Synergistic Effect of Co-utilization of Coal and Biomass Char: An Overview

M E S Paiman¹, N S Hamzah¹, S S Idris¹, N A Rahman¹ and K Ismail²
¹Faculty of Chemical Engineering, Block 5, Tower 2, Sultan Aziz Mu’adzam Shah Engineering Complex, University Technology of MARA (UiTM), Shah Alam, Selangor, Malaysia
²Faculty of Applied Sciences, University Technology of MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia
Email: shawal075@salam.uitm.edu.my

Abstract: Global concerns on impact of greenhouse gases emission, mostly released from coal-fired power plant, and the depletion of fossil fuel particularly coal, has led the production of electricity from alternatives resources such as co-utilization technologies. Previous studies proved that the co-utilization of coal and biomass/biomass chars has significantly reduced the emission of greenhouse gases either during the pyrolysis, combustion or gasification process in laboratories, pilots as well as in the industrial scales. Interestingly, most of the studies reported the presence of synergistic effect during the co-utilization processes particularly between coal and biomass char while some are not. Biomass chars were found to have porous and highly disorder carbon structure and belong to the class of most reactive carbon material, resulting to be more reactive than those hard coal and lignite. Up to date, microwave assisted pyrolysis is one of the best and latest techniques employed to produce better quality of biomass chars and it is also reduce the processing cost. Lot of works has been done regarding on the existence of synergistic effects during its co-utilization. However, the knowledge is limited to thermal and product characteristics so far. Even so, the specific reasons behind its existence are yet to understand well. Therefore, in this paper, the emphasis will be given on the synergistic effects on emission characteristics of co-utilization of coal and biomass chars so that it can be apply in energy-based industries to help in reduction of the greenhouse gases emission.

Keywords: Coal, Biomass chars, Synergistic effects, Microwave assisted pyrolysis.

1. Introduction
Energy demand increases over the year especially in developed and developing countries. Between 1971 and 2014, world total primary energy supply (TPES) was multiplied by almost 2.5 times. In which, oil remained the dominant fuel in 2014; nonetheless fell from 44% to 31%. Meanwhile, coal natural gas and nuclear was increased from 26–29%, 16–21%, and 1–5%, respectively. As for Asia, coal remains by far the main energy source, supplying more than half (54%) of its main energy demand compared to 29% globally in 2014 followed by oil (21%), biofuels (13%), and natural gas (8%). According to the International Energy Agency (IEA) 2016, the significant utilisation of coal in Asia is partly explained by the use of coal in power generation where in 2014, coal represented 67% of the electricity mix versus 41% globally [1].

Coal is black or dark brown solid type of fossil fuel. It is combustible, sedimentary, organic rock, which is composed mainly of carbon (C), hydrogen (H), oxygen (O), and volatile matters. As stated above, it was a dominant fuel in global power generation where it full power generation cost are below...
than oil, gas or renewables [2]. In comparison to other type of fossil fuels, coal has more than 100 years reserves globally based on 2015 production [3]. This is the main reason for coal being widely used as dominant fuel in power generation plants. However, coal is the dirtiest among fossil fuels since it emitting excessive greenhouse gases such as SOx, NOx and CO2 during its utilization for power generation. Increasing concerns on the adverse effect of the emissions arising from coal conversion technologies on the environmental and gradually depletion of the fossil fuel reserves had led to global initiatives on using renewable and other opportunity resources to meet the future energy demands in a sustainable manner. Biomass has been reported to be the most promising alternative resources that is renewable which promoted the significant reduction of greenhouse gases emission during its co-utilization with coal as well as potentially to the replacement of fossil fuels.

2. Co-utilization of coal and biomass
Co-utilization is a promising thermochemical conversion way to utilize the abundant biomass residues and wastes into cleaner energy products for reducing the consumption of the fossil fuel particularly coal. The most highlighted one is the impact on the emission of greenhouse gases i.e. SOx, NOx, CO2, volatile organic compound (VOC) and poly-aromatic hydrocarbon (PAH) which largely released from their formation during incomplete combustion. As compared to coal, there was proved that co-firing or gasification of coal and biomass results in a reduction in the emission of the latter. It is believe that the competitive char burnout contributed in the reduction of NOx, while the reduction of SO2 can be explained by sulphur fixation in the ash due to the increase in potassium and calcium from biomass. Also, biomass contains virtually has no sulphur, therefore, SO2 emissions are reduced in direct proportion to the coal replacement [4,5]. Co-firing may also reduce fuel costs, minimize waste and reduce soil and water pollution, depending upon chemical composition of the biomass used [6].

2.1. Environmental impact of co-utilization of coal and biomass
According to Tillman, 2000 [7], almost all demonstrations of co-firing shown a significant reduction on emission of SOx, NOx and CO2. In his study, he found that the NOx reduction is typically disproportionate to the co-firing percentage on a heat-input basis, and result from the fuel volatility. In addition, co-firing also provides for significant reduction in fossil CO2 emission. Demirbas, 2003 [6] stated that the benefits of co-firing include the reduction in CO2 emission from the combustion of fossil fuels, the reduction of SO2 formation through a reduction in fuel. To reduce greenhouse gas emission, the pressure is on conventional coal fired utilities to burn renewable fuels such a waste product or energy crop-derived biomass fuels, as a lowest cost option for reducing greenhouse emission. The impacts of co-firing of coal with biomass residues could substantially contribute to reduction in CO2 emission from the power generation sector. Co-firing has a larger potential contribution to CO2 reduction than the most other options for the power sector. In addition, Dayton, 2002 [8] stated biomass usually has lower sulphur content than coal. Therefore, the co-firing results in a reduction of SOx emission because of a displacement of sulphur in the fuel blend. Similar reduction also observed for NOx emission because the nitrogen content of the co-fired fuel generally lower than the nitrogen content of coal. Based on the previous studies, similar findings reported the positive reduction of greenhouse gases emission done by co-utilization of coal and biomass [9–11] as well as the most effective ways in reduction of the excessive biomass wastes i.e. oil palm biomass and municipal waste in Malaysia.

The co-utilization of coal and biomass is an interesting way to solve the environmental problems particularly on greenhouse gases emission. As a consequence from this field of study, a number of studies has been carried out to understand the combustion characteristics and its behaviour during co-utilization processes under thermogravimetric analyser (TGA). Most interestingly, there are few number of studies has been reported the existence of synergistic effect in the co-utilization of coal and biomass [12–20] while others are not [21–27].

3. Synergistic effect of co-utilization of coal and biomass char
The studies on co-utilization of biomass char and coal are relatively new field all over the world. Co-utilization of biomass char in existing coal-fired power plants may result to environmental, technical, and economical benefits. Combustion reactivity assessment by thermogravimetric analysis (TGA) technique has been reported in literature for either coal [28–30] or biomass fuels [31–33], but there
exist a few comparison studies [34,35] and even less concerning about coal-biomass char blends [36,37].

According to Kastanaki & Vamvuka 2006 [38], biomass char were generally more reactive than those of hard coal and lignite based on their finding. In addition, biomass chars were found to have porous and highly disorder structure and belong to the class of most reactive carbon materials. The porosity within the chars causes more accessible of the reactive gas to active site resulting in the very good combustion reactivity. Biomass chars production is derived from pyrolysis process where the biomass is decomposed by heating in oxygen free or oxygen-limited environment. Pyrolysis has been used commercially for the wide production including bio-gas and bio-oil. Lot of technologies also has been invented to meet the desired i.e. muffle furnace [39], fixed bed furnace [40], and drop tube furnace (DTG) [41] in effort to investigate the biomass chars characteristics. However, microwave assisted pyrolysis reaction is one of the latest technique employed for pyrolysis reaction nowadays. Its benefits will reduce processing cost, produce better product quality and reduce hazard to human, environment and enhance quality of life [42].

3.1. Synergistic effects

The unexpected finding was discovered by previous studies claimed that there was the existence of synergistic effects during co-utilization of coal and biomass chars. However, not all studies discovered the same synergistic effects output as previous studies i.e. combustion reactivity, weight lost, thermal stability, and de-volatilization. Meanwhile, some of studies claimed there was lack and even no synergistic effect reported. By far, basically, the observed synergistic effects of co-utilization of primary and secondary fuels can be divided into three categories; thermal characteristics, product characteristics and emission characteristic. Summary of previous studies on synergistic effects by co-utilization of coal and biomass chars are shown in Table 1.

Table 1. Summary of previous studies on synergistic effects by co-utilization of coal and biomass char

Author(s)	Feedstock	Method & Conditions	Remarks
Lu, Lee, Chen, & Lin, 2013 [19]	Biomass – Torrefied C. japonica wood (char). Coal – Australian’s anthracite coal.	Thermogravimetric analysis (co-pyrolysis reaction) – Heating rate (20 °C/min), Temperature range (25–800 °C), inert air condition (N₂ influenced, 100 cc/min)	Synergies observed – weight percentage
Sahu, Sarkar, Chakraborty, & Adak, 2010 [43]	Biomass – Pyrolyzed Saw dust & rice husk (char). Coal – Indian’s coal	Thermogravimetric analysis (co-combustion reaction) – Heating rate (10 °C/min), Temperature range (ambient up to 750 °C), air flow rate (50 ml/min)	Synergies observed (lack) – improvement of reactivity in major combustion zone. – Blends containing less than 50% are better performing.
Gil et al., 2012 [44]	Biomass – Torrefied pine sawdust (char). Coal – Anthracite (AC), semianthracite (HVN), high-volatile bituminous (DAB, M6N and NZ)	Thermo-balance (oxy-fuel combustion reaction) – Heating rate (2, 3, & 5 K/min), Temperature range (room to 1273 K), air flow rate (50 NmL/min, 30 %O₂ and 70 %CO₂)	No synergies observed
Kastanaki & Vamvuka	Biomass – Cotton,	Thermogravimetric	Synergies observed –
2006 [38]

Year	Source	Methodology
2006	forest residues, olive	analysis (co-combustion reaction) - Heating rate (10 °C/min), Temperature
	kernel, & wood chars.	range (25–850 °C), air flow rate (45 mL/min)
	Coal – Lignite	combustion performance of the blends showed some deviation from the
		expected weighted average of the constituents chars.

Idris, 2014 [42]

Year	Source	Methodology
2014	Biomass – EFB, PKS,	Thermogravimetric analysis (co-combustion reaction) – Heating rate (20 °C
	PMF chars (microwave	/min).
	irradiation)	Synergies observed – improved coal reactivity.
	Coal – Mukah	– Low burnout temperature.
	Balingian	

4. Conclusion

It can be seen that, a lot of efforts have been done in order to understand the existence of the synergistic effects and behaviour of the combustion characteristics during co-utilization of coal and biomass/biomass char so that it can be apply beneficially in energy-based industry. By far, the works on synergistic effect during co-utilization is limited only to the investigation on thermal and product characteristics. Details works focusing on emission characteristics which might be related with the existence of the synergistic effect is yet to be explore. Therefore, further studies are very much needed to be conducted.

5. Acknowledgement

The author also would like to express his gratitude to the Research Management Institute (RMI) for the financial support (600-RMI/FRGS 5/3 (127/2015)), committee of Faculty of Chemical Engineering (FKK) and ICGSCE for publishing this article.

6. References

[1] IEA 2016 Key World Energy Trends Iea 19
[2] IEA Coal Industry Advisory Board 2014 The Impact of Global Coal Supply on Worldwide Electricity Prices 57
[3] Global B 2016 Coal Reserves BP Glob.
[4] Nussbaumer T 2003 Combustion and Co-combustion of Biomass: Fundamentals, Technologies, and Primary Measures for Emission Reduction Energy and Fuels 17 p 1510–21
[5] Kumar M, Kumar P and Kumari A 2015 Co-Utilization of Coal and Biomass – A Review 2 p 4–8
[6] Demirba A 2003 Biomass Co-firing for Coal-Fired Boilers 21 p 269–78
[7] Tillman D A 2000 Cofiring benefits for coal and biomass Biomass and Bioenergy 19 p 363–4
[8] Dayton D 2002 A Summary of NO x Emissions Reduction from Biomass Cofiring 7
[9] Kazagic A and Smajevic I 2007 Experimental investigation of ash behavior and emissions during combustion of Bosnian coal and biomass Energy 32 p 2006–16
[10] Spliethoff H and Hein K R. 1998 Effect of co-combustion of biomass on emissions in pulverized fuel furnaces Fuel Process. Technol. 54 p 189–205
[11] Sahu S G, Chakraborty N and Sarkar P 2014 Coal-biomass co-combustion: An overview Renew. Sustain. Energy Rev. 39 p 575–86
[12] Jones J M, Kubacki M, Kubica K, Ross A B and Williams A 2005 Devolatilisation characteristics of coal and biomass blends J. Anal. Appl. Pyrolysis 74 p 502–11
[13] Haykiri-Acma H and Yaman S 2007 Synergy in devolatilization characteristics of lignite and hazelnut shell during co-pyrolysis Fuel 86 p 373–80
[14] Cai J, Wang Y, Zhou L and Huang Q 2008 Thermogravimetric analysis and kinetics of coal/plastic blends during co-pyrolysis in nitrogen atmosphere Fuel Process. Technol. 89 p 21–7
[15] Haykiri-Acma H and Yaman S 2010 Interaction between biomass and different rank coals during co-pyrolysis Renew. Energy 35 p 288–92
[16] Park D K, Kim S D, Lee S H and Lee J G 2010 Co-pyrolysis characteristics of sawdust and coal blend in TGA and a fixed bed reactor *Bioresour. Technol.* **101** p 6151–6

[17] Moon C, Sung Y, Ahn S, Kim T, Choi G and Kim D 2013 Effect of blending ratio on combustion performance in blends of biomass and coals of different ranks *Exp. Therm. Fluid Sci.* **47** p 232–40

[18] Krerkkaiwan S, Fushimi C, Tsutsuomi A and Kuchonthara P 2013 Synergetic effect during co-pyrolysis/gasification of biomass and sub-bituminous coal *Fuel Process. Technol.* **115** p 11–8

[19] Lu K M, Lee W J, Chen W H and Lin T C 2013 Thermogravimetric analysis and kinetics of co-pyrolysis of raw/torrefied wood and coal blends *Appl. Energy* **105** p 57–65

[20] Wu Z, Wang S, Zhao J, Chen L and Meng H 2014 Synergistic effect on thermal behavior during co-pyrolysis of lignocellulosic biomass model components blend with bituminous coal *Bioresour. Technol.* **169** p 220–8

[21] Meesri C and Moghtaderi B 2002 Lack of synergetic effects in the pyrolytic characteristics of woody biomass = coal blends under low and high heating rate regimes. Meesri, C., Moghtaderi, B. (2002). Lack Synerg. effects pyrolytic Charact. woody biomass = coal blends under low high Heat. rate regimes, 23, 55–66. 23 p 55–66

[22] Vuthaluru H B 2004 Thermal behaviour of coal/biomass blends during co-pyrolysis *Fuel Process. Technol.* **85** p 141–55

[23] Sadhukhan A K, Gupta P, Goyal T and Saha R K 2008 Modelling of pyrolysis of coal-biomass blends using thermogravimetric analysis *Bioresour. Technol.* **99** p 8022–6

[24] Idris S S, Rahman N A, Ismail K, Alias A B, Rashid Z A and Aris M J 2010 Investigation on thermochemical behaviour of low rank Malaysian coal, oil palm biomass and their blends during pyrolysis via thermogravimetric analysis (TGA) *Bioresour. Technol.* **101** p 4584–92

[25] Gil M V., Casal D, Pevida C, Pís J J and Rubiera F 2010 Thermal behaviour and kinetics of coal/biomass blends during co-combustion *Bioresour. Technol.* **101** p 5601–8

[26] Muthuraman M, Namioka T and Yoshikawa K 2010 Characteristics of co-combustion and kinetic study on hydrothermally treated municipal solid waste with different rank coals: A thermogravimetric analysis *Appl. Energy* **87** p 141–8

[27] Wang Z, Li Q, Lin Z, Whiddon R, Qiu K, Kuang M and Cen K 2016 Transformation of nitrogen and sulphur impurities during hydrothermal upgrading of low quality coals *Fuel* **164** p 254–61

[28] Varhegyi G, Szabo P, Jakab E, Till F and Richard J-R 1996 Mathematical Modeling of Char Reactivity in Ar-O2 and CO2-O2 Mixtures *Energy & Fuels* **10** p 1208–14

[29] Russell N V, Beeley T J, Man C-K, Gibbins J R and Williamson J 1998 Development of TG measurements of intrinsic char combustion reactivity for industrial and research purposes *Fuel Process. Technol.* **57** p 113–30

[30] Ciuryła V T, Weimer R F, Bivans D A and Motika S A 1979 Ambient-pressure thermogravimetric characterization of four different coals and their chars *Fuel* **58** p 748–54

[31] Adánez J, de Diego L F, García-Labiano F, Abad A, Abanades J C and Luis F 2001 Determination of biomass char combustion reactivities for FBC applications by a combined method *Ind. Eng. Chem. Res.* **40** p 4317–23

[32] Di Blasi C, Buonanno F and Branca C 1999 Reactivities of some biomass chars in air *Carbon N. Y.* **37** p 1227–38

[33] Henrich E, Bürkle S, Meza-Renken Z I and Rumpel S 1999 Combustion and gasification kinetics of pyrolysis chars from waste and biomass *J. Anal. Appl. Pyrolysis* **49** p 221–41

[34] Stenseng M, Zolin a and Cenni R 2001 Thermal Analysis in Combustion Research *J. Therm. Anal. Calorim.* **64** p 1325–34

[35] Zolin A, Jensen A, Jensen P A, Frandsen F and Dam-Johansen K 2001 The influence of inorganic materials on the thermal deactivation of fuel chars *Energy and Fuels* **15** p 1110–22

[36] Backreedy R I, Fletcher L M, Jones J M, Ma L, Pourkashanian M and Williams A 2005 Co-firing pulverised coal and biomass: A modeling approach *Proc. Combust. Inst.* **30 II** p 2955–64

[37] Backreedy R I, Jones J M, Pourkashanian M and Williams A 2003 Burn-out of pulverised coal
and biomass chars q 82 p 2097–105
[38] Kastanaki E and Vamvuka D 2006 A comparative reactivity and kinetic study on the combustion of coal-biomass char blends Fuel 85 p 1186–93
[39] Zhang Y, Zhai M, Wang X, Sun J, Dong P, Liu P and Zhu Q 2015 Preparation and characteristics of biomass char BioResources 10 p 3017–26
[40] Avila C, Pang C H, Wu T and Lester E 2011 Morphology and reactivity characteristics of char biomass particles Bioresour. Technol. 102 p 5237–43
[41] Borrego A G, Garavaglia L and Kalkreuth W D 2009 Characteristics of high heating rate biomass chars prepared under N2 and CO2 atmospheres Int. J. Coal Geol. 77 p 409–15
[42] Idris S S 2014 Production of solid fuel from oil palm biomass via microwave irradiation pyrolysis technique for co-combustion with coal (University Technology of MARA)
[43] Sahu S G, Sarkar P, Chakraborty N and Adak A K 2010 Thermogravimetric assessment of combustion characteristics of blends of a coal with different biomass chars Fuel Process. Technol. 91 p 369–78
[44] Gil M V, Riaza J, Álvarez L, Pevida C, Pis J J and Rubiera F 2012 Kinetic models for the oxyfuel combustion of coal and coal/biomass blend chars obtained in N2 and CO2 atmospheres Energy 48 p 510–8