APPLICATION OF SCHUR-WEYL DUALITY TO SPRINGER THEORY

ZHIJIE DONG AND HAITAO MA

Abstract. In [FMX19], it is proved that the convolution algebra of top Borel-Moore homology on Steinberg variety of type B/C realizes $U(sl^n_\theta)$, where sl^n_θ is the fixed point subalgebra of involution on sl_n. So top Borel-Moore homology of the partial Springer’s fibers gives the representations of $U(sl^n_\theta)$. In this paper, we study these representations using the Schur-Weyl duality and Springer theory.

1. Introduction

In [G91], V. Ginzburg observed that one can realize a irreducible representation of $U(sl_n)$ using the top Borel-Moore homology of partial springer fibers of type A. A. Braverman and D. Gaitsgory gave another interpretation of the action using the Schur-Weyl duality between $U(sl_n)$ and Weyl group S_d and Springer theory [BG99].

Let g be a Lie algebra and $\theta : g \to g$ be an involution on g. Let g^θ be the fixed point subalgebra of g. In [SS99], M. Sakamoto and T. Shoji gave the Schur-Weyl duality of Ariki-Koike algebras which includes sl^n_θ as a special case. In [BKLW14], the authors considered the convolution algebra on double flag varieties associated to the algebraic group $O_{2r+1}(\mathbb{F}_q)$ ($Sp_{2r}(\mathbb{F}_q)$), which is q-Schur type algebra. The geometric realizations of the corresponding \imath-quantum group (quantization of $U(g^\theta)$) are hence obtained. They also gave the Schur-Weyl duality between the \imath-quantum group and Hecke algebra of type B/C. In [FMX19], it was proved that the convolution algebra of the top Borel-Moore homology on Steinberg variety of type B/C realizes $U(sl^n_\theta)$, so the Borel-Moore homology of partial Springer’s fibers give a representation of $U(sl^n_\theta)$.

This paper is devoted to study the representation of $U(sl^n_\theta)$ given by the Borel-Moore homology of partial Springer’s fibers of type C. The type B case can be given similarly so we omit it. More precisely, let $a \in O_A$ be the nilpotent orbit corresponding to a Young diagram A of type C. We prove in theorem 4.3 that top homology of partial Springer fibers over a can be naturally identified with a representation of $U(sl^n_\theta)$, which is determined by Schur-Weyl duality and Springer correspondence.

This paper is organized as follows. In section 2 and section 3, we recall the Schur-Weyl duality of Ariki-Koike algebras and the Springer theory. In section 4, we give the proof of the main result of this paper and an example to explain it.

2. Schur-Weyl duality

Let $g = gl_{m_1} \oplus gl_{m_2}$ be a Levi subalgebra of gl_m with $m = m_1 + m_2$. Let W_d be the complex reflection group $S_d \ltimes (\mathbb{Z}/2\mathbb{Z})^d$. The group W_d is generated by s_1, s_2, \cdots, s_d.
where \(s_2, \ldots, s_d \) are the generators of \(S_d \) corresponding to transpositions \((1, 2), \ldots, (n-1, n)\), and \(s_1 \) satisfies the relation \(s_1^2 = 1 \), \((s_2 s_1)^2 = (s_2 s_1 s_2 s_1)^2 \), \(s_1 s_i = s_i s_1 \) for \(i \geq 3 \). Let \(V = \mathbb{C}^n \) be the natural representation of \(U(gl_n) \). We can define a left \(U(g) \) action and right \(W_d \) action on \(V^\otimes d \) as follows. The action of \(U(g) \) on \(V^\otimes d \) is obtained by the restriction of \(U(gl_n) \). Let \(\varepsilon = \{ v_1^1, \ldots, v_{m_1}^1, v_1^2, \ldots, v_{m_2}^2 \} \) be the natural basis of \(V \). Define a function \(b : \varepsilon \rightarrow \mathbb{N} \) by \(b(v_i^j) = i \). The group \(S_d \) acts on \(V^\otimes n \) by permuting the components of the tensor product, while \(s_1 \) acts on \(V^\otimes n \) by

\[
s_1(x_1 \otimes \cdots \otimes x_n) = (-1)^{b(x_1)}x_1 \otimes \cdots \otimes x_n,
\]

where \(x_i \in \varepsilon \). Then Schur-Weyl duality holds between the left \(U(g) \) action and the right \(W_d \) action on \(V^\otimes d \).

Since \(U(g) = U(gl_{m_1}) \otimes U(gl_{m_2}) \), irreducible representations of \(U(g) \) are parameterized by 2-tuples \(\lambda = (\lambda^1, \lambda^2) \) of Young diagrams \(\lambda^i \) with \(l(\lambda^i) \leq m_i \), where \(l(\lambda^i) \) is the number of rows of \(\lambda^i \). Let \(\Lambda_{m_1, m_2} \) be the set of 2-tuple \(\lambda \) of Young diagrams such that \(l(\lambda^i) \leq m_i \), \(|\lambda^1| + |\lambda^2| = d \), where \(|\lambda^i| \) is the number of boxes in \(\lambda^i \). Let \(V_{\lambda} \) be the irreducible \(U(g) \)-module corresponding to \(\lambda \). We recall that the irreducible representation of \(W_d \) are in one to one correspondence to the ordered pairs of Young diagrams \((\mu, \nu)\) where \(\mu = (\mu_i), \mu_1 \geq \mu_2 \geq \cdots \geq \mu_r \) is a partition of \(d_1 \) and \(\nu = (\nu_j), \nu_1 \geq \nu_2 \geq \cdots \geq \nu_s \) is a partition of \(d_2 \) such that \(d_1 + d_2 = d \). Let \(Z(\mu, \nu) \) be the irreducible \(W_d \)-module corresponding to \((\mu, \nu)\).

Proposition 2.1. [SS99] The \(U(g) \otimes W_d \)-module \(V^\otimes d \) decomposes as

\[
V^\otimes d = \bigoplus_{\lambda \in \Lambda_{m_1, m_2}} Z_{\lambda} \otimes V_{\lambda}.
\]

3. Springer theory

Let \(N = 2n+1, D = 2d, N > D \). Let \(V \) be \(\mathbb{C}^{2d} \) with a nondegenerate skew-symmetric bilinear form \((,\), and \(G = Sp(V) \). Let

\[
Q_{N,D} = \{ d = (d_i) \in \mathbb{N}^N \mid d_i = d_{N+1-i}, \sum_{i=1}^{N} d_i = D \}.
\]

For any \(U \subseteq V \), let \(U^\perp = \{ x \in V \mid (x, y) = 0, \forall y \in U \} \). For any \(d \in Q_{N,D} \), we set partial flag

\[
F_d = \{ F = (0 = V_0 \subset V_1 \subset \cdots \subset V_N = V) \mid V_i = V_{N-i}^\perp, \dim(V_i/V_{i-1}) = d_i, \forall i \}.
\]

Denote

\[
C = \{ F = (0 = V_0 \subset V_1 \subset \cdots \subset V_D = V) \mid V_i = V_{N-i}^\perp, \dim(V_i/V_{i-1}) = 1, \forall i \}
\]

for convenience. Let \(F = \sqcup_{d \in Q_{N,D}} F_d \).

The nilpotent cone of \(g = sp_D \), denote by \(N \), consists of all nilpotent element in \(g \). Let \(N_{N,D} = \{ a \in g \mid a^n = 0 \} \), and \(\tilde{N}_{N,D} = T^*F \) (resp. \(\tilde{N} = T^*C \)) be the cotangent bundle of \(F \) (resp. \(C \)). More precisely, \(\tilde{N}_{N,D} \) can be identified with the set of all pairs \(
\{(F, x) \in F \times g \mid x(F_i) \subseteq F_{i-1}, \forall i \},
\)
and \(\tilde{N} \) can be identified with the set of all pairs
\[
\{(F, x) \in C \times g \mid x(F_i) \subseteq F_{i-1}, \forall i\}.
\]

For \(d \in Q_{N,D} \), denote by \(\tilde{N}_{N,D}^{d} \) the \(d \)'s component of \(\tilde{N}_{N,D} \). Let \(\pi_{N,D}^{\tilde{N},D} : \tilde{N}_{N,D} \to g, (F, x) \mapsto x \) be projection map. Let \(\mu : \tilde{N} \to N, (F, x) \mapsto x \) be the springer resolution of \(N \). Let \(\tilde{g} \) be the Grothendieck simultaneous resolution
\[
\{(F, x) \in C \times \mathfrak{sp}_{2d} \mid x(F_i) \subseteq F_{i-1}, \forall i\}.
\]

Let \(\mu_{\tilde{g}} : \tilde{g} \to \mathfrak{sp}_{2d}, (F, x) \mapsto x \) be projection map. Let \(g_{rs} \) be regular semisimple part of \(g \). We have the following cartesian diagram
\[
\begin{array}{ccc}
\tilde{g}_{rs} & \longrightarrow & \tilde{g} \\
\mu_{rs} & \downarrow & \mu \\
g_{rs} & \longrightarrow & g
\end{array}
\]
The springer sheaf for \(G \), denoted by \(\text{Spr} \), is the perverse sheaf
\[
\text{Spr} = \mu_\ast \underline{C}_{\tilde{N}}[\text{dim} \tilde{N}].
\]
Then there is an isomorphism
\[
\mathbb{C}[W] \simeq \text{End(\text{Spr})},
\]
where \(W = W_d \).

For any \(x_0 \in g_{rs} \), there is a surjective map \(\pi_1(g_{rs}, x_0) \to W \). Let
\[
L_{rs} : \mathbb{C}[W] \to \text{Loc}(g_{rs}, \mathbb{C})
\]
be the map that assigns \(V \) to the local system corresponding to it. For any \(\mathbb{C}[W] \)-module \(\rho \), let \(S_\rho \) be IC sheaf \(\text{IC}(g_{rs}, L_{rs}(\rho)) \) on \(g \). Let us choose a \(G \)-equivariant isomorphism between vector spaces \(g \) and \(g^* \), then one can regard the Fourier-Laumon transform as a functor
\[
\text{Four}_\tilde{g} : D^b_{\mathbb{C}^* \times G}(g, \mathbb{C}) \to D^b_{\mathbb{C}^* \times G}(g, \mathbb{C}).
\]

Abuse of notation, for any irreducible \(W \)-representation \(\rho = (\lambda, \mu) \), let \(\nu = (\nu_i) \) be the sequence defined by \(\nu_{2i-1} = \mu_i (1 \leq i \leq s), \nu_{2i} = \lambda_i (1 \leq i \leq r), \) and \(\nu_j = 0 \) otherwise. Define Young diagram \(A_\rho = (a_i) \) of type C by the following equalities,
(i) if \(\nu_i \geq \nu_{i+1} \), then \(a_i = 2\nu_i \),
(ii) if \(\nu_i = \nu_{i+1} - 1 \), then \(a_i = 2\nu_i + 1, a_{i+1} = 2\nu_i + 1 \),
(iii) if \(\nu_i \leq \nu_{i+1} - 2 \), then \(a_i = 2\nu_{i+1} - 2, a_{i+1} = 2\nu_i + 2 \). By [S79, Theorem 3.3], the springer correspondence can be given by the following map
\[
\rho = (\lambda, \mu) \mapsto (A_\rho, \phi_\rho),
\]
where \(\phi_\rho \) denote the local system on the nilpotent orbit correspondence to \(\rho \) defined explicitly in [S79].

Remark 3.1. Note that in section 2, we already have a correspondence between bipartitions of \(n \) and irreducible representations of \(W \). This two correspondences are equal up to duality of Young diagrams.
We have the following well-known theorem.

Theorem 3.2. Let \(h : \mathcal{N} \hookrightarrow \mathfrak{g} \) be the inclusion map. For any irreducible representation \(\rho \) of \(\mathbb{C}[W] \), we have the following isomorphism of the perverse sheaves

\[\text{Four}_{\mathfrak{g}}(S_\rho) \cong IC_{A_\rho, \phi_{\rho}}. \]

4. Main results

We define a perverse sheaf \(\mathcal{L} \) such that for any \(d \in \mathbb{Q}_{N,D} \)

\[\mathcal{L}_d = \mathcal{L}|_{\tilde{\mathcal{N}}_{N,D}} = \mathbb{C}[\dim(\tilde{\mathcal{N}}_{N,D})]. \]

Let \(\tilde{\mathfrak{g}}_{N,D} \) be the variety of all pairs \(\{(F, x) \in \mathcal{F} \times \mathfrak{g} \mid x(F_i) \subseteq F_i, \forall i\} \).

Define \(p : \tilde{\mathfrak{g}}_{N,D} \to \mathfrak{g}, (F, x) \mapsto x \). Let \(\tilde{\mathfrak{g}}_{N,D}^d \) be the \(d \)'s component of \(\tilde{\mathfrak{g}}_{N,D} \). We have \(\dim \tilde{\mathfrak{g}}_{N,D}^d = \dim(\mathfrak{g}) \).

Define \(K = \mathbb{C}[\tilde{\mathfrak{g}}_{N,D}^d[\dim(\mathfrak{g})]] \).

Lemma 4.1. There is a canonical isomorphism

\[\text{Four}_{\mathfrak{g}}(\pi^{N,D}(\mathcal{L})) \cong p_*\mathcal{K}. \]

Proof. Observe \(\tilde{\mathcal{N}}_{N,D} \) and \(\tilde{\mathfrak{g}} \) are the subbundles of the trivial bundle \(\mathcal{F} \times \mathfrak{sp}_{2d} \). Under the \(G \)-equivariant \(\mathfrak{sp}_{2d} \cong \mathfrak{sp}_{2d} \). We have

\[\tilde{\mathcal{N}}_{N,D} = \mathfrak{sp}_{2d}^\perp. \]

The lemma follows from the [Ac, Corollary 6.8.11]. \(\square \)

Let \(E \) be \(\mathbb{C}^N \). Recall that \(E^{\otimes d} \) is a \(W \)-module, and \(S_{E^{\otimes d}} = IC(\mathfrak{g}_{rs}, L_{rs}(E^{\otimes d})) \).

Proposition 4.2. [Ac, Proposition 2.7.10] Let \(X \) and \(Y \) be connected, locally path-connected, and semilocally simply connected topological spaces, and let \(f : (X, x_0) \to (Y, y_0) \) be a covering map. For \(\mathfrak{g} \in \text{Loc}(X, \mathbb{k}) \), there is a natural isomorphism

\[\text{Mon}_{y_0}(f^*\mathfrak{g}) \cong \mathbb{k}[\pi_1(Y, y_0)] \otimes_{\mathbb{k}[\pi_1(X, x_0)]} \text{Mon}_{x_0}(\mathfrak{g}). \]

Lemma 4.3. There is a canonical isomorphism

\[p_*\mathcal{K} \cong S_{E^{\otimes d}}. \]

Proof. Since the map \(p \) is small, \(p_*\mathcal{K} \) is equal to the intersection cohomology extension of its restriction local system on \(\mathfrak{g}_{rs} \). We only need to prove

\[p_*\mathcal{K}|_{\mathfrak{g}_{rs}} \cong S_{E^{\otimes d}}|_{\mathfrak{g}_{rs}}. \]

Denote \(p_{rs} = p|_{p^{-1}(\mathfrak{g}_{rs})} \). For any \(d = (d_i) \in \mathbb{Q}_{N,D} \), let \(W_d \) be the group \(S_{d_1} \times S_{d_2} \times \cdots \times S_{d_n} \times (\mathbb{Z}/2\mathbb{Z})^{d_{n+1}} \). The map \(p_{rs} \) is a covering map with Galois group \(W/W_d \). Denote by \(\mathbb{C}[X] \) be \(\mathbb{C} \)-vector space generated by the set \(X \). By proposition [4.2] \(p_*\mathcal{K}|_{\mathfrak{g}_{rs}} \) is a local system corresponding to a natural \(W \)-module on \(\mathbb{C}[W/W_d] \). More precisely,
fix $t \in \mathfrak{g}_{rs}$. There exist a basis $\{e_1, e_2, \ldots, e_D\}$ such that \mathfrak{g}_{rs} is the diagonal matrix corresponding to this basis. Denote $X_d = p^{-1}(t) \cap \mathbb{G}_{N,D}^d$. Define a set
\[
\Theta_d = \{ A = (a_{ij}) \in \text{Mat}_{N \times D}(\mathbb{N}) | \sum_{i,j} a_{ij} = 2d, a_{ij} = a_{N+1-i,N+1-j}; \sum_i a_{ij} = 1, \sum_j a_{ij} = d_i \}.
\]
For any $A \in \Theta_d$, we can construct an element
\[
0 \subset V_1 \subset V_2 \subset \cdots \subset V
\]
in X_d, where $V_i = \sum_{j \in [1,N], a_{ij} = 1} \mathbb{C}e_j$. Then we have X_d and Θ_d are in bijection. The set Θ_d has a W-action defined as follows. For any $\sigma \in W$,
\[
\sigma((V_i)) = (\sigma(V_i)),
\]
where $\sigma(V_i) = \sum_{j \in [1,N], a_{ij} = 1} \mathbb{C}e_{\sigma(j)}$. Then $\mathbb{C}[X_d]$ is a W-module, and $\mathbb{C}[\Theta_d]$ is also a W-module induced by the bijection between the two sets. Let
\[
F = 0 \subset U_1 \subset U_2 \subset \cdots \subset V \subset X_d,
\]
where $U_i = \sum_{j=1}^{d_i} \mathbb{C}e_j$. Define
\[
\varphi : \mathbb{C}[W/W_d] \to \mathbb{C}[X_d], w \mapsto w(F).
\]
We can check φ is a W-module isomorphism.

Next consider $p^{-1}(t) = \bigcup_{d \in \mathbb{Q}_{N,D}} X_d$ which consists of all components. It is in bijection to the union of Θ_d which is denoted by
\[
\Theta = \{ A = (a_{ij}) \in \text{Mat}_{N \times N}(\mathbb{D}) | \sum_{i,j} a_{ij} = 2d, a_{ij} = a_{N+1-i,N+1-j}; \sum_i a_{ij} = 1, \sum_j a_{ij} = d \}.
\]
For any $A \in \Theta$, every column have only one non-zero number 1, and the first d columns can decide the last d columns. So the number of the element in $P^{-1}(t)$ is N^d. The dimension of the $E^\otimes d$ is also N^d. Define
\[
\chi : \mathbb{C}[\Theta] \to E^\otimes d, A = (a_{ij}) \mapsto f_{i_1} \otimes f_{i_2} \otimes \cdots \otimes f_{i_d},
\]
where i_k is the number such that $a_{i_k,i_k} = 1, \{f_1, \ldots, f_N\}$ is the natural basis of E. It is easy to see χ is injective and W-equivariant. So χ is an isomorphism as W-module since $\text{dim} \mathbb{C}[\Theta] = \text{dim} E^\otimes d = N^d$. Recall $p_*(\mathcal{K})|_{\mathfrak{g}_{rs}} = L_{rs}(\mathbb{C}[\Theta]|_{\mathfrak{g}_{rs}})$ and $S_{E^\otimes d}|_t = L_{rs}(E^\otimes d)$. Then we have
\[
p_*(\mathcal{K})|_{\mathfrak{g}_{rs}} \simeq S_{E^\otimes d}|_{\mathfrak{g}_{rs}}.
\]
The lemma follows. \hfill \Box

Let A be the Young diagram of type C, and \mathcal{O}_A be the nilpotent orbit corresponding to A. Let $\mathcal{N}_{N,D}^d$ be image of $\pi_{N,D}$ on d's component. For $a \in \mathcal{O}_A$, we don’t know the dimension of $(\pi_{N,D})^{-1}(a) \cap \mathcal{F}_d$. By definition of semismall map, the dimension is lower than $\text{codim}_{\mathcal{N}_{N,D}^d}(\mathcal{O}_A)$. So we call $\text{codim}_{\mathcal{N}_{N,D}^d}(\mathcal{O}_A)$-dimensional homology the top homology. We have
\[
H_{\text{top}}((\pi_{N,D})^{-1}(a)) = \bigoplus_{d \in \mathbb{Q}_{N,D}} H_{\text{codim}_{\mathcal{N}_{N,D}^d}(\mathcal{O}_A)}((\pi_{N,D})^{-1}(a) \cap \mathcal{F}_d),
\]
where H_* is the Borel-Moore homology.
For \(\rho = (\lambda, \mu) \), denote \(\check{\rho} = (\check{\lambda}, \check{\mu}) \), where \(\bullet \) is the dual of Young diagram \(\bullet \). The following theorem is the main theorem of this paper.

Theorem 4.4. For any Young diagram \(A \) of type \(C \), \(a \in \mathcal{O}_A \), then the space \(H_{\text{top}}((\pi^{N,D})^{-1}(a)) \) can be naturally identified with the space of the representation \(\bigoplus_{\rho \in \text{Irr}(W)} A_{\rho} \) \(\check{V}_\rho \), where the summation is over irreducible representations \(\rho \) such that \(A_{\rho} = A \).

Proof. Let \(\pi_{d}^{N,D} \) be the restriction of \(\pi^{N,D} \) on \(d \)'s component. Since \(\pi^{N,D}|_d \) is a small \([BM83]\), so the pushforward of a perverse sheaf is also a perverse sheaf. By the decomposition theorem, there is a canonical isomorphism

\[
\pi_{d,*}^{N,D} (L_d) \simeq \bigoplus_{(B,t)} IC_{B,t} \otimes W(B,t)_d,
\]

where \(t \) is the local system on \(O_B \). By proper base change, \((\pi_{d,*}^{N,D} L_d)_a \simeq R\Gamma(\pi_{d}^{N,D}(a), \mathcal{L})[\text{dim}\mathcal{N}_{N,D}^d] \).

We obtain

\[
H^i(\pi_{d}^{N,D}(a), \mathcal{L}) \cong \bigoplus_{(B,t)} H^{i-\text{dim}\mathcal{N}_{N,D}^d}(IC_{B,t}|_{O_A})_a \otimes W(B,t)_d.
\]

Let \(i = \text{codim}_{\mathcal{N}_{N,D}} (O_A) \). Then

\[
H^{\text{codim}_{\mathcal{N}_{N,D}} (O_A)}(\pi_{d}^{N,D}(a), \mathcal{L}) \cong \bigoplus_{(B,t)} H^{-\text{dim}\mathcal{O}_A}(IC_{B,t}|_{O_A})_a \otimes W(B,t)_d.
\]

By the property of IC, we have

\[
H^{-\text{dim}\mathcal{O}_A}(IC_{B,t})_a = \begin{cases} C & \text{if } A = B; \\ 0 & \text{otherwise.} \end{cases}
\]

By the definition of the Borel-Moore homology,

\[
H^{\text{codim}_{\mathcal{N}_{N,D}} (O_A)}(\pi_{d}^{N,D}(a), \mathcal{L}) \cong H^{\text{codim}_{\mathcal{N}_{N,D}} (O_A)}(\pi_{d}^{N,D}(a), \mathcal{L}) \cong H^{\text{codim}_{\mathcal{N}_{N,D}} (O_A)}(\pi_{d}^{N,D}(a), \mathcal{L}) \cong \bigoplus_{\mathcal{L}} W(A, t)_d.
\]

Then

\[
H^{\text{codim}_{\mathcal{N}_{N,D}} (O_A)}((\pi_{d}^{N,D})^{-1}(a) \cap \mathcal{F}_d) \cong \bigoplus_{\mathcal{L}} W(A, t)_d.
\]

So

\[
H_{\text{top}}((\pi_{d}^{N,D})^{-1}(a) \cap \mathcal{F}_d) \cong \bigoplus_{\mathcal{L}} W(A, t)_d.
\]

Combine all components together, we have

\[
\pi_{d,*}^{N,D} (L_d) \simeq \bigoplus_{(B,t)} IC_{B,t} \otimes W(B,t)_d.
\]

So

\[
W(B,t) = \bigoplus_{d \in \mathcal{Q}_{N,D}} W(B,t)_d,
\]

and

\[
H_{\text{top}}((\pi_{d}^{N,D})^{-1}(a)) \cong \bigoplus_{\mathcal{L}} W(A, t)_d.
\]
Since Four_g is an involution, we have the following canonical isomorphism
\[\pi_*^{N,D}(\mathcal{L}) \simeq \text{Four}_g(S_{E^d}). \]
By the proposition 2.1, we have
\[S_{E^d} = \bigoplus_{\rho \in \text{Irr}(W)} S_{\rho} \otimes V_{\rho}. \]
Then
\[\bigoplus_{(A, \iota)} IC(A, \iota) \otimes W(A, \iota) \simeq \pi_*^{N,D}(\mathcal{L}) \simeq \bigoplus_{\rho \in \text{Irr}(W)} \text{Four}_g(S_{\rho}) \otimes V_{\rho} = \bigoplus_{\rho \in \text{Irr}(W)} IC_{A, \phi_{\rho}} \otimes V_{\rho}. \]
So we have
\[W(A, \iota) = \begin{cases} V_{\rho} & \text{if } (A, \iota) = (A_{\rho}, \phi_{\rho}); \\ 0 & \text{otherwise}. \end{cases} \]
The theorem follows. \hfill \Box

Theorem 4.5. The action of $sl_{n+1} \oplus gl_n$ on V_{ρ} via Schur-Weyl duality coincides with the action by convolution.

Proof. Denote Z the Steinberg variety $\widetilde{N}_{N,D} \times g \widetilde{N}_{N,D}$. We define an action of $H(Z)$ on the sheaf $\mathcal{F} = p_* (\bigoplus_{\rho \in \text{Irr}(W)} \mathcal{S}_{\rho})$ geometrically. This means that for any open set $U \subset \mathfrak{g}$, define an action of $H(Z)$ on $\mathcal{F}(U) = H(\pi^{-1}(U))$. This is done by convolution. In the paper [FMX19], it is proved that there is a map $U(sl_{N}^g) \rightarrow H(Z)$, hence we have sl_{N}^g acting on the sheaf \mathcal{F}, which we denoted by G. We next define another action of sl_{N}^g acting on the sheaf \mathcal{F}. Recall in lemma 4.3 since the map p is small, the sheaf \mathcal{F} is the IC sheaf associated with the local system E^d. Using the isomorphism between sl_{N}^g and $sl_{n+1} \oplus gl_n$, we have the natural action of sl_{N}^g on E^d. By IC continuation principle, this action, denoted by A, extends to the sheaf \mathcal{F}, and to show the action A coincides with the action G, we only need to show they coincide on the regular semisimple part \mathfrak{g}_{rs}. For a regular semisimple element $x \in \mathfrak{g}_{rs}$, the fiber $p^{-1}(x)$ is analysed in lemma 4.3 and by result in [BKLW14] Section 6, letting $q=1$ yields our claim that A coincides with G. Now we decompose the sheaf $\mathcal{F} = \bigoplus_{\rho \in \text{Irr}(W)} \mathcal{S}_{\rho} \otimes V_{\rho}$. Algebraically, the space V_{ρ} gets the action of sl_{N}^g by Schur-Weyl duality and it is the action of sl_{N}^g on E^d restricted on the subspace V_{ρ}. Geometrically, the space V_{ρ} is identified with the top degree cohomology of the stalk at $x \in \mathcal{N}$ and by definition of the action G, it is given by convolution. Since we proved that A coincides with G, the action of sl_{N}^g on V_{ρ} via Schur-Weyl duality coincides with the action by convolution. \hfill \Box

Remark 4.6. The action of sl_{N}^g on E^d defined in [BKLW14] Section 6 looks slightly different from the action of $sl_{n+1} \oplus gl_n$ in [SS99] after identifying sl_{N}^g and $sl_{n+1} \oplus gl_n$, but they are the same after a change of basis.

Example 4.7. Consider the case $n = 2, d = 2$. Let $\theta : sl_5 \rightarrow sl_5$ be the involution defined by $\theta(e_i) = f_{5-i}, \theta(f_i) = e_{5-i}$. As we know, sl_5^g is generated by
\[E_1 = e_1 + f_4, E_2 = e_2 + f_3, F_1 = f_1 + e_4, F_2 = f_2 + e_3, H_1 = h_1 - h_4, H_2 = h_2 - h_3. \]
Let V be the 5-dimensional \mathbb{C}-vector space with basis $\{e_1, \cdots, e_5\}$. The Schur-Weyl duality between \mathfrak{sl}_5 and $\mathbb{C}[S_2 \ltimes \mathbb{Z}_2^2]$ is given as follows. The action of $\mathbb{C}[S_2 \ltimes \mathbb{Z}_2^2]$ on $V^\otimes 2$ is given by

$$s_1(e_i \otimes e_j) = e_j \otimes e_i, [1]_1(e_i \otimes e_j) = e_i \otimes e_{6-j},$$

where s_1 is the generator of S_2, $[1]_1 = ([1], 0)$ in \mathbb{Z}_2^2. There are four 1-dimensional modules and one 2-dimensional simple module. The Young diagram of type C consists of four cases $(1, 1, 1, 1), (2, 1, 1), (2, 2), (4)$. By the Springer correspondence of type C, we have:

$\text{Irr}(W)$	\dim	(λ, μ)	Young diagram
Sign	1	$((1,1), 0)$	$(1,1,1,1)$
Ssign	1	$(0, (1,1))$	$(2,1,1)$
Lsign	1	$(2,0)$	$(2,2)$
regular	2	$(1,1)$	$(2,2)$
triv	1	$(0,2)$	(4)

The partition of type C in this case is

$$Q_{5,4} = \{d_1 = (1, 1, 0, 1, 1), d_2 = (0, 1, 2, 1, 0), d_3 = (1, 0, 2, 0, 1),$$

$$d_4 = (0, 2, 0, 2, 0), d_5 = (2, 0, 0, 2, 0), d_6 = (0, 0, 4, 0, 0)\}.$$

For any $x \in \mathcal{O}_A$, by direct computation, the following table gives the fiber of x in different component.

	d_1	d_2	d_3	d_4	d_5	d_6	
(4)	pt	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset	
$(2,2)$	$\mathbb{P}_1 \cup \mathbb{P}_1 \cup \mathbb{P}_1$	$pt_1 \cup pt_2$	$pt_1 \cup pt_2$	pt	pt	\emptyset	
$(2,1,1)$	X	pt	pt	$\mathbb{P}_1	\mathbb{P}_1$	\emptyset	\emptyset
$(1,1,1,1)$	\mathcal{F}_{d_1}	\mathcal{F}_{d_2}	\mathcal{F}_{d_3}	\mathcal{F}_{d_4}	\mathcal{F}_{d_5}	pt	

where X is an irreducible variety of dimension 2.

If $x \in \mathcal{O}_{(2,1,1)}$, the following table gives dimension of top homology in different component.

	d_1	d_2	d_3	d_4	d_5	d_6	
$(2,1,1)$	X	pt	$\mathbb{P}_1	\mathbb{P}_1$	\emptyset	\emptyset	\emptyset

In the d_i's component, where $i = 2, 3$. Since $\text{codim}_{\mathcal{N}_{5,4}}(\mathcal{O}_x) = \frac{6-4}{2} = 1$, we have $H_{\text{top}}(\pi_{d_i}^{-1}(x)) = H_1(pt) = 0$. So we have $\dim H_{\text{top}}(\pi^{-1}(x)) = 3$. In the other cases, the top dimension we defined is really the top dimension of the fiber.

References

[Ac] P. Achar. Perverse sheaves and application to representation theory, to appear.
[BG99] A. Braverman, D. Gaitsgory. On Ginzburg’s Lagrangian construction of representations of GL_n. Math. Res. Lett. 6, (1999), no. 2, 195-201.
[BKLW14] H. Bao, J. Kujawa, Y. Li and W. Wang. Geometric Schur duality of classical type, Transform. Groups, 23, (2018), 329–389.
APPLICATION OF SCHUR-WEYL DUALITY TO SPRINGER THEORY

[BM83] W. Borho, R. Macpherson, *Partial resolution of nilpotent varieties*, Astérisque, 101-102, (1983), 23-74

[FMX19] Z. Fan, H. Ma, and H. Xiao. Equivariant K-theory approach to r-quantum groups. *Publications Of The Research Institute For Mathematical Sciences*, [arXiv:1911.00851](https://arxiv.org/abs/1911.00851), to appear.

[G91] V. Ginzburg, *Langrangian construction of the enveloping algebra U(sl_n)*, C. R. Acad. Sci. Paris Sér. I Math. 312, (1991), no. 12, 907-912.

[H78] S. Helgason. *Differential geometry, Lie groups, and symmetric spaces*. Pure and Applied Mathematics, 80, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, (1978).

[OV90] A.L. Onishchik and È.B. Vinberg. *Lie groups and algebraic groups*. Translated from the Russian and with a preface by D. A. Leites. Springer Series in Soviet Mathematics. Springer-Verlag, Berlin, 1990.

[S79] T. Shoji. *On the springer representations of the weyl groups of classical algebraic groups*, Communications in Algebra, 7:16, (1979), 1713-1745.

[SS99] M. Sakamoto and T. Shoji. *Schur-Weyl Reciprocity for Ariki-Koike Algebras*, Journal of Algebra 221, (1999),293–314.

(H.Ma)College of mathematics science, Harbin Engineering University, Harbin, 150001, China.

(Z.Dong)Harbin Institute of Technology, Harbin, 150001, China.

Email address: dongmouren@gmail.com(Z. Dong), hhamath@hrbeu.edu.cn(H. Ma)