Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Upper airway inflammatory diseases and bronchial hyperresponsiveness

Peyton A. Eggleston, MD Baltimore, Md.

Inflammatory processes of the upper airway may alter the responsiveness of the lower airway. For example, bronchial hyperresponsiveness may be seen in patients with allergic rhinitis. This could represent coexistent but unrecognized asthma, but also suggests that IgE-dependent inflammation may occur in the lower airway that can increase bronchial hyperresponsiveness without at the same time precipitating obvious obstruction. Clearly, allergic rhinitis is a risk factor for asthma. A second example of the interaction of upper airway inflammation and bronchial hyperreactivity are reports that viral upper respiratory tract infections may cause otherwise healthy persons to respond abnormally to inhaled histamine or irritants for several months after the infections. These same viruses usually precipitate attacks in patients with asthma, who already have hyperresponsive airways. Both of these examples suggest that inflammatory processes occurring totally or primarily in the upper airway may participate in the pathogenesis of lower respiratory tract hyperresponsiveness and asthma. (J ALLERGY CLIN IMMUNOL 1988;81:1036-41.)

Bronchial hyperreactivity is defined as an abnormal responsiveness of the airways, expressed as increased air flow obstruction on exposure to a variety of physical, chemical, and pharmacologic bronchoprovocational agents.' It is equally well expressed by the prompt reversal of obstruction by beta adrenergic agonists or other bronchodilators. Hyperresponsiveness is almost always present in asthma and is sometimes considered pathognomonic; it may also be seen in cystic fibrosis, chronic bronchitis, and other lung diseases.

Bronchial hyperreactivity is usually thought of as an abnormality of the lower respiratory tract. Recently it has been described in two disorders in which the lower respiratory tract is usually normal. Patients with allergic rhinitis, who are at risk for asthma subsequently, frequently exhibit increased bronchial hyperresponsiveness; and acute viral upper respiratory tract infections may induce bronchial responsiveness. This de novo induction of hyperresponsiveness during airway infection suggests a mechanism that may explain the frequent associations of upper respiratory tract infections with wheezing episodes in patients with asthma and also why some healthy persons can develop persisting bronchial hyperresponsiveness.

The mechanism underlying hyperresponsive airways is not known, but it has been suggested that abnormalities may exist in mucosal permeability, in autonomic control of bronchial smooth muscle, or in the smooth muscle itself. Most hypotheses presume an abnormality in the lower respiratory tract, and so offer explanation for abnormal responses seen in diseases apparently limited to the upper respiratory tract. The access of molecules from the lumen of the respiratory tract to submucosal structures is limited in the normal state by the maintenance of “tight junctions” between epithelial cells. These junctions may be disrupted after exposure to pollutants or to IgE-mediated inflammation. However, abnormal bronchoconstriction also occurs when histamine is given parenterally to patients with asthma, so this cannot be the sole mechanism. The caliber of the lower airways is under balanced autonomic control. Vagal efferent nerves decrease airway caliber, and the afferent input to these reflexes may originate in irritant receptors in either the lower or upper tract mucosa. A major balancing factor is sympathetic tone, and decreased beta adrenergic responsiveness has been shown in

Abbreviation used

FEV1: Forced expiratory volume in 1 second

From the Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore.
Supported by Grants AI-21073 and HL 30532 from the National Institutes of Health.
Reprint requests: Peyton A. Eggleston, MD, Division of Immunology, Department of Pediatrics, The Johns Hopkins Hospital, 600 N. Wolfe St., Baltimore, MD 21205.
Upper airway inflammatory diseases: bronchial hyperreactivity

Upper airway inflammatory diseases, chronic bronchitis, and viral upper respiratory tract infections. Abnormalities of the bronchial smooth muscle, either hypertrophy or increased mass or abnormal response characteristics, have been proposed as mechanisms for hyperreactivity.

The usual method of estimating bronchial reactivity is by use of bronchoprovocational agents, and the two most common challenges are exercise and inhalation of methacholine or histamine. The techniques for exercise challenge have been described in detail. In general, 6 minutes of strenuous exercise is required to cause significant and reproducible airflow changes, so this test has been applied almost exclusively in children and young adults. Iso-capnic hyperventilation, in which the ventilatory changes associated with exercise are reproduced voluntarily, is becoming more widely used as a substitute.

Inhalation challenges are usually conducted using histamine or methacholine. After determining a baseline control response to inhaled saline solution, the agonist is inhaled, beginning with low concentration (0.025 to 0.03 mg/ml) and progressing stepwise with increasing doses, usually doubling at each step (Δ ≥ 20%). Pulmonary function tests are measured after each step, and the test is stopped when a significant response occurs. The results are expressed as the dose or concentration causing pulmonary function tests to change a given amount from control values (usually a 20% change in FEV₁, or peak expiratory flow rate). This dose is called the PD₅₀, FEV₁, expressed as breath units (1 breath unit is one inhalation of 1 mg/ml), or as the PC₂₀, FEV₁, for the concentration (in milligrams per milliliter) causing a 20% change in FEV₁. Distilled water inhaled for increasingly longer times has also been used to demonstrate hyperreactivity.

Allergic rhinitis in childhood may be associated with development of asthma more frequently. Andersen et al. examined 8806 children enrolled in the National Child Development Study of England, Scotland, and Wales; this represented 51% of a cohort observed since birth during a single week in March 1958. At age 7, 11, and 16 years they completed a questionnaire, were interviewed, and were examined by a school physician. A total of 24.7% had had wheezing during childhood, but the point prevalence at 7, 11, and 16 years was only 8.3, 4.7, and 3.5%, respectively. Those with allergic rhinitis and sneezing attacks at age 7 years were 7.1 times more likely to have had wheezing sometime during childhood.

Allergic rhinitis may be a risk factor for development of asthma, and is further suggested by the frequent association with airway hyperreactivity. A comparison of responses to histamine inhalation challenge in healthy volunteers and in patients with allergic rhinitis and asthma is illustrated in Fig. 1. Twenty-nine percent of those with reaction to bronchial challenge testing can be demonstrated as having a current or past history of asthma. However, persons with allergic rhinitis are clearly less responsive than those with asthma, even when allergic sensitivity as assessed by skin tests or leukocyte histamine release studies is comparable.

The significance of the association between allergic rhinitis, asthma, and abnormal airway responsiveness with regard to the pathogenesis of asthma is unknown. As a first approach to understanding this association,
it is worth considering the link between allergy and abnormal airway reactivity. Based on reports of a clustering of abnormal methacholine responsiveness among atopic families, some investigators have suggested a possible genetic basis for this link. 22 Another possibility is that hyperresponsiveness arises in atopic persons as an acquired abnormality, perhaps as a consequence of inflammatory changes in the lower respiratory tract. Cockcroft et al.23 have shown controlled intrapulmonary deposition of allergen in the laboratory. Environmental allergen exposure can produce a transient increase in histamine and methacholine responsiveness in allergic patients who develop late-phase asthmatic reactions. These changes are of the same order of magnitude as found in normal persons after viral respiratory tract infections or after exposure to pollutants.25-28 Although the cause of the increase in reactivity is unknown, a possible mechanism is suggested by the demonstration that mucosal permeability may substantially increase after antigen challenge in sensitized monkeys.3 A final piece of evidence linking allergic inflammation is the demonstration that when patients with asthma who are allergic to house dust mites are isolated from their antigen, bronchial reactivity decreases significantly over several months.29

The increase in bronchial hyperresponsiveness in allergic rhinitis related to allergen-induced inflammatory changes or alterations in mucosal permeability of the lower airways may be related to natural environmental exposure to aeroallergens, resulting in IgE-mediated reactions, not only in the upper respiratory tract but in the lower respiratory tract, and to effects on the lower airways that are subclinical or not sufficient to cause perceived symptoms. The evidence for this is circumstantial, but nonetheless compelling. When patients with hay fever and asthma are compared, there are insignificant differences in allergen sensitivity in terms of skin sensitivity or leukocyte histamine release.21 A number of investigators have shown that patients with allergic rhinitis who have never had asthmatic symptoms demonstrate physiologic alterations typical of acute asthma after inhalation of an appropriate allergen in the laboratory.20-22 Patients with asthma remain slightly more hyperresponsive than do those with hay fever, especially when the FEV1 response is measured.20-22 Nevertheless, the differences are small and there is considerable overlap between groups. Why these patients respond to inhaled allergen in the laboratory but not after natural environmental exposure is not entirely clear, but the most likely explanation is that the amount of allergen encountered under natural conditions is far less than that used in laboratory experiments, and that the ability to sustain a clinical response under conditions of lower levels of allergen exposure depends on preexisting abnormal airway reactivity.22, 27 Hence patients with marked increases in airway responsiveness, those with asthma, for example, may sustain a substantial airway response after a mild allergic reaction, and patients with modest increases in responsiveness, such as those with allergic rhinitis, experience little if any clinical effect. Despite the absence of a clinically perceptible airway response in these patients, it seems plausible that allergic stimulation is capable of causing inflammatory changes as well as subclinical airflow obstructions. Although there is no direct evidence to support this, there are reports of subtle abnormalities of lower airway function in patients with hay fever during intervals of environmental allergen exposure and symptomatic rhinitis.30

Classifying a patient as having clear-cut asthma or clear-cut rhinitis is often difficult. Some may deny symptoms of wheezing or chest tightness but admit having cough during a particular pollen season. A history of wheezing is predictive of airway reactivity in only 35% to 49% of patients.31 It seems reasonable to view patients with symptoms of clear-cut asthma and those with exclusive symptoms of rhinitis during a particular pollen season or with exposure to animal dander as representing either end, respectively, of a spectrum of allergic respiratory bronchial responsiveness.

Thus, although there are common underlying abnormalities in hay fever and asthma, it is still not known whether the existence of active allergic airway disease as expressed as allergic rhinitis somehow modifies the lower respiratory tract, leading progressively to hyperresponsiveness and eventually to clinical asthma. Based on studies showing that allergen exposure can result in increased airway responsiveness, it is tempting to speculate that this is the case.23, 24 Existing data emphasize the importance of obtaining a careful clinical history regarding chest symptoms of patients with allergic rhinitis, and beginning bronchodilator therapy when such symptoms are reported.

UPPER RESPIRATORY TRACT INFECTION

Acute viral upper respiratory tract infections have been clearly associated with exacerbation of asthma in children and in adults.30,33, 35, 38,44 There is no association between acute bacterial infections of the upper respiratory tract and exacerbation of asthma. The effects of chronic upper respiratory tract infections (such as chronic sinusitis) are discussed elsewhere in this symposium.

The most informative studies in children were conducted by McIntosh et al.38 and by Minor et al.40 In
Upper airway inflammatory diseases: bronchial hyperresponsiveness

TABLE I. Association of viral infection with attacks in patients with asthma

Study	Year	n	Age (yr)	Wheezing episodes with positive viral cultures	Viral illness with wheezing		
Children				n	%	n	%
Freeman and Todd	1962	30	0-5.5	58/139	42	34/62	55
McIntosh et al.	1973	32	1.5	23/43	53	58/102	57
Horn and Gregg	1973	47	5.7-8	9/44	20	41/62	66
Minor et al.	1974	16	3-11	17/71	24	17/32	53
Shapiro et al.	1976	41	1.3-18.1	35/72	49		
Minor et al.	1975	22	1-15	27/142	19		
Horn et al.	1976	8	22-60	3/17	19		
Adults				n	%	n	%
Huhti et al.	1974	63	15-77	24/76	11	8/21	38
Minor et al.	1976	19	Not stated	11/15	62		
Horn and Gregg	1976	19	24-67	1/77	14		
Hudgel et al.	1976	21	19-37	4/19	21		

*Hospitalized patients.
†States only that 3/17 positive cultures were in adults.
‡Rhinovirus.

both studies, a group of children with asthma were studied prospectively with weekly viral cultures, documentation of infections with cultures and serology, and monitoring of respiratory symptoms. McIntosh et al. studied children aged 3 to 8 years during two winters, and documented 128 viral infections and 144 wheezing episodes, with 64 (42%) occurring simultaneously. Minor et al. studied school-aged children and found 48 viral infections and 61 wheezing episodes, with 32 coincident episodes. In studies of adults with asthma,

TABLE II. Agents associated with wheezing episodes in patients with asthma

Virus	
Rhinovirus	Respiratory syncytial virus
Parainfluenza types 1, 2, 3	
Influenza A	
Influenza B	
Coronavirus	
Adenovirus	
Mycoplasma pneumoniae	Other (enterovirus, herpesvirus, coxsackie virus)

...cytial virus and the second with parainfluenza virus infection, are not seen in adults infected with the two viruses. Even more intriguing is the demonstration by Welliver et al.

The viruses associated with lower tract illness (Table II) are those usually found in acute "colds" in the general population. Respiratory syncytial virus and coronavirus have been recovered primarily in small children with asthma, and *Mycoplasma pneu*...
Bronchial hyperreactivity is seen in illnesses involving the upper respiratory tract. In allergic rhinitis, it appears to be coexistent and to constitute a risk factor for asthma. In acute respiratory tract infections, asthmatic attacks may occur coincident with viral infections, and infection with some specific viruses may cause normal persons to develop bronchial hyperresponsiveness. Bronchial hyperresponsiveness may take months to clear, and may predispose to conditions with long term sequelae.

REFERENCES

1. Rouseby HA, Holtzman MJ, Sheller JR, Nadel JA. Bronchial hyperreactivity. Am Rev Respir Dis 1980;121:389-413.
2. Holtzman MJ, Sheller JR, Nadel JA. Bronchial hyperreactivity. Am Rev Respir Dis 1980;121:389-413.
3. Hurwitz WC, Walker DC, Jackson A, Hogg JC. Airway permeability of horseradish peroxidase in guinea pigs: the repair phase after injury by cigarette smoke. Am Rev Respir Dis 1981;123:320-6.
4. Boucher RC, Pare PD, Gilmore NJ, Moroz LA, Hogg JC. Airway mucosal permeability in the Ascaris suum-sensitized rhesus monkey. J ALLERGY CLIN IMMUNOL 1977;60:134 40.
5. Corry JJ. The action of histamine on the respiratory tract in normal and asthmatic subjects. J Clin Invest 1946;25:785-91.
6. Widdicombe JG, Keat DC, Nadel JA. Mechanism of bronchoconstriction during inhalation of dust. J Appl Physiol 1962;17:613-6.
7. Szentivanyi A. The beta adrenergic theory of the atopic abnormality in bronchial asthma. J ALLERGY CLIN IMMUNOL 1968;42:203-31.
8. Lemanske RF, Anderson C, Braun S, Skatrude J, Busse WW. Impaired in vitro beta-adrenergic granulocyte response in chronic obstructive lung pulmonary disease. Am Rev Respir Dis 1980;122:213-9.
9. Busse WW. Decreased granulocyte response to isoproterenol in asthma during upper respiratory infections. Am Rev Respir Dis 1977;115:783-91.
10. Stephens NL, Mitchell RW, Antonissen LA, et al. Airway smooth muscle: physical properties and metabolism. In: Hargrave FF, ed. Airway reactivity. Mississauga, Ont., Canada: Astra, 1980;110-31.
11. Eggleston PA, Guerrant JL. A standardized method of evaluating exercise-induced asthma. J ALLERGY CLIN IMMUNOL 1976;58:414-25.
12. Cockcroft DW, Killian DN, Mellon JJA, Hargrave FE. Bronchial reactivity to inhaled histamine: a method and clinical survey. Clin Allergy 1977;7:235-43.
13. Chai H, Farr RS, Froehlich LA, et al. Standardization of bronchial challenge procedures. J ALLERGY CLIN IMMUNOL 1975;56:323-7.
14. Galdes-Sebald CM, McLaughlin FJ, Levison H. Comparison of cold air, ultrasonic mist and methacholine inhalations as
tests of bronchial reactivity in normal and asthmatic children. J Pediatr 1985;107:576-80.

15. Blair H. Natural history of childhood asthma: 20-year follow-up. Arch Dis Child 1977;52:613-9.

16. Broder LR, Higgins MW, Matthews KJ, Keler JL. Epidemiology of asthma and allergic rhinitis in a total community: Tecumseh, Michigan. J ALLERGY CLIN IMMUNOL 1974;54:100-10.

17. Anderson RR, Bland JM, Patel S, Peckham C. The natural history of asthma in childhood. J Epidemiol Community Health 1986;40:121-9.

18. Parker CD, Bibbo RE, Reed CE. Methacholine aerosol as test for bronchial asthma. Arch Intern Med 1965;115:452-8.

19. Kawabori I, Pierson WE, Conquest LL, Bieman CW. Incidence of exercise-induced asthma in children. J ALLERGY CLIN IMMUNOL 1976;58:447-55.

20. Fish JE, Akin MG, Kelly JF, Peterman VI. Comparison of responses to pollen extract in subjects with allergic asthma and nonasthmatic subjects with allergic rhinitis. J ALLERGY CLIN IMMUNOL 1980;65:154-61.

21. Bruce CA, Rosenthal RR, Lichtenstein LM, Norman PS. Quantitative inhalation bronchial challenge in ragweed hay fever patients: a comparison with ragweed-allergic asthmatics. J ALLERGY CLIN IMMUNOL 1975;56:331-7.

22. Townley RG, Bewtra A, Villacotte G, Watt G, Burke K. Correlation of methacholine sensitivity with serum IgE, allergen skin test, and disease state in atopic and nonatopic families. J ALLERGY CLIN IMMUNOL 1978;61:158.

23. Cockcroft DW, Ruffin RE, Dolovich J, Hargrave FE. Allergen-induced increase in non-allergic bronchial reactivity. Clin Allergy 1977;7:503-13.

24. Boulet LP, Cattier A, Thomson NC, Peckham C. The natural history of asthma. Am Rev Respir Dis 1979;120:121-9.

25. Golden JA, Nadel JA, Boushey HA. Bronchial hyperreactivity in normal subjects after upper respiratory tract infection. J ALLERGY CLIN IMMUNOL 1978;61:158.

26. Empey DW, Ruffin RE, Dolovich J, Hargrave FE. Mechanisms of bronchial hyperreactivity in normal subjects after upper respiratory tract infection. Am Rev Respir Dis 1978;118:287-94.

27. Little JW, Hall WJ, Douglas RG Jr, Mudholkar GS, Speer DM, Patel K. Airway hyperreactivity and peripheral airway dysfunction in influenza A infection. Am Rev Respir Dis 1978;118:295-303.

28. Laitinen LA, Elin RB, Empey DW, et al. Changes in bronchial reactivity after administration of live attenuated influenza virus [Abstract]. Am Rev Respir Dis 1976;113:194.

29. Plattus-Mills TAE, Tovey ER, Mitchell EB, Mozarro H, Noek P, Wilkins SR. Reversal of bronchial hyperreactivity during prolonged allergen avoidance. Lancet 1982;2:675-7.

30. Horn ME, Reed SE, Taylor P. Reversal of bronchial hyperreactivity during prolonged allergen avoidance. JAMA 1979;242:292-9.

31. Shapiro GG, Eggelston PA, Bieman WE, Ray CG, Bierman CW. Double-blind study of the effectiveness of a broad-spectrum antibiotic in status asthmaticus. Pediatr Allergy 1975;55:867-72.

32. Minor TE, Dick EC, DeMeo AN, Ouellette JJ, Cohen M, Reed CE. Viruses as precipitants of asthmatic attacks in children. JAMA 1974;227:292-9.

33. McIntosh K, Ellis EF, Hoffman JS, Folginsbys GB. Allergen-induced increase in non-allergic bronchial reactivity. J ALLERGY CLIN IMMUNOL 1978;61:158.

34. Bush RK, Busse W, Flaherty D, Warshauer D, Dick EC, Reed CE. Experiments of experimental rhinovirus-16 infection on airways and leukocyte function in normal subjects. J ALLERGY CLIN IMMUNOL 1978;61:80-7.

35. Utrill MI, Phillips CA, Forsythe BR, McIntosh K, Lamborn KR, Stavich WH. Role of infection in chronic bronchitis. Am Rev Respir Dis 1976;113:113-119.

36. Welliver RC, Wong DT, Sun M, Middleton ER, Vaughan RS, Ogla PL. The development of respiratory syncytial virus-specific IgE and the release of histamine in nasopharyngeal secretions after infection. N Engl J Med 1983;305:841-9.

37. Morgan EJ, Hall DR. Abnormalities of lung function in hay fever. Thorax 1976;31:80-6.

38. McIntosh K, Ellis EF, Hoffman JS, Folginsby GB. The association of viral and bacterial respiratory infections with exacerbations of wheezing in young asthmatic children. J Pediatr 1973;82:578-90.

39. Horn ME, Reed SE, Taylor P. Role of viruses and bacteria in acute episodes of asthma and chronic bronchitis. Chest 1976;36(suppl):44-8.

40. Minor TE, Dick EC, Baker JW, Ouellette JJ, Cohen M, Reed CE. Rhinovirus and influenza type A infections as precipitants of asthma. Am Rev Respir Dis 1976;113:149-53.

41. Horn ME, Reed SE, Taylor P. Role of viruses and bacteria in acute wheezy bronchitis in childhood: a study of sputum. Arch Dis Child 1979;54:87-92.

42. Huhti E, Mokk T, Noskelainen J, Holanen P. Association of viral and mycoplasma infections with exacerbations of asthma. Ann Allergy 1974;33:145-9.

43. Welliver RC, Wong DT, Middleton ER, Sun M, McCarthy N, Ogla PL. Role of parainfluenza virus-specific IgE in pathogenesis of croup and wheezing subsequent to infection. J Pediatr 1982;101:889-96.

44. Walsh JJ, Dietlein LF, Low FN, Burch GE, Mogabgab WJ. Bronchotachial response in human influenza. Arch Intern Med 1961;108:376-88.

45. Whittle B, Parr RB, Turner KB, Hendley JO, Gwaltney JM Jr, Mygind N, Histopathologic examination and enumeration of polymorphonuclear leukocytes in the nasal mucosa during experimental rhinovirus colds. Acta Otolaryngol [Suppl](Stockh) 1984;413:19-24.

46. Halperin SA, Eggelston PA, Hendley JO, Surani PM, Grosshaut DHM, Gwaltney JM Jr. Pathogenesis of lower respiratory tract symptoms in experimental rhinovirus infection. Am Rev Respir Dis 1983;128:806-10.

47. Aquilina AT, Hall WJ, Douglas RG Jr, Utell MJ. Airway reactivity in subjects with viral upper respiratory tract infections: the effects of exercise and cold air. Am Rev Respir Dis 1980;122:3-10.

48. Utell MJ, Aquilina AT, Hall WJ, et al. Development of airway reactivity to nitrites in subjects with influenza. Am Rev Respir Dis 1980;121:233-41.

49. Busse W, Mink K, Bernard M, Swenson C, Dick E. Rhinovirus upper respiratory infection (URI) causes airway hyperreactivity. J ALLERGY CLIN IMMUNOL 1987;79:133.