microRNA-29a functions as a tumor suppressor in nasopharyngeal carcinoma 5-8F cells through targeting VEGF

Qingyuan Shi 1, Jinhua Dai 2, Lizhen Huang 1*

1 Department of Otorhinolaryngology, HwaMei Hospital, University of Chinese Academy of Sciences (Ningbo No.2 Hospital), Ningbo, Zhejiang 315010, P.R.China
2 Department of Clinical Laboratory, HwaMei Hospital, University of Chinese Academy of Sciences (Ningbo No.2 Hospital), Ningbo, Zhejiang 315010, P.R.China

ABSTRACT

Objective(s): microRNA-29 (miR-29) family members have been reported as tumor suppressive genes in several human cancers. The purpose of this study was to investigate the function of miR-29a in nasopharyngeal carcinoma (NPC) cells.

Materials and Methods: Human NPC cell line 5-8F was transfected with mimic, inhibitor or scrambled controls specific for miR-29a. Subsequently, cell viability, migration, apoptosis and expression changes of VEGF were assessed by trypan blue staining, MTT assay, transwell assay, flow cytometry, Western blot and RT-qPCR. TargetScan online database was used to predict the targets of miR-29a, and luciferase reporter assay was carried out for testing the targeting relationship between VEGF and miR-29a. Western blot analysis was performed to determine the expression changes of core proteins in PI3K/AKT and JAK/STAT pathways.

Results: Overexpression of miR-29a suppressed 5-8F cells viability and relative migration, but increased apoptotic cell rate. Consistently, Bcl-2 was downregulated, Bax was upregulated, and caspase-3 and -9 were cleaved by miR-29a overexpression. VEGF was a target gene of miR-29a. Besides, VEGF silence exerted similar effects like miR-29a, as the viability and migration were repressed and apoptosis was induced. Finally, we found that PI3K/AKT and JAK/STAT pathways were deactivated by miR-29a or VEGF silence.

Conclusion: These findings highlighted the tumor suppressive effects of miR-29a on NPC cells, as its overexpression inhibited 5-8F cells viability, migration, and induced apoptosis. miR-29a exerted similar effects like miR-29a, as the viability and migration were repressed and apoptosis was induced. Finally, we found that PI3K/AKT and JAK/STAT pathways were deactivated by miR-29a or VEGF silence.

Introduction

Nasopharyngeal carcinoma (NPC) is a distinctive type of head and neck cancer with low-frequency incidence worldwide, but it is a high-risk cancer in Southeast Asia and Southern China, especially in Guangdong province (1, 2). The extract etiology of NPC remains unclear. EB virus infection, environmental influences and heredity have been recognized as main risk factors of NPC (3). The therapeutic approach of NPC in clinic includes surgery, chemotherapy and radiotherapy, which will achieve satisfactory outcomes (4). However, survival rates are declined with increasing tumor growth and distant metastases of NPC patients with advanced disease stage (5). Development of novel treating strategies focused on repressing NPC cells growth and metastasis is still required for improving the survival of NPC.

microRNAs (miRNAs) are small non-coding RNAs with length approximately 22 nt. miRNAs are able to participate in multiple physiological and pathological processes through regulating target genes post-transcriptionally (6). Nowadays, miRNAs’ function in tumor cells has been investigated extensively. According to their function, some of them have been identified as oncogenic miRNAs or tumor-suppressive miRNAs (7). Additionally, detection of miRNA expression profiling is showing promise in clinical diagnose and prognosis prediction of human cancers (8).

miR-29 family consists of miR-29a, miR-29b and miR-29c, which have been reported as key regulators in tumor cells proliferation, differentiation, apoptosis, migration and invasion (9). Aberrant expression of miR-29 has been found in many human cancers, including acute myeloid leukemia (10), gastric cancer (11), colorectal cancer (12) and osteosarcomas (13). Besides, it has been mentioned as a tumor suppressive gene in NPC, as its expression is gradually increased during the development of NPC (14, 15). Meanwhile, p53 signaling and expression of immunoinhibitory molecules can be significantly regulated by miR-29 (14, 15). Low plasma levels of miR-29a predicted a poor prognosis of NPC (16). A later functional experiment reported that miR-29a inhibited the proliferation and promoted apoptosis of NPC CNE-1 cells (17), showing tumor suppressive functions. Of contrast, another in vitro study proposed that miR-29a as a NPC promoting gene by enhancing tumor cells migration and invasion (18).

This study performed in human NPC 5-8F cells aimed to study the exact role of miR-29a in NPC cells growth...
and migration. A previous study has demonstrated that, miR-29a suppressed gastric cancer cells growth and invasion via targeting VEGF (19). Herein, we attempted to reveal whether miR-29a functioned to 5-BF cells also via regulating VEGF. Besides, PI3K/AKT and JAK/STAT pathways have now been extensively studied with investigations determining their role in carcinogenesis and the potential use of blocking these two signaling in cancer treatment (20, 21). Thus, in this study the effects of miR-29a and VEGF on the activation of PI3K/AKT and JAK/STAT pathways were studied for further explanation of the anti-tumor role of miR-29a. This study will be helpful for understanding miR-29a’s function.

Materials and Methods

Cell culture

Human NPC cell line (5-BF), a kind gift from Yixin Zeng (Cancer Center, Sun Yat-sen University, Guangzhou, China), was cultured in RPMI-1640 medium (HyClone, Logan City, Utah, USA) supplemented with 10% fetal bovine serum (FBS, HyClone). The cells were cultured at 37 °C in a humidified atmosphere of 5% CO₂.

Cell transfection

miR-29a mimic, miR-29a inhibitor and the corresponding scrambled controls, namely Scramble and NC, were synthesized by GenPharma (Shanghai, China). The full-length of VEGF was inserted into pcDNA3.1 plasmid (Invitrogen, Carlsbad, CA, USA) for construction of VEGF expression vector. VEGF shRNA plasmid was purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA). Empty pcDNA3.1 plasmid and the non-targeting shRNA were used as negative controls respectively. Transfection was performed when the cells in 6-well plates were reached 50% confluence by using Lipofectamine 3000 reagent (Invitrogen). After 48 hr of transfection, cells were collected and the transfection efficiency was tested by RT-qPCR and/or Western blot.

Trypan blue staining

The transfected cells were seeded in 24-well plates with a density of 1 × 10⁵ cells/well for 48 hr of incubation. The cells were trypsinized and stained by 0.4% trypan blue (Solarbio, Beijing, China) for 5 min, after which the viable cells were counted under a microscope (CX23, Olympus, Tokyo, Japan).

CCK-8 assay

Cell viability was also detected by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay. The transfected cells were seeded in 96-well plates with a density of 5 × 10⁴ cells/well. The cells were then incubated at 37 °C for 12-96 hr. MTT solution (Sigma-Aldrich) was added into each well. The plates were shaken in an ELISA reader (Bio-Rad, Hercules, CA, USA) as previously described (22). The samples were then determined by a flow cytometer (Beckman Coulter, USA).

Luciferase reporter assay

The predicted binding site in 3'UTR of VEGF was amplified by PCR and was inserted into pmiR-Report vector (Ambion, Austin, TX, USA) as previously described (22). The expression of VEGF was tested by using the Luciferase reporter assay system (Promega, Madison, WI, USA) as previously described (22).

Prediction of miR-29a-targeting genes

TargetScan online database (http://www.targetscan.org/vert_71/) was used to predict target genes for miR-29a.

Western blot

Total proteins in the transfected cells were isolated using the TRIZol reagent (Invitrogen). The expression of miR-29a was tested by using the Mir-XX™ miRNA First Strand cDNA Synthesis Kit and FastStart Universal SYBR Green Master (Roche, Basel, Switzerland). The expression of VEGF was tested by using the Transcriptor First Strand cDNA Synthesis Kit and FastStart SYBR Green Master (Roche, Basel, Switzerland). The expression of miR-29a was normalized to U6, and VEGF was normalized to GAPDH. Data were analyzed according to the classic 2−ΔΔCt method. The primer sequences were listed as follows.

- **miR-29a:** forward 5'-GGGTTAGGACACCATCTGAAAT-3'; reverse 5'-CAGTGCCGTCTGTCGAGT-3';
- **U6:** forward 5'-CTCGCTTCGGCAGCACA-3'; reverse 5'-AACGCTTCACGAATTTGCGT-3';
- **VEGF:** forward 5'-GAAGGTGAAGGTCGGAGTC-3'; reverse 5'-CAACATCACCATGCAGATTATGC-3';
- **GAPDH:** forward 5'-AAACCATCACCATGCAGATTATGC-3'; reverse 5'-CCCACAGGGATTTTCTTGTCTT-3';
- **miR-29a mimic:** forward 5'-GGGTAGCACCATCTGAAAT-3'; reverse 5'-CCCACAGGGATTTTCTTGTCTT-3';
- **miR-29a inhibitor:** forward 5'-GAAGGTGAAGGTCGGAGTC-3'; reverse 5'-GAAGATGGTGATGGGATTTC-3';
- **Scramble:** forward 5'-GAAGGTGAAGGTCGGAGTC-3'; reverse 5'-GAAGATGGTGATGGGATTTC-3';
- **NC:** forward 5'-GAAGGTGAAGGTCGGAGTC-3'; reverse 5'-GAAGATGGTGATGGGATTTC-3';
- **miR-29a plasmid:** forward 5'-GGGTAGCACCATCTGAAAT-3'; reverse 5'-CCCACAGGGATTTTCTTGTCTT-3';
- **VEGF plasmid:** forward 5'-GGGTAGCACCATCTGAAAT-3'; reverse 5'-CCCACAGGGATTTTCTTGTCTT-3';
- **VEGF shRNA plasmid:** forward 5'-GAAGGTGAAGGTCGGAGTC-3'; reverse 5'-GAAGATGGTGATGGGATTTC-3';
- **Scramble shRNA plasmid:** forward 5'-GAAGGTGAAGGTCGGAGTC-3'; reverse 5'-GAAGATGGTGATGGGATTTC-3';
- **NC shRNA plasmid:** forward 5'-GAAGGTGAAGGTCGGAGTC-3'; reverse 5'-GAAGATGGTGATGGGATTTC-3';
by 1% Triton X-100 and 1 mM PMSF (pH 7.4) over ice for 30 min. The protein concentration of the whole-cell extract was tested by BCA™ Protein Assay Kit (Pierce, Appleton, WI, USA). Proteins were separated by SDS-PAGE and transferred onto polyvinylidene fluoride (PVDF) membrane. The membranes were blocked in 5% nonfat dry milk for 1 hr at room temperature, followed by incubation with primary antibodies at 4 °C overnight. Antibodies specific for Bcl-2 (ab692), Bax (ab32503), pro-caspase-3 (ab32499), cleaved-caspase-3 (ab2302), pro-caspase-9 (ab2013), cleaved-caspase-9 (ab2324), VEGF (ab52917), P13K (ab66714), p-P13K (ab182651), AKT (ab8805), p-AKT (ab38449), JAK1 (ab47435), p-JAK1 (ab215330), STAT1 (ab3987), p-STAT1 (ab30645), STAT3 (ab119352), p-STAT3 (ab76315), and GAPDH (ab181602) were all purchased from Abcam (Cambridge, MA, USA). The membranes were then incubated with the secondary antibodies for 1 hr at room temperature. The protein bands were developed by chemiluminescence and autoradiography, and the intensity of the bands was quantified using Image Lab™ Software (Bio-Rad Laboratories, Hercules, CA, USA).

Statistical analysis

Data was presented as mean±SD from three repeated experiments. Statistical difference between groups was tested by ANOVA in SPSS 19.0 software (SPSS Inc., Chicago, IL, USA). Statistical difference was identified as P-value of <0.05.

Results

miR-29a was overexpressed or suppressed after transfection

The expression levels of miR-29a in 5-8F cells were altered by transfection. RT-qPCR data in Figure 1 showed that the expression level of miR-29a was significantly increased in miR-29a mimic transfected cells as compared to Scramble control (P<0.001). Meanwhile, miR-29a expression was significantly decreased in miR-29a inhibitor transfected cells when compared to NC transfected cells (P<0.01). These data suggested that miR-29a was successfully overexpressed or suppressed in 5-8F cells by transfection.

Increased miR-29a level inhibited viability and migration, but induced apoptosis of 5-8F cells

The changes in cell viability, migration and apoptosis were tested respectively post-transfection to evaluate the functions of miR-29a in 5-8F cells. Figure 2 showed that cell viability and migration were both significantly reduced in miR-29a mimic group, and increased in miR-29a inhibitor group, as compared with their corresponding controls (all P<0.05). Figure 2D showed that apoptotic cell rate was increased in miR-29a mimic group when compared to Scramble group (P<0.01). However, no significant changes in apoptotic cell rate between miR-29a inhibitor group and NC group were observed (P>0.05), since the rate in NC group is already very low. Consistently, Western blot results in Figure 2E-2F displayed that Bcl-2 was downregulated (P<0.05), Bax was upregulated (P<0.05) and caspase-3 and -9 were remarkably cleaved (P<0.001) in miR-29a mimic group. Meanwhile, Bcl-2 was upregulated (P<0.05), Bax was downregulated (P<0.05) and caspase-3 and -9 were unchanged (P>0.05) in miR-29a inhibitor group.

VEGF was a target gene of miR-29a

Previous studies have mentioned VEGF as a downstream effector of miR-29a in inhibition of gastric cancer (19) and osteoarthritis (23). Present work studied the regulatory relationship between miR-29a and VEGF.
in 5-8F cells to see whether miR-29a contributed to NPC cells growth and migration also via regulating VEGF. By performing RT-qPCR and Western blotting, we found that both the mRNA and protein levels of VEGF were low expressed in miR-29a mimic group, while were highly expressed in miR-29a inhibitor group, as compared to their corresponding controls (Figure 3A-3B). These data indicated that VEGF expression was negatively regulated by miR-29a. Next, we studied whether VEGF was a downstream target for miR-29a. TargetScan online database predicted that VEGF could directly bind with miR-29a (Figure 3C). This prediction was further confirmed by luciferase reporter assay, suggesting VEGF was a target gene of miR-29a (Figure 3D).

Decreased VEGF level inhibited viability and migration, but induced apoptosis of 5-8F cells

Next, the functions of VEGF in 5-8F cells were tested by detection of cell viability, migration and apoptosis after transfection of pc-VEGF, sh-VEGF or corresponding controls. Transfection efficiency was verified by RT-qPCR and Western blotting. Figure 4A and 4B showed that VEGF overexpressing- and VEGF silencing-cells were successfully obtained. More importantly, transfection of cells with pc-VEGF significantly increased cell viability and migration (both \(P<0.05 \), Figure 4C-4E), while have no impacts on apoptotic cell rate (\(P>0.05 \), Figure 4F). Of contrast, transfection of cells with sh-VEGF significantly decreased viability (\(P<0.01 \)) and migration (\(P<0.05 \)), but increased apoptotic cell rate (\(P<0.01 \). Western blotting results indicated that Bcl-2 was up-regulated (\(P<0.01 \)), Bax was down-regulated (\(P>0.05 \)) and caspase-3 and -9 were unchanged (\(P>0.05 \)) in pc-VEGF transfected cells (Figure 4G-4H). Meanwhile, Bcl-2 was down-regulated (\(P<0.05 \)), Bax was up-regulated (\(P<0.01 \)) and caspase-3 and -9 were cleaved (\(P<0.001 \)) in sh-VEGF transfected cells. Collectively, VEGF silence shows miR-29a-like effects on 5-8F cells.

Increased miR-29a level and decreased VEGF level deactivated PI3K/AKT and JAK/STAT pathways

Finally, the expression changes of core kinases in PI3K/AKT and JAK/STAT pathways were measured to decode whether miR-29a and VEGF impacted 5-8F cells though these two signaling. Figure 5A-5D displayed that, the phosphorylation levels of PI3K, AKT, JAK1, STAT1, and STAT3 were all remarkably decreased by miR-29a mimic (\(P<0.01 \)), while were increased by miR-29a inhibitor (\(P<0.01 \)). Opposite trend was observed in Figure 5E-5H, that the phosphorylation levels of these proteins were increased by pc-VEGF (\(P<0.001 \)), while were decreased by sh-VEGF (\(P<0.05 \) or \(P<0.01 \)). The total levels of these proteins were unchanged either by miR-29a dysregulation or by VEGF dysregulation.

Discussion

Although the management of NPC has been largely improved in recent decades, the 5-years survival rate remains poor, due to the high recurrence and distant metastasis (24). Therefore, it is imperative to fully
carcinoma (29), lung cancer (30), glioma (31), and reported in other cancer types, like hepatocellular tumor suppressive role of miR-29a has been widely promoted apoptosis of CNE-1 cells (17). Actually, the 29a overexpression inhibited the proliferation, but this was confirmed by a later study, in which miR-29a mediated p53 signaling and immuneinhibition (14, 15).

The analysis has proposed that miR-29a might function as a tumor suppressive gene in the stepwise development of NPC (28), due to miR-29a could significantly mediate p53 signaling and immuneinhibition (14, 15). This was confirmed by a later study, in which miR-29a overexpression inhibited the proliferation, but promoted apoptosis of CNE-1 cells (17). Actually, the tumor suppressive role of miR-29a has been widely reported in other cancer types, like hepatocellular carcinoma (29), lung cancer (30), glioma (31), and papillary thyroid carcinoma (32). However, another in vitro study suggested miR-29a as an oncogenic miRNA in NPC, as miR-29a overexpression increased S18 cells migration and invasion (18). Present work performed in NPC 5-8F cell line demonstrated that miR-29a overexpression repressed the viability and migration of tumor cells, while induced apoptosis, suggesting the tumor suppressive role of miR-29a in NPC. This contradiction might be caused by different cell types used in study.

An increasing number of literatures have demonstrated that miR-29a exerted its functions via regulating several relevant effectors in cancer, including CAV2 (33), STAT3 (17), SIRT1 (29), and NRAS (30). VEGF, a promoter of tumorigenesis, has also been mentioned as one of such downstream effectors of miR-29a (23). miR-29a lowered VEGF production and thus suppressed gastric cancer cells growth and invasion (19). Similar results were observed in this study, that miR-29a overexpression led to a down-regulation of VEGF. Luciferase reporter assay results revealed that VEGF was a target gene of miR-29a. Additionally, VEGF silence showed miR-29a-like effects on 5-8F cells, as the viability and migration were decreased, and apoptosis was induced by VEGF silence. Together, these findings suggested that miR-29a exerted anti-migratory and pro-apoptotic effects on 5-8F cells possibly via targeting VEGF.

PI3K/AKT and JAK/STAT signaling pathways play significant roles in regulating tumor cells proliferation, apoptosis, and migration (34, 35). Previous studies have showed a close relationship between miR-29a and STAT. For example, in melanoma cells, miR-29a could be up-regulated by IFN-γ in STAT1-dependent signaling (36). Moreover, in NPC CNE-1 cells, miR-29a overexpression inhibited STAT3 expression, indicating STAT3 was negatively regulated by miR-29a (17). Also, miR-29 expression has been linked with the activation of PI3K/AKT pathways (32, 37). The present work demonstrated that miR-29a overexpression remarkably repressed PI3K/AKT and JAK/STAT signaling pathways. VEGF exhibited opposite results in there two signaling, showing promoting effects on the activation of PI3K/AKT and JAK/STAT pathways. Our findings suggested the tumor suppressive effect of miR-29a and the tumor promoting effect of VEGF on NPC cells might be via modulating these two signaling.

Conclusion
Taken together, the findings of this study highlighted the tumor suppressive effects of miR-29a on NPC cells, as its overexpression inhibited 5-8F cells viability, migration, and induced apoptosis. miR-29a exerted tumor suppressive functions might be via targeting VEGF and deactivating PI3K/AKT and JAK/STAT pathways.

Acknowledgement
This work was supported by Zhejiang Medical and Health Science and Technology Project (No. 2015KYA199).

Conflict of interest
Authors declare that there is no conflict of interests.
Enhances cell migration and invasion in nasopharyngeal carcinoma cell line CNE-1. Targeted regulation of STAT3 by miR-29a in mediating taxol resistance of nasopharyngeal carcinoma cell line CNE-1.

14. Park SY, Lee JH, Ha M, Nam JW, Kim VN. MiR-29 miRNAs exhibit anti-growth and anti-invasion activities in human nasopharyngeal carcinoma by targeting CXCL12. Am J Transl Res 2018; 10:3586-3598.

15. Xu H, Cheung IY, Guo HF, Cheung NK. MicroRNA miR-29 family in patients with primary osteosarcomas. J Exp Ther Med 2018; 15:4179-4184.

16. Wang HY, Yan LX, Shao Q, Fu S, Zhang ZC, Ye W, et al. Profiling plasma microRNA in nasopharyngeal carcinoma with deep sequencing. Clin Chem 2014; 60:773-782.

17. Gao J, Shao Z, Yan M, Fu T, Zhang L, Yan Y. Targetedregulation of STAT3 by miR-29a in mediating taxol resistance of nasopharyngeal carcinoma cell line CNE-1. Cancer Biomark 2018; 22:6441-648.

18. Qiu F, Sun R, Deng N, Guo T, Cao Y, Yu Y, et al. MiR-29a/b enhances cell migration and invasion in nasopharyngeal carcinoma progression by regulating SPARC and COL3A1 gene expression. PLoS One 2015; 10:1-22.

19. Chen L, Xiao H, Wang ZH, Huang Y, Liu ZP, Ren H, et al. MiR-29a suppresses growth and invasion of gastric cancer cells in vitro by targeting VEGF-A. BMB reports 2014; 47:39-44.

20. Chen J. Roles of the PI3K/Akt pathway in Epstein-Barr virus-induced cancers and therapeutic implications. World J Virol 2012; 1:154-161.

21. Pencik J, Pham HT, Schmoeller J, Javaheri T, Schlederer M, Culig Z, et al. JAK-STAT signaling in cancer: From cytokines to non-coding genome. Cytokine 2016; 87:26-36.

22. Shen H, Yao Z, Zhao W, Zhang Y, Yao C, Tong C. miR-21 enhances the protective effect of loperamide on rat cardiomyocytes against hypoxia/reoxygenation, reactive oxygen species production and apoptosis via regulating Akap8 and Bard1 expression. Exp Ther Med 2019; 17:1312-1320.

23. Ko JY, Lee MS, Lian WS, Weng WT, Sun YC, Chen YS, et al. MicroRNA-29a counteracts synovitis in knee osteoarthritis pathogenesis by targeting VEGF. Sci Rep 2017; 7:3584-3598.

24. Meng H, Zhu X, Li L, Liang Z, Li X, Pan X, et al. Identification of CALM as the potential serum biomarker for predicting the recurrence of nasopharyngeal carcinoma using a mass spectrometry-based comparative proteomic approach. Int J Mol Med 2017; 40:1152-1164.

25. Deng B, Su F, Xie R, Tang W. MiR-371-5p suppresses the proliferative and migratory capacity of human nasopharyngeal carcinoma by targeting BCL2. Onclet Lett 2018; 15:9209-9215.

26. Jiang N, Jiang X, Chen Z, Song X, Wu L, Zong D, et al. MiR-203a-3p suppresses cell proliferation and metastasis through inhibiting LASP1 in nasopharyngeal carcinoma. J Exp Clin Cancer Res 2017; 36:139.

27. Qu R, Sun Y, Li Y, Hu C, Shi G, Tang Y, et al. MicroRNA-130a-3p suppresses cell viability, proliferation and invasion in nasopharyngeal carcinoma by inhibiting CXL2. Am J Transl Res 2017; 9:3586-3598.

28. Luo Z, Zhang L, Li Z, Li X, Li G, Yu H, et al. An in silico analysis of dynamic changes in microRNA expression profiles in stepwise development of nasopharyngeal carcinoma. BMC Genomics 2012; 13:5-15.

29. Zhang Y, Yang L, Wang S, Liu Z, Xiu M. MiR-29a suppresses cell proliferation by targeting SIRT1 in hepatocellular carcinoma. Cancer Biomark 2018; 15:151-159.

30. Liu X, Lv X, Yang Q, Jin H, Zhou W, Fan Q. MicroRNA-29a functions as a tumor suppressor and increases cisplatin sensitivity by targeting NRAS in lung cancer. Technol Cancer Res Treat 2018; 17:1-8.

31. Shi C, Ren L, Sun C, Yu L, Bian X, Zhou X, et al. MiR-29a/b/c function as invasion suppressors for gliomas by targeting CDC42 and predict the prognosis of patients. Br J Cancer 2017; 117:1036-1047.

32. Li R, Liu J, Li Q, Chen G, Yu X. MiR-29a reduces growth and metastasis in papillary thyroid carcinoma by targeting AKT3. Tumour Biol 2016; 37:3987-3996.

33. Liang C, Shi S, Meng Q, Liang D, Hua J, Qin Y, et al. MiR-29a, targeting caveolin 2 expression, is responsible for limitation of pancreatic cancer metastasis in patients with normal level of serum CA125. Int J Cancer 2018; 143:2919-2931.

34. Wang SC, Chai DS, Chen CB, Wang ZY, Wang L. HPIP promotes thyroid cancer cell growth, migration and EMT through activating PI3K/AKT signaling pathway. Biomed Pharmacother 2015; 75:33-39.

35. Slattery ML, Lundgreen A, Kadlubar SA, Bondurant KL, Wolff RK. JAK/STAT/SOCS-signaling pathway and colon and rectal cancer. Mol Carcinog 2013; 52:155-166.

36. Schmitt MJ, Philippidou D, Reinsbach SE, Margue C, Culig Z, et al. JAK-STAT/SOCS-signaling pathway and colon and rectal cancer. Mol Carcinog 2013; 52:155-166.

37. Chen DD, Feng LC, Ye R, He YQ, Wang YD. MiR-29b reduces cisplatin resistance of gastric cancer cell by targeting PI3K/Akt Pathway. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 2015; 37:514-519.