Biodegradable and biocompatible graphene-based scaffolds for functional neural tissue engineering: A strategy approach using dental pulp stem cells and biomaterials

Negar Mansouri¹,² | Said Al-Sarawi¹ | Dusan Losic²,³ | Jagan Mazumdar¹ | Jillian Clark⁴,⁵ | Stan Gronthos⁶,⁷ | Ryan O'Hare Doig⁸,⁹

¹School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, Australia
²ARC Research Hub for Graphene-Enabled Industry Transformation, The University of Adelaide, Adelaide, Australia
³School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, Australia
⁴Centre for Orthopaedics and Trauma Research, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
⁵South Australian Spinal Cord Injury Research Centre, Hampstead Rehabilitation Centre, Lightsview, Adelaide, Australia
⁶Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
⁷Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
⁸Neil Sachse Centre for Spinal Cord Research, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
⁹Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia

Correspondence
Ryan O'Hare Doig, Neil Sachse Centre for Spinal Cord Research, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia. Email: ryan.doig@sahmri.com

Funding information
Australian Research Council Research Hub for Graphene Enabled Industry, Grant/Award Number: IH 150100003;
University of Adelaide, Grant/Award Number: Adelaide Scholarship International; AOSpine, Grant/Award Number: AOSAUNZ(R) 2019-05

Abstract
Neural tissue engineering aims to restore the function of nervous system tissues using biocompatible cell-seeded scaffolds. Graphene-based scaffolds combined with stem cells deserve special attention to enhance tissue regeneration in a controlled manner. However, it is believed that minor changes in scaffold biomaterial composition, internal porous structure, and physicochemical properties can impact cellular growth and adhesion. The current work aims to investigate in vitro biological effects of three-dimensional (3D) graphene oxide (GO)/sodium alginate (GOSA) and reduced GOSA (RGOSA) scaffolds on dental pulp stem cells (DPSCs) in terms of cell viability and cytotoxicity. Herein, the effects of the 3D scaffolds, coating conditions, and serum supplementation on DPSCs functions are explored extensively. Biodegradation analysis revealed that the addition of GO enhanced the degradation rate of composite scaffolds. Compared to the 2D surface, the cell viability of 3D scaffolds was higher ($p < 0.0001$), highlighting the optimal initial cell adhesion to the scaffold surface and cell migration through pores. Moreover, the cytotoxicity study indicated that the incorporation of graphene supported higher DPSCs viability. It is also shown that when the mean pore size of the scaffold increases, DPSCs activity decreases. In terms of coating conditions, poly-L-lysine was the most robust coating reagent that improved cell-scaffold adherence and DPSCs metabolism activity. The cytotoxicity of GO-based scaffolds showed that DPSCs can be seeded in serum-free media without cytotoxic effects. This is critical for human translation as cellular transplants.
are typically serum-free. These findings suggest that proposed 3D GO-based scaffolds have favorable effects on the biological responses of DPSCs.

**KEYWORDS**
3D scaffolds, biocompatibility, graphene, neural tissue engineering, stem cell

### 1 INTRODUCTION

The biological, neurochemical, and anatomical complexity of the human nervous system challenges attempts to achieve neuronal repair or regeneration after a disease or traumatic injury. The overarching goal is to restore the functional properties of the nervous system, compensate or substitute for tissue defects, and restore neural transmission (Schmidt & Leach, 2003). In relation to these goals, it is of considerable interest that bioengineered scaffolds can induce topographical, chemical, and biological cues that effectively stimulate nerve regeneration (Ghasemi-Mobarakeh et al., 2015). However, there is consensus that natural microenvironments and their in vivo physiological equivalent conditions cannot be fully represented using two-dimensional (2D) cell cultures. Three-dimensional (3D) cell models are a more reliable representation of the physiological environment of living tissue which suitably replicate the in vivo native matrix and mimic the biophysical properties of remnant tissue (Joseph et al., 2018; Wu et al., 2017).

The 3D cell culture products in tissue engineering development include porous scaffolds, scaffold-free constructs, (self-assembling) hydrogels, and microchips. Among these, prefabricated porous scaffolds are recognized as the most promising platform to advance cell therapy and drug discovery (Jaiswal, 2017). These scaffolds are used as a supportive matrix, replicating the extracellular matrix of the central nervous system (CNS). In vitro proof-of-principle work shows that 3D interstices are conducive to cell attachment, migration, and infiltration (Larson, 2015). A tissue-engineered scaffold with suitable biocompatibility, biodegradability, and interconnected porosity is favorable in neural tissue engineering (NTE) applications (Yildirim et al., 2019).

The literature presents multiple examples of polymer-based materials of relevance to the fabrication of 3D scaffolds. Of these, the nontoxic, biodegradable, and biocompatible properties of alginate, a natural biopolymer, have been extensively investigated for neural applications (Ansorena et al., 2013). The 3D alginate-based scaffolds of Ansari et al. (2017) demonstrated efficacy to sustainably release neurotrophic factors and enhance the proliferation and neurogenic differentiation of encapsulated mesenchymal stem cells (MSCs) in vitro (Ansari et al., 2017). Another in vitro study by Wang et al. (2017) demonstrated the aptitude of hybrid scaffolds composed of chitosan and alginate to promote olfactory ensheathing and neural stem cell (NSC) viability (Wang et al., 2017). Similarly, an in vivo study by Prang et al. (2004) demonstrated the compatibility of alginate-based scaffolds loaded with NSCs to dampen inflammatory responses in experimental spinal cord injury necessary to encourage axonal regrowth. Despite promising results, in vitro and in vivo, alginate-based constructs suffer from weak mechanical strength, high degradation rate, and electrical insulation at biological frequencies, which might be attuned through combination with other biomaterials (Sun & Tan, 2013).

Recently, graphene-based scaffolds have attracted intense interest for their use in NTE due to their unique properties including large surface area, excellent electrical conductivity, suitable biocompatibility, chemical stability, and mechanical properties (Akhavan, 2016). Importantly, the high electrical conductivity of graphene provides a great electrical coupling between regenerating nerve cells which is conducive to the regeneration of excitable tissues (N. Li et al., 2013; Zhao et al., 2017). Two graphene derivatives, namely graphene oxide (GO) and reduced graphene oxide (RGO) are endowed with unique physicochemical properties of interest to functional NTE (W. Lee et al., 2011; W. C. Lee et al., 2018). Serrano et al. (2014) showed that GO scaffolds improve the differentiation of NSCs into mature neurons replete with axons, dendrites, and synapses and supportive glial cells. In addition, researchers observed that biological properties and cytotoxicity of graphene-based composites could be enhanced with respect to cell type, the interaction between graphene and the matrix, graphene concentration, and composite production method (Bei et al., 2019; Pinto et al., 2013). These data suggest that graphene-based composites may warrant closer investigation.

Numerous studies showed that coating reagents such as poly-L-lysine (PLL) and laminin (LAM) on the surface of the scaffolds induce signals regulating cell responses, adhesion, and growth (Zhang et al., 2020). However, it is interesting to point out that various coating reagents have different impacts on cellular behavior according to scaffold biomaterial and cell type (Liu et al., 2020). The culture medium is another consideration, with more information required about the interaction between serum, protein corona, and scaffold properties (Andréé et al., 2019; Lynch et al., 2009; Serpooshan et al., 2015). These data suggest a requirement for laboratory protocol improvements of 3D culture systems taking into account the influence of and potential interactions between coating reagents and serum-supplementing culture media, as they provide sites for cell attachment and proliferation.

We have previously reported the mechanical, electrical, and physical properties of engineered 3D composite scaffolds consisting of GO and sodium alginate (SA) (GOSA) (Mansouri et al., 2019). Our study revealed that GOSA composite porous scaffolds combine the known advantages of alginate (including non-toxicity, biocompatibility, and biodegradability) and graphene (including hydrophilicity, excellent mechanical strength, suitable biocompatibility, and good electrical conductivity). Considering
the aggregation of graphene nanosheets above 3 mg/ml, it was necessary to adjust the graphene loading in the biocomposite. The next step was to realize that the incorporation of GO into SA to produce a composite scaffold introduces excellent chemical properties, mechanical strength, and electrical conductivity, which perhaps can be harnessed to exploit the CNS physiology. In our previous work, it was shown that GOSA and RGOSA scaffolds with 0.5 and 1 wt. (%) concentrations and mean pore sizes of 147.4 μm (GOSA0.5), 142.5 μm (GOSA1), 116.0 μm (RGOSA0.5), and 114.7 μm (RGOSA1) can accommodate stem cells as an effective and promising cell source in regenerative therapies, in culture. Therefore, it will be important to establish cellular viability and cytotoxicity data based upon potential mechanisms of graphene-based material incorporation into the scaffold.

Neural crest-derived human dental pulp stem cells (hDPSCs) are a rich source of mesenchymal stem cells (MSCs), with the ability for high proliferation and multilineage differentiation capacity (Lan et al., 2019). These cells can be easily harvested from human exfoliated deciduous teeth, permanent and primary teeth, and supernumerary teeth (Gronthos et al., 2000). Studies showed that hDPSCs can differentiate into neuron-like cells and form functionally active neurons, under the direction of appropriate environmental cues (Arthur et al., 2008; H. Li et al., 2018). DPSCs also appear to induce axonal guidance via stromal-derived factor-1 (SDF-1) secretion, encouraging further exploration. Another study by Nosrat et al. (2004) showed that DPSCs express a repertoire of neurotrophic factors and stimulate neurogenesis and angiogenesis (Nosrat et al., 2003; Sakai et al., 2012). Similarly, implantation of hDPSCs has been shown to significantly improve forelimb sensorimotor function in a cerebral ischemia rodent model (Leong et al., 2012). For all these reasons, hDPSCs represent a candidate stem cell population for in vitro investigation of neural tissue repair.

Following the fabrication of composite graphene-based scaffolds, in this paper, we present our investigations into the influence of graphene incorporation, cell seeding density, coating conditions, and DPSC donor type on the viability and cytotoxicity of DPSCs. The viability and cytotoxicity of DPSC-loaded GOSA and RGOSA scaffolds have been assessed using the Alamar blue (AB) and lactate dehydrogenase (LDH) activity assays. Furthermore, defined serum-free media has been developed for the culture of DPSCs on the fabricated scaffolds to overcome the problematic issues of using fetal bovine serum (FBS) and promote efficient clinical translation of stem cell-based approaches.

2 | EXPERIMENTAL SECTION

2.1 | Materials

Sodium alginate and calcium chloride dried were purchased from Chem-Supply. Alpha-MEM (Gibco, Life Technologies, Cat. No. 12561056) was supplemented with FBS (USA origin, Life Technologies), penicillin/streptomycin (Gibco), L-ascorbic acid-2-phosphate (Sigma-Aldrich), and 2 mM L-glutamine (Life Technologies). Natural mouse Laminin (Gibco-Life Technologies) and 0.01% PLL solution (Sigma) were used as coating reagents. Trypsin-EDTA was supplied by Gibco Life Technologies. Clear-bottom 24-well and 96-well plates (Costar™) were used throughout the study. The cytotoxicity assay was performed following the manufacturer’s protocol using LDH kits from Promega Corporation. The AlamarBlue™ cell viability reagent was supplied by Invitrogen-Thermo Fisher Scientific.

2.2 | GOSA/RGOSA scaffold fabrication and preparation

The graphene-based composite scaffolds were fabricated by a technique involving solution mixing, freeze-drying, crosslinking, and bio-reduction as described previously (Mansouri et al., 2019). Briefly, 2 wt. % sodium alginate powder was dissolved in deionized water until a transparent solution was obtained. Then, GO (synthesized by modified hummers’ method as described previously [Marcano et al., 2010]) was added to the solution to get a final concentration of 0.5 and 1 wt. %. The mixture was frozen overnight at -18°C and fabricated into a porous structure by the freeze-drying technique. The obtained aerogels were crosslinked in 1 M calcium chloride (CaCl2) solution for 1 h and freeze-dried again to form GOSA scaffolds. The obtained scaffolds are named as GOSA0.5 and GOSA1 according to the concentration of GO in the composite sample. SA scaffolds were fabricated without the addition of GO. To make conductive RGOSA scaffolds, the obtained GOSA0.5 and GOSA1 scaffolds were treated with gelatin solution (1 mg ml⁻¹) at 95°C to produce conductive RGOSA0.5 and RGOSA1 scaffolds, respectively. The prepared scaffolds were cut in 2 mm thickness (diameter = 14 mm) until further use. Details on the physicochemical characterization of the GOSA and RGOSA scaffolds can be found in (Mansouri et al., 2019).

2.3 | Scanning electron microscopy (SEM)

The cross-sectional area of scaffolds was captured by a scanning electron microscope (SEM, Hitachi, SU1510 high technologies) at an acceleration voltage of 30 kV to observe the morphology and porosity of samples.

2.4 | In vitro biodegradation study

The in vitro biodegradation study aims to investigate the biodegradation rate of prepared scaffolds (Zhou et al., 2019). Briefly, each scaffold (n = 3) with known weight (W0) was incubated at 37°C in alpha-MEM culture media containing 1% (v/v) penicillin/streptomycin to prevent bacterial growth. At specific time points, scaffolds were rinsed with ddH2O. Then, samples were dried under vacuum and weighed (Wt). The extent of biodegradation was calculated using the following formula.

\[ \text{In vitro Biodegradation (\%) } = \frac{W_0 - W_t}{W_0} \times 100 \]
2.5 | Sterilization and coating of scaffolds

Before cell seeding, the scaffolds were sterilized with 80% ethanol for 24 h, then allowed to dry overnight and washed twice with DPBS. For PLL coating, scaffolds were incubated at room temperature in PLL (1 µg/ml) solution overnight. PLL was also used as a primer coating for laminin (LAM) coating conditions to ensure uniform coating. Therefore, for LAM coating, PLL-coated samples were incubated at 37°C in LAM solution (10 µg/ml) overnight. Noncoated (NC) scaffolds, which were wetted but not incubated with any coating material, served as control.

2.6 | Cell culture

Donor DPSCs (passage 6-7) were cultured in alpha modification of Eagle's medium (α-MEM) supplemented with 10% FBS, 1% penicillin (100 U/ml)/streptomycin (100 µg/ml), 100 µM l-ascorbic acid 2-phosphate, and 2 mM L-glutamine at 37°C in 5% CO₂ humidified atmosphere. Cells reaching 80%-90% confluency were harvested using 0.05% (w/v) trypsin/ethylenediaminetetraacetic acid (EDTA) solution and seeded onto scaffolds in 24-well culture plates (100 µl/well) at 1, 2, 4, 8, or 16 × 10⁴ cells/sample. The scaffolds were incubated for 3 h at 37°C with 5% CO₂ to allow diffusion of cells through the network of pores before adding culture media (550 µl/well). DPSCs cultured on the surface of the well plate (i.e., no scaffolds) were used as the 2D control.

2.7 | Cell viability using Alamar Blue assay

Alamar Blue (AB) assay was used to quantitatively measure the metabolic activity of living cells on the scaffolds by detecting the oxidation-reduction rate of the AB reagent (Rostami et al., 2020). When an AB reagent enters a living cell, resazurin is reduced to a highly fluorescent resorufin which is used to quantify cell viability (Ramakrishna et al., 2019; Vaquette et al., 2008). The effects of cell seeding density and coating condition of the various 3D porous scaffolds on the viability of DPSCs were evaluated. Briefly, after 24 and 48 h of cell seeding on scaffolds, 1 ml of 10% AB solution was added to each well (250 µl/well). The plates were shaken gently (200 rpm) for 5 min and incubated for 4 h at 37°C with 5% CO₂. After incubation, 100 µl of each sample was transferred to a 96-well plate and the fluorescence intensity was recorded at an excitation wavelength of 540 nm and an emission wavelength of 600 nm using a spectrophotometer (BioTek Synergy H1 multi-mode reader). Nonseeded scaffolds supplemented with 10% AB dye were used as a negative control to confirm that the fluorescence intensity of scaffolds alone did not interfere with the assay. Each experimental condition was conducted in triplicate, and experiments were replicated twice.

2.8 | Cytotoxicity study using LDH assay

The cytotoxic effects and level of toxicity of fabricated 3D scaffolds seeded with DPSCs, considering various coating conditions and inclusion/exclusion of serum in media, were measured by LDH assay for up to two days under proliferation conditions. The LDH kit (CytoTox 96® non-radioactive cytotoxicity assay, Promega) was used and LDH assay was performed according to manufacturer's instructions in which the number of cytotoxic cells is quantified by measuring cytosolic LDH enzyme leakage into the culture medium as a result of cell membrane damage (Lalwani et al., 2017). Density 3 (4 × 10⁴ cells/sample) was chosen to compare the DPSCs toxicity of scaffolds. Briefly, 50 µl of cell culture media was collected from 24-well plates after 24 and 48 h following DPSC seeding and transferred into a fresh 96-well plate. Approximately 50 µl of LDH assay mixture was then added to each well containing the supernatant and incubated at room temperature in the dark for 30 min. After 30 min, the reaction was stopped with HCl (1 N, 10 vol%) and absorbance values were obtained at 490 nm using a 96-well plate reader (GloMax Discovery microplate reader). DPSCs grown without scaffolds (2D controls) were incubated with lysis solution for 45 min and used as positive controls (100% dead, maximum LDH release control). The cytocompatibility performance of the scaffolds was analyzed by using the absorbance of the experimental groups and the negative control group (scaffold only, with no cells). Cytotoxicity data are presented as the average of three replicates. Two different donors were selected to determine the effects of donor type on cytotoxic effects of DPSCs with and without FBS in culture media.

2.9 | Statistical analysis

Data are graphically reported as mean ± SEM (standard error of mean) of at least three independent samples. Statistical analysis was performed by two-way analysis of variance with a significance level of p < 0.05 followed by post hoc Dunnett test. The analysis was carried out on GraphPad Prism software. The correlation between cell viability and mean pore size was determined by the Spearman rank-order correlation test.

3 | RESULTS

3.1 | Structural analysis

The microstructure of fabricated scaffolds was assessed using SEM images (Figure 1). The data revealed that all scaffolds exhibited homogeneous porous structures with interconnected pores. As reported in our previous study (Mansouri et al., 2019), the average pore sizes were measured as: 162.5 ± 37.2, 147.4 ± 17.5, 142.5 ± 28.5, 116 ± 8.1, and 114.7 ± 16.1 µm for SA, GOSA0.5, GOSA1, RGOSA0.5, and RGOSA1, respectively. These observations show the dependency of composite scaffold pore size on GO concentration.
To evaluate the effect of GO addition on the degradation rate of composite scaffolds, weight loss was expressed as the percentage (%) of biodegradation at 1, 2, 3, 7, and 21 days (Figure 1). These time points were chosen based on the acute critical timepoints required for long-term differentiation assays of DPSCs (Arthur et al., 2008). The biodegradation of GOSA and RGOSA scaffolds containing different percentages of GO were analyzed over a 3-week period. At Day 3, there was gradual biodegradation of all GOSA and RGOSA scaffolds by approximately 20% of initial weight. In contrast, SA scaffolds showed degradation percentages of approximately 31%. The difference between all GO-based scaffolds and the SA scaffold (no-graphene control) was statistically significant ($p < 0.0001$) from Day 2 to Day 21. Figure 2 presents in vitro biodegradation data for all five scaffolds. The mean (SEM) weight loss between Day 0 and Day 21 was approximately 24.86% ± 1.34, 32.42% ± 0.68, 23.19% ± 1.60, and 31.42% ± 1.20 for GOSA0.5, GOSA1, RGOSA0.5, and RGOSA1 scaffolds, respectively. The SA scaffold (containing no graphene) showed the highest weight loss of approximately 44.02% at Day 21, while hybrid scaffold weight loss stabilized after 7 days.

3.2 | Biodegradation study

FIGURE 1 SEM images of (a) SA, (b) GOSA0.5, (c) GOSA1, (d) RGOSA0.5, and (e) RGOSA1 scaffolds showing a connected porous structure of fabricated scaffolds to facilitate 3D DPSCs culture. DPSCs, dental pulp stem cells; GOSA, graphene oxide/sodium alginate; RGOSA, reduced graphene oxide/sodium alginate; SEM, scanning electron microscopy

FIGURE 2 The biodegradation rate expressed as a percentage (SEM) of SA, GOSA0.5, GOSA1, RGOSA0.5, and RGOSA1 scaffolds from 0 to 3 weeks. GOSA, graphene oxide/sodium alginate; RGOSA, reduced graphene oxide/sodium alginate; SEM, standard error of mean

FIGURE 3 24-hour Alamar Blue reduction (%) of two-dimensional surface (no scaffold), SA and GOSA scaffolds (means, SEM) at five cell seeding densities; *indicates statistical significance (**p < 0.001, ****p < 0.0001). GOSA, graphene oxide/sodium alginate; SEM, standard error of mean
3.3 | Enhancement of cell viability using 3D culture system

The viability of DPSCs grown in 2D or 3D scaffolds was assessed using the AB assay. After 24 h of cell culture (Figure 3), there was a significant increase in the cellular activity of SA and GOSA scaffolds seeded with DPSCs compared with DPSCs grown under 2D conditions at all cell densities ($p < 0.0001$). Cells seeded directly on the surface had an average (SEM) AB reduction of $53.7\% \pm 1.00$ across all five seeding densities. Furthermore, cells on 3D scaffolds were found to be more viable when compared with the no scaffold (2D) condition (Figure 3).

3.4 | Comparison based on cell densities

Both scaffolds (SA and GOSA) supported cell viability across various cell densities with no negative effect on AB reduction, after 24 h of cell culture (Figure 3). The data showed that AB reduction increased significantly, as an indication of metabolic activity and proliferation, in SA and GOSA1 scaffolds across all five cell densities.

3.5 | Increased DPSCs viability on scaffolds coated with PLL

As the overall pattern of DPSCs viability was not affected by seeding density when compared with no scaffold controls, Density 1 ($1 \times 10^4$), Density 3 ($4 \times 10^4$), and Density 5 ($16 \times 10^4$) were selected to conduct further AB viability analysis over 24- and 48-h. To determine the effects of coating conditions on seeded DPSCs, three different coating conditions (NC, PLL, and PLL + LAM) were used. The effect of cell seeding densities was impacted by various coating conditions following 24 h of culture. Significantly higher AB reduction percentage was observed for SA and GOSA scaffolds at all three densities compared with the 2D control condition ($4a$-$c$)er 48 h of DPSCs culture, statistically significant differences were detected in the profiles of cells growing in 2D and 3D under various coating conditions ($4d$-$f$). PLL coating significantly increased the cellular activity of GOSA scaffolds at all three cell densities within 48 h of DPSCs culture (Figure 4).
As Density 3 (4 × 10^4 cells/sample) was observed to have consistent and comparable effects on DPSCs viability, herein we selected this density to prevent potential differences in morphology (Kanafi et al., 2013) and differentiation pathways (Noda et al., 2019) previously observed with higher seeding densities.

3.6 Scaffold biomaterial composition plays a key role in cellular functions

To explore the effects of scaffold biomaterials on cellular functions, the metabolic activity of cultured DPSCs on various scaffolds was measured using the AB assay. In SA scaffolds, AB reduction (%) was maintained at the 2D cell culture (Figure 5). In contrast, the AB reduction was significantly increased for GOSA1, RGOSA0.5, and RGOSA1 scaffolds compared with SA only scaffolds across all coating conditions. A significantly higher degree of reduction of the AB dye was observed in DPSCs grown on PLL-coated graphene-based scaffolds compared to those cultured on a 2D surface. This highlights the importance of PLL coating (as previously proved in coating conditions), where the highest AB reduction percentage was recorded for PLL-coated RGOSA1 as 93.66% ± 5.88.

3.7 Lower cytotoxic effects of graphene-based scaffolds

The cytotoxicity of fabricated scaffolds was examined using analysis of LDH release in culture media. In this study, LDH release was taken as a marker of DPSCs membrane damage. At 24 h of DPSCs culture, all biomaterials showed a relatively low level of released LDH (Figure 6). However, a significant increase in the LDH levels of DPSCs were observed for uncoated SA (41.65% ± 7.35) and PLL-coated GOSA0.5 (34.31% ± 5.31) scaffolds after 24 h of cell culture. It is interesting to note that, after 48 h of culture, DPSCs toxicity obtained by LDH assay on graphene-based scaffolds were not significantly higher than the 2D surface (Figure 6). However, DPSCs cultivated onto pure SA scaffolds displayed the highest levels of cytotoxicity as compared to 2D control (no scaffold) (p < 0.0001).

3.8 Better cellular behavior in scaffolds with smaller mean pore size

The AB and LDH assay results were utilized to determine the effects of scaffold pore size on cellular behavior. The data showed that cellular activity decreases when the mean pore size increases on PLL-coated scaffolds (Figure 7). The lowest AB reduction percentages were measured for PLL + LAM coated SA and GOSA0.5 scaffolds with the largest mean pore sizes as 36.12% and 38.33%, respectively. Accordingly, the relatively lowest cytotoxicity was observed for RGOSA0.5 (116.0 μm) and RGOSA1 (114.7 μm) scaffolds with smaller mean pore sizes compared with SA and other composite scaffolds (Figure 7). Overall, a negative correlation (Spearman R = −0.83) was observed between mean pore size of scaffolds and cellular activity (obtained by AB assay). Conversely, a weak positive correlation (Spearman R = 0.06) was seen between the mean pore size of scaffolds and cytotoxicity (obtained by LDH assay). These findings indicate that increasing mean pore size decreases DPSCs metabolic activity with no corresponding relationship to cytotoxicity.

3.9 Serum supplemented scaffolds greatly increased cytotoxicity

DPSCs cultured for 24 h in serum-free media on all graphene-based scaffolds caused no significant increases in cytotoxicity levels compared to cell only (2D) control, irrespective of coating conditions (Figure 8). The data also indicated significantly lower cell toxicity of PLL + LAM-coated RGOSA1 scaffolds (1.81% ± 3.57), compared with

![Figure 6](image_url) Cell cytotoxicity (mean, SEM) of each scaffold measured by LDH assay in no coating, PLL coating and PLL + LAM coating conditions at (a) 24 and (b) 48 h of DPSCs culture; "indicates statistical significance (*p < 0.05, ****p < 0.0001). DPSCs, dental pulp stem cells; LAM, laminin; PLL, poly-L-lysine; SEM, standard error of mean.
Furthermore, quantitative LDH activity measurements (Figure 8) showed no significant differences after 24 h between all 3D graphene-based scaffolds seeded with DPSCs using serum-containing media, when compared with 2D control. These cytotoxic effects were not influenced by coating conditions. However, the percentage of cytotoxic effects of PLL + LAM-coated SA scaffolds (24.83% ± 4.77) was the highest amongst other scaffolds assessed across all coating conditions.

There are no significant increases in the percentage of cell toxicity of DPSCs exposed to coated and uncoated GOSA and...
RGOSA scaffolds in comparison to the 2D control (Figure 8). However, after 48 h of cell culture, a significant elevation of LDH release was detected when DPSCs were cultured on SA scaffolds with serum deprivation, with the highest cell toxicity percentage of 36.22% ± 1.26 for PLL + LAM coating. The cell toxicity percentage of almost all samples tested with no serum was found to have increased in comparison with the corresponding conditions at the 24 h time point. In addition, when DPSCs in serum-rich media were seeded onto fabricated 3D scaffolds, cell toxicity of scaffolds increased significantly in comparison with no scaffold culture, regardless of coating conditions (Figure 8). After 48 h of DPSCs culture with serum, cell cytotoxicity was the highest in SA (20.78% ± 2.95), GOSA1 (16.95% ± 3.38), and RGOSA1 (16.43% ± 3.58) matrices coated with PLL. Furthermore, at 48 h of cell culture with serum, the cell toxicity percentage of all evaluated samples was reduced when compared with the corresponding 24 h time point.

4 | DISCUSSION

Significant complexity has been uncovered in the interactions between stem cells and engineered scaffolds (Willerth & Sakiyama-Elbert, 2019). In this study, we report the profiles of DPSCs cultured on fabricated 3D GOSA and RGOSA scaffolds with 2D, coating and media controls.

Our in vitro biodegradation data revealed an inverse relationship between GO concentrations and weight loss. This relationship is explained by the accessibility of water molecules to GO composites as a function of GO concentration. As discussed in the water contact angle measurements in our previous paper (Mansouri et al., 2019), the incorporation of GO increases the interaction of composite scaffolds with water and this effect is GO concentration-dependent. Therefore, as hydrophilicity accelerates with higher GO concentration, water-mediated scaffold degradation increases (Samadian et al., 2020). The fast degradation of scaffolds over the first week is attributed to the release of unbounded graphene nanosheets which have weak binding with the polymer matrix. In addition, the alginate chains with insufficient crosslinking are likely to release to the media at this stage. Moreover, when scaffolds are soaked in the culture media, the ion exchange between calcium and existing salts in the culture media could lead to the weakening of alginate crosslinking leading to an initial fast weight loss (Rastin et al., 2020, 2021). After a while, the remaining polymer matrix and embedded graphene nanosheets reached a steady state toward the end of incubation period which favors appropriate tissue regeneration. It is well-established that neural regeneration is a protracted biological process (Purohit et al., 2019; Subramanian et al., 2009; Verreck et al., 2005). In relation to long-term biophysical support for regenerating neurons, a slower degradation rate is highly desirable. Our results suggest that the lower degradation rate of graphene-based composite scaffolds can mimic the biological conditions necessary to achieve neural regeneration. Furthermore, a slower degradation pattern of scaffolds would certainly maintain structural integrity and provide adequate mechanical support. Collectively, our results confirm that the degradability of composite 3D RGOSA scaffolds is adjustable and controlled by graphene content.

It is noteworthy that when cultured onto 3D SA and GOSA scaffolds, DPSCs viability was enhanced in relation to 2D culture plates. This relationship clearly signifies the optimal condition of initial cell adhesion to the scaffold surface to promote subsequent cell proliferation and infiltration. Our observation of an increase in the total metabolic activity of cell-seeded scaffolds provides proof-of-principle support for cell growth and proliferation in a 3D matrix that can act as a delivery system for seeded cells. Thus, it is reasonable to conclude that an artificial 3D scaffold is an acceptable approach to mimic the natural architecture of the native tissue and create a microenvironment conducive to DPSCs engraftment.

The cell–cell interactions within the matrix of 3D cell culture systems have a profound influence on cellular functions including viability, migration, and proliferation in contrast to 2D culture (Baker & Chen, 2012). For example, one report showed that 3D polymer-based scaffolds seeded with hepatic cells had less cytotoxic effects than those cultured in 2D (Jensen & Teng, 2020). In another study, the 3D culture of dental stem cells was found to support their neuronal characteristics and maintain cell phenotypes (Pisciotto et al., 2018). Extending this, we have confirmed that a superior proliferative ability of DPSCs, as measured by metabolic activity, can be obtained when cells are cultured on 3D porous scaffolds.

Regarding cell seeding density, we have shown that when cells are seeded on 3D scaffolds at all densities, the cell proliferation rate is significantly increased in comparison to 2D. Moreover, we found that increased seeding density in 3D scaffolds could be achieved without inducing cytotoxic effects, as determined by the LDH assay. In this study, we also showed that the addition of graphene to 3D composite scaffolds improved cellular behaviors and this was seen across all DPSCs seeding densities examined. When cells are seeded at high densities, cellular proliferative activity fluctuates over time. Whereas cells seeded at lower densities proliferate gradually but continuously, as described previously (Divieto & Sassi, 2015). Thus, the metabolic activity of cells is highly impacted by both the internal porosity of the scaffold structure and the initial cell seeding density. Presumably, at high cell densities, cells are able to rapidly colonize pores which resulted in our study in the highest AB reduction per-pore which resulted in our study in the highest AB reduction percentage for GOSA1 scaffolds at a density of 16 × 10⁴. Notably, the degree of cellular metabolic activity did not differ significantly between the different cell densities tested. This result is important because the implication is that seeding efficiency can be achieved even at high cell densities, at least within a 48-h period. More work would be required to determine if high seeding densities might have different effects on longer-term culture.

Assessment of coating reagents revealed that PLL + LAM coating did not affect cell viability as indicated by AB reduction percentage. After 48 h of DPSCs culture, both laminin coating and no coating conditions decreased cell viability on both SA and GOSA scaffolds. Possible explanations involve interactions between coating properties and DPSCs adherence or cell aggregation which can decrease
proliferation (Liberio et al., 2014). Interestingly, PLL was identified as the coating reagent that enhanced cell-matrix adherence. This enhancement might be due to the larger number of cationic sites offered by PLL coating on the 3D surface. In agreement with another study (Liberio et al., 2014), our results show that PLL is superior to laminin coating. In addition, the effect of all three coating conditions on DPSCs was irrespective of cell seeding density.

The AB assessment of metabolic activity shows that biomaterial composition can modulate DPSCs responses to fabricated scaffolds. Our no scaffold controlled LDH results also indicate that SA, GOSA, and RGOSA scaffolds materials are nontoxic to DPSCs in short-term culture. Based on previous work, it might be inferred that the composition of a scaffold material can have a direct effect on the biodistribution of secreted factors that in turn influence the stem cell fate. The results appear to suggest that different scaffolds with varying material properties (such as blend ratio, swelling index, or microstructure) elicit diverse DPSCs behaviors. The increase in cell viability observed in vitro upon the incorporation of graphene in composite scaffolds is consistent with other studies (Qian et al., 2018; Rostami et al., 2020). Published data suggest that the outstanding surface properties and adsorption capacity of graphene-based nanomaterials are the main contributors to the observed DPSCs responses.

Our results showed a strong influence of pore size, material composition, and substrate dimensionality on cell viability, in accordance with the findings of Domingos et al. (2013). Comparisons of AB reduction in SA (97.2%) and graphene-based scaffolds including GOSA0.5 (97.5%), GOSA1 (98.0%), RGOSA0.5 (99.05%), and RGOSA1 (99.18%) revealed the differences in DPSCs proliferation markers across various graphene-based scaffolds. These differences appear to be explained by variations in scaffold porosity (%) such that scaffolds with higher porosity (RGOSA ≈ 99%) are able to accommodate higher numbers of viable cells. Furthermore, it was shown that scaffolds with smaller mean pore sizes induce relatively less toxicity. This can be explained by the available surface area of scaffolds for cultured cells or applying the principle that the mean pore size and specific surface area are inversely proportional. In consideration of the specific surface area and mean pore size of a scaffold, biophysical properties can affect cell adhesion (Karageorgiou & Kaplan, 2005). It follows that low levels of cell adhesion are observed on scaffolds with larger pore size and less specific surface area (O’Brien et al., 2005, 2007). As a result, the available specific surface area per unit volume for cell adhesion of each fabricated scaffold can be calculated using mean pore sizes (Murphy & O’Brien, 2010). Accordingly, the normalized specific surface area of GOSA and RGOSA scaffolds, as shown in Table 1, can be obtained by dividing the mean pore size of each scaffold by the mean pore size of SA scaffold (3D control). Thus, the higher AB reduction observed in our RGOSA1 scaffold can be explained by the higher specific surface area in comparison with GOSA1 and SA scaffolds. These data indicate that higher pore size facilitates increased DPSCs migration and proliferation, in agreement with a previous report on culturing DPSCs into 3D PLL acid-based scaffolds (Conde et al., 2015). In addition, the mechanical properties of scaffolds with overly large pores are compromised, whereas higher cellular proliferation within large pore sizes can have implications for differentiation (Morsy et al., 2019).

Our cytotoxicity findings are consistent with several other studies using GO layer cultured with mesenchymal stromal cells and GO/chitosan scaffolds seeded with human adipose-derived stem cells (Dinescu et al., 2019; Kibalcoca et al., 2010). In our study, LDH measurements showed significantly higher levels of DPSCs toxicity for uncoated SA scaffolds which can be attributed to poor ability and lack of efficient sites to support cell adhesion and proliferation. This result is supported by another study utilizing other materials mixed with alginate to create biocomposites (Luo et al., 2015). However, the incorporation of GO into GOSA scaffolds did not elicit significant differences in cytotoxic effects after 2 days of DPSCs culture. Overall, the GO-enriched scaffolds exhibited cytotoxicity of 15%–27% after 48 h of culture, suggesting that these materials are biocompatible with DPSCs. Therefore, GO has no apparent cytotoxic effect but exhibits positive effects on cell function in long-term DPSCS culture.

The use of serum-free or serum-rich culture media for biological assays is a contentious issue (Jones & Grainger, 2009). The associated clinical uncertainties with the use of FBS include immune rejection, batch-to-batch variations, ethical concerns, interfering effects of unidentified growth factors and proteins, and viral contamination (Van der Valk et al., 2004). Regarding DPSCs stability, there is clear evidence about the positive effects of serum-free culture media on retaining stemness (Bonnamain et al., 2013; Xiao & Tsutsui, 2013). Furthermore, serum-free cultured DPSCs within chitosan scaffolds expressed stem cell markers (Nestin and Sox2) and survived successfully after transplantation into the rodent spinal cord (Jung et al., 2016). The present study investigated whether serum depletion facilitates the attachment of DPSCs onto hybrid scaffolds. Thus, the effects of serum on the cytotoxicity of DPSCs were tested using 2D and 3D culture systems across three different coating conditions at a single-cell density of 4 × 10^4 cells/sample. We have indicated that the presence of serum caused significantly higher cytotoxic behavior of coated 3D scaffolds which could be due to suboptimal surface-cell attachment (Liu et al., 2020). This was also shown for the

### Table 1

| Sample   | Mean pore size (μm) | Normalized specific surface area |
|----------|---------------------|---------------------------------|
| SA       | 162.5 ± 37.2        | 1                               |
| GOSA0.5  | 147.4 ± 17.5        | 0.907                           |
| GOSA1    | 142.5 ± 8.5         | 0.876                           |
| RGOSA0.5 | 116.0 ± 8.1         | 0.713                           |
| RGOSA1   | 114.7 ± 16.1        | 0.705                           |

Abbreviations: GOSA, graphene oxide/sodium alginate; RGOSA, reduced graphene oxide/sodium alginate.
combination of PLL and LAM coatings in the presence of serum on 3D structures. It is surmised that coatings lower the available surface area of 3D scaffold biomaterials for the attachment of cell receptors, which subsequently causes poor adhesion. In contrast, the coated 2D surface was found to result in better attachment of DPSCs which is due to the unfavorable bare tissue culture surface. Moreover, our study found that the cytotoxicity of DPSCs cultured in serum-rich media on 3D scaffolds increased significantly in comparison with the 2D control. The increased level of cytotoxicity in serum-containing medium could be attributed to the surface oxygen content of GO and RGO, which favors FBS adsorption. This could be due to the formation of protein corona on the GO surface which in turn influence the toxicity of GO-based materials (Hu et al., 2011; Wei et al., 2015). Furthermore, studies have indicated that serum proteins can have an interfering effect on interactions between nanoparticles, cells, and biological molecules (Karaman & Yaral, 2018; Lesniak et al., 2010, 2012). Accordingly, Lesniak et al. (2012) demonstrated that various protein corona formed on silica nanoparticles modified cell adhesion, cellular uptake, and toxicity, which is determined by the serum protein concentration. It was also shown that serum-containing media resulted in lower cell adhesion and internalization efficiency of silica nanoparticles. The present study found DPSCs can be seeded in serum-free media onto GOSA and RGOSA scaffolds with no cytotoxic effects, showing promising potential for clinical translation as cellular transplants are typically serum-free.

5 | CONCLUSION

Alginate-based scaffolds have been extensively investigated for NTE, however, they faced some limitations that hampered their further developments. Importantly, alginate-based scaffolds have poor mechanical strength and degradation rate, which are not matched with the native tissue microenvironment. It was found that incorporation of graphene within the alginate matrix can address these drawbacks. However, it is important to investigate cellular viability and cytotoxicity of 3D graphene-based composite scaffold. In addition, it is revealed that coating of scaffolds induces cell functions, adhesion, and growth. Therefore, this study examined the biodegradation, biocompatibility, bioactivity, and cytotoxicity of neural crest-derived DPSCs loaded graphene-based 3D composite scaffolds, using three different coating conditions.

It was shown that the composite GOSA and RGOSA scaffolds have controlled biodegradability which is effective in therapeutic tissue engineering applications. DPSCs viability cultured onto SA and GOSA scaffolds was higher than that of on 2D controls thus signifying surface cell adhesion followed by cell infiltration through the porous matrices. Therefore, the superior proliferative ability of DPSCs can be obtained when cells are cultured on 3D porous scaffolds. The LDH assay showed comparable DPSCs toxicity on the GOSA and RGOSA scaffolds to that obtained on a 2D surface in the absence of the biomaterial, highlighting no significant cytotoxic effects of graphene incorporation after 2 days of DPSCs culture. Furthermore, a smaller mean pore size of scaffolds resulted in higher cellular activity and relatively less cytotoxicity, which is due to more available specific surface area on scaffolds with smaller mean pore sizes. In terms of coating conditions, PLL was the most robust reagent that improved cell-matrix adherence and affected the metabolism activity of DPSCs, being superior to combined PLL + LAM coating. Furthermore, the cytotoxicity of GOSA and RGOSA scaffolds in the presence of serum is increased compared to serum-free conditions, indicating that DPSCs can be cultured in serum deprivation onto the fabricated scaffolds for clinical translation. The findings from the current study suggest that the proposed 3D graphene-based composite scaffolds had a favorable effect on the biological responses of DPSCs which could be exploited in further DPSCs differentiation and electrical stimulation for functional NTE.

ACKNOWLEDGMENTS

This study was supported by AOSpine Asia Pacific Research Grant 2019 (AOSAUNZ(R) 2019-05). The first author wishes to acknowledge the University of Adelaide for awarding Adelaide Scholarship International (ASI) for her PhD study. The authors also appreciate the support from the Australian Research Council Research Hub for Graphene Enabled Industry Transformation (project no. IH 150100003). Also, special thanks go to Mr Arash Mazinani for his support with SEM imaging.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author, [ROD], upon reasonable request.

CONFLICT OF INTERESTS

The authors declare that there are no conflict of interests.

REFERENCES

Akhavan, O. (2016). Graphene scaffolds in progressive nanotechnology/stem cell-based tissue engineering of the nervous system. Journal of Materials Chemistry B, 4(19), 3169–3190. https://doi.org/10.1039/C6TB00152A
Andrée, B., Ichanti, H., Kalies, S., Heisterkamp, A., Strauß, S., Vogt, P. -M., & Hilfiker, A. (2019). Formation of three-dimensional tubular endothelial cell networks under defined serum-free cell culture conditions in human collagen hydrogels. Scientific Reports, 9(1), 1–11. https://doi.org/10.1038/s41598-019-41985-6
Ansari, S., Diniz, I. M., Chen, C., Sarrión, P., Tamayol, A., Wu, B. M., & Moshaverinia, A. (2017). Human periodontal ligament and gingival-derived mesenchymal stem cells promote nerve regeneration when encapsulated in alginate/hyaluronic acid 3D scaffold. Advanced Healthcare Materials, 6(24), 1700670. https://doi.org/10.1002/adhm.201700670
Ansorena, E., De Berdt, P., Uçakar, B., Simón-Yarza, T., Jacobs, D., Schakman, O., & Préat, V. (2013). Injectable alginate hydrogel loaded with GDNF promotes functional recovery in a hemisection model of spinal cord injury. International Journal of Pharmaceutics, 455(1-2), 148–159. https://doi.org/10.1016/j.ijpharm.2013.07.045
Arthur, A., Rychkov, G., Shi, S., Koblar, S. A., & Grotchhos, S. (2008). Adult human dental pulp stem cells differentiate toward functionally active neurons under appropriate environmental cues. Stem Cells, 26(7), 1787–1795. https://doi.org/10.1634/stemcells.2007-0979
Baker, B. M., & Chen, C. S. (2012). Deconstructing the third dimension--how 3D culture microenvironments alter cellular cues. *Journal of Cell Science*, 125(13), 3015–3024. https://doi.org/10.1242/jcs.097909

Beii, H. P., Yang, Y., Zhang, Q., Tian, Y., Luo, X., Yang, M., & Zhao, X. (2019). Graphene-based nanocomposites for neural tissue engineering. *Molecules*, 24(4), 658.

Bonnemain, V., Thinard, R., Sergent-Tanguy, S., Huet, P., Bienvenu, G., Naveilhan, P., & Alliot-Licht, B. (2013). Human dental pulp stem cells cultured in serum-free supplemented medium. *Frontiers in Physiology*, 4, 357. https://doi.org/10.3389/fphys.2013.00357

Conde, C. M., Demarco, F. F., Casagrande, L., Alcazar, J. C., Nör, J. E., & Baker, B. M., & Chen, C. S. (2012). Deconstructing the third dimension: a first approach to evaluate the cell dose. *Biofabrication*, 4(2), 93–98. https://doi.org/10.1590/0103-644020130030022

Dinescu, S., Ionita, M., Ignat, S.-R., Costache, M., & Hermenean, A. (2019). Pore size and geometry of highly porous scaffolds by using a non-destructive metabolic method. *Future Science OA*, 1(4), 58.

Domingos, M., Intrunafuro, F., Russo, T., De Santis, R., Gloria, A., Ambrosio, L., & Bartolo, P. (2013). The first systematic analysis of 3D rapid prototyped poly (ε-caprolactone) scaffolds manufactured through BioCell printing: The effect of pore size and geometry on compressive mechanical behaviour and in vitro hMSC viability. *Biofabrication*, 5(4), 045004. https://doi.org/10.1088/1758-5082/5/4/045004

Ghasemi, M., Divieto, C., & Sassi, M. P. (2015). Protein corona-mediated mitigation of cytotoxicity of graphene oxide. *ACS Nano*, 9(7), 7334–7341. https://doi.org/10.1021/nn502190c

Lee, W., Lim, C. Y. X., Shi, H., Tang, L. A. L., Wang, Y., Lim, C., & Loh, K. (2011). Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide. *ACS Nano*, 5(9), 9518–9527. https://doi.org/10.1021/nn2019042

Lesniak, A., Campbell, A., Monopoli, M. P., Lynch, I., Salvati, A., & Dawson, K. A. (2010). Serum heat inactivation affects protein corona composition and nanoparticle uptake. *Biomaterials*, 31(36), 9511–9518. https://doi.org/10.1016/j.biomaterials.2010.09.049

Li, H., Ye, A. Q., & Su, M. (2018). Application of stem cells and advanced materials in nerve tissue regeneration. *Stem Cells International*, 2018, 42431102. https://doi.org/10.1155/2018/42431102

Li, N., Zhang, Q., Gao, S., Song, Q., Huang, R., Wang, L., & Cheng, G. (2013). Three-dimensional graphene foam as a biocompatible and conductive scaffold for neural stem cells. *Scientific Reports*, 3, 1604.

Liberio, M. S., Sadowski, M. C., Soekmadji, C., Davis, R. A., & Nelson, C. C. (2015). Concentrated gelatin/alginate composites for fabrication of predesigned scaffolds for application in neural tissue engineering. *Frontiers in Neurology*, 10, 824. https://doi.org/10.3389/fneur.2019.00824

Luo, Y., Lode, A., Akkineni, A. R., & Gelinsky, M. (2015). Concentrated gelatin/alginate composites for fabrication of predesigned scaffolds with a favorable cell response by 3D plotting. *RSC Advances*, 5(54), 43480–43488. https://doi.org/10.1039/c5ra04308e

Lynch, I., Salvati, A., & Dawson, K. A. (2009). Protein–nanoparticle interactions: What does the cell see? *Nature Nanotechnology*, 4(9), 546–547. https://doi.org/10.1038/nnano.2009.248

Mansouri, N., Al-Sarawi, S. F., Mazumdar, J., & Losic, D. (2019). Advancing fabrication and properties of three-dimensional graphene–alginate scaffolds for application in neural tissue engineering. *RSC Advances*, 9(63), 36838–36848. https://doi.org/10.1039/C9RA07481C
Murphy, C. M., & O’Morsy, R. A., Beherei, H., Ellithy, M., Tarek, H. E., & Mabrouk, M. (2019). MANSOURI ET AL.

Prang, P., Müller, R., Eljaouhari, A., Heckmann, K., Kunz, W., Weber, T., & Nosrat, I. V., Widenfalk, J., Olson, L., & Nosrat, C. A. (2001). Dental pulp Pisciotta, A., Bertoni, L., Riccio, M., Mapelli, J., Bigiani, A., La Noce, M., & O’Brien, F. J., Harley, B. A., Waller, M. A., Yannas, I. V., Gibson, L. J., & Ramakrishna, H., Li, T., He, T., Temple, J., King, M. W., & Spagnoli, A. (2019). Tissue engineering a tendon-bone junction with biodegradable braided scaffolds. Biomaterials Research, 23(1), 1–12. https://doi.org/10.1186/s40824-019-0160-3

Rastin, H., Ramezanpour, M., Hassan, K., Mazinani, A., Tung, T. T., Vreugde, S., & Losic, D. (2021). 3D bioprinting of a cell-laden antibacterial polysaccharide hydrogel composite. Carbohydrate Polymers, 264, 117989.

Rastin, H., Zhang, B., Mazinani, A., Hassan, K., Bi, J., Tung, T. T., & Losic, D. (2020). 3D bioprinting of cell-laden electroconductive MXene nanocomposite bioinks. Nanoscale, 12(30), 16069–16080.

Rostami, F., Tamjid, E., & Behmanesh, M. (2020). Drug-eluting PCL/graphene oxide nanocomposite scaffolds for enhanced osteogenic differentiation of mesenchymal stem cells. Materials Science and Engineering: C, 115, 111102. https://doi.org/10.1016/j.msec.2020.111102

Sakai, K., Yamamoto, A., Matsubara, K., Nakamura, S., Naruse, M., Yamagata, M., & Imagama, S. (2012). Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro-regenerative mechanisms. The Journal of Clinical Investigation, 122(1), 80–90. https://doi.org/10.1172/JCI59251

Samadian, H., Farzamfar, S., Vaez, A., Ehterami, A., Blt, A., Alam, M., & Salehi, M. (2020). A tailored polyactic acid/polycaprolactone biodegradable and bioactive 3D porous scaffold containing gelatin nanofibers and Taurine for bone regeneration. Scientific Reports, 10(1), 1–12. https://doi.org/10.1038/s41598-020-70155-2

Schmidt, C. E., & Leach, J. B. (2003). Neural tissue engineering: Strategies for repair and regeneration. Annual Review of Biomedical Engineering, 5(1), 293–347. https://doi.org/10.1146/annurev.bioeng.5.111303.120731

Serpooshan, V., Mahmoudi, M., Zhao, M., Wei, K., Sivanesan, S., Motamedchaboki, K., & Yang, P. C. (2015). Protein corona influences cell–biomaterial interactions in nanostructured tissue engineering scaffolds. Advanced Functional Materials, 25(28), 4379–4389. https://doi.org/10.1002/adfm.201500875

Serrano, M. C., Patiño, J., García-Rama, C., Ferrer, M. L., Fierro, J. L. G., Tamayo, A., & Gutiérrez, M. C. (2014). 3D free-standing porous scaffolds made of graphene oxide as substrates for neural cell growth. Journal of Materials Chemistry B, 2(34), 5698–5706. https://doi.org/10.1039/C4TB00652F

Subramanian, A., Krishnan, U. M., & Sethuraman, S. (2009). Development of biomaterial scaffold for nerve tissue engineering: Biomaterial mediated neural regeneration. Journal of Biomedical Science, 16(1), 108. https://doi.org/10.1186/1423-0127-16-108

Sun, J., & Tan, H. (2013). Alginate-based biomaterials for regenerative medicine applications. Materials, 6(4), 1285–1309. https://doi.org/10.3390/ma6041285

Van der Valk, J., Mellor, D., Brands, R., Fischer, R., Gruber, F., Gstraunthaler, G., & Prieto, P. (2004). The humane collection of fetal bovine serum and possibilities for serum-free cell and tissue culture. Toxicology in Vitro, 18(1), 1–12. https://doi.org/10.1016/j.tiv.2003.08.009

Vaquez, C., Frochot, C., Rahouadi, R., Muller, S., & Wang, X. (2008). Mechanical and biological characterization of a porous poly‐lactic acid‐co‐ε‐caprolactone scaffold for tissue engineering. Soft Materials, 4(1), 25–33. https://doi.org/10.1080/15394450801887109

Verreuck, G., Chun, I., Li, Y., Kataria, R., Zhang, Q., Rosenblatt, J., & Bruining, M. (2005). Preparation and physicochemical characterization of biodegradable nerve guides containing the nerve growth factor sabeluzole. Biomaterials, 26(11), 1307–1315. https://doi.org/10.1016/j.biomaterials.2004.04.040

Wang, G., Wang, X., & Huang, L. (2017). Feasibility of chitosan-alginate (Chi-Alg) hydrogel used as scaffold for neural tissue engineering: A pilot study in vitro. Biotechnology & Biotechnological Equipment, 31(4), 766–773. https://doi.org/10.1080/13102818.2017.1332493
Wei, X.-Q., Hao, L.-Y., Shao, X.-R., Zhang, Q., Jia, X.-Q., Zhang, Z.-R., & Peng, Q. (2015). Insight into the interaction of graphene oxide with serum proteins and the impact of the degree of reduction and concentration. *ACS Applied Materials & Interfaces, 7*(24), 13367–13374. https://doi.org/10.1021/acsami.5b01874

Willerth, S. M., & Sakiyama-Elbert, S. E. (2019). Combining stem cells and biomaterial scaffolds for constructing tissues and cell delivery. *StemJournal, 1*(1), 1–25. https://doi.org/10.3233/STJ-180001

Wu, J., Xie, L., Lin, W. Z. Y., & Chen, Q. (2017). Biomimetic nanofibrous scaffolds for neural tissue engineering and drug development. *Drug Discovery Today, 22*(9), 1375–1384. https://doi.org/10.1016/j.drudis.2017.03.007

Xiao, L., & Tsutsui, T. (2013). Characterization of human dental pulp cells-derived spheroids in serum-free medium: Stem cells in the core. *Journal of Cellular Biochemistry, 114*(11), 2624–2636. https://doi.org/10.1002/jcb.24610

Yildirim, L., Zhang, Q., Kuang, S., Cheung, C.-W. J., Chu, K. A., He, Y., & Zhao, X. (2019). Engineering three-dimensional microenvironments towards in vitro disease models of the central nervous system. *Biofabrication, 11*(3), 032003.

Zhang, X., Viitala, T., Harjumäki, R., Kartal-Hodzic, A., Valle-Delgado, J. J., & Österberg, M. (2020). Effect of laminin, polylysine and cell medium components on the attachment of human hepatocellular carcinoma cells to cellulose nanofibrils analyzed by surface plasmon resonance. *Journal of Colloid and Interface Science, 584*, 310–319. https://doi.org/10.1016/j.jcis.2020.09.080

Zhao, H., Ding, R., Zhao, X., Li, Y., Qu, L., Pei, H., & Zhang, W. (2017). Graphene-based nanomaterials for drug and/or gene delivery, bioimaging, and tissue engineering. *Drug Discovery Today, 22*(9), 1302–1317.

Zhou, X., Pan, Y., Liu, R., Luo, X., Zeng, X., Zhi, D., & Zhang, H. (2019). Biocompatibility and biodegradation properties of polycaprolactone/polydioxanone composite scaffolds prepared by blend or co-electrospinning. *Journal of Bioactive and Compatible Polymers, 34*(2), 115–130. https://doi.org/10.1177/0883911519835569

How to cite this article: Mansouri, N., Al-Sarawi, S., Losic, D., Mazumdar, J., Clark, J., Gronthos, S., & O’Hare Doig, R. (2021). Biodegradable and biocompatible graphene-based scaffolds for functional neural tissue engineering: A strategy approach using dental pulp stem cells and biomaterials. *Biotechnology and Bioengineering, 118*, 4217–4230. https://doi.org/10.1002/bit.27891