The One-Phase Bifurcation For The p-Laplacian

Alaa Akram Haj Ali & Peiyong Wang*

Department of Mathematics
Wayne State University
Detroit, MI 48202

Abstract

A bifurcation about the uniqueness of a solution of a singularly perturbed free boundary problem of phase transition associated with the p-Laplacian, subject to given boundary condition is proved in this paper. We show this phenomenon by proving the existence of a third solution through the Mountain Pass Lemma when the boundary data decreases below a threshold. In the second part, we prove the convergence of an evolution to stable solutions, and show the Mountain Pass solution is unstable in this sense.

AMS Classifications: 35J92, 35J25, 35J62, 35K92, 35K20, 35K59

Keywords: bifurcation, phase transition, p-Laplacian, Mountain Pass Theorem, Palais-Smale condition, critical point, critical boundary data, convergence of evolution.

1 Introduction

In this paper, one considers the phase transition problem of minimizing the p-functional

$$J_{p,\varepsilon}(u) = \int_{\Omega} \frac{1}{p} |\nabla u(x)|^p + Q(x)\Gamma_{\varepsilon}(u(x)) \, dx \quad (1 < p < \infty)$$ \hspace{1cm} (1.1)

which is a singular perturbation of the one-phase problem of minimizing the functional associated with the p-Laplacian

$$J_p(u) = \int_{\Omega} \frac{1}{p} |\nabla u(x)|^p + Q(x)\chi_{\{u(x) > 0\}} \, dx,$$ \hspace{1cm} (1.2)

where $\Gamma_{\varepsilon}(s) = \Gamma(s)$ for $\varepsilon > 0$ and for a C^∞ function Γ defined by

$$\Gamma(s) = \begin{cases}
0 & \text{if } s \leq 0 \\
1 & \text{if } s \geq 1,
\end{cases}$$

*Peiyong Wang is partially supported by a Simons Collaboration Grant.
and $0 \leq \Gamma(s) \leq 1$ for $0 < s < 1$, and $Q \in W^{2,2}(\Omega)$ is a positive continuous function on Ω such that $\inf_{\Omega} Q(x) > 0$. Let $\beta_\varepsilon(s) = \Gamma'_\varepsilon(s) = \frac{1}{\varepsilon} \beta(\frac{s}{\varepsilon})$ with $\beta = \Gamma'$. The domain Ω is always assumed to be smooth in this paper for convenience. As in the following we will fix the value of ε unless we specifically examine the influence of the value of ε on the critical boundary data and will not use the notation J_p for a different purpose, we are going to abuse the notation by using J_p for the functional $J_{p,\varepsilon}$ from now on.

The Euler-Lagrange equation of (1.1) is

$$-\Delta_p u + Q(x) \beta_\varepsilon(u) = 0 \quad x \in \Omega \quad (1.3)$$

One imposes the boundary condition

$$u(x) = \sigma(x), \quad x \in \partial \Omega \quad (1.4)$$

on u, for $\sigma \in C(\partial \Omega)$ with $\min_{\partial \Omega} \sigma > 0$, to form a boundary value problem.

In this paper, we take on the task of establishing in the general case when $p \neq 2$ the results proved in [CW] for the Laplacian when $p = 2$. The main difficulty in this generalization lies in the lack of sufficient regularity and the singular-degenerate nature of the p-Laplacian when $p \neq 2$. A well-known fact about p-harmonic functions is the optimal regularity generally possessed by them is $C^{1,\alpha}$ (e.g. [E] and [Le]). Thus we need to employ more techniques associated with the p-Laplacian, and in a case or two we have to make our conclusion slightly weaker. Nevertheless, we follow the overall scheme of approach used in [CW]. In the second section, we prove the bifurcation phenomenon through the Mountain Pass Theorem. In the third section, we establish a parabolic comparison principle. In the last section, we show the convergence of an evolution to a stable steady state in accordance with respective initial data.

2 A Third Solution

We first prove if the boundary data is small enough, then the minimizer is nontrivial. More precisely, let u_0 be the trivial solution of (1.3) and (1.4), being p-harmonic in the weak sense, and u_2 be a minimizer of the p-functional (1.1), and set

$$\sigma_M = \max_{\partial \Omega} \sigma(x) \quad \text{and} \quad \sigma_m = \min_{\partial \Omega} \sigma(x).$$

If σ_M is small enough, then $u_0 \neq u_2$.

In fact, we pick $u \in W^{1,p}(\Omega)$ so that

$$\begin{cases}
 u = 0 & \text{in } \Omega_\delta, \\
 u = \sigma & \text{on } \partial \Omega, \quad \text{and} \\
 -\Delta_p u = 0 & \text{in } \Omega \setminus \Omega_\delta,
\end{cases} \quad (2.1)$$

where $\Omega_\delta = \{ x \in \Omega : \text{dist}(x, \partial \Omega) > \delta \}$ and $\delta > 0$ is a small constant independent of ε and σ so that $\int_{\Omega_\delta} Q(x) \, dx$ has a positive lower bound which is also independent of ε and σ. Using an approximating domain if necessary, we may assume Ω_δ possesses a smooth boundary. Clearly,

$$J_p(u_0) = \int_\Omega \frac{1}{p} |\nabla u_0|^p + Q(x) \, dx \geq \int_\Omega Q(x) \, dx.$$
It is well-known that
\[\int_{\Omega \setminus \hat{\Omega}_\delta} |\nabla u|^p \leq C \sigma_p \delta^{1-p} \] for \(C = C(n, p, \Omega) \), so that
\[J_p(u) = \int_{\Omega \setminus \hat{\Omega}_\delta} \frac{1}{p} |\nabla u|^p + \int_{\Omega \setminus \hat{\Omega}_\delta} Q(x) \, dx \]
\[\leq C \sigma_p \delta^{1-p} + \int_{\Omega \setminus \hat{\Omega}_\delta} Q(x) \, dx. \]
So, for all small \(\varepsilon > 0 \),
\[J_p(u) - J_p(u_0) \leq C \sigma_p \delta^{1-p} - \int_{\Omega \setminus \hat{\Omega}_\delta} Q(x) \, dx < 0 \]
if \(\sigma_M \leq \sigma_0 \) for some small enough \(\sigma_0 = \sigma_0(\delta, \Omega, Q) \).

Let \(\mathcal{B} \) denote the Banach space \(W_0^1(\Omega) \) we will work with. For every \(v \in \mathcal{B} \), we write \(u = v + u_0 \) and adopt the norm \(||v||_\mathcal{B} = (\int_\Omega |\nabla v|^p)^{\frac{1}{p}} = (\int_\Omega |\nabla u - \nabla u_0|^p)^{\frac{1}{p}} \). We define the functional
\[I[v] = J_p(u) - J_p(u_0) = \int_{\Omega} \frac{1}{p} |\nabla u|^p - \int_{\{u < \varepsilon\}} Q(x) (1 - \Gamma_\varepsilon(u)) - \int_{\Omega} \frac{1}{p} |\nabla u_0|^p \] (2.2)
Set \(v_2 = u_2 - u_0 \). Clearly, \(I[0] = 0 \) and \(I[v_2] \leq 0 \) on account of the definition of \(u_2 \) as a minimizer of \(J_p \). If \(I[v_2] < 0 \) which is the case if \(\sigma_M \) is small, we will apply the Mountain Pass Lemma to prove there exists a critical point of the functional \(I \) which is a weak solution of the problem (1.3) and (1.4).

The Fréchet derivative of \(I \) at \(v \in \mathcal{B} \) is given by
\[I'[v] \varphi = \int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla \varphi + Q(x) \beta_\varepsilon(u) \varphi \] \(\varphi \in \mathcal{B} \) (2.3)
which is obviously in the dual space \(\mathcal{B}^* \) of \(\mathcal{B} \) in light of the Hölder’s inequality. Equivalently
\[I'[v] = -\Delta_p (v + u_0) + Q(x) \beta_\varepsilon(v + u_0) \in \mathcal{B}^*. \] (2.4)
We see that \(I' \) is Lipschitz continuous on any bounded subset of \(\mathcal{B} \) with Lipschitz constant depending on \(\varepsilon, p, \) and \(\sup Q \). In fact, for any \(v, w, \) and \(\varphi \in \mathcal{B}, \)
\[|I'[v] \varphi - I'[w] \varphi| = |\int_{\Omega} |\nabla v + \nabla u_0|^{p-2} (\nabla v + \nabla u_0) \cdot \nabla \varphi + Q(x) \beta_\varepsilon(v + u_0) \varphi - (\nabla w + \nabla u_0)^{p-2} (\nabla w + \nabla u_0) \cdot \nabla \varphi - Q(x) \beta_\varepsilon(w + u_0) \varphi| \]
\[\leq \left| \int_{\Omega} |\nabla v + \nabla u_0|^{p-2} (\nabla v + \nabla u_0) \cdot \nabla \varphi - |\nabla w + \nabla u_0|^{p-2} (\nabla w + \nabla u_0) \cdot \nabla \varphi \right| \]
\[+ \left| \int_{\Omega} Q(x) \beta_\varepsilon(v + u_0) - Q(x) \beta_\varepsilon(w + u_0) \right| \]
Furthermore,
\[
\left| \int_{\Omega} Q(x) \beta_{\varepsilon}(v + u_0) - Q(x) \beta_{\varepsilon}(w + u_0) \right|
\]
\[
= \left| \int_{\Omega} Q(x) \int_0^1 \beta'_{\varepsilon}((1-t)w + tv + u_0) \, dt \, (v(x) - w(x)) \, dx \right|
\]
\[
\leq \sup_{\Omega} |\beta'_{\varepsilon}| \int_{\Omega} |Q(x) (v(x) - w(x))| \, dx
\]
\[
\leq C_{\varepsilon^2} \left(\int_{\Omega} Q_{\beta'}(x) \right)^{\frac{1}{p}} \left(\int_{\Omega} |v(x) - w(x)|^p \, dx \right)^{\frac{1}{p}}
\]

and
\[
\left| \int_{\Omega} |\nabla v + \nabla u_0|^{p-2} (\nabla v + \nabla u_0) \cdot \nabla \varphi - |\nabla w + \nabla u_0|^{p-2} (\nabla w + \nabla u_0) \cdot \nabla \varphi \right|
\]
\[
\leq \left(\int_{\Omega} |\nabla v + \nabla u_0|^p \right)^{\frac{p-2}{p}} \left(\int_{\Omega} |\nabla \varphi|^p \right)^{\frac{1}{p}} \left(\int_{\Omega} |\nabla v - \nabla w|^p \right)^{\frac{1}{p}},
\]

and
\[
\left| \int_{\Omega} (|\nabla v + \nabla u_0|^{p-2} - |\nabla w + \nabla u_0|^{p-2}) (\nabla w + \nabla u_0) \cdot \nabla \varphi \right|
\]
\[
\leq C(p) \int_{\Omega} (||\nabla v||_{L^p} + ||\nabla w||_{L^p} + ||\nabla u_0||_{L^p})^{p-2} \|\nabla v - \nabla w\|_{L^p(\Omega)} \|\nabla \varphi\|_{L^p(\Omega)}.
\]

Therefore I' is Lipschitz continuous on bounded subsets of \mathcal{B}.

We note that $f \in \mathcal{B}^*$ if and only if there exist f^0, f^1, f^2, ..., $f^n \in L^{p'}(\Omega)$, where
\[
\frac{1}{p} + \frac{1}{p'} = 1,
\]
such that
\[
< f, u > = \int_{\Omega} f^0 u + \sum_{i=1}^n f^i u_{x_i} \quad \text{holds for all } u \in \mathcal{B}; \quad \text{and} \quad (2.5)
\]
\[
\left\| f \right\|_{\mathcal{B}^*} = \inf \left\{ \left(\int_{\Omega} \sum_{i=0}^n |f^i|^p \, dx \right)^{\frac{1}{p}} : (2.5) \text{ holds.} \right\}
\]

(2.6)
Next we justify the Palais-Smale condition on the functional I. Suppose $\{v_k\} \subset B$ is a Palais-Smale sequence in the sense that

$$|I[v_k]| \leq M \quad \text{and} \quad I'[v_k] \to 0 \quad \text{in } B^*$$

for some $M > 0$. Let $u_k = v_k + u_0 \in W^{1,p}(\Omega)$, $k = 1, 2, 3, \ldots$.

That $Q(x)\beta_\varepsilon(v + u_0) \in W^{1,p}_0(\Omega)$ implies that the mapping $v \mapsto Q(x)\beta_\varepsilon(v + u_0)$ from $W^{1,p}_0(\Omega)$ to B^* is compact due to the fact $W^{1,p}_0(\Omega) \subset L^p(\Omega) \subset B^*$ following from the Rellich-Kondrachov Compactness Theorem. Then there exists $f \in L^p(\Omega) \subset B^*$ such that for a subsequence, still denoted by $\{v_k\}$, of $\{v_k\}$, it holds that

$$Q(x)\beta_\varepsilon(u_k) \to -f \quad \text{in } L^p(\Omega).$$

Recall that

$$|I'[v_k]| = \sup_{\|\varphi\|_{B^*} \leq 1} \left| \int_\Omega |\nabla u_k|^{p-2} \nabla u_k \cdot \nabla \varphi + Q(x)\beta_\varepsilon(u_k)\varphi \right| \to 0.\quad (2.7)$$

As a consequence,

$$\sup_{\|\varphi\|_{B^*} \leq M} \left| \int_\Omega |\nabla u_k|^{p-2} \nabla u_k \cdot \nabla \varphi - f \varphi \right| \to 0 \quad \text{for any } M \geq 0.\quad (2.7)$$

Obviously, that $\{I[v_k]\}$ is bounded implies that a subsequence of $\{v_k\}$, still denoted by $\{v_k\}$ by abusing the notation without confusion, converges weakly in $B = W^{1,p}_0(\Omega)$. In particular,

$$\int_\Omega f v_k - f v_m \to 0 \quad \text{as } k, m \to \infty.$$

Then by setting $\varphi = v_k - v_m = u_k - u_m$ in (2.7), one gets

$$\left| \int_\Omega (|\nabla u_k|^{p-2} \nabla u_k - |\nabla u_m|^{p-2} \nabla u_m) \cdot \nabla (u_k - u_m) \right| \to 0 \quad \text{as } k, m \to \infty,\quad (2.8)$$

since

$$\|u_k - u_m\|^p_B = \|v_k - v_m\|^p_B \leq 2pM + 2J_p[u_0].$$

In particular, if $p = 2$, $\{v_k\}$ is a Cauchy sequence in $W^{1,2}_0(\Omega)$ and hence converges. We will apply the following elementary inequalities associated with the p-Laplacian, $[L]$, to the general case $p \neq 2$:

$$< |b|^{p-2}b - |a|^{p-2}a, b - a > \geq (p - 1)|b - a|^2(1 + |a|^2 + |b|^2)^{\frac{p-2}{2}}, \quad 1 \leq p \leq 2;\quad (2.9)$$

and

$$< |b|^{p-2}b - |a|^{p-2}a, b - a > \geq 2^{p-2}|b - a|^p, \quad p \geq 2.\quad (2.10)$$

We assume first $1 < p < 2$. Let $K = 2pM + 2J_p[u_0]$. Then the first elementary inequality (2.9) implies

$$(p - 1) \int_\Omega |\nabla u_k - \nabla u_m|^2 \left(1 + |\nabla u_k|^2 + |\nabla u_m|^2\right)^{\frac{p-2}{2}}$$

$$\leq \int_\Omega (|\nabla u_k|^{p-2} \nabla u_k - |\nabla u_m|^{p-2} \nabla u_m) \cdot \nabla (u_k - u_m) \to 0$$
Meanwhile Hölder’s inequality implies
\[
\int_{\Omega} |\nabla v_k - \nabla v_m|^p = \int_{\Omega} |\nabla u_k - \nabla u_m|^p \\
\leq \left(\int_{\Omega} |\nabla u_k - \nabla u_m|^2 \right)^{\frac{p}{2}} \left(\int_{\Omega} \left(|\nabla u_k|^2 + |\nabla u_m|^2 \right)^{\frac{p}{2}} \right)^{\frac{2}{p}} \\
\leq C(p) \left(|\Omega| + K \right)^{\frac{2-p}{2}} \left(\int_{\Omega} |\nabla u_k - \nabla u_m|^2 \right)^{\frac{2-p}{2}} \left(\int_{\Omega} \left(|\nabla u_k|^2 + |\nabla u_m|^2 \right)^{\frac{p}{2}} \right)^{\frac{2}{p}}
\]
Therefore, \(\{v_k\} \) is a Cauchy sequence in \(\mathcal{B} \) and hence converges.

Suppose \(p > 2 \). The second elementary inequality (2.10) implies
\[
\int_{\Omega} |\nabla v_k - \nabla v_m|^p = \int_{\Omega} |\nabla u_k - \nabla u_m|^p \\
\leq 2^{p-2} \int_{\Omega} \left(|\nabla u_k|^{p-2} |\nabla v_k - |\nabla u_m|^{p-2} |\nabla v_m| \right) \cdot (\nabla u_k - \nabla u_m),
\]
which in turn implies \(\{v_k\} \) is a Cauchy sequence in \(\mathcal{B} \) and hence converges, on account of (2.8). The Palais-Smale condition is verified for \(1 < p < \infty \) for the functional \(I \) on the Banach space \(W^{1,p}_0(\Omega) \).

Before we continue the main proof, let us state an elementary result closely related to the \(p \)-Laplacian, which follows readily from the Fundamental Theorem of Calculus.

Lemma 2.1 For any \(a \) and \(b \) \(\in \mathbb{R}^n \), it holds
\[
|b|^p \geq |a|^p + p < |a|^{p-2} a, b - a > + C(p)|b - a|^p \quad (p \geq 2)
\]
where \(C(p) > 0 \).

If \(1 < p < 2 \), then
\[
|b|^p \geq |a|^p + p < |a|^{p-2} a, b - a > + C(p)|b - a|^p \int_{0}^{1} \int_{0}^{t} |(1-s)a + sb|^{p-2} \, ds \, dt,
\]
where \(C(p) = p(p-1) \).

We are now in a position to show there is a closed mountain ridge around the origin of the Banach space \(\mathcal{B} \) that separates \(v_2 \) from the origin with the energy \(I \) as the elevation function, which is the content of the following lemma.

Lemma 2.2 For all small \(\varepsilon > 0 \) such that \(C \varepsilon \leq \frac{1}{2} \sigma_m \) for a large universal constant \(C \), there exist positive constants \(\delta \) and \(\alpha \) independent of \(\varepsilon \), such that, for every \(v \) in \(\mathcal{B} \) with \(\|v\|_{\mathcal{B}} = \delta \), the inequality \(I[v] \geq a \) holds.

Proof. It suffices to prove \(I[v] \geq a > 0 \) for every \(v \in C_0^\infty(\Omega) \) with \(\|v\|_{\mathcal{B}} = \delta \) for \(\delta \) small enough, as \(I \) is continuous on \(\mathcal{B} \), and \(C_0^\infty(\Omega) \) is dense in \(\mathcal{B} \).

Let \(\Lambda = \{x \in \Omega : u(x) \leq \varepsilon \} \), where \(u = v + u_0 \). We claim that \(\Lambda = \emptyset \) if \(\delta \) is small enough. If not, one may pick \(z \in \Lambda \). Let \(\mathcal{AC}([a, b], S) \) be the set of absolutely continuous
functions \(\gamma : [a, b] \to S \), where \(S \subseteq \mathbb{R}^n \). For each \(\gamma \in \mathcal{AC}([a, b], S) \), we define its length to be \(L(\gamma) = \int_a^b |\gamma'(t)| \, dt \). For \(x_0 \in \partial \Omega \), we define the distance from \(x_0 \) to \(z \) to be

\[
d(x_0, z) = \inf\{L(\gamma) : \gamma \in \mathcal{AC}([0, 1], \Omega), \text{ s.t. } \gamma(0) = x_0, \text{ and } \gamma(1) = z\}
\]

As shown in [CW], there is a minimizing path \(\gamma_{x_0} \) for the distance \(d(x_0, z) \).

Suppose the domain \(\Omega \) is convex or star-like about \(z \). For any \(x_0 \in \partial \Omega \), let \(\gamma = \gamma_{x_0} \) be a minimizing path of \(d(x_0, z) \). Then it is clear that \(\gamma \) is a straight line segment and \(\gamma(t) \neq z \) for \(t \in [0, 1] \). Furthermore, for any two distinct points \(x_1 \) and \(x_2 \in \partial \Omega \), the corresponding minimizing paths do not intersect in \(\Omega \setminus \{z\} \). For this reason, we can carry out the following computation. Clearly \(v(x_0) = 0 \) and \(v(\gamma(1)) = \varepsilon - u_0(\gamma(1)) \leq \varepsilon - \sigma_m < 0 \). So the Fundamental Theorem of Calculus

\[
v(\gamma(1)) - v(\gamma(0)) = \int_0^1 \nabla v(\gamma(t)) \cdot \gamma'(t) \, dt
\]

implies

\[
\sigma_m - \varepsilon \leq \int_0^1 |\nabla v(\gamma(t))| |\gamma'(t)| \, dt. \tag{2.13}
\]

For each \(x_0 \in \partial \Omega \), let \(e(x_0) \) be the unit vector in the direction of \(x_0 - z \) and \(\nu(x_0) \) the outer normal to \(\partial \Omega \) at \(x_0 \). Then \(\nu(x_0) \cdot e(x_0) > 0 \) everywhere on \(\partial \Omega \). Hence the above inequality (2.13) implies

\[
(\sigma_m - \varepsilon) \int_{\partial \Omega} \nu(x_0) \cdot e(x_0) \, dH^{n-1}(x_0)
\]

\[
\leq \int_{\partial \Omega} \int_0^1 |\nabla v(\gamma(t))| |\gamma'(t)| \, dt \nu(x_0) \cdot e(x_0) \, dH^{n-1}(x_0)
\]

\[
\leq \int_{\partial \Omega} \left(\int_0^1 |\gamma'(t)| \, dt \right)^{\frac{1}{p'}} \left(\int_0^1 |\nabla v(\gamma(t))|^p |\gamma'(t)| \, dt \right)^{\frac{1}{p}} \nu(x_0) \cdot e(x_0) \, dH^{n-1}(x_0),
\]

where \(\frac{1}{p} + \frac{1}{p'} = 1 \),

\[
= \int_{\partial \Omega} L(\gamma_{x_0}) \left(\int_0^1 |\nabla v(\gamma(t))|^p |\gamma'(t)| \, dt \right)^{\frac{1}{p'}} \nu(x_0) \cdot e(x_0) \, dH^{n-1}(x_0)
\]

\[
\leq \left(\int_{\partial \Omega} L(\gamma_{x_0}) \nu(x_0) \cdot e(x_0) \, dH^{n-1} \right)^{\frac{1}{p'}} \left(\int_{\partial \Omega} \int_0^1 |\nabla v(\gamma(t))|^p |\gamma'(t)| \nu \cdot e \, dt \, dH^{n-1} \right)^{\frac{1}{p}}
\]

\[
= C|\Omega| \left(\int_{\Omega} |\nabla v|^p \, dx \right)^{\frac{1}{p'}} \left(\int_{\partial \Omega} \int_0^1 |\nabla v(\gamma(t))|^p |\gamma'(t)| \nu \cdot e \, dt \, dH^{n-1} \right)^{\frac{1}{p}}
\]

\[
\leq C\{|u > \varepsilon\}|^{\frac{1}{p'}} \delta \leq C\{|u > 0\}|^{\frac{1}{p'}} \delta,
\]

where the second and third inequalities are due to the application of the Hölder’s inequality, and the constant \(C \) depends on \(n \) and \(p \). The second equality follows from the two representation formulas

\[
|\Omega| = C(n) \int_{\partial \Omega} L(\gamma_{x_0}) \nu(x_0) \cdot e(x_0) \, dH^{n-1}(x_0)
\]
and
\[\int_{\Omega} |\nabla v(x)|^p \, dx = C(n) \int_{\partial \Omega} \int_0^1 |\nabla v(\gamma_{x_0}(t))|^p \left| \gamma'_{x_0}(t) \right| \nu(x_0) \cdot e(x_0) \, dt \, dH^{n-1}(x_0). \]

If we take \(\delta \) sufficiently small and independent of \(\varepsilon \) in the preceding inequality
\[(\sigma_m - \varepsilon) \int_{\partial \Omega} \nu(x_0) \cdot e(x_0) \, dH^{n-1}(x_0) \leq C|\{u > 0\}|^{\frac{p}{p'}} \delta, \]
the measure \(|\{u > 0\}|\) of the positive domain would be greater than that of \(\Omega \), which is impossible, provided that
\[\int_{\partial \Omega} \nu(x_0) \cdot e(x_0) \, dH^{n-1}(x_0) \geq C, \quad (2.14) \]
for a constant \(C \) which depends on \(n, p \) and \(|\Omega|\), but not on \(z \) or \(v \). Hence \(\Lambda \) must be empty. So we need to justify the inequality (2.14). To fulfil that condition, for \(e = e(x_0) \), we set \(l(e, z) = l(e) = L(\gamma_{x_0}) \). Then
\[\int_{\partial \Omega} \nu(x_0) \cdot e(x_0) \, dH^{n-1}(x_0) = \int_{e \in \partial B} (l(e))^{n-1} \, d\sigma(e), \]
where \(B \) is the unit ball about \(z \) and \(d\sigma(e) \) is the surface area element on the unit sphere \(\partial B \) which is invariant under rotation and reflection. Clearly,
\[\left(\int_{\partial B} (l(e))^{n-1} \, d\sigma(e) \right)^{\frac{2}{n-1}} \geq C(n) \int_{\partial B} l^2(e) \, d\sigma(e) \]
Consequently, in order to prove (2.14), one needs only to prove
\[\int_{\partial B} l^2(e) \, d\sigma(e) \geq C(n, p, |\Omega|). \quad (2.15) \]

Next, we show the integral on the left-hand-side of (2.15) is minimal if \(\Omega \) is a ball while its measure is kept unchanged. In fact, this is almost obvious if one notices the following fact. Let \(\pi \) be any hyperplane passing through \(z \), and \(x_1 \) and \(x_2 \) be the points on \(\partial \Omega \) which lie on a line perpendicular to \(\pi \). Let \(x_1^* \) and \(x_2^* \) be the points on the boundary \(\partial \Omega_{x^*} \), where \(\Omega_{x^*} \) is the symmetrized image of \(\Omega \) about the hyperplane \(\pi \), which lie on the line \(x_1x_2 \). Let \(2a = |x_1x_2| = |x_1^*x_2^*| \) and \(d \) be the distance from \(z \) to the line \(x_1x_2 \). Then for some \(t \) in \(-a \leq t \leq a\), it holds that
\[L^2(\gamma_{x_1}) + L^2(\gamma_{x_2}) = (d^2 + (a - t)^2) + (d^2 + (a + t)^2) \geq 2(d^2 + a^2) = 2 \left(L^*(\gamma_{x^*_1}) \right)^2. \]
As a consequence, if \(\Omega^* \) is the symmetrized ball with measure equal to that of \(\Omega \), then
\[\int_{\partial B} l^2(e) \, d\sigma(e) \geq \int_{\partial B} (l^*(e))^2 \, d\sigma(e) = C(n, |\Omega|), \]
\[\int_{\partial B} l^2(e) \, d\sigma(e) \geq C(n, |\Omega|). \]
where \(l^* \) is the length from \(z \) to a point on the boundary \(\partial \Omega^* \) which is constant. This finishes the proof of the fact that \(\Lambda = \emptyset \).

In case the domain \(\Omega \) is not convex, the minimizing paths of \(d(x_1, z) \) and \(d(x_2, z) \) for distinct \(x_1, x_2 \in \partial \Omega \) may partially coincide. We form the set \(\mathcal{DA}(\partial \Omega) \) of the points \(x_0 \) on \(\partial \Omega \) so that a minimizing path \(\gamma \) of \(d(x_0, z) \) satisfies \(\gamma(t) \in \Omega \setminus \{z\} \) for \(t \in (0, 1) \). We call a point in \(\mathcal{DA}(\partial \Omega) \) a **directly accessible** boundary point. Let \(\Omega_1 \) be the union of these minimizing paths for the directly accessible boundary points. It is not difficult to see that \(|\Omega_1| > 0 \) and hence \(H^{n-1}(\mathcal{DA}(\partial \Omega)) > 0 \). Then we may apply the above computation to the star-like domain \(\Omega_1 \) with minimal modification. We have

\[
(\sigma_m - C\varepsilon) \int_{\partial \Omega} \nu(x_0) \cdot e(x_0) \, dH^{n-1}(x_0) \leq C|\Omega_1|^{\frac{1}{p}} \delta \leq C|\Omega|^{\frac{1}{p}} \delta. \tag{2.16}
\]

For small enough \(\delta \), this raises a contradiction \(|\Omega| > |\Omega| \). So \(\Lambda = \emptyset \).

Finally we prove that \(||v||_{\Omega_1} = \delta \) implies

\[
I[v] = \int_{\Omega} \frac{1}{p} |\nabla v + \nabla u_0|^p - \frac{1}{p} |\nabla u_0|^p \geq a \quad \text{for a certain} \quad a > 0. \tag{2.17}
\]

If \(p \geq 2 \), then the elementary inequality (2.11) implies that

\[
I[v] \geq p(p-1) \int_{\Omega} |\nabla v|^2 \int_{0}^{1} \int_{0}^{t} \frac{1}{|\nabla u_0 + s \nabla v|^{2-p}} \, ds \, dt \, dx \geq p(p-1) \int_{\Omega} |\nabla v|^2 \int_{0}^{1} \int_{0}^{t} \frac{1}{(|\nabla u_0| + s |\nabla v|)^{2-p}} \, ds \, dt \, dx.
\]

If \(\int_{\Omega} |\nabla u_0|^p = 0 \), then \(I[v] = \frac{1}{p} \delta^p > 0 \). So in the following, we assume \(\int_{\Omega} |\nabla u_0|^p > 0 \).

Let \(S = S_{\lambda} = \{ x \in \Omega : |\nabla v| > \lambda \delta \} \), where the constant \(\lambda = \lambda(p, |\Omega|) \) is to be taken. Then

\[
\delta^p = \int_{\Omega} |\nabla v|^p = \int_{|\nabla v| \leq \lambda \delta} |\nabla v|^p + \int_{S} |\nabla v|^p \leq (\lambda \delta)^p |\Omega| + \int_{S} |\nabla v|^p
\]

and hence

\[
\int_{S} |\nabla v|^p \geq \delta^p (1 - \lambda^p |\Omega|) \geq \frac{1}{2} \delta^p, \quad \text{if} \quad \lambda \quad \text{satisfies} \quad \frac{1}{4} < \lambda^p |\Omega| \leq \frac{1}{2}.
\]
Meanwhile, for $1 < p < 2$, it holds that
\[
I[v] \geq C(p) \int_S |\nabla v|^2 \int_0^1 \int_0^t \frac{1}{(|\nabla u_0| + s|\nabla v|)^{2-p}} \, ds \, dt \, dx
\]
\[
= C(p) \left(\int_{S \cap \{|\nabla u_0| \leq |\nabla v|\}} |\nabla v|^2 \int_0^1 \int_0^t \frac{1}{(|\nabla u_0| + s|\nabla v|)^{2-p}} \, ds \, dt \, dx \right)
\]
\[
+ \int_{S \cap \{|\nabla u_0| > |\nabla v|\}} |\nabla v|^2 \int_0^1 \int_0^t \frac{1}{(|\nabla u_0| + s|\nabla v|)^{2-p}} \, ds \, dt \, dx .
\]
The first integral on the right satisfies
\[
\int_{S \cap \{|\nabla u_0| \leq |\nabla v|\}} |\nabla v|^2 \int_0^1 \int_0^t \frac{1}{(|\nabla u_0| + s|\nabla v|)^{2-p}} \, ds \, dt \, dx
\]
\[
\geq C(p) \int_{S \cap \{|\nabla u_0| \leq |\nabla v|\}} |\nabla v|^p \int_0^1 \int_0^t \frac{1}{(1 + s)^{2-p}} \, ds \, dt \, dx
\]
\[
= C(p) \int_{S \cap \{|\nabla u_0| \leq |\nabla v|\}} |\nabla v|^p \, dx,
\]
while the second integral on the right satisfies
\[
\int_{S \cap \{|\nabla u_0| > |\nabla v|\}} |\nabla v|^2 \int_0^1 \int_0^t \frac{1}{(|\nabla u_0| + s|\nabla v|)^{2-p}} \, ds \, dt \, dx
\]
\[
\geq C(p) \int_{S \cap \{|\nabla u_0| > |\nabla v|\}} |\nabla v|^2 |\nabla u_0|^{2-p} \int_0^1 \int_0^t \frac{ds \, dt}{(1 + s)^{2-p}} \, dx
\]
\[
= C(p) \int_{S \cap \{|\nabla u_0| > |\nabla v|\}} |\nabla v|^2 \frac{|\nabla u_0|^{2-p}}{dx}.
\]
The H"older's inequality applied with exponents $\frac{2}{p}$ and $\frac{2}{2-p}$ implies that
\[
\int_{S \cap \{|\nabla u_0| > |\nabla v|\}} |\nabla v|^p \leq \left(\int_{S \cap \{|\nabla u_0| > |\nabla v|\}} \frac{|\nabla v|^2}{|\nabla u_0|^{2-p}} \right)^{\frac{p}{2}} \left(\int_{S \cap \{|\nabla u_0| > |\nabla v|\}} |\nabla u_0|^p \right)^{\frac{2-p}{2}} ,
\]
or equivalently
\[
\int_{S \cap \{|\nabla u_0| > |\nabla v|\}} \frac{|\nabla v|^2}{|\nabla u_0|^{2-p}} \geq \left(\int_{S \cap \{|\nabla u_0| > |\nabla v|\}} \frac{|\nabla v|^p}{|\nabla u_0|^{2-p}} \right)^{\frac{2}{p}} \left(\int_{S \cap \{|\nabla u_0| > |\nabla v|\}} |\nabla u_0|^p \right)^{\frac{2-p}{p}}
\]
\[
\geq \left(\int_{S \cap \{|\nabla u_0| > |\nabla v|\}} \frac{|\nabla v|^p}{|\nabla u_0|^{2-p}} \right)^{\frac{2}{p}} \left(\int_{\Omega} |\nabla u_0|^p \right)^{\frac{2-p}{p}} .\]
Consequently,

\[I[v] \geq C(p) \int_{S \cap \{ |\nabla u_0| \leq |\nabla v| \}} |\nabla v|^p + C(p) \frac{\left(\int_{S \cap \{ |\nabla u_0| > |\nabla v| \}} |\nabla v|^p \right)^{\frac{2}{p}}}{\left(\int_{\Omega} |\nabla u_0|^p \right)^{\frac{2-p}{p}}}, \]

where the last inequality is a consequence of the elementary inequality

\[a^2 + b^2 \geq C(p) (a + b)^2 \]

for \(a, b \geq 0 \), and the constant

\[A(u_0) = \min \left\{ 1, \frac{1}{\left(\int_{\Omega} |\nabla u_0|^p \right)^{\frac{2-p}{p}}} \right\}. \]

So we have proved \(I[v] \geq a > 0 \) for some \(a > 0 \) whenever \(v \in C_0^\infty(\Omega) \) satisfies \(\|v\|_B = \delta \), for any \(p \in (1, \infty) \). \(\square \)

Let

\[\mathcal{G} = \{ \gamma \in C([0,1], H) : \gamma(0) = 0 \text{ and } \gamma(1) = v_2 \} \]

and

\[c = \inf_{\gamma \in \mathcal{G}} \max_{0 \leq t \leq 1} I[\gamma(t)]. \]

The verified Palais-Smale condition and the preceding lemma allow us to apply the Mountain Pass Theorem as stated, for example, in [J] to conclude that there is a \(v_1 \in \mathfrak{B} \) such that \(I[v_1] = c \), and \(I'[v_1] = 0 \) in \(\mathfrak{B}^* \). That is

\[\int_{\Omega} |\nabla u_1|^{p-2} \nabla u_1 \cdot \nabla \varphi + Q(x) \beta_\varepsilon(u_1) \varphi dx = 0 \]

for any \(\varphi \in \mathfrak{B} = W_0^{1,p}(\Omega) \), where \(u_1 = v_1 + u_0 \). So \(u_1 \) is a weak solution of the problem (1.3) and (1.4). In essence, the Mountain Pass Theorem is a way to produce a saddle point solution. Therefore, in general, \(u_1 \) tends to be an unstable solution in contrast to the stable solutions \(u_0 \) and \(u_2 \).

In this section, we have proved the following theorem.

Theorem 2.3 If \(\varepsilon \ll \sigma_m \) and \(J_p(u_2) < J_p(u_0) \), then there exists a third weak solution \(u_1 \) of the problem (1.3) and (1.4). Moreover, \(J_p(u_1) \geq J_p(u_0) + a \), where \(a \) is independent of \(\varepsilon \).
3 A Comparison Principle for Evolution

In this section, we prove a comparison theorem for the following evolution problem.

\[
\begin{cases}
w_t - \Delta_p w + \alpha(x, w) = 0 & \text{in } \Omega \times (0, T) \\
w(x, t) = \sigma(x) & \text{on } \partial \Omega \times (0, T) \\
w(x, 0) = v_0(x) & \text{for } x \in \bar{\Omega},
\end{cases}
\]

(3.1)

where \(T > 0 \) may be finite or infinite, and \(\alpha \) is a continuous function satisfying \(0 \leq \alpha(x, w) \leq Kw \) and \(|\alpha(x, r_2) - \alpha(x, r_1)| \leq K|r_2 - r_1| \) for all \(x \in \Omega, r_1 \) and \(r_2 \in \mathbb{R} \), and some \(K \geq 0 \). Let us introduce the notation \(H_p w = w_t - \Delta_p w + \alpha(x, w) \). We recall a weak sub-solution \(w \in L^2(0, T; W^{1,p}(\Omega)) \) satisfies

\[
\int_V w\varphi \bigg|_{t_1}^{t_2} + \int_{t_1}^{t_2} \int_V -w\varphi_t + |\nabla w|^{p-2}\nabla w \cdot \nabla \varphi + \alpha(x, w)\varphi \leq 0
\]

for any region \(V \subset \subset \Omega \) and any test function \(\varphi \in L^2(0, T; W^{1,p}(\Omega)) \) such that \(\varphi_t \in L^2(\Omega \times \mathbb{R}_T) \) and \(\varphi \geq 0 \) in \(\Omega \times \mathbb{R}_T \), where \(L^2(0, T; W^{1,p}(\Omega)) \) is the subset of \(L^2(0, T; W^{1,p}(\Omega)) \) that contains functions which is equal zero on the boundary of \(\Omega \times \mathbb{R}_T \), where \(\mathbb{R}_T = [0, T] \).

For convenience, we let \(\mathfrak{H} \) denote this set of test functions in the following.

In particular, it holds that

\[
\int_0^T \int_\Omega -w\varphi_t + |\nabla w|^{p-2}\nabla w \cdot \nabla \varphi + \alpha(x, w)\varphi \leq 0
\]

for any test function \(\varphi \in L^2_0(0, T; W^{1,p}(\Omega)) \) such that \(\varphi_t \in L^2(\Omega \times \mathbb{R}_T) \) and \(\varphi \geq 0 \) in \(\Omega \times \mathbb{R}_T \).

The comparison principle for weak sub- and super-solutions is stated as follows.

Theorem 3.1 Suppose \(w_1 \) and \(w_2 \) are weak sub- and super-solutions of the evolutionary problem (3.1) respectively with \(w_1 \leq w_2 \) on the parabolic boundary \((\bar{\Omega} \times \{0\}) \cup (\partial \Omega \times (0, +\infty)) \). Then \(w_1 \leq w_2 \) in \(\mathcal{D} \).

Uniqueness of a weak solution of (3.1) follows from the comparison principle, Theorem 3.1, immediately.

Lemma 3.2 For \(T > 0 \) small enough, if \(H_p w_1 \leq 0 \leq H_p w_2 \) in the weak sense in \(\Omega \times \mathbb{R}_T \) and \(w_1 < w_2 \) on \(\partial_p(\Omega \times \mathbb{R}_T) \), then \(w_1 \leq w_2 \) in \(\Omega \times \mathbb{R}_T \).

Proof. For any given small number \(\delta > 0 \), we define a new function \(\tilde{w}_1 \) by

\[
\tilde{w}_1(x, t) = w_1(x, t) - \frac{\delta}{T - t},
\]

where \(x \in \bar{\Omega} \) and \(0 \leq t < T \). In order to prove \(w_1 \leq w_2 \) in \(\Omega \times \mathbb{R}_T \), it suffices to prove \(\tilde{w}_1 \leq w_2 \) in \(\Omega \times \mathbb{R}_T \) for all small \(\delta > 0 \). Clearly, \(\tilde{w}_1 < w_2 \) on \(\partial_p(\Omega \times \mathbb{R}_T) \), and

12
\[\lim_{t \to T} \tilde{w}_1(x, t) = -\infty \] uniformly on \(\Omega \). Moreover, the following holds for any \(\varphi \in \mathfrak{T}_+ \):

\[
\int_0^T \int_\Omega \tilde{w}_1 \varphi_t + < \nabla \tilde{w}_1 |^{p-2} \nabla \tilde{w}_1, \nabla \varphi > + \alpha(x, \tilde{w}_1) \varphi \\
= \int_0^T \int_\Omega -w_1 \varphi_t + < \nabla w_1 |^{p-2} \nabla w_1, \nabla \varphi > + \frac{\delta}{T-t} \varphi_t + (\alpha(x, \tilde{w}_1) - \alpha(x, w_1)) \varphi \\
\leq \int_0^T \int_\Omega \frac{\delta}{T-t} \varphi_t + K \frac{\delta}{T-t} \varphi, \text{ as } w_1 \text{ is a weak sub-solution}
\]

\[
= \int_0^T \int_\Omega \left(-\frac{\delta}{(T-t)^2} + K \frac{\delta}{T-t} \right) \varphi \\
\leq \int_0^T \int_\Omega \frac{\delta}{2(T-t)^2} \varphi, \text{ for } T \leq \frac{1}{2K} \text{ so that } 2K \leq \frac{1}{T-t} < 0,
\]

i.e.

\[H_p \tilde{w}_1 \leq -\frac{\delta}{2(T-t)^2} \leq -\frac{\delta}{2T^2} < 0 \] in the weak sense.

That is, if we abuse the notation a little by denoting \(\tilde{w}_1 \) by \(w_1 \) in the following for convenience, it holds for any \(\varphi \in \mathfrak{T}_+ \),

\[\int_0^T \int_\Omega -w_1 \varphi_t + < \nabla w_1 |^{p-2} \nabla w_1, \nabla \varphi > + \alpha(x, w_1) \varphi \leq \int_0^T \int_\Omega \frac{\delta}{2T^2} \varphi < 0. \]

Meanwhile, for any \(\varphi \in \mathfrak{T}_+ \), \(w_2 \) satisfies

\[\int_0^T \int_\Omega -w_2 \varphi_t + < \nabla w_2 |^{p-2} \nabla w_2, \nabla \varphi > + \alpha(x, w_2) \varphi \geq 0. \]

Define, for \(j = 1, 2 \), \(v_j(x, t) = e^{-\lambda t} w_j(x, t) \), where the constant \(\lambda > 2K \). Then \(w_j(x, t) = e^\lambda v_j(x, t) \), and it is clear that \(w_1 \leq w_2 \) in \(\Omega \times \mathbb{R}_T \) is equivalent to \(v_1 \leq v_2 \) in \(\Omega \times \mathbb{R}_T \). In addition, for any \(\varphi \in \mathfrak{T}_+ \), the following inequalities hold:

\[
\int_0^T \int_\Omega -e^\lambda v_1 \varphi_t + e^\lambda (p-1)t < |\nabla v_1|^{p-2} \nabla v_1, \nabla \varphi > + \alpha(x, e^\lambda v_1) \varphi \leq -\int_0^T \int_\Omega \frac{\delta}{2T^2} \varphi
\]

and

\[
\int_0^T \int_\Omega -e^\lambda v_2 \varphi_t + e^\lambda (p-1)t < |\nabla v_2|^{p-2} \nabla v_2, \nabla \varphi > + \alpha(x, e^\lambda v_2) \varphi \geq 0.
\]

Consequently, it holds for any \(\varphi \in \mathfrak{T}_+ \)

\[
\int_0^T \int_\Omega -e^\lambda (v_1 - v_2) \varphi_t + e^\lambda (p-1)t < |\nabla v_1|^{p-2} \nabla v_1 - |\nabla v_2|^{p-2} \nabla v_2, \nabla \varphi > + (\alpha(x, e^\lambda v_1) - \alpha(x, e^\lambda v_2)) \varphi \leq -\int_0^T \int_\Omega \frac{\delta}{2T^2} \varphi.
\]
We take \(\varphi = (v_1 - v_2)^+ = \max\{v_1 - v_2, 0\} \) as the test function, since it vanishes on the boundary of \(\Omega \times \mathbb{R}_T \). Then

\[
\int_0^T \int_{\{v_1 > v_2\}} -e^\lambda (v_1 - v_2)(v_1 - v_2)_t + e^\lambda (p-1)t < |\nabla v_1|^{p-2} \nabla v_1 - |\nabla v_2|^{p-2} \nabla v_2, \nabla v_1 - \nabla v_2 > \\
+ \left(\alpha(x, e^\lambda v_1) - \alpha(x, e^\lambda v_2) \right) (v_1 - v_2) \leq -\frac{\delta}{2T^2} \int_0^T \int_{\{v_1 > v_2\}} (v_1 - v_2).
\]

Since \(\{v_1 > v_2\} \subset \Omega \times (0, T) \) due to the facts \(v_1 \leq v_2 \) on \(\partial_p(\Omega \times \mathbb{R}_T) \) and \(v_1 \to -\infty \) as \(t \uparrow T \), the divergence theorem implies

\[
\int_0^T \int_{\{v_1 > v_2\}} -e^\lambda (v_1 - v_2)(v_1 - v_2)_t = \int_0^T \int_{\{v_1 > v_2\}} \lambda e^\lambda \frac{1}{2} (v_1 - v_2)^2.
\]

On the other hand,

\[
\left(\alpha(x, e^\lambda v_1) - \alpha(x, e^\lambda v_2) \right) (v_1 - v_2) \geq -K e^\lambda (v_1 - v_2)^2 \text{ on } \{v_1 > v_2\}.
\]

As a consequence, it holds that

\[
\int_0^T \int_{\{v_1 > v_2\}} \left(\frac{\lambda}{2} - K \right) e^\lambda (v_1 - v_2)^2 + e^\lambda (p-1)t < |\nabla v_1|^{p-2} \nabla v_1 - |\nabla v_2|^{p-2} \nabla v_2, \nabla v_1 - \nabla v_2 > \\
\leq -\frac{\delta}{2T^2} \int_0^T \int_{\{v_1 > v_2\}} (v_1 - v_2).
\]

We call into play two elementary inequalities (\([L]\)) associated with the \(p \)-Laplacian:

\[
< |b|^{p-2}b - |a|^{p-2}a, b - a > \geq (p-1)|b - a|^2 \left(1 + |b|^2 + |a|^2 \right)^{\frac{p-2}{2}} \quad (1 \leq p \leq 2),
\]

and

\[
< |b|^{p-2}b - |a|^{p-2}a, b - a > \geq 2^{p-2}p|b - a|^p \quad (p \geq 2)
\]

for any \(a, b \in \mathbb{R}^n \).

By applying them with \(b = \nabla v_1 \) and \(a = \nabla v_2 \) in the preceding inequalities, we obtain

\[
\int_0^T \int_{\{v_1 > v_2\}} \left(\frac{\lambda}{2} - K \right) e^\lambda (v_1 - v_2)^2 + (p-1)e^\lambda (p-1)t |\nabla v_1 - \nabla v_2|^2 \left(1 + |\nabla v_1|^2 + |\nabla v_2|^2 \right)^{\frac{p-2}{2}}
\]

\[
\leq -\frac{\delta}{2T^2} \int_0^T \int_{\{v_1 > v_2\}} (v_1 - v_2) \quad \text{for } 1 < p < 2
\]

and

\[
\int_0^T \int_{\{v_1 > v_2\}} \left(\frac{\lambda}{2} - K \right) e^\lambda (v_1 - v_2)^2 + 2^{2-p}e^\lambda (p-1)t |\nabla v_1 - \nabla v_2|^p
\]

\[
\leq -\frac{\delta}{2T^2} \int_0^T \int_{\{v_1 > v_2\}} (v_1 - v_2) \quad \text{for } p \geq 2.
\]
One can easily see in either case the respective inequality is true only if the measure of the set \(\{ v_1 > v_2 \} \) is zero. The proof is complete.

In the next lemma, we show the strict inequality on the boundary data can be relaxed to a non-strict one.

Lemma 3.3 For \(T > 0 \) sufficiently small, if \(H_p w_1 \leq 0 \leq H_p w_2 \) in the weak sense in \(\Omega \times \mathbb{R}_T \) and \(w_1 \leq w_2 \) on \(\partial_p (\Omega \times \mathbb{R}_T) \), then \(w_1 \leq w_2 \) on \(\Omega \times \mathbb{R}_T \).

Proof. For any \(\delta > 0 \), take \(\tilde{\delta} > 0 \) such that \(\tilde{\delta} \leq \frac{\delta}{4K} \) and define

\[
\tilde{w}_1(x, t) = w_1(x, t) - \delta t - \tilde{\delta}(x, t) \in \bar{\Omega} \times \mathbb{R}^n.
\]

Then \(\tilde{w}_1 < w_1 \leq w_2 \) on \(\partial_p (\Omega \times \mathbb{R}^n) \), and for any \(\varphi \in \mathcal{S}_+ \), the following holds:

\[
\begin{align*}
\int_0^T \int_{\Omega} -\tilde{w}_1 \varphi_t + & < |\nabla \tilde{w}_1|^{p-2} \nabla \tilde{w}_1, \nabla \varphi > + \alpha(x, \tilde{w}) \varphi \\
= & \int_0^T \int_{\Omega} -w_1 \varphi_t + < |\nabla w_1|^{p-2} \nabla w_1, \nabla \varphi > + \alpha(x, w_1) \varphi \\
& - \delta \varphi + \left(\alpha(x, w_1 - \delta t - \tilde{\delta}) - \alpha(x, w_1) \right) \varphi \\
& \leq \int_0^T \int_{\Omega} -\delta \varphi + K \left(\delta t + \tilde{\delta} \right) \varphi \\
& \leq \int_0^T \int_{\Omega} \left(-\delta + \frac{\delta}{2} + \frac{\tilde{\delta}}{4} \right) \varphi \quad \text{for } T \text{ small} \\
= & -\frac{\delta}{4} \int_0^T \int_{\Omega} \varphi.
\end{align*}
\]

The preceding lemma implies \(\tilde{w}_1 \leq w_2 \) in \(\bar{\Omega} \times \mathbb{R}_T \) for small \(T \) and for any small \(\delta > 0 \), and whence the conclusion of this lemma.

Now the parabolic comparison theorem (3.1) follows from the preceding lemma quite easily as shown by the following argument: Let \(T_0 > 0 \) be any small value of \(T \) in the preceding lemma so that the conclusion of the preceding lemma holds. Then \(w_1 \leq w_2 \) on \(\bar{\Omega} \times (0, T_0) \). In particular, \(w_1 \leq w_2 \) on \(\partial_p (\bar{\Omega} \times (T_0, 2T_0)) \). The preceding lemma may be applied again to conclude that \(w_1 \leq w_2 \) on \(\bar{\Omega} \times (T_0, 2T_0) \). And so on. This recursion allows us to conclude that \(w_1 \leq w_2 \) on \(\bar{\Omega} \times \mathbb{R}_T \).

4 Convergence of Evolution

Define \(\mathcal{S} \) to be the set of weak solutions of the stationary problem (1.3) and (1.4). The \(p \)-harmonic function \(u_0 \) is the maximum element in \(\mathcal{S} \), while \(u_2 \) denotes the least solution which may be constructed as the infimum of super-solutions. We also use the term *non-minimal solution* with the same definition in [CW]. That is, \(u \) a non-minimal solution of
the problem (1.3) and (1.4) if it is a viscosity solution but not a local minimizer in the sense that for any $\delta > 0$, there exists v in the admissible set of the functional J_p with $v = \sigma$ on $\partial \Omega$ such that $\|v - u\|_{L^\infty} < \delta$, and $J_p(v) < J_p(u)$.

In this section, we consider the evolutionary problem

$$\begin{align*}
\begin{cases}
 w_t - \triangle_p w + Q(x)\beta_\varepsilon(w) = 0 &\text{in } \Omega \times (0, +\infty) \\
 w(x, t) = \sigma(x) &\text{on } \partial \Omega \times (0, +\infty) \\
 w(x, 0) = v_0(x) &\text{for } x \in \Omega,
\end{cases}
\end{align*}$$

(4.1)

and will apply the parabolic comparison principle (3.1) proved in Section 3 to prove the following convergence of evolution theorem. One just notes that the parabolic problem (3.1) includes the above problem (4.1) as a special case so that the comparison principle (3.1) applies in this case.

Theorem 4.1 If the initial data v_0 falls into any of the categories specified below, the corresponding conclusion of convergence holds.

1. If $v_0 \leq u_2$ on Ω, then $\lim_{t \to +\infty} w(x, t) = u_2(x)$ locally uniformly for $x \in \bar{\Omega}$;
2. Define
 $$\bar{u}_2(x) = \inf_{u \in \mathcal{S}, u \geq u_2, u \neq u_2} u(x), \quad x \in \Omega.$$
 If $\bar{u}_2 > u_2$, then for v_0 such that $u_2 < v_0 < \bar{u}_2$, $\lim_{t \to +\infty} w(x, t) = u_2(x)$ locally uniformly for $x \in \bar{\Omega}$;
3. Define $\bar{u}_0(x) = \sup_{u \in \mathcal{S}, u \leq u_0, u \neq u_0} u(x)$, $x \in \Omega$. If $\bar{u}_0 < u_0$, then for v_0 such that $\bar{u}_0 < v_0 < u_0$, $\lim_{t \to +\infty} w(x, t) = u_0(x)$ locally uniformly for $x \in \Omega$;
4. If $v_0 \geq u_0$ in Ω, then $\lim_{t \to +\infty} w(x, t) = u_0(x)$ locally uniformly for $x \in \bar{\Omega}$;
5. Suppose u_1 is a non-minimal solution of (1.3) and (1.4). For any small $\delta > 0$, there exists v_0 such that $\|v_0 - u_1\|_{L^\infty(\Omega)} < \delta$ and the solution w of the problem (4.1) does not satisfy

$$\lim_{t \to +\infty} w(x, t) = u_1(x) \quad \text{in } \Omega.$$

Proof. We first take care of case 4. We may take new initial data a smooth function \tilde{v}_0 so that $D^2\tilde{v}_0 < -KI$ and $|\nabla \tilde{v}_0| \geq \delta > 0$ on $\bar{\Omega}$. According to the parabolic comparison principle (3.1), it suffices to prove the solution \tilde{w} generated by the initial data \tilde{v}_0 converges locally uniformly to u_0 if we also take \tilde{v}_0 large than v_0, which can easily be done. So we use v_0 and w for the new functions \tilde{v}_0 and \tilde{w} without any confusion.

For any $V \subset \subset \Omega$ and any nonnegative function φ which is independent of the time variable t and supported in V, it holds that

$$\int_V |\nabla v_0|^{p-2} \nabla v_0 \cdot \nabla \varphi = \int_V -\text{div} (|\nabla v_0|^{p-2} \nabla v_0) \varphi \geq \int_V M \varphi \quad \text{for some } M = M(n, p, K, \delta) > 0.$$
The Hölder continuity of ∇w up to $t = 0$ as stated in [DiB], then implies

$$\int_V |\nabla w|^{p-2} \nabla w \cdot \nabla \varphi \geq \frac{M}{2} \int_V \varphi$$

for any small t in $(0, t_0)$, and any nonnegative function φ which is independent of t, supported in V and subject to the condition

$$\frac{\int_V |\nabla \varphi|}{\int_V \varphi} \leq A$$

(4.2)

for a fixed constant $A > 0$ and some $t_0 > 0$ dependent on A. Then the sub-solution condition on w

$$\int_V w_\varphi \bigg|_{t=t_2} - \int_V w_\varphi \bigg|_{t=t_1} + \int_{t_1}^{t_2} \int_V |\nabla w|^{p-2} \nabla w \cdot \nabla \varphi \leq 0$$

implies that

$$\int_V w_\varphi \bigg|_{t=t_2} - \int_V w_\varphi \bigg|_{t=t_1} \leq -\frac{M}{2} (t_2 - t_1) \int_V \varphi$$

for any small $t_2 > t_1$ in $(0, t_0)$, and any nonnegative function φ which is independent of t, supported in V and subject to (4.2). In particular, $\int_V w_\varphi \bigg|_{t=t_1} \leq 0$ for any nonnegative function φ independent of t, supported in V and subject to (4.2). So

$$w(x, t_2) \leq w(x, t_1)$$

for any $x \in \Omega$ and $0 \leq t_1 \leq t_2$. Then the parabolic comparison principle readily implies w is decreasing in t for t in $[0, \infty)$. Therefore $w(x, t) \to w^\infty(x)$ locally uniformly as $t \to \infty$ and hence w^∞ is a solution of (1.3) and (1.4). Furthermore, the parabolic comparison principle also implies $w(x, t) \geq u_0(x)$ at any time $t > 0$. Consequently, $u^\infty = u_0$ as u_0 is the greatest solution of (1.3) and (1.4).

Next, we briefly explain the proof for case 1. We may take a new smooth initial data \tilde{v}_0 such that \tilde{v}_0 is very large negative, $D^2 \tilde{v}_0 \geq K I$ and $|\nabla \tilde{v}_0| \geq \delta$ on $\bar{\Omega}$ for large constant $K > 0$ and constant $\delta > 0$. It suffices to prove the solution \tilde{w} generated by the initial data \tilde{v}_0 converges to u_2 locally uniformly on $\bar{\Omega}$ as $t \to \infty$. Following a computation exactly parallel to that in case 4, we can prove w is increasing in t in $[0, \infty)$. So w converges locally uniformly to a solution w^∞ of (1.3) and (1.4). As $w^\infty \leq u_2$ and u_2 is the least solution of (1.3) and (1.4), we conclude $w^\infty = u_2$.

In case 2, we may replace v_0 by a strict super-solution of $\triangle_p v - Q_{\beta_\varepsilon}(v) = 0$ in $\bar{\Omega}$ between u_2 and \bar{u}_2, by employing the fact that u_2 is the infimum of super-solutions of (1.3) and (1.4). Using v_0 as the initial data, we obtain a solution $w(x, t)$ of (4.1). Then one argues as in case 4 that for any $V \subset \subset \Omega$, there exist constants $A > 0$ and $t_0 > 0$ such that for $t_1 < t_2$ with $t_1, t_2 \in [0, t_0)$, $\int_V w_\varphi \bigg|_{t_1} \leq 0$ for any nonnegative function φ independent of t, supported in V and subject to the condition $\frac{\int_V |\nabla \varphi|}{\int_V \varphi} \leq A$. As a consequence, $w(x, t_1) \geq w(x, t_2)$ $(x \in \Omega)$. Then the parabolic comparison principle implies w is decreasing in t over $[0, +\infty)$. Therefore $w(x, t)$ converges locally uniformly to
some function u^∞ as $t \to \infty$ which solves (1.3) and (1.4). Clearly $u_2(x) \leq w(x, t) \leq \bar{u}_2(x)$ from which $u_2(x) \leq u^\infty(x) \leq \bar{u}_2(x)$ follows. As w is decreasing in t and $v_0 \neq \bar{u}_2$, $u^\infty \neq \bar{u}_2$. Hence $u^\infty = u_2$.

The proof of case 3 is parallel to that of case 2 with the switch of sub- and supersolutions. Hence we skip it.

In case 5, we pick v_0 with $\|v_0 - u_1\|_{L^\infty} < \delta$ and $J_p(v_0) < J_p(u_1)$. Let w be the solution of (4.1) with v_0 as the initial data. Clearly, we may change the value of v_0 slightly if necessary so that it is not a solution of the equation

$$-\nabla \cdot \left((\varepsilon + |\nabla u|^2)^{p/2 - 1} \nabla u \right) + Q(x)\beta(u) = 0$$

for any small $\varepsilon > 0$.

Let w^ε be the smooth solution of the uniformly parabolic boundary-value problem

$$\begin{cases}
 w_t - \nabla \cdot \left((\varepsilon + |\nabla w|^2)^{p/2 - 1} \nabla w \right) + Q\beta(w) = 0 & \text{in } \Omega \times (0, +\infty) \\
 w(x, t) = \sigma(x) & \text{on } \partial\Omega \times (0, +\infty) \\
 w(x, 0) = v_0(x) & \text{on } \Omega.
\end{cases}$$

w^ε converges to w in $W^{1,p}(\Omega)$ for every $t \in [0, \infty)$ as $\varepsilon \to 0$.

We define the functional

$$J_{\varepsilon,p}(u) = \frac{1}{p} \int_{\Omega} (\varepsilon + |\nabla u|^2)^{p/2} + Q(x)\Gamma(u) \, dx.$$

It is easy to see that

$$\int_0^t \int_{\Omega} (w^\varepsilon_t)^2 - \nabla \cdot \left((\varepsilon + |\nabla w^\varepsilon|^2)^{p/2 - 1} \nabla w^\varepsilon \right) w^\varepsilon_t + Q\beta(w^\varepsilon)w^\varepsilon_t = 0.$$

As $w^\varepsilon_t = 0$ on $\partial\Omega \times (0, \infty)$, one gets

$$\int_0^t \int_{\Omega} (w^\varepsilon_t)^2 + (\varepsilon + |\nabla w^\varepsilon|^2)^{p/2 - 1} \nabla w^\varepsilon \cdot \nabla w^\varepsilon + Q(x)\Gamma(w^\varepsilon)_t = 0,$$

which implies

$$\int_0^t \int_{\Omega} (w^\varepsilon_t)^2 + \frac{1}{p} \left((\varepsilon + |\nabla w^\varepsilon|^2)^{p/2} \right)_t + Q(x)\Gamma(w^\varepsilon)_t = 0.$$

Consequently, it holds

$$\int_0^t \int_{\Omega} (w^\varepsilon_t)^2 + \frac{1}{p} \int_{\Omega} \left((\varepsilon + |\nabla w^\varepsilon(x,t)|^2)^{p/2} + Q\Gamma(w^\varepsilon(x,t)) \right)$$

$$= \frac{1}{p} \int_{\Omega} \left((\varepsilon + |\nabla w^\varepsilon(x,0)|^2)^{p/2} + Q\Gamma(w^\varepsilon(x,0)) \right)$$

i.e.

$$\int_0^t \int_{\Omega} (w^\varepsilon)^2 + J_{\varepsilon,p}(w^\varepsilon(\cdot, t)) = J_{\varepsilon,p}(w^\varepsilon(\cdot, 0)).$$
Therefore

\[J_{\varepsilon,p}(w^\varepsilon(\cdot, t)) \leq J_{\varepsilon,p}(v_0), \]

which in turn implies

\[J_p(w(\cdot, t)) \leq J_p(v_0) < J_p(u_1). \]

In conclusion, \(w \) does not converge to \(u_1 \) as \(t \to \infty \). □

References

[CW] L. A. Caffarelli and P. Wang, “A bifurcation phenomenon in a singularly perturbed one-phase free boundary problem of phase transition”, *Calc. Var. Partial Differential Equations*, 54(2015), no.4, 3517-3529.

[DiB] E. DiBenedetto, “Degenerate Parabolic Equations”, *Springer-Verlag*, 1993.

[E] L. C. Evans, “A new proof of local \(C^{1,\alpha} \) regularity for solutions of certain degenerate elliptic P. D. E.”, *Journal of Differential Equations*, 45(1982), 356-373.

[J] Y. Jabri, “The mountain pass theorem: variants, generalizations, and some applications”, *Encyclopedia of Mathematics and its Applications*, 95. *Cambridge University Press*, Cambridge, 2003.

[Le] J. L. Lewis, “Regularity of the derivatives of solutions to certain degenerate elliptic equations”, *Indiana University Math. J.*, 32(1983), 849-858.

[L] P. Lindqvist, “Notes on the \(p \)-Laplace equation”, *Report. University of Jyväskylä Department of Mathematics and Statistics*, 102. *University of Jyväskylä*, Jyväskylä, 2006. ii+80pp. ISBN 951-39-2586-2.