Introduction

Diabetic kidney disease (DKD) is now a pandemic worldwide, and novel therapeutic options are urgently required. Adenosine, an adenine triphosphate metabolite, plays a role in kidney homeostasis through interacting with four types of adenosine receptors (ARs): A1AR, A2AAR, A2BAR, and A3AR. Increasing evidence highlights the role of adenosine and ARs in the development and progression of DKD: 1) increased adenosine in the plasma and urine of diabetics with kidney injury, 2) increased expression of each of the ARs in diabetic kidneys, 3) the protective effect of coffee, a commonly ingested nonselective AR antagonist, on DKD, and 4) the protective effect of AR modulators in experimental DKD models. We propose AR modulators as a new therapeutic option to treat DKD. Detailed mechanistic studies on the pharmacology of AR modulators will help us to develop effective first-in-class AR modulators against DKD.

Keywords: Adenosine, Purinergic P1 receptors, Purinergic P1 receptor agonists, Purinergic P1 receptor antagonists, Diabetic kidney disease, Fibrosis
tissue injury [8]. Caffeine, a commonly ingested nonselective AR antagonist, inhibits development of hepatic fibrosis [9] and DKD [10], suggesting AR antagonists as new therapeutic agents against fibrosis including DKD [11]. Increasing evidence highlights the role of adenosine and ARs in the development and progression of DKD [12–23].

Since extracellular adenosine is regulated by membrane transporters as well as conversion from adenosine triphosphate (ATP), the role of conversion of extracellular ATP to adenosine [5] and agents affecting adenosine transport [24] with respect to kidney diseases including DKD have been recently reviewed. In the present review, we provide a background of adenosine and ARs, summarizing the current state of AR modulators in preclinical and clinical evaluation targeting DKD.

Adenosine and adenosine receptors

Adenosine: formation and metabolism

Adenosine is an endogenous purinergic nucleoside. Intracellular adenosine is synthesized either by the dephosphorylation of adenosine monophosphate (AMP) via intracellular 5′-nucleotidase (5′NTD) or by the hydrolysis of S-adenosylhomocysteine (Fig. 1). Extracellular adenosine is produced by dephosphorylation of ATP via a two-step enzymatic reaction sequence. First, CD39 converts ATP or adenosine diphosphate into AMP. In the second step, CD73 converts AMP into adenosine. Adenosine deaminase (ADA) catabolizes adenosine into inosine, and equilibrative nucleoside transporters (ENTs) carry adenosine across the cell membrane in either direction (Fig. 1). Extracellular adenosine is low under normal conditions (20–300 nM) but rises dramatically upon tissue injury, such as hypoxia and inflammation, due to an increased demand for energy supplied by ATP [25]. Increased adenosine up to a certain level provides protection through increased blood flow via vasodilation and through anti-inflammatory/immune-modulatory cascade [26]. However, a chronically increased level of adenosine may play a role in tissue injuries such as hepatic steatosis, asthma, and fibrosis [8]. In fact, persistent and excessive adenosine exposure under ADA deficiency...
leads to kidney fibrosis [27]. In addition, adenosine uptake is reduced in kidney proximal tubular cells under diabetic stress resulting from reduced ENT, and ENT deficiency leads to kidney fibrosis [19].

Adenosine receptors: classification and signal transduction

Each AR exhibits differences in affinity for adenosine, G protein coupling, and subsequent intracellular signal transduction (Fig. 2).

Molecular structure of adenosine receptors

All four ARs belong to GPCR, which contains a core domain crossing the plasma membrane seven times (seven transmembrane domains, 7TM), an extracellular N-terminus, and an intracellular C-terminus. The 7TM receptors consist of three intracellular and three extracellular loops with different lengths. Cysteine amino acids forming disulfide

Figure 2. Signaling cascade of each AR. AR, adenosine receptor; cAMP, cyclic adenosine monophosphate; CREB, cAMP-response element-binding protein; DAG, diacylglycerol; Epac, exchange proteins activated by cAMP; ERK, extracellular signal-regulated protein kinase; GSK-3β, glycogen synthase kinase 3 beta; IP₃, inositol trisphosphate; JNK, c-Jun N-terminal kinase; MAPK, mitogen-activated protein kinase; NO, nitric oxide; PI3K, phosphatidylinositol 4,5-bisphosphate; PLD, phospholipase D.
bonds in the extracellular loop 2 are important not only in ligand binding but also in receptor stability and function. The N-terminus possesses glycosylation sites, while the C-terminus possesses phosphorylation and palmitoylation sites. These modifications are all important for structural maturation, ligand binding, and downstream signaling [4]. Accordingly, diabetes-induced posttranslational modification, such as glycosylation and palmitoylation, should be considered as a factor that can modify the characteristics of ARs in diabetic kidneys.

All four ARs have been cloned from various species, including rat, mouse, and human. There is a close similarity between species of the same subtype, at least among mammals. However, A_{2A}AR shows the largest variability as follows: human vs. rat 73%, human vs. mouse 72%, and rat vs. mouse 91% [4]. Considering rats and mice are the most widely employed animals in preclinical studies, more attention is needed to translate the data from animal studies on A_{2A}AR modulators to clinical trials [28].

Classification of adenosine receptors: affinity, G protein coupling, and signal transduction (Fig. 2)

1) A_{1A}AR
Adenosine interacts with A_{1A}AR with an EC50 in the range of 10 nM to 1 μM. A_{1A}AR is coupled to the inhibitory G protein (Gi), which inhibits adenylyl cyclase (AC) activity and subsequent cyclic AMP (cAMP) production [29]. This leads to the inhibition of cAMP-dependent protein kinase A (PKA) activation and subsequent cAMP-responsive element-binding protein (CREB) transcriptional activation by reducing CREB phosphorylation. A_{1A}AR also induces phospholipase C (PLC) activation by coupling to the Gq, thus leading to increases in inositol 1,4,5-triphosphate (IP3) and intracellular Ca2+ concentrations, which activate calcium-dependent protein kinases (PKC). In addition, the 7γ subunit of Gi/o stimulates PLC. A_{1A}AR directly activates K+ channels and inhibits voltage-gated Ca2+ channels [25,29]. The involvement of A_{1A}AR and the cascade of mitogen-activated protein kinase (MAPK) family members, including extracellular signal-regulated kinase (ERK), p38, and c-Jun N-terminal kinase (JNK), has also been demonstrated in human A_{1A}AR-overexpressed CHO cells [30].

2) A_{2A}AR
Adenosine interacts with A_{2A}AR with an EC50 in the range of 10 nM to 1 μM. A_{2A}AR is coupled to the stimulatory G protein (Gs), which stimulates AC and thereby increases cAMP levels with consequent activation of PKA, CREB phosphorylation, exchange protein activated by cAMP (Epac) signaling, and MAPK family [30]. A_{2A}AR stimulates PLC leading to activation of PKC, ERK, JNK, and AKT [31].

3) A_{2B}AR
Adenosine interacts with A_{2B}AR with an EC50 in the range higher than 10 μM. A_{2B}AR is coupled to Gs and Gq [29]. Gs activates AC, causing phosphorylation of PKA and activation of Epac [32]. Gq activates PLC, leading to increase of Ca2+ concentration [29]. A_{2B}AR also activates MAPK and AKT pathways [30].

4) A_{3}AR
Adenosine interacts with A_{3}AR with an EC50 in the range of 10 nM to 1 μM. A_{3}AR is coupled to Gi and Gq [29]. Gi inhibits AC, causing reduced cAMP and PKA leading to activation of glycogen synthase kinase-3β (GSK-3β) and inhibition of beta-catenin [33,34], while Gq stimulates PLC leading to increase of diacylglycerol and intracellular Ca2+ concentrations, cytosolic Ca2+ activates nitric oxide synthase (NOS) or PKC [29]. In addition, A_{3}AR also stimulates RhoA, phospholipase D, ERK, PI3K, and AKT pathways [30].

The role of adenosine and adenosine receptors in the kidney

The kidney is a fundamental organ that maintains the homeostasis by glomerular filtration, reabsorption, and excretion of solutes, ions, and water. The kidney releases diverse hormones that regulate blood pressure, produce red blood cells, and control calcium metabolism [35]. Adenosine, a kidney hormone, participates in such kidney-mediated fundamental physiological functions in homeostasis via regulating kidney blood flow, GFR, tubuloglomerular feedback (TGF), and secretion of renin [7]. However, overproduction of adenosine alters their signaling via the ARs and plays a key role in chronic inflammation, fibrosis, and kidney damage [8,36].
Distribution of adenosine receptors in the kidney

Data from functional studies, immunohistochemistry, and transgenic AR mice show all four ARs are expressed in the kidney [19,36–39]. As summarized in Fig. 3A, all four ARs are expressed in whole kidney homogenates [38], the glomeruli [19,37,39], the proximal tubules [19,40], and the afferent/efferent arterioles [41]. The loop of Henle, distal convoluted tubules, and collecting duct express A₁AR/A₂BₐR [37,38], A₁AR/A₂BₐR [37,38], and A₁AR [37], respectively. A recent single-cell transcriptomic analysis study [42] provided a comprehensive atlas of AR expression in the healthy mouse kidney (Fig. 3B).

Physiological role of kidney adenosine receptors

Adenosine directly acts on the coronary arteries to increase blood flow by four times compared to that of at rest [43]. Interestingly, exogenous adenosine induces a marked but transient reduction in the kidney blood flow [44]. Blockade of endogenous adenosine signaling by theophylline-mediated AR antagonism does not alter basal kidney function; however, the exogenous adenosine-mediated reduction of GFR is inhibited with theophylline by 31.4% [45]. All AR subtypes are expressed in the kidney vasculature, yet levels of AₐR and A₂BₐR are high in the preglomerular microcirculation, whereas A₂AₐR and AₐR levels are low [46,47]. Adenosine is also involved in the regulation of the TGF of the nephron and renin release from juxtaglomerular cells [48,49].

Vasoconstriction and vasodilation

Pharmacological blockade of the renin-angiotensin system diminishes the kidney vasoconstrictive action of adenosine [45,50], and activation of the renin-angiotensin system augments adenosine-induced vasoconstriction and lowering of GFR [7,50,51]. Selective A₁AR antagonists inhibit the

Figure 3. Distribution of ARs in the kidney. (A) Summary of each AR expressed in the nephron. (B) Expression of each AR in healthy mouse kidney delineated by single-cell transcriptomic analysis (https://susztaklab.com).

A-IC, alpha intercalated cell; ALOH, ascending loop of Henle; AR, adenosine receptor; B-IC, beta intercalated cell; CD-PC, collecting duct principal cell; CD-Trans, CD transient cell; CNT, connecting tubule; DC 11b+, CD11b+ dendritic cell; DCT, distal convoluted tubule; DLOH, descending loop of Henle; Endo, endothelial; Fib, fibroblast; GEC, glomerular endothelial cells; Granul, granulocyte; LOH, loop of Henle; Macro, macrophage; Neutro, neutrophil; NK, natural killer cell; pDC, plasmacytoid DC; Podo, podocyte; PT, proximal tubule; Tgd, gamma delta T cell; Treg, regulatory T cell.
adenosine-mediated vasoconstriction, which is absent in \(\alpha_1\)AR knockout mice \([45,52,53]\). \(\alpha_1\)AR-mediated renal vasoconstriction is also supported by the persistent reduction in both kidney blood flow and GFR induced by the infusion of the \(\alpha_1\)AR agonist \([54]\). In isolated perfused afferent arterioles, adenosine induces a 30% reduction of vessel diameter in proximal parts of the arteriole \([55]\). In contrast to \(\alpha_1\)AR-mediated persistent vasoconstriction in the afferent arterioles, the elevation of kidney adenosine may result in vasorelaxation via \(\alpha_2\)AR-mediated generation of nitric oxide \([53]\). \(\alpha_2\)AR agonists reduce renal vascular constriction without altering urine volume, sodium excretion, or renin release \([56]\). \(\alpha_2\)AR signaling plays a role in increasing medullary blood flow \([57,58]\). \(\alpha_2\)AR agonists do not display vasodilatory influence on isolated afferent arterioles but induce vasodilation in \(\alpha_2\)AR-induced constricted isolated afferent arterioles \([47]\), suggesting the counterbalancing effects between \(\alpha_1\)AR and \(\alpha_2\)AR on afferent arterioles.

Vasoconstriction induced by adenosine or \(\alpha_1\)AR agonists is blocked by pretreatment with pertussis toxin, indicating that Gi/o protein is involved. The PLC but not the AC signaling pathway plays a role in \(\alpha_1\)AR-mediated vasoconstriction in the afferent arterioles, since 1) adenylate cyclase inhibitor or PKA inhibitor does not induce vasoconstriction and 2) PLC inhibitor blocks adenosine-induced vasoconstriction in perfused afferent arterioles \([59]\). Adenosine increases intracellular calcium concentration leading to activation of NOS in afferent arterioles \([60]\). \(\alpha_1\)AR-mediated renal vasoconstriction is, in fact, aggravated by NOS inhibitor, suggesting that adenosine activates NOS to counteract \(\alpha_1\)AR-mediated vasoconstriction \([61]\).

Tubuloglomerular feedback

GFR, defined as the total volume of fluid filtered from the kidney glomeruli in a given period of time, is considered the optimal index for kidney function. TGF is a mechanism that helps to regulate single nephron GFR with the tubular transport activity or capacity. Adenosine signaling triggered by an increased sodium chloride concentration in distal tubules has been suggested to mediate TGF \([62]\).

An intact TGF mechanism requires local adenosine responding to the sodium chloride concentration in the tubular fluid at the macula densa \([63]\). Sodium levels in urine are sensed by the Na-K-2Cl cotransporter (NKCC2) in the macula densa. Activated NKCC2 leads to synthesis of adenosine and elevated adenosine levels in glomerular capillaries. Adenosine induces the contraction of afferent arterioles and dilation of efferent arterioles through activation of adenosine \(A_1\)AR and \(A_2\)AR, respectively, as described above; subsequently, single nephron GFR and the filtration pressure are suppressed. Regarding this, \(A_1\)AR knockout mice lack the TGF mechanism \([64,65]\). \(\alpha_2\)AR in efferent arterioles induces vasodilation and leads to reducing GFR \([66]\). Administration of an \(\alpha_2\)AR antagonist increases GFR without a change in renal blood flow, suggesting a tonic influence of endogenous adenosine on efferent arterioles \([14]\).

Secretion of renin

Adenosine inhibits secretion of renin in the kidney \([7,67]\). \(A_1\)AR antagonists increase plasma renin level, indicating a tonic inhibition of renin secretion by \(A_1\)AR activation \([68]\). Consistently, \(A_1\)AR knockout mice show increased renin expression and content in the kidney \([69]\). \(A_1\)AR activation, however, increases renin secretion \([70]\).

The role of adenosine and adenosine receptors in the diabetic kidney disease

Plasma levels of adenosine and its catabolic product, inosine, are increased in patients with DKD \([21,22]\). Interestingly, plasma adenosine is not different between healthy and diabetic patients without kidney disease \([21]\). Our urinary analysis of diabetic patients showed proportional increases in urinary adenosine excretion according to the stage of DKD (Fig. 4A). In addition, urinary excretion of adenosine shows positive correlation with proteinuria or microalbuminuria and negative correlation with creatinine clearance (data not shown). Levels of adenosine in kidney tissue and urine are increased in streptozotocin (STZ)-induced diabetic mice and rats \([16,71]\). The isolated glomeruli from diabetic rats contains six-fold higher adenosine compared to controls \([72]\). Adenosine in renal venous plasma but not in renal arterial plasma is significantly increased in diabetic rats compared to controls \([23]\), further suggesting increased synthesis and release of adenosine in diabetic kidneys. Additionally, kidney expression of CD73 transcription and protein are increased in STZ-induced diabetic mice and rats \([16,71]\). The expression of kidney adenosine kinase (AK) is decreased in diabetic rats, whereas administration of insulin to diabetic rats restores the...
kidney AK expression [73,74]. The administration of ADA in diabetic rats decreases the urinary excretion of proinflammatory cytokines and increases the anti-inflammatory cytokine [20], suggesting a pathogenic role of increased adenosine in DKD. The ENT, which modulates adenosine uptake, is reduced in diabetic kidneys, contributing to kidney fibrosis [19].

In contrast to the above studies, administration of adenosine, inhibition of cellular uptake of adenosine, and blockade of AK have all been shown to reduce kidney injury in diabetes [75-77]. In addition, CD73 knockout diabetic mice exhibited more severe kidney injury than wild-type diabetic mice [16]. The exact reason for these seemingly contradictory findings is not clear but may be due to experimental conditions such as duration of diabetes and severity of DKD.

We confirmed that expression of each AR is significantly increased in both STZ-induced type-1 diabetes (T1D) and db/db type-2 diabetes (T2D) mouse kidney (Fig. 5A, B). In addition, analysis of the Nephroseq database of human diabetic kidney biopsy samples showed increased AR expression (Fig. 5C). Our immunohistochemical analysis shows that A2AR expression is increased in minor glomerulopathy, minimal change disease, and DKD. Interestingly, A3AR expression is significantly increased only in DKD, and not in minor glomerulopathy or minimal change disease (Fig. 4B).

The involvement of adenosine and ARs in DKD has been also studied using genetically engineered models. Lack of A1AR in diabetic mice aggravates both hyperfiltration and glomerular injuries [78]. Both A2AR or A2BR knockout diabetic mice exhibited more severe kidney injury, as indicated by increased albumin excretion compared to wild-type diabetic mice [13,16]. The severity of DKD in A3AR knockout mice has not been reported, while A3AR knockout mice are protected against ischemia- or myoglobinuria-induced AKI [79]. Considering the ubiquitous distribution and diverse effects of each AR, future studies with spatiotemporal regulation of AR during the progression of DKD are necessary to understand their exact roles in diabetic kidneys.

The role of NKCC2/adenosine/AR in the renoprotective effect of SGLT2 inhibitors was particularly interesting. SGLT2 inhibitors have recently been shown to prevent the progression of DKD [80,81]. SGLT2 inhibitors reduce proximal reabsorption of sodium chloride and increase sodium chloride concentrations at the macula densa, fa-
cilitating NKCC2 transporter which subsequently leads to production of adenosine, activates the TGF mechanism, and reduces hyperfiltration (summarized in section of Tubuloglomerular feedback) associated with DKD [82]. It is speculated that upregulated SGLT2, even in the presence of hyperfiltration in diabetic kidney, will reduce sodium chloride delivered to macular densa, inactivate NKCC2, decrease the adenosine/AR axis in TGF, and maintain hyperfiltration. This speculation is supported by the fact that SGLT2 inhibition in T1D patients increases urinary adenosine excretion [83]. Restoration of TGF as a result of increased extracellular adenosine (due to inhibition of ENT) also has been suggested as a renoprotective mechanism of dipyridamole in STZ-induced diabetic rats [84].

Therapeutic applications of adenosine receptor modulators against diabetic kidney disease

The consumption of more than two cups per day of coffee, which contains the nonselective adenosine antagonist caffeine, for 2 weeks improved eGFR in DKD patients [10], and there is an inverse relationship between caffeine consumption and mortality in CKD patients [85]. In addition, a nonselective AR antagonist, 8-(p-sulfophenyl) theophylline, effectively decreases kidney fibrosis and improves kidney function [86]. These data suggest that well-designed AR antagonists may become novel protective agents against DKD.

With respect to specific AR subtype, A₁AR antagonists consistently prevent experimental DKD [18–20] as summarized in Table 1 and Fig. 6. LJ2698 and MRS1220, the A₁AR antagonists, attenuate fibrosis, oxidative stress, and inflammation in db/db mice [18] and STZ diabetic rats [19,20], respectively. Our previous study showed that LJ1888, a prototype compound of LJ2698, prevents fibrosis in obstructed kidney as well [87]. Inhibition of transforming growth factor-β1 (TGF-β1)-induced extracellular matrix (ECM) upregulation via A₁AR-specific small interfering RNA in renal proximal epithelial cells [87] confirmed the fibrotic effects of A₁AR in the kidney. We have shown that LJ1888 reduced obstruction- or TGF-β1-induced upregulation of lysyl oxidase, which induces cross-linking of ECM, suggesting that A₁AR antagonists may also regulate ECM accumulation via posttranslational regulation [87]. Yet, more studies are needed to confirm the therapeutic effect of A₁AR antagonists against DKD, because decreased proinflammatory cytokines in response to A₁AR agonists and increased proinflammatory cytokines in A₁AR knockout mice under sepsis-induced kidney injury have been reported [88].

Inflammation plays a key role in the development of DKD [1], and A_{2a}AR acts as a strong anti-inflammatory effector responding to extracellular adenosine [89]. In agreement with this, the A_{2a}AR agonists ATL146 or CGS21680 attenuate kidney injury including inflammation as well as fibrosis in STZ-induced diabetic rats [13–15]. A_{2a}AR activation also reduces cytokine and chemokine expression.
Name	Ligand type	Structure	Model of DKD	Effects	Reference
ATL146 (DWH146e)	A2A AR agonist	![ATL146 Structure](image)	STZ-induced diabetic rats	↓ BG, ↓ UAE and P_c, ↓ Urinary MCP-1, IFN-γ, TNF-α, ↓ Fibronectin and collagen mRNA expression in kidney	[13]
CGS21680	A2A AR agonist	![CGS21680 Structure](image)	STZ-induced diabetic rats	↓ Hyperfiltration, ↓ Proteinuria and urinary TNF-α, ↓ ED-1 expression and glomerular hypertrophy in kidney	[14] [15]
Bay60-6583	A2B AR agonist	![Bay60-6583 Structure](image)	STZ-induced diabetic mice	↓ GFR and UAE, ↓ Urinary MCP-1, ↓ VEGF and nephrin mRNA expression, ↑Nephrin expression in kidney	[16]
MRS1754	A2B AR antagonist	![MRS1754 Structure](image)	STZ-induced diabetic rats	↓ BG, ↓ Proteinuria, ↓ VEGF and α-SMA expression, ↑Nephrin expression in kidney	[12]
			Glomeruli exposed to high glucose	↓ Proteinuria, ↓ VEGF and collagen mRNA expression in kidney	[17,39]
			STZ-induced diabetic mice	↓ Serum creatinine, BUN, UAE, ↓ VEGF expression	[17]
LIT2698	A3 AR antagonist	![LIT2698 Structure](image)	db/db mice	↓ UAE and urinary Kim-1, ↓ Proinflammatory, and oxidative stress markers, ↓ Lipid accumulation, ↑ PG1α, cytochrome B, TFAM, and NRF1 expression in kidney	[18]
MRS1220	A3 AR antagonist	![MRS1220 Structure](image)	HK2 cells exposed to high glucose and TGF-β	↓ Fibronectin and α-SMA expression, ↓ α-SMA expression in kidney	[19] [20]
			STZ-induced diabetic rats	↓ Urinary inflammatory cytokines, ↓ NF-κB, cleaved caspase 1, and cleaved caspase 3 activity, ↑ α-SMA expression in kidney	

AR, adenosine receptor; α-SMA, α-smooth muscle actin; BG, blood glucose; BUN, blood urea nitrogen; DKD, diabetic kidney disease; GFR, glomerular filtration rate; IFN-γ, interferon gamma; Kim-1, kidney injury molecule; MCP-1, monocyte chemoattracted protein-1; mRNA, messenger RNA; NRF1, nuclear respiratory factor 1; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; P_c, plasma creatinine; PG1α, proliferator-activated receptor-gamma coactivator-1; STZ, streptozotocin; TFAM, mitochondrial transcription factor A; TGF-β, transforming growth factor-β; TNF-α, tumor necrosis factor-α; UAE, urinary albumin excretion; VEGF, vascular endothelial growth factor.
in the kidney tubular epithelial cells under hypoxia and inhibits the macrophage infiltration after ischemia-reperfusion [90,91]. A2A AR activation, in fact, attenuates kidney fibrosis and suppresses the epithelial-mesenchymal transition in various kidney fibrosis models [92,93].

Since A3 AR antagonists or A2A AR agonists protect against DKD, it is reasonable to develop AR modulators with dual action as an A3 AR antagonist and an A2A AR agonist in order to have better protective effects against DKD. We showed for the first time that LJ4459, a newly synthesized dual-acting ligand, prevents the progression of tubulointerstitial fibrosis in obstructed kidneys [94]. It will be interesting to determine whether this dual-acting ligand has better therapeutic efficacy against DKD than an A3 AR antagonist or an A2A AR agonist.

Opposing pro- and anti-therapeutic roles of A2B AR in DKD have been reported. The A2B AR agonist Bay60-6583 attenuates diabetic kidney fibrosis [16]. On the contrary, 1) Bay60-6583 promotes profibrotic activation of kidney fibroblasts [95] and 2) MRS1754, the A2B AR antagonist, attenuates profibrotic effects along with reduced vascular endothelial growth factor expression in diabetic rats and mice [12,17]. An anti-inflammatory role of A1 AR in ischemia/reperfusion kidney injury has been reported [96-98], but the role of A1 AR modulators in DKD remains to be studied.

Oxidative stress plays a key role in the development and progression of DKD [99]. Diabetic stress including high glucose and lipids increases reactive oxygen species (ROS), and mitochondrial dysfunction and nicotinamide adenine dinucleotide phosphate oxidase (NOX) play key, if not all, roles in increased ROS under diabetic conditions [100]. A1 AR antagonists reduce adriamycin-induced NOS up-regulation in the kidney [101], and A2A AR or A3 AR knockout reduces NOX-derived oxidative stress in mice [102,103].

The involvement of adenosine on metabolism should be considered, since hyperglycemia is a key player in DKD [1]. The adenosine system has been suggested to play a role in glucose homeostasis, contributing to the pathophysiology of T1D and T2D [3]. Caffeine reduces plasma glucose and increases pancreatic insulin in STZ diabetic rats [104]. Pharmacological inhibition of A1 AR or knockout of A1 AR in mice enhances basal insulin secretion [105,106]. On the other hand, A2A AR activation increases insulin secretion and improves beta-cell function by inhibiting the inflammatory response [107,108]. The absence of A3 AR in mice improved a metabolic phenotype including reduced glucose clearance and increased insulin compared to wild-type mice [103] (Fig. 6). Although further mechanistic studies are required, activation of A2A AR and inhibition of A1 AR or A3 AR improves insulin resistance and hyperglycemia, which may play a role in preventing DKD.

While various AR agonists or antagonists are under clin-
ical trials, according to clinicaltrials.gov, targeting inflammatory, cancer, and cardiovascular diseases, none of the AR modulators are U.S. Food and Drug Administration-approved or under clinical trials against DKD at present.

Conclusion

The severity of DKD and limited therapeutic modality underscores the urgency to develop new therapeutic strategies based on pathogenesis of DKD. In this review, we summarized the (patho)physiological role of adenosine and ARs in diabetic kidneys and updated AR modulators showing a protective effect in experimental DKD. There has been no AR modulator in clinical trials against DKD. Considering 1) the protective effect of caffeine on kidney injury in diabetic patients, 2) increased plasma and urinary excretion of adenosine under diabetic stress, 3) upregulation of expression of each AR in diabetic kidneys, and 4) the protective effect of AR modulators in experimental DKD models, we propose AR modulators as a new therapeutic option to treat DKD. Detailed mechanistic studies on the pharmacology of AR modulators, including the role of diabetes-induced posttranslational modification such as glycosylation and palmitoylation, in AR function will help us to develop effective first-in-class AR modulator agents for DKD.

Conflicts of interest

All authors have no conflicts of interest to declare.

Funding

The preparation of this manuscript was supported by a National Research Foundation grant (No. 2020R1A6A3A13076183), Republic of Korea, and by Ewha Womans University (No. 1-2021-1301-001-1).

Authors’ contributions

Conceptualization, Funding acquisition: ESP, HH
Supervision: HH
Writing–original draft: ESP
Writing–review & editing: All authors
All authors read and approved the final manuscript.

ORCID

Eun Seon Pak, https://orcid.org/0000-0002-5184-2721
Jin Joo Cha, https://orcid.org/0000-0001-6779-0113
Dae Ryong Cha, https://orcid.org/0000-0003-0063-2844
Keizo Kanasaki, https://orcid.org/0000-0002-9563-502X
Hunjoo Ha, https://orcid.org/0000-0002-5601-1265

References

1. Alicic RZ, Rooney MT, Tuttle KR. Diabetic kidney disease: challenges, progress, and possibilities. *Clin J Am Soc Nephrol* 2017;12:2032–2045.
2. Yamazaki T, Mimura I, Tanaka T, Nangaku M. Treatment of diabetic kidney disease: current and future. *Diabetes Metab J* 2021;45:11–26.
3. Antonioli L, Blandizzi C, Csóka B, Pacher P, Haskó G. Adenosine signalling in diabetes mellitus—pathophysiology and therapeutic considerations. *Nat Rev Endocrinol* 2015;11:228–241.
4. Fredholm BB, IJzerman AP, Jacobson KA, Klotz KN, Linden J. International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. *Pharmacol Rev* 2001;53:527–552.
5. Dwyer KM, Kishore BK, Robson SC. Conversion of extracellular ATP into adenosine: a master switch in renal health and disease. *Nat Rev Nephrol* 2020;16:509–524.
6. Menzies RI, Tam FW, Unwin RJ, Bailey MA. Purinergic signaling in kidney disease. *Kidney Int* 2017;91:315–323.
7. Osswald H, Mühlbauer B, Vallon V. Adenosine and tubuloglomerular feedback. *Blood Purif* 1997;15:243–252.
8. Borea PA, Gessi S, Merighi S, Vincenzi E, Varani K. Pathological overproduction: the bad side of adenosine. *Br J Pharmacol* 2017;174:1945–1960.
9. Modi AA, Feld JJ, Park Y, et al. Increased caffeine consumption is associated with reduced hepatic fibrosis. *Hepatology* 2010;51:201–209.
10. Kim BH, Park YS, Noh HM, Sung JS, Lee JK. Association between coffee consumption and renal impairment in Korean women with and without diabetes: analysis of the fourth Korea National Health and Nutrition Examination Survey in 2008. *Korean J Fam Med* 2013;34:265–271.
11. Cronstein BN. Adenosine receptors and fibrosis: a translational review. *F1000 Biol Rep* 2011;3:21.
12. Cárdenas A, Toledo C, Oyarzún C, et al. Adenosine A(2B) receptor-mediated VEGF induction promotes diabetic glomerulopa-
13. Awad AS, Huang L, Ye H, et al. Adenosine A2A receptor activation attenuates inflammation and injury in diabetic nephropathy. *Am J Physiol Renal Physiol* 2006;290:F828–F837.

14. Persson P, Hansell P, Palm F. Reduced adenosine A2a receptor-mediated efferent arteriolar vasodilation contributes to diabetes-induced glomerular hyperfiltration. *Kidney Int* 2015;87:109–115.

15. Persson P, Friederich-Persson M, Fasching A, Hansell P, Inagi R, Palm F. Adenosine A2 receptor stimulation prevents proteinuria in diabetic rats by promoting an anti-inflammatory phenotype without affecting oxidative stress. *Acta Physiol (Oxf)* 2015;214:311–318.

16. Tak E, Ridyard D, Kim JH, et al. CD73-dependent generation of adenosine and endothelial Adora2b signaling attenuate diabetic nephropathy. *J Am Soc Nephrol* 2014;25:547–563.

17. Patel L, Thaker A. The effects of adenosine A2B receptor inhibition on VEGF and nitric oxide axis-mediated renal function in diabetic nephropathy. *Ren Fail* 2014;36:916–924.

18. Dorotea D, Cho A, Lee G, et al. Orally active, species-independent novel A3 adenosine receptor antagonist protects against kidney injury in db/db mice. *Exp Mol Med* 2018;50:1–14.

19. Kretschmar C, Oyarzún C, Villablanca C, et al. Reduced adenosine uptake and its contribution to signaling that mediates profibrotic activation in renal tubular epithelial cells: implication in diabetic nephropathy. *PLoS One* 2016;11:e0147430.

20. Garrido W, Jara C, Torres A, et al. Blockade of the adenosine A3 receptor attenuates caspase 1 activation in renal tubule epithelial cells and decreases interleukins IL-1β and IL-18 in diabetic rats. *Int J Mol Sci* 2019;20:4531.

21. Xia JF, Liang QL, Liang XP, et al. Ultraviolet and tandem mass spectrometry for simultaneous quantification of 21 pivotal metabolites in plasma from patients with diabetic nephropathy. *J Chromatogr B Analyt Technol Biomed Life Sci* 2009;877:1930–1936.

22. Huang M, Liang Q, Li P, et al. Biomarkers for early diagnosis of type 2 diabetic nephropathy: a study based on an integrated biomarker system. *Mol Biosyst* 2013;9:2134–2141.

23. Angielski S, Jakubowski Z, Pawelczyk T, Piec G, Redlak M. Renal handling and metabolism of adenosine in diabetic rats. *Contriob Nephrol* 1989;73:52–58.

24. Jacobson KA, Reitman ML. Adenosine-related mechanisms in non-adenosine receptor drugs. *Cells* 2020;9:956.

25. Borea PA, Gessi S, Merighi S, Vincenzi E, Varani K. Pharmacology of adenosine receptors: the state of the art. *Physiol Rev* 2018;98:1591–1625.

26. Yegutkin GG. Nucleotide- and nucleoside-converting ectoenzymes: important modulators of purinergic signalling cascade. *Biochim Biophys Acta* 2008;1783:673–694.

27. Dai Y, Zhang W, Wen J, Zhang Y, Kellems RE, Xia Y. A2B adenosine receptor-mediated induction of IL-6 promotes CKD. *J Am Soc Nephrol* 2011;22:890–901.

28. Alnouri MW, Jepards S, Casari A, Schiedel AC, Hinz S, Müller CE. Selectivity is species-dependent: characterization of standard agonists and antagonists at human, rat, and mouse adenosine receptors. *Purinergic Signal* 2015;11:389–407.

29. Haskó G, Linden J, Cronstein B, Pacher P. Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. *Nat Rev Drug Discov* 2008;7:759–770.

30. Schulte G, Fredholm BB. Signalling from adenosine receptors to mitogen-activated protein kinases. *Cell Signal* 2003;15:813–827.

31. Gessi S, Bencivenni S, Battistello E, et al. Inhibition of A2A adenosine receptor signaling in cancer cells proliferation by the novel antagonist TP455. *Front Pharmacol* 2017;8:888.

32. Fang Y, Olah ME. Cyclic AMP-dependent, protein kinase A-independent activation of extracellular signal-regulated kinase 1/2 following adenosine receptor stimulation in human umbilical vein endothelial cells: role of exchange protein activated by cAMP 1 (Epac1). *J Pharmacol Exp Ther* 2007;322:1189–1200.

33. Ochaion A, Bar-Yehuda S, Cohen S, et al. The A3 adenosine receptor agonist CF502 inhibits the PI3K, PKB/Akt and NF-kappa B signaling pathway in synoviocytes from rheumatoid arthritis patients and in adjuvant-induced arthritis rats. *Biochem Pharmacol* 2008;76:482–494.

34. Fishman P, Bar-Yehuda S, Ohana G, et al. An agonist to the A3 adenosine receptor inhibits colon carcinoma growth in mice via modulation of GSK-3 beta and NF-kappa B. *Oncogene* 2004;23:2465–2471.

35. Finco DR. Kidney function. In: Kaneko JJ, Harvey JW, Bruss ML, editors. Clinical biochemistry of domestic animals. New York: Academic Press; 1997. p. 441–484.

36. Oyarzún C, Garrido W, Alarcón S, et al. Adenosine contribution to normal renal physiology and chronic kidney disease. *Mol Aspects Med* 2017;55:75–89.

37. Vitzthum H, Weiss B, Bachleitner W, Krämer BK, Kurtz A. Gene expression of adenosine receptors along the nephron. *Kidney Int* 2004;65:1180–1190.

38. Pawelczyk T, Grden M, Rzepko R, Sakowicz M, Szutowicz A. Region-specific alterations of adenosine receptors expression level in kidney of diabetic rat. *Am J Pathol* 2005;167:315–325.
39. Valladares D, Quezada C, Montecinos P, et al. Adenosine A(2B) receptor mediates an increase on VEGF-A production in rat kidney glomeruli. Biochem Biophys Res Commun 2008;366:180–185.

40. Tang Y, Zhou L. Characterization of adenosine A1 receptors in human proximal tubule epithelial (HK-2) cells. Recept Channels 2003;9:67–75.

41. Al-Mashhadi RH, Skøt O, Vanhoutte PM, Hansen PB. Activation of A(2) adenosine receptors dilates cortical efferent arterioles in mouse. Kidney Int 2009;75:793–799.

42. Park J, Shrestha R, Qiu C, et al. Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of kidney disease. Science 2018;360:758–763.

43. Wilson RF, Wyche K, Christensen BV, Zimmer S, Laxson DD. Effects of adenosine on human coronary arterial circulation. Circulation 1990;82:1595–1606.

44. Marraccini P, Fedele S, Marzilli M, et al. Adenosine-induced renal vasoconstriction in man. Cardiovasc Res 1996;32:949–953.

45. Osswald H. Renal effects of adenosine and their inhibition by theophylline in dogs. Naunyn Schmiedebers Arch Pharmacol 1975;288:79–86.

46. Jackson EK, Zhu C, Tofovic SP. Expression of adenosine receptors in the preglomerular microcirculation. Am J Physiol Renal Physiol 2002;283:F41–F51.

47. Lu Y, Zhang R, Ge Y, et al. Identification and function of adenosine A3 receptor in afferent arterioles. Am J Physiol Renal Physiol 2015;308:F1020–F1025.

48. Vallon V, Mühlbauer B, Osswald H. Adenosine and kidney function. Physiol Rev 2006;86:901–940.

49. Vallon V, Osswald H. Adenosine receptors and the kidney. Handb Exp Pharmacol 2009;2009:443–470.

50. Spielman WS, Osswald H. Characterization of the postocclusive response of renal blood flow in the cat. Am J Physiol 1978;235:F286–F290.

51. Osswald H, Spielman WS, Knox FG. Mechanism of adenosine-mediated decreases in glomerular filtration rate in dogs. Circ Res 1978;43:465–469.

52. Aki Y, Tomohiro A, Nishiyama A, Kiyomoto K, Kimura S, Abe Y. Effects of KW-3902, a selective and potent adenosine A1 receptor antagonist, on renal hemodynamics and urine formation in anesthetized dogs. Pharmacology 1997;55:193–201.

53. Hansen PB, Hashimoto S, Oppermann M, Huang Y, Briggs JP, Schnermann J. Vasconstrictor and vasodilator effects of adenosine in the mouse kidney due to preferential activation of A1 or A2 adenosine receptors. J Pharmacol Exp Ther 2005;315:1150–1157.

54. Cook CB, Churchill PC. Effects of renal derivation on the renal responses of anesthetized rats to cyclohexyladenosine. Can J Physiol Pharmacol 1984;62:934–938.

55. Wehbrecht H, Lorenz JN, Briggs JP, Schnermann J. Vasomotor effects of purinergic agonists in isolated rabbit afferent arterioles. Am J Physiol 1992;263:F1026–F1033.

56. Levens N, Beil M, Schulz R. Intrarenal actions of the new adenosine agonist CGS 21680A, selective for the A2 receptor. J Pharmacol Exp Ther 1991;257:1013–1019.

57. Zou AP, Nithipatikom K, Li PL, Cowley AW Jr. Role of renomedullary adenosine in the control of blood flow and sodium excretion. Am J Physiol 1999;276:F790–F798.

58. Agmon Y, Dinour D, Brezis M. Disparate effects of adenosine A1 and A2 receptor agonists on intrarenal blood flow. Am J Physiol 1993;265:F802–F806.

59. Hansen PB, Castrop H, Briggs J, Schnermann J. Adenosine induces vasoconstriction through Gi-dependent activation of phospholipase C in isolated perfused afferent arterioles of mice. J Am Soc Nephrol 2003;14:2457–2465.

60. Hansen PB, Friis UG, Uhrenholt TR, Briggs J, Schnermann J. Intracellular signalling pathways in the vasoconstrictor response of mouse afferent arterioles to adenosine. Acta Physiol (Oxf) 2007;191:89–97.

61. Okumura M, Miura K, Yamashita Y, Yamamoto K. Role of endothelium-derived relaxing factor in the in vivo renal vascular action of adenosine in dogs. J Pharmacol Exp Ther 1992;260:1262–1267.

62. Arulkumaran N, Turner CM, Sixma ML, Singer M, Unwin R, Tam FW. Purinergic signaling in inflammatory renal disease. Front Physiol 2013;4:194.

63. Thomson S, Bao D, Deng A, Vallon V. Adenosine formed by 5′-nucleotidase mediates tubuloglomerular feedback. J Clin Invest 2000;106:289–298.

64. Sällström J, Carlsson PO, Fredholm BB, Larsson E, Persson AE, Palm F. Diabetes-induced hyperfiltration in adenosine A(1)-receptor deficient mice lacking the tubuloglomerular feedback mechanism. Acta Physiol (Oxf) 2007;190:253–259.

65. Vallon V, Richter K, Huang DY, Rieg T, Schnermann J. Functional consequences at the single-nephron level of the lack of adenosine A1 receptors and tubuloglomerular feedback in mice. Pflugers Arch 2004;448:214–221.

66. Ren Y, Garvin JL, Carretero OA. Efferent arteriole tubuloglomerular feedback in the renal parenchyma. Kidney Int 2001;59:222–229.

67. Tagawa H, Vander AJ. Effects of adenosine compounds on renal
function and renin secretion in dogs. Circ Res 1970;26:327–338.
68. Jackson EK. Adenosine: a physiological brake on renin release. Annu Rev Pharmacol Toxicol 1991;31:1–35.
69. Schweda F, Wagner C, Krämer BK, Schnermann J, Kurtz A. Preserved macula densa-dependent renin secretion in A1 adenosine receptor knockout mice. Am J Physiol Renal Physiol 2003;284:F770–F777.
70. Churchill PC, Bidani A. Renal effects of selective adenosine receptor agonists in anesthetized rats. Am J Physiol 1987;252:F299–F303.
71. Oyarzún C, Salinas C, Gómez D, et al. Increased levels of adenosine and ecto 5′-nucleotidase (CD73) activity precede renal alterations in experimental diabetic rats. Biochem Biophys Res Commun 2015;468:354–359.
72. San Martín R, Valladares D, Roa H, Troncoso E, Sobrevia L. Do adenosine receptors offer new therapeutic options for diabetic nephropathy? Curr Vasc Pharmacol 2009;7:450–459.
73. Pawelczyk T, Sakowicz M, Szczepanska-Konkel M, Angielski S. Decreased expression of adenosine kinase in streptozotocin-induced diabetes mellitus rats. Arch Biochem Biophys 2000;375:1–6.
74. Sakowicz M, Pawelczyk T. Insulin restores expression of adenosine kinase in streptozotocin-induced diabetes mellitus rats. Mol Cell Biochem 2002;236:163–171.
75. Pye C, Elsherbiny NM, Ibrahim AS, et al. Adenosine kinase inhibition protects the kidney against streptozotocin-induced diabetes through anti-inflammatory and anti-oxidant mechanisms. Pharm Res 2014;31:3:F184–F1.
76. Elsherbiny NM, Al-Gayyar MM, Abd El Galil KH. Nephroprotective role of dipyridamole in diabetic nephropathy: effect on inflammation and apoptosis. Life Sci 2015;143:8–17.
77. Taşkıran E, Erbaş O, Yiğittürk G, Meral A, Akar H, Taşkıran D. Exogenously administered adenosine attenuates renal damage in streptozotocin-induced diabetic rats. Ren Fail 2016;38:1276–1282.
78. Faulhaber-Walter R, Chen L, Oppermann M, et al. Lack of A1 adenosine receptors augments diabetic hyperfiltration and glomerular injury. J Am Soc Nephrol 2008;19:722–730.
79. Lee HT, Ota-Setlik A, Xu H, D’Agati VD, Jacobson MA, Emala CW. A3 adenosine receptor knockout mice are protected against ischemia- and myoglobinuria-induced renal failure. Am J Physiol Renal Physiol 2003;284:F267–F273.
80. Pareek A, Chandurkar N, Naidu K. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med 2016;375:1800.
81. Morita M, Kanasaki K. Sodium-glucose cotransporter-2 inhibitors for diabetic kidney disease: targeting Warburg effects in proximal tubular cells. Diabetes Metab 2020;46:353–361.
82. Thomson SC, Rieg T, Miracle C, et al. Acute and chronic effects of SGLT2 blockade on glomerular and tubular function in the early diabetic rat. Am J Physiol Renal Physiol 2012;302:F75–R83.
83. Rajasekeran H, Lytvyn Y, Bozovic A, et al. Urinary adenosine excretion in type 1 diabetes. Am J Physiol Renal Physiol 2017;313:F184–F191.
84. Vallon V, Osswald H. Dipyridamole prevents diabetes-induced alterations of kidney function in rats. Naunyn Schmiedebergs Arch Pharmacol 1994;349:217–222.
85. Bigotte Vieira M, Magriço R, Viegas Dias C, Leitão L, Neves JS. Caffeine consumption and mortality in chronic kidney disease: a nationally representative analysis. Nephrol Dial Transplant 2019;34:974–980.
86. Tang J, Jiang X, Zhou Y, Xia B, Dai Y. Increased adenosine levels contribute to ischemic kidney fibrosis in the unilateral ureteral obstruction model. Exp Ther Med 2015;9:737–743.
87. Lee J, Hwang I, Lee JH, Lee HW, Jeong LS, Ha H. The selective A3AR antagonist LJ-1888 ameliorates UUO-induced tubulointerstitial fibrosis. Am J Pathol 2013;183:1488–1497.
88. Lee HT, Kim M, Joo JD, Gallos G, Chen JF, Emala CW. A3 adenosine receptor activation decreases mortality and renal and hepatic injury in murine septic peritonitis. Am J Physiol Renal Integr Comp Physiol 2006;291:R959–R969.
89. Haskó G, Pacher P. A2A receptors in inflammation and injury: lessons learned from transgenic animals. J Leukoc Biol 2008;83:447–455.
90. Day YJ, Huang L, McDuffie MJ, et al. Renal protection from ischemia mediated by A2A adenosine receptors on bone marrow-derived cells. J Clin Invest 2003;112:883–891.
91. Day YJ, Huang L, Ye I, Linden J, Okusa MD. Renal ischemia-reperfusion injury and adenosine 2A receptor-mediated tissue protection: role of macrophages. Am J Physiol Renal Physiol 2005;288:F722–F731.
92. Garcia GE, Truong LD, Chen JF, Johnson RJ, Feng L. Adenosine A(2A) receptor activation prevents progressive kidney fibrosis in a model of immune-associated chronic inflammation. Kidney Int 2011;80:378–388.
93. Xiao H, Shen HY, Liu W, et al. Adenosine A2A receptor: a target for regulating renal interstitial fibrosis in obstructive nephropathy. PLoS One 2013;8:e60173.
94. Pak ES, Jeong LS, Hou X, Tripathi SK, Lee J, Ha H. Dual actions of

www.krcp-ksn.org S87
A2A and A3 adenosine receptor ligand prevents obstruction-induced kidney fibrosis in mice. *Int J Mol Sci* 2021;22:5667.

95. Wilkinson PF, Farrell FX, Morel D, Law W, Murphy S. Adenosine signaling increases proinflammatory and profibrotic mediators through activation of a functional adenosine 2B receptor in renal fibroblasts. *Ann Clin Lab Sci* 2016;46:339–345.

96. Lee HT, Gallos G, Nasr SH, Emala CW. A1 adenosine receptor activation inhibits inflammation, necrosis, and apoptosis after renal ischemia-reperfusion injury in mice. *J Am Soc Nephrol* 2004;15:102–111.

97. Lee HT, Xu H, Nasr SH, Schnermann J, Emala CW. A1 adenosine receptor knockout mice exhibit increased renal injury following ischemia and reperfusion. *Am J Physiol Renal Physiol* 2004;286:F298–F306.

98. Kim JY, Kim M, Ham A, et al. IL-11 is required for A1 adenosine receptor-mediated protection against ischemic AKI. *J Am Soc Nephrol* 2013;24:1558–1570.

99. Ha H, Hwang IA, Park JH, Lee HB. Role of reactive oxygen species in the pathogenesis of diabetic nephropathy. *Diabetes Res Clin Pract* 2008;82 Suppl 1:S42–S45.

100. Bae YS, Choi MK, Lee WJ. Dual oxidase in mucosal immunity and host-microbe homeostasis. *Trends Immunol* 2010;31:278–287.

101. Min HS, Cha JJ, Kim K, et al. Renoprotective effects of a highly selective A3 adenosine receptor antagonist in a mouse model of adriamycin-induced nephropathy. *J Korean Med Sci* 2016;31:1403–1412.

102. Yang T, Gao X, Sandberg M, et al. Abrogation of adenosine A1 receptor signalling improves metabolic regulation in mice by modulating oxidative stress and inflammatory responses. *Diabetologia* 2015;58:1610–1620.

103. Yang T, Zollbrecht C, Winerdal ME, et al. Genetic abrogation of adenosine A3 receptor prevents uninephrectomy and high salt-induced hypertension. *J Am Heart Assoc* 2016;5:e003868.

104. Kagami K, Morita H, Onda K, Hirano T, Oka K. Protective effect of caffeine on streptozotocin-induced beta-cell damage in rats. *J Pharm Pharmacol* 2008;60:1161–1165.

105. Zywert A, Szukuleska K, Szukuleski T. Effects of adenosine A(1) receptor antagonism on insulin secretion from rat pancreatic islets. *Physiol Res* 2011;60:905–911.

106. Johansson SM, Salehi A, Sandström ME, et al. A1 receptor deficiency causes increased insulin and glucagon secretion in mice. *Biochem Pharmacol* 2007;74:1628–1635.

107. Ohtani M, Oka T, Ohura K. Possible involvement of A₂A and A₂ receptors in modulation of insulin secretion and β-cell survival in mouse pancreatic islets. *Gen Comp Endocrinol* 2013;187:86–94.

108. Chhabra P, Wang K, Zeng Q, et al. Adenosine A(2A) agonist administration improves islet transplant outcome: evidence for the role of innate immunity in islet graft rejection. *Cell Transplant* 2010;19:597–612.