Validation and Prognostic Value of EZ-ALBI Score in Patients with Intermediate-Stage Hepatocellular Carcinoma Treated with Trans-Arterial Chemoembolization

Prooksa Ananchuensook
Chulalongkorn University

Supachaya Sriphoosanaphan (supachaya.s@chula.ac.th)
Chulalongkorn University

Sirinporn Suksawatamnauy
Chulalongkorn University

Nipapom Siripon
Chulalongkorn University

Nutcha Pincharoen
Chulalongkorn University

Nopavut Geratikomsupuk
Queen Savang Vadhana Memorial Hospital

Kessarin Thanapirom
Chulalongkorn University

Piyawat Komolmit
Chulalongkorn University

Research Article

Keywords: Easy albumin-bilirubin score, intermediate-stage hepatocellular carcinoma, trans-arterial chemoembolization, Overall survival

Posted Date: March 29th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1487018/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background

Heterogeneity of liver function and tumor burden in intermediate-stage hepatocellular carcinoma (HCC) results in different outcomes after transarterial chemoembolization (TACE). Easy albumin-bilirubin (EZ-ALBI), a simplified albumin-bilirubin (ALBI) score, has recently been proposed as a new prognostic score for HCC. This study aimed to validate the EZ-ALBI score and evaluate the impact of dynamic changes in patients with intermediate-stage HCC undergoing TACE.

Methods

All patients with HCC treated with TACE at King Chulalongkorn Memorial Hospital, Bangkok, Thailand, between January 2015 and December 2019 were prospectively enrolled. Intermediate-stage HCC was defined as Barcelona Clinic Liver Cancer (BCLC) stage B or unresectable single HCC with size >5 cm in BCLC stage A. EZ-ALBI and ALBI scores were calculated and stratified into three different grades. Overall survival (OS) and prognostic factors were assessed using the Kaplan-Meier curve and Cox proportional hazard model.

Results

Among 672 patients with HCC treated with TACE, 166 patients with intermediate-stage HCC who met the eligibility criteria were enrolled. The median OS of all patients in the cohort was 21 months. A good correlation between the EZ-ALBI and ALBI scores was observed (correlation coefficient 1.000, p<0.001). The baseline EZ-ALBI grades 1, 2, and 3 were 24.5%, 70%, and 5.5%, respectively. EZ-ALBI grade can stratify patients with significantly different prognoses (p=0.002). Baseline EZ-ALBI grade 2, 3, and serum alpha-fetoprotein >20 ng/ml were significantly associated with OS [hazard ratio (HR) 2.20 (95% confidence interval [CI] 1.24-3.88, p=0.007), 3.26 (95% CI 1.24-8.57, p=0.016), and 1.77 (95% CI 1.10-2.84, p=0.018), respectively). Following TACE, 42 (29.6%) patients had a worsening EZ-ALBI grade. However, the EZ-ALBI grade migration was not significantly correlated with OS. EZ-ALBI and ALBI score provided improved discriminatory ability (Harrell's concordance index 0.599 and 0.602, respectively) compared with Child-Turcotte-Pugh and Model for End-stage Liver Disease scores.

Conclusions

The baseline EZ-ALBI score demonstrated good predictive performance for survival and a strong correlation with conventional ALBI scores. Both the EZ-ALBI and ALBI scores outperformed other prognostic models in patients with intermediate-stage HCC receiving TACE. However, the dynamic change in the EZ-ALBI grade after TACE was not associated with postprocedural survival.

Background
Hepatocellular carcinoma (HCC) is a leading cause of death worldwide. It ranked as the sixth most common cancer with more than 80,000 deaths annually.1 Chronic hepatitis B virus (HBV) infection is the major cause of HCC in Eastern countries, while chronic hepatitis C virus (HCV) infection and non-alcoholic fatty liver disease are the most common etiologies among HCC patients in the west.2–4 Despite recent advanced treatments, HCC is still associated with high mortality rate.5

Current guidelines recommend treatment algorithms according to the Barcelona Clinic Liver Cancer (BCLC) staging.2–4 Trans-arterial chemoembolization (TACE) is recognized as a standard therapeutic option for intermediate-stage HCC. However, not all patients benefit from this treatment modality.6 A significant proportion of patients have liver decompensation following the procedure, leading to poor clinical outcomes.7 This could be explained by a variety of liver statuses and tumor burdens. The high heterogeneity of patients with intermediate-stage HCC ultimately results in various overall survival (OS) and treatment responses after TACE.8

Unlike other cancers, the prognosis of HCC does not depend solely on the tumor burden. Background of chronic liver disease is also a crucial factor for survival in patients with HCC.9 Various classifications of liver reserve function have been proposed for clinical decision-making and prediction of patient survival. The Child-Turcotte-Pugh (CTP) score is widely accepted as a standard tool for assessing liver function. However, arbitrarily defined cutoffs and clinically challenging assessment of hepatic encephalopathy and ascites could affect accurate prognostication.10 Later, albumin-bilirubin (ALBI) score has emerged as an alternative score to assess liver impairment among patients with HCC.11 The validation of ALBI score in several cohorts of patients with HCC, especially in the intermediate stage, showed a significant association with OS.12,13 ALBI grade migration after TACE also demonstrated adverse effects on patient survival.14 However, the complexity of score calculation was a major drawback and limited its application in real-life practice. Therefore, an easy albumin-bilirubin (EZ-ALBI) score, a simplified and user-friendly formula for the ALBI score, has been developed.15 EZ-ALBI score was significantly correlated with the conventional ALBI score and demonstrated good prognostic prediction across all HCC stages.15,16 With its simplicity, the EZ-ALBI score may potentially replace the ALBI score in clinical practice.

To date, no study has explored the role of the EZ-ALBI score as a pretreatment prognostic model for patients with HCC undergoing TACE. Additionally, no data exist on whether the dynamic change in the EZ-ALBI score after TACE could predict patient survival following the procedure. Therefore, our study aimed to validate the EZ-ALBI score and evaluate the impact of EZ-ALBI grade alterations on survival in patients with intermediate-stage HCC treated with TACE.

Methods

Patients and study design
Data of patients with HCC who underwent the first session of TACE at King Chulalongkorn Memorial Hospital (KCMH), a tertiary referral center and academic teaching hospital in Bangkok, Thailand, from January 2015 to December 2019 were retrospectively collected. According to the American Association for the Study of Liver Disease guidelines, HCC is diagnosed using an arterial-enhancing liver mass on the background of cirrhosis or chronic liver disease on abdominal imaging or histopathology. Intermediate-stage HCC was defined as BCLC B or unresectable tumor with size > 5 cm in BCLC A, which represents the optimal candidates for TACE. Patients aged > 18 years with preserved liver function defined by CTP A-B were included. The exclusion criteria were spontaneous tumor rupture, subsequent surgical resection after TACE, and concomitant treatment with other locoregional procedures or systemic therapies.

Baseline characteristics, including age, sex, etiologies of liver diseases, CTP score, and Eastern Cooperative Oncology Group status, were collected. Tumor characteristics, including tumor number, location, and size of HCC, were documented. Liver function test results and serum alpha-fetoprotein (AFP) levels were retrospectively recorded at baseline before TACE and 1–3 months after the procedure.

The formula for the ALBI score was \(0.66 \times \log_{10}\text{bilirubin (µmol/L)} - 0.0085 \times \text{albumin (g/L)}\). The ALBI score was stratified into grades 1, 2, and 3 with scores of \(\leq -2.6\), \(>-2.6\) to \(\geq -1.39\), and \(>-1.39\), respectively.\(^\text{11}\) The EZ-ALBI score was calculated as total bilirubin (mg/dL) – \([9 \times \text{albumin (g/dL)}]\) and subsequently stratified into three grades. EZ-ALBI grades 1, 2, and 3 were \(\leq -34.4\), 34.4 to -22.2, and \(\geq -22.2\), respectively.\(^\text{15}\) The OS was calculated from the date of TACE to death documented by the Thailand Civil Registration Database or the last follow-up.

TACE procedure

Conventional TACE was performed by experienced interventional radiologists in the Division of Interventional Radiology, Department of Radiology, KCMH, Bangkok, Thailand. The right common femoral artery was accessed using the Seldinger technique, followed by installation of a 5F introducer sheath. Routinely, a 5F Yashiro catheter in conjunction with a 0.035” Terumo guide wire was used to perform celiac and superior mesenteric artery (SMA) angiograms, CT arterial portography via the SMA, and CT hepatic angiography via the hepatic artery (mostly at the common hepatic artery, but sometimes at the hepatic artery proper or right or left hepatic artery). After selective catheterization of the tumor feeders was achieved, chemoembolization was performed until the feeders were occluded, using a mixture of 10 ml of Lipiodol, 20 mg of Mitomycin in 2 ml of sterile water, and 1–3 ml of contrast media with an intervening infusion of 500 mg of 5-Fluorouracil solution in the same proportion. Finally, gel foam embolization of the proximal feeder was performed. Repeated TACE may be scheduled for no less than 4 weeks, depending on the presence of residual or recurrent viable tumors.

Statistical analysis

All statistical analyses were performed using the SPSS software (version 22.0; IBM Corp., Armonk, NY, USA). For baseline characteristics, categorical variables are presented as frequency (%), and continuous variables are shown as median and interquartile range. Categorical variables were compared using the
chi-square test or Fisher’s exact test, whereas continuous variables were assessed using the Mann-Whitney U-test. OS was assessed using the Kaplan-Meier curve and Cox proportional hazard model.

The EZ-ALBI scores assessed before and after TACE were externally validated in our population, and the correlation between EZ-ALBI and conventional ALBI scores was performed using regression analysis. Comparison with other prognostic scores, including the CTP and Model for End-stage Liver Disease (MELD) scores, was performed using the area under the receiver operating characteristic (AUROC) curve. The discrimination ability of the different prognostic scores was assessed using Harrell’s concordance index (C-index).

The study was reviewed and approved by the Ethics Committee and Institutional Review Board of the Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand (IRB Number: 467/64). The study protocol was in accordance with the Declaration of Helsinki (1989) of the World Medical Association.

Results
Baseline characteristics
Among 672 patients who underwent TACE at KCMH during the study period, 166 patients who met the inclusion criteria were enrolled (Fig. 1). The median follow-up time was 53 months (interquartile range [IQR] 37–62 months). Baseline clinical and tumor characteristics are summarized in Table 1. The majority of patients were male (76.5%), with a mean age of 65 ± 10.5 years. The common underlying etiologies of liver disease were HBV virus infection (39.8%) and HCV virus infection (25.9%). Overall, 156 (94%) patients had cirrhosis; 80.7% were classified as CTP A. Approximately 75% of patients had multiple HCC, and almost half (46.4%) had a maximal diameter of 3–7 cm. Ninety percent of the patients had unilobar disease, 45.8% in the right lobe, and 45.2% in the left lobe. Laboratory findings at baseline and 1–3 months after TACE are shown in Table 2. Following TACE, there was a significant change of total bilirubin (mean change from 1.03 ± 0.61 to 1.17 ± 0.86 mg/dL, p = 0.027), albumin (mean change 3.50 ± 0.57 to 3.20 ± 0.56, p < 0.001), and INR (mean change from 1.16 ± 0.13 to 1.20 ± 0.13, p < 0.001).
Table 1
Baseline clinical and tumor characteristics

Baseline characteristics	N (%)/ mean ± SD (N = 166)
Sex	39 (23.5%)
Female	127 (76.5%)
Male	
Age (years)	65 ± 10.5
Etiologies of liver disease	
HBV infection	73 (44.0%)
HCV infection	50 (30.1%)
NASH	16 (9.6%)
Cryptogenic	14 (8.4%)
Alcohol	12 (7.3%)
AIH	1 (0.6%)
Cirrhosis	156 (94.0%)
CTP A	134 (80.7%)
- Score 5	- 87 (52.4%)
- Score 6	- 47 (28.3%)
CTP B	22 (13.3%)
- Score 7	- 17 (10.2%)
- Score 8	- 5 (3.0%)
MELD score	9.23 ± 2.14
Number of HCC	49 (25.3%)
1	57 (34.4%)
2–3	67 (40.4%)
> 3	
Location of HCC	76 (45.8%)
Both lobes	75 (45.2%)
Right lobe	15 (9.0%)
Left lobe	
Baseline characteristics

Largest tumor diameter (cm)	N (%)/ mean ± SD (N = 166)
≤ 3	16 (9.6%)
> 3 - ≤ 7	77 (46.4%)
> 7 - ≤ 10	42 (25.3%)
> 10	31 (18.7%)

Table 2
Laboratory findings at baseline and 1–3 month after TACE

Laboratory findings	Baseline, Mean ± SD	Post-TACE, Mean ± SD	Significant change, p-value
Total bilirubin (mg/dL)	1.03 ± 0.61	1.17 ± 0.86	0.027*
AST (U/L)	77.20 ± 51.65	73.69 ± 57.05	0.586
ALT (U/L)	56.21 ± 38.35	52.48 ± 43.95	0.300
Albumin (g/dL)	3.50 ± 0.57	3.20 ± 0.56	< 0.001*
INR	1.16 ± 0.13	1.20 ± 0.13	< 0.001*
Platelet (x10^3/µL)	167.46 ± 107.53	169.58 ± 116.82	0.621
Creatinine (mg/dL)	0.89 ± 0.36	0.88 ± 0.68	0.925
AFP (ng/mL)	3,460.38 ± 14382.67	2,449.96 ± 8.177.59	0.850

EZ-ALBI and ALBI score/grade at baseline and after TACE

The EZ-ALBI and ALBI scores at baseline and after TACE are shown in Table 3. A good correlation between the EZ-ALBI and ALBI scores at baseline and after TACE was observed, with correlation coefficients of 1.000 (95% confidence interval [CI] 0.983-1.000, p < 0.001) and 0.986 (95% CI 0.980–0.991, p < 0.001), respectively. At baseline, most patients had an EZ-ALBI grade of 2 (69.9%). Notably, there was no significant change in the EZ-ALBI and ALBI scores after TACE. Regarding EZ-ALBI grade migration, most patients (66.2%) remained at the same grade following TACE. However, approximately one-third of patients had worsening EZ-ALBI grades (Table 4). The proportions of patients with EZ-ALBI grades 1, 2, and 3 after TACE were 16 (11.0%), 105 (72.4%), and 9 (16.6%), respectively.
Table 3
EZ-ALBI and ALBI score/grade at baseline and after TACE

Scores and grade	Baseline (N = 163)	Post-TACE (N = 145)	Significant change (p-value)
	N (%)/ mean ± SD	N (%)/ mean ± SD	
EZ-ALBI score	-37.70 ± 92.63	-27.61 ± 5.51	0.185
EZ-ALBI grade			
- Grade 1	40 (24.5%)	16 (11.0%)	
- Grade 2	114 (69.9%)	105 (72.4%)	
- Grade 3	9 (5.5%)	24 (16.6%)	
ALBI score	-2.89 ± 8.76	-1.93 ± 0.59	0.181
ALBI-grade			
- Grade 1	40 (24.6%)	18 (12.4%)	
- Grade 2	111 (68.0%)	95 (65.5%)	
- Grade 3	12 (7.4%)	32 (22.1%)	

Table 4
EZ-ALBI and ALBI grade change after TACE

Grade change (N = 142)	EZ-ALBI, N (%)	ALBI, N (%)
Improving grade	6 (4.2%)	6 (4.2%)
Same grade	94 (66.2%)	92 (64.8%)
Worsening grade	42 (29.6%)	44 (31.0%)

OS and factors associated with OS according to EZ-ALBI grade

The median OS of our cohort was 21 (95% CI, 16.9–25.1) months. The survival distributions of patients stratified by EZ-ALBI grade at baseline and after TACE are shown in Fig. 2. The baseline EZ-ALBI grade stratified patients into three groups with significantly different survival rates. The median OS was 42 (95% CI 13.3–70.6) months, 18 (95% CI 13.7–22.2) months, and 13 months (95% CI 6.0–19.9) for EZ-ALBI grade 1, 2, and 3, respectively (p = 0.002). The 1-year survival rates of the patients with baseline EZ-ALBI grades 1, 2, and 3 were 87.5%, 64.9%, and 55.6%, respectively. In multivariate analysis, baseline EZ-ALBI grade 2, 3, and AFP > 20 ng/ml were significantly associated with OS (hazard ratio [HR] 2.196, [95% CI 1.243–3.880, p = 0.007], 3.262 [95% CI 1.242–8.566, p = 0.016], and 1.768 [95% CI 1.101–2.841, p = 0.018], respectively) (Table 5). Notably, EZ-ALBI grade migration after TACE did not seem to be related to posttreatment survival.
Table 5
Univariate and multivariate analysis of factors associated with survival in patients with HCC underwent TACE.

Factors	Univariate analysis	Multivariate analysis					
	HR	95%CI	p-value	Factors	HR	95%CI	p-value
Age	0.999	0.974–1.007	0.264				
Sex (male)	1.241	0.985–1.564	0.067				
MELD score	1.066	0.979–1.161	0.143				
Within up-to-seven criteria	0.924	0.677–1.260	0.617				
CTP B	1.168	0.688–1.985	0.565				
AFP > 20 ng/mL	1.817	1.158–2.851	0.009*	AFP > 20 ng/mL	1.768	1.101–2.841	0.018*
Baseline EZ-ALBI	-	-	-	Baseline EZALBI	-	-	-
Grade 1	2.185	1.356–3.519	0.001*	Grade 1	2.196	1.243–3.880	0.007*
Grade 2	2.705	1.144–6.398	0.023*	Grade 2	3.262	1.242–8.566	0.016*
Grade 3				Grade 3			
Worsening EZ-ALBI grade	0.936	0.601–1.457	0.769				

Comparison with other prognostic scores

The performances of the EZ-ALBI score and other prognostic scores, including the CTP, MELD, and ALBI scores, are shown in Table 6. The AUROCs of the EZ-ALBI score at baseline for predicting death at 1, 2, and 3 years were 0.613, 0.624, and 0.623, respectively. Although all mentioned scores included both albumin and bilirubin in their parameters, EZ-ALBI and ALBI scores showed higher AUROCs for prediction compared to those of CTP and MELD scores.

Regarding discrimination ability, the EZ-ALBI and ALBI scores had higher Harrell’s C-index than the CTP and MELD scores.
Table 6
The AUROCs for predicting death of EZ-ALBI and other prognostic scores

Prognostic scores	AUROC for survival at 1 year	p-value	AUROC for survival at 2 year	p-value	AUROC for survival at 3 year	p-value	C-index
EZ-ALBI score	0.613 (0.517–0.709)	0.027	0.624 (0.537–0.711)	0.007	0.623 (0.525–0.720)	0.015	0.599 (0.542–0.656)
ALBI score	0.624 (0.529–0.720)	0.015	0.624 (0.537–0.711)	0.007	0.610 (0.513–0.707)	0.030	0.602 (0.545–0.659)
CTP score	0.557 (0.453–0.662)	0.276	0.575 (0.485–0.665)	0.110	0.524 (0.424–0.625)	0.637	0.554 (0.497–0.610)
MELD score	0.588 (0.488–0.689)	0.095	0.577 (0.486–0.669)	0.104	0.575 (0.469–0.680)	0.169	0.545 (0.486–0.604)

Discussion

The heterogeneity of patients with intermediate-stage HCC has raised several issues in the clinical practice. Diversity in tumor burden and liver function reserve exerts a crucial impact on the survival and clinical course of HCC. A thorough evaluation of preserved liver status plays an important role in optimizing the patient’s benefit after TACE. The present study demonstrated that the EZ-ALBI score, a simple liver reserve assessment, can stratify patients who were treated with TACE to different survival rates. Patients with pretreatment EZ-ALBI grades 2 and 3 had significantly decreased OS compared to those with EZ-ALBI grade 1. Almost 30% of the patients had worsening EZ-ALBI grades following TACE. However, EZ-ALBI grade migration was not associated with posttreatment survival.

Liver functional reserve is a significant predictor of survival after TACE. Following TACE, deterioration of liver function is usually observed and ultimately affects OS. At one month after TACE, 30% of patients had higher serum bilirubin levels and more than half (52%) had lower albumin levels, indicating deteriorating hepatic function. These changes also affected ALBI and EZ-ALBI grades. A study by Chi et al. demonstrated that 24.3% of patients had ALBI grade alterations at 1 month after TACE. In addition, ALBI grade migration to grade 3 was independently correlated with OS. In our study, we also observed a significant increase in serum bilirubin after TACE together with a reduction in serum albumin. More than one-third of the patients in our cohort had EZ-ALBI grade migration following TACE, of which 29.6% showed worsening EZ-ALBI grade. Unfortunately, worsening EZ-ALBI grade was not a significant predictive factor for survival, and the EZ-ALBI score following the procedure could not demonstrate prognostic ability among our patients. The different time points of the postprocedural evaluation could partly explain the different findings from the previous study. Since some patients might recover from recent decompensation, the dynamic change in liver function and EZ-ALBI grade at 1–3 months after TACE would be better accounted for.
TACE might not reflect actual patient survival.7,22,23 Hence, pre-TACE EZ-ALBI scores should be used instead to provide an accurate and reliable prognostication.

Many predictive scores include total bilirubin and albumin levels as parameters in their formulas. CTP classification and MELD scores were popularly used to assess survival in patients with cirrhosis as well as patients with HCC.24 The ALBI score, which eliminates subjective parameters of the CTP score, has been developed and has become a useful marker to assess the extent of liver impairment in patients with HCC.11,25 To avoid the complexity of ALBI calculation, the EZ-ALBI score has been proposed with a good correlation with the conventional ALBI score. In our study, the correlation between the EZ-ALBI and ALBI scores was excellent, with a correlation coefficient of 1.000, which was in line with the studies by Kariyama \textit{et al.} and Ho \textit{et al.}15,16 The prognostic performance of CTP, MELD, and ALBI scores among patients receiving TACE remains unclear in previous studies.26–29 In this study, EZ-ALBI and ALBI scores showed high AUROCs and C-indices, which outperformed other models for anticipating death in this population.

Although recent studies reported that EZ-ALBI score had acceptable predictive power across all stages of HCC, only 23.3\% of patients treated with TACE were included in the original cohort and the authors did not specifically explore the role of EZ-ALBI score in patients with intermediate-stage HCC.15 Further, only 27.0\% of patients undergoing TACE were enrolled in the Taiwanese validation set and the study reported a median OS of less than 25 months for patients treated with non-curative treatments, which comprised not only TACE but also systemic treatment and best supportive care.16 With a small proportion of patients treated with TACE in previous studies, it could not make a firm conclusion for the prognostic performance of EZ-ALBI in patients with intermediate-stage HCC, which usually encompasses a highly heterogeneous population. Moreover, unlike the original Japanese cohort, which mainly comprised of patients with HCV infection (58.6\%)15, the patients in our study had HBV infection as the majority of liver disease. Data from a large cancer registry demonstrated more favorable survival in patients with HBV-associated HCC than in those with other causes of liver diseases.30 Thus, a direct comparison of our cohort with the original study should be interpreted with caution.

To our knowledge, this is the first study to externally validate the EZ-ALBI score in patients treated with TACE. We confirmed that EZ-ALBI is a useful tool for stratifying patients with intermediate-stage HCC who undergo TACE. Our findings emphasize the important role of liver function assessment and optimal patient selection to maximize efficacy in patients treated with locoregional therapy.

The retrospective nature of our study is a limitation. Selection bias cannot be completely avoided. Assessment of related information, such as treatment for viral hepatitis and current viral status, was limited, and these data could impact patient survival. Finally, the study was conducted in a single tertiary referral center, which may limit its generalizability. The results require external validation in other settings.

\textbf{Conclusions}
In conclusion, the EZ-ALBI score is an easy-to-calculate, reliable, and inexpensive stratifying biomarker of functional liver reserve, and a prognostic index for patients with intermediate-stage HCC treated with TACE. With its simplicity, EZ-ALBI may potentially replace the current complex prognostic scoring in real-life practice. Nevertheless, a large-scale prospective study to validate this novel score as a pre-TACE prognostic model to optimize patient benefits is warranted.

Abbreviations

HCC, hepatocellular carcinoma
TACE, transarterial chemoembolization
EZ-ALBI, easy albumin-bilirubin
ALBI, albumin-bilirubin
BCLC, Barcelona Clinic Liver Cancer
OS, overall survival
HR, hazard ratio
CI, confidence interval
HBV, hepatitis B virus
HCV, hepatitis C virus
CTP, Child-Turcotte-Pugh
KCMH, King Chulalongkorn Memorial Hospital
AFP, alpha-fetoprotein
SMA, superior mesenteric artery
MELD, Model for End-stage Liver Disease
AUROC, area under the receiver operating characteristic
C-index, concordance index
IQR, interquartile range

Declarations
Ethics approval and consent to participate

The study was reviewed and approved by the Ethics Committee and Institutional Review Board of the Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand (IRB Number: 467/64). The study protocol was in accordance with the Declaration of Helsinki (1989) of the World Medical Association.

Consent for publication

Not applicable

Availability of data and materials

Correspondence and requests for materials should be addressed to S.S.

Competing interests

The authors declare that they have no competing interests.

Funding

This work was funded by the Ratchadaphiseksomphon Endowment Fund of hepatic fibrosis and cirrhosis research unit, the Ratchadaphiseksomphon Endowment Fund (RCU_H_64_023_30) and Ratchadapiseksomphonotch Fund, Faculty of Medicine, Chulalongkorn University (RA64/026). The funders had no role in study design, data collection and analysis, decision to publish, and preparation of the manuscript.

Authors’ contributions

S.S. and P.A. contributed to the conception of the work and wrote the manuscript. P.A., S.S. and N.S. collected the data. P.A. analyzed the data. N.P., N.G., K.T. and P.K. revised the manuscript. All authors reviewed and approved the final version of the manuscript.

Acknowledgements

We would like to thank the staff of Division of Gastroenterology (Chulalongkorn University), Center of Excellence in Liver Diseases (KCMH), Research unit of hepatic fibrosis and cirrhosis (Chulalongkorn University) and Department of Radiology (Chulalongkorn University) for technical assistance and clinical support.

References

1. Globocan. International Agency for Research on Cancer 2020 [Available from: https://gco.iarc.fr/today/data/factsheets/cancers/11-Liver-fact-sheet.pdf.]
2. Bolondi L, Burroughs A, Dufour J-F, Galle PR, Mazzaferro V, Piscaglia F, et al., editors. Heterogeneity of patients with intermediate (BCLC B) Hepatocellular Carcinoma: proposal for a subclassification to facilitate treatment decisions. Seminars in liver disease; 2012: Thieme Medical Publishers.

3. Heimbach JK, Kulik LM, Finn RS, Sirlin CB, Abecassis MM, Roberts LR, et al. AASLD guidelines for the treatment of hepatocellular carcinoma. 2018;67(1):358-80.

4. hepatology EAFTSOTLJo. EASL clinical practice guidelines: management of hepatocellular carcinoma. 2018;69(1):182-236.

5. Llovet JM, Kelley RK, Villanueva A, Singal AG, Pikarsky E, Roayaie S, et al. Hepatocellular carcinoma. Nat Rev Dis Primers. 2021;7(1):6.

6. Kudo M, Han KH, Ye SL, Zhou J, Huang YH, Lin SM, et al. A Changing Paradigm for the Treatment of Intermediate-Stage Hepatocellular Carcinoma: Asia-Pacific Primary Liver Cancer Expert Consensus Statements. Liver Cancer. 2020;9(3):245-60.

7. Miksad RA, Ogasawara S, Xia F, Fellous M, Piscaglia FJBc. Liver function changes after transarterial chemoembolization in US hepatocellular carcinoma patients: the LiverT study. 2019;19(1):1-8.

8. Bolondi L, Burroughs A, Dufour JF, Galle PR, Mazzaferro V, Piscaglia F, et al. Heterogeneity of patients with intermediate (BCLC B) Hepatocellular Carcinoma: proposal for a subclassification to facilitate treatment decisions. Semin Liver Dis. 2012;32(4):348-59.

9. European Association For The Study Of The L, European Organisation For R, Treatment Of C. EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol. 2012;56(4):908-43.

10. Durand F, Valla D. Assessment of prognosis of cirrhosis. Semin Liver Dis. 2008;28(1):110-22.

11. Johnson PJ, Berhane S, Kagebayashi C, Satomura S, Teng M, Reeves HL, et al. Assessment of liver function in patients with hepatocellular carcinoma: a new evidence-based approach—the ALBI grade. 2015;33(6):550.

12. Kim JH, Sinn DH, Lee J-H, Hyun D, Cho SK, Shin SW, et al. Novel albumin–bilirubin grade-based risk prediction model for patients with hepatocellular carcinoma undergoing chemoembolization. 2018;63(4):1062-71.

13. Lee IC, Hung YW, Liu CA, Lee RC, Su CW, Huo TI, et al. A new ALBI-based model to predict survival after transarterial chemoembolization for BCLC stage B hepatocellular carcinoma. 2019;39(9):1704-12.

14. Chi C-T, Lee I, Lee R-C, Hung Y-W, Su C-W, Hou M-C, et al. Effect of Transarterial Chemoembolization on ALBI Grade in Intermediate-Stage Hepatocellular Carcinoma: Criteria for Unsuitable Cases Selection. 2021;13(17):4325.
15. Kariyama K, Nouso K, Hiraoka A, Wakuta A, Oonishi A, Kuzuya T, et al. EZ-ALBI Score for Predicting Hepatocellular Carcinoma Prognosis. 2020;9(6):734-43.

16. Ho SY, Liu PH, Hsu CY, Ko CC, Huang YH, Su CW, et al. EZ-ALBI score as a new prognostic predictor in hepatocellular carcinoma. 2021.

17. Sangro B, Salem R. Transarterial chemoembolization and radioembolization. Semin Liver Dis. 2014;34(4):435-43.

18. Ho S-Y, Liu P-H, Hsu C-Y, Hsia C-Y, Lee Y-H, Lee R-C, et al. Prognostic role of noninvasive liver reserve markers in patients with hepatocellular carcinoma undergoing transarterial chemoembolization. 2017;12(7):e0180408.

19. Park Y, Kim BK, Park JY, Kim DY, Ahn SH, Han K-H, et al. Feasibility of dynamic risk assessment for patients with repeated trans-arterial chemoembolization for hepatocellular carcinoma. 2019;19(1):1-10.

20. Kohla MA, Zeid MIA, Al-Warraky M, Taha H, Gish RGJBog. Predictors of hepatic decompensation after TACE for hepatocellular carcinoma. 2015;2(1):e000032.

21. Lencioni R, de Baere T, Soulen MC, Rilling WS, Geschwind JFHJH. Lipiodol transarterial chemoembolization for hepatocellular carcinoma: a systematic review of efficacy and safety data. 2016;64(1):106-16.

22. Li J-X, Wu H, Huang J-W, Zeng YJJotFMA. The influence on liver function after transcatheter arterial chemoembolization combined with percutaneous radiofrequency ablation in patients with hepatocellular carcinoma. 2012;111(9):510-5.

23. Kudo M, Raoul J-L, Lee HC, Cheng A-L, Nakajima K, Peck-Radosavljevic M. Deterioration of liver function after transarterial chemoembolization (TACE) in hepatocellular carcinoma (HCC): An exploratory analysis of OPTIMIS—An international observational study assessing the use of sorafenib after TACE. American Society of Clinical Oncology; 2018.

24. Peng Y, Qi X, Guo XJM. Child–Pugh versus MELD score for the assessment of prognosis in liver cirrhosis: a systematic review and meta-analysis of observational studies. 2016;95(8).

25. Hiraoka A, Michitaka K, Kumada T, Izumi N, Kadoya M, Kokudo N, et al. Validation and potential of albumin-bilirubin grade and prognostication in a nationwide survey of 46,681 hepatocellular carcinoma patients in Japan: the need for a more detailed evaluation of hepatic function. 2017;6(4):325-36.

26. Hiraoka A, Kumada T, Kudo M, Hirooka M, Tsuji K, Itobayashi E, et al. Albumin-bilirubin (ALBI) grade as part of the evidence-based clinical practice guideline for HCC of the Japan Society of Hepatology: a comparison with the liver damage and Child-Pugh classifications. 2017;6(3):204-15.
27. Hsu W-F, Chang K-C, Chen T-H, Lin C-H, Lin Y-C, Tsai M-H, et al. Comparison of 10 noninvasive models for predicting overall survival in patients with intermediate-stage hepatocellular carcinoma. 2021;100(33).

28. Akarapatima K, Chang A, Prateepchaiboon T, Pungpipattrakul N, Songjamrat A, Pakdeejit S, et al. Predictive Outcomes Using Child-Turcotte-Pugh and Albumin-Bilirubin Scores in Patients with Hepatocellular Carcinoma Undergoing Transarterial Chemoembolization. 2021:1-8.

29. Vogeler M, Mohr I, Pfeiffenberger J, Sprengel SD, Klauss M, Teufel A, et al. Applicability of scoring systems predicting outcome of transarterial chemoembolization for hepatocellular carcinoma. 2020;146(4):1033-50.

30. Brar G, Greten TF, Graubard BI, McNeil TS, Petrick JL, McGlynn KA, et al. Hepatocellular Carcinoma Survival by Etiology: A SEER-Medicare Database Analysis. Hepatol Commun. 2020;4(10):1541-51.

Figures

Figure 1

Flowchart of patient eligibility
Figure 2

Overall survival according to EZ-ALBI grade at baseline and after TACE