Encoding changing country codes for the Semantic Web with ISO 3166 and SKOS

Jakob Voß
Verbundzentrale des GBV (VZG), Platz der Göttinger Sieben 1, 37073 Göttingen, Germany. jakob.voss@gbv.de

Summary. This paper shows how authority files can be encoded for the Semantic Web with the Simple Knowledge Organisation System (SKOS). In particular the application of SKOS for encoding the structure, management, and utilization of country codes as defined in ISO 3166 is demonstrated. The proposed encoding gives a use case for SKOS that includes features that have only been discussed little so far, such as multiple notations, nested concept schemes, changes by versioning.

1 Introduction

1.1 Semantic Web

The Semantic Web is a vision to extend the World Wide Web to a universal, decentralised information space. To join in, information has to be expressed with the Resources Description Framework (RDF) in form of statements about resources. All resources are identified by Uniform Resource Identifiers (URIs) as defined in RFC 3986 [1]. URIs can identify documents, but also real-world objects and abstract concepts. In library and information science controlled vocabularies are used to uniformly identify objects — also across different databases. An example of such controlled vocabulary is ISO 3166 [2] that defines codes and names to identify countries and their subdivisions. To use ISO 3166 in Semantic Web applications for referring to countries, an encoding in RDF is needed. The encoding should include explicit relations between codes in ISO 3166 and define a way how to deal with changes. It is shown how the Simple Knowledge Organisation Systems (SKOS) can be used to encode ISO 3166, and which parts of it need to be redefined to do so. Examples of RDF in this paper are given in Notation 3 (N3) [3].

1.2 ISO 3166 and other systems of country codes

Country codes are short codes that represent countries and dependent areas. The most common code for general applications is ISO 3166, but there are many other country codes for special uses. Country codes are managed by an agency that defines a set of countries, with code, name and partly additional information. Examples
of relevant systems of country codes beside ISO 3166 include codes that are used by the US government as defined by the Federal Information Processing Standard (FIPS), codes of the International Olympic Committee (IOC), codes of the World Meteorological Organization (WMO), and numerical country calling codes assigned by the International Telecommunications Union (ITU). Other systems also identify groups of countries such as the group identifiers of International Standard Book Numbers (ISBN). More country code systems are listed in the English Wikipedia [4]. The best public resource on country codes on the Web is Statoids [5] that includes references and a history of updated codes for many country subdivisions. GeoNames [6] is an open, free-content geographical database that also contains countries and subdivisions. In contrast to ISO 3166 (which GeoNames partly refers to) GeoNames already uses URIs and SKOS to publish its content, but changes are rather uncontrolled because the database can be edited by anyone. Examples of agencies that not define codes but names of countries and subdivisions are the Board on Geographic Names (BGN) in the United States and the Permanent Committee on Geographical Names (StAGN) in Germany.

1.3 ISO 3166

ISO 3166 is an international standard for coding the names of countries and its subdivisions. It consists of three parts. ISO 3166-1 (first published in 1974) defines two letter codes, three letter codes and three digit numeric codes for countries and dependent areas together with their names in English and French. The standard is widely referred to by other standards. For instance ISO 3166-2 is used for most of the country code top-level domains as defined by Internet Assigned Numbers Authority (IANA) and the ICANN Country Code Names Supporting Organisation (ccNSO). ISO 3166-2 (first published 1998) builds on ISO 3166-1 and defines codes for country subdivisions. Figure 1 shows the relations between ISO 3166, ISO 3166-1, and ISO 3166-2. ISO 3166-3 defines four letter codes for countries that merged, split up or changed the main part of their name and their two letter ISO 3166-1 codes since 1974. ISO 3166 is continuously updated via newsletters that are published by the ISO 3166 Maintenance Agency.¹ In November 2006 a second edition of ISO 3166-1 was published [2]. It contains a consolidation all changes to the lists of ISO 3166-1:1997, published in the ISO 3166 Newsletter up to V-12. Meanwhile this edition has been corrected by a technical corrigendum that was published in July 2007 [7].

1.4 SKOS

SKOS was first developed in the SWAD-Europe project (2002-2004). It is a RDF-based standard for representing and sharing thesauri, classifications, taxonomies, subject-heading systems, glossaries, and other controlled vocabularies that are used for subject indexing in traditional Information Retrieval. Examples of such systems are the AGROVOC Thesaurus, the Dewey Decimal Classification, and the dynamic category system of Wikipedia [8]. Encoding controlled vocabularies with SKOS allows them to be passed between computer applications in an interoperable way

¹ http://www.iso.org/iso/country_codes
and to be used in the Semantic Web. Because SKOS does not carry the strict and complex semantics of the Web Ontology Language (OWL), it is also referred to as “Semantic Web light”. At the same time SKOS is compatible with OWL and can be extended with computational semantics for more complex applications. SKOS is currently being revised in the Semantic Web Deployment Working Group of W3C to become a W3C Recommendation in 2008.

2 Related Work

Use cases and application guidelines for SKOS can best be found at the SKOS homepage. Guidelines for using SKOS to encode thesauri and classification schemes been published, while the use to encode authority files and standards like ISO 3166 has not been analysed in detail so far. To a slightly lesser degree this also applies to revision and changes. Although changes are common in living Knowledge Organization Systems, research about this process is rare. The Fourth International Conference of the International Society for Knowledge Organization in 1996 was about changes in general — but the change only dealt about getting existing systems digital, a task that is still not finished and will hopefully bring more interoperability with SKOS. In computer science Johann Eder has done some recent work about modelling and detecting changes in ontologies. He presented an approach to represent changes in ontologies by introducing information about the valid time of concepts. Following this, a changed concept must get a new URI which is compatible to the method presented in this paper. Bakillah et al. propose a semantic similarity model for multidimensional databases with different geospatial and temporal data – however countries are more than simple, undisputed geographic objects. On the contrary is is unclear whether results from ontology evolution can be applied to knowledge organization systems. Noy and Klein argue that ontology versioning is different from schema evolution in a database – the same applies to ontology versioning compared to changes in knowledge organization systems because the latter are mainly designed for subject indexing and retrieval without strict semantics and reasoning.

3 Encoding ISO 3166 in SKOS

3.1 Basic elements

The basic elements of SKOS are concepts (skos:Concept). A concept in SKOS is a resource (identified by an URI) that can be used for subject indexing. To state that a resource is indexed with a specific concept, SKOS provides the property skos:subject. The concepts of ISO 3166 are countries and their subdivisions. Hierarchical relations between concepts are encoded with skos:broader and skos:narrower. These relationships allow applications to retrieve resources that are index with a more specific concept when searching for a general term. For representation and usage by humans, concepts are referred to by labels (names).
SKOS provides the labelling properties `skos:prefLabel` and `skos:altLabel`. A concept should only have one `skos:prefLabel` at least per language – as shown below this causes problems due to the definition of 'language'. The following example encodes basic parts of ISO 3166 for two concepts: France and the subordinated region Bretagne are encoded together with their English names and their ISO codes FR (‘France’) and FR-E (‘Bretagne’). Unless the ISO 3166 Maintenance Agency defines an official URI schema, unspecified namespace prefixes like `iso3166:` are used:

```xml
iso3166:FR a skos:Concept ;
   skos:prefLabel "France"@en ;
   skos:prefLabel "FR"@zxx ;
   skos:narrower iso3166:FR-E .

iso3166:FR-E a skos:Concept ;
   skos:prefLabel "Bretagne"@en ;
   skos:prefLabel "FR-E"@zxx ;
   skos:broader iso3166:FR-E .
```

3.2 Notations

The main labels of ISO 3166 are not names but country codes. Such codes are also known as notations in other knowledge organisation systems. The final encoding method of notations in SKOS is still an open issue. The example above uses ISO 639-2 language code `zxx` for ‘no linguistic content’ as proposed in [12]. This solution has some drawbacks: First the code was introduced the IANA language subtag registry in 2006, so not every RDF application may already be aware of it. Second the SKOS specification requires the `skos:prefLabel` property to be unique per concept and language, so you can only specify one main notation per concept. The problem is caused by the special treatment of languages in RDF which is a failure by design. To bypass the limitation, notations could either be implemented by additional labeling properties or by private language tags. If you use additional labeling properties for notations, SKOS must provide a way to state that a given property defines a notation. This could be done with a new relation `skos:notationProperty`:

```xml
iso3166: a skos:ConceptScheme ;
   skos:notationProperty iso3166:twoLetterCode ;
   skos:notationProperty iso3166:threeLetterCode ;
   skos:notationProperty iso3166:numericalCode .

iso3166:FR a skos:Concept ;
   skos:prefLabel "France"@en ;
   iso3166:twoLetterCode "FR" ;
   iso3166:threeLetterCode "FRA" ;
   iso3166:numericalCode "250" .
```

3 Languages in RDF are not resources but absolute entities outside of RDF.
With RFC 4646 [19] you can now define private language tags in RDF. These tags are separated with the reserved single-character subtag ‘x’. This way you could define the new language tag \texttt{x-notation} for notations:

\begin{verbatim}
iso3166:FR a skos:Concept ;
 skos:prefLabel "France"@en ;
 skos:prefLabel "FR@x-notation-twoletter" ;
 skos:prefLabel "FRA@x-notation-threeletter" ;
 skos:prefLabel "250@x-notation-numerical" .
\end{verbatim}

Another advantage of private language codes is that you can use them at different levels, for instance \texttt{de-x-notation} for a German notation. No matter which solution will be used for encoding notations in SKOS, it has to be defined clearly in the SKOS standard or notations will not be usable among different applications.

3.3 Grouping

ISO 3166 is does not only consist of country codes but it also has an internal structure. First the three parts ISO 3166-1, ISO 3166-2, and ISO 3166-3 are concept schemes of their own but their concepts refer to each other. Second the country subdivisions as defined in ISO 3166-2 can be grouped and build upon another. For instance France is divided in 100 departments which are grouped into 22 metropolitan and four overseas regions, and Canada is disjointedly composed of 10 provinces and 3 territories. Figure 1 shows the structure of ISO 3166 with an extract of the definitions for France.

![Fig. 1. Internal structure and grouping of ISO 3166](image)

To encode groupings of concepts, SKOS provides the classes \texttt{skos:Collection} and \texttt{skos:ConceptScheme} and the properties \texttt{skos:member} and \texttt{skos:inScheme}. The current standard only allows \texttt{skos:Collection} to be nested. This is problematic for
vocabularies like ISO 3166, that nested parts of which are also used independently. An easy solution is to make skos:ConceptScheme a subclass of skos:Collection. This way concept schemes can be nested via skos:member (figure 2).

``` RDF
iso3166: a skos:ConceptScheme ;
    skos:member iso3166-1: ;
    skos:member iso3166-2: .

iso3166-1: a skos:ConceptScheme .
iso3166-2: a skos:ConceptScheme ;
    skos:member iso3166-2:FR .

iso3166-2:FR a skos:ConceptScheme ;
    skos:member iso3166-2:FR-regions ;
    skos:member iso3166-2:FR-departements .

iso3166-2:FR-regions a skos:Collection ;
    skos:member iso3166:FR-E .

iso3166-2:FR-departements a skos:Collection ;
    skos:member iso3166:FR-35 ;
    skos:member iso3166:FR-56 .
```

Fig. 2. Proposed encoding of figure 1 (without concepts)

3.4 Changes and Versioning

SKOS provides concept mapping relations to merge and combine identifiers from different concept schemes. A first working draft of the SKOS mapping vocabulary was published in 2004 [20]. It includes properties for concept equivalence (skos:exactMatch), specialization (skos:narrowMatch), and concept generalization (skos:broadMatch). In practice, full one-to-one mappings between concept schemes are rare because of differences in definition, focus, politics, and update cycles. In the following it will be shown how mapping relations can be used to encode changes and versioning in ISO 3166. Mappings between different systems of country codes remain a topic to be analyzed in more detail. A promising candidate to start with for mapping to ISO 3166 would be the GeoNames database which already uses SKOS.[6]

Nationalists might have a different opinion, but countries are no stable entities: Countries come into existence, they can split and merge, change their names and area, or even disappear. To keep track of changes and the current situation, every modification in a schema of country codes needs to be documented for further lookup. The ISO 3166 Maintenance Agency uses newsletters and editions to publish updates. For Semantic Web applications these updates need to be explicitly specified in RDF.

To develop a consistent encoding of changes, you must first consider all possible types of updates and paradigms of versioning. Types of changes are:
1. A new country arises
2. A country disappears
3. A country is split into two or more countries
4. Two or more countries unite (join)
5. A country remains but its identity changes

Type 1 and 2 are easy to model if there is no predecessor/successor but nowadays countries mostly arise from other countries (type 3 to 5). Easy examples of splits (type 3) are the division of Czechoslovakia (ISO code CS) into the Czech Republic (CZ) and Slovakia (SK) in 1993 and the division of Serbia and Montenegro (CS, until 2003 named Yugoslavia with code YU) into Serbia (RS) and Montenegro (ME) in 2006. An example of a simple join (type 4) is the German reunification in 1990. Other changes such as large reforms of country subdivisions and partly splits are more complex. They mostly imply that the identity of all involved entities change. To distinguish countries before and after a change, it is crucial to assigned a new URI for each version. The examples of Yugoslavia (which underwent several splits between 1991 and 2006) and the country code CS show that also controlled codes and names can be ambiguous if date is unknown and versioning is not respected.

You should keep in mind that changes in the basic structure of countries are political and can be highly controversial. This means that the existence and nature of a change depends on who and when you ask. Encoding schemes of country codes can only give you guidance how to consistently encode changes for reasoned retrieval but you first have to agree upon what happened with the involved entities.

The encoding of changes in ISO 3166 in SKOS will be shown with the example of Canada. Canada, the world second largest country in total area, is composed of 10 provinces and 3 territories. The provinces are independent states with own jurisdiction. In March 31, 1949 Newfoundland entered the Canadian confederation as the 10th province. The territories cover the parts of Canada that do not belong to provinces. They are created by the federal government and have less authority. The North-Western Territory was formerly much larger then today. It contained parts of current provinces and the area that now form the territories Yukon (since 1898) and Nunavut (1999). Between 1998 and 2002 the ISO 3166-2 entry of Canada has been changed three times. Figure 3 contains an overview of the changes:

- Newsletter I-1 (2000-06-21) Addition of 1 new territory: The new territory Nunavut split up from Northwest Territories.
- Newsletter I-2 (2002-05-21) Correction of name form of CA-NF: The name 'Newfoundland' changed to 'Newfoundland and Labrador'.
- Newsletter I-4 (2002-12-10) Change of code element of Newfoundland and Labrador: The country code CA-NF changed to CA-NL.

To model these changes, unique URIs must be defined for each version – at least when the definition of a country or country subdivision changed. For easy detection of the valid URI for a given date or newsletter, a directory structure of URLs with namespaces for each newsletter should be provided by the ISO 3166 Maintenance Agency. Changing country codes are then mapped to each other with the SKOS Mapping vocabulary. For codes that did not change with a newsletter, you could either provide new URIs and connect unmodified concepts with the owl:sameAs property from the OWL Web Ontology Language or just direct to the previous URI with a HTTP 303 redirect. Support of any method in SKOS applications can be
Fig. 3. Changes of Canada in ISO 3166-2

ensured by best practice rules in the final SKOS standards. Figure 3 contains an encoding of the changes of Canada in ISO 3166 as shown in figure 3. The change of Newfoundland to Newfoundland and Labrador in newsletter I-2 and I-4 is encoded by an exact mapping between sequent versions (skos:exactMatch) while the split of Northwest Territories in newsletter I-1 is encoded by a skos:narrowMatch. Unchanged country codes are connected with owl:sameAs.

```xml
@prefix iso3166-2-v0: <http://iso.org/iso3166/2/first/> .
@prefix iso3166-2-v1: <http://iso.org/iso3166/2/newsletter-1/> .
@prefix iso3166-2-v2: <http://iso.org/iso3166/2/newsletter-2/> .
@prefix iso3166-2-v3: <http://iso.org/iso3166/2/newsletter-3/> .
@prefix iso3166-2-v4: <http://iso.org/iso3166/2/newsletter-4/> .
@prefix iso3166-2-v4: <http://iso.org/iso3166/2/current/> .
iso3166-2-v0:CA-NF owl:sameAs iso3166-2-v1:CA-NF .
iso3166-2-v0:CA-NT skos:narrowMatch iso3166-2-v1:CA-NT .
iso3166-2-v0:CA-NT skos:narrowMatch iso3166-2-v1:CA-NU .
iso3166-2-v1:CA-NF skos:exactMatch iso3166-2-v2:CA-NF .
iso3166-2-v1:CA-NT owl:sameAs iso3166-2-v2:CA-NT .
iso3166-2-v1:CA-NU owl:sameAs iso3166-2-v2:CA-NU .
iso3166-2-v2:CA-NF owl:sameAs iso3166-2-v3:CA-NF .
iso3166-2-v2:CA-NT owl:sameAs iso3166-2-v3:CA-NT .
iso3166-2-v2:CA-NU owl:sameAs iso3166-2-v3:CA-NU .
iso3166-2-v3:CA-NF skos:exactMatch iso3166-2-v4:CA-NL .
iso3166-2-v3:CA-NT owl:sameAs iso3166-2-v4:CA-NT .
iso3166-2-v3:CA-NU owl:sameAs iso3166-2-v4:CA-NU .
```

Fig. 4. Encoding of changes of Canada in ISO 3166-2
4 Summary and Conclusions

With the Simple Knowledge Organisation System more and more thesauri, classifications, subject-heading systems, and other controlled vocabularies can be integrated into the Semantic Web. This will increase interoperability among Knowledge Organisation Systems which are already used and maintained for a long time and in many applications. One kind of Knowledge Organisation Systems are Country codes, a common type of authority files. This paper shows how in particular country codes from ISO 3166 can be encoded in RDF with SKOS. ISO 3166 and its parts are widely used and referred to by other applications and standards that could benefit from such a common encoding. ISO 3166 includes some particular features of controlled vocabularies that have not been discussed in detail so far in the context of SKOS.

The hereby proposed encoding contains support of country names and codes (notations), internal structure and nested concept schemes (grouping), and versioning of changes. To explicitly support notations a notation property or a private language subtag (x-notatıon) has to be defined. Nested concept schemes can easily be supported by making skos:ConceptScheme a subclass of skos:Collection. Finally you can track changes by publishing new URIs for the concepts of each version of a concept scheme and interlink them with owl:sameAs and SKOS mapping relations.

To get a reliable RDF representation of ISO 3166, that other Semantic Web applications can build upon, the upcoming W3C Recommendation of SKOS must first be finalized with support of notations, grouping concept schemes and versioning. Second an URL scheme for country codes of ISO 3166 has to be defined by ISO, and third the ISO 3166 Maintenance Agency must regularly and freely publish versioned ISO 3166 data in SKOS. A public, official, RDF-representation of ISO 3166 will allow heterogeneous data on the web to be linked for homogeneous, semantic retrieval via aggregating resources. For instance statistics by the United Nations can be combined with encyclopaedic information by Wikipedia and visualised with geographical data by GeoNames. With controlled versioning and linking to specific versions you can also access historic information without having to update all involved datasets. Geographic data from GeoNames could be used to select a country or country subdivision by browsing on a map. Linked with ISO 3166 in SKOS then relevant past countries could be determined to extend searches in databases with other country codes. In this way ISO 3166 and other authority files will be the corner stones of connecting distributed data to a universal, decentralised information space.
References

1. Berners-Lee, T., Fielding, R., Masinter, L.: Uniform Resource Identifier (URI): Generic Syntax. RFC 3986 (January 2005)
2. International Organization for Standardization: Codes for the representation of names of countries and their subdivisions — Part 1: Country codes. ISO3166-1-2006 (November 2006)
3. Berners-Lee, T.: Notation3 (N3) A readable RDF syntax
4. Wikipedia: Country code. http://en.wikipedia.org/wiki/index.php?oldid=154259104 (August 2007)
5. Law, C.: Statoids. http://www.statoids.com (2007) [visited 2008-01-20].
6. Wick, M.: Geonames. http://www.geonames.org (2007) [visited 2008-01-20].
7. International Organization for Standardization: ISO 3166-1 Technical Corrigendum 1. ISO3166-1-2006/Cor 1:2007 (July 2007)
8. Voss, J.: Collaborative thesaurus tagging the Wikipedia way. http://arxiv.org/abs/cs/0604036v2 (April 2006)
9. Sanchez-Alonso, S., Garcia-Barriocanal, E.: Making use of upper ontologies to foster interoperability between SKOS concept schemes. Online Information Review 30(3) (May 2006) 263–277
10. van Assem, M., Malais, V., Miles, A., Schreiber, G.: A Method to Convert Thesauri to SKOS. The Semantic Web: Research and Applications 95–109
11. Miles, A.: Quick Guide to Publishing a Thesaurus on the Semantic Web. http://www.w3.org/TR/swbp-thesaurus-pubguide (May 2005)
12. Voss, J.: Quick Guide to Publishing a Classification Scheme on the Semantic Web. http://esw.w3.org/topic/SkosDev/ClassificationPubGuide (September 2006) [last changed 2006-09-11 13:08:41].
13. Knowledge organization and change: Proceedings of the Fourth International ISKO Conference, Indeks (1996)
14. Eder, J., Koncilia, C.: Modelling Changes in Ontologies. Lecture Notes in Computer Science 3292 (2004) 662–673
15. Eder, J., Wiggisser, K.: Detecting Changes in Ontologies via DAG Comparison. Lecture Notes in Computer Science 4495 (2007) 21–35
16. Bakillah, Mostafavi, Bédard: A Semantic Similarity Model for Mapping Between Evolving Geospatial Data Cubes. On the Move to Meaningful Internet Systems 2006: OTM 2006 Workshops (2006)
17. Noy, N., Klein, M.: Ontology Evolution: Not the Same as Schema Evolution. Knowledge and Information Systems (2003)
18. Miles, A.: Retrieval and the Semantic Web. http://isegserv.itd.rl.ac.uk/retrieval/ (September 2006)
19. Phillips, Davis: Tags for the Identification of Languages. RFC 4646 (September 2006)
20. Miles, A., Brickley, D.: SKOS Mapping Vocabulary Specification. http://www.w3.org/2004/02/skos/mapping/spec/ (November 2004)