Communication

One-Pot Synthesis of Triazolobenzodiazepines Through Decarboxylative [3 + 2] Cycloaddition of Nonstabilized Azomethine Ylides and Cu-Free Click Reactions

Xiaoming Ma 1,†, Xiaofeng Zhang 2,†, Weiqi Qiu 2, Wensheng Zhang 3, Bruce Wan 2, Jason Evans 2,* and Wei Zhang 2,†

1 School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, China; mxm.wuxi@cczu.edu.cn
2 Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125, USA; xxiaofengzhang@gmail.com (X.Z.); Weiqi.Qiu001@umb.edu (W.Q.); brucewan99@yahoo.com (B.W.); jason.evans@umb.edu (J.E.)
3 School of Science, Jiaozuo Teachers’ College, 998 Shanyang Road, Jiaozuo 454100, China; tongjizws@163.com
* Correspondence: wei2.zhang@umb.edu; Tel.: +1-617-287-6147
† These authors contributed equally to this work.

Received: 16 January 2019; Accepted: 5 February 2019; Published: 8 February 2019

Abstract: A one-pot synthesis of triazolobenzodiazepine-containing polycyclic compounds is introduced. The reaction process involves a decarboxylative three-component [3 + 2] cycloaddition of nonstabilized azomethine ylides, N-propargylation, and intramolecular click reactions.

Keywords: one-pot synthesis; decarboxylative [3 + 2] cycloaddition; nonstabilized azomethine ylides; click reaction

1. Introduction

Triazolobenzodiazepines and related scaffolds are privileged heterocyclic systems for biologically active molecules, such as benzodiazepine-bearing bretazenil [1], midazolam [2]; protease inhibitors [3], alprazolam [4], estazolam [5], and triazolam [6] (Figure 1). Due to their medicinal significance, the development of synthetic methods for triazolobenzodiazepine-bearing compounds continuously attracts the attention of organic and medicinal chemists [7–9].

![Figure 1. Biologically active triazolobenzodiazepine-related molecules.](image-url)

Highly efficient and atom economic synthesis such as one-pot reactions and multicomponent reactions (MCRs) have gained increasing popularity in the synthesizing of complex molecules including triazolobenzodiazepine-type compounds [10–15]. For example, the Martin group reported a cascade reductive amination and intramolecular [3 + 2] cycloaddition reaction sequence for triazole-fused 1,4-benzodiazepines (Scheme 1A) [10,11]. The Djuric group modified the van Leusen imidazole synthesis to develop an intramolecular azide-alkyne cycloaddition for imidazole- and triazole-fused benzodiazepine compounds (Scheme 1B) [12]. The Kurth group reported a Lewis acid-catalyzed...
MCR for imidazole- and triazole-fused benzodiazepines through sequential [3 + 2] cycloaddition and cycloaddition reactions (Scheme 1C) [13]. Introduced in this paper is a new sequence involving decarboxylative intermolecular [3 + 2] cycloaddition of nonstabilized azomethine ylides followed by N-propargylation and intramolecular [3 + 2] cycloaddition for triazolobenzodiazepines (Scheme 1D).

A. Martin’s work

B. Djuric’s work

C. Kurth’s work

D. This work (one-pot)

Scheme 1. Atom economic synthesis of triazolobenzodiazepines.

1,3-Dipolar cycloaddition of primary amino esters, aldehydes, and activated alkenes is a well-established three-component reaction [16–21]. The azomethine ylides derived from deprotonation of iminium ions are CO₂R-stabilized ylides A (Figure 2A) [22–30]. In recent years, our lab has reported a series of azomethine ylides A-based [3 + 2] cycloadditions for diverse heterocyclic scaffolds [31–35], including one-pot [3 + 2] and click reactions for triazolobenzodiazepines [32]. Compared to the reactions of stabilized ylides A, cycloadditions of nonstabilized ylides B are less explored (Figure 2B) [36–42]. We have recently reported the synthesis of α-trifluoromethyl pyrrolidines through decarboxylative [3 + 2] cycloaddition of nonstabilized azomethine ylides B derived from α-amino acids [43]. Presented in this paper is a new application of nonstabilized azomethine ylides in the one-pot [3 + 2] and click reactions for triazolobenzodiazepines.

2. Results and Discussions

Reaction conditions for the synthesis of proline 4a through one-pot [3 + 2] cycloaddition were developed using 1:1:2:1 of 2-azidebenzaldehyde 1a, 2-aminoisobutyric acid 2a, and N-ethylmaleimide 3a in the presence of 0.3 equiv. of AcOH for decarboxylation [43] (Table 1). After screening
solvents including 2-methyltetrahydrofuran, toluene, EtOH and CH$_3$CN as well as reaction time and temperature, it was found that a reaction using CH$_3$CN as a solvent at 110 °C for 6 h afforded 4a in 93% LC (liquid chromatography) yield with a dr (diastereomer) of 6:1 (Table 1, entry 6). The stereochemistry of 4a was determined according to the literature report [38].

Table 1. Three-component decarboxylative [3 + 2] cycloaddition a.

Entry	Solvent	T ($^\circ$C)	t (h)	4a (%) b	dr (%) c
1	2-Me THF	80	4	trace	—
2	MePh	110	4	82	5:1
3	EtOH	80	4	93	6:1
4	EtOH	110	6	92	6:1
5	CH$_3$CN	110	4	93	6:1
6	CH$_3$CN	110	6	88	6:1
7	CH$_3$CN	125	12		

a Reaction conditions: 1:1.2:1 1a:2a:3a for [3 + 2] cycloaddition. b Detected by LC-MS. c Determined by 1H NMR.

Decarboxylative [3 + 2] cycloaddition product 4a was then used for the development of conditions for the N-propargylation and sequential click reaction for the synthesis of triazolobenzodiazepine 6a. In the presence of K$_2$CO$_3$, 4a reacted with propargyl bromide in CH$_3$CN at 80 °C for 2 h to give 5a in 94% LC yield (Table 2, entries 2–5). Without separation, the reaction mixture was used for intramolecular click reaction at 100 °C under the catalysis of Cu salts (Table 2, entries 2–4). The CuI-catalyzed click reaction gave 6a in 89% LC yield, which is better than the reactions catalyzed with CuCl or CuBr. In our previous work, the intramolecular click reaction was accomplished under microwave heating and Cu-free conditions [32]. In this work, N-propargylation compound 5a generated under the microwave heating was continuously heated at 150 °C for 1 h to give 6a in 88% LC yield without CuI catalyst (Table 2, entry 6). A Cu-free control reaction of 5a under conventional heating at 100 °C for 3 h only gave 5% of 6a (Table 2, entry 5).

Table 2. One-pot N-propargylation and click reaction a.

Entry	Solvent	T$_1$ ($^\circ$C)	t$_1$ (h)	5a (%) b	Cat.	T$_2$ ($^\circ$C)	t$_2$ (h)	6a (%) b
1	EtOH	80	2	trace				
2	CH$_3$CN	80	2	94	CuCl	100	3	35
3	CH$_3$CN	80	2	94	CuBr	100	3	60
4	CH$_3$CN	80	2	94	CuI	100	3	89
5	CH$_3$CN	80	2	94	—	100	3	5
6 c	CH$_3$CN	110	0.5	93		150	1	88 (dr 6:1)

a Reaction conditions: K$_2$CO$_3$ (2.5 equiv.) and propargyl bromide (5.0 equiv.) under conventional or microwave heating. b Detected by LC-MS. c Microwave heating for both N-propargylation and click reactions.

After establishing the three-component [3 + 2] cycloaddition, N-propargylation, and sequential click reactions for 6a shown in Tables 1 and 2, we then aimed to combine these three reactions in one pot. After modification of the conditions shown in Tables 1 and 2, the best conditions for the one-pot
One of the main objectives of this work, however, is to introduce a caveat for the interpretation of gene expression of acute-phase cytokines, and demonstrated that Kupffer cells are involved in this process [22]. Zymosan is known to trigger an inflammatory response through the activation of Kupffer cells at 3 h (Figure 3B,D), for [3 + 2] cycloaddition of nonstabilized azomethine ylides, followed by N-propargylation and a Cu-free intramolecular click reaction using CuI as a catalyst for the click reaction didn’t give a better yield (Table 3, entry 4).

Under the optimized conditions for the one-pot synthesis [44], 13 analogues of triazolobenzodiazepines 6a–m were synthesized using different sets of azidobenzaldehydes 1 (R₁ = H, CF₃, Br, Cl, NO₂), amino acids 2 (R² = H, Me; R³ = Me, Ph, i-Pr), and maleimides 3 (R⁴ = Me, Et, Ph, Bn, 4-Br-Ph) (Table 4). The reactions of five different maleimides with 2-aminoisobutyric acids and 2-azidobenzaldehyde gave 6a–e in 55–65% isolated yields. The substitution groups on the benzaldehydes had some influence on the product yield. For example, the azidobenzaldehydes bearing electron-withdrawing groups, such as Br and CF₃, gave 6f and 6g in lower yields (59% and 35%), while the azidobenzaldehyde with the strong electron-withdrawing group NO₂ gave no product of 6m. The reactions of glycine and leucine with azidobenzaldehydes (R₁ = H, Br, Cl) and maleimides (R⁴ = Me, Et) gave 6h–l in 44–55% yields. The stereochemistry of product 6 was established during the step of the decarboxylative [3 + 2] cycloaddition, which was determined according to the literature report [38].

Entry	T₁ (°C)	t₁ (h)	Cat.	T₂ (°C)	t₂ (h)	6a (%) b
1	110	0.5	—	150	1	75
2	150	0.5	—	150	1	51
3	150	1	—	150	1	76 (dr 6:1)
4	110	0.5	Cul	110	1	70

a Reaction conditions: 1:1.2:1 1a:2a:3a, K₂CO₃ (2.5 equiv.), propargyl bromide (5 equiv.). b Detected by LC-MS, 6:1 dr.

One-pot synthesis of triazolobenzodiazepines 6 a.

| 6a, 65%, dr 6:1 | 6b, 55%, dr 7:1 | 6c, 57%, dr 7:1 | 6d, 60%, dr 7:1 | 6e, 63%, dr 6:1 | 6f, 59%, dr 5:1 | 6g, 35%, dr 4:1 | 6h, 52%, dr 4:1 | 6i, 44%, dr 4:1 | 6j, 47%, dr 4:1 | 6k, 55%, dr 3:1 | 6l, 52%, dr 2:1 | 6m, 0% |

a Reaction conditions, see [44]. b Isolated yield.
The proposed mechanism for the synthesis of product 6a is outlined in Scheme 2. The condensation of 2-azidebenzaldehyde 1a and 2-aminosobutyric acid 2a give oxazolidin-5-one I. It then underwent decarboxylation to form the nonstabilized azomethine ylide II for [3 + 2] cycloaddition with 3a to form 4a. Formation of 5a through propargylation followed by continuous heating for intramolecular click reaction affords product 6a. There are several reports in literature which demonstrated that intramolecular click reactions in one-pot synthesis could be achieved under Cu-free conditions [10,15,32,45,46].

Scheme 2. Mechanism for one-pot synthesis of 6a.

3. Summary

A one-pot synthesis of fused-triazolobenzodiazepines was developed using readily available amino acids, maleimides, and 2-azidebenzaldehydes for decarboxylative [3 + 2] cycloaddition of nonstabilized azomethine ylides, followed by N-propargylation and a Cu-free intramolecular click reaction. This is a highly efficient and operational simple reaction process for fused-triazolobenzodiazepines, and only CO₂ and H₂O were generated as byproducts.

Supplementary Materials: The following are available online. ¹H-NMR, ¹³C-NMR, and ¹⁹F-NMR spectra of final products.

Author Contributions: X.M. and X.F. developed above reactions; W.Q., W.Z., and B.W. expanded the substrates scope; X.F. and W.Z. conceived the project; W.Z. supervised the project and revised the manuscript.

Acknowledgments: X.M. acknowledges the sponsorship of Jiangsu oversea Visiting Scholar Program for University Prominent Youth & Middle-aged Teachers and Presidents. We also acknowledge John Mark Awad and Guoshu Xie’s involvement in this project.

Conflicts of Interest: The authors declare no conflict of interest.

References and Notes
1. Tashma, Z.; Raveh, L.; Liani, H.; Alkalay, D.; Givoni, S.; Kapon, J.; Cohen, G.; Alcalay, M.; Grauer, E. Bretazenil, a benzodiazepine receptor partial agonist, as an adjunct in the prophylactic treatment of OP poisoning. *J. Appl. Toxicol.* 2001, 21, S115–S119. [CrossRef] [PubMed]
2. Djabri, A.; Guy, R.H.; Begona Delgado-Charro, M. Potential of iontophoresis as a drug delivery method for midazolam in pediatrics. *Eur. J. Pharm. Sci.* 2019, 128, 137–143. [CrossRef] [PubMed]
3. Mohapatra, D.K.; Maity, P.K.; Shabab, M.; Khan, M.I. Click chemistry based rapid one-pot synthesis and evaluation for protease inhibition of new tetracyclic triazole fused benzodiazepine derivatives. *Bioorg. Med. Chem. Lett.* 2009, 19, 5241–5245. [CrossRef] [PubMed]
4. Ye, Z.; Ding, M.; Wu, Y.; Li, Y.; Hua, W.; Zhang, F. Electrochemical synthesis of 1,2,4-triazole-fused heterocycles. *Green Chem.* 2018, 20, 1732–1737. [CrossRef]
5. Ahmad, M.R.; Sajjad, G.; Ardeshiri, L.H.; Nahad, A. New and mild method for the synthesis of alprazolam and diazepam and computational study of their binding mode to GABAA receptor. *Med. Chem. Res.* 2016, 25, 1538–1550. [CrossRef]
6. Santos, F.; Javier, G.; Carlos, P. 1,4-Benzodiazepine N-Nitrosoamidines: Useful Intermediates in the Synthesis of Tricyclic Benzodiazepines. *Molecules* 2006, 11, 583–588. [CrossRef]
7. Dömling, A.; Ugi, I. Multicomponent Reactions with Isocyanides. *Angew. Chem. Int. Ed.* **2000**, *39*, 3168–3210. [CrossRef]

8. Dömling, A. Recent Developments in Isocyanide Based Multicomponent Reactions in Applied Chemistry. *Chem. Rev.* **2006**, *106*, 17–89. [CrossRef]

9. Dömling, A.; Wang, W.; Wang, K. Chemistry and Biology of Multicomponent Reactions. *Chem. Rev.* **2012**, *112*, 3083–3135. [CrossRef]

10. Donald, J.R.; Martin, S.F. Synthesis and Diversification of 1,2,3-Triazole-Fused 1,4-Benzodiazepine Scaffolds. *Org. Lett.* **2011**, *13*, 852–855. [CrossRef]

11. Donald, J.R.; Wood, R.R.; Martin, S.F. Application of a Sequential Multicomponent Assembly Process/Huisgen Cycloaddition Strategy to the Preparation of 1,2,3-Triazole-Fused 1,4-Benzodiazepines. *ACS Comb. Sci.* **2012**, *14*, 135–143. [CrossRef] [PubMed]

12. Gracias, V.; Darczak, D.; Gasiecki, A.F.; Djuric, S.W. Synthesis of fused triazolo-imidazole derivatives by sequential van Leusen/alkyne–azide cycloaddition reactions. *Tetrahedron Lett.* **2005**, *46*, 9053–9056. [CrossRef]

13. Nguyen, H.H.; Palazzo, T.A.; Kurth, M.J. Facile One-Pot Assembly of Imidazotriazolobenzodiazepines via Indium(III)-Catalyzed Multicomponent Reactions. *Org. Lett.* **2013**, *15*, 4492–4495. [CrossRef] [PubMed]

14. Kosychova, L.; Karalius, A.; Širutkaitis, R.A.; Palaima, A.; Laurynenas, A.; Anusevicius, Z. New 1-(3-nitrophenyl)-5,6-dihydro-4H-[1,2,4]triazolo[4,3-a][1,5]benzodiazepines: synthesis and computational study. *Molecules* **2015**, *20*, 5392–5408. [CrossRef] [PubMed]

15. Vroemans, R.; Bamba, F.; Winters, J.; Thomas, J.; Jacobs, J.; Meervelt, L.V.; John, J.; Dehaen, W. Sequential Ugi reaction/base-induced ring closing/IAAC protocol toward triazolobenzodiazepine-fused diketopiperazines and hydantoins. *Beilstein J. Org. Chem.* **2018**, *14*, 626–633. [CrossRef] [PubMed]

16. Padwa, A.; Pearson, W.H. (Eds.) *Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products*; Wiley: Hoboken, NJ, USA, 2003. [CrossRef]

17. Kantorowski, E.J.; Kurth, M.J. Dipolar cycloadditions in solid-phase organic synthesis (SPOS). *Chem. Rev.* **2011**, *112*, 3083–3135. [CrossRef] [PubMed]

18. Nagaj, C.; Sansano, J.M. Azomethine Ylides in Organic Synthesis. *Curr. Org. Chem.* **2003**, *7*, 1105–1150. [CrossRef]

19. Coldham, I.; Hufton, R. Intramolecular Dipolar Cycloaddition Reactions of Azomethine Ylides. *Chem. Rev.* **2005**, *105*, 2765–2810. [CrossRef]

20. Rück-Braun, K.; Freysoldt, T.H.E.; Wierschem, F. 1,3-Dipolar cycloaddition on solid supports: nitrene approach towards isoxazolidines and isoxazolines and subsequent transformations. *Chem. Soc. Rev.* **2005**, *34*, 507–516. [CrossRef]

21. Harju, K.; Yli-Kaupiala, J. Recent advances in 1,3-dipolar cycloaddition reactions on solid supports. *Mol. Divers.* **2005**, *9*, 187–200. [CrossRef]

22. Oderaotoshi, Y.; Cheng, W.; Fujitomi, S.; Kasano, Y.; Minakata, S.; Komatsu, M. exo- and Enantioselective Cycloaddition of Azomethine Ylides Generated from N-Alkylidene Glycine Esters Using Chiral Phosphine–Copper Complexes. *Org. Lett.* **2003**, *5*, 5043–5046. [CrossRef] [PubMed]

23. Pandey, G.; Banerjee, P.; Gadre, S.R. Construction of Enantiopure Pyrrolidine Ring System via Asymmetric [3+2]-Cycloaddition of Azomethine Ylides. *Chem. Rev.* **2006**, *106*, 4484–4517. [CrossRef] [PubMed]

24. Potowski, M.; Bauer, J.O.; Strohmann, C.; Antonchick, A.P.; Waldmann, H. Highly Enantioselective Catalytic [6+3] Cycloadditions of Azomethine Ylides. *Angew. Chem. Int. Ed.* **2012**, *51*, 9512–9516. [CrossRef] [PubMed]

25. Adrio, J.; Carretero, J.C. Recent advances in the catalytic asymmetric 1,3-dipolar cycloaddition of azomethine ylides. *Chem. Commun.* **2014**, *50*, 12434–12446. [CrossRef] [PubMed]

26. Narayan, R.; Potowski, M.; Jia, Z.J.; Antonchick, A.P.; Waldmann, H. Catalytic Enantioselective 1,3-Dipolar Cycloadditions of Azomethine Ylides for Biology-Oriented Synthesis. *Acc. Chem. Res.* **2014**, *47*, 1296–1310. [CrossRef] [PubMed]

27. Hashimoto, T.; Maruoka, K. Recent Advances of Catalytic Asymmetric 1,3-Dipolar Cycloadditions. *Chem. Rev.* **2015**, *115*, 5366–5412. [CrossRef]

28. Singh, M.S.; Chowdhury, S.; Koley, S. Progress in 1,3-dipolar cycloadditions in the recent decade: an update to strategic development towards the arsenal of organic synthesis. *Tetrahedron* **2016**, *72*, 1603–1644. [CrossRef]

29. Zhang, J.X.; Wang, H.Y.; Jin, Q.W.; Zheng, C.W.; Zhao, G.; Shang, Y.J. Thiourea–Quaternary Ammonium Salt Catalyzed Asymmetric 1,3-Dipolar Cycloaddition of Imino Esters to Construct Spirol[pyrrolidin-3,3′-oxindoles]. *Org. Lett.* **2016**, *18*, 4774–4777. [CrossRef]
30. Esteban, F.; Cieslik, W.; Arpa, E.M.; Guerrero-Corella, A.; Diaz-Tendero, S.; Perles, J.; Fernandez-Salas, J.A.; Fraile, A.; Aleman, J. Intramolecular Hydrogen Bond Activation: Thiourea-Organocatalyzed Enantioselective 1, 3-Dipolar Cycloaddition of Salicylaldehyde-Derived Azomethine Ylides with Nitroalkenes. *Acs Catal.* 2018, 8, 1884–1890.

31. Zhang, W.; Lu, Y.; Chen, C.H.-T.; Zeng, L.; Kassel, D.B. Fluororous Mixture Synthesis of Two Libraries with Hydantoin-, and Benzodiazepinedione-Fused Heterocyclic Scaffolds. *J. Comb. Chem.* 2006, 8, 687–695. [CrossRef]

32. Zhang, X.F.; Zhi, S.J.; Wang, W.; Liu, S.; Jasinski, J.P.; Zhang, W. A pot-economical and diastereoselective synthesis involving catalyst-free click reaction for fused-triazolobenzodiazepines. *Green Chem.* 2016, 18, 2642–2646. [CrossRef]

33. Zhang, X.F.; Legris, M.; Muthengi, A.; Zhang, W. [3 + 2] Cycloaddition-based one-pot synthesis of 3,9-diazabicyclo[4.2.1]nonane-containing scaffold. *Chem. Heterocycl. Com.* 2017, 53, 468–473. [CrossRef]

34. Muthengi, A.; Zhang, X.F.; Dhawan, G.; Zhang, W.S.; Corsinia, F.; Zhang, W. Sequential (3 + 2) cycloaddition and (5 + n) annulation for modular synthesis of dihydrobenzoazines, tetrahydrobenzoazepines and tetrahydrobenzoxazocines. *Green Chem.* 2018, 20, 3134–3139. [CrossRef]

35. Zhang, X.F.; Qiu, W.Q.; Ma, X.M.; Evans, J.; Kaur, M.; Jasinski, J.P.; Zhang, W. One-Pot Double [3 + 2] Cycloadditions for Diastereoselective Synthesis of Pyrroolidine-Based Polycyclic Systems. *J. Org. Chem.* 2018, 83, 13536–13542. [CrossRef] [PubMed]

36. Tsuge, O.; Kanemasa, S.; Ohe, M.; Takenaka, S. Simple Generation of Nonstabilized Azomethine Ylides through Decarboxylative Condensation of α-Amino acids with Carbonyl Compounds via 5-Oxazolidinone Intermediates. *Bull. Chem. Soc. Jpn.* 1987, 60, 4079–4089. [CrossRef]

37. Grigg, R.; Idle, J.; McMeekin, P.; Vipond, D. The Decarboxylative Route to Azomethine Ylides. Mechanism of 1,3-Dipole Formation. *J. Chem. Soc. Chem. Commun.* 1987, 2, 49–51. [CrossRef]

38. Aly, M.F.; Grigg, R.; Thanapatagul, S.; Sridharan, V. X=Y–ZH systems as potential 1,3-dipoles. Part 10. The decarboxylative route to azomethine ylides. Background and relevance to pyridoxal decarboxylases. *J. Chem. Soc. Perkin Trans. 1* 1988, 4, 949–955. [CrossRef] [PubMed]

39. Kanemasa, S. The Chemistry of Azomethine Ylides Developed in the Institute. *Rep. Inst. Adv. Mater. Study Kyushu Univ.* 1988, 2, 149–177. [CrossRef]

40. Kanemasa, S.; Sakamoto, K.; Tsuge, O. Nonstabilized Azomethine Ylides Generated by Decarboxylative Condensation of α-Amino acids. Structural Variation, Reactivity and Stereoselectivity. *Bull. Chem. Soc. Jpn.* 1989, 62, 1960–1968. [CrossRef]

41. Rehn, S.; Bergman, J.; Stensland, B. The Three-Component Reaction between Isatin, α-Amino Acids, and Dipolarophiles. *Eur. J. Org. Chem.* 2004, 413–418. [CrossRef]

42. Kudryavtsev, K.V. Three-component synthesis of tricyclic lactams containing the pyrrolizidin-3-one moiety. *Russ. Chem. Bull.* 2008, 57, 2364–2372. [CrossRef]

43. Zhang, X.F.; Liu, M.; Zhang, W.S.; Legris, M.; Zhang, W. Synthesis of trifluoromethylated pyrroldines via decarboxylative [3+2] cycloaddition of non-stabilized N-unsubstituted azomethine ylides. *J. Fluorine Chem.* 2017, 204, 18–22. [CrossRef]

44. General procedure for the one-pot synthesis: A solution of 2-azidebenzaldehyde 1 (1.0 mmol), amino acid 2 (1.2 mmol) and maleimide 3 (1.0 mmol) in 3.0 mL of CH3CN was heated at 110 °C for 6 h in a sealed tube. Upon the completion of the reaction as monitored by LC-MS, propargyl bromide solution (80% in toluene, 5.0 mmol) and K2CO3 (2.5 mmol) were added to the reaction mixture and then heated under microwaves at 150 °C for 1 h. The concentrated reaction mixture was loaded onto a semi-preparative HPLC with a C18 column to afford purified major diastereomer of product 6.

45. Guggenheim, K.G.; Toru, H.; Kurth, M.J. One-Pot, Two-Step Cascade Synthesis of Quinazolinotriazolobenzodiazepines. *Org. Lett.* 2012, 14, 3732–3735. [CrossRef] [PubMed]

46. De Moliner, F.; Bigatti, M.; Banfi, L.; Riva, R.; Basso, A. OPHA (Oxidation – Passerini – Hydrolysis – Alkylation) Strategy: A Four-Step, One-Pot Improvement of the Alkylation Passerini Reaction. *Org. Lett.* 2014, 16, 2280–2283. [CrossRef] [PubMed]

Sample Availability: Samples of the compounds are available from the authors.