Effect of degree of water stress on growth and fecundity of velvetleaf (Abutilon theophrasti) using soil moisture sensors

Jasmine Mausbach1, Suat Irmak2, Parminder Chahal3, Debalin Sarangi4 and Amit J. Jhala5

1Graduate Research Assistant, Department of Agronomy and Horticulture, University of Nebraska–Lincoln, Lincoln, NE, USA; 2Harold W. Eberhard Distinguished Professor, Department of Biological Systems Engineering, University of Nebraska–Lincoln, Lincoln, NE, USA; 3Field Development Representative, FMC Agricultural Solutions, Rochelle, IL, USA; 4Assistant Professor, Department of Agronomy and Plant Genetics, University of Minnesota, St Paul, MN, USA and 5Associate Professor, Department of Agronomy and Horticulture, University of Nebraska–Lincoln, Lincoln, NE, USA

Abstract

Velvetleaf (Abutilon theophrasti Medik.) is a troublesome broadleaf weed that competes with crops for resources such as soil moisture. Water stress can affect the ability of weed species to grow and produce seeds. The objective of this study was to determine the effect of degree of water stress on the growth and fecundity of A. theophrasti using soil moisture sensors under greenhouse conditions. Abutilon theophrasti seeds collected from a corn (Zea mays L.)–soybean [Glycine max (L.) Merr.] field were grown in silty clay loam soil, and plants were maintained at 100%, 75%, 50%, and 25% soil field capacity (FC) corresponding to no, light, moderate, and high water-stress conditions, respectively. Water was added daily to pots based on soil moisture levels detected by a Meter Group 5TM sensor to maintain the desired water-stress level required by treatment. Plants maintained at 100% FC had the maximum number of leaves (28 leaves plant−1), followed by 21 and 15 leaves plant−1 at 75% and 50% FC, respectively. Abutilon theophrasti at 100% and 75% FC achieved maximum plant height (108 to 123 cm) compared with 83 cm at 50% FC. Abutilon theophrasti maintained at 75% FC had the greatest growth index (79,907 cm3) followed by 72,197 cm3 at 100% FC and 64,256 cm3 at 50% FC. Seed production was similar at 100%, 75%, and 50% FC (288 to 453 seeds plant−1) compared with 2 seeds plant−1 at 25% FC. This is because the majority of plants maintained at 25% FC did not survive more than 77 d after transplanting. Seed germination was 96% to 100% at 100%, 75%, and 50% FC compared with 20% germination at 25% FC. Abutilon theophrasti can survive ≥50% FC continuous water-stress conditions, although with reduced leaf number, plant height, and growth index compared with 75% and 100% FC.

Introduction

Introduced into North America as a potential fiber crop in the mid-1700s, velvetleaf (Abutilon theophrasti Medik.) was planted by growers for more than a century in the United States. The popularity of A. theophrasti as a viable new fiber source subsided due to a lack of proper machinery to clean the fiber. In the late 1800s, A. theophrasti was beginning to be recognized as a troublesome weed in Illinois cornfields (Spencer 1984). Abutilon theophrasti continues to be regarded as a troublesome broadleaf weed (Spencer 1984), causing grain yield losses in corn (Zea mays L.), soybean [Glycine max (L.) Merr.], sorghum [Sorghum bicolor (L.) Moench], and cotton (Gossypium hirsutum L.) (Behrens 1979; Colton and Einhellig 1980; Eaton et al. 1976; Hagood et al. 1980; Higgins et al. 1984; Oliver 1979; Spencer 1984; USDA 1970). A growers’ survey conducted in 2005 to 2006 reported A. theophrasti as one of the three most problematic weeds in glyphosate-resistant corn- and soybean-cropping systems in the Midwest (Kruger et al. 2009). A statewide survey of Nebraska stakeholders in 2015 found that A. theophrasti ranked as the fourth most difficult to control weed in corn and soybean production fields (Sarangi and Jhala 2018).

Abutilon theophrasti characteristics contribute to its success as a weed, including rapid root growth and the ability to produce sugar at a relatively efficient rate in low sunlight, allowing growth under partially shaded crop canopies (Roeth 1987). Abutilon theophrasti produces 700 to 17,000 seeds plant−1 that have high viability and can persist in the soil up to 50 yr (Anderson et al. 1985; Chandler and Dale 1974; Khedor and Roeth 1981). In addition, A. theophrasti has a sporadic and continuous germination pattern (Burnside et al. 1981; Roeth 1987), robust seedling vigor (Harterink and Bazzaz 1984), and allelopathic effects (Bhownik and Doll 1982; Colton and Einhellig 1980; Elmore 1980; Gressel and Holm 1964;
Sterling and Putman 1987; Sterling et al. 1987); is a host to several crop pests and pathogens (Hepperley et al. 1980; Jacques and Peters 1971); and has reduced susceptibility to certain herbicides used in corn and soybean production (Jhala et al. 2021), such as dicamba (de Sanctis and Jhala 2021).

Throughout Nebraska’s agricultural history, natural disasters such as drought have had an adverse effect on crop yields and the economy (USDA 2020; Wu et al. 2013). In the early mid-2000s and in 2012, Nebraska dealt with severe drought resulting in reduced crop yields (Wu et al. 2013). More recently, in August of 2020, Nebraska began experiencing drought conditions, and by October of 2020, 34 counties in Nebraska were eligible for emergency loans for drought relief (USDA 2020). Recognition of drought periods is important, because weed species such as Abutilon theophrasti compete with crops for a variety of environmental resources, including water, which is one of the most limiting factors for optimum crop production (Benjamin and Nielsen 2006). Water stress can negatively affect the growth and productivity of crops and associated weed species, though the outcomes of competition for water depend on the crop and weed species’ abilities to survive under water-stress conditions (Begg and Turner 1976; Patterson 1995). Compared with C₄ weed species such as Palmer amaranth (Amaranthus palmeri S. Watson) and common purslane (Portulaca oleracea L.) that have water-stress resistance mechanisms (e.g., drought avoidance, drought tolerance, drought recovery, or drought escape), C₃ weed species such as Abutilon theophrasti are not able to maintain the same level of growth and development under water-stress conditions (Kumar et al. 1984; Pearcy and Ehleringer 1984; Sung and Krieg 1979; Ward et al. 2001). Hinz and Owen (1994) found that water-stress conditions caused leaf water and osmotic potential to decrease linearly over time in Abutilon theophrasti. Munger et al. (1987a, 1987b) indicated that as leaf water potential decreased in Abutilon theophrasti plants, stomatal conductance, photosynthetic, and transpiration rates decreased.

In addition to growth and development, seed germination is an important component of weed establishment and is influenced by environmental factors such as water availability, water temperature, light quality, and light duration during seed development (Baskin and Baskin 1998; Fenner 1991). Abutilon theophrasti seed germination is sensitive to varying degrees of water stress and was completely inhibited by an osmotic potential of ~600 kPa (Sadeghloo et al. 2013; Xiong et al. 2018). Despite these findings, scientific literature is not available on the effects of water stress on growth and fecundity throughout Abutilon theophrasti’s growth period. Bathke et al. (2014) projected a 5% to 10% decrease in soil moisture for Nebraska under a high emissions scenario, indicating the potential for increased water stress and plant water competition in Nebraska plant populations. Despite projected increases in precipitation events in the eastern Great Plains, soil moisture is expected to decrease most near the soil surface due to evaporative loss from warmer temperatures (Bathke et al. 2014; Berg et al. 2016). While some plant developmental processes in leaves, roots, and reproductive structures are conserved across species, most plant responses are variable within and between species and are dependent on the developmental stage (Gray and Brady 2016).

Research evaluating a plant’s response to water stress is typically performed under greenhouse or controlled environment conditions. The plants are often grown in pots to maintain certain water-stress levels or soil field capacity (FC) for a limited growth period or until the plant has reached maturity. A common method for maintaining desired FC in similar studies has been to weigh pots regularly to determine water lost from the soil and then add the appropriate amount of water (Chandi et al. 2013; Chauhan 2013; Chauhan and Johnson 2010; Earl 2003; Sarangi et al. 2015). However, it is not possible to determine the weight of the plant and pot separately using this method, resulting in inaccurate soil water content (Chahal et al. 2018). This could result in errors when adding water, especially as plants accumulate more biomass. Moreover, this approach is time-consuming and labor intensive, because the pots must be lifted and weighed at regular intervals until completion of the study. The labor required to weigh and add water to pots can be reduced by incorporating soil moisture sensors such as Meter Group STM sensors (METER Group, 2365 NE Hopkins Court, Pullman, WA 99163, USA). The Meter Group STM sensor is a frequency-domain reflectometry sensor that measures soil water content directly as percent volume, determining soil moisture stress in real time with increased accuracy (Chahal et al. 2018). Soil moisture sensors allow researchers to measure soil water content more frequently and maintain FC within a narrow, predetermined range (Irmak et al. 2016) in loam and silt-loam soils (Paudel et al. 2016; Zhu et al. 2019). Thus, the objective of this study was to determine the effect of degree of water stress on growth and fecundity of Abutilon theophrasti using soil moisture sensors.

Materials and Methods

Plant Materials

Abutilon theophrasti seeds were collected from fields under corn-soybean rotation at the South Central Agricultural Laboratory near Clay Center in Clay County, Nebraska (40.57°N, 98.14°W). The seeds were stored in a refrigerator at 5°C until used in this study. The study was conducted in greenhouse at the University of Nebraska–Lincoln with six replications and repeated once. Abutilon theophrasti seeds were planted in germination trays in early May of 2019 (for the first study) and late January of 2020 (for the second study) and watered uniformly once a day to initiate plant growth. Germination trays were filled with silty clay loam soil with a particle size distribution of 53% silt, 28% clay, 19% sand, and 2% organic matter content and a pH of 6.7. The soil used in this study was collected from a field near Lincoln, NE, with no herbicide use in the last 10 yr. Germination trays were kept under greenhouse conditions at the University of Nebraska–Lincoln maintained at 27/21°C day/night temperatures. Overhead metalhalide lamps with 600 mmol photon m⁻² s⁻¹ light intensity were used to provide supplemental light in the greenhouse to maintain a 16-h photoperiod. Abutilon theophrasti seedlings 6 to 8 cm in height were transplanted into round, free-draining pots (20-cm diameter and 30-cm height) containing 10 kg of the same soil used in the germination trays, with pots already at the desired water-stress level of 100%, 75%, 50%, and 25% FC. One A. theophrasti plant per pot was transplanted on May 28 in 2019 and February 4 in 2020. Treatments were arranged in a completely randomized design with six replications.

Soil Water Content

The soil used in this study had a permanent wilting point and saturation point of 17.7% and 34.7% volumetric, respectively. The soil had a bulk density of 1.4 g cm⁻³ and a volumetric FC of 39.2% based on soil test reports (American Agricultural Laboratory, 700 W D Street, McCook, NE 69001, USA). Gravimetric FC was 28% and was calculated using the following equation (Hillel 1998):
percent volumetric soil water content, and ρ is the gravimetric soil water content. Soil water content in the pots was measured using Meter Group 5TM moisture sensors and Em50 data loggers to determine degree of water stress on Abutilon theophrasti in a greenhouse study conducted at the University of Nebraska–Lincoln.

$$\theta_g = \theta_v / \rho_g$$ \[1\]

where θ_g is the percent gravimetric soil water content, θ_v is the percent volumetric soil water content, and ρ_g is the soil bulk density in grams per cubic centimeter.

The study included four soil water-stress treatments: 100%, 75%, 50%, and 25% of the soil FC, corresponding to no, light, moderate, and high water-stress levels, respectively (Chahal et al. 2018; Sarangi et al. 2015). Soil water content in the pots was measured using Meter Group 5TM soil moisture sensors and Em50 data loggers (Figure 1). The sensors were installed at a 45° angle at a 15-cm depth in each pot. To ensure adequate soil moisture distribution to plant roots, soil moisture sensors were installed directly beneath A. theophrasti roots and monitored after each water application for increases in soil moisture. Because the soil had a gravimetric FC of 28%, 2.8 L of water (28% of 10 kg soil) was added to 100% gravimetric FC treatments at 12 and 4 d before transplanting in 2019 and 2020, respectively. Likewise, 2.3 L (75% of 2.8 L), 1.6 L (50% of 2.8 L), and 0.9 L (25% of 2.8 L) of water were added to maintain 75%, 50%, and 25% gravimetric FC treatments, respectively, with a range of ±2% actual volumetric water content set for water-stress treatments. Soil moisture data from data loggers were recorded once a day, and the required amount of water was added one time each afternoon to maintain treatment soil FC where the sensor was installed. Water was delivered directly to the A. theophrasti plant for maximum water uptake, resulting in soil moisture distribution near the plant roots and soil moisture sensor of 75%, 50%, and 25% FC. For the 100% FC, soil moisture was distributed throughout the whole pot, as evidenced by the moist soil visible at the bottom of the pots.

Data Collection

Abutilon theophrasti height, number of leaves per plant, and growth index were determined at 7-d intervals beginning 7 d after transplanting (DATr) until plants were harvested upon maturity at 84 DATr during both years. Growth index can be defined as a quantitative indicator of plant growth rate used to compare plants grown under different soil water conditions and was calculated using the following equation (Irmak et al. 2004; Sarangi et al. 2015):

$$GI \ (cm^3) = \pi \times (w/2)^2 \times h$$ \[2\]

where w is the width of the plant calculated as an average of two widths, one measured at the widest point and another at 90° to the first; and h is the plant height measured from the soil surface to the shoot apical meristem (Sarangi et al. 2015). Upon maturity, leaves were counted and removed from each stem to measure the total leaf area for each plant using a leaf area meter (LI-3100C Area Meter, Li-Cor, Lincoln, NE).

During harvest, plant stems were clipped at the soil surface and roots were removed from the pots; stems and roots were washed with water in a container and air-dried for 24 h. The leaves, shoots, and roots from each plant were stored separately in paper bags and oven-dried at 65 C for 7 d to obtain dry biomass values. Seed heads were collected, and the number of seeds per plant was counted; seeds were then weighed and stored in the dark at room temperature until being used in germination tests. Seed dormancy was interrupted in A. theophrasti seeds by soaking them in boiling water for 5 s (Sadeghloo et al. 2013). Fifty seeds from each plant were placed on a piece of moist Whatman No. 4 filter paper (GE Healthcare UK, Amersham Place, Little Chalfont, Buckinghamshire HP7 9NA, UK) in a petri dish. Petri dishes were stored for 21 d in a growth chamber maintained at 35/28 C day/night temperatures with a 16-h photoperiod, and an appropriate amount of water was added each day to keep the filter paper wet. Fluorescent bulbs were used to produce a light intensity of 85 mmol m$^{-2}$ s$^{-1}$. The total number of germinated seeds was counted and converted to percent germination based on the total seed number in each petri dish.

Statistical Analysis

Three parameter log-logistic models were fit to A. theophrasti height, leaf number per plant, and growth index using the drc package in R (R Foundation for Statistical Computing, Vienna, Austria) (Knezevic et al. 2007):

$$Y = \frac{d}{1 + \exp[b(log x - log e)\right]}$$ \[3\]

where Y is plant height, leaf number per plant, or growth index; x is days after transplanting; d is the estimated maximum plant height, leaf number per plant, or growth index; e is the time taken to achieve 50% of plant height, leaf number per plant, or growth index; and b represents the relative slope around the parameter e. An independent t-test was used to determine significant differences in maximum plant height, leaf number per plant, or growth index; rate of change of plant height, leaf number per plant, or growth index; and time taken to achieve 50% of plant height, leaf number per plant, or growth index between two water-stress treatments. Abutilon theophrasti stem, leaf, and root biomass per plant (g), total leaf area per plant (cm^2), seed number per plant, and percent seed germination were subjected to ANOVA and LSD tests using the agricolae and LSD procedures in R, respectively. Experimental year and replication were considered fixed effects to determine whether A. theophrasti stem, leaf,
Table 1. Parameter estimates and test of lack of fit at 95% level for the three-parameter log-logistic function fit to Abutilon theophrasti leaves per plant, plant height, and growth index under differing degrees of water stress at 84 d after transplanting (DATr) in a greenhouse study at University of Nebraska–Lincoln.*

Water-stress treatment⁵	d ± SE ⁴	\(\beta^d \)	\(\beta^e \)	Lack of fit*
100% FC (no water stress)	28 ± 7 a	4.3 ± 1.3 a	-2.4 ± 1.6 a	1.0
75% FC (light water stress)	21 ± 1.4 b	3.4 ± 0.47 a	-4.9 ± 2.5 a	0.3
50% FC (moderate water stress)	15 ± 1.8 c	3.3 ± 0.6 a	-2.5 ± 1.2 a	0.4
100% FC (no water stress)	108 ± 10.7 a	5.7 ± 0.4 a	-4.7 ± 1.7 a	0.9
75% FC (light water stress)	123 ± 12.3 a	6.0 ± 0.4 a	-4.8 ± 1.6 a	0.9
50% FC (moderate water stress)	83 ± 11.6 b	6.2 ± 0.6 a	-4.8 ± 2.1 a	0.9
100% FC (no water stress)	72,197 ± 8,310 b	5.1 ± 0.4 ab	-6.6 ± 3.1 a	0.9
75% FC (light water stress)	79,907 ± 7,072 a	4.6 ± 0.3 a	-10.1 ± 5.6 a	0.9
50% FC (moderate water stress)	64,256 ± 8,398 c	5.7 ± 0.4 b	-8.3 ± 4.5 a	1.0

\[Y = \frac{1}{1 + \exp(\log x - \log \beta)} \]

Where \(Y \) is the leaves per plant, plant height, or growth index; \(x \) is days after transplanting; \(d \) is the estimated maximum leaves per plant, plant height, or growth index; \(\beta \) is the time taken to achieve 50% of leaves per plant, plant height, or growth index; and \(\beta \) is the relative slope around parameter \(e \).

*Only one A. theophrasti plant maintained at 25% soil FC survived more than 77 DATr, and the three-parameter log-logistic model did not provide a good fit for leaves per plant, plant height, or growth index; therefore, data are not presented.

Results and Discussion

Leaf Number

Abutilon theophrasti responded to increasing water stress by senescing the oldest leaves, resulting in a reduced number of leaves with increasing water-stress level (Table 1). Abutilon theophrasti maintained at 25% FC did not survive more than 77 DATr during both years; therefore, leaf number data of A. theophrasti at 25% FC are not included. Similarly, Schmidt et al. (2011) reported senescence of older leaves in A. theophrasti under drought conditions. Abutilon theophrasti maintained at 100% FC had a maximum of 28 leaves plant\(^{-1}\), followed by 21 and 15 leaves plant\(^{-1}\) at 75% and 50% FC, respectively (Table 1; Figure 2A). Chadha et al. (2019) reported similar results in prickly lettuce (Lactuca serriola L.), in which leaf numbers were higher at 100% (52 leaves plant\(^{-1}\)) and 75% FC (49 leaves plant\(^{-1}\)) compared with 50% FC (41 leaves plant\(^{-1}\)). In contrast, Mahajan et al. (2018) reported a similar leaf number per plant in two African turnip (Sisymbrium thellungi Bertoni) weed biotypes at 100%, 75%, and 50% FC. Kaur et al. (2016) also reported a similar number of leaves per plant in giant ragweed (Ambrosia trifida L.) at 100%, 75%, and 50% FC. Significant reductions in leaf number were reported in S. thellangi (Mahajan et al. 2018) and A. trifida (Kaur et al. 2016) at 25% FC, similar to the results of the present study, in which A. theophrasti plants maintained at 25% FC had a maximum of 7 leaves plant\(^{-1}\) before plant death (Figure 2A). The log-logistic model estimated that A. theophrasti grown at 100%, 75%, and 50% FC took a similar amount of time (3.3 to 4.3 wk after transplanting [WATr]) to achieve 50% of maximum leaf number. Similarly, there was no difference in the time it took for A. trifida to achieve 50% of maximum leaf number at 100%, 75%, and 50% FC (6 to 9 WATr) (Kaur et al. 2016).

Plant Height

Abutilon theophrasti maintained at 100% and 75% FC achieved heights of 108 cm and 123 cm, respectively, compared with a height of 83 cm at 50% FC (Table 1; Figure 2B). Abutilon theophrasti maintained at 25% FC did not survive more than 77 DATr during both years; therefore, plant height data of A. theophrasti at 25% FC are not included. Results suggest that available soil moisture at ≥75% FC is sufficient to achieve maximum A. theophrasti height and that a visible decrease in plant height at 50% FC could be a result of reduced cell enlargement due to low turgor pressure at 50% FC water-stress level (Farooq et al. 2009; Jaleel et al. 2009). Similar results were reported by Chadha et al. (2019), who noted that L. serriola had the greatest plant heights at 75% FC (115 cm) and 100% FC (104 cm) compared with 77 cm at 50% FC. Kaur et al. (2016) reported that A. trifida had the greatest plant heights at 75% FC (140 cm) and 100% FC (125 cm) compared with 112 cm at 50% FC. In contrast, Mahajan et al. (2018) reported the greatest plant height at 50% FC (65 cm) compared with 75% FC (53 cm) and 100% FC (56 cm) of the St George biotype of S. thellungi. Karimi et al. (2015) reported the greatest plant height in sweetleaf [Stevia rebaudiana (Bertoni) Bertoni] at 90% FC, and decreased height with increasing water stress up to 45% FC. The model estimated that A. theophrasti grown at 100%, 75%, and 50% FC took a similar amount of time (5.7 to 6.2 WATr) to achieve 50% of maximum plant height. Similarly, Kaur et al. (2016) reported that A. trifida grown at 100%, 75%, and 50% FC took 6 WATr to reach 50% of maximum plant height.
Plant Growth Index

Abutilon theophrasti maintained at 75% FC had the greatest growth index (79,907 cm3) compared with growth indices of 72,197 cm3 at 100% FC and 64,256 cm3 at 50% FC (Table 1; Figure 2C). *Abutilon theophrasti* maintained at 25% FC did not survive more than 77 DATr during both years; therefore, growth index data of *A. theophrasti* at 25% FC are not included. Results suggest that available soil moisture at 75% FC is sufficient for maximum growth of *A. theophrasti* and that available soil moisture at 100% FC might actually hinder plant growth due to root saturation (Ashraf 2012). Similarly, Kaur et al. (2016) reported that *A. trifida* maintained at 75% FC had the greatest growth index (588 cm3), followed by 416 cm3 at 100% FC and 274 cm3 at 50% FC. The time to achieve 50% of maximum growth index was similar across water-stress levels (4.6 to 5.7 WATr) (Table 1). In contrast, Kaur et al. (2016) reported that the time for *A. trifida* to achieve 50% of maximum growth index was longer at 75% FC (6 WATr) compared with 100% and 50% FC (4 WATr).

Although *A. theophrasti* maintained at 25% FC did not survive more than 77 DATr during both years, one plant produced a small number of seeds; therefore, root, leaf, and stem biomass, total leaf area, number of seeds per plant, and percent seed germination are presented (Table 2). The permanent wilting point of soil used in this study was 17.7% by volume, corresponding to 45.2% FC. The soil water available to *A. theophrasti* plants at 25% FC was below the permanent wilting point and resulted in plant death.

Plant Stem and Root Biomass

Year by treatment interactions were significant for stem and root biomass; therefore, data were separated (Table 2). *Abutilon theophrasti* plants maintained at 75% FC were the tallest; however, they resulted in root, stem, and leaf biomass similar to 100% FC during

Figure 2. Effect of degree of water stress on (A) leaves per plant, (B) plant height, and (C) growth index of *Abutilon theophrasti* after 84 d after transplanting (DATr) during both years. The 100%, 75%, 50%, and 25% field capacity (FC) treatments correspond to no, light, moderate, and high water stress, respectively. Only one *A. theophrasti* plant maintained at 25% FC survived more than 77 DATr during both years, and the three-parameter log-logistic model did not provide a good fit for leaves per plant, plant height, or growth index; therefore, curves are presented for 25% FC, although only for visual reference.
both years. In 2019, stem biomass was similar (10 to 14 g plant$^{-1}$) at 100%, 75%, and 50% FC, and root biomass was reduced at 100% FC (1.5 g plant$^{-1}$) and 25% FC (0.08 g plant$^{-1}$) compared with 2.4 to 3.4 g plant$^{-1}$ at 75% and 50% FC. Similarly, no differences were reported in *A. trifida* (Kaur et al. 2016) and *S. thellungii* (Mahajan et al. 2018) stem biomass at 100%, 75%, and 50% FC. Other studies reported that *A. threophrasti* (Vaughn et al. 2016) and stevia (Karimi et al. 2015) aboveground biomass increased as water supply increased and was generally greatest at full transpiration and 90% FC, respectively. Studies also reported that *A. threophrasti* (Vaughn et al. 2016) and *A. trifida* (Kaur et al. 2016) root biomass was greatest at full transpiration and 100% FC, respectively, but that was not the case in this study, as root biomass was reduced at 100% FC in 2019. Root biomass at 100% FC was likely reduced due to waterlogging of the soil, inhibiting root system elongation and potentially leading to adventitious root formation (Asraf 2012; Steffens and Rasmussen 2016). In 2020, stem biomass (0.05 to 0.3 g plant$^{-1}$) and root biomass (0.01 to 0.07 g plant$^{-1}$) were reduced at 50% and 25% FC compared with stem biomass (1.2 to 1.3 g plant$^{-1}$) and root biomass (0.16 to 0.17 g plant$^{-1}$) at 100% and 75% FC. Chadha et al. (2019) reported similar results, in which aboveground biomass of *L. serriola* was greatest at 100% and 75% FC (19.4 to 22.4 g plant$^{-1}$) compared with 50% and 25% FC (17.2 to 17.5 g plant$^{-1}$). In contrast, Karkanis et al. (2011) reported no effect on root biomass due to water stress.

Total Leaf Area

Total leaf area values were statistically similar across 100%, 75%, and 50% FC (56 to 86.7 cm2 plant$^{-1}$) and were statistically lower at 25% FC (5.5 cm2 plant$^{-1}$) (Table 2). In contrast, Chadha et al. (2019) reported the greatest leaf area of *L. serriola* at 75% FC, followed by 50%, 100%, and 25% FC. Vaughn et al. (2016) and Manivannan et al. (2007) reported reduced total leaf area with decreased water availability in *A. threophrasti* and sunflower (*Helianthus annuus* L.).

Seed Production

Water stress influenced the number of *A. threophrasti* seeds produced per plant. *Abutilon threophrasti* at 75% FC produced the highest number of seeds (453 seeds plant$^{-1}$), followed by 100% (406 seeds plant$^{-1}$), 50% (288 seeds plant$^{-1}$), and 25% FC (2 seeds plant$^{-1}$) (Table 2). Results suggest that although *A. threophrasti* plant growth may be reduced by 50% FC, a considerable number of seeds are still produced. Thus, early-season control of *A. threophrasti* is crucial for avoiding a large infestation later in the growing season. Similarly, Kaur et al. (2016) reported that seed production of *A. trifida* was influenced by degree of water stress, with the highest number of seeds produced at 75% FC, followed by 100%, 50%, and 25% FC. In contrast, Chadha et al. (2019), Chahal et al. (2018), Mahajan et al. (2018), and Sarangi et al. (2015) reported decreased seed production with increased water stress in *L. serriola, S. thellungii,* waterhemp [*Amaranthus tuberculatus* (Moq.) Sauer], and *A. palmeri,* respectively, indicating their sensitivity to water stress compared with *A. threophrasti*.

Seed Germination

Abutilon threophrasti seed germination was similar (96% to 100%) at 100%, 75%, and 50% FC compared with 20% germination at 25% FC. Similarly, Chahal et al. (2018) reported no difference in *A. palmeri* seed germination at 100%, 75%, and 50% FC, and no seeds were produced at 25% FC, signifying that *A. palmeri* seed production is more sensitive to water stress than *A. threophrasti*. In contrast, Chadha et al. (2019) reported no difference in the germination ability of *L. serriola* seeds produced under water-stress conditions, demonstrating a higher tolerance to water stress compared with *A. threophrasti*. These findings imply that *A. threophrasti* can survive and produce viable offspring at water-stress levels as low as 50% FC, prompting the need for early-season control.

Practical Implications

This is the first study that evaluates the response of *A. threophrasti* to the degree of water stress using soil moisture sensors to more frequently and accurately maintain a precise level of water stress throughout the growing period. Plant height and leaf number per plant were more sensitive to water stress than total leaf area; stem, leaf, and root biomass; seed production; and seed germination. Seeds of *A. threophrasti* used in this study were collected from a field under continuous corn–soybean rotation in Clay County, Nebraska, USA. The growth characteristics of *A. threophrasti* observed in this study could vary if *A. threophrasti* biotypes were collected from different cropping systems or rotations. Waselkov et al. (2020) found that agriculturally prevalent *A. tuberculatus*
from the Mississippi Valley and Plains regions had higher relative performance compared with \textit{A. tuberculatus} from the Northeast region, where \textit{A. tuberculatus} is less of an agricultural weed.

The results of this study could vary under field conditions, because \textit{A. theophrasti} plants were not able to grow to their full potential due to limited pot size and pest infestation under greenhouse conditions. In 2020, stem and root biomass were lower compared with 2019, likely due to white fly (Aleyrodidae) infestation. In addition, a single \textit{A. theophrasti} plant was grown in each pot without inter- or intraspecific competition; thus, plants growing with crops might produce flowers earlier or later in the growing season depending on the competitive nature of the crop, resulting in higher or lower seed formation. Water-stress treatments were imposed throughout the growth period in this study, while duration of water stress can also play an important role in determining \textit{A. theophrasti}'s growth response. Therefore, it is expected that \textit{A. theophrasti} grown under field conditions will have a better chance of survival and higher seed production due to possibly limited periods of water stress because of rain/irrigation compared with the continuous water-stress conditions imposed in this study.

Water stress may also influence the duration of the critical weed-free period for various crops. Light to moderate water stress (75% to 50% FC) is unlikely to impact the critical weed-free period of \textit{A. theophrasti} in crops, although high water stress (25% FC) might reduce the critical weed-free period of \textit{A. theophrasti} compared with saturated conditions (Coble et al. 1981; Jackson et al. 1985). \textit{Abutilon theophrasti} is a temperate climate species and is typically absent from environments where dry climate and high evaportranspiration rates restrict growth. Munger et al. (1987a) and Vaughn et al. (2016) have shown that crops such as soybean and corn, respectively, have higher transpiration efficiency (TE) compared with \textit{A. theophrasti} under short-term water-stress conditions. The higher TE of soybean and corn is likely due to earlier senescence in \textit{A. theophrasti} during short-term water stress; however, the \textit{A. theophrasti} response to long-term water stress may be disadvantageous, where early conservation of available soil moisture and early leaf senescence could result in maintaining enough water for transpiration later and potentially producing seeds (Schmidt et al. 2011). Hagood et al. (1980) reported a greater reduction in soybean growth due to \textit{A. theophrasti} competition during a dry year compared with a wet year, indicating potential competition for moisture. The growth characteristics of \textit{A. theophrasti} at ≤75% FC in this study could indicate its competitive ability under long-term water-stress conditions. For these reasons, this information could be useful for evaluating weed–crop interaction using competition models, as well as for developing climate simulation models to understand the effect of drought, rising atmospheric CO$_2$ concentrations, rising global temperatures, reductions in annual soil and groundwater recharge, and increasing frequency of extreme weather events on crop and weed species.

Acknowledgments. The authors gratefully acknowledge Adam Leise and Murtaza Nalwala for their assistance on this project. No conflicts of interest have been declared.

References

Anderson RN, Menges RM, Conn JS (1985) Variability in velvetleaf (\textit{Abutilon theophrasti}) and reproduction beyond its current range in North America. Weed Sci 33:307–312

Ashraf MA (2012) Waterlogging stress in plants: a review. J Agric Res 7: 1976–1981

Baskin CC, Baskin JM (1998) Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination. 1st ed. San Diego: Academic. 627 p

Batike DJ, Oglesby RJ, Rowe CM, Wilhite DA (2014) Understanding and Assessing Climate Change: Implications for Nebraska. Lincoln, NE: University of Nebraska–Lincoln. 88 p

Begg JE, Turner NC (1976) Crop water deficits. Adv Agron 28:161–217

Behrens R (1979) Weed control in U.S. maize. Pages 38–45 in Hafliger E, ed. Maize. Basle: Switzerland

Benjamin JG, Nielsen DC (2006) Water deficit effects on root distribution of soybean, field pea and chickpea. Field Crops Res 97:248–253

Berg A, Sheffield J, Milly PCD (2016) Divergent surface and total soil moisture projections under global warming. Geophys Res Lett 44:236–244

Bhownik PC, Doll JD (1982) Corn and soybean response to allelopathic effects of weed and crop residues. Agron J 74:601–606

Burnside OC, Fenster CR, Evetts LL, Muvom RF (1981) Germination of emerged weed seed in Nebraska. Weed Sci 29:577–586

Chadha A, Florentine SK, Chauhan BS, Long B, Jayasundera M (2019) Influence of soil moisture regimes on growth, photosynthetic capacity, leaf biochemistry and reproductive capabilities of the invasive agronomic weed; \textit{Lactuca serriola}. PLos ONE 14:e0218191

Chahal PS, Irmak S, Jugulam M, Jhala AJ (2018) Evaluating effect of degree of water stress on growth and fecundity of Palmer amaranth (\textit{Amaranthus palmeri}) using soil moisture sensors. Weed Sci 66:378–745

Chandler JM, Dale JE (1974) Comparative growth of four Malvaceae species. Pages 116–117 in Proceedings of the 27th Annual Meeting. Atlanta, GA: Southern Weed Science Society

Chauhan BS (2013) Growth response of itchgrass (\textit{Rottboella cochinchenensis}) to water stress. Weed Sci 61:98–103

Chauhan BS, Johnson DE (2010) Growth and reproduction of junglerice (\textit{Echinochloa colonum}) in response to water-stress. Weed Sci 58:132–135

Coble HD, Williams FM, Ritter RL (1981) Common ragweed (\textit{Ambrosia artesia}) interference in soybeans (\textit{Glycine max}). Weed Sci 29:339–342

Colton CE, Einheilig FA (1980) Allelopathic mechanisms of velvetleaf (\textit{Abutilon theophrasti} Medic., Malvaceae) on soybean. Am J Bot 67:1407–1413

de Sanctis JH, Jhala AJ (2021) Interaction of dicamba, fluthiacet-methyl, and glyphosate for control of velvetleaf in dicamba/glyphosate-resistant soybean. Weed Technol 35:761–767

Earl HJ (2003) A precise gravimetric method for simulating drought stress in pot experiments. Crop Sci 43:1868–1873

Eaton BJ, Russ OG, Feltner KC (1976) Competition of velvetleaf, prickly sida, and Venice mallow in soybeans. Weed Sci 24:224–228

Elmore CD (1980) Inhibition of turnip (\textit{Brassica rapa}) seed germination by velvetleaf (\textit{Abutilon theophrasti}) seed. Weed Sci 28:658–660

Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms, and management. Pages 153–188 in Lichtfouse E, Navarrete M, Debacke P, Veronique S, Alberola C, eds. Sustainable Agriculture. Dordrecht, Nethedlands: Springer

Fenner M (1991) The effects of the parent environment on seed germinability. Seed Sci Res 1:75–84

Gray SB, Brady SM (2016) Plant developmental responses to climate change. Dev Biol 419:64–77

Gressel JG, Holm LG (1964) Chemical inhibition of crop germination by weed seeds and the nature of inhibition by \textit{Abutilon theophrasti}. Weed Res 4:44–53

Hagood ES Jr, Bauman TT, Williams TL Jr, Schreiber MM (1980) Growth analysis of soybean (\textit{Glycine max}) in competition with velvetleaf (\textit{Abutilon theophrasti}). Weed Sci 28:729–734

Hartgerink AP, Bazzaz FA (1984) Seedling-scale environmental heterogeneity influences individual fitness and population structure. Ecology 65:198–206

Hepperly PR, Kirkpatrick BL, Sinclair JB (1980) \textit{Abutilon theophrasti}; wild host for three fungal parasites of soybean. Phytopathology 70:307–310

Higgins RA, Pedigo LP, Staniforth DW (1984) Effect of velvetleaf competition and defoliation simulating a green clouvertworm (\textit{Lepidoptera: Noctuidae}) outbreak in Iowa on indeterminate soybean yield, yield components and economic decision levels. Environ Entomol 13:917–925
Hillel D (1998) Environmental Soil Physics. San Diego: Academic. 771 p
Hinz JR, Owen MDK (1994) Effect of drought stress on velvetleaf (Abutilon theophrasti) and bentazon efficacy. Weed Sci 42:76–81
Irmak S, Haman DZ, Irmak A, Jones JW, Campbell KL, Crisman TL (2004) Measurement and analysis of growth and stress parameters of Viburnum odoratissimum (Ker-gawl) grown in a multi-plot box system. HortScience 39:1445–1455
Irmak S, Payero JO, VanDeWalle B, Rees J, Zoubek G, Martin DL, Kranz WL, Eisenhauer D, Leininger D (2016) Principles and Operational Characteristics of Watermark Granular Matrix Sensor to Measure Soil Water Status and Its Practical Applications for Irrigation Management in Various Soil Textures. Lincoln, NE: Nebraska Extension Circular EC783. https://extensionpublications.unl.edu/assets/pdf/cc783.pdf. Accessed: October 8, 2020
Jackson LA, Kapusta G, Schutte Mason DJ (1985) Effect of duration and type of drought stress. Colloids Surf B 59:141–145
Jacques RL Jr, Peters DC (1971) Biology of Abutilon theophrasti (Ker-gawl). Front Plant Sci 9:1241
Kaur S, Aulakh J, Jhala AJ (2016) Growth and seed production of glyphosate-resistant barnyardgrass (Echinochloa crus-galli). Planta Daninha 31:259–266
Karimi M, Ahmadi A, Hashemi J, Abbasi A, Tavarini S, Guglielminetti L, Jacques RL Jr, Peters DC (1971) Biology of Abutilon theophrasti (Ker-gawl). Front Plant Sci 9:1241
Karimi M, Ahmadi A, Hashemi J, Abbasi A, Tavarini S, Guglielminetti L, Angelini LG (2015) The effect of soil moisture depletion on stevia (Stevia rebaudiana Bertoni) grown in greenhouse conditions: growth, steviol glycosides content, soluble sugars and total antioxidant capacity. Sci Hortic 183:93–99
Karkanis A, Bilalis D, Efthimiadou A (2011) Architectural plasticity, photosynthesis and growth response of velvetleaf (Abutilon theophrasti Medicus) plants to water stress in a semi-arid environment. Aust J Crop Sci 5:369–374
Kaur S, Aulakh J, Ahuja J (2016) Growth and seed production of glyophosate-resistant giant ragweed (Ambrosia trifida) in response to water stress. Can J Plant Sci 96:828–836
Khedir KD, Roeth FW (1981) Velvetleaf (Abutilon theophrasti) seed populations in six continuous-corn (Zea mays) fields. Weed Sci 29:485–490
Knezevic SZ, Streihig JC, Ritz C (2007) Utilizing R software package for dose-response studies: the concept and data analysis. Weed Technol 21:840–848
Kruger GR, Johnson WG, Weller SC, Owen MDK, Shaw DR, Walscut JW, Jordan DL, Wilson BG, Bernards ML, Young BG (2009) US growers views on problem weeds and changes in weed pressure in glyphosate-resistant corn, cotton, and soybean cropping systems. Weed Technol 23:162–166
Kumar UD, Saraswatthi R, Das VS (1984) Differential performance of Cleome gynandra L. (C3) and C. speciosa L. (C4) under water stress, and recovery. Environ Exp Bot 24:305–310
Mahajan G, George-Jaaggal B, Walsh M, Chauhan BS (2018) Effect of soil moisture regimes on growth and seed production of two Australian biotypes of Sisymbrium thalidongi O. E. Schulz. Front Plant Sci 9:1241
Manivannan P, Jaleed CA, sankar B, Kishorekumar A, Somasundaram R, Lakshmanan GMA, Panneerselvam R (2007) Growth, biochemical modifications and proline metabolism in Helianthus annuus L. as induced by drought stress. Colloids Surf B 59:141–149
Munger PH, Chandler JM, Cothren JT (1967a) Effect of water stress on photosynthetic parameters of soybean (Glycine max) and velvetleaf (Abutilon theophrasti). Weed Sci 33:15–21
Munger PH, Chandler, JM, Cothren JT, Hons FM (1967b) Soybean (Glycine max) and velvetleaf (Abutilon theophrasti) interspecific competition. Weed Sci 35:647–653
Oliver LR (1979) Influence of soybean planting date on velvetleaf competition. Weed Sci 27:183–188
Patterson DT (1995) Effects of environmental stress on weed/crop interactions. Weed Sci 43:483–490
Paudel R, Grantz DA, Vu HB, Shrestha A (2016) Tolerance of elevated ozone and water stress in a California population of Palmer amaranth (Amaranthus palmeri). Weed Sci 64:276–284
Peary RW, Ehleringer J (1984) Comparative ecophysiology of C3 and C4 plants. Plant Cell Environ 7:1–13
Roeth FW (1987) Velvetleaf—coming on strong. Crops Soils 39:10–11
Sadeghloo A, Aghhari J, Ghaderi-Far F (2013) Seed germination and seedling emergence of velvetleaf (Abutilon theophrasti) and barnyardgrass (Echinochloa crus-galli). Planta Daninha 31:259–266
Sarangi D, Irmak S, Lindquist JL, Knezevic SZ, Jhala AJ (2015) Effect of water stress on the growth and fecundity of common waterhemp (Amaranthus rudis). Weed Sci 64:42–52
Sarangi D, Jhala AJ (2018) A statewide survey of stakeholders to assess the problem weeds and weed management practices in Nebraska. Weed Technol 32:642–655
Schmidt JJ, Blankenship EE, Lindquist JL (2011) Corn and velvetleaf (Abutilon theophrasti) transpiration in response to drying soil. Weed Sci 59:50–54
Spencer NR (1984) Velvetleaf, Abutilon theophrasti (Malvaceae), history and economic impact in the United States. Econ Bot 38:407–416
Steffens B, Rasmussen A (2016) The physiology of adventitious roots. Plant Physiol 170:603–617
Sterling TM, Houtz RL, Putnam AR (1987) Phytotoxic exudates from velvetleaf (Abutilon theophrasti) glandular trichomes. Am J Bot 74:543–550
Sterling TM, Putnam AR (1987) Possible role of glandular trichome exudates in interference by velvetleaf (Abutilon theophrasti). Weed Sci 35:308–314
Sung FJM, Krieg DR (1979) Relative sensitivity of photosynthetic assimilation and translocation of 14C on to water stress. Plant Physiol 64:852–856
[USDA] U.S. Department of Agriculture (1970) Selected Weeds of the United States. Agriculture Handbook 366. Washington, DC: U.S. Agricultural Research Service. 260 p
[USDA] U.S. Department of Agriculture (2020) USDA Designates Six Nebraska Counties as Primary Natural Disaster Areas. Washington, DC: U.S. Department of Agriculture
Vaughn LG, Bernards ML, Akebauer TJ, Lindquist JL (2016) Corn and velvetleaf (Abutilon theophrasti) growth and transpiration efficiency under varying water supply. Weed Sci 64:596–604
Ward JK, Tissue DT, Thomas RB, Strain BR (2001) Comparative responses of model C3 and C4 plants to drought in low and elevated CO2. Global Chang Biol 5:857–867
Waselkov KE, Regenold ND, Lum RC, Olsen KM (2020) Agricultural adaptation in the native North American weed waterhemp, Amaranthus tuberculatus (Amaranthaceae). PLoS ONE 15:e0238861
Wu D, Qu JJ, Hao X, Xiong J (2013) The 2012 agricultural drought assessment in Nebraska using MODIS satellite data. Pages 170–175 in Proceedings of the 2nd International Conference on AgroGeoinformatics. Fairfax, VA: Center for Spatial Information Science and Systems
Xiong RC, Ma Y, Wu HW, Jiang WL, Ma XY (2018) Effects of environmental factors on seed germination and emergence of velvetleaf (Abutilon theophrasti). Planta Daninha 36, 10.1590/s0100-83582018360100122
Zhu Y, Irmak S, Jhala AJ, Vuran MC, Diotto A (2019) Time domain and frequency domain reflectometry type soil moisture sensor performance and soil temperature effects in fine and coarse textured soils. Appl Eng Agric 35:117–134