Cancellation ideals of a ring extension

S. Tchamna

Communicated by E. I. Zelmanov

Abstract. We study properties of cancellation ideals of ring extensions. Let $R \subseteq S$ be a ring extension. A nonzero S-regular ideal I of R is called a (quasi)-cancellation ideal of the ring extension $R \subseteq S$ if whenever $IB = IC$ for two S-regular (finitely generated) R-submodules B and C of S, then $B = C$. We show that a finitely generated ideal I is a cancellation ideal of the ring extension $R \subseteq S$ if and only if I is S-invertible.

1. Introduction and background

Throughout this article, we assume that all rings are commutative with identity. The notion of cancellation ideal for a ring has been studied in [1] and [2]. An ideal I of a ring R is called cancellation ideal if whenever $IB = IC$ for two ideals B and C of R, then $B = C$ [2]. A finitely generated ideal is a cancellation ideal if and only if for each maximal ideal M of R, IM is a regular principal ideal of RM [1, Theorem 1]. D.D Anderson and D.F Anderson used the notion of cancellation ideal to characterize Prüfer domain. A ring R is a Prüfer domain if and only if every finitely generated nonzero ideal of R is a cancellation ideal[1, Theorem 6]. In this paper, we study the notion of cancellation ideal for ring extensions; which is a generalization of the notion of cancellation ideal for rings. Let $R \subseteq S$ be a ring extension, and let A be an R-submodule of S. The R-submodule A is said to be S-regular if $AS = S$[5, Definition 1, p. 84]. For two R-submodules E, F of S, denote by $[E : F]$ the set of all $x \in S$ such that $xF \subseteq E$.

2020 MSC: 13A15, 13A18, 13B02.

Key words and phrases: ring extension, cancellation ideal, pullback diagram.
An R-submodule A of S is said to be S-invertible, if there exists an R-submodule B of S such that $AB = R[\mathbf{5}, \text{Definition 3, p 90}]$. In this case, we write $B = A^{-1}$, and $A^{-1} = [R : A] = \{x \in S : xA \subseteq R\}$ $[\mathbf{5}, \text{Remark 1.10, p. 90}]$. For the R-submodule A of S, and for a multiplicative subset τ of R, we denote by $A[\tau]$ the set of all $x \in S$ such that $tx \in A$ for some $t \in \tau$. If p is a prime ideal of R, and $\tau = R \setminus p$, then $A[p]$ denotes the set of all $x \in S$ such that $tx \in A$ for some $t \in \tau$. The set $A[\tau]$ is called the saturation of A by τ. Properties of the saturation of a submodule are studied in $[\mathbf{5}, \text{p. 18}]$ and $[\mathbf{6}]$.

An S-regular ideal I of R is called (quasi)-cancellation ideal of the ring extension $R \subseteq S$ if whenever $IB = IC$ for two S-regular (finitely generated) R-submodules B and C of S, then $B = C$. In section 2, we study properties of (quasi)-cancellation ideals of ring extensions. In Proposition 2.4, we prove that a finitely generated S-regular ideal I of R is a cancellation ideal if and only if it is a quasi-cancellation ideal. In Theorem 2.12, we show that for an S-regular finitely generated ideal I of R, the followings are equivalent:

1. I is a cancellation ideal of the ring extension $R \subseteq S$.
2. I is an S-invertible ideal of R.
3. $IR[X]$ is a cancellation ideal of the ring extension $R[X] \subseteq S[X]$.

Remark 1.1. Let $R \subseteq S$ be a ring extension, and let A, B be two R-submodules of S. Then $A = B$ if and only if $A[m] = B[m]$ for each maximal ideal m of R. In fact, if $A = B$, then it clear that $A[m] = B[m]$ for each maximal ideal m of R. Conversely, if $A[m] = B[m]$ for each $m \in M$, where M is the set of all maximal ideals of R, then by $[\mathbf{5}, \text{Remark 5.5, p. 50}]$, we have $A = \bigcap_{m \in M} A[m] = \bigcap_{m \in M} B[m] = B$.

Let $R \subseteq S$ and $L \subseteq T$ be two ring extensions, and consider the following commutative diagram

$$
\begin{array}{ccc}
R & \xrightarrow{\alpha} & L \\
\downarrow & & \downarrow \\
S & \xrightarrow{\Psi} & T
\end{array}
$$

where ker Ψ is an ideal of R, $\Psi : S \rightarrow T$ is surjective, the restriction $\alpha : R \rightarrow L$ of Ψ is also surjective and the vertical mappings are inclusions. When ker Ψ is a maximal ideal of S, the previous commutative diagram is called a pullback diagram a type \Box. Pullback diagrams of type \Box are studied by S. Gabelli and E. Houston in $[\mathbf{4}]$.
Lemma 1.2. Consider the above pullback diagram of type □. If \(A, B \) are two \(S \)-regular ideals of \(R \) such that \(\Psi(A) = \Psi(B) \), then \(A = B \).

Proof. Let \(A, B \) be two \(S \)-regular ideals of \(R \) such that \(\Psi(A) = \Psi(B) \). By [7, Remark 1.1], we have \(\ker \Psi \subseteq A \) and \(\ker \Psi \subseteq B \). Let \(a \in A \). Then there exists \(b \in B \) such that \(\Psi(a) = \Psi(b) \). Hence \(a - b \in \ker \Psi \subseteq B \). Thus \(a \in B \). This shows that \(A \subseteq B \). With the same argument, \(B \subseteq A \). Thus \(A = B \). □

2. Cancellation ideals of ring extensions

In this section, we define and study properties of cancellation ideals of ring extensions.

Definition 2.1. Let \(R \subseteq S \) be a ring extension. A nonzero \(S \)-regular ideal \(I \) of \(R \) is called a (quasi)-cancellation ideal of the ring extension \(R \subseteq S \) if whenever \(IB = IC \) for two \(S \)-regular (finitely generated) \(R \)-submodules \(B \) and \(C \) of \(S \), then \(B = C \).

The following proposition studies cancellation ideals in pullback diagram of type □. In this article, the Jacobson radical of a ring is denoted \(\text{Jac}(R) \).

Proposition 2.2. Suppose that the following diagram

\[
\begin{array}{ccc}
R & \longrightarrow & L \\
\downarrow & & \downarrow \\
S & \longrightarrow & T
\end{array}
\]

is a pullback diagram of type □ such that \(\ker \Psi \subseteq \text{Jac}(R) \). Then an \(S \)-regular ideal \(I \) of \(R \) is a cancellation ideal of the extension \(R \subseteq S \) if and only if \(\Psi(I) \) is a cancellation ideal of the extension \(L \subseteq T \).

Proof. Suppose that \(I \) is a cancellation ideal of the extension \(R \subseteq S \). Since \(IS = S \), we have \(\Psi(I)\Psi(S) = \Psi(S) \). It follows that \(\Psi(I)T = T \). Hence \(\Psi(I) \) is a \(T \)-regular ideal of \(L \). Let \(E \) and \(F \) be two \(T \)-regular \(L \)-submodules of \(T \) such that \(\Psi(I)E = \Psi(I)F \). Let \(B = \Psi^{-1}(E) \) and \(C = \Psi^{-1}(F) \). Then by [7, Lemma 2.8(1)] \(B \) and \(C \) are two \(S \)-regular ideals of \(R \). Furthermore, \(E = \Psi(B) \) and \(F = \Psi(C) \) since \(\Psi \) is surjective. It follows from the equality \(\Psi(I)E = \Psi(I)F \) that \(\Psi(I)\Psi(B) = \Psi(I)\Psi(C) \). Hence \(\Psi(IB) = \Psi(IC) \). Furthermore, \((IB)S = IS = S \) and \((IC)S = IS = S \). Therefore, by
Lemma 1.2, we have $IB = IC$. Hence $B = C$ since I is a cancellation ideal of the extension $R \subseteq S$. It follows that $E = \Psi(B) = \Psi(C) = F$. This shows that $\Psi(I)$ is a cancellation ideal of the extension $L \subseteq T$.

Conversely, suppose that $\Psi(I)$ is a cancellation ideal of the extension $L \subseteq T$. Let B and C be two S-regular R-submodules of S such that $IB = IC$. Then $\Psi(I)\Psi(B) = \Psi(I)\Psi(C)$. Since $BS = S$, we have $\Psi(B)T = T$. Hence $\Psi(B)$ is a T-regular ideal of L. With the same argument, $\Psi(C)$ is a T-regular ideal of L. It follows that $\Psi(B) = \Psi(C)$ since $\Psi(I)$ is a cancellation ideal of the extension $L \subseteq T$. Therefore, by Lemma 1.2, we have $B = C$. This shows that I is a cancellation ideal of the extension $R \subseteq S$.

In the next proposition, we give a characterization of a cancellation ideal of a ring extension. This result is an analogue of [3, Proposition 2.1, p. 10] in the case of cancellation ideal of a ring.

Proposition 2.3. Let $R \subseteq S$ be a ring extension, and let I be an S-regular ideal of R. The following statements are equivalent.

1. I is a (quasi)-cancellation ideal of the ring extension $R \subseteq S$.
2. $[IJ : I] = J$ for any S-regular (finitely generated) R-submodule J of S.
3. If $IJ \subseteq IK$ for two S-regular (finitely generated) R-submodules J and K of S, then $J \subseteq K$.

Proof. (1) \Rightarrow (2) Suppose that I is a cancellation ideal of the extension $R \subseteq S$, and let J be an S-regular R-submodule of S. The containment $J \subseteq [IJ : I]$ is always true. Let $x \in [IJ : I]$. Then $xI \subseteq IJ$. It follows that $(x, J)I \subseteq IJ$, where (x, J) is the R-submodule of S generated by x and J. Therefore, $(x, J)I = IJ$ since the containment $IJ \subseteq (x, J)I$ is always true. Furthermore, (x, J) is an S-regular R-submodule of S since $J \subseteq (x, J)$. It follows from the definition of a cancellation ideal that $(x, J) = J$. This shows that $x \in J$, and thus $[IJ : I] \subseteq J$. Therefore $[IJ : I] = J$.

(2) \Rightarrow (3) Suppose that the statement (2) is true. Let J and K be two S-regular R-submodules of S. Then by (2), we have $[IK : I] = K$. If $IJ \subseteq IK$, then $J \subseteq [IK : I] = K$.

(3) \Rightarrow (1) This implication is obvious.

Proposition 2.4. Let $R \subseteq S$ be a ring extension, and let I be a finitely generated S-regular ideal of R. Then I is a cancellation ideal of $R \subseteq S$ if and only if I is a quasi-cancellation ideal of $R \subseteq S$.

Proof. Let \(I \) be a finitely generated \(S \)-regular ideal of \(R \). If \(I \) is a cancellation ideal of the extension \(R \subseteq S \), then obviously \(I \) is a quasi-cancellation ideal of the extension \(R \subseteq S \). Conversely, suppose that \(I \) is a quasi-cancellation ideal of the extension \(R \subseteq S \). Let \(a_1, \ldots, a_n \in R \) be a set of generators of \(I \). Let \(B, C \) be two \(S \)-regular \(R \)-submodules of \(S \) such that \(IB \subseteq IC \). Let \(b \in B \). Then \(bI \subseteq IC \). So, for \(1 \leq i \leq n \), we have \(ba_i = \sum_{j=1}^{k} a_j c_{ij} \) with \(c_{ij} \in C \) for \(1 \leq j \leq k \). Furthermore, since \(CS = S \), there exist \(u_1, \ldots, u_\ell \in C \) and \(s_1, \ldots, s_\ell \in S \) such that \(u_1 s_1 + \cdots + u_\ell s_\ell = 1 \).

Let \(C' \) be the \(R \)-submodule of \(S \) generated by the elements of the set \(\{u_1, \ldots, u_n, c_{ij} : 1 \leq i \leq n, 1 \leq j \leq k\} \). Let \(B_0 \) be the \(R \)-submodule of \(S \) generated by \(b \). Then \(B_0 + (u_1, \ldots, u_n)R \subseteq C' \). It follows from the equivalence (1) \(\iff \) (3) of Proposition 2.3 that \(B_0 + (u_1, \ldots, u_n)R \subseteq C' \) since \(B_0 + (u_1, \ldots, u_n) \) and \(C' \) are finitely generated \(S \)-regular ideal of \(S \). Therefore, \(b \in C' \subseteq C \). Hence \(B \subseteq C \) since \(b \) was arbitrary chosen in \(B \).

This shows that \(I \) is a cancellation ideal of the extension \(R \subseteq S \). \(\square \)

Lemma 2.5. Let \(R \subseteq S \) be a ring extension, and let \(u_1, \ldots, u_\ell \in S \).

Define the sets \(E = (u_1, \ldots, u_\ell)R_\mathfrak{p} \) and \(A = (u_1, \ldots, u_\ell)R \), where \(\mathfrak{p} \) is a prime ideal of \(R \). For any ideal \(I \) of \(R \), we have:

1. \((AI)_\mathfrak{p} = (EI)_\mathfrak{p} \). In particular, \(A_\mathfrak{p} = E_\mathfrak{p} \).
2. \((EI)_\mathfrak{p} = (EI_\mathfrak{p})_\mathfrak{p} \).

Proof. (1) First, observe that \(AI \subseteq EI \). So \((AI)_\mathfrak{p} \subseteq (EI)_\mathfrak{p} \). Let \(x \in (EI)_\mathfrak{p} \). Then there exists \(t \in R \setminus \mathfrak{p} \) such that \(tx \in EI \). Therefore, \(tx = \sum_{i=1}^{n} e_ix_i \) for some \(e_i \in E \) and \(x_i \in I \), \(1 \leq i \leq n \). For each \(1 \leq i \leq n \), write \(e_i = \sum_{j=1}^{\ell} u_j y_{ij} \) with \(y_{ij} \in R_\mathfrak{p} \) for \(1 \leq j \leq \ell \). Let \(s_{ij} \in R \setminus \mathfrak{p} \) such that \(s_{ij}y_{ij} \in R \), \(s_i = \prod_{j=1}^{\ell} s_{ij} \) and \(s = \prod_{i=1}^{n} e_i \). It follows that \((st)x = \sum_{i=1}^{\ell} (se_i)x_i \in AI \). Thus \(x \in (AI)_\mathfrak{p} \) since \(st \in R \setminus \mathfrak{p} \). This shows that \((EI)_\mathfrak{p} \subseteq (AI)_\mathfrak{p} \). Hence \((AI)_\mathfrak{p} = (EI)_\mathfrak{p} \).

In particular, if we take \(I = R \), then we get \(A_\mathfrak{p} = E_\mathfrak{p} \).

(2) The containment \((EI)_\mathfrak{p} \subseteq (EI_\mathfrak{p})_\mathfrak{p} \) is clear since \(EI \subseteq EI_\mathfrak{p} \). Let \(x \in (EI_\mathfrak{p})_\mathfrak{p} \). Then \(tx \in EI_\mathfrak{p} \) for some \(t \in R \setminus \mathfrak{p} \). Thus \(tx = \sum_{i=1}^{k} v_i y_i \) with \(v_i \in E \) and \(y_i \in I_\mathfrak{p} \) for \(1 \leq i \leq k \). Let \(s_i \in R \setminus \mathfrak{p} \) such that \(s_i y_i \in I \), and let \(s = \prod_{i=1}^{k} s_i \). Then \((st)x = \sum_{i=1}^{k} v_i (s y_i) \in EI \). It follows that \(x \in (EI)_\mathfrak{p} \). Therefore, \((EI)_\mathfrak{p} = (EI_\mathfrak{p})_\mathfrak{p} \) \(\square \)

Theorem 2.6. Let \(R \subseteq S \) be a ring extension, and let \(I \) be a finitely generated \(S \)-regular ideal of \(R \). The following statements are equivalent.

1. \(I \) is a quasi-cancellation ideal of the extension \(R \subseteq S \).
(2) For each prime ideal \(p \) of \(R \), and for each \(S \)-regular finitely generated \(R[p] \)-submodule \(E \) of \(S \), we have \([((EI)[p] : I[p]] = E[p]\).

Proof. (1) \(\Rightarrow \) (2) Suppose that \(I \) is a quasi-cancellation ideal of the extension \(R \subseteq S \), and let \(p \) be a prime ideal of \(R \). Let \(E \) be a finitely generated \(S \)-regular \(R[p] \)-submodule of \(S \). Then \(E = (u_1, \ldots , u_\ell) R[p] \) for some elements \(u_1, \ldots , u_\ell \) of \(S \). Let \(A \) be the \(R \)-submodule of \(S \) generated by \(u_1, \ldots , u_\ell \). Then by Proposition 2.3 and Proposition 2.4, we have \([AI : I] = A\). It follows from [6, Proposition 2.1(4)] that \([((AI)_p : I_p[p]] = A[p]\). Hence by Lemma 2.5, we have \([((EI)_p[p] : I[p]] = [(EI)_p : I[p]] = [(AI)_p : I[p]] = A[p] = E[p] \).

(2) \(\Rightarrow \) (1) Suppose that the statement (2) is true. Let \(A \) be an \(S \)-regular finitely generated \(R \)-submodule of \(S \), and let \(p \) be a prime ideal of \(R \). Let \(E = AR[p] \). Then by Lemma 2.5, we have \((AI)_p = (EI)_p[p] \) and \(A[p] = E[p] \).

So, by hypothesis we have \(A[p] = E[p] = [(EI)_p : I[p]] = [(AI)_p : I[p]] \). But by [6, Proposition 2.1(4)], we have \([((AI)_p : I[p]] = [(AI) : I[p]] \). Therefore, \(A[p] = [(AI) : I[p]] \) for each prime ideal \(p \) of \(R \). It follows from Remark 1.1 that \([AI : I] = A\). Therefore, by the equivalence (1) \(\Leftrightarrow \) (2) of Proposition 2.3, \(I \) is a quasi-cancellation ideal of the extension \(R \subseteq S \). \(\square \)

In their book [5], Knebusch and Zhang defined the notion of Prüfer extension using valuation ring [5, Definition 1, p. 46]. Several characterizations of a Prüfer extension are given in [5, Theorem 5.2, p. 47]. For the purpose of this work, we will use the following: a ring extension \(R \subseteq S \) is called Prüfer extension if \(R \) is integrally closed in \(S \) and \(R[\alpha] = R[\alpha^n] \) for any \(\alpha \in S \) and any \(n \in \mathbb{N} \).

Lemma 2.7. [5, Theorem 1.13, p. 91] If a ring extension \(R \subseteq S \) is a Prüfer extension, then every finitely generated \(S \)-regular \(R \)-submodule of \(S \) is \(S \)-invertible.

Proposition 2.8. Let \(R \subseteq S \) be a ring extension, and let \(I \) be an \(S \)-regular ideal of \(R \).

(1) If \(I \) is a cancellation ideal of the extension \(R \subseteq S \), then \([I : I] = R\).

(2) If the extension \(R \subseteq S \) is Prüfer, then the converse of statement (1) is also true (i.e. in a Prüfer extension \(R \subseteq S \), if \(I \) is an \(S \)-regular ideal satisfying \([I : I] = R\), then \(I \) is a quasi-cancellation ideal).

Proof. (1) The proof follows directly from the equivalence (1) \(\Leftrightarrow \) (2) of Theorem 2.3. It suffices to take \(J = R \).

(2) Suppose that the extension \(R \subseteq S \) is Prüfer, and let \(I \) be an \(S \)-regular ideal of \(R \) such that \([I : I] = R\). Let \(A \) be an \(S \)-regular finitely
generated R-submodule of S. Then by Lemma 2.7, A is S-invertible. We show that $A[I : I] = [AI : I]$. Let $x \in [AI : I]$. Then $xI \subseteq AI$. Hence $xA^{-1} \subseteq I$. Thus $xA^{-1} \subseteq [I : I]$. It follows that $x \in A[I : I]$. On the other hand, let $y = \sum_{i=1}^{k}a_iv_i \in A[I : I]$ with $a_i \in A$ and $v_i \in [I : I]$ for $1 \leq i \leq k$. Then $v_i I \subseteq I$. Hence $a_iv_i I \subseteq AI$. Therefore, $a_iv_i \in [AI : I]$. So $y = \sum_{i=1}^{k}a_iv_i \in [AI : I]$. This shows that $[AI : I] = A[I : I]$. Hence $[AI : I] = A[I : I] = AR = A$. Hence, by the equivalence $(1) \iff (2)$ of Proposition 2.3, I is a quasi-cancellation ideal of the extension $R \subseteq S$.

Let $R \subseteq S$ be a ring extension. A nonzero S-regular ideal I of R is called an m-canonical ideal of the extension $R \subseteq S$ if $[I : [I : J]] = J$ for all S-regular ideal J of R. Properties of m-canonical ideals of a ring extension are studied in [7].

Corollary 2.9. Any m-canonical ideal of a Prüfer extension is a quasi-cancellation ideal.

Proof. If I is an m-canonical ideal of a Prüfer extension $R \subseteq S$, then by [7, Proposition 2.3], we have $[I : I] = R$. It follows from Proposition 2.8(2) that I is a quasi-cancellation ideal of the extension $R \subseteq S$.

Lemma 2.10. Let $R \subseteq S$ be a ring extension, and let I be an S-regular ideal of R which is a cancellation ideal of $R \subseteq S$. If $I = (x, y) + A$, where A is an ideal of R containing mI for some maximal ideal m of R, then $I = (x) + A$ or $I = (y) + A$.

Proof. Let $J = (x^2 + y^2, xy, xA, yA, A^2)R$. Then $IJ = I^3$. Observe that I^2 is S-regular since $I^2S = I(IS) = IS = S$. Also, from the equality $IJ = I^3$ we have $(IJ)S = I^3S = I(IS) = IS = S$. So $JS = S$. This shows that J is an S-regular ideal of R. It follows from the equation $IJ = I^3$ and the fact that I is a cancellation ideal of the extension $R \subseteq S$ that $J = I^2$. Thus $x^2 = t(x^2 + y^2) + \text{terms from } (xy, xA, yA, A^2)$, with $t \in R$. Suppose that $t \in m$. Then $x^2 \in (y^2, xy, xA, yA, A^2)$, since $tx \in mI \in A$. Let $K = (y) + A$. Then $I^2 = IK$. Furthermore, from the equality $IK = I^2$, we have $K(IS) = I^2S$. Hence $KS = S$. Therefore, K is an S-regular ideal of S. It follows that $I = K$ since I is a cancellation ideal of the extension $R \subseteq S$. The rest of the proof is similar to the proof of [2, Lemma].

Proposition 2.11. Let $R \subseteq S$ be a ring extension, and let I be a nonzero S-regular ideal of R. If I is a cancellation ideal of the extension $R \subseteq S$, then for each maximal ideal m of R, there exists $a \in R$ such that $I_{[m]} = (a)_{[m]}$.

Theorem 2.12. Let $R \subseteq S$ be a ring extension, and let I be a nonzero finitely generated S-regular ideal of R. The following statements are equivalent.

1. I is a cancellation ideal of the extension $R \subseteq S$.
2. I is a quasi-cancellation ideal of the extension $R \subseteq S$.
3. I is an S-invertible ideal of R.
4. $IR[X]$ is a cancellation ideal of the extension $R[X] \subseteq S[X]$.

Proof. The equivalence (1) \Leftrightarrow (2) is the result of Theorem 2.4.

(1) \Rightarrow (3) Suppose that I is a cancellation ideal of the extension $R \subseteq S$, and let m be a maximal ideal of R. By the previous proposition, $I[m] = (a)[m]$ for some $a \in R$. It follows that $(I[m])_{m[m]} = ((a)[m])_{m[m]}$. But by [5, Lemma 2.9(b), p. 28], we have $I_m = (I[m])_{m[m]}$ and $(a)_m = ((a)[m])_{m[m]}$. Hence $I_m = (a)_m$. This shows that I is locally principal. It follows from [5, Proposition 2.3, p. 97] that I is S-invertible.

(3) \Rightarrow (4) Suppose that I is an S-invertible ideal of the extension $R \subseteq S$. First, note that $(IR[X])(S[X]) = S[X]$ since $IS = S$. Hence $IR[X]$ is an $S[X]$-regular ideal of $R[X]$. Let J be the R-submodule of S such that $IJ = R$. Then $(IR[X])(JR[X]) = R[X]$. This shows that $IR[X]$ is an $S[X]$-invertible ideal of $R[X]$. It follows from the equivalence (1) \Leftrightarrow (3) that $IR[X]$ is a cancellation ideal of the extension $R[X] \subseteq S[X]$.

(4) \Rightarrow (1) Suppose that $IR[X]$ is a cancellation ideal of the extension $R[X] \subseteq S[X]$. Let J be an S-regular ideal of R. Then by the equivalence (1) \Leftrightarrow (2) of Proposition 2.3, we have $[(IR[X])(JR[X]) : IR[X]] = JR[X]$.

We show that $[IJ : I] = J$. First, note that the containment $J \subseteq [IJ : I]$ is always true. Let $u \in [IJ : I]$. Then $uI \subseteq IJ$. Therefore, $uIR[X] \subseteq (IJ)R[X] \subseteq (IR[X])(JR[X])$. Hence $u \in [(IR[X])(JR[X]) : IR[X]] = JR[X]$. It follows that $u \in JR[X] \cap S = J$. This shows that $[IJ : I] \subseteq J$. Hence $[IJ : I] = J$. It follows from the equivalence (1) \Leftrightarrow (2) of Proposition 2.3 that I is a cancellation ideal of the extension $R \subseteq S$. □
Corollary 2.13. Let $R \subseteq S$ be a ring extension, and let I be a finitely generated S-regular ideal of R. If I is a cancellation ideal of the extension $R \subseteq S$, then $I_{[m]}$ is a cancellation ideal of the extension $R_{[m]} \subseteq S$ for each maximal ideal m of R.

Proof. Let I be a finitely generated S-regular ideal of R, and let m be a maximal ideal of R. Suppose that I is a cancellation ideal of the extension $R \subseteq S$. Then by the previous theorem, I is S-invertible. Let J be an R-submodule of S such that $IJ = R$. Then $I_{[m]}J_{[m]} \subseteq (IJ)_{[m]} \subseteq R_{[m]}$. Furthermore, since $IS = S$, there exist $x_i \in I$ and $y_i \in J$, $1 \leq i \leq \ell$, such that $1 = \sum_{i=1}^{\ell} x_i y_i$. Let $u \in R_{[m]}$. There exists $t \in R \setminus m$ such that $tu \in R$ and $u = \sum_{i=1}^{\ell} (ux_i)y_i$. But for $1 \leq i \leq \ell$, $t(ux_i) = (tu)x_i \in I$ since $tu \in R$ and $x_i \in I$. It follows that $ux_i \in I_{[m]}$. Therefore, $u = \sum_{i=1}^{\ell} (ux_i)y_i \in I_{[m]}J \subseteq I_{[m]}J_{[m]}$. This shows that $R_{[m]} \subseteq I_{[m]}J_{[m]}$. Thus $I_{[m]}J_{[m]} = R_{[m]}$. Hence $I_{[m]}$ is an S-invertible $R_{[m]}$-submodule of S. It follows that $I_{[m]}$ is a cancellation ideal of the extension $R_{[m]} \subseteq S$, since an invertible ideal of ring extension is always a cancellation ideal. \qed

References
[1] Anderson, D.D., Anderson, D. F. (1984). Some remarks on cancellation ideals. Math Japonica. 29 (6), pp 879-886.
[2] Anderson, D.D., Roitman, M. (1997). A characterization of cancellation ideals. Proc. Amer. Math. Soc. No. 10, pp 2853 - 2854.
[3] Fuchs, L.; Salce, L. (2001) Modules over non-Noetherian domains. Mathematical Surveys and Monographs, Vol. 84. American Mathematical Society, Providence, RI. xvi+613 pp.
[4] Gabelli, S; Houston, E. (2000). Ideal theory in pullbacks. In Chapman S. T; Glaz S., eds. Non-Noetherian commutative ring theory. Math. Appl., Vol 520. Dordrecht: Kluwer Acad. Publ., pp. 199-227.
[5] Knebusch, M., Zhang, D. (2002). Manis valuations and Prüfer extensions I. Lecture Notes in Mathematics, Vol. 1791. Berlin: Springer-Verlag.
[6] Paudel, L., Tchamna, S. (2018). On the saturation of submodules. Algebra and Discrete Mathematics, Vol. 26, No. 1, pp. 110 - 123
[7] Tchamna, S. (2017). Multiplicative canonical ideals of ring extensions. Journal of Algebra and Its Appl. Vol. 16, No. 4:170069.

Contact Information
Simplice Tchamna Department of Mathematics
Georgia College, Milledgeville, GA, USA
E-Mail(s): simplice.tchamna@gcsu.edu

Received by the editors: 26.07.2019
and in final form 30.10.2020.