The chloroplast genome sequence and characteristic analysis of *Vitex negundo* var. *heterophylla* (Franch.) Rehder

Guangshun Zheng\(^a\), Jianbo Li\(^a\) and Shu Diao\(^b\)

\(^a\)National Permanent Scientific Research Base for Warm Temperate Zone Forestry of Jiulong Mountain in Beijing Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing, China; \(^b\)Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China

ABSTRACT

Vitex negundo var. *heterophylla* (Franch.) Rehder is a common small shrub in northern China. In order to study the fine nectar characteristics and water and soil conservation characteristics of *V. negundo*, the analysis of chloroplast genome would provide theoretical basis for economic development and germplasm utilization of *V. negundo*. The chloroplast genome sequence (accession number MW366787) of *V. negundo* was accepted by high-throughput sequencing technology using a plant from Jiulongshan, Mentougou District, Beijing, China. The total length of the chloroplast genome is 154,438 bp, and the A, T, C and G content of the whole genome is 30.48, 31.26, 19.42, and 18.84%, respectively. The phylogenetic analysis of 16 Verbenaceae plants (including *V. negundo*) with *Arabidopsis thaliana* as the outgroup was carried out by the maximum likelihood method; and the result shows that *V. negundo* is relatively closed to *Vitex rotundifolia*.

Vitex negundo var. *heterophylla* (Franch.) Rehder is widely distributed in northern China and has been known as an excellent nectar plant. *Vitex negundo* var. *heterophylla* is a variant of *Vitex negundo*. The whole plant of *V. negundo* could be used medicinally to treat diseases such as asthma, stomach pain and tinea capitis (Meena et al. 2011). *V. negundo* is also widely accepted as the resource of health food due to the presence of biologically active ingredients, which could improve physical conditions in China. The seed of *V. negundo* contained a variety of phenolic compounds, which were evaluated to improve physical conditions in China. The seed of *V. negundo* is also used medicinally to treat diseases such as asthma, stomach pain and tinea capitis (Meena et al. 2011). *V. negundo* is also widely accepted as the resource of health food due to the presence of biologically active ingredients, which could improve physical conditions in China. The seed of *V. negundo* contained a variety of phenolic compounds, which were evaluated to improve physical conditions in China. The seed of *V. negundo* is also used medicinally to treat diseases such as asthma, stomach pain and tinea capitis (Meena et al. 2011).

ARTICLE HISTORY

Received 6 June 2021
Accepted 6 November 2021

KEYWORDS

Verbenaceae; *Vitex negundo*; chloroplast genome; phylogenetic analysis

CONTACT

Shu Diao, diaooshu0802@163.com

Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China

© 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
The assembled chloroplast genome of *V. negundo* has been submitted to the NCBI database (accession number MW366787). The *V. negundo* chloroplast genome is 154,438 bp in length, of which the GC content is 38.26%; the A, T, C and G content of the whole genome is 30.48, 31.26, 19.42 and 18.84%, respectively. The chloroplast genome distributed in a typical four-segment structure. It is found that the LSC region (large single copy region) is 85,146 bp, and the IRB region (inverted repeat B) and the other IR region IRA (inverted repeat A) is 25,686 bp, the SSC area (small single copy region) is 17,920 bp. And it is found the overall AT content is 61.7%, showing obvious AT preference. A total of 132 genes are encoded in *V. negundo* chloroplast genome, including 87 protein-coding, 37 tRNAs, and 8 rRNAs genes. The LSC region contains 62 protein-coding and 22 tRNAs genes, and the SSC region contains 14 protein-coding and 1 tRNA genes. The rRNA genes are only in the two IR regions with 4 types, respectively. Six protein-coding genes and seven tRNAs genes are only included in IR regions. Eighteen genes (including 6 tRNA genes) in the *V. negundo* chloroplast genome contains one or two introns, of which ycf3, clpP1 and rps12 contain two introns. Therefore, the position of rps12 is quite special. Its 5'-end is located in the LSC region, and the two 3'-ends are located in the IRA and IRB regions. The length of introns in the *V. negundo* chloroplast genome is different: *trnK*-UUU is with the longest intron of 2,507 bp, and *trnL*-UAA is with the shortest intron of 485 bp.

In order to confirm the phylogenetic position of *V. negundo*, another 15 complete chloroplast genome sequences from Verbenaceae plants and *Arabidopsis thaliana* (the outgroup) were downloaded from NCBI. The Maximum Likelihood method under MEGA7 (Kumar et al. 2016) in FastTree software was used to perform the phylogenetic tree. After the tree construction was completed, the reliability of the branch of the phylogenetic tree was verified (Bootstrap, 1000 replications). The result showed that *V. negundo* and *V. rotundifolia* in the genus *Vitex* were clustered together, indicating that their evolutionary relationship is closer than that of other Verbenaceae plants (Figure 1). The complete chloroplast genome of *V. negundo* is an important resource, which would help further research the population genetics, systematic geography, evolution, and conservation biology of Verbenaceae.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was supporting by Fundamental Research Funds of Chinese Academy of Forestry [CAFYBB2019ZS003 and CAFYBB20210B006] and the National Natural Science Foundation of China [31800569].

Data availability statement

The genome sequence data that support the findings of this study are openly available in GenBank of NCBI at https://www.ncbi.nlm.nih.gov under the accession no. MW366787. The associated BioProject, SRA, and Bio-Sample numbers are PRJNA701363, SRR13684571, and SAMN17864120, respectively.

References

Hu P, Li D, Wang K, Wang H, Wang Z, Li Z, Hua H. 2015. New phenolic compounds from *Vitex negundo* var. heterophylla and their antioxidant and NO inhibitory activities. J Funct Foods. 19:174–181.

Hu P, Li DH, Hu X, Li SG, Sai CM, Sun XC, Su T, Bai J, Wang ZH, Li ZL, et al. 2016. Lignans and triterpenoids from *Vitex negundo* var. *heterophylla* and their biological evaluation. Fitoterapia. 111:147–153.

Hu P, Li DH, Jia CC, Liu Q, Wang XF, Li ZL, Hua HM. 2017. Bioactive constituents from *Vitex negundo* var. *heterophylla* and their antioxidant and α-glucosidase inhibitory activities. J Funct Foods. 35:236–244.

Huang J, Ding GY, Hu P. 2019. *Vitexnegheteroin M*, a new phenolic glycoside from *Vitex negundo* var. *heterophylla*. Nat Prod Res. :1–7.
Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 33(7): 1870–1874.

Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL. 2016. Versatile and open software for comparing large genomes. Genome Biol. 5(2):R12.

Li S, Yang B, Wu D. 2008. Community succession analysis of naturally colonized plants on coal Gob piles in Shanxi Mining Areas, China. Water Air Soil Pollut. 193(1–4):211–228.

Meena AK, Niranjan US, Rao MM, Padhi MM, Babu R. 2011. A review of the important chemical constituents and medicinal uses of Vitex genus. Asian J Tradit Med. 6(2):54–60.

Niu YX, Wang D, Chu XY, Gao SY, Yang DX, Chen LX, Li H. 2020. Iridoids from *Vitex negundo* var. *heterophylla* and their antioxidant activities. Phytochem Lett. 35:186–190.

Tian YL, Zhang HY, Guo W, Zhang LY, Yu XJ, Chen ZS. 2012. Cadmium tolerance and accumulation in *Vitex negundo* var. *heterophylla* in pot experiment. Adv Mater Res. 360(4):287–290.

Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng Q, Wortman J, Young SK, et al. 2014. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLOS One. 9(11):e112963.

Xu JM, Hu BC, Yuan L, Wu YL, Luan SS, Yuan T, Wang D, Chen LX. 2019. Labdanes and megastigmanes from *Vitex negundo* var. *heterophylla*. Fitoterapia. 137:104265.

Zhou Y, Zhai Y, He R, Qiu F, Kurihara H. 2011. Effect of *Vitex negundo* var. *heterophylla* seeds ethanol extract (VSE) on mice model of immunological hepatitis and acute inflammation. Zhongguo Zhong Yao Za Zhi. 36(17):2404–2408.