ASSESSMENT OF SERUM LEPTIN, LIPID PROFILE, GLUCOSE LEVEL, INSULIN RESISTANCE AND BMI IN PATIENTS WITH SKIN TAGS

Erdinç Terzi¹, Fatma Ceyla Eraldemir², Irem Yavaş³

¹Department of Dermatology, İstinye University Liv Hospital, Esenyurt, İstanbul, Turkey
²Department of Dermatology, Private Sakarya Vatan Hospital, Sakarya, Turkey
³Department of Biochemistry, Koçaeli University, Koçaeli, Turkey

Corresponding author:
Dr Erdinç Terzi,
Department of Dermatology, İstinye University Liv Hospital, Esenyurt, İstanbul, Turkey
Tel: 00905382667840
E-mail: erdincterzi@yahoo.com

Abstract

Background: Skin tags are small, soft, pedunculated papillomas, usually occurring on the neck, axillae and eyelids. Skin tags are associated with obesity and atherogenic profile.

Aim: The aim of this study was to evaluate the relationship between serum leptin, body mass index, lipid profile, fasting glucose, insulin levels and homeostasis model assessment of insulin resistance in patients with skin tags and to compare them with the levels in healthy controls.

Materials and Methods: This study included 84 participants, 45 skin tags patients and 39 apparently healthy controls. Body mass index, fasting glucose and insulin levels were estimated in addition to lipid profile, leptin and homeostasis model assessment of insulin resistance levels.

Results: The skin tags group showed significantly higher values of age, total cholesterol, low-density lipoprotein cholesterol, body mass index, triglycerides, very low-density lipoprotein cholesterol and homeostasis model assessment of insulin resistance, when compared with the healthy control group. There was no significant difference in sex, leptin levels, high-density lipoprotein cholesterol, glucose and insulin levels between the two groups.

Conclusion: The results of this study confirm that skin tags are associated with obesity and dyslipidemia. Therefore, follow-up of these patients regarding to development of atherosclerosis associated diseases may be beneficial.

Keywords:
serum leptin, insulin resistance, skin tag.
Materials and methods

This study included 84 participants: 45 patients with at least three skin tags and 39 healthy participants serving as controls. All participants were selected from the outpatient clinic of the Department of Dermatology, Private Sakarya Vatan Hospital, Sakarya, Turkey. The study protocol respected the ethical guidelines of Kocaeli University and was approved by the ethical committee.

Exclusion criteria included patients on oral contraceptives, lipid lowering agents, pregnant or lactating women, medical history of endocrine disease (Cushing syndrome, acromegaly, hyperthyroidism, glucagonoma), acute infection, erythroderma and/or psoriasis, cases with drug history of isotretinoin use in the last six months. All participants underwent full history taking, family history and general examination. The height and weight of the participants were measured and their BMI was calculated. The BMI was determined by dividing body weight to height square (kg/m²). Participants with BMI 19.25-25 kg/m² were considered normal, those with BMI 25-29 kg/m² overweight and those with BMI equal or higher than 30 kg/m² obese.

Blood samples were collected from patients and healthy controls between 9 and 10 a.m. after they had fasted overnight. Two cc. of blood were taken from healty controls and patients for measurement of insulin, glucose, HOMA-IR, low-density lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol (HDL), triglycerides, total cholesterol and leptin levels. Serum very low-density lipoprotein cholesterol (VLDL) was calculated using the following formula: VLDL=TG/5. After getting centrifuged at 3500 rpm, serum samples were extracted and studied. The same procedure was applied to the control group at the same time as patients. Remaining serum was stored at 40°C and thawed just before analysis. Leptin levels were measured by solid phase sandwich ELISA, using a commercial kit (Leptin, DRG Instruments, Marburg, Germany).

The statistical software used was IBM SPSS 20.0 (SPSS Inc, Chicago, IL, USA). Normality of the distribution was evaluated with the Kolmogrov-Smirnov test. Numeric variables that show normal distribution were given as mean±standard deviation, non-numeric variables median±deviation and categorical variables were given as frequencies. Differences between groups were evaluated with Student-t test for numeric variables that are normally distributed, and Mann Whitney U test for non-numeric variables that are not normally distributed. P<0.05 was sufficient for being statistically significant.

Results

This study enrolled 84 participants, who were divided into two groups: group 1 included 45 patients (21 men and 24 women) with ST, with a mean of 41.13 ±13.67 years of age, who were compared with group 2, which included 39 control participants (14 men and 25 women), with a mean of 31.38 ±13.05 years age (Table 1).

The mean BMI of group 1 and group 2 were 28.72±5.49 and 24.69±4.82, respectively, which was found to be statistically significant (p=0.001) (Table 2); 28.9% of cases were in the overweight group (BMI 25-29.9 kg/m²) and 31.1% were obese (BMI> 30 kg/m²).

The mean total cholesterol levels in group 1 and group 2 were 207.25±37.08 and 174.49±33.54, respectively, which was found to be statistically significant (p<0.001) (Table 2).

The mean LDL cholesterol levels in group 1 and group 2 were 128.35±33.16 and 105.46±29.55, respectively, which was found to be statistically significant (p<0.001) (Table 2).

The mean triglyceride levels in group 1 and group 2 were 161.21±73.71 and 100.53±46.99, respectively, which was found to be statistically significant (p<0.001) (Table 2).

The mean VLDL cholesterol levels in group 1 and group 2 were 32.25±14.78 and 20.20±9.30, respectively, which were found to be statistically significant (p<0.001) (Table 2).

The mean HOMA-IR levels in group 1 and group 2 were 3.45±6.23 and 2.89±1.08, respectively, which were found to be statistically significant (p<0.05) (Table 2).

Discussion

Skin tags are small, soft, flesh-colored to dark brown, pinhead-sized and larger, sessile and pe-
ASSESSMENT OF SERUM LEPTIN, LIPID PROFILE, GLUCOSE LEVEL, INSULIN RESISTANCE AND BMI IN PATIENTS WITH SKIN TAGS

Ducted papillomas commonly occurring on the neck. ST are also frequently seen in the axilla and eyelids and less often on the trunk and groins (1).

The presence of ST is associated with diabetes mellitus, obesity and atherogenic lipid profile. ST is also associated with friction, acromegaly, Crohn's disease, aging, organ transplants, colonic polyps, pregnancy, human papilloma virus, increased mast cell count and increased androgen and oestrogen receptors (2-6).

Leptin is a 16-kDa protein, produced primarily by adipocytes, and low levels have been detected in gastric fundic epithelium, intestine and skeletal muscle. It is involved in the regulation of appetite, energy expenditure via hypothalamic mediated effects, carbohydrate and lipid metabolism. Serum leptin levels are increased in obesity, being strongly associated with cardiovascular risk factors such as insulin resistance, hypertension, dyslipidaemia, hyperuricaemia and inflammatory markers (7).

Obesity and dislipidemia are frequently associated with a marked risk for the development of metabolic syndrome. Metabolic syndrome includes raised blood pressure, elevated glucose level, cholesterol and triglycerides (TG) levels and low HDL cholesterol. ST frequently occur in patients with obesity, their prevalence being correlated with the severity of obesity. Our study showed that the BMI values in ST patients were significantly higher than in the control group.

We evaluated the relationship between obesity, diabetes mellitus, insulin resistance and multiple skin tags. In this study, the mean BMI was 28.72±5.49, most of our patients being overweight. HOMA-IR levels were statistically significant higher in the patients' group than controls. There was no significant difference in levels of serum fasting glucose, insulin and leptin between the two groups.

Table 1. Frequency of ST according to gender in the study sample

Gender	Group 1	Group 2	Total		
	n	%	n	%	
Male	21	24.2	14	16.8	35
Female	24	28.7	25	30.3	49
Total	45	52.9	39	47.1	84

Table 2. Comparison of biochemical results of the study participants

Case mean±SD	Control mean±SD	P value	
BMI	28.72±5.49	24.69±4.82	0.001
Total cholesterol	207.25±37.08	174.49±33.54	0.001
Triglyceride	161.21±73.71	100.53±46.99	0.001
LDL	128.35±33.16	105.46±29.55	0.001
HDL	45.2±11.04	49.11±12.96	0.212
VLDL	32.25±14.78	20.20±9.30	0.001
Insulin	11.76±4.46	9.68±12.50	0.628
HOMA-IR	3.45±6.23	2.89±1.08	0.042
Leptin	11.97±13.27	9.67±12.49	0.092
the insulin resistant groups (10). Idris S and Sunitha showed that there was no statistical difference in leptin levels between the groups (12).

As a result, patients with ST were found to have significantly high total cholesterol, triglycerides, LDL cholesterol, VLDL cholesterol levels and HOMA-IR, when compared to the control group. However, there was no significant difference in serum fasting glucose levels, insulin levels and leptin levels between the two groups.

The results of this study confirm that ST are associated with obesity, insulin resistance and dyslipidemia. Therefore, follow-up of these patients regarding the development of atherosclerosis and metabolic syndrome associated diseases may be beneficial.

Conflicts of interest: None declared.

Financial disclosure: none declared.

1. James WD, Berger T, Elston D. Andrews’ Disease of the Skin: Clinical Dermatology. 10th edition, Elsevier Health Sciences 2011, 610-611.
2. Crook MA. Skin tags and atherogenic lipid profile. J Clin Path 2000;53:873-874.
3. Sari R, Akman A, Alpsoy E, Balci MK. The metabolic profile in patients with skin tags. Clin Exp Med 2010;10:193-197.
4. El Safoury QS, Abdel Hay RM, Fawzy MH, Kadry D, et al. Skin tags, leptin, metabolic syndrome and change in the life style. Ind J Dermatol Venereal Leprol 2011;77:577-601.
5. Erkek E, Kisa U, Bagi Y, Sezikli H. Leptin resistance and genetic predisposition as potential mechanism in the development of skin tags. Hong Kong J Dermatol Venereal 2011;19:108-114.
6. El Safoury Q, Fawzy MH, Abdel Hay RM, Hassan SA, et al. Increased tissue leptin hormone level and mast cell count in skin tags: A possible role of adipopoimmune in the growth of benign skin growths. Ind J Dermatol Venereal Leprol 2010;76:538-542.
7. Zhao SP, Wu ZH. Atorvastatin reduced serum leptin concentration in hypercholesterolemic rabbits. Clin Chim Acta 2005;36:133-140.
8. Demir S, Demir Y. Atherosclerosis and impaired carbohydrate metabolism. Acta Diabetol 2002;39:57-59.
9. Erdogan BS,Aktan S, Rota S, Ergin S, Efiyozoglu D. Skin tags and atherosclerotic risk factors. J Dermatol 2005;32:371-375.
10. Gorpelioglu C, Erdal E, Ardıcoglu Y,Adam B, Sarıfakıoğlu E. Serum leptin, atherogenic lipids and glucose levels in patients with skin tags. Indian J Dermatol 2009;54:20-22.
11. Tamega Ade A, Avanha Am, Guotoku MM, et al. Association between skin tags and insulin resistance. An Bras Dermatol 2010;85:25-31.
12. Idris S, Sunitha S. Assessment of BMI, Serum Leptin Levels and Lipid Profile in Patients with Skin Tags. J Of Clin and Diag Res 2014;8:1-3.
13. Agamia NF, Gomaa SH. Assessment of serum leptin atherogenic lipids, glucose level, insulin resistance and metabolic syndrome in patients with skin tags. Egypt J Dermatol 2014;34:58-64.

This work is licensed under a Creative Commons Attribution 4.0 Unported License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/4.0/