Nonlinear Negotiation Approaches for Complex-Network Optimization: A Study Inspired by Wi-Fi Channel Assignment

Ivan Marsa-Maestre, Enrique de la Hoz, Jose Manuel Gimenez-Guzman, David Orden, Mark Klein

Abstract

At the present time, Wi-Fi networks are everywhere. They operate in unlicensed radio-frequency spectrum bands (divided in channels), which are highly congested. The purpose of this paper is to tackle the problem of channel assignment in Wi-Fi networks. To this end, we have modeled the networks as multilayer graphs, in a way that frequency channel assignment becomes a graph coloring problem. For a high number and variety of scenarios, we have solved the problem with two different automated negotiation techniques: a hill-climbing mediated negotiation and a simulated annealing mediated negotiation. As an upper bound reference for the performance of these two techniques, we have also solved the problem using a particle swarm optimizer. Results show that the annealer negotiator behaves as the best choice because it is able to obtain even better results than the particle swarm optimizer in the most complex scenarios under study, with running times one order of magnitude below. Moreover, we study how different properties of the network layout affect to the performance gain that the annealer is...
able to obtain with respect to the particle swarm optimizer. Finally, we show how the different strategic behavior of the participants affects the results.

1 Introduction

In our current society everything is interconnected, with the Internet network as the prime example. Internet ubiquity and popularity have grown impressively in the last decades. Because of this, many of the current research problems can be modeled as interconnected nodes, i.e. as networks. We can find real-world problems that can be modeled by networks in key strategic fields like transportation (Ghavidelsyooki et al. 2017), energy (Valori et al. 2016), industrial processes (Bernini et al. 2016), medical disciplines like neurology (Fornito 2016) and communication networks. This last domain is the one this paper focuses on.

More specifically, we are focused in communication networks where nodes have an important feature: they are self-interested. We will compare two different families of methods to address this kind of problems: optimization techniques and automated negotiation. The first family, optimization techniques, are well suited to large-scale problems, as networked systems use to be. However, these techniques fail when there are self-interested nodes that ignore the optimal solution taking a decision that improves their performance or utility, but severely decreases the total network performance. Thus, there is a number of works that are focused on detecting self-interested nodes (Kumar et al. 2016; Banchs et al. 2016). The second family, automated negotiation techniques, can reach solutions in a timely manner and consider selfish nodes in their intrinsic behavior (Ren et al. 2009) so nodes will be less predisposed to deviate from the solutions given (in fact, they are usually called agreements). Although automated negotiation techniques could be worth to solve the type of problems we deal with in this paper, they have been barely used to solve complex networked problems (De Jonge and Sierra 2015), as their applications have been focused on designing tools for collaboration, e-commerce or decision-making support (Fujita et al. 2017). In this paper we show that automated negotiation also behaves as a very interesting tool to solve complex network optimization problems where there are conflicts of interest.

The specific problem we tackle in this paper is channel assignment in Wireless Local Area Networks (WLAN) operating in infrastructure mode, i.e. consisting in access points (APs) and clients attached to those APs. This is a complex network problem that includes selfish behavior as nodes are only interested in their performance, not in the global performance of the whole network. Thus, the problem consists of assigning the frequency channel to each AP of the network that minimizes interferences and, therefore, maximizes the performance of their clients. As there are interferences between channels and the number of APs to be assigned with a channel is usually much higher than the total number of available channels, this becomes a very complex problem.

This problem fits within other generic well-known research problems like FAP (Frequency Assignment Problem) (Aardal et al. 2007; FAP 2017) and the more generic graph coloring problem (Jensen and Toft 2011; Tuza et al. 2003), as frequencies can be considered as colors. Regarding the graph coloring problem we can emphasize the
work (Malaguti and Toth 2010) where there is a survey of the generic vertex coloring problem (VCP), whose objective is to assign a color to each vertex using different colors on adjacent vertices and minimizing the total number of colors required (Orden et al. 2018). In addition to this problem, in (Malaguti and Toth 2010) it is also included a survey on other generalizations of the VCP, like the Bandwidth Coloring Problem (BCP), where distance between colors is taken into account forbidding those colorings where distance between two connected vertices is below a certain value. Other works that consider distances between colors are (Griggs et al. 2009; Sharp 2007; Bodlaender et al. 2000). All these works considering distances between colors, i.e. including hard restrictions in the graph coloring process, are different from our problem because they are focused on minimizing the largest color assigned to the vertices, while in our problem we have a predefined number of colors (the available spectrum band where the technology is able to operate in) and we want to minimize interferences. The main works in FAP can be found in the survey (Aardal et al. 2007). Although this survey is mainly devoted to channel assignment in cellular networks, military applications or satellite communications, it also includes a brief mapping of the channel assignment problem to WLAN networks. IEEE 802.11 networks (commercially known as Wi-Fi networks) are the most widespread (and, from a practical point of view, unique) WLAN networks. Although these networks can operate in different unlicensed frequency bands, the most widely used is the 2.4 GHz band, that contains 11 possible and partially overlapped channels (Gimenez-Guzman et al in press). As they are partially overlapped, only three frequencies (the first, the sixth and the eleventh channels) do not collide among them. For that reason it is often considered a three-colors problem (Aardal et al. 2007), although in this work we consider the whole set of possible channels.

More closely related to our specific research are the works directly addressing channel assignment in Wi-Fi networks. It is interesting to highlight that the number of works in this field is quite limited if we consider Wi-Fi impact in our daily lives, as we are surrounded by a large and increasing number of Wi-Fi networks. This scarcity is probably due to the high complexity of the problem, being NP-hard, as stated in (Chieochan et al. 2010). It is precisely in (Chieochan et al. 2010) where we can find a survey of channel assignment in Wi-Fi networks. It is interesting to emphasize the works (Mishra et al. 2005, 2006) as they are probably the most similar works to ours, not only in terms of their scope (channel assignment for Wi-Fi networks) but also in terms of the problem modelling (the Wi-Fi network is modeled as a graph), although we focus on the use of nonlinear negotiation techniques to solve this type of problems. In (McDiarmid and Reed 2000; Narayanan 2002) authors also use graphs for channel assignment, but not specifically in Wi-Fi. Finally, in (Abusubaih et al. 2007) authors propose a coordination protocol for dynamic channel assignment in Wi-Fi networks.

In spite of all the above-mentioned works, the objective and contributions of our proposal are different from them. Our first contribution is to model the Wi-Fi infrastructure network as a multilayer graph composed by three layers. Our second contribution, and probably the most prominent, is to show that nonlinear negotiation techniques are powerful tools to assign channels to APs in comparison to well-known centralized optimization techniques like a particle swarm optimizer. Our third contribution consists of analyzing how graph properties, or network layout in terms of topology,
contribute to the performance gains that nonlinear negotiation approaches offer. Our fourth contribution is the study of how the different strategic behavior of the participants affects the results. A preliminary and shorter version of this work was presented in (de La Hoz et al. 2017), but in this paper we make not only a more in-depth study of the problem, including a more accurate multilayer model, but also a much more detailed experimental evaluation and analysis section.

The rest of this paper is organized as follows. In Sect. 2 we describe the graph-based problem model. Section 3 describes the negotiation scenario and approach. Section 4 includes the description of the performed experiments and a discussion of the obtained results. Finally, the last section concludes the paper summarizing our main contributions.

2 System Modelling

2.1 Wi-Fi Networks

Wi-Fi technology is the most widespread technology to deploy wireless local area networks. It is based on the family of IEEE 802.11 standards and it operates in unlicensed frequency bands, with the 2.4 GHz frequency band as the most popular. This band is divided into 11 partially overlapped channels (Ng and Szymanski 2012), although this number is dependent on the world region where the network operates. Our focus is to choose the channel where each access point (AP) will operate, and therefore, the channel where each wireless device (WD) will work, as the channel used by a WD is the same than the one used by its associated AP. This type of Wi-Fi architecture, the most widely deployed, is called infrastructure mode, where we have two different types of nodes: APs and WDs/clients, being examples in this last category devices like laptops, smartphones, TVs... From a user’s point of view, the access point is usually a wireless router. Note that WDs are able to communicate to each other only through their associated APs. The decision of the channel used must aim to minimize interferences, and, therefore, optimize network throughput.

In this paper we have chosen centrally managed Wi-Fi networks, i.e. we consider that there is a wireless controller that is responsible of selecting the frequency channel of the APs it has in charge, and also to collect information related to the utility they are achieving. This type of networks, whose number is increasing (Baid and Raychaudhuri 2015), represents not only the typical enterprise Wi-Fi environment, but also the increasing number of centrally managed home Wi-Fi networks, where the Internet Service Provider (ISP) manages the APs remotely. In this setting, the role of the mediator is assigned to an external device where the wireless controllers are attached, typically using a wired network. Regarding the implementation of centrally managed schemes, in (Cisco 2007) Cisco presents a network architecture that is able to perform it. Another prominent trend in networks is their virtualization. In this sense, Software-Defined Networking (SDN) is a flexible alternative for the management of networks, including Wi-Fi networks. Using SDN, the implementation of centrally managed techniques, once the channel assignment is known, is rather straightforward, as the SDN controller applies this assignment through its Open Flow southbound
API (Seyedebrahimi et al. 2016). In summary, all these facts will contribute to make centralized techniques even more applicable in a near future.

2.2 Multilayer Graph Model

As it is stated in Sect. 1, FAP is a specific instance of the more generic graph coloring problem, a widely studied field, some of which main results are summarized in (Jensen and Toft 2011; Tuza et al. 2003). For that reason, it is natural to model the problem of assigning channels as a graph. A frequency assignment graph is composed by a set of vertices, that represents the devices, and by edges connecting them. This way, channel assignment is reduced to a vertex coloring problem (Orden et al. in press). With this model and the typical vertex coloring problem (VCP), as described in Sect. 1, we are not able to capture all the peculiarities of our Wi-Fi channel assignment problem due to the following reasons. First, in Wi-Fi networks we have two different types of vertices, APs and WDs. Therefore, we do not have to color all the vertices, only the ones that represent APs. Note that WDs will take the same color of their AP. We could be tempted to not include WDs in the graph, but this would neglect their effect in terms of interferences. Second, the meaning of the edges in the graph would not be clear, as it could mean interferences or wireless connections or the provider to which an access point belongs to. Third, we do not intend to only avoid monochromatic edges, because, as has been shown, the distance between colors (or channels) is crucial in Wi-Fi networks in terms of interferences. In conclusion, a plain graph along with the VCP is not accurate enough to capture all the peculiarities of wireless networks (E. Z. Tragos et al. 2013).

Once defined the lack of information that a plain graph leads to, we next show the model we propose to more accurately capture the features of Wi-Fi deployments. We use a multilayer network graph (Kivelä et al. 2014) in which each layer models a given relation between network elements. More specifically, the graph is composed by three layers. For each layer we differentiate two different types of vertices: APs and WDs. The information that each layer captures is as follows:

- **Layer a** shows the relation between WDs and APs, i.e. in layer a edges represent the attachment between each WD and the AP it is associated to. Although a different assumption could be done, we have linked each WD with its closest AP. Remember that when we assign a color to an AP, all the WDs it has associated will also receive the same color, i.e. all the nodes linked in layer a will receive the same color.
- **Layer b** models the interference between neighboring nodes, so two nodes are linked provided the distance between them is lower than a value \(R \), that is obtained from the sensitivity of the reception antennas. Note that two WDs do not collide if they are associated to the same AP, as these communications are coordinated by the AP. The same applies for an AP and all the WDs it has associated. The interference model used is discussed in Sect. 2.4.
- Finally, **layer c** links the access points that are controlled by a network provider or ISP. This is a common situation, as it is usual to have a small number of network providers coexisting in the same place. It is very interesting to include this layer, as each provider is able to control their own APs. Of course, this is a general
situation, as we could consider that there is only a network provider for the case of the management of the wireless network in a corporation, for example. Moreover, the inclusion of this layer is essential for the negotiation point of view, because an ISP could sacrifice the performance of a node for the sake of improving the performance of others, what enables trade-offs in negotiations.

Note that this model does not restrict the communication between WDs associated to different APs, as in the most cases APs are connected to the rest of the network (including the rest of APs and to the Internet in general) through wired links. As these wired links do not affect at all the wireless communications, they do not appear in the multilayer graph.

2.3 Utility of a Channel Assignment

The performance of a certain channel assignment (network coloring) will be shown in terms of its utility. We define by U_i the utility of node i (either an AP or a WD) as a measure ranging from 0 to 1 that depends on the throughput perceived by the user. When the throughput is equal to its maximum value we will have $U_i = 1$ and when the throughput decreases the utility will also monotonically decrease. When the node cannot keep connected to the network, and therefore its throughput equals 0, then $U_i = 0$. In other words, the utility of a node can be considered as a normalized throughput. A parallel reasoning can be done in terms of the signal to noise ratio of terminal i, defined by $SINR_i$. As it is shown in (Bazzi 2011), when $SINR$ is above a certain value $SINR_{max}$, the network throughput reaches its maximum value for a node, so higher $SINR$ values will not lead to better throughputs. Additionally, when $SINR$ is below a certain value $SINR_{min}$ the wireless node cannot keep connected, so its throughput (and utility) equals to 0. Note that the values for $SINR_{max}$ and $SINR_{min}$ thresholds have been taken from a realistic point of view (Geier 2017). A graphical representation that shows the relation between $SINR$ and U_i is shown in Fig. 1.

For the moment, we have only defined the utility for a certain node. However, as we are interested in the whole utility of a particular channel assignment, we will sum the utility for all the nodes in the graph, i.e.

$$U = \sum_{\forall i} U_i.$$

Fig. 1 Relation between utility and $SINR$
Moreover, and for the right operation of the nonlinear negotiation techniques, we have also to define the utility for a provider p_i, defined by U_{p_i}. This value U_{p_i} is defined as the sum of the utilities for all its APs and the WDs attached to those APs

$$U_{p_i} = \sum_{\forall i \in p_i} U_i.$$

2.4 Interference Model

As seen in Sect. 2.3, the utility of a particular channel assignment depends on the $SINR$ value of each node ($SINR_i$). As usual, $SINR_i$ is computed as the ratio between the received power of the desired signal (P_i) and the sum of the received unsought interferences ($I_{j \rightarrow i}$):

$$SINR_i = \frac{P_i}{\sum_{\forall j \in J} I_{j \rightarrow i}},$$

being J the set of wireless nodes (either WDs or APs) that produce interferences to node i. Note that, as APs will have so many $SINR$ values as the number of WDs they have associated, we will take as $SINR$ for each AP the worst case, i.e. the minimum $SINR$ value.

Finally, to be able to compute the signal strengths required for computing $SINR$ we have to take into account interfering signals. In fact, the weight of the edges of the graph layer b, as described in Sect. 2.2, represent these interferences. Three are the main elements that affect the signal strength: distance (d), co-channel interference (W_{xy}) and activity index (ψ). In the following, we describe the impact of these three elements.

Distance is probably the most evident factor that affects signal strength. We have made use of the propagation model defined in (Green and Obaidat 2002), so we compute the power loss (P_{loss}), expressed in dB, for a 2.4 GHz signal as

$$P_{loss} = 7.6 + 40\log_{10}d - 20\log_{10}(h_i h_r) + L_{obs},$$

being h_i and h_r the heights where transmission and reception antennas are located and L_{obs} the power losses due to obstacles in the propagation as walls or windows (expressed in dB). As a result of considering the distance between network nodes, the weight assigned to an edge ij will depend on the distance d between nodes i and j, so our graph is geometrical and no longer abstract, as it is usually the case for the VCP.

Probably, the most peculiar feature of Wi-Fi networks is the partial overlap between channels. This behavior is captured by adding the co-channel interference index to the signal propagation. In this way, a transmission in channel i will affect another transmission in channel j with a fraction of its nominal power depending on the “distance” between channels in the spectrum, represented with matrix W_{xy}. The values for this co-channel interference have been taken from the empirical study conducted in (Ng and Szymanski 2012). Note again that the VCP does not consider the distance between colors, so our model is more general.
Finally, we have considered that data flows do not occupy the frequency channels permanently, but they use the spectrum a certain ratio of time. It is obvious that when a node emits with a higher ratio, the interferences it causes to other nodes are more harmful. This fact is represented by the activity index, \(\psi \). From all the above, the interference signal from node \(i \) to \(j \) (\(I_{j \rightarrow i} \)) that operate in channels \(x \) and \(y \) respectively can be computed as:

\[
I_{j \rightarrow i} = W_{xy} + \psi + P_t + G_t + G_r - P_{\text{loss}},
\]

where every value is expressed in logarithmic scale and \(P_t \) represents the transmission power and \(G_t \) (resp. \(G_r \)) represents the transmission (resp. reception) antenna gain.

3 Wi-Fi Frequency Assignment as a Negotiation Process

As stated above, the problem we want to tackle in this paper is the coordination between APs to select the most appropriate frequencies (channels) in order to reduce interference. We want to address this problem by means of automated negotiation (Fatima et al. 2014). In this section, we describe the problem as a negotiation process, using the key elements traditionally used to characterize this kind of processes (Fatima et al. 2001): the negotiation domain, the interaction protocol and the decision mechanisms.

3.1 Negotiation Domain

The negotiation domain defines the scope of the negotiation (basically what is negotiated and among whom). In this paper, we propose to see the channel assignment problem as a multiattribute negotiation, where an agreement would be to collectively assign a value to the channel assigned to each of the access points, being these channels the attributes (or issues) under negotiation. That is we will consider solutions or contracts \(S \) of the form \(S = \{s_i | i \in 1, \ldots, n_{\text{AP}}\} \), where \(n_{\text{AP}} \) is the number of access points. Here, \(s_i \in \{1, \ldots, 11\} \) stands for the channel which has been assigned to the corresponding access point \(i \).

As stated in the previous sections, we will assume a bilateral negotiation scenario, with two negotiating agents \(p_1, p_2 \), corresponding to two network providers (commonly ISPs), each of which has jurisdiction over a subset of the APs. This has the advantage that there are more works in the literature to compare with than for the three or more agents instance. Each agent will have a utility model based on the interference model described in Sect. 2. With these assumptions, the resulting utility spaces will be non-monotonic and highly rugged, with many local optima (Hattori et al. 2007).

3.2 Interaction Protocol

The interaction protocol defines the rules of the negotiation process. There is a wide variety of protocol proposals in the literature for bilateral and multilateral negotiations (Rubinstein 1982; Hattori et al. 2007). Since we expect the utility spaces to be highly
rugged, and in a similar way as we did in (Marsa-Maestre et al. 2009), we will use here a simple text mediation protocol (Klein et al. 2003). In the following we briefly describe the protocol:

1. The mediator generates a random candidate contract \(S_0 \), thus effectively selecting a random channel for each AP as the initial solution.
2. At time \(t \) (starting in \(t = 0 \)), the mediator sends contract \(S_t \) as a proposal for the negotiating agents (i.e., \(p_1, p_2 \)).
3. The negotiating agents then vote on the contract \(S_t \), either accepting or rejecting it.
4. For \(t = t + 1 \), the mediator builds a new contract \(S_{t+1} \) taking into account the received feedback and goes back to step 2.
5. After a fixed number of iterations, the process ends and a final agreement is declared.

This protocol definition has to be augmented with the appropriate decision mechanisms (or strategies) for the negotiating agents and the mediator. In the following, we define these decision mechanisms.

3.3 Decision Mechanisms

The decision mechanisms or strategies define how agents behave when facing the different situations that may occur during the negotiation. In our case, we have to define decision mechanisms for the negotiating agents and for the mediator. Negotiating agents have to decide which votes to cast when confronted with a proposal \(S_t \) from the mediator. We have considered two different strategies:

- **Hill-climber (HC):** This is a greedy utility maximization approach, where agents accept a proposal when it yields at least the same utility that the previous commonly accepted proposal.

- **Annealer (SA):** Simulated annealing (Klein et al. 2003) is a widely used method to avoid getting stuck in local optima during optimization processes. Contrary to greedy utility maximization, there will be a finite probability \(P_a \) for the acceptance of a proposal even when it makes the agent to lose utility. \(P_a \) is defined as
\[
P_a = e^{-\Delta u / \tau} \]
where \(\Delta u \) is the utility loss for the new proposal, and \(\tau \) is an annealing temperature parameter, which linearly decreases to zero during the course of the negotiation according to
\[
\tau = \tau_0 (1 - \frac{t}{T})
\]
being \(\tau_0 = 1 \) the initial temperature and \(T = 3000 \) the maximum number of iterations of the algorithm. In this way, agents are more flexible at the beginning of the negotiation and become more greedy as the deadline approaches.

The mediator, on the other hand, has to decide which new contract to propose to the negotiating agents at each iteration. We have considered here a single-text mediation mechanism (Klein et al. 2003):

1. The new proposed contract \(S_{t+1} \) is built from a base contract \(S^b \), which is the last contract upon which all negotiating agents have voted accept.
2. S_{i+1}^C is obtained by random, single-issue mutation from the base contract S_b. That is, the mediator randomly varies the assigned frequency for a randomly chosen AP.

3. When the deadline expires, the last contract upon which all negotiating agents have voted accept is assumed to be the final agreement.

This protocol has a number of desirable properties for our problem. First, it does not require revelation of agent preference information (agents just vote in favor or against proposed contracts), which makes it adequate for competitive settings. In addition, its computation and time cost is adjustable via the number of iterations, which makes it adequate for scenarios where performance is important (as it is the case of wireless networks applications). Finally, the protocol has been proven successful in academic nonlinear negotiation scenarios (Klein et al. 2003; Lang and Fink 2015).

4 Experimental Settings

4.1 Scenarios Under Study

For the scope of this work, we consider a typical, realistic Wi-Fi configuration, similar to the one used in (de la Hoz et al. 2015). Readers are referred to this paper for the specifics of the Wi-Fi configuration parameters. From an intuitive point of view, these scenarios could represent a realistic situation in residential or commercial managed buildings, where there are a number of different households or small businesses which get their internet access from an AP belonging to one of the available ISPs, and where there is an entity in charge of the building which is interested in social welfare (i.e. that all households/businesses are satisfied with their experience in the building). In this setting, the different ISPs will play the role of negotiating agents, while the managing entity would play the role of mediator.

Furthermore, we assume that APs and WDs do not move during the experiments. Regarding WDs, we have placed them randomly throughout the scenario, while for the APs we have considered two different types of scenarios. In the first case, APs are distributed randomly, as in (Marsa-Maestre et al. 2016). In the second one, APs are located in the junctions of a square grid. According to these positions of the deployed APs, we will call the first type of scenarios random, and the second one square.

We have considered scenarios with different number of APs and WDs per AP. More specifically, we have considered scenarios with 15, 50 and 100 APs and for each of these values, we have considered two different settings, with 1 and 5 WDs per AP. For simplicity, we use the nomenclature (i, j), being i the number of APs and j the number of WDs, having the following combinations: (15, 15), (15, 75), (50, 50), (50, 250), (100, 100) and (100, 500). For each one, we consider 50 distinct settings, resulting in 600 scenarios (300 for random scenarios and 300 for square scenarios). These scenarios, which are an extended version of the ones in (Marsa-Maestre et al. 2016), represent very different types of scenarios in terms not only of the problem size (we consider scenarios from a few tens to several hundreds of devices) but also in terms of variability, due to the random generation that produces the graphs. Moreover,
the variability is higher if we consider that we have taken away from the scenarios those wirelessly unconnected nodes. As we consider a bilateral negotiation, we have evenly divided APs into two random groups, one for each agent. An example of one of the scenarios under study is the one shown in Fig. 2, that corresponds to a square scenario of the category (100, 500).

4.2 Reference Techniques

We have compared our results with the next approaches:

- **Random Reference** the simplest possible technique, where each AP is assigned a channel in a random, uniform manner.
- **Augmented Lagrangian Particle Swarm Optimization (ALPSO)** this is a parallel particle swarm optimizer, which solves nonlinear non-smooth constrained problems using an augmented Lagrange multiplier approach to handle constraints (Jansen and Perez 2011). This provides the perspective of centralized, complete-information optimization.

4.3 Graph Metrics Under Consideration

An interesting question we intend to give answer in this research is what is the effect of the network-related features of a problem on the adequacy of the different techniques to tackle the problem. With this long-term goal in mind, we have analyzed our set of scenarios according to a set of metrics taken from the graph theory literature. Some of these metrics are directly or indirectly related to graph size, such as the order (number of vertices), or the diameter (higher number of hops between any two vertices) (Newman 2010). The other metrics give us an idea of the structural
properties of the graph regardless of its size. The Wiener index (Wiener 1947), for instance, assesses complexity considering distances between nodes, yielding a metric $W(G) = \frac{1}{2} \sum_{i=0}^{\mid N \mid} \sum_{j=0}^{\mid N \mid} d(n_i, n_j)$, with $d(n_i, n_j)$ being the lowest number of hops of the path linking n_i and n_j. Graph density is the global relative connectedness of the graph (i.e. number of edges) when compared to a graph that is fully-connected. Clustering coefficient is a similar metric but with a local meaning, computing the density for each node’s local cluster (i.e. its neighbors and itself) and then averaged. Finally, from the diverse centrality metrics used to rank the importance of vertices in a graph, we have chosen the betweenness centrality, which gives more importance to those nodes which are part of a bigger proportion of the shortest paths in the graph (Koschützki et al. 2005).

5 Performance Evaluation

Now we show the main results of the evaluation. The first results (Tables 1 and 2) show the performance obtained for each of the studied techniques for each of the scenario categories. Note that a scenario category is given in terms of the number of APs and WDs. Also note that performance is given as the sum of utilities for both providers, i.e. $U_{p1} + U_{p2}$. Moreover, each category comprehends 50 different graphs and for each graph we have performed 10 different repetitions. Results show that, for the simplest scenarios all the techniques, with the exception of random, perform fairly similar. However, as the scenarios get more complex the annealer SA becomes the best choice, followed by the hill climber HC and the particle swarm optimizer ALPSO. Furthermore, random becomes worse as the complexity of the scenarios increase. The difference in performance between HC and SA means that the scenarios under study are highly nonlinear (Klein et al. 2003; Marsa-Maestre et al. 2009), since one of the strengths of the annealer is its ability to escape from local optima. As an illustration of this high ruggedness of the utility function, in Fig. 3 we show a two-dimensional projection of the utility function for one of the simplest scenarios, with 15 access points and 15 wireless devices, over two random dimensions (remember there is one issue per AP, so the utility function is, in this case, 15-dimensional).

If we compare the utility of the random scenarios and their counterpart square scenarios, we perceive that the utility in random scenarios is lower. This is due to the fact that in the square scenarios, as the APs are evenly distributed, the number of APs that have no nearby clients, and therefore are removed from the graph, is lower than in the random setting. Finally, it is important to note that the results of the annealer SA are achieved 8 to 10 times faster than with the particle swarm ALPSO. The results in terms of the running time needed to obtain the previous performance results are summarized in Tables 3 and 4. The experiments have been run in an Intel® Core i7-2600 machine with 8 CPUs@3.40GHz and 8GB RAM, running Ubuntu 14.04.4 LTS.

Tables 1 and 2 offer us a first and clear comparison between the different techniques under study. However, Figs. 4 and 5 show us a more profound insight for some specific selected scenarios (for the sake of space), although the same conclusions can be given
Table 1 Utility for different techniques in random scenarios (Marsa-Maestre et al. 2016)

(APs, WDs)	Random	HC	SA	ALPSO		
	Avg	Std	Avg	Std	Avg	Std
(15, 15)	12.45	1.90	15.88	0.02	15.86	0.04
(15, 75)	30.57	5.18	52.53	1.35	53.85	0.50
(50, 50)	29.17	4.15	50.40	0.89	51.08	0.52
(50, 250)	60.28	9.44	125.24	4.71	134.96	2.34
(100, 100)	45.37	5.48	84.90	2.39	88.33	1.52
(100, 500)	86.21	11.68	188.13	7.93	208.23	4.33

Table 2 Utility for different techniques in square scenarios

(APs, WDs)	Random	HC	SA	ALPSO		
	Avg	Std	Avg	Std	Avg	Std
(15, 15)	16.57	2.67	24.18	0.05	24.15	0.06
(15, 75)	42.11	7.01	74.59	1.91	76.91	0.69
(50, 50)	32.96	4.43	60.26	1.34	61.80	0.82
(50, 250)	68.86	9.69	145.28	5.21	157.19	2.63
(100, 100)	49.36	4.55	91.05	2.40	94.64	1.63
(100, 500)	102.00	10.44	205.90	7.10	221.68	4.20

Fig. 3 Two-dimensional projection of the utility function for a (15,15) scenario
for the rest. Note that, also for the sake of brevity, we have focused on the larger scenarios, omitting the categories (15, 15) and (15, 75). Figures on the left show the cumulative distribution function (cdf) of the utility experienced by the different nodes in the network, so a point \((x, y)\) represents that a fraction of \(y\) nodes have a utility below \(x\). For that reason, lower curves are better. As an example, if we focus on Fig. 4a, and for \(Utility = 0.8\), we can observe that for \(SA\), around 45% of the nodes have utilities below 0.8. However, this percentage grows up to 50%, 52% and 90% for \(ALPSO\), \(HC\) and \(Random\), respectively. Obviously, as this percentage is lower, it means that there are less nodes with utility under 0.8, i.e. more nodes are above this utility. In all cases, we can conclude that the worst technique is clearly \(Random\), while the best one is \(SA\). Moreover, the performance of \(HC\) and \(ALPSO\) is fairly similar. Finally, to compare the performance of \(SA\) and \(ALPSO\), in the figures on the right we show heat maps of the difference in the utility achieved by each node for \(SA\) and \(ALPSO\), i.e. \(U_{i}^{SA} - U_{i}^{ALPSO}\), \(\forall i\), being \(i\) the \(i\)-th node. For that reason, red colorings represent situations where \(SA\) outperforms \(ALPSO\), while blue colorings represent the opposite situation. Note also that each heat map in the right corresponds to the same scenario whose results are shown in the cdf on the left. From those heat maps, as the color of most of the dots is very similar to white, we can conclude that the utilities given by \(SA\) and \(ALPSO\) are not very differently distributed, and that the differences between both techniques are distributed among a high number of nodes, i.e. many of the nodes are light red colored. Note that in some few cases, we have noted the situation given

(APs, WDs)	HC	SA	ALPSO			
	Avg	Std	Avg	Std	Avg	Std
(15, 15)	0.53	0.21	0.64	0.22	0.25	0.19
(15, 75)	5.79	1.22	5.96	1.23	5.86	2.00
(50, 50)	5.22	1.16	5.40	1.17	11.91	5.02
(50, 250)	69.39	6.44	69.32	6.36	285.89	74.37
(100, 100)	22.01	2.96	22.15	2.99	108.14	31.39
(100, 500)	330.38	17.23	326.90	16.61	3225.63	817.93

(APs, WDs)	HC	SA	ALPSO			
	Avg	Std	Avg	Std	Avg	Std
(15, 15)	1.35	0.12	1.55	0.13	0.65	0.10
(15, 75)	17.30	1.41	13.64	0.99	13.25	2.81
(50, 50)	13.05	1.07	13.64	1.23	23.53	4.42
(50, 250)	115.12	4.74	122.93	4.54	362.52	65.05
(100, 100)	47.97	3.23	47.02	3.22	187.34	33.32
(100, 500)	433.16	12.02	463.59	14.75	3985.70	797.10
Fig. 4 cdf of the utility and comparison of the utility achieved by SA and ALPSO in random scenarios. a (50, 50), b (50, 250), c (100, 100) and d (100, 500)
Fig. 5 cdf of the utility and comparison of the utility achieved by SA and ALPSO in square scenarios a (50, 50), b (50, 250), c (100, 100) and d (100, 500)
in Fig. 4c, where there are three nodes in dark red, so SA greatly improves ALPSO for them. It is also important to point out that we have not found any point in dark blue for any of the 600 scenarios under study. Finally, heat maps also show in their lower part the mean utility achieved by SA (U_n^{SA}) and ALPSO (U_n^{ALPSO}).

Next, we study how the different graph metrics described in Sect. 4.3 influence the gain that the annealer SA is able to obtain with respect to the particle swarm optimizer ALPSO. In Fig. 6 it is shown the quotient between the mean utility reached by SA in the 10 runs for each graph and the same value reached by ALPSO for the same graph (the dashed line with value 1 represents the values where the performance of SA and
ALPSO coincide). Note also that blue squares correspond to random scenarios while red crosses correspond to square ones.

Attending to the graph order (Fig. 6a) we note an almost linear increasing trend with this metric, reaching performance gains up to 10% for the largest graphs. This behavior was also glimpsed in Tables 1 and 2. A similar behavior is shown for the Wiener index in Fig. 6f. Figure 6b shows the opposite behavior when dealing with the average betweenness centrality. The best performance for SA is obtained for low values of centrality and this behavior can be explained by the fact that the negotiations of the annealer are expected to be easier as there are less interfering nodes, and therefore, more interfering vertices. A similar argument can be given for graph density where SA performs better for low density graphs, i.e. with less interferences, as shown in Fig. 6c. In Figs. 6d, e we show that there are optimal values for the diameter and cluster coefficient that make that SA performs better than ALPSO. In this last figure we have obtained an expected and interesting result, as the improvement achieved by SA in almost complete graphs (i.e. with high clustering coefficient) cannot be very high, as the room for improvement is more limited.

Finally, we now briefly discuss the strategic implications of the Wi-Fi negotiation setting. So far, we have just considered both agents playing the same strategy (i.e., hill-climbing or annealing) in the negotiation. Now we will see what happens if the agents may choose one or the other strategy freely. Table 5 shows the payoff matrices for both agents in all strategy combinations for the different random scenario categories. Note that, since the mechanisms are randomized, these are expected payoffs obtained as the average of all negotiations conducted. Payoffs are normalized to the maximum expected utility, to allow for easier interpretation. Each tuple in the table cells contains, therefore, the normalized expected utility for both agents, as \((\bar{U}^{provider}_1, \bar{U}^{provider}_2)\).

We can see that, for the smaller scenarios (Table 5a and b), SA is a best-response strategy in all cases, that is, regardless of the other agent’s strategy, the best “move” for an agent is to use simulated annealing. Thus, we have an equilibrium in the (SA, SA) strategy profile, which is also the situation with the highest expected social welfare. This can be interpreted as having incentives for cooperation in these scenarios, since the SA strategy is more cooperative than the HC one (i.e., an annealer agents can accept a contract even when there is no immediate gain). However, for more complex scenarios (Table 5c to f), the dominant strategy is HC, which leads to an equilibrium in the (HC, HC) strategy profile. This is also the strategy profile with the lowest expected social welfare. The problem is especially relevant in the more complex scenarios (which are also the more realistic ones), where the social welfare loss, also known as Price of Anarchy (Koutsoupias and Papadimitriou 1999), is above 14%. This can be interpreted as these scenarios having strong incentives for competition which hamper the social welfare.

6 Discussion and Conclusions

In this work we study the problem of coordinating frequency assignment for Wi-Fi access points. We consider an approach inspired in the well-known graph coloring problem. In contrast with the traditional viewpoint from discrete optimization, we
Table 5 Normalized payoff matrices for the different random scenario categories

(a) (15,15)

	Provider 1	Provider 2
	SA	HC
SA	(0.98, 0.98)	(1.00, 0.85)
HC	(0.85, 1.00)	(0.95, 0.95)

(b) (15,75)

	Provider 1	Provider 2
	SA	HC
SA	(1.00, 1.00)	(0.98, 0.92)
HC	(0.92, 0.98)	(0.94, 0.94)

(c) (50,50)

	Provider 1	Provider 2
	SA	HC
SA	(0.95, 0.95)	(0.95, 1.00)
HC	(1.00, 0.95)	(0.91, 0.91)

(d) (50,250)

	Provider 1	Provider 2
	SA	HC
SA	(0.80, 0.80)	(0.48, 1.00)
HC	(1.00, 0.48)	(0.78, 0.78)

(e) (100,100)

	Provider 1	Provider 2
	SA	HC
SA	(0.86, 0.86)	(0.69, 1.00)
HC	(1.00, 0.69)	(0.84, 0.84)

(f) (100,500)

	Provider 1	Provider 2
	SA	HC
SA	(0.84, 0.84)	(0.57, 1.00)
HC	(1.00, 0.57)	(0.72, 0.72)

provide a negotiation approach based on a simple-text mediation protocol and agent strategies based on simulated annealing. After experimental evaluation, our results are significantly better than the reference approaches. This is especially significant, because (1) it is the first time (to our knowledge) that nonlinear negotiation is used for complex network optimization in a realistic setting, and (2) the approach effectively addresses complex negotiation scalability, which has been a challenge to apply this kind of techniques to real settings. The advantage of using our negotiation approach is especially relevant in the more complex scenarios. In addition, there is a clear influence of the graph structural properties on the performance of the approach, which could be used to derive insights to guide the design of wireless coverage maps in settings where there are coexisting, competing networks.

There are a number of issues that are left outside the scope of this work. Probably the most important is the fact that we consider a static environment, where wireless clients do not appear or disappear (or move) during the course of the negotiation. This imposes a performance constraint on the approaches considered, since the response time must be short enough to allow to provide a solution before the network has changed too much for the solution to be useful. Also, since we have used uniform distributions for provider AP placements, client placements, activity indexes and the like, the generated scenarios result in “symmetric” negotiations, in the sense that there are no fundamental “inequalities” that make one or the other provider to have more “negotiating power” in the negotiation. Scenarios more “biased”, where a provider has more APs or more clients than the other, or where clients have non-uniformly distributed activity indexes, will likely result in asymmetric negotiation settings where fairness would be an issue and should be studied.

There are a different future lines of research which emerge from this work. We are studying the creation of negotiation-based hyper-heuristics, to dynamically adapt the approaches to the metrics that characterize the scenarios. We are also working on distributed belief propagation as a way to conduct the negotiation, which raises some challenges in itself. Furthermore, we are enlarging the family of negotiation
approaches under evaluation, and we are working on generalizing the approach to other network-structured real-world problems. Finally, we want to address the outlined strategic implications of the negotiation setting and introduce mechanisms to mitigate the detected incentives and their effects, applying a generalization of the work we did in this line for other nonlinear negotiation domains (Lopez-Carmona et al. 2012).

Acknowledgements This work has been supported by the Spanish Ministry of Economy and Competitiveness Grants TIN2016-80622-P (AEI/FEDER, UE), TIN2014-61627-EXP, MTM2017-83750-P.

References

A Bazzi (2011) On uncoordinated multi user multi RAT combining. In: Vehicular technology conference (VTC Fall), 2011 IEEE, pp 1–6. https://doi.org/10.1109/VETECF.2011.6093056
Aardal KI, Van Hoesel SP, Koster AM, Mannino C, Sassano A (2007) Models and solution techniques for frequency assignment problems. Ann Oper Res 153(1):79–129
Abusubaih M, Gross J, Wolisz A (2007) An inter-access point coordination protocol for dynamic channel selection in IEEE802.11 wireless LANs. In: 1st IEEE workshop on autonomic communications and network management 2007 (ACNM 2007)
Baid A, Raychaudhuri D (2015) Understanding channel selection dynamics in dense wi-fi networks. IEEE Commun Mag 53(1):110–117
Banchs A, Ortin J, Garcia-Saavedra A, Leith DJ, Serrano P (2016) Thwarting selfish behavior in 802.11 WLANs. IEEE/ACM Trans Netw 24(1):492–505
Bermini R, Bondavalli A, Lollini P, Montecchi L (2016) Combining san and p-graphs for the analysis and optimization of industrial processes. In: Dependable computing conference (EDCC), 2016 12th European, IEEE, pp 197–207
Bodlaender HL, Kloks T, Tan RB, van Leeuwen J (2000) λ-coloring of graphs. In: Annual symposium on theoretical aspects of computer science, Springer, pp 395–406
Chieochan S, Hossain E, Diamond J (2010) Channel assignment schemes for infrastructure-based 802.11 WLANs: a survey. IEEE Commun Surv Tutor 12(1):124–136
Cisco (2007) Radio resource management under unified wireless networks, cisco system technical note
De Jonge D, Sierra C (2015) NB3: a multilateral negotiation algorithm for large, non-linear agreement spaces with limited time. Auton Agents Multi-Agent Syst 29(5):896–942
de la Hoz E, Gimenez-Guzman JM, Marsa-Maestre I, Orden D (2015) Automated negotiation for resource allocation in wireless surveillance sensor networks. Sensors 15(11):29547–29568
Tragos EZ, Zeadally S, Fragkiadakis AG, Siris VA (2013) Spectrum assignment in cognitive radio networks: a comprehensive survey. IEEE Commun Surv Tutor 15(3):1108–1135. https://doi.org/10.1109/SURV.2012.1111.00047
FAP (2017) Fap web—a website about frequency assignment problems. http://fap.zib.de/
Fatima S, Kraus S, Wooldridge M (2014) Principles of automated negotiation. Cambridge University Press, Cambridge
Fatima SS, Wooldridge M, Jennings NR (2001) Optimal negotiation strategies for agents with incomplete information. In: International workshop on agent theories, architectures, and languages. Springer, pp 377–392
Fornito A (2016) Graph theoretic analysis of human brain networks. fMRI Techniques and Protocols pp 283–314
Fujita K, Bai Q, Ito T, Zhang M, Ren F, Aydo˘gan R, Hadfi R (2017) Modern approaches to agent-based complex automated negotiation. Springer, Switzerland
Geier J (2017) How to: define minimum SNR values for signal coverage. http://www.wireless-nets.com/resources/tutorials/define_SNR_values.html
Ghavidelsyooki M, Awasthi A, Allouche M, Berger J, Mitrovic Minic S (2017) Partitioning of transportation networks under disruption. Int J Model Simul 37:1–9
Gimenez-Guzman JM, Marsa-Maestre I, Orden D, de la Hoz E, Ito T (2018) On the goodness of using orthogonal channels in WLAN IEEE 802.11 in realistic scenarios. Wireless Communications and Mobile Computing, vol. 2018, 11p. https://doi.org/10.1155/2018/5742712
Green DB, Obaidat AS (2002) An accurate line of sight propagation performance model for ad-hoc 802.11 wireless LAN (WLAN) devices. In: IEEE international conference on communications, 2002. ICC 2002, vol 5, pp 3424–3428. https://doi.org/10.1109/ICC.2002.997466
Griggs JR et al (2009) Graph labellings with variable weights, a survey. Discret Appl Math 157(12):2646–2658
Hattori H, Klein M, Ito T (2007) Using Iterative Narrowing to Enable Multi-party Negotiations with Multiple Interdependent Issues. In: Proceedings of the 6th international joint conference on autonomous agents and multiagent systems, ACM, New York, NY, USA, AAMAS ’07, pp 247:1–247:3. https://doi.org/10.1145/1329125.1329424
Jansen P, Perez R (2011) Constrained structural design optimization via a parallel augmented Lagrangian particle swarm optimization approach. Comput Struct 89(13–14):1352–1366. https://doi.org/10.1016/j.compstruc.2011.03.011
Jensen TR, Toft B (2011) Graph coloring problems, vol 39. Wiley, Hoboken
Kivelä M, Arenas A, Barthelemy M, Gleeson JP, Moreno Y, Porter MA (2014) Multilayer networks. J Complex Netw. https://doi.org/10.1093/comnet/cnu016
Klein M, Faratin P, Sayama H, Bar-Yam Y (2003) Negotiating complex contracts. Group Decis Negotiat 12(2):111–125. https://doi.org/10.1023/A:1023068821218
Koschützki D, Lehmann KA, Peeters L, Richter S, Tenfelde-Podehl D, Zlotowski O (2005) Centrality indices. In: Brandes U, Erlebach T (eds) Network analysis: methodological foundations. Springer, Berlin, pp 16–61
Koutsoupias E, Papadimitriou C (1999) Worst-case equilibria. Stacs, Springer 99:404–413
Kumar S, Dutta K, Sharma G (2016) A detailed survey on selfish node detection techniques for mobile ad hoc networks. In: Fourth international conference on parallel, distributed and grid computing (PDGC), IEEE, pp 122–127
de La Hoz E, Marsa-Maestre I, Gimenez-Guzman JM, Orden D, Klein M (2017) Multi-agent nonlinear negotiation for wi-fi channel assignment. In: Proceedings of the 16th conference on autonomous agents and multiagent systems, international foundation for autonomous agents and multiagent systems, pp 1035–1043
Lang F, Fink A (2015) Learning from the metaheuristics: protocols for automated negotiations. Group Decis Negotiat 24(2):299–332. https://doi.org/10.1007/s10726-014-9390-x
Lopez-Carmona MA, Marsa-Maestre I, Klein M, Ito T (2012) Addressing stability issues in mediated complex contract negotiations for constraint-based, non-monotonic utility spaces. Auton Agents Multi-Agent Syst 24(3):485–535
Malaguti E, Toth P (2010) A survey on vertex coloring problems. Int Trans Oper Res 17(1):1–34
Marsa-Maestre I, Lopez-Carmona MA, Velasco JR, Ito T, Klein M, Fujita K (2009) Balancing utility and deal probability for auction-based negotiations in highly nonlinear utility spaces. In: Proceedings of the 21st international joint conference on artificial intelligence IJCAI’09. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, pp 214–219
Marsa-Maestre I, de la Hoz E, Gimenez-Guzman JM, Orden D, Klein M (2016) Nonlinear negotiation approaches for complex-network optimization: a study inspired by wi-fi channel assignment. In: International workshop on conflict resolution in decision making, Springer, pp 51–65
McDiarmid C, Reed B (2000) Channel assignment and weighted coloring. Networks 36(2):114–117
Mishra A, Banerjee S, Arbaugh W (2005) Weighted coloring based channel assignment for WLANs. ACM SIGMOBILE Mobile Comput Commun Rev 9(3):19–31
Mishra A, Brik V, Banerjee S, Srinivasan A, Arbaugh WA (2006) A client-driven approach for channel management in wireless LANs. In: INFOCOM
Narayanan L (2002) Channel assignment and graph multicoloring. Handbook Wirel Netw Mobile Comput 8:71–94
Newman M (2010) Networks: an introduction. Oxford University Press, Oxford
Ng SWK, Szymanski TH (2012) Interference measurements in an 802.11n wireless mesh network testbed. In: 25th IEEE Canadian conference on electrical computer engineering (CCECE), 2012 , pp 1–6. https://doi.org/10.1109/CCECE.2012.6334846
Orden D, Gimenez-Guzman JM, Marsa-Maestre I, de la Hoz E (2018) Spectrum graph coloring and applications to Wi-Fi channel assignment. Symmetry 10(3):65
Orden D, Marsa-Maestre I, Gimenez-Guzman JM, de la Hoz E, Alvarez-Suarez A (2018) Spectrum graph coloring to improve Wi-Fi channel assignment in a real-world scenario via edge contraction. Discret Appl Math (in press)
Ren F, Zhang M, Sim KM (2009) Adaptive conceding strategies for automated trading agents in dynamic, open markets. Wirel Healthc 46(3):704–716. https://doi.org/10.1016/j.dss.2008.11.005
Rubinstein A (1982) Perfect equilibrium in a bargaining model. Econometrica 50(1):97–109. https://doi.org/10.2307/1912531
Seyedebrahimi M, Bouhafs F, Raschella A, Mackay M, Shi Q (2016) Sdn-based channel assignment algorithm for interference management in dense wi-fi networks. In: 2016 European conference on networks and communications (EuCNC), pp 128–132
Sharp A (2007) Distance coloring. In: European symposium on algorithms, Springer, pp 510–521
Tuza Z, Gutin G, Plummer M, Tucker A, Burke E, Werra D, Kingston J (2003) Colorings and related topics. Handbook of graph theory. Discrete mathematics and its applications. CRC Press, Boca Raton, pp 340–483
Valori L, Giannuzzi GL, Facchini A, Squartini T, Garlaschelli D, Basosi R (2016) A generation-attraction model for renewable energy flows in Italy: a complex network approach. Eur Phys J Spec Top 225(10):1913–1927
Wiener H (1947) Structural determination of paraffin boiling points. J Am Chem Soc 69(1):17–20. https://doi.org/10.1021/ja01193a005