Electric detection of the spin-Seebeck effect in Ni and Fe thin films at room temperature

T Ota1,2, K Uchida1,2, Y Kitamura1,2, T Yoshino1,2, H Nakayama1,2 and E Saitoh1,2,3

1Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan
2Department of Applied Physics and Physico-Informatics, Keio University, Yokohama 223-8522, Japan
3PRESTO, Japan Science and Technology Agency, Sanbancho, Tokyo, 102-0075, Japan
E-mail: ota@z5.keio.jp

Abstract. The spin-Seebeck effects in Ni and Fe thin films have been investigated by using the inverse spin-Hall effect in a Pt film. The experimental results show that the sign of the spin-Seebeck coefficient for Ni is opposite to those for Fe and Ni$_{81}$Fe$_{19}$ and that the magnitude of the spin-Seebeck coefficients for Ni and Ni$_{81}$Fe$_{19}$ are much greater than that for Fe at room temperature. This material dependence of the spin-Seebeck coefficient is different from that of the conventional Seebeck coefficient.

1. Introduction
In the field of spintronics [1, 2], there have been many efforts to develop the generation methods of a spin current [3, 4], a flow of electron spin in a solid, for deriving magnetic devices. In this stream, the spin-Seebeck effect (SSE) was recently observed experimentally at room temperature [5]. SSE allows us to generate a pure spin current simply by placing a ferromagnetic metal in a temperature gradient [5-7].

In a ferromagnetic metal under a temperature gradient, the thermally generated spin current induces spin voltage $\mu_\uparrow - \mu_\downarrow$, where μ_σ is electrochemical potential for spin channel σ ($\sigma = \uparrow$ or \downarrow). As shown in the previous work [5], the spin voltage $\mu_\uparrow - \mu_\downarrow$ induced from a uniform temperature gradient varies almost linearly along the temperature-gradient direction and the sign of $\mu_\uparrow - \mu_\downarrow$ is reversed between the opposite ends of the ferromagnet.

The spin voltage generated by SSE can be detected electrically by means of the inverse spin-Hall effect (ISHE) in a paramagnetic metal [8-19]. However, up to now, the SSE signal was reported only in a ferromagnetic Ni$_{81}$Fe$_{19}$ film. In this study, we measured the thermally induced spin voltage in ferromagnetic Ni and Fe thin films by using ISHE of a Pt film.

2. Methods
Figure 1(c) is a schematic illustration of the sample system used in the present study. The sample consists of a 20-nm-thick ferromagnetic (Ni or Fe) film with a 10-nm-thick Pt wire attached to one end. The lengths of the ferromagnetic layer and the Pt wire along the x (y) direction are 6 mm (4 mm) and 0.1 mm (4 mm), respectively. The ferromagnetic layer was deposited on the sapphire substrate by electron-beam evaporation in a high vacuum, and then
the Pt wire was sputtered on the end of the ferromagnetic layer in an Ar atmosphere. We apply an in-plane magnetic field, \(\mathbf{H} \), with magnitude \(H \) along the \(x \) direction (see figures 1(c) and 1(d)). A uniform temperature gradient \(\nabla T \) is applied along the \(x \) direction. The uniformity of \(\nabla T \) in the ferromagnetic layer was confirmed by measuring thermoelectric voltage along the \(x \) direction.

\[
V_{\text{ISHE}} \equiv E_{\text{ISHE}} L_{\text{Pt}} = -\frac{\theta_{\text{Pt}} \eta_{\text{F/Pt}}}{e} \left(\frac{L_{\text{Pt}}}{d_{\text{Pt}}} \right) (\mu_{\uparrow} - \mu_{\downarrow}),
\]

where \(E_{\text{ISHE}} \) is the magnitude of \(\mathbf{E}_{\text{ISHE}} \), \(\theta_{\text{Pt}} \) is the spin-Hall angle in Pt \([18]\), \(\eta_{\text{F/Pt}} \) is the spin-injection efficiency \([4]\) across the F(Ni or Fe)/Pt interface, \(d_{\text{Pt}} \) is the thickness of the Pt wire, and \(L_{\text{Pt}} \) is the length of the Pt wire along the \(y \) direction. We measured the electric voltage difference \(V \) between the ends of the Pt wire to detect the \(V_{\text{ISHE}} \) signal, when the Pt wire is on the higher- and lower-temperature ends of the sample, as illustrated in figures 1(c) and 1(d).

3. Results and Discussion

Figures 2(a) and 2(c) show the measured voltage \(V \) as a function of the temperature difference between the ends of the sample, \(\Delta T \), when the Pt wire is on the higher- and lower-temperature ends of the Ni/Pt and Fe/Pt samples, respectively. In each sample, the magnitude of \(V \) is proportional to \(\Delta T \) and the sign of \(V \) for finite values of \(\Delta T \) is clearly reversed between the ends of the sample. This behavior of \(V \) is consistent with the feature of ISHE induced by SSE.

As shown in figures 2(b) and 2(d), these \(V \) signals disappear in plain Ni and Fe films in which the Pt wires are absent. These results show that these signals are irrelevant to the anomalous Nernst-Ettingshausen effects \([21]\) in the ferromagnetic layers, and the temperature gradient along the \(z \) direction is absent in the ferromagnets.

In figures 3(a) and 3(b), we show \(V \) as a function of \(H \) for various values of \(\Delta T \), measured in the Ni/Pt and Fe/Pt samples, respectively. The signs of \(V \) at each end of the samples are
reversed by reversing H. On the basis, these V signals observed are attributed to the ISHE voltage induced by SSE, V_{ISHE}.

In table 1, we show the values of the ISHE voltage at the higher-temperature end of the sample, $V_{\text{ISHE,HT}}$, for the Ni/Pt, Fe/Pt, and Ni$_{81}$Fe$_{19}$/Pt sample systems. The data for the Ni$_{81}$Fe$_{19}$/Pt sample is cited from Ref. [5]. Table 1 shows that the sign of V_{ISHE} for the Ni/Pt sample is opposite to those for the Fe/Pt and Ni$_{81}$Fe$_{19}$/Pt [5] samples, and the sign of the thermally generated spin voltage in Ni is also opposite to those in Fe and Ni$_{81}$Fe$_{19}$ at room temperature. Using equation (1) and the experimental values of $V_{\text{ISHE,HT}}$, we estimated the values of the thermally generated spin voltage at the higher-temperature end, $(\mu_\uparrow - \mu_\downarrow)_{\text{HT}}$, and the spin-Seebeck coefficients $S_s \equiv (2/e)((\mu_\uparrow - \mu_\downarrow)_{\text{HT}}/\Delta T)$ of the ferromagnets (see table 1). Notable is that the signs and the orders of the magnitude of S_s for Ni, Fe, and Ni$_{81}$Fe$_{19}$ are distinctly different from those of the conventional Seebeck coefficients, S (see also table 1). This
shows that the origin of SSE is different from that of the conventional Seebeck effect.

Table 1. Comparison of S_s and S for the Ni, Fe, and Ni$_{81}$Fe$_{19}$ films. The values of $V_{\text{SHE,HT}}/\Delta T$ are estimated from the data shown in figure 2 and Ref. [5]. η_F/η_{Pt} is calculated by using the phenomenological theory in Ref. [4]. For calculating S_s, $\theta_{Pt} = 0.08$ is used [18].

Material	$V_{\text{SHE,HT}}/\Delta T$ (V/K)	η_F/η_{Pt}	S_s (V/K)	S (V/K)
Ni	-1.20×10^{-7}	0.16	5×10^{-11}	-15×10^{-6}
Fe	0.21×10^{-7}	0.18	-0.7×10^{-11}	5×10^{-6}
Ni$_{81}$Fe$_{19}$[5]	2.60×10^{-7}	0.27	-6×10^{-11}	-20×10^{-6}

4. Conclusion

We have measured the thermally induced spin voltage in Ni and Fe thin films by using the inverse spin-Hall effect in a Pt wire, and estimated the spin-Seebeck coefficient for Ni, Fe, and Ni$_{81}$Fe$_{19}$ at room temperature from the measured spin voltage. The experimental results show that the sign of the spin-Seebeck coefficient for Ni is opposite to those for Fe and Ni$_{81}$Fe$_{19}$. We compared the spin-Seebeck coefficients with the conventional Seebeck coefficients and concluded the origin of the thermally induced spin voltage is different from that of the conventional Seebeck effect.

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific research in Priority Area “Creation and Control of Spin Current” and Scientific Research A from MEXT.

References

[1] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnar S, Roukes M L and Chtchelkanova A Y 2001 Science 294 1488-95
[2] Zutic I, Fabian J and Sarma S D 2004 Rev. Mod. Phys. 76 323-410
[3] Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1-7
[4] Takahashi S and Maekawa S 2008 J. Phys. Soc. Jpn. 77 031009
[5] Uchida K, Takahashi S, Harii K, Ieda J, Koshiba W, Ando K, Maekawa S and Saitoh E 2008 Nature 455 778-81
[6] Uchida K, Takahashi S, Ieda J, Harii K, Ikeda K, Koshiba W, Maekawa S and Saitoh E 2009 J. Appl. Phys. 105 07C908
[7] Uchida K, Ota T, Harii K, Ando K, Sasage K, Nakayama H, Ikeda K and Saitoh E 2009 IEEE Trans. Magn. 45 2386-8
[8] Hirsch J E 1999 Phys. Rev. Lett. 83 1834-7
[9] Murakami S, Nagaosa N and Zhang S -C 2003 Science 301 1348-51
[10] Saitoh E, Ueda M, Miyajima H and Tatara G 2006 Appl. Phys. Lett. 88 182509
[11] Valenzuela S O and Tinkham M 2006 Nature 442 176-9
[12] Harii K, Ando K, Sasage K and Saitoh E 2007 Phys. Solidi C 4 4437-40
[13] Inoue H Y, Harii K, Ando K, Sasage K and Saitoh E 2007 J. Appl. Phys. 102 083915
[14] Kimura T, Otani Y, Sato T, Takahashi S and Maekawa S 2007 Phys. Rev. Lett. 98 156601
[15] Seki T, Hasegawa Y, Mitani S, Takahashi S, Imamura H, Maekawa S, Nitta J and Takamashi K 2008 Nature Mater. 7 125-9
[16] Harii K, Ando K, Inoue H Y, Sasage K and Saitoh E 2008 J. Appl. Phys. 103 07F311
[17] Ando K, Kajiwara Y, Takahashi S, Maekawa S, Takemoto K, Takatsu M and Saitoh E 2008 Phys. Rev. B 78 014413
[18] Ando K, Takahashi S, Harii K, Sasage K, Ieda J, Maekawa S and Saitoh E 2008 Phys. Rev. Lett. 101 036601
[19] Takeuchi A and Tatara G 2008 J. Phys. Soc. Jpn. 77 074701
[20] Valet T and Fert A 1993 Phys. Rev. B 48 7099-113
[21] Vasil’eva R P 2000 Phys. Met. Metallogr. 90 27-32