Genomic Sequence of the Yeast *Kluyveromyces marxianus* CCT 7735 (UFV-3), a Highly Lactose-Fermenting Yeast Isolated from the Brazilian Dairy Industry

Wendel B. Silveira,a Raphael H. S. Diniz,a M. Esperanza Cerdán,b María I. González-Siso,b Robson de A Souza,a Pedro M. P. Vidigal,c Otávio J. B. Brustolini,a Emille R. B. de Almeida Prata,a Alexandre C. Medeiros,a Lilian C. Paiva,a Mozés Nascimento,a Éder G. Ferreira,a Valdilene C. dos Santos,a Caio R. S. Bragança,a Tatiana A. R. Fernandes,a Lívia T. Colombo,a Flávia M. L. Passos,a

Departamento de Microbiologia,a Núcleo de Análise de Biomoléculas (NuBioMol),a and Departamento de Estatística,c Instituto de Biotecnologia Aplicada à Agropecuária (IBIOAGRO), Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil; Grupo EXPRELA, Departamento de Biologia Celular e Molecular, Universidade de Coruña, Campus da Zapateira, A Coruña, Spainb; Instituto de Ciência, Engenharia e Tecnologia (ICET), Universidade Federal do Vale do Jequitinhonha e Mucuri (UFVJM), Brazilc

Here, we present the draft genome sequence of *Kluyveromyces marxianus* CCT 7735 (UFV-3), including the eight chromosomes and the mitochondrial genomic sequences.

Received 24 September 2014 Accepted 28 September 2014 Published 6 November 2014

Citation Silveira WB, Diniz RHS, Cerdán ME, González-Siso MI, Souza RDA, Vidigal PM, Brustolini OJB, de Almeida Prata ER, Medeiros AC, Paiva LC, Nascimento M, Ferreira ÉG, dos Santos VC, Bragança CR, Fernandes TAR, Colombo LT, Passos FML. 2014. Genomic sequence of the yeast *Kluyveromyces marxianus* CCT 7735 (UFV-3), a highly lactose-fermenting yeast isolated from the Brazilian dairy industry. Genome Announc. 2:6.e01136-14. doi 10.1128/genomeA.01136-14

Copyright © 2014 Silveira et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 Unported license.

Address correspondence to Flávia M. L. Passos, fpassos@ufv.br.

Here, we present the draft genome sequence of *Kluyveromyces marxianus* CCT 7735 (UFV-3), including the eight chromosomes and the mitochondrial genomic sequences. *Kluyveromyces marxianus* strains show both high metabolic diversity and a substantial degree of polymorphisms. This is likely to be explained by the different habitats from which it has been recovered (from plant sources and natural fermentations to ecological niches associated with warm-blooded animals, including dairy products). *K. marxianus* CCT 7735 (UFV-3), isolated from the regional Brazilian dairy industry, was selected from among other yeast isolates due to its high endopolygalacturonase activity. At a low growth rate, this enzyme is strongly secreted (our unpublished data).

*K. marxianus* UFV-3, the sequences of *K. marxianus* DMKU3-1042 proteins, and some (~3%) were similar to *K. lactis* NRRL Y-1140. The complete genomic sequences of the *K. marxianus* CCT 7735 (UFV-3) chromosomes and mitochondrial genome have been deposited in GenBank under the accession numbers CP009303 and CP009311.

ACKNOWLEDGMENTS The Brazilian agencies CAPES, CNPq, and FAPEMIG supported this work. General support to the Grupo EXPRELA during 2012 to 2014 was funded by Xunta de Galicia (contract no. 2012/118) and by FEDER.
We thank the Department of Information Technology (Federal University of Viçosa) for supporting the data analysis on the computational cluster.

REFERENCES

1. Silveira WB, Passos FJV, Mantovani HC, Passos FML. 2005. Ethanol production from cheese whey permeate by Kluyveromyces marxianus UFV-3: a flux analysis of oxido-reductive metabolism as a function of lactose concentration and oxygen levels. Enzyme Microb. Technol. 36:930–936. http://dx.doi.org/10.1016/j.enzmictec.2005.01.018.

2. Diniz RHS, Silveira WB, Fietto LG, Passos FML. 2012. The high fermentative metabolism of Kluyveromyces marxianus UFV-3 relies on the increased expression of key lactose metabolic enzymes. Antonie Van Leeuwenhoek 101:541–550. http://dx.doi.org/10.1007/s10482-011-9668-9.

3. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Subgroup GPDP. 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078–2079. http://dx.doi.org/10.1093/bioinformatics/btp352.

4. Stanke M, Schöffmann O, Morgenstern B, Waack S. 2006. Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external sources. BMC Bioinformatics 7:62. http://dx.doi.org/10.1186/1471-2105-7-62.

5. Stanke M, Waack S. 2003. Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics 19(Suppl 2):ii215–ii225. http://dx.doi.org/10.1093/bioinformatics/btg1080.

6. Finn RD, Clements J, Eddy SR. 2011. HMMER Web server: interactive sequence similarity searching. Nucleic Acids Res. 39:W29–W37. http://dx.doi.org/10.1093/nar/gkr367.