Otitis Media and Biofilm: An Overview

Muhamad Bin Abu Bakar, Judy McKimm, Mainul Haque
Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kem Perdana Sungai Besi, 57000 Kuala Lumpur, Malaysia, *Swansea University School of Medicine, Grove Building, Swansea University, Singleton Park, Swansea, Wales SA2 8PP, UK

Abstract

Otitis media (OM) is a group of complex infective and inflammatory conditions affecting the middle ear, with a variety of subtypes differing in presentation and associated complications. It is the highest cause of pediatric health-care visits and antibiotic prescriptions internationally. It has been stated that approximately 75% of children under age three suffer from middle-ear infections. OM complications are the essential cause of preventable hearing loss, particularly in low-resource settings. Currently, scientists have confirmed that bacteria form colonies in the middle ear and are responsible for chronic infections. While bacteria are often thought of as independently free-floating living microorganisms, most of the bacteria and fungus forms organize complex communities and attach to surfaces called biofilm. Biofilm formation is considered as a survival strategy by bacteria to counteract traditional approaches (such as antibiotics) which are effective against bacteria. Biofilms are almost impossible to grow in the laboratory media and are incredibly resistant to antimicrobials which mean that the diagnosis of chronic OM is one of the most challenging in the management of middle-ear infection. This article aims to provide an appraisal of current scientific successes within the field of OM research and clinical management.

Keywords: Biofilm, otitis media, treatment strategies

INTRODUCTION

Otitis media (OM) is a standard terminology [1] clinically comprising acute OM (AOM), chronic OM (COM), and COM with effusion (COME), also referred to as nonsuppurative OM. [2,3] OM is a common middle-ear pathological condition in both high- and low-resource settings, a principal cause for visiting the doctor (particularly for pediatric patients), requires antimicrobials, surgical procedures, and is the primary cause of hearing loss. [4-6] COM is associated with chronic suppurative OM (CSOM) but is different as COM is not necessarily a consequence of “the gathering of pus.” [7] Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis have been isolated from approximately 25% of children with OME and polymerase chain reaction (PCR)-based methods have demonstrated sequence-specific DNA and RNA for these pathogens in nearly 80% of cases. This finding specifically relates to OM with effusion, lasting for more than 3 months with an intact eardrum. [8-13]

CHRONIC SUPPURATIVE OTITIS MEDIA

CSOM is considered as the most prevalent chronic contagious disease of prepubescence and adolescence in many low-resource countries and among marginalized communities (especially among aboriginal and indigenous peoples living in Australia and Alaska, United States, respectively) in developed nations and is a major cause of acquired hearing impairment affecting 65–330 million people globally. [14,19-23] CSOM is “probably a dangerous clinical condition” [24] which can lead to deadly intracranial infections and acute mastoiditis, particularly in resource-poor countries and is a cause of poor academic achievement. [25] CSOM is defined as a chronic persistent inflammatory multifactorial disease of the middle ear and mastoid cavity, which presents with recurrent and persistent ear discharges (or otorrhea) through a tympanic membrane perforation (TMP) for over 2–6 weeks. [25-28] CSOM can cause thickening of the middle-ear mucosa, mucosal polyps, and cholesteatoma. [29]

The classification and definition of CSOM have changed over time. Conventionally, it was classified as a safe or tubotympanic...
Bacteria are commonly involved in biofilm formation.[49,42-44] This has been recognized as the most important causative factor of the persistent nature of COM.[61,62] Biofilms have now been studied in other middle-ear diseases of children, such as recurrent AOM with middle-ear effusions, which increases the possibility of COM.[48,63-65] Bacterial biofilms were found in 85%, 92%, and 16% of patients with middle-ear cholesteatoma, COM, and TMD, respectively.[57] Another factor associated with COM is the presence of biofilms, which explains the lack of antibiotic efficacy for this disorder.

Although there have been technological advances in laboratory diagnostics, routine clinical, microbiological examinations continue to depend on more traditional testing methods (including culture, phenotypic, and biochemical tests) to detect microorganisms present in the clinical specimen.[66] Among these, diagnostic test culture and sensitivity is one of the definitive diagnostic tests in microbiology, and the plate count technique is one of the standard cultivation methods for the itemizing and quantification of viable bacteria.[67,68] This traditional diagnostics approach is important, reliable, and makes a huge contribution toward the diagnosis of infectious diseases and treatment; however, it is less specific for biofilm detection because these methods cannot identify the composite, three-dimensional features of biofilms.[69-71] Staphylococcus species, Streptococcus species, Pseudomonas aeruginosa, and other bacteria are grown at experimental conditions (usually 37°C for 24–48 h). However, most bacterial and fungal species do not grow under these laboratory conditions. Bacteria in the biofilm phenotype are especially difficult to grow in routine clinical microbiological culture examinations because these organisms are viable but not culturable (VBNC) state.[72-74]

A group of scientists first observed in 1982 that Escherichia coli and Vibrio cholerae cells could enter a distinct state called the VBNC “nonrecoverable stage of existence.”[74] A large proportion of the biofilm community of pathogenic bacteria continues as a VBNC state, and traditional diagnostic techniques fail to detect these organisms. The VBNC state Staphylococcus epidermidis present in biofilms are not only
resistant to several antimicrobials but also escapes normal defense mechanisms. In vitro decreases the output “of tumor necrosis factor alpha, interleukin-1, and interleukin-6 by bone-marrow-derived murine macrophages, and in vivo, a lower stimulatory effect on peritoneal macrophages, assessed by increased surface expression of Gr1 and major histocompatibility complex class II molecules.”[75] Normally, bacterial cells are culturable inappropriate media, and they develop their colonies in a culture plate. VBNBC bacterial cells are alive and viable cells which have lost the ability to grow in routine laboratory media, on which they normally grow.[76] Although biofilm bacterial cells have lost the potential to grow typically in compliant laboratory media, VBNBC cells are not considered as dead. Whereas, the cell membrane of dead cells is totally damaged, incapable of holding chromosomes and plasmidic DNA, and metabolically inactive, VBNBC cells have a complete and integral cell membrane, comprise intact genetic information, retained plasmids, maintains metabolism, and carry out respiration.[77-81] Furthermore, dead cells do not express genes, whereas VBNBC cells endure transcription and consequently, mRNA production.[73] Dead cells do not need or utilize nutrients, in contrast, VBNBC cells are known to have continual uptake and integration of amino acids into proteins.[82] For example, the VBNBC state *Listeria monocytogenes* had high levels of ATP even after 1 year.[83] The VBNBC “state is, therefore, a unique survival strategy adopted by many bacteria in response to adverse environmental conditions.”[84] Multiple studies have revealed that over 50% of middle-ear effusion specimens were found to be culture negative.[48,58-89] This raises suspicions that microorganisms are not involved in OME.

Molecular biology diagnostics technology based on nucleic acid intensification approaches have provided the process to detect and recognize bacteria, and different imaging modalities have given investigators insight into the role of biofilms in human infections.[86] Scanning electron microscopy is also a cutting-edge resolution technique that makes available ultrastructure analysis of biofilms.[89] Studies using PCR tests have found mixed results. Some studies detected bacterial nucleic acids in a clinical specimen of middle effusion of several patients.[15,91,92] However, another study concluded that nucleic acids noted through PCR evaluation might not denote viable bacteria, even when the quantitative technique of real-time PCR was used,[93] although an innovative technique of distinguishing whether DNA comes from live or dead bacteria has newly been developed.[94] An alternative interpretation is that the nucleic acid detected might be VBNBC not culturable by traditional laboratory approach, a state that is usually observed in biofilms.[95,96] More evidence that biofilms are involved has been found, for example, one reporting that bacterial biofilm is progressively documented as the causative factor for the recurrence and persistence of infections such as OM.[90] Multiple live otopathogenic species were demonstrated in bacterial biofilms of OME of children with recurrent acute OM (RAOM). There was also the association of these biofilms with a DNA matrix produced by neutrophil extracellular traps.[96] Furthermore, bacterial biofilms were confirmed in 84% of OME from children undergoing ventilation tube insertion for RAOM.[84] Similar rates of the presence of biofilm on the middle-ear mucosa among pediatric patients with COME and RAOM (64%–92%)[48,63] and in COM discharge samples (83%) in earlier studies were found.[97] Utilizing fluorescent in situ hybridization technology, these biofilms of OME were found as heterogeneous, polymicrobial community, and consistent with the environment.[98,99]

One of the exclusive characteristics of biofilms is “planktonic shedding” of bacteria from the biofilm surface into the neighboring space, scattering infection to distant parts of the body in a manner like septic emboli.[100-102] This planktonic shedding is a regular event which appears to intensify during physiological stress and starvation.[103] The planktonic-tattered bacteria are consistent with common pathogens found in nasopharyngeal biofilms and OME of children with RAOM and chronic OME. Therefore it has been concluded that there is a hidden pathogenesis of RAOM and OME with high rate of negative findings in the middle-ear fluid OME cultures and common recurrence of these diseases.[103-106]

TREATMENT STRATEGIES OF BIOFILM-RELATED MIDDLE-EAR DISEASES

Multiple studies report that biofilm chronic infective disorders are difficult to eradicate and often antibiotic treatment alone is inadequate.[69,107-109] In general, the treatment strategies can be divided into three main types based on the involvement of a foreign body (device) or not.[85,103,110] Those are device-related biofilm disease, nondevice-related chronic biofilm disease, and biofilm-related device malfunction.[107] “Implanted foreign bodies are highly susceptible to pyogenic infections and represent a major problem in modern medicine.”[111]

DEVICE-RELATED BIOFILM DISEASE

Medical implant-related infectious diseases are often very serious and increase morbidity, mortality, and health-care costs tremendously.[112-114] The average rate of surgical implant-related infectious diseases ranges between 2% and 40%. [112,113] Earlier studies demonstrated that *Staphylococcus aureus* inoculated guine pig modeled soft tissues could not create any abscesses in the absence of foreign body, whereas infection and inflammation could be induced with a foreign body in 95% of the cases, despite a significant presence of polymorphonuclear (PMN)/[granular] neutrophil, eosinophil, and basophil) leukocytes.[111,115] The presence of a foreign body significantly decreases the phagocytosis and intracellular bactericidal effects of PMN leukocytes.[111] Due to reduced granular leukocyte functions, a foreign body (device/implant) provides a perfect surface for microbes to attach.[69] Therefore, a foreign body increases the predisposition significantly for the possibility of biofilm formation[69] and infection to staphylococcal infection by at least 10,000 fold.[111,112,116] Consequently, the removal of a foreign body is an important
measure to help eliminate such biofilm infections.\[69,117,118\] The most important first step in treating a biofilm infection is to have a high index of suspicion. The mainstay of treatment includes antiseptic techniques, removal of infected foreign bodies, and provision of meticulous debridement. However, with an understanding of biofilms and how bacteria interact to form biofilms, newer methods can be developed in the future.

It is possible that not all medical devices or implants (foreign bodies) progress to chronic biofilm-related infections, and biofilms are also observed in the absence of such implant.\[107,109,119-122\] In view of this, possible antibiofilms should be constructed around the three-stage process of biofilm formation: “(i) Inhibition of microbial adhesion to the surface and of colonization, (ii) interference with the signal molecules modulating biofilm development, and (iii) disaggregation of the biofilm matrix.”\[117\] Another group of scientists has categorized antibiofilm research and the development of intervention technologies into two groups: (a) explicitly prevents the formation process of biofilm and (b) the development of medical devices or implants that will be resistant to biofilm formation.\[117\] In the last two decades, although great scientific and technological advances have been achieved regarding medical implants that are resistant to microbial colonization and biofilm formation, still most of the targets of biofilm remain the same and they continue to tax human health care.\[122\]

That bacteria could stick to, survive, and proliferate on surfaces was first documented in a scientific medical journal in 1937.\[123\] Another group of researchers found natural populations of bacteria (predominantly Gram-negative) enmeshed in a fibrous matrix whose constituent fibrils were tarnished with ruthenium red, with slippery, mucoid, and muddy submerged surfaces in a mountain stream.\[124\] The surface is the most important factor in biofilm formation. The preliminary add-on and fixing of microbes to surfaces are controlled by physicochemical properties.\[125\] The universal rule of thumb is that microbes will favorably inhabit surfaces that are hydrophobic, have even a minor degree of coarseness, and are exposed to a conditioning layer in distinction to smooth, hydrophilic surfaces. Research confirms that the principal difficulty is to prevent the formation of a conditioning layer that provides microbes with a place to lodge and form a colony.\[126\] Almost all substances in natural environmental conditions, particularly when exposed to air and humidity, are subjected to microbial contaminations. Researchers are exploring several mechanisms aimed at developing coatings that are either antimicrobial or nonbiofuling.\[125,127\]

Another group of scientists reports that on polymethacrylate derivate painted surfaces where microbes attached after 1 h of exposure, 99.9% were dead. Over the next 2–8 days as the painted coating slowly hydrolyzed, 98% of the microbial cells were released.\[128,129\] The polymethacrylate derivate with a cationic side chain becomes zwitterionic on the conversion of a terminal ester to carboxylate, and the hydrolysis-painted coating prevents further attachments of microbial cells and formation of a biofilm. Several researchers are exploring various avenues of research on a range of medical devices used as implants.\[128,129\] Polycationic polymers have been extensively utilized as antimicrobials because of their broad-spectrum activity against both bacteria (E. coli and S. aureus) and fungi (Candida albicans). Furthermore, such polyanionic antimicrobial membranes competitively prevent the development of biofilms by SC5314 and its crk1 gene deleted (Δcrk1) C. albicans strains.\[130\]

LIMITING MICROBIAL ADAPTABILITY

Microbes essentially possess an ability to sense their environments and can adapt their physiological systems to acclimatize and continue to survive better.\[69\] This ability of microbes (bacteria and fungi), global regulation, is considered as the most important function, specifically quorum sensing (QS).\[119\] Microbes use QS to coordinate gene expression in response to fluctuations in cell-population density. This functions as a decision-making process to regulate the production of virulent factors and create an infection.\[131-134\]

In the last decade, it has been identified that nucleotide signaling controls many of the vital processes required for microbial adaptation and is associated with pathogenicity as QS. Among the above, several nucleotides (cyclic diguanosine monophosphate [c-di-GMP], cyclic diadenosine monophosphate, cyclic guanosine monophosphate, cyclic adenosine monophosphate and guanosine tetraphosphate, and c-di-GMP [The Universal Bacterial Second Messenger]) have been under active consideration since they are involved closely in biofilm formation in Gram-negative bacteria.\[135-138\] Consequently, the control of QS mechanism and the alteration of c-di-GMP become the focus of the development of new antibiofilm medicines. Parallel to QS and c-di-GMP, microbial amyloids have spawned another widespread area of new research.\[69\] Amyloids have been identified in several types of microbial species which rely on amyloids to stick to one other or to further host surfaces, resulting in the creation of biofilms.\[139,140\] Medicines which damage amyloid structures might provide an innovative means of preventing and eradicating microbial biofilm-related infectious diseases.\[141\]

The commonly used antimicrobials achieved wonderful success in eradicating infective disorders both in hospitals and the community.\[59,142\] However, they have not been able to generate promising results regarding biofilm diseases because biofilm cells are at least 500–1000 times more resistant to antibacterial agents,\[106,125\] as biofilm microbes reduce rates of cellular growth, respiration, metabolism, and protect themselves by biofilm matrix polymers.\[143,147\] The expression of such precise defensive aspects, such as multidrug efflux pumps and stress-response regulons, additionally increased biofilm resistance against antimicrobials\[146-153\] as well as plasmidial gene transfer, which is enabled in the biofilm setting.\[154\] Furthermore, the heterogeneity in metabolic and reproductive commotion within a biofilm is associated with an erratic susceptibility of fenced bacteria.\[150\] Thereafter,
Multiple groups of otolaryngologists concluded that multiple strategies are involved in the development and maintenance of biofilms resistance against antimicrobials [55, 56, 155-157]. Consequently, present-day ear-nose-and-throat specialists are facing the spread of biofilm-related infections, although the concept of biofilms is a relatively recent issue to many otorhinolaryngologists [158]. Many scientists feel that there is an urgent need among ENT surgeons to develop a better understanding of pathogenesis biofilms and their contribution to biofilm-related ENT diseases that will hopefully trigger the progress of novel treatment strategies [156, 158].

Genetic and Preventive Strategies

The genetic factors subsequent to indisposition to OM are not well understood although a few genetic targets have been recognized [159]. Some studies report that it has been documented in reputed journal concerning a familial connection of AOM and COM as 40%–70%, but most of the genes underlying this susceptibility are yet to be identified [159-163]. It is suggested that the innate defense molecules become defective, leading to increased susceptibility to OM [164-167]. Possible therapeutic goals, therefore, aim to identify and target the genes regulating mucin expression, mucus production, and host response to bacteria in the middle ear [165, 166]. Comprehensive understanding of the genetics of OM is of absolute necessity for the development of anticipatory actions, and the minimization of risk aspects in susceptible patients. Research in mouse models regarding OM found that hypoxia is as an essential factor in OME, and as ventilation tubes, implant relieves hypoxia and reverse the disease process of the middle-ear bacterial and viral infection [165, 167].

It has been considered that defensive measures for OM and its most dangerous complication COM are the most important in limiting the impact of this disease [159]. The most common invading organisms for AOM are S. pneumoniae, nontypeable H. influenzae, and M. catarrhalis [14, 168]. Antigens against S. pneumoniae, nontypeable H. influenzae, and M. catarrhalis have been identified and shed light on the prevention of middle-ear diseases by the development of a vaccine [1168]. Pneumococcal conjugate vaccine (PCV7) is highly immunogenic in children in the first few months of life and includes most of the serotypes associated with AOM (4, 6B, 9V, 14, 19F, 18C, and 23F). As S. pneumoniae is the cause of 25%–50% of the cases of AOM, and PCV7 prevented more than 90% of the cases of invasive pneumococcal disease, it was thought that a significant reduction in the incidence of AOM might follow the implementation of programs for its universal use in younger children [38].

One systematic review concluded that OM visit rates have decreased by approximately 19% following the introduction of the 7-valent pneumococcal conjugate vaccine [1169]. Another study reported a 12% (95% confidence interval [CI] 0.5–26) decline in the number of AOM incidents caused by S. pneumoniae in patients <3 years between 2000 and 2007 due to the combined effects of PCV7 [a heptavalent vaccine, meaning that it contains the cell capsule sugars of seven serotypes of the bacteria S. pneumoniae (4, 6B, 9V, 14, 18C, 19F, and 23F)] vaccine efficacy and vaccine-induced serotype replacement, and furthermore, expects that PCV13 (pneumococcal conjugate vaccine called PCV13) defenses against 13 types of pneumococcal bacteria will further decrease pneumococcal AOM an additional 27% (95% CI 13–40) from 2007 to 2013 [170]. Another systematic review of 11 randomized controlled trials, in which 46,074 children were given a pneumococcal vaccination for the prevention of AOM concluded that a reasonable result of pneumococcal polysaccharide vaccination was found in children of 2 years and more (relative risk [RR] 0.78; 95% CI 0.63–0.97). Pneumococcal polysaccharide vaccine had little outcome on prevention of AOM in children without earlier recorded episodes before vaccination (RR 0.92; 95% CI 0.85–0.99). Improved usefulness was seen in children with documented previous AOM before immunization (RR 0.81; 95% CI 0.72–0.91). Collective outcomes of pneumococcal conjugate vaccine trials in infants vaccinated as early as 2 months of age and in toddlers attending day care showed a limited effect on the prevention of AOM (RR 0.92; 95% CI 0.85–0.99). Other research concluded, based on current evidence of the efficiency of PCVs for the deterrence of AOM, that licensed 7-valent PCV given during infancy has wide-ranging useful effects. The study found that 6%–7% reductions of the middle-ear diseases might be considered as important from a public health standpoint. However, PCV7 vaccine given in older children with a history of AOM appears to have no advantage in deterring added episodes [172]. Two other studies reported almost similar findings regarding the licensed 7-valent PCV with CRM197 as a carrier protein (CRM197-PCV7) [173, 174].

Conclusions

Biofilm-related middle-ear diseases ranging from AOM to COM still continue to affect many children worldwide, increasing both morbidity and mortality. Although more in-depth understanding of biofilms is needed to prevent middle-ear diseases, a range of scientific developments are providing new ways of identifying biofilms and limiting their impact, including the development of new materials for implants and devices, medications, targeted gene therapy, and vaccinations [23].

Acknowledgments

Corresponding author Dr. Mainul Haque, especially grateful and indebted to Ms. Iris Heise and Mr. Kevin Heise, 9-3, Jalan Solaris 2, Mont Kiara Solaris, 50480 Kuala Lumpur, Malaysia, for their kind help to read and edited the current manuscript.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.
Abu Bakar, et al.: Otitis media and biofilm

REFERENCES

1. Berman S. Otitis media in children. N Engl J Med 1995;332:1560-5.
2. Browning GG, Merchant SN, Kelly G, Swan IR, Canter R, McKerrow SW. Chronic otitis media. In: Gleeson M, Browning GG, Bruton MJ, Clarke R, John H, Jones NS, et al., editors. Chronic Otitis Media. Scott-Brown’s Otorhinolaryngology Head and Neck. 7th ed. London: Edward Arnold (Publisher) Ltd.; 2008. p. 3406-10.
3. Homoe P. Otitis media in Greenland. Studies on historical, epidemiological, microbiological, and immunological aspects. Int J Circumpolar Health 2001;60 Suppl 2:1-54.
4. Rovers MM, Schilder AG, Ziehlhus GA, Rosenfeld RM. Otitis media. Lancet 2004;363:465-73.
5. Bluestone C. Definitions, terminology, and classification. In: Rosenfeld RM, Bluestone C, editors. Evidence-Based Otitis Media. Hamilton, ON: B.C. Decker; 1999. p. 85-103.
6. Harnes KM, Blackwood RA, Burrows HL, Cooke JM, Harrison RV, Passamani PP, et al. Otitis media: Diagnosis and treatment. Am Fam Physician 2013;88:435-40.
7. Mandel EM, Casselbrant ML, Richert BC, Teixeira MS, Swarts JD, et al. Endotoxin in middle-ear effusions. J Clin Microbiol 1998;36:3417-9.
8. Godinho RN, Gonçalves TM, Nunes FB, Becker CG, Becker HM, Guimarães RE, et al. Prevalence and impact of chronic otitis media in school age children in Brazil. First epidemiologic study concerning chronic otitis media in Latin America. Int J Pediatr Otorhinolaryngol 2001;61:223-32.
9. American Academy of Pediatrics Subcommittee on Management of Acute Otitis Media. Diagnosis and management of acute otitis media. Pediatrics 2004;113:1451-65.
10. Coker TR, Chan LS, Newberry SJ, Limbos MA, Suttorpf MJ, Shekelle PG, et al. Diagnosis, microbial epidemiology, and antibiotic treatment of acute otitis media in children: A systematic review. JAMA 2010;304:2161-9.
11. McCaig LF, Besser RE, Hughes JM. Trends in antimicrobial prescribing rates for children and adolescents. JAMA 2002;287:3096-102.
12. Arguedas A, Kvaerner K, Liese J, Schilder AG, Pelton SI. Otitis media across nine countries: Disease burden and management. Int J Pediatr Otorhinolaryngol 2010;74:1419-24.
13. Bluestone CD. Epidemiology and pathogenesis of chronic suppurative otitis media: Implications for prevention and treatment. Int J Pediatr Otorhinolaryngol 1998;42:207-23.
14. Hoa M, Syamal M, Schaeffer MA, Sachdeva L, Berk R, Cotitchia J, et al. Biofilms and chronic otitis media: An initial exploration into the role of biofilms in the pathogenesis of chronic otitis media. Am J Otolaryngol 2010;31:241-5.
15. Post JC, Preston RA, Aul JJ, Larkins-Pettigrew M, Rydquist-White J, Preston RA, et al. Comparative evaluation of culture and PCR for the detection and determination of persistence of bacterial strains and DNAs in the Chinchilla laniger model of otitis media. Ann Otol Rhinol Laryngol 1998;107:508-13.
16. Rayner MG, Zhang Y, Gorry MC, Chen Y, Post JC, Ehrlich GD, et al. Evidence of metabolic activity in culture-negative otitis media with effusion. JAMA 1998;279:296-9.
17. Dingman JR, Rayner MG, Mishra S, Zhang Y, Ehrlich MD, Post JC, et al. Correlation between presence of viable bacteria and presence of endotoxin in middle-ear effusions. J Clin Microbiol 1998;36:3417-9.
18. Acuin J. World Health Organization. Chronic suppurative otitis media. Burden of Illness and Management Options. Geneva, Switzerland: World Health Organization; 2004. Available from: http://www.who.int/ pbd/publications/Chronicsuppurativetotitis_media.pdf. [Last accessed on 2018 Jan 22].
19. Orji F. A survey of the burden of management of chronic suppurative otitis media in a developing country. Ann Med Health Sci Res 2013;3:598-601.
20. World Health Organization. Chronic suppurative otitis media. Burden of Illness and Management Options. Child and Adolescent Health and Development: Prevention of Blindness and Deafness. Geneva, Switzerland: World Health Organization; 2004. Available from: http://www.who.int/iris/bitstream/10665/42941/1/9241591587. pdf. [Last accessed on 2018 Mar 19].
21. Kenna M. Etiology and pathogenesis of chronic suppurative otitis media. Arch Otolaryngol Head Neck Surg 1988;97 Suppl 137:16-7.
22. Monasta L, Ronfani L, Marchetti F, Montico M, Vecchi Brunatti L, Bavcar A, et al. Burden of disease caused by otitis media: Systematic review and global estimates. PLoS One 2012;7:e6226.
23. Ahmad S. Antibiotics in chronic suppurative otitis media: A bacteriologic study. Egypt J Ear Nose Throat Allied Sci 2013;14:191-4.
24. Acuin J. Chronic suppurative otitis media. BMJ Clin Evid 2007;2007: pii: 0507.
25. Morris P. Chronic suppurative otitis media. BMJ Clin Evid 2012;2012. pii: p0507.
26. Verhoef M, van der Veen EL, Rovers MM, Sanders EA, Schilder AG. Chronic suppurative otitis media: A review. Int J Pediatr Otorhinolaryngol 2006;70:1-2.
27. Daniel SJ. Topical treatment of chronic suppurative otitis media. Curr Infect Dis Rep 2012;14:121-7.
28. Thakur SK, Ghimire N, Acharya R, Singh SK, Afque A. The intraoperative pathological findings in cases of chronic suppurative otitis media with central perforation of tympanic membrane at a tertiary care center in Eastern Nepal. Asian J Med Sci 2017;8:42-7.
29. Anand J, Paul Emerson L. Current Concepts of Otitis Media and Recent Management Strategies. 1st ed. New Delhi, India: Jaypee Brothers Medical Publishers (p) Ltd.; 2015.
30. Nahata V, Patil CY, Patil RK, Gattani G, Disawal A, Roy A. Tympanic membrane perforation: Its correlation with hearing loss and frequency affected – An analytical study. Indian J Otol 2014;20:10-5.
31. Grewal DS, Hathiram BT, Molitorisar AV, Davis S, Rajeevan T. Retraction pockets in chronic suppurative otitis media: our experience. Indian J Otolaryngol Head Neck Surg 2003;55:107-12.
32. Thiagarajan B. Recent advances in Otorhinolaryngology; 2015. Available from: https://www.researchgate.net/publication/275656920_Recent_advances_in_Otorhinolaryngology. [Last accessed on 2018 Mar 29].
33. Varshney S, Nangia A, Bis SS, Singh RK, Gupta N, Bhagat S, et al. Oscillar chain status in chronic suppurative otitis media in adults. Indian J Otolaryngol Head Neck Surg 2010;62:421-6.
34. Kumar H, Seth S, Bacterial and fungal study of 100 cases of chronic suppurative otitis media. J Clin Diagn Res 2011;5:1224-7.
35. Bhalla AS, Singh A, Jana M. Chronically discharging ears: Evaluation with high resolution computed tomography. Pol J Radiol 2017;82:478-89.
36. Rout MR, Mohanty D, Vijayalaxmi Y, Kamalesh B, Chakradhar M. Prevalence of cholesteatoma in chronic suppurative otitis media with central perforation. Indian J Otol 2012;18:7-10.
37. Berman S. Otitis media in developing countries. Pediatrics 1995;96:126-31.
38. Wiwanitkit S, Wiwanitkit V. Pyogenic brain abscess in Thailand. N Am J Med Sci 2013;4:245-8.
39. Hossain MM, Kundu SC, Haque MR, Shamsuzzaman AK, Khan MK, Halder KK, et al. Extracranial complications of chronic suppurative otitis media. Mymensingh Med J 2006;15:4-9.
40. Morris PS, Leach AJ. Prevention and management of chronic suppurative otitis media in aboriginal children: A practical approach. Comm Ear Hear H 2007;4:22-5.
41. Sharma N, Jaiswal AA, Banerjee PK, Gark AK. Complications of chronic suppurative otitis media and their management: A single institution 12 years experience. Indian J Otolaryngol Head Neck Surg 2015;67:353-60.
42. Dubey SP, Laravin V. Complications of chronic suppurative otitis media and their management. Laryngoscope 2007;117:264-7.
43. Yorgancılar E, Yildirim M, Gun R, Bakir S, Tekin R, Goemez C, et al. Complications of chronic suppurative otitis media: A retrospective review. Eur Arch Otorhinolaryngol 2013;270:69-76.
44. Khader KA, Parrhar H, Mishra RK. Etiological agents in chronic suppurative otitis media. Int J Med Res Rev 2014;2:463-8.
46. World Health Organization. Prevention of Hearing Impairment from Chronic Otitis Media, Report of a WHO/CIBA Foundation Workshop, held at The CIBA Foundation. London, U.K.: World Health Organization; 1996. p. 19–21. Available from: http://www.apps.who.int/iris/bitstream/10665/63870/1/WHO_PDH_98.4.pdf. [Last accessed on 2018 Jan 23].

47. Westerberg BD, Kozak FK, Thomas EE, Blondel-Hill E, Brunstein JD, Patrick DM, et al. Is the healthy middle ear a normally sterile site? Otol Neurotol 2009;30:174-7.

48. Hall-Stoodley L, Hu FZ, Gieseke A, Nistico L, Nguyen D, Hayes J, et al. Direct detection of bacterial biofilms on the middle-ear mucosa of children with chronic otitis media. JAMA 2006;296:202-11.

49. Neef M, Biswas K, Hoggard M, Taylor MW, Douglas R. Molecular microbiological profile of chronic suppurative otitis media. J Clin Microbiol 2016;54:2538-46.

50. Coticchia JM, Chen M, Sachdeva L, Mutchnick S. New paradigms in the pathogenesis of otitis media in children. Front Pediatr 2013;1:52.

51. Mittal R, Lisi CV, Gerring R, Mittal J, Mathe K, Narasimhan G, et al. Current concepts in the pathogenesis and treatment of chronic suppurative otitis media. J Med Microbiol 2015;64:1103-16.

52. Saunders J, Murray M, Allemann A. Biofilms in chronic suppurative otitis media and cholesteatoma: Scanning electron microscopy findings. Am J Otolaryngol 2011;32:32-7.

53. Akyildiz I, Take G, Uygur K, Kızıl Y, Aydil U. Bacterial biofilm formation in the middle-ear mucosa of children with chronic otitis media. Indian J Otolaryngol Head Neck Surg 2013;65:557-61.

54. Kaya E, Dag I, Incinclusu A, Gurbuz MK, Acar M, Birdane L, et al. Investigation of the presence of biofilms in chronic suppurative otitis media, nonsuppurative otitis media, and chronic otitis media with cholesteatoma by scanning electron microscopy. ScientificWorldJournal 2013;2013:368715.

55. Post JC, Hillier NL, Nistico L, Stoodley P, Ehrlich GD. The role of biofilms in otolaryngologic infections: Update 2007. Curr Opin Otolaryngol Head Neck Surg 2007;15:347-51.

56. Vlastaraks PV, Nikolopoulos TP, Maragoudakis P, Tzagarakolakis A, Ferekidis E. Biofilms in ear, nose, and throat infections: How important are they? Laryngoscope 2007;117:668-73.

57. Gu X, Keyoumu Y, Long L, Zhang H. Detection of bacterial biofilms in different types of chronic otitis media. Eur Arch Otorhinolaryngol 2014;271:2877-83.

58. Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: A common cause of persistent infections. Science 1999;284:1318-22.

59. Costerton W, Veeh R, Shirliff M, Pasmore M, Post C, Ehrlich G, et al. The application of biofilm science to the study and control of chronic bacterial infections. J Clin Invest 2003;112:1466-77.

60. Sawhney R, Berry V. Bacterial biofilm formation, pathogenicity, diagnostics and control: An overview. Indian J Med Sci 2009;63:313-21.

61. Byrd MS, Pang B, Hong W, Waligora EA, Juneau RA, Arbruster CE, et al. Direct evaluation of Pseudomonas aeruginosa biofilm mediators in a chronic infection model. Infect Immun 2011;79:3087-95.

62. Dohar JE, Hedba PA, Veeh R, Awad M, Costerton JW, Hayes J, et al. Mucosal biofilm formation on middle-ear mucosa in a nonhuman primate model of chronic suppurative otitis media. Laryngoscope 2005;115:1469-72.

63. Thornton RB, Rigby PJ, Wiertsema SP, Filion P, Langlands J, Coates HL, et al. Multi-species bacterial biofilm and intracellular infection in otitis media. BMC Pediatr 2011;11:94.

64. Thornton RB, Wiertsema SP, Kirkham LA, Rigby PJ, Vijayasekaran S, Coates HL, et al. Neutrophil extracellular traps and bacterial biofilms in middle ear effusion of children with recurrent acute otitis media – A potential treatment target. PLoS One 2013;8:e53837.

65. Post JC. Direct evidence of bacterial biofilms in otitis media 2001. Laryngoscope 2015;125:2003-14.

66. Buchan BW, Ledeboer NA. Emerging technologies for the clinical microbiology laboratory. Clin Microbiol Rev 2014;27:783-822.

67. Buck J. The plate count in aquatic microbiology. In: Costerton JW, Colwell RR, editors. Native Aquatic Bacteria: Enumeration, Activity and Ecology. Philadelphia, PA: American Society for Testing and Materials; 1979. p. 19-28.

68. Talaro KP, Talaro A, Delisle G, Tomalty L. Foundations in Microbiology. Blacklick, OH: McGraw-Hill College; 2002.

69. Wu H, Moser C, Wang HZ, Haiy B, Nong ZJ. Strategies for combating bacterial biofilm infections. Int J Oral Sci 2015;7:1-7.

70. Stoodley P, Conti SF, DeMeo PJ, Nistico L, Melton-Kreft R, Johnson S, et al. Characterization of a mixed MRSA/MRSA biofilm in an explanted total ankle arthroplasty. FEMS Immunol Med Microbiol 2011;62:66-74.

71. Stewart EJ. Growing unculturable bacteria. J Bacteriol 2012;194:4151-60.

72. Li L, Mendis N, Trigui H, Oliver JD, Faucher SP. The importance of the viable but non-culturable state in human bacterial pathogens. Front Microbiol 2014;5:258.

73. Wolcott R, Cox SB. The use of DNA methods to characterize biofilm infection. In: Rumbaugh K, Ahmad I, editors. Antibiofilm Agents: Springer Series on Biofilms. Vol. 8. Berlin, Heidelberg: Springer; 2014.

74. Xu HS, Roberts N, Singleton FL, Atwell RW, Grimes DJ, Colwell RR, et al. Survival and viability of nonculturable Escherichia coli and Vibrio cholerae in the estuarine and marine environment. Microb Ecol 1982;8:313-23.

75. Cerca F, Andrade F, Franca Â, Andrade EB, Ribeiro A, Almeida AA, et al. Staphylococcus epidermidis biofilms with higher proportions of dormant bacteria induce a lower activation of marine macrophages. J Med Microbiol 2011;60:1717-24.

76. Oliver JD. The public health significance of viable but nonculturable bacteria. In: Colwell RR, Grimes DJ, editors. Nonculturable Microorganisms in the Environment. Washington, DC: ASM Press; 2000. p. 277-300.

77. Heidelberg JF, Shahamat M, Levin M, Rahman I, Stelma G, Grim C, et al. Effect of aerosolization on culturability and viability of gram-negative bacteria. Appl Environ Microbiol 1997;6:3585-8.

78. Cook KL, Bolster CH. Survival of Campylobacter jejuni and Escherichia coli in groundwater during prolonged starvation at low temperatures. J Appl Microbiol 2007;103:573-83.

79. Oliver JD. Recent findings on the viable but nonculturable state in pathogenic bacteria. FEMS Microbiol Rev 2010;34:415-25.

80. Lleó MM, Pierobon S, Tafi MC, Signoretto C, Canepari P. mRNA detection by reverse transcription-PCR for monitoring viability over time in an Enterococcus faecalis viable but nonculturable population maintained in a laboratory microcosm. Appl Environ Microbiol 2000;66:4564-7.

81. Beesward V, Federighi M, Declerq E, Jugiau F, Cappelier JM. Environmental and physico-chemical factors induce VBNC state in Listeria monocytogenes. Vet Res 2002;33:359-70.

82. Lleó MM, Tafi MC, Canepari P. Nonculturable Enterococcus faecalis cells are metabolically active and capable of resuming active growth. Syst Appl Microbiol 1998;21:333-9.

83. Lindbäck T, Rottenberg ME, Roche SM, Rervik LM. The ability to enter into an avirulent but non-culturable (VBNC) form is widespread among Listeria monocytogenes isolates from salmon, patients and environment. Vet Res 2010;41:8.

84. Ramamurthy T, Ghosh A, Pazhani GP, Shindoa S. Current perspectives on viable but non-culturable (VBNC) pathogenic bacteria. Front Public Health 2014;2:103.

85. Mater GM, Sidani F, Nayad M, Hadi U. Two-step PCR-based assay for identification of bacterial etiology of otitis media with effusion in infected Lebanese children. J Clin Microbiol 1998;36:1185-8.

86. Schousboe LP, Ovesen T, Eckhardt L, Rasmussen LM, Pedersen CB. A new two-step PCR-based assay for identification of bacterial etiology of otitis media with effusion in infected Lebanese children. J Clin Microbiol 1998;36:1185-8.

87. Ehrlich G, et al. Is the healthy middle ear a normally sterile site? Otol Neurotol 2009;30:174-7.
of clinical isolates of *Staphylococcus aureus*. J Infect Dev Ctries 2012;6:403-9.

91. Kubha H, Pearson JP, Birchal JP. The aetiology of otitis media with effusion: A review. Clin Otolaryngol Allied Sci 2000;25:181-94.

92. Hendolin PH, Markkanen A, Yliksoski J, Wahlforss J. Use of multiplex PCR for simultaneous detection of four bacterial species in middle ear effusions. J Clin Microbiol 1997;35:2854-8.

93. Saukkoriipi A, Palmu A, Kilpi T, Leinonen M. Real-time quantitative PCR for the detection of *Streptococcus pneumoniae* in the middle ear fluid of children with acute otitis media. Mol Cell Probes 2002;16:385-96.

94. Kobayashi H, Oethinger M, Tuohy MJ, Hall GS, Bauer TW. Improving clinical significance of PCR: Use of propidium monoazide to distinguish viable from dead *Staphylococcus aureus* and *Staphylococcus epidermidis*. J Orthop Res 2009;27:1247-7.

95. Proctor RA, von Eiff C, Kahl BC, Becker K, McNamara P, Herrmann M, et al. Small colony variants: A pathogenic form of bacteria that facilitates persistent and recurrent infections. Nat Rev Microbiol 2006;4:295-305.

96. Proctor RA, von Humboldt A. Bacterial energetics and antimicrobial resistance. Drug Resist Update 1998;1:1273-5.

97. Home P, Bjarnsholt T, Wessman M, Sørensen HC, Johansen HK. Morphological evidence of biofilm formation in Greenlanders with chronic suppurative otitis media. Eur Arch Otorhinolaryngol 2009;266:1533-8.

98. Ehrlich GD, Veeh R, Wang X, Costerton JW, Hayes JD, Hu FZ, et al. Mucosal biofilm formation on middle-ear mucosa in the *Chinchilla* model of otitis media. JAMA 2002;287:1710-5.

99. Stoodley P, Sauer K, Costerton JW. Biofilms as complex differentiated communities. Annu Rev Microbiol 2002;56:187-209.

100. Zuliani G, Carlisle M, Duberstein A, Haupert M, Syamal M, Berk R, et al. Biofilm density in the pediatric nasopharynx: Recurrent acute otitis media versus obstructive sleep apnea. Ann Otol Rhinol Laryngol 2009;118:519-24.

101. Costerton JW, Nickel JC, Ladd TI. Suitable methods for the comparative study of free-living and surface-associated bacterial populations. In: Poindexter JS, Leadbetter ER, editors. Methods and Special Applications in Bacterial Ecology. Vol. 3. New York: Plenum; 1986. p. 49-84.

102. Costerton JW, Lewandowski Z, Caldwell WE, Korber DR, Lappin-Scott HM. Microbial biofilms. Annu Rev Microbiol 1995;49:711-45.

103. Ngo CC, Massa HM, Thornton RB, Cripps AW. Predominant bacteria detected from the middle ear fluid of children experiencing otitis media: A systematic review. PLoS One 2016;11:e0150949.

104. Torretta S, Marchisio P, Drago L, Baggi E, De Vecchi E, Garavello W, et al. Nasopharyngeal biofilm-producing otopathogens in children with nonsevere recurrent acute otitis media. Otolaryngol Head Neck Surg 2012;146:991-6.

105. Buzatto GP, Tamashiro E, Proença-Modena JL, Saturno TH, Prates MC, Gagliardi TB, et al. The pathogens profile in children with otitis media with effusion and adenoïd hypertrophy. PLoS One 2017;12:e0171049.

106. Higgins TS. Otitis media with effusion. Drugs & Diseases, 2018;4:882-8.

107. Del Pozo JL. Biofilm-related disease. Expert Rev Anti Infect Ther 2018;16:51-65.

108. Barshack MB, Durand ML. The role of infection and antibiotics in chronic rhinosinusitis. Laryngoscope Investig Otolaryngol 2017;2:36-42.

109. Hall-Stoodley L, Stoodley P, Kathju S, Hoiby N, Moser C, Costerton JW, et al. Towards diagnostic guidelines for biofilm-associated infections. FEMS Immunol Med Microbiol 2012;65:127-45.

110. Jacqueline C, Caillon J. Impact of bacterial biofilm on the treatment of prosthetic joint infections. J Antimicrob Chemother 2014;69 Suppl 1:i37-40.

111. Zimmerli W, Lew PD, Waldvogel FA. Pathogenesis of foreign body infection. Evidence for a local granulocyte defect. J Clin Invest 1984;73:1191-200.

112. Tsaras G, Osmon DR, Mabry T, Lahr B, St. Sauveur J, Yawn B, et al. Incidence, secular trends, and outcomes of prosthetic joint infection: A population-based study, Olmsted county, Minnesota, 1969-2007. Infect Control Hosp Epidemiol 2012;33:1207-12.

113. Barshack MB, Durand ML. The role of infection and antibiotics in chronic rhinosinusitis. Laryngoscope Investig Otolaryngol 2017;2:36-42.
Abu Bakar, et al.: Otitis media and biofilm

in bacteria and implications in pathogenesis. Chem Soc Rev 2013;42:305-41.

135. Hengge R. Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol 2009;7:263-73.

136. Römling U, Galperin MY, Gomelsky M. Cyclic di-GMP: The first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 2013;77:1-52.

137. Jenal U, Reinders A, Lori C. Cyclic di-GMP: Second messenger extraordinaire. Nat Rev Microbiol 2015;17:271-84.

138. Taghlialegna A, Lasa I, Valle J. Amyloid structures as biofilm matrix scaffolds. J Bacteriol 2016;198:2579-88.

139. Gallo PM, Rapsinski GJ, Wilson RP, Oppong GO, Sriman U, Goulam M, et al. Amyloid-DNA composites of bacterial biofilms stimulate autoimmunity. Immunity 2015;42:1171-84.

140. Romero D, Aguilar C, Losick R, Kolter R. Amyloid fibers provide structural integrity to *Bacillus subtilis* biofilms. Proc Natl Acad Sci U S A 2010;107:2230-4.

141. Singh S, Singh SK, Chowdhury I, Singh R. Understanding the mechanism of bacterial biofilms resistance to antimicrobial agents. Open Microbiol J 2017;11:53-62.

142. Passerini L, Lam K, Costerton JW, King EG. Biofilms on indwelling vascular catheters. Crit Care Med 1992;20:665-73.

143. Pople IK, Bayston R, Hayward RD. Stimulation of aging biofilms: A study of etiological factors. J Neurosurg 1992;77:29-36.

144. Khosravi Y, Ling LC, Loke MF, Shailendra S, Prepaganer N, Vadivelu J, et al. Determination of the biofilm formation capacity of bacterial pathogens associated with otitis media in the Malaysian population. Eur Arch Otorhinolaryngol 2014;271:1227-33.

145. Gilbert P, Allsion DG, McBain AJ. Biofilms *in vitro* and *in vivo*: Do singular mechanisms imply cross-resistance? J Appl Microbiol 2002;92 Suppl:947-S105.

146. Gilbert P, Maira-Litran T, McBain AJ, Rickard AH, Whyte FW. The physiology and collective recalcitrance of microbial biofilm communities. Adv Microb Physiol 2002;46:202-56.

147. Stewart PS. Mechanisms of antibiotic resistance in bacterial biofilms. Int J Med Microbiol 2002;292:107-13.

148. Mah TF, O’Toole GA. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 2001;9:34-9.

149. Sauer K, Camper AK. Characterization of phenotypic changes in *Pseudomonas putida* in response to surface-associated growth. J Bacteriol 2001;183:6579-89.

150. Anwar H, Strap JL, Costerton JW. Establishment of aging biofilms: Possible mechanism of bacterial resistance to antimicrobial therapy. Antimicrob Agents Chemother 1992;36:1347-51.

151. Davies D. Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2003;2:114-22.

152. Brown MR, Allsion DG, Gilbert P. Resistance of bacterial biofilms to antibiotics: A growth-rate related effect? J Antimicrob Chemother 1988;22:777-80.

153. Donlan RM. Biofilms: Microbial life on surfaces. Emerg Infect Dis 2002;8:881-90.

154. Fux CA, Costerton JW, Stewart PS, Stoodley P. Survival strategies of infectious biofilms. Trends Microbiol 2005;13:34-40.

155. Stewart PS, Costerton JW. Antibiotic resistance of bacteria in biofilms. Lancet 2001;358:135-8.

156. Smith A, Buchinsky FJ, Post JC. Eradicating chronic ear, nose, and throat infections: A systematically conducted literature review of advances in biofilm treatment. Otalaryngol Head Neck Surg 2011;144:338-47.

157. Macassey E, Dawes P. Biofilms and their role in otorhinolaryngological disease. J Laryngol Otol 2008;122:1273-8.

158. Fastenberg JH, Hsueh WD, Mustafa A, Akbar NA, Abuzeid WM. Biofilms in chronic rhinosinusitis: Pathophysiology and therapeutic strategies. World J Otorhinolaryngol Head Neck Surg 2016;2:219-29.

159. Qureshi A, Lee Y, Belfield K, Birchall JP, Daniel M. Update on otitis media – Prevention and treatment. Infect Drug Resist 2014;7:15-24.

160. Rye MS, Bhutta MF, Cheeseman MT, Burgner D, Blackwell JM, Brown SD, et al. Unravelling the genetics of otitis media: From mouse to human and back again. Mamm Genome 2011;22:66-82.

161. Thornton RB. Biofilm and Intracellular Infection: persistence Mechanisms of Bacterial Otopathogens in Chronic and Recurrent Otitis Media. PhD Thesis, School of Pediatrics and Child Health. The University of Western Australia; 2010. Available from: http://www.research-repository.uwa.edu.au/files/3236595/Thornton_Ruth_Barbara_2010.pdf. [Last accessed on 2018 Mar 19].

162. Rye MS. Genetic Susceptibility to Otitis in Childhood: A Western Australian Study. Media PhD Thesis, School of Pediatrics and Child Health. The University of Western Australia; 2013. Available from: http://www.research-repository.uwa.edu.au/files/3229131/Rye_Marie_Suzanne_2013.pdf. [Last accessed on 2018 Mar 19].

163. Mittal R, Kodyian J, Gerring R, Mathee K, Li JD, Grati M, et al. Role of innate immunity in the pathogenesis of otitis media. Int J Infect Dis 2014;29:259-67.

164. Leichtle A, Lai Y, Wollenberg B, Wasserman SI, Ryan AF. Inmate signaling in otitis media: Pathogenesis and recovery. Curr Allergy Asthma Rep 2011;11:78-84.

165. Li JD, Hermansson A, Ryan AF, Bakaletz LO, Brown SD, Cheeseman MT, et al. Panel 4: Recent advances in otitis media in molecular biology, biochemistry, genetics, and animal models. Otalaryngol Head Neck Surg 2013;148:E52-63.

166. Kaur R, Casey J, Pichichero M. Differences in innate immune response gene regulation in the middle ear of children who are otitis prone and in those not otitis prone. Am J Rhinol Allergy 2016;30:218-23.

167. Cheeseman MT, Tyrer HE, Williams D, Hough TA, Pathak P, Romero MR, et al. HIV-VEGF pathways are critical for chronic otitis media in Junbo and Jeiff mouse mutants. PLoS Genet 2011;7:e1002336.

168. Pelton SI, Pettigrew MM, Barenkamp SJ, Godfroid F, Grijalva CG, Leach A, et al. Panel 6: Vaccines. Otolaryngol Head Neck Surg 2013;148:E90-101.

169. Taylor S, Marchisio P, Vergison A, Harriague J, Hausdorff WP, Haggard M, et al. Impact of pneumococcal conjugate vaccination on otitis media: A systematic review. Clin Infect Dis 2012;54:1765-73.

170. Shea KM, Weycker D, Stevenson AE, Strutton DR, Pelton SI. Modeling the decline in pneumococcal acute otitis media following the introduction of pneumococcal conjugate vaccines in the US. Vaccine 2011;29:8042-8.

171. Straetemans M, Sanders EA, Veenhoven RH, Schilder AG, Damoiseaux RA, Zielhuis GA, et al. Review of randomized controlled trials on pneumococcal vaccination for prevention of otitis media. Pediart Infect Dis J 2003;22:515-24.

172. Jansen AG, Haggard M, Sanders EA, et al. Hemophilus influenzae conjugate vaccines for preventing otitis media. Cochrane Database Syst Rev 2014;2:CD001480.

173. Forstner AC, Vechkamp RP, Boonacker CW, Hek E, Schilder AG, Sanders EA, et al. Pneumococcal conjugate vaccines for preventing otitis media. Cochrane Database Syst Rev 2014;4:CD001480.

174. Le Saux N. Pneumococcal conjugate vaccines for preventing otitis media. Paediatr Child Health 2016;21:89-90.