THE LUMINOSITY DEPENDENCE OF UV ABSORPTION IN AGN

ARI LAOR
Technion, Physics Dept., Haifa 32000, Israel.
laor@physics.technion.ac.il

W. N. BRANDT
The Pennsylvania State University, Dept. of Astronomy & Astrophysics, 525 Davey Lab,
University Park, PA 16802. niel@astro.psu.edu

To appear in 2002, ApJ 569 (April 20th).

Draft version November 26, 2018

ABSTRACT

We describe the results of a survey of the UV absorption properties of the Boroson & Green sample of AGN, which extends from the Seyfert ($M_V \sim -21$) to the luminous quasar ($M_V \sim -27$) level. The survey is based mostly on HST archival data available for $\geq 1/2$ of the 87 sample objects. Our main result is that soft X-ray weak quasars (SXWQs, 10 AGN with $\alpha_{ox} \leq -2$) show the strongest UV absorption at a given luminosity, and their maximum outflow velocity, v_{max}, is strongly correlated with M_V ($r_S = -0.95$). This suggests that v_{max} is largely set by the luminosity, as expected for radiation-pressure driven outflows. Luminous SXWQs have preferentially low [OIII] luminosity, which suggests they are physically distinct from unabsorbed AGN, while non-SXWQs with UV absorption are consistent with being drawn from the unabsorbed AGN population. We also find an indication that $v_{\text{max}}/v_{\text{BLR}}$ increases with L/L_{Edd}, as expected for radiation-pressure driven outflows. This relation and the v_{max} vs. M_V relation may indicate that the radiation-pressure force multiplier increases with luminosity, and that the wind launching radius in non-SXWQs is ~ 10 times larger than in SXWQs.

Subject headings: galaxies: active–quasars: absorption lines–X-rays: galaxies

1. INTRODUCTION

Fast outflows are common in AGN. The outflow properties are very different in high and low-luminosity AGN. Whereas luminous high-z quasars display outflows reaching a few 10^4 km s$^{-1}$ in a few percent of the objects, Seyfert galaxies display typical outflow velocities up to only $\sim 10^3$ km s$^{-1}$, in about 50% of the objects. Why are the outflow properties so different at low and high-luminosity? How do the outflow properties vary with luminosity? Are AGN with outflows normal AGN seen at a preferred angle, or are they physically distinct objects? How is the UV absorption related to X-ray absorption? The answers bear important clues to the origin and acceleration mechanism of AGN outflows.

The largest and most systematic study of broad absorption line quasars (BALQs) was carried out by Weymann et al. (1991), using ground-based spectroscopy of $z > 1.5$ quasars. More recent well-defined samples of BALQs are emerging from other large ground-based surveys (Becker et al. 2000; Menou et al. 2001; Hall et al. 2001). However, these comprehensive studies are limited to luminous quasars. Studies of absorption in low-luminosity AGN are not yet well-determined in low-z objects and thus require HST (see Crenshaw et al. 1999 for the most comprehensive study). There are many detailed studies of various objects ranging in luminosity from Seyferts to quasars, but these are focused on understanding the absorber properties of each object and do not provide a clear comprehensive picture.

In this study we make a first step toward a uniform and systematic survey of the UV absorption properties of AGN from the Seyfert to the luminous quasar level. We primarily use archival HST observations of the Boroson & Green (1992; hereafter BG92) sample, which includes the 87 $z < 0.5$ Palomar-Green (PG, Schmidt & Green 1983) AGN, and extends from Seyferts at $M_V \sim -21$ to luminous quasars at $M_V \sim -27$. The high-quality optical data set available from BG92 allows us to explore relations between quasar absorption and emission properties known as “eigenvector 1” (EV1; BG92; Boroson 2002), which are also strongly correlated with X-ray and UV emission properties (e.g., Laor et al. 1997, hereafter L97; Brandt & Boller 1999; Wills et al. 1999; Laor 2000). These correlations are particularly interesting since they may be driven by fundamental parameters, specifically the black hole mass and the accretion rate.

The UV absorption properties of some AGN from the BG92 sample have been studied by various authors (see the references in Appendix A and in Brandt, Laor, & Wills 2000; hereafter BLW, §§5, 6), and a complete census of the CIV absorption equivalent width, EW(CIV), of all BG92 AGN with sufficient quality UV spectra is provided by BLW. This study also provides a complete systematic census of the effective optical-to-X-ray spectral slope, α_{ox}, based on ROSAT data. The α_{ox} was used by BLW to define a complete sample of Soft X-ray Weak quasars (SXWQs), which includes all 10 AGN from BG92 with $\alpha_{ox} \leq -2$. The $\alpha_{ox} \leq -2$ cutoff is based on the distribution of α_{ox} in the BG92 sample, which suggests an apparently distinct group of SXWQs (see BLW). Since $\langle \alpha_{ox} \rangle \sim -1.48$ in non-SXWQs (Laor et al. 1997, and §3.2 here), the 2 keV luminosity of SXWQs is suppressed by a factor of ≥ 25 on average, compared to non-SXWQs with the same optical luminosity. BLW
discovered a very strong relation between α_{ox} and EW(C IV), which suggests that soft X-ray weakness is due to absorption, as was directly confirmed for some objects by hard X-ray spectroscopy (e.g., Gallagher et al. 1999, 2001; Green et al. 2001).

The EW(C IV) of the 10 SXWQs covers a wide range (1–100 Å), and although nearly all BALQs are SXWQs (e.g., Kopko, Turnshek, & Espey 1994; Green et al. 1995; Green & Mathur 1996), the converse is not true as only some of these SXWQs can be defined as BALQs (see below). What determines if a SXWQ is a BALQ? The purpose of this paper is to answer this question, together with some of the questions discussed in §4, and the main conclusions are summarized in §5. Appendix A provides notes on individual objects, supplementing the notes in BLW, and Appendix B lists the 28 objects without intrinsic UV absorption.

2. METHOD

We retrieved all public Faint Object Spectrograph and High Resolution Spectrograph spectra of the BG92 AGN available in the HST archives, and supplemented these with the four IUE spectra of SXWQs presented by BLW. UV coverage of C IV and/or Lyα+N V was obtained for 56 objects which extend from $M_{\text{Ly}} = -21.44$ to $M_{\text{Ly}} = -27.26$. Of these, 42 have HST coverage of both C IV and Lyα+N V, and six have only C IV coverage. Five objects have no C IV coverage, and Lyα+N V was used instead. In three additional objects (SXWQs) both C IV and Lyα+N V were obtained from IUE.

The wavelength scale of each spectrum has been calibrated using low-ionization Galactic absorption lines (O I, C II, Si II, Al II) which are detectable in most spectra (e.g., Savage et al. 2000), and thus we expect the associated error to be generally not below ~ 0.1 Å. Very shallow (depth $< 10\%$) and broad (width > 1000 km s$^{-1}$) absorption troughs would remain undetected in our sample.

3. RESULTS & DISCUSSION

3.1. Absorption Frequency

Absorption is detected in 28 of the 56 BG92 sample objects, and their EW(C IV), v_{max}, and $v_{\gamma, \text{max}}$ values are listed in Table 1. In 21 objects the parameters are based on HST C IV profiles, in three on HST Lyα profiles, and in four on IUE C IV profiles (all SXWQs from BLW). In two of these last four the absorption is only marginally significant (PG 1011–040 and PG 2214+139, see Appendix A), and we use a special symbol to denote them in the figures. Table 1 also lists the redshift, the 3000 Å to 2 keV spectral slope, α_{ox}, taken from BLW, M_V and EW([O III]) from PG 1011–040 and PG 2214+139, all the SXWQs have intermediate-to-strong Galactic absorption lines, used here to calibrate the absorption troughs would remain undetected in our sample.

The absorption EW is measured by making a linear interpolation (in log f_λ vs. log λ) for the unabsorbed flux between the two closest continuum points judged to be unabsorbed. There is no accurate way to estimate the EW uncertainty, as it is most likely dominated by systematic errors in the continuum placement. As a rough guide we estimate the associated error to be typically $\sim 10\%$, and generally not below ~ 0.1 Å. Very shallow (depth $< 10\%$) and broad (width > 1000 km s$^{-1}$) absorption troughs would remain undetected in our sample.
ing $(\alpha_{\text{ox}}) = -1.68 \pm 0.11$. They have almost no overlap with the α_{ox} of the 11 objects with weak UV absorption, which have $(\alpha_{\text{ox}}) = -1.49 \pm 0.08$. As noted in BLW, X-ray spectra available for some of these intermediate objects suggest intrinsic X-ray absorption features as well, but the S/N is generally too low to identify the features (excluding PG 1114+445 which shows what appears to be a warm absorber edge, George et al. 1997). These intermediate objects are relatively X-ray bright and would be interesting to explore with higher resolution X-ray spectroscopy.

Nearly all objects with no UV absorption have a "normal" $\alpha_{\text{ox}} \sim -1.5$. The two significant exceptions are PG 1259+593 and PG 1543+489, which have significantly steeper α_{ox}. Interestingly, these two objects also have very unusual UV line profiles (very broad, highly blueshifted, and very asymmetric), which may be related to their unusual α_{ox}.

3.3. The $M_{\text{O III}}$ distribution

As pointed out by BLW (see Fig. 3 there), SXWQs tend to lie toward the weak-[O III] end of the BG92 EV1 (see §1). This result is consistent with the findings of Boroson & Meyers (1992) that low-ionization BALQs are much more common in low-EW([O III]) AGN, and the similar finding of Turnshek et al. (1997) for normal BALQs, as both of these types of BALQs are generally SXW. BLW further showed that the difference in the [O III] luminosities of SXW AGN vs. non-SXW AGN is more significant than the difference in their EW([O III]). Are non-SXW AGN with UV absorption also more common at low [O III] luminosities? We first take a closer look at the [O III] luminosities of SXWQs and then address this question (the difference in EW([O III]) is discussed in §3.5).

Figure 5 shows the positions of the 56 AGN studied here in the $M_{\text{O III}}$ vs. M_V plane, where $M_{\text{O III}} = M_V - 2.5 \log \text{EW}([\text{O III}])$ (defined in BG92) is used here as a measure of the [O III] luminosity. Radio-loud and radio-quiet AGN are shown separately in Fig. 5 since their $M_{\text{O III}}$ and M_V distributions are significantly different (see Table 5 in BG92). All 9 radio-quiet SXWQs lie at $M_{\text{O III}} > -27$, where they form $\sim 35\%$ (9/26) of the population. The Poisson probability that the true fraction of SXWQs at $M_{\text{O III}} < -27$ is also $\sim 35\%$ is 7.8×10^{-3}. PG 1004+130 is the only SXWQ of the 14 radio-loud AGN in our sample, and it also lies at the bottom of the radio-loud $M_{\text{O III}}$ distribution. A KS test for the combined sample of SXWQs gives a probability of 1.5% that the 10 SXWQs and the 28 AGN with no UV absorption are drawn from the same $M_{\text{O III}}$ distribution. In this combined sample the fraction of SXWQs at $M_{\text{O III}} < -27$ is $\sim 3\%$ (1/30) of the single object is PG 1004+130), and the Poisson probability that the true fraction is $\sim 35\%$, as found for $M_{\text{O III}} > -27$, is 3.2×10^{-4}.

Inspection of Fig. 5 suggests that the difference in the $M_{\text{O III}}$ distributions of SXWQs and non-SXWQs is mostly driven by the more luminous AGN. Indeed, a KS test for the complete BG92 sample of 87 AGN gives a probability of 1.2% that the 4 SXWQs and 20 non-SXWQs more luminous than $M_V = -25$ are drawn from the same $M_{\text{O III}}$ distribution, while for AGN less luminous than $M_V = -25$ the probability for that is 18% (6 SXWQs and 57 non-SXWQs).

In contrast to SXWQs, non-SXWQs with intermediate and weak UV absorption are not significantly different in their $M_{\text{O III}}$ distribution from unabsorbed AGN (see Fig. 5). The KS test gives a probability of 39% that intermediately-absorbed and unabsorbed AGN are drawn from the same distribution, and a corresponding probability of 97% for the weakly absorbed AGN. What do these $M_{\text{O III}}$ distributions imply?

The [O III] emission is most likely isotropic (e.g., Kuratskiewicz et al. 2000 and references therein). Thus, as BLW pointed out (§8 there), the weakness of [O III] in SXWQs strongly suggests they are physically distinct from normal α_{ox} quasars, as suggested by Boroson & Meyers (1992) and Turnshek et al. (1997) for low-ionization and normal BALQs. The distributions in Fig. 5 suggest then that SXWQs, in particular the luminous ones, are physically distinct from AGN with no UV absorption, but that AGN with intermediate to weak UV absorption are consistent with being drawn from the unabsorbed AGN population.

The low [O III] luminosities of luminous SXWQs argue then against the common interpretation in which BALQs are normal quasars seen edge on (e.g., Weymann et al. 1991). An alternative interpretation is that there is a range of covering factors of the obscuring material in AGN, and this covering factor strongly influences $M_{\text{O III}}$. For example, the numbers found in our incomplete (and possibly biased) study would suggest that in AGN with $M_{\text{O III}} < -27 \sim 57\%$ of the "sky" is clear, $\sim 20\%$ is covered by low-column density clouds, $\sim 20\%$ by intermediate-column density clouds, and $\sim 3\%$ by high-column density clouds producing strong UV and X-ray absorption, while in $M_{\text{O III}} > -27$ AGN $\sim 40\%$ of the "sky" is clear, $\sim 25\%$ is covered by low-to-intermediate column density clouds, and $\sim 35\%$ is covered by high-column density clouds (see Table 2). Note that the clouds’ covering factors may be underestimated if the optical continuum emission of UV absorbed quasars is suppressed (Goodrich 1997; Krolik & Voit 1998), as suggested by the recent composite spectra presented by Brotherton et al. (2001).

3.4. The Luminosity Dependence

What determines if a SXWQ is a BALQ? The answer appears to be remarkably simple. Figure 6 shows the distribution of EW(C IV) and of v_{max} vs. M_V for all 28 absorbed AGN. SXWQs have a higher EW(C IV) and a higher v_{max} at any given luminosity, than intermediate and weak UV absorption AGN. In addition, both EW(C IV) and v_{max} of the SXWQs are strongly correlated with M_V. The Spearman rank correlation coefficient, r_s, and its significance level, Pr, for the EW(C IV) vs. M_V correlation are -0.93 and 1.1×10^{-4}, and for the v_{max} vs. M_V correlation they are -0.95 and 2.3×10^{-5}. A least-squares fit to the SXWQs gives $\text{EW}(\text{C IV}) \propto L_{\text{bol}}^{0.68 \pm 0.18}$, and $v_{\text{max}} \propto L_{\text{bol}}^{0.62 \pm 0.08}$. Only five objects in our sample are “true” BALQs, using the Weymann et al. (1991) definition of $B1 > 0$ (see the note to Table 1), and these are also the five most luminous SXWQs. Thus, BALQs are simply luminous SXWQs.

On the other hand, for non-SXWQs there is no significant luminosity dependence of either EW(C IV) or v_{max} (there may be a negative trend of EW(C IV) with M_V for the low-EW(C IV) AGN, but the significance is $< 2\sigma$). The differences in the M_V dependence for SXWQs and non-SXWQs suggests that the UV absorption in these two populations occurs in physically different classes of absorbers.

The strong luminosity dependence of v_{max} is consistent with some radiation-pressure acceleration scenarios. For example, if the BAL outflow is launched by radiation-pressure acceleration on optically thin clouds moving at some Keplerian velocity v_{Kep}, at some radius R, then the terminal outflow velocity is

$$v_{\text{ter}} \approx v_{\text{Kep}} \times \sqrt{L/L_{\text{Edd}}}.$$
where Γ is the force multiplier, which depends on the opacity sources in the gas (dust, lines, or bound-free absorption), and is assumed to remain constant throughout the flow. Since

$$v_{\text{Kep}} \propto \sqrt{M_{\text{BH}}/R} \quad \text{and} \quad L_{\text{Edd}} \propto M_{\text{BH}}$$

we get that

$$v_{\text{ter}} \propto \sqrt{L_{\text{Edd}}/R}.$$

Thus, in an object with a given L, the maximum terminal outflow velocity is obtained for a flow which starts at the minimum launching radius, $v_{\text{max}} = v_{\text{ter}}(R_{\text{min}})$. If the main opacity source is dust (Scoville & Norman 1995), then the minimum radius where grains survive is

$$R_{\text{min}} \propto L^{1/2},$$

which is just outside the radius of the Broad Line Region (BLR, Laor & Draine 1993). Alternatively, the outflow may be driven by line opacity and be launched from $R_{\text{min}} = R_{\text{BLR}}$. However, since $R_{\text{BLR}} \propto L^{-1/2}$, as both observations (Kaspi et al. 2000), and theoretical arguments (Netzer & Laor 1993) indicate, then qualitatively similar outflows could be obtained for dust and line driving. If, in addition, Γ is independent of L (e.g., if the grain size distribution, composition, and dust/gas ratio, or the gas ionization level, are the same in all objects) we obtain that

$$v_{\text{max}} \propto L^{1/4},$$

i.e. a pure luminosity dependence (e.g., Arav, Li, & Begelman 1994, eq. 3.3; Scoville & Norman 1995, eq. 6). The observed slope 0.62 ± 0.08 is significantly steeper than this simplified model prediction of 0.25. The difference may not be significant if the small slope uncertainty is just a coincidence due to the small sample size. However, it could also be due to a failure of one or more of the above assumptions. For example, if R_{min} is independent of L then $v_{\text{max}} \propto L^{1/2}$ (e.g., Weymann, Turnshek, & Christiansen 1985). If the flow is launched at $R_{\text{min}} \propto L^{1/2}$, then the observed slope implies empirically that Γ is not independent of L, but rather $\Gamma \propto L^{0.74}$.

A correlation analysis using $v_{\text{r, max}}$ instead of v_{max} yields very similar or slightly stronger correlations, both here and in the following sections, and for the sake of brevity we do not report these results. Exclusion of the two lower quality IUE-based data points of PG 1011-040 and PG 2214+139, also generally yields similar or somewhat stronger correlations, and are also not reported here and below.

3.5. Dependence on other Emission Properties

BG92 have shown significant correlations among optical emission-line parameters, in particular among the β width and asymmetry, $M_{\text{[O III]}}$, $M_{\text{H/\beta}}$, $M_{\text{Fe II}}$ and $M_{\text{H/\beta}}$ flux ratio, and $M_{\text{Fe II}}$/$M_{\text{H/\beta}}$ flux ratio (some of the dominant components of EV1 in BG92). These correlations extend to the X-ray (e.g., L97) and to the UV (e.g., Wills et al. 1999), and may be due to systematic changes in the BLR and NLR properties with increasing L/L_{Edd}. Are the UV absorption properties of SXWQs related to any of the BG92 optical emission-line properties?

Figure 7 shows that EW(C IV) and v_{max} are significantly correlated with EW([O III]) for the SXWQs (in addition to the low [O III] luminosities of SXWQs, §3.3), and there appears to exist an overall upper "envelope" of decreasing EW(C IV) and v_{max} with increasing EW([O III]), although there is no significant correlation for the intermediate and weak absorption AGN.

A somewhat weaker correlation (Pr=5 \times 10$^{-5}$) of EW(C IV) and v_{max} was found with EW(He II 4686), and none of the other emission-line parameters tabulated by BG92 shows any significant correlation with either EW(C IV) or v_{max}.

The rather strong correlation between EW([O III]) and v_{max}, together with the lack of correlation with other EV1 emission-line parameters is intriguing. Is there a direct physical link between v_{max} and EW([O III])? Possible direct links could be a greater destruction of NLR clouds by higher velocity outflows, or an increasing obscuration of the NLR due to interactions of a faster outflow with nearby dense clouds which increases the scale height of the obscuring gas. However, there is an indication that the relation between EW([O III]) and v_{max} may be indirect. There is a very strong correlation of EW([O III]) with M_{γ} for the SXWQs ($r_3 = 0.91$, Fig. 5), and there is also a very strong correlation of v_{max} with M_{γ} ($r_3 = -0.95$, Fig. 6). Thus, the somewhat weaker correlation of EW([O III]) with v_{max} ($r_3 = -0.90$) may be a secondary effect, as partial correlation analysis indicates (using eq. 27 in Kendall & Stuart 1977), and it does not necessarily imply a direct physical link. However, the origin of the highly significant EW([O III]) vs. M_{γ} correlation in SXWQs (Pr=2.8 \times 10$^{-4}$) remains to be understood. AGN in general show a trend of decreasing EW([O III]) with increasing luminosity (see Fig. 3 in BLW), but with a very broad scatter. SXWQs populate the lower boundary of the EW([O III]) vs. M_{γ} distribution of AGN, and for some unknown reason this lower boundary decreases with increasing luminosity, creating the observed correlation.

Earlier studies suggested that BALQs are restricted to the radio-quiet quasar population, but recent deep radio surveys are finding that BALQs occur with about equal frequency in radio-loud and radio-quiet quasars (Becker et al. 2000; Menou et al. 2001). However, the UV absorption strength and velocity extent may still be larger in radio-quiet quasars, in particular when compared to the most radio-loud quasars ($R > 100$, Becker et al. 2001). Figure 8 shows the dependence of EW(C IV) and v_{max} on the radio/optical flux ratio in our sample. KS tests indicate that the eight radio-loud and 20 radio-quiet AGN in our sample are consistent with being drawn from the same distributions of EW(C IV) and v_{max} (Pr=0.49 for both). The trend noted in earlier studies may become statistically significant if a larger sample is studied.

3.6. Dependence on Fundamental Parameters

The black hole mass (M_{BH}) in AGN can be estimated using the Hβ FWHM (v_{BLR}) and the size of the Hβ emitting region (R_{BLR}) obtained from reverberation mapping, or from the BLR size-luminosity relation (e.g., Kaspi et al. 2000), with the assumption of virialized motion in the BLR (e.g., Peterson, & Wandel 2000), giving $M_{\text{BH}}(H/\beta) = v_{\text{BLR}}^2 R_{\text{BLR}}/G$, or

$$m_0 = 0.18 v_{\text{BLR}}^2 L_{46}^{1/2},$$

where $m_0 \equiv M_{\text{BH}}(H/\beta)/10^3 M_\odot$, $v_{\text{BLR}} \equiv 3000 \text{ km s}^{-1}$, and L_{46} is the bolometric luminosity in units of 1046 erg s$^{-1}$ (e.g. Laor 1998). Since the Eddington luminosity in units of 1046 erg s$^{-1}$ is $L_{\text{Edd}} = 12.5 m_0$, the above relation implies

$$L/L_{\text{Edd}} = 0.44 v_{\text{BLR}}^2 L_{46}^{1/2}.$$

Such estimates are potentially significantly uncertain (e.g., Krolik 2001); however, recent studies have shown that the Hβ-based black hole mass estimate in AGN is correlated with the
host bulge luminosity and with the host bulge stellar velocity dispersion, as found for nearby non-active galaxies (Laor 1998; Ferrarese et al. 2001; Gebhardt et al. 2000). This indicates that \(M_{\text{BH}}(H/\beta) \) provides a reasonably accurate estimate of the true \(M_{\text{BH}} \) (to within a factor of 2–3), and it opens up the possibility of looking for correlations of various observed properties with the underlying fundamental parameters, \(M_{\text{BH}} \) and \(L/L_{\text{Edd}} \).

The simplified radiation-pressure driven outflow scenario (§3.4) implies that if the outflow is launched at \(R_{\min} \simeq R_{\text{BLR}} \), then

\[
v_{\text{max}}/v_{\text{BLR}} \simeq \sqrt{\Gamma L/L_{\text{Edd}}},
\]

where we assume \(v_{\text{ kep}} \simeq v_{\text{BLR}} \). Figure 9 shows there indeed exists an apparently significant correlation between the observed \(v_{\text{max}}/v_{\text{BLR}} \) and \(L/L_{\text{Edd}} \). The value of \(L/L_{\text{Edd}} \) for each object is obtained using the H/β FWHM from BG92, assuming \(L_{\text{Edd}} = 8.3\nu L_{\nu}(3000 \ \text{Å}) \) (Laor 1998), where \(\nu L_{\nu}(3000 \ \text{Å}) \) is listed in Table 1. The strength of the correlation for the combined sample of 24 AGN with significant outflow velocity \(3 \) is \(r_y = 0.76 \) (\(P = 1.9 \times 10^{-5} \)). The other option mentioned in §3.4 that \(R_{\text{min}} \) is a constant (independent of \(L \)) would not imply the correlation seen in Fig. 9.

As argued above (§§3.3, 3.4), the UV absorbers in SXWQs and non-SXWQs are likely to be different, so we repeated the analysis for the two populations separately. A marginally significant correlation is still present for the 10 SXWQs (\(r_y = 0.72 \), \(P = 19 \times 10^{-5} \)), and a significant correlation is present for the 14 non-SXWQs (\(r_y = 0.85 \), \(P = 1.6 \times 10^{-4} \)). The best-fit slopes for the two populations are very similar; for SXWQs, \(v_{\text{max}}/v_{\text{BLR}} \propto (L/L_{\text{Edd}})^{0.891 \pm 0.24} \), and for non-SXWQs, \(v_{\text{max}}/v_{\text{BLR}} \propto (L/L_{\text{Edd}})^{0.83 \pm 0.16} \). Under the simplified outflow scenario described above these slopes imply that \(\Gamma \) must increase with \(L/L_{\text{Edd}} \). Specifically, the above relations imply \(\Gamma \propto (L/L_{\text{Edd}})^{0.82} \) for SXWQs, and \(\Gamma \propto (L/L_{\text{Edd}})^{0.66} \) for non-SXWQs. This luminosity dependence of \(\Gamma \) is comparable to \(\Gamma \propto (L/L_{\text{Edd}})^{0.68} \) suggested by the \(v_{\text{max}} \) vs. luminosity relation (§3.4), which is independent of the observed values of \(v_{\text{BLR}} \).

The non-SXWQs in Fig. 9 fall on average a factor of \(~3\) below the SXWQs. A possible interpretation is that the UV absorbing outflows in non-SXWQs are launched at \(~10\) times larger distance than in SXWQs. At this larger distance \(v_{\text{ kep}} \), and thus the resulting \(v_{\text{max}} \) (see §3.4), are a factor of \(~3\) smaller, at a given \(L/L_{\text{Edd}} \). A possible alternative explanation is that the launching radius is the same in all objects, but in non-SXWQs the outflows become fully ionized before reaching \(v_{\text{max}} \) due to their higher X-ray flux. This alternative cannot be ruled out, but we note that intermediate \(\alpha_{\text{ox}} \) AGN do not have intermediate \(v_{\text{max}} \), as one may expect given their apparently intermediate strength ionizing radiation, rather than the same \(v_{\text{max}} \) as of normal \(\alpha_{\text{ox}} \) AGN of the same \(M_{\text{BH}} \) (§6.2). This alternative can be directly tested by looking for higher ionization lines (e.g. O vi, Ne viii) which should display a higher \(v_{\text{max}} \).

Since \(\Gamma \simeq (v_{\text{max}}/v_{\text{BLR}})^2/(L/L_{\text{Edd}}) \) (§3.4), then Fig. 9 together with our assumed outflow mechanism suggest that \(\Gamma \sim 50–100 \) in SXWQs with \(L \sim L_{\text{Edd}} \). Optically thin outflows with \(N_{\text{H}} \lesssim 10^{23}\ \text{cm}^{-2} \) driven by dust or resonance-line opacity can reach \(\Gamma \sim 1000 \) (e.g., Arav et al. 1994; Scoville & Norman 1995), but such outflows are too thin to produce the observed X-ray absorption if their metal abundance is solar. An optically thick absorber which absorbs all incident continuum photons can reach at most \(\Gamma \lesssim 1.5 \times 10^{24}/N_{\text{H}} \), and thus a flow with \(\Gamma \gtrsim 50 \) would imply \(N_{\text{H}} \lesssim 10^{22}\ \text{cm}^{-2} \), which is optically thin above 1.5 keV (i.e., cannot make an AGN SXW). Our estimates of \(\Gamma \) can probably be off by an order of magnitude, but if SXWQs with UV outflows having \(\Gamma \gtrsim 50 \) do exist then the large column density X-ray absorber of SXWQs should not be part of this outflow, but rather should form a “heavy” non-outflowing “filter” for the the UV absorbing outflow. However, if the X-ray absorber is found to have the same dynamics of the UV outflow, then the X-ray absorber must be very “light”, implying a metallicity well above solar (i.e., having little H and He which constitute most of the mass, but do not contribute much to the X-ray opacity).

The \(v_{\text{max}}/v_{\text{BLR}} \) vs. \(L/L_{\text{Edd}} \) relation is subject to one major caveat. The two quantities are not determined independently, but rather both depend on \(v_{\text{BLR}} \). Is the observed relation physically meaningful, or is it just a secondary effect due to the strong correlation of \(v_{\text{max}} \) with \(L \) coupled with the inclusion of \(v_{\text{BLR}} \) in both the \(x \) and \(y \) coordinate parameters? There is no conclusive answer to this question. However, there is an indirect indication that the \(v_{\text{max}}/v_{\text{BLR}} \) vs. \(L/L_{\text{Edd}} \) relation is real. This is provided by the lower panel of Fig. 9 which shows the relation of \(v_{\text{max}}/v_{\text{BLR}} \) vs. \(M_{\text{BH}} \). The correlation of \(v_{\text{max}}/v_{\text{BLR}} \) with \(M_{\text{BH}} \) is much weaker, although the secondary effect mentioned above should affect this correlation just as well. We carried out additional tests replacing \(v_{\text{BLR}} \) with an unrelated optical emission-line parameter from BG92 (e.g., EW(O III)), \(R \), \(z \), which served as a mock \("v_{\text{BLR}}" \), and tested the strength of the new mock \(v_{\text{max}}/v_{\text{BLR}} " \) with the new mock \(L/L_{\text{Edd}} " \) and \("M_{\text{BH}}" \). The results were either both a strong correlation of \(v_{\text{max}}/v_{\text{BLR}} " \) with both \(L/L_{\text{Edd}} " \) and \("M_{\text{BH}}" \), when \("v_{\text{BLR}}" \) had a large range of values in the sample, or no significant correlation with both parameters, when \("v_{\text{BLR}}" \) had a small range. Thus, the fact that \(v_{\text{max}}/v_{\text{BLR}} \) is significantly correlated with \(L/L_{\text{Edd}} \), but not with \(M_{\text{BH}} \), provides an indirect indication we are detecting a real physical effect. This result is also consistent with our theoretical expectation that \(v_{\text{max}}/v_{\text{BLR}} \) and \(M_{\text{BH}} \) should not be directly related (the observed marginally significant correlation could be induced the correlation of \(M_{\text{BH}} \) and \(L/L_{\text{Edd}} \) which has \(r_y = -0.66 \) in our sample).

4. Some Further Questions

4.1. Are there AGN with strong UV absorption and no X-ray absorption?

As shown in Fig. 4, there appears to exist a well-defined upper envelope to the EW(C IV) vs. \(\alpha_{\text{ox}} \) distribution, and thus it appears to be impossible to have strong UV absorption without strong X-ray absorption. This result is not trivial as one may imagine a low-column density absorber (\(N_{\text{H}} \sim 10^{20}\ \text{cm}^{-2} \)) which can produce very strong UV absorption (EW \(\gtrsim 10\ \text{Å} \), but essentially no X-ray continuum absorption. Why do such absorbers not exist? A possible answer is provided by the model of Murray et al. (1995), where a strong suppression of the ionizing continuum is essential to prevent the UV absorbing outflow from becoming fully ionized. If true, then traces of absorption by highly ionized gas (e.g., in O vi, Ne viii) may still be detected at higher outflow velocities in intermediate \(\alpha_{\text{ox}} \) AGN.

4.2. Are all intermediate-strength UV absorbers the same?
As described in §§3.3.3.4, the different $M_{\text{O III}}$ distributions of SXWQs and non-SXWQs, in particular at $M_V < -25$, and their different dependence of v_{max} on M_V, suggest that the UV absorption in SXWQs and non-SXWQs arises in physically different types of absorbers. If true, then although both SXWQs and non-SXWQs can show similar intermediate-strength UV absorption, higher quality UV spectroscopy could reveal differences in the absorber physical properties (e.g., covering factors, optical depths, abundances, depletions). Such differences would provide important clues about the nature of the UV and X-ray absorbers.

4.3. Are the X-ray and UV absorbers the same?

The simplest interpretation of the strong link between EW(C IV) and α_{UV} (BLW; Fig. 4) is that the X-ray and the UV absorption arise in the same absorber. Simple estimates of the UV column densities in BALQs assuming optically thin absorption imply column densities of $N_{\text{H}} \sim 10^{19} - 10^{20} \text{cm}^{-2}$, which are highly discrepant with the X-ray deduced column densities of $\sim 10^{23} - 10^{24} \text{cm}^{-2}$. Higher quality UV spectroscopy established the importance of UV line saturation and partial covering (Kwan 1990; Korista et al. 1992; Arav 1997; Hamann 1998), and thus increased the implied UV column densities by one to possibly two orders of magnitude. However, a large discrepancy still remains in the best-studied BALQ (Arav et al. 2001 vs. Mathur et al. 2000) and in the best-studied Seyfert absorber (Kraemer et al. 2001).

The models of Murray et al. (1995) and Murray & Chiang (1995) suggest that the X-ray absorbing gas lies at the inner low-velocity part of the flow and shields the UV outflow from ionizing photons. However, if the outflow is highly clumped and is driven by radiation pressure on dust (Scoville & Norman 1995) or by other mechanisms (e.g., Begelman, de Kool & Sikora 1991), then such shielding may not be necessary. Thus, an observational determination of the relation between the UV and X-ray absorbers may allow discrimination between different acceleration models.

If the X-ray and UV absorbers are the same then, apart from a similar column density, they should also share the same kinematics. The available UV spectroscopy allows an accurate determination of the outflow kinematics but typically only weak constraints on the column density due to partial-covering and line-saturation effects, while the opposite is true for the available low-resolution X-ray spectroscopy. This problem can be alleviated, at least in part, in two ways. On the UV side, more accurate column densities can be obtained through high-quality spectroscopy of low-luminosity SXWQs, where the low outflow velocities allow one to resolve various absorption doublets, and thus better constrain the UV absorbing column density (e.g., PG 1351+64, Zheng et al. 2001). On the X-ray side, more accurate kinematic constraints can be obtained through X-ray grating spectroscopy of relatively X-ray bright SXWQs, where the outflow velocities should be fairly easy to resolve if they are similar to the observed UV velocities, even if the S/N is not very high (e.g., PG 2112+059, Gallagher et al. 2001). The intermediate X-ray and UV absorption AGN (Figs. 2, 4) could be the optimal objects for applying the absorber kinematics “identity test”; they are not as heavily absorbed in the X-rays as SXWQs are, their UV absorption is generally narrow enough to allow doublet resolution, but the outflow velocity is large enough to be resolved with X-ray grating spectroscopy.

Such tests are now being done for nearby bright Seyfert galaxies with relatively weak UV and X-ray absorption (e.g., Kaspi et al. 2001), they may be possible for the intermediate objects (with a fairly large investment of time), and they may be extended to “proper” SXWQs in the future when larger collecting area X-ray telescopes become available.

4.4. What controls the outflowing column density?

The results presented here suggest that v_{max} is largely set by the luminosity, as some radiation-pressure scenarios suggest. In a source with a given L/L_{Edd}, radiation pressure can just overcome gravity and start a radially accelerating optically thick outflow for $N_{\text{H}} = 1.5 \times 10^{23} f L/L_{\text{Edd}} \text{cm}^{-2}$, where f is the fraction of flux absorbed by the outflow from the total incident flux. For example, objects with $f L/L_{\text{Edd}} \lesssim 0.01$ should not be able to drive an outflow with $N_{\text{H}} > 1.5 \times 10^{22} \text{cm}^{-2}$ and thus cannot produce a hard X-ray absorbing outflow ($\tau > 1$ at 2 keV). Combined X-ray and UV spectroscopy may allow us to measure the N_{H} of the outflow and test if it is indeed set by $f L/L_{\text{Edd}}$.

4.5. Why are SXWQs with luminous [O III] rare?

As discussed in BLW and in §3.3, SXWQs are ~ 10 times more common in AGN with lower [O III] luminosity ($M_{\text{O III}}> -27$) compared to AGN with luminous [O III] ($M_{\text{O III}}< -27$), and the difference in $M_{\text{O III}}$ distribution is most apparent for luminous AGN ($M_V < -25$). Since the measured luminosity of [O III] is most likely not inclination dependent, this implies the existence of “luminous [O III]” AGN which for some reason are only rarely SXW. Do these AGN just have a luminous (§3.1)? Most likely not since models of the BLR indicate that $N_{\text{H}} > 10^{22} \text{cm}^{-2}$ clouds are required to produce the low-ionization lines (e.g., Netzer 1990), which are present at about comparable strengths in both low and high [O III] luminosity AGN. A possible alternative explanation, which also physically relates the X-ray absorption to the weakness of [O III], is that luminous [O III] AGN do not lack high-column density clouds, but rather lack high-column density clouds with a low dust/gas ratio. For some reason, some AGN may have in addition to the normal BLR gas component, another high-column density component with a low dust/gas ratio covering a large solid angle (a strong wind where the dust is mostly destroyed?), through which an AGN would appear X-ray opaque.
10 Å) absorption. ~20% show weak (0.1 Å–1 Å) absorption, and ~50% show no (<0.1 Å) absorption.

2. SXWQs are ~10 times more common at $M_{\text{O III}} > -27$ compared to $M_{\text{O III}} < -27$, but the frequency of UV absorption in objects without strong X-ray absorption is independent of $M_{\text{O III}}$. This indicates that UV absorption without strong soft X-ray absorption may be purely an inclination effect, but apparently higher column UV + soft X-ray absorption (yet without much optical extinction), as also seen in BALQs, occurs in a physical component present only in certain types of AGN.

3. SXWQs have a higher EW(C IV) and v_{max} at a given M_{V} than UV-only absorbed AGN, and both parameters in SXWQs are strongly correlated with M_{V} ($r_5 = -0.93$ and -0.95). Thus, luminous SXWQs are BALQs, and lower luminosity SXWQs have “mini-BALs” or “associated absorbers”. The observed dependence $v_{\text{max}} \propto L^{0.82 \pm 0.06}$ is steeper than expected for constant-Γ, radiation-pressure driven outflows launched at $R \sim R_{\text{BLR}}$. This may indicate that Γ increases with luminosity.

4. There is an indication that the relative outflow velocity, $v_{\text{max}}/v_{\text{BLR}}$, increases with L/L_{Edd} for all AGN, and that the wind in non-SXWQs is launched at ~10 times the launching radius in SXWQs.

The results presented here are based on UV spectra of 56 of the BG92 AGN, a few of which have only low-quality spectra. To establish the strength and statistical significance of these results it is important to obtain high-quality UV coverage of the complete BG92 sample of 87 AGN. This survey, together with the BLW study, will establish complete UV + soft X-ray coverage of the sample. This can then be followed by detailed UV and X-ray spectroscopy of all the “interesting” AGN, which may lead to solutions of some of the above questions. In particular, the class of “intermediate” UV and X-ray absorption AGN (seven identified here, Fig. 2) may be especially suitable for studying the relation of the UV and X-ray absorbers.

This first complete UV survey of low-z AGN, together with ground-based surveys of high-redshift AGN samples, will also allow one to explore if there is significant evolution in AGN absorption properties with z. A complete survey is a resource-intensive approach but, unlike the study of individual AGN, will allow one to draw conclusions about the general optically selected AGN population. In addition, it is important to define a significantly larger complete sample of SXWQs (e.g., Risaliti et al. 2001) to test the strength and significance of the relations described above.

We thank Todd Boroson for providing us with accurate redshifts for all objects in the BG92 sample, and Bev Wills and Sarah Gallagher for their helpful comments. We also thank the referee for a very detailed and helpful report. This research was supported by grant # 209/00-11.1 of the Israel Science Foundation to A.L. and NASA LTSA grant NAG5-8107 to W.N.B.

APPENDIX

A. NOTES ON INDIVIDUAL OBJECTS

Relevant notes on some of the objects appear in BLW (§§5,6). Here we provide additional notes, mostly on objects with weak C IV absorption.

0003+158—BLW note EW(C IV)=0.8 Å for this object, which refers to the $z = 0.366$ metal absorber noted by Jannuzi et al. (1998, hereafter J98). Since the associated Lyα line is unresolved (FWHM< 250 km s$^{-1}$), the velocity shift of the system is very large ($v = -17.500 \pm 500$ km s$^{-1}$), and the higher order Lyman series lines indicate a (partially) optically thin absorber, this is likely to be an intervening system and we adopt here EW(C IV)=0 Å. However, we cannot rule out an intrinsic narrow high-velocity system, as suggested in some high-redshift quasars (e.g., Jannuzi et al. 1996; Hamann, Barlow, & Junkkarinen 1997; Richards et al. 1999), though the absorption in the more secure such cases is significantly broader than 250 km s$^{-1}$.

0007+106—HST did not observe C IV. There may be very weak N v absorption (EW~0.2 Å), as also suspected by Crenshaw et al. 1999 (§B1 there). The Lyα EW used here is likely an overestimate of the EW(C IV). No significant X-ray absorption is seen with ROSAT (Wang et al. 1996).

0050+124—Weak absorption in Lyα, N v, and C IV was noted by L97 and Crenshaw et al. (1999). A closer inspection reveals also the Si IV $\lambda\lambda$1393.8,1402.8 doublet in absorption at the same velocity shift of ~1850 km s$^{-1}$. Small excess absorption may be present in soft X-rays (Boller, Brandt & Fink 1996).

0844+349—HST did not observe C IV. Wang et al. (2000) noted the $v \sim 0$ km s$^{-1}$ absorption system in Lyα. The N v absorption is weak (EW~0.1 Å), but both doublet components appear to be present. Wang et al. suggest in addition that the absorption at observed-frame 1260.4 Å (rest-frame ~7770 km s$^{-1}$) is too strong and too broad to be just due to Galactic Si II $\lambda 1260.4$ absorption and conclude there is intrinsic Lyα absorption in this feature as well. However, the Galactic C II $\lambda 1335$ absorption has a very similar profile (see Fig. 3), which suggests the 1260.4 Å feature is pure Galactic absorption. There is also evidence for a small excess “cold” X-ray absorbing column density in an ASCA observation (George et al. 2000, hereafter G00). Note that this object shows large amplitude changes in α_{molv} (Gallagher et al. 2001, Fig. 9 there).

0923+201—HST did not observe C IV, and only part of the blue wing of N v was observed. However, the “valley” between N v and Lyα is much deeper than normally seen in AGN spectra, where the blue wing of N v generally blends into Lyα with only a slight drop in flux density (see all the other profiles in Figs. 1-3). The bottom of this dip at $v \sim -2500$ km s$^{-1}$ matches quite well the Lyα absorption system at ~2500 km s$^{-1}$. The absorption in both Lyα and N v appears to include a broad, shallow component (~4000 $\lesssim v \lesssim 2000$ km s$^{-1}$) on top of a narrow unresolved core.

0947+396—BLW suggest weak C IV absorption (EW~0.2 Å) based on the line-peak asymmetry. Since there is no clear absorption dip in the line profile we adopt a more conservative estimate of EW=0 Å. ROSAT and BeppoSAX spectra do not find significant absorption (L97; Mineo et al. 2000, hereafter M00).
0953+414-- J98 did not note intrinsic C IV absorption in this object, but Ganguly et al. (2001) did. The C IV absorption is only marginally significant, though both doublet components seem to be present. The velocity shift of \(-1380 \text{ km s}^{-1}\) found by Ganguly et al. is based on \(z = 0.239\). The revised value of \(z = 0.23405\) based on the peak of [O III] \(\lambda 5007\) (see Table 1) gives a velocity shift of only \(100 \text{ km s}^{-1}\). *ROSAT* and ASCA spectra (L97; G00) suggest there may be a small intrinsic X-ray absorbing column density.

1011--040-- BLW give EW(C IV)\(< 1.2 \text{ Å}\) based on the available IUE spectrum. However, the marginally significant absorption centered at \(v = -200 \text{ km s}^{-1}\) in C IV appears to be present in NV and Ly\(\alpha\) as well. We therefore adopt EW(C IV)\(= 1 \text{ Å}\) for this object, though a higher quality spectrum is obviously required to verify this result.

1049--005-- The C IV absorption was noted by J98 and by Ganguly et al. (2001). The absorption is very weak, but both doublet components are clearly present.

1100+772-- The C IV absorption was noted by J98 and by Ganguly et al. (2001). The absorption is rather weak but clearly present in C IV, Ly\(\alpha\), and O VI. *ROSAT* and ASCA spectra do not reveal any intrinsic absorption (Wang, Brinkmann, & Bergeron 1996; Sambruna et al. 1999).

1115+407-- The C IV absorption is weak, but both doublet components are clearly present. The NV doublet is also clearly present. *ROSAT* and *BeppoSAX* do not reveal significant intrinsic absorption (L97; M00).

1116+215-- BLW suggest very weak C IV absorption (EW\(\sim 0.1 \text{ Å}\)) based on a feature at \(v = -9500 \text{ km s}^{-1}\). This feature is below the detection threshold of J98, and the second doublet component is not seen. If real, this system is likely to be associated with the intervening Ly\(\alpha\) system at \(v = -9500 \text{ km s}^{-1}\) (related to an intervening galaxy; Tripp, Lu & Savage 1998), and we therefore adopt here EW(C IV)\(= 0 \text{ Å}\). A very high S/N *ROSAT* spectrum puts a strong constraint on any cold absorber (L97), and an ASCA spectrum suggests a weak warm absorber (G00).

1202+281-- BLW give EW(C IV)\(= 0.4 \text{ Å}\). This is based on the C IV line-peak asymmetry. However, inspection of the H\(\beta\) profile in BG92 reveals the same asymmetry. Since H\(\beta\) absorption is extremely rare, we conclude that the emission-line asymmetry is most likely not due to absorption, and adopt here EW(C IV)\(= 0 \text{ Å}\). A rather high S/N *ROSAT* spectrum does not reveal any evidence for absorption (L97).

1211+143-- BLW give EW(C IV)\(= 0.5 \text{ Å}\). This is based on marginally significant features at \(v \sim -8000 \text{ km s}^{-1}\). The two apparent narrow C IV components are somewhat too close (400 km s\(^{-1}\) apart, instead of 500 km s\(^{-1}\)) and are displaced by \(\sim 200 \text{ km s}^{-1}\) from the nearest Ly\(\alpha\) absorber. We conclude that the identification of this system is not secure and adopt EW(C IV)\(= 0 \text{ Å}\). High S/N *ROSAT* and ASCA spectra do not reveal any intrinsic absorption (Fiore et al. 1994; G00).

1322+659-- BLW give EW(C IV)\(= 0.2 \text{ Å}\), based on a narrow absorption feature at \(v = 120 \text{ km s}^{-1}\). A similarly shaped absorption feature occurs in Ly\(\alpha\), but it is centered at \(v = -20 \text{ km s}^{-1}\). The apparent C IV absorption is centered at 1808.2 \(\text{ Å}\), and it may be due to Galactic Si II \(\lambda 1808.0\) since the other resonance Si II lines at 1190.4 \(\text{ Å}\), 1193.3 \(\text{ Å}\), 1260.4 \(\text{ Å}\), 1304.4 \(\text{ Å}\), and 1526.7 \(\text{ Å}\) are unusually strong. We therefore conservatively adopt EW(C IV)\(= 0 \text{ Å}\). A *ROSAT* spectrum suggests a low-column density intrinsic neutral absorber, and an ASCA spectrum suggests a weak warm absorber (L97; G00).

1532+183-- BLW give EW(C IV)\(= 0.5 \text{ Å}\) based on a narrow absorption feature at \(v = -9900 \text{ km s}^{-1}\). However, since the second C IV doublet component does not appear to be present, and the nearest possible Ly\(\alpha\) absorption is at \(v = -10200 \text{ km s}^{-1}\), we conclude that this feature is most likely not due to C IV and adopt EW(C IV)\(= 0 \text{ Å}\). No absorption is seen with *ROSAT* and *BeppoSAX* (L97; M00).

1402+261-- Although C IV absorption is clearly seen at \(v = -4600 \text{ km s}^{-1}\), two earlier *HST* observations in 1993 (PI Tytler) and in 1994 (Turnshek et al. 1997) do not show significant absorption in C IV, providing strong evidence that the absorption is variable. No absorption is seen with *ROSAT* and *BeppoSAX* (L97; M00).

1427+480-- BLW give EW(C IV)\(= 0.03 \text{ Å}\) based on two very weak features at \(v = -100 \text{ km s}^{-1}\) and \(v = 400 \text{ km s}^{-1}\), and a weak Ly\(\alpha\) absorption feature at \(v = 0 \text{ km s}^{-1}\). Since the amplitudes of these features are comparable to the noise we adopt here EW(C IV)\(= 0 \text{ Å}\). No absorption is seen with *ROSAT* (L97).

1512+370-- BLW give EW(C IV)\(= 0.2 \text{ Å}\) based on two apparently significant features at \(v = 250 \text{ km s}^{-1}\) and \(v = 800 \text{ km s}^{-1}\). However, since there is no clear corresponding Ly\(\alpha\) feature we adopt EW(C IV)\(= 0 \text{ Å}\) here. J98 and Ganguly et al. (2001) also do not identify these features as C IV absorption. No absorption is seen with *ROSAT* and *BeppoSAX* (L97; M00).

1543+489-- BLW give EW(C IV)\(= 0.4 \text{ Å}\) based on an apparently very broad and very shallow absorption dip at the C IV line peak (\(v = -1000 \text{ km s}^{-1}\) to \(-3000 \text{ km s}^{-1}\)). However, since we cannot rule out a peculiar line profile in this rather extreme ETV1 object (BG92), we adopt EW(C IV)\(= 0 \text{ Å}\) here.

2214+139-- BLW give EW(C IV)\(< 1.2 \text{ Å}\) based on the available IUE spectrum. However, the peak of NV appears to be redshifted by \(\sim 1000 \text{ km s}^{-1}\), which is highly unusual and may imply absorption of the blue wing of NV. Some absorption may be present in C IV at \(v = -1000 \text{ km s}^{-1}\), though Ly\(\alpha\) shows no evidence for absorption. We tentatively estimate a marginally significant EW(C IV)\(= 1.1 \text{ Å}\) and use a different symbol for this object throughout the paper.

2251+113-- BLW give EW(C IV)\(= 0.8 \text{ Å}\) based on a very deep resolved C IV doublet at \(v = 0 \text{ km s}^{-1}\). Here we identify additional absorption extending up to \(v = -5000 \text{ km s}^{-1}\), which increases EW(C IV) to \(3.5 \text{ Å}\) (see also the comment in §6.4 of Ganguly et al. 2001). The velocity shift of 610 km s\(^{-1}\) found by Ganguly et al. is based on \(z = 0.323\). The revised value of \(z = 0.32553\) (see Table 1) gives a velocity shift of \(0 \text{ km s}^{-1}\).

APPENDIX

B. OBJECTS WITH EW(C IV)\(< 0.1 \text{ Å}\)

For the sake of completeness we list the 28 objects where we find intrinsic EW(C IV)\(< 0.1 \text{ Å}\). This limit is based on C IV, Ly\(\alpha\), and NV. In objects where these three lines are not all available we list in parentheses the line which was available and used to constrain
the UV absorption. The “no UV absorption” sample includes the following objects: PG 0003+158, PG 0003+199, PG 0026+129, PG 0052+251 (C IV), PG 0947+396, PG 1103-006, PG 1116+214, PG 1121+422 (C IV), PG 1202+281, PG 1211+143, PG 1216+069, PG 1226+023, PG 1259+593, PG 1307+085 (C IV), PG 1322+659, PG 1352+183, PG 1415+451, PG 1416-129, PG 1427+480, PG 1440+356, PG 1444+407, PG 1512+370, PG 1534+580 (Lyα), PG 1543+489, PG 1545+210, PG 1612+261 (C IV), PG 1626+554.

REFERENCES

Arav, N. 1997, in ASP Conf. Ser. 128: Mass Ejection from Active Galactic Nuclei, eds. N. Arav, I. Shlosman, and R. J. Wehmann, (ASP Press: San Francisco), 208

Arav, N., Li, Z., & Begelman, M. C. 1994, ApJ, 432, 62

Arav et al. 2001, ApJ, 561, 118

Becker, R. H., White, R. L., Gregg, M. D., Brotherton, M. S., Laurent-Muehleisen, S. A., & Arav, N. 2000, ApJ, 538, 72

Becker, R. H. et al. 2001, ApJS, 135, 227

Begelman, M., de Kool, M., & Sikora, M. 1991, ApJ, 382, 416

Boiler, T., Brandt, W. N., & Fink, H. 1996, A&A, 315, 53

Boroson, T. A. 2002, ApJ, in press [astro-ph/0109317]

Boroson, T. A., & Green, P. J. 1992, ApJS, 80, 109 (BG92)

Boroson, T. A., & Meyers, K. A. 1992, ApJ, 397, 442

Brandt, W. N., & Boletter, Th. 1999, in Structure and Kinematics of Quasar Broad Line Regions, eds. Gaskell, C. M., Brandt, W. N., Dietrich, M., Dultzin-Hacyan, D., Eracleous, M. (ASP Press: San Francisco), 265

Brandt, W. N., Laor, A., & Wills, B. J. 2000, ApJ, 528, 637 (BLW)

Brotherton, M. S., Tran, H. D., Becker, R. H., Gregg, M. D., Laurent-Muehleisen, S. A., & White, R. L. 2001, ApJ, 546, 775

Crenshaw, D. M., Kraemer, S. B., Boggs, A., Maran, S. P., Mushotzky, R. F., & Wu, C. 1999, ApJ, 516, 750

Ferrarese, L., Pogge, R. W., Peterson, B. M., Merritt, D., Wandel, A., & Joseph, C. L. 2001, ApJ, 555, L79

Gallagher, S. C., Brandt, W. N., Sambruna, R. M., Mathur, S., & Yamasaki, N. 1999, ApJ, 519, 549

Gallagher, S. C., Brandt, W. N., Laor, A., Elvis, M., Mathur, S., Wills, B. J., & Iyamoto, N. 2001, ApJ, 546, 795

Ganguly, R., Bond, N. A., Charlton, J. C., Eracleous, M., Brandt, W. N., & Churchill, C. W. 2001, ApJ, 549, 133

Georgakakis, A. et al. 2000, ApJ, 543, L5

George, I. M., Netzer, H., & Laor, A. 1993, ApJ, 404, 508

Netzer, H., & Laor, A. 1993, ApJ, 404, L51

Netzer, H. 1990 in Active Galactic Nuclei, ed. T. J. L. Courvoisier & M. Mayor (Berlin: Springer), 57

Netzer, H. 1990 in Active Galactic Nuclei, eds. N. Arav, I. Shlosman, and R. J. Weymann, (ASP Press: San Francisco), 265

Kaspi, S., Brandt, W. N., Netzer, H., George, I. M., Chartas, G., Behar, E., Sambruna, R. M., Garmire, G. P., & Nousek, J. A. 2001, ApJ, 554, 216

Kendall, M., & Stuart, A. 1977, The Advanced Theory of Statistics, Vol. 2 (4th ed.; New York: Macmillan)

Kopko, M., Turnshek, D. A., & Espey, B. R. 1994, IAU Symp. 159: Multi-Wavelength Continuum Emission of AGN, 159, 450

Korista, K. T. et al. 1992, ApJ, 401, 529

Kraemer, S. B., et al. 2001, ApJ, 551, 671

Krolik, J. H., & Voit, G. M. 1997, ApJ, 497, L5

Kuraszkiewicz, J., Wilkes, B. J., Brandt, W. N., & Vestergaard, M. 2000, ApJ, 542, 631

Kwan, J. 1990, ApJ, 353, 123

Laor, A. 1998, ApJ, 505, L83

Laor, A. 2000, NewA Rev. 44, 503

Laor, A. & Draine, B. T. 1993, ApJ, 402, 441

Laor, A., Fiore, F., Elvis, M., Wilkes, B. J., & McDowell, J. C. 1997, ApJ, 477, 93 (L97)

Mathur, S. et al. 2000, ApJ, 533, L79

Menou, K., et al. 2001, ApJ, 561, 645

Minne, T. et al. 2000, A&A, 359, 471 (M00)

Murray, N., & Chiang, J. 1995, ApJ, 454, L105

Murray, N., Chiang, J., Grossman, S. A., & Voit, G. M. 1995, ApJ, 451, 498

Netzer, H., & Laor, A. 1993, ApJ, 404, L51

Netzer, H. 1990 in Active Galactic Nuclei, ed. T. J. L. Courvoisier & M. Mayor (Berlin: Springer), 57

Peterson, B. M. & Wandel, A. 2000, ApJ, 540, L13

Richards, G. T., York, D. G., Yanny, B., Kollgaard, R. I., Laurent-Muehleisen, S. A., & vanden Berk, D. E. 1999, ApJ, 513, 576

Risaliti, G., Marconi, A., Maiolino, R., Salvati, M., & Severgnini, P. 2001, A&A, 371, 37

Sambruna, R. M., Eracleous, M., & Mushotzky, R. F. 1999, ApJ, 526, 60

Savage, B. D. et al. 2000, ApJS, 129, 563

Schmidt, M., & Green, F. G. 1983, ApJ, 269, 352

Schmitz, M., & Green, F. G. 1983, ApJ, 269, 352

Scoville, N., & Norman, C. 1995, ApJ, 451, 510

Turnshek, D. A., Monier, E., Sirola, C. J., & Espey, B. R. 1997, ApJ, 476, 40

Tripp, T. M., Lu, L., & Savage, B. D. 1998, ApJ, 508, 200

Wang, T., Brinkmann, W., & Bergeron, J. 1996, A&A, 309, 81

Wang, T., G., & Shang, Z. 1999, ApJ, 515, L5

Wills, B. J., Laor, A., Brotherton, M. S., Wilkes, B. J., Ferland, G. J., & Shang, Z. 1999, ApJ, 515, L5

Weymann, R. J., Turnshek, D. A., & Christiansen, W. A. 1985, in Astrophysics of Active Galaxies and Quasi-Stellar Objects, ed. J. S. Miller (Mill Valley, CA: University Science Books), 333

Weymann, R. J., Morris, S. L., Foltz, C. B., & Hewett, P. C. 1991, ApJ, 373, 23

Zheng, W., et al. 2001, ApJ, 562, 152
In units of log ergs s\(^{-1}\).

Taken from BG92.

\(a \) Kindly provided by T. A. Boroson.

No Galactic absorption lines were available for calibration. The velocity scale may be off by

Based on Ly\(\alpha\) (Weymann et al. 1991):

\(b \) Weak absorption 0.1–1 Å

\(c \) Strong absorption

\(e \) Based on Ly\(\alpha\).

\(d \) No Galactic absorption lines were available for calibration. The velocity scale may be off by \(\sim 300 \) km s\(^{-1}\).

\(f \) The limit on \(\alpha_{\text{ox}} \) is from Gallagher et al. (2001).

Table 1

Object name	\(z^a \)	\(M_H^b \)	\(\nu L_\nu^c \)	\(\alpha_{\text{ox}} \)	EW([O iii])	EW(C IV)	\(v_{\text{max}} \)	\(v_{\tau_{\text{max}}} \)
0007+106\(^a\)	0.0894	–23.85	44.77	–1.43	42	0.8	360	360
0043+039\(^a\)	0.3859	–26.16	45.49	\(< -2.00\)	1	22.3	19000	11000
0050+124	0.0609	–23.77	44.58	–1.56	22	0.4	1850	1850
0844+349\(^d\)	0.0644	–23.31	44.46	–1.54	8	0.6	-100	-100
0923+201\(^d\)	0.1929	–24.56	45.14	–1.57	7	0.8	2700	2700
0953+414	0.2340	–25.65	45.47	–1.50	18	0.1	100	100
1001+054	0.1610	–24.07	44.81	–2.13	7	11.8	10000	6150
1004+130\(^f\)	0.2404	–25.97	45.47	\(< -2.01\)	6	16.6	12000	6800
1011–040\(^f\)	0.0584	–22.70	44.22	–2.01	15	1.0	3000;	2000;
1049+005	0.3596	–25.93	45.54	–1.56	55	0.3	4050	4050
1100+772	0.3115	–25.86	45.54	–1.39	41	0.4	750	750
1114+445	0.1438	–24.01	44.67	–1.62	17	4.0	800	250
1115+407	0.1542	–23.74	44.55	–1.45	6	0.3	–200	–200
1126–041\(^f\)	0.0601	–23.00	44.34	–2.13	19	5.8	3300	2000
1309+355	0.1825	–24.76	44.92	–1.71	19	2.2	1450	900
1351+640	0.0880	–24.08	44.78	–1.78	31	5.3	2300	900
1402+261\(^e\)	0.1643	–24.48	45.04	–1.58	1	0.7	4600	4600
1404+226\(^f\)	0.0978	–22.93	44.13	–1.55	7	1.5	2400	1800
1411+442	0.0898	–23.54	44.52	–2.03	15	10.3	4100	2000
1425+267	0.3635	–26.18	45.22	–1.63	36	2.1	1600	800
1535+547\(^g\)	0.0388	–22.15	43.82	\(< -2.17\)	16	3.9	1400	400
1700+518	0.2892	–26.44	45.51	\(< -2.29\)	0	94	31000	12000
1704+608	0.3721	–26.38	45.61	–1.62	27	2.4	2500	1750
2112+059	0.4597	–27.26	46.13	–2.11	0	26.7	24000	18400
2130+099	0.0631	–23.23	44.62	–1.47	20	0.6	1550	1550
2214+139\(^f\)	0.0657	–23.39	44.46	–2.02	9	1.1	2000;	1000;
2251+113	0.3255	–26.24	45.63	–1.86	19	3.5	5000	2950
2308+098	0.4336	–26.24	45.62	–1.35	17	0.2	0	0

\(a \) Kindly provided by T. A. Boroson.

\(b \) Taken from BG92.

\(c \) In units of log ergs s\(^{-1}\), based on \(f_\nu \) at rest frame 3000 Å from Neugebauer et al. (1987), calculated for \(H_0 = 80 \) km s\(^{-1}\) Mpc\(^{-1}\), \(\Omega_0 = 1.0 \).

\(d \) Based on Ly\(\alpha\).

\(e \) No Galactic absorption lines were available for calibration. The velocity scale may be off by \(\sim 300 \) km s\(^{-1}\).

\(f \) Based on a low spectral resolution (\(\sim 1000 \) km s\(^{-1}\)) IUE spectrum.

\(g \) The upper limit on \(\alpha_{\text{ox}} \) is from Gallagher et al. (2001).

Table 2

EW(C IV)	\(M_{[\text{O iii}] < -27} \)	\(M_{[\text{O iii}] > -27} \)	
Clear	\(< 0.1 \) Å	\(\sim 57\% (17/30) \)	\(\sim 40\% (11/26) \)
Weak absorption	0.1–1 Å	\(\sim 20\% (6/30) \)	\(\sim 25\% (6/26) \)
Intermediate absorption	1–10 Å	\(\sim 20\% (6/30) \)	\(\sim 25\% (6/26) \)
Strong absorption	\(> 10 \) Å	\(\sim 3\% (1/30) \)	\(\sim 35\% (9/26) \)
Fig. 1.— The C\textsc{iv}, Ly\alpha, and N\textsc{v} absorption-line profiles for the SXWQs (not all lines are available for all objects). The flux density is in units of observed ergs s\(^{-1}\) Å\(^{-1}\) cm\(^{-2}\). The three vertical dashed lines in each panel indicate \(v = 0\) km s\(^{-1}\), defined with respect to the shorter wavelength doublet component, the velocity of maximum absorption, \(v_{\tau, max}\), and the maximum velocity of absorption, \(v_{max}\). The Ly\alpha and N\textsc{v} profiles are shifted downward for clarity by the amount indicated next to the line label. Note that the significance of the absorption in PG 1011−040 and PG 2214+139 is only marginal.
Fig. 2.— As in Figure 1 for the objects with intermediate-strength C IV absorption ($1 \text{ Å} < \text{EW} < 10 \text{ Å}$) that are not SXWOs. Note that since the absorption lines are generally narrow, it is possible to resolve the longer wavelength doublet component of C IV at 500 km s^{-1}, and that of N V at 960 km s^{-1}. Narrow absorption features due to Galactic absorption are designated.
FIG. 3.—As in Figures 1 and 2 for the objects with weak C IV absorption (EW<1 Å). Since the absorption features are not resolved, only $v_{\text{r, max}}$ is indicated.
Fig. 4.— The absorption EW(C\textsc{iv}) vs. α_{ox} relation for the BG92 AGN. Filled squares are SXWQs, stars are non-SXWQs with intermediate C\textsc{iv} absorption (1 Å < EW < 10 Å), open squares are AGN with weak C\textsc{iv} absorption (EW < 1 Å), and open triangles have weak Ly\textsc{a} absorption. Open circles at log EW(C\textsc{iv}) = −1 indicate objects with no detectable absorption. Filled triangles mark the two SXWQs where the absorption is only marginally significant. Some objects are designated by the right ascension part of their name. Note that AGN with intermediate absorption have a steeper α_{ox} than AGN with weak absorption, and all AGN with strong absorption (EW > 10 Å) are SXW.
Fig. 5.— The $M_{\text{[O III]}}$ vs. M_V relation for the radio-quiet and radio-loud BG92 AGN. Symbols are as in Fig. 4, and open circles mark the 28 objects with no C iv absorption. The diagonal solid lines indicate constant [O iii] EW. The distribution of AGN with intermediate/weak UV absorption is similar to AGN with no absorption, but SXWQs have preferentially low [O iii] luminosity.
Fig. 6.— The luminosity dependence of EW(C IV) and of v_{max}. SXWQs have higher EW(C IV) and v_{max} than other absorbed quasars at any given luminosity, and both parameters of the SXWQs are significantly correlated with luminosity. The Spearman correlation coefficient for the SXWQs (r_s) and its significance level (Pr) are indicated in each panel. The solid line in each panel is a least-squares fit to the SXWQs. Note the very tight relation between v_{max} and M_V for the SXWQs ($v_{\text{max}} \propto L^{0.62 \pm 0.08}$), as qualitatively expected for some radiation-pressure driven outflow scenarios.
Fig. 7.— The dependence of absorption $\text{EW}(\text{C IV})$ and v_{max} on $\text{EW}(\text{O III})$. Both parameters for the SXWQs are significantly correlated with $\text{EW}(\text{O III})$. The values of r_S and Pr for the SXWQs are indicated in each panel.
Fig. 8.— The radio-loudness dependence of EW(C IV) and of v_{max}. The vertical dashed line separates radio-quiet and radio-loud AGN. There may be a hint for somewhat lower EW(C IV) and v_{max} in radio-loud AGN, but the observed differences are not formally significant (see text).
Fig. 9.— The dependence of $v_{\text{max}}/v_{\text{BLR}}$ on the estimated L/L_{Edd} and M_{BH}. Note the rather strong correlation between $v_{\text{max}}/v_{\text{BLR}}$ and L/L_{Edd} for all absorbed objects, but the only marginal correlation with M_{BH}. Upper limits represent objects with no significant outflows ($v_{\text{max}} \leq 100$ km s$^{-1}$), which are excluded from the analysis. The values of r_s and P_{r} for the 24 AGN with significant outflows are indicated in each panel. The solid line is a least-squares fit for the 10 SXWQs, which gives $v_{\text{max}}/v_{\text{BLR}} \propto (L/L_{\text{Edd}})^{0.91\pm0.24}$, and the dotted line is a fit for the 14 non-SXWQs, which gives $v_{\text{max}}/v_{\text{BLR}} \propto (L/L_{\text{Edd}})^{0.83\pm0.16}$.