Exotic States in a Holographic Theory*

H. G. Dosch,1,† S. J. Brodsky,2,‡ G. F. de Téramond,3,§ M. Nielsen,4,¶ and Liping Zou5,∗∗

1Institut für Theoretische Physik, der Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg, Germany
2SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94309, USA
3Laboratorio de Física Teórica y Computacional, Universidad de Costa Rica, 11501 San José, Costa Rica
4Instituto de Física, Universidade de São Paulo, 05508-090 São Paulo, São Paulo, Brazil
5Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China

Abstract

Supersymmetric Light Front Holographic QCD is a holographic theory, which not only describes the spectroscopy of mesons and baryons, but also predicts the existence and spectroscopy of tetraquarks. A discussion of the limitations of the theory is also presented.

* Talk given at 23rd International Conference in Quantum Chromodynamics (QCD20), 27-30 October 2020, Montpelier, France.
† Speaker, corresponding author; h.g.dosch@gmail.com
‡ sjbth@slac.stanford.edu
§ gdt@asterix.crnet.cr
¶ mnielsen@if.usp.br
** zoulp@impcas.ac.cn
I. INTRODUCTION

Light front holographic QCD [1–4] (LFHQCD) is a bottom-up holographic theory. Supersymmetric LFHQCD is a semiclassical model for hadron physics based on the equivalence [5] of a classical 5-dimensional theory (AdS$_5$) and a superconformal 4-dimensional quantum field theory (AdS/CFT) and on quantization in the light front (LF) frame. The breaking of the conformal symmetry, necessary for the generation of a discrete mass spectrum, is achieved by assuming that the resulting LF Hamiltonian is a linear combination of generators of the superconformal graded algebra [6, 7]. Following this procedure the form of the interaction is completely fixed and, in the limit of massless quarks, it is determined by one dimensionful constant λ, representing the QCD confining interaction. The spin dependence is taken from the tensor structure of the fields in the 5-dimensional classical theory [8], and the quark mass dependence from mapping to the LF Hamiltonian. In this way the number of parameters is minimal, as in lattice gauge theory. Supersymmetric LFHQCD theory is not a supersymmetric field theory with squarks and gluinos, but a semi-classical theory with supermultiplets of hadrons. Supersymmetric LFHQCD describes not only hadronic spectroscopy, but it gives also insight into the dynamical and structural properties of the strong interactions 1.

II. SUPERSYMMETRIC LIGHT FRONT HOLOGRAPHIC QCD

As mentioned above supersymmetric LFHQCD is based on broken superconformal quantum mechanics [7, 10, 11]. The Hamiltonian (translation operator in time) H of superconformal quantum mechanics has the same form as that of the light-front Hamiltonian derived from AdS$_5$. It is the anti-commutator of a fermionic operator Q, $H = \{Q, Q^\dagger\}$. Another fermionic operator S of the graded superconformal algebra is the “square root of the special conformal transformation” K: $K = \{S, S^\dagger\}$. In a two-component Hilbert-space $L_2(\mathcal{R}_1) \oplus L_2(\mathcal{R}_1)$, where the upper component is defined as the bosonic component and the lower component as the fermionic one, the two fermionic operators can be represented as: $Q = \begin{pmatrix} 0 & -\partial_x + \frac{L}{x} \\ 0 & 0 \end{pmatrix}$, $S = \begin{pmatrix} 0 & x \\ 0 & 0 \end{pmatrix}$. In supersymmetric LFHQCD a scale is introduced by changing the Hamiltonian H from $H = \{Q, Q^\dagger\}$ to

\[G = \{R_\lambda, R_\lambda^\dagger\} \quad \text{with} \quad R = Q + \lambda S. \quad (1) \]

1 For a recent recapitulation see [9].
The dynamical scale $\sqrt{\lambda} = 0.523 \pm 0.024$ GeV as determined from different hadronic and mesonic channels including orbital and radial excitations.

The operators Q and S have different dimensions and, therefore, the linear combination of the two must contain a dimensionful constant. This constant λ in (1) with the dimension of a squared mass is the scale of supersymmetric LFHQCD.

The resulting hadron mass spectra of the Hamiltonian $G = \{R_\lambda, R_\lambda^\dagger\}$ for mesons and baryons are:

\[
\begin{align*}
M^2_M &= 4\lambda (n + L + S/2) + \Delta(m_1^2, m_2^2), \\
M^2_B &= 4\lambda (n + L + S/2 + 1) + \Delta(m_1^2, m_2^2, m_3^2),
\end{align*}
\]

with internal spin $S = 0, 1$. The parameters from a fit of all light hadron spectra come out to be: $\sqrt{\lambda} = 0.523 \pm 0.024$ GeV and the effective masses for the up and down quarks are $m_q = 0.046$ GeV, $q = u, d$, and for the strange quark $m_s = 0.357$ GeV. Thus, supersymmetric light-front holography explains the remarkable degeneracy of the meson and baryon Regge trajectories.

The analytical expressions for the Δ-terms in Eqs. (2), which describes the influence of the quark masses, is [4, 11–14]

\[
\Delta M^2_n(m_1, \cdots m_n) = -2\lambda^2 \frac{\partial}{\partial \lambda} \log K(\lambda),
\]

with

\[
K(\lambda) = \int_0^1 dx_1 \cdots dx_n \delta(x_1 + \cdots x_n - 1) e^{-\frac{1}{\lambda}(\frac{m_1^2 + \cdots m_n^2}{x_1 + \cdots x_n})}.
\]

The holographic equivalence is based on a large number of colours [5] and therefore the accuracy in this $1/N_c \to \infty$ approximation is limited approximately to $1/N_c^2$, thus to ± 120 MeV. In Fig. 1 the value of the dynamical scale $\sqrt{\lambda}$ is shown, as determined from the different hadronic and mesonic channels; within the expected accuracy it clearly indicates the meson-baryon supersymmetry.

In Fig. 2 some leading meson and baryon trajectories are shown. The meson-baryon symmetry is evident. The lowest mesonic state, which in a chiral theory has zero mass, has no super-partner. In the supersymmetric theory it plays the role of a vacuum state [6].
FIG. 2. Leading light mesonic and baryonic trajectories: The dashed curves are the predictions of supersymmetric LFHQCD, Eqs. 2.
The value of the dynamical scale $\sqrt{\lambda}$ as determined from the lowest lying mesonic states containing one or two heavy quarks. The solid line is the curve $\sqrt{\lambda}_Q = 0.49 \sqrt{M_M}$ [GeV].

For hadrons containing heavy quarks the conformal symmetry is strongly broken, but due to the constraints imposed by supersymmetry [6] and heavy quark effective theory [15] the form of the interaction remains unchanged, only the numerical value of the scale λ changes from the values for light quarks from $\sqrt{\lambda} = 0.523$ GeV for heavy quarks to a value

$$\sqrt{\lambda}_Q = C \sqrt{M_M},$$

where $C \approx 0.49 \sqrt{\text{GeV}}$ [13] and M_M is the mass of the lightest meson containing the heavy quarks, see Fig. 3. There are less data in this sector, but there is no experimental contradiction to the meson-baryon supersymmetry: Errors are somewhat larger, due to uncertainty of λ_Q, a rough (optimistic) estimate is $\Delta M \approx 150$ MeV.

A. Completion of the Supermultiplet

Up to now we have supermultiplets consisting of one meson and two-baryon components, one with positive and one with negative chirality: ϕ_{L_M} and $\psi^+_{L_M-1}, \psi^-_{L_M}$. Note that in LF quantization the LF angular momentum of the negative chirality state ψ^- is by one unit higher than that of the positive chirality state ψ^+. The parity is determined by the LF angular momentum of the leading twist: the positive chirality state [4].

In a complete supermultiplet the number of bosons components equals the number of fermion components, we thus miss an additional boson. This is indeed included in the formalism [11, 14] and the mass of this additional state is given by supersymmetric LFHQCD. The fermionic operator R_λ, see (1), transforms a bosonic meson wave function with LF angular momentum L_M into a a fermionic baryon wave function with $L_B = L_M - 1$ and positive chirality: $R^\dagger_\lambda \phi_{L_M} = \psi^+_{L_M-1}$. It also transforms the negative chirality baryon wave function $\psi^-_{L_M-1}$ of a baryon, which has leading twist.
FIG. 4. The interpretation of superconformal quantum mechanics in terms of LFHQCD. The operator R^\dagger_λ transforms a quark (open circle) or an antiquark (filled circle) of the meson into pair of antiparticles of the same color, that is a quark into an anti-diquark cluster with color 3 or an antiquark into a diquark cluster of color $\bar{3}$. In the same way a constituent of the baryon is transformed into a two-particle cluster of the same color. Therefore the resulting hadron is a tetraquark, consisting of a diquark - anti-diquark cluster.

LF angular momentum L_M, into a bosonic wave function with LF angular momentum $L_M - 1$:

$$R^\dagger_\lambda \psi_L^{-L_M} = \Phi_{L_M}. \quad (4)$$

This additional bosonic state Φ_{L} completes the supersymmetric quadruplet of two mesons and two fermions which can be arranged into a matrix

$$\Psi = \begin{pmatrix} \phi_L & \psi_L^- \\ \psi_L^+ & \Phi_{L-1} \end{pmatrix} \quad \text{with} \quad G \Psi = M^2 \Psi. \quad (5)$$

This additional bosonic state can, in terms of LFHQCD, be interpreted as a tetraquark. The argument is given in Fig. 4 caption: It consists of a diquark with color 3 and an anti-diquark with color $\bar{3}$. The spin-statistics theorem limits the possible states in LFHQCD, a diquark composed of identical quarks in the lowest lying state must be symmetric under the combined spin and isospin transformation, since it is antisymmetric in color, namely in a 3 or $\bar{3}$ state.

As mass of the tetraquark one obtains

$$M_T^2 = 4 \lambda (n + L + S/2 + 1) + \Delta (m_1^2, m_2^2, m_3^2, m_4^2). \quad (6)$$

In Table I the lowest lying light tetraquarks are displayed, for hadrons with total isospin 0 additional possible non-perturbative effects have to be taken into account, see [16]. In accordance with the spectra of mesons and baryons we expect an accuracy of ≈ 120 MeV. Possible candidates for a quadruplet are $a_2(1320)$ $\Delta(1232)$ $a_1(1260)$.

6
TABLE I. Predicted masses of light tetraquarks in supersymmetric LFHQCD. [...] indicates a diquark cluster in a total quark spin \(S = 0 \) state, (…) a cluster in a \(S = 1 \) state. The symbol \(s \) in the second column refers to the open strangeness content. All diquarks are assumed to be in the lowest possible state.

q-cont.	\(s \)	\(I \)	\(J^{PC} \)	\(n + L \) Mass [GeV]	\(n + L \) Mass [GeV]
\([ud][ud]\)	0	0	\((L^{(-1)L} (\bar{L})^{(-1)}L) \)	0	1.10
\([ud][qq]\)	0	1	\((L+1)^{(L)}L \)	0	1.33
\([qs][qs]\)	0	0.1	\(L^{-(-1)L} L \)	0	1.42
\([sq][sq]\)	0	0.1	\((L+1)^{((-1)L)}L \)	0	1.60
\([ud][sq]\)	1	\(\frac{1}{2} \)	\(L^{-(-1)L} L \)	0	1.23
\([ud][sq]\)	1	\(\frac{1}{2} \)	\((L+1)^{(-1)L} \)	0	1.43
\([s\bar{q}][qq]\)	1	\(\frac{3}{2} \)	\((L+1)^{(-1)L} \)	0	1.43
\([s\bar{q}][ss]\)	1	\(\frac{1}{2} \)	\((L+1)^{(-1)L} \)	0	1.60
\([ud][ss]\)	2	0	\((L+1)^{(-1)L} \)	0	1.60

If the meson in the quadruplet consists of two heavy quarks, e.g., \(c \) and \(\bar{c} \), we have two possible tetraquarks in the quadruplet, one with hidden [17, 18] or one with open [19] charm, see Figure 4, B, where the large circles represent a charm or beautiful quark. In the first case, the heavy quark of the baryon is transformed in a heavy anti-diquark, in the latter case the light quark into a light diquark. Some of the new heavy bosons can in this way be explained as tetraquarks. In Table II some candidates for hidden charm or beauty are displayed.

For states with open beauty the mass of the lowest lying tetraquark could be below the threshold for a strong decay, as predicted by potential models [20, 21]. As can be seen from Table III, the existence of such states is also predicted by supersymmetric LFHQCD, namely a tetraquark with two \(b \)-quarks and one with a \(b \) and a \(c \) quark. The predicted masses are 570 and 340 MeV below the strong decay threshold, respectively. The tetraquark with open charm is predicted to be very near the threshold, so with the estimated uncertainty of \(\pm 180 \) MeV no conclusion can be drawn.

For tetraquarks containing four heavy quarks, not only conformal symmetry but also supersymmetry in the multiplets is strongly broken; the application of the formalism is therefore very questionable. Nevertheless, the mass formula (6) can be applied to those states without any additional free parameter if we insert in (3) for \(M_M \) the sum of the quark masses. The results are displayed in Table IV. It should be noted that spin and statistics demands that the lightest diquark cluster, consisting of quarks of the same flavor, must have total quark spin 1. Curiously the mass of the newly discovered \(X(6900) \) [22] fits very well with the \(L = 0, S = 2 \) tetraquark state.
TABLE II. Some candidates for multiplets with hidden charm or hidden beauty.

Hadron q-cont.	n, L	J^P_C	M_{thco}	Cand. Mass [GeV]	PC	M_{theo} [GeV]
$c \bar{c}$	0, 0	1^{++}	χ_{c1} (3872)	3.87	3.872	
1^{-+}	3.87	Z_{c} (3900)	3.886			
Tetraq. $[cq][cq]$	0, 0	1^{3+}	$\Xi_{cc} \frac{1}{2}$ or $\Xi_{cc} \frac{3}{2}$	3.76	3.621	
Baryon $\langle cq \rangle c$	0, 0	3^{2+}	Ξ_{cc}	3.56	3.62	
Meson $\langle \bar{c} c \rangle$	0, 1	2^{++}	$\chi_{c2}(1P)$	3.67	3.56	
$b \bar{b}$	1, 0	1^{+}	$\chi_{b2}(2P)$	3.67	3.56	
Tetraq. $[bq][bq]$	1, 0	1^{3+}	$\Xi_{bb}(?)$	3.76	3.62	
Baryon $\langle bq \rangle b$	1, 0	3^{2+}	$\Xi_{bb}(?)$	3.56	3.46	
Meson $\langle \bar{b} b \rangle$	1, 1	2^{++}	$\chi_{b2}(2P)$	3.76	3.67	

TABLE III. Masses of hadrons containing two heavy quarks. The two last columns show the lightest strong decay channel and its threshold.

Mesons, $L_M = 1$				Baryons, $L_B = 0$		Tetraquark, $L_T = 0$					
Hadron q-cont.	J^{P}	name [MeV]	M_{thco}	Cand. Mass [MeV]	J^{P}	name [MeV]	M_{thco}	Cand. Mass [MeV]	J^{P}	name [MeV]	M_{thco}
$c \bar{s}$	1$^+$	$D_{s1}(2460)$	2550	$D_{s} \pi$	1948						
$c \bar{s}$	2$^+$	$D_{s2}^*(2559)$	2730	$D_{s}^* \pi$	2250						
$c \bar{c}$	1$^{+}$	$h_c(3525)$	3660	$h_c \pi \pi$	3270						
$c \bar{c}$	2$^{++}$	$\chi_{c2}(3565)$	3870	$D^* D_{s} \pi \pi$	3880(1)						
$b \bar{b}$	1$^{+}$	$h_b(9899)$	10020	$h_b \pi \pi$	9680						
$b \bar{b}$	2$^{++}$	$\chi_{b2}(9912)$	10230	$B^* B_{s}$	10800(1)						
$b \bar{c}$	1$^+$	6550	6660	BD*	7150(1)						

TABLE IV. Tentative assignment of tetraquark masses according for four heavy quarks.

$L = 0$, $S = 0$	$L = 0$, $S = 1$	$L = 1$, $S = 0$	$L = 1$, $S = 1$
cc\bar{c}	6.470	19.110	12.830
bb\bar{b}	6.680	19.340	13.060
cc\bar{b}	6.880	19.570	13.280
cc\bar{b}	7.080	19.790	13.490
III. FINAL REMARKS AND CONCLUSIONS

There has been speculation on the existence of exotic quark states [23] since the establishment of the quark model. Supersymmetric light-front holographic QCD predicts the existence of these states and the dependence of their masses on their quantum numbers without introducing new parameters. The accuracy of the mass predictions is limited to \(\approx 120 \) MeV for states composed of light quarks, and \(\approx 180 \) for those containing heavy quarks. Although the values of the masses are given by the theory, there remains, however, the problem of particle mixing, since the exotic states can mix with the conventional states without violating the Okubo-Zweig-Iizuka rule. But also in more elaborate treatments, the results of supersymmetric LFHQCD could be a valuable input.

Whereas tetraquarks are a consequence of supersymmetric LFHQCD, pentaquarks are not; they are, however, not excluded. In supersymmetric LFHQCD the pentaquark could be the member of a new supermultiplet consisting of a tetraquark, a pentaquark with two chiralities, and a hexaquark.

IV. ACKNOWLEDGEMENTS

This work is supported in part by the Department of Energy, Contract DE–AC02–76SF00515 and by the National Natural Science Foundation of China (Grant 11805242).

[1] S. J. Brodsky and G. F. de Téramond, Light-front hadron dynamics and AdS/CFT correspondence, Phys. Lett. B 582, 211 (2004)[arXiv:hep-th/0310227 [hep-th]].
[2] S. J. Brodsky and G. F. de Téramond, Hadronic spectra and light-front wavefunctions in holographic QCD, Phys. Rev. Lett. 96 (2006), 201601 [arXiv:hep-ph/0602252 [hep-ph]].
[3] G. F. de Téramond and S. J. Brodsky, Light-front holography: A first approximation to QCD, Phys. Rev. Lett. 102, 081601 (2009) [arXiv:0809.4899 [hep-ph]].
[4] S. J. Brodsky, G. F. de Téramond, H. G. Dosch and J. Erlich, Light-front holographic QCD and emerging confinement, Phys. Rept. 584, 1 (2015) [arXiv:1407.8131 [hep-ph]].
[5] J. M. Maldacena, The large N limit of superconformal field theories and supergravity, [Int. J. Theor. Phys. 38, 1113 (1999) [arXiv:hep-th/9711200]].
[6] E. Witten, Dynamical breaking of supersymmetry, Nucl. Phys. B 188, 513 (1981).
[7] S. Fubini and E. Rabinovici, Superconformal quantum mechanics, Nucl. Phys. B 245, 17 (1984).
[8] G. F. de Téramond, H. G. Dosch and S. J. Brodsky, Kinematical and dynamical aspects of higher-spin bound-state equations in holographic QCD, Phys. Rev. D 87, 075005 (2013) [arXiv:1301.1651 [hep-ph]].
[9] S. J. Brodsky, G. F. de Téramond and H. G. Dosch, Light-front holography and supersymmetric conformal algebra: A novel approach to hadron spectroscopy, structure, and dynamics, [arXiv:2004.07756 [hep-ph]].

[10] G. F. de Téramond, H. G. Dosch and S. J. Brodsky, Baryon spectrum from superconformal quantum mechanics and its light-front holographic embedding, Phys. Rev. D 91, 045040 (2015) [arXiv:1411.5243 [hep-ph]].

[11] H. G. Dosch, G. F. de Téramond and S. J. Brodsky, Superconformal baryon-meson symmetry and light-front holographic QCD, Phys. Rev. D 91, 085016 (2015) [arXiv:1501.00959].

[12] H. G. Dosch, G. F. de Téramond and S. J. Brodsky, Supersymmetry across the light and heavy-light hadronic spectrum, Phys. Rev. D 92, 074010 (2015) [arXiv:1504.05112 [hep-ph]].

[13] H. G. Dosch, G. F. de Téramond and S. J. Brodsky, Supersymmetry across the light and heavy-light hadronic spectrum II, Phys. Rev. D 95, 034016 (2017) [arXiv:1612.02370 [hep-ph]].

[14] S. J. Brodsky, G. F. de Téramond, H. G. Dosch and C. Lorcé, Universal effective hadron dynamics from superconformal algebra, Phys. Lett. B 759, 171 (2016) [arXiv:1604.06746 [hep-ph]].

[15] N. Isgur and M. B. Wise, Spectroscopy with heavy quark symmetry, Phys. Rev. Lett. 66, 1130 (1991).

[16] L. Zou, H. G. Dosch, G. F. de Téramond and S. J. Brodsky, The isoscalar mesons and exotic states in light front holographic QCD, Phys. Rev. D 99, 114024 (2019) [arXiv:1901.11205 [hep-ph]].

[17] M. Nielsen and S. J. Brodsky, Hadronic superpartners from a superconformal and supersymmetric algebra, Phys. Rev. D 97, 114001 (2018) [arXiv:1802.09652 [hep-ph]].

[18] M. Nielsen, S. J. Brodsky, G. F. de Téramond, H. G. Dosch, F. S. Navarra and L. Zou, Supersymmetry in the double-heavy Hadronic Spectrum, Phys. Rev. D 98, 034002 (2018) [arXiv:1805.11567 [hep-ph]].

[19] L. Zou and H. G. Dosch, A very practical guide to light front holographic QCD, arXiv:1801.00607 [hep-ph].

[20] J. P. Ader, J. M. Richard and P. Taxil, Do narrow heavy multiquark states exist? Phys. Rev. D 25, 2370 (1982).

[21] M. Karliner and J. L. Rosner, Discovery of doubly-charmed Ξ_{cc} baryon implies a stable (bbūd) tetraquark, Phys. Rev. Lett. 119, 202001 (2017) [arXiv:1707.07666 [hep-ph]].

[22] R. Aaij et al. [LHCb], Observation of structure in the J/ψ-pair mass spectrum, Sci. Bull. 65, 1983 (2020) [arXiv:2006.16957 [hep-ex]].

[23] D. P. Roy, History of exotic meson (four quark) and baryon (five quark) states, J. Phys. G 30, R113 (2004) [arXiv:hep-ph/0311207 [hep-ph]].