The genetics of circadian rhythms, sleep and health

Aarti Jagannath1,*, Lewis Taylor1, Zeinab Wakaf2, Sridhar R. Vasudevan2 and Russell G. Foster1,*

1Sleep and Circadian Neuroscience Institute, OMPi-G, Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK and 2Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK

*To whom correspondence should be addressed. Email: aarti.jagannath@ndcn.ox.ac.uk (A.J.); russell.foster@eye.ox.ac.uk (R.G.F.)

Abstract
Circadian rhythms are 24-h rhythms in physiology and behaviour generated by molecular clocks, which serve to coordinate internal time with the external world. The circadian system is a master regulator of nearly all physiology and its disruption has major consequences on health. Sleep and circadian rhythm disruption (SCRD) is a ubiquitous feature in today’s 24/7 society, and studies on shift-workers have shown that SCRD can lead not only to cognitive impairment, but also metabolic syndrome and psychiatric illness including depression (1,2). Mouse models of clock mutants recapitulate these deficits, implicating mechanistic and causal links between SCRD and disease pathophysiology (3–5). Importantly, treating clock disruption reverses and attenuates these adverse health states in animal models (6,7), thus establishing the circadian system as a novel therapeutic target. Significantly, circadian and clock-controlled gene mutations have recently been identified by Genome-Wide Association Studies (GWAS) in the aetiology of sleep, mental health and metabolic disorders. This review will focus upon the genetics of circadian rhythms in sleep and health.

Introduction to the Circadian Clock
Life has evolved under a 24-h rhythm where environmental factors such as temperature and light fluctuate with a daily predictable sequence. As a consequence, most organisms have evolved circadian clocks that anticipate these regular environmental changes and establish endogenous 24-h rhythms to get the correct physiology and behaviour to the appropriate time window each day. The mechanisms underlying circadian regulation are cell autonomous transcription-translation feedback loops (TTFLs): In mammals, the transcription factors CLOCK and BMAL1 drive the expression of Period (Per1/2) and Cryptochrome (Cry1/2), whose protein products in turn feed-back to inhibit CLOCK and BMAL1 (8) (Fig. 1). Downstream of these four factors lie thousands of clock-controlled genes that orchestrate the oscillation of tissue-specific metabolic and physiological functions. Most cells in the body possess a molecular clock and are maintained in synchrony by a master pacemaker located in the suprachiasmatic nuclei (SCN) of the hypothalamus (9).

In order for the circadian network to have adaptive value, it must receive and respond to signals that provide temporal cues (zeitgebers). Zeitgebers modulate the temporal expression patterns of clock genes such as Per1/2 (10), to set the phase, amplitude and period of the molecular clockwork. Light, which signals the dawn-dusk cycle, is the best-characterised zeitgeber, and this light input from the photosensitive retinal ganglion cells (pRGCs) of the retina (11) is transmitted directly to the ventral SCN through synaptic connections, where glutamate signaling then drives cAMP response element binding factor (CREB-CRTC)-mediated transcription of Per genes in the SCN (12) (Fig. 2). Peripheral circadian clocks throughout the body receive inputs from the SCN and numerous additional signals, including feeding (13); glucocorticoids (14); temperature (15); and...
Circadian Rhythm Disruption in Mental Illness

There is considerable evidence that patients with neuropsychiatric diseases, such as bipolar disorder, schizophrenia and depression exhibit SCRD and this, alongside the evidence from mouse models has been extensively reviewed previously (2,25). This disruption encompasses a wide range of sleep perturbations, including fragmented sleep, reduced total sleep time and changes in normal sleep architecture (26). Furthermore, these patients show dysregulation of multiple circadian outputs and of the core molecular clock (Fig. 1). Remarkably, fibroblasts isolated from schizophrenic patients show a loss of rhythmicity in CR1 and PER1 expression, and their peripheral blood leukocytes have decreased and/or disrupted diurnal expression of CLOCK, PER1/2, CR1 and a functional CLOCK homologue NPAS2 in comparison to healthy controls (27). Fibroblasts isolated from bipolar patients display a larger variance in period and amplitude and deficits in the entrainment pathways. Lithium is used for the treatment of bipolar disorder, and lithium’s primary therapeutic target is

![Diagram of the mammalian molecular clock](https://academic.oup.com/hmg/article-abstract/26/R2/R128/3965504/26/R2/R128?anchor= Pendulum)
postulated to be Rev-erba (28) (Fig. 1). Additionally, patients with major depressive disorder display a marked disruption in the circadian rhythm and phasing of core clock genes across multiple brain regions (29).

It is becoming increasingly clear that disruption of the molecular clock is not just a consequence of neuropsychiatric illness, but instead forms part of a bidirectional feedback loop with neuropsychiatric disease, whereby perturbations in one exacerbate dysfunction in the other (2,5). In this context, it is worth noting that, many disease relevant processes are under circadian control, such as sleep-wake timing and monoaminergic neurotransmitter synthesis, signalling and degradation (30–32). Furthermore, multiple single nucleotide polymorphisms (SNPs) in the genes encoding the core components of the molecular clock have been demonstrated, albeit weakly, to be associated with schizophrenia, bipolar disorder and depression, suggesting a causal role for clock dysfunction in neuropsychiatric disease (Table 1).

Currently the functional consequence of these SNPs and the strength of their association with disease remains unclear, however, recent work has provided insight into how mutations may impact clock function. Two rare missense mutations in the PERIOD3 gene (PER3-P415A/H417R), found to be associated with seasonal depression, were demonstrated to generate a mutant PER3 protein unable to stabilise PER1/2 and induce their nuclear localisation, resulting in circadian rhythm disruption (63).

A similar relationship has been found in patients with neurodegenerative diseases. Many conditions are associated with the disruption of sleep, circadian outputs and the core molecular clock (64). Patients with Alzheimer’s disease (AD) exhibit neuronal loss in the SCN (65), and a recent study by Lim et al. found that the diurnal and seasonal transcriptional rhythmicity of core clock genes in the dorsolateral prefrontal cortex is disrupted in AD patients (66). In addition, the expression of Bmal1/2 is dampened in peripheral blood leukocytes isolated from Parkinson’s disease (PD) patients (67,68).

As with neuropsychiatric illness, disruption of the core molecular clock is both a consequence of, and a contributor to, neurodegenerative diseases. Many conditions are associated with circadian rhythm disruption (69) (Fig. 1). In animal models it has been shown that sleep deprivation leads to increased Aβ plaque formation and that sleep is required for the clearance of Aβ (70). Additionally, the circadian clock regulates many molecular processes commonly involved in neurodegeneration, such as oxidative stress (71), metabolism (see next section), neuroinflammation (72,73).
Table 1. A list of single nucleotide polymorphisms (SNPs) in core clock genes that are associated with neuropsychiatric or neurodegenerative diseases. Only P values highlighted in bold remain significant after multiple comparisons correction.

Gene	Disease	Sample size	Total SNPs tested	SNP	P value	Test used	Reference	
ARNTL	BPD	180 controls, 234 patients	44	rs1481892	P = 0.018	Cochran-Armitage trend test	(33)	
				rs4757142	P = 0.0009			
				rs1982350	P = 0.005			
				rs7107287	P = 0.033			
BPD		477 controls, 523 patients	268	rs1481892	P = 0.018	Cochran-Armitage trend test	(34)	
				rs712633	P = 0.04			
SAD		136 controls, 147 patients	115	rs2290035	P = 0.02	Logistic regression analysis	(35)	
MD		926 controls, 459 patients		rs2290036	P = 0.005	Logistic regression analysis	(36)	
PS		913 controls, 535 patients	6	rs2290036	P = 0.005	Logistic regression analysis	(37)	
BPD		405 controls, 465 patients	92	rs3789327	P = 0.0212	Association testing using FBAT	(38)	
AD		423 controls, 476 patients	1	rs2278749	P < 0.0001	Pearson’s chi-squared test	(39)	
PD		1342 controls, 1394 patients	125	rs7950226	P = 0.0088	Cochran-Armitage trend test	(40)	
				rs11605776	P = 0.0049			
				rs10832022	P = 0.0049			
				rs7941761	P = 0.0197			
				rs1562437	P = 0.0013			
				rs3816358	P = 0.0275			
				rs900147	P = 0.00423 *			
CLOCK	BPD	101 patients, 128 controls, 145 patients	1	rs180260	P = 0.026	One-way ANOVA	(41)	
	BPD		635 controls, 145 patients	44	rs180260	P = 0.0138	Association determined using the SNPassoc software package	(42)
				rs11932595	P = 0.0319			
SZ		128 controls, 199 patients	1	rs180260	P = 0.026	Logistic regression analysis	(43)	
SZ				rs180260	P < 0.05	Pearson’s chi-squared test	(44)	
MD		776 controls, 592 patients	32	rs180260	P = 0.028	Pearson’s chi-squared test	(45)	
AD		423 controls, 296 patients	1	rs180260	P < 0.0001	Pearson’s chi-squared test	(46)	
BPD		405 controls, 465 patients	92	rs17777929	P = 0.0317	Association testing using FBAT	(47)	
BPD		614 controls, 518 patients	62	rs534654	P = 0.0097	Pearson’s chi-squared test	(48)	
				rs4340844	P = 0.015			
				rs6850524	P = 0.012			
BPD	444 BPD families, 130 unrelated BPD families	197		rs6850524	P = 0.032	Pearson’s chi-squared test	(49)	
				rs3805148	P = 0.009			
				rs3736544	P = 0.024			
				rs12504300	P = 0.009			
				rs4864542	P = 0.01			
				rs12648271	P = 0.037			
BPD		440 controls, 199 patients	209	rs10462028	P = 0.02	Logistic regression analysis	(50)	
AD		188 controls, 130 patients	1	rs1554483	P = 0.009	Pearson’s chi-squared test	(51)	
AD		423 controls, 296 patients	1	rs4580704	P < 0.0001	Pearson’s chi-squared test	(52)	
CRY1	MD	654 BPD patients, 335 patients	7	rs10861688	P = 0.0048 *	Covariated linear regression	(53)	
MD	440 controls, 105 patients	209	rs2287161	P = 0.007 †	Logistic regression analysis	(54)		
MD		485 controls, 105 patients	3	rs2287161	P = 0.010	Logistic regression analysis	(55)	
CRY2	BPD	477 controls, 268	rs1554338	P = 0.031	Cochran-Armitage trend test	(56)		

(Continued)
Table 1. (Continued)

Gene	Disease	Sample size	Total SNPs tested	SNP	P value	Test used	Reference	
MD	523 patients	118 patients	4	rs10838524	$P = 0.0017$	Logistic regression analysis	(54)	
					$P = 0.00074$			
					$P = 0.007$			
DT	3871 patients	136 patients	48	rs10838524	$q = 0.04$	Linear and logistic regression analysis	(55)	
					$q = 0.04$			
					$q = 0.04$			
					$q = 0.04$			
DT	4154 patients	166 patients	48	rs10838524	$q = 0.003$	Logistic regression analysis	(56)	
					$q = 0.002$			
					$q = 0.002$			
					$q = 0.002$			
MD	4154 patients	862 patients	48	rs10838524	$q = 0.05$	Logistic regression analysis	(56)	
					$q = 0.05$			
					$q = 0.05$			
					$q = 0.05$			
NR1D1	BPD	444 BPD families	197	rs2071427	$P = 0.0019$	Pearson’s chi-squared test	(48)	
		130 control families		rs2269457	$P = 0.0029$			
					$P = 0.0005$			
PD	1342 patients	1394 patients	125	rs3744805	$P = 0.00294$	Cochran-Armitage trend test	(40)	
					$P = 0.0009$			
PER1	PD	1342 patients	125	rs2253820	$P = 0.00067$*	Cochran-Armitage trend test	(40)	
PER2	SAD	173 controls	13	rs10870	$P = 0.03$	Logistic regression analysis	(35)	
MD	459 controls	926 patients	115	rs2304672	$P = 0.0087$	Logistic regression analysis	(57)	
					$P = 0.0033$			
					$P = 0.0036$			
					$P = 0.0018$			
SZ	477 controls	527 patients	268	rs2304672	$P = 0.046$	Cochran-Armitage trend test	(34)	
					$P = 0.033$			
BPD	180 controls	138 patients	44	rs2859387	$P = 0.039$	Cochran-Armitage trend test	(33)	
PER3	SZ	180 controls	44	rs228729	$P = 0.028$	Cochran-Armitage trend test	(33)	
		331 patients						
SZ	477 controls	527 patients	268	rs2304674	$P = 0.036$	Cochran-Armitage trend test	(34)	
					$P = 0.031$			
MD	2915 controls	1296 patients	529	rs12137927	$P = 0.00054$	Logistic regression analysis	(58)	
					$P = 0.00013$			
					$P = 0.00014$			
MD	776 controls	592 patients	32	rs17031614	$P = 0.017$	Pearson’s chi-squared test	(45)	
					$P = 0.007$			
RORA	MD	459 controls	926 patients	115	rs2028122	$P = 0.044$	Logistic regression analysis	(57)
					$P = 0.0007$			
					$P = 0.0009$			
MD	4811 participants	Whole genome		rs12912233	$P = 6.3 \times 10^{-7}$	Weighted z score-based fixed effects meta-analysis	(59)	
					$P = 6.3 \times 10^{-6}$			
					$P = 7.2 \times 10^{-6}$			
					$P = 1.5 \times 10^{-5}$			
MD	2915 controls	1296 patients	529	rs11632098	$P = 0.00056$	Logistic regression analysis	(58)	
					$P = 6.3 \times 10^{-7}$			
BPD	1759 controls	479 patients	353	rs782931	$P = 0.01$*	Pearson’s chi-squared test	(60)	
BPD	200 controls	280 patients	27	rs4774388	$P = 0.024$	Additive, dominant and recessive genetic models with a maximum test for associations	(61)	
BPD	1770 controls	448 patients	429	43 SNPs reached nominal significance	$P = 0.002-0.044$			
RORB	SZ	477 controls	268	rs10491929	$P = 0.023$	Cochran-Armitage trend test	(34)	

(Continued)
Furthermore, growth and synaptic vesicle assembly within these cells. Variations in the expression of genes involved in survival, proliferation, and inflammation within these cells further exacerbate β-cell dysfunction. The disruption of these components has been reported. Remarkably, being obese alters the expression of both neurodegenerative and neuropsychiatric conditions.

Metabolic Disorders

The metabolic system is under strong circadian control, and these relationships are summarised in Figure 3. One of the first indications of the strong coupling between circadian clocks and metabolism was suggested by the observation that the majority of cycling transcripts in the liver are implicated in multiple metabolic pathways (19,75). Processes such as glucose, cholesterol, and triglyceride metabolism are a few examples, whose rate-limiting steps were shown to be major sites of circadian regulation.

Clock genes are linked directly to metabolic syndrome (MetS), both in mutant mice and humans. For example, homozygous Clock mutant mice (Clock^{−/−}) exhibit significant hypoglycemia, hyperinsulinemia, hepatic steatosis and dyslipidemia (76), all of which are significant markers of MetS. Remarkably, being obese alters the expression of both neurodegenerative and neuropsychiatric conditions.

Clock genes are linked directly to metabolic syndrome (MetS), both in mutant mice and humans. For example, homozygous Clock mutant mice (Clock^{−/−}) exhibit significant hypoglycemia, hyperinsulinemia, hepatic steatosis and dyslipidemia (76), all of which are significant markers of MetS. Remarkably, being obese alters the expression of both neurodegenerative and neuropsychiatric conditions.

Table 1. (Continued)

Gene	Disease	Sample size	Total SNPs tested	SNP	P value	Test used	Reference
BPD	527 patients	268	rs17691363	P = 0.035	Cochran-Armitage trend test	(34)	
PD	1342 controls	125	rs17691363	P = 0.026	Cochran-Armitage trend test	(62)	
BPD	200 controls	27	rs1327836	P = 0.003	Additive, dominant and recessive genetic models with a maximum test for associations	(61)	
BPD	1770 controls	429	rs1761135	P = 0.027			

*denotes a Bonferroni corrected P value, † denotes a permutation corrected P value. All other P values are not adjusted for multiple comparisons. q denotes the false discovery rate q-values, used to correct for multiple comparisons. q < 0.05 was taken to be statistically significant.

Abbreviations: AD: Alzheimer’s disease; BPD: Bipolar disorder; DT: dysthymia; MD: major depression; PD: Parkinson’s disease; PS: psychosis; SAD: seasonal affective disorder; SZ: schizophrenia.

and protein dynamics (74). Evidence linking SNPs in core clock genes with neurodegenerative diseases is currently scarce, with only a limited number of studies demonstrating the association of SNPs in CLOCK, BMAL1 and/or PER1 with AD or PD. Collectively, there is currently compelling evidence that disruption of the molecular clock contributes to the progression of both neurodegenerative and neuropsychiatric conditions.

Metabolic Disorders

The metabolic system is under strong circadian control, and these relationships are summarised in Figure 3. One of the first indications of the strong coupling between circadian clocks and metabolism was suggested by the observation that the majority of cycling transcripts in the liver are implicated in multiple metabolic pathways (19,75). Processes such as glucose, cholesterol, and triglyceride metabolism are a few examples, whose rate-limiting steps were shown to be major sites of circadian regulation.

Clock genes are linked directly to metabolic syndrome (MetS), both in mutant mice and humans. For example, homozygous Clock mutant mice (Clock^{−/−}) exhibit significant hypoglycemia, hyperinsulinemia, hepatic steatosis and dyslipidemia (76), all of which are significant markers of MetS. Remarkably, being obese alters the expression of both neurodegenerative and neuropsychiatric conditions.

Clock genes are linked directly to metabolic syndrome (MetS), both in mutant mice and humans. For example, homozygous Clock mutant mice (Clock^{−/−}) exhibit significant hypoglycemia, hyperinsulinemia, hepatic steatosis and dyslipidemia (76), all of which are significant markers of MetS. Remarkably, being obese alters the expression of both neurodegenerative and neuropsychiatric conditions.

In humans, like mice, polymorphisms of CLOCK and BMAL1 have been associated with metabolic disorders. For example, CLOCK gene polymorphisms have been linked to a higher susceptibility to obesity (81,82) and two haplotypes of BMAL1 have been associated with hypertension and type 2 diabetes mellitus, replicated both in humans and in rodent models (83). Similar studies have also linked polymorphisms in other core clock genes like PER2 and NPAS2 to fasting hyperglycemia and hypertension respectively (84). In a small population of lean and obese women, a correlation between obesity and core clock components has been reported. Remarkably, being obese alters expression of core clock genes in adipocytes throughout the day and induces notable upregulation of CRY2 and REV-ERβa, two important negative feedback components of circadian clocks (85) (Fig. 1). Furthermore, a rare SNP in visfatin (NAMPT/PBEF1), a gene known to be involved in the negative arm of the clock (86) (not shown in Figures), has been associated with protection from obesity in human populations (87).

It is now evident that circadian clocks do not only regulate metabolism, but metabolic pathways can in turn feedback upon the circadian clockwork (Fig. 3). Restricting feeding to daytime (sleep phase) in mice causes uncoupling of peripheral clocks within the liver, kidney, heart and pancreas from SCN rhythms (13,88). In addition, a high-caloric diet has been shown to disrupt behavioural and molecular circadian rhythms in mice (89). Furthermore, two important regulators of homeostasis and metabolism in Drosophila, FOXO and GSK3β/Shaggy, were shown to be necessary for robust circadian rhythms (90,91), which emphasises the connection between metabolism and circadian clocks across the animal kingdom.
Collectively, the results from humans and animal models highlight the considerable involvement of the circadian machinery in metabolic pathways. A two-way interplay between these two systems is clear and the mechanisms governing their intercommunication are slowly emerging (Fig. 3).

Disorders of Sleep Timing

The human population displays a wide spread of circadian phenotypes or chronotypes, with early types (larks) at one end of the spectrum and late types (owls) at the other. Chronotype is influenced by an individual’s genetics, development and exposure to light and dawn and dusk. In terms of the genetics, clock gene mutations can explain some of the differences in chronotype. Two recent large scale genomic studies identified variants in several clock-related loci (92,93), particularly *PER2/3*, underlying morningness in the general population. Different chronotypes can usually alter sleep patterns to accommodate both their social demands and circadian clock; Winston Churchill believed in the importance of good sleep, but was a very late chronotype and compensated with long afternoon naps (94). However, extreme misalignment with the external light-dark cycle leads to severely disrupted sleep-wake cycles, chronic fatigue and exhaustion. The underlying cause could be either deficits in core clock machinery leading to non-24h rhythms or deficits in the input pathways and entrainment systems that result in a misaligned rhythm.

Examples of the first include delayed or advanced sleep phase disorders; Familial Advanced Sleep Phase syndrome is linked to mutations in *Per2* (95) and Familial Delayed Sleep Phase Syndrome to mutations in Casein Kinase 1 Delta (96) (Fig. 1). Recently, mutations in *Cry1* have been linked to Familial Delayed Sleep Phase syndrome, with a remarkably high frequency of 0.6% in the population, thereby affecting sleep in large numbers of individuals (97). In these conditions, due to a faster or slower molecular clock, the time window defined by the clock as optimal to sleep is shifted with respect to the external light-dark cycle, resulting in severe misalignment. In addition, situations where input pathways are deficient are also relatively common. Low levels of light within the nursing home environment result in circadian rhythm disruption (98) and patients with severe eye damage due to either genetic causes or trauma lose light input to the circadian clock resulting in severe misalignment (99). In these situations, behavioural rhythms imposed by care or feeding may help mask this disruption, but desynchronised and drifting peripheral clocks demonstrate the lack of entrainment which is manifest as poor and disrupted sleep.

Treatment of Sleep and Circadian Rhythm Disruption (SCRD)

Despite our growing knowledge of the molecular mechanisms underlying the 24h circadian clock and its role in the
development of chronic and debilitating diseases, there are limited therapeutic options available for the treatment of SCRD. As light is the primary zeitgeber for the SCN clock, bright light therapies and cognitive behavioural therapies that strengthen natural zeitgebers such as scheduled outdoor exercise (100, 101) have been shown to have some success. However, potent pharmacological interventions are still lacking. Melatonin has long been characterised as an output of the circadian clock and can be used to modify the phase of the clock, presumably acting via the melatonin receptors that are expressed in the neurons of the SCN and multiple other cell populations across the body. Melatonin has therefore been studied as a possible chronotherapeutic drug and shows promise in certain circadian-related conditions (102, 103). Prolonged release melatonin (tradename Circadin) is used to treat primary insomnia (104) in the aged and the agonist Agomelatine in the treatment of major depressive disorder (105). Most recently, Tasimelteon was approved in the United States in an orphan circadian disorder, non-24h sleep-wake disorder in the totally blind (106). Targeting the melatonin system, however, has limited efficacy; for example, Tasimelteon showed a beneficial effect on stabilising sleep-wake in 20% of the patient population after one month of treatment (106). As a consequence, recent efforts have focussed on developing alternatives, mainly targeting the core clock. Solt et al. reported a novel REV-ERB agonist receptor agonist was effective at regulating both sleep as well as metabolism in mice (6, 107) and Hirota et al. have developed a small molecule Cryptochrome activator (108). An alternative strategy that has yet to be employed is the development of molecules that act on the light input pathway to the clock, providing a pharmacological replacement for light for the treatment of SCRD.

Acknowledgements
The authors are very grateful for valuable input and critical comments from Prof. Andrea Nemeth and Dr. Jing Yu.

Conflict of Interest statement. None declared.

Funding
We would like to acknowledge the following sources of funding: BBSRC ref. BB/N01992X/1 to AJ, Wellcome Trust ref. 106174/Z/14/Z to RGF, BBSRC ref. BB/N001664/1 to SV, and a Said Foundation scholarship to ZW. AJ, SRV and RGF are in receipt of funding from Circadian Therapeutics.

References
1. Arendt, J. (2010) Shift work: coping with the biological clock. Occup. Med. (Lond.), 60, 10–20.
2. Wulff, K., Gatti, S., Wettstein, J.G. and Foster, R.G. (2010) Sleep and circadian rhythm disruption in psychiatric and neurodegenerative disease. Nat. Rev. Neurosci., 11, 589–599.
3. Laposky, A., Easton, A., Dugovic, C., Walisser, J., Bradfield, C. and Turek, F. (2005) Deletion of the mammalian circadian clock gene BMAL1/Mop3 alters baseline sleep architecture and the response to sleep deprivation. Sleep, 28, 395–409.
4. Marcheva, B., Ramsey, K.M., Buhr, E.D., Kobayashi, Y., Su, H., Ko, C.H., Ivanova, G., Omura, C., Mo, S., Vitaterna, M.H. et al. (2010) Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinemia and diabetes. Nature, 466, 627–631.
5. Jagannath, A., Peirson, S.N. and Foster, R.G. (2013) Sleep and circadian rhythm disruption in neuropsychiatric illness. Curr. Opin. Neurobiol., 23, 888–894.
6. Solt, L.A., Wang, Y., Banerjee, S., Hughes, T., Kojetin, D.J., Lundasen, T., Shin, Y., Liu, J., Cameron, M.D., Noel, R. et al. (2012) Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists. Nature, 485, 62–68.
7. Hatori, M., Vollmers, C., Zarrinpar, A., DiTacchio, L., Bushong, E.A., Gill, S., Leblanc, M., Chaix, A., Joens, M., Fitzpatrick, J.A. et al. (2012) Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab., 15, 848–860.
8. Reppert, S.M. and Weaver, D.R. (2002) Coordination of circadian timing in mammals. Nature, 418, 935–941.
9. Klein, D.C., Moore, R.Y. and Reppert, S.M. (1991) Suprachiasmatic nucleus: the mind’s clock. Oxford University Press, New York.
10. Schwartz, W.J., Tavakoli-Nezhad, M., Lambert, C.M., Weaver, D.R. and de la Iglesia, H.O. (2013) Distinct patterns of period gene expression in the suprachiasmatic nucleus underlie circadian clock photoentrainment by advances or delays. Proc. Natl Acad. Sci. U S A, 108, 17219–17224.
11. Hughes, S., Jagannath, A., Hankins, M.W., Foster, R.G. and Peirson, S.N. (2015) Photic regulation of clock systems. Methods Enzymol., 552, 125–143.
12. Jagannath, A., Butler, R., Godinho, S.I., Couch, Y., Brown, L.A., Vasudevan, S.R., Flanagan, K.C., Anthony, D., Churchill, G.C., Wood, M.J. et al. (2013) The CRCT1-SIK1 pathway regulates entrainment of the circadian clock. Cell, 154, 1100–1111.
13. Stokkan, K.A., Yamazaki, S., Tei, H., Sakaki, Y. and Menaker, M. (2001) Entrainment of the circadian clock in the liver by feeding. Science, 291, 490–493.
14. Balsalobre, A., Brown, S.A., Marcacci, L., Tronche, F., Kellendonk, C., Reichardt, H.M., Schultz, G. and Schibler, U. (2000) Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science, 289, 2344–2347.
15. Morf, J., Rey, G., Schneider, K., Stratmann, M., Fujita, J., Naeff, F. and Schibler, U. (2012) Cold-inducible RNA-binding protein modulates circadian gene expression posttranscriptionally. Science, 338, 379–383.
16. Ramsey, K.M., Yoshino, J., Brace, C.S., Abrassart, D., Kobayashi, Y., Marcheva, B., Hong, H.K., Chong, J.L., Buhr, E.D., Lee, C. et al. (2009) Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science, 324, 651–654.
17. Yamakawa, G.R., Basu, P., Cortese, F., Macchionelli, J., Whalley, D., Smith, V.M. and Antle, M.C. (2016) The cholinergic forebrain arousal system acts directly on the circadian pacemaker. Proc. Natl Acad. Sci. U S A, 113, 13498–13503.
18. Davies, S.K., Ang, J.E., Revell, V.L., Holmes, B., Mann, A., Robertson, F.P., Cui, N., Middleton, B., Ackermann, K., Kayser, M. et al. (2014) Effect of sleep deprivation on the human metabolome. Proc. Natl Acad. Sci. U S A, 111, 10761–10766.
19. Panda, S., Antoch, M.P., Miller, B.H., Su, A.I., Schook, A.B., Straume, M., Schultz, P.G., Kay, S.A., Takahashi, J.S. and Hogenesch, J.B. (2002) Coordinated transcription of key pathways in the mouse by the circadian clock. Cell, 109, 307–320.
20. Duffield, G.E., Best, J.D., Meurers, B.H., Bittner, A., Loros, J.J. and Dunlap, J.C. (2002) Circadian programs of transcriptional activation, signaling, and protein turnover revealed by microarray analysis of mammalian cells. Curr. Biol., 12, 551–557.
21. Kornmann, B., Schaad, O., Bujard, H., Takahashi, J.S. and Schibler, U. (2007) System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock. PLoS Biol, 5, e34.

22. Perelis, M., Marcheva, B., Ramsey, K.M., Schipma, M.J., Hutchison, A.L., Taguchi, A., Peek, C.B., Hong, H., Huang, W., Omura, C. et al. (2015) Pancreatic β cell enhancers regulate rhythmic transcription of genes controlling insulin secretion. Science, 350, aaa4250.

23. Kiessling, S., Beaulieu-Laroche, L., Blum, I.D., Landgraf, D., Welsh, D.K., Storch, K.F., Labrecque, N. and Cermakian, N. (2017) Enhancing circadian clock function in cancer cells inhibits tumor growth. BMC Biol., 15, 13.

24. Scheiermann, C., Kunisaki, Y. and Frenette, P.S. (2013) Circadian control of the immune system. Nat. Rev. Immunol., 13, 190–198.

25. Jagannath, A., Peirson, S.N. and Foster, R.G. Sleep and circadian rhythm disruption in neuropsychiatric illness. Curr. Opin. Neurobiol., 23, 888–894.

26. Krystal, A.D. (2012) Psychiatric disorders and sleep. Neurol. Clin., 30, 1389–1413.

27. Johansson, A.S., Owe-Larsson, B., Hetta, J. and Lundkvist, G.B. (2016) Altered circadian clock gene expression in patients with schizophrenia. Schizophr. Res., 174, 17–23.

28. Yin, L., Wang, J., Klein, P.S. and Lazar, M.A. (2006) Nuclear receptor Rev-erbalpha is a critical lithium-sensitive component of the circadian clock. Science, 311, 1002–1005.

29. Li, J.Z., Bunney, B.G., Meng, F., Hagenauer, M.H., Walsh, D.M., Vawter, M.P., Evans, S.J., Choudary, P.V., Cartagena, P., Barchas, J.D. et al. (2013) Circadian patterns of gene expression in the human brain and disruption in major depressive disorder. Proc. Natl. Acad. Sci. U.S.A, 110, 9950–9955.

30. Hampp, G. and Albrecht, U. (2008) The circadian clock and mood-related behavior. Commun. Integr. Biol., 1, 1–3.

31. Chung, S., Lee, E.J., Yun, S., Choe, H.K., Park, S.B., Son, H.J., Kim, K.S., Dulzen, D.E., Lee, I., Hwang, O. et al. (2014) Impact of circadian nuclear receptor REV-ERBalpeta on midbrain dopamine production and mood regulation. Cell, 158, 858–868.

32. Ikeda, Y., Kumagai, H., Skach, A., Sato, M. and Yanagisawa, M. (2013) Modulation of circadian glucocorticoid oscillation via adrenal opioid-CXCR7 signaling alters emotional behavior. Cell, 155, 1323–1336.

33. Mansour, H.A., Wood, J., Logue, T., Chowdari, K.V., Dayal, M., Kupfer, D.J., Monk, T.H., Devlin, B. and Nimmo-Grant, V.L. (2006) Association study of eight circadian genes with bipolar I disorder, schizoaffective disorder and schizophrenia. Genes Brain Behav., 5, 150–157.

34. Mansour, H.A., Talkowski, M.E., Wood, J., Chowdari, K.V., McClain, L., Prasad, K., Montrose, D., Fagiolini, A., Friedman, E.S., Allen, M.H. et al. (2009) Association study of 21 circadian genes with bipolar I disorder, schizoaffective disorder, and schizophrenia. Bipolar Disorders, 11, 701–710.

35. Partonen, T., Taskinen, J., Alpman, A., Frank, J., Johansson, C., Depner, M., Aron, L., Rietschel, M., Wellek, S., Soronen, P. et al. (2007) Three circadian clock genes Per2, Arntl, and Npas2 contribute to winter depression. Ann. Med., 39, 229–238.

36. Lavelbratt, C., Sjoholm, L.K., Partonen, T., Schalling, M. and Forssell, Y. (2010) PER2 variantion is associated with depression vulnerability. Am. J. Med. Genet. B Neuropsychiatr. Genet., 153B, 570–581.

37. Liu, J.J., Hukic, D.S., Forssell, Y., Schalling, M., Sby, U. and Lavelbratt, C. (2015) Depression-associated ARNTL and PER2 genetic variants in psychotic disorders. Chronobiol. Int., 32, 579–584.

38. Gonzalez, R., Gonzalez, S., Villa, E., Ramirez, M., Zavala, J., Armas, R., Contreras, J., Dassori, A., Leach, R.J., Flores, D. et al. (2015) Identification of circadian gene variants in bipolar disorder in Latino populations. J. Affect. Disord., 186, 367–375.

39. Chen, Q., Peng, X.D., Huang, C.Q., Hu, X.Y. and Zhang, X.M. (2015) Association between ARNTL (BMAL1) rs2278749 polymorphism T>C and susceptibility to Alzheimer disease in a Chinese population. Genet. Mol. Res., 14, 18515–18522.

40. Gu, Z., Wang, B., Zhang, Y.-B., Ding, H., Zhang, Y., Yu, J., Gu, M., Chan, P. and Cai, Y. (2015) Association of ARNTL and PER1 genes with Parkinson’s disease: a case-control study of Han Chinese. Sci. Rep., 5, 15891.

41. Benedetti, F., Serretti, A., Colombo, C., Barbini, B., Lorenzi, C., Campori, E. and Smeraldi, E. (2003) Influence of CLOCK gene polymorphism on circadian mood fluctuation and illness recurrence in bipolar depression. Am. J. Med. Genet., 123B, 23–26.

42. Dmitrzak-Weglarz, M.P., Pawlak, J.M., Maciukiewicz, M., Moczek, J., Wilkosc, M., Leszczynska-Rodziewicz, A., Zaremba, D. and Hauser, J. (2015) Clock gene variants differentiate mood disorders. Mol. Biol. Rep., 42, 277–288.

43. Takaó, T., Tachikawa, H., Kawanishi, Y., Mizukami, K. and Asada, T. (2007) CLOCK gene T3111C polymorphism is associated with Japanese schizophrenics: A preliminary study. Eur. Neuropsychopharmacol., 17, 273–276.

44. Zhang, J., Liu, G., Liu, C., Sun, L., Liu, Y., Wang, Y., Jiang, Z. and Wang, Z. (2011) The association of CLOCK gene T3111C polymorphism and hPER3 gene 54-nucleotide repeat polymorphism with Chinese Han people schizophrenics. Mol. Biol. Rep., 38, 349–354.

45. Shi, S-q., White, M.J., Borsetti, H.M., Pendergast, J.S., Hida, A., Carliglio, C.M., de Verteuil, P.A., Cedar, A.G., Cala, C., McMahon, D.G. et al. (2016) Molecular analyses of circadian gene variants reveal sex-dependent links between depression and clocks. Transl. Psychiatry, 6, e748.

46. Yang, Y.-K., Peng, X.-D., Li, Y.-H., Wang, Z.-R., Chang-quan, H., Hui, W. and Liu, Q.-X. (2013) The Polymorphism of CLOCK gene 3111T/C C>T is associated with susceptibility of Alzheimer disease in Chinese population. J. Investig. Med., 61, 1084–1087.

47. Shi, J., Wittke-Thompson, J.K., Badner, J.A., Hattori, E., Perez-Egea, R., Garcia, C., Gutiérrez-Zotes, A., Puigdemont, D., Bayès, M., Crespo, J.M. et al. (2010) Differential Association of Circadian Genes with Mood Disorders: CRY1 and NPAS2 are associated with unipolar major depression and dysfunctional circadian rhythm. Am. J. Med. Genet. Part B Neuropsychiatr. Genet., 147B, 1047–1055.

48. Kripke, D.F., Nievergelt, C.M., Joo, E., Shekhtman, T. and Kelsoe, J.R. (2009) Circadian polymorphisms associated with affective disorders. J. Circadian Rhythms, 7, 2.

49. Soria, V., Martínez-Amorós, E., Escaramís, G., Valero, J., Pérez-Egea, E., García, C., Gutiérrez-Zotes, A., Puigdemont, D., Bayés, M., Crespo, J.M. et al. (2010) Differential Association of Circadian Genes with Mood Disorders: CRY1 and NPAS2 are associated with unipolar major depression and CLOCK and VIP with bipolar disorder. Neuropsychopharmacology, 35, 1279–1289.

50. Chen, Q., Huang, C.-Q., Hu, X.-Y., Li, S.-B. and Zhang, X.-M. (2013) Functional CLOCK gene rs1554483 C>G polymorphism is associated with susceptibility to Alzheimer’s disease in the Chinese population. J. Int. Med. Res., 41, 340–346.

51. Chen, H.-f., Huang, C.-q., You, C., Wang, Z.-r. and Si-qing, H. (2013) Polymorphism of CLOCK gene rs 4580704 C>G is
associated with susceptibility of Alzheimer’s disease in a Chinese population. Arch. Med. Res., 44, 203–207.

52. Drago, A., Monti, B., De Ronchi, D. and Serretti, A. (2015) CRY1 variations impacts on the depressive relapse rate in a sample of bipolar patients. Psychiatry Investig., 12, 118.

53. Hua, P., Liu, W., Chen, D., Zhao, Y., Chen, L., Zhang, N., Wang, C., Guo, S., Wang, L., Xiao, H. et al. (2014) CRY1 and Tef gene polymorphisms are associated with major depressive disorder in the Chinese population. J. Affect. Disord., 157, 100–103.

54. Lavenbruck, C., Sjöholm, L.K., Soronen, P., Paunio, T., Vawter, M.P., Bunney, W.E., Adolphson, R., Forsell, Y., Wu, J.C., Kelsoe, J.R. et al. (2010) CRY2 is associated with depression. PLoS One, 5, e9407.

55. Kovann, L., Kaunisto, M., Donner, K., Saarikoski, S.T. and Partonen, T. (2013) CRY2 genetic variants associate with dysthyrnia. PLoS One, 8, e71450.

56. Maglione, J.E., Nievergelt, C.M., Parimi, N., Evans, D.S., Ancoli-Israel, S., Stone, K.L., Yaffe, K., Redline, S. and Tranah, G.J. (2015) Associations of PER3 and RORA circadian gene polymorphisms and depressive symptoms in older adults. Am. J. Geriatr. Psychiatry, 23, 1075–1087.

57. Terracciano, A., Tanaka, T., Sutin, A.R., Sanna, S., Deiana, B., Lai, S., Uda, M., Schlessinger, D., Abecasis, G.R., Ferrucci, L. et al. (2010) Genome-wide association scan of trait depression. Biol. Psychiatry, 68, 811–817.

58. Griebel, G., Ravinet-Trillou, C., Beeske, S., Avenet, P. and Gomard, P. (2014) Mice deficient in cryptochrome 1 (cry1 (-/-)) exhibit altered sleep-wake cycle. PLoS Biol, 2, e377.

59. Shima, S., Ishii, N., Ohya, O., Ohno, T., Watabe, Y., Hayashi, M., Wada, T., Aoyagi, T. and Tezuka, M. (2005) Brain and muscle Arnt-like protein-1 (BMAL1), a component of the molecular clock, regulates adipogenesis. Proc. Natl Acad. Sci. USA, 102, 12071–12076.

60. Griebel, G., Ravinet-Trillou, C., Beeske, S., Avenet, P. and Pichat, P. (2014) Mice deficient in cryptochrome 1 (cry1 (-/-)) exhibit resistance to obesity induced by a high-fat diet. Front. Endocrinol. (Lausanne), 5, 49.

61. Scott, E.M., Carter, A.M. and Grant, P.J. (2008) Association between polymorphisms in the Clock gene, obesity and the metabolic syndrome in man. Int. J. Obes. (Lond), 32, 658–662.

62. Soochoan, S., Gemma, C., Gianotti, T.F., Burgueno, A., Castano, G. and Pirola, C.J. (2008) Genetic variants of Clock
transcription factor are associated with individual susceptibility to obesity. Am. J. Clin. Nutr., 87, 1606–1615.

83. Woon, P.Y., Kaisaki, P.J., Braganca, J., Bioreau, M.T., Levy, J.C., Farrall, M. and Gaugier, D. (2007) Aryl hydrocarbon receptor nuclear translocator-like (BMAL1) is associated with susceptibility to hypertension and type 2 diabetes. Proc. Natl Acad. Sci. U.S.A, 104, 14412–14417.

84. Englund, A., Kovanel, L., Saarikoski, S.T., Haukka, J., Reunanen, A., Aromaa, A., Lonqvist, J. and Partonen, T. (2009) Npas2 and Per2 are linked to risk factors of the metabolic syndrome. J. Circadian Rhythms, 7, 5.

85. Vieira, E., Ruano, E., Figueiroa, A.L., Momblan, D., Carmona, F., Gomis, R., Vidal, J. and Hanzu, F.A. (2014) Altered clock gene expression in obese visceral adipose tissue is associated with metabolic syndrome. PLoS One, 9, e111678.

86. Nakahata, Y., Sahar, S., Astarita, G., Kaluzova, M. and Sassone-Corsi, P. (2009) Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science, 324, 654–657.

87. Blakemore, A.I., Meyre, D., Delplanque, J., Vatin, V., Jones, S.E., Tyrrell, J., Wood, A.R., Beaumont, R.N., Ruth, K.S., Reunanen, A., Aromaa, A., Lonnqvist, J. and Partonen, T. (2007) Exercise as a synchroniser of human circadian rhythms: an update and discussion of the methodological problems. Eur. J. Appl. Physiol., 99, 331–341.

88. Zee, P.C., Attarian, H. and Videnovic, A. (2013) Circadian rhythm abnormalities. Continuum (Minneap Minn), 19, 132–147.

89. Dahlitz, M., Alvarez, B., Vignau, J., English, J., Arendt, J. and Parkes, J.D. (1991) Delayed sleep phase syndrome response to melatonin. Lancet, 337, 1121–1124.

90. Damiola, F., Le Minh, N., Frey, N., Kornmann, B., Fleury-Olela, F. and Schibler, U. (2000) Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev., 14, 2950–2961.

91. Kobsa, A., Laposky, A.D., Ramsey, K.M., Estrada, C., Joshi, C., Kobayashi, Y., Turek, F.W. and Bass, J. (2007) High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab., 6, 414–421.

92. Martinke, S., Inonog, S., Manoukian, A.S. and Young, M.W. (2001) A role for the segment polarity gene shaggy/GSK-3 in the Drosophila circadian clock. Cell, 105, 769–779.

93. Zheng, X., Yang, Z., Yue, Z., Alvarez, J.D. and Sehgal, A. (2007) FOXO and insulin signaling regulate sensitivity of the circadian clock to oxidative stress. Proc. Natl Acad. Sci. U.S.A, 104, 15899–15904.

94. Hu, Y., Shmygelska, A., Tran, D., Eriksson, N., Tung, J.Y. and Hinds, D.A. (2016) GWAS of 89,283 individuals identifies genetic variants associated with self-reporting of being a morning person. Nat. Commun., 7, 10448.

95. Jones, S.E., Tyrrell, J., Wood, A.R., Beaumont, R.N., Ruth, K.S., Tuke, M.A., Yaghooktar, H., Hu, Y., Toder-Laving, M., Hayward, C. et al. (2016) Genome-Wide Association Analyses in 128,266 Individuals Identifies New Morningness and Sleep Duration Loci. PLoS Genet., 12, e1006125.

96. Jenkins, R. (2001) Churchill: A Biography. Farrar, Straus and Giroux, New York.

97. Toh, K.L., Jones, C.R., He, Y., Eide, E.J., Hinz, W.A., Virshup, D.M., Ptacek, L.J. and Fu, Y.H. (2001) An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science, 291, 1040–1043.

98. Xu, Y., Padiath, Q.S., Shapiro, R.E., Jones, C.R., Wu, S.C., Saigoh, N., Saigoh, K., Ptacek, L.J. and Fu, Y.H. (2005) Functional consequences of a CKIdelta mutation causing familial advanced sleep phase syndrome. Nature, 434, 640–644.

99. Patke, A., Murphy, P.J., Onat, O.E., Krieger, A.C., Ozcelik, T., Campbell, S.S. and Young, M.W. (2017) Mutation of the human circadian clock gene Cry1 in familial delayed sleep phase disorder. Cell, 169, 203–215, e213.

100. Most, E.I., Schelten, P. and Van Someren, E.J. (2010) Prevention of depression and sleep disturbances in elderly with memory-problems by activation of the biological clock with light—a randomized clinical trial. Trials, 11, 19.

101. Sak, R.L., Lewy, A.J., Blood, M.L., Keith, L.D. and Nagakawa, H. (1992) Circadian rhythm abnormalities in totally blind people: incidence and clinical significance. J. Clin. Endocrinol. Metab., 75, 127–134.

102. Atkinson, G., Edwards, B., Reilly, T. and Waterhouse, J. (2007) Exercise as a synchroniser of human circadian rhythms: an update and discussion of the methodological problems. Eur. J. Appl. Physiol., 99, 331–341.

103. Zee, P.C., Attarian, H. and Videnovic, A. (2013) Circadian rhythm abnormalities. Continuum (Minneap Minn), 19, 132–147.

104. Dahlitz, M., Alvarez, B., Vignau, J., English, J., Arendt, J. and Parkes, J.D. (1991) Delayed sleep phase syndrome response to melatonin. Lancet, 337, 1121–1124.

105. Mundey, K., Benloucif, S., Harshani, K., Dubocovich, M.L. and Zee, P.C. (2005) Phase-dependent treatment of delayed sleep phase syndrome with melatonin. Sleep, 28, 1271–1278.

106. Lemoine, P., Wade, A.G., Katz, A., Nir, T. and Zisapel, N. (2012) Efficacy and safety of prolonged-release melatonin for insomnia in middle-aged and elderly patients with hypertension: a combined analysis of controlled clinical trials. Integr. Blood Press Control, 5, 9–17.

107. Kennedy, S.H. and Emsley, R. (2006) Placebo-controlled trial of agomelatine in the treatment of major depressive disorder. Eur. Neuropsychopharmacol., 16, 93–100.

108. Lockley, S.W., Dressman, M.A., Licamele, L., Xiao, C., Fisher, D.M., Flynn-Evans, E.E., Hull, J.T., Torres, R., Lavedan, C. and Polymorposes, M.H. (2015) Tasimelteon for non-24-hour sleep-wake disorder in totally blind people (SET and SPACE). Lancet, 386, 1754–1764.

109. Banerjee, S., Wang, Y., Solt, L.A., Griffett, K., Kazantzis, M., Amador, A., El-Gendy, B.M., Hui-tron-Resendiz, S., Roberts, A.J., Shin, Y. et al. (2014) Pharmacological targeting of the mammalian clock regulates sleep architecture and emotional behaviour. Nat. Commun., 5, 5759.

110. Horiata, T., Lee, J.W., St John, P.C., Sawa, M., Iwaisako, K., Noguchi, T., Pongsawakul, P.Y., Sonntag, T., Welsh, D.K., Brenner, D.A. et al. (2012) Identification of small molecule activators of cryptochrome. Science, 337, 1094–1097.