This paper substantiates the modernization and commissioning of a railroad car for high-temperature, bulk/loose cargoes in order to improve the efficiency of railroad transportation. A feature of the car is the presence of an open-type boiler, which is made of heat-resistant material. To prevent splashing of transported cargo, it is possible to use a removable cover, which is attached to the top of the boiler.

The boiler of the car was calculated for strength under the main operating modes. The vertical load on the boiler was taken into consideration while accounting for the transportation of bulk cargo, as well as longitudinal, and the effect of temperature load. The strength was calculated by the method of finite elements. It is taken into consideration that the boiler is made of composite heat-resistant material. The calculation results showed that with the considered load modes, the strength of the boiler is ensured.

The dynamic load of the boiler was mathematically modeled at car shunting. The calculation was performed in a flat coordinate system. Solving the mathematical model of the car dynamic load has established that the maximum acceleration that acts on the boiler is 36.5 m/s².

The dynamic load of the boiler was simulated. The dislocation fields and numerical values of accelerations that act on it were determined. The maximum acceleration, in this case, is concentrated in the bottom of the boiler; it is 37.4 m/s².

To verify the dynamic load model, the F-criterion was used for calculation. It has been established that the hypothesis about the adequacy of the model is confirmed.

The study reported here could contribute to improving the efficiency of railroad transport operation and advancing the design of multifunctional car structures.

Keywords: transport mechanics, railroad car, load-bearing structure, composite material, structure load.

References
1. Gattuso, D., Cassone, G. C., Lucisano, A., Lucisano, M., Lucisano, F. (2017). Automated rail wagon for new freight transport opportunities. 2017 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS). doi: https://doi.org/10.1109/mtits.2017.8005581
2. Sęstnia, Ł., Smietanka, L., Morawski, M. (2018). Structural Analysis of a Main Construction Assemblies of the New Wagon Prototype Type Zans. Manufacturing Technology, 18 (3), 510–517. doi: https://doi.org/10.21062/ujepr/130/2018/a-1213-2489/m/18/3/510
3. Stoilov, V., Purgić, S., Slavchev, S. (2015). STATIC Strength Analysis Of The Body Of A Wagon, Series Zans. Journal of the Balkan Tribological Association, 21, 49–57. Available at: https://www.semanticscholar.org/paper/STATIC-STRONGH-ANALYS-OF-THE-BODY-OF-A-WAGON%2C-Stoilov-Purg% C4%87/633c6f6afdd75973e9b2e457505fe79e5b0534
4. Liu, W., Wang, Y., Wang, T. (2021). Box Girder Optimization by Orthogonal Experiment Design and GA-BP Algorithm in the Gon-dola Car Body Processes, 10 (1), 74. doi: https://doi.org/10.3390/pr10010074
5. Silva, R., Ribeiro, D., Bragança, C., Costa, C., Astle, A., Calgada, R. (2011). Model Updating of a Freight Wagon Based on Dynamic Tests under Different Loading Scenarios. Applied Sciences, 11 (22), 10691. doi: https://doi.org/10.3390/app112210691
6. Wei, C., Kaiwu, C., Fukang, Q., Jin, X. (2018). Study on Fatigue Strength and Life of Freight Car Frame after Making Holes. MATEC Web of Conferences, 175, 01035. doi: https://doi.org/10.1051/matecconf/201817501035
7. Pączek, M., Buczach, A., Baier, A., Herbuł, K., Ociepka, P., Mazner, M. (2018). Development and analysis of a new technology of freight cars modernization. Journal of Vibroengineering, 20 (8), 2978–2997. doi: https://doi.org/10.21595/jve.2018.19206
8. Fomin, O., Lovska, A. (2021). Determination of dynamic loading of bearing structures of freight wagons with actual dimensions. Eastern-European Journal of Enterprise Technologies, 2 (7 (110)), 6–14. doi: https://doi.org/10.15587/1729-4061.2021.220534
9. Fomin, O., Lovska, A. O., Pläktitt, O. A., Nercbatskij, V. P. (2017). The influence of implementation of circular pipes in load-bearing structures of bodies of freight cars on their physico-mechanical properties. Scientific Bulletin of National Mining University, 6, 89–96. Available at: https://nvngu.in.ua/jdownloads/pdf/2017/06_06_2017_Fomin.pdf
10. Kondratiev, A. (2019). Improving the mass efficiency of a composite launch vehicle head fairing with a sandwich structure. Eastern-European Journal of Enterprise Technologies, 6 (7 (102)), 6–18. doi: https://doi.org/10.15587/1729-4061.2019.184551
11. Kondratiev, A., Gaidachuk, V., Nabokina, T., Kovalenko, V. (2019). Determination of the influence of deflections in the thickness of a composite material on its physical and mechanical properties with a local damage to its wholeness. Eastern-European Journal of Enterprise Technologies, 4 (1 (100)), 6–13. doi: https://doi.org/10.15587/1729-4061.2019.174025
12. Gallagher, R. (1984). Metod konechnikh elementov. Osnovy. Moscow: Mir, 428.
13. Alyamovskiy, A. A. (2010). COSMOS Works. Osnovy rascheta konstruktsiy na prochnost' v srede SolidWorks. Moscow: DMK, 784.
14. Alyamovskiy, A. A. (2007). SolidWorks/COSMOSWorks 2006–2007. Inzhenernyy analiz metodam konech- nykh elementov. Moscow: DMK, 784.
15. Vatulia, G. L., Petrenko, D. H., Novikova, M. A. (2017). Experimental estimation of load-carrying capacity of circular, square and rect- angular CFTS columns. Naukovi visnyk natsionalnohohirnychoho universytetu, 6, 97–102. Available at: http://nbuv.gov.ua/UJRN/ Nvngu_2017_6_16
16. Vatulia, G., Lobiak, A., Orel, Y. (2017). Simulation of performance of circular CFST columns under short-time and long-time load. MATEC Web of Conferences, 116, 02036. doi: https://doi.org/10.1051/matecconf/201711602036
17. Piňěk, V., Kučera, P., Fomin, O., Lovska, A. (2020). Effective Misadjustment Identification Method of Integrated Bladed Discs of Marine Engine Turbochargers. Journal of Marine Science and Engineering, 8 (5), 379. doi: https://doi.org/10.3390/jmse8050379

18. Lovska, A. O. (2015). Computer simulation of wagon body bearing structure dynamics during transportation by train ferry. Eastern-European Journal of Enterprise Technologies, 3, 9–14. doi: https://doi.org/10.15587/1729-4061.2015.43749

19. Lovska, A. (2018). Simulation of Loads on the Carrying Structure of an Articulated Flat Car in Combined Transportation. International Journal of Engineering & Technology, 7 (4.3), 140. doi: https://doi.org/10.14419/ijet.v7i4.3.19724

20. Lovska, A., Fomin, O., Piňěk, V., Kučera, P. (2020). Dynamic Load Modelling within Combined Transport Trains during Transportation on a Railway Ferry. Applied Sciences, 10 (16), 5710. doi: https://doi.org/10.3390/app10165710

21. Lovska, A., Fomin, O., Kučera, P., Piňěk, V. (2020). Calculation of Loads on Carrying Structures of Articulated-Circular-Tube Wagons Equipped with New Draft Gear Concepts. Applied Sciences, 10 (21), 7441. doi: https://doi.org/10.3390/app10217441

22. Lovska, A. A. (2015). Peculiarities of computer modeling of strength of body bearing construction of gondola car during transportation by ferry-bridge. Metallurgical and Mining Industry, 1, 49–54. Available at: https://www.semanticscholar.org/paper/Peculiari-ties-of-computer-modeling-of-strength-of-Lovska/b86e05254831bfc6b26118d57f8394a5868d69005

23. Kelyryk, M. B., Fomin, O. V. (2014). Perspective directions of planning carrying systems of gondolas. Metallurgical and Mining Industry, 6, 57–60. Available at: https://www.metaljournal.com.ua/assets/MMI_2014_6/11-Fomin.pdf

24. Bogomaz, G. I., Melkov, D. D., Pliuchenko, O. P., CHeartmashentseva, Yu. G. (1992). Naugruhennost’ konteynerov-tsistern, raspolznykhennykh na zhelezodorozhnoy platforme, pri udarakh v avtocestseku. Zb. nauk. prats «Dynamika ta keruvannia rukhom mashentsev». Kyiv: ANU, Instytut tekhnichnoi mekhaniki, 85–95.

25. Fomin, O. V., Burlutsky, O. V., Fomina, Yu. V. (2015). Development and application of cataloging in structural design of freight car building. Metallurgical and Mining Industry, 2, 250–256. Available at: https://www.metaljournal.com.ua/assets/Journal/english-edition/MMI_2015_2/039Fomin.pdf

26. Fomin, O. (2014). Modern requirements to carrying systems of railway general-purpose gondola cars. Metallurgical and Mining Industry, 5, 31–43. Available at: https://www.metaljournal.com.ua/assets/Journal/9-Fomin.pdf

27. Kosmin, V. V. (2007). Osnovy nauchnykh issledovanii. Moscow, 731.

28. Krol, O., Prikhvan, O., Sokolov, V., Tskankov, P. (2019). Vibration stability of spindle nodes in the zone of tool equipment optimal parameters. Comptes rendus de l’Acade’mie bulgare des Sciences, 72 (11), 1546–1556. doi: https://doi.org/10.7546/crabs.2019.11.12

29. Krol, O., Sokolov, V. (2020). Modeling of Spindle Node Dynamics Using the Spectral Analysis Method. Lecture Notes in Mechanical Engineering, 35–44. doi: https://doi.org/10.1007/978-3-030-50794-7_4

30. Kobzar’, A. I. (2006). Prikladnaya matematicheskaya statistika. Moscow, 816.

31. Ivenchenko, G. I., Medvedev, Yu. I. (2014). Matematicheskaya statistika. Moscow, 352.

32. Rudenko, V. M. (2012). Matematychna statistystyka. Kyiv, 304.

33. A Koshlan, A. A., Salnikova, M., Chekhnovska, M., Zhyvotovskiy, R., Prokopenko, V., Hursko, T. et. al. (2019). Development of an algorithm for complex processing of geospatial data in the special-purpose geoinformation system in conditions of diversity and uncertainty of data. Eastern-European Journal of Enterprise Technologies, 5 (9 (101)), 35–45. doi: https://doi.org/10.15587/1729-4061.2019.180197

34. Lukin, V. V., Shadr, L. A., Koturounov, V. I., Khokhlou, A. A., Anisiun, P. S. (2000). Konstruuirovanie i raschet vagonov. Moscow, 731.

35. Vysloukh, S. P. (2011). Informatsiyni tekhnolohiyi v zadachakh tekhnolohichnoi pidhotovky pryliado- ta mashynobudivnovo vyrob-nytstva. Kyiv, 488.

36. Petrovich, M. L. (1982). Regressionniy analiz i ego matematicheskoe obespechenie na ES EVM. Moscow, 199.

37. Lapach, S. N., Chubenko, A. V., Babich, P. N. (2001). Statisticheskie metody v mediko-biologicheskih isledovanyakh s ispolzovaniem Excel. Kyiv, 408.

DOI: 10.15587/1729-4061.2022.258118

ESTIMATING THE STRESSED-STRAINED STATE OF THE VERTICAL MOUNTING JOINT OF THE CYLINDRICAL TANK WALL TAKING INTO CONSIDERATION IMPERFECTIONS (p. 14–21)

Ulbanator Suleimenov
Mukhtar Auezov South Kazakhstan University, Shymkent, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0001-7798-1044

Nurlan Zhangabay
Mukhtar Auezov South Kazakhstan University, Shymkent, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0002-8153-1449

Khassen Abshenov
Mukhtar Auezov South Kazakhstan University, Shymkent, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0002-0173-2524

Akmaral Utelbayeva
Mukhtar Auezov South Kazakhstan University, Shymkent, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0002-4771-9853

Kuanysh Imanaliev
Mukhtar Auezov South Kazakhstan University, Shymkent, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0002-1141-8424

Saule Mussayeva
Mukhtar Auezov South Kazakhstan University, Shymkent, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0003-3779-0060

Arman Moldagaliyev
Mukhtar Auezov South Kazakhstan University, Shymkent, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0002-4286-8401

Myrzabek Yermakhanov
Central Asian Innovation University, Shymkent, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0003-0939-1792

Gulnura Raikhanova
Mukhtar Auezov South Kazakhstan University, Shymkent, Republic of Kazakhstan
ORCID: https://orcid.org/0000-0003-4215-2929

Based on the use of a multi-level mathematical model, this paper estimates the stressed-strained state of a cylindrical reservoir in the mounting joint and considers the concentration of stresses in the joint zone. The correctness of the selected mathematical model was verified to show that for an engineering assessment of the stressed-strained
state of the wall of a cylindrical tank with variable thickness, it is possible to use the ratios for a cylindrical shell with a constant wall thickness. The spread of values is no more than 1%, which indicates the proper selection of the mathematical model.

A numerical assessment of the stressed-strained state in the zone of the mounting joint proved the assumption of significant stress concentrations in the zone and indicated the determining effect exerted on the concentration of stresses by its geometric dimensions. The concentration of stresses in the joint zone of the tank wall was investigated at various sizes in the ANSYS programming environment. The result of calculating the stressed-strained state of the reservoir for various values of the dent parameters $f$ and $a/\sqrt{R}$ is the constructed polynomials that approximate the stress concentration coefficient $K_{\sigma}$.

As a result of the calculations, an interpolation polynomial and an approximating stress concentration coefficient were derived, which could be used to assess the strength, durability, residual life of the tank and to normalize the limiting dimensions of the imperfection of the joint.

This paper reports comparative results of the calculations of the stress concentration coefficient depending on the geometric dimensions of the imperfection of the mounting joint in the ANSYS software package, as well as using an interpolation polynomial. The results could be used to assess the strength and residual life of such structures.

Keywords: steel tank, stress concentration, mounting joint, joint parameters, numerical method.

References
1. Suleimenov, U., Zhangabay, N., Utelbayeva, A., Ibrahim, M. M. N., Moldagaliev, A., Absheron, K. et. al. (2021). Determining the features of oscillations in stressed pipelines. Eastern-European Journal of Enterprise Technologies, 6 (7 (114)), 85–92. doi: https://doi.org/10.15387/1729-4061.2021.2465713
2. Tursunkululy, T., Zhangabay, N., Avramov, K., Chernobyrykov, M., Suleimenov, U., Utelbayeva, A. et. al. (2022). Strength analysis of stressed vertical cylindrical steel oil tanks under operational and dynamic loads. Eastern-European Journal of Enterprise Technologies, 2 (7 (116)), 14–21. doi: https://doi.org/10.15387/1729-4061.2022.254218
3. Oil tanks: Danger on the rails. Available at: https://edition.cnm.com/2015/05/14/us/oil-tank-investigation/
4. Oil Tank Leaks or Oil Tank & Tank Piping Failure & Oil Leak Odor Causes. Available at: https://inspectapedia.com/oiltanks/Oil_Tank_Leak_Causes.php
5. Analiz rynka nefteproduktov v Kazakhstane - 2022. Pokazateli i prognozy. Available at: https://tezhiz.ru/mi/analiz-rynka-nefteproduktov-v-kazakhstane/
6. Hud, M. (2022). Simulation of the stress-strain state of a cylindrical tank under the action of forced oscillations. Procedia Structural Integrity, 36, 79–86. doi: https://doi.org/10.1016/j.prostr.2022.01.086
7. Farhan, M. M., Al-Jumialy, M. M., Al-Muhammad, A. D., Ismail, A. S. (2017). Development of a New Method for Reducing the Loss of Light Hydrocarbons at Breather Valve of Oil Tanks. Energy Procedia, 141, 471–478. doi: https://doi.org/10.1016/j.egypro.2017.11.061
8. Hong, F., Jiang, L., Zhao, Q., Zhang, F., Lu, X., Ma, X., Hao, J. (2018). Types of abnormal high-pressure gas reservoir in foreland basins of China. Journal of Natural Gas Geoscience, 3 (4), 191–201. doi: https://doi.org/10.1016/j.jnggs.2018.10.001
9. Dusissenkov, B., Tokmuratov, A., Zhangabay, N., Orazbayev, Z., Yermibetov, B., Aldyvarov, Z. (2020). Finite-difference equations of quasistatic motion of the shallow concrete shells in nonlinear setting. Curved and Layered Structures, 7 (1), 48–55. doi: https://doi.org/10.1515/clss-2020-0005
10. Borodin, K., Zhangabalyuly Zhangabay, N. (2019). Mechanical characteristics, as well as physical-and-chemical properties of the slag-filled concretes, and investigation of the predictive power of the metaheuristic approach. Curved and Layered Structures, 6 (1), 236–244. doi: https://doi.org/10.1515/clss-2019-0020
11. Utelbaeva, A. B., Ermakhanov, M. N., Zhanabai, N. Z., Utelbaev, B. T., Mel'adeshov, A. A. (2013). Hydrogenation of benzene in the presence of ruthenium on a modified montmorillonite support. Russian Journal of Physical Chemistry A, 87 (9), 1478–1481. doi: https://doi.org/10.1134/s1066033x13090276
12. Filipov, V. V., Prokhorov, V. A., Argunov, S. V., Buslava, I. I. (1993). Analytical characteristics of mobile versions of multichannel seismic spectrometers based on galvanic current. Izvestiya vuzov. Stroitel'stvo, 7-8, 13–16.
13. Biletskiy, S. M., Golinko, V. M. (1983). Industrial'noe izgotovlenie negabaritnykh svarnykh listovykh konstruktsiy. Kyiv: Nauk. dumka, 272. Available at: https://search.rsl.ru/ru/record/0100165555
14. Ivansova, S. G., Rakhminin, A. I., Tarasenko, M. A., Sill'ntsikiy, P. F (2011). Kontseptsiya analiza riska rezervurnykh konstruktsiy. Up-ravlenie kachestvom v neftegazovom kompleks, 3, 31–35.
15. Mansurova, S. M., Tlyasheva, R. R., Ivakin, A. V., Shazyakov, G. A., Bayramgulov, A. S. (2014). Cylindrical steel tank stress-strain state evaluation with operational loads taken into account. Oil and Gas Business, 1, 329–344. doi: https://doi.org/10.17122/opbs-2014-1-329-344
16. Fan, Y., Hunt, J., Wang, Q., Yin, S., Li, Y. (2019). Water tank modelling of variations in inversion breakup over a circular city. Building and Environment, 164, 106342. doi: https://doi.org/10.1016/j.buildenv.2019.106342
17. Martynenko, G., Avramov, K., Martynenko, V., Chernobyrykov, M., Tonkonozhenko, A., Kozharin, V. (2021). Numerical simulation of warhead transportation. Defence Technology, 17 (2), 478–494. doi: https://doi.org/10.1016/j.dt.2020.03.005
18. Wang, Z., Hu, K., Zhao, Y. (2022). Doom-roof steel tanks under external explosion: Dynamic responses and anti-explosion measures. Journal of Constructional Steel Research, 190, 107118. doi: https://doi.org/10.1016/j.jcsr.2021.107118
19. Rastgar, M., Showkatli, H. (2018). Buckling behavior of cylindrical steel tanks with concavity of vertical weld line imperfection. Journal of Constructional Steel Research, 145, 289–299. doi: https://doi.org/10.1016/j.jcsr.2018.02.028
20. Aydın Korucuk, F. M., Maali, M., Kâlç, M., Aydın, A. C. (2019). Experimental analysis of the effect of dent variation on the buckling capacity of thin-walled cylindrical shells. Thin-Walled Structures, 143, 106259. doi: https://doi.org/10.1016/j.tws.2019.106259
21. Coramik, M., Ege, Y. (2017). Discontinuity inspection in pipelines: A comparison review. Measurement, 111, 339–373. doi: https://doi.org/10.1016/j.measurement.2017.07.058
22. Bannikov, R. Yu., Smetannikov, O. Yu., Trufanov, N. A. (2014). Calculation of the amplitude of local conditional elastic stresses on the wall surface tank with defects the form as a dent. Vestn. Samar. Gos. Tekh. Un-ta. Ser. Tekhnicheskie nauki, 272. Available at: https://search.rsl.ru/ru/record/0100165555
23. Dmitrieva, A. S., Rakhminin, A. I., Tarasenko, M. A., Sil'nitskiy, P. F (2011). Kontseptsiya analiza riska rezervurnykh konstruktsiy. Up-ravlenie kachestvom v neftegazovom kompleks, 3, 31–35.
24. Matslak, M., Pazdanowski, M., Siudut, J., Tarsa, K. (2017). Corrosion Durability Estimation for Steel Shell of a Tank Used to Store Liquid Fuels. Procedia Engineering, 172, 723–730. doi: https://doi.org/10.1016/j.proeng.2017.02.092
25. Kolesov, A. I., Ageeva, M. A. (2011). Ostatotchniy resurs stal'nykh rezervurov khimi in neftekhimii, otrabotav sh normativnye sroki ekspluatatsii. Vestnik MGSU, 1, 388–391.
26. TP-704-1-167-84. Rezervuar stal’noy vertikal’nyy tsilindricheskiy
27. Likhman, V. V., Kopysitskaya, L. N., Muratov, V. M. (1992). Kont-
entratsiya napryazheniy v rezervuarkh s lokal’nymi nesovershen-
stvami formy. Khimicheskoe i neftyanoe mashinostroenie, 6, 22–24.
28. Kopysitskaya, L. N., Likhman, V. V., Muratov, V. M. (1989). Izuchen-
nyi metod rascheta napryazhenno-deformirovannogo sostoyaniya
svarnykh tsilindricheskikh rezervuarov s uvodom kromok. Khimi-
cheskoe i neftyanoe mashinostroenie, 10, 15–18.
29. Sulaimanov, U., Zhangabay, N., Utelbayeva, A., Azmi Murad, M. A.,
Dosmakanbetova, A., Ashbenov, K. et. al. (2022). Estimation of the
strength of vertical cylindrical liquid storage tanks with dents in
the wall. Eastern-European Journal of Enterprise Technologies,
1 (7 (115)), 6–20. doi: https://doi.org/10.15587/1729-4061.
2022.252599

DOI: 10.15587/1729-4061.2022.256943

INVESTIGATION OF THE MECHANICAL PERFORMANCE OF THE COMPOSITE PROSTHETIC KEEL BASED ON THE STATIC LOAD: A COMPUTATIONAL ANALYSIS (p. 22–30)

Kussay Ahmed Subhi
Al-Furat Al-Awsat Technical University ATU, Babil, Iraq
ORCID: https://orcid.org/0000-0001-5132-839X

Emad Kamal Hussein
Al-Furat Al-Awsat Technical University ATU, Babil, Iraq
ORCID: https://orcid.org/0000-0003-3831-1659

Haider Rahman Dawood Al-Hamadani
Al-Furat Al-Awsat Technical University ATU, Babil, Iraq
ORCID: https://orcid.org/0000-0002-2921-2512

Hussein Kadhim Sharaf
Dijlah University College, Baghdad, Iraq
ORCID: https://orcid.org/0000-0001-9349-6671

In this paper, the numerical simulation of the mechanical performance of a composite prosthetic keel structure under static load has been explored, and the findings of this inquiry have been included. The prosthetic keel is constructed from an epoxy and glass fiber composite, 3 percent weight (MWCNTs with SiC), and a carbon nanotube, which are utilized in conjunction with other materials to create the structure. The force that is applied in this example is 1.000 N, and it is applied in accordance with the boundary condition that has been previously established in this case. The ANSYS modeling software package was used to create the prosthetic keel model, which was meshed and created. Because of the total deformation, the fundamental simulation results of the prosthetic keel model have been converged in line with the total deformation, which was used as a reference to determine the total deformation. The major outcome of the current numerical analysis has been successfully validated by considering the findings of the earlier experimental study. The mechanical performance of the composite prosthetic keel structure is determined by four primary criteria, the results of which are based on the findings. Aspects to analyze include equivalent elastic strain, three-axis directed deformation, total deformation, and equivalent stress (von Mises). Although only 0.00058 mm total deformation is created by the imposed static load of 1.000 N (the least attainable value), it represents the largest total deformation. The equivalent stress (von Mises) responded to the load with a response of 0.045 MPa, which is quite small. Furthermore, the equivalent elastic strain has also been undertaken and it resulted in a value of elastic strain of 3.4*10^-7.

Keywords: von Mises stress, directional deformation, total deformation, equivalent elastic strain, FEM.

References
1. Santana, J. P., Beltran, K., Barocio, E., Lopez-Avina, G. I., Hue-
gel, J. C. (2018). Development of a Low-Cost and Multi-Size Foot
Prosthesis for Humanitarian Applications. 2018 IEEE Global
Humanitarian Technology Conference (GHTC). doi: https://doi.org/
10.1109/ghtc.2018.8601851
2. Hamzah, M., Gatta, A. (2018). Design of a Novel Carbon-Fiber
Ankle-Foot Prosthetic using Finite Element Modeling. IOP Con-
ference Series: Materials Science and Engineering, 433, 012056.
doi: https://doi.org/10.1088/1757-899x/433/1/012056
3. Anane-Fenin, K., Akinlabi, E. T., Perry, N. (2019). Optimization
Methods for Minimizing Induced Stress During Tensile Testing
of Prosthetic Composite Materials. Advances in Mechatronics and
Mechanical Engineering, 180–206. doi: https://doi.org/10.4018/978-1-
5225-8235-9.ch008
4. Hussein, E. K., Subhi, K. A., Gazz, T. S. (2021). Effect of Stick –
Slip Phenomena between Human Skin and UHMW Polyethylene.
Pertanika Journal of Science and Technology, 29 (3). doi: https://
doi.org/10.4783/j.pst.29.3.06
5. Cavallaro, L., Tersari, F., Milandri, G., De Benedictis, C., Ferrari,
C., Lafrench, M., De Michieli, L. (2021). Finite element modeling
of an energy storing and return prosthetic foot and implications of
stiffness on rollover shape. Proceedings of the Institution of Mecha-
nical Engineers, Part H: Journal of Engineering in Medicine, 236 (2),
218–227. doi: https://doi.org/10.1177/095441291910443556
6. Prost, V., Peterson, H. V., Winter, A. G. (2021). Multi-Keel Passive
Prosthetic Foot Design Optimization Using the Lower Leg Trajec-
try Error Framework. Volume 8A: 45th Mechanisms and Robotics
Conference (MR). doi: https://doi.org/10.1115/detc2021-67673
7. Mohammed, S. karim. (2021). Design and Manufacturing of a New
Prosthetic Foot. Journal Port Science Research, 4 (2), 109–115.
doi: https://doi.org/10.36371/port.2020.2.8
8. Subhi, K. A., Hussein, E. K., Al-Jumaili, S. A. K., Abbas, Z. A. (2022).
Implementation of the numerical analysis of dynamic loads on the
composite structure employing the FE method. Eastern-European
Journal of Enterprise Technologies, 1 (7 (115)), 42–47. doi: https://
doi.org/10.15587/1729-4061.2022.253345
9. Leconte, C., Armannsdottir, A. L., Starker, F., Tryggvason, H.,
Briem, K., Brynjolfsson, S. (2021). Variable stiffness foot design and
validation. Journal of Biomechanics, 122, 110440. doi: https://doi.
go/10.1016/j.jbiomech.2021.110440
10. Baharuddin, M. H., Ab Rashid, A. M., Nasution, A. K., Seng, G.
H., Ramlee, M. H. (2021). Patient-specific design of passive pros-
thetic leg for transtibial amputee: Analysis between two different
designs. Malaysian Journal of Medicine and Health Sciences, 17 (4),
226–234. Available at: https://medic.upm.edu.my/upload/doku-
men/2021100809555732_MOHIS_0119.pdf
11. Subhi, K. A., Tudor, A., Hussein, E. K., Wahid, H., Chisin, G. (2018).
Ex Vivo Cow Skin Viscoelastic Effect for Tribological Aspects in Endo-
prostheses. IOP Conference Series: Materials Science and Engineering,
295, 012018. doi: https://doi.org/10.1088/1757-899x/295/1/012018
12. May, C., Eglolf, M., Butscher, A., Keel, M. J. B., Arbi, T., Siebenrock,
K. A., Bastian, J. D. (2018). Comparison of Fixation Techniques for
Acetabular Fractures Involving the Anterior Column with Disrup-
tion of the Quadrilateral Plate. Journal of Bone and Joint Surgery,
100 (12), 1047–1054. doi: https://doi.org/10.2106/jbjs.17.00295
13. Daniele, B. (2020). Evolution of prosthetic feet and design based on
gait analysis data. Clinical Engineering Handbook, 438–468.
doi: https://doi.org/10.1016/b978-0-12-8153467-2.00070-5
14. Kok, S. A., Aller, M. A., Ajbhori, H. S. H., Mulhins, J. J. (2021).
Design and Analysis of a Novel Artificial Ankle-Foot Joint Mechanism.
ADVANCING ASYMPTOTIC APPROACHES TO STUDYING THE LONGITUDINAL AND TORSIONAL OSCILLATIONS OF A MOVING BEAM (p. 31–39)

Andrii Slipchuk
Lviv Polytechnic National University, Lviv, Ukraine
ORCID: https://orcid.org/0000-0003-0584-6104

Petro Pukach
Lviv Polytechnic National University, Lviv, Ukraine
ORCID: https://orcid.org/0000-0002-0359-5025

Myroslava Vokv
Lviv Polytechnic National University, Lviv, Ukraine
ORCID: https://orcid.org/0000-0002-7818-7753

Olya Slyusarchuk
Lviv Polytechnic National University, Lviv, Ukraine
ORCID: https://orcid.org/0000-0003-3464-0252

This paper analyzes the influence of kinetic and physical-mechanical parameters of systems on the characteristics of dynamic processes in moving one-dimensional nonlinear-elastic systems. Improved convenient calculation formulas have been derived that describe the laws of changing the amplitude-frequency characteristics of systems for both a non-resonant case and a resonant one. An important issue is studying the influence of the speed of movement of elements of mechanisms on the oscillations of one-dimensional nonlinear-elastic systems has not been considered in detail until now in the scientific literature. This issue relates to the vibrations of shafts in gears, pipe strings when drilling oil and gas wells, the oscillations of turbine blades and rotating turbine discs, the longitudinal vibrations of the beam as an element of structures. The main reason for this is the analytical study of dynamic processes were the shortcomings of the mathematical apparatus for solving the corresponding nonlinear differential equations that describe the laws of motion of those systems.

It was found that in the case of longitudinal oscillations in the moving beam with an increase in the longitudinal speed of the medium to 10 m/s, the amplitude of the oscillation also increases by 13.5%. However, when the longitudinal velocity of the beam is 5 m/s, the amplitude will increase by only 3%. It is established that with the growth of the amplitude, the frequency of longitudinal oscillations decreases sharply, and if the system moves at a higher speed, for example, 20 m/s, it reduces the frequency of oscillation by about 13%.

The results reported here make it possible to assess the effect of kinetic and physical-mechanical parameters on the frequency and amplitude of oscillations. The research that involved the asymptotic method makes it possible to predict resonant phenomena and obtain engineering solutions to improve the efficiency of technological equipment.

**Keywords:** nonlinear oscillations, asymptotic method, elastic beam, longitudinal oscillations, torsional oscillations.

**References**

1. Andrukhiv, A., Sokil, B., Sokil, M. (2018). Resonant phenomena of elastic bodies that perform bending and torsion vibrations. Ukrainian Journal of Mechanical Engineering and Materials Science, 4 (1), 65–73. doi: https://doi.org/10.23939/ujjemems2018.01.065
2. Humbert, S. C., Gensini, F., Andreini, A., Pascheriet, C. O., Orchini, A. (2021). Nonlinear analysis of self-sustained oscillations in an annular combustor model with electroacoustic feedback. Proceedings of the Combustion Institute, 38 (4), 6085–6093. doi: https://doi.org/10.1016/j.proci.2020.06.154
3. Harris, A., Alevras, P., Mohammadpour, M., Theodossiades, S., O’Mally, M. (2020). Design and validation of a nonlinear vibration absorber to attenuate torsional oscillations of propulsion systems. Nonlinear Dynamics, 100 (1), 33–49. doi: https://doi.org/10.1007/s11071-020-05502-z
4. Pipin, V. V., Kosovich, A. G. (2020). Torsional Oscillations in Dynamo Models with Fluctuations and Potential for Helioseismic Predictions of the Solar Cycles. The Astrophysical Journal, 900 (1), 26. doi: https://doi.org/10.3847/1538-4357/aba4ad
5. Barbosa, J. M. de O., Fanjul, A. B., van Dalen, K. N., Steenberg, M. J. M. (2022). Modelling ballistic via a non-linear lattice to assess its compaction behaviour at railway transition zones. Journal of Sound and Vibration, 530, 116942. doi: https://doi.org/10.1016/j.jsv.2022.116942

DOI: 10.1587/1729-4061.2022.257439

ADVANCING ASYMPTOTIC APPROACHES TO STUDYING THE LONGITUDINAL AND TORSIONAL OSCILLATIONS OF A MOVING BEAM (p. 31–39)
This paper investigates the process of destruction of parts of the connecting rod-piston group of the engine due to hydraulic lock after the ingress of liquid into the cylinders of the engine. Comparing expert data on actual engine destruction due to hydrolock with existing estimation models has made it possible to identify a number of significant contradictions affecting the objectivity and accuracy of the destruction assessment.

To resolve the existing contradictions, a mathematical model for reconstructing the destruction of the connecting rod-piston group of the engine during a hydraulic lock has been improved. Unlike the existing ones, the model makes it possible to take into consideration not only the static deformation of the connecting rod but also to give a comprehensive assessment of the deformations of the connecting rod, piston pin, and piston at different volumes of hydrolock fluid.

Underlying the model is the hypothesis assuming that the deformation of the piston pin under excessive load caused by hydraulic lock leads to the emergence of tension and an increase in the friction in the mated pin-piston. The calculation from the condition of differential change in the amount of friction in the mated pin-piston produced a satisfactory result that does not contradict the practical data and has confirmed the working hypothesis.

By calculation, the onset of the destruction of engine parts during hydrolock at a pressure in the cylinder close to 17.3 MPa, at a crankshaft angle of about 346°, was revealed. In addition, it was found that in the case of violating the operating conditions, due to friction, the mated pin-piston is exposed to the lateral force on the skirt that reaches 17.2 MPa, which exceeds the permissible one, calculated according to known procedures, by 2.8 times.

The results reported here are confirmed by known practical data, which makes the devised model applicable to the practice of expert studies into the causes of engine malfunctions when violating the operating conditions of a car.

Keywords: violation of operating conditions, hydrolock in the cylinder, connecting rod-piston group, deformation of parts.

References

1. Greuter, E., Zima, S. (2012). Engine Failure Analysis. SAE International, 582. doi: https://doi.org/10.4271/0768008S59

2. Khurlev, A. E., Drozdovskiy, V. B., Losavio, S. K. (2019). Expertise of the technical condition of the engine and the reasons for its failure. Moscow: Izdatel'noe stvo ABKAS. 966.

3. Khurlev, A., Dmitriev, S. (2020). The calculating model of air compression process with liquid in the internal combustion engine cylinder. The National Transport University Bulletin, 1 (46), 416–426. doi: https://doi.org/10.33744/2308-6645-2020-1-46-416-426
A technique of inertial dynamic tests of the deformed state of a tunnel overpass from prefabricated metal corrugated structures during the passage of railroad rolling stock is given, by measuring accelerations at the top and on the sides of overpass structures.

An algorithm is proposed for processing the acceleration signal for assessing the strained state of metal corrugated structures of a tunnel overpass under the action of dynamic load from railroad transport.

Experimental dynamic measurements of accelerations arising at the top and on the sides of a tunnel overpass during the passage of passenger and freight railroad rolling stock were carried out. The maximum value of accelerations arising at the top of a tunnel overpass during the passage of a freight train was 7.99 m/s², and when passing a passenger train – 6.21 m/s²; the maximum accelerations that occur on the sides were 2.63 m/s² and 1.77 m/s².

It is established that the maximum deformations of metal corrugated structures of the top of a tunnel overpass, when passing freight and passenger trains are, respectively, 1.63 mm and 1.11 mm. The maximum strains of metal corrugated structures on the sides of an overpass are 1.07 mm and 0.48 mm.

The value of relative deformations in the vertical and horizontal dimensions of the structures of a tunnel overpass under the action of dynamic loads from the railroad rolling stock has been found. The relative vertical strains of an overpass amounted to 0.020 %; horizontal – 0.012 %.

The practical significance of this work is that with the help of the devised procedure for measuring accelerations, it is possible to assess the strained state of metal corrugated structures under the influence of dynamic loads from the railroad rolling stock.

**Keywords:** tunnel overpass, prefabricated metal corrugated structures, railroad track, acceleration of metal structures, vertical and horizontal strains of structures.

**References**

1. Kovalchuk, V., Markul, R., Bal, O., Milyanch, A., Pantsak, A., Parneta, B., Gajda, A. (2017). The study of strength of corrugated metal structures of railroad tracks. Eastern-European Journal of Enterprise Technologies, 2 (7 (86)), 18–25. doi: https://doi.org/10.15587/1729-4061.2017.96549

2. Miewicz, M. (2019). Risk assessment of the use of corrugated metal sheets for construction of road soil-shell structures. Roads and Bridges – Drogi i Mosty, 18 (2), 89–107. doi: https://doi.org/10.7409/rabdim.019.006

3. Bšen, D. (2013). Evaluation of backfill corrosivity around steel road culverts. Roads and Bridges – Drogi i Mosty, 12 (3), 255–268. doi: https://doi.org/10.7409/rabdim.013.018

4. Kovalchuk, V., Kovalchuk, Y., Sysyn, M., Stankevych, V., Petrenko, O. (2018). Estimation of carrying capacity of metallic corrugated structures of the type Multiplate MP 150 during interaction with backfill soil. Eastern-European Journal of Enterprise Technologies, 1 (1 (91)), 18–26. doi: https://doi.org/10.15587/1729-4061.2018.123802

5. Directive (EU) 2016/797 of the European Parliament and of the Council of 11 May 2016 on the interoperability of the rail system within the European Union. Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32016L0797

6. VBN V.2.3-218-198.2007. Sporudny transportu. Proektuvannya ta buduvnytstvo sporud iz metalovynykh konstruktsiy na avtomobilnykh dorohakh zaliznoho korystuvannia (2007). Kyiv. URL: http://online.budstandart.com/ua/catalog/doc-page?id_doc=24463

7. Kovalchuk, V., Markul, R., Pantsak, A., Parneta, B., Gajda, O., Brianshenko, S. (2017). Study of the stress-strain state in defective railway reinforced-concrete pipes restored with corrugated metal structures. Eastern-European Journal of Enterprise Technologies, 5 (1 (89)), 37–44. doi: https://doi.org/10.15587/1729-4061.2017.109611

8. Kovalchuk, V., Luchko, J., Bondarenko, I., Markul, R., Parneta, B. (2016). Research and analysis of the stressed-strained state of metal corrugated structures of railroad tracks. Eastern-European Journal of Enterprise Technologies, 6 (7 (84)), 4–9. doi: https://doi.org/10.15587/1729-4061.2016.84236

9. Machelski, C. (2016). Steel plate curvatures of soil-steel structures during construction and exploitation. Roads and Bridges – Drogi i Mosty, 15 (3), 207–220. doi: https://doi.org/10.7409/rabdim.016.013

10. Esmaeili, M., Zakeri, J. A., Abdulrazag, P. H. (2013). Minimum depth of soil cover above long-span soil-steel railway bridges. International Journal of Advanced Structural Engineering, 5 (1), 7. doi: https://doi.org/10.1186/2008-6695-5-7

11. Liu, Y., Houte, N. A., Moore, I. D. (2020). Structural Performance of In-Service Corrugated Steel Culvert under Vehicle Loading. Journal of Bridge Engineering, 25 (3). doi: https://doi.org/10.1061/(asce)be.1943-5592.0002524

12. Kovalchuk, V., Kuzhyshyn, A., Kostritsya, S., Sobolevska, Y., Batig, A., Dovyanyuk, S. (2018). Improving a methodology of theoretical determination of the frame and directing forces in modern diesel trains. Eastern-European Journal of Enterprise Technologies, 6 (7 (96)), 19–26. doi: https://doi.org/10.15587/1729-4061.2018.149838

13. Nabochenko, O., Sysyn, M., Kovalchuk, V., Pantsek, A., Braichenko, S. (2019). Studying the railroad track geometry deterioration as a result of an uneven subsidence of the ballast layer. Eastern-European Journal of Enterprise Technologies, 1 (7 (97)), 30–39. doi: https://doi.org/10.15587/1729-4061.2019.154864

14. Luchko, J., Kovalchuk, V., Kravets, I., Gajda, O., Onyshchenko, A. (2020). Determining patterns in the stressed-deformed state of the railroad track subgrade reinforced with tubular drains. Eastern-European Journal of Enterprise Technologies, 5 (7 (107)), 6–13. doi: https://doi.org/10.15587/1729-4061.2020.213525

15. Kovalchuk, V., Sobolevska, Y., Onyshchenko, A., Bal, O., Kravets, I., Pantsek, A. et al. (2022). Investigating the influence of the diameter of a fiberglass pipe on the deformed state of railroad transportation structure «embankment-pipe». Eastern-European Journal of Enterprise Technologies, 2 (7 (116)), 35–43. doi: https://doi.org/10.15587/1729-4061.2022.234573

16. Gera, B., Kovalchuk, V. (2019). A study of the effects of climatic temperature changes on the corrugated structure. Eastern-European Journal of Enterprise Technologies, 3 (7 (99)), 26–35. doi: https://doi.org/10.15587/1729-4061.2019.168260

17. Stankevych, V. Z., Butrik, I. O., Kovalchuk, V. V. (2018). Cracks Interaction in the Elastic Composite under Action of the Harmonic Loading Field. 2018 XXIIIrd International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED). doi: https://doi.org/10.1109/diped.2018.8543323

18. Gerber, U., Zoll, A., Fengler, W. (2015). Verschleiß- und Fahrflächenmessung an Weichen mit starrer Herzhanschulze. Eisenbahntechnische Rundschau, 1, 36–41.

19. Zoll, A., Gerber, U., Fengler, W. (2016). The measuring system ESAH-M. Eisenbahningeniur Kalender, 49–62.

20. Scholz, S., Lommock, R. (2018). Models for Onboard Train Diagnostics Data to Improve Condition-Based Maintenance. Automated People Movers and Automated Transit Systems 2018. doi: https://doi.org/10.1061/9780784481318.010

21. Sysyn, M., Gerber, U., Nabochenko, O., Li, Y., Kovalchuk, V. (2019). Indicators for common crossing structural health monitoring with track-side inertial measurements. Acta Polytechnica, 59 (2), 170–181. doi: https://doi.org/10.1080/1729-4061.2020.1834323

22. Sysyn, M., Nabochenko, O., Kluge, F., Kovalchuk, V., Pantsak, A. (2019). Common Crossing Structural Health Analysis with Track-
This paper considers the issue related to the protection of buildings and structures against seismic influences and the prevention, exclusion, or reduction of seismic hazards. The catastrophic destruction of modern "earthquake-resistant" buildings in Turkey and Taiwan has shown that existing methods of strengthening and reinforcing structures are not perfect and require further study. Analysis of existing approaches to ensuring seismic resistance showed that seismic insulation and seismic suppression systems still do not have a scientific and technical justification for the effectiveness of their application from the point of view of ensuring the stability of structures. The estimation-dynamic models of the "base-seismic insulation-structure" system developed to date do not always make it possible to simulate the joint work of their interaction during an earthquake and account for the transformation of the seismic impact on the structure. An alternative technique has been devised, a geotechnical seismic insulation screen, as a seismic insulation system that reduces the intensity of seismic loads on the structure and ensures its seismic resistance. In a specific example, the effectiveness of this seismic insulation system is confirmed. This seismic insulation technique in the form of damper screens is characterized by reliability and manufacturability in ensuring the seismic resistance of objects under construction.

The results of computational and experimental modeling of the interaction of an earthquake-insulated structure with a ground base found that the values of axial forces and bending moments in a building with a seismic insulation screen are less than in a building without seismic insulation by 30–40%.

The geotechnical seismic insulation screen makes it possible to advance the development of new seismic insulation techniques and determine their effectiveness. This technique will also be effective when strengthening the base and seismic insulation systems of historical monuments, protecting them against seismic and dynamic influences.

**Keywords:** seismic impacts, ground movement, seismic protection and seismic insulation, geotechnical damper of horizontal stresses, geotechnical seismic insulating screen.

**References**

1. Zhamusov, T. Zh. (1990). Osnovy seysmostoykosti sooruzheniy. Alma-Ata, 270.
2. Cherepinskiy, Yu. D. (2003). Seysmoizolyatsiya zhylykh zdaniy Alma-Ata, 157.
3. Dzhinchvelashvili, G. A., Kolesnikov, A. V., Zaalishvili, V. B., Abakarov, A. J., Omarov, K. M. (2017). Seismic response of frame buildings with combined earthquake protection system. Herald of Dagestan State Technical University. Technical Sciences, 44 (1), 116–126. doi: https://doi.org/10.21822/2073-6185-2017-44-1-116-126
This paper has defined and investigated for stability the steady state modes of motion of a single-mass resonant vibratory machine. The vibratory machine has a platform that is supported by viscoelastic supports. The platform moves rectilinearly translationally. A vibration exciter is installed on the platform. The vibration exciter consists of a body of the vibration exciter, is exposed to a viscous resistance force. In the cases of two or more loads, the vibratory machine also virtually balance each other.

It was established theoretically that with small forces of viscous resistance and any number of loads, the vibratory machine has jamming modes under which the loads that are collected form a conditionally combined load and lag behind the rotor. In this case, there are two bifurcation speeds of the rotor. At speeds less than the first bifurcation speed, the vibratory machine has one single (first) jamming mode. At speeds greater than the second bifurcation speed, the vibratory machine has one single (first) jamming mode. When the first bifurcation speed is exceeded, the second and third jamming modes appear. When the second bifurcation speed is exceeded, the first and second jamming modes disappear. The first jamming mode is resonant.

In the cases of two or more loads, the vibratory machine also has an auto balancing mode (no vibrations), under which the loads rotate synchronously with the body of the vibration exciter and mutually balance each other.
With small forces of viscous resistance, the computational experiment found that odd jamming modes are stable if they are numbered in ascending order of the frequency of load jamming. An auto-balancing mode is stable at the rotor speeds above the resonance. For the onset of a resonant mode of motion of the vibratory machine, it is enough to slowly accelerate the rotor to a speed lower than the second bifurcation speed.

The results reported here are applicable in the design of resonant single-mass vibratory machines with inertial vibration exciters of the ball, roller, or pendulum type.

**Keywords:** inertial vibration exciter, resonant vibratory machine, steady movement, Sommerfeld effect, auto balancing, stability of motion.

**References**

1. Kryukov, B. I. (1967). Dinamika vibratsionnykh maskin rezonansnogo tipa. Kyiv: Naukova dumka, 210.
2. Sommerfeld, A. (1904). Beitrag zum dynamischen Ausbau der Festigkeislehre. Zeitschrift des Vereins Deutsher Ingenieure, 48 (18), 631–636.
3. Ryzhik, B., Sperling, L., Duckstein, H. (2004). Non-synchronous Motions Near Critical Speeds in a Single-plane Auto-balancing Device. Technische mechanik, 24 (1), 25–36. Available at: https://journals.ub.uni-magdeburg.de/index.php/techmech/article/view/911
4. Lu, C.-J., Tien, M.-H. (2012). Pure-rotary periodic motions of a planar two-ball auto-balancer system. Mechanical Systems and Signal Processing, 32, 231–268. doi: https://doi.org/10.1016/j.ymssp.2012.06.001
5. Artynin, A. I., Elsyeve, S. V. (2013). Effect of «Crawling» and Peculiarities of Motion of a Rotor with Pendular Self-Balancers. Applied Mechanics and Materials, 373-375, 38–42. doi: https://doi.org/10.4028/www.scientific.net/AMM.373-375.38
6. Lanets, O. V., Shpak, Yu. V., Lozynsky, V. I., Leonovych, P. Yu. (2013). Realizatsiia i efektu Zomerfelda u vibratsionyho moida danchuyo z inertiyhnym pryvoldom. Avtomatyzatsiya vyrobnychykh protsesiv u mashynobuduvannii ta pryladobuduvannii, 47, 12–28. Available at: http://nbuv.gov.ua/UJRN/Avtomatyzac_2013_47_4
7. Kuzo, I. V., Lanets, O. V., Gurskyi, V. M. (2013). Synthesis of low-frequency resonance vibratory machines with an aeroinertial drive. Nationalnoho hirnychoho universytetu, 2, 60–67. Available at: http://nbuv.gov.ua/UJRN/Nvngu_2013_2_11
8. Filimonikhin, G., Yatsun, V. (2015). Method of excitation of dual frequency vibrations by passive auto-balancers. Eastern-European Journal of Enterprise Technologies, 4 (7 (76), 9–14. doi: https://doi.org/10.15587/1729-4061.2015.47116
9. Yatsun, V., Filimonikhin, G., Dumenko, K., Nevadka, A. (2017). Search for two-frequency motion modes of single-mass vibratory machine with vibration exciter in the form of passive auto-balancer. Eastern-European Journal of Enterprise Technologies, 6 (7 (90)), 58–66. doi: https://doi.org/10.15587/1729-4061.2017.117683
10. Yatsun, V., Filimonikhin, G., Haleeva, A., Nevadka, A. (2018). On stability of the dual-frequency motion modes of a single-mass vibratory machine with a vibration exciter in the form of a passive auto-balancer. Eastern-European Journal of Enterprise Technologies, 2 (7 (92)), 59–67. doi: https://doi.org/10.15587/1729-4061.2018.128265
11. Jung, D. (2018). Supercritical Coexistence Behavior of Coupled Oscillating Planar Eccentric Rotor/AutoBalancer System. Shock and Vibration, 2018, 1–19. doi: https://doi.org/10.1155/2018/4083897
12. Yaroshchevich, N., Puts, V., Yaroshchevich, T., Herasymchuk, O. (2020). Slow oscillations in systems with inertial vibration exciters. Vibro-engineering PROCEDEIA, 32, 20–25. doi: https://doi.org/10.21595/vp.2020.21509
13. Drozdetskaya, O., Fullin, A. (2021). Passing through resonance of the unbalanced rotor with self-balancing device. Nonlinear Dynamics, 106 (3), 1647–1657. doi: https://doi.org/10.1007/s11071-021-06973-4
14. Nayfeh, A. H. (1993). Introduction to Perturbation Techniques. John Wiley and Sons Ltd., 536. Available at: http://modernmath.ir/wp-content/uploads/2018/11/Ali-H.-Nayfeh-Introduction-to-perturbation-techniques-1993-Wiley-VCH.pdf
15. Ruelle, D. (1989). Elements of Differentiable Dynamics and Bifurcation Theory Academic Press. doi: https://doi.org/10.1016/c2013-0-11426-2
16. Filimonikhin, G., Filimonikhina, I., Dumenko, K., Lichik, M. (2016). Empirical criterion for the occurrence of auto-balancing and its application for axisymmetric rotor with a fixed point and isotropic elastic support. Eastern-European Journal of Enterprise Technologies, 5 (7 (83)), 11–18. doi: https://doi.org/10.15587/1729-4061.2016.79970
Побудовані поліноми, що вживаються в якості еталону для визначення повного зміщення. Основний результат поточного чисельного аналізу був успішно підтверджений збільшеною міністю котла вагона при основних експлуатаційних режимах. Усього прийнятої вертикальної навантаженості котла з урахуванням переваги наливного вантажу; повздовжньою, а також дію температурного навантаження. Розрахунок на міність реалізовано за методом скінчених елементів. При цьому враховано, що котел виготовлений з композитного термостійкого матеріалу. Результати розрахунків показали, що при розглянутих режимах навантаження міність котла забезпечується.

Проведено математичне моделювання динамічної навантаженості котла при маневровому співударному вагона. Розрахунок здійснений в плоскій системі координат. Розв'язок математичної моделі динамічної навантаженості вагона встановлений, що максимальне прискорення, яке діє на котел складає 36,5 м/с². Проведено комікатерне моделювання динамічної навантаженості котла. Визначено поля дислокації та чисельні значення прискорень, які діють на нього. Максимальне прискорення при цьому зосереджене в днищі котла і складає 37,4 м/с². Для верифікації моделі динамічної навантаженості проведено розрахунок за F-критерієм. Встановлено, що гіпотеза про адекватність моделі підтверджується.

Проведені дослідження сприяють підвищенню ефективності експлуатації залізничного транспорту та створюють напрацювання щодо проектування багатофункціональних конструкцій вагонів.

Ключові слова: транспортна механіка, залізничний вагон, несуча конструкція, композитний матеріал, навантаженість конструкцій.

У роботі було вивчено чисельне моделювання механічних характеристик композитної конструкції протезного кіля при статичному режимі навантаження та визначено концентрацію напруги в зоні стику стінки резервуара в середовищі ANSYS при різних розмірах. В результаті розрахунків досліджено напружено-деформований стан залізничного вагона при розглянутих режимах навантаження. Розрахунок здійснений чисельним методом, використано математичну модель оцінки напружено-деформованих резервуарів з урахуванням недосконалості. Проведено чисельна оцінка напружено-деформованого стану в зоні монтажного стику довела припущення про значні концентрації напруги в зоні стику та вказала на визначальний вплив на концентрацію напружень її геометричних розмірів. Досліджено концентрацію напруг у зоні стику стінки резервуара в середовищі ANSYS при різних розмірах. В результаті розрахунку здійснено аналіз інтерполійу концентрації напруг у зоні стику при різних розмірах.

Дослідження сприятимуть підвищенню ефективності експлуатації залізничного транспорту та створюють напрацювання щодо проектування багатофункціональних конструкцій вагонів.

Ключові слова: транспортна механіка, залізничний вагон, несуча конструкція, композитний матеріал, навантаженість конструкцій.

У роботі було вивчено чисельне моделювання механічних характеристик композитної конструкції протезного кіля при статичному навантажені та визначено концентрацію напруги в зоні стику стінки резервуара в середовищі ANSYS при різних розмірах. В результаті розрахунку здійснено аналіз інтерполійу концентрації напруг у зоні стику при різних розмірах.

Дослідження сприятимуть підвищенню ефективності експлуатації залізничного транспорту та створюють напрацювання щодо проектування багатофункціональних конструкцій вагонів.

Ключові слова: транспортна механіка, залізничний вагон, несуча конструкція, композитний матеріал, навантаженість конструкцій.
з урахуванням результатів попереднього експериментального дослідження. Механічні характеристики композитної конструкції проте- ного кіля визначаються чотири основними критеріями, результати яких ґрунтуються на отриманих даних. Аналізовані аспекти включають еквівалентну пружну деформацію, тривісне співвідношення зміщення, повне зміщення та еквівалентне напруження (за Мілісом). Незважаючи на те, що повне зміщення становить всього 0,00058 мм при статичному навантаженні 1000 Н, найменші довжини значення, воно являє собою найбільше повне зміщення. Еквівалентне напруження (за Мілісом) відсоткувало на навантаженні з відхилом 0,045 МПа, що є досить низьким значенням. Крім того, була проведена еквівалентна пружна деформація, в результаті чого значення пружної деформації склало 3,4*10^-7.

**Ключові слова:** напруження за Мілісом, співвідношення зміщення, повне зміщення, еквівалентна пружна деформація, МКЕ.

**DOI:** 10.15587/1729-4061.2022.257439

**РОЗВИВНЕННЯ АСЙМІТРОТЮЧНИХ ПІДХОДІВ ПРИ ДОСЛІДЖЕННІ ПОЗДОВЖНІХ ТА КРУТИЛЬНИХ КОЛИВАНЬ БАЛКІЙ, ЯКА РУХАЄТЬСЯ СЬОДНЯ (с. 31–39)

А. М. Сліпчук, П. Я. Пукач, М. І. Вовк, О. З. Слюсарчук

Проведено аналіз впливу кінетичних та фізико-механічних параметрів систем на характеристики динамічних процесів рухомих одновимірних нелінійно-пружних систем. Обрани зручні удосконалені розрахункові формулі, які описують закони зміни амп- літудно-частотних характеристик систем як для нерезонансного випадку, так й резонансного. Важлива проблема вивчення впливу швидкості руху ізольованих елементів механізмів на коливання одновимірних нелінійно-пружних систем у достатній мірі поточів в науковій літературі не розглядалася. Встановлено, що співвідношенняштучних сил під час прискорення у вершині та на тунельного шляхопроводу з метою пропуску автомобільних транспортних засобів та рухомого складу залізниць.

**Ключові слова:** рухомі балки, асимптотичний метод, пружна волна, рухомі коливання, крутильні коливання.
Запропоновано алгоритм обробки сигналу прискорень для оцінки деформованого стану металевих гофрованих конструкцій тунелю та шляхопроводу при дії динамічного навантаження від залізничного транспорту.

Проведено експериментальні динамічні вимірювання прискорень, що виникають у вершинні та на бокових сторонах тунелю та шляхопроводу при проїзді пасажирського та вантажного рухомого складу залізничного транспорту. Максимальна величина прискорень, що відмічалася, заздалегідь визначена оскільки виникають у вершинні тунелю та шляхопроводу при проїзді вантажного складу 7,99 м/с², а при проїзді пасажирського складу 6,21 м/с², а максимальні прискорення, які виникають на бокових сторонах становили 2,63 м/с² та 1,77 м/с².

Встановлено, що максимальні деформації металевих гофрованих конструкцій вершини тунелю та шляхопроводу при проїзді вантажного та пасажирського складу становлять, відповідно, 1,63 мм та 1,11 мм. Максимальні деформації металевих гофрованих конструкцій на бокових сторонах шляхопроводу становлять 1,07 мм та 0,48 мм.

Отримано величину відносних деформації вертикального та горизонтального розмірів конструкцій тунелю та шляхопроводу при дії динамічного навантаження від залізничного транспорту. Відносні вертикальні деформації шляхопроводу складали 0,920 %, а горизонтальні 0,012 %.

Практичне значення роботи полягає у тому, що за допомогою розробленої методики вимірювання прискорень можна проводити оцінку деформованого стану металевих гофрованих конструкцій при дії динамічних навантажень від рухомого складу залізничного транспорту.

Ключові слова: тунельний шляхопровід, збірні металеві гофровані конструкції, залізнична колія, прискорення металевих конструкцій, вертикальні та горизонтальні деформації конструкцій.

DOI: 10.15587/1729-4061.2022.260035

ЗАБЕЗПЕЧЕННЯ СЕЙСМОСТІЙКОСТІ БУДІВЛІ ПРИСТОРОМ ГЕОТЕХНІЧНОГО СЕЙСМОІЗОЛОЮЮЧОГО ЕКРАНУ (с. 59–67)

Yerik Bessimbayev, Zauresh Zhambakina, Sayat Niyetbay

Розглядається проблема захисту будівлі та споруд від сейсмічних впливів, запобігання, виключення чи зниження сейсмічної небезпеки. Катастрофичні руйнування сучасних «сеизмічноїй стійкості» будівлі у Туреччині та на Тайвані показали, що існуючі методи зміцнення та носії присутні та вимагають подальшого вивчення. Аналіз існуючих підходів щодо забезпечення сейсмічної стійкості покаж, що системи сейсмозахисту мають, досі не мають науково-технічного обґрунтування ефективності їх роботи, з погляду забезпечення стійкості споруд. Розроблені на сьогоденняній день розрахунково-дynamічні моделі системи «основа-сеизмозахиста-спорудження» не завжди дозволяють моделювати силу руху її взаємодії під час землетрусу та обліку трансформації сейсмічного впливу на споруду. Розроблено альтернативний спосіб, геотехнічний сейсмозахищений екран як система сейсмозахисту, що дозволяє забезпечити сейсмічність споруди від землетрусу та забезпечує їх сейсмічну стійкість.

Ключові слова: сейсмічні впливи, рух груту, сейсмозахист і сейсмоізоляція, геотехнічний деміфер-гасник горизонтальних інерційних віброзбудників, резонансна вібромашина, усталений рух, ефект Зомерфельда, автобалансування, стійкість споруд.

DOI: 10.15587/1729-4061.2022.259567

ВИДІЛЕННЯ ТА ДОСЛІДЖЕННЯ СТИЙКОСТІ УСТАЛЕННИХ РЕЖИМОВ РУХУ ОДНОМАСОВОЇ РЕЗОНАНСНОЇ ВІБРОМАШИНИ, ЩО ПРАЦЮЄ НА ЕФЕКТІ ЗОМЕРФЕЛЬДА (с. 68–76)

Г. Б. Філімоніхін, В. В. Яцун, А. М. Мацуй, В. О. Кондратець, В. В. Пирогов

Видалено, що чисельність усталених режимів руху одномасовій резонансної вібромашина, віброзбудник має платформу, яка підтримує пружну-ніжну опору. Платформа рухається прямолінійно постійно. На платформу встановлено віброзбудник. Віброзбудник складається з N однакових вантажів – куль, роликів чи маятників. Центр мас кожного вантажу може рухатися по колу зі своєю радіусом з центром на подовжній осі ротора. На кожен вантаж при русі відносно корпусу віброзбудника діє сила в'язкого опору. Віброзбудник складається з N однакових вантажів – куль, роликів чи маятників. Центр мас кожного вантажу може рухатися по колу зі своєю радіусом з центром на подовжній осі ротора. На кожен вантаж при русі відносно корпусу віброзбудника діє сила в'язкого опору. Платформа рухається прямолінійно постійно. На платформу встановлено віброзбудник. Теоретично встановлено, що при малих силах в'язкого опору і будь-якій кількості вантажів у вібромашині існують режими застрягання, на які вони відповідають. При цьому існують дві біфуркації швидкості обертання ротора. На швидкостях, менших за першу біфуркаційну швидкість зникають перший і другий режими застрягання. Режим застрягання є первісним, що виникає при обертання віброзбудника відносно корпусу, і діє набагато сильніше, ніж у віброзбудника на режимі основної частоти коливань.

Ключові слова: резонансна вібромашина, збірні металеві гофровані конструкції, залізнична колія, прискорення металевих конструкцій, вертикальні та горизонтальні деформації конструкцій.