ON THE DIAGONAL HOOKS OF A SYMMETRIC PARTITION

RISHI NATH

Abstract. Using only a symmetric p-core and p-quotient, we give an explicit formula for the set of diagonal hook lengths of the associated symmetric partition.

1. Introduction

Suppose $\mathbb{N} = \{0, 1, \ldots\}$ let $n \in \mathbb{N}$ and p be a prime. For standard definitions of a partition λ of n, its dual λ^* and Young diagram $[\lambda]$, a hook h_{ij} of $[\lambda]$ with corner (i, j), the hook length $|h_{ij}|$, the arm length and leg length of h_{ij}, and a β-set X corresponding to λ, we refer readers to [1], [2], [3], [7].

A β-set X associated to a partition λ can be seen as a finite set of non-negative integers, represented by beads at integral points of the x-axis, i.e. a bead at position x for each x in X. Then X is a β-set to λ in the extended sense if we extend X infinitely in both directions with beads at all negative positions and spaces at all positions to the right of the position of the largest integer $x_k \in X$. In this interpretation, β-sets equivalent to X are the same infinite string of beads and spaces with the origin shifted a finite number of positions to the left. A minimal β-set X is an extended set where the first space is counted as 0. If X is a minimal β-set of λ, we define $|X|$ as the number of beads occurring to the right of the leftmost space.

Given a fixed integer p, we can arrange the nonnegative integers in an array of columns and consider the columns as runners of an abacus in order to represent X.

\[
\begin{array}{cccc}
0 & 1 & \cdots & p - 1 \\
p & p + 1 & 2p - 1 \\
\vdots & \ddots \\
mp & \cdots & mp + p - 1
\end{array}
\]

2000 Mathematics Subject Classification. 203C0.

Key words and phrases. Young diagrams, symmetric group, p-cores.
The column containing γ for $0 \leq \gamma \leq p - 1$ will be called the γth runner of the abacus. The integers $\gamma, \gamma + p, \gamma + 2p, \cdots$ label corresponding positions $0, 1, 2, \cdots$ on the γth runner. Placing a bead at position x_j for each $x_j \in X$ gives the abacus diagram of X.

We deviate from standard notation by denoting by $h = (y, x]$ a hook arising from the β-set X of λ where $y \not\in X$ and $x \in X$. We define the hook length of $(y, x]$ as $x - y$. Lemma describes a bijection between the set of hooks h_{ij} of the Young diagram $[\lambda]$ and the set of hooks $(y, x]$ of a β-set X of λ.

Lemma 1.1. Let λ be a partition of n and X a β-set of λ. A hook $h = (y, x]$ of X corresponds to the hook h_{ij} with corner node (i, j) in the Young diagram $[\lambda]$ where

$$i = |z \in \mathbb{N} : z \in X, z \geq x|$$

and

$$j = |z \in \mathbb{N} : z \not\in X, z \leq y|.$$

Additionally, the leg length and arm length of h are $|z \in \mathbb{N} : z \in X, y < z < x|$ and $|z \in \mathbb{N} : z \not\in X : y < z < x|$ respectively.

Proof. See pg. 180 in [1].

If $h = (y, x]$ is a hook of length p (henceforth a p-hook) of X then $\{y\} \cup X - \{x\}$ is a β-set for a partition λ_1 of $n - p$. We say that λ_1 and X_{λ_1} are achieved from λ and X respectively by removing a p-hook. In the opposite manner, we see that λ and X are gotten from λ_1 and X_{λ_1} respectively by adding a p-hook. Subsequently, the abacus diagram of X_{λ_1} is related to that of X by moving the bead at $x \in X$ up one position on the runner. Let X^0 be the unique β-set obtained from X by successively removing p-hooks until none are left. Thus X^0 will have no p-hooks. The partition λ^0 represented by X^0 is called the p-core of λ and is uniquely determined by λ. The abacus of the p-core λ^0 is obtained from the abacus of λ by pushing up the beads in each runner as high up as they can go (Theorem 2.7.16, [2]).

A hook $h = (y, x]$ of length divisible by p is said to be on the γth runner if x is on the γth runner. Then y is also on the γth runner. In particular, hooks of length divisible by p are on the same runner if and only if they have the same residue modulo p. For $0 \leq \gamma \leq p - 1$, let $X_\gamma = \{j : \gamma + jp \in X\}$ and let λ_γ be the partition represented by the β-set X_γ. Notice that this is the partition whose beads appear on the γth runner of the abacus diagram of λ. Our convention will be that the p-quotient of λ is the sequence $(\lambda_0, \cdots, \lambda_{p-1})$ obtained from X where $|X| \equiv 0 \pmod{p}$. We call X_γ the β-set of λ_γ induced by X.

A partition is symmetric if \(\lambda = \lambda^* \). A \(p \)-quotient \((\lambda_0, \cdots, \lambda_{p-1})\) is symmetric if \(\lambda_i = \lambda^*_{p-i-1} \) where \(0 \leq i \leq p - 1 \). The \(p \)-quotient and \(p \)-core of a partition \(\lambda \) and its dual \(\lambda^* \) are related in the following manner.

Lemma 1.2. Let \(X \) be a \(\beta \)-set for \(\lambda \) such that \(|X| \equiv 0 \pmod{p}\). Let \(\lambda^* \) be the dual of \(\lambda \), let \((\lambda^*)^0\) be the \(p \)-core of \(\lambda^* \) and let \(\{\lambda^*\} = \{\lambda_0^*, \cdots, \lambda_{p-1}^*\} \) be the \(p \)-quotient of \(\lambda^* \). Then \((\lambda^*)^0 = (\lambda^0)^*\) and \((\lambda^*_{p-1})^* = \lambda^*_{p-1-\gamma}\) for \(0 \leq \gamma \leq p - 1 \). Hence \(\lambda = \lambda^* \) if and only if \(\lambda^0 = (\lambda^0)^* \) and \((\lambda^*)^* = \lambda^*_{\gamma^*} \).

Proof. See Proposition 3.5 in [7]. \(\square \)

Given a symmetric partition \(\lambda \), we let \(\delta(\lambda) = \{\delta_{ii}(\lambda)\} \) be the set of diagonal hooks where \(h_{ii} = \delta_{ii}(\lambda) \). When there is no ambiguity we will set \(\delta_{ii}(\lambda) = \delta_{ii} \). By abuse of notation \(\delta_{ii} \) will also stand for the size of \(\delta_{ii}(\lambda) \), and \(\delta(\lambda) \) for the set of diagonal hook lengths of \(\lambda \).

In this paper we give an explicit formula for \(\delta(\lambda) = \{\delta_{ii}\} \) in terms of only the \(p \)-quotient and the \(p \)-core. These results are motivated by an ongoing study of the irrationalities of the character table of the alternating groups \(A(n) \), which, by a classical result of Frobenius, arise from the diagonal hook lengths of symmetric partitions of \(n \). In particular they assist in verifying that a recent refinement of McKay’s conjecture by Navarro [6] involving Galois automorphisms holds for \(A(n) \) in special cases [5].

2. Bisequences and diagonal hooks

A bisequence

\[
(\alpha_1, \alpha_2, \cdots, \alpha_t|\beta_1, \beta_2, \cdots, \beta_t)
\]

will be an ordered pair of strictly decreasing sequences of non-negative integers

\[
(\alpha_1, \alpha_2, \cdots, \alpha_t) \\
(\beta_1, \beta_2, \cdots, \beta_t)
\]

of the same length \(t \). For example let \(\alpha_i \) and \(\beta_i \) be the leg and arm lengths of \(\delta_{ii} \in \delta(\lambda) \). Then the sequences \((\alpha_1, \alpha_2, \cdots, \alpha_t)\) and \((\beta_1, \beta_2, \cdots, \beta_t)\), are strictly decreasing. Hence we may define the bisequence

\[
D(\lambda) = (\alpha_1, \alpha_2, \cdots, \alpha_t|\beta_1, \beta_2, \cdots, \beta_t)
\]

We define the components of \(D(\lambda) \) to be \(D(\lambda)_L = (\alpha_1, \alpha_2, \cdots, \alpha_t) \) and \(D(\lambda)_R = (\beta_1, \beta_2, \cdots, \beta_t) \). An element of \(D(\lambda) \) is an ordered pair \((\alpha_i|\beta_i)\) for some \(i \) and corresponds to a diagonal hook \(\delta_{ii} \). Then \(|D(\lambda)|\) is the number of such pairs, and equals \(t \). Note that \(|D(\lambda)_R|\) and
$|D(\lambda)_L|$ (the number of arm lengths and leg lengths of the diagonal hooks respectively) both equal t as well. The dual of $D(\lambda)$ is

$$D(\lambda)^* = (\beta_1, \beta_2, \cdots, \beta_t | \alpha_1, \alpha_2, \cdots, \alpha_t).$$

Clearly $D(\lambda)^* = D(\lambda^*)$. If λ is symmetric then $D(\lambda)_L = D(\lambda)_R$. We attach to $D(\lambda)$ a p-tuple $D'(\lambda)$ of bisequences.

Definition 2.1. Let $D'(\lambda) = (D_0(\lambda), \cdots, D_{p-1}(\lambda))$ where $D_\gamma(\lambda)$ is defined as follows.

1. If $\alpha = \gamma + mp \in D(\lambda)_L$, $0 \leq \gamma \leq p - 1$ and $m \geq 0$, we put m in $D_{p-1-\gamma}(\lambda)_L$.

2. If $\beta = \gamma + mp \in D(\lambda)_R$, $0 \leq \gamma \leq p - 1$ and $m \geq 0$, we put m in $D_\gamma(\lambda)_R$.

$D'(\lambda)$ is called the p-quotient of $D(\lambda)$.

From this definition, given $D'(\lambda)$, we can obtain $D(\lambda)$. At the moment, it is not clear that for each γ the sequences in $D_\gamma(\lambda)_L$ and $D_\gamma(\lambda)_R$ have the same length. This will be shown to be true when $\lambda^0 = \emptyset$ in Theorem 5.2.

3. $\theta(\lambda)$ and Diagonal Hooks

The diagonal hooks δ_{ii} of λ correspond to the following hooks of β-set $X = \{x_1, \cdots, x_k\}$. The largest hook δ_{11} corresponds to $(y_1, x_k]$, where y_1 is the position of the smallest space i.e. the minimal positive integer not included in X. By removing δ_{11} (that is, by moving the bead at position x_k to the space y_1) then δ_{22} corresponds to the largest hook of λ^\vee, and so on. Thus the diagonal hooks correspond to the nested hooks starting with the longest hook in X, then the longest hook contained strictly within that longest hook, and so on.

Let λ^\vee be the partition obtained from λ by removing δ_{11}. Then X^\vee is the induced β-set of λ^\vee.

Proposition 3.1. Suppose λ is a partition of n and let X be a β-set for λ. Then there exists a half-integer $\theta(\lambda)$ such that the number of beads to the right of $\theta(\lambda)$ equals the number of spaces to the left of $\theta(\lambda)$.

Proof. Let θ be the point at the half-integer just to the left of the smallest space of X. So there are 0 spaces to the left of θ and a finite number of beads to the right. Next move θ a unit distance to the right, that is, to the next half-integer on the right. One and only one of the following happens: Either the number of spaces to the left of θ increases by one or the number of of beads to the right decreases by
one. So by iterating this process we reach a point where the number of spaces to the left of θ is equal to the number of beads to the right of θ. That point is then $\theta(\lambda)$.

Let X be a β-set for a partition λ (not necessarily symmetric), with maximal element $x_k \in X$. Let X_+ be the subset of beads to the right of $\theta(\lambda)$ and let X_- be the subset of spaces to the left of $\theta(\lambda)$. We index the elements of $X_+ = \{y'_i : i \leq r\}$ so that $y'_1 < \cdots < y'_1$ with y'_1 as the largest bead. Correspondingly, we index the elements of $X_- = \{y_i : i \leq r\}$ so that $y_1 < \cdots < y_r$ with y_1 as the smallest space. In particular, $y'_i - y_i = \alpha_i + \beta_i + 1$ for all $1 \leq i \leq r$ since the length of the hook is one plus the sum of its leg and arm lengths. This relation holds whether or not X is a minimal β-set since y'_i, y_i and $\theta(\lambda)$ shift by the same amount when X is shifted, whereas α_i and β_i do not change.

In particular the β-set X gotten from removing the largest diagonal hook of X can be used so that $\theta(\lambda^\vee) = \theta(\lambda)$ holds. Hence we have the following.

Lemma 3.2. Suppose λ' and λ are partitions such that $|\lambda'| < |\lambda|$ and λ' can be obtained from λ by removing a sequence of hooks from λ. Then $\theta(\lambda) = \theta(\lambda')$.

Proposition 3.3. X_- and X_+ correspond to $D(\lambda)_L$ and $D(\lambda)_R$ in the following manner. Let $\alpha_i \in D(\lambda)_L$ and $\beta_i \in D(\lambda)_R$. Then for each $y'_i \in X_+$ and $y_i \in X_-$ we have

1. $y_i = \theta(\lambda) - \frac{1}{2} - \alpha_i$.
2. $y'_i = \theta(\lambda) + \frac{1}{2} + \beta_i$

Proof. We proceed by induction on $s = |D(\lambda)|$. Suppose $s = 1$. Then $D(\lambda) = \{\alpha, \beta\}$ and $X = \{1, 2, \cdots, m-1, m, t_1\}$ so $\theta(\lambda) = m + \frac{1}{2}$. Recall α and β are the number of beads and spaces respectively in the interval $(0, t_1)$, and hence $\alpha = \theta(\lambda) - \frac{1}{2}$ and $\beta = t - \theta(\lambda) - \frac{1}{2}$.

Consider λ where $|D(\lambda)| = s$ and let λ^\vee be the partition obtained by removing h_{11} from λ. Then, by induction and Lemma 3.2 when $|D(\lambda^\vee)| = s - 1$ we have that

$$y_i = \theta(\lambda) - \frac{1}{2} - \alpha_i \quad y'_i = \theta(\lambda) + \frac{1}{2} + \beta_i$$

for $2 \leq i \leq r$. In particular, $y_2 = \theta(\lambda) - \frac{1}{2} - \alpha_2$ and $y'_2 = \theta(\lambda) + \frac{1}{2} + \beta_2$. But $y_2 - y_1$ is one plus the number of beads between y_1 and y_2, which is precisely the difference $\alpha_1 - \alpha_2$ by Lemma 3.1. These formulas imply $y_1 = \theta(\lambda) - \frac{1}{2} - \alpha_1$ and $y'_1 = \theta(\lambda) + \frac{1}{2} + \beta_1$.

Suppose λ is symmetric. Then the diagonal hook lengths δ_{ii} are necessarily odd. Then X has an axis of symmetry $\theta(\lambda)$ where beads and
spaces on one side are reflected respectively into spaces and beads on the other side.

Corollary 3.4. Suppose λ is a symmetric partition and X is a β-set in the extended sense for λ. Then there exists an axis of symmetry $\theta(\lambda)$ at a half-integer such that beads and spaces in X to the right of $\theta(\lambda)$ are reflected respectively to spaces and beads in X to the left of $\theta(\lambda)$.

Proof. Follows from Proposition 3.1 and Proposition 3.3. □

Lemma 3.5. Suppose λ is symmetric with empty p-core. Then the number of beads to the right of $\theta(\lambda)$ on the γth runner is the same as the number of empty positions to the left of $\theta(\lambda)$ on the γth runner.

Proof. Let X be a β-set for λ and let X^0 be the β-set for λ^0. Then X^0 consists of $\{0, 1, 2, \ldots, t\}$. Then it is clear that symmetry about $\theta(\lambda)$ is possible only if $\theta(\lambda) = t + 1/2$. Thus all beads of X^0 are left of the axis and all spaces of X^0 are right of the axis. Hence, all beads on the γ-runner right of the axis must be accommodated by spaces on the γ-runner left of the axis. □

We will need the following relation in Section 8.

Lemma 3.6. If λ has empty p-core, then $\theta(\lambda_\gamma) = \theta(\lambda_{\gamma'})$ for all $0 \leq \gamma, \gamma' \leq p - 1$. In particular, if $|X| = mp$, then $\theta(\lambda_\gamma) = \theta(\lambda_{\gamma''}) = m - \frac{1}{2}$.

Proof. Since λ has empty p-core the β-set for λ^0 is $X = \{0, 1, \ldots, mp-1\}$ for some m. Then the abacus diagram will consist of (from north-to-south) m rows of beads followed by rows of empty spaces. On each runner one begins counting at 0, hence $\theta(\lambda^0_\gamma) = \theta(\lambda^0_{\gamma'}) = m - \frac{1}{2}$. By Lemma 3.2, $\theta(\lambda^0_\gamma) = \theta(\lambda_\gamma)$ and $\theta(\lambda^0_{\gamma'}) = \theta(\lambda_{\gamma'})$. The result follows. □

We will need the following relation in Section 8.

Lemma 3.7. Suppose λ has empty p-core. Then

$$p(\theta(\lambda_\gamma) + \frac{1}{2}) = \theta(\lambda) + \frac{1}{2}$$

for all $0 \leq \gamma \leq p - 1$.

Proof. Since λ has an empty p-core we have $X^0 = \{0, 1, 2, \ldots, mp - 1\}$ for some m. Hence $\theta(\lambda) = mp - \frac{1}{2}$. Since mp is the total number of beads in X, we have
\[p(m - 1 + 1) = mp - \frac{1}{2} + \frac{1}{2} \]
which implies $p(\theta(\lambda) + \frac{1}{2}) = \theta(\lambda) + \frac{1}{2}$ by Lemma 3.6. \hfill \square

Let λ be such that $\lambda^0 \neq \emptyset$ and let $\bar{\lambda}$ be such that $\bar{\lambda} = \emptyset$ but $\bar{\lambda}_i = \lambda_i$ for $0 \leq i \leq p - 1$.

Corollary 3.8. For all $0 \leq \gamma \leq p - 1$ we have
\[p(\theta(\bar{\lambda}) + \frac{1}{2}) = \theta(\lambda) + \frac{1}{2}. \]

Proof. By Lemma 3.2 \(\theta(\bar{\lambda}) = \theta(\lambda)\). The result then follows from Lemma 3.7. \hfill \square

We use Corollary 3.8 to offer an interpretation of $D'(\lambda)$. Suppose $\alpha_i \in D(\lambda)_{L, \gamma}$ so $\alpha_i = \gamma + \eta_i p$. Then $\gamma + \eta_i p = \theta(\lambda) - \frac{1}{2} - y_i$ by Proposition 3.3. By Corollary 3.8
\[\gamma + \eta_i p = p(\theta(\bar{\lambda}) - \frac{1}{2}) + p - 1 - y_i. \]

Suppose $y_i = \gamma + \bar{y}_i$. Then $\bar{y}_i = \theta(\bar{\lambda}) - \eta_i - \frac{1}{2}$.

Now suppose $\beta_i \in D(\lambda)_{R, \gamma}$ so $\beta_i = \gamma + \eta_i p$. Then $\gamma + \eta_i p = y_i' - \theta(\lambda) - \frac{1}{2}$. Then
\[\gamma + \eta_i p = y_i' - p(\theta(\bar{\lambda}) + \frac{1}{2}). \]

by Proposition 3.3 Hence $y_i' - \gamma = p(\theta(\lambda) + \frac{1}{2} + \eta_i)$. Suppose $y_i' = \gamma + \bar{y}_i'$. Then $\bar{y}_i = \theta(\bar{\lambda}) + \frac{1}{2} + \eta$. Hence $D'(\lambda) = \{D_\gamma(\lambda)\}_{0 \leq \gamma \leq p - 1}$ can be expressed as distances of the beads and spaces of the corresponding X_γ from each $\theta(\lambda)$. We will use this observation in Section 8.

4. Pairs of Straddling or Non-Straddling p-hooks

If $(x', x]$ is a diagonal hook of X corresponding to a symmetric λ, we call x' the opposite position of x. Given two diagonal hooks $(x', x]$ and $(y', y]$ where $x < y$, we call the (non-diagonal) hooks $(y', x]$ and $(x', y]$ opposite hooks. Conversely, given opposite non-diagonal hooks $(y', x]$ and $(x', y]$ with $x < y$ we get diagonal hooks $(y', y]$ and $(x', x]$.

Lemma 4.1. Suppose λ is symmetric and let X be a β-set for λ with $|X| \equiv 0 \pmod{p}$. Let $(x', x]$ be a diagonal hook of X. Then $x' \equiv p - 1 - \gamma \pmod{p}$ if and only if $x \equiv \gamma \pmod{p}$.
Proof. By symmetry around $\theta(\lambda)$, the number of beads and empty positions below the axis is $|X|$. Hence $\theta(\lambda) - \frac{1}{2} \equiv p - 1 \pmod{p}$. Since x' and x are equidistant from $\theta(\lambda)$, then $x' \equiv p - 1 - x \pmod{p}$. □

Suppose we want to reduce a symmetric partition λ of $n - p$ by removing one p-hook. There is one way of doing so.

1. (The single hook case) Then p-hook $h = (y, x)$ is a diagonal hook (x', x) where $x - x' = p$.

Suppose we want to reduce a symmetric partition λ of n to a symmetric partition λ' of $n - 2p$ by removing two p-hooks. By removing two opposite p-hooks $h = (y, x]$ and $h' = (x', y',]$ where $h \neq h'$. There are two cases, the non-straddling case, in which $x' < y' < \theta(\lambda) < y < x$, and the straddling case, in which $x' < y < \theta(\lambda) < y' < x$.

1. (The non-straddling case). Suppose h is completely to the right of $\theta(\lambda)$. Then removing h and h' is equivalent to replacing a diagonal hook $(x', x]$ with $(x' + p, x - p)$.

2. (The straddling case). Suppose that h and h' straddle $\theta(\lambda)$.

Then removing h and h' is equivalent to removing two diagonal hooks $(x', x]$ and (y, y') where $x - x' + y' - y = 2p$.

Suppose $h = (y, x]$ and $h' = (x', y')$ are non-straddling opposite p-hooks of λ (as in Figure 2). Without loss of generality, $x > y'$. Let $h = h_{ij}$, i.e. have corner (i, j) in $[\lambda]$. Then the corner of h is on the arm of some diagonal hook. Since

$$|\{z \in \mathbb{N} : z \notin X, z \leq y\}| > |\{z \in \mathbb{N} : z \in X, z \geq x\}|$$

by Lemma 1.1, we have $j > i$. Thus, if $x = \gamma + kp$, where $0 \leq \gamma \leq p - 1$ and $k \geq 0$, then $y \notin X$ such that $y = \gamma + (k - 1)p$. Consequently, $h = (y, x]$ of λ corresponds to some hook $(k - 1, k]$ of γ on the γth runner of the p-abacus. We give the exact coordinates (i_h, j_h) on the Young diagram $[\lambda_\gamma]$ corresponding to $(k - 1, k]$ when λ has empty p-core. Define

$$A = \{z \equiv \gamma \pmod{p}, z \in X : z \geq x\}$$
$$B = \{z \equiv \gamma \pmod{p}, z \notin X : \theta(\lambda) < z \leq y\}$$
$$C = \{z \equiv -1 - \gamma \pmod{p}, z \in X : z > \theta(\lambda)\}.$$

Let $|A| = a$, $|B| = b$ and $|C| = c$. By construction, $i_h = a$.

By Proposition 3.1, λ_γ has an axis $\theta(\lambda_\gamma)$ that is a half-integer such that the number of beads above $\theta(\lambda_\gamma)$ is the same as the number of spaces below.
Lemma 4.2. Suppose \(\lambda \) has empty \(p \)-core and \(Y = \{w_1, \ldots, w_j\} \) is the induced \(\beta \)-set for \(\lambda \). Let \(k \) be an integer such that \(0 \leq k \leq w_j \). Then we have the following.

1. If \(k < \theta(\lambda) \) then \((p - \gamma - 1) + kp < \theta(\lambda)\)
2. If \(k > \theta(\lambda) \) then \(\gamma + kp > \theta(\lambda) \).

Proof. Follows by Proposition 3.7 and the definition of the \(p \)-quotient. \(\square \)

Lemma 4.3. Suppose \(\lambda \) is a symmetric partition with empty \(p \)-core. Consider the \(p \)-hook \(h = (y, x) \). Let \((i_h, j_h)\) be the coordinates of the corresponding 1-hook of \([\lambda_\gamma]\) for some fixed \(\gamma \). Then

\[j_h = b + c \]

if and only if \(h \) is completely to the right of \(\theta(\lambda) \).

Proof. Suppose \(j_h = b + c \). It is clear that \(h \) is completely to the right of \(\theta(\lambda) \). Suppose \(h \) is completely to the right of \(\theta(\lambda) \). Since \(\lambda \) is symmetric, we know by Lemma 4.1 that \(C \) corresponds bijectively to the set \(\{y' \in \mathbb{N}, y' \notin X, y < \theta(\lambda) : y' \equiv \gamma \pmod{p}\} \). Hence \(c \) is also the number of empty positions less than \(\theta(\lambda) \) of residue \(\gamma \pmod{p} \). By Lemma 3.5, \(b \) is the number of empty positions between \(\theta(\lambda) \) (and including) \(y \) with residue \(\gamma \pmod{p} \). This follows since \(\lambda \) has empty \(p \)-core. Hence \(b + c \) is the total number of empty positions below and including \(y \) with residue \(\gamma \pmod{p} \). Then, by Lemma 1.1, we are done. \(\square \)

Lemma 4.4. Suppose \(\lambda \) is symmetric with empty \(p \)-core. Consider the \(p \)-hook \(h = (y, x) \). If \(h \) is completely to the right of \(\theta(\lambda) \) then

\[a \leq c \]

Proof. By Lemma 4.1, we have that \(c \) is the number of empty positions less than \(\theta(\lambda) \) that have residue \(\gamma \pmod{p} \). By Lemma 3.5, since \(\lambda \) has empty \(p \)-core, \(c \) must be equal to the number of \(z \in X \) such that \(z > \theta(\lambda) \) and \(z \equiv \gamma \pmod{p} \). Since \(x > \theta(\lambda) \) and \(A = \{z = \gamma + jp, z \in X : z \geq x\} \), we have \(a \leq c \). \(\square \)

Proposition 4.5. A hook \((k - 1, k]\) of size 1 on \(\lambda_\gamma \) corresponds to the \(p \)-hook \(h = (y, x) \) on \(\lambda \) where \(y \) and \(x \) are completely to the right (resp. left) of \(\theta(\lambda) \) if and only if \((k - 1, k]\) occurs on an arm (resp. leg) of \([\lambda_\gamma]\).

Proof. Suppose \(h \) is to the right of \(\theta(\lambda) \). The coordinates of \((k - 1, k]\) on the Young diagram \([\lambda_\gamma]\) are \((i_h, j_h)\) where \(i_h = a \) (by definition) and \(j_h = b + c \) by Lemma 4.3. Since \(y \notin B \), \(|B| \neq 0 \) and we have \(a < b + c \),
since \(a \leq c\) by Lemma 4.4. It follows that \(i_h < j_h\). Hence \((k - 1, k]\) is a 1-hook on the arm of \([\lambda_\gamma]\).

Suppose \((k - 1, k]\) is a 1-hook on the arm of \([\lambda_\gamma]\). Clearly \(\theta(\lambda_\gamma) < k - 1\). Hence \(\theta(\lambda) < y = \gamma + (k - 1)p\) by Lemma 4.2. Since \(y < x\), \(h\) is completely to the right of \(\theta(\lambda)\).

Suppose \((k - 1, k]\) is a 1-hook on \(\lambda_\gamma\) corresponding to a \(p\)-hook \(h = (y, x]\) completely to the left of \(\theta(\lambda)\). Then \(h\) can be viewed as a hook completely to the right of \(\theta(\lambda^\star)\). Hence, by the argument above, it corresponds to a 1-hook on the arm of \(\lambda_\gamma\). Taking the dual again, \(h\) corresponds to a 1-hook on the leg of \(\lambda_\gamma\).

\[\text{Proposition 4.6.}\] Let \(\lambda\) be a symmetric partition with empty \(p\)-core. Let \(\gamma \in \{0, p - 1\}\). Then a hook \(h = (k - 1, k]\) of size 1 on \(\lambda_\gamma\) corresponds to the \(p\)-hook \(h = (y, x]\) of \(\lambda\) where \(y\) is to the left of \(\theta(\lambda)\) and \(x\) is to the right of \(\theta(\lambda)\) if and only if \((k - 1, k]\) is a diagonal hook of \([\lambda_\gamma]\).

\[\text{Proof.}\] Consider a pair \(h = (y, x]\) and \(h' = (x', y']\) of straddling \(p\)-hooks. Without loss of generality, we may suppose \(x' < y < y' < x\). Set \(y' = \gamma + jp\) and \(x = (p - 1 - \gamma) + kp\). So \(x' = \gamma + (j - 1)p\) and \(y = (p - 1 - \gamma) + (k - 1)p\).

Suppose \(E = \{z \in X, z = \gamma (\mod p), z \geq y']\) and \(F = \{z' \not\in X, z' = \gamma (\mod p) : z' \leq x']\). Let \(|E| = e\) and \(|F| = f\). By Lemma 4.1, the coordinates of the hook \((k - 1, k]\) on the Young diagram \([\lambda_\gamma]\) are \((i_h, j_h) = (e, f)\). The inequality \(x' < y < x\) is equivalent to \((k - 1)p < 2\gamma - p + 1 + jp < kp\). If \(\gamma = \frac{p - 1}{2}\), then \(h = h'\), which is impossible. Hence we only consider \(\gamma \neq \frac{p - 1}{2}\). If \(0 \leq \gamma < (p - 1)/2\), it follows that \(j = k\) and \(\theta(\lambda) = kp - 1/2\). If \((p - 1)/2 < \gamma \leq p - 1\), it follows \(j = k - 1\) and \(\theta(\lambda) = jp + (p - 1)/2\).

Since \(\theta(\lambda)\) is a half-integer, the second case is impossible and \(0 \leq \gamma < (p - 1)/2\). Now define \(E' = \{z \in X : z = \gamma (\mod p), z > \theta(\lambda)\}\) and \(F' = \{z' \not\in X : z' = \gamma (\mod p), z' < \theta(\lambda)\}\), so \(|E'| = |F'|\) by Lemma 4.5. Since \(y < \theta(\lambda) < x\) and \(x - y = p\), we have \(\{z \in X : z = \gamma (\mod p), \theta(\lambda) < z < x\} = \{z' \not\in X : z' = \gamma (\mod p), y < z' < \theta(\lambda)\} = \emptyset\). Thus \(E' = E\) and \(F' = F\) and we are done.

Suppose \((k - 1, k]\) is a hook of size 1 on the diagonal of \([\lambda_\gamma]\). Then \(k - 1 < \theta(\lambda_\gamma) < k\). Hence \((p - 1 - \gamma + (k - 1)p, \gamma + kp] = (y, x]\) straddles \(\theta(\lambda)\) by Lemma 4.2.

5. \(D'(\lambda)\) concentrated at one or two places

Suppose \(\lambda\) is a symmetric partition. We say \(D(\lambda)\) is \emph{concentrated} at \(\{\gamma, \gamma^\star\}\) if \(D_i(\lambda) \neq \emptyset\) for \(i \in \{\gamma, \gamma^\star\}\) and \(D_i(\lambda) = \emptyset\) otherwise.
Lemma 5.1. Suppose \(\lambda \) and \(\lambda' \) are distinct partitions such that \(D(\lambda) \) is concentrated at \(\{\gamma, \gamma^*\} \) and \(D(\lambda') \) is concentrated at \(\{\gamma', \gamma'^*\} \) where \(\gamma \neq \gamma' \). If \(\{\gamma, \gamma^*\} \neq \{\gamma', \gamma'^*\} \) then \(D(\lambda) \cap D(\lambda') = \emptyset \), that is, no diagonal hook length of \(\lambda \) equals a diagonal hook length of \(\lambda' \).

Proof. Suppose not. Then there exists \(\alpha \in D(\lambda)_L \) and \(\alpha' \in D(\lambda')_L \) such that \(\alpha = \alpha' \). But \(\alpha = \gamma + mp \) and \(\alpha' = \gamma' + m'p \) so that \(\gamma = \gamma' \). This is impossible. \(\square \)

Suppose \(\lambda \) and \(\lambda' \) are symmetric partitions such that \(D(\lambda) \cap D(\lambda') = \emptyset \). Define \(\lambda + \lambda' \) to be the symmetric partition such that \(D(\lambda + \lambda') = D(\lambda) \cup D(\lambda') \). In particular, we can form \(\lambda + \lambda' \) whenever \(\lambda \) and \(\lambda' \) are concentrated on disjoint sets.

Theorem 5.2. Let \(\lambda \) be symmetric with empty \(p \)-core such that \(D'(\lambda) \) is concentrated at \(\{\gamma, \gamma^*\} \) where \(\gamma \neq \gamma^* \). Then

1. \(D'(\lambda) \) is a \(p \)-tuple of bisequences, that is, for each \(\gamma \), \(D_\gamma(\lambda)_L \) and \(D_\gamma(\lambda)_R \) are of equal lengths.
2. For each \(\gamma \), \(D_\gamma(\lambda) = D_\gamma(\lambda_\gamma) \) and \(D_{\gamma^*}(\lambda) = D_{\gamma^*}(\lambda_{\gamma^*}) \), where \(\lambda_\gamma \) and \(\lambda_{\gamma^*} \) are the \(\gamma \)-th and \(\gamma^* \)-th components of the \(p \)-quotient of \(\lambda \).
3. Suppose \(D(\lambda_\gamma) = (\sigma_1, \ldots, \sigma_w | \tau_1, \ldots, \tau_w) \). Then
 \[
 D(\lambda) = (\alpha_1, \ldots, \alpha_{2w} | \alpha_1, \ldots, \alpha_{2w})
 \]
 where \(\{\alpha_1, \ldots, \alpha_{2w}\} = \{\gamma^* + \sigma_i p, \gamma + \tau_i p : 1 \leq i \leq w\} \).

Proof. By induction on \(|\lambda| \). The minimal case is \(|\lambda| = 2p \) where \(D(\lambda) = (p - 1 - \gamma, \gamma | p - 1 - \gamma, \gamma) \). Then \(\lambda \) is comprised of just two opposite \(p \)-hooks. Hence \(|D_\gamma(\lambda)_R| = |D_\gamma(\lambda)_L| = 1 \) and part (1) follows. By definition, \(D_\gamma(\lambda) = (0 | 0) \) and \(D_{p-1-\gamma}(\lambda) = (0 | 0) \). Since \(\lambda_\gamma = (1) \) and \(\lambda_{\gamma^*} = (1) \), part (2) follows. Part (3) follows since \(D(\lambda) = (p - 1 - \gamma, \gamma | p - 1 - \gamma, \gamma) \). Now suppose \(|\lambda| = n > 2p \). By induction, we assume that the theorem holds for all partitions \(\lambda \) such that \(|\lambda| < n \). Consider \(|\lambda| = n \). Let \(h, h' \) be opposite \(p \)-hooks in \(\lambda \) and let \(\lambda^V \) be the symmetric partition gotten from removing \(h \) and \(h' \). Following the discussion preceding Lemma 4.3, there are two cases.

Case 1: (The non-straddling case) Here one obtains \(D(\lambda^V) \) from \(D(\lambda) \) by replacing an element \((\alpha | \alpha) \) by \((\alpha - p | \alpha - p) \) where \(\alpha - p \geq 0 \). Then \(D_\gamma(\lambda)_L \) and \(D_{\gamma^*}(\lambda^V)_L \) are the same except for some \(\sigma_\mu \in D_{\gamma^*}(\lambda)_L \) which is replaced by \(\sigma_\mu - 1 \). By symmetry, \(\sigma_\mu \) is replaced by \(\sigma_\mu - 1 \) resulting in \(D_{\gamma^*}(\lambda^V)_R \). We prove that parts (1), (2), and (3) hold.

1. By induction \(D_\gamma(\lambda^V) \) and \(D_{\gamma^*}(\lambda^V) \) are both bisequences with components of equal length. Hence the same is true for \(D_\gamma(\lambda) \) and \(D_{\gamma^*}(\lambda) \).
(2) By induction $D_\gamma(\lambda^\nu) = D(\lambda^\nu)$. By Proposition [4.5] λ^ν is obtained from λ^ν_γ by adding a hook of size 1 to both the leg length of the diagonal hook corresponding to $(\sigma_\mu - 1|\tau_\mu) \in D(\lambda^\nu_\gamma)$ and to the arm length of the diagonal hook $(\tau_\mu|\sigma_\mu - 1) \in D(\lambda^\nu_\gamma)$. Hence $D_\gamma(\lambda) = D(\lambda_\gamma)$ and $D_{\gamma^*}(\lambda) = D(\lambda_{\gamma^*})$.

(3) Given

\[
D(\lambda^\nu_\gamma) = (\sigma_1, \cdots, \sigma_{\mu - 1}, \cdots, \sigma_w|\tau_1, \cdots, \tau_i, \cdots, \tau_w)
\]

we have by induction that

\[
D(\lambda^\nu) = (\cdots \alpha_i', \alpha_i'' \cdots | \cdots \alpha_i', \alpha_i'' \cdots)
\]

where

\[
\alpha_i' = (p - 1 - \gamma) + \sigma_ip \quad \alpha_i'' = \gamma + \tau_ip
\]

1 \leq i \leq w \text{ and } i \neq \mu. \text{ When } i = \mu, \text{ then}

\[
\alpha_\mu' = (p - 1 - \gamma) + (\sigma_\mu - 1)p \quad \alpha_\mu'' = \gamma + \tau_\mu p
\]

It is clear by replacing $\sigma_\mu - 1$ by σ_μ, that the desired formula for $D(\lambda)$ is obtained.

Case 2: (The straddling case) Here $D(\lambda^\nu)$ one obtains $D(\lambda)$ from by removing $(\alpha|\alpha)$ and $(\beta|\beta)$ where $\alpha + \beta + 1 = p$ (assume without loss of generality that $\alpha > \beta$). Then $D(\lambda^\nu)$ is also concentrated at $\{\gamma, \gamma^*\}$. The relation $\alpha + \beta + 1 = p$ implies that if $\alpha = \gamma$, then $\beta = p - 1 - \gamma$. Thus $(\alpha|\alpha)$ contributes a term 0 to $D_\gamma(\lambda)_L$ and a 0 to $D_{\gamma^*}(\lambda)_R$. Likewise $(\beta|\beta)$ contributes a term 0 to $D_\gamma(\lambda)_R$ and a 0 to $D_{\gamma^*}(\lambda)_R$. We prove that parts (1), (2), and (3) hold.

(1) By induction $D_\gamma(\lambda^\nu)$ is a bisquence with components of equal length. Hence $D_\gamma(\lambda)$.

(2) By induction $D_\gamma(\lambda^\nu) = D(\lambda^\nu)$ and $D_{\gamma^*}(\lambda^\nu) = D(\lambda^\nu_{\gamma^*})$. Now we re-attach to λ^ν the diagonal hooks corresponding to $(\alpha|\alpha)$ and $(\beta|\beta)$, where $\alpha + \beta + 1 = p$. This is equivalent to adjoining $(0|0)$ to both $D_\gamma(\lambda)$ and $D_{\gamma^*}(\lambda')$. The effect on the partitions λ^ν_γ and $\lambda^\nu_{\gamma^*}$ will be adding a diagonal node of size 1 to each, by Proposition [4.6]. Hence $D_\gamma(\lambda) = D(\lambda_\gamma)$ and $D_{\gamma^*}(\lambda) = D(\lambda_{\gamma^*})$.

(3) Given

\[
D(\lambda^\nu_\gamma) = (\sigma_1, \cdots, \sigma_{w-1}|\tau_1, \cdots, \tau_{w-1})
\]

\[
D(\lambda^\nu_{\gamma^*}) = (\tau_1, \cdots, \tau_{w-1}|\sigma_1, \cdots, \sigma_{w-1})
\]

then by induction

\[
D(\lambda^\nu) = (\cdots \alpha_i', \alpha_i'' \cdots | \cdots \alpha_i', \alpha_i'' \cdots)
\]
Corollary 5.3. Suppose λ is symmetric with empty p-core and $D(\lambda)$ is concentrated at $\{\gamma, \gamma^* : \gamma \neq \gamma^*\}$ and $D_\gamma(\lambda) = (\sigma_1, \cdots, \sigma_w | \tau_1, \cdots, \tau_w)$. Then

$$\delta(\lambda) = \cup_i \{2(\sigma_i + 1)p - 2\gamma - 1, 2\tau_i p + 2\gamma + 1\}$$

Proof. Follows from part 3 of Theorem 5.2 \hfill \Box

Example 5.4. Let $p = 5$. Suppose the 5-quotient is concentrated at $\{\gamma, \gamma^*\} = \{0, 4\}$, where $\lambda_0 = (6^2, 2)$ and $\lambda_4 = (3^2, 2^3)$. Then $D_0(\lambda) = (2, 1|5, 4)$ and $D_4(\lambda) = (5, 4|2, 1)$, $D(\lambda) = (25, 20, 14, 9|25, 20, 14, 9)$ and $\delta(\lambda) = (51, 41, 29, 19)$.

Similar results hold for the case when λ is symmetric and $D(\lambda)$ is concentrated at $\gamma = \gamma^* = \frac{p-1}{2}$.

Theorem 5.5. Suppose λ is a symmetric partition with empty p-core and let $D(\lambda)$ be concentrated at $\gamma = \gamma^* = \frac{p-1}{2}$. Then

1. $D'(\lambda)$ is a p-tuple of $p-1$ empty bisequences, with $D_{\frac{p-1}{2}}(\lambda) \neq \emptyset$ and $D_{\frac{p-1}{2}}(\lambda)_R$ and $D_{\frac{p-1}{2}}(\lambda)_L$ are of equal lengths.
2. $D_{\frac{p-1}{2}}(\lambda) = D(\lambda_{\frac{p-1}{2}})$.
3. Suppose $D(\lambda_{\frac{p-1}{2}}) = (w_1, \cdots, w_\mu|w_1, \cdots, w_\mu)$, and $D(\lambda_{\gamma}) = \emptyset$ when $\gamma \neq \frac{p-1}{2}$. Then

$$D(\lambda) = (z_1, \cdots, z_\mu|z_1, \cdots, z_\mu)$$

where $z_i = \frac{p-1}{2} + w_i p$.

Proof. By induction on $|\lambda|$. The minimal case is $|\lambda| = p$. In this case $D(\lambda) = (\frac{p-1}{2}|\frac{p-1}{2})$ and $D_{\frac{p-1}{2}}(\lambda) = (0|0)$. The remainder of the proof is similar to that of Theorem 5.2 \hfill \Box

Corollary 5.6. Suppose λ is symmetric with empty p-core, such that λ is concentrated at $\{\frac{p-1}{2}\}$. Then $\delta(\lambda) = \cup_i \{(2m_i + 1)p\}$ if $\delta(\lambda_{\frac{p-1}{2}}) = \cup_i \{2m_i + 1\}$ for every $(m_i|m_i) \in D(\lambda_{\frac{p-1}{2}})$.

Proof. This follows from Theorem 2, part 3. \hfill \Box
Example 5.7. Let $p = 5$. Suppose the 5-quotient is concentrated at $\{2\}$ and $\lambda_0 = (2^2)$. Then $D_2(\lambda) = (1, 0|1, 0)$ and $D(\lambda) = (7, 2|7, 2)$, $\delta(\lambda) = (15, 5)$.

6. Symmetric partitions with an empty p-core

Now suppose λ is symmetric and has empty p-core. Fix a γ between 0 and $\frac{p-1}{2}$. Suppose $D(\lambda_{[\gamma]}) \subseteq D(\lambda)$ is the bisequence whose p-quotient $D'(\lambda_{[\gamma]})$ has just the components $D_\gamma(\lambda)$ and $D_{\gamma^*}(\lambda)$. Let $\lambda_{[\gamma]}$ be the symmetric partition corresponding to $D(\lambda_{[\gamma]})$. By Lemma 5.1:

$$\lambda_{[0]}, \ldots, \lambda_{\frac{p-1}{2}}$$

have disjoint diagonals. Thus $\lambda_{[0]} + \lambda_{[1]} + \cdots + \lambda_{\frac{p-1}{2}}$ is defined in the sense described in the remark before Theorem 5.2.

Theorem 6.1. Suppose λ is symmetric and has empty p-core. Then

$$\lambda = \lambda_{[0]} + \lambda_{[1]} + \cdots + \lambda_{\frac{p-1}{2}}$$

$$D(\lambda) = \coprod_{1 \leq \gamma \leq \frac{p-1}{2}} D(\lambda_{[\gamma]})$$

Proof. By Lemma 5.1, it is clear that $D(\lambda_{[\gamma]}) \cap D(\lambda_{[\mu]}) = \emptyset$ when $\gamma \neq \mu$. Let $k_\gamma = |D_\gamma(\lambda)_R|$. By Theorem 5.2 and Theorem 5.5, for a fixed γ, we have for all $1 \leq i \leq k_\gamma$ and $1 \leq j \leq t$, the diagonal hooks of λ corresponding to $(\alpha'_{\gamma, i}, \alpha''_{\gamma, i})$, $(\alpha'_{\gamma, i}, \alpha''_{\gamma, i})$ and (z_j, z_j) in $D(\lambda)$ have distinct lengths. Hence $\bigcap_{1 \leq \gamma \leq \frac{p-1}{2}} D(\lambda_{[\gamma]}) = \emptyset$. Since these exhaust the diagonal hooks arising from the p-quotient $D'(\lambda)$, and λ has an empty p-core, $\bigcap_{1 \leq \gamma \leq \frac{p-1}{2}} D(\lambda_{[\gamma]})$ constitute all of the diagonal hook lengths of λ. \square

Example 6.2.

Suppose $p = 5$, $\lambda \vdash 190$ is symmetric with empty p-core and $\lambda_0 = (6^2, 2)$, $\lambda_1 = (3)$, $\lambda_2 = (2^2)$, $\lambda_3 = (1^3)$, $\lambda_4 = (3^2, 2^3)$. Then $D_0(\lambda) = \{2, 1|5, 4\}$, $D_1(\lambda) = \{0|2\}$, $D_2(\lambda) = \{1, 0|1, 0\}$, $D_3(\lambda) = \{2|0\}$, and $D_4(\lambda) = \{5, 4|2, 1\}$. Hence

$$D(\lambda) = \{25, 20, 14, 11, 9, 7, 3, 2|25, 20, 14, 11, 9, 7, 3, 2\}$$

and $\delta(\lambda) = (51, 41, 29, 23, 19, 15, 7, 5)$.
7. Symmetric p-cores

For any partition λ, let
\[
D(\lambda)_{L,\gamma} = \{ \alpha \in D(\lambda)_L : \alpha \equiv \gamma \pmod p \}
\]
and
\[
D(\lambda)_{R,\gamma} = \{ \beta \in D(\lambda)_R : \beta \equiv \gamma \pmod p \}.
\]
Let λ^0 be a symmetric p-core partition. Let $D(\lambda)_\gamma$ be the set of $(\beta | \beta) \in D(\lambda)$ such that $\beta \equiv \gamma \pmod p$. Then, in particular, $D(\lambda^0) = \bigcup_\gamma D(\lambda^0)_\gamma$ and $D(\lambda^0)_\gamma \cap D(\lambda^0)_{\gamma'} = \emptyset$ for $\gamma \neq \gamma'$.

Proposition 7.1. Suppose λ^0 is a symmetric p-core partition. Then for $\gamma \neq \gamma^*$,
\[
D(\lambda^0)_{\gamma^*} \neq \emptyset \implies D(\lambda^0)_{\gamma^*} = \emptyset.
\]

Proof. Suppose $(\alpha_i | \alpha_i) \in D(\lambda^0)_\gamma$ and $(\beta_j | \beta_j) \in D(\lambda^0)_{\gamma^*}$. Then in the notation of Proposition 3.3 we have $y'_i \equiv \theta(\lambda^0) + \frac{1}{2} + \gamma \pmod p$ and $y_j \equiv \theta(\lambda^0) - \frac{1}{2} - \gamma^* \pmod p$. But $\gamma^* = -1 - \gamma \pmod p$. Thus $y'_i - y_j \equiv (\mod p)$, contradicting the assumption λ^0 is a p-core.

A symmetric λ is γ-packed if $D(\lambda)_\gamma$ consists of the elements $(\gamma + ip | \gamma + ip)$ for $i = 0, 1, \ldots, r$. Let $X_{\gamma,+}$ be the subset of X_+ consisting of elements y' where
\[
y' - \theta(\lambda) - \frac{1}{2} \equiv \gamma \pmod p.
\]
We define $X_{\gamma,-}$ similarly.

Proposition 7.2. Suppose λ^0 is a symmetric p-core and $D(\lambda)_\gamma \neq \emptyset$. Then λ^0 is γ-packed.

Proof. Clearly if λ^0 is not γ-packed, then there exist integers y', z', greater than $\theta(\lambda^0)$ such that $z' \equiv y' \pmod p$, $z' \not\in X_+$, and $y' \in X_+$. In particular, (z', y') is a p-hook of λ^0.

Corollary 7.3. (symmetric p-core criterion) Let λ^0 be a symmetric partition. Then λ^0 is a p-core if and only if for every $\gamma \in \{0, \ldots, p - 1\}$ $D(\lambda^0)_{\gamma^*} \neq \emptyset$ implies that λ^0 is γ-packed and $D(\lambda^0)_{\gamma^*} = \emptyset$.

Proof. Clearly, if λ^0 if a p-core the result follows by Proposition 7.1 and Proposition 7.2. Suppose that for each $\gamma \in \{0, \ldots, p - 1\}$, if $D(\lambda^0)_{\gamma^*} \neq \emptyset$ then λ^0 is γ-packed and $D(\lambda^0)_{\gamma^*} = \emptyset$, but that λ^0 is not a p-core. Then, for some γ there exists a hook $h = (x, y')$ where $y' = \gamma + mp$, $x = \gamma + (m - 1)p$. By symmetry, we can assume that $y' > \theta(\lambda^0)$. If $x > \theta(\lambda)$, then λ is not γ-packed, which is a contradiction. Now suppose $x < \theta(\lambda^0)$, then by symmetry there exists $x' > \theta(\lambda^0)$ such that...
Example 7.4.

Suppose $p = 5$ and $\lambda' \vdash 324$ such that λ' is symmetric and

$$\delta(\lambda') = (69, 59, 49, 39, 29, 27, 19, 17, 9, 7).$$

In particular, $D(\lambda')_R = (34, 29, 24, 19, 14, 13, 9, 8, 4, 3)$. Hence $D(\lambda')_{R,4} = (34, 29, 24, 19, 14, 9, 4)$ and $D(\lambda')_{R,3} = (13, 8, 3)$. Hence λ' is both 4-packed and 3-packed. Since $D(\lambda')_0 = \emptyset$ and $D(\lambda')_1 = \emptyset$, λ' is a 5-core by Theorem 7.3.

8. Symmetric partitions with a non-empty p-core

We extend the results of Section 6 to the case of a symmetric partition with a non-empty p-core. Let $\bar{\lambda}$ be the symmetric partition that shares the p-quotient with λ, but has empty p-core. Hence $(\bar{\lambda})^0 = \emptyset$ and $(\bar{\lambda})_1 = \lambda_1$ for $0 \leq \gamma \leq p - 1$.

Now consider a symmetric partition λ of n with a non-empty p-core λ^0. Let \bar{X} and X^0 be β-sets of λ and λ^0 respectively. Since $\lambda^0 \neq \emptyset$, we have $(X^0)_{\gamma,0} \neq \emptyset$ for some γ. Then $|D(\lambda^0)\gamma| \neq \emptyset$. In particular, $|D(\lambda^0)\gamma| = d^0_\gamma$ by Proposition 7.1. The definition of $D'(\lambda)$ each $(\lambda)_{\gamma,0} \in D(\lambda^0)\gamma$ contributes an element to both $D_{\gamma,L}^*(\lambda)_L$ and $D_{\gamma,R}^*(\lambda)_R$. $(D(\lambda^0))$ contributes nothing to $D_{\gamma,L}^*(\lambda)_R$ and $D_{\gamma,L}^*(\lambda)_L$. The definition of $D'(\lambda)$ (and Proposition 7.1) forces $|D_{\gamma,L}^*(\lambda)_R| - |D_{\gamma,L}^*(\lambda)_L| = d^0_\gamma$. This implies $D'(\lambda)$ is not a p-tuple of bisequences. Specifically, $D_{\gamma,L}^*(\lambda) \neq D(\lambda^0)$.

Define $\Omega' \subset \{0, \ldots, p - 1\}$ so that $\gamma' \in \Omega'$ if $D_{\gamma'}(\lambda^0) \neq \emptyset$ (i.e. $d^{0}_{\gamma'} > 0$). Let $(\Omega')^* = \{0 - \gamma' - 1 : \gamma' \in \Omega'\}$ and $U = \Omega' \cup (\Omega')^*$. Define $\Omega'' = \{0, \ldots, p - 1\} - U$.

Lemma 8.1.

1. $\theta(\lambda_{\gamma'}) = \theta(\lambda_{\gamma'})$
2. $\theta(\lambda_{\gamma'}) = \theta(\lambda_{\gamma'}) + d^0_{\gamma'}$

Proof. When all beads on all the runners of the abacus of λ are moved up completely one obtains the abacus diagram for λ^0 (Theorem 2.7.16, 2). Since $D(\lambda^0)_{\frac{p-1}{2}}$ is empty, $d^0_{\frac{p-1}{2}} = 0$ and the $\frac{p-1}{2}$-th runner of λ^0 is unchanged from the $\frac{p-1}{2}$-th runner of $\bar{\lambda}^0$. Let \bar{X}^0 and X^0 be the β-sets for λ^0 and $\bar{\lambda}^0$. Matching the $\frac{p-1}{2}$-th runners of λ^0 and $\bar{\lambda}^0$ one can superimpose the abacus of λ^0 onto the abacus of $\bar{\lambda}^0$. It follows...
that $|X_{\gamma'}^0| + d_\gamma^0 = |X_{\gamma''}^0|$ for $\gamma' \in \Omega'$. Also, $|X_{\gamma''}^0| = |X_{\gamma''}^0|$ since $d_{\gamma''}^0 = 0$ for $\gamma'' \in \Omega''$. Hence $\theta(\lambda_{\gamma'}) = \theta(\bar{\lambda}_{\gamma'}) + d_\gamma^0$ and $\theta(\lambda_{\gamma''}) = \theta(\bar{\lambda}_{\gamma''})$. The result follows since $\theta(\lambda_{\gamma'}) = \theta(\bar{\lambda}_{\gamma'})$ and $\theta(\bar{\lambda}_{\gamma''}) = \theta(\bar{\lambda}_{\gamma''})$ by Proposition 3.2.

We can describe $X_{\gamma'}$ using $\bar{X}_{\gamma'}$ and Lemma 8.1 in the following three steps which we call the d_γ^0-shift of $\bar{X}_{\gamma'}$.

1. $m_\sigma \in X_{\gamma',+}$ if $m_\sigma - d_\gamma^0 > \theta(\bar{\lambda}_{\gamma'})$ and $m_\sigma - d_\gamma^0 \in \bar{X}_{\gamma',+}$

2. $m_s \in X_{\gamma',+}$ if $\theta(\bar{\lambda}_{\gamma'}) < m_s < \theta(\bar{\lambda}_{\gamma'}) + d_\gamma^0$ and $m_s - d_\gamma^0 \notin \bar{X}_{\gamma',-}$

3. $m_t \in X_{\gamma',-}$ if $m_t - d_\gamma^0 < \theta(\bar{\lambda}_{\gamma'})$.

Now consider the following sets

$$S_{\gamma'}(\bar{\lambda})_L =: \{s : s \in \mathbb{N}, s \notin D_{\gamma'}(\bar{\lambda})_L, 0 \leq s \leq d_{\gamma'}^0 - 1\}$$

$$T_{\gamma'}(\bar{\lambda})_L =: \{t : t \in D_{\gamma'}(\bar{\lambda})_L, t \geq d_{\gamma'}^0\}.$$

Following the comments after Proposition 3.8, $S_{\gamma'}(\bar{\lambda})_L$ and $T_{\gamma'}(\bar{\lambda})_L$ are in bijection with the subsets of \bar{X}_{γ} in steps (2) and (3) of the definition of the d_γ^0-shift. Now we can interpret $D_{\gamma'}(\lambda)$ via the d_γ^0-shift of $\bar{X}_{\gamma'}$.

Proposition 8.2. $D_{\gamma'}(\lambda)$ is obtained from $D_{\gamma'}(\bar{\lambda})$ in the following three steps.

1. Each $\sigma \in D_{\gamma'}(\bar{\lambda})_R$ is sent to $\sigma + d_\gamma^0 \in D_{\gamma'}(\lambda)_R$

2. Each $s \in S_{\gamma'}(\bar{\lambda})_L$ is sent to $d_\gamma^0 - s - 1 \in D_{\gamma'}(\lambda)_R$

3. Each $t \in T_{\gamma'}(\bar{\lambda})_L$ is sent to $t - d_\gamma^0 \in D_{\gamma'}(\lambda)_L$.

Proof. We prove part (2). Let $x_s = m_s - d_\gamma^0$. Each $x_s < \theta(\bar{\lambda}_{\gamma'})$ where $x_s \notin \bar{X}_{\gamma',-}$ where $x_s + d_\gamma^0 > \theta(\bar{\lambda}_{\gamma'})$ corresponds to some $s \in S_{\gamma'}(\bar{\lambda})_L$. Hence we have $\gamma + (x_s + d_\gamma^0)p \in X_{\gamma',+}$ by the usual p-quotient. Again, by Proposition 3.3,

$$\theta(\lambda) + \frac{1}{2} + \beta = \gamma + (x_s + d_\gamma^0)p$$

for some $\beta \in D(\lambda)_R$. By substitution,

$$\beta = \gamma - \theta(\lambda) - \frac{1}{2} + (\theta(\bar{\lambda}_{\gamma'}) - \frac{1}{2})p + (d_\gamma^0 - s)p.$$

By Lemma 3.7 we have

$$\beta = \gamma + (d_\gamma^0 - s - 1)p.$$

By definition of $D'(\lambda)$, $x_s + d_\gamma^0$ corresponds to $d_\gamma^0 - s - 1 \in D_{\gamma'}(\bar{\lambda})_R$.

The proofs of (1) and (3) are similar. □
Theorem 8.4. Given λ^0 and $\bar{\lambda}$,

$$D(\lambda)_R = O_1 \cup O_2 \cup O_3 \cup O_4$$

where

$$O_1 = \bigcup_{\gamma' \in \Omega'} \{\gamma' + (\sigma + d_{\gamma'}^0)p : \sigma \in D_{\gamma'}(\bar{\lambda})_R\}$$

$$O_2 = \bigcup_{\gamma' \in \Omega'} \{\gamma' + (d_{\gamma'}^0 - s - 1)p : s \in S_{\gamma'}(\bar{\lambda})\}$$

$$O_3 = \bigcup_{\gamma' \in \Omega'} \{(p - 1 - \gamma') + (t - d_{\gamma'}^0)p : t \in T_{\gamma'}(\bar{\lambda})\}$$

$$O_4 = \bigcup_{\gamma'' \in \Omega''} \{\gamma' + \mu p : \mu \in D_{\gamma''}(\bar{\lambda})_R\}.$$

Proof. This follows from the definition of $D'(\lambda)$ and Proposition 8.3. \hfill \Box

Theorem 8.4. Given λ^0 and $\bar{\lambda}$,

$$\delta(\lambda) = \mathbb{O}_1 \cup \mathbb{O}_2 \cup \mathbb{O}_3 \cup \mathbb{O}_4$$

where

$$\mathbb{O}_1 = \bigcup_{\gamma' \in \Omega'} \{2(\gamma' + (\sigma + d_{\gamma'}^0)p) + 1 : \sigma \in D_{\gamma'}(\bar{\lambda})_R\}$$

$$\mathbb{O}_2 = \bigcup_{\gamma' \in \Omega'} \{2(\gamma + (d_{\gamma'}^0 - s - 1)p) + 1 : s \in S_{\gamma'}(\lambda)_L\}$$

$$\mathbb{O}_3 = \bigcup_{\gamma' \in \Omega'} \{2((p - 1 - \gamma') + (t - d_{\gamma'}^0)p) + 1 : t \in T_{\gamma'}(\lambda)_L\}.$$

$$\mathbb{O}_4 = \bigcup_{\gamma'' \in \Omega''} \{2(\gamma' + \mu p) + 1 : \mu \in D_{\gamma''}(\bar{\lambda})_R\}.$$

where $d_{\gamma'}^0 = |D(\lambda)^0_{\gamma'}|$, $\gamma' \in \Omega'$ and $D_{\gamma'}(\lambda)_R$, $S_{\gamma'}(\lambda)_L$ and $T_{\gamma'}(\lambda)_L$ are as above.

Proof. Follows from the Proposition 8.3 and the relationship between $D(\lambda)$ and $\delta(\lambda)$. \hfill \Box

[Note: In the case $d_{\gamma'}^0 = 0$ for all $0 \leq \gamma \leq p - 1$, Proposition 8.3 reverts to Theorem 6.1.]

Example 8.5.

Suppose $p = 5$ and $\eta \vdash 514$ such that η is symmetric such that $\eta^0 = \lambda'$, where λ' is as in Example 7.4. Furthermore, let $\eta_i = \lambda_i$ for $0 \leq i \leq p - 1$, where λ_i is as in Example 6.2. In this case we have $d_3^0 = 3$, $d_4^0 = 7$, $D_3(\bar{\eta}) = \{2|0\}$, and $D_4(\bar{\eta}) = \{5,4|2,1\}$. Hence, by Proposition 8.2 we have

$$D_2(\eta)_R = \{1,0\}$$

$$D_2(\eta)_L = \{1,0\}$$

$$D_3(\eta)_R = \{2,1,0\}$$

$$D_3(\eta)_L = \emptyset$$

$$D_4(\eta)_R = \{9,8,6,5,4,3,0\}$$

$$D_4(\eta)_L = \emptyset.$$
Then by Proposition 8.3,

\[\begin{align*}
D(\eta)_{R,2} &= \{6, 2\} \\
D(\eta)_{R,3} &= \{13, 8, 3\} \\
D(\eta)_{L,3} &= \emptyset \\
D(\eta)_{R,4} &= \{49, 44, 34, 29, 24, 19, 4\} \\
D(\eta)_{L,4} &= \emptyset.
\end{align*} \]

Finally, by Theorem 8.4 we have

\[\delta(\eta) = (99, 69, 59, 49, 39, 37, 27, 17, 13, 9, 7, 5). \]

Acknowledgements Portions of this paper appeared in my PhD thesis [4] completed under the direction of Paul Fong. The author would also like to thank Itaru Terada for helpful discussions.

References

[1] P. Fong and B. Srinivasan, *Brauer Trees in Classical Groups*, J. Algebra 63 (1980), 124–142
[2] G. James and A. Kerber, *The Representation Theory of the Symmetric Groups*. Encyclopedia of Mathematics, 16, Addison-Wesley 1981
[3] I.G. MacDonald, *On the degrees of the irreducible representations of symmetric groups*, Bull. London Math. Soc., 3 (1971), 189-192
[4] R. Nath *Partial Results on Navarro’s conjecture and the Isaacs-Navarro conjecture for the alternating groups* PhD Thesis (2006) University of Illinois at Chicago
[5] R. Nath, *The Navarro conjecture for the alternating group when p=2*, under review
[6] G. Navarro, *The McKay conjecture and Galois automorphisms*, Annals of Mathematics 160 (2004) 1129-1140
[7] J. Olsson, *Combinatorics and Representations of Finite Groups*, Vorlesungen aus dem FB Mathematik der Univ. Essen, Heft 20 Essen, 1993

York College/City University of New York
E-mail address: rnath@york.cuny.edu