A UPR-independent infection-specific role for a BiP/GRP78 protein in the control of antimicrobial peptide expression in C. elegans epidermis

Carole Couillault, Patrick Fourquet, Matthieu Pophillat and Jonathan J. Ewbank*

Centre d’Immunologie de Marseille-Luminy; Aix-Marseille Université; Marseille, France; INSERM; U1104; Marseille, France; CNRS; UMR7280; Marseille, France

Keywords: proteomics, signal transduction, MAPK, Drechmeria coniospora, gene regulation

The nematode C. elegans responds to infection by the fungus Drechmeria coniospora with a rapid increase in the expression of antimicrobial peptide genes. To investigate further the molecular basis of this innate immune response, we took a two-dimensional difference in-gel electrophoresis (2D-DIGE) approach to characterize the changes in host protein that accompany infection. We identified a total of 68 proteins from differentially represented spots and their corresponding genes. Through class testing, we identified functional categories that were enriched in our proteomic data set. One of these was "protein processing in endoplasmic reticulum," pointing to a potential link between innate immunity and endoplasmic reticulum function. This class included HSP-3, a chaperone of the BiP/GRP78 family known to act coordinately in the endoplasmic reticulum with its paralog HSP-4 to regulate the unfolded protein response (UPR). Other studies have shown that infection of C. elegans can provoke a UPR. We observed, however, that in adult C. elegans infection with D. coniospora did not induce a UPR, and conversely, triggering a UPR did not lead to an increase in expression of the well-characterized antimicrobial peptide gene nlp-29. On the other hand, we demonstrated a specific role for hsp-3 in the regulation of nlp-29 after infection that is not shared with hsp-4. Epistasis analysis allowed us to place hsp-3 genetically between the Tribbles-like kinase gene nipi-3 and the protein kinase C delta gene tpa-1. The precise function of hsp-3 has yet to be determined, but these results uncover a hitherto unsuspected link between a BiP/GRP78 family protein and innate immune signaling.

Introduction

The nematophagous fungus Drechmeria coniospora infects various species of nematodes. Its spores adhere to the surface of a worm, germinate and perforate the cuticle. The worm’s body is then totally invaded by the fungus, rapidly causing death (reviewed by Engelmann and Pujol1). When D. coniospora infects Caenorhabditis elegans this triggers the expression of a large number of genes including those encoding antimicrobial peptides (AMPs) of the NLP family.2-4 The induction of several nlp genes is dependent upon a protein kinase C delta (PKCδ)/p38 MAPK pathway that can be activated in the epidermis either by infection or by sterile wounding.5 In both cases, signaling passes via TPA-1, a PKCδ that acts upstream of TIR-1, the nematode ortholog of SARM, and a MAPK cassette constituted of a MAP3K (NSY-1), MAP2K (SEK-1) and the p38 MAPK PMK-1. This then acts upstream of the STAT-like transcription factor STA-2 to regulate nlp gene expression.6 The elements that contribute to signaling upstream of TPA-1 have only been partially characterized. Wounding and infection require G-protein signaling upstream of TPA-1, while infection specifically involves the Tribbles-like kinase NIPI-3.3,7

Part of the innate defenses against intestinal pathogens and toxins are also mediated by a p38 MAPK cascade that shares many but not all of the elements that act in the epidermis;6,14 reviewed by Partridge et al.15 and Coleman and Mylonakis.16 Intestinal infection or exposure to bacterial toxins can also induce an unfolded protein response (UPR); this too is linked to the p38 pathway.17,18

The UPR in C. elegans is divided into constitutive and inducible pathways, the former being essential during development.19,20 Part of the UPR involves activation of the endoribonuclease IRE-1 that leads to the production of an alternatively spliced isoform of the mRNA of the transcription factor XBP-1.21 Compounds such as thapsigargin, dithiothreitol and tunicamycin that perturb endoplasmic reticulum (ER) homeostasis trigger a UPR and lead to IRE-1 activation. The subsequent production of the specific form of XBP-1 then leads to the expression throughout the organism of a large number of genes, many involved in metabolism, or the secretory pathway, including chaperones.19,21
Feeding worms the bacterial pore-forming toxin Cry5B also activates IRE-1 and upregulates chaperone expression specifically in the intestine. This requires the p38 MAPK signaling cassette. The Gram-negative bacterial pathogen *Pseudomonas aeruginosa* also induces IRE-1-mediated splicing of *xbp-1* mRNA in larvae and consequent chaperone gene expression, in a p38 MAPK-dependent manner. As the UPR-deficient *xbp-1* mutants arrest as larvae when cultured on *P. aeruginosa*, in this case, it was suggested that the ER cannot cope with the combined developmental and defense demands placed upon it (reviewed in Ewbank and Pujol).

In addition to the UPR-mediated changes in protein maturation, turnover and trafficking, the innate immune response may also affect the activity, post-translational modification and subcellular localization of signal transduction proteins. These can be analyzed at a global level through proteomic approaches. Indeed, there have already been a number of informative studies addressing the changes in the proteome that accompany infection of *C. elegans* by several different bacterial pathogens.

To extend our characterization of the response of *C. elegans* to *D. coniospora* we have now compared the proteomes of infected and control worms using two-dimensional difference gel electrophoresis (2D-DIGE). This fluorescence-based method allows two different protein samples tagged with two distinct fluorescent dyes to be run on the same gel, thereby improving comparative quantitation. We decided to focus on a single time point, early in the infection, with the hope of detecting changes in proteins involved in signal transduction, rather than finding proteins altered by the pathophysiological consequences of infection. We found that few changes were detected in whole extracts, but after fractionation we detected changes in many proteins. For one of these candidates, a *C. elegans* BiP/GRP78 homolog, we defined a novel role in the regulation of AMP gene expression.

Results

Protein fractionation reveals changes in the proteome induced by fungal infection. The infection of *C. elegans* by *D. coniospora* induces significant changes in gene expression within a matter of hours (and unpublished data). We used a standard 2D-DIGE approach to identify alterations at the protein level in *C. elegans* after 5 h of infection with *D. coniospora*. As with any 2D gel approach, with DIGE it is appropriate to refer to changes in representation, rather than stating that a protein is more or less abundant, unless all protein spots are identified and quantitated. With whole animal extracts (FT), when we used a narrow-range pH gradient for isoelectric focusing, although 890 protein spots were detected, we observed no differences between extracts of infected and control worms. With a broad-range pH gradient for isoelectric focusing, although 890 protein spots were detected, we observed no differences between extracts of infected and control worms. When performing DIGE as above for each one. The fractionation allowed many more spots to be detected (9,246 in total), and revealed differences in intensity for 67 and 103 spots in the narrow- and broad-range pH gradient gels, respectively. All these spots were excised and analyzed by mass-spectrometry, leading to an identification of a protein from 98 spots (Tables 1 and 2). This clearly illustrates the interest of combining DIGE with a prior protein fractionation approach.

Classification of differentially represented proteins. In some cases, the same protein was identified from more than one spot, either within the same fraction on the same gel, or from different fractions and/or gels. As a consequence, the 98 characterized spots corresponded to 67 individual proteins that were differentially-represented between infected and control worms (Table 3). We used WormMar (WS220) to match each of the 68 identified proteins (LEC-6 and the 67 others) with its corresponding *C. elegans* gene (Table 3). They fall into many different structural and functional classes (Table S1). We therefore performed two complementary bioinformatic analyses to find common themes. We first used the KEGG database to determine whether there was an over-representation of higher-level systemic functions within the list of 68 genes. The most populated categories (Table 3) were “implicated in a metabolic pathway” (13 genes), and “protein processing in endoplasmic reticulum” (8 genes). We then used EASE with our extensive in-house annotations culled from the *C. elegans* literature and referenced to WS220. There were 24 functional classes identified as significantly enriched (p < 0.001, Fisher exact test; see Materials and Methods). Among these classes, 6 were related to the response of *C. elegans* to infection, with a further 10 linked to aging and stress-resistance, including to the insulin/DAF-2 pathway (Tables 4 and S2). Given the intimate connection between stress-resistance and susceptibility to infection, a part of the observed protein changes could thus be directly or indirectly associated with an innate immune response. The EASE analysis also revealed a potential connection with protein processing in the endoplasmic reticulum, as had been seen with KEGG.

Fungal infection in adults does not provoke the UPR. The proteins linked to protein processing in the endoplasmic reticulum included the calreticulin CRT-1, the protein disulphide...
Table 3. List of identified proteins from spots with different intensities

Spot N°	Range pH 4–7	Spot N°	Range pH 3–10	Wormpep name	Worm base ID	Gene name
F1-740	ZK455.1	F1-776	Y113G7A.3	WBGene00000040	aco-1*	
F2-401; FNS-17 & FNS-489	FNS-677	FNS-1926	K10B3.7	WBGene00001685	gpd-3*	
FNS-1965	F3H1.2	FNS-1717	H28O16.1	WBGene00010419	H28O16.1*	
FNS-228	Y45G128.1	F3-516	K12G11.3	WBGene000010790	sodh-1*	
FNS-455	ZK455.1	FNS-463	Y38A10A.5	WBGene000000802	crt-1*	
F3-516	Y49A3A.2	FNS-315	C15H9.6	WBGene00002007	hsp-3*	
FNS-198	F40F9.6	FNS-411	C07A12.4	WBGene00003963	pdi-2*	
FNS-463	Y38A10A.5	F2-1119	Y69A2AR.18	WBGene00022089	Y69A2AR.18*	
FNS-401	ZK829.4	F3-142	T14G8.3	WBGene00011771	T14G8.3*	
FNS-198	F40F9.6	FNS-197	T24H7.2	WBGene00020781	T24H7.2*	
FNS-197	T24H7.2	F1-1375	M03F4.2	WBGene00000066	act-4	
F1-463	M03F4.2	FNS-198	F54H12.6	WBGene00018846	eef-18.1	
F1-460	T5CB8.2	F57F4.4	F57F4.4	WBGene000019017	F57F4.4	
F2-100	B0334.3	FNS-285	T21G5.3	WBGene00001598	ghl-1	
F1-1246; FNS1717	FNS-1284	FNS-489	C26D10.2	WBGene00000040	hel-1	
F1-1246; FNS1717	FNS-1284	FNS-390	Y22D7AL.5	WBGene000002053	hel-1	
F1-1234	C44B7.10	FNS-401	M6.1	WBGene0002056	ifc-2	
FNS-2317	FNS-503	FNS-1051	C43C3.1	WBGene0002067	ifp-1	
FNS-2295	FNS-1051	FNS-503	F57B9.6	WBGene00002083	inf-1	
FNS-996	FNS-489	F1-553; F1-579	K08H10.2	WBGene00010695	k08H10.2	
FNS-996; FNS-1002; FNS-1018; FNS-1019; FNS-1055	FNS-1284	F1-1012	F10C1.2	WBGene00002053	ifb-1	
FNS-285; FNS-286; FNS-287; FNS-288	FNS-401	FNS-1051	C43C3.1	WBGene0002067	ifp-1	
FNS-285; FNS-286; FNS-287; FNS-288	FNS-401	FNS-1051	C43C3.1	WBGene0002067	ifp-1	
isomerase PDI-2 and HSP-3. HSP-3 and the closely related HSP-4 represent the worm’s BiP/GRP78 homologs. All these proteins function in the ER to ensure the correct folding of nascent polypeptides and are important components of the UPR. Given the reported link between the UPR and resistance to bacterial toxins and infection,17,18,22,30,31 we decided to investigate whether the UPR is involved in the host response to D. coniospora infection.

A direct measure of the activation of the UPR is provided by the detection of a specific UPR-associated alternatively spliced isoform of the transcription factor XBP-1. In contrast to the splicing of \(\text{xbp-1} \) observed when young adult worms were treated with the UPR-inducing drug tunicamycin, the alternatively spliced isoform of \(\text{xbp-1} \) was not detected following D. coniospora infection (Fig. 1A). Another indicator of the UPR is an increased expression of \(\text{hsp-3} \) and \(\text{hsp-4} \). In C. elegans, the UPR is often monitored in vivo using a \(\text{p} \text{hsp-4} \)::GFP transgene reporter, which has a lower constitutive expression and higher level of induction during a UPR than \(\text{p} \text{hsp-3} \)::GFP.32 In contrast to tunicamycin-treated worms, there was neither induction of an \(\text{p} \text{hsp-4} \)::GFP transgene reporter after infection (Fig. 1B), nor increase of the \(\text{hsp-4} \) transcript as measured by qRT-PCR (data not shown). This is consistent with previous genome-wide transcriptome studies that found that the expression of \(\text{hsp-4} \) (and \(\text{hsp-3} \)) was not significantly altered following infection with D. coniospora.3,4

When worms carrying a \(\text{p} \text{nlp-29} \)::GFP transgene reporter were exposed to tunicamycin, strong GFP expression was observed in young larvae. This is consistent with a previous microarray study that reported the induction of a number of epidermal AMP genes, including \(\text{nlp-29} \), in L2 larvae treated with tunicamycin.20 A marked increase in reporter gene expression was also seen in young larvae carrying a \(\text{p} \text{nlp-30} \)::GFP reporter transgene. On the other hand, no induction of either of these reporters was seen in L4 or adult worms (Fig. 1B and data not shown). Similar results were obtained using the UPR-inducing agents dithiothreitol and thapsigargin (data not shown).

We also tested whether direct activation of effector genes in the epidermis would trigger a UPR. PMA activates the PKC \(\text{dTPA-1} \) that controls multiple AMP genes, including \(\text{nlp-29} \).7 It provokes very high levels of AMP gene expression within 4 h (unpublished results). Treating worms with PMA for 5 h did not lead to splicing of \(\text{xbp-1} \) nor to induction of \(\text{hsp-4} \) or the \(\text{p} \text{hsp-4} \)::GFP transgene reporter after infection (Fig. 1B), nor increase of the \(\text{hsp-4} \) transcript as measured by qRT-PCR (data not shown). This is consistent with previous genome-wide transcriptome studies that found that the expression of \(\text{hsp-4} \) (and \(\text{hsp-3} \)) was not significantly altered following infection with D. coniospora.3,4

Table 3. List of identified proteins from spots with different intensities (continued)

Spot N° Range pH 4–7	Spot N° Range pH 3–10	Wormpep name	Worm base ID	Gene name
F1-533; F1-579	K08H10.1	lea-1	WBGene00002263	
FT-1877	Y55B1AR.1	lec-6	WBGene00002269	
F1-1012	DY3.2	lrm-1	WBGene00003052	
FNS-1051	Y48C3A.7	mac-1	WBGene00003119	
F2-821	Y69A2AR.30	mdf-2	WBGene00003161	
F3-731	C36E6.3	mlc-1	WBGene00003369	
F1-362; F1-367	R07G3.3	npp-21	WBGene00019940	
FNS-134	F54F2.1	pat-2	WBGene00003929	
F2-1199	R05G6.7	R05G6.7	WBGene00019900	
F2-564; F3-516	F25H2.10	rla-0	WBGene00004408	
F2-584	B0041.4	rpl-4	WBGene00004415	
F1-741	T22F3.3	t22F3.3	WBGene00002696	
F2-456; FNS-463	F1-1115; FNS1669	tbb-1	WBGene00006536	
F2-401; FNS-455	C36E8.5	tbb-2	WBGene00006537	
FNS-784	Y71H2AM.23	tfm-1	WBGene00070000	
F1-114; F3-97	F1-463; FNS-373	unc-54	WBGene00006789	
F1-1234; F1-1246	F08B6.4	unc-87	WBGene00006819	
F1-908	Y54E10A.9	vbh-1	WBGene00006888	
FNS-534	K09F5.2	vit-1	WBGene0006925	
FNS-501; FNS-517; FNS-518	C42D8.2	vit-2	WBGene0006926	
FNS-518; FNS-532	F59D8.1	vit-3	WBGene0006927	
FNS-531; FNS-534	F59D8.2	vit-4	WBGene0006928	
FNS-1126; FNS-1129	K07H8.6	vit-6	WBGene0006930	
FNS-831	Y48A6B.3	Y48A6B.3	WBGene00012964	

*Proteins implicated in a metabolic pathway. †Protein processing in endoplasmic reticulum.
transgene reporter (Fig. 1A, data not shown). The expression of many epidermal genes, including some AMPs, is strongly upregulated by osmotic stress.3,33 Although exposure to high salt did induce a p

\[\text{hsp-4} \]\n
did induce a p

\[\text{hsp-3} \]\n
expression normally leads to an increase in the level of anti-fungal immune effectors in adult C. elegans.

\[\text{hsp-3} \] regulates nlp-29 AMP gene expression. While the results described above suggested that the UPR did not play a direct role in the antifungal innate immune response, the representation of a number of ER-resident proteins is modulated by infection. This led us to assay directly the role of the corresponding genes in the regulation of nlp-29 by RNAi. While several of the tested genes had an effect (results not shown), hsp-3 stood out for its strong effect, essentially totally blocking the induction of p

\[\text{nlp-29} \] normally observed upon infection in adult worms (Fig. 2A). A similar abrogation of reporter gene expression was seen in an atf-6 mutant, but not in a pek-1 mutant background (Fig. S1).

The mRNA sequence of the second BiP/GRP78 gene in C. elegans, hsp-4, is highly similar to that of hsp-3 (14/27/1873 nucleotides identical, including several contiguous stretches of more than 20 nucleotides) and would thus be predicted to be targeted by the hsp-3 RNAi construct. At the same time, there is a reciprocal control of hsp-3 and hsp-4, such that a decrease in hsp-3 expression normally leads to an increase in the level of hsp-4, and vice versa.34 As RNAi with hsp-4 did block p

\[\text{nlp-29} \] induction upon infection in adult worms (data not shown), we sought to discriminate between the two genes using available null mutants. We observed a strong reduction in p

\[\text{nlp-29} \] expression only in an hsp-3 mutant, not in an hsp-4 mutant background (Fig. 2B). Attempts to establish a hsp-3:hsp-4 strain were confounded by the fact that homozygous double mutants were sterile. When we inactivated hsp-3 by RNAi in the hsp-4 mutant background, the adult worms were sterile, and the induction of p

\[\text{nlp-29} \] expression upon infection was blocked (data not shown).

In C. elegans, fertility and pathogen resistance are interlinked, via the FOXO transcription factor DAF-16,35,36 which also plays a role in the UPR.37 We therefore assayed the effect of hsp-3 RNAi on p

\[\text{nlp-29} \] expression in a daf-16 mutant background. Loss of daf-16 had no effect on the abrogation of p

\[\text{nlp-29} \] expression provoked by hsp-3 RNAi, or by RNAi with the STAT-like transcription factor sta-2, previously characterized for its role

| Table 4. Functional classification by EASE of differentially represented proteins |
|---|---------|---------|----------|-----------|
| Gene category | Infection | Stress |
| | List hits | Population hits | Probability |
| Down ≥ 2x daf-2 (D6); Halaschek-Wiener 2005 | X | 25 | 234 | 7.6E-31 |
| Proteome changes S. aureus; Bogaerts 2010 | X | 17 | 109 | 7.2E-24 |
| Differentially expressed proteins in crt-1;cnx-1 vs N2 at 20°C; Lee 2006 | 7 | 13 | 9.0E-15 |
| Protein expression; Kim 2001 | | | 14 | 4.7E-10 |
| Proteome changes Aeromonas h; Bogaerts 2010 | X | 7 | 64 | 2.8E-09 |
| Down ≥ 2x dauer; Halaschek-Wiener 2005 | X | 6 | 36 | 2.9E-09 |
| Differentially expressed proteins in crt-1;cnx-1 vs N2 at 25°C; Lee 2006 | 4 | 12 | 7.2E-08 |
| Up > 1.75x in M. luteus vs. Pseudomonas sp; Coolon 2009 | X | 6 | 69 | 1.7E-07 |
| Glycoproteins Gal6 binding; Kaji 2007 | 9 | 287 | 8.0E-07 |
| Heat shock; Kim 2001 | X | 4 | 25 | 1.8E-06 |
| Cell structural, muscle; Kim 2001 | 9 | 332 | 2.6E-06 |
| Down after organophosphorus pesticide chlorpyrifos + diazinon; Vinuela 2010 | X | 5 | 65 | 3.5E-06 |
| Regulated down daf-2 mutant and RNAI;Class2-IGF1; Murphy 2003 | X | 7 | 222 | 1.4E-05 |
| Down > 1.75x in Pseudomonas spp vs E. coli; Coolon 2009 | X | 4 | 44 | 1.8E-05 |
| Down after organophosphorus pesticide diazinon; Vinuela 2010 | X | 5 | 121 | 7.2E-05 |
| Regulated down Bt toxin, Cry5B; Huffman 2004 | X | 8 | 442 | 0.00017 |
| Differentially expressed proteins in crt-1 vs N2 at 20°C; Lee 2006 | 2 | 7 | 0.00026 |
| Regulated down, Cadmium; Huffman 2004 | X | 7 | 388 | 0.00046 |
| Energy generation; Kim 2001 | 4 | 104 | 0.00052 |
| Up > 1.75x in B. megaterium vs. Pseudomonas sp; Coolon 2009 | X | 3 | 45 | 0.00055 |
| Down ≥ 2x oxidative stress; Park 2009 | X | 2 | 13 | 0.00095 |
| DNA synthesis; Kim 2001 | 7 | 440 | 0.00096 |
| Up ≥ 2x by PA14 8h; Troemel 2006 | X | 5 | 233 | 0.00146 |
| Overlap Between oxidative stress and aging—downregulated genes by oxidative stress; Park 2009 | X | 3 | 66 | 0.00169 |
in nlp-29 expression (Fig. 2A), indicating that the effect of hsp-3, and of sta-2, is independent of daf-16.

We then determined the specificity of the effect of hsp-3 on reporter gene expression. In clear contrast to the near-complete block of nlp-29::GFP expression after infection, in an hsp-3 mutant the induction of the reporter gene was at least as strong as in the wild-type background when triggered by PMA, salt or wounding. In the hsp-4 mutant, however, no effect was seen under any of the experimental conditions (Fig. 2B). These results underline the specific role hsp-3 plays in regulating nlp-29::GFP only after infection, and place hsp-3 genetically upstream of, or parallel to, the PKCδ TPA-1.

hsp-3 acts downstream of nipi-3 to regulate nlp-29 AMP gene expression. The only previously known component of the innate immune signaling pathways that regulates nlp-29 expression specifically upon infection is the Tribbles-like kinase nipi-3. Overexpression of nipi-3 leads to an induction of nlp-29::GFP. This induction was blocked in the hsp-3 mutant background, placing hsp-3 genetically downstream of nipi-3 (Fig. 3A). Consistent with this result, hsp-3 did not block the increased expression of nlp-29::GFP provoked by an activated form of GPA-12 that triggers TPA-1 independently of NPI-3 (Fig. 3B). Together these results indicate that hsp-3 acts between nipi-3 and tpa-1 to control the expression of nlp-29 upon fungal infection (Fig. 4).

Discussion

Much of our previous characterization of the innate immune response of *C. elegans* to *D. coniospora* has been focused on the host transcriptional changes that accompany infection. In *Drosophila*, the expression of many components of immune signaling pathways are themselves highly regulated upon infection. In contrast, none of 18 genes known to influence nlp-29 expression, including the p38 MAPK cascade components *nsy-1*, *sek-1* and *pmk-1*, show a marked change in their expression level after infection. In a previous DIGE-based pilot study, we identified RACK-1 as a factor involved in the regulation of anti-fungal defenses. In an attempt to identify additional candidates, we extended the approach and undertook a comprehensive proteomic study of the changes that accompany fungal infection.

A number of other comparative gel-based proteomic studies have been performed using *C. elegans* including two looking at protein changes upon bacterial infection of the intestine. It is striking that certain proteins, such as ACT-4, SODH-1, VHA-13 and PDI-2, appear in almost every published list. This may reflect an intrinsic bias in the approach, since the measured expression level for the genes corresponding to the proteins that we identified as differentially represented was very significantly higher than that of genes in general, (71.7% > 5 dcpm vs. 6.6% for all transcripts; p < 0.001 binomial test). It may also result from the fact that all these analyses used whole-animal extracts, potentially masking tissue-specific biologically relevant variations in protein abundance, and underlines the interest for developing efficient and simple methods to allow protein extraction from a specific *C. elegans* tissue.

If a particular spot on a gel increases or decreases in intensity, one cannot always infer that the total level of the corresponding protein was changed. For example, post-translational modifications may render a protein more difficult to extract, so that spot intensity does not reflect protein abundance. Similarly, post-translational modifications may also lead to an alteration of the sub-cellular localization of a protein, which may cause a protein to be found in different extraction fractions, and thereby affect spot intensity. As many proteins give rise to multiple spots, generally because of post-translational modifications, only if all the spots for
During development, hsp-3 has an unambiguous role in the UPR. The data presented here indicate that the immune function of hsp-3 is independent of its function in the UPR. There is, however, evidence for a link between the UPR and AMP gene regulation in larvae. As mentioned above, a number of genes, including cnc-4, pjr-26, nlp-28 and nlp-29 are induced in L2 larvae after treatment with tunicamycin, apparently independently of xbp-1. But although tunicamycin does provoke upregulation of nlp-29::GFP in larvae, D. coniospora infection does not induce php-4::GFP expression either in larvae or adults. Further, this UPR-induced expression of nlp-29::GFP is independent of the p38 MAPK pathway, as it is observed in pmk-1 mutant background, as well as in a tpa-1 and nipi-3 mutant backgrounds (data not shown), and overall, there is only a minimal overlap between the genes upregulated by tunicamycin and D. coniospora infection. So the relationship between anti-fungal innate immunity and the UPR is not straightforward.

It is interesting, nonetheless, to speculate on how HSP-3 might exert its influence on AMP expression. There are several plausible models that are based on the idea that although genetically hsp-3 is positioned between nipi-3 and tpa-1, it seems unlikely that it plays a direct role in signal transduction. HSP-3 might be needed to ensure the correct intracellular localization of NIP1-3, itself, or of a protein that acts downstream of NIP1-3 and upstream of TPA-1. It may therefore be worthwhile to look at NIP1-3 localization in wild-type and hsp-3 mutant worms. The presence of two almost identical BiP/GRP78 proteins in the nematode is intriguing, as mammals, for example, only have one. It is conceivable that HSP-3 has a UPR-independent function outside the ER. Interestingly, one of the areas of sequence divergence between the two proteins is at the C-terminus; where HSP-3 has the ER retention signal KDEL sequence, HSP-4 has the ER retention signal HDEL. There are many examples of heat shock proteins playing a more or less direct role in innate immune responses. For example, they can function as endogenous danger signals to indicate cell stress and tissue damage to the immune system. As another example, the conserved SG1/HSP90 complex binds NLR proteins, and modulates innate immune signaling in plants and animals, although it should be noted that there are no obvious NLR proteins in C. elegans. A study of the intracellular localization of HSP-3, and of the consequences of artificially expressing it in the cytoplasm could be merited. It is interesting to note that in an hsp-3 mutant there is some residual induction of the nlp-29 reporter gene, but this is fully abolished if the mutants are subject to RNAi against hsp-4 (C.C., unpublished observations). On the other hand, we have shown that loss of hsp-4 function alone has no effect on nlp-29 reporter gene expression. This suggests that hsp-4 can partially compensate for the absence of hsp-3.

A specific role for hsp-3 in the regulation of nlp-29. (A) Quantification of the effect of control (K04G11.3), GFP, hsp-3 and sta-2 RNAi on nlp-29::GFP expression in a wild-type or daf-16(mu86) mutant background. For reasons given elsewhere, in this and the subsequent graphs, error bars are not shown. Data are representative of three independent experiments. (B) Quantification of nlp-29::GFP expression in hsp-3(ok1083) and hsp-4(gk514) mutant backgrounds following different treatments. In all cases, quantification was with the COPAS Biosort. The normalized average ratio of green to red fluorescence is shown. The analysis was restricted to worms with a TOF above 450. The number of worms analyzed here and in subsequent figures is given in the Supplemental Material.

Figure 2. A specific role for hsp-3 in the regulation of nlp-29. (A) Quantification of the effect of control (K04G11.3), GFP, hsp-3 and sta-2 RNAi on nlp-29::GFP expression in a wild-type or daf-16(mu86) mutant background. For reasons given elsewhere, in this and the subsequent graphs, error bars are not shown. Data are representative of three independent experiments. (B) Quantification of nlp-29::GFP expression in hsp-3(ok1083) and hsp-4(gk514) mutant backgrounds following different treatments. In all cases, quantification was with the COPAS Biosort. The normalized average ratio of green to red fluorescence is shown. The analysis was restricted to worms with a TOF above 450. The number of worms analyzed here and in subsequent figures is given in the Supplemental Material.
It has been shown that during *C. elegans* development, the activation of a p38 MAPK pathway that follows intestinal infection with the *P. aeruginosa* strain PA14 causes a UPR. This is believed to be a consequence of the increased expression of innate immune effectors that overload the protein folding machinery in the ER. The results we have presented here show that infection of adult *C. elegans* by *D. coniospora* and the resultant induction of a large number of defense proteins in the epidermis does not provoke a UPR. This might reflect a relatively low constitutive activity of the secretory pathway in the epidermis, and therefore a buffering capacity in adult animals to cope with the consequences of infection. It will be interesting to dissect further the complex interplay between developmental, physiological (e.g., production of digestive enzymes in the intestine) and induced processes that put stress on the ER, both in *C. elegans* and other organisms. Additional study is also required to understand fully the UPR-independent role of BiP/GRP78 in innate immunity in *C. elegans* and to determine whether it might play any such role in other organisms.

Materials and Methods

Strains and culture condition. Worms were grown and maintained on nematode growth medium (NGM) and cultured with the *E. coli* strain OP50, as described. The *hsp-3*(ok1083), *hsp-4*(gk514), *daf-16*(mu86), *tph-4*(*fr4*), and *atf-6*(ok551) mutants were obtained from the Caenorhabditis Genetics Center (CGC). The strain SJ17 (xhp-1(zs12) III; zsIs4[p* *hsp-4::GFP*]V) was the kind gift of Dr Eric Chevet.

Figure 3. *hsp-3* acts genetically downstream of *nipi-3* but not of *gpa-12*. (A) *pnlp-29::GFP* reporter expression was quantified in *wt* and *hsp-3* (ok1083) mutant worms with (black bars) or without (blue bars) copies of a transgene containing *nipi-3* under the control of its own promoter. (B) Quantification of *pnlp-29::GFP* reporter expression in *wt*, *tpa-1*(k530), *nipi-3*(fr4) and *hsp-3*(ok1083) mutant worms with (green bars) or without (blue bars) copies of a transgene containing a gain-of-function (*) allele of *gpa-12* under the control of the epidermis-specific *col-19* promoter. Both *pnipi-3*:NIPI-3 and *pcol-19*:GPA-12* transgenes provoke a robust nlp-29 upregulation in the absence of infection in adult worms. Quantification was with the COPAS Biosort. The normalized average ratio of green fluorescence to time of flight (TOF) is shown. The analysis was restricted to worms with a TOF between 450 and 650.

Figure 4. Model of the control of *nlp-29* expression. Signals perceived upon *D. coniospora* infection and injury are transduced by a PKCβ-p38 MAPK pathway to regulate the expression of *nlp-29*. HSP-3 functions between NIPI-3 and the PKCβ TPA-1. Many other known regulatory elements, including the OSM-11/WNK-1/GCK-3 pathway and the recently described pseudokinase NIPI-4 have been omitted for the sake of clarity.
Strain SJ17 with N2. The strain IG1363 (wt; frEx486;pNP21[pBunc-53;GFP]) was the kind gift of Dr Nathalie Pujol. The strains IG1361 [tpa-1(k530) frl7 IV; frEx486], IG1364 [hsp-3(ok1083) X; frl7 IV; frEx486] and IG1365 [npsi-3(fr4) X; frl7 IV; frEx486] were obtained by crossing respectively tpa-1(k530), hsp-3(ok1083) and npsi-3(fr4) with IG1363.

Splicing of xbp-1. N2 worms were grown and maintained on NGM plates with OP50. When they reached the young adult stage, worms were infected with D. coniospora by transferring them to NGM/OP50 plates previously spread with a dense suspension of spores. These had been freshly harvested in M9 buffer. Otherwise uninfected young adult worms were transferred onto NGM/OP50 plates containing 10 μg/mL or 20 μg/mL tunicamycin (Sigma) or 1 μg/mL PMA (Sigma). After 5 h worms were harvested and RNA extracted with Trizol as described.66 Reverse transcription used High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems) and PCR analyses were performed as described.17 Samples were normalized by Q-PCR as described66 with ef-217 as an internal control.

RNAi. All RNAi feeding experiments were performed essentially as described,67 using clones from the Ahringer library. All RNAi clones were sequence verified before use. The experiments were performed with worms cultured on OP50 until the L2 stage.

Infection, wounding, osmotic stress, PMA stress. Infection, and wounding were performed as described.7 For exposure to osmotic stress, PMA and tunicamycin, compounds were added to NGM plates to a final concentration of 300 mM for NaCl, 1 μg/mL for PMA and 10 or 20 μg/mL for tunicamycin. Worms were grown and maintained on NGM plates with OP50. When they reached the young adult stage, worms were transferred onto the appropriate modified NGM/OP50 plates. Similar conditions were used to assay the induction of GFP expression in the strains IG274 and IG1320 (shown in Fig. 1B), except images were taken after only 5 h.

Biosort. The quantification of fluorescent reporter gene (GFP) expression was performed with the COPAS Biosort (Union Biometrica), essentially as described.66 Generally, animals were analyzed for length (time of flight), optical density (extension), green fluorescence, and red fluorescence (if appropriate).

Protein extraction. A synchronized population of L4 IG274 worms was infected with D. coniospora. After 5 h, when there was a clear induction of GFP, indicative of the innate immune response to a productive infection, worms were harvested by washing plates with M9 buffer. Worms were pelleted by decantation, washed twice in the M9 buffer, then twice with PBS buffer. Proteins were extracted from a pellet of 500 μL of worms either by sonication in 8 M urea, 2 M thiourea, 4% (w/v) CHAPS, pH 8.5, containing a phosphatase inhibitor cocktail (Roche), or using the 2D fractionation kit (Amersham) according to the manufacturer’s instructions.

Protein fractionation, labeling, gel electrophoresis and identification. Full experimental details are publically available at http://miapegedb.expasy.org/experiment/118. The comprehensive set of analytical data from this study is available at the World-2DPAGE database http://world-2dpage.expasy.org/repository/0042.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Acknowledgments
We thank J. Belougne for worm sorting. Some nematode strains used in this work were provided by the Caenorhabditis Genetics Center, which is funded by the NIH National Center for Research Resources (NCRR). We thank E. Chevet and N. Pujol for providing strains, and S. Granjeaud, P. Pierre and the members of the Ewbank lab for discussion and critical comments. This work was funded by institutional grants from INSERM and the CNRS.

Supplemental Material
Supplemental materials may be found here: www.landesbioscience.com/journals/virulence/article/20384
23. Bogaerts A, Beets I, Temmerman L, Schoofs L, Ewbank JJ, Pujol N. Cellular homeostasis: coping with ER overload during an immune response in Caenorhabditis elegans. PLoS Genet 2010; 6:e1000892; PMID: 20360920; http://dx.doi.org/10.1371/journal.pgen.1000892

24. Troemel ER, Chu SW, Reinke V, Lee SS, Ausubel FM, Lee KZ, Kniazeva M, Han M, Pujol N, Ewbank JJ. Identification of ferritin in the innate immune response of Caenorhabditis elegans identifies ferritin in the innate immune response of C. elegans. PLoS Genet 2010; 6:e1000892; PMID: 20360920; http://dx.doi.org/10.1371/journal.pgen.1000892

25. Simonsen KT, Møller-Jensen J, Kristensen AR, Andersen JS, Riddle DL, Kallupitis BH. Quantitative proteomics identifies ferritin in the innate immune response of C. elegans. Virulence 2011; 2:120-30; PMID:21388777; http://dx.doi.org/10.4161/viru.2.2.15270

26. Zugenast O, Ewbank JJ. Neuroimmune regulation of antimicrobial peptide expression by a noncanonical TGF-beta signaling pathway in Caenorhabditis elegans. Nat Immunol 2009; 10:249-56; PMID: 19198592; http://dx.doi.org/10.1038/ni.1700

27. Schwarz EM, Antoshechkin I, Bastiani C, Bien T, Blaisd D, Canaran P, et al. WormBase: berber software, richer content. Nucleic Acids Res 2006; 34(Database issue):D475-8; PMID:16381915; http://dx.doi.org/10.1093/nar/gkj061

28. Kanesha M, Goto S, Furumichi M, Tanabe M, Hirokawa M. KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res 2010; 38(Database issue):D355-60; PMID:19880382; http://dx.doi.org/10.1093/nar/gkp986

29. Hosack DA, Dennis G, Jr., Sherman BT, Lane HC, Lempicki RA. Identifying biological themes within lists of genes with EASE. Genome Biol 2003; 4:R70; PMID:14519205; http://dx.doi.org/10.1186/gb-2003-4-10-c70

30. Haskins KA, Russell JP, Gaddis N, Dressman HK, Haskins KA, Russell JP, Gaddis N, Dressman HK, et al. Phosphorylation of the phosphatase 2A regulatory subunit PM2-1 by CED-1 are required for Caenorhabditis elegans innate immunity. Dev Cell 2005; 28:4261-74; PMID:16057869; http://dx.doi.org/10.1016/j.devcel.2005.08.006

31. Sun J, Singh V, Kajino-Sakamoto R, Aballay A. Neuronal GPCR controls innate immunity by regulating noncanonical unfolded protein response genes. Science 2011; 332:729-32; PMID:21477412; http://dx.doi.org/10.1126/science.1230411

32. Caruso ME, Jenna S, Bochechareil M, Baillie DL, Goimenet D, et al. Gene expression mimics transcriptional signatures of pathogen infection in C. elegans. PLoS One 2010; 5:e9010; PMID:20126308; http://dx.doi.org/10.1371/journal.pone.0009010

33. Kapalkin WJ, Huested BG, Link CD. Compensation regulation among ER chaperones in C. elegans. PLOS Genet 2005; 1:e37; PMID:16184190; http://dx.doi.org/10.1371/journal.pgen.0010037

34. Calfon M, Zeng H, Urano F, Reddy KC, Whitney JK, et al. Ubiquitin-mediated regulation of the unfolded protein response in C. elegans. PLoS Genet 2005; 1:e6; PMID:15709597; http://dx.doi.org/10.1371/journal.pgen.0010037

35. TeKippe M, Aballay A. Unfolded protein response genes regulated by CED-1 are required for Caenorhabditis elegans innate immunity. Dev Cell 2005; 28:4261-74; PMID:16057869; http://dx.doi.org/10.1016/j.devcel.2005.08.006

36. Miyata S, Begun J, Troemel ER, Ausubel FM. DAF-16-dependent suppression of immunity during reproduction in Caenorhabditis elegans. Genes Immunol 2008; 263:103-12; PMID:11223248. http://dx.doi.org/10.1016/j.gene.2003.11.001

37. Henis-Korenblit S, Zhang P, Hansen M, McCormick M, Lee SJ, Cary M, et al. Insulin/IGF-1 signaling mutants reprogram ER stress response regulators to promote longevity. Proc Natl Acad Sci U S A 2010; 107:9730-5; PMID:20460307; http://dx.doi.org/10.1073/pnas.1002575107

38. De Gregorio E, Spellman PT, Rubin GM, Lemaître B. Genome-wide analysis of the Drosophila immune response by using oligonucleotide microarrays. Proc Natl Acad Sci U S A 2001; 98:12590-5; PMID:11606746; http://dx.doi.org/10.1073/pnas.212458698

39. De Gregorio E, Spellman PT, Tsou P, Rubin GM, Lemaître B. The Toll and Imd pathways are the major regulators of the immune response in Drosophila. EMBO J 2002; 21:2568-79; PMID:12032070; http://dx.doi.org/10.1093/emboj/21.11.2568

40. Lee W, Kim KR, Sangareguvula G, Park BJ, Kim DH, Ahhn J, et al. Alternative chaperone machinery may compensate for calreticulin/calnexin deficiency in Caenorhabditis elegans. Proteomics 2006; 6:1329-39; PMID:16404716; http://dx.doi.org/10.1002/pmic.200503020

41. Jeong PY, Na K, Jeong MJ, Chunwood D, Shim YH, Paik YK. Proteomic analysis of Caenorhabditis elegans. Methods Mol Biol 2009; 519:149-69; PMID:19381582; http://dx.doi.org/10.1007/978-1-59745-281-6_10

42. Urano F, Calfon M, Yoneda T, Yun C, Kiraly M, Clark SG, et al. A survival pathway for Caenorhabditis elegans with a blocked unfolded protein response. J Cell Biol 2002; 158:639-46; PMID:12186849; http://dx.doi.org/10.1083/jcb.20020386

43. Osterloh A, Breloer M. Heat shock proteins: linking danger and pathogen recognition. Med Microbiol Immunol 2000; 187:1-8; PMID:17638015; http://dx.doi.org/10.1016/S0025-2857(00)00224-7

44. Kadota Y, Shirasu K, Guerios N. NLR sensors meet at the SGT1-HSP90 crossroad. Trends Biochem Sci 2010; 35:199-207; PMID:20096590; http://dx.doi.org/10.1016/j.tibs.2010.09.005

45. Stiernagle T. Maintenance of Caenorhabditis elegans. WormBook. http://www.wormbook.org: The C. elegans Research Community ed, 2006:1551-8507.

46. Molla GV, Kurz CL, Couillaert C, Pujol N, Granjeaud S, Kohara Y, et al. Inducible antibacterial defense system in C. elegans. Curr Biol 2002; 12:1209-14; PMID:12176330; http://dx.doi.org/10.1016/j.sab.2002.09.028-4

47. Timmons L, Court DL, Fire A. Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 2001; 263:103-12; PMID:11232348. http://dx.doi.org/10.1016/S0378-1119(00)00579-5

48. Lee KZ, Kniazeva M, Han M, Pujol N, Ewbank JJ. The fatty acid synthase family-1 acts upstream of WNK and Ste20/CKC-VI kinases to modulate antimicrobial peptide expression in C. elegans. Virulence 2010; 1:113-22; PMID:21178429; http://dx.doi.org/10.4161/viru.1.3.10974

49. Labeled SA, Omi S, Gut M, Ewbank JJ, Pujol N. The Pseudokinase NUTI-4 Is a Novel Regulator of Antimicrobial Peptide Gene Expression. PLoS One 2012; 7: e33887; PMID:22470487; http://dx.doi.org/10.1371/journal.pone.0033887

©2012 Landes Bioscience. Do not redistribute.