EVALUATION OF RESISTANCE TO ACETOLACTATE SYNTHASE INHIBITING HERBICIDE IN WILD MUSTARD (Sinapis arvensis L.)

Ashkan Bahmani Fathabadi¹, Eskandar Zand²*, Mahmoud Masumi³, Ahmad Naderi⁴, And Shahram Lack⁵

¹Department of Agronomy, College of Agriculture, Khuzestan Science and Research Branch, Islamic Azad University, Ahvaz, Iran.
²Weed Research Department, Plant Protection Research Institute P.O.BOX 1454 Tehran 19395 Iran,
³Plant Virology Research Center, College of Agriculture, Shiraz University, Shiraz, Iran.
⁴Agricultural and Natural Resources Research Institute, Khuzestan, Iran.
⁵Department of Agronomy, College of Agriculture, Ahvaz branch, Islamic Azad University, Ahvaz, Iran.

Received – July 24, 2016; Revision – September 29, 2016; Accepted – October 04, 2016
Available Online – October 07, 2016

DOI: http://dx.doi.org/10.18006/2016.4(5S).581.587

ABSTRACT

To evaluate the mechanism and levels of herbicide resistance in Sinapis arvensis, a series of experiments were performed. Sequencing of ALS gene in S. arvensis sub-populations was carried out and ALS-based resistance (substitution of Asp by Glu) was detected at position 376 in this weed species. Further, it was reported that combined application of herbicide mesosulfuron + iodosulfuron can cause up to 50% reduction in dry weight (GR₅₀) of heterozygous resistant (FHR₃), homozygous resistant (FHR₂), and homozgyous susceptible (MHS₁) sub-populations and it was reported 2409, 603 and 289 g ha⁻¹, respectively. Further, resistance indices (RI) were reported 8.3 and 2 for FHR₃ and FHR₂ sub-populations, respectively. Based on LD₃₀, RI values were 8.5 and 4.5 for FHR₃ and FHR₂, respectively. Growth reduction occurred in the resistant homozygous when compared with the heterozygous sub-population in the presence of mesosulfuron + iodosulfuron.

* Corresponding author
E-mail: Eszand@yahoo.com (Eskandar Zand)

Peer review under responsibility of Journal of Experimental Biology and Agricultural Sciences.

All the article published by Journal of Experimental Biology and Agricultural Sciences is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License Based on a work at www.jebas.org.

Production and Hosting by Horizon Publisher India [HPI] (http://www.horizonpublisherindia.in/).
All rights reserved.
1 Introduction

From the ancestral time, farmers and researchers have made various efforts to control weeds. From last few decades use of herbicides increased drastically, however, despite the higher application of herbicides, sometime very limited success has been achieved in weed control (Mcgillion & Storrie, 2006; Gherekhloo et al., 2016). Further, continuous excess use of herbicide caused herbicide resistance in the crop weeds. According to Heap (2016) till today, total 471 weed species have developed resistance to herbicides. Globally, now in these days, among the herbicides which are currently used in agro-ecosystems, acetolactate synthase (ALS) inhibitor herbicides have been most widely used by farmers and researchers (Mallory–Smith et al., 1990).

ALS enzyme has catalytic effect on the branched chain amino acids, such as valine, leucine and isoleucine (Xu et al., 2010; Cui et al., 2011). ALS enzyme is the target-site of different chemical families such as sulfonylureas, imidazolinones, triazolopyrimidines, pyrimidinylthiobenzoates and sulfonylaminocarbonyl-triazolinones (Cruz-Hipolito et al., 2013). In case of target site based herbicide resistance, herbicide cannot bind to the enzyme catalytic site (Pang et al., 2002; Duran-Prado et al., 2004; Duggleby et al., 2008; Powles & Yu, 2010; Jian et al., 2011). Common amino acid substitutions in the ALS gene that confirmed target site resistance and provide protection against herbicide damage are Ala-122, Pro-197, Ala-205, Asp-376, Arg-377, Trp-574, Ser-653 and Gly-654 (Yu & Powles, 2014; Cross et al., 2015). Consequently, substitution of certain amino acids within the herbicide binding area can cause resistance to some herbicides, but not all of them (Yu et al., 2012).

Assessment of herbicide resistance are often carried out using based on the comparison of growth and survival of the plants suspected to be resistant or susceptible to different range of herbicide doses. Moreover, recently, uses of molecular methods also facilitate the detection of herbicide resistance mechanism (Kaundun & Windass, 2006; Delye et al., 2013). Herbicide resistance mechanisms divided in two groups of target-site and non-target-site resistance. The vast majority of the resistance cases to ALS inhibitors reported in the literature are target-site resistance (Tranel et al., 2011; Wiersma, 2012). Identifying target-site resistance mechanism is vital for understanding, diagnosing and managing herbicide resistance.

So, molecular approaches include sequencing (Corbett & Tardif, 2006), enable deciphering the genetic basis of resistant (Duran-Prado et al., 2004; Duggleby et al., 2008; Breccia et al., 2013; Ochogavia et al., 2014; Tranel et al., 2014). Therefore, in this study, it was investigated that whether target-site mutation confers resistance to ALS inhibitor herbicide with two active ingredient (mesosulfuron + iodosulfuron) in wild mustard (S. arvensis) or not, and, if so, the resistance levels for each homozygous/heterozygous mutation were also determined.

2 Materials and Methods

2.1 Plant materials

Two resistant and one susceptible sub-population of S. arvensis were used in this experiment. Seeds of mesosulfuron + iodosulfuron resistant S. arvensis plants collected from different wheat fields in Firoozabad, Fars Province, Iran. The seeds were separately planted in pots already filled with peat. At the 3–4 leaf stage, seedlings from FHR1, FHR2 and MHS1 sub-populations were treated with mesosulfuron-methyl (10 g/L) + iodosulfuron-methyl-sodium (2 g/L) at commercial rates of 0, 187, 375, 1500 and 3000 mg ha\(^{-1}\) (Atlantis, 40 OD, Bayer, Crop Science, Germany), utilizing a moving-boom with 8004 Tee-Jet nozzles sprayer delivering herbicide at a rate of 400-L water ha\(^{-1}\) at a pressure of 200 kPa. The pots were kept outside in growing season. Survival rate and dry weight were assessed 4 weeks after treatment.

2.2 ALS gene sequencing

ALS sequencing was obtained for each sub-population of FHR1, FHR2, and MHS1. Total genomic DNA was extracted from each plant of sub-populations by utilizing genomic DNA isolation kit (Denazist, Mashhad, Iran). Fragments of the ALS gene that included the regions of domains A, B, C, D and E were amplified. Changes in these domains can cause target-site resistance to ALS inhibitor herbicides. ALS primers were designated from S. arvensis (Accession numbers: FJ861277.1 and FJ655877.1). The specific primers used were, SAR1F-5'-CTA TGT CCT ACG TTA TGA GCC-3' and SAR1R-5'-TCG AGC TTT CCC GTG ACA CG-3'. SAR2F-5'-GTA ACG ACG AGT TGT CTC TGC-3' and SAR2R-5'-TCC AAC AGG TAT GTA CCT GG-3'. These primers were used to detect any amino acid changes in the ALS gene and related to ALS resistance to S. arvensis. Sequencing of the purified genomic DNA was performed in the Medical University, Shiraz, Iran.

2.3 Statistical analysis

All data presented here are mean values of four replicates. For herbicide dose-response assay, the dose required to kill 50% of the population (LD\(_{50}\)) or cause 50% dry weight reduction (GR\(_{50}\)) was calculated by non-linear regression using a three-parameter log-logistic model which fitted better than the other models (Xu et al., 2010; Cui et al., 2011).

\[
y = a/[1 + (x/x_0)^b]\]

Where, \(a\) is the upper limit, \(b\) is the slope of the curve, \(x\) is a constant and \(x_0\) represent to herbicide dose that reduces survival and dry matter by 50 percent. Resistance index (RI) of S. arvensis to mesosulfuron + iodosulfuron was computed as \(\text{IR}_{50}\) (FHR\(_2\) or FHR\(_1\)/IR\(_{50}\) (MHS)). \(\text{LD}_{50}\) and \(\text{GR}_{50}\) indices were analyzed based on sigmaplot 12.0.
Table 1 The resistance level of different *S. arvensis* sub-populations from Iran, to Mesosulfuron + iodosulfuron by dose-response experiment.

Sub-populations	LD$_{50}$ (g ha$^{-1}$)	a	b	R^2	RI
FHR$_3$	3160	98.83	5.42	0.99	8.5
FHR$_2$	1664	96.69	5.59	0.99	4.5
MHS$_1$	371	98.02	5.17	0.99	-

Sub-populations	GR$_{50}$ (g ha$^{-1}$)	a	b	R^2	RI
FHR$_3$	2409	100.21	3.53	0.99	8.3
FHR$_2$	603	103.23	2.25	0.99	2
MHS$_1$	289	99.36	3.18	0.99	-

LD$_{50}$ and GR$_{50}$ effective dose of Mesosulfuron + iodosulfuron causing 50% reduction in survival and dry weight respectively; RI, ratio of LD$_{50}$ or GR$_{50}$ values relative to the susceptible sub-population. RR is homozygous Glu-376 resistant sub-population, RS is heterozygous (Asp/Glu-376) resistant sub-population and SS is homozygous (Asp-376) susceptible sub-population.

3 Results and Discussion

3.1 Plant dose-response assays

The plant dose-response assay study revealed the GR$_{50}$ values for FHR$_3$, FHR$_2$ and MHS$_1$ sub-populations and it was reported 2409, 603 and 289 g ha$^{-1}$ for mesosulfuron + iodosulfuron application respectively (Table 1). Further, RI values were reported 8.3 and 2 for FHR$_3$ and FHR$_2$ sub-populations respectively (Table 1 and Figure 1). Based on GR$_{50}$ and RI values, it can be concluded that FHR$_3$ and FHR$_2$ sub-populations have low to moderate resistant against mesosulfuron + iodosulfuron, respectively (Figure 3). Moreover, no MHS$_1$ sub-population growth at the recommended dose of mesosulfuron + iodosulfuron was identified (Figure 1).

![Figure 1](image-url) Effect of Mesosulfuron + iodosulfuron on dry weight of the homozygous resistant (Glu-376) FHR$_3$ (dot line), heterozygous resistant (Asp/Glu-376) FHR$_3$ (solid line), and homozygous (Asp-376) susceptible MHS$_1$ (dash line) *S. arvensis* sub-populations from Froozabad, Iran. Error bars represent standard error of three to four replicates.

The similar trend was reported for the LD$_{50}$ values and it was reported 3160, 1664 and 371 g ha$^{-1}$ for the FHR$_3$, FHR$_2$ and MHS$_1$ sub-populations respectively on the application of mesosulfuron + iodosulfuron (Table 1 and Figure 2). RI values were 8.5 and 4.5 for FHR$_3$ and FHR$_2$, respectively. Growth of the FHR$_2$ sub-population was reduced (Figure 1) and resulting in 1.3 fold higher LD$_{50}$ than the GR$_{50}$ values (Figure 1, Figure 2 and Table 1).

Moreover, based on LD$_{50}$ homozygous *Raphanus raphanistrum* for Asp-376-Glu were highly resistant to sulfonylurea herbicide chlorsulfuron (Duhoux et al., 2015). In addition, some studies emphasis that the homozygous Asp-376-Glu resistant plants treated with ALS herbicides are weaker than 122-Tyr, 197-Ser and 574-Leu in different resistant weeds (Warwick et al., 2005; Whaley et al., 2007; Ashigh et al., 2009; Duhoux et al., 2015).
Table 2 ALS sequence data. Substitution at position 376 resulted in amino acid changes in resistant *S. arvensis* sub-populations; and all other substitutions are neutral.

Nucleotide Polymorphisms	Amino acid	Amino acid no.	codon	population								
	Ser	Thr	Leu	Gly	Asp	Pro	Thr	Pro	Val	Gly	Leu	Glu
MHS1	TCT	ACT	CTG	GGA	GAT	CCT	ACA	CCT	GTT	GGA	TTG	GAG
FHR2	C	G	T	C	A	C	C	T	A	G	G	
FHR3	C	G	C	T	C	C	A	C	T	G	G	
Arabidopsis	T	T	C	A	T	A	C	T	A	G	G	

Amino acid positions are indicated by ALS gene from Arabidopsis thaliana (sathasivan et al. 1990). Nucleotide base are indicated by A=adenine, C=cytosine, G=guanine, T=thymine. Domain C: amino acids 115 to 133; Domain A: amino acids 191 to 203; Domain D: amino acids 205 to 210; Domain B: amino acids 573 to 576; Domain E: amino acids 651 to 655.

Figure 2 Effect of Mesosulfuron + iodosulfuron on survival of the homozygous resistant (Glu-376) FHR2 (dot line), heterozygous resistant (Asp/Glu-376) FHR3 (solid line), and homozygous (Asp-376) susceptible MHS1 (dash line) *S. arvensis* sub-populations from Froozabad, Iran. Error bars represent standard error of three to four replicates.
Figure 3 ALS genes sequencing results showing (a) the GAC codon for Asp-376 in homozygous susceptible (MHS₁) sub-population, (b) the GAC/GAA codons for Asp/Glu-376 in heterozygous resistant (FHR₁) sub-population and (c) the GAA codon for Glu-376 in homozygous resistant (FHR₂) sub-population.

Unfortunately, the mechanism of this pathway in ALS homozygous Glu-376 is not clear (Duhoux et al., 2015). Therefore, as stated above, homo/heterozygous Asp-376-Glu mutation in two resistant sub-populations (FHR₁ and FHR₂) represents a complex situation for resistance to mesosulfuron + iodosulfuron or even other sulfonylurea herbicides.

3.2 ALS gene sequencing

Sequences 1601 and 1572 bp obtained from ALS gene sequencing were compared with the sequences in the genbank using Blast software (Blast http://www.ncbi.org). Fragments sequenced have the highest percentage of similarity (99%) with ALS genes, and this is the reason for the accurate sequencing of S. arvensis (Table 2). Finally, specific primer pairs of SAR1F/SAR1R, and SAR2F/SAR2R were isolated. After the blast of resistant and susceptible genes of S. arvensis,
point mutation at site 376 resulted in the substitution of aspartate by glutamate (Table 2).

Sequences isolated from ALS gene in different sub-populations of *S. arvensis* and Arabidopsis are shown in Table 2. All sequences were based on the Arabidopsis sequence (Table 2). At sites 175, 178 181, 212 and 248, nucleotide changes occurred at susceptible (MHS) and homozygous resistant (FHR) sub-populations of *S. arvensis*, but did not change the amino acid (synonymous substitution). Consequently, they cannot be a factor of herbicide resistance. In another experiment, comparison of 18 resistant and susceptible populations of *S. arvensis* collected from Canada, demonstrated mutations unrelated to change of amino acid (Warwick et al., 2005).

Even though the RHR and FHR sub-populations have the same mutation and identical ALS sequences. Furthermore, these changes were observed only at the beginning of the ALS gene. When the PCR fragments between R and S samples were compared, 2 homozygous susceptible (Figure 3a), 5 heterozygous resistant (Figure 3b), and 5 homozygous resistant individuals were revealed (Figure 3c). The results obtained demonstrate that ALS-based mutation (Asp-376-Glu) confers resistance in *S. arvensis* sub-populations (FHR and RHR) and are in line with the results reported in the literature (Whaley et al., 2007; Zhang et al., 2011; Duhoux et al., 2015). Evolved ALS target-site resistance is most common in six positions (Ala-122, Pro-197, Ala-205, Asp-376, Tsp-574 and Ser-653), although other target positions have been reported in rare cases (McCourt et al., 2006).

Conclusion

Tribenuron-methyl resistance in *S. arvensis* sub-populations of Iran wheat fields can be attributed to ALS target-site (Asp-376-Glu) mutation resulting in homo/heterozygous sub-populations. Nevertheless, in the presence of herbicide, unknown factors other than target-site resistance mechanism can mediate the response of homozygous resistant sub-population (FHR) to decrease growth rate. This is a problematic issue that has the potential to cause shift in our understanding and management of weed resistance. Finally, with regards to the point of evolutionary-based of herbicide resistance, we have to consider both molecular and biological aspects.

Acknowledgement

The authors are grateful to the Biotechnology Research Center, College of Shiraz Agriculture, Shiraz University. They would like to thank Dr. Ali Niazi for his assistance with gene expression experiments.

Conflict of interest

Authors would hereby like to declare that there is no conflict of interests that could possibly arise.

Reference

Ashigh J, Corbett CAL, Smith PJ, Laplante J, Tardif FJ (2009) Characterization and diagnostic tests of resistance to acetohydroxyacid synthase inhibitors due to an Asp376Glu substitution in *Amaranthus powellii*. Pesticide Biochemistry and Physiology 95:38–46. DOI: org/10.1016/j.pestbp.2009.06.002.

Breccia G, Vega T, Felitti SA, Picardi L, Nestares G (2013) Differential expression of acetohydroxyacid synthase genes in sunflower plantlets and its response to imazapyr herbicide. Plant Science 208 : 28-33. DOI: 10.1016/j.plantsci.2013.03.008.

Corbett CA, Tardif FJ (2006) Detection of resistance to acetolactate synthase inhibitors in weeds with emphasis on DNA-based techniques. Pest Management Science 62 : 584-597. DOI:10.1002/ps.1219.

Cross RB, McCarty LB, McElroy JS, Tharayil N, Bridges WC (2015) Comparison of enzyme and growth characteristics in ALS-inhibitor susceptible and resistant annual bluegrass (*Poa annua*) poulations. Weed Science 63:220-228. DOI: http://dx.doi.org/10.1614/WS-D-14-00091.1.

Cruz-Hipolito H, Rosario J, Ioli G, Osana MD, Smeda RJ, Gonzalez-Torralva F, De Prado R (2013) Resistance mechanism to-tribenuron-methyl in white mustard (*Sinapis alba*) from southern spain. Weed Science 61 : 341-347. DOI: http://dx.doi.org/10.1614/WS-D-12-00146.1.

Cui HL, Zhang CX, Wei SH, Zhang HJ, Li ZX, Zhang YQ, Wang GQ (2011) Acetolactate synthase gene proline (197) mutations confer tribenuron-methyl resistance in Fix weed (*Descurainia sophia*) populations from China. Weed science 59:376-379. DOI: http://dx.doi.org/10.1614/WS-D-10-00099.1

Delye C, Jasieniuk M, Le Corre R (2013) Deciphering the evolution of herbicide resistance in weeds. Trends in Genetics 29:649-658. DOI: 10.1016/j.tig.2013.06.001.

Duggleby RG, McCourt JA, Guddat LW (2008) Structure and mechanism of inhibition of plant acetohydroxy acid synthase. Plant physiology and Biochemistry 46:309-324. DOI:10.1016/j.plaphy.2007.12.004.

Duhoux A, Carrere S, Gouzy J, Bonin L, Delye C (2015) RNA-Seq analysis of rye-grass transcriptomic response to an herbicide inhibiting acetolactate-synthase identifies transcripts linked to non-target-site-based resistance. Plant Molecular Biology 87:473–487. DOI: 10.1007/s11103-015-0292-3.

Duran-Prado M, Osuna MD, De-Prado R, Franco AR (2004) Molecular basis of resistance to sulfonylureas in Papaver rhoas. Pesticide Biochemistry and Physiology 79:10–17. DOI: org/10.1016/j.pestbp.2004.01.003.
Ghereshkloo J, Oveisi M, Zand E, De Prado R (2016) A review of herbicide resistance in Iran. Weed Science 64:1-11. DOI: 10.1614/WS-D-15-00139.1.

Heap I (2016) The International Survey of Herbicide Resistance Weeds. Available on www.weedscience.org access on April, 2016.

Jian S, Jin-xin W, Hong-jun Z, Jun-liang L, Sheng-nan B (2011) Study on mutations in ALS for resistance to tribenuron-methyl in Galium aparine L. Agricultural Sciences in China 10:86–91. DOI:10.1016/S1671-2927(11)60310-6.

Kaundun SS, Windass JD (2006) Derived cleaved amplified polymorphic, a simple method to detect a key point mutation conferring acetyl CoA carboxylase inhibitor herbicide resistance in grass weeds. Weed Research 46:34-39. DOI: 10.1111/j.1365-3180.2006.00487.x.

Mallory-Smith CA, Thill DC, Dial MJ (1990) Identification of sulfonyleurea herbicide- resistant prickly lettuce (Lactuca serriola). Weed Technology 4: 163-168.

McCourt JA, Pang SS, King-Scott J, Guddat LW, Duggleby RG (2006) Herbicide-binding sites revealed in the structure of plant acetohydroxyacid synthase. Proceedings of the National Academy of Sciences of the United States of America, 103:569–573. DOI: 10.1073/pnas.0508701103.

Mcgillion T, Storrrie A (2006) Integrated weed management in Australian cropping system- A training resource for farm advisors. CRC for Australian Weed Management Pp. 274.

Ochogavia AC, Breccia G, Vega T, Felitti SA, Picardi LA, Nestares G (2014) Acetohydroxyacid synthase activity and transcripts profiling reveal tissue specific regulation of ahas genes in sunflower. Plant Science 224:144-150. DOI: 10.1016/j.plantsci.2014.04.018.

Pang SS, Duggleby RG, Guddat LW (2002) Crystal structure of yeast acetohydroxyacid synthase: a target for herbicidal inhibitors. Journal of Molecular Biology 317: 249-262. DOI:10.1006/jmbi.2001.5419.

Powles SB, Yu Q (2010) Evolution in action: Plants resistant to herbicides. Annual Review of Plant Biology 61:317 – 347. DOI:10.1146/annurev-arplant-042809-112119.

Sathasivan K, Haughn GW, Murai N (1990) Nucleotide sequence of a mutant acetolactate synthase gene from an imidazolinone-resistant Arabidopsis thaliana var. Columbia. Nucleic Acids Research 18 : 2188.

Tranel PJ, Riggins CW, Bell MS, Hager AG (2011) Herbicide resistances in Amaranthus tuberculatus: a call for new options. Journal of Agriculture and Food Chemistry 59:5808–5812. DOI: 10.1021/jf103797n

Tranel PJ, Wright TR, Heap I (2014) Mutations in herbicide resistant weeds to ALS inhibitors. Available on http://www.weedscience.com access on April, 2016.

Warwick SI, Sauder C, Beckie H (2005) Resistance in Canadian poulation of wild mustard (Sinapis arvensis) to acetolactate synthase inhibiting herbicides. Weed Science 53:631–639. DOI: http://dx.doi.org/10.1614/WS-05-003R1.1.

Whaley CM, Wilson HP, Westwood JH (2007) A new mutation in plant ALS confers resistance to five classes of ALS-inhibiting herbicides. Weed Science 55:83–90. DOI: http://dx.doi.org/10.1614/WS-06-082.1.

Wiersma A (2012) Regional whole plant and molecular response of Kochia scoparia to glyphosate. MS thesis submitted to the Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO.

Xu X, Wang GQ, Chen SL, Fan CQ, Li BH (2010) Confirmation of Flixweed (Descurainia sophia) Resistance to Tribenuron-Methyl Using Three Different Assay Methods. Weed Science 58 : 56-60. DOI: http://dx.doi.org/10.1614/WS-09-034.1

Yu Q, Han H, Li M, Purba E, Walsh MJ, Powles SB (2012) Resistance evaluation for herbicide resistance-endowing acetolactate synthase (ALS) gene mutation using Raphanus raphanistrum populations homozygous for specific ALS mutations. Weed Research 52:178-186. DOI: 10.1111/j.1365-3180.2012.00902.x.

Yu Q, Powles SB (2014) Resistance to AHAS inhibitor herbicides: current understanding. Pest Management Science 70:1340-1350. DOI: 10.1002/ps.3710.

Zhang D, Kruger GR, Singh S, Davis V, Tranel PJ, Weller SC, Johnson WG (2011) Cross-resistance of horseweed (Conyza canadensis) populations with three different ALS mutations. Pest Management Science 67:1486–1492. DOI: 10.1002/ps.2190.