Algebra of Fractions of Algebra with Conjugation

Aleks Kleyn

Abstract. In the paper, I considered construction of algebra of fractions of algebra with conjugation. I also considered algebra of polynomials and algebra of rational mappings over algebra with conjugation.

Contents

1. Auxiliary Theorems .. 1
2. Field of Fractions of Scalar Algebra 4
3. Algebra of Polynomials 7
4. Ideal .. 8
5. References .. 9
6. Index ... 10
7. Special Symbols and Notations 11

1. Auxiliary Theorems

Theorem 1.1. Let \(a, b \in \text{Im} A \). Then

\begin{align}
\text{Re} (ab) &= \text{Re} (ba) \\
\text{Im} (ab) &= -\text{Im} (ba) \\
ab &= (ba)^*
\end{align}

Proof. Since condition of lemma is true, then

\begin{align}
a^* &= -a \\
b^* &= -b
\end{align}

The equation (1.3) follows from the equation (1.4) and the equation

\[ab = a^* b^* = (ba)^* \]

Therefore, equations (1.1), (1.2) follow from equations

\[ab = \text{Re} (ab) + \text{Im} (ab) \]

\[ab = (ba)^* = \text{Re} (ba) - \text{Im} (ba) \]
Theorem 1.2. Let $a \in A$. Then
\begin{equation}
(1.5) \quad aa^* = a^* a
\end{equation}

Proof. The equation (1.5) follows from equations
\begin{align*}
aa^* &= (\Re a)^2 - (\Re a)(\Im a) + (\Im a)(\Re a) - (\Im a)^2 = (\Re a)^2 - (\Im a)^2 \\
(1.8) \quad a^* a &= (\Re a)^2 + (\Re a)(\Im a) - (\Im a)(\Re a) - (\Im a)^2 = (\Re a)^2 - (\Im a)^2
\end{align*}
\hfill \Box

Theorem 1.3. Let A be associative algebra with conjugation. Then
\begin{equation}
(1.6) \quad \overline{(ab)(ab)} = (aa^*)(bb^*)
\end{equation}

Proof. Since
\begin{align*}
a &= \Re a + \Im a \\
b &= \Re b + \Im b
\end{align*}
then
\begin{align*}
(1.7) \quad aa^* &= (\Re a)^2 - (\Re a)(\Im a) + (\Im a)(\Re a) - (\Im a)^2 = (\Re a)^2 - (\Im a)^2 \\
(1.8) \quad bb^* &= (\Re b)^2 - (\Im b)^2 \\
(1.9) \quad ab &= (\Re a)(\Re b) + (\Re a)(\Im b) + (\Im a)(\Re b) + (\Im a)(\Im b) \\
(ab)^* &= (\Re a)(\Re b) - (\Re a)(\Im b) - (\Im a)(\Re b) + (\Im a)(\Im b))^* \\
(1.10) \quad &= (\Re a)(\Re b) - (\Re a)(\Im b) - (\Im a)(\Re b) + (\Im b)^*(\Im a)^* \\
&= (\Re a)(\Re b) - (\Re a)(\Im b) - (\Im a)(\Re b) + (\Im b)(\Im a)
\end{align*}

Since
\begin{align*}
(ab)(ab)^* &= ((\Re a)(\Re b) + (\Re a)(\Im b) + (\Im a)(\Re b) + (\Im a)(\Im b)) \\
&= (\Re a)(\Re b)(\Re a)(\Re b) + (\Re a)(\Im b)(\Re b)(\Re a) - (\Im a)(\Re b)(\Re b)(\Re a) - (\Im a)(\Im b)(\Re b)(\Re a) \\
&+ (\Im a)(\Re b)(\Re a)(\Re b) - (\Im a)(\Im b)(\Re b)(\Re a) \\
&+ (\Im a)(\Re b)(\Re a)(\Re b) - (\Im a)(\Im b)(\Re b)(\Re a) \\
&+ (\Im a)(\Re b)(\Re a)(\Re b) - (\Im a)(\Im b)(\Re b)(\Re a)
\end{align*}

Theorem 1.3 has more simple prove. Namely, the theorem follows from the equation
\begin{equation}
(ab)(ab)^* = (ab)(b^*a^*) = a((bb^*)a^*) = (aa^*)(bb^*)
\end{equation}

However, I hope to find conditions when the theorem 1.3 is true for non associative algebra. The proof in the text is the basis for future research.
From the equation (1.11), it follows that
\[(ab)(ab)^* \]
\[= (\text{Re } a)^2 (\text{Re } b)^2 \]
\[- (\text{Re } a)^2 (\text{Im } b)^2 - (\text{Im } a)^2 (\text{Re } b)^2 \]
\[+ ((\text{Im } a)(\text{Im } b))(\text{Im } b)(\text{Im } a)) \]
\[-((\text{Im } a)(\text{Im } b))(\text{Re } a)(\text{Im } b) + (\text{Re } a)(\text{Im } b)((\text{Im } b)(\text{Im } a)) \]
\[-((\text{Im } a)(\text{Im } b))(\text{Im } a)(\text{Re } b) + (\text{Im } a)(\text{Re } b)((\text{Im } b)(\text{Im } a)) \]
(1.12)

Since the algebra \(A \) is associative, then
\[((\text{Im } a)(\text{Im } b))(\text{Im } b) = (\text{Im } a)((\text{Im } b)(\text{Im } a)) \]
(1.13)
\[((\text{Im } a)(\text{Im } b))(\text{Im } a) = (\text{Im } a)((\text{Im } b)(\text{Im } a)) \]
(1.14)
\[((\text{Im } a)(\text{Im } b))(\text{Im } a) = (\text{Im } a)((\text{Im } b)(\text{Im } a)) \]
(1.15)

It follows from equations (1.12), (1.13), (1.14), (1.15) that
\[(ab)(ab)^* \]
\[= (\text{Re } a)^2 (\text{Re } b)^2 - (\text{Re } a)^2 (\text{Im } b)^2 \]
\[-(\text{Im } a)^2 (\text{Re } b)^2 + (\text{Im } a)^2 (\text{Im } b)^2 \]
(1.16)

The equation (1.6) follows from equations (1.7), (1.8), (1.16).

Theorem 1.4. Let \(A \) be associative algebra with conjugation. Then
\[(\prod_{i=1}^{m} a_i)(\prod_{i=1}^{m} a_i)^* = \prod_{i=1}^{m}(a_i a_i^*) \]
(1.17)

Proof. For \(m = 1 \), the theorem is obvious. For \(m = 2 \), the theorem follows from the theorem 1.3. Let the theorem is true for \(m = p - 1 \). Let
\[b = \prod_{i=1}^{p-1} a_i \]
Then

\[
\left(\prod_{i=1}^{p} a_i \right) \left(\prod_{i=1}^{p} a_i \right)^{*} = \left(\prod_{i=1}^{p-1} a_i \right) a_p \left(\prod_{i=1}^{p-1} a_i \right)^{*} a_p
\]

\[
= (ba_p)(ba_p)^{*} = (ba_p)(a_p^*b^*)
\]

\[
= b(a_p a_p^*)^* b^* = bb^*(a_p a_p^*)
\]

\[
= \left(\prod_{i=1}^{p-1} a_i \right) \left(\prod_{i=1}^{p-1} a_i \right)^* (a_p a_p^*)
\]

\[
= \left(\prod_{i=1}^{p-1} (a_i a_i^*) \right) (a_p a_p^*) = \prod_{i=1}^{p}(a_i a_i^*)
\]

Therefore, the theorem is true for \(m = p \).

\[\Box\]

2. Field of Fractions of Scalar Algebra

Let \(D \) be commutative ring. Let \(A \) be \(D \)-algebra with conjugation. According to the definition [7]-4.2, scalar algebra \(Re A \) is commutative associative ring. Let the ring \(Re A \) be entire.\(^2\) Then there exists field \(F \) of fractions of ring \(Re A \).\(^3\)

According to construction that was done in subsections [8]-4.4.2, [8]-4.4.3, a diagram of representations of \(Re A \)-algebra \(A \) has form

\[
\begin{array}{ccc}
Re A & \xrightarrow{f_{1.2}} & A \\
\downarrow f_{1.2} & & \downarrow f_{2.3} \\
Re A & \xrightarrow{f_{1.2}} & A \\
& & \downarrow f_{2.3} \\
& & f_{2.3}(a) : b \rightarrow C_A(a, b) \\
& & C_A \in \mathcal{L}(A^2; A)
\end{array}
\]

A diagram of representations of \(F \)-algebra \(G \) has form

\[
\begin{array}{ccc}
F & \xrightarrow{g_{1.2}} & B \\
\downarrow g_{1.2} & & \downarrow g_{2.3} \\
F & \xrightarrow{g_{1.2}} & B \\
& & \downarrow g_{2.3} \\
& & g_{2.3}(a) : b \rightarrow C_B(a, b) \\
& & C_B \in \mathcal{L}(B^2; B)
\end{array}
\]

We define \(F \)-algebra \(B \) such that there exists linear homomorphism\(^4\) of \(Re A \)-algebra \(A \) into \(F \)-algebra \(B \)

\[
r_1 : Re A \rightarrow F \quad r_2 : A \rightarrow B
\]

such that ring homomorphism \(r_1 \) is embedding of the ring \(Re A \) into the ring \(F \) (page [1]-108)

(2.1)\quad r_1(d) = d/1

and image of a basis \(\mathcal{E}_A \) of \(Re A \)-module \(A \) under mapping \(r_2 \) is a basis of \(F \)-vector space \(B \)

(2.2)\quad r_2 \circ \mathcal{E}_A = \mathcal{E}_B

\(^2\)See the definition of entire ring on the page [1]-91.

\(^3\)Construction of field of fractions is considered in [1], pages 107 - 110.

\(^4\)See the definition [6]-6.2.
Based on the equation (2.1) we can identify \(d \in \text{Re} A \) and its image
\[r_1(d) = d \]

Theorem 2.1. \(F \)-algebra \(B \) is algebra with conjugation. The field \(F \) is scalar algebra of \(F \)-algebra \(B \). Structural constants of \(F \)-algebra \(B \) coincide with structural constants of \(\text{Re} A \)-algebra \(A \)
\[C_{B - ij}^{k} = C_{A - ij}^{k} \]

Proof. From the equation (2.2) it follows that
\[r_{2 - i}^{k} = \delta_{i}^{k} \]
From the equation (2.4) and the theorem [6]-6.4 it follows that
\[C_{A - ij}^{l} = r_{1}(C_{A - ij}^{k})\delta_{k}^{l} = \delta_{i}^{p}\delta_{j}^{q}C_{B - pq} \]
The equation (2.2) follows from the equation (2.5). From the equation (2.5) and the theorem [7]-4.5 it follows that \(F \)-algebra \(B \) is algebra with conjugation and the field \(F \) is scalar algebra of algebra \(B \).

Below we will assume that \(\text{Re} A \) is a field.

According to the theorem [7]-4.9
\[aa^{*} \in \text{Re} A \]

In contrast to complex field and quaternion algebra, the field \(\text{Re} A \) can be different from the real field. The concept of order may be missing in the field \(\text{Re} A \). So we cannot accept the expression (2.6) as norm in the algebra \(A \). Even more, this expression can be equal 0.

Theorem 2.2. \(a \in A \) is invertible in the \(\text{Re} A \)-algebra \(A \) iff
\[aa^{*} \neq 0 \]
Since the condition (2.6) is true, then
\[a^{-1} = \frac{1}{aa^{*}}a^{*} \]

Proof. By definition, \(a \in A \) is invertible, if there exists \(a^{-1} \in A \) such that
\[aa^{-1} = 1 \]
From the equation
\[aa^{*} = aa^{*} \]
and the equation (2.6), it follows that
\[\frac{1}{aa^{*}}aa^{*} = \frac{1}{aa^{*}}aa^{*} \]
We can represent right part of the equation (2.10) as
\[\frac{1}{aa^{*}}aa^{*} = \frac{1}{aa^{*}} = 1 \]
Since the product in \(\text{Re} A \)-algebra \(A \) is bilinear mapping, then we can represent left part of the equation (2.10) as
\[\frac{1}{aa^{*}}aa^{*} = a\left(\frac{1}{aa^{*}}a^{*} \right) \]
From equations (2.10), (2.11), (2.12), it follows that
\begin{equation}
(2.13) \quad a \left(\frac{1}{aa^*a} \right) = 1
\end{equation}
(2.8) follows from equations (2.9), (2.13).

Since
\begin{equation}
(2.14) \quad aa^* = 0
\end{equation}
then \(a \in A\) is left and right zero divisor.\(^5\) According to the theorem \([3]-6.3\), \(a \in A\) does not have inverse. □

Remark 2.3. Using the notation considered in the beginning of this section we can say that it follows from the theorem 2.2 that \(F\)-algebra \(B\) is algebra which has the greatest possible set of invertible elements of \(\text{Re} A\)-algebra \(A\). \(F\)-algebra \(B\) is called **algebra of fractions of algebra with conjugation \(A\)**. □

Definition 2.4. Let us denote
\[
A_0 = \{ a \in A : aa^* = 0 \}
\]
the **set of zeros of algebra** \(A\). According to the theorem 2.2, \(a \in A_0\) iff either \(a = 0\), or \(a\) is zero divisor. Let us denote
\[
A_1 = \{ a \in A : aa^* \neq 0 \}
\]
the **set of invertible elements of algebra** \(A\). □

Let \(a \in A_1, b \in A\). **Left fraction** is represented by expression
\[
a^{-1}b = \frac{1}{aa^*}a^*b
\]
Right fraction is represented by expression
\[
ba^{-1} = \frac{1}{aa^*}b a^*
\]
The set of fractions in algebra is not limited by left or right fractions. For instance, expressions
\[
(a^{-1}b)(c^{-1}d) \quad a^{-1}b + c^{-1}d
\]
are also fractions.

We can define few equivalence relations on the set of fractions. For instance, since \(d \in \text{Re} A\), then
\[
a^{-1}b = (da)^{-1}(db) \quad (a^{-1}(db))(c^{-1}f) = (a^{-1}b)(c^{-1}(df))
\]
However, the question about canonical form of fraction is not trivial task, at least, at current time.

\(^5\)From equations
\[
\begin{align*}
aa^* &= C_{no}^o a^0 a^0 - C_{kl}^o a^k a^l \\
a^*a &= C_{00}^o a^0 a^0 - C_{kl}^o a^k a^l
\end{align*}
\]
and the equation (2.14), it follows that \(aa^* = 0\).
3. ALGEBRA OF POLYNOMIALS

Let D be the commutative ring of characteristic 0. Let A be D-algebra. **Algebra of polynomials $A[x]$ over D-algebra A** is generated by the set of monomials. The following theorem (the section [5]-5.2) describes the structure of the monomial p_k of power k, $k > 0$, in one variable over associative D-algebra A.

Theorem 3.1. Monomial of power 0 has form a_0, $a_0 \in A$. For $k > 0$,

$$p_k(x) = p_{k-1}(x)xa_k$$

where $a_k \in A$.

Proof. Actually, last factor of monomial $p_k(x)$ is either $a_k \in A$, or has form x^l, $l \geq 1$. In the later case we assume $a_k = 1$. Factor preceding a_k has form x^l, $l \geq 1$. We can represent this factor as $x^{l-1}x$. Therefore, we proved the statement. \[\square\]

In particular, monomial of power 1 has form $p_1(x) = a_0xa_1$. From theorems 3.1, [5]-3.41, it follows that we can associate the tensor $a_0 \otimes a_1 \otimes ... \otimes a_k$ to each monomial p_k.

Order of the factors is essential in the nonassociative algebra. So the theorem 3.1 gets following form.

Theorem 3.2. Monomial of power 0 has form a_0, $a_0 \in A$. For $k > 0$, there exist monomials $p_1, p_m, m + l = k$, such that

$$p_k(x) = a_{k-1}p_1(x)a_{k-2}p_m(x)a_{k-3}$$

where $a_{k-1}, a_{k-2}, a_{k-3} \in A$. \[\square\]

Since D-algebra A is algebra with conjugation, then we can extend the mapping of conjugation onto algebra of polynomials as well. We can consider polynomials over ring $\text{Re} A$. Since the structure of polynomial over ring $\text{Re} A$ is different from the structure of polynomial over algebra A, then determination of relationship between algebras $\text{Re} A[x]$ and $A[x]$ is nontrivial problem.

Since $p(x)$ is monomial over algebra, then, according to the theorem 1.4, we can consider an expression $p(x)(p(x))^*$ as polynomial $r(y)$ with variable $y = xx^*$ over algebra $\text{Re} A$. Although for an arbitrary polynomial $p(x) \in A[x]$, expressions $p(x) + (p(x))^*$, $p(x)(p(x))^*$ take values in ring $\text{Re} A$, it is not clear whether we can consider these expressions as polynomials over ring $\text{Re} A$.

There exist algebras with conjugation where conjugation does not depend linearly on identity mapping (see, for instance, section [2]-6). In such case for any polynomial, expression

$$p(x)(p(x))^*$$

depends from two variables: x and x^*.

Consider algebras with conjugation where conjugation linearly depends on identity mapping

$$x^* = s(x) = s_{i-1}s_{i-1}$$

(for instance, the mapping [4]-4.3.35 in quaternion algebra, the mapping [4]- (4.5.99) in octonion algebra). In such case for any polynomial $p(x)$, expression

$$p(x)(p(x))^* = r(x)$$

is polynomial.

Let the ring $\text{Re} A$ be a field.
Definition 3.3. Let $p(x)$ be polynomial over algebra A. $a \in A$ is called root of the polynomial p, if $p(a) \in A_0$.

According to the theorem 2.2, for polynomial $p(x)$, following expression is defined

\[(3.1) \quad \frac{1}{p(x)(p(x))^*} \in \text{Re } A\]

for any $x \in A$ which is different from root of polynomial $p(x)$. Therefore, the mapping

\[(3.2) \quad (p(x))^{-1} = \frac{1}{p(x)(p(x))^*} (p(x))^*\]

is defined properly for x which is not root of polynomial p.

Algebra $A(x)$ generated by expressions like (3.2) is called algebra of rational mappings of algebra A.

4. IDEAL

Definition 4.1. Subgroup B of additive group of algebra with conjugation A is called left ideal of algebra, if

\[aB \subset B \quad a \in A\]

Subgroup B of additive group of algebra with conjugation A is called right ideal of algebra, if

\[Ba \subset B \quad a \in A\]

Subgroup B of additive group of algebra with conjugation A is called ideal of algebra, if B is both a left and a right ideal.

Example 4.2. Let A be algebra with conjugation, $a \in A$. The set Aa is left ideal called left principal ideal of algebra A. The set aA is right ideal called right principal ideal of algebra A. The set AaA is ideal called principal ideal of algebra A.

Theorem 4.3. Let A be associative algebra with conjugation, $a \in A_0$. Then

\[(4.1) \quad Aa \in A_0\]
\[(4.2) \quad aA \in A_0\]

Proof. Let $b \in A$. From the definition 2.4 it follows that

\[(4.3) \quad (ba)(ba)^* = (ba)(a^*b^*) = b(aa^*)b^* = 0\]
\[(4.4) \quad (ab)(ab)^* = (ab)(b^*a^*) = a(bb^*)a^* = (bb^*)(aa^*) = 0\]

The statement (4.1) follows from the equation (4.3). The statement (4.2) follows from the equation (4.4).

\[\text{6This definition is based on the definition [1], page 86.}\]
\[\text{7[1], page 86.}\]
Theorem 4.4. Let A be associative algebra with conjugation, $a \in A$, $b \in A_0$. Algebra of polynomials $A[x]$ has left ideal

$$Z_1^l(a,b)A[x] = \{ p \in A[x] : p(a) \in Ab \}$$

Algebra of polynomials $A[x]$ has right ideal

$$Z_1^r(a,b)A[x] = \{ p \in A[x] : p(a) \in bA \}$$

Proof. The theorem follows from definitions considered in the example 4.2 and the theorem 4.3. □

We can prove similar theorems.

Theorem 4.5. Let A be associative algebra with conjugation, $a \in A$. Algebra of polynomials $A[x]$ has ideal

$$Z^1(a)A[x] = \{ p \in A[x] : p(a) = 0 \}$$

□

Theorem 4.6. Let A be associative algebra with conjugation, $a \in A$, $b \in A_0$. Algebra of rational mappings $A(x)$ has left ideal

$$Z_1^l(a,b)A(x) = \{ p \in A(x) : p(a) \in Ab \}$$

Algebra of rational mappings $A(x)$ has right ideal

$$Z_1^r(a,b)A(x) = \{ p \in A(x) : p(a) \in bA \}$$

□

Theorem 4.7. Let A be associative algebra with conjugation, $a \in A$. Algebra of rational mappings $A(x)$ has ideal

$$Z^1(a)A(x) = \{ p \in A(x) : p(a) = 0 \}$$

□

5. References

[1] Serge Lang, Algebra, Springer, 2002
[2] Aleks Kleyn, Quaternion Rhapsody, eprint arXiv:0909.0855 (2010)
[3] Aleks Kleyn, Linear Equation in Finite Dimensional Algebra, eprint arXiv:0912.4061 (2010)
[4] Aleks Kleyn, Linear Mappings of Free Algebra, eprint arXiv:1003.1544 (2010)
[5] Aleks Kleyn, The Gâteaux Derivative and Integral over Banach Algebra, eprint arXiv:1006.2597 (2010)
[6] Aleks Kleyn, C^*-Rhapsody, eprint arXiv:1104.5197 (2011)
[7] Aleks Kleyn, Algebra with Conjugation, eprint arXiv:1105.4307 (2011)
[8] Aleks Kleyn, Representation Theory: Representation of Universal Algebra, Lambert Academic Publishing, 2011
6. Index

algebra of fractions of algebra with conjugation 6
algebra of polynomials over D-algebra 7
algebra of rational mappings of algebra 8
ideal of algebra 8
left fraction 6
left ideal of algebra 8
left principal ideal 8
principal ideal 8
right fraction 6
right ideal of algebra 8
right principal ideal 8
root of polynomial 8
set of invertible elements of algebra 6
set of zeros of algebra 6
7. Special Symbols and Notations

\(A[x] \) algebra of polynomials over \(D \)-algebra
\(A \)

\(A(x) \) algebra of rational mappings of
\(A \)

\(a^{-1}b \) left fraction
\(Aa \) left principal ideal
\(AaA \) principal ideal
\(aA \) right principal ideal
\(A_1 \) set of invertible elements of algebra
\(A \)
\(A_0 \) set of zeros of algebra

\(ba^{-1} \) right fraction
Алгебра частных алгебры с сопряжением

Александр Клейн

Аннотация. В статье рассмотрено возможность построения алгебры частных алгебры с сопряжением. Я также рассмотрел алгебру многочленов и алгебру рациональных отображений над алгеброй с сопряжением.

СОДЕРЖАНИЕ

1. Вспомогательные теоремы .. 1
2. Поле частных алгебры скаляров 4
3. Алгебра многочленов ... 7
4. Идеал .. 8
5. Список литературы ... 9
6. Предметный указатель .. 11
7. Специальные символы и обозначения 12

1. ВСПОМОГАТЕЛЬНЫЕ ТЕОРЕМЫ

Теорема 1.1. Пусть $a, b \in \text{Im} A$. Тогда

(1.1) $\text{Re} (ab) = \text{Re} (ba)$
(1.2) $\text{Im} (ab) = -\text{Im} (ba)$
(1.3) $ab = (ba)^*$

Доказательство. Если условие леммы выполнено, то

(1.4) $a^* = -a$ $b^* = -b$

Равенство (1.3) является следствием равенства (1.4) и равенства

$ab = a^*b^* = (ba)^*$

Следовательно, равенства (1.1), (1.2) являются следствием равенств

$ab = \text{Re} (ab) + \text{Im} (ab)$
$ab = (ba)^* = \text{Re} (ba) - \text{Im} (ba)$

Aleks_Kleyn@MailAPS.org.
http://sites.google.com/site/AleksKleyn/.
http://arxiv.org/a/kleyn_a_1.
http://AleksKleyn.blogspot.com/.
Теорема 1.2. Пусть $a \in A$. Тогда

(1.5) \[a^* a = a^* a \]

Доказательство. Равенство (1.5) следует из равенств

\[a^* a = (Re a)^2 - (Re a)(Im a) + (Im a)(Re a) - (Im a)^2 = (Re a)^2 - (Im a)^2 \]
\[a^* a = (Re a)^2 + (Re a)(Im a) - (Im a)(Re a) - (Im a)^2 = (Re a)^2 - (Im a)^2 \]

\[\square \]

Теорема 1.3. Пусть A - ассоциативная алгебра с сопряжением. Тогда

(1.6) \[(ab)(ab)^* = (aa^*)(bb^*) \]

Доказательство. Поскольку

\[a = Re a + Im a \]
\[b = Re b + Im b \]

то

(1.7) \[aa^* = (Re a)^2 - (Re a)(Im a) + (Im a)(Re a) - (Im a)^2 = (Re a)^2 - (Im a)^2 \]
(1.8) \[bb^* = (Re b)^2 - (Im b)^2 \]
(1.9) \[ab = (Re a)(Re b) + (Re a)(Im b) + (Im a)(Re b) + (Im a)(Im b) \]
(1.10) \[(ab)^* = (Re a)(Re b) - (Re a)(Im b) - (Im a)(Re b) + ((Im a)(Im b))^* \]

\[(ab)(ab)^* = ((Re a)(Re b) + (Re a)(Im b) + (Im a)(Re b) + (Im a)(Im b)) \]
\[\ast((Re a)(Re b) - (Re a)(Im b) - (Im a)(Re b) + (Im a)(Im b)) \]
\[= (Re a)(Re b)(Re a)(Re b) + (Re a)(Im b)(Re a)(Re b) - 1 - \]
\[+ (Im a)(Re b)(Re a)(Re b) - 2 - (Im a)(Im b)(Re a)(Re b) - 3 - \]
\[-(Re a)(Re b)(Re a)(Im b) - 1 - (Re a)(Im b)(Re a)(Im b) \]
\[-(Im a)(Re b)(Re a)(Im b) - 3 - (Im a)(Im b)(Re a)(Im b) \]
\[-(Re a)(Re b)(Im a)(Re b) - 2 - (Re a)(Im b)(Im a)(Re b) - 4 - \]
\[-(Im a)(Re b)(Im a)(Re b) - (Im a)(Im b)(Re a)(Re b) \]
\[+ (Re a)(Re b)(Im b)(Im a) - 4 - (Re a)(Im b)(Im a)(Im a) \]
\[+ (Im a)(Re b)(Im b)(Im a) + ((Im a)(Im b))(Im b)(Im a) \]

\[\square \]

1Теорема 1.3 имеет более простое доказательство. А именно, теорема следует из равенств

\[(ab)(ab)^* = (ab)(b^* a^*) = a((bb^*)a^*) = (aa^*)(bb^*) \]

Однако, я надеюсь найти условия, когда теорема 1.3 верна для неассоциативной алгебры. Приведенное доказательство является основой для будущего исследования.
Из равенства (1.11) следует

\[(ab)(ab)^* = (Re a)^2(Re b)^2 - (Re a)^2(Im b)^2 + (Im a)(Im b)(Im a)\]

(1.12)

\[= (Re a)^2(Re b)^2 - (Re a)^2(Im b)^2 + (Im a)(Im b)(Im a)\]

Если произведение в алгебре A ассоциативно, то

\[
((Im a)(Im b))(Im b) = (Im a)((Im b)(Im b))
\]

(1.13)

\[
= ((Im b)(Im b))(Im a) = (Im b)((Im b)(Im a))
\]

(1.14)

\[
((Im a)(Im b))(Im a) = (Im a)((Im b)(Im a))
\]

((Im a)(Im b))(Im a)) = (Im a)((Im b)(Im a))

(1.15)

\[
= (Im a)((Im b)(Im a))(Im a) = (Im a)(Im a)((Im b)(Im b)) = (Im a)^2(Im b)^2
\]

Из равенств (1.12), (1.13), (1.14), (1.15) следует

\[(ab)(ab)^* = (Re a)^2(Re b)^2 - (Re a)^2(Im b)^2 + (Im a)^2(Im b)^2
\]

(1.16)

\[= (Re a)^2((Re b)^2 - (Im b)^2)
\]

\[= (Re a)^2((Re b)^2 - (Im b)^2)
\]

\[= ((Re a)^2 - (Im a)^2)((Re b)^2 - (Im b)^2)
\]

Равенство (1.6) следует из равенств (1.7), (1.8), (1.16).

Теорема 1.4. Пусть A - ассоциативная алгебра с сопряжением. Тогда

\[
\left(\prod_{i=1}^{m} a_i\right) \left(\prod_{i=1}^{m} a_i^*\right) = \prod_{i=1}^{m} (a_i a_i^*)
\]

(1.17)

Доказательство. Для $m = 1$ утверждение теоремы очевидно. Для $m = 2$ теорема следует из теоремы 1.3. Пусть утверждение теоремы верно для $m = p - 1$. Пусть

\[b = \prod_{i=1}^{p-1} a_i\]
Тогда

\[\left(\prod_{i=1}^{p} a_i \right) \left(\prod_{i=1}^{p} a_i \right)^* = \left(\left(\prod_{i=1}^{p-1} a_i \right) a_p \right) \left(\prod_{i=1}^{p-1} a_i \right)^* \]

\[= \left(ba_p (a_p)^* \right) \left(\prod_{i=1}^{p-1} a_i \right)^* b(a_p a_p^*)b^* \]

\[= \left(\prod_{i=1}^{p-1} a_i \right) \left(\prod_{i=1}^{p-1} a_i \right)^* \left(a_p a_p^* \right) \]

\[= \left(\prod_{i=1}^{p-1} (a_i a_i^*) \right) \left(a_p a_p^* \right) = p \left(a_i a_i^* \right) \]

Следовательно утверждение теоремы верно для \(m = p \). \(\square \)

2. Полье частных алгебры скаляр

Пусть \(D \) - коммутативное кольцо. Пусть \(A - D \)-алгебра с сопряжением. Со-гласно определению [7]-4.2, алгебра скаляр \(A \) является коммутативным ассоциативным кольцом. Пусть кольцо \(Re A \) является целостным. Тогда существует поле \(F \) частных кольца \(Re A \).

Согласно построениям, выполненными в разделах [8]-4.4.2, [8]-4.4.3, диаграмма представлений \(Re A \)-алгебры \(A \) имеет вид

\[
\begin{array}{ccc}
Re A & f_{1,2} & A \quad f_{2,3} & A \\
& f_{2,3}(d) : a \rightarrow d a & & \\
& f_{1,2}(a) : b \rightarrow C_A(a, b) & & \\
& f_{1,2} & A & \\
Re A & C_A \in L(A^2; A) & & \\
\end{array}
\]

Диаграмма представлений \(F \)-алгебры \(G \) имеет вид

\[
\begin{array}{ccc}
F & g_{1,2} & B \quad g_{2,3} & B \\
& g_{2,3}(d) : a \rightarrow d a & & \\
& g_{1,2}(a) : b \rightarrow C_B(a, b) & & \\
& g_{1,2} & B & \\
F & C_B \in L(B^2; B) & & \\
\end{array}
\]

Мы определим \(F \)-алгебру \(B \) так, что существует линейный гомоморфизм \(^4\) \(Re A \)-алгебры \(A \) в \(F \)-алгебру \(B \)

\[r_1 : Re A \rightarrow F \quad r_2 : A \rightarrow B \]

такой, что гомоморфизм колец \(r_1 \) является вложением кольца \(Re A \) в кольцо \(F \) (стрицица [1]-86)

(2.1) \[r_1(d) = d/1 \]

и образ базиса \(\overline{e}_A \) \(Re A \)-модуля \(A \) при отображении \(r_2 \) является базисом \(F \)-векторного пространства \(B \)

(2.2) \[r_2 \circ \overline{e}_{A,i} = \overline{e}_{B,i} \]

\(^2\)Смотрите определение целостного кольца на странице [1]-79.

\(^3\)Построение поля частных рассмотрено в [1], страницы 85 - 88.

\(^4\)Смотрите определение [6]-6.2.
На основе равенства (2.1) мы можем отождествить \(d \in \text{Re} \, A \) и его образ
\[
r_1(d) = d
\]
Теорема 2.1. \(F \)-алгебра \(B \) является алгеброй с сопряжением. Поле \(F \) является алгеброй скаляров \(F \)-алгебры \(B \). Структурные константы \(F \)-алгебры \(B \) совпадают со структурными константами \(\text{Re} \, A \)-алгебры \(A \)

\[
(2.3) \quad C_{B,ij}^k = C_{A,ij}^k
\]
Доказательство. Из равенства (2.2) следует
\[
(2.4) \quad r_2^k_i = \delta_i^k
\]
Из равенства (2.4) и теоремы [6]-6.4 следует
\[
(2.5) \quad C_{A,ij}^k = r_1(C_{A,ij}^k) \delta_i^k = \delta_i^p \delta_j^q C_{B,pq}^{ij}
\]
Равенство (2.2) следует из равенства (2.5). Из равенства (2.5) и теоремы [7]-4.5 следует, что \(F \)-алгебра \(B \) является алгеброй с сопряжением и поле \(F \) является алгеброй скаляров алгебры \(B \).

В дальнейшем мы будем полагать, что \(\text{Re} \, A \) является полем.
Согласно теореме [7]-4.9
\[
(2.6) \quad aa^* \in \text{Re} \, A
\]
В отличие от поля комплексных чисел и алгебры кватернионов, поле \(\text{Re} \, A \) может быть отлично от поля действительных чисел. В поле \(\text{Re} \, A \) может отсутствовать понятие порядка. Поэтому мы не можем интерпретировать выражение (2.6) как норму в алгебре \(A \). Более того, это выражение может быть равно 0.
Теорема 2.2. \(a \in A \) обратим в \(\text{Re} \, A \)-алгебре \(A \) тогда и только тогда, когда
\[
(2.7) \quad aa^* \neq 0
\]
Если условие (2.6) выполнено, то
\[
(2.8) \quad a^{-1} = \frac{1}{aa^*}a^*
\]
Доказательство. По определению, \(a \in A \) обратим, если существует \(a^{-1} \in A \) такой, что
\[
(2.9) \quad aa^{-1} = 1
\]
Из равенства
\[
(2.10) \quad aa^* = aa^*
\]
и равенства (2.6) следует
\[
(2.11) \quad \frac{1}{aa^*}aa^* = \frac{1}{aa^*}aa^*
\]
Мы можем представить правую часть равенства (2.11) в виде
\[
(2.12) \quad \frac{1}{aa^*}aa^* = a \left(\frac{1}{aa^*}a^* \right)
\]
Поскольку произведение в \(\text{Re} \, A \)-алгебре \(A \) - билинейное отображение, то мы можем представить левую часть равенства (2.10) в виде
Из равенств (2.10), (2.11), (2.12), следует

\[(2.13)\quad a \left(\frac{1}{aa^*} a^* \right) = 1\]

(2.8) следует из равенств (2.9), (2.13).

Если

\[(2.14)\quad aa^* = 0\]

to \(a \in A\) является левым и правым делителем нуля.\(^5\) Согласно теореме [3]-6.3, \(a \in A\) не имеет обратного.

Замечание 2.3. Используя обозначения, рассмотренные в начале раздела, мы можем утверждать, что из теоремы 2.2 следует, что \(F\)-алгебра \(B\) является алгеброй, в которой обратимо максимально возможное множество элементов \(Re A\)-алгебры \(A\). \(F\)-алгебра \(B\) называется алгеброй частных алгебры с сопряжением \(A\).

Определение 2.4. Обозначим

\[A_0 = \{a \in A : aa^* = 0\}\]

множество нулей алгебры \(A\). Согласно теореме 2.2, \(a \in A_0\) тогда и только тогда, когда либо \(a = 0\), либо \(a\) является делителем нуля. Обозначим

\[A_1 = \{a \in A : aa^* \neq 0\}\]

множество обратимых элементов алгебры \(A\).

Пусть \(a \in A_1, b \in A\). Левая дробь представлена выражением

\[a^{-1}b = \frac{1}{aa^*} a^* b\]

Правая дробь представлена выражением

\[ba^{-1} = \frac{1}{a a^*} a^* b\]

Множество дробей в алгебре не ограничено левыми или правыми дробями. Например, выражения

\[(a^{-1}b)(c^{-1}d) = a^{-1}b + c^{-1}d\]

также являются дробями.

На множестве дробей можно определить несколько отношений эквивалентности. Например, если \(d \in \text{Re } A\), то

\[a^{-1}b = (da)^{-1}(db) = (a^{-1}(db))(c^{-1}f) = (a^{-1}b)(c^{-1}(df))\]

Однако вопрос о канонической форме дроби - задача нетривиальная, по крайней мере, в данный момент времени.

\[\text{из равенств} \quad aa^* = C_{00}^{\alpha} a^0 a^0 - C_{kl}^{\alpha} a^k a^l\]

\[a^* a = C_{00}^{\alpha} a^0 a^0 - C_{kl}^{\alpha} a^k a^l\]

и равенства (2.14) следует \(aa^* = 0\).
3. АЛГЕБРА МНОГОЧЛЕНВ

Пусть D - коммутативное кольцо характеристики 0. Пусть A - D-алгебра.

Алгебра многочленов $A[x]$ над D-алгеброй A порождена множеством одночленов. Структура одночлена p_k степени k, $k > 0$, одной переменной над ассоциативной D-алгеброй A описана в следующей теореме (раздел [5]-5.2).

Теорема 3.1. Одночлен степени 0 имеет вид a_0, $a_0 \in A$. Для $k > 0$, $p_k(x) = p_{k-1}(x)a_k$ где $a_k \in A$.

Доказательство. Действительно, последний множитель одночлена $p_k(x)$ является либо $a_k \in A$, либо имеет вид x^{l}, $l \geq 1$. В последнем случае мы положим $a_k = 1$. Множитель, предшествующий a_k, имеет вид $x^{l'}$, $l' \geq 1$. Мы можем представить этот множитель в виде $x^{l-1}x$. Следовательно, утверждение доказано.

В частности, одночлен степени 1 имеет вид $p_1(x) = a_0 xa_1$. Из теоремы 3.1, [5]-3.41 следует, что каждому одночлену p_k мы можем сопоставить тензор $a_0 \otimes a_1 \otimes ... \otimes a_k$.

В неассоциативной алгебре порядок сомножителей становится существенным. Поэтому теорема 3.1 приобретает следующую форму.

Теорема 3.2. Одночлен степени 0 имеет вид a_0, $a_0 \in A$. Для $k > 0$, существуют одночлены p_i, p_m, $m + l = k$, такие, что

$$p_k(x) = a_{k-1} p_1(x) a_{k-2} p_m(x) a_{k-3}$$

где a_{k-1}, a_{k-2}, $a_{k-3} \in A$.

Если D-алгебра A является алгеброй с сопряжением, то мы можем распространить отображение сопряжения на алгебру многочленов, а также рассматривать многочлены над кольцом $Re A$. Так как структура многочлена над кольцом $Re A$ отличается от структуры многочлена над алгеброй A, то определение связи между алгебрами $Re A[x]$ и $A[x]$ является нетривиальной задачей.

Если $p(x) -$ одночлен над алгеброй, то, согласно теореме 1.4, мы можем рассматривать выражение $p(x)(p(x))^*$ как многочлен $r(y)$ с переменной $y = xx^*$ над алгеброй $Re A$. Хотя для произвольного многочлена $p(x) \in A[x]$ выражения $p(x) + (p(x))^*$, $p(x)(p(x))^*$ принимают значения в кольце $Re A$, совсем не очевидно, можем ли мы эти выражения рассматривать как многочлены над кольцом $Re A$.

Существуют алгебры с сопряжением, в которых сопряжение не зависит линейно от тождественного отображения (смотрите, например, раздел [2]-6). В этом случае для произвольного полинома выражение

$$p(x)(p(x))^*$$

зависит от двух переменных: x и x^*.

Рассмотрим алгебры с сопряжением, в которых сопряжение линейно зависит от тождественного отображения

$$x^* = s(x) = s_{i,0} x s_{i,1}$$
(например, отображение [4]-4.3.35 в алгебре кватернионов, отображение [4]-4.5.99 в алгебре октонионов). В этом случае для произвольного полинома \(p(x) \) выражение
\[p(x)(p(x))^* = r(x) \]
является полиномом.

Пусть кольцо \(\text{Re} A \) является полем.

Определение 3.3. Пусть \(p(x) \) - полином над алгеброй \(A \). \(a \in A \) называется корнем полинома \(p \), если \(p(a) \in A_0 \). □

Согласно теореме 2.2, для полинома \(p(x) \) определено выражение
\[\frac{1}{p(x)(p(x))^*} \in \text{Re} A \]
для любого \(x \in A \), отличного от корня полинома \(p(x) \). Следовательно, отображение
\[(p(x))^{-1} = \frac{1}{p(x)(p(x))^*} (p(x))^* \]
kорректно определено для \(x \), не являющихся корнями многочлена \(p \).

Алгебра \(A(x) \), порождённая выражениями вида (3.2) называется алгеброй рациональных отображений алгебры \(A \).

4. Идеал

Определение 4.1. Подгруппа \(B \) аддитивной группы алгебры с сопряжением \(A \) называется левым идеалом алгебры, если
\[aB \subset B \quad a \in A \]
Подгруппа \(B \) аддитивной группы алгебры с сопряжением \(A \) называется правым идеалом алгебры, если
\[Ba \subset B \quad a \in A \]
Подгруппа \(B \) аддитивной группы алгебры с сопряжением \(A \) называется идеалом алгебры, если \(B \) одновременно является левым и правым идеалом. □

Пример 4.2. Пусть \(A \) - алгебра с сопряжением, \(a \in A \). Множество \(Aa \) является левым идеалом, называемым левым главным идеалом алгебры \(A \). Множество \(aA \) является правым идеалом, называемым правым главным идеалом алгебры \(A \). Множество \(AaA \) является идеалом, называемым главным идеалом алгебры \(A \). □

Теорема 4.3. Пусть \(A \) - ассоциативная алгебра с сопряжением, \(a \in A_0 \). Тогда
\[(4.1) \quad Aa \in A_0 \]
\[(4.2) \quad aA \in A_0 \]

6Это определение опирается на определение [1], стр. 75.
7[1], страници 75.
Доказательство. Пусть \(b \in A \). Из определения 2.4 следует
\[(ba)(ba)^* = (ba)(a^*b^*) = b(aa^*)b^* = 0\] (4.3)
\[(ab)(ab)^* = (ab)(b^*a^*) = a(bb^*)a^* = (bb^*)(aa^*) = 0\] (4.4)
Утверждение (4.1) следует из равенства (4.3). Утверждение (4.2) следует из равенства (4.4).

Теорема 4.4. Пусть \(A \) - ассоциативная алгебра с сопряжением, \(a \in A, b \in A_0 \). Алгебра многочленов \(A[x] \) имеет левый идеал
\[Z_1^l(a, b)A[x] = \{p \in A[x]: p(a) \in Ab\} \]
Алгебра многочленов \(A[x] \) имеет правый идеал
\[Z_1^r(a, b)A[x] = \{p \in A[x]: p(a) \in bA\} \]

Доказательство. Теорема является следствием определений, рассмотренных в примере 4.2 и теоремы 4.3.

Верны также аналогичные теоремы.

Теорема 4.5. Пусть \(A \) - ассоциативная алгебра с сопряжением, \(a \in A \). Алгебра многочленов \(A[x] \) имеет идеал
\[Z_1^1(a)A[x] = \{p \in A[x]: p(a) = 0\} \]

Теорема 4.6. Пусть \(A \) - ассоциативная алгебра с сопряжением, \(a \in A, b \in A_0 \). Алгебра рациональных отображений \(A(x) \) имеет левый идеал
\[Z_1^l(a, b)A(x) = \{p \in A(x): p(a) \in Ab\} \]
Алгебра рациональных отображений \(A(x) \) имеет правый идеал
\[Z_1^r(a, b)A(x) = \{p \in A(x): p(a) \in bA\} \]

Теорема 4.7. Пусть \(A \) - ассоциативная алгебра с сопряжением, \(a \in A \). Алгебра рациональных отображений \(A(x) \) имеет идеал
\[Z_1^1(a)A(x) = \{p \in A(x): p(a) = 0\} \]

5. Список литературы

[1] Серж Ленг, Алгебра, М. Мир, 1968
[2] Александр Клейн, Этюд о кватернионах, eprint arXiv:0909.0855 (2010)
[3] Александр Клейн, Линейное уравнение в конечномерной алгебре, eprint arXiv:0912.4061 (2010)
[4] Александр Клейн, Линейные отображения свободной алгебры, eprint arXiv:1003.1544 (2010)
[5] Александр Клейн, Производная Гато и интеграл над банаховой алгеброй, eprint arXiv:1006.2597 (2010)
[6] Александр Клейн, C^*-рапсодия, eprint arXiv:1104.5197 (2011)
[7] Александр Клейн, Алгебра с сопряжением, eprint arXiv:1105.4307 (2011)
[8] Aleks Kleyn, Representation Theory: Representation of Universal Algebra, Lambert Academic Publishing, 2011
6. ПРЕДМЕТНЫЙ УКАЗАТЕЛЬ

алгебра многочленов над D-алгеброй 7
алгебра рациональных отображений алгебры 8
алгебра частных алгебры с сопряжением 6

главный идеал 8

идеал алгебры 8

корень полинома 8

левая дробь 6
левый главный идеал 8
левый идеал алгебры 8

множество нулей алгебры 6
множество обратимых элементов алгебры 6

правая дробь 6
правый главный идеал 8
правый идеал алгебры 8
7. Специальные символы и обозначения

\[A[x] \] алгебра многочленов над \(D \)-алгеброй \(A \)

\[A(x) \] алгебра рациональных отображений алгебры \(A \)

\[a^{-1}b \] левая дробь

\[Aa \] левый главный идеал

\[AaA \] главный идеал

\[aA \] правый главный идеал

\[A_1 \] множество обратимых элементов алгебры \(A \)

\[A_0 \] множество нулей алгебры \(A \)

\[ba^{-1} \] правая дробь