On the classical R-matrix of the degenerate Calogero-Moser models

L. Fehér and B.G. Pusztai

Department of Theoretical Physics, József Attila University
Tisza Lajos krt 84-86, H-6720 Szeged, Hungary
e-mail: lfeher@sol.cc.u-szeged.hu

Abstract

The most general momentum independent dynamical r-matrices are described for the standard Lax representation of the degenerate Calogero-Moser models based on gl_n and those r-matrices whose dynamical dependence can be gauged away are selected. In the rational case, a non-dynamical r-matrix resulting from gauge transformation is given explicitly as an antisymmetric solution of the classical Yang-Baxter equation that belongs to the Frobenius subalgebra of gl_n consisting of the matrices with vanishing last row.

Talk by L. F. at the 8th Colloquium on Quantum Groups and Integrable Systems, Prague, June 1999.
1 Introduction

The Calogero-Moser type many particle systems [1, 2, 3] have recently been the subject of intense studies due to their fascinating mathematics and applications ranging from solid state physics to Seiberg-Witten theory. The equations of motion of these classical mechanical systems admit Lax representations,

\[\dot{L} = [L, M], \]

as is necessary for integrability. More precisely, Liouville integrability also requires [4] that the Poisson brackets of the Lax matrix must be expressible in the r-matrix form,

\[\{L_1, L_2\} = \{L^\mu, L^\nu\} T_\mu \otimes T_\nu = [R_{12}, L_1] - [R_{21}, L_2], \]

where \(R_{12} = R^{\mu\nu} T_\mu \otimes T_\nu \) with some constant matrices \(T_\mu \).

The specification of Calogero-Moser type models typically involves a root system and a potential function depending on the inter-particle ‘distance’. The potential is given either by the Weierstrass \(P \)-function or one of its (hyperbolic, trigonometric or rational) degenerations. A Lax representation of the Calogero-Moser models based on the root systems of the classical Lie algebras was found by Olshanetsky and Perelomov [5] using symmetric spaces. Recently new Lax representations for these systems as well as their exceptional Lie algebraic analogues and twisted versions have been constructed [6, 7].

The classical r-matrix has been explicitly determined in the literature in some cases of the Olshanetsky-Perelomov Lax representation with degenerate potentials [8, 9] and for Krichever’s [10] spectral parameter dependent Lax matrix in the standard \(gl_n \) case [11, 12]. The r-matrices turned out to be dynamical.

Since the present understanding of most integrable systems involves constant r-matrices, it is natural to ask if the Lax representation of the Calogero-Moser models can be chosen in such a way to exhibit non-dynamical r-matrices. The obvious way to search for new Lax representations with this property is to perform gauge transformations on the usual Lax representations and their dynamical r-matrices. Our aim here is to implement this program in the simplest case: the standard Calogero-Moser models belonging to \(gl_n \) defined by degenerate potential functions. A more complete version of our study containing the proofs and a comparison with the existing results on the elliptic case [13] will be published elsewhere.

2 The Avan-Talon r-matrix in its general form

The standard Calogero-Moser-Sutherland models are defined by the Hamiltonian

\[h = \frac{1}{2} \sum_{k=1}^{n} p_k^2 + \sum_{k<l} v(q_k - q_l), \]

where, in the degenerate cases, \(v \) is given by

\[v(\xi) = \xi^{-2} \quad \text{or} \quad v(\xi) = a^2 \sinh^{-2}(a\xi) \quad \text{or} \quad v(\xi) = a^2 \sin^{-2}(a\xi). \]
One has the canonical Poisson brackets \(\{p_k, q_l\} = \delta_{k,l} \), the coordinates are restricted to a domain in \(\mathbb{R}^n \) where \(v(q_k - q_l) < \infty \), and \(a \) is a real parameter.

Let us fix the following notation for elements of the Lie algebra \(gl_n \):

\[
H_k := e_{kk}, \quad E_\alpha := e_{kl}, \quad H_\alpha := (e_{kk} - e_{ll}) \quad \text{for} \quad \alpha = \lambda_k - \lambda_l \in \Phi. \tag{5}
\]

Here \(\Phi = \{(\lambda_k - \lambda_l)k \neq l\} \) is the set of roots of \(gl_n \), \(\lambda_k \) operates on a diagonal matrix, \(H = \text{diag}(H_{1,1}, \ldots, H_{n,n}) \) as \(\lambda_k(H) = H_{k,k} \), and \(e_{kl} \) is the \(n \times n \) elementary matrix whose \(kl \)-entry is 1. Moreover, we denote the standard Cartan subalgebra of \(sl_n \subset gl_n \) as \(\mathcal{H}_n \), and put \(p = \sum_{k=1}^n p_k H_k, \ q = \sum_{k=1}^n q_k H_k, \ 1_n = \sum_{k=1}^n H_k \).

From the list of known Lax representations we consider the original one \([1, 2]\) for which \(L \) is the \(gl_n \)-valued function defined by

\[
L(q, p) = p + i \sum_{\alpha \in \Phi} w_\alpha(q) E_\alpha, \tag{6}
\]

where \(w_\alpha(q) := w(\alpha(q)) \) and \(w(\xi) \) is chosen, respectively, as

\[
w(\xi) = \xi^{-1} \quad \text{or} \quad w(\xi) = a \sinh^{-1}(a \xi) \quad \text{or} \quad w(\xi) = a \sin^{-1}(a \xi). \tag{7}
\]

As an \(n \times n \) matrix \(L_{k,l} = p_k \delta_{k,l} + i(1 - \delta_{k,l})w(q_k - q_l) \), but \(L \) can also be used in any other representation of \(gl_n \). The r-matrix corresponding to this \(L \) was studied by Avan and Talon \([3]\), who found that it is necessarily dynamical, and may be chosen so as to depend on the coordinates \(q_k \) only. We next describe a slight generalization of their result.

Proposition 1. The most general \(gl_n \otimes gl_n \)-valued r-matrix that satisfies \([3]\) with the Lax matrix in \([4]\) and depends only on \(q \) is given by

\[
R(q) = \sum_{\alpha \in \Phi} \frac{w'_\alpha(q)}{w_\alpha(q)} E_\alpha \otimes E_{-\alpha} + \frac{1}{2} \sum_{\alpha \in \Phi} w_\alpha(q)(C_\alpha(q) - K_\alpha) \otimes E_\alpha + 1_n \otimes Q(q), \tag{8}
\]

where the \(C_\alpha(q) \) are \(\mathcal{H}_n \)-valued functions subject to the conditions

\[
C_{-\alpha}(q) = -C_\alpha(q), \quad \beta(C_\alpha(q)) = \alpha(C_\beta(q)) \quad \forall \alpha, \beta \in \Phi \tag{9}
\]

and \(Q(q) \) is an arbitrary \(gl_n \)-valued function.

Remarks. The functions \(C_\alpha \) can be given arbitrarily for the simple roots, and are then uniquely determined for the other roots by \([5]\). The r-matrix found by Avan and Talon \([3]\) is recovered from \([8]\) with \(C_\alpha \equiv 0 \); and we refer to \(R(q) \) in \([8]\) as the Avan-Talon r-matrix in its general form. If desirable, one may put \(Q(q) = \frac{1}{n} \sum_{\alpha \in \Phi} w_\alpha(q) E_\alpha \) to ensure that \(R(q) \in sl_n \otimes sl_n \).

Proposition 1 can be proved by a careful calculation along the lines of \([12]\).

3 Is \(R(q) \) gauge equivalent to a constant r-matrix?

A gauge transformation of a given Lax representation \([1]\) has the form

\[
L \rightarrow L' = gLg^{-1}, \quad M \rightarrow M' = gMg^{-1} - \frac{dg}{dt}g^{-1}, \tag{10}
\]
where g is an invertible matrix function on the phase space. If L satisfies (2), then L' will have similar Poisson brackets with a transformed r-matrix R'. The question now is whether one can remove the q-dependence of any of the r-matrices in (8) by a gauge transformation of L in (6).

It is natural to assume this gauge transformation to be p-independent, i.e. defined by some function $g : q \mapsto g(q) \in GL_n$, in which case

$$R'(q) = (g(q) \otimes g(q)) \left(R(q) + \sum_{k=1}^{n} A_k(q) \otimes H_k \right) (g(q) \otimes g(q))^{-1}$$

(11)

with

$$A_k(q) := -g^{-1}(q)\partial_q g(q), \quad \partial_q := \frac{\partial}{\partial q_k}. \quad (12)$$

We are looking for a function $g(q)$ for which $\partial_k R' = 0$, which is equivalent to

$$\partial_k (R + \sum_{l=1}^{n} A_l \otimes H_l) + [R + \sum_{l=1}^{n} A_l \otimes H_l, A_k \otimes 1_n + 1_n \otimes A_k] = 0. \quad (13)$$

By using (12), which means that

$$\partial_k A_l - \partial_l A_k + [A_l, A_k] = 0, \quad (14)$$

it is useful to rewrite (13) as

$$\partial_k R + \sum_l \partial_l A_k \otimes H_l + [R, A_k \otimes 1_n + 1_n \otimes A_k] + \sum_l A_l \otimes [H_l, A_k] = 0. \quad (15)$$

We first wish to solve the last two equations for A_k, which we now parameterize as

$$A_k(q) = \sum_{l=1}^{n} \Psi_k^l(q) H_l + \sum_{\alpha \in \Phi} B_k^\alpha(q) E_\alpha. \quad (16)$$

After finding A_k we will have to determine $g(q)$ and the resulting constant r-matrix.

By substituting (8) and (16), from the $E_\alpha \otimes H_k$ components of (15) we get that

$$B_k^\alpha(q) = w_\alpha(q)b_k^\alpha, \quad b_k^\alpha : \text{some constants.} \quad (17)$$

The $E_\alpha \otimes E_\beta$ components of (15) also do not contain the Ψ_k^l, and we obtain the following result by detailed inspection.

Proposition 2. The $E_\alpha \otimes E_\beta$ components of (13) admit solution for the constants b_k^α only for those two families of $R(q)$ in (8) for which the C_α are chosen according to

$$\begin{cases}
\text{case I:} & C_\alpha = -H_\alpha \quad \forall \alpha \in \Phi, \\
\text{or} & \text{case II:} \quad C_\alpha = H_\alpha \quad \forall \alpha \in \Phi.
\end{cases} \quad (18)$$

For $\alpha = \lambda_m - \lambda_l$, the b_k^α are respectively given by

$$b_k^{(\lambda_m - \lambda_l)} = \delta_{km} + \Omega \quad \text{in case I,} \quad \text{and} \quad b_k^{(\lambda_m - \lambda_l)} = \delta_{kl} + \Omega \quad \text{in case II}, \quad (19)$$

3
where Ω is an arbitrary constant.

Now we present two solutions of the full equations (14), (15) making simplifying choices for the arbitrary function $Q(q)$ in (8) and the arbitrary constant Ω in (19).

Proposition 3. Consider $R(q)$ in (8) with $Q = 0$ and the C_a in (18). Then a solution of eqs. (14), (15) for A_k in (16) is provided by b^α_k in (19) with $\Omega = 0$, and Ψ^I_k defined by

$$
\Psi^I_k = 0, \quad \Psi^I_k(q) = -\frac{w'(q_l - q_k)}{w(q_l - q_k)} \quad \text{for } k \neq l \quad \text{in case I},
$$

$$
\Psi^I_k = 0, \quad \Psi^I_k(q) = \frac{w'(q_l - q_k)}{w(q_l - q_k)} \quad \text{for } k \neq l \quad \text{in case II}.
$$

Remark. The symmetric part of $R'(q)$ is easily checked to vanish for either of the two gauge transformations determined by Proposition 3. Recall that for an antisymmetric constant R' the classical Yang-Baxter equation and its modified version are sufficient conditions for the Jacobi identity $\{\{L'_1, L'_2\}, L'_3\} + \text{cycl} = 0$.

4 The constant r-matrix in the rational case

In general, if A_k is given so that (14) holds then the gauge transformation $g(q)$ can be determined from the differential equation in (12) up to an arbitrary constant. We here describe the result in the rational case. The gauge transformed r-matrix found below is an antisymmetric, constant solution of the classical Yang-Baxter equation,

$$
[R'_{12}, R'_{13}] + [R'_{12}, R'_{23}] + [R'_{13}, R'_{23}] = 0.
$$

Let us consider case I of the preceding propositions. Put w_{kl} for w_α with $\alpha = (\lambda_k - \lambda_l)$, and introduce the notation

$$
I^n_k := \{1, \ldots, n\} \setminus \{k\} \quad \forall k = 1, \ldots, n.
$$

Then $R(q)$ and $A_k(q)$ are the $n \times n$ matrices:

$$
R = \sum_{1 \leq k \neq l \leq n} \left(\frac{w'_l}{w_{kl}} e_{kl} \otimes e_{lk} - w_{kl} e_{kk} \otimes e_{kl} \right), \quad A_k = \sum_{l \in I^n_k} \left(w_{kl} e_{kl} - \frac{w'_l}{w_{lk}} e_{ll} \right).
$$

Define now an $n \times n$ matrix $\varphi(q)$ as follows: $\varphi_{nk}(q) := 1$ for any $k = 1, \ldots, n$ and

$$
\varphi_{jk}(q) := \sum_{P(P \subset I^n_k, |P| = n-j)} \left(\prod_{l \in P} q_l \right) \quad \forall k, \quad 1 \leq j \leq n - 1.
$$
Here $|P|$ denotes the number of the elements in the summation subset $P \subset I^n_k$. Note that $\varphi(q)$ is invertible, since
\[
\det[\varphi(q)] = \prod_{1 \leq j < k \leq n} (q_k - q_j) \neq 0.
\]
Our result now is

Theorem 4. A gauge transformation $g(q)$ for which $\partial_k g(q) = -g(q)A_k(q)$ with A_k in (24) is given in the rational case by $g(q) = \varphi(q)$, where $\varphi(q)$ is defined above. The corresponding gauge transform of $R(q)$ in (24) is the following antisymmetric solution of (22):
\[
R' = \sum_{(a,b,c,d) \in S} (e_{ab} \otimes e_{cd} - e_{cd} \otimes e_{ab}),
\]
(27)
\[
S = \{(a, b, c, d)|a, b, c, d \in \mathbb{Z}, a + c + 1 = b + d, 1 \leq b \leq a < n, b \leq c < n, 1 \leq d \leq n\}.
\]

The above constant r-matrix is actually very well-known. It already appears as an example at the end of [14], where it has also been identified in terms of a non-degenerate 2-coboundary of a Frobenius subalgebra of gl_n. We briefly recall this interpretation next.

Let us define the subalgebra $\mathcal{F}_n \subset gl_n$ as
\[
\mathcal{F}_n = \text{span}\{T_a \mid T_a = e_{kl} \text{ for } 1 \leq k \leq n-1, 1 \leq l \leq n\}.
\]
(28)
That is, \mathcal{F}_n consists of the $n \times n$ matrices having zeros in their last row. It is clear that $R' \in \mathcal{F}_n \wedge \mathcal{F}_n$, i.e., with the basis T_a of \mathcal{F}_n one can write
\[
R' = \sum_{a,b} \mathcal{M}_{a,b}(T_a \wedge T_b).
\]
(29)
It is then easy to verify that the matrix $\mathcal{M}_{a,b}$, whose size is $\dim(\mathcal{F}_n) = n(n-1)$, is invertible, and its inverse is given by
\[
\mathcal{M}_{a,b}^{-1} = \Lambda_n([T_a, T_b]),
\]
(30)
where Λ_n is the linear functional on \mathcal{F}_n defined by
\[
\Lambda_n(T) := \text{tr} (J_n T) \quad \forall T \in \mathcal{F}_n \quad \text{with} \quad J_n := \sum_{k=1}^{n-1} e_{k+1,k}.
\]
(31)
This realization of R' means that it indeed belongs to the Frobenius subalgebra $\mathcal{F}_n \subset gl_n$, and the corresponding inverse is the non-degenerate 2-coboundary obtained from the functional Λ_n in (31).

It is interesting to notice that J_n in (31) is a principal nilpotent element of gl_n. This fact could perhaps be related to a possible interpretation of R' as a ‘boundary solution’ of (22) in the sense of [13], which may in turn be related to the degeneration of the hyperbolic/trigonometric Calogero-Moser models into the rational ones. In the future, we hope to report on this question as well as on the possible relationship of R' in (27) to Belavin’s elliptic r-matrix, which occurs
for the elliptic Calogero-Moser models according to [13]. The results in [10, 17, 18] concerning non-dynamical R-matrices for quantized Ruijsenaars models may also be relevant to answer these questions.

Acknowledgments. L.F. wishes to thank A. Stolin for a useful discussion. This work has been supported in part by the Hungarian Ministry of Education under FKFP 0596/1999 and by the National Science Fund (OTKA) under T025120.

References

[1] F. Calogero, Lett. Nuovo Cim. 13 (1975) 411.
[2] J. Moser, Adv. Math. 16 (1975) 197.
[3] A.M. Perelomov, Integrable Systems of Classical Mechanics and Lie Algebras, Vol. 1., Birkhäuser Verlag, Basel, 1990; and references therein.
[4] O. Babelon and C.-M. Viallet, Phys. Lett. B 237 (1990) 411.
[5] M.A. Olshanetsky and A.M. Perelomov, Invent. Math. 37 (1976) 93.
[6] E. D’Hoker and D.H. Phong, Nucl. Phys. B 530 (1998) 537.
[7] A.J. Bordner, E. Corrigan and R. Sasaki, Prog. Theor. Phys. 100 (1998) 1107.
[8] J. Avan and M. Talon, Phys. Lett. B 303 (1993) 33.
[9] J. Avan, O. Babelon and M. Talon, Alg. and Anal. 6 (1995) 255.
[10] I. Krichever, Funct. Anal. Appl. 14 (1980) 282.
[11] E.K. Sklyanin, Alg. and Anal. 6 (1994) 227.
[12] H.W. Braden and T. Suzuki, Lett. Math. Phys. 30 (1994) 147.
[13] Wen-Li Yang and Bo-Yu Hou, The nondynamical r-matrix structure for the elliptic A_{n-1} Calogero-Moser model, q-alg/9711010.
[14] A.A. Belavin and V.G. Drinfeld, Funct. Anal. Appl. 16 (1982) 159.
[15] M. Gerstenhaber and A. Giaquinto, Lett. Math. Phys. 40 (1997) 337.
[16] K. Hasegawa, Ruijsenaars’ commuting difference operators as commuting transfer matrices, q-alg/9512029.
[17] A. Antonov, K. Hasegawa and A. Zabrodin, Nucl. Phys. B 503 (1997) 747.
[18] G.E. Arutyunov and S.A. Frolov, Commun. Math. Phys. 191 (1998) 15; G.E. Arutyunov, L.O. Chekhov and S.A. Frolov, Commun. Math. Phys. 192 (1998) 405.

6