Omega-3 phospholipids and obesity-associated NAFLD: Potential mechanisms and therapeutic perspectives

Marko Mitrovic | Gabriella Sistilli | Olga Horakova | Martin Rossmeisl

Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic

Correspondence
Martin Rossmeisl, Laboratory of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic.
Email: martin.rossmeisl@fgu.cas.cz

Funding information
Grantová Agentura České Republiky, Grant/Award Number: 17-11027S; H2020 Marie Skłodowska-Curie Actions, Grant/Award Number: 722619

Abstract
Prevalence of non-alcoholic fatty liver disease (NAFLD) increases in line with obesity and type 2 diabetes, and there is no approved drug therapy. Polyunsaturated fatty acids of n-3 series (omega-3) are known for their hypolipidaemic and anti-inflammatory effects. Existing clinical trials suggest varying effectiveness of triacylglycerol- or ethyl ester-bound omega-3 in the treatment of NAFLD, without affecting advanced stages such as non-alcoholic steatohepatitis. Preclinical studies suggest that the lipid class used to supplement omega-3 may determine the extent and nature of their effects on metabolism. Phospholipids of marine origin represent an alternative source of omega-3. The aim of this review is to summarise the available evidence on the use of omega-3 phospholipids, primarily in obesity-related NAFLD, and to outline perspectives of their use in the prevention/treatment of NAFLD. A PubMed literature search was conducted in May 2021. In total, 1088 articles were identified, but based on selection criteria, 38 original papers were included in the review. Selected articles describing the potential mechanisms of action of omega-3 phospholipids have also been included. Preclinical evidence clearly indicates that omega-3 phospholipids have strong antisteatotic effects in the liver, which are stronger compared to omega-3 administered as triacylglycerols. Multiple mechanisms are likely involved in the overall antisteatotic effects, involving not only the liver but also adipose tissue and the gut. Robust preclinical evidence for strong antisteatotic effects of omega-3 phospholipids in the liver should be confirmed in clinical trials. Further research is needed on the possible effects of omega-3 phospholipids on advanced NAFLD.

KEYWORDS
krill oil, marine phospholipids, n-3 polyunsaturated fatty acids, non-alcoholic fatty liver disease, obesity

1 | INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) affects 25% of the world's population and it is predicted to become the main indication for liver transplantation by 2030. NAFLD represents a spectrum of conditions ranging from increased intrahepatic accumulation of triacylglycerols (TAGs), that is fatty liver aka hepatic steatosis, to non-alcoholic...
steatohepatitis (NASH), a state of hepatocellular inflammation and ballooning with possible collagen deposition, which can progress further to fibrosis, cirrhosis and hepatocellular carcinoma. It is estimated that 10%-30% of patients with steatosis develop NASH and 20%-30% of these subjects then develop cirrhosis. Although hepatic steatosis can also occur in lean people, the development of NAFLD is strongly associated with obesity, insulin resistance and their metabolic sequelae (i.e. metabolic syndrome), as well as type 2 diabetes. Hepatic steatosis and NASH in extremely obese subjects may be present in up to 85% and 40% of cases, respectively, and the presence of metabolic syndrome and/or type 2 diabetes is associated with a potentially progressive, severe liver disease. Due to its high prevalence, NAFLD has become a major health problem that currently has no approved pharmacotherapy, and lifestyle modifications and weight reduction are the main tools for treating the disease.

Polysaturated fatty acids (FAs) of n-3 series (omega-3) are characterised by the presence of a double bond between the third and fourth carbon atom, with the methyl terminal carbon counting as carbon number one. Long-chain omega-3 such as eicosapentaenoic acid (EPA; 20:5n-3), docosapentaenoic acid (DPA; 22:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) are found in marine fish oils and are known for their anti-inflammatory and hypolipidaemic effects. In this context, EPA and DHA supplementation may also be effective in the treatment of human NAFLD, especially when it comes to hepatic steatosis (recently reviewed). However, both primary studies and meta-analyses confirm low efficacy of omega-3 towards more advanced stages of NAFLD, such as NASH and/or fibrosis. The effectiveness of omega-3 supplementation in NAFLD may depend on omega-3 dose, EPA/DHA ratio, duration of treatment and patient-specific factors, that is age, baseline liver fat or the presence of comorbidities. The lipid class used to supplement omega-3 could also play an important role. Thus, in addition to TAG- or ethyl ester-bound omega-3, phospholipid (PL)-bound EPA and DHA from marine sources have recently become the subject of many, mostly preclinical, studies. This review aims to summarise preclinical and clinical evidence regarding the use and efficacy of omega-3 PLs primarily in obesity-related NAFLD and to discuss potential mechanisms of action and therapeutic perspectives.

2 | PHOSPHOLIPID CLASSES AND SOURCES OF OMEGA-3 PHOSPHOLIPIDS

Omega-3 are naturally esterified mainly in TAGs and PLs, or present in the free form. In contrast to TAGs, PLs have only two FAs esterified to a glycerol backbone and a hydrophilic ‘head’ containing a phosphate group, which can be further modified with molecules such as choline, ethanolamine, serine, glycerol or inositol. Glycerophospholipids, representing the most common class of PLs, can be divided into subgroups based on the type of modification of the head group in the PL molecule. For example, phosphatidylcholine (PC) is the most common type of PLs in various marine sources.

3 | THE EFFECTS OF OMEGA-3 PHOSPHOLIPIDS ON NAFLD AND RELATED METABOLIC PHENOTYPES: OVERVIEW OF STUDIES

PubMed was searched for existing animal and human studies that examined the effects of various forms of omega-3 PLs primarily on obesity-related NAFLD and/or metabolic parameters. See Figure 1 for a flow chart showing keywords and selection criteria. A total of 590 animal studies and 498 human studies were found. Due to the lack of studies investigating the effects of omega-3 PLs on advanced NAFLD, the main emphasis was on hepatic steatosis (animal studies) or overweight/obesity-related metabolic disorders (human studies). Thus, based on the selection criteria, only 26 and 12 of the original papers were included in Table 1 (animal studies) and Table 2 (human studies), respectively. Selected papers are commented below in this section.

3.1 | Animal studies

Most current models based on genetic or dietary manipulation fail to mimic the complex human features of NASH. Because
hepatic steatosis, the first stage of NAFLD, is associated with overnutrition and obesity, rodent models with a high susceptibility to an obesogenic diet are most commonly used in preclinical studies. A review of animal studies examining the effects of krill-based products on various phenotypes including obesity, inflammation or cardiovascular function was published in 2015, but provided only minimal information on NAFLD. In the current work, we focus primarily on NAFLD and related phenotypes in animals (Table 1), categorising studies according to whether they used EPA- or DHA-rich PLs or krill oil/powder as a source of omega-3 PLs. Since studies using krill products predominate, they are discussed separately.

3.1.1 | The effects on simple steatosis

A reduction in total lipid content in the liver was reported in 21 animal studies involving the use of omega-3 PLs regardless of the source and EPA and DHA content of PLs, the experimental model and the type of diet. Dietary supplementation with EPA-enriched PLs, as opposed to DHA-enriched PLs, also resulted in reduced plasma TAG levels in various mouse models. Dietary supplementation with DHA-rich PLs for one week reduced liver TAG content in Balb/c mice fed a low-fat diet, but not when fed a high-fat diet (HFD). When EPA- and DHA-rich PLs were directly compared in rats with NAFLD induced by 1% orotic acid, both reduced liver lipids, with EPA-PL showing a greater effect. Herring-derived omega-3 PLs administered to HFD-fed C57BL/6 mice reduced liver TAG content whilst lowering plasma TAG and cholesterol levels and inducing adiponectin. However, most studies investigating the effects of omega-3 PLs have used krill oil or powder. Krill powder decreased TAGs in both liver and plasma of tumour necrosis factor α (TNFα)-humanised mice fed HFD, which are otherwise characterised by adverse changes in lipid metabolism. Krill oil supplementation reduced hepatic TAG content whilst decreasing de novo lipogenesis (DNL) in HFD-fed mice and rats. Studies in HFD-fed C57BL/6 mice showed that krill oil reduced hepatic lipids in a dose-dependent manner. This lipid-lowering effect was not seen in mice fed a low-fat diet and in one study using HFD, despite reduced hepatic expression of genes involved in DNL.

3.1.2 | The effects on advanced stages of NAFLD: NASH and fibrosis

Krill powder reduced hepatic levels of proinflammatory cytokines (Interleukin-2, TNFα) in TNFα-humanised mice fed HFD. In mice with thermoneutral housing fed a HFD for 24 weeks, krill oil supplementation reduced exacerbated hepatic steatosis whilst decreasing plasma alanine transaminase (ALT) and aspartate transaminase (AST) levels. In experiments in rats with orotic acid-induced NAFLD, supplementation with EPA- or DHA-rich PLs reduced plasma AST and
TABLE 1 Effects of omega-3 PLs on NAFLD-related parameters in preclinical studies

Name of concentrate	EPA/DHA dose	Target	Type of study	Results (NAFLD)	Other results	Reference
Animal studies						
EPA-containing PLs						
EPA-PL	EPA: 2.03	Male C57BL/6J mice	4 weeks	↓ Liver TAG (44.1%)	↓ Body weight	Liu et al²⁶
	DHA: 0.08	HHHF vs. HHF + EPA-PL		↓ Liver TC (10.3%)	↓ Glucose AUC (OGTT)	
	% of FA composition				↑ Plasma adiponectin	
					↓ Plasma TAG, TC and glucose	
					↓ Plasma IL-6 and TNF-α	
					↓ Hepatic FAS and G6PDH enzyme activity	
					↑ CPT enzyme activity	
					↓ Peroxisomal FA oxidation	
					Liver gene expression:	
					↓ FA synthesis	
					↓ FA oxidation	
					≈ Body weight	
					Liver gene expression:	
					↓ Cholesterol synthesis (EPA-PC, high dose)	
EPA-PC and EPA-PS	EPA-PC: 57.4	SAMP8 male mice	8 weeks	↓ Liver TAG (29% in EPA-PC and 26.2% in EPA-PS)	↓ Plasma TAG (both EPA-PC and EPA-PS, 52.1% and 49.6% respectively)	Ding et al²⁷
	EPA-PS: 58.4	SD vs. SD + 2% EPA-PC or 2% EPA-PS		↓ Liver TC	≈ Plasma TC (EPA-PC)	
	% of FA composition				↑ Plasma TC (EPA-PS)	
					Liver gene expression:	
					↓ FA synthesis	
					↓ FA oxidation	
					≈ Body weight	
					Liver gene expression:	
					↓ Cholesterol synthesis (EPA-PC, high dose)	
EPA-PC	EPA-PC: 40 or 80 mg/kg of body weight	Male Wistar rats	3 weeks	↓ Liver TAG, TC	≈ Body weight	Liu et al²⁶
		SD + 1% OA vs. SD + 1% OA + EPA-PC at low or high dose			Liver gene expression:	
					↓ FA oxidation	
					≈ Body weight	
					Liver gene expression:	
					↓ Cholesterol synthesis (EPA-PC, high dose)	
EPA-PL	EPA: 1.98	Male C57BL/6J ApoE−/− mice	8 weeks	↓ Liver TAG, TC	≈ Body weight	Zhang et al²⁹
	% of FA composition	HHHS vs. HHHS + EPA-PL			Liver gene expression:	
					↑ FA oxidation, bile acid synthesis, cholesterol efflux	
					↓ FA and cholesterol synthesis	
					↓ Body weight	
					Liver gene expression:	
					↓ Plasma TAG, TC	
					↓ Adipocyte size	
					↓ FSP27 protein in liver and WAT	
					≈ PLIN1 protein in liver and WAT	
EPA-PL	EPA: 9.49	Male C57BL/6J mice	8 weeks	↓ Liver TAG	≈ Body weight	Zhang et al³⁰
	DHA: 1.32	HS vs. HS + EPA-PL			Liver gene expression:	
	% of FA composition				↑ FA oxidation, bile acid synthesis, cholesterol efflux	
					↓ FA and cholesterol synthesis	
					↓ Body weight	
					Liver gene expression:	
					↓ Plasma TAG, TC	
					↓ Adipocyte size	
					↓ FSP27 protein in liver and WAT	
					≈ PLIN1 protein in liver and WAT	

(Continues)
Name of concentrate	EPA/DHA dose	Target	Type of study	Results (NAFLD)	Other results	Reference
DHA-containing PLs						
DHA-PL	EPA: 1.95 DHA: 5.13 g/kg diet	Male Balb/c mice	1 week SD vs. SD + EPA-PL or HF vs. HF + EPA-PL	↓ Liver TAG, vs. SD ≈ Liver TAG, vs. HF ↓ Liver TC, vs. HF	↓ Body weight, vs. SD ≈ Body weight, vs. HF ≈ Plasma TAG ↓ Plasma TC, vs. SD ≈ Plasma TC, vs. HF	Tang et al31
DHA-LPC rich oil	EPA: 2.9 DHA: 17.0 mol%	Male Wistar rats	28 days 7% soybean oil diet vs. 4.5% soybean oil + 2.5% DHA-LPC rich oil diet	↓ Liver TAG, TC	≈ Body weight	Hosomi et al32
EPA vs. DHA-containing PLs						
EPA/ DHA-PL forage and EPA/ DHA-PL liposomes	EPA: 1 DHA: 1% of the diet	Male Wistar rats	10 days SD + 1% OA vs. SD + OA + EPA-PL or DHA-PL or lipo-EPA or lipo-DHA	↓ Liver TAG, TC ↓ AST and ALT	≈ Body weight ≈ Plasma TAG, TC and glucose	Chang et al33
EPA/DHA-containing PLs						
Prevention EPA + DHA: 10 or 30 g/kg diet	Male C57BL/6J mice	9 weeks HF vs. HF + EPA/DHA-PL	↓ Liver TAG ↓ Liver TAG	↓ Plasma TAG ↓ Glucose AUC (IGTT)	Rossmeisl et al23	
Reversal EPA + DHA: 30 g/kg diet		4 months HF + 9 weeks HF vs. HF + EPA/DHA-PL (+2 g of metformin in both diets)				
Herring-derived omega-3 PL						
EPA/DHA-containing PLs	EPA: 4.3 DHA: 10 g/kg diet	Male C57BL/6N mice	7 weeks HF vs. HF + herring-derived omega-3 PL	↓ Liver TAG, TC	↓ Plasma TG, TC ↓ Plasma glucose, insulin ↓ HOMA-IR index ↓ Glucose AUC (IGTT) ↓ Plasma adiponectin	Rossmeisl et al25
Herring-derived omega-3 PL						

(Continues)
Name of concentrate	EPA/DHA dose	Target	Type of study	Results (NAFLD)	Other results	Reference
Partial hydrolysate of phospholipids (PH-PL)	EPA: 6.9	Male Wistar rats	28 days	↓ Liver TAG	≈ Body weight	Hosomi et al32
	DHA: 23.5 mmol/kg diet	SD + 7% soybean oil diet vs. SD + EPA/DHA- LIPC	≈ Liver TC	↓ Plasma TAG, TC		
Omega-3 PUFA binding phosphatidylglycerol (Omega-3 PUFA-PG)	EPA: 2.14	Diabetic/obese KK-AY male mice	30 days	↓ Liver total lipid	≈ Body weight	Chen et al35
	DHA: 2.63 g/kg diet	SoyPC diet (5% soybean oil + 2% SoyPC) vs. Omega-3 PUFA-PG (5% soybean oil + 2% omega-3 PUFA-PG)	≈ AST and ALT	↓ Plasma TC		
Krill	Krill powder	Transgenic C57BL/6 hTNF\textalpha male mice	6 weeks	↓ Hepatic cytokines (IL-2, TNF\textalpha)	≈ Body weight	Bjørndal et al36
	EPA: 5.4	HF vs. HF + krill powder	↓ Liver TAG-44%	↓ Plasma TAG (21%)		
	DHA: 2.4			↓ Plasma NEFA (45%)		
	% of FA composition			↓ Plasma TC (22%)		
	Krill oil	Male C57BL/6 mice	8 weeks	↓ Liver TAG	≈ Body weight	Piscitelli et al37
	EPA: 1.1, 1.6 or 2.6	HF vs. HF + 1.25 or 2.5 or 5% wt of KO		↓ Body weight		
	DHA: 0.5, 0.8 or 1.3 g/kg diet			↓ Plasma TC, glucose		
				↑ Plasma adiponectin (HF+5% KO)		
				↑ Hepatic endocannabinoid levels (AEA, 2-AG, PEA)		
				Liver gene expression: ↓ FA synthesis, cholesterol and glucose metabolism		
				↓ FA synthesis		
				↓ Plasma TAG		
				↓ Plasma TC, glucose		
				↑ Plasma adiponectin (HF+5% KO)		
				↑ Hepatic endocannabinoid levels (AEA, 2-AG, PEA)		
				Liver gene expression: ↓ FA synthesis		
				↓ Plasma TAG, NEFA, TC		
				≈ Plasma insulin, glucose		
				Liver gene expression: ↓ FA and cholesterol synthesis, glucose production, FA oxidation		
Krill oil	EPA: 1.9	Male CBA/J mice	3 months	N/A	≈ Plasma TAG, NEFA, TC	Burri et al44
	DHA: 1.1 g/kg diet	SD vs. SD + KO		≈ Plasma insulin, glucose		
Krill oil	EPA: 0.3	Male Sprague-Dawley rats	12 weeks	↓ Liver TAG, TC	↓ Body weight	Ferramosca et al38
	DHA: 0.2 % of FA composition	HF vs. HF + KO		↓ Plasma TAG		
Name of concentrate	EPA/DHA dose	Target	Type of study	Results (NAFLD)	Other results	Reference
---------------------	--------------	--------	---------------	----------------	---------------	-----------
Krill oil	EPA: 3	Male Wistar rats	6 weeks	↓ Liver TAG (20%)	≈ Body weight	Ferramosca, et al³⁹
	DHA: 1.7	SD vs. SD + KO		↓ Liver TC	↓ CIC activity	
	g/kg diet			≈ Body weight	↓ Cytosolic FAS and ACC activity	
				≈ Body weight	↓ Plasma TAG	
				≈ Body weight	↓ Plasma cholesterol	
Krill oil	-	Male C57BL/6 mice	18 weeks	≈ Liver TAG (compared to SD)	↓ Body weight (vs. HF)	Sadzuka et al⁴⁵
		SD vs. SD + KO or HF or HF + KO		≈ Liver TAG (21% but not significant, compared to HF)	↓ Plasma leptin (vs. HF)	
				≈ Plasma TAG (both vs. SD and HF)	≈ Plasma cholesterol (both vs. SD and HF)	
Krill oil	EPA: 5.39	Male C57BL/6 hTNFα mice	6 weeks	N/A	↓ Plasma TAG (19%)	Vigerust et al³²
	DHA: 2.36 wt%	HF vs. HF + KO			↓ Plasma TC	
					↑ Hepatic ACOX1 activity (peroxisomal β-oxidation)	
					↑ Mitochondrial FA oxidation	
					↑ Acylcarnitine classes in plasma	
					Liver gene expression:	
					↓ FA and cholesterol synthesis	
					≈ Acox1	
Krill oil	EPA: 5.23	Male C57BL/6J mice	6 weeks	≈ Liver TAG	≈ Body weight	Tillander et al⁸⁶
	DHA: 2.28 % of FA composition	HF vs. HF + KO			≈ Plasma TAG and TC	
					Liver gene expression:	
					↓ FA and cholesterol synthesis	
Krill oil	EPA: 135.6	Male C57BL/6N mice	10 weeks	↓ Liver TAG (H– E and Oil Red O staining)	↓ Body weight	Yang et al¹⁰
	DHA: 97.5 g/kg KO	HF vs. HF + KO		↓ Liver mass/body weight (35%)	↓ Plasma TAG	
					≈ Plasma TC	
					≈ Fasting plasma glucose	
					↑ Liver AMPK activation	
					Liver gene expression:	
					↓ FA synthesis	
Krill oil	4.86% of KO in the diet	ApoE-deficient female mice	12 weeks	↓ Liver TAG, TC	≈ Body weight	Parolini et al⁴¹
		WD vs. WD + KO			≈ Plasma TAG	
					↓ Plasma TC	
					↑ Total antioxidant capacity in plasma	
					Liver gene expression:	
					↓ Cholesterol synthesis	
Name of concentrate	EPA/DHA dose	Target	Type of study	Results (NAFLD)	Other results	Reference
---------------------	--------------	--------	---------------	-----------------	--------------	-----------
Krill oil	EPA + DHA: 10 or 30 g/kg diet	Male C57BL/6N mice	8 weeks	↓ Liver TAG, (KO, high dose)	↓ Body weight (KO, high dose)	Kroupova et al⁴²
					↓ Plasma TAG	
					↓ Plasma TC, insulin (KO, high dose)	
					↓ Glucose AUC (OGTT)	
					↑ Intestinal FA oxidation	
Krill oil	EPA + DHA: 10 or 30 g/kg diet	Male C57BL/6N mice	8 weeks	↓ Liver TAG (69%, KO, high dose)	↓ Body weight (KO, high dose)	Rossmeisl et al²⁴
					↓ HOMA-IR index (KO, high dose)	
					↓ Fasting plasma glucose (KO, high dose)	
					↓ Plasma insulin (KO, high dose)	
					↑ Insulin sensitivity	
					↑ Plasma adiponectin	
Krill oil	-	Male Sprague-Dawley rats	8 weeks	↓ AST, ALT	Hepatic oxidative stress	Helal and El-Kashef⁴⁷
					Hepatic nitrosative stress in liver	
Krill oil	Prevention EPA + DHA: 30 mg/g diet	Male C57BL/6N mice	24 weeks	↓ Liver TAG	↓ Body weight	Sistilli et al⁴³
	Reversal EPA + DHA: 30 mg/g diet			↓ ALT	≈ Plasma TAG	
					↓ Liver TAG	
					≈ Plasma TC	
					↓ HOMA-IR index	
					↑ Plasma adiponectin	
					↑ Insulin sensitivity	
					Liver gene expression:	
					↓ FA and cholesterol synthesis	
					≈ Body weight	
					≈ Plasma TAG, TC	
					↓ HOMA-IR index	
					↑ Plasma adiponectin	
					Liver gene expression:	
					↓ FA and cholesterol synthesis	

Note: The included animal studies (n = 26) have been published in the last 10 years. Unless otherwise stated, all results in the table relate to liver metabolism.

Abbreviations: 2-AG, 2-arachidonoyl glycerol; ACC, acetyl-CoA carboxylase; ACOX1, acyl-coenzyme A oxidase 1; AEA, anandamide; ALT, alanine transaminase; AMPK, AMP-activated protein kinase; ApoE, apolipoprotein E; AST, aspartate transaminase; AUC, area under curve; CPT, carnitine palmitoyltransferase; DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; FA, fatty acid(s); FAS, fatty acid synthase; G6PDH, glucose-6-phosphate dehydrogenase; HDL, high-density lipoprotein; HF, high-fat diet; HHHF, high-fat/high-fructose diet; HHSF, high-fat/high-sucrose diet; HOMA-IR, homeostatic model assessment for insulin resistance; hTNFα, human tumour necrosis factor α; IGTT, intraperitoneal glucose tolerance test; KO, krill oil; IL-2, interleukin-2; LDL, low-density lipoprotein; LPC, lysophosphatidylcholine; N/A, not applicable; NEFA, non-esterified fatty acid(s); OA, orotic acid; OGTT, oral glucose tolerance test; PC, phosphatidylcholine; PEA, palmitoylethanolamide; PG, phosphatidyglycerol; PL, phospholipid; PS, phosphatidylserine; SD, standard diet; TAG, triacylglycerols; TC, total cholesterol; WD, Western diet.
ALT levels compared to controls. In a rat model of iron overload–induced liver damage, krill oil supplementation reduced liver fibrosis. However, studies investigating the effects of omega-3 PLs in animal models of diet-induced obesity associated with advanced stages of NAFLD are lacking.

3.2 Human studies

There are currently no human studies examining the effects of omega-3 PLs directly on NAFLD. However, we identified 12 studies that examined changes in metabolic parameters and/or effects on cardiovascular risk factors following administration of krill oil or krill powder to overweight/obese patients with or without type 2 diabetes (Table 2).

Bunea et al reported a ~27% reduction in serum TAGs, ~18% and ~39% reductions in total and low-density lipoprotein (LDL) cholesterol, and ~60% increase in high-density lipoprotein (HDL) levels in a group of obese hyperlipidaemic subjects who received 3 g of krill oil daily for 12 weeks. In this study, fish oil given at the same dose of 3 g/day (i.e. ~900 mg EPA and DHA) did not significantly affect TAG and LDL cholesterol levels, whilst it induced a less pronounced reduction in total and an increase in HDL cholesterol. The reason for the differential effects of krill oil and fish oil on blood lipids in this study is not clear; however, differences in the hydrolysis of TAGs and PLs in the intestine, subsequent absorption of hydrolysis products and metabolism of lipoprotein particles probably play an important role. The ability of krill oil to reduce plasma TAG concentrations was later confirmed in overweight/obese subjects with borderline high or high serum TAG levels as well as in healthy young adults. In another study conducted in hypertriglyceridaemic and overweight patients, krill oil raised HDL and lowered non-HDL cholesterol levels whilst lowering plasma TAG levels comparably to omega-3 ethyl esters. In a short-term 4-week study in overweight/obese healthy subjects, administration of krill oil did not result in significant changes in lipid homeostasis, despite increases in plasma omega-3 concentrations. Nevertheless, administration of krill oil under similar conditions led to a reduction in plasma levels of the endocannabinoid 2-arachidonoylglycerol (2-AG) in healthy obese subjects, whereas omega-3 TAGs were ineffective. Since 2-AG levels were correlated with the n-6/n-3 long-chain polyunsaturated FA ratio in plasma PLs, it is likely that krill oil supplementation reduced 2-AG biosynthesis due to the replacement of arachidonic acid (20:4 n-6), a precursor of 2-AG, by omega-3. Animal studies have suggested that this process may be more efficient in the case of omega-3 PLs compared to omega-3 TAGs.

Given the established role of increased activity of the endocannabinoid system in the development of obesity-related metabolic disorders, including NAFLD (see 4.2), the superior ability of omega-3 PLs to inhibit endocannabinoid synthesis may contribute to their strong antisteatotic effects, possibly also in humans. Furthermore, a long-term 24-week administration of krill powder caused a time-dependent decrease in plasma levels of the endocannabinoid N-arachidonoylthetanolamine (anandamide; AEA) along with a decrease in TAG levels in obese men. However, the same daily amount of krill powder administered for just 8 weeks did not change plasma TAG levels in overweight subjects with elevated blood pressure. Krill oil intake reduced cardiovascular risk markers such as fasting blood glucose levels and down-regulated the expression of cholesterol biosynthesis genes in peripheral blood mononuclear cells in healthy subjects. Lobraco et al demonstrated that krill oil administration reduces insulin resistance as assessed by the HOMA-IR index in obese patients with type 2 diabetes. In contrast, insulin sensitivity unexpectedly decreased after supplementation with krill and salmon oil mixture in overweight men. The human studies analysed suggest that the effectiveness of krill-based products in alleviating metabolic disorders associated with overweight/obesity is inconsistent and likely depends on the dose of EPA and DHA, the duration of supplementation and/or the degree of metabolic impairment of the patients.

4 OMEGA-3 PHOSPHOLIPIDS AND NAFLD: MECHANISMS OF ACTION

Hepatic steatosis, occurs when the rate of FA uptake from the circulation and DNL are greater than the rate of FA oxidation and their export as TAGs via very-low-density lipoproteins (VLDLs); this imbalance is then associated with insulin resistance. Here, we describe the main mechanisms, including the metabolic aspects mentioned above, involved in the effects of omega-3 PLs on NAFLD, primarily hepatic steatosis. We also look at the effects of omega-3 PLs on organs such as adipose tissue (AT) and the gut, as these may contribute to antisteatotic effects in the liver (Figure 2).

4.1 Liver

4.1.1 Inhibition of de novo lipogenesis

Hepatic DNL and cholesterol biosynthesis are amongst the most affected metabolic pathways observed in obese rodents after administration of krill oil or fish-derived PLs. Their down-regulation significantly contributes to the antisteatotic effect of omega-3 PLs, as activation of DNL in obesity leads to TAG accumulation in the liver. Suppression of DNL may be caused, for example, by inhibition of hepatic lipogenic gene expression in obese animals.
Name of concentrate	EPA/DHA dose	Target	Type of study	Results (NAFLD)	Other results	Reference
Krill powder	EPA: 268 DHA: 132 mg per day	Mildly obese men	Single-centre, open label, pilot study 24 weeks Comparison to baseline	N/A ≈ Body weight ↓ Plasma TAG (20.6%) ≈ Plasma TC, LDL, insulin ↓ Plasma endocannabinoids (AEA 84%, PEA and OEA); ≈ Plasma endocannabinoids (2-AG)	Berge et al54	
Krill powder	EPA: 100 DHA: 60 mg per day	Overweight men and women with mildly or moderately elevated blood pressure	Prospective, randomised, double-blinded, placebo-controlled study 8 weeks Comparison to baseline and vs. placebo	N/A ≈ Plasma total TC, HDL, LDL, TAG ≈ Serum ALT, AST, glutamyl transferase, creatinine	Sarkkinen et al55	
Krill oil	Not specified 1-1.5 or 2-3 g of KO per day	Patients with hyperlipidemia	Multi-centre, prospective, randomised study 16 weeks Comparison to baseline and vs. fish oil or placebo	N/A ↓ Plasma glucose, TC, TAG, LDL (both treatments vs. baseline, fish oil and placebo) ↑ Plasma HDL (both treatments vs. baseline, fish oil and placebo)	Bunea et al56	
Krill oil	EPA: 216 DHA: 90 mg per day	Overweight and obese men and women	Randomised, double-blind, controlled, parallel clinical trial 4 weeks Comparison to baseline and vs. menhaden or olive oil	N/A ≈ Body weight ≈ Plasma glucose, insulin, lipoprotein lipids, TAG, albumin, creatinine, electrolytes and liver enzymes ≈ HOMA-IR	Maki et al52	
Krill oil	EPA: 216 DHA: 90 mg per day	Normoweight, overweight and obese men and women	Randomised, double-blind, controlled, parallel clinical trial 4 weeks Comparison to baseline and vs. menhaden or olive oil	N/A ≈ BMI, waist circumference, plasma glucose and insulin ↓ Plasma 2-AG (obese subjects, vs. baseline, menhaden oil and olive oil) ≈ Plasma AEA	Banni et al53	
Krill oil	EPA +DHA: 0, 100, 200, 400 or 800 mg per day	Men and women with borderline high or high TAG levels	Double-blind, randomised, multi-centre, placebo-controlled study 12 weeks Comparison to baseline and vs. olive oil	N/A ↑ Omega-3 index (vs. baseline and placebo) ↓ Plasma TAG (200, 400 and 800 mg per day vs. baseline and placebo) ≈ Plasma TC, LDL, HDL	Berge et al59	
Name of concentrate	EPA/DHA dose	Target	Type of study	Results (NAFLD)	Other results	Reference
---------------------	--------------	--------	---------------	----------------	---------------	-----------
Krill oil	Not specified 1000 mg of KO per day	Patients with type 2 diabetes	Randomised, double-blind, controlled crossover trial 4 weeks + optional 17 weeks Comparison to baseline and vs. olive oil	N/A	↑ Endothelial function (17 weeks, vs. baseline) ↓ HOMA-IR (vs. olive oil) ↓ Plasma C-peptide (vs. olive oil)	Lobraco et al⁵⁸
Krill oil	EPA: 230 DHA: 154 mg per day	Overweight, middle-aged men	Randomised, double-blind, controlled crossover trial 8 weeks Comparison to baseline and vs. canola oil	N/A	↓ Insulin sensitivity (Matsuda index, HOMA-IR, vs. canola oil) ↑ Plasma TC, HDL, LDL, apolipoprotein B (vs. baseline) ↑ Carotid artery intima-media thickness (vs. baseline)	Albert et al⁵⁹
Krill oil	EPA +DHA: 832.5 mg per day	Healthy young adults	Intervention study 28 days Comparison to baseline	N/A	≈ CRP, ALT, AST, ALP, bilirubin ↓ Plasma TAG, TAG/HDL ratio ↑ HDL, LDL	Berge et al⁶⁰
Krill oil	EPA: 150 DHA: 90 mg per day	Moderately hypertriglyceridaemic subjects	Randomised, crossover, clinical trial 4 weeks Comparison to baseline and vs. omega-3 ethyl esters	N/A	≈ Plasma TC, LDL, apolipoprotein B, fasting plasma glucose, creatinine, liver transaminases and CPK ↓ Plasma TAG (vs. baseline) ↓ hs-CRP (vs. baseline and omega-3 ethyl esters) ↑ Plasma HDL (vs. baseline)	Cicero et al⁶¹
Krill oil	Omega-3 FA: 4654 mg per week	Healthy overweight men and women	Randomised controlled trial 8 weeks Comparison to baseline and vs. fish oil or control oil	N/A	↓ Plasma glucose, TAG (1%) – not significant (overall difference between groups) ↑ Total lipids, PLs, cholesterol, cholesteryl esters and non-esterified cholesterol in XS-VLDL (overall difference between groups) ↑ HDL₃-C, LDL-TAG (overall difference between groups)	Rundblad et al⁶⁶
Krill oil	Omega-3 FA: 4654 mg per week	Healthy overweight men and women	Randomised controlled trial 8 weeks Comparison to baseline and vs. fish oil or control oil	N/A	PBMC mRNA expression: ↓ Gluconeogenesis, cholesterol synthesis, FA oxidation (vs. baseline)	Rundblad et al⁶⁷

Note: The included human studies (n = 12) have been published in the last 20 years.

Abbreviations: 2-AG, 2-arachidonoyl glycerol; AEA, anandamide; ALP, alkaline phosphatase; ALT, alanine transaminase; AST, aspartate transaminase; CPK, creatine kinase; CRP, C-reactive protein; DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; FA, fatty acid(s); HDL, high-density lipoprotein; HOMA-IR, homeostatic model assessment for insulin resistance; KO, krill oil; LDL, low-density lipoprotein; N/A, not applicable; OEA, oleoylethanolamide; PBMC, peripheral blood mononuclear cells; PEA, palmitoylethanolamide; TAG, triacylglycerols; TC, total cholesterol; XS-VLDL, very small, very-low-density lipoprotein.
supplemented with omega-3 PLs. Reduced DNL pathway activity in the liver was also confirmed by detecting reduced activity of lipogenic enzymes such as acetyl-CoA carboxylase (ACC) and fatty acid synthase, or by reduced levels of short/medium-chain TAGs containing 38-48 carbons and 0-3 double bonds, a lipidomic marker of hepatic DNL.

Transcriptional regulators of de novo lipogenesis

Down-regulation of genes involved in DNL induced by administration of omega-3 PLs may be attributed to an increased PC/phosphatidylethanolamine ratio, as a decrease in this ratio leads to activation of sterol regulatory element-binding protein 1c (SREBP-1c), thereby initiating DNL and lipid accumulation. Interestingly, antisteatotic effects and down-regulation of hepatic DNL genes were observed in HFD-fed mice only when animals received omega-3-rich PCs, but not when these PCs contained omega-6 FAs. Further, it has been observed that administration of EPA-rich PCs reduces SREBP-1c expression in the liver, whilst fish oil had no effect. Transcription of genes involved in glycolysis and DNL can also be activated by carbohydrate-responsive element-binding protein (ChREBP). Polysaturated FAs have been shown to inhibit nuclear translocation of ChREBP and to increase ChREBP mRNA decay, and krill oil, but not fish oil, decreased the expression of max-like factor X, a functional heterodimeric partner of ChREBP. Reduced expression of the transcription factor SREBP-2 may be responsible for the down-regulation of cholesterol biosynthesis observed in rodents given omega-3 PLs but not fish oil.

Citrate transport

Interestingly, decreased expression and activity of mitochondrial citrate carrier (CIC) was observed in HFD-fed rats supplemented with krill oil. Mechanistically, inhibition of CIC will reduce the efflux of mitochondrial citrate into the cytosol, thereby reducing the supply of acetyl-CoA available for DNL, whilst reducing allosteric activation of ACC by citrate. Inhibition of CIC will also contribute to a reduction in cholesterol biosynthesis because this also starts with acetyl-CoA. However, CIC gene expression was not significantly affected by omega-3 PLs from herring, so this may be an effect specific to krill oil.

AMP-activated protein kinase

Finally, omega-3 administration is associated with activation of AMP-activated protein kinase (AMPK) in the liver, presumably through the hormone adiponectin (see Section 4.2 for details). Activation of AMPK leads, amongst other effects, to inhibitory phosphorylation of ACC, a key enzyme of the DNL pathway, in hepatocytes.

The contribution of suppressed DNL to the overall antisteatotic effect of omega-3 PLs may also explain their superior efficacy against hepatic steatosis compared with omega-3 TAGs. Simultaneously, reduced DNL may underlie the suppressive effect of krill oil on hepatic diacylglycerol (DAG) levels. Since DAGs are involved in hepatic insulin resistance, their reduced levels may be related to the improvement in hepatic insulin sensitivity due to krill oil supplementation.

Stimulation of the oxidation of fatty acids

Increased FA catabolism is another way that omega-3 PLs may reduce hepatic steatosis. However, although omega-3 act as ligands of the peroxisome proliferator–activated receptor (PPAR)-α transcription factor, omega-3 PLs do not appear to consistently affect β-oxidation-related genes, known targets of PPAR-α. However, administration of krill oil increased the activity of carnitine palmitoyltransferase I (CPT1), the enzyme catalysing the essential step of β-oxidation in mitochondria, concomitantly with an increase in free carnitine levels in HFD-fed rats. For example, in TNFα-humanised mice, mitochondrial and peroxisomal β-oxidation was enhanced by the effect of krill oil on CPT2 and acyl-CoA oxidase 1 (ACOX1) activity. EPA-PLs, compared with DHA-PLs, showed stronger antisteatotic effects related to PPARα-mediated activation of β-oxidation in the liver. This may also be related to the fact that EPA, but not DHA, increases β-oxidation and inhibits esterification of 1,2-DAGs and TAG synthesis in hepatocytes. Moreover, dietary intake of EPA-PLs decreased FSP27 protein content in both liver and AT of C57BL/6J mice, suggesting changes in lipid droplet formation and stimulation of lipolysis.

Accordingly, the improved bioavailability of omega-3, especially EPA, in response to administration of omega-3 in the form of PLs, observed in both obese mice and humans (reviewed in), may contribute to the superior antisteatotic effects of this lipid class. Similar to DNL inhibition, but perhaps even more significant, may be the involvement of the adiponectin-AMPK axis in the stimulatory effect of omega-3 on β-oxidation in hepatocytes and in maintaining hepatic insulin sensitivity.

No effect of omega-3 PLs on hepatic VLDL-TAG production or TAG content of VLDL particles was observed in HFD-fed mice. Thus, hepatic VLDL-TAG secretion does not appear to be significantly affected by administration of omega-3 PLs in the above experimental models.

Adipose tissue

In obese NAFLD patients, 59% of hepatic TAGs come from plasma non-esterified FAs (NEFA), which are strongly influenced by AT metabolism. AT also releases secretory...
factors (i.e. adipocytokines) that regulate processes elsewhere in the body, including the liver. As for NEFA levels, these were reduced in dietary obese mice receiving omega-3 PLs from either herring or krill oil. This effect does not appear to be stronger compared to omega-3 given as TAGs.

Regarding the secretory function of AT in relation to the antisteatotic effects of omega-3 PLs, the focal point here is adiponectin. This hormone is a potent antilipotoxic and anti-inflammatory agent with insulin-sensitising properties. Omega-3 are known to stimulate adiponectin expression and secretion from AT into the circulation. Administration of omega-3 PLs was associated with an increase in circulating adiponectin levels in obese mice. This effect was dose-dependent and generally stronger compared to omega-3 administered as TAGs. Because adiponectin secretion by adipocytes is markedly stimulated by the EPA-derived metabolite 15d-PGJ2, it is possible that the higher EPA content of some omega-3 PL products (e.g. krill oil) could more effectively promote adiponectin secretion.

Regarding AT inflammation, decreased tissue levels of proinflammatory cytokines and/or reduced macrophage accumulation were observed in obese mice treated with omega-3 PLs, which, together with improved insulin sensitivity, further suggests improved AT function.

Elevated circulating levels of endocannabinoids such as 2-AG or AEA may also be a causative factor in the development of obesity-related metabolic disorders. Omega-3 PLs decreased AEA and/or 2-AG levels in visceral AT and in the circulation of obese rodents, showing a stronger effect compared to TAG-based omega-3. Reduced endocannabinoid synthesis in visceral AT may have beneficial effects in the liver due to reduced stimulation of cannabinoid (CB) receptors, for example the CB1 receptor, whose activation potentiates DNL.

4.3 | Intestine

Besides its role in nutrient absorption, the intestine has endocrine functions which together with changes in the gut microbiota and intestinal barrier may influence the pathogenesis of NAFLD/NASH. In this context, overweight/obesity is associated with qualitative and quantitative modifications of the gut microbiota (i.e. dysbiosis), activation of intestinal inflammation and increased intestinal permeability. Omega-3 intake is associated with alleviation of inflammation, also in enterocytes. Krill oil supplementation increased the intestinal barrier-related gene expression in HFD-fed mice and reduced intestinal inflammation, and systemic endotoxin levels in rat and mouse models of induced colitis. Anti-inflammatory effects of krill oil in the gut may be mediated by inhibition of histidine metabolism in the microbiome and host, in addition to inhibition of anti-inflammatory eicosanoid production.

There is relatively little evidence of the effects of omega-3 supplementation on the gut microbiota. Omega-3 intake improved dysbiosis and reduced mucosal inflammation in ulcerative colitis patients and stimulated bacteria producing short-chain FAs (SCFA) in healthy subjects. Butyrate, a SCFA, positively affects intestinal integrity whilst protecting against the development of NASH. In mice with induced colitis, DHA-PLs from algal oil improved the intestinal barrier and increased amount of SCFA-producing bacteria. Similar effects were observed when omega-3 PLs from Porcellio trituberculatus eggs were administered to HFD-fed mice, which was associated with alleviation of insulin resistance. Krill oil supplementation partially restored intestinal dysbiosis in models of infection-induced colitis and in HFD-fed mice induced an increase in the genera Allobaculum and Enterobacter icraflora, shown to be negatively associated with hyperlipidaemia and inflammation.

Glucose and lipid metabolism may also be affected by intestinal hormones such as incretins, that is glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide; in fact, incretin-based therapies also have a beneficial effect on various parameters related to NAFLD (reviewed in detail in). Increased glucose-stimulated GLP-1 secretion was observed when omega-3 TAGs were administered either acutely into the colon or chronically in conjunction with high-fat feeding. The potential added benefits of using omega-3 PLs to stimulate incretin secretion and its potential role in the metabolic effects associated with omega-3 PL supplementation remain unclear.

Intestinal metabolism affects the bioavailability of omega-3 depending on the lipid class used for their administration. Conversely, the lipid class may play a role in the direct effects of omega-3 on intestinal metabolism. For example, krill oil, but not omega-3 given as TAGs, stimulated FA oxidation in the small intestine of HFD-fed mice. This may further contribute to the potent antisteatotic effects of this lipid class in the liver.

4.4 | Potential contributors to the effect of omega-3 phospholipids administered as krill oil

The composition of omega-3 PL products is often very complex, so other constituents may also contribute to the pleiotropic effects of these products. For example, krill oil contains the antioxidant astaxanthin, but also POA, elevated concentrations of which may contribute to the beneficial effects of krill oil on insulin sensitivity in obese mice. POA can also stimulate FA catabolism in the liver via PPARδ-dependent AMPK activation. Furthermore, the plant alkaloids trigonelline and stachydrine were recently
identified by metabolomic analysis as potential contributors to the potent antisteatotic effects of krill oil in the livers of obese mice with exacerbated steatosis. In one study, where the trigonelline concentration was ~50 mg/kg of diet, it was still about 20 times less compared to the standard diet, use with autophagy stimulants could improve efficacy in addition of these combination therapy (Figure 2), and its concomitant protective effects against carbon tetrachloride-induced liver fibrosis. Thus, the use of krill oil can be considered as a type of combination therapy (Figure 2), and its concomitant use with autophagy stimulants could improve efficacy in advanced NAFLD.

5 | THERAPEUTIC PERSPECTIVES

In terms of health benefits of omega-3 PLs in humans, daily doses of around 1-4 g of krill oil (i.e. ~200-800 mg EPA + DHA) administered to hyperlipidaemic overweight/obese subjects for at least 1 month may reduce circulating TAG levels and possibly increase HDL cholesterol. These conclusions are also supported by a meta-analysis of randomised controlled trials using krill oil. Nevertheless, further human studies are needed to reveal the effect of omega-3 PLs directly on NAFLD, including its advanced stages such as NASH. Although several existing studies do not suggest that krill-based products could alter AST and ALT levels in overweight/obese people, due to the relatively short duration of these studies and the absence of pathologically elevated levels of liver enzymes in basal condition, the effect of omega-3 PLs on NAFLD in humans is still unclear. Furthermore, there are no human studies examining the effects of omega-3 PLs from sources other than krill oil, at least not in relation to obesity and related metabolic disorders. However, in terms of improving impaired glucose homeostasis and insulin sensitivity in obesity, preclinical animal studies have shown greater efficacy of omega-3 PLs compared to the TAG form, which is often ineffective. This is important because NAFLD is closely related to obesity and the combination of antisteatotic and insulin-sensitising effects of omega-3 PLs may thus be advantageous in this context.

6 | CONCLUDING REMARKS

Preclinical animal studies have provided compelling evidence for the potent antisteatotic effects of omega-3 PL supplementation in the context of NAFLD in obesity. PC is the dominant PL class in most natural sources of omega-3 PLs, and in
terms of effects on obesity-related liver steatosis, it appears that enrichment of PC with omega-3 is necessary to achieve optimal efficacy compared to PC from other sources that do not contain omega-3. The pronounced suppression of DNL in the liver may be one of the main reasons for the improved efficacy of omega-3 PLs on hepatic steatosis; however, the involvement of other tissues such as the intestine (e.g. induction of FA oxidation in situ, alleviation of dysbiosis and improvement of intestinal integrity) and AT (e.g. adiponectin secretion) seems to be important. Also, higher relative EPA content could be associated with higher efficacy of different forms of omega-3 PLs, as EPA appears to be more effective than DHA in stimulating hepatic FA oxidation and adiponectin secretion by adipocytes. Comparative studies also suggest that the antisteatotic effects of omega-3 PLs are often stronger and have a partially different mechanistic basis compared to omega-3 administered in the form of fish oil or TAG-based concentrates. These improved effects of omega-3 PLs are likely based on the unique combination of the PL molecule with omega-3, whereby the metabolic properties of the PLs themselves are exploited whilst ensuring better bioavailability of omega-3. Increased omega-3 bioavailability than translates into more effective regulation of a number of processes, including inhibition of endocannabinoid synthesis or adiponectin secretion (see above). Importantly, some forms of omega-3 PLs, such as krill oil, contain other bioactive substances (e.g. astaxanthin, plant alkaloids, POA) that may contribute to their antisteatotic and insulin-sensitising effects. Finally, preclinical evidence for strong antisteatotic effects of omega-3 PLs in the liver should be confirmed in clinical trials, whilst further research is needed on the possible effects of omega-3 PLs on advanced stages of NAFLD such as NASH and fibrosis.

ACKNOWLEDGEMENTS
This work was supported by a grant from the Czech Science Foundation (grant no. 17-11027S; recipient MR) and the project FOIE GRAS, which has received funding from the European Union’s Horizon 2020 Research and Innovation framework, under the Marie Skłodowska-Curie Grant Agreement (#722619; recipient GS).

CONFLICT OF INTEREST
The authors declares that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

AUTHORS CONTRIBUTIONS
O. H. and M. R. conception and design; M. M., G. S., O. H. and M. R. writing and revision of the manuscript; M. M., G. S., O. H. and M. R. approved the final version of the manuscript.

ORCID
Martin Rossmeisl https://orcid.org/0000-0001-8534-4002

REFERENCES
1. Younossi Z, Tacke F, Arrese M, et al. Global perspectives on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. *Hepatology*. 2019;69(6):2672-2682.
2. Byrne CD, Targher G. NAFLD: a multisystem disease. *J Hepatol*. 2015;62(1 Suppl):S47-64.
3. Tiniakos DG, Vos MB, Brunt EM. Nonalcoholic fatty liver disease: pathology and pathogenesis. *Annu Rev Pathol*. 2010;5:145-171.
4. Spooner MH, Jump DB. Omega-3 fatty acids and nonalcoholic fatty liver disease in adults and children: where do we stand? *Curr Opin Clin Nutr Metab Care*. 2019;22(2):103-110.
5. Chen F, Esmaili S, Rogers GB, et al. Lean NAFLD: A distinct entity shaped by differential metabolic adaptation. *Hepatology*. 2020;71(4):1213-1227.
6. Fabbriini E, Sullivan S, Klein S. Obesity and nonalcoholic fatty liver disease: biochemical, metabolic, and clinical implications. *Hepatology*. 2010;51(2):679-689.
7. Marchesini G, Bugianesi E, Forlani G, et al. Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome. *Hepatology*. 2003;37(4):917-923.
8. Gastaldelli A, Cusi K. From NASH to diabetes and from diabetes to NASH: Mechanisms and treatment options. *JHEP Rep*. 2019;1(4):312-328.
9. Younossi ZM, Tampi RP, Racila A, et al. Economic and clinical burden of nonalcoholic steatohepatitis in patients with type 2 diabetes in the U.S. *Diabetes Care*. 2020;43(2):283-289.
10. European Association for the Study of the Liver. European Association for the Study of the Liver, European Association for the Study of Obesity. EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. *J Hepatol*. 2016;64(6):1388-1402.
11. Ruisen MM, Mak AL, Beuers U, Tushuizen ME, Holleboom AG. Non-alcoholic fatty liver disease: a multidisciplinary approach towards a cardiometabolic liver disease. *Eur J Endocrinol*. 2020;183(3):R57-R73.
12. Calder PC. Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance. *Biochem Biophys Acta*. 2015;1851(4):469-484.
13. Roche HM, Gibney MJ. Effect of long-chain n-3 polyunsaturated fatty acids on fasting and postprandial triacylglycerol metabolism. *Am J Clin Nutr*. 2000;71(1 Suppl):232S-237S.
14. Scorletti E, Byrne CD. Omega-3 fatty acids and non-alcoholic fatty liver disease: Evidence of efficacy and mechanism of action. *Mol Aspects Med*. 2018;64:135-146.
15. Musa-Veloso K, Venditti C, Lee HY, et al. Systematic review and meta-analysis of controlled intervention studies on the effectiveness of long-chain omega-3 fatty acids in patients with nonalcoholic fatty liver disease. *Nutr Rev*. 2018;76(8):581-602.
16. Jump DB, Lytle KA, Depner CM, Tripathy S. Omega-3 polyunsaturated fatty acids as a treatment strategy for nonalcoholic fatty liver disease. *Pharmacol Ther*. 2018;181:108-125.
17. Argo CK, Patrie JT, Lackner C, et al. Effects of n-3 fish oil on metabolic and histological parameters in NASH: a double-blind, randomized, placebo-controlled trial. *J Hepatol*. 2015;62(1):190-197.
18. Caldwell S. NASH Therapy: omega 3 supplementation, vitamin E, insulin sensitizers and statin drugs. *Clin Mol Hepatol*. 2017;23(2):103-108.

19. Lu FS, Nielsen NS, Timm-Heinrich M, Jacobsen C. Oxidative stability of marine phospholipids in the liposomal form and their applications. *Lipids*. 2011;46(1):3-23.

20. Rossmeisl M, Medrikova D, van Schothorst EM, et al. Omega-3 phospholipids from fish suppress hepatic steatosis by integrated inhibition of biosynthetic pathways in dietary obese mice. *Biochim Biophys Acta*. 2014;1841(2):267-278.

21. Paluchova V, Vik A, Cajka T, et al. Triacylglycerol-rich oils of marine origin are optimal nutrients for induction of polyunsaturated docosahexaenoic acid ester of hydroxy linoleic acid (13-DHAHLA) with anti-inflammatory properties in mice. *Mol Nutr Food Res*. 2020;64(11):e1901238.

22. Burri L, Hoem N, Banni S, Berge K. Marine omega-3 phospholipids: metabolism and biological activities. *Int J Mol Sci*. 2012;13(11):15401-15419.

23. Rossmeisl M, Jilkova ZM, Kuda O, et al. Metabolic effects of n-3 PUFA as phospholipids are superior to triglycerides in mice fed a high-fat diet: possible role of endocannabinoids. *PLoS One*. 2012;7(6):e38834.

24. Rossmeisl M, Pavlova J, Bardova K, et al. Increased plasma levels of palmitoleic acid may contribute to beneficial effects of Krill oil on glucose homeostasis in dietary obese mice. *Biochim Biophys Acta Mol Cell Biol Lipids*. 2020;1865(8):158732.

25. Burri L, Johnsen L. Krill products: an overview of animal studies. *Nutrients*. 2015;7(5):3300-3321.

26. Liu X, Xue Y, Liu C, et al. Eicosapentaenoic acid-enriched phospholipid ameliorates insulin resistance and lipid metabolism in diet-induced-obese mice. *Lipids Health Dis*. 2013;12:109.

27. Ding L, Wang D, Zhou M, et al. Comparative study of EPA-enriched phosphatidylcholine and EPA-enriched phosphatidylserine on lipid metabolism in mice. *J Oleo Sci*. 2016;65(7):593-602.

28. Liu Y, Shi D, Tian Y, et al. Eicosapentaenoic acid-enriched phosphatidylcholine attenuated hepatic steatosis through regulation of cholesterol metabolism in rats with nonalcoholic fatty liver disease. *Lipids*. 2017;52(2):119-127.

29. Zhang LY, Ding L, Shi HH, et al. Eicosapentaenoic acid in the form of phospholipids exerts superior anti-atherosclerosis effects to its triglyceride form in ApoE(-/-) mice. *Food Funct*. 2019;10(7):4177-4188.

30. Zhang L, Ding L, Shi H, et al. Eicosapentaenoic acid-enriched phospholipids suppressed lipid accumulation by specific inhibition of lipid droplet-associated protein FSP27 in mice. *J Sci Food Agric*. 2020;100(5):2244-2251.

31. Tang X, Li ZJ, Xu J, et al. Short term effects of different omega-3 fatty acid formulation on lipid metabolism in mice fed high or low fat diet. *Lipids Health Dis*. 2012;11:70.

32. Hosomi R, Fukunaga K, Nagao T, et al. Effect of dietary oil rich in docosahexaenoic acid-bound lysophosphatidylcholine prepared from fishery by-products on lipid and fatty acid composition in rat liver and brain. *J Oleo Sci*. 2019;68(8):781-792.

33. Chang M, Zhang T, Han X, et al. Comparative analysis of EPA/DHA-PL forage and liposomes in orotic acid-induced nonalcoholic fatty liver rats and their related mechanisms. *J Agric Food Chem*. 2018;66(6):1408-1418.

34. Hosomi R, Fukunaga K, Nagao T, et al. Effect of dietary partial hydrolysate of phospholipids, rich in docosahexaenoic acid-bound lysophospholipids, on lipid and fatty acid composition in rat serum and liver. *J Food Sci*. 2019;84(1):183-191.

35. Chen L, Takatani N, Beppu F, Miyashita K, Hosokawa M. The effect of n-3 PUFA binding phosphatidylglycerol on metabolic syndrome-related parameters and n-3 PUFA accretion in diabetic/obese KK-A(y) mice. *Nutrients*. 2019;11(12):2866.

36. Bjørndal B, Vik R, Brattelid T, et al. Krill powder increases liver lipid catabolism and reduces glucose mobilization in tumor necrosis factor-alpha transgenic mice fed a high-fat diet. *Metabolism*. 2012;61(10):1461-1472.

37. Piscitelli F, Carta G, Bisogno T, et al. Effect of dietary krill oil supplementation on the endocannabinoidome of metabolically relevant tissues from high-fat-fed mice. *Natr Metab (Lond)*. 2011;8(1):51.

38. Ferramosca A, Conte A, Burri L, et al. A krill oil supplemented diet suppresses hepatic steatosis in high-fat fed rats. *PLoS One*. 2012;7(6):e38797.

39. Ferramosca A, Conte A, Zara V. A krill oil supplemented diet reduces the activities of the mitochondrial tricarboxylate carrier and of the cytosolic lipogenic enzymes in rats. *J Anim Physiol Anim Nutr (Berl)*. 2012;96(2):295-306.

40. Yang G, Lee J, Lee S, et al. Krill oil supplementation improves dyslipidemia and lowers body weight in mice fed a high-fat diet through activation of amp-activated protein kinase. *J Med Food*. 2016;19(12):1120-1129.

41. Parolini C, Bjørndal B, Busnelli M, et al. Effect of dietary components from antarctic krill on atherosclerosis in apoE-deficient mice. *Mol Nutr Food Res*. 2017;61(12):1700098.

42. Kroupova P, van Schothorst EM, Keijer J, et al. Omega-3 phospholipids from krill oil enhance intestinal fatty acid oxidation more effectively than omega-3 triacylglycerols in high-fat diet-fed obese mice. *Nutrients*. 2020;12(7):2037.

43. Sistilli G, Kalendova V, Cajka T, et al. Krill oil supplementation reduces exacerbated hepatic steatosis induced by thermoneutral housing in mice with diet-induced obesity. *Nutrients*. 2021;13(2):437.

44. Burri L, Berge K, Wirbrand K, Berge RK, Barger JL. Differential effects of krill oil and fish oil on the hepatic transcriptome in mice. *Front Genet*. 2011;2:45.

45. Sadzuka Y, Sugiyama I, Miyashita M, et al. Beneficial effects by intake of *Euphausia superba* on high-fat diet-induced obesity. *Biol Pharm Bull*. 2012;35(4):568-572.

46. Tillander V, Bjørndal B, Burri L, et al. Fish oil and krill oil supplementations differentially regulate lipid catabolic and synthetic pathways in mice. *Nutr Metab (Lond)*. 2014;11:20.

47. Helal MG, El-Kashf DH. Krill oil alleviates oxidative stress, iron accumulation and fibrosis in the liver and spleen of iron-overload rats. *Environ Sci Pollut Res Int*. 2020;27(4):3950-3961.

48. Bunea R, El Farrah K, Deutsch L. Evaluation of the effects of Neptune Krill Oil on the clinical course of hyperlipidemia. *Altern Med Rev*. 2004;9(4):420-428.

49. Berge K, Musa-Veloso K, Harwood M, Hoem N, Burri L. Krill oil supplementation lowers serum triglycerides without increasing low-density lipoprotein cholesterol in adults with borderline high or high triglyceride levels. *Nutr Rev*. 2014;72(2):126-133.

50. Berge RK, Ramsvik MS, Bohov P, et al. Krill oil reduces plasma triacylglycerol level and improves related lipoprotein particle concentration, fatty acid composition and redox status in healthy young adults - a pilot study. *Lipids Health Dis*. 2015;14:163.
51. Cicero AF, Rostici M, Morbini M, et al. Lipid-lowering and anti-inflammatory effects of omega 3 ethyl esters and krill oil: a randomized, cross-over, clinical trial. *Arch Med Sci.* 2016;12(3):507-512.

52. Maki KC, Reeves MS, Farmer M, et al. Krill oil supplementation increases plasma concentrations of eicosapentaenoic and docosahexaenoic acids in overweight and obese men and women. *Nutr Res.* 2009;29(9):609-615.

53. Banni S, Carta G, Murr E, et al. Krill oil significantly decreases 2-arachidonoylglycerol plasma levels in obese subjects. *Nutr Metab (Lond).* 2011;8(1):7.

54. Berge K, Piscitelli F, Hoem N, et al. Chronic treatment with krill powder reduces plasma triglyceride and anandamide levels in mildly obese men. *Lipids Health Dis.* 2013;12:78.

55. Sarkkinen ES, Savolainen MJ, Taurio J, Marvola T, Bruheim I. Prospective, randomized, double-blinded, placebo-controlled study on safety and tolerability of the krill powder product in overweight subjects with moderately elevated blood pressure. *Lipids Health Dis.* 2018;17(1):287.

56. Rundblad A, Holven KB, Bruheim I, Myhrstad MC, Ulven SM. Effects of krill oil and lean and fatty fish on cardiovascular risk markers: a randomised controlled trial. *J Nutr Sci.* 2018;7:e3.

57. Rundblad A, Holven KB, Bruheim I, Myhrstad MC, Ulven SM. Effects of fish and krill oil on gene expression in peripheral blood mononuclear cells and circulating markers of inflammation: a randomised controlled trial. *J Nutr Sci.* 2018;7:e10.

58. Lo brasso JM, DiLello LC, Butler AD, Cordisco ME, Petrinki JR, Ahmadi R. Effects of krill oil on endothelial function and other cardiovascular risk factors in participants with type 2 diabetes, a randomized controlled trial. *BMJ Open Diabetes Res Care.* 2015;3(1):e000107.

59. Albert BB, Derraik JG, Brennan CM, et al. Supplementation with krill oil: a randomised, cross-over, clinical trial. *Lipids Health Dis.* 2013;12(5):1343-1351.

60. Petersen MC, Shulman GI. Roles of diacylglycerols and ceramides in hepatic insulin resistance. *Trends Pharmacol Sci.* 2017;38(7):649-665.

61. Sanderson LM, de Groot PJ, Hooiveld GJ, et al. Effect of synthetic dietary triglycerides: a novel research paradigm for nutrigenomics. *PLoS One.* 2008;3(2):e1681.

62. Vigerust NF, Bjorndal B, Bohov P, Brattelid T, Svardal A, Berge RK. Krill oil versus fish oil in modulation of inflammation and lipid metabolism in mice transgenic for TNF-alpha. *Eur J Nutr.* 2015;54(4):1315-1325.

63. Liu X, Cui J, Li Z, et al. Comparative study of DHA-enriched phospholipids and EPA-enriched phospholipids on metabolic disorders in diet-induced-obese C57BL/6J mice. *Eur J Lipid Sci Technol.* 2014;116(3):255-265.

64. Berge RK, Madsen L, Vaagenes H, Tronstad KJ, Gottlicher M, Rustan AC. In contrast with docosahexaenoic acid, eicosapentaenoic acid and hypolipidaemic derivatives decrease hepatic synthesis and secretion of triacylglycerol by decreased diacylglycerol acyltransferase activity and stimulation of fatty acid oxidation. *Biochem J.* 1999;343(Pt 1):191-197.

65. Schuchardt JP, Hahn A. Bioavailability of long-chain omega-3 fatty acids. *Prostaglandins Leukot Essent Fatty Acids.* 2013;89(1):1-8.

66. Ulven SM, Holven KB. Comparison of bioavailability of krill oil versus fish oil and health effect. *Vasc Health Risk Manag.* 2015;11:515-524.

67. Scherer PE. The many secret lives of adipocytes: implications for diabetes. *Diabetologia.* 2019;62(2):233-232.

68. Flachs P, Mohamed-Ali V, Horakova O, et al. Polysaturated fatty acids of marine origin induce adiponectin in mice fed a high-fat diet. *Diabetologia.* 2006;49(2):394-397.

69. Silvestri C, Di Marzo V. The endocannabinoid system in energy homeostasis and the etiopathology of metabolic disorders. *Cell Metab.* 2013;17(4):475-490.

70. Tam J, Liu J, Mukhopadhyay B, Cinars R, Godlewski G, Kunos G. Endocannabinoids in liver disease. *Hepatology.* 2011;53(1):346-355.

71. Svegliati-Baroni G, Patricio B, Liooi G, Macedo MP, Gastaldelli A. Gut-pancreas-liver axis as a target for treatment of NAFLD/NASH. *Int J Mol Sci.* 2020;21(16):5820.

72. Boulange CL, Neves AL, Chilloux J, Nicholson JK, Dumas ME. Impact of the gut microbiota on inflammation, obesity, and metabolic disease. *Genome Med.* 2016;8(1):42.

73. Durkin LA, Childs CE, Calder PC. Omega-3 polysaturated fatty acids and the intestinal epithelium-A review. *Foods.* 2021;10(1):199.

74. Grimstad T, Bjorndal B, Cacabelos D, et al. Dietary supplementation of krill oil attenuates inflammation and oxidative stress in experimental ulcerative colitis in rats. *Scand J Gastroenterol.* 2012;47(1):49-58.
85. Costanzo M, Cesi V, Palone F, et al. Krill oil, vitamin D and Lactobacillus reuteri cooperate to reduce gut inflammation. Benef Microbes. 2018;9(3):389-399.

86. Kim JH, Hong SS, Lee M, et al. Krill Oil-Incorporated Liposomes As An Effective Nanovehicle To Ameliorate The Inflammatory Responses Of DSS-Induced Colitis. Int J Nanomedicine. 2019;14:8305-8320.

87. Liu F, Smith AD, Solano-Aguilar G, et al. Mechanistic insights into the attenuation of intestinal inflammation and modulation of the gut microbiome by krill oil using in vitro and in vivo models. Microbiome. 2020;8(1):83.

88. Prossomariti A, Scaioli E, Piazzi G, et al. Short-term treatment with eicosapentaenoic acid improves inflammation and affects colonic differentiation markers and microbiota in patients with ulcerative colitis. Sci Rep. 2017;7(1):7458.

89. Watson H, Mitra S, Croden FC, et al. A randomised trial of the effect of omega-3 polyunsaturated fatty acid supplements on the human intestinal microbiota. Gut. 2018;67(11):1974-1983.

90. Ye J, Lv L, Wu W, et al. Butyrate protects mice against methionine-choline-deficient diet-induced non-alcoholic steatohepatitis by improving gut barrier function, attenuating inflammation and reducing endotoxin levels. Front Microbiol. 2018;9:1967.

91. Xu Z, Tang H, Huang F, et al. Algal oil rich in n-3 PUFA alleviates DSS-induced colitis via regulation of gut microbiota and restoration of intestinal barrier. Front Microbiol. 2020;11:615404.

92. Hu S, Du M, Su L, Yang H. Phosphatidylserine from portunus trituberculatus eggs alleviates insulin resistance and alters the gut microbiota in high-fat-diet-fed mice. Mar Drugs. 2020;18(9):483.

93. Lu C, Sun T, Li Y, Zhang D, Zhou J, Su X. Modulation of the gut microbiota by krill oil in mice fed a high-sugar high-fat diet. Front Microbiol. 2017;8:905.

94. Morishita M, Tanaka T, Shida T, Takayama K. Usefulness of colon targeted DHA and EPA as novel diabetes medications that promote intrinsic GLP-1 secretion. J Control Release. 2008;132(2):99-104.

95. Pavlisova J, Horakova O, Kalendova V, et al. Chronic n-3 fatty acid intake enhances insulin response to oral glucose and elevates GLP-1 in high-fat diet-fed obese mice. Food Funct. 2020;11(11):9764-9775.

96. Tou JC, Jaczynski J, Chen YC. Krill for human consumption: nutritional value and potential health benefits. Nutr Rev. 2007;65(2):63-77.

97. de Souza CO, Teixeira AAS, Biondo LA, Lima Junior EA, Batatinha HAP, Rosa Neto JC. Palmitoleic acid improves metabolic functions in fatty liver by PPARalpha-dependent AMPK activation. J Cell Physiol. 2017;232(8):2168-2177.

98. Sharma L, Lone NA, Knott RM, Hassan A, Abdullah T. Trigonelline prevents high cholesterol and high fat diet induced hepatic lipid accumulation and lipo-toxicity in C57BL/6J mice, via restoration of hepatic autophagy. Food Chem Toxicol. 2018;121:283-296.

99. Zhang J, Yang A, Wu Y, et al. Stachydrine ameliorates carbon tetrachloride-induced hepatic fibrosis by inhibiting inflammation, oxidative stress and regulating MMPs/TIMPs system in rats. Biomed Pharmacother. 2018;97:1586-1594.

100. Ursoniu S, Sahebkar A, Serban MC, et al. Lipid-modifying effects of krill oil in humans: systematic review and meta-analysis of randomized controlled trials. Nutr Rev. 2017;75(5):361-373.

How to cite this article: Mitrovic M, Sistilli G, Horakova O, Rossmeisl M. Omega-3 phospholipids and obesity-associated NAFLD: Potential mechanisms and therapeutic perspectives. Eur J Clin Invest. 2022;52:e13650. https://doi.org/10.1111/eci.13650