New atomic data for trans-iron elements and their application to abundance determinations in planetary nebulae

N.C. Sterling, M.C. Witthoeft, D.A. Esteves, R.C. Bilodeau, A.L.D. Kilcoyne, E.C. Red, R.A. Phaneuf, G. Alna'Washi, and A. Aguilar

Abstract: Investigations of neutron(n)-capture element nucleosynthesis and chemical evolution have largely been based on stellar spectroscopy. However, the recent detection of these elements in several planetary nebulae (PNe) indicates that nebular spectroscopy is a promising new tool for such studies. In PNe, n-capture element abundance determinations reveal details of s-process nucleosynthesis and convective mixing in evolved low-mass stars, as well as the chemical evolution of elements that cannot be detected in stellar spectra. Only one or two ions of a given trans-iron element can typically be detected in individual nebulae. Elemental abundance determinations thus require corrections for the abundances of unobserved ions. Such corrections rely on the availability of atomic data for processes that control the ionization equilibrium of nebulae (e.g., photoionization cross sections and rate coefficients for various recombination processes). Until recently, these data were unknown for virtually all n-capture element ions. For the first six ions of Se, Kr, and Xe — the three most widely detected n-capture elements in PNe — we are calculating photoionization cross sections and radiative and dielectronic recombination rate coefficients using the multi-configuration Breit–Pauli atomic structure code AUTOSTRUCTURE. Charge transfer rate coefficients are being determined with a multichannel Landau–Zener code. To calibrate these calculations, we have measured absolute photoionization cross sections of Se and Xe ions at the Advanced Light Source synchrotron radiation facility. These atomic data can be incorporated into photoionization codes, which we will use to derive ionization corrections (hence abundances) for Se, Kr, and Xe in ionized nebulae. Using Monte Carlo simulations, we will investigate the effects of atomic data uncertainties on the derived abundances, illuminating the systems and atomic processes that require further analysis.

These results are critical for honing nebular spectroscopy into a more effective tool for investigating the production and chemical evolution of trans-iron elements in the Universe.

PACS Nos: 32.80.Fb, 33.60.+q, 34.80.Lx, 34.70.+e, 95.30.Dr, 95.30.Ky, 97.10.Cv, 97.10.Tk, 98.38.Bn, 98.38.Ly, 98.38.Hv

Résumé : Les études de la nucléosynthèse des éléments par capture de neutrons (n) et de l’évolution chimique sont largement basées sur la spectroscopie stellaire. Cependant, la détection récente de ces éléments dans plusieurs nébuleuses planétaires (PNe) indique que la spectroscopie des nébuleuses est un nouvel outil utile pour de telles études. Dans une PNe, la détermination de l’abondance des éléments n-capture (générés par capture de neutron) révèle des détails du processus s de nucléosynthèse et le mélange convective dans les étoiles matures de faible masse, ainsi que l’évolution chimique des éléments qu’on ne peut détecter dans les spectres stellaires. Seulement un ou deux ions d’un élément au-delà du fer peuvent typiquement être détecté dans une nébuleuse donnée. La détermination de l’abondance des éléments requiert ainsi des corrections pour l’abondance des ions non observés. De telles corrections reposent sur la disponibilité des données atomiques pour les processus qui contrôlent l’équilibre d’ionisation des nébuleuses (comme les sections efficaces d’ionisation et les coefficients de taux pour différents mécanismes de recombinaison). Jusqu’à récemment, ces données étaient inconnues pour pratiquement