The free-energy cost of accurate biochemical oscillations

Yuansheng Cao¹, Hongli Wang¹, Qi Ouyang¹,²* and Yuhai Tu³*

Oscillations within the cell regulate the timing of many important life cycles. However, in this noisy environment, oscillations can be highly inaccurate owing to phase fluctuations. It remains poorly understood how biochemical circuits suppress these phase fluctuations and what is the incurred thermodynamic cost. Here, we study three different types of biochemical oscillation, representing three basic oscillation motifs shared by all known oscillatory systems. In all the systems studied, we find that the phase diffusion constant depends on the free-energy dissipation per period, following the same inverse relation parameterized by system-specific constants. This relationship and its range of validity are shown analytically in a model of noisy oscillation. Microscopically, we find that the oscillation is driven by multiple irreversible cycles that hydrolyse fuel molecules such as ATP; the number of phase coherent periods is proportional to the free energy consumed per period. Experimental evidence in support of this general relationship and testable predictions are also presented.

Living systems are dissipative, consuming energy to perform key functions for their survival and growth. Although it is clear that free energy¹⁻³ is needed for physical functions, such as cell motility⁴ and macromolecule synthesis⁵, it remains poorly understood whether and how regulatory functions are enhanced by free-energy consumption. The relationship between biological regulatory functions and nonequilibrium thermodynamics has been an active area in biophysics⁶⁻¹¹. For example, recent studies in different cellular adaptation processes demonstrated that the cost-performance trade-off follows a universal relationship, independent of the detailed biochemical circuits⁸⁻⁹.

Oscillatory behaviours exist in many biological systems, for example, glycolysis¹², cyclic AMP signalling¹³⁻¹⁴, cell cycle¹⁴⁻¹⁵, circadian rhythms¹⁶⁻¹⁷ and synthetic oscillators¹⁸⁻¹⁹. These biochemical oscillations are crucial in controlling the timing of life processes. Much is known now about the structure of biochemical circuits responsible for these oscillatory behaviours. There are a few basic network motifs, illustrated in Fig. 1a, which are responsible for all known biochemical and genetic oscillations¹²,¹³,¹⁶⁻¹⁸. These network motifs share a few essential features, such as nonlinearity, negative feedback and a time delay, as summarized by Novak and Tyson in ref. 20. However, in small systems such as a single cell, the dynamics of oscillations are subject to large fluctuations from the environment, owing to their small sizes. Thus, one may ask how biological systems maintain coherence of oscillations amidst these fluctuations²¹. Here, we study the thermodynamic cost of controlling oscillation coherence in different representative oscillatory systems and investigate whether there is a general relationship between the accuracy of the oscillation and its minimum free-energy cost that may apply to all biochemical oscillations.

We study three specific models, the activator–inhibitor (AI) model, the repressilator model, and the allosteric glycolysis model, chosen to exemplify the three different basic oscillation motifs, as shown in Fig. 1. For all the systems studied, a finite (critical) amount of free energy is needed to drive them to oscillate. Beyond the onset of oscillation, extra free-energy dissipation must be applied to reduce the phase diffusion constant and thus enhance the coherence time and phase accuracy of the oscillations. A general inverse relationship between the phase diffusion constant and the free-energy dissipation is found in all three models studied. The parameters in this inverse relationship and the range of its validity depend on the details of the system. This general energy–accuracy relation for noisy oscillations is also verified analytically in the noisy complex Stuart–Landau equation. In the following, we report these results, followed by an in-depth discussion of a plausible general microscopic mechanism/strategy for energy-assisted noise suppression.

Models and results
An inverse relationship between phase diffusion and free energy dissipation is shown in three biochemical oscillatory systems and in a simple analytical model. Experimental evidence is presented.

Three basic network motifs for biochemical oscillations. All known biochemical and genetic oscillators contain at least one of the basic motifs (or their variants) in network topology²⁰,²². To search for general principles in these noisy oscillatory systems, we study three biochemical systems (Fig. 1), each representing one of the three basic network motifs responsible for oscillatory behaviours. The first one is the activator–inhibitor (AI) system, where a negative feedback is interlinked with a positive feedback (left panel, Fig. 1a). This regulatory motif is common in biological oscillators, such as the circadian clock in cyanobacteria²³⁻²⁴, cell cycle in frog eggs²⁵⁻²⁶, cAMP signalling in Dictyostelium¹⁶, and genetic oscillators in synthetic biology²⁷⁻²⁸. We implement this motif in a simplified biological network with a phosphorylation–dephosphorylation cycle (Fig. 1b). The second model is a repressilator, which consists of three components connected in a negative feedback loop, such that each component represses the next one in the loop, and is itself repressed by the previous one (middle panel, Fig. 1a). The first synthetic genetic oscillator was built with this motif²⁹. Many important transcriptional–translational oscillators also use this motif as their backbone, such as the circadian clock in mammalian cells³⁰, NF-kB

¹The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China. ²Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, AAIC, Peking University, Beijing 100871, China. ³IBM T. J. Watson Research Center, Yorktown Heights, New York 10598, USA. *e-mail: qi@pku.edu.cn; yuhai@us.ibm.com
signalling\(^{29}\), and the p53-mdm2 oscillations in cancer cells\(^{30}\). Here, we take the repressor composed of CDK1, Plk1 and APC in a cell cycle as our case study (Fig. 1c). The third oscillatory network motif we studied is the substrate-depletion model\(^{21}\) (the last panel in Fig. 1a), where substrate \(S\) is converted by a process that is amplified auto-catalytically by the product \(P\). Examples of substrate-depletion motifs are oscillations in glycolysis\(^{12,13}\) and calcium signalling\(^{15}\). Here, we examine the noise effect in glycolysis oscillations, where the allosteric enzyme PFK catalyzes substrate to product in a network shown in Fig. 1d. To show the generality of our results, we have also studied the brusselator model, which represents one of the simplest chemical systems that can generate sustained oscillations. The brusselator is a special kind of substrate-depletion model.

In our study, we introduced a parameter \(\gamma\) to characterize the reversibility of the biochemical networks. In a reaction loop, \(\gamma\) corresponds to the ratio of the product of the reaction rates in one direction (for example, anticlockwise) and that in the other direction (for example, clockwise). When \(\gamma = 1\), the system is in equilibrium without any free-energy dissipation. For \(\gamma \neq 1\), free energy is dissipated. Here, we study the relationship between the dynamics and the energetics of the biochemical networks by varying \(\gamma\). The mathematical details of the four models are described in the Supplementary Information; all parameters (for example, reaction rates, concentrations, time and volumes) are shown here as dimensionless numbers, with their units explained in the Supplementary Information.

Phase diffusion reduces the coherence time. In all four models that we studied, there is an onset of oscillation as \(\gamma\) decreases below a critical value \(\gamma_c\) (<1). This means that a finite critical free-energy dissipation \((W_c > 0)\) is needed to generate an oscillatory behaviour (see Supplementary Fig. 1). In Fig. 2a, two trajectories of the concentration of the inhibitor \(X\) are shown for \(\gamma = 10^{-5} < \gamma_c\) in the activator–inhibitor model, where \(\gamma_c = 2 \times 10^{-3}\). As evident in Fig. 2a, biochemical oscillations are noisy. To characterize the coherence of the oscillation in time, we computed the autocorrelation function \(C(t)\) for a given concentration variable \(x\) in the network. As shown in Fig. 2b, \(C(t)\) follows a damped oscillation:

\[
C(t) = \frac{\langle (x(t+s) - \langle x \rangle)(x(s) - \langle x \rangle) \rangle}{\langle x^2 \rangle - \langle x \rangle^2} = \exp(-t/\tau_c) \cos(2\pi t/T) \tag{1}
\]

where \(\langle \cdots \rangle\) denotes the average and \(s\) is a time variable. The period is given by \(T\) and \(\tau_c\) defines a coherence time for the oscillation.

The oscillatory state breaks time translation invariance (symmetry) of the underlying biochemical system. As a result, the phase of the oscillation is a soft mode and follows diffusive dynamics in the presence of noise. To quantify the phase diffusion, we simulated many trajectories in the model(s) with the same parameters and the same initial conditions. In Fig. 2c, the peak times for 500 trajectories in the AI model are shown in a raster plot together with the peak-time distributions (red lines). The variance \(\sigma^2\) of the distribution versus the average peak time is shown in Fig. 2d. It is clear that the variance goes linearly with time, confirming the diffusive nature of the phase, and the linear slope defines a peak-time diffusion constant \(D\). It is easy to show that the coherence time \(\tau_c\) is inversely proportional to \(D\):

\[
\tau_c = \alpha T^2 / D \tag{2}
\]

where \(\alpha\) is a constant dependent on the waveform \((\alpha = (2\pi)^{-1}\) for a sine wave).

Free-energy dissipation suppresses phase diffusion. As \(\gamma\) decreases below \(\gamma_c\), more free energy is dissipated. What is the effect of the additional free-energy dissipation beyond the onset of oscillation? From the chemical reaction rates, we can compute the free-energy dissipation rate\(^{24}\):

\[
W = \sum_i (J_i^+ - J_i^-) \ln \frac{J_i^+}{J_i^-} \tag{3}
\]

where \(J_i^+\) and \(J_i^-\) are the forward and backward fluxes of the \(i\)th reaction, and free energy is in units of thermal energy. For the activator–inhibitor and glycolysis models, we calculated the energy dissipation rate using equation (3). For systems with continuum stochastic dynamics described by Langevin equations (for example, the brusselator and the repressilator models), we can obtain the steady-state distribution \(P(x)\) by solving the corresponding Fokker–Planck equation or by direct stochastic simulations (see Supplementary Fig. 2 for an example). From \(P(x)\), we computed the phase-space fluxes and the free-energy dissipation rate following ref. 9 (see Methods and Supplementary Information for details). For
oscillatory systems, the dissipation rate \dot{W} varies in a period T. We define $\Delta W \equiv \int_0^T \dot{W} dt$ to characterize the free-energy dissipation per period per volume.

For each of the four models, ΔW and the dimensionless peak-time diffusion constant D/T were computed for different parameter values (reaction rates, protein concentrations) in the oscillatory regime $\gamma < \gamma_c$ and for different volume V. As shown in Fig. 3a for the activator–inhibitor model, D/T decreases as the energy dissipation ΔW increases, and eventually saturates to a fixed value when $\Delta W \to \infty$ (that is, $\gamma \to 0$). The phase diffusion constants scale inversely with the volume V. As shown in Fig. 3b, $V \times D/T$ for different volumes collapsed onto a simple curve, which can be approximated by

$$V \times \frac{D}{T} \approx \frac{W_0}{\Delta W - W_c}$$

(4)

where W_c is the critical free energy, and W_0 and C are intensive constants (independent of volume), whose values are in the legend of Fig. 3. Equation (4) also holds true for the other models (repressilator, brusselator and glycolysis) we studied, see Fig. 3c and Supplementary Fig. 3 for details.

The free-energy sources and experimental evidence. What is the free-energy source driving the biochemical oscillations? For the activator–inhibitor model, the free energy is provided by ATP hydrolysis in the phosphorylation–dephosphorylation (PdP) cycle (see Fig. 1a). Besides the standard free energy ΔG_0 of ATP hydrolysis, the total free-energy dissipation per period ΔW also depends on (and thus can be controlled by) the concentrations of ATP, ADP and the inorganic phosphate P_i. In the activator–inhibitor model, we can include ATP, ADP and P_i explicitly in the reactions (see Methods). Here, we study how these concentrations ([ATP], [ADP] and $[P_i]$) affect the phase diffusion of the oscillation. In Fig. 4a, we show the phase diffusion constant (D/T) versus the dissipation per period (ΔW) for 300 sets of randomly chosen concentrations [ATP], [ADP] and $[P_i]$. Remarkably, all the points lie above an envelope curve (the dotted line), which follows equation (4). This envelope curve defines the best performance of the biochemical network—that is, the minimum free energy ΔW_m needed to achieve a given level of phase coherence. For each choice of the concentrations ([ATP], [ADP], $[P_i]$), a functional efficiency E can be defined as the ratio of ΔW_m and the actual cost ΔW for the same performance (D/T). The efficiency is represented by colour

Figure 2 | Correlation and phase diffusion of the noisy oscillations in the activator–inhibitor model. a, Two noisy oscillation time series (trajectories) of the inhibitor (X) concentration, with the peaks labelled by circles and squares. b, The autocorrelation function $C(t)$ (defined in equation (1)) decays exponentially with a correlation time $\tau_c = 37.7$. c, Raster plot of the peak times for 500 different trajectories starting with the same initial condition. The distributions of the peak times for each consecutive peaks are shown by red lines. The peak-time variance σ^2 is shown. d, Peak time variance σ^2 goes linearly with the average peak time, with the linear coefficient defined as the peak-time diffusion constant. Here, parameters are $V = 50$, $\gamma = 10^{-5}$. We find $D = 0.2$ and $\sigma \equiv \tau_c D / T^2 \approx 0.07$.

© 2015 Macmillan Publishers Limited. All rights reserved
The activator–inhibitor model with 300 randomly chosen parameters of dimensionless [ATP], [ADP] and [Pi] (see Methods). We chose $V = 100$. a, D/T versus ΔW for the 300 different parameter choices. All the points lie above an envelope curve, which follows equation (4) with $D/T = 194/(\Delta W - 400) + 0.0036$. Points shown as squares indicate the points shown in Fig. 3. For a given value of D/T, the corresponding minimal energy dissipation ΔW_{min} is computed according to the fitted envelope curve. The efficiency is defined as $E = \Delta W_{\text{min}}/\Delta W$. Colours of the points indicate the efficiency. b, Distribution of the 300 randomly sampled points in the parameter space ([ATP], [ADP]/[P]), Colours of the points indicate the efficiency as in a. Points with high efficiency are clustered. c, Distribution of [ATP] and [ADP]/[P] for parameter choices with high efficiency $E \geq 0.75$. The most probable parameter values for high efficiency are $[\text{ATP}] = 10^3$, $[\text{ADP}] = [\text{P}]$, which corresponds to $\alpha = 2\tau_f = 2\tau_w$ in the kinetic equations. This result indicates that high efficiency is achieved when the kinetic rates in the two halves of the PdP cycle (phosphorylation and dephosphorylation) are matched.

in Fig. 4a,b. We investigated how efficiency depends on the three concentrations. As shown in Fig. 4b,c, the efficiency E does not simply increase with the ATP concentration; instead it peaks near a particular level of [ATP], at which the forward (anticlockwise in Fig. 1b) rates along different steps of the PdP cycle are matched. Similarly, E does not have any clear dependence on [ADP] or [Pi] level, it is high near a fixed ratio of [ADP]/[P], when the backward (clockwise in Fig. 1b) rates along the different steps of the PdP cycle are matched. In the Supplementary Information we show in a simple model of chemical reaction cycles that with a constant energy dissipation (that is, a fixed γ), phase diffusion approaches its minimum when the forward and the backward rates along different steps of the cycle, for example, the PdP cycle, are matched.

These predicted dependence of oscillatory behaviours on [ATP], [ADP] and [P], concentrations, as shown in Fig. 4, may be tested experimentally by measuring peak-to-peak time variations, or equivalently the correlation time for different nucleotide concentrations. As reported in two recent studies35,36, the oscillatory dynamics of the phosphorylated KaiC protein in a reconstituted circadian clock from cyanobacteria (the Kai system) have been measured in media with different ATP/ADP ratios. We analysed the data according to equation (1) and obtained the correlation time (τ_C) and the period (T) for different ATP/ADP ratios (see Supplementary Information and Supplementary Fig. 4 for details). In Fig. 5, we plotted the period and the phase diffusion versus $\ln([\text{ATP}]/[\text{ADP}])$, which is the entropic contribution to the free-energy dissipation. As the ATP/ADP ratio increases, the period changes little. In contrast, the phase diffusion $T/\tau_C \equiv \alpha^{-1}D/T$ decreases significantly and eventually saturates at high ATP/ADP ratios, consistent with the relationship between energy dissipation and phase diffusion discovered here.
Phase can be defined without ambiguity when the amplitude fluctuation \(\langle \delta r^2 \rangle \equiv (r - r_r)^2 \) is smaller than \(r_r^2 \). This leads to \(a > \sqrt{2c\Delta} \). When \(\Delta \) is small, the phase diffusion constant is determined by expanding the phase velocity around \(r = r_r \). This leads to \(\frac{d\theta}{dt} = b + \alpha \delta t + \beta \delta t + \gamma_0(t) \), with \(\beta = \partial \omega(r) / \partial r = 2d\sqrt{a/c} \). Approximately we have \(\langle \eta_0 \rangle = 0 \), \(\langle \eta_0(t)\eta_0(t') \rangle \approx \Delta / r^3 \delta(t - t') \). The phase fluctuation \(\delta \eta_0(t) = \theta - \omega(r)r \) follows a diffusive behaviour with the diffusion constant given by:

\[
D_\theta = \frac{\Delta}{a} \left(\frac{d^2}{2c} + c \right) = \frac{k\Delta}{a} \tag{7}
\]

where \(k = d^2 / 2c + c \).

It is clear from equations (5) and (6) that detailed balance is broken and the system is dissipative. To compute the free-energy dissipation, we first determine the phase-space probability distribution function \(P(r, \theta, t) \). Solving the Fokker–Planck equation in polar coordinates, we obtain the steady-state probability \(P_r(r, \theta) \):

\[
P_r(r, \theta) = A \exp \left[-\frac{(cr/4 - ar^2/2)}{\Delta} \right]
\]

where \(A = [2\pi \int \exp[-(cr/4 - ar^2/2)/\Delta] \, dr]^{-1} \) is the normalization constant.

We compute the system’s entropy production rate \(\dot{S} \) (refs 37,38), from which we obtain the minimum free-energy dissipation (see Supplementary Information for details):

\[
\frac{\Delta W}{\dot{W}} = \frac{2\pi da^2}{c^2\Delta} + \frac{2\pi ba}{c\Delta} + \frac{4\pi d^2 a}{c(ad + bc)} + \frac{8\pi d}{c}
\]

When \(a \ll bc/d \), higher order terms can be neglected and \(\Delta W \) is linearly dependent on \(a \):

\[
\Delta W = W_c + \xi a
\]

where \(\xi = 2\pi b / (c\Delta) + 2\pi d^2 / (bc^2) \), and \(W_c = 8\pi d / c > 0 \).

Eliminating \(a \) from equations (7) and (8), the relation between phase diffusion and energy dissipation emerges:

\[
D_\theta = C + \frac{W_c}{\Delta W - W_c}
\]

where \(C \equiv 0 \) and \(W_c = \xi \Delta \). The region where equation (9) holds is given by \(\sqrt{2c\Delta} < a < (bc/d) \), where the lower bound is limited by phase ambiguity, and the upper bound is given by the linear regime of \(\Delta W \). The noise strength affects the lower bound. The phase–amplitude correlation parameter \(d \) controls the upper bound (see Supplementary Information and Supplementary Fig. 5 for details).

In general, \(C > 0 \) when the noise strengths of the two variables \((x, y) \) vary independently, see Supplementary Information for an analytical derivation (based on small noise expansion) and Supplementary Fig. 6 for a direct simulation demonstration. In a system with multiple variables, large energy dissipation may...
completely suppress fluctuations in some of the variables. However, other variables, which are not subject to the energy-assisted noise control mechanism, can introduce a finite contribution to the phase diffusion, resulting in a finite \(C \).

Equation (9) has the same form as equation (4) obtained empirically from studying different biochemical networks. Analysis of the noisy Stuart–Landau equation clearly shows that free-energy dissipation is used to suppress phase diffusion. The parameters in this relationship and the range of its validity depend on the details of the system. However, the inverse dependence of phase diffusion on energy dissipation seems to be general.

Discussion

Oscillations are critical for many biological functions that require accurate time control, such as circadian clock, cell cycle and development. However, biological systems are inherently noisy. The phase of a noisy oscillator fluctuates (diffuses) without bound and eventually destroys the coherence (accuracy) of the oscillation. Specifically, the number of periods \(N_C \) in which the oscillation maintains its phase coherence is given by \(N_C = \frac{\tau_c}{T} = \alpha T / D \), which decreases with the phase diffusion constant. Here, our study shows that free-energy dissipation can be used to reduce phase diffusion and thus prolong the coherence of the oscillation. A general relationship between the phase diffusion constant and the minimum free-energy cost, as given in equation (4), holds true for all the oscillatory systems we studied here. The amplitude fluctuations also decrease with free-energy dissipation (see Supplementary Fig. 7 for details), as fluctuations in phase and amplitude are coupled in realistic systems. Our study thus establishes a cost-performance trade-off for noisy biochemical oscillations.

How do biological systems use their free-energy sources (for example, ATP) to enhance the accuracy of the biochemical oscillations? As illustrated in Fig. 6a, a biochemical oscillation can be considered as a clock, which goes through a series of time-ordered chemical states (green dots) during each period. These chemical states are characterized by the conformational and chemical modification (for example, phosphorylation) states of the key proteins or protein complexes in the system. The forward transition from one state to the next is coupled to an energy-consuming cycle exemplified here by a PdP cycle (blue arrowed circle) driven by hydrolysis of one ATP molecule. For each forward step, the reverse transition introduces a large error in the clock. The system suppresses these backward transitions by utilizing the ATP hydrolysis free energy. However, this is just one half of the story. Even in the absence of the reverse transition, the time duration between two consecutive states is highly variable owing to the stochastic nature (Poisson process) of the chemical transitions. A general strategy of increasing accuracy is averaging\(^{40}\). In the case of biochemical oscillations, each period may consist of multiple steps, each powered by at least one ATP molecule. As a result of averaging, the error in the period should go down as the number of steps increases. Specifically, we expect that the variance of the period \(\sigma^2 = \frac{1}{D/T} \) should be inversely proportional to the total number of ATP hydrolysed \(N_{ATP} \propto T / \tau_{cyc} \) in each period \(T \), where \(\tau_{cyc} \) is the average cycle time, which is essentially the ATP turnover time. Consequently, the number of coherent periods \(N_c = \alpha T / D \) should be proportional to the number of ATP hydrolysed in each period. We checked this prediction by varying the kinetic rates in the PdP cycle to change \(\tau_{cyc} \) (see Methods for details). In Fig. 6b, it is shown that the accuracy of the oscillation (clock), as measured by \(N_c \), is enhanced by the number of ATP molecules hydrolysed in each period. This result reveals a general strategy for oscillatory biochemical networks to enhance their phase coherence by coupling to multiple energy-consuming cycles in each period. For the cyanobacteria circadian clock, each KaiC molecule has two phosphorylation sites. In principle a full circadian cycle should consume 2 ATP molecules per KaiC monomer. Interestingly, approximately 15 ATP molecules are consumed per KaiC molecule per period\(^{40}\). Our study suggests that the extra ATP molecules may be used to increase the phase coherence of the circadian clock.

Biological systems need to function robustly against variations in their underlying biochemical parameters (rates, concentrations)\(^{41,42}\). For oscillatory networks, the free-energy dissipation needs to reach a critical value \(W_c \) to drive the system to oscillate. We showed here that additional free-energy cost in excess of \(W_c \) is needed to make the oscillation more accurate, as demonstrated explicitly in equation (4). In addition to this energy–accuracy trade-off, we found that larger energy dissipation can also enhance the system’s robustness against its parameter variations. Take the activator–inhibitor model, for example: the concentrations of enzyme \(M(\alpha T) \) and phosphatase
K (K\textsubscript{f}) may vary from cell to cell. We search for the existence of oscillation in the (M\textsubscript{f}, K\textsubscript{f}) space for different values of γ. Robustness is defined as the area of the parameter space where oscillation exists. As shown in Supplementary Fig. 8, the robustness increases as the system becomes more irreversible (that is, when more free energy is dissipated). This suggests a possible general trade-off between the functional robustness and energy dissipation in biological networks.

Methods

Methods and any associated references are available in the online version of the paper.

Received 5 January 2015; accepted 25 June 2015; published online 27 July 2015

References

1. Eisenberg, E. & Hill, T. L. Muscle contraction and free energy transduction in biological systems. *Science* **227**, 999–1006 (1985).
2. Hill, T. L. Free Energy Transduction and Biochemical Cycle Kinetics (Academic, 1977).
3. Qian, H. & Beard, D. A. *Chemical Biophysics: Quantitative Analysis of Cellular Systems* (Cambridge Univ. Press, 2008).
4. Julicher, F., Ajdari, A. & Prost, J. Modeling molecular motors. *Rev. Mod. Phys.* **69**, 1269–1281 (1997).
5. Nelson, D. L., Lehninger, A. L. & Cox, M. M. *Lehninger Principles of Biochemistry* (McMillan, 2008).
6. Bialek, W. & Setayeshgar, S. Physical limits to biochemical signaling. *Proc. Natl Acad. Sci. USA* **102**, 10040–10045 (2005).
7. Hu, B., Chen, W., Rappel, W. J. & Levine, H. Physical limits on cellular sensing of spatial gradients. *Phys. Rev. Lett.* **105**, 048104 (2010).
8. Lan, G., Sartori, P., Neumann, S., Sourjik, V. & Tu, Y. The energy-speed–accuracy tradeoff in sensory adaptation. *Nature Phys.* **8**, 422–428 (2012).
9. Lan, G. & Tu, Y. The cost of sensitive response and accurate adaptation in networks with an incoherent type-1 feed-forward loop. *J. R. Soc. Interface* **10**, 20130489 (2013).
10. Skoge, M., Naqvi, S., Meir, Y. & Wingreen, N. S. Chemical sensing by nonequilibrium cooperative receptors. *Phys. Rev. Lett.* **110**, 248102 (2013).
11. Lang, A. H., Fisher, C. K., Mora, T. & Mehta, P. Thermodynamics of statistical inference by cells. *Phys. Rev. Lett.* **113**, 148103 (2014).
12. Goldbeter, A. *Biochemical Oscillations and Cellular Rhythms: The Molecular Bases of Periodic and Chaotic Behaviour* (Cambridge Univ. Press, 1996).
13. Martiel, J. L. & Goldbeter, A. A model based on receptor desensitization for cyclic amp signaling in dictyostelium cells. *Biophys. J.* **52**, 807–828 (1987).
14. Pomerening, J. R., Sontag, E. D. & Ferrell, J. E. Building a cell cycle oscillator: Hysteresis and bistability in the activation of cdc2. *Nature Cell Biol.* **5**, 346–351 (2003).
15. Tsai, Y. & et al. Robust, tunable biological oscillations from interlinked positive and negative feedback loops. *Science* **321**, 126–129 (2008).
16. Ferrell, J. J., Tsai, T. Y. & Yang, Q. Modeling the cell cycle: Why do certain circuits oscillate? *Cell* **144**, 874–885 (2011).
17. Hogensie, J. B. & Ueda, H. R. Understanding systems-level properties: Timely stories from the study of clocks. *Nature Rev. Genet.* **12**, 407–416 (2011).
18. Elowitz, M. B. & Leibler, S. A synthetic oscillatory network of transcriptional regulators. *Nature* **403**, 335–338 (2000).
19. Stricker, J. et al. A fast, robust and tunable synthetic gene oscillator. *Nature* **456**, 516–519 (2008).
20. Novak, B. & Tyson, J. J. Design principles of biochemical oscillators. *Nature Rev. Mol. Cell Biol.* **9**, 981–991 (2008).
21. Barkai, N. & Leibler, S. Circadian clocks limited by noise. *Nature* **403**, 267–268 (2000).
22. van Dorp, M., Lannoo, B. & Carlon, E. Generation of oscillating gene regulatory network motifs. *Phys. Rev. E* **88**, 012722 (2013).
23. Nakajima, M. et al. Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. *Science* **308**, 414–415 (2005).
24. Rust, M. J., Markson, J. S., Lane, W. S., Fisher, D. S. & O’Shea, E. K. Ordered phosphorylation governs oscillation of a three-protein circadian clock. *Science* **318**, 809–812 (2007).
25. Goldbeter, A. A minimal cascade model for the mitotic oscillator involving cyclin and cdc2 kinase. *Proc. Natl Acad. Sci. USA* **88**, 9107–9111 (1991).
26. Pomerening, J. R., Kim, S. Y. & Ferrell, J. E. Jr. Systems-level dissection of the cell-cycle oscillator: Bypassing positive feedback produces damped oscillations. *Cell* **122**, 565–578 (2005).
27. Danino, T., Mondragon-Palomino, O., Tsimring, L. & Hasty, J. A synchronized quorum of genetic clocks. *Nature* **463**, 326–330 (2010).
28. Prindle, A. et al. A sensing array of radically coupled synthetic biopixels. *Nature* **481**, 39–44 (2012).
29. Krishna, S., Jensen, M. H. & Schnep, K. Minimal model of spiky oscillations in nf-κb signaling. *Proc. Natl Acad. Sci. USA* **103**, 10840–10845 (2006).
30. Geva-Zatorsky, N. et al. Oscillations and variability in the p53 system. *Mol. Syst. Biol.* **2**, 2006.0033 (2006).
31. Szallasi, Z., Stelling, J. & Periwal, V. *System Modeling in Cell Biology: From Concepts to Nuts and Bolts* (MIT Press, 2006).
32. Goldbeter, A. & Lefer, R. Dispersive structures for an allosteric model. Application to glycolytic oscillations. *Biophys. J.* **12**, 1302–1315 (1972).
33. Dupont, G., Berridge, M. & Goldbeter, A. Signal-induced Ca2+ oscillations: Properties of a model based on Ca2+–induced Ca2+ release. *Cell Calcium* **12**, 73–85 (1991).
34. Qian, H. Phosphorylation energy hypothesis: Open chemical systems and their biological functions. *Annu. Rev. Phys. Chem.* **58**, 113–142 (2007).
35. Rust, M. J., Golden, S. S. & O’Shea, E. K. Light-driven changes in energy metabolism directly entrain the cyanobacterial circadian oscillator. *Science* **331**, 220–223 (2011).
36. Phong, C., Markson, J. S., Wilhoite, C. M. & Rust, M. J. Robust and tunable circadian rhythms from differentially sensitive catalytic domains. *Proc. Natl Acad. Sci. USA* **110**, 1124–1129 (2013).
37. Tome, T. & de Oliveira, M. J. Entropy production in irreversible systems described by a Fokker–Planck equation. *Phys. Rev. E* **82**, 021120 (2010).
38. Seifert, U. Entropy production along a stochastic trajectory and an integral fluctuation theorem. *Phys. Rev. Lett.* **95**, 040602 (2005).
39. Berg, H. C. & Purcell, E. M. Physics of chemoreception. *Biophys. J.* **20**, 193–219 (1977).
40. Terauchi, K. et al. Attractive activity of KaiC determines the basic timing for circadian clock of cyanobacteria. *Proc. Natl Acad. Sci. USA* **104**, 16357–16381 (2007).
41. Barkai, N. & Leibler, S. Robustness in simple biochemical networks. *Nature* **387**, 913–917 (1997).
42. Ma, W., Trusina, A., El-Samad, H., Lim, W. A. & Tang, C. Defining network topologies that can achieve biochemical adaptation. *Cell* **138**, 760–773 (2009).

Acknowledgements

We thank M. Rust for sharing the experimental data in refs 35,36. This work is partly supported by a NIH grant (R01GM081747 to Y.T.), a NSF grant (11434001 to Q.O.) and a MStC grant (2012AA02A702 to Q.O.).

Author contributions

Y.T. and Q.O. initiated the work; Y.C., H.W., Q.O. and Y.T. designed the research; Y.C. performed simulations; Y.C. and Y.T. contributed to the analytical results; Y.C., Q.O. and Y.T. wrote the paper.

Additional information

Supplementary information is available in the online version of the paper. Reprints and permissions information is available online at www.nature.com/reprints. Correspondence and requests for materials should be addressed to Q.O. or Y.T.

Competing financial interests

The authors declare no competing financial interests.
Methods

Simulation methods. The Gillespie algorithm\(^43\) is used for the stochastic simulations of the reaction kinetics. The parameters in Figs 2 and 3 for the activator–inhibitor model are \(k_a = k_i = 1 (\text{second}^{-1})\), \(k_s = 10 (\text{second}^{-1})\), \(k_f = 0.5 (\text{second}^{-1})\), \(S = 0.4 (\text{c})\), \(X = 1 (\text{c})\), \(M_1 = 10 (\text{c})\), \(\alpha_i = \alpha_s = 100 (\text{second}^{-1})\), \(f_1 = f_2 = d_1 = d_2 = 15 (\text{second}^{-1})\), \(f_3 = f_4 = \sqrt{\alpha_i} (\text{second}^{-1})\), with \(\epsilon\) the arbitrary concentration and \(t\) the time. Parameters for the other three models are given in Supplementary Information. For given kinetic rates and the volume \(V\), we simulated 1,000 trajectories starting with the same initial condition. For the 4th trajectory, we obtained its 13th peak time \(t_j\) from the trajectory \(x_j(t)\) after smoothing (smooth function in MATLAB was used). The peak positions for two trajectories are shown in Fig. 2a. For each of the trajectories, we computed the mean of their 13th peak time \(m = \frac{1}{N} \sum_i t_j / N\), and variance \(\sigma^2 = \frac{1}{N} \sum_i (t_i - m)^2\), where \(N\) is the total number of trajectories. The average period \(T\) is given by \(T = m / \sigma\).

Asymptotically, \(\sigma^2\) depends linearly on \(m\) (Fig. 2d), and the slope of this linear dependence is the peak-time diffusion constant \(D\), which has the dimension of time. The phase diffusion constant \(D_p\) is linearly proportional to \(D\):

\[
D_p = (2 \pi^2) D / T.
\]

For the represillator and the brusselator models, we simulated the stochastic kinetic equations to a sufficiently long time (10,000 periods) to obtain the time-averaged distribution \(P(x)\), where \(x\) represents the phase space. We used \(P(x)\) to compute free-energy dissipation.

Random sampling. We can include ATP, ADP and \(P\) explicitly in the reactions:

\[
M + R + \text{ATP} \rightarrow M \cdot R \cdot \text{ATP} \rightarrow M_p + R + \text{ADP} \text{ and } M_K \Rightarrow M + K + P.
\]

The affected kinetic rates are \(a_1 = a_{1,3}[\text{ATP}]\), \(f_{\text{ATP}} = f_{\text{ADP}} = f_{\text{P}}\). We varied \(a_1 = 0.1, f_{\text{ATP}} = f_{\text{ADP}} = f_{\text{P}}\) are constants. The energy parameter \(r\) for the PdP cycle can now be expressed as:

\[
y = (d_1 d_2 f_1 f_3 [\text{ATP}]/(a_1 a_3 f_3 [\text{ATP}]) \right)
\]

Random sampling in the \([\text{ATP}],[\text{ADP}],[P]\) space is performed in \(\log\) scale (in log scale) in the region \(\log_{10}([\text{ATP}]/[\text{ATP}]) \in [2, 3], \log_{10}([\text{ADP}]/[\text{ADP}]) \in [-3, 1], \log_{10}([P]/[P]) \in [-3, 1]\) by using Latin hypercube sampling (the lhs-design function in MATLAB). The reference concentrations \([\text{ATP}]_0, [\text{ADP}], [P]\) are set to unity and their actual values are absorbed into the baseline reaction rates \(a_{1,3}, f_{\text{ATP}}\) and \(f_{\text{P}}\), which are given in the caption of Fig. 4.

ATP consumption. In the activator–inhibitor model, the ATP consumption rate is \(R_{\text{ATP}} = V (L^+ \cdot - L^- \cdot\), where \(L^+ \cdot\) and \(L^- \cdot\) are the fluxes for the \(M \rightarrow M_p\) and \(M_p \rightarrow M\) reactions, respectively. We varied the overall reaction kinetics, for example, \(r_{\text{ATP}}\), and the ATP consumption rate, by introducing a timescale factor \(B\) for all four rates \(d_i = d_i B d_1 = d_2 B f_3 = d_2 B f_3\), where \(d = 15\) and \(f = 15\) are the original values used in this paper (see Supplementary Information). By changing the rates this way, the free-energy release of ATP hydrolysis \(\Delta G = -\ln y = \ln (a_1 a_3 f_3 / (d_1 d_2 f_3))\) is unchanged. We varied \(B \in [0, 2, 2]\), and computed the total number of ATP consumed per period \(N_{\text{ATP}} = \int_0^{R_{\text{ATP}}} d t\) and \(N_2\) for Fig. 6b.

References

43. Gillespie, D. T. Exact stochastic simulation of coupled chemical reactions. \textit{J. Chem. Phys.} \textbf{81}, 2340–2361 (1977).