Seasonal Influenza Vaccine-induced Pneumonitis Presenting with Multiple Pulmonary Nodules

Takeshi Numata, Norihito Hida, Kai Yazaki, Naoki Arai, Kyoko Ota, Hidetoshi Yanai and Takeo Endo

Abstract:
A 39-year-old woman received a seasonal influenza vaccine in November 2015 and subsequently experienced malaise, low-grade fever, and chest discomfort. A chest X-ray performed 2 weeks after vaccination showed multiple nodular shadows in both lungs and ground-glass shadows in both lower lung fields. Her bronchoalveolar lavage fluid contained an unusually high number of lymphocytes, and a drug-induced lymphocyte stimulation test for seasonal influenza vaccine was positive. Transbronchial lung biopsy revealed the presence of granulomatous inflammation. Thereafter her abnormal chest shadow spontaneously improved. Based on these findings, the patient was diagnosed with drug-induced pneumonitis due to an influenza vaccine.

Key words: drug-induced pneumonitis, seasonal influenza vaccine, multiple nodules, granuloma, drug-induced lymphocyte stimulation test

(Intern Med 57: 707-711, 2018)
(DOI: 10.2169/internalmedicine.9399-17)

Introduction

Annual seasonal influenza vaccination is recommended for elderly people in Japan to prevent them from contracting influenza or serious related conditions. Its common side effects include reddening, swelling, and pain at the vaccination site. Other side effects, such as low-grade fever, headache, and malaise, may sometimes occur but usually improve within a few days. We herein report the case of a patient who experienced persistent low-grade fever and malaise after seasonal influenza vaccination. A chest X-ray obtained 2 weeks after vaccination showed rare imaging characteristics that were consistent with drug-induced pneumonitis.

Case Report

A 39-year-old woman received a seasonal influenza vaccine in November 2015. Approximately 6 hours later, she developed a low-grade fever and experienced malaise and chest discomfort. Four days later, she presented to our hospital’s Department of Internal Medicine, where she was prescribed clarithromycin and acetaminophen. Although her symptoms showed some improvement, they did not disappear completely. She was reexamined 2 weeks after the vaccination, at which time a chest X-ray revealed multiple nodular shadows in both lungs and ground-glass shadows in both lower lung fields (Fig. 1). She was admitted to hospital for further investigation and treatment.

The patient’s previous medical history included bronchial asthma, lumbar disk herniation, mammary adenoma, ureteral stones, and sensitivity to sunlight, which was treated with olopatadine. She did not smoke and had not previously suffered an allergic reaction to clarithromycin, acetaminophen, or seasonal influenza vaccines. In addition, abnormal shadows were not pointed out in chest X-ray that had been taken at a medical examination six months previously.

On admission, the patient’s temperature was 37.8°C and her arterial blood oxygen saturation (SpO2) level was 96%. The only noteworthy physical finding was mild fine crackles in both lower lung fields. Computed tomography (CT) revealed multiple nodular shadows in both lungs, ground-glass shadows that were predominantly located in the lower lobes, a small amount of pleural effusion, and mild mediastinal
lymph node enlargement. The nodular shadows were randomly distributed and somewhat ill-defined (Fig. 2A).

The laboratory test results are shown in Table. Other than an elevated C-reactive protein level, there were no signs suggesting mycosis, connective tissue disease, or vasculitis, and tests for tumor markers were negative. On bronchoscopy, bronchoalveolar lavage (BAL) was performed from the right middle lobe bronchus (right B4), and a transbronchial lung biopsy (TBLB) specimen was obtained from the right lower lobe bronchus (right B8). The BAL fluid contained 3.36×10⁵/mL cells: 58% lymphocytes, 12% neutrophils, 7% eosinophils, and 23% alveolar macrophages; the proportion of lymphocytes was unusually high. The CD4/CD8 ratio was 1.94. Bacterial cultures were negative, and polymerase chain reactions to detect *Mycobacterium tuberculosis* and *Mycobacterium avium complex* were negative.

The histopathological examination of the TBLB specimen revealed granulomatous inflammation with alveolar macrophage aggregations (Fig. 3). The regions of mild inflammation surrounding the aggregations were primarily populated by lymphocytes; multinucleated giant cells were also present, but no necrosis was evident. Periodic acid-Schiff, Grocott, and Ziehl-Neelsen staining were all negative, and Elastica van Gieson staining showed no apparent vasculitis.

Figure 1. A chest X-ray obtained on admission shows multiple nodular shadows in both lungs and ground-glass shadows in both lower lung fields.

Figure 2. (A) A CT scan on admission. Bilateral multiple nodular shadows are seen in both lung fields. (B) One month after admission, the multiple nodular shadows were found to have decreased in size.
including imaging), and the nodular shadows have gradually decreased in size without treatment, and the ground-glass shadows and pleural effusion essentially disappeared thereafter; however, the pathological presentations in all of these cases included interstitial fibrosis and intraluminal orgranizations, with lymphocytic or eosinophilic infiltration. There are no reported cases of the granuloma type that was seen in our patient. Although granulomas have been observed in the cases of drug-induced pneumonitis associated with methotrexate (15), everolimus (16), and the Bacillus Calmette-Guérin (BCG) vaccine (17), the CT findings in those cases did not resemble the findings in our patient.

Table. Laboratory Data on Admission.

Complete blood counts	Serological studies
WBC 7.100 µL	CRP 4.65 mg/dL
Neutrophils 64.5 %	PCT 0.04 ng/mL
Lymphocytes 24.2 %	β-D-glucan <5.0 pg/mL
Monocytes 7.3 %	Cryptococcus Ag (-)
Eosinophils 3.9 %	Aspergillus Ag (-)
Hb 12.6 g/dL	KL-6 326 U/mL (<500)
Pt 334×10^3 µL	ANA <×40
Blood chemistry	
TP 6.3 g/dL	PR3-ANCA <1.0 U/mL
Alb 3.2 g/dL	MPO-ANCA <1.0 U/mL
AST 17 IU/L	ACE 10.0 IU/L (8.3-21.4)
ALT 11 IU/L	CA19-9 11.8 U/mL (<37)
LDH 253 IU/L	CYFRA 0.9 ng/mL (<3.5)
T-Bil 0.2 mg/dL	Pro-GRP 35.4 pg/mL (<65)
BUN 7.5 mg/dL	NCC-ST-439 2.6 U/mL (<7.0)
Cre 0.44 mg/dL	Arterial blood gases (Room air)
Na 137 mEq/L	pH 7.422
K 4.2 mEq/L	PaCO₂ 44.2 torr
BS 133 mg/dL	PaO₂ 74.1 torr
	HCO₃⁻ 28.2 mmol/L

TP: total protein, Alb: albumin, BS: blood sugar, CRP: C-reactive protein, PCT: procalcitonin, KL-6: Krebs von den Lungen-6, ANA: anti-nuclear antibody, PR3-ANCA: proteinase-3 anti-neutrophil cytoplasmic antibody, MPO-ANCA: myeloperoxidase anti-neutrophil cytoplasmic antibody, ACE: angiotensin converting enzyme, CEA: carcinoembryonic antigen, CA19-9: carbohydrate antigen 19-9, CYFRA: cytokeratin-19 fragment, Pro-GRP: pro-gastrin releasing peptide, NCC-ST-439: nation cancer center-stomach-439

Figure 3. The histological examination of the TBLB specimen revealed granulomatous inflammation with the aggregation of histiocytes (Hematoxylin and Eosin staining, ×100).

In a drug-induced lymphocyte stimulation test (DLST) for the seasonal influenza vaccine, the stimulation index was positive in both the peripheral blood (3.90) and the BAL fluid (3.53). After admission, the multiple nodular shadows decreased in size without treatment, and the ground-glass shadows and pleural effusion essentially disappeared (Fig. 2B). Based on the clinical course and the test results, drug-induced pneumonitis due to the seasonal influenza vaccine was diagnosed. At the time of writing, six months after her admission, the patient remains under observation (including imaging), and the nodular shadows have gradually continued to fade.

Discussion

An unusual feature of this case was the appearance of multiple nodules on chest X-rays and the presence of granulomas in pathological specimens. A previous case of drug-induced pneumonitis due to seasonal influenza vaccine involved ground-grass opacities with some interlobular septal thickening on images and organizing pneumonia on pathology (1). Drug-induced pneumonitis has a wide range of pathological manifestations, which are distinguishable by imaging (2, 3). The typical manifestation is diffuse infiltration or ground-glass shadows in both lungs, whereas the presence of multiple nodules is considered rare. Several cases of multiple nodules due to bleomycin were reported in the 1980s (4-9), and scattered cases of multiple nodules due to ticlopidine (10), minocycline (11), fludarabine (12), amiodarone (13), and salazosulfapyridine (14) were reported thereafter; however, the pathological presentations in all of these cases included interstitial fibrosis and intraluminal organizations, with lymphocytic or eosinophilic infiltration. There are no reported cases of the granuloma type that was seen in our patient. Although granulomas have been observed in the cases of drug-induced pneumonitis associated with methotrexate (15), everolimus (16), and the Bacillus Calmette-Guérin (BCG) vaccine (17), the CT findings in those cases did not resemble the findings in our patient.
The authors state that they have no Conflict of Interest (COI).

References

1. Kanemitsu Y, Kita H, Fuseya Y, et al. Interstitial pneumonitis caused by seasonal influenza vaccine. J Jpn Respir Soc 48: 739-742, 2010 (in Japanese, Abstract in English).

2. Camus P, Fanton A, Bonniaud P, Camus C, Foucher P. Interstitial lung disease induced by drugs and radiation. Respiration 71: 301-326, 2004.

3. Rossi SE, Erasmus JJ, McAdams HP, Sporn TA, Goodman PC. Pulmonary drug toxicity: radiologic and pathologic manifestations. Radiographics 20: 1245-1259, 2000.

4. Nachman JB, Baum ES, White H, Cruissi FG. Bleomycin-induced pulmonary fibrosis mimicking recurrent metastatic disease in a patient with testicular carcinoma: case report of the CT scan appearance. Cancer 47: 236-239, 1981.

5. McCrea ES, Diconis JN, Wade JC, Johnston CA. Bleomycin toxicity simulating metastatic nodules to the lungs. Cancer 48: 1096-1100, 1981.

6. Glasier CM, Siegel MJ. Multiple pulmonary nodules: unusual manifestation of bleomycin toxicity. AJR Am J Roentgenol 137: 155-156, 1981.

7. Dineen MK, Englander LS, Huben RP. Bleomycin induced nodular pulmonary fibrosis masquerading as metastatic testicular cancer. J Urol 136: 473-475, 1986.

8. Cohen MB, Austin JH, Smith-Vaniz A, Lutzky J, Grimes MM. Nodular bleomycin toxicity. Am J Clin Pathol 92: 101-104, 1989.

9. Santrach PJ, Askin FB, Wells RJ, Azizkhan RG, Merten DF. Nodular form of bleomycin-related pulmonary injury in patients with osteogenic sarcoma. Cancer 64: 806-811, 1989.

10. Watanabe M, Machida K, Higashimoto I, Niina K, Kawabata M, Osame M. Multiple pulmonary nodules due to ticlopidine-induced pneumonitis. J Jpn Respir Soc 37: 841-845, 1999 (in Japanese, Abstract in English).

11. Nakano K, Gemma H, Ono T, Ito R, Chida K, Nakamura H. A case of monoclycine-induced eosinophilic pneumonia presenting with multiple white eosinophilic plaques in the tracheobronchial mucosa. J Jpn Respir Soc 39: 24-29, 2001 (in Japanese, Abstract in English).

12. Garg S, Garg MS, Basmaji N. Multiple pulmonary nodules: an unusual presentation of fludarabine pulmonary toxicity: case report and review of literature. Am J Hematol 70: 241-245, 2002.

13. Bernal Morell E, Hernández Madrid A, Marín Marín I, Rodríguez Pena R, González Gordaliza MC, Moro C. Multiple pulmonary nodules and amiodarone. KL-6 as a new diagnostic tool. Rev Esp Cardiol 58: 447-449, 2005.

14. Kasai S, Tokuda H, Yoshikawa M, Nishine H, Nishiyama H. A case of salazosulfapyridine-induced pneumonitis with multiple pulmonary nodules and lymphadenopathy. J Jpn Respir Soc 44: 928-932, 2006 (in Japanese, Abstract in English).

15. Inokawa S, Colby TV, Leslie KO, Helmers RA. Methotrexate pneumonitis: review of the literature and histopathological findings in nine patients. Eur Respir J 15: 373-381, 2000.

16. Saito Y, Kunugi S, Suzuki Y, et al. Granuloma-forming interstitial pneumonia occurring one year after the start of everolimus therapy. Intern Med 52: 263-267, 2013.

17. Tan L, Testa G, Yung T. Diffuse alveolar damage in BCGosis: a rare complication of intravesical bacillus calmette-guerin therapy for transitional cell carcinoma. Pathology 31: 55-56, 1999.

18. Camus P, Bonniaud P, Fanton A, Camus C, Baudaun N, Foucher N, Flieder DB, Travis WD. Pathologic characteristics of drug-induced pneumonitis. Clin Chest Med 25: 479-519, vi, 2004.

19. Fleider DB, Travis WD. Pathologic characteristics of drug-induced lung disease. Clin Chest Med 25: 37-45, 2004.

20. Kondo A. Drug-induced pneumonitis. Kekkaku (Tuberculosis) 74: 33-41, 1999 (in Japanese, Abstract in English).

21. Hirata S, Hattori N, Kumagai K, Haruta Y, Yokoyama A, Kohn N. Lymphocyte transformation test is not helpful for the diagnosis of methotrexate-induced pneumonitis in patients with rheumatoid arthritis. Clin Chim Acta 407: 25-29, 2009.

22. Mitsubishi Tanabe Pharma. Flubik HA syringe interview form. [cited 2017 Mar. 30]. Available from: http://www.pmda.go.jp (in Japanese)
