Review Article

Traditional Medicinal Plants as a Source of Antituberculosis Drugs: A System Review

Yuhui Xu,1 Bowen Liang,2 Chengcheng Kong,3,4 and Zhaogang Sun1,3,4

1Institute of Chinese Materia Medica, China Academy of Chinese Medical Science, Beijing 100700, China
2Department of Traditional Chinese Medicine, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
3Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
4Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing 101149, China

Correspondence should be addressed to Zhaogang Sun; sunzg75@163.com

Received 16 March 2021; Accepted 9 August 2021; Published 10 September 2021

Academic Editor: Jane Hanrahan

Copyright © 2021 Yuhui Xu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Medicinal plants are the chief components in the different oriental formulations in different traditional medical systems worldwide. As a thriving source of medicine, the medicinal plants with antituberculosis (TB) properties inspire the pharmacists to develop new drugs based on their active components or semimetabolites. In the present review, the anti-TB medicinal plants were screened from the scientific literatures, based on the botanical classification and the anti-TB activity.

The obtained anti-TB medicinal plants were categorized into three different categories, viz., 159 plants critically examined with a total 335 isolated compounds, 131 plants with their crude extracts showing anti-TB activity, and 27 plants in literature with the prescribed formula by the traditional healers. Our systemic analysis on the medicinal plants can assist the discovery of novel and more efficacious anti-TB drugs.

1. Introduction

Globally, traditional medicines (TM) make a vital contribution to the health care industry. In some countries, TM is the main source of health care or even the sole health care service available, especially in the rural sector [1]. The popularity of TM is also increasing in the developed countries for many different reasons, one of which is that the effectiveness of these TM was proved by the ethnopharmacological research. Early in 1972, the World Health Organization (WHO) established a Department of Traditional Medicine (DTM). Later, WHO (2013) called on to strengthen its public services of the traditional medicine [1]. Recently, the International Classification of Traditional Medicine (ICTM) was added as a new chapter into the International Classification of Diseases—11 (ICD-11) [2]. This achievement currently refers to the Traditional Chinese Medicine (TCM) alone, which opens its doors to accommodate many other thriving traditional health care philosophies prevailing globally, such as Ayurveda and Traditional African medicine (TAM).

The spread of tuberculosis (TB) occurred from East Africa to the rest of the world with the migration of Homo sapiens, especially along the established trade routes with increased mingling and crowding of populations [3, 4]. Currently, there exist more than 10 million new cases of active disease and nearly 1.3 million deaths annually [5, 6]. In response to this spreading route, different countries developed their own traditional anti-TB formulations during the long courses in fighting this old plaque. Reports relating TB can be found in many ancestral data of the TM medical system, especially the TCM, Ayurveda, and TAM for its long history coexisting with human kinds for an estimated 70,000 years [7]. Investigations on the TM formulations show that the plants or herbs are the main composition of the traditional anti-TB formula, from which the active components or semimetabolites present a thriving source of new drugs. In the last 20 years, nearly 50% of drugs approved by the
FDA in the United States of America have been derivatives of the natural products, including natural plant products [8]. Among the 435,000 plant species reported worldwide [9], an estimated 70,000 species of plants are used for medicinal purposes [10]. Thus, selecting plants based on ethnobotanical knowledge can enhance the probability to find new compounds with anti-TB activity.

Before this review, some articles summarized the role of local medical plants but only few with anti-TB purpose [11, 12]. In this review, the anti-TB medicinal plants in different countries or regions are included to analyze their botanical classification, active botanical parts, extract method, and in vitro anti-TB activities in brief. Subsequently, the effective anti-TB plants are described with the following three branches: those with the isolated effective compounds, those with their crude plant extracts showing anti-TB effect, and those only found in the formula prescribed by traditional healers. Finally, we discuss the influencing factors on the development of traditional medicine and its future trend. This review is to inspire the development of possible new anti-TB agents derived from plants.

2. Brief Description of the Overall Anti-TB Medicinal Plants

We present the data by searching the main three databases: Wangfang Med, Chinese National Knowledge Infrastructure, and PubMed. Combinations of the following search terms are used: “tuberculosis,” “plant,” “herb,” “Chinese and western medicine,” and “random.” In the present review, only the nonrepetitive plant species with good in vivo or in vitro anti-TB effect were accepted, although the criterion of the effectiveness was quite different with the inhibition concentration expressed in several different ways in different Mycobacteria, especially the \(M. \) \(\text{tuberculosis} \) H37Rv and the clinical isolates. The plants employed for treating the fever in traditional medicine have not been included, as fever is taken to be a nonspecific indication of many infections that are not restricted to TB. The exception to this is where fever is treated in conjunction with other TB-related symptoms like coughing.

The classification of the traditional anti-TB medicinal plants in the present review belongs to 90 families including 230 genus and 277 species (Figure 1). The top 11 families with more than 7 plant species include Fabaceae (21 species in 18 genus), Asteraceae (20 in 16 genus), Euphorbiaceae (14 in 11 genus), Lamiaceae (13 in 11 genus), Rutaceae (14 in 10 genus), Combretaceae (9 in 4 genus), Piperaceae (9 in 1 genus), Zingiberaceae (8 in 3 genus), Annonaceae (7 in 6 genus), and Apiaceae (7 in 7 genus). Forty plant families are only reported once. A total of 6 \(Terminalia \) genus that belongs to the Combretaceae family have up to 6 anti-TB plant species, and about 9 anti-TB plant species belong to only one genus \(Piper \).

The literatures that we studied reported the anti-TB properties of the plant species from different plant parts (aerial parts, almonds, bark, bulbs, branches, fruits, flowers, heart woods, leaves, rhizomes, roots, stems, seeds, shoots, twigs, tubers, wood, whole plants, and even the ethnomedicinal recipes). With the leaves (83 cases), roots (61), aerial parts (52), barks (30), stems (14), whole plants (9), seeds (9), fruits (8), rhizomes (8), and flowers (7) are the top 10 most used anti-TB plant parts. For the same plant species, different parts of the plant presented a varied anti-TB effect. The useful plant parts of the genus \(Lantana \), \(Piper \), and \(Terminalia \) mainly focused on the leaves, leaves, and both leaves and roots, respectively.

It was observed that the extraction methods of the medicinal plants available in the literature significantly affected the anti-TB results. The general problems concerning the antibacterial screening of medicinal plant extracts have already been discussed in the literature [13]. There is still no single extraction method that is regarded as a standard for extracting the bioactive compounds from medicinal plants. One or more of the following solvents were mainly used in the studies: dichloromethane (268 times), methanol (65), ethanol (45), hexane (29), chloroform (18), ethyl acetate (11), water (11), and acetone (10), while diethyl ether, acetate, and hydroalcoholic solutions were seldom used. Since the extraction process deeply influences the results of the bioactivity tests and the subsequent isolation of bioactive compounds, selection of the best extraction method by consulting the traditional knowledge about the preparation of the herbal remedy remains crucial [14].

As noted earlier and evidenced by this review, many reports lack adequate statistical analysis of their results and appropriate controls for their anti-TB activity, while some studies lack the generic extraction schemes or tests against a panel of various species of \(Mycobacteria \) to avoid false positive results. In this review, the parallel cytotoxic evaluation on mammalian cell lines has not been provided, since our main aim was to summarize the crude extracts or compound precursors of the anti-TB medicinal plants, although this needs to be overcome in the future.

3. Compounds from the Plants with Anti-TB Activity

Different from the conventional process of drug discovery involving the screening of large molecular libraries for biological activities and/or in silico data mining approaches based on cheminformatics modeling, the bioactivity-guided fractionation was mostly employed in medicinal plants to isolate the bioactive compounds. They were extracted first from the specified parts of the plants, then fractionized and characterized by infrared spectroscopy, mass spectrometry, and nuclear magnetic resonance spectroscopy, to obtain the structural data. Finally, their bioactivities were verified in different mycobacteria.

Several groups summarized the active anti-TB natural products from the different organs and regions. Early in 2007, Copp and Pearce [15] summarized a total of 353 natural products (secondary metabolites) with reported growth inhibitory activity towards \(M. \) \(\text{tuberculosis} \) or related organisms from terrestrial and marine plants and animals and microorganisms. Abedinzadeh et al. [16] stressed the natural antimycobacterial peptides from bacteria, fungi, plants, and animals. Chinsembu [17] described the natural
antimycobacterial agents from endophytes and medicinal plants in different regions of Africa, Europe, Asia, South America, and Canada. The present review only focused on the medicinal plants and the plants with anti-TB components belonged to the 156 species, 123 genus, and 64 families, of which Fabaceae (13 species, 10 genus), Rutaceae (10 species, 7 genus), and Lamiaceae (9 species, 7 genus) were the top three families; accordingly, more genera belong to those family with anti-TB activity (Table 1).

Many plants consisted several components with anti-TB activity, and only the active compounds that were reported are listed in this review. Table 1 presents the list of 335 compounds, which were tested for their anti-TB activities. Those 335 compounds could be divided into mainly 11 classes, such as terpenes (37 types), ketones (31), acids (14), alcohols (10), esters (9), hydrocarbons (9), quinones (8), furans (7), phenols (6), and quinolones (3). The typical structures of the 335 compounds are sorted out in Figure 2. Of all the anti-TB natural compounds, the derivatives and analogs of phytol, flavones, and terpenoids were critically reviewed by Singh et al. [173] and Cantrell et al. [174] for their pharmacological activities of various diseases. These 335 compounds were natural products or secondary metabolites, and few of their synthetic modified derivatives have been mentioned in this review.

In fact, many semisynthetic derivatives proved to be more active than the parent compounds; for example, the methylation of natural compounds of mulinenic acid and 13-hydroxy-mulin-11-en-20-oic acid methyl ester decreased the minimum inhibitory concentration (MIC) by 8 times [42]; n-propyl ester and n-butyl ester of isomulinic acid decreased the MIC by 4 times [42]. The triacetylated methyl gallate decreased the MIC 2-4 times, since the acetylation increased the lipophilic nature of methyl gallate [19]. The

![Classification of traditional anti-TB medicinal plants with effective crude extracts and the compounds. (a) Botanical families consisting of the anti-TB medicinal plants. There are 108 families including 230 genus and 277 species in this summary. (b) Genus number (>2) of the anti-TB medicinal plant families.](image-url)
Plant species	Plant family	Part used	Extracts	Compound class	Active constituents	References
Abrus precatorius	Fabaceae	Aerial parts	Dichloromethane fraction	Isoflavonquinone	Abroquinone B (1) against *M. tuberculosis* H37Ra with MIC of 12.5 μg/ml by MABA^{ab}	[18]
Acacia farnesiana	Mimosaceae	Fruit	Methanolic extract	Parabens, flavonones	Methyl gallate (2) showed activity against the sensible strain *M. tuberculosis* H37Rv with MIC of 50 μg/ml, respectively. The (2S)-Naringenin 7-O-β-D-galloylglucopyranoside (3) showed activity against multidrug resistant *M. tuberculosis* G122 with MIC of 50 μg/ml by MABA	[19]
Aglaia forbesii	Meliaceae	Leaf	Dichloromethane fraction	Benzopyran flavaglines	Desacyetylpyramidial D (4) against *M. tuberculosis* Ra with MIC of 25 μg/ml by MABA	[20]
Allanblackia floribunda	Guttiferae	Root bark	Successively macerated in dichloromethane-methanol (1 : 1) and methanol for 4 h	Biflavonoids	Morelloflavone (5) with the MIC of 19.53 and 39.06 μg/ml against *M. smegmatis* and *M. tuberculosis*, respectively, by MABA	[21]
Allium neapolitanum	Alliaceae	Bulb	Chloroform extract	Canthinone	Canthin-6-one (6), 8-hydroxy-canthin-6-one (7), and 5(C)-hydroxy-octadeca-6(E)-8(Z)-dieniac acid (8) with MICs in the range 8–32 μg/ml against a panel of fast-growing Mycobacterium species by dilution method	[22]
Allium sativum	Liliaceae	Bulb	Petroleum ether extract	Fatty acids	Lauric acid (9) and myristic acid (10) with MIC of 22.2 and 66.7 μg/ml, respectively, against *M. tuberculosis* H37Ra by MABA	[23]
Allophylus edulis	Sapindaceae	Leaf	Hydrodistillation	Cycloprop[e]azulen-4-ol	Viridiflorol (11) against *M. tuberculosis* H37Rv (ATCC27294) with MIC of 190.0 μg/ml by the microplate resazurin assay	[24]
Alnus incana	Betulaceae	Bark	Methanol extract	Triterpenes	Betulin (12), betulinic acid (13), and betulone (14) with MIC of 12.5, 84, and 57 μg/ml against *M. tuberculosis* H37Ra by the microplate resazurin assay	[25]
Alpinia katsumadai	Zingiberaceae	Seed	n-Hexane	Diarylheptanoids	Trans,trans-1,7-diphenylhepta-4,6-dien-3-one (15) as efflux inhibitors against *M. smegmatis* mc² 155 by thiazolyl blue tetrazolium bromide method	[26]
Amphipterygium adstringens	Anacardiaceae	Stem bark	Dichloromethane/ methanol (1 : 1)	Tirucallanes	(14β, 24E)-3-oxolanosta-7,24-dien-26-oic acid (16) and (14β,24E)-3-hydroxylanosta-7,24-dien-26-oic acid (17) with MIC of 64 and 32 μg/ml against *M. tuberculosis* H37Rv (ATCC 27294) by Bactec 460-TB apparatus	[27]
Amyris elemifera	Rutaceae	Leaf	Chloroform extract	Texalin	Texalin (18) with MIC of 25 μg/ml against *M. tuberculosis* H37Rv by Bactec 460-TB radiometric methodology	[28]
Androsace umbellata	Primulaceae	Whole plants	Ethanol extract	Saxifragifolin	Saxifragifolin D (19) reduced the intracellular replication of *M. tuberculosis* in THP-1-derived macrophages but not in A549 cells	[29]
Plant species	Plant family	Part used	Extracts	Compound class	Active constituents	References
------------------------	-------------------	-------------------	-------------------	------------------------------	---	------------
Angelica sinensis	Apiaceae	Root	Chloroform extract	Fatty diol	Falcarindiol (20), 9Z,17-octadecadiene-12,14-diyne-1,11,16-triol,1-acetate (21), and oplopandiol (22) with MIC of 26.7, 25.3, and 50.2 μg/ml, respectively, against M. tuberculosis H37Rv by MABA	[30]
Anisochilus harmandii	Lamiaceae	Aerial parts	Water	Diterpenes	One pimarane-type diterpene named pimicar acid (23) and two abietane-type diterpenes named 9α,13α-epidioxyabiet-8-(14)-en-18-oic acid (24) and 15-hydroxydehydroabietic acid (25) with MIC of 50 μg/ml, respectively, against M. tuberculosis H37Ra by MABA (3R)-falcarnol (26) and (3R, 9R, 10S)-panaxydol (27) with MICs of 25.6 μM and 36.0 μM and IC50’s of 15.3 μM and 23.5 μM against M. tuberculosis H37Ra by microplate resazurin assay	[31]
Aralia nudicaulis	Araliaceae	Rhizome	Methanolic extract	Polyacetylene	(3R)-falcarinol (26) and (3R, 9R, 10S)-panaxydol (27) with MICs of 25.6 μM and 36.0 μM and IC50’s of 15.3 μM and 23.5 μM against M. tuberculosis H37Ra by microplate resazurin assay	[32]
Ardisia gigantifolia	Primulaceae	Leaves and stems	Chloroform extract	Resorcinol	5-alkylresorcinols (28), 5-(8Z-heptadecenyl) resorcinol (29), and 5-(8Z-pentadecenyl) resorcinol (30) with MIC of 34.4 and 79.2 μM against M. tuberculosis H37Rv (ATCC 27294) by MABA assay, respectively	[33]
Argyreia speciosa	Convolvulaceae	Root	Methanolic extract	Flavanoid sulphates	Quercetin 3'-O methyl 3-sulphate (31) and kaempferol 7-O methyl 3-sulphate (32) against M. tuberculosis H37Rv with MIC values of 25 μg/ml, respectively, by MABA [(E)-2-(methyl (phenyl) amino) ethyl 2-(2-hydroxyundecanamido)-7 (33), 11-dimethyl-3-oxotetradec-4-enoate (34), and compound 1 inhibit mycobacterial biofilm formation, disperse the preformed biofilms, and disrupt the mature biofilms at concentration of 4, 8, and 32 μg/ml, respectively]	[34]
Arisaema sinii	Araceae	Whole plant	80% ethanol	Fatty acid ester	Aristolactam I (35) with MIC of 12.5-25 μg/ml against drug resistant M. tuberculosis by fluorometrit MABA	[35]
Aristolochia brevipes	Aristolochiaceae	Rhizome	Dichloromethane extract	Benzo[f]-1,3-benzodioxolo[6,5,4-cd]jindol-5(6H)-one	Aristolactam I (35) with MIC of 12.5-25 μg/ml against drug resistant M. tuberculosis by fluorometrit MABA	[36]
Aristolochia taliscana	Aristolochiaceae	Hook roots	Hexanic extract	Neolignans	Licanin A (36), licanin B (37), and eupomatenoid-7 (38) with MIC of 3.12-12.5 μg/ml against M. tuberculosis strains: H37Rv, four mono-resistant H37Rv variants and 12 clinical MDR isolates by MABA	[37, 38]
Arracacen toleucensis	Umbelliferae	Aerial parts	Dichloromethane-methanol (1:1)	Coumarins	Isoimperatorin (39), osthol (40), suberolin (41), and 8-methoxypsoralen (42) with MIC of 64, 32, 16, and 128 μg/ml against M. tuberculosis H37Rv (ATCC 27294) by MABA	[39]
Artemisia capillaris	Asteraceae	Aerial parts	Methanol extracts	Stilbene derivatives	Ursolic acid (43) and hydroquinone (44) with MIC of 12.5-25 μg/ml against M. tuberculosis MDR/XDR strains by MABA	[40]
Table 1: Continued.

Plant species	Plant family	Part used	Extracts	Compound class	Active constituents	References
Artocarpus lakoocha	Moraceae	Root	Dichloromethane extract	Benzofuran	Lakoochin A (45) and lakoochin B (46) with MIC of 12.5 and 50 μg/ml against M. tuberculosis H37Ra by MABA	[41]
Azorella compacta	Umbelliferae	Aerial parts	n-Hexane	Diterpenoid	Azorellanol (47) and 17-acetoxy-13-alpha-hydroxy-azorellane (48) showed the strongest activity, with MIC of 12.5 μg/ml against both strains (M. tuberculosis H37Rv (ATCC 27294) and a clinical isolate CIBIN/UMF15:99) by MABA	[42, 43]
Bauhinia purpurea	Fabaceae	Root	Dichloromethane extract	Dibenz[b,f]oxepin	Bauhinoxepin J (5,6-dihydro-3-methoxy-1,4-dionedibenzo[b,f]oxepin (49) against M. tuberculosis H37Ra with a MIC of 24.4 μM by MABA	[44]
Bauhinia saccocalyx	Fabaceae	Root	Dichloromethane extract	Dibenz[b,f]oxepin	Bauhinoxepins A (3,3,5-trimethylbenzo[b]pyrano[6,11-diol] (50) and B (6-methoxy-7-methyl-2-(3-methylbut-2-enyl)dibenzo[b,f]oxepine-1,8-diol (51) against M. tuberculosis H37Rv with MIC of 6.25 and 12.5 μg/ml, respectively, by MABA	[45]
Beilschmiedia erythrophloia	Lauraceae	Root	Methanol	Endiandric acid	Beilschminol C (52) and suberosol B (53) against M. tuberculosis H37Rv with MICs of 50 and 28.9 μg/ml, respectively, by MABA	[46]
Beilschmiedia tsangii	Lauraceae	Leaf	Methanol	Epoxyfuranoid lignans	Three new epoxyfuranoid lignans, 4a,5a-epoxybeilschmin A (54) and B (55), and beilschmin D (56), together with known beilschmin A (57) and B (58) with MICs of 30, 40, 50, 2.5, and 7.5 μg/ml, respectively, against M. tuberculosis 90-211378 by proportion method on agar	[47]
Blepharodon nitidum	Asclepiadaceae	Whole plant	Ethanol extract	Hydroperoxycycloartanes	24-Hydroperoxycycloart1-25-en-3β-ol (59) and 25-hydroperoxycycloart-23-en-3β-ol (60) with MIC of 12.5 and 25 μg/ml against drug-resistant clinical isolates by MABA	[48]
Bocconia arborea	Papaveraceae	Aerial parts	Chloroform extract	Dihydrochelirubine	Alkaloids 6-methoxydihydrochelirubine (61) and 6-methoxydihydrochelirubine (62) against M. tuberculosis H37Rv and MDR tuberculosis with MIC of 12.5-50 μg/ml by MABA	[49]
Caesalpinia pulcherrima	Fabaceae	Root	Dichloromethane	Cassane-furanoditerpenoids	6 Beta-benzoyl-7 beta-hydroxyvoucapen-5 alpha-ol (63) and 6 beta-cinnamoyl-7 beta-hydroxyvoucapen-5 alpha-ol (64) with MIC of 25 and 6.25 μg/ml against M. tuberculosis H37Ra by MABA	[50]
Caesalpinia sappan	Fabaceae	Heartwood	Methanol	Chalcone	3-Deoxyxyampphalcone (65) against both drug-susceptible and drug-resistant strains of M. tuberculosis at MIC50s of 3.125–12.5 μg/ml in culture broth and MIC50s of 6.25–12.5 μg/ml inside macrophages and pneumocytes	[51]
Plant species	Plant family	Part used	Extracts	Compound class	Active constituents	References
-----------------------	--------------	-----------------	-------------------	------------------------	---	------------
Calliandra californica	Fabaceae	Root	Ethyl acetate	Cassane-type diterpenes	Escobarine A (66) and B (67) with MIC of 25-50 μg/ml against M. tuberculosis H37Rv	[52]
Callicarpa pilossissima	Verbenaceae	Leaves and twigs	Methanol extract	Diterpenoids	12-Deoxy-11,12-dihydro-seco-hinokiol methyl ester (68), callicarpic acid B (69), and alpha-tocopherol trimer B (70) with MICs ≤63.6 μM against M. tuberculosis H37Rv in vitro by MABA	[53]
Calophyllum lanigerum	Clusiaceae	All plant	Methanol	Coumarin	(+)-Calanolide A (71) against M. tuberculosis with H37Rv with MIC of 3.13 μg/ml by the radiometric BACTEC	[54, 55]
Camchaya calcarea	Asteraceae	Whole plant	Dichloromethane	Cycloeca[b]furan	Goyazensolide (72), centraherin (73), lychnophorolide B (74), isogoyazensolide (75), isocentraherin (76), 5-epi-sisogoyazensolide (77), and 5-epi-isocentraherin (78) with MICs of 3.1, 3.1, 6.2, 1.5, 3.1, 3.1, and 3.1 μg/ml, against M. tuberculosis H37Rv, respectively, by MABA	[56]
Celastrus vulcanicola	Celastraceae	Leaf	Dichloromethane	Sesquiterpenes	1α-Acetoxy-6β, 9β-dibenzoyloxy-dihydro-b-agarofuran (79) with MIC value of 6.2 μg/ml against sensitive and resistant M. tuberculosis strains by MTT method	[57]
Chamaedorea tepejilote	Arecaeae	Leaf	Hexane extracts	Pentacyclic triterpenes, fatty alcohols	Ursolic acid (43) and farnesol (80) against M. tuberculosis H37Rv (ATCC 27,294) with MIC of 50 μg/ml and 8 μg/ml, respectively, by MABA	[58, 59]
Chrysanthemum morifolium	Asteraceae	Flower	Methanol extract	3-Hydroxy triterpenoids	Maniladiol (81), 3-epilupeol (82), and 4,5a-epoxyhelianol (83) with MIC of 4 μg/ml, 4 μg/ml, and 6 μg/ml, respectively, against M. tuberculosis H37Rv by MABA	[60]
Citrullus colocynthis	Cucurbitaceae	Fruit	Methanolic extract	Triterpenes	Ursolic acid (43) and cucurbitacin E 2-O-β-D-glucopyranoside (84) against M. tuberculosis H37Rv with MICs of 25 μg/ml, respectively, by BACTEC 460TB system	[61]
Citrus aurantiifolia	Rutaceae	Fruit peels	Hexane extract	Furo[3,2-G]coumarin, fatty acid	Both 5,8-dimethoxypsoralen (85) and palmic acid (86) with the MIC of 25 μg/ml against M. tuberculosis H37Rv (ATCC 27,294) and M. tuberculosis H10 by MABA	[62]
Clausena excavata	Rutaceae	Rhizome	Chloroform extract	Coumarins, carbazole derivatives	Dentatin (87), nor-dentatin (88), clausenidin (89), 3-formylcarbazole (90), mukonal (91), 3-methoxy-3-formylcarbazole (92), 2-hydroxy-3-formyl-7-methoxy-carbazole (93), and clausazoline J (94) with MIC of 50, 100, 200, 100, 200, 50, 100, and 100 μg/ml against M. tuberculosis H37Rv by MABA	[63]
Clavija procera	Theophrastaceae	Stem and bark	Ethanol extract	Oleanane triterpene	Oleane triterpenoid aegicerin (95) with MIC values ranged between 1.6 and 3.12 μg/ml against 37 different sensitive and resistant MTB strains by thiazolyl blue tetrazolium bromide method	[64]
Plant species	Plant family	Part used	Extracts	Compound class	Active constituents	References
--------------------	--------------	-----------	----------------------	------------------------	--	------------
Clinacanthus siamensis	Acanthaceae	Leaf	Ethanol	Amide	Trans-3-methylthioacrylamide (96) with the MIC of 200 μg/ml against M. tuberculosis H37Ra by MABA	[65]
Cnidoscolus chayamansa	Euphorbiaceae	Leaf	Chloroform : methanol (1 : 1)	Pentacyclic triterpenes	Moretenol (97) and moretenyl acetate (98) showed MIC of 25 μg/ml against M. tuberculosis H37Rv and four mono-resistant strains	[66]
Combretum molle	Combretaceae	Stem bark	Acetone	Polyphenol	Punicalagin (99) with MIC of 600 μg/ml against M. tuberculosis H37Rv by the agar proportionnal method	[67, 68]
Cordia globifera	Ehretiaceae	Root	A hexane-soluble extract	Quinones	Globiferin (100) and cordiachrome C (101) with MICs of 6.2 and 1.5 μg/ml, respectively, against M. tuberculosis H37Ra by MABA	[69]
Croton kongensis	Euphorbiaceae	Leaf	Dichloromethane	Diterpenedione	16-Dien-9,15-dione (102), ent-8,9-seco-8,14-epoxy-7R-hydroxy-11α-acetoxy-16-kauren-9,15-dione (103), ent-8,9-seco-7R-hydroxy-11α-acetoxykaur-8 (14) with MICs of 25.0, 6.25, and 6.25 μg/ml, respectively, and possessed antimalarial activity with ICso ranges of 1.0-2.8 μg/ml against M. tuberculosis H37Ra by MABA	[70]
Curcuma longa	Zingiberaceae	Rhizomes	Chloroform extracts	Curcumin	Curcuminoid demethoxycurcumin (104) with MIC of 200 μg/ml against M. tuberculosis H37Rv by BACTEC 460	[71, 72]
Curtisia dentata	Curtisiaceae	Leaf	Ethanol extracts	Triterpenes	Ursolic acid acetate (105) and betulinic acid acetate (106) with MIC of 3.4 μg/ml and 19.8 μg/ml against M. tuberculosis H37Rv (ATCC 27294) by MABA	[73]
Cynanchum atratum	Asclepiadaceae	Roots	Ethanol extract	Isoquinolin	(-)-Deoxypergularinine (107) with MIC of 12.5 μg/ml against M. tuberculosis H37Ra, H37Rv, MDR, and XDR strains by Bactec MGIT 960TM	[74]
Derris indica	Fabaceae	Stem, root	Hexane : dichloromethane (1 : 1)	Flavonoids	3-Methoxy-(3″,4″-dihydro-3″,4″-dioxo-7″,8″-dimethylpyrano-(7,8 : 5″,6″)-flavone (108), 3,4-methylenedioxy-10-methoxy-7-o xo[2]benzopyran[4,3-b]benzopyran (109), karanjachromene (110), and pinnatin (111) against M. tuberculosis H37Ra with MICs of 25, 6.25, 12.5, and 12.5 μg/ml by MABA	[75, 76]
Diospyros anisandra	Ebenaceae	Stem bark	n-Hexane extract	Naphthalene	Plumbagin (112) and 3,3″-biplumabgin (113) against M. tuberculosis H37Rv with MIC of 1.56 and 3.33 μg/ml by MABA	[7]
Diospyros decandra	Ebenaceae	Bark	Hexane	Triterpenes	2-Oxo-3b,19a-dihydroxy-24-nor-urs-12-en-28-oic acid (114) with MIC of μg/ml against M. tuberculosis H37Ra by MABA	[77]
Diospyros montana	Ebenaceae	Stem bark	Chloroform extract	Quinonoids	Plumbagin (112) > emodin (115) > menadione (116) > thymoquinone (117) > diospyrin (118) against M. tuberculosis H37Ra (ATCC 25177) and MDR-TB by MABA	[78, 79]
Plant species	Plant family	Part used	Extracts	Compound class	Active constituents	References
-------------------------------	-----------------	-----------------	-------------------	------------------	--	------------
Disthemonanthus benthamianus	Fabaceae	Stem bark	Methanol extract	Flavonoids	Distemonanthoside (119), sitosterol 3-O-β-D-glucopyranoside, 4-methoxygallic acid (118), and quercetin (121), against a clinical isolate strain of *M. tuberculosis* AC 45 with MIC ranged from 31.25 to 125 μg/ml by MABA	[80]
Dracaena angustifolia	Dracaenaceae	Leaf	Dichloromethane extract	Triterpenes, fatty acids, fatty alcohols	Ergosterol-5,8-endoperoxide (122), linoleic acid (123), and E-phytol (124) with MICs ≤ 2 μg/ml against *M. tuberculosis* H37Rv (ATCC 27294) by MABA	[81]
Ehretia longiflora	Boraginaceae	Root	Methanolic extract	Quinone	Ehretiquinone (125) and prenylhydroquinone (126) with MIC of 25 and 26.2 μg/ml against *M. tuberculosis* strain H37Rv by the agar proportion method	[82]
Engelhardia roxburghiana	Juglandaceae	Root	Methanol	Quinone	Engelharquinone (127), 3-methoxyjuglone (128), and (-)-4-hydroxy-1-tetralone (129) with MIC of 3.125, 3.125, and 6.25 μg/ml against *M. tuberculosis* 90-221387 and 0.2, 0.2, and 4.0 μg/ml against *M. tuberculosis* H37Ra by MABA	[83, 84]
Eriosema chinense	Fabaceae	Root	Ethnomedicinal extracts	Flavonoids	Isoflavonoids, pasellidin (138) and erythobissin (139) with MICs between 8 μg/ml and 25 μg/ml against MTB; 3-phenyl coumarin derivative indicanine (138) with MIC of 18.5 μg/ml against *M. smegmatis* by agar proportion method	[85]
Erythrina gibbosa	Fabaceae	Root	Successively extracted with dichloromethane-methanol (1:1) and methanol	Isoflavonoids	Indicanine B (141) with MIC of 18.5 μg/ml against *M. smegmatis* by agar proportion method	[86]
Erythrina indica	Fabaceae	Root bark	Methanol	Isoflavonoids	Isoflavonoids, pasellidin (138) and erythobissin (139) with MICs between 8 μg/ml and 25 μg/ml against *M. tuberculosis* H37Rv; 3-phenyl coumarin derivative indicanine (138) with MIC of 18.5 μg/ml against *M. smegmatis* by agar proportion method	[86]
Erythrina senegalensis	Fabaceae	Ethnomedicinal recipes	70% aqueous methanol	Isoflavonoids	Isolavonoids, pasellidin (138) and erythobissin (139) with 3-phenyl coumarin derivative indicanine (138) with MIC of 18.5 μg/ml against *M. smegmatis* by agar proportion method	[86]
Eucalyptus tordilliana	Myrtaceae	Leaf	Hexane extract	Fatty acid ester	Hydroxymyristic acid methylester (142) and a substituted pyrenyl ester (143), a sterol with MIC of 49.45 and 46.99 μg/ml against *M. tuberculosis* H37Rv (ATCC 27294) by MABA	[87]
Euclea natalensis	Ebenaceae	Root	Acetone extract	Naphthoquinone	Diospyrin (118) and 7-methyljuglone (144) against *M. tuberculosis* H37Rv (ATCC 27294) by BACTEC 460 with four- to sixfold reduction of MIC	[88]
Plant species	Plant family	Part used	Extracts	Compound class	Active constituents	References
-------------------------	------------------	--------------------	----------------	----------------------	---	------------
Euphorbia ebracteolata	Euphorbiaceae	Roots	80% ethanol	Diterpenoids	Rosane-type diterpenoids 3 (145) and 8 (146) displayed moderate inhibitory effects on with the MIC of 18 μg/ml and 25 μg/ml, respectively, by MABA	[89, 90]
Euphorbia lagascae	Euphorbiaceae	Air-dried powdered plant	Methanol extract	Steroids	Ergosterol peroxide (147), cycloart-23-en-3β,25-diol (148), vanillin (149), and 4-hydroxybenzaldehyde (150) against M. tuberculosis H37Rv ATCC 27294 strain using two different systems: BACTEC 460TB (Bectec 460)	[91]
Exocarpos latifolius	Santalaceae	Stem	Methanol extract	Fatty acid	Exocarpic acid (E-octade-13-ene-9,11-diyinoic-acid) (151) with MIC of 20 μg/ml against M. tuberculosis H37Ra (ATCC 25177) by the thiazolyl blue tetrazolium bromide method	[92]
Fatoua pilosa	Moraceae	Whole plant	Methanol extract	Coumarin; chalcones	Scopoletin (152), isobavachalcone (153) and (E)-1-[2,4-dihydroxy-3-(3-methylbut-2-enyl)phenyl]-3-(2,2-dimethyl-8-hydroxy-2H-benzopyran-6-yl)prop-2-en-1-one (154), copoletin (155), and umbelliferone (156) with MICs of 42, 18, 30, 42, and 58.3 μg/ml against M. tuberculosis H37Rv by the agar proportion method	[93]
Ferula hermonis	Apiaceae	Root	Ethanol extraction	Octahydroazulen	Jaeschkeanadiol benzoate (teferidin) (157) and jaeschkeanadiol p-hydroxybenzoate (ferutin) (158) with MIC values of 3.125 and 1.56 μg/ml against M. bovis BCG Pasteur 1173P2 and 0.69 and 2 μg/ml against M. tuberculosis H37Rv, respectively, by fluorescence assay	[94]
Garcinia livingstonei	Guttiferae	Leaf	Acetone extract	Flavonoids	Amentoflavone (159) and 4-monomethoxy amentoflavone (160) with MIC of 0.6 ad 1.4 mg/ml against M. smegmatis (ATCC 1441), with the positive control isoniazid (MIC = 1.70 mg/ml) by tetrazolium violet indicator	[95]
Garcinia multilora	Clusiaceae	Heartwood	Methanol	Biflavones	6,6″′-Biapigenin hexamethylether (161), volkensilavone hexamethylether (162), and hexamethylether of GB-1a (163) against M. tuberculosis H37Rv with inhibition of 96%, 95%, and 87% at 1.25 μg/ml by BACTEC 460TB	[96]
Garcinia nobilis	Clusiaceae	Stem bark	Methanol	Flavonoids	4-Prenyl-2-(3,7-dimethyl-2,6-octadienyl)-1,3,5,8-tetrahydroxyxanthone (164) with MIC of 8 μg/ml against M. tuberculosis H37Rv ATCC 27294 and M. tuberculosis clinical MTCS2 by MABA	[97]
Goniothalamus laoticus	Annonaceae	Flower	Ethyl acetate extract	Lactone derivative	(+)-Altholactone (165) and howinin A (166) with MIC of 6.25 μg/ml, respectively, against M. tuberculosis H37Ra by MABA	[98]
Harrisonia perforata	Simaroubaceae	Branches	Ethanolic extract	Flavonoids	Perforamone B (5-hydroxy-7-methoxy-2-methyl-8-(1-hydroxy-3-methyl-3-butenyl)chromone) (167) and D (2-hydroxymethylalloptaeroxylin) (168), peucin-7-methyl	[99]
Plant species	Plant family	Part used	Extracts	Compound class	Active constituents	References
-------------------------------	--------------	-----------------	----------------	----------------	---	------------
Helichrysum melanacme	Asteraceae	Shoots	Acetonic extract	Chalcone	Ether (169), and greveichromenol (170) with MICs of 25, 25, 50, and 50 μg/ml against \(M. \) tuberculosis H37Ra by MABA	
2,4,6-Trihydroxy-3'-prenylchalcone (171) and 4',6',5'-trihydroxy-6'-6''-dimethyldihydropyrano-[2''',3'''-2',3'] chalcone (172) [100]						
Heracleum maximum	Apiaceae	Root	Methanolic extract	Furanocoumarins	(3R,8S)-Falcarindiol (173) and 6-isopentenylxyloisobergapten (174) with MICs of 24 μM and 167 μM and IC₅₀ of 6 μM and 27 μM against \(M. \) tuberculosis H37Ra respectively [101]	
Humulus lupulus	Cannabaceae	Strobile hops	Hexane extract	Fatty acid	Unsaturated fat oleic and linoleic acids (175) with MIC of 4 and 16 μg/ml against \(M. \) fortuitum by thiazolyl blue tetrazolium bromide method [102]	
Hydnocarpus anthelmintica	Flacourtiaceae	Seeds	95% ethanol	Fatty acid	Anthelmintinins A (176), B (177), C (178) (11-cyclopent-1-en-1-yl)-11-oxoundecanoic acid, 2,3-dihydroxypropyl 9-[(R)-cyclopent-2-en-1-yl]nonanoate, 2,3-dihydroxypropyl 13-[(R)-cyclopent-2-en-1-yl]tridecanoate, and two known ones, namely, chaulmoogric acid (179) and ethyl chaulmoograte (180) with MIC of 5.54, 16.70, 4.38, 9.82, and 16.80 μM, respectively, by GFP-expressed \(M. \) tuberculosis H37Rv [103]	
Hypericum perforatum	Guttiferae	Aerial parts	Hexane and chloroform extracts	Pyranone	Hyperenone A (181) against \(M. \) tuberculosis H37Rv and \(M. \) bovis BCG with MIC of 75 μg/ml and 100 μg/ml, respectively, by thiazolyl blue tetrazolium bromide method [104]	
Indigofera longeracemosa	Fabaceae	Stem	Methanol extract	Diterpene	Diterpene 12-methyl-5-dehydroacetylhydromine (182) with MIC of 0.38 μg/ml against \(M. \) tuberculosis H37Rv by proportion method [105]	
Ipomoea leptophylla	Convolvulaceae	Leaf	Organic soluble extract	Triterpenes	3α,25-Epoxy-3R,21R-dihydroxy-22a-angeloyloxolean-12-ene-28-oic acid (183), camacic acid (184), and rehmannic acid (185) with MICs of 64, 64, and 32 μM, respectively, against \(M. \) tuberculosis H37Rv by BACTEC 460 radiometric system [106]	
Juniperus communis	Cupressaceae	Needles and branches	Methanolic extracts	Diterpene	Isocupressic acid (186) and commucic acid (187) displayed MICs of 78 μM and 31 μM against \(M. \) tuberculosis H37Ra, respectively, by microplate resazurin assay [107]	
Juniperus procera	Cupressaceae	Leaf and bark	95% ethanol	Diterpene	Plumagin (112) and 7β-hydroxyabieta-8,13-dien-11,12-dione (188) with MIC < 12.5 μg/ml against \(M. \) tuberculosis H37Rv by visible growth [108]	
Plant species	Plant family	Part used	Extracts	Compound class	Active constituents	References
Kaempferia galanga	Zingiberaceae	Rhizomes	Absolute ethanol	Aromatic acid	Ethyl p-methoxycinnamate (189) inhibited the growth of \(M. \) tuberculosis H37Ra and H37Rv with MICs of 48.5 and 24.2 mM by Bactec 460 system	[109]
					3,5,7,4′-Tetramethoxyflavone (190) and 5,7,4′-trimethoxyflavone (191) with MIC of 200 and 50 \(\mu \)g/ml, respectively, against \(M. \) tuberculosis H37Rv by MABA	[110]
Kaempferia parviflora	Zingiberaceae	Rhizomes	Water	Flavonoids	Three pentacyclic triterpenoids of 3-acetoxy-22-(2′-methyl-2Z-butenyloxy)-12-oleanen-28-oic acid (192), 3-hydroxy-22β-(2′-methyl-2Z-butenyloxy)-12-oleanen-28-oic acid (reduced lantadene A) (193), and oleanolic acid (194) with MIC of 50, 50, and 25 \(\mu \)g/ml against \(M. \) tuberculosis H37Rv by MABA	[111]
Lantana hispida	Verbenaceae	Aerial parts	Hexane extract	Pentacyclic triterpenoids	Ursolic acid (43) and oleanolic acid (194) against \(M. \) tuberculosis H37Rv by MABA	[58]
					5,7-Dihydroxy-3-methoxy-2-(4-methoxyphenyl)-4H-chromen-4-one (195); 5,6,7-trihydroxy-3-methoxy-2-(4-methoxyphenyl)-H-chromen-4-one (196); 6,8,4′-trimethyl-\(\alpha,\beta,\gamma\)-dimethyl,\(\alpha,\beta,\gamma\)-bis(3,4-dihydroxyphenyl) butane (17) with MIC of 50 \(\mu \)g/ml, respectively, against \(M. \) tuberculosis H37Rv (ATCC 27294) by Bactec 460-TB apparatus	[27]
Lantana horrida	Verbenaceae	Aerial parts	Hexanic extracts	Triterpenes	Falcarindiol (198) with MIC of 20 \(\mu \)g/ml and sesquiterpene alcohol a-preanthapendol (199) with MIC of 60 \(\mu \)g/ml against \(M. \) tuberculosis H37Rv by spot culture growth inhibition assay	[112]
Larrea divaricata	Zygophyllaceae	Aerial parts	Dichloromethane/methanol (1:1)	Flavone, polyphenols	Lavonessnevadens (5,7-dihydroxy-6,8,4′-trimethoxyflavone) (200) and isothymusin (6,7-dimethoxy-5,8,4′-trihydroxyflavone) (201) against \(M. \) tuberculosis H37Rv by MABA	[113]
Ligusticum officinale	Apiaceae	Root	n-Hexane extract	Fatty alcohol	3β,25-Epoxy-3α,21α-dihydroxy-22β-(3-methylbut-2-en-1-oloyloxy) olean-12-ene-28-oic acid (202); 3β,25-epoxy-3α,21α-dihydroxy-22β-angeloyloxyolean-12-ene-28-oic acid (203); 3β,25-epoxy-3α,21α-dihydroxy-22β-tigloyloxyolean-12-ene-28-oic acid (204); and 3β,25-epoxy-3R-hydroxy-22β-(2-methylbutan-1-oloyloxy)olean-12-ene-28-oic acid (205), lantanillic acid (206), cammaric acid (184), lantanolic acid (207), and rehmannic acid (185) against \(M. \) tuberculosis H37Rv (ATCC 27294) using the radiorepiometric BACTEC 460 system	[106]
Limnophila geoffrayi	Scrophulariaceae	Aerial parts	Chloroform extract	Flavonoids	Citrusflavonoids (207) against \(M. \) tuberculosis H37Rv (ATCC 27294) using the radiorepiometric BACTEC 460 system	[113]
Lippia turbinata	Verbenaceae	Aerial parts	Methanol-dichloromethane	Triterpenoids	Lantanillic acid (206), cammaric acid (184), lantanolic acid (207), and rehmannic acid (185) against \(M. \) tuberculosis H37Rv (ATCC 27294) using the radiorepiometric BACTEC 460 system	[106]
Litsea hypophaeae	Lauraceae	Root	Methanol	Lactone, phenol	Litseakolide L (208) and N-trans-feruloylmethoxystyramine (209) with MIC values of 25	[76]
Plant species	Plant family	Part used	Extracts	Compound class	Active constituents	References
-------------------------------	--------------	-----------	------------------	----------------	--	------------
Lophira lanceolata	Ochnaceae	Roots	Methanol extract	Flavonoids	and 1.6 μg/ml, respectively, against M. tuberculosis H37Rv by agar proportion method	[114]
					Dihydrolophirone A (210) and lophirone A (211) with MIC of 31.25 and 15.75 μg/ml against M. tuberculosis H37Rv by MABA	[114]
Lunasia amara	Rutaceae	Leaf	Ethanol	Phenyl quinoline	4-Methoxy-2-phenylquinoline (212) and 4-methoxy-2-(3,4-ethylenedioxy) phenyl quinoline (213) with MICs of 16 μg/ml, respectively, against M. tuberculosis H37Rv by BACTEC radiometric method	[115]
Marsypopetalum modestum	Annonaceae	Stem	Ethanol	Dithiopyridine	Dipyridithione (214) with MIC < 0.039 μg/ml, respectively, against M. tuberculosis H37Rv by MABA	[116]
Micromelum hirsutum	Rutaceae	Stem bark	Dichloromethane extract	Carbazole	Micromolide ((−)-Z-9-octadecene-4-olide) (215) and five known alkaloids: lansine (216), 3-formylcarbazole (90), and 3-formyl-6-methoxycarbazole (217) with MIC of 1.5, 31.5, 14.3, 42.3, and 15.6 μg/ml, against M. tuberculosis H37Rv by agar proportion method	[117]
Microtropis fokienensis	Celastraceae	Root	Methanol	Sesquiterpenes	1α-Acetoxy-2α-hydroxy-6β,9β,15-tribenzoylxy-β-dihydroagarofuran (218), 2α-acetoxy-1α-hydroxy-6β,9β,15-tribenzoylxy-β-dihydroagarofuran (219), ribiculin G (220), and triptogedin G-2 (221) with MICs of 19.5, 15.8, 14.6, and 26 μM against M. tuberculosis 90-221387 by agar proportion method	[118]
Microtropis japonica	Celastraceae	Stem	Methanol	Sesquiterpenes	15-Acetoxyorbiculin G (222), celahin C (223), salasol A (224), and 8-acetoxymutangin (225) with MICs of 39.6 μM, 15 μM, 15 μM, and 10 μg/ml, respectively, against M. tuberculosis H37Rv by agar proportion method	[119, 120]
Morinda citrifolia	Rubiaceae	Leaves	Hexane fraction	Steroid	E-Phytol (mixture of the two ketosteroids, stigmasta-4-en-3-one (226) and stigmasta-4,22-dien-3-one (227)) and the epidoxyoster campesta-5,7,22-trien-3β-ol (228) with MIC of 2.5 μg/ml and minus 2.0 μg/ml against M. tuberculosis H37Rv (ATCC 27294) by the growth index 13-Hydroxy-mulin-11-en-20-oic-acid methyl ester (229), isomulinic acid n-propyl ester (230), and isomulinic acid n-butyl ester (231) with MIC of 6.25 μg/ml, respectively, against M. tuberculosis H37Rv (ATCC 27294) by MABA Essential oil of limonene (232), 1,8 cineole (233), and α-pinene (234) against M. tuberculosis H37Rv with MIC of 2% (v/v)	[121, 122]
Mulinum crassifolium	Apiaceae	Aerial parts	n-Hexane	Diterpenoid		[43]
Myrtus communis	Myrtaceae	Leaf	Hydrodistillation	Monoterpenes	Thymoquinone (TQ; 2-isopropyl-5-methyl-1, 4-benzoquinone) (117) with MIC of 12.5 μg/ml	[123]
Nigella sativa	Ranunculaceae	Seed	Methanolic extract	Quinones		[124]
Plant species	Part used	Part family	Active constituents	Compound class	References	
-----------------------	----------------------------	-------------------	---	--	------------	
Ocimum basilicum	Aerial parts (leaves, fruits, and flowers)	Lamiaceae	(E)-3′-Hydroxy-4′-1′-hydroxyethyl-4′-(2-hydroxy-3-oxo-2-propyl) phenyl-4′-methoxy cinnamate (235) against M. tuberculosis H37Rv by MABA (ATCC 27294)	Fatty acid ester	[125]	
Ocimum sanctum	Leaf	Lamiaceae	Ursolic acid (UA) 12-(26-oxic-acids) with MIC of 12.5 μg/ml against M. tuberculosis H37Rv by MABA (ATCC 27294)	Triterpenes	[40, 126]	
Ocotea macrophylla	Wood, leaf	Lauraceae	(S)-3-Methoxynordomesticine hydrochloride (236) with MIC of 4 μg/ml against M. tuberculosis H37Rv by thiazolyl blue tetrazolium bromide method (127)	Apomorphine	[127]	
Oplopanax horridus	Inner stem bark	Araliaceae	Sesquiterpenes Oplopandiol (237) and falcarindiol (198) with MIC of 61.5 μg/ml against M. tuberculosis (ATCC 35801) by MABA	Sesquiterpenes	[128]	
Oplopanax horridus	Successively using hexane, dichloromethane, and methanol	Araliaceae	Sesquiterpenes Oplopandiol (237) and falcarindiol (198) with MIC of 61.5 μg/ml against M. tuberculosis (ATCC 35801) by MABA	Sesquiterpenes	[128]	
Pedilanthus tithymaloides	Aerial parts	Euphorbiaceae	Canjojane (238) against M. tuberculosis H37Ra with MIC of 25 μg/ml by MABA	Diterpenoid	[129]	
Phoradendron robinii	Whole plant	Santalaceae	5-Hydroxy-2-(4′-hydroxyphenyl)-7-methoxy-2,3-dihydro-4H-chromen-4-one (239) with MIC of 28 μg/ml against M. tuberculosis H37Ra by MABA (ATCC 27294)	Flavanone	[27]	
Physalis angulata	Aerial parts	Solanaceae	Physalin D (240) with MIC of 31.2 μg/ml against M. tuberculosis H37Rv by MABA (ATCC 27294)	-Benzofuran	[130]	
Physalis angulata	Aerial parts	Solanaceae	Physalin D (240) with MIC of 31.2 μg/ml against M. tuberculosis H37Rv by MABA (ATCC 27294)	-Benzofuran	[130]	
Plectranthus granulatus	Aerial parts	Lamiaceae	Benzofuran-Benzofuran-3-2-hydroxymethyl-5-ethyl-3′-(N,N-dimethylcarbamoyl) pyridinium (245) against M. tuberculosis H37Rv and 17 clinical isolates with benzofuran-3-2-hydroxymethyl-5-ethyl-3′-(N,N-dimethylcarbamoyl) pyridinium by microplate assay	Benzofuran	[133]	
Plectranthus granulatus	Aerial parts	Lamiaceae	Benzofuran-Benzofuran-3-2-hydroxymethyl-5-ethyl-3′-(N,N-dimethylcarbamoyl) pyridinium (245) against M. tuberculosis H37Rv and 17 clinical isolates with benzofuran-3-2-hydroxymethyl-5-ethyl-3′-(N,N-dimethylcarbamoyl) pyridinium by microplate assay	Benzofuran	[133]	
Plectranthus granulatus	Aerial parts	Lamiaceae	Benzofuran-Benzofuran-3-2-hydroxymethyl-5-ethyl-3′-(N,N-dimethylcarbamoyl) pyridinium (245) against M. tuberculosis H37Rv and 17 clinical isolates with benzofuran-3-2-hydroxymethyl-5-ethyl-3′-(N,N-dimethylcarbamoyl) pyridinium by microplate assay	Benzofuran	[133]	
Plant species	Plant family	Part used	Extracts	Compound class	Active constituents	References
-----------------------	------------------	---------------	-------------------	--------------------	---	------------
Plectranthus ornatus	Lamiaceae	Aerial parts	Chloroform	Royleanone	12.5 μg/ml, respectively, against *M. tuberculosis* H37Rv by MTT	[134, 135]
					7α-Acetoxy-6β-hydroxyroyleanone (MIC 0.0083 μM) (253) and 6,7-dehydroxyroyleanone (MIC 0.039 μM) (254) against *M. tuberculosis* H37Rv by thiazolyl blue tetrazolium bromide method	
Plumbago indica	Plumbaginaceae	Root	Petroleum ether	Naphthalene	Plumbagin (112) with MIC of 0.25 and 8 μg/ml against MDR-TB and 2 and 4 μg/ml against the XDR-TB isolates by thiazolyl blue tetrazolium bromide method	
Plumeria bicolor	Apocynaceae	Leaves	Chloroform extract	Naphthalene	Plumericin (112) against active and MDR TB with MIC of 0.12, 0.15, 0.07, 0.13, and 0.14 μg/ml, respectively, better than isoplumericin	
Polyalthia cerasoides	Annonaceae	Root	Extracted successively with hexane, ethyl acetate, and methanol	Apomorphine, fatty acid, sesquiterpenes	Bidebiline E (255), octadeca-9,11,13-triynoic acid (256), and α-humulene (257), with 6.25 μg/ml against *M. tuberculosis* H37Ra MABA	
Polyalthia debilis	Annonaceae	Root	Methanol	Lactone derivative	Debilisones B (258), C (259), and E (260) with MIC of 25, 12.5, and 25 μg/ml, respectively, against *M. tuberculosis* H37Ra by MABA	
Polyalthia evecta	Annonaceae	Root	Extracted successively with hexane, dichloromethane, and methanol	Furan	Furanoid polycetylene (261) with MIC of 3.1 μg/ml against *M. tuberculosis* H37Ra by MABA	
Potamogeton malaianus	Potamogetonaceae	Whole plant	Dichloromethane	Diterpenes	Potamogetonide (262), potamogetonol (263), potamogetonin (264), and 15,16-epoxy-12-oxo-8 (17),13 (16),14-labdatrien-20,19-olide (265) with MIC of 50-100 μg/ml against *M. tuberculosis* H37Ra by MABA	
Pourthiaea lucida	Rosaceae	Leaf	Methanol	Alkohol	a-Tocospirio A (266) and B (267), a-tocopherylquinone (268), and (E)-phytol (124) with MICs of 30, 50, 25, and 12.5 μg/ml against *M. tuberculosis* H37Rv by agar proportion method	
Premna odorata	Lamiaceae	Leaf	Methanol	Aldehydes	1-Heneicosyl formate (269) with MIC of 8 μg/ml against *M. tuberculosis* H37Rv (ATCC27294) by MABA	
Prunus cerasoides	Rosaceae	Root	Successively with hexane, ethyl acetate, and methanol	Fatty acid	Octadeca-9,11,13-triynoic acid (256) with MIC of 6.25 μg/ml against *M. tuberculosis* H37Ra by MABA	
Punica granatum	Punicaceae	Peel of the fruit	Water	Polyphenol	Epigallocatechin-3-gallate (EGCG) (270) and quercetin (271) with MIC of MIC 32-256 μg/ml against nine *M. tuberculosis* isolates by thiazolyl blue tetrazolium bromide method	[143]
Plant species	Plant family	Part used	Extracts	Compound class	Active constituents	References
---------------------------	--------------	-----------------	------------------------	----------------	---	------------
Radermachera boniana	Bignoniaceae	Leaves and twigs	Ethyl acetate	Sterol	Ergosterol peroxide (147) and b-sitosterone (272) with MICs of 34.8 and 9.9 μM, respectively, against M. tuberculosis H37Rv by MABA	[144]
Ranunculus ternatus	Ranunculaceae	Roots	Ethanol	Benzophenones	(benzophenones) Methyl (R)-3-[2-(3,4-dihydroxybenzoyl)-4,5-dihydroxyphenyl]-2-hydroxypropanoate (273) with MIC of 41.67 μg/ml against M. tuberculosis H37Rv by MABA	[145]
Rumex hymenosepalus	Polygonaceae	Root	Dichloromethane/methanol (1:1)	Diphenylethylene	5’-[(E)-2-(4-Acetoxyphenyl) ethenyl]-1,3-benzenediol(1a) (274) with MIC of 32 μg/ml against M. tuberculosis H37Rv (ATCC 27294) by Bactec 460-TB apparatus	[27]
Rumex nepalensis	Polygonaceae	Root	Ethanol extracts	Glycoside	Rumexneuposide A (275), torachryson (276), nepodin-8-O-b-D-glucopyranoside (277), torachryson-8-O-b-D-glucopyranoside (278), and chrysophanol-8-O-b-D-glucopyranoside (279), which showed MICs of 20.7, 6.1, 26.6, 8.9, and 4.1 μM, respectively, by fluorescence assay	[146]
Salvia africanaalutea	Lamiaceae	Aerial parts	Ethanol extract	Diterpene	Abietane-type diterpene carnosic acid (280) with MIC of 28 μg/ml against M. tuberculosis H37Rv (ATCC27294) by a rapid radiometric method	[147]
Salvia miltiorrhiza	Lamiaceae	Roots	Acetone	Tanshinones	Tanshinone I (281), tanshinone IIA (282), and cryptotanshinone (283) with MIC in the range of 1.17–26.57 μg/ml against M. tuberculosis H37Rv by agar proportion method	[148, 149]
Sapium indicum	Euphorbiaceae	Fruit	Hexane extract	Phorbol ester	Sapitoxin A (284), sapitoxin B (285), 12-(2¢-N-methylaminobenzoyl)-4R-deoxy-5,20-dihydroxyphorbol-13-acetate (286), and 12-(2-methylaminobenzoyl)-4-deoxyphorbaklyde-13-acetate (287) with MIC of 3.12, 12.5, 25, and 25 μg/ml, respectively, against M. tuberculosis H37Ra by MABA	[150]
Saussurea lappa	Asteraceae	Bark	Ethanol extract	Sesquiterpenoids	Saussureamine C (methyl 3-O-feruloylquinate) (288) against M. tuberculosis by inhibiting folC	[151]
Scleropyrum wallichianum	Santalaceae	Twig	Successively with n-hexane, chloroform, and methanol	Fatty acid	Scleropyric acid (289) with MIC of 25 μg/ml against M. tuberculosis H37Rv by MABA	[152]
Solanum torvum	Solanaceae	Fruit	Methanol extracts	Xanthine	Methyl caffeate (290) with MIC of 8 μg/ml against M. tuberculosis by agar proportion method	[153]
Stephania dinklagei	Menispermaceae	Aerial parts	Chloroform extract	Flavanone	Flavanone pinostrabin (291) against M. tuberculosis H37Rv with MIC of 3.125 μg/ml by MABA	[49]
Strobilanthes cusia	Acanthaceae	Leaf	Methanol extracts	Quinazoline	Tryptanthrin (292) with MIC of 1 mg/ml against M. tuberculosis by BACTECH	[154, 155]
Plant species	Plant family	Part used	Extracts	Compound class	Active constituents	References
------------------------	--------------	-------------	-----------------------------------	-----------------	--	------------
Tabernaemontana citrifolia	Apocynaceae	Leaf	Chloroform extract	Voacangine	Ibogaine (293) and voacangine (294) with MIC of 50 μg/ml against M. tuberculosis H37Rv by Bactec 460-TB radiometric methodology	[28]
Teloxys graveolens	Chenopodiaceae	Aerial parts	Acetone extract	Flavanone	Flavanone pinosirobin (291) against M. tuberculosis H37Rv with MIC of 12.5 μg/ml by MABA	[49]
Terminalia avicennioides	Combretaceae	Root bark	Sucessively with petroleum ether, ethyl acetate, chloroform, and methanol	Triterpenes	Anjucnolic acid (295) and friedelin (296) which, respectively, had MICs against BCG of 156 μg/ml and 4.9 μg/ml, respectively, by broth microdilution method	[156, 157]
Terminalia brownii	Combretaceae	Root	Methanol extract	Flavones, ellagic acid	Methyl (S)-flavogallonate (297), ellagic acid xyloside (298), and methyl ellagic acid xyloside (299) against M. smegmatis by measured spectrophotometrically at 620 nm	[158]
Byrsonima fagifolia	Malpighiaceae	Leaf	Chloroform extract	Amyrin	α- and β-Amyrin (300), α-amyrin acetate (301), and dotriacontane (302) with MIC of 31.25, 62.5, and 62.5 μg/ml, respectively, against M. tuberculosis H37Rv (ATCC 27294) by MABA	[159]
Terminalia laxiflora	Combretaceae	Root	Methanol extract	Triterpenes, fatty alcohol, sterol	Friedelin (296), triacantanol (303), β-sitosterol (34), and sitostenone (35) with MIC of 250 μg/ml, 250 μg/ml, 500 μg/ml, and 500 μg/ml, respectively, against M. smegmatis by measured spectrophotometrically at 620 nm	[158]
Terminalia superba	Combretaceae	Stem bark	Methanol extract	Ellagic acid	3,4′-Di-O-methyllic acid 3′-O-β-D-xylopyranoside (306) and 4′-O-galloyl-3,3′-di-O-methyllic acid 4-O-β-D-xylopyranoside (307) with MIC of 4.88 μg/ml and 9.76 μg/ml, respectively, against M. tuberculosis H37Rv (ATCC 27294) by MABA	[160]
Tetracera potatoria	Dilleniaceae	Stem bark	Methanol/dichloromethane (1:1)	Alcohol	Tetraceranolate (308) and N-hydroxy imidate-tetracerase (309) with MIC of 7.8 μg/ml and 15 μg/ml, respectively, against M. smegmatis (ATCC 23246) by tetracarboxazol method	[161]
Tetradenia riparia	Lamiaceae	Leaf	Hydrodistillation	Royleanone	6,7-Dehydroroylanone (254) with MIC of 31.2 μg/ml against M. tuberculosis H37Rv by resazurin microtiter assay	[162]
Thalia multiflora	Marantaceae	Aerial parts	Dichloromethane–methanol (1:1) followed by a 100% methanol	Steroids	Stigmast-5-en-3β-ol-7-one (310), stigmast-4-en-6β-ol-3-one (311), stigmast-5,22-dien-3β-ol-7-one (312), and stigmast-4,22-dien-6β-ol-3-one (313) were found to be the most active compounds with MIC of 1.9, 4., 1.0, and 2.2 μg/ml, respectively, against M. tuberculosis by fluorescence assay	[163]
Plant species	Plant family	Part used	Extracts	Compound class	Active constituents	References
----------------------	----------------	-------------	---------------------	---------------------------------------	---	------------
Tiliacora triandra	Menispermaceae	Root	Dichloromethane	Bisbenzylisoquinoline alkaloids	Tiliacorinine (314), 2'-nortiliacorinine (315), and tiliacorine (316) are bisbenzylisoquinoline alkaloids with MIC of 3.1–6.2 mg/ml against M. tuberculosis different strains by MABA	[164]
Tussilago farfara	Asteraceae	Aerial parts	Soxhlet extracted	Aromatic acid	p-Coumaric acid (317) and 4-hydroxybenzoic acid (318) with MIC 31.3 μg/ml of 62.5 μg/ml against M. tuberculosis H37Rv by high throughput spot culture growth inhibition assay	[165]
Ventilago madraspatana	Rhamnaceae	Stem bark	Methanol	Anthraquinone	Emodin (115) with MIC of 4 μg/ml against M. tuberculosis H37Rv by MABA	[78, 166]
Zanthoxylum capense	Rutaceae	Leaf	80% ethanol	Phenol, amide	Decarine (319) and an N-isobutylamidine, N-isobutyl- (2E,4E)-2,4-tetradecadienamide (320) with MIC of 1.6 μg/ml against M. tuberculosis H37Rv by measuring the optical density at 600 nm in a Tecan M200 plate spectrophotometer	[167]
Zanthoxylum leprieurii	Rutaceae	Stem bark	Methanol extract	Dihydroacridine	Hydroxy-1, 3-dimethoxy-10-methyl-9-acridone (321), 3-hydroxy-1, 5, 6-trimethoxy-9-acridone (322) with MIC of 5.1 and 1.5 μg/ml, respectively, against M. tuberculosis H37Rv by MABA	[168]
Zanthoxylum schinifolium	Rutaceae	Leaf	Methanolic extracts	Coumarin	7-[(2E)-3,7-dimethylocta-2,6-dienoyl]-8-methoxychromen-2-one (collinin) (323) with MIC 30 μg/ml of 3.13–6.25 μg/ml against both drug-susceptible and -resistant strains of M. tuberculosis by luminescent viability assay kit	[169]
Zanthoxylum wutaiense	Rutaceae	Root	Methanol extract	Benzofuran, furo[3,2-b]quinoline	7-Methoxyanodendroate (324), 7-methoxystaurophan (325), wutaianal (326), dictamine (327), and γ-fagine (328), with MIC of 35, 35, 30, and 30 μg/ml, respectively, against M. Tuberculosis H37Rv by the agar proportion method	[170]
Zingiber cassumunar	Zingiberaceae	Root	Methanol	Three fatty acid esters	(E)-4-(3,4-Dimethoxyphenyl)but-3-en-1-yl linoleate (329), (E)-4-(3,4-dimethoxyphenyl)but-3-en-1-yl oleate (330), and (E)-4-(3,4-dimethoxyphenyl)but-3-en-1-yl palmitate (331), with MIC of 200, 100, and 200 μg/ml, respectively, against M. tuberculosis H37Rv by MABA	[171]
Ziziphus cambodiana	Rhamnaceae	Root bark	Acetate extract	Triterpenes	3-O-Vanillyleacetic acid (332), betulinaldehyde (333), betulic acid (334), and 2-O-E-p-coumaryl aliphatic acid (335) with MIC of 25, 25, 25, and 12.5 μg/ml, respectively, against M. tuberculosis H37Rv by MABA	[172]

MABA: microplate alamar blue assay; MIC: minimum inhibitory concentration.
abietane diterpenoid had an MIC of 1.2 μg/ml, while its C-12 acetate analogue was more active with an MIC of 0.89 μg/ml [175]. One of the most impressing natural products was (+)-calanolide A, a novel dipyranocoumarin from the Mal- sian tree *Calophyllum lanigerum* var. austrocoriaceum. This distinct compound was first reported with good activity against the strains of HIV-1, which was resistant to diverse other nonnucleosides as well as nucleoside (AZT) reverse transcriptase inhibitors [176, 177]. Later, the novel calanolides with the ring-D-modification were synthesized with selective activity against the replication and/or nonreplicating *M. tuberculosis* by targeting the Rv2466c [55]. In particular, analogues bearing 2-nitrofurano group at the ring D position markedly improved the in vitro efficacy and reduced the mammalian cell toxicity, when compared with the parent compound (+)-calanolide A [55]. Recently, Mu et al. demonstrated that the nitrofuranyl calanolides could be employed as novel fluorescent probes that can serve as a much needed high-throughput and low-cost detection method for detection of living *M. tuberculosis* and can precisely determine the MIC values for a full range of available drugs [178]. Thus, different modifications of the calanolide derivatives demonstrated three aspects (anti-HIV, anti-TB, and TB diagnosis) of potent usage in TB disease.

Of all the 335 natural plant compounds and its semisynthetic analogues, only few were found for their mechanistic role of their anti-TB activities. The calanolides target the Rv2466c, and hyperenone A inhibits the ATP-dependent MurE ligase, which involves in the cytoplasmic steps of peptidoglycan biosynthesis [104]. It was reported that saussureamine C (methyl 3-O-feruloylquinate) targets the folC [151] and eupractenoid B targets the acetyl transfer activity of GlnU [90]. The trans, trans-1, 7-diphenylhepta-4, 6-dien-3-one target the efflux pumps [26]. *In silico* analysis revealed that some fatty acids could bind at the cleft between the N-terminal and C-terminal lobes of the cytosolic domain of serine/threonine protein kinase B (PknB) [23]. The anti-TB plant medicinal compounds included in this review lack the molecular basis of the action and mechanisms of modulation on the metabolism of *M. tuberculosis* nor the immunomodulatory activities of those compounds.

4. Plants Showing Anti-TB Effect in Form of Crude Extracts

The plants whose active components were isolated and tested for their anti-TB activity as described in Section 3. This section summarizes the reported plants for their anti-TB activity only in the form of crude extracts. They are listed in Table 2 with the total amount of 128 plant species. The top five plant families were *Asteraceae*, *Euphorbiaceae*, *Fabaceae*, *Piperaceae*, and *Acanthaceae*, and the plant parts mainly used for extraction were root for *Fabaceae* family and leaf for *Asteraceae*, *Piperaceae*, and *Acanthaceae*, respectively. For *Euphorbiaceae* family, the plant parts of bark, fruit, leaf, root, and seed were reported with the anti-TB function.

Among the extraction methods, ethanol, hexane, and methanol were found to be the top three frequently used
Table 2: Medicinal plants and their crude extracts showing *in vitro* anti-TB activity.

Plant species	Plant family	Part used	Extracts	References
Acacia catechu	Liliaceae	Root	Hexane extracts with inhibition of mycobacterial (standard and clinical) growth	[179]
Acacia senegal	Fabaceae	Root	Aqueous extraction has potential antimycobacterial activity	[180]
Acalypha indica	Euphorbiaceae	Leaf	Aqueous extracts with inhibition of 95% at 4 percent \(\text{v/v} \) concentration in L-J medium for sensitive \(M. \) tuberculosis H37Rv	[181]
Acorus calamus	Acoraceae	Root	Methanol extracts with the oils inhibiting the growth of MTB B19-4 at 2 \(\mu \)g/ml	[180]
Aloe vera	Xanthorrhoeaceae	Leaf	Aqueous extract was found to be 41% at 4 percent \(\text{v/v} \) concentration in L-J medium for sensitive \(M. \) tuberculosis H37Rv	[181, 184]
Alstonia scholaris	Apocynaceae	Leaf	Methanol extracts have potential antimycobacterial activity and the synergistic group consisting of rifampicin in murine model	[185]
Amborella trichopoda	Amborellaceae	Fruit	Methanol extracts against \(M. \) bovis BCG (strain 11-73 P2) with MIC of 2.5 \(\mu \)g/ml	[186]
Ambrosia ambrosioides	Asteraceae	Aerial parts	Methanolic extracts against \(M. \) tuberculosis H37Rv with MIC of 790 \(\mu \)g/ml	[187]
Ambrosia confertiflora	Asteraceae	Aerial parts	Methanol, chloroform, dichloromethane, and ethyl acetate extracts against \(M. \) tuberculosis H37Rv with MIC of 200, 90, 120, and 160 \(\mu \)g/ml, respectively	[187]
Amphilerygium simplicifolium	Julianaceae	Leaf	Dichloromethane-methanol extracts (1.1) inhibit the \(M. \) tuberculosis H37Rv at 50 \(\mu \)g/ml with 90.5 ± 1.0%	[188]
Andrographis paniculata	Acanthaceae	Aerial parts	Hexane and methanol (1:5) extracts with maximum antimycobacterial activity at 250 \(\mu \)g/ml against all the tested strains of \(M. \) tuberculosis (H37Rv, MDR, and drug sensitive)	[189]
Andrographis paniculata	Acanthaceae	Leaf	Ethanol extracts with inhibition of mycobacterial (standard and clinical) growth	[7, 190]
Angiopteris evecta	Marattiaceae	Leaf	80% methanol extract against \(M. \) tuberculosis H37Rv ATCC 25618 with an MIC of 400 \(\mu \)g/ml	[191]
Apodytes dimidiata	Icacinaceae	Leaf	Hexane extractions against the field strain of MDR-TB and against the \(M. \) tuberculosis H37Rv with MIC of 0.47 and 0.31 mg/ml, respectively	[192]
Artemisia ludoviciana	Asteraceae	Bark, leaf	Hexane extracts against MDR-TB clinical isolates with MIC of 25-100 \(\mu \)g/ml	[58, 193]
Artemisia nilagirica	Asteraceae	Leaf	Ethanol extracts against \(M. \) smegmatis with IC50 of 300 \(\mu \)g/ml	[194]
Belischmedia obscura	Lauraceae	Root	Ethyl acetate extracts against \(M. \) tuberculosis H37Rv with MIC of 31.25 \(\mu \)g/ml by MABAb	[195]
Bidens odorata	Asteraceae	Aerial parts	Hexane, dichloromethane, ethyl acetate, and ethanolic extracts against \(M. \) tuberculosis H37Rv (ATCC 27294) with MIC of 100, 12.5, 12.5, and 12.5 \(\mu \)g/ml	[196]
Bridelia micrantha	Euphorbiaceae	Bark	Acetone extracts against \(M. \) tuberculosis H37Ra with MIC of 25 \(\mu \)g/ml	[197]
Calluna vulgaris	Ericaceae	Aerial parts	Ethyl acetate extracts with 97% inhibition at 100 \(\mu \)g/ml against \(M. \) tuberculosis H37Rv (ATCC 27294)	[198]
Calophyllum brasiliense	Clusiaceae	Leaf	Dichloromethane-methanol extracts (1.1) inhibit the \(M. \) tuberculosis H37Rv at 50 \(\mu \)g/ml with 82.8 ± 0.4%	[188]
Capparis zeylanica	Capparidaceae	Leaf	Ethyl acetate extracts against \(M. \) tuberculosis H37Rv with the 32 mm minimum zone of inhibition	[199, 200]
Carya illinoensis	Juglandaceae	Bark	Hexane extracts against \(M. \) tuberculosis H37Rv with MIC of 30 \(\mu \)g/ml	[193]
Cassia sophera	Caesalpinia ceae	Seed	Methanol extracts against \(M. \) smegmatis with MIC of 125 \(\mu \)g/ml	[201]
Plant species	Plant family	Part used	Extracts	References
-------------------------	------------------	-----------	--	------------
Chenopodium ambrosioides	Amaranthaceae	Leaf	80% ethanol crude extracts against *M. tuberculosis* 37Ra (ATCC 25177™) with MIC of 5000 μg/ml	[184]
Chrysactinia mexicana	Asteraceae	Root	Ethyl ether extract against a drug-resistant strain of *M. tuberculosis* CIBIN/UMF15:99 with MIC of 62.5 μg/ml	[202]
Citrullus colocynthis	Cucurbitaceae	Leaf	Chloroform extracts against *M. tuberculosis* 37Rv with MIC of 2.5 mg/ml by MABA	[203]
Citrus sinensis	Rutaceae	Fruit peel	Hexane extracts against two drug-resistant strains of *M. tuberculosis* with MIC of 25 and 50 μg/ml	[204]
Cladonia arbuscula	Cladoniaceae	Root	Hexane and ethyl acetate extracts with 96% and 99% inhibition at 100 μg/ml against *M. tuberculosis* 37Rv (ATCC 27294), respectively	[198]
Cocculus hirsutus	Menispermaceae	Leaf	Ethanol extracts against *M. tuberculosis* 37Rv (ATCC 27294) with MIC of 500 μg/ml	[196]
Codiaeum peltatum	Euphorbiaceae	Stem	Methanol extracts against *M. bovis* BCG (strain 11-73 P2) with MIC of 100 μg/ml	[186]
Combretum aculeatum	Combretaceae	Aerial part	Aqueous extracts inhibiting *M. marinum* with MIC of 0.2 mg/ml	[205]
Costus speciosus	Zingiberaceae	Stem, flower	Hexane partition from methanol extracts against *M. tuberculosis* 37Rv with MIC of 100 μg/ml	[206]
Cremastrispora triflora	Rubiaceae	Leaf	Acetone extracts decreased 16-fold of MIC in combination with rifampicin against *M. aurum* and reduction of the MICs of the anti-TB drug ranged from 2-fold to 4-fold, 2-fold to 64-fold, and 2-fold to 64-fold for *M. smegmatis*, *M. aurium*, and *M. tuberculosis*, respectively	[207]
Croton sylvaticus	Euphorbiaceae	Leaf, root, stem bark	Decoction, not known	[208]
Curcuma caesia	Zingiberaceae	Rhizome	Ethanol extract against *M. tuberculosis* 37Rv (ATCC 27294) with MIC of 31.25 μg/ml	[196]
Cymbopogon citratus	Poaceae	Stem, rhizome	Hexane partition from methanol extracts of 200 μg/ml against *M. tuberculosis* 37Rv	[206]
Cyperus rotundus	Cyperaceae	Root	Ethanol extracts against *M. tuberculosis* 37Rv (ATCC 27294) with MIC of 62.5 μg/ml	[209]
Davilla elliptica	Dilleniaceae	Leaf	Chloroform extracts showed a promising antimycobacterial activity with a MIC of 62.5 μg/ml by MABA	[209]
Dissotis rotundifolia	Melastomataceae	Leaf	80% ethanol crude extracts against *M. tuberculosis* 37Ra (ATCC 25177™) with MIC of 5000 μg/ml	[184]
Dryopteris stewartii	Dryopteridaceae	Whole plant	Decoction, not known	[203]
Echinopsis giganteus	Asteraceae	Root	Methanol extracts against *M. tuberculosis* 37Ra and 37Rv with MIC of 32 and 16 μg/ml, respectively	[210]
Empetreum nigrum	Emperataceae	Root	Hexane extracts with 95% inhibition at 100 μg/ml against *M. tuberculosis* 37Rv (ATCC 27294)	[198]
Erythrina abyssinica	Fabaceae	Root bark	Methanol extracts showed the highest activity on *M. tuberculosis* 37Rv (MIC 390 μg/ml)	[211]
Euophoria nuda	Orchidaceae	Tubers	Ethanol extracts against *M. tuberculosis* 37Rv (ATCC 27294) with MIC of 500 μg/ml	[196]
Euphoria albomarginata	Euphorbiaceae	Shoots	Extracts by n-hexane, dichloromethane, ethyl acetate, and methanol individually against *M. tuberculosis* 37Rv with MIC of 250-1000 μg/ml	[212]
Euphoria hirta	Euphorbiaceae	Leaf	Ethyl acetate extracts showed better activity with maximum of 64.73% reduction in relative light units against *M. tuberculosis* 37Rv	[213]
Evodia elleryana	Rutaceae	Bark	Ethyl acetate extracts with 95% inhibition of *M. tuberculosis* 37Ra grown in vitro (ATCC 25177) at 50 μg/ml	[214]
Ficus sur	Moraceae	Root	80% ethanol against *M. tuberculosis* 37Ra (ATCC 25177) with MIC of 0.78 μg/ml	[215]
Ficus citrifolia	Moraceae	Leaf	95% ethanol extracts against *M. tuberculosis* 37Rv (ATCC 27294) with 91% inhibition at 100 μg/ml	[216]
Table 2: Continued.

Plant species	Plant family	Part used	Extracts	References
F. cernua	Asteraceae	Leaf	Hexane extracts against sensitive and resistant strains, respectively, with MIC of 25-50 μg/ml	[217]
Foeniculum vulgare	Umbelliferae	Aerial parts	Hexane extracts against M. tuberculosis H37Rv with MIC of 100 μg/ml	[204]
Globularia alypum	Globulariaceae	Leaf	Petroleum ether extracts against M. tuberculosis H37Rv with IC$_{50}$ of 77 μg/ml	[218]
Glycyrrhiza glabra	Fabaceae	Root	Ethanol extracts against M. tuberculosis H37Rv (ATCC 27294) with MIC of 250 μg/ml	[219]
Guaiacum coulteri	Zygophyllaceae	Flower	Methanol extracts against M. tuberculosis H37Rv with MIC of 1000 μg/ml	[188]
Guiera senegalensis	Combretaceae	Aerial parts	Aqueous extracts inhibiting M. marinum with MIC of 200 μg/ml	[205]
Gymnosperma glutinosum	Asteraceae	Leaf	Hexane extracts against M. tuberculosis H37Ra and H37Rv both at 31.2 μg/ml	[220]
Helianthus annuus	Asteraceae	Stem	Extracts by n-hexane, dichloromethane, ethyl acetate, and methanol individually against M. tuberculosis H37Rv with MIC of 250-500 μg/ml	[212]
Heracleum maximum	Apiaceae	Root	Aqueous extracts against M. bovis BCG by OD units	[183]
Heteromorpha trifoliata	Apiaceae	Leaf	Ethanol extracts against M. tuberculosis H37Rv with MIC of 80 μg/ml	[221]
Hygrophilia auriculata	Acanthaceae	Root, leaf	Acetone extract against M. tuberculosis H37Rv by y the disc diffusion method	[222]
Juglans mollis	Juglandaceae	Bark	Hexane extracts against M. tuberculosis H37Rv with MIC of 50 μg/ml	[193]
Juglans regia	Juglandaceae	Bark, leaf	Hexane extracts against M. tuberculosis strain H37Rv with MIC of 100 μg/ml	[193, 194]
Justicia adhatoda	Acanthaceae	Leaf	Ethanolic extract against M. tuberculosis H37Rv by y the disc diffusion method	[223]
Khaya senegalensis	Meliaceae	Bark, leaf	Ethanol extracts against M. tuberculosis H37Ra with MIC of 6.25 μg/ml	[224]
Lantana camara	Verbenaceae	Leaf	Methanol extracts against M. tuberculosis H37Rv with MIC of 20 μg/ml	[17]
Lantana hispida	Verbenaceae	Leaf	Hexane extracts against drug-resistant clinical isolates of M. tuberculosis with MIC of 100-200 μg/ml	[193, 194]
Laurelia novaezelandiae	Monimiaceae	Leaf, flower	Aqueous extract against M. smegmatis with IC$_{50}$ of 0.02 mg/ml	[225]
Leucophyllum frutescens	Scrophulariaceae	Root, leaf	Methanol extracts against a drug-resistant strain of M. tuberculosis CIBIN/UMF15:99 with MIC of 62.5 μg/ml	[202]
Maerua edulis	Capparaceae	Root	Hexane extracts against M. bovis BCG, M. tuberculosis H37Ra with MIC 31.2-62.5 μg/ml	[226]
Mallotus philippensis	Euphorbiaceae	Leaf, fruit	Ethanolic extracts of fruit and leaves against M. tuberculosis H37Rv (ATCC 27294) both with MIC of 250 μg/ml	[227]
Metroeceros excelsa	Myrtaceae	Leaf	Methanol extracts against M. smegmatis with IC$_{50}$ of 0.11 mg/ml	[226]
Millettia stuhlmannii	Fabaceae	Leaf	Acetone extracts against M. smegmatis with MIC of 0.13 mg/ml	[228]
Morinda citrifolia	Rubiaceae	Leaf	Aqueous extract has an inhibition rate of 89% against M. tuberculosis H37Rv	[180]
Mucuna imbricata	Fabaceae	Seed	Methanol extracts have potential antimycobacterial activity and the synergistic group consisting of rifampicin in murine model	[185]
Murraya koenigii	Rutaceae	Leaf	Ethanol extracts against M. smegmatis with IC$_{50}$ of 300 μg/ml	[194]
Musa acuminata	Musaceae	Stem	Methanol extracts against drug-resistant variants of M. tuberculosis with MIC of 200 μg/ml	[204]
Myoporum crassifolium	Scrophulariaceae	Wood	Hydrodistillation with essential oils against M. bovis BCG (strain 11-73 P2) with MIC of 50 μg/ml	[186]
Plant species	Plant family	Part used	Extracts	References
-------------------------	---------------	-----------	--	-------------
Myrica gale	Myricaceae	Root, stem	Ethyl acetate extracts with 96% inhibition at 100 μg/ml against *M.* tuberculosis H37Rv (ATCC 27294)	[198]
Myristica fatua	Myricaceae	Almond	Dichloromethane soluble extracts against *M.* bovis BCG (strain 11-73 P2) with MIC of 50 μg/ml	[186]
Nasturtium officinale	Cruciferae	Aerial parts	Chloroform extracts against two drug-resistant strains of *M.* tuberculosis with MIC of 50-100 μM	[204]
Olea europaea	Oleaceae	Leaf	Hexane extracts against the drug-resistant variants of *M.* tuberculosis with MIC of 25-100 μM	[204]
Otostegia integrifolia	Lamiaceae	Root	Chloroform extract of roots was the most active on *M.* tuberculosis H37Rv (MIC 156 μg/ml) and AOZ8W-4 (MDR-TB clinical isolate) (MIC 0.078 mg/ml)	[229]
Pelargonium graveolens	Geraniaceae	Seed	Hydrodistillation for essential oil against tested isolates ranged from 19.5 μg/ml to 78 μg/ml	[230]
Pelargonium sidoides	Geraniaceae	Root	Aqueous extracts inhibiting the growth of *M.* tuberculosis H37Rv (ATCC 27294) by 96% at a sample concentration of 12.5 μg/ml	[231]
Pentanisia prunelloides	Rubiaceae	Root	80% ethanol against *M.* tuberculosis H37Ra (ATCC 25177) with MIC of 0.78 mg/ml	[215]
Persea americana	Lauraceae	Leaf, seed	Methanolic extracts against *M.* tuberculosis H37Ra with MIC of 31.2 μg/ml and H37Rv; chloroformic extract of seeds against *M.* tuberculosis H37Rv MIC less than 50 μg/ml	[229, 232]
Phymaspermum acerosum	Asteraceae	Root, leaf	Ethanol and water extracts had the best MIC value of 20 μg/ml against five *M.* tuberculosis strains	[221]
Piper cernuum	Piperaceae	Leaf	Hydrodistillation with water displayed moderate activity against the *M.* tuberculosis H37Rv with MIC of 125 μg/ml	[233]
Piper diospyrifolium	Piperaceae	Leaf	Hydrodistillation with water displayed moderate activity against the *M.* tuberculosis H37Rv with MIC of 125 μg/ml	[233]
Piper guineense	Piperaceae	Seed	Methanol extracts against *M.* tuberculosis H37Ra and H37Rv with MIC of 256 μg/ml	[210]
Piper imperiale	Piperaceae	Flower	Ethanolic extracts against *M.* tuberculosis H37Rv with MIC of 75 μg/ml	[234]
Piper rivinoides	Piperaceae	Leaf	Hydrodistillation with water displayed moderate activity against the *M.* tuberculosis H37Rv with MIC of 125 μg/ml	[233]
Piper sarmentosum	Piperaceae	Leaf	Extracts with petroleum ether, chloroform, and methanol, against *M.* tuberculosis H37Rv with MIC of 25, 25, and 12.5 μg/ml	[235]
Pisonia borinquena	Nyctaginaceae	Leaf	95% ethanol extracts against *M.* tuberculosis H37Rv (ATCC 27294) with 85% inhibition at 100 μg/ml	[216]
Pittosporum tenuifolium	Pittosporaceae	Leaf	Ethanol extracts against *M*. smegmatis with IC₅₀ of 0.78 mg/ml	[225]
Pluchea indica	Asteraceae	Flower and leaf	80% methanol extract against *M.* tuberculosis H37Rv ATCC 25618 with an MIC of 800 μg/ml	[191]
Plumbago zeylanica	Plumbaginaceae	Root	Ethanol extract against *M.* tuberculosis H37Rv (ATCC 27294) with MIC of 31.25 μg/ml	[196]
Psychotria zombamontana	Rubiaceae	Leaf	Acetone extract decreased 256-fold of MIC in combination with rifampicin against *M.* aurum and reduction of the MICS of the anti-TB drug ranged from 2-fold to 4-fold, 2-fold to 64-fold, and 2-fold to 64-fold for *M*. smegmatis, *M*. aurum, and *M*. tuberculosis, respectively	[207]
Pterocarpus osun	Fabaceae (Leguminosae)	Stem	Chloroform extract against *M.* tuberculosis H37Rv and *M.* bovis BCG with MIC of 1225 μg/ml and 1100 μg/ml, respectively, by MABA	[67, 236]
Pterolobium stellatum	Fabaceae	Root	Chloroform extracts of roots were the most active on *M.* tuberculosis H37Rv (MIC 39 μg/ml) and AOZ8W-4 (MDR-TB clinical isolate) (MIC 0.078 mg/ml)	[229]
Rhynchosia precatoria	Fabaceae	Root	Extracts by n-hexane, dichloromethane, ethyl acetate, and methanol individually against *M.* tuberculosis H37Rv with MIC of 15.6-125 μg/ml	[212]
Ricinus communis	Euphorbiaceae	Seed	Hexane extracts against *M.* tuberculosis H37Rv sensitive strain with MIC of 2.5 mg/ml by MABA	[203]
extracting solvents, while chloroform, dichloromethane, acetone, and ethyl acetate were used to a lesser extent. Of course, aqueous extract method was also popularly used, which involved the process of soaking, boiling, or/and hydrodistilling. Although the plant part used for study does not determine the extraction method, as a general rule, low molecule organic solvents are recommended when there is no reference.

To date, no specific cut-off value has been established as a reference to analyze the anti-TB activity results of the plant extracts, and many different methods are available to evaluate the activity. As of date, only a few anti-TB plant extracts in Table 2 have been tested in preclinical or clinical trials. It is encouraging that more and more promising crude extracts are now paving a way for the clinical test for their therapeutic applications. This section can provide a new perspective

Table 2: Continued.

Plant species	Plant family	Part used	Extracts	References
Rosmarinus officinalis	Lamiaceae	Leaf	Ethanolic extracts against M. tuberculosis H37Rv with MIC of 6.25 μg/ml	[224]
Satureja aintabensis	Lamiaceae	Aerial parts	Extraction with petroleum ether, ethyl acetate, and methanol killed M. tuberculosis with MIC of 50-800 μg/ml	[237]
Satyrium nepalense	Orchidaceae	Flower	Hexane extracts against M. tuberculosis H37Rv TMC-102 with MIC of 15.7 μg/ml	[238]
Schinus molle	Anacardiaceae	Fruit	Methanol extract against a drug-resistant strain of M. tuberculosis CIBIN/UMF15.99 with MIC of 125 μg/ml	[202]
Securidaca longipedunculata	Polygalaceae	Root	Hexane extracts against M. bovis BCG, M. tuberculosis H37Ra, and H37Rv with 62.5 μg/ml	[226]
Solanum torvum	Solanaceae	Leaf	80% ethanol crude extracts against M. tuberculosis H37Ra (ATCC 25177™) with MIC of 156.3 μg/ml	[184]
Sphaeranthus indicus	Asteraceae	Floral head	Ethanol extract against M. tuberculosis H37Rv (ATCC 27294) with MIC of 31.25 μg/ml	[196]
Sterculia setigera	Sterculiaceae	Leaf	Hexane, dichloromethane, and ethyl acetate extracts against M. tuberculosis H37Rv with MICs of 84 μg/ml, 62 μg/ml, and 128 μg/ml, respectively	[239]
Swinglea glutinosa	Rutaceae	Fruit peel	Aqueous extracts for essential oils against M. tuberculosis H37Rv (ATCC 27294) with MIC of 100 μg/ml	[182]
Tabernaemontana elegans	Apocynaceae	Root	Ethyl acetate extracts against M. tuberculosis H37Rv with MIC of 15.6 μg/ml	[226]
Tabernaemontana coronaria	Apocynaceae	Leaf	Hexane partition from methanol extracts of MIC of 100 μg/ml against M. tuberculosis H37Rv	[206]
Terminalia phanerophlebia	Combretaceae	Leaf, root, twig	80% ethanol against M. tuberculosis H37Ra (ATCC 25177) with 0.30 and 0.78 mg/ml, respectively	[215]
Terminalia sericea	Combretaceae	Stem bark	Acetone extracts against M. tuberculosis H37Ra with MIC of 25 μg/ml	[197]
Thymus sibthorpii	Lamiaceae	Aerial parts	Extracts with petroleum ether, ethyl acetate, and methanol against M. tuberculosis with MIC of 50–800 μg/ml	[237]
Trachyspermum copticum	Apiceae	Aerial parts	Hydrodistillation extracts against M. kansasi and MDR-TB with MICs of 78 μg/ml	[230]
Urtica dioica	Urticaceae	Leaf	Hexane extracts against M. smegmatis with MIC of 250 μg/ml	[201]
Uvaria rufa	Annonaceae	Leaf	Lead acetate-treated crude chloroform extracts against M. tuberculosis H37Rv with MIC of 8 μg/ml	[136]
Vetiveria zizanoides	Poaceae	Root	Ethanolic extract and hexane fraction 500 μg/ml or 50 μg/ml against M. tuberculosis H37Rv and H37Ra	[240]
Vismia baccifera	Clusiaceae	Leaf	Dichloromethane-methanol extracts (1.1) inhibit the M. tuberculosis H37Rv at 50 μg/ml with 70.3 ± 0.5%	[188]
Xylopia aethiopica	Annonaceae	Fruit, bark	Methanol extracts against M. tuberculosis H37Ra and H37Rv with MIC of 512 μg/ml	[210]
Zanthoxylum capense	Rutaceae	Root	Dichloromethane extracts against M. bovis BCG, M. tuberculosis H37Ra, and H37Rv with MICs of 31.2 μg/ml	[226]
Zingiber officinale	Zingiberaceae	Rhizome	Ethanol extract against M. tuberculosis H37Ra with MIC of 2500 μg/ml by MABA	[184]

*Minimum inhibitory concentration (MIC); \(^{\text{a}} \) microplate alamar blue assay (MABA); \(^{\text{b}} \) half maximal inhibitory concentration (C\text{_{50}}).
Table 3: Important anti-TB traditional medicinal plants in literature by the systemic survey on the prescribed formula.

Species number	Family number	Main families	Country or region	References
13	10	Asteraceae (3), Chrysobalanaceae, Araliaceae, Acanthaceae, Chrysobalanaceae, Cucurbitaceae, Fabaceae, Lamiaceae, Melastomataceae, Phyllanthaceae, Polygonaceae	Burundian	[241]
9	8	Apocynaceae, Verbenaceae, Rubiaceae, Goodeniaceae, Agavaceae, Moraceae, Myrtaceae, Zingiberaceae	Manus Province, Papua New Guinea	[242]
184	77	Fabaceae (21), Asteraceae (12), Malvaceae (11)	Bapedi (South Africa)	[243]
30	21	Alliaceae (3), Rutaceae (3), Apioaceae (2), Caryophyllaceae (2), Asteraceae (2), Lamiaceae (2), Myrtaceae (2), Solanaceae (2)	Nkonkobe municipality, Eastern Cape Province (South Africa)	[244]
21	12	Asteraceae, Fabaceae, Geraniaceae	Mananga metro, Thabo Mofutsanyana, and Lejweleputswa in South Africa	[245]
25	14	Fabaceae (5), Euphorbiaceae (3), Asteraceae (3), Lamiaceae (12%)	Bas-Congo Province, Democratic Republic of Congo	[208]
15	13	Amaryllidaceae (3), Xanthorrhoeaceae (2), Arecaecae (2), Solanaceae (2), Meliaceae, Acanthaceae, Poaceae, Phyllanthaceae, Melastomataceae, Poaceae, Cyperaceae, Zingiberaceae, Amaryllaceae, Asteraceae	Greater Accra and eastern communities in Ghana	[246]
95	48	Loranthaceae (6), Caesalpiniaaceae (5), Papilionaceae (5), Poaceae (4), Mimosaceae (4), Sphorhulariae (4), Anacardiaceae (3), Combretaceae (3), Liliaceae (3), and Solanaceae (3)	Niger state, Nigeria	[247]
66	35	Rutaceae (7), Euphorbiaceae (5), Rubiaceae (4), Anacardiaceae (3), Fabaceae (3), Verbenaceae (3), Arecaecae (2), Annonaceae (2), Solanaceae (2), Moraceae (2), Rhamnaceae (2)	Lao PDR	[248]
23	20	Arecaecae (2), Aristolochiaceae (2), Rubiaceae (2)	Malaysia	[249]
181	67	Asteraceae (31), Fabaceae (14), Lamiaceae (9), Euphorbiaceae (7), Celastraceae (5)	South Africa	[250]
62	38	Asteraceae (12), Aristolochiaceae (3), Compositae (3), Rosaceae (3), Juglandaceae (2), Zygophyllaceae (2), Verbenaceae (2), Rutaceae (2), Papaveraceae (2), Fabaceae (2)	Mexico	[10]
88	36	Lamiaceae (9), Asteraceae (7), Papilionaceae (4), Acanthaceae (3), Caesalpiniaaceae (3), Capparaceae (3), Euphorbiaceae (3), Mimosaceae (3)	Districts of Kamuli, Kisoro, and Nakapiripiti in Uganda	[251]
90	44	Fabaceae (13), Asteraceae (7), Moraceae (5), Rutaceae (4)	Districts of Mpigi and Butambala, Uganda	[252]
35	22	Fabaceae (5), Rutaceae (4), Apocynaceae (3), Menispermaceae (3), Malvaceae (3)	Madhya Pradesh, India	[196]
132	45	Annonaceae (14), Zingiberaceae (12), Rutaceae (10), Annonaceae (8), Euphorbiaceae (8), Fabaceae (7)	Southeast Asian	[253]
10	8	Fabaceae (3), Canellaceae (1), Rubiaceae (1), Anacardiaceae (1), Rutaceae (1), Myrtaceae (1), Merlucciidae (1), Guttiferae (1)	Lake Victoria Basin (Uganda, Kenya, and Tanzania)	[254]
14	8	Euphorbiaceae (4), Verbenaceae (3), Rutaceae (2)	Lake Victoria region and the Samburu community	[255]
2	2	Achillea millefolium (1), Dryopteris stewartii (1)	Kel village, Neelum Valley, Azad Kashmir, Pakistan	[256]
4	3	Amaryllidaceae (1), Lauraceae (1), Amaranthaceae (1), Asteraceae (1)	Sulaymaniyah Province, Kurdistan, Iraq	[257]
22	18	Liliaceae (3), Euphorbiaceae (2), Verbenaceae (2)	India	[258]
6	6	Vitaceae (1), Poaceae (1), Pinaceae (1), Musaceae (1), Rosaceae (1), Leguminosae (1)	Arabian Peninsula	[259]
2	2	Asteraceae (1), Dryopteridaceae (1)	Pakistan	[251]
70	44	Arecaecae (4), Euphorbiaceae (4), Fabaceae (3), Piperaceae (3), Rutaceae (3)	Malaysia	[191]
in expanding the anti-TB plant species for the development of anti-TB medicine in the future.

5. Medicinal Plants Only Found in Formula Prescribed by the Traditional Healers

Traditional healers continually serve the public health in most of the countries. Some ethnomedical information has been published based on many plant species in anti-TB formulas documented by different traditional healing systems, ranging from the poor documented oral African medicine to the well-documented Ayurveda or Chinese medicine. These reports inspired the scientists to find more effective compounds for tuberculosis. The investigations of medicinal plants using frontier technologies are now being reconsidered to be a feasible approach for discovering novel bioactive compounds and crude extracts, in order to solve the wide spreaded TB problems. Table 3 shows the main species or families of the traditional plant medicines and their botanical details in the published papers by the systemic survey of the prescribed formula, but very few studies reveal the working compounds or active crude extracts.

The anti-TB formulas were investigated in many countries or regions, such as China, India, Mexico, South Africa, Pakistan, Iraq, Malaysia, Congo, Lao PDR, Nigeria, Niger, Burundi, Papua New Guinea, Lake Victoria Basin (Uganda, Kenya, and Tanzania), Arabian Peninsula, Southeast Asian, and Manus Province. Most anti-TB formulas were found during the ethnopharmacological investigation of the indigenous plants. To strengthen the anti-TB purpose, the present review summarized the anti-TB plant in the formula from the ethnopharmacological publications, with an emphasis on their classification (Table 3). Although three reports in Table 3 did not show the botanical family of the anti-TB medical plants in detail, it still can be speculated that the family Fabaceae is the most represented species, followed by Asteraceae, Euphorbiaceae, and Liliaceae families.

We need to be aware that the plant medicine used by the traditional healers is based on their according ethnomedical traditional medical theories. In comparison with the western system of medicine, the traditional plant medicines showed certain drawbacks. An important issue of all was that the active components of the herbal drugs prescribed were unknown. The activity of the traditional herbal drugs prescribed by the traditional healers can be greatly affected by the difference in the processing methods, variation in the potency due to difference in plant species and subspecies, varying geographical location of growth, nonuniform quality control standards, etc. Furthermore, for a given plant, a specific place, part, method, and time for collection can significantly affect the therapeutic efficacy [16, 40]. Hence, the plant medicine used by the traditional healers needs a critical evaluation to find the active components.

6. Need for Future Research

Although this review presents a big list of plants with effective anti-TB activities from different traditional medicine systems, there is a need of better therapeutic drug monitoring systems and high throughput in vitro assays for the routine screening to identify potentially serious and clinically significant herb-drug interactions [262]. Furthermore, there is a lack of in vivo information regarding the drug metabolism associated interactions with reference to the traditional medicines and the treatment of TB. This requires health care practitioners to ensure a clear communication with patients regarding the possible negative impacts of simultaneous use of certain TMs and prescribed drugs. It was reported that the widely used Sutherlandia frutescens in the treatment of TB in countries of Southern African Development Community interfered with the isoniazid therapy, but the mechanism of this interaction was not clear [263, 264]. Coadministration also resulted in the reduced bioavailability of ofloxacin [265], while piperine showed the ability to increase the bioavailability of the antituberculosis drug rifampicin [266–268].

Several issues affect the anti-TB activity of the components of the medicinal plants, such as the variation in the potency due to difference in species, absence of an integrated coding for every species used commonly in TMs, varying geographical location of growth and incorrect identification of drugs, and nonuniform quality control standards [269]. No clinic trial was reported on the crude extracts, and even the pure compounds from the medical plants still need to be elucidated for their constituent characterization and the mechanism of action. Till date, not many compounds have been originated from plants for further modification for use in clinic. We hope that this review will help to find a possible way to get better anti-TB results by making a combination of the compounds originated from plants based on the different TB-killing mechanisms.

Abbreviations

TB: Tuberculosis
TM: Traditional medicines
Data Availability

All data included in this article are available from the corresponding author upon request.

Ethical Approval

Ethical approval is not applicable.

Consent

Consent was not necessary.

Conflicts of Interest

The authors declared that there are no conflicts of interest.

Authors’ Contributions

ZS and YX designed and organized the review. CK drafted the manuscript. BL revised the manuscript. All authors read and approved the final manuscript.

Acknowledgments

We appreciated Prof. Chunhua Qiao for giving the good suggestions on drawing the compound structures. This manuscript was supported by the Beijing Municipal Science & Technology Commission No. Z18110001718181, the National Natural Science Foundation (81871691), and the Joint Key Program of Beijing Municipal Education Commission and Beijing Municipal Natural Science Foundation Committee (21JG0034).

References

[1] WHO, Traditional medicine strategy 2014-2023, WHO Press, Geneva, Switzerland, 2013; https://www.who.int/medicines/publications/traditional/trm_strategy14_23/en/.
[2] WHO, "World Health Assembly Update," 2019, https://www.who.int/news-room/detail/25-05-2019-world-health-assembly-update.
[3] A. T. Pezzella, "History of pulmonary tuberculosis," Thoracic Surgery Clinics, vol. 29, no. 1, pp. 1–17, 2019.
[4] T. Wirth, F. Hildebrand, C. Allix-Béguec et al., "Origin, spread and demography of the Mycobacterium tuberculosis complex," PLoS Pathogens, vol. 4, no. 9, article e1000160, 2008.
[5] I. Comas, M. Coscolla, T. Luo et al., "Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans," Nature Genetics, vol. 45, no. 10, pp. 1176–1182, 2013.
[6] WHO, "Global tuberculosis report 2020," 2020, https://www.who.int/publications/i/item/9789240013131.
[7] World Health Organization, Global tuberculosis report 2019, World Health Organization, 2019, https://apps.who.int/iris/handle/10665/329368.
[8] A. H. Uc-Cachón, R. Borges-Argáez, S. Said-Fernández et al., "Naphthoquinones isolated from Diospyros anisandra exhibit potent activity against pan-resistant first-line drugs Mycobacterium tuberculosis strains," Pulmonary Pharmacology & Therapeutics, vol. 27, no. 1, pp. 114–120, 2014.
[9] B. J. Enquist, X. Feng, B. Boyle et al., "The commonness of rarity: global and future distribution of rarity across land plants," Science Advances, vol. 5, no. 11, article eaaz0414, 2019.
[10] S. Chen, X. Pang, J. Song et al., "A renaissance in herbal medicine identification: From morphology to DNA," Biotechnology Advances, vol. 32, no. 7, pp. 1237–1244, 2014.
[11] R. Gómez-Cansino, S. L. Guzmán-Gutiérrez, M. G. Campos-Lara, C. I. Espitia-Pinzón, and R. Reyes-Chilpa, "Natural compounds from Mexican medicinal plants as potential drug leads for anti-tuberculosis drugs," Anais da Academia Brasileira de Ciências, vol. 89, no. 1, pp. 31–43, 2017.
[12] R. Patel, T. Jawaaid, P. Gautam, and P. Dwivedi, "Herbal remedies for gastroprotective action: a review," International Journal of Phytopharmacy, vol. 2, no. 2, pp. 64–67, 2012.
[13] J. L. Ríos and M. C. Recio, "Medicinal plants and antimicrobial activity," Journal of Ethnopharmacology, vol. 100, no. 1-2, pp. 80–84, 2005.
[14] D. S. Fabricant and N. R. Farnsworth, "The value of plants used in traditional medicine for drug discovery," Environmental Health Perspectives, vol. 109, Supplement 1, pp. 69–75, 2001.
[15] B. R. Copp and A. N. Pearce, "Natural product growth inhibitors of Mycobacterium tuberculosis," Natural Product Reports, vol. 24, no. 2, pp. 278–297, 2007.
[16] M. Abedinzadeh, M. Gaeini, and S. Sardari, "Natural antimicrobial peptides against Mycobacterium tuberculosis," Journal of Antimicrobial Chemotherapy, vol. 70, no. 5, pp. 1285–1289, 2015.
[17] K. C. Chinsembu, "Tuberculosis and nature’s pharmacy of putative anti-tuberculosis agents," Acta Tropica, vol. 153, pp. 46–56, 2016.
[18] C. Limmatvapirat, S. Sirisopanaporn, and P. Kittakoop, "Antitubercular and antiplasmodial constituents of Abrus precatorius," Planta Medica, vol. 70, no. 3, pp. 276–278, 2004.
[19] E. Hernández-García, A. García, E. Garza-González et al., "Chemical composition of Acacia farnesiana (L) wild fruits and its activity against Mycobacterium tuberculosis and dysentery bacteria," Journal of Ethnopharmacology, vol. 230, pp. 74–80, 2019.
[20] N. Joycharat, H. Greger, O. Hofer, and E. Saifah, "Flavaglines and triterpenoids from the leaves of Aglaia forbesii," Phytochemistry, vol. 69, no. 1, pp. 206–211, 2008.
multidrug-resistant mycobacterium tuberculosis,” *Journal of the Mexican Chemical Society*, vol. 53, no. 2, pp. 71–75, 2009.

[50] N. Promsawan, P. Kittakoop, S. Boonphong, and P. Nongkunsarn, “Antitubercular cassane furanoditerpenoids from the roots of Caesalpinia pulcherrima,” *Planta Medica*, vol. 69, no. 8, pp. 776–777, 2003.

[51] H. Seo, S. Kim, H. A. Mahmoud et al., “In vitro antitubercular activity of 3-deoxyxyppanachalcone isolated from the heartwood of Caesalpinia sappan Linn,” *Phytotherapy Research*, vol. 31, no. 10, pp. 1600–1606, 2017.

[52] R. Encarnación-Dimayuga, J. Agúndez-Espinoza, A. García, G. Delgado, G. Molina-Salinas, and S. Saíd-Fernández, “Two new cassane-type diterpenes from Calliandra californica with antituberculosis and cytotoxic activities,” *Planta Medica*, vol. 72, no. 8, pp. 757–761, 2006.

[53] J. J. Chen, H. M. Wu, C. F. Peng, I. S. Chen, and S. D. Chu, “Seco-Abietane diterpenoids, a phenylethanoid derivative, and antitubercular constituents from Callicarpa pilosissima,” *Journal of Natural Products*, vol. 72, no. 2, pp. 223–228, 2009.

[54] Z. Q. Xu, W. W. Barrow, W. J. Suling et al., “Anti-HIV natural product (+)-calanolide A is active against both drug-susceptible and drug-resistant strains of Mycobacterium tuberculosis,” *Bioorganic & Medicinal Chemistry*, vol. 12, no. 5, pp. 1199–1207, 2004.

[55] P. Zheng, S. Somersan-Karakaya, S. Lu et al., “Synthetic calanolides with bactericidal activity against replicating and non-replicating Mycobacterium tuberculosis,” *Journal of Medicinal Chemistry*, vol. 57, no. 9, pp. 3755–3772, 2014.

[56] N. Vongvanich, P. Kittakoop, P. Charoenchai, S. Intamas, K. Sriklung, and Y. Thebtaranonth, “Antiplasmodial, antitubercular, and Cytotoxic principles from Calliandra californica, Planta Medica, vol. 72, no. 15, pp. 1427–1430, 2006.

[57] D. Torres-Romero, I. A. Jiménez, R. Rojas, R. H. Gilman, M. López, and I. L. Bazzocchi, “Dihydro-β-agarofuran sesquiterpenes isolated from Celastrus vulcanicola as potential anti-Mycobacterium tuberculosis multidrug-resistant agents,” *Bioorganic & Medicinal Chemistry*, vol. 19, no. 7, pp. 2182–2189, 2011.

[58] A. Jiménez-Arellanes, M. Meckes, R. Ramírez, J. Torres, and J. Luna-Herrera, “Activity against multidrug-resistant Mycobacterium tuberculosis in Mexican plants used to treat respiratory diseases,” *Phytotherapy Research*, vol. 17, no. 8, pp. 903–908, 2003.

[59] A. Jiménez-Arellanes, J. Luna-Herrera, J. Cornejo-Garrido et al., “Ursolic and oleanolic acids as antimicrobial and immunomodulatory compounds for tuberculosis treatment,” *BMC Complementary and Alternative Medicine*, vol. 13, no. 1, p. 258, 2013.

[60] T. Akihisa, S. G. Franzblau, M. Ukiya et al., “Antitubercular activity of triterpenoids from asteraceae flowers,” *Biological & Pharmaceutical Bulletin*, vol. 28, no. 1, pp. 158–160, 2005.

[61] A. Mehta, G. Srivastava, S. Kachhawa, M. Sharma, and S. L. Kothari, “Antimycobacterial activity of Citrullus colocynthis (L.) Schrad. against drug sensitive and drug resistant Mycobacterium tuberculosis and MOTT clinical isolates,” *Journal of Ethnopharmacology*, vol. 149, no. 1, pp. 195–200, 2013.

[62] N. E. Sandoval-Montemayor, A. García, E. Elizondo-Trevisio, E. Garza-González, L. Alvarez, and M. del Rayo Camacho-Corona, “Chemical composition of hexane extract of Citrus aurantifolia and anti-Mycobacterium tuberculosis activity of some of its constituents,” *Molecules*, vol. 17, no. 9, pp. 11173–11184, 2012.

[63] A. Sunthitikawinsakul, N. Kongkathip, B. Kongkathip et al., “Coumarins and carbazoles from Clausena excavata exhibited antitubycobacterial and antifungal activities,” *Planta Medica*, vol. 69, no. 2, pp. 155–157, 2003.

[64] R. Rojas, L. Caviedes, J. C. Aponte et al., “Aegicerin, the first oleane triterpene with wide-ranging antimycobacterial activity, isolated from Clavija procera,” *Journal of Natural Products*, vol. 69, no. 5, pp. 845–846, 2006.

[65] P. Tuntiwachwuttikul, Y. Pootaeng-on, P. Pansa, T. Srisanpang, and W. C. Taylor, “Sulfur-containing compounds from Clinacanthus siamensis,” *Chemical & Pharmaceutical Bulletin (Tokyo)*, vol. 51, no. 12, pp. 1423–1425, 2003.

[66] M. Z. Pérez-González, G. A. Gutiérrez-Rebolledo, L. Yépez-Mulia, I. S. Rojas-Tomé, J. Luna-Herrera, and M. A. Jiménez-Arellanes, “Antiprotozoal, antimycobacterial, and anti-inflammatory evaluation of Cnidioscolus chatmanus (McVaugh) extract and the isolated compounds,” *Biomedicine & Pharmacotherapy*, vol. 89, pp. 89–97, 2017.

[67] N. N. Ibeke, J. B. Nvau, P. O. Oladosu et al., “Some Nigerian anti-tuberculosis ethnomedicines: a preliminary efficacy assessment,” *Journal of Ethnopharmacology*, vol. 155, no. 1, pp. 524–532, 2014.

[68] K. Asres, F. Bucar, S. Edelbrunner, T. Kartnig, H. Göker, and W. Thiel, “Investigations on antitubercular activity of some Ethiopian medicinal plants,” *Phytotherapy Research*, vol. 15, no. 4, pp. 323–326, 2001.

[69] S. Dettrakul, S. Surerum, S. Rajviroongit, and P. Kittakoop, “Biomimetic transformation and biological activities of globiferin, a terpenoid benzoquinone from Cordia globifera,” *Journal of Natural Products*, vol. 72, no. 5, pp. 861–865, 2009.

[70] J. Thongtan, P. Kittakoop, N. Ruangrungsi, J. Saenboonruang, and Y. Thebtaranonth, “New antitycobacterial and antimalarial 8,9-Seckaurane diterpenes from Crotonkongensis,” *Journal of Natural Products*, vol. 66, no. 6, pp. 868–870, 2003.

[71] D. K. Agrawal, D. Saikia, R. Tiwari et al., “Demethoxycurcumin and its semisynthetic analogues as antitubercular agents,” *Planta Medica*, vol. 74, no. 15, pp. 1828–1831, 2008.

[72] P. R. Baldwin, A. Z. Reeves, K. R. Powell et al., “Monocarboynyl analogs of curcumin inhibit growth of antibiotic sensitive and resistant strains of Mycobacterium tuberculosis,” *European Journal of Medicinal Chemistry*, vol. 92, pp. 693–699, 2015.

[73] V. O. Fadipe, N. I. Mongalo, A. R. Opoku, P. M. Dikhoba, and K. W. Nam, W. S. Jang, M. A. Jyoti, S. Kim, B. E. Lee, and P. C. Pan, M. J. Cheng, C. F. Peng, H. Y. Huang, J. J. Chen, and H. Y. Song, “In vitro antimycobacterial activity of some ethnomedicinal products from Derris indica and its semisynthetic analogues as antitubercular agents,” *Planta Medica*, vol. 74, no. 15, pp. 1828–1831, 2008.

[74] K. W. Nam, W. S. Jang, M. A. Jyoti, S. Kim, B. E. Lee, and H. Y. Song, “In vitro activity of (−)-deoxypergalinine, on its own and in combination with anti-tubercular drugs, against resistant strains of Mycobacterium tuberculosis,” *Phytotherapy*, vol. 23, no. 5, pp. 578–582, 2016.

[75] S. Koyosomboon, I. van Altena, S. Kato, and K. Chantarapromma, “Antimycobacterial flavonoids from Derris indica,” *Phytochemistry*, vol. 67, no. 10, pp. 1034–1040, 2006.

[76] P. C. Pan, M. J. Cheng, C. F. Peng, H. Y. Huang, J. J. Chen, and I. S. Chen, “Secondary metabolites from the roots of Litsea hypophaea and their antitubercular activity,” *Journal of Natural Products*, vol. 73, no. 5, pp. 890–896, 2010.
[106] G. A. Wächter, S. Valcic, S. G. Franzblau, E. Suarez, and B. N. Timmermann, “Antitubercular activity of triterpenoids from Lippia turbinata,” Journal of Natural Products, vol. 64, no. 1, pp. 37–41, 2001.

[107] C. D. Carpenter, T. O’Neill, N. Picot et al., “Anti-mycobacterial natural products from the Canadian medicinal plant Juniperus communis,” Journal of Ethnopharmacology, vol. 143, no. 2, pp. 695–700, 2012.

[108] J. S. Mossa, F. S. el-Feraly, and I. Muhammad, “Antimycobacterial constituents from Juniperus procera, Ferula communis and Plumbago zeylanica and their in vitro synergistic activity with isonicotinic acid hydrazide,” Phytotherapy Research, vol. 18, no. 11, pp. 934–937, 2004.

[109] D. Lakshmanan, J. Werngren, L. Jose et al., “Ethyl p-methoxy-cinnamate isolated from a traditional anti-tuberculosis medicinal herb inhibits drug resistant strains of Mycobacterium tuberculosis in vitro,” Fitoterapia, vol. 82, no. 5, pp. 757–761, 2011.

[110] C. Yenjai, K. Prasanphen, S. Daodee, V. Wongpanich, and C. D. Carpenter, T. O’Neill, N. Picot et al., “Indonesian and Thai medicinal herbs containing antimycobacterial activity,” Phytotherapy Research, vol. 20, no. 1, pp. 37–42, 2006.

[111] J. J. Chen, T. H. Chou, C. F. Peng, I. S. Chen, and S. Z. Yang, “Antitubercular dihydroagarofuranoid sesquiterpenes from the roots of Eriosema chinense,” Phytotherapy Research, vol. 20, no. 7, pp. 651–655, 2006.

[112] H. A. Mahmud, H. Seo, S. Kim et al., “Thymoquinone (TQ) inhibits the replication of intracellular Mycobacterium tuberculosis in macrophages and modulates nitric oxide production,” BMC Complementary and Alternative Medicine, vol. 17, no. 1, p. 279, 2017.

[113] B. S. Siddiqui, H. A. Bhatti, S. Begum, and S. Perwaiz, “Evaluation of the antitubercular activity of the constituents from Ocimum basilicum against Mycobacterium tuberculosis,” Journal of Ethnopharmacology, vol. 144, no. 1, pp. 220–222, 2012.

[114] R. S. Sundaram, M. Ramanathan, R. Rajesh, B. Satheesh, and D. Saravana, “LC-MS quantification of rosмаринic acid and ursolic acid in theocimum sanctum leaf extract (Holy Basil, Tulsi),” Journal of Liquid Chromatography & Related Technologies, vol. 35, no. 5, pp. 634–650, 2012.

[115] J. L. Nkot, D. S. Ngo Take, A. Abouem A Zintchem et al., “Antituberculosis activity of the roots of Eriosema chinense,” Phytotherapy Research, vol. 20, no. 12, pp. 1546–1551, 2006.

[116] B. G. Elkington, K. Sydara, A. Newsome et al., “New finding of an anti-TB compound in the genus Marsypopetalum (Annonaceae) from a traditional herbal remedy of Laos,” Journal of Ethnopharmacology, vol. 151, no. 2, pp. 337–348, 2014.

[117] C. Ma, R. J. Case, Y. Wang et al., “Anti-tuberculosis constituents from the stem bark of Micromelum hirsutum,” Planta Medica, vol. 71, no. 3, pp. 261–267, 2005.

[118] J. J. Chen, T. H. Chou, C. F. Peng, I. S. Chen, and S. Z. Yang, “Antitubercular dihydroagarofuranoid sesquiterpenes from the roots of Microtropis fokiemensis,” Journal of Natural Products, vol. 70, no. 2, pp. 202–205, 2007.

[119] T. H. Chou, I. S. Chen, C. F. Peng, P. J. Sung, and J. J. Chen, “A new dihydroagarofuranoid sesquiterpene and antituberculosis constituents from the root of Microtropis japonica,” Chemistry & Biodiversity, vol. 5, no. 7, pp. 1412–1418, 2008.

[120] J. J. Chen, C. S. Yang, C. F. Peng, I. S. Chen, and C. L. Miaw, “Dihydroagarofuranoid sesquiterpenes, a lignan derivative, a benzenoid, and antitubercular constituents from the stem of Microtropis japonica,” Journal of Natural Products, vol. 71, no. 6, pp. 1016–1021, 2008.

[121] J. P. Saludes, M. J. Garson, S. G. Franzblau, and A. M. Aguinasto, “Antitubercular constituents from the hexane fraction of Morinda citrifolia Linn. (Rubiaceae),” Phytotherapy Research, vol. 16, no. 7, pp. 683–685, 2002.

[122] G. Mudur, “Indian health ministry challenges report of totally drug resistant tuberculosis,” BMJ, vol. 344, article e702, 2012.

[123] S. Zanetti, S. Cannas, P. Molinelli et al., “Evaluation of the Antimicrobial Properties of the Essential Oil of Myrtus communis L. against Clinical Strains of Mycobacterium spp.,” Interdisciplinary Perspectives on Infectious Diseases, vol. 2010, Article ID 931530, 3 pages, 2010.

[124] H. A. Mahmud, H. Seo, S. Kim et al., “Thymoquinone (TQ) inhibits the replication of intracellular Mycobacterium tuberculosis in macrophages and modulates nitric oxide production,” BMC Complementary and Alternative Medicine, vol. 17, no. 1, p. 279, 2017.

[125] A. Vedder, A. B. Baker, C. S. Prasad, and S. Perwaiz, “Flavonoids from the roots of Eriosema chinense,” Phytotherapy Research, vol. 26, no. 10, pp. 1245–1250, 2012.

[126] R. S. Sundaram, M. Ramanathan, R. Rajesh, B. Satheesh, and D. Saravana, “LC-MS quantification of rosmarinic acid and ursolic acid in theocimum sanctum leaf extract (Holy Basil, Tulsi),” Journal of Liquid Chromatography & Related Technologies, vol. 35, no. 5, pp. 634–650, 2012.

[127] L. C. Pabon and L. E. Cuca, “Aporphine alkaloids from Ocotea macrophylla (Lauraceae),” Quim Nova, vol. 33, no. 4, pp. 875–879, 2010.

[128] T. Inui, Y. Wang, D. Nikolic, D. C. Smith, S. G. Franzblau, and G. F. Pauli, “Sesquiterpenes from Oplopanax horridus,” Journal of Natural Products, vol. 73, no. 4, pp. 563–567, 2010.

[129] S. Sutthaguyakit, O. Thongnak, T. Lhinhatrakool et al., “Cytotoxic and antitubercular prenylated flavonoids from the roots of Eriosema chinense,” Journal of Natural Products, vol. 72, no. 6, pp. 1092–1096, 2009.

[130] A. H. Januarío, E. R. Filho, R. C. L. R. Pietro, S. Kashima, D. N. Sato, and S. C. França, “Antimycobacterial phy salins from Physalis angulata L. (Solanaceae),” Phytotherapy Research, vol. 16, no. 5, pp. 445–448, 2002.

[131] T. Rukchaisirikul, P. Siriwattanakit, K. Sukcharoenphol et al., “Chemical constituents and bioactivity of Piper sarmentosum,” Journal of Ethnopharmacology, vol. 93, no. 2-3, pp. 173–176, 2004.

[132] R. B. L. Scodro, C. T. A. Pires, V. S. Carrara et al., “Antituberculosis neolignans from Piper nigrum,” Phytomedicine, vol. 20, no. 7, pp. 600–604, 2013.

[133] M. A. Lopes, K. R. C. Ferracioli, V. L. D. Siqueira et al., “In vitro interaction of eupomatenoid-5 from Piper solmsianum,” Phytotherapy Research, vol. 20, no. 7, pp. 651–655, 2006.

[134] P. Rijo, M. F. Simões, A. P. Francisco et al., “Antimycobacterial metabolites from Plectranthus royleane derivatives against Mycobacterium tuberculosis strains,” Chemistry & Biodiversity, vol. 7, no. 4, pp. 922–932, 2010.
J. M. Andrade, L. Custódio, A. Romagnoli et al., "Antitubercular and anti-inflammatory properties screening of natural products from Plectranthus species," *Future Medicinal Chemistry*, vol. 10, no. 14, pp. 1677–1691, 2018.

P. Kumar, A. Singh, U. Sharma, D. Singh, M. P. Dobhal, and S. Singh, "Anti-mycobacterial activity of plumerin and isopluverin against MDR Mycobacterium tuberculosis," *Pulmonary Pharmacology & Therapeutics*, vol. 26, no. 3, pp. 332–335, 2013.

S. Kanokmedhakul, K. Kanokmedhakul, and R. Lekphrom, "Bioactive constituents of the roots of Polyalthia cerasoides," *Journal of Natural Products*, vol. 70, no. 9, pp. 1536–1538, 2007.

N. Panthama, S. Kanokmedhakul, and K. Kanokmedhakul, "Polyacetylenes from the roots of Polyalthia debilis," *Journal of Natural Products*, vol. 73, no. 8, pp. 1366–1369, 2010.

S. Kanokmedhakul, K. Kanokmedhakul, I. Kantikeaw, and N. Phonkerd, "2-Substituted furans from the roots of Polyalthia evecta," *Journal of Natural Products*, vol. 69, no. 1, pp. 68–72, 2006.

P. Kittakoop, S. Wanasisoth, P. Watts, J. Kramyu, M. Tanticharoen, and Y. Thebtaranonth, "Potent antiviral potamogetonyde and potamogetonol, new furanoid labdane diterpenes from Potamogeton malayanus," *Journal of Natural Products*, vol. 64, no. 3, pp. 385–388, 2001.

J. J. Chen, W. J. Lin, P. C. Shieh, I. S. Chen, C. F. Peng, and P. J. Sung, "A new long-chain alkene and antituberculosis constituents from the leaves of Pourthiaea lucida," *Chemistry and Biodiversity*, vol. 7, no. 3, pp. 717–721, 2010.

S. B. Lirio, A. P. G. Macabeo, E. M. Paragas et al., "Antitubercular constituents from Premna odorata Blanco," *Journal of Ethnopharmacology*, vol. 154, no. 2, pp. 471–474, 2014.

D. Dey, R. Ray, and B. Hazra, "Antimicrobial activity of pomegranate fruit constituents against drug-resistant Mycobacterium tuberculosis and β-lactamase producing Klebsiella pneumoniae," *Pharmaceutical Biology*, vol. 53, no. 10, pp. 1474–1480, 2015.

N. B. Truong, C. V. Pham, H. T. M. Doan et al., "Antituberculosis cyclostane triterpenoids from Radermacheria boniana," *Journal of Natural Products*, vol. 74, no. 5, pp. 1318–1322, 2011.

K. Z. Deng, Y. Xiong, B. Zhou, Y. M. Guan, and Y. M. Luo, "Chemical constituents from the roots of Ranunculus ternatus and their inhibitory effects on Mycobacterium tuberculosis," *Molecules*, vol. 18, no. 10, pp. 11859–11865, 2013.

H. X. Liang, H. Q. Dai, H. A. Fu et al., "Bioactive compounds from Rumex plants," *Phytochemistry Letters*, vol. 3, no. 4, pp. 181–184, 2010.

A. A. Hussein, J. J. M. Meyer, M. L. Jimeno, and B. Rodriguez, "Bioactive diterpenes from Orthosiphon labiatus and Salvia africana-lutea," *Journal of Natural Products*, vol. 70, no. 2, pp. 293–295, 2007.

C. Chen, W. He, P. Huang et al., "Exploring anti-TB leads from natural products library originated from marine microbes and medicinal plants," *Antonie Van Leeuwenhoek*, vol. 102, no. 3, pp. 447–461, 2012.

D. Yang and H. Luo, "Modification of diterpenoid quinones from Salvia miltiorrhiza," *Journal of China Pharmaceutical University*, vol. 29, pp. 255–258, 1998.

P. Chumkaew, C. Karlai, C. Ponglimanont, and K. Chantrapromma, "Antimycobacterial activity of phorbol esters from the fruits of Sapium indicum," *Journal of Natural Products*, vol. 66, no. 4, pp. 540–543, 2003.

T. C. Hung, K. B. Chen, W. Y. Lee, and C. Y. C. Chen, "The Inhibition of Folyopolyglutamate Synthetase (foIC) in the Prevention of Drug Resistance in Mycobacterium tuberculosis by Traditional Chinese Medicine," *BioMed Research International*, vol. 2014, Article ID 635152, 14 pages, 2014.

A. Suksamrarn, M. Buaprom, S. Udtip, N. Nuntawong, R. Haritakun, and S. Kanokmedhakul, "Antimycobacterial and antiplasmodial unsaturated carboxylic acid from the twigs of Scelorpyrum wallichianum," *Chemical & Pharmaceutical Bulletin (Tokyo)*, vol. 53, no. 10, pp. 1327–1329, 2005.

C. Balachandran, V. Duraipandiyani, N. A. Al-Dhabi et al., "Antimicrobial and antimycobacterial activities of methyl caffeate isolated from Solanum torvum Swartz. fruit," *Indian Journal of Microbiology*, vol. 52, no. 4, pp. 676–681, 2012.

J. M. Hwang, T. Oh, T. Kaneko et al., "Design, synthesis, and structure-activity relationship studies of tryptanthrins as antitubercular agents," *Journal of Natural Products*, vol. 76, no. 3, pp. 354–367, 2013.

L. A. Mitscher and W. R. Baker, "A search for novel chemotherapy against tuberculosis amongst natural products," *Pure and Applied Chemistry*, vol. 70, no. 2, pp. 365–371, 1998.

A. Mann, J. O. Amupitan, A. O. Oyewale et al., "Evaluation of in vitro antimycobacterial activity of Nigerian plants used for treatment of respiratory diseases," *African Journal of Biotechnology*, vol. 7, no. 11, pp. 1630–1636, 2008.

A. Mann, K. Ibrahim, A. O. Oyewale, J. O. Amupitan, M. O. Fatope, and J. I. Okogun, "Antimycobacterial Friedelane-terpenoid from the root bark of Terminalia avicennioides," *American Journal of Chemistry*, vol. 1, no. 2, pp. 52–55, 2011.

E. Y. A. Salih, R. Jukunen-Tittoo, A. M. Lampi et al., "*Terminalia laxiflora* and *Terminalia brownii* contain a broad spectrum of antimycobacterial compounds including eilgattannins, elagic acid derivatives, triterpenes, fatty acids and fatty alcohols," *Journal of Ethnopharmacology*, vol. 227, pp. 82–96, 2018.

C. T. Higuchi, M. Sannomiya, F. R. Pavan et al., "Byronisina fagifolia Niedenzu Apolar compounds with antitubercular activity," *Evidence-based Complimentary and Alternative Medicine*, vol. 2011, Article ID 128349, 5 pages, 2011.

V. Kuete, T. K. Tabopda, B. Ngameni, F. Nana, T. E. Tshikangle, and B. T. Ngadjui, "Antimycobacterial, antibacterial and antifungal activities of *Terminalia superba* (Combretaceae)," *South African Journal of Botany*, vol. 76, no. 1, pp. 125–131, 2010.

M. C. Fomogne-Fodjo, D. T. Ndinteh, D. K. Olivier, P. Kempgens, S. van Vuuren, and R. W. M. Krause, "Secondary metabolites from *Tetracera potatoria* stem bark with antimycobacterial activity," *Journal of Ethnopharmacology*, vol. 195, pp. 238–245, 2017.

V. P. Baldin, R. B. L. Scodro, M. A. Lopes-Ortiz et al., "Antimycobacterium tuberculosis activity of essential oil and 6,7-dehydroroyleanone isolated from leaves of *Tetradenia riparia* (Hochst.) Codd (Lamiaceae)," *Phytomedicine*, vol. 47, pp. 34–39, 2018.

M. T. Gutierrez-Lugo, Y. Wang, S. G. Franzblau, E. Suarez, and B. N. Timmermann, "Antitubercular sterols from Thalia multiflora Horkel ex Koernicke," *Phytotherapy Research*, vol. 19, no. 10, pp. 876–880, 2005.
[164] S. Sureram, S. P. D. Senadeera, P. Hongmanee, C. Mahidol, S. Ruchirawat, and P. Kittakoop, "Antimycobacterial activity of bisbenzylisoquinoline alkaloids from *Tiliacora triandra* against multidrug-resistant isolates of *Mycobacterium tuberculosis*," *Bioorganic & Medicinal Chemistry Letters*, vol. 22, no. 8, pp. 2902–2905, 2012.

[165] J. Zhao, D. Evangelopoulos, S. Bhakta, A. I. Gray, and V. Seidel, "Antitubercular activity of *Arctium lappa* and *Tussilago farfara* extracts and constituents," *Journal of Ethnopharmacology*, vol. 155, no. 1, pp. 796–800, 2014.

[166] S. Basu, A. Ghosh, and B. Hazra, "Evaluation of the antimicrobial activity of *Ventilagio madraspatana* Gaertn., *Rubia cordifolia* Linn. and *Lantana camara* Linn.: isolation of emodin and physcion as active antimicrobial agents," *Phytotherapy Research*, vol. 19, no. 10, pp. 888–894, 2005.

[167] X. Luo, D. Pires, J. A. Aínsa et al., "Zanthoxylum capense constituents with antitubercobacterial activity against *Mycobacterium tuberculosis* in vitro and ex vivo within human macrophages," *Journal of Ethnopharmacology*, vol. 146, no. 1, pp. 417–422, 2013.

[168] L. Bunalema, G. W. Fotso, P. Waako, and S. O. Yeboah, "Potential of Zanthoxylum leprieurii as a source of active compounds against drug resistant *Mycobacterium tuberculosis*," *BMC Complementary and Alternative Medicine*, vol. 17, no. 1, p. 89, 2017.

[169] S. Kim, H. Seo, H. A. Mahmud et al., "In vitro activity of colchin isolated from the leaves of *Zanthoxylum schinifolium* against multidrug- and extensively drug-resistant *Mycobacterium tuberculosis*," *Phytotherapy*, vol. 46, pp. 104–110, 2018.

[170] H. Y. Huang, T. Ishikawa, C. F. Peng, I. L. Tsai, and I. S. Chen, "Constituents of the root wood of *Zanthoxylum wutaiense* with antitubercular activity," *Journal of Natural Products*, vol. 71, no. 7, pp. 1146–1151, 2008.

[171] P. Tangguenyongwatana and W. Gritsanapan, "Biological evaluations of fatty acid esters originated during storage of Prasaplai, a Thai traditional medicine," *Natural Product Research*, vol. 21, no. 11, pp. 990–997, 2007.

[172] S. Suksamrarn, P. Panseeta, S. Kunchanawatta, T. Distaporn, S. Ruktasing, and A. Suksamrarn, "Carnoalthane- and lupane-type triterpenes with antiplasmodial and antitubercobacterial activities from *Ziziphus cambodiensis*," *Chemical & Pharmaceutical Bulletin (Tokyo)*, vol. 54, no. 4, pp. 535–537, 2006.

[173] M. Singh, M. Kaur, and O. Silakari, "Flavones: an important scaffold for medicinal chemistry," *European Journal of Medicinal Chemistry*, vol. 84, pp. 206–239, 2014.

[174] C. L. Cantrell, S. Franzelau, and N. Fischer, "Antimycobacterial plant terpenoids," *Planta Medica*, vol. 67, no. 8, pp. 685–694, 2001.

[175] A. Ulubelen, G. Topcu, and C. B. Johansson, "Norditerpenoids and diterpenoids from *Salviamulticaulis* with Antituberculous Activity," *Journal of Natural Products*, vol. 60, no. 12, pp. 1275–1280, 1997.

[176] J. C. Wu, T. C. Warren, J. Adams et al., "A novel, dipyridodiazepinone inhibitor of HIV-1 reverse transcriptase acts through a nonsubstrate binding site," *Biochemistry*, vol. 30, no. 8, pp. 2022–2026, 1991.

[177] K. R. Gustafson, H. R. Bokesch, R. W. Fuller et al., "Calanone, a novel coumarin from *Calophyllum teysmannii*," *Tetrahedron Letters*, vol. 35, no. 32, pp. 5821–5824, 1994.

[178] R. Mu, C. Kong, W. Yu et al., "Nitrooxidoerduractase Rv2466c-dependent fluorescent probe for *Mycobacterium tuberculosis* Diagnosis and Drug susceptibility testing," *ACS Infectious Diseases*, vol. 5, no. 6, pp. 949–961, 2019.

[179] K. Tawde, "Evaluation of selected Indian traditional folk medicinal plants against *Mycobacterium tuberculosis* with antioxidant and cytotoxicity study," *Asian Pacific Journal of Tropical Medicine*, vol. 2, pp. 685–691, 2012.

[180] S. Y. Pan, S. F. Zhou, S. H. Gao et al., "New Perspectives on How to Discover Drugs from Herbal Medicines: CAM’s Outstanding Contribution to Modern Therapeutics," *Evidence-based Complementary and Alternative Medicine*, vol. 2013, Article ID 627375, 25 pages, 2013.

[181] R. Gupta, B. Thakur, P. Singh et al., "Anti-tuberculosis activity of selected medicinal plants against multi-drug resistant *Mycobacterium tuberculosis* isolates," *The Indian Journal of Medical Research*, vol. 131, pp. 809–813, 2010.

[182] J. G. Bueno-Sánchez, J. R. Martínez-Morales, E. E. Stashenko, and W. Ribón, "Anti-tubercular activity of eleven aromatic and medicinal plants occurring in Colombia," *Biomédica*, vol. 29, no. 1, pp. 51–60, 2009.

[183] D. Webster, T. D. G. Lee, J. Moore et al., "Antimycobacterial screening of traditional medicinal plants using the microplate resazurin assay," *Canadian Journal of Microbiology*, vol. 56, no. 6, pp. 487–494, 2010.

[184] J. M. Nguta, R. Appiah-Opong, A. K. Nyarko et al., "Antimycobacterial and cytotoxic activity of selected medicinal plant extracts," *Ethnopharmacology*, vol. 182, pp. 10–15, 2016.

[185] J. B. Niu and P. Oladosu, "Antimycobacterial evaluation of some medicinal plants used in plateau State of Nigeria for the treatment of tuberculosis," *Agriculture and Biology Journal of North America*, vol. 2, no. 9, pp. 1270–1272, 2011.

[186] M. Billo, P. Cabaljon, J. Waikedre et al., "Screening of some new Caledonian and Vanuatu medicinal plants for antimycobacterial activity," *Journal of Ethnopharmacology*, vol. 96, no. 1-2, pp. 195–200, 2005.

[187] R. E. Robles-Zepeda, E. W. Coronado-Aceves, C. A. Velázquez-Contreras, E. Ruiz-Bustos, M. Navarro-Navarro, and A. Garibay-Escobar, "In vitro anti-mycobacterial activity of nine medicinal plants used by ethnic groups in Sonora, Mexico," *BMC Complementary and Alternative Medicine*, vol. 13, no. 1, p. 329, 2013.

[188] R. Gómez-Cansino, C. I. Espitia-Pinzón, M. G. Campos-Lara et al., "Antimycobacterial and *HIV*–1 reverse transcriptase activity of *Julinaceae* and *Clusiaceae* plant species from Mexico," *Evidence-based Complementary and Alternative Medicine*, vol. 2015, Article ID 183036, 8 pages, 2015.

[189] A. Prabu, S. Hassan, Prabuseenivasan, A. S. Shainaba, L. E. Hanna, and V. Kumar, "Andrographolide: A potent antituberculosis compound that targets Aminoglycoside 2′-N-acetyltransferase in *Mycobacterium tuberculosis*," *Journal of Molecular Graphics & Modelling*, vol. 61, pp. 133–140, 2015.

[190] P. Bhattar, P. Gupta, P. Daswani, P. Tetali, and T. Birdi, "Antimycobacterial efficacy of andrographis paniculata leaf extracts under intracelluler and hypoxic conditions," *Journal of Evidence-Based Complementary & Alternative Medicine*, vol. 20, no. 1, pp. 3–8, 2015.

[191] S. Mohamad, N. M. Zin, H. A. Wahab et al., "Antituberculosis potential of some ethnobotanically selected Malaysian plants," *Journal of Ethnopharmacology*, vol. 133, no. 3, pp. 1021–1026, 2011.

[192] N. P. Komape, V. P. Bagla, P. Kabongo-Kayoka, and P. Masoko, "Anti-mycobacteria potential and synergistic
effects of combined crude extracts of selected medicinal plants used by Bapedi traditional healers to treat tuberculosis related symptoms in Limpopo Province, South Africa,” BMC Complementary and Alternative Medicine, vol. 17, no. 1, p. 128, 2017.

[193] D. E. Cruz-Vega, M. J. Verde-Star, N. Salinas-González et al., “Antimycobacterial activity of Juglans regia, Juglans mollis, Caryla illinoinsis and Bocconia frutescens,” Phytotherapy Research, vol. 22, no. 4, pp. 557–559, 2008.

[194] S. K. Naik, S. Mohanty, A. Padhi, R. Pati, and A. Sonawane, “Evaluation of antibacterial and cytotoxic activity of Arthemisia nilagirica and Murraya koenigi leaf extracts against mycobacteria and macrophages,” BMC Complementary and Alternative Medicine, vol. 14, no. 1, p. 87, 2014.

[195] C. N. Nkenfou, I. K. Mawabo, A. Notedji et al., “In vitro antimycobacterial activity of six Cameroonian medicinal plants using microplate alamarBlue assay,” Intl J Mycobacteriol., vol. 4, no. 4, pp. 306–311, 2015.

[196] V. K. Gupta, A. Kaushik, D. S. Chauhan, R. K. Ahirwar, S. Sharma, and D. Bisht, “Anti-mycobacterial activity of some medicinal plants used traditionally by tribes from Madhya Pradesh, India for treating tuberculosis related symptoms,” Journal of Ethnopharmacology, vol. 227, pp. 113–120, 2018.

[197] E. Green, A. Samie, C. L. Obi, P. O. Bessong, and R. N. Ndip, “Inhibitory properties of selected South African medicinal plants against Mycobacterium tuberculosis,” Journal of Ethnopharmacology, vol. 130, no. 1, pp. 151–157, 2010.

[198] A. Y. Gordien, A. I. Gray, K. Ingleby, S. G. Franzblau, and E. Green, A. Samie, C. L. Obi, P. O. Bessong, and R. N. Ndip, “Inhibitory properties of selected South African medicinal plants against Mycobacterium tuberculosis,” Journal of Ethnopharmacology, vol. 130, no. 1, pp. 151–157, 2010.

[199] P. Arulmozhi, S. Vijayakumar, and T. Kumar, “Phytochemical analysis and antimicrobial activity of some medicinal plants against selected pathogenic microorganisms,” Microbial Pathogenesis, vol. 123, pp. 219–226, 2018.

[200] P. Arulmozhi, S. Vijayakumar, P. K. Praseetha, and S. Janyathi, “Extraction methods and computational approaches for evaluation of antimicrobial compounds from Capparis zeylanica L,” Analytical Biochemistry, vol. 572, pp. 33–44, 2019.

[201] R. Singh, S. Hussain, R. Verma, and P. Sharma, “Anti-mycobacterial screening of five Indian medicinal plants and partial purification of active extracts of Cassia sophera and Urtica dioica,” Asian Pacific Journal of Tropical Medicine, vol. 6, no. 5, pp. 366–371, 2013.

[202] G. M. Molina-Salinas, A. Pérez-López, P. Becerril-Montes, R. Salazar-Aranda, S. Said-Fernández, and N. W. Torres, “Evaluation of the flora of northern Mexico for in vitro antimicrobial and antituberculosis activity,” Journal of Ethnopharmacology, vol. 109, no. 3, pp. 435–441, 2007.

[203] S. Ullah, S. Hussain, S. N. Khan, M. Khurram, I. Khan, and M. A. Khan, “The medicinal plants in the control of tuberculosis: laboratory study on medicinal plants from the Northern Area of Pakistan,” International Journal of Mycobacteriology, vol. 6, no. 1, pp. 102–105, 2017.

[204] M. R. Camacho-Corona, M. A. Ramirez-Cabrera, O. G. Santiago, E. Garza-González, I. P. Palacios, and J. Luna-Herrera, “Activity against drug resistant-tuberculosis strains of plants used in Mexican traditional medicine to treat tuberculosis and other respiratory diseases,” Phytotherapy Research, vol. 22, no. 1, pp. 82–85, 2008.

[205] E. A. Diop, E. F. Queiroz, S. Kicka et al., “Survey on medicinal plants traditionally used in Senegal for the treatment of tuberculosis (TB) and assessment of their antimycobacterial activity,” Journal of Ethnopharmacology, vol. 216, pp. 71–78, 2018.

[206] S. Mohamad, N. N. Ismail, T. Parumaisivam, P. Ibrahim, H. Osman, and H. A. Wahab, “Antituberculosis activity, phytochemical identification of Costus speciosus (J. Koenig) Sm., Cymbopogon citratus (DC. Ex Nee) Stapf, and Tabernaemontana coronaria (L.) Willd. and their effects on the growth kinetics and cellular integrity of Mycobacterium tuberculosis H37Rv,” BMC Complementary and Alternative Medicine, vol. 18, no. 1, p. 5, 2018.

[207] A. O. Aro, J. P. Dzoyem, J. N. Eloff, and L. J. McGaw, “Extracts of six Rubiaceae species combined with rifampicin have good in vitro synergistic antimycobacterial activity and good anti-inflammatory and antioxidant activities,” BMC Complementary and Alternative Medicine, vol. 16, no. 1, p. 385, 2016.

[208] K. N. Ngbolua, G. N. Bongo, C. M. Ashande et al., “Ethnobotanical survey and ecological study of plants resources used in folk medicine to treat symptoms of tuberculosis in Kinshasa City, Democratic Republic of the Congo,” Journal of Drug Discovery, Development and Delivery, vol. 1, no. 4, pp. 1–6, 2014.

[209] F. C. M. Lopes, M. C. P. Placeres, C. M. Jordão Junior et al., “Immunological and microbiological activity of Davilla elliptica St. Hl. (Dilleniaceae) against Mycobacterium tuberculosis,” Memórias do Instituto Oswaldo Cruz, vol. 102, no. 6, pp. 769–772, 2007.

[210] E. M. Tekwu, T. Askun, V. Kuete et al., “Antibacterial activity of selected Cameroonian dietary spices ethno-medically used against strains of Mycobacterium tuberculosis,” Journal of Ethnopharmacology, vol. 142, no. 2, pp. 374–382, 2012.

[211] L. Bunalema, C. Kirimuhiyuza, J. R. Tabuti et al., “The efficacy of the crude root bark extracts of Erythrina abyssinica on rifampicin resistant Mycobacterium tuberculosis,” African Health Sciences, vol. 11, no. 4, pp. 587–593, 2011.

[212] E. W. Coronado-Aceves, J. J. Sánchez-Escalante, J. López-Cervantes et al., “Antimycobacterial activity of medicinal plants used by the Mayan people of Sonora, Mexico,” Journal of Ethnopharmacology, vol. 190, pp. 106–115, 2016.

[213] T. Rajasekar, S. Anbarasu, R. Manikkam, J. Joseph, and V. Kumar, “Inhibitory activity of Euphorbia hirta (Tawa-tawa) extracts against Mycobacterium tuberculosis and other non mycobacterial pathogens,” Der Pharma Chemica, vol. 7, pp. 213–216, 2015.

[214] L. R. Barrows, E. Powan, C. D. Pond, and T. Matainaho, “Anti-TB activity of Evodia elleryana bark extract,” Fitoterapia, vol. 78, no. 3, pp. 250–252, 2007.

[215] B. Madikizela, A. R. Ndhala, J. F. Finnie, and J. van Staden, “Antimycobacterial, anti-inflammatory and genotoxicity evaluation of plants used for the treatment of tuberculosis and related symptoms in South Africa,” Journal of Ethnopharmacology, vol. 153, no. 2, pp. 386–391, 2014.

[216] M. D. Antoun, Z. Ramos, J. Vazquez et al., “Evaluation of the flora of Puerto Rico for in vitro antimalarial and antimycobacterial activities,” Phytotherapy Research, vol. 15, no. 7, pp. 638–642, 2001.

[217] G. M. Molina-Salinas, M. C. Ramos-Guerra, J. Vargas-Villarreal, B. D. Mata-Cárdenas, P. Becerril-Montes, and S. Said-Fernández, “Bactericidal Activity of Organic Extracts from
Flourensia cernua DC against Strains of Mycobacterium tuberculosis,” Archives of Medical Research, vol. 37, no. 1, pp. 45–49, 2006.

[218] D. Khilfi, M. Hamdi, A. E. Hayouni et al., “Global chemical composition and antioxidant and anti-tuberculosis activities of various extracts of Globularia alypum L. (Globulariaceae) leaves,” Molecules, vol. 16, no. 12, pp. 10592–10603, 2011.

[219] V. K. Gupta, A. Fatima, U. Faridi et al., “Antimicrobial potential of Glycyrrhiza glabra roots,” Journal of Ethnopharmacology, vol. 116, no. 2, pp. 377–380, 2008.

[220] R. Gomes-Flores, C. Arzate-Quintana, R. Quintanilla-Licea, P. Tamez-Guerra, Monreal-Cuevas, and C. Rodriguez-Padilla, “Antimicrobial activity of Persea americana Mill (Lauraceae) (avocado) and Gymnosperma glutinosum (Spreng.) Less (Asteraceae) leaf extracts and active fractions against Mycobacterium tuberculosis,” American-Eurasian Journal of Scientific Research (AEJSR), vol. 3, pp. 188–194, 2008.

[221] B. Madikizela and L. J. McGaw, “Scientific rationale for traditional use of plants to treat tuberculosis in the eastern region of the OR Tambo district, South Africa,” Journal of Ethnopharmacology, vol. 224, pp. 250–260, 2018.

[222] N. K. Sethiya, N. M. Ahmed, R. M. Shekh, V. Kumar, P. Kumar Singh, and V. Kumar, “Ethnomedicinal, phytochemical and pharmacological updates on Hygrophila auriculata (Schum.) Hiene: an overview,” Journal of Integrative Medicine, vol. 16, no. 5, pp. 299–311, 2018.

[223] M. H. Kabir, N. Hasan, M. Rahman et al., “A survey of medicinal plants used by the Deb barma clan of the Tripura tribe of Moulvibazar district, Bangladesh,” Journal of Ethnobiology and Ethnomedicine, vol. 10, no. 1, p. 19, 2014.

[224] N. Abuzeid, S. Kalsum, R. J. Koshy et al., “Antimycobacterial activity of selected medicinal plants traditionally used in Sudan to treat infectious diseases,” Journal of Ethnopharmacology, vol. 157, pp. 134–139, 2014.

[225] E. A. Earl, M. Altaf, R. V. Murikoli, S. Swift, and R. O’Toole, “Native New Zealand plants with inhibitory activity towards Mycobacterium tuberculosis,” BMC Complementary and Alternative Medicine, vol. 10, no. 1, p. 25, 2010.

[226] X. Luo, D. Pires, J. A. Ainsa et al., “Antimycobacterial evaluation and preliminary phytochemical investigation of selected medicinal plants traditionally used in Mozambique,” Journal of Ethnopharmacology, vol. 137, no. 1, pp. 114–120, 2011.

[227] V. K. Gupta, C. Shukla, G. R. S. Bisht, D. Saikia, S. Kumar, and R. L. Thakur, “Detection of anti-tuberculosis activity in some folklore plants by radiometric BACTEC assay,” Letters in Applied Microbiology, vol. 52, no. 1, pp. 33–40, 2011.

[228] T. Mmushi, P. Masoko, L. Mde, M. Mokgotho, L. Mampuru, and R. Howard, “Antimycobacterial evaluation of fifteen medicinal plants in South Africa,” African Journal of Traditional, Complementary, and Alternative Medicines, vol. 7, no. 1, pp. 34–39, 2009.

[229] W. Kahaliw, A. Aseffa, M. Abebe, M. Teferi, and E. Engidawork, “Evaluation of the antimycobacterial activity of crude extracts and solvent fractions of selected Ethiopian medicinal plants,” BMC Complementary and Alternative Medicine, vol. 17, no. 1, p. 143, 2017.

[230] J. Kardan-Yamchi, M. Mahboubi, H. Kazemian, G. Hamzelou, and M. M. Feizabadi, “The chemical composition and anti-mycobacterial activities of Trachyspermum copticum and Pelargonium graveolens essential oils,” Recent Patents on Anti-Infective Drug Discovery, vol. 15, no. 1, pp. 68–74, 2020.

[231] H. Kolodziej, O. Kayser, O. A. Radtke, A. F. Kiderlen, and E. Koch, “Pharmacological profile of extracts of Pelargonium sidoides and their constituents,” Phytotherapy, vol. 10, Supplement 4, pp. 18–24, 2003.

[232] A. Jiménez-Arellanes, J. Luna-Herrera, R. Ruiz-Nicolás, J. Cornejo-Garrido, A. Tapia, and L. Yépez-Mulia, “Antiprotozoal and antimycobacterial activities of Persea americana seeds,” BMC Complementary and Alternative Medicine, vol. 13, no. 1, p. 109, 2013.

[233] K. Z. Bernucci, C. Iwanaga, C. Fernandez-Andrade et al., “Evaluation of chemical composition and antileishmanial and antituberculosis activities of essential oils of Piper species,” Molecules, vol. 21, no. 12, p. 1698, 2016.

[234] L. E. Diaz, D. R. Munoz, R. E. Prieto et al., “Antioxidant, antitubercular and cytotoxic activities of Piper imperiale,” Molecules, vol. 17, no. 4, pp. 4142–4157, 2012.

[235] K. Hussain, Z. Ismail, A. Sadikun, and P. Ibrahim, “Evaluation of proteins, polysaccharides, glycocapsin contents of Piper sarmentosum Roxb. and anti-TB evaluation for bio-enhancing/interaction effects of leaf extract with isoniazid (INH),” Natural Product Radiance, vol. 7, pp. 402–408, 2008.

[236] G. C. Ebi and S. I. Ofoefule, “Antimicrobial activity of Pterocarpus osun stems,” Fitoterapia, vol. 71, no. 4, pp. 433–435, 2000.

[237] T. Askun, E. M. Tekwu, F. Satil, S. Modanioglu, and H. Aydeniz, “Preliminary antimycobacterial study on selected Turkish plants (Lamiaceae) against Mycobacterium tuberculosis and search for some phenolic constituents,” BMC Complementary and Alternative Medicine, vol. 13, no. 1, p. 365, 2013.

[238] M. Bhatnagar, N. Sarkar, N. Gandharv, O. Apang, S. Singh, and S. Ghosal, “Evaluation of antimycobacterial, leishmanicidal and antibacterial activity of three medicinal orchids of Arunachal Pradesh, India,” BMC Complementary and Alternative Medicine, vol. 17, no. 1, p. 379, 2017.

[239] I. T. Babalola, E. A. Adelakun, Y. Wang, and F. O. Shode, “Anti-TB activity of Sterculia setigera Del., leaves (Sterculiae),” J Pharmacogn Phytochem., vol. 1, pp. 17–23, 2012.

[240] D. Saikia, S. Parveen, V. K. Gupta, and S. Luqmam, “Antituberculosis activity of Indian grass KHUS (Vetiveria zizanioides L. Nash),” Complementary Therapies in Medicine, vol. 20, no. 6, pp. 434–436, 2012.

[241] J. Ngezahayo, F. Havayarima, L. Hari, C. Stévigny, and P. Duez, “Medicinal plants used by Burundian traditional healers for the treatment of microbial diseases,” Journal of Ethnopharmacology, vol. 173, pp. 338–351, 2015.

[242] R. J. Case, S. G. Franzblau, Y. Wang, S. H. Cho, D. D. Soejarto, and G. F. Pauli, “Ethnopharmacological evaluation of the informant consensus model on anti-tuberculosis claims among the Manus,” Journal of Ethnopharmacology, vol. 106, no. 1, pp. 82–89, 2006.

[243] S. S. Semenya and A. Maroyi, “Ethnobotanical survey of plants used by Bapedi traditional healers to treat tuberculosis and its opportunistic infections in the Limpopo Province, South Africa,” South African Journal of Botany, vol. 122, pp. 401–421, 2019.

[244] I. O. Lawal, D. S. Grierson, and A. J. Afofolayan, “Phytotherapeutic information on plants used for the treatment of tuberculosis in Eastern Cape Province, South Africa,” Evidence-
based Complementary and Alternative Medicine, vol. 2014, Article ID 735423, 11 pages, 2014.

[245] K. V. Phungula, A. Marston, M. Khamane, P. C. Zietsman, and S. L. Bonnet, "Ethnobotanical survey of plants used for the treatment of tuberculosis by traditional health healers in the Free State Province, South Africa," Planta Medica, vol. 80, no. 16, p. LP75, 2014.

[246] J. N. Nguta, R. Appiah-Opong, A. K. Nyanko, D. Yeboah-Manu, and P. G. A. Addo, "Medicinal plants used to treat TB in Ghana," International Journal of Mycobacteriology, vol. 4, no. 2, pp. 116–123, 2015.

[247] A. Mann, J. O. Amupitan, A. O. Oyewale, J. I. Okogun, and K. Ibrahim, "An ethnobotanical survey of indigenous flora for treating tuberculosis and other respiratory diseases in Niger State, Nigeria," Journal of Phytomedicine and Therapeutics, vol. 12, no. 1, pp. 1–12, 2008.

[248] B. G. Elkington, B. Southavong, K. Sydara et al., "Biological evaluation of plants of Laos used in the treatment of tuberculosis in Lao traditional medicine," Pharmaceutical Biology, vol. 47, no. 1, pp. 26–33, 2009.

[249] S. F. Sabran, M. Mohamed, and M. F. Abu Bakar, "Ethnomedical knowledge of plants used for the treatment of tuberculosis in Johor, Malaysia," Evidence-based Complementary and Alternative Medicine, vol. 2016, Article ID 2850845, 12 pages, 2016.

[250] L. J. McGaw, N. Lall, J. J. M. Meyer, and J. N. Elloff, "The potential of South African plants against Mycobacterium infections," Journal of Ethnopharmacology, vol. 119, no. 3, pp. 482–500, 2008.

[251] J. R. Tabuti, C. B. Kukunda, and P. J. Waako, "Medicinal plants used by traditional medicine practitioners in the treatment of tuberculosis and related ailments in Uganda," Journal of Ethnopharmacology, vol. 127, no. 1, pp. 130–136, 2010.

[252] L. Bunalema, S. Obakiro, J. R. S. Tabuti, and P. Waako, "Knowledge on plants used traditionally in the treatment of tuberculosis in Uganda," Journal of Ethnopharmacology, vol. 151, no. 2, pp. 999–1004, 2014.

[253] S. B. Sanusi, M. F. Abu Bakar, M. Mohamed, S. F. Sabran, and M. M. Mainasara, "Southeast Asian medicinal plants as a potential source of antituberculosis agent," Evidence-based Complementary and Alternative Medicine, vol. 2017, Article ID 7185649, 39 pages, 2017.

[254] A. O. J., O. P., B. T. J., O. N., M. J.J, and K. C., "Indigenous knowledge of communities around Lake Victoria Basin regarding treatment and management of tuberculosis using medicinal plants," International Journal of Medicine and Medical Sciences, vol. 6, no. 1, pp. 16–23, 2014.

[255] M. A. R. Mariita, Efficacy of medicinal plants used by communities around Lake Victoria Region and the Samburu against Mycobacteria, selected bacteria and Candida albicans Kenya, Kenyatta University, 2006.

[256] K. S. Ahmad, A. Hamid, F. Nawaz et al., "Ethnopharmacological studies of indigenous plants in Kel village, Neelum Valley, Azad Kashmir, Pakistan," Journal of Ethnobiology and Ethnomedicine, vol. 13, no. 1, p. 68, 2017.

[257] H. M. Ahmed, "Ethnopharmacobotanical study on the medicinal plants used by herbalists in Sulaymaniyah Province, Kurdistan, Iraq," Journal of Ethnobiology and Ethnomedicine, vol. 12, no. 1, p. 8, 2016.

[258] V. Arya, "A review on anti-tubercular plants," International Journal of PharmTech Research, vol. 3, no. 2, pp. 872–880, 2011.

[259] A. S. Saganuwan, "Some medicinal plants of Arabian Peninsula," Medicinal Plants Research, vol. 4, pp. 766–788, 2010.

[260] Y. Xu, G. M. Dai, S. H. Tang, H. J. Yang, and Z. G. Sun, "Changes of Anti-tuberculosis Herbs formula during past three decades in contrast to ancient ones," Chinese Journal of Integrative Medicine, vol. 27, no. 5, pp. 388–393, 2020.

[261] S. D. Tavhare and K. Nishitewar, "Collection practices of medicinal plants-Vedic, Ayurvedic and modern perspectives," International Journal of Pharmacy and Biological Sciences, vol. 5, pp. 54–61, 2014.

[262] C. Gouws and J. H. Hamman, "Recent developments in our understanding of the implications of traditional African medicine on drug metabolism," Expert Opinion on Drug Metabolism & Toxicology, vol. 14, no. 2, pp. 161–168, 2018.

[263] W. R. Folk, A. Smith, H. Song et al., "Does concurrent use of some botanicals interfere with treatment of tuberculosis?", Neuromolecular Medicine, vol. 18, no. 3, pp. 483–486, 2016.

[264] D. Wilson, K. Goggin, K. Williams et al., "Consumption of Sutherlandia frutescens by HIV-seropositive South African adults: an adaptive double-blind randomized placebo controlled trial," PLoS One, vol. 10, no. 7, article e0128522, 2015.

[265] C. O. Esimone, "Drug-drug and herb-drug interactions—a comment," Jorind, vol. 9, no. 1, pp. 47–59, 2011.

[266] R. K. Zutshi, R. Singh, U. Zutshi, R. K. Johri, and C. K. Atal, "Influence of piperine on rifampicin blood levels in patients of pulmonary tuberculosis," The Journal of the Association of Physicians of India, vol. 33, no. 3, pp. 223-224, 1985.

[267] D. V. Tatiraju, V. B. Bagade, P. J. Karambelkar, V. M. Jadhav, and V. Kadam, "Natural bioenhancers: an overview," Journal of Pharmacognosy and Phytochemistry, vol. 2, no. 3, pp. 55–60, 2013.

[268] M. Kumar-Sarangi, B. Chandra-Joshi, and B. Ritchie, "Natural bioenhancers in drug delivery: an overview," Puerto Rico Health Sciences Journal, vol. 37, no. 1, pp. 12–18, 2018.

[269] Y. S. Jaiswal and L. L. Williams, "A glimpse of Ayurveda - The forgotten history and principles of Indian traditional medicine," Journal of Traditional and Complementary Medicine, vol. 7, no. 1, pp. 50–53, 2017.