MORPHISMS BETWEEN TWO CONSTRUCTIONS OF WITT VECTORS OF NON-COMMUTATIVE RINGS

SUPRIYA PISOLKAR

Abstract. Let A be any unital associative, possibly non-commutative ring and let p be a prime number. Let $E(A)$ be the ring of p-typical Witt vectors as constructed by Cuntz and Deninger in $[1]$ and $W(A)$ be the abelian group constructed by Hesselholt in $[2]$ and $[3]$. In $[4]$ it was proved that if $p = 2$ and A is non-commutative unital torsion free ring then there is no surjective continuous group homomorphism from $W(A) \to HH_0(E(A)) := E(A)/[E(A), E(A)]$ which commutes with the Verschiebung operator and the Teichmüller map. In this paper we generalise this result to all primes p and simplify the arguments used for $p = 2$. We also prove that if A is a non-commutative unital ring then there is no continuous map of sets $HH_0(E(A)) \to W(A)$ which commutes with the ghost maps.

1. Introduction

Let p be a prime number. Let A be any unital associative, non-commutative ring. In $[4]$ we compared two constructions, one of a ring $E(A)$ by Cuntz and Deninger, given in $[1]$ and the other of an abelian group $W(A)$ given by Hesselholt in $[2]$ (see also $[3]$). Both $E(A)$ and $W(A)$ are topological groups and are equipped with the Verschiebung operator V and the Teichmüller map $\langle \cdot \rangle$. Moreover, $W(A)$ and $E(A)$ are isomorphic to the classical construction of ring of p-typical Witt vectors when A is commutative. It is natural to see how these constructions are related when A is non-commutative.

L. Hesselholt asked whether for an associative ring A, $W(A)$ is isomorphic to $HH_0(E(A))$? Although this question is still open, it was proved in $[4$, Theorem 1.2$]$ that for $p = 2$ and $A = \mathbb{Z}\{X,Y\}$ there is no continuous surjective group homomorphism from $W(A) \to HH_0(E(A))$ which commutes with V and $\langle \cdot \rangle$. One of the main results of this paper generalises this result to any prime number p.

Theorem 1.1. Let $A := \mathbb{Z}\{X,Y\}$ and p be any prime number. Then there is no continuous surjective group homomorphism from $W(A) \to HH_0(E(A))$ which is compatible with V and $\langle \cdot \rangle$.

It is also natural to see whether there is a map in the opposite direction giving relation between $HH_0(E(A))$ and $W(A)$. The next result of this paper will show that even this is not possible under some additional hypothesis in the case when p is any prime number and $A = \mathbb{Z}\{X,Y\}$.

Theorem 1.2. Let p be any prime number. Let $A = \mathbb{Z}\{X,Y\}$. Then there is no map of sets from $HH_0(E(A)) \to W(A)$ which commutes with the ghost maps $\eta : HH_0(E(A)) \xrightarrow{\eta} \left(\frac{A}{[A,A]}\right)^{\mathbb{N}_0}$ and $W(A) \xrightarrow{\omega} \left(\frac{A}{[A,A]}\right)^{\mathbb{N}_0}$.

Acknowledgement: The author is indebted to the anonymous referee for providing many insightful comments. This work is supported by the SERB-MATRICS grant MTR/2018/000346.

2. Preliminaries

In this section we will briefly recall the constructions $W(A)$ from $[2]$, $[3]$ and of $E(A)$ from $[1]$.

(1) Hesselholt’s construction of $W(A)$:
We will stick to the hypothesis on A as in [3]. Suppose A is any unital associative (need not be commutative) ring A. Let p be a prime number and $\mathbb{N}_0 := \mathbb{N} \cup \{0\}$.

Consider the map (called as ghost map)
\[
\omega : A^{N_0} \rightarrow \left(\frac{A}{[A,A]} \right)^{N_0}
\]
\[
\omega(a_0, a_1, a_2, \ldots) := \left(\omega_0(a_0), \omega_1(a_0, a_1), \omega_2(a_0, a_1, a_2), \ldots \right)
\]
where ω_i's are ghost polynomials defined by
\[
\omega_i(a_0, \ldots, a_i) := a_0 p^i + pa_1 p^{i-1} + p^2 a_2 p^{i-2} + \cdots + p^i a_i.
\]

ω is merely a map of sets and not a homomorphism of groups. For every integer $n \in \mathbb{N}_0$, we also have truncated versions of the above map (denoted again by ω).

Hesselholt then inductively defines groups $W_n(A)$ (see [3]) such that the map ω factor through
\[
A^n \xrightarrow{q_n} W_n(A) \xrightarrow{\varpi} \left(\frac{A}{[A,A]} \right)^n
\]
and the following are satisfied

1. $W_1(A) = \frac{A}{[A,A]}$.
2. q_n is surjective map of sets.
3. ϖ is an additive homomorphism and is injective if $\frac{A}{[A,A]}$ is p-torsion free.

Define $W(A) := \lim_{\longleftarrow n} W_n(A)$ and the topology on $W(A)$ is the inverse limit topology. Clearly one also has a factorization of $A^{N_0} \xrightarrow{\omega} \left(\frac{A}{[A,A]} \right)^{N_0}$ as
\[
A^{N_0} \xrightarrow{q} W(A) \xrightarrow{\varpi} \left(\frac{A}{[A,A]} \right)^{N_0}
\]
where q is always surjective and where ϖ is injective if $\frac{A}{[A,A]}$ has no p-torsion.

We have the Verschiebung operator
\[
V : W(A) \rightarrow W(A)
\]
and the Teichmüller map
\[
\langle \rangle : A \rightarrow W(A)
\]
which satisfy
\[
V(a_0, a_1, \cdots) = (0, a_0, a_1, \cdots)
\]
and
\[
\langle a \rangle = (a, 0, 0, \ldots)
\]
One can show that V and $\langle \rangle$ are well defined and that V is a additive group homomorphism. Similarly for $n \in \mathbb{N}_0$, we have truncated versions (denoted by the same notation).

Ghost map: The group homomorphism $\varpi : W(A) \rightarrow \left(\frac{A}{[A,A]} \right)^{N_0}$ given by
\[
\varpi(a_0, a_1, a_2, \ldots) := \left(\omega_0(a_0), \omega_1(a_0, a_1), \omega_2(a_0, a_1, a_2), \ldots \right)
\]
will also be called as the ghost map and ϖ is injective if $\frac{A}{[A,A]}$ is p-torsion free (See [3], page 56).

(2) Cuntz and Deninger’s construction of the ring $E(A)$:
Consider the ring $A^{\mathbb{N}_0}$ with the product topology where A has the discrete topology.

(i) Let $V : A^{\mathbb{N}_0} \to A^{\mathbb{N}_0}$ be the map defined by $V(a_0, a_1, ...) := p(0, a_0, a_1, ...)$.

(ii) For an element $a \in A$, define $\langle a \rangle \in A^{\mathbb{N}_0}$ by $\langle a \rangle := (a, ap^2, ap^3, ...)$.

(iii) Let $X(A) \subset A^{\mathbb{N}_0}$ be the closed subgroup generated by
$$\left\{ V^m(\langle a_1 \rangle \cdots \langle a_r \rangle) \mid m \in \mathbb{N}_0, r \in \mathbb{N}, a_i \in A \forall i \right\}.$$

Similarly, if $I \subset A$ is an ideal, we let $X(I)$ denote the closed subgroup generated by
$$\left\{ V^m(\langle a_1 \rangle \cdots \langle a_r \rangle) \mid m \in \mathbb{N}_0, r \in \mathbb{N}, a_i \in I \forall i \right\}.$$

For $n \in \mathbb{N}_0$, we also have the truncated version $X_n(A), n \in \mathbb{N}$ (See Preliminaries in [1]). In fact $X(A) = \varprojlim_{n} X_n(A)$ as topological rings.

Let ZA be the monoid algebra of the multiplicative monoid underlying A. Thus the elements of ZA are formal sums of the form $\sum_{r \geq 0} n_r [r]$ with almost all $n_r = 0$. We have a natural epimorphism of rings from $ZA \to A$ and we let I denote its kernel. One now defines

$$E(A) := \frac{X(ZA)}{X(I)} \quad \text{and} \quad E_n(A) := \frac{X_n(ZA)}{X_n(I)}.$$

Note that $E(A)$ is a Hausdorff topological ring equipped with the (multiplicative) Teichmüller map $\langle \rangle$ and the continuous additive operator V give by

$$\langle \rangle : A \to E(A) \quad \langle a \rangle := ([a], [a]^p, [a]^{p^2}, ...) \mod X(I).$$

$$V : E(A) \to E(A) \quad V(a_0, a_1, ..., a_n) := p(0, a_0, a_1, ..., a_{n-1})$$

The above construction gives a functor E from the category of associative rings to the category of associative rings which is compatible with the map $\langle \rangle$ and the additive homomorphism V.

Ghost maps: Let $X(A) \xrightarrow{\gamma} \left(\frac{A}{[A,A]} \right)^{\mathbb{N}_0}$ be the group homomorphism which is the composition

$$X(A) \hookrightarrow A^{\mathbb{N}_0} \to \left(\frac{A}{[A,A]} \right)^{\mathbb{N}_0}.$$

Let $E(A) \xrightarrow{\eta} \left(\frac{A}{[A,A]} \right)^{\mathbb{N}_0}$ denote the composition

$$E(A) \xrightarrow{\pi} X(A) \xrightarrow{\gamma} \left(\frac{A}{[A,A]} \right)^{\mathbb{N}_0}.$$

Let $HH_0(E(A)) := E(A)/[E(A), E(A)]$ where $[E(A), E(A)]$ is the closure of the commutator subgroup $[E(A), E(A)]$. The subgroup $[E(A), E(A)]$ is not an ideal of $E(A)$. We then have the following induced maps.

1. the Teichmüller map $\langle \rangle : A \to HH_0(E(A))$.
2. Additive group homomorphism $V : HH_0(E(A)) \to HH_0(E(A))$
3. The group homomorphisms which are analogous to the ghost homomorphism $W(A) \xrightarrow{\pi} \left(\frac{A}{[A,A]} \right)^{\mathbb{N}_0}$.

(a) $HH_0(X(A)) \xrightarrow{\pi} \left(\frac{A}{[A,A]} \right)^{\mathbb{N}_0}$
(b) $HH_0(E(A)) \xrightarrow{\pi} \left(\frac{A}{[A,A]} \right)^{\mathbb{N}_0}$.

Let A be any associative, possibly non-unital ring A, p be a prime number and $\mathbb{N}_0 := \mathbb{N} \cup \{0\}$. We will refer to [1, Preliminaries and Page 20].
Remark 2.1. Note that if A is commutative p-torsion free ring then the ghost map $\overline{\eta}$ is a injective group homomorphism (See [1, Corollary 2.10]). If A is not commutative then $\overline{\eta}$ and $\overline{\eta}$ need not be injective even if $\frac{A}{[A,A]}$ is p-torsion free (See [4, Theorem 4.2]).

Remark 2.2 (Commutative case). Let A be a unital commutative ring. In this case the two constructions above are identified with the classical construction of the ring of p-typical Witt vectors. The discussion after [1, Corollary 2.10] establishes an isomorphism $W(A) \to E(A)$, natural in A, given by $\psi(r) = \sum_n V_n(r)$. This isomorphism preserves V and $\langle \rangle$.

The following is an alternative formulation of Theorem 1.1 as suggested by the referee. We have two functors $A \mapsto W(A)$ and $A \mapsto HH_0(E(A))$ on the category of unital associative rings. Restricted to the subcategory of commutative rings, these functors are naturally isomorphic (see Remark 2.2).

Theorem 2.3. There is no natural map from $W(A) \to HH_0(E(A))$ which is a continuous surjective group homomorphism and which induces the natural isomorphism in the commutative case.

Proof. Let $\phi_A : W(A) \to HH_0(E(A))$ be any natural map which induces the given natural isomorphism in the commutative case. By (1.1), it is is enough to show that ϕ_A preserves V and $\langle \rangle$. For an element $a \in A$ consider the map from $\mathbb{Z}[T] \xrightarrow{\bar{f}} A$ which sends T to a. This gives us the following commutative diagram

$$
\begin{array}{ccc}
W(\mathbb{Z}[T]) & \xrightarrow{W(f)} & W(A) \\
\downarrow{\phi_{\mathbb{Z}[T]}} & & \downarrow{\phi_A} \\
E(\mathbb{Z}[T]) & = & HH_0(E(\mathbb{Z}[T])) \\
\end{array}
$$

That $\phi_A(\langle a \rangle) = \langle a \rangle$ follows from the fact that the other three maps in the diagram are compatible with $\langle \rangle$. To check compatibility of ϕ_A with V it is enough to check that for all elements $a \in A$ and $n \in \mathbb{N}_0$

$$
\phi_A(V^n(\langle a \rangle)) = V^n(\langle a \rangle).
$$

This also follows from the above diagram. \square

It is not clear to us if a similar reformulation for Theorem 1.2, analogous to (2.3) can be proved.

3. **Proof of the Theorem 1.1 and 1.2**

To prove the Theorem 1.1 we will observe that if there exists a continuous map $W(A) \to HH_0(E(A))$ which commutes with V and $\langle \rangle$ then it has to commute with the ghost maps $\overline{\eta}$ and $\overline{\omega}$. The argument given here is implicit in the proof of the Theorem 1.3 [4]. For the convenience it is given below.

Lemma 3.1. If there exists a continuous map $\Psi : W(A) \to HH_0(E(A))$ which commutes with V and $\langle \rangle$ then the following diagram must commute

$$
\begin{array}{ccc}
HH_0(E(A)) & \xrightarrow{\overline{\eta}} & (\frac{A}{[A,A]})^{N_0} \\
\downarrow{\Psi} & & \downarrow{\Psi} \\
W(A) & \xrightarrow{\overline{\omega}} & (\frac{A}{[A,A]})^{N_0} \\
\end{array}
$$

Proof. Suppose there exists a continuous group homomorphism $W(A) \to HH_0(E(A))$ satisfying the above mentioned properties. Composing with the natural homomorphism $HH_0(E(A)) \to HH_0(X(A))$ we get a map

$$
\Phi : W(A) \to HH_0(X(A)).
$$
MORPHISMS BETWEEN TWO CONSTRUCTIONS OF WITT VECTORS OF NON-COMMUTATIVE RINGS. 5

To prove the result of the lemma it is thus enough to show that if Φ exists then it has to commute with the ghost map $\bar{\omega}$ and $\bar{\eta}$.

By following Hesselholt’s construction in [3], we know that the map $f : A^N_0 \to A^N_0$ given by

$$a := (a_0, a_1, \cdots) \mapsto (w_0(a), w_1(a), \cdots)$$

factors thorough $W(A)$ and we get the following, where q is a surjective map.

$$A^N_0 \xrightarrow{q} W(A) \xrightarrow{\bar{\omega}} (A_{[A/A]}^N)^{N_0}$$

Consider the set map $\Omega : A^N_0 \to A^N_0$ defined by

$$\Omega(a) = (\omega_0(a), \omega_1(a), \cdots)$$

where $\omega_n(a) = a_0^n + p \cdot a_1^{p^{n-1}} + \cdots + p^n a_n$ are the Witt polynomials. The Lemma 4.1 in [4] proves that the image of Ω is contained in $X(A)$. The fact that both Ω and $\bar{\omega} \circ q$ are given by the same Witt polynomials, we have the following commutative diagram.

$$X(A) \xrightarrow{\pi} HH_0(X(A)) \xrightarrow{\bar{\omega}} (A_{[A/A]}^N)^{N_0}$$

Suppose there exists a continuous map $\Phi : W(A) \to HH_0(X(A))$. By Lemma 4.2 in [4], we know that following diagram is commutative.

$$X(A) \xrightarrow{\pi} HH_0(X(A))$$

As q is a surjective map and $\bar{\eta} \circ \pi \circ \Omega = \bar{\omega} \circ q$ from the first diagram, this commutative square can be extended to the following commutative diagram.

$$X(A) \xrightarrow{\pi} HH_0(X(A)) \xrightarrow{\bar{\omega}} (A_{[A/A]}^N)^{N_0}$$

This proves that a continuous map $\Phi : W(A) \to HH_0(X(A))$ which commutes with V and $\langle \cdot \rangle$ has to commute with the ghost map $\bar{\omega}$ and $\bar{\eta}$. Thus it will commute with the ghost maps $\bar{\omega}$ and $\bar{\eta}$. □

Proof of Theorem 1.1. We will show that there does not exist a continuous surjective map $\Phi : W(A) \to HH_0(E(A))$ which commutes with V and $\langle \cdot \rangle$. As explained in Lemma 3.1, it is enough to show that there does not exist a continuos surjective map $W(A) \to HH_0(X(A))$ which commutes with the ghost maps.

Let p be any prime number and $A = \mathbb{Z}\{X,Y\}$. Let $\langle X \rangle \langle Y \rangle \in HH_0(X(A))$ and let $\alpha := (\alpha_1, \alpha_2, \cdots) \in W(A)$ such that $\Phi(\alpha) = \langle X \rangle \langle Y \rangle$.
\[\overline{\gamma}(\langle X \rangle \langle Y \rangle) = \overline{\varphi}(\alpha) \quad \cdots \cdots \quad \text{(By Lemma 3.1)} \]

\[= (\overline{\alpha_1}, \overline{\alpha_1}^p + \overline{p\alpha_2}, \overline{\alpha_1}^{p^2} + \overline{p^2\alpha_2} + \overline{p^3\alpha_3}, \cdots) \]

\[= (\overline{\alpha_1}, \overline{\alpha_1}^p, \cdots) \pmod {pA} \]

This gives us,

\[\overline{XY} = \overline{\alpha_1} \pmod {pA}, \quad \overline{XP} = \overline{\alpha_1}^p = \overline{XY}^p \pmod {pA}, \cdots \]

In the next Lemma, we will show that the equality \(\overline{XY}^p = \overline{XY}^p \pmod {pA} \) is not possible. \(\square \)

Lemma 3.2. Suppose \(p \) is any prime number and \(A = \mathbb{Z}\{X,Y\} \). Let \(\overline{A} := \mathbb{Z}/p\mathbb{Z}\{X,Y\} \). Then \(X^pY^p \neq (XY)^p \pmod {\overline{A}, \overline{A}} \)

Proof. It is enough to find a homomorphism \(f \) from \(\overline{A} \) to another ring \(B \) such that \(f(X)^pf(Y)^p \neq f(XY)^p \pmod {\overline{B}, \overline{B}} \).

Let \(B := M_2(\mathbb{F}_p) \). Consider a homomorphism

\[f : \overline{A} \to M_2(\mathbb{F}_p) \]

\[f(X) = R := \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \]

\[f(Y) = S := \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \]

If \(X^pY^p - (XY)^p \in [\overline{A}, \overline{A}] \) then \(R^pS^p - (RS)^p \in [M_2(\mathbb{F}_p), M_2(\mathbb{F}_p)] \). This will imply that

\[Tr(R^pS^p - (RS)^p) = 0. \]

Now \(R^p = S^p = 0 \) and \(Tr(R^pS^p - (RS)^p) = -1 \). This implies that \(X^pY^p - (XY)^p \notin [\overline{A}, \overline{A}] \).

\(\square \)

Remark 3.3. The above proof of the claim that \(X^pY^p - (XY)^p \notin [\overline{A}, \overline{A}] \) simplifies the arguments of the main Theorem 2.1 of [4] for \(p = 2 \) and generalises it to any prime number \(p \).

We will prove below the Theorem 1.2 by using the Lemma 3.2.

Proof of Theorem 1.2. Suppose \(p \) is any prime number, \(A = \mathbb{Z}\{X,Y\} \) and \(\overline{A} := \mathbb{Z}/p\mathbb{Z}\{X,Y\} \). Suppose there exists a map \(\rho : HH_0(E(A)) \to W(A) \) which commutes with the ghost maps i.e. \(\overline{\varphi} \circ \rho = \overline{\eta} \).

Consider the element \(\rho(\langle X \rangle \langle Y \rangle) = (\alpha_1, \alpha_2, \cdots) \in W(A) \). Thus we have the equality,

\[\overline{\varphi} \circ \rho(\langle X \rangle \langle Y \rangle) = \overline{\eta}(\langle X \rangle \langle Y \rangle) \]

\[\overline{\varphi}(\rho(\langle X \rangle \langle Y \rangle)) = (\alpha_1, \alpha_1^p + p\alpha_2, \alpha_1^{p^2} + p^2\alpha_2 + p^3\alpha_3, \cdots) \pmod {\overline{A}, \overline{A}} \]

\[= (\alpha_1, \alpha_1^p, \alpha_1^{p^2}, \cdots) \pmod {\overline{A}, \overline{A}} \]

We also have,

\[\eta(\langle X \rangle \langle Y \rangle) = (XY, X^pY^p, X^{p^2}Y^{p^2}, \cdots) \pmod {\overline{A}, \overline{A}} \]

\[= (XY, X^pY^p, X^{p^2}Y^{p^2}, \cdots) \pmod {\overline{A}, \overline{A}} \]
Thus, $\alpha p^1 = (XY)^p = X^p Y^p$. This is not possible by the Lemma 3.2. Thus, there does not exist any map $\psi : HH_0(E(A)) \to W(A)$ which commutes with the ghost maps.

\[\square\]

References

[1] J. Cuntz and C. Deninger; Witt vector rings and the relative de Rham Witt complex. With an appendix by Umberto Zannier. J. Algebra 440 (2015), 545–593. 1, 3, 4

[2] Hesselholt, Lars; Witt vectors of non-commutative rings and topological cyclic homology. Acta Math. 178 (1997), no. 1, 109–141. 1

[3] Hesselholt, Lars; Correction to: “Witt vectors of non-commutative rings and topological cyclic homology”. Acta Math. 195 (2005), 55–60. 1, 2, 5

[4] Hogadi, Amit; Pisolkar, Supriya; On the comparison of two constructions of Witt vectors of non-commutative rings. J. Algebra 506 (2018), 379–396. 1, 4, 5, 6

Indian Institute of Science, Education and Research (IISER), Homi Bhabha Road, Pashan, Pune - 411008, India

E-mail address: supriya@iiserpune.ac.in