Nanosecond Pulsed Electric Fields Enhance the Anti-tumour Effects of the mTOR Inhibitor Everolimus against Melanoma

Jie Dai¹, Shan Wu²,³*, Yan Kong¹,*, Zhihong Chi¹, Lu Si¹, Xinan Sheng¹, Chuanliang Cui¹, Jing Fang²,³, Jue Zhang²,³ & Jun Guo¹

The PI3K/mTOR/AKT pathway is activated in most melanomas, but mTOR inhibitors used singly have limited activity against advanced melanomas. The application of nanosecond pulsed electric fields (nsPEFs) is a promising cancer therapy approach. In this study, we evaluated the synergistic anti-tumour efficacy of the mTOR inhibitor everolimus in conjunction with nsPEFs against melanoma. The combined treatment of nsPEFs and everolimus gradually decreased cell growth concurrent with nsPEF intensity. nsPEFs alone or combined with everolimus could promote melanoma cell apoptosis, accompanied with a loss in cellular mitochondrial membrane potential and an increase in Ca²⁺ levels. In vivo experiments showed that a combination of the mTOR inhibitor everolimus and nsPEFs improved the inhibitory effect, and all skin lesions caused by nsPEFs healed in 1 week without any observed adverse effect. Combination treatment induced caspase-dependent apoptosis through the upregulation of the pro-apoptotic factor Bax and downregulation of the anti-apoptotic factor Bcl-2. Everolimus and nsPEFs synergistically inhibited angiogenesis by decreasing the expression of vascular endothelial growth factor (VEGF), VEGF receptor (VEGFR), and CD34. Our findings indicate that nsPEFs in combination with an mTOR inhibitor can be used as a potential treatment approach for advanced melanoma.

Metastatic melanoma is the most aggressive skin cancer, with a 5-year survival of less than 5% and a median survival of only 6–9 months¹. The incidence of melanoma is increasing every year worldwide, and the American Cancer Society has estimated 76,380 new cases and 10,130 deaths from melanoma in the United States alone in 2016². Many exciting advancements have been achieved in the treatment of metastatic melanoma in the last 4 years, and targeted therapy has been demonstrated to be a powerful strategy to this end³–⁵. The mammalian target of rapamycin (mTOR) is a validated target in cancer treatment. The mTOR pathway has been demonstrated to be frequently hyper-activated in melanoma, resulting in increased cell proliferation and decreased cell apoptosis⁶–⁸. Everolimus (RAD001) is an inhibitor of mTOR, and it binds to FKBP12 and interacts with the mTOR complex, resulting in the inhibition of downstream signalling and growth suppression of tumour cells⁹–¹⁰. Everolimus can also inhibit the production of vascular endothelial growth factor (VEGF) and regulate angiogenesis¹¹. Everolimus has been approved to treat HR⁺/HER2- advanced breast cancer, advanced neuroendocrine tumours of pancreatic origin, and advanced renal cell carcinoma¹²–¹⁵. However, a phase II trial of single-agent everolimus for the treatment of advanced melanoma failed, with a disease control rate of 29% and a progression-free survival (PFS) of 3 months¹⁶. Everolimus combined with chemotherapy or target therapeutic agents also could not prolong the survival of metastatic melanoma patients: the PFS of everolimus and temozolomide combination therapy was 2.4 months, while that of everolimus plus bevacizumab was 3.5 months¹⁶,¹⁷. Nanosecond pulsed electric fields (nsPEFs) are characterized by ultra-short duration and ultra-high intensity electric fields. Typical nsPEFs have a duration of 60–300 ns, with a rise time of 4–30 ns¹⁸–²¹. Owing to its
Ultra-short duration and rise time, nsPEFs induce various biomedical effects that are clearly distinct from those of conventional electroporation. They have been reported to trigger various cellular responses, including phosphatidylserine translocation, cell membrane permeabilisation, and loss of mitochondrial membrane potential. Besides, nsPEFs create little thermal effects when biological tissues or materials are treated. In the treatment of solid tumours, nsPEFs have proved to be effective in inducing the growth inhibition of breast cancer and liver cancer. Nuccitelli and Chen treated B16F10 murine melanoma with nsPEFs, and observed a rapid shrinkage in tumour cell nuclei and suppression of tumour blood flow. nsPEFs have been demonstrated to be safe and effective in humans. The first human trial on nsPEFs was in a patient diagnosed with basal cell carcinoma, and pathological evaluation showed a complete remission 6 weeks after pulse delivery. UCSF Benioff Children's Hospital Oakland conducted the first clinical trial to treat skin cancer with nsPEFs (NCT01463709). Of 10 basal cell carcinomas treated, 7 became completely free of basaloid cells, 2 were partially ablated, and 1 recurred by week 10, with the appearance of squamous cell carcinoma.

In addition to its use in monotherapy against solid tumours, the possibility of using nsPEFs as an adjuvant therapy has also been investigated. Recent studies showed that nsPEFs could enhance the efficacy of chemotherapeutic drugs in vitro, such as gemcitabine and pingyangmycin. Thus, we speculate that nsPEFs might improve the therapeutic effect of the mTOR inhibitor everolimus in melanoma. In this study, we attempted to investigate the efficacy of the combination of everolimus and nsPEFs in melanoma cells, as well as in an orthotopic model, with the aim of developing a novel melanoma treatment approach.

Results
nsPEFs suppressed melanoma cell growth in vivo and in vitro. First, we evaluated the effect of nsPEFs on the growth of 4 melanoma cell lines (A375, A875, M21, and WM-115). Cells were treated with elevated energy input, and cell viability was detected after 72 h. Results showed that the cell proliferation could be reduced by nsPEFs, and the inhibitory effect was associated with nsPEF energy delivered to cells. nsPEFs have been demonstrated to be safe and effective in humans. The first human trial on nsPEFs was in a patient diagnosed with basal cell carcinoma, and pathological evaluation showed a complete remission 6 weeks after pulse delivery. UCSF Benioff Children's Hospital Oakland conducted the first clinical trial to treat skin cancer with nsPEFs (NCT01463709). Of 10 basal cell carcinomas treated, 7 became completely free of basaloid cells, 2 were partially ablated, and 1 recurred by week 10, with the appearance of squamous cell carcinoma.

In addition to its use in monotherapy against solid tumours, the possibility of using nsPEFs as an adjuvant therapy has also been investigated. Recent studies showed that nsPEFs could enhance the efficacy of chemotherapeutic drugs in vitro, such as gemcitabine and pingyangmycin. Thus, we speculate that nsPEFs might improve the therapeutic effect of the mTOR inhibitor everolimus in melanoma. In this study, we attempted to investigate the efficacy of the combination of everolimus and nsPEFs in melanoma cells, as well as in an orthotopic model, with the aim of developing a novel melanoma treatment approach.

Results
nsPEFs suppressed melanoma cell growth in vivo and in vitro. First, we evaluated the effect of nsPEFs on the growth of 4 melanoma cell lines (A375, A875, M21, and WM-115). Cells were treated with elevated energy input, and cell viability was detected after 72 h. Results showed that the cell proliferation could be reduced by nsPEFs, and the inhibitory effect was associated with nsPEF energy delivered to cells (Fig. 1a,b, and Supplementary Fig. S1). The inhibitory effect of nsPEFs was further detected in vivo. A375-GFP cells were inoculated into the flanks of BALB/c mice, and the Xenogen IVIS 200 system was used to longitudinally monitor the tumour development before and after nsPEF treatment. The fluorescence intensity of tumour-bearing mice before and after nsPEF treatment (day 0), as well as 1, 2, 4, and 8 days after nsPEF treatment. (d) Fluorescence intensities were quantified in photons per second. Ratios of mean ± SD (n = 5) were obtained. (e) Surface view after nsPEF treatment. The experiments were repeated thrice and yielded similar results. *P < 0.05, **P < 0.01 compared to control.
showed local oedema and subcutaneous haemorrhage. Then, the skin begun to scab, and the lesions induced by nsPEFs healed in 1 week (Fig. 1e).

nsPEFs and everolimus synergistically inhibited melanoma cell growth. The sensitivities of A375 and A875 cells to everolimus were evaluated. CellTiter-Glo analysis was performed to test the effect of everolimus on the proliferation of A375 and A875 cells. Cells were cultured in the presence of vehicle or elevated concentrations of everolimus for 24, 48, and 72h. Cell viabilities were determined by CellTiter-Glo analysis. (c) and (d) Cells were first treated with nsPEFs, followed by incubation with everolimus for 48 h; or treated with everolimus for 48 h prior to nsPEF treatment. Synergy quotients (SQ) are shown for both treatment orders. Mean ± SD values of triplicate samples were determined. *P < 0.05 compared to control, **P < 0.05 compared to everolimus single agent treatment.

nsPEF plus everolimus treatment promoted cell apoptosis. Cell apoptosis was detected 24 h after nsPEF treatment. nsPEF energy-dependent apoptosis was observed in both cell lines, while everolimus alone could only slightly induce cell apoptosis compared to the control even when the drug concentration achieved 1μM. We therefore examined whether the combination of everolimus and nsPEFs could further induce cell apoptosis in A375 cells. The results showed that although everolimus did not induce strong apoptosis, the combination of everolimus and nsPEFs exhibited a synergistic effect in inducing cell apoptosis (Fig. 3a).
nsPEFs induced cellular ΔΨm loss and Ca2+ increase. Cellular ΔΨm loss and Ca2+ increase were detected after nsPEF treatment with JC-1 and Fluo-3/AM staining. For everolimus single agent, cellular ΔΨm loss and Ca2+ increase were detected after 24 h incubation. When ΔΨm decreases, JC-1 changes from red aggregates to green monomers. As shown in Fig. 3b, everolimus treatment could induce only a minor ΔΨm decrease, whereas nsPEFs led to a greater ΔΨm decrease compared to everolimus. Everolimus combined with nsPEFs exhibited significant synergism with increased green fluorescence intensity and decreased red fluorescence intensity, which indicated severe deaggregation of JC-1 aggregates and strong ΔΨm loss. Increased intracellular Ca2+ levels were detected immediately after nsPEF treatment and exhibited a pattern of dependence on nsPEF intensity (Fig. 3c).

nsPEF plus everolimus treatment suppressed tumour growth in vivo. We further investigated the effectiveness of everolimus and nsPEFs in vivo, A375 cells were used for establishment of orthotopic model. As shown in Fig. 4a and Supplementary Fig. S3, tumours of the control group showed steady growth after inoculation and started dramatic growth 24 days after inoculation. Single-agent everolimus induced controlled tumour...
growth; tumours remained almost the same in the first 2 weeks after treatment, and then started to grow rapidly after drug withdrawal. With nsPEF treatment alone, tumour size decreased significantly right after the pulse. However, the growth inhibition effect of nsPEFs was sustained only for 1 week; the tumours started to grow back on day 18. The tumour growth of the combination treatment group steadily decreased throughout the experimental period, and the tumours could not even be measured at 3 weeks after treatment, the tumours of 2 of 5 (40%) mice achieved complete regression. At the endpoint of the control group, all mice were sacrificed, and tumours were dissected and weighed. Both rapamycin and nsPEFs significantly decreased tumour growth, with an average tumour volume of 99.24 ± 37.65 mm³ (p = 0.019) and 101.57 ± 43.90 mm³ (p = 0.020), respectively, in comparison with 247.57 ± 55.21 mm³ of the control mice. The combination of rapamycin and nsPEFs improved the inhibitory effect, with an average tumour volume of 8.30 ± 7.43 mm³ (p = 0.001).

nsPEFs and everolimus induced cell apoptosis and suppressed angiogenesis in vivo. To investigate whether nsPEFs alone or in combination with everolimus decrease melanoma tumour growth by promoting tumour cell apoptosis in vivo, we examined the markers related to cell apoptosis by immunohistochemistry. As shown in Fig. 5, compared to the control group, both nsPEF- and everolimus-treated tumours showed increased expression of caspase 3, caspase 6, and Bax, and decreased expression of Bcl-2. Combined treatment showed a stronger increase than that by everolimus or nsPEF treatment alone. VEGF and VEGFR are important mediators during angiogenesis in cancer35. The endothelial cell marker CD34 is generally used in the evaluation of angiogenesis. Tumours treated with either nsPEFs alone or everolimus alone exhibited decreased VEGF, VEGFR, and CD34 expression, while the combined treatment showed an increased inhibition of VEGF, VEGFR, and CD34 expression, indicating that nsPEFs and everolimus synergistically suppressed neovascular growth.

Discussion

Metastatic melanoma is highly resistant to traditional chemotherapy and radiation therapy. The objective response rate of single-agent dacarbazine and temozolomide is less than 20%36. Over the past few years, significant progress in treating metastatic melanoma has been achieved with the development of individual targeted therapies and immunotherapies, but these therapeutic agents do not serve all patients because they are expensive and not available in some countries and regions. Exploring a safe, efficient, and affordable therapeutic strategy to improve the clinical condition of metastasis or local recurrence of malignant melanoma has important implications.

The conserved serine/threonine kinase mTOR forms 2 complexes, mTORC1 and mTORC2. The main accepted tumour ablation mechanism of everolimus is the dephosphorylation of 66K1 and 4EBP1 by inhibiting mTORC1, which results in cell apoptosis, G1/S cell cycle arrest, and angiogenesis suppression37–40. However, everolimus does not inhibit mTORC2, and the inhibition of mTORC1 leads to feedback activation of Akt and protects cancer cells from apoptosis41. In this study, we proposed that nsPEFs might enhance the anti-tumour efficacy of everolimus and might be used as a novel strategy for melanoma treatment. First, we evaluated the growth inhibitory effect of nsPEFs alone in vivo and in vitro. Melanoma cells were pulsed with high-energy electric fields. The results showed that nsPEFs could inhibit melanoma cell growth, and the effect was energy dependent. However, the inhibitory effect would reach a plateau when 30–40% surviving cells remained. This result was confirmed by an orthotopic model, where the tumour continued to shrink for 3 days after nsPEF treatment, and then robust proliferation appeared. This might be because nsPEFs stimulated the release of internally stored calcium. The calcium signal would induce resting G0 cells to re-enter the cell cycle and promote DNA synthesis at the G1/S transition42,43.

Our results demonstrated that the combination of everolimus and nsPEFs synergistically inhibited melanoma growth. Given that the effects of nsPEFs in combination with drugs have not been investigated in melanoma thus far, how to combine the 2 different tools to maximize the inhibition effect needs to be defined. The proliferation rates of 2 cell lines after different sequential orders of treatment were assessed, and both cell lines were more sensitive to nsPEFs following everolimus treatment. These results suggested that although everolimus could not kill the 2 melanoma cell lines, it could sensitize the cells to low-strength nsPEFs. This finding was similar with the results of our previous work in breast cancer, in which the chemotherapeutic drug gemcitabine was used in combination with nsPEFs, and treatment with gemcitabine before nsPEFs was the preferred sequential order to inhibit breast cancer cell viability and clonogenic survival32. In our in vivo study, nsPEFs showed a stronger retardation of tumour growth than everolimus since treatment initiation. However, after the nsPEF-induced scar healed, tumour growth in the nsPEF group accelerated, and there were no significant differences in tumour size and weight between the nsPEF and everolimus groups. The enhancement of efficacy in vivo was consistent with that in vitro, as the combination treatment displayed a better curative effect than that of all the other groups. Furthermore, the tumours of the 40% combination group achieved complete remission. It is possible that the synergistic effects of everolimus and nsPEFs could last for around a month, after which tumours would grow again. Tumours have been reported to grow again after 2 weeks’ regression with nsPEF treatment35. Although tumours start to grow again, they are still much smaller in size, which would make enable other approaches to be applied, thereby increasing the chances of achieving complete remission.

In the combination treatment group, cellular apoptosis was observed, with elevated expression of Bax, caspase 3, and caspase 6 and decreased expression of Bcl-2, indicating that nsPEFs and everolimus disturbed the balance between pro-apoptosis and anti-apoptosis signals and triggered apoptosis in vivo. The consequent DNA damage may also contribute to tumour growth inhibition. DNA damage has been observed in nsPEF-treated murine fibrosarcoma and melanoma. DNA double-stranded breaks and chromosome condensation appear shortly after nsPEF treatment29,44. Another widely accepted mechanism of tumour growth inhibition by nsPEF is by the suppression of angiogenesis. nsPEFs have been demonstrated to be able to inhibit the growth of tumour blood vessels.
and blood supply around tumours. In our study, VEGF, VEGFR, and CD34 expression was strongly suppressed after treatment, indicating that the blood supply of tumours was inhibited.

It has been recognized that multiple cellular organs respond to nsPEF treatment. Our study showed that nsPEFs and everolimus induced cell apoptosis, accompanied with ΔΨm loss and increased Ca2+ levels. nsPEFs can trigger a rapid decrease in ΔΨm in multiple cell lines, including B16F10 murine melanoma and E4 squamous cells. The rapid change in ΔΨm leads to the release of pro-apoptotic factors like cytochrome c and then contributes to caspase-dependent apoptosis. nsPEFs are reported to trigger cytoplasmic Ca2+ increase almost immediately after treatment, causing both endoplasmic reticulum Ca2+ release and extracellular Ca2+ influx. Increased Ca2+ levels can also induce cell death. Morotomi-Yano et al. found that nsPEFs could induce

Figure 5. nsPEFs and everolimus induced cell apoptosis and decreased angiogenesis in vivo.
Immunohistochemical staining of the apoptosis markers Bax, Bcl-2, cleaved caspase-3, and cleaved caspase-6, and angiogenesis-associated markers VEGF, VEGFR, and CD34 (original magnification, ×200).
the necrosis of HeLa S3 cells in a Ca$^{2+}$-dependent manner in the presence of extracellular calcium, whereas apoptosis was induced in the absence of extracellular calcium53.

In summary, our study demonstrated that the combined treatment of nsPEFs with everolimus could synergistically decrease melanoma cell growth, promote cell apoptosis, and inhibit angiogenesis. This finding suggested that as a promising physical sensitizer, nsPEFs provide valuable impetus to molecular targeting drugs, and that combination therapy using nsPEFs and everolimus can be optimized for further clinical treatment of advanced melanoma.

Materials and Methods

Cell lines and cell culture. Human melanoma cell lines A375 and A875 were obtained from the Cell Resource Center, IBMS, CAMS/PUMC (Beijing, China). M21 was purchased from National Institutes for Food and Drug Control (Beijing, China). The 293T cell line was purchased from Leibniz Institute (DSMZ, Braunschweig, Germany). All cell lines were cultured in DMEM (Gibco, Invitrogen, Grand Island, NY, USA) supplemented with 10% FBS (Gibco), 2 mM l-glutamine, and 1% penicillin-streptomycin (Gibco). WM-115 was purchased from ATCC (Manassas, VA, USA) and cultured in EMEM (Gibco, Invitrogen, Grand Island, NY, USA) supplemented with 10% FBS (Gibco), 2 mM l-glutamine, and 1% penicillin-streptomycin (Gibco).

Animals. Four- to five-week-old BALB/c (nu/nu) female mice were purchased and maintained under pathogen-free conditions in the Peking University Laboratory Animal Center. All animal experiments were carried out in accordance with the National Institutes of Health guide for the care and use of laboratory animals (NIH Publications No. 8023, revised 1978), and were approved by the medical ethics committee of the Peking University Cancer Hospital & Institute. A375 cells (5×10^6) in 100 μL PBS were inoculated subcutaneously into flanks. All mice were classified into 4 groups when tumours reached 5–7 mm in diameter: group I (control group), treated with sham pulse and 0.9% saline; group II, treated with 100 pulses of nsPEFs at 30 kV/cm for 100 ns; group III, treated with everolimus (4 mg/kg of body weight) by oral gavage daily for 2 weeks; and group IV, treated with everolimus (4 mg/kg of body weight for 2 weeks) in combination with nsPEFs (100 pulses of 30 kV/cm, 100 ns). nsPEFs were delivered on the first day of everolimus administration. Tumour sizes and mouse weights were measured twice a week. Each tumour was measured with a calliper, and tumour volume was calculated by the following formula: volume = $0.52 \times a \times b^2$, where a = longest diameter and b = shortest diameter. When the tumours of the control group were >1.5 cm in diameter, all mice were sacrificed by exposure to an atmosphere highly enriched with CO$_2$, and the xenografts were excised and weighed.

Chemicals and antibodies. Everolimus was purchased from Selleckchem Co. (Shanghai, China). For the in vivo experiments, a microemulsion was freshly diluted in a vehicle of 5% glucose at an administration volume of 4 mg/kg. The cleaved caspase antibody sampler kit, and antibodies against phospho-mTOR, phospho-S6RP, phospho-4EBP1, mTOR, S6RP, and 4EBP1 were purchased from Cell Signaling Technology (Beverly, MA, USA). Bcl-2, Bax, VEGF, VEGF receptor (VEGFR), and CD34 antibodies were purchased from Bioworld Technology (Minneapolis, MN, USA).

nsPEF application. We established a transmission line–based nsPEF generator, as shown in the schematic diagram in Fig. 6. The pulse duration was fixed at 100 ns, and the intensity of electric fields varied from 5 to 40 kV/cm. For the in vitro study, cells were harvested and suspended in a cuvette (BTX Co., San Diego, CA, USA) with a 2-mm gap in complete culture medium. All cells were exposed to 25 pulses at electric fields between 10 kV/cm to 30 kV/cm. For the in vivo study, tumours were fixed between the 2 clamps of the applicator to accept nsPEF treatment. The applicator was made of insulting materials with 2 copper strips in opposite positions inside the clamp, and an electric field was generated between the 2 copper strips. Throughout the treatment process, all mice were maintained under sodium pentobarbital anaesthesia.
Cell proliferation and apoptosis assays. Cell viability was measured by the CellTiter-Glo luminescent cell viability assay kit (Promega, Madison, WI, USA) according to the manufacturer’s instructions, and luminescence was measured using a BioTek Synergy 2 luminesimeter (BioTek, Winooski, VT, USA). Cell apoptosis was evaluated by FITC–Annexin V and PI staining (Merck, Darmstadt, Germany), and stained samples were analysed by a FACS flow cytometer (Becton Dickinson, USA).

Western blotting. When cells reached 70–80% confluence, they were starved overnight and treated with control vehicle (DMSO) or 1 μM everolimus for 1 h. Cells were lysed using PhosphoSafe extraction reagent (EMD Millipore, Billerica, MA, USA) and subjected to NuPAGE (Invitrogen, Carlsbad, CA, USA) according to standard procedures.

Mitochondrial membrane potential and intracellular Ca²⁺ detection. Loss of mitochondrial membrane potential (ΔΨm) was detected using the fluorescent probe JC-1 (Beyotime, Shanghai, China), and intracellular Ca²⁺ level was quantified with the fluorescent dye Fluo-3/AM (Beyotime). For nsPEF single agent and combination treatment, cellular ΔΨm loss and Ca²⁺ increase were detected after nsPEF treatment and incubated with JC-1 or Fluo-3/AM at 37 °C for 30 min. For everolimus single agent, cellular ΔΨm loss and Ca²⁺ increase were detected after 24 h incubation. Next, cells were washed with PBS and analysed with a fluorescence plate reader.

Lenti-GFP infection and in vivo fluorescence imaging. The day before transfection, 293 T cells were seeded at 5 × 10⁶ cells per 100-mm dish. The next day, GFP lentiviral vector, psPAX2 packaging plasmid, and pMD2.G envelope vector were added to 293 T cells using the FuGENE 6 transfection reagent (Promega) according to the manufacturer’s instructions. Virus-containing supernatants were collected 48 h post transfection. A375 cells were incubated in the virus-containing supernatants overnight and replaced in fresh culture medium. A375-GFP cells were inoculated subcutaneously into the flanks of mice, and tumour images before and after nsPEF treatment were monitored. Mice were anesthetized with 2.5% isoflurane, and the GFP activity was localized and quantified using an IVIS 200 in vivo optical imaging system (Xenogen Corp., Alameda, CA, USA). Images were obtained with an excitation wavelength of 465 nm and emission wavelength ranging from 500 to 540 nm. Imaging processing and analysis were performed with Living Image 3.0 software (Caliper Life Sciences, Hopkinton, MA, USA).

Immunohistochemistry assay. Tumours were fixed in 4% paraformaldehyde, embedded with paraffin, and cut into 4–5-μm sections. The slides were deparaffinised and rehydrated in PBS. Antigen retrieval was performed by microwaving in citrate buffer (pH 6) for 10 min. Endogenous peroxidase was blocked by 3% hydrogen peroxide for 20 min. Tumour sections were incubated with the primary antibody (Affinity Bioreagents, Golden, CO, USA) and then with biotinylated secondary antibody (Vector Laboratories, Burlingame, CA, USA). The slides were counterstained with hematoxylin and mounted in Permount. The slides were examined under a fluorescence microscope (Leica, Wetzlar, Germany) and images were acquired with a digital camera (Nikon, Tokyo, Japan).

Statistical analysis. Statistical analyses were performed using SPSS 16.0 software. Values of mean ± SD were determined, and differences among groups were determined by Student’s t test or ANOVA. Statistical significance was considered at p < 0.05.

References
1. Balch, C. M. et al. Final version of the American Joint Committee on Cancer staging system for cutaneous melanoma. J Clin Oncol. 19, 3633–3648 (2001).
2. Siegel, R., Miller, K., Zou, Z. & Jemal, A. Cancer statistics, 2016[J]. CA: a cancer journal for clinicians. 66, 7–30 (2016).
3. Tao, H., Chin, L., Garraway, L. A. & Fisher, D. E. Melanoma: from mutations to medicine. Genes Dev. 26, 1131–1155 (2012).
4. Sosman, J. A. et al. Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N Engl J Med. 366, 707–14 (2012).
5. Guo, J. et al. Phase II, open-label, single-arm trial of imatinib mesylate in patients with metastatic melanoma harboring c-Kit mutation or amplification. J Clin Oncol. 29, 2904–9 (2011).
6. Karbowniczek, M., Spittle, C. S., Morrison, T., Wu, H. & Henske, E. P. mTOR is activated in the majority of malignant melanomas. J Investig Dermatol. 128, 980–7 (2008).
7. Bjornsti, M. A. & Houghton, P. J. The TOR pathway: A target for cancer therapy. Nat Rev Cancer. 4, 335–48 (2004).
8. Janus, A., Robak, T. & Smolewski, P. The mammalian target of the rapamycin (mTOR) kinase pathway: Its role in tumourigenesis and targeted anti-tumour therapy. Cell Mol Biol Lett. 10, 479–98 (2005).
9. Bevink, J. et al. The mTOR inhibitor RAD001 sensitizes tumor cells to DNA-mediated induced apoptosis through inhibition of p21 translation. Cell. 120, 747–59 (2005).
10. Danacey, J. mTOR signaling and drug development in cancer. Nat Rev Clin Oncol. 7, 209–19 (2010).
11. O’Reilly, T. M. et al. Differential anti-vascular effects of mTOR or VEGFR pathway inhibition: a rational basis for combining RAD001 and PTK787/ZK222584. Cancer Res. 65, 715 (2005).
12. Baselga, J., et al. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med. 366, 520–9 (2012).
13. Yao, J. C. et al. Everolimus for advanced pancreatic neuroendocrine tumors. N Engl J Med. 364, 514–23 (2011).
14. Motzer, R. J. et al. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet. 372, 449–56 (2008).
15. Rao, R. D. et al. Phase II trial of the mTOR inhibitor everolimus (RAD-001) in metastatic melanoma. J Clin Oncol. 24, Abs8043 (2006).
16. Dronca, R. S. et al. Phase II study of temozolomide (TMZ) and everolimus (RAD001) therapy for metastatic melanoma: a North Central Cancer Treatment Group study, N0675. Am J Clin Oncol. 37, 369–76 (2014).
17. Peyton, J. D. et al. Phase II trial of bevacizumab and everolimus in the treatment of patients with metastatic melanoma: preliminary results. J Clin Oncol. 27, Abs9027 (2009).
18. Beebe, S. J. et al. Nanosecond pulsed electric field (nsPEFs) effects on cells and tissues: Apoptosis induction and tumor growth inhibition, IEEE Transactions On Plasma Science. 30 (2002).
19. Stacey, M. et al. Differential effects in cells exposed to ultra-short, high intensity electric fields: cell survival, DNA damage, and cell cycle analysis. Mut Res. 542, 65–75 (2003).
J.G. and J.Z. led the project and supervised all experiments. J.D., S.W., Y.K., Z.C., L.S., X.S., and C.C. conducted additional experiments and measurements. J.D., S.W., and Y.K. co-led data analysis and co-wrote the manuscript. All authors discussed the results.

Acknowledgements

This work was supported by grants from the Major State Basic Research Development Program of China (2013CB911004), National Natural Science Foundation of China (81402264), 81627296, Beijing Municipal Natural Science Foundation (7152033, 7154187), Beijing Talents Fund (2014000021223ZK26, 2016000021223ZK18), Beijing Baixianwan Talents Project, Beijing Municipal Administration of Hospitals Clinical Medicine Development of Special Funding Support (ZYLK201603), Beijing Municipal Science & Technology Commission (Z151110003915074), Peking University Biomed-X Foundation, and the 985 Project of Peking University.

Author Contributions

J.G. and J.Z. led the project and supervised all experiments. J.D., S.W., Y.K., Z.C., I.S., X.S., and C.C. conducted additional experiments and measurements. J.D., S.W., and Y.K. co-led data analysis and co-wrote the manuscript. All authors discussed the results.

Additional Information

Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Dai, J. *et al.* Nanosecond Pulsed Electric Fields Enhance the Anti-tumour Effects of the mTOR Inhibitor Everolimus against Melanoma. *Sci. Rep.* 7, 39597; doi: 10.1038/srep39597 (2017).

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

© The Author(s) 2017