Automated seizure detection with noninvasive wearable devices: A systematic review and meta-analysis

Vaidehi Naganur1,2,3,4 | Shobi Sivathamboo1,2,3,4 | Zhibin Chen1,2,5 | Shitanshu Kusmakar6 | Ana Antonic-Baker1 | Terence J. O’Brien1,2,3,4 | Patrick Kwan1,2,3,4

1Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
2Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Melbourne, Victoria, Australia
3Department of Neurology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
4Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
5Chronic Disease and Ageing, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
6Department of Electrical and Electronic Engineering, University of Melbourne, Melbourne, Victoria, Australia

Correspondence
Patrick Kwan, Level 6, Alfred Centre, 99 Commercial Road, Melbourne 3004, Victoria, Australia. Email: patrick.kwan@monash.edu

Objective: This study was undertaken to review the reported performance of noninvasive wearable devices in detecting epileptic seizures and psychogenic nonepileptic seizures (PNES).

Methods: We conducted a systematic review and meta-analysis of studies reported up to November 15, 2021. We included studies that used video-electroencephalographic (EEG) monitoring as the gold standard to determine the sensitivity and false alarm rate (FAR) of noninvasive wearables for automated seizure detection.

Results: Twenty-eight studies met the criteria for the systematic review, of which 23 were eligible for meta-analysis. These studies (1269 patients in total, median recording time = 52.9 h per patient) investigated devices for tonic–clonic seizures using wrist-worn and/or ankle-worn devices to measure three-dimensional accelerometry (15 studies), and/or wearable surface devices to measure electromyography (eight studies). The mean sensitivity for detecting tonic–clonic seizures was .91 (95% confidence interval [CI] = .85–.96, I^2 = 83.8%); sensitivity was similar between the wrist-worn (.93) and surface devices (.90). The overall FAR was 2.1/24 h (95% CI = 1.7–2.6, I^2 = 99.7%); FAR was higher in wrist-worn (2.5/24 h) than in wearable surface devices (.96/24 h). Three of the 23 studies also detected PNES; the mean sensitivity and FAR from these studies were 62.9% and .79/24 h, respectively. Four studies detected both focal and tonic–clonic seizures, and one study detected focal seizures only; the sensitivities ranged from 31.1% to 93.1% in these studies.

Significance: Reported noninvasive wearable devices had high sensitivity but relatively high FARs in detecting tonic–clonic seizures during limited recording time in a video-EEG setting. Future studies should focus on reducing FAR, detection of other seizure types and PNES, and longer recording in the community.

Keywords
ambulatory/noninvasive device, automated seizure detection, epilepsy/seizures, video/EEG use in epilepsy
1 | INTRODUCTION

Accurate seizure detection is paramount for optimizing care in patients with epilepsy. The current gold standard practice for evaluation of epilepsy is inpatient video-electroencephalographic (EEG) monitoring (VEM), which is limited due to the high level of expertise and resources required and is impractical to be undertaken over long periods of time. In routine practice, reporting of seizures usually relies on patients or caregivers completing seizure diaries. However, seizure diaries are often unreliable, as patients or caregivers commonly do not recognize their seizures and many conditions can mimic epileptic seizures, such as psychogenic nonepileptic seizures (PNES).

The diagnostic delay in patients with epileptic seizures and PNES carries a significant burden on patients, caregivers, and health services. Inaccurate knowledge of the seizure type and frequency can lead to inappropriate management and suboptimal seizure control. The consequences of this include a decreased quality of life, with negative impacts on mental health and increased health care utilization. In addition, delayed epilepsy diagnosis and treatment may increase the risk of status epilepticus, myocardial infarction, and sudden unexpected death in epilepsy.

Noninvasive wearable devices are expanding rapidly into the health care sector. Devices capable of automated seizure detection are a rapidly growing area of research. These devices typically measure motor and autonomic features of seizures, including three-dimensional (3D) accelerometry, surface electromyographic (EMG) signals, electrodermal activity (EDA), heart rate, and heart rate variability, using either wrist-worn or wearable surface devices. Data collected by the device is analyzed by trained algorithms for automated seizure detection and classification. In addition to providing more accurate seizure recording for review during consultation, wearable devices with real-time detection may alert care providers to help prevent injuries or falls associated with seizures, particularly tonic–clonic seizures (TCS). Automated seizure detection with the use of noninvasive wearable devices therefore has the potential to assist clinicians in the diagnosis and management of patients with both epileptic and nonepileptic seizures in a timely manner.

Recently, the International League Against Epilepsy (ILAE) and International Federation of Clinical Neurophysiology (IFCN) established a joint working group to formulate a guideline on the use of wearable devices for automated seizure detection in patients with epilepsy. The working group systematically reviewed the published evidence up to October 2019. However, a meta-analysis of studies in terms of sensitivities and false alarm rates (FARs) for different seizure types was not undertaken. Furthermore, the guideline did not include studies of devices for detection of PNES.

Key Points

• Wrist-worn and wearable surface devices measuring 3D accelerometry and/or surface EMG have high sensitivities but relatively high FARs in the automated detection of TCS
• Parameters that are not motion-based such as heart rate and/or heart rate variability need to be explored further through noninvasive and wearable devices to determine their potential in detecting both TCS and focal seizures
• Few studies have assessed wearable devices for detecting PNES
• Future revision of the ILAE-IFCN guideline may consider referring to the overall sensitivity and FAR for TCS as benchmarks for the evaluation of future devices, and greater emphasis on developing devices with lower FAR and ability to detect other seizure types and PNES

2 | MATERIALS AND METHODS

We performed the review in accordance with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines (Figure 1). Our systematic review was prospectively registered on PROSPERO (International Prospective Register of Systematic Reviews; registration ID: CRD42019126849).

2.1 | Systematic review

A systemic literature search was conducted up to April 30, 2021. A second search was conducted on November 10, 2021. We searched the databases PubMed and Embase using the terms “automated detection” OR “algorithm” AND “detection” OR “wearable” AND “detection” AND “epilepsy” OR “seizure”. The National Heart, Lung, and Blood Institute (NHLBI) quality assessment tool for
cross-sectional studies was used for the systematic assessment of risk of bias. The inclusion criteria included (1) evaluation of a wearable and noninvasive device in patients with epilepsy or PNES, with a minimum of five participants; (2) primary measurement of interest for seizure detection was not EEG (EEG can be included as an auxiliary measurement); (3) studies reported the sensitivity for the detection of seizures and FAR (as a measure over time); and (4) devices and algorithms must have been trained and evaluated using noninvasive video-EEG monitoring as the gold standard comparator for the detection of epileptic seizures and PNES. We excluded studies that evaluated nonwearable or invasive devices, or wearable devices that measured EEG only.

The titles and abstracts were independently screened by two reviewers (V.N. and S.S.) using Covidence (Veritas Health Innovation). The full-text records identified during the screening were extracted and reviewed for inclusion. Conflicts were resolved by a third reviewer (P.K.). Assessment of bias were performed by two reviewers (V.N. and S.S.), where disagreements were resolved by consensus. V.N. extracted the data. The extracted data included (1) device type, (2) parameters measured, (3) seizure type detected, (4) total number of patients, (5) number of patients who experienced a seizure, (6) number of seizures recorded by VEM, (7) number of seizures detected by the device, (8) total recording time (hours), (9) sensitivity, (10) FAR, and (11) method of analysis utilized for the automated detection of seizures. To assess the risk of bias, two reviewers (V.N. and S.S.) graded each paper independently according to the NHLBI quality assessment tool.

2.2 Meta-analysis

A meta-analysis was performed on the studies detecting TCS. A meta-analysis could not be done on the studies detecting PNES or focal seizures owing to insufficient number of studies. We used random-effects meta-analysis with DerSimonian and Laird method to estimate pooled
sensitivity and FAR for epileptic seizures with motor activity. FAR was presented as the average FAR within 24 h in each study. We subsequently stratified the studies by device type (wrist-worn or wearable surface device) and parameter used (3D accelerometry, surface EMG signals, or EDA).

We performed meta-regression to further explore the sources of heterogeneity. Heterogeneity was assessed using I^2. We calculated the change in I^2 values to assess the proportion of the observed variability in the observed effect size for a group of experiments explained by device type (wrist-worn vs. surface), number of parameters (unimodal vs. multimodal), and study duration (total and per patient).

We performed Egger test on publication bias for both sensitivity and FAR. Freeman–Tukey double arcsine transformation was used on sensitivity data.

All statistical analyses were performed by using STATA version 16 (StataCorp), with user-written packages "metaprop" for meta-analysis of proportions.

3 | RESULTS

We screened 3389 publications, of which 3316 were excluded as they were not relevant. A further 45 studies were excluded due to the use of invasive devices, no devices used, measuring the wrong or insufficient outcomes, reviews, conference abstract, using only EEG as a parameter, enrolling less than five patients, wrong patient population, and wrong study design. A total of 28 studies met eligibility criteria for inclusion into the systematic review. Eleven of these were published after the publication of the ILAE-IFCN guideline.6–8,13–20 Twenty-three of these were eligible for meta-analysis, focusing on the detection of TCS including focal to bilateral TCS (FBTCS) and/or generalized TCS (GTCS). Three of the 28 studies also detected PNES and were included in the descriptive analyses. Four studies detected TCS, focal aware seizures (FAS), and focal impaired awareness seizures (FIAS). One study detected only FAS and FIAS. All studies were included in the descriptive analyses. We performed a quality assessment using the NHLBI tool and rated eight studies as good and 20 studies as fair, as seen in Table S1.

3.1 | Meta-analysis of TCS and clonic seizures

The characteristics of the 23 studies included are summarized in Table 1. Of these, 14 studies utilized a wrist-worn device, measuring 3D accelerometry, with three studies measuring both 3D accelerometry and EDA. One study utilized a wrist- and ankle-worn device, measuring 3D accelerometry, heart rate, and surface EMG. Eight studies utilized a wearable surface device, measuring surface EMG signals. Two studies used both a wearable and a wrist-worn device, measuring 3D accelerometry and EDA. A total of 1269 patients were enrolled into these 23 studies (median = 58, interquartile range [IQR] = 16–76). The total recording time was 66109.7 h. This corresponded to a median recording time of 52.9 h (IQR = 34.8–73.6) per patient during the period of assessment under VEM.

Of the 1269 patients, 388 (30.6%) experienced seizures during the recording period. The median number of patients who had seizures during VEM was 11. A total of 1248 motor seizures were recorded during VEM (median = 22, IQR = 17–31). Of the 1248 motor seizures, 54 (4.3%) were specified to be FBTCS, 86 (6.9%) were defined as clonic seizures, and the remaining 1108 (88.8%) were GTCS. Of the 1248 motor seizures, 1061 (85%) were detected by the wearable device through automated seizure detection. Breaking this down, 53 (98.1%) FBTCS, 86 (100%) clonic seizures, and 922 (83.2%) GTCS were detected by the wearable and noninvasive device.

The results of the meta-analysis are summarized in Figures 2 and 3, categorized by device type. Figure 2 shows the results of the sensitivities. The mean sensitivity for the detection of FBTCS, TCS, and clonic seizures was .91 (95% confidence interval [CI] = .85–.96, $I^2 = 83.8\%$). The subtotal sensitivity for studies utilizing wrist-worn devices was .93 (95% CI = .85–.99, $I^2 = 84\%$). The subtotal sensitivity for studies utilizing wearable surface devices was .9 (95% CI = .71–1.00, $I^2 = 85.3\%$).

Figure 3 shows the results for the FARs. The total number of false alarms in the 23 studies was 8569. The overall FAR of the 23 studies was 2.1/24 h (95% CI = 1.7–2.6, $I^2 = 99.7\%$). The subtotal FAR of the studies that utilized wrist and ankle worn devices was 2.5/24 h (95% CI = 1.95–3.1, $I^2 = 99.8\%$), and the subtotal FAR of the studies that utilized a wearable surface device was .96/24 h (95% CI = .25–1.66, $I^2 = 99.1\%$).

For the 23 studies detecting TCS, a regression-based Egger test for the sensitivities and FARs yielded $p = .58$ and $p < .001$, respectively. A meta-regression was performed to determine whether device type (wrist-worn vs. surface), number of parameters (unimodal vs. multimodal), and recording duration were possible sources of heterogeneity of the reported sensitivities and FARs. For sensitivities, I^2 changes were .005 increase for both device type and number of parameters, .016 reduction for total recording duration, and .021 reduction for recording time per patient. For FAR, I^2 changes were .0001 increase for device type, .<.0001 increase for number of parameters, .0004 reduction for total recording duration, and .012 reduction for recording time per patient.
First author, year published	Device type	Parameters measured	Patients who had seizures	Total patients recruited	VEM: seizures	Device:seizures	False alarm rate, per 24 h	Sensitivity
Beniczky, 2013	Wrist-worn	3D accelerometry	20	73	39	35	.2	89.70%
Beniczky, 2018	Wearable surface device	sEMG signals	20	71	32	30	.67	93.80%
Conradsen, 2012	Wearable surface device	sEMG signals	2	5	7	4	.07	57.10%
Conradsen, 2012	Wearable surface device	One sEMG signal	11	60	22	22	1	100%
De Cooman, 2018	Wrist-worn and wearable surface device	3D accelerometry, heart rate, sEMG	7	7	22	21	16.8	95.5%
Halford, 2017	Wearable surface device	sEMG signals	24	149	29	29	1.44	100%
Johansson, 2019	Wrist-worn	3D accelerometry	856	75	10	10	1.2	100%
Kramer, 2011	Wrist-worn	3D accelerometry	15	31	22	20	.11	90.90%
Kusmakar, 2017	Wrist-worn	3D accelerometry	12	12	21	20	.72	95.20%
Kusmakar, 2018	Wrist-worn	3D accelerometry	11	16	8	6	.59	75%
Kusmakar, 2018	Wrist-worn	3D accelerometry	8	8	9	9	1.1	100%
Kusmakar, 2019	Wrist-worn	3D accelerometry	14	79	26	25	.64	96.20%
Kusmakar, 2016	Wrist-worn	3D accelerometry	11	16	21	21	.73	100%
Larsen, 2014	Wearable surface device	sEMG signals	6	6	26	14	53.2	55.80%
Milosevic, 2014	Wrist- and ankle-worn	3D accelerometry, heart rate, sEMG	14	56	117	117	9.36	100%
Milosevic, 2016	Wrist-worn	3D accelerometry, sEMG	7	56	22	20	1	91%
Naganur, 2019	Wrist-worn	3D accelerometry	5	26	23	11	2.43	47.80%
Onorati, 2017	Wrist-worn	EDA, 3D accelerometry	22	69	55	52	.19	94.50%
Onorati, 2021	Wrist-worn and wearable surface device	EDA, 3D accelerometry	18	85	35	32	1.26	92%
Onorati, 2021	Wrist-worn and wearable surface device	EDA, 3D accelerometry	18	67	31	29	.57	94%
Poh, 2012	Wrist-worn	EDA, 3D accelerometry	7	80	16	15	.74	93.80%
Szabo, 2015	Wearable surface device	sEMG signals	11	33	21	20	.02	95.20%
Tang, 2021	Wrist-worn	EDA, 3D accelerometry	94	94	548	438	13.6	80%
3.2 | TCS and focal seizures: Descriptive analysis

Four studies included the detection of both TCS and focal seizures, using a wearable surface device to measure heart rate and heart rate variability. A total of 189 patients were included in these four studies (median = 35, IQR = 27.25–55). The total recording time was 6187 h. This corresponded to a median recording time of 28.5 h (IQR = 24–42.7) per patient during the period of assessment under VEM. A total of 224 focal seizures and TCS were recorded during VEM (median = 38, IQR = 24–70). Of the 224 seizures, 166 seizures were detected by the wearable and noninvasive device, with an overall sensitivity of 74.1%. The total number of false alarms in the four studies was 259 (median = 46, 95% CI = 37.3–73.6). The overall FAR of the four studies was .04/24 h.

3.3 | Focal seizures: Descriptive analysis

One study included the detection of focal seizures only. A wearable surface device was used, measuring heart rate and heart rate variability. Eleven patients were recruited, and each patient had a seizure during their admission. Forty-seven focal seizures were recorded during VEM, and 33 (70.2%) of these were detected by the device. FAR was reported to be 50.6/24 h. The characteristics of this study detecting focal seizures as well as the four studies detecting TCS and focal seizures can be seen in Table 2.

3.4 | PNES: Descriptive analysis

All three studies that investigated PNES utilized a wrist-worn device, measuring 3D accelerometry. A total of 58 patient participated in these three studies (median = 16, IQR = 16–21). The total recording time was 3394.6 h. This corresponded to a median recording time of 25.4 h (IQR = 22.7–72.7) per patient during the period of assessment under VEM.

Of the 58 patients, 17 (29.3%) patients had seizures during the recording period. The median number of patients who had seizures during their VEM admission was six. A total of 62 seizures were recorded during VEM (median = 21, IQR = 14.5–27). The overall sensitivity of the three studies was 62.9%, as 39 of the 62 seizures were detected by the wearable and noninvasive device through automated seizure detection. The total number of false alarms in the three studies was 112, with an overall FAR of .79/24 h. The characteristics of the studies detecting psychogenic nonepileptic seizures can be seen in Table 3.
This systematic review and meta-analysis has several important findings that may be considered in future revision of the ILAE-IFCN guideline. First, our meta-analysis quantified the overall reported sensitivity and FAR of wearable devices for detecting TCS. These may be used as benchmarks for evaluation of future devices. Second, the limited evidence suggests that wearable devices may have the potential to detect not only TCS but also PNES. Discussion of the use of these devices for detecting PNES may be considered in a future guideline. Third, given the high sensitivity but also relatively high FAR for detecting TCS, future effort should focus on reducing FAR as a priority. Fourth, our systematic review found only one report that specifically studied focal (non-TCS) seizures, with low sensitivity and high FAR, concurring with the ILAE-IFCN recommendation on the need to improve device performance especially for seizures without generalized convulsions.

For the detection of TCS, 3D accelerometry was the most commonly utilized parameter to identify ictal motor manifestations. The high sensitivity obtained from 3D accelerometry reflects the utility of this measure for detection of TCS. Although there are multiple methods to analyze 3D accelerometry tracings produced by TCS, we found that the threshold applied to differentiate accelerometry tracings between seizures and normal activity was similar across the 21 studies included in the meta-analysis. All studies empirically used .2 g as the lower threshold to classify seizure activity based on the lower bound (a value that is less than or equal to every element of a set of data) of the collected 3D accelerometry data, where g represents the gravitational force. This leaves very little space for false negatives, as most if not all seizure activity is recorded, and may account for the large proportion of studies reporting high sensitivities. Surface EMG also yielded high sensitivities of up to 100% for TCS. However, more studies are needed to establish whether surface EMG alone, or the combination of surface EMG and 3D accelerometry, is more sensitive and specific for the automated detection of TCS.

3D accelerometry was the only parameter used for the automated detection of PNES in the three studies included in the meta-analysis. This is in line with the previous finding that time frequency analysis of 3D accelerometry data...
from a wrist-worn device was effective in differentiating between TCS and PNES.10,11 However, due to the wide range of sensitivities these studies demonstrated, the utility of other parameters such as surface EMG, heart rate, and heart rate variability needs to be explored. This will assist in establishing which parameters and thus which algorithms will achieve consistently high sensitivities and low FARs.

There were four studies identified that detected both focal seizures and TCS and one separate study that focused on reporting only focal seizures, all using heart rate and heart rate variability. Although the first four studies demonstrated FARs of <2/24 h, the sensitivities ranged from 39% to 93%.20–23 The one study detecting only focal seizures measured the same parameters and demonstrated a much higher FAR that would be impractical for long-term use.19 The results from these five studies present a mixed picture about the potential of heart rate and heart rate variability in the automated detection of focal seizures as well as of both focal seizures and TCS.

The ability of noninvasive and wearable devices to detect TCS has shown great promise. However, it is important to note that most of these studies have not reported whether and how many focal seizures the same set of patients were experiencing alongside TCS. It will be helpful if future studies collect and report these data. This will help to emphasize the high number of patients who experience both focal seizures and TCS and therefore the need for a noninvasive and wearable device that has a high sensitivity and low FAR for detecting both focal seizures and TCS separately. We hope to see a change in the significant gap between the evidence we have for wearable devices in detecting TCS and in focal seizures.

Patients with epilepsy generally preferred higher sensitivities over lower FARs.24 The reported sensitivity of >90% from our meta-analysis is in line with the needs...
Table 2 Characteristics of two studies detecting tonic–clonic and focal seizures and one study detecting focal seizures

First author, year published	Device type	Parameters measured	Type of seizure	Patients who had seizures	Total patients recruited	VEM: seizures	Device: seizures	False alarm rate, per 24 h	Sensitivity
Jeppesen, 2019²⁰	Wearable surface device	Heart rate and heart rate variability	TCS and focal seizures	23	100	18 TCS, 108 focal	17 TCS, 97 focal	1	Overall: 93.10% Focal: 89.8% TCS: 94.4%
Jeppesen, 2020²¹	Wearable surface device	Heart rate and heart rate variability	TCS and focal seizures	11	19	10 TCS, 12 focal	9 TCS, 10 focal	.9	Overall: 87% Focal: 83.3% TCS: 90%
Hegarty-Craver, 2021²²	Wearable surface device	Heart rate and heart rate variability	TCS and focal seizures	25	40	12 TCS, 13 focal	11 TCS, 7 focal	1.03	Overall: 72% Focal: 53.8% TCS: 91.7%
Jahanbekam, 2021²³	Wearable surface device	Heart rate and heart rate variability	TCS and focal seizures	30	30	51^a	16^a	1.2	31.1%
Vandecasteele, 2017¹⁹	Wearable surface device	Heart rate and heart rate variability	Focal seizures	11	11	47	33	50.6	70%

^aNumber of TCS and focal seizures not specified.

Abbreviations: TCS, tonic–clonic seizures; VEM, video-electroencephalographic monitoring.

Table 3 Characteristics of studies detecting psychogenic nonepileptic seizures

First author, year published	Device type	Parameters measured	Patients who had seizures	Total patients recruited	VEM: seizures	Device: seizures	False alarm rate, per 24 h	Sensitivity
Kusmakar, 2018³⁴	Wrist-worn	3D accelerometry	6	16	8	8	.59^a	100%
Kusmakar, 2016³⁶	Wrist-worn	3D accelerometry	6	16	8	7	.75^b	87.50%
Naganur, 2019¹¹	Wrist-worn	3D accelerometry	5	26	33	13	2.43	39.30%

^aTwenty false alarms over 813 hours of recording.

^bTwenty five false alarms over 813 hours of recording.

Abbreviations: 3D, three-dimensional; VEM, video-EEG monitoring.
and experiences of patients with epilepsy. However, the FAR of >2/24 h did not meet user expectations. A study found that patients with epilepsy desired FARs that ranged 1–2 per month for patients with a lower seizure frequency and 1–2 per week for those with a higher seizure frequency. Future studies should focus on reducing the FAR.

A few major caveats need to be acknowledged in the some of the studies included in this systematic review. Some studies restricted analyses of the algorithms developed for automated seizure detection to only patients who had seizures or who displayed ictal tachycardia or bradycardia during their period of recording under VEM. Preselecting these patients introduces bias into these studies and could result in grossly underestimating the true FARs and overestimating the sensitivities of these algorithms and devices. Another major source of bias is the overlap between the testing and training sets of patients to develop and then test the algorithm during retrospective data analyses. Both introduce bias, as these algorithms were not predefined or run real-time and instead were specifically catered to the patients included in these studies, in a VEM setting. Therefore, the results of the algorithm and respective device would not accurately reflect the sensitivity and FAR in a non-VEM setting, such as the patients’ home environments, and with an entirely new group of patients.

The regression-based Egger test results found no significant small-study effect or publication bias for the sensitivities of the 23 studies detecting TCS. The results for the FARs of these studies indicate significant small-study effects. This suggests that the results of the smaller studies differ systematically from the results of the remaining larger studies. This may be due to the two studies that had very high FARs (53.2/24 h and 6.9/24 h, respectively) but relatively short total recording person-time (64.8 and 402 h, respectively) compared to the rest of the studies. It may also suggest potential publication bias toward larger studies reporting lower FARs.

There were limitations encountered in this systematic review and meta-analysis. Most studies detecting motor epileptic seizures did not specify whether the TCS were purely tonic–clonic or encompassed focal to bilateral TCS, tonic seizures, or clonic seizures. For this reason, we could not analyze the ability of the parameters or the algorithms to detect specific motor seizure types. There was a high level of heterogeneity in sensitivity and FAR within studies detecting TCS. However, our findings demonstrate that device type, number of parameters, total recording duration, and recording duration per patient did not contribute toward study heterogeneity. The variability in the algorithms used to analyze the data collected by the devices may underlie study heterogeneity. To avoid increasing heterogeneity further, we did not include studies that utilized invasive EEG measurements in the training dataset. As intracranial recordings may detect seizures that occur in deeper structures but are missed on scalp EEG, these studies may be incorporated in future systematic reviews and meta-analyses.

Wrist-worn or wearable surface devices could continue to be utilized to measure 3D accelerometry and/or surface EMG signals for detecting TCS. 3D accelerometry for PNES detection and heart rate/heart rate variability for focal seizures also showed promising results. However, more well-designed studies that explore parameters that do not rely on motion for detecting focal seizures and PNES are required to confirm these preliminary findings. Using promising, pre-defined algorithms in studies with larger groups of patients who have not been preselected will decrease heterogeneity and increase the quality of the study. This will further justify the use of the same algorithms in multicenter clinical settings, as demonstrated in recent studies. Studies should clearly report the total recording time by the device used, device deficiency time, recording time per patient, total number of false alarms, and FAR, as it will allow for accurate analyses of the device, parameter, and algorithm used. Standardized reporting will facilitate the assessment and establishment of clinical guidelines for the use of noninvasive and wearable devices for the automated detection of both epileptic seizures and PNES.

ACKNOWLEDGMENT

Z.C. is supported by an Early Career Fellowship from the National Health and Medical Research Council (GNT1156444). S.S. is supported by a Bridging Postdoctoral Fellowship from Monash University (BPF20-3253672466) and the Victorian Medical Research Acceleration Fund. She reports salary support to her institutions from Kaoskey and Optalert for clinical trial related activities; she receives no direct personal income for these activities. T.J.O. is supported by a Program Grant (APP1091593) and Investigator Grant (APP1176426) from the National Health and Medical Research Council of Australia, and the Victorian Medical Research Acceleration Fund. His institution has received research grants and consultancy funding from Eisai, UCB Pharma, LivaNova, BioGen, and Zynerba unrelated to the submitted work. P.K. is supported by a Medical Research Future Fund Practitioner Fellowship (MRF1136427). His institution has received research grants from Biscayne Pharmaceuticals, Eisai, GW Pharmaceuticals, LivaNova, Novartis, UCB Pharma, and Zynerba outside the submitted work; he has received speaker fees from Eisai, LivaNova, and UCB Pharma outside the submitted work. None of the other authors has any conflict of interest to disclose. We confirm that
we have read the Journal’s position on issues involved in ethical publication and affirm that this report is consistent with those guidelines. Open access publishing facilitated by Monash University, as part of the Wiley - Monash University agreement via the Council of Australian University Librarians. [Correction added on 05 July 2022, after first online publication: CRUI-CARE funding statement has been added.]

AUTHOR CONTRIBUTIONS

Vaidehi Naganur: Served as principal investigator, drafted and revised the manuscript for intellectual content, reviewed clinical data, analyzed data, contributed to the statistical analysis, contributed to the interpretation of data, and prepared the tables. Shobi Sivathamboo: Contributed to the acquisition and interpretation of data, reviewed clinical data, and revised the manuscript for intellectual content. Zhibin Chen: Contributed to the statistical analysis and interpretation of data, prepared the figures, and critically revised the manuscript for intellectual content. Shitanshu Kusmakar: Contributed to the acquisition of data and revised the manuscript for intellectual content. Ana Antonic-Baker: Critically revised the manuscript for intellectual content. Patrick Kwan: Served as principal investigator, provided scientific direction, reviewed clinical data, and revised the manuscript for intellectual content, revised the manuscript for intellectual content.

REFERENCES

1. Ghougassian DF, D’Souza W, Cook MJ, Epilepsia OTJ. Evaluating the utility of inpatient video EEG monitoring. Epilepsia. 2004;45:928–32.

2. Cook MJ, O’Brien TJ, Berkovic SF, Murphy M, Andrew M, Fabinyi G, et al. Prediction of seizure likelihood with a long-term, implanted seizure advisory system in patients with drug-resistant epilepsy: a first-in-man study. Lancet Neurol. 2013;12(6):563–71.

3. Fisher RS, Blum DE, DiVentura B, Vannest J, Hixson JD, Moss R, et al. Seizure diaries for clinical research and practice: limitations and future prospects. Epilepsy Behav. 2012;24(3):304–10.

4. Kerr WT, Janio EA, Le JM, Hori JM, Patel AB, Gallardo NL, et al. Diagnostic delay in psychogenic seizures and the association with anti-seizure medication trials. Seizure. 2016;40:123–6.

5. Asadi-Pooya AA, Emami M, Ashjazadeh N, Nikseresht A, Shariat A, Petramfar P, et al. Reasons for uncontrollable seizures in adults: the impact of pseudointractability. Seizure. 2013;22(4):271–4.

6. Beniczky S, Polster T, Kjaer TW, Hjalgrim H. Detection of generalised tonic-clonic seizures by a wireless wrist accelerometer: a prospective, multicentre study. Epilepsia. 2013;54:58–61.

7. Kusmakar S, Karmakar C, Yan B, O’Brien T, Muthuganapathy R, Palaniswami M. Automated detection of convulsive seizures using a wearable accelerometer device. IEEE Trans Biomed Eng. 2019;66(2):421–32.

8. Onorati F, Regalia G, Caborini C, Migliorini M, Bender D, Ming-Zher P, et al. Multicenter clinical assessment of improved wearable multimodal convulsive seizure detectors. Epilepsia. 2017;58(11):1870–9.

9. Hamilton KJ, Chen Z, Tomlin A, Kwan P. Mortality and morbidity of patients with treated and untreated epilepsy in New Zealand. Epilepsia. 2020;61(3):519–27.

10. Gubbi J, Kusmakar S, Rao AS, Yan B, O’Brien T, Palaniswami M. Automated detection and classification of convulsive psychogenic nonepileptic seizures using a wearable device. IEEE J Biomed Health Inform. 2016;20(4):1061–72.

11. Naganur V, Kusmakar S, Chen Z, Palaniswami MS, Kwan P, O’Brien TJ. The utility of an automated and ambulatory device for detecting and differentiating epileptic and psychogenic nonepileptic seizures. Epilepsia Open. 2019;4(2):309–17.

12. Beniczky S, Wiebe S, Jeppesen J, Tatum WO, Brazdil M, Wang Y, et al. Automated seizure detection using wearable devices: a clinical practice guideline of the International League Against Epilepsy and the International Federation of Clinical Neurophysiology. Epilepsia. 2021;62:632–46.

13. Beniczky S, Conradsen I, Henning O, Fabricus M, Wolf P. Automated real-time detection of tonic-clonic seizures using a wearable EMG device. Neurology. 2018;90(5):428–34.

14. Halford J, Sperling M, Nair D, Dlugos DJ, Tatum WO, Harvey J, et al. Detection of generalised tonic-clonic seizures using surface electromyographic monitoring. Epilepsia. 2017;58(11):1861–9.

15. Kramer U, Kipervasser S, Shlitner A, Kuzniecky R. A novel portable seizure detection alarm system: preliminary results. J Clin Neurophysiol. 2011;28(1):36–8.

16. Kusmakar S, Karmakar CK, Yan B, O’Brien TJ, Muthuganapathy R, Palaniswami M. Detection of generalized tonic-clonic seizures using short length accelerometer signal. Annu Int Conf IEEE Eng Biol Soc. 2017;2017:4566–9.

17. Szabo CA, Morgan LC, Karkar KM, Leary LD, Lie OV, Girouard M, et al. Electromyography-based seizure detector: preliminary results comparing a generalised tonic-clonic seizure detection algorithm to video-EEG recordings. Epilepsia. 2015;56(9):1432–7.

18. Van Andel J, Ungureanu C, Arends J, Tan F, Van Dijk J, Petkov G, et al. Multimodal, automated detection of nocturnal motor seizures at home: is a reliable seizure detector feasible? Epilepsia Open. 2017;2(4):424–31.

19. Vandecasteele K, De Cooman T, Gu Y, Cleeren E, Claes K, Van Paesschen W, et al. Automated epileptic seizure detection based on wearable ECG and PPG in a hospital environment. Sensors. 2017;17(10):2338.

20. Jeppesen J, Fuglsang-Frederiksen A, Johansen P, Christensen J, Wustenhagen S, Tankisi H, et al. Seizure detection based on heart rate variability using a wearable electrocardiography device. Epilepsia. 2019;60(10):2105–13.

21. Jeppesen J, Fuglsang-Frederiksen A, Johansen P, Christensen J, Wustenhagen S, Tankisi H, et al. Seizure detection using
heart rate variability: a prospective validation study. Epilepsia. 2020;61(Suppl 1):41–6.
22. Hegarty-Craver M, Kroner BL, Bumbut A, DeFilipp SJ, Gaillard WD, Gilchrist KH. Cardiac-based detection of seizures in children with epilepsy. Epilepsy Behav. 2021;122:108129.
23. Jahanbekam A, Baumann J, Nass RD, Bauckhage C, Hill H, Elger CE, et al. Performance of ECG-based seizure detection algorithms strongly depends on training and test conditions. Epilepsia. 2021;6:597–606.
24. Sculze-Bonhage A, Sales F, Wagner K, Teotonio R, Carius A, Schelle A, et al. Views of patients with epilepsy on seizure prediction devices. Epilepsy Behav. 2010;18(4):388–96.
25. Janse SA, Dumanis SB, Huwig T, Hyman S, Fureman BE, Bridges JFP. Patient and caregiver preferences for the potential benefits and risks of a seizure forecasting device: a best–worst scaling. Epilepsy Behav. 2019;96:183–91.
26. Van de Vel A, Smets K, Wouters K, Ceulemans B. Automated non-EEG based seizure detection: do users have a say? Epilepsy Behav. 2016;62:121–8.
27. Larsen SN, Conradsen I, Beniczky S, Sorensen H. Detection of tonic epileptic seizures using surface electromyography. Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:942–5.
28. Nasseri M, Attia TP, Joseph B, Gregg NM, Nurse ES, Viana PF, et al. Non-invasive wearable seizure detection using long-short-term memory networks with transfer learning. J Neural Eng. 2021;18(5):5.
29. Conradsen I, Beniczky S, Hoppe K, Wolf P, Sorensen H. Automated algorithm for generalised tonic-clonic epileptic seizure onset detection based on sEMG zero-crossing rate. IEEE Trans Biomed Eng. 2012;59(2):579–85.
30. De Cooman T, Varon C, Van De Vel A, Ceulemans B, Lagae L, Van Huffel S, et al. Comparison and combination of electrocardiogram, electromyogram and accelerometry for tonic-clonic seizure detection in children. IEEE. 2018;438–41.
31. Johansson D, Ohlsson F, Krystal D, Rydenhag B, Czarnecki M, Gustafsson N, et al. Tonic clonic seizure detection using accelerometry-based wearable sensors: a prospective, video-EEG controlled study. Seizure. 2019;65:48–54.
32. Kusmakar S, Karmakar CK, Yan B, O’Brien TJ, Palaniswami M, Muthuganapathy R. Improved detection and classification of convulsive epileptic and psychogenic non-epileptic seizures using FLDA and Bayesian inference. Annu Int Conf IEEE Eng Med Biol Soc. 2018;2018:3402–5.
33. Kusmakar S, Karmakar CK, Yan B, O’Brien TJ, Muthuganapathy R, Palaniswami M. Onset detection of epileptic seizures from accelerometry signal. Annu Int Conf IEEE Eng Med Biol Soc. 2018;2018:1–4.
34. Kusmakar S, Muthuganapathy M, Yan B, O’Brien TJ, Palaniswami M. Gaussian mixture model for the identification of psychogenic non-epileptic seizures using a wearable accelerometer sensor. Annu Int Conf IEEE Eng Med Biol Soc. 2016;2016:1006–9.
35. Milosevic M, Van De Vel A, Bonroy B, Ceulemans B, Lagae L, Vanrumste B, et al. Detection of epileptic convulsions from accelerometry signals through machine learning approach. IEEE. 2014:1–6.
36. Milosevic M, Van De Vel A, Bonroy B, Ceulemans B, Lagae L, Vanrumste B, et al. Automated detection of tonic-clonic seizures using 3D accelerometer and surface electromyography in paediatric patients. IEEE J Biomed Health Inform. 2016;20(5):1333–41.
37. Poh M, Loddenkemper T, Reinsberger C, Swenson NC, Goyal S, Sabtala MC, et al. Convulsive seizure detection using a wrist-worn electrodermal activity and accelerometry biosensor. Epilepsia. 2012;53(5):e93–7.
38. Tang J, El Atrache R, Yu S, Asif U, Jackson M, Roy S, et al. Seizure detection using wearable sensors and machine learning: setting a benchmark. Epilepsia. 2021;62:1807–19.

SUPPORTING INFORMATION

Additional supporting information may be found in the online version of the article at the publisher’s website.

How to cite this article: Naganur V, Sivathamboo S, Chen Z, Kusmakar S, Antonic-Baker A, O’Brien TJ, et al. Automated seizure detection with noninvasive wearable devices: A systematic review and meta-analysis. Epilepsia. 2022;63:1930–1941. https://doi.org/10.1111/epi.17297