Effects of Zuogui Wan on neurocyte apoptosis and down-regulation of TGF-β_1 expression in nuclei of arcuate hypothalami of monosodium glutamate -liver regeneration rats

Han-Min Li, Xiang Gao, Mu-Lan Yang, Jia-Jun Mei, Liu-Tong Zhang, Xing-Fan Qiu

INTRODUCTION

MSG-liver regeneration rat model is very useful in study about the correlative mechanism of liver regeneration with high-grade nerve center, hypothalamo-hypophysis-liver axial and nerve-endocrine-immune network (NEIN). Experiment results showed that the process of liver regeneration in MSG-liver regeneration rats was disproportional, liver regeneration was faster in the initial stage (the postoperative 1st d), significantly restrained in the intermediate and advanced periods, finally the degree of liver regeneration, meiosis index of liver cells (MI) and the ratio of liver mass to body mass all could not recover the normal level[1-2], but the above mentioned indexes could be significantly improved after MSG-liver regeneration rats were treated with Zuogui Wan[3-5]. Functional disorder of NEIN is probably one of the important mechanisms of serious imbalance of liver regenerative process. In order to research the effects of Zuogui Wan on neurocyte apoptosis of MSG-liver regeneration in rat hypothalamus and the mechanism to interfere with liver regeneration by adjusting nerve-endocrine-immunity network, we studied the apoptosis of neurocytes on experimental rats’ nuclei of arcuate hypothalami (ARN) and the expression of apoptosis related gene TGF-β_1 with in situ end-labeling technique (ISEL), optic microscope, electronic microscope and immunohistochemical method.

MATERIALS AND METHODS

Materials

Wistar rats were offered by the Animal Laboratory, Academy of Medical Sciences of Hubei Province, YDZ19-008. Monosodium glutamate (MSG) was provided by Sigma Co. ISEL apoptosis test kit was from Boehringer Mannheim Co. Strept avidin-biotin complex (SABC) was used to detect the expression of TGF-β_1 by immunohistochemical method (Wuhan Boshide Limited Company).

Establishment of MSG-liver regeneration-rat model

Wistar rats were divided into two groups: Treatment group which was given monosodium glutamate dissolved in saline solution, the other group which served as control was given the vehicle only. MSG 4 mg/g b.w. was injected on d 2, 4, 6, 8, and 10 after birth. On the 28th d, pups were weaned and caged in 8 groups (4 groups were male rats, 4 groups were female rats). The rats were maintained in an air-conditioned (temperature 24±1 °C) animal room with controlled lighting (12 h light, 12 h dark). They were provided with commercial diet and water. From the 6th week to the experiment end, treatment group rats were treated by gastrogavage of Zuogui Wan (Radix Rehmanniae Praeparata, Rhizoma Dioscoreae, Fructus Lycii, Fructus Corni, Semen Cuscutae, Radix Cyathulae, Colla Cornus Cervi, and Colla Plastri Testudinis) 5 g/kg[1]. In the 8th wk, partial hepatectomy was performed by excision of the median and left hepatic lobes (occupying about 68% of whole liver) according to the method of Higgins and Anderson under pentobarbital anesthesia[11]. Sham-operated rats (MSG-rats) were anesthetized, and their

METHODS:

Neurocyte apoptosis in ARN of the experiment rats was observed by using optic microscope, electron microscope and in situ end labeling technology to adjust nerve-endocrine-immunity network.

RESULTS:

The expression of TGF-β_1 in rats of model group was increased with the increase of ARN neurocyte apoptosis index (AI) (t = 8.3097, 12.9884, P<0.01). As compared with the rats of model group, the expression of TGF-β_1 in rats of Zuogui Wan treatment group was decreased with the significant decrease of ARN neurocyte apoptosis (t = 4.5624, 11.1420, P<0.01).

CONCLUSION:

Brain neurocyte calcium ion overexertion and TGF-β_1 protein participate in the adjustment and control of ARN neurocyte apoptosis in MSG-liver regeneration-rats. Zuogui Wan can prevent ARN neurocyte apoptosis of MSG-liver regeneration in rats by down-regulating the expression of TGF-β_1, and influence liver regeneration through adjusting nerve-endocrine-immune network.

Li HM, Gao X, Yang ML, Mei JJ, Zhang LT, Qiu XF. Effects of Zuogui Wan on neurocyte apoptosis and down-regulation of TGF-β_1 expression in nuclei of arcuate hypothalamus of monosodium glutamate -liver regeneration rats. World J Gastroenterol 2004; 10(19): 2823-2826

http://www.wjgnet.com/1007-9327/10/2823.asp
livers were exposed but not removed. All operations above were clean operations. Rats were operated and killed between 8 and 12 h a.m. to avoid the effects of diurnal variation. Rats subjected to partial hepatectomy were killed on the 1st, 3rd, 5th, 11th d after operation, and 6 were taken randomly in each group per batch (3 males and 3 females).

Neurocyte apoptosis observation
Using *in situ* end labeling (ISEL) method, the nuclei of positively apoptotic neurocytes were stained into blue purple, the starches of cells were intact. Each slice was randomly taken under five fields of vision, the positively stained area was surveyed, and the positive cell number was calculated on the unit area. Then five fields of vision were averaged to calculate the proportion of positive cells in the slice. The percentage of positive cells (apoptosis index, AI) was used to show the apoptosis degree in the tissue.

Pathology-histology observation
Hypothalamus tissue specimens were fixed in 10% formalin, embedded in paraffin, cut into 4 µm thick sections, dewaxed and evaporated with routine procedures, stained with HE, observed with optic microscope. Hypothalamus specimens were embedded and sliced for observation under electron microscope (using ultramicrotome of AO type) and transmission electron microscope (EM10C, Germany OPTON).

Immunohistochemistry
We used SABC method. The cerebral nerve cells showing brown, homogeneous or fine grains were positive. These fine grains distributed all over the cell membranes and cytoplasm, mainly in cell membranes. Five visual fields were taken randomly in each microsection, then the number of stained areas was surveyed and the number of positive cells was calculated according to the total count of cells in unit area. Finally, the number of positive cells in five visual fields was averaged, and the proportion of positive cells in the microsection was obtained. The percentage of positive cells was used to show the content of fine grains in the tissue.

Statistical analysis
The experimental data were statistically analyzed with HPIAS-1000 high acuity colored pathology image measurement system and Microsoft’s Excel.

RESULTS
Effect of Zuogui Wan on MSG-liver regeneration rat hypothalamus pathology-histology alteration
Under light microscope, the neurocytes in arcuatus hypothalami (ARN) of MSG-liver regeneration rats reduced significantly and astrocytes increased significantly. Under electron microscope, neurocyte nucleus chromatin collected at the edge was stained deeply, and nuclear membrane was not regular, cytoplasm was concentrated. Neurocyte nucleus shape factor (approach 1 was regular, and >1 was not regular), circularity (approach 1 was round, and <1 was not round) and heteromorphic index (approach 3 was low for the heterotype degree, >3 was high for the heterotype degree) had significant differences (*P*<0.05).

Pathological changes in Zuogui Wan treatment group were distinguished (Table 1, Figure1).

![Figure 1](image1)

Figure 1 Effect of Zuogui Wan on alteration, apoptosis and TGF-β1 expression in ARN of MSG-liver regeneration rats. A, B: Effect of Zuogui Wan on alteration in ARN of MSG-liver regeneration rats. C, D: Effect of Zuogui Wan on apoptosis in ARN of MSG-liver regeneration rats. E, F: Effect of Zuogui Wan on TGF-β1 expression in ARN of MSG-liver regeneration rats.
Our experiment results showed that MSG could induce necrosis in ARN neurocytes, and the difference was significant ($P<0.01$). The AI of Zuogui Wan treated group reduced significantly on the postoperative 5th and 11th days compared to the model group ($P<0.01$) (Table 2).

Table 2 Effect of Zuogui Wan on ARN neurocyte apoptosis in MSG-liver regeneration rats (positive cells %, $n=6$, mean±SD)

Group	Postoperative 1$^{\text{st}}$ d	Postoperative 3$^{\text{rd}}$ d	Postoperative 5$^{\text{th}}$ d	Postoperative 11$^{\text{th}}$ d
Normal saline	0.07±0.08	0.08±0.04	0.09±0.03	
Model	2.45±0.32a	2.32±0.45a	2.56±0.50b	
Zuogui Wan	2.62±0.72a	3.32±0.81a	4.23±1.22a	

Effect of Zuogui Wan on expression of TGF-β_1 in ARN of MSG-liver regeneration rats

Results indicated that, the expression of TGF-β_1 in ARN of MSG-liver regeneration rats was significantly higher than that in control group and sham-operated group (MSG-rats) ($P<0.01$). Along with increased apoptotic index (AI) in ARN neurocytes, the expression of TGF-β_1 improved correspondingly, namely, the more the TGF-β_1 expressed, the larger the AI was. Besides, along with the weakened expression of TGF-β_1, AI of ARN in Zuogui Wan treatment group decreased significantly ($P<0.01$, Table 3).

Table 3 Effect of Zuogui Wan on TGF-β_1 expression of ARN in MSG-liver regeneration-rats (positive cells %, $n=6$, mean±SD)

Group	Postoperative 1$^{\text{st}}$ d	Postoperative 3$^{\text{rd}}$ d	Postoperative 5$^{\text{th}}$ d	Postoperative 11$^{\text{th}}$ d
Normal saline	10.9±2.7	13.7±2.5	16.8±2.9	12.6±1.6
Model	12.8±3.1	13.5±2.8	12.3±3.2	14.5±2.9
Zuogui Wan	19.4±2.4a	21.3±2.6a	25.1±2.9a	29.7±2.8d

DISCUSSION

Some studies found that neonate rats who were given high dose MSG on the 2$^{\text{nd}}$, 4$^{\text{th}}$, 6$^{\text{th}}$, 8$^{\text{th}}$, 10$^{\text{th}}$ days could destroy nucleus arcuatus hypothalami (ARN) selectively, and swelling and necrosis in ARN neurocytes were the main pathological lesions, and its mechanism in nervous poison might be concerned with the overexertion of calcium ions in cerebral neurocytes$^{[8-11]}$. Our experiment results showed that MSG could induce neurocyte apoptosis in the intermediate and advanced stage after rats were injected with MSG, leading to acute swelling and necrosis in ARN neurocytes. We also could find apoptosis in cerebral neurocytes under electron microscopy and the number of apoptotic cells in model group is larger than that in control group, 8-10 wk after hypodermal injection of MSG. Furthermore, the shape factor, circularity and heteromorphic index that reflected the changes of neurocyte nuclei in ARN were different compared with saline control group. Quantitating apoptotic neurocytes in cerebra by in situ end-labeling technique also showed that cerebral IA was larger than that of control group. In ordinary physiological state, most neurons can survive all the life and do not renew, therefore, apoptosis can seldom be found. As a common secondary messenger of apoptosis, MSG could lead to overexertion of calcium ions in neuron cytoplasm, which might be one of the mechanisms underlying apoptosis in MSG-rats' and MSG-liver regeneration-rats' cerebral neurocytes. But the phenomenon that cerebral neurocyte apoptosis of MSG-liver regeneration rats was more conspicuous than that of MSG-rat group can not be explained completely with the mechanism, i.e. MSG leading to overexertion of calcium ions in neuron cytoplasm could induce neurocyte apoptosis. These studies showed that it probably involved other factors leading to cerebral neurocyte apoptosis, besides overexertion of calcium ions in neuron cytoplasm induced by MSG$^{[5]}$.

TGF-β_1 can enhance apoptosis, so the considerable expression of TGF-β_1 is an important signal that apoptosis takes place. TGF-β_1 expressed excessively in cerebral neurocyties of MSG-liver regeneration rats, and the quantity was larger than that in MSG-rat group and saline control group, and the differences were significant$^{[12-22]}$. That overexertion of calcium ions in cerebral neurocytes induced by MSG and the considerable expression of TGF-β_1 induced by partial hepatectomy in ARN of MSG-liver regeneration rats hint that both of them have synergistic effects on inducing MSG-liver regeneration-rat cerebral neurocyte apoptosis. AI of MSG-liver regeneration rat cerebral neurocyties is closely correlated with considerable expression of TGF-β_1. Neurocyte apoptosis in ARN of MSG-liver regeneration rats is one of the important mechanisms of functional disorder in nerve-endocrine-immune network. TGF-β_1 protein could participate in the regulation of neurocyte apoptosis in ARN of MSG-liver regeneration rats$^{[2-5]}$.

One of the major research achievements of the kidney’s essence is deficiency of kidney-yang in hypothalamus, and deficiency of kidney-yang is closely correlated with functional disorder in nerve-endocrine-immune network$^{[23-30]}$. Our results showed that deficiency of kidney-yin was located in hypothalamus also$^{[23-27]}$, and neurocyte apoptosis in ARN of MSG-liver regeneration rats significantly lessened and indexes such as shape factor, circularity, heteromorphism which reflect the changes of ARN neurocyte nuclei improved significantly by replenishing kidney-yin with Zuogui Wan. Meanwhile, its expression of TGF-β_1 was also less than that in model group.

In summary, Zuogui Wan could prevent cerebral neurocyte apoptosis MSG-liver regeneration rats and down-regulate the overexpression of TGF-β_1 and its acceptors. Thus Zuogui Wan could prevent cerebral neurocyte apoptosis MSG-liver regeneration rats and down-regulate the overexpression of TGF-β_1 and its acceptors. Thus Zuogui Wan could prevent cerebral neurocyte apoptosis MSG-liver regeneration rats and down-regulate the overexpression of TGF-β_1 and its acceptors. Thus Zuogui Wan could prevent cerebral neurocyte apoptosis MSG-liver regeneration rats and down-regulate the overexpression of TGF-β_1 and its acceptors. Thus Zuogui Wan could prevent cerebral neurocyte apoptosis MSG-liver regeneration rats and down-regulate the overexpression of TGF-β_1 and its acceptors. Thus Zuogui Wan could prevent cerebral neurocyte apoptosis MSG-liver regeneration rats and down-regulate the overexpression of TGF-β_1 and its acceptors. Thus Zuogui Wan could prevent cerebral neurocyte apoptosis MSG-liver regeneration rats and down-regulate the overexpression of TGF-β_1 and its acceptors. Thus Zuogui Wan could prevent cerebral neurocyte apoptosis MSG-liver regeneration rats and down-regulate the overexpression of TGF-β_1 and its acceptors. Thus Zuogui Wan could prevent cerebral neurocyte apoptosis MSG-liver regeneration rats and down-regulate the overexpression of TGF-β_1 and its acceptors. Thus Zuogui Wan could prevent cerebral neurocyte apoptosis MSG-liver regeneration rats and down-regulate the overexpression of TGF-β_1 and its acceptors. Thus Zuogui Wan could prevent cerebral neurocyte apoptosis MSG-liver regeneration rats and down-regulate the overexpression of TGF-β_1 and its acceptors. Thus Zuogui Wan could prevent cerebral neurocyte apoptosis MSG-liver regeneration rats and down-regulate the overexpression of TGF-β_1 and its acceptors. Thus Zuogui Wan could prevent cerebral neurocyte apoptosis MSG-liver regeneration rats and down-regulate the overexpression of TGF-β_1 and its acceptors. Thus Zuogui Wan could prevent cerebral neurocyte apoptosis MSG-liver regeneration rats and down-regulate the overexpression of TGF-β_1 and its acceptors. Thus Zuogui Wan...
can influence liver regeneration by adjusting nerve-endocrine-immune network.

REFERENCES

1 Li HM, Zhang LT, Mei J, Qiu XF, Wang P. The establishment of L-monosodium-glutamate-liver regeneration-rat model. Shijie Huairen Xiaohuo Zazhi 2000; 8: 824-826
2 Li HM, Zhang LT, Qiu XF. Research of “liver and kidney are all origin from the same origin of brain” and the essence of liver and kidney. Zhongyi Zazhi 2000; 41: 69-71
3 Li HM, Zhang LT, Qiu XF, Mei J, Wang P. Study about the effect and the mechanism of Yougui Pill on the kidney-essence and liver-blood deficiency syndrome of model of MSG-regeneration-rats. Huibi Zhongxiuyuan Xuebao 2001; 3: 30-33
4 Li HM, Yang ML, Mei J, Zhang LT, Qiu XF. Neurocyte apoptosis and expression of TGF-β, in ARN of MSG-Regeneration-Rats. China J Appl Physiol 2003; 19: 46-47
5 Yang ML, Li HM, Mei J, Zhang LT, Qiu XF. Dig marked probe in situ hybridization detected TGF-β-mRNA in MSG-liver regeneration-rats’ nucleus arcuatus hypothalami. Zhongguo Zuzhuhuaxue Yu Xibaozhuaxue Zazhi 2002; 11: 202-204
6 Liu YF, Cai DF. The effect of L-monosodium glutamate on nerve-endocrine-immune network. External medicine-endocrine fascicle. Guangxi Xueyue Nefenmixin Fax 1997; 17: 143-145
7 Olney JW. Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. Science 1969; 164: 719-721
8 Belluardo N, Mudo G, Bindoni M. Effects of early destruction of the mouse arcuate nucleus by monosodium glutamate on age-dependent natural killer activity. Brain Res 1990; 534: 225-233
9 Kure S, Tominaga T, Yoshimoto T, Tada K, Narisawa K. Glutamate triggers internucleosomal DNA cleavage in neuronal cells. Biochem Biophys Res Commun 1991; 179: 39-45
10 Terry LC, Epelbaum J, Martin JB. Monosodium glutamate: acute and chronic effects on rhythmic growth hormone and prolactin secretion, and somatostatin in the undisturbed male rat. Brain Res 1981; 217: 129-142
11 Hu L, Fernstrom JD, Goldsmith PC. Exogenous glutamate enhances glutamate receptor subunit expression during selective neuronal injury in the ventral arcuate nucleus of postnatal mice. Neuroendocrinology 1998; 68: 77-88
12 Yamamoto M, Fukuda K, Miura N, Suzuki R, Kido T, Komatsu Y. Inhibition by dexamethasone of transforming growth factor beta1-induced apoptosis in rat hepatoma cells: a possible association with Bcl-xL induction. Hepatology 1998; 27: 959-966
13 Roberts RA, James NH, Cosulich SC. The role of protein kinase B and mitogen-activated protein kinase in epidermal growth factor and tumor necrosis factor alpha-mediated rat hepatocyte survival and apoptosis. Hepatology 2000; 31: 420-427
14 Choi KS, Lim IK, Brady JN, Kim SJ. ICE-like protease (caspase) is involved in transforming growth factor beta1-mediated apoptosis in FAO rat hepatoma cell line. Hepatology 1998; 27: 415-421
15 Tsukada T, Eguchi K, Migita K, Kawakami Y, Kawakami A, Matsuoka N, Takashima H, Mizokami A, Nagataki S. Transforming growth factor beta 1 induces apoptotic cell death in cultured human umbilical vein endothelial cells with down-regulated expression of bcl-2. Biochem Biophys Res Commun 1995; 210: 1076-1082
16 Derynck R, Zhang Y, Feng XH. Smads: transcriptional activators of TGF-β/beta responses. Cell 1998; 95: 737-740
17 Ribeiro A, Bronk SF, Roberts PJ, Urrutia R, Gores GJ. The transforming growth factor beta 1 -inducible transcription factor, TIEG1, mediates apoptosis through oxidative stress. Hepatology 1998; 30: 1490-1497
18 Bissell DM, Wang SS, Jarnagin WR, Roll FJ. Cell-specific expression of transforming growth factor-beta in rat liver. Evidence for autocrine regulation of hepatocyte proliferation. J Clin Invest 1995; 96: 447-455
19 Oberhammer F, Bursch W, Tiefenbacher R, Fröschl G, Pavelka M, Pirchio T, Schulte-Hermann R. Apoptosis is induced by transforming growth factor-beta 1 within 5 hours in regressing liver without significant fragmentation of the DNA. Hepatology 1998; 18: 1238-1246
20 Khosla S, Oursler MJ, Schroeder MJ, Eberhardt NL. Transforming growth factor receptors in liver regeneration following partial hepatectomy in the rat. Cancer Res 1990; 50: 1464-1469
21 Gruppuso PA, Mead JE, Fausto N. Transforming growth factor receptors in liver regeneration following partial hepatectomy in the rat. Cancer Res 1990; 50: 1464-1469
22 Massague J. TGFBeta signaling: receptors, transducers, and mod proteins. Cell 1996; 85: 947-950
23 Cai DF, Shen ZY, Zhang LJ, Wang WJ. The effect of Yougui-ying on the hypothalamus-pituitary-adrenal thymus axis of rats inhibited by corticosterone. Zhongguo Xianqiyi Zazhi 1994; 10: 236-239
24 Song CF, Yin GS, Zhao JH, Sun SJ, Lu FY. The effect of tonifying kidney herbs on CaMPKII of hypothalamus-pituitary-adrenal axis in kidney-yang deficiency rats. Zhongguo Zhongyi Jichuyixue Zazhi 2001; 7: 605-607
25 Song CF, Yin GS, Li E, Li XY. The effect of Yougui-ying on median eminenced ependymocytes of hypothalamus in kidney-yang deficiency rats. Zhongguo Zhongyi Jichuyixue Zazhi 2001; 7: 19-22
26 Gao B, Yao YX, Zhang XY, Yin GS. Expression of NosmRNA in hypothalimus neuron on rats of kidney-yang deficiency and regulation of notifying kidney medicines. Zhongguo Zhongyi Jichuyixue Zazhi 2001; 8: 583-584
27 Cai DF, Liu YF, Cheng XH, Li WW, Bo J, Shen SY, Lin QW, Chen XQ, Ruan QJ, Liu YF, Cui JH, Shen YY, Zheng J, Huang XZ, Lu XX. Modern study on the theory of “kidney manufactures the marrow”. Zhongyi Zazhi 1999; 10: 626-628
28 Shen ZY. Contrasting research between kidney deficiency and senile in microscopic. Zhongyi Zazhi 2002; 43: 565-567
29 Shen ZY. Study on the localization of kidney-yang deficiency. Zhongguo Zhongyi Jichue Zazhi 1997; 17: 50-52

Edited by Wang XL. Proofread by Xu FM