Value of imaging study in predicting pelvic lymph node metastases of uterine cervical cancer

Wonguen Jung, MD¹, Kyung Ran Park, MD, PhD¹, Kyung-Ja Lee, MD, PhD¹, Kyubo Kim, MD, PhD¹, Jihae Lee, MD¹, Songmi Jeong, MD, PhD¹, Yi-Jun Kim, MD¹, Jiyoung Kim, MD¹, Hai-Jeon Yoon, MD², Byung-Chul Kang, MD, PhD², Hae Soo Koo, MD, PhD³, Sun Hee Sung, MD, PhD³, Min-Sun Cho, MD, PhD³, Sanghui Park, MD, PhD³

Departments of ¹Radiation Oncology, ²Nuclear Medicine, ³Radiology, and ⁴Pathology, Ewha Womans University Mokdong Hospital, Ewha Womans University College of Medicine, Seoul, Korea

Purpose: To evaluate the diagnostic accuracy of computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography/computed tomography (PET/CT) in predicting pelvic lymph node (LN) metastases in patients with cervical cancer.

Materials and Methods: From January 2009 to March 2015, 114 patients with FIGO stage IA1-IIB uterine cervical cancer who underwent hysterectomy with pelvic lymphadenectomy and took CT, MRI, and PET/CT before surgery were enrolled in this study. The criteria for LN metastases were a LN diameter ≥1.0 cm and/or the presence of central necrosis on CT, a LN diameter ≥1.0 cm on MRI, and a focally increased FDG uptake on PET/CT. The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy for pelvic LN metastases were estimated.

Results: The sensitivity, specificity, PPV, NPV, and accuracy for detection of pelvic LN metastases were 51.4%, 85.9%, 41.3%, 90.1%, and 80.3% for CT; 24.3%, 96.3%, 56.3%, 86.8%, and 84.6% for MRI; and 48.6%, 89.5%, 47.4%, 90.0%, and 82.9% for PET/CT, respectively. The sensitivity of PET/CT and CT was higher than that of MRI (p=0.004 and p=0.013, respectively). The specificity of MRI was higher than those of PET/CT and CT (p=0.002 and p=0.013, respectively). The difference of specificity between PET/CT and CT was not statistically significant (p=0.167).

Conclusion: These results indicate that preoperative CT, MRI, and PET/CT showed low to moderate sensitivity and PPV, and moderate to high specificity, NPV, and accuracy. More efforts are necessary to improve sensitivity of imaging modalities in order to predict pelvic LN metastases.

Keywords: Uterine cervical neoplasms, Lymph nodes, Magnetic resonance imaging, Computed tomography, Positron-emission tomography

Introduction

Uterine cervical cancer is one of the most common cancers in women worldwide. The incidence of uterine cervical cancer in Korea has decreased, but it ranks still fifth among cancers in women [1]. Rather, the number of patients who received
The aim of this study was to investigate the diagnostic accuracy of CT, MRI, and PET/CT in predicting pelvic LN metastases by comparing imaging findings with histopathologic diagnosis after LN dissection in patients with uterine cervical cancer.

Materials and Methods

1. Study population

Eligibility requirements for the current study included newly diagnosed and histopathologically proven, the International Federation of Gynecology and Obstetrics (FIGO) stage IA1–IIB uterine cervical carcinoma, as determined by baseline study including CT, MRI, and PET/CT from January 2009 to March 2015. All patients who underwent hysterectomy and bilateral pelvic lymphadenectomy were eligible to participate in this study. The patients had no contraindications for surgery and had no clinical evidence of distant metastases. The patients who took PET alone were excluded from this study, because PET scan has limited resolution and anatomic information compared with PET/CT. This research protocol was approved by the Institutional Review Board of Ewha Womans University Mokdong Hospital (No. 2015-08-029).

2. CT

CT examinations were performed using CT scans (SOMATOM; Siemens Medical Solutions, Erlangen, Germany), with the following parameters: beam collimation, 0.6 mm x 128 mm; pitch, 0.8; gantry rotation time, 0.5 seconds; slice thickness, 5.0 mm; interval, 5.0 mm. For the contrast enhancement study, 120 mL of non-ionic contrast medium (iohexol, Bonorex 350; Central Medical Service, Seoul, Korea) was intravenously administered at a rate of 3.0 mL/s. Then, CT scan was performed 100 seconds after contrast material injection to obtain the venous phase images. All images were obtained from the abdomen to the pelvis. The CT images were interpreted by a radiologist in gynecologic oncology with being unaware of the results of other tests. LNs with the short axis diameter ≥1.0 cm and/or the appearance of central necrosis were considered positive for malignancy on CT images.

3. MRI

MR imaging of the abdomen and pelvis was obtained by using 3.0-T scanner (Achieva; Philips Medical Systems, Cleveland, OH, USA) using a pelvic array coil for pelvic scans. Scans were performed using the following parameters: axial T1-weighted fast spin-echo (FSE) sequence (repetition time [TR]/echo time [TE], 500 ms/10 ms; echo-train length, 4; field-of-view [FOV], 24 cm x 24 cm; matrix, 512 x 248; section thickness, 4.0 mm; no intersectional gap; three signals acquired; no fat saturation; bandwidth, 0.291 kHz), axial T2-weighted FSE sequence (TR/TE, 3105 ms/90 ms; echo train length, 19; FOV, 24 cm x 24 cm; matrix, 552 x 239; section thickness, 4.0 mm; no intersectional gap; four signals acquired; no fat saturation, bandwidth, 0.190 kHz), sagittal T2-weighted FSE sequence (TR/TE, 3,000 ms/90 ms; echo train length, 19; FOV, 24 cm x 24 cm; matrix, 520 x 247; section thickness, 3.0 mm; intersectional gap, 0.3 mm; four signals acquired; no fat saturation, bandwidth, 0.179 kHz), coronal T2-weighted FSE sequence (TR/TE, 2,150 ms/70 ms; echo train length, 12; FOV, 24 cm x 24 cm; matrix, 520 x 240; section thickness, 3.0 mm; no intersectional gap; four signals acquired; no fat saturation, bandwidth, 0.138 kHz). After the acquisition of these images, diffusion-weighted MRI
(DW-MRI) was obtained in the sagittal plane using a single-shot echo-planar imaging sequence (TR/TE, 5,000 ms/60 ms; flip angle, 90°; three excitations; matrix, 100 × 100, bandwidth, 0.2 kHz) with chemical shift selective (CHESS) fat suppression technique. The corresponding b-values to the diffusion sensitizing gradient were 0 and 1,000 s/mm². An apparent diffusion coefficient (ADC) maps were automatically calculated on a pixel-by-pixel basis from the DW-MRI according to the following equation:

\[ADC = \frac{\ln(S1) - \ln(S0)}{b1 - b0} \]

where \(b0 \) and \(b1 \) represent lower and higher b-values, respectively, and \(S0 \) and \(S1 \) are the signal intensities for DW-MRI in these b-values. Forty patients did not undergo DW-MRI because they were recruited between January 2011 and June 2012, during which time we did not perform DW-MRI. The MRI images were interpreted by a radiologist in gynecologic oncology with being unaware of the results of other tests. The corresponding b-values were initially performed with the following parameters: FOV, skull base to the thigh; tube voltage, 80 kV; automatic mA/s adjustment (CARE Dose 4D; Siemens Medical Solutions); section thickness, 3.0 mm; pitch, 1.2. PET scans were performed immediately after CT. The spatial resolution of PET was 2.0 mm at the full width at half maximum (FWHM) in the transaxial direction and 2.0 mm FWHM in the axial direction at the center. Whole-body PET images (skull to mid-thigh) were obtained with 3D emission scan and acquired at 2 minutes per bed position. PET images were reconstructed to 200 × 200 matrices, 3.4 mm × 3.4 mm pixel size, and 3.0 mm section thickness with the TrueX algorithm (3 iterations, 21 subsets) with point spread function and time of flight. The PET/CT images were interpreted by a nuclear medicine physician with being unaware of the results of other tests. For each patient, FDG uptakes by normal tissue and tumor were measured as a value of uptake counts. On PET/CT images, a malignant LN was defined as a focally increased FDG uptake greater than the maximum standardized uptake values (SUV\text{max}) 3.0 or moderately to markedly increased FDG uptake relative to the surrounding tissue with the exclusion of urinary activity, vessel and physiological bowel. Equivocal or unclear uptakes were interpreted as negative findings.

4. **18F-FDG–PET/CT**

PET/CT scanning was obtained using a whole-body PET system (Biograph 128; Siemens Medical Solutions) by the use of 18F-FDG. The patients were asked to empty their bladder before administration of 18F-FDG and over again before image obtaining. After an intravenous injection of 3.0 to 5.0 MBq/kg of 18F-FDG followed by an uptake phase of 60 minutes, PET/CT scanning of the whole body was performed. The non-enhanced CT scans were initially performed with the following parameters: FOV, skull base to the thigh; tube voltage, 80 kV; automatic mA/s adjustment (CARE Dose 4D; Siemens Medical Solutions); section thickness, 3.0 mm; pitch, 1.2. PET scans were performed immediately after CT. The spatial resolution of PET was 2.0 mm at the full width at half maximum (FWHM) in the transaxial direction and 2.0 mm FWHM in the axial direction at the center. Whole-body PET images (skull to mid-thigh) were obtained with 3D emission scan and acquired at 2 minutes per bed position. PET images were reconstructed to 200 × 200 matrices, 3.4 mm × 3.4 mm pixel size, and 3.0 mm section thickness with the TrueX algorithm (3 iterations, 21 subsets) with point spread function and time of flight. The PET/CT images were interpreted by a nuclear medicine physician with being unaware of the results of other tests. For each patient, FDG uptakes by normal tissue and tumor were measured as a value of uptake counts. On PET/CT images, a malignant LN was defined as a focally increased FDG uptake greater than the maximum standardized uptake values (SUV\text{max}) 3.0 or moderately to markedly increased FDG uptake relative to the surrounding tissue with the exclusion of urinary activity, vessel and physiological bowel. Equivocal or unclear uptakes were interpreted as negative findings.

5. **Histopathologic evaluation**

LNs were labeled as right and left pelvis. All LNs were cut at 2.0 mm thickness and stained with hematoxylin and eosin. Each LN was examined by pathologists, who were blinded to the imaging results and surgical exploration findings.

6. **Classification of lymph node**

The pelvic LNs were divided into two groups: right hemi-pelvis and left hemi-pelvis. The hemi-pelvis based classification was applied to the current study as well as several other studies of uterine neoplasms [8,9]. The right hemi-pelvic LNs included right common iliac area, right internal iliac area, right external iliac area, and right obturator area. The left hemi-pelvic LNs included left common iliac area, left internal iliac area, left external iliac area, and left obturator area.

7. **Statistical evaluation**

CT, MRI, and PET/CT images on pelvic LN metastases were estimated on the basis of the histologic examination as true positive, false positive, true negative, or false negative. The pelvic LNs detected by imaging were correlated with the histologic findings on each hemi-pelvis as a distinct unit. Findings were considered a true positive if the positive pelvic LNs were shown in one hemi-pelvis on CT, MRI or PET/CT imaging and if metastatic LNs were identified on pathology. Findings were considered a false positive if the positive pelvic LNs were shown in one hemi-pelvis on CT, MRI or PET/CT imaging and if no metastatic LNs were identified per hemi-pelvis on pathology. Findings were considered a true negative if all LNs were free of metastases per hemi-pelvis on both imaging and pathology. Findings were considered a false negative if the positive pelvic LNs were not shown in one hemi-pelvis on CT, MRI or PET/CT imaging and if metastatic LNs were found per hemi-pelvis on pathology. The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy of the CT, MRI and PET/CT for detection of pelvic LN involvement were estimated using standard statistical formulas. The relative sensitivities and specificities of CT, MRI, and PET/CT in detecting LN metastases were compared by using the McNemar’s test (SPSS software...
Results

A total of 114 patients were enrolled. The distribution of enrolled patients and rate of positive pelvic LN on surgery according to the 2009 FIGO stage were shown in Table 1. Median age was 48 years (range, 26 to 86 years). For 114 patients, 228 (right, left) sites of pelvic LN were analyzed. The histopathologic characteristics of pelvic LNs were shown in Table 2. Pelvic LN metastasis was present in 37 sites among 228 pelvic LN sites (16.2%) on surgical specimens. CT, MRI, and PET/CT detection profiles of LN sites were shown in Table 3. The positive findings of LN metastases in CT, MRI, and PET/CT were present in 46 (20.2%), 16 (7.0%), and 38 (16.7%) LN sites, respectively. Seven of the 37 pelvic LN sites showed positive findings of LN metastases in CT, MRI, and PET/CT and pathology (Fig. 1). Five of the 37 pelvic LN sites showed positive findings in all three imaging modalities but no metastatic LNs on pathology (Fig. 2). For 38 sites with positive findings on PET/CT, the SUV\textsubscript{max} of pelvic LNs ranged from 1.3 to 7.4, with a mean value of 3.1. The SUV\textsubscript{max} of pelvic LNs with and without pathologic metastases were 3.3 ± 1.8 (1.3–7.4) and 3.0 ± 0.7 (1.7–4.5), respectively (Student t-test, p = 0.42).

The hemi-pelvic LN-based sensitivity, specificity, PPV, NPV, and accuracy of CT, MRI, and PET/CT for predicting LN metastasis were shown in Table 4. As for specificity, PPV, and accuracy, MRI had the greatest values among three imaging modalities for detection of metastatic LN. Regarding sensitivity and NPV, CT had the greatest values. The sensitivity of CT was higher than those of MRI or PET/CT. The differences of sensitivity were statistically significant between CT and MRI (p = 0.013) as well as PET/CT and MRI (p = 0.004), respectively. The difference of sensitivity between CT and PET/CT was not statistically significant (p = 1.000). The specificity of MRI was higher than those of CT or PET/CT. The differences of specificity were statistically significant between CT and MRI (p < 0.001) as well as PET/CT and MRI (p = 0.002), respectively. The difference of specificity between PET/CT and CT was not statistically significant (p = 0.167).

The sensitivity and specificity of patients with FIGO IA and
Fig. 1. Corresponding CT (A), MRI (B), and PET/CT (C) images in a patient with true positive pelvic lymph node (LN). (A) Enhanced CT image showed an enlarged pelvic LN (arrow) in left external iliac area. (B) T2-weighted MR image showed an enlarged pelvic LN (arrow) in left external iliac area. (C) PET/CT scan showed that increased FDG uptake (arrow) corresponds to the enlarged left external iliac LN seen in CT and MRI, suggesting LN metastasis. Histopathologic examination confirmed LN involvement. CT, computed tomography; MRI, magnetic resonance imaging; PET/CT, positron emission tomography/computed tomography; FDG, fludeoxyglucose.

Fig. 2. Corresponding CT (A), MRI (B), and PET/CT (C) images in a patient with false positive pelvic lymph node (LN). (A) Enhanced CT image showed an enlarged pelvic LN (arrow) in right external iliac area. (B) T2-weighted MR image showed an enlarged pelvic LN (arrow) in right external iliac area. (C) PET/CT scan showed that increased FDG uptake (arrow) corresponds to the enlarged right external iliac LN seen in CT and MRI, suggesting LN metastasis. Histopathologic examination confirmed no LN involvement. CT, computed tomography; MRI, magnetic resonance imaging; PET/CT, positron emission tomography/computed tomography; FDG, fludeoxyglucose.
IB were 37.5% and 88.8% for CT; 16.7% and 97.1% for MRI; and 41.7% and 91.8% for PET/CT, respectively. The sensitivities of three imaging modalities were lower than those of overall population. The difference of sensitivity between MRI and PET/CT was statistically significant ($p = 0.031$). The differences of sensitivity were not statistically significant between CT and MRI ($p = 0.125$) as well as CT and PET/CT ($p = 1.000$), respectively.

The sensitivity and specificity of patients with FIGO IIA and IIB were 76.9% and 81.3% for CT; 48.6% and 91.8% for MRI; and 64.5% and 75.0% for PET/CT, respectively. The sensitivities of three imaging modalities were higher than those of overall population. The differences of sensitivity among three imaging modalities were not statistically significant ($p = 0.125$ for CT and MRI, $p = 0.625$ for CT and PET/CT, and $p = 0.25$ for MRI and PET/CT, respectively).

Discussion and Conclusion

The purpose of this study was to assess the diagnostic accuracy of the three currently used imaging modalities, CT, MRI, and PET/CT, in evaluating pelvic LN involvement influencing treatment modality and prognosis.

The sensitivity and specificity of CT for detecting LN metastases from cervical cancer are reported to be 42.0%–64.7% and 82.0%–96.6%, respectively [8,10]. In our study, the sensitivity and specificity for LN sites were 51.4% and 85.9%, respectively, and are similar to those reported by others. The sensitivity and specificity of MRI for detecting LN metastases from cervical cancer are reported to be 30.3%–70.6% and 74.0%–92.6%, respectively [8,10,11]. In our study, the sensitivity and specificity for LN sites were 24.3% and 96.3%, respectively. The current data showed that the sensitivity of MRI was relatively low for detection of metastatic LNs compared to those reported by others.

The sensitivity and specificity of PET/CT for detecting LN metastases from cervical cancer are reported to be 51.1%–75% and 92.6%–99.8%, respectively [11-14]. In the present study, the sensitivity and specificity for LN sites were 48.6% and 89.5%, respectively. The current data showed that the sensitivity and specificity of PET/CT were relatively low for detection of metastatic LNs compared to those reported by others.

The first possible reason for low-to-moderate sensitivities of CT, MRI and PET/CT in our study is that most patients (75.4%) were of FIGO stage IA1 to IB1. In a study of 43 patients with stage IA-IIB uterine cervical cancer, Yang et al. [8] reported sensitivities with CT of 64.7% and MRI of 70.6% for pelvic LN metastases when dividing per hemi-pelvis. Despite the similar study design based on hemi-pelvis, the higher sensitivity compared with our results is probably related to different distributions of FIGO stage. Approximately 28% of these patients were of FIGO stage IIA and IIB, whereas there were 15% with FIGO stage IIA and IIB in the current study. The different distribution of patients according to FIGO stage

[Table 4. Comparison of findings of CT, MRI, and PET/CT with histologic findings based on the LN sites]

CT, computed tomography; MRI, magnetic resonance imaging; PET/CT, positron emission tomography/computed tomography; LN, lymph node; TP, true-positive; FP, false-positive; TN, true-negative; FN, false negative; PPV, positive predictive value; NPV, negative predictive value; FIGO, International Federation of Gynecology and Obstetrics.
may lead to difference in detecting LN. Several studies have shown that imaging modalities have little value in detecting LN metastases in early-stage cervical cancer. Signorelli et al. [15] reported that the sensitivity rate was 32% for PET/CT with FIGO stage IB1–IIB with a diameter of 4 mm or less. Chou et al. [16] reported that the uptake value of PET/CT is unsatisfactory when metastatic LNs are small sized. Kitajima et al. [25] found that PET/CT had a detection sensitivity of 16.7% in metastatic LNs with a short-axis diameter of 4 mm or less. This limited sensitivity is based chiefly on insufficient detection of small metastatic LNs. We suggest that the diagnostic accuracy of PET/CT could be improved when combined with morphologic findings provided by MRI. Kim et al. [26] reported that PET/CT imaging compared with PET/CT is suggested to be useful for detecting metastatic LNs in uterine cervical cancer.

A number of factors could explain the discrepancies of PET/CT between our study and previous ones. First, PET/CT is not a cancer-specific agent, and inflammatory cells such as macrophages and neutrophil in areas of infection or inflammation will also accumulate FDG [21,22]. FDG-PET/CT has still a difficulty in differentiating between inflammatory and metastatic LNs. Additionally, multiple structures with variable physiologic uptake of FDG may be seen in the abdomen and pelvis. The ovaries containing functional cysts may lead to increased FDG activity mimicking LN metastases, and normal ovarian uptake may be misinterpreted as a metastatic lesion [23,24]. Second, the uptake value of PET/CT is unsatisfactory when metastatic LNs are small sized. Kitajima et al. [25] found that PET/CT had a detection sensitivity of 16.7% in metastatic LNs with a short-axis diameter of 4 mm or less. This limited sensitivity is based chiefly on insufficient detection of small metastatic LNs. We suggest that the diagnostic accuracy of PET/CT could be improved when combined with morphologic findings provided by MRI. Kim et al. [26] reported that PET/CT imaging compared with PET/CT is suggested to be useful for detecting metastatic LNs in uterine cervical cancer.

Taken together, CT, MRI, and PET/CT in our patients with uterine cervical cancers have relatively low to moderate sensitivity and moderate to high specificity for detecting pelvic metastatic LNs compared to those reported by others. The discrepancy could be explained that we performed histopathologic examination of LNs with slices made at 2 mm thickness, whereas LNs are usually evaluated in only 1 or 2 parallel sections. Lentz et al. [27] reported that micrometastases was identified in histologically negative LNs in 19 patients (15%) of early-stage cervical cancer. Therefore, it is possible that pelvic LN metastasis may have been underestimated with the conventional techniques.

Although the current data showed that neither CT/MRI nor PET/CT is perfect for detecting LN metastases, the imaging modalities may be helpful for determining of treatment field and dose for boost EBRT in uterine cervical cancer. According to the National Comprehensive Cancer Network (NCCN) guidelines, highly conformal boosts of an additional 10–15 Gy may be considered for limited volumes of gross unresected lymphadenopathy. Several studies have used imaging modalities to determine the boost field in uterine cervical cancer. Ariga et al. [5] reported that the boost EBRT was delivered to clinically metastatic pelvic LNs assessed by CT/ MRI. Yoon et al. [28] reported that the involved LNs detected on pre–RT PET/CT were treated with doses from 59.4 Gy to 63.0 Gy, with an additional boost dose of 5.4 to 9.0 Gy delivered to the residual LNs seen on PET/CT taken immediately after the completion of RT.

The current study had some limitations. First, this study was a retrospective study with small sample size. Second, only one radiologist and nuclear medicine physician read each image from CT, MRI, and PET/CT. The images should be interpreted
independently by at least two researchers to ensure objectivity and to reduce inter-personal variation. Third, because of retrospective design, histopathological classification of pelvic LNs was not grouped into regions-specific categories. For this reason, all individual LNs detected on imaging could not be correlated to the surgically removed LNs based on nodal regions-specific comparison. Although the hemi-pelvis based classification was applied to several other studies of uterine neoplasms [8,9], we believe that the node-by-node correlation should be carried out in a future study.

In conclusion, the results of our analysis showed that preoperative CT, MRI, and PET/CT had low to moderate sensitivity and PPV, and moderate to high specificity, NPV, and accuracy. CT and PET/CT are more useful for detection of pelvic LN metastases than MRI; although CT and PET/CT still had a very low sensitivity. More efforts are necessary to improve sensitivity of imaging modalities in order to predict pelvic LN metastases in patients who will receive definitive chemoradiotherapy without surgery for uterine cervical cancer.

Conflict of Interest

No potential conflict of interest relevant to this article was reported.

References

1. Oh CM, Won YJ, Jung KW, et al. Cancer Statistics in Korea: Incidence, Mortality, Survival, and Prevalence in 2013. Cancer Res Treat 2016;48:436-50.
2. Kang JK, Kim MS, Jang WI, et al. The clinical utilization of radiation therapy in Korea between 2009 and 2013. Radiat Oncol J 2016;34:88-95.
3. Kidd EA, Siegel BA, Dehdashti F, et al. Lymph node staging by positron emission tomography in cervical cancer: relationship to prognosis. J Clin Oncol 2010;28:2108-13.
4. Inoue T, Morita K. The prognostic significance of number of positive nodes in cervical carcinoma stages IB, IIA, and IIB. Cancer 1990;65:1923-7.
5. Ariga T, Toita T, Kasuya G, et al. External beam boost irradiation for clinically positive pelvic nodes in patients with uterine cervical cancer. J Radiat Res 2013;54:690-6.
6. Chan JK, Cheung MK, Huh WK, et al. Therapeutic role of lymph node resection in endometrioid corpus cancer: a study of 12,333 patients. Cancer 2006;107:1823-30.
7. Benedetti Panici P, Basile S, Angioli R. Pelvic and aortic lymphadenectomy in cervical cancer: the standardization of surgical procedure and its clinical impact. Gynecol Oncol 2009;113:284-90.
8. Yang WT, Lam WW, Yu MY, Cheung TH, Metreweli C. Comparison of dynamic helical CT and dynamic MR imaging in the evaluation of pelvic lymph nodes in cervical carcinoma. AJR Am J Roentgenol 2000;175:759-66.
9. Horowitz NS, Dehdashti F, Herzog TJ, et al. Prospective evaluation of FDG-PET for detecting pelvic and para-aortic lymph node metastasis in uterine corpus cancer. Gynecol Oncol 2004;95:546-51.
10. Horowitz NS, Dehdashti F, Herzog TJ, et al. Prospective evaluation of FDG-PET for detecting pelvic and para-aortic lymph node metastasis in uterine corpus cancer. Gynecol Oncol 2004;95:546-51.
11. Choi HJ, Roh JW, Seo SS, et al. Comparison of the accuracy of magnetic resonance imaging and positron emission tomography/computed tomography in the presurgical detection of lymph node metastases in patients with uterine cervical carcinoma: a prospective study. Cancer 2006;106:914-22.
12. Sironi S, Buda A, Picchio M, et al. Lymph node metastasis in patients with clinical early-stage cervical cancer: detection with integrated FDG PET/CT. Radiology 2006;238:272-9.
13. Kitajima K, Murakami K, Yamasaki E, Kaji Y, Sugimura K. Accuracy of integrated FDG-PET/contrast-enhanced CT in detecting pelvic and paraaortic lymph node metastasis in patients with uterine cancer. Eur Radiol 2009;19:1529-36.
14. Loft A, Berthelsen AK, Roed H, et al. The diagnostic value of PET/CT scanning in patients with cervical cancer: a prospective study. Gynecol Oncol 2007;106:29-34.
15. Signorelli M, Guerra L, Montanelli L, et al. Preoperative staging of cervical cancer: is 18-FDG-PET/CT really effective in patients with early stage disease? Gynecol Oncol 2011;123:236-40.
16. Chou HH, Chang TC, Yen TC, et al. Low value of [18F]-fluoro-2-deoxy-D-glucose positron emission tomography in primary staging of early-stage cervical cancer before radical hysterectomy. J Clin Oncol 2006;24:123-8.
17. Driscoll DO, Halpenny D, Johnston C, Sheehy N, Keogan M. 18F-FDG-PET/CT is of limited value in primary staging of early stage cervical cancer. Abdom Imaging 2015;40:127-33.
18. Choi HJ, Kim SH, Seo SS, et al. MRI for pretreatment lymph node staging in uterine cervical cancer. AJR Am J Roentgenol 2006;187:W538-43.
19. Kim JK, Kim KA, Park BW, Kim N, Cho KS. Feasibility of diffusion-weighted imaging in the differentiation of metastatic from nonmetastatic lymph nodes: early experience. J Magn Reson Imaging 2008;28:714-9.

https://doi.org/10.3857/roj.2017.00206
20. Choi EK, Kim JK, Choi HJ, et al. Node-by-node correlation between MR and PET/CT in patients with uterine cervical cancer: diffusion-weighted imaging versus size-based criteria on T2WI. Eur Radiol 2009;19:2024-32.

21. Alavi A, Gupta N, Alberini JL, et al. Positron emission tomography imaging in nonmalignant thoracic disorders. Semin Nucl Med 2002;32:293-321.

22. Carter KR, Kotlyarov E. Common causes of false positive F18 FDG PET/CT scans in oncology. Braz Arch Biol Technol 2007;50(SPE):29-35.

23. Ames J, Blodgett T, Meltzer C. 18F-FDG uptake in an ovary containing a hemorrhagic corpus luteal cyst: false-positive PET/CT in a patient with cervical carcinoma. AJR Am J Roentgenol 2005;185:1057-9.

24. Yildirim Y, Sehirali S, Avci ME, et al. Integrated PET/CT for the evaluation of para-aortic nodal metastasis in locally advanced cervical cancer patients with negative conventional CT findings. Gynecol Oncol 2008;108:154-9.

25. Kitajima K, Murakami K, Yamasaki E, et al. Accuracy of 18F-FDG PET/CT in detecting pelvic and paraaortic lymph node metastasis in patients with endometrial cancer. AJR Am J Roentgenol 2008;190:1652-8.

26. Kim SK, Choi HJ, Park SY, et al. Additional value of MR/PET fusion compared with PET/CT in the detection of lymph node metastases in cervical cancer patients. Eur J Cancer 2009;45:2103-9.

27. Lentz SE, Muiderspach LI, Felix JC, Ye W, Groschen S, Amezqua CA. Identification of micrometastases in histologically negative lymph nodes of early-stage cervical cancer patients. Obstet Gynecol 2004;103:1204-10.

28. Yoon MS, Ahn SJ, Nah BS, et al. Metabolic response of lymph nodes immediately after RT is related with survival outcome of patients with pelvic node-positive cervical cancer using consecutive [18F]fluorodeoxyglucose-positron emission tomographycomputed tomography. Int J Radiat Oncol Biol Phys 2012;84:e491-7.