Causal Discovery in a Binary Exclusive-or Skew Acyclic Model: BExSAM
Takanori Inazumi, Takashi Washio, Shohei Shimizu, Joe Suzuki, Akihiro Yamamoto, and Yoshinobu Kawahara,

Abstract—Discovering causal relations among observed variables in a given data set is a major objective in studies of statistics and artificial intelligence. Recently, some techniques to discover a unique causal model have been explored based on non-Gaussianity of the observed data distribution. However, most of these are limited to continuous data. In this paper, we present a novel causal model for binary data and propose an efficient new approach to deriving the unique causal model governing a given binary data set under skew distributions of external binary noises. Experimental evaluation shows excellent performance for both artificial and real world data sets.

1 INTRODUCTION

Many approaches to causal inference and learning of Bayesian network structures have been studied in statistics and artificial intelligence [9], [19]. Most of these derive candidate causal models from an observed data set by assuming acyclicity of the causal dependencies. These mainly use information from second-order statistics such as correlations of the observed variables, and narrow down the candidate directed acyclic graphs (DAGs) by using some constraints and/or scoring functions. However, these approaches often produce multiple candidate causal structures for the data set because of the Markov equivalence or the local optimality of the structures. Recently, some non-Gaussianity-based approaches applied to a linear acyclic model (LiNGAM) have been proposed [15], [16], [17]. Such approaches derive a unique causal order of observed variables in a linear acyclic structural equation model under the condition that external noises driving the variables are non-Gaussian and jointly independent, and estimate a unique model based on the derived causal order. However, these approaches require linearity of the objective system. Recent studies extended this principle to non-linear models [6], [22]. They clarified conditions to identify unique causal orders in bivariate non-linear and post non-linear (PNL) models, and applied these conditions to derive candidate causal orders in their multivariate models and estimate models based on these orders. However, their applicability is limited to the model consisting of continuous variables and smooth non-linear functions, and identifying a unique causal order in the multivariate model is not guaranteed. More recent work further extended the principle for a bivariate model where the two variables have ordered discrete values [10]. However, this did not address the identification of a unique causal order in a multivariate model and the estimation of the model under the identified order.

In contrast, many real world domains such as computer networks, medicine [9], bioinformatics [21], [14] and sociology [19], maintain recently-accumulated stochastic binary data sets, and practitioners need to discover the causal structures and structural models governing the data sets for various purposes. However, to the best of our knowledge, no past studies have addressed principles and algorithms to practically derive a unique causal order and a causal model following the order for a given binary data set. In this regard, our objective in this paper is to propose a novel and practical approach to discovering such a causal order and the associated model within a given stochastic binary data set under some feasible assumptions.

In the next section, we briefly review some related work to indicate important technical issues. In the third section, we introduce a novel binary exclusive-or (EXOR) skew acyclic model, termed “BExSAM,” to represent an objective system, and characterize the model with respect to causal order identification and causal model estimation. In the fourth section, we propose novel criteria and algorithms for causal order identification and causal model estimation based on the model characterization. In the fifth section, we present an experimental evaluation of this approach using both artificial and real world data sets.
2 RELATED WORK

Many studies on causal inference in statistics and learning of Bayesian network structures have concentrated on developing principles for efficiently focusing on candidate causal structures of a given data set within a feasible search space by using information from second-order statistics of the data set [9, 19]. This has arisen because exhaustive searches are intractable as the number of possible directed acyclic graphs (DAGs) grows exponentially with the number of variables. To address this issue, constraint-based approaches such as the PC and the CPC algorithms [19, 12] and score-based approaches such as the GES algorithm [3] have been studied for both continuous and discrete variables. However, these admit multiple solutions because of the Markov equivalence and the local optimality of those solutions in many cases, and thus often fail to generate a uniquely identifiable causal structure. They also need the assumption of faithfulness, implying that correlations between the variables are entailed by the graph structure only.

A recent technique LiNGAM [15] formulates the causal DAG structure search and the structural modeling in the form of an independent component analysis (ICA), that ensures the existence of a unique global optimum under assumptions of linear relations among the observed variables, non-Gaussianity and joint independence of their external noises. Such a condition that enables the identification of a unique causal order of observed variables in a model, even if some other structural models are Markov equivalent to the model, is called an “identifiability condition.” However, this may often provide a locally optimal solution through the nature of its greedy search. In contrast, the more recent DirectLiNGAM [16, 17] efficiently derives a uniquely identifiable solution under the same identifiability condition through its iterative search for exogenous variables, i.e., causally top upstream variables, by applying simple bivariate linear regressions and independence measures. The other notable advantage of these LiNGAM approaches is that they do not need the faithfulness assumption. Two studies [6, 22] proposed extensions of the principles of LiNGAM to a non-linear additive noise model and a post-nonlinear (PNL) model respectively. However, these two studies presented the identifiability conditions for two variable cases only, i.e., “bivariate identifiability conditions,” and did not provide “multivariate identifiability conditions” or the algorithms to identify unique identifiable causal orders in multivariate models as mentioned in the former section. Another study [8] proposed a novel regression to allow causal inference in a non-linear additive noise model containing multiple variables by introducing HSIC (Hilbert-Schmidt independence criterion). However, the identifiability of a unique solution is not ensured because of the non-convexity of the regression problem.

In contrast to these studies for continuous variables, only a few studies have addressed the issue of discovering causal structure for discrete variable sets based on particular characteristics of their data distributions. A study on this topic was recently reported in [10]. It assessed the identifiability of a unique causal order and an algorithm to find a model entailed by the order for integer variables in a finite range and/or a cyclic range having a modulus. However, the focus is on bivariate models and their bivariate identifiability conditions only. Another study [20] proposed a principle for finding a causal order of binary variables to explain a given sample distribution by mutually independent conditional probability distributions named Markov kernels. However, its applicability is limited to very simple Boolean relations because of the high complexity of the kernel functions for the generic cases.

More recent work showed that the acyclic causal structure in a multivariate model is identifiable if the causal relation on every pair of variables conditioned by all other variables in the model is bivariate identifiable [11]. It also indicated that the faithfulness assumption is not needed for the bivariate identifiability based approach to deriving a unique identifiable causal order from a given data set. Furthermore, the multivariate identifiability of all aforementioned models under their respective bivariate identifiability conditions was shown. A generic algorithm for deriving candidate identifiable causal structures from given data sets based on these results was also demonstrated. However, the algorithm and the independence measure used in it are not adapted to the model consisting of multivariate discrete variables, and the applicability of the algorithm was confirmed only for linear and non-linear additive noise models containing up to four continuous variables.

On the other hand, many real world applications need to discover a feasible causal order and a causal model entailed by the order from a given binary data set. Because binary variables do not constitute a continuous algebra, we need to develop a structural model of acyclic relations among the binary variables for other algebraic systems such as a Boolean algebra. In addition, we need to apply a binary data distribution such as a Bernoulli distribution instead of Gaussian or non-Gaussian distributions in modeling stochastic characteristics of the variables, and to use adapted measures to evaluate the independence of the binary distribution. Moreover, we have to design novel algorithms for both causal order identification and model estimation under the order based upon characteristics of the structural model and the data distribution. In the following sections, we present our ideas concerning these issues.
3 Proposed Model

3.1 BExSAM

We first introduce a novel structural model representing generic acyclic causal relations among binary variables.

Definition 1: Given \(d \geq 1 \), let \(e_k \in \{0,1\} \) for all \(k = 1, \ldots, d \) be jointly independent random variables, \(f_k : \{0,1\}^{k-1} \to \{0,1\} \) deterministic Boolean functions and

\[
x_k = f_k(x_1, \ldots, x_{k-1}) \oplus e_k,
\]

where \(f_1 \) is constant, and \(\oplus \) denotes the EXOR operation defined by Table 1.

Every external noise \(e_k \) affects its corresponding variable \(x_k \) via an EXOR operation. Each \(f_k \) expresses any deterministic binary relation without loss of generality because such a relation is always represented by Boolean algebraic formulæ \([5]\). We further assume a skew Bernoulli distribution of every noise \(e_k \) as follows.

Assumption 1: We assume that the probability \(p_k \) of \(e_k = 1 \) satisfies \(0 < p_k < 0.5 \) for all \(k = 1, \ldots, d \).

This assumption covers the case \(0.5 < p_k < 1 \) without loss of generality, because \(x_k = f_k(x_1, \ldots, x_{k-1}) \oplus e_k \) is equivalent to \(x_k = \bar{f}_k(x_1, \ldots, x_{k-1}) \bar{\oplus} \bar{e}_k \) where the probability \(\bar{p}_k \) of \(\bar{e}_k = 1 \) is \(1 - p_k \) satisfies \(0 < \bar{p}_k < 0.5 \). \(p_k \neq 0, 0.5 \) is an essential assumption for causal identification in our setting as will be shown later, as an analogue to the aforementioned non-Gaussianity in the case of LiNGAM. The model provided by Definition 1 and Assumption 1 is called a binary EXOR skew acyclic model, or “BExSAM” for short.

If \(f_k \) in Definition 1 depends on \(x_h \) (\(h < k \)), we say that \(x_h \) is a “parent” of \(x_k \) and \(x_k \) is a “child” of \(x_h \). As is widely noted in causal inference studies \([9, 19]\), we divide \(X = \{x_k | x = 1, \ldots, d \} \) into two classes: \(x_k \) having no parents (“exogenous variables”) and \(x_k \) having some parents (“endogenous variables”). In this study, we further introduce the following definition of a particular endogenous variable.

Definition 2: Endogenous variables having no children are called “sinks.”

As shown in our later discussion, finding sink endogenous variables plays a key role with regard to principles and algorithms for identification of a unique causal order and estimation of a BExSAM.

Example 1 The following is an example of a BExSAM consisting of four binary variables.

\[
\begin{align*}
x_1 &= e_1, \\
x_2 &= x_1 \oplus e_2, \\
x_3 &= x_1x_2 \oplus e_3, \\
x_4 &= (x_1 + x_3) \oplus e_4,
\end{align*}
\]

where the values of \(x_1x_2 \) and \(x_1 + x_3 \) are given in Table 1. As shown in Fig. 1, \(x_1 \) and \(x_4 \) are exogenous and sink endogenous variables, respectively.

1. \(\bar{f}_1 \) and \(\bar{e}_i \) are \(f_i \oplus 1 \) and \(e_i \oplus 1 \), respectively.

	\(e \)	\(a \oplus b \)	\(ab \)	\(a + b \)
0 0	0 0	0 0		0 0
0 1	1 1	0 1		1 0
1 0	1 0	0 1		1 0
1 1	0 1	1 1		1 1

Fig. 1. A DAG structure of the BExSAM in Example 1.

3.2 Characterization

In this subsection, characteristics of BExSAM associated with sink endogenous variables concerning the identification of a unique causal order and the estimation of a structural model are analyzed. First, we define a notion of “selection” which specifies the values of some variables in \(X \).

Definition 3: For \(k = 1, \ldots, d \), we denote by \(X_k = V_k \) an assignment \(x_1 = v_1, \ldots, x_{k-1} = v_{k-1}, x_{k+1} = v_{k+1}, \ldots, x_d = v_d \) for \(X_k := X \setminus \{x_k\} \) and \(V_k := \{v_1, \ldots, v_{k-1}, v_{k+1}, \ldots, v_d\} \cap \{0,1\}^{d-1} \). This assignment is called a “selection” of \(X_k \) at \(V_k \).

The following theorem is important for causal ordering of the variables in \(X \) by using the selection.

Theorem 1: The following conditions are equivalent.
1) \(x_k \in X \) is a sink endogenous variable.
2) There is a common constant \(q_k \) such that \(p(x_k = 1 | X_k = V_k) = q_k \) or \(1 - q_k \) (and therefore, \(p(x_k = 0 | X_k = V_k) = 1 - q_k \) or \(q_k \) equivalently) for all selections \(X_k = V_k = \{0,1\}^{d-1} \).

Proof. See Appendix A.

For example, if we are given the two selections \(X_4 = \{x_1, x_2, x_3\} \) at \(V_4 = (0,0,0) \) and \(V_4' = (0,0,1) \) in Example 1, we have the following conditional probabilities for the sink endogenous variable.

\[
\begin{align*}
p(x_4 = 1 | X_4 = V_4) &= p_4, \\
p(x_4 = 1 | X_4 = V_4') &= 1 - p_4,
\end{align*}
\]

Actually, \(p(x_4 = 1 | X_4 = V_4) = p_4 \) or \(1 - q_4 \) holds for any \(V_4 \) in this case. In contrast, if we are provided with selections \(X_3 = \{x_1, x_2, x_4\} \) at \(V_3 = (0,0,0) \) and \(V_3' = (0,0,1) \), then

\[
\begin{align*}
p(x_3 = 1 | X_3 = V_3) &= \frac{p_3p_4}{p_3p_4 + (1 - p_3)(1 - p_4)}, \\
p(x_3 = 1 | X_3 = V_3') &= \frac{p_3(1 - p_4)}{p_3(1 - p_4) + (1 - p_3)p_4}
\end{align*}
\]
hold. Because \(p_3, p_4 \neq 0.5 \) by Assumption \([1]\) these probabilities are not equal, and also their sum is not unity. Accordingly, no constant \(q_3 \) or \(1 - q_3 \) can be assigned to both \(p(x_3 = 1|X_3 = V_3) \) and \(p(x_3 = 1|X_3 = V_3') \) in this case. These results reflect Theorem \([1]\) that we can find a sink endogenous variable in \(X \) by checking the conditional probability of every variable.

Next, we present an important proposition for estimating a structural model of \(X \).

Proposition 1: Let \(x_k \in X \) be a sink endogenous variable.

1) \(f_k(x_1, \ldots, x_{k-1}) = 1 \) under \(X_k = V_k \)
\[p(x_k = 1|X_k = V_k) > p(x_k = 0|X_k = V_k) \]
2) \(f_k(x_1, \ldots, x_{k-1}) = 0 \) under \(X_k = V_k \)
\[p(x_k = 1|X_k = V_k) < p(x_k = 0|X_k = V_k) \]

Proof. See Appendix \([1]\)

The function \(f_k \) under a selection \(X_k = V_k \) is constant since all of its arguments are constant. Accordingly, the probability distribution of \(x_k \) under the selection is determined by the constant \(f_k \) and the fact that \(0 < p_k < 0.5 \) in Assumption \([1]\)

Example 1, under a selection \(X_4 = \{x_1, x_2, x_3\} = V_4 = \{1, 0, 0\} \), \(f_4 = x_1 + x_3 = 1 \) and thus \(x_4 = 1 + e_4 = e_4 \). This implies that \(p(x_4 = 1|X_4 = V_4) > p(x_4 = 0|X_4 = V_4) \) since \(0 < p_4 < 0.5 \). On the other hand, \(p(x_4 = 1|X_4 = V_4) > p(x_4 = 0|X_4 = V_4) \) implies that \(0 < p(x_4 = 1|X_4 = V_4) < 0.5 \). This further implies that \(f_4 = 1 \) under \(X_4 = V_4 \) since \(x_4 = f_4 \) and \(0 < p_4 < 0.5 \). Proposition \([1]\) indicates a way to identify the part of a sink endogenous variable \(x_k \) in \(X_k = V_k \) in the truth table of \(f_k \).

4 PROPOSED ALGORITHMS

4.1 Problem Setting

First, we define our problem of causal order identification and structural model estimation for a BExSAM.

In our setting, the causal order \(x_1, \ldots, x_d \) is unknown in advance, but we have a data set \(D \) containing a finite number of instances \(V = (v_i(1), \ldots, v_i(d)) \in \{0,1\}^d \) of variables \(X = \{x_i(1), \ldots, x_i(d)\} \) where \(i(k) \) labels a variable \(x_i \) while \(k \) is unknown. \(i(k) \) is a permutation \(i: \{1, \ldots, d\} \rightarrow \{1, \ldots, d\} \) to be identified from \(D \) in determining the causal order. In addition, Boolean functions \(f_i(k) \) for all \(k = 1, \ldots, d \) in the BExSAM need to be estimated. Note that the values of \(\{e_i(1), \ldots, e_i(d)\} \) can be estimated only from \(D \). \(D \) is generated through a process well modeled by a BExSAM where the distributions of \(\{e_i(1), \ldots, e_i(d)\} \) are skew and joint independent. Accordingly, if the sample size \(n = |D| \) is sufficiently larger than \(2^d \), then \(D \) contains varieties of instances \(V \) which enables estimation of the conditional probabilities under various selections similar to the other constraint based approaches \([19]\).

In summary, we assume that a given data set \(D = \{V^h\}_{h=1}^n \) is generated in a BExSAM:
\[
x_i(k) = f_i(k)(x_{i(1)}, \ldots, x_{i(k-1)}) + e_i(k) \quad (k = 1, \ldots, d)
\]

input: a binary data set \(D \) and its variable list \(X \).
1. compute a frequency table \(FT \) of \(D \).
2. for \(k := d \) to 1 do
3. \(i(k) := \text{find_sink}(FT, X) \).
4. \(TT_i(k) := \text{find_truth_table}(FT, X, i(k)) \).
5. remove \(x_i(k) \) from \(X \)
and marginalize \(FT \) over \(x_i(k) \).
6. end
output: a list \(\{x_i(k), TT_i(k)\}_{k=1}^d \).

where \(f_i(1) \) is a constant in \(\{0,1\} \) and \(f_i(k) : \{0,1\}^{k-1} \rightarrow \{0,1\} \) \((k \geq 2)\) is deterministic Boolean function. Our problem is to identify the permutation \(i : \{1, \ldots, d\} \rightarrow \{1, \ldots, d\} \) that is the causal order, and to estimate the functions \(f_i(k) \) \((k = 1, \ldots, d)\) only from \(D \).

4.2 Outline of Proposed Algorithm

We propose an approach to solving our problem based on Theorem \([1]\) and Proposition \([2]\). Figure 2 shows the outline of our proposed algorithm. Since we only need the values of \(FT \) rather than \(D \) to identify the order \(x_1, \ldots, x_d \), we compute the values of \(FT \) in the first stage of the procedure. In the loop from the next step, the algorithm seeks a sink endogenous variable \(x_i(k) \) using the function “\(\text{find_sink} \)” at step 3 and a Boolean function \(f_i(k) \) in the form of a truth table \(TT_i(k) \) via the function “\(\text{find_truth_table} \)” at step 4. These functions perform the identification of a unique causal order and the estimation of a \(\text{BExSAM} \) entailed by the order. Step 5 reduces the search space in the next loop by removing the estimated sink endogenous variable \(x_i(k) \) from \(X \) and marginalizing it in \(FT \). The entire list of \(x_i(k) \) and \(TT_i(k) \) in the output represents the causal order of the variables in the causal DAG structure and the \(\text{BExSAM} \) reflecting the structure. This iterative reduction from the bottom in the causal order is similar to the causal ordering of \([8]\). However, their causal structure estimation needs a second sweep from the top to the bottom. We should note here that our approach consisting of the main algorithm, \(\text{find_sink} \) and \(\text{find_truth_table} \) does not require any parameters to be tuned as shown in the next subsection.

4.3 Finding a Unique Causal Order and Functions

Our algorithm for finding a sink endogenous variable is summarized in Fig. 3. In the loop starting from step 1, mutual information adapted to our problem: \(M_1(x_i, X_i) \) is computed for each \(x_i \) from \(FT \) as explained below. This represents the degree to which \(x_i \) fits condition 2 in Theorem \([1]\). Finally, \(x_i \) with the

2. Code is available from \url{http://www.ar.sanken.osaka-u.ac.jp/~inazumi/bexsam.html}.
input: a frequency table FT and its variable list X.
1. for $i := 1$ to $|X|$ do
2. \(X_i := X \setminus \{x_i\} \).
3. compute \(p_s(x_i = v_i, X_i = V_i), p_s(x_i = v_i), \)
 \(p_s(x_i = v_i) \) for all \(v_i \in \{0, 1\} \) and
 \(V_i \in \{0, 1\}^{|X|-1} \) from FT.
4. compute independence measure $MI_s(x_i, X_i)$.
5. end
6. select i having the minimum $MI_s(x_i, X_i)$ in X.
output: i.

Fig. 3. Algorithm for find_sink.

\[
\begin{array}{cccccc}
\hline \{0,0,...,0\} & \{0,0,...,1\} & \ldots & \{1,1,...,0\} & \{1,1,...,1\} \\
\hline 0 & 1-q_i & q_i & \ldots & q_i & 1-q_i \\
1 & q_i & 1-q_i & \ldots & 1-q_i & q_i \\
\hline
\end{array}
\]

\(p(x_i = v_i | X_i = V_i) \)

Fig. 4. Sort on \(x_i \) in a conditional probability table.

minimum value of $MI_s(x_i, X_i)$, that is the highest possibility of being a sink endogenous variable, is selected.

As noted in Theorem [1], \(p(x_i = 1 | X_i = V_i) \) takes one of the values \(q_i \) or \(1 - q_i \), depending on the selections as depicted in the upper table in Fig. 4, if and only if \(x_i \) is a sink endogenous variable. We then obtain the bottom table which represents the independence of \(x_i \) from \(X_i \) after sorting \(p(x_i = v_i | X_i = V_i) \) in ascending order in every column according to \(q_i < 1 - q_i \).

This implies that the independence of \(x_i \) from \(X_i \) in the table sorted on \(x_i \) is equivalent to the fact that \(x_i \) is a sink endogenous variable. Practically, if the frequencies of some \(X_i = V_i \) are zero in FT because of the incomplete cover of the selections of \(X_i = V_i \) in the given data set D, the probabilities on such \(X_i = V_i \) are not computable. Thus, we obtain the probabilities on \(N_i \) selections of \(X_i = V_i \) less than $2^d - 1$. Based on these considerations, we use the following mutual information $MI_s(x_i, X_i) \geq 0$ between the sorted \(x_i \) and \(X_i \) to evaluate the degree to which \(x_i \) is a sink endogenous variable.

\[
MI_s(x_i, X_i) = \frac{2^d - 1}{N_i} \sum_{v_i, V_i} \left\{ p_s(x_i = v_i, X_i = V_i) \right\}
\]

\[
\times \ln \frac{p_s(x_i = v_i, X_i = V_i)}{p_s(x_i = v_i)p(X_i = V_i)}
\]

where p_s represents a probability for the sorted x_i

input: a frequency table FT, its variable list X and an index of a sink endogenous variable i.
1. \(X_i := X \setminus \{x_i\} \) and $TT_i = \phi$.
2. for all $V_i \in \{0, 1\}^{|X|-1}$ do
3. compute \(p(x_i = v_i | X_i = V_i) \) for all $v_i \in \{0, 1\}$ from FT.
4. If \(p(x_i = 1 | X_i = V_i) > p(x_i = 0 | X_i = V_i), f_i = 1, \)
 otherwise \(f_i = 0 \).
5. $TT_i = TT_i + \{f_i\}$.
6. end
output: TT_i.

Fig. 5. Algorithm for find_truth_table.

\[
\begin{array}{cc}
\hline
X_i = V_i & TT_i \text{ of } f_i \\
\hline
(0,0,...,0) & 0 \\
(0,0,...,1) & 1 \\
\ldots \ldots & - \\
(1,1,...,0) & 1 \\
(1,1,...,1) & 0 \\
\hline
\end{array}
\]

and the summation is taken over the available N_i selections. Because $MI_s(x_i, X_i)$ is rewritten as

\[
MI_s(x_i, X_i) = \frac{2^d - 1}{N_i} \sum_{v_i, V_i} \left\{ p_s(x_i = v_i, X_i = V_i) \right\}
\]

\[
\times \ln \frac{p_s(x_i = v_i, X_i = V_i)}{p_s(x_i = v_i)p(X_i = V_i)}
\]

it is zero when $p_s(x_i = v_i | X_i = V_i) = p_s(x_i = v_i)$ as in the bottom table in Fig. 4. A smaller $MI_s(x_i, X_i)$ represents a higher possibility of x_i being a sink endogenous variable.

Figure 5 outlines our algorithm for estimating every function f_i. In the loop beginning from step 2, the conditional probability of x_i for each selection $X_i = V_i$ is computed at step 3, and the value of f_i is estimated by following Proposition [1] at step 4. This is further listed in a predefined order on V_i in a truth table TT_i at step 5 as depicted in Fig. 6. Similarly to the former algorithm of find_sink, we assign ‘void’ to f_i when the frequency of $X_i = V_i$ is zero by the incompleteness of FT. The final output holds the entire truth table of f_i.

4.4 Computational Complexity

The largest table used in the above algorithms is the frequency table FT which has size 2^d. Thus, the memory complexity of our algorithms is $O(2^d)$. According to the requirement of data size, $n \geq 2^d$, as noted in section [4], this is also written as $O(n)$.

The loop involved in the “find_sink” function computes the probabilities at most $2^d - 1$ times, and computes the independence measure $MI_s(x_i, X_i)$ by aggregating these $2^d - 1$ probabilities. Thus, this process
is $O(d^2) \simeq O(n)$. Since the loop repeats d times at most, the time complexity of “find_sink” is $O(d^2) \simeq O(dn)$. The loop involved in “find_truth_table” function computes the conditional probabilities and estimates an element in the truth table at most $2d^{-1}$ times. Therefore, the time complexity of “find_truth_table” is $O(2^d) \simeq O(n)$. Step 1 of the main algorithm needs $n \geq 2^d$ counts to compute FT, so is $O(2^d) \simeq O(n)$. The functions “find_sink” and “find_truth_table” which are $O(d2^d) \simeq O(dn)$ and $O(2^d) \simeq O(n)$ are repeated d times in the main algorithm. Accordingly, the total time complexity of the proposed algorithms is $O(d^22^d) \simeq O(d^3n)$. This computational complexity is tractable when the number of observed variables is moderate as shown in the numerical experiments later. This complexity is also favorable compared with past work. For example, DirectLiNGAM which also has an iterative algorithm structure and is considered to be one of the most efficient algorithms has $O(d^3n)$ complexity.

5 Experimental Evaluation

5.1 Basic Performance for Artificial Data

For our numerical experiments, we generated artificial data sets using BEExSAMs produced by the following procedure. For every f_k ($k > 1$) in Definition 1 we randomly choose each x_i from the set of potential ancestors $X^1 \cup \cdots \cup X^{k-1} = \{x_i | j = 1, \ldots, k-1\}$ as a parent of x_k with probability p_a. Given a set of parents $X^1 \cup \cdots \cup X^{k-1}$ chosen in this way, we set f_k to 0 or 1 uniformly at random for all selections $X^1 \cup \cdots \cup X^{k-1} \subseteq \{0, 1\}^{|X^1 \cup \cdots \cup X^{k-1}|}$. We do not care about the other non-parent variables in $X^1 \cup \cdots \cup X^{k-1}$ when defining f_k and obtain a truth table $TT_k = \{f_k | x_1 \cup \cdots \cup x_{k-1} = \{0, 1\}^{d-1}\}$ based on f_k for all $X^1 \cup \cdots \cup X^{k-1}$. For f_1, we simply form the truth table $TT_1 = \{f_1\}$ where f_1 is a constant chosen from $\{0, 1\}$ uniformly at random. This random procedure generates a generic BEExSAM in the form of a truth table $TT = \{TT_k | k = 1, \ldots, d\}$.

We obtained our artificial data set $D = \{V(h) | h = 1, \ldots, n\}$ from the generated BEExSAM in the following way. We randomly generate $e^{(h)}_k$ ($k = 1, \ldots, d$ and $h = 1, \ldots, n$) under respective $p_k \in (0, 0.5)$ which are common over all h by Assumption 1. For each h, we successively derive the value of f_k from $k = 1$ to d by applying the values of $X^1 \cup \cdots \cup X^{k-1}$ to TT_k, and compute the value of x_k by $f_k \oplus e_k$. Once this tentative data set is obtained, we randomly permute the indices $k = 1, \ldots, d$ of the causal ordering to define new variable indices $i(k)$ ($k = 1, \ldots, d$), and obtain the final data set D. The series of model generation, data generation and application of our approach was repeated 1000 times for various combinations of the parameters d, n, p_a and $p_i(k)$ ($k = 1, \ldots, d$).

Three performance indices were used for the evaluation. Given two binary adjacency matrices A_t and A_e representing the parent-child relationships between the variables in the generated BEExSAM and its estimated BEExSAM respectively, we compute their precision and recall as follows.

$$P(A) = |A_t \cap A_e|/|A_e| \text{ and } R(A) = |A_t \cap A_e|/|A_t|,$$

where \cap is an element-wise AND operation and $| \cdot |$ is the number of non-zero elements in a matrix. We then obtain their resultant F-measure as the first performance index.

$$F(A) = \frac{P(A) \cdot R(A)}{P(A) + R(A)}.$$

This represents the performance of the causal ordering. Similarly, we compute an F-measure $F(TT)$ between the true truth table TT_t and the estimated truth table TT_e as the second performance index, where f_i having the ‘void’ values in both TT_t and its corresponding f_i in TT_t were skipped in the element-wise AND operation of \cap. This indicates the performance of the model estimation. The third index is simply the total computational time CT (msec) of our algorithm explained in section 4. These indices are averaged over the 1000 trials.

In the first experiment, every combination of $d = 2, 4, 6, 8, 10, 12, 14, 16, 18, 20$ and $n = 100, 500, 1000, 5000, 10000$ was evaluated with $p_a = 0.5$ and $p_i(k)$ defined uniformly at random over $(0, 0.5)$ for $k = 1, \ldots, d$. These choices of $p_i(k)$ ensure the skew and non-deterministic distribution of $e^{(i)}_k$ as required by Assumption 1. p_a reflects the density of the variable couplings in the generated BEExSAM. Table summarizes the performance of our approach. Values of $F(A)$ and $F(TT)$ greater than 0.9 are typed in boldface, and values of CT less than 1000 msec are also written in boldface. We observe that $F(A)$ can be less than 0.9 even with $n > 2^d$ for a small d. This is because the statistical accuracy of $MI_i(x_i, X_j)$ is not very high according to the summation over the small number $N_i(\simeq 2^d)$ of V_i. The accuracy of the causal ordering is affected by erroneous values for $MI_i(x_i, X_j)$. On the other hand, $F(A)$ is greater than 0.9 under $n > 2^d$ when d is large because of the higher accuracy of $MI_i(x_i, X_j)$. We further observe that $F(TT)$ is more sensitive to shortages in the data than $F(A)$. This is because the estimation accuracy of $p(x_i = v_i | X_i = V_i)$ required to derive TT is directly affected by the frequency of the individual $X_i = v_i$ in the data. The estimation accuracy is strongly reduced by the smaller frequency for smaller n. These results indicate that our causal ordering approach and model estimation approach work properly for up to 12 variables and up to 8 or 10 variables, respectively, with a dataset of several thousand samples. We note that in particular CT increases with d but not with n. This is consistent with the aforementioned complexity analysis and the fact that n affects only the computation of FT in the initial stage of our algorithm. The results show that our algorithm completes the causal ordering and the
model estimation within a second up to \(d = 14 \) even for large amounts of data. In the second experiment, we gave an identical value \(p_e \in (0, 0.5) \) to \(p_{i(k)} \) for all \(k = 1, \ldots, d \), and evaluated \(F(A) \) and \(F(TT) \) for \(d = 4, n = 1000 \) and \(p_a = 0.5 \). Figure 7 depicts the resultant dependency of \(F(A) \) and \(F(TT) \) on various \(p_e \). If \(p_e \) is close to 0, our approach fails to accurately estimate the conditional probabilities and thus its accuracy is degraded. If \(p_e \) is close to 0.5, again the accuracy of our approach is lost, because it relies heavily on Theorem 1 and Proposition 1 which require \(p_{i(k)} \neq 0.5 \). Through some extra experiments, we confirmed that \(F(A) \) and \(F(TT) \) do not show strong dependency on \(p_a \), the causal density of the BExSAM.

5.2 Comparison with Other Algorithms

Our algorithm, the PC algorithm [19], the CPC algorithm [12] and the GES algorithm [3] were compared by applying them to data generated by the following artificial BExSAM forming a Y-structure [7].

\[
x_1 = e_1 \quad x_2 = e_2 \quad x_3 = x_1 x_2 \oplus e_3 \quad x_4 = x_3 \oplus e_4
\]

Each \(p_{i(k)} \) was given similarly to the first experiment in the previous subsection. The significance levels \(\alpha \) in both PC and CPC were set at 0.05. Table 3 shows the frequencies of estimated relationships between variables over their true relationships for 20 trials. The columns and rows represent estimated relationships and true relationships, respectively. Because of the Y-structure among the four variables, the number of true directed edges is \(3 \times 20 = 60 \) in total while the number of true non-edges is \(\binom{4}{2} - 3 \times 20 = 180 \) by double counting the two missing directed edges between two variables for a non-edge. This counting method gives double penalties to an incorrect estimation of an edge direction which often comes from causal ordering failures affecting the global structure estimation. The italics show the numbers of correct estimations. Note that this Y structure is a typical example which enables a valid estimation of the PC algorithm. However, our approach based on the skewness of the binary
data distribution provides better accuracy. Similar advantageous results of our approach was obtained for the case where \(x_3 = (x_1 + x_2) \oplus e_3 \). The results of CPC and GES are similar to PC, since CPC and GES do not have any significant advantages over PC at identifying Y-structures.

5.3 Example Applications to Real-World Data

Our approach has been applied to two real-world data sets. One is on leukemia deaths and survivals \((LE = 1/0)\) in children in southern Utah who have high/low exposure to radiation \((EX = 1/0)\) from the fallout of nuclear tests in Nevada \([4], [9]\). As this contains only two binary variables, conventional constraints/score-based approaches cannot estimate any unique causal structure. In contrast, our approach found a causal order \(EX \rightarrow LE\) consistent with our intuition.

Another data set is for college plans of \(10318\) Wisconsin high school seniors \([13], [19]\). While the original study aimed to find a feasible causal structure among five variables constituting a Y structure, we focus on the causality between three variables: yes/no college plans \((CP = 0/1)\), low/high parental encouragement \((PE = 0/1)\) and least to highest intelligence quotient \((IQ = 0, \ldots, 3)\). Conventional constraints-based approaches are known to give multiple candidate causal structures in an equivalence class for the three variables. We selected \(2543\) male seniors \((SEX = male)\) having a higher socioeconomic status \((SES \geq 2\) where \(SES = 0, \ldots, 3)\) to retain individuals having similar social background while maintaining an appropriate sample size. We further transformed \(IQ\) to a binary variable using a threshold value between 1 and 2, which gives a data set containing \(1035\) and \(1508\) seniors having \(IQ = 0\) (lower IQ) and \(IQ = 1\) (higher IQ), respectively. The application of our approach to this data set produced the unique causal structure depicted in Fig. 8. This states that the intelligence quotient of a senior affects both his parental encouragement and his college plan, and that the parental encouragement further influences the college plan. This is consistent with our intuition and the structure estimated by the PC algorithm from the original five variables constituting a Y structure.

6 Discussion

When we apply our approach to a data set, we assume that the data generation process approximately follows a \(BExSAM\). A crucial property required in a \(BExSAM\) is the skew distribution of every external noise. Because the noise is not directly observable, a measure to check this property using the given data set is desirable. The following lemma can be used for this purpose.

\[\text{Lemma 1: Assuming that a data set } D \text{ is generated by a } BExSAM, \text{ if a variable } x_k \in X \text{ has a distribution } p(x_k = 1) \neq 0.5, \text{ then the following condition hold.} \]

\[p_k < 0.5 \text{ and } p(f_k = 1) \neq 0.5. \]

Proof. See Appendix C

As mentioned in subsection 4.1, our algorithm requires a complete data set \(D\) in principle, which is similar to other constraint based approaches \([19]\). Therefore, to analyze a data set \(D\) in which a large portion is incomplete, we need to estimate the missing data in \(D\) by introducing some data completion techniques such as \([2]\). Another associated issue is the applicability to many variables, since the low error rates are ensured only for up to 12 variables with several thousands of samples. A promising way to overcome this issue may be to combine our approach with other constraint-based approaches such as the PC algorithm as discussed in \([22]\). The extensions of our approach toward these issues are topics for future studies.

7 Conclusion

In this paper, we presented a novel binary structural model involving exclusive-or noise and proposed an efficient new approach to deriving an identifiable causal structure governing a given binary data set based on the skewness of the distributions of external noises. The approach has low computational complexity and does not require any tunable parameters. The experimental evaluation shows promising performance for both artificial and real world data sets.

This study provides an extension of the non-Gaussianity-based causal inference for continuous variables to causal inference for discrete variables, and suggests a new perspective on more generic causal inference.
APPENDIX A

PROOF OF THEOREM 1

(1 \Rightarrow 2) Let the value of x_k be $v_k \in \{0, 1\}$. Under a selection $X_k = V_k$, f_k is a constant in $\{0, 1\}$. Accordingly, the following relation holds by Definition 1.

$$x_k = v_k \iff v_k = f_k \oplus e_k \iff e_k = v_k \oplus f_k.$$

Because x_k is a *sink endogenous variable*, e_k and X_k are mutually independent by Definition 1. Under this fact and Assumption 1,

$$p(x_k = v_k | X_k = V_k) = p(e_k = v_k \oplus f_k) = \begin{cases} p_k, & \text{for } v_k \oplus f_k = 1 \\ 1 - p_k, & \text{for } v_k \oplus f_k = 0 \end{cases}$$

By letting $q_k = p_k$ or $q_k = 1 - p_k$, 1 \Rightarrow 2 holds.

(1 \Leftarrow 2) Assume that x_k is not a *sink endogenous variable*. Let X_k be partitioned into X_k^l and X_k^u where X_k^l is a set of all descendants of x_k in a BExSAM, and X_k^u is the complement of X_k^l in X_k. Then, the following holds.

$$p(x_k = v_k | X_k = V_k) = p(x_k = v_k | X_k^u = V_k^u, X_k^l = V_k^l)$$

$$= \frac{p(X_k^l = V_k^l | x_k = v_k, X_k^u = V_k^u) p(x_k = v_k | X_k^u = V_k^u)}{\sum_{v_k' \in \{v_k, \bar{v}_k\}} p(X_k^l = V_k^l | x_k = v_k', X_k^u = V_k^u) p(x_k = v_k' | X_k^u = V_k^u)}.	ag{11}$$

where \bar{v}_k is $v_k + 1$. Furthermore, let $X_j = X \setminus \{x_j\}$ for $x_j \in X_k^l$ be partitioned into X_j^l and X_j^u similarly to X_k^l and X_k^u for x_k. By Definition 1, each f_j for $x_j \in X_k^l$ is given by $X_j^u = V_j^u$ and thus $x_j = f_j(X_j^u = V_j^u) + e_j$ for all $x_j \in X_k^l$. Accordingly, $X_k^l = V_k^l$ is equivalent to $e_j = v_j \oplus f_j(X_j^u = V_j^u)$ for all $x_j \in X_k^l$. We rewriter the r.h.s: $v_j \oplus f_j(X_j^u = V_j^u)$ as $l_j(v_k)$, since x_k is an ancestor of x_j ($x_k \in X_j^u$) and the values of all variables except x_k are constant under the selection $X_k = V_k$. Because every e_j is independent of its upper variables,

$$p(X_k^l = V_k^l | x_k = v_k, X_k^u = V_k^u) = \prod_{j \in X_k^l} p(e_j = l_j(v_k)).$$

x_k has at least one child $x_k \in X_k^l$ where $l_k(1) \neq l_k(0)$ for some selection $X_k = V_k$ from the assumption that x_k is not a *sink endogenous variable*. Accordingly,

$$p(X_k^l = V_k^l | x_k = v_k, X_k^u = V_k^u) = \begin{cases} p_k \prod_{j \in X_k^l, x_j \neq x_k} p(e_j = l_j(v_k)), & \text{for } l_k(v_k) = 1 \\ (1 - p_k) \prod_{j \in X_k^l, x_j \neq x_k} p(e_j = l_j(v_k)), & \text{for } l_k(v_k) = 0 \end{cases}.	ag{12}$$

On the other hand, since e_k is independent of X_k^u and $x_k = v_k \iff e_k = v_k \oplus f_k$,

$$p(x_k = v_k | X_k^u = V_k^u) = p(e_k = v_k \oplus f_k)$$

$$= \begin{cases} p_k, & \text{for } v_k \oplus f_k = 1 \\ 1 - p_k, & \text{for } v_k \oplus f_k = 0 \end{cases}.\tag{13}$$

By substituting Eqs. (12) and (13) into Eq. (11), we obtain the following four cases.

$$p(x_k = v_k | X_k = V_k) = \frac{\alpha p_k p_k + \beta (1 - p_k)(1 - p_k) p_k}{\alpha p_k p_k + \beta (1 - p_k)(1 - p_k)} \quad (4),$$

$$= \frac{\alpha p_k (1 - p_k) p_k}{\alpha p_k (1 - p_k) p_k + \beta p_k (1 - p_k)} \quad (5),$$

where $\alpha = \prod_{x_j \in X_k^l, x_j \neq x_k} p(e_j = l_j(v_k))$ and $\beta = \prod_{x_j \in X_k^l, x_j \neq x_k} p(e_j = l_j(\bar{v}_k))$, α and β are nonzero from Assumption 1 and each of (4) is (5), (4) = (6), (5) = (7) and (6) = (7) for any α and β, that is any $X_k = V_k^l$ excluding x_h, impiles that $p_k = 1/2$ or $p_h = 1/2$ respectively. Because neither $p_k \neq 1/2$ nor $p_h \neq 1/2$ is allowed by Assumption 1, this implies that all conditions (4) \neq (5), (4) \neq (6), (5) \neq (7) and (6) \neq (7) hold simultaneously for some $X_k = V_k^l$ excluding x_h. If we assume that (4) = (7) and (5) = (6) simultaneously for such $X_k = V_k^l$ excluding x_h, then $p_k^2 p_h^2 = (1 - p_k)^2 (1 - p_h)^2$ and $p_h^2 (1 - p_h)^2 = (1 - p_k)^2 p_k^2$, and so $p_k = 1/2$ and $p_h = 1/2$. Accordingly, $p_k \neq 1/2$ and $p_h \neq 1/2$ from Assumption 1 imply that one of (4) = (7) and (5) = (6) do not hold for $X_k = V_k^l$ excluding x_h. This result shows that $p(x_k = v_k | X_k = V_k)$ takes more than two values for some given selection $X_k = V_k$ if x_k is not a *sink endogenous variable*. By taking the contrapositive, we obtain 1 \Leftarrow 2. \hfill \Box

APPENDIX B

PROOF OF PROPOSITION 1

(i) Since f_k is binary, f_k only takes the values 1 or 0 under any selection $X_k = V_k$. This and $x_k = f_k \oplus e_k$ deduce the relations $x_k = e_k$ or $x_k = e_k$, respectively. Accordingly, one of $0 < p(x_k = 0 | X_k = V_k) < 0.5$ and $0 < p(x_k = 1 | X_k = V_k) < 0.5$ holds because $0 < p_k < 0.5$. This implies that $p(x_k = 1 | X_k = V_k) \neq p(x_k = 0 | X_k = V_k)$.

(ii) If $f_k = 1$, then $x_k = e_k$ is deduced from $x_k = f_k \oplus e_k$. This implies that $0 < p(x_k = 0 | X_k = V_k) < 0.5$ by $0 < p_k < 0.5$ and thus $p(x_k = 1 | X_k = V_k) > p(x_k = 0 | X_k = V_k)$.

(iii) If $f_k = 0$, then $x_k = e_k$ is deduced from $x_k = f_k \oplus e_k$. This implies that $0 < p(x_k = 1 | X_k = V_k) < 0.5$ by $0 < p_k < 0.5$ and thus $p(x_k = 0 | X_k = V_k) < p(x_k = 0 | X_k = V_k)$.

From (ii), (iii) and their contrapositives with (i), the proposition is proved. \hfill \Box

APPENDIX C

PROOF OF LEMMA 1

Without loss of generality, $p(e_k = 1) = p_k$, $p(e_k = 0) = 1 - p_k$, $p(f_k = 1), p(f_k = 0)$ with the definition $p(e_k = 1) \leq p(e_k = 0)$ are represented as

$$p(e_k = 1) = \frac{1 + e_k}{2}, \quad p(e_k = 0) = \frac{1 - e_k}{2} \quad (-1 \leq e_k \leq 0),$$

$$p(\bar{e}_k = 1) = \frac{1 - e_k}{2}, \quad p(\bar{e}_k = 0) = \frac{1 + e_k}{2} \quad (0 \leq e_k \leq 1).$$
\[p(f_k = 1) = \frac{1 + \xi_k}{2}, \quad p(f_k = 0) = \frac{1 - \xi_k}{2} \quad (1 \leq \xi_k \leq 1). \]

Because \(\varepsilon_k \) and \(f_k \) are mutually independent, and have the relation \(x_k = f_k \oplus \varepsilon_k \),

\[p(x_k = 1) = p(\varepsilon_k = 1)p(f_k = 0) + p(\varepsilon_k = 0)p(f_k = 1) \]
\[= \frac{(1 + \varepsilon_k)(1 - \xi_k)}{4} + \frac{(1 - \varepsilon_k)(1 + \xi_k)}{4} \]
\[= 1 - \varepsilon_k \xi_k. \]
\[p(x_k = 0) = p(\varepsilon_k = 1)p(f_k = 1) + p(\varepsilon_k = 0)p(f_k = 0) \]
\[= \frac{(1 + \varepsilon_k)(1 + \xi_k)}{4} + \frac{(1 - \varepsilon_k)(1 - \xi_k)}{4} \]
\[= 1 + \varepsilon_k \xi_k. \]

Therefore, \(p(x_k = 0) - p(x_k = 1) = \varepsilon_k \xi_k. \)

Accordingly, if \(p(x_k = 1) \neq p(x_k = 0) \) then \(\varepsilon_k \xi_k \neq 0. \)

This implies that \(\varepsilon_k < 0 \) and \(\xi_k \neq 0 \). Therefore, if \(p(x_k = 1) \neq 0.5 \) then \(p(\varepsilon_k = 1) = p_k < 0.5 \) and \(p(f_k = 1) \neq 0.5. \]

\[\square \]