The Shift-Match Number and String Matching Probabilities for Binary Sequences

A. H. Bilge1,2, A. Erzan2,3 and D. Balcan3

1Department of Mathematics, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
2Feza Gürsey Institute, P.O.B. 6, Çengelköy, 34680 Istanbul, Turkey
3Department of Physics, Istanbul Technical University, Maslak 34469, Istanbul, Turkey

(Dated: February 9, 2008)

Abstract

We define the “shift-match number” for a binary string and we compute the probability of occurrence of a given string as a subsequence in longer strings in terms of its shift-match number. We thus prove that the string matching probabilities depend not only on the length of shorter strings, but also on the equivalence class of the shorter string determined by its shift-match number.

PACS 02.10.Ox, 87.10.+e
I. INTRODUCTION

The sequence-matching problem can be defined as deciding whether a given string over any alphabet occurs at least once as a subsequence in another set of strings and it is a problem of interest in informatics and genetics. From the informatics point of view, the string-matching problem is essentially the development of fast algorithms for determining exact or approximate occurrences of a short string in longer strings. The “words” searched for are context and language dependent, hence they should not be considered merely as a random selection from the set of n-digit sequences of the given alphabet \[1\]. On the other hand genomic interactions \[2\] can be modelled as a valued graph, or “network” in which the nodes are strings of a given length. In a previous set of papers, a model network has been proposed where the edges joining two nodes (a,b) are placed according to whether the string a occurs at least once as subsequence in the string b \[3, 4\]. The number of nodes with a given number of outgoing and incoming edges determine the “out-degree” and “in-degree” distributions, which require the knowledge of the string matching probabilities for arbitrary strings of given lengths. A closely related problem in biology is the string alignment problem where it is important to determine the probabilities of chance multiple occurrences of a random string within a specific target string, allowing mismatches and gaps \[5, 6\].

In the present paper we show that for an alphabet of length 2, i.e., binary strings, the matching probabilities of short strings of length n in generic longer strings of length L fall into equivalence classes with respect to a property of the short strings which we identify as the “shift-match number.” We obtain a recursive formula for the computation of the string matching probabilities in terms of the “shift-match number” of the shorter string, and the length L of the longer strings. Counting the total number occurrences (with multiplicities) of strings of length n in strings of length $L \geq n$, however, washes out the fine structure induced by the shift-match number.

The paper is organized as follows. Section 2 is devoted to the definition of the shift-match number, and proving the dependence of the number of occurrences in longer strings to these numbers. In Section 3 this is applied to the computation of the degree distribution.
II. THE SHIFT-MATCH NUMBER

Let \(a \) be a given binary string and let \(P(a, L) \) be the probability of occurrence of \(a \) in binary strings of length \(L \). Since the number of distinct binary sequences of length \(L \) is \(2^L \), this probability can be expressed as

\[
P(a, L) = N(a, L) 2^{-L},
\]

where \(N(a, L) \) is the number of binary sequences of length \(L \) that contain \(a \) as a subsequence at least once. Clearly, if \(a \) is a sequence of length \(n \), then \(N(a, L) = 0 \) for \(L < n \) and \(N(a, n) = 1 \). Furthermore the probability \(P(a, L) \) approaches 1 as \(L \) increases.

We first computed \(P(a, L) \) numerically for arbitrary \(a \) of a given length \(n \) and for increasing values of \(L \). We then observed that although all sequences \(a \) are equally likely to occur, for fixed \(L \), the probability \(P(a, L) \) shows a variation with respect to \(a \) which reveals an equivalence class structure. For example, for sequences of length \(n = 4 \) we computed the following probabilities \(P(a, L) \), for \(a \) as given in the first line of the Table 1, and for \(L = 4, \ldots, 10 \).

Note that for \(L = 4 \), the probabilities \(P(a, 4) \) are all equal to \(0.0625 = 2^{-4} \). For \(L = 5 \), we see that the sequences fall into two classes, with \(a = 1111 \) being distinguished from the rest with respect to its probability of inclusion, \(P(a, 5) \). For \(L = 6 \) and \(L = 7 \) we see that the equivalence classes branch further, into three, then four. This structure stabilizes after \(L = 7 \). We also note that

\[
P(1000, L) = P(1100, L) = P(1110, L) > P(1001, L) = P(1011, L) = P(1101, L) > P(1010, L) > P(1111, L)
\]

for each \(L \). This observation was the starting point for our definition of the “shift-match number,” which explains perfectly the equivalence class structure in the \(P(a, L) \)'s.

The computation of the number of occurrences \(N(a, L) \) is motivated by the counting algorithm (2.9) displayed in the proof of Proposition 2.1. The final recursion formula (2.10) requires a number of intermediate technical definitions such as the shift- match indices \(j_i \)'s and \(j_{i,m} \)'s and the conditional number of occurrences \(N(a, L, m) \)'s, to be defined in Section 2.2.

In dealing with binary numbers we use the following convention. If \(a \) is an \(n \)-digit binary
number, the i’th digit of a counted from left is denoted by a_i, i.e.,

$$a = a_1a_2 \ldots a_n.$$ \hfill (2.3)

We note that if \bar{a} denotes the binary number obtained from a by replacing zeros with ones and vice versa, i.e., for $a = 00100110$, $\bar{a} = 11011001$, then $P(a, L) = P(\bar{a}, L)$. Hence without loss of generality we may assume that $a_1 = 1$ wherever convenient. We now define the shift-match number $s(a)$ for a given binary number a and the shift-match equivalence on the set of binary numbers of a fixed length.

A. The shift-match number and shift-match equivalence

Let a be the n-digit binary number $a = a_1a_2a_3 \ldots a_n$. Its shift-match number $s(a)$ is an n-digit binary number $s(a) = s_1s_2s_3 \ldots s_n$ where the $s_i = s_i(a)$’s are defined by

$$s_1(a) = 1 ,$$
$$s_2(a) = \delta(a_2, a_1) \delta(a_3, a_2) \ldots \delta(a_n, a_{n-1}) ,$$
$$s_3(a) = \delta(a_3, a_1) \delta(a_4, a_2) \ldots \delta(a_n, a_{n-2}) ,$$
$$\ldots$$
$$s_{n-1}(a) = \delta(a_{n-1}, a_1) \delta(a_n, a_2) ,$$
$$s_n(a) = \delta(a_n, a_1) .$$ \hfill (2.4)

The shift-match number induces an equivalence relation \cong by

$$a \cong b \text{ if and only if } s(a) = s(b) .$$ \hfill (2.5)

In the definition above, the choice $s_1 = 1$ is a convention and ensures that $s(a)$ and a have same length. For $j \geq 2$, $s_j = 1$, if and only if the last $n - j + 1$ digits of a match with its first $n - j + 1$ digits. We illustrate the computation of $s(a)$ by an example. If $a = 1011011$,
then by shifting a to right repeatedly, we obtain

$$a_1 \ a_2 \ a_3 \ a_4 \ a_5 \ a_6 \ a_7$$

\begin{align*}
1 & \quad 0 \quad 1 \quad 1 \quad 0 \quad 1 \quad 1 \quad s_1 = 1 \quad \text{(by convention)} \\
1 & \quad 0 \quad 1 \quad 1 \quad 0 \quad 1 \quad s_2 = 0 \quad \text{(no match with the first line)} \\
1 & \quad 0 \quad 1 \quad 1 \quad 1 \quad s_3 = 0 \quad \text{(no match with the first line)} \\
1 & \quad 0 \quad 1 \quad 1 \quad s_4 = 1 \\
1 & \quad 0 \quad 1 \quad s_5 = 0 \quad \text{(no match with the first line)} \\
1 & \quad 0 \quad s_6 = 0 \quad \text{(no match with the first line)} \\
1 & \quad s_7 = 1
\end{align*}

Hence $s(a) = 1001001$. We note that in many cases $s(s(a)) = s(a)$, i.e., the shift match number of a is frequently an element of the equivalence class of a, but this is not always true, as for $a = 11011$, $s(a) = 10011$ and $s(s(a)) = 10001$, where the latter does not belong to the equivalence class of a.

As we will show below that the probability of occurrence of a in longer strings will depend only on $s(a)$, we shall suppress the dependency of the shift-match number on a and work with s. The cardinality of the equivalence class whose shift-match number is s plays a crucial role in the computation of the network connectivities and the corresponding probability will be denoted by $P(s)$. We give in Table 2 the list of possible shift-match numbers s for binary sequences of length $n \leq 6$ together with the corresponding equivalence class $E(s)$ and its probability $P(s)$.

B. The shift-match indices

Recall that a is a n digit binary string starting with 1, $s = s(a) = 1 \ s_2 \ldots \ s_n$ is the shift-match number of a, and s also is a n digit binary number starting with 1. We shall now give the definition of the shift-match indices j_i and $j_{i,m}$ for $1 \leq i \leq n$ and $1 \leq m \leq n - 1$. We set $j_1 = 1$, and define j_i by

$$j_1 = 1,$$

$$j_i = 2^{i-1} - \sum_{k=2}^{i} s_k \ j_{i+1-k} \quad \text{for} \quad i \geq 2 . \quad (2.6)$$
The number j_i has the following meaning: write $a = a_1 \ldots a_n$ in the first line, shift it to right once filling with * at the left and continue to get

\[
\begin{align*}
a_1 \ldots \ldots \ldots \ldots \ldots a_n \\
n \quad \quad a_1 \ldots \ldots \ldots a_{n-1} \\
n \quad \quad \quad \quad a_1 \ldots \ldots \ldots a_{n-2} \\
n \quad \quad \quad \quad \quad \quad \quad \quad \quad \ldots a_1 \ldots a_{n-i+1} \\
n \quad \ldots \ldots \ldots \ldots * a_1
\end{align*}
\]

If we replace *’s with 0’s or 1’s, the ith line represents 2^{i-1} distinct strings. If the shifted version of a has no match with the first line, i.e., when $s = 10\ldots0$, then all strings are distinct. On the other hand when there are matches, i.e., some of the s_i’s are non zero, there are duplications, and the number of new strings added at each line decreases. The indices j_i’s are exactly the number of distinct new strings added at the line i.

The “conditional” shift-match indices $j_{i,m}$ for $1 \leq m \leq n-1$ are defined by

\[
\begin{align*}
j_{1,m} &= s_{n-m+1} \\
j_{i,m} &= s_{n-m+i} - \sum_{k=2}^{i} s_k j_{i+1-k,m} \quad \text{for} \quad 2 \leq i \leq m \\
j_{i,m} &= 2^{i-m-1} - \sum_{k=2}^{i} s_k j_{i+1-k,m} \quad \text{for} \quad i \geq m+1. \quad (2.7)
\end{align*}
\]

The numbers $j_{i,m}$ correspond to distinct sequences added at line i, where first m digits match with the last m digits of a. For example for $n = 5$ we have

\[
\begin{align*}
j_1 &= 1 \\
j_2 &= 2 - s_2 j_1 \\
j_3 &= 2^2 - s_2 j_2 - s_3 j_1 \\
j_{1,1} &= s_n \\
j_{2,1} &= 1 - s_2 j_{1,1} \\
j_{3,1} &= 2 - s_2 j_{2,1} - s_3 j_{1,1} \\
j_{1,2} &= s_{n-1} \\
j_{2,2} &= s_n - s_2 \hat{j}_{1,2} \\
j_{3,2} &= 1 - s_2 j_{2,2} - s_3 \hat{j}_{1,2}
\end{align*}
\]

These indices will be used in the computation of the string matching probability for all short strings whose shift-match number is s.

C. The number of occurrences

We define the conditional number of occurrences $N(a, L, m)$ for $m = 1, \ldots n-1$, defined to be the number of times a occurs as a subsequence in sequences of length L whose first m digits match with the last m digits of a.

6
For example, if $a = 110$, $L = 4$, the sequences containing a are 0110, 1100, 1101 and 1110. Thus $N(a, 4) = 4$, $N(a, 4, 1)$ is the number of such sequences starting with the last digit of a, i.e. 0, hence $N(a, 4, 1) = 1$. Similarly, $N(a, 4, 2) = 0$, since none of these starts with 10.

For simplicity of the presentation we write

$$j_{i,0} \equiv j_i, \quad N(a,L,0) \equiv N(a,L).$$

We shall now give the expression of $N(a,L)$ in terms of $N(a,L-n)$, $N(a,L-n,m)$ for $m = 1, \ldots, n-1$. This result shows, in particular, that $P(a,L)$ depends only on the shift-match equivalence class of a.

Proposition 2.1. Let a be a binary string of length n, s be its shift-match number and the shift-match indices j_i and $j_{i,m}$ be defined by (2.6-7). Then

\[
N(a,L,m) = 0, \quad m = 0, \ldots, n-1 \quad \text{for} \quad L < n, \quad (2.8a)
\]

\[
N(a,n,m) = 1, \quad m = 0, \ldots, n-1, \quad (2.8b)
\]

\[
N(a,L,m) = \sum_{i=1}^{L-n+1} j_{i,m} 2^{L-n+1-i}, \quad m = 0, \ldots, n-1
\]

\[
\text{for} \quad n+1 \leq L < 2n-1, \quad (2.8c)
\]

\[
N(a,L,m) = \sum_{i=1}^{n} j_{i,m} 2^{L-n+1-i} + 2^{n-m} N(a,L-n,0) - \sum_{i=1}^{n} j_{i,m} N(a,L-n,i-1), \quad m = 0, \ldots, n-1 \quad \text{for} \quad L \geq 2n-1, (2.8d)
\]

\[
N(a,L) = \sum_{i=1}^{n} j_i 2^{L-n+1-i} + 2^n N(a,L-n) - \sum_{i=1}^{n} j_i N(a,L-n,i-1) \quad \text{for} \quad L \geq 2n-1. \quad (2.8e)
\]

Proof. We can enumerate the sequences of length L containing a by counting the number of sequences of length L where the first occurrence of a starts at the kth digit, for $k =
1, \ldots, L - n + 1, as seen below.

\[
\begin{array}{cccccccccc}
a_1 & a_2 & \ldots & a_{n-1} & a_n & * & * & \ldots & * \\
* & a_1 & \ldots & a_{n-2} & a_{n-1} & a_n & * & \ldots & * \\
* & * & \ldots & a_{n-3} & a_{n-2} & a_{n-1} & a_n & \ldots & * \\
\cdots & \cdots \\
* & * & \ldots & * & a_1 & a_2 & a_3 & \ldots & * \\
* & * & \ldots & * & * & a_1 & a_2 & \ldots & * \\
* & * & \ldots & * & * & * & a_1 & \ldots & * \\
\cdots & \cdots \\
\end{array}
\] (2.9)

By assigning the values 0 and 1 to the *'s in the first row we obtain 2^{L-n} sequences containing a. At the second row, the same procedure gives again 2^{L-n} sequences but duplication of the sequences already encountered in the first line should be eliminated. It can be seen that sequences obtained from the first and second rows cannot coincide unless the last and the first $n - 1$ digits of a match, i.e., when $s_2 = 1$. Thus the number of additional sequences is exactly $j_2 \times 2^{L-n-1}$. By similar considerations it can be seen that at the row i, the number of additional sequences is $j_i \times 2^{L-n+1-i}$. For the enumeration of the distinct sequences in the last $(L - 2n + 1)$'st rows, we note that if there were no duplications with the ones in the first n rows, the contribution from this part would be $2^n \times N(a, L - n)$. Duplications with the sequences already enumerated at the jth row arise whenever the sequence of length $L - n$ starts with the last $(n - i + 1)$'st digits of a. But the number of such sequences containing a is what we call $N(a, L - n, i - 1)$, which is assumed to be known by the induction step. Hence the proof is complete.

In Eqs.(2.8a-e), the number of occurrences are labelled by the specific short string a, but it is clear from the proof that they depend only on the shift-match number of a. In the next section we shall use the notation

\[N(s, L) = N(a, L, 0) \]

where $s = s(a)$ is the shift-match number of a.

Corollary 2.2. Let s be a shift-match number for binary string of length n. Then for each member of the equivalence class $E(s)$, the number of occurrences in strings of length L is
given by

\[N(s, n) = 1, \quad (2.10a) \]

\[N(s, L) = \sum_{i=1}^{L-n+1} j_i \, 2^{L-n+1-i} \quad \text{for} \quad n + 1 \leq L < 2n - 1, \quad (2.10b) \]

\[N(s, L) = \sum_{i=1}^{n} j_i \, 2^{L-n+1-i} + 2^n \, N(s, L-n)
- \sum_{i=1}^{n} j_i \, N(s, L-n, i-1) \quad \text{for} \quad L \geq 2n - 1. \quad (2.10c) \]

The probability of occurrence of any element of the corresponding equivalence class is \(P(s, L) = N(s, L)/2^L \). The \(P(s, L) \) for strings of length \(n = 2, \ldots , 6 \) in strings of length \(L \leq 12 \) have been computed using the formulas (2.10). These numbers have been checked by direct enumeration of the numbers of matches of the given strings in all strings of length \(L \) using Octave. The results obtained for the probability of occurrence of a given string with shift-match number \(s \) in a string of length \(L \) are displayed in Figure 1.

We display the numerical values of the \(N(s, L) \) in Table 3, where \(s \) denotes the shift match number of any representative of a given equivalence class and \(P(s) \) is the probability of this equivalence class. The \(L \) values appear at the top of the respective columns. An inspection of Table 3 shows that for each pair of lengths \(n, L \), proceeding up the column of shift-match numbers \(s \), there exists a special value \(s_c \) of \(s \), such that \(N(s, L) = N(s_c, L) \) for all \(s \leq s_c \). Moreover, the total probability \(\sum_{s>s_c} P(s) \) of finding strings of length \(n \) with shift match numbers larger than \(s_c \) decreases rapidly with \(n \), as can be seen in Table 3. Thus the expected value \(\langle N(s, L) \rangle = \sum_s P(s) N(s, L) \to N(s_c, L) \) from below, as \(n \) becomes large, as shown in Table 4.

We will now use these findings to discuss the probability of occurrence of a given string of length \(n \) in a string of length \(L \), which is

\[p(n, L) = \sum_s P(s) \, P(s, L) = \langle P(s, L) \rangle. \quad (2.11) \]

In a previous paper by Mungan et al. [4], an approximate expression has been given for the probability \(p(n, L) \), namely,

\[p_M(n, L) \approx 1 - (1 - 2^n)^{L-n+1}. \quad (2.12) \]

The frequencies \(\langle N(s, L) \rangle \) reported in Table 4 have been obtained using Eqs.(2.10) (first line for each \(n \) value) and from \(2^L \, p_M(n, L) \) (second line for each \(n \) value). A comparison of the
numbers shows that they are extremely close, which is gratifying since the approximation (2.12) has been derived by a completely independent route.

Furthermore, note that for \(n \) and \(L - n \) large, the expression in Eq.(2.12) is approximately

\[
p_M(n, L) \sim (L - n + 1)/2^n \equiv p_e(n, L).
\]

This corresponds to the limit where the corrections to the probability, coming from correlations between successive shifted sequences, can be neglected. In fact, we find that \(p_e(n, L) = N(s_c, L)/2^L \) exactly, or \(N(s_c, L) = 2^{L-n}(L - n + 1) \). It is once more instructive to note that in all cases \(N(s_c, L) \) is the frequency associated with the smallest shift-match numbers.

Had we asked for the total number of multiple occurrences of a given string of length \(n \) in a string of length \(L \geq n \), we would have found that the sum of these numbers over all sequences of length \(L \) depends only on \(L - n \), and does not depend on the shift-match number of the short sequence. This total value happens to be equal to the limiting values given in the last line of Table 4, namely \(N(s_c, L) = 2^{L-n}(L - n + 1) \).

III. APPLICATIONS

Assume that we are given a collection \(\mathcal{C} \) of strings of lengths \(L \leq L_{\text{max}} \) and let \(N_L \) denote the number of strings of length \(L \). If \(a \) is a binary string in this collection, the degree of \(a \), \(d(a) \), is the number of sequences in \(\mathcal{C} \) that contain \(a \) as a subsequence. The considerations in Section 2 allow us to compute the degree distribution in \(\mathcal{C} \), over its elements \(a \).

Define \(d(s, L) \) as the expected number of occurrence of a string with shift-match number \(s \), in \(N_L \) strings of length \(L \),

\[
d(s, L) = P(s, L) N_L.
\]

If the shift-match number of \(a \) is \(s \), then the expected value of \(d(a) \), depends only on \(s \), and we denote it by \(\overline{d(s)} \). It can be seen that

\[
\overline{d(s)} = \sum_{L=n}^{L_{\text{max}}} d(s, L),
\]

\[
\overline{d(s)} = \sum_{L=n}^{L_{\text{max}}} P(s, L) N_L.
\]
A brief inspection of Table 3 shows that the degree of a node decreases with the string length \(n \) and for fixed \(n \), with the shift-match number. Thus for fixed \(L_{\text{max}} \) we have the ordering

\[
d(10) > d(11) > d(100) > d(101) > d(111) \\
> d(1000) > d(1001) > d(1010) > d(1111) > \ldots
\]

As \(N(s, L) \)'s decrease with \(s \) for fixed \(L \), the probabilities \(P(s, L) \) also decrease with increasing \(s \). Thus, for any set of numbers \(N_L \), the expected values \(\overline{d(s)} \) form a decreasing sequence. For lower values of \(s \) these numbers are strictly decreasing, but if the number \(N(s, L) \) and \(N(s', L) \) coincide in the range of \(n \leq L \leq L_{\text{max}} \) then \(\overline{d(s)} \) and \(\overline{d(s')} \) will be the same, hence the equivalence classes \(s \) and \(s' \) will be indistinguishable with respect to their string-matching probabilities. We can view the computation of the string matching probabilities on a collection of binary strings as a splitting effect revealing a spectral structure.

In the numerical simulation of Ref. [3], faithfully reproduced by the analytical approach of Refs. [4], the average degree was computed for strings of length \(n \), and the degree distribution exhibited peaks centered at these average values, with a certain variation about this value. We now see that the degree distribution for strings of length \(n \) in fact splits into discrete spectral lines, identified with different shift-match numbers. Thus, in the ideal case, where we can replace \(\overline{d(a)} \) by \(\overline{d(s)} \), the spectrum is discrete.

The strength of the spectral lines correspond to the number of strings \(\nu(d(s)) \) that have degree \(d(s) \). If \(s \) is the shift-match number for the string of length \(n \), then \(\nu(d(s)) \) is given by

\[
\nu(\overline{d(s)}) = P(s) N_n ,
\]

where \(P(s) \) is the probability of the equivalence class as given in Table 1 and \(N_n \) is the total number of strings of length \(n \). As an example, for \(s = 100 \) and \(L_{\text{max}} = 6 \) by using Table 3, we easily get

\[
\overline{d(100)} = \frac{1}{8} N_3 + \frac{4}{16} N_4 + \frac{12}{32} N_5 + \frac{31}{64} N_6 ,
\]

\[
\nu(\overline{d(100)}) = \frac{2}{4} N_3 .
\]

The results obtained for \(\nu(\overline{d(s)}) \) with respect to \(\overline{d(s)} \) have been shown in Figure 2, where we have chosen \(N_n = L_0 p^2 (1-p)^n \), for \(p = 0.05 \) and \(L_0 = 15000 \), as in Refs.[3,4]. Figure 2 may be compared to Figure 3 of Ref. [4], where \(\nu(d) \), averaged over 500 random realisations of
C, has been plotted. Note that unless L_{max} is large enough, the splitting between the values of $\overline{d(s)}$ for successive s, does not show up, as can be seen from the Table 3. Moreover, the $\overline{\nu(d(s))}$ values are degenerate for different values of s, for small n.

The total number $q(n, L)$ of connections leading from strings of length n to strings of length $L \geq n$, averaged over 1000 random realisations, is also displayed in Table 5. These numbers $q(n, L)$ should coincide with a weighted averages of $d(s)$’s over shift-match numbers s’s.

\begin{equation}
q(n, L) = \sum_{|s|=n} P(s) \frac{N_n}{N(s, L)} 2^{-L} N_L,
\end{equation}

where $|s| = n$ denotes the sequences having shift-match number s of length n. The numbers computed from (3.4) agree with the numbers given in Table 5, given that the numbers N_n and N_L are taken to be the number of sequences of length n and L respectively, averaged over the ensemble of realisations.

Acknowledgements

AE would like to gratefully acknowledge a useful discussion with Muhittin Mungan and partial support from the Turkish Academy of Sciences.

[1] K. Fredriksson, Information Processing Letters **87**, 201 (2003).
[2] R.V.Sole and R.Pastor-Satorras, in S. Bornhold, H.G. Schuster eds., *Handbook of Graphs and Networks* (Wiley-VCH, Berlin 2002).
[3] D.Balcan and A. Erzan, Eur.Phys. J. B **38**, 253 (2004).
[4] M. Mungan, A. Kabakçoğlu, D.Balcan and A. Erzan, [q-bio.MN/0406049](http://arxiv.org/abs/q-bio.MN/0406049).
[5] S. Karlin and S.F. Altschul, Proc. Natl. Acad. Sci. USA **87**, 2264 (1990).
[6] S. Karlin and S.F. Altschul, Proc. Natl. Acad. Sci. USA **90**, 5873 (1993).
TABLE I: The probabilities of occurrences of short strings a of length $n = 4$ starting with 1, in generic strings of length $L = 4, \ldots, 10$.

a	1000	1001	1010	1011	1100	1101	1110	1111
$P(a,4)$	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625	0.0625
$P(a,5)$	0.1250	0.1250	0.1250	0.1250	0.1250	0.1250	0.1250	0.0938
$P(a,6)$	0.1875	0.1875	0.1719	0.1875	0.1875	0.1875	0.1875	0.1250
$P(a,7)$	0.2500	0.2422	0.2188	0.2422	0.2500	0.2422	0.2500	0.1563
$P(a,8)$	0.3086	0.2930	0.2656	0.2930	0.3086	0.2930	0.3086	0.1875
$P(a,9)$	0.3633	0.3398	0.3086	0.3398	0.3633	0.3398	0.3633	0.2168
$P(a,10)$	0.4141	0.3838	0.3486	0.3838	0.4141	0.3838	0.4141	0.2451

FIG. 1: The probability, $P(s, L)$, of a given string with shift-match number s to be reproduced in a randomly chosen string of length L, plotted as a function of L. The dotted line corresponds to the expectation value of $P(s, L)$ averaged over the shift-match numbers s. It should be remarked that for $n = 3$, the branches for $s = 100$ and $s = 101$ are degenerate up to $L = 4$, where they split. For $n = 4$, a first splitting occurs at $L = 5$ and a further ones at $L = 6$ and 7. See Table 3 for the degeneracies in the number of occurrences $N(s, L)$, that give rise to this progressive splitting. (Color online)
TABLE II: List of the shift-match equivalence classes of binary strings of length \(n \leq 6 \). The shift-match number is given in the first column. Following the convention \(a_1 = 1 \), only half of the elements in each equivalence class are displayed and they are written in decimal form for compactness. The probability \(P(s) \) is obtained as the ratio of the cardinality of \(\mathcal{E}(s) \) to \(2^n/2 \).

\(s \)	\(P(s) \)	\(\mathcal{E}(s) \)
10	1/2	\{2\}
11	1/2	\{3\}
100	2/4	\{4,6\}
101	1/4	\{5\}
111	1/4	\{7\}
1000	3/8	\{8,12,14\}
1001	3/8	\{9,11,13\}
1010	1/8	\{10\}
1111	1/8	\{15\}
10000	6/16	\{16,20,24,26,28,30\}
10001	5/16	\{17,19,23,25,29\}
10010	2/16	\{18,22\}
10101	1/16	\{21\}
10011	1/16	\{27\}
11111	1/16	\{31\}
100000	10/32	\{32,40,44,48,50,52,56,58,60,62\}
100001	11/32	\{33,35,37,39,41,43,47,49,53,57,61\}
100010	3/32	\{34,38,46\}
100011	3/32	\{51,55,59\}
100100	2/32	\{36,54\}
100101	1/32	\{45\}
101010	1/32	\{42\}
111111	1/32	\{63\}
TABLE III: In the table above the first column labelled by s is the shift-match number of the members of the equivalence class while the second column labelled by $P(s)$ is the probability of occurrence of the corresponding equivalence class in strings of length $n = 2, \ldots, 6$. The numbers $N(s, L)$, of occurrences of any string with shift-match number s in sequences of length L, are given in columns labelled by $L = 2, \ldots, 12$. Clearly nonzero occurrences start after $L = n$. The numbers of occurrences decrease as the shift match numbers increase. The probabilities of occurrences, $P(s, L)$'s, are found by dividing the numbers in the column labelled by L with 2^L.

s	$P(s)$	2	3	4	5	6	7	8	9	10	11	12
10	1/2	1	4	11	26	57	120	247	502	1013	2036	4083
11	1/2	1	3	8	19	43	94	201	423	880	1815	3719
100	2/4	1	4	12	31	74	168	369	792	1672	3487	
101	1/4	1	4	11	27	63	142	312	673	1432	3015	
111	1/4	1	3	8	20	47	107	238	520	1121	2391	
1000	3/8	1	4	12	32	79	186	424	944	2065		
1001	3/8	1	4	12	31	75	174	393	870	1897		
1010	1/8	1	4	11	28	68	158	357	792	1731		
1111	1/8	1	3	8	20	48	111	251	558	1224		
10000	6/16	1	4	12	32	80	191	442	1000			
10001	5/16	1	4	12	32	79	187	430	968			
10010	2/16	1	4	12	31	76	179	411	924			
10011	1/16	1	4	12	31	75	175	399	894			
10101	1/16	1	4	11	28	68	159	363	814			
11111	1/16	1	3	8	20	48	112	255	571			
100000	10/32	1	4	12	32	80	192	447				
100001	11/32	1	4	12	32	80	191	443				
100010	3/32	1	4	12	32	79	188	435				
100011	3/32	1	4	12	32	79	187	431				
100100	2/32	1	4	12	31	76	180	419				
100101	1/32	1	4	12	31	76	179	412				
101010	1/32	1	4	11	28	68	160	368				
111111	1/32	1	3	8	20	48	112	256				
TABLE IV: In this table we present the values of $\langle N(s, L) \rangle = \langle P(s, L) \rangle 2^L$, obtained in two different ways. For each n, the first line corresponds to Eq.(2.10), and the second line to the value obtained from $p_M(n, L)2^L$ (Eq.(2.12)). See text.

L – n	0	1	2	3	4	5
n=2	1	3.5	9.5	22.5	50	107
	1	3.5	9.25	21.875	48.8125	105.2188
n=3	1	3.75	10.75	27.25	64.5	146.25
	1	3.75	10.5625	26.4844	62.3476	141.1083
n=4	1	3.875	11.375	29.625	72.25	168.625
	1	3.875	11.2656	29.1230	70.6057	164.385
n=5	1	3.9375	11.6875	30.8125	76.125	180.3125
	1	5.9375	11.6289	30.5310	75.31538	177.6105
n=6	1	3.96875	11.84375	31.40625	78.0625	186.15625
	1	3.96875	11.8134	31.2577	77.5387	184.6544
Limit	1	4	12	32	80	192

TABLE V: In this table the average simulation results are given for 1000 different realisations coming from Balcan-Erzan model \[3\], assuming a length distribution $N_n = L_0 p^2 (1 - p)^n$ for $p = 0.05$ and $L_0 = 15000$. The numbers given above show the average number of outgoing bonds from strings of length n (where n is indicated in the first column) to strings of length L (first row).

(n, L)	3	4	5	6	7	8	9	10	11	12
2	527.69	672.71	756.92	801.34	800.82	807.47	792.38	766.28	727.95	713.82
3	254.62	346.46	417.87	461.65	505.1	527.67	536.51	533.24	542.54	
4	117.47	163.89	200.12	233.59	259.75	279.06	288.77	305.76		
5	53.35	74.82	94.6	111.53	124.75	133.84	146.89			
6	24.28	35.04	43.7	51.24	56.81	64.18				
FIG. 2: The degree distribution \(\nu(d(s)) \) of a given string of length \(n \) with shift-match number \(s \) versus the degree \(d(s) \) as computed from (3.3) and (3.2) respectively. In the computation of \(\nu(d(s))'s \) and \(d(s)'s \) the number of sequences of length \(n \), \(N_n \), is taken to be \(L_0 \, p^2 \, (1 - p)^n \) for \(p = 0.05 \) and \(L_0 = 15000 \), where the parameters have been chosen to facilitate comparison with the numerical simulation of Ref. [3].