Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Sequence difference of angiotensin-converting enzyme 2 between nonhuman primates affects its binding-affinity with SARS-CoV-2 S receptor binding domain

Xiaojun Zhou, Jingjing Zhao, Yefeng Qiu, Rui Jia

ARTICLE INFO

Article history:
Received 27 June 2022
Revised 5 September 2022
Accepted 5 September 2022
Available online 9 September 2022

Keywords:
SARS-CoV-2
Angiotensin-converting enzyme 2
Receptor binding domain
Surface plasmon resonance
African green monkey

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused many deaths and contributed to a tremendous public health concern worldwide since 2020. Angiotensin-converting enzyme 2 (ACE2) binds to the SARS-CoV-2 virus as a receptor. The challenge of different nonhuman primate (NHP) species by SARS-CoV-2 virus demonstrated different effects on virus replication and disease pathology. This study characterizes differences between host ACE2 sequences of three NHP species: Macaca mulatta, Macaca fascicularis, and Chlorocebus aethiops. In addition, the binding affinity between the ACE2 ectodomain and the SARS-CoV-2 S receptor-binding domain (RBD) was analyzed. Variation of ACE2 sequence among NHP species and the binding affinity may account for different susceptibility and responses to SARS-CoV-2 infection.

© 2022 Chinese Medical Association Publishing House. Published by Elsevier BV. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Coronavirus disease 2019 (COVID-19), which was first reported in December 2019, resulted from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection [1]. Patients with COVID-19 presented with fever, pneumonia, and severe respiratory illness [2]. According to the World Health Organization, on June 13, 2022, there were over 532 million confirmed cases globally, causing at least 6 million deaths. SARS-CoV-2 is a member of the betacoronavirus genus that closely resembles several bat coronaviruses and SARS-CoV-1 [3, 4]. Compared with SARS-CoV, SARS-CoV-2 seems to cause human-to-human transmission more quickly and has caused a pandemic for a long time on earth, leading to the WHO declaration of a Public Health Emergency of International Concern (PHEIC) [5, 6].

The SARS-CoV spike protein (S) is cleaved into S1 and S2, mediating cell attachment and membrane fusion. Angiotensin-converting enzyme 2 (ACE2), a cell-surface zinc peptidase, is the receptor of severe acute respiratory syndrome coronavirus (SARS-CoV) or SARS-CoV-2 by binding to S1 receptor-binding domain (RBD) [7, 8]. The S1 RBD fragment (residues 318 to 510) is sufficient for tight binding to the peptidase domain of ACE2 [9, 10] and critical for virus-receptor interaction, which determines viral host range and tropism [11]. Changes in just a few residues in the SARS-CoV RBD can lead to efficient cross-species transmission [12, 13]. The crystal structure of the ACE2 ectodomain, which binds the S1 RBD, demonstrates a claw-like N-terminal peptidase domain, with the active site at the base of a deep groove and a C-terminal “collectrin” domain [14]. ACE2 has been confirmed to be the receptor of SARS-CoV-2 recently [15], and a structural analysis also indicated that the SARS-CoV-2 S binds ACE2 with higher affinity than SARS-CoV S [16].

Animal models are essential for pathogenesis studies of viral infection, evaluation of antiviral treatments, and vaccine development. Several animal models of COVID-19 have been reported including hACE2-transgenic models [17, 18], a non-transgenic mouse model [19], a golden hamster model [20], a ferret model [21], and NHP models [22, 23]. Infection of SARS-CoV has been previously established in NHP, such as Macaca mulatta (referred to as rhesus macaca, RM), Macaca fascicularis (referred to as cynomolgus macaque, CM), and Chlorocebus aethiops (referred to as African Green monkey, AGM), with varying levels of virus replication and serum neutralizing antibody production (Chlorocebus aethiops > Macaca fascicularis > Macaca mulatta) [24]. The challenge of different NHP species, such as Macaca mulatta, Macaca fascicularis, and Callithrix jaccus, by SARS-CoV-2 virus infection also resulted in distinct effects in viral load and pathological changes [25]. However, the underlying factors are unclear. This study aims to characterize the NHP host ACE2 sequence and
the binding affinity between the ACE2 ectodomain and SARS-CoV-2 S RBD.

2. Materials and methods

2.1. Data sources and commercial materials

The S protein sequence of SARS-CoV-2 comes from the complete genome of Wuhan seafood market pneumonia virus isolate Wuhan-Hu-1 with the National Center for Biotechnology Information (NCBI) reference sequence number NC_045512.2. The NCBI reference sequence numbers for ACE2 of different species are NM_001371415.1 for human, NM_001130513.1 for mouse, XM_005593037.3 for CM, NM_001135696 for RM, XM_007991113.1 for AGM. The SARS-CoV-2 S RBD was purchased from KMD Bioscience (Shanghai, China).

2.2. Cloning and sequencing of the ACE2 ectodomain of RM, CM, and AGM

Tissues of RM, CM, and AGM, were kindly provided by Dr. Yefeng Qiu of his laboratory animal center. Total RNA was extracted from these tissues by the RNeasy Plus Universal Kit (Cat.No 73404, Qiagen) and reverse transcribed by the First Strand cDNA Synthesis Kit (Code No.FSK-101, Toyobo). The KOD-Plus- high-fidelity PCR polymerase (Code No.KOD-201, Toyobo) was used to amplify the ACE2 genes of different species. Primers used for cloning the ACE2 ectodomain of AGM, RM, and CM are as follows: AGM-F: 5'-CTATATTGTTGATGCTCATGG-3', AGM-R: 5'-CATGTCAGGCTCTTCCTGGCTCC-3', RM-F: 5'-CATGTCCAGCTTTCTGCAGCCA-3', RM-R: 5'-CAACAGCACGGCTCATGGAATCTCTCAT-3', CM-F: 5'-CATGTCAGGCTCTTCCTGGCTCC-3', CM-R:5'-CCATCTCATGTAGCAGCTGT-3'. The PCR conditions were 95°C 5 min, 30 cycles of (92°C 30 s, 55°C 30 s, 72°C 40 s), 72°C 5 min. The PCR products were purified by QIAquick Gel Extraction (Cat.No 28704, Qiagen) and sequenced by Sangon Biotech (Shanghai, China). The sequences obtained were aligned and compared with NM_001135696 for RM, XM_005593037.3 for CM, and XM_007991113.1 for AGM from the NCBI database. Moreover, the DNA sequences encoding the ACE2 ectodomain of humans, RM, AGM, CM, and mice were aligned by GeneDoc software.

2.3. Synthesizing and cloning of the ectoACE2-related genes of humans, CM, RM, and AGM

The 1,101 bp genes which encode the ACE2 ectodomains of humans, CM, RM, and AGM, were synthesized by Sangon Biotech (Shanghai, China) and cloned into a pUC57 vector with the restriction enzyme site EcoRV at the 5' end and a 6 × His tag as well as PacI at 3' end. After sequence confirmation, the DNA fragments with EcoRV and PacI were cloned into the pCH01.0 vector. Finally, the CH01.0-ectoACE2 expression vectors were transformed into TOP10 competent cells and validated by restriction enzyme digestion and sequencing analysis.

2.4. Transfection, expression, and purification of the ACE2 ectodomains of different species

180 mL fresh Exp293™ Expression Medium (Cat.No A1435102, Thermo Scientific), which contains six mM l-glutamine, was used to resuspend 293F cells to a concentration of 1 × 10⁶ cells/ml and be cultured at 37°C in a shaking incubator with 5 % CO₂ the day before transfection. Moreover, 100 µg plasmid DNA was prepared by a Plasmid Plus Midi Kit (Cat. No 12945, Qiagen) and incubated with 200 µL Lipo- fectin™ (Cat. No 18292011, Thermo Scientific) within 20 mL Exp293™ Expression Medium at room temperature for 10 min. The transfected mixture was then added to 180 mL Exp293™ Expression Medium and cultured at 37°C in a shaking incubator with 5 % CO₂. After being cultured for another four days, the transfected 293F cells and the cell culture supernatants were collected. Proteins extracted from the cells by M-PEr Mammalian Protein Extraction Reagen (Cat.No 78503, Thermo Scientific) and the cell culture supernatants were purified using Ni Sepharose FF (Cat.No 17-5318-01, GE) and analyzed for expression of ACE2 by SDS-PAGE and western blot. A protease cocktail (Cat.No 5871, Cell Signaling) inhibited protein degradation. Protein Marker was purchased from Transgen Biotech (Cat. No DMZ211, China).

2.5. Surface plasmon resonance (SPR) analysis

His-tagged SARS-CoV-2 S RBD was diluted to 10 µg/ml by PBS and immobilized to an SA sensorchip (Cat.No 18–5019, Fortebio) using a Biacore X100 (GE Healthcare) and a running buffer composed of 10 mM HEPES pH 8.0, 150 mM NaCl and 0.05 % Tween 20. The ectoACE2 was diluted to a concentration of 200 nM by PBS buffer containing 0.1 % BSA and 0.02 % Tween20. The resulting data were fit to a 1:1 binding model using Fortebio Data Analysis 10.0 software (ForteBio).

2.6. Protein structure prediction

SWISS-MODEL performed automated protein structure homology modeling for ACE2 ectodomain via the ExPASy web server. The PDB

Fig. 1. Sequence variation and structure prediction of angiotensin-converting enzyme 2 (ACE2) among different species. A) Phylogenetic tree constructed based on sequence alignment of the full length (805aa) ACE2 amino acid sequences among human, mouse, rhesus macaca (RM), cynomolgus macaque (CM), and African Green monkey (AGM). B) Predicted structure of the ectodomain of human ACE2.
file of the predicted protein was further analyzed through Swiss Pdb Viewer software.

3. Results

3.1. Sequence variations in ACE2 between different species

Sequence alignment of the total length (805aa) ACE2 amino acid sequences from the NCBI reference source of human, mouse, RM, CM, and AGM was performed, and a phylogenetic tree was constructed (Fig. 1). Residues in ACE2 that contact SARS-CoV-2 RBD and SARS-CoV RBD have been identified [8,26]. Therefore, the contact residues of the SARS-CoV-2 RBD-ACE2 and SARS-CoV RBD-ACE2 were listed in Table 1 [8].

![Fig. 2](Comparison of the obtained angiotensin-converting enzyme 2 (ACE2) ectodomain DNA sequence of rhesus macaca (RM), cynomolgus macaque (CM), and African Green monkey (AGM) with those of the National Center for Biotechnology Information (NCBI) database.

Our results showed that position 101 residue of the AGM ectoACE2 DNA sequence was A while that of the NCBI sequence was C (Fig. 2A), resulting in a unique residue Pro34 of the AGM ectoACE2 amino acid sequence (Fig. 3). Position 574 G → A and 649 A → T transition of the RM ectoACE2 DNA sequence resulted in a change from Gly → Arg and Asn → Thr in amino acid sequence (Fig. 2B). No difference was found between the sequencing result of the CM ectoACE2 DNA and that of the NCBI sequence. A comparison of the ectoACE2 amino acid sequences between humans, RM, CM, and AGM found several different residues, as shown in Table 2. Compared with RM and humans, the residue Pro34 and residue Ala87 were unique in AGM. In addition, the residues Asp67, Asp136, Asn154, Ser218, Gly220, His228, Ile259, Ala342, and Leu359, were unique in humans.

3.2. Modeling analysis of the ACE2 ectodomain structure within different species

The crystal structure of the ACE2 ectodomain shows a claw-like N-terminal peptidase domain, with the active site at the base of a deep groove and a C-terminal “collectrin” domain [13]. Prediction of the ACE2 ectodomain demonstrated a similar “pocket” structure (Fig. 1B). The previous study has identified three fragments (31 ∼ 41aa, 82 ∼ 93aa, 353 ∼ 357aa) in ACE2 ectodomain which are critical for binding with SARS-CoV RBD as well as SARS-CoV-2 RBD [10,26], among which residue Pro34 and residue Ala87 in AGM were different from His34 and Glu87 in human and RM (Table 2). We found that these three fragments are part of a prominent “gap” structure through structure modeling. The other two “gap” structures are formed at residues 217, 218, 220, 228, and 299 and 303, respectively. The glycosylation sites, residue 218, 299, 303 of RM and AGM ACE2 all contain Asn that appears to influence interaction with SARS-CoV S RBD by introducing a glycan.

3.3. Expression of the ecto-ACE2 proteins and SPR analysis

SDS-PAGE and western blot analysis have confirmed the expression of the ectoACE2 protein in the cultured 293F cells instead of the supernatants (Fig. 4). In contrast, SPR analysis demonstrated the binding...
characteristics between SARS-CoV-2 S RBD and ectoACE2 (Fig. 5). The dissociation constant (K_D) between SARS-CoV-2 S RBD and ectoACE2 from human, RM, CM, and AGM were 61.2 nM, 68.0 nM, 69.2 nM, 67.6 nM (Fig. 5), respectively, indicating a decreased binding affinity (Human > AGM > RM > CM).

4. Discussion

ACE2 is a membrane protein located in the lung, heart, kidney, and intestine [27,28] with a physiological role in facilitating the maturation of angiotensin, which controls vasoconstriction and blood pressure. As the receptors of both SARS-CoV and SARS-CoV-2, ACE2 has drawn attention for its potential use in drug or vaccine design. However, the results also need elaboration of the structure and interaction between ACE2 and S RBD from SARS-CoV or SARS-CoV-2. A recent study has revealed the 2.9 Å resolution cryo-EM structure of full-length human ACE2 in complex with B0AT1 (SLC6A19) [29], which interacts with ACE2 for the neutral amino acid transport on the surface of intestinal cells [30]. This study demonstrated open and closed conformations of the ACE2-B0AT1 complex and a newly resolved Collectrin-like domain (CLD) on ACE2, which mediates homodimerization. Also, it was found that expression of ACE2 from baculovirus-infected insect cells or mammalian cells results in different glycosylation sites on the surface of ACE2 peptidase domains. Furthermore, a previous study has shown that chloroquine inhibits SARS-CoV infection by interfering with the terminal glycosylation of ACE2 [31], indicating the significance of glycosylation in recognizing viruses and receptors.

Several species can be infected by SARS-CoV-2, such as bats, golden hamsters, ferrets, and even horses, indicating a highly transmissible capacity across different species by SARS-CoV-2. As for NHPs, our data demonstrated differences in several residues of the ACE2 ectodomain between humans, RM, CM, and AGM. The AGM-specific Pro34 and residue Ala87 are located in the 31 ~ 41aa and 82 ~ 93aa fragments of ACE2 ectodomain, respectively. The specific residues Asn217, Asn218, Asp220, and Arg228 form a slightly differ-
ent “gap” structure. Also, variations at the glycosylation sites 136, 154, 217, 218, 299, and 303 among humans, RM, and AGM may result in different binding affinity between ACE2 ectodomain and SARS-CoV-2. Compared with the Old World monkey *Macaca fascicularis* and the New World monkey *Callithrix jacchus, Macaca mulatta* showed the most robust responses to SARS-CoV-2 infection, including increased inflammatory cytokine expression and pathological changes in the pulmonary tissues [25]. A recent study performed a challenge of SARS-CoV-2 by aerosol in *Macaca mulatta* (rhesus macaque) and *Chlorocebus aethiops* (African green monkey) [32]. Moreover, the results indicated that aerosol particle production increase relative to pre-infection totals was more profound in the rhesus macaques than in the African green monkeys. Compared with the African green monkey, our data demonstrated a slightly higher binding affinity between the ACE2 ectodomain of rhesus macaque and SARS-CoV-2. Variation of ACE2 sequence among NHP species and the binding affinity may account for different susceptibility and responses to SARS-CoV-2 infection, which may provide insights into the virus-host interaction, drugs, or vaccine design.

Conflict of interest statement

The authors declare that there are no conflicts of interest.

Author contributions

Xiaojun Zhou: Conceptualization, Methodology, Writing – Original Draft. Jingjing Zhao: Investigation, Resources. Yefeng Qiu: Supervision, Resources. Rui Jia: Writing – Review & Editing.

References

[1] J.F.W. Chan, S. Yuan, K.H. Kok, K.K. To, H. Chu, J. Yang, F. Xing, J. Liu, C.C. Yip, R.W. Poon, et al, A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster, Lancet 395 (10223) (2020) 514–523, https://doi.org/10.1016/S0140-6736(20)30154-9.

[2] C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, L. Zhang, G. Fan, J. Xu, X. Gu, et al, Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China, Lancet 395 (10223) (2020) 497–506, https://doi.org/10.1016/S0140-6736(20)30183-5.

[3] R. Lu, X. Zhao, J. Li, P. Niu, B. Yang, H. Wu, W. Wang, H. Song, B. Huang, N. Zhu, et al, Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding, Lancet 395 (10224) (2020) 565–574, https://doi.org/10.1016/S0140-6736(20)30251-8.

[4] F. Wu, S. Zhao, B. Yu, Y.M. Chen, W. Wang, Z. Song, Y. Hu, Z. Tao, J. Tian, Y. Pei, et al, A new coronavirus associated with human respiratory disease in China, Nature 579 (7798) (2020) 265–269, https://doi.org/10.1038/s41586-020-2008-3.

[5] N. Chen, M. Zhou, X. Dong, J. Qu, F. Gong, Y. Han, Y. Qiu, J. Wang, Y. Liu, Y. Wei, et al, Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China, Lancet 395 (10223) (2020) 507–513, https://doi.org/10.2139/smr.3523861.

[6] Q. Li, X. Guan, P. Wu, X. Wang, L. Zhou, Y. Tong, R. Ren, K. Leung, E. Lau, J.Y. Wong, et al, Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia, N. Engl. J. Med. 382 (13) (2020) 1199–1207, https://doi.org/10.1056/NEJMoa2001316.

[7] W. Li, M.J. Moore, N. Vasilieva, J. Sui, S.K. Wong, M.A. Berne, M. Somasundaran, J.L. Sullivan, K. Lanuziata, T.C. Greenough, et al, Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus, Nature 426 (6965) (2003) 450–454, https://doi.org/10.1038/nature02145.

[8] J. Lan, J.W. Ge, J.F. Yu, S.S. Shan, H. Zhou, S.L. Fan, Q. Zhang, X.L. Shi, Q.S. Wang, L.Q. Zhang, et al, Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor, Nature 581 (7807) (2020) 215–220, https://doi.org/10.1038/s41586-020-2180-5.

[9] S.K. Wong, W. Li, M.J. Moore, H. Choe, M. Farzan, A 193-amin acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2, J. Biol. Chem. 279 (5) (2004) 3197–3201, https://doi.org/10.1074/jbc.C300520200.

[10] G.J. Babcock, D.J. Eshaki, W.D. Thomas, D.M. Ambrosino, Amino acids 270 to 510 of the severe acute respiratory syndrome coronavirus spike protein are required for interaction with receptor, J. Virol. 78 (9) (2004) 4552–4560, https://doi.org/10.1128/jvi.78.9.4552-4560.2004.

[11] W. Li, C. Zhang, J. Sui, J.H. Kuhn, M.J. Moore, S. Luo, P.H. Li, L.J. Zhang, Y.J. Guan, et al, Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China, Science 302 (5643) (2003) 276–278, https://doi.org/10.1126/science.1087139.

[12] H.D. Song, C.C. Tu, G.W. Zhang, S.Y. Wang, K. Zheng, L.C. Lei, Q.K. Chen, Y.W. Gao, H.Q. Zhou, H. Xiang, et al, Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human, Proc. Natl. Acad. Sci. U. S. A. 102 (7) (2005) 2430–2435, https://doi.org/10.1073/pnas.0409608102.
