Modelling of local anodic oxidation of titanium oxide nanostructures formation process

To cite this article: O G Karen’kiih et al 2018 IOP Conf. Ser.: Mater. Sci. Eng. 443 012013

View the article online for updates and enhancements.
Modelling of local anodic oxidation of titanium oxide nanostructures formation process

O G Karen’kih, V I Avilov, V A Smirnov, A A Fedotov, N A Sharapov and N A Polupanov
Southern Federal University, Institute of Nanotechnologies, Electronics and Equipment Engineering, Taganrog, 344006, Russian Federation

AvilovVI@sfedu.ru

Abstract. A model for the oxide nanostructures formation by the local anodic oxidation method is presented. Dependences of height, depth, and diameter of titanium oxide nanostructures on the applied voltage pulse duration are obtained, as well as the oxide nanostructures profile for given technological parameters.

1. Introduction
The development of components of modern electronics, in particular memristor structures for resistive random access memory (RRAM) elements, requires application of new methods for the formation of nanostructures that possess high precision and reproducibility [1-8]. One of such methods is local anodic oxidation (LAO), which has high precision accuracy and allows forming structures with thickness less than 5 nm [9-16]. Other advantage of this method is the absence of complex photoresists and chemical etchants. Oxide nanostructures (ONS) obtained by LAO can be used to form profiled nanostructures and masks for surface selective etching [11-12]. Another promising application of titanium ONS is the memristor structures for resistive memory and synaptronics elements.

However, the LAO process has not been sufficiently studied. The analysis of the publications shows that the LAO mechanism consists of the oxygen ions generation and drift to the metal surface, where an oxidation reaction takes place with the oxide formation (Fig. 1). In this case, the application of voltage pulses plays a key role in the LAO process, since the generated electric field leads to the oxygen ions generation due to the electrical dissociation of water molecules in the air and on the substrate surface, and also stimulates the drift of the formed oxygen ions to the reaction region.

The goal of the work is to develop a mathematical model and to calculate an algorithm of titanium ONS formation obtained by LAO.

2. Model
Since the LAO process is associated with the generation and transfer of oxygen ions in the probe-air-oxide-substrate system and subsequent substrate oxidation, it is necessary to calculate the oxygen ion flux at each point of the substrate surface. For this purpose, it is necessary to solve the system of Poisson and continuity equations:
Figure 1. Schematic representation of the oxygen ions generation and drift process in the LAO.

\[
\begin{align*}
\nabla (\varepsilon \nabla \varphi) &= - \frac{\rho(N)}{\varepsilon_0}, \\
\nabla (-\mu N \nabla \varphi + D \nabla N) &= R(\varphi).
\end{align*}
\]

where \(\varepsilon \) is the relative permittivity, \(\varphi \) and \(N \) are the distribution of the electric potential and the concentration of oxygen ions in the system, \(\rho \) is the volume density of electrical charges, \(\varepsilon_0 \) is the electric constant, \(\mu \) and \(D \) are the mobility and diffusion coefficient of oxygen ions, and \(R \) is the generation rate of oxygen ions in air.

Solution of the equations system (1) will allow calculating the flow of oxidizer ions and the oxide growth rate by formula:

\[
v = -\frac{M_o}{\rho_o} (-\mu N \nabla \varphi + D \nabla N),
\]

where \(v \) is the oxide growth rate, \(M_o \) and \(\rho_o \) are the molar mass and density of the oxide.

In addition, it was shown in Ref. [17] that the height ratio \(h_1 \) and the depth ratio \(h_2 \) of the ONS are determined by the expression:

\[
h_1: h_2 = \left(1 - \frac{M_s \rho_s}{\rho_o M_o}\right) \cdot \frac{M_s \rho_s}{\rho_o M_o},
\]

where \(M_s \) and \(\rho_s \) are the molar mass and density of the substrate.

3. Results

Based on the developed model, the titanium film LAO process was numerically simulated using the MATLAB software package. For this purpose, the system geometry containing the AFM-probe, air, oxide, and metal film, for which the equations system (1) solution located was considered. Then, on the basis of equation (2) and the calculated values of the electric potential \(\varphi \) and the oxygen ions concentration \(N \), the oxide growth rate was determined and, based on the relation (3), the oxide height and depth were calculated.

As a result of simulation, it is possible to obtain the titanium ONS height, depth, and diameter dependences from duration of impulses of the applied voltage (Fig. 2), the electric potential and oxygen ions concentration distribution (Fig. 3), and also the profile of the titanium ONS (Fig. 4) at the given values of the applied voltage amplitude and duration, the distance of the probe-substrate, the relative humidity level in the process chamber, and the geometric parameters of the AFM probe.
Figure 2. Dependences of (a) height and (b) diameter at half-height of titanium ONS on the duration of the applied voltage pulses.

Figure 3. Spatial distributions of (a) electric potential and (b) oxygen ions concentration.

Figure 4. Titanium ONS profile.
4. Conclusion

The paper presents a model for the oxide nanostructures formation by the local anodic oxidation method, based on the electric potential distribution and the oxygen ions distribution calculation in the system. Dependences of height, depth, and diameter of titanium oxide nanostructures from duration of impulses of the applied voltage are obtained, as well as the oxide nanostructures profile for given technological parameters.

The obtained results correlate with the data obtained in Ref. [18] and can be used in the development of technological processes for the fabrication of the RRAM element based on titanium oxide nanostructures.

Acknowledgements

This work was supported by RFBR according to the research project № 18-37-00299, by Grant of the President of the Russian Federation № MK-2721.2018.8 and the Southern Federal University (grant nos. VnGr-07/2017-26).

References

[1] Ha S D and Ramanathan S 2011 J. Appl. Phys. 110 071101
[2] Pan F, Gao S, Chen C, Song C and Zeng F 2014 Mat. Sci.&Eng. R 83 1-59.
[3] Volkov E, Jityaev I and Kolomiytsev A S 2015 IOP Conf. Ser.: Mat. Sci.&Eng. 93 012031
[4] Avilov V I, Polupanov N V, Tominov R V, Smirnov V A and Ageev O A 2017 IOP Conf. Ser.: Mat. Sci.&Eng. 256 012001
[5] Bersuker G, Gilmer D C, Veksler D, Kirsch P, Vandelli L, Padovani A, Larcher L, McKenna K, Shluger A, Iglesias V, Porti M and Nafria M 2011 J. Appl. Phys. 110 124518
[6] Ageev O A, Blinov Y F, Il’in A M V, Il’in O I, Smirnov V A and Tsukanova O G 2016 Phys. Solid State 58 309-14.
[7] Chang T C, Chang K C, Tsai T M, Chu T J and Simon M S 2016 Mater. Today 19 254-64
[8] Solodovnik M S, Balakirev B S, Eremenko M M, Mikhailin I A, Avilov V I, Lisitsyn S A and Ageev O A 2017 IOP J. Phys.: Conf. Ser. 917 032037
[9] Popov I, Durisić I and Belić M R 2017 Nanotechnology 28 495706
[10] Walsh M A and Hersam M C 2009 Ann. Rev. Phys. Chem. 60 193-216
[11] Ageev O A, Smirnov V A, Solodovnik M S, Rukomoikin A V and Avilov V I 2012 Semiconductors 46 1616–21
[12] Avilov V I, Ageev O A, Smirnov V A, Solodovnik M S and Tsukanova O G 2015 Nanotechnologies in Russia 10 214-9
[13] Alekseev P A, Borodin B R, Dunaevskii M S, Lebedev S P and Lebedev A A 2018 Tech. Phys. Lett. 44 381-3
[14] Avilov V I, Ageev O A, Konoplev B G, Smirnov V A, Solodovnik M S and Tsukanova O G 2016 Semiconductors 50 601-6
[15] Ageev O A, Klimin V S, Solodovnik M S, Eskov A V and Krasnoborodko S Y 2016 J. Phys.: Conf. Ser. 741 012178
[16] Klimin V S, Tominov R V, Eskov A V, Krasnoborodko S Y and Ageev O A 2017 J. Phys.: Conf. Ser. 917 092005
[17] Avilov V I, Ageev O A, Blinov Y F, Konoplev B G, Polyakov V V, Smirnov V A and Tsukanova O G 2015 Tech. Phys. 60 717-23
[18] Smirnov V A 2015 Piezoelectrics and Nanomaterials: Fundamentals, Developments and Applications 85-103