Contagious obesity: from adenovirus 36 to RB dysfunction

Razvan Tudor Radulescu

Molecular Concepts Research (MCR), Muenster, Germany
E-mail: ratura@gmx.net

Short title: RB connection in infectious obesity

Key words: obesity, infection, adenovirus, E1A gene product, insulin B-chain, LXCXE amino acid motif, retinoblastoma protein (RB), MCR peptide, therapy
ABSTRACT

Significant overweight represents a major health problem in industrialized countries. Besides its known metabolic origins, this condition may also have an infectious cause, as recently postulated. Here, it is surmised that the potentially causative adenovirus 36 contributes to such disorder by inactivating the retinoblastoma tumor suppressor protein (RB) in a manner reminiscent of a mechanism employed by both another pathogenic adenoviral agent and insulin. The present insight additionally suggests novel modes of interfering with obesity-associated pathology.
Introduction

Obesity has recently been qualified as a condition that is meanwhile posing a more significant threat to human health than undernutrition or infectious diseases (Kopelman 2000). Notably, such pathologic overweight is also a component of syndrome X, a group of diseases predicted to prevail in the 21st century (Reaven 2005).

As an etiological variant distinct from purely metabolic aberrations, a correlation between an adenovirus infection and human obesity was discovered about a decade ago (Dhurandar et al. 1997). This form of infectobesity (Pasarica & Dhurandar 2007), as it was also termed, has specifically been linked to human adenovirus 36 (Ad36) given that neutralizing antibodies to this agent were revealed in obese subjects and, moreover, Ad36 was shown to be capable of stimulating preadipocyte differentiation (Vangipuram et al. 2004). Interestingly, PCR data indicated that the Ad36 E1A gene was expressed in an Ad36-infected murine preadipocyte cell line serving as a model for exploring mechanisms of human obesity (Vangipuram et al. 2004). Subsequently, Dhurandhar and coworkers established that, in contrast to measurable Ad36 mRNA levels, the control non-adipogenic adenovirus 2 mRNA was not expressed, thus providing a putative clue as to why among these two closely related adenoviruses only Ad36 seems to possess adipogenic potential in humans (Rathod et al. 2007). In this context, it should be noted that while the E4 gene product appears to be important for certain adenoviral effects, as suggested by several experimental settings (O’Connor & Hearing 2000; Rogers et al. 2008), E4 expression is known to require the presence of E1A (Flint & Shenk 1989) which in turn likely represents an essential functional relationship during natural adenoviral infections.

Conjecture and corollaries

Based on my investigations on the potential role of the insulin-retinoblastoma protein (RB) complex in various human diseases including most recently obesity (Radulescu 2006; Radulescu 2007) and, moreover, given the fact that the insulin B-chain and Ad5 E1A protein share the LXCXE RB-binding motif (Radulescu &
Wendtner 1992), the present study addressed the question as to whether the Ad36 E1A protein contains an amino acid sequence related thereto which, if present, would significantly corroborate the involvement I had anticipated for RB (inactivation) in obesity.

Intriguingly, I have now identified an LXCXE motif spanning residues 105-109 of human Ad36 E1A protein, both in its 12S and 13S isoforms (Fig. 1).

Amino Acid	Sequence
Leu Thr Cys His Glu	Ad5 E1A122-126
Leu Val Cys Gly Glu	human insulin B-chain17-21
Leu Arg Cys Tyr Glu	human Ad36 E1A 12S/13S protein105-109

Fig. 1 Alignment of LXCXE amino acid motifs- whereby X stands for any amino acid- in adenovirus 5 (Ad5) E1A protein, human insulin B-chain and human adenovirus 36 (Ad36) E1A protein.

This finding suggests that, similar to insulin (Radulescu & Wendtner 1992; Radulescu et al. 1995; Radulescu et al. 2000; Radulescu & Schulze 2002; Radulescu 2006; Radulescu & Kehe, 2007; Radulescu 2007), the Ad36 E1A protein may bind and thereby inactivate RB which in turn could contribute to the genesis of infectobesity.

If this conjecture was experimentally validated, e.g. by demonstrating significant amounts of Ad36 E1A-RB complexes in (pre)adipocytes vs. control cells, then it may be worthwhile exploring as to whether blocking such Ad36 E1A-RB complex formation, e.g. by means of LXCXE motif-"chelating" MCR peptides (Radulescu et al. 2000; Radulescu & Kehe, 2007), could attenuate or even reverse this metabolic disorder of presumed infectious origin.

Conversely, the Ad36 E1A-insulin similarity unveiled here lends further support to the notion according to which the insulin-RB complex is likely to be crucially involved not only in the pathophysiology of cancer, but also of (both non-viral and viral forms of) obesity (Radulescu 2006; Radulescu 2007).
Consistent with this proposed dysfunction of the key inhibitor of cell cycle progression RB during pathologic adipogenesis, it has recently been shown that abrogating fatty acid synthase function induces cell cycle arrest (Knowles et al. 2004).

Taken together, inhibition of the growth-suppressive activity of RB through its direct binding to functionally related factors such as insulin and/or Ad36 E1A, as I am suggesting here, could turn out to decisively contribute to an "obesogenic" environment that is known to predispose to the development of a variety of human malignancies, but has so far been poorly understood (Renehan et al. 2008). If so, viruses would have again enlightened us.

References

Dhurandhar NV, Kulkarni PR, Ajinkya SM, Sherikar AA & Atkinson RL 1997 Association of adenovirus infection with human obesity. Obesity Research 5 464-469.

Flint J & Shenk T 1989 Adenovirus E1A protein: paradigm viral transactivator. Annual Review of Genetics 23 141-161.

Knowles LM, Axelrod F, Browne CD & Smith JW 2004 A fatty acid synthase blockade induces tumor cell-cycle arrest by down-regulating Skp2. Journal of Biological Chemistry 279 30540-30545.

Kopelman PG 2000 Obesity as a medical problem. Nature 404 635-643.

O’Connor RJ & Hearing P 2000 The E4-6/7 protein functionally compensates for the loss of E1A expression in adenovirus infection. Journal of Virology 74 5819-5824.

Pasarica M & Dhurandhar NV 2007 Infectobesity: obesity of infectious origin. Advances in Food and Nutrition Research 52 61-102.

Radulescu RT 2006 Insulin-RB heterodimer: potential involvement in the linkage between aging and cancer. Logical Biology 6 81-83.

Radulescu RT 2007 The insulin-RB synapse in health and disease: cellular rocket science. arXiv: 0711.0175v1 [q-bio.BM].
Radulescu RT, Bellitti MR, Ruvo M, Cassani G & Fassina G 1995 Binding of the LXCXE insulin motif to a hexapeptide derived from retinoblastoma protein. Biochemical and Biophysical Research Communications 206 97-102.

Radulescu RT, Doklea E, Kehe K & Mückter H 2000 Nuclear colocalization and complex formation of insulin with retinoblastoma protein in HepG2 human hepatoma cells. Journal of Endocrinology 166 R1-R4.

Radulescu RT & Kehe K 2007 Antiproliferative MCR peptides block physical interaction of insulin with retinoblastoma protein (RB) in human lung cancer cells. arXiv: 0706.1991v1 [q-bio.SC].

Radulescu RT & Schulze J 2002 Insulin-retinoblastoma protein (RB) complex further revealed: intracellular RB is recognized by agarose-coupled insulin and co-immunoprecipitated by an anti-insulin antibody. Logical Biology 2 2-7.

Radulescu RT & Wendtner CM 1992 Proposed interaction between insulin and retinoblastoma protein. Journal of Molecular Recognition 5 133-137.

Rathod M, Vangipuram SD, Krishnan B, Heydari AR, Holland TC & Dhurandhar NV 2007 Viral mRNA expression but not DNA replication is required for lipogenic effect of human adenovirus Ad-36 in preadipocytes. International Journal of Obesity 31 78-86.

Reaven GM 2005 Why syndrome X? From Harold Himsworth to the insulin resistance syndrome. Cell Metabolism 1 9-14.

Renehan AG, Roberts DL & Dive C 2008 Obesity and cancer: pathophysiological and biological mechanisms. Archives of Physiology and Biochemistry 114 71-83.

Roberts PM, Fusinski KA, Rathod MA, Loiler SA, Pasarica M, Shaw MK, Kilroy G, Sutton GM, McAllister EJ, Mashtalir N, Gimble JM, Holland TC & Dhurandhar NV 2008 Human adenovirus Ad-36 induces adipogenesis via its E4 orf-1 gene. International Journal of Obesity 32 397-406.

Vangipuram SD, Sheele J, Atkinson RL, Holland TC & Dhurandhar NV 2004 A human adenovirus enhances preadipocyte differentiation. Obesity Research 12 770-777.