Evaluating the Feasibility of Five Candidate DNA Barcoding Loci for Philippine Lasianthus Jack (Lasiantheae: Rubiaceae)

Muhammad Jefte C. Arshed, Marcos B. Valdez Jr1, Grecebio Jonathan D. Alejandro2

The pantropical genus Lasianthus Jack is identified for high phenotypic plasticity making traditional taxonomic identification difficult. Having some members with important medicinal properties, a precise complimentary identification through DNA barcoding is needed for species delineation. Materials and Methods: In this study, 12 samples representing six Philippine Lasianthus species were used to determine the most efficient barcoding loci among the cpDNA markers (matK, rbcL, rps16, and trnT-F) and nrDNA (ITS) based on the criteria of universality, discriminatory power, and resolution of species. Results: The results revealed that ITS has the recommended primer universality, greatest interspecific divergences, and average resolution of species. Among the cpDNA markers, matK and rbcL are recommended but with minimal resolution of species. While trnT-F showed moderate interspecific variations and resolution of Lasianthus species, rps16 has the lowest interspecific divergence and resolution of species. Conclusion: Consequently, ITS is the potential ideal DNA barcode for Lasianthus species.

Key words: cpDNA, DNA barcoding, Lasianthus, nrDNA, Philippines

INTRODUCTION

Lasianthus Jack is the largest genus of the four genera comprising the tribe Lasiantheae of family Rubiaceae. The genus consists of about 225 species with the highest diversity in tropical and subtropical Asia.1 Lasianthus is characterized as drupes with thick wall that develop from the ovaries with 3–9 locules.2 It represents an ecologically important element specifically in its distribution pattern, which is significant in the field of biogeography and speciation patterns in the assemblage of tropical rainforest.1,3 Moreover, Lasianthus exhibits medicinal uses such as Lasianthus lucidus Blume that is used to ease fever, blood loss and has hepatoprotective potential.4 Lasianthus verticillatus (Lour.) Merr. is traditionally used by the Onges tribe as antidote.5 Lasianthus oblongus King and Gamble is applied orally to hasten constriction of the organs for postpartum mothers.6 and other several species of the genus are with known active chemical constituents such as alkaloids, terpenoids, and glycosides (e.g., L. attenuatus Jack, L. fordii Hance, and L. lucidus Blume).7,8 Close analysis of literature, protologs, and herbarium specimens reveals uncertainties and difficulties in discriminating Lasianthus species based on morphology. The genus is identified for high phenotypic plasticity making traditional taxonomic identification difficult. Knowing some Lasianthus species exhibits medicinal and pharmaceutical importance; accurate species identification is necessary. Modern molecular biology tools offer excellent approaches for rapid characterization and precise identification of species. Using short sequences as molecular markers for species-level identification is known

Abbreviations used: ITS: Internal Transcribe Spacer, matK: maturase K, rbcL: ribulose-1,5-biphosphate-carboxylase, rps16: ribosomal protein 16 small subunit gene.

Correspondence:
Dr. Grecebio Jonathan D. Alejandro,
Rm. 302, Plant Sciences Laboratory, Research Center for the Natural and Applied Sciences, University of Santo Tomas, España Blvd., 1015 Manila, Philippines.
E-mail: gdalejandro@ust.edu.ph/ balejan@yahoo.com

DOI: 10.4103/pm.pm_1_17

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

Cite this article as: Arshed MC, Valdez MB, Alejandro GD. Evaluating the feasibility of five candidate DNA Barcoding Loci for Philippine Lasianthus Jack (Lasiantheae: Rubiaceae). Phcog Mag 2017;13:553-8.
as DNA barcoding. Applications of DNA barcoding are enormous especially in scenario where morphological approaches cannot resolve identification in species having sexual dimorphism and phenotypic plasticity within species of the same genus. Several genomic regions were proposed for the plant DNA barcoding and the plant working group of the Consortium for the Barcode of Life (CBOL) recommended using \textit{matK} and \textit{rbcL} as the standard barcodes. Aside from using these two markers, additional three markers were utilized in this study, namely (1) \textit{rps16}, an intron in the single large copy region of the plastid genome that can provide good resolution and has higher divergence than other cpDNA markers; (2) \textit{trnT-F}, a noncoding chloroplast gene that has high variability and useful for species and genus level resolutions for phylogenetic studies (e.g., family \textit{Arecales} and \textit{Rhamnaceae}); and (3) ITS, a nuclear locus that has ability to infer closely related genera due to its high repeating units that promote good amplification and sequencing.

Moreover, these markers have been utilized in molecular analyses of \textit{Lasianthus} species. In this paper, five barcoding loci (\textit{matK}, \textit{rbcL}, \textit{rps16}, \textit{trnT-F}, and ITS) were evaluated for Philippine \textit{Lasianthus} species to identify the ideal DNA barcode of the genus based on universality, discriminatory ability, and resolution of species.

MATERIALS AND METHODS

Sampling of plant materials

Collections of Philippine \textit{Lasianthus} species [Table 1] from the provinces of Antique, Camiguin, Cebu, Davao, Mindoro, and Quezon, Philippines, by the Thomasian Angiosperm Phylogeny and Barcoding Group (TAPBG) of the University of Santo Tomas (UST), Manila, were used in this study. Field images of \textit{Lasianthus} [Figure 1] and voucher specimens were deposited at the UST Herbarium (USTH) provided with accession numbers [Table 1]. Leaf samples from two different populations were collected and stored in a zip-lock with silica gel. A total of 12 samples representing six Philippine \textit{Lasianthus} species were used in this study. Seven additional sequences of three \textit{Lasianthus} species retrieved in the GenBank were used in the analysis [Table 2].

DNA extraction, polymerase chain reaction, amplification, and sequencing

Silica gel-dried leaf samples were used for the extraction of genomic DNA using the DNeasy Plant Mini Kit (Qiagen, Germany) following the manufacturer’s protocol. The Biometra T-gradient (Germany) was used for the polymerase chain reaction (PCR) amplification. DNA was amplified using KAPA Taq PCR kit (USA). The universal primers and amplification protocol used are listed in Table 3. The PCR cocktail of 25 μL reaction for the chloroplast markers (\textit{rps16}, \textit{trnT-F}, \textit{matK}, and \textit{rbcL}) was as follows: 17.35 μL nuclease free water, 2.5 μL × 10 PCR buffer, 1.0 μL 25 MgCl₂, 2.0 μL deoxynucleotide triphosphates (dNTP), 1.0 μL of 10 μM forward and reverse primers, 0.15 μL Taq DNA polymerase, and 0.5 μL DNA template. For ITS marker, the PCR cocktail of 25 μL reaction was mixed as follows: 15.3 μL nuclease free water, 2.5 μL × 10 PCR buffer, 2.0 μL MgCl₂, 1.5 μL dNTP, 1.0 μL of 10 μM forward and reverse primers, 0.2 μL Taq DNA polymerase, and 1.5 μL DNA. The presence of amplified DNA bands was confirmed using 1% concentration of agarose gel with ×1 tris-borate-ethylenediaminetraacetic acid buffer [Figure 2]. Amplified DNA was purified using the QIA-quick Purification Kit (Qiagen, Germany) and were sent to Macrogen, South Korea, for bidirectional sequencing. DNA sequences were assembled and edited using the Codon Code Aligner v. 4.1.1. (CodonCode Co., USA).

Sequence analyses

For determining the most effective barcode marker for the discrimination of \textit{Lasianthus} species, the following conventional barcoding parameters such as mean length of base pair (bp), PCR success rate (%), intra- and inter-specific divergences (%), and the mean sequence divergence in each marker and between the different markers were analyzed using MEGA v. 7.0.14 (Pennsylvania State University), (K2P, Kimura-2-Parameter with pairwise deletion). This was followed by the Wilcoxon Mann–Whitney test to establish if the mean sequence divergence is statistically significant using SPSS 15.0 software (SPSS Inc., Chicago, IL, USA). To assess the resolution of species, percentage was calculated base from the neighbor-joining (NJ) tree that was constructed for further evaluation of markers.

Table 1: Thomasian Angiosperm Phylogeny and Barcoding Group \textit{Lasianthus} collection used in the study

Codes	USTH accession	Identification	Province
14C-415	USTH 012464	\textit{L. verticillatus}	Cebu
14C-421	USTH 012465	\textit{L. verticillatus}	Cebu
14C-431	USTH 012461	\textit{L. trichophlebus}	Cebu
14-620	USTH 012462	\textit{L. trichophlebus}	Antique
14-814	USTH 012458	\textit{L. clementis}	Camiguin
14-513	USTH 012459	\textit{L. clementis}	Davao
14-515	USTH 012457	\textit{L. fordii}	Davao
14-637	USTH 012460	\textit{L. fordii var. microphyllus}	Davao
14-541	USTH 012466	\textit{L. lucidus}	Antique
14-642	USTH 012465	\textit{L. lucidus}	Antique
14-830	USTH 012470	\textit{L. cyanus}	Camiguin
14-833	USTH 012472	\textit{L. cyanus}	Camiguin

\textit{L. fordii}; \textit{Lasianthus fordii}; \textit{L. lucidus}; \textit{Lasianthus lucidus}; \textit{L. cyanus}; \textit{Lasianthus cyanus}; \textit{L. clementis}; \textit{Lasianthus clementis}; \textit{L. trichophlebus}; \textit{Lasianthus trichophlebus}

Table 2: Accession numbers of \textit{Lasianthus} species obtained from National Center for Biotechnology Information-GenBank

Botanical name	NCBI-GenBank accession number
\textit{L. fordii} Hance	KS704883, KS704980
\textit{L. trichophlebus} Hemsl. ex F.B. Forbes and Hemsl.	KS704900, KS704950, KS704999
\textit{L. verticillatus} (Lour.) Merr.	DQ282640, KG705001

NCBI: National Center for Biotechnology Information; \textit{L. trichophlebus}; \textit{Lasianthus trichophlebus}; \textit{L. fordii}; \textit{Lasianthus fordii}; \textit{L. cyanus}; \textit{Lasianthus cyanus}

Figure 1: Field images of some \textit{Lasianthus} species. \textit{Lasianthus fordii} Hance: (a) leaves; (b) infructescence; (C) flowers; \textit{Lasianthus clementis} Merr. (d) habit; (e) infructescence; (f) fruits
RESULTS

From the five markers, a total of sixty newly sequences of Lasianthus were produced [Appendix 1]. Sequence characteristics for the five barcode loci are presented in Table 4 with their overall results. The longest mean length was from trnT-F with 2101 bp followed by rps16, matK, ITS, and rbcL. As for the most parsimonious informative sites, the trnT-F marker was the highest with 164 informative bp from 270 variable sites, followed by ITS, matK, and rps16. Interestingly, rps16 with the second highest mean bp still fall short for having the least informative characters of 11 from 54 variable sites.

Pairwise divergence analyses for each candidate barcodes using the two parameters to characterize the inter- and intra-specific divergences are presented in Table 5. The ITS has the highest interspecific divergence (0.1623 ± 0.0810), followed by matK (0.0951 ± 0.0982), trnT-F (0.0621 ± 0.0356), rbcL (0.0563 ± 0.0232), and rps16 (0.0238 ± 0.0376). Results for the intraspecific variations revealed that trnT-F (0.0121 ± 0.0122) has the lowest average in all the parameters, followed by rbcL (0.0155 ± 0.0161), matK (0.0207 ± 0.0172), rps16 (0.0243 ± 0.0469), and ITS (0.0999 ± 0.0613).

NJ tree was used to generate the topology of Lasianthus species in each candidate barcodes to determine the species resolution. Using BLAST,
all of the candidate barcodes were able to classify each species as to genus *Lasianthus*, but the generated tree for each barcodes was unable to categorize some species to its specific resolutions [Figure 3].

None of the markers can completely resolve taxa with closely related species (e.g., *L. lucidus*, *L. fordii*, *L. verticillatus*, *L. trichophlebus*). Nevertheless, some markers can give better resolution with higher bootstrap (BS) support than other markers used in the study. The rbcL marker followed by *matK* and *trnT-F* can resolve some of the difficult species with greater support value. For ITS, it cannot group same species fully just like *rps16*, but it can generate higher confidence level compared to *rps16*.

DISCUSSION

A suitable barcode should exhibit the following criteria: (1) high universality (PCR and sequencing success rates), (2) high discriminatory power based on the inter- and intra-specific divergences, and (3) high species resolution. The results of the study were assessed and vis-a-vis against the criteria.

Universality

PCR amplification efficiency and sequence quality: Amplified and generated sequences of the five barcoding loci were evaluated based on the sequence quality that each barcodes produced. ITS, *matK*, and *rps16* markers have the excellent amplification and sequence quality. The *rbcL* and *trnT-F* markers yielded successful amplification but less sequencing success rates. Results show that ITS, *matK*, and *rps16* markers are the most universal in terms of quality and coverage of sequences among the barcodes utilized. This corresponds to previous studies that ITS has high amplification [Figure 2] and sequence capabilities. Likewise, the results confirmed *matK* exhibiting amplification and sequencing efficiency and this was one of the markers recommended by CBOL as a standard barcode in plants. Furthermore, *rps16* marker also provides high amplification and sequencing success, indicating its universality as it has been used in discriminating taxonomic uncertainties in *Rubiaceae*.

Discriminatory: Inter- versus intra-specific genetic divergence

An ideal barcode should exhibit high interspecific divergences but low intraspecific variation. Using the Wilcoxon two-sample tests, significant differences between the inter- and intra-specific divergences of the five candidate barcodes were analyzed [Table 6]. Interspecific differences were significantly higher (*P < 0.05*) than their related intraspecific divergences. Thus, settled differences exhibited by both specific divergences give a good lead for the discriminatory efficiency of the markers used.

In comparison of the five barcodes, ITS maker has the highest interspecific divergence with the maximum values, followed by *matK*, *rbcL*, *trnT-F*, and *rps16*, respectively [Table 5]. The ITS has the second highest number of variable and informative sites. It also yields the highest interspecific mean which corroborates in other studies. However, results for intraspecific variations revealed that ITS has the highest value, followed by *rps16*, *matK*, *rbcL*, and *trnT-F* markers. An ideal barcode should have low intraspecific variations which ITS failed to have. Thus, ITS has high discriminatory power on interspecific level as this marker is useful for identification efficiency of closely related species among numerous genera. Furthermore, ITS region is regarded as more varied than any of the chloroplast genes. Results obtained from Wilcoxon signed-rank test [Table 7] support ITS to possess the highest interspecific divergence with almost high significant differences. However, ITS is not a good marker for intraspecific identification of *Lasianthus* species for having the least intraspecific variations among other barcodes. Consequently, *trnT-F* should be the ideal barcode for discriminating species for intraspecific level in genus *Lasianthus*. Furthermore, this marker has the highest number of variable and informative sites. Results obtained using Wilcoxon signed-rank test of interspecific divergence among loci [Table 8] suggest *rps16* as the lowest, followed by *trnT-F* and *matK* with equal rank and then *rbcL* and ITS as the highest. The significant differences were exhibited by *rps16* and *trnT-F* when compared to ITS alone, making the results inconclusive for the ideal barcode for intraspecific level. There should be a significant difference between all the markers to establish the efficiency of the particular marker to discriminate up to interspecific level.

Resolution of species

Alignments for each barcodes were used to generate phylogenetic analysis using NJ tree to evaluate the species resolution if each barcode can generate taxonomic groupings per species and a monophyletic tree. In addition, the BS values were included to give partial tree reliability for each barcodes. All of the markers have insufficient conspecific groupings [Figure 3] where *rbcL* has the highest species resolution of only 67%. The ITS, *matK*, and *trnT-F* were able to have 50% species resolution and least was from *rps16* with 33%. Thus, candidate barcodes

Table 5: Inter- and intra-specific divergences among loci

Parameter	Candidate barcode	ITS	matK	rbcL	rps16	trnT-F
Average interspecific distance		0.1623±0.081	0.0951±0.0982	0.0563±0.0232	0.2328±0.0376	0.0621±0.0356
Average intraspecific distance		0.0999±0.0613	0.0207±0.0172	0.0155±0.0161	0.0243±0.0469	0.0121±0.0122

Table 6: Wilcoxon two-sample test for inter- versus intra-specific divergences

Barcodes	Number of interspecific	Number of intraspecific	Wilcoxon	P
ITS	93	12	423.5	0.0327
matK	60	6	70.5	0.0037
rbcL	60	6	41.5	0.0004
rps16	93	12	441.1	0.0501
trnT-F	70	8	70	5.273×10^-3

Table 7: Wilcoxon signed-rank tests of interspecific divergence among loci

W+	W-	Relative ranks	n	P	Results	
ITS	matK	1450.50	379.50	60	0.0000	ITS > matK
ITS	rbcL	1777.50	52.50	60	0.0000	ITS > rbcL
ITS	rps16	4368.50	2.50	93	0.0000	ITS > rps16
ITS	trnT-F	2445.50	39.50	70	0.0000	ITS > trnT-F
matK	rbcL	1245.00	585.00	60	0.0150	matK > rbcL
matK	rps16	1708.00	3.00	60	0.0000	matK > rps16
matK	trnT-F	1199.00	631.00	60	0.0370	matK > trnT-F
rbcL	rps16	1820.00	10.00	60	0.0000	rbcL > rps16
rbcL	trnT-F	758.50	1011.50	60	0.3400	rbcL < trnT-F
rps16	trnT-F	1.00	2484.00	70	0.0000	rps16 < trnT-F
used in the study were inadequate for species resolution; nevertheless, inference from this study suggests that most of the barcodes, except for \(rps_{16} \), can give average resolution to \(Lasianthus \) species.

CONCLUSION

This study provides baseline information on the potential barcodes for Philippine \(Lasianthus \) species. The ITS marker has the most feasible ideal locus for this genus, having excellent universality, high interspecific discriminatory ability, and average species resolution, which can be supplemented by \(rbcL \) and \(matK \). It would be suitable to increase the sample size of \(Lasianthus \) species to facilitate more definite results for rapid authentication of Philippine \(Lasianthus \).

Acknowledgements

We would like to thank the TAPBG collectors, USTH, for granting access to herbarium collections and the Research Center for Natural and Applied Sciences, UST, for the laboratory facility.

Financial support and sponsorship

The present work is part of the graduate thesis of MJCA in which financial grant has been obtained from DOST-Science Education Institute. GJDA thanks DOST-Philippine Council for Health, Research and Development and CHED-Philippine Higher Education Research Network, for the funding.

Conflict of interest

There are no conflicts of interest.

REFERENCES

1. Smedmark JE, Razafimandimbison SG, Wikström N, Bremer B. Inferring geographic range evolution of a pantropical tribe in the coffee family (Lasiantheae, Rubiaceae) in the face of topological uncertainty. Mol Phylogenet Evol 2014;70:182-94.
2. Zhu H. Paralasianthus (Rubiaceae), a new genus from Southeast Asia. Phytotaxa 2015;202:273-8.
3. Zhu H, Roos MC, Ridsdale CE. A taxonomic revision of the Malesian species of \(Lasianthus \) (Rubiaceae). Blumea Biodivers Evol Biogeogr Plants 2012;57:1-102.
4. Choudhury KD, Choudhury MD, Banah MK. Hepatoprotective potential of Lasianthus lucidus Junci extracts against carbon tetrachloride induced liver damage in Swiss albino mice. World J Pharm Sci Pharm Sci 2014;4:1536-47.
5. Sharief MU. Plants folk medicine of Negrito tribes of Bay Islands. Indian J Tradit Knowl 2007;6:468-76.
6. Ong HC, Faezah AW, Milow P. Medicinal plants used by the Jah Hut Orang Asli at Kampung Pos Penderas, Pahang. Ethno Med 2012;1:11-5.
7. Takada Y, Shimizu H, Mizuno K, Inouchi S, Masuda T, Hirata E, et al. An iodized glucoside dimer and a non-glucoside iodinated from the leaves of Lasianthus wallichii. Chem Pharm Bull (Tokyo) 2002;50:1395-7.
8. Choudhury KD, Dutta C, Anupam DT. Chemical constituents and biological activities of the genus Lasianthus Jack: A review. Assam Univ J Sci Technol 2010;6:129-38.
9. Gao T, Yao J, Song J, Zhu Y, Liu C, Chen S. Evaluating the feasibility of using candidate DNA barcodes in discriminating species of the large Asteraceae family. BMC Evol Biol 2010;10:924.
10. Yu X, Xie Z, Wu J, Tao J, Xu X. DNA barcoding identification of Kadsurae caulis and Spatholobus caulis based on internal transcribed spacer 2 region and secondary structure prediction. Pharmacogn Mag 2016;12 Suppl 2:S161-9.
11. Zhou J, Wang W, Liu M, Liu Z. Molecular authentication of the traditional medicinal plant Peucedanum praeruptorum and its substitutes and adulterants by DNA-barcoding technique. Pharmacogenom Mag 2014;10:385-90.
12. Mahadani P, Sharma GD, Ghosh SK. Identification of ethnomedical plants (Rauvolfiaceae) Apocynaceae through DNA barcoding from northeast India. Pharmacogn Mag 2013;9:255-63.
13. Chapple DG, Ristieh RA. A retrospective approach to testing the DNA barcoding method. PLoS One 2013;8:e77882.
14. CBOL Plant Working Group. A DNA barcode for land plants. Proc Natl Acad Sci U S A 2009;106:12794-7.
15. Lee J, Hymowitz T. A molecular phylogenetic study of the subtribe Gynicriniae (Leguminosae) derived from the chloroplast DNA rps16 intron sequences. Am J Bot 2001;88:2064-73.
16. Marazzi B, Endress PK, Queroz LP, Conti E. Phylogenetic relationships within Senna (Leguminosae, Cassiinae) based on three chloroplast DNA regions: Patterns in the evolution of floral symmetry and extraloral nectaries. Am J Bot 2006;93:269-303.
17. Xiao LQ, Zhu H. Paraphyly and phylogenetic relationship in Lasianthus (Rubiaceae) inferred from chloroplast rps16 data. Bot Stud 2007;48:227-32.
18. Borsh T, Hilu KW, Quandt D, Wilde V, Nehius C, Barthlott W. Noncoding plastid trnT-F sequences reveal a well resolve phylogeny of basal Angiosperms. J Evol Biol 2003;16:558-76.
19. Solis DE, Solis PS. Choosing an approach and an appropriate gene for phylogenetic analysis. In: Solis PS, Doyle JJ, editors. Molecular Systematics of Plants. Boston, Massachusetts: Kluwer; 1998: p. 1-42.
20. Baldwin B, Sandersen MJ, Porter JM, Wojciechowski MF, Donoughue MJ. The ITS region of nuclear ribosomal DNA: A valuable source of evidence on angiosperm phylogeny. Ann Mo Bot Gard 1995;82:247-77.
21. Chase MW, Hills HH. Silica gel: An ideal material for preservation of leaf samples for DNA studies. Taxon 1991;40:215-20.
22. Popp M, Oxelman B. Infering the history of the polypliod Silene aegae (Caryophyllaceae) using plastid and homeoeologous nuclear DNA sequences. Mol Phylogenet Evol 2001;20:434-81.
23. Razafimpanambison SG, Bremer B. Phylogeny and classification of Naucleaeae s.l. (Rubiaceae) inferred from molecular (ITS, rBCL, and trnT-F) and morphological data. Am J Bot 2002;89:1027-41.
24. Tabeirot P, Gieyb L, Pautou G, Bouvet J. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 1991;17:1105-9.
25. Oxelman B, Liden M, Berglund D. Chloroplast rps16 intron phylogeny of the tribe Sileneae (Caryophyllaceae). Plant Syst Evol 1997;206:393-410.
26. Kress WJ, Erickson DL. A two-locus global DNA barcode for land plants: The coding rbcL gene complements the non-coding trnl-psbA spacer region. PLoS One 2007;2:e208.
27. Yao H, Song J, Liu C, Luo K, Han J, Li Y, et al. Use of ITS2 region as the universal DNA barcode for plants and animals. PLoS One 2010;5:pi: e13102.
28. Gu W, Song J, Cao Y, Sun Q, Yao H, Wu Q, et al. Application of the ITS2 region for barcoding medicinal plants of Selaginellaceae in Phoeniophyta. PLoS One 2013;8:e66718.
29. Yu H, Wu K, Song J, Zhu Y, Luo K, Lin Y. Expedition identification of magnoliaceae species by DNA barcoding. Plant Omics 2014;7:47-63.
30. Cabelin VL, Santor PJ, Alejandro GJ. Evaluation of DNA barcoding efficiency of cpDNA barcodes in selected Philippine Lea L. (Vitaceae). Acta Bot Gallica 2015;162:317-37.
31. Cabelin VL, Alejandro GJ. Efficiency of matK, rbcL, trnl-psbA, and trnLF (cpDNA) to molecularly authenticate Philippine ethnomedical Apocynaceae through DNA barcoding. Pharmacogn Mag 2016;12 Suppl 3:35384-8.
32. Shaw J, Lidke EB, Beck JT, Farmer SB, Liu W, Miller J, et al. The tortoise and the hare II: Relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. Am J Bot 2005;92:142-68.
33. Lahaye R, van der Bank M, Bogarin D, Wuinger J, Pupulin F, Giot G, et al. DNA barcoding the florae of biodiversity hotspots. Proc Natl Acad Sci U S A 2008;105:2923-9.
34. Li HD, Chen JY, Wang S, Xiong SZ. Evaluation of six candidate DNA barcoding loci in Ficus (Moraceae) of China. Mol Ecol Resour 2008;8:29-36.
35. Chase MV, Salamin N, Wilkinson M, Dunwell J, Kasmanarth RP, Haidar N, et al. Land plants and DNA barcodes: Short-term and long-term goals. Philos Trans R Soc Biol Sci 2005;360:1889-95.
36. Chase MV, Cowan RS, Hollingsworth PM, van den Berg C, Madarin S, Petersen G, et al. A proposal for a standardized protocol to barcode all land plants. Taxon 2007;56:295-9.
37. Roy S, Tye A, Shukla V, Kumar A, Singh UM, Chaudhary LB, et al. Universal plant DNA barcode loci may not work in complex groups: A case study with Indian berberis species. PLoS One 2010;5:e13674.
38. Liu Y, Zhang L, Liu Z, Luo K, Chen S, Chen K. Species identification of Rhododendron (Ericaceae) using the chloroplast deoxyribonucleic acid Paba-trnH genetic marker. Pharmacogn Mag 2012;8:29-36.

APPENDIX

Appendix 1: European Molecular Biology Laboratory accession numbers of the sequences generated in this study

Species	ITS	matK	rbcL	rps16	trnT-F
L. verticillatus	LT717425; LT717426	LT717461; LT717462	LT717473; LT717474	LT717437; LT717438	LT717449; LT717450
L. trichophlebus	LT717427; LT717428	LT717463; LT717464	LT717475; LT717476	LT717439; LT717440	LT717451; LT717452
L. clementis	LT717429; LT717430	LT717465; LT717466	LT717477; LT717478	LT717441; LT717442	LT717453; LT717454
L. fordi	LT717431	LT717467	LT717479	LT717443	LT717455
L. fordi var. microphyllus	LT717432	LT717468	LT717480	LT717444	LT717456
L. lucidus	LT717433; LT717434	LT717469; LT717470	LT717481; LT717482	LT717445; LT717446	LT717457; LT717458
L. cyaneus	LT717435; LT717436	LT717471; LT717472	LT717483; LT717484; LT717477; LT717448	LT717459; LT717460	

L. fordi: Lasianthus fordi; L. lucidus: Lasianthus lucidus; L. cyaneus: Lasianthus cyaneus; L. clementis: Lasianthus clementis; L. trichophlebus: Lasianthus trichophlebus