Dielectric crystal in the Planck blackbody

Miroslav Pardy
Department of Physical Electronics,
Masaryk University, Faculty of Science, Kotlářská 2,
611 37 Brno, Czech Republic
e-mail: pamir@physics.muni.cz

May 12, 2015

Abstract
The dielectric crystal with the index of refraction n is inserted in the Planck blackbody. The spectral formula for photons in such dielectric medium is derived with the equation for the temperature of internal photons. The derived equation is solved for the constant index of refraction. The photon flow initiates the osmotic pressure of the Debye phonons in the dielectric blackbody.

Key words: Thermodynamics, blackbody, photons, phonons, dielectric medium, dispersion.

1 Introduction

It is physically meaningful to consider, in quantum theory of light and quantum theory of solids, dielectric crystalline medium with phonons which is inserted in the Planck blackbody photon gas. It means that photon gas of the blackbody surrounding the dielectric crystalline medium with index of refraction n flows into such crystal and initiates the quantum osmotic pressure of photons as solvent and phonons as solute.

The classical osmosis is the spontaneous passage of solvent molecules through a partially permeable membrane separating two solutions of different concentration into a region of higher solute concentration of solute, in order to equalize the solute concentrations on the two sides. The physical law which controls the osmotic pressure is so called van’t Hoff’s equation (published in 1885):

$$p = i \frac{C}{\mu} RT,$$ \hspace{1cm} (1)
where p, i, C, μ, R, T are pressure, van’t Hoff factor, concentration of solute, molar mass, thermodynamic gas constant and temperature, and concentration is defined by formula $C = m/V$, where m is mass of solute in volume V. We consider here the quantum osmosis with photons and phonons and with the semi-permeable membrane for photons which is the surface of the dielectric crystal.

The derivation of the van’t Hoff formula using the thermodynamic potential can be found in the textbooks on thermodynamics and statistical physics (Landau et al., 1980). The derivation of the osmotical pressure from rigorous statistical physics was given by Isihara (1971). On the other hand, the quantum theory of osmosis was not published. A Dutch physical and organic chemist van’t Hoff presented his Nobelian theory long time before the introduction of photons into physics by Max Planck, Lewis and Einstein and before the introduction of phonons into solid state physics by Einstein and Debye. So, the problem of the osmotic pressure in the Planck blackbody with the dielectric medium arises as the problem of modern physics.

The dielectric crystal with photons is called here by term Planck dielectric blackbody. Inside of the dielectric medium with index of refraction n, the spectral radiation formula is modified and we derive in the next part mathematical form of the spectrum of such dielectric blackbody. The derivation of the spectral formula is based on the original Planck spectral formula which was rederived by Einstein (1917).

2 The Einstein blackbody model

The distribution of the blackbody photons was derived by Planck (1900) from modification of the thermodynamical entropy, and later, Einstein (1919) derived the Planck formula from the Bohr model of atom which was based on two postulates: 1. every atom can exist in the discrete series of states in which electrons do not radiate even if they are moving at acceleration (the postulate of the stationary states), 2. transiting electron from the stationary state to other, emits the energy according to the law $\hbar \omega = E_m - E_n$, called the Bohr formula, where E_m is the energy of an electron in the initial state, and E_n is the energy of the final state of an electron to which the transition is made and $E_m > E_n$.

Let us remark still that the Bohr theory does not involve the physical mechanism of creation of photons and the adequate model of photon. However, it follows from quantum theory of fields, that photon is excited state of vacuum and at the same time also an electron is the ex-
cited state of vacuum, which follows from the elementary experimental equation $\gamma + \gamma \rightarrow e^+ + e^-$ (Berestetzkii et al., 1999). At present time we know from the most general quantum field theory that all matter and antimatter in universe are excited states of vacuum.

Einstein introduced coefficients of spontaneous and stimulated emission A_{mn}, B_{mn}, B_{nm}. In case of spontaneous emission, the excited atomic state decays without external stimulus as an analogue of the natural radioactivity decay. The energy of the emitted photon is given by the Bohr formula. In the process of the stimulated emission the atom is induced by the external stimulus to make the same transition. The external stimulus is a blackbody photon that has an energy given by the Bohr formula.

If the number of the excited atoms is equal to N_m, the emission energy per unit time conditioned by the spontaneous transition from energy level E_m to energy level E_n is

$$P_{\text{spont. emiss.}} = N_m A_{mn} \hbar \omega,$$

where A_{mn} is the coefficient of the spontaneous emission.

In case of the stimulated emission, the coefficient B_{mn} corresponds to the transition of an electron from energy level E_m to energy level E_n and coefficient B_{nm} corresponds to the transition of an electron from energy level E_n to energy level E_m. So, for the energy of the stimulated emission per unit time we have two formulas:

$$P_{\text{stimul. emiss.}} = \varrho \omega N_m B_{mn} \hbar \omega,$$

$$P_{\text{stimul. absorption}} = \varrho \omega N_n B_{nm} \hbar \omega.$$

If the blackbody is in thermal equilibrium, then the number of transitions from E_m to E_n is the same as from E_n to E_m and we write:

$$N_m A_{mn} \hbar \omega + N_m \varrho \omega B_{mn} \hbar \omega = N_n \varrho \omega B_{nm} \hbar \omega,$$

where $\varrho \omega$ is the density of the photon energy of the blackbody.

Then, using the Maxwell statistics

$$N_n = D e^{-\frac{E_n}{kT}}, \quad N_m = D e^{-\frac{E_m}{kT}},$$

we get:

$$\varrho \omega = \frac{A_{mn} B_{nm}}{B_{mn} \frac{\omega}{kT} - 1}.$$
The spectral distribution of the blackbody does not depend on the specific atomic composition of the blackbody and it means the formula (7) must be so called the Planck formula:

\[\varrho_\omega = \frac{\hbar \omega^3}{\pi^2 c^3 \frac{kT}{e^{\frac{kT}{\hbar \omega}}} - 1}. \] (8)

After comparison of eq. (7) with eq. (8) we get:

\[B_{mn} = B_{nm} = \frac{\pi^2 c^3}{\hbar \omega^3} A_{mn}. \] (9)

It means that the probabilities of the stimulated transitions from \(E_m \) to \(E_n \) and from \(E_n \) to \(E_m \) are proportional to the probability of the spontaneous transition \(A_{mn} \). So, it is sufficient to determine only one of the coefficient in the description of the radiation of atoms.

The internal density energy of the blackbody gas is given by integration of the last equation over all frequencies \(\omega \), or

\[u = \int_0^\infty \varrho(\omega) d\omega = a T^4; \quad a = \frac{\pi^2 k^4}{15 \hbar^3 c^3} \] (10)

and the pressure of photons inside the blackbody follows from the electrodynamic situation inside blackbody as follows:

\[p = \frac{u}{3}. \] (11)

Let us remark that coefficients \(A_{mn} \) of the so called spontaneous emission cannot be specified in the framework of the classical thermodynamics, or, statistical physics. They can be determined only by the methods of quantum electrodynamics as the consequences of the so called radiative corrections. So, the radiative corrections are hidden external stimulus, which explains the spontaneous emission.

3 The dielectric blackbody

We suppose here that inside of the Planck blackbody there is the dielectric crystal with the index of refraction \(n(\omega) \). Then, the wave vector of photon inside the dielectric medium is given by known formula

\[q = n(\omega) \frac{\omega}{c}. \] (12)
The number of light modes in the interval \(q, q+\, dq \) inside of the dielectric in the volume \(V \) is \(V q^2 dq/\pi^2 \). After differentiation of formula (12) we get

\[
dq = \frac{1}{c} [n(\omega) + \omega \frac{dn(\omega)}{d\omega}] d\omega = \frac{n(\omega)}{c} \frac{d \ln [n(\omega)\omega]}{d \ln \omega} d\omega. \tag{13}\]

Then, it is easy to see that the number of states in the interval \(\omega, \omega+\, d\omega \) of the electromagnetic vibrations in the volume \(V \) is

\[
V g(\omega) d\omega = \frac{V}{\pi^2} \left(\frac{n(\omega)}{c} \right)^3 \frac{d \ln [n(\omega)\omega]}{d \ln \omega} d\omega. \tag{14}\]

If we multiply the last formula by the average energy of the harmonic oscillator,

\[
< E_\omega > = \frac{\hbar \omega}{e^{\frac{\hbar \omega}{kT}} - 1}, \tag{15}\]

we get the Planck formula for the blackbody with dielectric medium:

\[
\rho(\omega) = \frac{n^3(\omega)\omega^2}{\pi^2 c^3} \frac{d \ln [n(\omega)\omega]}{d \ln \omega} \frac{\hbar \omega}{e^{\frac{\hbar \omega}{kT}} - 1}, \tag{16}\]

where for \(n = 1 \), we get exactly formula (8).

4 The oscillator model of the index of refraction

This model follows from the classical theory of dispersion, which is based on the vibration equation of electron in an atom

\[
\ddot{x} + \gamma \dot{x} + \omega_0^2 x = \frac{e}{m} E_0 \cos \omega t, \tag{17}\]

where \(\gamma \) is the oscillator constant and \(\omega_0 \) is the basic frequency of oscillator. The symbol \(\omega \) is the frequency of the applied electric field. The index of refraction following from eq (17) is given by the formula (Garbuny, 1965)

\[
n = 2\pi N \frac{e^2}{m} \frac{\omega_0^2 - \omega^2}{(\omega_0^2 - \omega^2)^2 + \gamma^2 \omega^2}, \tag{18}\]

where \(N \) is number of electrons in the unit of volume.

In case of electrons with basic frequencies \(\omega_1, \omega_2, \omega_3, \omega_4...\omega_n \), the last refraction index can be generalized to form more complex mathematical object. We consider here, to be pedagogical clear, only one oscillator with
one basic frequency. Nevertheless it is possible consider arbitrary dielectric material with the phenomenological index of refraction. Now the question arises, if the dielectric blackbody can be considered as the solution composed from atoms, phonons and photons where the osmotic pressure play some role. We had accepted this hypothesis as the correct one.

5 The osmosis in dielectric blackbody

Phonons were introduced in the crystal physics by Einstein in order to derive the adequate formula for the specific heat. The Einstein formula was generalized and improved by Debye who derived the formula for the average energy of phonons in a crystal in the interval of temperatures \(\Theta - \delta < T < \Theta + \delta \) (\(\delta \) is some parameter) as follows (Rumer et al., 1977):

\[
U = N\varepsilon_0 + 3NTD\left(\frac{\Theta}{T}\right),
\]

where \(\varepsilon_0 = (9/8)\hbar\omega_{max} \), where

\[
\omega_{max} = 2\pi v \left(\frac{3N}{4\pi V} \right)^{1/3}
\]

and \(D(x) \) is so called the Debye wave function of the following structure:

\[
D(x) = 3x^3 \int_0^x \frac{y^2}{e^y - 1} dy,
\]

and the critical temperature \(\Theta \) was derived by Debye in the following form:

\[
\Theta = v \left(\frac{6\pi^2N}{V} \right)^{1/3},
\]

with \(v \) being velocity of sound waves defined in the theory of elasticity of the crystal.

Let us compare the internal energies of the pure blackbody and dielectric blackbody and then let us compare the pressure inside of the pure blackbody and inside the dielectric blackbody.

For pure blackbody, we have \(u = aT^4 \) and for model with \(n \) given by eq. (18) we have

\[
u = \int_0^\infty \rho_n(\omega)d\omega = \int_0^\infty \rho_n(\omega)\frac{n^3(\omega)\omega^2}{c^3} d\ln[n(\omega)\omega] - \frac{\hbar\omega}{e^{\hbar\omega/kT} - 1} d\omega.
\]
Because the dielectric medium is permeable for photons and not for phonons (the photon osmosis), the outer pressure is equal to the photon gas pressure in the dielectric blackbody, or \(p(n) = u(n)/3 = u/3 \). So,

\[
\int_0^\infty \varepsilon_n(\omega) d\omega = u/3 = \frac{aT^4}{3},
\]

or,

\[
\int_0^\infty n^3(\omega) \omega^2 \frac{d\ln[n(\omega)\omega]}{d\ln \omega} \frac{\hbar \omega}{e^{\frac{\hbar \omega}{kT_{\text{diel}}}} - 1} d\omega = \frac{aT^4}{3},
\]

where we introduced the dielectric temperature \(T_{\text{diel}} \), which physically means that the temperature of dielectric blackbody is not the same as the temperature of the bath of vacuum blackbody photons. The last equation is the integral equation for function \(T_{\text{diel}} \) and in general represents very difficult mathematical problem of the future physics of the dielectric blackbody. The experimental verification of the last equation will be also the crucial problem of photon physics.

In the most simple case with \(n = \text{const} \), we get after some algebraic operation, that the temperature dielectric blackbody surrounded by the vacuum blackbody is given by the formula

\[
T_{\text{diel}} = \frac{T}{\sqrt[4]{n^3}}.
\]

The last formula can form the goal of the experimenters working in the blackbody radiation physics. The dielectric as the osmotic membrane plays the role of the Maxwell demonic refrigerator. The second possibility is to put \(n = n(T) \) in order to get the integral equation for the dependence of the index of refraction on temperature. However, it seems that this assumption is not physically adequate.

In case of the dielectric Debye crystal, the equation of state is (Rumer et al., 1977)

\[
p = \left(\frac{U_{\text{phon}}}{\Theta} - \frac{9}{4} N \right) \frac{d\Theta}{dV},
\]

where \(V \) and \(N \) is volume and number of oscillators in crystal. The difference \(\Delta p = p(T) - p(T_{\text{diel}}) \) is the osmotic pressure caused by the photon flow.

In case of the two-dimensional crystal, the internal phonon energy is (Rumer et al., 1977)
\[U_{2D-phon} = \frac{4}{3} N \Theta \left[1 + \left(\frac{T}{\Theta} \right)^3 \int_0^{\Theta/T} \frac{y^2}{e^y - 1} dy \right]. \tag{28} \]

and

\[\Theta = 2\pi v \left(\frac{N}{\pi \sigma} \right)^{1/2}, \tag{29} \]

where \(\sigma \) is the area of the 2D crystal (e.g., graphene, which is the carbon sheet), instead of \(d\Theta/dV \) is \(d\Theta/d\sigma \) and \(9/4 \) must be replaced by the adequate constant. The osmotic temperature of the 2-dimensional and 1-dimensional dielectric crystal is an analogue of the 3-dimensional case and can be derived from the formulas by author article (Pardy, 2013).

6 Discussion

The classical osmosis is the physical phenomenon in the system with solute, solvent, solution and semi-permeable membrane. It plays fundamental role in biological and physiological systems, where for instance the photosynthesis in plants is not possible without water and photon osmosis and human being does not exist without liquid osmosis.

Isihara (1971) derived from the statistical physics the following formula for the osmotic pressure of the two-component statistical system:

\[p = kT \frac{\partial [\ln(\Xi/\Xi_0)]}{\partial V}, \tag{30} \]

where \(\Xi \) and \(\Xi_0 \) are the big statistical sums of solute and solvent. The explicit mathematical form of the formula is sophisticated and the derivation of the van’t Hoff formula is not elementary.

We have generalized the classical osmosis to the photon osmosis with phonons and photons where the osmotic pressure is realized by phonons and photons inside the medium with index of refraction. The change of temperature caused by osmotic pressure was described by eq. (25), which was solved by us only for the most simple case of the constant index of refraction. The solution of the general case is the problem of the future osmotic and photonic physics for the arbitrary index of refraction. The dielectric surface is the osmotic semi-permeable membrane and plays the role of the Maxwell demonic refrigerator.

The theory of phonon-photon dielectric blackbody is the preamble for experiments for the determination of the osmotic process as the consequence of the quantum properties of the phonon-photon gas. The role
of phonon-photon osmosis in biological and physiological systems is crucial. The phonon-photon osmotic pressure plays probably substantial negative role in the formation and in the development of skin cancer.

It is not excluded, that the experiments with the quantum osmosis in plasma with magnetic field as semi-permeable osmotic membrane, will play crucial role in the TOKAMAK fusion reactor physics.

References

Berestetzkii, V. B., Lifshitz E. M. and Pitaevskii, L. P. *Quantum electrodynamics*, (Butterworth-Heinemann, Oxford, 1999).

Einstein, A. (1917). Zur quantentheorie der Strahlung, *Physikalische Zeitschrift*, 18, 121.

Isihara, A. *Statistical Physics*, (Academic Press, New York-London, 1971).

Kubo, R. *Statistical Mechanics*, (North-Holland Publishing Company - Amsterdam, 1965).

Landau, L. D. and Pitaevskii, *Statistical Physics*, Volume 5, Third edition, revised and enlarged, (Pergamon Press, Oxford, New York,.., 1980).

Pardy, M. (1913). Velocity of sound in the blackbody photon gas, *Results in physics* 3, 7073.

Planck, M. (1900). Zur Theorie des Gesetzes der Energieverteilung im Normalspektrum, *Verhandlungen deutsch phys., Ges.*, 2, 237.; ibid: (1901). *Ann. Phys.*, 4, 553.

Rumer Yu. B. and Ryvkin, M. Sch. *Thermodynamics, statistical physics, kinetics*, (Nauka, Moscow, 1977), (in Russian).