphylococcus capitis, Serratia marcescens, Providencia alcalifaciens occurred, and in EG-1 rats it did from S. capitis, Enterococcus faecalis, S. marcescens, P. alcalifaciens, Streptococcus pyogenes. To day 21 specimen was 5.7×10⁹.
Анализ бактериологических параметров холодовых ран крыс различных групп свидетельствует о существенном влиянии системного введения КСКК и ЭП на микробную обсемененность ран и видовой состав их микрофлоры. В отсутствие лечения бактериальная обсемененность ран уменьшалась медленно, а видовой состав микрофлоры не изменялся. На наш взгляд, это является одной из главных причин медленного заживления холодовых ран у животных контрольной группы. Замедленное заживление ран у животных, не получавших лечение, подтверждается отсутствием значимых различий между показателями площади ран на 3-и и 7-е; 7- и 9-е; 9- и 14-е сутки после криоповреждения.

Введение животным КСКК и ЭП приводило к значительному снижению количества микробов в ранах, а также сопровождалось сужением спектра их видового состава. Наблюдалась эрадикация ран от патогенных микроорганизмов, существенно замедляющих репаративные процессы в ней. При этом интенсивность терапевтического влияния КСКК была выше, чем у ЭП.

Однонаправленное действие КСКК и ЭП мы объясняем тем, что они содержат биологически активные вещества, физиологические для организма животного и балансировано влияют на работу иммунной, эндокринной, нервной, кроветворной системы, которые находятся в тесном функциональном взаимодействии. Из положений концепции многоуровневой регуляции поддержания гомеостаза [9] следует, что активные начала обоих изучавшихся регуляторов метаболических процессов могут действовать на любом уровне регуляции: центральном, системном, клеточном, молекулярном. Одной из наиболее чувствительных интегративных систем организма является иммунная [6]. Нормальный иммунный ответ обеспечивается согласованным участием клеточных, гуморальных механизмов и специфической иммунной реактивности. Поскольку КСКК и ЭП не оказывают прямого антибактериального действия, то, скорее всего, они активируют реакции иммунной системы (возможно, через клеточные механизмы) и взаимосвязанные с ней остальные вышеуказанные системы. Более выраженное влияние КСКК на процессы репарации ран, вероятнее всего, связано с различиями в составе КСКК и ЭП.

Выводы

Полученные нами данные свидетельствуют о выраженном стимулирующем влиянии КСКК и ЭП на процессы репарации холодовых ран, что подтверждается уменьшением микробной обсемененности и сужением спектра видового состава микроорганизмов ран, ускорением их эпителизации.
Обнаружен, что влияние КСКК и ЭП одноразово направлено и проявляется улучшением заживления преимущественно в первую фазу раневого процесса, при этом терапевтическая эффективность КСКК выше, чем у ЭП.

Представленные результаты свидетельствуют о возможности включения КСКК в протокол лечения ран. Перспективным направлением дальнейших исследований может стать сравнительное изучение влияния регуляторов метаболических процессов ксеногенного происхождения на динамику заживления ран.

Литература
1. Абаев Ю.К. Справочник хирурга. Раны и раневая инфекция. – Ростов-на-Дону: Феникс, 2006. – 427 с.
2. Богатырьова О.О., Гальченко С.С., Сандомирский Б.П. Влияние экстрактов криосконсервированных фрагментов селезенки свиней на заживление ран // Психодиагностика. – 2012. – Т. 12, №1. – С. 97–103.
3. Введенский Б.П., Ковалев Г.А., Тынынкя Л.Н. и др. Криосконсервированная сыворотка коровой крови при лечении деструктивно-дистрофических процессов в суставах // Вестник неотложной и восстановительной медицины. – 2012. – Т. 13, №1. – С. 41–43.
4. Григорян А.Ю., Бежин А.И., Панкратов А.А. и др. Иммобилизированные формы антисептиков для лечения огненных ран в эксперименте // Курский научно-практ. вестник «Человек и его здоровье». – 2011. № 4. – С. 24–33.
5. Дерматовенерология: Национальное руководство / Под ред. Ю.К. Скрипкина, Ю.С. Бутова, О.Л. Иванова – М.: ГЭОТАР-Медиа, 2011. – 1024 с.
6. Дранник Г.Н. Клиническая иммунология и аллергология. – К.: Фолиант, 2010. – 552 с.
7. Дяченко В.Ф., Бирюкова С.В., Старобинцева З.Г. и т.н. Лабораторная диагностика нейрональных заболеваний, обусловленных аспергиллезными макрорганизмами: Методич. рекомендации. – Х: ХНДМИ им. И. Мечников, 2000. – 35 с.
8. Клиническая хирургия: Национальное руководство в 3 т./ Под ред. В.С. Савельева, А.И. Кириенко – М.: ГЭОТАР-Медиа, 2008. – Т. 1. – 864 с.
9. Кузенков С.А. Основы токсикологии. – СПб: Фолиант, 2004. – 720 с.
10. Об унификации микробиологических (бактериологических) методов исследования, применяемых в клинико-диагностических лабораториях лечебно-профилактических учреждений: Приказ МЗ СССР №535. – М., 1985.
11. Основные методы лабораторных исследований в клинической лаборатории. – Женева: Всемирная организация здравоохранения, 1994. – 132 с.
12. Поляк М.С., Сухаревич В.И., Сухаревич М.Э. Питательные среды для медицинской микробиологии. – СПб.: Научно-исследовательский центр фармакотерапии, 2002. – 80 с.
13. Поповчук Я.О., Шкунч А.Г., Василон М.Д. Препараты фетоплацентарного комплекса в коррекции оксидантного стресса при хирургическом ликвидации в хиростом дегенеративной стопы // Трансплантология. – 2007. – Т. 9, №1. – С. 224–227.
14. Порошконосцевы криоллампикаторы из никелево титана в медицине / Под ред. Д.Д. Мельник // Томск: Изд-во МИЦ, 2010. – 360 с.
15. Rules and procedures with the material admitted for study in microbiological (clinical microbiology) laboratory: Methodical recommendations. Moscow: Moscow Regional R&D Clinical Institute of Russ. Acad. Sci.; 1999.

References
1. Abave Yu.K. Manual for surgeon. Wounds and infection of wounds: Rostov-on-Don: Feniks; 2006.
2. About unification of microbiological (bacteriological) research methods in clinical and diagnostic laboratories at medical preventive institutions: Decree of Ministry of Healthcare of the USSR Nr. 535: Moscow: 1985.
3. Basic laboratory methods in clinical laboratory: Geneva: World Health Organization; 1994.
4. Bogatyreva O.O., Galchenko S.Ye., Sandomirsky B.P. Effect of extracts of pig spleen and piglet skin cryopreserved fragments on blood leukocyte profile of rats with cold injury of skin. Problems of Cryobiology 2012; 22(1): 97–103.
5. Demidova-Rice T., Hamblin M., Herman I. Acute and impaired wound healing: pathophysiology and current methods for drug delivery, part 1: normal and chronic wounds: biology, causes, and approaches to care. Adv Skin Wound Care 2012; 25(7): 304–314.
6. Directive 2010/63/EU of the European parliament and of the council of 22 September 2010 on the protection of animals used for scientific purposes. Official Journal of the European Union 2010; L276: 33–79.
7. Drannik G.N. Clinical immunology and allergology: Kiev: Foliant; 2010.
8. Dyachenko V.F., Birukova S.V., Starobinets Z.G. et al. Laboratory diagnostics of pyo-inflammatory diseases, caused asporogenic anaerobic microorganisms: Methodical recommendations. Kharkiv: Mechnikov Institute of Microbiology and Immunology; 2000.
9. Grigoriyan A.Yu., Bezhin A.I., Pankrushева T.A. et al. Immobilized forms of antiseptics to treat purulent wounds in experiment. Kurskiy Nauchno-Prakticheskiy Vestnik Cheholov i Ego Zdorovie 2011; 4: 24–33.
10. Kutsenko S.A. Basics of toxicology: St. Petersburg: Foliant; 2004.
11. Melnik D.D., editor Porous-permeable cryopapplicators of tita

народed nickelide in medicine. Tomsk: MITS; 2010.
12. Poljak M.S., Sukharevich V.I., Sukharevich M.E. The nutrient media for medical microbiology. St. Petersburg: Research Center of Drug Therapy, 2002.
13. Popovich Ya.O., Shevchuk A.G., Vasylyuk M.D. Preparations of fetoplacental complex in correcting oxidative stress correction under surgical treatment of patients with diabetic foot syndrome. Transplantologya 2007; 9(1): 224–227.
14. Poslusny J., Conrad J., Halerz M. et al. Surgical burn wound infections and their clinical implications. Burns Care Res. 2011; 32(2): 324–333.
15. Rules and procedures with the material admitted for study in microbiological (clinical microbiology) laboratory: Methodical recommendations. Moscow: Moscow Regional R&D Clinical Institute of Russ. Acad. Sci.; 1999.
15. Правила и техника работы с материалом, поступающим для исследования в микробиологическую (клинической микробиологии) лабораторию: Методические указания. – М.: МОНИКИ РАМН, 1999. – С. 6–16.
16. Рыболовлев Ю.Р., Рыболовлев Р.С. Дозирование веществ для млекопитающих по константе биологической активности // Доклады АН СССР. – 1979. – Т. 247, №6. – С. 1513–1516.
17. Демидова-Рис Т., Хэмблин М., Герман И. Острое и замедленное заживление: патофизиология и современные методы для доставки лекарств. // Adv. Skin. Wound. Care. – 2012. – Vol. 25, №7. – P. 304–314.
18. Рыболовлев Ю.Р., Рыболовлев Р.С. Дозирование веществ для млекопитающих по константе биологической активности. // Доклады АН СССР 1979; 247(6): 1513–1516.
19. Савелиев В.С., Киренко А.И., редакторы. Клиническая хирургия: национальное руководство. Москва: GEOTAR-Media; 2008.
20. Скрипкин Ю.К., Бутов Ю.С., Иванов О.Л., редакторы. Дерматовенерология. Национальное руководство. Москва: GEOTAR-Media; 2011.