Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
COVID-19 and the Chemical Senses: Supporting Players Take Center Stage

Keiland W. Cooper, 1, 14 David H. Brann, 2, 14 Michael C. Farrugia, 3 Surabhi Bhutani, 4 Robert Pellegrino, 5, 6 Tatsuya Tsukahara, 2 Caleb Weinreb, 2 Paule V. Joseph, 7, 8 Eric D. Larson, 9 Valentina Parma, 10 Mark W. Albers, 11 Linda A. Barlow, 12, 14 Sandeep Robert Datta, 2, 14 and Antonella Di Pizio 13, 14
1 Interdepartmental Neuroscience Program, University of California Irvine, Irvine, CA, USA
2 Harvard Medical School Department of Neurobiology, Boston, MA, USA
3 Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
4 School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, USA
5 Department of Food Science, Institute of Agriculture, University of Tennessee, Knoxville, TN, USA
6 Smell & Taste Clinic, Department of Otorhinolaryngology, TU Dresden, Dresden, Germany
7 Division of Intramural Research, National Institute of Nursing Research (NINR) National Institutes of Health, Bethesda, MD, USA
8 National Institute on Alcohol Abuse and Alcoholism (NIAAA) National Institutes of Health, Bethesda, MD, USA
9 Department of Otolaryngology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA and the Rocky Mountain Taste and Smell Center, Aurora, CO, USA
10 Department of Psychology, Temple University, Philadelphia, PA, USA
11 Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
12 Department of Cell and Developmental Biology, Graduate Program in Cell Biology, Stem Cells and Development and the Rocky Mountain Taste and Smell Center, University of Colorado, School Medicine, Anschutz Medical Campus, Aurora, CO, USA
13 Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
14 These authors contributed equally
* Correspondence: linda.barlow@cuanschutz.edu (L.A.B.), srdatta@hms.harvard.edu (S.R.D.), a.dipizio.leibniz-lsb@tum.de (A.D.P.)
https://doi.org/10.1016/j.neuron.2020.06.032

The main neurological manifestation of COVID-19 is loss of smell or taste. The high incidence of smell loss without significant rhinorrhea or nasal congestion suggests that SARS-CoV-2 targets the chemical senses through mechanisms distinct from those used by endemic coronaviruses or other common cold-causing agents. Here we review recently developed hypotheses about how SARS-CoV-2 might alter the cells and circuits involved in chemosensory processing and thereby change perception. Given our limited understanding of SARS-CoV-2 pathogenesis, we propose future experiments to elucidate disease mechanisms and highlight the relevance of this ongoing work to understanding how the virus might alter brain function more broadly.

Introduction

Disturbances in smell and taste have emerged as the predominant neurological symptom of the coronavirus disease 2019 (COVID-19), which is caused by SARS-CoV-2. Perhaps as many as 80% or more of patients infected with SARS-CoV-2 report anosmia, hyposmia, ageusia, dysgeusia, or changes in chemesthesis (the ability to sense chemical irritants) (Giacomelli et al., 2020; Baye et al., 2020; Lechien et al., 2020a; Parma et al., 2020; Spinato et al., 2020; Yan et al., 2020). Self-reported changes in chemical perception can predict whether a subject will test positive for SARS-CoV-2 (Bénézet et al., 2020; Fontanet et al., 2020; Haehner et al., 2020; Moein et al., 2020; Wagner et al., 2020; Meni et al. 2020). One recent observational study that included more than two million participants revealed that the loss of smell and taste is more predictive than all other symptoms, including fatigue, fever, or cough (Menni et al., 2020). Most of these studies have lacked objective chemosensory assessment, raising the possibility that chemosensory disturbances are even more prevalent than currently appreciated; indeed, smell testing reveals increased odor detection thresholds in a subset of COVID-19 patients who subjectively report a normal sense of smell (Hornuss et al., 2020; Iravani et al., 2020; Moein et al., 2020; Qiu et al., 2020). These findings have prompted researchers to develop accessible smell tests (in which individuals rate the quality and intensity of scents originating from, e.g., scratch-and-sniff cards or common kitchen items) for potential use as screening tools for COVID-19 (Iravani et al., 2020; Rodriguez et al., 2020). The close relationship between COVID-19 and changes in chemical sensation raises questions about how SARS-CoV-2 might alter the cells and circuits charged with detecting stimuli and creating perception. Identifying these pathophysiological mechanisms has important implications for the development of possible treatments, as well as for the design of clinical chemosensory assessments to detect SARS-CoV-2 infection. Further, given that the COVID-19 syndrome is associated with neurological symptoms (including dizziness, headache, and altered consciousness) and stroke, characterizing these mechanisms may shed light on how SARS-CoV-2 disrupts neural systems more broadly (Doeherty et al., 2020; Helms et al., 2020; Mao et al., 2020). Here we largely focus on interactions between SARS-CoV-2 and the olfactory system, which have been explored in some detail as the pandemic has progressed; as recent data suggest that SARS-CoV-2 may independently target taste and chemesthesis (Parma et al., 2020), we also...
More Than the Common Cold

SARS-CoV-2 belongs to the coronavirus family, which includes the pandemic MERS-CoV and SARS-CoV and the lesser known but more common endemic coronaviruses HCoV-OC43, HCoV-HKU1, HCoV-229E, and HCoV-NL63. The endemic coronaviruses can infect the upper airway and frequently cause the common cold, which in turn is associated with both acute and chronic changes in smell and taste (Dalton, 2004; Mäkelä et al., 1998; Pellegrino et al., 2020; Rowan et al., 2015; Suzuki et al., 2007; Wood et al., 2011). The main proposed mechanisms for acute viral-mediated changes in smell include conductive deficits caused by loss of patency due to swelling of the mucosa and increased mucus production, changes in mucus composition, and secondary changes in olfactory signaling caused by local release of inflammatory intermediates like cytokines (Åkerlund et al., 1995; Chen et al., 2019; Damm et al., 2002; Schlosser et al., 2016; Trotier et al., 2007; Victores et al., 2018; Zhao et al., 2004). While cold-causing viruses likely act through multiple mechanisms to influence smell, recovery from virus-associated olfactory deficits tend to resolve with a time course similar to that of other cold-related symptoms like nasal congestion (Hummel et al., 1998a, 1998b; Zhao et al., 2014).

In a subset of patients, viral infections lead to long-lasting (i.e., months) post-viral anosmia, which is thought to result from direct damage to the olfactory sensory neurons (OSNs) responsible for odor detection in the olfactory epithelium (OE) (Cavazzana et al., 2018; Duncan and Seiden, 1995; Welge-Lüssen, 2005; Welge-Lüssen and Wolfensberger, 2006). Partial or full recovery of olfactory function in these patients is likely due to the recruitment of stem cells in the olfactory epithelium, which can replace damaged OSNs over long timescales. The recovery process is often accompanied by parosmias—distortions of smell perception—associated with wiring errors between newborn OSNs and their post-synaptic targets in the olfactory bulb (OB) (Figure 1; Leopold, 2002; Rombaux et al., 2009). Some cases of post-viral anosmia have been hypothesized to be the consequence of viral damage to central nervous system structures; in these cases, coronaviruses and other viruses are thought to gain access to the OB either directly via OSN axons or indirectly by passing through perforations in the cribriform plate (Figure 1; Barnett and Perlman, 1993; Schwob et al., 2001; van Riel et al., 2015).

However, the natural history of COVID-19-associated anosmia argues that SARS-CoV-2 attacks the olfactory system through mechanisms distinct from those used by the more benign endemic coronaviruses. Many patients report anosmia as their first symptom, or in the absence of rhinorrhea or nasal congestion, suggesting that if inflammation is a key component of pathogenesis, it is local rather than generalized (Giacomelli et al., 2020; Kaye et al., 2020; Lechien et al., 2020b; Parma et al., 2020; Spinato et al., 2020; Vaira et al., 2020); indeed, the sensitivity of anosmia as a predictor of COVID-19 increases in patients.
without other nasal symptoms (Haehner et al., 2020; Shoer et al., 2020). Consistent with this observation, imaging studies of the olfactory system in COVID-19 patients are either normal or reveal focal inflammation (Eliezer et al., 2020; Galougahi et al., 2020). In addition, resolution of anosmia seems more rapid than observed in post-viral olfactory loss, in many cases occurring in weeks (rather than months) after initial symptoms develop (Hopkins et al., 2020; Kaye et al., 2020; Lechien et al., 2020a; Yan et al., 2020). Finally, the limited data currently available suggest that parosmias are infrequent during or after COVID-19 recovery (although this may change as we learn more) (Lechien et al., 2020a; Parma et al., 2020).

Inferring Disease Mechanisms from Patterns of Gene Expression

Coronaviruses are so named because of the halo of spike (S) proteins that decorate their surface (Du et al., 2009; Perlman and Netland, 2009). These S proteins interact with specific cellular receptors to bind host cells; binding is followed by protease-mediated S protein cleavage, which exposes fusion-promoting domains that enable viral entry. SARS-CoV-2 infects cells through interactions between its S protein and the Angiotensin I Converting Enzyme 2 (ACE2) receptor on target cells; ACE2 plays a crucial modulatory role in the renin-angiotensin system, which regulates blood pressure and salt water balance (Eliezer et al., 2020; Galougahi et al., 2020). Infection requires S protein cleavage, likely by the host cell serine protease TMPRSS2, although other proteases may also be involved (Hoffmann et al., 2020a, 2020b; Zang et al., 2020). With the exception of HCoV-NL63, the endemic coronaviruses do not use ACE2 as their primary cellular receptor (Belouzard et al., 2012; Zumla et al., 2016), a molecular distinction that likely underlies key differences in pathophysiology. SARS-CoV also uses ACE2 as its main receptor, and in one case study SARS-CoV infection was associated with anosmia (Hwang, 2006), although (unlike COVID-19) chemosensory disturbances are not a hallmark of SARS. Differences between SARS-CoV and SARS-CoV-2 in terms of their impacts on chemosensory systems may relate to biophysical differences, as the receptor-binding domain of the SARS-CoV-2 spike protein binds ACE2 with higher affinity and with a different binding mode than that of SARS-CoV (Li et al., 2003; Shang et al., 2020a; Walls et al., 2020). Species variation in the protein sequence of ACE2 significantly affects its affinity for the SARS-CoV-2 S protein, which in turn renders distinct model organisms differentially susceptible to infection (Wan et al., 2020; Zhao et al., 2020).

Given data suggesting that ACE2 is necessary for SARS-CoV-2 to infect host cells, researchers have used a variety of approaches to discern the pattern of expression of ACE2 and other viral entry proteins across the tissue landscape, with the goal of inferring possible target cells and disease mechanisms. For example, two studies have reported that cells in the nasal respiratory epithelium (RE) have higher expression of SARS-CoV-2 entry genes than cells in the RE that line the trachea or lungs (Hou et al., 2020; Sungnak et al., 2020). Consistent with this finding, recent work in macaques, ferrets, and cats identifies the nasal epithelium as a major source of viral RNA after SARS-CoV-2 infection (Munster et al., 2020; Shi et al., 2020). These data suggest that the nasal epithelium may act as a major reservoir for the virus (Figures 1 and 2).

Although much of the human nose is lined with RE, sensory detection occurs in the olfactory epithelium, which houses OSNs and is located in the superior-most regions of the nasal epithelium (Figures 1 and 2). The OE is a complex chemosensory tissue composed of multiple cell types, including immature and mature OSNs, non-neuronal cell types such as the sustentacular, Bowman’s gland, and microvillar cells, and stem cells including globose and horizontal basal cells. Sustentacular cells are particularly intimately associated with OSNs, and they “enwrap” the sensory dendritic cilia that project into the airspace and enable odor detection (Liang, 2020). Four recently published studies—using species ranging from mouse to human—have explored the cell types in the OE that express ACE2 and other viral entry genes (Brann et al., 2020; Chen et al., 2020b; Fodoulian et al., 2020; Ziegler et al., 2020); all four conclude that OSNs do not express ACE2 (Figure 2). Instead, co-expression of ACE2 and TMPRSS2 was observed in key support cells (including sustentacular, Bowman’s gland, and microvillar cells) and stem cells that repopulate the epithelium after damage. Although ACE2 mRNA was identified using single-cell RNA sequencing (scSeq) techniques in only a small subset of these cells, both Brann et al. (2020) and Fodoulian et al. (2020) have demonstrated high level expression of ACE2 protein in a large population of sustentacular cells concentrated in the dorso-medial aspect of the mouse OE, which corresponds to the dorsal “zone” traditionally identified via molecular markers (Gussing and Bohm, 2004; Miyamichi et al., 2005). Consistent with this observation, mouse and human sustentacular cells identified as ACE2 positive by scSeq largely derive from the dorsal zone (Brann et al., 2020).

The co-expression of ACE2 and TMPRSS2 suggests that OE support cells may be the initial targets of SARS-CoV-2 infection. These inference-based conclusions are increasingly being pressure-tested by experiments in which model organisms are directly subject to SARS-CoV-2 infection. One recent paper in the golden hamster reports that SARS-CoV-2 infects sustentacular cells but not OSNs (Bryche et al., 2020). Intriguingly, this phenotype is accompanied by damage to the OSN ciliary layer and an increase in the number of microglia present in the OE, both of which are partially reverted to normal at 14 days after infection. A similar study in the hamster identified a large number of cells in the OE that were infected by SARS-CoV-2, although OE cell types were not definitively identified; inspection of the photomicrographs in that paper reveals that most SARS-CoV-2-positive cells traverse the thickness of the OE, suggesting that sustentacular cells are primary targets for infection (Sia et al., 2020). Human OE samples obtained from COVID-19 patients have similarly been queried for infection by SARS-CoV-2, which has revealed coronaviral antigens present in OE cells; infected cell types were not unambiguously identified, but their shape and position is consistent with the virus targeting sustentacular cells rather than OSNs (Cantuti-Castelvetri et al., 2020; Meinhardt et al., 2020).

What mechanisms might link infection of support cells to the acute changes in smell reported in COVID-19 (Figure 3)? Localized inflammation in the epithelium might block the olfactory...
Olfactory bulb is inferred from the mouse data; there are currently no available human olfactory bulb sequencing datasets. Figure modified from Brann et al. (2020).

Figure 2. ACE2-Positive Cells in the Nasal Respiratory Epithelium, Olfactory Epithelium, and the Olfactory Bulb
Schematic of a sagittal view of the human head, in which respiratory and olfactory epithelium as well as the olfactory bulb in the brain are colored (left). For each tissue, a schematic of the anatomy and known major cell types are shown (middle). The nose contains both respiratory and olfactory epithelia. The olfactory epithelium is restricted to medial portion of the superior turbinate and the superior portion of the nasal septum, whereas the respiratory epithelium is continuous with the upper airway (Dahl and Mygind, 1998). Olfactory sensory neurons within the olfactory epithelium are responsible for detecting odors, and in mice and humans they are continuously regenerated from globose progenitors throughout life (Durante et al., 2020; Schwob et al., 2017). The olfactory epithelium also contains other support and non-neuronal cell types, as well as reserve horizontal basal stem cells that respond to injury and can reconstitute olfactory epithelial cell types (Choi and Goldstein, 2018). In the respiratory epithelium, basal progenitor cells generate all epithelial cell types, including ciliated and secretory cells. In the olfactory bulb in the brain (tan), the axons from olfactory sensory neurons coalesce into glomeruli, and mitral/tufted cells innervate these glomeruli and send olfactory projections to downstream olfactory areas. ACE2-positive cell types are indicated in gray (right). Four recent reports have all concluded that ACE2 is not expressed in olfactory sensory neurons (Brann et al., 2020; Chen et al., 2020b; Fodoulian et al., 2020; Ziegler et al., 2020). Pericyte ACE2 expression in the olfactory bulb is inferred from the mouse data; there are currently no available human olfactory bulb sequencing datasets. Figure modified from Brann et al. (2020).
consequence of the death of support cells, which in mouse models can lead to cascading changes in the structure and function of the OE (Bergström et al., 2003; Chen et al., 2019; Herrick et al., 2017). Of note, the horizontal basal cells that are normally quiescent but play a particularly important role in regenerating damaged OE also express ACE2 (Brann et al., 2020; Schwob et al., 2017); infection of these cells may therefore slow functional recovery over long time scales.

Is SARS-CoV-2 “Neuroinvasive”? Lessons from the Olfactory Bulb

Recent MRI studies have revealed transient changes in the OB that accompany COVID-related anosmia, consistent with some degree of central involvement in at least a subset of patients (Laurendon et al., 2020; Politi et al., 2020). Certain coronaviruses can pass from the OE through the cribriform plate to infect the OB (Dubé et al., 2018; Durante et al., 2016). It remains unclear whether SARS-CoV-2 (given that it likely does not directly infect OSNs, and thus cannot pass directly through the olfactory nerve; see Figure 1) has this capacity; nevertheless, this possibility raises the question of whether SARS-CoV-2 can directly target neurons, glia, or other cell types in the OB. To date there are no scSeq datasets for the human olfactory bulb, and thus the distribution of ACE2 and other SARS-CoV-2-specific cell entry genes remains to be determined. However, scSeq and immunostaining of the mouse OB has revealed—as in the nose—that bulb neurons do not express detectable levels of ACE2 (Figure 2; Brann et al., 2020). Consistent with this finding, targeted deep sequencing of dopaminergic juxtaglomerular cells, which receive direct inputs from nose OSNs, failed to reveal Ace2 mRNA (Brann et al., 2020). Furthermore, OB cell targeting was not observed in studies of hamsters infected with SARS-CoV-2 (Bryche et al., 2020).

In contrast, vascular pericytes in the OB expressed high levels of ACE2 protein (Brann et al., 2020), consistent with the reported expression of ACE2 in perivascular cells in the brain and throughout the body (Chen et al., 2020a; He et al., 2020). Pericytes are critical for maintaining the blood-brain barrier, for defining local blood pressure, and for mediating neuroimmune responses (Armulk et al., 2011); infection of these cells thus has the potential to alter perfusion or recruit inflammation, both...
of which can indirectly influence the function of neural circuits. Thus, while vascular effects and inflammation could influence central brain structures involved in odor perception, current data suggest that it is unlikely that SARS-CoV-2 directly infects OB neurons responsible for processing odor information from the nose and conveying it to the cortex.

Consistent with observations in the OB, there is an increasing amount of data suggesting that ACE2 is not appreciably expressed in neurons in the brain at either the RNA or protein level. Meta-analysis of ten separate mouse deep-sequencing datasets drawn from across the central and peripheral nervous system did not reveal significant expression of either ACE2 or TMPRSS2 in any neural cell type (Branan et al., 2020); scSeq analysis of human prefrontal cortex and hippocampus failed to identify any ACE2-expressing cells (Chen et al., 2020c); and multiple immunostaining studies have demonstrated ACE2 expression in brain vasculature but not in neurons or glia (Branan et al., 2020; Hamming et al., 2004; Kehoe et al., 2016). These expression-based studies are now being complemented by data from a variety of animal models that can be infected with SARS-CoV-2. Infection of macaques, cats, and ferrets with SARS-CoV-2 (which in the monkey and cat resulted in pulmonary infection) did not reveal any virus present in the brain (Munster et al., 2020; Shi et al., 2020). In addition, recent human autopsy studies reveal that the brain contains the least amount of SARS-CoV-2 of any sampled tissue in the body (Puuelles et al., 2020).

In contrast to these observations, several reports have suggested that SARS-CoV-2 may be “neuroinvasive,” which we take here to mean the direct infection of neurons or glia in the central nervous system (Baig et al., 2020; Li et al., 2020; Meinhardt et al., 2020; Morris and Zohrabian, 2020; Wu et al., 2020). Arguments supporting this position often refer to data demonstrating that coronaviruses can hop from the nose to the brain (Farhadian et al., 2020; Schaller et al., 2020). Furthermore, two studies have failed to identify SARS-CoV-2 RNA in the CSF of patients (Farhadian et al., 2020; Schaller et al., 2020). Notably, a recent experiment assessed the consequences of SARS-CoV-2 exposure in mice in which human ACE2 is transgenically expressed under control of the mouse ACE2 promoter (which should largely, although not perfectly, recapitulate endogenous patterns of ACE2 expression); while nasal infection and subsequent spread was sufficient to ultimately kill these mice, post-mortem analysis failed to reveal SARS-CoV-2 in the brain (Bao et al., 2020).

However, other lines of evidence more directly support the possibility that SARS-CoV-2 can directly infect neurons or glia. In one patient autopsy sample, SARS-CoV-2 was identified via antigen staining to be distributed across the brain parenchyma (Xu et al., 2005). Two papers have reported Ace2 staining in astrocytes in the rat cerebellum and brainstem (Gallagher et al., 2006; Gowrishankar and Clark, 2016), a paper from the Human Cell Atlas has reported ACE2 expression in oligodendrocytes (Muus et al., 2020), and a meta-analysis of a single scSeq dataset revealed low-level expression of ACE2 in human middle temporal gyrus and posterior cingulate cortex (although that same dataset included data for only a handful of vascular cells, making it difficult to assess relative expression levels) (Chen et al., 2020c). Two recent papers have observed anti-ACE2 staining in vivo in the mouse olfactory bulb, the first in a subset of mitral cells (Bilinska et al., 2020), the second in all mitral cells (Ueha et al., 2020); the latter paper also reports the presence of ACE2 protein in all ON nuclei (but not OSN cilia, raising the possibility of non-specific staining). Cortical neurons in human brain organoids (which express ACE2) can be infected by SARS-CoV-2 (Gopalakrishnan et al., 2020). Perhaps most convincingly, nasal instillation of SARS-CoV-2 in a mouse with the human ACE2 gene knocked into the mouse Ace2 locus caused infection of brain neurons, although the number, distribution, and identity of these cells was not characterized (Sun et al., 2020).

We are only now beginning to understand SARS-CoV-2 pathogenesis and so it is important to recognize key caveats in interpreting data suggesting SARS-CoV-2 does or does not infect neurons and glia directly. Conclusions drawn based upon the presence or absence of ACE2 message or protein depend upon the specific methods being used: for example, scSeq techniques have low sensitivity but an identifiable noise floor, whereas immunohistochemistry depends upon the vagaries of each anti-ACE2 antibody. Similarly, conclusions based upon SARS-CoV-2 infection of model organisms (transgenic or otherwise) depend upon the expression pattern and S protein affinity of the ACE2 protein in each model, as well as a number of other species-specific factors relating to viral tropism and immune responses. It is clear that there are significant inconsistencies among the datasets that require reconciliation; definitively addressing the question of whether SARS-CoV-2 can infect human neurons (in the bulb or elsewhere) will ultimately require detailed analysis of autopsy tissue. It is also important to note that SARS-CoV-2 in principle has access to the brain through routes independent of the nasal epithelium, including via vasculature and nerves innervating infected tissues; these modes of infection have been observed for other viruses (Dahm et al., 2016; Koyuncu et al., 2013).

In light of this controversy, it is worth noting that many of the observed neurological consequences of COVID-19 (like altered consciousness and stroke) can in principle be explained by a primary vasculopathy and hypercoagulability (Chen et al., 2020d; Helms et al., 2020; Zhang et al., 2020) or by a secondary deficit...
in brain perfusion caused by elevated cytokines (Poyiadji et al., 2020). In contrast, clinical signs of encephalitis (i.e., infection of neurons), such as increased risk of seizures and inflammatory CSF, have not been commonly observed (Lu et al., 2020). This perspective is consistent with recent MRI findings in COVID-19 patients (Beyrouti et al., 2020; Coolen et al., 2020), and two separate autopsy series that failed to identify any signs of encephalitis (Schaller et al., 2020; Solomon et al., 2020). At this point, therefore, the balance of the clinical evidence points to SARS-CoV-2 influencing the brain indirectly through effects on vasculature, although this view may change as we learn more about viral pathogenesis and we gain access to more detailed clinical information.

SARS-CoV-2 Targets Taste and Chemesthesia

Smell, taste, and chemesthesia are readily distinguishable but synergize to create the perception of the flavor in the mouth. A vast spectrum of volatile food odors is detected retronasally by OSNs, while the taste repertoire is restricted to non-volatile sour, salt, sweet, bitter, and umami stimuli that directly activate taste buds on the tongue. The spiciness of chili peppers and the cool of mint are neither odors nor tastes, but rather activate taste buds on the tongue. The spiciness of chili peppers and the cool of mint are neither odors nor tastes, but rather activate taste buds on the tongue. The spiciness of chili peppers and the cool of mint are neither odors nor tastes, but rather activate taste buds on the tongue.

Most recent reports of smell loss in COVID-19 patients (see above) have generally considered smell and taste loss as unitary and excluded consideration of chemesthesia altogether. Importantly, recent data suggest that taste and chemesthesia may be disturbed independently of smell in COVID-19 patients (Adamiczak et al., 2020; Lechien et al., 2020a; Parma et al., 2020; Vaira et al., 2020). For example, Parma et al. (2020) showed that ~60% of participants link taste loss (which could be attributed to flavor) to deficits in at least one specific taste quality (e.g., salty taste), suggesting that at least some participants distinguish changes in the taste component of flavor. However, the basic taste modalities were not predictably affected, with some taste qualities being differentially impacted across individuals. What mechanistic hypotheses can explain the specific impact of SARS-CoV-2 on taste function, and which cell populations may be targeted by the virus such that their loss would lead to distorted taste? Taste perception is supported by taste buds, which have a characteristic distribution on the tongue and which house taste receptor cells (TRCs) that are categorized into three morphological types (Figure 4): type I for support, type II for sweet, bitter, or umami, and type III for sour) (Chaudhari and Roper, 2010). Like OSNs, individual TRCs are constantly being renewed by stem cells, and thus taste function and perception also depend on rapid and reliable production of the proper proportions of each of the different TRCs (Barlow and Klein, 2015).

Although formal analyses are only now emerging, a cursory mining of publicly available datasets of type II and III TRCs in mice reveals that ACE2 is expressed by sour-sensing type III TRCs (Han et al., 2020; Lee et al., 2017; Qin et al., 2018; Shigemura et al., 2019; Zhang et al., 2019). While type II and type III TRCs express little to no TMPRSS2, Cathepsins (CTSB, CTSL) are abundant and may function as proteases to cleave SARS-CoV-2 spike protein at type II and III TRCs. Available datasets do not include transcriptional profiling for the type I TRCs, which—much like olfactory sustentacular cells—extend cellular processes that wrap type II and III TRCs (Liang, 2020; Yang et al., 2020). In addition, type I cells degrade ATP, which is used as a neurotransmitter by type II cells to convey taste information to the brain via the gustatory nerves (Bartel et al., 2006; Finger et al., 2005; Vandenbeuch et al., 2013). If type I cells are
indeed ACE2 positive and targeted by SARS-CoV-2, the loss of support cells could lead to taste bud collapse via cell death and/or reduced efficacy of taste signals to gustatory nerves (Figure 3). While human taste tissue has yet to be profiled, microarray data comparing macaque taste and non-taste lingual epithelia reveal low levels of ACE2, TMPRSS2, CTSL, and CTSA in both tissue compartments (Hevezi et al., 2009), suggesting that the machinery necessary for SARS-CoV-2 infection of taste-relevant cells may be present in humans.

Adult taste stem cells in the posterior tongue (where they are most abundant) express the marker LGR5 and can give rise to all TRC lineages (Yee et al., 2013). Despite a limited sample size, scSeq profiling revealed that murine LGR5-positive stem cells express ACE2 and TRMPSS2 and thus may be competent for infection by SARS-CoV-2 (Figure 4; Qin et al., 2018). These data raise the possibility that taste dysfuction in COVID-19 patients may be caused or exacerbated by insufficient TRC renewal due to SARS-CoV-2 stem cell damage. In addition, it has been shown that experimentally induced systemic inflammation in mice can reduce taste stem cell output, which in turn leads to depopulated taste buds and perturbed taste function (Cohn et al., 2010; Feng et al., 2014; Kaufman et al., 2018; Kim et al., 2012; Wang et al., 2007, 2009). If SARS-CoV-2 directly infects the tongue, local inflammatory processes could therefore alter stem cell properties and ultimately influence taste perception (Figure 3). Consistent with this possibility, scSeq analysis in mice and humans suggests that ACE2 is highly expressed in subsets of tongue epithelial cells, as are other proteases linked to coronavirus entry, e.g., TMPRSS11D, TMPRSS4, and CTSA (Pisco et al., 2020; Schaum et al., 2018; Venkatakrishnan et al., 2020; Xu et al., 2020).

It is important to note that—unlike OSNs—TRCs are not neurons; thus, all of the cell types identified as ACE2 positive in the tongue to date are either stem or epithelial cells. Transcriptional profiling of sensory neurons in the geniculate ganglion, whose fibers innervate fungiform taste buds, indicate that ACE2 and TMPRSS2 are not expressed (Figure 4; Dvoryanchikov et al., 2017; Zhang et al., 2019). Similarly, the vagal sensory neurons that innervate taste buds in the larynx do not express ACE2 or TMPRSS2 (Prescott et al., 2020). Obtaining more extensive data regarding SARS-CoV-2 relevant gene expression in taste epithelial populations (which have been woefully undersampled compared to similar populations in the olfactory system) will provide a better basis from which to propose mechanistic hypotheses.

In addition to taste and smell perturbations, subsets of COVID-19 patients experience a disruption of chemesthesia. Chemesthetic stimuli are detected by a variety of epithelial sensors and relayed to the brainstem via trigeminal ganglion sensory neurons, distinct branches of which innervate the nasal respiratory RE and the non-taste epithelium of the tongue, among other targets (Frasnelli and Manescu, 2017; Viana, 2011). These trigeminal somatosensory afferents are enriched for TRP channel receptors that detect chemical irritants (Roper, 2014). In the nasal cavity, several irritants are detected by solitary chemosensory cells (SCCs), which express many of the molecules required for bitter taste detection and signal transduction that characterize type II TRCs and are innervated by trigeminal fibers (Finger et al., 2003; Gulbransen et al., 2008; Tizzano et al., 2010). SCCs are capable of driving systemic physiological responses to aversive substances (like reduced respiration) and can recruit a local neurogenic inflammatory response (Saunders et al., 2014; Tizzano et al., 2010). As with the type I TRCs, it is not yet clear from sequencing data whether SCCs express SARS-CoV-2 cell entry genes. Thus how SARS-CoV-2 influences chemesthesia remains uncertain, although these effects are unlikely to be mediated by trigeminal neurons, which do not express ACE2 or TRMPSS2 (Nguyen et al., 2017, 2019).

Conclusions and Outlook

Research into possible mechanisms underlying changes in chemical perception due to COVID-19 has only just begun, and much remains to be learned about the pathophysiology of SARS-CoV-2. That said, current evidence favors a model in which SARS-CoV-2 cell entry genes in the olfactory, gustatory, and chemesthetic systems are not expressed in primary or secondary neurons, but rather are expressed in epithelial, support, and stem cells responsible for maintaining perception. This model suggests that neural function is altered indirectly due to sequelae of SARS-CoV-2 infection of peripheral support cells, including (but not limited to) local inflammation and changes in OSN gene expression and ciliary structure. Observed disease-associated changes in OB MRI intensity suggest that in a subset of patients, there is central involvement as well; given the transient nature of these changes, it is likely that they reflect either local inflammatory processes (that are, for example, a consequence of vascular infection) or more speculatively are a consequence of inflammatory cytokines diffusing from the dorsal epithelium across the perforations in the cribriform plate. Although less likely given current evidence, it also remains possible that SARS-CoV-2 directly infects OSNs or bulb neurons.

The notion that chemical sensory deficits in COVID-19 result from infection of support cells highlights an important lacuna in our understanding: while an enormous amount of effort has been devoted to understanding the molecular mechanisms underlying chemosensation—and the neural pathways that convey information about chemical cues to the brain—we still know little about the non-neuronal cells and structures that support sensory transduction. In this sense, SARS-CoV-2 provides an important opportunity to gain insight into how the complex peripheral tissues that support taste, smell, and chemesthesia enable meaningful interactions with the world.

Much of our current understanding of pathophysiological mechanisms has been inferred from patterns of ACE2 and TMPRSS2 expression. However, these inferences are constrained by our current understanding of the virus and by the predicted relationship between ACE2 mRNA and protein. Although the evidence that ACE2 is obligate for SARS-CoV-2 entry is strong, it has been suggested that other molecules such as BSG, neuropilin-1, or PIKfyve may participate in SARS-CoV-2 entry (Cantuti-Castelvetri et al., 2020; Chen et al., 2005; Kang et al., 2020; Ou et al., 2020; Wang et al., 2020). Furthermore, it has recently been reported that low-level expression of ACE2 may be sufficient to support SARS-CoV-2 infection (Lamers et al., 2020), suggesting that SARS-CoV-2 may infect apparently
ACE2-negative cell types. It is also important to note that many of the conclusions drawn about cell entry gene expression (in, for instance, the olfactory bulb) are based largely upon mouse data. Although the mouse and human ACE2 and TMPRSS2 expression data align nearly perfectly in the olfactory epithelium (Brann et al., 2020), there may be clinically relevant divergences between species in the olfactory bulb and brain (Hodge et al., 2019; Maresh et al., 2008). Finally, it is important to note that the ACE2 gene is regulated by inflammation in human cells, and other SARS-CoV-2 entry genes may be similarly modulated by primary infection and inflammation (Ansari et al., 2020; Ziegler et al., 2020). This observation raises the possibility that a broader spectrum of cells expresses ACE2 during SARS-CoV-2 infection than is currently appreciated.

Given the emerging central role of support cells in COVID pathophysiology, a key open question is how primary infection of non-neural cells alters chemical perception. Defining the pathophysiological mechanisms underlying anosmia and other SARS-CoV-2-associated disturbances in chemical sensation will require moving past inference based upon gene or protein expression and toward interrogative experiments aimed at falsifying hypotheses about the mechanistic links between, e.g., viral infection, sustentacular cell dysfunction, and altered OSN signaling. For example, the close anatomical apposition of sustentacular cell processes and OSN cilia suggest a direct role in the former in supporting the latter, but the nature of this support and how it might be abrogated after SARS-CoV-2 infection remains enigmatic.

Addressing mechanistic hypotheses will be facilitated by further experiments in mouse models in which human ACE2 is expressed under the control of the mouse ACE2 promoter (Sun et al., 2020) and by more extensive use of non-mouse model organisms, such as hamsters, ferrets, cats, and monkeys, all of which are susceptible to infection by SARS-CoV-2 (Bryche et al., 2020; Munster et al., 2020; Shi et al., 2020; Sia et al., 2020). Similarly, the development and use of benign viruses pseudotyped with the SARS-CoV-2 spike protein can be used to identify targeted cell types without the burden of a BSL-3 containment system. Developing tools to characterize the pattern of infection of SARS-CoV-2 in the olfactory system should be complemented by physiological studies in the OE, OB, and cortex—and parallel behavioral work—exploring how the function of the olfactory system evolves after SARS-CoV-2 infection. Importantly, the olfactory epithelium and tongue can be sampled in live human subjects without dissection, which should be complemented by additional work exploring the physiological function of support cells in the nose and tongue.

Finally, ongoing basic science efforts will benefit from more and better clinical data (Whitcroft and Hummel, 2020). Given the diversity of symptoms reported by patients, it remains unclear whether COVID-19 attacks chemosensation through one or many pathophysiological mechanisms, or whether specific smell or taste qualities are particularly affected. Similarly, we lack an understanding of how smell, taste, and chemesthesis evolve over the long term in the subset of patients that do not exhibit a quick recovery. Revealing the mechanisms through which SARS-CoV-2 influences chemical sensing will have important implications for our understanding of how viruses can functionally alter sensory systems in specific, and neural circuits more generally.

ACKNOWLEDGMENTS

The authors would like to thank the Global Consortium for Chemosensory Research (GCCoR) for facilitating the collaborative environment in which this manuscript was conceived. S.R.D. is supported by grants R01DC016222 and U19NS112953 from the National Institutes of Health and by the Simons Collaboration on the Global Brain. L.A.B. is supported by grants R01 DC012383 and R21 CA236480. K.W.C. gratefully acknowledges support from UC1 INP, E.D.L. is supported by NIDCD K23 DC014747 to V. Ramakrishnan, R01s DC016555 and DC017679 to S. Kinnamon, and R01 DC014253 to D. Restrepo. M.C.F. is supported by the Yale Medical School Fellowship, P.V.J. is supported by the National Institute of Nursing Research under award number 12IAAN000035-01. P.V.J. is also supported by the Office of Workforce Diversity, National Institutes of Health, and the Rockefeller University Heilbrunn Nurse Scholar Award. D.H.B. is supported by an NSF Graduate Research Fellowship.

REFERENCES

Adamczyk, K., Herman, M., Fraczek, J., Piec, R., Szykula-Piec, B., Zaczynski, A., Wojtowicz, R., Bojanowski, K., Rusyan, E., Krol, Z., et al. (2020). Sensitivity and specificity of prediction models based on gustatory disorders in diagnosing COVID-19 patients: a case-control study. medRxiv. https://doi.org/10.1101/2020.05.31.20118380.

Åkerlund, A., Bende, M., and Murphy, C. (1995). Olfactory threshold and nasal mucosal changes in experimentally induced common cold. Acta Otolaryngol. 115, 88–92.

Ansari, M.A., Marchi, E., Ramamurthy, N., Aschenbrenner, D., Hackstein, C.-P., Bowden, R., Sharma, E., Pedergnana, V., Venkateswaran, S., Kugathasan, S., et al. (2020). A gene locus that controls expression of ACE2 in virus infection. medRxiv. https://doi.org/10.1101/2020.04.26.20080408.

Armulik, A., Genové, G., and Betsholtz, C. (2011). Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev. Cell 21, 193–215.

Bader, M. (2010). Tissue renin-angiotensin-aldosterone systems: Targets for pharmacological therapy. Annu. Rev. Pharmacol. Toxicol. 50, 439–465.

Baig, A.M., Khaleeq, A., Ali, U., and Syeda, H. (2020). Evidence of the COVID-19 Virus Targeting the CNS: Tissue Distribution, Host-Virus Interaction, and Proposed Neurotropic Mechanisms. ACS Chem. Neurosci. 11, 995–998.

Bao, L., Deng, W., Huang, B., Gao, H., Liu, J., Ren, L., Wei, Q., Yu, P., Xu, Y., Qi, F., et al. (2020). The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature. Published online May 7, 2020. https://doi.org/10.1038/s41586-020-2312-y.

Barlow, L.A. (2015). Progress and renewal in gustation: new insights into taste bud development. Development 142, 3620–3629.

Barlow, L.A., and Klein, O.D. (2015). Developing and regenerating a sense of taste. Curr. Top. Dev. Biol. 111, 401–419.

Barnett, E.M., and Perlman, S. (1993). The olfactory nerve and not the trigeminal nerve is the major site of CNS entry for mouse hepatitis virus, strain JHM. Neuron 11, 185–191.

Bartel, D.L., Sullivan, S.L., Lavoie, E.G., Sévigny, J., and Finger, T.E. (2006). Nucleoside triphosphate diphosphohydrolase-2 is the ecto-ATPase of type I cells in taste buds. J. Comp. Neurol. 497, 1–12.

Baxter, B.D., Larson, E.D., Feinstein, P., Polese, A.G., Bubak, A.N., Niemer, C.S., Merle, L., Shepherd, D., Ramakrishnan, V.R., Nagel, M.A., and Restrepo, D. (2020). Transcriptional profiling reveals TRPM5-expressing cells involved in viral infection in the olfactory epithelium. bioRxiv. https://doi.org/10.1101/2020.05.14.096016.
Beidler, L.M., and Smallman, R.L. (1965). Renewal of cells within taste buds. J. Cell Biol. 27, 263–272.

Belouzard, S., Millet, J.K., Licitra, B.N., and Whittaker, G.R. (2012). Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses 4, 1011–1033.

Bénétit, F., Le Tourneau, P., Declercq, C., Pailié, C., Revest, M., Dubée, V., and Tattevin, P. (2020). RANTS COVID Study Group. Utility of hypoxia and hypoglucoxia for the diagnosis of COVID-19. Lancet Infect. Dis. Published online April 15, 2020. https://doi.org/10.1016/S1473-3099(20)30297-9.

Berghström, U., Giovanetti, A., Piras, E., and Brittebo, E.B. (2003). Methimazole-induced damage in the olfactory mucosa: effects on ultrastructure and glutathione levels. Toxicol. Pathol. 31, 379–387.

Besser, G., Liu, D.T., Renner, B., Hummel, T., and Mueller, C.A. (2020). Reversible obstruction of the olfactory cleft: impact on olfactory perception and nasal patency. Int. Forum Allergy Rhinol. 10, 713–718.

Beyroud, R., Adams, M.E., Benjamin, L., Cohen, H., Farmer, S.F., Goh, Y.Y., Humphries, F., Jäger, H.R., Losseff, N.A., Perry, R.J., et al. (2020). Characteristics of ischaemic stroke associated with COVID-19. J. Neurol. Neurosurg. Psychiatry. Published online April 30, 2020. https://doi.org/10.1136/jnnp-2020-335886.

Bilinska, K., Jakubowska, P., Von Bartheld, C.S., and Butowt, R. (2020). Expression of the SARS-CoV-2 Entry Proteins, ACE2 and TMPRSS2, in Cells of the Olfactory Epithelium: Identification of Cell Types and Trends with Age. ACS Chem. Neurosci. 11, 1555–1562.

Brann, D., Tsukahara, T., Weinreb, C., Lipovsek, M., Van den Berge, K., Gong, B., Chance, R., Macaulay, I.C., Chou, H.-J., Fletcher, R., et al. (2020). Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. bioRxiv. https://doi.org/10.1101/2020.03.25.009684.

Bryche, B., St Albin, A., Murri, S., Lacôte, S., Pulido, C., Goulil, M.A., Leseller, S., Servat, A., Wasniewski, M., Picard-Meyer, E., et al. (2020). Massive transient damage of the olfactory epithelium associated with infection of sustentacular cells by SARS-CoV-2 in golden Syrian hamsters. bioRxiv. https://doi.org/10.1101/2020.06.16.151704.

Butler, N., Pewe, L., Trandem, K., and Perlman, S. (2006). Murine encephalitis viruses: a versatile tool for understanding the emergence of neurotropic viruses. J. Neurovirol. 12, 755–760.

Butler, N., Pewe, L., Trandem, K., and Perlman, S. (2006). Murine encephalitis caused by HCoV-OC43, a human coronavirus with broad species specificity, is partly immune-mediated. Virology 347, 410–421.

Cantuti-Castelvetri, L., Ohja, R., Pedro, L.D., Djanjedian, M., Franz, J., Kuvalnen, S., Kallio, K., Kaya, T., Anastasina, S., Smura, T., et al. (2020). Neuronal and glial proteins facilitate SARS-CoV-2 cell entry and provides a possible pathway into the central nervous system. bioRxiv. https://doi.org/10.1101/2020.08.07.137982.

Cavazzana, A., Larsson, M., Münch, M., Höhner, A., and Hummel, T. (2018). Postinfectious olfactory loss: A retrospective study on 791 patients. Laryngoscope 129, 10–15.

Chaudhari, N., and Roper, S.D. (2010). The cell biology of taste. J. Cell Biol. 190, 285–296.

Chen, Z., Mi, L., Xu, J., Yu, J., Wang, X., Jiang, J., Xing, J., Shang, P., Qian, A., Yu, H., et al. (2020). Clinical characteristics of 113 deceased patients with coronavirus disease 2019: a retrospective study. BMJ 368, m1091.

Choi, R., and Goldstein, B.J. (2018). Olfactory epithelium: Cells, clinical disorders, and insights from an adult stem cell niche. Laryngoscope Investig. Otolaryngol. 3, 35–42.

Cohn, Z.J., Kim, A., Huang, L., Brand, J., and Wang, H. (2010). Lipopolysaccharide-induced inflammation attenuates taste progenitor cell proliferation and shortens the life span of taste bud cells. BMC Neurosci. 11, 72.

Coolen, T., Lolli, V., Sadeghi, N., Rovai, A., Trotsa, N., Taccone, F.S., Creteur, J., Henrard, S., Goffard, J.-C., Dewitte, O., et al. (2020). Early postmortem brain MRI findings in COVID-19 non-survivors. medRxiv. https://doi.org/10.1101/2020.05.04.20090316.

Cowley, T.J., and Weiss, S.R. (2010). Murine coronavirus neuropathogenesis: determinants of virulence. J. Neurovirol. 16, 427–434.

Dahl, R., and Mygind, N. (1998). Anatomy, physiology and function of the nasal cavities in health and disease. Adv. Drug Deliv. Rev. 29, 3–12.

Dahm, T., Rudolph, H., Schwerk, C., Schrot, H., and Tenenbaum, T. (2016). Neuroinvasion and Inflammation in Viral Central Nervous System Infections. Mediators Inflamm. 2016, 856805.

Dalton, P. (2004). Olfaction and anosmia in rhinosinusitis. Curr. Allergy Asthma Rep. 4, 230–236.

Damm, M., Vent, J., Schmidt, M., Theissen, P., Eckel, H.E., Löttch, J., and Hummel, T. (2002). Intranasal volume and olfactory function. Chem. Senses 27, 831–839.

Dear, T.N., Boehm, T., Keverne, E.B., and Rabbits, T.H. (1991). Novel genes for potential ligand-binding proteins in subregions of the olfactory mucosa. EMBO J. 10, 2813–2819.

Docherty, A.B., Harrison, E.M., Green, C.A., Hardwick, H.E., Pius, R., Norman, L., Holden, K.A., Read, J.M., Dondeling, F., Carson, G., et al. (2020). Features of 16,749 hospitalised UK patients with COVID-19 using the ISARIC WHO Clinical Characterisation Protocol. medRxiv. https://doi.org/10.1101/2020.04.23.20076042.

Du, L., He, Y., Zhou, Y., Liu, S., Zheng, B.-J., and Jiang, S. (2009). The spike protein of SARS-CoV–a target for vaccine and therapeutic development. Nat. Rev. Microbiol. 7, 226–236.

Dubé, M., Le Coupécan, A., Wong, A.H.M., Rini, J.M., Desorges, M., and Talbot, P.J. (2018). Axonal Transport Enables Neuron-to-Neuron Propagation of Human Coronavirus OC43. J. Virol. 92, e00404-18.

Duncan, H.J., and Seiden, A.M. (1995). Long-term follow-up of olfactory loss secondary to head trauma and upper respiratory tract infection. Arch. Otolaryngol. Head Neck Surg. 121, 1183–1187.

Durante, M.A., Kurtenbach, S., Sargi, Z.B., Harbour, J.W., Choi, R., Kurtenbach, S., Goss, G.M., Matsumani, H., and Goldstein, B.J. (2020). Single-cell analysis of olfactory neurogenesis and differentiation in adult humans. Nat. Neurosci. 23, 323–326.

Durrant, D.M., Ghosh, S., and Klein, R.S. (2016). The Olfactory Bulb: An Immune-Accessible Effector Organ during Neurotropic Viral Infections. ACS Chem. Neurosci. 7, 464–469.

Dvoryanchikov, G., Hernandez, D., Roebber, J.K., Hill, D.L., Roper, S.D., and Chaudhari, N. (2017). Transcriptomes and neurotransmitter profiles of classes of gustatory and somatosensory neurons in the geniculate ganglion. Nat. Commun. 8, 760.

Eliezèr, M., Hautofort, C., Hamel, A.-L., Verillaud, B., Herman, P., Houdart, E., and Eliot, C. (2020). Sudden and Complete Olfactory Loss Function as a Possible Symptom of COVID-19. JAMA Otolaryngol. Head Neck Surg. Published online April 8, 2020. https://doi.org/10.1001/jamaoto.2020.0832.

Farhadian, S., Glick, L.R., Vogels, C.B.F., Thomas, J., Chiarella, J., Casanova-Massana, A., Zhou, J., Odio, C., Vijayakumar, P., Geng, B., et al. (2020). Acute encephalopathy with elevated CSF inflammatory markers as the initial presentation of COVID-19. BMJ Neurol. 20, 248.
Expression of ACE2 Receptor of 2019-nCoV. Preprints.org. https://doi.org/
Han, Q., Peng, J., Xu, H., and Chen, Q. (2020). Taste Cell Is Abundant in the
631–637.
He, L., Oldner, A., Liu, J., Genove, G., et al. (2020). Cluster of COVID-19 in northern France: A retrospective closed cohort study.
mexitriv. https://doi.org/10.1101/2020.03.31.013268.
Fontanet, A., Tondeur, L., Madec, Y., Grant, R., Besombes, C., Jolly, N., Fernandes Pellerin, S., Ungeheuer, M.-N., Cailléau, I., Kuhnel, L., et al. (2020). Cluster of COVID-19 in northern France: A retrospective closed cohort study. medRxiv. https://doi.org/10.1101/2020.04.18.20071134.
Frassnelli, J., and Manescu, S. (2017). The Infrasal Trigeminal System. In Springer Handbook of Odor, A. Buettner, ed. (Cham: Springer International Publishing), pp. 113–114.
Gaillard, D., Xu, M., Liu, F., Millar, S.E., and Barlow, L.A. (2015). NQO1 activity in the main and the accessory olfactory epithelium of humans. PLoS Genet. 11, e1005208.
Gallagher, P.E., Chappell, M.C., Ferrario, C.M., and Tallant, E.A. (2006). Distinct roles for ANG II and ANG-(1-7) in the regulation of angiotensin-converting enzyme 2 in rat aortocytes. Am. J. Physiol. Cell Physiol. 290, C420–C426.
Galougah, M.K., Ghorbani, J., Bakshshayeshkaram, M., Naenie, A.S., and Haseli, S. (2020). Olfactory Bulb Magnetic Resonance Imaging in SARS-CoV-2-Induced Anosmia: The First Report. Acad. Radiol. 27, 892–893.
Giacomelli, A., Pezzati, L., Conti, F., Bernacchia, D., Siano, M., Oreni, L., Riusconi, S., Gervasoni, C., Ridolfo, A.L., Rizzardi, G., et al. (2020). Self-reported olfactory and taste disorders in SARS-CoV-2 patients: a cross-sectional study. Clin. Infect. Dis. Published online March 26, 2020. https://doi.org/10.1093/cid/ciaa330.
Gopalakrishnan, J., Ramani, A., Mueller, L., Nikias Osterrnann, P., Gabrielli, E., Islam Pranthy, A., Mueller-Shiffmann, A., Mariappan, A., Goureau, O., Gruehl, H., et al. (2020). SARS-CoV-2 targets cortical neurons of 3D human brain organoids and shows neurodegeneration-like effects. bioRxiv. https://doi.org/10.1101/2020.05.20.106575.
Govrisanek, Y.V., and Clark, M.A. (2016). Angiotensin II induces interleukin-6 expression in astrocytes: Role of reactive oxygen species and NF-κB. Mol. Cell. Endocrinol. 437, 130–141.
Gulbransen, B.D., Clapp, T.R., Finger, T.E., and Kinnamon, S.C. (2008). Nasal solitary chemoreceptor cell responses to bitter and trigeminal stimulants in vitro. J. Neurophysiol. 99, 2929–2937.
Gussing, F., and Bohm, S. (2004). NQO1 activity in the main and the accessory olfactory system correlates with the zonal topography of projection maps. Eur. J. Neurosci. 19, 2511–2518.
Haehner, A., Draf, J., Draeger, S., With, K.d., and Hummel, T. (2020). Predictive value of sudden olfactory loss in the diagnosis of COVID-19. medRxiv. https://doi.org/10.1101/2020.04.27.20081356.
Hamamichi, R., Asano-Miyoshi, M., and Emori, Y. (2006). Taste bud contains both short-lived and long-lived cell populations. Neuroscience 147, 2129–2138.
Hamming, I., Timens, W., Bulthuis, M.L.C., Lely, A.T., Navis, G., and van Goor, H. (2004). Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol. 203, 631–637.
Han, Q., Peng, J., Xu, H., and Chen, Q. (2020). Taste Cell Is Abundant in the Expression of ACE2 Receptor of 2019-nCoV. Preprints.org. https://doi.org/10.20944/preprints202004.0425.v1.
He, L., Maé, M.A., Sun, Y., Muhl, L., Nahar, K., Liébanas, E.V., Fagerlund, M.J., Oldner, A., Liu, J., Genové, G., et al. (2020). Pericyte-specific vascular expres-
Kehoe, P.G., Wong, S., Al Mulhim, N., Palmer, L.E., and Miners, J.S. (2016). Angiotensin-converting enzyme 2 is reduced in Alzheimer’s disease in association with increasing amyloid-β and tau pathology. Alzheimers Res. Ther. 8, 50.

Kern, R.C. (2000). Chronic sinusitis and anosmia: pathologic changes in the olfactory mucosa. Laryngoscope 110, 1071–1077.

Kim, A., Feng, P., Okhuri, T., Sleurs, D., Cohn, Z.J., Chai, J., Nelson, T., Bachmanov, A.A., Huang, L., and Wang, H. (2012). Defects in the peripheral taste structure and function in the MRL/ipl mouse model of autoimmune disease. PLoS ONE 7, e35586.

Koyuncu, O.O., Hogue, I.B., and Enquist, L.W. (2013). Virus infections in the nervous system. Cell Host Microbe 3, 373–393.

Lamers, M.M., Beumer, J., van der Vaart, J., Knoops, K., Puschoff, J., Breugem, T.I., Ravelli, R.B.G., Paul van Schayck, J., Mykytyn, A.Z., Duimel, H.O., et al. (2020). SARS-CoV-2 productively infects human gut enterocytes. Science. Published online May 1, 2020. https://doi.org/10.1126/science.abc1669.

Laurendon, T., Radulesco, T., Mugnier, J., Géraud, M., Chagnaud, C., El Ahmad, A.-A., and Varoquaux, A. (2020). Bilateral transient olfactory bulb edema during COVID-19-related anosmia. Neurology. Published online May 22, 2020. https://doi.org/10.1212/WNL.0000000000009850.

Lechien, J.R., Chiesa-Estomba, C.M., De Siat, D.R., Horoi, M., Le Bon, S.D., Rodriguez, A., Dequanter, D., Bleiec, S., El Afia, F., Distinguin, L., et al. (2020a). Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur. Arch. Otorhinolaryngol. Published online April 6, 2020. https://doi.org/10.1007/s00405-020-05965-1.

Lechien, J.R., Chiesa-Estomba, C.M., Place, S., Van Laethem, Y., Cabaraux, F., Chiesa-Estomba, C.M., De Siat, D.R., Horoi, M., Le Bon, S.D., Rodriguez, A., and Ryba, N.J.P. (2020b). Olfactory bulb transmucosal SARS-CoV-2 invasion as port of Central Nervous System entry in COVID-19 patients. bioRxiv. https://doi.org/10.1101/2020.06.04.135012.

Menni, C., Valdes, A.M., Freidin, M.B., Sudre, C.H., Nguyen, L.H., Drew, D.A., Ganesh, S., Varsavsky, T., Cardoso, M.J., El-Sayed Moustafa, J.S., et al. (2020). Real-time tracking of self-reported symptoms to predict potential COVID-19. Nat. Med. Published online May 11, 2020. https://doi.org/10.1038/s41591-020-0916-2.

Miura, H., Kusakabe, Y., and Harada, S. (2006). Cell lineage and differentiation in taste buds. Arch. Histol. Cytol. 69, 209–225.

Miura, H., Scott, J.K., Harada, S., and Barlow, L.A. (2014). Sonic hedgehog-expressing basal cells are general post-mitotic precursors of functional taste receptor cells. Dev. Dyn. 243, 1286–1297.

Miyamichi, K., Serizawa, S., Kimura, H.M., and Sakano, H. (2005). Continuous and overlapping expression domains of odorant receptor genes in the olfactory epithelium determine the dorsal/ventral position of glomeruli in the olfactory bulb. J. Neurosci. 25, 3586–3592.

Moein, S.T., Hashemian, S.M.R., Mansourafshar, B., Khorram-Tousi, A., Tabarsi, P., and Doty, R.L. (2020). Smell dysfunction: a biomarker for COVID-19. Int. Forum Allergy Rhinol. Published online April 17, 2020. https://doi.org/10.1002/ir.22587.

Morris, M., and Zohrabian, V.M. (2020). Neuroradiologists, Be Mindful of the Neuroinvasive Potential of COVID-19. AJNR Am. J. Neuroradiol. 41, E37–E39.

Munster, V.J., Feldmann, F., Williamson, B.N., van Doremalen, N., Pérez-Pérez, L., Schulz, J., Meade-White, K., Okumura, A., Callison, J., Brumbaugh, B., et al. (2020). Respiratory disease in rhesus macaques inoculated with SARS-CoV-2. Nature. Published online May 12, 2020. https://doi.org/10.1038/s41586-020-2324-7.

Muus, C., Luecken, M.D., Eraslan, G., Waghray, A., Heimberg, G., Sikkema, L., Kobayashi, Y., Vashnav, E.D., Subramanian, A., Smiiie, C., et al. (2020). Integrated analyses of single-cell atlases reveal age, gender, and smoking status associations with cell type-specific expression of mediators of SARS-CoV-2 viral entry and highlights inflammatory programs in putative target cells. bioRxiv. https://doi.org/10.1101/2020.04.19.049254.

Netland, J., Meyerhoft, D.K., Moore, S., Cassell, M., and Perlman, S. (2008). Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J. Virol. 82, 7264–7275.

Nguyen, M.Q., Wu, Y., Bonilla, L.S., von Buchholtz, L.J., and Ryba, N.J.P. (2017). Diversity amongst trigeminal neurons revealed by high throughput single cell sequencing. PLoS ONE 12, e0185543.

Nguyen, M.Q., Le Pichon, C.E., and Ryba, N. (2019). Stereotyped transcriptional transformation of somatosensory neurons in response to injury. eLife 8, e49679.

O’Leary, C.E., Schneider, C., and Locksley, R.M. (2019). Tuft Cells-Systemically Dispersed Sensory Epithelia Integrating Immune and Neural Circuitry. Annu. Rev. Immunol. 37, 47–72.

Okubo, T., Clark, C., and Hogan, B.L.M. (2009). Cell lineage mapping of taste bud cells and keratinocytes in the mouse tongue and soft palate. Stem Cells 27, 442–450.

Ou, X., Liu, Y., Lei, X., Li, P., Mi, D., Ren, L., Guo, L., Guo, R., Chen, T., Hu, J., et al. (2020). Characterization of spike glycoprotein of SARS-CoV-2 virus entry and its cell membrane-reactive activity with SARS-CoV. Nat. Commun. 11, 1620.

Parma, V., Ohia, K., Veldhuizen, M.G., Niv, M.Y., Kelly, C.E., Bakke, A.J., Cooper, K.W., Bouyssset, C., Pirastu, N., DiBattista, M., et al. (2020). More than smell – COVID-19 is associated with severe impairment of smell, taste, and chemesthesia. medRxiv. https://doi.org/10.1101/2020.05.04.20090902.

Pellegrino, R., Cooper, K.W., Di Pizio, A., Joseph, P.V., Bhutani, S., and Parma, V. (2020). Corona Viruses and the Chemical Senses: Past, Present, and Future.
Tariq, A., Buitrago-Teller, A., Huerta, S., et al. (2020). Augmented Curation of Unstructured Clinical Notes: Direct Impact on Provider Cognitive Load. JAMA Netw Open. 3(5):e208549.

Tan, J., Liu, Z., Zhang, Y., et al. (2020). Association of chemosensory dysfunction and COVID-19 in patients presenting with influenza-like symptoms. Int. Forum Allergy Rhinol. Published online April 12, 2020. https://doi.org/10.1002/alr.22579.

Yang, X.H., Deng, W., Tong, Z., Liu, Y.Y., Zhang, L.F., Zhu, H., Gao, H., Huang, L., Liu, Y.L., Ma, C.M., et al. (2020). Mice transgenic for human angiotensin-converting enzyme 2 provide a model for SARS coronavirus infection. Comp. Med. 57, 450–459.

Yang, R., Dzowo, Y.K., Wilson, C.E., Russell, R.L., Kidd, G.J., Salcedo, E., Lasher, R.S., Kinnamon, J.C., and Finger, T.E. (2020). Three-dimensional reconstructions of mouse circumvallate taste buds using serial blockface scanning electron microscopy: I. Cell types and the apical region of the taste bud. J. Comp. Neurol. 528, 756–771.

Yee, K.K., Li, Y., Redding, K.M., lwatsuki, K., Margolskee, R.F., and Jiang, P. (2013). Lgr5-EGFP marks taste bud stem/progenitor cells in posterior tongue. Stem Cells 31, 992–1000.

Zhang, R., Gomez Castro, M.F., McCune, B.T., Zeng, Q., Rothlauf, P.W., Sonnek, N.M., Liu, Z., Brulois, K.F., Wang, X., Greenberg, H.B., et al. (2020). TMPRSS2 and TMEM16A promote SARS-CoV-2 infection of human small intestine enterocytes. Sci. Immunol. 5, eabc3582.

Zhang, J., Jin, H., Zhang, W., Ding, C., O’Keeffe, S., Ye, M., and Zucher, C.S. (2019). Sour Sensing from the Tongue to the Brain. Cell 173, 392–402.e15.

Zhang, Y., Xiao, M., Zhang, S., Xia, P., Cao, W., Jiang, W., Chen, H., Ding, X., Zhao, H., Zhang, H., et al. (2020). Coagulopathy and Antiphospholipid Antibodies in Patients with Covid-19. N. Engl. J. Med. 382, e38.

Zhao, K., Scherer, P.W., Hajilo, S.A., and Dalton, P. (2004). Effect of anatomy on human nasal air flow and odorant transport patterns: implications for olfaction. Chem. Senses 29, 365–379.

Zhou, K., Jiang, K., Pribitkin, E.A., Dalton, P., Rosen, D., Lyman, B., Yee, K.K., Rawson, N.E., and Cowart, B.J. (2014). Conductive olfactory losses in chronic rhinosinusitis? A computational fluid dynamics study of 29 patients. Int. Forum Allergy Rhinol. 4, 298–308.
Zhao, X., Chen, D., Szabla, R., Zheng, M., Li, G., Du, P., Zheng, S., Li, X., Song, C., Li, R., et al. (2020). Broad and differential animal ACE2 receptor usage by SARS-CoV-2. bioRxiv. https://doi.org/10.1101/2020.04.19.048710.

Zhou, P., Yang, X.-L., Wang, X.-G., Hu, B., Zhang, L., Zhang, W., Si, H.-R., Zhu, Y., Li, B., Huang, C.-L., et al. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270-273.

Ziegler, C.G.K., Allon, S.J., Nyquist, S.K., Mbano, I.M., Miao, V.N., Tzouanas, C.N., Cao, Y., Yousif, A.S., Bals, J., Hauser, B.M., et al.; HCA Lung Biological Network. Electronic address: lung-network@humancellatlas.org; HCA Lung Biological Network (2020). SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues. Cell 181, 1016-1035.e19.

Zumla, A., Chan, J.F.W., Azhar, E.I., Hui, D.S.C., and Yuen, K.-Y. (2016). Coronavirus - drug discovery and therapeutic options. Nat. Rev. Drug Discov. 15, 327-347.