Study of the decay $B_s^0 \rightarrow J/\psi f'_2(1525)$ in $\mu^+\mu^-K^+K^-$ final states

V.M. Abazov, B. Abbott, B.S. Acharya, M. Adams, T. Adams, G.D. Alexeev, G. Alkhazov, A. Alton, G. Alves, M. Aoki, A. Askew, S. Atkins, K. Augsten, C. Avila, F. Badaud, L. Bagly, B. Baldin, D.V. Bandurin, E. Barberis, P. Baringer, J. Barreto, J.F. Bartlett, U. Bassler, V. Bažterra, A. Bean, M. Begalli, L. Bellantoni, S.B. Beri, G. Bernardi, R. Bernhard, I. Bertram, M. Besançon, R. Beuselinck, D.A. Bezzubov, P.C. Bhut, S. Bhatia, V. Bhatnagar, G. Blazej, S. Blessing, K. Bloom, A. Boehmlein, D. Boline, E.E. Boos, G. Borisov, T. Bose, A. Brandt, O. Brandt, R. Brock, G. Broojmans, A. Bross, D. Brown, J. Brown, X.B. Bu, M. Buehler, V. Buescher, V. Bunichev, S. Burdin, C.P. Buszello, E. Camacho-Pérez, B.C.K. Casey, H. Castillo-Valdez, S. Caughron, S. Chakrabarti, D. Chakraborty, K.M. Chan, A. Chandra, E. Chapon, G. Chen, S. Chevalier-Théré, D.K. Cho, S.W. Cho, S. Choi, B. Choudhary, S. Chilingarian, D. Claes, J. Clutter, M. Cooke, W.E. Cooper, M. Corcoran, F. Couderc, M.-C. Cousinou, A. Croc, D. Cutts, D. Das, G. Davies, S.J. de Jong, D. De La Cruz-Burelo, F. Deliot, R. Demina, D. Denisov, S.P. Denisyov, S. Desai, C. Detert, K. DeVaughan, M. Diesburg, P.F. Ding, A. Dominguez, D. Dubkh, L.V. Dukdo, D. Duggan, A. Duperrin, S. Dutt, A. Dydshant, M. Eads, D. Edmunds, J. Ellison, V.D. Elvira, Y. Enari, H. Evans, A. Evdokimov, V.N. Evdokimov, F. Facini, L. Feng, T. Ferbel, F. Fiedler, M. Fillatou, W. Fisher, H.E. Fisk, M. Fortner, G. Fox, S. Fuess, A. García-Bellido, J.A. García-González, A. García-Guerr, V. Gavrilov, P. Gay, W. Geng, D. Gerbaudo, C.E. Gerber, Y. Gershtein, G. Ginther, G. Golovanov, A. Goussiou, P.D. Grannis, S. Gredel, H. Greenlee, G. Grenier, Ph. Grivaz, A. Grosjean, S. Grünendahl, M.W. Grünwald, T. Guillen, G. Gutierrez, P. Gutierrez, A. Haas, H. Hagopian, J. Haley, L. Han, K. Harder, A. Harel, J.M. Hauptman, J. Hays, T. Head, T. Heebeker, D. Hedin, H. Hegab, A.P. Heinson, U. Heintz, C. Hensel, I. Heredia-De La Cruz, K. Herner, G. Hesketh, M.D. Hildreth, R. Hirosky, T. Hoang, J.D. Hobbs, B. Hoenesien, M. Hohlfeld, I. Howley, Z. Hubacek, V. Hynek, I. Iashvili, Y. Ilchenko, R. Illingworth, A.S. Ito, S. Jabeen, M. Jaffré, A. Jayasinghe, R. Jesik, K. Johns, E. Johnson, M. Johnson, A. Jonckheere, P. Jonsson, J. Joshi, A.W. Jung, A. Juste, K. Kaadze, E. Kajfasz, D. Karmanov, P.A. Kasper, I. Katsanos, R. Kehoe, S. Kerniche, N. Khalatyan, A. Khanov, A. Kharchilava, Y.N. Khazheev, I. Kiselevich, J.M. Kohli, A.V. Kozelov, J. Kraus, S. Kulikov, A. Kumar, A. Kupco, T. Kurča, V.A. Kuzmin, S. Lammers, P. Lebrun, H.S. Lee, S.W. Lee, W.M. Lee, J. Lellouch, H. Li, L. Li, Q.Z. Li, J.K. Lim, D. Lincoln, J. Linnemann, V.V. Lipaev, R. Lipton, H. Liu, Y. Liu, A. Lobodenko, M. Lokajicek, R. Lopes de Sa, H.J. Lubatti, R. Luna-García, A.L. Lyon, A.K.A. Maciel, R. Madar, R. Maganilla, S. Malik, V.L. Malyshev, Y. Maravin, J. Martínez-Ortega, R. McCarthy, C.L. McGivern, M.M. Meier, A. Ménitchouk, D. Mercier, M. Merkin, A. Meyer, J. Meyer, W. Miconi, N.K. Mondal, M. Mullhern, E. Nagy, M. Naimuddin, M. Narain, R. Nayyar, H.A. Neal, J.P. Negret, P. Neustroev, T. Nunnemann, G. Obrant, J. Orduna, N. Osman, J. Osta, M. Padilla, A. Pal, N. Parashar, V. Parihar, S.K. Park, R. Partridge, N. Parua, A. Patwa, B. Penning, M. Perfiliev, Y. Peters, K. Petridis, G. Petrillo, P. Pétroff, M. Pleier, P.L.M. Postela-Lern, V.M. Podstavkov, A.V. Popov, M. Prewitt, D. Price, N. Prokopenko, J. Qian, A. Quadt, B. Quinn, M.S. Rangel, K. Ranjan, P.N. Ratoff, I. Razunov, P. Renkel, I. Ripp-Baudot, R. Rizatdinova, M. Rominsky, A. Ross, C. Royon, P. Rubinin, J. Ruchti, G. Sajot, P. Salcido, G. Sánchez-Hernández, M.P. Sanders, B. Sanghi, A.S. Santos, G. Savage, L. Sawyer, T. Scanlon, R.D. Schambberger, Y. Scheglov, H. Schellman, G. Scholohom, C. Schwanenberger, R. Schwinhorst, J. Sekaric, H. Severini, E. Shabalina, V. Shary, S. Shaw, A.A. Shchukin, R.K. Shivpuri, V. Simak, P. Skubic, P. Slattery, D. Smirnov, K.J. Smith, G.R. Snow, J. Snow, S. Snyder, S. Söldner-Rembold, L. Sonnenschein, K. Soustruznik, J. Stark, D.A. Stoyanova, M. Strauss, L. Stutte, L. Suter, P. Svoisky, M. Takahashi, M. Titov, V.V. Tomkimen, Y.-T. Tsai, K. Tschann-Grimm, T. Tsybaychek, B. Tuchming, C. Tully, L. Uvarov, S. Uvarov, S. Uzunyan, R. Van Kooten, W.M. van Leeuwen, N. Varelas, E.W. Varnes, I.A. Vasilyev, P. Verdier, A.Y. Verkhleev, L.S. Vertogradov, M. Verzocchi, M. Vesterinen, D. Vilanova, P. Vokac, H.D. Wahl, M.H.L.S. Wang, J. Warchol, G. Watts, M. Wayne, J. Weichert, L. Welty-Rieger.
A. White, D. Wicke, M.R.J. Williams, G.W. Wilson, M. Wobisch, D.R. Wood, T.R. Wyatt, Y. Xie, R. Yamada, W.-C. Yang, T. Yasuda, Y.A. Yatsunenko, W. Ye, Z. Ye, H. Yin, K. Yip, S.W. Youn, J. Zennamo, T. Zhao, T. G. Zhao, B. Zhou, M. Zielinski, D. Zieminska, and L. Zivkovic (The D0 Collaboration)

1 LAFEX, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
2 Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
3 Universidade Federal do ABC, Santo André, Brazil
4 University of Science and Technology of China, Hefei, People’s Republic of China
5 Universidad de los Andes, Bogotá, Colombia
6 Charles University, Faculty of Mathematics and Physics, Center for Particle Physics, Prague, Czech Republic
7 Czech Technical University in Prague, Prague, Czech Republic
8 Center for Particle Physics, Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
9 Universidad San Francisco de Quito, Quito, Ecuador
10 LPC, Université Blaise Pascal, CNRS/IN2P3, Clermont, France
11 LPSC, Université Joseph Fourier Grenoble I, CNRS/IN2P3, Institut National Polytechnique de Grenoble, Grenoble, France
12CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
13LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France
14LPNHE, Universités Paris VI and VII, CNRS/IN2P3, Paris, France
15CEA, Ifca, SPP, Saclay, France
16IPHC, Université de Strasbourg, CNRS/IN2P3, Strasbourg, France
17IPNL, Université Lyon 1, CNRS/IN2P3, Villeurbanne, France and Université de Lyon, Lyon, France
18III. Physikalisches Institut A, RWTH Aachen University, Aachen, Germany
19Physikalisches Institut, Universität Freiburg, Freiburg, Germany
20II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany
21Institut für Physik, Universität Mainz, Mainz, Germany
22Ludwig-Maximilians-Universität München, München, Germany
23Fachbereich Physik, Bergische Universität Wuppertal, Wuppertal, Germany
24Panjab University, Chandigarh, India
25Delhi University, Delhi, India
26Tata Institute of Fundamental Research, Mumbai, India
27University College Dublin, Dublin, Ireland
28Korea Detector Laboratory, Korea University, Seoul, Korea
29CINVESTAV, Mexico City, Mexico
30Nikhef, Science Park, Amsterdam, the Netherlands
31 Radboud University Nijmegen, Nijmegen, the Netherlands
32Joint Institute for Nuclear Research, Dubna, Russia
33Institute for Theoretical and Experimental Physics, Moscow, Russia
34Moscow State University, Moscow, Russia
35Institute for High Energy Physics, Protvino, Russia
36Petersburg Nuclear Physics Institute, St. Petersburg, Russia
37Institució Catalana de Recerca i Estudis Avançats (ICREA) and Institut de Física d’Altes Energies (IFAE), Barcelona, Spain
38Uppsala University, Uppsala, Sweden
39Lancaster University, Lancaster LA1 4YB, United Kingdom
40Imperial College London, London SW7 2AZ, United Kingdom
41The University of Manchester, Manchester M13 9PL, United Kingdom
42University of Arizona, Tucson, Arizona 85721, USA
43University of California Riverside, Riverside, California 92521, USA
44Florida State University, Tallahassee, Florida 32306, USA
45Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
46University of Illinois at Chicago, Chicago, Illinois 60607, USA
47Northern Illinois University, DeKalb, Illinois 60115, USA
48Northwestern University, Evanston, Illinois 60208, USA
49Indiana University, Bloomington, Indiana 47405, USA
50Purdue University Calumet, Hammond, Indiana 46323, USA
51University of Notre Dame, Notre Dame, Indiana 46556, USA
52Iowa State University, Ames, Iowa 50011, USA
53University of Kansas, Lawrence, Kansas 66045, USA
54Kansas State University, Manhattan, Kansas 66506, USA
55Louisiana Tech University, Ruston, Louisiana 71272, USA
56Boston University, Boston, Massachusetts 02215, USA
We investigate the decay $B^0_s \rightarrow J/\psi K^+ K^-$ for invariant masses of the $K^+ K^-$ pair in the range $1.35 < M(K^+ K^-) < 2$ GeV. The data sample corresponds to an integrated luminosity of 10.4 fb$^{-1}$ of $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV accumulated with the D0 detector at the Fermilab Tevatron collider. From the study of the invariant mass and spin of the $K^+ K^-$ system, we find evidence for the two-body decay $B^0_s \rightarrow J/\psi f_2'(1525)$ and measure the relative branching fraction of the decays $B^0_s \rightarrow J/\psi f_2'(1525)$ and $B^0_s \rightarrow J/\psi \phi$ to be $R_{f_2'/\phi} = 0.19 \pm 0.05$ (stat) ± 0.04 (syst).

PACS numbers: 13.25.Hw, 14.20.Gk

I. INTRODUCTION

In the standard model [1], the mixing of quarks originates from their interactions with the Higgs field causing the quark mass eigenstates to be different from the quark flavor eigenstates. Constraints on the mixing phases are obtained from measurements of the decays of neutral mesons. Decays to final states that are common to both partners of a neutral-meson doublet are of particular importance. The interference between the amplitude of the direct decay and the amplitude of the decay following the particle-antiparticle oscillation may lead to a CP-violating asymmetry between decays of mesons and antimesons. The decays $B^0_s \rightarrow J/\psi X$, where X stands for a pair of charged kaons or pions, are a sensitive probe for new phenomena because the CP-violating phase that appears in such decays is predicted in the standard model to be close to zero with high precision [2].

The first observation of the decay sequence $B^0_s \rightarrow J/\psi f_2'(1525)$, $f_2'(1525) \rightarrow K^+ K^-$, was recently reported by LHCb [3]. The spin $J = 2$ assignment for the $K^+ K^-$ pair was based on excluding pure $J = 0$. In this article, we confirm the presence of the decay $B^0_s \rightarrow J/\psi K^+ K^-$ with $K^+ K^-$ invariant masses $M(K^+ K^-)$ close to 1.52 GeV and we determine that the spin of the $K^+ K^-$ resonance is consistent with $J = 2$ and is preferred over $J = 0$ or $J = 1$ assignments. We identify the resonance as the $f_2'(1525)$ meson and measure the branching fraction relative to the well established decay $B^0_s \rightarrow J/\psi \phi$.

II. DETECTOR

The D0 detector consists of a central tracking system, a calorimetry system and muon detectors, as detailed in Refs. [4–6]. The central tracking system comprises a silicon microstrip tracker (SMT) and a central fiber tracker, both located inside a 1.9 T superconducting solenoidal magnet. The tracking system is designed to optimize tracking and vertexing for pseudorapidities $|\eta| < 3$, where $\eta = -\ln[\tan(\theta/2)]$ and θ is the polar angle with respect to the proton beam direction.

The SMT can reconstruct the $p\bar{p}$ interaction vertex (PV) for interactions with at least three tracks with a precision of 40 μm in the plane transverse to the beam direction and determine the impact parameter of any track relative to the PV with a precision between 20 and 50 μm.
depending on the number of hits in the SMT. The muon detector surrounds the calorimeter. It consists of a central muon system covering the pseudorapidity region \(|\eta| < 1\) and a forward muon system covering the pseudorapidity region \(1 < |\eta| < 2\). Both systems consist of a layer of drift tubes and scintillators inside 1.8 T toroidal magnets and two similar layers outside the toroids.

III. EVENT RECONSTRUCTION AND CANDIDATE SELECTION

The analysis presented here is based on a data sample corresponding to an integrated luminosity of 10.4 fb\(^{-1}\) accumulated between February 2002 and September 2011 at the Fermilab Tevatron collider. Events are collected with single-muon and dimuon triggers. Some triggers require the presence of tracks with a large impact parameter with respect to the PV. The events selected exclusively by these triggers are removed from our sample.

Candidate \(B_0^0 \rightarrow J/\psi K^+ K^-\), \(J/\psi \rightarrow \mu^+ \mu^-\) events are required to include two oppositely charged muons accompanied by two oppositely charged tracks. Both muons are required to be detected in the muon chambers inside the toroidal magnet, and at least one of the muons is required to be also detected outside the toroid. Each of the four tracks is required to have at least one SMT hit. In addition, the kaon candidates are required to have at least two hits in the SMT, at least two hits in the central fiber tracker, and a total of at least eight hits in both detectors.

To form \(B_0^0\) candidates, muon pairs in the invariant mass range \(2.9 < M(\mu^+ \mu^-) < 3.3\) GeV, consistent with \(J/\psi\) decay, are combined with pairs of oppositely charged particles (assigned the kaon mass), consistent with production at a common vertex. A kinematic fit under the \(B_0^0\) decay hypothesis constrains \(M(\mu^+ \mu^-)\) to the Particle Data Group [1] value of the \(J/\psi\) mass and the four tracks to a common vertex. The trajectories of the four \(B_0^0\) decay products are adjusted according to this kinematic fit. In events where multiple candidates satisfy these requirements, we select the candidate with the best fit probability. The \(\chi^2\) of the fit is required to be less than 15, for a total number of degrees of freedom of 4. We require that the transverse momenta of the \(B_0^0\) and \(K^\pm\) mesons are larger than 8 and 0.7 GeV, respectively. To suppress background from the decay \(B_0^0 \rightarrow J/\psi K^*\) (892), we require the kaon pair to have an invariant mass greater than 1 GeV under the \(K^\pm\pi^\mp\) hypothesis.

To reconstruct the PV, we select tracks that do not originate from the candidate \(B_0^0\) decay and apply a constraint to the average beam-spot position [4] in the transverse plane. We define the signed decay length of a \(B_0^0\) meson, \(L_{xy}^B\), as the vector pointing from the PV to the decay vertex, projected on the \(B_0^0\) transverse momentum \(p_T\). The proper decay time of a \(B_0^0\) candidate is given by \(t = M_B \cdot L_{xy}^B \cdot \sqrt{\vec{p}/(\vec{p}_T)^2}\) where \(M_B\) is the world-average \(B_0^0\) mass [1], and \(\vec{p}\) is the particle momentum. To increase \(B_0^0\) signal purity and reject prompt background, we require the proper decay length to be greater than 200 \(\mu\)m. The distribution of the uncertainty on the proper decay length peaks around 25 \(\mu\)m and has a long tail extending to several hundred microns. To remove poorly reconstructed events in the tail, we require the uncertainty of the proper decay length to be less than 100 \(\mu\)m.

IV. MONTE CARLO SAMPLES

Some aspects of this analysis require information that cannot be derived from data. We rely on Monte Carlo (MC) simulated samples to derive templates of the distributions of the signal \(B_0^0 \rightarrow J/\psi f_2(1525)\) and of the main background components, and to derive the detector acceptance as a function of decay angles, and the relative acceptance for the decays \(B_0^0 \rightarrow J/\psi \phi\) and \(B_0^0 \rightarrow J/\psi f_2(1525)\).

We use PROSIT [7] to generate \(B_0^0\) mesons and EVTGEN [8] to simulate their decay. In all simulated samples the final states are assumed to have no polarization. The samples have been processed by the detector simulation and the standard event reconstruction. To take into account the effects of the instantaneous luminosity, the MC samples are overlaid with data events collected during random beam crossings. We have generated events containing the decays \(B_0^0 \rightarrow J/\psi f_2(1525)\), \(B_0^0 \rightarrow J/\psi \phi\), \(B_0^0 \rightarrow J/\psi K_2^0\) (1430), and \(B_0^0 \rightarrow J/\psi K_0^0\) (1430).

V. \(B_s^0 \rightarrow J/\psi K^+ K^-\) SIGNAL EXTRACTION

The distribution of the \(B_s^0\) candidate mass \(M(J/\psi K^+ K^-)\) as a function of \(M(K^+ K^-)\) for accepted events is shown in Fig. 1. The data show a structure consistent with the decay \(B_0^0 \rightarrow J/\psi f_2(1525)\). Another possibility for the observed structure near \(M(K^+ K^-) = 1.5\) GeV is the decay \(B_0^0 \rightarrow J/\psi f_0(1500)\). The two states have very different branching fractions to \(\pi^+ \pi^-\) and \(K^+ K^-\). The branching fractions [1] are \(B(f_0(1500) \rightarrow \pi \pi) = (34.9 \pm 2.3)\%, B(f_0(1500) \rightarrow K \bar{K}) = (8.6 \pm 1.0)\%\), \(B(f_2^0(1525) \rightarrow \pi \pi) = (0.82 \pm 0.15)\%, B(f_2^0(1525) \rightarrow K \bar{K}) = (88.7 \pm 2.3)\%\). If the \(M(K^+ K^-)\) peak is due to the \(f_0(1500)\), a larger peak is expected near \(M(\pi^+ \pi^-) = 1.5\) GeV. If the \(M(K^+ K^-)\) peak is due to the \(f_2^0(1525)\) meson, a negligibly small peak is expected in the \(M(\pi^+ \pi^-)\) distribution. From the lack of significant \(B_0^0\) signal in the \(\pi^+ \pi^-\) channel, presented in Fig. 2, we conclude that the observed state is not the \(f_0(1500)\) meson.

However, as observed by others [3, 9], a similar distribution may also result from decays of \(B^0\) mesons where the \(J/\psi\) meson is accompanied by a \(K^*\) resonance, and a pion from the decay \(K^* \rightarrow K^\pm \pi^\mp\) is assigned the kaon mass.
FIG. 1: (a) Invariant mass of the B^0_Υ candidates as a function of $M(K^+K^-)$ as well as (b) and (c) one-dimensional projections. The observed structure is consistent with a decay $B^0_\Upsilon \rightarrow J/\psi K^+K^-$ proceeding through $f'_2(1525)$ or $f_0(1500)$ mesons. (d) Invariant mass of the B^0_Υ mesons as a function of $M(K^+K^-)$ for the simulated decay $B^0_\Upsilon \rightarrow J/\psi f'_2(1525)$ as well as (e) and (f) one-dimensional projections.

There are two $K^*_J(1430)$ states, degenerate in mass but differing in width, $\Gamma = 0.109 \pm 0.005$ GeV for $J = 2$ and $\Gamma = 0.27 \pm 0.08$ GeV for $J = 0$ [1]. Simulated distributions of B^0_Υ mass versus $M(K^+K^-)$ for misidentified decays $B^0 \rightarrow J/\psi K^*_2(1430)$ and $B^0 \rightarrow J/\psi K^*_0(1430)$ are shown in Fig. 3. In the case of $J = 0$, we use the full $I = 1/2 K\pi$ elastic scattering S-wave amplitude [9] composed of $K^*_0(1430)$ and a nonresonant term.

As seen in Fig. 3, the decays $B^0 \rightarrow J/\psi K^*_J(1430)$ with $J = 0, 2$ can mimic the decay $B^0_\Upsilon \rightarrow J/\psi f'_2(1525)$,
with the apparent B^0_s mass peak position increasing with $M(K^+K^-)$. We take this peaking background into account by constructing templates of the B^0_s mass distribution in steps of the K^+K^- invariant mass of 50 MeV. Examples of the templates are shown in Figs. 4 and 5. Figure 6 shows the simulated $B^0_s \rightarrow J/\psi f_2^*(1525)$ signal in the same $M(K^+K^-)$ ranges, with fits to a sum of two Gaussian functions.

Other possible sources of peaking background include B-meson decays to J/ψ mesons accompanied by the $J = 1$ and $J = 3$ resonances $K^*(1410)$ and $K^*_0(1870)$. The former decays predominantly to $K^*(892)$. When the kaon mass is used for both tracks, the latter resonance would peak at $M(K^+K^-)$ greater than 1.78 GeV.

The candidate mass distribution in the range $1.45 < M(K^+K^-) < 1.60$ GeV and $|\cos \psi| < 0.8$ is shown in Fig. 7, where ψ is the helicity angle defined in Sec. VI. A fit of templates for the $B^0 \rightarrow J/\psi K^+K^- \rightarrow J/\psi f_2^*(1525)$ signal, the $B^0 \rightarrow J/\psi K^*_0(1430)$ and S-wave $K\pi$ background and a linear combinatorial background, yields 3386 ± 101 $B^0 \rightarrow J/\psi K^+K^-$ events. The relative rate of the S and $D K\pi$ wave is constrained to the ratio of 3:2 reported in Ref. [9].

To extract the B^0_s signal yield, we use the B^0_s mass distribution for $M(K^+K^-)$ between 1.35 and 2 GeV. We fit the simulated signal templates to the data, with the mass parameter of the core Gaussian function in each $M(K^+K^-)$ bin scaled by a factor of 0.9982 ± 0.0008 obtained by matching the simulation and data as shown in Fig. 7. Figure 8 shows the B^0_s mass fits using the templates for the signal $B^0 \rightarrow J/\psi f_2^*(1525)$ and for the $B^0 \rightarrow J/\psi K^*_0(1430)$ and $B^0 \rightarrow J/\psi K^*_2(1430)$ reflections. In these fits we allow the relative rates of the S and $D K\pi$ contributions to vary. Note that a nonresonant K^+K^- component is implicitly included in the signal part of these fits. In addition to the peaking background there is a background due to random combinations and partially reconstructed B-meson decays, described by a linear function. We allow the relative normalization of the two K^*_0 states to vary in each fit. The normalization parameters of the B^0_s signal and background components are not constrained to be positive in order to obtain unbiased results for rates close to zero. We have conducted toy MC ensemble tests and we confirm that there are no biases on signal yield introduced by the described fitting procedure.

As seen from Fig. 8, the fitted yields for the $B^0 \rightarrow J/\psi K^*_0(1430)$ and $B^0 \rightarrow J/\psi K^*_1(1430)$ decays exceed the B^0_s signal in most of the 11 subsamples, although the data do not provide a significant constraint on their relative strength. For an independent study of this background, we select events in the range $5.4 < M(J/\psi K^+K^-) < 5.6$ GeV, where the $B^0 \rightarrow J/\psi K^*_1(1430)$ decays dominate over the B^0_s signal. In Fig. 9 we show the $M(K^\pm\pi^\mp)$ distribution for these events. A fit of a relativistic Breit-Wigner $J = 2$ resonance at a fixed mass of 1.43 GeV and with a floating width, over a background described by a second-order polynomial function, yields 3386 ± 390 $K^*(1430)$ resonance events. This is in agreement with the total number of events ascribed to the $K^*(1430)$ reflection in this mass range. The best fit result for the width is $\Gamma = 0.162 \pm 0.019$ GeV that is in between the widths of the $J = 2$ and $J = 0$ states. This study shows that we cannot establish the dominance of one background component over the other with the present data. Figure 10 shows the B^0_s signal yield versus $M(K^+K^-)$ from data after taking into account the $B^0 \rightarrow J/\psi K^*_2(1430)$ and $B^0 \rightarrow J/\psi K^*_0(1430)$ templates and a linear background.

VI. SPIN OF K^+K^- STATE

In Section V, we have presented evidence for the decay $B^0 \rightarrow J/\psi K^+K^-$ in the range $M(K^+K^-) > 1.35$ GeV. The $M(K^+K^-)$ distribution peaks near 1.5 GeV. In this section we study the spin of the K^+K^- system in the range $1.45 < M(K^+K^-) < 1.60$ GeV.

A K^+K^- system can be in any natural parity state, $J^P = 0^+, 1^-, 2^+$, etc. We consider the values $J = 0, 1, 2$ for the spin of the observed structure.
FIG. 3: (a) Invariant mass of the B^0_s candidates versus $M(K^+K^-)$ for simulated decay $B^0 \rightarrow J/\psi K^*_2(1430); K^*_2 \rightarrow \pi\mp K^\pm$, with the pion assigned the kaon mass, as well as (b) and (c) one-dimensional projections. (d) $K\pi$ S-wave contribution [9] to the decay $B^0 \rightarrow J/\psi K^\pm\pi^\mp$, with the pion assigned the kaon mass as well as (e) and (f) one-dimensional projections.
FIG. 4: Invariant mass of B^0 mesons from the simulated decay $B^0 \rightarrow J/\psi K^0(1430), K^0(1430) \rightarrow K^\pm \pi^\mp$, where the pion is assigned the kaon mass, for a sampling of different $M(K^+ K^-)$ ranges. The distributions are fitted with a sum of two Gaussian functions with free masses, widths, and normalizations.

FIG. 5: Invariant mass of B^0 mesons from the simulated $K \pi$ S-wave contribution [9] to the decay $B^0 \rightarrow J/\psi K^\pm \pi^\mp$, where the pion is assigned the kaon mass, for a sampling of different $M(K^+ K^-)$ ranges. The distributions are fitted with a sum of two Gaussian functions with free masses, widths, and relative normalizations.

FIG. 6: Invariant mass of B^0_s mesons from the simulated decay $B^0_s \rightarrow J/\psi f_2^0(1525)$ for a sampling of different ranges of $M(K^+ K^-)$. The distributions are fitted with a sum of two Gaussian functions with free masses, widths, and relative normalization.
The final state can be described by three independent angles. We define them as follows: θ_H is the angle between the direction of μ^+ and B^0_s direction in the J/ψ rest frame, ψ is the angle of the K^+ meson with respect to the B^0_s direction in the K^+K^- rest frame, and ϕ_H is the angle between the two decay planes, as shown in Fig. 11. The angular distribution for the decay of a spinless meson into the spin-one meson J/ψ and a meson of unknown spin J can be expressed in terms of $H_1 = \cos\theta_H$, $H_2 = \cos\psi$, and ϕ_H as follows [10]:

$$
\frac{d\Gamma}{d\Omega} \propto |\Sigma A_{Jm} Y_1^m(H_1, \phi_H) Y_j^{-m}(-H_2, 0)|^2 D(\Omega),
$$

where Y_j^m are spherical harmonics, A_{Jm} are complex amplitudes corresponding to spin J and helicity m, and Ω is either H_1, ϕ_H or H_2, and the sum extends over equal helicities of the daughter particles, $m = 0$ or $m = \pm 1$. The factor D is the acceptance of the event selection. Its dependence on the three angular variables is shown in Fig. 12.

Due to limited statistics and a large background, we focus on the $\cos\psi$ distribution obtained by integrating the angular distribution over $\cos\theta_H$ and ϕ_H, taking into account the variation of the acceptance as a function of $\cos\theta_H$. We extract the B^0_s signal rate as a function of $|\cos\psi|$ by fitting the candidate mass in five regions of $|\cos\psi|$. The data and fit results are shown in Fig. 13. The resulting distribution, corrected for acceptance, is shown in Fig. 14. Systematic uncertainties due to the shape of combinatorial background, signal model, and acceptance, are added in quadrature. In the region $|\cos\psi| > 0.8$, the large background prevents obtaining a reliable fit.

For $J = 0$, the expected distribution is isotropic. For $J = 1$, the $\cos\psi$ distribution without the acceptance factor is given by:

$$
\frac{d\Gamma}{d\cos\psi} \propto F_{10}(2\cos^2\psi) + (1 - F_{10})\sin^2\psi,
$$

where F_{10} is the ratio of the rate $J = 1, m = 0$ to the total $J = 1$ rate. For a superposition of $J = 0$ and 2, with a free relative normalization, the $\cos\psi$ distribution is obtained from

$$
\frac{d\Gamma}{d\cos\psi} \propto \sqrt{F_{20}(1 - F_0)(5/4)(3\cos^2\psi - 1) + \exp(i\delta_0)\sqrt{F_0}^2}

+ \frac{15}{2}(1 - F_{20})(1 - F_0)\sin^2\psi(1 - \sin^2\psi),
$$

where F_{20} is the ratio of the rate $J = 2, m = 0$ to the total $J = 2$ rate, and F_0 is the $J = 0$ fraction with relative phase angle δ_0.

Figure 14 shows that the data favor $J = 2$, hence the peak is identified with the $f'_0(1525)$ meson. The fit probabilities for pure $J = 0$ and pure $J = 1$ are 2.8×10^{-2} and 9.8×10^{-3}, respectively. For $J = 2$ the fit probability is 0.27. The data are also consistent with a coherent superposition of $J = 0$ and $J = 2$ states. With $F_{20} = 1$, we obtain the S-wave fraction of $F_0 = 0.06 \pm 0.16$ and a fit probability of 0.37.
FIG. 8: Invariant mass of candidates for the decay $B^0_s \rightarrow J/\psi K^+ K^-$ in a sampling of different $M(K^+ K^-)$ ranges. Each fit uses a template derived from the B^0_s signal simulation, a combination of the templates for the decays $B^0 \rightarrow J/\psi K^*_{J}(1430), K^*_{J}(1430) \rightarrow K^\pm \pi^\mp$, $J = 1, 2$, as shown in Figs. 4 and 5, and a linear function describing the combinatorial background. The fit is performed in the range $5.25 < M(J/\psi K^+ K^-) < 5.7$ GeV, used to avoid the steeply falling background from multibody decays of B mesons at lower masses and the steeply rising background from decays $B^\pm \rightarrow J/\psi K^\pm$ at higher masses. Neither the B^0_s signal nor background components are constrained to positive values in order to obtain unbiased results for rates close to zero.

VII. SIGNAL YIELD

The measured decay rate of a particle resonance as a function of the invariant mass of the final state, is described by the relativistic Breit-Wigner function (RBW) \cite{1} convoluted with detector resolution. To obtain the detector resolution, we use simulated $B^0_s \rightarrow J/\psi f_2'(1525)$ decays where the J/ψ is forced to decay into two muons and the $f_2'(1525)$ into two kaons.

The fitted $M(K^+ K^-)$ distribution for the simulation is shown in Fig. 15. Fixing the mass and natural width parameters at their input values, $M = 1525$ MeV and $\Gamma_0 = 73$ MeV, and using the range parameter \cite{1} $R = 5.0$ GeV$^{-1}$, we obtain $\sigma(M) = 22 \pm 1$ MeV.

We fit the B^0_s signal yield versus $M(K^+ K^-)$ from data, as shown in Fig. 10, to an incoherent sum of the $J = 2$ component and a constant continuum term. The result is shown in Fig. 16. The fit yields $629 \pm 157 f_2'(1525)$
FIG. 9: Invariant mass distribution of the meson pair from the \(B_s^0\) candidates in the mass range \(5.4 < M(J/\psi K^+ K^-) < 5.6\) GeV, under the \(K^+ \pi^-\) hypothesis. The curve shows the fit of a relativistic Breit-Wigner \(J = 2\) resonance at a fixed mass of 1.43 GeV and with a floating width, over a background described by a second-order polynomial function.

FIG. 10: The \(B_s^0\) signal yield as a function of \(M(K^+ K^-)\) obtained from the fits shown in Fig. 8. The outer and inner error bars correspond to the statistical uncertainties with and without systematic uncertainties added in quadrature.

FIG. 11: Definition of the decay angles \(\theta_H\), \(\phi_H\), and \(\psi\) in the helicity basis for the sequential decay \(B_s^0 \rightarrow J/\psi X\), \(J/\psi \rightarrow \mu^+ \mu^-\), \(X \rightarrow K^+ K^-\).

FIG. 12: Angular dependence of the detection and event selection acceptance of the decay \(B_s^0 \rightarrow J/\psi f_2^+(1525)\) from simulations as a function of (a) \(\cos \theta_H\), (b) \(\phi_H\), and (c) \(\cos \psi\). The acceptance is found to be independent of the angle \(\phi_H\). For \(\cos \theta_H\) and \(\cos \psi\), we fit the acceptance dependence with symmetric fourth-order polynomial functions.

To determine an absolute branching fraction for the \(B_s^0 \rightarrow J/\psi f_2^+(1525)\) decay, efficiencies, branching fractions, and the cross section need to be known, as well as the integrated luminosity. However, terms common to the \(B_s^0 \rightarrow J/\psi f_2^+(1525)\) and the \(B_s^0 \rightarrow J/\psi \phi\) branch-
falling background from multibody decays of $B_J/\psi K^\pm$ at lower masses and a steeply rising background from decays ψ particularly acute for $|\cos(\psi)| > 0.8$ making it impossible to obtain a reliable fit in this region.

![FIG. 13: The B^0_J mass distribution in five intervals of $|\cos(\psi)|$ as shown. The fits assume a two-Gaussian B^0_J signal template and a background composed of a reflection of the $B^0 \rightarrow J/\psi K^\pm \pi^\mp$ decay and a linear component. There is a steeply falling background from multibody decays of B mesons at lower masses and a steeply rising background from decays $B^\pm \rightarrow J/\psi K^\mp$ at higher masses. These backgrounds are particularly acute for $|\cos(\psi)| > 0.8$ making it impossible to obtain a reliable fit in this region.](image)

Eq. 1. The $|\cos(\psi)|$ distribution for the decay $B^0 \rightarrow J/\psi X$, $X \rightarrow K^+ K^-$ in the range $1.45 < M(K^+ K^-) < 1.6$ GeV. The curves are best fits assuming pure $J = 0$ (dashed line), pure $J = 1$ (dashed-dotted line), and pure $J = 2$ (solid line).

![FIG. 14: The $|\cos(\psi)|$ distribution for the decay $B^0 \rightarrow J/\psi X$, $X \rightarrow K^+ K^-$ in the range $1.45 < M(K^+ K^-) < 1.6$ GeV. The curves are best fits assuming pure $J = 0$ (dashed line), pure $J = 1$ (dashed-dotted line), and pure $J = 2$ (solid line).](image)

Fig. 15: The $M(K^+ K^-)$ distribution from the simulation of the decay $B^0 \rightarrow J/\psi f^0_2(1525)$ fitted by the relativistic Breit-Wigner function [1].

![FIG. 15: The $M(K^+ K^-)$ distribution from the simulation of the decay $B^0 \rightarrow J/\psi f^0_2(1525)$ fitted by the relativistic Breit-Wigner function [1].](image)

FIG. 16: Fit to the B^0_J yield versus $M(K^+ K^-)$ as obtained in Fig. 10. The full fit to $B^0 \rightarrow J/\psi K^+ K^-$ includes a $f^0_2(1525)$ signal described by a relativistic Breit-Wigner and nonresonant constant term for the S wave. The outer and inner error bars correspond to the statistical uncertainties with and without systematic uncertainties added in quadrature.
with $ct > M$ to determine the reconstruction efficiencies. For the de-

![DØ Run II, 10.4 fb⁻¹](image)

FIG. 17: Invariant mass distribution of B^0_s candidates with $ct > 200\,\mu$m for events in the mass range $1.01 < M(K^+K^-) < 1.03$ GeV. A fit to a sum of a double Gaussian $B^0_s \to J/\psi f_2^*(1525)$, a quadratic combinatorial background (dotted line), and the reflection of the decay $B^0_s \to J/\psi K^*$ taken from simulations. The total number of $B^0_s \to J/\psi f_2^*$ events is 4064 ± 105.

The yield of the $B^0_s \to J/\psi f_2^*(1525)$ decay is determined by fitting the data, shown in Fig. 17, with a double Gaus-
sian function for the signal, a second-order polynomial for back-
ground, and the reflection of the decay $B^0_s \to J/\psi K^*$ taken from simulations. The total number of $B^0_s \to J/\psi f_2^*$ events is 4064 ± 105.

We use simulated samples of the two decay processes
to determine the reconstruction efficiencies. For the de-
cay $B^0_s \to J/\psi f_2^*(1525)$ the efficiency is measured to be $(0.122 \pm 0.002)\%$ and for the decay $B^0_s \to J/\psi f_2^*$ it is

$$(0.149 \pm 0.002)\%$$

(where the uncertainties are due to MC statistics), yielding $R_{f_2^*/f_2^*} = 0.19 \pm 0.05$ (stat).

The denominator in Eq. 4 may include a contribution from the K^+K^- S wave, and no correction is made, allowing the ratio to be recalculated for different S-wave fraction inputs.

IX. SYSTEMATIC UNCERTAINTIES

The main contributions to systematic uncertainties are summarized in Table I. They are evaluated as follows:

- **$K^*_0 (1430)$ width:** We vary the K^*_0 width within its uncertainty of 0.08 GeV [1].

- **$K^*_0 (1430)$ and $K^*_2 (1430)$ templates:** We vary the shape of the K^*_0 and K^*_2 templates by altering the widths of the dominant Gaussian component within statistical uncertainties.

- **Combinatorial background shape:** As an alternative, we use a second-order polynomial to describe the combinatorial background. We also vary the fitting mass range from 5.25 – 5.70 GeV to 5.2 – 5.8 GeV.

- **Signal shape:** We vary the B^0_s mass scale within its uncertainty in data of 0.08% and the width of the core Gaussian component by ±10%.

- **Trigger efficiency:** Due to the mass difference between the $f_2^*(1525)$ and f_2^* resonances, there is a small difference between average muon momenta in the two channels. Approximately 3% more $J/\psi f_2^*$ events have a leading muon with $p_T > 15$ GeV and about 3% more $J/\psi f_2^*$ events have both muons with $p_T > 3$ GeV. We therefore estimate that there is approximately a 3% difference in the fraction of events that can be accepted by the trigger between the $J/\psi f_2^*$ and $J/\psi f_2^*(1520)$ signals. Trigger simulations confirm this estimate. We apply the 3% correction to $R_{f_2^*/f_2^*}$ and assign an absolute 3% systematic uncertainty.

- **$M(K^+K^-)$ dependence of efficiency:** The $M(K^+K^-)$ dependence of the efficiency for recon-

- **Helicity dependence of efficiency:** The $B^0_s \to J/\psi f_2^*$ signal acceptance is obtained from a MC sample generated under the assumption that the final state is not polarized, i.e., with the final state distributed uniformly in helicity angle $\cos \theta_H$. We compare this signal acceptance with distributions corresponding to pure helicity 0 and 1 and assign a systematic uncertainty equal to the difference.

- **$f_2^*(1525)$ mass and natural width:** The uncertainty on the mass of the $f_2^*(1525)$ resonance of 5 MeV [1] leads to the uncertainty on $R_{f_2^*/f_2^*}$ of 3%, while the uncertainty on the natural width of 6 MeV leads to the uncertainty on $R_{f_2^*/f_2^*}$ of 0.7%.

- **$B^0_s \to J/\psi f_2^*$ signal shape:** The $B^0_s \to J/\psi f_2^*$ signal yield is sensitive to the signal mass model because of the presence of the $B^0_s \to J/\psi K^*$ reflection that peaks near the signal. We assign the systematic uncertainty as one half of the difference between fit results for single and double Gaussian distributions for the signal mass model.

X. SUMMARY AND DISCUSSION

We confirm the observation of the decay $B^0_s \to J/\psi f_2^*(1525)$ previously observed by the LHCb Collabora-
tion [3] and measure the ratio of branching fractions of the decays $B^0_s \to J/\psi f_2^*(1525)$ and $B^0_s \to J/\psi f_2^*$ to be $R_{f_2^*/f_2^*} = 0.19 \pm 0.05$ (stat) ± 0.04 (syst). The fit to the
TABLE I: Sources of systematic relative uncertainty on $R_{f_2^*/\phi}$.

Source	Uncertainty (%)
$K_0^*(1430)$ width	5
$K_0^*(1430)$ and $K_2^*(1430)$ templates	10
Combinatorial background shape	10
Signal shape	12
Trigger efficiency	3
$M(K^+K^-)$ dependence of efficiency	2
Helicity dependence of efficiency	3
$f_2^*(1525)$ mass	3
$f_2^*(1525)$ natural width	1
$B^0_s \rightarrow J/\psi \phi$ signal shape	4
Total	**20**

background-subtracted signal $B^0_s \rightarrow J/\psi K^+ K^-$, assuming an incoherent sum of the $J = 2$ resonance $f_2^*(1525)$ and a constant continuum term, assigns the fraction of 0.35 ± 0.09 to the constant term. The fit to the helicity angle ψ in the K^+K^- rest frame finds the K^+K^- resonance to be consistent with $J = 2$ with a fit probability of 0.27 and preferred over $J = 0$ or $J = 1$, for which the fit probabilities are 2.8×10^{-2} and 9.8×10^{-3}, respectively.

We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (U.S.); CEA and CNRS/IN2P3 (France); MON, Rosatom, and RFBR (Russia); CNPq, FAPERJ, FAPESP, and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); NRF (Korea); FOM (The Netherlands); STFC and the Royal Society (U.K.); MSMT and GACR (Czech Republic); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); and CAS and CNSF (China).

[1] K. Nakamura et al., (Particle Data Group), J. Phys. G 37, 075021 (2010).
[2] J. Charles et al., Phys. Rev. D 84, 033005 (2011).
[3] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 108, 151801 (2012).
[4] V. M. Abazov et al., (D0 Collaboration), Nucl. Instrum. Methods Phys. Res. A 565, 463 (2006).
[5] R. Angstadt et al., Nucl. Instrum. Methods Phys. Res. A 622, 298 (2010).
[6] V. M. Abazov et al., Nucl. Instrum. Methods Phys. Res. A 552, 372 (2005).
[7] T. Sjöstrand, S. Mrenna and P. Scands, J. High Energy Phys. 05, (2006) 026.
[8] D.J. Lange, Nucl. Instrum. Meth. A 462, 152 (2001).
[9] B. Aubert et al., Phys. Rev. D 79, 112001 (2009).
[10] A. Datta et al., Phys. Rev. D 77, 114025 (2008).