1. Introduction

Flour confectionery products are characterized by an almost complete absence of important biologically active substances, such as vitamins, carotenoids, dietary fiber, macro- and micronutrients, etc. [1, 2], but their composition is subject to regulation [3]. The introduction of vegetable raw materials in the recipes, rich in useful essential substances, can effectively improve the chemical composition of flour products. It is in connection with this object of research are cupcakes, which will enrich the diet with micronutrients [4, 5].

A review of literature shows that flour confectionery products are often used as an object of study in order to improve their consumer properties. Scientists practice partial replacement of wheat flour with rye, various types of gluten-free flour – corn, rice of various types and buckwheat [6]. Methods of using more unconventional flour, for example, lupine [7], from the roots of dandelion officinalis [8], from flax seeds [9] are also common. It is very effective to use fruit and vegetable powders from pomace, apple, apricot and pear puree in the formulation [10]. A method is proposed for using melon seeds [11],
blueberry powder [12], and others. All these studies have shown the relevance and promise of using non-traditional plant materials with high biological value in confectionery recipes.

Another area of improving the consumer properties of flour confectionery products is the use of whey-based raw materials [13, 14] (low-lactose whey, demineralized whey permeate, whey protein concentrates, whey protein isolates, lactose, calcium-fortified whey products).

An important stage in the life cycle of any product is its storage. Hardening is typical for flour confectionery products, which occurs due to a complex of complex physicochemical, colloidal, and biochemical processes associated with starch and proteins [15]. It is these substances that provide the formation of microcavities with water molecules in an oriented state, the breaking of hydrogen bonds and the release of water change the structure, quality and taste of products. Organoleptic changes (decrease in volume, fragility of the product) in the quality of the product occurs due to the aging of starch, is accompanied by a loss of moisture and the transition of starch to a crystalline state [16]. During the study of the hardening process, the ratio of the crystalline and amorphous state of starch (retrograde) is very important. It is known that sugars bind water well in flour confectionery products; therefore, in the absence of sugars, products become stale faster [17].

The objects of research are developed according to the author's recipes: «Sesame», «Moriachok», «Mitsnyi Gorishok», «Osninni Aromat», «Chornychnyi», «Medok», «Elitnyi» cupcakes, basic samples for comparison – premium flour and «Stolychnyi» cupcake. Various types of flour (buckwheat, oat, corn, rye), dairy products processing products (milk whey, skimmed milk powder) and beekeeping products (pollen, propolis, natural honey), and vegetable raw materials were introduced into the recipe for these cupcakes. The contents of the individual prescription components are presented in Table 1.

In the «Osninni Aromat» cupcake, raisins are completely replaced with candied fruit (apple-cherry) and partially replaced in the «Mitsnyi Gorishok» cupcake with walnut kernels (22.9 kg/t). In the «Chornychnyi» cupcake blueberries are used (22.9 kg/t). Cupcakes with fillings contain 150.6 kg/t each filling of natural honey with pollen «Medok» and natural honey with propolis «Elitnyi» [18].

The aim of research is studying the destruction degree of the starch crystal lattice in the structure of the pulp of the developed cupcakes, the interaction with other carbohydrates and their influence on the formation of the final crystal structure of the finished products.

2. Methods of research

To determine the phase composition of substances, an X-ray phase analysis was used to reveal the degree of deformation of the crystal structure and the types of its defects. The study of the products was carried out on a DRON-UM-1 X-ray diffractometer (Russia), tube type 1.5 BSV23 Cu. Let’s use samples of the studied cupcakes with a thickness of 2 mm, the diffraction patterns were recorded under the conditions of the same area of the studied material and the radiation intensity. The values of the reflection angles ranged from 10–30°, this is due to the values of the diffraction maxima of starch [19].

The X-ray phase analysis method is based on the fact that for X-rays the crystal lattice is diffraction. If to use a powder or a crystalline material with variously oriented crystals as an object, then when interacting with it, monochromatic X-rays will always find for each sort of planes a certain number of crystals that fall into the reflection position. In this case, at a certain angle, a diffraction maximum for a given kind of planes will be observed. If the object under study consists of several phases, then each phase will have its own diffraction pattern. In this case, the diffraction patterns are the superposition of the diffraction patterns of all phases in the sample under study, the intensity of the reflections of each phase will depend on its amount in the mixture under study [20].

3. Research results and discussion

The main component of wheat flour is starch, when heated, it adsorbs water, because of which its crystalline structure is destroyed. It is determined that the diffraction patterns of flour (Fig. 1) consist of five broad high-intensity maxima corresponding to the structure of crystalline starch.

The diffraction patterns of the control sample cupcake «Stolychnyi» is shown in Fig. 2, a, where one can see very similar diffraction maxima to a higher-grade flour sample, but of much lower intensity.

Table 1. Features of the recipe composition of new cupcakes.

Unconventional raw materials and natural additives	The amount of raw materials in the cupcake recipe, kg/t						
	«Sesame»	«Moriachok»	«Mitsnyi Gorishok»	«Osninni Aromat»	«Chornychnyi»	«Medok»	«Elitnyi»
Flour	rye (57.2)	oatmeal (38.1)	buckwheat (19.06)	corn (57.2)	buckwheat (15.25)	corn (53.06)	oatmeal (35.52)
Powders and mixtures thereof	blackberry leaves with gray (1.9), black currant (3.8), chamomile flowers (1.9)	lankincense leaves (0.95), raspberries (1.9), Foalfoot ordinary (19.1), thallus kelp (0.95)	peppermint leaves (1.91), walnut (1.91)	Hypericum perforatum (1.91), linden blossoms (1.91), Echinacea purpurea (0.95)	chicory roots (0.95), tricolor lirius violet flowers (5.7)	heart-shaped linden flowers (1.77), flower pollen (4.42)	peppermint leaves (1.77), beans (13.69), propolis (3.68)
Milk serum	38.1	–	38.12	–	–	53.05	53.29
Skimmed milk powder	–	–	–	–	–	–	–
Vegetable oils	sesame seeds (21.0)	pumpkin seeds (16.3)	walnut (21.0)	–	–	pumpkin seeds (15.12)	–
Such data confirm the partial destruction of the lattice of the starch molecule. It is revealed that the intensity of the reflection maximum, which corresponds to a diffraction angle of 20° for the Stolychnyi cupcake, is 295.

Fig. 2, b shows the results of an X-ray phase study of the «Sesame» cupcake. A decrease in diffraction maxima and their intensity is revealed in comparison with the control sample. The decrease in the destruction of the crystalline structure of starch is due to the partial replacement of wheat flour with rye and the addition of whey, increases the content of monosugars. The intensity of the maximum reflection for the «Sesame» cupcake is only 200.

Fig. 1. Diffraction pattern of premium wheat flour

Fig. 2. Diffraction patterns after baking:

a – control sample cupcake; b – «Sesame» cupcake

Fig. 3. Diffraction patterns after baking:

a – «Moriachok» cupcake; b – «Mitsnyi Gorishok» cupcake

According to the diffraction pattern of the «Osinnii Aromat» cupcake (Fig. 4, a), a sharp increase in the diffraction maximum after baking is observed, and consequently, the destruction of the crystalline structure of starch occurred more intensively compared to the control sample. Buckwheat flour, skimmed milk powder, and chicory root powder are added to the «Chornychnyi» cupcake (Fig. 4, b), which increases the water-holding ability of the product due to hydration of simple carbohydrate molecules of the introduced raw materials, as a result of which the cupcake is stale. At a diffraction angle of 20°, the intensity of the diffraction maximum in the «Chornychnyi» cupcake is 298.

To the «Medok» cupcakes (Fig. 5, a) and «Elitnyi» (Fig. 5, b) bee products are introduced. Milk whey, corn flour, pollen powder are added to the composition of the «Medok» cupcakes, and natural and flower pollen honey is added to the filling. «Elitnyi» cupcake contains milk whey, oatmeal, bean powder and propolis. The filling is formed on the basis of natural honey with propolis.
Beekeeping products increase the content of monosugars, which contributes to the release of water, interacting with flour proteins with the formation of gluten, as well as with starch, as a result of which its crystalline structure is destroyed.

When comparing the diffraction patterns of the «Elitnyi» cupcake sample with the diffraction patterns of the control sample, the destruction of the crystalline sections of the starch of flour, the intensity of the reflection maximum are clearly observed. This corresponds to a diffraction angle of 20° for the «Elitnyi» cupcake sample, which is 225. In the «Medok» and «Elitnyi» samples, the maxima are clearly delineated, and there are no diffraction, which indicates a slowdown in the retrograde process.

4. Conclusions

The phase composition of the substances is determined in the developed «Sesame», «Moriachok», «Mitsnyi Gorishok», «Osinnii Aromat», «Chornychnyi», «Medok», «Elitnyi» cupcakes from the X-ray analysis of X-ray phase analysis revealed the degree of deformation of the crystalline structure of starch, and therefore analyze the process of retrograde. Comparison of the obtained diffractograms with the control sample of the «Stolychnyi» cupcake confirms the efficiency of using the proposed plant materials and natural additives in the cupcakes. The additions determine the process of destruction of the crystalline structure of starch, and thus slow down the process of retrograde and lengthen the storage of cupcakes.

References
1. Dubcov, G. G., Dzhaboeva, A. S., SHaova, L. G. (2010). Novye vidy muchnykh konditerskikh izdelii profilakticheskogo naznacheniya. Konditerskoe i khlebopekarnoe proizvodstvo, 1-2, 50.
2. Ranadheera, R. D. C. S., Baines, S. K., Adams, M. C. (2010). Importance of food in probiotic efficacy. Food Research International, 43 (1), 1–7. doi: http://doi.org/10.1016/j.foodres.2009.09.009
3. Kozlova, O. S., Filippov, S. V. (2010). Naturalnye ingredienty dlia proizvodstva funkciionalnykh produktov. Konditerskoe i khlebopekarnoe proizvodstvo, 10, 14–16.
4. Kuzneceva, L. S., Sidanova, M. In. (2010). Novye netradicionnye vodya dlia konditerskoi promyshlennosti. Konditerskoe i khlebopekarnoe proizvodstvo, 9, 8–10.
5. Dorokhovych, A., Sokolovych, O., Bondaruk, Yu. (2010). Zhachennia kondyterskykh vyrobiv vitaminami i mineralnymy rechovynamy. Khlibopekarska i kondyterska promyslovist Ukrainy, 7-8 (68-69), 57–60.
6. Vishniak, M. N. (2009). Muchnye konditerskie izdelia dlia bezgliutenovogo pitaniya. Polzunovskii almanakh, 2, 95–96.
7. Paraskevopoulou, A., Provatsidou, E., Tsotsiou, D., Kiosseoglou, V. (2010). Dough rheology and baking performance of wheat flour–lupin protein isolate blends. Food Research International, 43 (4), 1009–1016. doi: http://doi.org/10.1016/j.foodres.2010.01.010
8. Strupan, E. A., Strupan, O. A., Korshunova, T. V. (2009). Pat. No. 2355171 RU. Sposob polucheniia muki iz rastitelnogo syria. MPK: A 21 D 2/36. No. 2008106096/13; declareted: 18.02.2008; published: 20.05.2009.
9. Suprunova, I. A., Chizhikova, O. G., Samchenko, O. N. (2010). Muka lnianaia – perspektivnii istochnik pischevykh volokon dlia razrabotki funkciionalnykh produktov. Tekhnika i tekhnologiia pischevykh proizvodstv, 4, 50–54.
10. Principa, O. V., Baranov, B. A., Skripnikov, Iu. G. (2009). Fruktovye i ovoschnye poroshki iz vyzhimok v konditerskom proizvodstve. Khranenie i pererabotka selkhozsyria, 9, 52–54.
11. Franko, E. P., Khasanov, G. I. (2010). Osobennosti pererabotki miakoi i semian dyni. Izvestiya vuzov. Pischevaia tekhnikia, 4, 26–28.
12. Tumanova, A. E., Tipsina, N. N., Korshunova, T. V., Strupan, E. A. (2010). Poroshok iz cherniki – cennaia pischevaia dobavka. Konditerskie i khlebopekarne proizvodstvo, 7-8, 50–52.

13. Kaloshyna, A., Vaskyna, V. (2011). Perspektivy yspolzovania novogo molokchnogo produkta v proizvodstve konditerskykh yzdeiy. Khlibopekarska i kondyterska promyslovist Ukrainy, 1 (74), 5.

14. Ramazanova, L. A., Daudova, T. N. (2009). Poluchenie i ispolzovanie kompleksnykh BAD na osnove molokchnoy syvorotki. Khranenie i pererabotka selkhozsyria, 2, 65–65.

15. Lozova, T. M., Syrokhman, I. V. (2009). Naukovi osnovy formuvannia spozhyvnych vlastivostei i zberihannia yakosti borshchynyk kondyterskykh vyrobiv: Lviv: Vydavnytstvo Lvivskoi komertsiinoi akademii, 456.

16. Syrokhman, I. V., Dontsova, I. V. (2010). Suchasni napriamy polypshennia spozhyvnych vlastivostei zhyrovmisnykh kondyterskykh vyrobiv. Lviv: Vydavnytstvo Lvivskoi komertsinoi akademi, 320.

17. Khasanova, S. D., Skobelskaia, Z. G. (2012). Izuchenie form связвания влаги в помаде со шротом амаранта. Khranenie i pererabotka selkhozsyria, 1, 26–28.

18. Kovalchuk, K., Ozimok, H., Mariychuk, R., Gyrka, O., Bodak, M., Palko, N. et. al. (2019). Determination of safety indicators in the developed muffins with non-traditional raw materials. EUREKA: Life Sciences, 4, 28–35. doi: http://doi.org/10.21303/2504-5695.2019.00072

19. Shulha, O. S. (2019). Naukove osgruntuvania ta rozublinnia tekhnolohii biodehradabelnoho giztivnoho pokryttiia dlia kondyterskykh i khlibobolchynych vyrobiv: Kyiv, 45.

20. Zubenko, V. V. (1992). Eksperimentalnye metody rentgensstrukturnogo analiza. Moscow: Izdatelstvo MGU, 150.