Subclonal STAT3 mutations solidify clonal dominance

Cassandra M. Kerr,1 Michael J. Clemente,1 Peter W. Chomczynski,1 Bartlomiej Przychodzen,1 Yasunobu Nagata,1 Vera Adema,1 Valeria Visconte,1 Alan E. Lichtin,2 Satu Mustjoki,3,4 Tomas Radivojevitch,5 Mikkael A. Sekeres,2 and Jaroslaw P. Maciejewski1,2

1Department of Translational Hematology and Oncology Research and 2Leukemia Program, Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH; 3Hematology Research Unit Helsinki, University of Helsinki, Helsinki, Finland; 4Department of Hematology, Helsinki University Hospital Comprehensive Cancer Centre, Helsinki, Finland; and 5Quantitative Health Sciences Department, Cleveland Clinic, Cleveland, OH

Key Points

- TCR clones can be followed throughout the disease course with deep NGS sequencing of the TCR Vβ CDR3 and STAT3.

T large granular lymphocyte leukemia (T-LGLL) is a clonal lymphoproliferative disorder that can arise in the context of pathologic or physiologic cytotoxic T-cell (CTL) responses. STAT3 mutations are often absent in typical T-LGLL, suggesting that in a significant fraction of patients, antigen-driven expansion alone can maintain LGL clone persistence. We set out to determine the relationship between activating STAT3 hits and CTL clonal selection at presentation and in response to therapy. Thus, a group of patients with T-LGLL were serially subjected to deep next-generation sequencing (NGS) of the T-cell receptor (TCR) Vβ complementarity-determining region 3 (CDR3) and STAT3 to recapitulate clonal hierarchy and dynamics. The results of this complex analysis demonstrate that STAT3 mutations produce either a sweeping or linear subclone within a monoclonal CTL population either early or during the course of disease. Therapy can extinguish a LGL clone, silence it, or adapt mechanisms to escape elimination. LGL clones can persist on elimination of STAT3 subclones, and alternate STAT3-negative CTL clones can replace therapy-sensitive CTL clones. LGL clones can evolve and are fueled by a nonextinguished antigenic drive. STAT3 mutations can accelerate this process or render CTL clones semiautonomous and not reliant on physiologic stimulation.

Introduction

Characterized by an increased number of circulating clonal cytotoxic T cells (CTLs), large granular T lymphocyte leukemia (T-LGLL) is frequently accompanied by neutropenia, anemia, or thrombocytopenia, but it often develops silently, without pathologic features or clinical symptoms.1-5 Many lines of evidence indicate that LGL clonal expansion evolves in the context of physiologic (viruses, tumor surveillance) or pathologic responses (autoimmune conditions) to antigens that drive excessive clonal expansions.6 This view has been supported by studies of T-cell receptor (TCR) rearrangement and TCR Vβ complementarity-determining region 3 (CDR3) deep sequencing, which has frequently demonstrated extreme expansion of a single immunodominant T-cell clone or multiple codominant clones.7,8 Discovery of activating STAT3 mutations in a significant proportion of patients with LGL suggested that such mutations initiated a clonal process yielding a spectrum of hematologic pathologies dependent on the specificity of the transformed/expanded CTL clones. Vβ CDR3 sequences acting as biological bar codes can be used to identify and quantify these expansions and to diagnose LGL.9-17

Deep TCR repertoire sequencing can precisely identify and assess CDR3 diversity and quantify immunodominant expansions. Using it in conjunction with next-generation sequencing (NGS) of STAT3 allows serial monitoring of clonal burden and reconstruction of the process that culminates in LGL.
We used this approach to recapitulate the dynamics of clonal CTL expansions and interactions between individual clones in a large cohort of patients with T-LGLL followed over extended periods of time. Our goal was to determine whether poly- and subsequently oligoclonal immune responses are “anchored” by STAT3 mutations, most likely occurring in the most proliferative clones, or whether the responses were driven by somatic hits in STAT3 as the ancestral event. We also set out to characterize the plasticity of the underlying immune response during the course of treatment, including mechanisms of resistance or relapse.

Methods

DNA samples

Blood samples were obtained from patients with LGL seen at the Cleveland Clinic, according to protocols approved by the Cleveland Clinic institutional review board and the Declaration of Helsinki (for diagnostic criteria, see supplemental Table 1). DNA was extracted from blood mononuclear cells; the same sample was used for both sequencing methods. Samples were collected from a total of 207 patients with LGL seen at the Cleveland Clinic, 92% T-LGLL, and 8% natural killer LGL. Most patients presented with anemia (46%) and/or neutropenia (46%). Vβ expansion (by Vβ flow cytometry) was present in 94% of cases, with an average LGL count of 2317 k/μL. Clinical features are described in detail in supplemental Table 2.

Deep STAT3 NGS

All patients with LGL were deep sequenced for the presence of a mutation in exon 21 of STAT3, the protein-protein interaction domain. The average coverage was 7500 ± 5700 reads, and hits more than 1% were positive. A STAT3 mutation was found in 38% of patients in 4 common hotspots: 42% Y640F, 34% D661Y, 11% D661V, and 8% N647I. STAT3MT VAF was followed over multiple points for 44% of the total cohort. Multiple STAT3MT were found in 4% of patients. Whole-exome sequencing was performed for some patients, but no recurrent somatic mutations beyond STAT3 were found.

Deep TCR sequencing

TCR Vβ was sequenced using the Immunoseq assay (Adaptive Biotechnologies), which targets the TCRβ CDR3 region using a multiplex polymerase chain reaction library preparation. Libraries were sequenced on the MiSeq (Illumina), with an average of 40 773 ± 35 667 productive templates. The nucleotide and predicted amino acid sequences, along with the rearranged VDJ regions, were available for every unique CDR3 sequence. TCR deep sequencing was performed on 23% of patients, 10% of which were sequenced at more than 1 point. The diversity of the same represents how monoclonal or polyclonal a sample is as previously defined; values approaching 0 reflect extreme monoclonal samples.

Results

Compared with healthy control patients, the diversity of patients with LGL is much smaller, and they have a higher average max Vβ clone size, suggesting they are more monoclonal (Figure 1). Starting from an initial cohort of 207 patients with LGLL, we selected a representative 18 T-LGLL cases to deep sequence both STAT3 and TCRβ CDR3 longitudinally (Table 1). Patients were sequenced for an average of 4 times (range, 2-8 times). In approximately half the patients, we were able to detect STAT3MT in previously described canonical positions. In all patients, deep TCR NGS identified at least 1 clonotype that was immunodominant over most other clonotypes, with multiple immunodominant subclonotypes identified in about half the patients. For control purposes, we also longitudinally sequenced 2 patients with natural killer LGL; major TCR clonotypic expansions could not be detected in 1 patient with a STAT3 mutation, but 2 immunodominant T-cell clones were identified in the other patient, consistent with stig antigenic drive also involving T-cell responses (supplemental Figure 1).
STAT3^{MT}	Hematologic presentation	AAD, y	Sex	Therapy	LGL count*	Flow cytometry	TCR deep sequencing	Clonal diversity†	Clonality‡†
CCF1 D661V	Anemia	68	M	CSA, CYC, MTX	2455 NIP	TRBV9 65	CASSLAGGYNEQFF 42, 0.176 0.373		
CCF2 D661V	Neutropenia, thrombocytopenia	81	M	MTX	1225 TRBV6-2, TRBV3-1 25, 16	TRBV10-3 23	CASSVSSYGSGGSEQF 75, 0.565 0.734		
CCF3 Y640F	Neutropenia, thrombocytopenia	55	F	CSA	1355 TRBV6-2, TRBV3-1 25, 16	NIP 65	CASSLAGGYNEQFF 26, 0.068 0.263		
CCF4 D661Y, Y640F	Pancytopenia	64	M	CSA, MTX	3672 TRBV10-3 23	TRBV9 65	CASSLAGGYNEQFF 8, 0.016 0.222		
CCF5 D661Y	Anemia, neutropenia	54	M	CSA, CYC	10 631 TRBV9 99	TRBV9 65	CASSVSSYGSGGSEQF 44, 0.192 0.378		
CCF6 Y640F	Neutropenia	47	M	CSA, CYC, MTX	850 TRBV29-1 8, 11	NIP 65	CASSLAGGYNEQFF 4, 0.012 0.046		
CCF7 D661Y	Neutropenia	40	M	CSA, CYC, MTX	2882 NIP	TRBV18 77	CASSVSSYGSGGSEQF 93, 0.871 0.893		
CCF8 Y640F	Anemia, neutropenia	37	F	CSA	480 TRBV12-3, TRBV12-4 82	TRBV18 77	CASSVSSYGSGGSEQF 93, 0.871 0.893		
CCF9 Y640F	Anemia, neutropenia	74	F	CSA, CYC, MTX	496 NIP	TRBV18 77	CASSVSSYGSGGSEQF 93, 0.871 0.893		
CCF10 Negative	Anemia, neutropenia	17	M	CSA, MTX	330 TRBV18 77	TRBV18 77	CASSVSSYGSGGSEQF 93, 0.871 0.893		
CCF11 Negative	Anemia	63	M	CSA, CYC, MTX	980 TRBV28, TRBV19 32, 18	NIP 65	CASSLAGGYNEQFF 25, 0.886 0.471		
CCF12 Negative	Neutropenia	47	F	CSA, MTX	188 TRBV12-3, TRBV12-4 45	TRBV18 77	CASSLAGGYNEQFF 12, 3 0.191		
CCF13 Negative	Anemia, neutropenia	52	F	CSA, CYC, MTX	261 TRBV13 97	TRBV13 97	CASSLAGGYNEQFF 99, 0.983 0.984		
CCF14 Negative	Anemia	66	M	CYC	409 TRBV20-1 84, 24	TRBV13 97	CASSLAGGYNEQFF 27, 0.093 0.350		
CCF15 Negative	Anemia, neutropenia	60	M	CSA, CYC, MDX	4472 TRBV19 97	TRBV19 97	CASSLAGGYNEQFF 83, 0.686 0.791		
CCF16 Negative	Asymptomatic	59	M	SCT, CYC	1515 TRBV27 30	TRBV19 20	CASSLAGGYNEQFF 40, 0.173 0.478		
CCF17 Negative	Asymptomatic	71	F	MTX	2536 TRBV19 20	TRBV19 20	CASSLAGGYNEQFF 10, 8 0.024 0.263		
CCF18 Negative	Asymptomatic	54	M	None	686 TRBV27, TRBV4-3 12, 8	TRBV27 12, 8	CASSLAGGYNEQFF 4, 0.026 0.319		

AAD, age at diagnosis; CSA, cyclosporine A; CYC, cyclophosphamide; F, female; FU, follow-up; M, male; MTX, methotrexate; SCT, stem cell transplant.

*At earliest sampling.
†Clonal diversity and Clonality assessed according to Clemente et al.9
burden of the dominant clone was higher than that of STAT3MT, suggesting that STAT3MT is not the ancestral event for clonal expansion (see patients CCF1, CCF2, CCF7, CCF8, and CCF9). Our findings imply that the STAT3 hit occurs as a secondary event within the preexpanded immunodominant clone. However, in other patients, the clonal burden of both the TCR and STAT3MT clone were similar (patients CCF3, CCF5, and CCF6), indicating that the STAT3MT may contribute to autonomous antigen-independent clonal expansion.

Serial samplings illustrated clonal dynamics in response to therapy. More than half of patients with T-LGLL were treated with 1 or more immunosuppressive therapy (IST) regimens, leading to hematologic response in 40% of those treated. Distinct patterns of clonal dynamics were seen after treatment and are illustrated as fish plots (Figure 2). Samples were not available at the first appearance of a clone, but the clonal expansion can be speculated based on samplings at other points. In some patients (4/18), both the STAT3MT (if present) and major TCR clone decreased in response to treatment (patients CCF1, CCF3, CCF5, and CCF10). In others (3/18), the clones persisted despite a hematologic response (patients CCF2, CCF4, and CCF17), suggesting major clones were functionally silenced in their ability to inhibit/destroy specific hematopoietic progenitors. We also observed a common phenomenon of TCR “clonotype switching” in many patients (6/18), wherein therapy contracts 1 major clonotype while another previously “minor” clonotype expands (patients CCF6, CCF11, CCF12, CCF14, CCF16, and CCF18), likely because of its relative therapy insensitivity. Interestingly, all newly emerging clones were STAT3MT (wild type), and half the patients with “switching” were resistant to IST therapy. Multiple clonotypes were present at initial sampling in a few patients without STAT3MT and persisted at the same rate in subsequent samplings, precluding identification of a truly immunodominant clonotype (4/18). It is thus possible that a small but highly pathogenic clone may have been missed in our initial analysis. Predictably, a stable or increasing clonal burden of both STAT3MT and VB CDR3 sequence was seen in nonresponders to IST (28%; patients CCF7, CCF9, CCF13, CCF15, and CCF17).

Discussion

Our results demonstrate that STAT3MT can arise either within an already preexpanded clonotype, or simultaneously with the clonal expansion of the immunodominant TCR VB clonotype. This leads us to believe that the STAT3MT mutation is selected among the originally triggered (responding) T-cell clones, and thus make the response more autonomous by either more persistence or less dependent on accessory signaling while not making the clone totally autonomous. The dynamics of both the STAT3MT and the TCR VB clonotype can be assessed over the course of the disease and in response to treatment regimens, and may demonstrate additional clinical utility when applied to larger prospective clinical trials (supplemental Figure 2). The difficulty in finding a direct correlation between response to a specific IST and a decrease in TCR VB clonal burden and STAT3MT may be a result of variability in time frames between samplings, IST regimens used, and the quality of response. Some large clonotypes may also be asymptomatic/not pathogenic, and thus may be overshadowing signals from smaller truly pathogenic clonotypes. Associations of remission with elimination of immunodominant clonotypes remain unclear. Our results suggest that pathogenic
clones can be contracted to manageable clonal burdens and/or functionally silenced/tolerated. Thus, clonal elimination may not be needed for a complete clinical response.

Acknowledgments

This work was supported by the National Institutes of Health, National Heart, Lung, and Blood Institute grants R01HL118281, R01HL123904, R01HL132071, and R35HL135795. S.M. was funded by the European Research Council (M-IMM Project) and the Academy of Finland.

Authorship

Contribution: C.M.K. performed sequencing experiments, collected/analyzed data, and wrote the manuscript; M.J.C collected data, advised on experiments, contributed to study design, and edited the manuscript; P.W.C. assisted with sequencing experiments; B.P., Y.N., V.A., and V.V. contributed to study design; T.R. reviewed the manuscript; A.E.L. and M.A.S. collected patient samples and clinical information; S.M. performed research; and J.P.M. designed and conceptualized the overall research and wrote the manuscript.

Conflict-of-interest disclosure: The authors declare no competing financial interests.

ORCID profile: S.M., 0000-0002-0816-8241.

Correspondence: Jaroslaw P. Maciejewski, Taussig Cancer Center, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195; e-mail: maciejj@ccf.org.

References

1. Loughran TP Jr, Starkebaum G. Clinical features in large granular lymphocytic leukemia. *Blood*. 1987;69(6):1786.

2. Loughran TP Jr, Kadin ME, Starkebaum G, et al. Leukemia of large granular lymphocytes: association with clonal chromosomal abnormalities and autoimmune neutropenia, thrombocytopenia, and hemolytic anemia. *Ann Intern Med*. 1985;102(2):169-175.

3. Lamy T, Loughran TP Jr. How I treat LGL leukemia. *Blood*. 2011;117(10):2764-2774.

4. Lamy T, Moignet A, Loughran TP Jr. LGL leukemia: from pathogenesis to treatment. *Blood*. 2017;129(9):1082-1094.

5. Sanikommu SR, Clemente MJ, Chomczynski P, et al. Clinical features and treatment outcomes in large granular lymphocytic leukemia (LGLL). *Leuk Lymphoma*. 2018;59(2):416-422.

6. Sokol L, Loughran TP Jr. Large granular lymphocyte leukemia. *Oncologist*. 2006;11(3):263-273.

7. Qiu ZY, Shen WY, Fan L, et al. Assessment of clonality in T-cell large granular lymphocytic leukemia: flow cytometric T cell receptor Vβ repertoire and T cell receptor gene rearrangement. *Leuk Lymphoma*. 2015;56(2):324-331.

8. Clemente MJ, Przychodzen B, Jerez A, et al. Deep sequencing of the T-cell receptor repertoire in CD8+ T-large granular lymphocyte leukemia identifies signature landscapes. *Blood*. 2013;122(25):4077-4085.

9. Clemente MJ, Wlodarski MW, Makishima H, et al. Clonal drift demonstrates unexpected dynamics of the T-cell repertoire in T-large granular lymphocyte leukemia. *Blood*. 2011;118(16):4384-4393.

10. Wlodarski MW, Schade AE, Maciejewski JP. T-large granular lymphocyte leukemia: current molecular concepts. *Hematology*. 2006;11(4):245-256.

11. Epling-Burnette PK, Liu JH, Catlett-Falcone R, et al. Inhibition of STAT3 signaling leads to apoptosis of leukemic large granular lymphocytes and decreased Mcl-1 expression. *J Clin Invest*. 2001;107(3):351-362.

12. Andersson E, Kuusannäki H, Bortoluzzi S, et al. Activating somatic mutations outside the SH2-domain of STAT3 in LGL leukemia. *Leukemia*. 2016;30(5):1204-1208.

13. Jerez A, Clemente MJ, Makishima H, et al. STAT3 mutations unify the pathogenesis of chronic lymphoproliferative disorders of NK cells and T-cell large granular lymphocyte leukemia. *Blood*. 2012;120(15):3048-3057.

14. Fasan A, Kem W, Grossmann V, Haferlach C, Haferlach T, Schnittger S. STAT3 mutations are highly specific for large granular lymphocytic leukemia. *Leukemia*. 2013;27(7):1598-1600.

15. Koskela HL, Eldfors S, Ellonen P, et al. Somatic STAT3 mutations in large granular lymphocytic leukemia. *N Engl J Med*. 2012;366(20):1905-1913.

16. Rajala HL, Porkka K, Maciejewski JP, Loughran TP Jr, Mustjoki S. Uncovering the pathogenesis of large granular lymphocytic leukemia-novel STAT3 and STAT5b mutations. *Ann Med*. 2014;46(3):114-122.

17. Rajala HL, Olson T, Clemente MJ, et al. The analysis of clonal diversity and therapy responses using STAT3 mutations as a molecular marker in large granular lymphocytic leukemia. *Haematologica*. 2015;100(1):91-99.

18. Swerdlow SH, Campo E, Pileri SA, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. *Blood*. 2016;127(20):2375-2390.