Genetic response to metabolic fluctuations: correlation between central carbon metabolism and DNA replication in *Escherichia coli*

Monika Maciąg¹, Dariusz Nowicki¹, Laurent Janniere², Agnieszka Szalewska-Pałasz¹ and Grzegorz Węgrzyn¹*

Abstract

Background: Until now, the direct link between central carbon metabolism and DNA replication has been demonstrated only in *Bacillus subtilis*. Therefore, we asked if this is a specific phenomenon, characteristic for this bacterium and perhaps for its close relatives, or a more general biological rule.

Results: We found that temperature-sensitivity of mutants in particular genes coding for replication proteins could be suppressed by deletions of certain genes coding for enzymes of the central carbon metabolism. Namely, the effects of *dnaA46*(ts) mutation could be suppressed by dysfunction of *pta* or *ackA*, effects of *dnaB*(ts) by dysfunction of *pgi* or *pta*, effects of *dnaE486*(ts) by dysfunction of *tktB*, effects of *dnaG*(ts) by dysfunction of *gpmA*, *pta* or *ackA*, and effects of *dnaN159*(ts) by dysfunction of *pta* or *ackA*. The observed suppression effects were not caused by a decrease in bacterial growth rate.

Conclusions: The genetic correlation exists between central carbon metabolism and DNA replication in the model Gram-negative bacterium, *E. coli*. This link exists at the steps of initiation and elongation of DNA replication, indicating the important global correlation between metabolic status of the cell and the events leading to cell reproduction.

Background

When considering a bacterial cell as a microbial factory, producing various macromolecules either natural or formed due to introduction of recombinant genes, several biochemical processes must be taken into consideration. Among them, there are two basic processes ensuring that more specialized reactions (like transcription of particular genes and translation of particular mRNAs on ribosomes as well as enzyme-mediated production of various compounds) can occur. These two processes are central carbon metabolism (for a review see ref. [1]) and DNA replication (for a review see ref. [2]). The former one provides energy from nutrients, which is absolutely necessary to all life functions of cells. The latter one, although consuming cellular energy, ensures integrity of genetic material and its inheritance by daughter cells after each cell division, providing the source of information about biological structures and functions of macromolecules.

The central carbon metabolism (CCM) is generally recognized as a set of biochemical pathways devoted to transport and oxidation of main carbon sources in the cell [1]. In a model Gram-negative bacterium, *Escherichia coli*, it consists of the phosphotransferase system, glycolysis, gluconeogenesis, pentose-monophosphate bypass with Entner-Dudoroff pathway, Krebs cycle with glyoxylate bypass and the respiration chain [3]. Biochemical reactions of these pathways ensure the optimal energy production and usage in the cell at particular growth conditions, in order to keep homeostasis.

DNA replication is a process of genetic information duplication, which is necessary to equal and precise distribution of the genetic material to both daughter cells after each cell division [2]. The process of replicative DNA synthesis requires large cellular machinery, which in *E. coli* consists of DNA polymerase III holoenzyme (containing at least 10 subunits) and other essential proteins, including DnaB helicase and DnaG primase.

* Correspondence: wegrzyn@biotech.univ.gda.pl
1Department of Molecular Biology, University of Gdańsk, Kładki 24, 80-822 Gdańsk, Poland
Full list of author information is available at the end of the article

© 2011 Maciąg et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Additional proteins (DnaA, DnaC) are required for DNA replication initiation at a specific genome region, called oriC [2,4]. Although it was observed previously that regulation of DNA replication may depend on bacterial cell metabolism, it was generally assumed that this dependency is indirect. For example, it might result from different availability of cellular energy and/or precursors of macromolecules [5,6] or from production of specific alarmons, like cyclic AMP (cAMP) [7,8] or guanosine tetraphosphate (ppGpp) [9-12], in response to nutritional deprivations. However, it was reported recently that DNA replication may be directly linked to central carbon metabolism, particularly glycolysis, in a model Gram-positive bacterium, Bacillus subtilis [13]. Namely, specific suppression of conditionally-lethal (temperature-sensitive, ts) mutations in genes coding for replication proteins (DnaE, a DNA polymerase involved in lagging strand synthesis, DnaC, a helicase - homologue of *E. coli* DnaB protein, and DnaG, the primase) by dysfunction of certain genes coding for enzymes involved in glycolysis, was observed. An indirect suppression mechanism (e.g. by slowing down of bacterial growth rate) was excluded, strongly suggesting a real link between glycolysis and DNA replication. Thus, the existence of such a link should be considered in any studies on both these processes, as well as when constructing and using biotechnological systems for efficient production of desired compounds.

Until now, the direct link between central carbon metabolism and DNA replication has been demonstrated only in *B. subtilis* [13]. Therefore, we asked if this is a specific phenomenon, characteristic for this bacterium and perhaps for its close relatives, or a more general biological rule. Since *E. coli* is both a model Gram-negative bacterium and a widely used host for production of recombinant proteins, in our studies, which were performed to answer the above question, we employed strains of this species.

Methods

Bacterial strains, plasmids and bacteriophages

E. coli strains used in this work are listed in Table 1. Plasmids and bacteriophages are described in Table 2. New bacterial strains and plasmids were constructed according to standard procedures of P1 transduction and molecular cloning, respectively [14].

Oligonucleotides

Oligonucleotides are described in Table 3.

Growth conditions

Luria-Bertani (LB) medium, and minimal media M9 and MM, were used [14]. Solid media contained 1.5% of bacteriological agar. For liquid cultures, bacteria were grown in various media in shake flasks, with aeration (by shaking). Overnight cultures were diluted in LB and grown to OD₆₀₀ = 0.3. Then, 100 μl of the culture or its dilution was plated on solid media. The plates were then incubated at indicated temperatures for indicated time. CFU (colony forming units) were calculated from plates where colony number was between 100 and 1000.

Results

We have employed six *E. coli* temperature-sensitive mutants in following genes coding for proteins necessary for chromosomal DNA replication: dnaA (coding for the replication initiator protein that binds to the oriC region and forms a specific nucleoprotein structure; this is the first step in the DNA replication initiation), dnaB (coding for the main DNA helicase, the enzyme necessary to melt DNA during the replication process), dnaC (coding for the protein which delivers DnaB helicase to the DnaA protein bound to oriC), dnaE (coding for the α subunit of DNA polymerase III, the catalytic subunit of this enzyme), dnaG (coding for primase, an enzyme necessary to synthesize RNA primers during DNA replication) and dnaN (coding for the β subunit of DNA polymerase III, a protein forming the sliding clamp and allowing DNA polymerase III to be kept on the template DNA strand when synthesizing new polynucleotide strand) [for more detailed information on these genes and their products, see ref. 2]. These mutants are described in Table 1.

To test whether mutations (particularly deletion-insertion mutations) in genes coding for enzymes from central carbon metabolism (CCM) may suppress temperature sensitivity of the replication mutants, we have determined the sensitivity profiles of all tested conditionally lethal mutants. This was necessary to chose temperatures that severely restricted growth of mutant cells, however, which still allowed observing some viability of tested strains; otherwise detection of any suppression would be impossible, as observed in the *B. subtilis* study [13]. The profiles of temperature-sensitivity of dnaA, dnaB, dnaC, dnaE, dnaG and dnaN mutants in LB medium are shown in Figure 1.

A series of double mutants, bearing mutations in one of the replication genes and in one of genes coding for CCM enzyme, has been constructed by P1 transduction (Table 1). For these constructions, deletion-insertion mutants in following genes were employed: gapC, pykF, tpiA, pgi, fbaB, gpmA, pck, zwf, tkbB, pta, ackA, aceB, acnB, and icd. Enzymes encoded by these genes are listed in Table 4, and locations (in particular biochemical pathways) of reactions catalyzed by them are marked on the scheme depicting the central carbon metabolism in *E. coli* (Figure 2).
Table 1 *E. coli* strains used in this work

Strain	Relevant characteristics	Reference or source
JCB809 (PC8)	dnaB8(ts) Cm^F F² leuB6 thyA47 deoC3 rps153 l2	[21]
PC2	dnaC(ts) thy leu rpsL	[21]
PC3	dnaG(ts) Hfr leu thy rpsL	[22]
MG1655	F⁻ ilvG::rpsE rpsE::rpsL	[23]
MG1655ΔdnaA46	F⁻ ilvG::rpsE rpsE::rpsL	[24]
DH5α	F⁻ g80lacZMD15 Δ(lacZYA-argF)U169 deoR recA1 endA1 hisR17(rK, mK+) phoA supE44	[25]
BW25113	ΔaroA-ara8)567, ΔlacZ4787:mmB-3, λ⁻, rph-1, Δ(araD-ara8)567, hisD514	[26]
JW1122	Same as BW25113 but Δcdc::kan	[27]
JW1413	Same as BW25113 but ΔgacP::kan	[27]
JW1666	Same as BW25113 but ΔgacP::kan	[27]
JW1841	Same as BW25113 but ΔgacB::kan	[27]
JW2449	Same as BW25113 but ΔgacB::kan	[27]
JW3666	Same as BW25113 but ΔgacC::kan	[27]
JW3890	Same as BW25113 but ΔgacA::kan	[27]
JW3974	Same as BW25113 but ΔgacB::kan	[27]
JW3985	Same as BW25113 but ΔgacA::kan	[27]
JW2294	Same as BW25113 but ΔgacA::kan	[27]
JW2293	Same as BW25113 but ΔgacA::kan	[27]
JW5173	Same as BW25113 but ΔgacC::kan	[27]
JW5344	Same as BW25113 but ΔgacB::kan	[27]
JW0738	Same as BW25113 but ΔgacB::kan	[27]
NR13339	Same as KA796 with dnaN159(Ts) zid501::Tn10	[28]
NR7651	Same as MC4100 lacZ104 ΔdnaA46::kan	[28]
AS701	MG1655 ΔdnaA46 Δacr::kan	This study, by P1 transduction from JW0114
AS702	MG1655 ΔdnaA46 Δcdc::kan	This study, by P1 transduction from JW1122
AS703	MG1655 ΔdnaA46 ΔgacP::kan	This study, by P1 transduction from JW1413
AS704	MG1655 ΔdnaA46 ΔgacP::kan	This study, by P1 transduction from JW1666
AS705	MG1655 ΔdnaA46 ΔgacP::kan	This study, by P1 transduction from JW1841
AS706	MG1655 ΔdnaA46 ΔgacB::kan	This study, by P1 transduction from JW2449
AS707	MG1655 ΔdnaA46 ΔgacC::kan	This study, by P1 transduction from JW3366
AS708	MG1655 ΔdnaA46 ΔgacA::kan	This study, by P1 transduction from JW3890
AS709	MG1655 ΔdnaA46 ΔgacA::kan	This study, by P1 transduction from JW3974
AS710	MG1655 ΔdnaA46 ΔgacA::kan	This study, by P1 transduction from JW3985
AS711	MG1655 ΔdnaA46 ΔgacA::kan	This study, by P1 transduction from JW2294
AS712	MG1655 ΔdnaA46 ΔgacA::kan	This study, by P1 transduction from JW2293
AS713	MG1655 ΔdnaA46 ΔgacA::kan	This study, by P1 transduction from JW5173
AS714	MG1655 ΔdnaA46 ΔgacA::kan	This study, by P1 transduction from JW5344
AS715	MG1655 ΔdnaA46 ΔgacA::kan	This study, by P1 transduction from JW3890
AS716	MG1655 ΔdnaA46 ΔgacA::kan	This study, by P1 transduction from JW5173
AS717	MG1655 ΔdnaA46 ΔgacA::kan	This study, by P1 transduction from JW5344
AS718	MG1655 ΔdnaA46 ΔgacA::kan	This study, by P1 transduction from JW3890
AS719	MG1655 ΔdnaA46 ΔgacA::kan	This study, by P1 transduction from JW3890
AS720	MG1655 ΔdnaA46 ΔgacA::kan	This study, by P1 transduction from JW3890
AS721	MG1655 ΔdnaA46 ΔgacA::kan	This study, by P1 transduction from JW3890
AS722	MG1655 ΔdnaA46 ΔgacA::kan	This study, by P1 transduction from JW3890
AS723	MG1655 ΔdnaA46 ΔgacA::kan	This study, by P1 transduction from JW3890
AS724	MG1655 ΔdnaA46 ΔgacA::kan	This study, by P1 transduction from JW3890
AS725	MG1655 ΔdnaA46 ΔgacA::kan	This study, by P1 transduction from JW3890
AS726	MG1655 ΔdnaA46 ΔgacA::kan	This study, by P1 transduction from JW3890
AS727	MG1655 ΔdnaA46 ΔgacA::kan	This study, by P1 transduction from JW3890
AS728	MG1655 ΔdnaA46 ΔgacA::kan	This study, by P1 transduction from JW3890
Table 1 *E. coli* strains used in this work (Continued)

Strain	Mutation	Source
AS779	MG1655 dnaA88 ΔacDC::kan	This study, by P1 transduction from JW5173
AS780	MG1655 dnaA88 ΔdcbB::kan	This study, by P1 transduction from JW5344
AS781	MG1655 dnaA88 ΔgmnA::kan	This study, by P1 transduction from JW0738
AS750	PC2 dnaC(ts) Δacn::kan	This study, by P1 transduction from JW0114
AS751	PC2 dnaC(ts) Δcd::kan	This study, by P1 transduction from JW1122
AS752	PC2 dnaC(ts) ΔgapC::kan	This study, by P1 transduction from JW1413
AS753	PC2 dnaC(ts) ΔpykF::kan	This study, by P1 transduction from JW1666
AS754	PC2 dnaC(ts) Δwfs::kan	This study, by P1 transduction from JW1841
AS755	PC2 dnaC(ts) ΔlkbB::kan	This study, by P1 transduction from JW2449
AS756	PC2 dnaC(ts) Δpck::kan	This study, by P1 transduction from JW3366
AS757	PC2 dnaC(ts) ΔpsiA::kan	This study, by P1 transduction from JW3890
AS758	PC2 dnaC(ts) ΔaceB::kan	This study, by P1 transduction from JW3974
AS759	PC2 dnaC(ts) ΔpsiG::kan	This study, by P1 transduction from JW3985
AS760	PC2 dnaC(ts) Δpta::kan	This study, by P1 transduction from JW2294
AS761	PC2 dnaC(ts) ΔackA::kan	This study, by P1 transduction from JW2293
AS762	PC2 dnaC(ts) ΔacDC::kan	This study, by P1 transduction from JW5173
AS763	PC2 dnaC(ts) ΔsbaB::kan	This study, by P1 transduction from JW5344
AS764	PC2 dnaC(ts) ΔgmnA::kan	This study, by P1 transduction from JW0738
AS783	PC3 dnaS(ts) Δacn::kan	This study, by P1 transduction from JW0114
AS784	PC3 dnaS(ts) Δcd::kan	This study, by P1 transduction from JW1122
AS785	PC3 dnaS(ts) ΔgapC::kan	This study, by P1 transduction from JW1413
AS786	PC3 dnaS(ts) ΔpykF::kan	This study, by P1 transduction from JW1666
AS787	PC3 dnaS(ts) Δwfs::kan	This study, by P1 transduction from JW1841
AS788	PC3 dnaS(ts) ΔlkbB::kan	This study, by P1 transduction from JW2449
AS789	PC3 dnaS(ts) Δpck::kan	This study, by P1 transduction from JW3366
AS790	PC3 dnaS(ts) ΔpsiA::kan	This study, by P1 transduction from JW3890
AS791	PC3 dnaS(ts) ΔaceB::kan	This study, by P1 transduction from JW3974
AS792	PC3 dnaS(ts) ΔpsiG::kan	This study, by P1 transduction from JW3985
AS793	PC3 dnaS(ts) Δpta::kan	This study, by P1 transduction from JW2294
AS794	PC3 dnaS(ts) ΔackA::kan	This study, by P1 transduction from JW2293
AS795	PC3 dnaS(ts) ΔacDC::kan	This study, by P1 transduction from JW7173
AS796	PC3 dnaS(ts) ΔsbaB::kan	This study, by P1 transduction from JW5344
AS797	PC3 dnaS(ts) ΔgmnA::kan	This study, by P1 transduction from JW0738
AS718	MG1655 dnaA486 Δacn	This study, by P1 transduction from JW0114
AS719	MG1655 dnaA486 Δcd	This study, by P1 transduction from JW1122
AS720	MG1655 dnaA486 ΔgapC	This study, by P1 transduction from JW1413
AS721	MG1655 dnaA486 ΔpykF	This study, by P1 transduction from JW1666
AS722	MG1655 dnaA486 Δwfs	This study, by P1 transduction from JW1841
AS723	MG1655 dnaA486 ΔlkbB	This study, by P1 transduction from JW2449
AS724	MG1655 dnaA486 Δpck	This study, by P1 transduction from JW3366
AS725	MG1655 dnaA486 ΔpsiA	This study, by P1 transduction from JW3890
AS726	MG1655 dnaA486 ΔaceB	This study, by P1 transduction from JW3974
AS728	MG1655 dnaA486 Δpsi	This study, by P1 transduction from JW3985
AS729	MG1655 dnaA486 Δpta	This study, by P1 transduction from JW2294
AS730	MG1655 dnaA486 ΔackA	This study, by P1 transduction from JW2293
AS731	MG1655 dnaA486 ΔcdC	This study, by P1 transduction from JW5173
AS732	MG1655 dnaA486 ΔsbaB	This study, by P1 transduction from JW5344
AS733	MG1655 dnaA486 ΔgmnA	This study, by P1 transduction from JW0738
AS734	MG1655 dnaN159 ΔacnN8::kan	This study, by P1 transduction from JW0114
AS735	MG1655 dnaN159 Δcd::kan	This study, by P1 transduction from JW1122
AS736	MG1655 dnaN159 ΔgapC::kan	This study, by P1 transduction from JW1413
AS737	MG1655 dnaN159 ΔpykF::kan	This study, by P1 transduction from JW1666
We have tested whether mutations in the CCM genes can suppress temperature sensitivity of bacteria caused by mutations in the replication genes. In this test, bacteria were plated at sublethal temperatures (i.e. temperatures causing a decrease in the efficiency of plating for several orders of magnitude, but still allowing survival of a small fraction of mutant cells), selected on the basis of temperature-sensitivity profiles determined as shown in Figure 1 (in control experiments, the temperature permissive to all strains, 30°C, was used). These following sublethal temperatures were chosen for particular replication mutants: 39°C for dnaA46(ts), 41°C for dnaB8(ts), 35°C for dnaC(ts), 36.5°C for dnaE486(ts), 34°C for dnaG(ts) and 37.5°C for dnaN159(ts). The effects of dnaN159(ts) mutation could be increased by at least one order of magnitude (often considerably more) at sublethal temperatures in the presence of particular mutations in genes coding for enzymes from CCM (Figure 3). The effects of dnaA46(ts) mutation could be suppressed by dysfunction of pta or ackA, effects of dnaB8(ts) by dysfunction of pgI or pta, effects of dnaE486(ts) by dysfunction of tktB, effects of dnaG(ts) by dysfunction of gpmA, pta or ackA, and effects of dnaN159(ts) by dysfunction of pta or ackA. Most of the suppression phenomena were not complete, i.e. the efficiency of survival of the ts mutants in the sublethal temperature was between 1 and 10% of that in the permissive temperature, though still it was 10 to 100 times higher than that of the ts mutant without suppressor mutation at the sublethal temperature (Figure 4).

Table 2 Plasmids employed and constructed in this study

Plasmid	Relevant characteristics	Reference
pBAD24	ori pBR322; bla+ P_BAD	[29]
pAS101	pBAD24 bearing the ackA gene under of pBAD control	This study, by cloning of a PCR amplified fragment of E. coli MG1655 chromosome, obtained with primers ackaF and ackaR (Table 3), into the SmaI side of pBAD24
pAS102	pBAD24 bearing the pgI gene under of pBAD control	This study, by cloning of a PCR amplified fragment of E. coli MG1655 chromosome fragment obtained with primers pgIF and pgIR (Table 3), into the SmaI side of pBAD24
pAS103	pBAD24 bearing the fbaB gene under of pBAD control	This study, by cloning of a PCR amplified fragment of E. coli MG1655 chromosome fragment obtained with primers fbaBF and fbaBR (Table 3), into the KpnI side of pBAD24
pAS104	pBAD24 bearing the tktB gene under of pBAD control	This study, by cloning of a PCR amplified fragment of E. coli MG1655 chromosome fragment obtained with primers tktBF and tktBR (Table 3), into the KpnI side of pBAD24
pAS105	pBAD24 bearing the pta gene under of pBAD control	This study, by cloning of a PCR amplified fragment of E. coli MG1655 chromosome fragment obtained with primers ptaF and ptaR (Table 3), into the KpnI side of pBAD24
pAS106	pBAD24 bearing the gpm gene under of pBAD control	This study, by cloning of a PCR amplified fragment of E. coli MG1655 chromosome fragment obtained with primers gpmAF and gpmAR (Table 3), into the KpnI side of pBAD24
pAS107	pBAD24 bearing the aceB gene under of pBAD control	This study, by cloning of a PCR amplified fragment of E. coli MG1655 chromosome fragment obtained with primers aceBF and aceBR (Table 3), into the KpnI side of pBAD24
This correlates with the previous findings on the \textit{B. subtilis} model [13]. Interestingly, the only exceptions were \textit{dnaA46} suppressors, restoring 100\% growth relative to that under permissive conditions. It is worth noting that \textit{dnaA} mutants of \textit{B. subtilis} were not tested in the previous work, mentioned above [13].

To test whether suppressions depicted in Figure 3 were specific, plasmids bearing wild-type copies of disrupted metabolic genes (Table 2) have been introduced into cells of the double mutants. The wild-type alleles were under control of the pBAD promoter, which could be stimulated by addition of L-arabinose into growth medium. We found that for \textit{dnaA46} (ts), \textit{dnaB8} (ts), \textit{dnaE486} (ts), \textit{dnaG} (ts) and \textit{dnaN159} (ts) hosts, expression of appropriate wild-type allele of CCM gene reversed effects of temperature sensitivity suppression by the corresponding mutant allele (Figure 4). Therefore, we conclude that the suppression effects depicted in Figure 3 are specific for certain mutations.

We asked whether the suppression of temperature sensitivity of mutants in the replication genes by dysfunction of particular genes coding for CCM enzymes could be caused by decreased growth rates of double mutants. This question was substantiated by the fact that DNA replication regulation is known to be dependent on bacterial growth rate [2]. However, we found that although in most cases (excluding the \textit{dnaA46} mutants) at 30\textdegreeC the growth rates of the double mutants revealing suppression of the temperature sensitivity were lower than in wild-type bacteria, a similar or lower decrease in the growth rate was observed also in double mutants which did not suppress the temperature sensitivity (Figure 5). Therefore, we conclude that the observed suppression effects could not be caused simply by a decrease in bacterial growth rate.

We have also tested whether the suppression can be caused by growth of the replication mutants in media containing various carbon sources, which also allow for different growth rates. Therefore, we have plated \textit{dnaA46} (ts), \textit{dnaB8} (ts), \textit{dnaC} (ts), \textit{dnaE486} (ts), \textit{dnaG} (ts) and \textit{dnaN159} (ts) mutants on plates containing a minimal medium supplemented with various carbon sources: glucose, glycerol, maleic acid or sodium acetate. However, in these experiments, we did not observe any improvement in viability of these mutants at the sub-lethal temperatures (data not shown). These results corroborate the results of experiments with growth rate measurement, and support our conclusion that the suppression of temperature sensitivity of the replication mutants cannot be explained by lower growth rates of bacteria.

Discussion

The approach to understand cellular processes as a network of complex relations becomes more appreciated...
only nowadays. Two major processes responsible for maintenance and reproduction of the cell (i.e. energy metabolism and DNA replication) were studied mostly independently until recently. A direct link between DNA replication and central carbon metabolism (CCM) has been demonstrated solely for one species of Gram-positive bacterium, B. subtilis [13]. This finding was a breakthrough in considering these processes as interrelated. Thus, it was crucial to address the question whether such a phenomenon occurs only in the specific strain or it is more general. Here we present evidence that such a link exists also in E. coli, a model Gram-negative bacterium.

Despite the general similarity, there are important differences between suppression of effects of mutations in replication genes by dysfunction of genes coding for enzymes of CCM in E. coli and B. subtilis. According to previous report [13], in B. subtilis, the temperature-sensitivity suppression was detected for only three genes: dnaE, dnaC (an equivalent of the E. coli dnaB gene, coding for helicase) and dnaG. Temperature-sensitive mutants in these genes could grow at elevated temperatures in the presence of additional mutations in gapA, pgk, pgm, eno or pykA. These five genes code for enzymes acting at the late stages of glycolysis and gluconeogenesis. In E. coli, we were able to observe suppression of effects of temperature-sensitive mutations not only in dnaE, dnaB and dnaG genes (like in B. subtilis), but also in dnaN and - perhaps the most surprisingly - in dnaA. Moreover, growth at sublethal temperatures of these mutants was observed under conditions of a lack of enzymes involved not only in glycolysis and gluconeogenesis (pgi and gpmA), but also in other regimens of CCM, namely the pentose phosphate pathway (tktB gene) and the overflow pathway (pta and ackA genes). This suggests that in E. coli the link between DNA replication and CCM may be broader than in B. subtilis. Alternatively, the observed differences might result from a partial exploration of a complex system (only some replication and metabolic genes were tested due to technical reasons, namely unavailability of viable mutants).

For B. subtilis, the target of the regulation by metabolic-related signals was shown to be mostly the elongation of the DNA replication process, though some suppressed replication mutations affected also replication initiation [13]. In E. coli, the evidence presented here shows the link between CCM and replication elongation (represented by enzymes involved in the replication complex), and initiation. One of indispensable regulators of the latter process in E. coli is DnaA protein [15,4]. Thus, the finding of the suppression of dnaA46(ts) conditionally-lethal phenotype by mutants in genes involved in CCM suggests the presence of as yet unidentified correlation. Moreover, the observed suppression was complete (100% survival at sublethal temperature relative to survival at permissive temperature), contrary to those noted for other mutants in replication genes. Both suppressors of the dnaA46(ts) phenotype map in the overflow pathway of CCM. This and the presence of the suppressors in genes of enzymes from other pathways beside glycolysis, linking energy turnover and DNA replication, thus,
Figure 2 A scheme for CCM including main pathways - glycolysis/gluconeogenesis, penthaphosphate pathway, citrate cycle, overflow pathway. Mutants tested in this work are indicated by following colours: blue - non suppressor mutants, red - suppressors of replication genes mutants. Metabolites abbreviations: 1,3-BGP, 1,3-biphosphoglycerate; 2PG, 2-phophoglycerate; 3PG, 3-phosphoglycerate; 6PGLN, 6-phosphoglucono-δ-lactone; 6PGNT, 6-phophogluconate; GLC, glucose; G6P, glucose-6-phosphate; F6P, fructose-6-phosphate; FUM, fumarate; MAL, malate; OXA, oxaloacetate; PBP, fructose-1,6-biphosphate; DHAP, dihydroxyacetone phosphate; GAP, glyceraldehyde 3-phosphate; PEP, phosphoenolpyruvate; PYR, pyruvate; Ru5P, ribulose-5-phosphate; S7P, sedoheptulose-7-phosphate; E4P, erythrose-4-phosphate; Ac-CoA, acetyl coenzyme A; Ac-P, acetyl phosphate; Ac-AMP, acetyl-AMP; CIT, citrate; ICT, isocitrate; GOX, glyoxylate; α-KG, α-ketoglutarate; SUC-CoA, succinyl-coenzyme A; SUC, succinate; Xu5P, xylulose-5-phosphate.

Figure 3 Suppression pattern of double mutants in CCM and replication genes. Red - full suppression, yellow - incomplete suppression. Suppressions were observed in sublethal temperatures.
Figure 4: Complementation of suppression phenotypes in double replication/CCM mutants by the overproduction of the metabolic enzymes. The experiments were performed in sublethal temperatures (relevant for each strain). Mutations as indicated above the graphs were employed. Panel A. Bacterial growth measured in CFU. Empty columns - growth in the presence of 0.2% arabinose, shaded columns - growth in the presence of 0.1% glucose. Efficiencies of plating (CFU/ml) of the replication mutants at 30°C are indicated by a dashed line at each graph. Panel B and C. The growth of temperature-sensitive dnaA46-derivatives in permissive and sublethal temperature. B - dnaA46Δpta, C - dnaA46ΔackA. Panels A, B and C. 1 - temperature-sensitive replication mutants, 2 - double mutants in replication and CCM genes, 3 - double mutants in replication and CCM genes complemented with the relevant metabolic gene under the control of arabinose-inducible pBAD promoter.
it may benefit from more metabolic sensors. Similarly to *B. subtilis*, the suppression observed in *E. coli* was not caused by a decrease in the growth rate. Moreover, the increase in the doubling time of replication mutants (by growth on the minimal media containing various carbon sources, including very poor ones, like maleic acid or acetate) did not improve their viability at sublethal temperatures.

The proposed mechanism of the regulation of DNA replication by CCM in *B. subtilis* involves a putative metabolic linker which can cause conformational changes in replication proteins to modulate replisome properties [13]. This hypothesis may be supported by the role of acetyl phosphate which can accumulate in the overflow pathway mutants. Acetyl phosphate has been proposed to function as a global signal that fits into various two-compound systems [16,17]. This may require the second, as yet unknown, protein modulating replication proteins, or the mechanism can rely on autophosphorylation. The role of acetyl phosphate in protein folding and stability has been proposed as well [18]. In this light it is interesting that AckA and Pta reduce the production of double-stranded breaks in DNA [19]. Moreover, DiaA, a DnaA-binding protein, contains a SIS motif that might bind phosphosugars [20]. These facts may provide a start point to further works on understanding the link between CCM and DNA replication.

It is worth noting that since we have used deletion-insertion mutants in genes coding for CCM enzymes, the suppressions of the temperature-sensitivity phenotypes of the replication mutants cannot be explained by direct protein-protein interactions. Indeed, numerous and large-scale interactions between replication proteins and CCM enzymes seemed unlikely, which led us to use a set of deletion mutants in tested genes. On the other hand, the use of such mutants ensured that particular enzymatic functions were absent in mutant cells, which excluded potential problems with putative partial inactivation of CCM enzymes caused by point mutations.

One should also take into consideration a possibility that changes in chemical composition of the cells caused by a lack of particular CCM enzymes might alleviate temperature sensitivity of mutants in genes coding for replication proteins. In fact, we cannot exclude that increased concentrations of some substances that accumulate due to metabolic blocks at certain steps of CCM might stabilize the temperature-sensitive replication proteins and allow them to function at higher temperatures. If so, CCM could have no effects on wild-type replication proteins and the DNA replication process in wild-type cells. However, to accept such a hypothesis it would be necessary to assume that there are at least several compounds (metabolites) able to interact specifically with several different temperature-sensitive variants of the replication proteins, resulting in their stabilization at elevated temperatures. Although still possible, such a scenario seems unlikely, therefore, we prefer the hypothesis that there is a link between CCM and DNA replication in bacterial cells.

Conclusions

We show the genetic correlation between central carbon metabolism and DNA replication in the model Gram-negative bacterium, *E. coli*. Therefore, one might suggest

Replication mutants	Mutation in metabolic gene								
	None	tpiA	pgI	fbaB	gpmA	tktB	pta	ackA	aceB
dnaA46	52 ± 7.6	-	35 ± 0.0	-	-	-	38 ± 7.6	37 ± 3.8	-
dnaB8	56 ± 5.8	46 ± 6.4	115 ± 0.0	-	-	-	50 ± 0.0	-	-
dnaC(Ts)	48 ± 0.7	-	42 ± 2.1	75 ± 0.0	45 ± 8.3	65 ± 7.0	-	-	-
dnaE486	37 ± 2.8	-	24 ± 5.0	-	-	42 ± 4.2	-	-	-
dnaG(Ts)	43 ± 3.4	55 ± 7.6	-	-	44 ± 12.8	-	53 ± 6.6	52 ± 7.1	41 ± 5.3
dnaN159	43 ± 2.5	-	-	73 ± 3.5	-	-	46 ± 8.5	50 ± 7.0	-

Figure 5 Generation times of double mutants in replication and CCM genes. Bacteria were grown at 30°C in LB and doubling time (values presented in the boxes ± SD) was assessed in the exponential growth phase. The doubling time for the wild-type strain (MG1655) was 48 ± 0.7 min. The colors represent genotypes in which suppressions were observed at sublethal temperatures (red - full suppression, yellow - incomplete suppression). Dash - the generation time was not determined.
that the existence of such a link is a general phenomenon rather than an event occurring very specifically in a small group of organisms. This link exists at the steps of initiation and elongation of DNA replication, indicating the important global correlation between metabolic status of the cell and the events leading to cell reproduction.

List of abbreviations
CFU: colony forming unit; CCM: central carbon metabolism; PPP: pentose phosphate pathway; ts: temperature-sensitivity.

Acknowledgements and Funding
We are grateful to Dr. Benedict Michel and Dr. Ivona Fjalkowska for replication mutant strains. The mutants in the CCM genes were obtained from the keio collection (25, National BioResource Project (NIG, Japan): E. coli). This work was supported by Ministry of Science and Higher Education (Poland) (project grant no. N N301 467234 to GW).

Author details
1Department of Molecular Biology, University of Gdańsk, Klapudzka 24, 80-822 Gdańsk, Poland. 2MEGA Laboratory, Institute of System and Synthetic Biology, Gênopole Campus I, 5 rue Henri Desbruslles, 91000 Evry, France.

Authors’ contributions
MM and DN performed all experiments. LJ was the initiator of the project and contributed to experimental design and data analysis. ASP supervised the experiments and participated in preparation of the manuscript. GW was a project leader, supervised the work and drafted the manuscript. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 11 February 2011 Accepted: 31 March 2011 Published: 31 March 2011

References
1. Gottschalk G. Bacterial Metabolism. Springer, Berlin-Heidelberg, 2 1986.
2. Kornberg A, Baker TA. DNA Replication. University Science Books, Sausalito, CA, 2 1992.
3. Neidhardt FC. Escherichia coli and Salmonella Cell and Molecular Biology. ASM Press: Washington, D.C., 2 1996:219-206.
4. Zakrzewska-Czernicka J, Jakimowicz D, Zawilak-Pawlik A, Messer W. Regulation of the initiation of chromosomal replication in bacteria. FEMS Microbiol Rev 2007, 31:378-387.
5. Zyskind JW, Smith DW. DNA replication, the bacterial cell cycle, and cell growth. Cell 1992, 69:5-8.
6. Michielisen T, Teixeira de Mattos MJ, Jensen PR, Hansen FG. Precise determinations of C and D periods by flow cytometry in Escherichia coli. J Bacteriol 1997, 179:2587-2590.
7. Hughes P, Landoulsi A, Kohiyama M. A novel role for CAMP in the control of the activity of the E. coli chromosome replication initiator protein, DnaA. Cell 1988, 55:343-350.
8. Landoulsi A, Kohiyama M. Initiation of DNA replication in Δγα mutants of Escherichia coli K12. Biochimie 1999, 81:827-834.
9. Levine A, Vannier F, Dehbi M, Henckes G, Seror SJ. The stringent response blocks DNA replication outside the ori region in Bacillus subtilis and at the origin in Escherichia coli. J Mol Biol 1991, 219:603-613.
10. Schreiber G, Ron EZ, Glasser A. ppGpp-mediated regulation of DNA replication and cell division in Escherichia coli. Curr Microbiol 1995, 30:27-32.
11. Herman A, Wegrzyn G. Effect of increased ppGpp concentration on DNA replication of different replicons in Escherichia coli. J Basic Microbiol 1995, 35:33-39.
12. Wegrzyn G, Wegrzyn A. Stress responses and replication of plasmids in bacterial cells. Microb Cell Fact 2002, 1:2.
13. Janierê L, Cancelli D, Suski C, Kanga S, Dalmais B, Lestini R, Monnier AF, Chapuis J, Bolotin A, Titok M, Le Chatelier E, Ehrlich SD. Genetic evidence for a link between glycolysis and DNA replication. PLoS ONE 2007, 2:e4647.
14. Sambrook J, Russell DW. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press; Cold Spring Harbor, New York, 3 2001.
15. Messer W. The bacterial replication initiation DnaA. DnaA and oriC, the bacterial mode to initiate DNA replication. FEMS Microbiol Rev 2002, 26:355-374.
16. Neen AH, Shulla A, Reimann SA, Keating DH, Wolfe AJ. The intracellular concentration of acetyl phosphate in Escherichia coli is sufficient for direct phosphorylation of two-component response regulators. J Bacteriol 2007, 189:5574-5581.
17. McCleary WR, Stock JB. Acetyl phosphate and the activation of two-component response regulators. J Biol Chem 1994, 269:31567-31572.
18. Mizrahi I, Biran D, Ron EZ. Involvement of the Pta-AckA pathway in protein folding and aggregation. Res Microbiol 2009, 160:80-84.
19. Shi Y, Stansbury J, Kuzminov A. A defect in the acetyl coenzyme A - acetate pathway poisons recombinational repair-deficient mutants of Escherichia coli. J Bacteriol 2005, 187:1266-1275.
20. Ishida T, Akimitsu N, Kashioka T, Hatano M, Kubota T, Ogata Y, Sekimizu K, Katayama T: DiaA, a novel DnaA-binding protein, ensures the timely initiation of Escherichia coli chromosome replication. J Biol Chem 2004, 279:45546-45555.
21. Carl PL. Escherichia coli mutants with temperature-sensitive synthesis of DNA. Mol Gen Genet 1970, 109:107-122.
22. Dabbis ER. The gene for ribosomal protein S21, rpsL, maps close to dnaG at 66.5 min on the Escherichia coli chromosomal linkage map. J Bacteriol 1980, 144:603-607.
23. Jensen KS. The Escherichia coli K-12 “wild types” W3110 and MG1655 have an rph frameshift mutation that leads to pyrimidine starvation due to low pyrF expression levels. J Bacteriol 1993, 175:3401-3407.
24. Fayet O, Louarn JM, Georgopoulos C. Precise determination of the ori region in Bacillus subtilis. J Bacteriol 1996, 175:5574-5581.
25. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2006, 2:2006:3008.
26. Jensen KS. The Escherichia coli K12 “wild types” W3110 and MG1655 have an rph frameshift mutation that leads to pyrimidine starvation due to low pyrF expression levels. J Bacteriol 1993, 175:3401-3407.
27. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2006, 2:2006:3008.
28. Makiela-Czbonska K, Jaroszcz M, Banach-Olowska M, Jonczyk P, Schaaper RM, Fijalkowska I. Role of Escherichia coli DNA Polymerase I in chromosomal DNA replication fidelity. Mol Microbiol 2009, 74:1114-1127.
29. Guzman LM, Belin D, Carson M, Beckwith J. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 1995, 177:4121-4130.