Dear Editor,

The viral pandemic known as coronavirus disease (COVID-19), which started at the end of 2019 in the city of Wuhan, China, has reached daunting proportions in several countries worldwide because of the speed of its dissemination [1].

The identification that the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a virus transmitted through airways or by direct contact with the mucosas [2] has prompted the dental community to become alert. The sensation was that dentistry would face an even greater challenge since this profession not only exposes the practitioner to extremely close contact with the patient’s airways but also uses dental procedures causing the production of aerosols, which can potentially contaminate several surfaces in the dental office.

Some interesting studies bringing important information for the dentist began to be published. For instance, the use of personal protective equipment (PPE) and the disinfection of surfaces have become the centre of scientific information for the dental community [3, 4].

Kampf et al. [5] performed a literature review of 22 studies on the virucidal capacity of several substances, which were tested against various coronaviruses (both human and animal ones) regarding the disinfection of inanimate surfaces. They concluded that human coronavirus on inanimate surfaces could be inactivated by using ethanol (62–71%), hydrogen peroxide (0.5%) or sodium hypochlorite (0.1%) for 1 min, whereas other substances such as benzalkonium chloride (0.05% and 0.2%) and chlorhexidine digluconate (0.02%) were less effective. The authors also pointed out that although no study had tested the virucidal capacity of those agents against SARS-CoV-2, they expected a similar effect against this virus [5].

In the absence of any disinfection procedure, SARS-CoV-2 has a half-life of 6.8 h on a plastic surface and of 5.6 h on a stainless steel surface. On the other hand, its half-life was estimated to be 1.1 h in aerosol environments [6].

The identification that ACE2—a cell surface receptor necessary for the virus to enter into the human cell—may be present on the surface of oral mucosal cells [7] and that the virus was also found in saliva [8] might, perhaps, have caused greater anxiety in some dentists despite the fact that viral load is higher in the oropharynx [9].

In March 2020, a study by Peng et al. [4] published in the International Journal of Oral Science brought information on transmission routes and possible control strategies in the dental practice [4]. However, the suggestion to use mouthwash...
with 1% hydrogen peroxide or 0.2% povidone in order to
decrease the viral load in saliva, based on the idea that
SARS-CoV-2 would be vulnerable to oxidation, does not
seem to be based on scientific evidence to date. It is known
that the mouthwash provides a microbiological control
characterised by an active substance with substantively (resid-
ual antimicrobial activity), which allows not only a mechani-
cal effect at the moment of application but also a bacteriostatic
and/or virucidal effect over a given period of time [10].
However, there is no information on the substances reported
in the article regarding SARS-CoV-2 in this sense, meaning
that their indication is not scientifically proven as they might
lead to damage to the patient, such as risks of broncho-
asthmatic and allergy with hydrogen peroxide and
povidone-iodine, respectively. On the other hand, catalase,
produced by diverse pathogens, degrades hydrogen peroxide
and releases oxygen, creating bubbles which can potentially
be compared with aerosols.

Although ACE2 is present in some types of cells, including
those of the oral cavity [7], the virus replicates more frequent-
ly and more easily in the pulmonary epithelium. To et al.
found that SARS-CoV-2 can be present in the saliva on a
sustained and consistent basis for days. This raised the ques-
tion of whether saliva can contain nasopharyngeal and pulmo-
nary secretions by the action of cilia lining the airway epithe-
lium, suggesting that the detection of the virus in saliva may
not be necessarily related to salivary glands [8]. Other respira-
atory viruses, such as the influenza virus, can be present in
the oral cavity through the breathing process [11].

The study by Pen et al. [4] served as a conduct guide for
dental practitioners worldwide, including indication for use
of mouthwash with 1% hydrogen peroxide and 0.2% povidone-
iodine. Brazil, Spain and Portugal have seen an increasing
influence of these recommendations issued by class associa-
tions. It seems that hydrogen peroxide and povidone-iodine
might reduce the amounts of viral particles in the oral cavity,
suggesting that this approach would decrease the likelihood of
infection among practitioners and contamination of the envi-
ronment as well. However, by comparing the decontamination
of inanimate surfaces to that of the mucosal surface, the indi-
cation of mouthwash proposed by the article might cause con-
fusion among the practitioners, with undesirable effects on the
healthcare protocols established for the pandemic.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interests.

References

1. Li JY, You Z, Wang Q, Zhou ZJ, Qiu Y, Luo R, Ge XY (2020) The
epidemic of 2019-novel-coronavirus (2019-nCoV) pneumonia and
insights for emerging infectious diseases in the future. Microbes
Infect. https://doi.org/10.1016/j.micinf.2020.02.002

2. Wang C, Horby PW, Hayden FG, Gao GF (2020) A novel corona-
virus outbreak of global health concern. Lancet. https://doi.org/10.1016/S0140-6736(20)30185-9

3. Meng L, Hua F, Bian Z (2020) Coronavirus disease 2019 (COVID-
19): emerging and future challenges for dental and oral medicine. J
Dent Res https://doi.org/10.1177/0022034520914246

4. Peng X, Xu X, Li Y, Cheng L, Zhou X, Ren B (2020) Transmission
routes of 2019-nCoV and controls in dental practice. Int J Oral Sci.
https://doi.org/10.1038/s41368-020-0075-9

5. Kampf G, Todt D, Pfaender S, Steinmann E (2020) Persistence of
coronaviruses on inanimate surfaces and their inactivation with bio-
cidal agents. J Hosp Infect. https://doi.org/10.1016/j.jhin.2020.01.
022

6. van Doremalen N, Bushmaker T, Morris DH, Holbrook MG,
Gamble A, Williamson BN, Tamin A, Harcourt JL, Thornburg
NJ, Gerber SI, Llloyd-Smith JO, de Wit E, Munster VJ
(2020) Aerosol and surface stability of SARS-CoV-2 as compared
with SARS-CoV-1. N Engl J Med. https://doi.org/10.1056/NEJMc2004973

7. Xu H, Zhong L, Deng J, Peng J, Dan H, Zeng X, Li T, Chen Q
(2020) High expression of ACE2 receptor of 2019-nCoV on the
epithelial cells of oral mucosa. Int J Oral Sci. https://doi.org/10.
1038/s41368-020-0074-x

8. To KK, Tsang OT, Leung WS, Tam AR, Wu TC, Lung DC, Yip
CC, Cai JP, Chan JM, Chik TS, Lau DP, Choi CY, Chen LL, Chan
WM, Chan KH, Ip JD, Ng AC, Poon RW, Luo CT, Cheng VC,
Chan JF, Hung IF, Chen Z, Chen H, Yuen KY (2020) Temporal
profiles of viral load in posterior oropharyngeal saliva samples and
serum antibody responses during infection by SARS-CoV-2: an
observational cohort study. Lancet Infect Dis. https://doi.org/10.
1016/S1473-3099(20)30196-1

9. To KK, Tsang OT, Chik-Yan Yip C, Chan KH, Wu TC, Chan
JMC, Leung WS, Chik TS, Choi CY, Kandamby DH, Lung DC,
Tam AR, Poon RW, Fung AY, Hung IF, Cheng VC, Chan JF,
Yuen KY (2020) Consistent detection of 2019 novel coronavirus
in saliva. Clin Infect Dis. https://doi.org/10.1093/cid/ciaa149

10. Bescos R, Ashworth A, Cutler C, Brookes ZL, Belfield L, Rodiles
A, Casas-Agustench P, Farnham G, Liddle L, Burlleigh M, White D,
Easton C, Hickson M (2020) Effects of chlorhexidine mouthwash
on the oral microbiome. Sci Rep. https://doi.org/10.1038/s41598-
020-61912-4

11. Yan J, Grantham M, Pantelic J, Bueno de Mesquita PJ, Albert B,
Liu F, Ehrman S, Milton DK; EMIT Consortium (2018) Infectious
viruses in exhaled breath of symptomatic seasonal influenza cases
from a college community. Proc Natl Acad Sci USA. https://doi.
org/10.1073/pnas.1716561115

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.