INTRODUCTION

Membrane trafficking can take place intra- or inter-cellularly. While intracellular membrane trafficking has been well-studied, inter-cellular communication via extracellular vesicles (EVs) has only recently emerged as a novel cell signalling mechanism. EVs are membrane-bound nanoparticles, which are secreted by all cell types. Different types of EVs have been annotated and their classification is based on biogenesis. For example, living cells secrete both exosomes (~40-100 nm in diameter) and ectosomes or microvesicles (~100-1000 nm in diameter). The former originates from endosomal multivesicular bodies (MVBs) that fuse with the cell membrane, whereas the latter directly bud from the cell membrane upon stimulation. There are also apoptotic bodies (>500 nm), which are formed when cells undergo programmed cell death. Of note, the size of the EVs presented here is for reference only and cannot be utilized as a classification characteristic. In addition to the well-known EV species mentioned above, various other types of vesicles have also been described. However, their formation might still follow the basic biogenesis steps of exosomes and microvesicles.

EVs contain a wide array of biological molecules, which represent the cytoplasmic and membranous contents of the mother cell. These include membrane proteins, enzymes, signalling molecules and RNAs including both coding and non-coding RNAs. MicroRNAs (miRNAs) are a class of small single-stranded non-coding RNAs (of ~22 nt in length) that play an important role in the regulation of gene expression in eukaryotes. miRNAs and associated proteins of the RNA-silencing complex (RISC) execute their functions mainly.

Abstract

Cells utilize different means of inter-cellular communication to function properly. Here, we review the crosstalk between cancer cells and their surrounding environment through microRNA (miRNA)-containing extracellular vesicles (EVs). The current findings suggest that the export of miRNAs and uptake of miRNA-containing EVs might be an active process. As post-transcriptional regulators of gene expression, cancer-derived miRNAs that are taken up by normal cells can change the translational profile of the recipient cell towards a transformed proteome. Stromal cells can also deliver miRNAs via EVs to cancer cells to support tumour growth and cancer progression. Therefore, gaining a better understanding of EV-mediated inter-cellular communication in the tumour microenvironment might lead to the development of novel diagnostic and therapeutic strategies.
by binding (either precisely or imprecisely) to the 3′ untranslated region (3′UTR) of their target mRNA, which subsequently leads to translational inhibition and/or target mRNA degradation in the cytosol. In mammals, most protein-coding genes contain at least one miRNA-binding site. Therefore, miRNA-mediated gene regulation is involved in many important processes including embryonic development, the cell cycle and metabolism.

The expression of miRNA is tightly regulated. After being transcribed by RNA polymerase II, miRNA primary transcripts (pri-miRNAs), which encode one or multiple miRNAs, are further processed via 5′-capping, splicing and polyadenylation. Pri-miRNAs can reach several kilobases in length and they contain stem-loop structures, which are the target excision sites for the nuclear RNase III, Drosha. After cleavage by Drosha, the hairpins (pre-miRNAs) generated are translocated into the cytosol by exportin-5. The pre-miRNAs then have their terminal loop removed by Dicer, and this results in the formation of double-stranded (ds) RNAs of ~22 bp. The ds-miRNAs are subsequently loaded onto Argonaute (Ago) protein to form a RISC. Ago selects one strand to be a guide (miRNA) and it removes the other (passenger strand or miRNA*) in order to form a functional complex.

Although miRNAs are mainly localized in the cytosol, they are also secreted in extracellular complexes such as EVs. Cell-free miRNAs have been identified in different body fluids such as serum/plasma, breast milk, colostrum, saliva, tears, urine, seminal fluid, amniotic fluid, pleural fluid, bronchoalveolar lavage fluid, gastric juice, peritoneal fluid and cerebrospinal fluid. Proteins can serve as carriers for different groups of miRNAs. In addition to a passive secretion, there is also a mechanism by which specific miRNAs are loaded into EVs. EV cargoes are recruited to the site of vesicle formation, whereas sorting is an active selection process in which some specific miRNAs are exclusively destined for secretion. These processes happen simultaneously following vesicle biogenesis.

2.1 miRNA secretion into exosomes

Stable circulating miRNAs have been found to complex with lipids, proteins and secreted vesicles, which suggests that there is more than one mechanism of miRNA secretion. In addition to a passive leakage due to cellular injury, there are other different pathways that have been proposed to explain the secretion of miRNAs into the circulation. For example, high-density lipoprotein (HDL) and other proteins can serve as carriers for different groups of miRNAs. However, the mechanism by which miRNAs are selected for HDL secretion is still unknown. It is known that miR-16, miR-92a, miR-122, miR-142-3p and miR-150 in complex with AGO2 can all stably circulate in the blood stream. However, the miRNA secretion pathway where most is known is the export of miRNAs via EVs.

Two processes govern the presence of a specific miRNA in EVs: these are loading and sorting. Loading refers to mechanisms in which EV cargo is recruited to the site of vesicle formation, whereas sorting is an active selection process in which some specific miRNAs are exclusively destined for secretion. These processes happen simultaneously following vesicle biogenesis.

Various attempts have been made to analyse the loading and sorting of miRNA into exosomes. Exosome biogenesis includes either the recruitment of the endosomal sorting complex required for transport system (ESCRT-dependent) or the synthesis of ceramide (ESCRT-independent). miRNA loading is more likely to be involved in the ESCRT-independent pathway. This is because downregulation of neutral sphingomyelinase 2 (nSMase2), a key regulator of ceramide synthesis, leads to decreased miRNA secretion, whereas blocking the ESCRT has little effect on miRNA secretion. Some miRNAs are known to be selectively sorted into EVs, although the exact mechanisms are mostly unknown. Villarroya-Beltri et al reported that in T cells, sumoylated heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1) binds to a particular motif of various miRNAs and localizes them into the intraluminal vesicles (ILVs) of MVBs (Figure 1). These MVBs subsequently fuse with the cell membrane and release the now-mature ILVs or exosomes. Furthermore, Lupus La protein binds to miR-223 into exosomes of HEC-293T cells (Figure 1).

Wild-type and mutant KRAS regulate the secretion of different miRNAs into colorectal cancer exosomes (Figure 1). In addition, the RNA-binding protein called Y-box protein, SYNCRIP, selectively sorts miRNAs that have a 4-nucleotide motif near the 3′ end, independently of hnRNPA2B1 (Figure 1). Together, these findings suggest that there is more than one mechanism for miRNA sorting. However, it is unclear whether the loading of miRNAs is sequence specific although some findings have suggested that the sorting of selective miRNAs is based on motif recognition.

Genomic position might also play a role in miRNA secretion. miRNAs often cluster together in the genome and are often transcribed together. By comparing the miRNAs of the cells and exosomes of related individuals, Tsang et al identified an active region at band 14q32 on chromosome 14 for the secretion of miRNAs. However, the group also stated that the selective export miRNAs could not be explained by current mechanisms.

As miRNA can be selectively sorted into EVs, the concentration of miRNA in EVs (a quantitative aspect of miRNA sorting) can provide new information regarding miRNA secretion. Squadrito et al reported that...
the level of miR-511 in bone marrow–derived macrophage exosomes is affected either by the cell activation state or the expression of cellular miRNAs and their target sequences. Similarly, the expression of Cavin-1 in prostate cancer cells was reported to selectively decrease the concentration of miR-148a in EVs by ~3.67-fold without changing the concentration of miR-148a. These findings reveal that the presence and quantity of EV-derived miRNAs are dynamic and dependent on the response of the mother cell to both internal and external signals. However, much work is still required to uncover the biological implications of the fluctuation of EV-derived miRNAs.

2.2 | miRNA secretion into microvesicles

Not much is known about the loading and sorting of miRNAs into microvesicles. Although the biogenesis of microvesicles and exosomes is regulated by overlapping sets of molecules, the former still utilizes a distinct collection of regulatory proteins. In the biogenesis of microvesicles, annexin A1 and A2, which are calcium ion- (Ca²⁺-) and membrane-binding proteins, play an important role in forming a curved structure on the membrane for blebbing and folding. Indeed, using a combination of high-resolution density gradient fractionation and immunoaffinity methods to purify and classify EVs, Jeppesen et al. identified annexin A1 and A2 as exclusive markers of microvesicles. Of note, these members of the annexin family are also RNA-binding proteins. Annexin A2 is also reported to regulate the levels of miRNAs in EVs (Figure 1). It both facilitates the loading of miRNAs into EVs and also selectively sorts a number of miRNAs, including miR-16, miR-21, miR-24, miR-29a, miR-100, miR-125, let-7a and let-7b. Recent findings show that a post-translational isoform of annexin A2 partially colocalizes with processing (P-) bodies where the RISC machinery is recruited. This might be a clue for the functional delivery of EV-associated miRNAs, such that annexin A2 is modified and targets miRNAs to the P-bodies in recipient cells.

3 | UPTAKE OF miRNA-CONTAINING EVs

Upon secretion, EVs are taken up by their parental cells or by other (either adjacent or distant) cells via autocrine or paracrine signaling. Although much progress has been made to elucidate the mechanisms of miRNA uptake by EVs and other carriers, the EV uptake mechanism is still not fully understood. Since studying exosomes and microvesicles separately is complicated, we will continue to use the general term “EVs” for the following section.

3.1 | Uptake of EVs by recipient cells

Since EVs are carriers of proteins and other polynucleotides as well as miRNAs, the endocytic pathway is likely to be common for all EVs, whatever they carry. EVs are taken up into cells by a number of different mechanisms, including endocytosis, phagocytosis, macropinocytosis, and plasma membrane fusion, all of which utilize different sets of proteins for binding and internalization. Therefore, it is likely that the uptake of EVs is dependent on surface proteins on the recipient cells as well as ligands on the EVs (Figure 2).
several studies have demonstrated the differential uptake of EVs by different types of recipient cells. For example, it has been shown that exosomes expressing the Tspan8-alpha4 complex on their surface most likely bind to CD54 on the membrane of endothelial and pancreatic cells (Figure 2). Interestingly, the integrin signatures on the surface of exosomes have been shown to determine metastatic organotropism in different organs (Figure 2). For example, using labelled exosomes, Hoshino et al. discovered a novel homing pattern of tumour EVs with different combinations of integrin molecules. Specifically, integrin α6β4- and α6β1-positive exosomes were shown to be endocytosed more by lung epithelial cells, whereas αvβ5-positive exosomes are more liver-tropic. In another study, activated T cells were reported to capture major histocompatibility complex (MHC) class II–containing exosomes secreted by dendritic cells. This process was shown to be regulated in a dose-dependent manner by leucocyte function-associated antigen-1 on the EV surface.

Glycosylation also plays a role in the specific uptake of EVs. For example, the uptake of EVs by recipient cells is, in some cases, regulated by D-mannose, D-glucosamine and β-galactosides, and the underlying mechanism involves sugar-binding proteins. It has

FIGURE 2 EV uptake and release of miRNAs into the cytosol of recipient cell. Proteins and sugar chains on EV surface can direct the selective binding of EVs to a specific cell. EV-derived miRNAs are released into the cytosol by either direct fusion of the EVs to the cell membrane or the endosomal-limiting membrane or different mechanisms. EVs, extracellular vesicles
been shown that sialyl-lactose–containing EVs, which are secreted by Jurkat cells, bind to (and are captured by) dendritic cells via sialic acid-binding Ig-like lectin 1 (Siglec-1) on the latter (Figure 2). In addition, Sauderson et al reported that B cell–derived EVs are taken up by lymph node macrophages through the binding of α2,3-linked sialic acids on the former to the sugar-binding protein, sialoadhesin (CD169), on the latter (Figure 2). These findings confirm the hypothesis that the uptake of EVs is neither random nor passive, but rather is regulated by a complex series of pathways. Of note, the specificity of EV uptake leads to another question, which is are different sets of miRNAs selectively secreted into different populations of EVs with specific uptake tropism?

3.2 Release of EV-derived miRNAs into the cytosol

After internalization into the cell, most EVs remain in endosomes. It is therefore challenging for EV-derived miRNAs to get into the cytosol so that they can be loaded onto RISCs and perform their physiological role. Montecalvo et al proposed a functional transfer of miRNAs by direct fusion with the plasma membrane, but also reported that EV cargoes are released to the cytoplasm by back fusion of EVs to the endosomal-limiting membrane (Figure 2). Direct fusion with the plasma membrane is also reported by other groups via a process that is pH dependent. However, the detailed mechanism for EV-plasma membrane fusion is not well understood, although it has been suggested that common intracellular vesicle fusion protein families such as SNAREs, Rab proteins and Sec1/Munc-18 might play a role.

Little is known about the fate of EVs after being endocytosed. However, Heussermann et al traced the uptake of CD63+ exosomes and found that they surf on filopodia to enter recipient cells and shuffle in cytoplasm endosomes. Once these labelled exosomes enter a cell, they follow the usual endosomal trafficking routes that lead to degradation in lysosomes (Figure 2). Interestingly, around 90% of the labelled vesicles move into close association with the endoplasmic reticulum (ER) before sorted into lysosomes. In human primary fibroblasts, within 48 hours of internalization, 60% of the labelled exosomes are co-localized with lysosomes. The research group proposed the hypothesis that EVs are in contact with ER for efficient release of RNA contents near the local translation machineries. However, when EVs are labelled with a generic lipid dye or the membrane proteins are labelled with a fluorescent tag, the release of EV cargo is rarely observed. Therefore, labelling both the EV contents and membrane, and tracing the end point of EV uptake are all essential for determining the fate of EVs in the cell. Once this mechanism has been revealed, the fate of EVs might be controlled and manipulated for therapeutic purposes.

3.3 Loading of EV-derived miRNAs into RISC of recipient cells

The functionality of EV-derived miRNAs in recipient cells is another key question in the field. In order to perform translational silencing, single-stranded miRNAs must bind to AGO2 and other proteins to form the RISC complex during their maturation. It is unclear whether single-stranded free miRNAs released from EVs are active in recipient cells since they might interact less efficiently with AGO2, when compared with pre-miRNAs.

Interestingly, annexin A1 is also capable of binding to both DNA and RNA upon formation of an A1-S100 heterotetramer complex; this suggests an additional possible role for annexin A1 in regulating RNA sorting in EVs. In an attempt to elucidate the underlying mechanism, Melo et al reported that the miRNAs carried in exosomes undergo maturation en route to the recipient cells as pre-miRNAs, Dicer, AGO2 and TRBP are packaged altogether in the EVs. With this cell-independent maturation, miRNAs are thus readily functional upon their release to the cytosol. However, this mechanism has not been confirmed as some other studies could not show the ubiquitous presence of Dicer and AGO2 in EVs when purified using gradient centrifugation. It has also been suggested that in some cases, mature miRNAs might change the phenotype of their recipient cells without being pre-incorporated onto the RISC complex. Moreover, the selective sorting of miRNAs into exosomes often results in them forming complexes with proteins other than AGO. However, the process of switching the miRNA from its carrier protein to AGO in recipient cells is also unknown. Therefore, further investigations are needed to clarify the processing of miRNAs after their release from EVs.

4 miRNA EXCHANGE AS INTERCELLULAR COMMUNICATION MECHANISM IN CANCER

With the ability to suppress the expression of multiple target mRNAs, miRNAs transferred via EVs support tumour growth at each stage of cancer progression. This has become a robust means of communication between cancer cells and the tumour microenvironment (TME). Here, we summarize our current understanding of the mutual communication both among cancer cells and between cancer cells and other cells of the TME.

4.1 The effects of miRNA-containing EVs from cancer cells in the TME

Fibroblast activation is a key event in the growth of primary tumours. Our recent study revealed that breast cancer–derived EVs contain high levels of miR-125b, which is taken up by fibroblasts situated adjacent to the primary tumour (Figure 3). This cellular increase in miR-125b suppresses the expression of TP53 and TP53INP1, and the fibroblasts differentiate into cancer-associated fibroblasts (CAFs). A similar mechanism is observed in pancreatic cancer–derived microvesicles, which contain an elevated level of miR-155 (Figure 3). Similarly, melanoma-derived exosomes (melanosomes) containing miR-211 are able to promote the formation of
of CAFs by activating the mitogen-activated protein kinase signalling pathway (Figure 3). Moreover, lung adenocarcinoma cancer-derived exosomal miR-142 has been shown to promote the differentiation of WI-38 and IMR90 lung fibroblasts into CAFs via a TGF-β-independent pathway (Figure 3).

Evading the immune system is a hallmark of cancer. Cancer-derived exosomal miRNAs have been shown to regulate and suppress immune cells in order to support cancer growth. For example, Mutp53 colon cancer cell–derived exosomal miR-1246 reprograms M2 macrophages into tumour-associated macrophages (TAMs) (Figure 3). As a consequence, TAMs produce IL-10, TGF-β and matrix metalloproteinases (MMPs) to enhance tumour growth and progression. Similarly, exosomal miR-940, which is derived from hypoxic epithelial ovarian cancer (EOC) SKOV3 cells, reprogrammes U937 macrophages into the tumour-promoting M2 subtype, which in turn promotes the proliferation of EOC cells (Figure 3). EOC-derived exosomal miR-222 has also been shown to promote M2 macrophage polarization, and it achieved this by regulating the SOCS3/STAT3 signalling pathway (Figure 3). Again, the M2 TAM-like macrophages enhanced EOC growth.

In addition to their canonical function, miRNAs might also exert novel functions in recipient cells. For instance, miR-21 and miR-29a in Lewis lung carcinoma–derived exosomes promote lung tumour multiplicities in B6 mice by binding and activating Toll-like receptor 7 (TLR7) in the surrounding immune cells, especially macrophages (Figure 3). This results in the activation of nuclear factor κB (NF-κB) and the secretion of pro-inflammatory cytokines TNF-α and IL-6, which together promote tumour growth. Similarly, liposarcoma Lipo246 exosome–derived miR-25 and miR-92a can induce secretion of IL-6 in surrounding TAMs by regulating NF-κB signalling via TLR7/8 (Figure 3).

Dendritic cells also play a part in the tumour modulation of the immune system. For example, miR-203-containing exosomes from pancreatic cancer cells inhibit the expression of TLR4 in recipient dendritic cells, and downregulate the production of TNF-α and IL-12, thereby repressing the usual anti-tumour immune response (Figure 3). Moreover, pancreatic cancer cell PANC-1–derived exosomal miR-212 modulates regulatory factor X-associated protein expression (Figure 3). This leads to a decrease in the expression of MHC-II and thus induces immune tolerance of dendritic cells.

In addition to macrophages and dendritic cells, natural killer (NK) cells are also critical effectors in the innate immune response. Berchem et al showed that tumour-derived exosomal miR-23a
modulates the immune response by impairing NK cytotoxicity and function (Figure 3). They demonstrated that when miR-23a and TGF-β were delivered by microvesicles isolated from hypoxic IGR-Heu, K562 and T1 tumour cells into MK-92 cells, then the expression of CD107a/LAMP1 was reduced and the number of NKG2D activating surface receptors was decreased in these cells.

miRNA-containing EVs from tumour cells also modulate and suppress T-lymphocyte function. The delivery of miR-214 from Lewis lung cancer cell-derived exosomes to recipient T cells was shown to significantly downregulate PTEN and promote a regulatory T cell (Treg) phenotype (Figure 3). These Tregs in turn secrete IL-10, which promotes tumour growth.

In addition to fibroblasts and cells of the immune system, miRNAs carried by EVs can also target endothelial cells. For example, miR-9 (carried by SK23 melanoma cell–derived microvesicles) targets SOCS5 in endothelial cells (Figure 3); this leads to activation of the miR-9 (carried by SK23 melanoma cell–derived microvesicles) targets NAs carried by EVs can also target endothelial cells. For example, promotes tumour growth.

[45x532]Furthermore, Mao et al. reported that exosomal miR-21 binds to TLR7 in liver macrophages (Figure 3). Through the TLR7 signalling pathway, liver macrophages polarize to a pro-inflammatory phenotype and produce cytokines such as IL-6, thus generating a pro-inflammatory niche for colorectal cancer in the liver. Moreover, miR-203 containing exosomes released from colorectal cancer cells induces the differentiation of monocytes into M2 macrophages in vivo and thus promotes liver metastasis (Figure 3). Furthermore, exosomal miR-25 from SW480 colorectal cancer cells enhances angiogenesis at pre-metastatic niches in endothelial cells, by silencing KLF2 and KLF4, which restricts the expression of tight junction related proteins such as VEGFR2, ZO-1, occludin and claudin-5 (Figure 3).

These findings demonstrate that the transfer of miRNAs from cancer cells to cells of the TME is an active and dynamic process. The same miRNA (ie miR-21, miR-23a, miR-142, miR-1246) can have different effects on the recipient cells by targeting different miRNAs or interacting with different proteins. Of note, the miRNAs being studied here are usually the most abundant miRNAs in the cancer-derived EVs. The role of miRNAs with low abundant in EVs is likely insufficient to make any significant functional impact. Further studies are desirable to investigate the combinatorial effects of multiple miRNAs in EVs on their recipient cells.

4.2 Stromal-derived miRNAs

The TME also communicates with cancer cells via miRNAs in EVs. For example, upon activation of ovarian CAFs and cancer-associated adipocytes, miR-21–containing EVs are secreted, and these target apoptotic protease activating factor 1 (APAF1) to promote chemoresistance and suppress apoptosis of recipient cancer cells (Figure 3). Neuroblastoma cells also secrete exosomal miR-21, which upregulates miR-155 levels in TAM and TAM-derived exosomes (Figure 3). The latter then carry miR-155 to neuroblastoma cells where they downregulate telomeric repeat binding factor 1, thereby enhancing neuroblastoma chemoresistance. TAMs also carry miR-223 to breast cancer cells and enhance cancer
BT549 and MDA-MB-231 breast cancer cells are all enhanced by breast
invasion via the Mef2c-β-catenin pathway (Figure 3). In addition, M2
subtype TAMs secrete exosomal miR-21, which regulates the PTEN/
PI3K/AKT signalling pathway in gastric cancer cells, thereby enhancing
cisplatin resistance (Figure 3). Binenbaum et al demonstrated that
TAM-derived exosomal miR-365 can induce both in vivo and in vitro
chemoresistance in K989 pancreatic adenocarcinoma cells by upregulat-
ing triphosphate nucleotide (NTP) (Figure 3). Increased levels of NTP
induce the expression of cytidine deaminase, which can metabolize the
chemotherapeutic drug, gemcitabine, to its inactive form. Aggressive
properties such as the stemness, endothelial-to-mesenchymal transi-
tion, anchorage-independent growth and invasive capacity of T47D,
Zeb2 to drive the recipient cells towards a mesenchymal-to-epithelial
transition, and this facilitates the colonization of poorly metastatic cells
at distant sites. The same phenomenon has also been observed in
MB-231 breast cancer cells, which exhibit enhanced lung colonization
in mice models after being incubated with EVs from MCF-10CA1a cells.
Together, these findings demonstrate that communication be-
tween cancer cells and their environment is bidirectional. Thus, can-
cer cells secrete miRNA-containing EVs, which convert cells nearby
into a more tumorigenic (activated) state. Meanwhile, these activ-
ated cells support the growth and progression of the tumour by
transferring miRNAs into the cancer cells. These findings provide a
better understanding of the crosstalk between cancer cells and their
microenvironment and facilitate the development of novel therapeu-
tic treatments and early diagnosis.

4.3 | miRNAs transfer between cancer cells

As well as modulating the surrounding cells, cancer cells can also ex-
change EVs to enhance their progression, especially their metastatic
capability via miRNAs. For example, when poorly metastatic mouse
breast cancer cells take up EVs from highly metastatic isogenic cells, they
become more metastatic. The underlying mechanism involves the en-
richment of miR-200 family miRNAs exclusively in the highly metastatic
breast cancer cells and their secreted EVs (Figure 3). miR-200s target
Zeb2 to drive the recipient cells towards a mesenchymal-to-epithelial
transition, and this facilitates the colonization of poorly metastatic cells
at distant sites. The same phenomenon has also been observed in
MB-231 breast cancer cells, which exhibit enhanced lung colonization
in mice models after being incubated with EVs from MCF-10CA1a cells.

Together, these findings demonstrate that communication be-
tween cancer cells and their environment is bidirectional. Thus, can-
cer cells secrete miRNA-containing EVs, which convert cells nearby
into a more tumorigenic (activated) state. Meanwhile, these activ-
ated cells support the growth and progression of the tumour by
transferring miRNAs into the cancer cells. These findings provide a
better understanding of the crosstalk between cancer cells and their
microenvironment and facilitate the development of novel therapeu-
tic treatments and early diagnosis.

5 | CONCLUSIONS AND FUTURE PERSPECTIVES

Further investigations are still required to fully understand the
crosstalk between cancer cells and their microenvironment via
EVs. Among the various cargos (ie proteins and other RNAs),
miRNAs play an important role as signalling molecules. However,
not enough research has been conducted to determine the syn-
ergistic contribution of different molecules on the signal trans-
duction between cancer cells and the microenvironment. As
RNA-profiling, proteome and bioinformatics are advanc-
ing at a rapid rate, the role of EV-miRNAs can be elucidated further
through a comparison of the EV contents and network mapping of the
genome and proteome.

Additional problems in the field include both the nomenclature
and the purification of EVs. Currently, EVs are classified by their
biogenesis. However, experiments often rely on the size and a hand-
ful of surface molecules to distinguish EVs. Different publications
have shown that the use of such markers cannot clearly distinguish
between different types of EVs. Thus, it is necessary to look for
novel markers or combinations of molecules that clearly identify the
diverse reservoir of EVs released by cancer cells. Identification of
such markers will also facilitate the purification of EVs, as currently
this also varies widely between publications.

Different mechanisms might govern the export of miRNAs.
However, it is still unclear which pathways contribute the most
with the level of circulating miRNAs for each cancer type. Elucidating
the export mechanism of miRNAs would help to support their applica-
tion as biomarkers for cancer. This would be highly advantageous
as the detection of miRNAs is both fast and robust, and thus, they
would be a valuable tool for cancer diagnosis and prognosis.

ACKNOWLEDGEMENTS
The authors received funding from the National University of
Singapore (grant R-184-000-295-733 and R-184-000-295-133), the
National Natural Science Foundation of China (81602514,
81773246, 81972865) and the Shenzhen Innovation and Technology
Fund (grant JCYJ20180507181636165).

AUTHOR CONTRIBUTION
LTV, GJ and TTP prepared the manuscript. TTP and YK provided
illustrations. MTL obtained funding, trained and wrote the manu-
script. The authors declare no competing interests.

DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no new data were cre-
ated or analysed in this study.

ORCID
Luyen Tien Vu https://orcid.org/0000-0002-4953-6469
Minh T. N. Le https://orcid.org/0000-0002-6077-1566

REFERENCES
1. Dacks JB, Field MC. Evolutionary origins and specialisation of
membrane transport. Curr Opin Cell Biol. 2018;53:70-76.
2. Lawson C, Kovacs D, Finding E, Ulfelder E, Luis-Fuentes V.
Extracellular vesicles: evolutionarily conserved mediators of inter-
cellular communication. Yale J Biol Med. 2017;90:481-491.
3. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO.
Exosome-mediated transfer of miRNAs and microRNAs is a novel
mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9:654-659.
24. van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19:213.
25. Gill S, Catchpole R, Forterre P. Extracellular membrane vesicles in the three domains of life and beyond. FEMS Microbiol Rev. 2018;43:273-303.
26. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281-297.
27. Friedman RC, Farh KK-H, Burge CB, Bartel DP. Most mammalian miRNAs are conserved targets of microRNAs. Genome Res. 2009;19:92-105.
28. Marí-Alexandre J, Barceló-Molina M, Belmonte-López E, et al. MicroRNA isolation and quantification in serum and plasma following rapid heat/freeze cycling. Microm. 2018;7:138-147.
29. Binderup HG, Madsen JS, Heegaard NH, Poulsen K, Andersen RF, Bransen CL. Quantification of microRNA levels in plasma – impact of preanalytical and analytical conditions. PloS one. 2018;13.
30. Wang X. Isolation of extracellular vesicles from breast milk. Extracellular vesicles. In: Kuo WP, Jia S, eds. Methods and Protocols. New York, NY: Springer. 2017:351-353.
31. Wang X, Cheng B, Cui M, Wang H, Yao X, et al. Circulating microRNAs in cancer: potential and challenge. Front Genet. 2019;10:626.
32. Villard A, Marchand L, Thivolet C, Rome S. Diagnostic value of cell-free circulating microRNAs for obesity and type 2 diabetes: a meta-analysis. J Mol Biomark Diagn. 2015;6:251.
33. Kim YJ, Yeon Y, Lee WJ, et al. Comparison of MicroRNA expression in serum and plasma: a meta-analysis. J Mol Biomark Diagn. 2019;10:626.
48. Aukrust I, Rosenberg LA, Ankerud MM, et al. Post-translational modifications of Annexin A2 are linked to its association with perinuclear nonpolyosomal mRNP complexes. FEBS Open Bio. 2017;7:160-173.

49. Asare-Werehene M, Nakka K, Reunov A, et al. The exosome-mediated autocrine and paracrine actions of plasma gelosin in ovarian cancer chemoresistance. Oncogene. 2020;39:1600-1616.

50. Mulcahy LA, Pink RC, Carter DRF. Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles. 2014;3:24641.

51. Murphy DE, de Jong OG, Brouwer M, et al. Extracellular vesicle-based therapeutics: natural versus engineered targeting and trafficking. Exp Med. 2019;51:1-12.

52. Rana S, Yue S, Stadel D, Zöller M. Toward tailored exosomes: the exosomal tetraspican web contributes to target cell selection. Int J Biochem Cell Biol. 2012;44:1574-1584.

53. Hoshino A, Costa-Silva B, Shen T-L, et al. Tumour exosome integrins determine organotropic metastasis. Nature. 2015;527:329-335.

54. Nolte-t'Hoen ENM, Buschow SI, Anderton SM, Stoorvogel W, Wauben MHM. Activated T cells recruit exosomes secreted by dendritic cells via LFA-1. Blood. 2009;113:1977-1981.

55. Barrès C, Blanc L, Bette-Bobillo P, et al. Galectin-5 is bound onto the surface of rat reticulocyte exosomes and modulates vesicle uptake by macrophages. Blood. 2010;115:695-705.

56. Hao S, Bai OU, Li F, Yuan J, Laferte S, Xiang J. Mature dendritic cells pulsed with exosomes stimulate efficient cytotoxic T-lymphocyte responses and antitumour immunity. Immunology. 2007;120:90-102.

57. Izquierdo-Users N, Lorizate M, Puertas MC, et al. Siglec-1 is a novel dendritic cell receptor that mediates HIV-1 trans-infection through recognition of viral membrane gangliosides. PLoS Biol. 2012;10:e1001448.

58. Montecalvo A, Larregina AT, Shufesky WJ, et al. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood. 2012;119:756-766.

59. Saunderson SC, Dunn AC, Crocker PR, McLeLLan AD. CD169-mediated capture of exosomes in spleen and lymph node. Blood. 2014;123:208-216.

60. Parolini I, Federici C, Raggi C, et al. Microenvironmental pH is a key factor for exosome traffic in tumor cells. J Biol Rev Biochem. 1999;68:863-911.

61. John R, Südhof TC. Membrane fusion and exocytosis. Annu Rev Biochem. 1999;68:863-911.

62. Heussermann W, Hean J, Trojer D, et al. The exosome-mediated autocrine and paracrine actions of plasma gelosin in ovarian cancer chemoresistance. Oncogene. 2020;39:1600-1616.

63. Strell C, Rundqvist H, Östman A. Fibroblasts—a key host cell type in tumor initiation, progression, and metastasis. Ups J Med Sci. 2012;117:187-195.

64. Vu LT, Peng B, Zhang DX, et al. Tumor-secreted extracellular vesicles promote the activation of cancer-associated fibroblasts via the transfer of microRNA-125b. J Extracell Vesicles. 2019;8:1599680.

65. Pang W, Su J, Wang Y, et al. Pancreatic cancer-secreted miR-155 implicates in the conversion from normal fibroblasts to cancer-associated fibroblasts. Cancer Sci. 2015;106:1362-1369.

66. Dror S, Sander L, Schwartz H, et al. Melanoma miRNA trafficking controls tumour primary niche formation. Nat Cell Biol. 2016;18:1006-1017.

67. Lawson J, Dickman C, Towle R, Jabalee J, Javer A, Garnis C. Extracellular vesicle secretion of miR-142-3p from lung adenocarcinoma cells induces tumor promoting changes in the stroma through cell-cell communication. Mol Carcinog. 2019;58:376-387.

68. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646-674.

69. Cooks T, Pateras IS, Jenkins LM, et al. Mutant p53 cancers reprogram macrophages to support invading macrophages via exosomal miR-1246. Nat Commun. 2018;9:1-15.

70. Chen X, Ying X, Wang X, Wu X, Zhu Q, Wang X. Exosomes derived from hypoxic epithelial ovarian cancer deliver microRNA-940 to induce macrophage M2 polarization. Oncol Rep. 2017;38:522-528.

71. Ying X, Wu Q, Wu X, et al. Epithelial ovarian cancer-secreted exosomal miR-222-3p induces polarization of tumor-associated macrophages. Oncotarget. 2016;7:43076-43087.

72. Fabbri M, Paone A, Calore F, et al. MicroRNAs bind to Toll-like receptors to induce protumorigenic inflammatory response. Proc Natl Acad Sci USA. 2012;109:E2110-E2116.

73. Casadei L, Calore F, Creighton CJ, et al. Exosome-derived miR-25-3p and miR-92a-3p stimulate liposarcoma progression. Cancer Res. 2017;77:3846-3856.

74. Gardner A, Ruffell B. Dendritic cells and cancer immunity. Trends Immunol. 2016;37:855-865.

75. Zhou M, Chen J, Zhou L, Chen W, Ding G, Cao L. Pancreatic cancer derived exosomes regulate the expression of TLR4 in dendritic cells via miR-203. Cell Immunol. 2014;292:65-69.

76. Ding G, Zhou L, Qian Y, et al. Pancreatic cancer-derived exosomes transfer miRNAs to dendritic cells and inhibit RFXAP expression via miR-212-3p. Oncotarget. 2015;6:29877-29888.

77. Pahl J, Cerwenka A. Tricking the balance: NK cells in anti-cancer immunity. Immunobiology. 2017;222:11-20.

78. Berchem G, Noman MZ, Bosseler M, et al. Hypoxic tumor-derived microvesicles negatively regulate NK cell function by a mechanism involving TGF-β and miR23a transfer. Oncology. 2016;5:1062968.

79. Yin Y, Cai X, Chen X, et al. Tumor-secreted miR-214 induces regulatory T cells: a major link between immune evasion and tumor growth. Cell Res. 2014;24:1164-1180.

80. Zhuang G, Wu X, Jiang Z, et al. Tumour-secreted miR-9 promotes endothelial cell migration and angiogenesis by activating the JAK-STAT pathway. J Cell Res. 2012;31:3513-3523.

81. Zhang Y, Liu D, Chen W, et al. Dendritic cells pulsed with exosomes stimulate efficient cytotoxic T-cell responses to induce protumorigenic inflammatory response. Proc Natl Acad Sci USA. 2012;109:E2110-E2116.

82. Casadei L, Calore F, Creighton CJ, et al. Exosome-derived miR-25-3p and miR-92a-3p stimulate liposarcoma progression. Cancer Res. 2017;77:3846-3856.

83. Gardner A, Ruffell B. Dendritic cells and cancer immunity. Trends Immunol. 2016;37:855-865.
92. Yamada N, Tsujimura N, Kumazaki M, et al. Colorectal cancer cell-derived microvesicles containing microRNA-1246 promote angiogenesis by activating Smad 1/5/8 signaling elicited by PML down-regulation in endothelial cells. *Biochim Biophys Acta*. 2014;1839:1256-1272.

93. Mao G, Liu Y, Fang X, et al. Tumor-derived microRNA-494 promotes angiogenesis in non-small cell lung cancer. *Angiogenesis*. 2015;18:373-382.

94. Wang Y, Lu J, Chen L, et al. Tumor-derived EV-encapsulated miR-181b-5p induces angiogenesis to foster tumorigenesis and metastasis of ESCC. *Mol Ther Nucleic Acids*. 2020;20:421-437.

95. Hsu Y-L, Hung J-Y, Chang W-A, et al. Hypoxic lung cancer-secreted exosomal miR-23a increased angiogenesis and vascular permeability by targeting prolyl hydroxylase and tight junction protein ZO-1. *Oncogene*. 2017;36:4929-4942.

96. Umezu T, Tadokoro H, Azuma K, Yoshizawa S, Ohyashiki K, Ohyashiki JH. Exosomal miR-135b shed from hypoxic multiple myeloma cells enhances angiogenesis by targeting factor-inhibiting HIF-1. *Blood*. 2014;124:3748-3757.

97. Sruthi TV, Edatt L, Raji GR, et al. Horizontal transfer of miR-23a from hypoxic tumor cell colonies can induce angiogenesis. *J Cell Physiol*. 2018;233:3498-3514.

98. Zhou W, Fong M, Min Y, et al. Cancer-secreted microvesicles establish an inflammatory premetastatic niche in liver metastasis. *Carcinogenesis*. 2018;39:1368-1379.

99. Takano Y, Masuda T, Linuma H, et al. Circulating exosomal microRNA-203 is associated with metastasis possibly via inducing tumor-associated macrophages in colorectal cancer. *Oncotarget*. 2017;8:78598-78613.

100. Zeng Z, Li Y, Pan Y, et al. Cancer-derived exosomal miR-25-3p promotes pre-metastatic niche formation by inducing vascular permeability and angiogenesis. *Nat Commun*. 2018;9:1-14.

101. Au Yeung CL, Co NN, Tsuruga T, et al. Exosomal transfer of stroma-derived miR21 confers paclitaxel resistance in ovarian cancer cells through targeting APAF1. *Nat Commun*. 2016;7:11150.

102. Challagundla KB, Wise PM, Neviani P, et al. Exosome-mediated transfer of microRNAs within the tumor microenvironment and neuroblastoma resistance to chemotherapy. *J Natl Cancer Inst*. 2015;107:djv135.

103. Zeng Z, Li Y, Pan Y, et al. Cancer-derived exosomal miR-25-3p promotes pre-metastatic niche formation by inducing vascular permeability and angiogenesis. *Nat Commun*. 2018;9:1-14.

104. Au Yeung CL, Co NN, Tsuruga T, et al. Exosomal transfer of stroma-derived miR21 confers paclitaxel resistance in ovarian cancer cells through targeting APAF1. *Nat Commun*. 2016;7:11150.

105. Challagundla KB, Wise PM, Neviani P, et al. Exosome-mediated transfer of microRNAs within the tumor microenvironment and neuroblastoma resistance to chemotherapy. *J Natl Cancer Inst*. 2015;107:djv135.

106. Yang M, Chen J, Su F, et al. Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells. *Mol Cancer*. 2011;10:117.

107. Zhou W, Fong M, Min Y, et al. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. *Cancer Cell*. 2014;25:501-515.

108. Fong MY, Zhou W, Liu L, et al. Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. *Nat Cell Biol*. 2015;17:183-194.

109. Shao Y, Chen T, Zheng X, et al. Colorectal cancer-derived small extracellular vesicles establish an inflammatory premetastatic niche in liver metastasis. *Carcinogenesis*. 2018;39:1368-1379.

110. Takano Y, Masuda T, Linuma H, et al. Circulating exosomal microRNA-203 is associated with metastasis possibly via inducing tumor-associated macrophages in colorectal cancer. *Oncotarget*. 2017;8:78598-78613.

111. Zhang L, Zhang S, Yao J, et al. Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. *Nature*. 2015;527:100-104.

112. Wittwer KW, Théry C. Extracellular vesicles or exosomes? On privacy, precision, and popularity influencing a choice of nomenclature. *J Extracell Vesicles*. 2019;8:1648167.

How to cite this article: Vu LT, Gong J, Pham TT, Kim Y, Le MTN. microRNA exchange via extracellular vesicles in cancer. *Cell Prolif*. 2020;53:e12877. https://doi.org/10.1111/cpr.12877