Non-integrability of dominated splitting on \mathbb{T}^2

Baolin He1,2 and Shaobo Gan3

1 Mathematics and Science College, Shanghai Normal University, Shanghai 200235, People’s Republic of China
2 Beijing International Center for Mathematical Research, Peking University, Beijing 100871, People’s Republic of China
3 LMAM, School of Mathematics Sciences, Peking University, Beijing 100871, People’s Republic of China

E-mail: hebaolin@shnu.edu.cn and gansb@pku.edu.cn

Received 9 April 2014, revised 10 September 2014
Accepted for publication 23 October 2014
Published 17 November 2014

Recommended by D V Treschev

Abstract
We construct a diffeomorphism f on a 2-torus with dominated splitting $E \oplus F$ such that there exists an open neighbourhood $\mathcal{U} \ni f$ satisfying that for any $g \in \mathcal{U}$, neither E_g nor F_g is integrable.

Keywords: dominated splitting, integrable, DA
Mathematics Subject Classification: 37D30

1. Introduction

According to the theory of ordinary differential equations, Lipschitz vector fields are uniquely integrable. However, the bundles that appear in dynamics are mostly Hölder [PSW]. Due to hyperbolicity, the stable and unstable bundles are uniquely integrable. Particularly for two-dimensional C^2 Anosov diffeomorphisms, the two hyperbolic bundles are C^1 [AS]! But, we know little on the integrability of centre bundles, which is an exceedingly challenging problem [BBI].

In this paper, we focus on the diffeomorphisms on a 2-torus \mathbb{T}^2 with dominated splitting. Firstly, we recall some related definitions.

Let E be a one-dimensional continuous sub-bundle of \mathbb{T}^2.

Definition 1.1. E is said to be integrable if there exists a 1-foliation (continuous partition consisting of immersed one-dimensional sub-manifolds) of the \mathbb{T}^2 tangent to E.

Definition 1.2. E is said to be uniquely integrable if there exists exactly one 1-foliation of the \mathbb{T}^2 tangent to E.
Definition 1.3. A Df-invariant continuous bundle splitting $E \oplus F = \mathbb{T}^2$ with $\dim E = \dim F = 1$ is said to be a dominated splitting, if for any $x \in \mathbb{T}^2$, any unitary $u \in E_x$ and any unitary $v \in F_x$, $|Df(u)| < |Df(v)|$.

Both the two bundles in the splitting are uniquely defined. Additionally, the dominated splitting is C^1 robust: there exists a C^1 neighbourhood $U \ni f$ such that for any $g \in U$, g has the dominated splitting $E_g \oplus F_g$.

According to Peano’s Theorem, for a continuous vector field, through every point x there exists an integral curve. But, can these curves form a foliation?

Question 1. Let f be a diffeomorphism on \mathbb{T}^2 with a dominated splitting $E \oplus F$. Are these two sub-bundles integrated to foliations? Moreover, if f is C^2, are the two bundles Lipschitz (C^1)?

For partially hyperbolic systems (the one of E and F is uniformly hyperbolic), Pujals and Sambarino have firstly given a positive answer for the former question. For the latter, it is still unclear.

Theorem 1.4. [PS, Po] For partially hyperbolic diffeomorphisms on 2-torus \mathbb{T}^2, the two bundles in the dominated splitting are uniquely integrable.

In this paper, we give a negative answer for the above question:

Theorem 1.5. There exists a diffeomorphism f on 2-torus with dominated splitting $E \oplus F$, such that there is a C^1 open neighbourhood $U \ni f$ satisfying that for any $g \in U$, neither E_g nor F_g is integrable and hence neither of them are Lipschitz.

In our construction, the non-integrability happens in a small neighbourhood of sink (source). On the contrary, in [PS], it has an interesting corollary that ‘for any C^2 diffeomorphism on 2-torus with dominated splitting, if periodic points are all hyperbolic saddles, then the two bundles are uniquely integrable’. How about C^1 systems:

Problem 1. Given a C^1 diffeomorphism on 2-torus with dominated splitting, if periodic points are all hyperbolic saddles, are the two bundles integrable?

Between the integrability and unique integrability, there exists such a surprising phenomenon for a Hölder continuous vector field on the plane: there are uncountable distinct foliations tangent to some given vector field [BF]. So, it is natural to ask:

Problem 2. Is there such a diffeomorphism with dominated splitting $E \oplus F$, satisfying that $E(F)$ is integrated to different foliations?

2. Two basic lemmas

At first, we introduce some notations used through the paper. Take

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}^2.$$

Let $0 < \lambda < 1 < \mu$ be the two eigenvalues of A, E^s the contracting eigenspace of A, and E^u the expanding eigenspace of A. Let f_A be the hyperbolic automorphism on 2-torus induced by A, which has two fixed points at least. E^s and E^u induce the hyperbolic splitting of f_A, still denoted as $E^s \oplus E^u = \mathbb{T}^2$ and the two eigenspaces induce the coordinate system $\{ \frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2} \}$ on the 2-torus \mathbb{T}^2.

Let f be a diffeomorphism on \mathbb{T}^2, the norm of Df is denoted by

$$\|Df\| = \sup\{|Df(v)|/|v| : 0 \neq v \in \mathbb{T}^2\}.$$
The norm of Df restricted on a sub-bundle E, is denoted by $\|Df|_E\|$. Let $r > 0$. For a hyperbolic fixed non-sink x with dominated splitting $T_xM = E(x) \oplus F(x)$, we define the strong unstable manifold $W^{uu}(x, f)$ as:

\[
\{ y : d(f^{-n}(y), x) < r, \text{ and } \exists N, \text{ s.t. } \frac{d(f^{-n}(y), x)}{\|Df^{-n}|E(y)\|} < \frac{1}{2}, \forall n > N \}.
\]

Similarly, we can define a strong stable manifold $W^{ss}(x, f)$ for a hyperbolic fixed non-source x with dominated splitting.

Now we give two basic lemmas. Firstly, we recall the DA-operation [Wi]:

Lemma 2.1. Let $p = (0, 0)$ be a fixed point of f_A. Then, for any $\varepsilon > 0$, there exists C^0-perturbation f of f_A such that:

1. $f(x) = f_A(x)$ outside the ε-ball $B(p, \varepsilon)$;
2. for any $x \in M$,
\[
Df(x) = \begin{pmatrix}
a(x) & b(x) \\
0 & \mu
\end{pmatrix},
\]

where $\lambda^2 < a(x) < \sqrt{\mu}$, $|b(x)| < \varepsilon$;
3. In $W^u(p, f)$, f has exactly three periodic points contained in $B(p, \varepsilon)$: one fixed source p and two fixed saddles;
4. Df are constant diagonal matrices in some neighbourhoods of the two saddles above;
5. $W^{uu}(p, f) = \{0\} \times (-\frac{1}{\mu}, \frac{1}{\mu})$.

Similarly, there exists a symmetrical DA-operation of f_A: to do the same DA-operation of f^{-1}.

For completion, we give a proof of this basic lemma in the following.

Proof. Let $I_1 \times I_2 \subset B(p, \varepsilon)$, where both I_1 and I_2 are intervals centred at 0, and
\[
\ell(I_1) = \frac{\varepsilon}{3\mu} \ell(I_2).
\]

Take a smooth bump function α satisfying the following conditions:

1. $\alpha(x)$ is an odd function and $\alpha(x) = 0$, for $x \notin I_1$;
2. $\lambda^2 - \lambda < \alpha'(x) < \sqrt{\mu} - \lambda$;
3. $\alpha(x) + \lambda x$ has exactly three periodic points all contained in I_1: one fixed source 0 and two fixed sinks;
4. $\alpha'(x)$ is constant in some neighbourhoods of the above two sinks.

Take another bump function β satisfying that,
\[
\begin{align*}
\beta(x) &= 1, \quad x \text{ in a small neighbourhood of } 0; \\
\beta(x) &= 0, \quad x \notin I_2; \\
0 &\leq \beta(x) \leq 1; \\
|\beta'(x)| &< 3/\ell(I_2)
\end{align*}
\]

Let
\[
f(x) = f(x_1, x_2) = (\alpha(x_1)\beta(x_2) + \lambda x_1, \mu x_2).
\]

Then,
\[
Df(x) = \begin{pmatrix}
\alpha'(x_1)\beta(x_2) + \lambda & \alpha(x_1)\beta'(x_2) \\
0 & \mu
\end{pmatrix}.
\]

Note that $\lambda^2 - \lambda < \alpha'(x) < \sqrt{\mu} - \lambda$, $\beta(x) \in [0, 1]$ and $\ell(I_1) = \frac{\varepsilon}{3\mu} \ell(I_2)$.
Then,
\[|\alpha(x_1)\beta'(x_2)| < \mu \ell(I_1) \times \frac{3}{\ell(I_2)} = \varepsilon. \]
And,
\[\lambda^2 < \alpha'(x_1)\beta(x_2) + \lambda < \sqrt{\mu}. \]
This verifies the property (2) in the lemma. From properties (3) and (4) of function \(\alpha \) and \(\beta'(x) = 0 \) in a small neighbourhood of 0, we get properties (3) and (4) of the lemma. Since \(Df \) is a diagonal matrix on the line \(\{0\} \times (-\frac{1}{10}, \frac{1}{10}) \), \(f \) satisfies property (5).

The next lemma is a classic theorem (e.g., see appendix B in [BDV]), which gives a sufficient condition for a diffeomorphism to have dominated splitting. For any two sub-bundles \(E, F \subset T\mathbb{T}^2 \),
\[\langle E, F \rangle \triangleq \sup \{ \langle u, v \rangle \leq \frac{\pi}{2} : u \in E_x, v \in F_x, x \in \mathbb{T}^2 \}. \]

Lemma 2.2. Let \(K > 0 \), \(\eta > 1 \), \(\delta > 0 \), there exists \(\varepsilon > 0 \) such that for any diffeomorphism \(f \) on \(\mathbb{T}^2 \), if under the coordinate \(\{ \frac{\partial}{\partial x}, \frac{\partial}{\partial y} \} \),
\[Df(x) = \begin{pmatrix} a(x) & b(x) \\ c(x) & d(x) \end{pmatrix} \]
satisfies that for any \(x \in \mathbb{T}^2 \),
- \(\min\{|a(x)|, |d(x)|\} > K \),
- \(|d(x)| > \eta |a(x)| \),
- \(\max\{|b(x)|, |c(x)|\} < \varepsilon \),
then \(f \) has the dominated splitting \(E \oplus F \) with the property
\[\langle E, E' \rangle < \delta, \quad \langle F, F' \rangle < \delta. \]

3. A robustly non-integrable example

Firstly, we construct a diffeomorphism on 2-torus with dominated splitting \(E \oplus F \), such that \(E \) is robustly non-integrable. It is a special DA-map: to do the DA-operation twice.

Example 3.1. Let \(p \) be a fixed point of \(f_A, \varepsilon > 0 \) a very small constant (to be determined in the following construction). By DA-operation in \(B(p, \varepsilon) \), we can take a map \(g \) such that
\[g(x) = f_A(x), \quad x \notin B(p, \varepsilon), \]
\[Dg = \begin{pmatrix} a(x) & b(x) \\ 0 & \mu \end{pmatrix}, \]
here, \(\lambda^2 < a(x) < \sqrt{\mu}, |b(x)| < \varepsilon \). Additionally, \(g \) has two fixed points: source \(p \) and saddle \(q \in B(p, \varepsilon) \).

Also, there exists an open neighbourhood \(U \ni q \) such that for any \(x \in U \):
\[Dg(x) = \begin{pmatrix} a(q) & 0 \\ 0 & \mu \end{pmatrix}. \]
In this smaller neighbourhood \(U \), we make another DA-operation \(f \) of \(g \) such that \(f \) has two fixed points in \(B(p, \varepsilon) \): source \(p \) and sink \(q \), both the length of two components of \(W^{uu}(p, f) - p \) equals \(\frac{1}{10} \), and
\[Df = \begin{pmatrix} a_1(x) & b_1(x) \\ c_1(x) & d_1(x) \end{pmatrix}. \]
satisfies that there exists $K > 0$ and $\eta > 1$ such that
\[
\min\{|a_1(x)|, |d_1(x)|\} > K,
\]
\[
|d_1(x)| > \eta |a_1(x)|,
\]
\[
\max\{|b_1(x)|, |c_1(x)|\} < \varepsilon.
\]
Choose $\delta < \frac{1}{1000}$ and $\varepsilon < \frac{1}{1000}$ satisfying lemma 2.2.

Then, f satisfies the following properties.

1. f has dominated splitting $E \oplus F$;
2. $\angle(E^s, E) < \delta$, $\angle(E^u, F) < \delta$;
3. $f(x) = f_A(x)$, $x \notin B(p, \varepsilon)$;
4. f has two fixed points in $B(p, \varepsilon)$: source p and sink q;
5. The lengths of the two components of $W_{\pm}^{uu}(p, f)$ both equal $\frac{1}{10}$, and $2\varepsilon \|Df\| < \frac{1}{10}$.

The following proposition is our main result.

Proposition 3.2. For any diffeomorphism f on \mathbb{T}^2 satisfying the above five properties, there exists a C^1 open neighbourhood $U \ni f$ such that for any $g \in U$, g has dominated splitting $E_g \oplus F_g$, but E_g is non-integrable.

A curve γ^E is said to be an E-curve, if γ^E is tangent to E everywhere. Similarly, we define the F-curve. The non-integrability of E results from the following fact:

Lemma 3.3. Let $B(q)$ be the intersection of $B(p, \varepsilon)$ and the basin of the sink q. For any $x \in B(q)$ and any E-curve γ^E of length 3ε centred at x, we have that $p \in \gamma^E$.

Proof. We give the natural order on the curve $W_{\pm}^{uu}(p, f)$. By dominated splitting it is not difficult to show that the tangent space
\[
TW_{\pm}^{uu}(p, f) = F|W_{\pm}^{uu}(p, f).
\]
Let I be the set of the intersections of $W_{\pm}^{uu}(p, f)$ and E-curves γ^E of length 3ε centred at some $x \in B(q)$. Note that
\[
q \in B(p, \varepsilon), \angle(E^s, E) < \delta, \angle(E^u, F) < \delta, \text{ and } \frac{1}{10} \gg \varepsilon.
\]
Then, it is not difficult to deduce that every intersection above is exactly one point. Also, the lower bound a and upper bound b of I satisfy that
\[
\max\{|d(a, p)|, |d(b, p)|\} < 2\varepsilon.
\]
Suppose, on the contrary, that $I \neq \{p\}$, say $b \neq p$. Then, we can take a point $y \in I$ close enough to b. By the definition of I, we take an E-curve γ^E starting from y to $B(q)$ of length smaller than 3ε (see the following picture).
Note that $f = f_A$ outside $B(p, \varepsilon)$, and $\zeta(E^c, E) < \delta$. Then,
$$\ell(f(\gamma^E)) < 3\varepsilon.$$ By $2\varepsilon \|Df\| < \frac{1}{10}$, we see that
$$f([a, b]) \subset W^{ss}_{\pm}(p, f).$$ Then, $f(y) \in I$. By the uniform expansion of f on the curve $W^{uu}(p, f)$, we have that the intersection $f(y) \notin [a, b]$. This contradiction finishes the proof of the lemma. \qed

Proof of the robust non-integrability of E (proposition 3.2). Note that the above five properties of f are all C^1 robust. Then, by the above lemma, there exists a C^1 open neighbourhood $U \ni f$ such that for any $g \in U$, g has dominated splitting $E_g \oplus F_g$, but E_g is non-integrable.

Remark 3.4. Consider another saddle q' in the $W^s(p, f_A)$. Then, the phenomenon in the above lemma also happens between the saddle q' and sink q.

Proof of theorem 1.5. Let p_1 and p_2 be the two fixed points of f_A. Take a small enough $\varepsilon > 0$. We construct the map f as follows:

1. make the same perturbation in $B(p_1, \varepsilon)$ as the example above;
2. make the symmetrical perturbation in $B(p_2, \varepsilon)$: for f_A^{-1}, we make the same perturbation as the example above;
3. $B(p_1, \varepsilon)$ and $B(p_2, \varepsilon)$ are disjointed. Also, f has that
 - the lengths of the two components of $W^{uu}_{\pm}(p_1, f) - p_1$ both equal $\frac{1}{10}$,
 - the lengths of the two components of $W^{uu}_{\pm}(p_2, f) - p_2$ both equal $\frac{1}{10}$.

Now, f satisfies all the properties in the theorem.

Acknowledgments

BH is supported by CPSF 2013M540805. SG is supported by 973 project 2011CB808002, NSFC 11025101 and 11231001.

References

[AS] Arnol’d V I and Sinai J G 1962 On small perturbations of the automorphism of a torus Dokl. Aka. Nauk SSSR 144 695–98
[BBI] Brin M, Burago D and Ivanov S 2009 Dynamical coherence of partially hyperbolic diffeomorphisms of the 3-torus J. Mod. Dyn. 3 1–11
[BDV] Bonatti C, Díaz L J and Viana M 2005 Dynamics Beyond Uniform Hyperbolicity—A Global Geometric and Probabilistic Perspective (Berlin: Springer)
[BF] Bonatti C and Franks J 2004 A Hölder continuous vector field tangent to many foliations Modern Dynamical Systems and Applications (Cambridge: Cambridge University) pp 299–306
[Po] Potrie R Partial hyperbolicity and attracting regions in three-dimensional manifolds Doctoral Thesis
[PS] Pujals E and Sambarino M 2007 Integrability on codimension one dominated splitting Bull. Braz. Math. Soc. (N.S.) 38 1–19
[PSW] Pugh C, Shub M and Wilkinson A 2012 Hölder foliations, revisited J. Mod. Dyn. 6 79–120
[Ta] Takens F 1971 Partially hyperbolic fixed points Topology 10 133–47
[Wi] Williams R 1970 The ‘DA’ maps of Smale and structural stability, in ‘Global Analysis’ Pro. Symp. Pure Math. 14 329–34