Characterization of the Venom Proteome for the Wandering Spider, *Ctenus hibernalis* (Aranae: Ctenidae)

Jeffrey Cole1, Patrick A Buszka2, James A Mobley3 and Robert A Hataway4*

1Department of Biological and Environmental Science, Samford University, Birmingham, AL 35229-2234, USA
2Department of Surgery, University of Alabama-Birmingham, Birmingham, AL 35294-0113, USA

Abstract

Spider venom is a rich multicomponent mixture of neurotoxic polypeptides. The venom of a small percentage of the currently classified spiders has been categorized. In order to determine what venom proteins are expressed in our species, the wandering spider *Ctenus hibernalis*, we constructed a comprehensive proteome derived from a crude venom extract using a GeLC approach that required a one dimensional denatured gel electrophoresis separation combined with enzymatic digestion of the entire lane cut into many molecular weight fractions followed by LC-ESI-MS2. In this way, we identified 1,182 proteins with >99% confidence that closely matched sequences derived from the combined genomes taken from several similar species of spiders. Our results suggest that the venom proteins of *C. hibernalis* contain several proteins with conserved sequences similar to other species. Going forward, with next generation sequencing (NGS), combined with extended annotations will be used to construct a more complete genoproteomic database. Therefore, it is expected that with further studies like this, there will be a continued and growing understand of the genoproteomic makeup of the venom for many species derived from insects, plants, and animals. We believe that as a whole these approaches will lead to a much better understanding of the biology behind venoms of all types, as well as ways to treat exposed patients while also expanding upon and taking advantage of the various positive sides of venomous toxins.

Keywords: Venom; Spider; Proteome; Ctenidae; Ctenus

Introduction

Spider venoms are a multicomponent mixture of polypeptides that contain a diverse array of structure and function that is used for both the immobilization of prey as well as a defense mechanism [1-4]. To date, the venom composition of less than 100 of the nearly 40,000 characterized species of spiders has been investigated [5]. Although certain venom protein families are highly conserved across spider taxa [6], there are several instances of novel taxa-specific venom proteins, such as latrotoxins in *Latrodectus*, Sphyngomyelinase D in *Loxosceles*, and γ-catenotoxin-Pn1a in *Phoneutria* [7-9]. Spider venom has been shown to have several therapeutic applications due to the vast array of biological functionality such as neurotoxic, antimicrobial, antiparasitic, cytolytic, hemolytic, and antiarrhythmic activities [10]; it is thus likely that undiscovered peptides of novel importance are likely to be found in previously unexplored venoms.

Spiders in the Ctenidae family, a group containing nearly 500 species in 42 genera that range mostly in tropical terrains, is home to the most venomous spider in the world *Phoneutria nigriventer* [11], and a nonlethal spider that has become the model species for arachnological studies on evolution and development *Cupinnius salei* [12]; both of which are South American spiders whose venom has been highly studied [13,14]. In the U.S., *Ctenus hibernalis* is one of only 7 representative species of Ctenidae spiders and it has primarily been collected in Alabama [15], but little to no information is available about its ecology or physiology, nor is there anything known about its divergence from its tropical counterparts in relation to its venom. The aim of this study is to utilize proteomic techniques in order to characterize the venom proteome of *C. hibernalis* and to determine what similarities exist between its venom composition and other spider taxa as well as its tropical counterparts.

Methods

Spider collection

Individuals were hand collected at night, the time when they are most active, using spotlight techniques due to the reflective tapetum within their eyes [16]. Collection was done within the Homewood Forest Preserve in Homewood, AL in September 2015. Only adult females, collected within the same week, were included to limit confounding variables such as ontological differences in venom composition that may occur over time and between sexes as has occurred in other species [17-19].

Venom collection

Prior to venom collection, individuals were anesthetized with CO2 as previously described [20]. Venom was collected using electrostimulation with 7V of AC current, similar to previous studies [21-24]. Anesthetized individuals were placed on clamped forceps attached to an electrode. One prong of the forceps was wrapped in nonconductive insulating tape to create a point of contact for the spider that would retard current, while the other prong of the forceps was wrapped with a cotton thread and soaked in saline to create a point of contact with the spider to promote electrical conductivity. A capillary tube was then placed over the fang in order to collect the venom. Finally, the second electrode was touched to the base of the chelicerae in order to complete the circuit and allow the muscles around the venom gland to contract and eject venom into the capillary tube. Venom was pooled from 21 individuals and then stored at -80°C prior to analysis in accordance to previously reported methodology [25,26].

*Corresponding author: Robert A Hataway, Department of Biological and Environmental Science, Samford University, Birmingham, AL 35229-2234, USA, Tel: 205-726-4190; E-mail: rahatawa@samford.edu

Received July 08, 2016; Accepted August 22, 2016; Published August 25, 2016

Citation: Cole J, Buszka PA, Mobley JA, Hataway RA (2016) Characterization of the Venom Proteome for the Wandering Spider, *Ctenus hibernalis* (Aranea: Ctenidae). J Proteomics Bioinform 9: 196-199. doi:10.4172/jpb.1000406

Copyright: © 2016 Cole J, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Sample preparation and data acquisition

The venom protein isolates were quantified against an 8-point standard curve run in triplicate using a BCA Protein Quantification Kit (Biorad, CA). 50 µg was diluted in LDS PAGE buffer (Biorad) containing reducing agent and separated on a 4-2% SDS Bis-Tris gel (Biorad). The gel was stained overnight with colloidal blue (Biorad), and destained prior to visualization. The entire lane was cut into 19 molecular weight (MW) fractions. Gel slices were reduced, carbamidomethylated, dehydrated, and digested with Trypsin Gold (Promega) as per manufacturers’ instructions. Peptide digests were analyzed in duplicate using an LTQ XL ion trap mass spectrometer equipped with a nano-electrospray source, and a Surveyor plus binary high-pressure liquid chromatography (HPLC) pump (Thermo Scientific, San Jose CA) using a split flow configuration. Separations were carried out using a 75 µm × 13 cm pulled tip C-18 column (Jupiter Scientific, San Jose CA) using a split flow configuration. The proteins were separated into 19 MW fractions in the 1D gel assay. The proteins were separated into 19 MW fractions in the 1D gel. The venom protein isolates were quantified against an 8-point standard curve run in triplicate using a BCA Protein Quantification Kit (In Vitrogen), 50 µg was diluted in LDS PAGE buffer (In Vitrogen) containing reducing agent and separated on a 4-2% SDS Bis-Tris gel (In Vitrogen). The gel was stained overnight with colloidal blue (In Vitrogen), and destained prior to visualization. The entire lane was cut into 19 molecular weight (MW) fractions. Gel slices were reduced, carbamidomethylated, dehydrated, and digested with Trypsin Gold (Promega) as per manufacturers’ instructions. Peptide digests were analyzed in duplicate using an LTQ XL ion trap mass spectrometer equipped with a nano-electrospray source, and a Surveyor plus binary high-pressure liquid chromatography (HPLC) pump (Thermo Scientific, San Jose CA) using a split flow configuration. Separations were carried out using a 75 µm × 13 cm pulled tip C-18 column (Jupiter C-18 300 A, 5 µm, Phenomenex).

Data analysis

The data was searched using SEQUEST (v.27 rev12, .dta files). Searches were performed using all published Araneae venom peptide sequences in Uniprot that also contained common contaminants such as porcine digestion enzymes and human keratins.

Identified peptides were filtered, grouped, and quantified using Scaffold (Proteome Software, Portland Oregon). Only peptides with charge state of ≥ 2+, a minimum peptide length of 6 amino acids, were accepted for this analysis, in addition to proteins containing ≥ 2 peptides and a final false discovery rate of <1%. Relative quantification was performed via spectral counting, and spectral count abundances were normalized across the entire set. Toxin groups, delineated by taxonomic family, and molecular targets were identified according to activity prefix from King et al. [27,28].

Results

A total of 21 female C. hibernalis were collected for venom sampling. Pooled venom from the 21 individuals provided a total of 20 µL with a protein content of 53.8 µg/µL as determined by BCA assay. The proteins were separated into 19 MW fractions in the 1D gel ranging from 3-188 kDa (Figure 1) for downstream analysis by LCMS2. From these data, 1,182 proteins matched the published spider venom sequences with >99% confidence. A match required at least 2 peptides uniquely mapped to the protein. These matches ranged from 93 species in 27 spider families (Figure 2a). Of those 1,182 proteins, 86 were found in other Ctenidae spiders, and 335 of these matches had an attributed molecular activity prefix (Figure 2b). There were strong matches with cytolytic proteins as well as proteins involved in channel inhibition (Ca²⁺ Na⁺ and K⁺) (Table 1, Supplementary Material).

Discussion

This study marks not only the first attempt to characterize the venom of Ctenus hibernalis, but also the venom composition of a U.S. native Ctenidae. We detected over a thousand unique proteins homologous with venom proteins across several spider taxa, which indicates the venom proteins are highly conserved. Although venom proteins in evolutionarily young clades of venomous animals such as snakes that diverged 30-50 million years ago (MYA) typically undergo positive selection due to a predatory arms race [29,30], it has been discovered that certain venom protein families in the ancient clade of spiders that diverged 416-359 MYA have been optimized for their predatory purposes and undergo purifying selection to conserve venom protein functionality [6,31].
Figure 2: a) Distribution of homologous spider toxin families of detected proteins in the venom of Ctenus hibernalis. Other spider venom families such as pisautoxin, barytoxin, zodatoxin, oxotoxin, miturgitoxin, filistitoxin, segestritoxin, latrotoxin, plectoxin, sicaritoxin, sparatoxin, amaurobitoxin, diguetoxin, nemetoxin, thomitoxin were also detected and grouped into the "other" section. b) Distribution of prefix activities from the 335 matches that had a characterized activity prefix from. The prefix ω (omega) inhibits voltage-gated calcium (Ca\textsubscript{v}) channels, μ (mu) inhibits voltage-activated sodium (Na\textsubscript{v}) channels, κ (kappa) inhibits voltage-activated potassium (K\textsubscript{v}) channels, M (Mu) indicates haemolytic cytolytic or antimicrobial. Lumped into the "other" category are matches with the prefix δ (delta) delays inactivation of voltage-activated Na\textsubscript{v} channels, β (beta) shifts voltage-dependence of Na\textsubscript{v} channel activation α (alpha) targets acetylcholine receptor, γ (gamma) targets HCN nonspecific cation channels, and τ (tau) targets transient receptor potential (TRP) channel.

Table 1: Partial list of detected proteins in the venom of Ctenus hibernalis highlighting several species and molecular functionality, sorted by Uniref accession number. An exhaustive list of detected proteins has been included as supplementary material.
We were only able to characterize the venom proteins that had significant matches within the database; there are still several peptides to be characterized that are entirely unique to C. hibernalis. It is evident that the knowledge base of venom peptide sequences in Ctenidae spiders is limited, which merits further investigation. Future work is necessary to determine the sequences of peptides found in the venom that are not found in the database by generating transcriptomic data from the spider’s venom gland. This ongoing work will allow for orthogonal validation and entire peptide sequences for all expressed venom proteins, rather than just the partial sequences generated from this study, which will also aid in determining the gene ontology distribution found in the venom proteins. Additionally this information will allow for future work quantifying expression levels in this species and its relatives using mRNA based methodologies. Further work is also necessary to expand the taxa that we investigated, as well as expanding to the population level using both proteomic and transcriptomic techniques in tandem to generate comprehensive venomic information of several species as well as individuals within a population. This will help generate a better understanding of the molecular evolution of venom proteins in these animals.

Acknowledgements

We thank the UAB Comprehensive Cancer Center Mass Spectrometry/Proteomics (MSP) Shared Facility for the proteomic instrumentation portion of our project, whose core was funded by core grant [P30CA13148-38, UAB CCC-MSP-SF], and Collin Plourde for his field assistance in spider collecting.

References

1. Kaiser E, Raab W (1967) Collagenolytic activity of snake and spider venoms. Toxicon 4: 251-255.
2. Habermehl G (1975) Biological significance of animal toxins. Naturwissenschaften 62: 15-21.
3. Bachmann M (1976) The venom of the spider orthognathic Pterinochilus spec: Isolation and partial biochemical and biological characterization of a neurotoxin and a hyaluronidase. Basel.
4. Vassilevski AA, Kozlov SA, Grishin EV (2009) Molecular diversity of spider venom. Biochemistry (Mosc) 74: 1505-1534.
5. Piatnick NI (2014) The world spider catalog, version 13.5. American Museum of Natural History.
6. Sunagar K, Moran Y (2015) The Rise and Fall of an Evolutionary Innovation: Contrasting Strategies of Venom Evolution in Ancient and Young Animals. PLoS Genet 11: e1005596.
7. Diniz MR, Theakston RD, Crampton JM, Nascimento CM, Pimenta AM, et al. (2006) Functional expression and purification of recombinant Tx, a sodium channel blocker neurotoxin from the venom of the Brazilian “armed” spider, Phoneutria nigroviridis. Protein Expr Purif 50: 18-24.
8. Garb JE, Hayashi CY (2013) Molecular evolution of alpha-latrotoxin, the exceptionally potent vertebrate neurotoxin in black widow spider venom. Mol Biol Evol 30: 999-1014.
9. Binford GJ, Bodner MR, Cordes MH, Baldwin KL, Ryerson MR, et al. (2009) Molecular evolution, functional variation, and proposed nomenclature of the gene family that includes sphingomyelinase D in sicariid spider venoms. Mol Biol Evol 26: 547-566.
10. Saetz NJ, Semff S, Jensen JE, Er SY, Herzig V, et al. (2010) Spider-venom peptides as therapeutics. Toxins (Basel) 2: 2851-2871.
11. Herzig V, Ward RJ, dos Santos WF (2002) Intersexual variations in the venom of the Brazilian ‘armed’ spider Phoneutria nigriviridis (Keyserling, 1891). Toxicon 40: 1399-1406.
12. McGregor AP, Hibbard M, Peckmann M, Schwager EE, Prpic N-MM, et al. (2008) Cupiennius salei and Achaeaeranae tepidiarum: Spider models for investigating evolution and development. Bioessays 30: 487-498.
13. Haebelri S, Kuhn-Nentwig L, Schaller J, Nentwig W (2000) Characterisation of antibacterial activity of peptides isolated from the venom of the spider Cupiennius salei (Araneae: Ctenidae). Toxicon 38: 375-380.
14. Cardoso FC, Pacifico LG, Carvalho DC, Victória JM, Neves AL, et al. (2003) Molecular cloning and characterization of Phoneutria nigriviridis toxins active on calcium channels. Toxicon 41: 755-763.
15. Peck WB (1981) The Ctenidae of temperate zone North America. Bulletin of the American Museum of Natural History 170: 157-169.
16. Atkinson RK, Walker P (1985) The effects of season of collection, feeding, maturation and gender on the potency of funnel-web spider (Atrax invenustus) venom. Aust J Exp Biol Med Sci 63: 555-561.
17. Malli H, Vapeník Z, Nentwig W (1993) Ontogenetic changes in the toxicity of the venom of the spider Cupiennius salei (Araneae, Ctenidae). Zoologische Jahrbucher Abteilung für Allgemeine Zoologie und Physiologie der Tiere 197: 113-122.
18. Malli H, Kuhn-Nentwig L, Imboden H, Nentwig W (1999) Effects of size, motility and paralysis time of prey on the quantity of venom injected by the hunting spider Cupiennius salei. J Exp Biol 202: 2083-2089.
19. Spagna JC, Moore AM (1998) Safe immobilization by CO, of Latrodectus hesperus (Arachnida; Theridiidae). The Pan-Pacific entomologist (USA).
20. Barrio A, Brazil O (1950) Ein neues Verfahren der Giftentnahme bei Spinnen. Experientia 6: 112-113.
21. Binford GJ, Wells MA (2003) The phylogenetic distribution of spingomyelinase D activity in venoms of Haplogynae spiders. Comp Biochem Physiol B Biochem Mol Biol 135: 25-33.
22. Wang XC, Duan ZG, Yang J, Yan XJ, Zhou H, et al. (2007) Physiological and biochemical analysis of L. fregicincutatus venom collected by electrical stimulation. J Physiol Biochem 63: 221-230.
23. Garb JE (2014) Extraction of venom and venom gland microdissections from spiders for proteomic and transcriptomic analyses. J Vis Exp: e51618.
24. Munekiyo SM, Mackessy SP (1998) Effects of temperature and storage conditions on the electrophoretic, toxic and enzymatic stability of venom components. Comp Biochem Physiol B Biochem Mol Biol 119: 119-127.
25. Li J, Li D, Zhang F, Wang H, Yu H, et al. (2014) A comparative study of the molecular composition and electrophysiological activity of the venoms from two fishing spiders Dolomedes mahoanus and Dolomedes sulfureus. Toxicon 83: 43-52.
26. King GF, Gentz MC, Escoubas P, Nicholson GM (2008) A rational nomenclature for naming peptide toxins from spiders and other venomous animals. Toxicon 52: 264-276.
27. Herzig V, Wood DL, Newell F, Chaumeil PA, Kaas Q, et al. (2011) ArachnoServer 2.0, an updated online resource for spider toxin sequences and structures. Nucleic Acids Res 39: D653-D657.
28. Vidalia N, Ragec JC, Couloud X, Hedgeg SB (2009) Snakes (Serpentes). The Timetable of Life.
29. Casewell NR, Wüster W, Vonk F, Harrison RA, Fry BG (2013) Complex cocktails: the evolutionary novelty of venoms. Trends Ecol Evol 28: 219-229.
30. Selden PA, Shear WA, Bonamo PM (1991) A spider and other arachnids from the Devonian of New York, and reinterpretations of Devonian Araneae. Palaeontology 34: 241-281.
31. Fry BG, Roelants K, Champagne DE, Scheib H, Tyndall JD, et al. (2009) The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms. Annu Rev Genomics Hum Genet 10: 483-511.
32. Kiernan MC, Isbister GK, Lin CS, Burke D, Bostock H (2005) Acute tetrodotoxin-induced neurotoxicity after ingestion of puffer fish. Ann Neurol 57: 339-348.
33. Choi DW (2000) Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends Neurosci 11: 465-469.
34. Stanfield PR (1983) Tetraethylammonium Ions and the Potassium Permeability of Excitable Cells. Rev Physiol Biochem Pharmacol 97: 1-49.
35. Adams ME (2004) Agatoxins: ion channel specific toxins from the American funnel web spider, Agelenopsis aperta. J Exp Biol 207: 1575-1576.