Prognostic Value of Exercise as Compared to Resting Pulmonary Hypertension in Patients with Normal or Mildly Elevated Pulmonary Arterial Pressure

To the Editor:

There is increasing evidence for the prognostic relevance of pulmonary hypertension during exercise (1–5); it is unclear, however, if this prediction goes beyond the predictive power of resting pulmonary hypertension. In this study, we aimed to assess the association between pulmonary hypertension during exercise and mortality in patients with normal or mildly elevated pulmonary arterial pressures at rest and focused on the additive prognostic information of exercise- as compared with resting hemodynamics. Some of the results of these studies have been previously reported in the form of an abstract (6).

In this single-center retrospective study, we included patients undergoing right heart catheterization (RHC) at rest and during supine ergometer exercise. Patients were referred to our clinic owing to suspected pulmonary hypertension based on their history, symptoms and investigations performed before their admission. The indication for resting RHC followed international guidelines and was based on the clinical judgment of physicians in our outpatient clinic (7). Patients who turned out to have resting mean pulmonary arterial pressure (mPAP) <25 mm Hg at RHC underwent exercise-RHC to assess pulmonary hypertension during exercise and to gain additional information regarding mechanisms of dyspnea and exercise limitation. Patients had a minimum observation time of six months. The study was approved by the local ethics committee (EK 32–352 ex 19–20). Patients undergoing exercise RHC from 2005 to August 2011 were retrospectively entered in our registry. Starting with August 2011, patients were prospectively recruited and signed informed consent. Resting- and exercise RHC was performed in all patients as previously described, pressure/cardiac output (CO) slopes were calculated as (Pressure peak – Pressure base)/(CO peak – CO base) (8). To identify continuous exercise hemodynamic parameters predicting overall survival, we performed multivariate Cox regression analysis, adjusted for sex and age. Significant predictors were dichotomized using the approach proposed by Crowley and colleagues (9). In a second step, prognostically relevant exercise hemodynamic variables were analyzed adjusting for the presence of relevant cardiopulmonary comorbidities, smoking status, World Health Organization functional class (WHO-FC), N-terminal pro brain natriuretic peptide (NT-proBNP), 6-minute-walk distance (6MWD), peak oxygen uptake (peakVO₂) and pulmonary resting hemodynamics including mPAP, pulmonary arterial wedge pressure (PAWP), right atrial pressure (RAP), CO, and pulmonary vascular resistance (PVR). Models including exercise hemodynamic variables were compared with the model without these exercise hemodynamic variables using log-likelihoods. Data are presented as mean ± SD for parametric and as median (interquartile range [IQR]) for nonparametric continuous variables. Categorical data are shown as absolute and relative frequencies. Statistical software R (4.1.1) was used for data analysis (used package: survival). Between 2005 and 2017, we included 207 patients (age: 64 yr [IQR, 54–72], 69% female, body mass index: 26.6 kg/m² [22.8–30.1], NT-proBNP: 184 pg/ml [81–493], 6MWD: 398 ± 105 m, PeakVO₂: 74 ± 22.3% predicted; WATTmax 75 [50–100], mPAP: 18 mm Hg [IQR, 15–21], PAWP: 8 mm Hg [IQR, 6–10], PVR: 2.12 WU [IQR, 1.46–2.73], CO: 4.8 L/min [3.9–5.8], median follow-up time 4.3 years [IQR, 2.0–8.5], mortality events: 40 [19%]). Ten patients had a prevalent pulmonary vascular disease based on previous RHC and were treated with at least one pulmonary arterial hypertension (PAH) drug. Eight other connective tissue disease patients received bosentan for digital ulcers. The other patients received no PAH drugs. Cardiopulmonary comorbidities were present in 147 (71%) patients.

Of the examined pulmonary exercise hemodynamic parameters mPAP/CO-slope, PAWP/CO-slope, trans-pulmonary gradient (TPG)/CO-slope and CO peak turned out as age- and sex independent predictors of mortality (Table 1). The best cut-offs were 7.5 mm Hg/L/min for mPAP/CO-slope (hazard ratio [HR], 3.24; 95% confidence interval [CI], 1.49–7.04; P = 0.003; reference group: <7.5 mm Hg/L/min), 6.0 mm Hg/L/min for PAWP/CO-slope (HR, 4.43; 95% CI, 1.96–10.00; P < 0.001; reference group: <6 mm Hg/L/min), 3.9 mm Hg/L/min for TPG/CO-slope (HR, 2.56; 95% CI, 1.24–5.30, P = 0.013; reference group: <3.9 mm Hg/L/min) and 8.5 L/min for CO peak (HR, 4.41; 95% CI, 2.01–9.68; P < 0.001; reference group: ≥8.5 L/min) (Figure 1). In multivariate models, additionally adjusting for cardiopulmonary comorbidities, smoking status, WHO-FC, and resting hemodynamics, all four parameters remained significant independent predictors of mortality (Table 2: Models 2–5). After additionally adjusting for NT-proBNP, this remained true for CO peak (Table 2: Model 4). Of note, after adjusting for 6MWD or peakVO₂, the addition of exercise- to resting hemodynamics did not result in an improvement of the prognostic model (Table 2: Models 5–6). Based on the data of the Austrian National Institute of Statistics, the most frequent causes of death were: cardiovascular (N = 11 [28%]) respiratory (N = 8 [20%]), and cancer (N = 8 [20%]). All three slopes and CO peak remained significant predictors of survival after using competing risk analysis adjusting cancer related events.

Patients with a mPAP/CO-slope ≥7.5 mm Hg/L/min were older (73 yr [68–77] vs. 60 yr [50–69], P < 0.001), had more cardiopulmonary comorbidities (one or more comorbidities in 46/49 [94%] vs. 95/148 [64%], P < 0.001), higher NT-proBNP (470 pg/ml [243–1416] vs. 144 pg/ml [66–344], P < 0.001) and shorter 6MWD (314 ± 85 m vs. 426 ± 99 m, P < 0.001) as compared with subjects with mPAP/CO-slope <7.5 mm Hg/L/min. In addition, in high-slope versus low-slope patients significantly more patients had resting PVR ≥3 WU (32% vs. 12%; P < 0.001), peak work-load was significantly lower (50 W [25–50] vs. 75 W [50–100]; P < 0.001) and...
Model 1: resting parameter adjusted for age and sex	Resting parameters	mPAP	PAWP	RAP	CO	PVR
mPAP/CO slope Model comparison:						
HR (95% CI)	0.045	0.96 (0.90–1.02)	1.01 (0.95–1.07)	1.00 (0.99–1.00)	1.42 (0.98–2.05)	
P value	0.021	0.008	0.005	0.008	0.006	
PAWP/CO slope Model comparison:						
HR (95% CI)	1.05 (1.01–1.09)	1.01 (1.01–1.09)	1.05 (1.01–1.10)	1.06 (1.02–1.10)	1.06 (1.02–1.10)	
P value	0.009	0.013	0.026	0.033	0.003	
TPG/CO slope Model comparison:						
HR (95% CI)	0.061	0.029	0.023	0.027	0.014	
P value	0.024	0.047	0.072	0.005	0.006	
COpeak Model comparison:						
HR (95% CI)	0.031	0.011	0.006	0.014	0.031	
P value	0.022	0.011	0.022	0.003	0.016	

Definition of abbreviations: CI = confidence interval; CO = cardiac output; HR = hazard ratio; mPAP = mean pulmonary arterial pressure; NT-proBNP = N terminal pro brain natriuretic peptide; PAWP = pulmonary artery wedge pressure; peakVO2 = peak oxygen uptake; PVR = pulmonary vascular resistance; RAP = right atrial pressure; WHO-FC = World Health Organization functional class; 6MWD = 6-minute-walk distance.

Model 1 adjusting for age and sex. Hazard ratios (95% CI) and P values are given for different resting hemodynamics separately (mPAP, PAWP, RAP, CO, and PVR). Parameters of exercise hemodynamics (mPAP/CO slope, PAWP/CO slope, TPG/CO slope, peak CO) are added individually to the model. Here, HR (95% CI) as well as the P values for the exercise hemodynamics are given. The models including exercise hemodynamics are compared to the initial model without exercise hemodynamics. In the line “model comparison” the P value for this comparison is given.

In model 1, all analyzed parameters of exercise hemodynamics are significant predictors of prognosis and are superior to the model including only resting hemodynamics. Bold values are statistically significant.
mPAP was higher both at rest (21 mm Hg [IQR, 18–23] vs. 17 mm Hg [IQR, 14–21]; P < 0.001) and at peak exercise (45 ± 9 mm Hg vs. 39 ± 10 mm Hg; P < 0.001).

In this study, we confirm the prognostic relevance of pulmonary hypertension during exercise in patients with normal or mildly elevated pulmonary arterial pressure. We show for the first time that mPAP/CO-slope, PAWP/CO-slope, TPG/CO-slope, and COpeak are not only age- and sex-independent predictors of mortality but also independent of cardiopulmonary comorbidities, smoking status, WHO-FC, and resting hemodynamics, thus providing additional prognostic information.

Based on recent studies, pressure/CO-slopes emerge as valuable prognostic parameters for patients with normal or mildly elevated pulmonary arterial pressures (10–12) and mPAP/CO-slope <3 mm Hg/L/min may even serve as cut-off for normal exercise hemodynamics (2, 3). In our study, we do not only confirm the prognostic relevance of Pressure/CO slopes (mPAP/CO-, TPG/CO-, and PAWP/CO slope), but extend our knowledge by showing that in patients with normal or mildly elevated resting mPAP, these slopes are independent predictors of mortality even after adjustment for continuous pulmonary resting hemodynamic parameters. This suggests that both pre- and post-capillary causes of pulmonary pressure elevation during exercise may contribute to mortality risk.

Previous studies have found a broad range of predictive mPAP/CO-slopes and PAWP/CO-slopes (2, 4, 13). This may be explained by the fact that optimal prognostic cut-offs are highly dependent on the analyzed patients and other circumstances including body position during exercise. The finding that in addition to pressure/CO slopes COpeak was a significant predictor of prognosis supports previous results of Chaouat and colleagues, who identified cardiac index during exercise as independent prognosticator (1), although their finding was derived from a set of 55 patients with severe PAH, while our patients had no more than mild pulmonary hypertension. Of note, in our study, there was a strong negative nonlinear correlation between the mPAP/CO slope and COpeak (r_s = -0.803, P < 0.001), suggesting that a steep mPAP increase might limit COpeak during exercise.

The clinical consequences of our study need to be further explored. We do not advise the investigation of pulmonary hypertension during exercise as an additive invasive testing to patients, but our data suggest that protocols encompassing both rest

Figure 1. Multivariate COX Regression for (A) COpeak (P < 0.001), (B) mPAP/CO-slope (P = 0.036), (C) PAWP/CO-slope (P < 0.001), and (D) TPG/CO-slope (P = 0.011) accounting for age and sex. CO = cardiac output; mPAP = mean pulmonary arterial pressure; PAWP = pulmonary artery wedge pressure; TPG = transpulmonary gradient.
Table 2. Additional Prognostic Models Predicting All-Cause Mortality by Exercise Hemodynamics

Model 2: resting parameter adjusted for age, sex, smoking status, and comorbidities	Resting Parameters	mPAP	PAWP	RAP	CO	PVR	
Model 2 + MPAP/CO-slope	mPAP/CO-slope	HR (95% CI)	1.12 (1.02–1.24)	0.97 (0.91–1.03)	1.01 (0.95–1.08)	1.00 (0.99–1.01)	1.40 (0.93–2.09)
Model 2 + PAWP/CO slope	PAWP/CO-slope	HR (95% CI)	1.06 (1.02–1.10)	1.06 (1.03–1.10)	1.07 (1.03–1.11)	1.06 (1.02–1.10)	1.07 (1.03–1.11)
Model 2 + TPG/CO slope	TPG/CO-slope	HR (95% CI)	1.07 (1.01–1.14)	1.08 (1.02–1.15)	1.08 (1.02–1.15)	1.08 (1.02–1.15)	1.10 (1.03–1.17)
Model 2 + COpeak	COpeak	HR (95% CI)	0.79 (0.69–0.91)	0.78 (0.67–0.89)	0.78 (0.68–0.90)	0.73 (0.61–0.90)	0.78 (0.68–0.92)
Model 3: resting parameter adjusted for age, sex, and comorbidities	Resting parameters	HR (95% CI)	1.12 (1.02–1.23)	0.97 (0.91–1.03)	1.02 (0.95–1.09)	1.00 (0.99–1.01)	1.41 (0.95–2.09)
Model 3 + MPAP/CO-slope	mPAP/CO-slope	HR (95% CI)	1.05 (1.01–1.09)	1.06 (1.02–1.10)	1.06 (1.03–1.10)	1.06 (1.02–1.10)	1.07 (1.03–1.11)
Model 3 + PAWP/CO slope	PAWP/CO-slope	HR (95% CI)	1.06 (1.00–1.13)	0.98 (0.82–1.05)	1.08 (1.02–1.14)	1.07 (1.01–1.14)	1.09 (1.02–1.16)
Model 3 + TPG/CO slope	TPG/CO-slope	HR (95% CI)	1.11 (1.02–1.21)	1.13 (1.04–1.23)	1.15 (1.06–1.26)	1.14 (1.04–1.25)	1.13 (1.03–1.24)
Model 3 + COpeak	COpeak	HR (95% CI)	0.80 (0.70–0.92)	0.78 (0.68–0.90)	0.78 (0.68–0.90)	0.73 (0.61–0.87)	0.79 (0.69–0.92)
Model 4: resting parameter adjusted for age, sex, WHO functional class, ln(NTproBNP)	Resting parameters	HR (95% CI)	1.13 (1.02–1.26)	0.97 (0.91–1.04)	1.03 (0.96–1.10)	1.00 (0.99–1.01)	1.28 (0.85–1.92)
Model 4 + MPAP/CO-slope	mPAP/CO-slope	HR (95% CI)	1.03 (1.00–1.08)	1.04 (1.00–1.08)	1.04 (1.00–1.09)	1.04 (1.00–1.08)	1.04 (1.00–1.09)
Model 4 + PAWP/CO slope	PAWP/CO-slope	HR (95% CI)	1.03 (0.96–1.10)	1.04 (0.97–1.11)	1.04 (0.97–1.11)	1.04 (0.97–1.11)	1.06 (0.98–1.14)
Model 4 + TPG/CO slope	TPG/CO-slope	HR (95% CI)	1.10 (0.98–1.18)	1.10 (1.01–1.20)	1.12 (1.02–1.23)	1.12 (1.01–1.23)	1.19 (1.09–1.29)
Model 4 + COpeak	COpeak	HR (95% CI)	0.82 (0.70–0.96)	0.81 (0.69–0.94)	0.82 (0.70–0.96)	0.77 (0.64–0.94)	0.83 (0.70–0.97)
Model 5: resting parameter adjusted for age, sex, 6 MWD	Resting parameters	HR (95% CI)	1.11 (0.99–1.24)	0.95 (0.88–1.04)	0.95 (0.87–1.04)	1.00 (0.98–1.01)	1.63 (0.95–2.78)
Model 5 + MPAP/CO-slope	mPAP/CO-slope	HR (95% CI)	0.793	0.488	0.540	0.549	0.419
Table 2. (Continued).

	mPAP	PAWP	RAP	CO	PVR
Resting Parameters					
mPAP/CO-Slope: HR (95% CI)	1.01 (0.98–1.24)	1.02 (0.97–1.07)	1.02 (0.97–1.07)	1.02 (0.97–1.07)	1.02 (1.00–1.03)
Model 5 + PAWP/CO slope					
Model comparison: P value	0.748	0.466	0.522	0.534	0.391
PAWP/CO-Slope: HR (95% CI)	1.00 (0.93–1.08)	1.02 (0.95–1.09)	1.03 (0.96–1.10)	1.02 (0.95–1.09)	1.03 (0.96–1.11)
Model 5 + TPG/CO slope					
Model comparison: P value	0.931	0.627	0.458	0.591	0.371
TPG/CO-Slope: HR (95% CI)	0.575	0.407	0.798	0.605	0.690
Model 5 + CO_peak					
Model comparison: P value	0.564	0.386	0.796	0.666	0.710
CO_peak: HR (95% CI)	0.319	0.212	0.186	0.261	0.394
Model 6: resting parameter adjusted for age, sex, peakVO2					
Resting parameters P value	0.020	0.296	0.475	0.127	0.043
Model 6 + MPAP/CO-slope					
Model comparison: P value	0.905	0.507	0.403	0.637	0.806
MPAP/CO-Slope: HR (95% CI)	0.904	0.483	0.368	0.623	0.801
Model 6 + PAWP/CO slope					
Model comparison: P value	0.942	0.890	0.943	0.774	0.866
PAWP/CO-Slope: HR (95% CI)	0.99 (0.80–1.23)	0.98 (0.78–1.24)	1.01 (0.78–1.30)	0.96 (0.74–1.25)	1.02 (0.80–1.31)
Model 6 + TPG/CO slope					
Model comparison: P value	0.942	0.893	0.942	0.783	0.863
TPG/CO-Slope: HR (95% CI)	0.761	0.166	0.214	0.175	0.926
Model 6 + CO_peak					
Model comparison: P value	0.760	0.132	0.177	0.144	0.926
CO_peak: HR (95% CI)	0.830	0.681	0.743	0.437	0.797

For definition of abbreviations, see Table 1.

We provide additional five prognostic models (models 2–6: additionally adjusted for cardiopulmonary comorbidities and smoking status (model 2), WHO-FC (model 3), natural logarithm of NT-proBNP (ln[NT-proBNP]) (model 4), 6MWD (model 5) and peakVO2 (model 6), in all of them also adjusting for age and sex. Hazard ratios (95% CI) and P values are given for different resting hemodynamics separately (mPAP, PAWP, CO, and PVR).

Parameters of exercise hemodynamics (mPAP/CO slope, PAWP/CO slope, TPG/CO slope, peak CO) are added individually to the models. Here, HR (95% CI) as well as the P values for the exercise hemodynamics are given. The models including exercise hemodynamics are compared to the initial models without exercise hemodynamics. In the line “model comparison” the P value for this comparison is given.

In models 2–3, all analyzed parameters of exercise hemodynamics are significant predictors of prognosis and are superior to the model including only resting hemodynamics. In model 4, adjusting also for ln(NT-proBNP), peak CO is still a significant predictor of prognosis and is superior to the model including only resting hemodynamics. Bold values are statistically significant.
and exercise testing during RHC are positioned to improve prognosis estimates. This approach may additionally contribute to the differentiation between early pulmonary vascular disease and latent left heart disease. Currently, close clinical follow-up of patients with abnormal pulmonary hypertension during exercise and their inclusion into appropriate clinical trials should be recommended.

The addition of exercise hemodynamics is not intended to replace noninvasive methods for assessing function, such as 6MWD, which itself is prognostic. Of note, after adjusting for 6MWD or peakVO2, the outcome estimates generated by analyzing specific exercise hemodynamic variables were no longer significant. Although this finding might be partly explained by the limited number of patients and events in our study, it also emphasizes the usefulness of 6MWD and cardiopulmonary exercise testing in the clinical practice. To which extent pulmonary exercise hemodynamics may serve as general prognosticators in the risk assessment for pulmonary vascular disease may therefore warrant exploration in larger multicenter studies.

Our data have been derived from a single center retrospective analysis, which is a limitation of the study. A multivariate analysis including all slopes in one model was not possible, due to high collinearity. Due to the limited small sample size patients with malignancies were not excluded from primary analysis. However, after adjusting for cancer related events, exercise hemodynamics remained significant prognosticators. As further potential limitation, CO was measured by thermodilution, potentially leading to slightly different CO values as compared with the gold-standard Fick-method. However, all measurements were performed by the same experienced team using standardized protocols that should minimize methodologic errors.

In conclusion, in patients with normal or mildly elevated pulmonary arterial pressures, mPAP/CO, PAWP/CO, and TPG/CO-slopes, and COpeak are predictors of all-cause mortality, after correction for age, sex, comorbidities, smoking status, WHO-FC, and resting hemodynamics suggesting that exercise hemodynamics provide robust and independent prognostic information. ■

Author disclosures are available with the text of this letter at www.atjsournals.org.

Philipp Douschan, M.D., Ph.D.*
Medical University of Graz
Graz, Austria
and
Ludwig Boltzmann Institute for Lung Vascular Research
Graz, Austria

Alexander Avian, Ph.D.
Medical University of Graz
Graz, Austria

Vasile Foris, M.D., Ph.D.
Teresa Sassmann, M.D.
Medical University of Graz
Graz, Austria

and
Ludwig Boltzmann Institute for Lung Vascular Research
Graz, Austria

References

1. Chuaat A, Sitbon O, Mercy M, Ponçon-Mongars R, Provencher S, Guillaumot A, et al. Prognostic value of exercise pulmonary haemodynamics in pulmonary arterial hypertension. Eur Respir J 2014;44:704–713.
2. Ho JE, ZemEK, Lau ES, Wooster L, Bailey GS, Cunningham T, et al. Exercise pulmonary hypertension predicts clinical outcomes in patients with dyspnea on effort. J Am Coll Cardiol 2020;75:17–26.
3. Lewis GD, Murphy RM, Shah RV, Pappagianopoulos PP, Malhotra R, Bloch KD, et al. Pulmonary vascular response patterns during exercise in left ventricular systolic dysfunction predict exercise capacity and outcomes. Circ Heart Fail 2011;4:276–285.
4. Eiseman AS, Shah RV, Dhakal BP, Pappagianopoulos PP, Wooster L, Bailey C, et al. Pulmonary capillary wedge pressure patterns during exercise predict exercise capacity and incident heart failure. Circ Heart Fail 2018;11:e004750.
5. Hasler ED, Müller-Mottet S, Furian M, Saxer S, Huber LC, Maggiorini M, et al. Pressure-flow during exercise catheterization predicts survival in pulmonary hypertension. Chest 2016;150:57–67.
6. Douschan P, Foris V, Avian A, Sassmann T, Olechewski H, Kovacs G. MPAP/CO-slope during exercise as predictor of mortality in patients at risk for pulmonary hypertension. Eur Respir J 2020;56:1508.
7. Galé N, Humbert M, Vachiery JL, Gibbs S, Lang I, Torbicki A, et al. 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension: the Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPCC), International Society for Heart and Lung Transplantation (ISHLT). Eur Respir J 2015;46:903–975.
8. Kovacs G, Maier R, Aberer E, Brodmann M, Scheidl S, Hesse C, et al. Assessment of pulmonary arterial pressure during exercise in collagen vascular disease: echocardiography vs right-sided heart catheterization. Chest 2010;138:270–278.
9. Crowley J, Leblanc M, Gentileman R, Salmon S. Exploratory methods in survival analysis. Lect Notes Monogr Ser 1995;27:55–77.
10. Herve P, Lau EM, Sitbon O, Savale L, Montani D, Godinas L, et al. Criteria for diagnosis of exercise pulmonary hypertension. Eur Respir J 2015;46:728–737.
11. Kovacs G, Herve P, Barbera JA, Chuaat A, Chemla D, Condiffe R, et al. An official European Respiratory Society statement: pulmonary haemodynamics during exercise. Eur Respir J 2017;50:1700578.
12. Zeder K, Banfi C, Steinrisser-Allen G, Maron BA, Humbert M, Lewis GD, et al. Diagnostic, prognostic and differential-diagnostic relevance of pulmonary hemodynamics during exercise - a systematic review. Eur Respir J 2022;60:2103181.
13. Stamm A, Saxer S, Lichtblau M, Hasler ED, Jordan S, Huber LG, et al. Exercise pulmonary haemodynamics predict outcome in patients with systemic sclerosis. Eur Respir J 2016;48:1658–1667.