Drought over Seoul and Its Association with Solar Cycles

Jong-Hyeok Park1,2, Heon-Young Chang†
1Department of Astronomy and Atmospheric Sciences, Kyungpook National University, Daegu 702-701, Korea
2Korea Meteorological Administration, Seoul 156-720, Korea

We have investigated drought periodicities occurred in Seoul to find out any indication of relationship between drought in Korea and solar activities. It is motivated, in view of solar-terrestrial connection, to search for an example of extreme weather condition controlled by solar activity. The periodicity of drought in Seoul has been re-examined using the wavelet transform technique as the consensus is not achieved yet. The reason we have chosen Seoul is because daily precipitation was recorded for longer than 200 years, which meets our requirement that analyses of drought frequency demand long-term historical data to ensure reliable estimates. We have examined three types of time series of the Effective Drought Index (EDI). We have directly analyzed EDI time series in the first place. And we have constructed and analyzed time series of histogram in which the number of days whose EDI is less than -1.5 for a given month of the year is given as a function of time, and one in which the number of occasions where EDI values of three consecutive days are all less than -1.5 is given as a function of time. All the time series data sets we analyzed are periodic. Apart from the annual cycle due to seasonal variations, periodicities shorter than the 11 year sunspot cycle, ~ 3, ~ 4, ~ 6 years, have been confirmed. Periodicities to which thses short periodicities (shorter than Hale period) may be corresponding are not yet known. Longer periodicities possibly related to Gleissberg cycles, ~ 55, ~ 120 years, can be also seen. However, periodicity comparable to the 11 year solar cycle seems absent in both EDI and the constructed data sets.

Keywords: drought, EDI, solar cycles, data analysis

1. INTRODUCTION

Timely and accurate forecasts that can be used to minimize their damage are highly desirable since droughts are among the greatest natural disasters threatening the human population in the world. Unfortunately, however, the causes of drought are various, and even different for a separate region and each season, and, moreover, most elements that trigger droughts cannot be regulated. This is partly why many countries rely on the drought monitoring system as the most effective system for allaying drought damage by early drought detection and issuing warnings (e.g., Boken et al. 2005, Oh et al. 2010). Factors including relationships between solar activity and terrestrial weather that affect the amount of rainfall eventually controlling drought attributes have been under careful scrutiny to understand its characteristics, namely its possible duration, intensity/severity, and frequency (Ponce et al. 2000, Kim et al. 2009, Chang & Oh 2012).

In the meantime there is growing interest in roles that the Sun plays on terrestrial weather and climate, not to mention space weather (Svensmark & Friis-Christensen 1997, Tinsley 2000, Scafetta & West 2006, Cho & Chang 2008, Kniveton et al. 2008, Cho et al. 2012). Changes in the temperature and dynamics in the troposphere are suggested to correlate with the Earth's magnetic/electric changes corresponding to solar activities (Burns et al. 2007, 2008). The study of responses of atmospheric ionization and the global electric circuit to varying GCRs demonstrates that the atmospheric transparency is associated with GCR flux which itself is modulated by the solar magnetic field (Roldugin & Tinsley 2004). The response of daily sea-level pressure (SLP) over...
Korean Peninsula to the high-speed solar wind stream (HSS) is examined, resulting in 0.81 with day lag in the correlation coefficient between the average profiles of superposed SLP and HSS (Cho et al. 2012).

The solar activity cycles excite periodical and pseudo periodical variations of all Earth systems, such as, climate, water cycles, rainfalls, streamflows, groundwater, and so on. This rhythm has been associated with possible forcing by the Hale solar magnetic cycle and/or the 18.6-year lunar nodal cycle (Hodell et al. 2001, Hwang et al. 2005, Byun et al. 2008, Penalba & Vargas 2004, Leal-Silva & Velasco Herrera 2012, Yoo et al. 2012). For instance, Cook et al. (1997) made an assessment of these possible solar/lunar forcings on drought area index (DAI), finding a reasonably strong statistical association between the bidecadal drought area rhythm in the Western United States and years of Hale solar cycle minima and 18.6-year lunar tidal maxima. Analysis of the historical time series of rainfall data in Italy has revealed significant 11-year, 22-year and 44-year variabilities that are possibly linked to coherent fluctuations in the high-speed solar wind precipitation into the atmosphere (Mazzarella & Palumbo 1992). Periods corresponding to the 11 year sunspot cycle, the Hale cycle and others have been detected in various hydrologic data (Rao et al. 1992). The Southern Oscillation Index (SOI) is also shown to track the pairing of sunspot cycles in ~88 year periods (Landscheidt 2000, Baker & Palumbo 1992). Periods corresponding to the 11 year sunspot cycle, the Hale cycle and others have been detected in various hydrologic data (Rao et al. 1992). The Southern Oscillation Index (SOI) is also shown to track the pairing of sunspot cycles in ~88 year periods (Landscheidt 2000, Baker 2008, Bettolli et al. 2010).

As mentioned above, drought occurs due to various causes. In some places, the solar forcing may thus play a role on one hand. In other places, on other hand, it can be overshadowed by other reasons, such as meteorological causes, even if the Sun might have a playing role indeed, so that the association of the solar forcing with drought is negligible in a drought modeling. One may be interested in finding such a relation with data collected in Korea when especially tailored model for Korean drought is under development. Min et al. (2003) have found that the frequency of occurrence of droughts in Korea has significant time intervals of 2-3 and 5-8 years and has been increasing since the 1980s using the Standardized Precipitation Index (SPI) as a drought index. Wang et al. (2007) have also analyzed monthly precipitation data from the Seoul observatory and showed that spectral peaks exist in 4-year cycles. Recently, Byun et al. (2008) have claimed that drought periodicities correlated with the solar cycles can be found in records of precipitation of Seoul and in other available data including records of ritual praying for rain, drought damage, and years of deficient precipitation for the duration of 536 years. In their analysis, drought intensity is quantified by using the Effective Drought Index (EDI), which is an intensive measure that considers daily water accumulation with a weighting function for time passage (Byun & Whilhite 1999). EDI is one of widely used drought indices, including the Palmer drought severity index (PDSI; Palmer 1965), rainfall anomaly index (RAI; van Rooy 1965), deciles (Gibbs & Maher 1967), crop moisture index (CMI; Palmer 1968), standardized precipitation index (SPI; McKee et al. 1993, 1995), and crop-specific drought index (CSDI; Meyer & Hubbard 1995), and surface water supply index (SWSI; Shafer & Dezman 1982). Compared to other drought indices, the EDI has several advantages (see, e.g., Mishra & Singh 2010).

In this contribution the periodicity of drought in Seoul, where daily precipitation was recorded from 1778 to 2012, has been re-examined using the wavelet transform technique (e.g., Chang 2006). By doing so, the solar influences on local variations of drought can be investigated by means of available time series of observed meteorological data. This analyzing technique is used in many fields of physics and engineering, such as, acoustics, geophysics, helioseismology, image processing, and so on. It is a very powerful tool to obtain information on the temporal behavior of an oscillatory signal. This paper is organized as follows. We begin with brief descriptions of data in Section 2. We present and discuss results in Section 3. Finally, we summarize and conclude in Section 4.

2. DATA

We have used for the present analysis EDI of Seoul in Korea during the period from 1778 to 2012. The data set has been taken from the Meteorological Disaster Research Laboratory website, Department of Environmental Atmospheric Sciences, Pukyong National University. Time series of EDIs for other stations distributed in South Korea, North Korea, Japan, and China can be also obtained as ASCII text files. Computer codes for EDI are provided so that one may easily appreciate how EDI is defined and computed. Typically, EDI varies in the range from -2.0 to 2.0. The drought range of EDI indicates extremely dry conditions at EDI < -2.0, severe drought at -2.0 < EDI < -1.5 and moderate drought at -1.5 < EDI < -1.0. In Fig. 1, we show the daily EDI as a function of time for Seoul. One may identify the year with relative ease when the severe drought occurred.

3. RESULTS AND DISCUSSION

In Fig. 2, we show result from the wavelet transform
analysis of the data shown in Fig. 1. The horizontal axis represents time in day counting from the beginning of the data for 235 years, and the vertical axis the cyclic frequency in $\frac{1}{\text{day}}$. The power is shown in gray scale. The power is scaled by the mean value of the noise. Several high power peaks appear at -0.00274, -0.001, -0.00075, -0.0002 $\frac{1}{\text{day}}$, whose periods correspond to ~ 1, ~ 2.7, ~ 3.7, ~ 5.5, ~ 15 years, respectively. The most dominant peak is the one of frequency ~ 0.00274 $\frac{1}{\text{day}}$. It is due to the fact that drought has a seasonal variation. That is, in Korea basically we have rainy summer seasons and dry spring and winter seasons, which leads an annual modulation. We have found some marginal peaks corresponding to periods of $\sim 70-100$ years. But considering that the total data length is 235 years peaks should be regarded as statistically insignificant. We, therefore, conclude that periodicities associated with the solar cycles cannot be found in time series of EDI data. Another point to note is that most power is concentrated in 19th century and that in modern times there seems no severe drought occurred. Unlike the Fourier analysis, the wavelet transform analysis does also show where the modes of the signal exist in time. This is a strong point of the wavelet transform analysis over the traditional Fourier-based analysis. This finding can be understood in the sense the average value of EDI is more negative in 19th century implying severity of drought, as seen in Fig. 1.

In Fig. 3, we show result from the wavelet transform analysis of time series of histogram in which the number of days whose EDI is less than -1.5 for a given month of the year is given as a function of time. The horizontal axis represents time in month counting from the beginning of the data for 235 years, and the vertical axis the cyclic frequency in $\frac{1}{\text{month}}$. The power is shown in gray scale. The power is again scaled by the mean value of the noise. High peaks can be seen at -0.083, -0.028, -0.022, -0.014 $\frac{1}{\text{month}}$, whose periods correspond to ~ 1, ~ 2.9, ~ 3.8, ~ 6 years, respectively. The most dominant peak is obviously the one of frequency -0.083 $\frac{1}{\text{month}}$. In Fig. 4, we show similar plot to Fig. 3, except the vertical scale is different. Here, we see peaks at -0.0015, -0.0007 $\frac{1}{\text{month}}$, whose periods correspond to ~ 55, ~ 120 years, respectively. Even though a peak at -0.007 $\frac{1}{\text{month}}$ corresponding to the 11 year solar cycle does not appear in the power spectrum, peaks possibly related to Gleissberg cycles can be found. We have repeated the
same analysis with the critical EDI setting to -2.0 instead of -1.5. We find peaks at the same frequencies. Yet, any peaks relating 11 year solar cycle cannot be found. We point out that, despite apparent similarity, searching for a periodicity in a power spectrum resulting from the histogram as in Figs. 3 and 4 is rather a proper way than from time series of EDI itself as in Fig. 2. Since the time series like one shown in Fig. 1 commonly shows periodic behaviors of droughts (negative EDIs) and floods (positive EDIs) at the same time, the resulting power spectrum is a sum of signals due to pulses of positive and negative EDIs. Hence, power spectrum as shown in Fig. 2 should be interpreted with due care.

In Fig. 5, we show result from the wavelet transform analysis of time series in which the number of occasions where EDI values of three consecutive days are all less than -1.5 is given as a function of time. By this, we meant to count severe or prolonged droughts. Here we show the power spectrum of occurrence of severe droughts in a sense. The horizontal axis represents time in month, and the vertical axis the cyclic frequency in $\frac{1}{\text{month}}$. The power is shown in gray scale normalized by the mean value of the noise. High peaks can be seen at ~0.083, ~0.039, ~0.028, ~0.022, ~0.013, ~0.01 $\frac{1}{\text{month}}$, whose periods correspond to ~1, ~2.1, ~2.9, ~3.8, ~6.4, ~8.3 years, respectively. In Fig. 6, we show similar plot to Fig. 5, except the vertical scale is different. Here, we see peaks at ~0.0015, ~0.0007 $\frac{1}{\text{month}}$, whose periods correspond to ~55, ~120 years, respectively. Even though a peak at ~0.007 $\frac{1}{\text{month}}$ corresponding to the 11 year solar cycle does not appear in the power spectrum, peaks possibly related to Gleissberg cycles can be found. We have repeated the same analysis with the critical EDI setting to -2.0 instead of -1.5. We also repeated a case of five consecutive day long drought with critical EDI of -1.5 and -2.0. Generally speaking, same conclusions are drawn so that our conclusion is robust.

4. SUMMARY AND CONCLUSION

The main purpose of study on periodicities of droughts is to provide a scientific tool to predict their occurrences in the future. Another scientific motivation in view of solar-terrestrial connection is to search for an example of extreme weather condition controlled by solar activity. We have investigated drought periodicities occurred in Seoul to find out any indication of a relationship between drought in Korea and solar activities. The periodicity of drought in Seoul, where daily precipitation was recorded from 1778 to 2012, has been re-examined using the wavelet transform technique as the consensus is not achieved yet. The reason we have chosen Seoul is because daily precipitation was recorded for longer than 200 years, which meets our requirement that analyses of drought frequency demand long-term historical data to ensure reliable estimates.

Supposed the site is a random choice from homogeneous stations in Korea, we have investigated the solar influences
on local variations of drought in Korea using time series data sets constructed with EDI data. We have examined three types of time series of EDI. We have directly analyzed EDI time series in the first place. And we have constructed and analyzed time series of histogram in which the number of days whose EDI is less than -1.5 for a given month of the year is given as a function of time, and one in which the number of occasions where EDI values of three consecutive days are all less than -1.5 is given as a function of time. We have repeatedly generated and tested similar time series data with different criteria too. All the time series data sets we analyzed are periodic. Apart from the annual cycle, periodicities shorter than the 11 year sunspot cycle reported have been confirmed. Longer periodicities possibly related to Gleissberg cycles can be also seen. However, periodicity comparable to the 11 year sunspot cycle seems absent in both EDI and the constructed data sets.

ACKNOWLEDGMENTS

HYC was supported by the National Research Foundation of Korea Grant funded by the Korean government (NRF-2011-0008123).

REFERENCES

Baker RGV, Exploratory Analysis of Similarities in Solar Cycle Magnetic Phases with Southern Oscillation Index Fluctuations in Eastern Australia, Geographical Research, 46, 380-398 (2008).

Bettolli ML, Penalba O, Rivera J, Trends and periodicities in the annual amount of dry days over Argentina, looking towards the climatic change, Options Mediterraneennes, Series A, no. 95, 27-33 (2010).

Boken VK, Cracknell AP, Heathcote RH, Monitoring and Predicting Agricultural Drought: A Global Study (Oxford University Press, New York, 2005), 472.

Burns GB, Tinsley BA, Frank-Kamenetsky AV, Bering EA, Interplanetary magnetic field and atmospheric electric circuit influences on ground-level pressure at Vostok, JGR, 112, D04103 (2007).

Burns GB, Tinsley BA, French WJR, Troshichev OA, Frank-Kamenetsky AV, Atmospheric circuit influences on ground-level pressure in the Antarctic and Arctic, JGR, 113, D15112 (2008).

Byun HR, Whillhite DA, Objective Quantification of Drought Severity and Duration, J. Climate, 12, 2747-2756 (1999).

Byun HR, Lee SJ, Morid, S, Choi KS, Lee SM, et al., Study on the Periodicities of Droughts in Korea, APJAS, 44, 417-441 (2008).

Chang HY, Time/Frequency Analysis Of Terrestrial Impact Crater Records, JASS, 23, 199-208 (2006).

Chang HY, Oh SJ, Does Correction Factor Vary with Solar Cycle?, JASS, 29, 97-101 (2012). http://dx.doi.org/10.5140/JASS.2012.29.2.097

Cho IH, Chang HY, Long term variability of the sun and climate change, JASS, 25, 395-404 (2008).

Cho IH, Kwak YS, Marubashi K, Kim YH, Park YD, et al., Changes in sea-level pressure over South Korea associated with high-speed solar wind events, Adv. Space Res., 50, 777-782 (2012).

Cook ER, Meko DM, Stockton CW, A new assessment of possible solar and lunar forcing of the bi-decadal drought rhythm in the Western United States, J. Climate, 10, 1343-1356 (1997).

Gibbs WJ, Maher JV, Rainfall Deciles as Drought Indicators, In: Bureau of Meteorology Bull. 48, Commonwealth of Australia (Bureau of Meteorology, Melbourne, 1967).

Hodell DA, Brenner M, Curtis JH, Guilderson T, Solar forcing of drought frequency in the Maya lowlands, Science, 292, 1367-1370 (2001).

Hwang SH, Kim J, Won YI, Cho HK, Kim JS, et al., Statistical characteristics of secondary ozone density peak observed in Korea, Adv. Space Res., 36, 952-957 (2005).

Kim DW, Byun HR, Choi KS, Evaluation, modification, and application of the Effective Drought Index to 200-Year drought climatology of Seoul, Korea. J. Hydro., 378, 1-12 (2009).

Kniveton DR, Tinsley BA, Burns GB, Bering EA, Troshichev OA, Variations in global cloud cover and the fair-weather vertical electric field, JASTP, 70, 1633-1642 (2008).

Landscheidt T, River Po discharges and cycles of solar activity, Hydrol. Sci. J., 45, 491-493 (2000).

Leal-Silva MC, Velasco Herrera VM, Solar forcing on the ice winter severity index in the western Baltic region, JASTP, 89, 98-109 (2012).

McKee TB, Doesken NJ, Kleist J, The Relationship of Drought Frequency and Duration to Time Scales, In: 8th Conference on Applied Climatology, (American Meteorological Society, Anaheim, 1993), 179-184.

McKee TB, Doesken NJ, Kleist J, Drought Monitoring with Multiple Time Scales, In: 9th Conference on Applied Climatology, (American Meteorological Society, Dallas, 1995), 233-236.

Mazzarella A, Palumbo F, Rainfall Fluctuations over Italy and Their Association with Solar Activity, Theor. Appl. Climatol., 45, 201-207 (1992).
Meyer SJ, Hubbard KG, Extending the Crop-specific Drought Index to Soybean, In: Ninth Conf. on Applied Climatology (American Meteorological Society, Dallas, 1995), 258-259.

Min SK, Kwon WT, Park EH, Choi YG, Spatial And Temporal Comparisons Of Droughts Over Korea With East Asia, Int. J. Climatol., 23, 223-233 (2003).

Mishra AK, Singh V, A review of drought concepts, J. Hydrol., 391, 202-216 (2010).

Oh SB, Kim DW, Choi KS, Byun HR, Introduction of East Asian Drought Monitoring System, SOLA, 6A, 9-12 (2010).

Palmer WC, Meteorologic Drought, US Department of Commerce, Weather Bureau, Research Paper, 45, 1-58 (1965).

Palmer WC, Keeping track of crop moisture conditions, nationwide: the new crop moisture index, Weatherwise, 21, 156-161 (1968).

Penalba OC, Vargas WM, Interdecadal and interannual variations of annual and extreme precipitation over central-northeastern Argentina. In: International Journal of Climatology, 24, 1565-1580 (2004).

Ponce VM, Pandey RP, Ercan S, Characterization of drought across climatic spectrum. Journal of Hydrologic Engineering, ASCE, 5, 222-224 (2000).

Rao AR, Jeong GD, Chang FJ, Estimation of periodicities in hydrologic data, Stochastic Hydrol. Hydraul., 6, 270-288 (1992).

Roldugin VC, Tinsley BA, Atmospheric transparency changes associated with solar wind-induced atmospheric electricity variations, JASTP, 66, 1143-1149 (2004).

Scafetta N, West BJ, Phenomenological solar contribution to the 1900-2000 global surface warming, GRL, 33, L05708 (2006).

Shafer BA, Dezman L, Development of a Surface Water Supply Index (SWSI) to Assess the Severity of Drought Conditions in Snowpack Runoff Areas. In: Preprints, Western Snow Conf., Reno, NV, Colorado State University, 164-175 (1982).

Svensmark H, Friis-Christensen E, Variation of cosmic ray flux and global cloud coverage-a missing link in solar-climate relationships, JASTP, 59, 1225-1232 (1997).

Tinsley BA, Influence of solar wind on the global electric circuit, and inferred effects on cloud microphysics, temperature, and dynamics in the troposphere, Space Sci. Rev., 94, 231-258 (2000).

van Rooy MP, A rainfall anomaly index independent of time and space, Notos, 14, 43 (1965).

Wang B, Jhun JG, Moon BK, Variability and singularity of Seoul, South Korea, Rainy Season (1778-2004), J. Climate, 20, 2572-2580 (2007).

Yoo J, Kwon HH, Kim WT, Ahn JH, Drought frequency analysis using cluster analysis and bivariate probability distribution, J. Hydrol., 420-421, 102-111 (2012).