Spin chain in magnetic field: limitations of the large-N mean-field theory

Krzysztof Wohlfeld1,2*, Cheng-Chien Chen3, Michel van Veenendaal3,4, Thomas P. Devereaux1

1Stanford Institute for Materials and Energy Sciences, SLAC National Laboratory and Stanford University, Menlo Park, California 94025, USA
2Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Pasteura 5, PL-02093 Warsaw, Poland
3Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA and
4Department of Physics, Northern Illinois University, DeKalb, Illinois 60115, USA

(Dated: April 7, 2015)

Motivated by the recent success in describing the spin and orbital spectrum of a spin-orbital chain using a large-N mean-field approximation \cite{1}, we apply the same formalism to the case of a spin chain in the external magnetic field. It occurs that in this case, which corresponds to $N = 2$ in the approximation, the large-N mean-field theory cannot qualitatively reproduce the spin excitation spectra at high magnetic fields, which polarize more than 50\% of the spins in the magnetic ground state. This, rather counterintuitively, shows that the physics of a spin chain can under some circumstances be regarded as more complex than the physics of a spin-orbital chain.

PACS numbers: 71.10.Fd, 75.10.Jm, 75.10.Pq

Introduction Recently a number of studies discussed the collective excitations in a spin-orbital chain \cite{1} \cite{2} \cite{3} \cite{4} \cite{5}. Most of them concentrated around a novel phenomenon called spin-orbital separation which is present when a very strong external crystal field fully polarizes the orbital sector of the ground state \cite{2} \cite{3} \cite{4}. Although this phenomenon seemed to be completely at odds with the physics present in an SU(4)-symmetric spin-orbital chain (i.e. without external crystal field) \cite{6}, a very recent paper discusses how to unify these two seemingly different limits \cite{1}. It occurs that a large-N mean-field theory \cite{7} \cite{8} surprisingly well describes the spin and orbital spectra for any value of the crystal field and thus explains the striking evolution of the spin and orbital spectra with increasing external crystal field \cite{1}.

As a result of this recent success of the large-N mean-field theory the following question arises: could such a theory be equally successful in explaining the behavior of collective spin excitations in a spin chain that is subject to external magnetic field? While this might look like as an old problem, which should have been solved long time ago, to the best of our knowledge, there exists no precise answer to this question in the literature.

Definition of the problem Let us now be more specific. First, we define the following Hamiltonian which describes the problem of a spin chain subject to the external magnetic field H_z

\[H = J \sum_{\langle ij \rangle} (S_i S_j + \frac{1}{4}) + H_z \sum_i S_i^z. \] (1)

Here J is the energy scale of the superexchange interactions between SU(2)-invariant spin $S = 1/2$ operators (S), $\langle ij \rangle$ represents a nearest-neighbor spin pair, and H_z is the magnetic field strength.

Second, we define the transverse dynamical spin structure factor which is a good proxy for probing the nature of the collective spin excitations:

\[S(q, \omega) = \frac{1}{\pi} \lim_{\eta \to 0} \Im \langle \psi | S^x_q \frac{1}{\omega + i \eta - E_\psi} - H - i \eta S^z_q | \psi \rangle. \] (2)

Here $| \psi \rangle$ is the ground state of \mathcal{H} with energy E_ψ, $S^x_q \equiv \sum_j e^{iqj} S^x_j / \sqrt{L}$ is the Fourier transform of the local spin operator, and L is the number of lattice sites.

In what follows we calculate the dynamical spin structure factor in Eq. (2) using two distinct methods: (i) the numerically exact combined cluster perturbation theory (CPT) and exact diagonalization (ED) method, and (ii) the approximate analytical large-N mean-field theory. We compare our analytical results with the numerical calculations, which have already been extensively discussed in the literature \cite{9} \cite{10} \cite{11} \cite{12} \cite{13}.

Numerical results The numerical method employed in the current study, CPT+ED, is a quantum cluster approach \cite{14} \cite{15} which complements the finite-size ED simulations and therefore allows for a better visualization of the fine spectral details. The spin dynamical structure factor, Eq. (2), calculated with this method is shown in Fig. 1 for three different values of the external magnetic field H_z. When $H_z = 0$, the ground state has short range antiferromagnetic order and the spectrum is well-known \cite{9} \cite{10} \cite{11} \cite{12} \cite{13}: it is mostly spanned by a two-spinon continuum and has zero modes at $q = 0$ and $q = \pi$, cf. Fig. 1(a). For a finite value of H_z the ferromagnetic domains start to appear in the ground state and the positions of the zero modes shift. For instance when $H_z \sim 1.58 J$ half of the spins in the chain are polarized and the spectrum has zero modes at $q = \pi/2$ and $q = \pi$, cf. Fig. 1(b). Nevertheless, the spectrum is still spanned by a continuum of fractional excitations. This, however,
As a function of the magnetic field \(H \), the shift of the zero-energy modes with the magnetic field can be calculated by \(\bar{\delta} = \frac{2}{\pi} \cos(\delta k) \cos k/\pi \mp J \sin(2\delta k)/\pi \) (cf. Fig. 2) with \(\delta k = \arcsin[H z\pi/(2J)]/2 \), subject to the constraint \(\sum f_{\sigma}^\dagger f_{\sigma} = 1 \).

We note, first, that in this approach \(H z \leq 2J/\pi \), which means \(\delta k \leq \pi/4 \) and a maximum Fermi momentum \(\delta k + k_F = 3\pi/4 \). The fermionic mean-field solution effectively breaks down.

Next, since the maximum available Fermi momentum, \(3\pi/4 \), corresponds to just half of the spins being polarized in the ground state, this is the maximum value of polarization available in this approach. As this means that we can never fully fill one of the spin bands, i.e. reach the \(\delta k + k_F = \pi/2 \) momentum, the fermionic mean-field theory is not able to describe the fully spin-polarized ground state.

In this fermionic mean-field picture, the compact support of the spin spectrum can be calculated by \(S(q, \omega) = \sum_{k \in FS, q + k \notin FS} \delta(\omega - \varepsilon_{q + k, \uparrow} - \varepsilon_{k, \downarrow}) + \sum_{k \in FS, q + k \notin FS} \delta(\omega - \varepsilon_{q + k, \downarrow} + \varepsilon_{k, \uparrow}) \), cf. Fig. 2. The evolution of the spin spectrum as a function of \(H z \) is shown in Fig. 2(a)-(b). The shift of the zero-energy modes with the magnetic field

\[H z = 0 \] with no spin polarization \(\sum \varepsilon / L = 0 \); \(H z \sim 0.79H z^* \) with half polarized spins \(\sum \varepsilon / L = 1/4 \); \(H z = H z^* = 2.0J \) with fully polarized spins \(\sum \varepsilon / L = 1/2 \). The ED spectra (broadened with a 0.25J Lorentzian) are computed on an \(L = 24 \) site lattice. For \(H z < H z^* \) [panels (a) and (b)], the spin spectra show broad energy continua. When \(H z > H z^* \), the (ferromagnetic) ground state is fully spin-polarized; the excitations are no longer fractional, and the spectrum exhibits only a sharp, single-magnon mode [panel (c)].

Large-\(N \) mean-field theory

Following similar steps as described in detail in Refs. [1, 16], we first map the spin model described by Eq. (1) onto a fermionic model [16]. By performing a large-\(N \) mean-field decoupling and solving the self-consistent mean-field equations, we obtain the following Hamiltonian

\[\mathcal{H}^{MF} = \sum_k (\varepsilon_{k, \uparrow} f_{k, \uparrow}^\dagger f_{k, \uparrow} + \varepsilon_{k, \downarrow} f_{k, \downarrow}^\dagger f_{k, \downarrow}), \]

where the fermionic bands are \(\varepsilon_{k, \sigma} = -2J \cos(\delta k) \cos k/\pi \mp J \sin(2\delta k)/\pi \) (cf. Fig. 2) with \(\delta k = \arcsin[H z\pi/(2J)]/2 \), subject to the constraint \(\sum f_{\sigma}^\dagger f_{\sigma} = 1 \).

We note, first, that in this approach \(H z \leq 2J/\pi \), which means \(\delta k \leq \pi/4 \) and a maximum Fermi momentum \(\delta k + k_F = 3\pi/4 \) under an applied magnetic field (since \(k_F = \pi/2 \) for the fermionic mean-field theory at \(H z = 0 \) [16]). Second, above \(H z > 2J/\pi \) the self-consistent mean-field solution effectively breaks down.

Next, since the maximum available Fermi momentum, \(3\pi/4 \), corresponds to just half of the spins being polarized in the ground state, this is the maximum value of polarization available in this approach. As this means that we can never fully fill one of the spin bands, i.e. reach the \(\delta k + k_F = \pi/2 \) momentum, the fermionic mean-field theory is not able to describe the fully spin-polarized ground state.

In this fermionic mean-field picture, the compact support of the spin spectrum can be calculated by \(S(q, \omega) = \sum_{k \in FS, q + k \notin FS} \delta(\omega - \varepsilon_{q + k, \uparrow} - \varepsilon_{k, \downarrow}) + \sum_{k \in FS, q + k \notin FS} \delta(\omega - \varepsilon_{q + k, \downarrow} + \varepsilon_{k, \uparrow}) \), cf. Fig. 2. The evolution of the spin spectrum as a function of \(H z \) is shown in Fig. 2(a)-(b). The shift of the zero-energy modes with the magnetic field

\[H z = 0 \] with no spin polarization \(\sum \varepsilon / L = 0 \); \(H z \sim 0.79H z^* \) with half polarized spins \(\sum \varepsilon / L = 1/4 \); \(H z = H z^* = 2.0J \) with fully polarized spins \(\sum \varepsilon / L = 1/2 \). The ED spectra (broadened with a 0.25J Lorentzian) are computed on an \(L = 24 \) site lattice. For \(H z < H z^* \) [panels (a) and (b)], the spin spectra show broad energy continua. When \(H z > H z^* \), the (ferromagnetic) ground state is fully spin-polarized; the excitations are no longer fractional, and the spectrum exhibits only a sharp, single-magnon mode [panel (c)].
in the spin spectrum follows from the splitting of the fermionic bands in the magnetic field, cf. Fig. 2.

Conclusions Let us first emphasize that the fermionic large-N mean-field approximation is valid only when \(H_z \leq 2J/\pi \) (i.e. when the ground state is less than half-polarized). In this case there exists a qualitative agreement between the analytically calculated compact support and the numerically obtained spin spectrum. Nevertheless, the quantitative differences between the mean-field and the CPT+ED results are substantial (the bandwidth of the spin excitations is ca. 2.5 smaller in the analytical approach), making the fermionic large-N mean-field description less appropriate compared to that in the spin-orbital model \([1]\).

A different situation exists when \(H_z > 2J/\pi \) (i.e. when the ground state is more than half-polarized). Here the mean-field approximation breaks down. This means that long before the critical field is reached (which fully polarizes the ground state) there exists no simple analytical approach that can be used to calculate the spin spectrum (for more complex approaches, cf. Ref. \([9\) \(17]\)). It is then only when \(H_z \geq H_z^{*\sigma} \) that another simple analytical approach becomes valid – the well-known linear spin-wave approximation which works well for spin ground states with long range magnetic order \([11\) \(18]\). The analytically calculated spin spectrum, \(S(q, \omega) = \delta(\omega - \omega_q) \) with \(\omega_q = J(1 + \cos q) \) being the magnon dispersion when \(H_z = H_z^{*\sigma} \) [cf. Fig. 3(c)], is then equal to the numerically calculated spin dynamical structure factor [cf. Fig. 1(c)].

Acknowledgements K. W. and T. P. D. acknowledge support from the DOE-BES Division of Materials Sciences and Engineering (DMSE) under Contract No. DE-AC02-76SF00515 (Stanford/SIMES). K. W. acknowledges support from the Polish National Science Center (NCN) under Project No. 2012/04/A/ST3/00331. C.C.C. is supported by the Anceur Rahman Postdoctoral Fellowship at Argonne National Laboratory (ANL), operated by the U.S. DOE Contract No. DE-AC02-06CH11357. M.v.V is supported by the DOE Office of BES Award No. DE-FG02-03ER46097 and the NIU Institute for Nanoscience, Engineering and Technology. This work utilized computational resources at NERSC, supported by the U.S. DOE Contract No. DE-AC02-05CH11231.

[1] C.-C. Chen, M. van Veenendaal, T. P. Devereaux, and K. Wohlfeld, Phys. Rev. B 91, 165102 (2015).
[2] K. Wohlfeld, M. Daghofer, S. Nishimoto, G. Khaliullin, and J. v. d. Brink, Phys. Rev. Lett. 107, 147201 (2011).
[3] J. Schlappa, K. Wohlfeld, K. J. Zhou, M. Mourigal, M. W. Haverkort, V. N. Strocov, L. Hozoi, C. Monney, S. Nishimoto, S. Singh, A. Revcolevschi, J. Caux, L. Pattheay, H. M. Ronnow, J. v. d. Brink, and T. Schmitt, Nature 485, 82 (2012).
[4] V. Bisogni, K. Wohlfeld, S. Nishimoto, C. Monney, J. Trinckauf, K. Zhou, R. Kraus, K. Koepernik, C. Sekar, V. Strocov, B. Buechner, T. Schmitt, J. van den Brink, and J. Geck, Phys. Rev. Lett. 114, 096402 (2015).
[5] W.-L. You, A. M. Oleś, and P. Horsch, Phys. Rev. B 86, 094412 (2012); W. Brzezicki, J. Dziarmaga, and A. M. Oleś, Phys. Rev. Lett. 112, 117204 (2014).
[6] Y.-Q. Li, M. Ma, D.-N. Shi, and F.-C. Zhang, Phys. Rev. B 60, 12781 (1999).
[7] G. Baskaran, Z. Zou, and P. Anderson, Solid State Communications 63, 973 (1987).
[8] I. Affleck and J. B. Marston, Phys. Rev. B 37, 3774 (1988).
[9] G. Müller, H. Thomas, H. Beck, and J. C. Bonner, Phys. Rev. B 24, 1429 (1981).
[10] D. C. Dender, P. R. Hammar, D. H. Reich, C. Broholm, and G. Aeppli, Phys. Rev. Lett. 97, 1750 (1987).
[11] S. Grossjohann and W. Brenig, Phys. Rev. B 79, 094409 (2009).
[12] M. Kohno, Phys. Rev. Lett. 102, 037203 (2009).
[13] M. Mourigal, M. Enderle, A. Klöpperpieper, J.-S. Caux, A. Stunault, and H. M. Ronnow, Nat. Phys. 9, 435 (2013).
[14] D. Sénéchal, D. Perez, and M. Pioro-Ladrière, Phys. Rev. Lett. 84, 522 (2000).
[15] T. Maier, M. Jarrell, T. Pruschke, and M. H. Hettler, Rev. Mod. Phys. 77, 1027 (2005).
[16] M. Kenzelmann, C. D. Batista, Y. Chen, C. Broholm,
[17] M. Karbach, D. Biegel, and G. Müller, Phys. Rev. B 66, 054405 (2002).

[18] A. Auerbach, *Interacting Electrons and Quantum Magnetism* (Springer, New York, 1994).