Severe plasma prekallikrein deficiency: Clinical characteristics, novel KLKB1 mutations, and estimated prevalence

Stefano Barco1,2 | Stefanie Sollfrank3 | Alice Trinchero1,4 | Anke Adenaeuer1,3 | Hassan Abolghasemi5,6 | Laura Conti7 | Friederike Häuser3 | Johanna A. Kremer Hovinga8 | Karl J. Lackner1,3 | Felicia Loewecke9 | Erwin Miloni10 | Nader Vazifeh Shiran11 | Luigi Tomao7,12 | Walter A. Wuillemin13 | Barbara Zieger9 | Bernhard Lämmle1,8,14 | Heidi Rossmann1,3

1Center for Thrombosis and Hemostasis, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany
2Clinic of Angiology, University Hospital and University of Zurich, Zurich, Switzerland
3Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany
4Department of Medical Oncology and Hematology, University Hospital and University of Zurich, Zurich, Switzerland
5Pediatric Congenital Hematologic Disorders Research Center, Research Institute for Children’s Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
6Department of Pediatrics, Baqiyatallah University of Medical Sciences, Tehran, Iran
7Clinical Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
8Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
9Zentrum für Kinder- und Jugendmedizin, Klinik IV, Universitätsklinikum Freiburg, Freiburg, Germany
10Practicing Physician, Bern, Switzerland
11Department of Hematology and Blood Banking, Paramedical Faculty, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Abstract

Background: Severe plasma prekallikrein (PK) deficiency is an autosomal-recessive defect characterized by isolated activated partial thromboplastin time prolongation. To date, no comprehensive methodologically firm analysis has investigated the diagnostic, clinical, and genetic characteristics of PK deficiency, and its prevalence remains unknown.

Patients/Methods: We described new families with PK deficiency, retrieved clinical and laboratory information of cases systematically searched in the (gray) literature, and collected blood of these cases for complementary analyses. The Genome Aggregation Database (gnomAD) and the population-based Gutenberg Health Study served to study the prevalence of mutations and relevant genetic variants.

Results: We assembled a cohort of 111 cases from 89 families and performed new genetic analyses in eight families (three unpublished). We identified new KLKB1 mutations, excluded the pathogenicity of some of the previously described ones, and estimated a prevalence of severe PK deficiency of 1/155 668 overall and 1/4725 among Africans. One individual reported with PK deficiency had, in fact, congenital kininogen deficiency associated with decreased PK activity. One quarter of individuals had factor XII clotting activity below the reference range. Four major bleeding events were described in 96 individuals, of which 3 were provoked, for a prevalence of 4% and an annualized rate of 0.1%. The prevalence of cardiovascular events was 15% (6% <40 years; 21% 40-65 years; 33% >65 years) for an annualized rate of 0.4%.

Conclusions: We characterized the genetic background of severe PK deficiency, critically appraised mutations, and provided prevalence estimates. Our data on
1599

BARCO et Al.

1

INTRODUCTION

Prekallikrein (PK; also called “Fletcher factor” after the first family with a severe deficiency described in 1965)\(^1\) is the zymogen of the serine protease plasma kallikrein, which participates in the initiation of the intrinsic pathway of coagulation together with factors XII (FXII), XI (FXI), and the non-enzymatic cofactor high-molecular-weight kininogen (HK), and mediates the inflammatory response by liberating the vasodilatory and proinflammatory nonapeptide bradykinin from HK.\(^2,3\) This mechanism is involved in several diseases,\(^2\) notably hereditary angioedema,\(^4\) for which plasma kallikrein inhibitors may represent an effective therapy.\(^5,6\)

Severe PK deficiency is an autosomal-recessive defect caused by \(KLKB1\) mutations. An isolated prolongation of the activated partial thromboplastin time (aPTT) is often the initial hint.\(^3\) A swift confirmation of PK deficiency is essential to prevent time-consuming investigation of other potential causes of aPTT prolongation, possibly delaying invasive procedures and prolonging the in-hospital stay.\(^7\) The preoperative administration of prohemostatic agents may represent a useless or even harmful intervention, as excess of bleeding is considered to be absent.

The absence of overt severe clinical disturbances has led to a gradual decrement of clinical research on PK deficiency (Figure S1 in supporting information), although plasma kallikrein inhibition is emerging as an appealing therapy to modulate coagulation\(^8\) and control bradykinin release.\(^5,6\) Novel data concerning the genetic background and diagnostic criteria of PK deficiency are lacking. Because publication bias cannot be excluded, the most common scientific repositories used in prior reviews\(^9\) are unlikely to contain all available studies. In this context, the prevalence of severe PK deficiency in the general population is thought to be very low, but remains unknown.

Our goal is to conduct a comprehensive analysis of severe PK deficiency by (a) identifying \(KLKB1\) mutations in novel cases or after having obtained blood material of published families, and estimating the prevalence of causal mutations in large-scale sequencing projects, (b) critically evaluating all reported \(KLKB1\) mutations based on the predicted effect on the protein and estimating their prevalence, and (c) studying the laboratory features and prevalence of clinical events in cases identified by a systematic review of the literature.

2 | METHODS

2.1 | Study population

The study population of individuals with severe PK deficiency was assembled based on the following sources: (1) novel cases of severe PK deficiency diagnosed at two German centers, from whom complete clinical, laboratory, and genetic information was established in this study; (2a) cases identified from a systematic review of the literature from whom blood samples were obtained to perform complementary genetic analyses and functional tests after contact with the authors; (2b) cases identified from a systematic review of the literature contributing only clinical or laboratory data, as reported in the original publication. The study flow is summarized in Figure 1.
In our systematic review of the literature, we searched MEDLINE (PubMed), EMBASE (Ovid), Web of Science, the gray literature, and user-based or institutional repositories without time/language restrictions. Detailed methods are reported in Appendix S1 in supporting information. The study selection consisted of three steps: (a) evaluation of titles/abstracts, (b) selection of full texts, and (c) contact with the authors to obtain additional clinical information or blood material for laboratory analyses.

All potentially eligible cases of severe PK deficiency were discussed by five investigators and included if the diagnostic tools were adequately described and the diagnosis was supported by a combination of specific diagnostic criteria. Because several tests, notably PK clotting activity (PK:C) and genetic analyses of \textit{KLKB1}, became available only recently, we could not apply a single set of criteria to cases described over a 50-year span. The presence of at least one of these criteria, possibly in individuals screened for the presence of other coagulation factor deficiencies and lupus anticoagulant, sufficed for inclusion in the present analysis: (a) PK:C or PK amidolytic activity test < 15% of normal (irrespective of the PK:Antigen [PK:Ag] value), or mixing studies with deficient plasmas; (b) normalization or quasi-normalization of aPTT after prolonged pre-incubation before recalcification; (c) presence of causal, homozygous or compound heterozygous, \textit{KLKB1} mutations. We excluded cases with a diagnosis not substantiated by laboratory tests (ie, PK:C performed but values not reported), or key inclusion criteria were not met (ie, PK:C ≥ 15%). These cases are listed and discussed in Tables S1-S2 in supporting information.

2.2 | Quantitative analysis of clinical events

We focused on three main aspects of the clinical presentation of severe PK deficiency: major bleeding events, thromboembolic events, and other comorbidities (including arterial hypo- and hypertension). Bleeding events were retrospectively classified into major and non-major\(^\text{10}\) by two independent investigators. Thromboembolic events were classified according to the site of presentation.
Prothrombin time (HemosIL RecombiPlas Tin 2G reagent); derived fibrinogen; aPTT (Synthasill reagent); thrombin time; clotting activity of coagulation factors FVIII:C, FIX:C, FXI:C, FXII:C; lupus anticoagulant testing; and further mixing studies (aPTT in mixtures of index cases and normal plasma before and after incubation at 37°C for 1 hour to exclude inhibitors) were performed on an ACL TOP 700 instrument (Instrumentation Laboratory Company) using IL reagents and following the manufacturer’s instructions. PK:C and HK:C were measured with reagents supplied by IL, George King Bio-Medical Inc (PK Deficient Plasma), and CoaChrom Diagnostica GmbH (HK Deficient Plasma).11 Clotting times were obtained by a KC4A Macro coagulation analyzer (SYCOfmed e.K.). PK:Ag and HK:Ag were determined by enzyme-linked immunosorbent assay (ELISA) using the matched-pair antibody set for ELISA of human PK and HK (Affinity Biologicals Inc).

Genetic testing was performed based on genomic DNA from ethylenediaminetetraacetic acid (EDTA) blood samples. When no whole blood was available, cell-free DNA was extracted and isolated from 1-2 mL citrated plasma using QIAamp® MinElute® ccfDNA Mini Kit (Qiagen): comprehensive details on the genotyping procedure on cell-free DNA are provided in Appendix S1. Depending on the accessible material, variant detection in KLKB1 or KNG1 was done by Sanger Sequencing (Beckman CEQ8000, Sciei), Pyrosequencing (PyroMark Q96 ID, Qiagen), or whole exome sequencing (WES, MedExome, Roche). Digital droplet polymerase chain reaction (ddPCR; droplet generator, QX200 droplet-reader, Bio-Rad) was used for the confirmation of gross deletions detected by WES. Detailed information on laboratory methods and all the assays used is given in Tables S3-S14 in support of information and Figure S2 in supporting information.

2.4 Statistical and bioinformatic analyses

We analyzed individual level data; the prevalence of clinical events was accompanied by 95% confidence interval (95% CI, Wilson method) for the entire population and across age groups. Based on the years of observation which each individual contributed, we calculated annualized incidence rates (95% CI, Poisson formula) of clinical events.

To provide initial estimates of the prevalence of mutations causing PK deficiency according to the Hardy-Weinberg principle, the allele frequencies of the most common KLKB1 mutations were retrieved from the Genome Aggregation Database (gnomAD; https://gnomad.broadinstitute.org/). The gnomAD aggregates exome and genome sequencing data from several large-scale sequencing projects spanning 125 748 exome and 15 708 whole-genome sequences from unrelated individuals from population and disease-specific genetic studies not including individuals (or their relatives) with severe pediatric diseases;12 it represents the most comprehensive population dataset with genetic information of individuals of different ethnicity and was used for population estimates.12

The frequency and, if applicable, the possible haplotype linkage (GenePOP 4.2) of three common non-pathogenic KLKB1 variants (c.428G>A, p.Ser143Asn; c.1679G>A, p.Arg560Gln; c.759-12dupT) were deduced from a prior analysis of the 200 youngest blood donors from a cohort of 750 consecutive German donors and extrapolated from.13 In addition, we analyzed PK:C activity and the genotype for three relevant variants in 300 individuals included in the population-based Gutenberg Health Study (GHS). The GHS is a population-based, prospective, single-center cohort study that started in 2007 at the University Medical Center Mainz and enrolled participants from the German Rhine-Main area according to the local residents’ registration office. It primarily aimed to investigate the prevalence and course of cardiovascular diseases, cancer, eye diseases, metabolic disorders, diseases of the immune system, and mental illnesses in the general population. A total of 15 000 individuals was enrolled after 2007. Inclusion criteria were an age between 35 and 74 years and a written consent; exclusion criteria were insufficient knowledge of the German language to understand explanations and instructions, and physical or psychic inability to participate in the examinations in the study center. The samples analyzed for the present study were collected from 300 individuals who had been recruited for GHS consecutively from April to July 2019 and consented to genetic analyses. Additional details on the database, variant calling tools, gene variant sorting, prediction of variant dignity, and GHS are given in Table S14.14

The nomenclature of all previously described mutations was adapted to HGVs using NM_000892.4 as reference, starting with the first nucleotide in the translation initiation codon. Older numbering of the mutations, however, had often been reported omitting the first 57 nucleotides/19 amino acids.

Genotyping as well as functional and protein analyses were performed for diagnostic purposes at the Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, in individuals who gave explicit consent also for the use of their anonymized data for research purposes. The GHS was approved by an independent ethics committee and required separate consent: all individuals provided written informed consent to participate in parent studies. The use of anonymized retrospective data or of data already published in the literature followed local regulation at each participating institution. The studies were designed and executed in accordance with all local legal and regulatory requirements, notably the General Data Protection Regulation (EU 2016/679) and the Declaration of Helsinki, 7th revision.

3 RESULTS

3.1 Identification of cases of severe PK deficiency

We identified 67 studies reporting a total of 108 cases diagnosed with severe PK deficiency from 86 families.11,13,15-19 The process of study selection is summarized in Figure 1; the reasons for study exclusion are detailed in Tables S1-S2.

After the incorporation of three novel unrelated cases (Cases #1-3 described below and in Tables S15-S19 in supporting
information), we assembled a cohort of 111 cases (89 families) with severe PK deficiency, who contributed for clinical events and laboratory characteristics. Women represented 47.5% of the overall study population (n = 10 missing values for sex); median age at diagnosis was 39 (Q1-Q3: 16-58) years. Of 51 cases with available individual case level information on ethnicity, the majority were reported to have either an African-American (n = 20) or Caucasian (n = 25) background. Of 17 cases with pedigree information, 9 (53%) had consanguineous parents. Severe PK deficiency was diagnosed after routine presurgical screening in 46% of cases.

In 15 individuals from eight families, including the three novel cases, we performed new genetic analyses (Table 1).11,13,15-17

3.2 | Molecular genetic analyses in novel and not previously investigated cases of severe PK deficiency

3.2.1 | Case #1

A 68-year-old woman from Ghana underwent routine coagulation tests before nephrectomy (renal cell carcinoma). Personal and familial history of bleeding and thrombotic events was negative. Severe PK deficiency was diagnosed based on aPTT prolongation, normal activity of coagulation factors, absence of heparinemia and lupus anticoagulant, quasi-normalization of aPTT with increasing pre-incubation time (Figure 2), and PK:C and PK:Ag<1% each. Nephrectomy was performed without complications. WES revealed the homozygous KLKB1 mutation c.451dupT, p.Ser151Phefs*34 (as in Case #1), as well as a functional polymorphism c.-4C>T and a variant of unknown significance c.413C>A in F12.

3.2.2 | Case #2

A 17-year-old German boy was referred for an isolated aPTT prolongation. Coagulation factor activities were normal with no heparinemia and lupus anticoagulant. PK:C was <1%, PK:Ag was 10%, HK:C and HK:Ag were normal. We detected the homozygous KLKB1 mutation c.1643G>A, p.Cys548Tyr (Sanger), previously described with the legacy name Cys529Tyr (Cys548 corresponds to Cys529 in mature PK).13,21,62,63 His parents were heterozygous for p.Cys548Tyr with normal PK:C.

3.2.3 | Case #3

A 26-year-old man from Somalia without personal or familial history of thrombotic/bleeding disorders underwent routine coagulation tests before sinus surgery. Severe PK deficiency was diagnosed based on aPTT prolongation (Figure 2), normal activity of coagulation factors except for FXII:C (39%-50%), neither heparinemia nor lupus anticoagulant, decreasing aPTT with increasing pre-incubation time, and <1% for PK:C and PK:Ag. Surgery was performed without complications. WES revealed the homozygous KLKB1 mutation c.451dupT, p.Ser151Phefs*34 (as in Case #1), as well as a functional polymorphism c.-4C>T and a variant of unknown significance c.413C>A in F12.

3.2.4 | Case #4

Asmis and colleagues11 reported on a 71-year-old Swiss man with primary myelofibrosis, who was hospitalized for splenectomy. No personal or familial history of bleeding or thrombotic events was reported. PK deficiency was diagnosed based on prolonged aPTT, aPTT shortening after prolonged pre-incubation, PK:C 5%, and PK:Ag 2%. Blood samples were obtained from two living offsprings, in whom the heterozygous KLKB1 mutation c.1203_1204delGT, p.Trp402Alafs*35 was found (Sanger). Therefore, the index case should have been either homozygous or compound heterozygous for p.Trp402Alafs*35 and a further, unknown mutation.

3.2.5 | Case #5

Tomao and colleagues15 described the case of a 72-year-old Italian woman with endometriosis and no prior bleeding/thrombosis. The diagnosis of PK deficiency was made based on a prolonged aPTT, normal activity of coagulation factors (HK:C not tested), aPTT shortening after 15 minutes of pre-incubation, and PK:C 7%. We analyzed previously stored EDTA blood. No KLKB1 mutations were found (Sanger), but we identified two KNG1 mutations (WES): c.1038+1G>A and c.1165C>T, p.Arg389*. The mutations have never been reported in the literature for HK deficiency; their pathogenicity is predicted because they may lead to a nonsense-mediated mRNA decay (NMD) or a truncated protein without binding region for PK/FXI. These results suggest that this individual had HK deficiency, but was erroneously classified as severe PK deficiency based on a low PK:C value.

3.2.6 | Case #6

In 1993, Wuillemin and colleagues reported on a 68-year-old Swiss man with myocardial infarction.16 The diagnosis of PK deficiency was based on aPTT prolongation, normal activity of coagulation factors, aPTT shortening after prolonged pre-incubation, PK:C<1%, and PK:Ag 10%. Only citrated plasma from the deceased case was stored. Pyrosequencing, which allows sequencing of short DNA fragments, detected heterozygous c.1643G>A, p.Cys548Tyr. A library preparation protocol for next-generation sequencing from ancient DNA was adapted to our sequencing procedure.80 WES confirmed c.1643G>A, p.Cys548Tyr and detected c.1196G>A, p.Trp399*, later confirmed by pyrosequencing. c.1196G>A, p.Trp399* has not been reported yet. The case’s daughter had PK:C and PK:Ag in the low reference range, and was heterozygous for c.1643G>A, p.Cys548Tyr (pyrosequencing).
Family ID (reference)	Allele 1	Allele 2	Method	Mat.	PK:C, %	PK:Ag, %	HK:C, %	HK:Ag, %	Conclusions	
Unpublished cases										
1	Index case (68, F)	c.451dupT, p.Ser151Phefs*34	c.451dupT, p.Ser151Phefs*34	WES, Sanger	EB	<1	<1	94	95	homozygous PK deficiency
2	2-1; Index case (17, M)	c.1643G>A, p.Cys548Tyr	c.1643G>A, p.Cys548Tyr	Sanger	EB	<1	10	70	68	homozygous PK deficiency (CRM+)
2-2; Index case’s mother (45, F)	c.1643G>A, p.Cys548Tyr	KLKB1: –	Sanger	EB	72	87	98	87	heterozygous carrier	
2-3; Index case’s father (52, M)	c.1643G>A, p.Cys548Tyr	KLKB1: –	Sanger	EB	70	93	175	93	heterozygous carrier	
3	Index case (26, M)	c.451dupT, p.Ser151Phefs*34	c.451dupT, p.Ser151Phefs*34	Sanger	EB	<1	<1	142	76	homozygous PK deficiency
Published cases not previously tested for mutations										
4	4-1; Index case (71, M)	c.1203_1204delGT, p.Trp402Alafs*35	Unknown	Deduced from the children’s genotype	–	5	2	–	–	prekallikrein deficiency (homozygous or compound heterozygous)
4-2; Index case’s daughter (58, F)	c.1203_1204delGT, p.Trp402Alafs*35	KLKB1: –	Sanger	EB	66	43	91	73	heterozygous carrier	
4-3; Index case’s son (56, M)	c.1203_1204delGT, p.Trp402Alafs*35	KLKB1: –	Sanger	EB	59	34	93	58	heterozygous carrier	
5	Index case (72, F)	KLKB1: –	KLKB1: –	Sanger	EB	7	–	–	–	compound heterozygous: HK deficiency
KNG1: c.1165C>T, p.Arg389*	KNG1: c.1038+1G>A	WES, Sanger	EB							
6	6-1; Index case (68, M)	c.1196G>A, p.Trp399*	c.1643G>A, p.Cys548Tyr	WES + PSQ	CP	1	6-10	91	70	compound heterozygous PK deficiency (CRM+)
6-2; Index case’s daughter (–, F)	KLKB1: –	c.1643G>A, p.Cys548Tyr	KLKB1: –	Sanger	CP	55	61	100	76	heterozygous carrier
7	7-1; Index case (3, F)	c.143_221+128del, p.Gln48Argfs*11	c.143_221+128del, p.Gln48Argfs*11	WES, ddPCR, Sanger	EB	1	<1	110	–	homozygous PK deficiency
7-2; Index case’s mother (35, F)	c.143_221+128del, p.Gln48Argfs*11	KLKB1: –	WES, ddPCR, Sanger	EB	–	79	–	–	heterozygous carrier	
7-3; Index case’s father (50, M)	c.143_221+128del, p.Gln48Argfs*11	KLKB1: –	WES, ddPCR, Sanger	EB	–	72	–	–	heterozygous carrier	
7-4; Index case’s brother (5, M)	KLKB1: –	KLKB1: –	WES, ddPCR	EB	–	95	–	–	not affected	
Family ID (reference)	Allele 1	Allele 2	Method	Mat.	PK:C, %	PK:Ag, %	HK:C, %	HK:Ag, %	Conclusions	
----------------------	----------	----------	------------	------	----------	----------	---------	----------	--	
Published case with genetic data (gray literature), resequenced for this publication and complemented by functional data										
8^13	Index case (13, M)	c.689T>A, p.Ile230Asn	c.1643G>A, p.Cys548Tyr	Sanger, PSQ	EB	<1	9	84	73	compound heterozygous PK deficiency (CRM+)
9^13	9-1 Index case (34, F)	c.451dupT, p.Ser151Phefs*34	c.451dupT, p.Ser151Phefs*34	dHPLC, Sanger	EB	—	—	—	—	homozygous PK deficiency
	9-2 Index case's daughter (9, F)	c.451dupT, p.Ser151Phefs*34	KLKB1: —	dHPLC, Sanger	EB	—	—	—	—	heterozygous carrier
	9-3 Index case's daughter (13, F)	c.451dupT, p.Ser151Phefs*34	KLKB1: —	dHPLC, Sanger	EB	—	—	—	—	heterozygous carrier
	9-4 Index case's daughter (11, F)	c.451dupT, p.Ser151Phefs*34	KLKB1: —	dHPLC, Sanger	EB	—	—	—	—	heterozygous carrier
10^13	10-1 Index case (64, M)	c.717_719delCTT, p.Phe240del	c.1643G>A, p.Cys548Tyr	dHPLC, Sanger	EB	<1	—	—	—	compound heterozygous PK deficiency (CRM + likely)
	10-2 Index case's son (42, M)	KLKB1: —	c.1643G>A, p.Cys548Tyr	dHPLC, Sanger	EB	—	—	—	—	heterozygous carrier
11^13	Index case (30, F)	c.1165delA, p.Thr389Hisfs*18	c.1643G>A, p.Cys548Tyr	dHPLC, Sanger	EB	<1	—	—	—	compound heterozygous PK deficiency
12^13	Index case (62, F)	c.337C>T, p.Arg113*	c.337C>T, p.Arg113*	dHPLC, Sanger	EB	—	—	—	—	compound heterozygous PK deficiency
13^13	Index case (73, M)	c.1643G>A, p.Cys548Tyr	c.1643G>A, p.Cys548Tyr	dHPLC, Sanger	EB	<1	—	—	—	homozygous PK deficiency (CRM + likely, no data on PK:Ag available)
14^13	Index case (23, F)	c.337C>T, p.Arg113*	c.337C>T, p.Arg113*	dHPLC, Sanger	EB	—	—	—	—	homozygous PK deficiency
Published cases with genetic data (PubMed, Embase)										
15^18	15-1 Index case (14, M)	c.1205G>A, p.Trp402*	c.1643G>A, p.Cys548Tyr	Sanger	BL	<1	traces	Norm	—	compound heterozygous PK deficiency
	15-2 Index case's mother (—, F)	KLKB1: —	c.1643G>A, p.Cys548Tyr	Sanger	BL	68	72	Norm	—	heterozygous carrier
	15-3 Index case's father (—, M)	c.1205G>A, p.Trp402*	KLKB1: —	Sanger	BL	50	60	Norm	—	heterozygous carrier
	15-4 Index case's brother (—, M)	KLKB1: —	KLKB1: —	Sanger	BL	90	95	Norm	—	not affected
16^61	16-1 Index case (47, M)	c.1259G>A, p.Gly420Glu	c.1259G>A, p.Gly420Glu	Sanger	WB	<1	25	—	—	homozygous PK deficiency (CRM+)
	16-2 Index case's sister (—, F)	c.1259G>A, p.Gly420Glu	c.1259G>A, p.Gly420Glu	ASO	WB	1	21	—	—	homozygous PK deficiency (CRM+)
Family ID (reference)	Allele 1	Allele 2	Method	Mat. PK:C, %	PK:Ag, %	HK:C, %	HK:Ag, %	Conclusions	
16-3 to 16-14; 12 relatives from three generations	c.1259G>A, p.Gly420Glu	KLKB1: –	ASO	WB	23-50	50-76	–	–	heterozygous carriers
16-15 to 16-18; 4 relatives from three generations	KLKB1: –	KLKB1: –	ASO	WB	88-150	82-140	–	–	not affected
17-1; Index case (79, M)	c.337C>T, p.Arg113*	c.337C>T, p.Arg113*	Sanger	–	<1	4	79	–	homozygous PK deficiency
17-2; Index case’s wife (–, F)	KLKB1: –	KLKB1: –	RFLP	–	–	–	–	–	not affected
17-3 to 17-7; Index cases’ five children	c.337C>T, p.Arg113*	KLKB1: –	RFLP	–	58-78	48-72	–	–	heterozygous carriers
18-1; Index case (53, M)	c.[367G>A;428=], p.[Gly123Arg;Ser143=]	c.[367G>A;428=], p.[Gly123Arg;Ser143=]	Sanger	BL	1	–	75	–	homozygous PK deficiency
18-2, 18-3; Index case’s sisters	c.[367G>A;428=], p.[Gly123Arg;Ser143=]	c.[367G>A;428=], p.[Gly123Arg;Ser143=]	Sanger	BL	1; 3	–	–	–	homozygous PK deficiency
18-4, 18-5; Index case’s mother and brother	c.[367G>A;428=], p.[Gly123Arg;Ser143=]	c.[367G>A;428G>A, Ser143Asn]	Sanger	BL	74; 90	–	–	–	heterozygous carriers
18-6, 18-7; Case’s daughters	c.[367G>A;428=], p.[Gly123Arg;Ser143=]	c.[367G>A;428G>A, p.[Gly123Arg;Ser143Asn]	Sanger	BL	90; 100	–	–	–	heterozygous carriers
19-62; Index case (63, M)	c.1643G>A, p.Cys548Tyr	c.1643G>A, p.Cys548Tyr	Sanger	EB	<1	7	–	–	homozygous PK deficiency (CRM+)
20-62; Index case (38, F)	c.1643G>A, p.Cys548Tyr	c.1643G>A, p.Cys548Tyr	Sanger	EB	<1	7.5	–	–	homozygous PK deficiency (CRM+)
21-20; Index case (69, F)	c.1259G>A, p.Gly420Glu	c.1259G>A, p.Gly420Glu	–	–	<1	–	–	–	homozygous PK deficiency
22-21; Index case (75, F)	c.1643G>A, p.Cys548Tyr	c.1643G>A, p.Cys548Tyr	–	–	13	–	Norm.	–	homozygous PK deficiency (CRM + likely, no data on PK:Ag available)
23-63; 23-1; Index case (14, M)	c.451dupT, p.Ser151Phefs*34	c.1643G>A, p.Cys548Tyr	Sanger	BL	<1	–	68	–	compound heterozygous PK deficiency
23-2; Index case’s mother	KLKB1: –	c.1643G>A, p.Cys548Tyr	Sanger	BL	77	–	–	–	heterozygous carrier
23-3; Index case’s father	c.451dupT, p.Ser151Phefs*34	KLKB1: –	Sanger	BL	85	–	–	–	heterozygous carrier
23-4; Index case’s brother	KLKB1: –	KLKB1: –	Sanger	BL	81	–	–	–	not affected

(Continues)
Table 1 (Continued)

Family ID (reference)	Allele 1	Allele 2	Method	Mat.	PK:C, %	PK:Ag, %	HK:C, %	Conclusions	
23-5; Index case's	c.451dupT, p.Ser151Phefs*34	c.1643G>A, p.Cys548Tyr	Sanger	BL	<1			compound heterozygous PK deficiency	
24⁶⁸	24-1; Index case (40, M)	Unknown; c.759-12dupT variant	Sanger	BL	5	95	60	suspected PK deficiency; second mutation unknown: the reported variant is a common polymorphism	
24-2, 24-3 Index case's sisters	c.1731T>G, p.Asp577Glu	Unknown; c.759-12dupT variant is a common polymorphism^a	Sanger	BL	-5	Norm.	Norm.	suspected PK deficiency; second mutation unknown: the reported variant is a common polymorphism	
24-4 Index case's brother	c.1731T>G, p.Asp577Glu	Unknown; c.759-12dupT variant is a common polymorphism^a	Sanger	BL	-50	Norm.		heterozygous carrier: the other allele has a common polymorphism	
25³¹	25-1 Index case (40, M)	c.1553G>A, Trp518[*]	Sanger	BL	<10			homozygous PK deficiency	
26⁶⁴	26-1; Index case (32, M)	c.[428=;1679G>A], p.[Ser143=;Arg560Gln]^a	Sanger	BL	1	<1	93	PK deficiency; homozygosity for two common polymorphisms most likely not the cause of severe PK deficiency	
26-2; Index case's aunt (55, F)	c.[428=;1679G>A], p.[Ser143=;Arg560Gln]^a	c.[428=;1679G>A], p.[Ser143=;Arg560Gln]^a	Sanger	BL	1	<1		PK deficiency; homozygosity for two common polymorphisms most likely not the cause of severe PK deficiency	
26-3 to 26-9; 7 relatives from three generations	c.[428=;1679G>A], p.[Ser143=;Arg560Gln]^a	KLKB1: --	Sanger	BL	68-86			heterozygous carriers?	
26-10 to 26-12; 3 relatives from three generations	KLKB1: --	KLKB1: --	Sanger	BL	88-126			not affected	
27⁵⁹	27-1 Index case (4, M)	c.1259G+A, p.Gly420Glu	Sanger	WB	<1	3-4		compound heterozygous PK deficiency	
28⁷⁹	28-1; Index case (58, F)	c.[417,418insCATTCCTTA, Arg140Hisfs*3]	KLKB1: --	Sanger	BL	88-126			not affected

Note: The following mutations have been identified in this study for the first time (shown in the table in bold): c.1203_1204delGT, p.Tryp402Alafs*35 (KLKB1); c.1165C>T, p.Arg389* (KNG1); c.1038+1G>A (KNG1); c.1196G>A, p.Tryp399* (KLKB1); c.143_221+128del, p.Gln48Argfs*11 (KLKB1); c.689T>A, p.Ile230Asn (KLKB1).

Abbreviations: ASO, allele-specific oligonucleotide hybridization; BL, blood leukocytes; CP, citrated plasma; CRM, cross-reacting material; ddPCR, digital droplet polymerase chain reaction; dHPLC, denaturing high pressure liquid chromatography; EB, EDTA-blood; HK, high-molecular-weight kinogen; PK, prekallikrein; PSQ, pyrosequencing; RFLP, restriction fragment length polymorphism; Sanger, Sanger sequencing; WB, whole blood; WES, whole-exome-sequencing.

^aThe following polymorphisms previously described in the literature in association with severe PK deficiency are unlikely to be causal mutations: c.[428=;1679G>A], p.[Ser143=;Arg560Gln] (KLKB1); c.759-12dupT (KLKB1); KLKB1: --, no mutation detected; --, no data available; c.: coding DNA reference sequence used (NM_000892.4); p.: protein reference sequence used (NP_000883.2).
KLKB1 mutation	**Exon**	**MAF (dbSNP), %**	**rsID (dbSNP)**	**ClinVar**	**Poly Phen2**	**SIFT**	**PROVEAN**	**Mutation Taster**	**Consequences on protein level**	**Ref.**	**Classification (ACMG/AMP)**
Missense											
c.1643G>A, p.Cys548Tyr	14	0.03-0.08	rs121964951	P/VUS	D	D	D	D	amino acid exchange	13,18,21,62,63	pathogenic
c.689T>A, p.Ile230Asn	7	0.02-0.05	rs142420360	–	D	D	D	D	amino acid exchange	13	likely pathogenic
c.1259G>A, p.Gly420Glu	11	0.02-0.0008	rs186254196	P	D	D	D	D	amino acid exchange	20,59,61	pathogenic
c.[367G>A;428=], p.[Gly123Arg;Ser143=]	5	–	rs121964952; rs3733402	P	D	D	D	D	two amino acid exchanges on one allele	67	likely pathogenic
c.367G>A, p.Gly123Arg	5	0.0008	rs121964952	P	D	D	D	D	amino acid exchange	67	variant of uncertain significance
c.428G>A, p.Ser143Asn	5	39-46	rs3733402	P	B	B	B	B	amino acid exchange	64,67	benign
c.1731T>G, p.Asp577Glu	15	–	–	–	VUS	D	D	D	amino acid exchange	68	likely pathogenic
c.[428=;1679G>A], p.[Ser143=;Arg560Gln]	5/14	–	rs3733402; rs4253325	–	B	B	B	B	two amino acid exchanges on one allele	64	benign
c.1679G>A, p.Arg560Gln	14	16-22	rs4253325	–	B	B	B	B	amino acid exchange	64	benign
Frameshift											
c.451dupT, p.Ser151Phefs*34	5	0.13-0.56	rs560588447	–	–	–	–	–	truncating mutation, presumably NMD	13,63	pathogenic
c.1203_1204delGT, p.Trp402Alafs*35	11	0.01	rs768319200	–	–	–	–	–	truncating mutation, presumably NMD	–	pathogenic
c.1165delA, p.Thr389Hisfs*18	11	–	–	–	–	–	–	–	truncating mutation, presumably NMD	13	pathogenic
c.143_221+128del, p.Gln48Argfs*11	3	–	–	–	–	–	–	–	truncating mutation, presumably NMD	–	pathogenic
c.417_418insCATTCTTA, p.Arg140Hisfs*3	5	0.002-0.004	rs777280545	–	–	–	–	–	truncating mutation, presumably NMD	79	pathogenic
c.821delA, p.Asn274Thrfs*9	8	–	–	–	–	–	–	–	truncating mutation, presumably NMD	79	pathogenic

(Continues)
TABLE 2 (Continued)

KLKB1 mutation	Exon	MAF (dbSNP), %	rsID (dbSNP)	Bioinformatic analyses	Consequences on protein level	Classification (ACMG/AMP)	
Truncation/Nonsense							
c.1196G>A, p.Trp399*	11	—	rs130357405	— — — — —	truncating mutation, presumably NMD	—	pathogenic
c.337C>T, p.Arg113*	5	0.002-0.007	rs12196499	P — — — —	truncating mutation, presumably NMD	13	pathogenic
c.1205G>A, p.Trp402*	11	0.0008	rs121964950	P — — — —	truncating mutation, presumably NMD	13	pathogenic
c.1553G>A, p.Trp518*	13	—	—	— — — — —	truncating mutation, presumably NMD	31	pathogenic
c.1198G>T, p.Gly400*	11	—	—	— — — — —	truncating mutation, presumably NMD	59	pathogenic
In frame deletion							
c.717_719delCTT, p.Phe240del	7	—	—	— — — — D	deletion of Phe at position 240	13	likely pathogenic
Splice site							
c.759-12dupT	IVS7	34.7-38.7	rs3214676	— — — — —	splice defect?	68	benign

Note: KLKB1 mutations: numbered according to RefSeq NM_000892.4; Genome Build GRCh37/hg19: total exon count for KLKB1: 15; MAF: minor allele frequency according to dbSNP; ClinVar: P = likely pathogenic; VUS = variant of uncertain significance; D = deleterious/damaging/disease causing; B = benign/polymorphism/neutral/tolerated; NMD = nonsense mediated mRNA decay; ACMG/AMP = American College of Medical Genetics and Genomics/Association of Molecular Pathology. The following KLKB1 mutations have been identified in this study for the first time (shown in the table in bold): c.1203_1204delGT, p.Trp402Alafs*35; c.1196G>A, p.Trp399*; c.143_221+128del, p.Gln48Argfs*11; c.689T>A, p.Ile230Asn. The following polymorphisms previously described in the literature in association with severe PK deficiency are unlikely to be causal mutations: c.428-1679G>A, p.[Ser143=;Arg560Gln] (KLKB1); c.759-12dupT (KLKB1). — = no data available; c.: coding DNA reference sequence used (NM_000892.4); p.: protein reference sequence used (NP_000883.2).
3.2.7 | Case #7

Shahverdi and colleagues reported on a 3-year-old Iranian girl presenting with recurrent epistaxis, bruising, thrombocytopenia, and giant platelets due to Bernard-Soulier syndrome. Severe PK deficiency was diagnosed based on a prolonged aPTT which normalized upon prolonged pre-incubation, normal activity of coagulation factors, and PKC 1.3%. Sanger sequencing resulted in low quality electropherograms due to sample degradation during shipment. WES revealed the homozygous missense mutation c.284G>A, p.Tyr95Cys in exon 3 of GP9, which causes Bernard-Soulier syndrome, and the homozygous partial deletion of exon 3 of KLKB1 (c.143_221+128del, p.Gln48Argfs*11), confirmed by ddPCR. The parents were heterozygous for both mutations.

3.2.8 | Case #8

Complete analysis of citrated plasma and EDTA blood of a 13-year-old German boy confirmed the diagnosis of PK deficiency based on aPTT prolongation, normal activity of coagulation factors (HK:C not tested; PK:C<1%, PK:Ag 9%), and genetic analysis. Sanger sequencing confirmed compound heterozygosity for c.1643G>A, p.Cys548Tyr and c.689T>A, p.Ile230Asn.

3.3 | Genetic analysis: critical appraisal, nomenclature, and allele frequency

All index cases of PK deficiency with novel and previously published genetic data of the KLKB1 gene are summarized in Table 1, including pedigree information, DNA source, genotyping method, and the results of PK/HK:C and antigen. Table 2 and Figure 3 include detailed information on all KLKB1 variants, the minor allele frequency (dbSNP), the results of bioinformatics testing, and a critical appraisal concerning their dignity according to the American College of Medical Genetics and Genomics/Association of Molecular Pathology guidelines.

We categorized four alleles, which had been suggested to be disease-causing, as not pathogenic (benign) or variants of uncertain significance, namely c.428G>A, p.Ser143Asn; c.428=;1679G>A, p.Ser143=Arg560Gln; c.759-12dupT. The reevaluation of the genotypes of 200 German blood donors, as well as the analysis of the genetic and functional data of 300 participants of the GHS revealed that the four aforementioned alleles were too frequent to cause severe PK deficiency.

FIGURE 2 Measurement of activated partial thromboplastin time (aPTT) using different preincubation times of plasma with aPTT reagent before addition of calcium. Plasma of the index individual and several control plasmas were mixed with aPTT reagent for various time intervals before addition of Ca$^{2+}$. Clotting time almost normalized upon preincubation for ≥ 480 seconds (SyntAsil, Instrumentation Laboratory, Bedford, US)

FIGURE 3 Summary and localization of KLKB1 mutations. Variants reported in [brackets] refer to common polymorphisms, which have been described in association with severe prekallikrein (PK) deficiency, but have been shown in the present work not to be causal/pathogenic mutations. The following KLKB1 mutations have been identified in this study for the first time: c.1203_1204delGT, p.Trp402Alafs*35; c.1196G>A, p.Trp399*; c.143_221+128del, p.Gln48Argfs*11; c.689T>A, p.Ile230Asn. The following polymorphisms previously described in the literature in association with severe PK deficiency are unlikely to be causal mutations: c.428=;1679G>A, p.[Ser143=Arg560Gln] (KLKB1); c.759-12dupT (KLKB1). c.: coding DNA reference sequence used (NM_000892.4); p.: protein reference sequence used (NP_000883.2)
(c.[428=;167G>A], p.[Ser143=Gln]). No homozygotes, but ≥11 heterozygotes/500; c.[428=;759-12dupT]: ≥15 heterozygotes/200, 5 homozygotes/200; Table S20 in supporting information). None of the haplotypes defined by the variants p.Ser143Asn and p.Arg560Gln caused reduced PK activity comparable to that observed in heterozygotes for PK deficiency (Figure 4). While some functional effect cannot be ruled out, we exclude that any of these variants causes severe PK deficiency.

3.4 | Estimated prevalence of severe PK deficiency

The data from gnomAD (Table 3) depicted a higher-than-expected prevalence of mutations causing PK deficiency in individuals of African ancestry (1 per 4725 population), as compared to non-Finnish Europeans (1 per 242786 population) or Latinos (1 per 536587 population). We estimated an overall prevalence of severe PK deficiency (Table S16). One case with PK:C of 7% (Case #5) had compound heterozygous KNG1 mutations suggesting severe hereditary HK deficiency with secondary PK:C reduction (Figure 5).

The median (Q1-Q3: min-max) clotting activity of the other clotting factors was: FVIII:C 100% (85%-160%; 47%-330%), FIX:C 92% (80%-110%; 38%-173%), FXI:C 89% (72%-100%; 49%-200%), FXII:C 80% (66%-104%; 25%-180%), and HK:C 90% (79%-110%; 31%-153%).

3.5 | Laboratory parameters

Median aPTT using non-ellagic acid-based assays was 119 (Q1-Q3: 110-120; n = 64; reference ranges 31-60) seconds. Median aPTT was normal or only mildly prolonged if ellagic acid-based reagents were used: median 40 (Q1-Q3: 32-45; n = 17; reference ranges 21-42) seconds. PK:C was low (≤5%) in more than 95% of cases tested (Table S16). One case with PK:C of 7% (Case #5) had compound heterozygous KNG1 mutations suggesting severe hereditary HK deficiency with secondary PK:C reduction (Figure 5).

![FIGURE 4](https://example.com/image.png)

FIGURE 4 Impact of different KLKB1 haplotypes (defined by the common polymorphisms p.Ser143Asn and p.Arg560Gln) on prekallikrein clotting activity (PK:C). Comparison of PK:C between KLKB1 heterozygotes (var: various genotypes for p.Ser143Asn and p.Arg560Gln, also shown in Figure 5, left panel) and control individuals from the Gutenberg Health Study (GHS), who carry combinations of the common KLKB1 polymorphisms p.Ser143Asn (N/N, S/N, and S/S) and p.Arg560Gln (R/R, R/Q, Q/Q). In homozygosity, the haplotype 143Ser-560Gln (S-Q) was suggested to cause PK deficiency. This graph shows that heterozygosity (S/S-Q/R, shown in red) is not associated with a reduction of PK:C as expected for heterozygotes of KLKB1 mutations (left column, var). p.: protein reference sequence used (NP_000883.2)

3.6 | Clinical events

After excluding cases with no clinical information reported, a total of 14 thromboembolic events were described in 95 individuals with severe PK deficiency (Table S17) for a prevalence of 14.7% (95% CI 9.0%-23.2%) and an annualized incidence rate of 0.4 cases/100 person-years (95% CI 0.2-0.6). Of these, four had familial history of cardiovascular disorders. Among individuals aged <40 years, three had thromboembolic events for a prevalence of 6.3% (95% CI 2.1%-16.8%): one was described as "low-extremity thrombophlebitis" and two were ischemic strokes. A total of 6 (20.7%; 95% CI 9.5%-38.4%) events occurred in individuals aged 40-65 years, including three ischemic strokes, one myocardial infarction, and two venous thromboembolic events. Among individuals older than 65 years, the prevalence was 33.3% (95% CI 15.2%-58.3%; n = 5 arterial cardio- or cerebrovascular events).

Four (4.2%; 95% CI 1.6%-10.2%) major bleeding events were described in 96 individuals during their lifetime for an annualized incidence rate of 0.1 cases/100 person-years (95% CI 0.03-0.3). They consisted of a spontaneous recurrent hematemesis with hypovolemic shock in a 13-year-old child and of three provoked events: (a) an anticoagulant-associated intracranial hemorrhage after cerebral vein thrombosis in a 43-year-old individual, (b) a prolonged bleeding after tonsillectomy requiring transfusion of fresh frozen plasma (6-month-old child), (c) an intracranial hemorrhage in a premature newborn with no further bleeding events until the age of 9 (Table S18). The prevalence of major bleeding was 6.3% (95% CI 2.1%-16.8%; n = 3) in individuals aged <40 years, 3.3% (95% CI 0.6%-16.7%; n = 1) in individuals aged 40-65 years, and 0% (95% CI 0%-20.4%; n = 0) in the elderly. The prevalence of other (non-major) bleedings was 14.5%, 16.6%, and 13.3%, respectively.

The prevalence of other comorbidities seemed sporadic; the quality of reporting was deemed to be too poor for quantitative synthesis (Table S19).

4 | DISCUSSION

Our individual level analysis of 111 individuals with severe PK deficiency represents the largest study ever performed on this condition.
KLKB1 mutations	African	European (non-Finnish)	Latino	East Asian	South Asian	European (Finnish)	Ashkenazi	Other	TOTAL
Variant allele count out of total allele number (variant allele frequency, %)									
rs121964951^a	2/24 756 (0.01)	128/128 518 (0.1)	35/35 060 (0.1)	0/19 766 (0)	2/30 382 (0.01)	0/25 028 (0)	0/10 348 (0)	13/7134 (0.18)	180/280 992 (0.06)
rs142420360	2/24 970 (0.01)	44/129 198 (0.03)	3/35 440 (0.01)	0/19 954 (0)	0/30 616 (0)	0/25 122 (0)	0/10 370 (0)	2/7226 (0.03)	51/282 896 (0.02)
rs186254196	0/16 106 (0)	0/112 678 (0)	0/34 544 (0)	2/18 364 (0.01)	0/30 580 (0)	0/21 632 (0)	0/10 008 (0)	0/6108 (0)	2/250 020 (0)
rs121964952	0/16 254 (0)	1/113 676 (0)	0/34 588 (0)	0/18 394 (0)	0/30 612 (0)	0/21 648 (0)	0/10 078 (0)	0/6134 (0)	1/251 384 (0)
rs560588447^b	358/24 954 (1.43)	37/129 130 (0.03)	9/35 436 (0.03)	0/19 954 (0)	8/30 614 (0.03)	2/25 120 (0.01)	0/10 370 (0)	5/7226 (0.07)	419/282 804 (0.15)
rs768319200	0/24 878 (0)	34/128 406 (0.03)	1/35 422 (0)	0/19 934 (0)	0/30 596 (0)	0/25 118 (0)	0/10 330 (0)	0/7204 (0)	35/281 888 (0.01)
rs777280545	0/24 966 (0)	0/129 156 (0)	0/35 438 (0)	8/19 954 (0.04)	0/30 612 (0)	0/25 122 (0)	0/10 370 (0)	0/7226 (0)	8/282 844 (0)
rs121964949	1/24 956 (0)	16/129 046 (0)	0/35 434 (0)	0/19 950 (0)	0/30 612 (0)	0/25 120 (0)	0/10 366 (0)	1/7218 (0.01)	18/282 702 (0.01)
rs121964950	0/16 160 (0)	1/112 832 (0)	0/34 564 (0)	0/18 376 (0)	0/30 592 (0)	0/21 642 (0)	0/10 038 (0)	0/6120 (0)	1/250 324 (0)

Estimated prevalence of compound heterozygotes or homozygotes for mutations causing severe PK deficiency

One case per N population	N = 4725	N = 242 786	N = 536 587	N = 3 847 226	N > 5 000 000	N > 5 000 000	N > 5 000 000	N = 116 521	N = 155 668
Cases per 1 000 000 population	210	4	2	<1	<1	<1	<1	9	6

Note: The bold values represent allele counts resulting in variant allele frequencies ≥ 0.1%. c.: coding DNA reference sequence used (NM_000892.4); p.: protein reference sequence used (NP_000883.2).

^ac.1643G>A, p.Cys548Tyr emerged as the most common mutation among non-Finnish Europeans.

^bc.451dupT, p.Ser151Phefs*34 emerged as the most common mutation among Africans.
We identified novel pathogenic mutations and confirmed that some of those previously described as "causal" or "pathogenic" represent common variants. We provided prevalence estimates, suggesting that severe PK deficiency is a frequent cause of prolonged aPTT in individuals of African ancestry. As preliminary as our evidence is, the low prevalence of bleeding events observed in individuals with PK deficiency does not support routine administration of prohemostatic products before surgical procedures.

Our estimate of the prevalence of homozygotes or compound heterozygotes with severe PK deficiency suggests a much higher prevalence of causal KLKB1 mutations among individuals of African ancestry (1 per 4725 versus 1 per 155 668 overall). In a population survey published in 1977, the authors identified 1 case of PK deficiency among 40 522 individuals from a Nigerian community. If confirmed, these results may have consequences for individuals of African origins undergoing routine coagulation screening, especially considering that the prevalence at birth for non-severe hemophilia A and B is approximately 1 case per 6600 males and 1 case per 28 600 males, respectively. All cases of PK deficiency with homozygosity and compound heterozygosity for c.1643G>A, p.Cys548Tyr presented with low non-functional PK antigen (Cross Reacting Material+) and were more often European; c.451dupT, p.Ser151Phefs*34 explained most cases in individuals of African ancestry. We excluded that any of the three common variants 143Ser, 560Gln, and 759-12dupT (or a haplotype combining these variants) cause PK deficiency, in contrast to prior reports. With a frequency of >1% for 143Ser-560Gln, which is by far the rarest of the aforementioned common alleles, their involvement in the genesis of PK deficiency is not plausible (Table S20). In the setting of a population-based study, we showed that individuals heterozygous for 143Ser-560Gln had PK:C and PK:Ag levels twice as high as in the presence of a confirmed heterozygous PK defect and identical to non-PK-deficient individuals (Figure 4).

Prior reporting on 143Ser-560Gln as a pathogenic variant was based on its co-segregation in homozygosity with severe PK deficiency (Case #26). However, it is commonly observed that benign variants are in linkage with the disease-causing variant and co-segregate with the phenotype. Some mutation types missed by conventional sequencing were not tested, including gross deletions.

A further report described four siblings (Case #24) with the same, allegedly PK deficiency-causing genotype, but only three of four affected individuals showed PK deficiency; therefore, at least one of the described variants was not disease-causing. While c.1731T>G, p.Asp577Glu (in the original paper described as p.Asp558Glu) is rare, and bioinformatics predicts pathogenicity, the other variant, c.759-12dupT, is common (33% in a collective of German blood donors, Table S20), intronic, and not predicted to alter splicing. As 143Ser co-segregates with 759-12dupT in the family, the authors speculated that the haplotype 143Ser/759-12dupT was disease-causing, but it does not co-segregate with the phenotype and is frequent in German blood donors.

There is one report suggesting a role of 143Ser, whenever located in cis with the rare variant c.367G>A, p.Gly123Arg (in the original paper described as Gly104Arg). Three siblings (Case #18) with PK:C ≤ 3% were homozygous for 123Arg and 143Ser, while homozygosity for 123Arg alone did not co-segregate with PK deficiency. Analysis of the recombinantly expressed A2 domain of PK showed the lowest affinity to HK when the amino acids at position 143 and 123 were both substituted, but the presented data was not significant. Gross deletions were not investigated.
A correct diagnosis of PK deficiency may prevent unnecessary delay in surgical procedures. However, functional PK assays may not be widely available and a prolonged aPTT, a normalization of aPTT following increased preincubation time, and the exclusion of other factor deficiencies may represent the only diagnostic information available at most centers. Although plasma kallikrein inhibition may not have an impact on hemostasis in humans, a selective reduction of PK induced an antithrombotic effect in animal models.85-87 Cases of PK-deficient dogs and horses with excessive bleeding were described.88,89 We showed that the prevalence of major bleeding events was very low, approximately 4%, corresponding to an annualized estimated incidence rate of 0.1%, which was calculated based on the years contributed by each individual. This rate is similar to that observed in the general population for nonfatal major bleeding among individuals aged 30-39 years who were not exposed to antithrombotic therapy.90 It must be noted that only one of four major bleeding events was spontaneous, whereas the other three individuals had a provoked event, namely an anticoagulant-associated intracranial hemorrhage, a prolonged bleeding after tonsilectomy, and an intracranial hemorrhage related to prematurity. In contrast, the prevalence of arterial cardiovascular and cerebrovascular events appeared higher with a prevalence of 15% and an estimated annualized incidence rate of 0.4% in a population characterized by a median age of 39 years. Although these findings can only serve to generate hypotheses, they may not support the routine administration of prohemostatic products to individuals with severe PK deficiency who undergo invasive procedures.

Of five individuals/families from whom we performed additional genetic analysis, we identified one carrier of compound heterozygous mutations in KNG1, likely associated with a truncated HK protein, and no mutation in KLKB1. PK-deficient samples are characterized by almost normalization of the severely prolonged aPTT following increased preincubation time, which is due to autoactivation of FXII.11 The case had low PK:C (7%) and only moderate aPTT shortening after prolonged pre-incubation.15 We confirmed the reduction of PK:C in hereditary HK deficiency (Figure 5) and attributed it to the lack of chaperone function of HK, resulting in PK:C values between 10%-45%.91-99 Of note, we confirmed prior reports showing that ellagic acid-based aPTT reagents may be relatively insensitive to PK deficiency as ellagic acid may accelerate FXII autoactivation.100,101 Other cases of HK deficiency may have been mistaken for PK deficiency and PK deficiency cases missed if ellagic acid-based aPTT reagents were used for screening.

Severe PK deficiency is a rare benign condition, as reflected by several reports in the gray literature identified by our literature search. Underreporting may be substantial and we acknowledge publication bias as a key limitation of our analysis with only exceptional cases, i.e., those with overt clinical manifestations, being reported. This is also indirectly suggested by the number of publications having appeared over the past 50 years (Figure S1). This may have substantially influenced the prevalence of clinical events. Furthermore, the type and severity of clinical events were extrapolated, if and when available, from information in the original reports. In this context, we cannot exclude misclassification bias, over- or underreporting of comorbidities, and the presence of confounding by indication, as many individuals indeed received prohemostatic products before invasive procedures. We also acknowledge limitations concerning our prevalence estimates. GnomAD contains data from population studies and disease-specific genetic studies not including pediatric diseases: our estimates may not fully reflect the prevalence in the general population, especially considering that Africans are less genetically homogeneous than other groups. The fact that the prevalent pathogenic KLKB1 mutation c.451dupT, p.Ser151Phes*34 was found in individuals from African regions that are far apart, Ghana and Somalia, is only partially reassuring.

We identified novel mutations causing severe PK deficiency and unveiled that some of those previously described in the literature represent common variants. Prevalence of severe PK deficiency may be as high as 1 per 4725 among individuals of African ancestry. From a diagnostic perspective, it must be considered that ellagic-acid based aPTT reagents are relatively insensitive to PK deficiency, that FXII:C levels may be spuriously low, and that variably low PK:C levels are encountered in individuals with severe hereditary HK deficiency. These findings will play a role for the standardization of the diagnostic criteria of severe PK and HK deficiency. Individuals with PK deficiency are not characterized by a bleeding diathesis: delaying surgical procedures and the routine administration of prohemostatic agents before invasive procedures may not be justified. Future trials on plasma kallikrein inhibitors should include cardiovascular events as a safety outcome, as their prevalence was not negligible in individuals with severe PK deficiency.

Our data on mutations, prevalence estimates, laboratory characteristics, and clinical course of severe PK deficiency may have clinical implications. Based on these results we plan to start an international registry, ideally supported by the International Society on Thrombosis and Haemostasis, including individuals with suspected or confirmed PK and HK deficiencies. In the setting of a registry study, it will be possible to standardize diagnostic criteria, profit from the accumulated experience to serve as a platform for institutions where specific PK/HK tests are not available, and allow the prospective evaluation of clinical aspects and interpretation of functional and genotype data.

\textbf{ACKNOWLEDGMENTS}

The research project has been carried out at the University Medical Center of the Johannes Gutenberg University (Mainz, Germany) and was not funded. The work of SB, AT, AA, KJL, BL, and HR (platform “Advanced Diagnostics,” Center for Thrombosis and Hemostasis) is supported by the German Federal Ministry of Education and Research (BMBF 01EO1003 and 01EO1503). We would like to thank Adriana Degreif, Carolin Neukirch, and Sarah Krutmann (Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz), Minoo Ahmadinejad (Pediatric Congenital Hematologic Disorders Research Center,
for their technical assistance and help with data collection. We thank all the personnel of the Library of the University Medical Center of the Johannes Gutenberg University Mainz for having retrieved some reprints of prior publications. We acknowledge the help received by all the scientists who provided additional data or clarified details of the studies they co-authored, in particular Toshiyuki Miyata (Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan), Rajasekharan Warrier (Department of Anesthesiology, Ochsner Clinic Foundation, New Orleans, United States), Chiara Ambaglio (Department of Internal Medicine, IRCCS Fondazione Policlinico “San Matteo,” Pavia, Italy), Sonja Alesci (IMD Blood Coagulation Centre, Bad Homburg, Germany), Anna Corso (Department of Hematology, Ospedale Niguarda Ca Granda, Milano, Italy), Gary Moore (Diagnostic Haemostasis and Thrombosis Laboratories, GSTS Pathology, St. Thomas’ Hospital, London, United Kingdom), Silvia Zheng (Haematology Department and SEALS Pathology, Prince of Wales Hospital, Randwick, Australia), Kristen Ver Elst (Department of Laboratory Hematology, GZA Sint-Augustinus, Antwerp, Belgium), Matt Oram (Department of Anaesthesia, Bristol Royal Infirmary, Bristol, United Kingdom), and David Essex (Temple University School of Medicine, SoL Sherry Thrombosis Research Center and Division of Hematology, Philadelphia, United States). This report includes experiments/work performed by SS and AA, and help with data collection by Sarah Krutmann, during the preparation of their doctoral theses. The authors thank the study team and Steering Committee of the Gutenberg Health Study for the opportunity to use samples from enrolled individuals who agreed on parent analysis, including genotyping and PK:C measurement.

CONFLICTS OF INTEREST
None of the authors report any conflicts of interest with the present work. SB received travel and congress payment from Daiichi Sankyo and Bayer HealthCare, and personal honorarium from BTG Pharmaceuticals, Leo Pharma, and Bayer HealthCare, outside the present work. BL received travel and congress payment or lecture fees from Baxter, Ablynx, Alexion, Siemens, Bayer HealthCare, Roche, outside the present work.

AUTHOR CONTRIBUTIONS
Concept and design of the study, data analysis, and writing of the manuscript: SB, SS, AT, AA, BL, HR. Acquisition and interpretation of data: SB, SS, AT, AA, HA, LC, FH, JAKH, KJL, FL, EM, NVS, LT, WAW, BZ, BL, HR. Discussion concerning potentially eligible cases of severe PK deficiency: SB, SS, AT, AA, BL. Laboratory and bioinformatics analysis: SS, AA, FH, HR. Other statistical analyses: SB. Critical revision for important intellectual content and final approval: SB, SS, AT, AA, HA, LC, FH, JAKH, KJL, FL, EM, NVS, LT, WAW, BZ, BL, HR.

REFERENCES
1. Hathaway WE, Belhasen LP, Hathaway HS. Evidence for a new plasma thromboplastin factor. I. Case report, coagulation studies and physicochemical properties. Blood. 1965;26:521-532.
2. Colman RW, Schmaier AH. Contact system: a vascular biology modifier with anticoagulant, profibrinolytic, antiadhesive, and proinflammatory attributes. Blood. 1997;90:3819-3843.
3. Schmaier AH. Plasma prekallikrein: its role in hereditary angioedema and health and disease. Front Med. 2018;5:3.
4. Ivanov I, Matafonov A, Sun MF, et al. A mechanism for hereditary angioedema with normal C1 inhibitor: an inhibitory regulatory role for the factor XII heavy chain. Blood. 2019;133:1152-1163.
5. Banerji A, Busse P, Shennak M, et al. Inhibiting plasma kallikrein for hereditary angioedema prophylaxis. N Engl J Med. 2017;376:717-728.
6. Aygoren-Pursun E, Bygum A, Grivcheva-Panovska V, et al. Oral plasma kallikrein inhibitor for prophylaxis in hereditary angioedema. N Engl J Med. 2018;379:352-362.
7. Barbosa ACN, Montalvao SAL, Barbosa KGN, et al. Prolonged APTT of unknown etiology: a systematic evaluation of causes and laboratory resource use in an outpatient hemostasis academic unit. Res Pract Thromb Haemost. 2019;3:749-757.
8. Li X, Wood JP. Studies into prekallikrein activation pave the way for new avenues of antithrombotic research. J Thromb Haemost. 2019;17:717-719.
9. Girolami A, Ferrari S, Cosi E, Lombardi AM. A structure-function analysis in patients with prekallikrein deficiency. Hematology. 2018;23:346-350.
10. Schulman S, Kearon C. Subcommittee on Control of Anticoagulation of the S, Standardization Committee of the International Society on T, Haemostasis. Definition of major bleeding in clinical investigations of antihemostatic medicinal products in non-surgical patients. J Thromb Haemost. 2005;3:692-694.
11. Asmis LM, Sulzer I, Furlan M, Lammle B. Prekallikrein deficiency: the characteristic normalization of the severely prolonged aPTT following increased preincubation time is due to autoactivation of factor XII. Thromb Res. 2002;105:463-470.
12. Soussi T, Leroy B, Devir M, Rosenberg S. High prevalence of cancer-associated TP53 variants in the gnomAD database: a word of caution concerning the use of variant filtering. Hum Mutat. 2019;40:516-524.
13. Farac J. Die genetische Variabilität des Präkallikrein-Gens bei Patienten mit Präkallikreinmangel sowie in der Allgemeinbevölkerung. Hum Mutat. 2019;40:516-524.
14. Schulman S, Kearon C. Subcommittee on Control of Anticoagulation of the S, Standardization Committee of the International Society on T, Haemostasis. Definition of major bleeding in clinical investigations of antihemostatic medicinal products in non-surgical patients. J Thromb Haemost. 2005;3:692-694.
15. Asmis LM, Sulzer I, Furlan M, Lammle B. Prekallikrein deficiency: the characteristic normalization of the severely prolonged aPTT following increased preincubation time is due to autoactivation of factor XII. Thromb Res. 2002;105:463-470.
16. Soussi T, Leroy B, Devir M, Rosenberg S. High prevalence of cancer-associated TP53 variants in the gnomAD database: a word of caution concerning the use of variant filtering. Hum Mutat. 2019;40:516-524.
17. Farac J. Die genetische Variabilität des Präkallikrein-Gens bei Patienten mit Präkallikreinmangel sowie in der Allgemeinbevölkerung. Hum Mutat. 2019;40:516-524.
compound heterozygosis (383Trp stop codon and Cys529Tyr).

19. Wynne Jones D, Russell G, Allford SL, et al. Severe prekallikrein deficiency associated with homozygosity for an Arg94Stop nonsense mutation. Br J Haematol. 2004;127:220-223.

20. Nagaya S, Morishita E, Takami A, et al. An elderly case of congenital prekallikrein deficiency. Nihon Ronen Igakkai Zasshi. 2009;46:348-351.

21. Dasanu CA, Alexandrescu DT. A case of prekallikrein deficiency resulting in severe recurrent mucosal hemorrhage. Am J Med Sci. 2009;338:429-430.

22. Carpenter SL, Britton HA. A case of prekallikrein deficiency in a pediatric patient. Blood. 2005;106:105b-106b.

23. Kolodie L, Poirot P, Foret C. Un cas de déficit en facteur Fletcher. Nouv Rev Fr Hematol. 1980;22:89-90.

24. Malacrida A, Chantarangkie V, Tripodi A. Prekallikrein deficiency associated with homozygosity for an Arg94Stop nonsense mutation. Lab Medicine. 2010;41:271-274.

25. Depasse F. Un cas rare d'allongement du TCA: le déficit en prékallikréine. Immunoanal Biol Spec. 2000;15:139-142.

26. Sanfelippo MJ, Cafaro AJ, Hollister WN. APTT prolonged by prekallikrein deficiency. Lab Med. 1998;29:274-276.

27. Carpenter SL, Britton HA. A case of prekallikrein deficiency in a pediatric patient. Blood. 2005;106:105b-106b.

28. Kolodie L, Poirot P, Foret C. Un cas de déficit en facteur Fletcher. Nouv Rev Fr Hematol. 1980;22:89-90.

29. Malacrida A, Chantarangkie V, Tripodi A. Prekallikrein deficiency associated with homozygosity for an Arg94Stop nonsense mutation. Lab Medicine. 2010;41:271-274.

30. Criel M, Declau F, Schuermans C, et al. Prekallikrein deficiency in a 15-year-old boy with Meniere's disease: a case report. Acta Clin Belg. 2017;72:274-277.

31. Nakao T, Yamane T, Katagami T, et al. Severe prekallikrein deficiency due to a homozygous Trp99Stop nonsense mutation. Blood Coagul Fibrinolysis. 2011;22:337-339.

32. Currimbhoy Z, Vinciguerra V, Palakavongs P, Kuslansky P, Degnan DE. Fletcher factor deficiency, a rare cause of a significant prolongation of the activated partial thromboplastin time. Apropos of a case. Cah Anesthesiol. 1991;39:421-423.

33. Currimbhoy Z, Vinciguerra V, Palakavongs P, Kuslansky P, Degnan DE. Fletcher factor deficiency, a rare case of a significant prolongation of the activated partial thromboplastin time. Apropos of a case. Cah Anesthesiol. 1991;39:421-423.

34. Raffoux C, Alexandre P, Perrier P, Briquel ME, Streiff F. HLA typing in a new family with Fletcher factor deficiency. Hum Genet. 1982;60:71-73.

35. Waddell CC, Brown JA, Udden MM. Plasma prekallikrein (Fletcher factor) deficiency in a patient with chronic lymphocytic leukemia. South Med J. 1980;73:1653-1655.

36. Poon MC, Moore MR, Castleberry RP, Lurie A, Huang ST, Lehnmeyer J. Severe Fletcher factor (plasma prekallikrein) deficiency with partial deficiency of Hageman factor (factor XII): report of a case with observation on in vivo and in vitro leukocyte chemotaxis. Am J Hematol. 1982;12:261-270.

37. Castaman G, Ruggeri M, Rodeghiero F. A new Italian family with severe prekallikrein deficiency. Desmopressin-induced fibrinolysis and coagulation changes in homozygous and heterozygous members. Ric Clin Lab. 1990;20:239-244.

38. Kyrla PA, Niessner H, Deutsch E, Lehchner K, Korninger C, Mannhalter C. CRM+ severe Fletcher factor deficiency associated with Graves' disease. Haemostasis. 1984;14:302-306.

39. Odumosu MC, Yoong WC, Fakokunde AF. Fletcher factor deficiency in a woman requiring emergency caesarean section. J Obstet Gynaecol. 2009;29:442.

40. van Veen JJ, Laidlaw S, Swanevelder J, et al. Contact factor deficiencies and cardiopulmonary bypass surgery: detection of the defect and monitoring of heparin. J Thromb Haemost. 2009;7:208-212.

41. DeLa Cadena RA. Fletcher factor deficiency in a 9-year-old girl: mechanisms of the contact pathway of blood coagulation. Am J Hematol. 1995;48:273-277.

42. Dietzel H, Lutzke G, Katzle R, Liebscher K. [Prekallikrein (Fletcher Factor) Deficiency and Prolongation of APTT Reaction]. Med Klin. 2003;98:587-590.

43. Saade M. Fletcher factor deficiency with mildly prolonged activated PTT. South Med J. 1980;73:958.

44. Guerra CC, Pollini IE. [Plasma prekallikrein deficiency: 1st case diagnosed in Brazil]. Rev Paul Med. 1985;103:103-104.

45. Colla G, Carrea M, Scaffa F. Fletcher factor deficiency (Report of a new case). Ric Clin Lab. 1983;13:443-448.

46. Abecassis L, Poupin F, Forceville X, Tapie-Deugue M, Amiot JF. Prekallikrein deficiency: a rare cause of a significant prolongation of the activated partial thromboplastin time. Apropos of a case. J Thromb Haemost. 2003;1:1314-1316.

47. Ragni MV, Lewis JH, Hasiba U, Spero JA. Prekallikrein (Fletcher factor) deficiency in clinical disease states. J Thromb Haemost. 2003;1:1314-1316.

48. Andreani G, Paladino E, Liotta AA, et al. The laboratory of primo livello nella diagnosi di carenza di pre-callicreina: descrizione di un caso biochimica clinica. 2010; 34: 093.

49. Sollo DG, Saleem A, Prekallikrein (Fletcher factor) deficiency. Ann Clin Lab Sci. 1985;15:279-285.

50. Arcar K, Yagci M, Sucak GT, Haznedar R. Isolated prolonged activated partial thromboplastin time in an asymptomatic patient: Fletcher factor deficiency. Thromb Res. 2006;118:765-766.

51. Baker SM, Kiefer A, Carollo DS, Warrier RP. Prolonged activated partial thromboplastin time in an asymptomatic patient: Fletcher factor deficiency. Thromb Res. 2003;106:115-119.

52. Shigekiiyo T, Fujino O, Kanagawa Y, Matsumoto T. Prekallikrein (PK) Tokushima: PK deficiency caused by a Gly401–>Glu mutation. J Thromb Haemost. 2003;1:1314-1316.
63. Maak B, Kochhan L, Heuchel P, Jenderny J. (Severe prekallikrein deficiency due to a compound heterozygosis in the KLKB1-gene). Haemostaseologie. 2009;29:187-189.

64. Girolami A, Vital J, Sabagh M, et al. The old and the new in prekallikrein deficiency: historical context and a family from Argentina with PK deficiency due to a new mutation (Arg541Gln) in exon 14 associated with a common polymorphism (Asn124Ser) in exon 5, Semin Thromb Hemost. 2014;40:592-599.

65. Harris MG, Exner T, Rickard KA, Kronenberg H. Multiple cerebral thrombosis in Fletcher factor (prekallikrein) deficiency: a case report. Am J Hematol. 1985;19:387-393.

66. Jorgg J, Stalder M, Knecht H, Hauert J, Bachmann F. [Prekallikrein deficiency: aprop of 2 cases]. Schweiz Med Wochenschr. 1990;120:1942-1944.

67. Katsuda I, Maruyama F, Ezaki K, Sawamura T, Ichihara Y. A new type of plasma prekallikrein deficiency associated with homogyosity for Gly104Arg and Asn124Ser in apple domain 2 of the heavy-chain region. Eur J Haematol. 2007;79:59-68.

68. Girolami A, Marun S, Vettore S, et al. A large family from Argentina with prekallikrein deficiency due to a compound heterozygosis (T insertion in intron 7 and Asp558Glu in exon 15): prekallikrein Cordoba. Am J Hematol. 2010;85:363-366.

69. Saito H, Goodnough LT, Soria J, Soria C, Aznar J, Espana F. Heterogeneity of human prekallikrein deficiency (Fletcher trait): evidence that five of 18 cases are positive for cross-reacting material. N Engl J Med. 1981;305:910-914.

70. De Stefano V, Leone G, Teofili L, et al. Association of Graves’ disease and prekallikrein congenital deficiency in a patient belonging to the first CRM+ prekallikrein-deficient Italian family. Thromb Res. 1990;60:397-404.

71. Hattersley PG, Hayse D. Fletcher factor deficiency: a report of three unrelated cases. Br J Haematol. 1970;18:411-416.

72. Aznar JA, Espana F, Aznar J, Tascon A, Jimenez C. Fletcher factor deficiency: report of a new family. Scand J Haematol. 1978:21:94-98.

73. Goodnough LT, Saito H, Ratnoff OD. Thrombosis or myocardial infarction in congenital clotting factor abnormalities and chronic thrombocytopenia: a report of 21 patients and a review of 50 previously reported cases. Medicine. 1983;62:248-255.

74. Bouma BN, Kerbiriou DM, Baker J, Griffin JH. Characterization of a variant prekallikrein, prekallikrein Long Beach, from a family with mixed cross-reacting material-positive and cross-reacting material-negative prekallikrein deficiency. J Clin Invest. 1986;78:170-176.

75. Al-Harbi I, Alahmadi EH, Althobaiti AS, Medhir RJ. A prekallikrein deficiency case report (Saudi boy with prekallikrein deficiency). EC Paediatrics. 2016;24:201-204.

76. Nazir HF, Pathare AV. Prekallikrein and high molecular weight kininogen deficiency in Oman: a challenging diagnosis in mucosal bleeding. Hematol Transfus Int J. 2019;7:11-15.

77. Vorst EJ, Berrebi A. Three cases of Fletcher factor deficiency in an Iranian Jewish family with various allergic and/or rheumatoid features. Thromb Res. 1986;VI:37.

78. Scharf R, Bünnder R, Hoffmann T, Makhloifi H. Monitoring of intraoperative anticoagulation in individuals with prekallikrein deficiency using rotational thrombelastography. Vox Sang. 2010;99(Suppl.1):446.

79. Wang JD, Shen MC, Hua KS, et al. A first Taiwanese patient of severe Prekallikrein deficiency with novel mutations seen in Taiwan. J Thromb Haemost. 2011;9:222-223.

80. Gansauge MT, Meyer M. Single-stranded DNA library preparation for the sequencing of ancient or damaged DNA. Nat Protoc. 2013;8:737-748.

81. Savoia A, Kunishima S, De Rocco D, et al. Spectrum of the mutations in Bernard-Soulier syndrome. Hum Mutat. 2014;35:1033-1045.

82. Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405-424.

83. Faraj J. Die genetische Variabilität des Präkallikrein-Gens bei Patienten mit Präkallikreinmangel sowie in der Allgemeinbevölkerung (Doctoral Thesis). 2008.

84. Iorio A, Stonebraker JS, Chambost H, et al. Establishing the prevalence and prevalence at birth of hemophilia in males: a meta-analytic approach using national registries. Ann Intern Med. 2019;171(8):540.

85. Revenko AS, Gao D, Crosby JR, et al. Selective depletion of plasma prekallikrein or coagulation factor XII inhibits thrombosis in mice without increased risk of bleeding. Blood. 2011;118:5302-5311.

86. Stavrou EX, Fang C, Merkulova A, et al. Reduced thrombosis in Klkb1/-/- mice is mediated by increased Mas receptor, pros-tacyclin, Sirt1, and KLF4 and decreased tissue factor. Blood. 2015;125:710-719.

87. Bird JE, Smith PL, Wang X, et al. Effects of plasma kallikrein deficiency on haemostasis and thrombosis in mice: murine ortholog of the Fletcher trait. Thromb Haemost. 2012;107:1141-1150.

88. Chinn DR, Dodds WJ, Selcer BA. Prekallikrein deficiency in a dog. J Am Vet Med Assoc. 1986;188:69-71.

89. Geor RJ, Jackson ML, Lewis KD, Fretz PB. Prekallikrein deficiency in a family of Belgian horses. J Am Vet Med Assoc. 1990;197:741-745.

90. Selak V, Kerr A, Poppe K, et al. Annual risk of major bleeding among persons without cardiovascular disease not receiving antiplatelet therapy. JAMA. 2018;321:2507-2520.

91. Oh-ishi S, Ueno A, Uchida Y, et al. Abnormalities in the contact activation through factor XII in Fujiwara trait: a deficiency in both high and low molecular weight kininogens with low level of prekallikrein. Tohoku J Exp Med. 1981;133:67-80.

92. Donaldson VH, Kleinevski J, Saito H, Sayed JK. Prekallikrein deficiency in a kindred with kininogen deficiency and Fitzgerald trait clotting defect. Evidence that high molecular weight kininogen and prekallikrein exist as a complex in normal human plasma. J Clin Invest. 1977;60:571-583.

93. Waldmann R, Abraham JP, Reubuck JW, Caldwell J, Saito H, Ratnoff OD. Fitzgerald factor: a hitherto unrecognised coagulation factor. Lancet. 1975;1:949-951.

94. Colman RW, Bagdasarian A, Talamo RC, et al. Williams trait. Human kininogen deficiency with diminished levels of plasminogen proactivator and prekallikrein associated with abnormalities of the Hageman factor-dependent pathways. J Clin Invest. 1975;56:1650-1662.

95. Hayashi H, Ishimaru F, Fujita T, Tsurumi N, Tsuda T, Kimura I. Molecular genetic survey of five Japanese families with high-molecular-weight kininogen deficiency. Blood. 1990;75:1296-1304.

96. Fukushima N, Itamura H, Wada H, et al. A novel frameshift mutation in exon 4 causing a deficiency of high-molecular-weight kininogen in a patient with splenic infarction. Intern Med. 2014;53:253-257.

97. Krijanovski Y, Proulle V, Mahdi F, Dreyfus M, Muller-Esterl W, Schmaier AH. Characterization of molecular defects of Fitzgerald trait and another novel high-molecular-weight kininogen-deficient patient: insights into structural requirements for kininogen expression. Blood. 2003;101:4430-4436.

98. Ishimaru F, Dansako H, Nakase K, et al. Molecular characterization of total kininogen deficiency in Japanese patients. Int J Hematol. 1999;69:126-128.

99. Lefrere JJ, Horellou MH, Gozin D, et al. Establishing the prevalence and prevalence at birth of hemophilia in males: a meta-analytic approach using national registries. Ann Intern Med. 2019;171(8):540.

100. Gallani D, Wheeler AP, Neff AT. Hematology - Chapter 137 - Rare Coagulation Factor Deficiencies. 2018.
101. Turi DC, Peerschke EI. Sensitivity of three activated partial thromboplastin time reagents to coagulation factor deficiencies. *Am J Clin Pathol*. 1986;85:43-49.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section.

How to cite this article: Barco S, Sollfrank S, Trinchero A, et al. Severe plasma prekallikrein deficiency: Clinical characteristics, novel KLKB1 mutations, and estimated prevalence. *J Thromb Haemost*. 2020;18:1598–1617. https://doi.org/10.1111/jth.14805