Deletions of recessive disease genes: CNV contribution to carrier states and disease-causing alleles

Philip M. Boone,1 Ian M. Campbell,1 Brett C. Baggett,1 Zachry T. Soens,1 Mitchell M. Rao,1 Patricia M. Hixson,1,2 Ankita Patel,1,2 Weimin Bi,1,2 Sau Wai Cheung,1,2 Seema R. Lalani,1,2,3,4 Arthur L. Beaudet,1,2,3,4,5 Pawel Stankiewicz,1,2 Chad A. Shaw,1,2 and James R. Lupski1,2,3,4,6

1Department of Molecular and Human Genetics, 2Medical Genetics Laboratories, 3Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA; 4Texas Children’s Hospital, Houston, Texas 77030, USA; 5Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA

Over 1200 recessive disease genes have been described in humans. The prevalence, allelic architecture, and per-genome load of pathogenic alleles in these genes remain to be fully elucidated, as does the contribution of DNA copy-number variants (CNVs) to carrier status and recessive disease. We mined CNV data from 21,470 individuals obtained by array-comparative genomic hybridization in a clinical diagnostic setting to identify deletions encompassing or disrupting recessive disease genes. We identified 3212 heterozygous potential carrier deletions affecting 419 unique recessive disease genes. Deletion frequency of these genes ranged from one occurrence to 1.5%. When compared with recessive disease genes never deleted in our cohort, the 419 recessive disease genes affected by at least one carrier deletion were longer and located farther from known dominant disease genes, suggesting that the formation and/or prevalence of carrier CNVs may be affected by both local and adjacent genomic features and by selection. Some subjects had multiple carrier CNVs (307 subjects) and/or carrier deletions encompassing more than one recessive disease gene (206 deletions). Heterozygous deletions spanning multiple recessive disease genes may confer carrier status for multiple single-gene disorders, for complex syndromes resulting from the combination of two or more recessive conditions, or may potentially cause clinical phenotypes due to a multiply heterozygous state. In addition to carrier mutations, we identified homozygous and hemizygous deletions potentially causative for recessive disease. We provide further evidence that CNVs contribute to the allelic architecture of both carrier and recessive disease-causing mutations. Thus, a complete recessive carrier screening method or diagnostic test should detect CNV alleles.

[Supplemental material is available for this article.]

Over 1000 recessive genetic disorders have been described, and many of their corresponding disease genes identified (http://www.omim.org). While most of these conditions are individually rare (Srinivasan et al. 2010), their collective burden on health is noteworthy (Kumar et al. 2001; McCandless et al. 2004; Dye et al. 2011a,b). However, for many recessive diseases, the overall mutational spectrum, prevalence, and carrier frequency in the population remain obscure, as does an accurate estimate of the total per-genome load of recessive carrier mutations.

Identifying disease-causing mutations in individuals affected with recessive disease can provide a molecular diagnosis that not only brings an end to an often long diagnostic odyssey (Lupski et al. 2010; Field and Boat 2011), but can also potentially enable therapeutic options (Bainbridge et al. 2011; van Karnebeek and Stockler 2012). Carrier testing for heterozygous mutations in recessive disease genes also has clinical utility. An approach to multigene carrier screening in a clinical setting was described recently by Lazarin and colleagues who screened 23,453 individuals for selected, previously reported alleles (most single nucleotide variants, or SNVs) associated with 108 recessive disorders (Srinivasan et al. 2010; Lazarin et al. 2013). Twenty-four percent of individuals were carriers for at least one condition, and 5.2% were carriers for two or more recessive traits. These statistics represent lower bounds, as only 417 alleles (average of approximately four alleles per gene) were assessed. Notably, only five of the 417 genotyped alleles (~1%) were DNA copy-number variants (CNVs) (Srinivasan et al. 2010).

Incorporating next-generation sequencing into carrier screening, Bell et al. (2011) recently demonstrated that capture sequencing of 437 recessive disease genes could identify SNVs in a group of 104 individuals, most of whom were known carriers or patients with a recessive disease. A few gross deletions were assayed for and detected, although custom capture baits were designed for each based on a priori knowledge of their presence and location. The method of Bell et al. (2011) is not yet clinically available. Furthermore, the gene list did not include many recessive disease genes, for example genes for recessive deafness, intellectual disability, or adult-onset cancers. An estimation of carrier load was made (average of 2.4 mutations per individual, range 0–7), although cell lines were the source of DNA, potentially affecting the accuracy of this value (Epeldegui et al. 2007).

Whole-genome and whole-exome sequences of a number of individuals have yielded some additional information about per-genome load of carrier mutations (Gonzaga-Jauregui et al. 2012). For example, Ashley et al. (2010) analyzed the whole-genome sequence of a single individual, identifying five carrier SNVs previously reported as pathogenic, and two novel, likely damaging
carrier variants. Berg et al. (2013) analyzed 80 whole-genome sequences and found an average of 5.5 potential SNV carrier variants per genome, with a range of 0–12. MacArthur et al. (2012) analyzed data from the 1000 Genomes Project (1000GP) pilot phase, identifying 26 known and 21 predicted disease-causing alleles; however, the per-person load of variants was not enumerated. The 1000GP pilot phase data were further mined by Xue et al. (2012) to more accurately identify likely damaging mutations; however, the predicted consequence of each variant (i.e., disease-causing vs. carrier) was not systematically addressed in light of the inheritance pattern(s) of any associated Mendelian disease(s). Carrier alleles were not addressed in the recent initial publication of the Phase 1 1000GP data (The 1000 Genomes Project Consortium 2012).

CNVs encompassing recessive disease genes have been described as carrier alleles and disease-causing mutations for a number of conditions, and are occasionally among the most common causative mutations for a condition (Luzi et al. 1995; Rafi et al. 1995). While some reports of genome-wide copy-number analyses have mentioned carrier CNVs (e.g., Pang et al. 2010, which examined losses affecting any of 472 recessive disease genes in data from the Venter genome), this information is absent from others (Mills et al. 2011). Thus, the genome-wide contribution of CNVs to carrier states and recessive disease-causing mutations, and the diagnostic yield of aCGH to detect these variants, are not yet clear.

We sought to describe the contribution of CNVs to recessive carrier states and recessive disease. To this end, we examined the genomes of a clinical cohort of 21,470 subjects analyzed by aCGH (also known as chromosomal microarray analysis, or CMA) (Cheung et al. 2005) for CNVs deleting part or all of at least one known recessive disease gene.

Results

Computational analysis identified 165,595 CNVs in our cohort of 21,470 individuals using a nontargeted, genome-wide CGH array (“V7” array; 19,707 CNVs in 4928 subjects, avg. 4.0/subject) and a genome-wide CGH array with supplemental exon coverage (“V8” array; 145,888 CNVs in 16,542 subjects; avg. 8.8/subject). Initial filtering steps yielded 4372 deletions affecting at least one exon of a Mendelian disease gene and not affecting any genes associated solely with dominant diseases or diseases with complex inheritance patterns (Supplemental Fig. S1). While each deletion contained one or more genes associated with a recessive phenotype, some of these genes are solely associated with a recessive phenotype (“recessive disease genes”), whereas others are associated with both recessive and dominant phenotypes (“rec/dom disease genes”). As CNVs deleting rec/dom disease genes could contribute to either recessive or dominant disease, these CNVs were ordered in lower priority “tiers” (Tiers 2 and 3; Supplemental Fig. S1) than were CNVs affecting only recessive disease genes (Tier 1). Deletions were then parsed by zygosity and subjected to final quality control (Supplemental Methods; Supplemental Fig. S1), yielding the number of heterozygous, homozygous, and hemizygous deletions listed in Table 1. Detailed CNV data are shown as Supplemental Table S2.

The percentage of subjects with a CNV passing the above filtering steps is displayed as Supplemental Figure S2. As Tiers 2 and 3 represent a small proportion of the total CNVs (Supplemental Figure S2) and the CNVs within them are less readily interpretable, subsequent data and analyses focus on Tier 1 deletions. Statistics concerning Tier 1 deletions are presented in depth in Table 2.

Tier	Heterozygous deletions	Homozygous deletions	Hemizygous deletions
Tier 1	3212 (in 2829 subjects)	8 (in 8 subjects)	67 (in 67 subjects)
Tier 2	59 (in 59 subjects)	0	0
Tier 3	436 (in 426 subjects)	0	3 (in 3 subjects)

Heterozygous deletions of recessive disease genes: potential carrier CNVs

The 3212 heterozygous Tier 1 deletions (Table 2; Supplemental Table S2) represent potential carrier alleles. These were identified at an overall prevalence of approximately one per 19 subjects for V7 cases and one per six subjects for V8 cases (Table 2). The distribution of Tier 1 heterozygous deletion sizes is shown in Figure 1A, and the distribution of RefSeq genes per CNV in Figure 1B. These data demonstrate the predominance of small, single-gene events among V8 heterozygous Tier 1 deletions, likely detected because of the exon-focused design of the V8 array. The distribution of recessive disease genes per CNV is shown in Figure 1C.

In total, 419 of 1228 known recessive disease genes (34%) were encompassed or disrupted by at least one Tier 1 heterozygous deletion. Of the 359 genes screened by capture sequencing by Bell et al. (2011) and designated as recessive disease genes in Supplemental Table S1, 140 were deleted by at least one Tier 1 heterozygous CNV (Supplemental Fig. S3). These copy-number variants or a proportion thereof may have evaded a capture sequencing screen as in Bell et al. (2011). The remaining 279 recessive disease genes deleted by Tier 1 heterozygous CNVs were not screened for mutations by Bell and colleagues.

Many apparent carrier CNV alleles (1625/3212, 51% of heterozygous Tier 1 deletions) matched intervals in the Database of Genomic Variants (DGV; http://dgv.tcag.ca/), a database of CNV data from control individuals, by 50% mutual overlap (Table 2; Supplemental Table S2). This serves as a positive control of our assay and analysis and suggests that this subset of deletions we report may represent nonprivate variants derived from founder events and/or recurrent CNV formation. Deletions not previously cataloged in DGV may be novel.

Of the heterozygous Tier 1 deletions described above, 490 (15.3%) affected X-linked genes in females, a special type of carrier state.

Carrier frequency

The frequency with which each of the 419 unique recessive disease genes is deleted among Tier 1 heterozygous CNVs ranges from one
occurrence to 314 (1.5%; V7 and V8 combined), with a frequency distribution shown in Figure 2A and Supplemental Table S3. There are a few commonly affected genes and many rarely affected genes. We investigated whether our ascertainment of affected recessive disease genes was “saturated,” i.e., whether testing additional individuals would identify additional unique mutated recessive disease genes. Figure 2B plots our chronological ascertainment of unique recessive disease genes and indicates that it continues to rise even after assessing 2829 subjects with a Tier 1 heterozygous deletion, consistent with genomics observations of rare variant CNV alleles (Lupski et al. 2011; Marth et al. 2011).

The most frequently deleted genes in our cohort are listed in Supplemental Table S5. Some display a variety of deletion alleles, while others are the substrate of only one or a few ancestral and/or recurrent deletions. Among CNVs affecting commonly deleted genes, some very likely represent carrier alleles (e.g., deletions of \(\text{LEPREL1} \)), while others appear to be too common in our cohort to be deleterious, given the incidence of the associated recessive disease(s) (e.g., deletions of a noncoding, alternative exon of \(\text{LEPREL1} \)); these common CNV alleles likely represent benign polymorphisms. Some entries in Supplemental Table S5 have intermediate frequencies, a diversity of alleles, or an unknown disease incidence in the population, rendering their roles as carrier alleles less clear.

The \(\text{LEPREL1} \) noncoding exon deletions (above) led us to assess the overall contribution of CNVs affecting noncoding exons in our data set. We compared a test set of 2803 CNVs from the UCSC Genome Browser CCDS track (a consensus track of the protein-coding portions of the genome) without exon data. A total of 100 CNVs out of the 2803 CNVs (21%) did not delete a coding exon; however, 238 of these 588 (40%) were the \(\text{LEPREL1} \) deletion mentioned above, and another 240/588 (40%) were \(\text{NKX2-6} \) deletions, also featured in Supplemental Table S5 (the RefSeq and UCSC gene models disagree concerning whether \(\text{NKX2-6} \) is coding, and it is not part of CCDS). When the \(\text{LEPREL1} \) and \(\text{NKX2-6} \) CNVs are removed from the test set, the remaining 110 CNVs deleting noncoding exons make up a small proportion of the total (110/2325, 4.7%).

We compared SNV carrier frequencies in recessive disease genes screened by Lazarin et al. (2013) to deletion carrier frequencies in our cohort (Fig. 3; Supplemental Table S10). We limited this analysis to genes that were assigned purely recessive status (i.e., not rec/dom, etc.) and that have exonic probe coverage on the V8 (exon-focused) CGH array, and used only V8 Tier 1 deletion data. For the 49 genes fulfilling these criteria, SNV carrier frequency was 13.5 times higher than deletion carrier frequency; however, for five of the 49 genes (\(\text{CTNS}, \text{LAMC2}, \text{SACS}, \text{CLN8}, \text{ALDH3A2} \)) deletion carrier frequency was higher than that of SNVs. \(\text{CTNS} \) is notable in that a single 57-kb deletion eliminating the first 10 exons of the gene is present in either the heterozygous or homozygous state in 76% of European patients with nephropathic cystinosis (OMIM #219800), making it the predominant mutation for this condition (Forestier et al. 1999). Twenty-five V8 patients were carriers for this allele, and five for larger deletions affecting \(\text{CTNS} \). This deletion was not screened for by Lazarin et al. (2013). Figure 3 compares the SNV and deletion carrier frequencies in Supplemental Table S10, and demonstrates a lack of correlation between the two (Spearmann correlation coefficient \(r = 0.122, P \text{[estimated]} = 0.399 \)), in support of the idea that each recessive disease locus may differ in the frequency contribution of SNV versus CNV alleles.

CNVs spanning two or more recessive disease genes

Two hundred six Tier 1 heterozygous CNVs deleted multiple recessive disease genes, with a range of two to six of such genes in each deletion (Table 2; Fig. 1C; Supplemental Table S2). These deletions contributed to the difference between the number of CNVs per individual (Fig. 1D) and the total carrier load in that individual (Fig. 1E). In contrast to a carrier point mutation, a single heterozygous deletion containing two or more recessive disease genes confers carrier status for multiple recessive conditions, each of which could manifest by a mutation on the remaining allele. In addition, if such a deletion is homozygous or hemizygous, it could lead to a complex recessive phenotype; for example, the autosomal recessive hypotonia-cystinuria syndrome (OMIM #606407) and X-linked deletions of Xp11.4-p21.2 leading to combinations of Duchenne muscular dystrophy, ornithine transcarbamylase deficiency, McLeod syndrome, and chronic granulomatous disease in males (Peng et al. 2007). Furthermore, the multiply heterozygous state could potentially itself manifest disease (i.e., digenic or oligogenic inheritance) if the genes involved encode proteins in the
same pathway and contribute to a mutational load that surpasses a threshold for disease (Lupski 2012).

We investigated how many genomic regions exist in the human genome in which two or more recessive disease genes in cis are not separated by a known dominant or rec/dom disease gene or centromere, as each of these regions may predict a locus for which deletion may eliminate or disrupt two or more recessive disease genes, with potential consequences as described above. We analyzed our gene list (Supplemental Table S1) and found that 294 such genomic regions exist (Fig. 4; Supplemental Table S4; Supplemental Methods), containing between two and 10 recessive disease genes and including 19 regions on the X chromosome.

Individuals with multiple carrier deletions

Three hundred seven subjects had multiple Tier 1 heterozygous deletions (range 2–7) (Fig. 1D), contributing to the total CNV carrier load per individual shown in Figure 1E. We examined...
whether these CNVs (specifically, the gene deletions they cause) are distributed independently among the V8 subjects in our cohort. To do this, we modeled the expected number of V8 individuals with multiple potential carrier deletions using a binomial distribution (Fig. 2C; Supplemental Methods). The number of individuals in our cohort with multiple potential carrier deletions does not significantly deviate from the modeled expectation ($P = 0.312$) (Fig. 2C), suggesting that the number of CNV carrier alleles is distributed randomly among V8 subjects in our cohort.

To determine whether any specific genes in $trans$ are more or less commonly codeleted, we performed pairwise comparisons of codeletion frequency for all pairs of 374 genes deleted by V8 Tier 1 heterozygous deletions (Fig. 2D). In addition to the expected cis interactions, we found pairs of genes in $trans$ that showed some evidence for enriched co-occurrence of deletion.

While many recessive disease genes codeleted in a single individual have unrelated functions, a few cases exist in which these genes appear to be in related pathways. An example is subject 1399, in whom a CNV at 6p21.32 (CNV 1080) deletes three recessive immune genes: $PSMB8$, the disease gene for autoinflammation, lipodystrophy, and dermatosis syndrome (OMIM #256040), and $TAP1$ and $TAP2$, both disease genes for type I bare lymphocyte syndrome (OMIM #604571). In the same individual, a CNV at 16p11.2 (CNV 2211) deletes one recessive immune gene ($CD19$, the disease gene for common variable immunodeficiency 3 [OMIM #613493]) and two recessive disease genes unrelated to immune function. Thus, this patient is heterozygously deleted for four genes related to recessive immunological conditions due to both multiple carrier CNVs and a CNV spanning multiple recessive disease genes. Owing to the anonymized fashion in which our study was conducted, it is unknown whether this multiply heterozygous state contributes to an immune phenotype.
Genomic signatures of CNV carrier mutations

We investigated whether particular features of recessive disease genes correlated with their deletion in our cohort. To do this, we compared the 419 recessive disease genes deleted at least once by Tier 1 heterozygous CNVs with all remaining recessive disease genes. Recessive disease genes deleted at least once were farther from the nearest dominant disease gene than were the remaining recessive disease genes (median distance 1.55 Mb vs. 0.66 Mb; \(P = 3.3 \times 10^{-15} \); Wilcoxon rank sum test with continuity correction) (Fig. 5A). Additionally, these genes were larger (median genomic size 45.1 kb vs. 24.0 kb; \(P = 9.3 \times 10^{-14} \)) and had lower fractional content of Alu elements (see Supplemental Methods) (median 11.9% vs. 18.0%; \(P = 2.33 \times 10^{-11} \)) (Fig. 5B,C).

CNV validation and robustness

To investigate the possibility of false-positive CNV calls, particularly among deletions encompassing only a few (e.g., nine or fewer array probes, we examined the average probe log2 value across each heterozygous Tier 1 deletion, parsed by the number of array probes within each deletion (Supporting Table S8; Supporting Fig. S4). Additionally, a subset of CNVs was assessed by PCR using primers spanning the hypothesized deletion breakpoints and/or by FISH. Of 56 total PCRs, seven had equivocal results, and of the remaining 49 cases, 39 (80%) confirmed the deletion (Supporting Fig. S4; Supporting Table S2; data not shown). All 187 deletions assayed by FISH were confirmed, including 20 (11%) with nine or fewer array probes (Supporting Table S2; Supporting Fig. S4; data not shown). FISH confirmed one CNV for which PCR was equivocal (CNV 315).

Despite the above data suggesting that most small CNV calls in our data set are robust, we repeated several analyses (Figs. 1A, 2B, 5) using only data from CNVs comprised of \(\geq 10 \) probes. This analysis demonstrates that our findings persist even without small CNVs (Supporting Table S9; Supporting Fig. S5):

Homozygous deletions

Eight homozygous deletions were identified (Fig. 6; Supporting Table S6): A homozygous deletion at 2p21 (subject 163) deletes the recessive disease gene \(SLC3A1 \) (mutated in cystinuria, OMIM #220100) as well as much of \(PREPL \) (Fig. 6A). Homozygous deletions spanning both \(SLC3A1 \) and \(PREPL \) have been described as causing hypotonia-cystinuria syndrome (HCS; OMIM #606407); larger homozygous losses at this locus including additional genes

Figure 3. Comparison of deletion carrier frequency in our cohort to point mutation carrier frequency reported by Lazarin et al. (2013). Values are derived from Supporting Table S10. SNV and deletion carrier frequencies for a given gene are poorly correlated (Spearman correlation coefficient = 0.122; \(P[\text{estimated}] = 0.399 \)). Genes for which deletion carrier frequency is higher than SNV carrier frequency are labeled and in green.
Hemizygous deletions

Sixty-seven males in our cohort had hemizygous Tier 1 deletions (Table 2; Supplemental Tables S2, S7). In total, hemizygous Tier 1 deletions encompass 14 unique, recessive, X-linked genes (Supplemental Table S7). The most commonly deleted genes are DMD (16 hemizygous deletions; one per 1034 V8 subjects), STS (10 hemizygous deletions; one per 1654 V8 subjects), and OPN1LW (eight hemizygous deletions; one per 2068 V8 subjects).

Discussion

Recessive genetic diseases, while individually rare, number in the thousands and contribute substantially to the burden of disease with a genetic basis. The extent to which DNA copy-number variations (CNVs) contribute to recessive disease or recessive carrier mutations has not been investigated on a genome-wide scale in a large cohort. We sought to identify and describe CNV carrier and recessive disease-causing alleles using genomic copy-number data from a clinical cohort of 21,470 individuals.

Heterozygous deletions of recessive disease genes: potential carrier CNVs

Potential carrier CNVs were identified by mining our data set for heterozygous deletions encompassing or disrupting recessive disease genes. We calculated the prevalence of such events using two different CGH array platforms. These values provide provisional estimates of the CNV contribution to recessive carrier load upon which future investigations can improve. The V8 array, with both backbone probes and supplemental probes localized to the exons of selected genes, identified more CNVs and CNVs of markedly smaller minimum size than did the V7 (backbone probes only) array. Thus, aCGH using a higher-resolution, exon-focused design enables the detection of additional potential carrier alleles, particularly small CNVs encompassing or disrupting single genes.

An abundance of small carrier deletions, many of which encompass only a few array probes, raises the possibility of false-positive CNV calls (Haraksingh et al. 2011). We took multiple measures to filter out low-quality CNVs and found that over 50% of filtered CNVs matched alleles in the Database of Genomic Variants (DGV), and a high percentage of filtered CNVs tested by PCR or FISH were validated. Additionally, when we repeated several of our analyses using only CNVs spanning ≥10 probes, each of our original conclusions was upheld (Supplemental Fig. S5). Moreover, an abundance of small CNVs is consistent with the overall allele frequency spectrum of CNVs in personal genomes (e.g., Wheeler et al. 2008; Conrad et al. 2010; Mills et al. 2011).
Carrier frequency

We estimated gene-specific CNV carrier frequencies for the 419 recessive disease genes deleted heterozygously in our cohort; these are characterized by a few commonly mutated genes and a “long tail” of more rarely variant loci, consistent with observations of SNV carrier alleles (Srinivasan et al. 2010). The ascertainment of unique recessive disease genes deleted lessened over time, but did not appear to reach saturation, reminiscent of the continued identification of novel SNPs in personal genomes despite a multitude of previously sequenced genomes (Lipshutz et al. 2011; Marth et al. 2011; Gonzaga-Jauregui et al. 2012). Abundant novel alleles are also consistent with low-frequency technical error; however, our finding of continued novelty persists even among our highest confidence (≥10 probe) CNVs, indicating that the observed copious diversity of CNV carrier alleles exists and extends even to large CNVs.

We compared the gene-specific CNV carrier frequencies in our cohort to SNV carrier frequencies recently published by Lazarin et al. (2013) and found that the two are not correlated. Our study also identified CNVs affecting hundreds of recessive disease genes not assayed by either Lazarin et al. (2013) or Bell et al. (2011) in their approaches to carrier screening. This indicates that while an SNV-centric carrier screen of genes with high SNV carrier frequency in the population may be ideal for efficient SNV carrier screening, the list of priority genes may be different if carrier states caused by CNVs are considered.

CNVs spanning two or more recessive disease genes

By identifying heterozygous CNVs in our cohort that span two or more recessive disease genes, we identified variants that, in a single
allele, may render the affected individual a carrier for multiple recessive diseases. Such CNVs were present in ~1% of subjects in our cohort and encompassed between two and six recessive disease genes each. Our genome-wide prediction of loci susceptible to this kind of mutation (Fig. 4; Supplemental Table S4) indicates that up to 10 recessive disease genes can be deleted in cis without deleting a known dominant or rec/dom disease gene. We hypothesize that the carrier load from CNVs may be particularly skewed in individuals with deletions spanning multiple recessive disease genes, and may even exceed the SNV carrier load.

Analogous to dominant contiguous gene syndromes, in which two or more discrete dominant disease genes may contribute to a complex phenotype (Campbell et al. 2012), recessive contiguous gene syndromes have also been described (e.g., hypotonia-cystinuria syndrome; OMIM #606407). By identifying all contiguous recessive disease genes in the genome, we delineate hundreds of potential complex recessive phenotypes (recessive contiguous gene syndromes) that could result from homozygous or hemizygous deletion of these loci, further developing the concept of oligogenic inheritance and cis-genetics, in contrast to the trans-genetics in which Mendelism is so rooted (Luptsi et al. 2011). Such phenotypes may challenge diagnostic acumen; thus, a laboratory method that asays for CNVs at high resolution in these predicted genomic regions may facilitate a molecular diagnosis.

Individuals with multiple carrier deletions

In addition to CNVs affecting multiple recessive disease genes, multiple carrier CNVs in the same individual could contribute to an overall load of carrier mutations. Indeed, a subset of subjects in our cohort (>1%) has multiple potential CNV carrier alleles. Estimates of the recessive carrier load per individual have been proposed for some time (Muller 1950; Morton et al. 1956; Morton 1960) and, recently, empirical estimates have been made from genome-wide or targeted analyses (Bell et al. 2011; Berg et al. 2013; Lazarin et al. 2013), suggesting that the average per-person SNV carrier load is likely <10 carrier mutations. Thus, our data suggest that multiple CNVs may contribute appreciably to the overall carrier load in some individuals.

Genomic signatures of CNV mutations

We found that recessive disease genes deleted at least once in our cohort tended to be located, in terms of median distance, two to three times farther from the nearest dominant disease gene than were never-deleted recessive disease genes. This correlation may suggest a mechanism whereby an adjacent locus (dominant gene) can affect population allele frequency at another locus (CNV frequency in a recessive disease gene), since a deletion encompassing both genes would potentially lead to dominant disease and be selected against (Fig. 7A,B). This finding persists among CNVs >10 probes, the most robust group of CNVs in our analyses (Supplemental Fig. S5C).

We also found that recessive disease genes deleted at least once in our cohort tended to be larger, genomics, than those never deleted. This correlation may be the result of a confounding variable, for example number of exons or likelihood of exon coverage on the V8 array. However, it may also suggest that, for large recessive disease genes, many deletions do not span beyond the boundary of the gene. Thus, irrespective of this recessive disease gene's proximity to the nearest dominant disease gene, many deletions in this gene are solely carrier deletions.

Furthermore, recessive disease genes deleted at least once in our cohort tended to have a lower Alu content than recessive disease genes never deleted. It has been proposed that Alu elements play a role in the generation of genome rearrangements by various mechanisms (Lehrman et al. 1985; Boone et al. 2011). Thus, loci with high Alu density may be predisposed to copy-number change, and as such, these loci might be expected to be enriched for variants contributing to dominant (Boone et al. 2011) or semi-dominant (Lehrman et al. 1985) phenotypes, for which new mutation is important. In our cohort, Alu density is not associated with recessive disease genes affected by CNV carrier states, potentially because of the minor importance of new mutation, as compared with inherited variation, for recessive alleles. The reason for a lower Alu concentration (as opposed to statistically equivalent) among recessive disease genes deleted at least once is unknown.

Homozygous deletions

Three homozygously deleted regions illustrate the ability of screening acGH to provide a molecular diagnosis for recessive disease, including one case of a two-gene homozygous deletion potentially leading to HCS, a recessive contiguous gene syndrome. The total number of homozygotes in our cohort appears small, given that this is a population screened because of a clinical phenotype. The subjects studied are largely from a diverse urban population with no historical evidence for a high percentage of consanguineous unions, although frequency of consanguninity in our clinical cohort has not been experimentally assessed. The possibility of an overly stringent log2 cutoff for homozygous deletions (~2) can likely be excluded (Supplemental Fig. S7). One factor that may contribute to the small number of homozygous CNVs is that our CNV-calling algorithm does not incorporate dim probes (probes with very low fluorescence) into CNV calls.

Hemizygous deletions

The V8 hemizygous deletion frequency and V8 carrier frequency are similar for most genes in Supplemental Table S7. This is consistent with the following: (1) For nonlethal X-linked recessive conditions, the prevalence in the population of carrier females and
affected males should be somewhat similar; and (2) the mothers of boys identified by aCGH to have an X-linked potentially pathogenic CNV are often tested by aCGH in order to estimate recurrence risk; such carrier females are included in our cohort. Two genes, however, do not follow the above pattern: OCLR and OPN1LW.

Heterozygous OCLR deletions are present in 314 females in our cohort (Supplemental Tables S2, S5). All are the same, single-exon (exon 16 of 24) in-frame loss, and are likely benign based on the high frequency of this event in our cohort and the low incidence of Lowe syndrome (OMIM #309000) and Dent disease 2 (OMIM #300555). In contrast to the large number of female heterozygotes, there is only a single male with a hemizygous OCLR deletion (an 11-probe loss of exons 5 and 6). Whereas it is possible that the exon 16 OCLR losses are technical artifacts, it is perhaps more likely that they are not ascertained in the hemizygous state owing to dim probes that are excluded from the CNV-calling algorithm. Note also that no homozygous OCLR deletion was detected.

OPN1LW encodes red cone pigment, associated with red-green color vision defects (OMIM #303700 and #303900) present in ~8% of northern European males (Deeb and Mutsatsky 1993). This gene was deleted in eight V8 males compared with no heterozygous deletions in V8 females. This may be explained by the homology shared between OPN1LW and the nearby OPN1MW (green cone pigment gene; often present in multiple iterative copies): A deletion resulting from recombination between OPN1LW and OPN1MW, the most common mutation causing red-green colorblindness (Nathans et al. 1986), leaves a remaining hybrid gene copy and may leave one or more intact gene copies. Thus, at this multiallelic CNV locus, CGH probe log2 ratios are expected to be attenuated; indeed, the average log2 in our cohort for at this multiallelic CNV locus, CGH probe log2 ratios are expected...
deletion were included; (4) Three “tiers” of potential carrier mutations were assigned (Tiers 1, 2, and 3) based on the likelihood of association with recessive disease and nonassociation with dominant disease (see Supplemental Fig. S1; Supplemental Results); (5) Filtering was based on the minimum extent of each CNV. All genomic coordinates are based on the February 2009 assembly of the reference human genome (GRCh37/hg19), unless otherwise specified.

Identifying hemizygous and homozygous CNVs affecting recessive disease genes

Hemizygous CNVs were the X- and Y-linked CNVs in males remaining after filtering as described above for carrier CNVs. Homozygous CNVs were all other remaining CNVs with an average probe ratio log$_2$ consistent with a homozygous loss (Supplemental Figs. S1, S7).

CNV validation

A subset of deletions was subjected to PCR (size range 3–114 array probes) and/or FISH (size range 3–703 probes) validation as described previously (Boone et al. 2010; Supplemental Table S2; Supplemental Fig. S4).

Data access

CNV data have been deposited at dbVar (http://www.ncbi.nlm.nih.gov/dbvar/studies/) under accession number nstd80.

Competing interest statement

J.R.L. is a paid consultant for Athena Diagnostics, holds stock ownership in 23andMe, Inc. and Ion Torrent Systems, Inc., and is a co-inventor on multiple United States and European patents related to molecular diagnostics. The Department of Molecular and Human Genetics at Baylor College of Medicine derives revenue from molecular genetic testing offered in the Medical Genetics Laboratories (http://wwwbcm.edu/geneticlabs/).

Acknowledgments

We thank Drs. Jonathan Berg and Stephen Kingsmore for help in assembling the recessive disease gene list, and Joep de Ligt for commenting on the manuscript. P.M.B. and I.M.C. are fellows of the Wintermann Foundation and the Baylor Research Advocates for Student Scientists. This work was supported in part by the National Institutes of Health (NIH) and grants from the United States National Institutes of Health (NEI) Training Program grant (T32EY007102) from the National Eye Institute (NEI) and a National Eye Institute (NEI) Training Program grant (T32EY007102) from the National Eye Institute (NEI). P.M.B. is also supported by a National Eye Institute (NEI) Training Program grant (T32EY007102) from the National Eye Institute (NEI). The research of the authors was supported in part by the Department of Molecular and Human Genetics at Baylor College of Medicine and the National Human Genome Research Institute (US4HG006542).

References

The 1000 Genomes Project Consortium. 2012. An integrated map of genetic variation from 1,092 human genomes. Nature 491: 56–65.

Ashley EA, Butte AJ, Wheeler MT, Chen R, Klein TE, Dewey FE, Dudley JT, Ormond KE, Pavlovic A, Morgan AA, et al. 2010. Clinical assessment incorporating a personal genome. Lancet 375: 1525–1535.

Bacino CA, Cheung S-W. 2010. Introductory comments on special section—genomic microduplications: When adding may equal subtracting. Am J Med Genet A 152A: 1063–1065.

Bainbridge MN, Wizniewski W, Murdock DR, Friedman J, Gonzalez-Jauregui C, NeveU shan J, Reid JG, Fink JK, Morgan MB, Gingras M-C, et al. 2011. Whole-genome sequencing for optimized patient management. Sci Transl Med 3: 87re85.

Bell CJ, Dinwiddie DL, Miller NA, Hately SL, Ganusova EE, Mudge J, Langley RJ, Zhang L, Lee CC, Schilkey FD, et al. 2011. Carrier testing for severe childhood recessive diseases by next-generation sequencing. Sci Transl Med 3: 65ra64.

Berg JS, Adams M, Nassar N, Bizon C, Lee K, Schmitt CP, Wilhelmsen KC, Evans JP. 2013. An informatics approach to analyzing the incidentalome. Genet Med 15: 36–44.

Boone PM, Bacino CA, Shaw CA, Eng PA, Hixson PM, Purseley AN, Kang S-HL, Yang Y, Wizniewska J, Nowakowska BA, et al. 2010. Detection of clinically relevant exonic copy-number changes by array CGH. Hum Mutat 31: 1326–1342.

Boone PM, Liu P, Zhang E, Carvalho CMB, Towne CE, Batish SD, Lupsiri J. 2011. Alu-specific microhomology-mediated deletion of the final exon of SPAST in three unrelated subjects with hereditary spastic paraplegia. Genet Med 13: 580–592.

Boone PM, Seoane ZL, Campbell IM, Stankiewicz P, Cheung SW, Patel A, Beaudet AL, Pion SE, Shaw CA, McGuire AL, et al. 2013. Incidental copy-number variants identified by routine genome testing in a clinical population. Genet Med 15: 45–54.

Campbell IM, Yatsenko SA, Hixson P, Reisman T, Thomas M, Wilson W, Dayal U, Wheelless JW, Crunk A, Curry C, et al. 2012. Novel 9q43.11 gene deletions encompassing combinations of four Mendelian disease genes: STXB4, SPK1, ENG, and TORA. Genet Med 14: 868–876.

Cheung SW, Shaw CA, Venu V, Li J, Ou Z, Patel A, Van den Enk SA, Cooper ML, Furman P, Stankiewicz P, et al. 2005. Development and validation of a CGH microarray for clinical cytogenetic diagnosis. Genet Med 7: 422–432.

Conrad DF, Pinto D, Redon R, Feuk L, Gokcumen O, Zhang Y, Aerts J, Andrews TD, Barnes C, Campbell P, et al. 2010. Origins and functional impact of copy number variation in the human genome. Nature 464: 704–712.

de Leeuw N, Dijkhuizen T, Hehir-Kwa JY, Carter NP, Feuk L, Firth HV, Kuhn RM, Ledbetter DH, Martin CL, van Ravenswaaij-Arts CMA, et al. 2012. Diagnostic interpretation of array data using public databases and internet sources. Hum Mutat 33: 930–940.

Deeb SS, Motulsky AG. 1993. Red-green color vision defects. In GeneReviews (ed. Pagon RA). University of Washington, Seattle, WA.

Dye DE, Brameld KJ, Maxwell S, Goldblatt J, Bower C, Leonard H, Bourke J, Glasson EJ, O’Leary P. 2011a. The impact of single gene and chromosomal disorders on hospital admissions of children and adolescents: A population-based study. Public Health Genomics 14: 153–161.

Dye DE, Brameld KJ, Maxwell S, Goldblatt J, O’Leary P. 2011b. The impact of single gene and chromosomal disorders on hospital admissions in an adult population. J Community Genet 2: 81–90.

Epeldegeui M, Hung YP, McCray A, Ambinder RF, Martinez-Maza O. 2007. Infection of human B cells with Epstein-Barr virus results in the expression of somatic hypermutation-inducing molecules and in the accrual of oncogene mutations. Mol Immunol 44: 934–942.

Field MJ, Boat TF, ed. 2011. Rare diseases and orphan products: Accelerating research and development. National Academy of Sciences, Washington, D.C.

Foretter L, Jean G, Attard M, Cheneqi S, Lewis C, van’t Hoff W, Broyer M, Town M, Antignac C. 1999. Molecular characterization of CTNS deletions in nephropathic cystinosis: Development of a PCR-based detection assay. Am J Hum Genet 65: 345–359.

Gonzaga-Jauregui C, Lupski JR, Gibbs RA. 2012. Human genome sequencing in health and disease. Annu Rev Med 63: 35–61.

Haraksingh RB, Abyzov A, Gerstein M, Urban AE, Snyder M. 2011. Genomewide mapping of copy number variation in humans. Comparative analysis of high resolution array platforms. PLoS ONE 6: e27859.

Kang S-HL, Shaw C, Ou Z, Eng PA, Cooper ML, Pursley AN, Sahoo T, Bacino CA, Chinnault AC, Stankiewicz P, et al. 2010. Insertional translocation detected using FISH confirmation of array-comparative genomic hybridization (aCGH) results. Am J Med Genet A 152A: 1111–1126.

Konrad M, Saunier S, Heidet L, Silbermann F, Bendix F, Calado J, Le Psolier D, Broyer M, Gubler M-C, Antignac C. 1996. Large homzygous deletions of the 2q13 region are a major cause of juvenile nephropathosis. Hum Mol Genet 5: 367–371.

Kumar P, Radhakrishnan J, Chowdary MA, Giampietro PF. 2001. Prevalence and patterns of presentation of genetic disorders in a pediatric emergency department. Mayo Clin Proc 76: 777–783.

Lazarin GA, Haque IS, Nazareth S, Iori K, Patterson AS, Jacobson JL, Marshall JR, Seltzer WK, Patrizio P, Evans EA, et al. 2013. An empirical estimate of carrier frequencies for 400+ causal Mendelian variants: Results from an ethnically diverse clinical sample of 23,453 individuals. Genet Med 15: 178–186.
Lehrman MA, Schneider WJ, Sudhof TC, Brown MS, Goldstein JL, Russell DW. 1985. Mutation in LDL receptor: Alu-Alu recombination deletes exons encoding transmembrane and cytoplasmic domains. Science 227: 140–146.

Lupski JR. 2012. Digenic inheritance and Mendelian disease. Nat Genet 44: 1291–1292.

Lupski JR, Reid JG, Gonzaga-Jauregui C, Rio Deiros D, Chen DCY, Nazareth L, Bainbridge M, Dinh H, Jing C, Wheeler DA, et al. 2010. Whole-genome sequencing in a patient with Charcot-Marie-Tooth neuroopathy. N Engl J Med 362: 1181–1191.

Lupski JR, Belmont JW, Boerwinkle E, Gibbs RA. 2011. Digenic inheritance and Mendelian disease. Hum Mol Genet 20: 438–445.

Lupski JR, Reid JG, Gonzaga-Jauregui C, Rio Deiros D, Chen DCY, Nazareth L, Bainbridge M, Dinh H, Jing C, Wheeler DA, et al. 2010. Whole-genome sequencing in a patient with Charcot-Marie-Tooth neuroopathy. N Engl J Med 362: 1181–1191.

Makhijani V, Roth GT, Gomes X, et al. 2008. The complete diploid genome of an individual by massively parallel sequencing. Nature 452: 59–65.

Morten NE, Crow JF, Muller HJ. 1956. An estimate of the mutational damage in man from data on consanguineous marriages. Proc Natl Acad Sci USA 42: 855–863.

Muller HJ. 1950. Our load of mutations. Am J Hum Genet 2: 111–176.

Nathans J, Plantanida TP, Eddy RL, Shows TB, Hogness DS. 1986. Molecular genetics of inherited variation in human color vision. Science 232: 203–210.

Pang AW, MacDonald JR, Pinto D, Wei J, Rafiq MA, Conrad DF, Park H, Hurles ME, Lee C, Venter JC, et al. 2010. Towards a comprehensive structural variation map of an individual human genome. Genome Biol 11: R52.

Patravinassam M, Egholm M, Shen Y, Chen L, McGuire A, He W, Makhijani V, Roth GT, Gomes X, et al. 2008. The complete diploid genome of an individual by massively parallel sequencing. Nature 452: 872–876.

Phillips AD, Shaw K, Stenson PD, Cooper DN, et al. 2012. Deleterious- and disease-allele prevalence in healthy individuals: Insights from current predictions, mutation databases, and population-scale resequencing. Am J Hum Genet 91: 1022–1032.

Received February 7, 2013; accepted in revised form May 6, 2013.

www.genome.org