Gardenia jasminoides attenuates hepatocellular injury and fibrosis in bile duct-ligated rats and human hepatic stellate cells

Ying-Hua Chen, Tian Lan, Jing Li, Chun-Hui Qiu, Teng Wu, Hong-Ju Gou, Min-Qiang Lu

Abstract

AIM: To investigate the anti-hepatofibrotic effects of *Gardenia jasminoides* in liver fibrosis.

METHODS: Male Sprague-Dawley rats underwent common bile duct ligation (BDL) for 14 d and were treated with *Gardenia jasminoides* by gavage. The effects of *Gardenia jasminoides* on liver fibrosis and the detailed molecular mechanisms were also assessed in human hepatic stellate cells (LX-2) in vitro.

RESULTS: Treatment with *Gardenia jasminoides* decreased serum alanine aminotransferase (BDL vs BDL + 100 mg/kg *Gardenia jasminoides*, 146.6 ± 15 U/L vs 77 ± 6.5 U/L, *P* = 0.0007) and aspartate aminotransferase (BDL vs BDL + 100 mg/kg *Gardenia jasminoides*, 188 ± 35.2 U/L vs 128 ± 19 U/L, *P* = 0.005) as well as hydroxyproline (BDL vs BDL + 100 mg/kg *Gardenia jasminoides*, 438 ± 40.2 μg/g liver tissue vs 228 ± 10.3 μg/g liver tissue, *P* = 0.004) after BDL. Furthermore, *Gardenia jasminoides* significantly reduced liver mRNA and/or protein expression of transforming growth factor-β1 (TGF-β1), collagen type I (Col I) and α-smooth muscle actin (α-SMA). *Gardenia jasminoides* significantly suppressed the upregulation of TGF-β1, Col I and α-SMA in LX-2 exposed to recombinant TGF-β1. Moreover, *Gardenia jasminoides* inhibited TGF-β1-induced Smad2 phosphorylation in LX-2 cells.

CONCLUSION: *Gardenia jasminoides* exerts antifibrotic effects in the liver fibrosis and may represent a novel antifibrotic agent.
bile duct-ligated rats and human hepatic stellate cells. World J Gastroenterol 2012; 18(48): 7158-7165. Available from: URL: http://www.wjgnet.com/1007-9327/full/v18/i48/7158.htm DOI: http://dx.doi.org/10.3748/wjg.v18.i48.7158

INTRODUCTION

Chronic liver injury causes the accumulation of extracellular matrix (ECM) such as α-smooth muscle actin (α-SMA) in the liver and subsequently contributes to liver fibrosis and later cirrhosis.[1-6] This eventually leads to hepatic dysfunction, portal hypertension, and hepatocellular carcinoma (HCC).[7-9]. Hepatic stellate cells (HSC) are the principal liver cells that promote liver fibrosis.[10-12]. Upon activation by various stimuli such as transforming growth factor (TGF)-β1, HSC transdifferentiate into myofibroblasts and then produce excessive ECM proteins, resulting in liver fibrosis.[13-15]. Strategies aimed at disrupting TGF-β1 synthesis and/or signaling pathways markedly ameliorates liver fibrosis in an experimental model.[16].

Herbal medicines have been frequently investigated for their hepatoprotective and antifibrotic effects in both humans[17] and animal models.[18]. A number of studies have shown that administration of Chinese herbs lead to a decrease in hepatic TGF-β1 expression and severity of fibrosis in rats.[19-20]. Yin-Chen-Hao-Tang (YCHT) decoctions have long been used as antiinflammatory, antipyretic, choleric and diuretic agents for liver disorders and jaundice. Several studies provide clinical evidence of its effectiveness in the treatment of various liver diseases. YCHT is an aqueous extract derived from three herbs: Artemisia capillaries Thunb (Herba Artemisiae Capillaris, Yin-zhi) and Rheum officinale Baill (Emodin, Da-huang) with a ratio of 4:3:1 in weight. YCHT was reported to suppress liver fibrosis in rats induced by a choline-deficient diet.[21]. Long-term administration of YCHT in rats ameliorated hydrophilic bile acids-induced hepatic injury presumably by reducing oxidative stress and the degree of hepatic fibrosis.[22]. These studies have indicated that YCHT as a promising therapeutic agent in chronic liver disease. Recent studies showed that Artemisia capillaries and Emodin (the main compound of Rheum officinale) are well-known herbal hepatotherapeutic drugs for the treatment of liver fibrosis.[23-25]. However, whether Gardenia jasminoides has an anti-fibrotic effect on liver fibrosis and the involved detailed mechanism has not been fully understood yet.

The aim of the current study is to investigate the beneficial effects of Gardenia jasminoides on liver fibrosis using the bile duct ligation (BDL) rat model in vivo and TGF-β1-stimulated HSCs in vitro.

MATERIALS AND METHODS

Materials

Recombinant human TGF-β1 was obtained from R and D (Minneapolis, MN, United States). α-SMA and TGF-β1 antibodies were purchased from Abcam (Cambridge, MA, United States). Phospho-Smad2 and Smad2 antibodies were obtained from Cell Signaling Technology (Boston, MA, United States). α-tubulin antibody was purchased from Sigma-Aldrich (St. Louis, MO, United States). DMEM and fetal bovine serum (FBS), penicillin/streptomycin and trypsin were obtained from Invitrogen (Carsbad, CA, United States). Gardenia jasminoides standard (purity > 99%) was purchased from the Institute of Chinese Pharmaceutical and Biological Products.

Preparation of Gardenia jasminoides

Gardenia jasminoides was prepared as described previously[22] by boiling the dried Gardenia jasminoides fruits with distilled water for 5 h. The extract was filtered, freeze-dried, and kept at 4 °C. The yield of water extract of Gardenia jasminoides was 8.33% (w/w). The dried extract was dissolved in distilled water before use.

Animal experiments

All animal experimental protocols were approved by the local animal care and use committee according to criteria outlined in Guide for the Care and Use of Laboratory Animals from the National Academy of Sciences (National Institutes of Health publication 86-23, 1985 revision). For experiments with BDL, rats were randomly divided into five groups (n = 8). Each day, four animals underwent BDL, and a sham-operated animal was used as a healthy control. Twenty-four hours after surgery, the four BDL animals were randomly assigned to receive 14 d of daily gavage consisting of ddH2O (the treatment control and vehicle), while treatment groups received 25, 50 and 100 mg/kg Gardenia jasminoides (suspended in ddH2O) by gavage. The sham controls also received ddH2O by gavage. At the end of experiment, rats were anesthetized, serum was collected and livers were removed. Some portions of liver tissue were fixed in 10% formalin or embedded in paraffin specimen medium. Others were snap frozen in liquid nitrogen and stored at -80 °C until use.

Serum biochemistry and liver histology

Serum alanine aminotransferase (ALT), and aspartate aminotransferase (AST) were analyzed with kits from Thermo Fisher Scientific (United States). Formalin-fixed tissue was embedded in paraffin, and sections of liver (4 μm) were stained with hematoxylin and eosin (HE) to evaluate the morphological changes and stage of liver fibrosis according to the Ishak Stage Score. The liver hydroxyproline content was measured as described[26].

Quantitative real-time polymerase chain reaction

Total RNA was extracted using TRIzol™ Reagent (Invitrogen, United States) according to the manufacturer’s instructions. Total RNA (1 μg) was reverse transcribed, followed by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) using the Bio-Rad

| WJG | www.wjgnet.com | 7159 | December 28, 2012 | Volume 18 | Issue 48 |
Treatment with Gardenia jasminoides attenuates TGF-β1-induced HSC activation

Because Gardenia jasminoides reduced markers of hepatic fibrosis in BDL rats, we next examined whether this therapy has similar antifibrotic effects in a human HSC line (LX-2 cells). The mRNA levels of TGF-β1 and Col I were significantly increased in response to recombinant TGF-β1 for 24 h. However, Gardenia jasminoides downregulated the mRNA levels of TGF-β1 and Col I in LX-2 exposed to TGF-β1 in a dose-dependent manner (Figure 3A and B). The protein expression of α-SMA as detected by Western blotting was also reduced in LX-2 cells after Gardenia jasminoides treatment (Figure 3C). Together, these results indicate that Gardenia jasminoides exerts its antifibrotic effects in the liver by repressing TGF-β1, Col I and α-SMA expression.
Gardenia jasminoides reduces Smad2 phosphorylation in TGF-β1-stimulated LX-2 cells

Phosphorylated Smad2 plays an important role in the activation of TGF-β1-induced Col I and α-SMA expression.[29-31]. To determine whether Gardenia jasminoides attenuated the expression of Col I and α-SMA, we treated human hepatocytes with different concentrations of Gardenia jasminoides. Western blotting indicated that Gardenia jasminoides significantly reduced Smad2 phosphorylation. These data are consistent with the results of our study. Furthermore, the expression of Col I and α-SMA was markedly reduced by Gardenia jasminoides. These results suggest that Gardenia jasminoides reduces Smad2 phosphorylation in human hepatocytes.

DISCUSSION

Liver fibrosis is a key risk factor for the development of cirrhosis and chronic liver failure. Activation of HSCs is a crucial component of this process.[11,12]. In the current study, we evaluated the therapeutic effects of Gardenia jasminoides on both in vivo and in vitro human hepatocytes.

Chronic cholestasis leads to liver necrosis, fibrosis, and cirrhosis, partly due to an accumulation of toxic bile acids in the liver.[32]. Therapy with Gardenia jasminoides is based on the hepatoprotective properties of YCHT decoctions containing Gardenia jasminoides.[33]. Because previous studies have demonstrated that the other two ingredients, Artemisia capillaris Thunb and Rheum officinale Baill, have hepatoprotective properties, we hypothesized that Gardenia jasminoides might also improve hepatic function in patients with cholestatic liver diseases. As seen in this report, this hypothesis is supported by our experimental results. Biochemical and gene expression analyses demonstrated that elevated markers of liver dysfunction such as ALT and AST were reduced by Gardenia jasminoides.

Continuous accumulation of the ECM causes hepatofibrosis. Collagen is the main component of the extracellular matrix in fibrotic tissue.[3]. Hydroxyproline, a major component of collagen, was used as an indicator for evaluation of the degree of liver fibrosis.[33]. Gardenia jasminoides treatment (50 and 100 mg/kg) significantly attenuated collagen accumulation as evidenced by the inhibition of BDL-elevated hydroxyproline concentrations and the proportion of fibrotic tissue.

It is well-known that HSCs activation plays a pivotal role in the process of liver fibrogenesis. As seen in this report, this hypothesis is supported by our experimental results. Biochemical and gene expression analyses demonstrated that elevated markers of liver dysfunction such as ALT and AST were reduced by Gardenia jasminoides.

In contrast to vehicle, Western blotting indicated that Gardenia jasminoides treatment significantly decreased the expression of Col I and α-SMA. These data are consistent with the results of our study. Together, these results provide compelling evidence supporting the beneficial effects of Gardenia jasminoides on the rat model of cholestasis and human liver cells.

Further analysis of this antifibrotic effect suggests that Gardenia jasminoides suppressed the expression of Col I and α-SMA via the TGF-β1/Smad2 signaling pathway.

Figure 1 Gardenia jasminoides markedly improved the histology in bile duct ligation rats. Representative pictures of hematoxylin and eosin staining (magnification ×200) from rats subjected to bile duct ligation (BDL) or sham-operated rats treated with vehicle or Gardenia jasminoides. A: Sham; B: BDL + vehicle; C: BDL + Gardenia jasminoides (25 mg/kg per day); D: BDL + Gardenia jasminoides (50 mg/kg per day); E: BDL + Gardenia jasminoides (100 mg/kg per day); F: Scores of double-blinded assessments of liver histology with respect to fibrosis. *P < 0.01 vs sham; †P < 0.05, ‡P < 0.01 vs BDL + vehicle (n = 8).
pathway. HSCs are the major target of TGF-β1, which helps to stimulate the transdifferentiation of HSCs into fibrogenic myofibroblasts[36]. The production of TGF-β1 is upregulated in myofibroblasts and proliferating bile duct epithelia after BDL, which further contribute to the fibrogenic process in an autocrine/paracrine manner[37]. Downstream signaling in HSCs involves signaling transcription factors such as Smad2. In addition, TGF-β1 is

Figure 2 Biochemical and fibrotic gene expression in bile duct ligation rats. Gardenia jasminoides significantly improved liver function and reduced the expression of liver fibrosis marker genes from rats submitted to bile duct ligation (BDL) or sham-operated rats treated with vehicle or Gardenia jasminoides. A: Serum levels of alanine aminotransferase (ALT); B: Serum levels of aspartate aminotransferase (AST); C: Liver hydroxyproline content; D, E: Liver mRNA expression of transforming growth factor-β1 (TGF-β1) (D) and collagen type Ⅰ (Col Ⅰ) (E); F: Liver protein expression of α-smooth muscle actin (α-SMA) detected by Western blotting. P < 0.01 vs sham; P < 0.05, P < 0.01 vs BDL + vehicle (n = 8).

Chen YH et al. Gardenia jasminoides prevents against liver fibrosis
thought to mediate the activation of Smad2 through its phosphorylation. Here, we found that Gardenia jasminoides reduced Smad2 phosphorylation in a dose-dependent manner using LX-2 cells. These findings are consistent with a significant antifibrotic effect of Gardenia jasminoides mediated through the inhibition of the TGF-β1/Smad2 pathway. How Gardenia jasminoides represses Smad2 phosphorylation remains to be determined.

In summary, we demonstrate that Gardenia jasminoides improves the therapeutic response in a rat model of cholestasis and in vitro in human hepatic cells. These findings suggest that Gardenia jasminoides might be beneficial in patients with chronic cholestatic disorders. To further elucidate the detailed mechanisms, additional comparative studies will be needed to investigate the hepatoprotective effect of Gardenia jasminoides on other liver disease models as well as patients with liver fibrosis.

COMMENTS

Background

Liver fibrosis is a major cause of morbidity and mortality worldwide. However, there are only a few effective antifibrotic therapies for patients with liver fibrosis. Yin-Chen-Hao-Tang (YCHT) decoctions has long been used as antiinflammatory, antipyretic, choleretic and diuretic agent for liver disorders and jaundice and several studies provide clinical evidence for its effectiveness in the treatment of various liver disease. However, whether Gardenia jasminoides, one of the
components of YCHT decongestions, has anti-fibrotic effect on liver fibrosis and the involved detailed mechanism has not been fully understood yet. In the present study, the anti-hepatofibrotic effects of Gardenia jasminoides were evaluated.

Research frontiers

Strategies aimed at disrupting transforming growth factor-β1 (TGF-β1) synthesis and/or signaling pathways markedly ameliorate liver fibrosis in experimental model. Inhibition of TGF-β1 signaling pathway may be related to the protective effects of Gardenia jasminoides on the bile duct ligation (BDL) rat model in vivo and TGF-β1-stimulated HSCs in vitro.

Innovations and breakthroughs

Treatment with Gardenia jasminoides decreased serum alanine aminotransferase and aspartate aminotransferase as well as hydroxyproline after BDL. Protective mechanisms of Gardenia jasminoides are associated with reduced hepatic mRNA and/or protein expression of TGF-β1, collagen type 1 (Col 1) and α-smooth muscle actin (α-SMA). Gardenia jasminoides significantly suppressed the expression of TGF-β1, Col 1, and α-SMA in hepatic stellate cells exposed to recombinant TGF-β1. Moreover, Gardenia jasminoides inhibited TGF-β1-induced Smad2 phosphorylation in hepatic stellate cells.

Applications

By understanding the effects and mechanism of Gardenia jasminoides on liver fibrosis, the present study may present a promising strategy in the treatment of patients with liver fibrosis.

Peer review

The present manuscript describes the effect of Gardenia jasminoides extract (‘YCHT’) on the process of fibrosis that develops in rat liver after ligation of the common bile duct. This Chinese herbal medicine reduced the levels of serum transaminases, hydroxyproline, TGF-β1 (and its mRNA), collagen type 1, and α-smooth muscle actin. The treatment also decreases the TGF-β1-induced Smad2 phosphorylation in a human stellate cell line LX-2. This study clearly demonstrates that treatment of fibrosis, even by classical medical treatment has an effect.

REFERENCES

1. Bataller R, Brenner DA. Liver fibrosis. J Clin Invest 2005; 115: 209-218
2. Osterreicher CH, Taura K, De Minicis S, Seki E, Penz-Osterreicher M, Kodama Y, Kluwe J, Schuster M, Oudit GY, Penninger JM, Brenner DA. Angiotensin-converting-enzyme 2 inhibits liver fibrosis in mice. Hepatology 2009; 50: 929-938
3. Friedman SL. Mechanisms of hepatic fibrogenesis. Gastroenterology 2008; 134: 1655-1669
4. Seki E, de Minicis S, Inokuchi S, Taura K, Miya K, van Rooij LN, Mansego ML, Ivorra C, Dominguez M, Conde L, Millán C, Mari M, Colmenero J, Lozano JJ, James P, Vidal J, Forns X, Arroyo V, Caballeria J, Ginés P, Bataller R, Ghelini attenuates hepatoportal injury and liver fibrogenesis in rodents and influences fibrosis progression in humans. Hepatology 2010; 51: 974-985
5. Gressner AM, Weiskirchen R. Modern pathogenetic concepts of liver fibrosis suggest stellate cells and TGF-beta as major players and therapeutic targets. J Cell Mol Med 2010; 14: 76-99
6. Mannaerts I, Ruts A, Geerts A, Peeters D, Riches G, Mann J, Millward-Sadler H, Mann DA. JunD is a pro-fibrogenic transcription factor regulated by Jun N-terminal kinase-independent phosphorylation. J Hepatol 2008; 49: 134-142
7. Matsuzaki K, Murata M, Yoshida K, Sekimoto G, Uemura Y, Kihara Y, Kimura T, Terai S, Murata M, Yoshida K, Sekimoto G, Uemura Y, Chen M, Palacino JJ, Zhou L, Li CC, Geng YT, Zhou L, Li CC. Mechanisms of hepatic fibrogenesis. J Pharm Pharmacol 2009; 61: 953-960
8. Jeong WI, Park O, Radaeva S, Gao B. STAT1 inhibits liver fibrosis by inhibiting stellate cell proliferation and stimulating NK cell cytotoxicity. Hepatology 2006; 44: 1441-1451
9. Lee TY, Wang GJ, Chiu JH, Lin HC. Long-term administration of Salvia miltiorrhiza ameliorates carbon tetrachloride-induced hepatic fibrosis in rats. J Hepatol 1998; 29: 760-771
10. Lin HJ, Chen YJ, Lin CF, Kao ST, Cheng JC, Chen HL, Chen CM. Hepatoprotective effects of Yi Guan Jian, an herbal medicine, in rats with dimethylsulfoxide-induced liver fibrosis. J Ethnopharmacol 2011; 134: 953-960
11. Lin HJ, Chen YJ, Lin CF, Kao ST, Cheng JC, Chen HL, Chen CM. Liver fibrosis. J Hepatol 2005; 43: 1000-1009
12. Soroka CJ, Chen W, Faintuch J, Choi SS, You L, Soroka CJ, Chen W, Faintuch J, Choi SS, You L. Human hepatic stellate cells express and stimulate immune cell activation. J Hepatol 2008; 49: 734-742
13. Lin HJ, Chen YJ, Lin CF, Kao ST, Cheng JC, Chen HL, Chen CM. Long-term administration of Salvia miltiorrhiza ameliorates carbon tetrachloride-induced hepatic fibrosis in rats. J Pharm Pharmacol 2003; 55: 1561-1568
14. Sakaeda I, Tsuchiya M, Kawaguchi K, Kimura T, Terai S, Okita K. Herbal medicine Inchi-in-koto (TT-135) prevents against liver fibrosis induced by a choline-deficient L-amino acid-defined diet. J Ethnopharmacol 2009; 125: 1215-1218
15. Lee TY, Chang HH, Chen JH, Hsueh ML, Kuo JJ. Herb medicine Yin-Chen-Hao-Tang ameliorates hepatic fibrosis in bile duct ligation rats. J Ethnopharmacol 2007; 109: 318-324
16. Wang JH, Choi MK, Shin JW, Hwang SY, Son CG. Antifibrotic effects of Artemisia capillaris and Artemisia twaymomo- gia in a carbon tetrachloride-induced hepatic fibrosis animal model. J Ethnopharmacol 2012; 140: 179-185
17. Dong MX, Liu JC, Niu YC. Emodin protects rat liver from CCl4-induced liver fibrosis and enzyme-altered lesions in rat liver cirrhosis induced by a choline-deficient L-amino acid-defined diet. J Hepatol 2003; 38: 762-769
18. Lee TY, Chang HH, Chen JH, Hsueh ML, Kuo JJ. Herb medicine Yin-Chen-Hao-Tang ameliorates hepatic fibrosis in bile duct ligation rats. J Ethnopharmacol 2007; 109: 318-324
19. Wang JH, Choi MK, Shin JW, Hwang SY, Son CG. Antifibrotic effects of Artemisia capillaris and Artemisia twaymomo- gia in a carbon tetrachloride-induced hepatic fibrosis animal model. J Ethnopharmacol 2012; 140: 179-185
20. Imanishi Y, Maeda N, Otagawa K, Seki S, Matsui H, Kawada N, Arakawa T. Herb medicine Inchi-in-koto (TT-135) regulates PDGF-BB-dependent signaling pathways of hepatic stellate cells in primary culture and attenuates development of liver fibrosis induced by thioacetamide administration in rats. J Hepatol 2004; 41: 242-250
21. Soroka CJ, Mennone A, Hayeg LR, Ballatori N, Boyer JI. Mouse organic solute transporter alpha deficiency enhances

WJG | www.wjgnet.com

7164

December 28, 2012 | Volume 18 | Issue 48
renal excretion of bile acids and attenuates cholestasis. Hepatology 2010; 51: 181-190

27 Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001; 29: e45

28 Lan T, Liu W, Xie X, Xu S, Huang K, Peng J, Shen X, Liu P, Wang L, Xia P, Huang H. Sphingosine kinase-1 pathway mediates high glucose-induced fibronectin expression in glomerular mesangial cells. Mol Endocrinol 2011; 25: 2094-2105

29 Trojanowska M. Noncanonical transforming growth factor beta signaling in scleroderma fibrosis. Curr Opin Rheumatol 2009; 21: 623-629

30 Poncelet AC, de Caestecker MP, Schnaper HW. The transforming growth factor-beta/SMAD signaling pathway is present and functional in human mesangial cells. Kidney Int 1999; 56: 1354-1365

31 Melchior-Becker A, Dai G, Ding Z, Schäfer L, Schrader J, Young MF, Fischer JW. Deficiency of biglycan causes cardiac fibroblasts to differentiate into a myofibroblast phenotype. J Biol Chem 2011; 286: 17365-17375

32 Svegliati-Baroni G, Ridolfi F, Hannivooort R, Saccomanno S, Homan M, De Minicis S, Jansen PL, Candelaresi C, Benedetti A, Moshage H. Bile acids induce hepatic stellate cell proliferation via activation of the epidermal growth factor receptor. Gastroenterology 2005; 128: 1042-1055

33 Popov Y, Patsenker E, Fickert P, Trauner M, Schuppan D. Mdr2 (Abcb4)-/- mice spontaneously develop severe biliary fibrosis via massive dysregulation of pro- and antifibrogenic genes. J Hepatol 2005; 43: 1045-1054

34 Chinnadurai R, Grakoui A. B7-H4 mediates inhibition of T cell responses by activated murine hepatic stellate cells. Hepatology 2010; 52: 2177-2185

35 Kisseleva T, Brenner DA. Mechanisms of fibrogenesis. Exp Biol Med (Maywood) 2008; 233: 109-122

36 Parola M, Marra F, Pinzani M. Myofibroblast-like cells and liver fibrogenesis: Emerging concepts in a rapidly moving scenario. Mol Aspects Med 2008; 29: 58-66

37 Dranoff JA, Wells RG. Portal fibroblasts: Underappreciated mediators of biliary fibrosis. Hepatology 2010; 51: 1438-1444

38 Liu C, Gaça MD, Swenson ES, Vellucci VF, Reiss M, Wells RG. Smads 2 and 3 are differentially activated by transforming growth factor-beta (TGF-beta) in quiescent and activated hepatic stellate cells. Constitutive nuclear localization of Smads in activated cells is TGF-beta-independent. J Biol Chem 2003; 278: 11721-11728

S- Editor Lv S L- Editor Cant MR E- Editor Zhang DN