EXISTENCE THEOREM FOR NON-ABELIAN VORTICES
IN THE AHARONY–BERGMAN–JAFFERIS–MALDACENA
THEORY

RUIFENG ZHANG AND MEILI ZHU

Abstract. In this paper, we discuss the existence theorem for multiple vortex solutions in the non-Abelian Chern–Simons–Higgs field theory developed by Aharony, Bergman, Jafferis, and Maldacena, on a doubly periodic domain. The governing equations are of the BPS type and derived by Auzzi and Kumar in the mass-deformed framework labeled by a continuous parameter. Our method is based on fixed point method.

1. Introduction

Vortices in non-Abelian gauge field theory play important roles in confinement mechanism and are governed by systems of nonlinear elliptic equations of complicated structures [2, 4, 7, 8, 10, 11, 12, 13, 14, 16, 22, 28, 30]. In this paper, we will focus on the vortex equations in the non-Abelian Chern–Simons–Higgs field theory developed by Aharony, Bergman, Jafferis, and Maldacena [1], known as the ABJM model, on a doubly periodic domain. The governing equations are of the BPS type and derived by Auzzi and Kumar [5] in the mass-deformed framework labeled by a continuous parameter. Developing and extending the methods of [6, 15, 17, 18, 19, 20, 21, 24, 27], we obtain the existence of a multiple vortex solution.

Recall that the ABJM model [1] is a Chern–Simons–Higgs theory within which the matter fields are four complex scalars,

\[C^I = (Q^1, Q^2, R^1, R^2), \quad I = 1, 2, 3, 4, \]

in the bifundamental matter field \((\mathbf{N}, \overline{\mathbf{N}}) \) representation of the gauge group \(U(N) \times U(N) \), which hosts two gauge fields, \(A_\mu \) and \(B_\mu \). The Chern–Simons action associated to the two gauge group \(A_\mu \) and \(B_\mu \) of levels \(+k\) and \(-k\) is...
given by the Lagrangian density

\[L_{\text{CS}} = \frac{k}{4\pi} \epsilon^{\mu\nu\gamma} \text{Tr} \left(A_\mu \partial_\nu A_\gamma - \frac{2i}{3} A_\mu A_\nu A_\gamma - B_\mu \partial_\nu B_\gamma - \frac{2i}{3} B_\mu B_\nu B_\gamma \right), \]

where the gauge-covariant derivatives on the bifundamental field \(s \) are defined as

\[D_\mu C^I = \partial_\mu C^I + i A_\mu C^I - i C^I B_\mu, \quad I = 1, 2, 3, 4. \]

The scalar potential of the mass deformed theory can be written in a compact way as [9]

\[V = \text{Tr}(M^\alpha M^\alpha + N^\alpha N^\alpha), \]

where

\[M^\alpha = \rho Q^\alpha + \frac{2\pi}{k} (2Q^\alpha Q^\beta Q^\beta + R^\alpha R^\beta R^\beta - Q^\alpha R^\beta R^\beta) \]

\[N^\alpha = -\rho R^\alpha + \frac{2\pi}{k} (2R^\alpha R^\beta R^\beta + Q^\alpha Q^\beta R^\beta - R^\alpha Q^\beta Q^\beta) \]

where the Kronecker symbol \(\epsilon^{\alpha\beta} \) (\(\alpha, \beta = 1, 2 \)) is used to lower or raise indices, and \(\rho > 0 \) a massive parameter. Thus, when the spacetime metric is of the signature \((+ - -)\), the total (bosonic) Lagrangian density of ABJM model can be written as

\[L = -L_{\text{CS}} + \text{Tr}([D_\mu C^I]'^* [D^\mu C^I]) - V, \]

which is of a pure Chern–Simons type for the gauge field sector. The equations of motion of the Lagrangian (1.7) are rather complicated. As in [5] and [6], we concentrate on a reduced situation where (say) \(R^\alpha = 0, N = 3 \). In the static limit, Auzzi and Kumar [5] showed that these equations may be reduced into the first-order BPS vortex equations without assuming radial symmetry

\[(\partial_1 + i\partial_2)\kappa = i(a_1 + ia_2)\kappa, \]

\[(\partial_1 + i\partial_2)\phi = -i([a_1 + ia_2] - [b_1 + ib_2])\phi, \]

\[a_{12} = -\frac{\lambda}{2}(2|\kappa|^2 - |\phi|^2 - 1), \]

\[b_{12} = -\lambda(|\phi|^2 - 1), \]

where \(\kappa \) is a real-valued scalar field, \(\phi \) a complex-valued scalar field, and \(a_j \) and \(b_j \) are two real-valued gauge potential vector fields, \(a_{jk} = \partial_j a_k - \partial_k a_j \) and \(\lambda = 4\rho^2 \).

We shall look for solutions of these equations so that \(\kappa \) never vanishes but \(\phi \) vanishes exactly at the finite set of points

\[Z = \{p_1, p_2, \ldots, p_n\}. \]
Set $u = \ln \kappa^2$ and $w = \ln |\phi|^2$ and note that $|\phi|$ behaves like $|x - p_s|$ for x near p_s ($s = 1, \ldots, n$). We see that u and w satisfy the equations [6]

$\Delta u = \lambda (2e^u - e^w - 1)$, \hspace{1cm} (1.13)

$\Delta u + \Delta w = 2\lambda (e^w - 1) + 4\pi n \sum_{s=1}^{n} \delta_{p_s}(x)$, \hspace{1cm} (1.14)

where we have included our consideration of the zero set Z of ϕ as given in (1.12).

Chen, Zhang and Zhu [6] studied vortex equations in a supersymmetric Chern–Simons–Higgs theory in the ABJM model. They obtained a series of existence and uniqueness theorems for multiple vortex solutions of the ABJM model, over \mathbb{R}^2 and on a doubly periodic domain using the methods of calculus of variations.

In the present paper, we are going to discuss the non-Abelian BPS vortex equations of the ABJM model on a doubly periodic domain. We shall show how to approach the existence problem by a fixed point method via the Leray–Schauder theorem. Our approach is of independent interest because the a priori estimates obtained in the process may provide additional information on the governing equations. It’s interesting that, our method is completely applicable to the self-dual equations governing multiple vortices in a product Abelian Higgs model may be regarded as a generalized Ginzburg–Landau theory [25, 26, 29].

2. Fixed point method

In this section, we approach the existence problem of the multiple vortex solutions in a doubly periodic domain Ω by a fixed point method where we apply the maximum principle and the Poincaré inequality to derive suitable a priori estimates. We introduce a background function w_0 satisfying

$\Delta w_0 = -\frac{4\pi n}{|\Omega|} + 4\pi \sum_{s=1}^{n} \delta_{p_s}(x)$, \hspace{1cm} (2.1)

where δ_p is the Dirac distribution concentrated at the point p. Using the new variable v so that $w = w_0 + v$, we can modify (1.13) and (1.14) into

$\Delta u = \lambda (2e^u - e^{w_0+v} - 1)$, \hspace{1cm} (2.2)

$\Delta v = \lambda (3e^{w_0+v} - 2e^u - 1) + \frac{4\pi n}{|\Omega|}$, \hspace{1cm} (2.3)

which are now in a regular (singularity-free) form. Note that, since the singularity of w_0 at p_s is of the type $\ln |x - p_s|^2$, the weight function e^{w_0} is everywhere smooth.
Let \((u, v)\) be a solution of (2.2) and (2.3). Then \((u, w)\) solves (1.13) and (1.14). We first derive a necessary condition for the solvability of (2.2) and (2.3). Integrating (2.2) and (2.3), we have

\[
\int_{\Omega} e^{u_{0} + v} \, dx = |\Omega| - \frac{2\pi n}{\lambda} \equiv C_{1} > 0,
\]
\[
\int_{\Omega} e^{u} \, dx = \frac{1}{2} \int_{\Omega} e^{u_{0} + v} \, dx + \frac{1}{2} |\Omega| = \frac{1}{2} (C_{1} + |\Omega|) \equiv C_{2} > 0.
\]

Of course, the conditions (2.4) and (2.5) imply that the existence of an \(n\)-vortex solution requires that \(C_{1} > 0\) and \(C_{2} > 0\), which is simply

\[
|\Omega| - \frac{2\pi n}{\lambda} \equiv C_{1} > 0,
\]

since \(C_{1} > 0\) contains \(C_{2} > 0\).

We now proceed to prove that (2.4) and (2.5) are also sufficient for the existence of a solution to the equations (2.2) and (2.3).

We use \(W^{1,2}(\Omega)\) to denote the usual Sobolev space of scalar-valued or vector-valued \(\Omega\)-periodic \(L^{2}\)-functions whose derivatives are also in \(L^{2}(\Omega)\). For this purpose, we rewrite each \(f \in W^{1,2}(\Omega)\) as follows

\[
f = f + f',
\]

where \(f\) denotes the integral mean of \(f\), \(f = \frac{1}{|\Omega|} \int_{\Omega} f \, dx\) and \(\int_{\Omega} f' \, dx = 0\). We can derive from (2.4) and (2.5) the expressions

\[
u = \ln C_{1} - \ln \left(\int_{\Omega} e^{u_{0} + v'} \, dx \right),
\]
\[
u = \ln C_{2} - \ln \left(\int_{\Omega} e^{u} \, dx \right).
\]

For \(X = \{ f' \in W^{1,2}(\Omega) \mid \int_{\Omega} f' \, dx = 0 \}\) and \(Y = X \times X\) define a operator \(T : Y \rightarrow Y\) by setting

\[
(U', V') = T(u', v'), \quad (u', v') \in Y,
\]

where \((U', V') \in Y\) is the unique solution of the system of the equations

\[
\Delta U' = \lambda \left(\frac{2C_{2}e^{u'}}{\int_{\Omega} e^{u} \, dx} - \frac{C_{1}e^{u_{0} + v'}}{\int_{\Omega} e^{u_{0} + v} \, dx} - 1 \right),
\]
\[
\Delta V' = \lambda \left(\frac{3C_{1}e^{u_{0} + v'}}{\int_{\Omega} e^{u} \, dx} - \frac{2C_{2}e^{u'}}{\int_{\Omega} e^{u} \, dx} - 1 \right) + \frac{4\pi n}{|\Omega|}.
\]

The existence and uniqueness of a solution of the system of equations (2.10) and (2.11) may easily be seen since the right-hand sides of (2.10) and (2.11) have zero average value on \(\Omega\) as a consequence of the definitions of (2.7) and (2.8). By the Poincaré inequality [23], we may define the norm of \(Y\) as follow

\[
\|(u', v')\|_{Y} = \|\nabla u'\|_{L^{2}(\Omega)} + \|\nabla v'\|_{L^{2}(\Omega)}.
\]
Theorem 2.1. The system of equation (1.13) and (1.14) has a solution if and only if the conditions (2.4) and (2.5) are valid.

We will prove Theorem 2.1 in terms of two lemmas as follows.

Lemma 2.1. The operator $T : Y \mapsto Y$ is completely continuous.

Proof. Let $(u'_n, v'_n) \rightarrow (u'_0, v'_0)$ weakly in Y as $n \rightarrow \infty$. Then $(u'_n, v'_n) \rightarrow (u'_0, v'_0)$ strongly in $L^p(\Omega) \times L^p(\Omega)$ ($p \geq 1$). The Egorov theorem imply that for any $\epsilon > 0$ there is a sufficiently large number $K_\epsilon > 0$ and a subset $\Omega_\epsilon \subset \Omega$ such that $|u'_n|, |v'_n| \leq K_\epsilon$, $x \in \Omega - \Omega_\epsilon$, $|\Omega_\epsilon| < \epsilon$.

Set $(U'_n, V'_n) = T(u'_n, v'_n)$ and $(U'_0, V'_0) = T(u'_0, v'_0)$. Then

\begin{align}
\Delta(U'_n - U'_0) &= \lambda \left(\frac{2C_2 e^{u'_n}}{f^u_{\Omega e}} - \frac{C_1 e^{u'_0 v'_n + v'_n}}{f^u_{\Omega e}} \right) \Delta e^{u'_n} dx + \frac{C_1 e^{u'_0 v'_n + v'_n}}{f^u_{\Omega e}} \Delta e^{u'_n} dx, \\
\Delta(V'_n - V'_0) &= \lambda \left(\frac{-2C_2 e^{v'_n}}{f^v_{\Omega e}} + \frac{3C_1 e^{u'_0 v'_n + v'_n}}{f^v_{\Omega e}} \right) \Delta e^{v'_n} dx + \frac{2C_2 e^{u'_0 v'_n + v'_n}}{f^v_{\Omega e}} \Delta e^{v'_n} dx.
\end{align}

Multiplying (2.13) and (2.14) by $U'_n - U'_0$ and $V'_n - V'_0$, and integrating by parts, respectively, we obtain

\begin{align}
\int_{\Omega} |\nabla(U'_n - U'_0)|^2 dx &= \int_{\Omega} \lambda \left(\frac{2C_2 e^{u'_n}}{f^u_{\Omega e}} - \frac{2C_2 e^{v'_n}}{f^v_{\Omega e}} \right) (U'_n - U'_0) dx, \\
\int_{\Omega} |\nabla(V'_n - V'_0)|^2 dx &= \int_{\Omega} \lambda \left(\frac{2C_2 e^{u'_n}}{f^u_{\Omega e}} - \frac{2C_2 e^{v'_n}}{f^v_{\Omega e}} \right) (V'_n - V'_0) dx.
\end{align}

Note that the boundedness of $\{(u'_n, v'_n)\}$ in Y and the Trudinger-Moser inequality [3] imply that

\begin{align}
\sup_n \int_{\Omega} e^{u'_n} dx &\leq C < \infty, \\
\sup_n \int_{\Omega} e^{v'_n} dx &\leq C < \infty.
\end{align}

For any $\epsilon > 0$, let Ω_ϵ be a neighborhood of the points p_1, p_2, \ldots, p_n so that $p_n \in \Omega_\epsilon(\forall \epsilon)$ and $|\Omega_\epsilon| < \epsilon$. On the other hand, since there is a constant $\epsilon_0 > 0$ such that $e^{u_0(x)} \geq \epsilon_0$ for all $x \in \Omega - \Omega_\epsilon$.

Therefore, from (2.14), we obtain

\begin{align}
\int_{\Omega} |\nabla(U'_n - U'_0)|^2 dx &\leq \lambda \left(\frac{4C_2}{f^u_{\Omega e}} \int_{\Omega} e^{u'_n} dx \right) (U'_n - U'_0)^2 dx.
\end{align}
Inserting (2.20) and (2.21) into (2.19), and letting
$$\varepsilon > 0,$$
where \(\tilde{u}_n \) used the inequalities
\[
\int_{\Omega} e^{u_n} dx \geq |\Omega| \exp\left(\frac{1}{|\Omega|} \int_{\Omega} u_n^4 dx\right) = |\Omega|,
\]
and
\[
\int_{\Omega} e^{u_n + v_n^0} dx \geq \int_{\Omega - \Omega_\varepsilon} e^{u_n + v_n^0} dx \geq \varepsilon_0 |\Omega - \Omega_\varepsilon| \exp(-K_\varepsilon) = K_{\Omega_\varepsilon}.\]

Applying the Cauchy inequality and Hölder inequality, and (2.17), we have
\[
\int \int_{\Omega} \int e^{2u_n}|u_n^4 - u_0^4| dx \leq \frac{1}{2\varepsilon} \int \int_{\Omega} e^{2u_n}|u_n^4 - u_0^4|^2 dx + \varepsilon \int \int_{\Omega} (U_n' - U_0')^2 dx
\]
\[
\leq \frac{1}{2\varepsilon} \left(\int \int_{\Omega} e^{4u_n} dx \right)^\frac{1}{2} \left(\int \int_{\Omega} |u_n^4 - u_0^4|^4 x \right)^\frac{1}{4}
\]
\[
+ \frac{C_3 \varepsilon}{2} \| \nabla(U_n' - U_0') \|^2_{L^2(\Omega)}
\]
(2.20)
\[
\leq C_4 \| u_n^4 - u_0^4 \|^2_{L^4(\Omega)} + \frac{C_3 \varepsilon}{2} \| \nabla(U_n' - U_0') \|^2_{L^2(\Omega)}.
\]

Similarly,
\[
\int \int_{\Omega} \int e^{u_n + v_n^0}|u_n - v_0^0||U_n' - U_0'| dx \leq C_5 \| u_n^4 - v_0^4 \|^2_{L^4(\Omega)} + \frac{C_4 \varepsilon}{2} \| \nabla(U_n' - U_0') \|^2_{L^2(\Omega)}.
\]
Inserting (2.20) and (2.21) into (2.19), and letting \(\varepsilon > 0 \) be small enough, we have
\[
\| \nabla(U_n' - U_0') \|^2_{L^2(\Omega)} \leq C \left(\| u_n^4 - u_0^4 \|^2_{L^4(\Omega)} + \| v_n^4 - v_0^4 \|^2_{L^4(\Omega)} \right),
\]
where \(C > 0 \) is a constant.

For (2.16), we have
\[
\| \nabla(V_n' - V_0') \|^2_{L^2(\Omega)} \leq C \left(\| u_n^4 - u_0^4 \|^2_{L^4(\Omega)} + \| v_n^4 - v_0^4 \|^2_{L^4(\Omega)} \right).
\]

From (2.22) and (2.23), we arrive at
\[
\| (U_n' - U_0', V_n' - V_0') \|^2_\mathcal{Y} \leq C \left(\| u_n^4 - u_0^4 \|^2_{L^4(\Omega)} + \| v_n^4 - v_0^4 \|^2_{L^4(\Omega)} \right),
\]
(2.24)
where $C > 0$ is a constant. This proves that $(U'_n, V'_n) \to (U'_0, V'_0)$ strongly in Y and the lemma follows. □

We now study the fixed point equation labeled by a parameter t,

$$\begin{align*}
(u'_t, v'_t) &= tT(u'_t, v'_t), \quad 0 \leq t \leq 1.
\end{align*}$$

Lemma 2.2. There is a constant $C > 0$ independent of $t \in [0, 1]$ so that

$$\begin{align*}
\|(u'_t, v'_t)\|_Y &\leq C, \quad 0 < t \leq 1.
\end{align*}$$

Consequently, T has a fixed point in Y.

Proof. When $t > 0$, it is straightforward to check that (u'_t, v'_t) satisfies the equations

$$\begin{align*}
\Delta u'_t &= \lambda t \left(\frac{2C_2 e^{u'_t}}{\int_\Omega e^{u'_t} dx} - \frac{C_1 e^{w_0 + v'_t}}{\int_\Omega e^{w_0 + v'_t} dx} - 1 \right), \\
\Delta v'_t &= \lambda t \left(-\frac{2C_2 e^{v'_t}}{\int_\Omega e^{v'_t} dx} + \frac{3C_1 e^{w_0 + v'_t}}{\int_\Omega e^{w_0 + v'_t} dx} - 1 \right) + \frac{4\pi n}{|\Omega|} t.
\end{align*}$$

Set $w'_t = w_0 + v'_t$. Then the equations (2.27) and (2.28) are modified into

$$\begin{align*}
\Delta u'_t &= \lambda t \left(\frac{2C_2 e^{u'_t}}{\int_\Omega e^{u'_t} dx} - \frac{C_1 e^{w'_t}}{\int_\Omega e^{w'_t} dx} - 1 \right), \\
\Delta w'_t &= \lambda t \left(-\frac{2C_2 e^{w'_t}}{\int_\Omega e^{w'_t} dx} + \frac{3C_1 e^{w'_t}}{\int_\Omega e^{w'_t} dx} - 1 \right) + \frac{4\pi n}{|\Omega|} (t - 1) + 4\pi \sum_{s=1}^n \delta_{p_s}(x),
\end{align*}$$

where $\Delta w_0 = -\frac{4\pi n}{|\Omega|} + 4\pi \sum_{s=1}^n \delta_{p_s}(x)$. In the doubly periodic domain Ω, we let $p, q \in \Omega$ so that

$$u'_t(p) = \max\{u'_t(x)|x \in \Omega\}, \quad w'_t(q) = \max\{w'_t(x)|x \in \Omega\}.$$

To facilitate our computation, we adopt the notation

$$\begin{align*}
h'_t(x) &= \frac{C_2 e^{u'_t}}{\int_\Omega e^{u'_t} dx}, \\
g'_t(x) &= \frac{C_1 e^{w'_t}}{\int_\Omega e^{w'_t} dx}.
\end{align*}$$

Then from (2.29), we have

$$0 \geq (\Delta u'_t)(p) = \lambda t (2h'_t(p) - g'_t(p) - 1).$$

Therefore

$$2h'_t(p) \leq g'_t(p) + 1 \leq \frac{C_1 e^{w'_t(q)}}{\int_\Omega e^{w'_t} dx} + 1 = g'_t(q) + 1.$$

Hence, for any $x \in \Omega$, we have

$$2h'_t(x) \leq g'_t(q) + 1, \quad \forall x \in \Omega.$$

From (2.30), using (2.32), we obtain

$$g'_t(q) \leq 1 + \frac{2\pi n}{\lambda |\Omega|} \frac{1 - t}{t}, \quad 0 < t \leq 1.$$
In view of (2.32) and (2.33), for any \(x \in \Omega \), we have
\[
(2.34) \quad g_t'(x) \leq 1, \quad h_t'(x) \leq 1 + \frac{\pi n}{\lambda|\Omega|} \frac{1-t}{t}, \quad x \in \Omega.
\]

Multiplying (2.27) and (2.28) by \(u'_t, v'_t \) and integrating by parts, respectively, and using (2.34), we have
\[
\left\| \left(\nabla u'_t, \nabla v'_t \right) \right\|_{L^2(\Omega) \times L^2(\Omega)}^2 \leq \int_\Omega \left\{ (1 + 1 + 2)\lambda|u'_t| + \left[(1 + 3 + 2)\lambda + \frac{4\pi n}{|\Omega|} \right]|v'_t| \right\} dx \\
\leq \tilde{C}_1 \int_\Omega |u'_t| dx + \tilde{C}_2 \int_\Omega |v'_t| dx \\
(2.35) \quad \leq C \varepsilon + \tilde{C}_\varepsilon \left\| \left(\nabla u'_t, \nabla v'_t \right) \right\|_{L^2(\Omega) \times L^2(\Omega)}^2.
\]

Let \(\varepsilon > 0 \) be small enough, we have
\[
(2.36) \quad ||(u'_t, v'_t)||_Y = ||(\nabla u'_t, \nabla v'_t)||_{L^2(\Omega) \times L^2(\Omega)} \leq C,
\]
where \(C > 0 \) is a constant. The existence of a fixed point is a consequence of Lemma 2.2, the apriori estimate (2.26) and the Leray–Schauder theory. In particular, the existence of a fixed point of \(T \), say \((u', v')\), follows. \(\square \)

Acknowledgments. The authors thank the referee for guidance regarding this paper. This work was supported in part by the Natural Science Foundation of China (11471099, 11271052).

References

[1] O. Aharony, O. Bergman, D. L. Jafferis, and J. Maldacena, \(\mathcal{N} = 6 \) superconformal Chern–Simons-matter theories, M2-branes and their gravity duals, High Energy Phys. **2008** (2008), no. 10, 091, 38 pp.

[2] L. G. Aldrovandi and F. A. Schaposnik, Non-Abelian vortices in Chern–Simons theories and their induced effective theory, Phys. Rev. D **76** (2007), 045010.

[3] T. Aubin, *Nonlinear Analysis on Manifolds: Monge-Ampère Equations*, Springer, Berlin and New York, 1982.

[4] R. Auzzi, S. Bolognesi, J. Evslin, K. Konishi, and A. Yung, Non-Abelian superconductors: vortices and confinement in \(\mathcal{N} = 2 \) SQCD, Nuclear Phys. B **673** (2003), 187–216.

[5] R. Auzzi and S. P. Kumar, Non-Abelian vortices at weak and strong coupling in mass deformed ABJM theory, J. High Energy Phys. **2009** (2009), no. 10, 071, 35 pp.

[6] S. X. Chen, R. F. Zhang, and M. L. Zhu, Multiple vortices in the Aharony–Bergman–Jafferis–Maldacena model, Ann. H. Poincaré, to appear.
[7] G. Dunne, *Self-Dual Chern–Simons Theories*, Lecture Notes in Physics, 36, Springer-Verlag, Berlin, 1995.

[8] G. Dunne, *Aspects of Chern–Simons Theory*, In: Aspects topologiques de la physique en basse dimension/Topological aspects of low dimensional systems (Les Houches, 1998), 177–263, EDP Sci., Les Ulis, 1999.

[9] J. Gomis, D. Rodríguez-Gómez, M. Van Raamsdonk, and H. Verlinde, *A massive study of M2-brane proposals*, J. High Energy Phys. 2008 (2008), no. 9, 113, 29 pp.

[10] S. B. Gudnason, Y. Jiang, and K. Konishi, *Non-Abelian vortex dynamics: effective world-sheet action*, J. High Energy Phys. 2010 (2010), no. 8, 012, 22 pp.

[11] J. Hong, Y. Kim, and P. Y. Pac, *Multivortex solutions of the Abelian Chern–Simons–Higgs theory*, Phys. Rev. Lett. 64 (1990), no. 19, 2230–2233.

[12] P. A. Horvathy and P. Zhang, *Vortices in (Abelian) Chern–Simons gauge theory*, Phys. Rept. 481 (2009), no. 5-6, 83–142.

[13] R. Jackiw, K. Lee, and E. J. Weinberg, *Self-dual Chern–Simons solitons*, Phys. Rev. D (3) 42 (1990), no. 10, 3488–3499.

[14] R. Jackiw and E. J. Weinberg, *Self-dual Chern–Simons vortices*, Phys. Rev. Lett. 64 (1990), no. 19, 2234–2237.

[15] A. Jaffe and C. H. Taubes, *Vortices and Monopoles*, Birkhäuser, Boston, 1980.

[16] C. N. Kumar and A. Khare, *Charged vortex of finite energy in non-Abelian gauge theories with Chern-Simons term*, Phys. Lett. B 178 (1986), no. 4, 395–399.

[17] E. H. Lieb and Y. Yang, *Non-Abelian vortices in supersymmetric gauge field theory via direct methods*, Comm. Math. Phys. 313 (2012), no. 2, 445–478.

[18] C. S. Lin, A. C. Ponce, and Y. Yang, *A system of elliptic equations arising in Chern–Simons field theory*, J. Funct. Anal. 247 (2007), no. 2, 289–350.

[19] C. S. Lin and J. V. Prajapat, *Vortex condensates for relativistic Abelian Chern–Simons model with two Higgs scalar fields and two gauge fields on a torus*, Comm. Math. Phys. 288 (2009), no. 1, 311–347.

[20] C. S. Lin and Y. Yang, *Non-Abelian multiple vortices in supersymmetric field theory*, Comm. Math. Phys. 304 (2011), no. 2, 433–457.

[21] C. S. Lin and Y. Yang, *Non-Abelian multiple vortices in supersymmetric field theory*, Comm. Math. Phys. 304 (2011), no. 2, 433–457.

[22] G. S. Lozano, D. Marqus, E. F. Moreno, and F. A. Schaposnik, *Non-Abelian Chern–Simons vortices*, Phys. Lett. B 654 (2007), no. 1-2, 27–34.

[23] R. McOwen, *On the equation $\Delta u + K e^{2u} = f$ and prescribed negative curvature in \mathbb{R}^2*, J. Math. Anal. Appl. 103 (1984), no. 2, 365–370.

[24] G. Tarantello, *Selfdual Gauge Field Vortices: An Analytical Approach*, Birkhäuser, Boston and Basel, 2008.

[25] D. Tong and K. Wong, *Monopoles and Wilson lines*, J. High Energy Phys. 06 (2014), 048.

[26] Y. Yang, *Solitons in Field Theory and Nonlinear Analogy*, Springer Monographs in Mathematics, Springer-Verlag, Berlin and New York, 2001.

[27] R. Zhang and F. Li, *Existence of charged vortices in a Maxwell–Chern–Simons model*, J. Differential Equations 257 (2014), no. 7, 2728–2752.

[28] R. Zhang and H. Li, *Sharp existence theorems for multiple vortices induced from magnetic impurities*, Nonlinear Anal. 115 (2015), 117–129.

[29] R. Zhang and H. Li, *Existence and uniqueness of domain wall solitons in a Maxwell–Chern–Simons model*, J. Math. Phys. 55 (2014), 023501, 9 pp.
RUIFENG ZHANG
INSTITUTE OF CONTEMPORARY MATHEMATICS HENAN UNIVERSITY
COLLEGE OF MATHEMATICS AND STATISTICS HENAN UNIVERSITY
KAIFENG 475001, P. R. CHINA
E-mail address: zrf615@henu.edu.cn

MEILI ZHU
CHUNLAI SENIOR HIGH SCHOOL OF CHUNLAI EDUCTION GROUP
SHANGQIU 476000, P. R. CHINA
E-mail address: meili.xiaoyue0163.com