The prevalence of abnormal pap smear in women with pelvic inflammatory disease and determine the risk factors of cervical intra-epithelial neoplasia 2/3

Hye-yon Cho, Soobin Yim, Inji Yeo, Min Sun Kyung

1 Hallym University Dogtan Sacred Heart Hospital, Keunjang-gil 7, Hwaseong-si, 18450 Kyonggi-do, Korea

*Correspondence: msfeel@hallym.or.kr (Min Sun Kyung)

DOI: 10.31083/j.ejgo.2021.01.2269

Objective: To investigate the prevalence of abnormal Pap (ASCUS or worse) and HPV infection in women with pelvic inflammatory disease (PID) and assess the risk factors for CIN2/3. Methods: Retrospective chart review of 249 women who were admitted to the hospital for the treatment of PID between 2013 and 2019 was performed. Patients' characteristics including age, parity, sexually transmitted disease (STD) infection, Pap results, human papilloma virus (HPV) infection, Nugent score, C-reactive protein (CRP), and neutrophil to lymphocyte ratio (NLR) were retrieved. Clinical characteristics were compared between group 1 (women with normal Pap; N=159) and group 2 (women with abnormal Pap; N=90). Results: Of 249 women, abnormal Pap rate was 36.1% and HPV positivity was 41.0%. Of those with HPV infection, 78.4% had high-risk HPV subtypes. Group 2 was significantly associated with high-risk HPV infection ($P < 0.0001$) and low NLR ($P = 0.047$). 74 women underwent colposcopy-directed punch biopsy, and 14 showed CIN2/3. Multivariate analysis showed that high-risk HPV infection ($P = 0.040$; 95% CI 1.081-32.389) and low Nugent score (≤ 3) ($P = 0.003$; 95% CI 2.130-39.807) were independent risk factors of CIN2/3 in women with abnormal Pap and PID. Conclusions: Women with PID showed high prevalence of abnormal Pap. Nonetheless, high-risk HPV infection and low Nugent score are the most reliable factors in determining colposcopy for the diagnosis of CIN2/3.

Keywords
Abnormal Pap; Cervical intraepithelial neoplasia (CIN); Human papilloma virus (HPV); Pelvic inflammatory disease (PID)

1. Introduction

Cervical cancer is the 4th most common gynecologic malignancy worldwide [1]. Although human papilloma virus (HPV) vaccination was expected to decrease incidence of cervical intra-epithelial neoplasia (CIN) which is a pre-invasive disease of cervix cancer, global incidence of cervical cancer in 2018 was 570,000 and the annual death was 311,000 [2]. In South Korea, 3348 women newly diagnosed as cervical cancer, and the annual death was 1029 in 2018 [3]. A major risk factor of CIN and cervical cancer is HPV infection, which can be transmitted through sexual intercourse [4, 5]. Therefore, women with pelvic inflammatory disease (PID), a typical sexually transmitted disease, have been considered risk for CIN and cervical cancer [6, 7].

Clinically, many physicians can experience high ASCUS prevalence in patients with PID. Basically, Pap smear should be refrained if there is a sign of severe cervicitis or PID, which may disturb definite interpretation of Pap smear. However, general physicians cannot rule out which case can be done or not. Moreover, most women are unwilling to visit gynecologist outpatient clinic frequently because of the repulsion to pelvic exam with lithotomy position. Therefore, most of gynecologists prefer to perform Pap smear even if there is a sign of cervicitis or PID.

Nonetheless, there have been no worldwide reports evaluating prevalence of abnormal Pap (ASCUS or worse) and risk factors of CIN2/3 in women with PID.

In this study, thus, we evaluated the incidence of abnormal Pap (ASCUS or worse) and risk factors of CIN2/3 in women with PID.

In this study, thus, we evaluated the incidence of abnormal Pap (ASCUS or worse) and risk factors of CIN2/3 in women with PID.

2. Methods and materials

We retrospectively reviewed medical records of all women who diagnosed as pelvic inflammatory disease (PID) in Hallym University Dongtan Sacred Heart Hospital, between 2013 and 2018. Inclusion criteria is as follows; 1. Women who diagnosed as PID by symptom evaluation, imaging study (transvaginal ultrasonography, abdominal-pelvic computed tomography, or magnetic resonance imaging) or sexually-transmitted disease (STD) test; 2. Women admitted to our hospital for PID; 3. Women who did STD test, Pap smear, and HPV test during the admission period. Women with pathologically-confirmed cervical cancer were excluded in this study. According to the inclusion and exclusion criteria, a total of 249 women were included in this study.

In reference, we investigated the prevalence of abnormal Pap (ASCUS, AGC, ASC-H, LSIL, and HSIL) in women who visited healthcare center for routine pelvic exam during the same period of our study.
Patients’ characteristics including age, parity, STD results (test for infection of Chlamydia trachomatis, Neisseria gonorrhoea, Mycoplasma genitalium, Ureaplasma urealyticum, and Candida species), Pap results, HPV infection (high-risk HPV subtypes are included 16, 18, 26, 31, 33, 35, 39, 45, 51, 52, 53, 56, 58, 59, 66, 68, 69, 73 and 82).

Nugent score, CRP, and NLR (neutrophil to lymphocyte ratio) were retrieved from the medical records. Nugent Score is a Gram stain scoring system for vaginal swab to diagnose bacterial vaginosis, which is calculated by assessing for the presence of large Gram-positive rods (Lactobacillus morphotypes; decreased in Lactobacillus scored as 0-4), small Gram-variable rods (Gardnerella vaginalis morphotypes; scored as 0-4), and curved Gram-variable rods (Mobiluncus species morphotypes; scored as 0-2). A score of 7 to 10 is consistent with bacterial vaginosis without culture [8].

Clinical characteristics were compared between group 1 (women with normal Pap; N = 159) and group 2 (women with abnormal Pap; N = 90) (Fig. 1). Statistical analyses were performed using SPSS for Windows (version 26.0, SPSS Inc.). Komogorov-Smirnov test revealed that all variables showed normal distribution. Dichotomous variables were compared using the Fisher exact test or chi-square test. Continuous variables were compared using the independent-samples t-test. Multivariate analysis was performed using binary logistic regression. Hazard ratio (HR) and 95% confidence interval (CI) were calculated. ROC curve analysis and cut-off value of Nugent score, CRP, and NLR were determined by Medcalc software (version 15.2.2). For all statistical tests, a P-value less than 0.05 were considered significant.

Table 1. Comparison of clinical characteristics between patients with normal and abnormal Pap (≥ ASCUS).

	Normal pap (N = 159)	Abnormal pap (N = 90)	P value
Age	36.2 ± 9.44	35.8 ± 10.15	0.760
Parity	1.1 ± 1.04	1.1 ± 1.10	0.952
STD	negative 85 (53.5)	50 (55.6)	
	positive 74 (46.5)	40 (44.4)	
HPV	negative 112 (70.4)	35 (38.9)	< 0.0001*
	positive 47 (29.6)	55 (61.1)	
HR-HPV	negative 127 (79.9)	42 (46.7)	< 0.0001*
	positive 32 (20.1)	48 (53.3)	
Nugent score	3.2 ± 2.52	2.9 ± 2.75	0.382
CRP	29.6 ± 55.88	20.6 ± 39.17	0.245
NLR (neutrophil to lymphocyte ratio)	5.3 ± 6.73	3.8 ± 5.31	0.047*

Data are presented as mean ± SD or absolute numbers (%). *P-value < 0.05.

Total 74 women indicated for colposcopy-directed punch biopsy according to the American Society of Colposcopy and Cervical Pathology (ASCCP) guidelines, and 14 showed CIN2/3. Univariate analysis revealed that high-risk HPV infection (P = 0.031), low Nugent score (P = 0.025), low CRP (P = 0.007), and low NLR (P = 0.026) were significantly associated with CIN2, 3 (Table 2).

Multivariate analysis showed that high-risk HPV infection (P = 0.040; 95% CI 1.081-3.2389) and low Nugent score (≤ 3) (P = 0.003; 95% CI 2.130-39.807) were independent risk factors of CIN2/3 in women with PID who showed abnormal Pap (Table 3).

4. Discussion

In this study, we examined the prevalence of abnormal Pap in women visited our inpatient clinic for PID treatment, compared to women without gynecologic problems who visited healthcare center for routine pelvic exam. In our data, abnormal Pap was reported in 3.13% of women with no gynecologic problems. In contrast, women with PID who had been treated at the inpatient clinic was reported to have 36.1% of abnormal Pap, which is approximately 12 times larger than normal women. According to our data, HR-HPV infection rate was 78.4% among women with HPV in-
Peripheral neutrophil-lymphocyte ratio (NLR) has been regarded as a simple and effective marker of inflammation associated with abnormal Pap results. Although the introduction of HPV vaccination was expected to decrease the incidence of CIN and cervical cancer, routine screening is also recommended regardless of vaccination.

Table 2. Univariate analysis for risk factors of CIN2, 3.

Risk factors	CIN1 ≤ (N = 60)	CIN2, 3 (N = 14)	P value
Age	37.3 ± 10.24	35.4 ± 8.41	0.488
Parity	1.21 ± 1.14	0.6 ± 0.93	0.090
STD	95.0	0.463	
negative	35 (58.3)	9 (64.3)	
positive	25 (41.7)	5 (35.7)	
PAP negative	9 (15.0)	3 (21.4)	
Positive (more than ASCUS)	51 (85.0)	11 (78.6)	0.031*
HR-HPV negative	27 (45.0)	2 (14.3)	0.025*
positive	33 (55.0)	12 (85.7)	
Nugent score	3.3 ± 2.71	1.5 ± 1.94	0.025*
CRP	23.6 ± 42.46	1.6 ± 1.30	0.007*
NLR	3.4 ± 2.94	2.0 ± 0.77	0.026*

Data are presented as mean ± SD or absolute numbers (%). *P-value < 0.05.

Table 3. Multivariate analysis for risk factors of CIN2, 3.

Risk factors	Hazard ratio (95% CI)	P value
HR-HPV	5.916 (1.081-32.389)	0.040*
Nugent score 3 or less	9.208 (2.130-39.807)	0.003*
CRP 3.7 or less	1.368 (0.228-8.219)	0.732
NLR 3.7 or less	1.054 (0.184-6.038)	0.953

*P-value < 0.05.
nation [28, 29]. Moreover, American Cancer Society recommends primary HPV test in women aged 25 to 65 every 5 years. If primary HPV testing is not available, screening may be done with either a co-test that combines an HPV test with a Pap test every 5 years or a Pap test alone every 3 years, which is because HR-HPV infection can accelerate CIN or cervical cancer even if Pap smear is normal [29, 30]. In addition, American Society of Colposcopy and Cervical Pathology (ASCCP) guidelines recommend triage for ASCUS/LSIL [31]. In women with ASCUS/LSIL, 1. direct colposcopy, 2. HPV test, 3. HPV & colposcopy could be done to discriminate actual CIN or cervix cancer from normal cervix [31]. In women with ASCUS, about 20-25% are reported to have CIN or cervical cancer. In other words, about 75-80% of ASCUS are caused by the inflammation of cervix or other reasons. Therefore, ASCUS can be frequently observed in women with PID. In these patients, discrimination of the actual risk group of CIN2/3 is important. Theoretically, women with PID are at high risk for CIN and cervical cancer. However, doing direct colposcopy in all PID women with abnormal Pap could lead to over-diagnosis and over treatment. Even in PID women with abnormal Pap, HR-HPV infection status and level of inflammatory markers should be considered as predictive factors for CIN2/3 or cervical cancer. Our finding supports that HR-HPV infection status is the most important factor deciding colposcopy in patients with PID and abnormal Pap. We think that our findings warrant confirmation by a larger prospective study.

5. Conclusions
In conclusion, women with PID showed high prevalence of abnormal Pap. Nonetheless, high-risk HPV infection and low Nugent score are the most reliable factors in determining colposcopy for the diagnosis of CIN2/3. Our data supports that HR-HPV infection status is the strongest risk factor for CIN or cervical cancer, even in patients with other risk factors.

Author contributions
HY and MS designed the research study, and provided the data. HY, SB, and IY analyzed the data. HY wrote the manuscript. All authors contributed to editorial changes in the manuscript. All authors read and approved the final manuscript.

Ethics approval and consent to participate
This study was approved by the local institutional review board of Hallym University Hospital (IRB No. 2020-07-010-001).

Acknowledgement
We would like to express our gratitude to all those who helped me during the writing of this manuscript.

Conflict of interest
The authors declare no competing interests.

References
[1] Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA: A Cancer Journal for Clinicians. 2005; 55: 74-108.
[2] Arlín M, Weiderpass E, Bruni L, de Sanjosé S, Saraiya M, Ferlay J, et al. Estimates of incidence and mortality of cervical cancer in 2018: a worldwide analysis. The Lancet Global Health. 2020; 8: e191-e203.
[3] Bruni L AG, Serrano B, Mena M, Gómez D, Muñoz J, Bosch FX, de Sanjosé S. Human papillomavirus and related diseases in republic of Korea. ICO/IARC Information Centre on HPV and Cancer (HPV Information Centre). 2019.
[4] Kjaer SK, Frederiksen K, Munk C, Hønner T. Long-term absolute risk of cervical intraepithelial neoplasia grade 3 or worse following human papillomavirus infection: role of persistence. Journal of the National Cancer Institute. 2010; 102: 1478-1488.
[5] Rodriguez AC, Schiffman M, Herrero R, Hildesheim A, Bratti C, Sherman ME, et al. Longitudinal study of human papillomavirus persistence and cervical intraepithelial neoplasia grade 2/3: critical role of duration of infection. Journal of the National Cancer Institute. 2010; 102: 315-324.
[6] International Collaboration of Epidemiological Studies of Cervical Cancer. Comparison of risk factors for invasive squamous cell carcinoma and adenocarcinoma of the cervix: collaborative reanalysis of individual data on 8,097 women with squamous cell carcinoma and 1,374 women with adenocarcinoma from 12 epidemiological studies. International Journal of Cancer. 2007; 120: 885-891.
[7] Dugas P, Rebojil M, Garred P, Lyng E. Immunosuppression and risk of cervical cancer. Expert Review of Anticancer Therapy. 2013; 13: 29-42.
[8] Nugent RP, Krohn MA, Hillier SL. Reliability of diagnosing bacterial vaginosis is improved by a standardized method of gram stain interpretation. Journal of Clinical Microbiology. 1991; 29: 297-301.
[9] Lee EH, Um TH, Chi H, Hong Y, Cha YJ. Prevalence and distribution of human papillomavirus infection in Korean women as determined by restriction fragment mass polymorphism assay. Journal of Korean Medical Science. 2012; 27: 1091.
[10] Smith JS, Lindsay L, Hoots B, Keys J, Franceschi S, Winer R, et al. Human papillomavirus type distribution in invasive cervical cancer and high-grade cervical lesions: a meta-analysis update. International Journal of Cancer. 2007; 121: 621-632.
[11] Zahorec R. Ratio of neutrophil to lymphocyte counts-rapid and simple parameter of systemic inflammation and stress in critically ill. Bratislavské Lekarske Listy. 2001; 102: 5-14.
[12] Acmaz G, Aksoy H, Unal D, Ozyurt S, Cingillioglu B, Aksoy U, et al. Are Neutrophil/lymphocyte ratio and platelet/lymphocyte ratios associated with endometrial precancerous and cancerous lesions in patients with abnormal uterine bleeding? Asian Pacific Journal of Cancer Prevention. 2014; 15: 1689-1692.
[13] Wang GY, Yang Y, Li H, Zhang J, Jiang N, Li MR, et al. A scoring model based on neutrophil to lymphocyte ratio predicts recurrence of HBV-associated hepatocellular carcinoma after liver transplantation. PLoS ONE. 2011; 6: e25295.
[14] Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002; 420: 860-867.
[15] Babu SN, Chetia G, Kumar S. Macrophage migration inhibitory factor: a potential marker for cancer diagnosis and therapy. Asian Pacific Journal of Cancer Prevention. 2012; 13: 1737-1744.
[16] Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008; 454: 436-444.
[17] Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010; 140: 883-899.
[18] McMillan DC. The systemic inflammation-based Glasgow Prognostic Score: a decade of experience in patients with cancer. Cancer Treatment Reviews. 2013; 39: 534-540.
[19] Guthrie GJK, Charles KA, Roxburgh CSD, Horgan PG, McMillan DC, Clarke SJ. The systemic inflammation-based neutrophil-lymphocyte ratio: experience in patients with cancer. Critical Re-
views in Oncology Hematology. 2013; 88: 218-230.

[20] Templeton AJ, McNamara MG, Seruga B, Vera-Badillo FE, Aneja P, Ocaña A, et al. Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: a systematic review and meta-analysis. Journal of the National Cancer Institute. 2014; 106: dju124.

[21] Chun S, Shin K, Kim KH, Kim HY, Eo W, Lee JY, et al. The neutrophil-lymphocyte ratio predicts recurrence of cervical intraepithelial neoplasia. Journal of Cancer. 2017; 8: 2205-2211.

[22] Huang Q, Man Q, Hu J, Yang Y, Zhang Y, Wang W, et al. Prognostic significance of neutrophil-to-lymphocyte ratio in cervical cancer: a systematic review and meta-analysis of observational studies. Oncotarget. 2017; 8: 16755-16764.

[23] Dey S, Pahwa P, Mishra A, Govil J, Dhillon PK. Reproductive tract infections and premalignant lesions of cervix: evidence from women presenting at the Cancer Detection Centre of the Indian Cancer Society, Delhi, 2000-2012. The Journal of Obstetrics and Gynecology of India. 2016; 66: 441-451.

[24] Depuydt CE, Leuridan E, Van Damme P, Rogers J, Vereecken AJ, Donders GG. Epidemiology of Trichomonas vaginalis and human papillomavirus infection detected by real-time PCR in flanders. Gynecologic and Obstetric Investigation. 2010; 70: 273-280.

[25] Ghosh I, Mwonge R, Mital S, Ranjee D, Kundu P, Mandal R, et al. Association between high risk human papillomavirus infection and co-infection with Candida spp. and Trichomonas vaginalis in women with cervical pre-malignant and malignant lesions. Journal of Clinical Virology. 2017; 87: 43-48.

[26] Burd EM. Human papillomavirus and cervical cancer. Clinical Microbiology Reviews. 2003; 16: 1-17.

[27] So KA, Hong JH, Lee JK. Human papillomavirus prevalence and type distribution among 968 women in South Korea. Journal of Cancer Prevention. 2016; 21: 104-109.

[28] Fontham ETH, Wolf AMD, Church TR, Ettzioni R, Flowers CR, Herzig A, et al. Cervical cancer screening for individuals at average risk: 2020 guideline update from the American cancer society. CA: A Cancer Journal for Clinicians. 2020; 70: 321-346.

[29] Perkins RB, Guido RS, Castle PE, Chelmow D, Einstein MH, Garcia F, et al. 2019 ASCCP risk-based management consensus guidelines for abnormal cervical cancer screening tests and cancer precursors. Journal of Lower Genital Tract Disease. 2020; 24: 102-131.

[30] Saslow D, Solomon D, Lawson HW, Killackey M, Kulasingam SL, Cai J, et al. American Cancer Society, American Society for Cytology and Cervical Pathology, and American Society for Clinical Pathology screening guidelines for the prevention and early detection of cervical cancer. CA: A Cancer Journal for Clinicians. 2012; 62: 147-172.

[31] Massad LS, Einstein MH, Huh WK, Katki HA, Kinney WK, Schiffman M, et al. 2012 updated consensus guidelines for the management of abnormal cervical cancer screening tests and cancer precursors. Journal of Lower Genital Tract Disease. 2013; 17: S1-S27.