Ab initio based description of the unusual temperature increase of the electric field gradient at Ti sites in rutile TiO$_2$

A. V. Nikolaev,1,2,3 N. M. Chtchelkatchev,4,3 A. V. Bibikov,1,2 D. A. Salamatin,5,6 and A. V. Tsyvashchenko5

1Skobeltsyn Institute of Nuclear Physics Lomonosov Moscow State University, 119991 Moscow, Russia
2National Research Nuclear University MEPhI, 115409, Kashirskoe shosse 31, Moscow, Russia
3Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Mosocw Region, Russia
4Vereshchagin Institute for High Pressure Physics, Russian Academy of Sciences, 108840 Troitsk, Moscow, Russia
5Vereshchagin Institute for High Pressure Physics, RAS, 142190 Troitsk, Moscow, Russia
6Dzelepow Laboratory of Nuclear Problems, Joint Institute for Nuclear Research, 141980 Dubna, Russia

Combining a precise ab initio electron band structure calculation of the TiO$_2$ rutile structure with the temperature evolution of the Ti mean-square displacements, we reproduce a puzzling temperature increase of the electric field gradient at Ti sites in TiO$_2$, observed experimentally. Our method employs a procedure of averaging two quadrupole electron density components ($L = 2$) inside a sphere vibrating with the Ti nucleus at its center, where the key factor introducing the temperature dependence is the square root of the Debye-Waller factor. Although the Debye-Waller factor always reduces the corresponding Fourier component, in TiO$_2$ due to the interplay between terms of opposite signs, it results in a net increase of the whole sum with temperature, leading to the growth of the electric field gradient. Quantitatively, we find that the increase of electric field gradient is only half of the experimental value, which we ascribe to anharmonic effects or a strong oxygen position influence. In addition, our method reproduces the unusual temperature dependence of the asymmetry parameter η, which first decreases with temperature, goes to zero and then increases.

PACS numbers: 63.20.-e, 71.15.-m, 76.80.+y, 63.20.kd

I. INTRODUCTION

Nuclear spectroscopic methods – such as the time-differential perturbed angular correlation (TDPAC) technique and the Mössbauer spectroscopy – are very sensitive experimental instruments probing the local charge distributions of complex materials of interest over a wide temperature (T) range \cite{4,5}. These methods measure the electric field gradient (EFG) at nuclear probes \cite{4,5}, reflecting minute changes in their chemical environment and local bonding. In the case of a phase transition, EFG (or V_{zz}) can change abruptly \cite{4}, but even without phase transitions the EFG demonstrates a smooth change with T \cite{4,5}. Usually, this is a monotonic decrease with increasing T, very often in the functional form of $V_{zz} \propto (1 - BT^{3/2})$ \cite{4,5,7} (where B is a constant) but in some instances unexpectedly an increase of V_{zz} with T takes place. In particular, a weak increase of V_{zz} with T has been observed for the 47Ti and 49Ti nuclear probes in the rutile structure of titanium dioxide \cite{6}.

The nature of a strong temperature behavior of V_{zz} has been addressed in a number of theoretical and experimental research \cite{4,5,7}. In principle, one can consider it as an anharmonic effect. Then, taking the experimental temperature dependence of lattice constants – $a(T)$ and $c(T)$ for TiO$_2$ for example – and performing a set of EFG calculations at distinct values of a_t and c_t corresponding to various temperatures T, one can obtain the evolution of V_{zz} as a function of T. This is of course not true ab initio approach, but even worse – the method in many cases does not work, giving wrong dependence: a decrease instead of increase and vice versa. This was realized already at the early stage of investigation albeit for a simple point charge model \cite{4}. The challenge is to explain the temperature evolution of V_{zz} in the harmonic approximation, at least its general tendency to increase or decrease with T. To date there have been only a few attempts of such research \cite{4,10}.

A recent study \cite{9} has combined an ab initio band structure approach with computing Debye-Waller factors (DWFs), $\exp(-W(K,T))$ \cite{11}, to reproduce correctly the experimental temperature evolution of EFG in pristine metallic zinc and cadmium \cite{7}. This method is in accord with early idea of Jena \cite{12}, who used a simple empirical model for the temperature dependence of DWFs and obtained a $(1 - BT^{3/2})$ decrease of EFG. The model of Jena can only describe the reduction of V_{zz} with T, which seems logical taking into account the monotonic decrease of DWFs with temperature \cite{11}. A fundamental question is – can the consideration based on DWFs explain an increase of EFGs for example, in TiO$_2$? As discussed in Ref. \cite{9}, in principle it is possible. However, it has been shown only that this type of behaviour is not forbidden and can occur within a certain model dependence for the temperature evolution of mean square displacements. In the present paper, we extend the considerations developed in Ref. \cite{9} to the rutile structure of TiO$_2$ and demonstrate that the method is capable of predicting the increase of V_{zz} with T.

The rutile phase of TiO$_2$ is the thermodynamically stable form of the three known modifications (rutile, anatase, brookite) of titanium dioxide \cite{13}. The Ti ions form the body centered tetragonal structure, with each Ti ion surrounded by a distorted octahedron of six oxygen ions,
The EFG at Ti sites has been a subject of band structure investigations [17, 21, 23]. In the early study of Blaha et al. [21] in pure TiO$_2$ it has been found that in addition to valence states, there is a relatively large contribution to V_{zz} from the semicore Ti 3p electron states, and that the value of V_{zz} is very sensitive to details of the electron band structure. In a series of first-principles calculations the problem of a substitutional Cd impurity located at the Ti site has been addressed in Refs. [17, 22, 23]. On substituting the Ti atom by a Cd impurity the \textit{ab initio} calculation predicts strong anisotropic relaxations of the nearest oxygen neighbors and a change of the orientation of the largest EFG tensor component, V_{33}, from the (001) to the (110) direction [17]. To calculate the temperature dependence of V_{zz} at Cd the structural relaxation has been performed for a set of experimental temperature dependent lattice constants a and c [23]. This study however refers to a decrease of V_{zz}.

To the best of our knowledge no attempt was made to explain the temperature increase of V_{zz} in TiO$_2$. This issue is the main goal of the present study. In Sec. II we briefly describe the method. Here we generally follow the considerations of Ref. [9], but apply the approach to the problem of TiO$_2$. In Sec. III we present our results and discuss them. The conclusions are summarized in Sec. IV.

II. THEORETICAL METHOD

A. Electric Field Gradient in TiO$_2$

The EFG tensor V_{ij} is defined as the second partial spatial derivatives of the electric part of the self-consistent-field potential $V(\vec{R})$ evaluated at the nuclear site, i.e.

$$V_{ij} = \frac{\partial^2 V}{\partial \overrightarrow{R}_i \partial \overrightarrow{R}_j},$$

(1)

where $i = x, y, z$. V_{ij} being a symmetric second rank tensor, can be further diagonalized by transforming coordinates to the principal system of axes chosen such that $|V_{zz}| \geq |V_{yy}| \geq |V_{xx}|$. (Since V_{ij} is traceless, in the principal axis system the number of independent parameters for EFG is reduced to two.) The principal component (V_{zz}) is called the electric field gradient, and the second independent parameter is the asymmetry η defined as $\eta = (V_{xx} - V_{yy})/V_{zz}$ ($0 \leq \eta \leq 1$).

It can be shown (see e.g. Ref. [9]) that the tensor of EFG V_{ij} is closely related to the quadrupole components ($l = 2$) of the expansion of the electric part of the full potential $V(\vec{R})$ in terms of the angular functions $S_l^i(\theta, \phi)$, (See Fig. 1.)

$$V(r, \theta, \phi) = \sum_{l, \tau} V_l^\tau(r) S_l^\tau(\theta, \phi).$$

(2)

Here $S_l^\tau(\theta, \phi)$ are the angular functions adapted for the rutile point crystal symmetry, l is the multipole orbital.
index and \(\tau \) counts functions with the same \(l \) (if there are few such functions). The polar angles \((\theta, \phi)\) are specified by the vector \(\mathbf{r} \) from the closest nuclear position. \(S_l^0(\theta, \phi) \) called symmetry adapted functions (SAFs) are linear combinations of real spherical harmonics \(Y_l^{m,c} \sim \cos m\phi \) and \(Y_l^{m,s} \sim \sin m\phi \) defined by the crystal site symmetry and tabulated in Ref. \([9]\). Eq. (2) can be viewed as a standard expansion in terms of spherical harmonics, where each angular function has the full point crystal symmetry. Expansion (2) is a standard procedure in the full potential version of modern electron band structure codes \([25]\).

At titanium site there are two quadrupole SAFs related to the tensor of EFG, Fig. 2.

\[
S_{Q,1}(\theta, \phi) = Y_{l=2}^0(\theta, \phi) \sim 3z^2 - r^2, \quad (3a)
\]

\[
S_{Q,2}(\theta, \phi) = Y_{l=2}^2(\theta, \phi) \sim xy. \quad (3b)
\]

Here \(Y_l^{m=0} \) and \(Y_l^{m,s} \) are real spherical harmonics with \(l = 2 \). Thus, the quadrupole part of the electric potential, Eq. (2), is given by

\[
V_Q(r, \theta, \phi) = V_{Q,1}(r)S_{Q,1}(\theta, \phi) + V_{Q,2}(r)S_{Q,2}(\theta, \phi). \quad (4)
\]

Here \(V_{Q,i}(r) \) \((i = 1, 2)\) are two independent radial components corresponding to the angular parts \(S_{Q,i}(\theta, \phi) \). The tensor of EFG \(V_{ij} \), Eq. (1), comes solely from the function \(V_Q \), Eq. (4), the contribution from the other terms in Eq. (2) is zero. As shown in Ref. \([9]\), for the radial components \(V_{Q,i}(r) \) at \(r \to 0 \) we obtain

\[
V_{Q,1}(r) = v_{Q,1}r^2, \quad V_{Q,2}(r) = v_{Q,2}r^2, \quad (5)
\]

where \(v_{Q,1} \) and \(v_{Q,2} \) are potential constants. The calculated dependencies of \(v_{Q,1} \) and \(v_{Q,2} \) on the lattice constant ratio \(c/a \) are shown in Fig. 3. From Eqs. (4) and (5) one can obtain the diagonal components of the EFG tensor,

\[
V_{11} = -v_{Q,1} \frac{1}{2} \sqrt{\frac{5}{\pi}} + v_{Q,2} \frac{1}{2} \sqrt{\frac{15}{\pi}}, \quad (6a)
\]

\[
V_{22} = -v_{Q,1} \frac{1}{2} \sqrt{\frac{5}{\pi}} + v_{Q,2} \frac{1}{2} \sqrt{\frac{15}{\pi}}, \quad (6b)
\]

\[
V_{33} = v_{Q,1} \sqrt{\frac{5}{\pi}}. \quad (6c)
\]

Here the diagonal component \(V_{11} \) is oriented along the \((1,1,0)\) crystal lattice direction, \(V_{22} \) along the \((-1,1,0)\) direction and \(V_{33} \) along the \((0,0,1)\) direction.

The calculated dependence of the components \(V_{ij} \) on the lattice constant ratio \(c/a \) with the fixed \(u = 0.3041 \) is depicted in Fig. 4. From Figs. 3 and 4 (see also Sec. III) it follows that in TiO\(_2\) where \(c/a \approx 0.640 - 0.644, v_{Q,1} < 0 \) and \(V_{22} \simeq 0 < V_{11} \) and hence \(V_{11} > 0, V_{22} > 0 \). That is, the EFG value is associated with the \(V_{33} \) component along the \((1,0,0)\) crystal lattice direction. For \(c/a < 0.641 \) \(v_{Q,2} < 0 \) and \(V_{22} < 0 \) and hence \(V_{11} < 0 \). That is, the EFG value is associated with the \(V_{33} \) component along the \((0,0,1)\) crystal lattice direction. For \(c/a > 0.641 \) \(v_{Q,2} > 0 \) and \(V_{22} > 0 \) and hence \(V_{11} < 0 \).

Interestingly, at \(c/a > 0.653 \) the largest diagonal component becomes \(V_{11} \) (i.e. \(V_{zz} = V_{11} \)), Fig. 4. The change of \(V_{zz} \) orientation from (001) to (110) directions is experimentally observed for Cd probes in Ti sites in TiO\(_2\) \([17, 22]\), where it comes from the local anisotropic atomic relaxation introduced by the Cd impurity. In pure TiO\(_2\) the situation is different and the change of EFG is caused by the potential increase of \(c/a \) modifying the nearest neighbors’ Ti-O relative distances (those from the apical oxygens and those of the basal plane) and thus producing a similar effect.

Therefore, there are two critical points in Fig. 4. At
c/a = 0.641 η = 0 and the tensor of EFG is axial, whereas at c/a = 0.653 η = 1 and the tensor of EFG is antiaxial [19].

B. Temperature dependence of EFG

A general model for theoretical calculations of temperature dependence of EFG is presented in Ref. [8]. Here we briefly outline it applying to TiO$_2$ and working within the linear augmented plane wave (LAPW) method [25].

The electron density around a nucleus being strongly perturbed ions is less affected by the motion of a single vibrating ion, while the electron density coupled to it by the Coulomb interaction follows adiabatically the vibrating ion, whereas the average value of quadrupole components of electron density, \(\langle \rho_Q \rangle \) associated with the multipole index \(l = 2 \). The change of \(\langle \rho_Q \rangle \) on the sphere surface (at \(r = R_{MT} \)) translates inside it (i.e. at \(r \leq R_{MT} \)) and finally leads to a change of EFG at \(r \to 0 \).

Unlike Ref. [9], the point symmetry of the Ti site in TiO$_2$ supports two angular quadrupole functions – \(S_{Q,i}, i = 1, 2 \), Eqs. (3a) and (3b) – in the multipole expansions of the potential and electron density. Extending the considerations of Ref. [9], we then write for the average values of two quadrupole components of electron density on the Ti MT-sphere,

\[
\langle \rho_{Q,i} \rangle = -4\pi \sum_{K} j_2(KR_{MT})S_{Q,i}(\hat{K})e^{-W(\hat{K},T)}\rho(\hat{K}).
\]

(7)

Here the summation is over the reciprocal vectors \(\hat{K} \), \(\hat{K} \) specifies the direction of \(\hat{K} \), i.e. \(\hat{K} \equiv (\theta_\hat{K},\phi_\hat{K}) \), \(j_2 \) are spherical Bessel functions, \(S_{Q,1} \) and \(S_{Q,2} \) are the quadrupole SAFs given by Eqs. (3a) and (3b), and, finally,

\[
W(\hat{K},T) = \frac{1}{2}(\hat{K} \cdot \vec{u})^2,
\]

(8)

where \(\vec{u} \) is the vector of the MT-sphere displacement. In Eq. (7), the effective reductions of \(\rho(\hat{K}) \) is described by the temperature function \(\exp(-W) \), which is the square root of the Debye-Waller factor (SRDWF). (The conventional Debye-Waller factor is \(\exp(-2W) \), Ref. [11].) Earlier, SRDWF has been used by Kasowski in explaining the temperature-dependent Knight shift in cadmium [26, 27].

As argued in Ref. [9] in a first approximation one can use an \(r \)-independent change (often reduction) of the quadrupole electron density component \(\rho_{Q.i}(r) \) inside the Ti MT-sphere (\(r \leq R_{MT} \)),

\[
\frac{\langle \rho_{Q.i}(r,T) \rangle}{\rho_{Q.i}(r, u = 0)} = \frac{\langle \rho_{Q.i}(R_{MT},T) \rangle}{\rho_{Q.i}(R_{MT}, u = 0)} = R_i(T).
\]

(9)

Here \(\langle \rho_{Q.i}(r,T) \rangle \) is the \(i \)-th averaged quadrupole value inside the sphere \((i = 1, 2) \), while \(\rho_{Q.i}(r, u = 0) \) is the quadrupole component in the absence of displacements \((u = 0) \). Note that \(\langle \rho_{Q.i}(R_{MT},T) \rangle \) on the surface of Ti MT-sphere can be calculated by means of Eq. (8). Combining Eqs. (7) and (9), we obtain \(R_1 \) and \(R_2 \) as functions of \(T \). At \(T = 0 \), \(R_i(T) \approx 1 \). (The deviations of \(R_i(T = 0) \) from one are due to the zero point vibrations.)

The temperature changes of \(\rho_{Q,i} \) inside the Ti MT-spheres described by Eq. (9) lead to the proportional changes of the quadrupole potential components, i.e. \(V_{Q,i}(r,T) = R_i(T)V_{Q,i}(r) \). Eq. (9) then reads as

\[
V_Q(r,\Omega, T) = V_{Q,1}(r,T)S_{Q,1}(\Omega) + V_{Q,2}(r,T)S_{Q,2}(\Omega),
\]

(10)

where \(\Omega = (\theta,\phi) \). At \(r \to 0 \) we obtain \(V_{Q,i}(r,T) = v_{Q,i}(T)r^2 \) [compare with Eq. (5)] where we have introduced temperature dependent functions

\[
v_{Q,1}(T) = v_{Q,1}R_1(T), \quad v_{Q,2}(T) = v_{Q,2}R_2(T).
\]

(11)
Then the temperature dependence of three components of EFG, Eqs. (12a–12c) is explicitly expressed as

\[V_{11}(T) = -R_1(T) \frac{\nu Q,1}{2} \sqrt{\frac{5}{\pi}} + R_2(T) \frac{\nu Q,2}{2} \sqrt{\frac{15}{\pi}}, \]
\[V_{22}(T) = -R_1(T) \frac{\nu Q,1}{2} \sqrt{\frac{5}{\pi}} - R_2(T) \frac{\nu Q,2}{2} \sqrt{\frac{15}{\pi}}, \]
\[V_{33}(T) = R_3(T) \frac{\nu Q,1}{2} \sqrt{\frac{5}{\pi}}. \]

(12)

As long as \(V_{33} \) remains the largest diagonal component (i.e. \(V_{zz} = V_{33} \)) we arrive at

\[V_{zz}(T) \approx R_1(T) V_{zz}, \]

(13)

where \(V_{zz} \) is the \(T = 0 \) value of EFG. On the other hand, the asymmetry parameter \(\eta(T) \) depends on both \(\nu Q,1(T) \) and \(\nu Q,2(T) \).

In the following we will work in this approximation, and therefore, the only quantities that we have to calculate are two ratios of quadrupole components on the surface of Ti MT-sphere \(R_1(T) \), which completely describe the temperature dependence of the EFG tensor, Eqs. (12).

C. Technical details of calculations

Electron density functional calculations have been performed with the Moscow-FLAPW code \[32\]. The code explicitly takes into account the nuclear size and the change of the potential and the wave function inside the nuclear region to obtain the electric field gradient accurately. In addition, the number of radial points inside the MT-region has been increased to 3000 (for some runs 3500). The typical LAPW basis set cut-off parameter was \(R_{MT} K_{max} \) from 7.8 to 8 with the number of basis functions from 583 to 737 for various runs, a typical number of \(k \) points in the irreducible part of the Brillouin zone (BZ) was 840. We have used the tetrahedron method for the linear interpolation of energy between \(k \) points. For calculation of the exchange-correlation potential we have used the PBEsol variant \[29\] of the generalized-gradient approximation (GGA) within the density functional theory (DFT). The precise calculations of \(V_{zz} \) and \(\eta \) have been performed for a number of various lattice constants whose \(c/a \) ratios are shown in Figs. 3 and 1. The correct behavior of \(\eta \) with \(T \) has been obtained for the lattice constants \(a = 4.5685 \AA, c = 2.9115 \AA, u = 0.30414 \) with the MT-radii 0.8731 Å. It was assumed that the semicore (Ti 3p) states followed adiabatically the nuclei vibrations and their contribution to the interstitial region and temperature dependence was not considered.

For the phonon part required for mean-square displacement calculations, we have used the pseudopotential method as implemented in Quantum Espresso (QE \[30, 31\], with the PBEsol exchange-correlation functional \[29\] and PBEsol optimized norm conserving Vanderbilt pseudopotentials (ONCVPSP) \[32\] from the ONCVPSP library \[33\]. The integration over the BZ for the electron density of states has been performed on a \(24 \times 24 \times 12 \) grid of \(k \)-points, the plane-wave kinetic cut-off energy was 70 Ry. The lattice-dynamical calculations have been carried out within the density-functional perturbation theory (DFPT). Phonon dispersions have been computed using the interatomic force constants based on a \(6 \times 6 \times 4 \) \(k \)-point grid, with a \(48 \times 48 \times 24 \) grid used to obtain the phonon densities of states and the mean square displacements of titanium and oxygen.

In both cases the thermal expansion of the unit cell has not been taken into account.

III. RESULTS AND DISCUSSION

First, we note that both the expansion of the lattice and a slight increase of \(c/a \) with temperature (with the rate \(2.2 \times 10^{-6} \text{ K}^{-1} \[34\]) lead to a smooth decrease of the electric field gradient \(V_{zz} = V_{33} \), Fig. 3 (around \(c/a = 0.64 \)). Thus, the effect of the increase of EFG observed experimentally \[8\] is highly nontrivial.

Our typical calculation of the temperature evolutions of the potential quadrupole quantities \(\nu Q,1 \) and \(\nu Q,2 \), Eq. 15, are shown in Fig. 5 (for \(c/a = 0.6373 \)). The increase of \(\nu Q,1 \) with \(T \) unambiguously results in increase of EFG, Eqs. 12 and 13. Interestingly, \(|\nu Q,2| \) decreases with \(T \) and crosses the zero value at 940 K, after which the sign of \(\nu Q,2 \) is reversed. From Eqs. 12 and 13b then it follows that at 940 K \(\eta = 0 \), in close correspondence with experimental observations \[8\].

The increase of EFG in TiO\(_2\) is a very stable effect. It is found in a very wide range of lattice constants and \(c/a \) ratios. The temperature evolution of \(\nu Q,2 \) on the other
hand is very sensitive to details of calculations. We have found that at $c/a < 0.641$ $\left| \rho_{Q,2} \right|$ decreases as shown in the lower panel of Fig. [5] but increases at $c/a > 0.641$, Fig. [6].

The principal mechanism of an increase of EFG has been discussed in Ref. [9]. Below we briefly discuss it for TiO$_2$. From Eqs. (13) and (9) it follows that $V_{zz}(T) \propto \langle \rho_{Q,1}(R_{\text{MT}}, T) \rangle$, while the Fourier expansion for $\langle \rho_{Q,1}(R_{\text{MT}}, T) \rangle$, Eq. (7), being positive, can be further partitioned in two groups,

$$\langle \rho_{Q,1} \rangle = \sum_{m} |c_{1,m}| W_{1,m}(T) - \sum_{n} |c_{2,n}| W_{2,n}(T). \quad (14)$$

Here $W_{i,p}(T) = \exp(-W(K_{i,p}, T)) \ (i = 1, p = m \text{ or } i = 2, p = n)$ are the temperature dependent SRDW factors, while $c_{i,p}(K_{i,p}) = -4\pi j_{2}(K_{i,p} R_{\text{MT}}) S_{Q,i}(K_{i,p}) \rho(K_{i,p})$ are temperature independent coefficients, which can be positive or negative, $[\rho(K_{i,p})]$ are the Fourier coefficients entering also Eq. (14). The difference between two explicitly written groups in Eq. (14) is that for all indices m and n, $c_{1,m} \geq 0$ whereas $c_{2,n} < 0$, and therefore, each of the two sums on the right hand side of Eq. (14) is positive. While SRDWFs W_i and consequently the both sums always reduce with T, the whole sum for TiO$_2$ increases. This occurs because the second sum in Eq. (14) drops fast enough to overcompensate the reduction of the first.

A detailed description of an increase of EFG is complicated: it clearly depends on the lattice structure through reciprocal vectors \vec{K} and connected with them numerical quantities $c_{i,p}$ (expressed in $j_2(K)$, $S_{Q,i}(K)$), and also on the Fourier density components $\rho(\vec{K})$. All these quantities have been calculated numerically with the Moscow-FLAPW code [28], details are given in Sec. III. Other important quantities giving the explicit temperature dependence in SRDWFs are mean square displacements $\langle u^2 \rangle$ of titanium, Eq. (8). In the case of the rutile phase of TiO$_2$ there are three independent quantities: $U_{11} = \langle u_x^2 \rangle$, $U_{12} = \langle u_x u_y \rangle$, and $U_{33} = \langle u_z^2 \rangle$, since by symmetry $U_{22} = U_{11}$ and $U_{13} = U_{23} = 0$. Then $W(\vec{K}, T)$, Eq. (5), reads as

$$W(\vec{K}, T) = \frac{1}{2} \left((K_x^2 + K_y^2) U_{11}(T) + 2K_x K_y U_{12} + K_z^2 U_{33}(T) \right). \quad (15a)$$

It can be brought in the diagonal form,

$$W(\vec{K}, T) = \frac{1}{2} \left(|K_{x'}|^2 U_{11}'(T) + |K_{y'}|^2 U_{22}'(T) + |K_{z'}|^2 U_{33}'(T) \right). \quad (15b)$$

Here $K_{x'}$ and $K_{y'}$ are projections of \vec{K} on new diagonal crystallographic axes [111] and [111], while the third axis $(z' = z)$ remains unchanged, and $U_{11}' = U_{11} - U_{12}$, $U_{22}' = U_{11} + U_{12}$. Notice, that due to our initial choice of crystallographic axes, Fig. [1] the diagonal axes x' and y' are interchanged in comparison with those in experimental Refs. [35–41] and consequently $U_{12} > 0$.

A precise calculation of the mean square displacements U_{11}, U_{12} and U_{33} (or alternatively, U_{11}', U_{22}', and U_{33}') is a formidable problem. Even experimental data obtained from fitting neutron and x-ray diffraction study of the rutile using both single crystal and powder samples of TiO$_2$ at room temperature are quite different, Table I.

Almost all of these studies refer to the room temperature values of MSDs. To the best of our knowledge in the literature there is only one low temperature (15 K) neutron powder powder diffraction investigation of TiO$_2$ carried out by Burdett et al. [32], whose data are also quoted in Table I. With these two point MSD data taken at 15 K and 295 K assuming the linear dependence in all temperature range, one can construct the temperature dependence of $U_{11}(T)$, $U_{12}(T)$ and $U_{33}(T)$. We shall refer to this T-dependence of MSDs as model 1. The EFG parameters obtained with these MSDs are depicted in Fig. 6.

Ref., T	U_{11}	U_{12}	U_{11}'	U_{22}'	U_{33}'
33$^\circ$, 15 K	1.2	0.2	1.0	1.4	1.1
35$^\circ$, 295 K	5.5	0.3	5.2	5.8	4.5
37$^\circ$, r.t.	6.8	0.4	6.4	7.2	4.6
38$^\circ$, r.t.	6.68	0.12	6.56	6.80	4.81
39$^\circ$, r.t.	6.9	0.0	6.9	6.9	4.4
40$^\circ$, 298 K	6.41	0.11	6.30	6.52	4.04
41$^\circ$, 299 K	6.99	0.31	6.68	7.30	4.67
34$^\circ$, 298 K	7.64	0.06	7.58	7.70	4.21
The temperature evolution of V_{zz} and η calculated within three models for mean square displacements (U_{11}, U_{12}, U_{33}). Model 1 – the linear approximation for MSDs with the values at $T = 15$ and $T = 295$ K taken from Ref. [35]. Model 2 – MSDs from the QE calculations (harmonic approximation). Model 3 – the scaled MSDs from the QE calculations. Model 4 – the modified Debye approximation ($T_D=600$ K [37]) Calculation with $c/a = 0.6373$.

Calculated within the harmonic approximation at room temperature and above.

For a more realistic representation of the temperature evolution of MSD, we have scaled our QE data. The scaling factor has been chosen to fit the room temperature MSD values of Ref. [35]. Table I We refer to these T-dependence of MSDs as model 3, Fig. 6.

Finally, we can obtain the temperature dependence of MSDs using a modified Debye model. In Ref. [37] it has been shown that the model of isotropic vibrations of average amplitude with the Debye temperature $T_D=600$ K [37] fits the diffraction data. Within the Debye approximation we can calculate the average value of MSDs ($U_{av} = (2U_{11} + U_{33})/3$). We get $U_{av} = 2.72 \cdot 10^{-3}$ Å2 at 15 K and $U_{av} = 6.00 \cdot 10^{-3}$ Å2 at 300 K. Based on the T-dependence of U_{av} and using the linear interpolation for the ratios U_{11}/U_{33} and U_{12}/U_{33} in the range from 15 K to 300 K with the data of Ref. [37], we can obtain the anisotropic values of MSDs (U_{11}, U_{12}, U_{33}) at all temperatures. This is the modified Debye model marked as model 4 in Fig. 6.

All four models for mean square displacements result in a growth of EFG with temperature and a characteristic dependence of the asymmetry parameter η, Fig. 6. Numerically, the plots vary, reflecting a difference in the T-evolution of mean square displacements. In Fig. 7 the best calculated dependencies for EFG and η are compared with NMR data of Kanert and Kolem [8].

The theoretical increase of V_{zz} is approximately half of the experimental one. We ascribe it to anharmonic effects which were found important for the description of the temperature evolution of EFG in Zn and Cd [8]. EFG there is found to be very sensitive to the correct temperature evolution of the ratio $U_{33}(T)/U_{11}(T)$, which could be the case for TiO$_2$ when taking into account a stiffening of its low lying phonon energy spectrum with T and a strong forth order component of the potential [42, 43]. Another important factor is a possible change of the oxygen rutile position u with T, which greatly influence the value of EFG [19].

The calculated V_{zz} is in good correspondence with the experimental value of 2.0×10^{21} V/m2, obtained by extrapolating experimental data to $T = 0$ [8]. The zero-point vibrations lead to a 0.5% increase of the calculated EFG, to the corrected value 1.998×10^{21} V/m2 at the experimental ratio $c/a = 0.642$.

IV. CONCLUSIONS

On the basis of ab initio calculations of the rutile phase of TiO$_2$ we have reproduced qualitatively the temperature increase of the electric field gradient V_{zz} and the evolution of the asymmetry parameter η, Fig. 7. Note that if only the anisotropic thermal expansion of the lattice parameters is taken into account, i.e. an increase of c/a, this would predict a decrease of V_{zz}. Our consideration relies on the method used in Ref. [8] for calculation of the temperature dependence of EFG in Zn and Cd. The method utilizes the effect of changing the averaged value of the quadrupole components $\langle \rho_{Q,1} \rangle$ and $\langle \rho_{Q,2} \rangle$, Eq. (7), on a titanium MT-sphere vibrating with the Ti nucleus. The angular quadrupole functions $S_{Q,1}$ and $S_{Q,2}$ are explicitly given by Eqs. (3a) and (3b). The temperature dependence is introduced through the factor $\exp(-W(\vec{K}, T))$ which is the square root of the usual
calculated corresponding V

mates in comparison with the experimental ones. On of temperature range from zero to 1000 K, but these values we have computed MSDs with Quantum Espresso in the ries at room temperature and at 15 K [35]. In addition, Table I, in neutron and x-ray diffraction stud-

mentally, Table I, in neutron and x-ray diffraction stud-

For all cases our results indicate a stable increase of EFG with temperature, Figs. and . The increase of EFG is a remarkable effect arising from interplay of positive and negative terms, Eq. . While each term is reduced with temperature due to the exp(−W(\vec{K}, T)) factors, the whole sum can grow with T, leading to the increase of EFG. Quantitatively however the calculated growth of Vzz is smaller than the experimental one. This can be explained by an appreciable change of oxygen polarizability with T [19] or by anharmonic effects playing an important role in Zn and Cd [9]. Such effects include a nonlinear change of the U11/U33 and U12/U33 ratios with temperature, a change of oxygen position and the thermal expansion of the rutile lattice. MSDs in TiO2 are apparently influenced by several unusual anharmonic effects [42 44] found in this compound.

For calculations with c/a < 0.641 when V22 > V11, Fig. the calculated temperature evolution of η shows a good correspondence with experimental data, Figs. and [9]. In particular it fairly well reproduces the crossing of the zero value, which is a nontrivial feature of the experimental curve [8]. This property is connected with the quadrupole potential parameter VQ2 going through zero at this temperature, Fig. [5]. For the c/a > 0.641 case corresponding to the experimental c/a ratio, η demonstrates just a monotonic linear increase with T in disagreement with the experiment.

Interestingly, when c/a > 0.653, the electric field gradient switches to another component, Vzz = V11 in Fig. 4. Note that such a situation is experimentally observed for Cd probes in TiO2 where it is accounted for by local displacements caused by Cd replacing a Ti atom in the rutile lattice [17 22]. Although the electronic configuration of Ti and Cd are quite different, the change in the orientation of Vzz from (011) to (110) is produced by a similar distortion of the nearest neighbor oxygen octahedron.

Acknowledgments

This research was supported by a grant of the Russian Science Foundation (Grant No 18-12-00438). We are grateful to the Polish representative at the Joint Institute for Nuclear Research. The numerical computations have been carried out using computing resources of the federal collective usage center Complex for Simulation and Data Processing for Mega-science Facilities at NRC “Kurchatov Institute”, [http://ckp.nrcki.ru/] and supercomputers at Joint Supercomputer Center of RAS (JSCC RAS). We also thank the Uran supercomputer of IMM UB RAS for access.

[1] Handbook of Applied Solid State Spectroscopy, Ed. D.R. Vij, Springer-Verlag US (2006).
[2] T. Wichert, E. Recknagel, Perturbed Angular Correlation, In: Gonser U. (eds) Microscopic Methods in Metals. Topics in Current Physics, vol 40. Springer, Berlin, Heidelberg (1996).
[3] J. Schell, D. Zyabkin, D. C. Lupascu, Hans-Christian Hofsäss, M. O. Karabasov, A. Welker, and F. Schaad, AIP Advances 9, 085208 (2019).
[4] E. N. Kaufmann and R. J. Vianden, Rev. Mod. Phys. 51, 161 (1979).
[5] H. Haas, Hyperfine Interact. 129, 493 (2000).
[6] A. V. Tsvyashchenko, D. A. Salamatin, V. A. Sidorov, A. E. Petrova, L. N. Formicheva, S. E. Kichanov, A. V. Salamatin, A. Velichkov, D. R. Kozlenko, A. V. Nikolaev, G. K. Ryasny, O. L. Makarova, D. Menzel, and M. Dudzynski, Phys. Rev. B 92, 104426 (2015).
[7] J. Christiansen, P. Heubes, R. Keitel, W. Klinger, W. Loeffler, W. Sandner, and W. Withhuhn, Z. Phys. B 24, 177 (1976).
[8] O. Kauert and H. Koleh, J. Phys. C: Solid State Phys. 21, 3909 (1988).
[9] A. V. Nikolaev, N. M. Chtchelkatchev, D. A. Salamatin, A. V. Tsvyashchenko, Phys. Rev. B 101, 064310 (2020).
[10] D. Torumba, K. Parlinski, M. Rots, and S. Cottenier, Phys. Rev. B 74, 144304 (2006).
[11] P. Briësch, Phonons: Theory and Experiments II, Springer-Verlag Berlin Heidelberg (1986).
[12] P. Jena, Phys. Rev. Lett. 36, 418 (1976).
[13] F. A. Grant, Rev. Mod. Phys. 31, 646 (1959).
[14] T. Butz, Hyperfine Interact. 198, 161 (2010).
[15] T. Wenzel, A. Bartos, K. P. Lieb, M. Uhrmacher, and D. Wiarda, Ann. Phys. (Leipzig) 1, 155 (1992).
[16] J. M. Adams and G. L. Catchen, Phys. Rev. B 50, 1264 (1994).
[17] L. A. Errico, G. Fabricius, M. Renteria, P. de la Presa, and M. Forker, Phys. Rev. Lett. 89, 55503 (2002).
[18] G. N. Darriba, L. A. Errico, P. D. Eversheim, G. Fabricius, and M. Renteria, Phys. Rev. B 79, 115213 (2009).
[19] S. Ryu, S. K. Das, T. Butz, W. Schmitz, C. Spiel, P. Blaha, K. Schwarz Phys. Rev. B 77, 094124 (2008).
[20] T. Butz, R. Vianden, Hyperfine Interact. 221, 99 (2013).
[21] P. Dufek, P. Blaha, and K. Schwarz, Phys. Rev. Lett. 75, 3545 (1995); P. Blaha, D. J. Singh, P. I. Sorantin, and K.
[22] L. A. Errico, G. Fabricius, and M. Rentería, Phys. Rev. B 67, 144104 (2003).
[23] L. A. Errico, Hyperfine Interact. 158, 29 (2004).
[24] C. J. Bradley and A. P. Cracknell, The Mathematical Theory of Symmetry in Solids, (Clarendon, Oxford, 1972).
[25] D.J. Singh, L. Nordström, Plane waves, Pseudopotentials, and the LAPW Method, 2nd ed. (Springer, New York, 2006).
[26] R. V. Kasowski and L. M. Falicov, Phys. Rev. Lett. 22, 1001 (1969).
[27] R. V. Kasowski, Phys. Rev. 187, 891 (1969).
[28] A. V. Nikolaev, D. Lamoen, and B. Partoens, J. Chem. Phys. 145, 014101 (2016).
[29] J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria, L. A. Constantin, X. Zhou, K. Burke, Phys. Rev. Lett. 100, 136406 (2008).
[30] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J Jia, M. Kawasaki, H.-Y. Ko, A. Kokaş, E. Kückbenili, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N. L. Nguyen, H.-V. Nguyen, A. Otero-de-la-Roza, L. Paulatto, S. Ponce, D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A. P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu, S. Baroni, J. Phys.: Condens. Matter 29, 465901 (2017).
[31] P. Giannozzi, O. Andreussi, T. Brunne, O. Bunau, M. Buongiorno Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. Dal Corso, S. de Gironcoli, P. Delugas, R. A. DiStasio Jr, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J Jia, M. Kawasaki, H.-Y. Ko, A. Kokaş, E. Kückbenili, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N. L. Nguyen, H.-V. Nguyen, A. Otero-de-la-Roza, L. Paulatto, S. Ponce, D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A. P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu, S. Baroni, J. Phys.: Condens. Matter 29, 465901 (2017).
[32] D. R. Hamann, Phys. Rev. B 88, 085117 (2013).
[33] available at www.mat-simresearch.com.
[34] K. Sugiyama and Y. Takéuchi, Z. Kristallogr. 194, 305 (1991).
[35] J. K. Burdett, T. Hughbanks, G. J. Miller, J. W. Jr. Richardson, J. V. Smith, J. Am. Chem. Soc. 109, 3639 (1987).
[36] R. J. Hill and C. J. Howard, J. Appl. Cryst. 20, 467 (1987).
[37] C. J. Howard, T. M. Sabine, F. Dickson, Acta Cryst. B 47, 462 (1991).
[38] W. Gonschorek, Z. Kristallogr. 160, 187 (1982).
[39] W. Gonschorek, R. Feld, Z. Kristallogr. 161, 1 (1982).
[40] S. C. Abrahams, J. L. Bernstein, J. Chem. Phys. 55, 3206 (1971).
[41] H. Shintani, S. Sato, Y. Saito, Acta Cryst. B 31, 1981 (1975).
[42] B. Wehinger, A. Bosak, and P. T. Jochym, Phys. Rev. B 93, 043403 (2016).
[43] T. Lan, C. W. Li, O. Hellman, D. S. Kim, J. A. Muñoz, H. Smith, D. L. Abernathy, and B. Fultz, Phys. Rev. B 92, 054304 (2015).
[44] R. Restori, D. Schwarzenbach, J. R. Schneider, Acta Cryst. B 43, 251 (1987).