Syntheses, Geometrical and Electronic Structure of Alkyladamantanes and Their Thermodynamic Characteristic According to the Density Functional Theory

Amanzhan Saginayev¹,*, Marina Kursina², Altynai Kalauova²

¹Laboratory of Petrochemistry, Atyrau of Oil and Gas University, Atyrau, Kazakhstan
²Department of Chemistry and Chemical Technology, Atyrau of Oil and Gas University, Atyrau, Kazakhstan

Email address: asaginayev@mail.ru (A. Saginayev), kursinamm@list.ru (M. Kursina), skalauova@mail.ru (A. Kalauova)

*Corresponding author

To cite this article: Amanzhan Saginayev, Marina Kursina, Altynai Kalauova. Syntheses, Geometrical and Electronic Structure of Alkyladamantanes and Their Thermodynamic Characteristic According to the Density Functional Theory. Science Journal of Chemistry. Vol. 6, No. 4, 2018, pp. 50-55.
doi: 10.11648/j.sjc.20180604.13

Received: September 3, 2018; Accepted: September 26, 2018; Published: October 22, 2018

Abstract: Propyladamantanes synthesized by of alkylation adamantane with isopropyl alcohol temperature range from 5 to 40°C in the presence of 96% sulfuric acid. Tetramethyl- and Dimethylethyladamantanes synthesized by of isomerization of Perhydroanthracene in the presence of aluminium oxide catalyst on the setting of the flow type. Isomers Butyladamantanes was obtained by the reaction of alkylation of the adamantane with n-butane and isobutane. Adamantane and its derivatives have been the subject of many experimental and theoretical studies. The molecular structure of adamantane was studied by gasphase electron diffraction, Penning ionization electron spectroscopy, photoelectron spectroscopy, electron spin resonance, and quantum calculations of ionization potentials (IP) and electron affinity (SE). The structure 1-n-propyladamantane (1), 1-isopropyladamantane (2), 2-n-propyladamantane (3), 1,2-di-n-propyladamantane (4), 1,3-dimethyl-5-ethyladamantane (5), 1,3,5,6-tetramethyladamantane (6), 1,3,5,7-tetramethyladamantane (7), perhydroanthracene (8), 1-n-butyldadamantane (9), 1-isobutyldadamantane (10), 1-sec-butyldadamantane (11) has been studied using the Becke–Lee–Yang–Parr (B3LYP) hybrid energy functional of electron density with the 6-31G* basis set. The geometric and electronic characteristics of the compounds and their total energy, normal vibration frequencies have been calculated. It has been shown that the calculated Gibb free energies of formation for the perhydroanthracene isomerization products are in qualitative agreement with the experimental product composition of the isomerate and alkylation of adamantane with isopropyl alcohol are in qualitative agreement with the experimental composition of the products. Obtained good agreement of calculated and experimental data on the composition of equilibrium mixtures.

Keywords: Propyladamantane, Dimethylethyladamantane, Tetramethyladamantane, Butyladamantane, DFT Calculations

1. Introduction

Alkyladamantanes and higher alkyldiamondoids, are of interest not only as a component of energetic hydrocarbon fuels, e.g., RF-1, RF-2, etc. propellants, but also have great scientific importance. Because of the special thermodynamic properties of their isomers, they can be used for assessing the degree of catalytic transformation of oils and condensates by the action of natural clays and aluminosilicates and “fingerprinting” the fuels manufactured on their basis. In addition, these hydrocarbons are useful as feedstock in fine organic and petrochemical syntheses [1]. The molecular structure of adamantane was studied by gasphase electron diffraction [2], Penning ionization electron spectroscopy [3], photoelectron spectroscopy [4], electron spin resonance [5], and quantum calculations of ionization potentials (IP) and electron affinity (SE) [6]. Since obtaining experimental data on the relative thermodynamic stability of isomers of polyalkyladamantanes and higher alkyldiamondoids is fraught with certain difficulties, including those in the
identification of the isomers and determination of their spatial structure, computational methods are anticipated to play a very important role in solving these problems. In a previous paper [7, 8], we reported the results of studying the structure of perhydroacenaphthene, perhydrofluorene and its isomerization products \(\text{C12H20-C13H22} \) alkyladamantanes and presented calculated geometric and electronic characteristics, total energies, transformation energies, entropies of transformations, and normal vibration frequencies, as well as the equilibrium constant of isomerization of perhydroacenaphthene and perhydrofluorene into products.

In this paper we discuss the results of our quantum-chemical study of propyl-, tetramethyl-, dimethylethyl- and butyladamantanes, including comparison of the calculated and experimental compositions of equilibrium mixtures.

2. Experimental

2.1. The Synthesis of Alkyladamantanes

Propyladamantanes were synthesized by alkylation of adamantane with isopropyl alcohol according [9] to figure 1. The reaction was carried out in the temperature range from 5 to 40 °C in the presence of 96% sulfuric acid.

![Figure 1. Synthesis of propyl- and dipropyladamantanes.](image1)

The main products of the alkylation of adamantane with isopropyl alcohol are 1-n-propyladamantane (yield 24%, \(n_\text{D} = 1.4902 \)) and 1,3-dipropyladamantane (yield 18%, \(n_\text{D} = 1.4882 \)), and in small amounts 1-isopropyl- and 2-n-propyladamantanes (yield 10% and 1%, respectively).

The structure of propyl radicals is clearly determined by IR spectra of hydrocarbons. The presence of the n-propyl group is indicated by the ordinary character of the 1380 cm\(^{-1}\) band and the 740 cm\(^{-1}\) band (Figure 2). The asymmetry of the 1380 and 1530 cm\(^{-1}\) bands is associated with an impurity of 1-isopropyl adamantane.

![Figure 2. The experimental IR spectra of 1-n-propyladamantane.](image2)

Based on the composition of the alkylation products of adamantane with alcohols, the following reaction mechanism can be assumed. Alkylation proceeds along the tertiary carbon atom of the adamantane nucleus. The formation of a carbonium ion and the transfer of a positive charge to adamantane with the formation of an adamantyl-cation can be represented by the following scheme:

\[
\text{CH}_3 - \text{CHOH} - \text{CH}_3 + \text{H}^+ \rightarrow \text{CH}_3 - \text{C}^+\text{H} - \text{CH}_3 + \text{H}_2\text{O}
\]

In addition, the alcohol is dehydrogenated to the corresponding olefin and attached along the nucleophilic mechanism to the adamantyl cation:

\[
\begin{align*}
\text{CH}_3 - \text{CHOH} - \text{CH}_3 &\xrightarrow{\text{H}_2\text{SO}_4} \text{CH}_2 = \text{CH} - \text{CH}_3 + \text{H}_2\text{O} \\
\text{CH}_2 = \text{CH} - \text{CH}_3 &\xrightarrow{\text{H}^+} \text{CH}_2 - \text{CH}_2 - \text{CH}_3
\end{align*}
\]

Tetramethyl- and dimethylethyladamantanes of the composition \(\text{C}_{14}\text{H}_{24} \) (5-7) were isomerized from perhydroanthracene [10], according to figure 3. The isomerization of perhydroanthracene was carried out at a temperature of 180-200°C in the presence of aluminum oxide.

![Figure 3. Synthesis of dimethylethyl- and tetramethyldadamantanes by isomerization of perhydroanthracene.](image3)

The main reaction products are 1,3,5,6-tetramethyldadamantane (yield 25%, \(n_\text{D} = 1.4800 \)) and 1,3-dimethyl-5-ethyladamantane (yield 35%, \(n_\text{D} = 1.4805 \)). The formation of the thermodynamically most stable isomer -
1,3,5,7-tetramethyladamantane kinetically is extremely difficult (yield 9%).

The structure of methyl and ethyl radicals is also clearly defined by IR spectroscopy [12, 13].

The mechanism of isomerization of perhydroanthracene can be schematically represented by the following scheme:

Alkylation of adamantane with isooctane was carried out in a swinging duck, thermostated at a given temperature. The adamantane was dissolved in isooctane and AlCl$_3$ was added. The catalyst was activated with hydrochloric acid. The reaction was carried out for 2 hours. The main products are 1-n-butyladamantane (yield 66%, $n = 1.4907$), 1-isobutyladamantane (yield 18%, $n = 1.4890$), 1-sec-butyladamantane (yield 9%, $n = 1.4870$). The reason for the lower thermodynamic stability of 1-isobutyl- and 1-sec-butyladamantane is probably the spatial 1.5-interaction of the protons of the methyl groups of the side chain and protons in the second carbon of the adamantane nucleus.

On the basis of the experimental data, the difference in the enthalpy of 1-n-butyl- and 1-isobutyl adamantanes is ≈ 10.3 kJ/mol.

Isomeric butyladamantanes (9-11) were obtained by the alkylation reaction of adamantane with isooctane [11]. The reaction equations are given in figure 4.

Quantum-chemical calculations of compounds I-XI were performed using the density functional theory (DFT) using the B3LYP hybrid functional from the electron density with total energy optimization and calculation of the frequencies of normal vibrations and the 6-31G* basis set. Calculations were performed using the program GAUSSIAN-98 [14]. For each molecule, geometric parameters of atoms were optimized using analytical methods of calculation. By calculating the normal vibration frequencies with the use of second derivatives, it was confirmed that the stationary points determined with geometry optimization are energy minima.

The DFT B3LYP method is a combination of the Hartree–Fock method and the density functional theory using Becke’s three-parameter (B3) gradient-corrected functional series [15] and the Lee–Yang exchange-correlation functional series (LYP) [16]. For each molecule, the geometric arrangement of atoms was optimized using analytical calculation methods. By calculating the normal vibration frequencies with the use of second derivatives, it was confirmed that the stationary points determined with geometry optimization are energy minima.

The DFT method using the B3LYP hybrid functional is widely used in the study of the kinetics and mechanism of reactions [17], the calculation and interpretation of vibrational spectra, the thermodynamics of compounds [18, 19], the molecular structure [20-22], the structural and electronic characteristics of compounds [23] and in other cases of research.

3. The Results of Calculations and Their Discussion

Table 1 shows the calculated electronic characteristics of the calculated molecules (1-11). Here are the energies of the boundary orbitals (E_{homo}, E_{lumo}), dipole moments (μ), zero-point energy (ZPC) and entropy values (S).
Table 2 shows the basic calculated energy characteristics of compounds 1-11. Here are values of complete energies (E_t), complete energies with allowance for zero-point energy corrections (E_{zpc}), complete energies with allowance for enthalpy corrections (E_H) and complete energies with allowance for Gibbs free energy corrections (E_G) in atomic units.

Table 1. Basic design the electronic characteristics of compounds 1-11.

Compound	E_{homo}, eV	E_{lumo}, eV	μ, D	ZPC, eV	S, cal/mol-K
1	-0.24781	0.10188	0.1275	0.334733	108.667
2	-0.25001	0.08986	0.1236	0.331388	107.244
3	-0.24958	0.08836	0.1444	0.330616	107.239
4	-0.24906	0.06401	0.0772	0.306013	100.098
5	-0.25075	0.06379	0.1090	0.305508	100.056
6	-0.25047	0.06518	0.1450	0.306382	101.521
7	-0.24864	0.06577	0.0219	0.306100	99.872
8	-0.25324	0.08626	0.0098	0.330032	106.630
9	-0.25559	0.07514	0.0808	0.307316	103.962
10	-0.25327	0.06330	0.1036	0.304719	100.113
11	-0.25170	0.06446	0.0945	0.306018	100.965

These thermodynamic quantities are defined by the following formulas [24]:

$$E_{\text{zpc}} = E_t + ZPC$$

(1)

$$E_H = E_t + ZPC + E_{\text{vib}} + E_{\text{rot}} + E_{\text{trans}}$$

(2)

$$E_G = E_H - T S$$

(3)

where, E_{vib} – energy of oscillatory motion, E_{rot} – energy of rotational motion, E_{trans} – energy of translational motion, S – entropy, T – temperature on the Kelvin scale.

Table 2. Basic calculation of energy characteristics of compounds 1-11 in atomic units at the temperature of 298.15 °K.

Compound	E_t, a.u., (ΔE_t)	E_{zpc}, a.u., (ΔE_{zpc})	E_H, a.u., (ΔE_H)	E_G, a.u., (ΔE_G)
1	-547.8747539	-547.515212	547.501936	-547.553567
2	-547.8886614	-547.532903	-547.519003	-547.569958
3	-547.8883602	-547.533431	-547.519311	-547.570263
4	-547.8929792	-547.538677	-547.524623	-547.575287
5	-508.6655207	-508.336111	-508.323859	-508.372736
6	-508.6629781	-508.333033	-508.320840	-508.369816
7	-508.6612079	-508.331759	-508.319590	-508.367885
8	-508.6605242	-508.330749	-508.318633	-508.367042
9	-547.882752	-547.524897	-547.511158	-547.564131
10	-547.8794548	-547.521779	-547.508283	-547.559734
11	-547.8773523	-547.519630	-547.505964	-547.557543
4. Conclusions

The geometrical structure, electronic and energy characteristics (energy of boundary orbitals, dipole moments, zero-point energy, entropy values, values of total energies) of compounds (1-11) are calculated by the method of the density functional theory (DFT) using the B3LYP hybrid functional in 6-31G* bases.

It was found that the calculated values of the Gibb's energies of the products of the isomerization of perhydroanthracene and the alkylation of adamantane with alcohols are in qualitative agreement with the experimental composition of the products in isomerates.

The applicability of the calculation methods used for hydrocarbons of a diamond-like structure is shown and, consequently, these methods can later be used to determine the structure, thermodynamic stability, and compositions of equilibrium mixtures of isomers of higher alkyldiamondoids, both contained in oils and gas condensates, and obtained synthetically.

Acknowledgements

We Express our gratitude to Professor Yu. A. Borisov for his help in calculations of thermodynamic characteristics of alkyladamantanes.

References

[1] Bagrii E. I. Adamantanes: Synthesis, Properties and Application. Moscow: Nauka, 1989, 264 p. [in Russian].

[2] Hargittai I., Hedberg K. Molecular Structures and Vibrations. Amsterdam: Elsevier, 1972, 340 p.

[3] Kruppa G. H., Beauchamp J. L. J. Am. Chem. Soc. Vol. 108, 1985, p. 2126.

[4] Tian S. X., Kishimoto N., Ohno K. J. Phys. Chem. A. Vol. 106, 2002, p. 6541.

[5] Kira M., Akiyama M., Ichinose M., Sakurai H. J. Am. Chem. Soc. Vol. 111, No. 21, 1989, p. 8256.

[6] Rienstra-Kiracofe J. C., Tschumper G. S., Schaefer H. F. Chem. Rev. Vol. 102, No. 1, 2002, p. 231.

[7] Borisov Yu. A., Saginayev A. T. Petrochemistry. Vol. 54, No. 4, 2014, pp. 270-274.

[8] Borisov Yu. A., Saginayev A. T., Bagrii E. I. Petrochemistry. Vol. 56, No. 2, 2016, pp. 166-170.

[9] Saginayev A. T. Novosti nauki Kazakhstana. No. 1, 2004, pp. 23-28. [in Russian].

[10] Bagrii E. I., Sanin P. I. US Patent 3637876. 1972.

[11] Bagrii E. I., Saginayev A. T. Petrochemistry. Vol. 22, No. 6, 1982, pp. 729-734.

[12] Saginayev A. T., Bagrii E. I. Sb. Tr. Mezhdunarodnoi konferencii po analyticheskoi chimii. Almaty, 1998, pp. 78-84. [in Russian].

[13] Bagrii E. I., Poisk 1999, pp. 19-23. [in Russian].

[14] Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Zakrzewski V. G., Montgomery Jr. J. A., Stratmann R. E., Burant J. C., Dapprich S., Millam J. M., Daniels A. D., Kudin K. N., Strain M. C., Farkas O., Tomasi J., Barone V., Cossi M., Cammi R., Mennucci B., Pomelli C., Adamo C., Clifford S., Ochterski J., Petersson G. A., Ayala P. Y., Cui Q., Morokuma K., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Cioslowski J., Ortiz J. V., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Fox D. Gaussian 98, Revision A. 5. Inc. Pittsburgh. PA. 1998.
[15] Becke A. D. J. Chem. Phys. Vol. 98, 1993, p. 1372.
[16] Lee C., Yang W., Parr R. G. Phys. Rev. B. Vol. 37, No. 2, 1988, p. 785.
[17] Borisov Yu. A., Bagrii E. I. Reports of the Academy of Sciences, physical chemistry. Vol. 463, No. 1, 2015, pp. 54-57. [in Russian].
[18] Udhayakala P., Jayanthi A., Rajendiran T. V., Gunasekaran S. International J. of ChemTech Research CODEN. Vol. 3, No. 4, 2011, pp. 1851-1862.
[19] Zaitsau D., Paulechka E., Firaha D. S., Blokhin A. V., Kabo G. J., Bazyleva A., Kabo A. G., Varfolomeev A. M., Sevruk V. M. J. Chem. Thermodynamics. 91, 2015, pp. 459-473.
[20] Karabacak M., Kose E., Atac A., Cipiloglu M. A., Kurt M. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 97, 2012, pp. 892-908.
[21] Seshadri S., Rasheed M. P., Sangeetha R. IOSR Journal of Applied Physics. Vol. 7, No. 6, 2015, pp. 56-70.
[22] Dereli O., Erdogdu Y., Gulluoglu M. T., Sundaraganesan N., Turkkan E., Sayin U., Ozmen A. Optics and Spectroscopy. Vol. 116, No. 2, 2014, pp. 205-213.
[23] Benia H. M., Myrach P., Nilius N., Freund H.-J. Surface Science. 604, 2010, pp. 435-441.
[24] McQuarrie D. A. Statistic Thermodynamics. Harper and Row. N. Y. 1973, 194 p.
[25] Bagrii E. I., Sanin P. I. Patent 239302 USSR. [in Russian].