Supplementary Information for
The enigmatic tropical alpine flora on the African sky islands is young, disturbed, and unsaturated

Martha Kandziora, Berit Gehrke, Magnus Popp, Abel Gizaw, Christian Brochmann, Michael D. Pirie

corresponding author: Martha Kandziora, email: martha.kandziora@mailbox.org

This PDF file includes:
- Supplementary text
- Figures S1 to S8
- Tables S1 to S9
- Legend for Appendix S2
- SI References

Other supplementary materials for this manuscript include the following:
- Appendix S2
Appendix 1. Supplementary Methods and Results

Methods

Material and DNA sequencing

We sampled 102 species that occur in montane and/or alpine areas of eastern Africa (Ethiopia, Kenya, Uganda, and Tanzania), limited to those with an upper altitudinal limit above 2500 m (Table S2). Seventy of these species occur above the tree line (> 3800 m). For this project, we sampled 92 species that were collected over the years (Table S1). We collected leaves on silica gel and pressed three individual plants from each population, deposited in the following herbaria: one in the National Herbarium of Ethiopia, Addis Ababa University, Ethiopia (ETH); one in the Natural History Museum, University of Oslo, Norway (O); and one in the country of collection: East African Herbarium, National Museum of Kenya, Nairobi, Kenya (EA); National Herbarium of Tanzania, Arusha, Tanzania (NHT); or Makerere University Herbarium, Kampala, Uganda (MHU).

In some cases, we pooled DNA of multiple individuals from a single population to obtain sufficient DNA for sequencing. We consider this to be unproblematic for species level analyses. We used FastQC (version 0.11.5; http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) to determine the quality of the raw sequences. After sequencing, we removed adapters and low-quality reads using bbduk (bbmap version 38.79; 1) with standard settings (adapter trimming: ktrim=r, k=23, mink=11, hdist=1, tpe, tbo; low quality reads: qtrim=rl, trimq=10). To assemble nuclear ribosomal and plastid sequences we used GetOrganelle (version 1.6.2e; 2). Settings were adapted to plastid and nuclear ribosomal DNA, using the recommended ones (plastid: -R 7 -k 35,85,115; nuclear ribosomal: -R 15 -k 21,45,65,85,105).

Dating approach and methodology

To estimate ages of afroalpine lineages, we used datasets from previously published molecular dating analyses (3–16) whenever these were available through public archives or on request from the authors, instead of building new alignments. We could thereby leverage work by experts on the respective lineages, with sampling typically carefully chosen to be representative of the entire lineage, with carefully incorporated fossil calibrations, and often with comparison of results from different analysis settings; the sum of which has passed peer-review process. Most such datasets focused on individual seed plant clades; for comparison we also used an existing dataset spanning seed plants (17) which incorporates an alternative set of fossil calibrations.

We added new sequences to the existing alignments (3–17) using PhylUp (18). PhylUp is a python workflow for finding and adding sequences to a target alignment using blast+ (19) to search for similar sequences. To further increase sampling of the closest relatives of afroalpine taxa we used PhylUp to add 10 additional taxa from GenBank for each of our own new sequences, selecting those that were most similar (but not identical) and which represented species/subspecies not already included. We first split concatenated matrices into their constituent individual marker alignments. Where information about partitioning of the alignment was not available, we used blast searches to determine locus identities and start and end positions within the concatenated alignments. Alignment information is provided in Table S3.

We used different dating approaches. For individual seed plant clades, we used a Bayesian relaxed clock model (BEAST2; 20) and also a penalized likelihood method, treePL (21; Table S8). For the seed plant wide matrix, we used penalized likelihood only (following 17) because the matrix was too large to run successfully using BEAST2. It was not always possible or desirable to implement exactly the same analysis settings as used in the original publications. In two cases (Poaceae and Dipsacales) we combined alignments and molecular dating protocols from two different publications (4–6, 13). For Gentianaceae (11), we added a maximum age constraint for the root node following (22) to restrict overall age estimates to within plausible time frames. The node constraint reported for...
Cleistochloa in Poaceae (6) was omitted because the relevant node was not represented given the taxon sampling in the available alignment (13). Our BEAST2 analysis using the original Brassicaceae matrix did not converge; we achieved convergence after reducing the density of taxon sampling in the matrix.

For the treePL analyses, we first needed to reconstruct phylogenetic trees from the updated alignments using RAxML-NG (version 0.9.0) or RAxMLv8 on CIPRES (for the seed plant-wide phylogeny; 23–25). We then estimated chronograms using penalized likelihood (based on the RAxML trees) and uncorrelated lognormal relaxed clock models (estimating phylogeny and node ages at the same time). For treePL, we applied node calibrations as minimum and/or maximum age constraints, and for the BEAST2 analyses, we used the same prior distributions for node calibrations as implemented in the original publications (Table S8). For the analyses of individual seed plant clades, we used an existing script (https://github.com/tongjial/treepl_wrapper) for the treePL analysis that automatically runs the ‘prime’ step a hundred times to find the best optimization parameters and to choose the optimal cross validation (cv) parameters, before calculating an ultrametric phylogeny using the corresponding smoothing value. For the seed plant-wide analyses we followed the dating method as reported in the original analysis (17), incorporating the same set of node-defined calibration points and producing a comparable result by using their topology as a backbone constraint under RAxML. In order to compute confidence intervals for the age estimates, we calculated 50 bootstrap trees, dated them using treePL, and combined the dated trees using TreeAnnotator from the BEAST package (version 1.10).

For the BEAST2 analyses, when detailed settings were not provided in the original publications, we partitioned substitution models into pDNA and nrDNA markers, and linked trees and molecular clocks, without further assessment of model fit (Table S8). Convergence of BEAST2 analyses was assessed using Tracer version 1.7.1. Two independent BEAST2 analyses were combined using Logcombiner and TreeAnnotator (version 2.6.2) if the analyses converged and ESS values were above 200 (in a few cases only >100). Sometimes three independent but converging analyses were combined to ensure high ESS values.

To compare species ages with the age of the mountains we used the information from (26). Species were categorized as “local endemics” if they occur on a maximum of two different mountains; otherwise, either as “afrotropical endemics” (distribution limited to DR Congo, Rwanda, Tanzania, Ethiopia, Sudan, Zimbabwe, Kenya, Uganda, Burundi, Malawi, Zambia, Yemen) or as “widespread species” (also occurring in more distant temperate regions).

Species accumulation over time

We summarized the ages of species and clades (representing colonization and in situ diversification events) across phylogenies for all sampled species occurring in the afroalpine flora, excluding multiple accessions of monophyletic species, and compared the resulting node age distributions through time to expectations based on hypothetical models of diversification. Age estimates were pruned to two decimal positions for this approach.

1) We pooled node ages across all clades analyzed, ordered them by decreasing age, and summed the accumulating number of colonization/diversification events over time, equivalent to the approach of (27). In a few cases, where there was a discrepancy between phylogenies concerning the nodes within species complexes, we omitted these nodes.

2) We estimated a colonization/diversification rate given age intervals between consecutive ages by calculating the difference quotient, an approach similar to (28). The difference quotient is defined as f(b)-f(a)/(b-a), which in our case is (cumulative number of colonization/diversification events at age 2 - cumulative number of colonization/diversification events at age 1) / (age 2 - age 1).

3) We summarized the number of colonization/diversification events per time bin.

To account for phylogenetic uncertainty and uncertainty in the age estimates, we employed a
subsampling approach: We randomly selected 50% of the samples 200 times before recalculating the three estimates and overlaid the results. We compared our results to expectations assuming constant and exponential models, simulating colonization/diversification under these two models and comparing the fit of our data using the fit_curve method from scipy v. 1.5.4 (29), an optimization process to find an optimal set of parameters for a defined function that best fits a given set of observations. We calculated R^2 between our dating results and data of the fitted curve. We repeated the above analysis using diversification events only to test whether the pattern we see is driven by the older colonization events.

We modeled a constant colonization/diversification rate by sampling N colonization/diversification events from a uniform distribution between 0 and the maximum age inferred by the dating method. The corresponding linear function is $N(t)=a*t+b$, where a is the slope and b is the number of new species, in our case one. The exponential model was generated by drawing samples from an exponential distribution. The corresponding (probability density) function is $N(t)=N_0*\exp(-\lambda*t)$, where N is the number of colonization/diversification events, t is the time point and lambda is $-\ln(N_0/N_{max})/t_{max}$.

Results

Data deposition

We deposited raw reads from shotgun sequencing in an NCBI sequence read archive: http://www.ncbi.nlm.nih.gov/bioproject/766027. Alignments (including newly added sequences, as below), phylogenetic trees and analysis settings as well as code used for this study are available via https://github.com/mkandziora/AfroalpineDating/, including reference to the respective original publications on which alignments and settings were based.

Phylogenetic relationships

All newly sampled sequences were represented in at least one of the datasets. However, nine species were only included in the seed plant-wide dating, either because of mismatch between available data and existing matrices (Table S2) or, in the case of Dipsacales and Apiaceae, because of persistent problems with convergence using BEAST2. For the analyses of individual seed plant clades, we included similar sequences from GenBank in addition to our newly sampled individuals to improve the resolution of species relationships of our afroalpine samples. This added nine afroalpine species and corresponding age estimates to the results of the individual seed plant clades only.

Of the genera that are represented by more than five species in the afroalpine flora (26), six were represented by more than one species in our analyses. We found that three of these six genera colonized the afroalpine region more than once: Lobelia and Swertia both colonized twice, and Ranunculus colonized at least four times (of which only two colonizations resulted in diversification into two or more afroalpine species). The two Silene species we sampled (out of three in the flora), S. flammulifolia and S. burchelli, belonged to separate clades, each including non-afroalpine Silene species. The genus Lychnis (in our dataset nested within Silene), represents a further independent origin in the afroalpine region.

Nineteen species were represented by more than one individual in our analyses (Table S4). Five of them were retrieved as clearly monophyletic (>0.9 PP; according to the BEAST2 analyses, which were better supported than the RAxML analyses), and seven were retrieved as para- or polyphyletic, potentially indicating unrecognized species diversity in the afroalpine flora (these cases did not represent additional immigration events). For the remaining seven species, support was too low to confirm or reject monophyly.

Molecular dating
Based on our three dating methods, we could summarize up to three different age estimates for each of 102 afroalpine species, with and without confidence intervals (Figure S3-S5, Table S2). For the analyses of individual seed plant clades, we used treePL (rate-smoothing a single ML tree to obtain point estimates for node ages) and BEAST2 (estimating the phylogeny and age estimates at the same time, including confidence intervals from posterior probability distributions). For the seed plant-wide analysis we used only treePL (using an ML tree with confidence intervals estimated from bootstrapping). As the two datasets represent different species (as represented in published data) with our newly added sequences, the two datasets delivered two somewhat different sets of results (91 and 93 age estimates from not fully overlapping species sampling).

More than 60% of the BEAST2/treePL median age estimates fell within the seed plant-wide confidence intervals, and >40% of the seed plant-wide median age estimates fell within the individual seed plant clade confidence intervals. Because fossil-calibrated molecular dating results should in principle be interpreted as minimum ages (and other means of rate calibration are subject to various sources of error), deviation between results based on different calibrations can be expected and needs to be assessed. The BEAST2 and treePL analyses resulted in only a few old (> 10 Ma) species, but the two methods identified different species (Table S6). The age estimates were very different for two species: Umbilicus botryoides (individual lineage analysis 0.98 Ma, seed plant-wide analysis 19.41 Ma) and Sebaea sp. (3.26 Ma and 18.25 Ma); the much younger ages inferred by the better sampled individual lineage analyses may be caused by using more informative, and thus more reliable, age constraints for these lineages. In the case of Umbilicus, it should be noted that the Crassulaceae is difficult to date as no fossils are available; the age estimate from the seed plant-wide dating, which is informed by (albeit more distant) fossil calibrations, might be more appropriate.

The inferred ages and resolution in our phylogenies of individual seed plant clades were very similar to those in the original publications (Table S9), except for Veronica, for which we estimated the crown age to 10.82 Ma (7.11-15.69 highest posterior density [HPD]) instead of 16.13 Ma (12.46-20.59 HPD, BEAST2 age estimates). We used the same node calibrations as in the original publication; the different results might be due to the use of both ITS and trnLF in the original publication whereas our analysis only included ITS, because our sampling for the trnLF alignment did not include the nodes needed for calibration.

Notably, our estimates for species stem ages from the treePL and BEAST2 analyses were young compared to the ages of the tropical African mountains, also when considering the maximum confidence intervals (Figures S2 and S3). The median age over all BEAST2 analyses was 2.44 Ma (0.7 - 4.85; median of all HPDs), the treePL median age was 2.57 Ma, and the seed plant-wide median age was 0.84 Ma (0.12 - 7.81; median of all HPDs). All three dating approaches estimated that the majority of species (73 of 102) were younger than 5 Ma. Eighty-four of the species were younger than 10 Ma according to their median age estimates (Figure S3, BEAST2 analyses, Table S7).

We found no correlation between age and altitudinal distribution (Pearson correlation: R = 0.11, p = 0.3) and no association between age and biogeographic subregion (Figure S6 and S7). Species older than 10 Ma were typically either widespread or only found in Ethiopia and mostly found in alpine habitats. The clades that diversified were often composed of species that occur both above and below the treeline. From our results, it was rarely possible to discern whether clades originated in alpine or montane habitats (Figure S7).

As might be expected from the young stem node ages, the crown nodes of the six afroalpine clades (i.e., in situ diversifications) that we recovered were also younger than most of potential alpine or montane habitats (Figure S1).

Accumulation of species over time did not change its main results when not including colonizations events (Figure S8).
Table S1. Voucher information. Abbreviations: HC – herbarium code.

family	genus	species name (according to ncbi)	author	collector	collection date	unique id	country	locality	elevation	latitude	longitud	HC	accession sample_id
Apiaceae	Pimpinella	Pimpinella oreophila var oreophila	Hook. f. (Hochst.)	AFROAL P II team	2009-01-29	29 O-DP-36064	Kenya	Mt Elgon: S of Mt Koitobos	3629	1.10067	34.6215	SAMN21 599645	KNO0314-2_Pimpinella_oreophila_var_oreophila
Apiaceae	Pimpinella	Pimpinella pimpinelloides	H.Wolff Sch.Bip	AFROAL P II team	2007-10-30	30 O-DP-30849	Ethiopia	Simen Mts: Silki	3760	13.3333	38.23333	SAMN21 599646	ET0415-2_Pimpinella_pimpinelloides ET1413-2_Cineraria_abysinica
Asteraceae	Cineraria	Cineraria abyssinica	A.Rich. Sch.Bip	AFROAL P II team	2007-10-13	13 O-DP-33982	Ethiopia	Bale Mts: Habera	3484	7.01867	39.72067	SAMN21 599647	ET0652-2_Cineraria_deltoides
Asteraceae	Cineraria	Cineraria abyssinica	A.Rich. Sch.Bip	AFROAL P II team	2007-11-12	12 O-DP-31694	Ethiopia	Bale Mts: Sanetti Plateau	4143	6.85502	39.87802	SAMN21 599648	ETO225-2_Cineraria_sebaldii
Asteraceae	Cineraria	Cineraria sebaldii	Cufod.	AFROAL P II team	2007-10-24	24 O-DP-44436	Ethiopia	Simen Mts: Dirni Gate	3716	13.2879	38.11882	SAMN21 599649	UG2305-3_Dendrosenecio_adnivalis_var_adnivalis
Asteraceae	Dendroseccio	Dendrosenecio adnivalis var adnivalis	(Stapf) E.B.Kno (R.E.Fr. & T.C.E.F)	AFROAL P II team	2008-08-10	10 O-DP-40704	Uganda	Rwenzori Mts: Upper Bigo Valley	3561	0.38602	29.92632	SAMN21 599650	KNO0482-1_Dendrosenecio_battiscombei
Asteraceae	Dendroseccio	Dendrosenecio battiscombei	E.B.Kno (R.E.Fr. & T.C.E.F)	AFROAL P II team	2009-02-11	11 O-DP-27466	Kenya	Aberdare Mts: Mt Kinangop area	3069	0.54265	36.71993	SAMN21 599651	KNO0516-4_Dendrosenecio_brassiciformis
Asteraceae	Dendroseccio	Dendrosenecio brassiciformis	Mabb. (T.C.E. Fr.)	AFROAL P II team	2009-02-12	12 O-DP-42217	Kenya	Aberdare Mts: Mt Satima area	3865	0.30105	36.63192	SAMN21 599652	KNO0025-4_Dendrosenecio_elenonensis_ssp_kinangopensis_ssp_kinangopensis
Asteraceae	Dendroseccio	Dendrosenecio elgonensis ssp	(T.C.E. Fr.)	AFROAL P II team	2009-01-20	20 O-DP-34825	Kenya	Mts Elgon: S of Mt Koitobos	3915	1.10567	34.60183	SAMN21 599653	KNO0314-2_Dendrosenecio_oreophila_var_oreophila
Dendroscenecio erici-rosenii

- **Asteracea**
- Elgonensis
- E.B.Kno x (R.E.Fr. & T.C.E.F)

2008-07-22 O-DP-39500 Uganda

Virunga Mts: Mt Mghinga, summit 3457 1.38492 29.6449 O

Dendrosenecio erici-rosenii ss erici-rosenii

- **Asteracea**
- E.B.Kno & T.C.E.F

2009-07-04 O-DP-28618 Kenya

Kenya Mt Kenya: Sirimon Route 3652 0.06298 37.29625 O

Dendrosenecio erici-rosenii f.

- **Asteracea**
- Dendrosenecio
- Mabb. P II team

2009-07-04 O-DP-28581 Kenya

Kenya Mt Kilimanjaro Above Old Moses Camp 3696 0.06762 37.2978 O

Dendrosenecio keniensis

- **Asteracea**
- Dendrosenecio
- B.Nord. P II team

2009-07-22 O-DP-38340 Tanzania

Tanzania Horombo Hut, 4 km from 3288 -3.1508 37.4759 O

Dendrosenecio kenioidendron

- **Asteracea**
- Dendrosenecio
- E.B.Kno & T.C.E.F

2008-11-19 O-DP-38340 Tanzania

Tanzania Horombo 3288 -3.1508 37.4759 O

Dendrosenecio kilimanjari ssp kilimanjari

- **Asteracea**
- Dendrosenecio
- E.B.Kno x P II team

2008-11-20 O-DP-32764 Ethiopia

Ethiopia Bale Mts: Angaso Aberdare Mts: Mt Satima area 3986 6.88218 39.8883 O

Euryops alpinus

- **Asteracea**
- Euryops
- L. P II team

2007-11-20 O-DP-32764 Ethiopia

Ethiopia Bale Mts: Angaso Aberdare Mts: Mt Satima area 3986 6.88218 39.8883 O

Euryops brownii

- **Asteracea**
- Euryops
- S.Moor P II team

2009-02-14 O-DP-27951 Kenya

Kenya Mt Kilimanjaro: S of Mawenzi Peak 3605 0.33533 36.643 O

Euryops dacrydioides

- **Asteracea**
- Euryops
- Oliv. P II team

2008-11-15 O-DP-37892 Tanzania

Tanzania Mt Elgon: S of Mt 4109 3.10997 37.42112 O

Euryops elgonensis

- **Asteracea**
- Euryops
- Mattf. P II team

2009-01-20 O-DP-34779 Kenya

Kenya Mt Elgon: S of Mt 3915 1.10567 34.60183 O

Euryops matti

- **Asteracea**
- Euryops
- Mattf. P II team

2009-01-20 O-DP-34779 Kenya

Kenya Mt Elgon: S of Mt 3915 1.10567 34.60183 O

Euryops sambucus

- **Asteracea**
- Euryops
- Baker f. P II team

2009-07-04 O-DP-28581 Kenya

Kenya Mt Kenya: Sirimon Route 3696 0.06762 37.2978 O

Euryops sambuculoides

- **Asteracea**
- Euryops
- Baker f. P II team

2009-07-04 O-DP-28581 Kenya

Kenya Mt Kenya: Sirimon Route 3696 0.06762 37.2978 O

Euphorbia keniensis

- **Asteracea**
- Euphorbia
- L. P II team

2009-02-14 O-DP-27951 Kenya

Kenya Mt Kilimanjaro: S of Mawenzi Peak 3605 0.33533 36.643 O

Euphorbia sambuculoides

- **Asteracea**
- Euphorbia
- Mattf. P II team

2009-02-14 O-DP-27951 Kenya

Kenya Mt Kilimanjaro: S of Mawenzi Peak 3605 0.33533 36.643 O

Euphorbia sambuculoides

- **Asteracea**
- Euphorbia
- Mattf. P II team

2009-02-14 O-DP-27951 Kenya

Kenya Mt Kilimanjaro: S of Mawenzi Peak 3605 0.33533 36.643 O

Euphorbia sambuculoides

- **Asteracea**
- Euphorbia
- Mattf. P II team

2009-02-14 O-DP-27951 Kenya

Kenya Mt Kilimanjaro: S of Mawenzi Peak 3605 0.33533 36.643 O

Euphorbia sambuculoides

- **Asteracea**
- Euphorbia
- Mattf. P II team

2009-02-14 O-DP-27951 Kenya

Kenya Mt Kilimanjaro: S of Mawenzi Peak 3605 0.33533 36.643 O

Euphorbia sambuculoides

- **Asteracea**
- Euphorbia
- Mattf. P II team

2009-02-14 O-DP-27951 Kenya

Kenya Mt Kilimanjaro: S of Mawenzi Peak 3605 0.33533 36.643 O

Euphorbia sambuculoides

- **Asteracea**
- Euphorbia
- Mattf. P II team

2009-02-14 O-DP-27951 Kenya

Kenya Mt Kilimanjaro: S of Mawenzi Peak 3605 0.33533 36.643 O

Euphorbia sambuculoides

- **Asteracea**
- Euphorbia
- Mattf. P II team

2009-02-14 O-DP-27951 Kenya

Kenya Mt Kilimanjaro: S of Mawenzi Peak 3605 0.33533 36.643 O

Euphorbia sambuculoides

- **Asteracea**
- Euphorbia
- Mattf. P II team

2009-02-14 O-DP-27951 Kenya

Kenya Mt Kilimanjaro: S of Mawenzi Peak 3605 0.33533 36.643 O

Euphorbia sambuculoides

- **Asteracea**
- Euphorbia
- Mattf. P II team

2009-02-14 O-DP-27951 Kenya

Kenya Mt Kilimanjaro: S of Mawenzi Peak 3605 0.33533 36.643 O

Euphorbia sambuculoides

- **Asteracea**
- Euphorbia
- Mattf. P II team

2009-02-14 O-DP-27951 Kenya

Kenya Mt Kilimanjaro: S of Mawenzi Peak 3605 0.33533 36.643 O
Family	Genus	Species	Collector	Date	Accession	Country	Location Description	Latitude	Longitude	O-DP-	Aircraft	SAMN21
Asteraceae	Euryops	Euryops pinifolius	A.Rich.	2008-10-08	O-DP-33607	Ethiopia	Mt Choke	3960	10.642	37.83567	ETH1330-2	599662
Asteraceae	Euryops	Euryops prostratus	B.Nord.	2007-11-21	O-DP-32614	Ethiopia	Bale Mts: Batu	4116	6.85003	39.85317	ET0889-2	599663
Brassicaceae	Arabidopsis	Arabidopsis thaliana	(L.) Heynh.	2007-10-24	O-DP-29948	Ethiopia	Simen Mts: Dirni Gate Mt Meru: Saddle Hut	3716	8	38.11882	ET0177-3	599664
Brassicaceae	Arabis	Arabis alpina	L.	2008-11-27	O-DP-38474	Tanzania	area	3594	-3.217	36.769	TZ0375-3	599665
Brassicaceae	Erophila	Erophila verna var macrosperma	Sebadl R.E.Fr. &	2007-11-13	O-DP-31710	Ethiopia	BALE Mts: Sanetti	4000	NA	NA	ETH0671-2	599666
Brassicaceae	Erophila	Erophila verna var macrosperma	Sebadl R.E.Fr. &	2007-11-13	O-DP-31715	Ethiopia	Bale Mts: Sanetti Mt Elgon: Near camp site at end of car road	4050	NA	NA	KN0394-1	599668
Campanulaceae	Lobelia	Lobelia aberdaronica	T.C.E.F. r. (E.Wim m.)	2009-01-29	O-DP-27246	Kenya		3557	1.09317	34.62367	ET1503-3	599669
Campanulaceae	Lobelia	Lobelia acrochila	E.B.Knox	2008-10-17	O-DP-34377	Ethiopia	Bale Mts: Dinsho Mt Kilimanjaro: Shira Plateau near Mt Simba: Betw. Goba and Sanetti, 4	3281	7.05815	39.7657	TZ0025-2	599670
Campanulaceae	Lobelia deckenii ssp	Lobelia deckenii	Hems. Engl.	2008-11-03	O-DP-37017	Tanzania		3636	3.03425	37.243	SAMN21	599671
Campanulaceae	Lobelia	Lobelia deckenii	Hems. Engl.	2008-10-18	O-DP-34150, 18 O-DP-34155	Ethiopia		2918	6.77312	39.72578	SAMN21	599671
Campanulaceae	Lobelia	Lobelia Erlangeriana	Hems. Engl.	2008-11-03	O-DP-37017	Tanzania		3636	3.03425	37.243	SAMN21	599671
Campanulaceae	Lobelia lindblomii	Mildbr.	AFROAL P II team	2009-02-12	O-DP-27650	Kenya	km from Goba	Aberdare Mts: Mt Satima area	3806 0.30533 36.62483 O	SAMN21 4_Lobelia_lindblomii		
Campanulaceae	Lobelia mildbraedii	Engl.	AFROAL P II team	2009-02-17	O-DP-28572	Kenya		Aberdare Mts: Near Wanderi Gate	2571 0.32017 36.7685 O	SAMN21 2_Lobelia_mildbraedii		
Campanulaceae	Lobelia rhynchopetalum	Hemsl.	AFROAL P II team	2007-10-21	O-DP-29729	Ethiopia	Simen Mts: Saha	3711 3 38.11077 O	SAMN21 2_Lobelia_rhynchopetalum			
Campanulaceae	Lobelia schimperi	Hochst. ex A.Rich.	B. Gebremen & G. Tassew	2013-03-26	O-DP-54720	Ethiopia	ETH: Simen Mts: Sherafi Virunga Mts: Mt Muhavura, along trail to summit	2780 5 38.07445 O	BG52-1_Lobelia_schimperi			
Campanulaceae	Lobelia stuhlmannii	Schwei nf. ex Stuhlmann	AFROAL P II team	2008-07-26	O-DP-43042	Uganda		Aberdare Mts: Mt Kinangop area, Gura River Virunga Mts: Mt Muhavura, summit	3600 1.38272 29.67798 O	SAMN21 1_Lobelia_stuhlmannii		
Campanulaceae	Lobelia telekii	Schwei nf.	AFROAL P II team	2009-02-12	O-DP-27438	Kenya	NA NA NA O	SAMN21 3_Lobelia_telekii				
Campanulaceae	Lobelia wollastonii	Baker f.	AFROAL P II team	2008-07-28	O-DP-40212	Uganda				SAMN21 3_Lobelia_wollastonii		
Caryophylaceae	Lychnis abyssinica (=Silene abyssinica)	(Hochst AFROAL P II team	2008-09-22	O-DP-33225	Ethiopia				2318 7.25575 39.1564 O	SAMN21 3_Lychnis_abyssinica		
Caryophylaceae	Lychnis (Hochst AFROAL	2007-10-28	O-DP-44203	Ethiopia					3574 13.2666 38.10782 O	SAMN21 ET009-		
Family	Genus	Scientific Name	Collector	Year	Code	Country	Location	Coordinates	Description			
-----------	-----------	---	-----------	------------	------------	-------------	--------------	-------------	-----------------------------			
Caryophyllaceae	Lychnis	abyssinica (=Silene abyssinica)	Liden	P II team	20	Close to Gich Camp Site	Aberdare Mts: Mt Kinangop area	3086°0.5425' 36.7175°O	X_Lychnis_abyssinica_LGS			
Caryophyllaceae	Lychnis	crassifolia (=Silene kenyana)	(T.C.E. Fr.)	AFROAL	2009-02-01	11 O-DP-27504	Kenya		SAMN21 Lychnis_crassifolia			
Caryophyllaceae	Lychnis	kigesiensis subsp. ragazziana (=Silene kigesiensis subsp. ragazziana)	(Ousted)	AFROAL	2008-10-06	06 O-DP-41981	Uganda		SAMN21 Lychnis_kigesiensis_subsp_ragazziana			
Caryophyllaceae	Lychnis	kiwuensis (=Silene kiwuensis)	(T.C.E. Fr.)	AFROAL	2008-10-01	01 O-DP-33528	Ethiopia		SAMN21 Lychnis_kiwueinsis			
Caryophyllaceae	Lychnis	rotundifolia (=Silene afromontana)	(Oliv.)	AFROAL	2009-02-12	12 O-DP-27521	Kenya		SAMN21 Lychnis_rotundifolia			
Caryophyllaceae	Minuartia	filifolia	(Forssk. AFROAL)		2007-10-25	25 O-DP-30277	Ethiopia		SAMN21 Minuartia_filifolia			
Caryophyllaceae	Minuartia	filifolia	(Forssk. Mattf.)	P II team	2007-10-24	24 O-DP-29995	Ethiopia		SAMN21 Minuartia_filifolia			
Caryophyllaceae	Sagina	afroalpina	Hedberg	AFROAL	2009-07-09	09 O-DP-29202	Kenya		SAMN21 Sagina_afroalpina			
Caryophyllaceae	Silene	burchellii	Oth ex AFROAL DC. P II team	2009-02-14	14 O-DP-27930	Kenya		SAMN21 Silene_burchellii_var_burchellii				
Caryophyllaceae	Silene	flammulifolia	Steud. AFROAL ex P II team	2007-10-24	0 O-DP-30053	Ethiopia		SAMN21 Silene_flammulifolia				

Legend:
- **Family:*** Caryophyllaceae
- **Genus:**
- **Scientific Name:**
- **Collector:**
- **Year:**
- **Code:**
- **Country:**
- **Location:**
- **Coordinates:**
- **Description:**
| Family | Genus | Species | Authors | Collection Number | Country | Location Details | Coordinates | Elevation (m) | Latitude | Longitude | Comment |
|-----------------|-------------|----------------------------------|--------------------------|-------------------|-------------|---------------------------|---------------|--------------|-----------|------------|---------------|
| Caryophyllaceae | Silene | Silene macrosolen | A.Rich. ex A.Rich. | AFROAL P II team | Ethiopia | Simen Mts: Bwahit Mt Kilimanjaro Horombo Bale Mts: Garba Guracha Virunga Mts: Mt Muhavura | 13.2513 | 4035 | 38.20225 | O | 599690 |
| Dipsacales | Scabiosa | Scabiosa columbaria | L. | AFROAL P II team | Tanzania | - | 3650 | 3.14215 | 37.44065 | O | 599691 |
| Dipsacales | Valerianella| Valerianella microcarpa | Loisel. | AFROAL P II team | Ethiopia | - | 4101 | 6.87028 | 39.8678 | O | 599692 |
| Gentianaceae | Sebae | Sebea sp | | AFROAL P II team | Uganda | - | 3800 | NA | NA | O | 599693 |
| Gentianaceae | Swertia | Swertia adolfi-friderici | Mildbr. & Gilg | AFROAL P II team | Tanzania | Mbeya Mts Virunga Mts: Mt Mgahinga, near Mgahinga Camp Site | 2731 | 8.83633 | 33.37083 | O | 599695 |
| Gentianaceae | Swertia | Swertia brownii | J.Shah | AFROAL P II team | Uganda | Mt Elgon: S of Mt Koitobos | 2340 | 1.35275 | 34.6215 | O | 599696 |
| Gentianaceae | Swertia | Swertia crassiuscula ssp | Gilg | AFROAL P II team | Kenya | Bale Mts: Sanetti Aberdare Mts: along the car road towards Satima | 3700 | 6.76667 | 39.75 | O | 599698 |
| Gentianaceae | Swertia | Swertia crassiuscula ssp robusta| Sileshi | AFROAL P II team | Ethiopia | Bale Mts: along the car road towards Satima | 3697 | 0.33883 | 36.6515 | O | 599699 |

Notes:
- **AFROAL P II team:** The group responsible for the expeditions and collections.
- **O-DP-XXXX:** The collection number, indicating the specific field and collection details.
- **ET0289-4 Silene macrosolen:** The specific collection documentation code and identifier.
- **SAMN21:** The repository or collection code, used for cataloging and referencing the specimens.
| Gentianaceae | Species | Synonyms | Collectors | Dates | Vouchers | Locality | Latitude | Longitude | Elevation | Coordinates |samn | ET | O-DP- | Country |
|-------------|---------|----------|------------|-------|---------|----------|----------|-----------|-----------|-------------|------|----|--------|---------|
| Swertia | engleri | var. engleri | Gilg | AFROAL P II team | 2007-10-23 | O-DP-43467 | Ethiopia | Simen Mts: Saha | 13.2852 | 3718 5 38.11838 O | SAMN21 | ET0136-1_Swertia_engleri | 599700 |
| Swertia | engleri | var. woodii | J. Shah, Sileshi | AFROAL P II team | 2008-10-14 | O-DP-34071 | Ethiopia | Bale Mts: Habera Virunga Mts: Mt Muhavura, along trail to 1st Hut | 3482 7.00733 29.70983 O | SAMN21 | ET1454-4_Swertia_engleri | 599701 |
| Swertia | kilimandscharica | | Engl. | AFROAL P II team | 2008-07-29 | O-DP-40220 | Uganda | | 2900 NA NA O | SAMN21 | UG2175-1_Swertia_kilimandscharica | 599702 |
| Swertia | macrosepala | ssp | Gilg | AFROAL P II team | 2008-07-22 | O-DP-39494 | Uganda | Virunga Mts: Mt Mgahinga | 3470 1.38427 29.64018 O | SAMN21 | ET0443-1_Swertia_macrosepala | 599703 |
| Swertia | pumila | | Hochst. | AFROAL P II team | 2007-10-31 | O-DP-30948 | Ethiopia | Simen Mts: Silki Sidamo: Wendo Abela Giorgis Church | 13.3490 | 3912 7 38.2625 O | SAMN21 | ET1304-5_Swertia_pumila | 599704 |
| Swertia | quartiniana | | A. Rich. (Hochst.) | AFROAL P II team | 2008-09-24 | O-DP-33260 | Ethiopia | Simen Mts: Near Gich Camp Site Mt Elgon: Mt Koitobos Addis Ababa: Kality Mt Elgon: Mt Koitobos | 1990 6.9158 38.50017 O | SAMN21 | ET0187-5_Swertia_quartiniana | 599705 |
| Swertia | schimperi | | Griseb. | AFROAL P II team | 2007-10-25 | O-DP-44309 | Ethiopia | Simen Mts: NA | NA NA NA O | SAMN21 | KN0004-3_Swertia_schimperi | 599706 |
| Swertia | subnivalis | r. | T.C.E.F r. | AFROAL P II team | 2009-01-19 | O-DP-34720 | Kenya | | 4224 1.1239 34.60198 O | SAMN21 | ET1294-3_Swertia_subnivalis | 599707 |
| Swertia | tetandra | | Hochst. | AFROAL P II team | 2008-09-29 | O-DP-33195 | Ethiopia | NA | NA NA NA O | SAMN21 | KN0085-4_Swertia_tetandra | 599708 |
| Swertia | uniflora | | Mildbr. & Gilg | AFROAL P II team | 2007-01-23 | O-DP-35048 | Kenya | O-DP-39276-O-DP-39278, 24 O-DP-48440 | 3953 1.124 34.59033 O | SAMN21 | TZ0711-4568_Swertia_uniflora | 599709 |
| Swertia | usambarensis | | Engl. | AFROAL P II team | 2009-06-24 | O-DP-48440 | Tanzania Mbeya Mts | | 2616 8.83683 33.3725 O | SAMN21 | TZ0711-4568_Swertia_usambarensis | 599710 |
| Family | Genus | Species | Author | Collector | Specimen Code | Location | Date | Coordinates | Use Code | Accession Number | Other Accession Numbers |
|-------------|---------------------|-----------------------|-------------------|-------------------|---------------|---------------------------|---------|-----------------------------|----------|------------------|---|
| Poaceae | Gentiana | Swertia | Gilg | AFROAL P II team | 2007-11-031750,13 O-DP-131751 | Ethiopia Sanetti | 4050 NA NA O | SAMN21 599711 ET0680-x23_Swertia_volkensii | ET0167-T_Aira_caryophyllea ET0495-5_Alopecurus_baptarrhenius |
| Poaceae | Poaceae | Aegea | Gilg | AFROAL P II team | 2007-10-44263 | Ethiopia Dirni Gate | 3716 8 38.11882 O | SAMN21 599712 | | |
| Poaceae | Poaceae | Alopecurus | S.M. Phillips | AFROAL P II team | 2007-11-31197 | Ethiopia Silki | 3681 7 38.24297 O | SAMN21 599713 | | |
| Poaceae | Poaceae | Anthoxanthum | Schumacher | AFROAL P II team | 2008-11-37045 | Tanzania Shira Plateau | 3406 2.98662 37.22327 O | SAMN21 599714 | | |
| Poaceae | Poaceae | Deschampsia | Beauvoir | AFROAL P II team | 2007-11-32350 | Ethiopia Konten | 4019 6.85542 39.89647 O | SAMN21 599715 | | |
| Poaceae | Poaceae | Avenella | Drejer | AFROAL P II team | 2008-11-38285 | Tanzania Horombo | 3710 -3.1375 37.43683 O | SAMN21 599716 | | |
| Poaceae | Poaceae | Koeleria | Nees | AFROAL P II team | 2007-10-29614 | Ethiopia Saha | 3718 5 38.11838 O | SAMN21 599718 | | |
| Poaceae | Poaceae | Rytidosperma | Cope | AFROAL P II team | 2007-11-32749 | Ethiopia Angaso | 3986 6.88218 39.8883 O | SAMN21 599719 | | |
| Plantaginaceae | Veronica | anagallis-aquatica | L. | AFROAL P II team | 2007-11-31570 | Ethiopia Silki | 3682 5 38.24247 O | SAMN21 599731 | | |
| Plantaginaceae | Veronica | arvensis | Hochst. ex | AFROAL P II team | 2007-10-30129 | Ethiopia Dirni Gate | 3716 8 38.11882 O | SAMN21 599732 | | |
| Plantaginaceae | Veronica | glandulosa | Hochst. ex | AFROAL P II team | 2007-10-29615 | Ethiopia Saha | 3718 13.2852 38.11838 O | SAMN21 599733 | | |
| Family | Genus | Species | Occurrence | Location | Altitude | Coordinates | Number | Additional Information |
|---------------|---------------------|----------------------------------|---------------------|---------------------------|----------|-------------------|------------|---|
| Primulaceae | Anagallis | serpens subsp meyeri-johannis | (Engl.) | Benth. | | | | Et0090-3_Ananagallis_serpens_subsp_meyeri-johannis |
| Primulaceae | Primula | verticillata | Forssk. | AFROAL P II team | 2007-10- | O-DP-29581 | Ethiopia | 13.2827 Simen Mts: Saha 3711 3 38.11077 O |
| Ranunculaceae | Anemone | thomsonii var friesiorum | Ulbr. | AFROAL P II team | 2007-11- | O-DP-31586 | Ethiopia | 13.3285 Simen Mts: Silki 3643 38.24092 O |
| Ranunculaceae | Anemone | thomsonii | Oliv. | AFROAL P II team | 2008-11- | O-DP-38990 | Tanzania | 3.21783 36.754 O Mt Meru: Saddle Hut 3659 |
| Ranunculaceae | Ranunculus | aberdaricus | Ulbr. | AFROAL P II team | 2007-11- | O-DP-31436 | Ethiopia | 13.3285 Simen Mts: Silki 3643 38.24092 O |
| Ranunculaceae | Ranunculus | distrias | A, Rich. ex Hochst. | AFROAL P II team | 2007-10- | O-DP-29766 | Ethiopia | 13.2827 Simen Mts: Silki 3711 3 38.11077 O |
| Ranunculaceae | Ranunculus | oligocarpus | A, Rich. ex Hochst. | AFROAL P II team | 2007-11- | O-DP-30977 | Ethiopia | 13.3284 Simen Mts: Silki 3681 7 38.24297 O |
| Ranunculaceae | Ranunculus | oreophytus | Delile ex Hochst. | AFROAL P II team | 2008-11- | O-DP-38965 | Tanzania | 3.22075 36.78395 O Mt Elgon: S of Mt Koitobos 3166|
| Ranunculaceae | Ranunculus | stagnalis | A, Rich. ex Hochst. | AFROAL P II team | 2009-01- | O-DP-27222 | Kenya | 1.107 34.60317 O Mt Meru: Saddle Hut 3166 |
| Ranunculaceae | Ranunculus | trichophyllus | Chaix | AFROAL P II team | 2007-11- | O-DP-31595 | Ethiopia | 13.3285 Simen Mts: Silki 3643 38.24092 O |
| Ranunculaceae | Ranunculus | volkensii | Eng. | AFROAL P II team | 2008-11- | O-DP-37229 | Tanzania | 3.0056 37.24155 O Mt Kilimanjaro: Shira 3536 |

Note: The table includes species names, occurrence data, location details, and additional information such as altitude, coordinates, and number identifiers. Each row represents a different species or variety, with details such as family, genus, species, and occurrence data. The table is organized with columns for Family, Genus, Species, Occurrence, Location, Altitude, Coordinates, Number, and Additional Information.
| Family | Genus | Species | Authority | AFROAL | Team | Year | Location | Latitude | Longitude | Elevation | Coordinates | Collection | Genus | Species | Authority | AFROAL | Team | Year | Location | Latitude | Longitude | Elevation | Coordinates | Collection |
|--------------|---------|------------------|-----------|--------|----------|---------|------------|----------|-----------|------------|-------------|-----------|---------|--------------|-----------|--------|----------|---------|------------|------------|-----------|-----------|-----------|-------------|-----------|
| Violaceae | Viola | Viola abyssinica | Steud. ex Oliv. | AFROAL | P II team | 2008-07- | Plateau Virunga Mts: Muhavura, along trail to summit | 3700 | 1.3782 | 29.67333 | O | SAMN21 599734 | UG2096-2_Viola_abyssinica |
| Violaceae | Viola | Viola eminii | R.E.Fr. | AFROAL | P II team | 2008-07- | Plateau Virunga Mts: Muhavura, along trail to summit | 3550 | 1.37628 | 29.67153 | O | SAMN21 599735 | UG2035-1_Viola_eminii |
| Violaceae | Viola | Viola nannae | R.E.Fr. | AFROAL | P II team | 2008-08- | Plateau Virunga Mts: Muhavura, along trail to summit | 3425 | 0.38502 | 29.9273 | O | SAMN21 599736 | UG2247-2_Viola_nannae |
| Crassulaceae | Umbilicus| Umbilicus botryoides | Hochst. ex A.Rich. | AFROAL | P II team | 2007-10- | Plateau Virunga Mts: Muhavura, along trail to summit | 3652 | 13.269 | 38.1058 | O | SAMN2 1599737 | ET0230-2_Umbilicus_botryoides |
Table S2. Distribution and age of species. Distribution and elevation of sampled species according to the Flora of East Africa and the Flora of Eritrea. In some cases, information are adapted to more recent information (indicated). *Lychnis* information are also based on Ousted (1985) *A taxonomic revision of the genus Uebelinia* Hochst. (Caryophyllaceae). *Bulletin du Jardin botanique national de Belgique/Bulletin van de Nationale Plantentuin van Belgie*, pp. 421-459. *Cineraria* information based on Cron, G.V., Balkwill, K. and Knox, E.B., 2006. *A revision of the genus Cineraria* (Asteraceae, Senecioneae). *Kew Bulletin*, pp. 449-535. *Viola* information are solely based on information provided by “Conservatoire et Jardin botanique de Geneve” (http://www.ville-ge.ch/musinfo/bd/cjb/africa/details.php?langue=an&id=175422). Abbreviations: Ci: confidence interval; sA: strict Afroalpine (>3800m, according to Gehrke et al. (3)); obsA: occurs in the strict Afroalpine and below; obsA: occurs only below the strict Afroalpine (<3800m).

family	genus	species name	BEAST2 individual clades	BEAST2 seed plant wide	treePL elevation in m	altitudinal coding	Distribution coding	Distribution	sample_id
Apiaceae	Pimpinella	oreophila	Apiaceae	2.58 7.71 0.19 1.25	0.37 1.52 0.01	250 410	endemicEA	Ethiopia, Kenya, Rep. South Sudan, Tanzania, Uganda, Cameroon, Gulf of Guinea Islands	ET0415-2_Pimpinella_oreophila

| Apiaceae | Pimpinella | pimpinelloides | Apiaceae | 2.58 7.71 0.19 1.25 | 0.37 1.52 0.01 | 250 410 | endemicEA | Ethiopia, Saudi Arabia, Yemen, Ethiopia, Kenya, Uganda, Tanzania, Rep. South Sudan, DR Congo, Rwanda, Malawi, Zambia, Zimbabwe, South Africa | ET0652-2_Cineraria_deltoidea

| Asteraceae | Cineraria | abyssinica | Asteraceae | 2.58 7.71 0.19 1.25 | 0.37 1.52 0.01 | 250 410 | endemicEA | Ethiopia, Kenya, Uganda, Tanzania, Rep. South Sudan, DR Congo, Rwanda, Malawi, Zambia, Zimbabwe, South Africa, Ugandan, DR Congo, Rwenzori Mtts | UG2305-3_Dendrosenecio

| Asteraceae | Cineraria | deltoidea | Asteraceae | 0.42 2.5 0.59 1.25 | 0.48 9.75 0.01 | 325 450 | endemic to Mt | Uganda, DR Congo, Rwenzori Mtts | UG2305-3_Dendrosenecio

| Asteraceae | Dendrosenecio | adnivalis | Asteraceae | 0.42 2.5 0.59 1.25 | 0.48 9.75 0.01 | 325 450 | endemic to Mt | Uganda, DR Congo, Rwenzori Mtts | UG2305-3_Dendrosenecio
Family	Genus	Species	Locality	Locality Code
Asteraceae	Dendrosenecio	battiscombei	0.41 2.51 0.59 0.55 4.68 0.01 0 0 osA	KN0482-1_Dendrosenecio_battiscombei
	Dendrosenecio	brassiciformis	0.42 2.5 0.59 0.46 5.52 0 0 0 osA	KN0516-4_Dendrosenecio_brassiciformis
	Dendrosenecio	cheranganiensis	1 3.61 0.02 0.99 0 osA	KN025-4_Dendrosenecio_cheranganiensis
	Dendrosenecio	elgonensis	0.41 2.51 0.54 0.22 2.36 0.01 0 5 osA	UG2207-5_Dendrosenecio_elgonensis_ssp_elgonensis
	Dendrosenecio	erici-rosenii	1.46 4.85 0.12 1.98 0.33 8.23 0.03 0 5 osA	KN0792-3_Dendrosenecio_johnstonii
	Dendrosenecio	johnstonii	0.49 2.95 0.67 0 osA	KN0781-1_Dendrosenecio_johnstonii
	Dendrosenecio	keniensis	0.44 2.7 0.59 0.22 3.2 0.01 0 5 osA	KN0781-1_Dendrosenecio_keniensis
	Dendrosenecio	keniodendron	0.44 2.7 0.54 0.46 2.54 0 0 0 osA	TZ0343-3_Dendrosenecio_kenioidendron
	Dendrosenecio	kilimanjari	0.49 2.95 0.67 0.23 2.56 0 0 0 osA	UG2207-5_Dendrosenecio_kilimanjari_ssp_kilimanjari
	Dendrosenecio	meruensis	2.79 8.75 0.13 1.34 0 osA	UG2207-5_Dendrosenecio_meruensis

- **Dendrosenecio battiscombei**: endemic to Mt Kenya and Aberdare Mts.
- **Dendrosenecio brassiciformis**: endemic to Aberdare Mts and Cherangani Hills.
- **Dendrosenecio cheranganiensis**: endemic to Cherangani Hills.
- **Dendrosenecio elgonensis**: endemic to Mt Elgon.
- **Dendrosenecio erici-rosenii**: endemic to Mt Rwenzori, Virunga Mts, Mt Muh, Mt Kahuzi, Mt Rwenzori Mts, Virunga Mts.
- **Dendrosenecio johnstonii**: endemic to Mt Kilimanjaro.
- **Dendrosenecio keniensis**: endemic to Mt Kenya.
- **Dendrosenecio keniodendron**: endemic to Mt Kilimanjaro.
- **Dendrosenecio kilimanjari**: endemic to Mt Kilimanjaro.
- **Dendrosenecio meruensis**: endemic to Mt Meru.
| Family | Genus | Species | Coordinates | Distribution |
|-------------|-----------|------------------------|-------------|---|
| Asteraceae | Erigeron | Erigeron alpinus | 3.86 8.82 0.55 1.36 0.03 1.76 0 0 0 osA | Ethiopia and Kenya. Also Europe to N. Iran. Widespread |
| Asteraceae | Euryops | Euryops brownei | 0.54 3.06 0 0.6 0.52 4.25 0 0 0 osA | Kenya, Tanzania endemicEA |
| Asteraceae | Euryops | Euryops dacydioides | 2.5 7.07 0.07 2.2 0.3 6.2 0 0 0 osA | Tanzania; endemic to Mt Kilimanjaro MtKilimanjaro |
| Asteraceae | Euryops | Euryops elgonensis | 0.54 3.06 0 0.6 0.52 4.47 0 0 0 osA | Kenya, Uganda; endemic to Mt Elgon MtElgon |
| Asteraceae | Euryops | Euryops pinifolius | 1.61 5.73 0.02 1.44 0.43 4.25 0 0 0 osA | Ethiopia; Simen Mts, Mt Choke Simen |
| Asteraceae | Euryops | Euryops prostratus | 1.61 5.73 0.02 1.75 0.3 4.5 0 0 0 osA | Ethiopia, endemic to Bale Mts, Bale |
| Brassicaceae| Arabidopsis| Arabidopsis thaliana | 15.7 11.91 9.81 3.66 2.11 6.14 0.01 0 0 0 osA | Ethiopia, Kenya, Uganda, Tanzania. Also in Northern Africa, Macaronesia, Europe and much of Asia. Widespread |
| Brassicaceae| Arabis | Arabis alpina | 19.09 4 5 6.14 3.81 8.75 0.31 0 0 0 osA | Ethiopia, Kenya, Uganda, Tanzania, DR Congo. Also widespread in Europe, N. Asia, and N. America, extending within the Arctic Circle. Widespread |
| Brassicaceae| Erophila | Erophila verna | 9.77 14.4 5.26 2.74 1.02 7.93 0.12 390 450 osA | Ethiopia, Simen widespread |
Brassicaceae

| Thlaspi alliaceum (=Mummenhoffia alliacea) | 18.9 | 15.8 | 390 | 462 |

| Thlaspi verna var. Macrosperma | 2.0 | 0.0 | 0.0 | 0.0 |

| 3 | 0 | 0 | 0 | 0 |

Campanulaceae

| Thlaspi alliaceum (=Mummenhoffia alliacea) | 12.7 | 3.0 | 7.01 | 4.41 | 1.57 | 9.0 | 0.35 | 0.0 | sA |

| 2_Erophila_verna var. Macrosperma | 12.0 | 1.8 | 5.1 | 1.3 |

| ET0671-2 | Thlaspi_alliaceum | 12.7 | 1.8 | 5.1 | 1.3 |

| 3 | 0 | 0 | 0 | 0 |

Campanulaceae

| Lobelia alliaceum | 12.7 | 170 | 355 |

| 2_Thlaspi_alliaceum | 12.0 | 1.8 | 5.1 | 1.3 |

| KN0394-1 | Lobelia_alliaceum | 12.0 | 1.8 | 5.1 | 1.3 |

| 3 | 0 | 0 | 0 | 0 |

Campanulaceae

| Lobelia aberdarica | 4.03 | 6.94 | 1.95 | 2 | 0.6 | 8.27 | 0.3 | 0 | obsA |

| Kenya, Uganda | endemicEA |

| ET1503-3 | Lobelia_aberdarica | 4.03 | 6.94 | 1.95 | 2 | 0.6 | 8.27 | 0.3 | 0 | obsA |

| 3 | 0 | 0 | 0 | 0 |

Campanulaceae

| Lobelia acrochila | 0.72 | 2.17 | 0.04 | 5 | 0.17 | 8.59 | 0.06 | 0 | obsA |

| Ethiopia; Mt Bale, Sidamo, Arsi, Harar Kenyan; endemic to Bale |

| 2 | 0 | 0 | 0 | 0 |

Campanulaceae

| Lobelia bambuseti | 0.15 | 0.82 | 0.21 | 1.7 | 0.01 | 8.27 | 0.3 | 0 | obsA |

| Mt Kenya and Aberdare Mts Uganda, DR Congo; endemic to Mt Rwenzori |

| 2 | 0 | 0 | 0 | 0 |

Campanulaceae

| Lobelia deckenii subsp. bequaertii | 2.44 | 5.09 | 0.75 | 6.05 | 0 | 0 | osA |

| Tanzania, Kenya, Uganda | endemicEA |

| TZ0025-2 | Lobelia_deckenii ssp.deckenii | 2.44 | 5.09 | 0.75 | 6.05 | 0 | 0 | osA |

| 3 | 0 | 0 | 0 | 0 |

Campanulaceae

| Lobelia giberroa | 0.57 | 2.14 | 0.15 | 1.57 | 0 | 0 | obsA |

| Zambia, Zaire | endemicEA |

| KN0743-1 | Lobelia_giberroa | 0.57 | 2.14 | 0.15 | 1.57 | 0 | 0 | obsA |

| 3 | 0 | 0 | 0 | 0 |

Campanulaceae

| Lobelia granitica | 4.09 | 1.08 | 8.6 | 4.76 | 3.13 | 9.17 | 0 | 0 | obsA |

| Tanzania | endemicEA |

| 2 | 0 | 0 | 0 | 0 |

Campanulaceae

| Lobelia | 0.57 | 2.14 | 0.15 | 1.57 | 0.84 | 14.7 | 0.53 | 180 | 300 | obsA |

| Burundi, Malawi, endemicEA |

| 3 | 0 | 0 | 0 | 0 |

Campanulaceae

| Lobelia | 0.57 | 2.14 | 0.15 | 1.57 | 0.84 | 14.7 | 0.53 | 180 | 300 | obsA |

| Burundi, Malawi, endemicEA |

| 3 | 0 | 0 | 0 | 0 |

Campanulaceae

| Lobelia | 0.57 | 2.14 | 0.15 | 1.57 | 0.84 | 14.7 | 0.53 | 180 | 300 | obsA |

| Burundi, Malawi, endemicEA |

| 3 | 0 | 0 | 0 | 0 |

Campanulaceae

| Lobelia | 0.57 | 2.14 | 0.15 | 1.57 | 0.84 | 14.7 | 0.53 | 180 | 300 | obsA |

| Burundi, Malawi, endemicEA |

| 3 | 0 | 0 | 0 | 0 |

Campanulaceae

| Lobelia | 0.57 | 2.14 | 0.15 | 1.57 | 0.84 | 14.7 | 0.53 | 180 | 300 | obsA |

| Burundi, Malawi, endemicEA |

| 3 | 0 | 0 | 0 | 0 |

Campanulaceae

| Lobelia | 0.57 | 2.14 | 0.15 | 1.57 | 0.84 | 14.7 | 0.53 | 180 | 300 | obsA |

| Burundi, Malawi, endemicEA |

| 3 | 0 | 0 | 0 | 0 |

Campanulaceae

| Lobelia | 0.57 | 2.14 | 0.15 | 1.57 | 0.84 | 14.7 | 0.53 | 180 | 300 | obsA |

| Burundi, Malawi, endemicEA |

3	0	0	0	0										
Campanulaceae	Lobelia	Mildbraedii	3	0	0	Rwanda, Tanzania, Uganda, DR Congo, Burundi, Malawi,	2_Lobelia_mildbraedii							
Campanulaceae	Lobelia	Mildbraedii2	3.45	6.68	1.23	8.87	0	0	obsA	Rwanda, Tanzania, Uganda, DR Congo endemicEA	Lobelia_mildbraedii			
Campanulaceae	Lobelia	rhynchopetalum	3.45	6.68	1.23	3	0.17	8.59	0.06	0	0	osA	Ethiopia; Choke, Arsi, Harar, Burundi, Rwanda, Uganda, DR Congo	2_Lobelia_rhynchopetalum
Campanulaceae	Lobelia	stuhlmannii	1.25	2.94	0.3	3.67	0.5	7.81	0.24	0	0	obsA	Kenya, Uganda; endemic to Mt. Rwenzori, Virunga Mts, Simen, Bale	1_Lobelia_stuhlmannii
Campanulaceae	Lobelia	telekii	5.18	8.59	2.66	2	0.79	7	0.12	0	0	obsA	Mt. Elgon, Aberdare, Mt. Kenya endemicEA	3_Lobelia_telekii
Campanulaceae	Lobelia	wollastonii	2.44	5.09	0.75	6.05	0.5	7.81	0.24	0	0	obsA	Ethiopia; Bale Mts, Arsi, Kenya, Uganda; endemic to Mt. Rwenzori, Virunga Mts, Simen, Bale	3_Lobelia_wollastonii
Caryophyllaceae	Lychnis	abyssinica (=Silene abyssinica)	1.98	3.25	1.03	0.98	1.37	14.3	0.47	135	400	osA	Ethiopia; Kenya, widespread	1_Lychnis_abyssinica
Family	Genus	Species Name	ET0098- X_Lychnis_abyssica	ET0098- X_Lychnis_abyssica1	ET0098- X_Lychnis_abyssica2	ET0098- X_Lychnis_abyssica3	ET0098- X_Lychnis_abyssica4
Caryophyllace	Lychnis	abyssinica	4.67 6.81 2.85 2.57	2.4 1.15 0 0 osA	12.9 135 400	Ethio, Ken, Ru, UD Congo, Eritrea, Nig, Cameroon	widespread inica LGS
Caryophyllace	Lychnis	cryssifolia	2.45 4.14 1.26 1.53	2.11 10.2 0.68 0 0 osA	200 390	Kenya, Tan, endemicEA	folia
Caryophyllace	Lychnis	kigesiensis	1.98 3.25 1.03 0.98	1.37 11.3 0.47 0 0 obsA	150 300	Uganda, Rw, Eth, endemicEA	azzi
Caryophyllace	Lychnis	kigesiensis subsp. ragazziana	2.45 4.14 1.26 1.53	2.11 10.2 0.68 0 0 obsA	180 380	Uganda, Ru, Bur, DR Congo, Ken, Tan, endemicEA	Kigesiensis subsp. ragazziana
Caryophyllace	Lychnis	kiwensis	3.9 5.81 2.36 2.88	1.98 8 0.68 0 0 osA	16.6 260 395	Uganda, Ken, Mt, Kilimanjaro, endemicEA	Kigeti
Caryophyllace	Lychnis	scottii	3.22 4.91 1.87 1.96	0 0 obsA	270 330	Ethiopia, Tan, Eritrea, Rep. South, Sudan, Yemen, Eritrea, Rep. South, Sudan, Yemen,	Bale Uebelina scottii
Caryophyllace	Minuartia	filifolia	5.05 7.94 2.88 3	10.19 3 4.03 0 0 osA	13.9 27.1 180 405	Somalia, endemicEA	ET0266- 1_Minuartia_filifolia
Caryophyllace	Sagina	afroalpina	2.87 4.8 1.29 2.78	1.44 16 1.15 315 460 osA	5.8 2.57 10.2 0.68 0 0 osA	E, Ken, endemicEA	KN0944-
Family	Genus	Species	Country	Location			
---------------------	-------------	------------------	----------------------------------	-------------------			
Caryophyllace	Silene	Silene burchellii	Uganda, DR Congo, Ethiopia, Kenya, Uganda, Tanzania, Eritrea, Rep. South Sudan, Somaliland, South Africa, Angola, Rwanda, DR Congo, Tropical Arabia	widespread			
				KN0594-1_Silene_burchelli_var_burchellii	Eriobotrya		
Caryophyllace	Silene	flammulifolia	Ethiopia, Somalia, Yemen	endemicEA flammulifolia	Eriobotrya		
Caryophyllace	Silene	macrosolen	Ethiopia, Kenya, Tanzania, Rep. South Sudan,	endemicEA macrosolen			
			Cameroon				
Crassulaceae	Umbilicus	botryoides	Ethiopia, Kenya, Uganda, DR Congo, Djibouti, Eritrea, Rwanda, Somalia, Sudan, Cameroon	widespread botryoides			
Dipsacales	Scabiosa	columbaria	Ethiopia, Kenya, Tanzania, also Cameron, South Africa and Europe	widespread mbaria			
			Ethiopia, Kenya, North Africa, Europe				
Dipsacales	Valerianella	microcarpa	12.2 22.5 220 410	Mediterranean region	widespread microcarpa		
Gentianaceae	Sebaea	Sebaea sp	3.26 5.76 1.28 2.35 18.25 9.49	obsA			
Gentianaceae	Swertia1	Swertia	5.17 8.43 2.24 4.8 0.58 3.11 0.1 150 335	obsA			
Swertia abyssinica

0 0

Gentianaceae Swertia1

Swertia brownii

Country	Observations
Uganda, Tanzania	0 obsA
Also in South Sudan, Malawi, Cameroon, Equatorial Guinea, Eritrea and Zambia	3_Swertia_abyssinica

Gentianaceae Swertia1	Swertia brownii	6.47 9.85 3.46 4.8 0.45 4.1 0.07 750 0 obsA
DR Congo	endemicEA	
Ethiopia, Kenya, Uganda, Tanzania, Burundi, Rwanda, Uganda, Tanzania	UG2008-1_Swertia_brownii	

Swertia crassiuscula

Gentianaceae Swertia1	Swertia crassiuscula	17.3
Kenya, Tanzania, Uganda	260 420 obsA	

Gentianaceae Swertia1

Swertia crassiuscula ssp robusta

Gentianaceae Swertia1	Swertia crassiuscula ssp robusta	6.33 9.65 3.39 4.8 1.18 4.45 0.15 0 0 osA
Ethiopia; endemic to Mt Bale	360 405	
Bale		

Gentianaceae Swertia1

Swertia engleri var engleri

Gentianaceae Swertia1	Swertia engleri var engleri	18.6
Ethiopia; Simen Mts and Wello	335 450	
Simen		

Gentianaceae Swertia1

Swertia engleri var woodii

Gentianaceae Swertia1	Swertia engleri var woodii	13.99 3 9.82 9.87 0.82 4.79 0.13 0 0 osA
Ethiopia; Yemen, Saudi Arabia	245 335	
endemicEA		

Gentianaceae Swertia1

Swertia pumila

Gentianaceae Swertia1	Swertia pumila	3.93 6.53 1.78 2.63 0.58 3.11 0.1 0 0 obsA
Ethiopia; Simen Mts, Bale Mts	305 375	
Simen, Bale widely spread	4_Swertia_engleri var woodii	

Gentianaceae Swertia1

Swertia quartiniana

Gentianaceae Swertia1	Swertia quartiniana	5.17 8.43 2.24 4.8 0.9 4.19 0.19 900 285 obsA
Ethiopia, Kenya, Uganda, Tanzania, DR Congo, Zambia, Malawi, Mozambique, Zimbabwe	5_Swertia_quartiniana	

Country	Observations
Ethiopia; Yemen, Saudi Arabia	0

Gentianaceae Swertia1	Swertia quartiniana	5.17 8.43 2.24 4.8 0.9 4.19 0.19 900 285 obsA					
Ethiopia, Kenya, Uganda, Tanzania, DR Congo, Zambia, Malawi, Mozambique, Zimbabwe	5_Swertia_quartiniana						
Family	Genus	Species	Cameroon, Nigeria	Ethiopia, Kenya, Uganda, Tanzania, Burundi, Rwanda, DR Congo, Zimbabwe, Mozambique, Malawi	widespread	Catalogue Number	
--------------	-------------	---------------------	-------------------	--	-----------	------------------	
Gentianaceae	Swertia	usambarensis	6.33 9.65 3.39 5.8	0.45 5.89 0.07 0 0 obsA	Malawi	TZ0711-4568_Swertia_usambarensis	
Gentianaceae	Swertia	adolfi-friderici	3.32 7.09 1.9 2.57	2.25 8 0.27 0 0 obsA	Uganda, Rwanda, DR Congo, Burundi, Rwanda, Ethiopia, Kenya, Uganda, Tanzania, Burundi, Rwanda, DR Congo, Malawi	endemicEA	TZ0710-5_Swertia_adolfi-friderici
Gentianaceae	Swertia	klimandscharica	0.71 2.75 0 2.7	1.14 4 0.58 0 0 osA	Tanzania, Uganda, Rwanda, DR Congo, Ethiopia, Uganda, Tanzania, Malawi, South Sudan	endemicEA	UG2175-1_Swertia_kilimandscharica
Gentianaceae	Swertia	macrosepala	0.22 1.08 0 0.35	3.33 9.79 0.27 0 0 osA	Ethiopia, Uganda, Tanzania, Malawi, DR Congo, Ethiopia, Kenya, Tanzania, Malawi, South Sudan	endemicEA	EG0085-3_Swertia_macrosepala
Gentianaceae	Swertia	schimperi	4.09 7.09 1.9 2.57	1.14 4 0.58 0 0 osA	Kenya; endemic to Mt. Kenya.	MtKenya	KN0004-3_Swertia_subnivalis
Gentianaceae	Swertia	subnivalis	0.22 1.08 0 0.35	3.33 4 0.33 0 0 osA	Kenya, Uganda; endemic to Mt Elgon MtElgon	wide	
Gentianaceae	Swertia	uniflora	0.71 2.75 0 1.55	6.11 7 0.27 0 0 osA	Ethiopia, Kenya, Tanzania, widespread		
Poaceae	Aira	caryophyllea	1.67 3.57 0.39 1.26	15.5 5.19 6 0.27 0 0 osA	Ethiopia, Kenya, Tanzania, widespread	ET0680-x23_Swertia_volkensii	

Family	Genus	Species	Tanzania, Uganda, Rwanda, DR Congo, Ethiopia, Uganda, Tanzania, Malawi, South Sudan, Kenya, Uganda; endemic to Mt Elgon MtElgon	Kenya, Uganda; endemic to Mt. Kenya.	MtKenya	KN0095-4_Swertia_uniflora
Poaceae	Aira	caryophyllea	2.89 5.53 0.7 1.73 2.11 11.3 0.56 210 450 osA	1 0 0	Ethiopia, Kenya, Tanzania, widespread	ET0167-T_Aira_caryophyllea

24
In South Africa, Northern Europe and Asia. Introduced to many other parts of the world.

Poaceae	Species	Numbers	Description	Location	Code
Alopecurus	*baptarrhenius*	1.4		Ethiopia, Bale Mts, Kenya	ET0495-5
Anthoxanthum	*nivale*	2.1		Ethiopia, Kenya, Uganda, Tanzania	TZ0031-2
Avenella	*flexuosa*	11.29		Ethiopia, Kenya, Uganda, Tanzania	ET0831-3
Deschampsia	*cespitosa*	1.29		Ethiopia, Kenya, Uganda, Tanzania	ET0831-3
Helictotrichon	*elongatum*	1.43		Madagascar	TZ0097-1
Koeleria	*capensis*	1.15		Ethiopia, Kenya, Uganda, Tanzania,	

Also in South Africa, Northern Europe and Asia. Introduced to many other parts of the world.

Numbers	Description	Location	Code
270		Ethiopia, Bale Mts, Kenya	ET0495-5
240		Ethiopia, Kenya, Uganda, Tanzania	TZ0031-2
260		Ethiopia, Kenya, Uganda, Tanzania	ET0831-3
290		Ethiopia, Kenya, Uganda, Tanzania	ET0831-3
180		Madagascar	TZ0097-1

Also in Shewa Region.

Kenya, Uganda, DR Congo, Rwanda, Tanzania endemicEA

Kenya, Tanzania, DR Congo endemicEA

Ethiopia, Rwanda, Tanzania endemicEA

Kenya, Tanzania, DR Congo, Rwanda, Tanzania, Rep. South Sudan, Cameroonian endemicEA

Ethiopia, Kenya, Uganda, DR Congo, Tanzania endemicEA

Ethiopia, Kenya, Uganda, DR Congo, Tanzania, Rep. South Sudan, Cameroonian endemicEA

Ethiopia, Kenya, Uganda, Tanzania, Rep. South Sudan, Cameroonian endemicEA

Ethiopia, Kenya, Uganda, Tanzania, Rep. South Sudan, Cameroonian endemicEA

Ethiopia, Kenya, Uganda, Tanzania, Rep. South Sudan, Cameroonian endemicEA

Ethiopia, Kenya, Uganda, Tanzania, Rep. South Sudan, Cameroonian endemicEA

Also in Cameroon, widespread

Also in Madagascar, widespread

Also in Cameroon, widespread

Also in Cameroon, widespread
Family	Genus	Species	Latitude 1	Latitude 2	Latitude 3	Latitude 4	Latitude 5	Latitude 6	Latitude 7	Latitude 8	Latitude 9	Latitude 10	Latitude 11
Poaceae	Rytidosperma	subulata	1.43	2.61	0.28	0.75	0.77	2.97	0.07	300	430		
Plantaginacea	Veronica	abyssinica	3.11	5.03	1.54	1.37	0	0	osA	120	390		
Plantaginacea	Veronica	anagallis-aquatica	1.47	2.62	0.7	0.4	1.11	3.62	480	300			
Plantaginacea	Veronica	glandulosa	6.79	1	4.35	2.65	0.74	7.87	0.2	200	410		
Primulaceae	Anagallis	serpens	0.74	0.2	7.87	0	osA						
Primulaceae	Primula	verticillata	0.91	2.02	0.22	1.21	4.84	8.63	0.11	200	420		
Ranunculaceae	Anemone	thomsonii	3.48	5	0.6	0	osA						

Southern Africa
Ethiopia; Simen Mts, Bale Mts. Also in Northern Yemen. endemicEA

Ethiopia, Kenya, Uganda, Tanzania, Burundi, Cameroon, Malawi, Mozambique, Nigeria, Rwanda, Somalia, Rep. South Sudan, Zambia, DR Congo, Zimbabwe widespread

Ethiopia, Kenya, Uganda, Tanzania, also in Rwanda, Zambia, Zimbabwe and widespread in N America and Europe widespread

Ethiopia, Kenya, Uganda, DR Congo, Rwanda, Tanzania endemicEA

Uganda, Kenya, Tanzania, Rep. South Sudan, Zimbabwe, Somalia, Yemen endemicEA

Ethiopia, Kenya, Rep. South Sudan, Tanzania, Uganda, DR Congo
Genus	Species	Obs 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	
Ranunculaceae	Ranunculus_ noclade	2.44	4.12	0.89	6.76	2.75	9.01	0	0	0	0																	
	distrias																											
Ranunculaceae	Ranunculus_ noclade	3.74	5.93	1.86	8.67	3.75	0.04	0	0	0	0																	
	oreophytus																											
Ranunculaceae	Ranunculus_ noclade	2.1	4.29	1.6	5.17	0.56	4.29	0.11	0	0	0																	
	trichophyllus																											
Ranunculaceae	Ranunculus_ noclade	4.93	7.15	3.1	13.5	2.68	0.45	0	0	0	0																	
	volkensii																											
Ranunculaceae	Ranunculus_ Ranunculus																											
	aberdaricus																											
Ranunculaceae	Ranunculus_ Ranunculus																											
	multifidus																											
Ranunculaceae	Ranunculus_ Ranunculus																											
	cryptanthus																											
Ranunculaceae	Ranunculus_ Ranunculus																											
	oligocarpus																											
Ranunculaceae	Ranunculus_ Ranunculus																											

- *Ethiopia; Northern and central Ethiopia* Simen
- *Ethiopia, Kenya, Tanzania, Uganda,* Rwanda, Rep.
- *South Sudan, DR Congo*
- *Tanzania, Uganda, Rwanda, Rep.*
- *Drug Congo, Rwanda, Tanzania, Burundi*
- *Kenya, Uganda, Tanzania*
- *Ethiopia, Kenya, Uganda, Tanzania*
- *Tasmania, Europe to Asia, Australia and* Tasmanian
- *North America, through Europe to Asia, through* Australia and *Tasmania widespread*
- *Ethiopia, Kenya, Uganda, DR Congo, Rwanda, Tanzania, Burundi endemicEA*
- *Kenya, Uganda, Tanzania and widespread in tropical and south Africa, Madagascar and Arabia widespread*
- *Kenya, Uganda; endemic to Mt Elgon MtElgon*
- *Ethiopia, Kenya endemicEA*
- *Ethiopia, Kenya endemicEA*
- *Ethiopia, Kenya endemicEA*
- *Kenya, Uganda; endemic to Mt Elgon MtElgon*
- *Ethiopia, Simen endemicEA*
- *Ethiopia, Simen, Bale*

ET0130-1 Ranunculus distrias
TZ0472-5 Ranunculus oreophytus
ET0609-2 Ranunculus trichophyllus
TZ0069-1 Ranunculus volkensii
ET0557-2 Ranunculus aberdaricus
ET0449-2 Ranunculus oligocarpus

27
Family	Genus	Species	Obs 1	Obs 2	Obs 3	Obs 4	Obs 5	Obs 6	Coordinates	Notes
Ranunculacea	Ranunculus	simiensis	0	0	0	0	0	0	Mts, Bale Mts, Arisi	simiensis
	Ranunculus	stagnalis	0.44	1.43	0	0.79	0.63	8.91	Ethiopia, Kenya, Uganda, Tanzania,	KN0386-2_Ranunculus_stagnalis
	Ranunculus	stagnalis2	1.09	2.02	0.39	3.1	0.37	3.1	Ethiopia, Kenya, Uganda, Tanzania,	endemicEA_Ranunculus_stagnalis
	Ranunculus	tembensis	1.09	2.02	0.39	3.1	0.42	4.37	Ethiopia, Kenya, Uganda, Tanzania,	endemicEA_Ranunculus_tembensis
Violaceae	Viola	abyssinica	0.61	5.28	0.08	0	0	0	Ethiopia, Kenya, Rwanda, Rep. South Sudan, Tanzania, Zambia, Zimbabwe,	widespreadViola_abyssinica
Violaceae	Viola	eminii	0.32	4.96	0.04	0	0	0	DR Congo	endemicEA_Viola_eminii
Violaceae	Viola	nannae	0.32	4.96	0.04	0	0	0	DR Congo	endemicEA_Viola_nannae

28
Alignment dataset	Locus	No. of seq. in original dataset	No of seq. added from new material	No of seq. added from GenBank	Total no. of seq.	Total seq. length	Missing new samples
Seed plant wide	*rbcL*	22399	92	0	27982	682	0
	matK (incl. *trnK*)	27891	92	0	22489	4215	0
	concatenated				36197	4897	
Asteraceae	*trnLF*	29	17	61	107	890	0
	rbcL	29	17	15	55	1429	0
	ndhF	29	17	20	64	1718	0
	concatenated				90	4031	0
Brassicaceae	*trnLF*	55	4	37	96	1064	0
	rbcL	26	4	29	59	1153	0
	ndhF	95	4	22	121	2068	0
	nad4	97	0	0	97	1481	4
	matK	58	4	29	91	1045	0
	ITS	211	4	34	249	819	0
	chl	26	0	0	26	999	4
	adh	14	0	0	14	1986	4
	concatenated				54	7270	
Campanulaceae	*trnLF*	76	11	31	119	1347	0
	rbcL	67	11	27	106	1400	0
	ndhF	31	11	29	72	1234	0
	concatenated				118	3776	
Caryophyllaceae	ITS	63	10	58	132	766	0
Crassulaceae	*trnLF*	90	1	9	100	1168	0
	rps16	58	1	9	68	1052	0
	matK	89	1	9	99	1232	0
	ITS	322	1	9	332	1005	0
	concatenated				324	4440	
Dipsacales	ITS	120	2	13	122	743	0
	matK	126	2	20	128	1226	0

no chl, adh used for concatenation, samples with less than 4 loci were removed, alignment edited.
Family	Accession	Length	GC content	A content	T content	C content	G content	N content
Gentianaceae	psbAH	109	2	4	111	459	0	
	trnL	123	2	16	125	1028	0	
	concatenated	149	3448	0				
	trnLF	162	19	58	239	667	0	
	ITS	153	18	39	210	732	1	
	concatenated	181	1384					
Poaceae (dataset A)	rbcL	250	8	28	286	1486	0	
	ndhF	250	8	30	288	2451	0	
	matK	250	8	27	285	3321	0	
	concatenated	282	7442					
Plantaginaceae	ITS – Plantago	38	2	23	63	741	0	
Primulaceae	trnLF	13	2	9	24	1070	0	
	rps16	11	2	9	22	879	0	
	rpl16	13	2	8	22	1099	0	
	rbcL	13	2	10	25	1396	0	
	ndhF	9	2	5	16	1938	0	
	matK	13	1	8	23	1573	1	
	concatenated	20	7911					
Ranunculaceae	trnL-matK	237	7	42	286	2013	2	
	psbJ-petA	225	7	24	256	762	2	
	ITS	238	6	39	283	656	3	
	concatenated	249	3425					
Table S4. Species represented by more than one individual in the phylogenies of individual seed plant clades generated using BEAST2 and retrieved as monophyletic or non-monophyletic. PP = posterior probability.

Species retrieved as monophyletic	> 0.9 PP	< 0.9 PP
	Arabidopsis thaliana, Arabis alpina, Minuartia filifolia, Lobelia deckenii (excl. *L. d. bequaertii*, Silene burchellii)	*Lobelia telekii, Lobelia acrochila, Cineraria abyssinica*

Non-monophyletic

> 0.9 PP	Potentially paraphyletic species (nested species in parenthesis): *Veronica glandulosa* (*V. abyssinica*); *Lobelia aberdarica* (*L. bambuseti*); *Lobelia stuhlmannii* (*L. wollastonii*)
	Potentially polyphyletic species: *
	Ranunculus stagnalis; Lychnis abyssinica; Lobelia mildbraedii, Lobelia deckenii* (*Lobelia deckenii* spp. *bequaertii* clade with *L. stuhlmannii*, *L. wollastonii*); Swertia crassiuscula (Ethiopian sample together with *S. engleri*, distantly related to other *S. crassiuscula*)
< 0.9 PP	*Ranunculus trichophyllus; Veronica anagallis-aquatica; Lobelia rhynchopetalum* (*L. acrochilua*); *Ranunculus volkensii* (*R. ficariifolius, R. cheirophyllus*)

Table S5. BEAST2 age estimates of afroalpine clades containing min. two sampled species. Asterix indicates unsupported stem nodes.

family	clade	number of species	crown age	stem age
Asteraceae	*Dendrosenecio*	11	7.89 (2.07 - 16.77)	22.62 (15.18 - 30.73)
Asteraceae	*Cineraria*	2	2.58 (7.71 - 0.19)	3.54 (0.55 - 8.28)
Asteraceae	*Euryops*	6	6.34 (1.93 - 13.03)	14.61 (7.4 - 22.87)
Campanulaceae	Giant *Lobelia*	14	9.49 (5.01 - 15.17)	15.79 (9.63 - 22.98)
Campanulaceae	Herbal *Lobelia*	4	12.23 (6.03 - 20.05)	18.7 (10.37 - 28.99)
Caryophyllaceae	Lychnis	7	6.62 (4.33 - 9.4)	8.35 (9.4 - 5.56)
Gentianaceae	Swertia clade 1	9	13.99 (9.82 - 18.63)	19.02 (14.19 - 24.44)
Gentianaceae	Swertia clade 2	6	4.09 (1.9 - 7.09)	10.49 (5.08 - -
Plantaginaceae	Veronica	7	3.93 (2.2 - 6.14)	6.79 (4.35 - 10.01)
Ranunculaceae	*Ranunculus* clade 1	3	4 (2.06 - 6.13)	5.53 (3.83 - 7.58)
Ranunculaceae	*Ranunculus* clade 2	4	2.2 (1.13 - 3.47)	3.49 (2.31 - 4.8)
Table S6. Lineages estimated to be older than 10 Ma in at least one of the analyses (Table S2). Differentiated into being part of an afroalpine clade or not. Sorted according to families and then sorted according to the dating method and then alphabetically. Bold indicates taxa having across all available dating methods age estimates > 10Ma.

family	genus	taxon	number of species	individual seed plant clades – BEAST2	individual seed plant clades – treePL	seed plant-wide – treePL
Asteraceae	*Dendrosenecio*	*Dendrosenecio*	11	22.62	0.77	
Asteraceae	*Euryops*	*Euryops*	6	14.61	0.93	
Campanulaceae	*Lobelia2*	*Lobelia 2*	4	18.7	13.68	
Campanulaceae	*Lobelia1*	*Lobelia 1*	12	15.79	1.42	
Caryophyllaceae	*Lychnis*	*Lychnis*	7	8.35	3.35	
Gentianaceae	*Swertia1*	*Swertia 1*	11	19.02	2.94	
Gentianaceae	*Swertia2*	*Swertia 2*	7	10.49	8.82	
Plantaginaceae	*Veronica*	*Veronica*	2	6.79		
Brassicaceae	*Arabis*	*Arabis alpina*	1	19.09	6.14	3.81
Brassicaceae	*Thlaspi*	*Thlaspi alliaceum*	1	12.7	4.41	1.57
Brassicaceae	*Arabidopsis*	*Arabidopsis thaliana*	1	11.91	3.66	2.11
Caryophyllaceae	*Minuartia*	*Minuartia filifolia*	1	5.05	13.93	10.19
Crassulaceae	*Umbilicus*	*Umbilicus botryoides*	1	0.98	2.76	19.41
Dipsacales	*Valerianella*	*Valerianella microcarpa*	1	12.28	10.23	
Gentianaceae	*Sebaea*	*Sebaea sp*	1	3.26	2.35	18.25
Poaceae	*Avenella*	*Avenella flexuosa*	1	11.29	11.49	0.88
Table S7. Statistics for the different dating methods (Table S2). Abbreviations: ci – confidence intervals.

	individual seed plant clades – BEAST2	individual seed plant clades – treePL	seed plant-wide – treePL											
	stem age	ci max	ci min	stem age	ci min	ci max	stem age	ci min	ci max					
min	0.15	0.82	0	0.33	0.03	0	0.03	0	0.20					
max	19.09	25.14	13.05	14.02	19.41	7.87	65.78							
median	2.44	4.85	0.70	2.57	0.84	0.12	7.81							
mean	3.37	6.00	1.68	3.81	2.12	0.53	10.28							
number of species	91	93	93											
<=5	73	47	82	79	84	90	31							
< 10	84	81	90	84	88	91	60							
>= 10	7	10	1	9	5	0	31							
>=15	1	7	0	0	2	0	14							
Lineage	Constraint	Linked substitution rates	Linked trees	Linked clocks	Starting tree	Substitution rate model	Prior settings	Min	Max					
---------------------	------------	---------------------------	--------------	---------------	---------------	------------------------	----------------	-----	-----					
Asteraceae														
Barnadesioideae	incl. All samples	no	yes	yes	yes	GTR+G+I	uniform	73	101					
Barnadesia, Dasyphyllum, Acicarpa, Barnadesia, Boopis, Dasyphyllum, Famatinanthus, Schlechtendalia excl. Tropaeolum minus, Moringa oleifera, Carica papaya, Batis maritima, Reseda lutea, Capparis flexuosa, Cleome viscosa	Exponential	1.5	Exponential	1.5	72.1	72.1	100							
Campanulaceae	excl.换													
mrca	incl. Brighamia insignis, Clermontia kakeana, Cyanea angustifolia, Cyanea koolauensis, Delissea undulata, Lobelia hypoleuca, Lobelia yuccoides, Trematolobelia macrostachys	no	yes	yes	no	GTR+G+I	normal	89.5	87.9					
Campanula asperuloides, Campanula latifolia, Campanula trachelium, Legousia hybrida excl. Corrigiola andina, Corrigiola litoralis, Paronychia argentea, Paronychia lindheimeri, Gymnocarpos rotundifolius, Gymnocarpos decander, Herniaria glabra, Philippiella patagonica, Drymara cordata, Pycnophillum bryoides, Cerdia, Polycarpion tetraphyllum, Illecebrum verticillatum	Exponential	5.33	Exponential	5.33	0	29.8	infinite							
Alsinoideae	Cardionema ramosissimum, Loeflingia hispanica, Dichanethus plocamoides, Pteranthus dichotomus, Scopulophilia parryi, Sphaerocoma aucheri, Spargularia rubra, Telephium imperati	only 1	only 1	only 1	no	GTR+G+I	lognormal	34	34					
Crassulaceae	excl. Aphanopetalum, Glischlorcyon, Gonocarpus, Haloragis, Laurembergia, Meionectes, Myriophyllum, Penthorum,	yes	yes	yes	no	GTR+G+I	normal	94	7.6					
mrca	all													
Crassulaceae														
Family	Genus	Loci	GenDist	Model	GenDist	GenDist	GenDist	GenDist	GenDist					
------------------------	------------------------------	--------------------	-----------------------	---------	---------------	---------------	---------------	---------------	---------------					
Dipsacales^1^	Macaronesia	incl. Aeonium, Greenovia, Monanthes	mrca	all	no	yes	yes	yes	GTR+G+I	uniform	0	21	set	21
Gentianaceae	Gentianaceae		all	no	yes	yes	yes	GTR+G+I	Normal	7	3	40.4	68.8	
	Enmenopteris	sectGentiana	incl. G.cruciata, G. decumbens					lognormal	1.0/1.	45	0	45	65	
	Lisanthus	crownPoa	incl. Lisanthus					lognormal	1.0/1.	1	5	5	25	
	Poampleae	excl. Anomochloa	yes	yes	yes	yes	yes	GTR+G+I	uniform	90	y	90	no set	
	BEP+PA	excl. Anomochloa, Leptaspis, Pharus, Puelia, Streptochaeta						lognormal	1.0/1.	55	0	55	75	
	Distichlis	incl. Bouteloua, Distichlis						lognormal	1.0/1.	14	0	14	34	
	Aragoa	incl. Aragoa	yes	yes	yes	no		GTR+G+I	uniform	0	3.3	0	3.3	
	PlatArag	incl. Plantago and Aragoa						Exponential	1.0/1.	39.9	19.4	19.4	24	
	Primulaceae	mrca	all	yes	yes	yes	no	GTR+G+I	normal	9	11.49	9	58.9	
		ingroup	excl. Androsace, Anagallis, Soldanella					lognormal	1.0/1.	39.9	7	18.9	39	
	Ranunculaceae	excl. Anemone quinquefolia, Isopyrum		Only 1	locus	Only 1	locus	only no	GTR+G+I	normal	46.6	14.6	48.2	
		excl. Anemone quinquefolia, Arcteranthis, Beckwithia andersonii, Callianthemoides semiverticillatus, Coptidium lapponicum, Coptidium pallasii, Cyrtorhynch ranunculina, Ficaria fascicularis, Ficaria verna, Halerpestes, Hamadryas Isopyrum, Oxygraphis polypetala, Myosurus Peltocalathos baurii						only no	GTR+G+I	normal	0	0.914	0	2.56
		gen_dist	incl. Ranunculus carpaticola, Ranunculus notabilis					Exponential	1.0/1.	1	23	23	not set	

^1^ Number of taxa: 1
island incl. *R. caprarum, R. peduncularis*	uniform	not	set	2
	0.1	2	set	2

\(^1\)based on Bell\&Donoghue 2012
Table S9. Comparison of our age estimates to previous Bayesian estimates. Abbreviations: CI – confidence intervals.

lineage	node	Individual clades – BEAST2	compared to publication (references see main text)				
		median	min 95% CI	max 95% CI	median	min 95% CI	max 95% CI
Asteraceae	Asteraceae crown	84.5	76.08	94.08	80.5	75.41	86.99
	Senecioneae crown	28.66	26.21	35.87	24.59	17.76	31.45
	Root - Moringaceae/Brassicace						
Brassicaceae	ae split	89.46	87.47	91.4	72	47.9	90.5
	Brassicaceae crown	47.19	35.82	58.35	37.6	24.2	49.4
Campanulaceae	N2	47.58	32.84	64.37	45.5	30.9	59.2
	N3	42.78	30.07	57.59	39.7	27.4	53.1
	N4	26.04	16.03	37.38	24.5	15.1	36.6
	N5	19.53	12.44	27.65	20.8	12.4	30.5
	N7	33.55	24.06	43.89	36.7	25.1	49.5
	N8	31.3	19.96	39.75	32.8	22	45.4
	N9	29.48	22.22	41.61	29.6	18.9	41.3
Caryophyllaceae	Faccinia stem	10.37	6.77	14.38	9.41	5.02	13.93
	Faccinia crown	3.93	2.16	6.58	3.3	1.67	5.18
	Stellaria-Faccinia	27.01	21.36	32.22	25.46		
Crassulaceae	root	101.38	87	115.78	107.54	93.9	121.43
	excl. Crassula and						
	Calanchoe	60.16	46.32	74.82	65.92	53.39	79.53
Gentianaceae	Pirie et al. 2015 does not report ages incl. root constraint						
Poaceae	Poaceae crown	96.18	90	109.39			
	BEP+PACCMAP	61.79	55.15	72.16	57	51.75	
	Danthonooideae	27.47	20.27	36.3	30	21.38	
Plantaginaceae	stem Veronica	14.69	9.81	20.99	19.91	15.47	25.09
	crown Veronica	10.82	7.11	15.69	16.13	12.46	20.59
Primulaceae	Primula crown	11.15	7.78	15.58			results not shown
Ranunculaceae	Ranunculus stem	20	16.13	23.45	21.25	14.13	28.43
	Ranunculus crown	17.74	14.01	21.19	18.11		
Figure S1. BEAST2 crown ages from the seed plant wide dating analysis indicating the start of lineage radiations. Numbers depict number of species sampled in clades.
Figure S2. Species accumulation over time in the afroalpine region based on historical lineage diversity estimates and relative branching times obtained from the time-calibrated phylogenies. These plots differ from standard lineage through time plots in that species accumulation in a region results from colonization events in addition to regional diversification. Row 1: Number of colonization/diversification events over time. The black dotted line marks a constant rate model and the black dashed line an exponential model. Row 2: Change in number of colonization/diversification events over time calculated as a difference quotient (see text). The red line shows the maximum difference of change in a constant model. Row 3: number of colonization/ diversification events per 0.5-million-year intervals.
Figure S3. Median age estimates of afroalpine species based on the three different dating approaches.
Figure S4. Individual seed plant clades stem age estimates (BEAST2) of all afroalpine species, ordered by median age.
Figure S5. treePL stem ages from the seed plant wide dating analysis, showing median and 95% confidence interval.
Figure S6. BEAST2 stem ages from the seed plant wide dating analysis and geographic distribution of species. Distribution of species has been assigned to subregions, species found in more than one subregion but being restricted to eastern Africa are coded as ‘afrotemperate endemic’ and if they occur beyond these limits as ‘widespread’. See text for details on distribution coding.
Figure S7. BEAST2 stem ages from the seed plant wide dating analysis. The species are categorized as ‘strictly afroalpine (lower altitudinal limit above 3800 m), ‘strictly afroalpine + below’ and ‘non-strictly afroalpine’ (upper altitudinal limit below 3800 m), median age estimates are 7.16 (n=2), 2.45 Ma (n=32) and 2.21 Ma (n=57) respectively.
Figure S8. Species diversification (excluding colonization events) over time in the afroalpine region based on historical lineage diversity estimates and relative branching times obtained from the time-calibrated phylogenies. These plots differ from standard lineage through time plots in that species accumulation in a region results from colonization events in addition to regional diversification. Row 1: Number of diversification events over time. The black dotted line marks a constant rate model and the black dashed line an exponential model. Row 2: Change in number of diversification events over time calculated as a difference quotient (see text). The red line shows the maximum difference of change in a constant model. Row 3: number of diversification events per 0.5-million-year intervals. A. Results for the three different dating methods are shown in A) and B). For A) age estimates were subsampled to 50% 200 times; B) shows the actual data.
Legends for further SI Appendices:
SI Appendix S2: Figures of dated phylogenies of individual seed-plant clades.
SI References

1. B. Bushnell, “BBMap: A Fast, Accurate, Splice-Aware Aligner” (Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States), 2014) (December 2, 2020).
2. J.-J. Jin, et al., GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biology 21, 241 (2020).
3. Ł. Banasiak, et al., Dispersal patterns in space and time: a case study of Apiaceae subfamily Apioidae. Journal of Biogeography 40, 1324–1335 (2013).
4. C. D. Bell, Phylogenetic placement and biogeography of the North American species of Valerianella (Valerianaceae: Dipsacales) based on chloroplast and nuclear DNA. Molecular Phylogenetics and Evolution 44, 929–941 (2007).
5. C. D. Bell, A. Kutschker, M. T. K. Arroyo, Phylogeny and diversification of Valerianaceae (Dipsacales) in the southern Andes. Molecular Phylogenetics and Evolution 63, 724–737 (2012).
6. Y. Bouchenak-Khelladi, G. A. Verboom, V. Savolainen, T. R. Hodkinson, Biogeography of the grasses (Poaceae): a phylogenetic approach to reveal evolutionary history in geographical space and geological time. Bot J Linn Soc 162, 543–557 (2010).
7. T. L. P. Couvreur, et al., Molecular Phylogenetics, Temporal Diversification, and Principles of Evolution in the Mustard Family (Brassicaceae). Mol Biol Evol 27, 55–71 (2010).
8. M. S. Dillenberger, J. W. Kadereit, Simultaneous speciation in the European high mountain flowering plant genus Facchinia (Minuartia s.l., Caryophyllaceae) revealed by genotyping-by-sequencing. Molecular Phylogenetics and Evolution 112, 23–35 (2017).
9. K. Emadzade, E. Hörandl, Northern Hemisphere origin, transeooeanic dispersal, and diversification of Ranunculeae DC. (Ranunculaceae) in the Cenozoic. Journal of Biogeography 38, 517–530 (2011).
10. T. F. E. Messerschmid, J. T. Klein, G. Kadereit, J. W. Kadereit, Linnaeus’s folly – phylogeny, evolution and classification of Sedum (Crassulaceae) and Crassulaceae subfamily Sempervivoideae. TAXON 69, 892–926 (2020).
11. M. D. Pirie, G. Litsios, D. U. Bellstedt, N. Salamin, J. Kissling, Back to Gondwanaland: can ancient vicariance explain (some) Indian Ocean disjunct plant distributions? Biology Letters 11, 20150086 (2015).
12. G. Ren, E. Conti, N. Salamin, Phylogeny and biogeography of Primula sect. Armerina: implications for plant evolution under climate change and the uplift of the Qinghai-Tibet Plateau. BMC Evolutionary Biology 15, 161 (2015).
13. J. M. Saarela, et al., A 250 plastome phylogeny of the grass family (Poaceae): topological support under different data partitions. PeerJ 6, e4299 (2018).
14. B. Surina, S. Pfanzelt, H. J. R. Einzmann, D. C. Albach, Bridging the Alps and the Middle East: Evolution, phylogeny and systematics of the genus Wulfenia (Plantaginaceae). TAXON 63, 843–858 (2014).
15. M. Kandziora, J. W. Kadereit, B. Gehrke, Dual colonization of the Palaearctic from different regions in the Afrotropics by Senecio. J. Biogeogr. 44, 147–157 (2017).
16. A. Antonelli, Have giant lobelias evolved several times independently? Life form shifts and historical biogeography of the cosmopolitan and highly diverse subfamily Lobelioideae (Campanulaceae). BMC biology 7, 82 (2009).
17. S. Janssens, et al., A large-scale species level dated angiosperm phylogeny for evolutionary and ecological analyses. Biodiversity Data Journal 8, e39677 (2020).
18. M. Kandziora, PhylUp: phylogenetic alignment building with custom taxon sampling. bioRxiv, 2020.12.21.394551 (2020).
19. C. Camacho, et al., BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2009).
20. R. Bouckaert, et al., BEAST 2: A Software Platform for Bayesian Evolutionary Analysis. PLOS
21. S. A. Smith, B. C. O’Meara, treePL: divergence time estimation using penalized likelihood for large phylogenies. *Bioinformatics* **28**, 2689–2690 (2012).

22. S. Magallón, S. Gómez-Acevedo, L. L. Sánchez-Reyes, T. Hernández-Hernández, A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. *New Phytologist* **207**, 437–453 (2015).

23. A. M. Kozlov, D. Darriba, T. Flouri, B. Morel, A. Stamatakis, RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. *Bioinformatics* **35**, 4453–4455 (2019).

24. A. Stamatakis, RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. *Bioinformatics* **30**, 1312–1313 (2014).

25. M. A. Miller, W. Pfeiffer, T. Schwartz, Creating the CIPRES Science Gateway for inference of large phylogenetic trees. *Proceedings of the Gateway Computing Environments Workshop (GCE)*, New Orleans, 1–8 (2010).

26. B. Gehrke, H. P. Linder, Species richness, endemism and species composition in the tropical Afroalpine flora. *Alpine Botany* **124**, 165–177 (2014).

27. J. A. McGuire, *et al.*, Molecular Phylogenetics and the Diversification of Hummingbirds. *Current Biology* **24**, 910–916 (2014).

28. M. van der Merwe, *et al.*, Assemblage accumulation curves: A framework for resolving species accumulation in biological communities using DNA sequences. *Methods in Ecology and Evolution* **10**, 971–981 (2019).

29. E. Jones, T. Oliphant, P. Peterson, others, SciPy: Open source scientific tools for Python (2001).
Appendix 2 of The enigmatic tropical alpine flora on the African sky islands is young, disturbed, and unsaturated by M. Kandzia, B. Gehrke, M. Popp, A. Gizaw, C. Brochmann, M.D. Pirie

Asteraceae
Appendix 2 of The enigmatic tropical alpine flora on the African sky islands is young, disturbed, and unsaturated by M. Kandziora, B. Gehrke, M. Popp, A. Gizaw, C. Brochmann, M.D. Pirie
Campanulaceae

BEAST2 result
treePL result

Appendix 2 of The enigmatic tropical alpine flora on the African sky islands is young, disturbed, and unsaturated by M. Kandziora, B. Gehrke, M. Popp, A. Gizaw, C. Brochmann, M.D. Pirie
Caryophyllaceae
Crassulaceae

BEAST2 result

treePL result

Appendix 2 of The enigmatic tropical alpine flora on the African sky islands is young, disturbed, and unsaturated by M. Kandziora, B. Gehrke, M. Popp, A. Gizaw, C. Brochmann, M.D. Pirie
Appendix 2 of The enigmatic tropical alpine flora on the African sky islands is young, disturbed, and unsaturated by M. Kandziora, B. Gehrke, M. Popp, A. Gizaw, C. Brochmann, M.D. Pirie
Gentinaceae

BEAST2 result

treePL result
Appendix 2 of The enigmatic tropical alpine flora on the African sky islands is young, disturbed, and unsaturated by M. Kandziora, B. Gehrke, M. Popp, A. Gizaw, C. Brochmann, M.D. Pirie
Poaceae

BEAST2 result

treePL result

Appendix 2 of The enigmatic tropical alpine flora on the African sky islands is young, disturbed, and unsaturated by M. Kandziora, B. Gehrke, M. Popp, A. Gizaw, C. Brochmann, M.D. Pirie
Appendix 2 of The enigmatic tropical alpine flora on the African sky islands is young, disturbed, and unsaturated by M. Kandziora, B. Gehrke, M. Popp, A. Gizaw, C. Brochmann, M.D. Pirie.

Primulaceae

BEAST2 result

treePL result
Ranunculaceae

BEAST2 result

treePL result

Appendix 2 of The enigmatic tropical alpine flora on the African sky islands is young, disturbed, and unsaturated by M. Kandziora, B. Gehrke, M. Popp, A. Gizaw, C. Brochmann, M.D. Pirie