Chromosome numbers of invasive and potentially invasive species in the flora of the Republic of Altai. Post V

E. Yu. Zykova1,2*, T. V. Pankova1,3, M. N. Lomonosova1,4

1 Federal State Institution of Science Central Siberian Botanical Garden of Siberian Branch of RAS, Zolotodolinskaya str., 101, Novosibirsk, 630090, Russian Federation
2 E-mail: elena.yu.zykova@gmail.com; ORCID iD: https://orcid.org/0000-0002-1847-5835
3 ORCID iD: https://orcid.org/0000-0003-3661-0719
4 ORCID iD: https://orcid.org/0000-0003-0510-5349
* Corresponding author

Keywords: Asteraceae, Brassicaceae, Caryophyllaceae, chromosome studies, Malvaceae, Onagraceae, Papaveraceae, Plantaginaceae, Poaceae, Polygonaceae, Portulacaceae, Rosaceae, species distribution.

Summary. Chromosome numbers (2n) of 15 invasive and potentially invasive plant species from the families Asteraceae, Brassicaceae, Caryophyllaceae, Malvaceae, Onagraceae, Papaveraceae, Plantaginaceae, Poaceae, Polygonaceae, Portulacaceae, and Rosaceae are reported on the samples collected in the Republic of Altai. To determine the chromosome number (ploidy level), the method of direct counting was used. Among studied species, chromosome complements for Persicaria orientalis (2n = 22), Potentilla norvegica (2n = 42), Veronica persica (2n = 28) were first examined from Russia; for Papaver rhoesas (2n = 14) and Rumex obtusifolius (2n = 20) – from Asian part of Russia; for Bromus squarrosus (2n = 14), Cosmos bipinnatus (2n = 24), and Eriochloa villosa (2n = 54) – from Siberia. Abutilon theophrasti (2n = 42) and Lepidium densiflorum (2n = 32) were first studied from Western Siberia; Epilobium ciliatum subsp. adenocaulon (2n = 36), Portulaca oleracea (2n = 36), Spergularia rubra (2n = 36), and Xanthium strumarium (2n = 36) – from the Republic of Altai. Common distribution and the history of floristic findings of these species in the Republic of Altai are given. Previously published data on chromosome numbers from Russia are cited.

Числа хромосом инвазивных и потенциально инвазивных видов во флоре Республики Алтай: сообщение 5

Е. Ю. Зыкова, Т. В. Панкова, М. Н. Ломоносова

Федеральное государственное бюджетное учреждение науки «Центральный сибирский ботанический сад» Сибирского отделения РАН, ул. Золотодолинская, 101, г. Новосибирск, 630090, Россия

Ключевые слова: кариологическое изучение, расселение видов, Asteraceae, Brassicaceae, Caryophyllaceae, Malvaceae, Onagraceae, Papaveraceae, Plantaginaceae, Poaceae, Polygonaceae, Portulacaceae, Rosaceae.

Аннотация. Приводятся данные о числах хромосом (2n) для 15 инвазивных и потенциально инвазивных видов из семейств Asteraceae, Brassicaceae, Caryophyllaceae, Malvaceae, Onagraceae, Papaveraceae, Plantaginaceae, Poaceae, Polygonaceae, Portulacaceae, Rosaceae, полученные на материале из Республики Алтай. Для определения числа хромосом (уровня пloidности) использован метод прямого подсчета. Впервые для России определено число хромосом у Persicaria orientalis (2n = 22), Potentilla norvegica (2n = 42) и Veronica persica (2n = 28); впервые для Азиатской части России – у Papaver rhoesas (2n = 14) и Rumex obtusifolius (2n = 20); впервые
We continue the karyological study of invasive and potentially invasive species in the flora of Southern Siberia on the material from the Republic of Altai (Lomonosova et al., 2018; Zykova et al., 2018, 2020, 2021). This research provides data on the chromosome numbers of 15 species, most of which are invasive on the territory of the Republic of Altai. *Epilobium ciliatum* subsp. *adenocaullon* and *Lepidium densiflorum* are also included in the Black Book of the Flora of Siberia (Chernaya kniga ..., 2016). The information on the history of floristic studies of examined species in the territory of the Republic of Altai is provided here. For each species, published data on the chromosome numbers determined from the territory of Russia are given. Latin names of plants are given according to the “Catalog of Life” (Hassler, 2021).

The chromosome numbers were determined by direct counting in metaphase on root meristem squash preparations, via the method described earlier (Zykova et al., 2018). Metaphase plates were observed under 100× magnification by the Axioscope 40 (Karl Zeiss, Axio Lab) and photographed by the Axicam MRC 5 digital camera (AxioVision 4.8 software).

The herbarium specimens (vouchers) are deposited in the Herbarium of the Central Siberian Botanical Garden SB RAS (NS).

ASTERACEAE

Cosmos bipinnatus Cav., \(2n = 24\)

“Russian Federation, the Republic of Altai, Gorno-Altaysk city, Protochnaya street, wasteland, 51°58′ N, 85°55′ E. 18 VIII 2017. E. Zykova”, Z899–6617; “Russian Federation, the Republic of Altai, Gorno-Altaysk city, Chorsyynyaya street, wasteland, 51°58′N, 85°55′E. 22 VIII 2017. E. Zykova”, Z899–6717.

Annual. North American species (Protopopova, 1994). It is cultivated in many regions, including Siberia, as an ornamental plant. Plants may reappear via self-sowing, becoming a weed. In the Republic of Altai, it is common as a weed in the northern regions, where it was shown for the first time outside of culture from the Altai Reserve and the Mayma district (Zolotukhin, 2012).

The chromosome number was determined on the Siberian material for the first time. The same number was known from Primorye Territory (Probatova, 2014, and references therein).

Diploid \((2x), x = 12\).

Xanthium strumarium L., \(2n = 36\)

“Russian Federation, the Republic of Altai, Gorno-Altaysk city, Choros-Gurkina street near the Mebelny stop, pebbled bank of the Mayma river, 51°58′N, 85°55′E. 21 VIII 2017. E. Zykova”, Z898–6617; “Russian Federation, the Republic of Altai, Gorno-Altaysk city, Shosseynaya street, wasteland, 51°58′ N, 85°55′E. 22 VIII 2017. E. Zykova”, Z899–6717.

Annual. Distributes all over the world as an invasive species (Protopopova, 1994). Since the beginning of the 20th century, it spread in the regions of Siberia. In the Republic of Altai it was first discovered in the middle of the 20th century in the village of Cherny Anuy in Ust-Kan district (Krylov, 1949). At present, it is common on the banks of water bodies and in disturbed habitats in the northern regions of the Republic of Altai (Zykova, 2015).

The chromosome number is reported for the first time for the Republic of Altai. The same number was determined from Novosibirsk Region (Lomonosova, 2013), Altai (Chisla khromosom ..., 1990) and Primorye (Probatova, 2014, and references therein) Territories.

Tetraploid \((4x), x = 9\).

BRASSICACEAE

Lepidium densiflorum Schrad., \(2n = 32\)

“Russian Federation, the Republic of Altai, Gorno-Altaysk city, Stroiteley street, by the roads, 18 VI 2020. E. Zykova”, Z844–0220.

Annual. A North American species widely dispersed in the Northern Hemisphere, penetrating into the Southern Hemisphere (Kotov, 1979). Since the middle of the 20th century, the first localities in Siberia (including Altai) have been recorded. As invasive species, it is included in the Black Book of the Flora of Siberia (Ebel, 2016). It is one of the most widespread alien species in the Republic of Altai, common in the northern regions, occasionally found in the central ones (Zykova, 2015).
The chromosome number is given for the first time from the Western Siberia. The same number was determined from Republic of Buryatia (Chepinoga, 2014, and references therein), Khabarovsk Territory (Probatova, Sokolovskaya, 1988), Magadan (Probatova et al., 2012) and Amur (Probatova et al., 1996) Regions. The diploid level of the species (2n = 16) registered in the Republic of Sakha (Yakutia) (Lomonosova, 2013) may belong to another related species.

Tetraploid (4x), x = 8.

CARYOPHYLLACEAE

Spergularia rubra (L.) J. Presl et C. Presl, 2n = 36

“Russian Federation, the Republic of Altai, Turochak district, Logach village, stadium, 51°46′N, 87°15′E. 29 VI 2017. E. Zykova”, Z338–2617.

Annual or biennial. European species spread throughout the continent (Tzvelev, 2004). It was collected for the first time in the Republic of Altai (Turochak district) in 1996 (Studenikina, 1999), where it had been known to date only from pebbles, water bodies, roadsides (Zykova, 2015).

The chromosome number is given for the first time for the Republic of Altai. The same number was identified from Tyumen Region (Erst et al., 2018).

Diploid level (2n = 18) was determined for the Republic of Buryatia (Probatova et al., 2016).

Tetraploid (4x), x = 9.

MALVACEAE

Abutilon theophrasti Medic., 2n = 42

“Russian Federation, the Republic of Altai, Gorno-Altaisky city, near the hippodrome, wasteland, 51°58′N, 85°55′E. 18 VIII 2018. E. Zykova”, Z676–2718.

Annual. East Asian species cultivated as an ornamental plant, widely dispersed in the temperate zone of both hemispheres. In Siberia, single localities have been recorded since the end of the 20th century; in the Republic of Altai it was first discovered in 2014 (Ebel et al., 2018).

The chromosome number is given for the first time for the Republic of Altai. The same number was determined from Primorye Territory (Probatova, 2014, and references therein), Irkutsk (Chepinoga, 2014, and references therein) and Amur (Shatokhina, 2006) Regions. Tetraploid level (2n = 28) was determined for the Krasnodar Territory (Probatova et al., 2009).

Hexaploid (6x), x = 7.

ONAGRACEAE

Epilobium ciliatum subsp. adenocaulon (Hausskn.) Jäger ex Hand et Buttler, 2n = 36

“Russian Federation, the Republic of Altai, Mayma district, vicinity of Kysyl-Ozek village, bank of the Saydys river, 51°58′N, 85°55′E. 15 VIII 2018. E. Zykova”, Z816–2518.

Perennial. An American species that settled in Eurasia and Australia (Skvortsov, 2005). It was noted in Russia at the end of the 19th century (Skvortsov, 1995). Since the end of the 20th century, it actively spreads in the regions of Siberia including the Republic of Altai (Zykova, 2015). This species is usually found as an invasive species and is listed in the Black Book of Flora of Siberia (Buko, 2016).

The chromosome number is given for the first time for the Republic of Altai. The same number was determined from Krasnoyarsk Territory (Stepanov, Muratova, 1992), Irkutsk (Chepinoga, 2014, and references therein) and Sakhalin (Probatova et al., 2006a) Regions.

Tetraploid (4x), x = 9.

PAPAVERACEAE

Papaver rhoeas L., 2n = 14

“Russian Federation, the Republic of Altai, Gorno-Altaisky city, at the Rodnik stop, the bank of the Mayma river, 51°58′N, 85°55′E. 15 VII 2019. E. Zykova”, Z803–2718.

Annual. Its native range is from SW Asia and the E Mediterranean (Kadereit, 1997). One of the most widespread species of Papaver found from forest to desert areas (Nikitin, 1983). In Siberia, it was noted as a wild in the Tyumen Region (Krylov, 1931). In the Republic of Altai, it was first discovered in 2014 in the city of Gorno-Altaisky (Zykova, 2014), where it is now quite common.

The chromosome number is given for the first time for the Asian part of Russia. The same number was determined from Leningrad Region (Safonova, 1991).

Diploid (2x), x = 7.

PLANTAGINACEAE

Veronica persica Poir., 2n = 28

“Russian Federation, the Republic of Altai, Gorno-Altaisky city, near the hippodrome, wasteland, 51°58′N, 85°55′E. 18 VIII 2018. E. Zykova”, Z682–2718; Z683–2718.

Annual. Eurasian species, very rare in Siberia. It was first found in Tomsk (Muldiyarov, 1996), later in Novosibirsk and Kemerovo Regions (Ebel et al., 2016); in the Republic of Altai, it was found in 2016
in the Turochak district (Ebel et al., 2016), and in 2018 in the city of Gorno-Altaysk (Zykova, 2019).

The chromosome number was determined in Russia for the first time.
Tetraploid (4\(\times\)), \(x = 7\).

POACEAE

Bromus squarrosus L., \(2n = 14\)

“Russian Federation, the Republic of Altai, Mayma district, vicinity of Rybalka village, wasteland on the territory of the Altai Valley base, 51°55′N, 85°51′E. 18 VIII 2015. E. Zykova”, Z755–5215; “Russian Federation, the Republic of Altai, Mayma district, vicinity of Mayma village, wasteland on gravel heaps, 52°02′N, 85°54′E. 12 VIII 2017. E. Zykova”, Z758–4917; “Russian Federation, the Republic of Altai, bypass road between the city of Gorno-Altaysk and the village of Mayma, on gravel heaps, 51°97′N, 85°86′E. 28 VIII 2018. E. Zykova”, Z757–2818.

Annual. The species is native in Europe, North Africa, Asia and spreads over the extratropical regions (Tzvelev, Probatova, 2019). A very rare species in Siberia, recorded in the Altai and Krasnoyarsk Territories (Peshkova, 1990). In the Republic of Altai, it was first discovered in 2015; at present, it is rarely found in the city of Gorno-Altaysk and in the Mayma district (Zykova, 2020).

The chromosome number was determined for the first time on the Siberian material. The same chromosome number was known for the Volgograd Region, Republic of Crimea (Chisla khromosom ..., 1993), Krasnodar (Probatova et al., 2009) and Primorye (Probatova, 2014, and references therein) Territories, Astrakhan Region (Probatova et al., 2010).

Diploid (2\(\times\)), \(x = 7\).

Eriochloa villosa (Thunb.) Kunth, \(2n = 54\)

“Russian Federation, the Republic of Altai, bypass road between the city of Gorno-Altaysk and the village of Mayma, on gravel heaps, 51°97′N, 85°86′E. 28 VIII 2018. E. Zykova”, Z897–2818.

Annual. It occurs in tropical and subtropical countries of both hemispheres (Tzvelev, Probatova, 2019). In Siberia, it was first found in the vicinity of the Omsk city (Krylov, Sergievskaya, 1961). Recently two localities were found in Altai Territory (Lomonosova, 2003) and Tomsk Region (Ebel et al., 2009). In the Republic of Altai, it was found in 2017 (Zykova et al., 2019) as a small population in the vicinity of the village of Mayma (Mayma district), which has been preserved for 4 years.

The chromosome number was determined for the first time on the Siberian material. The same chromosome number was known for the Kabardino-Balkarian Republic (Chisla khromosom ..., 1993), Amur Region (Probatova et al., 2008a), Khabarovsk (Probatova et al., 1996) and Primorye (Probatova, 2014, and references therein) Territories.

Hexaploid (6\(\times\)), \(x = 9\).

TRICITICUM AESTIVUM L., \(2n = 42\)

“Russian Federation, the Republic of Altai, Mayma district, near the village of Mayma, at the customs post, the outskirts of the field, 52°02′N, 85°54′E. 01 VIII 2015. E. Zykova”, Z431–3015; “Russian Federation, the Republic of Altai, Mayma district, near the bridge over the Katun river to the village of Platovo, by the road, 52°04′N, 85°55′E. 01 VIII 2015. E. Zykova”, Z432–3115.

Annual. Cultivated all over the world (Tzvelev, Probatova, 2019). In the Republic of Altai, it is rarely found in the northern regions along the roads, in ruderal habitats (Zykova, 2015).

Hexaploid (6\(\times\)), \(x = 7\).

POLYGONACEAE

Persicaria orientalis (L.) Spach, \(2n = 22\)

“Russian Federation, the Republic of Altai, Gorno-Altaysk city, Protochnaya street, wasteland, 51°58′N, 85°55′E. 18 VIII 2017. E. Zykova”, Z760–6017.

Annual. Native to SE Asia and northern Australia, where it grows on riverside sands and pebbles, as well as in disturbed habitats (Tzvelev, 1996; Mayorov et al., 2012). In Siberia, it was recently noted as alien plant in Irkutsk city (Verkhozina et al., 2019). This species was found in the Republic of Altai in 2017 (Ebel, Zykova, 2020).

The chromosome number was determined in Russia for the first time.

Diploid (2\(\times\)), \(x = 11\).

Rumex obtusifolius L., \(2n = 20\)

“Russia, the Republic of Altai, Mayma district, vicinity of Rybalka village, wasteland at a construction site, 51°55′N, 85°51′E. 2 VIII 2015. E. Zykova”, Z872–3315; “Russian Federation, the Republic of Altai, Turochak district, vicinity of Turochak village, wasteland, 52°15′N, 87°07′E. 07 VIII 2015. E. Zykova”, Z873–3815; “Russian Federation, the Republic of Altai, Turochak district, Altai State Reserve, Baygazan cordon, weed on the estate, 51°45′N, 87°26′E. 14 VIII 2017. E. Zykova”, Z871–5217; “Russian Federation, the Republic of
Altai, Gorno-Altaysk city, Zhilmassiv microdistrict, by the stream, 51°58′N, 85°55′E. 12 VIII 2017. E. Zykova”, Z877–1918.

Perennial. The European species that actively spreads in the regions of Southern Siberia (Ebel et al., 2016). In the Republic of Altai, it was known earlier only from Choya and Turochak districts (Zykova, 2015); at present, it is actively settling in the city of Gorno-Altaysk and Mayma district.

The chromosome number is given for the first time for the Asian part of Russia. The same number was determined from Krasnodar Territory (Probatova et al., 2009). Tetraploid level (2n = 40) was noted for the Sakhalin Region (Probatova et al., 2007, and references therein). Two chromosome numbers (2n = 24 and 2n = 36) were determined for the Krasnoyarsk Territory (Stepanov, Muratova, 1995).

Diploid (2x), x = 10.

PORTULACACEAE

Portulaca oleracea L., 2n = 36

“Russian Federation, the Republic of Altai, Turochak district, Altai State Reserve, Baygazan cordon, weed on the estate, 51°45′N, 87°26′E. 14 VIII 2017. E. Zykova”, Z896–5217.

Annual. The Mediterranean-Asian species is almost cosmopolitan as an adventive one. In recent years, it has been actively spreading in Southern Siberia (Ebel et al., 2015). In the Republic of Altai, it was first found in 2008 (Zykova, Erst, 2012). Now it settles in the northern regions (Zykova et al., 2019).

The chromosome number is given for the first time for the Republic of Altai. The same number was determined from Primorye Territory (Probatova et al., 2012), Sakhalin (Probatova et al., 2007, and references therein) and Amur (Probatova et al., 2013) Regions. Nanoploid (2n = 63) was determined for the Republic of Buryatia (Chepinoga, 2014, and references therein). Decaploid (2n = 70) was reported for the Irkutsk Region, Republic of Buryatia (Chepinoga, 2014, and references therein), Novosibirsk and Leningrad Regions (Chisla khromosom …, 1993). Potentilla norvegica is an allopolyid species, which ploidy level ranges from tetraploid (4x) to dodecaploid (12x) (Persson et al., 2020).

Hexaploid (6x), x = 7.

ROSACEAE

Potentilla norvegica L., 2n = 42

“Russian Federation, the Republic of Altai, Mayma district, Kysyl-Ozek village, wasteland at the bridge over the Mayma river, 51°53′N, 86°00′E. 07 VIII 2015. E. Zykova”, Z422–3515: “Russian Federation, the Republic of Altai, Turochak district, on the 44th km of the Turochak–Artybash highway, by the road, 08 VIII 2015. E. Zykova”, Z420–4215.

Annual or biennial. This species has the Holarctic area (Kamelin, 2001). In Siberia, it was widespread to the beginning of the 20th century (Krylov, 1903). In the Republic of Altai it was known for a long time only from Turochak district (Krylov, 1933). Now it is common in Choya and Turochak districts; rarely recorded in Mayma, Onguday and Ust-Koksa ones (Zykova, 2015).

The chromosome number was determined for the first time in Russia. Octoploid level (2n = 56) was mentioned for the Irkutsk Region, the Republic of Buryatia, Trans-Baikal Territory (Chepinoga, 2014, and references therein), Republic of Sakha (Yakutia), Khabarovsk Territory (Chisla khromosom …, 1993), Primorye (Probatova, 2014, and references therein) and Krasnoyarsk Territory (Chepinoga et al., 2012) Territories, Magadan (Probatova et al., 2012), Sakhalin (Probatova et al., 2007, and references therein) and Amur (Probatova et al., 2013) Regions. Nanoploid (2n = 63) was determined for the Republic of Buryatia (Chepinoga, 2014, and references therein). Decaploid (2n = 70) was reported for the region of Buryatia (Chepinoga, 2014, and references therein), Novosibirsk and Leningrad Regions (Chisla khromosom …, 1993). Potentilla norvegica is an allopolyid species, which ploidy level ranges from tetraploid (4x) to dodecaploid (12x) (Persson et al., 2020).

Hexaploid (6x), x = 7.

Conclusion

So far, we have studied 64 invasive and potentially invasive species from the territory of the Republic of Altai. This report presents the results of the study of chromosome numbers of 15 species. 10 of them are polyploids, namely Abutilon theophrasti, Epilobium ciliatum subsp. adenocaulon, Erinocila villosa, Lepidium densiflorum, Portulaca oleracea, Potentilla norvegica, Spergularia rubra, Triticum aestivum, Veronica persica, and Xanthium strumarium. Among the 15 studied species, the most active in the Republic of Altai are diploids Rumex obtusifolius, Cosmos bipinnatus, tetraploids Epilobium ciliatum, Lepidium densiflorum, Portulaca oleracea, Spergularia rubra, Xanthium strumarium, and hexaploid Potentilla norvegica.
Acknowledgements

The study was carried out in the framework of the scientific program of the Central Siberian Botanical Garden SB RAS (AAA-A21-121011290024-5). Partially financial support was provided by The Federal Scientific and Technical Program for the Development of Genetic Technologies for 2019–2027 approved by the Decree of the Government of the Russian Federation No. 479 dated April 22, 2019 “On approval of the Federal Scientific and Technical Program for the Development of Genetic Technologies for 2019–2027”. Project topic: “Herbarium collections of biological diversity of plants and fungi of the Collection Fund of the V. L. Komarov Botanical Institute of the Russian Academy of Sciences: modernization, development and networking as the basis for fundamental research and improvement of genetic technologies”.

REFERENCES / ЛИТЕРАТУРА

An’kova T. V., Zykova E. Yu. 2017. IAP/IOPB chromosome data 25. K. Marhold (Ed.). Taxon 66(5): 1246; E1–E2. DOI: 10.12705/665.29

Buko T. E. 2016. Epilobium adenocaulon Hausskn. In: Chernaya kniga flory Sibiri [Black book of the flora of Siberia]. Novosibirsk: “Geo” Publ. Pp. 284–287. [In Russian] (Буко Т. Е. Epilobium adenocaulon Hausskn. // Черная книга флоры Сибири. Новосибирск: Академическое изд-во «Гео», 2016. С. 284–287).

Chepinoga V. V. 2014. Chromosome numbers of plant species from Baikal Siberia. Novosibirsk: Nauka. 419 pp. [In Russian] (Чепинога В. В. Хромосомные числа растений флоры Байкальской Сибири. Новосибирск: Наука, 2014. 419 c.).

Chepinoga V. V., Gnutikov A. A., Lubogoschinsky P. I., Fleckenstein K. M. 2012. IAP/IOPB chromosome data 13. K. Marhold (Ed.). Taxon 61(4): 889–891; E5–E10. DOI: 10.1002/tax.614023

Chernaya kniga flory Sibiri [Black book of the flora of Siberia]. Novosibirsk: “Geo” Publ. 440 pp. [In Russian] (Черная книга флоры Сибири. Новосибирск: Академическое изд-во «Гео», 2016. 440 c.).

Chisla khromosom tsvetkovykh rasteniy flory SSSR: Aceraceae–Menyanthaceae [Chromosome numbers of flowering plants of the USSR flora: Aceraceae – Menyanthaceae]. 1990. A. L. Takhtadzhyan (Ed.). Vol. 1. Leningrad: Nauka. 509 pp. [In Russian] (Числа хромосом цветковых растений флоры СССР: Aceraceae – Menyanthaceae. Под ред. акад. А. Л. Тахтаджяна. Т. 1. Л.: Наука, 1990. 509 с.).

Chisla khromosom tsvetkovykh rasteniy flory SSSR: Moraceae – Zygocephallaceae [Chromosome numbers of flowering plants of the USSR flora: Moraceae – Zygocephallaceae]. 1993. A. L. Takhtadzhyan (Ed.). Vol. 2. St. Petersburg: Nauka. 480 pp. [In Russian] (Числа хромосом цветковых растений флоры СССР: Moraceae–Zygocephallaceae. Под ред. акад. А. Л. Тахтаджяна. Т. 2. СПб.: Наука, 1993. 480 c.).

Ebel A. L. 2016. Lepidium densiflorum Schrad. In: Chernaya kniga flory Sibiri [Black book of the flora of Siberia]. Novosibirsk: “Geo” Publ. Pp. 162–168. [In Russian] (Эбель А. Л. Lepidium densiflorum Schrad. // Черная книга флоры Сибири. Новосибирск: Академическое изд-во «Гео», 2016. С. 162–168).

Ebel A. L., Sheremetova S. A., Buko T. E. 2009. Floristic finds in the Tom basin (Western Siberia). Bull. Moscow Soc. Natur. Biol. Ser. 114, 3: 65–67. [In Russian] (Эбель А. Л., Шереметова С. А., Буко Т. Е. Фlorистические находки в бассейне Томи (Западная Сибирь). // Бюл. МОИП. Отд. биол., 2009. Т. 114, вып. 3. С. 65–67).

Ebel A. L., Verkhozina A. V., Zykova E. Yu., Strelnikova T. O., Khrustaleva I. A., Sheremetova S. A., Mikhaiilova S. I., Ebel T. V., Murashko V. V. 2018. New findings of alien plant species in Siberia. Sist. Zametki Mater. Gerb. Krylova Tomsk. Gosud. Univ. [Systematic notes on the materials of P. N. Krylov Herbarium of Tomsk State University] 118: 50–63. [In Russian] (Эбель А. Л., Верхоzина А. В., Зыкова Е. Ю., Стrelникова Т. О., Хрусталева И. А., Шереметова С. А., Михайлова С. И., Эбель Т. В., Мурашко В. В. Новые находки чужеродных видов растений в Сибири // Сист. зам. Герб. Томск. ун-та, 2018. № 118. С. 50–63. DOI: 10.17223/20764103.118.4

Ebel A. L., Zykova E. Yu., 2020. Persicaria orientalis (L.) Spach (Polygonaceae). In: Findings to the flora of Russia and adjacent countries: New national and regional vascular plant records, 2. A. V. Verkhozina (Ed.). Botanica Pacifica 9(1): 144. DOI: 10.17581/bp.2020.09115

Ebel A. L., Zykova E. Yu., Verkhozina A. V., Chepinoga V. V., Kazanovskiy S. G., Mikhaiilova S. I. 2015. New and rare species in adventitious flora of Southern Siberia. Sist. Zametki Mater. Gerb. Krylova Tomsk. Gosud. Univ. [Systematic notes on the materials of P. N. Krylov Herbarium of Tomsk State University] 111: 16–32. [In Russian] (Эбель А. Л., Зыкова Е. Ю., Верхоzина А. В., Чепинога В. В., Казановский С. Г., Михайлова С. И. Новые и редкие виды в адvenтивной флоре Южной Сибири // Сист. зам. Герб. Томск. ун-та, 2015. № 111. С. 16–32. DOI: 10.17223/20764103.111.2

Ebel A. L., Zykova E. Yu., Verkhozina A. V., Mikhailova S. I., Krylov Yu. S., Prokopiev A. S., Strelnikova T. O., Sheremetova S. A., Khrustaleva I. A. 2016. New data on distribution of alien and synanthropic plant species in Siberia. Sist. Zametki Mater. Gerb. Krylova Tomsk. Gosud. Univ. [Systematic notes on the materials of P. N. Krylov Herbarium of Tomsk state University] 114: 16–37. [In Russian] (Эбель А. Л., Зыкова Е. Ю., Верхоzина А. В., Михайлова С. И., Про-
Про́батова Н. С., Баркало́в В. Ю., Русды́ка Е. Г. 2007. Кариология флоры Сахалина и Курильских островов. Числа хромосом, таксономические и фитогеографические комментарии [Caryology of the flora of Sakhalin and the Kurile Islands. Chromosome numbers, taxonomic and phytogeographic comments]. — Khabarovsk: Khabarovsk Polytechnical Institute. Pp. 1–17.
Красноярского края // Бот. журн., 1995. Т. 80, № 6. С. 114–116).

Пробатова Н. С., Баркалов В. Ю., Рудька Е. Г., Павлова Н. С. 2006а. Further chromosome studies on vascular plant species from Sakhalin, Moneron and Kurile Islands. Biodiversity and Biogeography of the Kuril Islands and Sakhalin 2: 93–110. URL: http://hdl.handle.net/2115/47822

Пробатова Н. С., Казановский С. Г., Баркалов В. Ю., Нееваев В. А. 2016. IAPT/IOPB chromosome data 22. K. Marhold (Ed.). Taxon 65 (5): 1203–1204; E13–E15. DOI: 10.12705/655.40

Пробатова Н. С., Казановский С. Г., Рудька Е. Г., Селедетс В. П., Нееваев В. А. 2012. IAPT/IOPB chromosome data 13. K. Marhold (Ed.). Taxon 61(4): 889–902; E34–E42. DOI: 10.1002/tax.614023

Пробатова Н. С., Коробков А. А., Гнитиков А. А., Рудька Е. Г., Котсера Б. В., Селедетс В. П. 2010. IAPT/IOPB chromosome data 10. K. Marhold (Ed.). Taxon 59 (6): 1935–1937; E6–E10. URL: www.iapt-taxon.org/files/iopb/IAPT_IOPB_Chrom_data10.pdf

Пробатова Н. С., Моторкина Т. Н., Рудька Е. Г., Криукова М. В., Нееваев В. А. 2013. IAPT/IOPB chromosome data 15. K. Marhold (Ed.). Taxon 62 (5): 1081–1082; E26–E29. DOI: 10.12705/625.16

Пробатова Н. С., Рудька Е. Г., Селедетс В. П., Нееваев В. А. 2008а. IAPT/IOPB chromosome data 6. K. Marhold (Ed.). Taxon 57 (4): 1268–1271; E4–E12. URL: www.iapt-taxon.org/files/iopb/IAPT_IOPB_Chrom_data6.pdf

Пробатова Н. С., Рудька Е. Г., Шатокхина А. В., Баркалов В. Ю., Крыжов М. В., Тыренева Д. Ю. 2006б. Chromosome numbers of some plant species of the Primorsky Territory and the Amur River basin. Bot. Zhurn. 91(5): 785–804. [In Russian] (Пробатова Н. С., Рудька Е. Г., Шатокхина А. В., Баркалов В. Ю., Крыжов М. В., Тыренева Д. Ю. Числа хромосом видов флоры Приморского края и Приамурья // Бот. журн., 2006б. Т. 91, № 5. С. 785–804).

Пробатова Н. С., Рудька Е. Г., Соколовская А. П. 1996. Chromosome numbers in synanthropic plants from the Russian Far East. Bot. Zhurn. 80(6): 904–905. [In Russian] (Пробатова Н. С., Рудька Е. Г., Соколовская А. П. Числа хромосом синантропных видов растений с Дальнего Востока России // Бот. журн., 1996. Т. 81, № 5. С. 98–101).

Пробатова Н. С., Селедетс В. П., Рудька Е. Г. 2008б. IAPT/IOPB chromosome data 5. K. Marhold (Ed.). Taxon 57(2): 558–562; E16–E24. URL: www.iapt-taxon.org/files/iopb/IAPT_IOPB_Chrom_data5.pdf

Пробатова Н. С., Селедетс В. П., Рудька Е. Г., Гнитиков А. А., Кожевникова З. В., Баркалов В. В. 2009. IAPT/IOPB chromosome data 8. K. Marhold (Ed.). Taxon 58(4): 1284–1288; E11–E20. URL: www.iapt-taxon.org/files/iopb/IAPT_IOPB_Chrom_data8.pdf

Пробатова Н. С., Соколовская А. П. 1988. Chromosome numbers in vascular plants from Primorye Territory, the Amur River basin, north Koryakia, Kamchatka and Sakhalin. Bot. Zhurn. 73(2): 290–293. [In Russian] (Пробатова Н. С., Соколовская А. П. Числа хромосом сосудистых растений с Дальнего Востока России // Бот. журн., 1988. Т. 73, № 2. С. 290–293).

Протопопова В. В. 1994. Cosmos Cav., Xanthium L. In: Flora Yevropeiskoy chasti SSSR [Flora of the European part of the USSR]. Vol. 7. St. Petersburg: Nauka. Pp. 39, 48–52. [In Russian] (Протопопова В. В. Cosmos Cav., Xanthium L. // Флора европейской части СССР. СПб.: Наука, 1994. Т. 7. С. 39, 48–52).

Сафонова И. Н. 1991. Chromosome numbers in some species of the family Papaveraceae. Bot. Zhurn. 76(6): 904–905. [In Russian] (Сафонова И. Н. Числа хромосом некоторых видов семейства Papaveraceae // Бот. журн., 1991. Т. 76, № 6. С. 904–905).

Шатокхина А. В. 2006. Chromosome numbers of some plants of the Amur Region flora. Bot. Zhurn. 91(3): 487–490. [In Russian] (Шатокхина А. В. Числа хромосом некоторых видов флоры Амурской области // Бот. журн., 2006. Т. 91, № 3. С. 487–490).

Сквортцов А. К. 1995. On the taxonomy and nomenclature of adventive species of the genus Epilobium (Onagraceae) in the flora of Russia. Bull. Moscow Soc. Natur. Biol. Ser. 103, 2: 44–52. [In Russian] (Сквортцов А. К. К систематике и номенклатуре адвентивных видов рода Epilobium (Onagraceae) во флоре России // Биол. МОИП. Отд. биол., 1995. Т. 103, вып. 2. С. 44–52).

Сквортцов А. К. 2005. Synopsis of the genus Epilobium s.str. in Russia and neighboring countries. Byull. Glavn. bot. sada (Moscow) [Bulletin of the Main Botanical Garden] 189: 90–104. [In Russian] (Сквортцов А. К. Конспект рода кипрей (Epilobium s. str.) в России и сопредельных странах // Биол. Глав. ботан. сада, 2005. Вып. 200. С. 90–104).

Степанов Н. В., Муравова Е. Н. 1992. Chromosome numbers of some species of higher plants of flora of the Krasnoyarsk Territory. Bot. Zhurn. 77(7): 125–126. [In Russian] (Степанов Н. В., Муравова Е. Н. Числа хромосом некоторых видов высших растений флоры Красноярского края // Бот. журн., 1992. Т. 77, № 7. С. 125–126).

Степанов Н. В., Муравова Е. Н. 1995. Chromosome numbers of some taxa of higher plants of Krasnoyarsk Territory. Bot. Zhurn. 80(6): 114–116. [In Russian] (Степанов Н. В., Муравова Е. Н. Хромосомные числа некоторых таксонов высших растений Красноярского края // Бот. журн., 1995. Т. 80, № 6. С. 114–116).
Studenikina E. Yu. 1999. Vysshie sosudistyye rasteniya flory Biye-Katunskogo mezhdurehchy v preidelakh pred-gory i nizkogoriy Altaya [Higher vascular plants of the flora of the Biya-Katun interfluve within the foothills and low mountains of Altai]. Barnaul. 121 pp. [In Russian] (Студенкина Е. Ю. Высшие сосудистые растения флоры Бие-Катунского междуречья в пределах предгорий и низкогорий Алтая. Барнаул, 1999. 121 с.).

Tzvelev N. N. 1996. Persicaria Mill. In: Flora Vostochnoy Yevropy [Flora of Eastern Europe]. Vol. 9. St. Petersburg: Nauka. Pp. 125–132. [In Russian] (Цвелев Н. Н. 1996. Persicaria Mill. // Флора Восточной Европы. Т. 9. СПб.: Наука, 1996. C. 125–132).

Zyкова Е. Ю. 2019. New record of alien species in the Republic of Altai. Bull. Moscow Soc. Natur. Biol. Ser. 117, 3: 77–80. [In Russian] (Зыкова Е. Ю. Новые данные о распространении адвентивных видов в Республике Алтай // Бюл. МОИП. Отд. биол., 2012. Т. 117, вып. 3. С. 77–80).

Zyкова Е. Ю. 2014. New data on the distribution of adventive species in the Altai Republic. Bull. Moscow Soc. Natur. Biol. Ser. 119, 6: 74–76. [In Russian] (Зыкова Е. Ю. Новые данные о распространении адвентивных видов во флоре Республики Алтай // Бюл. МОИП. Отд. биол., 2014. Т. 119, вып. 6. C. 74–76). URL: herba.msu.ru/russian/journals/bmsn/archive/moip_2014_119_6.pdf

Zyкова Е. Ю. 2015. Alien flora of the Republic of Altai. Rastitelnyy mir mir Aziatskoy Rossii [Plant Life of Asian Russia] 3(19): 72–87. [In Russian] (Зыкова Е. Ю. Адвентивная флора Республики Алтай // Растительный мир Азиатской России, 2015. № 3(19). C. 72–87). URL: www.izdatgeo.ru/pdf/rast/2015-3/72.pdf

Zyкова Е. Ю. 2019. Findings of alien plants in the Republic of Altai. Bull. Moscow Soc. Natur. Biol. Ser. 124, 6: 66–68. [In Russian] (Зыкова Е. Ю. Новые местонахождения адвентивных видов в Республике Алтай // Бюл. МОИП. Отд. биол., 2019. Т. 124, вып. 6. C. 66–68). URL: herba.msu.ru/russian/journals/bmsn/archive/moip_2019_124_6.pdf

Zyкова Е. Ю. 2020. New record of alien species in the Altai Republic. Bull. Moscow Soc. Natur. Biol. Ser. 125, 4: 45–46. [In Russian] (Зыкова Е. Ю. Новые местонахождения адвентивных видов в Республике Алтай // Бюл. МОИП. Отд. биол., 2020. Т. 125, вып. 4. C. 45–46). URL: http://herba.msu.ru/russian/journals/bmsn/archive/moip_2020_125_4.pdf

Zyкова Е. Ю., An’kova T. V., Lomonosova M. N. 2020. Chromosome numbers of invasive and potentially invasive species in the flora of the Republic of Altai. III. Turczaninowia 23, 1: 133–139. DOI: 10.14258/turczaninowia.23.1.15

Zyкова Е. Ю., An’kova T. V., Lomonosova M. N. 2021. Chromosome numbers of invasive and potentially invasive species in the flora of the Republic of Altai. IV. Turczaninowia 24, 1: 89–97. DOI: 10.14258/turczaninowia.24.1.11

Zyкова Е. Ю., Ebel A. L., Ebel T. V., Sheremetova S. A. 2019. New findings of alien plants in the Republic of Altai. Turczaninowia 22, 1: 143–153. [In Russian] (Зыкова Е. Ю., Эбель А. Л., Эбель Т. В., Шереметова С. А. Новые находки адвентивных видов растений в Республике Алтай // Turczaninowia, 2019. Т. 22, № 1. C. 143–153). DOI: 10.14258/turczaninowia.22.1.11

Zyкова Е. Ю., Erst A. S. 2012. Floristic findings of some rare and alien species in Siberia. Turczaninowia 15, 4: 34–40. [In Russian] (Зыкова Е. Ю., Эрст А. С. Находки некоторых редких и адвентивных видов растений в Сибири // Turczaninowia, 2012. Т. 15, № 4. C. 34–40).

Zyкова Е. Ю., Lomonosova M. N., An’kova T. V. 2018. Chromosome numbers of invasive species of the Altai Republic flora: post 1. Turczaninowia 21, 1: 41–51. [In Russian] (Зыкова Е. Ю., Ломоносова М. Н., Анькова Т. В. Числа хромосом инвазионных видов во флоре Республики Алтай: сообщение 1 // Turczaninowia, 2018. Т. 21, № 1. С. 41–51). DOI: 10.14258/turczaninowia.21.1.