Supplementary Material for:
Clinical and molecular profiling to develop a potential prediction model for the response to alemtuzumab therapy for acute kidney transplant rejection

Daphne M. Hullegie-Peelen MD, Marieke van der Zwan MD, PHD, Marian C. Claesen-van Groningen MD, PHD, Dana A.M. Mustafa PHD, Sara J. Baart PHD, Marlies Reinders MD, PHD, Carla C. Baan PHD, Dennis A. Hesselink MD,PHD

Table of Contents:

1. Detailed methods of gene expression profiling .. 2
2. TRIPOD checklist ... 3-4
3. Supplementary Tables:
 Table S1 Collected baseline characteristics of the study population 5
 Table S2 Shrinkage of regression coefficients in the lambda.min LASSO model 6
 Table S3 Shrinkage of regression coefficients in the lambda.1SE LASSO model 7
 Table S4 Bootstrap variable selection ... 8
 Table S5 Logistic regression model: Included variables and statistics 9
 Table S6 Baseline characteristics of the NanoString® cohort (n=63) 10
 Table S7 Treatment outcomes in the NanoString® cohort (n=63) 11
 Table S8 Differently expressed genes between responders and non-responders 12
 Table S9 Genes included in the NanoString® pathway analysis of B-cell receptor signaling 13
 Table S10 Shrinkage of regression coefficients in the mRNA LASSO model 13
4. Supplementary Figures
 Figure S1 Performance measures of prediction models 14-15
 Figure S2 Flowchart of included samples in NanoString® analysis 16
 Figure S3 B-cell receptor signaling scores according to type of rejection 17
 Figure S4 Correlation matrices of DE genes .. 18
 Figures S5 Penalization and shrinkage in the mRNA.LASSO model 19
5. Equation of ALEMAR-score ... 20
6. References ... 20
1. Detailed methods of gene expression profiling

Formalin-fixed paraffin-embedded biopsy samples on which the initial diagnosis of AR was made were obtained from the in-hospital pathology biobank. RNA was isolated as described previously. RNA concentration and quality were assessed using the NanoDrop™ 2000 spectrophotometer (Thermo Fisher Scientific Waltham, MA, USA). RNA samples with a concentration below 10ng/ul or a 260/280 ratio below 1.5 were excluded for further analysis.

The Banff Human Organ Transplant (B-HOT) panel was used in the NanoString® nCounter assay. The B-HOT panel was specifically designed for use in solid organ transplant research and consists of 758 target genes of interest and 12 reference genes for quality control and normalization. Capture and reporter probes of 770 target genes, 6 positive control probes and 8 negative control probes were added to 25 ng RNA of each sample for hybridization. Excess probes were removed by two times magnetic bead selection. Samples were loaded on nCounter Sample cartridges (NanoString® Technologies, Seattle, WA, USA) for alignment and immobilization. Next, cartridges were loaded onto the nCounter FLEX system (NanoString® Technologies) for imaging and counting of RNA-probe complexes. Excitation wavelength for fields of view (FOV) was set at 490 nm. Raw count complex (RCC) files were obtained and transferred to nSolver software for data analysis.

nSolver software (NanoString® Technologies) was used for quality control, normalization and data analysis. First, a simple analysis was performed for quality control (QC) of samples. Default parameters of QC flagging as recommended by the manufacturer were used. Each sample with a positive QC flag was evaluated and removed when needed. Next, the advanced analysis module was performed with all samples that passed the QC. For this analysis, a threshold was calculated to remove low count genes as recommended by the manufacturer as follows: The background for each sample was calculated as the average of negative controls plus 2 standard deviations (SD). The sample with maximum background was identified. The threshold of gene detection was calculated as 2 times the maximum background. All genes that had >50% of samples with a raw count below this threshold were omitted from the analysis. The geNorm algorithm was selected for the housekeeping (HK) gene normalization procedure. Samples that were far outlying other samples within this HK normalization were excluded from the analysis, i.e. samples with a normalization factor greater than -3 or +3 or a mean squared error (MSE) above 2.
2. TRIPOD checklist

Section/Topic	Checklist Item	Page	
Title and abstract			
Title	Identify the study as developing and/or validating a multivariable prediction model, the target population, and the outcome to be predicted.	P1	
Abstract	Provide a summary of objectives, study design, setting, participants, sample size, predictors, outcome, statistical analysis, results, and conclusions.	P3	
Introduction			
Background and objectives	Explain the medical context (including whether diagnostic or prognostic) and rationale for developing or validating the multivariable prediction model, including references to existing models.	P4	
	Specify the objectives, including whether the study describes the development or validation of the model or both.	P4	
Methods			
Source of data	Describe the study design or source of data (e.g., randomized trial, cohort, or registry data), separately for the development and validation data sets, if applicable.	P5	
	Specify the key study dates, including start of accrual; end of accrual; and, if applicable, end of follow-up.	P5	
Participants	Specify key elements of the study setting (e.g., primary care, secondary care, general population) including number and location of centres.	P5	
	Describe eligibility criteria for participants.	P5	
	Give details of treatments received, if relevant.	P5; Reference #7	
Outcome	Clearly define the outcome that is predicted by the prediction model, including how and when assessed.	P7	
	Report any actions to blind assessment of the outcome to be predicted.	-	
Predictors	Clearly define all predictors used in developing or validating the multivariable prediction model, including how and when they were measured.	P6; Table S1	
	Report any actions to blind assessment of predictors for the outcome and other predictors.	-	
Sample size	Explain how the study size was arrived at.	-	
Missing data	Describe how missing data were handled (e.g., complete-case analysis, single imputation, multiple imputation) with details of any imputation method.	P8	
Statistical analysis methods	Describe how predictors were handled in the analyses.	P8; Table S1	
	Specify type of model, all model-building procedures (including any predictor selection), and method for internal validation.	P8-10	
	Specify all measures used to assess model performance and, if relevant, to compare multiple models.	P9-10	
Risk groups	Provide details on how risk groups were created, if done.	P9	
Results			
Participants	Describe the flow of participants through the study, including the number of participants with and without the outcome and, if applicable, a summary of the follow-up time. A diagram may be helpful.	P10; P13; Table 2; Table S7; Figure S2	
	Describe the characteristics of the participants (basic demographics, clinical features, available predictors), including the number of participants with missing data for predictors and outcome.	P10; Table 1; Table S6	
Model development	Specify the number of participants and outcome events in each analysis.	P10; P13; Table 2; Table S7	
	If done, report the unadjusted association between each candidate predictor and outcome.	-	
Model specification	Present the full prediction model to allow predictions for individuals (i.e., all regression coefficients, and model intercept or baseline survival at a given time point).	P11-12; P14; Figure 1; Table S2; Table S10 Figure S5	
	Explain how to use the prediction model.	P12; Table 3; Supplementary file S	
Model performance	16	Report performance measures (with CIs) for the prediction model.	P11; P14; Figure 4; Figure S1
-------------------	----	---	-------------------------------

Discussion

Limitations	18	Discuss any limitations of the study (such as nonrepresentative sample, few events per predictor, missing data).	P17
Interpretation	19b	Give an overall interpretation of the results, considering objectives, limitations, and results from similar studies, and other relevant evidence.	P15-17
Implications	20	Discuss the potential clinical use of the model and implications for future research.	P15-18

Other information

| Supplementary information | 21 | Provide information about the availability of supplementary resources, such as study protocol, Web calculator, and data sets. | Throughout article |
| Funding | 22 | Give the source of funding and the role of the funders for the present study. | P2 |
Table S1: Collected baseline characteristics of the study population

VARIABLES	TYPE OF VARIABLE	USED IN PREDICTION MODEL	CODING IN PREDICTION MODEL
PATIENT CHARACTERISTICS			
RECIPIENT AGE AT TRANSPLANTATION	CONTINUOUS	NO	
RECIPIENT AGE AT ACUTE REJECTION	CONTINUOUS	YES	YEARS, CONTINUOUS
GENDER	CATEGORICAL	NO	
ETHNICITY	CATEGORICAL	NO	
PRIMARY KIDNEY DISEASE	CATEGORICAL	NO	
TRANSPLANT NUMBER	CATEGORICAL	NO	
PRE-EMPTIVE TRANSPLANTATION	CATEGORICAL	YES	0=NO; 1=YES
% PANEL REACTIVE ANTIBODIES - CURRENT	CONTINUOUS	YES	PERCENTAGE, CONTINUOUS
TRANSPLANT CHARACTERISTICS			
TYPE OF DONOR (LIVING OR POSTMORTAL)	CATEGORICAL	YES	1=LIVING; 2=POSTMORTAL
DONOR AGE	CONTINUOUS	YES	YEARS, CONTINUOUS
HLA MISMATCHES	CATEGORICAL	YES	1-6 = NUMBER OF HLA MISMATCHES
HLA MISMATCHES DR	CATEGORICAL	NO	
DELAYED GRAFT FUNCTION	CATEGORICAL	YES	0=NO; 1=YES
REJECTION CHARACTERISTICS			
TIMING OF REJECTION (DAYS AFTER TRANSPLANTATION)	CONTINUOUS	YES	DAYS, CONTINUOUS
EARLY VS LATE*	CATEGORICAL	NO	
TYPE OF REJECTION (HISTOLOGICAL CLASSIFICATION)	CATEGORICAL	YES	TYPE_REJECTION_2=AABMR (REFERENCE ATCMR)
			TYPE_REJECTION_3=MIXED-TYPE (REFERENCE ATCMR)
DSA	CATEGORICAL	YES	0= NO DSA; 1=DSA
MAX BASELINE EGFR**	CONTINUOUS	YES	EGFR, CONTINUOUS
THERAPY CHARACTERISTICS			
TRIPLE MAINTENANCE THERAPY (TAC+MMF+PRED)**	CATEGORICAL	YES	0=NO; 1=YES
DOSAGE FREQUENCY OF ALEMTUZUMAB	CATEGORICAL	YES	0= 1 DOSAGE OF 30MG; 1= 2 DOSAGES OF 30MG
INDICATION FOR ALEMTUZUMAB (SEVERE OR GLUCOCORTICOID-RESISTANT AR)	CATEGORICAL	YES	1=SEVERE AR; 2=GLUCOCORTICOID-RESISTANT AR

*early rejection<3 months after transplantation, late rejection>3 months after transplantation

**Max Baseline eGFR= highest eGFR in the 3 months prior to alemtuzumab

***TAC=tacrolimus, MMF=mycophenolate mofetil, PRED=methylprednisolone
Table S2: Shrinkage of regression coefficients in the lambda.min LASSO model

COVARIATES	COEFFICIENTS BEFORE SHRINKAGE	COEFFICIENTS AFTER SHRINKAGE
RECIPIENT AGE AT AR	-0.038	-0.005
PRE-EMPTIVE TRANSPLANTATION	-0.915	0.000
PRA CURRENT	-0.075	-0.008
DONOR AGE	-0.045	-0.000
TYPE OF DONOR	-1.141	0.000
HLA MISMATCHES	-0.847	-0.371
TRIPLE MAINTENANCE THERAPY	-1.588	-0.775
ALEM DOSES*	-0.545	-0.066
INDICATION FOR ALEMTUZUMAB	1.349	0.138
TIMING OF REJECTION	0.001	0.001
TYPE OF REJECTION: AABMR	-0.761	-0.215
TYPE OF REJECTION: MIXED-TYPE	1.741	0.432
DELAYED GRAFT FUNCTION	-0.824	0.000
DSA	-0.032	0.000
MAX BASELINE EGFR	-0.057	-0.004

* Alem doses = Dosage frequency of alemtuzumab
Table S3: Shrinkage of regression coefficients in the lambda.1SE LASSO model

COVARIATES	COEFFICIENTS BEFORE SHRINKAGE	COEFFICIENTS AFTER SHRINKAGE
RECIPIENT AGE AT AR	-0.038	0.00000
PRE-EMPTIVE TRANSPLANTATION	-0.915	0.00000
PRA CURRENT	-0.075	0.00000
DONOR AGE	-0.045	0.00000
TYPE OF DONOR	-1.141	0.00000
HLA MISMATCHES	-0.847	-0.09575
TRIPLE MAINTENANCE THERAPY	-1.588	-0.29382
ALEM DOSES*	-0.545	0.00000
INDICATION FOR ALEMTUZUMAB	1.349	0.00000
TIMING OF REJECTION	0.001	0.00021
TYPE OF REJECTION: AABMR	-0.761	0.00000
TYPE OF REJECTION: MIXED-TYPE	1.741	0.00000
DELAYED GRAFT FUNCTION	-0.824	0.00000
DSA	-0.032	0.00000
MAX BASELINE EGFR	-0.057	0.00000

* Alem doses = Dosage frequency of alemtuzumab
Table S4: Bootstrap variable selection

VARIABLES	% SELECTED IN RESAMPLING	% SELECTED IN RESAMPLING
	– CONSTANT λ^{**}	– VARIABLE λ^{**}
(INTERCEPT)	100.0	100.0
RECIPIENT AGE AT AR	59.2	78.9
PRE-EMPTIVE TRANSPLANTATION	11.7	49.9
PRA CURRENT	69.5	88.4
DONOR AGE	38.0	72.1
TYPE OF DONOR	25.9	57.9
HLA MISMATCHES	98.4	99.6
TRIPLE MAINTENANCE THERAPY	85.9	91.1
ALEM DOSES	49.3	69.0
INDICATION FOR ALEMTUZUMAB	53.8	79.9
TIMING OF REJECTION	82.8	88.4
TYPE OF REJECTION: AABMR	59.9	71.4
TYPE OF REJECTION: MIXED-TYPE	67.8	83.0
DELAYED GRAFT FUNCTION	4.4	31.3
DSA	18.3	46.7
MAX BASELINE EGFR	62.2	87.9

* Alem doses = Dosage frequency of alemtuzumab

** Two internal validations using bootstrap resampling have been performed; first to evaluate the robustness of the model (constant λ) and second to evaluate the tuning parameter (variable λ)
Table S5: Logistic regression model: Included variables and statistics

VARIABLES	OR	95% CI	P-VALUE
(INTERCEPT)	26.896	4.274 – 222.620	0.001
HLA MISMATCHES	0.519	0.342 – 0.749	0.001
TRIPLE MAINTENANCE THERAPY	0.091	0.025 – 0.282	0.000
MAX BASELINE EGFR	0.973	0.947 – 0.997	0.037
Table S6: Baseline characteristics of the NanoString® cohort (n=63)

VARIABLES	MISSING (N)*	ALL PATIENTS (N=63)	RESPONDERS (N=46)	NON-RESPONDERS (N=15)	P-VALUE
PATIENT CHARACTERISTICS					
Recipient age at transplantation (YEARS), median (IQR**)	57.1 (43.0-63.4)	56.8 (41.9-63.4)	55.0 (42.9-63.4)	0.940	
Recipient age at acute rejection (YEARS), median (IQR)	57.1 (43.1-63.9)	56.8 (41.9-64.0)	55.5 (44.8-63.4)	0.927	
Gender (male), N (%)	39 (62%)	28 (61%)	10 (67%)	0.687	
Ethnicity (Caucasian), N (%)	39 (62%)	28 (61%)	9 (60%)	0.684	
Primary kidney disease, N (%)					
Hypertension	11 (17%)	6 (13%)	3 (20%)	0.817	
Diabetic nephropathy	15 (24%)	12 (26%)	3 (20%)		
Glomerulonephritis	5 (8%)	3 (7%)	2 (13%)		
Polycystic kidney disease	11 (17%)	8 (17%)	3 (20%)		
Reflux nephropathy	5 (8%)	5 (11%)	0 (0%)		
Other	15 (24%)	11 (24%)	4 (27%)		
Unknown	1 (2%)	1 (2%)	0 (0%)		
Transplant number (first), N (%)	52 (83%)	38 (83%)	13 (87%)	1.000	
Pre-emptive transplantation, N (%)	19 (30%)	12 (26%)	6 (40%)	0.340	
% Panel reactive antibodies - current, median (IQR)	0.0 (0.0-4.0)	0.0 (0.0-4.0)	0.0 (0.0-4.0)	0.555	
TRANSPLANT CHARACTERISTICS					
Type of donor (Living), N (%)	41 (65%)	31 (67%)	9 (60%)	0.601	
Donor age (years), median (IQR)	54.0 (43.5-64.0)	55.0 (46.0-64.0)	53.0 (38.5-60.0)	0.244	
HLA Mismatches, median (IQR)	4.0 (2.25-5.0)	4.0 (3.0-5.0)	3.0 (2.0-4.5)	0.087	
HLA Mismatches DR, N (%)	1				0.780
0	9 (14%)	6 (13%)	3 (20%)		
1	30 (48%)	23 (51%)	6 (40%)		
2	23 (37%)	16 (36%)	6 (40%)		
Delayed graft function, N (%)	25 (40%)	21 (46%)	3 (20%)	0.077	
REJECTION CHARACTERISTICS					
Timing of rejection (days after \(T\))	11.0 (7.0-324.0)	9.5 (6.0-94.3)	461.0 (201.0-971.0)	0.000	
Early***, N (%)	39 (62%)	34 (74%)	3 (20%)	0.000	
Histological rejection category, N (%)					0.188
ATCMR	44 (70%)	33 (72%)	10 (67%)		
AABMR	11 (17%)	9 (20%)	1 (7%)		
Mixed	8 (13%)	4 (9%)	4 (27%)		
DSA, N (%)	13 (21%)	9 (20%)	4 (27%)	0.718	
Max baseline eGFR***, median (IQR)	26.0 (2.5-46.8)	26.0 (1.25-45.0)	26.0 (7.5-48.3)	0.953	
THERAPY CHARACTERISTICS					
Triple maintenance therapy (TAC+MMF+PRED)*****, N (%)	44 (70%)	35 (76%)	7 (47%)	0.053	
Dosage frequency of alemtuzumab (single), N (%)	59 (94%)	43 (94%)	14 (93%)	1.000	
Indication for alemtuzumab (Severe AR), N (%)	17 (27%)	14 (30%)	2 (13%)	0.312	

*The patient with missing data was excluded in all prediction models **IQR = interquartile range ***early rejection<3 months after transplantation, late rejection>3 months after transplantation ****Max Baseline eGFR= highest eGFR in the 3 months prior to
alemtuzumab

Tac=tacrolimus, MMF=mycophenolate mofetil, PRED=methylprednisolone; aTCMR, acute T cell-mediated rejection; aABMR, acute antibody-mediated rejection

Table S7: Treatment outcomes in the NanoString® cohort (n=63)

VARIABLES	VALUE
EVENTS	
DEATH WITH FUNCTIONING GRAFT*, N (%)	2 (3%)
TIME INTERVAL (DAYS)**, MEAN ±SD	103 ±42.4
ALLOGRAFT LOSS, N (%)	8 (13%)
TIME INTERVAL (DAYS), MEDIAN (IQR****)	93.0 (93.0-95.8)
LOST TO FOLLOW UP, N (%)	0 (0%)
EGFR	
NUMBER OF MEASUREMENTS***, MEDIAN (IQR)	26.0 (18.5-33.0)
6 MONTHS AFTER ALEMTUZUMAB, MEDIAN (IQR)	36.0 (28.5-42.9)
RESPONSE TO ALEMTUZUMAB	
RESPONDERS, N (%)	46 (73%)
NON-RESPONDERS, N (%)	15 (24%)

*Causes of death: cardiac arrest during pneumonia and cardiac decompensation (day 73 after alemtuzumab); pneumosepsis (day 133 after alemtuzumab)

** Days after alemtuzumab treatment

*** IQR= Interquartile range

**** Number of eGFR measurements during the follow-up period
Table S8: Differently expressed genes between responders and non-responders

GENE	LOG2 FOLD CHANGE	STANDARD ERROR	P-VALUE	BH. P-VALUE*
XBP1	1.2	0.178	7.74E-09	4.07E-06
IGLC1	3.19	0.591	1.23E-06	0.000324
IGHM	2.59	0.582	3.97E-05	0.00525
IGHG3	3.61	0.831	5.67E-05	0.00525
PRDM1	1.3	0.3	5.87E-05	0.00525
IGHG1	3.78	0.881	6.61E-05	0.00525
IGHG2	3.6	0.841	6.99E-05	0.00525
IGHG4	3.66	0.867	8.59E-05	0.00565
TPSAB1/B2	1.81	0.444	0.000136	0.00793
IGKC	3.13	0.772	0.000151	0.00793
CXCR4	1.04	0.32	0.0019	0.0771
S100A8	-1.5	0.466	0.00207	0.0778
CD209	1.01	0.322	0.00256	0.0898

*BH. p-value= Benjamin-Hochberg corrected p-value
Table S9: Genes included in the NanoString® pathway analysis of B-cell receptor signaling

B-CELL RECEPTOR SIGNALING GENES
BLK
BLNK
BTK
CD19
CD22
CD72
CD79A
CD81
CHUK
FCGR2B
FKBP1A
FOS
FYN
IFITM1
IGHA1

Table S10: Shrinkage of regression coefficients in the mRNA LASSO model

COVARIATES	COEFFICIENTS BEFORE SHRINKAGE	COEFFICIENTS AFTER SHRINKAGE
ALEMAR-SCORE	8.06610	7.552635
XBP1	0.00123	0.001154
IGHG1	0.00004	0.000001
CXCR4	0.00091	0.000591
S100A8	-0.00242	-0.001069
Figure S1: Performance measures of prediction models

Performance was compared between LASSO models and the logistic regression model by evaluation of the discrimination and calibration plots.
(a-b) Discrimination of the lambda.min model was good (c-index=0.858) and the calibration showed a good agreement (slope=1.955)

(c-d) Discrimination and calibration of the lambda.1SE model was inferior to the lambda.min model (c-index=0.808, slope=5.113)

(e-f) Discrimination of the logistic regression model was lower compared to the lambda.min model (c-index=0.814), while the calibration was slightly better (slope=1.000)

$AUC=area \text{ under the curve (equal to } c\text{-index); Black dots in calibration plots represent the sample percentiles).
FFPE tissues were available in 91 of 115 patients of the study cohort. Examination of RNA concentration and quality resulted in exclusion of 19 samples. Another 10 samples were excluded by the multistep normalization within the nSolver software, including quality control flags, positive and negative controls and housekeeping genes. Sixty-three samples could be used in the data analysis.

Figure S2: Flowchart of included samples in NanoString® analysis
Figure S3: B-cell receptor signaling scores according type of rejection.
NanoString® pathway analysis for B-cell receptor signaling (BCR) related genes calculates a score for each patient based on the overall expression of BCR genes. No association was found between the BCR score and the type of rejection (aTCMR versus aABMR/mixed-type).
Figure S4: Correlation matrices of DE genes

(a-b) Correlation matrices including all DE genes that were considered for inclusion in the prediction model. On the diagonal are the names of the mRNA markers. The lower triangle shows the scatterplot between two markers including a smoothing line. The upper triangle shows the Spearman correlation coefficient. Correlations varied between 0.066 and 0.99.

(c) Correlation matrix of the DE genes that were selected for inclusion shows a maximum correlation of 0.54.
Figure S5: Penalization and shrinkage in the mRNA LASSO model
LASSO method was used for shrinkage and selection of variables to include in the mRNA prediction model. (a) The tuning parameter (λ) corresponding to the minimal cross validated error was used conform the main model (left dotted vertical line). (b) The shrinkage factor (s=0.13) corresponding to the minimal lambda didn’t shrink any of the 5 variables to zero. Positive variables (red) give a higher risk of non-response to alemtuzumab, while negative variables (green) give a lower risk of non-response.
5. Equation of ALEMAR-score

\[\ln\left(\frac{p}{1-p} \right) = 0.59118 - 0.00489 \times (\text{Recipient age at AR}) - 0.00759 \times (\text{PRA current}) - 0.3713 \times (\text{HLA mismatches}) - 0.7747 \times (\text{Triple maintenance therapy}) - 0.06608 \times (\text{Alcm doses}) + 0.13827 \times (\text{Indication for alemtuzumab}) + 0.0058 \times (\text{Timing of rejection}) - 0.21507 \times (\text{Type of rejection: aABMR}) + 0.43233 \times (\text{Type of rejection: MIXED-type}) - 0.00441 \times (\text{Max baseline eGFR}) \]

6. References

1. van der Zwan M, Baan CC, Colvin RB, et al. Immunomics of Renal Allograft Acute T Cell-Mediated Rejection Biopsies of Tacrolimus- and Belatacept-Treated Patients. Transplant Direct. 2019;5(1):e418.

2. Mengel M, Loupy A, Haas M, et al. Banff 2019 Meeting Report: Molecular diagnostics in solid organ transplantation—Consensus for the Banff Human Organ Transplant (B-HOT) gene panel and open source multicenter validation. Am J Transplant. 2020;20(9):2305-2317.

3. nCounter® Human Organ Transplant Panel, version: LBL-10743-01. 2019; https://www.nanostring.com/products/ncounter-assays-panels/immunology/human-organ-transplant/. Accessed 15 February, 2022.

4. nCounter Advanced Analysis 2.0 User Manual, version: MAN-10030-03. 2018; https://www.nanostring.com/wp-content/uploads/2020/12/MAN-10030-03_nCounter_Advanced_Analysis_2.0_User_Manual.pdf. Accessed 15 February, 2022.

5. nSolver 4.0 Analysis Software User Manual, version: MAN-C0019-08. 2018; https://www.nanostring.com/wp-content/uploads/2020/12/MAN-C0019-08_nSolver_4.0_Analysis_Software_User_Manual.pdf. Accessed 15 February, 2022.