Research on armature vibration characteristics of electromagnetic gun's extreme sliding electrical conta

Xiangjun Li, Jun Wang, Xianchun Zhang and Sheng Wang

Nanjing University of Science and Technology Advanced Launch Collaborative Innovation Center Nanjing, China, 210094

Email:wangj1125@163.com

Abstract. The electromagnetic railgun is a new launch method that uses electromagnetic force to drive payloads and accelerate objects to super high speeds. In the electromagnetic railgun system, the armature is a key component that converts electrical energy into kinetic energy of projectile. It will vibrate when it moves between rails, and the vibration characteristic is the behavior when the armature slides along the rail. Armature vibration will affect firing accuracy, damage integrity of rail, and affect life of rail. Armature vibration may also cause arc discharge, which will damage the armature, consume energy, and reduce the launching efficiency of the electromagnetic railgun. In order to provide a more reasonable design for the armature, based on the finite element simulation software ANSYS, a modal analysis was performed on the armature during the launch process, and the possible modes of its free vibration were simulated. The analysis found that the vibration modes are mainly divided into translational movements along the X, Y, and Z directions and torsional movements along the X, Y, and Z axes. Whether or not the prestress is loaded on the armature and the magnitude of the prestress does not significantly affect its vibration mode. Changing the armature structure and materials will affect the vibration mode of the armature accordingly.

1. Introduction
In the electromagnetic railgun system, the energy conversion is reflected in the armature as the conversion of electrical energy to kinetic energy. The armature is a key component of energy conversion [1]. The first requirement for an armature is the ability to transfer current from one rail to another. Therefore, the performance of the armature is directly related to the performance of the railgun, which determines the launch stability of the entire system.

The vibration characteristic is the behavior when the armature slides along the rail. The armature vibration will cause the projectile to vibrate, because the projectile is at the front of the armature. In this case, when the armature and the projectile fly away from the muzzle, the outer ballistic trajectory will deflect and affect the accuracy of the shot. In addition, the vibration of the armature will cause an impact on the rail. Due to the extremely short launch time of the railgun, the impact will produce a local high-intensity lateral load in an instant. This process can easily cause planing pits on the rail surface and damage the integrity of the track, thus, affecting the orbital life [2]. The armature vibration will also bring deformation and wear of itself, which may change the contact state of the armature and the rail, resulting in intermittent contact at the interface, which means that arc discharge may occur. The arc will
damage the armature, and will also consume a lot of energy, reducing the launching efficiency of the railgun [3]. In view of the complexity and variety of possible vibrations during the sliding of the armature, a preliminary understanding of the vibration of the armature is started from the most basic mode, that is, the free vibration, in order to propose methods to effectively suppress its vibration, and help to optimize the design of the armature structure and materials.

2. Extreme sliding electrical contact and Electromagnetic force in electromagnetic launch
In current-carrying sliding electrical contact, electrical, thermal, and mechanical effects will occur on the contact surface, and these effects will change the state of the contact surface [4]. In the process of relative sliding under load, most of the work done by friction will be converted into thermal energy. At the same time, the contact resistance will also generate a lot of Joule heat, which will increase the temperature of contact surface. The high temperature will cause the armature and metal materials of rail to change state, forming a liquid metal film, which will cause great damage to the armature and rails [5].

The limits of the extreme sliding electrical contact are reflected in its large working current, which can reach the order of MA, and the maximum current density on the electrical contact surface is close to the current bearing limit of the conductor material, the contact pressure is strong, the action time is extremely short, and the thermal effect is significant. The sliding electrical contact under extreme conditions is more extreme than the case under small and medium current loads. It is accompanied by more severe mechanical effects, thermal effects, and arcs and electric sparks caused by intermittent contact during sliding. The abrasion and wear of the contact surface, the deformation of the material, and the change in the surface state of the material all affect the operation of the system.

The propulsive force related to electromagnetic launch is an electromagnetic force generated by a high current exhibited by the Lorentz force. The propulsive force is generated from a megaampere-level current conducted through the rail and the armature. Due to the existence of large currents, electric and magnetic fields are locally generated in the rail, and the armature is accelerated according to the principle of Lorentz force [6]. Figure 1 shows a simple diagram of electromagnetic railgun circuit.

![Figure 1. Diagram of electromagnetic railgun circuit.](image)

Position 1 in figure 1 is the starting position of the armature, and it reaches position 2 after elapse of time \(dt \). Assuming the power electromotive force is \(V \), the current flowing into the railgun is \(I \), and the armature displacement is \(dx \), the inductance increment of this distance from the rail is \(dL \). Assuming that the magnitude of the current \(I \) is constant, the inductance value of the unit length of the track is \(L' \), and \(F \) is the propulsive force acting on the armature, then the mechanical work done by \(F \) is shown as follows.

\[
W_{m} = F \, dx \quad \text{* MERGEFORMAT (1)}
\]

The increase in the induced magnetic energy of the railgun during this distance is as follows.

\[
W_{i} = \frac{dLI^{2}}{2} = \frac{L' I^{2} dx}{2} \quad \text{* MERGEFORMAT (2)}
\]

According to Faraday’s law \(V = d\Phi/dt \), the voltage \(V \) in the circuit is equal to the rate of change of its magnetic flux \(d\Phi/dt \), that is,

\[
V = d(\Phi I)/dt = L' I \, dx/dt = L' I v \quad \text{* MERGEFORMAT (3)}
\]
The work W_g transferred to the circuit during this time is shown as follows.

$$W_g = \int t' \, dv = L' \int L' \, d\alpha$$ \hspace{1cm} ^{\text{MERGEFORMAT} (4)}$$

According to the Law of conservation of energy $W_g = W_m + W_1$, it is concluded as follows.

$$F = \frac{1}{2} L' \, I^2$$ \hspace{1cm} ^{\text{MERGEFORMAT} (5)}$$

3. Finite element simulation of armature

The natural frequency and modal shape of the free vibration of the armature with or without prestress are determined by analysis. The material selection and structural design of the armature are analyzed. For prestressed cases, the armature was analyzed using a maximum contact pressure standard that did not exceed the structural analysis. The importance of modal characteristics is reflected in its behavior as the armature slides inside the barrel along the rail. During this entire launch period, a good constant contact between the armature arm and the rail is required to maintain a constant current flow. However, the mode and size of the vibration modal may cause intermittent contact at the pivot-rail interface, which will affect the normal operation of the entire electromagnetic railgun system.

3.1. Establishment of Armature Geometric Model

Figure 2 shows the plane structure of armature used in this modal analysis [7].

![Figure 2. Plane structure of armature.](image)

3.2. Material Properties

Three metals (aluminum, copper and titanium) are selected for comparison in the armature material analysis. The parameter attributes are shown in table 1.

Attribute Parameter	aluminum	copper	titanium
Elastic Modulus /GPa	70	119	102.04
Poisson's ratio	0.33	0.3	0.326
density / g/ cm³	2.7	8.9	4.51

3.3. Element types and meshing

As shown in figure 3, the mesh division adopts the method of free mesh division. The element type used is Solid186 element, which is defined by 20 nodes, each node has three degrees of freedom: translation in the X, Y, and Z directions of the node coordinate system.
3.4. Boundary conditions and loads

In order to simulate the impact of the current, the electromagnetic force generated by the current is loaded on the armature. Due to the speed skin effect, the current share of the armature tail is large, so an equivalent electromagnetic force is loaded on the armature tail. The magnitude of the electromagnetic force is calculated according to the formula (5), taking the inductance gradient L' as 0.42μH/m, and current I as 1800kA, so the electromagnetic force F is 6.804×10^5 N [8].

As shown in figure 4, the prestress is loaded along the edge of the pivot tail, and its directions on both sides are away from the track. The magnitude of prestress does not exceed the maximum contact pressure obtained from the structural analysis, which is 0.215GPa.

4. Analysis of Numerical Simulation Results
4.1. Modal Analysis

The results of the modal analysis show that the first-order modal mode is in-phase bending in the y-direction, the second-order modal mode is different-direction bending in the y-direction, and the third-order modal mode is bending in the z-direction, the fourth-order modal mode is bending in the x-direction, the fifth-order modal mode is torsion along the x-axis, the sixth-order modal mode is torsion along the z-axis, the seventh-order mode mode is the superposition of the torsion along the z-axis and the in-phase bending of the pivot tail in the y-direction, the eighth-order modal mode is torsion along the y-axis. Based on the comprehensive analysis results, the modal modes can be divided into six types of motion, namely translation in the X, Y, and Z directions, and torsion in the X, Y, and Z axes, or a superposition of these six types of motion. The six types of motion are shown below.

![Outline figure](image1.png) ![Vector figure](image2.png)
Figure 6. Translation in x-direction.

![Outline figure](image3.png) ![Vector figure](image4.png)
Figure 7. Translation in y-direction.

![Outline figure](image5.png) ![Vector figure](image6.png)
Figure 8. Translation in z-direction.
From the perspective of the natural modes of each order, the impact of different modes is also different. For example, from the perspective of the type of translation in the y direction, when the pivot arms are bent in opposite directions toward the two sides of the rail, as shown in figure 12, it will generate greater pressure on the rail, but still maintain the pivot track. However, when the pivot arm is bent in the same direction, as shown in figure 7 (a), one side of the pivot arm will inevitably lose contact with the rail, which will affect the normal flow of current and cause a series of damage, resulting in the normal operation of the entire electromagnetic railgun system is affected. Similarly, in the case of torsion along the z axis, there may also be a phenomenon that the pivot arm loses contact with the rail. And according to the results, it can be seen that the armature's displacement due to vibration is more serious at the tail of armature, so the possibility of loss of contact at the armature tail is higher. Considering that as the speed increases, the current is mainly concentrated at the tail of armature. Therefore, the loss of contact has a huge impact on the normal operation of the electromagnetic railgun system.
4.2. Comparison of Armature Material

Table 2. Natural frequency and natural period of armature vibration of different materials.

Order	Natural Frequency (kHz)	Natural Period (μs)	Copper (μs)	Titanium (μs)		
first	15.677	14.595	11.253	63.78771449	68.51601528	68.8651915
second	16.938	15.778	12.159	59.03884756	63.37938902	82.2436056
third	20.166	18.78	14.475	49.58841615	53.24813632	69.0846287
fourth	20.552	19.151	14.754	48.65706501	52.21659443	67.7782296
fifth	22.293	20.809	16.007	44.8571304	48.05612956	62.4726082
sixth	22.586	21.091	16.218	44.27521473	47.41358873	61.6598841
seventh	25.885	24.143	18.585	38.63241259	41.41987236	53.8068335
eighth	27.276	25.454	19.584	36.6626719	39.28655614	51.0620195
ninth	27.591	25.789	19.815	36.24270266	38.77622242	50.4668181
tenth	29.428	27.528	21.126	33.98124225	36.32664923	47.3126419
eleventh	34.641	32.427	24.884	28.86752602	30.83849878	40.1864052
twelfth	37.128	34.767	26.676	26.93385046	28.76290735	37.4053313
thirteenth	41.311	38.755	29.683	24.20662777	25.80312218	33.6893171
fourteenth	50.192	46.863	36.041	19.92349378	21.33870607	27.746178
fifteenth	51.473	48.217	36.977	19.4276611	20.73957318	27.0438381

Table 3. Maximum displacement of armature vibration of different materials.

Order	Copper (mm)	Titanium (mm)	Aluminum (mm)
first	0.34	0.26	0.187
second	0.409	0.313	0.225
third	0.219	0.169	0.121
fourth	0.174	0.134	0.096
fifth	0.252	0.195	0.139
sixth	0.222	0.171	0.122
seventh	0.403	0.309	0.221
eighth	0.271	0.201	0.148
ninth	0.368	0.288	0.203
tenth	0.439	0.337	0.241

It can be seen from the results of Table 2 and Table 3 that the largest natural period of vibration is 88.87 μs in the first-order case of the copper armature, which is much shorter than the movement time of the armature in the barrel. Therefore, intermittent contact between the armature and the rail may occur when the armature moves in the barrel.

From the perspective of the natural frequency of each order and the maximum displacement, as the
elastic modulus of the material increases, its natural frequency of vibration decreases and its amplitude decreases. It shows that the method of increasing stiffness to suppress vibration is feasible.

4.3. Comparison of armature structure

For the armature structure, a comparison was made from the length L of contact surface, the radial depth d at the tail, the maximum depth D of armature, and the size of the caliber. As shown below.

![Diagram of armature size](image)

Figure 13. Diagram of armature size.

The length of contact surface was compared for armatures of 25mm, 30mm, 35mm, and 40mm respectively, the radial depth at the tail was compared for armatures of 3mm, 5mm, and 7mm respectively. The maximum depth of armature is compared with the armatures of 8mm and 9mm respectively, and armature calibers are compared for three caliber sizes, 30mm * 30mm, 40mm * 40mm, and 50mm * 50mm. The results are shown below.

Table 4. Natural frequency of vibration at each order with different length of contact surface.

	25mm(kHz)	30mm(kHz)	35mm(kHz)	40mm(kHz)
first-order	15.677	13.428	12.373	10.875
second-order	16.938	14.204	12.837	11.154
third-order	20.166	17.973	17.657	16.422
fourth-order	20.552	19.127	18.654	17.21
fifth-order	22.293	19.287	19.443	18.34
sixth-order	22.586	21.731	20.812	18.559
seventh-order	25.885	22.53	21.17	18.614
eighth-order	27.276	22.962	21.38	19.69
ninth-order	27.591	23.858	22.741	22.052
tenth-order	29.428	25.59	24.681	22.245

Table 5. Maximum displacement of vibration at each order with different length of contact surface.

	25mm(mm)	30mm(mm)	35mm(mm)	40mm(mm)
first-order	0.34	0.286	0.249	0.205
second-order	0.409	0.332	0.261	0.211
third-order	0.219	0.214	0.209	0.191
fourth-order	0.174	0.162	0.152	0.108
fifth-order	0.252	0.248	0.167	0.191
sixth-order	0.222	0.208	0.166	0.161
seventh-order	0.403	0.392	0.376	0.354
eighth-order	0.271	0.259	0.247	0.232
ninth-order	0.368	0.352	0.332	0.317
tenth-order	0.439	0.427	0.408	0.393
Table 6. Natural frequency of vibration at each order with different depth of tail radial.

	3mm(kHz)	5mm(kHz)	7mm(kHz)
first-order	14.169	15.677	16.668
second-order	15.286	16.938	17.943
third-order	19.802	20.166	20.538
fourth-order	19.892	20.552	20.972
fifth-order	21.673	22.293	22.661
sixth-order	22.316	22.586	23.197
seventh-order	25.346	25.885	26.207
eighth-order	26.325	27.276	27.672
ninth-order	26.576	27.591	28.513
tenth-order	27.966	29.428	30.201

Table 7. Maximum displacement of vibration at each order with different depth of tail radial.

	3mm(mm)	5mm(mm)	7mm(mm)
first-order	0.407	0.34	0.31
second-order	0.483	0.409	0.368
third-order	0.23	0.219	0.205
fourth-order	0.177	0.174	0.168
fifth-order	0.259	0.252	0.248
sixth-order	0.264	0.222	0.212
seventh-order	0.525	0.403	0.323
eighth-order	0.392	0.271	0.247
ninth-order	0.372	0.368	0.365
tenth-order	0.465	0.439	0.405

Table 8. Natural frequency of vibration at each order with different maximum armature depth.

	8mm(kHz)	9mm(kHz)
first-order	15.506	15.677
second-order	16.441	16.938
third-order	20.608	20.166
fourth-order	20.74	20.552
fifth-order	22.465	22.293
sixth-order	22.576	22.586
seventh-order	24.589	25.885
eighth-order	27.013	27.276
ninth-order	27.569	27.591
tenth-order	28.845	29.428

Table 9. Maximum displacement of vibration at each order with different maximum armature depth.

	8mm(mm)	9mm(mm)
first-order	0.394	0.34
second-order	0.439	0.409
third-order	0.205	0.219
fourth-order	0.234	0.174
fifth-order	0.258	0.252
sixth-order	0.26	0.222
seventh-order	0.427	0.403
eighth-order	0.302	0.271
ninth-order	0.374	0.368
tenth-order	0.462	0.439
Table 10. Natural frequency of vibration at each order with different calibers.

Order	30mm*30 mm(kHz)	40mm*40 mm(kHz)	50mm*50 mm(kHz)
first-order	12.373	9.8312	9.7164
second-order	12.837	10.071	10.313
third-order	17.657	15.679	13.079
fourth-order	18.654	15.727	13.3
fifth-order	19.443	16.806	14.048
sixth-order	20.812	16.825	14.733
seventh-order	21.17	17.814	16.085
eighth-order	21.38	18.301	17.48
ninth-order	22.741	18.509	18.064
tenth-order	24.681	20.628	18.907

Table 11. Maximum displacement of vibration at each order with different calibers.

Order	30mm*30 mm(mm)	40mm*40 mm(mm)	50mm*50 mm(mm)
first-order	0.349	0.299	0.199
second-order	0.361	0.317	0.228
third-order	0.239	0.15	0.085
fourth-order	0.252	0.115	0.114
fifth-order	0.247	0.234	0.114
sixth-order	0.466	0.229	0.132
seventh-order	0.376	0.243	0.188
eighth-order	0.347	0.326	0.311
ninth-order	0.362	0.33	0.315
tenth-order	0.243	0.182	0.157

Based on the analysis of the results shown above, it can be known that increasing the length of the contact surface of the armature can reduce the natural frequencies and amplitudes of the armature vibration at each order, and weaken the vibration of the armature to a certain extent. However, when the length of the contact surface is increased to a certain value, the attenuation of the vibration is also reduced. As the radial depth of the armature tail is increased, the natural frequencies of the armature vibration at each order are slightly increased, and the amplitudes at each order are reduced, but as the radial depth continues to increase, the amplitude start to decrease slightly. It can be seen that increasing the radial depth of the armature tail has a certain effect on reducing the vibration of the armature. Increasing the maximum armature depth has little effect on the low-order natural frequency, and the high-order natural frequency increases slightly, at the same time, the maximum displacement of the vibration will decrease, so increasing the maximum armature depth can weaken the vibration of the armature. And increasing the caliber of the armature can reduce the vibration frequency and the maximum displacement of the armature vibration at each order. However, increasing the caliber of the armature will increase the volume of the railgun, so it is not necessarily that the larger the caliber, the better.

Based on the comparison of the above structures, increasing the length of contact surface of the armature, increasing the radial depth of the armature tail, increasing the maximum depth of the armature, and increasing the caliber can reduce the vibration of the armature.

4.4. Modal vibration under damage

Calculating the natural frequency of the mode also helps to judge the damage of the armature to a certain extent. Leave a crack in the middle of the upper arm of the armature to simulate the damage of the armature. As shown in the figure 14.
Figure 14. Model of damaged armature.

A total of six different damage conditions are selected, as shown in the table below.

Table 12. Six different sizes of damage.
size
size

Table 13. Natural frequencies in six different sizes of damage.

order	damage 1(kHz)	damage 2(kHz)	damage 3(kHz)	damage 4(kHz)	damage 5(kHz)	damage 6(kHz)
first-order	15.389	15.453	15.488	15.545	15.594	15.651
second-order	16.886	17.008	17.078	17.417	17.643	17.997
third-order	19.658	19.676	19.703	19.741	19.787	19.805
fourth-order	19.765	19.826	19.792	19.87	19.887	19.928
fifth-order	21.812	21.924	21.949	21.988	21.972	22.073
sixth-order	22.228	22.352	22.461	22.619	22.862	23.277
seventh-order	25.531	25.519	25.607	25.641	25.731	25.738
eighth-order	26.314	26.327	26.15	26.293	26.364	26.454
ninth-order	27.057	27.227	27.325	27.385	27.469	27.754
tenth-order	29.285	29.667	30.067	30.983	31.565	32.462

It can be seen from Table 13 that the damage of the contact surface of the pivot arm and the rail has an influence on the natural frequency, and the more severe the damage, the higher the natural frequency. Taking damage 1 and damage 6 as examples, when the size of damage is changed from size 1 to size 6, the natural frequency of vibration increases by 1.7% at first-order, 6.6% at second-order, 0.7% at third-order, 0.8% at fourth-order, 1.2% at fifth-order, and 4.7% at sixth-order.

Since the natural frequency is a unique attribute of the armature vibration, the damage of the armature can be judged to a certain extent according to the change of the natural frequency.

5. Summary
As one of the key components of the electromagnetic rail gun, the armature's performance is directly related to the performance of the electromagnetic railgun. In this paper, the vibration modal analysis of the armature of the electromagnetic railgun is realized, and the corresponding vibration suppression methods are proposed based on the analysis results through the simulation of ANSYS. When the armature slides in the barrel, its vibration mode is mainly divided into translation in the X, Y, and Z directions and torsion in the X, Y, and Z axes, and the vibration period is much shorter than the movement time in the barrel, so the vibration mode may cause the armature to lose contact with the rail. From the perspective of the armature material, increasing the elastic modulus of the material can suppress the vibration of the armature. And the structure of armature also affects the vibration. The vibration of the armature can be reduced by increasing the length of contact surface of the armature,
the radial depth of the armature tail, the maximum depth of armature, and the caliber. In addition, the modal analysis of the armature can also provide a reference for judging the damage of the armature.

Acknowledgement
This paper is supported by the pre-research funding of weapon and equipment (30101040204) and the funding of national defense strengthening foundation(2019-JCJQ-ZD-134).

References
[1] Du Chuantong, Lei Bin, Jin Longwen. 2017 Journal of Gun Launch & Control 38(02) 94-100
[2] Wang Zhiheng, Wu Haoran, Li Xiaojiang. 2015 High Voltage Engineering 41(06) 1885-90
[3] Yin Qiang, Zhang He, Li Haojie. 2019 Acta Armamentarii 40(03) 464-72
[4] Tang Liangliang, Zhang Guangzhou, Xia Shengguo. 2016 High Voltage Engineering 42(09) 2857-63
[5] Li Xiaojiang, Wan Min, Wang Zhiheng. 2017 Journal of Gun Launch & Control 42(02) 154-8
[6] Lv Qingao, Chen Jianwei, Zhang Huaxiang. 2019 Journal of Ordnance Equipment Engineering 40(04) 10-4
[7] Liu Feng, Dang Shenggang, Zhao Liman. 2015 Journal of Gun Launch & Control 36(01) 1-4
[8] Li Feng, Li Haojie, Yin Qiang. 2016 Journal of Ordnance Equipment Engineering 37(10) 61-5+71