Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Placental growth factor level in plasma predicts COVID-19 severity and in-hospital mortality

David M. Smadja1,2 | Aurélien Philippe1,2 | Olivier Bory3 | Nicolas Gendron1,2
Agathe Beauvais3 | Maxime Gruet1,2 | Nicolas Peron4 | Lina Khider5
Coralie L. Guerin1,6 | Guillaume Goudot5 | Françoise Levavasseur7,8 | Jérome Duchemin7,8 | Frédéric Pene9 | Cherifa Cheurfa10 | Tali-Anne Szwebel9 | Elise Sourdeau11 | Benjamin Planquette1,12 | Caroline Hauw-Berlemont4 | Bertrand Hermann4 | Pascale Gaussem1,2 | Charles-Marc Samama10 | Tristan Mirault13,14 | Benjamin Terrier9,13 | Olivier Sanchez11 | Bastien Rance15 | Michaela Fontenay7,8 | Jean-Luc Diehl1,16 | Richard Chocron17,18

1Université de Paris, Innovative Therapies in Haemostasis, INSERM, Paris, France
2Hematology Department and Biosurgical Research Lab (Carpentier Foundation), Assistance Publique Hôpitaux de Paris-Centre (APHP-CUP), Paris, France
3Université de Paris, Emergency Department, Assistance Publique Hôpitaux de Paris-Centre (APHP-CUP), Paris, France
4Université de Paris, Intensive Care Department, Assistance Publique Hôpitaux de Paris-Centre (APHP-CUP), Paris, France
5Université de Paris, Vascular Medicine Department and Biosurgical Research Lab (Carpentier Foundation), Assistance Publique Hôpitaux de Paris-Centre (APHP-CUP), Paris, France
6Curie Institute, Cytometry Department, Paris, France
7Université de Paris, Institut Cochin, INSERM, Paris, France
8Hematology Department Assistance Publique Hôpitaux de Paris-Centre (APHP-CUP), Paris, France
9Internal Medicine Department, Assistance Publique Hôpitaux de Paris-Centre (APHP-CUP), Paris, France
10Intensive Care Medicine and Reanimation Department, Assistance Publique Hôpitaux de Paris-Centre (APHP-CUP), Paris, France
11Emergency Unit, Hôpital Hôtel-Dieu, Assistance Publique Hôpitaux de Paris-Centre (APHP-CUP), Paris, France
12Respiratory Medicine Department and Biosurgical Research Lab (Carpentier Foundation), Assistance Publique Hôpitaux de Paris-Centre (APHP-CUP), Paris, France
13Université de Paris, PARCC, INSERM, Paris, France
14Vascular Medicine Department, Assistance Publique - Hôpitaux de Paris-Centre (APHP-CUP), Paris, France
15Université de Paris, Department of Medical Informatics, AP-HP, Georges Pompidou European Hospital, Paris, France
16Intensive Care Unit and Biosurgical Research Lab (Carpentier Foundation), Assistance Publique - Hôpitaux de Paris-Centre (APHP-CUP), Paris, France
17Université de Paris, PARCC, INSERM U970, Paris, France
18Emergency Department, AH-HP-Centre Université de Paris (APHP-CUP), Paris, France

Correspondence
David M. Smadja, Inserm UMR-S1140, Hematology Department, 20 rue Leblanc, F-75015 Paris, France.
Email: david.smadja@aphp.fr

Abstract
Background: Coronavirus disease 2019 (COVID-19) is a respiratory disease associated with vascular inflammation and endothelial injury.
Coronavirus disease 2019 (COVID-19) mortality is related to respiratory failure characterized by interstitial pneumonia progressing into a life-threatening acute respiratory distress syndrome with a potential evolution in fibrosis.\(^1\) The pathogenic pathways involved in the local lung fibrogenesis, in particular in idiopathic pulmonary fibrosis (IPF), are still elusive. However, lung parenchymal lesions are consistently associated with major vascular remodeling processes,\(^2\) microvascular alterations,\(^3\) and changes in endothelial phenotype.\(^4-6\) Mechanisms underlying this vascular remodeling are yet to be elucidated. We previously proposed a deregulation of circulating angiogenic factors as a potential origin of endothelial dysfunction in IPF.\(^7\)

Autopsy findings and circulating markers of endotheliopathy in COVID-19 have accumulated.\(^8-12\) This endothelial injury is probably mostly the result of cytokine release and complement-system activation.\(^11,13\) Moreover, we recently described an association between several biomarkers of endothelial activation and intensive care unit (ICU) referral or in-hospital mortality.\(^14,15\) Moreover, more than endothelial lesion, increased vessel growth, through a mechanism of intussusceptive angiogenesis has been reported in the lungs of patients who died from COVID-19\(^16\) in contrast to patients who died from influenza virus. This abnormal angiogenesis was associated with a dysregulated expression of numerous angiogenesis-related genes.\(^16\) However, the association of circulating angiogenic marker levels with disease severity and mortality has still not been established in large cohorts.

The objective of the present study was to assess if major angiogenic biomarkers vascular endothelial growth factor A (VEGF-A), placental growth factor (PlGF), and fibroblast growth factor 2 (FGF-2) to in-hospital mortality in COVID-19 adult patients.

Methods: Consecutive ambulatory and hospitalized patients with COVID-19 infection were enrolled. VEGF-A, PlGF, and FGF-2 were measured in each patient ≤48 h following admission.

Results: The study enrolled 237 patients with suspected COVID-19: 208 patients had a positive diagnostic for COVID-19, of whom 23 were mild outpatients and 185 patients hospitalized after admission. Levels of VEGF-A, PlGF, and FGF-2 significantly increase with the severity of the disease (\(P < .001\)). Using a logistic regression model, we found a significant association between the increase of FGF-2 or PlGF and mortality (odds ratio [OR] 1.11, 95% confidence interval [CI; 1.07–1.16], \(P < .001\) for FGF-2 and OR 1.07 95% CI [1.04–1.10], \(P < .001\) for PlGF) while no association were found for VEGF-A levels. Receiver operating characteristic curve analysis was performed and we identified PlGF above 30 pg/ml as the best predictor of in-hospital mortality in COVID-19 patients. Survival analysis for PlGF confirmed its interest for in-hospital mortality prediction, by using a Kaplan-Meier survival curve (\(P = .001\)) and a Cox proportional hazard model adjusted to age, body mass index, D-dimer, and C-reactive protein (3.23 95% CI [1.29–8.11], \(P = .001\)).

Conclusion: Angiogenic factor PlGF is a relevant predictive factor for in-hospital mortality in COVID-19 patients. More than a biomarker, we hypothesize that PlGF blocking strategies could be a new interesting therapeutic approach in COVID-19.

Key Words: angiogenesis, COVID-19, FGF-2, mortality, placental growth factor, PlGF
all patients included or their trusted relatives at the time of enrollment (SARCODO 2020-A01048-31A, NCT04624997). All included patients, hospitalized or not, presented a confirmed diagnosis of COVID-19, using a reverse transcriptase–polymerase chain reaction (RT-PCR) assay on nasopharyngeal swab samples as previously described.15

Patients were classified according to World Health Organization guidance (WHO) as non-critical (median oxygen requirement 3 L/min; WHO score range 4–6) or critical (requiring mechanical ventilation, WHO score range 7–9) in the first 48 h following admission for clinically suspected COVID-19. Outpatients were COVID-19 patients who did not meet hospitalization criteria and returned home immediately after RT-PCR testing for COVID-19. None of the outpatients clinically suspected COVID-19. Outpatients were COVID-19 patients the month following COVID-19 diagnosis. Finally, we also included 29 non-COVID-19 non-hospitalized individuals who served as controls. These patients had suspected COVID-19, but with mild clinical presentation and a negative RT-PCR result. Patient characteristics including age, sex, comorbidities, medical history, and treatment at admission were recorded. The primary outcome was COVID-19 inhospital mortality.

2.2 | Laboratory tests

Routine laboratory tests and sampling for angiogenic biomarkers were all performed at hospital admission, that is, in the first 48 h following the admission for suspected COVID-19. Venous blood was collected from patients and controls and processed according to standard laboratory techniques. Routine laboratory tests were plasma creatinine, C-reactive protein (CRP), and high-sensitivity cardiac Troponin I (Hs-Tnl). Regarding coagulation assays and angiogenic biomarker measurements, blood was collected in 0.129 M trisodium citrate tubes (9NC BD Vacutainer). Platelet-poor plasma (PPP) was obtained after centrifugation twice at 2500 g for 15 min and stored at −80°C until analysis. Measurement of D-dimer was performed using the Vidas D-dimers® assay (bioMérieux) according to the manufacturer’s instruction. The plasma concentrations of VEGF-A, FGF-2, and PIGF were quantified in PPP using a Human Magnetic Luminex Assay (R&D Systems). Data were assessed with the Bio-Plex 200 using the Bio-Plex Manager 5.0 software (Bio-Rad).

2.3 | Statistical analysis

Continuous data were expressed as median (interquartile range [IQR]) and categorical data as frequencies and proportions. The association between levels of angiogenic biomarkers and COVID-19 severity was assessed using the Kruskal-Wallis test followed by Dunn’s post-test for multiple group comparisons with median reported. Clinical characteristics and outcomes (categorical variables) were compared according to the COVID-19 severity using the Cochran-Armitage trend test. Spearman rank coefficient correlation was used to determine the correlation between angiogenic biomarkers (VEGF-A, PlGF, and FGF-2) and biomarkers of multiorgan dysfunction (creatine, Hs-Tnl, D-dimer, and CRP). In order to estimate the ability of PIGF to predict in-hospital mortality, we used receiver operating characteristic (ROC) analysis. We estimated the area under the curve (AUC) and its 95% confidence interval (CI) and selected the optimal cut-off that illustrated the prognostic ability of PIGF. For the survival analysis among patients hospitalized for COVID-19, the start of the study was triggered by the diagnosis of SARS-CoV-2 infection. The end of the study was defined either by patient’s death during their hospitalization or by discharge alive from the hospital. We used the Kaplan-Meier curve to estimate the survival function from diagnosis to in-hospital death according to the optimal cutoff of PIGF. Survival curves were compared using the log-rank test. We used the Cox proportional hazard model adjusted for age, body mass index (BMI), D-dimer, and CRP levels to investigate the relationships between the increase in PIGF (over the calculated cut-off value) and in-hospital mortality. In sensitivity analysis, to adjust for bias due to nonrandom allocation of potential covariates among COVID-19 patients, we applied propensity score-matching methods. For each angiogenic biomarker, we estimated the propensity score by running a logistic regression model in which the outcome variable is a binary variable indicating biomarkers levels status (< or > threshold). We included any covariate that is related to both biomarkers and potential outcomes such as age, sex, and BMI. Then a 1:1 match was performed using Greedy matching techniques. Based on the matched dataset, we compare patients’ characteristics and outcomes according to the threshold of angiogenic biomarkers (< or > threshold). All analyses were two-sided and a P-value of <.05 was considered statistically significant. Statistical analysis was performed using R studio software (R Foundation for Statistical Computing).

3 | RESULTS AND DISCUSSION

A total of 208 COVID-19 adult patients comprising 23 outpatients and 185 hospitalized patients were included (Table 1). Patients were significantly older (P < .001) and included a higher proportion of males (P < .001) than non-COVID-19 patients. Among the patients included, 129 (62.0%) were male. The non-COVID-19 control group comprised 17 (58.6%) females and 12 (41.4%) males. The median age was 39 [IQR 32.0–46.0] in the non-COVID-19 group and 62 [50.0–72.0] in COVID-19 patients. Compared to the non-COVID-19 group, cardiovascular comorbidities were more frequent in COVID-19 patients. Moreover, hospitalized and in particular critical patients had high D-dimer, creatinine, and CRP levels. Levels of VEGF-A, PlGF, and FGF-2 increased significantly with the severity of the disease (P < .001; Figure 1A). We evaluated the correlation between VEGF-A, PlGF, and FGF-2 and biomarkers of multiorgan dysfunction. Because Hs-Tnl, D-dimer, CRP, and creatinine at admission were associated to severity,17 we analyzed the association of angiogenic factors with these four markers (Figure 1D–O). While a significant association was found between CRP, D-dimer, and the...
three angiogenic biomarkers studied (all with P-value < .001), no association existed with creatinine, Hs-TnI, and VEGF-A (P = .16 for VEGF-A and creatinine; P = .07 for Hs-TnI and VEGF-A). In contrast, FGF-2 and PlGF were both associated to creatinine and Hs-TnI (with P < .001 for FGF-2 and both creatinine and Hs-TnI; P < .01 for PlGF and creatinine, and P < .001 for PlGF and Hs-TnI).

ROC curve analysis was performed to define an optimal cut-off of VEGF-A, FGF-2, and PlGF level to predict in-hospital mortality. We identified that VEGF-A level above 44.2 pg/ml, FGF-2 level above 18 pg/ml, and a PlGF level above 30 pg/ml could predict in-hospital mortality in COVID-19 patients (AUC 77.2, 95% CI [68.8–85.6] for VEGF-A; AUC 77.0, 95% CI [69.2–84.8] for FGF-2; and AUC 77.2, 95% CI [68.8–85.6] for PlGF).

Because VEGF-A and PlGF are both ligand for VEGF family receptors, we wanted to verify potential interactions between them. First, among patients with high VEGF-A (>44.2 pg/ml), only 41.7% had a high PlGF (>30 pg/ml). In the same way, among patients with high PlGF, only 28.9% had a high VEGF. Among the entire population, only 8.4% patients had both VEGF-A and PlGF at high levels. Moreover, there was no significant association between VEGF-A and PlGF (r = .12, P = .07). Taken together, these results are not in line with a relationship between VEGF-A and PlGF.

Moreover, we performed a propensity-matched score for VEGF-A, PlGF, and FGF-2 adjusted on age, sex, and BMI. As demonstrated in Table 2, clinical characteristics were the same between patients with high and low levels of VEGF-A, PlGF, and FGF-2. Moreover, in terms of outcomes, ICU admission and endotracheal intubation were significantly different between high and low levels of the three angiogenic factors studied. In-hospital mortality rate was significantly increased only in patients with high levels of FGF-2 and PI GF (P-value = .632 for VEGF-A, P < .001 for FGF-2 and PI GF). Using a logistic regression model, we found a significant association between both FGF-2 and PI GF levels with in-hospital mortality (OR 1.11, 95% CI [1.07–1.16], P < .001 for FGF-2 and OR 1.07 95% CI [1.04–1.10], P < .001 for PI GF) while no association were found for VEGF-A levels (OR 1.01 95% CI [0.99–1.02], P = .358) in univariate analysis. Time between hospitalization and death in our population spread from 2 to 57 days, with a median of 14 days. We compared level of VEGF-A, FGF-2, and PI GF in patients who died before and after 14 days of hospitalization and found no significant association between time and in-hospital mortality (data not shown).

Because PI GF provided the best prognostic value (higher AUC, sensitivity, specificity, and negative predictive value), we performed the survival analysis for PI GF confirming its usefulness for in-hospital mortality prediction, using a Kaplan-Meier survival curves (P = .001; Figure 2B) and a Cox proportional hazard model adjusted for age, BMI, D-dimer, and CRP (HR: 3.23, 95% CI [1.29–8.11], P = .001, Figure 2C). Because CRP and D-dimer are significantly associated (Spearman’s correlation coefficient: r = .35; P < .001), we tested an interaction term to a regression model to expand understanding of the relationship between CRP and D-dimer in the model with in-hospital mortality. The interaction

| TABLE 1 Demographic, clinical and biological characteristics of COVID-19 and non-COVID-19 patients at admission |
|---|---|---|
| Non-COVID-19 (n = 29) | Outpatients (n = 23) | Non-critical (n = 96) |
| Comorbidities | | In-hospital mortality |
| Obesity – n (%) | 5 (17.2) | 1 (3.4) |
| Hypertension – n (%) | 4 (13.8) | 0 (0.0) |
| Hyperlipidaemia – n (%) | 0 (0.0) | 23 (24.0) |
| Diabetes – n (%) | 1 (3.4) | 9 (9.4) |
| Chronic kidney disease – n (%) | 1 (3.4) | 13 (14.6) |
| Biological parameters | | |
| D-dimer – ng/ml median [IQR] | 214 [172–291] | 1089 [798–1889] |
| CRP – mg/L median [IQR] | 28.0 [14.8–33.4] | 63.6 [32.0–117.9] |
| Plasma creatinine – µmol/L median [IQR] | 64.00 [64.0–64.0] | 67.00 [57.0–87.5] |
| Outcomes | | |
| In-hospital mortality – n (%) | 0 (0.0) | 2 (15.4) |

Note: Obesity was defined as body mass index >30 Kg/m².

Abbreviations: CRP, C-reactive protein; IQR, interquartile range.
term between CRP and D-dimer was not significant (OR univariate 2.52, 95% CI [0.08–78.1], \(P = .552 \); OR multivariable 3.65, 95% CI [0.1–121.1], \(P = .419 \)). Absence of significant interaction indicates that effect of CRP (or D-dimer) on the outcome (in-hospital mortality) is not different at different values of the other predictor variables.
TABLE 2 Patients' characteristics and outcomes according to the propensity matching analysis for VEGF-A, FGF-2, and PlGF

VEGF-A	FGF-2	PlGF							
<44.2 pg/ml	>44.2 pg/ml	p-value	<18 pg/ml	>18 pg/ml	p-value	<30 pg/ml	>30 pg/ml	p-value	
Matched population on age, sex and BMI	48	48	66	66	69	69			
Clinical severity									
Non-COVID-19	5 (10.4)	0 (0.0)	.002	9 (13.6)	2 (3.0)	<.001	5 (7.2)	3 (4.3)	<.001
Outpatients	5 (10.4)	1 (2.1)		5 (7.6)	1 (1.5)		3 (4.3)	1 (1.4)	
Non-critical	24 (50.0)	17 (35.4)		32 (48.5)	11 (16.7)		37 (53.6)	13 (18.8)	
Critical	14 (29.2)	30 (62.5)		20 (30.3)	52 (78.8)		24 (34.8)	52 (75.4)	
Clinical characteristics									
Male sex – n (%)	32 (66.7)	33 (68.8)	1.00	48 (72.7)	50 (75.8)	.84	49 (71.0)	47 (68.1)	.85
Age – years, median [IQR]	62.0 [51.5−74.3]	63.5 [54.0−73.0]	.96	59.0 [44.0–670]	57.0 [49.3–70.8]	.65	61.0	59.0 [50.0–69.0]	.8
BMI, median [IQR]	25.7 [23.9–30.4]	27.1 [24.4–30.0]	.64	27.8 [25.6–32.7]	27.9 [26.1–33.5]	.71	27.8 [25.6–31.6]	28.6 [25.7–33.7]	.50
Hypertension – n (%)	22 (45.8)	27 (56.2)	.41	32 (48.5)	34 (51.5)	.86	39 (56.5)	35 (50.7)	.61
Hyperlipidaemia – n (%)	13 (27.1)	15 (31.2)	.82	14 (21.2)	22 (33.3)	.17	13 (18.8)	22 (31.9)	.12
Diabetes – n (%)	13 (27.1)	15 (31.2)	.82	20 (30.3)	21 (31.8)	1.00	21 (30.4)	27 (39.1)	.37
Chronic kidney disease – n (%)	3 (6.2)	8 (16.7)	.20	4 (6.1)	10 (15.2)	.16	8 (11.6)	8 (11.6)	1.00
Outcomes									
ICU admission, n(%)	21 (43.8)	34 (70.8)	.013	33 (50.0)	55 (83.3)	<.001	36 (52.2)	57 (82.6)	<.001
Endotracheal Intubation, n (%)	14 (29.2)	31 (64.6)	.001	22 (33.3)	52 (78.8)	<.001	26 (37.7)	53 (76.8)	<.001
In-hospital mortality – n(%)	10 (20.8)	13 (27.1)	.63	4 (6.1)	26 (39.4)	<.001	9 (13.0)	28 (40.6)	<.001

Note: The population was matched on age, sex and BMI.
Abbreviations: BMI, body mass index; FGF-2, fibroblast growth factor 2; ICU, intensive care unit; IQR, interquartile range; PlGF, placental growth factor; VEGF-A, vascular endothelial growth factor A.
Recently, Kong et al. reported a positive correlation between VEGF-D and disease severity in COVID-19 patients. As well, Rovas et al. demonstrated that VEGF-A correlated positively with disease severity and acute respiratory distress syndrome development. In contrast, Pine et al. showed that VEGF-A, along with PDGF-AB and PDGF-AB/BB, was only elevated by a similar amount in COVID-19, regardless of its severity, making these biomarkers a poor predictor of in-hospital mortality. However, to our knowledge, this study is the first one to examine several angiogenic-circulating biomarkers in such a range of COVID-19 severities. In this study, we demonstrated that levels of angiogenic factors were related to COVID-19 severity at admission and described PlGF as the best predictive marker of in-hospital mortality. PlGF acts through binding to VEGF receptor-1 (VEGFR-1, aka Flt-1). In animal studies, PlGF was reported to increase angiogenesis in pathological but not physiological angiogenesis. PlGF stimulates angiogenesis through VEGFR-1 direct signaling and/or displacing VEGF from its binding site, and we previously described PlGF involvement in human endothelial progenitor differentiation. In line with these angiogenic functions, increased PlGF plasma levels have been proposed as a biomarker of adverse outcome in patients with acute chest pain, of thrombotic events risk in antiphospholipid syndrome, and of poor prognosis in cancer. In pregnant women, a low soluble Flt-1/PlGF ratio is used to predict the short-term absence of preeclampsia (PE). Severe COVID-19 during pregnancy can provoke a PE-like syndrome. In this setting, a normal sFLT-1/PlGF ratio might help to distinguish endothelial dysfunction caused by COVID-19 disease inflammation from true PE. Increased PlGF could be involved in COVID-19 pathophysiology in leukocyte infiltration as well as in angiogenic process recently described; however, there is still a lot of work to understand if high levels of angiogenic factors are a response/consequence or at the origin of angiogenic disorders observed inside lungs. Several strategies to block PlGF are in clinical development in particular in cancer and/or vascular disorders. PlGF-dependent angiogenesis and cell recruitment could be a promising new target for COVID-19 treatment. Our results highlight the potential for plasma PlGF to discriminate COVID-19 severity and higher risk of in-hospital mortality, but also may help identify and target patients for new therapeutic approaches.

ACKNOWLEDGMENTS
We thank AP-HP for promotion of the SARCODO Project. We thank the unit of clinical research URC HEGP CIC-EC1418 (Natacha Nohile, Pauline Jouany, and Dr Juliette Djadi-Prat) and Helene Cart-Grandjean from AP-HP for their involvement in the SARCODO project. We would like to acknowledge all nurses and technicians...
involved in the vascular medicine, internal medicine, respiratory medicine, intensive care, and hematology departments of the George Pompidou European Hospital and Cochin Hospital for their help in taking care of patients and including them in the study. We would like to acknowledge all physicians involved in the recruitment or follow-up of patients.

CONFLICT OF INTEREST
The authors have nothing to disclose.

AUTHOR CONTRIBUTIONS
DMS interpreted data, conceived of, and supervised the study, RC analyzed the data, supervised statistical analysis, and supervised the study. AP, OB, AB, MG, and NG performed analysis, analyzed the data, and drafted the manuscript. All other authors included patients, reviewed all patients characteristics, interpreted data, drafted and revised the manuscript, and approved the final version.

ORCID
David M. Smadja https://orcid.org/0000-0001-7731-9202
Olivier Bory https://orcid.org/0000-0001-7909-3905
Nicolas Gendron https://orcid.org/0000-0003-4852-4738

TWEETER
David M. Smadja @davidmsmadja

REFERENCES
1. George PM, Wells AU, Jenkins RG. Pulmonary fibrosis and COVID-19: the potential role for antifibrotic therapy. Lancet Respir Med. 2020;8(8):807-815.
2. Ebina M, Shimizukawa M, Shibata N, et al. Heterogeneous increase in CD34-positive alveolar capillaries in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2004;169(11):1203-1208.
3. Ackermann M, Stark H, Neubert L, et al. Morphomolecular motifs of pulmonary neoangiogenesis in interstitial lung diseases. Eur Respir J. 2020;55(3):1900933.
4. Smadja DM, Mauge L, Nunes H, et al. Imbalance of circulating endothelial progenitors in idiopathic pulmonary fibrosis. Angiogenesis. 2013;16(1):147-157.
5. Blandinieres A, Gendron N, Bacha N, et al. Interleukin-8 release by endothelial colony-forming cells isolated from idiopathic pulmonary fibrosis patients might contribute to their pathogenicity. Angiogenesis. 2019;22:325-339.
6. Billoir P, Blandinieres A, Gendron N, et al. Endothelial colony-forming cells from idiopathic pulmonary fibrosis patients have a high procoagulant potential. Stem Cell Rev Rep. 2020;17(2):694-699.
7. Smadja DM, Nunes H, Juvin K, et al. Increase in both angiogenic and angiostatic mediators in patients with idiopathic pulmonary fibrosis. Pathol Biol (Paris). 2014;62(6):391-394.
8. Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395(10234):1417-1418.
9. Khider L, Gendron N, Goudot G, et al. Curative anticoagulation prevents endothelial lesion in COVID-19 patients. J Thromb Haemost. 2020;18(9):2391-2399.
10. Debuco B, Smadja DM. Is COVID-19 a new hematologic disease? Stem Cell Rev Rep. 2020;17(1):4-8.
11. Libby P, Luscher T. COVID-19 is, in the end, an endothelial disease. Eur Heart J. 2020;41(32):3038-3044.
12. Guervilly C, Burtey S, Sabatier F, et al. Circulating endothelial cells as a marker of endothelial injury in severe COVID-19. J Infect Dis. 2020;222(11):1789-1793.
13. Magro C, Mulvey JJ, Berlin D, et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: a report of five cases. Transfsl. 2020:220:1-13.
14. Smadja DM, Guerin CL, Chocron R, et al. Angiopoietin-2 as a marker of endothelial activation is a good predictor factor for intensive care unit admission of COVID-19 patients. Angiogenesis. 2020;23(4):611-620.
15. Philippe A, Chocron R, Gendron N, et al. Circulating Von Willebrand factor and high molecular weight multimers as markers of endothelial injury predict COVID-19 in-hospital mortality. Angiogenesis. 2021:1-13.
16. Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary vascular endotheliitis, thrombosis, and angiogenesis in Covid-19. N Engl J Med. 2020;383(2):120-128.
17. Goudot G, Chocron R, Augy JL, et al. Predictive factor for COVID-19 worsening: insights for high-sensitivity troponin and d-dimer and correlation with right ventricular afterload. Front Med (Lausanne). 2020;7:586307.
18. Kong Y, Han J, Wu X, Zeng H, Liu J, Zhang H. VEGF-D: a novel biomarker for detection of COVID-19 progression. Crit Care. 2020;24(1):373.
19. Rovas A, Osiaevi I, Buscher K, et al. Microvascular dysfunction in COVID-19: the MYSTIC study. Angiogenesis. 2020;24(1):145-157.
20. Pine AB, Meizlish ML, Goshua G, et al. Circulating markers of angiogenesis and endotheliopathy in COVID-19. Pulm Circ. 2020;10(4):2045894020966547.
21. Carmeliet P, Moons L, Luttun A, et al. Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med. 2001;7(5):575-583.
22. d’Audigier C, Gautier B, Yon A, et al. Targeting VEGFR1 on endothelial progenitors modulates their differentiation potential. Angiogenesis. 2014;17(3):603-616.
23. Heeschen C, Dammel S, Fichtlscherer S, et al. Prognostic value of placental growth factor in patients with acute chest pain. JAMA. 2004;291(4):435-441.
24. Smadja D, Gaussem P, Roncal C, Fischer AM, Emmerich J, Darnige L, Peuch D, Mezrich ML, Goshua G, et al. Circulating markers of angiogenesis and endotheliopathy in COVID-19. Pathology. 2020;10(4):2045894020966547.
25. Wei SC, Tsao PN, Yu SC, et al. Placenta growth factor level in plasma predicts COVID-19 severity and in-hospital mortality. J Thromb Haemost. 2021;19:1823–1830. https://doi.org/10.1111/jth.15339