Construction and characterization of a full-length cDNA library for the wheat stripe rust pathogen

Peng Ling
United States Department of Agriculture

Meinan Wang
Washington State University

Xianming Chen
United States Department of Agriculture

Kimberly A. Garland-Campbell
United States Department of Agriculture, kim.garland-campbell@ars.usda.gov

Follow this and additional works at: https://digitalcommons.unl.edu/usdaarsfacpub

Part of the Agricultural Science Commons

Ling, Peng; Wang, Meinan; Chen, Xianming; and Garland-Campbell, Kimberly A., "Construction and characterization of a full-length cDNA library for the wheat stripe rust pathogen" (2007). Publications from USDA-ARS / UNL Faculty. 402.
https://digitalcommons.unl.edu/usdaarsfacpub/402

This Article is brought to you for free and open access by the U.S. Department of Agriculture: Agricultural Research Service, Lincoln, Nebraska at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Publications from USDA-ARS / UNL Faculty by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Construction and characterization of a full-length cDNA library for the wheat stripe rust pathogen (Puccinia striiformis f. sp. tritici)

Peng Ling1,2, Meinan Wang2,3, Xianming Chen*1,2 and Kimberly Garland Campbell1,4

Address: 1US Department of Agriculture, Agricultural Research Service, Wheat Genetic, Quality, Physiology and Disease Research Unit, Pullman, WA 99164-6430, USA, 2Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA, 3College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People’s Republic of China and 4Department of Soil and Crop Sciences, Washington State University, Pullman, WA 99164-6420, USA

Email: Peng Ling - pling@wsu.edu; Meinan Wang - meinan_wang@wsu.edu; Xianming Chen* - xianming@wsu.edu; Kimberly Garland Campbell - kgcamp@wsu.edu

* Corresponding author

Abstract

Background: Puccinia striiformis is a plant pathogenic fungus causing stripe rust, one of the most important diseases on cereal crops and grasses worldwide. However, little is known about its genome and genes involved in the biology and pathogenicity of the pathogen. We initiated the functional genomic research of the fungus by constructing a full-length cDNA and determined functions of the first group of genes by sequence comparison of cDNA clones to genes reported in other fungi.

Results: A full-length cDNA library, consisting of 42,240 clones with an average cDNA insert of 1.9 kb, was constructed using urediniospores of race PST-78 of P. striiformis f. sp. tritici. From 196 sequenced cDNA clones, we determined functions of 73 clones (37.2%). In addition, 36 clones (18.4%) had significant homology to hypothetical proteins, 37 clones (18.9%) had some homology to genes in other fungi, and the remaining 50 clones (25.5%) did not produce any hits. From the 73 clones with functions, we identified 51 different genes encoding protein products that are involved in amino acid metabolism, cell defense, cell cycle, cell signaling, cell structure and growth, energy cycle, lipid and nucleotide metabolism, protein modification, ribosomal protein complex, sugar metabolism, transcription factor, transport metabolism, and virulence/infection.

Conclusion: The full-length cDNA library is useful in identifying functional genes of P. striiformis.

Background

Puccinia striiformis Westend., a fungus in Pucciniacea, Uredinales, Basidiomycotina, Eumycota, causes stripe (yellow) rust. Based on specific pathogenicity on cereal crops and grasses, the fungal species consists of various formae speciales, such as P. striiformis f. sp. tritici on wheat (Triticum aestivum), P. striiformis f. sp. hordei on barley (Hordeum vulgare), P. striiformis f. sp. poae on bluegrass (Poa pratensis) and P. striiformis f. sp. dactylidis on orchard grass (Dactylis glomerata) [9,32]. Among the various formae specialiae, the wheat and barley stripe rust pathogens are most economically important. Wheat stripe rust has been reported in more than 60 countries and all continents except Antarctica [6]. Devastating epidemics of wheat
stripe rust often occur in many countries in Africa, Asia, Australia, Europe, North America and South America [6,32]. In the U. S., stripe rust of wheat has existed for more than 100 years [19,25]. The disease had been primarily a major problem in western US before 2000, but has become increasingly important in the south central and the Great Plains since 2000 [6,11,25]. Barley stripe rust is a relatively new disease in the west hemisphere. It has caused severe damage in some locations since it was introduced to Colombia in 1975 from Europe [14], and spread to Mexico in 1987 [1] and the U. S. in 1991 [5,9,29]. In spite of its importance, very little is known about the molecular biology and the genomics of the stripe rust fungus.

The life cycle of the stripe rust fungus consists of the dikaryotic uredial and diploid telial stages in the nature [24,32]. Teliospores can germinate to form haploid basidiospores. Unlike the stem rust (P. graminis) and leaf rust (P. triticina) pathogens, the stripe rust pathogen does not have known alternate hosts for basidiospores to infect, and thus, it does not have known sexual pycnial and aecial stages. Therefore, isolates of the fungus cannot be crossed through sexual hybridization, which makes it impossible to study the fungal genes through classic genetic approaches. The fungus reproduces and spreads through urediniospores and survives as mycelium in living host plants. Because urediniospores cannot keep their viability for very long, living plants (volunteers of wheat and barley crops and grasses, or crops and grasses in cool regions in the summer and in warm regions in the winter) are essential to keep the fungus alive from season to season. Although the pathogen does not have known sexual reproduction, there is a high degree of variation in virulence and DNA polymorphism in the natural populations of the stripe rust pathogens [5,6,8,9,11,25]. More than 100 races of P. striiformis f. sp. tritici and more than 70 races of P. striiformis f. sp. hordei have been identified in the U. S. [5,6] based on virulence/avirulence patterns produced on differential cultivars by isolates of the pathogens. The avirulence or virulence phenotypes have not been associated with any specific genes or DNA sequences due to the factors that the pathogen can not be studied by conventional analyses.

The expressed sequence tag (EST) technology is an approach to identify genes in organisms that are difficult to study using classic genetic approaches and gene mutation by insertional mutagenesis. Liu et al. [26] analyzed abundant and stage-specific mRNA from P. graminis. Lin et al. [23] isolated and studied the expression of a host response gene family encoding thaumatin-like proteins in incompatible oat-stem rust fungus interactions. Recently, EST libraries have been constructed for various fungal species including P. triticina [18], the probably most closely related fungal species to P. striiformis. ESTs provide valuable putative gene sequence information for genomic studies of targeted organisms. However, EST data has its own limitations such as incomplete cDNA sequence. Because ESTs are typically generated from the 3’ end sequences of cDNA clones, EST libraries tend to be incomplete at the 5’ end of the transcripts. The cDNA libraries constructed by conventional methods [17] normally contain a high percentage of 5’ truncated clones due to the premature stop of reverse transcription (RT) of the template mRNA, particularly for cDNA clones derived from large mRNA molecules and those with the potential to form secondary structures. The size bias against large fragments commonly exists in conventional cDNA cloning procedures. Certain limitations also apply to the end products of the automatic EST assemblies, which may be composed of ESTs generated from different tissues or different developmental stages and may not reflect the accurate transcripts.

Several methods have been developed to construct cDNA libraries that are enriched for full-length cDNAs, including RNA oligo ligation to the 5’ end of mRNA [21,33], 5’ cap affinity selection via eukaryotic initiation factor [15], or 5’ cap biotinylation followed by biotin affinity selection [2]. These methods can be used to improve the full-length cDNA clone content of the cDNA library, but they are all very laborious and involve several enzymatic steps that must be performed on mRNA. Therefore, they are prone to quality loss through RNA degradation. Furthermore, they all require high amounts of starting mRNA at μg level for reverse transcription and cloning processes. Comprehensive sets of accurate, full-length cDNA sequences would address many of the current limitations of the EST data. Genome-scale collections of full-length cDNA become important for analyses of the structures and functions of expressed genes and their products [31]. Full-length cDNA library is a powerful tool for functional genomics and is widely used as physical resources for identifying genes [36].

A full-length cDNA library should be an important resource for studying important genes of the P. striiformis pathogen, for sequencing the whole genome, and for determining its interaction with host plants. The objectives of the present study were to construct a full-length cDNA library for P. striiformis f. sp. tritici and characterize selected cDNA sequences in the library to identify putative functional genes of P. striiformis f. sp. tritici.

Results

Full-length cDNA library generation and characterization

Total RNA was extracted from 30 mg urediniospores of race PST-78 of P. striiformis f. sp. tritici and yielded approximately 7.5 μg total RNA of high purity. Full-length cDNA was synthesized by reverse transcription and enriched by
subsequent long distance PCR (LD PCR). Only non-truncated first strand cDNAs were tagged by the SMART IV oligonucleotide sequence: 5’-AAGCAGTGGTATCAACGAGTGCGCCATTACGC-GCCGGG-3’ during the initial reverse transcription. The PCR amplification products were digested with restriction enzyme sfil to generate directional cloning ends. The agarose gel analysis of the digestion showed a significant amount of double stranded cDNA that appeared as a smear ranging from 300 bp to 12 kb. The sfil-digested double strand cDNA was obtained from 5 fractionated gel zones. The gel zones containing smaller cDNA fragments (ranging from 500 bp to 4 kb) yielded approximately 800 ng to 1 μg of cDNA while the gel zones containing large cDNA fragments (ranging from 5 kb to 10 kb) had relatively lower cDNA yields in the 50 – 100 ng range. Although the large cDNA fragment output was relatively low, it was adequate for the subsequent ligation reaction for cloning.

Fractionated cDNA was cloned into the sfil sites of the pDNR-LIB cloning vector and transformed into DH10B competent cells. One microliter of ligation yielded a range of 1,000 to 2,000 recombinant clones for cDNA inserts within the large fractionated gel zone. More than 3,000 recombinant clones were obtained for cDNA inserts from the medium and smaller fractionated gel zones. The clone evaluation of random samples revealed cDNA insert length ranging from 200 bp up to 9 kb across all the fractionation inserts. In general, most of the inserts were in the length range of 500 bp to 4 kb. Large scale transformation was conducted using ligation reactions from each of the fractions, and clones were picked in a mixed fashion using an automated robotic clone picker. A total of 42,240 cDNA clones were arrayed in 112 micro-plates of 384-wells each. An additional copy of the cDNA library was generated by manual duplication.

The average cDNA insert size and their distribution were analyzed by random sampling of cDNA clones from randomly selected plates. A total of 320 cDNA clones were double-digested by HindIII/EcoRI. The average cDNA insert size was 1.9 kb. Approximately, 96% of the clones had inserts longer than 500 bp, 54% of the cDNA clones had inserts longer than 1.5 kb, and 15% of the clones contained inserts longer than 3 kb. Only 3% of the clones had inserts smaller than 500 bp (Fig. 1). Therefore, the size fractionation procedure used in this library construction was effective for obtaining cDNA inserts of different lengths.

cDNA sequence analysis
A total of 198 cDNA clones were sequenced with a single pass reading from both ends of the cloning sites. Sequence reads of 800 – 1,000 bp were achieved for most of the clones. For each sampled cDNA clone, two sequence reads from both ends were aligned and were comparatively edited to generate a consensus sequence contig. Of the 196 clones, we obtained a completed cDNA sequence for 149 clones. The remaining 47 cDNA clones had two partial sequences because they had insert sizes that exceeded the single pass sequencing capability. The 243 single sequences were deposited in the EST sequence database of the GenBank (Accession numbers EG374272 – EG374514).

All edited sequence contigs were searched against the NCBI fungal gene databases and the all-organism gene databases with their translated amino acid sequences. We consider that if a cDNA clone of P. striiformis f. sp. tritici and a gene in the fungal database share homology significant at an e-value of <1.00E-5, they likely belong to the same gene family and should share a similar broad sense function. A total of 73 cDNA clones (36.9%) met this requirement, and therefore, were considered with functions identified, of which 50 clones had completed sequences, 13 clones had partial sequences that hit the same or similar genes, and 10 clones had one partial sequence hitting a characterized gene (Table 1). These genes represented 51 different protein products that are involved in amino acid metabolism, cell defense, cell cycle, cell signaling, cell structure and growth, energy cycle, lipid and nucleotide metabolism, protein modification, ribosomal protein complex, sugar metabolism, transcription factor, transport metabolism and virulence/infection. Examples of these genes are glycine hydroxymethyltransferase, saccharopine dehydrogenase, mitogen-activated protein kinase (MAPK), serine/threonine kinase, β-tubulin, deacetylase, mitochondrial ATPase

![Figure 1](http://www.biomedcentral.com/1471-2164/8/145)

The insert size distribution of urediniospore cDNA clones of *Puccinia striiformis* f. sp. *tritici*. The insert sizes of 320 randomly picked cDNA clones were determined by HindIII/EcoRI double digestion.
Table 1: Putative genes identified in cDNA clones of *Puccinia striiformis* f. sp. *tritici* based on their sequence comparison with other fungal genes through Blastx search of the NCBI databases

Category & clone no.	GenBank accession	Size (bp)	Full length or partiala	Best hit in the NCBI fungal databases			
1. Amino acid metabolism							
6SN4 EG374380	2044	F	Glycine hydroxymethyltransferase	gb	AAW45780.1	Cryptococcus neoformans	1.00E-156
60J18a EG374421	1142	P	Potential kynurenine 3-monoxygenase	gb	EAK98864.1	Candida albicans	2.00E-06
60J18b EG374422	1220	P	Potential kynurenine 3-monoxygenase	gb	EAK98864.1	Candida albicans	1.00E-12
58D15a EG374299	897	P	Saccharopine dehydrogenase	gi	70993695	Aspergillus fumigatus	2.00E-55
58D15b EG374300	780	P	Spermidine synthase	emb	CAD71251.1	Neurospora crassa	3.00E-78
2. Cell Defense							
35A16 EG374447	1351	F	Related to stress response protein	emb	CAD21425.1	Neurospora crassa	2.00E-23
3. Cell division/cycle							
80F12 EG374389	1560	F	Cell division control protein	ref	NP_396149.1	Schizosaccharomyces pombe	3.00E-07
65O23 EG374383	2037	F	Cyclin c homolog 1	ref	NP_396149.1	Schizosaccharomyces pombe	3.00E-07
4. Cell signaling/cell communication							
55B10a EG374277	1351	F	Related to stress response protein	ref	NP_396149.1	Schizosaccharomyces pombe	3.00E-07
5. Cell Structure and growth							
59H22a EG374306	920	P	Beta-tubulin	emb	CAD83953.1	Uromyces viciae-fabae	3.00E-72
59H22b EG374307	859	P	Beta-tubulin	emb	CAD83953.1	Uromyces viciae-fabae	5.00E-68

(Please note that the remaining entries have been omitted for brevity.)

Amino acid metabolism

- **1. Amino acid metabolism**
 - 6SN4 EG374380: Glycine hydroxymethyltransferase
 - 60J18a EG374421: Potential kynurenine 3-monoxygenase
 - 60J18b EG374422: Potential kynurenine 3-monoxygenase
 - 58D15a EG374299: Saccharopine dehydrogenase
 - 58D15b EG374300: Spermidine synthase

Cell Defense

- **2. Cell Defense**
 - 35A16 EG374447: Related to stress response protein

Cell division/cycle

- **3. Cell division/cycle**
 - 80F12 EG374389: Cell division control protein
 - 65O23 EG374383: Cyclin c homolog 1

Cell signaling/cell communication

- **4. Cell signaling/cell communication**
 - 55B10a EG374277: Related to stress response protein

Cell Structure and growth

- **5. Cell Structure and growth**
 - 59H22a EG374306: Beta-tubulin
 - 59H22b EG374307: Beta-tubulin

(Please note that the remaining entries have been omitted for brevity.)
Table 1: Putative genes identified in cDNA clones of *Puccinia striiformis* f. sp. *tritici* based on their sequence comparison with other fungal genes through Blastx search of the NCBI databases (Continued)

accession	Description	e-value	Species	p-value
GB	Mitochondrial carrier family protein	0.00E+00	Candida albicans	1.00E-46
GB	Succinate dehydrogenase flavoprotein subunit precursor	2.00E-11	Cryptococcus neoformans	1.00E-63
GB	Succinate dehydrogenase flavoprotein subunit precursor	3.00E-13	Cryptococcus neoformans	1.00E-136
GB	V-type ATPase subunit G	7.00E-16	Neurospora crassa	6.00E-15
GB	Dicacylglycerol O-acyltransferase	1.00E-19	Cryptococcus neoformans	1.00E-84
GB	Fatty acid oxidoreductase	2.00E-05	Cryptococcus neoformans	3.00E-32
GB	Fatty acid oxidoreductase	2.00E-06	Cryptococcus neoformans	2.00E-20
GB	Uracil DNA N-glycosylase	7.00E-16	Schizosaccharomyces pombe	7.00E-06
GB	RNA	1.00E-19	Cryptococcus neoformans	7.00E-16
GB	Carboxypeptidase	7.00E-16	Schizosaccharomyces pombe	1.00E-13
GB	Endopeptidase	2.00E-09	Cryptococcus neoformans	1.00E-63
GB	Translation elongation factor eEF-1 alpha chain	0.00E+00	Puccinia graminis	0.00E+00
GB	Ubiquitin-conjugating enzyme	7.00E-21	Schizosaccharomyces pombe	7.00E-06
GB	16S small subunit ribosomal RNA	2.00E-10	Xanthoria elegans	2.00E-08
GB	18S ribosomal RNA	1.00E-14	Gymnosporangium libocedri	1.00E-154
GB	18S ribosomal RNA	3.00E-12	Puccinia graminis f. sp.tritici	3.00E-142
GB	18S ribosomal RNA	4.00E-05	Puccinia graminis f. sp.tritici	2.00E-16
GB	18S ribosomal RNA	2.00E-05	Puccinia graminis f. sp.tritici	2.00E-59
GB	18S ribosomal RNA	4.00E-05	Puccinia graminis f. sp.tritici	1.00E-33
GB	18S ribosomal RNA	6.00E-10	Tricholoma matsutake	9.00E-54
GB	18S ribosomal RNA	2.00E-05	Puccinia graminis f. sp. dactylis	1.00E-09
GB	18S ribosomal RNA	2.00E-05	Puccinia graminis f. sp. dactylis	1.00E-09
GB	18S ribosomal RNA	2.00E-05	Tricholoma matsutake	1.00E-09
GB	18S ribosomal RNA	2.00E-05	Puccinia graminis	1.00E-09
GB	18S ribosomal RNA	2.00E-05	Puccinia graminis f. sp. dactylis	1.00E-09
GB	18S ribosomal RNA	2.00E-05	Tricholoma matsutake	1.00E-09
GB	18S ribosomal RNA	2.00E-05	Puccinia graminis	1.00E-09
GB	18S ribosomal RNA	2.00E-05	Puccinia graminis f. sp. dactylis	1.00E-09
GB	18S ribosomal RNA	2.00E-05	Tricholoma matsutake	1.00E-09
GB	18S ribosomal RNA	2.00E-05	Puccinia graminis	1.00E-09
GB	18S ribosomal RNA	2.00E-05	Puccinia graminis f. sp. dactylis	1.00E-09
GB	18S ribosomal RNA	2.00E-05	Tricholoma matsutake	1.00E-09
GB	18S ribosomal RNA	2.00E-05	Puccinia graminis	1.00E-09
GB	18S ribosomal RNA	2.00E-05	Puccinia graminis f. sp. dactylis	1.00E-09
GB	18S ribosomal RNA	2.00E-05	Tricholoma matsutake	1.00E-09
GB	18S ribosomal RNA	2.00E-05	Puccinia graminis	1.00E-09
GB	18S ribosomal RNA	2.00E-05	Puccinia graminis f. sp. dactylis	1.00E-09
GB	18S ribosomal RNA	2.00E-05	Tricholoma matsutake	1.00E-09
GB	18S ribosomal RNA	2.00E-05	Puccinia graminis	1.00E-09
GB	18S ribosomal RNA	2.00E-05	Puccinia graminis f. sp. dactylis	1.00E-09
GB	18S ribosomal RNA	2.00E-05	Tricholoma matsutake	1.00E-09
alpha-subunit, fatty acid oxidoreductase, phosphatidyl
synthase, endopeptidase, elongation factor, ribosomal
RNA unit, glucose-repressible protein, transaldolase,
TATA-box binding protein, cell wall glucanase and pectin
lyase. Thirty-seven clones (18.9%) had certain levels of
homology to genes in other fungi, but the significance
levels were not adequate for considering the functions iden-
tified (Table 2). Sequences of 36 clones (18.4%) were
homologous to fungal genes with functions unclassified
and the most of them were hypothetical proteins.
Although many of the hypothetical protein genes had e-
value < 1.00E-05, they are listed in Table 2 because of their
unclear functions. Some of the hypothetical protein genes
were homologous to genes in other plant pathogens, such
as Ustilago maydis, Gibberella zeae and Magnapothe grisea.
These genes could be related to plant infection. Many of
the cDNA clones had homology of various levels to genes
from plants (12%), other eukaryotes (34%), or to pro-
teins of bacterial origin (11%) (data not shown). There
were 50 clones (25.5%) with full-length sequences result-
ing in no-hit, indicating that they had no homology to
any sequence available in the current NCBI databases
(Table 3). These genes could be unique to P. striiformis f.
sp. tritici. Alternatively, similar genes in other fungi have
not been identified or deposited into the databases.

Identification of open reading frames

Various lengths of open reading frames (ORFs) were iden-
tified from 167 cDNA clones using the Lasergene
sequence analysis software (DNASTAR package, WI.
USA). The quality of the cDNA libraries with respect to the
full-length (intactness) of cDNA was evaluated using three
parameters: 1) identification of the 5’-end sequence struc-
tures of the insert, 2) ATG start site at their 5’-end for com-
plete ORF contents and 3) Blastx evaluation of pre-
determined ORF with corresponding amino acid
sequences to determine the genuine ORF. Four cDNA sequences were
identified which contain incomplete ORF sequences,
indicating incomplete transcripts for those cDNA clones.
Nearly 86% of the cDNA sequences were found contain-
ing completed ORFs with a translation initiation codon
(ATG). Each of the validated ORFs was able to translate
into a continuous protein sequence with a translation ini-
tiation codon. This finding indicated high percentage of
cDNA clones containing full-length transcripts with vari-
ous sizes of ORFs in the cDNA library.

Discussion

A cDNA library can provide molecular resources for anal-
ysis of genes involved in the biology of a plant pathogenic
fungus, such as genes responsible for the development,
survival, pathogenicity and virulence. In order to initiate
studies on the basic genome structure and gene expression
of P. striiformis with infective state, we constructed a full-
length cDNA library and a BAC library from uredi-
inospores of a predominant race of P. striiformis f. sp. trit-
ici [10]. The full-length cDNA library can be used to study
the normal transcription profiles for the uredinial stage,
the biologically and epidemiologically essential stage of
the fungus. The current cDNA library will serve as a major
genetic resource for identifying and isolating full-length
genes and functional units from the P. striiformis genome.
Because this cDNA library was constructed from uredi-
inospores of the pathogen, it should include expressed
genes unique to this spore stage. Therefore, the cDNA
library should have avoided EST limitations that are com-
monly generated by automatic assemblies of transcripts
from different tissues. Controlled greenhouse conditions
and careful handling of the plants and spores minimized
possibility of contaminations by other fungal spores.
Powdery mildew or leaf rust, which sometimes contami-
nates stripe rust spores, were not observed on the stripe
rust – sporulating plants. Therefore, genes or cDNA
sequences identified in this study should be from uredi-
inospores of P. striiformis f. sp. tritici. This also was con-
firmed in a separate study, in which primers of all 12
randomly picked cDNA clones were successfully ampli-
Table 2: cDNA clones showing homology to genes with characterized or unclassified proteins through Blastx search of the NCBI fungal databases

Category & clone no.	GenBank accession	Size (bp)	Full length or partial	Protein	Best hit in the NCBI databases	
1. Amino acid metabolism	35I14 EG374455	766	F	Cystathionine beta-lyase	gi	6636350 Botryotinia fuckeliana 5.70E+00
2. Cell Defense	66C24a EG374440	1175	P	88 kDa immunoreactive mannoprotein MP88	gb	AAAL87197.1 Cryptococcus neoformans 1.00E-03
3. Cell Division/cycle	10F19 EG374412	1877	F	g1/s-specific cyclin pcl1 (cyclin hcs26)	gb	AAW44590.1 Cryptococcus neoformans 2.00E-04
4. Cell signaling/cell communication	63G15 EG374514	1106	P	Protein kinase	gi	15072451 Cryphonectria parasitica 1.20E+00
5. Cell Structure and growth	58G9 EG374486	1714	F	Beta tubulin	gi	47834278 Penicillium flavigenum 6.40E-00
6. Differentiation-related protein	70A18 EG374371	1207	F	Differentiation-related protein	gb	AAD38996.1 Uromyces appendiculatus 6.00E-03
7. Mating type	30M10 EG374346	1025	F	Mating type alpha locus	gi	73914085 Cryptococcus gattii 6.80E+00
8. Nucleotide metabolism	35K8 EG374456	1572	F	Ribonuclease H2 subunit	gi	6320485 Saccharomyces cerevisiae 9.00E+00
9. Protein translational modification	100C10 EG374490	1179	F	Non-ribosomal peptide synthetase	gi	62006079 Hypocrea jecorina 1.20E+00
10. Ribosomal protein complex	35L17 EG374457	585	F	18S ribosomal RNA	gi	51102377 Microbotryum dianthorum 4.20E-02
11. Sugar/glycolysis metabolism	35P11a EG374506	796	P	Pyruvate decarboxylase	gi	68480982 Candida albicans 1.40E+00
12. Transport metabolism	35E4 EG374445	897	F	28S ribosomal RNA	gi	62005826 Puccinia artemisias-keiskeanae 1.00E-04
13. Unclassified	55B15 EG374473	954	F	28S ribosomal RNA	gi	84794517 Puccinia strigosiformis 3.60E-01
	58B3 EG374484	884	F	28S ribosomal RNA	gi	46810582 Fuscoporia viticola 3.30E-01
	67N18 EG374491	1132	F	Genomic sequence	gi	48056381 Phakopsora pachyrhizi 7.00E-53
Table 2: cDNA clones showing homology to genes with characterized or unclassified proteins through Blastx search of the NCBI fungal databases (Continued)

Accession	Gene ID	Description	Accession	Organism	Description	E-Value
04F9	EG374470	1127 F Hypothetical protein	gi	71006713	Ustilago maydis	1.00E-06
10N10	EG374331	1106 F Hypothetical protein	gi	58258450	Cryptococcus neoformans	6.00E-22
30I21	EG374342	1906 F Hypothetical protein	gi	71023224	Ustilago maydis	1.00E-21
35B6	EG374449	1060 F Hypothetical protein	gb	EAA67250	Gibberella zeae	1.00E-03
35C10	EG374450	1465 F Hypothetical protein	gi	71004383	Ustilago maydis 521	2.00E-08
35G21	EG374454	1332 F Hypothetical protein	gb	EAK81105	Ustilago maydis	5.00E-09
35H2a	EG374499	758 P Hypothetical protein	gi	71021872	Ustilago maydis	1.80E+00
40B2a	EG374508	603 P Hypothetical protein	gi	85114517	Neurospora crassa	3.00E-05
40C12a	EG374450	1465 F Hypothetical protein	gb	EAK81105	Ustilago maydis	5.00E-09
55L8	EG374491	1417 F Hypothetical protein	gi	71004813	Ustilago maydis	1.50E-01
58C4a	EG374296	764 P Hypothetical protein	MGG_09875	Magnaporthe grisea	6.00E-12	
60D4	EG374350	1123 F Hypothetical protein	gi	58263159	Cryptococcus neoformans	2.00E-04
60L15	EG374359	2073 F Hypothetical protein	gb	EAA47832	Magnaporthe grisea	5.00E-09
60N2	EG374363	1109 F Hypothetical protein	gi	66096746	Ustilago maydis	7.00E-03
60N6	EG374364	1071 F Hypothetical protein	gi	49642978	Kluyveromyces lactis	8.00E-17
65H5	EG374374	1390 F Hypothetical protein	gi	8509053	Neurospora crassa	1.40E+00
65I3	EG374375	1870 F Hypothetical protein	gb	EAK86140	Ustilago maydis	1.00E-129
65O15	EG374381	1893 F Hypothetical protein	gi	71006255	Ustilago maydis	1.10E+00
66B6	EG374316	1263 F Hypothetical protein	MGG_09875	Magnaporthe grisea	6.00E-12	
66B1a	EG374337	1145 P Hypothetical protein	AN2903	Aspergillus nidulans	3.00E-57	
66B1b	EG374438	1200 P Hypothetical protein	FG10782	Fusarium graminearum	5.00E-49	
66C18	EG374377	2043 F Hypothetical protein	gb	EAA39593	Aspergillus nidulans	2.00E-12
70A3	EG374360	1835 F Hypothetical protein	SSIG_14513	Sclerotinia sclerotiorum	8.00E-18	
70C17b	EG374442	1191 P Hypothetical protein	ANO7683	Aspergillus nidulans	1.00E-07	
70K15b	EG374320	896 P Hypothetical protein	NCU02808	Neurospora crassa	2.00E-07	
70L24b	EG374446	1168 P Hypothetical protein	gi	EAA28928	Neurospora crassa	3.00E-23
80I9	EG374394	1300 F Hypothetical protein	gi	85114517	Neurospora crassa	1.50E+00
90O3	EG374410	1725 F Hypothetical protein	gi	85114517	Neurospora crassa	1.20E-02
90O18	EG374411	1973 F Hypothetical protein	CHG04543	Chaetomium globosum	4.00E-07	
66C24b	EG374440	1271 P Macrofage activating glycoprotein	gi	15722495	Cryptococcus neoformans	3.00E-08

*F = full-length sequence and P = partial sequence.

aData generated from Blastx search of the fungal database of the Broad Institute [34].
fied clones in the BAC library constructed with the same race of the pathogen (data not shown).

A urediniospore of *P. striiformis* is an infectious structure that is critical for the rust to initiate the infection process. Although the fungus produces other spores, teliospores and basidiospores, they do not result in infection of host plants because the fungus does not have alternate hosts for basidiospores to infect. Compared to mycelium, a urediniospore is relatively more resistant to adverse environmental conditions. Therefore, the urediniospore stage should contain most of the pathogen genes involved in the pathogen development, survival and pathogenicity.

Thus, our first full-length cDNA library for *P. striiformis* was constructed using urediniospores. Such transcript (gene) collection should include the genes that are important for the unique physical properties and characters of the urediniospores of *P. striiformis*. These genes are essential to maintain their germination and infective abilities. Therefore, the current full-length cDNA library would be one of the useful genomic resources for the functional genomic study of this important agricultural pathogen.

Our full-length cDNA library reported here is the first large scale transcript collection for *P. striiformis*. As expression of certain genes are stage-specific and genes involved in plant-pathogen interactions express in haustoria [4, 13],

Table 3: cDNA clones that produced no hit in the Blastx search of the NCBI fungal databases

Category & Clone no.	GenBank accession	Size (bp)	Full length or partial*	Category & Clone no.	GenBank accession	Size (bp)	Full length or partial*
04A1	EG374448	1188	F	55N9	EG374482	1171	F
04C13	EG374459	1423	F	55B9a	EG374293	585	P
04P11	EG374434	1133	F	55B9b	EG374293	930	P
100B17	EG374489	1137	F	58E11a	EG374301	542	P
10B5	EG374492	1161	F	58G18a	EG374301	791	P
10C11	EG374503	1235	F	58J11a	EG374308	672	P
10I7	EG374324	1112	F	58J15a	EG374310	921	P
10K3	EG374328	1687	F	58L3	EG374487	959	F
10L3	EG374272	1099	F	58M15a	EG374314	719	P
10NS	EG374329	1090	F	58M15b	EG374315	718	P
10O19	EG374332	1359	F	58M7a	EG374312	788	P
301I5a	EG374417	1032	P	58M7b	EG374313	934	P
32B15	EG374294	1296	F	58N10a	EG374317	287	P
23H21b	EG374436	1249	F	58N10b	EG374318	837	P
35C19a	EG374493	739	P	60F10	EG374353	1131	F
35D23a	EG374495	775	P	60L12	EG374358	1239	F
35F14	EG374543	971	F	60O23	EG374365	1084	F
35F7	EG374542	1086	F	65C23	EG374369	2047	F
35G11b	EG374498	757	P	65G1	EG374373	1631	F
35I10a	EG374501	807	P	65G15b	EG374314	1158	P
35P11b	EG374507	682	P	65I10	EG374376	1010	F
40B2b	EG374509	860	P	65K18	EG374377	1230	F
40C12b	EG374511	921	P	65P1	EG374384	1814	F
40C19b	EG374513	857	P	66M21	EG374349	1437	F
40E10	EG374467	713	F	70C4	EG374382	1518	F
40E23	EG374468	734	F	70D12	EG374393	1285	F
40G6a	EG374273	779	P	70K15a	EG374319	722	F
40H8b	EG374276	811	P	70L24a	EG374445	1104	P
50M2	EG374305	1182	F	80D10	EG374386	1147	F
55C20	EG374474	868	F	80E22	EG374388	2064	F
55E2	EG374476	1272	F	80E4	EG374387	1173	F
55F12	EG374478	935	F	80F15	EG374390	2129	F
55F15b	EG374282	865	P	80G19	EG374392	1124	F
55J1a	EG374284	660	P	80N10a	EG374429	1091	P
55L18a	EG374288	930	P	80O12	EG374398	1517	F
55M5	EG374480	942	F	80O24	EG374399	2098	F
55N22a	EG374290	813	P	90H10	EG374403	1748	F
55N22a	EG374291	282	P	90K17	EG374407	1896	F

* F = full-length sequence and P = partial sequence.
currently, we are working together with Scot Hulbert's lab to construct a full-length cDNA library from haustoria of the same stripe rust race used in this study.

The technology used in this study for full-length cDNA enrichment is robust and only requires less than 1 μg of starting total RNA. By using the MMLV reverse transcriptase, only the 5'-end tagged cDNAs are not prematurely terminated and can be amplified into full-length by an RNA oligo-specific primer [35,37]. The size fractionation process was modified in this study to generate large directional full-length cDNA inserts, which enriched full-length cDNA clones to have an insert size up to 9 kb. The enrichment of the full-length cDNA was achieved by PCR amplification following the cDNA synthesis. Because selection bias could favor the smaller cDNA, we used fewer PCR cycles to minimize such bias as previously suggested [35]. The conventionally constructed cDNA libraries rarely carry cDNA inserts over 2 kb, because the longer transcripts are often easily truncated during cDNA synthesis process, causing size bias against the larger cDNA fragments in cloning process. In our study, up to 22 PCR amplification cycles were used to generate adequate amount cDNA for cloning. The evaluation of cDNA insert size and its distribution showed a low level of insert size bias in the final cDNA library. Most of the cDNA inserts ranged from 500 bp to 1,500 bp, and there were high number of cDNA clones harboring inserts over 3,000 bp. Such results indicate that the size fraction is an effective selection approach to ensure the full-length cDNA content level in the cDNA library. The high quality of the initial total RNA and the optimal LD PCR conditions also resulted in low size bias level for the insert size distribution in this library. High quality and adequate amount of the initial mRNA is the key for yielding sufficient amount of the first strand full-length cDNA by reverse transcription. To reduce the redundancy and to avoid underrepresentation of different transcript species, cDNA fragments with different fractionated sizes were balanced and subjected to library construction. A considerable number of clones with an insert over 3 kb were found in our cDNA library, such big insert size is rarely found in conventional cDNA libraries.

Blasx was used to search the entire NCBI GenBank with e-value of 10^{-5}, which revealed 37% of the cDNA clones with high homologies to genes with known functions in the database. The relative low match rate to homologous genes from the blastx search might be due to the lack of gene information in the database for fungi. During the search process, the longest ORFs in each given cDNA sequence was also evaluated with amino acid alignments. The results showed that 86% of the cDNA clones contain ORFs with the translation initiation codon and stop codon. In addition, the existence of multi-exonic structure within some ORFs is additional evidence that supports their biological reality of genes or transcripts. The Kozak rules were found not totally applicable in determining ORFs in this study. Perhaps the Kozak rules are more suitable for analysis of mammalian genomes [22].

So far, there have been no other reports on the genome of *P. striiformis* in relation to function and biology of this important pathogen. In this study, we have identified genes encoding 51 different protein products involved in eleven aspects of the pathogen cell biology and plant infection. These genes are the first group of genes reported for the stripe rust pathogen. The genes identified for virulence/infection can be used in transient expression to confirm their function in pathogenicity. Although we sequenced only a small portion of the cDNA library, the study demonstrated the high efficiency of this procedure for the identification of putative genes of known function. As more and more genes with identified functions from other organisms are deposited into the databases, genes with important functions in *P. striiformis* should be more efficiently identified using our cDNA library. Even though sequences of only 196 clones were characterized in this study, we identified 19 cDNA clones encoding ribosomal RNA subunits, seven clones encoding deacetylase, and two clones encoding the glucose-repressible protein. The results may indicate the mRNA abundance of these genes. In this study, 10 cDNA clones had one of the two partial sequences with high homology (e-value ranging from 3E-06 to 5E-77) to genes identified in other fungi, but another partial sequence produced no hit. The results may indicate that these genes have very long sequences, and also may reflect that similar gene sequences in other fungi are mainly short EST sequences. When blastx search was conducted using other fungal genomic databases [34], seven cDNA clones, which produced no hit when blasted with the NCBI database, were identified to have some homology with unknown functions in various fungal spe-
cies. In this study, we identified 37.2% of the clones with known genes, 18.4% encoding hypothetical proteins, and 25.5% no hit. These numbers are quite different from the 11%, 23%, and 66% of these categories, respectively, found in the urediniospore EST library of P. graminis f. sp. tritici, the wheat stem rust pathogen (L. Szabo, personal communication). The differences could be due to the clone sampling sizes of the studies and the different types of libraries (the full-length cDNA library for P. striiformis f. sp. tritici and conventional EST library for P. graminis f. sp. tritici). As more genes or ESTs from other Puccinia species infecting cereal crops become available, it will be more feasible to identify genes common to this group of the rust pathogens and also identify genes unique to particular species.

Conclusion

A full-length cDNA library was constructed using urediniospores of the wheat stripe rust pathogen. Using the library, we identified 51 genes involved in amino acid metabolism, cell defense, cell cycle, cell signaling, cell structure and growth, energy cycle, lipid and nucleotide metabolism, protein modification, ribosomal protein complex, sugar metabolism, transcription factor, transport metabolism, and virulence/infection. The results of function-identified genes demonstrated that the full-length library is useful in the study of functional genomics of the important plant pathogenic fungus. Research will be conducted to identify genes involved in the development, survival and pathogenicity of the pathogen using the cDNA library.

Methods

Total RNA isolation from urediniospores of P. striiformis f. sp. tritici

Urediniospores from race PST-78 of P. striiformis f. sp. tritici, a predominant race of the wheat stripe rust [11], were harvested from infected leaves 15 days after inoculation. The inoculation method and conditions for growing plants before and after inoculation were as described by Chen and Line [7]. For total RNA extraction, approximately 30 mg urediniospores were pre-chilled with liquid nitrogen in a glass vial. Spores were ground in liquid nitrogen with mortar and pestle, and then 10 mM Tris concentration was adjusted to 5 ng/μl. Double stranded cDNA was subjected to sfiI digestion, 100 μl sfiI digestion reaction containing 79 μl of cDNA, 10 μl 10× NE buffer 2 (New England Biolabs, USA) (10 mM Tris-HCl, 50 mM NaCl, 10 mM MgCl2, 1 mM dithiothreitol), 1 μl of 100× BSA (100 μg/ml) and 10 units of sfiI restriction enzyme (New England Biolabs, USA). Digestion was performed under 50°C for 2 h. Digested cDNA was size-fractionated on 1% agarose gel with 6 V/cm electrophoresis and the size fraction of 500 bp to 10 kb was excised. The excised gel slice was further divided into 5 zones (5 smaller gel slices) corresponding to a cDNA size ranging from 500 bp to 10 kb. Then cDNA in each gel slice was extracted and purified using the MinElute Gel Extraction kit (Qiagen, USA). The final cDNA concentration was adjusted to 5 ng/μl.

Full-length cDNA synthesis and size fractionation

First-strand cDNA was synthesized from approximately 500 ng of total RNA using the Creator SMART cDNA Library Construction kit (DB Clontech, USA) following a slightly modified manufacturer’s protocol. The first-strand cDNA mixture was used as template to synthesize double-stranded DNA with long distance (LD) PCR. The PCR reactions were facilitated by 20 pmol of 5’ end PCR primer containing sfiI A site (5’AAGCAGTGTATCAACGCA-GAGTGGCCATTACGCGGGG-3’), and 20 pmol of CDSIII/3’ end polyT PCR primers containing sfiI B site [5’-ATTTCTAGAGGGCAGGGCGGCGACATG-d(T)30N-3’]. In a 100 μl PCR reaction, 2 μl first-stranded cDNA were used as the template. The PCR reaction mixture contained 20 pmol of 10× PCR buffer, dNTP mix and 5 units of Taq polymerase. The LD PCR was performed in a GeneAmp 9600 thermal cycler (ABI Biosystem, USA) with the following program: denature at 95°C for 20 s followed by 22 cycles of 95°C for 5 s, 68°C for 6 min and 4°C soaking. The double stranded cDNA was then treated with proteinase K at 45°C for 20 min to inactivate the remaining DNA polymerase. The double stranded cDNA was then phenol-extracted and precipitated with 10 μl of 3 M sodium acetate, 1.3 μl of glycogen (20 μg/μl) and 2.5 volumes of 100% ethanol. Double stranded cDNA pellet was washed with 80% ethanol, air dried and suspended in 20 μl of water.

Double stranded cDNA was subjected to sfiI digestion, 100 μl sfiI digestion reaction containing 79 μl of cDNA, 10 μl 10× NE buffer 2 (New England Biolabs, USA) (10 mM Tris-HCl, 50 mM NaCl, 10 mM MgCl2, 1 mM dithiothreitol), 1 μl of 100× BSA (100 μg/ml) and 10 units of sfiI restriction enzyme (New England Biolabs, USA). Digestion was performed under 50°C for 2 h. Digested cDNA was size-fractionated on 1% agarose gel with 6 V/cm electrophoresis and the size fraction of 500 bp to 10 kb was excised. The excised gel slice was further divided into 5 zones (5 smaller gel slices) corresponding to a cDNA size ranging from 500 bp to 10 kb. Then cDNA in each gel slice was extracted and purified using the MinElute Gel Extraction kit (Qiagen, USA). The final cDNA concentration was adjusted to 5 ng/μl.

Construction of cDNA library

Approximately 30 ng sfiI-digested cDNA fragments were ligated to 100 ng of the pDNR-LIB cloning vector (DB Clontech, USA) using T4 DNA ligase (New England Biolabs, USA) under 16°C for 16 h. The ligation product was directly transformed into competent cell DH10B (Epigenetics Technologies, USA) by electroporation. After 1 h SOC recovery incubation, transformed bacterial strain were grown on LB agar plates containing chloramphenicol (12.5 μg/ml), incubated at 37°C for 20 h. Since only the cDNA fragments with both sfiI A and sfiI B ends were...
allowed to be ligated into vector pDNR-LIB, only the recombinant clones were able to grow and were clearly identified as white colonies. The cDNA clones were randomly sampled and mini-prepared for a quality check using HindIII and EcoRI double-digestion to release inserts. The ligations with insert size larger than 500 bp were selected for large scale transformation. These colonies were subsequently picked and arrayed with a Q-Bot (Genetix, UK) into 384-well micro-titer plates. Each well on the culture plate contained 75 μl of LB freezing storage medium [360 mM K2HPO4, 132 mM KH2PO4, 17 mM Na citrate, 4 mM MgSO4, 68 mM (NH4)2SO4, 44% (v/v) glycerol, 12.5 μg/ml of chloramphenicol, LB]. Colonies were incubated at 37°C overnight, and then stored at -70°C.

Full-length cDNA library evaluation and cDNA clone sequence analysis

To evaluate the quality of the current full-length cDNA library, 400 individual cDNA clones were randomly picked from 12 storage plates, and grown in 5 ml of LB with 12.5 μg/ml of chloramphenicol under 37°C with 200 rpm shaking for 16 h. Plasmid DNA was isolated using the alkaline-lysis method [30] and digested with HindIII and EcoRI. The cDNA inserts were analyzed by 1% agarose gel electrophoresis with ethidium bromide staining. The average cDNA insert size and the cDNA length distribution profiles were obtained.

Two hundred cDNA clones were randomly selected for sequencing analysis. Prior to sequencing, all plasmids were isolated from cDNA bacterial clones by cellular lysis and purified in 96-well plates. Single pass sequencing was performed from both directions using two “in-house” sequencing primers. Phred software [16] was used for base calling. Each sequence was edited manually by removing vector sequences and the ambiguous reads. The overlapping sequences (from both 3’ and 5’ ends) were evaluated and aligned into full consensus sequence contigs using the DNA analyzing software DNA for Windows 2.2.1 [12]. The non-overlapping sequences were formatted and treated as two separated sequence contigs. All aligned sequence contigs were analyzed with the Lasergene 5.0 software (DNA STAR, Madison, WI, USA) for identifying ORFs. Consensus sequences were searched against the National Center for Biotechnology Information (NCBI) [28] fungal database and the all-organism database under E-value of 10⁻³ and 10⁻⁶, respectively. The genuine ORF fragments were cross validated by these two different scales of NCBI blast analysis.

Authors’ contributions

PL constructed the full-length cDNA library, participated in the cDNA sequencing and analysis, and drafted the manuscript; MW contributed to cDNA sequencing, Blast-searching the databases, and drafted the manuscript; XC conceived and coordinated the study, contributed materials and resources, interpreted the data, and wrote the manuscript; KGC contributed resources and participated in planning the experiments. All authors read and approved the final manuscript.

Acknowledgements

This research was supported in part by the US Department of Agriculture (USDA), Agricultural Research Service (ARS), USDA-ARS Postdoctoral Program, and Washington Wheat Commission. PPNS No. 0440, Department of Plant Pathology, College of Agricultural, Human, and Natural Resource Sciences Research Center, Project No. 13C-3061-3923, Washington State University, Pullman, WA 99164-6430, USA. We thank the Sequencing Core Facility of Washington State University for the support of automated cDNA clone array, Dr. Pat Okubara for the assistance on the NCBI database blast search, Mr. Dat Q. Le for his technical assistance. We also are grateful to Dr. Lee Hadwiger and Dr. Weidong Chen for their critical review of the manuscript.

References

1. Calhoun DS, Arhana S, Vivier HE: Chemical control of barley stripe rust, a new disease for North America. *Barley News* 1988, 32:109-112.
2. Carninci P, Kvatm C, Kirtamu A, Oshumi T, Okazaki Y, Itoh M, Kamiya M, Shibata K, Sasaki N, Izawa M, Muramatsu M, Hayashizaki Y, Schneider C: High-efficiency full-length cDNA cloning by biotinylated CAP trapper. *Genomics* 1996, 37:327-336.
3. Carninci P, Shibata Y, Hayatsu N, Sugahara Y, Shibata K, Itoh M, Cono H, Okazaki Y, Muramatsu M, Hayashizaki Y: Normalization and subtraction of cap-trapper-selected cDNAs to prepare full-length cDNA libraries for rapid discovery of new genes. *Genome Res* 2000, 10:1617-1630.
4. Catanzariti AM, Dodds PN, Lawrenance GJ, Ayliffe MA, Ellis JG: Haulstonically expressed secreted proteins from flax rust are highly enriched for avirulence elicitors. *Plant Cell* 2000, 18:243-256.
5. Chen XM: Epidemiology of barley stripe rust and races of *Puccinia striiformis f. sp. hordei*: the firstdecade in the United States. *Cereal Rusts and Powdery Mildews Bulletin* 2004 [http://www.crcmb.org/], 2004/1029chen.
6. Chen XP: Epidemiology and control of stripe rust [*Puccinia striiformis f. sp. triticum*] on wheat. *Can J Plant Pathol* 2005, 27:314-337.
7. Chen XM, Line RF: Inheritance of stripe rust resistance in wheat cultivars used to differentiate races of *Puccinia striiformis* in North America. *Phytopathology* 1992, 82:633-637.
8. Chen XM, Line RF, Leung H: Relationship between virulence variation and DNA polymorphism in *Puccinia striiformis*. *Phytopathology* 1993, 83:1489-1497.
9. Chen XM, Line RF, Leung H: Virulence and polymorphic DNA relationships of *Puccinia striiformis f. sp. hordei* to other rusts. *Phytopathology* 1995, 85:1335-1342.
10. Chen XM, Line RF: Towards cloning wheat genes for resistance to stripe rust and functional genomics of *Puccinia striiformis f. sp. tritici*. Proc of the 11th Intl Cereal Rusts and Powdery Mildew Conf., Norwich, England, 22–27 August 2004. Abstracts A2.10, Cereal Rasts and Powdery Mildews Bulletin.
11. Chen XM, Moore M, Milus EA, Long DL, Line RF, Marshall D, Jackson L: Wheat stripe rust epidemics and races of *Puccinia striiformis f. sp. tritici* in the United States in 2000. *Plant Dis* 2002, 86:39-46.
12. DNA for Windows [http://www.dna-software.co.uk/]
13. Dodds PN, Lawrence GJ, Catanzariti A, Ayliffe MA, Ellis JG: The *Melampsora lini AvrLs7* avirulence genes are expressed in haustoria and their products are recognized inside plant cells. *Plant Cell* 2004, 16:755-768.
14. Dubin HJ, Stubbs RW: Epidemic spread of barley stripe rust in *South America*. *Plant Dis* 1986, 70:141-144.
15. Edery I, Chul LL, Sonenberg N, Pelletier J: An efficient strategy to isolate full-length cDNAs based on an mRNA cap retention procedure (CAPture). *Mol Cell Biol* 1995, 15:3363-3371.
16. Ewing B, Green P: Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 1998, 8:186-194.

17. Gubler U, Hoffman BJ: A simple and very efficient method for generating cDNA libraries. Gene 1983, 25:263-269.

18. Hu GG, Lining R, Kamp A, Joseph C, McCallum B, Tanks T, Cloutier S, Butterfield Y, Liu J, Kirkpatrick R, Scott J, Yang G, Smalius D, Jones S, Marra M, Schein J, Pei JM, Westwood T, Bakkeren G: Generation of a wheat leaf rust, Puccinia triticina, EST database and microarray from stage-specific cDNA libraries. Proc of the 11th Int. Cereal Rusts and Powdery Mildew Conf., Norwich, England, 22–27 August 2004. Abstracts A147, Cereal Rusts and Powdery Mildews Bulletin.

19. Humphrey HB, Hungerford CW, Johnson AG: Stripe rust (Puccinia glumarum) of cereals and grasses in the United States. J Agric Res 1924, 29:209-227.

20. Kato S, Ohtoko K, Ohtake H, Kimura T: Vector-capping: a simple method for preparing a high-quality full-length cDNA library. DNA Res 2005, 12:53-62.

21. Kato S, Sekine S, Oh SW, Kim NS, Umezawa Y, Abe N, Yokoyama KM, Aoki T: Construction of a human full-length cDNA bank. Gene 1994, 150:243-250.

22. Kozak M: Interpreting cDNA sequences: some insights from studies on translation. Mammalian Genome 1996, 7:563-574.

23. Lin KC, Bushnell WR, Szabo LJ, Smith AG: Isolation and expression of a host response gene family encoding thiamatin-like proteins in incompatible oat-stem rust fungus interactions. Mol Plant-Microbe Interact 1996, 9:511-522.

24. Line RF: Stripe rust of wheat and barley in North America: a retrospective historical review. Ann Rev Phytopathol 2002, 40:75-118.

25. Line RF, Qayoum A: Virulence, aggressiveness, evolution, and distribution of races of Puccinia striiformis (the cause of stripe rust of wheat) in North America, 1968–87. U.S. Department of Agriculture Technical Bulletin 1992, 1788:44.

26. Liu Z, Szabo LJ, Bushnell WR: Molecular cloning and analysis of abundant and stage-specific mRNAs from Puccinia graminis. Mol Plant-Microbe Interact 1993, 6:84-91.

27. Maruyama K, Sugano S: Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. Gene 1994, 138:171-174.

28. National Center for Biotechnology Information [http://www.ncbi.nlm.nih.gov]

29. Roelfs AP, Huerta-Espino J, Marshall D: Barley stripe rust in Texas. Plant Dis 1992, 76:538.

30. Sambrook J, Fritsch EF, Maniatis T: Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York; 1989.

31. Seki M, Narusaka M, Kamiya A, Ishida J, Satou M, Nakajima M, Enju A, Akiyama K, Oono Y, Muramatsu M, Hayashizaki Y, Kawai J, Carninci P, Isho M, Ishii Y, Arakawa T, Shibata K, Shinagawa A, Shinazuki K: Functional annotation of a full-length Arabidopsis cDNA collection. Science 2002, 296(5565):141-145.

32. Stubbs RW: Stripe rust. In The Cereal Rusts: Diseases, distribution, epidemiology and control Volume II. Edited by: Roelfs AP, Bushnell WR. Academic Press, Orlando, FL; 1985:61-101.

33. Suzuki Y, Yoshimoto-Nakagawa K, Maruyama K, Suyama A, Sugano S: Construction and characterization of a full-length-enriched and a 5' end-enriched cDNA library. Gene 1997, 200:149-156.

34. The Broad Institute [http://www.broad.mit.edu]

35. Wellenreuther R, Schupp I, Poustka A, Wiemann S: SMART amplification combined with cDNA size fractionation in order to obtain large full-length clones. BMC Genomics 2004, 5:36.

36. Wiemann S, Mehrle A, Bechtel S, Wellenreuther R, Peperkock R, Poustka A: cDNAs for functional genomics and proteomics: the German cDNA Consortium. C.R. Biol 2003, 326:1003-1009.

37. Zhu YY, Mischleder EM, Chenchik A, Li R, Siebert PD: Reverse transcriptase template switching: a SMART approach for full-length cDNA library construction. Biotechniques 2001, 30:892-897.

Publish with BioMed Central and every scientist can read your work free of charge

"BioMed Central will be the most significant development for disseminating the results of biomedical research in our lifetime." Sir Paul Nurse, Cancer Research UK

Your research papers will be:
- available free of charge to the entire biomedical community
- peer reviewed and published immediately upon acceptance
- cited in PubMed and archived on PubMed Central
- yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp