Abstract
Finding four six-dimensional mutually unbiased bases (MUBs) containing the identity matrix is a long-standing open problem in quantum information. We show that if they exist, then the H_2-reducible matrix in the four MUBs has exactly nine 2×2 Hadamard submatrices. We apply our result to exclude from the four MUBs some known CHMs, such as symmetric H_2-reducible matrix, the Hermitian matrix, Dita family, Bjorck’s circulant matrix, and Szollosi family. Our results represent the latest progress on the existence of six-dimensional MUBs.

Keywords
Complex Hadamard matrix · H_2-Reducible matrix · Mutually unbiased bases

Mathematics Subject Classification 15A21 · 15A51

1 Introduction
In quantum physics, mutually unbiased bases (MUBs) present a basic notion of describing physical observables [1]. MUBs have been extensively useful in quan-
Quantum tomography, discrete Wigner functions [2,3], and King problem [4]. In particular, MUBs minimize the uncertainty of estimating density matrices and may conceal security in quantum key distribution protocols. It’s been proven that the complete set of d-dimensional MUBs has $d + 1$ MUBs. The main problem on MUBs is to prove whether MUBs in the d-dimensional Hilbert space \mathbb{C}^d is complete for any integer d. It has been proven true when d is prime power. However, it is widely conjectured that four MUBs may not exist in \mathbb{C}^6. Much effort has been devoted to the problem in the past decades [5–25].

In this paper, we investigate this conjecture in terms of the so-called H_2-reducible matrix [26,27]. The latter is a 6×6 complex Hadamard matrix (CHM) containing a 2×2 Hadamard submatrices, which is proportional to a 2×2 unitary matrix. The H_2-reducible matrix represents a large subset of CHMs covering many known affine CHMs say the Fourier matrix and non-affine CHMs such as Hermitian family. So the H_2-reducible matrix plays an important role whose existence in an MUB trio is worth being studied. In [28], we have investigated the four-MUB conjecture in terms of the H_2-reducible matrix and concluded that the H_2-reducible matrix belonging to an MUB trio has exactly nine or eighteen 2×2 Hadamard submatrices. In this paper, we concentrate on the problem further. We review preliminary results on CHMs and H_2-reducible matrices in Lemma 1. Next, we review preliminary results on MUB trio in Lemmas 3 and 4. In Theorem 7, we show that if an H_2-reducible matrix belongs to an MUB trio, then the matrix has exactly nine 2×2 Hadamard submatrices. This is the main result of this paper supported by the preliminary Lemmas 2 and 5. We furthermore apply our result to exclude some known CHMs as members of MUB trio. They include the affine CHMs say the Fourier matrix, Dita family, Bjorck’s circulant matrix, and non-affine CHMs such as Hermitian and Szollosi family. Our results present the latest progress on the existence of four six-dimensional MUBs. They are also related to other topics in quantum information, e.g., unitary matrices, tensor rank, and unextendible product basis [29–31].

The rest of this paper is structured as follows. In Sect. 2, we construct the notion of CHMs, equivalence, and complex equivalence of matrices, as well as the parametrization of H_2-reducible matrices. In Sect. 3, we introduce the main result of this paper. In Sect. 4, we apply our result to exclude some known CHMs as members of MUB trio. We conclude in Sect. 5.

2 Preliminaries

In this section, we introduce the notations and facts used in this paper. We refer to the $n \times n$ complex Hadamard matrix (CHM) $H_n = [u_{ij}]_{i,j=1,...,n}$ as a matrix with orthogonal row vectors and entries of modulus one. That is, $H_n^* H_n = n I_n$ and $|u_{ij}| = 1$. To find out the connection between different CHMs, we define the equivalence and complex equivalence. We refer to the monomial unitary matrix as a unitary matrix each of whose row and columns have exactly one nonzero entry, and it has modulus one. Two $n \times n$ matrices U and V are complex equivalent when $U = PVQ$ where P, Q are both monomial unitary matrices. If P, Q are both permutation matrices.
then we say that U, V are equivalent. Evidently, if U, V are equivalent then they are complex equivalent, and the converse fails. The number of real entries of a CHM may be changed under complex equivalence, while it is unchanged under equivalence. For example, it is straightforward to show that any $n \times n$ CHM is complex equivalent to a CHM containing at least $2n + 1$ entry one. They are in the first column and row of the CHM.

In quantum physics, a pure state is described by a unit vector in linear algebra. Two states in \mathbb{C}^d are MU when their inner product is of modulus $\sqrt{d}/\sqrt{2}$. Two MUBs are orthonormal basis are MU when their elements are pairwise MU. For convenience, we refer to a unitary matrix as an MUB consisting of the column vectors of the unitary matrix. For $d = 6$, it has been a long-standing open problem whether four MUBs I_6, V, W, X exist. If it exists then we refer to the three unitary matrices V, W, X as an MUB trio.

In the following, we review Theorem 11 of the paper [26]. We shall use it in the proof of Lemma 5 and Theorem 7. The result parameterizes every H_2-reducible matrix.

Lemma 1 (i) The H_2-reducible CHM is complex equivalent to the CHM H in [26, Theorem 11], namely

$$H = \begin{bmatrix} F_2 & Z_1 & Z_2 \\ Z_3 & \frac{1}{2} Z_3 A Z_1 & \frac{1}{2} Z_3 B Z_2 \\ Z_4 & \frac{1}{2} Z_4 B Z_1 & \frac{1}{2} Z_4 A Z_2 \end{bmatrix} = \begin{bmatrix} I_2 & 0 & 0 \\ 0 & Z_3 & 0 \\ 0 & 0 & Z_4 \end{bmatrix} \begin{bmatrix} F_2 & I_2 & I_2 \\ I_2 & \frac{1}{2} A & \frac{1}{2} B \\ I_2 & \frac{1}{2} B & \frac{1}{2} A \end{bmatrix} \begin{bmatrix} I_2 & 0 & 0 \\ 0 & Z_4 & 0 \\ 0 & 0 & Z_2 \end{bmatrix},$$

where

$$F_2 = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}, \quad Z_1 = \begin{bmatrix} 1 & 1 \\ z_1 & -z_1 \end{bmatrix}, \quad Z_2 = \begin{bmatrix} 1 & 1 \\ z_2 & -z_2 \end{bmatrix},$$

$$Z_3 = \begin{bmatrix} 1 & z_3 \\ 1 & -z_3 \end{bmatrix}, \quad Z_4 = \begin{bmatrix} 1 & z_4 \\ 1 & -z_4 \end{bmatrix},$$

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{12}^* & -A_{11}^* \end{bmatrix}, \quad B = \begin{bmatrix} -1 - A_{11} & -1 - A_{12} \\ -1 - A_{12}^* & 1 + A_{11}^* \end{bmatrix},$$

$$A_{11} = -\frac{1}{2} + i \sqrt{\frac{3}{2}} (\cos \theta + e^{-i\phi} \sin \theta),$$

$$A_{12} = -\frac{1}{2} + i \sqrt{\frac{3}{2}} (-\cos \theta + e^{i\phi} \sin \theta),$$

$$B_{11} = -\frac{1}{2} - i \sqrt{\frac{3}{2}} (\cos \theta + e^{-i\phi} \sin \theta),$$

$$B_{12} = -\frac{1}{2} - i \sqrt{\frac{3}{2}} (-\cos \theta + e^{i\phi} \sin \theta).$$
\[\theta, \phi \in [0, 2\pi), \quad |z_j| = 1, \]
\[z_3^2 = \mathcal{M}_A(z_1^2) = \mathcal{M}_B(z_2^2), \]
\[z_4^2 = \mathcal{M}_A(z_2^2) = \mathcal{M}_B(z_3^2), \]
\[\mathcal{M}_A(z) = \frac{A_{12}^2 z - A_{11}^2}{(A_{11}^2)^* z - (A_{12}^2)^*}, \]
\[\mathcal{M}_B(z) = \frac{B_{12}^2 z - B_{11}^2}{(B_{11}^2)^* z - (B_{12}^2)^*}. \]

(ii) Suppose \(M = \begin{bmatrix} F_2 & Z_1 & Z_2 \\ Z_3 & a & b \\ Z_4 & c & d \end{bmatrix} \) is an \(H_2 \)-reducible matrix where \(F_2, Z_1, Z_2, Z_3 \) and \(Z_4 \) are given in (2). Then, \(M \) is the same as the matrix \(H \) in (1) satisfying (2). In particular, \(a, b, c, d \) are \(2 \times 2 \) Hadamard submatrices described in (2).

We review Theorem 12 in the recent paper [28] on \(H_2 \)-reducible matrices and MUBs. This is the main result of [28]. We shall use it in the proof of Theorem 7 as the main result of this paper.

Lemma 2 If an \(H_2 \)-reducible matrix belongs to an MUB trio, then the matrix has exactly nine or eighteen \(2 \times 2 \) Hadamard submatrices.

Next, we review a fact from [23, Lemma 11]. It gives the necessary condition by which a \(6 \times 6 \) CHM is a member of some MUB trio. This is used in the proof of Lemma 5.

Lemma 3 The CHM in an MUB trio contains no a real \(2 \times 3 \) or \(3 \times 2 \) submatrix up to complex equivalence.

Finally, we review a fact on complex numbers used in the proof of Theorem 7.

Lemma 4 (i) Suppose \(a + b + c = 0 \) with complex numbers \(a, b, c \) of modulus one. Then, \((a, b, c) \propto (1, \omega, \omega^2) \) or \((1, \omega^2, \omega) \) with \(\omega = e^{\frac{2\pi i}{3}} \).

(ii) Suppose \(a + b + c + d = 0 \) with complex numbers \(a, b, c, d \) of modulus one. Then, \(a = -b, -c \) or \(-d \).

3 The \(H_2 \)-reducible matrix in an MUB trio

In this section, we show that the \(H_2 \)-reducible matrix in an MUB trio has exactly nine \(2 \times 2 \) Hadamard submatrices. This is presented in Theorem 7. For this purpose, we construct a preliminary lemma.

Lemma 5 Suppose \(M \) is a \(6 \times 6 \) CHM containing more than nine \(2 \times 2 \) Hadamard submatrices, and \(M \) belongs to an MUB trio. Then, up to complex equivalence we may assume that \(M \) is the matrix in (1) with the entry \((3, 3)\) of \(M \) being \(-1\).
Proof Evidently, M is an H_2-reducible matrix. It follows from Lemma 1 (i) that there exist two 6×6 monomial unitary matrices P, Q such that

$$H := [h_{ij}] := H(\theta, \phi, z_1, z_2, z_3, z_4) = PMQ$$

where $F_2, Z_1, \ldots, Z_4, A, B$ containing the parameters $\theta, \phi, z_1, z_2, z_3, z_4$ with $\theta, \phi \in [0, \pi)$, and $|z_j| = 1$ are given in (2). Since H and M are complex equivalent, H still has more than nine 2×2 Hadamard submatrices. Using (3), we obtain that $h_{ij} = -1$ for some (i, j) such that $i, j \neq 1$ and $(i, j) \neq (2, 2)$. If one of z_1, \ldots, z_4 is -1 then H has a 2×4 or 4×2 real submatrix. It is a contradiction with Lemma 3, because H belongs to an MUB trio. Hence, $h_{ij} = -1$ with $(i, j) \in \{3, 4, 5, 6\} \times \{3, 4, 5, 6\}$. We present claim one as follows. If we assume that H in (3) with h_{33}, h_{35}, h_{53} or $h_{55} = -1$ does not belong to any MUB trio, then neither does H with $h_{ij} = -1$ and $(i, j) \in \{3, 4, 5, 6\} \times \{3, 4, 5, 6\}$. To prove the claim, we consider

$H(\theta, \phi, z_1, z_2, z_3, z_4)$ with $h_{43} = -1$. Let the permutation matrix $R = I_2 \oplus \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \oplus I_2$.

Then, (3) implies that $RH(\theta, \phi, z_1, z_2, z_3, z_4) = H(\theta, \phi, z_1, z_2, -z_3, z_4) = [h'_{ij}]$ with $h'_{33} = -1$. Using the assumption, we obtain that $H(\theta, \phi, z_1, z_2, -z_3, z_4) = [h''_{ij}]$ does not belong to any MUB trio. Neither does $H(\theta, \phi, z_1, z_2, z_3, z_4)$ with $h_{43} = -1$. We have proven claim one.

We present claim two as follows. If we assume that H in (3) with $h_{33} = -1$ does not belong to any MUB trio, then neither does H with $h_{35}, h_{53}, h_{55} = -1$. To prove the claim, we consider $H(\theta, \phi, z_1, z_2, z_3, z_4)$ with $h_{55} = -1$. Let the permutation matrix $R_1 = I_2 \oplus \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$. Then, (3) implies that $R_1 H(\theta, \phi, z_1, z_2, z_3, z_4) R_1 = H(\theta, \phi, z_2, z_1, z_4, z_3) = [h'''_{ij}]$ with $h'''_{33} = -1$. Using the assumption, we obtain that $[h'''_{ij}]$ does not belong to any MUB trio. We have proven claim two. One can similarly show that H with $h_{35} = -1$ belongs to an MUB trio if and only if so does H with $h_{53} = -1$. To prove the claim, if suffices to show that $H(\theta, \phi, z_1, z_2, z_3, z_4)$ with $h_{53} = -1$ does not belong to any MUB trio. Indeed, (3) implies that $R_1 H(\theta, \phi, z_1, z_2, z_3, z_4) = H(\theta + \pi, \phi, z_1, z_2, z_3, z_4) = [h''''_{ij}]$ with $h''''_{33} = -1$. Using the assumption, we obtain that $[h''''_{ij}]$ does not belong to any MUB trio. We have proven claim two.

By combining claim one and two, we have proven the assertion. \qed
From the proof of Lemma 5, one can similarly obtain the following observation.

Corollary 6 Suppose M is an H_2-reducible matrix in (1). If M with $h_{33} = x$ does not belong to any MUB trio, then neither does M with $h_{ij} = x$ and (i, j) is one of $(3, 4), (3, 5), \ldots, (6, 6)$.

Now we are in a position to prove the main result of this section.

Theorem 7 If an H_2-reducible matrix belongs to an MUB trio, then the matrix has exactly nine 2×2 Hadamard submatrices.

In other words, the member of MUB trio has no CHM containing the 3×3 submatrix

\[
\begin{bmatrix}
1 & 1 & 1 \\
1 & -1 & * \\
1 & * & -1
\end{bmatrix}
\]

up to complex equivalence.

Proof Suppose $M = [m_{ij}]$ is an H_2-reducible matrix belonging to an MUB trio. It follows from Lemma 2 that M has exactly nine or eighteen 2×2 Hadamard submatrices. We shall exclude the latter by contradiction, and the assertion follows.

Assume that M has exactly eighteen 2×2 Hadamard submatrices. Using Lemma 5, we may assume that M is the matrix in (1) with $m_{33} = -1$. Applying Lemma 4 (ii) to row 1, 3 of M and column 5, 6 of M, we obtain that one of

\[
\begin{bmatrix}
m_{12} & m_{15} \\
m_{32} & m_{35}
\end{bmatrix}
\]

and

\[
\begin{bmatrix}
m_{12} & m_{16} \\
m_{32} & m_{36}
\end{bmatrix}
\]

is an Hadamard submatrix. Let the permutation matrix $R_1 = I_2 \oplus I_2 \oplus \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$. Using (1), one can show that MR_1 is still an H_2-reducible matrix containing exactly eighteen 2×2 Hadamard submatrices in an MUB trio. For convenience, we still name MR_1 as $M = [m_{ij}]$. So

\[
\begin{bmatrix}
m_{12} & m_{15} \\
m_{32} & m_{35}
\end{bmatrix}
\]

is a 2×2 Hadamard submatrix. Similarly by studying column 1, 3, we may assume that

\[
\begin{bmatrix}
m_{21} & m_{23} \\
m_{51} & m_{53}
\end{bmatrix}
\]

is a 2×2 Hadamard submatrix. Using Lemma 1, we can determine the eighteen 2×2 Hadamard submatrices in M. We obtain four equations $m_{33} = -1, m_{35} = -z_3, m_{53} = -z_1$, and $m_{55} = z_2 z_4$. Using (1), one can derive the expressions of $M = [m_{ij}]$. By solving the four equations, we obtain $m_{66} = -1$. It means that M has more than eighteen 2×2 Hadamard submatrices. It is a contradiction with the assumption that M has exactly eighteen 2×2 Hadamard submatrices. So we have excluded the option that M has exactly eighteen 2×2 Hadamard submatrices. We have proven the assertion. \(\Box\)

In the next section, we introduce the application of Theorem 7.

4 Application

In this section, we will exclude some known CHMs as members of MUB trio by using Theorem 7. First of all, we introduce Theorems 8 and 9, which exclude symmetric H_2-reducible matrix and the Hermitian matrix, respectively, from MUB trio.

Theorem 8 The CHM in any MUB trio is not a symmetric H_2-reducible matrix.
Proof Suppose that H is a symmetric H_2-reducible matrix in an MUB trio. The first row of H is $(h_1, h_2, h_3, h_4, h_5, h_6)$. Let $D = \text{diag}(h_1^{-\frac{1}{2}}, h_1^{-\frac{1}{2}}h_2^{-1}, h_1^{-\frac{1}{2}}h_3^{-1}, h_1^{-\frac{1}{2}}h_4^{-1}, h_1^{-\frac{1}{2}}h_5^{-1}, h_1^{-\frac{1}{2}}h_6^{-1})$. Then, D is a monomial unitary matrix, and $H' = DHD$ is a symmetric H_2-reducible matrix whose first row and column consist of ones. According to Corollary 3 of [26], H' has at least one element equaling to -1. If the element -1 does not belong to the diagonal of H', then H' contains at least two elements equaling to -1 by the symmetry of H'. Hence, H' does not belong to any MUB trio by Theorem 7. So the element -1 belongs to the diagonal of H'. From the proof of Lemma 5, we know that there is a permutation matrix P s.t. $H'' = PH'P$, and the element of the third row and the third column of H'' is -1, meanwhile H'' is a symmetric H_2-reducible matrix which has the form in (1). We assume that

$$H'' =
\begin{bmatrix}
F_2 & Z_1 & Z_2 \\
Z_3 & \frac{1}{2}Z_3AZ_1 & \frac{1}{2}Z_3BZ_2 \\
Z_4 & \frac{1}{2}Z_4BZ_1 & \frac{1}{2}Z_4AZ_2
\end{bmatrix}
$$

where

$$F_2 = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}, \quad Z_1 = \begin{bmatrix} 1 & 1 \\ z_1 & -z_1 \end{bmatrix}, \quad Z_2 = \begin{bmatrix} 1 & 1 \\ z_2 & -z_2 \end{bmatrix},$$

$$Z_3 = \begin{bmatrix} \frac{1}{2}z_3 \\ 1 & -z_3 \end{bmatrix}, \quad Z_4 = \begin{bmatrix} 1 & z_4 \\ 1 & -z_4 \end{bmatrix},$$

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{12}^* & -A_{11}^* \end{bmatrix}, \quad B = \begin{bmatrix} -1 & -A_{11} & -1 & -A_{12} \\ -1 & -A_{12}^* & 1 & A_{11}^* \end{bmatrix},$$

$$A_{11} = -\frac{1}{2} + i\frac{\sqrt{3}}{2}(\cos \theta + e^{-i\phi} \sin \theta),$$

$$A_{12} = -\frac{1}{2} + i\frac{\sqrt{3}}{2}(\cos \theta + e^{i\phi} \sin \theta),$$

$$B_{11} = -\frac{1}{2} - i\frac{\sqrt{3}}{2}(\cos \theta + e^{-i\phi} \sin \theta),$$

$$B_{12} = -\frac{1}{2} - i\frac{\sqrt{3}}{2}(\cos \theta + e^{i\phi} \sin \theta),$$

$$|z_j| = 1, \quad \theta, \phi \in [0, 2\pi),$$

$$z_3^2 = M_A(z_1^2) = M_B(z_2^2),$$

$$z_4^2 = M_A(z_2^2) = M_B(z_3^2),$$

$$M_A(z) = \frac{A_{12}^2z - A_{11}^2}{(A_{11}^2)^*z - (A_{12}^2)^*},$$

$$M_B(z) = \frac{B_{12}^2z - B_{11}^2}{(B_{11}^2)^*z - (B_{12}^2)^*}. \quad (4)$$
Suppose that \(h_{mn}'' (1 \leq m, n \leq 6) \) is the element of the \(m' \)th row and the \(n' \) column of \(H'' \). Because of the symmetry of \(H'' \), we have \(h_{mn}'' = h_{nm}'' \), \(z_1 = z_3 \) and \(z_2 = z_4 \). By \(h_{34}'' = h_{43}'' \), we have

\[
\frac{1}{2}(A_{11} + A_{12}z_1 - A_{12}z_3 + A_{11}z_1z_3) = \frac{1}{2}(A_{11} - A_{12}z_1 + z_3(A_{12} + A_{11}z_1)).
\] (5)

Namely

\[
(-\cos \theta + e^{i\phi} \sin \theta)z_1 = 0.
\] (6)

Obviously \(z_1 \neq 0 \). So \(-\cos \theta + e^{i\phi} \sin \theta = 0 \), namely \(\tan \theta = e^{-i\phi} \). Since \(\tan \theta \) is real, then \(e^{-i\phi} = 1 \) or \(e^{-i\phi} = -1 \). Now we can verify that \(h_{45}'' = h_{54}'' = -1 \) by using (4). Hence, \(H'' \) does not belong to any MUB trio by Theorem 7. To sum up, we have \(H \) does not belong to any MUB trio. So we complete this proof.

\[\square\]

Theorem 9 The CHM in any MUB trio is not an Hermitian matrix.

Proof Suppose that \(H_6 \) is an Hermitian matrix in an MUB trio. From the paper [32] by Kyle Beauchamp and Remus Nicoara, we know that \(H_6 \) is equivalent to \(H(\theta) \), where

\[
H(\theta) = \begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & -1 & \frac{1}{x} & -y & -\frac{1}{x} & y \\
1 & x & -1 & t & -t & -x \\
1 & -\frac{1}{y} & \frac{1}{t} & -1 & \frac{1}{y} & -\frac{1}{t} \\
1 & -x & -\frac{1}{t} & y & 1 & \frac{1}{z} \\
1 & \frac{1}{y} & -\frac{1}{x} & -t & z & 1
\end{bmatrix},
\] (7)

and \(\theta \in [-\pi, -\arccos(-1+\sqrt{3})] \cup [\arccos(-1+\sqrt{3}), \pi] \), the parameters \(x, y, z, t \) are given by:

\[
y = e^{i\theta}, \quad z = \frac{1 + 2y - y^2}{y(-1 + 2y + y^2)}
\] (8)

\[
x = \frac{1 + 2y + y^2 - \sqrt{2}\sqrt{1 + 2y + 2y^3 + y^4}}{1 + 2y - y^2}
\] (9)

\[
t = \frac{1 + 2y + y^2 - \sqrt{2}\sqrt{1 + 2y + 2y^3 + y^4}}{-1 + 2y + y^2}
\] (10)

One can verify that \(H(\theta) \) is an \(H_2 \)-reducible matrix of more than eighteen \(2 \times 2 \) Hadamard submatrices. So \(H(\theta) \) does not belong to any MUB trio by Theorem 7, of cause \(H_6 \) does not belong to any MUB trio. Hence, we complete this proof. \[\square\]

Next, we shall investigate some affine and non-affine CHMs. First, the two CHMs constructed on p256 of [26], and the Dita family [16, Eq. (5.45)] which are affine.
CHMs, all have more than nine 2×2 Hadamard submatrices. So they are both excluded by Theorem 7. One can similarly exclude the Fourier family and its transpose as known affine families. Next, a special CHM is Bjorck’s circulant matrix \cite[Eq. (5.46)]{16},

$$C_6 = \begin{bmatrix} 1 & id & -d & -i & -d^* & id^* \\ id^* & 1 & id & -d & -i & -d^* \\ -d^* & id^* & 1 & id & -d & -i \\ -i & -d^* & id^* & 1 & id & -d \\ -d & -i & -d^* & id^* & 1 & id \\ id & -d & -i & -d^* & id^* & 1 \end{bmatrix},$$ (11)

where $d = \frac{1-\sqrt{3}}{2} + i\sqrt{\frac{\sqrt{3} - 1}{2}}$. One can show that C_6 has more than nine 2×2 Hadamard submatrices. It is known that every circulant Hadamard matrix is equivalent to either the 6×6 Fourier matrix or C_6. So every circulant Hadamard matrix does not belong to any MUB trio.

Third, Theorem 7 excludes some non-affine CHMs too, such as the Szollosi family \cite[Eq. (C.12)]{4}

$$X(a, b) = H(x, y, u, v) = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & x^2 & y & x & y & \frac{xy}{uv} & uxy & uvy \\ 1 & x^2 & y & \frac{xy}{uv} & u & \frac{x}{v} & uvx & uvx \\ 1 & u & vx & uxy & -1 & -uxy & -uvx \\ 1 & u & vx & -\frac{x}{v} & -1 & -uxy \\ 1 & \frac{x}{v} & \frac{xy}{uv} & -\frac{x}{v} & -\frac{xy}{uv} & -1 \end{bmatrix},$$ (12)

where entries x, y and u, v are solutions of the equations $f_\alpha = 0$ and $f_{-\alpha} = 0$, respectively, such that $f_\alpha(z) = z^3 - \alpha z^2 + \alpha^* z - 1$ and $\alpha = a + bi$ restricted by $D(\alpha) \leq 0$ and $D(-\alpha) \leq 0$ with $D(\alpha) = |\alpha|^4 + 18 |\alpha|^2 - 8 Re[\alpha^3] - 27$. One can show that both Hermitian and Szollosi families are H_2-reducible matrices of more than nine 2×2 Hadamard submatrices. So they are not members of any MUB trio in terms of Theorem 7.

5 Conclusions

We have shown that if four six-dimensional MUBs containing the identity matrix exist, then the H_2-reducible matrix in the four MUBs has exactly nine 2×2 Hadamard submatrices. We have applied our result to exclude some known affine and non-affine CHMs as members of MUB trio, such as symmetric H_2-reducible matrix, the Hermitian matrix, Dita family, Bjorck’s circulant matrix, and Szollosi family. The next step is to exclude every H_2-reducible matrix as a member of MUB trio.

Acknowledgements XYC and MFL were partially supported by NSFC (Grant No. 61702025) and State Key Laboratory of Software Development Environment (Grant No. SKLSDE-2019ZX-12). MYH and LC were supported by the NNSF of China (Grant No. 11871089), and the Fundamental Research Funds for the Central Universities (Grant No. ZG216S1902).
References

1. Schwinger, J.: Unitary operator bases. Proc. Nat. Acad. Sci. U.S.A. 46(4), 570–579 (1960)
2. Amburg, I., Sharma, R., Sussman, D.M., Wootters, W.K.: States that “look the same” with respect to every basis in a mutually unbiased set. J. Math. Phys. 55(12), 122206 (2014)
3. Amburg, I., Sharma, R., Sussman, D.M., Wootters, W.K.: Erratum: “states that ‘look the same’ with respect to every basis in a mutually unbiased set”. J. Math. Phys. 56(3), 039901 (2015)
4. Brierley, S.: Mutually unbiased bases in low dimensions. University of York, Department of Mathematics. Ph.D. thesis (2009)
5. Brierley, S., Weigert, S.: Maximal sets of mutually unbiased quantum states in dimension 6. Phys. Rev. A 78, 042312 (2008)
6. Brierley, S., Weigert, S.: Constructing mutually unbiased bases in dimension six. Phys. Rev. A 79, 052316 (2009)
7. Brierley, S., Weigert, S.: Mutually unbiased bases and semi-definite programming. J. Phys. Conf. Ser. 254, 22 (2010)
8. Maxwell, A.S.: Brierley, Stephen: On properties of Karlsson Hadamards and sets of mutually unbiased bases in dimension six. Linear Algebra Appl. 466, 296–306 (2015)
9. Szöllösi, F.: Complex hadamard matrices of order 6: a four-parameter family. Journal of the London Mathematical Society 85(3), 616–632 (2012)
10. Turek, O, Goyeneche D. A generalization of circulant Hadamard and conference matrices. Linear Algebra Appl. 569:241–265 (2016)
11. Nicoara, R.: Worley, Chase: A finiteness result for circulant core complex Hadamard matrices. Linear Algebra Appl. 571, 143–153 (2019)
12. Szöllösi, F.: Parametrizing complex hadamard matrices. Eur. J. Combin. 29(5), 1219–1234 (2008)
13. Goyeneche, D.: Mutually unbiased triplets from non-affine families of complex hadamard matrices in dimension 6. J. Phys. A: Math. Theor. 46(10), 105301 (2013)
14. Boykin, P.O., Sitharam, M., Tiep, P.H., Wocjan, P.: Mutually unbiased bases and orthogonal decompositions of Lie algebras (2005). arXiv:quant-ph/0506089
15. Jaming, P., Matolcsi, M., Móra, P., Szöllösi, F., Weiner, M.: A generalized Pauli problem and an infinite family of MUB-triplets in dimension 6. J. Phys. Math. Theor. 42(24), 245305 (2009)
16. Durt, T., Englert, B.-G., Bengtsson, I., Zyczkowski, K.: On mutually unbiased bases. Int. J. Quantum Information 8(4), 535–640 (2010)
17. Wiesniak, M., Paterek, T., Zeilinger, A.: Entanglement in mutually unbiased bases. New J. Phys. 13(5), 053047 (2011)
18. McNulty, D., Weigert, S.: On the impossibility to extend triples of mutually unbiased product bases in dimension six. Int. J. Quant. Inform. 10(05), 125 (2012)
19. McNulty, D.: Weigert, Stefan: All mutually unbiased product bases in dimension 6. J. Phys. A: Math. Theor. 45(13), 135307 (2012)
20. Raynal, P, Lü, X, Englert, B-G.: Mutually unbiased bases in six dimensions: The four most distant bases. Phys. Rev. A 83, 33 (2011)
21. McNulty, D.: Weigert, Stefan: The limited role of mutually unbiased product bases in dimension 6. J. Phys. A: Math. Theor. 45(10), 102001 (2012)
22. McNulty D, Pammer B, Weigert S: Mutually unbiased product bases for multiple qudits. J. Math. Phys. 57(3): 32 (2016)
23. Chen, L, Li, Y.: Product states and Schmidt rank of mutually unbiased bases in dimension six. J. Phys. Math. General 50(47), 475304 (2017)
24. Chen, L, Li, Y.: Mutually unbiased bases in dimension six containing a product-vector basis. Quant. Inform. Process. 17(8), 198 (2018)
25. Designolle, S, Skrzypczyk, P, Fröwis, F, Brunner, N.: Quantifying measurement incompatibility of mutually unbiased bases. Phys. Rev. Lett. 122: 504 (2018)
26. Karlsson, B.R.: Three-parameter complex hadamard matrices of order 6. Linear Algebra Appl. 434(1), 247–258 (2011)
27. Karlsson, B.R.: H_2-reducible complex hadamard matrices of order 6. Linear Algebra Appl. 434(1), 239–246 (2011)
28. Liang, M, Mengyao, H, Chen, L, Chen, X: The H_2-reducible matrix in four six-dimensional mutually unbiased bases. Quantum Inform. Process. 18(11), 352 (2019)
29. De Baerdemacker, S, De Vos, A, Chen, L, Li, Y: The Birkhoff theorem for unitary matrices of arbitrary dimensions. Linear Algebra Appl 514, 151–164 (2017)
30. Chen, L.: Friedland, Shmuel: The tensor rank of tensor product of two three-qubit W states is eight. Linear Algebra Appl. 543, 1–16 (2018)
31. Wang, K, Chen, L, Shen, Y, Sun, Y, Zhao, L-J.: Constructing \(2 \times 2 \times 2 \) and \(4 \times 4 \) unextendible product bases and positive-partial-transpose entangled states. Linear Multilinear Algebra 69:131–46 (2019)
32. Beauchamp, K., Nicoara, R.: Orthogonal maximal abelian \(* \)-subalgebras of the \(6 \times 6 \) matrices (2006). arXiv:math/0609076v1

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.