A VARIANT OF SOME CYCLOTONOMIC MATRICES INVOLVING TRINOMIAL COEFFICIENTS

YU-BO LI AND NING-LIU WEI

Abstract. In this paper, by using the theory of circulant matrices we study some matrices over finite fields which involve the quadratic character and trinomial coefficients.

1. Introduction

Let p be an odd prime and let (\cdot/p) be the Legendre symbol. The study of the matrices involving Legendre symbols can trace back to the works of Lehmer [6] and Carlitz [1]. For example, Carlitz [1] initiated the study of the matrix

$$C_p = \left[\left(\frac{j-i}{p} \right) \right]_{1 \leq i,j \leq p-1}.$$

Carlitz [1, Thm. 4 (4.9)] proved that the characteristic polynomial of C_p is

$$f_p(t) = \left(t^2 - (-1)^{\frac{p-1}{2}} \right) \left(t^2 - (-1)^{\frac{p-1}{2}} \right).$$

Later Chapman [2, 3] and Vsemirnov [8, 9] investigated many variants of Carlitz’s matrix C_p. In particular, using sophisticated matrix decompositions Vsemirnov [8, 9] confirmed Chapman’s “evil” determinant conjecture which says that

$$\det \left[\left(\frac{j-i}{p} \right) \right]_{1 \leq i,j \leq \frac{p+1}{2}} = \begin{cases} -a_p & \text{if } p \equiv 1 \pmod{4}, \\ 1 & \text{if } p \equiv 3 \pmod{4}. \end{cases}$$

The number a_p is defined by the following equality

$$\varepsilon_p^{2-(\frac{2}{p})} h_p = a_p + b_p \sqrt{p}, \quad a_p, b_p \in \mathbb{Q},$$

where $\varepsilon_p > 1$ and h_p denote the fundamental unit and class number of the real quadratic field $\mathbb{Q}(\sqrt{p})$.

Recently, Sun [7] further studied some variants of Carlitz’s matrix C_p. For example, Sun [7, Thm. 1.2] showed that

$$- \det \left[\left(\frac{i^2 + j^2}{p} \right) \right]_{1 \leq i,j \leq p-1}$$

Key words and phrases. Central Trinomial Coefficients, Finite Fields, Determinants.

2020 Mathematics Subject Classification. Primary 05A19, 11C20; Secondary 15A18, 15B57, 33B10.
is always a quadratic residue modulo p. Along this line, for any integers c, d, the arithmetic properties of the matrix
\[
\begin{pmatrix}
\frac{i^2 + cij + dj^2}{p}
\end{pmatrix}_{1\leq i,j\leq p-1}
\]
were extensively studied. Readers may refer to [5, 7, 10, 11, 13] for details on this topic.

On the other hand, in the same paper Sun posed a conjecture (see [7, Remark 1.3]) which states that
\[
2 \det \begin{pmatrix}
\frac{1}{i^2 - ij + j^2}
\end{pmatrix}_{1\leq i,j\leq p-1}
\]
is a quadratic residue modulo p whenever $p \equiv 2 \pmod{3}$ is an odd prime. This conjecture was later proved by Wu, She and Ni [12].

Also, Let
\[
D_p = \begin{pmatrix}
(i^2 + j^2) \left(\frac{i^2 + j^2}{p} \right)
\end{pmatrix}_{1\leq i,j\leq (p-1)/2}.
\]
Recently, Wu, She and Wang [13] proved a conjecture posed by Sun which states that
\[
\frac{D_p}{p} = \begin{cases}
1 & \text{if } p \equiv 1 \pmod{4}, \\
(-1)^{h(-p)-1} & \text{if } p \equiv 3 \pmod{4},
\end{cases}
\]
where $h(-p)$ is the class number of $\mathbb{Q}(\sqrt{-p})$.

Now let $\mathbb{F}_q = \{0, a_1, \cdots, a_{q-1}\}$ be the finite field with q elements, where q is an odd prime power. Also, let χ be the unique quadratic multiplicative character of \mathbb{F}_q, i.e.,
\[
\chi(x) = \begin{cases}
0 & \text{if } x = 0, \\
1 & \text{if } x \text{ is a nonzero square}, \\
-1 & \text{otherwise}.
\end{cases}
\]

Motivated by the above results, in this paper, we shall study the following matrix over \mathbb{F}_q:
\[
S_q := \begin{pmatrix}
(a_i^2 + a_ia_j + a_j^2)\chi(a_i^2 + a_ia_j + a_j^2)
\end{pmatrix}_{1\leq i,j\leq q-1}.
\]

Let n be a non-negative integer. The central trinomial coefficient T_n is defined to be the coefficient of x^n in the polynomial $(x^2 + x + 1)^n$. Equivalently, T_n is the constant term of $(x + 1 + x^{-1})^n$. Now we state our main result.

Theorem 1.1. Let q be an odd prime power. Then there exists an element $u \in \mathbb{F}_q$ such that
\[
\det S_q = T_{\frac{q+1}{2}} \cdot u^2.
\]

As a consequence of Theorem 1.1, we have the following result.

Corollary 1.1. Let p be an odd prime. Suppose $p \nmid \det S_p$. Then
\[
\left(\frac{\det S_p}{p} \right) = \left(\frac{T_{\frac{p+1}{2}}}{p} \right).
\]
Next we shall give a necessary and sufficient condition for S_q to be singular. Let n be a non-negative integer. Then the trinomial coefficients $\left(\begin{array}{c} n \\ k \end{array}\right)_2$ is defined by

$$\left(x + \frac{1}{x} + 1\right)^n = \sum_{k=-n}^{n} \left(\begin{array}{c} n \\ k \end{array}\right)_2 x^k.$$

Clearly $\left(\begin{array}{c} n \\ 0 \end{array}\right)_2 = T_n$. Now we state our last result.

Theorem 1.2. Let \mathbb{F}_q be the finite field with $q > 5$ and $(q, 22) = 1$. Then

$$\det S_q = \frac{121}{64} \cdot T_{q+1} \cdot \prod_{k=1}^{(p-5)/2} \left(\begin{array}{c} q+1 \\ 2 \end{array}\right)_2 \in \mathbb{F}_p,$$

where p is the characteristic of \mathbb{F}_q. Also, S_q is a singular matrix over \mathbb{F}_q if and only if

$$\left(\begin{array}{c} q+1 \\ 2 \end{array}\right)_2 \equiv 0 \pmod{p}$$

for some $0 \leq k \leq (q - 5)/2$.

We will prove our main results in Section 2 and Section 3 respectively.

2. Proof of Theorem 1.1

We first introduce the definition of the circulant matrices. Let R be a commutative ring. Let m be a positive integer and $t_0, t_1, \ldots, t_{m-1} \in R$. We define the circulant matrix $C(t_0, \ldots, t_{m-1})$ to be an $m \times m$ matrix whose $(i-j)$-entry is t_{j-i} where the indices are cyclic module m. Wu [11, Lemma 3.4] obtained the following result.

Lemma 2.1. Let R be a commutative ring. Let m be a positive even integer. Let $t_0, t_1, \ldots, t_{m-1} \in R$ such that

$$t_i = t_{m-i} \text{ for each } 1 \leq i \leq m-1.$$

Then there exists an element $u \in R$ such that

$$\det C(t_0, \ldots, t_{m-1}) = \left(\sum_{i=0}^{m-1} t_i\right) \left(\sum_{i=0}^{m-1} (-1)^i t_i\right) \cdot u^2.$$

We also need the following known result.

Lemma 2.2. Let k be an integer. Then

$$\sum_{x \in \mathbb{F}_q \setminus \{0\}} x^k = \begin{cases} -1 & \text{if } p - 1 \mid k, \\ 0 & \text{otherwise}. \end{cases}$$
Now we are in a position to prove our main results. For simplicity, the summations \(\sum_{x \in \mathbb{F}_q} \) and \(\sum_{x \in \mathbb{F}_q \setminus \{0\}} \) are abbreviated as \(\sum_{x} \) and \(\sum_{x \neq 0} \) respectively.

Proof of Theorem 1.1. Fix a primitive element \(g \) of \(\mathbb{F}_q \). Then one can verify that

\[
\det S_q = \prod_{i=1}^{q-1} a_i^2 \cdot \det \left[\left(\left(\frac{a_j}{a_i} \right)^2 + \frac{a_j}{a_i} + 1 \right) \chi \left(\left(\frac{a_j}{a_i} \right)^2 + \frac{a_j}{a_i} + 1 \right) \right]_{1 \leq i, j \leq q-1}
\]

\[
= \det \left[\frac{1}{g^{j-i}} (g^{2(j-i)} + g^{j-i} + 1) \frac{q+1}{2} \right]_{0 \leq i, j \leq q-2}.
\]

Let \(t_i = g^{-i}(g^{2i} + g^i + 1) \frac{q+1}{2} \) for \(0 \leq i \leq q-2 \). Then

\[
\det S_q = \det C(t_0, t_1, \cdots, t_{q-2})
\]

and \(t_i = t_{q-1-i} \) for \(1 \leq i \leq q-3 \). Applying Lemma 2.1 there is an element \(u \in \mathbb{F}_q \) such that

\[
\det S_q = \left(\sum_{i=0}^{q-2} t_i \right) \left(\sum_{i=0}^{q-2} (-1)^i t_i \right) u^2. \tag{2.2}
\]

We first evaluate \(\sum_{i=0}^{q-2} t_i \).

\[
\sum_{i=0}^{q-2} t_i = \sum_{x \neq 0} \frac{1}{x} (x^2 + x + 1) \frac{q+1}{2}
\]

\[
= \sum_{x \neq 0} \left(x + \frac{1}{x} + 1 \right) \cdot (x^2 + x + 1) \frac{q+1}{2}
\]

\[
= 2 \sum_{x \neq 0} x \cdot (x^2 + x + 1) \frac{q+1}{2} + \sum_{x \neq 0} (x^2 + x + 1) \frac{q+1}{2}
\]

\[
= -1 + 2 \sum_{x} x \left(\left(x + \frac{1}{2} \right)^2 + \frac{3}{4} \right) \frac{q-1}{2} + \sum_{x} \left(\left(x + \frac{1}{2} \right)^2 + \frac{3}{4} \right) \frac{q-1}{2}
\]

\[
= -1 + 2 \sum_{x} \left(x - \frac{1}{2} \right) \left(x^2 + \frac{3}{4} \right) \frac{q-1}{2} + \sum_{x} \left(x^2 + \frac{3}{4} \right) \frac{q-1}{2} = -1.
\]

Hence we obtain

\[
\sum_{i=0}^{q-2} t_i = -1. \tag{2.3}
\]

Next we turn to \(\sum_{i=0}^{q-2} (-1)^i t_i \).

\[
\sum_{i=0}^{q-2} (-1)^i t_i = \sum_{x \neq 0} \frac{1}{x} \cdot (x^2 + x + 1) \cdot \chi \left(\frac{1}{x} \right) \chi (x^2 + x + 1)
\]
A VARIANT OF SOME CYCLOTOMIC MATRICES INVOLVING TRINOMIAL COEFFICIENTS

\[= \sum_{x \neq 0} \left(x + \frac{1}{x} + 1 \right)^{\frac{q+1}{2}} = -T_{\frac{q+1}{2}}. \]

The last equality follows from Lemma 2.2. We therefore obtain

\[\sum_{i=0}^{q-2} (-1)^i t_i = -T_{\frac{q+1}{2}}. \] (2.4)

Combining (2.3) and (2.4) with (2.2), we see that \(\det S_q = T_{\frac{q+1}{2}} \cdot u^2 \) for some \(u \in \mathbb{F}_q \).

This completes the proof. \(\square \)

3. PROOF OF THEOREM 1.2

We begin with the following known result (see [4, Lemma 10]).

Lemma 3.3. Let \(R \) be a commutative ring and let \(n \) be a positive integer. For any polynomial \(P(T) = p_{n-1}T^{n-1} + \cdots + p_1T + p_0 \in R[T] \) we have

\[\det [P(X_iY_j)]_{1 \leq i,j \leq n} = \prod_{i=0}^{n-1} p_i \prod_{1 \leq i<j \leq n} (X_j - X_i) (Y_j - Y_i). \]

We also need the following lemma.

Lemma 3.4. Let \(q \) be an odd prime. Then for any non-zero element \(a \in \mathbb{F}_q \) we have

\[(a^2 + a + 1)^{\frac{q+1}{2}} = f(a), \]

where

\[f(T) = \frac{11}{8} + T + \frac{11}{8} T^2 + \sum_{k=-(q-5)/2}^{(q-5)/2} \left(\frac{q+1}{2} \right)_2 T^{k+\frac{q+1}{2}} \] (3.5)

is a polynomial over \(\mathbb{F}_q \).

Proof. As \(a \neq 0 \), we have \(a^{q+k} = a^{k+1} \) for any integer \(k \). Using this and \(\left(\begin{array}{c} n \\ k \end{array} \right)_2 = \left(\begin{array}{c} n \\ -k \end{array} \right)_2 \), one can verify that \((a^2 + a + 1)^{\frac{q+1}{2}} \) is equal to

\[\sum_{k=-(q-5)/2}^{(q-5)/2} \left(\frac{q+1}{2} \right)_2 a^{k+\frac{q+1}{2}} + \left(\frac{q+1}{2} \right)_2 \left(\frac{q+1}{2} \right)_2 \left(\frac{q+1}{2} \right)_2 (1 + a^2) + \left(\frac{q+1}{2} \right)_2 \left(\frac{q+1}{2} \right)_2 \left(\frac{q+1}{2} \right)_2 \right) a \]

\[= \frac{11}{8} + a + \frac{11}{8} a^2 + \sum_{k=-(q-5)/2}^{(q-5)/2} \left(\frac{q+1}{2} \right)_2 a^{k+\frac{q+1}{2}}. \]

The last equality follows from (below the trinomial coefficient \(\left(\begin{array}{c} n \\ k \end{array} \right)_2 \) is viewed as an element of \(\mathbb{F}_q \)).

\[\left(\frac{q+1}{2} \right)_2 = 1, \left(\frac{q+1}{2} \right)_2 = q + 1 = \frac{1}{2}, \left(\frac{q+1}{2} \right)_2 = \frac{1}{2}, q + \frac{1}{2}, q + \frac{3}{2} = \frac{3}{8}. \]

This completes the proof. \(\square \)
Now we are in a position to prove our last result.

Proof of Theorem 1.2 By Lemma 3.4 one can verify that

\[
\det S_q = \prod_{i=1}^{q-1} a_i^{q+1} \cdot \det \left[\left(\left(\frac{a_j}{a_i} \right)^2 + \frac{a_j}{a_i} + 1 \right)^{\frac{q+1}{2}} \right]_{1 \leq i, j \leq q-1}
\]

\[
= \det \left[\left(\left(\frac{a_j}{a_i} \right)^2 + \frac{a_j}{a_i} + 1 \right)^{\frac{q+1}{2}} \right]_{1 \leq i, j \leq q-1}
\]

\[
= \det \left[f \left(\frac{a_j}{a_i} \right) \right]_{1 \leq i, j \leq q-1},
\]

where \(f \) is defined by (3.5).

Now applying Lemma 3.3 we obtain that \(\det S_q \) is equal to

\[
\det \left[f \left(\frac{a_j}{a_i} \right) \right]_{1 \leq i, j \leq q-1} = 12 \frac{61}{64} \cdot \left(\frac{q+1}{2} \right)^2 \cdot \prod_{k=1}^{(p-5)/2} \left(\frac{q+1}{k} \right)^2 \cdot \prod_{1 \leq i < j \leq q-1} (a_j - a_i) \left(\frac{1}{a_j} - \frac{1}{a_i} \right). \tag{3.6}
\]

By [12, Eq. (3.3)] we further have

\[
\prod_{1 \leq i < j \leq q-1} (a_j - a_i) \left(\frac{1}{a_j} - \frac{1}{a_i} \right) = 1. \tag{3.7}
\]

Hence by (3.6) and (3.7) we obtain

\[
\det S_q = 12 \frac{61}{64} \cdot \left(\frac{q+1}{2} \right)^2 \cdot \prod_{k=1}^{(p-5)/2} \left(\frac{q+1}{k} \right)^2. \tag{3.8}
\]

As \(q > 5 \) and \((q, 22) = 1\), by (3.8) we see that

\[
\det S_q = 0 \iff \left(\frac{q+1}{k} \right)_2 \equiv 0 \pmod{p} \text{ for some } 0 \leq k \leq (p-5)/2,
\]

where \(p \) is the characteristic of \(\mathbb{F}_q \). This completes the proof. \(\square \)

References

[1] L. Carlitz, Some cyclotomic matrices, Acta Arith. 5 (1959), 293–308.
[2] R. Chapman, Determinants of Legendre symbol matrices, Acta Arith. 115 (2004), 231–244.
[3] R. Chapman, My evil determinant problem, preprint, December 12, 2012, available at http://empslocal.ex.ac.uk/people/staff/rjchapma/etc/evildet.pdf.
[4] Krattenthaler, C.: Advanced determinant calculus: a complement. Linear Algebra Appl. 411 (2005), 68–166.
[5] D. Krachun, F. Petrov, Z.-W. Sun, M. Vsemirnov, On some determinants involving Jacobi symbols, Finite Fields Appl. 64 (2020), 101672.
[6] D. H. Lehmer, On certain character matrices, Pacific J. Math. 6 (1956), 491–499.
[7] Z.-W. Sun, On some determinants with Legendre symbols entries, Finite Fields Appl. 56 (2019), 285-307.
[8] M. Vsemirnov, On the evaluation of R. Chapman’s “evil determinant”, Linear Algebra Appl. 436 (2012), 4101–4106.
[9] M. Vsemirnov, On R. Chapman’s “evil determinant”: case $p \equiv 1 \pmod{4}$, Acta Arith. 159 (2013), 331–344.
[10] H.-L. Wu, Determinants concerning Legendre symbols, C. R. Math. Acad. Sci. Paris 359 (2021), 651–655.
[11] H.-L. Wu, Elliptic curves over \mathbb{F}_p and determinants of Legendre matrices, Finite Fields Appl. 76 (2021), 101929.
[12] H.-L. Wu, Y.-F. She, H.-X. Ni, A conjecture of Zhi-Wei Sun on determinants over finite fields, Bull. Malays. Math. Sci. Soc. 45 (2022), 2405–2412.
[13] H.-L. Wu, Y.-F. She and L.-Y. Wang, Cyclotomic matrices and hypergeometric functions over finite fields, Finite Fields and Their Applications, 82 (2022), 102054.

(Yu-Bo Li) School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, People’s Republic of China
Email address: lybmath2022@163.com

(Ning-Liu Wei) School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, People’s Republic of China
Email address: weiningliu6@163.com