The Hardy space from an engineer’s perspective

Nicola Arcozzi Richard Rochberg

September 25, 2020

Abstract

We give an overview of parts of the theory of Hardy spaces from the viewpoint of signals and systems theory. There are books on this topic, which dates back to Bode, Nyquist, and Wiener, and that eventually led to the development of H^∞ optimal control. Our modest goal here is giving a beginner’s dictionary for mathematicians and engineers who know little of either systems or H^2 spaces.

Contents

1 Introduction 2
2 Linear systems without holomorphic functions 3
3 Time and Frequency, and the time-invariant case. 7
 3.1 The characterization of time invariant operators . 7
 3.2 The characterization of bi-invariant and invariant spaces for the shift on $\ell^2(\mathbb{Z})$ 8
4 Complex frequencies and the causal case 9
 4.1 The Hardy space 9
 4.2 The characterization of causal, time invariant systems 11
 4.3 The characterization of the invariant spaces for $\ell^2(\mathbb{N})$ 13
 4.4 The characterization of inner functions 13
 4.5 Inner/outer factorization 15
5 Approximating noncausal systems by causal ones: Hankel operators and Nehari theory 16
 5.1 Hankel forms and Hankel operators 16
 5.2 Detour: Toeplitz operators 18
 5.3 H^1 and BMO 20
6 Systems and feedback 21
 6.1 The model matching problem and the Pick property 22
1 Introduction

The theory of Hardy spaces is a nice example of the “unreasonable effectiveness of mathematics” in providing a conceptual and computational framework for the applied sciences. The theory itself lives comfortably in pure mathematics. It had its inception in Privalov’s study of the boundary behavior of bounded holomorphic functions, some years before Hardy defined the spaces which go under its name. For many years the Hardy spaces H^p and the operators acting on them were studied in great depth, and an elegant and profound theory was developed.

A notable breakthrough was C. Fefferman discovery, in 1971, that the dual of the Hardy space H^1 is the space BMO of functions having bounded mean oscillations. This result contained the definite solution of the problem of characterizing the symbols for which the corresponding Hankel operator is bounded on H^2, developing a line of investigation in which Nehari had been a primary figure. One of the unexpected features of Fefferman result is that BMO had been earlier defined by Fritz John, and developed by him and Luis Niremberg, in the distant realm of elasticity theory (“the unreasonable effectiveness of mathematics” of the applied sort in providing tools for the pure ones).

While the pure mathematicians were developing the theory of the Hardy spaces, engineers found out that they were a very useful tool in signal processing, then in linear control theory. The basic idea is that signals and systems can be extended, in frequency space, to holomorphic functions, whose poles and zeros provide crucial information. This was the beginning of H^2 control theory. The use of frequency methods was pioneered by Bode, Black, and Nyquist at Bell Labs in the 1930’s. Soon after, Wiener entered the picture designing optimal filtering. Helton, Francis, and many others, developed the contemporary theory and applications between 1970’s and 1990’s.

Our goal here is providing an overview of some rather classical parts of Hardy space theory, highlighting the interpretation in terms of signals and systems. We hope this helps the pure mathematician, especially the one who is new to the
topic, to develop an intuition for it. Partial as they are, intuitions are a necessary part of understanding. On the other side, we aim at convincing the engineer eventually reading these notes that there are interesting things in Hardy theory to be learned, interpreted, used.

The frontier between these theories is so vast that we do not even try to make a list of what we are not covering. For the topics we do cover we will not give specific references to the literature. We do however include at the end a list of some of the many books and surveys in the area, with the hope they will help the interested reader who wants to learn more. We restrict to signals in discrete time. The case of continuous time is not much different, but for technical headaches. We do not even mention the matrix valued case, that is, what we say concerns SISO (single input/single output) systems, not SIMO or MIMO ones.

The Hardy space theory functions as a model for those studying holomorphic function spaces, and often the first questions asked when studying a different function space are "do things work here as in the Hardy space?" In the final section we discuss that question and others for closely related function spaces, including the Dirichlet space.

2 Linear systems without holomorphic functions

We will work all along with complex valued signals in discrete time, i.e. \(\phi : \mathbb{Z} \rightarrow \mathbb{C} \), the space of which is denoted by \(\ell(\mathbb{Z}) \). It will be soon clear that the complex field is best suited for dealing with linear systems, and real valued signals can be treated, with some care, as a special case. In doing preliminary calculations we consider signals \(\phi \) with finite support, \(\phi(n) = 0 \) for \(|n| \) large, and write \(\phi \in \ell_c(\mathbb{Z}) \). A single input/single output system (SISO) is simply a map \(T : \ell(\mathbb{Z}) \rightarrow \ell(\mathbb{Z}) \), defined on some subset of allowable signals.

Some properties a system is often required to satisfy are the following.

- **Linearity:** \(T(a\phi + b\psi) = aT(\phi) + bT(\psi) \), in which case we write \(T(\phi) = T\phi \);

- **Time (or shift) invariance:** let \(\tau_1 \phi(n) = \phi(n - 1) \) be the forward shift by one unit of time, then \(T(\tau_1 \phi) = \tau_1 (T(\phi)) \);

- **Causality:** if \(\phi(n) = \psi(n) \) for all \(n \leq m \), then \(T(\phi)(m) = T(\phi)(m) \);

- **p-Stability:** for a linear system, it can be phrased as \(\|T\|_{\mathcal{B}(\ell^p)} = \sup_{\phi} \frac{\|T\phi\|_{\ell^p}}{\|\phi\|_{\ell^p}} < \infty \), where

\[
\|\phi\|_{\ell^p} = \begin{cases} \sup_n |\phi(n)| & \text{if } p = \infty \\ (\sum_n |\phi(n)|^p)^{1/p} & \text{if } 1 \leq p < \infty \end{cases}
\]

is a measure of the size of the signal, the choices \(p = 1, 2, \infty \) being the most important in applications.
The meaning of time invariance is clear: the system works the same way all times; if the input ϕ is delayed by one time unit, $\tau_1\phi$, then the output $T(\phi)$ is delayed by one unit of time. Causality means that the output $T(\phi)(m)$ at time m only depends on inputs up to time m, not on future information. In other words, the time scale for input and output is the same: if we process a signal in its entirety, as it is done for instance when denoising an old musical record, causality is not an issue; but if we denoise a broadcast in real time, then causality is an obvious requirement.

Stability is a requirement of systems (bounds on energy, on size,...), or, often, a law of nature, if the system describes a phenomenon. The assumption of linearity simplifies the mathematics and is a very good approximation to many systems of interest. We will not consider the nonlinear theory here.

It is an easy and instructive exercise using the definitions to show that a linear, time invariant system is causal if and only if $\phi(n) = 0$ for negative n implies $T\phi(n) = 0$ for negative n. We will denote by $\ell(\mathbb{N})$ the subspace of those ϕ in $\ell(\mathbb{Z})$ for which $\phi(n) = 0$ for negative n and we set $\ell_c(\mathbb{N}) = \ell_c(\mathbb{Z}) \cap \ell(\mathbb{N})$. Causality can then be rephrased as saying that $T : \ell(\mathbb{N}) \to \ell(\mathbb{N})$.

Causality can then be rephrased as saying that $T : \ell(\mathbb{N}) \to \ell(\mathbb{N})$.

The characterization of linear, shift invariant systems acting on $\ell_c(\mathbb{Z})$, is purely algebraic, as it is that of the subclass of causal ones. We recall that the convolution of $\phi, \psi : \mathbb{Z} \to \mathbb{C}$ is $\phi * \psi : \mathbb{Z} \to \mathbb{C}$,

$$
\phi * \psi(m) = \sum_n \phi(m-n)\psi(n) = \psi * \phi(m),
$$

whenever the sum is defined (e.g. if ϕ or ψ belong to $\ell_c(\mathbb{Z})$).

Theorem 1 Let T be a linear system defined on $\ell_c(\mathbb{Z})$. Then, T is shift invariant if and only if there is a function $k : \mathbb{Z} \to \mathbb{C}$ such that

$$
T\phi = k * \phi.
$$

Moreover k, the unit impulse response, is uniquely determined by $k = T\delta_0$,

where $\delta_m(n) = \begin{cases} 1 & \text{if } n = m \\ 0 & \text{if } n \neq m \end{cases}$. The system is also causal if and only if $k(n) = 0$ for $n < 0$.

Let $\tau_m\phi(n) = \phi(n-m) = \tau_1^m\phi(n), m = \sigma|m| \in \mathbb{Z}$, where $f^\sigma = f \circ \ldots \circ f$, $|m|$ times. In particular, $\tau_m\delta_n = \delta_{n+m}$. Then, using time invariance of T in the
third equality,

\[T\phi(n) = T \left(\sum_m \phi(m) \delta_m \right)(n). \]

\[= \sum_m \phi(m)T(\tau_m \delta_0)(n) \]

\[= \sum_m \phi(m)\tau_m T(\delta_0)(n) \]

\[= \sum_m \phi(m)T(\delta_0)(n - m) \]

\[= \phi \ast T(\delta_0)(n). \]

That the system \(\phi \mapsto k \ast \phi \) is time invariant is easy to check. If \(T \) is also causal, then

\[k(m) = T\delta_0(m) = 0 \text{ for all } m < 0 \]

because \(\delta_0(m) = 0 \) for negative \(m \).

In the causal case, the action of \(T \) on \(\phi \in \ell(N) \) is a finite sum:

\[k \ast \phi(m) = \sum_{n=0}^{m} k(m - n) \phi(n). \]

Although the algebraic analysis is straightforward, the analytic details are subtle. The problem lies in establishing stability. We consider here the case \(p = 2 \), which will take us to the Hardy spaces, but we first mention \(p = \infty \), leading to Wiener’s algebra.

For a linear system (operator) \(T : X \to Y \) between two Banach function spaces \(X \) and \(Y \) we write

\[\|T\|_{B(X,Y)} = \sup_{v \in X, v \neq 0} \frac{\|Tv\|_X}{\|v\|_Y}, \]

and we shorten \(B(X,X) = B(X) \).

Theorem 2 A linear, time invariant system is \(\infty \)-stable if and only if \(k \in \ell^1(\mathbb{N}) \), in which case \(\|T\|_{B(\ell\infty(\mathbb{N}))} = \|k\|_{\ell^1} \).

The elementary estimate

\[|k \ast \phi(n)| \leq \|k\|_{\ell^1} \cdot \|\phi\|_{\ell\infty} \]

gives us \(\|T\|_{\ell\infty} \leq \|k\|_{\ell^1} \). In the other direction, set \(\phi(n) = \frac{k(-n)}{|k(-n)|} \chi(n : k(n) \neq 0) \) to have \(k \ast \phi(0) = \|k\|_{\ell^1} \) and \(\|\phi\|_{\ell\infty} = 1 \).

We leave it to the reader to show that in the causal case \(k \in \ell^1(\mathbb{N}) \), we could consider an extremal sequence \(\phi_m \in \ell\infty(\mathbb{N}) \) to show that

\[\sup_{\phi \in \ell\infty(\mathbb{N})} \frac{\|k \ast \phi\|_{\ell\infty(\mathbb{N})}}{\|\phi\|_{\ell\infty(\mathbb{N})}} = \|k\|_{\ell^1(\mathbb{N})}. \]
i.e. that the ∞-norm of a causal system can be estimated by considering signals in positive time.

The space $\ell^1(\mathbb{Z})$ with the multiplication given by convolution is a Banach algebra. Using Fourier series the algebra is isomorphic to the Banach algebra of continuous functions on the circle which have absolutely convergent Fourier series, now with multiplication given by the pointwise product of functions. Both versions are called the Wiener algebra.

The case of 2-stability is richer.

Theorem 3 We have $\|T\|_{\mathcal{B}(\ell^2(\mathbb{Z}))} \leq \|k\|_{\ell^1}$, with equality if $k \geq 0$.

In the causal case, we have

$$\|T\|_{\mathcal{B}(\ell^2(\mathbb{Z}))} = \sup_{\phi \in \ell^2(\mathbb{N})} \frac{\|T\phi\|_{\ell^2(\mathbb{N})}}{\|\phi\|_{\ell^2(\mathbb{N})}}.$$

However there are systems, even stable ones, for which $\|k\|_{\ell^1} = \infty$.

The estimate $\|T\|_{\mathcal{B}(\ell^2(\mathbb{Z}))} \leq \|k\|_{\ell^1}$ follows from an easy instance of Hausdorff-Young’s inequality,

$$\|k * \phi\|_{\ell^p} \leq \|k\|_{\ell^1} \cdot \|\phi\|_{\ell^p},$$

which holds for $1 \leq p \leq \infty$. If T is causal, to have its norm we can just test on $\phi \in \ell^2(\mathbb{N})$; this will be easily proved using holomorphic functions. Using holomorphic theory, examples with $\|T\|_{\mathcal{B}(\ell^2(\mathbb{N}))} < \infty$ and $\|k\|_{\ell^1} = \infty$ will naturally come to mind. Using that approach we will find necessary and sufficient conditions on k for T to be stable.

A reasonable problem is designing a causal system T, that is as close as possible to a given non causal system V: V is what we would like to do, while T is what we can do remaining in the causal class. A quantitative way to state the problem is the following. For given V with $\|V\|_{\mathcal{B}(\ell^2(\mathbb{Z}))} < \infty$, we want find a causal T for which it is achieved

$$\min_{T \text{ causal}} \sup_{\phi \in \ell^2(\mathbb{N})} \frac{\|V\phi - T\phi\|_{\ell^2}}{\|\phi\|_{\ell^2}}.$$

We will see later that the problem has a solution within Nehari’s theory of Hankel operators, which will be sketched below.

Another important problem is having the complete library of time-invariant features of signals: that is, those features which remain unchanged if the signal is anticipated or delayed. One such quality is the frequency spectrum, which we will more rigorously define below.

Each feature might be identified with the set $\mathcal{H} \subseteq \ell^2$ of the functions ϕ having that feature. The time invariance of the feature can be meant in a strong sense (bi-invariance):

$$\phi \in \mathcal{H} \iff \tau_1 \phi \in \mathcal{H},$$
or in a weaker sense ([forward] invariance):

\[\phi \in \mathcal{H} \Rightarrow \tau_1 \phi \in \mathcal{H}, \]

in which a signal might acquire a feature it did not possess before. This is especially meaningful in the causal case, where the only bi-invariant (linear) features are trivial: all or none.

As we are dealing with linear theory, we will assume that \(\mathcal{H} \) is a closed, linear subspace of \(\ell^2 \), and that \(\mathcal{H} \neq 0, \ell^2 \) is not trivial. We will say in this case that \(\mathcal{H} \) is a bi-invariant, resp. invariant, subspace of \(\ell^2 \).

3 Time and Frequency, and the time-invariant case.

In this section we review the \(L^2 \) Fourier theory on \(\mathbb{Z} \), which might be read as Fourier series upside-down. The first motivation comes from invariant subspaces. Suppose \(\phi \neq 0 \) is an eigenfunction of the shift, \(\tau_1 \phi = \lambda \phi \) (with, by necessity, \(\lambda \neq 0 \)). Then, span\{\phi\} is a 1-dimensional bi-invariant subspace, provided that \(\phi \in \ell^2 \).

A little calculation gives

\[
\phi(n) = \lambda^{-n} \phi(0),
\]

a formula which hold for negative \(n \)'s as well. After normalizing \(\phi(0) = 1 \), we see that (i) \(\phi \notin \ell^2(\mathbb{Z}) \), and (ii) \(\phi \) is bounded if and only if \(\lambda = e^{it} \) for some \(t \in (0, 2\pi) = T \), in which case \(\phi(n) = e_{\phi}(n) = e^{-int} \). It is natural to assign to the signal \(e_t \) the period \(2\pi/t \geq 1 \): a time interval which is a fortiori larger than the gap between successive integers; then a frequency \(\omega = t/2\pi \).

To each signal \(\phi \in \ell^2 \) assign its Fourier transform \(\hat{\phi}(e^{it}) = \sum_n \phi(n)e^{int} \), a function in \(L^2 = L^2(T, d\theta/2\pi) \) with \(\|\phi\|_{\ell^2} = \|\hat{\phi}\|_{L^2} \). Then,

\[
\|\phi\|_{\ell^2}^2 = \int_T |\hat{\phi}(e^{it})|^2 \frac{dt}{2\pi},
\]

\[
\phi(n) = \frac{1}{2\pi} \int_T \hat{\phi}(e^{it})e^{-int} dt,
\]

\[
(\phi * \psi)(t) = \hat{\phi}(t)\hat{\psi}(t).
\]

This is all we need from Fourier theory.

3.1 The characterization of time invariant operators

From these relations, it is easy to characterize time invariant operators on \(\ell^2(\mathbb{Z}) \).
Theorem 4 The time-invariant system \(T\phi = k * \phi \) is 2-stable if and only if \(k = b \in L^\infty(\mathbb{T}) \). Moreover,

\[
\|T\|_{B(\ell^2(\mathbb{Z}))} = \sup \frac{\|bh\|_{L^2(\mathbb{T})}}{\|h\|_{L^2(\mathbb{T})}}.
\]

Denote by \(M_b : h \mapsto bh \) the operator of multiplication times \(b \). Then,

\[
\|T\|_{B(\ell^2(\mathbb{Z}))} = \|M_b\|_{B(L^2(\mathbb{T}))},
\]

where the latter refers to the norm as bounded operator on \(L^2(\mathbb{T}) \).

The proof is easy. First, \(k = T\delta_0 \) is a priori in \(\ell^2 \), hence \(b \) is in \(L^2 \), and

\[
\sum_{n} |k * \phi(n)|^2 = \frac{1}{2\pi} \int_{\mathbb{T}} |(k * \phi)(t)|^2 dt
\]

\[
= \frac{1}{2\pi} \int_{\mathbb{T}} |b(t)\hat{\phi}(t)|^2 dt
\]

\[
\leq \|b\|_{L^\infty}^2 \frac{1}{2\pi} \int_{\mathbb{T}} |\hat{\phi}(t)|^2 dt
\]

\[
= \|b\|_{L^\infty}^2 \|\phi\|_{L^2}^2,
\]

hence \(\|T\|_{B(\ell^2(\mathbb{Z}))} \leq \|b\|_{L^\infty(\mathbb{T})} \), and choosing \(\hat{\phi}(t) \) supported where \(|b(t)| \) is close to its supremum it is easy to show that \(\|T\|_{B(\ell^2(\mathbb{Z}))} \geq \|b\|_{L^\infty(\mathbb{T})} - \epsilon \) for all positive \(\epsilon \).

The function \(b = \hat{k} \) is the transfer function of the system \(T\phi = k * \phi \).

3.2 The characterization of bi-invariant and invariant spaces for the shift on \(\ell^2(\mathbb{Z}) \)

Similarly simple is the characterization of the bi-invariant subspaces: the invariant features are the sets of frequencies. First, on the frequency side we look for subspaces \(\mathcal{H} \) of \(L^2(\mathbb{T}) \) such that \(S\mathcal{H} = \mathcal{H} \), where \(Sh(t) = e^{it}h(t) \) is the shift on the frequency side. We still call them “invariant subspaces for the shift”.

Theorem 5 \(M \) is a closed doubly invariant subspace of \(L^2 = L^2(\mathbb{T}) \) if and only if \(M = \eta L^2 \) for some \(\eta \) which is the characteristic function of some \(E \subset \mathbb{T} \).

That \(M \) is doubly invariant is straightforward.

Suppose we have such an \(M \). Let \(P \) be the orthogonal projection of \(L^2 \) onto \(M \) and let \(\eta = P(1) \). Let \(\gamma(t) = e^{it} \). By definition of the projection \(1 - \eta \perp M \), hence \(1 - \eta \perp \eta \gamma^n \) for all \(n \in \mathbb{Z} \).

\[
0 = \langle 1 - \eta, \eta \gamma^n \rangle = \frac{1}{2\pi} \int_{\mathbb{T}} (\bar{\eta} - |\eta|^2) \gamma^n dt,
\]

so all the Fourier coefficients of \(\bar{\eta} - |\eta|^2 \) are zero. Hence \(\eta \) is the characteristic function of some set. Hence \(N = \eta L^2 \) is an invariant subspace contained in \(M \).
If $\lambda \in M \ominus N$, then λ is orthogonal to ηL^2 and hence by computing Fourier coefficients $\lambda \bar{\eta}$ is identically zero. Also

$$1 - \eta \perp M \supseteq N \supseteq \{\gamma^n \lambda\}$$

so, computing Fourier coefficients we find $(1 - \bar{\eta})\lambda$ is identically zero. Combining these two shows λ is the zero function, hence $M = N$, and the theorem is proved.

Clearly, two sets identify the same subspace if and only if their symmetric difference has zero measure. The Boolean structure of the Borel σ-algebra \mathcal{B} makes the set of the bi-invariant subspaces a lattice which is isomorphic to \mathcal{B}.

We state the characterization of the invariant subspaces of $L^2(T)$, and sketch its proof.

Theorem 6 The invariant, non-bi-invariant, subspaces of $L^2(T)$ have the form $\psi H^2(\mathbb{D})$, where ψ is measurable and $|\psi(e^{it})| = 1$ a.e. The function ψ is unique up to a multiplicative, unimodular constant.

How do we extract ψ from K? For a given invariant subspace K such that $SK \subset K$, let $\psi \neq 0$ be in $K \ominus SK \subseteq K \ominus S^n K$. Then,

$$\int_{T} |\psi(e^{it})|^2 e^{int} dt = <e_n \psi, \psi >_{L^2(T)}$$

$$= <S^n \psi, \psi >_{L^2(T)}$$

$$= 0$$

for $n \geq 1$. Similarly $\int_{T} |\psi(e^{it})|^2 e^{int} dt = 0$ for $n \leq -1$, and so $|\psi|$ is a constant, which can be normalized to $|\psi| = 1$.

The reader who is familiar with the spectral theorem can view some of these results as a special instance of it. The shift is a normal operator, $\tau_1^* \tau_1 = \tau_{-1} \tau_1 = I = \tau_1 \tau_{-1}$ (this implies, more, that τ_1 is an unitary operator on $\ell^2(\mathbb{Z})$). Its spectrum is $\sigma(\tau_1) = T$, and the shift can be identified with the identity map $z \mapsto z$ on T. The measurable calculus for τ_1 identifies each bounded and Borel measurable b on T with the operator $b(\tau_1)$ on $\ell^2(\mathbb{Z})$; $\sigma(b(\tau_1)) = \text{ess-range}(b)$, and $\|b\|_{L^\infty} = ||b(\tau_1)||$, the operator norm of $b(\tau_1)$. The bi-invariant subspaces of τ_1 correspond to measurable subsets of the spectrum.

4 Complex frequencies and the causal case

4.1 The Hardy space

For $\phi \in \ell^2(\mathbb{N})$, define its Z-transform $Z\phi$ to be

$$Z\phi(z) = \sum_{n=0}^{\infty} \phi(n) z^n.$$
The series converges to a function holomorphic in the unit disc \(D = \{ z : |z| < 1 \} \):

\[
\left| \sum_{n=M+1}^{N} \phi(n)z^n \right|^2 \leq \sum_{n=M+1}^{N} |\phi(n)|^2 \cdot \sum_{n=M+1}^{N} |z|^{2n} \\
\leq \sum_{n=M+1}^{N} |\phi(n)|^2 \cdot |z|^{2M+2} \frac{1}{1-|z|^2}
\]

which tends to zero uniformly for \(|z| \leq r < 1 \). In holomorphic control theory the \(Z\) transform is usually defined as \(Z\phi(z) = \sum_{n=0}^{\infty} \phi(n)z^{-n} \), and the exterior of the unit disc plays the role which is in these notes played by the unit disc. What we are doing is extending the notion of “frequency” from \(T \) to \(D \cup T \), and the use of the notation \(\hat{\phi}(z) = Z\phi(z) \) is justified.

The old \(\hat{\phi}(e^{it}) \) can be recovered as the \(L^2 \)-limit of \(e^{it} \to \hat{\phi}(re^{it}) \) as \(r \to 1 \),

\[
\frac{1}{2\pi} \int_{T} |\hat{\phi}(e^{it}) - \hat{\phi}(re^{it})|^2 \, dt = \sum_{n=0}^{\infty} |\phi(n)|^2 (1 - r^{2n}) \to 0
\]

as \(r \to 1 \).

The **Hardy space** \(H^2(D) \) is the image of \(\ell^2(N) \) under the Z-transform. Alternatively, it can be defined as the space of the functions \(f \) which are holomorphic in \(D \), for which

\[
\|f\|_H^2 = \sup_{r < 1} \frac{1}{2\pi} \int_{T} |f(re^{it})|^2 \, dt = \lim_{r < 1} \frac{1}{2\pi} \int_{T} |f(re^{it})|^2 \, dt < \infty.
\]

Or, it can be characterized as the space of those \(f^*(e^{it}) \) in \(L^2(T) \), \(f^*(e^{it}) = \sum_{n=-\infty}^{\infty} \phi(n)e^{int} \), for which \(\phi(n) = 0 \) for all negative \(n \)'s and \(\{ \phi(n) \} \in \ell^2(Z) \), that is, \(\{ \phi(n) \} \in \ell^2(N) \). The function \(f^* : T \to \mathbb{C} \) is the boundary function of \(f(z) = f(re^{it}) = \sum_{n=0}^{+\infty} \phi(n)r^ne^{int} \), which we identify with \(f, f = f^* \).

On the frequency side we have the points of \(D \), and the value of functions in \(H^2 \) can be computed at those points, and not just a.e. In fact, it can be computed in a rather quantitative way.

\[
f(z) = \sum_{n=0}^{\infty} a_n z^n
\]

\[
= \langle \sum_{n=0}^{\infty} a_n w^n, \sum_{n=0}^{\infty} z^n w^n \rangle_{H^2}
\]

\[
= \langle f(w), \frac{1}{1-zw} \rangle_{H^2}
\]

\[
= \langle f, k_z \rangle_{H^2},
\]

where \(k(w, z) = k_z(w) = \frac{1}{1-zw} \), \(k : D \times D \to \mathbb{C} \) is the **reproducing kernel** of \(H^2 \).

The theory of **Hilbert function spaces with a reproducing kernel** (RKHS) is old, and it had its inception in work of Bergman and Aronszajn in
the early ’40s. Much of what is written in these notes can be proved, or posed as a problem, for general RKHS’s. We will see instances of that in the final section.

4.2 The characterization of causal, time invariant systems

To deal with causal systems, we need $H^\infty(D)$, the space of the bounded analytic functions on the unit disc.

Theorem 7 The causal, time-invariant, linear, 2-stable systems T are those having the form $(T\hat{\phi})(z) = b(z)\hat{\phi}(z)$, with b in H^∞. Moreover,

$$\|T\|_{B(H^2)} := \sup \frac{\|bh\|_{H^2(D)}}{\|h\|_{H^2(D)}} = \|h\|_{H^\infty}.$$

Using the maximum principle, it is easy to see that if the transfer function b is given by the boundary values of a function in H^∞, which we continue to call b; then $\sup \frac{\|bh\|_{H^2(D)}}{\|h\|_{H^2(D)}} \leq \|h\|_{H^\infty}$. In the other direction, let $M_b : H^2 \to H^2$ be the multiplication operator $f \mapsto bf$, and let M_b^* be its adjoint. Then, using the reproducing property of k_z,

$$M_b^*k_z(w) = <M_b^*k_z,k_w> = <k_z,M_bk_w> = <M_bk_w,k_z> = <bk_w,k_z> = b(z)k_w(z) = b(z)k_z(w),$$

i.e. $M_b^*k_z = \overline{b(z)}k_z$: the kernel functions are eigenvectors of the adjoint of the multiplication operator, having the conjugates of values of b as eigenvalues. This fact holds for general RKHS and we will encounter it again. We use it now to show the opposite inequality in the theorem above:

$$\sup \frac{\|bh\|_{H^2(D)}}{\|h\|_{H^2(D)}} = \|M_b\|_{B(H^2)} = \|M_b^*\|_{B(H^2)} \geq \sup \frac{\|M_b^*k_z\|_{H^2(D)}}{\|k_z\|_{H^2(D)}} = \sup |b(z)| = \|b\|_{H^\infty}.$$

Hidden behind this rather straightforward proof there is a curious fact. There are f_ϵ in H^2 such that

$$(\|b\|_{H^\infty} - \epsilon) \frac{1}{2\pi} \int_\mathbb{T} |f_\epsilon(e^{it})|^2 dt \leq \frac{1}{2\pi} \int_\mathbb{T} |b(e^{it})f_\epsilon(e^{it})|^2 dt,$$
i.e. $|f_t(e^{it})|$ is rather concentrated on the set where $|b(e^{it})|$ is largest. It is an interesting exercise showing that the functions f_t can be chosen among kernel functions. (Hint: use the nonintegrability of $t \mapsto \frac{1}{\sin t}$).

The theorem above applies to causal systems having input ϕ in $\ell^2(\mathbb{N})$:

$$T_b \phi(n) = \sum_{j=0}^{n} b(n-m)\phi(m),$$

where $b(n)$ is the nth coefficient in the series expansion of b with center at 0.

The same conclusion applies to T_b having input on the larger space $\ell^2(\mathbb{Z})$.

Passing to the frequency side,

$$\sup_{\psi \in L^2(T)} \frac{\|b\psi\|_{L^2(T)}}{\|\psi\|_{L^2(T)}} = \sup_{f \in H^2} \frac{\|bf\|_{H^2}}{\|f\|_{H^2}}.$$

In fact, as we have proved, both sides have value $\|b\|_{H^\infty} = \|b\|_{L^\infty(T)}$.

We can now give an example of $k \not\in \ell^1(\mathbb{N})$ such that $\phi \mapsto k * \phi$ is bounded on $\ell^2(\mathbb{N})$. If k were summable, then $b(z) = \sum_{n=0}^{\infty} \phi(n)z^n$ would extend to a function which is continuous on \mathbb{D}. We only have, then, to find a bounded holomorphic b which does not admit a continuous extension to the closed unit disc. As an example, let

$$b(z) = \exp\left(-\frac{1}{1-z}\right).$$

We will see below (and it can be easily verified) that b is inner: bounded and with boundary values of unit modulus a.e. The boundary values are in fact:

$$b(e^{it}) = \exp\left(\frac{e^{it} + 1}{e^{it} - 1}\right) = \exp(-i\cot(t/2))$$

which is not continuous at $t = 0$.

This theorem was given a far reaching generalization by von Neumann.

Theorem 8 Let T be a linear contraction on a Hilbert space H, $\|Tx\| \leq \|x\|$, and let p be a complex polynomial. Then,

$$\|p(T)\| \leq \|p\|_{H^\infty},$$

with equality (for any given polynomial p) when $H = H^2$ and $T = S$ is the shift.

This result exemplifies a general trend, of reducing (when possible) questions concerning a large family of abstract operators to the corresponding question for a shift-related operator on H^2, which works as a model for the general theory. A nice reading on these topics is the monograph Nagy and Fojaś (see references).

Observe that the equality $\|p(S)\|_{H^2} = \|p\|_{H^\infty}$ holds without restrictions on $p \in H^\infty$. In the general operator theoretic framework this is no longer true.
4.3 The characterization of the invariant spaces for $l^2(\mathbb{N})$

A inner function Θ is a nonconstant function in H^∞ such that $|\Theta(e^{it})| = 1$ a.e. Such functions play a prominent role in Hardy theory.

Theorem 9 [Beurling] The invariant subspaces of H^2 have the form ΘH^2. The representation is unique up to unimodular constants.

Since $H^2(\mathbb{D})$ is closed in $L^2(\mathbb{T})$, Beurling’s Theorem easily follows from the characterization of the invariant subspaces for the shift on $L^2(\mathbb{T})$. However, the direct approach to the problem is of interest.

It is clear that each space having the form ΘH^2 is invariant under multiplication by z. In the opposite direction, we only mention how to find Θ if an invariant subspace K is given. The key point is showing that $M_z K \subseteq K$ (which will be if necessary normalized). Let $n \geq 0$ be lowest such that z^n divides all f in K. Then, $n + 1$ is lowest for $M_z K$, so $M_z K \neq K$.

This simple reasoning, based on the mere existence of a “order of zero” for holomorphic functions, rules out the existence of bi-invariant spaces for the shift: there are no bi-invariant linear features for signals in positive time. This is somehow intuitive (the backward shift destroys some of the information carried by the signal), but it is nonetheless worth mentioning.

The operator M_Θ, mapping H^2 onto ΘH^2, is an isometry (but not a unitary operator): $\|\Theta f\|_{H^2} = \|f\|_{H^2}$.

4.4 The characterization of inner functions

Since the class of inner functions is the library of “invariant features”, it is interesting to have a more concrete characterization for them. There are two main building blocks we have to consider. The first, generated by Blaschke products, are determined by the points at which the functions vanish; the second, the singular inner factors, are determined by the rate at which the function tends to zero along various radii.

Let a be a point in \mathbb{D}. The Blaschke factor $\phi_a(z) = \frac{|a|}{|a - z|} \frac{a - \overline{a}}{1 - \overline{a}z}$ maps \mathbb{D}, respectively, \mathbb{T}, onto itself, holomorphically and $1 - 1$, hence it an inner function. We normalize it so that $\phi_a(a) = 0$ and $\phi_a(0) = |a| > 0$. Then, the finite Blaschke product

$$B(z) = \lambda z^n \prod_{j=1}^{m} \frac{|a_j|}{a_j} \frac{a_j - z}{1 - \overline{a_j}z},$$

where n, m are nonnegative integers ($n + m > 0$), $a_1, \ldots, a_n \in \mathbb{D}$ (repetition being allowed), and $|\lambda| = 1$, is also inner. It is clear that $B(z) = 0$ if and only if $z = a_1, \ldots, a_n$ or, if $m > 0$, $z = 0$. In applications to engineering, finite Blaschke products are especially important, for reasons that will be clear in Section 6.

We can pass to the limit to infinite Blaschke products.
Theorem 10 Let m be a nonnegative integer and $\{a_j\}_{j=0}^\infty$ be a sequence in \mathbb{D} (repetition being allowed), and $|\lambda| = 1$. Then,

$$B(z) = \lambda z^m \prod_{j=1}^{\infty} \frac{|a_j|}{a_j} \frac{a_j - z}{1 - \overline{a}_j z}$$

converges to a nonzero holomorphic function in \mathbb{D} if and only if the Blaschke condition holds,

$$\sum_{j=1}^{\infty} (1 - |a_j|) < \infty.$$

Convergence is uniform on compact subsets of \mathbb{D} and $B(z) = 0$ if and only if $z = a_j$ for some j, or, if $m > 0$, if $z = 0$.

Given a nonconstant, inner function Θ, let $\{a_j\}_{j=0}^\infty$ be the sequence of its zeros $a_j \neq 0$ in \mathbb{D} (repetition being allowed if the zero has higher order) and let $m \geq 0$ be the order of $\Theta(z)$ at $z = 0$. Then,

$$\Theta(z) = \lambda B(z) S(z),$$

where $|\lambda| = 1$, $B(z) = z^m \prod_{j=1}^{\infty} \frac{|a_j|}{a_j} \frac{a_j - z}{1 - \overline{a}_j z}$ is the Blaschke factor of Θ, normalized to have $B(0) > 0$, and S is a inner function with no zero inside \mathbb{D}, the singular inner factor of Θ, $S(0) > 0$.

To have a better understanding of the singular factor, consider the Caley map $\psi(z) = \frac{1 + z}{1 - z}$, mapping \mathbb{D} one-to-one and onto the right half-plane $\mathbb{C}_+ = \{x + iy : x > 0\}$. For any $\mu > 0$, the function $S_{0,\mu}(z) = e^{-\mu \psi(z)}$ is then an inner function, and an ∞-one mapping \mathbb{D} onto \mathbb{D} with no zero inside \mathbb{D}. It tends to zero rapidly as $z = 1 - \varepsilon$ approaches 1 along the real axis; $S_{0,\mu}(1 - \varepsilon) \sim \exp(-2\mu/\varepsilon)$. We might take products of factors $S_{\alpha,\mu}(z) = S_{0,\mu}(e^{-i\alpha} z)$ and obtain other such singular inner functions. We might think of taking infinite products, or even “continuous products”. It turns out that such products could well be “continuous”, but not too much.

Theorem 11 The singular factor has the form:

$$S(z) = \exp \left(- \int_{\mathbb{T}} \frac{1 + e^{-it} z}{1 - e^{-it} z} d\mu(t) \right),$$

where $\mu \geq 0$ is a Borel measure on \mathbb{T} which is mutually singular with respect to arclength measure.

When $\mu = \sum_j \mu_j \delta_{\alpha_j}$ is a finite, positive linear combination of Dirac delta’s, then

$$S(z) = \prod_j e^{-\mu_j \psi(e^{-i\alpha_j} z)}.$$

At this point we can describe the lattice of (singly) invariant subspaces of H^2. For invariant subspaces generated by Blaschke products the lattice structure is determined by the lattice of zero sets with the operations \cap and \cup. For the subspaces generated by singular functions the lattice is determined by the lattice of positive singular measures with the operations \wedge and \lor. The full lattice is described by combining these two.
4.5 Inner/outer factorization

The multiplication operator M_Θ takes H^2 onto the invariant subspace ΘH^2. It turns out that all multiplication operators we have seen in the analysis of causal systems admit a canonical factorization through an operator of this sort. Actually, it is convenient to look at things in more generality.

A function u in H^1 is outer if

$$u(z) = \exp \left(\frac{1}{2\pi} \int_T \frac{1 + e^{-it}z}{1 - e^{-it}z} k(e^{it}) dt \right),$$

for some real valued, integrable k on T. The function k can be easily recovered from u:

$$k(e^{it}) = \log |u(e^{it})|, \text{ a.e.}$$

We have chosen a normalization for which $u(0) > 0$.

Theorem 12 Let b be in H^1. Then, there are a unique outer function u and inner function Θ such that $b = u\Theta$.

Moreover, $\|b\|_{H^p} = \|u\|_{H^p}$ for $p = 1 \leq p \leq \infty$.

Outer functions $u \in H^\infty(D)$ can be characterized as those which are invertible in the weak sense that $uH^2(D)$ is dense in $H^2(D)$. In fact, more can be said.

Theorem 13 Let f be in H^2 and let $[f]$ be the smallest invariant subspace of H^2 containing f. Then, with Θu as in the inner/outer factorization of f, we have

$$[f] = \Theta H^2.$$

Hence if f is outer then $[f] = H^2$ and in particular $1 \in [f]$. Thus f is invertible in H^2 in the weak sense that there is a sequence $\{g_n\} \subset H^2$ such that $g_n f \to 1$ in the norm of H^2. However $1/f$ need not be in H^2; for instance $f(z) = 1 - z$ is outer (as is most easily seen by computing $[1 - z]^{1/2}$, i.e. showing that $H^2(D) \ominus (1 - z)H^2(D) = 0$). Inner functions are not invertible in H^∞; further, if Θ is inner then $[\Theta] = \Theta H^2 \subsetneq H^2$ and thus Θ does not even have an inverse in a weak sense we just saw.

Thus if b has the inner/outer factorization $b = \Theta u$ then we can write the operator M_b as a product of two commuting operators; the isometric map M_Θ which imposes "features" on the signal, and M_u which is a (roughly) invertible operator on the space of functions with specified features.

Another consequence of the inner/outer factorization is the following.

Lemma 1 For $h \in H^1$ we have

$$\|h\|_{H^1} = \inf \{ \|f\|_{H^2} \|g\|_{H^2} : h = fg \}.$$

The \leq direction is just Cauchy-Schwarz. In the other direction, we can write $h = u\Theta$ with u outer, then zero free in D: $h = (u^{1/2})(u^{1/2}\Theta) = fg$, with $\|h\|_{H^1} = \|f\|_{H^2} \|g\|_{H^2}$.
5 Approximating noncausal systems by causal ones: Hankel operators and Nehari theory

Given a function $\phi \in L^\infty(\mathbb{T})$, here identified with the invariant operator $\psi \mapsto M_\phi \psi = \phi \psi$ on $L^2(\mathbb{T})$, what is the best approximation of M_ϕ by causal operators M_b with $b \in H^\infty$? Namely, we look for

$$\inf_{b \in H^\infty} \sup_{f \in H^2} \frac{\|\phi f - bf\|_{H^2}}{\|f\|_{H^2}} = \inf_{b \in H^\infty} \|\phi - b\|_{L^\infty} = \text{dist}(\phi, H^\infty).$$

Indeed, one would also like to know if a minimizing b exists (yes), if it is unique (sometimes, in many relevant cases), if there is a way to construct it (again, yes in many cases of interest).

In the passage from first to second member the \leq direction is obvious. For the opposite direction, note that the L^∞ norm of $\phi - b$ requires testing on L^2 functions, while on the left we only test on H^2 functions. We use the shift invariance of the $L^2(\mathbb{T})$ norm. For $\epsilon > 0$ let $\psi \in L^2(\mathbb{T})$ be such that $\|\psi\|_{L^2} = 1$ and $\|\phi \psi\|_{L^2} \geq \|\phi\|_{L^\infty} - \epsilon$. Find N such that for $|z| = 1$, $\psi_N(z) = \sum_{n=-N}^{\infty} \hat{\psi}(n)z^n$ satisfies $\|\psi - \psi_N\|_{L^2} < \epsilon$. Then,

$$\|\phi\|_{L^\infty} - \epsilon \leq \|\phi \psi_N\|_{L^2} \leq \|\phi \psi_N\|_{L^2} + \|\phi - \psi_N\|_{L^2} \leq \left(\frac{1}{2\pi} \int_\mathbb{T} |\phi(e^{it})\psi_N(e^{it})| dt \right)^{1/2} + \|\phi\|_{L^\infty} \cdot \epsilon = \left(\frac{1}{2\pi} \int_\mathbb{T} |\phi(e^{it})e^{iNt}\psi_N(e^{iNt})| dt \right)^{1/2} + \|\phi\|_{L^\infty} \cdot \epsilon = \left(\frac{1}{2\pi} \int_\mathbb{T} |\phi(e^{it})f(e^{it})| dt \right)^{1/2} + \|\phi\|_{L^\infty} \cdot \epsilon,$$

where $f(z) = z^N \psi_N(z)$ is holomorphic and $1 \geq \|f\|_{H^2} = \|\psi_N\|_{L^2}$. Thus,

$$\frac{\|\phi f\|_{L^2}}{\|f\|_{L^2}} \geq \|\phi\|_{L^\infty} (1 - \epsilon) - \epsilon,$$

and the \geq direction in the equality is proved. A shorter proof can be derived using Toeplitz operators.

5.1 Hankel forms and Hankel operators

The approximation problem just described, finding b, the optimal H^∞ approximation to ϕ, can be stated in the language of Hankel operators and Nehari’s theorem characterizing the norm of Hankel gives information about b. We begin with some definitions.
The Hankel matrix operator Γ_α induced by a complex valued sequence $\alpha = \{\alpha_n\}_{n=0}^{\infty}$ is defined on sequences $a = \{a_n\}_{n=0}^{\infty}$ (in $\ell_2(\mathbb{N})$, to start with) by

$$(\Gamma_\alpha a)(m) = \sum_{n=0}^{\infty} \alpha_{m+n} a_n,$$

or

$$< \Gamma_\alpha a, b >_{\ell^2} = \sum_{m,n \geq 0} \alpha_{m+n} a_n b_m$$

A famous example of an Hankel matrix is Hilbert’s matrix $[(i+j+1)^{-1}]_{i,j=0}^{\infty}$.

We have already seen how useful it is to pass to the frequency side by the Z-transform. Let P_γ be the orthogonal projection of $L^2(\mathbb{T})$ onto H^2 and for any $g \in L^2(\mathbb{T})$ write $g_+ = P_\gamma g$ and $g_- = g - g_+$. Hence g_- is the projection of g onto $L^2 \ominus H^2$ and the g_- obtained this way are exactly the functions z_j for $j \in H^2$. For $\phi \in L^2(\mathbb{T})$ we define the Hankel bilinear form B_ϕ associated to ϕ, a bilinear map $H^2 \times H^2 \to \mathbb{C}$ and define the Hankel operator with symbol ϕ, H_ϕ, to be the linear map of H^2 to $L^2 \ominus H^2$ by

$$B_\phi(f, g) := \langle fg, z_\phi \rangle_{L^2} =: \langle H_\phi f, \overline{z} g \rangle_{L^2}.$$

In particular $H_\phi f = (\phi f)_-$.

The relation between Hankel forms and Hankel matrices is the following:

$$B_\phi(f, g) = \sum_{n=0}^{\infty} \hat{f}(n) \sum_{m=0}^{\infty} \hat{g}(m) z^{-m-n},$$

where $\alpha(j) = \hat{\phi}(-j - 1)$. From these formal calculations it is evident that

$$[B_\phi] := \sup_{f, g \in H^2} \frac{|B_\phi(f, g)|}{\|f\|_{H^2} \|g\|_{H^2}} = \|H_\phi\|_{\text{operator}} = \|\Gamma_\alpha\|_{\mathcal{B}(\ell^2)}.$$

If γ is bounded then

$$|B_\gamma(f, g)| = \|\langle fg, z_\gamma \rangle_{L^2}\| = \frac{1}{2\pi} \int_{\mathbb{T}} |f(e^{it}) \overline{g(e^{it})} e^{i\gamma(t)}| dt \leq \|\gamma\|_{L^\infty} \|f\|_{H^2} \|g\|_{H^2},$$

and hence $[B_\gamma] \leq \|\gamma\|_{L^\infty}$. Also clearly for any $b \in H^2$ $B_\phi = B_\phi - b$. Combining these facts we have

$$[B_\phi] \leq \inf \{ \| \phi - h \|_{L^\infty} : h \in H^2 \} = \text{dist}(\phi, H^\infty).$$

17
Given \(\phi \in L^2 \) let \(b \in H^2 \) be that function, if there is one, such that \(\| \phi - b \|_{L^\infty} = \text{dist}(\phi, H^\infty) \). If \(\phi \) is bounded then \(b \) is in \(H^\infty \) and is the function we discussed earlier, the best approximation to \(\phi \) in the \(L^\infty \) norm. To complete the story we show the opposite inequality, and will then know that the norm of the Hankel operator, or of the Hankel form, equals the distance of the symbol from \(H^\infty \). That result is Nehari’s theorem.

Theorem 14 Given \(\phi \in L^2 \)

\[
[B_\phi] = \| H_\phi \|_{\text{operator}} = \| \Gamma_\alpha \|_{B(\ell^2)} = \text{dist}(\phi, H^\infty).
\]

The previous discussion shows that the expression on the right is larger. To finish we must show that there is a holomorphic function \(b \) so that \(\| \phi - b \|_\infty = [B_\phi] \). Starting with the formula \(B_\phi(f, g) := \langle fg, \bar{\phi} \rangle_{L^2} \) and taking note of Lemma 1 which shows that \(fg \) is a generic element of \(H^1 \) we see that \([B_\phi] \) is equal to the norm of the functional \(h \to \langle fg, \bar{\phi} \rangle_{L^2} \) acting on \(H^1 \). By the Hahn-Banach theorem that functional extends in a norm preserving way to a functional on \(L^1 \). That functional on \(L^1 \) will be of the form \(k \to \langle k, j \rangle_{L^2} \) for a bounded \(j \) with \(\| j \|_\infty = [B_\phi] \) and \(j \) will satisfy

\[
\langle h, \bar{\phi} \rangle_{L^2} = \langle h, j \rangle_{L^2} \quad \forall h \in H^1.
\]

In particular \(j \) and \(\bar{\phi} \) have the same nonnegative Fourier coefficients and thus \(j_+ = (\bar{\phi})_+ \). We now want to find \(b \) so that \(\| \phi - b \|_\infty = \| j \|_\infty \). We have

\[
\overline{z\phi} = (z\phi)_+ + (z\phi)_- j_+ + (z\phi)_- = j_+ j_+ + (z\phi) = \overline{j_+ j_+} = j - j_+ + (z\phi).
\]

Rearranging gives \(\overline{z\phi} - (j_+ + (z\phi)) = j \). From that one quickly shows there is a holomorphic \(b \) so that \(\phi - b = zj \) and that is enough to give what we want, because \(\| \phi - b \|_{L^\infty} = \| j \|_{L^\infty} = [B_\phi] \leq \| \phi - b \|_{L^\infty} \).

On Hankel operators, for the mathematical side a good starting point is Peller’s survey; their use in control theory is in Francis’ lecture notes.

5.2 Detour: Toeplitz operators

For \(\psi \in L^2(\mathbb{T}) \) given, the Toeplitz operator \(T_\psi \), with symbol \(\psi \) is defined for \(f \in H^2 \) by \(T_\psi f = M_\psi f - H_\psi f = P_+(\psi f) \), where \(P_+ : L^2 \to H^2 \) is orthogonal projection. The Toeplitz operator coincides with the multiplication operator \(M_\psi \) if \(\psi \in H^2 \) is holomorphic. The adjoint of \(T_\psi \) is \(T_\psi^* = T_{\bar{\psi}} \).

In signal theory Toeplitz operators naturally appear in connection with an alternative definition of \(\ell^2(\mathbb{N}) \). Recall that \(\tau_\phi(n) = \phi(n-1) \) defines the shift on \(\ell^2(\mathbb{N}) \). Its adjoint, the **backward shift**, is the operator \(\tau_\phi^* = \phi(n+1) \), \(\tau_\phi^* : \ell^2(\mathbb{N}) \to \ell^2(\mathbb{N}) \). It is readily verified that \(\tau_\phi^* \tau_\phi = \psi \) and that \(\tau_\phi \tau_\phi^* = \phi - \phi(0) \delta_0 \). A linear system \(T \) on \(\ell^2(\mathbb{N}) \) is called time invariant if \(\tau_\phi^* T \tau_\phi = T \); if we shift the input forward, feed it to \(T \), then shift backward, we have the same as just applying \(T \).

The rationale for this new definition of invariant system for signals in positive time is that the previous definition assumed, in order to be verified, that all the
past values of the signal have been stored and are accessible, a requirement which is not practical.

We now see how invariant systems lead to Toeplitz operators. Passing to the frequency side with
\[h(z) = \sum_{j=0}^{\infty} a_j z^j, \]
a (linear) system \(T \) on \(\ell^2(\mathbb{N}) \), represented by a matrix \([F_{ij}]_{i,j=0}^{\infty} \) \((F_{ij} = \langle T(z^j), z^i \rangle_H^2) \) are the matrix elements of \(T \) with respect to the basis \(\{z^n\}_{n=0}^{\infty} \) of \(H^2 \), is invariant if
\[
\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} F_{ij} a_j z^i = (T\phi)(z)
\]
\[
= (\tau^*_1 T \tau_1 \hat{\phi}(z))
\]
\[
= \hat{z}((T \tau_1 \hat{\phi}(z) - (T \tau_1 \hat{\phi}(0)))
\]
\[
= \hat{z} \left(\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} F_{ij} a_j z^i - \sum_{j=1}^{\infty} F_{0j} a_j z^j \right)
\]
\[
= \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} F_{ij} a_j z^i - 1
\]
\[
= \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} F_{i+1,j+1} a_j z^i,
\]
i.e. \(F_{i+1,j+1} = F_{i,j} \). \(T \) is represented, w.r.t. the basis \(\{z^n\}_{n=0}^{\infty} \), by a Toeplitz matrix \(F_{i,j} = f_{i-j} \). Recall that in a Hankel matrix the \(i,j \) entry is a function of \(i+j \).

Inserting this back in the expression for \(T \) in frequency space,
\[
(T\phi)(z) = \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} f_{i-j} a_j z^i
\]
\[
= P_+(b(z)f(z))
\]
where \(\psi(z) = \sum_{n=-\infty}^{+\infty} f_n z^n \).

When \(\phi \) is holomorphic, the matrix \([f_{i-j}] \) is lower triangular.

As with Hankel operators, it is clear that \(\|T\phi\|_{B(H^2)} \leq \|\phi\|_{L^\infty} \cdot \|P_+(\phi f)\|_{H^2} \leq \|\phi f\|_{L^2} \leq \|f\|_{H^2} \). Contrary to the Hankel case, there is no way to improve this estimate:
\[
\|T\phi\|_{B(H^2)} = \|\phi\|_{L^\infty}.
\]
Let \(k_a(z) = \frac{1}{1 - az} \) be the reproducing kernel at \(a \):
\[
|\langle T\phi k_a, k_a \rangle| = |\langle P_+(\phi k_a), k_a \rangle|
\]
\[
= |\langle \phi k_a, k_a \rangle|
\]
\[
= \left| \frac{1}{2\pi} \int_{-\pi}^{\pi} \phi(e^{it})|k_a(e^{it})|^2 dt \right|
\]
\[
= \frac{1}{1 - |a|^2} \left| \frac{1}{2\pi} \int_{-\pi}^{\pi} \phi(e^{it}) \frac{1 - |a|^2}{|1 - az|^2} dt \right|
\]
\[
= \|k_a\|_{H^2}^2 \|P\phi(a)\|.
\]
where $P\phi$ is the Poisson integral of ϕ at a, because $P(a,e^{it}) = \frac{1}{2\pi} \frac{1-|a|^2}{|e^{it}-a|^2}$ is the Poisson kernel in the unit disc. Hence,

$$
\|T\phi\|_{H^2} \leq \sup_{a \in \mathbb{D}} \frac{|\langle T\phi k_a, k_a \rangle|}{\|k_a\|^2_{H^2}} = \|P\phi\|_{L^\infty(D)} = \|\phi\|_{L^\infty(T)}.
$$

5.3 H^1 and BMO

We will not touch here Nehari’s problem; that is, how to find the best approximant of ϕ in H^∞. Even the estimate we have found, however, are of little use unless we have tools for estimating $\|b\|_{(H^1)^*}$. Contrary to a first, naif guess, the dual of H^1 contains, but is larger, than H^∞.

Shortly after Nehari’s article on Hankel forms, Fritz John introduced, in connection to problems in elasticity theory, the space BMO of functions with Bounded Mean Oscillations, which he further studied together with John Nirenberg. Restricted to functions on \mathbb{T}, the definition is as follows. For each arc $I \subset \mathbb{T}$, denote by $\phi_I = \frac{1}{|I|} \int_I \phi(e^{it}) dt$ be the average of ϕ over I. The mean oscillation of ϕ over I is $\frac{1}{|I|} \int [\phi(e^{it}) - \phi_I] dt$, and the BMO norm of ϕ is

$$
\|\phi\|_{L^\infty} + \sup_I \frac{1}{|I|} \int |\phi(e^{it}) - \phi_I| dt.
$$

In 1971 C. Fefferman made the surprising discovery that $(H^1)^* = BMO$, the space of the BMO functions which extend holomorphically to the unit disc. Duality is with respect to the H^2 inner product. It is not difficult to see that this result implies that if ϕ is bounded, then $H\phi$, its Hilbert transform, belongs to BMO.

On his way to the proof, Fefferman proved that the BMO norm of a function can be characterized in terms of Carleson measures. Let $\mu \geq 0$ be a Borel measure on \mathbb{D}. We say that it is a Carleson measure for H^2 if there is a positive constant $[\mu]_{CM}$ such that

$$
\int_{\mathbb{D}} |f|^2 d\mu \leq [\mu]_{CM} \|f\|_{H^2}^2.
$$

The concept itself had been introduced by Carleson in connection to the problem of interpolating functions in H^∞. Fefferman showed that $b \in BMO$ if and only if $d\mu_b(z) = (1 - |z|^2) |b'(z)|^2 dxdy$ is a Carleson measure.

The appearance of such measures is easily explained. A equivalent norm for H^2 is

$$
\|f\|_{H^2}^2 = |f(0)|^2 + \int_{\mathbb{D}} (1 - |z|^2) |f'(z)|^2 dxdy.
$$

If $d\mu_b$ is a Carleson measure for H^2, then (assuming momentarily that $b(0) = 0$
and using the equivalent norm to define the inner product,

$$|\langle fg, b \rangle_{H^2}| = \left| \int_D (fg)' \overline{b}' (1 - |z|^2) dxdy \right|$$

$$\leq \left| \int_D fg' \overline{b} (1 - |z|^2) dxdy \right| + \left| \int_D g f' \overline{b} (1 - |z|^2) dxdy \right| \leq \left| \int_D |g|^2 (1 - |z|^2) |b'|^2 dxdy \right|^{1/2} \|f\|_{H^2} \left| \int_D |f'|^2 (1 - |z|^2) |b'|^2 dxdy \right|^{1/2} \|g\|_{H^2}$$

$$= \left| \int_D |g'|^2 d\mu_b \right|^{1/2} \|f\|_{H^2} + \left| \int_D |f'|^2 d\mu_b \right|^{1/2} \|g\|_{H^2} \leq 2|\mu_b|_{CM} \|f\|_{H^2} \|g\|_{H^2}.$$

Recalling Section 5.1, this shows that if μ_b is Carleson, then the Hankel form B_b, hence the Hankel operator H_b, is bounded. By Nehari’s theorem, $b \in (H^1)^*$. The delicate point is proving the opposite implication.

The short and dense monograph of Sarason well explains the connections between Hankel operators, basic questions of operator theory, and harmonic analysis.

We summarize part of what we have seen in a diagram:

$$\text{Mult}(H^2) = H^\infty \hookrightarrow \text{BMOA} = (H^1)^* \hookrightarrow H^2 \hookrightarrow H^1 = H^2 \cdot H^2.$$

We see here, as it often happens, that analysis on a function Hilbert space requires introducing a number of other Banach function spaces.

6 Systems and feedback

A typical device (a plant) can be modeled by a linear, time invariant, causal, stable operator P, which acts in frequency as M_b, with $b \in H^\infty$, and which we assume to be free of feedback loops. Generally the output $Pa(n)$ only depends on finitely many values a_{n-m+1}, \ldots, a_n of the input (which have to be stored), and it is easy to verify that this holds if and only if b is a polynomial of degree m. This property is sometimes expressed saying that transient inputs produce transient outputs, and it is clear that it suffices to verify this for the unit impulse δ_0.

A feedback system is one in which the output of P is “fed back” into P, possibly after having been processed by a different plant C. For instance:
We use the same symbols for signals and plants, and their Z-transforms and transfer functions; the letter \(n \) stands for time and \(\omega \) for frequency. In a real situation, the output \(y(n) \) can not immediately affect the input \(u(n) \) at time \(n \). In order to have this, \(C(\omega) \) must include a delay by at least a time unit; i.e. the polynomial \(C(0) = 0 \).

The system represented by the diagram is:

\[
\begin{cases}
y = Pv \\
v = u - z \\
z = Cy
\end{cases}
\]

Overall, \(y = P(u - Cy) \), i.e. \(y = \frac{P}{1 + P} u \). Observe that the rational function \(\frac{P}{1 + P} \) is not a polynomial, hence the system with feedback gives a persistent signal as output if the input is the unit impulse (the feedback produces an “echo”).

This easy example shows how nontrivial conclusions can be drawn by elementary algebra in frequency space. Hardy space theory leads system theory much further. We give here just one example, giving us the opportunity of mentioning Pick theory, a topic of current research.

6.1 The model matching problem and the Pick property

Let \(T \) be an ideal plant we want to best approximate by a cascade \(UCV \), where \(U \) and \(V \) are given plants, and \(C \) is a plant we can design. That is, we want to find \(C \) which minimizes

\[
\| T - UCV \|_{H^\infty}.
\]

This is the Model Matching Problem with data \(T, U, V \).
Consider the inner/outer factorization $UV = A_iA_o$. Since U and V are rational (we allow feedbacks), A_i is a finite Blaschke product, with zeros $\lambda_1, \ldots, \lambda_n$ in \mathbb{D}. We can then write $H := T - UCV = T - A_iF$, with $F = A_oC$. Since $H(\lambda_j) = \mu_j =: T(\lambda_j)$, we have that (assuming a minimizer exists):

$$\min \{ \|T - A_iF\|_H : F \in H^\infty \} = \min \{ \|H\|_H : H(\lambda_j) = \mu_j \}.$$

In fact, if H is a minimizer for the right hand side, then the equation $T - A_iF = H$ has the solution $F = A_o^{-1}(T - H)$, which is well defined in H^∞ because $T - H$ vanishes at $\lambda_1, \ldots, \lambda_n$. Since A_o is outer, we can then reconstruct C from F.

Finding a function H of minimal norm satisfying the interpolation constraints $H(\lambda_j) = \mu_j$ is the Pick problem with data $\{\lambda_1, \ldots, \lambda_n\}$ and $\{\mu_1, \ldots, \mu_n\}$.

Suppose that the minimal norm of H is not larger that R. We have sequences $\{\lambda_j\}$ and $\{\mu_j/R, \ldots, \mu_n/R\}$ in \mathbb{D} and we have an interpolating H/R of norm at most one. A necessary condition for this to hold is the Pick property. For any choice of complex a_1, \ldots, a_n, denoting by k_{λ_j} the reproducing function at λ_j and using $M_H^*(k_{\lambda_j}) = H(\lambda_j)k_{\lambda_j}$:

$$0 \leq \left| \sum_{j=1}^n a_j k_{\lambda_j} \right|^2 - \frac{1}{R} M_H^* \left(\sum_{j=1}^n a_j k_{\lambda_j} \right)^2$$

$$= \sum_{j=1}^n a_j k_{\lambda_j}^2 - \frac{1}{R} \sum_{j=1}^n a_j H(\lambda_j)k_{\lambda_j}$$

$$= \sum_{j=1}^n a_j k_{\lambda_j}^2 - \frac{1}{R} \sum_{j=1}^n a_j \bar{\mu_j}/Rk_{\lambda_j}$$

$$= \sum_{i,j=1}^n a_i \bar{a_j} < k_{\lambda_i}, k_{\lambda_j} >_{H^2} \left(1 - \frac{\bar{\mu_j}\mu_j}{R^2} \right)$$

$$= \sum_{i,j=1}^n a_i \bar{a_j} k_{\lambda_i}(\lambda_j) \left(1 - \frac{\bar{\mu_j}\mu_j}{R^2} \right)$$

That is, the Pick matrix $\left[k_{\lambda_i}(\lambda_j) \left(1 - \frac{\bar{\mu_j}\mu_j}{R^2} \right) \right]_{i,j=1}^n$ is positive semidefinite.
Pick’s Theorem says that the converse is true.

Theorem 15 Given points \(\lambda_1, \ldots, \lambda_n\) in the unit disc and values \(\mu_1, \ldots, \mu_n\) in the unit disc, there exists a function \(H\) in \(H^2\) having norm at most one interpolating them, \(H(\lambda_j) = \mu_j\), if and only if the matrix

\[
[k_{\lambda_i}(\lambda_j)(1 - \overline{\mu_i}\mu_j)]_{i,j=1}^n
\]

is positive definite.

Moreover, the interpolating function \(H\) of minimal norm is a rational function.

Pick’s Theorem holds, with natural modifications, for infinite sequences of points and values.

Extensions and applications of Pick theory are one of the most active areas of current research at the frontier between operator theory and function spaces.

7 Beyond the Hardy space; RKHS

Up to this point this article could be seen as a bus tour of an interesting city. The bus goes from place to place, the tour guide offers enthusiastic description and commentary, and at a few of the places the passengers have a chance to get off the bus and look in detail at some of the sights. That tour is over now and what comes next can be seen as the airplane ride home. We fly over a landscape and a voice on the speaker points out some interesting features below; just a quick glance at them, perhaps enough to whet the appetite.

The Hardy space lives in the intersection of several powerful mathematical technologies. Hardy space functions are holomorphic functions in the disk and can be analyzed using tools from function theory. The boundary values of Hardy space functions are in the Lebesgue space \(L^2\) of the circle and hence the machinery of Fourier analysis can be used can be used to study them. In fact they form a closed subspace of \(L^2\) and hence there is an associated projection operator and that lets questions about Hardy space functions be be formulated and studied in the language of linear operators on Hilbert space. We have seen bits of all of these approaches.

A point of view we are emphasizing here is that the Hardy space is a Hilbert space with reproducing kernel, RKHS. That is, it is a Hilbert space whose elements are functions on a set \(X\) (in this case \(X = \mathbb{D}\)), the evaluation of the functions at points \(x \in X\) are continuous linear functionals, and hence each of those evaluations is given by taking the inner product of \(f\) with some distinguished element \(k_x\) in the space; \(f(x) = \langle f, k_x \rangle\). The \(k_x\) are the reproducing kernels and, in some sense, the collection of them, \(\{k_x\}_{x \in X}\), plays the role in this theory that an orthonormal basis plays for finite dimensional inner product spaces.

In the next three sections we take a look, from great height, at three other examples of RKHS. The first is the Paley Wiener space, a space somewhat
similar to the Hardy space (but the Hardy space of the half plane rather than the disk) that is of great interest in the theory of sampling and reconstructing band limited signals such as speech and music. The second example is the Dirichlet space. It is a variation of the Hardy space with some similarities and some differences, and it is dear to the authors. The third example is the dyadic Dirichlet space. That space is a simplified model of the Dirichlet space, useful in analyzing the Dirichlet space. It is also a space which makes explicit the parameter space for the "phase space analysis" of signals, of which wavelets are the most prominent example.

7.1 Paley Wiener Space

The Paley-Wiener space, PW, is the subspace of $L^2(\mathbb{R})$ of all functions f whose Fourier transform \hat{f} supported on the interval $[-\pi, \pi]$. The space is often used in signal analysis; $f \in PW$ is a signal, $f(t)$ is its value at time $t \in \mathbb{R}$ is its value at time t and \hat{f}, its Fourier transform is the frequency space representation of the signal. The fact that \hat{f} is supported in $[-\pi, \pi]$ is a statement that the signal contains no frequencies outside this range, the signal is "band limited". The norm of f in PW, which is the same as the norm of f in L^2 and (with our normalization) the same as the norm of \hat{f} in $L^2(-\pi, \pi)$, is the energy of the signal. In short PW is a space of finite energy band limited signals. This can be compared with the Hardy space of the upper half plane; the boundary values of those functions are exactly the functions f with $\hat{f} \in L^2(0, \infty)$.

(The same space of functions can also be defined by restricting to the real axis a certain class of entire functions defined by their growth at infinity. The equivalence between the two definitions uses the fundamental ideas developed by Paley and Wiener in the 1930’s relating the smoothness of functions and the decay of their Fourier transforms.)

To see that PW is an RKHS we want to know that the evaluations of points of \mathbb{R} are continuous functionals. Consider first evaluation at $t = 0$. We now describe the picture from our very high altitude. The value of f at 0 is gotten by using the bilinear pairing $(f, g) \rightarrow \int f \bar{g}$ to pair f with the point mass at $t = 0$, Fourier transform theory tells us that the same value is obtained by pairing their Fourier transforms. The Fourier transform of the point mass is the constant function 1 but because we know \hat{f} is supported in $[-\pi, \pi]$ we can replace 1 with $1 \cdot \chi_{[-\pi, \pi]}$, the characteristic function $[-\pi, \pi]$. $1 \cdot \chi_{[-\pi, \pi]}$, is the Fourier transform of some function k_0 in PW and this discussion suggests, correctly that that function is k_0, the PW reproducing kernel for evaluating at $t = 0$:

$$k_0(t) = (1 \cdot \chi_{[-\pi, \pi]})^\vee = \frac{\sin \pi t}{\pi t} = \text{sinc}$$

$$f(0) = (f, k_0) \text{ all } f \in PW$$

Here \vee is the inverse Fourier transform, the second equality on the first line is an elementary Fourier transform computation and the third is the definition of the function sinc.
This gives k_0, the reproducing kernel for evaluating at the origin. By translation invariance k_x, the reproducing kernel for evaluating at x is $k_x(t) = \text{sinc}(t-x)$ and its Fourier transform is $(k_x)^\wedge(\xi) = e^{2\pi i \xi} \chi_{[-\pi,\pi]}(\xi)$. In particular the functions $\{(k_n)^\wedge\}_{n \in \mathbb{Z}}$ are an orthonormal basis of the space of Fourier transforms of functions in PW. Performing the inverse Fourier transform we see that $\{k_n\}_{n \in \mathbb{Z}}$ is an orthonormal basis of PW. Hence we have

Theorem 16 (Shannon sampling theorem) If $f(t)$ is a finite energy band limited signal with spectrum contained in $[-\pi,\pi]$ then $f \in PW$ (by definition) and

1. the sequence of sample values $\{f(n)\}$ is a square summable sequence and,
2. f can be reconstructed from those values using the formula
 \[f(t) = \sum (f, k_n) k_n(t) = \sum f(n) \text{sinc}(t-n). \] (1)
3. Conversely given any square summable sequence $\{a_n\}$ there is a function f in PW with $f(n) = a_n$, for all n and the value of f at all points is given by (1).

(The previous result has many names, we retreat behind the Wikipedia entry on Stigler’s law.)

This result describes the type of values obtained by regular sampling of the function f and gives a scheme for reconstructing f from those sample values—think of electronic device which samples audio signal at rate of 100 kHz and then a device which reconstructs the signal from the sample data—think about digital music.

More generally, the space PW and variations provide the mathematical framework in which to study sampling and reconstruction of band limited signals.

7.2 Dirichlet space

In this section we compare the answers to some questions for the Hardy space with the answers to the analogous questions for the closely related Dirichlet space. Some answers are very similar, some are not. Each space has a story of its own, and we consider the Dirichlet space because much is known about it and also, on the contrary, much is still open. We will see that sometimes the same object of the Hardy theory has, like in a broken mirror, more than one analog in Dirichlet theory.

The Dirichlet space D is the Hilbert space of holomorphic functions on the disk. $f(z) = \sum_{n=0}^{\infty} a_n z^n$ is in D exactly if, with $\alpha = 1$, the following norm is finite:

\[(\ast) \|f\|_D^2 = \sum_{n=0}^{\infty} (n+1)^\alpha |a_n|^2 = |f(0)|^2 + \frac{1}{\pi} \int_0^1 \int_D |f'(z)|^2 (1-|z|^2)^{1-\alpha} dxdy, \]
We wrote the norm in this form to emphasize the analogy with the Hardy space in which the formula for the norm is the case \(\alpha = 0 \) of the previous formula. The parameter \(\alpha \) in (*) helps highlight the close relationship with the Hardy space. With \(\alpha = 0 \) the formula describes the Hardy space norm. (With \(\alpha = -1 \) that formula defines the norm of the Bergman space, another much studied RKHS). The Dirichlet space is an RKHS and it is not hard to verify that the reproducing kernel is

\[
k_z(w) = \frac{1}{2w} \log \left(\frac{1}{1 - \overline{z}w} \right).
\]

These kernel functions, as well as the kernel functions for the Hardy space, have the property that the region where \(k_z \) is relatively large is roughly the region between \(z \) and the unit circle. More specifically, if \(z = re^{i\theta} \) then the region where \(k_z \) is large is, roughly, \(T_z \), the intersection of the unit disk with a disk centered at \(e^{i\theta} \) of radius \(2(1 - r) \). In particular the boundary value function has its mass concentrated near a particular point with a specific scale of dispersion.

We will discuss the two parameter phase space described by position and scale further in the next section.

The Dirichlet space has not so far found a place in signal theory. We discuss it here because it helps illuminate the Hardy space, and, truth be told, because the authors are very fond of it.

7.3 The Shift operator and invariant subspaces

The operator \(M_z \) of multiplication by \(z \) acts boundedly on \(D \). This operator, called the Dirichlet shift, has the same action on the sequence of Taylor coefficients of a function as the Hardy space shift does for Hardy space functions, it shifts each entry of that sequence one place to the right. The shift on the Hardy space is isometric and that is the starting point of an analysis which eventual leads to the theory of inner-outer factorization of functions and a characterization of the invariant subspaces of the shift operator acting on \(H^2 \). The analysis of the invariant subspaces of the shift operator on \(D \) is more complicated and less complete than for \(H^2 \).

The Dirichlet shift is bounded and it is easy to see that it has lots of invariant subspaces. In particular the structure of the invariant subspaces of finite codimension is exactly the same as for \(H^2 \); they are the subspaces of functions which vanish on a given finite point sets. Some other properties of the shift invariant subspaces of \(H^2 \) which follow easily from Beurling’s theorem are also true for spaces invariant of the Dirichlet shift, but with proofs that are less straightforward and more subtle. Two examples are the fact that any invariant subspace contains a bounded function and the fact that the intersection of any two nontrivial invariant subspace contains a third.

There is not yet a description of the shift invariant subspaces of \(D \). In fact it is not yet known how to characterize the functions with the property that the smallest closed invariant subspace containing them is the whole space. For the Hardy space those functions are exactly the outer functions. For the Dirichlet space the functions must be Hardy space outer functions and the set on which
their boundary values are zero must be a Dirichlet space null set. (A Hardy space function is the zero function if its boundary values are zero on a set of positive Lebesgue measure. The analogous statement for the Dirichlet space holds for smaller sets, those of logarithmic capacity zero.) It was conjectured by Brown and Shields in 1984 that those two conditions characterize the Dirichlet space analogs of outer functions.

7.3.1 Multiplication operators, Carleson measures, Hankel forms

Multiplication by the coordinate function is a bounded operator on \(D\) and it follows that multiplication by a polynomial is a bounded operator on \(D\). It is then natural to ask what are the multipliers of \(D\), the functions \(b\) such that \(M_b\), multiplication by \(b\) is a bounded map of \(D\) into itself. (Elements in a RKHS are functions on a set and hence there is a natural way to multiply two of them. The question of characterizing the multipliers makes sense on any RKHS.)

If \(M_b\) is a bounded multiplier on the Dirichlet space then \(b\) must be a bounded function; in fact the argument is the same as for the Hardy space multipliers, an argument that works for any RKHS. Also \(b\) must be holomorphic. Those conditions, \(b \in H^\infty\), are the full story for the Hardy space but not for the Dirichlet space. To see why not select \(f \in D\) and consider the requirement that \(bf \in D\). By definition we must have that \((bf)' = bf + b'f \) is square integrable. Because \(f \in D\) and \(b\) is bounded the second term is. Requiring the first term to be square integrable, for every \(f \in D\), leads to the definition of Carleson measure for \(D\).

A measure \(\mu\) on \(D\) is a Carleson measure for \(D\) if

\[
[\mu]_{CM(D)} = \sup_{f \in D} \frac{\int \int |f|^2 \, d\mu}{\|f\|^2_D} = \|Id\|_{B(L^2(D),L^2(\mu))}^2 < \infty.
\]

We define \(X\) to be the space of holomorphic functions \(b\) defined on the disk such that \(|b|^2 \, dx \, dy\) is a Carleson measure for \(D\). Considering \(f = 1\) in the previous definition we see that \(X \subset D\).

Our analysis to this point shows that if \(M_b\) is a bounded multiplication operator then \(b \in X \cap H^\infty\). The argument is easily reversed and we have the full story.

Theorem 17 \(M_b\) is a bounded multiplication operator on \(D\) if and only if \(b \in X \cap H^\infty\).

Although this does not look like our description of bounded multiplication operators for the Hardy space, it is in fact very similar. Using the description of the Hardy space given by by (*) with \(\alpha = 0\) and then following the ideas in that section will lead to the conclusion that \(M_b\) is a bounded multiplication operator on \(H^2\) if and only if \(b \in BMO \cap H^\infty\), which is the analog of the previous theorem. However that last statement can be simplified because \(H^\infty \subset BMO\), the analogous simplification is not possible for the Dirichlet space because \(H^\infty \not\subset X\).
Of course our understanding of the space X is limited by how well we understand Dirichlet space Carleson measures. There are several known characterizations of those measures, some are measure theoretic "local T_1 conditions" others are in terms of logarithmic capacity. The appearance of logarithmic capacity does not come as a surprise: functions in \mathcal{D} are defined by a Sobolev norm, and capacity has a role in the study of Sobolev spaces somewhat similar to the role of measure theory in studying Lebesgue spaces. However even with those results the space X and the Dirichlet space Carleson measures are much less well understood then their more classical cousins; BMO and "classical" Carleson measures.

7.3.2 The Pick property

Having gone this far with our analysis of multipliers for the Dirichlet space we can consider the analog of Pick’s question: Given a finite set of points in the disk what are the necessary and sufficient conditions on a set of target values which insure that there is a Dirichlet space multiplier of norm at most one which takes the target values at the points of the given set.

When we looked at the similar question in the Hardy space we started by showing that the kernel functions were eigenfunctions of the operator M_b^*, the adjoint of M_b, and the associated eigenvalues were the conjugates of the values of the multiplier at the given point set. This was enough to generate a condition involving finite matrices which was necessary in order for there to be a multiplier of the desired sort. That argument holds for any RKHS and the matrix produced this way is called the Pick matrix of the problem. Pick’s theorem was that in the Hardy space the condition on the Pick matrix was also sufficient for a solution to the interpolation problem. It is now understood that there is a class of RKHS for which an analog of Pick’s theorem holds as well as a matricial version, spaces with the complete Pick property. In recent decades it has become clear that those RKHS have a very rich additional structure. One of the reasons for recent interest in the Dirichlet space is that it is one of simplest spaces other than the Hardy space with this fundamental property.

7.3.3 Hankel forms

On the Hardy space we considered the following bilinear Hankel form. Select a holomorphic symbol function b and define the Hankel form on the Hardy space with symbol b to be the bilinear form on H^2 given by, for $f, g \in H^2$

$$H_b(f, g) = \langle fg, b \rangle_{H^2}.$$

We can define a Hankel form on the Dirichlet space for $f, g \in \mathcal{D}$ using the same formula but, of course, with the \mathcal{D} inner product.

When we looked at Hankel forms on the Hardy space it was straightforward to see that if $|b'|^2 dxdy$ was a Hardy space Carleson measure then H_b was bounded on the Hardy space. It then follows that having b in BMO will be a sufficient condition for boundedness. The same analysis shows that having b in
X is sufficient for H_b to be bounded on the Dirichlet space. In fact, as with the Hardy space, that is the full story.

Theorem 18 The Dirichlet space Hankel form H_b is bounded if and only if $b \in X$.

(The definition of Hankel operators and forms for the Dirichlet space is a place where there is more than one natural extension of the Hardy space ideas. Emphasizing different analogies between the Dirichlet space and Hardy space can lead to the conjugate linear map from \mathcal{D} to itself given by

$$f \rightarrow \int P(b' \bar{f}) = \mathcal{H}_b f$$

as the natural generalization of Hankel operators to the Dirichlet space. (Here P is the orthogonal projection associated with the Bergman space.) The condition $b \in X$ is also necessary and sufficient for is sufficient for the boundedness of H_b and the proof of the easy half of the result is the same as for H_b. However the full proof is different.)

The proof of the Hardy space version of the previous theorem exploited the fact that every function in H^1 is the product of two functions in H^2 and the duality between H^1 and BMO. Starting with the previous theorem one can try to reverse those arguments to find our what the space X is the dual of. That leads to the notion of weakly factored spaces. We define the weakly factored space $D \odot D$ to be the space of those f holomorphic on \mathcal{D} for which

$$\|f\|_{D \odot D} = \inf \left\{ \sum_j \|g_j\|_D \|h_j\|_D : \sum_j g_j h_j = f \right\} < \infty.$$

A consequence of the previous theorem is the duality relation

Corollary 1 $(D \odot D)^* = X$.

Using the factorization of H^1 functions described in Lemma 1, it is straightforward to see that $H^1 = H^2 \odot H^2$. Hence the previous corollary is the Dirichlet space analog of Fefferman’s classical $(H^1)^* = BMO$.

Using interpolation of Banach spaces, real or complex, it is possible to start from the spaces H^1 and BMO and recover the full range of Hardy spaces H^p, $1 < p < \infty$ with the starting Hilbert space H^2 in the middle of the scale. Similarly one can construct the scale of spaces connecting $D \odot D$ and X which has the Hilbert space D in the middle. Very little is known about those spaces.

7.4 Dyadic Dirichlet Space

Let \mathcal{T} be the vertex set the dyadic tree, which we choose to also call \mathcal{T}. Thus \mathcal{T} is a connected, simply connected, rooted graph with two edges at the root vertex o and three edges at all the other vertices. We put a partial order, \preceq, on
on the vertices by saying \(\alpha \preceq \beta \) exactly if \(\alpha \) is a vertex on the geodesic path connecting \(o \) and \(\beta \). For any \(\beta \in T \setminus \{o\} \) we let \(\beta^- \) be its predecessor, the maximal \(\alpha \) such that \(\alpha \preceq \beta \) and \(\alpha \neq \beta \).

We use two functions, \(I \) and \(\Delta \) acting on functions defined on \(T \):

\[
I f(\beta) = \sum_{\alpha \preceq \beta \preceq \beta} f(\alpha), \\
\Delta f(\beta) = \begin{cases}
0 & \text{if } \beta = o \\
 f(\beta) - f(\beta^-) & \text{otherwise}
\end{cases}
\]

These operators are models for integration and differentiation. If \(f \) is a function on \(T \) with \(f(o) = 0 \) then \(I \Delta f = \Delta I f = f \). We define the dyadic Dirichlet space, \(D_{\text{dyad}} \), to be the Hilbert space of functions \(f \) defined on \(T \) for which \(\Delta f \in \ell^2(T) \). The space is normed by

\[
\|f\|_{D_{\text{dyad}}}^2 = |f(o)|^2 + \|\Delta f\|^2_{\ell^2(T)}.
\]

This space is a RKHS, the reproducing kernel for evaluation at \(\alpha \in T \) is \(k_\alpha = I(\chi_{[o,\alpha]}). \)

7.4.1 \(D_{\text{dyad}} \) is a model for \(D \)

One of the reasons for considering the space \(D_{\text{dyad}} \) is that it is a simple model for \(D \). The analogy is best understood by regarding \(T \) as a point set in the unit disk. Informally, the root is placed at the origin, the \(2^n \) vertices connected to the origin by geodesics of length \(n \) are spaced evenly on the circle of radius \(1 - 2^{-n} \). The edge between an \(\alpha \) on that circle to its predecessor \(\alpha^- \) is represented by an almost radial line segment connecting the two.

In this picture the values of an \(f \in D_{\text{dyad}} \) at points of the abstract tree are a model for the values of some unspecified function \(\tilde{f} \in D \). If fact starting with any \(g \in D \) and restricting to the points of the realization of \(T \) inside the disk will given an element of \(D_{\text{dyad}} \). Continuing the analogy, if \(f \in D_{\text{dyad}} \) then \(\Delta f \) is a model for \(\tilde{f}' \) and the fact that \(\Delta f \) is required to be square summable models the fact that \(\tilde{f}' \) must be square integrable. (Our view from great height is ignoring scaling: \(\Delta f \) is actually a model of the invariant derivative \(\delta f(z) = (1 - |z|^2) f'(z). \))

7.4.2 The results are similar

The analogies just described are relatively superficial. More interesting is that the analogies extend to subtle aspects of the Dirichlet space theory. There are natural extensions of the definitions of multipliers, of Carleson measures, of Hankel forms, etc. from the Dirichlet space to the dyadic Dirichlet space. For all of the results we have discussed (and many others) the results for the two spaces are ”the same”, that is they continue the pattern suggested by the
analogy. Generally the proofs in the dyadic case are easier and sometimes those proofs provide road maps for the more difficult proofs for the classical space.

Carleson measures are a particularly interesting case. The measure theoretic characterization of Carleson measures for D is most simply obtained by first solving the analogous problem in D_{dyad} and then using the fact mentioned before, that the restriction of functions in D produces functions in D_{dyad}, to lift the result to D.

7.4.3 Phase space analysis

A number of interrelated ideas form the general category of phase space analysis. The RKHS we have discussed are in this category and the dyadic Dirichlet space is a particularly simply instance. We will say a few words about the general theme but, even by the standards of what has gone before, we will be very informal. Our main point is that some of the ideas we have seen here are instances of general themes.

Suppose we wanted to analyze a function f in the Dirichlet space. We know there are reproducing kernels $\{k_z\}_{z \in D}$ and hence $f(z) = \langle f, k_z \rangle$. We mentioned that reproducing kernels were a substitute for an orthonormal basis. If they were an orthogonal basis we would have a representation

$$f = \sum \frac{\langle f, k_z \rangle}{\|k_z\|} k_z \tag{2}$$

but that is not true. A possible path forward is to replace the sum by an integral and hope for a representation

$$f = \int \langle f, k_z \rangle k_z d\mu(z). \tag{3}$$

Here we have absorbed the normalizing factors into the measure but we are intentionally vague about the details. This does not hold but a formula of this type is true for the Bergman space ("Bergman reproducing formula") and in a number of spaces of interest in quantum theory ("coherent state representations"). Another way to try to go forward is to try to use a subset of the $\{k_z\}$ and obtain a summation formula of the type (2), for instance using only those z which correspond to the vertices of T. That set is still not an orthogonal basis but it is close enough so that (2), while not latterly true, is a good enough approximation, both analytically and conceptually, to be a useful starting point. That fact is the heart of the relation between D_{dyad} and D. It is also the starting point for obtaining representations of functions in various function spaces as linear combinations of reproducing kernels associated with points in a set such as T.

When we discussed the Hardy space there were different viewpoints; Hardy space functions can be viewed as holomorphic functions in the disk or as boundary value functions on the circle, and it is possible to pass back and forth between those viewpoints with no loss of information. The same is true for many other
spaces of functions on the disk. Consider now how that interacts with formulas such as (2) and (3) and their various refinements. We could start with a boundary function f_{boundary}, pass to the associated function inside the disk, f_{inside}, use the analytical tools to represent f_{inside} as a sum or integral of simple pieces, and then pass back to the boundary function. This would realize f_{boundary} as a sum (or integral) of boundary values of a set of well understood functions. If the coefficient corresponding to z in the representations is built by taking the inner product of f_{inside} with some h_z, function concentrated on the set we introduced earlier, T_z, then it will be mainly responsive to the values of f_{inside} inside T_z and hence presumably to the values of f_{boundary} near the part of the unit circle cut off by T_z. Furthermore the boundary values of the function in the representation, perhaps again h_z, will also be concentrated on that same interval. In sum, the representation of a function on the boundary uses analysis and reconstruction tools parametrized by two real parameters. The parameters can be understood as position and scale, the center of the boundary interval and its length, and those parameters form points in ”phase space”. For the Hardy space the points $z = re^{i\theta}$ parameterize the disk D which is the phase space; $re^{i\theta}$ is the complex parameter describing the interval on the circle with center $e^{i\theta}$ and radius $1 - r$.

Without examples the previous paragraph is idle talk. However there are examples. Many RKHS of holomorphic functions in one and several complex variables fit this pattern, or they do after minor modifications. The Bergman spaces are fundamental examples. Also there is an important class of examples not related to holomorphic functions. It is possible to start with a general function on the circle, or on the line, or on n-space and form an associated phase space, a space of one higher dimension whose new coordinate is scale. There are systematic ways to extend a function f on the space to a function f_{inside} defined on the phase space and to introduce functions $\{k_\zeta\}$ for ζ in the phase space. and proceed exactly as described. With the appropriate details filled in the result is an exact formula in the style of (3). The functions k_ζ are each associated with a point in phase space and their boundary values, their traces on the starting space, are concentrated in the associated ball, the ball whose center and radius are the coordinates in phase space. In fact all this can be done with the k_ζ all translates and dilates of a single function, a ”mother wavelet”. The resulting formula is the ”Calderon reproducing formula” or the ”continuous wavelet transform”. There is a striking refinement of these ideas. It is possible to arrange the details so that the set of normalized k_ζ with ζ in a discrete subset of phase space, shaped like \mathcal{T}, is an orthonormal basis of the Lebesgue space of the starting manifold. In that case there is a discrete representation, a formula of the form (2) for representing any function. In that formula the coefficients and the summands, the analysis and the reconstruction, respect the description of the function in terms of the phase space parameters of location and scale. The resulting formula is the ”wavelet representation” of the function which is fundamental in large areas of signal analysis.
8 Further reading

- A lovely and quick introduction to some of the topics we have discussed is the self-contained, expository article

John McCarthy Pick’s theorem - what’s the big deal? *American Mathematical Monthly* Vol. 110 No. 1 [2003] 36-45,

where in a few pages the route from the Hardy space to control theory to Pick’s theory is covered.

- The pure mathematician who wants to painlessly understand what signal theory and the related control theory are about, can watch the old, but clear and enjoyable, 1987 MIT lectures of Alan Oppenheim,

https://ocw.mit.edu/resources/res-6-007-signals-and-systems-spring-2011/video-lectures/

where some surprisingly effective practical applications are shown.

- A very nice introduction to H^∞ control theory are the 2008 lecture notes for “the mythical ‘mathematically mature engineering student” at University of Toronto,

https://www.control.utoronto.ca/~broucke/ece356s/ece356Book2008.pdf

by Bruce Francis, one of the protagonists of contemporary holomorphic control theory.

- A largely overlapping body of knowledge, but from the viewpoint of the pure mathematician, is in the monograph

Jonathan R. Partington - Linear operators and linear systems: An analytical approach to control theory (2004, CUP)

which also works as a comprehensive introduction to Hardy space theory.

- An excellent survey (with proofs) on Hankel operators and Nehari theory is

Vladimir Peller, *An Excursion into the Theory of Hankel Operators, Holomorphic Spaces* MSRI Publications Volume 33, 1998,
which can be found here: http://mathscinet.ru/files/PellerV.pdf

- An excellent, self-contained, and easy to read monograph on reproducing kernel Hilbert spaces and Pick theory, also providing an introduction to Hardy space theory, is

Jim Agler, John McCarthy, Pick Interpolation and Hilbert Function Spaces, American Mathematical Society, 2002.

- The discourse on Nehari, Hankel, Toeplitz, Hilbert transform, and BMO, is the subject of the short and dense

Donald Sarason, Function Theory on the Unit Disc, Virginia Polytechnic Institute and State University, 1978

- To move deeper in hard-analysis Hardy space theory, our standard reference is still

John Garnett, Bounded analytic functions, Springer, Revised 1st ed. 2007

- A standard text of Functional Analysis which is fully adequate for the subject is

Peter Lax, Functional Analysis, Wiley 2002.

- A chapter on the Paley-Wiener space, with a thorough discussion of sampling results (which are crucial in applications to engineering) is

Kristian Seip, Interpolation and Sampling in Spaces of Analytic Functions, American Mathematical Soc., 2004.

- There are two recent monographs on the Dirichlet space:

Omar El-Fallah, Karim Kellay, Javad Mashreghi, Thomas Ransford, A primer on the Dirichlet Space, Cambridge Tracts in Mathematics, 2014,

and

Nicola Arcozzi, Richard Rochberg, Eric T. Sawyer, Brett D. Wick, The Dirichlet Space and Related Function Spaces, American Mathematical Society, 2019.
The former develops the theory from a classical point of view, the latter from the viewpoint of Reproducing Kernel Hilbert Spaces.

- An excellent way to become acquainted to time-frequency analysis is

Ingrid Daubechies, Ten lectures on Wavelets, SIAM, 1994,

by one of the pioneers of wavelet theory.

- Specific operators on specific Hilbert function spaces can “model” general classes of operators acting on Hilbert spaces. This line of investigation has one of its milestones in:

 B. S. Nagy and C. Foias, Harmonic Analysis of Operators on Hilbert Space. VIII + 387 S. Budapest/Amsterdam/London 1970. North Holland Publishing Company

- Finally, we suggest this classical, short monograph, where the ideas surrounding Beurling’s theorem on invariant subspaces are the starting point to derive in a simple way some deep results in Hardy space theory:

 Helson, Henry Lectures on invariant subspaces. Academic Press, New York-London 1964 xi+130 pp