Effect of rain characteristics on rain erosivity in Banggai Regency, Central Sulawesi, Indonesia

Y W Nugraha, A Verawati, I W Sutapa

Faculty of Engineering, University of Tadulako, Palu, Central Sulawesi, Indonesia
JL. Sukarno – Hatta Km. 8 Palu, Central Sulawesi, Indonesia
Email: wsutapa@yahoo.com

Abstract. Rain characteristics are important characteristics to know and predict their response to overall climate change. The purpose of this study is to determine the characteristics of rain and its effect on the erosivity of rain and to make a relationship between rain erosivity and rain. The method used is the rain pattern, the nature of rain, rain erosivity, and double linear lines. The analysis was carried out using rain data at Singkoyo and Waru Stations with observation periods from 1997-2017 (21 years). The calculation results show that the rain characteristic is patterned C or opposite of A pattern; rain characteristics greatly affect the size of the rain erosivity; BN, N, and AN values are not the same for the two rain stations because they are strongly influenced by the statistical parameters of the rain; multiple regression equations for Singkoyo Station, \(\text{ET0} = 8.890 + 18.681 R_{\text{month}} - 21.594 N + 5.574 R_{\text{max}} \) and for Waru Station, \(\text{ET0} = -29.163 + 10.581 R_{\text{month}} - 6.150 N + 13.156 R_{\text{max}} \).

1. Introduction
Indonesia is located in a tropical climate, which has two seasons, namely the rainy season and the dry season. In general, the rainy season occurs from October to April, while the dry season occurs from April to October. However, the season patterns in these months can no longer be used as a reference. Global climate change caused by the effects of global warming has influenced the climate and weather in Indonesia. Some of the impacts that occur include, the season in Indonesia has changed to become erratic, the intensity of rain has increased, and increased flooding in areas that have been known to have rarely been flooded. These various impacts greatly affect the planning and design of various buildings that require hydrological data in their implementation [1].

Simply put, the hydrological process in a watershed can be described as the relationship between the input elements namely rain, process, and output in the form of flow. The existence of certain rain will produce a certain flow as well. This flow is also influenced by the characteristics of the watershed and the characteristics of falling rain. Rainfall characteristics include rainfall thickness, intensity, and duration of rain, while watershed characteristics include topography, geology, geomorphology, soil, land cover, and land management and watershed morphometry [2].

The threat of drought in the dry season and the danger of flooding in the rainy season are classic problems that continue to recur every year, even lately with increasing frequency and intensity and are difficult to predict. Responding to the impact of global climate change in its relation to flood disaster risk control, it is deemed necessary to study a characteristic of rainfall as one of the factors that are considered to have a significant influence on the phenomenon of flooding [3]. Brown stated that rain characteristics are important characteristics to know and predict their response to overall climate change.
change. Information on the amount and distribution of rain is very useful in making policies concerning the use of rainwater so that planting can be carried out optimally [4]. Hutomo stated that the ability of rain to cause erosion is called rain erosivity. Erosion occurs due to rainwater blows and surface runoff erosion [5]. This study aims to determine the characteristics of rain and its effect on rain erosivity and to make a relationship between rain erosivity and rain.

2. Material and Methods

2.1. Description of study

The data used in this study were obtained from two rainfall stations in Central Sulawesi (table 1 and figure 1). The material used in this analysis is secondary data in the form of monthly average rainfall, monthly maximum rainfall and the number of rainfalls per month. While the equipment used includes calculators, stationery, and personal computers.

Table 1. Rainfall station names and positions

No.	Station	Location	Period (year)	Position
1	Singkoyo Watershed	1997 - 2017	01° 26' 51" South Latitude (21 years) 122° 20' 09" East Longitude	
2	Waru Watershed	1997 - 2017	0° 49' 25,1" South Latitude (21 years) 123° 10' 16" East Longitude	

Figure 1. Location of research

2.2. Literature study

2.2.1 Rainfall characteristics. Tjasyono states that in general there are three rainfall patterns in Indonesia [6], namely:
1. Pattern A or Monsoon Pattern, influenced by monsoon winds with the characteristic of monthly distribution forming the letter (V).
2. Pattern B or Equatorial Pattern, the distribution of rainfall with two maximums, around April and October, is not always clear of the difference in the distribution of monthly rainfall.
3. Pattern C or Local Pattern, where the distribution of monthly rainfall is opposite to pattern A.
2.2.2 The nature of rain
The evaluation of rain properties can be calculated using the standard deviation formula. Rainfall by standard deviation method is classified into five characteristics of rain [7], namely:

1. Far below Normal (JBN)
 \[JBN = x \leq X - 1.5 \text{ SD} \]

2. Under Normal (BN)
 \[BN = X - 1.5 \text{ SD} < x \leq X - 0.5 \text{ SD} \]

3. Normal (N)
 \[N = X - 0.5 \text{ SD} < x \leq X + 0.5 \text{ SD} \]

4. Above Normal (AN)
 \[AN = X + 0.5 \text{ SD} < x \leq X + 1.5 \text{ SD} \]

5. Far above Normal (JAN)
 \[JAN = x > X + 1.5 \text{ SD} \]

Standard deviations are calculated using the formula [8-11]:

\[SD = \sqrt{\frac{\sum_{i=1}^{n} X_i^2 - (\sum X_i)^2}{n-1}} \]

2.2.3 Rain erosivity
To calculate the value of rain erosivity used the Bols formula, 1978 [12]. The rainfall data needed is the average monthly rainfall, the number of rainy days and the maximum daily rainfall per month.

\[E_{30} = 6.119 \ (RAIN)^{1.21} \times (DAYS)^{0.47} \times (M_{max})^{0.53} \]

2.2.4 Equation of multiple linear regression
The relationship between rain erosivity and rainfall characteristics that influence it is analyzed using the multiple linear regression equation [13]:

\[Y = b_0 + b_1X_1 + b_2X_2 + b_3X_3 \]

2.3 Research method
Several stages carried out in this study, including:

2.3.1 Data collection. Rain data were obtained from the Cipta Karya and Water Resources Office, Central Sulawesi Province, taken from the Singkoyo and Waru Rain Stations for 1997-2017 (21 years).

2.3.2 Data processing. The stages of data processing in this study start from create a monthly rain pattern profile, analyzing the nature of rain, analyzing rain erosivity, analyzing the effect of rain characteristics on erosivity, and make a regression line equation the relationship between rain characteristics and erosivity.
3. Results and Discussion

3.1 Rainfall pattern
Based on figure 2 and figure 3, it can be seen that the monthly rainfall patterns at the Singkoyo and Waru rain stations are almost the same, where the peak of rain occurs in July, subsequently lowering towards before and after July. Thus, it can be categorized by both rain stations patterned C or Pattern inverted V.

![Figure 2](image-url)
Figure 2. Rainfall pattern at Singkoyo station (1997-2017)

![Figure 3](image-url)
Figure 3. Rainfall pattern at Waru station (1997-2017)
Table 2. The rainy nature of Singkoyo station

No.	Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Yearly	JBN	BN	N	AN	JAN	
1	1997	BN	BN	BN	BN	BN	N	N	N	N	N	N	BN	BN	BN	BN	N	N	AN	
2	1998	BN	BN	BN	BN	BN	N	N	N	N	N	N	BN	BN	BN	BN	N	N	AN	
3	1999	BN	BN	BN	BN	BN	N	N	N	N	N	AN	JAN	BN	BN	BN	BN	N	N	AN
4	2000	BN	AN	BN	N	AN	N	AN	AN	BN	BN	AN	BN	AN	BN	BN	BN	N	N	AN
5	2001	BN	BN	BN	N	N	N	N	N	N	N	AN	BN	BN	BN	BN	N	N	AN	
6	2002	N	N	N	N	N	JAN	BN	BN	BN	BN	N	AN	BN	BN	BN	BN	N	N	AN
7	2003	N	N	BN	JAN	BN	N	BN	BN	BN	BN	N	AN	BN	BN	BN	BN	N	N	AN
8	2004	BN	AN	BN	N	JAN	BN	AN	BN	N	AN	BN	N	AN	BN	BN	BN	N	N	AN
9	2005	N	AN	BN	AN	JAN	BN	AN	BN	BN	BN	N	AN	BN	BN	BN	BN	N	N	AN
10	2006	BN	AN	BN	N	AN	BN	N	BN	BN	BN	N	AN	BN	BN	BN	BN	N	N	AN
11	2007	BN	N	N	BN	AN	BN	AN	N	AN	N	N	AN							
12	2008	N	AN	N	JAN	N	JAN	AN	N	N	AN									
13	2009	N	AN	JAN	N	JAN	AN	N	N	AN										
14	2010	AN	N	AN	N	BN	N	N	AN	BN	BN	N	AN	BN	BN	BN	BN	N	N	AN
15	2011	N	AN	AN	N	AN	N	N	AN	BN	BN	N	AN	BN	BN	BN	BN	N	N	AN
16	2012	N	AN	AN	N	AN	N	N	N	BN	BN	N	AN	BN	BN	BN	BN	N	N	AN
17	2013	AN	N	AN	N	BN	N	BN	BN	BN	BN	N	AN	BN	BN	BN	BN	N	N	AN
18	2014	N	AN	AN	N	JAN	BN	N	BN	BN	BN	N	AN	BN	BN	BN	BN	N	N	AN
19	2015	N	AN	AN	N	JAN	BN	N	BN	BN	BN	N	AN	BN	BN	BN	BN	N	N	AN
20	2016	AN	JAN	N	BN	N	BN	N	AN	N	N	AN								
21	2017	AN	N	N	JAN	AN	N	N	AN											

Where: JBN = Far Below Normal; BN = Below Normal; N = Normal; AN = Above Normal; JAN = Far Above Normal

Based on the evaluation of the nature of rain during the period 1997-2017 at the Singkoyo rain station (table 2), some rain properties were obtained as follows: far below normal (JBN), the largest = 16.67% in 1997, below the normal (BN), the largest = 58.33% year 1997, normal (N) biggest = 58.33% in 2011, above normal (AN) biggest = 59.0% in 2017, and far above normal (JAN) biggest = 25% in 2008.

Table 3. The rainy nature of Waru station

Based on the evaluation of the nature of rain during the period 1997-2017 at the Waru Rain Station (table 3), some rain properties were obtained as follows: far below normal (JBN), the largest occurred in 2000 with a percentage of 8.3%, below normal (BN), the largest occurred in the year 1997 with the percentage of 91.7%, the highest normal rainfall (N) occurred in 2006 with the percentage of 75.0%, the highest than normal rainfall (AN) occurred in 2017 with a percentage of 41.7% and far above the normal (JAN) the biggest occurred in 10 with a percentage of 41.7%.

3.2 Rain erosivity

From table 4 and figure 4 the erosivity calculation results can be explained that the erosivity value of rainfall from 1997-2017 fluctuates from year to year. Starting in 1997, the erosivity value increased and reached its peak in 2000. After that, the value fluctuated until it reached its peak in 2008. Then it fell
again in 2009 and was almost flat until 2017. The biggest rain erosion occurred in 2008 and the smallest in 2009.

Table 4. Rain erosivity at Singkoyo station

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Yearly		
1997	186.844	27.911	65.749	86.040	120.067	489.734	379.704	5.096	-	-	-	-	1361.146		
1998	2.895	-	44.172	72.536	116.302	889.009	273.882	-	-	155.942	81.593	60.861	60.976	1778.168	
1999	221.260	60.499	90.280	262.706	301.012	650.317	526.329	336.591	402.899	250.982	98.640	64.528	3274.042		
2000	-	125.912	109.364	64.359	226.965	1375.246	829.984	2504.988	993.717	241.296	27.997	-	-	6569.836	
2001	100.182	37.647	112.136	259.297	434.251	737.770	2331.991	921.906	195.175	131.592	153.387	-	167.647	5581.988	
2002	127.714	73.607	96.428	304.672	280.158	1602.903	653.438	242.684	6.333	-	12.429	319.998	-	3720.355	
2003	153.150	62.250	-	52.900	189.596	324.884	1008.491	325.428	78.136	5.221	-	43.071	145.945	3865.174	
2004	20.721	152.112	24.904	108.451	333.604	1378.496	1464.814	19.746	548.010	-	-	-	-	4185.788	
2005	20.828	133.877	29.281	169.231	774.788	279.433	-	939.960	56.063	30.911	81.455	97.515	-	2628.343	
2006	13.023	136.258	60.576	141.381	234.597	879.188	265.677	498.077	60.696	-	-	-	-	2511.688	
2007	19.083	82.680	48.044	65.913	338.383	478.035	284.462	802.768	486.830	108.762	68.479	-	-	5395.892	
2008	87.260	105.298	60.035	653.600	276.605	900.397	379.851	1483.380	394.496	427.902	-	-	63.166	3884.242	
2009	49.971	92.180	79.599	48.504	258.437	299.729	139.278	-	-	-	-	-	-	1471.647	
2010	51.293	19.312	123.257	48.284	250.487	1278.561	430.914	1011.745	88.735	120.351	144.752	-	-	3737.855	
2011	64.700	53.814	80.715	210.606	244.853	1328.363	850.560	699.148	1430.418	12.716	34.676	-	-	5083.654	
2012	107.972	53.287	34.544	268.720	906.072	447.420	1486.033	333.115	111.793	-	-	-	-	3929.137	
2013	159.071	102.063	94.522	118.422	203.466	252.963	857.282	436.979	223.227	47.151	-	-	-	2529.077	
2014	33.630	63.239	21.902	37.498	328.335	921.148	641.309	1917.931	17.603	23.508	84.388	-	-	179.293	4269.787
2015	68.092	181.803	99.311	137.685	1159.08	905.176	905.656	27.819	9.466	36.985	32.173	-	-	3662.372	
2016	281.419	202.230	65.180	96.030	55.624	811.446	757.114	279.228	120.279	150.256	117.592	309.048	-	3345.446	
2017	86.595	105.069	50.678	55.980	260.217	1127.093	771.092	1340.786	590.278	136.211	91.823	35.234	-	4651.055	

Figure 4. Singkoyo Station rain erosivity graph
Table 5. Rain erosivity at Waru station

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Yearly
1997	3.624	3.675	27.61	12.743	64.655	33.587	158.710	3.251	0.513	10.453	25.577	344.403	
1998	6.152	5.490	22.725	65.219	34.632	67.219	29.729	124.084	88.550	34.150	35.187	10.761	532.697
1999	21.938	14.176	47.520	29.016	236.881	187.814	64.307	35.865	32.646	30.388	74.063	3.169	767.762
2000	20.990	24.958	7.552	20.152	29.476	98.256	147.299	94.945	29.308	28.365	17.701	3.425	522.323
2001	46.702	4.548	21.167	68.386	95.169	127.969	86.866	14.834	50.280	6.522	4.678	7.030	534.151
2002	15.933	12.636	59.818	68.581	84.188	130.129	19.422	5.135	10.915	64.299	162.024	633.077	
2003	46.435	24.322	84.304	215.530	346.263	256.288	676.699	793.699	39.758	35.036	11.430	77.146	2606.321
2004	57.617	59.637	73.323	7.680	47.120	379.030	415.942	9.854	78.644	6.660	52.806	8.000	1183.933
2005	8.946	88.751	159.630	68.587	448.932	163.651	783.896	366.549	73.204	21.817	136.149	245.100	2665.207
2006	38.128	38.267	78.264	92.285	324.544	119.383	171.910	94.764	67.487	64.725	85.431	43.816	2297.004
2007	58.314	165.252	263.832	155.183	124.019	309.778	440.954	441.782	170.180	250.725	15.370	51.769	2445.148
2008	300.648	21.866	241.049	285.300	360.598	332.627	1314.984	783.726	241.530	67.654	69.198	53.247	4112.248
2009	99.012	27.787	113.064	56.920	697.983	190.078	218.568	59.204	104.982	88.505	80.257	13.969	1726.727
2010	77.577	23.585	108.375	88.503	73.313	451.924	154.199	181.607	533.742	234.668	151.621	171.764	3600.878
2011	177.541	400.482	92.641	251.672	305.337	160.669	655.813	342.386	832.371	56.791	361.705	72.254	3699.571
2012	68.430	67.844	79.011	249.876	181.572	472.241	976.669	379.587	259.506	51.862	88.303	50.056	2924.957
2013	14.221	34.952	19.039	462.411	451.725	347.227	356.381	384.903	308.165	101.120	46.658	55.147	2582.244
2014	74.189	76.180	97.465	217.356	614.613	567.401	257.320	114.055	58.136	35.222	60.120	23.484	3232.904
2015	42.223	28.756	216.779	234.742	860.857	589.136	502.761	10.099	5.970	2.362	121.140	9.365	2623.269
2016	275.207	48.837	167.233	105.855	167.729	537.852	211.550	149.495	38.696	218.500	82.863	132.269	2156.269
2017	62.286	194.503	130.477	189.623	767.929	604.615	1421.490	414.388	755.351	100.143	71.163	14.212	4830.579

Figure 5. Waru station rain erosivity graph

From table 5 and figure 5, the erosivity calculation results can be explained that the erosivity value of rainfall from 1997-2017 varies from year to year. For the year 1997-2002, the value of erosivity is relatively small compared to other years. This happens because the value of the rain is relatively very small and the number of rainy days is quite large. The greatest rainfall erosion occurred in 2017 and the smallest erosion value in 1997. However, there is a very significant difference,
namely the erosivity value the rain at Singkoyo Station is far greater than in Waru Station. This indicates that the amount of rain at Singkoyo Station is far greater than the Waru Station.

3.1. Relationship between rain characteristics and rain erosivity

![Figure 6](image1.png)

Figure 6. Graph relationship between rain erosivity and rain characteristics (Singkoyo station)

![Figure 7](image2.png)

Figure 7. Graph relationship between rain erosivity and rain characteristics (Waru station)

From figure 6 and figure 7 it can be explained that the characteristics of rain greatly affect the erosivity value of rain. For the characteristics of rain far below normal (JBN) and below normal (BN) produce the smallest erosivity, the characteristics of normal rain (N) produce erosivity in the middle and the characteristics of rain far above normal (JAN) and above normal (AN) produce greatest erosivity value. It is also important to note that the effect of rain characteristics on the erosivity value of rain is that BN, N and AN values are not the same for the two rain stations. This is strongly influenced by the statistical parameters of the rain.

3.3 Multiple linear regression

Multiple regression equation for Singkoyo Station, \(ET_0 = 8.890 + 18.681 R_{\text{month}} - 21.594 N + 5.574 R_{\text{max}} \). For Waru Station, \(ET_0 = -29.163 + 10.581 R_{\text{month}} - 6.150 N + 13.156 R_{\text{max}} \). Based on the regression equation it can be said that the erosivity value (ET0) is influenced by monthly rainfall (\(R_{\text{month}} \), rainy
day (N) and maximum monthly daily rainfall (R$_{\text{max}}$). This means that if the monthly rainfall is high, the rainy day is small and the maximum daily rainfall is large, the erosivity value will be large, and vice versa.

4. Conclusions
The conclusions that can be obtained from this study was the rain characteristic is patterned C or opposite of A pattern; rain characteristics greatly affect the size of the rain erosivity; BN, N and AN values are not the same for the two rain stations because they are strongly influenced by the statistical parameters of the rain; multiple regression equations for Singkoyo Station, $\text{ET}_0 = 8,890 + 18,681 R_{\text{month}} - 21,594 N + 5,574 R_{\text{max}}$ and for Waru Station, $\text{ET}_0 = -29,163 + 10,581 R_{\text{month}} - 6,150 N + 13,156 R_{\text{max}}$.

Acknowledgements
The author would like to thank all those who have supported this research, namely: Civil Engineering, Tadulako University, Sulawesi River Region Regional Office III and Cipta Karya and Water Resources Public Works Office in Central Sulawesi Province, Indonesia

References
[1] Syifa Fauziyah, Sobriyah, Susilowati 2013 e- J. Civil Engineering Matrix 82 1-8
[2] M. Pramono Hadi 2006 Geography Forum 20 13-26
[3] Happy Mulya and Tiny Mananoma 2010 PIT HATHI XXVII, Surabaya, July 29 – August 1, 2010
[4] Brown J R, Jacob C and Haynes J M 2010 Journal of Climate Change 23 6504-6525
[5] Hutomo W H 1987 Erosion and Land Conservation (Malang, Indonesia: Brawijaya University Press)
[6] Tjasyono B 2004 Climatology (Bandung, Indonesia: ITB. Bandung)
[7] Oktaviana A 2012 Analysis of Rain Characteristics and Land Use Against Ciliwung Hulu River Basin. Thesis. Department of Soil and Land Resources. IPB Agriculture Faculty. Bogor
[8] Suripin 2003 Sustainable Urban Drainage System (Yogyakarta, Indonesia: Andi Yogyakarta)
[9] Subarkah I 1980 Hydrology for Water Structure Design (Bandung, Indonesia: Idea Dharma Bandung)
[10] Soemarto C D 1987 Engineering Hydrology (Surabaya, Indonesia: Usaha Nasional Surabaya)
[11] Hadisusanto N 2011 Hydrology Application (Malang, Indonesia: Jogja Mediatama)
[12] Asdak C 2002 Hydrology and Management of Watersheds (Yogyakarta, Indonesia: Gadjah Mada University Press)
[13] Karyati 2015 AGRIFOR Journal 14 222-228