Cluster analysis of the biochemical composition in 53 Sichuan EGCG3"Me tea resources

J.H. Li¹, S. X.Chen¹*, M. Z. Zhu¹ and X.L. Meng¹
¹College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
²National Tea Product Quality Supervision and Inspection Center (Sichuan), Ya’an, Sichuan, China
*Corresponding author.

Abstract. The EGCG3"Me contents in the young tea leaves of 102 tea resources in sichuan were analyzed accurately using HPLC-DAD. The results revealed that there was a wide variation in EGCG3"Me levels among different tea resources. The EGCG3"Me content in different tea resources was in a range from 0 to 11.04 mg/g, mean was 2.33 mg/g.53 tea resources contained EGCG3"Me,accounting for 51.96% of the total number of resources survey. Shucha5, Jinguanyin, Chengxi11, Fenghuang-dancong, Chongpi 71-1 were found to contain higher EGCG3"Me content (>10mg/g).Cluster analysis showed that: 53 Sichuan EGCG3"Me tea resources were divided into six groups and the difference was obvious between their biochemical composition; tea resources rich in EGCG3"Me were mainly distributed in Sichuan, Chongqing and Fujian Province, mostly were shrub and mid-leaf, mainly existed in tea resources which were suitable to make green tea, oolong tea. The morphological and biochemical distribution provided a good theoretical basis for selecting and utilizing higher EGCG3"Me resources.

1. Introduction
The catechins in tea are flavanols, accounting for over 80% of the polyphenols, which are mainly composed of (-) - epicatechin (EC), (-) - epigallocatechin (EGC), (-) - epigallocatechin gallate (EGCG), and (-) - epicatechin gallate (ECG). Catechins are beneficial in curing a wide variety of diseases [1, 5]. EGCG3"Me (3"-methyl-epigallocatechin gallate) is a methylated catechin of natural existence in tea [20, 21]. It has been proved stronger than EGCG in the aspect of anti-allergic [17, 18] inhibit inducible nitric oxide synthase (iNOS) expression [4],anti-hypertensive [11] and anti-obesity [10, 19] etc.

Sichuan is the birthplace of the world tea culture and the territory of tea resources is very rich, which mainly contain three categories: local resources, introduced resources and self-fertile resources. However, there are few reports about the catechins which contain many health functions. In some of the specific tea resources breeding, they mainly focus on the excavation of conventional components, such as, tea polyphenols, caffeine and amino acids [2, 3, 8]. There aren't studies on systematic screening of EGCG3"Me in Sichuan Tea Resources. At present, EGCG3"Me researches mainly focus on the separation, purification and preparation of tea leaves [9, 14, 24]. But, the reports on the screening of tea resources rich in EGCG3"Me (content> 10 mg / g) are fewer [13, 15]. There are more HPLC methods for simultaneous determination of 4 main catechins, CAF and GA in tea [6, 7, 12, 23]. The
Simultaneous detection of 4 main catechins and methylated catechins is less [22]. The simultaneous detection of 4 main catechins, methylated catechins, CAF and GA in tea is least [11, 25]. Therefore, in this study, the EGCG3"Me contents in the young tea leaves of 102 tea resources in Sichuan were analyzed firstly and accurately using a HPLC-DAD method [16]. The method has been proved to be a simple and sensitive in determining 1 methylated catechins (EGCG3"Me), 5 common catechin (EGC, C, EC, EGCG, ECG), caffeine (CAF) and gallic acid (GA) in tea. The tea resources rich in EGCG3"Me (content> 10 mg/g) were screened out. The 8 biochemical components of tea resources containing EGCG3"Me were analyzed by cluster analysis, in order to ascertaining the morphological and physicochemical characteristics of tea resources rich in EGCG3"Me. It provides a basis for the exploration of Sichuan tea resources rich in EGCG3"Me and the natural anti-allergy drugs in tea. Meantime, it is beneficial to the development of new functional tea. In addition, it is of great significance for the sustainable development of tea industry.

2. Materials

2.1 Materials

102 kinds of tea resources were respectively planted in Mingshan seed tea plantation in Sichuan Province, Sichuan Agricultural University tea plantation and Jiajiang Tianfu tea varieties garden in Sichuan.

2.2 Instruments and reagents

The DIONEX UltiMate 3000 UHPLC including: DGP-3600SD pump, WPS-3000 AutoSampler, TCC-3000 RS Column Compartment and Diode Array Detector, AcclaimTM 120 (5 μm, 120 Å, 4.6 mm×250 mm) C18 chromatographic column. It controls and processes some data with the help of the Chromelone 7 workstation (Dionex UltiMate). Velocity 18R centrifuge (Shimadzu, Japan), ALC-110.4 electronic balance (Germany Sartorius), DZKW-4 electrothermal thermostat water bath pot (Beijing Zhongxing Albert), Arium Comfort purified water machine (Germany Sartorius). Gallic acid, caffeine, C, EC, EGC, EGCG, ECG reference standards (Purchased from Sigma); EGCG3"Me reference standards and Japanese benifuji green tea (By the Key Laboratory of the Tea science, Ministry of Education, Hunan Agricultural University); KH2PO4, Phosphoric acid, Glacial acetic acid, ascorbic acid etc. are guarantee reagent. Acetonitrile and methanol are chromatographic grade, commercially available.

3. Method

3.1 Sample Preparation

Type According to the random sampling and stratified sampling method, 102 copies of tea resources, a bud and two leaves of autumn shoots, respectively, were picked up from mature disease-free shoots. Those shoots were collected with liquid nitrogen to save the back to the laboratory, steam cured, 90°C drying, -20°C refrigerator preservation.

3.2 Sample extraction

When Sample extraction was carried out according to the extraction method of literature [16].

3.3 EGCG3"Me content determination

Use The EGCG3"Me content was determined by referring to the chromatographic conditions of literature [16].
3.4 Data Analysis

Locate All the results were expressed as mean±SD (n=3), and the biochemical composition analysis and cluster analysis of EGCG3"Me tea resources were carried out with Excel 2013 and SPSS 17.0 statistical software.

4. Results and Analysis

4.1 Determination of EGCG3"Me in Sichuan Tea Resources

The EGCG3"Me contents in 102 tea resources in sichuan were analyzed accurately using HPLC-DAD. The results revealed that there were 53 tea resources containing EGCG3"Me. Also, there was a wide variation in EGCG3"Me levels among different tea resources. The EGCG3"Me content in different tea resources was in a range from 0 to 11.04 mg/g, and mean was 2.33 mg/g. The EGCG3"Me content was significantly lower than the main 4 catechins EGCG, EGC, ECG and EC (p <0.01) in most tea resources. The changes of catechins content were EGCG> EGC> ECG> EC> C. 53 tea resources contained EGCG3"Me, accounting for 51.96% of the total number of resources survey. Shucha5, Jinguanyin, Chengxi11, Fenghuangdancong, Chongpi71-1 were found to contain higher EGCG3"Me content (>10mg/g), respectively, 11.04 mg/g, 10.15 mg/g, 10.87 mg/g, 10.76 mg/g, 11.01 mg/g, accounting for 4.90% of the total number of resources survey. Origin of Sichuan accounted for 3 tea resources. It would be conducive to the promotion of owning good varieties (strains) in the west, and provide the basis for the exploration of Sichuan special tea resources. There were only 7 tea resources between 8 and 10 mg/g, accounting for 6.86% of the total survey resources. There were 2 tea resources with the content of 6~8 mg/g, accounting for 1.96% of the total survey resources, 8 tea resources with the content of 4~6 mg/g, accounting for 7.84% of the total survey resources; 31 tea resources in the range of 0~4 mg/g, accounting for 30.39% of the total survey resources. The part of the tea tree chromatogram was shown in Figure 1.

![Figure 1: Elution profiles of tea cultivar Qingxin-wulong; Note: 1.GA; 2.EGC; 3.CAF; 4.C; 5.EC; 6. EGCG; 7. EGCG3"Me; 8. ECG.](image-url)
4.2 Cluster analysis of biochemical components of 53 EGCG3"Me tea resources in Sichuan

4.2.1 Analysis of biochemical components of tea resources with EGCG3"Me. Never The statistical analysis of the 8 chemical components in 53 tea resources containing EGCG3"Me was carried out. The results were shown in table 1. As can be seen from table 1, there were obvious differences in the 8 biochemical components of tea resources. The variation range was large and the genetic diversity was abundant. The content of GA was low and was not detected in about 50% of tea resources, which caused the coefficient of variation greater than 1, so no further cluster analysis was done. The average variation of the other 7 biochemical traits was 45.75%, EGC (35.14%), CAF (37.59%), EC (25.30%), EGCG (41.28%), ECG (50.49%), ester-catechin (19.1%). The coefficient of variation of the 8 indexes ranged from 25% to 50%, and the variation range was larger. EGCG3"Me had the largest coefficient of variation (67.75%), followed by C (62.72%). The coefficient of variation of EGCG3"Me shown that there were abundant variation of tea resources with EGCG3"Me, which laid the foundation for the selection of fine varieties in the future.

Component	Mean	Min	Max	S	CV (%)
GA	0.53	0.02	2.71	0.63	119.67
EGC	41.72	19.95	71.82	14.66	35.14
CAF	33.02	12.83	59.52	12.41	37.59
C	1.40	0.04	4.08	0.88	62.72
EC	15.52	4.71	26.91	3.93	25.30
EGCG	70.11	22.06	137.04	28.94	41.28
EGCG3"Me	4.54	0.46	11.04	3.07	67.75
ECG	16.55	2.77	38.76	8.35	50.49
4.2.2 Cluster Analysis of tea resources Containing EGCG3"Me. All the 7 biochemical components of 53 tea resources were clustered by mean Euclidean distance (figure 2). The biochemical components of each group were compared and analyzed according to the cluster results (table 2). In the genetic distance coefficient of 0.985, 53 tea resources were divided into 6 groups. Group I consisted of 18 resources and divided into two subgroups. One subgroup were Fuxuan4, Yucha2, Fujianshuixian, Longjingchanye, Baxiancha, Orange Osmanthus, Cuiyu, Meizhan, from top number 43 to bottom number 22. Another subgroup were Zhenong117, Mengshan29, Xicha5, Qingfeng, Huangyezao, Xiapu-yuantea, Huangguanyin, Mengshan16, Mingshan213, Chongqingpipacha, from top number 41 to bottom number 38. Group II included 14 resources, also divided into two subgroups. The first subgroup were Shuyong906, Shuyong401, Mabianlv1, Yinghong1, Jinxuan, Tianfu24, Sijichun, from top number 62 to bottom number 13. The second subgroup were Anxihsuixian, Huangdan, Lianandayecha, Shuyong2, Chengxi13, Tianfu28, Beichuan10, from top number 12 to bottom number 55. The III group included 6 resources, respectively, Yuenandaye, Yinghong2, Huangyeshuixian, Fuxuan9, Zhongcha102, Zhongcha302, from top number 95 to bottom number 23. The IV group included 3 resources, respectively, Tieguanyin, Maoxie, Shuyong808, from top number 77 to bottom number 21. The V group included 5 germplasm, respectively, Shucha5, Jinguanyin, Chengxi11, Fenghuang-dancong, Chongpi71-1, from top number 16 to bottom number 17. The VI group included 7 resources, respectively, Rougui, Chuannong2, Mengshan11, Fujian1, Qingxinwulong, Mingmeng8, Chengxi8, from top number 20 to bottom number 71.

Figure 2: Biochemical composition Dendrogram of 53 tea resources which contain EGCG3"Me

As can be seen from Table 2, there were significant differences in biochemical composition among groups. Group I and Group II had moderate levels of component contents. The highest average content of CAF and ECG in group III was 43.34 mg/g and 24.84 mg/g. EGCG3"Me had the lowest average content of 0.66 mg/g in group III. The average content of EGC in group IV was the highest, which was 57.19 mg/g. EC had the lowest average content of 11.51 mg/g in group IV. The highest content of EGCG3"Me in group V was 10.77 mg/g, which was the group of rich in EGCG3"Me. In addition, the average content of EC was the highest, 17.52 mg/g. The difference between the average content of EC in group V and group VI was not significant. In the group V, the average content of EGCG3"Me was relatively high, which was 8.62 mg/g, and the average CAF content was the lowest, which was 27.34 mg/g.
Table 2: Comparison of biochemical compositions among six clusters

Component	Cluster I	Cluster II	Cluster III	Cluster IV	Cluster V	Cluster VI
EGC	38.50±3.31b	37.92±3.76b	38.49±5.74b	57.19±8.12a	52.63±6.29ab	45.98±5.31ab
CAF	35.87±2.82ab	28.60±3.19ab	34.34±4.88a	32.95±6.89ab	30.79±5.34ab	27.34±4.51b
C	1.50±0.20a	1.00±0.23a	1.48±0.35a	2.11±0.50a	1.72±0.39a	1.33±0.33a
EC	16.24±0.91ab	14.21±1.03ab	16.53±1.57ab	11.51±2.21b	17.52±1.72a	15.76±1.45a
EGCG	73.32±6.71a	60.97±7.60a	94.69±11.61a	59.09±6.43a	67.21±12.72a	65.89±10.75a
EGCG3'Me	3.92±0.10d	2.36±0.11e	0.66±0.17f	6.25±0.25c	10.77±0.19a	8.62±0.16b
ECG	18.82±1.80ab	11.66±2.04b	24.84±3.12a	13.33±4.41b	16.54±3.41ab	14.76±2.89b

Note: Small letters represent the significantly different at 5% level (comparison between groups).

We can find the distribution of Morphology and adaptability in the 6 groups tea resources from table 3. Group I and Group II resources were dominated by shrubs, mid-leaf and suitable green tea resources. The group III resources were mainly in small tree, mid-leaf and suitable green tea resource. Group IV resources were dominated by shrubs and mid-leaf. The group V rich in EGCG3'Me and the group VI of higher content mostly were shrubs and mid-leaf, mainly existed in tea resources which were suitable to make green tea, oolong tea.

Table 3: Morphological characteristics and processing suitability of tea resources among 6 clusters

Morphological characteristics and processing suitability	Cluster I	Cluster II	Cluster III	Cluster IV	Cluster V	Cluster VI
Tree-type						
Shrub	11	6	2	2	3	5
Small tree	6	5	3	1	2	2
Half tree	-	1	-	-	-	-
Tree	1	2	1	-	-	-
Small leaf	-	-	-	-	-	1
Leaf-type						
mid-leaf	15	10	4	2	5	5
Big leaf	3	4	2	1	-	1
Green tea	8	5	3	-	2	4
Oolong tea	2	3	-	-	1	1
Processing suitability						
Oolong & Green tea	-	-	-	1	-	1
Oolong, Black, Green tea	4	1	1	1	1	1
Black & Green tea	2	3	-	1	1	-
Black tea	-	2	2	-	-	-

We can find the source and distribution of tea resources in the six groups from table 4. The group I resources were mostly dispersed in Fujian, Sichuan, Zhejiang. The group II resources were mainly in Sichuan. The group III resources were mainly dispersed in Zhejiang and Guangdong. The group IV resources came from Chongqing and Fujian. The group V rich in EGCG3'Me came from Sichuan, Chongqing and Fujian. The group VI of higher EGCG3'Me came from Sichuan and Fujian. Thus, the tea resources rich in EGCG3 were mainly distributed in Sichuan, Chongqing and Fujian, and most of them were shrub and mid-leaf. They were mainly suitable to make green tea, oolong tea or its concurrent varieties.

Table 4: Origins and distribution of tea resources among 6 clusters

Province	Cluster I	Cluster II	Cluster III	Cluster IV	Cluster V	Cluster VI
Taiwan	1	2	-	-	-	-
Fujian	6	2	-	2	2	3
Sichuan	4	7	-	2	2	4
5. Conclusion
The study found that the tea resources rich in EGCG3"Me, such as Shucha5, Jinguanyin, Fenghuang dancong and Chongpi 71-1, were suitable for Green Tea and Oolong Tea. In general, there are significant differences in biochemical composition among the six groups. The highest content of EGCG3"Me groups was group V, which is rich in EGCG3"Me, with an average content of 10.77 mg/g. In addition, the group has the highest average content of EC. The tea resources rich in EGCG3"Me are mainly found in shrubs, mid-leaf and green tea, oolong tea and its concurrent varieties. Those tea resources are distributed mainly in Sichuan, Chongqing and Fujian. These species distribution and physicochemical characteristics provide a good theoretical basis for the selection and development of rich in EGCG3"Me resources.

References
[1] Bansal S.,Syan N.,Mathur P.,et al. (2012).Pharmacological profile of green tea and its polyphenols: a review[J].Medicinal Chemistry Research, 21(11): 3347-3360.
[2] Chen L.&Zhou Z.X. (2005).Variations of Main Quality Components of Tea Genetic Resources [Camellia sinensis (L.) O. Kuntze] Preserved in the China National Germplasm Tea Repository[J].Plant Foods for Human Nutrition,60(1):31-35.
[3] Chen J.,Wang P.S., Xia Y.M.,et al. (2005).Genetic diversity and differentiation of Camellia sinensis L. (cultivated tea) and its wild relatives in Yunnan province of China, revealed by morphology, biochemistry and allozyme studies[J].Genetic Resources and Crop Evolution, 52(1): 41-52
[4] Chiu F.L.&Lin J.K. (2005).HPLC analysis of naturally occurring methylated catechins,3"-and 4"-methylenepigallocatechin gallate,in various fresh tea leaves and commercial teas and their potent inhibitory effects on inductible nitric oxide synthase in macrophages[J].Journal of Agriculture and Food Chemistry, 53(18):7035-7042.
[5] Chacko S.M.,Thambi P.T.,Kuttan R.,et al.(2010).Beneficial effects of green tea: A literature review[J].Chinese Medicine, 5:13.
[6] Delrio D.,Stewart A.J.,Mullen W.,et al. (2004).HPLC-MSn analysis of phenolic compounds and purine alkaloids in green and black tea[J].Journal of Chromatography A, 1216 (15):3223-3231.
[7] Goto T.,Yoshida Y.,Kiso M.,et al. (1996).Simutaneous analysis of individual catechins and caffeine in green tea[J].Chromatogram A, 749(2):295-299.
[8] Gong Z.H.,Tian N.,Xiao W.J. (2004).On the screening of tea Excellent Resources[J].Journal of Human Agricultural University: Natural Science Edition,30(6):576-578.
[9] Hu B.,Wang L.,Zhou B.,et al. (2009).Efficient procedure for isolating methylated catechins from green tea and effective simultaneous analysis of ten catechins, three purine alkaloids, and gallic acid in tea by high-performance liquid chromatography with diode array detection[J].Journal of Chromatography A, 1216 (15):3223-3231.
[10] Inagaki H.,Sugitani M.,Setoguchi Y.,et al. (2009).Effective suppression of adipose tissue weight gain in high-fat diet-fed mice by 'Benifuuki' green tea consumption[J].Journal of the Japanese Society for Food Science and Technology, 56(7):403-411.
[11] Kurita I.,Maeda Y.M.,Tachibana H.,et al. (2010).Antihypertensive effect of Benifuuki tea containing O-methylated EGCG [J].Journal of Agricultural and Food Chemistry, 58(3): 1903-1908.
[12] Kerio L.C., Wachira F.N., Wanyoko J.K., et al. (2013). Total polyphenols, catechin profiles and antioxidant activity of tea products from purple leaf coloured tea cultivars. [J] Food Chemistry, 136:1405-1413.

[13] Luo Z.F., Gong Z.L., Wang Y., et al. (2008). Studies on O-Methylated Epigallocatechin-3-O-Gallate in Tea [J]. Journal of Southwest University: Natural Science Edition, 30(3):56-59.

[14] Li Y.H., Zhang S., Huang J.A., et al. (2012). Isolation and Identification of EGCG3"Me and EGCG4"Me from Tea [J]. Journal of Tea Science, 32(4):313-318.

[15] Lv H.P., Yang T., Ma C.Y., et al. (2014). Analysis of naturally occurring 3-Methyl-epigallocatechin gallate in 71 major tea cultivars grown in China and its processing characteristics [J]. Journal of Functional Foods, 7:727-736.

[16] Li J.H., Qi G.N., Chen S.X., et al. (2015). Analysis of catechin, caffeine and gallic acid in Kangzhuan tea by HPLC-DAD [J]. Journal of Food Science and Technology, 36(2):75-78,84.

[17] Maeda-Yamamoto M., Ema K., Shibuchi I. (2007). In vitro and in vivo anti-allergic effects of ‘benifuuki’ green tea containing O-methylated catechin and ginger extract enhancement [J]. Cytotechnology, 55(2-3):135-142.

[18] Maeda-Yamamoto M., Tachibana H. (2012). Anti-Allergic Action of O-methylated EGCG in Green Tea Cultivar Benifuuki [J]. Journal of Food & Drug Analysis, 20:313-317

[19] Oritani Y., Matsui Y., Kurita I., et al. Mechanism of anti-obese effects of ‘Benifuuki’ green tea [J]. Journal of the Japanese Society for Food Science and Technology, (2009),56(7):412-418.

[20] Saijo R. (1982). Isolation and chemical structures of two new catechins from fresh tea leaf [J]. Agricultural and Biological chemistry, 46(7):1969-1970.

[21] Sano M., Suzuki M., Miyase T., et al. (1999). Novel antiallergic catechin derivatives isolated from oolong tea [J]. Journal of agricultural and food chemistry, 47(5): 1906-1910.

[22] Sano M., Tabata M., Suzuki M., et al. (2001). Simultaneous determination of twelve tea catechins by high-performance liquid chromatography with electrochemical detection [J]. Analyst, 126(6):816-820.

[23] Yao L.H., Jiang Y.M., Datta N., et al. (2004). HPLC analyses of flavanols and phenolic acids in the fresh young shoots of tea (Camellia sinensis) grown in Australia [J]. Food Chemistry, 84(2):253-263.

[24] Zhou B., Wang L., Li W., et al. (2008). Isolation of Methylated Catechins from Tea and Their Analysis by High Performance Liquid Chromatography [J]. Chinese Journal of Analytical Chemistry, 36(4):494-498.

[25] Ziyad T., Apostolovic D., Bojana K., et al. (2012). Green tea catechins of food supplements facilitate pepsin digestion of major food allergens, but hampers their digestion if oxidized by phenol oxidase [J]. Journal of Functional Foods, 4(3):650-660.