Towards a Treatment for Gulf War Illness: A Consensus Docking Approach

Rajeev Jaundoo, BSc†‡; Jonathan Bohmann, PhD§; Gloria E. Gutierrez, PhD∥; Nancy Klimas, MD*†¶; Gordon Broderick, PhD*‡+++; Travis J.A. Craddock, PhD*†,‡‡,+++†.

ABSTRACT Introduction: Gulf War Illness (GWI) currently has no known cure and affects soldiers deployed during the Persian Gulf War. It is thought to originate from exposure to neurotoxicants combined with battlefield stress, and previous research indicates that treatment first involves inhibition of interleukin-2 and tumor necrosis factor alpha, followed by the glucocorticoid receptor. However, the off-target effects of pharmaceuticals hinder development of a drug treatment therapy. Materials and Methods: AutoDock 4.2, AutoDock Vina, and Schrodinger’s Glide were used to perform consensus docking, a computational technique where pharmaceuticals are screened against targets using multiple scoring algorithms to obtain consistent binding affinities. FDA approved pharmaceuticals were docked against the above-mentioned immune and stress targets to determine a drug therapy for GWI. Additionally, the androgen and estrogen targets were screened to avoid pharmaceuticals with off-target interactions. Results: While suramin bound to both immune targets with high affinity, top binders of the hormonal and glucocorticoid targets were non-specific towards their respective proteins, possibly due to high structure similarity between these proteins. Conclusions: Development of a drug treatment therapy for GWI is threatened by the tight interplay between the immune and hormonal systems, often leading to drug interactions. Increasing knowledge of these interactions can lead to break-through therapies.

INTRODUCTION

Gulf War Illness (GWI) is a chronic multi-symptom illness with no known cure characterized by fatigue, musculoskeletal pain, gastrointestinal, and cognitive dysfunction believed to be a result of multiple chemical exposure to soldiers deployed to the theater of the 1990–1991 Persian Gulf War.1–4 And consistent with symptoms of GWI such as musculo-skeletal pain and fatigue, this neuroinflammatory cascade extends outside the central nervous system to affect the immune and endocrine systems as well, which are both linked to the brain via the hypothalamic–pituitary–adrenal (HPA) axis. Golier et al.6 has reported HPA dysregulation in soldiers with GWI, supporting this hypothesis. To address this issue, Craddock et al.7 utilized discrete logic models to determine a treatment course that would correct the altered homeostatic regulation in individuals with GWI. This multi-intervention treatment course comprised of inhibiting Th1 immune cytokines interleukin-2 (IL-2) and tumor necrosis factor alpha (TNF-α), directly followed by inhibition of the glucocorticoid receptor (GCR), involved with the stress response; however, a specific pharmaceutical combination for this treatment course has yet to be determined. Here, the drug docking programs AutoDock 4.2 (AD4),8 AutoDock Vina 1.1.2 (VINA),9 and Schrodinger’s Glide 2016-4 (GLIDE)10 were used to identify FDA-approved drugs specific to each IL-2, TNF-α, and GCR. Due to the tight regulation between the hormonal and immune systems,11 the androgen (AR) and estrogen (ER) targets were also screened to ensure that only drugs specific to IL-2, TNF-α, and GCR were chosen, reducing the chances of off-target interactions. FDA-approved drugs were specifically intended to bind to multiple sites beyond their intended targets,5 leading to off-target interactions and/or adverse drug reactions, which pose a major concern for the already taxed systems of those with GWI. A major hypothesis of GWI pathophysiology proposes that toxicant exposure, aggravated by stress, triggers a neuroinflammatory cascade leading to altered homeostatic regulation.1–3
testing, and the development of novel compounds is expensive in both time and cost.

METHODS

Crystal Structure Preparation

Crystal structures of the AR (2 am9, 2amb, 2pnu), ER (4ivy, 4iw6, 4ivy), GCR (1nhz, 3 h52, 4mdd), IL-2 (1 m48, 1 m49), and TNF-α (4twt) targets were obtained from the RCSB Protein Data Bank (PDB). These crystal structures were chosen primarily on their amino acid sequence completeness and resolution (3 Å or less). Furthermore, only structures in complex with a small molecule binder, which can be either a drug (eg, mifepristone for GCR) or an endogenous ligand (eg, testosterone for AR or estrogen for ER), were chosen. This served two purposes; first, the small molecule’s crystallographic position on each target was used as the binding site, and second, it allowed for re-docking, a process in which the small molecule is docked back to its target. The small molecule’s docked pose should be within 2.0 Å of its original crystallographic one, verifying the docking program used can accurately reproduce the in vitro derived crystal structure. Following Garcia-Sosa and Maran’s study, crystal structures for all docking programs were prepared using the Protein Preparation Prepwizard tool (PrepWiz), which removed waters, added hydrogens, set charges, and adjusted bond orders. Epik, a pK(a) predictor, was utilized in tandem with PrepWiz to perform tautomerization. The prepare_receptor4.py utility from AutoDockTools added Gasteiger charges and converted the crystal structures to the PDBQT format required for AD4 and VINA.

Ligand Preparation

1,794 FDA-approved drug structures were obtained from DrugBank’s February 15, 2016 database. The ligand preparation tool was used to prepare all drugs and add hydrogens for GLIDE. For AD4 and VINA, the ligands were converted to the PDB format using Open Babel. Hydrogens, Gasteiger charges, and rotatable bonds were assigned using the AutoDockTools utility, prepare_ligand4.py.

Crystal Structure Binders

To verify protocol accuracy, all small molecule binders were re-docked to their respective targets using each docking program. Next, the root mean squared deviation (RMSD) between the docked and crystallographic poses were calculated, which measures how different the two poses are from one another. If AD4, VINA, or GLIDE failed to dock a known binder within a cutoff score of 2.0 Å, then that program was used for that crystal structure (Table I). To accurately compare RMSD between docked and crystallographic poses, AmberTools was first used to normalize the atom numbers within the output files for all docked poses, which can change depending on docking program used.

Docking & Post-Processing

Virtual screening (VS) was performed using the Pegasus supercomputer located at the University of Miami. Drug docking was completed using Python and Bash scripts that implemented Garcia-Sosa and Maran’s protocol for AD4, VINA, and GLIDE. That being said, this protocol was adjusted, so that the Coulomb and van der Waals interaction energy cutoff score (CV cutoff) was set to ‘9999.9’ to report all binding energies, even positive, and a single docking run was performed with Schrodinger’s more extensive standard-precision (SP) scoring function instead of high-throughput VS (HTVS) scoring function. These scoring functions are based on the amount of central processing unit time required; HTVS is designed for quick preliminary screenings, while SP is intended for larger databases of compounds. Once VS was completed, only each ligand’s lowest energy pose from AD4, VINA, and GLIDE were used in further analysis.

To rank the results, the median absolute deviation from the median (MADM) of each ligand’s pose was calculated from all docking programs from all crystal structures. In contrast to the standard deviation and mean, the MADM is not skewed by outliers, and is able to discern outlier values even when the sample size is small. The MADM was used due to this robustness, especially when scoring a wide variety of binding energies.

![Table I. Programs Matrix](https://academic.oup.com/milmed/article-abstract/185/Supplement_1/554/5740749)

Crystal Structure	AD4	VINA	GLIDE
AR (2 am9)	*	*	*
AR (2amb)	*	*	*
AR (2pnu)	*	*	*
ER (4ivy)	*	*	*
ER (4iw6)	*	*	*
ER (4iwf)	*	*	*
GCR (1nhz)	*	*	*
GCR (3h52)	*	*	*
GCR (4mdd)	*	*	*
IL-2 (1m48)	*	*	*
IL-2 (1m49)	*	*	*
TNF-α (4twt)	*	*	*

* signifies docking programs included in the final results. The RMSDs are: AR 2 am9: AD4 = 1.570, VINA = 1.334, GLIDE = 0.270; AR 2amb: AD4 = 1.948, VINA = 3.535, GLIDE = 3.979; AR 2pnu: AD4 = 7.654, VINA = 9.519, GLIDE = 1.576; ER 4ivy: AD4 = 4.052, VINA = 4.224, GLIDE = 1.242; ER 4iw6: AD4 = 0.921, VINA = 1.712, GLIDE = 0.519; ER 4iwf: AD4 = 4.146, VINA = 4.124, GLIDE = 4.056; GCR 1nhz: AD4 = 1.064, VINA = 0.970, GLIDE = 0.665; GCR 3 h52: AD4 = 1.113, VINA = 0.480, GLIDE = 0.831; GCR 4mdd: AD4 = 1.140, VINA = 0.779, GLIDE = 0.875; IL-2 1 m48: AD4 = 1.745, VINA = 2.019, GLIDE = 1.356; IL-2 1 m49: AD4 = 1.225, VINA = 1.650, GLIDE = 1.700; TNF-α 4twt: AD4 = 1.060, VINA = 1.174, GLIDE = NA (failed to dock).
of binding energies. The upper and lower bounds were determined using the formula:

$$X_{\text{lower}}, X_{\text{upper}} = \text{median}(X) \pm (3.5 \times \text{MADM})$$

Wanting to be as inclusive as possible, only outlier energies that were greater than a threshold of 3.5 absolute deviations around the median were eliminated. Once these values were around the median were eliminated. Once these values were eliminated, the free binding energy of all poses predicted from AD4, then VINA, and finally GLIDE were ranked from lowest to highest. This initial ranking process was performed separately for each docking program. Next, to obtain the sum of ranks (SoR), we added the ranks from all three docking programs together. For example:

If AD4 rank = 10, VINA rank = 15, GLIDE rank = 12: SoR = 10 + 15 + 12 = 37.

Note that if a program failed to dock the ligand, then a value of NaN was used, which is equal to 0 when computing the SoR (ie AD4 = 1, VINA = NaN, and GLIDE = 3, then SoR = 4). Finally, the results were ordered lowest (best) to highest (worst) SoR, and that order is considered the overall rank (OR). Note that one limitation of the SoR is that a value of 0 from any number of docking programs would skew the results. That being said, the OR for known drugs such as testosterone for AR and mifepristone for GCR were within the top 10 binders of their respective targets. The high ranking and binding affinities of these known binders were reflective of in vitro results, endorsing the OR metric. The top 10 hits for each target are shown in Tables II to VI.

Additionally, each ligand’s specificity to their intended target was determined using another metric known as the next nearest target (NNT). The NNT was determined by comparing a ligand’s rank on a given target to its rank on every other target. The target with the best/lowest rank for the current ligand is considered the NNT; or in other words, NNT is the target that the ligand would most likely bind to after the current one. For instance, to find the NNT of mifepristone on GCR, we examined its position on the other targets: AR = 1392, ER = 1525, IL-2 = 299, and TNF-α = 499. In this case, IL-2 was the NNT because it contained the best/lowest rank for mifepristone after GCR. More selective drugs had a greater difference between their rank on a given target and NNT. Additionally, a two-tailed t-test was performed to examine how well a ligand bound to a target by comparing its binding energy predictions across all docking programs to that of the NNT’s, in which case a significant value was considered to be <=0.05. Statistically significant values meant that the ligand was more likely to bind to either the NNT or its intended target; one or the other. Non-significant P-values meant that the ligand was just as likely to bind to the NNT as the intended target, signifying the ligand was non-specific.

RESULTS

A total of 1,794 ligands were docked using AD4, VINA, and GLIDE to the targets AR, ER, GCR, IL-2, and TNF-α. For each crystal structure, only results from programs which docked known binders to within 2.0 Å of their crystallographic pose were computed, a cutoff known to reliably identify correctly docked ligands. Table I displays which docking programs were omitted for which crystal structures. AutoDock 4.2 and VINA were excluded from AR 2pnu, ER 4ivy, and ER 4iwf because their predicted poses for the known binders were above the 2.0 Å RMSD cutoff range. Similar to AD4 and VINA, GLIDE was excluded from AR 2amb and ER 4iwf due to exceeding the RMSD cutoff score. GLIDE failed to predict a pose for TNF-α 4twt’s known binder altogether. A graphical representation of Table I’s information is shown in Figure 1. The P-values between the top 10 compounds for each target and their NNT were calculated, and the majority of top compounds were not specific to their targets, as evidenced by their P-values >=0.05. Supplementary data contains a database with the full results.

For IL-2’s top ligands, sirolimus and rifapentine were marginally significant with values <0.10. The overwhelming majority of compounds for IL-2 had NNTs of TNF-α, and this trend continued for the top 20 compounds as well, with the exception of tavaborole (rank 11), whose NNT was GCR. TNF-α’s top ligands included two P-values of ‘NA’: sucralfate had no NNT since it failed to bind to any other target,
Within GCR’s top ligands, antrafenine, mifepristone, pimozide, and vilazodone were shown to be the most specific binders. The immune targets TNF-α and IL-2 were the most prevalent NNTs for the majority of GCR’s top 10 and top 20 ligands.

In regards to AR’s top ligands, dexibuprofen and feno-profen were the two significant binders with haloperidol as marginally significant. ER was the dominant NNT structure for the top 10 and top 20 ligands, with IL-2 as the next most common NNT.

Finally, ER’s top ligands contained a considerable number significant binders such as demeclocycline, paroxetine,
DISCUSSION AND CONCLUSIONS

Previous work\(^1\) has implicated immune and hormone dysregulation in GWI, and through drug repurposing, these same interactions may be leveraged towards drug treatment therapies. Here, a non-filtering strategy of consensus docking was utilized to ameliorate the problem of over filtration, where significant off-target interactions are too often neglected, leading to side effects during treatment. Consensus docking of FDA approved drugs using AD4, VINA, and GLIDE was performed on immune (TNF-\(\alpha\), IL-2) and stress-related (GCR) targets to find pharmaceuticals that specifically bound these targets, which would correct the altered homeostatic interplay between the immune and hormonal systems, the two exceptions to the rule. Mirabegron’s (rank 13) NNT was IL-2 and desmopressin’s (rank 15) NNT was TNF-\(\alpha\).

OR refers to the overall rank, SoR refers to the sum of ranks, and SD refers to the standard deviation.

TABLE III. Top 10 TNF-\(\alpha\) Results

OR	Ligand	SoR	Mean ± SD	NNT	NNT: mean ± SD	P-value
1	Sucralfate	1	−20.16 ± 0.00	NA	NA	NA
2	Suramin	19	−12.39 ± 2.49	IL-2: 3	−9.52 ± 1.36	0.45
3	Vancomycin	23	−12.20 ± 2.90	IL-2: 2	−8.93 ± 3.94	0.45
4	Lanreotide	35	−11.34 ± 2.04	ER: 460	−7.11 ± 1.92	0.23
5	Cyclosporine	35	−8.80 ± 0.00	GCR: 257	−3.79 ± 0.61	NA
6	Porfimer	42	−12.68 ± 4.08	IL-2: 150	−8.94 ± 2.89	0.52
7	Vapreotide	43	−11.17 ± 2.07	IL-2: 2	−11.54 ± 3.43	0.91
8	Dactinomycin	53	−11.42 ± 2.72	GCR: 1021	1778.87 ± 2117.24	0.12
9	Rifapentine	56	−10.56 ± 0.66	IL-2: 10	−7.07 ± 2.74	0.05
10	Desmopressin	62	−10.32 ± 1.12	ER: 15	−8.61 ± 0.71	0.34

TABLE IV. Top 10 GCR Results

OR	Ligand	SoR	Mean ± SD	NNT	NNT: mean ± SD	P-value
1	Curcumin	209	−8.10 ± 0.51	ER: 139	−7.08 ± 1.85	0.42
2	Antrafenine	220	−9.82 ± 1.12	IL-2: 49	−6.74 ± 2.10	0.02
3	Mifepristone	245	−9.49 ± 2.30	IL-2: 299	−5.55 ± 1.36	0.02
4	Indinavir	256	−10.38 ± 2.69	TNF-\(\alpha\): 58	−9.40 ± 1.60	0.65
5	Nebivolol	523	−9.83 ± 1.58	AR: 38	−9.55 ± 1.97	0.81
6	Darifenacin	586	−9.44 ± 1.49	TNF-\(\alpha\): 66	−8.82 ± 0.08	0.28
7	Norethindrone	646	−7.68 ± 0.17	ER: 427	−7.60 ± 1.03	0.89
8	Pimozide	656	−9.74 ± 0.92	TNF-\(\alpha\): 89	−8.51 ± 0.09	0.02
9	Bazedoxifene	686	−9.80 ± 1.41	TNF-\(\alpha\): 126	−8.47 ± 0.97	0.37
10	Vilazodone	713	−8.97 ± 1.13	IL-2: 38	−7.09 ± 1.44	0.04

OR refers to the overall rank, SoR refers to the sum of ranks, and SD refers to the standard deviation.

TABLE V. Top 10 AR Results

OR	Ligand	SoR	Mean ± SD	NNT	NNT: mean ± SD	P-value
1	Digoxin	24	−9.03 ± 1.65	TNF-\(\alpha\): 21	−10.54 ± 2.24	0.63
2	Brexpiprazole	26	−7.70 ± 3.80	ER: 14	−7.86 ± 2.46	0.95
3	Docetaxel	67	−8.25 ± 1.60	ER: 117	−7.58 ± 0.68	0.64
4	D exacerbate	73	−8.31 ± 0.92	IL-2: 374	−6.10 ± 0.98	0.01
5	Testosterone	81	−8.67 ± 1.93	ER: 22	−9.06 ± 0.70	0.73
6	Haloperidol	91	−8.37 ± 1.53	IL-2: 115	−6.27 ± 1.51	0.07
7	Estrone	110	−9.47 ± 0.31	ER: 19	−9.17 ± 0.70	0.52
8	Fenoprofen	116	−8.77 ± 0.38	IL-2: 424	−6.08 ± 1.11	0.00
9	Estradiol	174	−8.52 ± 1.19	ER: 16	−9.15 ± 0.55	0.39
10	Benzylpenicillin	207	−3.68 ± 6.61	IL-2: 726	−5.46 ± 0.92	0.62

OR refers to the overall rank, SoR refers to the sum of ranks, and SD refers to the standard deviation.

setiptiline, and ospemifene. Note that estradiol was included in Table VI due to its role as one of ER’s known binders. AR was the most common NNT, followed by GCR, for the top 10 and 20 ligands. However, within ER’s top 20 ligands, there were two exceptions to the rule. Mirabegron’s (rank 13) NNT was IL-2 and desmopressin’s (rank 15) NNT was TNF-\(\alpha\).
immune targets; in other words, pharmaceuticals with off-target interactions were avoided. Ensuring our protocol reflected results from in vitro experiments, only results from docking programs that re-docked their small molecule binder within 2.0 Å of its original pose were calculated. Furthermore, the NNT metric was developed to determine how specific each pharmaceutical was to their intended target, where larger discrepancies between a pharmaceuticals’ rank on its intended target and its NNT signaled greater specificity. The MADM bound equation was applied to all pharmaceuticals for every target, and any value beyond 3.5 standard deviations above/below the median binding energy was removed. The results were then ordered based on the SoR for all docking programs.

As this study is purely computational in nature, it does require further experimental validation. However, comparison against current literature does highlight some potential leads. Literature supports that the top 10 compounds identified to bind with IL-2 have the potential to directly bind to this target. Previous studies have shown that in vivo, suramin inhibits IL-2 binding to the IL-2 target in a concentration dependent manner. And although no literature currently exists demonstrating the binding affinity of antifungal agents to IL-2 directly, amphotericin-B, nystatin, and micafungin have shown to express immunomodulatory properties by stimulating the production of cytokines such as IL-1, IL-8, IL-10, and TNF-α. While sirolimus reduces T-cell and B-cell sensitivity to IL-2, the primary mode is through mTOR inhibition, and there were no known studies found examining whether sirolimus directly binds to IL-2. Likewise, there is currently no literature which investigates the in vitro binding of oritavancin, bacitracin, felypressin, and rifapentine to IL-2. That being said, rifamycins (eg. rifapentine, rifampicin, rifadin, etc.) have been shown to be immunosuppressive, although the mechanisms behind this behavior are unknown.

Similar to IL-2, current literature only shows one of TNF-α’s top hits as an experimental verified binder. Suramin inhibits the bioactivity of TNF-α by directly binding to TNF-α. Overall, all of TNF-α’s top compounds were found to be inhibitory. For instance, the antibiotics vancomycin and rifapentine also double as immunomodulators, which affect TNF-α pathways as well as signaling. Additionally, studies have shown that surcalfate, an anti-inflammatory agent, regulates the expression of TNF-α in rats, although the mechanism is not known at this time. Interestingly, Wafa et al. has shown that desmopressin decreased TNF-α plasma levels during experimental treatment of endotoxemia, implicating its anti-inflammatory properties. Finally, no studies were found that documents the direct binding effects of cyclosporine, lanreotide, vaporessin, dactinomycin, or porfimer to TNF-α, although immune modulation by these drugs has been found. Note that dactinomycin only bound to the TNF-α protein, which explains the low ranking of its NNT.

AR, ER, GCR, and the progesterone receptor (PR) are part of the nuclear receptor family, which among other things, have similar protein structures. While curcumin modulates GCR transcription, curcumin analogues can operate as 17α-substituted dihydrotestosterone, an AR antagonist. Likewise, mifepristone is both an PR and GCR antagonist, and nebivolol functions as an antagonist for nuclear receptors AR, ER, and PR, while norethindrone behaves as a synthetic progesterone. Bazedoxifene binds to ER, whose protein structure is similar to that of GCR and AR. No definitive information was available for antrafenine, indinavir, darifenacin, pimozide, or vilazodone regarding their ability to agonize/antagonize GCR.

Four out of the top 10 ligands for AR are experimentally shown to be direct binders. The top hit, digoxin, acts as an estrogen-like molecule under certain conditions, and can prohibit association of testosterone conjugates to membrane ARs. In addition to both being hormonal targets, the crystal structures used in this study for AR and ER are very similar, which may account for the binding of estrogens. That being said, experimental data have shown that estrone and estradiol are in fact binders of AR, albeit with lower affinity than androgens such as testosterone. Furthermore,

TABLE VI. Top 10 ER Results

OR	Ligand	SoR	Mean ± SD	NNT	NNT: mean ± SD	P-value
1	Demeclocycline	69	−9.59 ± 0.29	AR: 30	−6.87 ± 0.76	0.02
2	Paroxetine	73	−9.71 ± 0.38	AR: 54	−7.59 ± 0.70	0.00
3	Butoconazole	142	−8.68 ± 1.45	GCR: 130	−8.60 ± 0.67	0.93
4	Oxazepam	194	−8.62 ± 0.38	GCR: 471	−7.85 ± 0.62	0.36
5	Setiptiline	206	−9.41 ± 0.18	IL-2: 364	−5.65 ± 1.09	0.00
6	Pergolide	206	−8.56 ± 1.15	AR: 173	−7.72 ± 1.70	0.46
7	Mequitazine	210	−8.46 ± 1.40	TNF-α: 594	−7.03 ± 0.23	0.18
8	Equinol	217	−9.28 ± 0.46	AR: 23	−8.60 ± 0.89	0.23
9	Trazodone	227	−8.64 ± 1.06	GCR: 173	−8.49 ± 0.61	0.84
10	Ospemifene	239	−9.40 ± 0.76	GCR: 386	−8.05 ± 0.74	0.04
16	Estradiol	292	−9.15 ± 0.55	AR: 9	−8.52 ± 1.19	0.39

OR refers to the overall rank, SoR refers to the sum of ranks, and SD refers to the standard deviation.
fenoprofen and docetaxel both downregulate AR expression and signaling, and although no studies have shown that fenoprofen and dexibuprofen directly bind to AR, both of their pharmacological profiles are very similar to aspirin, which can inhibit androgen’s response to human chorionic gonadotropin. Lastly, no current literature supports brexpiprazole, haloperidol, or benzylpenicillin as AR agonists/antagonists.

For ER, four of the top 10 compounds were experimentally validated as direct binders. Paroxetine is an antidepressant that functions as an ER agonist, imidazoles (eg. butoconazole) have bound to ER in vitro, and selective ER modulators such as ospemifene that can mimic the effects of estrogens. Equinol was another top binder due to its origins as an estrogen related steroid, and the antidepressant setipiline has been found to interact with ER in varying degrees. No literature was found that suggests pergolide, demeclocycline, oxazepam, mequitazine, or trazodone affects ER directly.

In conclusion, GWI is thought to originate from exposure to battlefield neurotoxins and then further exacerbated by stress, requiring a treatment strategy that inhibits both immune and stress-related targets. However, pharmaceuticals on average bind to at least six different targets, which is why the focus on off-target interactions is a must to avoid adverse drug effects during treatment. The consensus docking method used here takes into account off-target effects of pharmaceuticals by utilizing the NNT metric, which measures a drug’s specificity to their intended target. This not only leads to the development of treatments with fewer side effects, but also understanding how each pharmaceutical interacts within the body may lead to a more effective drug therapy overall.

SUPPLEMENTARY MATERIAL

Supplementary material is available at MILMED online.

FUNDING

This research was funded by the United States Department of Defense Congressionally Directed Medical Research Program (CDMRP) awards (http://cdmr.army.mil/), grant number [W81XWH-15-1-0582] (Craddock/Broderick—PIs), grant number [W81XWH-16-1-0632] (Craddock—PI), and grant number [W81XWH-16-1-0552] (Morris—PI, Broderick/Klimas—Co-PIs).

REFERENCES

1. Amourette C, Lamproglou I, Barbier L, et al: Gulf war illness: effects of repeated stress and pyridostigmine treatment on blood–brain barrier permeability and cholinesterase activity in rat brain. Behav Brain Res 2009; 203: 207–14.

2. Barbier L, Diserbo M, Lamproglou I, Amourette C, Penequin A, Fauquette W: Repeated stress in combination with pyridostigmine: part II: changes in cerebral gene expression. Behav Brain Res 2009; 197: 292–300.

3. Lamproglou I, Barbier L, Diserbo M, Fauvelle F, Fauquette W, Amourette C: Repeated stress in combination with pyridostigmine: part I: long-term behavioural consequences. Behav Brain Res 2009; 197: 301–10.

4. Binns JH, et al: Gulf war illness and the health of gulf war veterans. Department of Veterans Affairs, Washington DC Research Advisory Committee on Gulf War Veterans 2008.

5. Kell DB, Dobson PD, Bilisland E, Oliver SG: The promiscuous binding of pharmaceutical drugs and their transporter-mediated uptake into cells: what we (need to) know and how we can do so. Drug Discov Today 2013; 18: 218–39.

6. Golier JA, Schneider J, Legge J, Yehuda R: Twenty-four hour plasma cortisol and adrenocorticotropic hormone in gulf war veterans: relationships to posttraumatic stress disorder and health symptoms. Biol Psychiatry 2007; 62: 1175–8.

7. Craddock TJ, Del Rosario RR, Rice M, et al: Achieving remission in Gulf war illness: a simulation-based approach to treatment design. PLoS One 2015; 10: e0132774.

8. Morris GM, Huey R, Lindstrom W, et al: AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 2009; 30: 2785–91.

9. Trott O, Olson AJ: AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multi threading. J Comput Chem 2010; 31: 455–61.

10. Schrödinger Suite 2015-4 Induced Fit Docking protocol; Glide version 6.9, Schrödinger, LLC, New York, NY, 2015; Prime version 4.2; Schrödinger, LLC, New York, NY, 2015.

11. Bupp MRG: Sex, the aging immune system, and chronic disease. Cell Immunol 2015; 294: 102–10.

12. Rose PW, Prič J, Altunkaya A, et al: The RCSB protein data bank: integrative view of protein, gene and 3D structural information. Nucleic Acids Res 2017; 45(D1): D271–81.

13. García-Sosa AT, Maran U: Improving the use of ranking in virtual screening against HIV-1 integrase with triangular numbers and including ligand profiling with antitargets. J Chem Inf Model 2014; 54: 3172–85.

14. Schrödinger release 2015-3: Schrödinger suite 2015-3 protein preparation wizard; Epik version 3.3, Schrödinger, LLC, New York, NY, 2015; Impact version 6.8, Schrödinger, LLC, New York, NY, 2015; Prime version 4.1, Schrödinger, LLC, New York, NY, 2015.

15. Shelley JC, Cholleti A, Frye LL, Greenwood JR, Timlin MR, Uchimaya M: Epik: a software program for pK a prediction and protonation state generation for drug-like molecules. J Comput Aided Mol Des 2007; 21: 681–91.

16. Knox C, Law V, Jewison T, et al: DrugBank 3.0: a comprehensive resource for ‘omics research on drugs. Nucleic Acids Res 2011; 39: D1035–41.

17. Law V, Knox C, Djomou Y, et al: DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res 2014; 42: D1091–7.

18. Wishart DS, Knox C, Guo AC, et al: DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res 2006; 34: D668–72.

19. Wishart DS, Knox C, Guo AC, et al: DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res 2008; 36: D901–6.

20. Schrödinger release 2015-3: LigPrep, version 3.5, Schrödinger, LLC, New York, NY, 2015.

21. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR: Open babel: an open chemical toolbox. J Cheminform 2011; 3: 33.

22. Case DA, Betz RM, Cerutti DS, et al AMBER. San Francisco, University of California, 2016.

23. Leys C, Ley C, Klein O, Bernard P, Licata L: Detecting outliers: do not use standard deviation around the mean, use absolute deviation around the median. J Exp Soc Psychol 2013; 49: 764–6.
Consensus Docking In Gulf-War Illness Treatment

24. Houston DR, Walkinshaw MD: Consensus docking: improving the reliability of docking in a virtual screening context. J Chem Inf Model 2013; 53: 384–90.

25. McGeary RP, Bennett AJ, Tran QB, Cosgrove KL, Ross BP: Suramin: clinical uses and structure-activity relationships. Mini-Rev Med Chem 2008; 8: 1384–94.

26. Mesa-Arango AC, Scorzoni L, Zaragoza O: It only takes one to do many jobs: amphotericin B as antifungal and immunomodulatory drug. Front Microbiol 2012; 3: 286.

27. Moretti S, Bozza S, Massi-Benedetti C, et al: An immunomodulatory activity of micafungin in preclinical aspergillosis. J Antimicrob Chemother 2014; 69: 1065–74.

28. Mukherjee S, Mukherjee U: A comprehensive review of immunosuppression used for liver transplantation. J Transplant 2009; 2009: 701464.

29. Aristoff PA, Garcia GA, Kirchhoff PD, Showalter HDH: Rifamycins—obstacles and opportunities. Tuberculosis 2010; 90: 94–118.

30. Shen Q, Chen J, Wang Q, Deng X, Liu Y, Lai L: Discovery of highly potent TNFα inhibitors using virtual screen. Eur J Med Chem 2014; 85: 119–26.

31. Abarbanel DN, Seki SM, Davies Y, et al: Immunomodulatory effect of vancomycin on Treg in pediatric inflammatory bowel disease and primary sclerosing cholangitis. J Clin Immunol 2013; 33: 397–406.

32. Junbo Z, Yongtao Y, Hongbo L, Fenshuang Z, Ruyun L, Chun’ai Y: Experimental study of sucralate intervention for paraquat poisoning in rats. Environ Toxicol Pharmacol 2017; 53: 57–63.

33. Wafa K, Lehmann C, Wagner L, Drzymulski I, Wegner A, Pavlovic D: Desmopressin improves intestinal functional capillary density and decreases leukocyte activation in experimental endotoxemia. Microvasc Res 2015; 97: 98–104.

34. Lu NZ, Wardell SE, Burnstein KL, et al: International Union of Pharmacology. LXV. The pharmacology and classification of the nuclear receptor superfamily: glucocorticoid, mineralocorticoid, progesterone, and androgen receptors. Pharmacol Rev 2006; 58: 782–97.

35. Aoyagi S, Archer TK: Differential glucocorticoid receptor-mediated transcription mechanisms. J Biol Chem 2011; 286: 4610–9.

36. Aggarwal BB: Prostate cancer and curcumin: add spice to your life. Cancer Biol Ther 2008; 7: 1436–40.

37. Im A, Appleman LJ: Mifepristone: pharmacology and clinical impact in reproductive medicine, endocrinology and oncology. Expert Opin Pharmacother 2010; 11: 481–8.

38. Fan F, Hu R, Munzli A, et al: Utilization of human nuclear receptors as an early counter screen for off-target activity: a case study with a compendium of 615 known drugs. Toxicol Sci 2015; 145(2): 283–95.

39. Martinkovich S, Shah D, Planey SL, Arnott IA: Selective estrogen receptor modulators: tissue specificity and clinical utility. Clin Interv Aging 2014; 9: 1437.

40. Shim JS, Liu JO: Recent advances in drug repositioning for the discovery of new anticancer drugs. Int J Biol Sci 2014; 10: 654–63.

41. Alevizopoulos K, Dimas K, Papadopoulou N, et al: Functional characterization and anti-cancer action of the clinical phase II cardiac Na+/K+ ATPase inhibitor istaroxime; in vitro and in vivo properties and cross talk with the membrane androgen receptor. Oncotarget 2016; 7: 24415.

42. Hickey TE, Robinson JLL, Carroll JS, Tilley WD: Mini-review: the androgen receptor in breast tissues: growth inhibitor, tumor suppressor, oncogene? Mol Endocrinol 2012; 26: 1252–67.

43. Kashewagi E, Shiota M, Yokomizo A, et al: Prostaglandin receptor EP3 mediates growth inhibitory effect of aspirin through androgen receptor and contributes to castration resistance in prostate cancer cells. Endocr Relat Cancer 2013; 20: 431–41.

44. Kuroda K, Liu H, Kim S, Guo M, Navarro V, Bander NH: Docetaxel down-regulates the expression of androgen receptor and prostate-specific antigen but not prostate-specific membrane antigen in prostate cancer cell lines: implications for PSA surrogacy. Prostate 2009; 69: 1579–85.

45. De la Cruz JP, Reyes JJ, Ruiz-Moreno MI, Lopez-Villodres JA, Jebrouni N, Gonzalez-Correa JA: Differences in the in vitro antiplatelet effect of dexibuprofen, ibuprofen, and flurbiprofen in human blood. Anesth Analg 2010; 111: 1341–6.

46. Kristensen DM, Mazaad-Guittot S, Gaudriault P, et al: Analgesic use—prevalence, biomonitoring and endocrine and reproductive effects. Nat Rev Endocrinol 2016; 12: 381.

47. Chen S, Zhou D, Hsin LY, et al: AroER tri-screen is a biologically relevant assay for endocrine disrupting chemicals modulating the activity of aromatase and/or the estrogen receptor. Toxicol Sci 2014; 139(1): 198–209.

48. Bey E, Marchais-Oberwinkler S, Kruchten P, et al: Design, synthesis and biological evaluation of bis (hydroxyphenyl) azoles as potent and selective non-steroidal inhibitors of 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1) for the treatment of estrogen-dependent diseases. Bioorg Med Chem 2008; 16: 6423–35.

49. Mohler ML, Narayanan R, Coss CC, et al: Estrogen receptor β selective nonsteroidal estrogens: seeking clinical indications. Expert Opin Ther Pat 2010; 20: 507–34.

50. Rutanen EM, Heikkinen J, Halonen K, Komi J, Lammintausta R, Ylikorkala O: Effects of esomepine, a novel SERM, on hormones, genital tract, climacteric symptoms, and quality of life in postmenopausal women: a double-blind, randomized trial. Menopause 2003; 10: 433–9.

51. Pop A, Lapu DI, Cherfan J, Kiss B, Loghin F: Estrogenic/antiestrogenic activity of selected selective serotonin reuptake inhibitors. Clujul Med 2015; 88: 381.