First-principle and molecular dynamic calculation of concrete-filled steel tubular to introduce stainless steel technology

Yaqin Guo¹²*, Duoqiang Liang³, Yong Deng⁴, Xuemei Zheng¹

¹ School of Mining and Environmental Engineering, Chongqing Vocational Institute of Engineering, Chongqing 402260, China
² College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
³ Innovation Center for Metal Resources Utilization and Environment Protection, School of Resources, Environment and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metal and Featured Materials, Guangxi University, Nanning 530004, China
⁴ Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China

*Email: yaqin.guo@cqu.edu.cn

Abstract: The concrete-filled steel tubular (CFST) structure offers numerous structural benefits, including high strength and fire resistances, favorable ductility and large energy absorption capacities. There is also no need for the use of shuttering during concrete construction; hence, the construction cost and time are reduced. These advantages have been widely exploited and have led to the extensive use of concrete-filled tubular structures in civil engineering structures. In the existing dozens of species types of stainless steel, some are suitable for concrete-filled steel tubular, some not. In this paper, the principles for selection of such types are studied, by both quantum mechanism and molecular dynamic method.

1. Introduction

In metallurgy, stainless steel, also known as inox steel or inox from French inoxydable (inoxidizable), is a steel alloy, with a minimum of 10.5% chromium content by mass and a maximum of 1.2% carbon by mass.

Concrete-filled stainless steel tubular (CFSST) columns are increasingly used in modern composite construction due to their high strength, high ductility, high corrosion resistance, high durability and aesthetics and ease of maintenance.

In the existing dozens of species types of stainless steel, some are suitable for concrete-filled steel tubular, some not. In this paper, the principles for selection of such types are studied, by both quantum mechanism and molecular dynamic method.

2. Calculation method

On the basis of the P–B ratio, it can be judged if the metal is likely to passivate in dry air by creation of a protective oxide layer. P–B ratio simulation was done with CASTEP 2018, a very good code using...
quantum theory, using ultra-soft pseudo potentials with a cut-off energy of 380 eV. The Perdew, Burke and Ernzerhof parametrisation of the generalised gradient approximation was employed to describe the exchange correlation function. A Monkhorst-Pack sampling scheme was used for the integration of the Brillouin Zone, with a minimum k-point separation of 0.045 Å⁻¹. The simulations employed density mixing using the Pulay method.

In calculation, the most factors include the self-consistent energy convergence criterion, the maximum allowed forces between ions, maximum difference in energy, and atomic displacement. They were set to 1×10^{-8} eV and 1×10^{-2} eV/Å, 1×10^{-5} eV and 5×10^{-4}, respectively. Finally, it resulted in a 36 atom supercell.

Melting point of metals and their oxide was calculated by LAMMPS, a very good simulation code using potential filed model including der Waals and electrostatic interactions. A time step, coupling constant, cutoff, and accuracy are 4 fs, 0.4 ps, 12.0Å, of 10^{-4}, respectively. NVT ensemble was adopted using the leap-frog algorithm with a time step of 2.5 fs. annealed time and gather time of the structures of metal and their oxides were set to 30 ps and 320 ps.

3. Calculation results and discussion

3.1. PBR values

PBR values of 1~2 is most important condition for stainless steel\cite{4,5}

PBR value of metals	PBR value
brand No. (USA)	
302	2.075
303	2.081
304	2.087
304L	2.083
309S	2.088
310S	2.088
316	2.289
316N	2.187
316L	2.283
405	2.088
430	2.092
430F	2.092
403	2.095
410S	2.096
410	2.095
420	2.089
420	2.161
201	2.091
202	2.092

As seen from table 1, 316L is higher than others, maybe caused by Mo, an element with high PBR value.

Quantum mechanism calculations results show that 316L is not suitable in preventing corrosion and conform. The table also shows that the corrosion inhibition of these compounds is the same. We can safely draw a conclusion that most metals are fit to inhibit by the PRB value.

3.2. melting points

High melting points is very important factor for concrete-filled steel tubular\cite{6,7}.
Table 2 melting points of metal oxides

brand No. (USA)	melting points	
1Cr18Ni9	302	1421
Y1Cr18Ni9	303	1435
0Cr18Ni9	304	1427
00Cr18Ni9	304L	1424
0Cr23Ni13	309S	1429
0Cr25Ni20	310S	1432
0Cr17Ni12Mo2	316	1442
0Cr17Ni12Mo2N	316N	1275
00Cr17Ni14Mo2	316L	1444
0Cr13Al	405	1396
1Cr17	430	1435
Y1Cr17	430F	1437
1Cr12	403	1437
0Cr13	410S	1438
1Cr13	410	1437
2Cr13	420	1437
3Cr13	420	1437
1Cr17Mn6Ni5N	201	1134
1Cr18Mn8Ni5N	202	1133

As seen from table 1, 201,202L are much lower than others, maybe caused by N, a element with low melting points[8].

Molecular dynamic calculations results predict that 316L is not suitable in preventing corrosion because their melting point is low.

4. Conclusions
The relationship between the intrinsic properties and the deformation behavior of the material was describing for measuring the intrinsic energy barriers. From such discussion, conclusions can be drawn safely that series 2** and 316L is not suitable to concrete-filled steel tubular.

The paper opens up a new way to investigate and understand materials from a different perspective. Much practical work was requiring proving the conclusions.

Acknowledge
The authors thank to the Scientific and Technological Research Program of Chongqing Education Commission (KJ1503305), State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization / Kunming University of Science and Technology (CNMRCUKF1603), and Chongqing Vocational Institute of Engineering (JG182022).

References
[1] Sha Liu, Yukui Gao, Zhijie Wang, Zhijun Shi, Qingxiang Yang. Refinement effect of TiC on ferrite by molecular statics/dynamics simulations and first-principles calculations[J]. Journal of Alloys and Compounds, Volume 731, 15 January 2018, Pages 822-830
[2] D. C. Johnson, B. Kuhr, D. Farkas, G. S. Was. Quantitative analysis of localized stresses in irradiated stainless steels using high resolution electron backscatter diffraction and molecular dynamics modeling[J]. Scripta Materialia, Volume 116, 15 April 2016, Pages 87-90
[3] Nan Dong, Caili Zhang, Hui Liu, Guangwei Fan, Peide Han. Effects of different alloying additives X (X=Si, Al, V, Ti, Mo, W, Nb, Y) on the adhesive behavior of Fe/Cr2O3 interfaces: A first-principles study[J]. Computational Materials Science, Volume 109, November 2015, Pages 293-299
[4] Haixu Li, Hao Yu, Tao Zhou, Baoliang Yin, Yanling Zhang. Effect of tin on the corrosion behavior of sea-water corrosion-resisting steel[J]. Materials & Design, Volume 84, 5 November 2015, Pages 1-9

[5] M. D. McMurtrey, B. Cui, I. Robertson, D. Farkas, G. S. Was. Mechanism of dislocation channel-induced irradiation assisted stress corrosion crack initiation in austenitic stainless steel[J]. Current Opinion in Solid State and Materials Science, Volume 19, Issue 5, October 2015, Pages 305-314

[6] D. C. Johnson, B. Kuhr, D. Farkas, G. S. Was. Quantitative linkage between the stress at dislocation channel – Grain boundary interaction sites and irradiation assisted stress corrosion crack initiation[J]. Acta Materialia, Volume 170, 15 May 2019, Pages 166-175

[7] Rajabpour, L. Seidabadi, M. Soltanpour. Calculating the Bulk Modulus of Iron and Steel Using Equilibrium Molecular Dynamics Simulation[J]. Procedia Materials Science, Volume 11, 2015, Pages 391-396

[8] Chenrui Pei, Lijun Deng, Hongjin Liu, Zhen He, Deen Sun. Corrosion inhibition behaviors of ZrNx thin films with varied N vacancy concentration[J]. Vacuum, Volume 162, April 2019, Pages 28-38