COMMUTATION FORMULAE WITH RESPECT TO NON-SYMMETRIC AFFINE CONNECTION

DUŠAN J. SIMJANOVIĆ
Faculty of Information Technology, Metropolitan University, Tadeuša Košćuška 63,
11158 Belgrade, Serbia.
E-Mail dsimce@gmail.com

NENAD O. VESIĆ*
Serbian Academy of Sciences and Arts, Mathematical Institute, Kneza Mihaila 36,
11000 Belgrade, Serbia.
E-Mail n.o.vesic@outlook.com

Abstract. Commutation formulae with respect to a non-symmetric affine connection are obtained in this paper. The components of commutation formulae in this paper are covariant derivatives of tensors with respect to symmetric and non-symmetric affine connection.

Mathematics Subject Classification (2020): 53B05, 15A03.
Key words: Covariant derivative, commutation formula, linear independence.

1. Introduction. Identities of Ricci Type [2, 3, 5, 4, 6, 7, 8, 9, 10, 11, 12, 13, 15] are important for different researches in the fields of differential geometry and the corresponding applications.

One curvature tensor of a symmetric affine connection space is obtained with respect to a symmetric affine connection [2, 12]. Many curvature tensors and curvature pseudotensors are founded with respect to a non-symmetric affine connection [3, 5, 4, 6, 7, 8, 9, 10, 11, 13, 15]. Curvature tensors and curvature pseudotensors are components of the curvature for the corresponding affine connection spaces.

Our purpose is to obtain all identities of Ricci Type with respect to a non-symmetric affine connection in this paper. In this research, we will try to simplify the previously obtained identities.

1.1. Affine connection space. An N-dimensional manifold \mathcal{M}_N equipped with an affine connection with torsion ∇ is the generalized affine connection space $\mathcal{G}A_N$ (see [1, 3, 5, 4, 6, 7, 8, 9, 10, 11, 13, 15]).

The affine connection coefficients with respect to the affine connection (with torsion) ∇ are L^i_{jk}, $L^i_{jk} \neq L^i_{kj}$. The symmetric and anti-symmetric parts of the

*Corresponding author.

1This work was supported by the Serbian Ministry of Education, Science and Technological Development through the Mathematical Institute of the Serbian Academy of Sciences and Arts.
affine connection coefficients L^i_{jk} are

$$L^i_{jk} = \frac{1}{2} (L^i_{jk} + L^i_{kj}) \quad \text{and} \quad L^i_{j,k} = \frac{1}{2} (L^i_{jk} - L^i_{kj}). \quad (1.1)$$

The double anti-symmetric parts $L^i_{j,k}$ are the components of the torsion tensor for the affine connection space $\mathbb{G}A_N$.

The symmetric parts L^i_{jk} satisfy the transformation rule

$$L^i_{j',k'} = x^i_{i'} x^j_{j'} x^k_{k'} L^i_{jk} + x^i_{i'} x^j_{j'} x^k_{k'} L^i_{j'k}.$$

(1.2)

For this reason, the manifold \mathcal{M}_N equipped with the symmetric affine connection $^0\nabla$ whose coefficients are L^i_{jk} is the associated (symmetric affine connection) space A_N of the space $\mathbb{G}A_N$ (see [2, 12]).

 Covariant derivatives are defined with respect to torsion-free affine connections [2, 12] and affine connections with torsion [1, 3, 5, 4, 6, 7, 8, 9, 10, 11, 13, 15]. With respect to double covariant derivatives, corresponding commutation formulae are obtained. From the commutation formulae, the curvature tensors for the spaces A_N and $\mathbb{G}A_N$ are founded.

1.2. About covariant derivatives. There exists one kind of covariant derivative with respect to the affine connection $^0\nabla$ (see [2, 12])

$$a^i_{j_1 \ldots j_q |k} = a^i_{j_1 \ldots j_q, k} + \sum_{u=1}^p L^i_{\alpha k} a^{i_1 \ldots i_u \alpha \alpha_{u+1} \ldots i_p}_{j_1 \ldots j_q} - \sum_{v=1}^q L^\alpha_{j v k} a^{i_1 \ldots i_p}_{j_1 \ldots j_{v-1} \alpha j_{v+1} \ldots j_q}, \quad (1.3)$$

for a tensor \hat{a} of the type (p, q) whose components are $a^i_{j_1 \ldots j_q}$ and the partial derivative $\partial / \partial x^k$ denoted by comma.

There exists one Ricci-Type identity with respect to the covariant derivative given by the equation (1.3)

$$a^i_{j_1 \ldots j_q |m |n} - a^i_{j_1 \ldots j_q |n |m} = \sum_{u=1}^p a^i_{j_1 \ldots j_{u-1} \alpha i_{u+1} \ldots i_p \alpha_{j_1 \ldots j_q} R^i_{\alpha mn} - \sum_{v=1}^q a^i_{j_1 \ldots j_{v-1} \alpha j_{v+1} \ldots j_q \alpha_{j_1 \ldots j_q} R^i_{\alpha mn},} \quad (1.4)$$

for the components

$$R^i_{jmn} = L^i_{jmn} - L^i_{jm,n} + L^\alpha_{jm} L^i_{\alpha mn} - L^\alpha_{jn} L^i_{\alpha mn}, \quad (1.5)$$

of the curvature tensor \hat{R} of the type $(1, 3)$ for the associated space A_N.

There are four kinds of covariant derivatives with respect to the affine connect-
tion with torsion ∇ (see [1, 3, 5, 4, 6, 7, 8, 9, 10, 11, 13, 15])

$$a^{i_1 \ldots i_p}_{j_1 \ldots j_q | k} = a^{i_1 \ldots i_p}_{j_1 \ldots j_q, k} + \sum_{u=1}^{p} L_{u\alpha}^{\alpha} a^{i_1 \ldots i_u-\alpha i_{u+1} \ldots i_p}_{j_1 \ldots j_q} - \sum_{v=1}^{q} L_{j_v k}^\alpha a^{i_1 \ldots i_p}_{j_1 \ldots j_{v-1} \alpha j_{v+1} \ldots j_q}, \quad (1.6)$$

$$a^{i_1 \ldots i_p}_{j_1 \ldots j_q | k} = a^{i_1 \ldots i_p}_{j_1 \ldots j_q, k} + \sum_{u=1}^{p} L_{u\alpha}^{\alpha} a^{i_1 \ldots i_u-\alpha i_{u+1} \ldots i_p}_{j_1 \ldots j_q} - \sum_{v=1}^{q} L_{j_v k}^\alpha a^{i_1 \ldots i_p}_{j_1 \ldots j_{v-1} \alpha j_{v+1} \ldots j_q}, \quad (1.7)$$

$$a^{i_1 \ldots i_p}_{j_1 \ldots j_q | k} = a^{i_1 \ldots i_p}_{j_1 \ldots j_q, k} + \sum_{u=1}^{p} L_{u\alpha}^{\alpha} a^{i_1 \ldots i_u-\alpha i_{u+1} \ldots i_p}_{j_1 \ldots j_q} - \sum_{v=1}^{q} L_{j_v k}^\alpha a^{i_1 \ldots i_p}_{j_1 \ldots j_{v-1} \alpha j_{v+1} \ldots j_q}, \quad (1.8)$$

$$a^{i_1 \ldots i_p}_{j_1 \ldots j_q | k} = a^{i_1 \ldots i_p}_{j_1 \ldots j_q, k} + \sum_{u=1}^{p} L_{u\alpha}^{\alpha} a^{i_1 \ldots i_u-\alpha i_{u+1} \ldots i_p}_{j_1 \ldots j_q} - \sum_{v=1}^{q} L_{j_v k}^\alpha a^{i_1 \ldots i_p}_{j_1 \ldots j_{v-1} \alpha j_{v+1} \ldots j_q}, \quad (1.9)$$

Let $a^{i_1 \ldots i_p}_{j_1 \ldots j_q | k} \equiv a^{i_1 \ldots i_p}_{j_1 \ldots j_q | k'}$. We will study the differences $a^{i_1 \ldots i_p}_{j_1 \ldots j_q | v_1} | m \rightarrow n - a^{i_1 \ldots i_p}_{j_1 \ldots j_q | v_2} | n \rightarrow m$, $v_1, v_2, w_1, w_2 \in \{0, 1, 2, 3, 4\}$, in this paper.

1.3. Motivation. It is obtained the Ricci-Type identity [1, 3, 5, 4, 6, 7, 8, 9, 10, 11, 13, 15]

$$a^i_{j|m} - a^i_{j|n} = a^\alpha_j A^i_{1 \alpha mn} - a^i_1 A^\alpha_{2 \alpha mn} + 4a^i_j <m \alpha n> + 4a^i_{j <m \alpha n>} + 2L^\alpha_{m \alpha} a^i_{j | \alpha}, \quad (1.10)$$

for

$$A^i_{1 \alpha mn} = R^i_{j mn} + L^i_{j \alpha m} - L^i_{j \alpha n} + L^\alpha_{j \alpha m} L^i_{j \alpha n} + 2L^\alpha_{j \alpha m} L^i_{j \alpha n}, \quad (1.11)$$

$$A^i_{2 \alpha mn} = R^i_{j mn} + L^i_{j \alpha m} - L^i_{j \alpha n} + L^\alpha_{j \alpha m} L^i_{j \alpha n} + 2L^\alpha_{j \alpha m} L^i_{j \alpha n}, \quad (1.12)$$

$$a^i_{j <m \alpha n>} = \frac{1}{2} L^\alpha_{j \alpha} a^i_{j, \alpha, n} - \frac{1}{2} L^\alpha_{j \alpha} a^i_{j, \alpha, n} + \frac{1}{2} L^\alpha_{j \alpha} a^i_{j, \alpha, m}, \quad (1.13)$$

$$a^i_{j <m \alpha n>} = \frac{1}{2} a^i_{\alpha \beta} \left(L^i_{j \alpha \beta} L^\alpha_{j \alpha \beta} - L^i_{j \alpha \beta} L^\alpha_{j \alpha \beta} - L^i_{j \alpha \beta} L^\alpha_{j \alpha \beta} + L^i_{j \alpha \beta} L^\alpha_{j \alpha \beta} \right). \quad (1.14)$$

The geometrical objects $A^i_{1 \alpha mn}$ and $A^i_{2 \alpha mn}$ are components of the curvature pseudotensors \tilde{A} and \tilde{A} of the type (1, 3). These objects are components of the curvature for the space \mathcal{A}_N.

In [14], and with respect to $L^i_{j \alpha k} = L^i_{jk} + L^i_{jk}$, the equation (1.10) is simplified to

$$a^i_{j|m} - a^i_{j|n} = 2L^i_{j \alpha m} a^j_{\alpha n} - 2L^i_{j \alpha n} a^j_{\alpha m} - 2L^\alpha_{j \alpha m} a^i_{\alpha n} + 2L^\alpha_{j \alpha n} a^i_{\alpha m} + 2L^\alpha_{m \alpha} a^i_{j | \alpha}$$

$$+ a^\alpha \left(R^i_{j mn} + L^i_{j \alpha m} - L^i_{j \alpha n} - L^\beta_{j \alpha m} L^\beta_{j \alpha n} + L^\beta_{j \alpha n} L^i_{j \alpha m} - 2L^\beta_{m \alpha} L^i_{j \alpha m} \right)$$

$$- a^\alpha \left(R^\alpha_{j mn} + L^\alpha_{j \alpha m} - L^\alpha_{j \alpha n} - L^\beta_{j \alpha m} L^\beta_{j \alpha n} + L^\beta_{j \alpha n} L^\alpha_{j \alpha m} - 2L^\beta_{m \alpha} L^\alpha_{j \alpha m} \right). \quad (1.10')$$
In [14], it is obtained the family of double covariant derivatives

\[
a^i_j|m|n = a^i_j|m|n + c_vL^i_\alpha m a^\alpha_j|m + c_wL^i_\beta n a^\beta_j|n + d_vL^i_j m a^\alpha_\alpha|n + d_wL^i_\alpha m a^\alpha_j|n
\]

\[
+ a^i_j \left(c_vL^i_\alpha m a^\alpha_j|m + c_wL^i_\beta n a^\beta_j|n + c_v(c_w + d_w)L^i_\alpha n L^i_\beta m - c_v d_wL^i_\beta m L^i_\alpha n \right)
\]

\[
- a^i_\alpha \left(- d_vL^i_\alpha n a^\alpha_j|m - d_v(c_w + d_w)L^i_\beta j m a^\alpha_\alpha|m - d_v d_wL^i_j m L^i_\alpha n + d_v d_wL^i_\alpha n L^i_\beta j \right)
\]

\[
+ a^i_\beta \left(c_w d_v L^i_\beta j m L^i_\alpha n + c_v d_w L^i_j m L^i_\alpha n \right),
\]

(1.15)

for \(v, w \in \{0, 1, 2, 3, 4 \} \).

When simplified the difference \(a^i_j|m|n - a^i_j|m|n \), we proved the next theorem.

Theorem 1.1. (First Ricci-type identities theorem, [14]) The family of identities of the Ricci type with respect to a non-symmetric affine connection \(\nabla \) is

\[
a^i_j|m|n - a^i_j|m|n - (c_v - c_w) L^i_\alpha m a^\alpha_j|m + (c_w - c_v) L^i_\alpha n a^\alpha_j|m + (d_v - d_w) L^i_\alpha m a^\alpha_j|m
\]

\[
+ (d_v - d_w) L^i_\alpha n a^\alpha_j|m + (d_w + d_w) L^i_\alpha m a^\alpha_j|m + a^i_j \left\{ R^i_\alpha m n - (c_v L^i_\alpha m a^\alpha_j|m + c_w L^i_\alpha n a^\alpha_j|m
\]

\[
+ [c_v c_w - c_v (c_w + d_w)] L^i_\alpha n L^i_\beta m + c_v (c_w + d_w) L^i_\alpha n L^i_\beta m - (c_v c_w + c_v d_w) L^i_\beta m L^i_\alpha n \right\}
\]

\[
- a^i_\alpha \left\{ R^i_\beta j m n - (d_v L^i_\beta j m a^\beta_j|m + d_w L^i_\beta j m a^\beta_j|m
\]

\[
- (d_v c_w - d_v d_w) L^i_\beta j m a^\beta_j|m + (d_v + d_w) c_w d_w L^i_\beta j m a^\beta_j|m
\]

\[
+ (d_v + d_w) c_w d_w L^i_\beta j m a^\beta_j|m \right\}
\]

\[
+ a^i_\beta \left\{ (c_v c_w - c_v d_w) L^i_\beta j m a^\beta_j|m + (c_v d_v - c_w d_w) L^i_\beta j m a^\beta_j|m \right\},
\]

(1.16)

for \(v, w, w_1, w_2 \in \{0, 1, 2, 3, 4 \} \).

It is obtained [14] that the geometrical objects \(a^i_j|k \), \(a^i_j|k \), \(a^i_j|k \) are linearly independent and that the geometrical objects \(a^i_j|k \) and \(a^i_j|k \) may be uniquely expressed in the terms of the first three kinds of covariant derivative.
The purpose of this paper is to generalize the first Ricci-type identities theorem in the sense of changing the summands $L^i_{jk}a^l_{s|r}$ with linear combinations of the geometrical objects $L^i_{jk}a^l_{s|r} = L^i_{jk}a^l_{s|r}, L^i_{jk}a^l_{s|1}, L^i_{jk}a^l_{s|2}, L^i_{jk}a^l_{s|3}, L^i_{jk}a^l_{s|4}.$

At the start of the research, we will prove that three of covariant derivatives $a^i_{j|k}, a^i_{j|k}, a^i_{j|k}, a^i_{j|k}$ are enough for all commutation formulae to be obtained.

The next result of our research will be the commutation formulae with respect to double covariant derivatives of a tensor \hat{a} of a type $(p, q), p, q \in \mathbb{N}$.

2. Four plus one kinds of covariant derivatives. For the research in this paper, we need the next propositions.

Proposition 2.1. The covariant derivatives given by the equations (1.6, 1.7, 1.8, 1.9) and the covariant derivative given by the equation (1.3) satisfy the equations

\[
a^i_{j_1...j_p|k_1} = a^i_{j_1...j_p|k_1} + \sum_{u=1}^p L^i_{\alpha u}a^{i_{\alpha i_{u+1}}...i_p}_{j_1...j_q|k_2} - \sum_{v=1}^q L^i_{\alpha v}a^{i_{\alpha i_{v+1}}...i_p}_{j_1...j_q|k_2}, \tag{2.1}
\]

\[
a^i_{j_1...j_p|k_2} = a^i_{j_1...j_p|k_2} - \sum_{u=1}^p L^i_{\alpha u}a^{i_{\alpha i_{u+1}}...i_p}_{j_1...j_q|k_2} + \sum_{v=1}^q L^i_{\alpha v}a^{i_{\alpha i_{v+1}}...i_p}_{j_1...j_q|k_2}, \tag{2.2}
\]

\[
a^i_{j_1...j_p|k_3} = a^i_{j_1...j_p|k_3} + \sum_{u=1}^p L^i_{\alpha u}a^{i_{\alpha i_{u+1}}...i_p}_{j_1...j_q|k_3} + \sum_{v=1}^q L^i_{\alpha v}a^{i_{\alpha i_{v+1}}...i_p}_{j_1...j_q|k_3}, \tag{2.3}
\]

\[
a^i_{j_1...j_p|k_4} = a^i_{j_1...j_p|k_4} - \sum_{u=1}^p L^i_{\alpha u}a^{i_{\alpha i_{u+1}}...i_p}_{j_1...j_q|k_4} - \sum_{v=1}^q L^i_{\alpha v}a^{i_{\alpha i_{v+1}}...i_p}_{j_1...j_q|k_4}. \tag{2.4}
\]

Remark 2.1. With respect to the equations (1.3, 2.1–2.4), we obtain

\[
a^i_{j_1...j_q|k} = a^i_{j_1...j_q|k} + c_0 \sum_{u=1}^p L^i_{\alpha u}a^{i_{\alpha i_{u+1}}...i_p}_{j_1...j_q|k} + d_0 \sum_{v=1}^q L^i_{\alpha v}a^{i_{\alpha i_{v+1}}...i_p}_{j_1...j_q|k}, \tag{2.5}
\]

for $z = 0, \ldots, 4$, and the corresponding coefficients $c_0 = d_0 = 0, c_1 = 1, c_2 = 1, c_3 = 1, c_4 = 1, d_1 = 1, d_2 = 1, d_3 = 1, d_4 = 1$.

Let us obtain the commutation formulae with respect to covariant derivatives of tensors \hat{a} of the type $(1, 1), \hat{u}$ of the type $(1, 0)$ and \hat{v} of the type $(0, 1)$.

Proposition 2.2. For a tensor \hat{a} of the type $(1, 1)$, three of the geometrical objects $a^i_{j|k}, a^i_{j|k}, a^i_{j|k}, a^i_{j|k}$ are linearly independent.

Proof. With respect to the equation (2.5), the number of linearly independent geometrical objects $a^i_{j|k}, a^i_{j|k}, a^i_{j|k}, a^i_{j|k}$ is equal to the rank of the matrix

\[
M = \begin{bmatrix}
1 & 0 & 0 \\
1 & 1 & -1 \\
1 & -1 & 1 \\
1 & 1 & 1 \\
1 & -1 & -1
\end{bmatrix}.
\]
Because $\text{Rank}(M) = 3$, three of the geometrical objects $a_{j|k}^i$, $a_{j|k}^i$, $a_{j|k}^i$, $a_{j|k}^i$ are linearly independent.

Corollary 2.1. For a tensor \hat{u} of the type $(1, 0)$, two of the geometrical objects $u_{k|1}^i$, $u_{k|3}^i$, $u_{k|4}^i$ are linearly independent.

For a tensor \hat{v} of the type $(0, 1)$, two of the geometrical objects $v_{j|k}$, $v_{j|k}$, $v_{j|k}$, $v_{j|k}$ are linearly independent.

Corollary 2.2. The triples

\[
\mathcal{A}: \begin{cases}
 a_{j|k}^i, \\
 a_{j|k}^i, \\
 a_{j|k}^i
\end{cases}
 \quad
\mathcal{A}: \begin{cases}
 a_{j|k}^i, \\
 a_{j|k}^i, \\
 a_{j|k}^i
\end{cases}
 \quad
\mathcal{A}: \begin{cases}
 a_{j|k}^i, \\
 a_{j|k}^i, \\
 a_{j|k}^i
\end{cases}
 \quad
\mathcal{A}: \begin{cases}
 a_{j|k}^i, \\
 a_{j|k}^i, \\
 a_{j|k}^i
\end{cases}
\]

are triples of linearly independent geometrical objects $a_{j|k}^i$, $z = 0, \ldots, 4$.

The pairs

\[
\mathcal{U}: \begin{cases}
 u_{k|1}^i, \\
 u_{k|1}^i
\end{cases}
 \quad
\mathcal{U}: \begin{cases}
 u_{k|2}^i, \\
 u_{k|2}^i
\end{cases}
 \quad
\mathcal{U}: \begin{cases}
 u_{k|3}^i, \\
 u_{k|3}^i
\end{cases}
 \quad
\mathcal{V}: \begin{cases}
 v_{j|k}, \\
 v_{j|k}
\end{cases}
 \quad
\mathcal{V}: \begin{cases}
 v_{j|k}, \\
 v_{j|k}
\end{cases}
 \quad
\mathcal{V}: \begin{cases}
 v_{j|k}, \\
 v_{j|k}
\end{cases}
\]

are pairs of linearly independent geometrical objects $u_{k|z}^i$, $v_{j|z}$, for $z = 0, \ldots, 4$.

3. **Identities of Ricci type with respect to tensor \hat{a} of type $(1, 1)$.** Let us generalize the first Ricci-type identities theorem.

Theorem 3.1. (Second Ricci-type identities theorem) Suppose that

\[
X_{jk}^i = \rho_0^1 a_{j|k}^i + \rho_1^1 a_{j|k}^i + \rho_2^1 a_{j|k}^i + \rho_3^1 a_{j|k}^i + \rho_4^1 a_{j|k}^i, \]

\[
Y_{jk}^i = \rho_0^2 a_{j|k}^i + \rho_1^2 a_{j|k}^i + \rho_2^2 a_{j|k}^i + \rho_3^2 a_{j|k}^i + \rho_4^2 a_{j|k}^i, \]

\[
Z_{jk}^i = \rho_0^3 a_{j|k}^i + \rho_1^3 a_{j|k}^i + \rho_2^3 a_{j|k}^i + \rho_3^3 a_{j|k}^i + \rho_4^3 a_{j|k}^i, \]

\[
U_{jk}^i = \rho_0^4 a_{j|k}^i + \rho_1^4 a_{j|k}^i + \rho_2^4 a_{j|k}^i + \rho_3^4 a_{j|k}^i + \rho_4^4 a_{j|k}^i, \]

(3.1) (3.2) (3.3) (3.4)
\[V_{jk}^i = \rho_0^i a_j^i | k + \rho_1^i a_j^i | k + \rho_2^i a_j^i | k + \rho_3^i a_j^i | k + \rho_4^i a_j^i | k, \]

(3.5)

for a tensor \(\hat{a} \) of the type \((1,1) \) and scalars \(\rho_0^z, \rho_1^z, \rho_2^z, \rho_3^z, \rho_4^z, \ z \in \{1, \ldots, 5\}, \rho_0^z + \rho_1^z + \rho_2^z + \rho_3^z + \rho_4^z = 1. \)

The following equation holds:

\[
\begin{align*}
 a_j^i & \mid m \mid n - a_j^i \mid n \mid m \\
 &= (c_{v_1} - c_{w_2}) L^i_{\alpha \gamma} X_{\gamma j}^\alpha + (c_{w_1} - c_{v_2}) L^i_{\alpha \gamma} Y_{\gamma j}^\alpha + (d_{v_1} - d_{w_2}) L^i_{\gamma \alpha} Z_{\gamma j}^\alpha \\
 &+ (d_{w_1} - d_{v_2}) L^i_{\gamma j} U_{\alpha m}^\alpha + (d_{v_1} + d_{w_2}) L^i_{\alpha m} V_{\gamma j}^\alpha \\
 &+ a_j^i \{ R_{\alpha mn}^i + c_{v_1} L^i_{\alpha \gamma} n - c_{w_2} L^i_{\alpha \gamma} m \\
 &+ p_1 L^i_{\gamma \alpha} L^i_{\alpha \beta} + p_2 L^i_{\alpha \gamma} L^i_{\alpha \beta} + p_3 L^i_{\alpha \gamma} L^i_{\alpha \beta} \} \\
 &- a_j^i \{ R_{\gamma jm}^i - d_{v_1} L^i_{\gamma j} m + d_{w_2} L^i_{\gamma j} m \\
 &+ q_1 L^i_{\gamma j} L^i_{\alpha \gamma} + q_2 L^i_{\gamma j} L^i_{\alpha \beta} + q_3 L^i_{\alpha \gamma} L^i_{\alpha \beta} \} \\
 &+ a_j^i \{ r_1 L^i_{\alpha \gamma} L^i_{\alpha \beta} + r_2 L^i_{\gamma j} L^i_{\alpha \beta} \},
\end{align*}
\]

(3.6)

where

\[
\begin{align*}
 p_1 &= c_{v_1} c_{w_1} - c_{v_2} (c_{w_1} + d_{w_2}) - (c_{w_1} - c_{v_2}) (\rho_1^2 - \rho_2^2 + \rho_3^2 - \rho_4^2), \tag{3.7} \\
 p_2 &= c_{v_1} (c_{w_1} + d_{w_1}) - c_{v_2} c_{w_2} - (c_{v_1} - c_{w_2}) (\rho_1^2 - \rho_2^2 - \rho_3^2 - \rho_4^2), \tag{3.8} \\
 p_3 &= -c_{v_1} d_{w_1} - c_{v_2} d_{w_2} + (d_{w_1} + d_{w_2}) (\rho_1^2 - \rho_2^2 - \rho_3^2 - \rho_4^2), \tag{3.9} \\
 q_1 &= -d_{v_1} (c_{w_1} + d_{w_1}) + d_{w_2} (d_{v_1} + d_{w_2}) (\rho_1^3 - \rho_2^3 - \rho_3^3 + \rho_4^3), \tag{3.10} \\
 q_2 &= -d_{v_1} d_{w_1} - d_{w_2} (c_{w_1} + d_{w_2}) - (d_{w_1} + d_{w_2}) (\rho_1^4 - \rho_2^4 - \rho_3^4 + \rho_4^4), \tag{3.11} \\
 q_3 &= d_{v_1} d_{w_1} + d_{w_2} (c_{w_1} + d_{w_2}) - (d_{w_1} + d_{w_2}) (\rho_1^5 - \rho_2^5 - \rho_3^5 + \rho_4^5), \tag{3.12} \\
 r_1 &= c_{w_1} d_{v_1} - c_{w_2} d_{w_2} + (c_{w_1} - c_{w_2}) (\rho_1^2 - \rho_2^2 - \rho_3^2 + \rho_4^2) \\
 &- (d_{v_1} - d_{w_2}) (\rho_1^3 - \rho_2^3 + \rho_3^3 - \rho_4^3), \\ r_2 &= c_{v_1} d_{v_1} - c_{v_2} d_{v_2} + (c_{v_1} - c_{v_2}) (\rho_1^4 - \rho_2^4 - \rho_3^4 + \rho_4^4) \\
 &- (d_{v_1} - d_{v_2}) (\rho_1^5 - \rho_2^5 + \rho_3^5 - \rho_4^5). \tag{3.14}
\end{align*}
\]

Proof. We get

\[
\begin{align*}
 L^i_{\alpha \gamma} X_{\gamma j}^\alpha &= L^i_{\alpha \gamma} a_j^\alpha | n + (\rho_1^2 - \rho_2^2 + \rho_3 - \rho_4) a_j^\alpha | n - (\rho_1^2 - \rho_2^2 + \rho_3 + \rho_4) a_j^\alpha | n,
 \\
 L^i_{\gamma \alpha} Y_{\gamma j}^\alpha &= L^i_{\gamma \alpha} a_j^\alpha | n + (\rho_1^2 - \rho_2^2 + \rho_3 - \rho_4) a_j^\alpha | n - (\rho_1^2 - \rho_2^2 + \rho_3 + \rho_4) a_j^\alpha | n,
 \\
 L^i_{\gamma j} Z_{\gamma j}^\alpha &= L^i_{\gamma j} a_j^\alpha | n + (\rho_1^2 - \rho_2^2 + \rho_3 - \rho_4) a_j^\alpha | n - (\rho_1^2 - \rho_2^2 + \rho_3 + \rho_4) a_j^\alpha | n.
\end{align*}
\]

(3.15)
Theorem 3.2. \((3.20, 3.21)\) substituted into the equation \((3.33)\), the next theorem holds.

\[L^\alpha_{\nu \nu} U_{\alpha m} = L^\alpha_{\nu \nu} a^i_{\alpha | m} + (\rho_1^2 - \rho_2^2 + \rho_3^2 - \rho_4^2) L^\beta_{\nu \nu} L^i_{\alpha m} a^\beta_{\alpha} - (\rho_1^2 - \rho_2^2 + \rho_3^2 - \rho_4^2) L^\beta_{\nu \nu} L^i_{\alpha m} a^\beta_{\alpha}, \]
\[(3.18) \]

\[L^\alpha_{\nu \nu} V^i_{\alpha} = L^\alpha_{\nu \nu} a^i_{\alpha | \alpha} + (\rho_1^2 - \rho_2^2 + \rho_3^2 - \rho_4^2) L^\beta_{\nu \nu} L^i_{\alpha \beta} a^\beta_{\alpha} - (\rho_1^2 - \rho_2^2 + \rho_3^2 - \rho_4^2) L^\beta_{\nu \nu} L^i_{\alpha \beta} a^\beta_{\alpha}, \]
\[(3.19) \]

After expressing the terms
\[(c_v - c_w) L^i_{\nu \mu} a^\mu_{\alpha | \alpha} \]
\[(c_v - c_w) L^i_{\nu \mu} a^\mu_{\alpha | m}, \]
\[(c_v - c_w) L^i_{\nu \mu} a^\mu_{\alpha | m}, \]
\[(d_v - d_w) L^\alpha_{\nu \nu} a^i_{\alpha | \alpha}, \]
\[(d_v - d_w) L^\alpha_{\nu \nu} a^i_{\alpha | m}, \]
\[(d_v + d_w) L^\alpha_{\nu \nu} a^i_{\alpha | \alpha}, \]
with respect to the equalities \((3.15–3.19)\) and substituting them into the equation \((1.16)\), one confirms the validity of the equation \((3.33)\).

The next equalities are satisfied
\[\rho_1^2 - \rho_2^2 + \rho_3^2 - \rho_4^2 = (-1)^{1-1} \rho_1^2 + (-1)^{2-1} \rho_2^2 + (-1)^{3-1} \rho_3^2 + (-1)^{4-1} \rho_4^2, \]
\[(3.20) \]
\[\rho_1^2 - \rho_2^2 - \rho_3^2 + \rho_4^2 = (-1)^{1-1} \rho_1^2 + (-1)^{2-1} \rho_2^2 + (-1)^{3-1} \rho_3^2 + (-1)^{4-1} \rho_4^2, \]
\[(3.21) \]

for \(z = 1, \ldots, 5\), for the floor function \(|x|\) (the function that takes as input a real number \(x\) and gives the greatest integer less than or equal to \(x\) as output).

Let \(\{n_1, n_2, n_3, n_4\} = \{1, 2, 3, 4\}\). With respect to the Proposition 2.2, we conclude that it is enough to consider the case of \(\rho_0^5 = \rho_4^5 = 0\), \(n_4 \in \{1, 2, 3, 4\}\) \(\setminus \{n_1, n_2, n_3\}\).

For integers \(n_1, n_2, n_3, 1 \leq n_1 < n_2 < n_3 \leq 4\), and with respect to the equations \((3.20, 3.21)\) substituted into the equation \((3.33)\), the next theorem holds.

Theorem 3.2. \((n_1 - n_2 - n_3)\) second Ricci-type identities theorem) Suppose that

\[\tilde{A}^i_{jk} = \rho_{n_1} a^i_{n_1 | k} + \rho_{n_2} a^i_{n_2 | k} + \rho_{n_3} a^i_{n_3 | k}, \]
\[\tilde{B}^i_{jk} = \rho_{n_1} a^i_{n_1 | k} + \rho_{n_2} a^i_{n_2 | k} + \rho_{n_3} a^i_{n_3 | k}, \]
\[\tilde{C}^i_{jk} = \rho_{n_1} a^i_{n_1 | k} + \rho_{n_2} a^i_{n_2 | k} + \rho_{n_3} a^i_{n_3 | k}, \]
\[\tilde{D}^i_{jk} = \rho_{n_1} a^i_{n_1 | k} + \rho_{n_2} a^i_{n_2 | k} + \rho_{n_3} a^i_{n_3 | k}, \]
\[(3.22) \]

for the tensor \(\tilde{a}\) of the type \((1, 1)\).

The following equation holds:

\[a^i_{\nu_1 \nu_1} - a^i_{\nu_2 \nu_2} = (c_{v_1} - c_{w_2}) L^i_{\nu \nu} \tilde{A}^{\alpha}_{\nu m} + (c_{v_1} - c_{w_2}) L^i_{\nu \nu} \tilde{B}^{\alpha}_{\nu m} + (d_v - d_{w_2}) L^i_{\nu \nu} \tilde{C}^{\alpha}_{\nu m} + (d_v + d_{w_2}) L^i_{\nu \nu} \tilde{D}^{\alpha}_{\nu m} \]
\[a_j^i \{ R^i_{\alpha mn} + c_v L^i_{\alpha |m} - c_v L^i_{\alpha |n} + \tilde{p}_1 L^\beta_{\alpha m} L^i_{\beta n} + \tilde{p}_2 L^\beta_{\alpha n} L^i_{\beta m} + \tilde{p}_3 L^\beta_{mn} L^i_{\beta \alpha}\}
\]
\[-a^i_\alpha \{ R^\alpha_{j mn} - d_v L^\alpha_{jm |n} + d_v L^\alpha_{jn |m} + \tilde{q}_1 L^\beta_{jm} L^\alpha_{\beta n} + \tilde{q}_2 L^\beta_{jn} L^\alpha_{\beta m} + \tilde{q}_3 L^\beta_{mn} L^\alpha_{\beta j}\}
\]
\[+ a^\alpha_\beta \{ \tilde{r}_1 L^\beta_{jm} L^i_{\alpha v} + \tilde{r}_2 L^\beta_{jn} L^i_{\alpha v}\}, \tag{3.23}\]

where

\[\tilde{p}_1 = c_v c_w - c_v (c_{w_2} + d_{w_2})\]
\[-(c_{w_1} - c_{w_2})((-1)^{n_1-1} \rho^2_{n_1} + (-1)^{n_2-1} \rho^2_{n_2} + (-1)^{n_3-1} \rho^2_{n_3}), \tag{3.24}\]
\[\tilde{p}_2 = c_v (c_w + d_w)
- c_v c_{w_2} - (c_v - c_{w_2})((-1)^{n_1-1} \rho^1_{n_1} + (-1)^{n_2-1} \rho^1_{n_2} + (-1)^{n_3-1} \rho^1_{n_3}), \tag{3.25}\]
\[\tilde{p}_3 = -c_v d_{w_1} - c_v d_{w_2} + (d_{w_1} + d_{w_2})((-1)^{n_1-1} \rho^5_{n_1} + (-1)^{n_2-1} \rho^5_{n_2} + (-1)^{n_3-1} \rho^5_{n_3}), \tag{3.26}\]
\[\tilde{q}_1 = -d_v (c_{w_1} + d_{w_1}) + d_{w_2} d_{w_2}\]
\[-(d_{w_1} - d_{w_2})((-1)^{n_1} \rho^3_{n_1} + (-1)^{n_2} \rho^3_{n_2} + (-1)^{n_3} \rho^3_{n_3}), \tag{3.27}\]
\[\tilde{q}_2 = -d_v d_{w_1} + d_v (c_{w_2} + d_{w_2})\]
\[-(d_{w_1} - d_{w_2})((-1)^{n_1} \rho^4_{n_1} + (-1)^{n_2} \rho^4_{n_2} + (-1)^{n_3} \rho^4_{n_3}), \tag{3.28}\]
\[\tilde{q}_3 = d_v d_{w_1} + d_v d_{w_2} - (d_{w_1} + d_{w_2})((-1)^{n_1} \rho^5_{n_1} + (-1)^{n_2} \rho^5_{n_2} + (-1)^{n_3} \rho^5_{n_3}), \tag{3.29}\]
\[\tilde{r}_1 = c_v d_{w_1} - c_v d_{w_2} + (c_v - c_{w_2})((-1)^{n_1} \rho^2_{n_1} + (-1)^{n_2} \rho^2_{n_2} + (-1)^{n_3} \rho^2_{n_3})\]
\[-(d_{w_1} - d_{w_2})((-1)^{n_1-1} \rho^3_{n_1} + (-1)^{n_2-1} \rho^3_{n_2} + (-1)^{n_3-1} \rho^3_{n_3}), \tag{3.30}\]
\[\tilde{r}_2 = c_v d_{w_1} - c_v d_{w_2} + (c_v - c_{w_2})((-1)^{n_1} \rho^1_{n_1} + (-1)^{n_2} \rho^1_{n_2} + (-1)^{n_3} \rho^1_{n_3})\]
\[-(d_{w_1} - d_{w_2})((-1)^{n_1-1} \rho^4_{n_1} + (-1)^{n_2-1} \rho^4_{n_2} + (-1)^{n_3-1} \rho^4_{n_3}), \tag{3.31}\]
\[\rho^z_{n_1} + \rho^z_{n_2} + \rho^z_{n_3} = 1, z \in \{1, 2, 3, 4, 5\}.
\]

With respect to the Proposition 2.2, we conclude that it is enough to consider the case of $\rho^z_{n_3} = 0, \rho^z_{n_4} = 0, 1 \leq n_3 < n_4 \leq 4, \{n_1, n_2\} = \{1, 2, 3, 4\}\}\{n_3, n_4\},
\quad (n_1, n_2) \in \{(1, 3), (1, 4), (2, 3), (2, 4)\} as in the next theorem.

Theorem 3.3. (n_1 - n_2-second Ricci-type identities theorem) Suppose that

\[\tilde{X}^i_{jk} = \rho^0_{a^i_{j |k}} + \rho^1_{a^i_{j |n_1}} + \rho^2_{a^i_{j |n_2}} + \rho^3_{a^i_{j |n_3}} + \rho^4_{a^i_{j |n_4}} + \rho^5_{a^i_{j |n_5}}, \quad \tilde{Y}^i_{jk} = \rho^0_{a^i_{j |k}} + \rho^1_{a^i_{j |n_1}} + \rho^2_{a^i_{j |n_2}} + \rho^3_{a^i_{j |n_3}} + \rho^4_{a^i_{j |n_4}} + \rho^5_{a^i_{j |n_5}},\]
\[\tilde{Z}^i_{jk} = \rho^3_{a^i_{j |k}} + \rho^4_{a^i_{j |n_1}} + \rho^5_{a^i_{j |n_2}} + \rho^0_{a^i_{j |n_3}} + \rho^1_{a^i_{j |n_4}} + \rho^2_{a^i_{j |n_5}}, \quad \tilde{U}^i_{jk} = \rho^0_{a^i_{j |k}} + \rho^1_{a^i_{j |n_1}} + \rho^2_{a^i_{j |n_2}} + \rho^3_{a^i_{j |n_3}} + \rho^4_{a^i_{j |n_4}} + \rho^5_{a^i_{j |n_5}},\]
\[\tilde{V}^i_{jk} = \rho^0_{a^i_{j |k}} + \rho^1_{a^i_{j |n_1}} + \rho^2_{a^i_{j |n_2}} + \rho^3_{a^i_{j |n_3}} + \rho^4_{a^i_{j |n_4}} + \rho^5_{a^i_{j |n_5}}, \tag{3.32}\]
for the tensor \tilde{a} of the type $(1,1)$.

The following equation holds:

\[
\begin{align*}
 a^i_{j, \nu_1 \nu_2} | m | n - a^i_{j, \nu_1 \nu_2} | n | m \\
 = & \quad (c_{v_1} - c_{v_2})L^i_{\alpha \nu_1} \tilde{X}^\alpha_{j, \nu_2} + (c_{w_1} - c_{w_2})L^i_{\alpha \nu_1} \tilde{Y}^\alpha_{j, m} + (d_{v_1} - d_{w_2})L^i_{\alpha \nu_1} \tilde{Z}^i_{j, \alpha m} \\
 & + (d_{w_1} - d_{v_2})L^i_{\beta \nu_1} \tilde{U}^\alpha_{j, \nu_2} + (d_{w_1} + d_{w_2})L^i_{\beta \nu_1} \tilde{V}^\alpha_{j, \alpha} \\
 + & a^\alpha_j \{ R^i_{\alpha \nu_1 \nu_2} + c_{v_1} L^i_{\alpha \nu_1 | n} - c_{v_2} L^i_{\alpha \nu_1 | m} \\
 & + \tilde{p}_1 L^\beta_{\alpha \nu_1} L^i_{\beta \nu_1} + \tilde{p}_2 L^\beta_{\alpha \nu_1} L^i_{\beta \nu_2} + \tilde{p}_3 L^\beta_{\nu_1 \nu_2} L^i_{\beta \nu_2} \} \\
 - & a^\alpha_j \{ R^i_{\beta \nu_1 \nu_2} - d_{v_1} L^i_{\alpha \nu_1 | n} + d_{v_2} L^i_{\alpha \nu_1 | m} \\
 & + \tilde{q}_1 L^\beta_{\alpha \nu_1} L^i_{\beta \nu_1} + \tilde{q}_2 L^\beta_{\beta \nu_1} L^i_{\beta \nu_2} + \tilde{q}_3 L^\beta_{\nu_1 \nu_2} L^i_{\beta \nu_2} \} \\
 + & a^\alpha_j \{ \tilde{r}_1 L^\beta_{\alpha \nu_1} L^i_{\beta \nu_1} + \tilde{r}_2 L^\beta_{\nu_1 \nu_2} L^i_{\alpha \nu_2} \},
\end{align*}
\]

(3.33)

where

\[
\begin{align*}
 \tilde{p}_1 &= c_{v_1} c_{w_1} - c_{v_2} (c_{v_2} + d_{w_2}) - (c_{w_1} - c_{v_2}) ((-1)^{n_1 - 1} \rho_{n_1}^2 + (-1)^{n_2} \rho_{n_2}^2), \\
 \tilde{p}_2 &= c_{v_1} (c_{w_1} + d_{w_1}) - c_{v_2} c_{w_2} - (c_{v_1} - c_{w_2}) ((-1)^{n_1 - 1} \rho_{n_1}^1 + (-1)^{n_2} \rho_{n_2}^1), \\
 \tilde{p}_3 &= -c_{v_1} d_{w_1} - c_{v_2} d_{w_2} + (d_{w_1} + d_{w_2})((-1)^{n_1} \rho_{n_1} + (-1)^{n_2} \rho_{n_2}), \\
 \tilde{q}_1 &= -d_{v_1} (c_{w_1} + d_{w_1}) + d_{v_2} d_{w_2} - (d_{v_1} - d_{w_2})((-1)^{n_1} \rho_{n_1} + (-1)^{n_2} \rho_{n_2}), \\
 \tilde{q}_2 &= -d_{v_1} d_{w_1} - d_{v_2} (c_{w_1} + d_{w_2}) - (d_{w_1} - d_{w_2})((-1)^{n_1} \rho_{n_1} + (-1)^{n_2} \rho_{n_2}), \\
 \tilde{q}_3 &= d_{v_1} d_{v_1} + d_{v_2} d_{v_2} - (d_{w_1} - d_{w_2})((-1)^{n_1} \rho_{n_1} + (-1)^{n_2} \rho_{n_2}), \\
 \tilde{r}_1 &= c_{w_1} d_{v_1} - c_{w_2} d_{w_2} + (c_{v_1} - c_{v_2})((-1)^{n_1} \rho_{n_1}^2 + (-1)^{n_2} \rho_{n_2}^2) \\
 & - (d_{v_1} - d_{v_2})((-1)^{n_1} \rho_{n_1}^1 + (-1)^{n_2} \rho_{n_2}^1), \\
 \tilde{r}_2 &= c_{w_1} d_{v_1} - c_{w_2} d_{v_2} + (c_{v_1} - c_{w_2})((-1)^{n_1} \rho_{n_1}^1 + (-1)^{n_2} \rho_{n_2}^1) \\
 & - (d_{v_1} - d_{v_2})((-1)^{n_1} \rho_{n_1}^2 + (-1)^{n_2} \rho_{n_2}^2),
\end{align*}
\]

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

\[
\begin{align*}
 \rho_{n_1}^z + \rho_{n_2}^z + \rho_{n_2}^z = 1, \ z \in \{1, 2, 3, 4, 5\}.
\end{align*}
\]

Theorem 3.4. (Commutation formulae theorem) Fifteen of the geometrical objects $a^i_{j, \nu_1 \nu_2} | m | n - a^i_{j, \nu_1 \nu_2} | n | m$, $v_1, v_2, w_1, w_2 \in \{0, 1, 2, 3, 4\}$, are linearly independent.

Proof. With respect to the Corollary 2.2 and the equation (2.6) in this corollary, we get
\[a^i_{j_1 \ldots j_q} \mid m | n = a^i_{j_1 \ldots j_q} \mid m | n + \sum_{k=1}^p L^i_{\alpha m} L^i_{\beta n} a^i_{j_1 \ldots j_q} \mid m | n + \sum_{k=1}^p L^i_{\alpha m} L^i_{\beta n} a^i_{j_1 \ldots j_q} \mid m | n \]

for the corresponding scalars \(x_1, x_2, x_3, y_1, y_2, y_3 \).

After substituting the expression (3.42) into the equation (3.43), one gets that the double covariant derivative \(a^i_{j_1 \ldots j_q} \mid m | n \) is a linear combination of the geometrical objects \(a^i_{j_1 \ldots j_q} \mid m | n \), for \(v'_1, w'_1 \in \{1, 2, 3\} \).

In 1–2–3-commutation formulae theorem [14], it is proved that sixteen of the geometrical objects \(a^i_{j_1 \ldots j_q} \mid m | n - a^i_{j_1 \ldots j_q} \mid m | n \), for \(v'_1, v'_2, w'_1, w'_2 \in \{1, 2, 3\} \), are linearly independent, which completes the proof for this theorem. \(\square \)

4. Identities of Ricci type with respect to tensor \(\hat{a} \) of type \((p, q)\). The next equation holds.

\[a^i_{j_1 \ldots j_q} \mid m | n = a^i_{j_1 \ldots j_q} \mid m | n + \sum_{k=1}^p L^i_{\alpha m} L^i_{\beta n} a^i_{j_1 \ldots j_q} \mid m | n + \sum_{k=1}^p L^i_{\alpha m} L^i_{\beta n} a^i_{j_1 \ldots j_q} \mid m | n \]

for the corresponding scalars \(x_1, x_2, x_3, y_1, y_2, y_3 \).
\[- \sum_{l=1}^{q} a_{j_1 \ldots j_l-1 \alpha j_l+1 \ldots j_q}^{i_1 \ldots i_p} \left(-d_v L_{j_lm}^\alpha \nabla_{j_m} - d_v (c_w + d_w) L_{j_{m+1}m}^\beta L_{\beta n}^\alpha - d_v d_w L_{j_{m+1}m}^\beta L_{\beta n}^\alpha \right. \\
\quad \left. + d_v d_w L_{mn}^\beta L_{\beta j}^i \right) \]
\[+ \sum_{k=1}^{p} \sum_{l=1}^{q} a_{j_1 \ldots j_l-1 \alpha j_l+1 \ldots j_q}^{i_1 \ldots i_p} \left(c_w d_v L_{j_{m+1}m}^\beta L_{\beta j}^{i_k} + c_v d_w L_{j_{m+1}m}^\beta L_{\beta j}^{i_k} \right). \]
(4.1)

With respect to the equation (2.5), one generalizes the results obtained in the previous section with the next theorems.

Theorem 4.1. (General first Ricci-type identities theorem) The family of identities of the Ricci type with respect to a non-symmetric affine connection \(\nabla \) and a tensor \(\tilde{a} \) of the type \((p, q), p, q \in \mathbb{N}\), is

\[
a_{j_1 \ldots j_q | m | n}^{i_1 \ldots i_p} - a_{j_1 \ldots j_q | v_1 w_1}^{i_1 \ldots i_p} \]
\[= \sum_{k=1}^{p} \sum_{l=1}^{q} \left(c_v - c_w \right) L_{\alpha v}^{i_k} a_{j_1 \ldots j_q | m}^{i_1 \ldots i_k \ldots i_{k+1} \ldots i_p} \]
\[+ \left(c_w - c_v \right) L_{\alpha v}^{i_k} a_{j_1 \ldots j_q | n}^{i_1 \ldots i_k \ldots i_{k+1} \ldots i_p}, \]
(4.3)

\[
a_{j_1 \ldots j_q | m | n}^{i_1 \ldots i_p} = \sum_{k=1}^{p} \sum_{l=1}^{q} \left(d_v - d_w \right) L_{\alpha v}^{i_k} a_{j_1 \ldots j_q | m}^{i_1 \ldots i_{k-1} \alpha i_{k+1} \ldots i_p} \]
\[+ \left(d_w - d_v \right) L_{\alpha v}^{i_k} a_{j_1 \ldots j_q | n}^{i_1 \ldots i_{k-1} \alpha i_{k+1} \ldots i_p}, \]
(4.4)

\[
1 R_{jlmn}^\alpha = R_{jlmn}^\alpha + c_v L_{j_{m+1}m}^\alpha - c_v L_{j_{m+1}m}^\alpha + \left[c_v - c_w (c_w + d_w) \right] L_{j_{m+1}m}^\alpha L_{\alpha v}^i \]
\[+ \left[c_v (c_w + d_w) - c_v c_w \right] L_{j_{m+1}m}^\alpha L_{\alpha v}^i - (c_v d_v + c_v d_w) L_{j_{m+1}m}^\alpha L_{\alpha v}^i, \]
(4.5)

\[
2 R_{jlmn}^\alpha = R_{jlmn}^\alpha - d_v L_{j_{m+1}m}^\alpha + d_v L_{j_{m+1}m}^\alpha - \left[d_v (c_w + d_w) - d_v d_w \right] L_{j_{m+1}m}^\alpha L_{\alpha v}^i \]
\[+ \left[d_v (c_w + d_w) - d_v c_w \right] L_{j_{m+1}m}^\alpha L_{\alpha v}^i + (c_v d_v + c_v d_w) L_{j_{m+1}m}^\alpha L_{\alpha v}^i, \]
(4.6)

\[
3 R_{jlmn}^\alpha = c_v d_v - c_v d_w \right) L_{j_{m+1}m}^\alpha L_{\alpha v}^i + \left(c_v d_{w_1} - c_v d_{w_2} \right) L_{j_{m+1}m}^\alpha L_{\alpha v}^i, \]
(4.7)
and \(v_1, v_2, w_1, w_2 \in \{0, 1, 2, 3, 4\} \).

5. **Conclusion.** In this article, we generalized the first Ricci-type identities theorem. It was proved that three of geometrical objects \(a_{j[k}^i, a_{j[k}^i_1, a_{j[k}^i_2, a_{j[k}^i_3, a_{j[k}^i_4 \) are linearly independent here.

After that, we generalized the first Ricci-type identities theorem with respect to a tensor \(\hat{a} \) of the type \((p, q), p, q \in \mathbb{N}\).

In the future work, we will generalize the commutation formulae theorem, \(n_1 - n_2 - n_3 \)-second Ricci-type identities theorem and the \(n_1 - n_2 \)-second Ricci-type identities theorem with respect to tensors of the types \((p, q), (p, 0), (0, q)\).

Acknowledgements. This research is financially supported by the Serbian Ministry of Education, Science and Technological Developments.

The authors thank the anonymous referee who refereed this paper.

References

1. L.P. Eisenhart, *Non-Riemannian Geometry*, American Mathematical Society (AMS), Providence, RI, 1927.

2. J. Mikeš, E. Stepanova, A. Vanžurova, et al., *Differential geometry of special mappings*, Palacky University, Olomouc, 2015.

3. S.M. Minčić, Ricci identities in the space of non-symmetric affine connexion, *Mat. Vesnik* **10**(25) sv. 2, (1973), 161–172.

4. S.M. Minčić, Curvature tensors of the space of non-symmetric affine connexion, obtained from the curvature pseudotensors, *Matematički Vesnik* **13**(28) (1976), 421–435.

5. S.M. Minčić, New commutation formulas in the non-symmetric affine connexion space, *Publ. Inst. Math., Nouv. Sér.* **22** (1977), 189–199.

6. S.M. Minčić, Independent curvature tensors and pseudotensors of spaces with non-symmetric affine connexion, Coll. Math. Soc. János Bolyai, 31, Dif. geom., pp. 445–460, Budapest, Hungary, 1979.

7. S.M. Minčić, On Ricci Type Identities in Manifolds With Non-Symmetric Affine Connection, *Publications De L’Institut Mathématique, Nouvelle série* tome **94**(108) (2013), 205–217.

8. S.M. Minčić and Lj.S. Velimirović, Spaces With Non-Symmetric Affine Connection, *Novi Sad J. Math.* **38**(3) (2008), 157–164.

9. M.Z. Petrović, Generalized para-Kähler Spaces in Eisenharts Sense Admitting a Holomorphically Projective Mapping, *Filomat* **33**(13) (2019), 4001–4012.

10. M.Z. Petrović and Lj.S. Velimirović, Generalized Kähler spaces in Eisenhart’s sense admitting a holomorphically projective mapping, *Mediterr. J. Math.* **15** (2018), 150.

11. M.Z. Petrović, A new type of generalized para-Kahler spaces and holomorphically projective transformations, *Bull. Iran. Math. Soc.* **45**(4) (2019), 1021–1043.
12. N.S. Sinyukov, *Geodesic mappings of Riemannian spaces*, Nauka, Moscow, 1979. (in Russian)

13. M.S. Stanković, M.Lj. Zlatanović and Lj.S. Velimirović, Equitorsion holomorphically projective mappings of generalized Kählerian space of the first kind, *Czechoslovak Mathematical Journal* 60 (2010), 635–653.

14. N.O. Vesić, Eighty One Ricci-Type Identities, *Facta Universitatis (Niš), Ser. Math. Inform.* 35(4) (2020), 1059–1078.

15. M.Lj. Zlatanović, New projective tensors for equitorsion geodesic mappings, *Applied Mathematics Letters* 25(5) (2012), 890–897.

Received 1 June, 2020.