Asymptotics of type I Hermite–Padé polynomials for semiclassical functions

Andrei Martínez-Finkelshtein, Evguenii A. Rakhmanov, and Sergey P. Suetin

This paper is dedicated to the 70th Birthday of Ed Saff

Abstract

Type I Hermite–Padé polynomials for a set of functions \(f_0, f_1, \ldots, f_s \) at infinity, \(Q_{n,0}, Q_{n,1}, \ldots, Q_{n,s} \), is defined by the asymptotic condition

\[
R_n(z) := (Q_{n,0}f_0+Q_{n,1}f_1+Q_{n,2}f_2+\cdots+Q_{n,s}f_s)(z) = O\left(\frac{1}{z^{n+s}}\right), \quad z \to \infty,
\]

with the degree of all \(Q_{n,k} \leq n \). We describe an approach for finding the asymptotic zero distribution of these polynomials as \(n \to \infty \) under the assumption that all \(f_j \)'s are semiclassical, i.e. their logarithmic derivatives are rational functions. In this situation \(R_n \) and \(Q_{n,k}f_k \) satisfy the same differential equation with polynomials coefficients.

We discuss in more detail the case when \(f_k \)'s are powers of the same function \(f \) (\(f_k = f^k \)); for illustration, the simplest non trivial situation of \(s = 2 \) and \(f \) having two branch points is analyzed in depth. Under these conditions, the ratio or comparative asymptotics of these polynomials is also discussed.

From methodological considerations and in order to make the situation clearer, we start our exposition with the better known case of Padé approximants (when \(s = 1 \)).

1 Introduction and main results

1.1 Type I Hermite–Padé polynomials

For \(s \in \mathbb{N} \) let \(f = (f_0, f_1, \ldots, f_s) \) be a vector of analytic functions defined by their Laurent expansions at infinity,

\[
f_k(z) = \sum_{m=0}^{\infty} \frac{f_{m,s}}{z^m}, \quad k = 0, 1, \ldots, s.
\]
For an arbitrary \(n \in \mathbb{N} \) the associated vector of type I Hermite–Padé (HP) polynomials, \(Q_{n,0}, Q_{n,1}, \ldots, Q_{n,s} \), corresponding to \(f \), is defined by the following asymptotic condition:

\[
R_n(z) := (Q_{n,0}f_0 + Q_{n,1}f_1 + Q_{n,2}f_2 + \cdots + Q_{n,s}f_s)(z) = \mathcal{O}\left(\frac{1}{z^{sn+s}}\right), \quad z \to \infty,
\]

where \(Q_{n,k} \in P_n, \quad k = 0, 1, \ldots, s, \) and not all \(Q_{n,k} \equiv 0 \).

We denote by \(P_n \) the space of algebraic polynomials with complex coefficients and degree \(\leq n \). Function \(R_n \) defined in (1.1) is called the remainder.

In order to avoid unnecessary complications we will assume hereafter that all \(f_k(\infty) \neq 0 \); with this condition, and since the division of (1.1) by \(f_0 \) preserves this asymptotic relation, we can also assume without loss of generality that \(f_0 \equiv 1 \). We follow this convention in the rest of the paper. Nontrivial polynomials \(Q_{n,k} \) satisfying (1.1) always exist but, in general, they are not defined uniquely. To avoid an essential degeneration we will also require that functions \(f_1, \ldots, f_s \) are rationally independent.

Construction (1.1) for the case \(f_k(z) = e^{k/z} \) was introduced by Hermite in 1858, who used it to prove that the number \(e \) is transcendental. The particular case \(s = 1 \) corresponds to the (diagonal) Padé approximants, and the general construction is called Hermite–Padé (HP) approximation to a collection of functions \(f_0, \ldots, f_s \). It plays an important role in Analysis and has significant applications in approximation theory, number theory, mathematical physics and other fields. For details and further references see [1, 2, 13, 29, 32, 42, 48].

A more general classes of type I HP polynomials may be introduced by allowing arbitrary distribution of powers of polynomials \(Q_{n,k} \); in this paper we keep all their degrees equal (the so-called diagonal case); neither we consider the associated construction of type II Hermite–Padé polynomials (see e.g. [15, Ch. 23], [28, Chapter 4] or [29] for definitions).

The asymptotic theory of the Padé approximants is fairly well developed after the works of Stahl and Gonchar–Rakhmanov in the 80ies, see e.g. [11, 12, 40, 41]. However, the analytic theory of the HP polynomials (in particular, the asymptotics of \(Q_{n,k} \) and of the remainder \(R_n \) as \(n \to \infty \)) is still in its infancy. In particular, we lack any general analogue of the Gonchar–Rakhmanov–Stahl (GRS) theory for HP polynomials. Some situations are rather well understood, and some particular classes of functions \(f \) have been studied in depth. This is the case of the so-called Markov–type functions (that is, when the coefficients \(f_{m,s} \) in (1.1) are moments of positive
measures on the real axis), and of functions with a “small” set of branch points. In this paper we focus mainly on the second class and more particularly, on functions with a finite number of branch points, see the definition below.

For a polynomial $Q_n \in \mathbb{P}_n$ we denote by $\mu(Q_n)$ its normalized zero counting measure

$$\mu(Q_n) = \frac{1}{n} \sum_{k=1}^{n} \delta_{x_k} \quad \text{where} \quad Q_n(x) = c_n \prod_{k=1}^{n} \left(1 - \frac{x}{x_k}\right), \quad c_n \neq 0$$

(if $\deg Q_n < n$ we assume that $n - \deg Q_n$ zeros of Q_n are at infinity, $x_k = \infty$). Thus, we associate with each polynomial $Q_{n,k}$ ($n \in \mathbb{N}, k = 0, 1, \ldots, s$) defined by (1.1) its normalized zero counting measure

$$\mu_{n,k} = \mu(Q_{n,k}) \quad (1.2)$$

and study the weak-* convergence of the sequences $\{\mu_{n,k}\}$ as $n \to \infty$.

This problem can be reformulated in the following terms. For a (finite, Borel, and positive) measure σ on \mathbb{C} we denote by

$$C^\sigma(z) = \int \frac{d\sigma(t)}{z - t}$$

its Cauchy transform. Recall that the weak convergence of a sequence of measures μ_n to a measure μ implies the convergence of C^{μ_n} to C^μ, both in the plane Lebesgue measure m_2 and in L^p, $p > 1$, on compact subsets of \mathbb{C}.

Since

$$C_{n,k}(z) := C^{\mu_{n,k}}(z) = \frac{1}{n} \frac{Q'_{n,k}(z)}{Q_{n,k}(z)}, \quad (1.3)$$

we are equivalently interested in the behavior of $C_{n,k}$ as $n \to \infty$. Hence, the proof of convergence of these sequences and the description of their limits constitute an extension of the theorem of Stahl to the context of HP Polynomials. In this generality this problem is completely open, and even a reasonable approach to its solution is not clear. The most general results so far have been obtained for the case of the type II HP polynomials for two functions ($s = 2$), each one with two branch points [3], and even these results are a consequence of the strong asymptotics established using the Riemann-Hilbert method, which is a clear overkill if we are only interested in the zero asymptotics.

Thus, here we restrict our attention to a specific class of functions, general enough to be interesting, but for which we can put forward a strategy
for studying the weak asymptotics. Namely, for a fixed set \(A = \{a_1, \ldots, a_p\} \) of \(p \geq 2 \) distinct points let

\[
L_A = \left\{ f(z) = f(z; \alpha) := \prod_{j=1}^{p} (z - a_j)^{\alpha_j} : \alpha_j \in \mathbb{C} \setminus \mathbb{Z}, \quad \sum_{j=1}^{p} \alpha_j = 0 \right\}.
\]

By \(L \) we denote the union of all classes \(L_A \) for all finite sets \(A \). Observe that \(L \) is a subclass of the so-called \textit{semiclassical} family, see the definition below. Since each \(f \in L \) is regular at infinity, for convenience we always fix its branch there as \(f(\infty) = 1 \).

With this convention the following result holds true, which shows that we can associate with the HP polynomials for a vector of functions from \(L \) a linear differential equation with polynomial coefficients, whose fundamental system of solutions can be build using the Hermite–Padé polynomials:

Theorem 1.1. For any vector \(f = (f_0 \equiv 1, f_1, \ldots, f_s) \), \(f_k \in L \), \(k = 1, \ldots, s \), and any \(n \in \mathbb{N} \) each of the following \(s + 1 \) functions

\[Q_{0,n}, Q_{1,n}f_1, \ldots, Q_{s,n}f_s \]

defined by (1.1) satisfies a linear differential equation

\[
\Pi_s(z)w^{(s)} + \Pi_{s-1}(z)w^{(s-1)} + \cdots + \Pi_1(z)w' + \Pi_0(z)w = 0,
\]

with polynomial coefficients \(\Pi_k(z) = \Pi_{k,n}(z) \) depending on \(n \), whose degrees are jointly bounded by a value depending only on the number of branch points of the component \(f_k \) of \(f \).

It follows from the definition that the reminder \(R_n \) defined by (1.1) is also a solution of the equation (1.5).

Linear ordinary differential equations (ODE) with polynomial coefficients are one of the central topics in classical analysis, and in particular, the problem of existence of polynomial solutions for a given equation is well known. For a second order equations these polynomial solutions are called the Heine–Stieltjes (HS) polynomials (see [44, § 6.8]). For relatively recent important developments in the theory of HS polynomials see, e.g. [24, 26, 38], and also [9, 39, 45, 46, 47] for the special case of the so-called Heun polynomials.

From this perspective, Theorem 1.1 can be viewed as a construction of a class of higher order differential equations, which \textit{a priori} have polynomial solutions, as well as a fundamental system of “quasi-polynomial” solutions.
of the form $Q_{n,k}f_k$, for $f_k \in \mathcal{L}$, that constitute a direct generalization of the HS polynomials.

The proof of Theorem 1.1 is presented in Section 3.1. It is based on
identities for the Wronskians (method which goes back to Riemann and Darboux, see [7] for further references) and strongly relies on the fact that
any function $f \in \mathcal{L}$ is \textit{semiclassical}: it satisfies the Pearson-type equation

$$\frac{f'}{f}(z) = \sum_{j=1}^{p} \frac{\alpha_j}{z - a_j},$$

or in other words, f is a solution of the first order differential equation $Af' - Bf = 0$ where the roots of the polynomial A are the branch points of f and $\deg B \leq \deg A - 2$. This method is well known for Padé polynomials [7, 30].

For a special choice of the vector f, which goes back again to the original
ideas of Hermite, we can be more specific. Namely, let $f \in \mathcal{L}$; a vector of
the form

$$f = (1, f, f^2, \ldots, f^s)$$

(1.6)
is a particular instance of the so-called \textit{Nikishin system} (of functions). Condition (1.1) defining the type I Hermite–Padé polynomials for f now takes the form

$$R_n(z) := (Q_{n,0} + Q_{n,1}f + Q_{n,2}f^2 + \cdots + Q_{n,s}f^s)(z) = O\left(\frac{1}{z^{sn+s}}\right), \quad z \to \infty,$$

(1.7)

with the assumptions that all $\deg Q_{n,j} \leq n$ and not all $Q_{n,j}$ are $\equiv 0$.

Obviously, Theorem 1.1 applies in this case too, so we get an ODE of the form (1.5) for the Nikishin system (1.6). However, even in this situation
the number of accessory parameters in the coefficients of the equation (1.5)
makes the problem virtually intractable. Thus, we consider in more detail
the case $s = 2$, i.e.,

$$f = (1, f, f^2).$$

(1.8)

Let $\mathcal{A} = \{a_1, \ldots, a_p\}$, $p \geq 2$, be the set of the pairwise distinct branch points of f, so that $f \in \mathcal{L}_\mathcal{A}$. For the sake of simplicity, we will assume initially that $\deg Q_{n,k} = n$ for all $k \in \{0, 1, 2\}$, and that the order of the zero of R_n at infinity is exactly $2n + 2$. In the established terminology this means that
such $n \in \mathbb{N}$ are \textit{normal indices}. If f is such that every $n \in \mathbb{N}$ is normal, we
say that the system (1.6) is \textit{perfect} (see [8, 10]).
Theorem 1.2. Let $A = \{a_1, \ldots, a_p\}$, $p \geq 2$, be a set of pairwise distinct points, $f \in L_A$, and $Q_{n,j}$, $j = 0, 1, 2$, be the type I Hermite–Padé polynomials for the system $f = (1, f, f^2)$, under the assumption that these functions are rationally independent.

Then functions $Q_{n,j}f^j$, $j = 0, 1, 2$, constitute three independent solutions of the differential equation

$$A^2Hw''' + A\{3(A' - B)H - AH'\}w'' - 3(n-1)(n+2)Fw' + 2n(n^2 - 1)Gw \equiv 0,$$

where

$$A(z) = \prod_{j=1}^{p}(z - a_j), \quad B = Af'/f \in \mathbb{P}_{p-2}.$$ (1.10)

If $n \in \mathbb{N}$ if normal, then $H = H_n(z) = z^{3p-6} + \cdots \in \mathbb{P}_{3p-6}$, $F = F_n(z) = z^{5p-8} + \cdots \in \mathbb{P}_{5p-8}$, and $G = G_n(z) = z^{5p-9} + \cdots \in \mathbb{P}_{5p-9}$ are some polynomials dependent from n.

It follows by definition that the remainder R_n is also a solution of (1.9).

The derivation of the zero asymptotics for the HP polynomials in the situation of Theorems 1.1 and 1.2 is based on the substitution $w_n = \exp\left(n \int z v_n(t) dt\right)$ (equivalently, $v_n = \frac{1}{n} w'_n/w_n$), where w_n is a solution of the ODE. This reduces the equation to a “compact” form (generalized Ricatti), for which all limit equations are purely algebraic. This argument can be carried through along convergent subsequences of functions $C_{n,k}$ (or equivalently, of weakly convergent subsequences of zero counting measures). However, for $p > 2$ the existence of non-trivial set of accessory parameters in the coefficients of the differential equation (H and G in the case of (1.9)) does not allow to show that the limit exists along the whole sequence $n \in \mathbb{N}$, without appealing to some deeper arguments.

The situation in its full generality is so complex that we start our discussion in Section 2 with the case of Padé approximants ($s = 1$). In this situation the accessory parameters still exist and constitute a problem, but the underlying Riemann surface governing the asymptotics is hyperelliptic, which makes the analysis if not simple but at least tractable.

The second case that can be fully understood is of (1.8) with $p = 2$, that is, when function f has only 2 branch points. Without loss of generality they can be clearly taken to be ± 1, so that we consider

$$f(z) = f(z; \alpha) = \left(\frac{z - 1}{z + 1}\right)^{\alpha}, \quad 2\alpha \in \mathbb{C} \setminus \mathbb{Z}.$$ (1.11)
Observe that f can be extended to a holomorphic function in $\mathbb{C} \setminus [-1,1]$ satisfying $f(\infty) = 1$.

For this function we consider the Hermite–Padé polynomials of type I for the system $f = (1, f, f^2)$, that satisfy

$$R_n(z) := \left(Q_{n,0} + Q_{n,1}f + Q_{n,2}f^2 \right)(z) = \mathcal{O}\left(\frac{1}{z^{2n+2}} \right), \quad z \to \infty, \quad (1.12)$$

with the assumptions that all $\deg Q_{n,j} \leq n$ and not all $Q_{n,j}$ are $\equiv 0$.

Now the statement of Theorem 1.2 can be made more precise:

Theorem 1.3. Let f be the holomorphic branch of the function (1.11) at infinity, normalized by the condition $f(\infty) = 1$, and let $Q_{n,j}, j = 0,1,2$, be the type I Hermite–Padé polynomials for the system $f = (1, f, f^2)$. Then $Q_{n,0}, Q_{n,1}f$ and $Q_{n,2}f^2$ (and hence, also the remainder R_n) satisfy the same differential equation:

\[
(z^2 - 1)^2w''' + 6(z^2 - 1)(z - \alpha)w'' \\
- \left[3(n-1)(n+2)z^2 + 12\alpha z - (3n(n+1) + 8\alpha^2 - 10) \right]w' \\
+ 2\left[n(n^2 - 1)z + \alpha(3n(n+1) - 8) \right]w = 0.
\]

(1.13)

Furthermore, polynomial $Q_{n,2}$ is a solution of the differential equation

\[
(z^2 - 1)^2w''' + 6(z^2 - 1)(z + \alpha)w'' \\
- \left[3(n-1)(n+2)z^2 - 12\alpha z - (3n(n+1) + 8\alpha^2 - 10) \right]w' \\
+ 2\left[n(n^2 - 1)z - \alpha(3n(n+1) - 8) \right]w = 0.
\]

(1.14)

Remark 1.4. Observe that the ODE (1.14) is obtained from equation (1.13) by replacing α by $-\alpha$.

The absence of accessory parameters in the coefficients of the ODE in Theorem 1.3 allows us to obtain an explicit formula for the limit zero distribution of the HP polynomials. In order to formulate the assertion, it is convenient to introduce a different branch of the function f from (1.11); namely, let in what follows

$$f_0(z) = \left(\frac{1-z}{1+z} \right)^\alpha, \quad z \in \mathbb{C} \setminus F, \quad F = \mathbb{R} \setminus (-1,1), \quad (1.15)$$

denote the holomorphic branch in $\mathbb{C} \setminus F$, fixed by $f_0(0) = 1$. Let us also define the form

$$\rho_n(z) = Q_{n,1}(z) + 2\cos(\alpha\pi)Q_{n,2}(z)f_0(z).$$

We have:
Theorem 1.5. Under the assumptions of Theorem 1.3, let \(\alpha \in \mathbb{R}, |\alpha| \in (0, 1/2) \). Then all the zeros of polynomials \(Q_{n,k} \) belong to \(\mathbb{R} \setminus [-1, 1] \).

Moreover, there exist two unit measures on \(\mathbb{R} \), \(\lambda \) supported on \(E = [-1, 1] \), and \(\nu \) supported on \(F = \mathbb{R} \setminus (-1, 1) \), such that the normalized zero counting measures \(\mu_{n,k}, k = 0, 1, 2 \), defined in (1.2), converge to \(\nu \), while the normalized zero counting measure of \(\rho_n \),

\[
\frac{1}{2n} \mu_n(p_n) = \frac{1}{2n} \sum_{\rho_n(x) = 0} \delta_x
\]

(with zeros accounted according to their multiplicity) converges to \(\lambda \).

Measures \(\nu \) and \(\lambda \) are absolutely continuous, with the densities

\[
\nu'(x) = \frac{\sqrt{3}}{2\pi} \frac{1}{\sqrt{x^2 - 1}} \left(\frac{1}{\sqrt{|x|} - 1} - \frac{1}{\sqrt{|x|} + 1} \right), \quad x \in \mathbb{R} \setminus (-1, 1), \tag{1.16}
\]

\[
\lambda'(x) = \frac{\sqrt{3}}{4\pi} \frac{1}{\sqrt{1 - x^2}} \left(\frac{1}{\sqrt{1 - x}} + \frac{1}{\sqrt{1 + x}} \right), \quad x \in (-1, 1). \tag{1.17}
\]

Remark 1.6. If \(\alpha \in \mathbb{C}, |\alpha| \in (0, 1/2) \), then not necessarily all zeros of \(Q_{n,k} \) are real; however, the asymptotics (1.16)–(1.17) remains valid.

It follows from the results and methods of [35, 36] that the limit zero distributions \(\lambda \) and \(\nu \) above can be characterized by an equilibrium problem involving mixed potentials, as follows. For a measure \(\mu \) on \(\mathbb{C} \) we denote by

\[
V^\mu(z) = \int \log \frac{1}{|z - t|} d\mu(t)
\]

its logarithmic potential. Furthermore, for \(F = \mathbb{R} \setminus (-1, 1) \), let \(g_F(z, t) \) be the Green function for the domain \(\Omega = \mathbb{C} \setminus F \) with pole at \(t \); for a measure \(\mu \) supported in \(\Omega \),

\[
G^\mu_F(z) = \int_E g_F(z, t) d\mu(t)
\]

defines its Green potential (with respect to \(\Omega \)).

Then \(\lambda \) in Theorem 1.5 is the unique probability equilibrium measure supported on the interval \(E = [-1, 1] \) for the mixed Green-logarithmic potential, characterized by the following identity:

\[
3V^\lambda(x) + G^\lambda_F(x) \equiv \gamma_E = \text{const}, \quad x \in E. \tag{1.18}
\]

Furthermore, \(\nu \) in Theorem 1.5 is the balayage of \(\lambda \) from \(\Omega \) onto \(F \) (see e.g. [19] or [37] for the definition of balayage).
Equivalently, \(\nu \) is the probability equilibrium measure in the external field
\[
\psi(x) = 3g_E(x, \infty) = 3 \log \left(|x| + \sqrt{x^2 - 1} \right), \quad x \in F,
\]
that is,
\[
3V^\nu(x) + G^\nu_E(x) + \psi(x) \equiv \gamma_F = \text{const}, \quad x \in F, \tag{1.19}
\]
where again
\[
G^\nu_E(z) = \int_F g_E(z,t) \, d\nu(t),
\]
and \(g_E(z,t) \) is the Green function of \(\mathbb{C} \setminus E \) with pole at \(t \).

Equilibrium conditions above were used in [35, 36] to investigate the convergence of Hermite–Padé approximants for a set of functions \(1, f_1, f_2\) under the assumptions that the pair \(f_1, f_2\) forms a complex Nikishin system for a so-called Nuttall condenser \((E, F)\), where the plate \(E\) is a finite union of real intervals and the second plate \(F\) exhibits a symmetry known as the \(S\)-property. In [36] (see also [23]) it was shown that the Cauchy transform \(h = C^\nu\) is a solution of a cubic equation, so that the Nuttall condenser can be associated with a three sheeted Riemann surface (see also [17]).

Finally, the problem of the strong asymptotics of the HP polynomials seems to be open even in the simplest cases. For Padé approximants \((s = 1)\) such formulas can be fairly easily obtained from the differential equation (see Section 2) using the Liouville–Green approximation [31]. However, the Liouville–Green (a.k.a. Liouville-Steklov or WKB) method is not yet completely developed for higher order differential equations (for the case of two-point Padé approximants see [16]), so it is not clear how to obtain the strong asymptotics of \(Q_{n,2}\) using WKB even in the simplest case of (1.14) with all its coefficients explicit.

In the case of (1.11)–(1.12), since for \(|\alpha| \in (0, 1/2)\) the singularities of the function (1.11) at \(\pm 1\) are integrable, polynomials \(Q_{n,2}\) satisfy some \(biorthogonality\) relations on \(\mathbb{R} \setminus (-1, 1)\) with respect to the weight \(((x - 1)/(x+1))^{\alpha}\). It allows us to establish convergence of the ratio of HP polynomials, which as it follows from Theorem 1.5 will occur only on the complex plane cut along \(F = \mathbb{R} \setminus (-1, 1)\).

Theorem 1.7. Under the assumptions of Theorem 1.5 as \(n \to \infty\),
\[
\frac{Q_{n,1}}{Q_{n,2}}(z) \longrightarrow -2 \cos(\alpha \pi) f_0(z), \tag{1.20}
\]
\[
\frac{Q_{n,0}}{Q_{n,2}}(z) \longrightarrow f_0^2(z), \tag{1.21}
\]

9
Remark 1.8. Similar results for Markov functions have been proved recently in [20, 21, 22].

For convenience, Theorems 1.5 and 1.7 assumed that $|\alpha| \in (0, 1/2)$, although the crucial constraint is that neither α nor 2α are integers. Indeed, if $\alpha, 2\alpha \in \mathbb{R} \setminus \mathbb{Z}$, but $|\alpha| \notin (0, 1/2)$, then function f_0^2 (see the definition in (1.15)) is no longer integrable on the interval E. By multiplying the defining relation (1.12) by a suitable real polynomial of a fixed degree, say m, we can reduce the problem to the previously analyzed situation of an integrable f_0, at the cost of losing m orthogonality conditions satisfied by $Q_{n,j}$ and R_n (see Section 4). Although the arguments that lead to the proof of the limit zero distribution in Theorem 1.7 still apply in this case (so (1.16) and (1.17) are valid as long as $\alpha, 2\alpha \in \mathbb{R} \setminus \mathbb{Z}$), a finite number of the zeros of the polynomials $Q_{n,j}$ is now out of our control. In consequence, instead of a uniform convergence as in Theorem 1.7 we can claim (1.20) and (1.21) in capacity only.

We can extend these conclusions even further, to the case when $\alpha, 2\alpha \in \mathbb{C} \setminus \mathbb{Z}$; this is subject of a manuscript in preparation.

The proof of Theorem 1.7, carried out in Section 4.2, relies on the existence of a Riemann surface with the so-called Nuttall’s canonical partition (see [29]). As a consequence, we conclude that for the remainder R_n, defined by (1.12), there exists the limit $g(z) = \lim(1/n) \log |R_n(z)|$, which is a single-valued harmonic function on this Riemann surface with the prescribed behavior at infinity on each sheet of \mathcal{R} (what we call the real g-function of the Riemann surface \mathcal{R}):

Definition 1.9. Let \mathcal{R} be a $(s+1)$-sheeted compact Riemann surface, and $\pi : \mathcal{R} \to \mathbb{C}$, $\pi(\zeta) = z$, $\zeta \in \mathcal{R}$, its canonical projection. For $z \in \mathbb{C}$ we use the notation $\pi^{-1}(z) = \{\zeta^{(0)}, \zeta^{(1)}, \ldots, \zeta^{(s)}\}$. The real g-function $g = g_{\mathcal{R}}$ on \mathcal{R} is defined as a function harmonic on the finite part of \mathcal{R} and satisfying conditions

$$
g(\zeta) = -s \log |z| + \mathcal{O}(1), \quad \zeta \to \infty^{(0)},$$
$$
g(\zeta) = \log |z| + \mathcal{O}(1), \quad \zeta \to \infty^{(j)}, \quad j = 1, \ldots, s,$$
$$
g(\zeta^{(0)}) + g(\zeta^{(1)}) + \cdots + g(\zeta^{(s)}) = 0,$$

with

$$\pi^{-1}(\infty) = \{\infty^{(1)}, \ldots, \infty^{(s+1)}\}.$$

Such a function exists and is unique.
Furthermore, any function G on \mathcal{R} such that $\text{Re} G = g$ is the \textit{complex g-function} of \mathcal{R}, and can be expressed as an Abelian integral of the third kind.

In theory, the considerations above can be extended to the most general setting of HP approximants defined by (1.7) or even (1.1), with $f_j \in \mathcal{L}$, by saying that the limit of any convergent subsequence of $(1/n) \log |R_n(z)|$ is the real g-function corresponding to certain $(s+1)$-sheeted Riemann surface \mathcal{R}_{s+1} associated with f. Moreover, all limits of all the Cauchy transforms (1.3) along the same subsequence are rational functions on the same Riemann surface \mathcal{R}_{s+1}.

Finally, if \mathcal{R}_{s+1} can be uniquely prescribed by some additional conditions we conclude that the whole sequence $(1/n) \log |R_n(z)|$ converges. Such a condition could be formulated in terms of the zero-level set $\{g(z) = 0\}$ and branch types of functions in f.

A complete implementation of the plan outlined above in the most general setting is rather a program for a future. Certain assertions needed for formal justification of this program are not completely proved at the moment, and volume restrictions prevent us from presenting even the main details related to general case in this paper. Instead, we discuss next a version of our approach for the case $s = 1$, that is, for the Padé approximants, situation still far from being trivial. As it was mentioned, the Riemann surfaces related to this case are hyperelliptic and this is an essential simplification. Also, all facts related to our method for $s = 1$ can be obtained as corollaries of the Stahl’s theorem. However, we intend to extend the method to the study of the Hermite–Padé polynomials where we lack any analogue of the Stahl’s theorem. It turns out that without recurring to this theorem even the case of Padé polynomials presents challenges.

\textit{Remark} 1.10. These results were in part announced in [23].

2 Padé polynomials

We start the discussion illustrating our approach in the simplest situation, when $s = 1$ and $f = (1, f)$ in (1.1). This corresponds to the \textit{Padé approximants} to the function f, or rather, to its analytic germ at infinity; recall that without loss of generality we assume that $f(\infty) = 1$, so that

\[f(z) = 1 + \sum_{m=1}^{\infty} \frac{c_m}{z^m}. \] (2.1)
It is customary to use for the polynomials defined in (1.1) the notation $P_n = -Q_{0,n}$ and $Q_n = Q_{1,n}$, so that we have the conditions $P_n, Q_n \in \mathbb{P}_n$, $Q_n \not\equiv 0$, and

$$R_n(z) = (Q_nf - P_n)(z) = \frac{M_n}{z^{n+1}} \left(1 + \mathcal{O} \left(\frac{1}{z} \right) \right), \quad z \to \infty.$$ (2.2)

Polynomials P_n and Q_n (not uniquely defined by (2.2)), are called the Padé polynomials (Q_n are Padé denominators), and the rational function P_n/Q_n (which is uniquely defined) is the Padé approximant to f of order n. Recall that an index n is called normal if $\deg Q_n = n$ and $M_n \not\equiv 0$ in (2.2).

Padé approximants constitute a classical method of rational approximation of analytic functions. They are the best local approximations to a power series or, alternatively, they are convergents of a continued fraction (Jacobi or Chebyshev fraction) to this series. A systematic study of such fractions was started in the 18th century by Euler, Lagrange and others, although the ground of the analytic theory was laid in the 19th century in the works of Hermite, Chebyshev and their students and followers, such as Padé, Markov, Stieltjes and others (see e.g. [4] and a recent review [1]).

2.1 The differential equation

As before, we particularize our analysis to the case of a function $f \in \mathcal{L}_A$, where $A = \{a_1, \ldots, a_p\}$, $p \geq 2$, and a_j are pairwise distinct. The following theorem belongs to Laguerre, although its derivation, also classical, is different from the original one.

Theorem 2.1 (see [35]). Let function $f(z) \in \mathcal{L}_A$, $A = \{a_1, \ldots, a_p\}$, $p \geq 2$, be given by (2.1), with polynomials A and B defined by (1.10). If P_n, Q_n are the associated Padé polynomials of degree n, and R_n the remainder (2.2), then there exist polynomials H_n and C_n, and a constant N (in general, all depending on n) such that functions $w = P_n$, $w = Q_nf$ and $w = R_n$ are solutions of the differential equation with polynomial coefficients

$$AH_nw'' + \{(A' - B)H_n - AH_n'\}w' - NC_nw = 0,$$ (2.3)

and $\deg(C_n) - \deg(H_n) \leq p - 2$.

Furthermore, if the index n is normal then

$$N = n(n+1), \quad H = H_n(z) = z^{p-2} + \cdots \in \mathbb{P}_{p-2}, \quad C = C_n = z^{2p-4} + \cdots \in \mathbb{P}_{2p-4}.$$
Remark 2.2. In connection with this result and method see [7, 27, 30] and [35, § 3, Theorem 3.1, formula (3.1)]).

Since \(f(\infty) = 1 \), substitution of \(\alpha_j \) for \(-\alpha_j\) is equivalent to dividing of both sides of (2.2) by \(f \). It follows that polynomial \(Q_n \) is a solution of the equation obtained from (2.3) by changing sign of all \(\alpha_j \), which basically replaces \(B \) by \(-B\).

Proof. We fix a neighbourhood \(U = \{ z : |z| > R \} \) of \(z = \infty \) where series (2.1) is convergent. If \(w(z) = c_1(Q_nf)(z)+c_2P_n(z) \) is any linear combination of functions \((Q_nf)(z)\) and \(P_n(z) \) then by the general theory, the associated Wronskian vanishes identically,

\[
W[w, P_n, Q_nf](z) \equiv \begin{vmatrix} w & w' & w'' \\ P_n & P'_n & P''_n \\ Q_nf & (Q_nf)' & (Q_nf)'' \end{vmatrix} \equiv 0, \ z \in U. \tag{2.4}
\]

Since \(W(z) \) is an analytic function, it must vanish identically in its whole domain of analyticity, \(\mathbb{C} \setminus \mathcal{A} \). Expanding the determinant along the first row yields the following second order differential equation with respect to \(w \), solved in particular by \(w = P = P_n, w = Qf = Q_nf \) and in consequence, by \(w = R = R_n \):

\[
W(z) = W_2(z)w'''(z) + W_1(z)w''(z) + W_0(z)w(z) = 0, \tag{2.5}
\]

where (we omit the explicit reference to \(n \))

\[
W_2(z) = \frac{P}{Qf} - \frac{P'}{(Qf)'} = \frac{P}{R} - \frac{P'}{R'} = \mathcal{O}\left(\frac{1}{z^2}\right) \quad \text{as} \quad z \to \infty, \tag{2.6}
\]

\[
-W_1(z) = \frac{P}{Qf} - \frac{P''}{(Qf)''} = \frac{P}{R} - \frac{P''}{R''} = \mathcal{O}\left(\frac{1}{z^3}\right) \quad \text{as} \quad z \to \infty, \tag{2.7}
\]

\[
W_0(z) = \left(\frac{P'}{(Qf)'} \frac{P''}{(Qf)''}\right) = \mathcal{O}\left(\frac{1}{z^4}\right) \quad \text{as} \quad z \to \infty. \tag{2.8}
\]

The second equality in each (2.6)–(2.8) is obtained by subtracting the first row of the determinant from the second one, and the order of zero for \(W_j \) at infinity is found using (2.2).

So far, (2.5)–(2.8) is just a set of straightforward identities. But now we use the semiclassical character of \(f \): we have \(A \frac{f'}{f} = Bf \) where \(A = z^p + \ldots \), \(B \in \mathbb{P}_{p-2} \) and further

\[
A^2 f'' = (B^2 + B'A - A'B)f = B_1f, \quad \text{where} \quad B_1 \in \mathbb{P}_{2p-3}.
\]
Taking this into account we multiply equation (2.4) by \(A^2/f \) reducing it to an equation with polynomial coefficients

\[
\frac{A^2(z)}{f(z)} W(z) = \Pi_2(z)w'' + \Pi_1(z)w' + \Pi_0(z)w \equiv 0, \quad z \in \mathbb{C} \setminus A.
\]

(2.9)

Consider for instance the coefficient \(\Pi_2 \); from (2.6) we obtain

\[
\Pi_2(z) = \frac{A^2}{f} W_2(z) = A \left| \frac{P}{AQ} \frac{P'}{A(Qf)'/f} \right|(z) = A \left| \frac{P}{AQ} \frac{P'}{AQ' + BQ} \right|(z) = A(z) H(z),
\]

(2.10)

where \(H \) is a polynomial; by the right hand side of (2.6), \(H \in \mathbb{P}_{p-2} \). In a similar vein it is established that \(\Pi_j = \left(\frac{A^2}{f} \right) W_j \in \mathbb{P}_{2p-4+j}, \quad j = 0, 1, 2. \)

Furthermore, an easy consequence of (2.6) and (2.7) is that \(W_2' = -W_1 \).

From here,

\[
\Pi_1(z) = -\left(\frac{f}{A^2} \Pi_2 \right)' \frac{A^2}{f} = (A' - B)H - AH'.
\]

(2.11)

Finally, for a normal index \(n \), (2.9) has a polynomial solution \(P \) of degree exactly \(n \). Substituting \(P \) into the equation one can calculate the coefficient of the highest power of \(z \) (which is \(z^{n+2p-4} \)) and find that the leading coefficient of \(\Pi_0 \) is \(N = -n(n+1) \).

Theorem 2.1 is proved.

\[\square\]

Remark 2.3. Arguments presented in the proof of theorem above show that if we do not assume normality, then condition (2.2) should be replaced by

\[
R_n(z) = \frac{M_n}{z^{n+1+\ell_n}} \left(1 + O \left(\frac{1}{z} \right) \right), \quad z \to \infty,
\]

(2.12)

with \(0 \leq \ell_n \leq p-2 \), so that all indices \(n \in \mathbb{N} \) are almost perfect, according to the terminology of \cite{7}. Indeed, if in (2.12) we assume \(\ell_n \geq p-1 \) then by the arguments above we would obtain that in (2.3), \(\deg H < 0 \), that is \(h \equiv 0 \) and \(\Pi_1 = \Pi_0 = 0 \), which is not possible. It follows that for \(n' = \deg P_n = \deg Q_n \) we have \(n' \geq n - \ell_n \) and further \(N = n'(n' + 1) \geq n(n+1) - 2n\ell_n \).

Let us finally single out the simplest non-trivial case of Theorem 2.1 when \(f \in \mathcal{L}_A \), with \(A = \{a_1, a_2, a_3\} \). Then the coefficients for the normal indices in the differential equation (2.3) have the form \(H_n(z) = z - z_n \),
\[C_n(z) = (z - b_n)(z - v_n), \] where \(z_n, b_n, v_n \) are some parameters, so that equation (2.3) becomes

\[A(z)(z-z_n)w'' + ((A'-B)(z)(z-z_n) - A(z))w' - n(n+1)(z-b_n)(z-c_n)w = 0. \quad (2.13) \]

This was the equation used by J. Nuttall \[30\] to derive a formula of strong asymptotics for Padé polynomials and their remainder in the case \(f \in \mathcal{L}_A \), and which we discuss next in the general setting.

2.2 Asymptotics

The zero asymptotics of numerators and denominators of Padé approximants for functions with singularities constituting a set of zero capacity was derived in a seminal work of H. Stahl \[40, 41\], see the details below. However, the proof of Stahl’s theorem is based on rather sophisticated potential theoretical arguments, and has no simplification even for the semiclassical functions from \(\mathcal{L} \), for which we have the bonus of the Laguerre differential equation (2.3). It is tempting to use (2.3) to study the asymptotic behavior of the Padé polynomials, finding a simpler proof of Stahl’s result, at least for the class \(\mathcal{L} \).

The first attempt in this direction for non-classical situation, although not successful, is due to Laguerre himself \[18\]. A hundred years later J. Nuttall \[30\] repeated the attempt, this time successfully, even before the publication of Stahl’s results. Since the Laguerre differential equation is of order 2, it is natural to use the Liouville–Green (Liouville–Steklov or WKB) method, which actually yields even the strong asymptotics of the polynomials (at least, away from the support of the limiting zero counting measure).

However, in the case of functions \(f \in \mathcal{L} \) with \(p > 2 \), equation (2.3) has non-trivial accessory parameters \(H_n \) and \(C_n \) whose asymptotics is a priori not clear. Their behavior was conjectured by Nuttall first, and then rigorously proved for \(p = 3 \) in the pioneering work \[30\], where the crucial step relied on the Stahl’s theorem just appeared in \[41\]! Nuttall’s method was extended to the case of an arbitrary number of branch points in \[27\]. Again, asymptotics of the free parameters along full sequence \(n \) is obtained using Stahl’s theorem.

In the approach above the goal was the strong asymptotics, and the Olver’s lemma \[31\] played the key role. Now, interested in the weak asymptotics, we proceed slightly differently: we use the Ricatti substitution in (2.3) and take limits along converging subsequences, resulting in an algebraic, instead of a differential, equation.
Namely, substitution

\[w_n = \exp \left(\frac{1}{n} \int^z v_n(t) \, dt \right) \]

or, equivalently,

\[v_n = \frac{1}{n} \frac{w_n'}{w_n} \] \hspace{1cm} (2.14)

in equation (2.3) and division by \(AH_n \) reduces it to the Ricatti equation

\[- \frac{1}{n} v_n' = v_n^2 + s_n v_n + r_n,\] \hspace{1cm} (2.15)

where

\[s_n = \frac{1}{n} \left(\frac{A'}{A} - \frac{B}{A} - \frac{H_n'}{H_n} \right) v_n \quad \text{and} \quad r_n = -\frac{N}{n^2} \frac{C_n}{AH_n}. \] \hspace{1cm} (2.16)

Equation (2.15) has, in particular, solutions

\[v_n = \frac{P_n'}{nP_n}, \quad \frac{Q_n'}{nQ_n} + \frac{f'}{nf}, \quad \frac{R_n'}{nR_n}. \]

Due to the weak compactness of the zero-counting measures involved in the coefficients of the equation (2.15), we have that

\[\lim_{n \to \infty} v_n(z) \frac{n}{n} = \lim_{n} s_n(z) = 0 \quad \text{m}_2\text{-a.e.} \]

on compact subsets of \(\mathbb{C} \). Furthermore, \(N/n^2 \to 1 \) as \(n \to \infty \). Consequently,

Lemma 2.4. We have

\[\lim_{n} \left(v_n^2 - \frac{C_n}{AH_n} \right) = 0 \quad \text{m}_2\text{-a.e.} \]

on compact subsets of \(\mathbb{C} \).

In particular, this procedure will yield an algebraic (vs. a differential), and more precisely, a quadratic asymptotic expression.

The sequence of rational functions \(\frac{C_n}{AH_n} \) is compact in the \(\text{m}_2 \) convergence, with possible limits including identically \(\infty \) and 0; this happens if some zeros of \(C_n \) or \(H_n \) (or both) go to infinity. To handle such an event one has to use the spherical normalization of polynomials, and normalize the term \(v_n^2 \) accordingly.

Let us select convergent subsequences

\[C_n \to C \quad \text{and} \quad H_n \to H \quad \text{as} \quad n \in \Lambda \subset \mathbb{N}. \]

In the generic case we have \(\deg H = p - 2 \), \(\deg C = 2p - 4 \); otherwise, the degrees of \(C \) and \(H \) may be reduced. Eventually, this is not important since we have cancellation of possible large zeros of \(C_n \) and \(H_n \). More exactly,
Lemma 2.5. We have $C = VH$ where $V(z) = z^{p-2} + \ldots$.

This lemma is eventually a consequence of the fact that the only possible singularities of any solution of (2.3) are the zeros of A.

In [35] one can find the proof of a stronger assertion: for any large enough n we have representation $C_n = \tilde{H}_n V_n$ where $|\tilde{H}_n - H_n| = O(1/n)$ on compacts in \mathbb{C} provided that polynomials are spherically normalized.

However, as it was mentioned before, all these arguments work along subsequences of \mathbb{N}, and the uniqueness of the limiting polynomial V (and thus, of the asymptotic zero distribution) does not follow from this analysis. For $p > 2$ (see [27, 30]), uniqueness has been established so far recurring to the Stahl’s theorem on the weak asymptotics, that we briefly outline next. It is worth mentioning however a new approach, discussed in [33], which uses fixed points arguments to prove uniqueness of V.

Let us recall that for a function from the class \mathcal{L} Stahl’s theorem asserts that there exist a unique (up to subsets of capacity zero) compact set $F = F_f \subset \mathbb{C}$, which is a union of analytic arcs, with the following properties:

- the complement to F is connected,
- f is single-valued in $\mathbb{C} \setminus F$,
- the jump of f across any arc in F is not identically zero and, finally, the S-property holds:

$$\frac{\partial g}{\partial n_+}(z) = \frac{\partial g}{\partial n_-}(z), \quad z \in F^0,$$

where g denotes the Green function of $\mathbb{C} \setminus F$ with pole at infinity, and n_\pm are two oppositely directed normals to F^0, where F^0 is the union of open parts of arcs constituting F. Furthermore, the Robin (equilibrium) measure of such a compact F is precisely the weak-$*$ limit of the zero counting measures $\mu(Q_n)$ for the Padé denominators Q_n. It was proved also that the sequence of Padé approximants $\pi_n = P_n/Q_n$ associated with f converges to the function f in capacity in the complement to F; the exact rate of convergence in capacity was also determined.

The proof of the existence of such a set F_f relied on its characterization as the set of minimal capacity:

$$\text{cap}(F_f) = \min \{ \text{cap}(F) : f \text{ is holomorphic and single–valued in } \mathbb{C} \setminus F \}.$$

This extremal problem is close to the classical Chebotarev’s problem of minimal capacity in the class of all continua F on plane containing \mathcal{A}. For finite sets \mathcal{A} it was solved by Grotsch’s in 1930 [14]. Stahl’s result is more general even for finite sets \mathcal{A}; it is actually a theorem from the geometric function theory related to a version of a general moduli problem;
see [13]. For finite sets \(\mathcal{A} \) a simple solution of the existence problem based on max-min energy problem was given in [34]; see also [24] for a study of so-called critical measures in plane which present another generalized version of moduli problem. Stahl’s theorem was extended later to the case of the existence of an external field (or to a varying orthogonality) by Gonchar and Rakhmanov in [12], and to more complex equilibria in [6, 25]. It is worth mentioning also [5] where an analogue of Stahl’s theorem for the case of \(m \)-point Padé approximants was proved. In this situation the external field is given by unit negative charges supported at the \(m \) interpolation points, and as a consequence in a “generic case” the corresponding \(S \)-curve makes an optimal partition of the Riemann sphere into \(m \) domains centered at these \(m \) interpolation points.

The proof of the convergence assertions of Stahl’s theorem is based on the complex (non-hermittian) orthogonality conditions for Padé denominators \(Q_n \), of the form

\[\oint_F Q_n(z)z^k f(z) dz = 0, \quad k = 0, 1, \ldots, n - 1 \]

where integration is taken over any system of contours separating \(F \) from infinity.

We can describe the extremal set \(F_f \) in terms of trajectories of a quadratic differential: there exists a polynomial \(V(z) = V_f(z) = \prod_{i=1}^{b^2} (z - v_i) \) such that the quadratic differential \(-(V/A)(dz)^2 \) on the extended plane \(\mathbb{C} \) is closed: all its trajectories, given by

\[\frac{V(z)}{A(z)} (dz)^2 < 0 \]

are either closed contours or critical arcs, joining poles or zeros of \(AV \).

Function \(\sqrt{V(t)/A(t)} \) has a holomorphic branch in \(\Omega = \mathbb{C} \setminus F \) and the Green function for \(\Omega \) with pole at infinity can be written as

\[g(z) = \text{Re} \, G(z), \quad G(z) = \int_a^z \sqrt{V(t)/A(t)} \, dt, \quad (a \in \mathcal{A}), \quad (2.17) \]

where branch of the root is selected by the condition

\[\lim_{z \to \infty} z \sqrt{V(t)/A(t)} = 1. \]

Formula (2.17) shows that function \(g \) has a harmonic continuation to the hyperelliptic Riemann surface \(\mathcal{R} \) of the function \(\sqrt{VA} \), which is convenient
to interpret as a two sheeted branched covering over $\overline{\mathbb{C}}$. In fact, it is the real g-function of \mathcal{R}, while G is the corresponding complex g-function, in the sense of Definition 1.9.

Now, the problem is to prove that the Riemann surface \mathcal{R} is uniquely determined by the function f. We suggest a procedure consisting of two steps. The first step is the determination of the family of all Riemann surfaces associated with all functions $f \in \mathcal{L}_\mathcal{A}$ with a fixed set \mathcal{A} of branch points. This determination is made by using special properties of the g-functions associated with Riemann surfaces \mathcal{R} originated by compacta F_f.

It follows from Stahl’s theorem that the family of possible Riemann surfaces \mathcal{R} is finite. Independently of Stahl’s theorem we can assert this fact from the following perspective (we consider situation of common position).

Consider all hyperelliptic Riemann surfaces with $2p - 2$ quadratic branch points out of which p are fixed at zeros of \mathcal{A} and the remaining $p - 2$, not necessarily distinct and that we denote by $v_1, \ldots, v_{p - 2}$, are free; let’s

$$V(z) = \prod_{i=1}^{p-2} (z - v_i).$$

It turns out that the requirement that the derivative G' of the complex g-function can have poles only at \mathcal{A} singles out only a finite number of such polynomials V. Note that the formula $G' = \sqrt{V/A}$ above tells us that this must hold indeed for g-functions originated by Stahl’s compacta F_f. We assert that this property is characteristic for the S-compacta for functions with branch points at the roots of \mathcal{A}.

Next, it is clear that the extremal compact F_f is the projection of the zero level of $g_{\mathcal{R}}$, or, better to say, the zero level of $g_{\mathcal{R}}$ is the lifting of F_f onto \mathcal{R}, that is,

$$F^* = \{ \zeta \in \mathcal{R} : \ g(\zeta) = 0 \} = \pi^{-1}(F_f).$$

The selection of the unique Riemann surface associated with $f \in \mathcal{L}_\mathcal{A}$ is made using properties of the projection of the zero level of $g_{\mathcal{R}}$, which is F_f: this set of analytic arcs on the plane has to make f single valued in the complementary domain and also the jump of f across any those arcs must be not identically zero.

The uniqueness of such a Riemann surface implies convergence of the sequence R_n'/nR_n (and in consequence, of the sequence of counting measures for the Padé denominators) along the whole \mathbb{N}.

19
3 The differential equation for Hermite–Padé polynomials

The considerations of Section 2 will be extended here to the case of the Hermite–Padé approximants.

3.1 Proof of Theorem 1.1

From the definition (1.1) and the properties of \(\mathcal{L} \) we know that the remainder \(w(z) := R_n(z) \) is a multivalued analytic function in \(\mathbb{C} \), with a finite number of branch points. Any branch of this function in the neighborhood of infinity \(U = \{ z \in \mathbb{C} : |z| > R \} \) is a linear combination with constant coefficients of the functions \(Q_{n,j} f_j, j = 0, 1, \ldots, s \). We will drop the index \(n \) in the notations, and write them \(Q_j f_j \). It follows that any branch of \(w(z) := R(z) \) in \(U \) is a solution of the \(s \)-th order differential equation

\[
W(z) = \begin{vmatrix}
 w & w' & w'' & \ldots & w^{(s)} \\
 Q_0 & Q'_0 & Q''_0 & \ldots & Q^{(s)}_0 \\
 Q_1 f_1 & (Q_1 f_1)' & (Q_1 f_1)'' & \ldots & (Q_1 f_1)^{(s)} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 Q_s f_s & (Q_s f_s)' & (Q_s f_s)'' & \ldots & (Q_s f_s)^{(s)}
\end{vmatrix} \equiv 0, \quad z \in U,
\]

where \(f^{(k)} \) denotes the \(k \)-th derivative of \(f \). Observe that this is an \(s \)-th order differential equation with respect to \(w \), solved in particular by \(w = Q_j f_j \) and in consequence, by \(w = R = R_n \), so that

\[
W(z) = \begin{vmatrix}
 w & w' & w'' & \ldots & w^{(s)} \\
 Q_0 & Q'_0 & Q''_0 & \ldots & Q^{(s)}_0 \\
 Q_1 f_1 & (Q_1 f_1)' & (Q_1 f_1)'' & \ldots & (Q_1 f_1)^{(s)} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 R & R' & R'' & \ldots & R^{(s)}
\end{vmatrix} \equiv 0, \quad z \in U.
\]

Expanding these determinant along the first row yields

\[
W(z) = \sum_{j=0}^{s} W_j(z) w^{(j)}(z) = 0, \quad (3.1)
\]

where the coefficient \(W_j, j = 0, 1, \ldots, s \), is the minor obtained by deleting the first row and the \((j+1)\)-th column in the determinantal expression for
W. For instance,

\[
W_0(z) = \begin{pmatrix}
Q_0' & Q_0'' & \ldots & Q_0^{(s)} \\
(Q_1f_1)' & (Q_1f_1)'' & \ldots & (Q_1f_1)^{(s)} \\
\vdots & \vdots & \ddots & \vdots \\
(Q_sf_s)' & (Q_sf_s)'' & \ldots & (Q_sf_s)^{(s)} \\
R' & R'' & \ldots & R^{(s)}
\end{pmatrix} (z) = O \left(z^{-\frac{s(s+3)}{2}} \right), \quad z \to \infty,
\]

where we have used that \(Q_j \in \mathbb{P}_n \) and the asymptotics of \(f_j \) and \(R \) at infinity. Operating in the same fashion, we conclude that

\[
W_j(z) = O \left(z^{-\frac{s(s+3)}{2}+j} \right), \quad z \to \infty, \quad j = 0, 1, \ldots, s. \tag{3.2}
\]

The assumption that \(f_j \in \mathcal{L} \) implies that there exist a pair of polynomials, \(A_j \) and \(B_j \), \(A_j \) monic, and \(\deg(A_j) - \deg(B_j) \geq 2 \), such that

\[
\frac{f_j'}{f_j}(z) = \frac{B_j}{A_j},
\]

and thus,

\[
A^k_j f_j^{(k)} = B_{j,k} f_j, \quad k = 0, 1, 2, \ldots,
\]

where \(B_{k,j} \) are algebraic polynomials. A consequence is that

\[
\frac{A^k_j}{f_j} (Q_j f_j)^{(k)} \in \mathbb{P}, \quad k = 0, 1, \ldots, \quad j = 0, 1, \ldots, s.
\]

Hence, multiplying (3.1) by

\[
\prod_{j=0}^s \frac{A^s_j}{f_j^s}(z),
\]

we obtain the equivalent ODE of the form

\[
\prod_{j=0}^s \frac{A^s_j}{f_j^s}(z)W(z) = \sum_{j=0}^s \Pi_j(z)w^{(j)}(z) = 0,
\]

where all coefficients \(\Pi_j \) are polynomials. By (3.2), their degrees are jointly uniformly bounded.

This proves the theorem.
3.2 Proof of Theorem 1.2

Using the arguments of the proof of Theorem 1.1 we conclude that

\[
W(z) = \begin{vmatrix}
 w & w' & w'' & w''' \\
 Q_0 & Q'_0 & Q''_0 & Q'''_0 \\
 Q_1 f & (Q_1 f)' & (Q_1 f)'' & (Q_1 f)'''
 Q_2 f^2 & (Q_2 f^2)' & (Q_2 f^2)'' & (Q_2 f^2)'''
\end{vmatrix} \equiv 0, \quad z \in U = \{ z \in \mathbb{C} : |z| > R \},
\]

(3.3)

where we again omit the subindex \(n \). From the assumption that \(f \in L_A \), \(A = \{a_1, \ldots, a_p\}, p \geq 2 \), it follows that this identity can be extended to \(\mathbb{C} \setminus A \). Furthermore, there exist algebraic polynomials \(B, C \) and \(D \) with complex coefficients, such that

\[
A f' = B f, \quad A^2 f'' = C f, \quad A^3 f''' = D f, \quad A(z) = \prod_{j=1}^{p} (z - a_j).
\]

(3.4)

As in the proof of Theorem 1.1, after multiplying \(W \) by \(A^6/f^3 \) we get a differential equation with polynomial coefficients. Actually, it is sufficient to multiply \(W \) by \(A^5/f^3 \). Indeed, derivatives of order three are all located in the last column of the determinant in (3.3), and therefore, each coefficient in first row of decomposition contains only one such term.

Thus, we have proved that

\[
\frac{A^5}{f^3} W(z) = \Pi_3(z)w''' + \Pi_2(z)w'' + \Pi_1(z)w' + \Pi_0(z)w \equiv 0, \quad z \in \mathbb{C} \setminus A,
\]

(3.5)

where \(\Pi_j \in \mathbb{P} \). The generic case conditions imply that \(\deg Q_j = n, j = 0, 1, \) and \(R(z) = M_n/z^{2n+2} + \ldots, \) where \(M_n \neq 0 \). It implies that for polynomials \(\Pi_j \) we have \(\deg \Pi_j = 5p - 9 + j, j = 0, 1, 2, 3 \). Thus, those polynomials depend on \(n \) but their degrees are uniformly bounded.

It is easy to see that for \(\Pi_3 \) we have representation

\[
\Pi_3(z) = A_n^2(z)H(z),
\]

where \(H(z) = H_n(z) = z^{3p-6} + \cdots \in \mathbb{P}_{3p-6} \). Next, using the fact coefficients of equation (3.5) were by first row decomposition of Wronskian we obtain (with arguments similar to what was done in Section 2.1) a representation for \(\Pi_2 \):

\[
\Pi_2 = -\left(\frac{f^3}{A^5} \Pi_3 \right)'' A^5 = -\left(\frac{f^3}{A^3} H \right)'' A^5 = A\{ B + (A' - B)H - AH' \}.
\]
Finally, taking into account the fact that equation (3.5) has a polynomial \(Q_0\) of degree \(\deg Q_0 = n\), as well as another solution with the leading term at infinity of the form \(R_n^*(z) = 1/z^{2n+2} + \ldots\), we arrive at two equations for the leading coefficients of the polynomials \(\Pi_1 \in \mathbb{P}_{5p-8}\) and \(\Pi_0 \in \mathbb{P}_{5p-9}\):

\[
\Pi_1(z) = -3(n-1)(n+2)\Pi_1^*(z), \quad \Pi_0(z) = 2(n-1)n(n+1)\Pi_0^*(z).
\]

Theorem 1.2 is proved.

3.3 Proof of Theorem 1.3

We turn to considering the case \(p = 2\), \(a_1 = -1\), \(a_2 = 1\) and \(f(z) = f(z; \alpha) = ((z-1)/(z+1))^{2\alpha}, 2\alpha \in \mathbb{C} \setminus \mathbb{Z}\).

It is directly verified that in this particular case we have \(H(z) \equiv 1\), \(\Pi_2(z) = 6A_2(z)(z-\alpha) = 6(z^2-1)(z-\alpha)\).

Next, we prove that for polynomials \(\Pi_1 = \Pi_1(z; \alpha)\) and \(\Pi_0 = \Pi_0(z; \alpha)\) the following equalities are valid:

\[
\Pi_1(-z; -\alpha) = \Pi_1(z; \alpha), \quad -\Pi_0(-z; -\alpha) = \Pi_0(z; \alpha),
\]

\[
\Pi_1(z; -\alpha) = \Pi_1(z; \alpha) - 3b_1(z) + 6(z-\alpha)b_0,
\]

\[
A_2(z)\Pi_0(z; -\alpha) = A_2(z)\Pi_0(z; \alpha) + b_2(z) + 6(z-\alpha)b_1(z) + \Pi_1(z; \alpha)b_0,
\]

(3.6)

where polynomials \(b_0 = \text{const}, b_1(z), b_2(z)\) are defined from the following equations (see (3.4)):

\[
A_2(f^2)' = 4\alpha f^2 = b_0 f^2, \quad A_2(f^2)'' = 8\alpha(2\alpha - z)f^2 = b_1(z)f^2,
\]

\[
A_2^2(f^2)''' = 8\alpha((2\alpha - z)4\alpha - 4A_2'(2\alpha - z) - A_2)f^2 = b_2(z)f^2.
\]

(3.7)

We write equation (1.13) in the form

\[
A_2^2w''' + \Pi_2w'' + \Pi_1w' + \Pi_0w = 0,
\]

(3.8)

where \(\Pi_2(z) = 6(z-\alpha)A_2(z), A_2(z) = (z^2 - 1)\) and \(\Pi_1 \in \mathbb{P}_{5p-8} = \mathbb{P}_2, \Pi_2 \in \mathbb{P}_{5p-9} = \mathbb{P}_1\). In particular, polynomial \(\Pi_2(z)\) is known. Let \(\Pi_1(z) = k_2z^2 + d_2z + c_2, \Pi_0(z) = k_1z + c_1\); in the generic case we have \(k_j \neq 0, d_2, c_1, c_2\), functions \(Q_{n,0}, Q_{n,1}, f, Q_{n,2}, f^2\) and \(R_n\) are solutions of this equation, and their monic versions satisfy \(Q_{n,0}^*(z) = z^n + \ldots, Q_{n,2}^*(z) = z^n + \ldots, R_n^*(z) = 1/z^{2n+2} + \ldots\). Substitute \(w = Q_0\) in (3.8); then the left hand side of the equation is a polynomial. Equating its coefficient at \(z^{n+1}\) (the leading coefficient) to zero we obtain

\[
n(n-1)(n+4) + nk_2 + k_1 = 0.
\]

(3.9)
Similarly, substituting $w = R_n^*$ and equating to zero the coefficient at $1/z^{2n+1}$ we get another equation for k_1, k_2:

$$-4(n+1)(2n+3)(n-1) - 2(n+1)k_2 + k_1 = 0. \tag{3.10}$$

Solving system (3.9) and (3.10) for k_1 and k_2 we obtain

$$k_1 = 2(n-1)n(n+1) = 2(n^2 - 1)n, \quad k_2 = -3(n-1)(n+2).$$

From normalization $f(\infty; \alpha) = 1$ and identity $f(z; -\alpha) = 1/f(z; \alpha)$, by dividing both sides of the definition (1.7) by f^2 we come to $Q_{n,2}^{(-\alpha, \alpha)}$. Therefore, the polynomial $Q_{n,2}$ satisfies a differential equation which is obtained from (3.8), by replacing α by $-\alpha$. The modified equation is

$$A_2^2 \tilde{w}''' + \tilde{\Pi}_2 \tilde{w}'' + \tilde{\Pi}_1 \tilde{w}' + \tilde{\Pi}_0 \tilde{w} = 0, \tag{3.11}$$

where $\tilde{\Pi}_2(z) = 6(z + \alpha)A_2(z)$, $\tilde{\Pi}_j(z) = \Pi_j(z; -\alpha)$, $j = 1, 2$.

Next, substitute the solution $w = Q_{n,2} f_2$ where $f_2 = f^2 \in \mathcal{L}_{(-1,1)}$ in (3.8) and regroup terms so that equation takes form (3.11) with solution $\tilde{w} = Q_{n,2}$. This yields the following relation for coefficients Π_j and $\tilde{\Pi}_j$ of equations (3.8) and (3.11):

$$3A_2 B_0 + \Pi_2 = \tilde{\Pi}_2,$$

$$3B_1 + 2\Pi_2 B_0 A_2 + \Pi_1 = \tilde{\Pi}_1, \tag{3.12}$$

$$B_2 A_2^{-2} + \Pi_2 B_1 A_2^{-2} + \Pi_1 B_0 A_2^{-2} + \Pi_0 = \tilde{\Pi}_0, \tag{3.13}$$

where $\Pi_2(z) = 6(z - \alpha)A_2(z)$,

$$A_2 f_2' = 4\alpha f_2 = B_0 f_2, \quad A_2^2 f_2'' = 8\alpha(2\alpha - z)f_2 = B_1 f_2,$$

$$A_2^3 f_2''' = f_2 8\alpha(2\alpha - z)4\alpha - 4B_2 A_2'(2\alpha - z) - A_2 = B_2 f_2. \tag{3.14}$$

It follows from (3.12) and (3.14)

$$24\alpha z + \Pi_1(z) = \tilde{\Pi}_1(z) \equiv \Pi_1(z; -\alpha). \tag{3.15}$$

Using the symmetry $f(-z; -\alpha) = f(z; \alpha)$ and the differential equations (3.8) and (3.11), we get

$$\Pi_1(-z; -\alpha) = \Pi_1(z; \alpha), \quad \Pi_0(-z; -\alpha) = -\Pi_0(z; \alpha). \tag{3.16}$$
Therefore, from (3.15) and (3.16) we obtain

\[
\Pi_1(z; \alpha) = k_2 z^2 - 12\alpha z + c_2, \quad \text{where} \quad k_2 = -3(n - 1)(n + 2), \\
\Pi_0(z; \alpha) = k_1 z + c_1, \quad \text{where} \quad k_1 = 2(n - 1)n(n + 1).
\]

Taking the limit as \(z \to \infty \) in (3.13) and with the equation \(c_1(-\alpha) = -c_1(\alpha) \) (following from (3.16)) we find that

\[
c_1(\alpha) = 2\alpha(3n(n + 1) - 8).
\] (3.17)

Similarly, evaluating (3.13) at \(z = 0 \) and combining it with (3.17) it follows that

\[
c_2(\alpha) = 3n(n + 1) + 8\alpha^2 - 10.
\]

Finally, from (3.6)–(3.7) one can find polynomials \(\Pi_1 \) and \(\Pi_0 \) explicitly:

\[
\Pi_1(z; \alpha) = -3(n - 1)(n + 2)z^2 - 12\alpha z + [3n(n + 1) + 8\alpha^2 - 10], \\
\Pi_0(z; \alpha) = 2n(n^2 - 1)z + 2\alpha [3n(n + 1) - 8].
\]

This concludes the proof.

4 Asymptotics of Hermite–Padé polynomials

4.1 Proof of Theorem 1.5

Denote \(E = [-1, 1] \). Definition (1.7) (with \(s = 2 \)) yields immediately the following orthogonality relation

\[
\oint_E (Q_{n,1} f + Q_{n,2} f^2)(\zeta)q(\zeta) d\zeta = 0,
\] (4.1)

where \(q \in \mathbb{P}_{2n} \) is arbitrary, and we integrate along an arbitrary closed contour encircling and sufficiently close to \(E \). Using the construction of Padé polynomials (see e.g. (2.2)) we find \(P_{n,0}, P_{n,2} \in \mathbb{P}_n, P_{n,1} \neq 0 \), such that

\[
(P_{n,0} + P_{n,1} f)(z) = \mathcal{O}\left(\frac{1}{z^{n+1}}\right), \quad z \to \infty.
\] (4.2)

From (4.2) it follows immediately that

\[
\oint_E P_{n,1}(\zeta)f(\zeta)p(\zeta) d\zeta = 0, \quad \forall p \in \mathbb{P}_{n-1}.
\] (4.3)
Since $f(x) > 0$ when $x > 1$, we have
\[f^\pm(x) = e^{\pm i\pi \alpha} f_0(x), \quad x \in (-1, 1), \quad (4.4) \]
where f^+ (resp., f^-) are the boundary value of f on $(-1, 1)$ from the upper (resp., lower), and f_0 was defined in (1.15). In consequence,
\[\Delta f(x) := (f^+ - f^-)(x) = 2i \sin(\alpha) f_0(x) = 2i \sin(\alpha) \left(\frac{1 - x}{1 + x} \right) ^\alpha, \quad x \in (-1, 1). \]
(4.5)

Taking into account that $|\alpha| \in (0, 1/2)$, (4.4) can be rewritten as
\[\int_{-1}^{1} P_{n,1}(x) p(x) \Delta f(x) \, dx = 0, \quad \forall p \in \mathbb{P}_{n-1}, \]
and we conclude that polynomials $P_{n,1} = P_n$ coincide (up to normalization) with the Jacobi polynomials $P_n^{(\alpha, -\alpha)}$ orthogonal on the segment E with respect to the positive weight function f_0:
\[\int_E P_n(x) p(x) f_0(x) \, dx = 0, \quad p \in \mathbb{P}_{n-1}. \]
(4.6)

In order to simplify notation, let us define also
\[\tilde{f}(z) := 2 \cos(\alpha \pi) f_0(z), \quad z \in \Omega := \mathbb{C} \setminus F, \quad F := \mathbb{R} \setminus (-1, 1), \]
so that
\[\tilde{f}(x) = (f^+ + f^-)(x), \quad x \in (-1, 1). \]
The integrability of f_0^2 at the end points of E plus the boundary conditions (4.4) allow us to rewrite the relation (4.1) as
\[\int_E (Q_{n,1} + Q_{n,2} \tilde{f})(x) q(x) f_0(x) \, dx = 0, \quad \forall q \in \mathbb{P}_{2n}. \]
(4.6)

Since $Q_{n,j}$ have real coefficients and both functions \tilde{f} and f_0 are positive in the interval $(-1, 1)$, it follows from (4.6) that the form
\[\rho_n(z) := (Q_{n,1} + Q_{n,2} \tilde{f})(z) \]
(4.7)
has at least $2n + 1$ zeros in the interval $(-1, 1)$, that we denote by $x_{n,j}$. Let
\[\omega_{2n+1}(z) := \prod_{j=1}^{2n+1} (z - x_{n,j}). \]
Since for each $p \in \mathbb{P}_{n-1}$ function $\rho_n p/\omega_{2n+1}$ is holomorphic in the domain Ω, by the Cauchy formula we obtain

$$Q_{n,1} + Q_{n,2} \tilde{f}(z) = \frac{1}{2\pi i} \oint_{\gamma} \frac{(Q_{n,1} + Q_{n,2} \tilde{f})(\zeta) d\zeta}{\omega_{2n+1}(\zeta)(\zeta - z)} = \frac{1}{2\pi i} \oint_{\gamma} \frac{(Q_{n,2} \tilde{f})(\zeta) d\zeta}{\omega_{2n+1}(\zeta)(\zeta - z)},$$

(4.8)

where γ is an arbitrary simple analytic contour that is contained in the domain Ω and that contains all the points $x_{n,j}$, $j = 1, \ldots, 2n + 1$, and z inside. Also

$$0 = \frac{1}{2\pi i} \oint_{\gamma} \frac{(Q_{n,1} + Q_{n,2} \tilde{f})(\zeta)p(\zeta) d\zeta}{\omega_{2n+1}(\zeta)} = \frac{1}{2\pi i} \oint_{\gamma} \frac{(Q_{n,2} \tilde{f})(\zeta)p(\zeta) d\zeta}{\omega_{2n+1}(\zeta)},$$

(4.9)

It is easy to see that we can transform the contour γ in such a way that the relation (4.9) takes the form

$$0 = \int_{F} \frac{Q_{n,2}(y)p(y)\Delta \tilde{f}(y) dy}{\omega_{2n+1}(y)}, \quad \Delta \tilde{f}(y) = \tilde{f}^+(y) - \tilde{f}^-(y), \quad p \in \mathbb{P}_{n-1}.$$

(4.10)

Since

$$\tilde{f}^\pm(y) = e^{\mp \alpha \pi i 2 \cos(\alpha \pi)} \left| \frac{1 - y}{1 + y} \right|^\alpha, \quad y \in F^0 := [-\infty, -1) \cup (1, \infty],$$

we obtain that $\Delta \tilde{f}(y) = -4i \sin(2\alpha \pi)|y - 1|(y + 1)|^\alpha$, $y \in F^0$. Thus the relation (4.10) may be written in an equivalent form as

$$0 = \int_{F} Q_{n,2}(y)p(y)h_{n,\alpha}(y) dy, \quad p \in \mathbb{P}_{n-1},$$

(4.11)

where the weight function $h_{n,\alpha}(y) = |(y - 1)/(y + 1)|^\alpha/\omega_{2n+1}(y)$. Since ω_{2n+1} is of degree $2n + 1$, function $h_{n,\alpha}$ is negative on $(-\infty, -1)$ and positive on $(1, \infty)$, and it follows immediately from (4.11) that real polynomial $Q_{n,2}$ has at least $n - 1$ zeros on F^0.

If $\deg Q_{n,2} = n - 1$, it shows that all its zeros are contained in the F^0. Let $\deg Q_{n,2} = n$. Since $Q_{n,2}$ is a real polynomial with at least $n - 1$ real zeros, we conclude that all zeros of $Q_{n,2}$ are real, and at most one of them in E. Assuming the existence of one zero in E leads into contradiction with the orthogonality relation (4.11). Thus, once again we conclude that all zeros of $Q_{n,2}$ are in F^0.

Since same arguments can be applied to the function $(Q_{n,1}/\tilde{f} + Q_{n,2})p/\omega_{2n+1}$, it immediately follows that we arrive at the same conclusion about the zeros
of the polynomial $Q_{n,1}$. Finally, we can divide both sides of (1.12) by f^2 to obtain that $Q_{n,0}(z; f) = Q_{n,2}(z; f^{-2})$.

Hence, we have proved that all zeros of polynomials $Q_{n,0}$, $Q_{n,1}$, and $Q_{n,2}$ are contained in F^0.

Let us remark also that by (4.8), (4.9) and (4.10),

$$(Q_{n,1} + Q_{n,2} \tilde{f})(z) = \omega_{2n+1}(z) \frac{1}{2\pi i} \oint_{\gamma} Q_{n,2}(\zeta) \tilde{f}(\zeta) d\zeta$$

$$= \omega_{2n+1}(z) \frac{1}{Q_{n,2}(z)} \frac{Q_{n,2}^2(\zeta) \tilde{f}(\zeta)}{Q_{n,2}(\zeta)(\zeta - z)} d\zeta$$

$$= \omega_{2n+1}(z) \frac{Q_{n,2}(y) \Delta \tilde{f}(y)}{Q_{n,2}(z)} \int_F \frac{Q_{n,2}(\zeta) \tilde{f}(\zeta)}{Q_{n,2}(\zeta)(\zeta - z)} d\zeta,$$

where $z \in \Omega$. (4.12)

Now we turn to the asymptotics. Divide the equation (1.13) through by $n^3 w$ and rewrite it in terms of $h_n = w'/nw$:

$$(z^2 - 1)^2 \left(h''_n + \frac{3}{n} h'_n + h^3_n \right) + \frac{6}{n} (z^2 - 1)(z - \alpha) \left(\frac{1}{n} h'_n + h^2_n \right)$$

$$- \left[\frac{3(n-1)(n+2)}{n^2} z^2 + \frac{12\alpha z}{n^2} - \frac{3n(n+1) + 8\alpha^2 - 10}{n^2} \right] h_n$$

$$+ \frac{2n(n^2 - 1)z + \alpha(3n(n+1) - 8)}{n^3} = 0.$$

Since $w = Q_{n,0}$ is a solution of (1.13), the corresponding h_n takes the form

$$h_n(z) = C^{\mu_n}(z) = \int \frac{d\mu_n(t)}{z - t},$$

where $\mu_n = \mu(Q_{n,0})$ is the normalized zero-counting measure of $Q_{n,0}$.

Now we take limit along any convergent subsequence with $\mu_n \to \nu$, so that $h_n \to h$, $z \notin \mathbb{R}$, and get that h satisfies the cubic equation

$$(z^2 - 1)^2 h^3(z) - 3(z^2 - 1)h(z) + 2z = 0. \quad (4.13)$$

We apply the standard Cardano formula to find its solution. This yields the following result:

Lemma 4.1. The general solution of the equation

$$(z^2 - 1)^2 y^3(z) - 3(z^2 - 1)y(z) + 2z = 0 \quad (4.14)$$

\footnote{At this point we should assume it convergent in the extended complex plane $\mathbb{C} \cup \{\infty\}$.}
for \(z \in \mathbb{C} \setminus \{-1,1\} \) is

\[
y(z) = \frac{1}{z+1} Y(z) + \frac{1}{z-1} \frac{1}{Y(z)},
\]

(4.15)

where

\[
Y(z) = \left(\frac{1+z}{1-z}\right)^{1/3}.
\]

(4.16)

In a neighborhood of infinity there are three holomorphic and linearly independent solutions \(y_j, j = 1,2,3 \), that can be enumerated in such a way that they satisfy

\[
y_1(z) + y_2(z) + y_3(z) = 0,
\]

(4.17)

Proof. A direct substitution of the right hand side in (4.15) into (4.14) yields that \(y(z) \) given by (4.15) is indeed a solution of this cubic equation, regardless the branch of \(Y \) considered.

Furthermore, let \(y_1(z) \) and \(y_2(z), z \neq \pm 1 \), be two values of (4.15) corresponding to two different selections of the branch of \(Y \). Then, without loss of generality, we can take the value of \(Y(z) \) in such a way that

\[
y_1(z) = \frac{1}{z} + \mathcal{O}\left(\frac{1}{z^2}\right), \quad y_2(z) = \frac{1}{z} + \mathcal{O}\left(\frac{1}{z^2}\right), \quad z \rightarrow \infty.
\]

(4.17)

Assuming that \(y_1(z) = y_2(z) \), straightforward calculations yield us into a contradiction. Finally, relations (4.17) are obtained by totally standard arguments. The lemma is proved.

Observe that the remainder function \(R_n \), defined in (1.12), is is holomorphic in \(D := \mathbb{C} \setminus E \) and is a solution of the differential equation (1.13); in consequence, its analytic jump \(w_n = \Delta R_n \) on \(E^0 = (-1,1) \) is also a solution of the same differential equation. But

\[
w_n(x) = \rho_n(x) \Delta f(x), \quad x \in (-1,1),
\]

where \(\rho_n \) was defined in (4.7) and \(\Delta f \) is given by (4.5). Standard arguments show that for \(z \not\in F \),

\[
\frac{1}{n} \left\{ \int_F \frac{Q^2_{n,2}(y) \Delta f(y) \, dy}{\omega_{2n+1}(y)(y-z)^2} \right\} \left\{ \int_F \frac{Q^2_{n,2}(y) \Delta f(y) \, dy}{\omega_{2n+1}(y)(y-z)} \right\}^{-1} \rightarrow 0, \quad n \rightarrow \infty,
\]

29
and we conclude from (4.12) that
\[
\frac{1}{n} w'_n = \frac{1}{n} \rho'_n + \frac{1}{n} (\Delta f)' = \frac{1}{n} \omega^{2n+1}_n(z) - \frac{1}{n} Q^{n,2}_n(z) + o(1).
\]

Using the result of Theorem 1.5 we conclude that
\[
\lim_{n} \frac{1}{n} w'_n = 2C^\lambda(z) - C^\nu(z), \quad z \in \mathbb{C} \setminus \mathbb{R}.
\]

From these considerations it follows that \(C^\nu\) and \(2C^\lambda - C^\nu\) are two, clearly linearly independent solutions of the algebraic equation (4.14). We already know that
\[
C^\nu(z) = y_1(z) = \frac{1}{z} + O\left(\frac{1}{z^2}\right), \quad z \to \infty.
\]

Taking into account (4.17) we conclude that
\[
(2C^\lambda - C^\nu)(z) = y_2(z) = \frac{1}{z} + O\left(\frac{1}{z^2}\right), \quad C^\lambda(z) = -\frac{1}{2}y_3(z) = \frac{1}{z} + O\left(\frac{1}{z^2}\right),
\]
which proves in particular that \(\lambda\) is a probability measure supported on \(E\).

Since we know the support of both \(\lambda\) and \(\nu\), we can recover their densities using the Sokhotskii-Plemelj formulas,
\[
\nu'(z) = -\frac{1}{2\pi i}(y_1+(x) - y_1-(x)), \quad z \in \text{supp}(\nu) = F = \mathbb{R} \setminus (-1,1), \quad (4.18)
\]
\[
\lambda'(z) = \frac{1}{4\pi i}(y_3+(x) - y_3-(x)), \quad z \in \text{supp}(\nu) = E = [-1,1]. \quad (4.19)
\]

Let \(Y\) now denotes the holomorphic branch of (4.16) in \(\mathbb{C} \setminus F\), determined by \(Y(0) = 1\). With this convention,
\[
\lim_{x \to \pm \infty} Y(ix) = e^{\pm \pi i/3}.
\]

Since \(y_1(x) = C^\nu(x)\) and \(\text{supp}(\nu) = \mathbb{R} \setminus (-1,1)\), it follows that \(y_1(x) \in \mathbb{R}\) for \(x \in (-1,1)\). This allows us to single out the expression for \(y_1\). Expanding at infinity we obtain the expression for all three solutions in \(\mathbb{C} \setminus \mathbb{R}\):
\[
y_1(z) = C^\nu(z) = \frac{1}{z + 1} Y(z) + \frac{1}{z - 1} Y(z), \quad (4.20)
\]
\[
y_2(z) = (2C^\lambda - C^\nu)(z) = -y_1(z) - y_3(z), \quad (4.21)
\]
\[
y_3(z) = -2C^\lambda(z) = \begin{cases} \frac{e^{2\pi i/3}}{z + 1} Y(z) + \frac{e^{-2\pi i/3}}{z - 1} Y(z), & \text{Im} z > 0, \\
\frac{e^{-2\pi i/3}}{z + 1} Y(z) + \frac{e^{2\pi i/3}}{z - 1} Y(z), & \text{Im} z < 0. \end{cases} \quad (4.22)
\]
Let Y_+ (resp., Y_-) denote the boundary values of the selected branch of Y on $(1, +\infty)$ from the upper (resp., lower) half plane2. Then

$$Y_\pm(x) = e^{\pm \pi i/3} \sqrt[3]{\frac{x+1}{x-1}}, \quad x > 1,$$

where we take the positive values of $\sqrt[3]{\cdot}$, so that

$$\Delta Y(x) = Y_+(x) - Y_-(x) = i\sqrt{3} \sqrt[3]{\frac{x+1}{x-1}},$$

$$\Delta \frac{1}{Y}(x) = \frac{1}{Y_+(x)} - \frac{1}{Y_-(x)} = -i\sqrt{3} \sqrt[3]{\frac{x-1}{x+1}}.$$

Using (4.18) and (4.20) we see that

$$\nu'(z) = -\frac{1}{2\pi i} \left(\frac{1}{x+1} \Delta Y(x) + \frac{1}{x-1} \Delta \frac{1}{Y}(x) \right) = -\frac{\sqrt{3}}{2\pi} \left(\frac{1}{x+1} \sqrt[3]{\frac{x+1}{x-1}} - \frac{1}{x-1} \sqrt[3]{\frac{x-1}{x+1}} \right),$$

which establishes (1.16).

On the other hand, for $x \in (-1, 1)$, by (4.19) and (4.22),

$$\lambda'(z) = \frac{\sin(2\pi/3)}{2\pi} \left(\frac{1}{x+1} Y(x) - \frac{1}{x-1} \frac{1}{Y(x)} \right) = \frac{\sqrt{3}}{4\pi} \left(\frac{1}{x+1} \sqrt[3]{\frac{1+x}{1-x}} + \frac{1}{1-x} \sqrt[3]{\frac{1-x}{1+x}} \right),$$

where we again take the positive values of $\sqrt[3]{\cdot}$, and (1.17) follows.

4.2 Proof of Theorem 1.7

By (4.12),

$$\frac{Q_{n,1}}{Q_{n,2}}(z) + \tilde{f}(z) = \frac{\rho_n}{Q_{n,2}}(z) = \frac{\omega_{2n+1}(z)}{Q_{n,2}^2(z)} \int_F Q_{n,2}^2(y) \Delta \tilde{f}(y) dy,$$

with ρ_n defined in (4.7). From Theorem 1.5 it follows that

$$\frac{1}{n} \rho_n' - \frac{1}{n} \frac{Q_{n,2}'}{Q_{n,2}} \to 2(C^\lambda - C^\nu)(z), \quad z \in \mathbb{C} \setminus \mathbb{R}.$$

2Calculations for $(-\infty, -1)$ are similar.
In the previous section we have established that

\[y_1(z) = C^\nu(z), \quad y_2(z) = (2C^\lambda - C^\nu)(z), \quad y_3(z) = -2C^\lambda(z) \]

are three independent holomorphic solutions of the algebraic equation (4.14) in \(\mathbb{C} \setminus \mathbb{R} \). With this notation we conclude from (4.24) that

\[
\frac{1}{n} \log \frac{\rho_n}{Q_{n,2}}(z) \to \int^{z} \{y_2(\zeta) - y_1(\zeta)\} \, d\zeta, \quad z \notin \mathbb{R},
\]

or equivalently,

\[
\frac{\rho_n}{Q_{n,2}}(z) \to \exp \left\{ \Re \int^{z} (y_2 - y_1)(\zeta) \, d\zeta \right\}
\] (4.25)

From (4.23) and (4.25) it follows that (1.20) is established if we prove that

\[
\Re \int^{z} (y_2 - y_1)(\zeta) \, d\zeta < 0, \quad z \notin \mathbb{R}.
\] (4.26)

Let us consider the three sheeted Riemann surface \(\mathcal{R}_3 \) of genus 0 given by the equation \(w^3 = (z-1)/(z+1) \). It can be realized as shown on Figure 1.
is meromorphic on \mathcal{R}_3. Here again we use the notation $\pi : \mathcal{R}_3 \to \mathbb{C}$ for the canonical projection of \mathcal{R}_3, and $\pi^{-1}(z) = \{z^{(1)}, z^{(2)}, z^{(3)}\}$ for $z \in \mathbb{C}$, with $z^{(i)} \in \mathcal{R}_3^{(j)}$.

However, in the particular case under consideration we can use a result of J. Nuttall; following Nuttall’s approach, it is sufficient to show that the three functions $y_j(z)$ give the canonical (in Nuttall’s sense, see [29, sec. 4.3.4], [36, §6]) partition of \mathcal{R}_3 into three sheets in the following way:

$$\text{Re} \int z y_3(z) \, dz < \text{Re} \int z y_2(z) \, dz < \text{Re} \int z y_1(z) \, dz, \quad z \notin \mathbb{R}. \quad (4.27)$$

Alternatively, we need an abelian integral ϕ on \mathcal{R}_3 such that

- $\text{Re}(\phi)$ is single valued on \mathcal{R}_3 and harmonic on $\mathcal{R}_3 \setminus \bigcup_{j=1}^{3} \infty^{(j)}$;
- $\exp(\phi(z))$ is meromorphic on \mathcal{R}_3, whose divisor on \mathcal{R}_3 is $2\infty^{(3)} - \infty^{(1)} - \infty^{(2)}$.

With such a ϕ, Nuttall’s canonical partition (4.27) of \mathcal{R}_3 into three sheets is given by

$$\text{Re} \phi(z^{(3)}) < \text{Re} \phi(z^{(2)}) < \text{Re} \phi(z^{(1)}).$$

The key fact we can exploit is that the algebraic curve defined by (4.14) is independent of α, so we can set $\alpha = 1/3$ and use the Nuttall’s example [29, Section 4.3.4], where he considered the Riemann surface \mathcal{R}_3' of the equation $zw^3 = z - 1$, along with the Hermite–Padé approximants to the system $f = (1, f, f^2)$ with $f(z) = w$. Nuttall showed that $\exp(\phi(z)) = z(1 - w)^3$, as well as proved that

$$\text{Re} \phi(z^{(2)}) - \text{Re} \phi(z^{(1)}) < 0, \quad z \notin \mathbb{R}. \quad (4.28)$$

Clearly, the Riemann surfaces \mathcal{R}_3 and \mathcal{R}_3' are isomorphic in such a way that (4.28) implies (4.26).

Finally, recall that identity $f(z; -\alpha) = 1/f(z; \alpha)$ implies, by dividing both sides of the definition (1.7) by f^2, that $Q_{n,2}^{(\alpha,-\alpha)} = Q_{n,0}^{(-\alpha,\alpha)}$. Hence, (1.20) applied to $f(z; -\alpha)$ yields

$$\frac{Q_{n,1}^{n,1}}{Q_{n,0}^{n,0}}(z) \to -2 \cos(\alpha \pi)/f_0(z),$$

which allows to conclude (1.21). The theorem is proved.

Footnote 3: The numeration of the sheets of \mathcal{R}_3' in [29] is slightly different.
Acknowledgements

The first author (AMF) was partially supported by MICINN of Spain and by the European Regional Development Fund (ERDF) under grant MTM2011-28952-C02-01, by Junta de Andalucía (Excellence Grant P11-FQM-7276 and the research group FQM-229), and by Campus de Excelencia Internacional del Mar (CEIMAR) of the University of Almería. This work was completed during a visit of AMF to the Department of Mathematics of the Vanderbilt University. He acknowledges the hospitality of the hosting department, as well as a partial support of the Spanish Ministry of Education, Culture and Sports through the travel grant PRX14/00037.

The third author was partially supported by the Russian Foundation for Basic Research (RFBR, grants 13-01-12430-ofi-m2 and 15-01-07531-a, and Russian Federation Presidential Program for support of the leading scientific schools (grant NSh-2900.2014.1).

We wish to acknowledge also the useful remarks of A. B. J. Kuijlaars on the first version of this manuscript.

References

[1] A. I. Aptekarev, V. I. Buslaev, A. Martínez-Finkelshtein, and S. P. Suetin. Padé approximants, continued fractions, and orthogonal polynomials. Uspekhi Mat. Nauk, 66(6(402)):37–122, 2011. English transl. in Russian Math. Surveys 66(6): 1049–1131, 2011.

[2] A. I. Aptekarev and A. B. Kuijlaars. Hermite-Padé approximations and ensembles of multiple orthogonal polynomials. Uspekhi Mat. Nauk, 66(6(402)):123–190, 2011.

[3] A. I. Aptekarev and A. B. Kuijlaars, and W. Van Assche. Asymptotics for Hermite–Padé rational approximants for two analytic functions with separated pairs of branch points (case of genus 0). Int. Math. Res. Pap. IMRP 2008, Art. ID rpm007, 128 pp.

[4] G. A. Baker Jr, and P.R. Graves-Morris. Padé Approximants, 2nd edn. Cambridge University Press, Cambridge (1996).

[5] V. I. Buslaev. Convergence of multipoint Padé approximants of piecewise analytic functions. Mat. Sb. 204(2):39–72, 2013.
[6] V. I. Buslaev, A. Martínez-Finkelshtein, and S. P. Suetin. Method of inner variations and existence of s-compact sets. *Proc. Steklov Inst. Math.*, 279(25–51), 2012.

[7] D. V. Chudnovsky and G. V. Chudnovsky. The Wronskian formalism for linear differential equations and Padé approximations. *Adv. in Math.*, 53(1):28–54, 1984.

[8] S. Delvaux, A. López, and G. López-Lagomasino. A family of Nikishin systems with periodic recurrence coefficients. *Mat. Sb.* 204 (1):47–78, 2013.

[9] M. V. Fedoryuk. Asymptotics of the spectrum of the Heun’s equation and of Heun’s functions. *Izv. Akad. Nauk SSSR Ser. Mat.*, 55(3):631–646, 1991. translation in Math. USSR-Izv. 38 (1992), no. 3, 621–635.

[10] U. Fidalgo Prieto and G. López-Lagomasino. Nikishin systems are perfect, *Constr. Approx.*, 34 (3):297–356, 2011.

[11] A. A. Gonchar and E. A. Rakhmanov. Equilibrium measure and the distribution of zeros of extremal polynomials. *Mat. Sbornik*, 125(2):117–127, 1984. translation from Mat. Sb., Nov. Ser. 134(176), No.3(11), 306-352 (1987).

[12] A. A. Gonchar and E. A. Rakhmanov. Equilibrium distributions and degree of rational approximation of analytic functions. *Math. USSR Sbornik*, 62(2):305–348, 1987. translation from Mat. Sb., Nov. Ser. 134(176), No.3(11), 306-352 (1987).

[13] A. A. Gonchar, E. A. Rakhmanov, and V. N. Sorokin. On Hermite-Padé approximants for systems of functions of Markov type. *Mat. Sb.*, 188(5):33–58, 1997.

[14] H. Groetsch. Über ein variationsproblem der konformen abbildung. *Leipziger Berichte*, 82, 1930.

[15] M. E. H. Ismail. *Classical and quantum orthogonal polynomials in one variable*. Encyclopedia of Mathematics and its Applications 98, Cambridge University Press, Cambridge, 2005.

[16] A. V. Komlov and S. P. Suetin. Strong asymptotics of two-point Padé approximants for power-like multivalued functions. *Doklady Mathematics* 89(2):1–4, 2014.
[17] R. K. Kovacheva and S. P. Suetin. Distribution of zeros of the Hermite-Padé polynomials for a system of three functions, and the Nuttall condenser. *Proc. Steklov Inst. Math.* 284:168–191, 2014.

[18] E. Laguerre. Sur la reduction en fractions continues d’une fraction qui satisfait a une equation differentielle lineaire du premier ordre dont les ecoeficients sont rationnels. *J. Math.*, 1:135-165, 1885.

[19] N. S. Landkof. *Foundations of Modern Potential Theory*. Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin, 1972.

[20] G. López Lagomasino and S. Medina Peralta. On the convergence of type I Hermite-Padé approximants. *Advances in Math.* 273, 124–148, 2015.

[21] G. López Lagomasino and S. Medina Peralta. On the convergence of type I Hermite-Padé approximants for rational perturbations of a Nikishin system. *Journal of Computational and Applied Mathematics*, 2015. Also preprint arXiv 1406.3737v1.

[22] U. Fidalgo Prieto, G. López Lagomasino, and S. Medina Peralta. Hermite-Padé approximation for certain systems of meromorphic functions. To appear in *Mat. Sbornik*. Also preprint arXiv 1310.7010.

[23] A. Martínez-Finkelshtein, E. A. Rakhmanov, and S. P. Suetin. Differential equations for Hermite-Padé polynomials. *Uspekhi Mat. Nauk*, 68(1(409)):197–198, 2013.

[24] A. Martínez-Finkelshtein and E. A. Rakhmanov. Critical measures, quadratic differentials, and weak limits of zeros of Stieltjes polynomials. *Comm. Math. Phys.*, 302(1):53–111, 2011.

[25] A. Martínez-Finkelshtein, E. A. Rakhmanov, and S. P. Suetin. Variation of the equilibrium measure and the s-property of stationary compact sets. *Russian Mathematical Surveys*, 66(1):176–178, 2011.

[26] A. Martínez-Finkelshtein and E. A. Rakhmanov. On asymptotic behavior of Heine-Stieltjes and Van Vleck polynomials. In *Recent trends in orthogonal polynomials and approximation theory*, volume 507 of *Contemp. Math.*, pages 209–232. Amer. Math. Soc., Providence, RI, 2010.

[27] A. Martínez-Finkelshtein, E. A. Rakhmanov, and S. P. Suetin. Heine, Hilbert, Padé, Riemann, and Stieltjes: John Nuttall’s work 25 years
later. In Recent advances in orthogonal polynomials, special functions, and their applications, volume 578 of Contemp. Math., pages 165–193. Amer. Math. Soc., Providence, RI, 2012.

[28] E. M. Nikishin and V. N. Sorokin Rational approximations and orthogonality. Translations of Mathematical Monographs 92, AMS, Providence, RI, 1991.

[29] J. Nuttall. Asymptotics of diagonal Hermite-Padé polynomials. J. Approx. Theory, 42(4):299–386, 1984.

[30] J. Nuttall. Asymptotics of generalized Jacobi polynomials. Constr. Approx., 2(1):59–77, 1986.

[31] F. W. J. Olver. Asymptotics and Special Functions. Computer Science and Scientific Computing. Academic Press, New York, 1974.

[32] E. A. Rakhmanov. On the asymptotics of Hermite-Padé polynomials for two Markov functions. Mat. Sb., 202(1):133–140, 2011. Preprint, 2015.

[33] E. A. Rakhmanov. Gonchar–Stahl’s ρ^2-theorem and associated directions in the theory of rational approximation of analytic functions.

[34] E. A. Rakhmanov and E. A. Perevozhnikova. Variations of the equilibrium energy and S-property of compacta of minimal capacity. Preprint, 1994.

[35] E. A. Rakhmanov and S. P. Suetin. Asymptotic behavior of Hermite-Padé polynomials of the first kind for a pair of functions forming a Nikishin system. Uspekhi Mat. Nauk, 67(5(407)):177–178, 2012.

[36] E. A. Rakhmanov and S. P. Suetin. Distribution of zeros of Hermite-Padé polynomials for a pair of functions forming a Nikishin system. Mat. Sb., 204(9):115–160, 2013.

[37] E. B. Saff and V. Totik. Logarithmic Potentials with External Fields, volume 316 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin, 1997.

[38] B. Shapiro. Algebro-geometric aspects of Heine–Stieltjes theory. J. London Math. Soc., 83:36–56, 2011.

[39] B. Shapiro, K. Takemura, and M. Tater. On spectral polynomials of the Heun equation. II. Comm. Math. Phys., 311(2):277–300, 2012.
[40] H. Stahl. Extremal domains associated with an analytic function. I, II.
Complex Variables Theory Appl., 4(4):311–324, 325–338, 1985.

[41] H. Stahl. Orthogonal polynomials with complex-valued weight function.
I, II. Constr. Approx., 2(3):225–240, 241–251, 1986.

[42] H. Stahl. Asymptotics of Hermite–Padé polynomials and related convergence results.
A summary of results. Nonlinear numerical methods and rational approximation (Wilrijk, 1987).
Math. Appl. 43, 23–53, Reidel, Dordrecht, 1988.

[43] K. Strebel. Quadratic differentials, volume 5 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)].
Springer-Verlag, Berlin, 1984.

[44] G. Szegő. Orthogonal Polynomials, volume 23 of Amer. Math. Soc.
Colloq. Publ. Amer. Math. Soc., Providence, RI, fourth edition, 1975.

[45] K. Takemura. On the Heun equation. Philos. Trans. R. Soc. Lond. Ser.
A Math. Phys. Eng. Sci., 366(1867):1179–1201, 2008.

[46] K. Takemura. Heun’s differential equation. In Selected papers on analysis and differential equations, volume 230 of Amer. Math. Soc. Transl. Ser. 2, pages 45–68. Amer. Math. Soc., Providence, RI, 2010.

[47] K. Takemura. Heun’s equation, generalized hypergeometric function and exceptional Jacobi polynomial. J. Phys. A, 45(8):085211, 14, 2012.

[48] W. Van Assche. Padé and Hermite-Padé approximation and orthogonality. Surv. Approx. Theory, 2:61–91, 2006.

A. Martínez-Finkelshtein (andrei@ual.es)
Department of Mathematics
University of Almería, Spain, and
Instituto Carlos I de Física Teórica y Computacional
Granada University, Spain

Evgenii A. Rakhmanov (rakhmano@mail.usf.edu)
Department of Mathematics,
University of South Florida, USA

Sergey P. Suetin (suetin@mi.ras.ru)
Steklov Institute of Mathematics of the
Russian Academy of Sciences, Russia