Frequent attendance at the emergency department shows typical features of complex systems: analysis of multicentre linked data

Christopher Burton, Tony Stone, Phillip Oliver, Jon M Dickson, Jen Lewis, Suzanne M Mason

ABSTRACT

Objective Frequent attendance at the ED is a worldwide problem. We hypothesised that frequent attendance could be understood as a feature of a complex system comprising patients, healthcare and society. Complex systems have characteristic statistical properties, with stable patterns at the level of the system emerging from unstable patterns at the level of individuals who make up the system.

Methods Analysis of a linked dataset of routinely collected health records from all 13 hospital trusts providing ED care in the Yorkshire and Humber region of the UK (population 5.5 million). We analysed the distribution of attendances per person in each of 3 years and measured the transition of individual patients between frequent, infrequent and non-attendance. We fitted data to power law distributions typically seen in complex systems using maximum likelihood estimation.

Results The data included 3.6 million attendances at EDs in 13 hospital trusts. 29/39 (74.3%) analyses showed a statistical fit to a power law; 2 (5.1%) fitted an alternative distribution. All trusts’ data fitted a power law in at least 1 year. Differences over time and between hospital trusts were small and partly explained by demographics. In contrast, individual patients’ frequent attendance was unstable between years.

Conclusions ED attendance patterns are stable at the level of the system, but unstable at the level of individual frequent attenders. Attendances follow a power law distribution typical of complex systems. Interventions to address ED frequent attendance need to consider the whole system and not just the individual frequent attenders.

INTRODUCTION

The problem of frequent attendance—patients repeatedly attending the ED although it may not be the most appropriate place for them—is a major challenge for emergency medicine.1 While frequent attendance appears to be ubiquitous,2 frequent attenders comprise a heterogeneous group with complex needs,3 4 which for many comprise a mix of physical, mental and social problems.5 6 While frequent attendance may at first appear to be a simple concept, it becomes less certain on closer inspection: definitions based on a threshold number of cases are arbitrary,7 definition of attendances for lower acuity problems8 9 is challenging, and the decisions patients make about use of emergency care are complex,10 reflecting personal and social factors.11 12 Furthermore, interventions aimed at frequent attenders, such as case management, which often appear effective at the level of the individual patient, appear less effective in controlled trials and populations.13 14 This has led some commentators to argue that frequent ED attendance represents a consequence of problems in wider social systems.15 While ED frequent attendance is ubiquitous,2 the population of frequent attenders is constantly changing. Studies in emergency medicine16 17 have demonstrated that frequent attendance by an individual is a relatively unstable state: many frequent attenders in one time period become infrequent attenders in the next, and vice versa.

In this study we approached the problem of ED frequent attendance from the perspective of a complex system comprising ED patients, staff and the wider social setting.2 18 Complex systems comprise many components and their interactions.19 Through these interactions, they generate—and are also constrained by—behaviours at the system level. The process by which system-level behaviours emerge from individual interactions, without external or top-down control, is referred to as self-organisation.19 A widely used example is that of a flock of birds such as starlings which creates complex geometric patterns in flight from the apparently simple interactions.
Box 1 Power law distributions

In a power law distribution, the probability of an event of magnitude X follows the equation $P(X) = kX^{-\alpha}$ where k is a constant and α is termed the power law scaling parameter. For such a power law distribution, the probability of an event of magnitude at least X ($P(X)$) approximates to $kX^{1-\alpha}$. This represents the complementary cumulative distribution function and if plotted on logarithmic axes it produces a straight line.

Consider a power law distribution with a lower threshold of 1, and with parameters $k=1$ and $\alpha=3$. If $X=2$, then $P(2)=0.25$. Thus the median of the distribution is 1 and the IQR is 1–2. As X increases, $P(X)$ diminishes; using the parameters above, for $X=4$, $P(4)=0.0625$; for $X=10$, $P(10)=0.01$. While the probability of values for X which are far above the upper quartile is low, it is not negligible. For instance, using the example above, for $X=100$, $P(100)=100^{-2}=0.0001$. Thus, in a large sample of tens of thousands, the tail of this distribution would likely include several occurrences of $X \geq 100$. This presence of extreme values is referred to as the ‘heavy tail’ of the distribution. It includes values for X which would be extremely improbable in a gaussian or exponential distribution with similar IQR.

Power laws can be fitted to empirical data and their scaling parameters estimated. Fitting power laws to different sets of data permits comparison of their scaling parameters.

Methods

Study Design

We carried out an analysis of routinely collected healthcare data for all ED care in the Yorkshire and Humber region of the UK, comprising 5.5 million residents over three consecutive years from April 2014 to March 2017.

Patient and public involvement

No patients were involved.

Data sources

We used a dataset extracted from the ‘Connected Health Cities: Data linkage of urgent care data’ study (known as the ‘CUREd research database’). This covers all EDs in the Yorkshire and Humber region.

Analysis of characteristics and stability of ED use at system level

We carried out analyses at the level of the whole region (in order to examine the effects of age and socioeconomic status) and at the level of individual hospital trusts (to look for geographic variation). For each year we aggregated all attendances per patient and calculated the complementary cumulative distribution function, defined as the proportion of patients whose total number of attendances was equal to or greater than each number of attendances between 1 and the largest recorded. We then plotted this distribution with logarithmic axes. Plots showed data broken down by year and by either age band, socioeconomic status or hospital trust. The technique of using logarithmic axes in this way means that a power law distribution appears as a straight line with a slope of one minus the scaling parameter. A larger power law scaling parameter indicates a steeper slope and a shorter tail to the distribution, while a smaller scaling parameter indicates a gentler slope and a longer tail.

We fitted power law distributions to data using maximum likelihood estimation with the poweRlaw package for R. We carried this out in four steps: inspection of plots; identification of best-performing minimum attendance number; fitting of distributions and estimation of CIs. In step 1, we inspected plots of the data to find a plausible range of possible values for the minimum attendance number to use in the power law fitting (ie, the number of attendances above which the shape of the distribution on logarithmic plots became linear). In step 2, we found the best-performing minimum attendance number by comparing the maximum likelihood fitting of the data to a power law starting at each value in the range of minimum attendance numbers from step 1. We then used this minimum attendance number as the lowest eligible number of attendances per patient for inclusion in the next two steps. In step 3, we tested the fit of the data to
a power law using the Kolmogorov-Smirnoff test. We extracted the scaling parameter for the distribution and estimated p values for the Kolmogorov-Smirnoff test by bootstrapping following the approach recommended in Clauset et al23 with 500 iterations. Where the p value of the Kolmogorov-Smirnoff test was >0.05 we labelled the distribution as indistinguishable from a power law. When a distribution of data looked like a power law on the logarithmic plot, but the p value of the fit was <0.05 (ie, the distribution differed significantly from a power law at some point) we compared the fit between a power law and two other distributions—the Poisson and lognormal—to find the distribution which best fitted the data. This comparison used a log likelihood ratio test.23 24 We labelled these distributions as similar to a power law. Finally, in step 4, we calculated 95% CIs for each power law scaling parameter by bootstrapping with 400 iterations. We estimated the Monte Carlo error (MCE) arising from the bootstrapping procedure.24

For the main analyses we used 12-month period (April–March for each year in the data). We estimated power law scaling parameters for data split by year and additionally split by hospital trust, patient age or socioeconomic deprivation. We initially included all patients with complete data in each analysis but subsequently excluded patients over 70 from some of the analysis because the data for this group did not resemble a power law over the majority of the distribution. Finally, we examined 6-month period (beginning in April and October) in order to test for stability in the face of seasonal variation in demand.

RESULTS
Over the 3 years there were a total of 3 864 081 type 1 ED attendances. The total volume increased over the 3 years from 1 263 149 attendances (830 046 patients) in year 1 (2014–2015) to 1 310 167 (850 443 patients) in year 3 (2016–2017). This represents an increase in attendances and patients attending of 3.7% and 2.5%, respectively between the first and third years.

The 13 hospital trusts varied substantially in size and demographics. Table 1 lists characteristics of each hospital trust including size of population served; number of ED patients; their median age and the percentage of patients in the most deprived quintile of the UK population. Some trusts covered a mix of urban and rural settings, while others served major conurbations with high levels of deprivation.

Table 1 Characteristics of hospital trusts and ED attenders

Trust population served	ED patients in 2015–2016			
Hospital trust	Number (thousands)*	Number (thousands)	Most deprived (%)†	Median age
A	161	27	3	52
B	476	79	14	50
C	160	31	23	50
D	428	65	56	42
E	789	111	40	42
F	578	65	40	47
G	538	109	34	45
H	456	77	30	45
I	245	43	38	47
J	427	74	34	48
K	332	67	31	49
L	265	42	39	46
M	583	78	43	46

*Estimated from NHS data for populations of corresponding clinical commissioning groups. This does not include patients who are seen at an ED but whose home address is outside the corresponding area.
†Proportion of ED patients whose postal code was in the most deprived 20% of the English population based on the Index of Multiple Deprivation 2015.

Visualisation of ED use at system level
Figure 1 shows the distribution of attendances per patient on logarithmic axes. Plots shown are for year 2, but plots for each year are shown together in the upper part of online supplemental figure 1. Figure 1A shows data points aggregated across all hospital trusts. The linear relationship between the log number of attendances and the log probability of a patient having that number or more—particularly between 3 and 30 attendances is indicative of a power law distribution. Figure 1B shows the data split by deprivation quintile. The gradient becomes shallower as deprivation increases and the relative difference between deprivation levels increases with the number of attendances. Thus, five or more attendances occur in approximately 1.2% of attendees from the least deprived quintile compared with 4% from the most deprived, for 10 or more attendances the respective proportions are 0.12% and 6% and for 50 or more attendances, 0.001% and 0.01%. Figure 1C shows the data split by patient age: in this figure, the lines representing patients aged 70–84 years and 85+ years can be seen to curve differently from the straight lines of the other age groups. Figure 1D is a simplified version of figure 1C with patients split into those aged under 70 years and those aged 70 years and over. This highlights that the distribution for patients aged over 70 years is convex on the logarithmic axes and does not have the linear appearance of a power law until a minimum attendance number of around 10. This distribution has a shorter tail. In summary, for all groups except patients aged over 70 years individual attendance patterns appeared on visual inspection to fit a power law.

Estimation of power law fitting
From observation of the data and preliminary testing of model fit, we found that the best-performing minimum value of attendance for power law fitting was 3; this value was used in all subsequent model fitting. Table 2 shows the results of analysis of power law fitting at the level of year and hospital trust. The data were indistinguishable from a power law in 29/39 instances. Of the remaining 10 instances, 8 were similar to a power law (they were a better fit to a power law than a Poisson distribution and there was no difference in fit between a power law and a lognormal distribution). The remaining two instances showed better fit to a lognormal distribution. They were from the same trust, but data from that trust in the remaining year was indistinguishable from a power law. Data pooled across trusts was indistinguishable from a power law in 7/15 analyses split by year and deprivation quintile and 3/9 analyses split by year and age group. In all remaining analyses, data were similar to a power law. As 61/63 distributions analysed were indistinguishable from, or similar, to a power law distribution we included all of them in comparisons of power law scaling parameter.

Table 3 summarises three measures of ED attendance by deprivation quintile and age group. The total numbers of attendance for deprivation reflect both increased prevalence of socioeconomic deprivation in the region (quintiles are for the whole population of England not just Yorkshire and Humber) and increased ED use by the most socioeconomically deprived. The power law scaling parameter is inversely related to socioeconomic deprivation. In terms of the plots in figure 1A smaller scaling parameter equates to a shallower slope, meaning that the probability of a patient having a given number of attendances is higher, and the
probability of having no further attendances is lower. MCE estimates were consistently small (<0.002) suggesting that the CIs around the power law scaling parameters in table 3 were robust.

Table 3 also permits assessment of trends in ED attendance. The number of attendances increased over time in all subgroups apart from those aged 18–34 years. The power law scaling parameter decreased (i.e., greater probability of high attendance) except for the highest and lowest socioeconomic deprivation groups. The finding of little change in the most deprived is surprising given that much of the perception about ED capacity has focused on unnecessary attendance in this group.6

Figure 2 examines the variation in power law scaling parameters between hospital trusts. Figure 2A shows the variation between years within trusts. While there is clear variation between trusts, there is relatively little year to year variation within trusts. In figure 2B the scaling parameter for a single year (year 2) is plotted against the proportion of patients in the most deprived population quintile. It suggests that at least part of the

42x140 probability of having no further attendances is lower. MCE estimates were consistently small (<0.002) suggesting that the CIs around the power law scaling parameters in table 3 were robust.

Table 3 also permits assessment of trends in ED attendance. The number of attendances increased over time in all subgroups apart from those aged 18–34 years. The power law scaling parameter decreased (i.e., greater probability of high attendance) except for the highest and lowest socioeconomic deprivation groups. The finding of little change in the most deprived is surprising given that much of the perception about ED capacity has focused on unnecessary attendance in this group.6

Figure 2 examines the variation in power law scaling parameters between hospital trusts. Figure 2A shows the variation between years within trusts. While there is clear variation between trusts, there is relatively little year to year variation within trusts. In figure 2B the scaling parameter for a single year (year 2) is plotted against the proportion of patients in the most deprived population quintile. It suggests that at least part of the
variation between trusts is attributable to population differences. Analysis in shorter periods found no consistent seasonal pattern between semesters.

DISCUSSION

Summary of principal findings

This study confirmed the hypothesis that ED attendance patterns follow power law distributions. These findings were consistently present across 13 hospital trusts and were stable over several time periods. The findings suggest that frequent attenders are not a discrete group of patients to be considered separately from others, but rather represent one part of a continuous and uninterupted distribution of attendance.

Limitations

Despite the size of population served it is possible that some of the features we observed were local rather than general phenomena, however, the consistency of findings across a very socioeconomically diverse region suggests a generalisable process. While data did not provide a precise fit to a power law in every analysis—particularly when aggregating across hospital trusts, the absence of a better fitting distribution in almost all cases suggested that this lack of fit may be explained by local ‘noise’ in the data rather than a fundamental misapplication of the model. We fitted the power law distribution only to patients with at least three attendances. This use of a lower (and sometimes higher) threshold for power laws is widely recognised due to finite sample effects. In this case a threshold of 3 allowed us to include all patients who met the lowest possible threshold for frequent attendance.

Relationship to other research

A review of published studies to 2017 documented heavy tailed distributions in use from over 20 EDs but only one tried fitting a power law distribution. None of these studies was large enough to examine the impact of demographic features on these patterns. The study places research into ED frequent attendance alongside a wider body of quantitative work about complex systems. While complex systems science is increasingly contributing to other areas of medicine, it has only rarely been used to address pressing problems of health system use.

Table 2 Fit of power law distribution to data from each hospital trust by year

Hospital trust	Year 1	Year 2	Year 3	Year 1	Year 2	Year 3	Year 1	Year 2	Year 3			
	Scaling parameter*	KS† P value	LRT‡ P value	Distribution	Scaling parameter*	KS† P value	LRT‡ P value	Distribution	Scaling parameter*	KS† P value	LRT‡ P value	Distribution
A	3.65	0.09	Power law	3.65	0.07	Power law	3.59	0.14	Power law			
B	3.56	0.23	Power law	3.52	0.00	0.53	Power law					
C	3.66	0.46	Power law	3.84	0.30	Power law						
D	3.41	0.23	Power law	3.41	0.12	Power law						
E	3.37	<0.01	Uncertain	3.35	0.02	0.50	Uncertain					
F	3.48	0.02	0.10	Uncertain	3.41	0.66	Power law					
G	3.65	0.01	0.89	Uncertain	3.63	0.00	0.35	Uncertain				
H	3.67	0.38	Power law	3.59	0.69	Power law						
I	3.57	0.26	Power law	3.59	0.33	Power law						
J	3.66	0.29	Power law	3.59	0.63	Power law						
K	3.46	0.10	Power law	3.48	0.47	Power law						
L	3.55	0.04	0.26	Uncertain	3.49	0.14	Power law					
M	3.48	<0.01	<0.01	Lognormal	3.46	0.08	Power law					

*Scaling parameter for power law fit for all patients with three or more attendances. †Kolmogorov-Smirnoff (KS) test p value (if >0.05 indicates data indistinguishable from a power law). ‡Likelihood ratio test (LRT) p value (only applied if data not indistinguishable from a power law; if >0.05 indicates no difference in fit between lognormal and power law distribution).

Table 3 ED attendance characteristics by population deprivation quintile and age group

Deprivation quintile	Number of ED patients (thousands)	Attendances per ED patient	Power law scaling parameter (with 95% CI)*						
	Year 1	Year 2	Year 3	Year 1	Year 2	Year 3	Year 1	Year 2	Year 3
Most deprived	286	290	292	1.68	1.68	1.70	3.24 (3.21 to 3.27)	3.24 (3.22 to 3.27)	3.22 (3.19 to 3.25)
2	165	168	169	1.52	1.53	1.54	3.62 (3.57 to 3.67)	3.57 (3.52 to 3.61)	3.52 (3.48 to 3.57)
3	140	142	144	1.45	1.46	1.47	3.81 (3.74 to 3.87)	3.73 (3.66 to 3.79)	3.67 (3.61 to 3.74)
4	136	138	139	1.41	1.42	1.43	3.95 (3.88 to 4.02)	3.87 (3.83 to 3.94)	3.84 (3.76 to 3.91)
Least deprived	96	97	99	1.36	1.37	1.37	4.06 (3.96 to 4.17)	4.05 (3.93 to 4.15)	4.14 (4.04 to 4.25)

*Power law fit to data from patients aged under 70 years and with three or more attendances in a year, 95% CIs estimated by bootstrap sampling.

Figure 2 Variation in power law scaling parameter by hospital trust. (A) The year to year variation for each hospital trusts ordered by scaling parameter. (B) The relationship between power law scaling parameter, socioeconomic deprivation and median patient age for each hospital trust. Error bars in both plots indicate 95% CIs. IMD, Index of Multiple Deprivation.

Implications

The approach we have used for fitting power laws and related distributions to ED data has implications for measurement and for understanding of the problem of frequent attendance. The fitted parameters provide a new objective measure by which to quantify patterns of ED use. They can potentially be used to provide a means for identifying when and under what circumstances systems change (or deviate from) their distribution, including in evaluating new interventions to manage demand.

Our findings demonstrate a difference between older frequent attenders and others in that the power law features were not observed. This suggests that frailty-related frequent attendance is different from that seen in younger adults and may be better understood at the level of the individual patient rather than the whole system.

Thinking of ED use as a complex system has important implications: first, frequent attendance needs to be seen as part of a continuum of attendance rather than a discrete problem of exceptional individuals. Second, the approach described here can be used to evaluate interventions to reduce frequent attendance in the ED which takes a whole system view. While a solution for an individual may benefit that person, if it simply means that another patient occupies their place in the power law distribution of attendance, then the emergency medicine system will be no better off. Third, the very stability of complex systems, which we have demonstrated in ED use, makes them challenging to change. The power law behaviour observed in the behaviour of individuals within a system is also seen in systems as they respond to change. Most changes have little effect (the system buffers them), but a few results in marked change (the system is transformed). If interventions to reduce demand on the ED are interventions in complex systems, one would expect most interventions addressing ED frequent attendance to have small effects. However, one would also expect a few interventions to have larger effects, potentially leading to pressure to adopt them elsewhere even though the benefits may have been more to do with local contextual factors. Finally, because frequent attendance can be seen to be just one part of a continuous spectrum of attendance, strategies to reduce reattendance should consider the effects of processes which occur in many consultations: these may include defensive safety netting (‘come back if you have any concerns’) and unthinking emphasis on patient satisfaction (much of which derives from business models designed to generate ongoing demand).

CONCLUSION

This study found compelling evidence that frequent attendance at the ED can be understood as representing a complex system. The concepts and analytic tools used here can be used to design, evaluate and model interventions to address frequent attendance, in order to ensure that they do more than replacing one high-using individual with another.

Twitter Jon M Dickson @Dr_J_M_Dickson and Suzanne M Mason @ProfSueMason

Contributors CB and SMM proposed the study, TS prepared the dataset. CB conducted the analysis in discussion with JL and PO. All authors contributed to interpretation of the data and editing the manuscript.

Funding NIHR Applied Research Collaboration, Yorkshire and Humber supports the CUREd database. No specific funding was obtained for the analysis reported here.

Competing interests None declared.

Patient and public involvement Patients and/or the public were not involved in the design, or conduct, or reporting, or dissemination plans of this research.

Patient consent for publication Not required.

Ethics approval The CUREd database has approval from a National Health Service (NHS) Research and Ethics Committee, overseen by the NHS Health Research Authority’s Research Ethics Service, and from the NHS Health Research Authority (HRA), directly, to receive health and social care data without patient consent for patients of emergency and urgent care services in Yorkshire and Humber. The Leeds East REC granted approval (18/YH/0234) and, subsequent to receiving a recommendation to approve from the Confidentiality Advisory Group (18/CAG/0126, previously 17/CAG/0024), the NHS HRA provided approval for English health and care providers to supply identifiable patient data to the study. The study complies with the common law of duty of confidentiality owed by health professionals in regard to information provided by patients in the course of clinical care; the General Data Protection Regulation as enacted in the UK by the Data Protection Act 2018; and, where applicable, the Statistics and Registration Service Act 2007.

Provenance and peer review Not commissioned; externally peer reviewed.
A healthy 53-year-old man presented to the emergency department with a swollen lower eyelid, that emerged after blowing his nose. He had a one-sided scooter accident earlier that day. Initially, he had no problems, but contacted his general practitioner when the swelling emerged.

What is the most appropriate diagnosis?

IMAGE CHALLENGE

CLINICAL INTRODUCTION

Examination of the eye showed swelling of the left lower eyelid with a small haematoma and palpable crepitus. Multiple vesiculae were noticed on the temporal bulbar conjunctiva. Patient had perfect vision, no eye movement restrictions and normal pupil reflexes. Further physical and neurological examination did not show any abnormalities. Patient Educ Couns 2013;93:335–41.

REFERENCES

1. Hayhurst CS, S.M.; Chambers D. Frequent attenders in the emergency department. Best practice guideline. London The Royal College of Emergency Medicine; 2017.
2. Burton C, Elliott A, Cochrane A, et al. Do healthcare services behave as complex systems? Analysis of patterns of attendance and implications for service delivery. BMC Med 2018;16:138.
3. Mason SM. Frequent attendance at the emergency department is a symptom but not a disease. Emerg Med J 2014;31:524–5.
4. Pines JM, Asplin BR, Kaji AH, et al. Frequent users of emergency department services: gaps in knowledge and a proposed research agenda. Acad Emerg Med 2011;18:e64–9.
5. Moore L, Deehan A, Seed P, et al. Characteristics of frequent attenders in an emergency department: analysis of 1-year attendance data. Emerg Med J 2009;26:263–7.
6. Krieg C, Hudon C, Chouinard M-C, et al. Individual predictors of frequent emergency department use: a scoping review. BMC Health Serv Res 2016;16:594.
7. Krieger R, Baston S, Mason SM, et al. Defining frequent use of an urban emergency department. Emerg Med J 2007;24:398–401.
8. Moirir T, Mason SM, Moulton C, et al. Calculating the proportion of avoidable attendances at UK emergency departments: analysis of the Royal College of emergency medicine’s sentinel site survey data. Emerg Med J 2018;35:114–9.
9. O’Keefe C, Mason S, Jacques R, et al. Characterising non-urgent users of the emergency department (ED): a retrospective analysis of routine ED data. PLoS One 2018;13:e0192855.
10. Pope C, McKenna G, Turnbull J, et al. Navigating and making sense of urgent and emergency care processes and provision. Health Expect 2019;22:435–43.
11. O’Cathain A, Connell J, Long J, et al. ‘Clinically unnecessary’ use of emergency and urgent care: a realist review of patients’ decision making. Health Expect 2020;23:19–40.
12. Hunter C, Chew-Graham C, Langer S, et al. A qualitative study of patient choices in using emergency health care for long-term conditions: the importance of candidacy and recursivity. Patient Educ Couns 2013;93:335–41.