An Introduction to Artificial Intelligence and Machine Learning for Online Education

Changling Peng1,2 · Xuanyu Zhou1,2 · Shuai Liu1,2

Published online: 18 March 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

1 Editorial

From Jan 2019, COVID-19 has been rushing the world, forcing many offline life and work to turn online. Education industry is also heavily impacted from universities to primary schools, and most traditional offline education and learning have to become online all over the world. The virus closed the door for the real world; however, it opens another window of the online world.

Online education and learning is the most popular way for both students and teachers, and has occupied a dominant position today [1, 2]. Therefore, the study of everything in online education method has become an urgent problem to be solved because it was never been so important. In past two years, many scholars have studied in the area. Meantime, artificial intelligence (AI) and machine learning (ML) methods in online education have been one of the most important research domains because this kind of method is very suitable to process the generated big education data online every day [3, 4].

Hence, how to provide AI and ML solutions for online education, what directions to aim, what kind of data to use, such problems are all current urgent required solving. In this way, this issue “Artificial Intelligence and Machine Learning for Online Education” is presented to provide an opportunity for educators and scholars to publish both theoretical and technological studies of emerging theory within AI and ML for online education, and their novel engineering applications within this domain.

2 Machine Learning Algorithms for Online Education

The first section of this issue includes six articles, which focuses on the machine learning algorithms for online education, including decision-making, privacy protection, assistance system, pattern recognition, online resource search, and engineering education [5–10].

In order to improve the quality of online distance education and students’ online learning, an intelligent online distance education decision-making method based on cloud computing is proposed in the first article, “A decision-making method of intelligent distance online education based on cloud computing”, authored by Gautam Srivastava from the Brandon University, Canada, as well as China Medical University, Taiwan. The proposed method provides a cloud computing based decision-making resources for online education. It provides human–computer interaction windows to view the decision-making scheme at the application layer, and complete the optimal decision-making for online education by providing the management function of cloud computing services. Experimental results show that this method can effectively obtain the decision-making scheme of network education. After the application of this method, the students' learning ability and academic performance have been significantly improved [5].

Long distance education occupies more important part under the COVID-19 age. An intelligent privacy protection with higher effect for the end users is an urgent problem in long distance education. In view of the risk of privacy
In order to realize the best matching search of mobile intelligent education system resources, a resource search method of mobile intelligent education system based on distributed hash table is proposed in the fifth article “Resource search method of mobile intelligent education system based on distributed hash table”, authored by Thippa Reddy Gadekallu from the Vellore Institute of Technology, India. The proposed method combines the chord system based on distributed hash table and vector space model to form a resource discovery mechanism, and solve the similarity between query and location resource vectors by establishing the vector relationship between them. Then, according to the resource similarity solution results, the resources with the greatest relevance to the search content are obtained. The experimental results show that comparing with other methods, the value of search request blocking rate is far lower, the search performance is better, and the matching degree of resource search results is higher [9].

In the sixth article “Bridging the gap between university engineering education and enterprise requirements”, authored by Hao Shen from the Beijing Institute of Technology, China, the consistency between engineering education in universities and corporate needs for such education is investigated. The article analyzes the problems in current engineering education such as low-level participation by enterprises, decoupling of teaching and industry demands, and difficulties for enterprises to participate in teaching reforms. In response to these problems, this article proposes a practical ability training platform, which features "university-enterprises co-construction". The platform adopts the method of "credit bidding" to improve the curriculum system that is combined with the enterprise teaching mechanism. Moreover, the university-enterprises collaborative teaching management and operation guarantee mechanism is established. By the proposed engineering education method, the practical ability of students and the satisfaction of enterprises to graduates are greatly improved [10].

3 Intelligent Educational Applications

The second section of this issue includes six articles, which focuses on the intelligent assistant system, evaluation model for classes, and communication platform in distance learning [11–16].

Aiming at the problems of low coverage of teaching resource recommendation results, long running time of the platform and low accuracy of resource recommendation in traditional methods, the seventh article “Intelligent real-time news communication platform in education”, authored by Jin Li from the University of Chinese Academy of Social Sciences, China, as well as the State Taxation Administration, China, designs an intelligent real-time news communication
In order to improve the training accuracy of online sport teaching and training scientifically and standardized, a correcting assistant system based on .NET platform is designed in the eighth article “Design of action correction assistant system in physical education teaching and training based on .NET platform”, authored by Dawid Połap from the Silesian University of Technology, Poland. Based on the .NET platform, a three-tier architecture is constructed, in which the data access layer is used to realize the exchange of database information, and provide services for the business logic layer. Dynamic time planning algorithm is used to match the corresponding frames, calculate the training score, and reproduce the action correction. The experimental results show that the proposed system can collect training actions and mark joint points, accurately match the corresponding frames, which means that it get higher training action scores and user satisfaction than current algorithms [12].

The current video key frame extraction algorithm is affected by the lens conversion, and the accuracy is poor. In the tenth article “Accurate key frame extraction algorithm of video action for Aerobics online teaching”, authored by Marcin Woźniak from the Silesian University of Technology, Poland, a precise extraction algorithm of video action key frames for online aerobics teaching is studied. In order to ensure that the color distance is suitable for human vision, a non-uniform quantized HSV space method is adopted, and a one-dimensional feature vector is introduced to realize the segmentation of video shots and reduce the impact of shot conversion. Sequence search constructs the processing dynamic frame, extracts the feature vector of the video sequence, and uses the multi-layer core aggregation algorithm to extract the key frame of the video action according to the extracted feature vector. Experimental results show that the proposed algorithm can effectively extract the key frames with the fidelity higher than 0.9, and the precision and recall both higher than 99% [14].

In order to improve the accuracy and performance of classroom teaching effect evaluation, an intelligent teaching mode classroom teaching effect evaluation method is proposed in the eleventh article “Evaluation method of classroom teaching effect under intelligent teaching mode”, authored by Hui Lu from Inner Mongolia University, China. Based on the characteristics of intelligent teaching mode, an effect evaluation index system including five indexes of basic quality, teaching attitude, teaching method, teaching ability and teaching effect is constructed. After obtaining the scores of each index by expert scoring, the final score of teaching effect evaluation is obtained by inputting the data into cuckoo search algorithm extreme learning machine evaluation model and solving with objective function. The experimental results show that the proposed method can effectively improve the evaluation accuracy of classroom teaching under intelligent teaching mode [15].

Due to the low recognition accuracy and slow convergence speed of the traditional basketball shooting trajectory recognition methods, the twelfth article “A recognition method of basketball’s shooting trajectory based on transfer learning”, authored by Fan-long Meng from Zhengzhou University of Industrial Technology, China, proposes a basketball shooting trajectory recognition method based on transfer learning to accurately analyze the behavior pattern of shooting trajectory in the monitoring scene. Combined with transfer learning, the speed of improving network optimization is accelerated, the missing information is made up, and the recognition of basketball shooting trajectory is realized. Experimental results show that the proposed method can accurately identify the basketball shooting trajectory with the minimum coordinate error, effectively improve the accuracy and time of network training, and also improve the convergence speed and recognition accuracy [16].

Acknowledgements The guest editors are thankful to our reviewers for their effort in reviewing the manuscripts. We also thank the Editor-in-Chief, Dr. Imrich Chlamtac for his supportive guidance during the entire process. The work is sponsored by National Science Foundation of Hunan Province with No.2020JJ4434; Key Scientific Research Projects of Department of Education of Hunan Province with No.19A312; Key Research Project on Degree and Graduate Education Reform of Hunan Province with No.2020GZD025; National Social Science Foundation of China with No.AEA200013.
References

1. Liu S, Wang S, Liu X et al (2021) Fuzzy Detection aided Real-time and Robust Visual Tracking under Complex Environments. IEEE Trans Fuzzy Syst 29(1):90–102
2. Shuai L, Chunli G, Fadi A et al (2020) Reliability of response region: A novel mechanism in visual tracking by edge computing for IoT environments. Mech Syst Signal Process 138:106537
3. Shuai L, Shuai W, Xin Yu L et al (2021) Human Memory Update Strategy: A Multi-Layer Template Update Mechanism for Remote Visual Monitoring. IEEE Trans Multimedia 23:2188–2198
4. Liu S, Liu X, Wang S et al (2021) Fuzzy-Aided Solution for Out-of-View Challenge in Visual Tracking under IoT Assisted Complex Environment. Neural Comput Appl 33(4):1055–1065
5. Jun-yan T, Gautam S (2022) A decision-making method of intelligent distance online education based on cloud computing, Mobile Networks and Applications, online first
6. Li Y, Zhu J, Fu W (2022) Intelligent Privacy Protection of End User in Long Distance Education, Mobile Networks and Applications, online first
7. Chao Y, Jerry CWL (2022) Design of Distance Assistance System for Intelligent Education by Web-based Applications, Mobile Networks and Applications, online first
8. Peng P, Weina F (2022) A pattern recognition method of personalized adaptive learning in online education, Mobile Networks and Applications, online first
9. Yu-bao S, Thippa RG (2022) Resource search method of mobile intelligence education system based on distributed hash table, Mobile Networks and Applications, online first
10. Yinglun X, Hao S, Xiang C (2022) Bridging the Gap between University Engineering Education and Enterprise Requirements, Mobile Networks and Applications, online first
11. Jin L, Tao J (2022) Intelligent real-time news communication platform in education, Mobile Networks and Applications, online first
12. Chong-gao C, Dawid P (2022) Design of action correction assistant system in physical education teaching and training based on .NET platform, Mobile Networks and Applications, online first
13. Chen X, Yu J (2022) Evaluation Model of Physical Education Integrated Ideology and Politics based on Principal Component Analysis, Mobile Networks and Applications, online first
14. Gong Y, Woźniak M (2022) Accurate key frame extraction algorithm of video action for Aerobics online teaching, Mobile Networks and Applications, online first
15. Chen J, Lu H (2022) Evaluation method of classroom teaching effect under intelligent teaching mode, Mobile Networks and Applications, online first
16. Fan-long M, Ting Y (2022) A recognition method of basketball’s shooting trajectory based on transfer learning, Mobile Networks and Applications, online first

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.