Observation of Negative s-Wave Proximity Effect in Superconducting UBe$_{13}$

Siyuan Han, K. W. Ng, and E. L. Woll$^{(a)}$

Ames Laboratory–U. S. Department of Energy and Department of Physics, Iowa State University, Ames, Iowa 50011

Andrew Millis

Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

and

J. L. Smith and Zachary Fisk

Los Alamos National Laboratory, Los Alamos, New Mexico 87545

(Received 14 April 1986)

The Josephson I_c between a Ta-wire probe and an induced, surface, singlet, superconducting state in UBe$_{13}$ decreases with decreasing temperature below the bulk UBe$_{13}$ T_c, in contrast to the increase seen in comparison Mo samples. This shows that the bulk UBe$_{13}$ superconductivity suppresses the induced singlet superconductivity. Such suppression is evidence of a triplet superconducting state in UBe$_{13}$. Evidence is presented for phase slip between weakly coupled singlet and triplet order parameters.

PACS numbers: 74.50.+r, 74.70.Rv

The nature of the superconducting state in the heavy-fermion metal UBe$_{13}$ is a question which has generated considerable current interest and experimental activity. The resistivity and specific heat, ultrasonic attenuation, and other properties in UBe$_{13}$ are anomalous and have supported suggestions that its pairing is odd-parity (OP) spin-triplet as in superfluid 3He, or even-parity d wave. Several authors have proposed experiments to detect a characteristic "negative proximity effect" between conventional and OP superconductors.

Measurements of the Josephson I_c and the quasiparticle tunneling spectrum are also pertinent. Interpretation of such experiments is complicated by inherent surface breaking of OP pairs and by the effects of spin-orbit interaction near an interface. It has also been proposed that order parameters of different symmetry will weakly suppress each other by competing for phase space. In this Letter we describe an experiment on UBe$_{13}$ which gives evidence of such suppression, and we argue that this suppression indicates that the superconductivity in UBe$_{13}$ is odd parity.

We have previously reported s-wave superconductivity induced in the surface of UBe$_{13}$ above its T_c by exchange of pairs from an s-wave probe and observed by the Josephson effect. A surface, singlet, order parameter Δ_s is thus established, extending a coherence length ξ into the bulk. This singlet state, whose magnitude can be monitored by the Josephson I_c, represents a probe of the bulk order parameter as in the proposed proximity-effect experiments.

New comparative measurements of the dc and ac Josephson effects have been carried out on ingots of UBe$_{13}$ and Mo contacted by Ta wires. The samples are mounted outside a hole in the wide face of a K-band microwave guide, and the wire driven across its interior by an externally controlled screw. Four wires separately contact the ingot and the Ta wire. Contact is made at 4.2 K, with only millivolt bias. The apparatus can discriminate between a milliohm resistance and a short; the latter is observed on Mo below 0.92 K. Electropolished surfaces of UBe$_{13}$ give significantly clearer Shapiro steps than were obtained previously. Nb and Ta tips on 1-mm wire are mechanically ground and result in typical contact diameters of 1–10 μm.

Study of the surface region of UBe$_{13}$ contacted by the probe in a scanning Auger microprobe (microscope) reveals no damage.

Figure 1 shows the $I_c(T)$ curves. As previously re-
reported, the T_c of the contact, T_c^*, exceeds the bulk T_c and approaches that of the Ta wire, 4.47 K. A proximity-induced Josephson effect, characterized by a series-spreading resistance $R_s = \rho/2a$, with a the contact radius and ρ the bulk resistivity, is observed. The $I_c(T)$ curves are reasonably approximated by a Ginzburg-Landau model13,14 (solid and dashed curves) assuming $I_c = \text{const} \times \Delta_s \Delta_{Ta}$, where Δ_s and Δ_{Ta} are the pair potentials at the surface of the ingot (UBe$_{13}$ or Mo) and the Ta, respectively.

The low-temperature $I_c(T)$ data are shown in Fig. 2. The Mo I_c rises faster below T_c corresponding to the appearance of an intrinsic pair potential Δ_{Mo}, resulting in an increase in Δ_s. $I_c(T)$ for UBe$_{13}$ falls below T_c, indicating suppression of Δ_s by about 10% between T_c and 0.6T_c, and also the absence of direct Josephson coupling between the bulk UBe$_{13}$ order parameter and the Ta probe. All I-V curves are nonhysteretic. In Fig. 2, the solid curve is obtained from a model (below) based on a triplet bulk order parameter for UBe$_{13}$.

Figure 3 illustrates the effect of microwave irradiation on the I-V curves of the UBe$_{13}$-Ta contact at 0.51 K. The spacing of the Shapiro steps is accurately $hv/2e$ as expected for an induced-singlet state. The steps have been carefully observed and do not change as T crosses T_c. The data thus confirm that the surface singlet state Δ_s persists to 0.6T_c and is weakly suppressed as the distinct interior pair potential Δ_T develops.

The measured series residual resistances $R(T) = dV/dI|_{V=0,T}$ are plotted in Fig. 4. The expected behavior for a conventional superconductor (crosses) is $R = \rho/2a$ for $T > T_c$, and $R = 0$ for $T < T_c$, as singlet superconductivity expands from radius a to fill the sample. The crosses in Fig. 4 actually represent $R(T)$ measured on a Nb-Ta contact,15 but are believed representative also of the Ta-Mo contact.

The anomalous behavior of UBe$_{13}$ is shown by the solid circles in Fig. 4 which represent $R(T) = dV/\text{dl}|_{0,T}$ of the UBe$_{13}$-Ta contact, normalized by R^*.

FIG. 2. Low-temperature $I_c(T)$ for nonhysteretic junctions of Fig. 1. T is normalized to ingot T_c. Fall of $I_c(T)$ in UBe$_{13}$ contact indicates s-wave pair breaking by the bulk superconductivity. Dashed curve is a guide to the eye, while solid curve is obtained from Eq. (3), with $\lambda = 2.8$, on the assumption $I_c = \Delta_s \Delta_{Ta}$.

FIG. 3. Conventional Shapiro steps observed in UBe$_{13}$-Ta contact at 0.51 K, indicating Josephson effect between induced-s-wave state Δ_s, and Δ_{Ta}. Direct coupling between Δ_{Ta} and intrinsic UBe$_{13}$ pairing is absent, as seen from detail of steps in bottom panel. This is consistent with different parity (triplet) bulk order Δ_T in UBe$_{13}$.

FIG. 4. Residual junction resistance $R(T) = dV/\text{dl}|_{V=0,T}$ normalized by $R^* = dV/dI|_{0.2K}$ follows dashed curve (disappears at T_c) for induced-s-wave state on s-wave bulk superconductor. Anomalous behavior of UBe$_{13}$-Ta contact (filled circles, solid line) follows trend of UBe$_{13}$ bulk $\rho(T)$ (open circles, Ref. 16) above T_c, but nonzero R persists to 0.6T_c. Orthogonality of singlet and triplet order parameters overlapping in a region of volume $\sim a^2 \xi$ implies weak interaction, and allows phase-slippage between Δ_T and Δ_s.

FIG. 5. Curves for UPS data in Fig. 3. The filled circles show the variational wavefunction ψ_0 and the open circles the variational wavefunction $\psi = \psi_0 e^{-\sqrt{2} \xi}$, for the model of Fig. 3.
\[dV/dl \big|_{0.2 \text{ K}} \] The residual resistance at 2 K is \(R^* = 1 \Omega = \rho/2a \), which, using \(\rho (2 \text{ K}) = 200 \mu \Omega \text{ cm} \), implies \(a = 1 \mu \text{m} \). \(R (T) \) falls in a manner similar to the bulk resistivity (open circles), after recent measurements of Remenyi et al.\(^{16} \) \(R (T) \) below \(T_c \) drops more sharply, but returns to a reduced slope and reaches 0.2\(R^* \) at the lowest temperature, 0.5 K.

The observations on UBe\(_{13}\) may be understood if the bulk superconductivity in UBe\(_{13}\) is odd parity.\(^7\) Then one expects, even near an interface, the following: (1) the direct Josephson coupling between tantalum and the odd-parity superconductivity is negligible\(^7\)\(^-\)\(^10\), (2) the odd-parity bulk superconductivity competes with the proximity-induced singlet superconductivity for electrons,\(^8\) thus causing the magnitude of the proximity-induced singlet order parameter \(\Delta_s \) to decrease as the temperature decreases below the \(T_c \) of UBe\(_{13}\); (3) phase slippage occurs in the region where the induced and bulk order parameters overlap, leading to a finite resistance in series with the Josephson junction even though the UBe\(_{13}\) is superconducting in bulk.

A complete discussion of these effects would involve formulating and solving a nonlocal, nonlinear equation. However, the essential question is the validity of point (2) above, and this may be demonstrated within the same simple model used for the \(T > T_c \) data.\(^12\)

We assume that the magnitude of the induced-singlet order parameter is fixed by balancing two energies: the free-energy cost \(\delta F_1 \) to impose \(s \)-type superconductivity on the UBe\(_{13}\) and another energy \(\delta F_2 \) which represents coupling to the Ta wire. We have

\[
\delta F_1 = \xi \eta \xi \left(\frac{T_c}{T} \right)^2 + \left(\frac{\xi_0}{\xi} \right)^2 + \lambda \left(\frac{\Delta_s}{\pi k_B T_c^2} \right)^2, \quad (1)
\]

\[
\delta F_2 = \eta \xi_0 (\Delta_{Ta} - \Delta_s)^2, \quad (2)
\]

where \(\delta F_2 \) is phenomenological; \(\eta \) is a measure of the transmissivity of the interface; \(\Delta_{Ta} \) and \(\Delta_s \) are the order parameters at the interface in the Ta and UBe\(_{13}\), respectively; \(\xi_0 \) is the coherence length in UBe\(_{13}\). For \(T > T_c^T \), where \(T_c^T = 0.86 \text{ K} \) is the bulk transition temperature of the UBe\(_{13}\), one has \(\xi_0 = (D/T)^{1/2} \). For \(T < T_c^T \), \(\xi_0 \) goes over to \(\xi_0 = (D/\Delta_T)^{1/2} \). This \(\Delta_T \) is the magnitude of the triplet gap near the interface.

\(\delta F_1 \) is obtained\(^8\) by following the standard derivation of the Landau-Ginzburg equation for \(s \)-type superconductivity, but Assuming \(\Delta_T (T_c^T) \). One assumes \(\Delta_T (z) = \Delta_T e^{-2|z|} \), and computes the free energy, \(\delta F_1 \). The parameter \(\lambda = \lambda_0 (\Delta_{Ta}/\Delta_0)^2 \), where \(\lambda_0 \) is approximately 3.5, depending slightly on the form of triplet state assumed.\(^8\) \(\Delta_T/\Delta_0 \) measures how much the triplet gap is suppressed from its bulk value \(\Delta_0 \) by the presence of the interface. \(T_c^T < T_c^T \) is the singlet \(T_c \) that UBe\(_{13}\) would have if the triplet-pairing interaction \(V_T = 0 \).

We assume \(T_c^T > 0 \), but this is not a crucial assumption.

Now \(\xi \) is chosen by minimizing \(\delta F_1 \). Then \(\delta F_1 + \delta F_2 \) is minimized with respect to \(\Delta_s \), yielding

\[
\Delta_s = \eta \Delta_T \left[\frac{\xi_0}{\xi} + \lambda \left(\frac{\Delta_T}{\pi k_B T_c^2} \right)^2 \right], \quad (3)
\]

Since \(\Delta_{Ta} \) is essentially independent of temperature below 1 K, while \((\Delta_T/\pi k_B T_c^2)^2 \sim (1 - T/T_c^T) \) for \(T < T_c^T \) we find \(d\Delta_s/dT = (\lambda - 1) \) which can be positive below \(T_c^T \) if \(\lambda > 1 \). Thus, since the Josephson current is proportional to \(\Delta_s \Delta_{Ta} \) (for \(\Delta_s \ll \Delta_{Ta} \)), we obtain our main result: The observed \(I_c \) suppression is due to the mechanism described in point (2) above if \(\lambda > 1 \). The solid curve in Fig. 2, obtained from Eq. (3) with \(\lambda = 2.8 \), provides the observed behavior.\(^18\)

The data for UBe\(_{13}\) from four other contacts (not shown) can also be fitted by Eq. (3), by use of the same material parameter \(\lambda \), altering only the contact-transmissivity parameter \(\eta \). Further work is in progress in improving and generalizing this treatment.

We note that the superconductivity in UBe\(_{13}\) spin-singlet (e.g., "\(d \)-wave") our analysis would not apply.\(^8\) Direct Josephson coupling between the Ta wire and the bulk UBe\(_{13}\) superconductivity would be possible. Also, within \(\sim \xi_0 \) of the interface, i.e., the region where the presence of the barrier is expected to destroy rotational invariance, the linearized gap equation would couple \(s \)- and \(d \)-symmetry gap functions.\(^19\)

The suppression of the induced \(s \)-wave gap caused by the competition for electrons would therefore be much weaker. Therefore, one may obtain a suppression of \(I_c \) below the UBe\(_{13}\) \(T_c \) from a model assuming \(d \)-wave superconductivity only if\(^8\) the Josephson coupling to the bulk \(d \)-wave order parameter is anomalously small, or if the induced-\(s \)-wave order parameter extends a distance \(\xi \gg \xi_0 \) into the bulk. We therefore believe the superconductivity in UBe\(_{13}\) is odd parity.

In summary, a negative proximity effect has been observed between the bulk superconductivity of UBe\(_{13}\) and a proximity-induced surface singlet state. This effect has been accounted for by a model of triplet-singlet phase competition in UBe\(_{13}\) below its \(T_c \). As we have argued, these new results support an odd-parity superconducting ground state in UBe\(_{13}\).

We thank Dr. Al Bevelo for the scanning Auger microprobe measurements, R. G. Barnes for use of a klystron, D. K. Finnemore for use of a cryostat, Harlan Baker for electropolishing the UBe\(_{13}\) sample, E. W. Fenton, Chandra Varma, James Sauls, G. B. Arnold, M. F. Bishop, Julius Ranninger, V. Kogan, and Zheong G. Kim for helpful discussions. A portion of this work was supported by NATO Collaborative Research Grant 167-84.
Ames Laboratory is operated for the U. S. Department of Energy by Iowa State University under Contract No. W-7405-Eng-82. This work was partially supported by the Director for Energy Research, Office of Basic Energy Sciences.

(a)Permanent address: Department of Physics, Polytechnic University, Brooklyn, NY 11201.

1H. R. Ott, H. Ridgier, Z. Fisk, and J. L. Smith, Phys. Rev. Lett. 50, 1595 (1983).

2B. Batlogg, D. Bishop, B. Golding, C. M. Varma, Z. Fisk, J. L. Smith, and H. R. Ott, Phys. Rev. Lett. 55, 1319 (1985), and references therein.

3G. R. Stewart, Rev. Mod. Phys. 56, 755 (1984).

4H. R. Ott, H. Rudigier, T. M. Rice, K. Ueda, Z. Fisk, and J. L. Smith, Phys. Rev. Lett. 52, 1915 (1984).

5C. M. Varma, Bull. Am. Phys. Soc. 29, 404, 857 (1984), and Moment Formation in Solids, edited by W. Buyers, NATO Advanced Study Institute Vol. 117 (Plenum, New York, 1984), and Comments Solid State Phys. 11, 221 (1985).

6P. W. Anderson, Phys. Rev. 30, 1549 , 4000 (1984).

7E. W. Fenton, Solid State Commun. 54, 709 (1985).

8A. J. Millis, Bull. Am. Phys. Soc. 30, 457 (1985), and Physica (Amsterdam) 135B, 69 (1985), and unpublished.

9B. Ashauer, G. Kieselmann, and D. Rainer (unpublished).

10J. A. Pals, W. van Haeringen, and M. H. van Maaren, Phys. Rev. B 15, 2592 (1977).

11L. J. Buchholtz and G. Zwicknagl, Phys. Rev. B 23, 5788 (1981).

12Siyuan Han, K. W. Ng, E. L. Wolf, H. F. Braun, L. Tanner, Z. Fisk, J. L. Smith, and M. R. Beasley, Phys. Rev. B 32, 7567 (1985).

13Siyuan Han and E. L. Wolf (unpublished).

14S. Greenspoon and H. J. T. Smith, Canadian J. Phys. 49, 1350 (1971).

15For high-purity annealed Mo, $R_\theta = p/2a$ (for $a = 1-10$ μm and residual resistance ratio 100) is below our resolution of 10^{-3} Ω. The Ta foil was cold rolled and had a larger p.

16G. Remenyi, D. Jaccard, J. Flouquet, A. Briggs, Z. Fisk, J. L. Smith, and H. R. Ott (unpublished).

17We will briefly consider below the possibility of an even-parity d-wave state.

18The theory curve (solid) in Fig. 2 has been smoothed to match the experimental temperature resolution.

19Note that the odd parity of the triplet gap function ensures that the linearized gap equation cannot couple singlet and triplet gap functions, even near the interface.