Концентрация андрогенов и эстрогенов при доброкачественной гиперплазии предстательной железы

Г. Е. Ройтберг1, 2, К. Г. Мкртчян2, Н. Г. Кульченко3

1ФГБОУ ВО «Российский национальный исследовательский медицинский университет им. Н. И. Пирогова» Минздрава России; Россия, 117437 Москва, ул. Островитянова, 1;
2АО «Медицина»; Россия, 125047 Москва, 2-й Тверской-Ямской пер., 10;
3ФГАОУ ВО «Российский университет дружбы народов»; Россия, 117198 Москва, ул. Миклухо-Маклая, 6

Контакты: Нина Геннадьевна Кульченко kle-kni@mail.ru

Введение. Этиология доброкачественной гиперплазии предстательной железы (ДГПЖ) полностью не изучена. Основную роль в индукции пролиферации ткани предстательной железы (ПЖ) отводят метаболизму тестостерона. В последнее время появились сообщения о том, что одним из факторов риска ДГПЖ выступает хроническое нарушение кровоснабжения ПЖ.

Цель исследования – определить уровень половых гормонов в сыворотке крови и ткани ПЖ лабораторных животных при создании модели хронической ишемии.

Материалы и методы. Исследование проведено на 20 белых нелинейных половозрелых крысах-самцах. В основную группу вошли 10 крыс, у которых была смоделирована хроническая ишемия органов таза путем частичного лигирования нижней полой вены. Контрольную группу составили 10 крыс аналогичного возраста, у которых вмешательство не выполняли. Через 1,5 мес у крыс обеих групп в крови и ткани ПЖ определен уровень половых гормонов: тестостерона, дигидротестостерона и эстрадиола. У всех животных проведено морфологическое исследование ПЖ.

Результаты. Выявлено статистически значимое увеличение массы ПЖ у крыс основной группы на 16,4 % (р <0,05). У крыс с ДГПЖ и нарушением кровоснабжения ПЖ наблюдалась изменение гормонального статуса – повышенный уровень тестостерона (р <0,05) и дигидротестостерона (р >0,05) в ткани предстательной железы.

Заключение. Длительно существующие ишемические нарушения кровоснабжения ПЖ могут быть триггером развития ДГПЖ вследствие увеличения концентрации тестостерона.

Ключевые слова: доброкачественная гиперплазия предстательной железы, тестостерон, дигидротестостерон, эстрадиол, хроническая ишемия, экспериментальное исследование

Для цитирования: Ройтберг Г. Е., Мкртчян К. Г., Кульченко Н. Г. Концентрация андрогенов и эстрогенов при доброкачественной гиперплазии предстательной железы. Андрология и генитальная хирургия 2020;21(4):47–53.

DOI: 10.17650/2070-9781-2020-21-4-47-53

The concentration of androgens and estrogens in benign prostatic hyperplasia

G. E. Roitberg1, 2, K. G. Mkrtchyan2, N. G. Kulchenko3

1N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia; 1 Ostrovityanova St., Moscow 117437, Russia;
2Meditinsa JSC; 10 Tverskoy-Yamskoy Ln, Moscow 125047, Russia;
3RUDN University; 6 Miklukho-Maklaya St., Moscow 117198, Russia

Background. The etiology of benign prostatic hyperplasia (BPH) has not been fully studied. The main role in the induction of prostate tissue proliferation is assigned to the metabolism of testosterone. Recently, it has been reported that one of the risk factors for BPH is a chronic violation of the blood supply to the prostate.

The study objective is to determine the level of reproductive hormones in blood serum and prostate tissue when creating a model of chronic ischemia.

Materials and methods. The model of chronic pelvic ischemia was created in 10 white non-linear mature rats by partial ligation of the inferior vena cava. The control group of the study consisted of 10 male rats of the same age. After 1.5 months, we performed a hormonal study in all rats (n = 20) determining the concentration of testosterone, dihydrotestosterone and estradiol in the blood and prostate tissue. Also, in all animals (n = 20), a morphological study of the prostate was performed.

Results. We’ve found a significant increase in prostate mass in the main group of rats by 16.4 % (p <0.05). Animals with BPH and impaired blood supply to the prostate had changes in their hormonal status – increased levels of testosterone (p <0.05) and dihydrotestosterone (p >0.05) in the prostate tissue.

Conclusion. Long-term ischemic disorders in the prostate may be a trigger factor for the development of BPH due to an increase in the concentration of testosterone.
Введение
Доброкачественная гиперплазия предстательной железы (ДГПЖ) — одно из наиболее распространенных заболеваний у мужчин старше 50 лет [1—5]. Многолетние исследования показывают, что патогенез ДГПЖ остается до конца не ясным. Основную роль в индукции пролиферации ткани предстательной железы (ПЖ) отводят метаболизму тестостерона. По современным представлениям, усиление процесса трансформации тестостерона в его активный метаболический аналог — дигидротестостерон — вносит вклад в патогенез ДГПЖ [6—8].

В последнее время появились сообщения о том, что одним из факторов риска развития ДГПЖ выступает хроническое нарушение кровоснабжения ПЖ [9, 10]. Такое состояние может развиваться вследствие возрастных изменений сосудов малого таза, атеросклероза и т.д. [11]. Уже опубликованы результаты исследований, доказывающие ухудшение кровоснабжения мочевого пузыря и развитие его дисфункции при ДГПЖ [11, 12]. Следовательно, вопрос о риске возникновения ишемического поражения ПЖ (рис. 1). У животных основной группы масса ПЖ через 1,5 мес после создания модели хронической ишемии была больше на 16,4 % (p <0,05), чем в контрольной группе, однако эти различия не были статистически значимыми (табл. 1). Уровень дигидротестостерона в сыворотке крови крыс был выше на 9,1 %, чем в контрольной группе, однако эти различия не были статистически значимыми (p >0,05). Статистическую обработку материала выполнена с использованием программы Statistica 7.0. Статистическая значимость различий между количественными показателями оценивали с помощью критерия Манна—Уитни. Различия считали значимыми при p <0,05.

Цель исследования — определить уровень половых гормонов в сыворотке крови и ткани ПЖ лабораторных животных при создании модели хронической ишемии.

Материалы и методы
Экспериментальное исследование проведено на 20 белых нелинейных половозрелых крысах—самцах весом 200—250 г. Возраст всех крыс составил 6 мес. Все животные были распределены по 2 равным группам. В основную группу включены 10 крыс, у которых была смоделирована хроническая ишемия органов таза путем нарушения венозного оттока от тазовых органов с помощью частичного лигирования нижней полой вены [12]. Контрольную группу составили 10 крыс, у которых вмешательство не выполняли.

Через 1,5 мес у крыс обеих групп в крови и ткани ПЖ определены уровень половых гормонов: андрогенов (тестостерона, дигидротестостерона) и эстрогенов (эстрадиола). Содержание гормонов определяли иммуноферментным методом (DRG Instrument GmbH, ФРГ) на анализаторе Artemis K-101 HTRF Microplate Reader (Bertold Technologies GmbH & Co. KG, ФРГ).

Уровень дигидротестостерона в основной группе через 1,5 мес после создания модели хронической ишемии ПЖ был выше на 18,1 %, чем в контрольной группе, однако эти различия не были статистически значимыми (p >0,05). Уровень общего тестостерона в сыворотке крови крыс с ишемическим поражением ПЖ был ниже на 18,1 %, чем в контрольной группе. Контрольную группу составили 10 крыс, у которых вмешательство не выполняли.

Материалы и методы
Экспериментальное исследование проведено на 20 белых нелинейных половозрелых крысах—самцах весом 200—250 г. Возраст всех крыс составил 6 мес. Все животные были распределены по 2 равным группам. В основную группу включены 10 крыс, у которых была смоделирована хроническая ишемия органов таза путем нарушения венозного оттока от тазовых органов с помощью частичного лигирования нижней полой вены [12]. Контрольную группу составили 10 крыс, у которых вмешательство не выполняли.

Через 1,5 мес у крыс обеих групп в крови и ткани ПЖ определены уровень половых гормонов: андрогенов (тестостерона, дигидротестостерона) и эстрогенов (эстрадиола). Содержание гормонов определяли иммуноферментным методом (DRG Instrument GmbH, ФРГ) на анализаторе Artemis K-101 HTRF Microplate Reader (Bertold Technologies GmbH & Co. KG, ФРГ).

Уровень дигидротестостерона в основной группе через 1,5 мес после создания модели хронической ишемии ПЖ был выше на 18,1 %, чем в контрольной группе, однако эти различия не были статистически значимыми (p >0,05). Уровень общего тестостерона в сыворотке крови крыс с ишемическим поражением ПЖ был ниже на 18,1 %, чем в контрольной группе. Контрольную группу составили 10 крыс, у которых вмешательство не выполняли.

В крови животных обеих групп уровень общего тестостерона статистически значимо не различался (p >0,05). Уровень дигидротестостерона в сыворотке крови крыс с ишемическим поражением ПЖ был ниже на 18,1 %, чем в контрольной группе, а эстрадиола — на 20,8 % по сравнению с показателями контрольной группы. Концентрация общего тестостерона в тканях ПЖ в основной и контрольной группах статистически значимо различалась и была выше у крыс с хроническими ишемическими поражениями ПЖ на 22 % (p <0,05) (рис. 2).

Результаты
Мы выявили статистически значимое увеличение массы ПЖ через 1,5 мес после создания модели хронической ишемии ПЖ (рис. 1). У животных основной группы масса ПЖ была больше на 16,4 % (p <0,05).

В крови животных обеих групп уровень общего тестостерона статистически значимо не различался (p >0,05). Уровень дигидротестостерона в сыворотке крови крыс с ишемическим поражением ПЖ был ниже на 18,1 %, а эстрадиола — на 20,8 % по сравнению с показателями контрольной группы. Концентрация общего тестостерона в тканях ПЖ в основной и контрольной группах статистически значимо различалась и была выше у крыс с хроническими ишемическими поражениями ПЖ на 22 % (p <0,05) (рис. 2).

Уровень дигидротестостерона в основной группе был выше на 9,1 %, чем в контрольной (соответственно 89 ± 3 и 81 ± 2 пг/мл), однако различия были статистически незначимы (p >0,05). Между группами не обнаружены также статистически значимые различия.
в уровне эстрадиола ($p > 0.05$). Более того, концентрация эстрадиола в ткани УЖ и в основной группе, и в контрольной не достигла порогового значения (<10 пг/г).

Обсуждение
Известно, что метаболизм тестостерона связан с такими состояниями, как ожирение, возрастной гипогонадизм, гипертоническая болезнь, нарушение толерантности к глюкозе [14–16]. Все эти заболевания сопровождаются снижением перфузии органов и развитием гипоксии. Так как вышеперечисленные заболевания и ДГПЖ чаще встречаются у мужчин пожилого возраста, очевидна взаимосвязь между ними.

Экспериментальные исследования показали, что атеросклероз сосудов тазовых органов у кроликов приводит к ишемии нижних мочевыводящих путей и провоцирует окислительный стресс, что приводит к функциональным изменениям в ПЖ и в стенке мочевого пузыря [17]. У кроликов при хронической ишемии ПЖ развивается стромальный фиброз и кистозная атрофия концевых секреторных отделов [17]. Железистая гипертрофия ПЖ, индуцированная нарушением кровоснабжения (ишемией), может быть взаимосвязана со снижением выработки сосудистого эндотелиального фактора роста (VEGF) [18, 19].

Наше исследование показывает, что сам факт длительной ишемии ПЖ провоцирует ее гиперплазию. Гипоксия стимулирует избыточное образование соединительной ткани, поэтому мы зафиксировали у крыс с моделью хронической ишемии выраженные разрастания стромы с формированием железисто-фibriозной ДГПЖ.

Предстательная железа является органом, реагирующим на андрогены [20]. Существует корреляция между уровнем продукции адренорецепторов и степенью прогрессирования ДГПЖ. Более того, повышенная чувствительность к тестостерону ткани ПЖ при ее узловой гиперплазии статистически значимо коррелирует с оценкой по IPSS (International Prostate Symptom Score, международная шкала оценки симптомов со стороны ПЖ) и объемом железы [21]. Таким образом, длительно существующая хроническая ишемия ПЖ может привести к изменениям в экспрессии рецепторов половых гормонов.

В нашем исследовании у крыс с ДГПЖ и нарушением кровоснабжения ПЖ были выявлены изменения в гормональном статусе: повышенный уровень тестостерона ($p < 0.05$) и дигидротестостерона ($p > 0.05$) в ткани ПЖ. Опираясь на известные сведения о том, что тестостерон и его метаболиты провоцируют гиперплазию ПЖ, можно утверждать, что длительно существующие ишемические нарушения в ПЖ могут быть триггером развития ДГПЖ.

Заключение
Хронические ишемические нарушения в ПЖ могут быть самостоятельным патогенетическим фактором развития ДГПЖ. Повреждение сосудов приводит к нарушению кровотока и гипоксии с повышением тканевой концентрации тестостерона, что потенцирует развитие ДГПЖ. При выявлении ослабленного кровотока в сосудах ПЖ целесообразно включать в комплекс медикаментозной терапии препараты, улучшающие микроциркуляцию.
Уровень половых гормонов в крови обеих групп животных

The level of reproductive hormones in the blood of both animals' groups

Гормон	Основная группа \(n = 10 \)	Контрольная группа \(n = 10 \)	\(p \)
Общий тестостерон, нг/мл	3,8 ± 0,3	3,9 ± 0,8	>0,05
Dihydrotestosterone, pg/ml	440 ± 36	537 ± 48	>0,05
Эстрadiол, pg/ml	23,6 ± 3,1	29,5 ± 4,7	>0,05

Рис. 1. Масса предстательной железы в основной группе крыс (на фоне хронической ишемии предстательной железы) и контрольной группе \(p < 0,05 \)

Fig. 1. Comparison of prostate mass in the main group of rats (against the background of chronic prostate ischemia) and control group \(p < 0,05 \)

Рис. 2. Концентрация общего тестостерона в ткани предстательной железы в основной группе крыс (на фоне хронической ишемии предстательной железы) и контрольной группе \(p < 0,05 \)

Fig. 2. Concentration of total testosterone in prostate tissue in the main group of rats (against the background of chronic prostate ischemia) and control group \(p < 0,05 \)
Introduction

Benign prostatic hyperplasia (BPH) is one of the most common diseases in men over 50 years old [1–5]. Long-lasting studies show that the pathogenesis of BPH remains unclear. The main role in the induction of prostate tissue proliferation is assigned to the metabolism of testosterone. According to modern concepts, an increase in the transformation of testosterone into its active metabolic analog-dihydrotestosterone has a pathogenetic value in prostatic hyperplasia [6–8].

Recently, it has been reported that one of the risk factors for BPH is a chronic violation of the blood supply to the prostate [9, 10]. This condition can develop due to age-related changes in the pelvic vessels, atherosclerosis, etc. [11]. There are already studies in the literature that prove the deterioration of blood supply to the bladder and the development of its dysfunction in BPH [12]. Therefore, the study of the growth of hyperplastic prostate nodes against the background of chronic ischemia is an urgent issue of modern urology.

The study objective is to determine the level of reproductive hormones in blood serum and prostate tissue when creating a model of chronic ischemia.

Materials and methods

The research was experimental. The study included 20 white non-linear sexually mature rats. All the rats were 6 months old and weighed 200–250 g. All manipulations with animals were performed in accordance with the guidelines for the maintenance and use of laboratory animals [13].

All animals were divided into 2 equal groups:

– main group (n = 10),
– control (intact) group (n = 10).

The first step in the main group of animals (n = 10) was to create a model of chronic prostatic ischemia by disrupting venous outflow from the pelvic organs using dosed ligation of the inferior vena cava [12].

Then, 1.5 months after the ischemic effect on the prostate, we’ve performed a hormonal study in all rats (n = 20) — determining the concentration of androgens (testosterone, dihydrotestosterone) and estrogens (estradiol) in the blood and prostate tissue. The level of hormones in the blood serum was determined by immunochemiluminescence on the access 2 device (Beckman Coulter, USA). To determine the concentration of androgens in the prostate tissue, we prepared a homogeneous substrate in the ratio of tissue/saline 1:10. This substrate was centrifuged at 3000 rpm for 5 min. The concentration of hormones was determined by an enzyme immunoassay (DRG Instrument GmbH, Germany) using an Artemis K–101 HTRF Microplate Reader (Berthold Technologies GmbH & Co. KG, Germany).

At the end of the experiment, a morphological study of the prostate gland of the studied animals (n = 20) was performed: mass determination and light microscopy of histological sections stained with hematoxylin and eosin.

Discussion

As we know the metabolism of testosterone is associated with such conditions as obesity, age-related hypogonadism, hypertension, impaired glucose tolerance [14–16]. All these diseases are accompanied by a decrease in organ perfusion and the development of hypoxia. Since the diseases listed above and BPH are more common in older men, the relationship between them is obvious.

Experimental studies have shown that pelvic vascular atherosclerosis in rabbits leads to lower urinary tract ischemia and induces oxidative stress, which leads to functional changes in the prostate and in the bladder wall [17]. Rabbits with chronic prostatic ischemia develop stromal fibrosis and cystic atrophy of the terminal secretory divisions.
[17]. Glandular prostatic hypertrophy induced by blood supply disorders (ischemia) may be associated with decreased production of vascular endothelial growth factor (VEGF) [18, 19].

Our study shows that the main fact of long-term prostate ischemia provokes its prostatic hyperplasia. Hypoxia stimulates excessive formation of connective tissue. For this reason, we recorded a marked growth of the stroma with the formation of glandular-fibrous BPH in rats with the formed model of chronic ischemia.

The prostate is an organ that reacts to androgens [20]. There is a correlation between the expression of adrenoreceptors and the progression of BPH. Moreover, increased sensitivity to testosterone in prostate tissue with nodular hyperplasia significantly correlates with the level of IPSS and the volume of the gland [21]. Thus, long-term chronic prostatic ischemia can lead to changes in the expression of sex hormone receptors.

In our study, rats with BPH and impaired blood supply to the prostate had changes in their hormonal status: increased levels of testosterone ($p < 0.05$) and dihydrotestosterone ($p > 0.05$) in the prostate tissue. Based on the known information that testosterone and its metabolites provoke prostatic hyperplasia, which can be claimed that long-term ischemic disorders in the prostate can be a trigger factor for the development of BPH.

Conclusion

Chronic ischemic disorders in the prostate can be described as an independent pathogenetic factor in the development of BPH. Vascular damage leads to impaired blood flow and hypoxia, with increased tissue concentration of testosterone, which potentiates the development of BPH.

When detecting reduced blood flow in the prostate vessels, it is sensible to include drugs that improve microcirculation in the complex of drug therapy.

References

1. Emberton M., Cornel E.B., Bassi P.F. et al. Benign prostatic hyperplasia as a progressive disease: a guide to the risk factors and options for medical management. Int J Clin Pract 2008;62(7):1076–86. DOI: 10.1111/j.1742-1241.2008.01785.x.

2. Foo K.T. What is a disease? What is the disease clinical benign prostatic hyperplasia (BPH)? World J Urol 2019;37(7):1293–6. DOI: 10.1007/s00345-019-02691-0.

3. Filimonov V.B., Vasin R.V., Kostin A.A., Panchenko V.N. The influence of metabolic syndrome on the development and clinical manifestations of benign prostatic hyperplasia. Issledovaniya i praktika v medicins = Research and Practical Medicine Journal 2018;5(2):48–55. (In Russ.)

4. Filimonov V.B., Vasin R.V., Kostin A.A., Panchenko V.N. The influence of metabolic syndrome on the development and clinical manifestations of benign prostatic hyperplasia. Issledovaniya i praktika v medicins = Research and Practical Medicine Journal 2018;5(4):46–57. (In Russ.)

5. Akobova R., Ryzhakin S.M. The authors reply. Vascular and lymph circulation in the prostate and inflammatory diseases of the prostate. Izvestiya vuzov. Vesti vestnik = Vestnik “Biomedicina and Sociology” 2019;4(2):21–4. (In Russ.). DOI: 10.26787/nydha-2618-8783-2019-4-2-21-24.

6. Kabir A., Cyrus A. The authors reply: Impact of metabolic syndrome on response to medical treatment of benign prostatic hyperplasia. Korean J Urol 2015;56(12):847–8. DOI: 10.4111/kju.2015.56.12.847.

7. Efremov E.A., Shekhovtsov S.Y., Merinov D.S. et al. Change in testosterone levels in endoscopic operations on the prostate gland. Issledovaniya i praktika v medicins = Research and Practical Medicine Journal 2018;5(2):48–55. (In Russ.).

8. Kulpchenko N.G., Yatsenko E.V. Phytotherapy for inflammatory diseases of the prostate. Issledovaniya i praktika v medicins = Research and Practical Medicine Journal 2019;6(3):87–97. (In Russ.)

9. Astashov V.V., Borodin Yu.I., Yorkov M.A. et al. Blood and lymph circulation in the prostate in dyscirculatory disorders. Prikladnaya toksikologiya = Applied Toxicology 2012;3(7):27–35. (In Russ.)

10. Sun F., Crisóstomo V., Báz-Díaz C., Sánchez F.M. Prostatic artery embolization (PAE) for symptomatic benign prostatic hyperplasia (BPH): Part 2, insights into the technical rationale. Cardiovasc Intervent Radiol 2016;39(2):161–9. DOI: 10.1007/s00270-015-1233-x.

11. Röttger G.E., Doroš J.V. Primene- niye vrahom praktiki integra- l’noj praktiki k ocheni riska pro- gressirovaniya ateroskleroticheskogo porazhena sokudobuchetnikh pazientov s in- sufiksnorezeptivnostyu. Speravchik vrahom obshchestvennoj praktiki 2018;5(15):14–9. (In Russ.)

12. Kirpatovskiy V.I., Mudraya I.S., Mkrtchyan K.G. et al. Ischemia in pelvic
organs as an independent pathogenic factor in the development of benign prostatic hyperplasia and urinary bladder dysfunction. Bull Exp Biol Med 2015;158(6):718–22. DOI: 10.1007/s10517-015-2845-5.

13. Hawkins P., Morton D.B., Burman O. et al. A guide to defining and implementing protocols for the welfare assessment of laboratory animals: eleventh report of the BVA/AWF/FRAME/RSPCA/UFAW Joint Working Group on Refinement. Lab Anim 2011;45(1):1–13. DOI: 10.1258/la.2010.010031.

14. Чумаков П.И., Марченко Л.А., Кравченко И.В. Эпидемиологическое исследование распространенности возрастного гипогонадизма у пациентов с доброкачественной гиперплазией предстательной железы на территории Ставропольского края. Трудный пациент 2019;17(5):36–8. [Chumakov P.I., Marchenko L.A., Kravchenko I.V. Epidemiological study of the prevalence of the late-onset hypogonadism in patients with benign prostatic hyperplasia in the Stavropol Region. Trudny patsient = Difficult Patient 2019;17(5):36–8. (In Russ.).]

15. Wu S., He H., Wang Y. et al. Association between benign prostate hyperplasia and metabolic syndrome in men under 60 years old: a meta-analysis. J Int Med Res 2019;47(11):5389–99. DOI: 10.1177/0300060519876823.

16. Patel N.D., Parsons J.K. Epidemiology and etiology of benign prostatic hyperplasia and bladder outlet obstruction. Indian J Urol 2014;30(2):170–6. DOI: 10.4103/0970-1591.126900.

17. Azadzoi K.M., Babayan R.K., Kozlowski R., Siroky M.B. Chronic ischemia increases prostatic smooth muscle contraction in the rabbit. J Urol 2003;170(2):659–63. DOI: 10.1097/01.ju.0000064923.29954.7e.

18. Grivas N., Goussia A., Stefanou D., Giannakis D. Microvascular density and immunohistochemical expression of VEGF, VEGFR-1 and VEGFR-2 in benign prostatic hyperplasia, high-grade prostate intraepithelial neoplasia and prostate cancer. Cent European J Urol 2016;69(1):63–71. DOI: 10.5173/ceju.2016.726.

19. Попов С.В., Гусейнов Р.Г., Скрябин О.Н. и др. Иммуногистохимический анализ как метод повышения выявляемости рака предстательной железы при первичной биопсии. Исследования и практика в медицине 2019;6(1):41–9. [Popov S.V., Guseynov R.G., Skryabin O.N. et al. Immunohistochemical analysis as a method for increasing the detection of prostate cancer in primary biopsy. Issledovaniya i praktika v medicine = Research and Practical Medicine Journal 2019;6(1):41–9. (In Russ.).]

20. Aaron L., Franco O.E., Hayward S.W. Review of prostate anatomy and embryology and the etiology of benign prostatic hyperplasia. Urol Clin North Am 2016;43(3):279–88. DOI: 10.1016/j.ucl.2016.04.012.

21. Madersbacher S., Sampson N., Culig Z. Pathophysiology of benign prostatic hyperplasia and benign prostatic enlargement: a mini-review. Gerontology 2019;65(5):458–64. DOI: 10.1159/000496289.

Вклад авторов
Г.Е. Ройтберг: разработка концепции и дизайна исследования, научное редактирование;
К.Г. Мкртчян: написание текста статьи;
Н.Г. Кульченко: обработка данных, подготовка иллюстраций.

Authors’ contributions
G.E. Roitberg: research concept and design, scientific editing;
K.G. Mkrtchyan: article writing;
N.G. Kulchenko: material processing, and working on illustrations.

ORCID авторов / ORCID of authors
N.G. Kulchenko: https://orcid.org/0000-0002-4468-3670

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.
Conflict of interest. The authors declare no conflict of interest.

Финансирование. Исследование проведено без спонсорской поддержки.
Financing. The study was performed without external funding.

Соблюдение правил биоэтики
Протокол исследования одобрен комитетом по биомедицинской этике ФГАОУ ВО «Российский университет дружбы народов».
Исследование выполнено в соответствии с этическими нормами обращения с животными, принятыми Европейской конвенцией по защите позвоночных животных, используемых для исследовательских и иных научных целей.

Compliance with principles of bioethics
The study protocol was approved by the biomedical ethics committee of RUDN University. The study was performed in accordance with ethical principles adopted by the European Convention for the protection of vertebrate animals used for experimental and other scientific purposes.