On the quasi-steady-state assumption in enzyme kinetics:
rigorous analysis

Vasiliki Bitsouni∗1, Nikolaos Gialelis†1, and Ioannis G. Stratis‡1

1Department of Mathematics,, National and Kapodistrian University of Athens,
Panepistimioupolis, GR-15784 Athens, Greece

Abstract

We study, from a purely quantitative point of view, the quasi-steady-state assumption
for the fundamental mathematical model of the general enzymatic reaction: we re-establish,
on a rigorous basis, certain already known results and we propose a novel approach to the
subject, that makes waivable an ambiguous, widely used, practice. In particular, we define the
two parts of the assumption in a quantitative fashion, we employ a simple algorithm for the
proper scaling of the corresponding problem which naturally provides us with the necessary
and sufficient information, and we comment, among other issues, on a dispensable third part
of the assumption.

Keywords: enzyme kinetics, quasi-steady-state assumption, standard, reverse, scaling algorithm

MSC: 92C45, 92E20, 34D15, 34D20, 34E10, 34E15, 37N25.

1 Introduction

The study of the fundamental mathematical model for the kinetics of the general enzymatic reaction
with chemical equation

$$S + E \rightarrow E + P,$$

(1.1)

where S is the substrate, P is the product and E is the enzyme that catalyses it, has a long history,
which we briefly present below.

Already since 1894, Fischer [8] derived the lock and key model for the interpretation of bio-
catalysis. Already prior to 1901, Brown suggested an intermediate step in the enzymatic reaction
that is described by (1.1), where the substrate forms a complex with the enzyme before the begin-
ing of the catalysis, an idea that was eventually published in 1902 [13]. Thus, it had already
been realised by that time, that enzymatic biochemical reactions should take place in at least two
stages, and in fact these stages should have different time scales. Based on this idea, combined
with conversations he had with Bodenstein, Henri published in 1902 [12] and then in 1903 [23] an
initial version of a reliable differential equation for the description of the kinetics of the enzyme
reaction with chemical equation given by (1.1), an idea he had conceived as early as 1901. A decade
later, in 1913, Michaelis and Menten [16] (translated in English in [1]), extracted this equation by
using a more detailed and analytical form that makes use of the rapid equilibrium assumption;
they interpreted it convincingly and studied it thoroughly. In particular, using as an example the
invertase-catalysed hydrolysis of sucrose into glucose and fructose, they studied (1.1) through the
chemical mechanism

$$S + E \overset{k_1}{\underset{k_{-1}}{\rightleftharpoons}} C \overset{k_2}{\rightarrow} E + P,$$

(1.2)
where \(k_1, k_{-1}, k_2 > 0 \) and \(C \) represents the substrate-enzyme complex, and indirectly concluded that, when

\[
[S] = [S]_0 \gg [E]_0 = [E] \quad \text{and} \quad [C] = [C]_0 = 0, \quad \text{for} \quad t = 0,
\]

(1.3)
a condition acceptable in enzymatic reactions, then for the rate \(v \) of the enzymatic reaction with chemical equation (1.1) it holds that

\[
v \approx \frac{v_{\text{sup}} [S]}{K_{\text{dis}} + [S]},
\]

(1.4)
where

\[
v_{\text{sup}} \coloneqq k_2 [E]_0,
\]

and

\[
K_{\text{dis}} \coloneqq \frac{k_{-1}}{k_1},
\]

(1.5)

\(K_{\text{dis}} \) is the constant that is nowadays called the \textit{dissociation constant} (of the complex).

On the other hand, Van Slyke and Cullen, working in parallel with Michaelis and Menten, but studying urease-catalysed hydrolysis of urea to ammonia and carbon dioxide, used - instead of (1.2) - the chemical mechanism

\[
S + E \overset{k_1}{\longrightarrow} C \overset{k_2}{\longrightarrow} E + P
\]

and concluded in 1914 [6] to

\[
v \approx \frac{v_{\text{sup}} [S]}{K_{\text{VSC}} + [S]},
\]

(1.6)
instead of (1.4), where

\[
K_{\text{VSC}} \coloneqq \frac{k_2}{k_1},
\]

(1.7)

\(K_{\text{VSC}} \) is a constant that is now known as the \textit{Van Slyke-Cullen constant}.

In 1925, Briggs and Haldane [7] published a short note where they composed the ideas of Michaelis & Menten and Van Slyke & Cullen through a raw first version of a new assumption, known presently as the \textit{standard quasi-steady-state assumption}. In particular, they improved (1.4) and (1.6), demonstrating that

\[
v \approx \frac{v_{\text{sup}} [S]}{K_{M} + [S]},
\]

(1.8)
where

\[
K_{M} = K_{\text{dis}} + K_{\text{VSC}} = \frac{k_{-1} + k_2}{k_1}.
\]

(1.9)
It is a standard expression nowadays, that “(1.8) characterises the Michaelis-Menten kinetics”, and the constant (1.9) is called the Michaelis-Menten constant.

Lineweaver and Burk in 1934 [11] established (1.8) in the form

\[
\frac{1}{v} \approx \frac{1}{v_{\text{sup}}} + \frac{K_{M}}{v_{\text{sup}} [S]},
\]

as a tool for experimental calculation of the values \(v_{\text{sup}} \) and \(K_{M} \).

Already since the beginning of the second half of the 20th century and throughout it, many researchers have dealt with the validity of the quasi-steady-state assumption and the determination of the two time scales of the model through the application of \textit{perturbation methods}. However, it was much later, in 1988 and in 1989, when Segel [2], and Segel and Slemrod [3], respectively, showed that if

\[
(K_{M} + [S]_0) \gg [E]_0 \quad \text{and} \quad [C]_0 = 0,
\]

(1.10)
then there are indeed two time scales, which recorded as follows

\[
t_{C} = \frac{1}{K_{M} + [S]_0} \ll \frac{K_{M} + [S]_0}{k_2[E]_0} = t_{S},
\]

and it holds that

\[
v \approx \begin{cases}
0, & \text{for times comparable to } t_{C}, \\
\text{as in (1.8)}, & \text{for times comparable to } t_{S}.
\end{cases}
\]

(1.11)
In fact, (1.10) is more general than (1.3) since it allows

\[
\frac{[E]_0}{[S]_0} = O(1), \quad \text{as} \quad \frac{[E]_0}{K_M + [S]_0} \to 0^*,
\]
or even

\[
[E]_0 \gg [S]_0.
\]

In 1997, Schnell and Mendoza [20] captured the solution of the Michaelis-Menten kinetics equation in closed form, by using the Lambert \(W \) function, and in particular a special case of it, which is defined by its inverse as follows

\[
W^{-1}(x) = x \exp \{x\}, \forall x \geq 0.
\]

In addition, via the aforementioned work of Segel and Slemrod, an initial form of another hypothesis was introduced for the first time, the reverse quasi-steady-state assumption, and it was shown that, when

\[
[E]_0 \gg K_M \quad \text{and} \quad [C]_0 = 0, \quad (1.12)
\]

then there are again two time scales,

\[
\tilde{t}_S = \frac{1}{k_1 [E]_0} \ll \frac{1}{k_2} = \tilde{t}_C,
\]

and it holds that

\[
u \approx \begin{cases} k_1 [E]_0 [S], & \text{for times comparable to } \tilde{t}_S, \\ 0, & \text{for times comparable to } \tilde{t}_C. \end{cases} \quad (1.13)
\]

About a decade later, in 2000, Schnell and Maini [21] found that (1.12) is not sufficient for (1.13) to hold; on the contrary, the new case should have the form

\[
[E]_0 \gg K_M, \quad [E]_0 \gg K_M \quad \text{and} \quad [C]_0 = 0. \quad (1.14)
\]

Finally, let us mention that in 1996, with the work of Borghans, Boer and Segel [18], the total substrate concentration, \([T]\) is introduced, i.e., the sum of the concentration of the unbound/free substrate plus the concentration of the bound substrate in the form of complex with the enzyme, that is

\[
[T] = [S] + [C], \quad (1.15)
\]
to describe an alleged third hypothesis that shares common ground with both the previous ones, the so called total quasi-steady-state assumption, and since then several researchers have adopted, and dealt with this hypothesis.

In this work, our novel results are

1. We propose a general and simple algorithm for the proper scaling of every problem with non negative solutions in a bounded domain, and we essentially employ it in our case. Until now, only a “rough” rule for the non dimensionalisation process is utilised in applications, which states that the scales considered for the variables of a problem are chosen so that they should be roughly of the same order of magnitude of the respective variables themselves [14]. The proposed procedure is as follows:

 I. Identification of the bounded feasible region - i.e., the range of the dependent variables - of the problem.

 II. Scaling of the dependent variables of the problem by their respective supremum feasible values - which do exist, since the non negative solutions exist in a bounded domain.

 III. Natural scaling of the independent variables by gathering the remaining terms of the previous step.

By this algorithm,

- the dependent variables are comparable with each other, since they all range onto \([0,1]\),
• any scale of the independent variables follows naturally by the process, hence there is no need of the somehow unjustified approach of “an estimate of the minimum value for which the variable undergoes a significant change in magnitude” (see, e.g., [4], [2] and [3]), which is widely adopted thenceforth, for the choice of the largest of the two time scales (in our case),

• the quantity ε, that characterizes both the standard and the reverse quasi-steady-state assumptions, arises effortlessly by the problem itself.

2. We clarify the purely quantitative nature of the standard and the reverse quasi-steady-state assumptions, as opposed to the aforementioned qualitative one. In particular, (sQSSA) and (rQSSA) do not serve for the validation of the standard and the reverse, respectively, quasi-steady-state assumptions: they define them.

3. We relinquish the, so called, total quasi-steady-state assumption, by showing that there is no substantive third hypothesis, but only a different approach to the first two. We note that such a duality, characterised by a positive parameter ε, that either tends to 0 or to ∞, is common in applications, for instance in the study of Hamiltonian systems possessing either a relatively small or a relatively large Hamiltonian.

As far as the mathematical tools employed in the present work are concerned, we note the following:

• For the sake of brevity, we neither state nor discuss the necessary concepts and fundamental results regarding a Cauchy (initial value) problem for vector first order autonomous, or not, nonlinear ordinary differential equations. These issues would certainly comprise the existence, the uniqueness, the extendibility, the regularity, the continuous and smooth dependence of the solutions on the data (initial condition, vector field determining the differential equation, possible parameters appearing in the Cauchy problem). Additional principal issues would include notions of stability, local and global techniques for studying it, and essential results of the qualitative theory of ODEs, in general. There is a huge literature on these topics; indicatively, we refer to [15], [5], [22], and [10].

• A powerful technique for problems with relatively small (or large) parameters is the Method of Matched Asymptotics, where approximate solutions, accurate in one region of the problem domain, are matched to different approximate solutions, accurate in another region. This subject is discussed in many books, see, e.g., [17], [9], [4], and [14].

2 Principal analysis of the problem

In this section, we introduce the main problem and proceed to its basic analysis, that comprises the identification of the feasible regions, the well posedness of the problem, the determination of the invariant sets, as well as the simplification and the stability analysis of the problem.

2.1 Cauchy problem

Employing the chemical mechanism (1.2) along with the Law of Mass Action [19], we arrive at the equations

\[
\begin{align*}
\frac{d[S]}{dt} &= -k_1 [S] [E] + k_{-1} [C], \\
\frac{d[E]}{dt} &= -k_1 [S] [E] + (k_{-1} + k_2) [C], \\
\frac{d[C]}{dt} &= k_1 [S] [E] - (k_{-1} + k_2) [C], \\
\frac{d[P]}{dt} &= k_2 [C],
\end{align*}
\] (2.1a) (2.1b) (2.1c) (2.1d)
and the corresponding Cauchy problem reads:

Given \([S]_0, [E]_0, [C]_0, [P]_0 \geq 0\), we seek an interval \(I \subseteq \mathbb{R}\) with \(0 \in I\), and a function \(\left([S], [E], [C], [P]\right): I \rightarrow [0, \infty)^4\), such that \(\left([S], [E], [C], [P]\right)\) satisfies both (2.1) in \((I \setminus \{0\})^5\) and

\[
\left([S], [E], [C], [P]\right) = (\left([S]_0, [E]_0, [C]_0, [P]_0\right), \text{ for } t = 0.
\]

For a solution of \((SECP)\) it holds that

\[
\frac{d[S]}{dt} + \frac{d[C]}{dt} + \frac{d[P]}{dt} = 0,
\]

or, equivalently,

\[
[S] + [C] + [P] = [S]_0 + [C]_0 + [P]_0 = A_1,
\]

due to the initial condition of (2.1), as well as that

\[
\frac{d[E]}{dt} + \frac{d[C]}{dt} = 0,
\]

or, equivalently,

\[
[E] + [C] = [E]_0 + [C]_0 = A_2.
\]

From (2.2) and (2.3) combined with the non negativity of the components of the solutions of \((SECP)\), we conclude that

\[
[S] \leq A_1, \quad [E] \leq A_2, \quad [C] \leq \min\{A_1, A_2\} \text{ and } [P] \leq A_1.
\]

In addition, from (2.1c) together with the bounds for \([S]\) and \([E]\) in (2.4) we have that

\[
[C] \leq \frac{A_1 A_2}{K_M},
\]

where \(K_M\) is defined as in (1.9), whereas the rest of the equations of (2.1) do not include further related information. Thus, from (2.4) and (2.5) we finally get that

\[
[S] \leq A_1, \quad [E] \leq A_2, \quad [C] \leq \min\left\{A_1, A_2, \frac{A_1 A_2}{K_M}\right\} = A_3 \quad \text{and} \quad [P] \leq A_1.
\]

In the light of (2.6), we set

\[
\Omega_0 = \left\{\left(s, e, c, p\right) \in [0, A_1] \times [0, A_2] \times [0, A_3] \times [0, A_1] \mid s + c + p = A_1, \ e + c = A_2\right\}
\]

and we can therefore consider an equivalent to \((SECP)\) problem as follows:

Given \([S]_0, [E]_0, [C]_0, [P]_0 \geq 0\), we are looking for an interval \(I \subseteq \mathbb{R}\) with \(0 \in I\) and a function \(\left([S], [E], [C], [P]\right): I \rightarrow \Omega_0\), such that

\[
\left([S], [E], [C], [P]\right) = (\left([S]_0, [E]_0, [C]_0, [P]_0\right), \text{ for } t = 0.
\]

Employing standard arguments of the theory of Ordinary Differential Equations, we can conclude that \((SECP)\) is globally well posed, with an infinitely smooth solution in an interval \(\overline{I} \subseteq \mathbb{R}\), where

\[
\overline{I} = \mathbb{R}, \text{ or } \overline{I} = [a, \infty) \text{ for some } a \in [0, \infty).
\]

In addition, when \(A_2 = 0\), the unique solution is the constant

\[
(S, E, C, P) = (\left([S]_0, 0, 0, [P]_0\right)^t), \forall t \in \mathbb{R}.
\]

Thus, when \(A_2 = 0\), \(\Omega_0\) reduces to

\[
\Omega_0 = \left\{\left(s, 0, 0, p\right) \in [0, A_1] \times \{0\}^2 \times [0, A_1] \mid s + p = A_1\right\}
\]

which is invariant (in particular, every singleton \(\{(s, 0, 0, A_1 - s)\}\) for \(s \in [0, A_1]\) is invariant), whereas \(\Omega_0\) is positively invariant, when \(A_2 > 0\).
2.2 A simpler equivalent problem

Given that (2.2) and (2.3) hold, we conclude that system (2.1) can be equivalently reduced to

\[
\frac{d[S]}{dt} = -k_1 A_2 [S] + k_1 [S] [C] + k_{-1} [C], \quad (2.7a)
\]

\[
\frac{d[C]}{dt} = k_1 A_2 [S] - k_1 [S] [C] - (k_{-1} + k_2) [C]. \quad (2.7b)
\]

Let us now study the above subsystem. Using (2.7b) combined with the bound of [S] in (2.6) we have that

\[
[C] \leq \frac{A_1 A_2}{K_M + A_1}. \quad (2.8)
\]

Therefore, from the bound of [C] in (2.6) and from (2.8) we eventually get that

\[
[C] \leq \min \left\{ A_1, A_2, \frac{A_1 A_2}{K_M + A_1} \right\} = \min \left\{ A_1, \frac{A_1 A_2}{K_M + A_1} \right\} = A_4. \quad (2.9)
\]

In fact, key to what follows are the immediately verifiable inferences

\[
A_2 \leq K_M + A_1 \Rightarrow A_4 = \frac{A_1 A_2}{K_M + A_1} \quad (2.10)
\]

and on the other hand,

\[
A_2 \geq K_M + A_1 \Rightarrow A_4 = A_1 \quad (2.11)
\]

Now, in the light of the bound for [S] in (2.6) and of (2.9), we set

\[
\Omega_1 := \{(s, c) \in [0, A_1] \times [0, A_4] \mid s + c \leq A_1\}
\]

and so we can consider the equivalent, to (SECP), problem as follows:

\[
\text{Given } [S]_0, [E]_0, [C]_0, [P]_0 \geq 0, \text{ we seek an interval } I \subseteq \mathbb{R} \text{ with } 0 \in I, \text{ and a function } ([S], [C]) : I \rightarrow \Omega_1, \text{ such that } ([S], [C]) \text{ satisfies both (2.7) in (SC) } (I \setminus \{0\})^+, \text{ and } ([S], [C]) = ([S]_0, [C]_0) \text{ for } t = 0.
\]

2.3 Stability analysis

First, we can easily deduce that

\[
\begin{cases}
(s, 0, 0, A_1 - s) \text{ where } s \in [0, A_1], & \text{when } A_2 = 0, \\
(0, c, 0, A_1) \text{ where } c \in [0, A_2], & \text{when } A_2 > 0,
\end{cases}
\]

are the steady states of (SECP). However, we immediately conclude that it makes sense to study their stability only for the non-trivial case, where

\[
A_1 > 0 \text{ and } A_2 > 0.
\]

It is sufficient though, as usually, to study the stability of (0, 0), as a steady state of (SC), when \(A_1 > 0\) and \(A_2 > 0\).

As for the local stability of (0, 0), we calculate the Jacobi matrix:

\[
J(s, c) = \begin{pmatrix}
k_1 (c - A_2) & k_1 s + k_{-1} \\
-k_1 s - (k_{-1} + k_2)
\end{pmatrix}.
\]

Its eigenvalues at (0, 0), are

\[
\lambda_\pm = \frac{1}{2} \left(-k_1 A_2 - (k_{-1} + k_2) \pm \left((k_1 A_2 + (k_{-1} + k_2))^2 - 4 k_1 k_2 A_2\right)^{1/2}\right).
\]

Since

\[
(k_1 A_2 + (k_{-1} + k_2))^2 - 4 k_1 k_2 A_2 = (k_1 A_2 - (k_{-1} - k_2))^2 + 4 k_{-1} k_2 \geq 0,
\]

we conclude that...
the origin \((0,0)\) is locally asymptotically stable for \((SC)\), since
\[
\lambda_k < 0.
\]
In fact, we can also find, as usually, a local approach to the solution close to \((0,0)\); we omit it for the sake of brevity.

As for the global stability of \((0,0)\), we can apply the Bendixson-Dulac Negative Criterion with
\[
g: (\mathbb{R}_+)^2 \to \{0, \infty\} \quad (s,c) \mapsto g(s,c) = \frac{1}{sc},
\]
thereby obtaining the desired result, since in \((\Omega_1)\) it holds that
\[
\text{div}\left\{\left(-\frac{k_1A_2}{[C]} + k_1 + \frac{k_{-1}k_1A_2}{[S][C]} - k_1 - \frac{(k_{-1} + k_2)}{[S]}\right)\right\} = -\frac{k_{-1}}{[S]^2} - \frac{k_1A_2}{[C]^2} < 0.
\]

3 The standard quasi-steady-state assumption
The standard quasi-steady-state assumption is
\[
A_1 > 0 \text{ and } 0 < A_2 \ll K_M + A_1 \quad (sQSSA)
\]
or, equivalently,
\[
A_1 > 0 \text{ and } 0 < A_2 \ll K_M, \text{ or } 0 < A_2 \ll A_1 \text{ (or these two together),}
\]
and provided that it holds, we study \((SC)\).

We consider two approaches for examining the assumption, the free substrate approach, where the concentration dynamics of the unbound substrate, \([S]\), is studied, and the total substrate approach, where the concentration dynamics of the total substrate, \([T]\), is studied, as defined in (1.15).

3.1 Free substrate approach
Using only \((sQSSA)\) we will show that

1. Problem \((SC)\), and therefore problem \((SECP)\) as well, has inherently two time scales which we will determine. In fact, \((sQSSA)\) owes its name to the existence of the above time scales. In particular, except for a short initial time interval, where the enzymatic reaction with chemical equation (1.1) is not evolving, i.e., \(v \equiv 0\), during the rest of the time the enzymatic reaction is at a “steady state”, in which (1.8) holds.

2. There is a good uniform approximation in closed form to the solution of \((SC)\), and therefore to \((SC)\) as well, which we will determine.

To highlight the above time scales, the first and basic step is scaling \((SC)\). Thus, as usually, due to the bound of \([S]\) in (2.6) and the relation (2.9), we choose the dimensionless dependent variables as
\[
S_{\alpha}(t_{\alpha}) := \frac{1}{A_1}[S] \left(\frac{t}{t_\ast}\right) \text{ and } C_{\alpha}(t_{\alpha}) := \frac{1}{A_4}[C] \left(\frac{t}{t_\ast}\right),
\]
where we have chosen an arbitrary, for the time being, time scale \(t_\ast > 0\) for the scaling, i.e.,
\[
t_{\alpha} := \frac{t}{t_\ast},
\]
the determination of which will arise in a natural manner during the process. We note, however, that - given \((sQSSA)\) - it follows from (2.10) that
\[
A_4 = \varepsilon A_1 \ll A_1
\]
\begin{align*}
C_\alpha(t_\alpha) &= \frac{1}{\varepsilon A_1} [C] \left(\frac{t}{t_\alpha} \right), \\
\text{where} \quad 0^{(\text{QSSA})} < \varepsilon \equiv \frac{A_2}{K_M + A_1} \overset{(\text{QSSA})}{\ll} 1, \quad (3.1)
\end{align*}

i.e., equivalently,
\begin{equation}
0 < \varepsilon = 0. \quad (3.2)
\end{equation}

A first conclusion is that the possible change of \([S]\) is much larger than the corresponding one of \([C]\). Now, (2.7) will take the following form

\begin{align*}
\frac{dS_\alpha}{dt_\alpha} &= k_1 A_2 t_* \left(-S_\alpha + \frac{\sigma}{1 + \sigma} S_\alpha C_\alpha + \frac{\rho}{(1 + \rho)(1 + \sigma)} C_\alpha \right), \quad (3.3a) \\
\frac{dC_\alpha}{dt_\alpha} &= k_1 (K_M + A_1) t_* \left(S_\alpha - \frac{\sigma}{1 + \sigma} S_\alpha C_\alpha - \frac{1}{1 + \sigma} C_\alpha \right), \quad (3.3b)
\end{align*}

where
\begin{equation}
\sigma = \frac{A_1}{K_M} \quad \text{and} \quad \rho = \frac{K_{\text{dis}}}{K_{\text{VSC}}} = \frac{k_1}{k_2}, \quad (3.4)
\end{equation}

where \(K_{\text{dis}}\) and \(K_{\text{VSC}}\) are as in (1.5) and (1.7), respectively.

Observing (3.3), we define
\begin{equation}
\frac{1}{k_1 (K_M + A_1)} = t_1 \overset{(3.1)}{=} 1 \ll \frac{t_1}{\varepsilon} = \frac{1}{k_1 A_2} = t_2, \quad (3.5)
\end{equation}

to conclude that
\begin{equation*}
t_* = t_1 \implies \begin{cases} k_1 A_2 t_* = \varepsilon, \\ k_1 (K_M + A_1) t_* = 1, \end{cases} \quad \text{and} \quad t_* = t_2 \implies \begin{cases} k_1 A_2 t_* = 1, \\ k_1 (K_M + A_1) t_* = \frac{1}{\varepsilon}, \end{cases}
\end{equation*}

and so (3.3) takes the following form:

\begin{itemize}
 \item If \(t_\alpha = \frac{t}{t_1}\), then \(\frac{dS_\alpha}{dt_\alpha} = \varepsilon \left(-S_\alpha + \frac{\sigma}{1 + \sigma} S_\alpha C_\alpha + \frac{\rho}{(1 + \rho)(1 + \sigma)} C_\alpha \right)\), \quad (3.6a) \\
 \frac{dC_\alpha}{dt_\alpha} = S_\alpha - \frac{\sigma}{1 + \sigma} S_\alpha C_\alpha - \frac{1}{1 + \sigma} C_\alpha. \quad (3.6b)
\end{itemize}

\begin{itemize}
 \item If \(t_\alpha = \frac{t}{t_2}\) then
 \begin{align*}
 \frac{dS_\alpha}{dt_\alpha} &= -S_\alpha + \frac{\sigma}{1 + \sigma} S_\alpha C_\alpha + \frac{\rho}{(1 + \rho)(1 + \sigma)} C_\alpha, \quad (3.7a) \\
 \frac{dC_\alpha}{dt_\alpha} &= \frac{1}{\varepsilon} \left(S_\alpha - \frac{\sigma}{1 + \sigma} S_\alpha C_\alpha - \frac{1}{1 + \sigma} C_\alpha \right). \quad (3.7b)
 \end{align*}
\end{itemize}

Setting
\begin{equation*}
\Omega_\varepsilon := \left\{(s, c) \in [0, 1]^2 \mid s + \varepsilon c \leq 1\right\},
\end{equation*}

the scaled version of \((SC)\) is:
\begin{equation*}
\text{Given } [S]_0, [C]_0, [P]_0 \geq 0 \text{ and } \varepsilon > 0, \text{ we seek an interval } \mathcal{I} \subseteq \mathbb{R} \text{ with } 0 \in \mathcal{I}, \quad \text{and} \\
a \text{ function } (S_\alpha, C_\alpha) : \mathcal{I} \rightarrow \Omega_\varepsilon, \text{ such that } (S_\alpha, C_\alpha) \text{ satisfying both } (3.6) \text{ if } t_\alpha = \frac{t}{t_1} \quad (SC_\alpha) \\
or (3.7) \text{ if } t_\alpha = \frac{t}{t_2} \text{ in } (\mathcal{I} \setminus \{0\})^+ \text{ and } (S_\alpha, C_\alpha) = \left([S]_0, [C]_0 \right)_{A_1 \varepsilon A_1} \text{ for } t_\alpha = 0.
\end{equation*}

We study separately each of the two versions of \((SC_\alpha)\) in order to find an inner and outer, respectively, approximation to the solution \([S], [C]\) of \((SC)\), i.e., one approximation for times comparable to \(t_1\) and another one for times comparable to \(t_2\), respectively. In more detail:
Looking at (SC) as a perturbed problem, with perturbation $\varepsilon > 0$ close to 0, we have the following information on (3.6a)

$$
\frac{dS_\alpha}{dt_\alpha} = \varepsilon \left(\frac{\sigma}{1 + \sigma} S_\alpha C_\alpha + \frac{\rho}{(1 + \sigma)(1 + \sigma)} C_\alpha \right)
$$

as well as

$$
\frac{dS_\alpha}{dt_\alpha} = O(\varepsilon) \text{ uniformly as } \varepsilon \to 0^+
$$

when $t_\alpha = O(1)$ uniformly as $\varepsilon \to 0^+$,

$\frac{dS_\alpha}{dt_\alpha} = O(1) \text{ uniformly as } \varepsilon \to 0^+$,

since $S_\alpha = O(1)$ uniformly as $\varepsilon \to 0^+$

combined with the definition of the derivative

thus

$$
\frac{dS_\alpha}{dt_\alpha} = O(\varepsilon) \text{ uniformly as } \varepsilon \to 0^+
$$

when $t_\alpha = O(1)$ uniformly as $\varepsilon \to 0^+$

Thus, due to (3.2) it follows that

$$
\frac{dS_\alpha}{dt_\alpha} = 0, \text{ when } \exists B > 0 \text{ independent of } \varepsilon, \text{ such that: } |t_\alpha| \leq B, \quad (3.8)
$$

and due to the initial condition of (SCα_s) we eventually have that

$$
S_\alpha = \frac{[S]_0}{A_1}, \text{ when } \exists B > 0: \quad |t_\alpha| \leq B.
$$
If we insert the above approximate equality in (3.6b), then the later becomes an approximate linear differential equation, the solution of which is

\[C_\alpha \approx \frac{(1 + \sigma) S_\alpha}{1 + \sigma S_\alpha} \left(\frac{[C]_0}{\varepsilon A_1} - \frac{(1 + \sigma) S_\alpha}{1 + \sigma S_\alpha} \right) \exp \left\{ -\frac{1 + \sigma S_\alpha}{1 + \sigma} t_\alpha \right\}, \]

when \(\exists B > 0 : |t_\alpha| \leq B \),
given the initial condition of \((SC\alpha) \).

Therefore, the inner approximation, \(([S]_{in}, [C]_{in}) \), of the solution \(([S], [C]) \) of \((SC) \), i.e., the approximation for those \(t \) for which it holds that

\[\exists B > 0 \text{ independent of } \varepsilon, \text{ such that: } |t| \leq B t_1 \]

is

\[([S]_{in}, [C]_{in}) = ([S]_0, \frac{A_2[S]_0}{K_M + [S]_0} + \frac{A_2[S]_0}{K_M + [S]_0} \exp \{-k_1 (K_M + [S]_0) t\}) \]

For (3.7b) we have that

\[\frac{dC_\alpha}{dt_\alpha} = \frac{1}{\varepsilon} \left(S_\alpha - \frac{\sigma}{1 + \sigma} S_\alpha C_\alpha - \frac{1}{1 + \sigma} C_\alpha \right) = O(1) \text{ uniformly as } \varepsilon \to 0^+ \]

as well as

\[\frac{dC_\alpha}{dt_\alpha} = \frac{1}{\varepsilon} \left(S_\alpha - \frac{\sigma}{1 + \sigma} S_\alpha C_\alpha - \frac{1}{1 + \sigma} C_\alpha \right) = O(1) \text{ uniformly as } \varepsilon \to 0^+ \]

therefore

\[S_\alpha - \frac{\sigma}{1 + \sigma} S_\alpha C_\alpha - \frac{1}{1 + \sigma} C_\alpha = O(1) \text{ uniformly as } \varepsilon \to 0^+ \]

Thus, it follows that

\[\varepsilon \frac{dC_\alpha}{dt_\alpha} = S_\alpha - \frac{\sigma}{1 + \sigma} S_\alpha C_\alpha - \frac{1}{1 + \sigma} C_\alpha = 0, \]

when \(\exists B > 0 \text{ independent of } \varepsilon, \text{ such that: } |t_\alpha| \leq B \),
i.e.,

\[C_\alpha \approx \frac{(1 + \sigma) S_\alpha}{1 + \sigma S_\alpha}, \text{ when } \exists B > 0 \text{ independent of } \varepsilon, \text{ such that: } |t_\alpha| \leq B. \]

If we insert the above approximate equality in (3.7a), then the later becomes an approximate separable non linear differential equation, i.e.,

\[\frac{dS_\alpha}{dt_\alpha} \approx -\frac{S_\alpha}{(1 + \rho)(1 + \sigma S_\alpha)} \text{ when } \exists B > 0 \text{ independent of } \varepsilon, \text{ such that: } |t_\alpha| \leq B, \]

the solution of which is

\[S_\alpha \approx \frac{1}{\sigma} \text{W} \left(\sigma \ell \exp \left\{ \sigma \ell - \frac{1}{1 + \rho} t_\alpha \right\} \right), \text{ when } \exists B > 0 : |t_\alpha| \leq B, \]

where \(\text{W} \) is the aforementioned Lambert function, and \(\ell \geq 0 \) is a constant that remains to be determined.
Therefore, the outer approximation, \([S]_{\text{out}}, [C]_{\text{out}}\), of the solution \(([S], [C])\) of \((SC)\), i.e., the approximation for those \(t\) for which it holds that

\[
\exists B > 0 \text{ independent of } \varepsilon, \text{ such that: } |t| \leq Bt_2.
\]

is

\[
[S]_{\text{out}} = K_M W \left(\frac{\ell A_1}{K_M} \exp \left(\frac{1}{K_M} (\ell A_1 - k_2 A_2 t) \right) \right)
\]
\[
[C]_{\text{out}} = A_2 W \left(\frac{\ell A_1}{K_M} \exp \left(\frac{1}{K_M} (\ell A_1 - k_2 A_2 t) \right) \right)
\]

We can now utilise the matching technique in order to find a uniform approximation of the solution \(([S], [C])\) of \((SC)\) from the individual approximations \(([S]_{\text{in}}, [C]_{\text{in}})\) and \(([S]_{\text{out}}, [C]_{\text{out}})\). First, choosing a time scale between \(t_1\) and \(t_2\), e.g.

\[
\frac{t_1}{\varepsilon} \in (t_1, t_2),
\]

we find easily that the common limit resulting from the matching condition of the two individual solutions should be

\[
L := \left([S]_0, \frac{A_2 [S]_0}{K_M + [S]_0} \right).
\]

Therefore

\[
\ell t = \frac{[S]_0}{A_1}
\]

and thus a uniform approximation \(([S]_{\text{un}}, [C]_{\text{un}})\), of \(([S], [C])\)

\[
([S]_{\text{un}}, [C]_{\text{un}}) = ([S]_{\text{in}}, [C]_{\text{in}}) + ([S]_{\text{out}}, [C]_{\text{out}}) - L,
\]

i.e., in more detail,

\[
[S]_{\text{un}} = K_M W \left(\frac{[S]_0}{K_M} \exp \left(\frac{1}{K_M} ([S]_0 - k_2 A_2 t) \right) \right),
\]
\[
[C]_{\text{un}} = A_2 W \left(\frac{[S]_0}{K_M} \exp \left(\frac{1}{K_M} ([S]_0 - k_2 A_2 t) \right) \right) + \left([C]_0 - \frac{A_2 [S]_0}{K_M + [S]_0} \right) \exp \left(-k_1 (K_M + [S]_0) t \right).
\]

(3.11)

3.2 Total substrate approach

Since \(([S], [C]) \in \Omega_1\), then \([T] \leq A_1\), where \([T]\) is as in (1.15). Thus, we introduce, as usually, the dimensionless dependent variable

\[
T_\alpha(t_\alpha) = \frac{1}{A_1} ([S] + [C])(t_\alpha) = (S_\alpha + \varepsilon C_\alpha)(t_\alpha).
\]

It is easily verified that (3.6) and (3.7) will take the following forms:

- If \(t_\alpha = \frac{t}{t_1}\), then

\[
\frac{dT_\alpha}{dt_\alpha} = \varepsilon \frac{1}{(1 + \rho) (1 + \sigma)} C_\alpha,
\]
\[
\frac{dC_\alpha}{dt_\alpha} = \frac{\varepsilon \sigma}{1 + \sigma} C_\alpha^2 - \left(\frac{1}{1 + \sigma} + \varepsilon \right) C_\alpha - \frac{\sigma}{1 + \sigma} C_\alpha T_\alpha + T_\alpha.
\]

(3.12a)

(3.12b)
If \(t_\alpha = \frac{t}{t_2} \), then

\[
\frac{dT_\alpha}{dt_\alpha} = -\frac{1}{(1 + \rho)(1 + \sigma)}C_\alpha, \tag{3.13a}
\]

\[
\frac{dC_\alpha}{dt_\alpha} = \frac{\sigma}{1 + \sigma}C_\alpha^2 - \left(\frac{1}{\varepsilon (1 + \sigma) + 1} \right) C_\alpha - \frac{\sigma}{1 + \sigma}C_\alpha T_\alpha + \frac{1}{\varepsilon} T_\alpha. \tag{3.13b}
\]

So we have the following scaled problem:

Given \([S]_0, [C]_0, [P] \geq 0\) and \(\varepsilon > 0 \), we seek an interval \(I \subseteq \mathbb{R} \) with \(0 \in I \), and a function \((T_\alpha, C_\alpha): I \to [0, 1]^2\), such that \((T_\alpha, C_\alpha)\) satisfies both (3.12) if

\[
t_\alpha = \frac{t}{t_2}, \quad \text{or} \quad (3.13) \quad \text{if} \quad t_\alpha = \frac{t}{t_2} \quad \text{in} \quad (I \setminus \{0\})^o, \quad \text{and}
\]

\[
(T_\alpha, C_\alpha) = \left(\frac{[S]_0}{A_1} + \frac{[C]_0}{\varepsilon A_1}, \frac{[C]_0}{\varepsilon A_1}, \right) \quad \text{for} \quad t_\alpha = 0.
\]

Working as with problem \((SC_\alpha)\), we conclude for problem \((TC_\alpha)\) now, the following:

- (3.12a) gives that

\[
\frac{dT_\alpha}{dt_\alpha} \approx 0, \quad \text{when} \quad \exists B > 0 \text{ independent of } \varepsilon, \quad \text{such that:} \quad |t_\alpha| \leq B,
\]

and due to the initial condition of \((TC_\alpha)\) we have that

\[
T_\alpha = \frac{[S]_0}{A_1} + \frac{[C]_0}{\varepsilon A_1}, \quad \text{when} \quad \exists B > 0 : \quad |t_\alpha| \leq B.
\]

Inserting the above approximate equality into (3.12b), which in turn takes the following approximate form

\[
\frac{dC_\alpha}{dt_\alpha} \approx -\left(\frac{\sigma}{1 + \sigma} T_\alpha + \frac{1}{1 + \sigma} \right) C_\alpha + T_\alpha,
\]

when \(\exists B > 0 \text{ independent of } \varepsilon, \quad \text{such that:} \quad |t_\alpha| \leq B,
\]

then the later becomes an approximate linear differential equation, the solution of which is

\[
C_\alpha \approx \frac{(1 + \sigma) T_\alpha}{1 + \sigma T_\alpha} + \left(\frac{[C]_0}{\varepsilon A_1} - \frac{(1 + \sigma) T_\alpha}{1 + \sigma T_\alpha} \right) \exp \left\{ -\frac{1 + \sigma T_\alpha}{1 + \sigma} t_\alpha \right\}, \quad \text{when} \quad \exists B > 0 : \quad |t_\alpha| \leq B,
\]

given the initial condition of \((TC_\alpha)\).

Therefore, the inner approximation, \(([T]_m, [C]_m), \text{ of } ([T], [C])\) is

\[
([T]_m, [C]_m) = \left([T]_0, \frac{A_2 [T]_0}{K_M + [T]_0} + \left(\frac{[C]_0}{\varepsilon A_1} - \frac{A_2 [T]_0}{K_M + [T]_0} \right) \exp \left\{ -k_1 (K_M + [T]_0) t \right\} \right),
\]

where

\[
[T]_0 := [S]_0 + [C]_0.
\]

- From (3.13b) we get that

\[
\varepsilon \left(\frac{dC_\alpha}{dt_\alpha} - \frac{\sigma}{1 + \sigma} C_\alpha^2 + C_\alpha \right) \approx -\frac{1}{1 + \sigma} C_\alpha - \frac{\sigma}{1 + \sigma} C_\alpha T_\alpha + T_\alpha \approx 0,
\]

when \(\exists B > 0 \text{ independent of } \varepsilon, \quad \text{such that:} \quad |t_\alpha| \leq B,
\]

i.e.,

\[
C_\alpha \approx \frac{(1 + \sigma) T_\alpha}{1 + \sigma T_\alpha}, \quad \text{when} \quad \exists B > 0 \text{ independent of } \varepsilon, \quad \text{such that:} \quad |t_\alpha| \leq B.
\]

If we insert the above approximate equality into (3.13a), then the later becomes an approximate separable non linear differential equation, namely

\[
\frac{dT_\alpha}{dt_\alpha} \approx -\frac{T_\alpha}{(1 + \rho)(1 + \sigma T_\alpha)}, \quad \text{when} \quad \exists B > 0 \text{ independent of } \varepsilon, \quad \text{such that:} \quad |t_\alpha| \leq B,
\]
the solution of which is

\[T_\alpha = \frac{1}{\sigma} W \left(\sigma \ell \exp \left(\sigma \ell - \frac{1}{1 + \rho} t_\alpha \right) \right), \]

where \(\ell \geq 0 \) is a constant that remains to be determined. Therefore, the outer approximation \([T]_{\text{out}}, [C]_{\text{out}}\) of \([T],[C]\), is

\[[T]_{\text{out}} = K_M W \left(\frac{\ell A_1}{K_M} \exp \left(\frac{1}{K_M} (\ell A_1 - k_2 A_2 t) \right) \right) \]
\[[C]_{\text{out}} = \frac{A_2 W \left(\frac{\ell A_1}{K_M} \exp \left(\frac{1}{K_M} (\ell A_1 - k_2 A_2 t) \right) \right)}{1 + W \left(\frac{\ell A_1}{K_M} \exp \left(\frac{1}{K_M} (\ell A_1 - k_2 A_2 t) \right) \right)} \]

Finally, with a similar reasoning as for the uniform approximation of the solution of \((SC)\), we have that

\[\ell = \frac{[T]_0}{A_1} \]

and also that the uniform approximation, \(([T]_{\text{un}}, [C]_{\text{un}})\), of \(([T],[C])\) is

\[[T]_{\text{un}} = K_M W \left(\frac{[T]_0}{K_M} \exp \left(\frac{1}{K_M} ([T]_0 - k_2 A_2 t) \right) \right) \]
\[[C]_{\text{un}} = \frac{A_2 W \left(\frac{[T]_0}{K_M} \exp \left(\frac{1}{K_M} ([T]_0 - k_2 A_2 t) \right) \right)}{1 + W \left(\frac{[T]_0}{K_M} \exp \left(\frac{1}{K_M} ([T]_0 - k_2 A_2 t) \right) \right)} + \left([T]_0 - \frac{A_2 [T]_0}{K_M + [T]_0} \right) \exp \left(-k_1 (K_M + [T]_0) t \right). \]

\[(3.14) \]

3.3 Conclusions

We showed that given \((sQSSA)\) there is a \(t_1 > 0 \) such that

\[\frac{d[S]}{dt} = 0, \quad \text{when } \exists B > 0 \text{ independent of } \varepsilon, \text{ such that: } |t| \leq B t_1, \]

which arises directly from \((3.8)\), as well as that there is a \(t_2 \gg t_1 \) such that

\[\frac{d[C]}{dt} = 0, \quad \text{when } \exists B > 0 \text{ independent of } \varepsilon, \text{ such that: } |t| \leq B t_2, \]

which in turn results from \((3.9)\).

In fact, due to \((3.10)\) it holds that

\[\frac{d[S]}{dt} \approx \frac{k_2 A_2 [S]}{K_M + [S]}, \quad \text{when } \exists B > 0: \ |t| \leq B t_2. \]

Hence, we can conclude that

\[v = \begin{cases} 0, & \text{when } \exists B > 0: \ |t| \leq B t_1, \\ \frac{k_2 A_2 [S]}{K_M + [S]}, & \text{when } \exists B > 0: \ |t| \leq B t_2, \end{cases} \]

where \(v \) is the rate of the chemical reaction with chemical equation \((1.1)\). The above approximation for \(t \) comparable to \(t_2 \) is none other than the Michaelis-Menten approximation for the kinetics of the aforementioned chemical reaction, as already commented in \((1.8)\).

Furthermore, comparing the approximate solution of the free substrate \(([S]_{\text{un}}, [C]_{\text{un}})\) of \((3.11)\) with the approximate solution of the total substrate \(([T]_{\text{un}}, [C]_{\text{un}})\) of \((3.14)\), these two should be in agreement. Indeed, it is sufficient to observe that

\[[T] \approx [S], \]

as

\[T_\alpha = S_\alpha + \varepsilon C_\alpha \overset{(3.2)}{=} S_\alpha \Rightarrow T \approx S. \]
3.4 Numerical solution

We proceed to the numerical solution of the problem, as shown in Figure 3, in Figure 4 and in Figure 5, to verify our conclusions. For the numerical values of the constants and the initial conditions we follow the work of Segel in 1988 [2]. The values are given in the table below.

Parameter	Value	Unit
k_{-1}	25	s^{-1}
k_1	$4 \cdot 10^{6}$	$M^{-1}s^{-1}$
k_2	15	s^{-1}
$[S]_0$	10^{-5}	M
$[E]_0$	10^{-8}	M
$[C]_0$	0	M
$[P]_0$	0	M

We calculate

$$K_M = [S]_0 = A_1 \text{ and } A_2 = [E]_0 = 10^{-3}[S]_0 = 10^{-3}A_1,$$

i.e.,

$$\varepsilon = 5 \cdot 10^{-4}$$

and

$$t_1 = 1,25 \cdot 10^{-2}s \text{ and } t_2 = 25s.$$

4 The reverse quasi-steady-state assumption

The reverse quasi-steady-state assumption is the following:

$$A_1 > 0 \text{ and } A_2 \gg K_M + A_1 \quad (rQSSA)$$

or, equivalently,

$$A_1 > 0, \ A_2 \gg K_M \text{ and } A_2 \gg A_1,$$

and given that this holds we study problem (SC). We notice that the inequality $A_2 \gg K_M + A_1$ of $(rQSSA)$ is the reverse of the one corresponding to $(sQSSA)$, hence the name of the first. As for the analysis of $(sQSSA)$, here, as well, we consider two approaches for the study of case $(rQSSA)$, the free substrate approach and the total substrate approach.
Figure 3: Plot of $[S]$, $[E]$, $[C]$ and $[P]$ of problem $(SECP)$ for non negative times, given that $(sQSSA)$ holds. We see that $[S]$ and $[C]$ are of different order of magnitude, as well as that there are two distinct phases of the evolution of the phenomenon.

(a) $[S]$ vs. t (s)
(b) $[E]$ vs. t (s)
(c) $[C]$ vs. t (s)
(d) $[P]$ vs. t (s)
Figure 4: Plots of S_α and C_α of problem ($SC\alpha\lambda_s$) for non negative times, given that ($sQSSA$) holds. In (a) and (b) time is measured based on t_1, whereas in (c) and (d) based on t_2.
Figure 5: Plots of the inner and outer approximations of $[S]$ and $[C]$ of problem (SECP), for nonnegative times, given that ($sQSSA$) holds.
4.1 Free substrate approach

Using only \((rQSSA)\) we will show that:

1. Problem \((SC)\), and therefore problem \((SECP)\) as well, has inherently two time scales which we will determine. In particular, except for a short initial time interval where the enzymatic reaction with chemical equation (1.1) is evolving with rate \(v\), showing approximately linear behaviour with respect to \([S]\), and \(v \approx k_1A_2[S]\) as in (1.13), during the rest of the time the enzymatic reaction does not evolve, i.e. \(v \approx 0\).

2. There is a good uniform approximation in closed form to the solution of \((SC)\), and therefore to \((SECP)\) as well, which we will determine.

As usually, we use the dimensionless dependent variables

\[
S_\alpha(t_\alpha) := \frac{1}{A_1}[S]\left(\frac{t}{t_*}\right) \quad \text{and} \quad C_\alpha(t_\alpha) := \frac{1}{A_1}[C]\left(\frac{t}{t_*}\right),
\]

where we have chosen an arbitrary, for the time being, time scale \(t_*\) for the scaling.

We notice, however, that given \((rQSSA)\) it follows from (2.11) that

\[
A_1 = A_1
\]

and

\[
C_\alpha(t_\alpha) = \frac{1}{A_1}[C]\left(\frac{t}{t_*}\right).
\]

A first conclusion is that the possible change of \([S]\) is comparable to the corresponding of \([C]\).

We set

\[
0 < \frac{(rQSSA)}{\eta} := \frac{A_1}{A_2} < \frac{K_M + A_1}{A_2} = 1
\]

where \(\varepsilon\) is as in (3.1), i.e., equivalently

\[
0 < \eta < \frac{1}{\varepsilon} \approx 0,
\]

and so (2.7) will take the following form

\[
\begin{align*}
\frac{dS_\alpha}{dt_\alpha} &= \frac{k_1(K_M + A_1)A_2}{A_1} \left(\frac{\sigma}{1 + \sigma}S_\alpha + \frac{\eta\sigma}{1 + \sigma}S_\alpha C_\alpha + \frac{\eta\rho}{(1 + \rho)(1 + \sigma)}C_\alpha\right), \\
\frac{dC_\alpha}{dt_\alpha} &= \frac{k_1(K_M + A_1)A_2}{A_1} \left(\frac{\sigma}{1 + \sigma}S_\alpha - \frac{\eta\sigma}{1 + \sigma}S_\alpha C_\alpha - \frac{\eta}{1 + \sigma}C_\alpha\right),
\end{align*}
\]

where \(\sigma\) and \(\rho\) are as in (3.4).

Observing (4.3), we define

\[
\frac{A_1}{k_1(K_M + A_1)A_2} = t_1 \approx \frac{t_1}{\eta} = \frac{1}{k_1(K_M + A_1)} = t_2,
\]

to conclude that

\[
t_* = t_1 \Rightarrow \frac{k_1(K_M + A_1)A_2}{A_1}t_* = 1 \quad \text{and} \quad t_* = t_2 \Rightarrow \frac{k_1(K_M + A_1)A_2}{A_1}t_* = \frac{1}{\eta},
\]

and so (4.3) to get the following forms:

- If \(\frac{t_2}{t_1} = \frac{t}{t_*}\) then

\[
\begin{align*}
\frac{dS_\alpha}{dt_\alpha} &= -\frac{\sigma}{1 + \sigma}S_\alpha + \frac{\eta\sigma}{1 + \sigma}S_\alpha C_\alpha + \frac{\eta\rho}{(1 + \rho)(1 + \sigma)}C_\alpha, \\
\frac{dC_\alpha}{dt_\alpha} &= \frac{\sigma}{1 + \sigma}S_\alpha - \frac{\eta\sigma}{1 + \sigma}S_\alpha C_\alpha - \frac{\eta}{1 + \sigma}C_\alpha.
\end{align*}
\]
• If \(t_\alpha = \frac{t}{t_2} \), then

\[
\begin{align*}
\frac{dS_\alpha}{dt_\alpha} &= -\frac{\sigma}{\eta(1+\sigma)}S_\alpha + \frac{\sigma}{1+\sigma}S_\alpha C_\alpha + \frac{\rho}{(1+\rho)(1+\sigma)}C_\alpha, \\
\frac{dC_\alpha}{dt_\alpha} &= -\frac{\sigma}{\eta(1+\sigma)}S_\alpha - \frac{\sigma}{1+\sigma}S_\alpha C_\alpha - \frac{1}{1+\sigma}C_\alpha.
\end{align*}
\]

(4.6a)

(4.6b)

Setting

\[
\Omega = \left\{ (s, c) \in [0,1]^2 \mid s + c \leq 1 \right\},
\]

the scaled version of \((SC)\) will be as follows:

Given \([S]_0, [C]_0, [P]_0 \geq 0 \) and \(\eta > 0 \), we seek an interval \(I \subseteq \mathbb{R} \) with \(0 \in I \), and a function \((S_\alpha, C_\alpha) : I \to \Omega \), such that \((S_\alpha, C_\alpha) \) satisfies both (4.5) if \(t_\alpha = \frac{t}{t_1} \), \((SC\alpha_r) \)

or (4.6) if \(t_\alpha = \frac{t}{t_2} \) in \((I \setminus \{0\})^\circ \), and \((S_\alpha, C_\alpha) = \left(\frac{[S]_0}{A_1}, \frac{[C]_0}{A_1} \right) \), for \(t_\alpha = 0 \).

Figure 6: The invariant set \(\Omega \) of problem \((SC\alpha_r)\).

We study each of two versions of \((SC\alpha_r)\) separately:

• From (4.5a), which due to (4.2) takes the approximate linear form

\[
\frac{dS_\alpha}{dt_\alpha} \approx -\frac{\sigma}{1+\sigma}S_\alpha, \quad \text{when } \exists B > 0 \text{ independent of } \eta, \text{ such that: } |t_\alpha| \leq B, \quad (4.7)
\]

we get, due to the initial condition of \((SC\alpha_r)\), that

\[
S_\alpha \approx \frac{[S]_0}{A_1} \exp \left\{ -\frac{\sigma}{1+\sigma} t_\alpha \right\}, \quad \text{when } \exists B > 0: \ |t_\alpha| \leq B.
\]

If we insert the above approximate equality in (4.5b), which will now have the approximate form

\[
\frac{dC_\alpha}{dt_\alpha} \approx \frac{\sigma}{1+\sigma} S_\alpha, \quad \text{when } \exists B > 0: \ |t_\alpha| \leq B,
\]

then we get that

\[
C_\alpha \approx \frac{[C]_0}{A_1} + \frac{[S]_0}{A_1} \left(1 - \exp \left\{ -\frac{\sigma}{1+\sigma} t_\alpha \right\} \right), \quad \text{when } \exists B > 0: \ |t_\alpha| \leq B.
\]
given the initial condition of \((SC\alpha_r)\). Therefore, the inner approximation, \(([S]_{in}, [C]_{in})\), of \(([S]_{in}, [C]_{in}) = (\{S\}_{0} \exp \{-k_1A_2 t\}, [C]_{0} + \{S\}_{0} (1 - \exp \{-k_1A_2 t\}))\).

- From (4.6a) we have that

\[
\eta \left(\frac{dS_{\alpha}}{dt_{\alpha}} - \frac{\sigma}{1 + \sigma} S_{\alpha} C_{\alpha} - \frac{\rho}{(1 + \rho)} \frac{1}{(1 + \sigma)} C_{\alpha} \right) = - \frac{\sigma}{1 + \sigma} S_{\alpha} = 0,
\]

when \(\exists B > 0\) independent of \(\eta\), such that: \(|t_{\alpha}| \leq B\),

i.e.,

\[S_{\alpha} \approx 0, \text{ when } \exists B > 0: \ |t_{\alpha}| \leq B,\]

thus

\[
\frac{dS_{\alpha}}{dt_{\alpha}} \approx 0, \text{ when } \exists B > 0: \ |t_{\alpha}| \leq B.
\]

If we insert the above approximate equality in the sum of (4.6a) and (4.6b), then the following approximate linear differential equation arises

\[
\frac{dC_{\alpha}}{dt_{\alpha}} \approx - \frac{1}{(1 + \rho)(1 + \sigma)} C_{\alpha}, \text{ when } \exists B > 0 \text{ independent of } \eta, \text{ such that: } |t_{\alpha}| \leq B,
\]

the solution of which is

\[C_{\alpha} \approx \ell \exp \left\{ - \frac{1}{(1 + \rho)(1 + \sigma)} t_{\alpha} \right\}, \text{ when } \exists B > 0: \ |t_{\alpha}| \leq B,
\]

where \(\ell \geq 0\) a constant that remains to be determined. Therefore, the external approximation, \(([S]_{out}, [C]_{out})\), of \(([S], [C])\) is

\([S]_{out} = \{S\}_{0} \exp \{-k_1A_2 t\}, [C]_{0} \exp \{-k_2 t\} + \{S\}_{0} (\exp \{-k_2 t\} - \exp \{-k_1A_2 t\})\).

Finally, as usually, we find that

\[\ell = \frac{\{S\}_{0}}{A_1} + \frac{\{C\}_{0}}{A_1},\]

as well as that the uniform approximation, \(([S]_{un}, [C]_{un})\), of \(([S], [C])\) is

\([S]_{un} = \{S\}_{0} \exp \{-k_1A_2 t\}, [C]_{0} \exp \{-k_2 t\} + \{S\}_{0} (\exp \{-k_2 t\} - \exp \{-k_1A_2 t\})\).

4.2 Total substrate approach

Since \(([S], [C])\) \(\in \Omega_1\), we have that \(|T| \leq A_1\). Thus, we introduce, as usually, the dimensionless dependent variable

\[T_{\alpha} (t_{\alpha}) = \frac{1}{A_1} (\{S\} + \{C\}) (t_{\alpha}) = (S_{\alpha} + C_{\alpha}) (t_{\alpha}).\]

It is easily verified that (4.5) and (4.6) will get the following forms:

- If \(t_{\alpha} = \frac{t}{t_1}\) then

\[
\frac{dT_{\alpha}}{dt_{\alpha}} = - \frac{\eta}{(1 + \rho)(1 + \sigma)} C_{\alpha}, \quad (4.10a)
\]

\[
\frac{dC_{\alpha}}{dt_{\alpha}} = \eta \frac{\sigma}{1 + \sigma} C_{\alpha}^2 - \frac{\eta + \sigma}{1 + \sigma} C_{\alpha} - \eta \frac{\sigma}{1 + \sigma} C_{\alpha} T_{\alpha} + \frac{\sigma}{1 + \sigma} T_{\alpha}.
\]

- If \(t_{\alpha} = \frac{t}{t_2}\) then

\[
\frac{dT_{\alpha}}{dt_{\alpha}} = - \frac{1}{(1 + \rho)(1 + \sigma)} C_{\alpha}, \quad (4.11a)
\]

\[
\frac{dC_{\alpha}}{dt_{\alpha}} = \frac{\sigma}{1 + \sigma} C_{\alpha}^2 - \frac{\eta + \sigma}{\eta (1 + \sigma)} C_{\alpha} - \frac{\sigma}{\eta (1 + \sigma)} C_{\alpha} T_{\alpha} + \frac{\sigma}{\eta (1 + \sigma)} T_{\alpha}.
\]
So we have the following scaled problem:

Given \([S]_0, [C]_0, [P]_0 \geq 0\) and \(\eta > 0\), we seek an interval \(\mathcal{I} \subseteq \mathbb{R}\) with \(0 \in \mathcal{I}\), and a function \((T_\alpha, C_\alpha) : \mathcal{I} \to [0, 1]^2\), such that \((T_\alpha, C_\alpha)\) satisfies both (4.10) if

\[
T_\alpha = \frac{t}{t_1}, \text{ or (4.11) if } T_\alpha = \frac{t}{t_2} \text{ in } (\mathcal{I} \setminus \{0\})^c, \text{ and } (T_\alpha, C_\alpha) = \left(\frac{[T]_0}{A_1} - \frac{[C]_0}{A_1} \right), \text{ for } t_\alpha = 0.
\]

Working as with problem \((SC\alpha_r)\), we conclude, now for problem \((TC\alpha_r)\), the following:

- (4.10a) gives that

\[
\frac{dT_\alpha}{dt_\alpha} = 0, \text{ when } \exists B > 0 \text{ independent of } \eta, \text{ such that: } |t_\alpha| \leq B,
\]

and due to the initial condition of \((TC\alpha_r)\) we have that

\[
T_\alpha = \frac{[T]_0}{A_1}, \text{ when } \exists B > 0 : |t_\alpha| \leq B.
\]

If we insert the above approximate equality into (4.10b), which will now have the approximate linear form

\[
\frac{dC_\alpha}{dt_\alpha} = -\frac{\sigma}{1 + \sigma} C_\alpha + \frac{\sigma}{1 + \sigma} T_\alpha, \text{ when } \exists B > 0 \text{ independent of } \eta, \text{ such that: } |t_\alpha| \leq B,
\]

then we will get

\[
C_\alpha = T_\alpha + \left(\frac{[C]_0}{A_1} - T_\alpha \right) \exp \left\{ -\frac{\sigma}{1 + \sigma} t_\alpha \right\}, \text{ when } \exists B > 0 : |t_\alpha| \leq B,
\]

given the initial condition \((TC\alpha_r)\).

Therefore, the initial condition, \([T]_{in}, [C]_{in}\), of \(([T], [C])\) is

\[
([T]_{in}, [C]_{in}) = ([T]_0, [T]_0 + ([C]_0 - [T]_0) \exp \{-k_1 A_2 t\}).
\]

- From (4.11b) we obtain that

\[
\eta \left(\frac{dC_\alpha}{dt_\alpha} - \frac{\sigma}{1 + \sigma} C_\alpha^2 + \frac{1}{1 + \sigma} C_\alpha - \frac{\sigma}{1 + \sigma} C_\alpha T_\alpha \right) = \frac{\sigma}{1 + \sigma} (-C_\alpha + T_\alpha) \approx 0,
\]

i.e.,

\[
T_\alpha \approx C_\alpha, \text{ when } \exists B > 0 \text{ independent of } \eta, \text{ such that: } |t_\alpha| \leq B.
\]

If we insert the above approximate equality in (4.11a), then the later becomes an approximate linear differential equation, which is none other than

\[
\frac{dT_\alpha}{dt_\alpha} \approx -\frac{1}{(1 + \rho)(1 + \sigma)} T_\alpha, \text{ when } \exists B > 0 \text{ independent of } \eta, \text{ such that: } |t_\alpha| \leq B,
\]

the solution of which is

\[
T_\alpha \approx \ell \exp \left\{ \frac{1}{(1 + \rho)(1 + \sigma)} t_\alpha \right\}, \text{ when } \exists B > 0 : |t_\alpha| \leq B,
\]

where \(\ell \geq 0\) a constant that remains to be determined. Therefore, the outer approximation, \(([T]_{out}, [C]_{out})\), of \(([T], [C])\) is

\[
([T]_{out}, [C]_{out}) = (\ell A_1 \exp \{-k_2 t\}, \ell A_1 \exp \{-k_2 t\}).
\]

Finally, as usually, we find that

\[
\ell = \frac{[T]_0}{A_1},
\]

as well as that the uniform approximation, \(([T]_{un}, [C]_{un})\), of \(([T], [C])\) is

\[
([T]_{un}, [C]_{un}) = ([T]_0 \exp \{-k_2 t\}, [T]_0 \exp \{-k_2 t\} + ([C]_0 - [T]_0) \exp \{-k_1 A_2 t\}). \quad (4.12)
\]
4.3 Conclusions

Although for the previous analysis it was used that \(0 < \eta \approx 0\), i.e.,

\[A_1 \ll A_2, \]

nevertheless we emphasise that also the relation

\[K_M \ll A_2, \]

although somehow “obscure”, plays an essential role in distinguishing \((rQSSA)\) from \((sQSSA)\). Indeed, let

\[K_M \gg A_2 \text{ or } K_M \approx A_2, \]

i.e.,

\[(sQSSA), \]

Then, given \(A_1 \ll A_2\), we could finally have that

\[A_2 \ll K_M + A_1, \]

i.e., \((sQSSA)\), if in addition it holds that \(K_M \gg A_2 \gg A_1\), or otherwise that

\[A_2 \approx K_M + A_1, \]

which does not fall under any case, if additionally \(K_M \approx A_2 \gg A_1\).

In addition, we showed that given \((rQSSA)\) there is \(t_1 > 0\) such that

\[\frac{d[S]}{dt} = -k_1 A_2 [S], \]

when \(\exists B > 0\) independent of \(\eta\), such that: \(|t| \leq Bt_1, \]

which arises directly from (4.7), as well as that there is \(t_2 > t_1\) such that

\[\frac{d[S]}{dt} \approx [S] \approx 0, \]

when \(\exists B > 0\) independent of \(\eta\), such that: \(|t| \leq Bt_2, \]

which in turn results from (4.8). i.e., we can conclude that

\[\nu \approx \begin{cases} k_1 A_2 [S], & \text{when } \exists B > 0: \ |t| \leq Bt_1, \\ 0, & \text{when } \exists B > 0: \ |t| \leq Bt_2, \end{cases} \]

where \(\nu\) stands for the rate of the chemical reaction with chemical equation (1.1), as we have already mentioned.

Finally, comparing the approximate solution of the free substrate \([S]_{un}, [C]_{un}\) of (4.9) with the approximate solution of the total substrate \([T]_{un}, [C]_{un}\) of (4.12), we easily observe by definition in (1.15) that they are in agreement.

4.4 Numerical solution

We proceed to the numerical solution of the problem, as shown in Figure 8, in Figure 9 and in Figure 10, to verify our conclusions. The numerical values of the constants and the initial conditions are given in the table below.

Parameter	Value	Unit
\(k_{-1}\)	25	\(s^{-1}\)
\(k_1\)	\(4 \cdot 10^6\)	\(M^{-1}s^{-1}\)
\(k_2\)	15	\(s^{-1}\)
\([S]_0\)	\(10^{-5}\)	\(M\)
\([E]_0\)	\(10^{-2}\)	\(M\)
\([C]_0\)	0	\(M\)
\([P]_0\)	0	\(M\)
Figure 7: An approximation for the kinetics of the chemical reaction (1.1) given that \(rQSSA\) holds, for times comparable to \(t_1\).

We calculate
\[
K_M = [S]_0 = A_1 \text{ and } A_2 = [E]_0 = 10^3[S]_0 = 10^3A_1,
\]
i.e.,
\[
\varepsilon = 500, \quad \frac{1}{\varepsilon} = 2 \cdot 10^{-3} \quad \text{and} \quad \eta = 10^{-3}
\]
and
\[
t_1 = 1.25 \cdot 10^{-5} \text{s and } t_2 = 1.25 \cdot 10^{-2} \text{s}.
\]

5 Discussion

We employed a simple scaling algorithm for the rigorous treatment of the quasi-steady-state assumption.

We note that such an algorithm can be utilised in every problem with non negative solutions in a bounded domain, e.g., the simple classical SIR problem of Epidemiology

\[
\begin{align*}
\frac{dS}{dt} & = -\beta SI, \\
\frac{dI}{dt} & = -\gamma I + \beta SI, \\
\frac{dR}{dt} & = \gamma I,
\end{align*}
\]
for \(\beta, \gamma > 0\), where the feasible region is the set
\[
\left\{(s, i, r) \in [0, N_0]^3 \mid s + i + r = N_0\right\},
\]
hence every dependent variable, \(S, I\) and \(R\), is scaled by \(N_0\) and the above system then becomes

\[
\begin{align*}
\frac{1}{\gamma} \frac{dS_\alpha}{dt} & = -\frac{\beta N_0}{\gamma} S_\alpha I_\alpha, \\
\frac{1}{\gamma} \frac{dI_\alpha}{dt} & = -I_\alpha + \frac{\beta N_0}{\gamma} S_\alpha I_\alpha, \\
\frac{1}{\gamma} \frac{dR_\alpha}{dt} & = I_\alpha.
\end{align*}
\]
Figure 8: Plots of $[S]$, $[E]$, $[C]$ and $[P]$ of problem (SECP) for non negative times, given that ($rQSSA$) holds. We see that $[S]$ and $[C]$ are of the same order of magnitude, as well as that there are two distinct phases of the evolution of the phenomenon.
Figure 9: Plots of S_α and C_α of problem (SCα) for non negative times, given that ($rQSSA$) holds. In (a) and (b) time is measured based on t_1, whereas (c) and (d) based on t_2.
Figure 10: Plots of the inner and outer approximations of $[S]$, $[E]$ and $[C]$ of problem (SECP), for non-negative times, given that (sQSSA) holds. The inner and outer approximation of $[E]$ are given by the relations $[E]_{\text{in}} = A_2 - [C]_{\text{in}}$ and $[E]_{\text{out}} = A_2 - [C]_{\text{out}}$, respectively, due to (2.3).
By such an approach we naturally obtain the time scale to be $\frac{1}{\gamma}$ and, using the well known non-dimensionalised quantity $R_0 = \frac{\beta N_0}{\gamma}$, the fully scaled equations finally get the form

\[
\frac{dS_\alpha}{dt_\alpha} = -R_0 S_\alpha I_\alpha, \\
\frac{dI_\alpha}{dt_\alpha} = -I_\alpha + R_0 S_\alpha I_\alpha, \\
\frac{dR_\alpha}{dt_\alpha} = I_\alpha.
\]

Returning to our problem, from the basic mathematical analysis of \((SECP)\) we were able to sleekly generate the quantity ε that characterises both \((sQSSA)\) and \((rQSSA)\). Moreover, we naturally determined two pairs of distinctive time scales, each pair of which is characteristic for one of the aforementioned two assumptions.

Figure 11: For a good approximation of the solution of \((SECP)\) for the case where $\varepsilon \sim 1$, a sophisticated extrapolation technique is required (work by the present authors in progress), than just a linear combination of the approximations of the solution for \((sQSSA)\) and \((rQSSA)\).

We further obtained a good approximation of the solution in closed form, for both the cases...
where $\varepsilon \to 0^+$ and $\varepsilon \to \infty$, which we can communally write as

$$
\frac{\varepsilon}{1 + \varepsilon} \times \text{(approximation for } \varepsilon \to \infty) + \left(1 - \frac{\varepsilon}{1 + \varepsilon}\right) \times \text{(approximation for } \varepsilon \to 0^+).
$$

We emphasise that the above linear combination is far from being a good approximation of the solution for the case where $\varepsilon \sim 1$, as it is illustrated in Figure 11. Such an approximation requires a much more sophisticated extrapolation technique, the study of which lies beyond the scope of the present work.

References

[1] Johnson Kenneth A. and Goody Roger S. The original Michaelis constant: Translation of the 1913 Michaelis-Menten paper. *Biochemistry*, 50:8264–8269, 2011.

[2] Segel Lee A. On the validity of the steady state assumption of enzyme kinetics. *Bulletin of Mathematical Biology*, 50(6):579–593, 1988.

[3] Segel Lee A. and Slemrod Marshall. The quasi-steady-state assumption: a case study in perturbation. *SIREV*, 31(3):446–477, 1989.

[4] Lin Chia-Chiao and Segel Lee A. *Mathematics Applied to Deterministic Problems in the Natural Sciences*. SIAM, 1988.

[5] Meiss James D. *Differential Dynamical Systems*, revised ed. SIAM, 2017.

[6] Van Slyke Donald D. and Cullen Glenn E. The mode of action of urease and of enzymes in general. *Journal of Biological Chemistry*, 19:141–180, 1914.

[7] Briggs George E. and Haldane John B. S. A note on the kinetics of enzyme action. *Biochemistry Journal*, 19(2):338–339, 1925.

[8] Fischer Emil. Einfluss der configuration auf die wirkung der enzyme. *Berichte der Deutschen Chemischen Gesellschaft*, 27(3):2985–2993, 1894.

[9] Holmes Mark H. *Introduction to Perturbation Methods*. Springer Science & Business Media, 2012.

[10] Strogatz Steven H. *Nonlinear Dynamics and Chaos: with Applications to Physics, Biology, Chemistry, and Engineering*, 2nd ed. CRC Press, 2018.

[11] Lineweaver Hans and Burk Dean. The determination of enzyme dissociation constants. *Journal of the American Chemical Society*, 56(3):658–666, 1934.

[12] Victor Henri. Über das gesetz der wirkung des invertins. *Zeitschrift für Physikalische Chemie*, 39(1):194–216, 1902.

[13] Brown Adrian J. Enzyme action. *Journal of the Chemical Society*, 81:373–388, 1902.

[14] Logan David J. *Applied Mathematics*, 4th ed. John Wiley & Sons, 2013.

[15] Hale Jack K. *Ordinary Differential Equations*, 2nd ed. Krieger Publishing Company, 1980.

[16] Michaelis Leonor and Menten Maud L. Die kinetik der invertinwirkung. *Biochemische Zeitschrift*, 49:333–369, 1913.

[17] Bender Carl M. and Orszag Steven A. *Advanced Mathematical Methods for Scientists and Engineers I: Asymptotic Methods and Perturbation Theory*. Springer Science & Business Media, 2013.

[18] Borghans José A. M., De Boer Rob J., and Segel Lee A. Extending the quasi-steady state approximation by changing variables. *Bulletin of Mathematical Biology*, 58(1):43–63, 1996.

[19] Voit Eberhard O., Martens Harald A., and Omholt Stig W. 150 years of the mass action law. *PLoS Computational Biology*, 11(1):e1004012, 2015.
[20] Schnell Santiago and Mendoza Claudio. Closed form solution for time-dependent enzyme kinetics. *Journal of Theoretical Biology*, 187(2):207–212, 1997.

[21] Schnell Santiago and Maini Philip K. Enzyme kinetics at high enzyme concentration. *Bulletin of Mathematical Biology*, 62(3):483–499, 2000.

[22] Pontryagin Lev Semyonovich. *Ordinary Differential Equations*. Addison Wesley, 1962.

[23] Henri Victor. *Lois Générales de l’Action des Diastases*. Librairie Scientifique A. Hermann, Paris, 1903.