Regulation of the pstSCAB operon in Corynebacterium glutamicum by the regulator of acetate metabolism RamB

Ulrike Sorger-Herrmann, Hironori Taniguchi and Volker F. Wendisch*

Abstract

Background: The pstSCAB operon of Corynebacterium glutamicum, which encodes an ABC transport system for uptake of phosphate (P\textsubscript{i}), is induced during the P\textsubscript{i} starvation response. The two-component regulatory system PhoRS is involved in this response, but partial P\textsubscript{i} starvation induction of pstSCAB in a ΔphoRS mutant indicated the involvement of additional regulator(s). Regulation of pstSCAB also involves the global transcriptional regulator GlxR.

Results: DNA affinity chromatography identified the regulator of acetate metabolism RamB as a protein binding to pstS promoter DNA in vitro. Gel mobility shift assays and mutational analysis of the pstS promoter region revealed that RamB binds to two sites localized at positions −74 to −88 and −9 to +2 with respect to the transcriptional start site of pstSCAB. Reporter gene studies supported the in vivo relevance of both binding sites for activation of pstSCAB by RamB. DNA microarray analysis revealed that expression of many P\textsubscript{i} starvation genes reached higher levels during the P\textsubscript{i} starvation response on minimal medium with glucose as sole carbon source than in P\textsubscript{i} starved acetate-grown C. glutamicum cells.

Conclusions: In C. glutamicum, RamB is involved in expression control of pstSCAB operon. Thus, transcriptional regulation of pstSCAB is complex involving activation by the phosphate-responsive two-component regulatory system PhoSR and the regulators of carbon metabolism GlxR and RamB.

Keywords: Corynebacterium glutamicum, Phosphate starvation, pstS, RamB, Phosphorus metabolism, Carbon metabolism, Acetate metabolism, PhoR, GlxR

Background

Phosphorus is an essential component of all cells. In bacteria, phosphorus is typically assimilated as inorganic orthophosphate (P\textsubscript{i}) via the reactions of the energy and carbon metabolism, thus, the phosphorus metabolism is closely intertwined with the energy and the central carbon metabolism. An optimal energy and carbon metabolism is possible only with sufficient phosphorus supply. As precursor metabolites for the biosynthesis of amino acids are derived from central carbon metabolism, the interplay of phosphorus and carbon metabolism is of particular interest in amino acid producing Corynebacterium glutamicum strains.

P\textsubscript{i} is taken up into the cell by specific transport systems. When P\textsubscript{i} becomes scarce, many bacteria induce the synthesis of proteins to use limiting concentrations of P\textsubscript{i} more efficiently and to make alternative sources of phosphorus accessible. The regulation of the P\textsubscript{i} starvation response of Escherichia coli [1] and Bacillus subtilis [2] has been studied in detail. In E. coli, the two component regulatory system PhoR-PhoB is responsible for the induction of the P\textsubscript{i} starvation genes. Under P\textsubscript{i} starvation conditions, the histidine kinase PhoR phosphorylates the response regulator PhoB and phosphorylated PhoB induces the transcription of at least 38 genes, the so-called PhoB regulon. Among these genes are the phoBR operon encoding two component regulatory system, the pstSCAB-phoU operon encoding an ABC transporter for high-affinity P\textsubscript{i} uptake and an regulatory protein, and the ugpBAECQ operon encoding an sn-glycerol 3-phosphate ABC uptake system and glycerophosphoryl...
diester phosphodiesterase. The PhoB regulon in *E. coli* also comprises 21 genes important for uptake and degradation of phosphonates, e.g. the *phnCDEFGHIJKLMNOP* operon. In *B. subtilis*, the *P*1starvation response is dependent on the two component system PhoP-PhoR for activation of Pho regulon, SpoOA for termination of the *P*1 starvation response and subsequent initiation of sporulation, ResDE for the full induction of the Pho regulon genes and the regulator AbrB. In addition, *P*1starvation in *B. subtilis* leads to the induction of genes of the general stress response, mediated by σB and σM [3–6]. Under *P*1starvation conditions, *B. subtilis* replaces teichoic acids in the cell-wall with the non-phosphate containing teichuronic acids due to repression of the teichoic acid biosynthesis operons tagAB and tagDEF and derepression of the teichuronic acid biosynthesis operon *tuaABCDEFGH* [7, 8].

C. glutamicum was isolated in 1957 as an L-glutamate excreting bacterium [9] and is used for the large scale biotechnological production of L-glutamate and L-lysine [10, 11]. This bacterium has been engineered for the production of other amino acids such as L-serine [12], L-isoleucine [13], L-valine [14, 15] or L-proline [16]. It has been also successfully engineered to produce derivatives or precursors of amino acids such as 1,4-diaminobutane [17, 18], 1,5-diaminopentane [19], 2-ketoisovalerate [20] and 2-ketoisocaproate [21, 22].

In *C. glutamicum*, phosphorus constitutes 1.5% to 2.1% of the cell dry weight [23]. Under *P*1sufficient conditions, *C. glutamicum* accumulates cytoplasmic and granular polyphosphate [24–26]. Polyphosphate is synthesized by class II polyphosphate kinases [27]. For utilization, it is hydrolysed by exopolyphosphatases [28] and replaces ATP in the reactions of NAD kinase PpnK [29] and glucokinase PpgK [30]. Although intracellular polyphosphate was shown to serve as reservoir of phosphorus [27], expression of a number of genes involved in phosphorus metabolism is induced within 1 h after a shift from *P*1sufficient to *P*1limiting conditions [23, 31]. As determined by global gene expression analysis using whole-genome *C. glutamicum* DNA microarrays [31], the *P*1starvation stimulus comprises among others *pstSCAB* encoding an ABC transporter for high affinity phosphate uptake, *ugpABCE* encoding an *sn*-glycerol 3-phosphate ABC uptake system, *ushA* encoding a secreted enzyme with UDP sugar hydrolase and 5’nucleotidase activity [32], and the *phoRS* operon encoding for the two component system involved in the *P*1starvation response of *C. glutamicum* [33]. Purified phosphorylated PhoR was shown to bind to the promoters of *P*1starvation-inducible genes at sites containing a loosely conserved 8-bp direct repeat [34]. Transcriptome analyses of *C. glutamicum* WT and the deletion mutant ΔphoRS revealed that the known *P*1starvation-inducible genes were not induced within 1 h after a shift from *P*1excess to *P*1limitation, with the exception of the *pstSCAB* operon, which was still partially induced in the deletion mutant [33]. This indicated that at least one additional regulator besides PhoR is involved in *P*1-dependent regulation of the *pstSCAB* operon in *C. glutamicum*. GlxR, a global cAMP-dependent transcriptional regulator [35–37], was shown to bind to the *pstS* promoter −133 bps to −117 bps upstream of the transcriptional start site and activates the *pstSCAB* operon under phosphate limiting conditions in a carbon source dependent manner [38]. When *glxR* was overexpressed, growth was enhanced under phosphate limiting conditions on glucose as carbon source, but not on acetate [38]. Moreover, a metabolome analysis of *C. glutamicum* grown on acetate or glucose revealed a link between *P*1limitation and accumulation of glycogen and maltose [39]. However, mutation of *GlxR* binding site in the *pstS* promoter sequence did not abolish the expression of the reporter gene. This indicated the existence of other factor(s) involved in regulation of *pstS* operon under *P*1starvation conditions. The aim of this study was to characterize adaptation of *C. glutamicum* to *P*1starvation in the absence of PhoS-PhoR and to identify additional regulator(s) of *pstSCAB*.

Results

Growth of *C. glutamicum* WT and ΔphoRS on different phosphorus sources and under *P*1limiting conditions

To characterize the long-term response of *C. glutamicum* to *P*1limitation and growth on alternative phosphorus sources, comparative growth experiments were performed with *C. glutamicum* WT and with the deletion mutant ΔphoRS, which lacks the two-component regulatory system PhoRS (Table 1) [33]. *C. glutamicum* WT and ΔphoRS were pre-cultured for 24 h in CGXII glucose medium without *P*1in order to exhaust the intercellular phosphorus storages [25, 31] and inoculated into CGXII glucose medium with either a limiting *P*1concentration of 0.065 mM or with 1 mM of the alternative phosphorus sources of adenosine 5’-monophosphate (5’AMP), L-α-glycerophosphate or UDP-glucose.

With 0.065 mM *P*1, which is below the *P*1concentration of 0.1 mM that supported growth of *C. glutamicum* with a half-maximal growth rate [31], *C. glutamicum* WT showed a doubling time of 0.14 h⁻¹ and formed 0.5 g DW l⁻¹ biomass whereas the deletion mutant ΔphoRS showed a growth defect under *P*1limiting conditions as expected from previous results (Table 2) [33].

C. glutamicum ΔphoRS could utilize the alternative phosphorus sources L-α-glycerophosphate, 5’AMP and UDP-glucose, however, it showed longer lag phases, lower growth rates and lower biomass yields than *C. glutamicum* WT (Table 2). As growth of *C. glutamicum* on 5’-AMP and UDP-glucose requires the *P*1starvation inducible gene *ushA*, which encodes a secreted enzyme
with UDP-glucose hydrolase and 5'-nucleotidase activity [32], UDP-glucose hydrolase activity of supernatants of these cultures were measured. While UDP-glucose hydrolase activity could not be detected under P_i sufficient conditions (data not shown), supernatants of *C. glutamicum* WT and ΔphoRS grown with L-α-glycerophosphate, 5AMP and UDP-Glucose as sole phosphorus sources showed UDP-glucose hydrolase activity (Table 2). Taken together, PhoRS is not essential for growth with these organophosphates and other regulators apparently allow *C. glutamicum* to induce ushA and possibly other genes necessary for the P_i starvation response in the absence of PhoRS.

Deletion analysis of the pstS promoter

To identify cis-regulatory sequences of the pstS promoter for the PhoR-dependent and PhoR-independent control, a deletion analysis of the pstS promoter region was performed using different oligonucleotides (Table 3). The pstS promoter fragment (R0F0) and the promoter fragments either lacking the 5' region (R0F0, R1F0, and R2F0) or the 3' region (R0F1, R0F2, and R0F3) were fused to the promoter-less chloramphenicol acetyl transferase (CAT) gene (Fig. 1). The resulting plasmids pET2-R0F0, pET2-R0F0, pET2-R1F0, pET2-R2F0, pET2-R0F1, pET2-R0F2 and pET2-R0F3 were transferred into *C. glutamicum* WT and ΔphoRS. Expression of these fusions was assayed before and 90 min after a shift from P_i rich to P_i lacking medium. The fusion with fragment R3F0 was not expressed as it lacked the previously determined transcriptional start site and the −10 and −35 binding regions of the RNA polymerase (Fig. 2a, b) [33]. All other fusions were expressed and showed P_i starvation-inducible expression both in *C. glutamicum* WT and ΔphoRS (Fig. 2a, b).

Expression of the reporter gene fused to the full-length pstS promoter in *C. glutamicum* WT (pET2-R0F0) was about threefold higher than in *C. glutamicum* ΔphoRS (pET2-R0F0), while expression of the other fusions did not differ much between WT and ΔphoRS (Fig. 2a, b). This indicated that fragment R0F0 lacked a cis regulatory sequence required for activation by PhoRS under P_i starvation conditions and it is consistent with the finding of a PhoRS binding site in this region [34]. Also the fusions in pET2-R1F0 and pET2-R2F0, which lack the previously determined GlxR binding site, were expressed in *C. glutamicum* WT as well as in ΔphoRS upon P_i starvation.

P_i starvation induction of the pstSCAB operon is stronger and faster than that of other P_i starvation inducible genes of *C. glutamicum* [31] and its induction is partially retained in the absence of PhoRS [33]. Therefore, the time dependent expression from pET2-R0F0 and pET2-R0F0 was analyzed in *C. glutamicum* WT and ΔphoRS under P_i starvation. After a shift from P_i-sufficient to P_i-limiting conditions, expression of the pstS promoter fusion in pET2-R0F0 was induced in *C. glutamicum* WT and ΔphoRS before 60 min (Fig. 2c). However, P_i starvation induction of the pstS promoter in the phoRS mutant followed slower kinetics and reached a

Table 1 Strains and plasmids used in this study

Strain or plasmid	Relevant characteristic	Reference
C. glutamicum		
WT	wild type strain ATCC 13032	[9]
ΔphoRS	deletion of the phoRS operon encoding the two component system PhoRS	[33]
ΔramB	Deletion of ramB encoding regulator of acetate metabolism B	[41]
E. coli		
DH5α	F′ thi-1 endA1 hsdR17 (r−, m−) supE44 ΔlacI169 (φ80lacZM15) recA1 gyrA96 relA1	[65]
Plasmids		
pGEM-T	cloning vector	Promega, WI, USA
pET2	promoter-probe vector	[54]
pET2-R0F0	pET2 with pstSCAB promoter fragment R0F0	This study
pET2-R0F0	pET2 with pstSCAB promoter fragment R0F0	This study
pET2-R1F0	pET2 with pstSCAB promoter fragment R1F0	This study
pET2-R2F0	pET2 with pstSCAB promoter fragment R2F0	This study
pET2-R3F0	pET2 with pstSCAB promoter fragment R3F0	This study
pET2-R0F1	pET2 with pstSCAB promoter fragment R0F1	This study
pET2-R0F2	pET2 with pstSCAB promoter fragment R0F2	This study
pET2-R0F3	pET2 with pstSCAB promoter fragment R0F3	This study
pET2-RcFc	pET2 with pstSCAB promoter fragment RcFc	This study
pET2-RcFm	pET2 with pstSCAB promoter fragment RcFm	This study
pET2-RmFc	pET2 with pstSCAB promoter fragment RmFc	This study
pET2-RmFm	pET2 with pstSCAB promoter fragment RmFm	This study
pET29-ramB-his	Kan^4, pET29-Histag derivative for over production of RamB with a C-terminal histidine tag	[41]
two to three fold lower level than in *C. glutamicum* WT. On the other hand, induction was very similar between the full-length *pstS* promoter (pET2-R0F0) in the *phoRS* mutant and the *pstS* promoter lacking PhoR binding site (pET2-R0F0) in the wild type. Thus, expression control of the *pstS* promoter by PhoRS in *vitro* required the cognate PhoR binding site, which is present in the full-length promoter fragment (RF0), but absent from the 35 nucleotides shorter fragment (R0F0). Furthermore, the fragment R0F0 apparently contains all cis regulatory sequences required for *P*~i~ starvation induction independent of PhoRS. Moreover, the fusions lacking the PhoR and the GlxR binding sites (pET2-R1F0, pET2-R2F0) were still induced under *P*~i~ starvation conditions. Thus, besides PhoRS, which is required for maximal *P*~i~ starvation induction of *pstSCAB*, and GlxR, (an) additional unknown regulator(s) are involved in control of *pstSCAB* expression during adaptation of *C. glutamicum* to *P*~i~ limitation.

Table 2 Growth of *C. glutamicum* WT and Δ*phoRS* on different phosphorus sources

Phosphorus source	Strain	Biomass formed [g/l]	μ [h⁻¹]	Duration of lag phase [h]	UDP-glucose hydrolase activity in supernatants [nmol min⁻¹ ml⁻¹]
Low Pi, 0.065 mM	WT	2	0.14	0	27
	ΔphoRS	1	0.07	6	39
Glycerol-3-phosphate, 1 mM	WT	11	0.16	0	9
	ΔphoRS	9	0.11	9	13
5’AMP, 1 mM	WT	9	0.08	11	6
	ΔphoRS	7	0.08	34	12
UDP-glucose, 1 mM	WT	9	0.06	39	6
	ΔphoRS	8	0.09	63	3

*UDP-glucose hydrolase activity was measured after 180 h of cultivation. No UDP-glucose hydrolase activity was detectable (<1 nmol min⁻¹ ml⁻¹) in supernatants of cells grown under *P*~i~ sufficient conditions (13 mM). This concentration is below the *P*~i~ concentration of 0.1 mM which supports the half-maximal growth rate in *C. glutamicum* [31].

Table 3 Oligonucleotides used in this study

Oligonucleotide Sequence (5’→3’)	pstsRForward	pstsR0forward	pstsR1forward	pstsR2forward	pstsR3forward	pstsF0reverse	pstsF1reverse	pstsF2reverse	pstsF3reverse	pstsF4reverse	pstsFc_reverse	pstsFm_reverse	pstsRc_forward	pstsRm_forward	pstsF0biotin
CCTCTCGAGTAAAAAAAAAGAGACTCTGCTAAAAACCT (Xhol)	CCTCTCGAGTAAGAAATCGGTGATTTTCTGGTCC (Xhol)	CCTCTCGAGAGTCTCAAAATGTATAAGTGAGTGA (Xhol)	CCTCTCGAGCTGTAGGTTAGTCTTCAAGGTCCTTA (Xhol)	CCTCTCGAGCCCGCTACAGGATCTGACTCA (Xhol)	CGTCTAGATCGCGGACTGCTGGGAGAGATG (XbaI)	GTTCACGGGGAAGCCTTTCCGG (XbaI)	CTAAGACTCATTGGAGTCGGAGCAA (XbaI)	GTTCACGGGGAAGCCTTTCCGG (XbaI)	CGCAGGACTTGGTCAGCGGAGAG (XbaI)	CGCAGGACTTGGTCAGCGGAGAG (XbaI)	Biotin-TGCCGAAGTCTGGGAAAGATCAC				

In some cases oligonucleotides were designed to introduce recognition sites for restriction endonucleases (recognition sites in italics).

Identification of RamB as a protein binding to the *pstS* promoter

In order to identify (a) regulatory protein(s) binding to the *pstS* promoter region, we coupled the biotinylated *pstS* promoter fragment R0F0 to Dynabeads® streptavidin for DNA affinity purification experiments. DNA affinity chromatography was performed with crude extracts from *C. glutamicum* WT (data not shown) and deletion mutant Δ*phoRS* in CGXII minimal medium with 4 % (w/v) glucose (Fig. 3a). In these experiments, a number of proteins bound to the promoter DNA fragment. By tryptic finger print analysis using MALDI-TOF mass spectrometry, some of these proteins could be identified. Among proteins binding the promoter DNA in a sequence-independent manner (e.g. subunits of RNA polymerase or topoisomerase) the transcriptional regulator RamB was identified (Fig. 3a). The regulator of acetate metabolism RamB is known to repress transcription of the *pta-ack* operon, the *aceA* and *aceB* genes encoding enzymes for acetate activation and of the glyoxylate cycle [40, 41]. Therefore, the DNA affinity chromatography experiments were repeated using crude extracts of *C. glutamicum* WT cultivated on acetate minimal medium under *P*~i~ starvation conditions. As a result, GlxR and RamB were found to bind to the full-length *pstS* promoter DNA (data not shown). Binding of RamB to the *pstS* promoter DNA suggested its involvement in direct control of the *pstSCAB* operon.

Table 3 Oligonucleotides used in this study

Oligonucleotide Sequence (5’→3’)	pstsRForward	pstsR0forward	pstsR1forward	pstsR2forward	pstsR3forward	pstsF0reverse	pstsF1reverse	pstsF2reverse	pstsF3reverse	pstsF4reverse	pstsFc_reverse	pstsFm_reverse	pstsRc_forward	pstsRm_forward	pstsF0biotin
CCTCTCGAGTAAAAAAAAAGAGACTCTGCTAAAAACCT (Xhol)	CCTCTCGAGTAAGAAATCGGTGATTTTCTGGTCC (Xhol)	CCTCTCGAGAGTCTCAAAATGTATAAGTGAGTGA (Xhol)	CCTCTCGAGCTGTAGGTTAGTCTTCAAGGTCCTTA (Xhol)	CCTCTCGAGCCCGCTACAGGATCTGACTCA (Xhol)	CGTCTAGATCGCGGACTGCTGGGAGAGATG (XbaI)	GTTCACGGGGAAGCCTTTCCGG (XbaI)	CTAAGACTCATTGGAGTCGGAGCAA (XbaI)	GTTCACGGGGAAGCCTTTCCGG (XbaI)	CGCAGGACTTGGTCAGCGGAGAG (XbaI)	CGCAGGACTTGGTCAGCGGAGAG (XbaI)	Biotin-TGCCGAAGTCTGGGAAAGATCAC				

In some cases oligonucleotides were designed to introduce recognition sites for restriction endonucleases (recognition sites in italics).

Identification of RamB as a protein binding to the *pstS* promoter

In order to identify (a) regulatory protein(s) binding to the *pstS* promoter region, we coupled the biotinylated *pstS* promoter fragment R0F0 to Dynabeads® streptavidin for DNA affinity purification experiments. DNA affinity chromatography was performed with crude extracts from *C. glutamicum* WT (data not shown) and deletion mutant Δ*phoRS* in CGXII minimal medium with 4 % (w/v) glucose (Fig. 3a). In these experiments, a number of proteins bound to the promoter DNA fragment. By tryptic finger print analysis using MALDI-TOF mass spectrometry, some of these proteins could be identified. Among proteins binding the promoter DNA in a sequence-independent manner (e.g. subunits of RNA polymerase or topoisomerase) the transcriptional regulator RamB was identified (Fig. 3a). The regulator of acetate metabolism RamB is known to repress transcription of the *pta-ack* operon, the *aceA* and *aceB* genes encoding enzymes for acetate activation and of the glyoxylate cycle [40, 41]. Therefore, the DNA affinity chromatography experiments were repeated using crude extracts of *C. glutamicum* WT cultivated on acetate minimal medium under *P*~i~ starvation conditions. As a result, GlxR and RamB were found to bind to the full-length *pstS* promoter DNA (data not shown). Binding of RamB to the *pstS* promoter DNA suggested its involvement in direct control of the *pstSCAB* operon.

Table 3 Oligonucleotides used in this study

Oligonucleotide Sequence (5’→3’)	pstsRForward	pstsR0forward	pstsR1forward	pstsR2forward	pstsR3forward	pstsF0reverse	pstsF1reverse	pstsF2reverse	pstsF3reverse	pstsF4reverse	pstsFc_reverse	pstsFm_reverse	pstsRc_forward	pstsRm_forward	pstsF0biotin
CCTCTCGAGTAAAAAAAAAGAGACTCTGCTAAAAACCT (Xhol)	CCTCTCGAGTAAGAAATCGGTGATTTTCTGGTCC (Xhol)	CCTCTCGAGAGTCTCAAAATGTATAAGTGAGTGA (Xhol)	CCTCTCGAGCTGTAGGTTAGTCTTCAAGGTCCTTA (Xhol)	CCTCTCGAGCCCGCTACAGGATCTGACTCA (Xhol)	CGTCTAGATCGCGGACTGCTGGGAGAGATG (XbaI)	GTTCACGGGGAAGCCTTTCCGG (XbaI)	CTAAGACTCATTGGAGTCGGAGCAA (XbaI)	GTTCACGGGGAAGCCTTTCCGG (XbaI)	CGCAGGACTTGGTCAGCGGAGAG (XbaI)	CGCAGGACTTGGTCAGCGGAGAG (XbaI)	Biotin-TGCCGAAGTCTGGGAAAGATCAC				
Several DNA fragments were used to analyze RamB binding to the \(\text{pstS} \) promoter in the gel mobility shift assays and the reporter gene assay. The PhoR binding site (open box), GlxR binding site (black box) and two putative RamB binding sites (black arrows) are indicated in the sequence and diagrams. The stop codon of cg2487 (TAA with bold italic), the transcriptional start site of \(\text{pstS} \) (C in a black box), and the \(\text{pstS} \) start codon (GTG in bold) are indicated in the sequence. The number in the diagram indicates the respective position of nucleotide from the transcription start site (+1) of \(\text{pstS} \) and the coverage of each fragment is indicated. A mutation introduced into a RamB binding site is indicated as circled M in the diagram.

Fig. 1 Overview of the \(\text{pstS} \) promoter region and the fragments used in this study. Several DNA fragments were used to analyze RamB binding to the \(\text{pstS} \) promoter in the gel mobility shift assays and the reporter gene assay. The PhoR binding site (open box), GlxR binding site (black box) and two putative RamB binding sites (black arrows) are indicated in the sequence and diagrams. The stop codon of cg2487 (TAA with bold italic), the transcriptional start site of \(\text{pstS} \) (C in a black box), and the \(\text{pstS} \) start codon (GTG in bold) are indicated in the sequence. The number in the diagram indicates the respective position of nucleotide from the transcription start site (+1) of \(\text{pstS} \) and the coverage of each fragment is indicated. A mutation introduced into a RamB binding site is indicated as circled M in the diagram.

Fig. 2 Expression of reporter gene with various promoter fragments in \(\text{C. glutamicum} \) WT and \(\Delta \text{phoRS} \). Expression levels of the fusions in \(\text{C. glutamicum} \) WT (a) and in \(\text{C. glutamicum} \) \(\Delta \text{phoRS} \) (b). Expression levels of the CAT gene fusions were measured before (open bar) and 90 min (filled bar) after the shift from \(\text{P}_i \) sufficient to \(\text{P}_i \) limiting conditions. RF0 to R3F0 indicates the fragment used in the experiment. Expressions are given as specific activity of chloramphenicol acetyltransferase. (*) the specific activity < 0.005) (c) Expression levels of the fusions in a time dependent manner. Expression of fusions was measured after a medium shift to medium lacking \(\text{P}_i \). \(\text{C. glutamicum} \) WT (circle) or \(\Delta \text{phoRS} \) (open) carrying the promoter fragment RF0 (circle) or R0F0 (square) was used.
carbon metabolism that belong to the acetate stimulon [41]. However, a RamB binding site within the psts promoter region has not yet been reported. Inspection of the psts promoter DNA suggested the occurrence of two partially conserved RamB binding sites, motif A and motif B: AGAA-74 to −88 and the reverse complement of ACGACTT-124bp region (Fig. 1). RamB did not bind to the fragment RmFm containing both mutated binding sites. RamB interacted stronger with non-mutated fragment RcFc than with the fragments RmFc and RmFc, each only containing one intact binding site (Fig. 5). Thus, both binding sites contribute to binding of RamB to the psts promoter in vitro.

Role of RamB sites for regulation of the psts promoter in vivo

In order to determine the role of RamB for P1 starvation induction of the psts promoter in vivo, expression of the promoter-gene fusion to the promoter-less CAT reporter gene was analyzed in C. glutamicum WT on different carbon sources after a shift from P1-sufficient to P1 starvation conditions. These medium shift experiments were performed with minimal medium containing either 4 % (w/v) glucose or 2 % (w/v) potassium acetate as sole carbon source. Expression of the psts promoter fusion R0F0 after a shift from P1-sufficient to P1 starvation conditions was higher on glucose than on acetate (2.10 compared to 0.22 μmol min⁻¹ mg⁻¹, Table 4). When mutations were introduced in only one of RamB binding sites (fragments RmFc and RcFm), expression was reduced both on glucose and acetate. The RmFm fusion carrying mutations in both RamB binding sites showed almost no activity after medium shift on both carbon source (Table 4).

In addition, expression of the psts promoter fusion R0F0 was assayed in the deletion mutant ΔramB
growing in 4% (w/v) glucose as a carbon source before and after Pi starvation induction. Before Pi starvation, expression of the pstS promoter fusion was low, both in WT and in ΔramB (0.02 and 0.02 μmol min⁻¹ mg⁻¹, respectively), while Pi starvation induction was higher in WT compared to ΔramB (2.10 and 1.23 μmol min⁻¹ mg⁻¹, respectively, data not shown). Taken together, RamB as well as both RamB binding sites are important for Pi starvation induction of the pstS promoter in C. glutamicum in vivo.

Comparison of Pi starvation inducible gene expression on glucose and acetate minimal medium

As Pi starvation induction of the pstS promoter differed with respect to the carbon source, DNA microarray analysis was performed to compare the gene expression profile on minimal medium containing either glucose or acetate during the Pi starvation response. C. glutamicum cells growing exponentially on glucose or acetate minimal medium with 13 mM Pi were shifted to minimal medium containing either glucose or acetate but lacking Pi. RNA was prepared 90 min after the medium shift. As expected for acetate dependent regulation in C. glutamicum [41], the DNA microarray analysis revealed two to 100 fold higher mRNA levels for genes belonging to the acetate stimulon on acetate than on glucose: pta encoding phosphotransacetylase, aceA and aceB encoding isocitrate lyase and malate synthase, pck encoding gluconeogenetic PEP carboxykinase, acn encodingaconitase and gltA encoding citrate synthase (Table 5). Expression of ramB was about four fold higher on glucose than on acetate due to autoregulation by RamB and control by RamA [40]. Expression of genes of the pstSCAB operon was higher on glucose than on acetate in response to Pi starvation, which is consistent with the pstS promoter fusion experiments in this study (Table 5). In addition, expression of other genes belonging to the Pi starvation stimulon reached higher levels on glucose than on acetate: ushA encoding 5’-nucleotidase, psb encoding a putative alkaline phosphatase, phoH1 encoding a putative ATPase, cg1224 encoding a PhnB-like protein, pctC of the pctABCD operon encoding an ABC transport system and ugpA and ugpE of the ugpEABC operon encoding an glycerol-3-phosphate uptake system (Table 5). Unlike other genes of the Pi starvation inducible gene expression on glucose and acetate minimal medium
starvation stimulon, expression of \textit{phoS} and \textit{phoR} encoding phosphate sensor kinase and its response regulator was lower on glucose than on acetate during \textit{P$_i$} starvation (Table 5).

Discussion

Here we have shown that RamB is involved in expression control of the \textit{pstSCAB} operon during the \textit{P$_i$} starvation response of \textit{C. glutamicum}. The two component regulatory system PhoR-PhoS is neither essential for \textit{P$_i$} starvation induction of \textit{pstSCAB} nor for growth on media with the organophosphates glycerol-3-phosphate, 5’-AMP and UDP-glucose as sole phosphorus source. However, PhoR-PhoS ensures rapid and maximal \textit{P$_i$} starvation induction of \textit{pstSCAB}. The regulator of acetate metabolism RamB was shown to bind to two binding sites in the \textit{pstS} promoter fragment \textit{in vitro} and both of two binding sites were shown to influence the activity of the \textit{pstS} promoter fragment \textit{in vivo} by reporter gene assay. \textit{P$_i$} starvation induction of the \textit{pstS} promoter fragment reached 10 fold higher levels on glucose minimal medium than on acetate minimal medium. Microarray experiments showed that \textit{P$_i$} starvation induction of \textit{ramB} and the \textit{P$_i$} starvation stimulon including \textit{pstSCAB} reached higher RNA levels with glucose as carbon source than with acetate as carbon source. These findings support and extend a regulatory link between phosphorus and carbon metabolism in \textit{C. glutamicum} [38, 39].

The regulator of acetate metabolism RamB represses transcription of the \textit{pta-ack} operon and the \textit{aceA} and \textit{aceB} genes, which encode enzymes for acetate activation and for the glyoxylate cycle [41]. Deletion and mutation analysis of the promoter regions of these genes allowed identifying conserved 13-bp motifs as RamB binding sites [41]. A bioinformatics analysis of the genome sequence revealed that variants of the \textit{cis}-regulatory motif for RamB binding were identified upstream of \textit{aceA}, \textit{aceB}, \textit{pta-ack} and also occur in the promoter regions of 28 other genes, 11 of which were differentially expressed in acetate- and glucose-grown \textit{C. glutamicum} cells. These genes code for enzymes of e.g. glucose uptake, glycolysis, gluconeogenesis, anaplerosis and the tricarboxylic acid cycle [41]. While this bioinformatic analysis searched for variants of the RamB binding site (AA/GAATTTTGCAAA or its complement) with maximal mismatches of two nucleotides [41], the newly identified RamB binding sites in the \textit{pstSCAB} promoter were not

Table 4 Expression of various \textit{pstS} promoter fragment \textit{cat} fusions in \textit{C. glutamicum} WT

Promoter fragment in transcriptional fusion	Carbon source	sp. act. of chloramphenicol acetyltransferase [\(\mu\text{mol min}^{-1} \text{mg}^{-1}\)] 0 min	sp. act. of chloramphenicol acetyltransferase [\(\mu\text{mol min}^{-1} \text{mg}^{-1}\)] 90 min
ROFO	Glucose	0.02	2.10
	Acetate	0.01	0.22
RcFc	Glucose	<0.005	0.06
	Acetate	<0.005	0.10
RcFm	Glucose	<0.005	0.12
	Acetate	<0.005	0.01
RmFc	Glucose	<0.005	0.10
	Acetate	<0.005	0.01
RmFm	Glucose	<0.005	0.02
	Acetate	<0.005	<0.005

*At least three determinations of two independent cultivations were performed. Average values are given with experimental imprecision < 20 %

Table 5 Genes differentially expressed in either glucose or acetate minimal medium cultures of \textit{C. glutamicum} WT after a shift from \textit{P$_i$}-sufficient to \textit{P$_i$}-limiting conditions

Gene identifier	Annotation*	Relative mRNA level** glucose/acetate
cg2560	aceA, isocitrate lyase	0.01
cg2559	aceB, malate synthase	0.05
cg3169	pck, phosphoenolpyruvate carboxykinase	0.22
cg3048	pta, phosphoacetate transferase	0.27
cg2888	phoR, phosphatase response regulator	0.33
cg1737	acn, aconitase	0.34
cg0949	gfaA, citrate synthase	0.46
cg2406	ctaE, cytochrome aa$_3$ oxidase subunit	0.47
cg2888	phoS, phosphatase sensor kinase	0.47
cg2843	ptaB, P, ABC transporter, ATPase	2.0
cg1569	ugpE, glycerol 3-phosphate ABC transporter, permease	2.1
cg1224	phnB1, PhnB-like protein	2.3
cg0397	ushA, UDP sugar hydrolase/5’-nucleotidase	2.4
cg0444	ramB, regulator of acetate metabolism B	3.5
cg1647	ptxB, putative alkaline phosphatase	4.2
cg3393	phoC, putative secreted phosphoesterase	4.3
cg0085	phoH1, ATPase	5.2
cg1650	ptcC, ABC transporter, permease	5.2
cg2868	nucH, putative nuclease	5.4
cg0812	accD1, acetyl-CoA carboxylase subunit	11.3
cg1568	ugpA, glycerol 3-phosphate ABC transporter, permease	31.2

*Gene identifiers and annotations are given according to BX922714

**The mRNA levels were derived from two independent cultivations
recognized previously as they contain 3 (AGAA-TT TGGCGGA) and 5 mismatches (complement of AGCA CTT-AAAAA), respectively. Mutational analysis of the RamB binding sites in the pstS promoter fragment showed that RamB binds to both of the newly identified RamB binding sites in vitro and that both binding sites are relevant for regulation of the pstS promoter under P, limiting condition in vivo. Thus, RamB appears to activate pstSCAB expression under P, limiting conditions. While RamB mostly represses its target genes, RamB was shown to activate aceE encoding the E1p subunit of the pyruvate dehydrogenase complex [42].

GlxR also links regulation of carbon and phosphorus metabolism in C. glutamicum. GlxR is known to regulate more than 100 genes and is one of the global hubs within the C. glutamicum gene-regulatory network [35]. GlxR was shown to bind to the pstS promoter in a cAMP-dependent manner in vitro [38] and the interaction of GlxR with pstS promoter DNA was higher on glucose than on acetate as carbon source in C. glutamicum [38, 43]. In this study, expression of the reporter gene fusion with the full length pstS promoter (RF0) was higher under P, starvation conditions than expression of the fusion lacking the PhoR binding site (R0F0) and even higher than expression of the fusion lacking both the PhoR and GlxR binding sites (R1F0) (Fig. 2). Thus, the three transcriptional regulators PhoR, GlxR and RamB synergistically activate expression of the pstS operon under P, starvation conditions.

GlxR, RamA and RamB also regulate transcription of their genes, e.g. GlxR activates ramA and represses ramB [35], RamA activates ramB [40] and GlxR, RamA and RamB show negative autoregulation [44–46]. Moreover, a number of target genes of RamB and RamA are also regulated by GlxR, e.g. aldA and ald encoding alcohol dehydrogenase and acetaldheyde dehydrogenase [41] as well as gltA encoding citrate synthase [44] are repressed by both GlxR and RamB, but activated by RamA, rpl2 encoding rescusitation promoting factor 2 is activated by RamA and GlxR, but repressed by RamB [45]. Negative autoregulation of RamB, carbon source-dependent activation of ramB by RamA [40] and cAMP-dependent activation of ramB by GlxR fine-tune regulation of carbon metabolism and also serve to integrate regulation of carbon and phosphorus metabolism in C. glutamicum.

Regulation of pstSCAB in C. glutamicum is complex, involves at least three transcriptional regulators: PhoR [33], GlxR [38] and RamB (this study) and differs from regulation of the pstS promoter in M. tuberculosis, E. coli and B. subtilis. Notably, in the related actinomycete Mycobacterium tuberculosis transcription of the pst operon is not induced upon P, starvation. Since M. tuberculosis can replicate in the phagosomes of macrophages, an acidic and P, poor environment, constitutive expression of pst may be a consequence of this intracellular life style [47]. In E. coli, the pstS promoter is regulated by integration host factor (IHF) and PhoB [48, 49], whereas this promoter is regulated in B. subtilis by PhoP [50].

Conclusions

In C. glutamicum, RamB is involved in expression control of the pstSCAB operon and two binding sites are relevant for activation by RamB in vitro. These finding support the notion that phosphorus and carbon metabolism in C. glutamicum are regulated in dependence of each other. Transcriptional regulation of pstSCAB is complex involving activation by the phosphate-responsive two-component regulatory system PhoSR and the regulators of carbon metabolism GlxR and RamB.

Methods

Bacterial strains, media, and growth conditions

Bacterial strains and plasmids used in this work are listed in Table 1. E. coli DH5α (Invitrogen) was used as host during the construction of recombinant plasmids and grown aerobically at 37 °C on a rotary shaker (120 rpm) in Luria-Bertani (LB) medium [51]. E. coli BL21 (DE3) was used for overproduction of RamB protein and grown aerobically at 37 °C on a rotary shaker (120 rpm) in LB medium. When appropriate, ampicillin was added at a concentration of 100 μg/ml. C. glutamicum wild-type strain ATCC 13032 (WT) and the ΔphoRS deletion mutant [33] were grown aerobically at 30 °C on a rotary shaker (120 rpm) in 500 ml baffled shake flasks with 60 ml BHI complex medium or CGXII minimal medium [52]. C. glutamicum cells were inoculated from 5 ml LB medium overnight culture to an optical density at 600 nm (OD600) of 0.6 in 60 ml CGXII-medium with 0.03 g/l protocatechuic acid as iron chelator and 40 g/l glucose or 20 g/l sodium acetate as carbon and energy source. For medium shift experiments, cells were harvested 14–18 h after inoculation by centrifugation at 4 °C, washed with CGXII without P, and carbon sources, and inoculated in 60 ml CGXII medium with sufficient P, (13 mM) to an optical density at 600 nm (OD600) of 0.6. These main cultures were cultivated until OD600 of 4 − 5 h. The cells were harvested and either stored at −20 °C for further analysis or washed with CGXII without P, and carbon source, and resuspended in an equal volume of fresh CGXII medium that contained either a limiting P, concentration (0.065 mM) or no P,. After incubation at 30 °C for 10, 30, 60, 90 and 120 min in the P, low or P, free medium, cells were harvested and stored at −20 °C for further analysis. For comparative growth experiments on different phosphorus sources, C. glutamicum cells growing exponentially on CGXII medium with sufficient P,
DNA affinity chromatography

The purification of DNA-binding proteins was performed essentially as described previously [57]. Briefly, psts promoter fragments were generated by PCR using genomic DNA from C. glutamicum and the primer pair pstsR0/pstsF0bio. Primer pstsF0bio was tagged with biotin via a TEG linker (Operon, Cologne, Germany). Unincorporated oligonucleotides were removed by the Qiaquick PCR purification kit (Qiagen, Hilden, Germany). About 100 pmol of biotin-labeled PCR product was coupled to 5 mg of Dynabeads streptavidin (Dynal, Oslo, Norway) and free DNA was removed by magnetic separation. The coupled Dynabeads were stored at 4 °C. Cultures (900 ml) of C. glutamicum were grown on CGXII minimal medium, harvested at an optical density at 600 nm (OD600) of about 4, washed with 1 volume of TN buffer (50 mM NaCl, 50 mM Tris–HCl, pH 7.6) and suspended in 6 ml of TGED buffer (50 mM Tris–HCl (pH 7.6), 1 mM dithiothreitol, 10 mM MgCl₂, 1 mM EDTA, 10 % (v/v) glycerol, 10 μM phenylmethylsulfonyl fluoride). The resuspended cell pellet was washed six times through a French pressure cell (SLM Amino, Spectronic Instruments, Rochester, NY) at 207 MPa. Cellular debris was removed by centrifugation at 8,000 g and 4 °C for 10 min and at 15,000 g and 4 °C for 60 min. Directly before incubation with the C. glutamicum crude extracts and the coupled Dynabeads, the beads were equilibrated with 300 μl of binding buffer (20 mM Tris–HCl pH 7.5, 1 mM EDTA, 10 % (v/v) glycerol, 0.01 % (v/v) Triton X-100, 100 mM NaCl and 1 mM dithiothreitol) for 2 min. The crude extract (about 6 ml) and 500 μg genomic DNA from C. glutamicum were incubated with the coupled Dynabeads for 1 h at room temperature with enough shaking to prevent sedimentation of the paramagnetic beads (150 rpm). Subsequently, the reaction was transferred into microcentrifuge tubes, washed once with 1 ml of TGED buffer, twice with 1 ml of TGED buffer including 400 μg of chromosomal DNA from C. glutamicum and finally with 1 ml of TGED buffer. Proteins bound to the immobilized DNA were eluted by washing the beads twice with 350 μl of elution buffer (TGED buffer containing 2 M NaCl). The eluates were pooled, concentrated and desalted with Microcon 3 microconcentrators (Millipore, Bedford, USA) and analysed by denaturing PAGE [51]. Gels were stained subsequently using a colloidal Coomasie blue staining kit (Novex, Frankfurt/Main, Germany).

MALDI-TOF mass spectrometry

For peptide mass fingerprinting, the protein band of interest was cut out from gels and subjected to in-gel digestion with trypsin essentially as described previously [58]. Briefly, gel pieces were washed twice with 750 μl of 0.1 M ammonium bicarbonate in 30 % (v/v) acetonitrile for 10 min. The destained and shrunken gel pieces were
vacuum-dried for 20 min in a conventional vacuum centrifuge and subsequently rehydrated with 6 μl of 3 mM Tris–HCl (pH 8.8) containing trypsin (10 ng/μl). After 20 min, 6 μl of 3 mM Tris–HCl (pH 8.8) without trypsin was added. Digestion was allowed to proceed overnight at room temperature. Peptides were then extracted by sequential addition of 6 μl of water and 10 μl of 0.1 % (v/v) trifluoroacetic acid in 30 % (v/v) acetonitrile. A total of 0.5 μl of the resulting peptide solution was mixed on a stainless steel sample plate with 0.5 μl of a saturated μ-cyano-4-hydroxy-trans cinnamic acid solution in 50 % (v/v) acetonitrile – 0.1 % (v/v) trifluoroacetic acid. Close external calibration using buffer mixtures 1 and 2 of a Sequazyme peptide mass standard kit (Applied Biosystems, Weiterstadt, Germany) was performed. Samples were analyzed manually in positive-reflector mode with 20 kV of accelerating voltage and 63 % grid voltage; the delay time was set at 125 ns. Data acquisition and analysis were performed using Voyager Control Panel software (version 5.0) and Voyager Data Explorer software (version 3.5) (Applied Biosystems). The generated mass lists and MS-Fit were used to search the National Center for Biotechnology Information (NCBI) database [59].

Overproduction and purification of RamB

The RamB fusion protein was prepared essentially as described previously [41, 60]. Briefly, *E. coli* BL21 (DE3) carrying the plasmid pET29-ramB-his was grown at 30 °C in 500 ml LB with 50 μg/ml kanamycin to an OD of 0.5 before adding 1 mM isopropyl β-D-thiogalactoside. Four hours after induction, cells were harvested by centrifugation and stored at – 20 °C. For cell extract preparation, thawed cells were resuspended in 10 ml of TNGI5 buffer (20 mM Tris/HCl, pH 7.9, 300 mM NaCl, 5 % (v/v) glycerol, 5 mM imidazol) containing 1 mM diisopropylfluorophosphate and 1 mM phenylmethylsulfonyl fluoride. The cell suspension was passed six times through a French pressure cell (SLM Amino, Spectronic Instruments, Rochester, NY) at 207 MPa. Cell debris and intact cells were removed by centrifugation for 10 min at 5,000 g and 4 °C, and the cell-free extract was subjected to centrifugation again for 1 h at 15,000 g and 4 °C. After centrifugation, the supernatant was purified by nickel affinity chromatography using Ni-NTA agarose (Novagen, San Diego, USA). The column was washed with TNGI20 and TNGI50 buffer (which contained 20 mM or 50 mM imidazol). The RamB protein was eluted with TNGI200 buffer (which contained 200 mM imidazol). Fractions containing RamB were pooled, and the elution buffer was exchanged against BS buffer (100 mM Tris/HCl, 20 % (v/v) glycerol, 100 mM KCl, 20 mM MgCl₂, 1 mM EDTA, pH 7.5). From 250 ml of culture, ~ 4 mg of RamB was purified to apparent homogeneity (Fig. 3b).

Gel mobility shift assays

Gel shift assays with RamB were prepared as described previously [60]. Briefly, overexpressed and purified RamB was mixed with the putative target promoter pstS (RF0) or promoter fragments (R0F0, R1F0, R2F0, R3F0, RF4, FcRc, FmRc, FcRm and FmRm) (124 bps – 507 bps, final concentrations 61 nM – 15 nM) (Figs. 4, 5) in a total volume of 20 μl. The binding buffer contained 100 mM Tris/HCl, 20 % (v/v) glycerol, 100 mM KCl, 20 mM MgCl₂, 1 mM EDTA, pH 7.5. Approximately 40 nM of a nontarget promoter fragment (P_cgb0527, P_dtxR or R3F0) (Figs. 4, 5) were added as a negative control. After incubation for 30 min at room temperature, the samples were separated on a 10 % native polyacrylamide gel at room temperature and 170 V using 1x TBE (89 mM Tris base, 89 mM boric acid, 2 mM EDTA) as electrophoresis buffer. The gels were subsequently stained with Sybr Green I (Sigma, Rödermark, Germany) and photographed.

DNA microarray analysis

Total RNA was isolated from exponentially growing cells by using the RNAeasy system (QIAGEN, Hilden, Germany) with on-column DNase I treatment prepared as described [61]. Quantity and quality of purified RNA was analyzed by UV-spectrometry and stored at –20 °C until use. DNA microarrays are based on PCR products of *C. glutamicum* genes [62]. Synthesis of fluorescently labelled cDNA from total RNA, microarray hybridization, washing and gene expression analysis were carried out as described previously [61–63]. The data are available as Gene Expression Omnibus GSE67012 data set at http://www.ncbi.nlm.nih.gov/geo/.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

USH and VFW planned and designed the experiments. USH performed the overexpression and purification of RamB. HT analysed data. USH and HT drafted the manuscript. All authors read and approved the manuscript.

Acknowledgements

We thank Karin Niermann (Münster) for technical assistance, Hermann Sahm (Jülich) for support during the initial phase of the project and Michael Bott (Jülich) for access to and help with the mass spectrometry facility. We thank Michael Bott, Martina Kocan (Jülich) and Sarah Schaaf (Jülich) for fruitful discussions. We thank Annette Cramer and Bernhard J. Ekman (Ulm) for providing deletion strain ΔramB, plasmid pET29-ramB-his and for advice on purification of RamB.

Received: 18 December 2014 Accepted: 5 May 2015

Published online: 29 May 2015

References

1. Neidhardt FC, Escherichia coli and Salmonella: Cellular and Molecular Biology. Washington, DC, USA: ASM Press; 1996.

2. Sonenshein AL, Hoch JA, Losick R. Bacillus subtilis and Its Closest Relatives. Washington, DC, USA: ASM Press; 2002.
3. Hecker M, Völker U. Non-specific, general and multiple stress resistance of growth-restricted Bacillus subtilis cells by the expression of the εB regulon. Mol Microbiol. 1998;29:129–36.

4. Prágá Z, Allenby NEE, O’Connor N, Dubrac S, Rapport G, Maedel T, et al. Transcriptional regulation of the phoPR Operon in Bacillus subtilis. J Bacteriol. 2004;186:183–90.

5. Prágá Z, Harwood CR. Regulatory interactions between the Pho and εB-dependent general stress regulons of Bacillus subtilis. Microbiology. 2002;148:1593–602.

6. Price CW, Fawcett C, Cérimoine H, Su N, Murphy CK, Youngman P. Genome-wide analysis of the general stress response in Bacillus subtilis. Mol Microbiol. 2003;41:757–74.

7. Antelmann H, Scharf C, Hecker M. Phosphate starvation-inducible proteins of Bacillus subtilis: proteomics and transcriptional analysis. J Bacteriol. 2000;182:4788–90.

8. Minning K, Lazarevic V, Soldo B, Mauel C. Analysis of teichic acid biosynthesis regulation reveals that the extraplastomic function sigma factor dmin is induced by phosphate depletion in Bacillus subtilis W23. Microbiology. 2005;151:3041–9.

9. Abe S, Takayama K-I, Kinoshita N, Hozumi S, Hattori M, Miki Y. Determination of soluble and granular inorganic polyphosphate in Corynebacterium glutamicum with a novel in vivo NMR. Acta Biotechnol. 2002;22:245–60.

10. Vorst M, Haas S, Soldo B, Mauel C. Analysis of teichic acid biosynthesis regulation reveals that the extraplastomic function sigma factor dmin is induced by phosphate depletion in Bacillus subtilis W23. Microbiology. 2005;151:3041–9.

11. Leuchtenberger W, Huthmacher K, Drauz K. Biotechnological production of amino acids and derivatives: current status and prospects. Appl Microbiol Biotechnol. 2000;55:89–100.

12. Peters-Wendisch P, Stolz M, Eiterich E, Henkernecht N, Sahm H, Egelling L. Metabolic engineering of Corynebacterium glutamicum for L-serine production. Appl Environ Microbiol. 2005;71:3739–44.

13. Gerstmeir R, Cramer A, Dangel P, Schaffer S, Eikmanns BJ. RamB, a novel transcriptional regulator of genes involved in acetate metabolism of Corynebacterium glutamicum. J Biotechnol. 2007;129:2130–4.

14. Cramer A, Gerstmeir R, Schaffer S, Bott M, Eikmanns BJ. Identification of RamA, a transcriptional regulator of genes involved in acetate metabolism of Corynebacterium glutamicum. J Mol Microbiol Biotechnol. 2009;16:236.

15. Vogt M, Haas S, Soldo B, Mauel C. Analysis of teichic acid biosynthesis regulation reveals that the extraplastomic function sigma factor dmin is induced by phosphate depletion in Bacillus subtilis W23. Microbiology. 2005;151:3041–9.

16. Conner N, Dubrac S, Rapoport G, Msadek T, et al. Analysis of teichoic acid modifying enzymes in Bacillus subtilis W23. J Mol Microbiol Biotechnol. 2009;16:236.

17. Cramer A, Gerstmeir R, Schaffer S, Bott M, Eikmanns BJ. Identification of RamA, a transcriptional regulator of genes involved in acetate metabolism of Corynebacterium glutamicum. J Mol Microbiol Biotechnol. 2009;16:236.

18. Panhorst M, Sorger-Herrmann U, Wendisch VF. The psaSCAB operon for phosphate uptake is regulated by the global regulator GlnR in Corynebacterium glutamicum. J Bacteriol. 2011;193:4123–33.

19. Bückle-Vallant V, Krause FS, Messerschmidt S, Eikmanns BJ. Metabolic adaptation and survival in macrophages. Proc Natl Acad Sci U S A. 2012;109:129–34.

20. Schaffer S, Bott M, Eikmanns BJ. Identification of RamA, a transcriptional regulator of genes involved in acetate metabolism of Corynebacterium glutamicum. J Mol Microbiol Biotechnol. 2009;16:236.

21. Cramer A, Gerstmeir R, Schaffer S, Bott M, Eikmanns BJ. Identification of RamA, a transcriptional regulator of genes involved in acetate metabolism of Corynebacterium glutamicum. J Mol Microbiol Biotechnol. 2009;16:236.

22. Wendisch VF. Phosphorus Metabolism. In: Handbook of Industrial Microbiology. 2010;15:113.

23. Jensen JVK, Wendisch VF. Ornithine cyclodeaminase-based proline production. Appl Microbiol Biotechnol. 2013;95:169–81.
48. Kimura S, Makino K, Shinagawa H, Amemura M, Nakata A. Regulation of the phosphate regulon of *Escherichia coli*: characterization of the promoter of the *pstS* gene. Mol Gen Genet MGG. 1989;215:374–80.

49. Spira B, Yagil E. The integration host factor (IHF) affects the expression of the phosphate-binding protein and of alkaline phosphatase in *Escherichia coli*. Curr Microbiol. 1999;38:80–5.

50. Liu W, Qi Y, Hulett FM. Sites internal to the coding regions of *phoA* and *pstS* bind PhoP and are required for full promoter activity. Mol Microbiol. 1998;28:119–30.

51. Sambrook J. Molecular Cloning: A Laboratory Manual, Third Edition, Cold Spring Harbor. N.Y: Cold Spring Harbor Laboratory Press; 2001.

52. Keilhauer C, Eggeling L, Sahm H. Isoleucine synthesis in *Corynebacterium glutamicum*: molecular analysis of the *ilvB*-*ilvN*-*ilvC* operon. J Bacteriol. 1993;175:599–603.

53. Edwards CJ, Innes DJ, Burns DM, Beacham IR. UDP-sugar hydrolase isozymes in *Salmonella enterica* and *Escherichia coli*: silent alleles of *ushA* in related strains of group I *Salmonella* isolates, and of *ushB* in wild-type and K12 strains of *E. coli*, indicate recent and early silencing events, respectively. FEMS Microbiol Lett. 1993;114:293–8.

54. Vasicová P, Abbrámová Z, Nesvera J, Pátek M, Sahm H, Eikmanns B. Integrative and autonomously replicating vectors for analysis of promoters in *Corynebacterium glutamicum*. Biotechnol Tech. 1998;12:743–6.

55. van der Rest ME, Lange C, Mollenaar D. A heat shock following electroporation induces highly efficient transformation of *Corynebacterium glutamicum* with xenogenic plasmid DNA. Appl Microbiol Biotechnol. 1999;52:541–5.

56. Engels V, Wendisch VF. The DeoR-type regulator SugR represses expression of *ptsG* in *Corynebacterium glutamicum*. J Bacteriol. 2007;189:2955–66.

57. Gabrielsen OS, Hornes E, Korsnes L, Ruet A, Oyen TB. Magnetic DNA affinity purification of yeast transcription factor tau—a new purification principle for the ultrarapid isolation of near homogeneous factor. Nucleic Acids Res. 1989;17:6253–67.

58. Schaffer S, Weil B, Nguyen DV, Dongmann G, Günther K, Nickolaus M, et al. A high-resolution reference map for cytoplasmic and membrane-associated proteins of *Corynebacterium glutamicum*. Electrophoresis. 2001;22:4404–22.

59. Clauser KR, Baker P, Burlingame AL. Role of accurate mass measurement (±10 ppm) in protein identification strategies employing MS or MS/MS and database searching. Anal Chem. 1999;71:2871–82.

60. Wanner J, Krug A, Bott M. The AraC-type regulator RipA represses aconitate and other iron proteins from *Corynebacterium* under iron limitation and is itself repressed by DtxR. J Biol Chem. 2005;280:40500–8.

61. Netzer R, Krause M, Rittmann D, Peters-Wendisch PG, Wendisch VF, et al. Roles of pyruvate kinase and malic enzyme in *Corynebacterium glutamicum* for growth on carbon sources requiring gluconeogenesis. Arch Microbiol. 2004;182:354–63.

62. Wendisch VF. Genome-wide expression analysis in *Corynebacterium glutamicum* using DNA microarrays. J Biotechnol. 2003;104:273–85.

63. Polen T, Schlaseiner D, Poetisch A, Bott M, Wendisch VF. Characterization of citrate utilization in *Corynebacterium glutamicum* by transcriptome and proteome analysis. FEMS Microbiol Lett. 2007;273:109–19.

64. Studer FW, Rosenberg AH, Dunn JJ, Dubendorff JW. Use of Tn7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 1990;185:60–89.

65. Hanahan D. Studies on transformation of *Escherichia coli* with plasmids. J Mol Biol. 1983;166:557–80.