A Network Pharmacology Approach to Explore the Mechanisms of Qishen Granules in Heart Failure

Junjie Liu*
Yuan Li*
Yili Zhang*
Mengqi Huo
Xiaoli Sun
Zixuan Xu
Nannan Tan
Kangjia Du
Yong Wang
Jian Zhang
Wei Wang

* Junjie Liu, Yuan Li, and Yili Zhang contributed equally to this work

Corresponding Authors: Wei Wang, e-mail: wangwei@bucm.edu.cn, Jian Zhang, e-mail: zhangjian@bucm.edu.cn

Source of support: This work was financially supported by the Grants from the National Natural Science Foundation of China (No. 81530100 and 81673712), Significant New Drugs Creation (No.2018ZX09201008-001-011), Fok Ying Tung Education Foundation (No. 151044), Beijing Nova program (Z17110000117028), Talent Young Scientist of China Association for Science and Technology (No.CACM-2017-QNRC2-C13), and excellent young scientist foundation of BUCM (No. 2016-JYB-XJ003)

Background: This study aimed to investigate the intrinsic mechanisms of Qishen granules (QSG) in the treatment of HF, and to provide new evidence and insights for its clinical application.

Material/Methods: Information on QSG ingredients was collected from Traditional Chinese medicine systems pharmacology (TCMSP), TCM@Taiwan, TCMID, and Batman, and input into SwissTargetPrediction to identify the compound targets. HF-related targets were detected from Therapeutic Target Database (TTD), Disgenet-Gene, Drugbank database, and Online Mendelian Inheritance in Man (OMIM) database. The overlap targets of QSG and HF were identified for pathway enrichment analysis by utilizing the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. The protein-protein interaction (PPI) network of QSG-HF was constructed, following by the generation of core targets, construction of core modules, and KEGG analysis of the core functional modules.

Results: There were 1909 potential targets predicted from the 243 bioactive compounds in QSG which shared 129 common targets with HF-related targets. KEGG pathway analysis of common targets indicated that QSG could regulated 23 representative pathways. In the QSG-HF PPI network analysis, 10 key targets were identified, including EDN1, AGT, CREB1, ACE, CXCR4, ADRBK1, AGTR1, BDKRB1, ADRB2, and F2. Further cluster and enrichment analysis suggested that neuroactive ligand-receptor interaction, cGMP-PKG signaling pathway, renin secretion, vascular smooth muscle contraction, and the renin-angiotensin system might be core pathways of QSG for HF.

Conclusions: Our study elucidated the possible mechanisms of QSG from a systemic and holistic perspective. The key targets and pathways will provide new insights for further research on the pharmacological mechanism of QSG.

MeSH Keywords: Heart Failure • Medicine, Chinese Traditional • Pharmacologic Actions

Abbreviations: QSG – Qishen granules; TCM – traditional Chinese medicine; HF – heart failure; KEGG – Kyoto Encyclopedia of Genes and Genomes; PPI – protein-protein interaction; TAMP – TCM systems pharmacology database; TIMED – TCM information database; TTD – Therapeutic Target Database; OMAN – Online Mendelian Inheritance in Man

Full-text PDF: https://www.medscimonit.com/abstract/index/idArt/919768
Background

Heart failure (HF), a clinical syndrome that symbolizes the final stage of cardiovascular diseases, has posed a huge threat to global public health [1,2]. Despite the therapeutic developments that have been made in the past few decades, the prevalence of HF continues to increase [3,4]. HF has extremely complex pathophysiological mechanisms, and the drugs recommended in current guidelines, such as angiotensin-converting enzyme inhibitors, beta-blockers, and spironolactone, tend to directly target limited molecules and pathways. Combinations of these drugs are often prescribed to achieve better effect, however, can cause high medical burden and side effects, and increase the economic burden to patients [5,6]. Hence, potential strategies for HF are extremely necessary.

Traditional Chinese medicine (TCM) has been used in the management of cardiovascular diseases for more than 2000 years [7]. Due to its multiple components, targets, and pathways, TCM treatment of HF is drawing more and more attention [8]. The combination of TCM and modern medicine is widely used in China, and it has shown some advantages such as fewer side effects and better efficacy [9].

Qishen granules (QSG), consists of 6 TCM herbs, and is a Chinese herbal formula that has been widely prescribed to treat HF for decades [10]. Several studies have suggested that the possible mechanisms of QSG for treatment of HF are mainly mediated via exerting anti-myocardial fibrotic, anti-apoptotic, and anti-inflammatory effects [11–13]. Nevertheless, the exact mechanisms that underlie the effects of QSG on HF are elusive. Owing to the complexity of the compounds in QSG, its features pose a huge challenge to comprehend and illustrate the internal molecular mechanisms [14,15].

Although the development and application of analytical chemistry and chemical biology have made it possible to identify the bioactive components of QSG and targets prediction, followed by retrieval of known HF-related targets, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the overlap targets between QSG and HF, the QSG-HF protein-protein interaction (PPI) network construction, and the KEGG pathway enrichment analysis of the core targets in QSG-HF PPI network, in turn. The workflow is illustrated in Figure 1.

Material and Methods

Identification of bioactive QSG components

QSG, also published under the name of Yixin jiedu Decoction, Qishenkeli and Qishenyiqi in the past, consists of 6 species of medicinal herbs: Hedysarum Multijugum Maxim (Huangqi), Radix Salviae (Danshen), Lonicerae Japonicae Flos (jinyinhua), Figwort Root (Xuanshen), Aconiti Lateralis Radix Praeparata (Fuzi), and licorice (Gancao). The compounds of the 6 herbs identified in QSG were obtained from the TCM systems pharmacology database and analysis platform (TCMSP, http://lbd.hkbu.edu.hk/ LSP/tcmsp.php), the TCM Database@Taiwan (http://tc.mcu.edu.tw), the TCM information database (TCMID, http://bidd.nus.edu.sg/group/TCMisite/), and the Bioinformatics analysis tool for molecular mechanism of TCM (Batman, http://bionet.ncpsb.org/batman-tcm/). They contain comprehensive information of all herb ingredients for drug screening and evaluation [20]. Oral bioavailability and drug-likeness were selected for identification of bioactive ingredients. The common screening criteria are oral bioavailability ≥30% and drug-likeness ≥0.18 [21]. Additionally, the names of compounds were standardized according to PubChem CIDs (https://pubchem.ncbi.nlm.nih.gov/).

Potential QSG-related targets and known HF-related targets

Here, SwissTargetPrediction (a tool for target prediction according to 2-dimensional and 3-dimensional similarity measures with known ligands) was selected to predict potential targets for QSG bioactive ingredients [22,23]. Thereafter, the protein names of the QSG bioactive ingredients were converted to gene names using the UniProt Knowledgebase (UniProtKB, http:// www.uniprot.org/) and species was restricted to “Homo sapiens” so that name standardization and deduplication could be achieved based on the UniProt number.

Known targets related to HF were screened using “heart failure” as the keyword from the Therapeutic Target Database (TTD, http://systemsdock.unit.osit.jp/iddp/home/index), the DisgeNet-Gene, the Drugbank database (https://www.drugbank.ca), and the Online Mendelian Inheritance in Man (OMIM, http://omim.org/). Deduplication was performed, after normalizing the targets numbers according to UniProt Knowledgebase.
PPI network construction

Three PPI networks were constructed for the purpose of further exploration of pharmacological mechanisms including: 1) QSG targets PPI network, 2) HF targets PPI network, and 3) QSG-HF PPI network. First, the predicted QSG-targets and screened HF-targets were utilized as hub proteins and submitted to String (https://string-db.org/), with species limited to “Homo sapiens” and a confidence score ≥0.7 [24]. Second, the 2 PPI interactive networks were constructed and visualized by Cytoscape 3.2.1 (http://www.cytoscape.org/). Finally, after merging these 2 networks as a candidate network according to the intersection of PPI data, the QSG-HF PPI network was built. Topological features of these PPI networks were analyzed mainly based on degree which can reflect the importance of nodes’ biological function [25,26].

Cluster analysis

Network modules or clusters refer to sets of highly interconnected nodes which can help discover and reveal hidden biological information within the network [27]. Module identification which can reduce the complexity of complex networks and avoid information loss during network integration, has been considered as one of the key factors in understanding biological systems [28]. Core modules were identified by finding modules that consist of closely linked, biologically similar targets in the QSG-HF PPI network, using ClusterONE in Cytoscape 3.2.1 [29].

Enrichment analysis

KEGG signaling pathway analysis was performed on the overlap targets of QSG and HF and the identified core functional modules of QSG-HF PPI network respectively, using ClueGO plug-in in Cytoscape 3.2.1. P<0.01 was regarded as threshold.

Results

Bioactive components in QSG

Although there are thousands of ingredients in TCM prescriptions, only a few are in accord with satisfactory pharmacokinetic and pharmacodynamic characteristics that ultimately determine efficacy [30]. There were 259 bioactive components from QSG collected, including 28, 71, 26, 10, 29, and 95 from Huangqi, Danshen, Fuzi, Xuanshen, Jinyinhua, and Gancao, respectively. After excluding duplicates, 243 candidate components were selected for further analysis.

Potential targets of QSG and known HF-related targets

A total of 2751 corresponding potential targets of these 243 bioactive components were explored. After the repetition was removed, 1909 potential targets were retained. HF-related gene and protein targets were obtained from 4 databases, including 5 targets from TTD, 73 targets from the Drugbank, 84 targets from the Disgenet-Gene, and 121 targets from the OMIM. After removing duplicates, 262 HF-related targets were collected. Among these, 129 common targets were shared between potential targets of QSG and known HF-related targets (Figure 2).

KEGG pathway enrichment analysis of common targets

Through a KEGG pathway enrichment analysis of these 129 common targets, 58 pathways of significance were identified.
After ranking by gene count, a total of 23 representative pathways were screened (Table 1, Figure 3). Four pathways were mainly associated with cardiovascular functions: cGMP-PKG signaling pathway, fluid shear stress and atherosclerosis, vascular smooth muscle contraction, and Apelin signaling pathway. Four pathways were mainly related to inflammation: TNF signaling pathway, HIF-1 signaling pathway, Toll-like receptor signaling pathway, and IL-17 signaling pathway. Four pathways were mainly involved in glycolipid energy metabolism: AMPK signaling pathway, insulin resistance, and regulation of lipolysis in adipocytes. Nine pathways were mainly relevant to neuro-humoral factor: neuroactive ligand-receptor interaction, adrenergic signaling in cardiomyocytes, calcium signaling pathway, cAMP signaling pathway, renin secretion, thyroid hormone signaling pathway, neurotrophin signaling pathway, aldosterone-regulated sodium reabsorption, and renin-angiotensin system. Two pathways were mainly associated with cell proliferation, differentiation, apoptosis: FoxO signaling pathway and apoptosis.

PPI network analysis

PPI network can visualize and quantify the function of specific proteins in cells at the systematic level [31]. We constructed QSG and HF-related targets network with PPI databases (Figure 4A, 4B). Further, the interactive QSG-HF PPI network was finally obtained after merging these 2 PPI networks (Figure 4C). The results suggested that the QSG-HF interactive PPI network consisted of 57 nodes and 299 edges. Among the 57 QSG core targets, the top 10 targets and corresponding herbs and ingredients were generated and summarized according to degree in Table 2. Furthermore, the herb-compound-target network was established based on the top 10 targets in Figure 5.

KEGG pathway enrichment analysis of core modules

In order to identify the potential mechanism of the 57 key targets, the final central PPI network was divided into 5 clusters. KEGG pathway enrichment analysis were performed on the final central PPI network. The results showed that the core targets were significantly enriched in the pathways related to cardiovascular functions, inflammation, and energy metabolism.
Table 1. 23 representative pathways according to gene count.

GO ID	Pathway	P-value	Gene count	Associated genes
KEGG: 04022	cGMP-PKG signaling pathway	1.90E-13	22	ADORA1, ADRA1A, ADRA1B, ADRA1D, ADRA2A, ADRA2B, ADRA2C, ADRB1, ADRB2, ADRB3, AGTR1, ATP1A1, CALM1, CREB1, EDNRB, KCNMA1, MAPK1, NPR1, PDE3A, PIK3CG, PLN, PPP1CA
KEGG: 05418	Fluid shear stress and atherosclerosis	1.11E-13	21	CALM1, CCL2, CTNNB1, EDN1, GSTP1, HMox1, IFNG, IKBKB, MAPK14, MMP9, NFkB1, NPRC, PIK3R1, PIK3R2, PIK3R3, SELE, THBD, TNF, TP53, VCAM1, VEGFA
KEGG: 04261	Adrenergic signaling in cardiomyocytes	1.47E-11	19	ADRA1A, ADRA1B, ADRA1D, ADRA2B, ADRA2A, ADRA2C, ADRB1, ADRB2, ADRB3, AGTR1, ATP1A1, CACNA2D1, CALM1, CREB1, KCN1, MAPK1, MAPK14, PIK3CG, PLN, PPP1CA, RYR2, SCN5A, TNNT2
KEGG: 04668	TNF signaling pathway	8.87E-13	18	CCL2, CREB1, EDN1, FADD, FAS, IKBKB, IL6, MAPK1, MAPK14, MMP9, NFkB1, PIK3R1, PIK3R2, PIK3R3, SELE, TNF, TNFAIP3, VCAM1
KEGG: 04020	Calcium signaling pathway	6.25E-09	18	ADORA2A, ADORA2B, ADRA1A, ADRA1B, ADRA1D, ADRB1, ADRB2, ADRB3, AGTR1, BDKRB1, CALM1, EDNRB, ERBB2, HTR2B, NOS2, PLN, RYR1, RYR2
KEGG: 04264	cAMP signaling pathway	2.38E-08	18	ADORA1, ADORA2A, ADRB1, ADRA1D, ADRA2B, ATP1A1, CALM1, CDR, CREB1, MAPK1, NFkB1, NPR1, PDE3A, PIK3R1, PIK3R2, PIK3R3, PLN, PPP1CA, RYR2
KEGG: 04066	HIF-1 signaling pathway	3.38E-12	17	EDN1, ERBB2, HIF1A, HMox1, IFNG, IL6, MAPK1, MTO, NFkB1, NOS2, PIK3R1, PIK3R2, PIK3R3, SERPINE1, STAT3, TL4, VEGFA
KEGG: 04924	Renin secretion	9.19E-12	14	ACE, ADORA1, ADRB1, ADRB2, ADRB3, AGT, AGTR1, AQ1P, CALM1, CREB1, KCNMA1, NPR1, PDE3A, REN
KEGG: 04620	Toll-like receptor signaling pathway	5.72E-08	13	CTSK, FADD, IKBKB, IL6, MAPK1, MAPK14, NFkB1, PIK3R1, PIK3R2, PIK3R3, TL4, TL9, TNF
KEGG: 04152	AMPK signaling pathway	3.50E-07	13	ADRA1A, CCND1, CTNR, CREB1, GYS1, HMGCR, LEP, MTO, PIK3R1, PIK3R2, PIK3R3, PPAR, SIRT1
KEGG: 04068	FoxO signaling pathway	9.63E-07	13	ATM, CCND1, FASLG, IKBKB, IL6, MAPK1, MAPK14, PIK3R1, PIK3R2, PIK3R3, SIRT1, STAT3, TGF81
KEGG: 04210	Apoptosis	1.60E-06	13	ATM, CTSK, FADD, FAS, FASLG, IKBKB, IL6, MAPK1, MAPK14, PIK3R1, PIK3R2, PIK3R3, SIRT1, STAT3, TGF81
KEGG: 04931	Insulin resistance	6.33E-07	12	CREB1, GYS1, IKBKB, IL6, MTO, NFkB1, PIK3R1, PIK3R2, PIK3R3, PP1CA, STAT3, TNF
KEGG: 04919	Thyroid hormone signaling pathway	1.52E-06	12	ATP1A1, CCND1, CTNNB1, HIF1A, MAPK1, MTO, NOTCH1, PIK3R1, PIK3R2, PIK3R3, PLN, TP53
KEGG: 04722	Neurotrophin signaling pathway	2.00E-06	12	ABL1, CALM1, FASLG, IKBKB, MAPK1, MAPK14, NFkB1, PIK3R1, PIK3R2, PIK3R3, PSEN1, TP53
KEGG: 04657	IL-17 signaling pathway	1.11E-06	11	CCL2, FADD, IFNG, IKBKB, IL6, MAPK1, MAPK14, MMP9, NFkB1, TNF, TNFAIP3
KEGG: 04270	Vascular smooth muscle contraction	1.49E-05	11	ADORA2A, ADORA2B, ADRA1A, ADRA1B, ADRA1D, AGTR1, CALM1, KCNMA1, MAPK1, NPR1, PPP1CA
Table 1 continued. 23 representative pathways according to gene count.

GO ID	Pathway	P-value	Gene count	Associated genes
KEGG: 04371	Apelin signaling pathway	5.11E-05	11	AGTR1, APLN, CALM1, CCND1, MAPK1, MTOR, NOS2, PIK3CG, RYR1, RYR2, SERPINE1
KEGG: 04211	Longevity regulating pathway	4.71E-05	9	CREB1, MTOR, NFKB1, PIK3R1, PIK3R2, PIK3R3, PPARG, SIRT1, TP53
KEGG: 04923	Regulation of lipolysis in adipocytes	6.28E-06	8	ADORA1, ADRB1, ADRB2, ADRB3, NPR1, PIK3R1, PIK3R2, PIK3R3
KEGG: 04960	Aldosterone-regulated sodium reabsorption	4.51E-06	7	ATP1A1, MAPK1, NR3C2, PIK3R1, PIK3R2, PIK3R3, SCNN1A
KEGG: 04614	Renin-angiotensin system	3.03E-06	6	ACE, ACE2, AGT, AGTR1, MME, REN

Figure 3. 23 pathways screened after sorting by gene count. The abscissa indicates the number of genes associated.

3 clusters which P<0.01 (Figure 6A). Through KEGG pathway enrichment of the 3 modules, after sorting by gene count, the top 5 were collected. The top 5 KEGG pathways were neuroactive ligand-receptor interaction, cGMP-PKG signaling pathway, renin secretion, vascular smooth muscle contraction, and renin-angiotensin system (Figure 6B, Table 3).

Discussion

Preliminary analysis based on common targets

This is the first time for us to systematically explore the internal mechanism of QSG on HF via network pharmacology method, which can provide direction and insights for subsequent basic and clinical researches. With the strategy of database mining, we identified 243 candidate ingredients and their 1909 targets by integrating the most widely used databases. Among these 1909 targets, 129 shared targets of QSG and HF were identified and implemented for KEGG analysis. The enriched pathways confirmed the role of QSG in multi-channel and multi-target regulation. It’s worth noting that among the 23 pathways screened, the regulation of QSG on vascular smooth muscle contraction [32], renin secretion or renin-angiotensin system [12,33,34], calcium signaling pathway [35], apoptosis and apoptosis related Bcl-2, Bax, P53, caspase-3 [11], inflammation related TNF signaling pathway, NF-kB, IL-6 [34] have been validated in our previous studies. However, the remaining pathways have yet to be confirmed. This means that the mechanisms of QSG at the system level are still under investigation.

Further analysis based on core targets

In the core QSG-HF PPI network, 57 QSG core targets were obtained and the top 10 targets were screened according to degree. Among the 10 genes, EDN1, a peptide that involves in maintaining vascular tone and cardiovascular system homeostasis [36,37], had the largest value of degree, indicating its critical role in the QSG-HF PPI network. It was targeted by 7 molecules which originated from 4 herbs including Dihydrokaranone (CID177072) from Danshen, 3-methyl-6,7,8-trihydroxypyrollo[1,2-A]pyrimidin-2-one (CID 5319799) from Gancao, FA (CID 6037) and canavanine (CID 46224610) from Huangqi, Beta-Pinene (CID14896), 1-hexene (CID 11597) and stigmastanol (CID 5280794) from Jinyinhua. Different components derived from different herbs can target common targets, indicating that QSG can regulate disease targets through synergistic effects of multiple components. On the other hand, the same molecule can act on different targets. For example, Miltirone originating from Danshen, can work on targets that participate in multiple pathways, such as AGT, AGRI, ACE, ADobe, and FT. This suggests that QSG interferes with HF through a multi-target approach. From the perspective of
network pharmacology, these 10 genes are the key targets for
the treatment of HF at the molecular level, and the key for un-
covering the pharmacological mechanisms of QSG.

Enrichment analysis based on core modules

We applied module partitioning and analysis to the 57 targets
to understand their biological mechanisms. KEGG analysis of
the core modules screened 5 key signaling pathways. The neu-
roactive ligand receptor interaction signaling pathway, which
covers a quantity of genes, can mediate cardio-protection [38].
Research has reported that regulation of neuroactive ligand-
receptor interaction may protect patients’ damaged cardiac
function after coronary artery bypass grafting [39]. cGMP is a
second messenger widely present in cells, and its stimulation
can alleviate myocardial ischemia-reperfusion injury during
the process of myocardial infarction [40,41]. The protective
role of inhibiting renin secretion or renin-angiotensin system
during HF has been recognized, and relevant drugs have been
widely used in clinical practice [42,43]. Vascular smooth mus-
cle contraction pathway that is closely associated with vascu-
lar remodeling, may play a significant role in regulating hemo-
dynamics [44,45]. Furthermore, genes identified by network
pharmacology analysis that may be involved in the correspond-
ing pathway are also listed in the tables. These genes will be
the key points of interest for follow-up researches.

Limitations

In this study, we confirmed the effect of QSG on HF at the mo-
lecular level by means of network pharmacology, and system-
atically expounded its possible mechanism. However, there are
still some limitations that exist in this study. First, the acqui-
sition of bioactive ingredients is based on existing databases
and literature, rather than expanding the database by liquid
chromatography, mass spectrometry, or other new methods for

Figure 4. Protein-protein interaction (PPI) networks of QSG and heart failure (HF). (A) Green represents QSG-related targets PPI
network with 890 nodes and 7121 edges. (B) Red represents HF-related targets PPI network with 199 nodes and 1015 edges.
(C) Interactive PPI network of QSG and HF with 57 nodes and 299 edges: nodes indicate target proteins or genes; edges
represent correlations between targets; the size of the nodes indicates the value of degree.
Table 2. Top 10 genes of QSG-HF PPI network according to degree.

Gene	Degree	Herbs	Molecule (PubChem CIDs)
EDN1	30	Danshen CID 177072	Gancao CID 5319799; Huangqi CID 6037; CID 46224610; Jinyinhua CID 14896; CID 11597; CID 5280794
AGT	26	Danshen CID 160142; CID 3082765	Gancao CID 5319799; CID 72301; Jinyinhua CID 1549018
ACE	23	Danshen CID 19001403222; CID 11683160; CID 160142; CID 5320066; CID 3082765; CID 5320113; CID 5319835; CID 5320114	Fuzi CID 20055981; Gancao CID 5319013; CID 5417
CXCR4	22	Gancao CID 5318999	Huangqi CID 71448940; CID 13943299; CID 71448939; CID 441905; CID 5988; CID 14241100
ADRBK1	21	Danshen CID 177072	Gancao CID 5319799; Jinyinhua CID 244; CID 6054; CID 1549018
AGTR1	19	Danshen CID 6709746; CID 44425165; CID 160142; CID 3082765	Fuzi CID 76963334; CID 138111911; Gancao CID 5319013; CID 5317478; CID 503731; CID 5481949; CID 5322053; Huangqi CID 73299; Jinyinhua MOL003128
BDKRB1	17	Danshen CID 124268; CID 3083515; CID 3083514	Gancao CID 442411
ADRB2	17	Danshen CID 94162; 5318290; 94162; 11600642; CID 160142	Fuzi CID 441737; CID 441742; CID 165581; CID 91588; CID 4076; Gancao CID 5481948; CID 5821789; CID 5481234; CID 5317300; Xuanshen CID 6992089
F2	17	Danshen CID 126071; CID 3083515; CID 160142; CID 3082765	Fuzi MOL002434; CID 6324887; Gancao CID 5318679; CID 10881804; CID 637112; CID 5281619; CID 5317479; CID 14604077; CID 14604081; CID 503731; CID 5316900; CID 5481949; Huangqi CID 5280343; CID 5318869; CID 5281654; CID 15689655; CID 108213; Jinyinhua MOL003108; MOL003117; CID 334457; Xuanshen CID 6450157

The names of all molecules were represented as PubChem CID numbers. The molecules without PubChem CID were represented as the MOL number.
Figure 5. The herb-compound-target network was established based on the top 10 genes of QSG-heart failure (HF) protein-protein interaction (PPI) network. The red represents 6 herbs in QSG; yellow represents the top 10 target genes; green indicates active compounds. The link represents the interaction among compounds, genes and herbs.

Figure 6. Clusters of core targets protein-protein interaction (PPI) network. (A) 3 core clusters of the final central PPI network. (B) Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the core clusters. The size of the nodes and depth of color is proportional to the number of mapped genes and significance, respectively.
Table 3. Top 5 KEGG pathways among the core modules according to gene count.

GO ID	Pathway	P-value	Gene count	Associated Genes
KEGG: 04080	Neuroactive ligand-receptor interaction	1.89E-12	12	ADORA1, ADORA2A, ADORA2B, ADRA1B, ADRA2A, ADRA2B, ADRA2C, ADBR1, ADBR2, ADBR3, AVPR2, BDKRB1
KEGG: 04022	cGMP-PKG signaling pathway	2.94E-10	9	ADORA1, ADRA1B, ADRA2A, ADRA2B, ADRA2C, ADBR1, ADBR2, ADBR3, CREB1
KEGG: 04924	Renin secretion	3.72E-10	7	ACE, ADORA1, ADBR1, ADBR2, ADBR3, AGT, CREB1
KEGG: 04270	Vascular smooth muscle contraction	1.57E-05	5	ADRA1A, ADRA1B, ADRA1D, AGTR1, AVPR1A
KEGG: 04614	Renin-angiotensin system	3.72E-07	4	ACE, ACE2, AGT, AGTR1

Conclusions

Our study systematically elaborated the possible mechanisms of QSG, and predicted, screened and analyzed the genes, proteins and pathways that might play a vital role in the biological process. Most importantly, these results provide evidence and new insights for further researches on the pharmacological mechanism of QSG.

Conflict of interest

None.

References:

1. Or so F, Fabbri G, Maggioni AP: Epidemiology of heart failure. Handb Exp Pharmacol, 2017; 243: 15–33
2. Mosterd A, Hoes AW: Clinical epidemiology of heart failure. Heart (British Cardiac Society), 2007; 93: 1137–46
3. Dharmarajan K, Rich MW: Epidemiology, pathophysiology, and prognosis of heart failure in older adults. Heart Fail Clin, 2017; 13: 417–26
4. Heidenreich PA, Albert NM, Allen LA et al: Forecasting the impact of heart failure in the United States: A policy statement from the American Heart Association. Circ Heart Fail, 2013; 6: 606–19
5. Page RL 2nd, O’Bryant CL, Cheng D et al. Drugs that may cause or exacerbate heart failure: A scientific statement from the American Heart Association. Circulation, 2016; 134: e32–69
6. Yancy CW, Jessup M, Bozkurt B et al. 2016 ACC/AHA/HFSA focused update on new pharmacological therapy for heart failure: An update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Circulation, 2016; 134: e282–93
7. Hao P, Jiang F, Cheng J et al: Traditional Chinese medicine for cardiovascular disease: Evidence and potential mechanisms. J Am Coll Cardiol, 2017; 69: 2952–66
8. Wang Y, Wang Q, Li C et al: A review of Chinese herbal medicine for the treatment of chronic heart failure. Curr Pharm Des, 2017; 23: 5115–24
9. Zhang P: Advantages, disadvantages, and trend of integrative medicine in the treatment of heart failure. Cell Biochem Biophys, 2015; 72: 363–66
10. Wang L, Shi L, Wei J et al: Safety and efficacy of Qishen granules in patients with chronic heart failure: Study protocol for a randomized controlled trial. Trials, 2017; 18: 468
11. Chang H, Li C, Wang Q et al: QSXL protects against myocardial apoptosis on heart failure via PI3K/Akt-p53 signaling pathway. Sci Rep, 2017; 7: 16986
12. Xia K, Wang Q, Li C et al: Effect of QSXL on MAPK and RhoA pathways in a rat model of heart failure. Evid Based Complement Alternat Med, 2017; 2017: 3903898
13. Ren W, Gao S, Zhang H et al: Decomposing the mechanism of Qishen granules in the treatment of heart failure by a quantitative pathway analysis method. Molecules (Basel, Switzerland), 2018; 23: pii: E1829
14. Ren Y, Chen X, Li P et al: Si-Miao-Yong-An decoction ameliorates cardiac function through restoring the equilibrium of SOD and NOX2 in heart failure mice. Pharmacol Res, 2019; 146: 104318
15. Luo TT, Lu Y, Yan SK et al: Network pharmacology in research of Chinese medicine formula: Methodology, application and prospective. Chin J Integr Med, 2019 [Epub ahead of print]
16. Li S, Zhang B: Traditional Chinese medicine network pharmacology: Theory, methodology and application. Chin J Nat Med, 2013; 11: 110–20
17. Zheng CS, Xu XJ, Ye HZ et al: Network pharmacology-based prediction of multi-target capabilities of the compounds in Taohong Siwu decoction, and their application in osteoarthritis. Exp Ther Med, 2013; 6: 125–32
18. Hopkins AL: Network pharmacology: The next paradigm in drug discovery. Nat Chem Biol, 2008; 4: 682–90
19. Chen L, Cao Y, Zhang H et al: Network pharmacology-based strategy for predicting active ingredients and potential targets of Yangxinshi tablet for treating heart failure. J Ethnopharmacol, 2018; 219: 359–68
20. Ru J, Li P, Wang J et al: TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J Cheminform, 2014; 6: 13
21. Song W, Ni S, Fu Y, Wang Y: Uncovering the mechanism of Maxing Ganshi Decoction on asthma from a systematic perspective: A network pharmacology study. Sci Rep, 2018; 8: 17362

This work is licensed under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
22. Daina A, Michelin O, Zoete V: SwissTargetPrediction. Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res, 2019; 47: W357–64.
23. Gefeller D, Grosdidier A, Wirth M et al: SwissTargetPrediction. A web server for target prediction of bioactive small molecules. Nucleic Acids Res, 2014; 42: W32–38.
24. Talwar P, Gupta R, Kushwaha S et al: Viral induced oxidative and inflammatory response in Alzheimer’s disease pathogenesis with identification of potential drug candidates: A systematic review using systems biology approach. Curr Neuropharmacol, 2019; 17: 352–65.
25. Zhang J, Zheng C, Yuan S et al: Uncovering the pharmacological mechanism of Chaibei Zhixian decoction on epilepsy by network pharmacology analysis. Evid Based Complement Alternat Med, 2019; 2019: 3104741.
26. Li M, Lu Y, Wang J et al: A topology potential-based method for identifying essential proteins from PPI networks. IEEE/ACM Trans Comput Biol Bioinform, 2015; 12: 372–83.
27. Zuo H, Zhang Q, Su S et al: A network pharmacology-based approach to analyze potential targets of traditional herbal formulas: An example of Yu Ping Feng decoction. Sci Rep, 2018; 8: 11418.
28. Csermely P, Korcsmaros T, Kiss HJ et al: Structure and dynamics of molecular networks: A novel paradigm of drug discovery: A comprehensive review. Pharmacol Ther, 2013; 138: 333–408.
29. Lorenz DM, Jeng A, Deem MW: The emergence of modularity in biological systems. Phys Life Rev, 2011; 8: 129–60.
30. Pang HQ, Yue SJ, Tang YP et al: Integrated metabolomics and network pharmacology approach to explain possible action mechanisms of Xin-Sheng-Hua granule for treating anemia. Front Pharmacol, 2018; 9: 165.
31. Jordan F, Nguyen TP, Liu WC: Studying protein-protein interaction networks: A systems view on diseases. Brief Funct Genomics, 2012; 11: 497–504.
32. X.C. F, Guo G, ZQ W et al: [Study on the influence of Yixin Jiedu Formula on CD31 and VEGF expression in myocardial tissue of chronic failure rats with qi deficiency and blood stasis syndrome.] Global Traditional Chinese Medicine, 2015; 8: 419–23 [in Chinese].
33. Wang Y, Li P, Ouyang Y et al: Cardioprotective effects of Qishenyiqi mediated by angiotensin II type 1 receptor blockade and enhancing angiotensin-converting enzyme 2. Evid Based Complement Alternat Med, 2012; 2012: 978127.
34. Li C, Wang Y, Qiu Q et al: Qishenyiqi protects ligand-induced left ventricular remodeling by attenuating inflammation and fibrosis via STAT3 and NF-kappaB signaling pathway. PloS One, 2014; 9: e104255.
35. Lu LH, Li C, Wang QY et al: Cardioprotective effects of Qishen Granule on sarcoplasmic reticulum Ca(2+) handling in heart failure rats. Chin J Integr Med, 2017; 23: 510–17.
36. Jankovich MD, Wu WC, Choudhary G: Association of elevated plasma endothelin-1 levels with pulmonary hypertension, mortality, and heart failure in african american individuals: The Jackson Heart Study. JAMA Cardiol, 2016; 1: 461–69.
37. Monneret D, Roche F, Bonnefont-Rousselot D: Plasma endothelin-1 in acute heart failure: Pathophysiological and preanalytical considerations. Eur J Heart Fail, 2016; 18: 579.
38. Nijst P, Verbrugge FH, Martens P et al: Plasma renin activity in patients undergoing coronary artery bypass graft surgery. Comput Math Methods Med, 2017; 2017: 3618213.
39. Wang J, Cheng J, Zhang C, Li X: Characterization of the drugged human genome. Pharmacogenomics, 2007; 8: 1063–73.
40. Li Y, Wang J, Zhang Q, Su S et al: [Analysis of potential targets of traditional herbal formulas: An example of Xin-Sheng-Hua granule for treating anemia.] Front Pharmacol, 2018; 9: 165.
41. Bice JS, Burley DS, Baxter GF: Novel approaches and opportunities for cardioprotective signaling through 3’,5’-cyclic guanosine monophosphate manipulation. J Cardiovasc Pharmacol Ther, 2014; 19: 269–82.
42. Nijst P, Verbrugge FH, Martens P et al: Plasma renin activity in patients with heart failure and reduced ejection fraction on optimal medical therapy. J Renin Angiotensin Aldosterone Syst, 2017; 18: 1470320317729919.
43. Ames MK, Atkins CE, Pitt B: The renin-angiotensin-aldosterone system and its suppression. J Vet Intern Med, 2019; 33: 363–82.
44. Jiang B, Zhang Y, She C et al: X-ray irradiation has positive effects for the recovery of peripheral nerve injury maybe through the vascular smooth muscle contraction signaling pathway. Environ Toxicol Pharmacol, 2017; 54: 177–83.
45. Kang S, Woo HH, Kim K et al: Dysfunction of vascular smooth muscle and vascular remodeling by simvastatin. Toxicol Sci, 2014; 138: 446–556.