Experimental observation of quantum entanglement in low dimensional spin systems

T. G. Rappoport, L. Ghivelder\(^1\) and J. C. Fernandes, R. B. Guimarães, M. A. Continentino\(^2\)

\(^1\)Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68.528-970, Rio de Janeiro, Brazil
\(^2\)Instituto de Física, Universidade Federal Fluminense, Campus da Praia Vermelha, Niterói, 24210-340, Brazil

(Dated: March 19, 2018)

We report macroscopic magnetic measurements carried out in order to detect and characterize field-induced quantum entanglement in low dimensional spin systems. We analyze the pyroborate MgMnB\(_2\)O\(_5\) and the and the warwickite MgTiOBO\(_3\), systems with spin 5/2 and 1/2 respectively. By using the magnetic susceptibility as an entanglement witness we are able to quantify entanglement as a function of temperature and magnetic field. In addition, we experimentally distinguish for the first time a random singlet phase from a Griffiths phase. This analysis opens the possibility of a more detailed characterization of low dimensional materials.

PACS numbers: 03.67.Mn, 03.67.Lx, 75.10.Pq, 75.30.Cr

Since the development of quantum mechanics, entanglement has been a subject of great interest. Lately, this is mainly due to the importance of entanglement in quantum information and computation. As a consequence, a great effort has been made to detect and quantify entanglement in quantum systems. In addition, quantum spin chains, a class of systems well known in solid state physics, began to be studied in the framework of quantum information theory; there are proposals for the use of such systems in quantum computation. Naturally, entanglement in interacting spin chains acquired relevance in the QI community. Therefore, there has been a special effort in understanding and quantifying quantum entanglement in solid-state systems. At the same time, the condensed matter community has begun to notice that entanglement may play a crucial role in the properties of different materials.

It is a difficult task to determine experimentally if a state is entangled or not. One of the new promising methods for entanglement detection is the use of an entanglement witnesses (EW). EW are observables which have negative expectation values for entangled states. Magnetic susceptibility was recently proposed as an EW and some old experimental results were reanalyzed within this new framework.

It has been known for a long time that entanglement appears in quantum spin chains, like the spin 1/2 Heisenberg model. The disordered spin 1/2 one-dimensional Heisenberg model, for example, presents a random singlet phase (RSP), where singlets of pairs of arbitrarily distant spins are formed. Although entanglement was already known to exist in such chains, it had not been quantified theoretically until this decade. A previous study of a diluted magnetic material has shown the importance of entanglement, but to our knowledge, this is the first experimental measurement of quantum entanglement in a magnetic material. As representative systems, we analyze the pyroborate MgMnB\(_2\)O\(_5\) and the warwickite MgTiOBO\(_3\), two quasi-one dimensional disordered spin compounds with previously known magnetic and thermodynamic properties that suggest the existence of either a RSP or a Griffiths phase (GP) at low temperatures.

There are no experimental studies on random magnetic chains which discriminate these two phases. In this Letter, from a detailed analysis of magnetic measurements, we show unambiguously the existence of a RSP in MgTiOBO\(_3\), which is expected for a spin-1/2 random exchange Heisenberg antiferromagnetic chain (REHAC). In addition, our study of MgMnB\(_2\)O\(_5\) provides experimental evidence for the existence of a Griffiths phase in a low dimensional system with \(S > 1/2 \).

Addressing the entanglement properties of these random systems, there is also a clear distinction between the RSP and the Griffiths phase. For the former, entanglement is well characterized and has been shown to scale with the logarithm of the size. For the latter there is no theoretical study of how entanglement behaves.

We make use of magnetization and ac susceptibility measurements as a function of temperature and applied magnetic field to detect and quantify entanglement by using the susceptibility as an entanglement witness. First we show that both systems present entanglement at low temperatures with no applied field. Next, we analyze the ac susceptibility and magnetization as a function of applied field. We observe that entanglement increases for increasing magnetic fields in a region of the B×T diagram. This unusual behavior was suggested by Arnesen et al. and called magnetic entanglement.

In both pyroborate MgMnB\(_2\)O\(_5\) and warwickite MgTiOBO\(_3\) there are ribbons formed by oxygen octahedra sharing edges. These octahedra give rise to four columns, along the ribbons, whose centers define a triangular lattice and two different crystallographic sites.
for metals: one in the central columns and another in the border ones. In the pyroborate such columns do not touch and both metal sites are equally occupied by the two metal ions \(\text{MgMnB}_6\). In the warwickite, on the contrary, the columns do touch and the metal sites are probably occupied as in \(\text{MgScOBO}_3\): 76 % of the internal sites occupied by the transition metal and 24 % by the alkaline-earth metal. The sites on the border columns have the opposite occupancy \(\text{MgTiOBO}_3\).

The pyroborate powder was obtained from grinded single crystals, and the warwickite powder was directly obtained from its synthesis. The warwickite sample was analyzed through X-Ray diffractometry; it has been verified that the material was well crystallized and that its purity was 97.72 %, as evaluated by the method of Lutterotti et al. \(\text{MgMnB}_6\). The more abundant impurity was the non-magnetic \(\text{MgTiO}_3\). More details on sample preparation were previously published \(\text{MgMnB}_6\). Dc magnetization and ac susceptibility measurements were performed with a commercial apparatus (Quantum Design PPMS).

In \(\text{MgTiOBO}_3\), evidence for a RSP-like behaviour was previously obtained from specific heat \(C(T)\), susceptibility \(\chi(T)\) and magnetization \(m(H)\) measurements \(\text{MgTiOBO}_3\). These quantities exhibit the characteristic power law behavior associated with a RSP, \(\chi(T) \propto T^{-\alpha}\), down to the lowest measured temperature. In this system the magnetic ion \(\text{Ti}^{3+}\) has spin \(S=1/2\), and due to the negligible magnetic anisotropy this material is well described by a spin-1/2 (REHAC). The physical behavior is controlled by an infinite randomness fixed point independent of the amount of disorder. On the other hand in the \(\text{MgMnB}_6\) pyroborate, the magnetic ion \(\text{Mn}^{2+}\) is a spin 5/2, \(S\) state ion. The phase diagram of a REHAC with \(S \geq 1/2\) is not a trivial one. For weak disorder these systems present GP, while only for strong disorder a RSP appears \(\text{MgMnB}_6\).

In figure \(\text{MgTiOBO}_3\), panels (a) and (b), we show the ac magnetic susceptibility as a function of temperature for \(\text{MgTiOBO}_3\) and \(\text{MgMnB}_6\) respectively. Both systems have a sub-Curie regime at low temperatures. \(\text{MgMnB}_6\) acquires a Curie-like temperature dependence around 50 K. On the other hand, \(\text{MgTiOBO}_3\) presents a sub-Curie susceptibility even at room temperature. It is known that both systems have a susceptibility which behaves as \(\chi(T) \propto T^{-\alpha}\), although the temperature dependence of \(\alpha\) was not further analyzed.

These two different phases should be distinguished experimentally by the temperature dependence of the exponent \(\alpha\). The GP is characterized by a constant value of \(\alpha\). For the RSP, \(\alpha\) should be expected as power law susceptibility following \(\chi(T) = \frac{1}{T} \ln^2(\frac{T_0}{T})\), which is equivalent to \(\alpha(T) = 1 - \frac{2}{\ln^2(\frac{T_0}{T})}\), where \(\lambda\) is a constant. \(\text{MgMnB}_6\). So, the RSP is characterized by a slowly varying \(\alpha(T)\).

Following Hirsch \(\text{MgTiOBO}_3\), we analyze the data by redefining \(\alpha = -d(\ln(\chi))/d(\ln(T))\) and extract the temperature dependence of the exponent \(\alpha(T)\) for both samples. Furthermore, we fit the experimental data of Fig \(\text{MgTiOBO}_3\) a, using \(\frac{1}{\chi(T)} = T\ln^2(\frac{T_0}{T})\) (solid line). Both Figs. \(\text{MgTiOBO}_3\) a and (c) indicate that the susceptibility coincides exactly with the RSP model and \(\alpha\) follows the same tendency previously predicted by numerical calculations \(\text{MgMnB}_6\). In \(\text{MgMnB}_6\), previous assessments and the inset of Fig. \(\text{MgTiOBO}_3\) b suggest a power law behavior for \(\chi(T)\) with a constant \(\alpha \approx 0.55\). Within a more detailed analysis, shown in Fig. \(\text{MgTiOBO}_3\) d we see an unequivocal slow increase of the exponent \(\alpha\), followed by a constant regime at intermediate temperatures. Although \(\alpha\) is not constant in the whole temperature interval, as expected for a Griffiths phase (GP), its increase with \(T\) is clearly inconsistent with a phase governed by an infinite randomness fixed point or RSP. However, for temperatures higher than 7 K, \(\alpha\) is constant (up to 20 K), and this strongly supports the existence of a GP in this system. In fact the variation of \(\alpha\) at low \(T\) may be related to a freezing of the Mn moments, as suggested by a low temperature anomaly in the specific heat of this material \(\text{MgTiOBO}_3\).

We further investigate these two systems by comparing other independent measurements, such as magnetization and ac susceptibility as a function of a magnetic field, as shown in in Fig. \(\text{MgTiOBO}_3\). From Fig. \(\text{MgTiOBO}_3\) a and Fig. \(\text{MgTiOBO}_3\) b we see that the \(\text{MgTiOBO}_3\) data always present logarithmic corrections and the magnetization follows \(M \propto \ln(B)\), as expected for a RSP \(\text{MgTiOBO}_3\). On the other hand, for \(\text{MgMnB}_6\) both \(\chi(B)\) and \(M(B)\) follow a power law behavior with exponents \(\alpha \approx 0.55\) and \(1 - \alpha \approx 0.45\) respectively. Such behavior is expected for systems in a GP. Finally, for the \(\text{MgTiOBO}_3\), we also analyze \(\chi_{a.c} \times T\) for different applied fields \(B\) (Fig. \(\text{MgTiOBO}_3\) c): the RSP is robust to applied fields bellow 3T even at temperatures up to...
100K, where the susceptibility is not Curie-like. However, the RSP characteristics disappear at high temperatures once the applied field is around 3T with the appearance of a Curie-like behavior.

Once established that MgTiOBO$_3$ is in a RSP, we can expect the system to be entangled. Theoretically, the entanglement can be estimated by calculating the Von Neumann entanglement entropy of a subsystem A of the spin chain, with respect to a subsystem B. This quantity can be defined as $S = - \text{Tr} \rho_A \ln \rho_A$. For a subsystem with length x embedded in an infinite system, the entanglement entropy for a Heisenberg chain in a RSP is given by $S = \frac{\ln(2)}{x}$, as previously calculated by means of a RSRG and further confirmed by numerical calculations. From an experimental point of view, it is not possible to use the entanglement entropy to quantify the entanglement. Entanglement witnesses (EW) have been proposed and applied as an attempt to detect and quantify entanglement experimentally. The main advantage of EW is that they are observables and their mean value can be directly measured.

The uncertainty of an operator \hat{A}_i for a given quantum state is defined as $\Delta A^2_i = \langle \hat{A}_i^2 \rangle - \langle \hat{A}_i \rangle^2$, the statistical variance of the measurement outcomes. The uncertainty ΔA^2 can only be zero if the quantum state is an eigenstate of \hat{A}_i. A quantum state with zero uncertainty in all the properties \hat{A}_i must be a simultaneous eigenstate of these operators. If the simultaneous eigenstate does not exist, there must be a lower limit for the sum of the uncertainties. We can illustrate this concept for spins where $s = (N-1)/2$: for any given spin state, we have $(\langle \hat{S}_x^2 \hat{S}_y^2 \hat{S}_z^2 \rangle | \psi \rangle = s(s+1)| \psi \rangle$. On the other hand, the expectation values of \hat{S}_i defines a vector with maximal length equal to $\pm s$. Using both relations, we obtain the inequality $\Delta S_x^2 + \Delta S_y^2 + \Delta S_z^2 = \langle \hat{S}_x^2 \hat{S}_y^2 \hat{S}_z^2 \rangle - (\langle \hat{S}_x \rangle^2 + \langle \hat{S}_y \rangle^2 + \langle \hat{S}_z \rangle^2) \geq s$. We can apply this relation to obtain a limit for the correlation of separable states. Exemplifying for two spins 1 and 2: for product states, the uncertainty of $\hat{S}_i(1) + \hat{S}_i(2)$ is equal to the sum of the local uncertainties. On the other hand, maximally entangled states can have a total uncertainty of zero in all directions of $\hat{S}_i(1) + \hat{S}_i(2)$, maximally violating the uncertainty relation. In this case, the quantity $E = 1 - \sum_{i} \frac{\Delta(\hat{S}_i(1) + \hat{S}_i(2))^2}{\Delta(\hat{S}_i(1))^2 + \Delta(\hat{S}_i(2))^2}$ measures the amount of entanglement verified by the violation of local uncertainties.

Following ref.1, the entanglement can be measured by the quantity

$$E = 1 - k_B T \left(\frac{\chi_x + \chi_y + \chi_z}{(g\mu_B)^2 N s} \right).$$
(1)

In our case, N is the total number of spins per gram. First, we analyze a specific limit: if there is no dc applied field and the system is isotropic, $E = 1 - 3k_B T \chi_z/(g^2\mu_B^2 N s)$. Since the studied samples have vanishing magnetic anisotropy, only one component of the susceptibility is needed to detect and quantify entanglement. For $\chi_z < (g^2\mu_B^2 N s)/3k_B T$, the system is entangled, and E quantifies the entanglement verified by the EW.

In Fig. 3 we show the experimental data for MgTiOBO$_3$ and MgMnBO$_2$: both systems present entanglement, although MgTiOBO$_3$ is entangled up to higher temperatures. The quantity E has a similar behavior as a function of temperature for both compounds, with a linear dependence on T for high temperatures.

For an applied dc field in the z direction, a pair of spins 1/2, where $J = 1 \sigma_1 + 2 \sigma_2$, form a singlet ($\mathcal{H} = I \sigma_1 \cdot \sigma_2$) at low fields. As $[\mathcal{H}, B J_z] = 0$, the field does not modify the eigenstates, changing only their energies. At a given field, the energy of the singlet is no longer the lowest
Energy B_z, the singlet breaks and the spins align with the field B. However, for the whole range of fields, the ground state of the system is such that spin variance is minimal: $\Delta J_z \Delta J_y = \frac{1}{2} \langle J_z \rangle$. In this case, as the system is isotropic in the xy plane, we have $\Delta^2 J_y = \Delta^2 J_x = \frac{1}{2} \langle J_z \rangle$ so $\Delta^2 J_y + \Delta^2 J_x = \langle J_z \rangle$. This approximation is valid for $g\mu_B sB \ll k_BT$, which assures that other states, which do not have this property, are not populated. Similarly, the same approach holds for two pairs of spin $5/2$ as shown in Figs. 4(a) and 4(b). As an illustration, we also consider a distribution of singlets, where the probability works well for high values of the magnetic field compared with the temperatures. Since both systems are in a phase where the spins form dimers ($\text{MgTi}_2\text{O}_3\text{B}_3$ is in a RSP and $\text{MgMn}_2\text{B}_2\text{O}_5$ presents Griffiths singularities in a random dimer phase) we can use this approximation to study quantum chains. It is possible to re-write the EW as

$$E = 1 - \left(\frac{M_z}{g\mu_B Ns} + k_BT \frac{\chi_z}{(g\mu_B)^2 Ns} \right), \tag{2}$$

which is valid only at high fields. We perform the necessary measurements and using Eq. 1 for $B=0$ and Eq. 2 for high magnetic fields ($g\mu_B sB > 6k_BT$ for $\text{MgMn}_2\text{B}_2\text{O}_5$ and $g\mu_B sB > 2k_BT$ for $\text{MgTi}_2\text{O}_3\text{B}_3$) we quantify the entanglement for both systems. In Fig. 4 we unambiguously show that the magnetic field can increase entanglement in quantum spin chains, as theoretically suggested vedral1, saguia1. In the insets, we extrapolate the behavior of $E \propto B$ for higher field values; measurements were performed with fields up to 9 T. From this extrapolation, we see that even if a field of 9T is not high enough for the approximation made in eq 2 the extrapolation shows that the suggested increase of entanglement for low fields is still valid although the amount could be slightly overestimated.

In conclusion, by means of macroscopic magnetic measurements we fully characterize a random singlet phase in a low dimensional spin system and for the first time, it was possible to distinguish this phase from a Griffiths phase. We use a novel analysis where the magnetic susceptibility plays the role of an entanglement witness and measure the entanglement in two different spin systems as a function of temperature and magnetic field. We believe that both types of analysis presented here can be used to experimentally characterize the phase diagram of low dimensional systems.

T. G. R would like to thank the group of quantum optics at IF-UFRJ and P. Milman for useful discussions and KITP at UCSB for the hospitality. This work was partially supported by CNPq, FAPERJ and the NSF (grant No. PHY99-07949).

FIG. 4: Up: Expectation value of the z component of the total spin $\langle J_z \rangle$, the sum of the total spin variance in three directions $\sum_i \Delta^2 J_i$, the spin variance in the z direction $\Delta^2 J_z$ and the sum $\Delta^2 J_z + \langle J_z \rangle$ for (a) a pair of spins $S=1/2$, (b) a pair of spin $S=5/2$ and (c) pairs of spin $S=1/2$ interaction with a random interaction I_i (power-law distribution and $T=0.05$) as a function of magnetic field. This is normalized by the exchange interaction and in the random case by the cutoff of the distribution. Down: Experimental data for E using eq. 2 for $B \neq 0$ for $\text{MgTi}_2\text{O}_3\text{B}_3$ and $\text{MgMn}_2\text{B}_2\text{O}_5$. The insets show the extrapolation of E for very high values of B.

[1] M. Wiesniak, V. Vedral, and C. Brukner, New J. Phys. 7, 258 (2005).
[2] See for example: A. Aspect, J. Dalibard, and G. Roger, Phys. Rev. Lett. 49, 1804 (1982); M. Bourennane et al., Phys. Rev. Lett. 92, 087902 (2004).
[3] S. C. Benjamin, S. Bose, Phys. Rev. Lett. 90, 247901 (2003).
[4] M. C. Arnesen, S. Bose, and V. Vedral, Phys. Rev. Lett. 87, 017901 (2001).
[5] L.-A. Wu et al., Phys. Rev. A 72, 032309 (2005).
[6] G. Vidal et al., Phys. Rev. Lett. 90, 227902 (2003).
[7] S. Ghosh et al., Nature, 425, 48 (2003).
[8] C. Brukner, V. Vedral and A. Zeilinger, Phys. Rev. A 73, 012110 (2006) and T. Vértesi, E. Bene, Phys. Rev. B 73, 134404 (2006).
[9] S. K. Ma, C. Dasgupta, and C. K. Hu, Phys. Rev. Lett. 43, 1434 (1979).
[10] G. Refael and J. E. Moore, Phys. Rev. Lett. 93, 260602 (2004).
[11] J.C. Fernandes et al., Phys. Rev. B 69, 054418 (2004).
[12] J.C. Fernandes et al., Phys. Rev. B 67, 104413 (2003).
[13] J.C. Fernandes et al. Phys. Rev. B 50, 16754 (1994).
[14] R. B. Griffiths, Phys. Rev. Lett. 23, 17 (1969).
[15] Nicolas Laflorencie, Phys. Rev. B 72, 140408 (R) (2005).
[16] A. Utzolino, K. Bluhm and Z. Naturforsch., B: Chem. Sci. 51, 912 (1996).
[17] R. Norrestam, Z. Kristallogr. 189, 1 (1989).
[18] L. Lutterotti, S. Matthies and H.-R. Wenk, Proc. of the Twelfth Int. Conf. on Textures of Materials 1, 1599
(1999).
[19] A. Saguia, B. Boechat and M. A. Continentino, Phys. Rev. B 68, 20403(R) (2003).
[20] D. S. Fisher, Phys. Rev. B 50, 3799 (1994).
[21] J. E. Hirsch, Phys. Rev. B 22, 5355 (1980).
[22] H. F. Hofmann and S. Takeuchi, Phys. Rev. A 68, 032103 (2003).
[23] J. Eisert, F.G.S.L. Brandao, K.M.R. Audenaert, quant-ph/0607167
[24] A. Saguia and M. S. Sarandy, Phys. Rev. A 67, 012315 (2003).