Mobilization efficiency is critically regulated by fat via marrow PPARδ

Tomohide Suzuki,1 Shinichi Ishii,1 Masakazu Shinohara,2,3 Yuko Kawano,4 Kanako Wakahashi,1 Hiroki Kawan,1 Akiko Sada,1 Kentaro Minagawa,1,3,4 Michito Hamada,4 Satoru Takahashi,4,5,6,7 Tomoyuki Furuyashiki,8 Nguan Soon Tan,9,10 Toshimitsu Matsui11 and Yoshio Katayama8

1Hematology, Department of Medicine, Kobe University Graduate School of Medicine, Kobe, Japan; 2Division of Epidemiology, Kobe University Graduate School of Medicine, Kobe, Japan; 3The Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, Kobe, Japan; 4Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan; 5Transborder Medical Research Center (TMRC), University of Tsukuba, Tsukuba, Japan; 6International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan; 7Life Science Center, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan; 8Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, Japan; 9Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore; 10School of Biological Sciences, Nanyang Technological University Singapore, Singapore and 11Department of Hematology, Nishiwaki Municipal Hospital, Nishiwaki, Japan

Current affiliations:
°YKaw and HK: Endocrine/Metabolism Division, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA;
°°KW: Area of Cell and Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain;
°°°KM: Hematology & Oncology Division, Penn State College of Medicine, Hershey, PA, USA.

©2021 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2020.265751

Received: July 3, 2020.
Accepted: January 19, 2021.
Pre-published: February 4, 2021.
Correspondence: YOSHIO KATAYAMA - katayama@med.kobe-u.ac.jp
Supplementary Appendix

Mobilization efficiency is critically regulated by fat via marrow PPARδ

Tomohide Suzuki,1 Shinichi Ishii,1 Masakazu Shinohara,2,3 Yuko Kawano,1 Kanako Wakahashi,1 Hiroki Kawano,1 Akiko Sada,1 Kentaro Minagawa,1 Michito Hamada,4 Satoru Takahashi,4,5,6,7 Tomoyuki Furuyashiki,8 Nguan Soon TAN,9,10 Toshimitsu Matsui,11 Yoshio Katayama1,*

1Hematology, Department of Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
2Division of Epidemiology, and 3The Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
4Department of Anatomy and Embryology, Faculty of Medicine, 5Transborder Medical Research Center (TMRC), 6International Institute for Integrative Sleep Medicine (WPI-IIIS), and 7Life Science Center, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8576, Japan
8Division of Pharmacology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
9Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, and 10School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore
11Department of Hematology, Nishiwaki Municipal Hospital, 652-1 Shimotoda, Nishiwaki 677-0043, Japan

Supplemental Appendix includes supplemental methods, 1 table, and 12 figures.

*Correspondence:
Yoshio Katayama, MD, PhD
Hematology, Department of Medicine, Kobe University Graduate School of Medicine,
7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
Tel: +81-78-382-6912
Fax: +81-78-382-6910
Email: katayama@med.kobe-u.ac.jp
Supplementary Appendix

Supplemental Methods

Generation of PPARδ-/- mice

ICR and C57BL/6J mice were purchased from Charles River Laboratories International, Inc. (Yokohama, Japan). Mice were kept in plastic cages under pathogen-free conditions in a room maintained at 23.5±2.5°C and 52.5±12.5% relative humidity under a 14 h light/10 h dark cycle. Mice had free access to commercial chow (MF diet; Oriental Yeast Co., Ltd., Tokyo, Japan) and filtered water. All mouse experiments for the generation of PPARδ-/- mice were approved by the University of Tsukuba Animal Experiment Committee.

The mouse genomic sequence (5’-ACG GGG TCC ACG CGT GCG AG-3’) in exon 4 of Pparδ was selected as the guide RNA target. This sequence was inserted into the pX330 plasmid, which carried both guide RNA and Cas9 expression units and was a gift from Dr. Feng Zhang (Addgene plasmid 42230).

Pregnant mare serum gonadotropin (5 units) and human chorionic gonadotropin (5 units) were intraperitoneally injected into female C57BL/6J mice at 48 h interval and mated with male C57BL/6J mice. Zygotes were collected from the oviducts of mated females, and pX330-Pparδ (circular; 5 ng/µL) was microinjected into zygotes. Subsequently, surviving zygotes were transferred into the oviducts of pseudopregnant ICR females, and newborns were obtained.

To confirm the indel mutation induced by CRISPR-Cas9, genomic DNA was purified from the tail. Genomic polymerase chain reaction (PCR) was performed with BioTaq (Bioline, London, UK) and primers (Pparδ-F: 5’-TTG TTT AAC TGC CCC TCC GT-3’ and Pparδ-R: 5’-AGG ACT GGA GCT GGG GTA AT-3’). The indel mutation sequence was confirmed with BigDye Terminator v3.1 Cycle Sequencing Kit (Thermo Fisher Scientific, Waltham, MA, USA), FastGene Dye Terminator Removal Kit (Nippon Genetics), and 3500xL Genetic Analyzer (Thermo Fisher Scientific). The random integration of pX330 was also checked by PCR with Cas9 gene detecting primers (Cas9 detection-F: 5’-AGT TCA TCA AGC CCA TCC TG -3’, and Cas9 detection-R: 5’-GAA GTT TCT GTT GGC GAA GC-3’).

Generation of chimeric mice

Chimeric (CD45.1/CD45.2) mice were generated by transplantation of 1×10⁶ BM cells from PPARδ-/- and PPARδ+/- littermate mice (CD45.2) into lethally irradiated (12 Gy, split dose) C57BL/6-C57BL.1 congenic mice. Reconstitution by donor cells was confirmed in all recipient mice by blood cell counts. CD45.1/CD45.2 chimerism of peripheral blood leukocytes was assessed by
flow cytometry at 6 weeks after transplantation to ensure that peripheral blood leukocytes were more than 95% of the donor type. Chimeric mice were used for G-CSF mobilization experiments at 8 weeks after transplantation.

Colony-forming units in culture (CFU-C) assay

Mouse HPCs were assayed using methylcellulose-based colony formation medium with growth factors according to the manufacturer’s recommendation (Methocult GFM3534; STEMCELL Technologies, Vancouver, BC, Canada).

G-CSF-induced mobilization

Mobilization by G-CSF was induced as described previously.² Briefly, mice were injected with recombinant human G-CSF (Filgrastim; kindly provided by Kyowa Kirin, Tokyo, Japan; 125 µg/kg/dose every 12 h in eight divided doses for 5 days starting on the evening of the first day, s.c.) in PBS supplemented with 0.1% BSA (PBS/BSA). Blood and BM were harvested 3 h after the last dose of G-CSF. In FFD experiments, the same food for each mouse was continued during G-CSF treatment.

The PPARδ agonist GW501516 (20 mg/kg body weight/day; Cayman Chemical, Ann Arbor, MI, USA) and the PPARδ antagonist GSK3787 (40 mg/kg body weight/day; Cayman Chemical) were dissolved in 0.5% (w/v) methylcellulose 400 solution (Fujifilm-Wako Pure Chemical Corporation, Osaka, Japan) with 10% dimethyl sulfoxide (Sigma-Aldrich, St. Louis, MO, USA), which was used as vehicle, and administered orally for 5 consecutive days of G-CSF treatment every 24 h in the morning before G-CSF administration. Eicosapentaenoic acid (EPA; 100 µg/mouse/day, MedChemExpress, Princeton, NJ, USA) was dissolved in 200 µL PBS by sonication and intravenously administered for 5 consecutive days of G-CSF treatment every 24 h in the morning before G-CSF administration.

The anti-Angiopoietin-like protein 4 (Angptl4) monoclonal antibody (clone 3F4F5) was generated as described previously³ and intraperitoneally injected twice (20 mg/kg body weight/dose) just before the first and fifth doses of G-CSF. The same amount of IgG from mouse serum (Sigma-Aldrich) was used as vehicle.

Competitive repopulation assay

Stem cell activities of blood mobilized by G-CSF were assessed by long-term competitive reconstitution as described previously with minor modifications. Briefly, 150 µL mobilized blood (CD45.2) together with 1x10⁵ BM nucleated cells from a CD45.1 competitor donor was injected into lethally irradiated (12 Gy, split dose) CD45.1 recipient mice. The proportion of peripheral blood
leukocytes bearing CD45.1 or CD45.2 antigen was determined monthly after transplantation by flow cytometry. Repopulating units (RUs) were calculated using the following standard formula: RUs =%/(100-%), where % is the measured percentage of donor cells (CD45.2+ cells derived from mobilized blood) and C is the number of competitor marrow cells per 10^5, which is 1 in this study.

In vivo depletion of neutrophils

In vivo depletion of mature neutrophils was performed as described previously. Briefly, mice were injected intraperitoneally with two doses of the anti-Ly6G antibody [200 µg/body/dose; clone 1A8 (LE/AF); Biolegend, San Diego, CA, USA] or rat IgG2ax isotype control (LE/AF; Biolegend) 9 to 12 h before the initial dose and just before the fourth dose of G-CSF.

Marrow lipid mediator analysis

The quantification of ω3- and ω6-fatty acids and arachidonic acid derivatives in BM was performed as described previously. Briefly, whole BM of one femur (both BM cells and extracellular fluids; 2 h after eight doses of G-CSF or PBS/BSA) was flushed directly with -20°C 100% methanol and prepared for lipid mediator analysis using LC-MS/MS (QTrap 6500; Sciex, Framingham, MA, USA).

Flow cytometry and cell sorting

Reagents for flow cytometry, including antibodies for the biotin-anti-mouse lineage panel [CD11b, Gr-1 (clone RB6-8C5), Ter119, CD3e, and B220], FITC-anti-Sca-1, and PE-anti-c-kit, were from BD PharMingen (San Diego, CA, USA). PE-Cy5-streptavidin, biotin-anti-F4/80, and APC-streptavidin were from eBioscience (San Diego, CA, USA). FITC-anti-Ly6G (clone 1A8), FITC-anti-CD45.2 and PE-anti-CD45.1 were from BioLegend.

Cells were suspended in 0.5% BSA/2 mM EDTA/PBS and stained for surface markers. For intracellular PPARδ detection, cells were first stained for surface markers, fixed with 2% paraformaldehyde/PBS for 10 min, and permeabilized with 0.1% saponin/PBS for 30 min on ice. Cells were stained with the rabbit anti-PPARδ polyclonal antibody (ab23673; Abcam, Cambridge, MA, USA) at 1:200 dilution or normal rabbit IgG (PM035; MBL, Nagoya, Japan) as control in 10% normal goat serum (Jackson Immunoresearch Labs, West Grove, PA, USA)/PBS for 30 min followed by incubation with the Alexa Fluor 555 F(ab')2 fragment of goat anti-rabbit IgG (H+L) for 30 min on ice. Cell analyses were performed on an Accuri C6 flow cytometer (BD Biosciences, San Jose, CA, USA). Data analysis was performed using FlowJo software (FlowJo LLC, Ashland, OR, USA).

For sorting of BM mature neutrophils (CD11b^Ly6G^highF4/80^low), immature neutrophils (CD11b^Ly6G^dullF4/80^low), and monocytes/macrophages (CD11b^Ly6G^dullF4/80^high), BM cells were suspended in 0.1% BSA/2 mM EDTA/PBS and stained with PE-Cy7-anti-CD11b (BD PharMingen),
FITC-anti-Ly6G (Biolegend), and biotin-anti-F4/80 (BD PharMingen) followed by APC-streptavidin. B and T lymphocytes were obtained by staining BM cells with PE-anti-CD45R/B220 (Biolegend) and PE-anti-CD3e (Biolegend), respectively. Nonhematopoietic cells (CD45^Ter119^) were obtained by staining with APC-anti-Ter119 (Biolegend) and PE-anti-CD45 (BD PharMingen). For the separation of LSK cells, CD117 (c-kit)-positive cells were enriched with anti-mouse CD117 microbeads (Miltenyi Biotech, Gladbach, Germany) and autoMACS separator (Miltenyi Biotech) and stained with the biotin-anti-mouse lineage panel followed by PE-streptavidin (eBioscience), APC-anti-c-kit (BD PharMingen), and FITC-anti-Sca-1 (BD PharMingen). Cell sorting was performed on a MoFlo XDP flow cytometer with Summit software (Beckman Coulter, Brea, CA, USA).

Cell culture for 32D and sorted BM myeloid cells

The neutrophil progenitor cell line 32D was cultured as described previously, with minor modifications. Briefly, 1x10^6 cells/well were incubated in 500 µL RPMI 1640 (Sigma-Aldrich) supplemented with 10% fetal bovine serum (FBS) and 15% WEHI-conditioned medium in a 24-well nonculture treatment plate (Falcon®, Corning, Corning, NY, USA) for 12 h at 37°C, 5% CO₂. After acclimatization, indicated concentrations of isoproterenol (DL-isoproterenol hydrochloride; Sigma-Aldrich), G-CSF (Kyowa Kirin), dobutamine hydrochloride (β1-AR agonist; Sigma-Aldrich), clenbuterol hydrochloride (β2-AR agonist; Sigma-Aldrich), BRL37344 sodium salt hydrate (β1-AR agonist; Sigma-Aldrich), GW501516 (Cayman Chemical), GSK3787 (Cayman Chemical), EPA (MedChemExpress), docosahexaenoic acid (DHA; MedChemExpress), α-linolenic acid (α-LA; Santa Cruz Biotechnology, Dallas, TX, USA), and linoleic acid (LA; MedChemExpress) were added. Cultured cells were harvested for mRNA assessment at 3 h for PPARδ and 12 h for carnitine palmitoyltransferase-1α (Cpt1α) and Angpt14.

Sorted BM mature neutrophils (CD11b^Ly6^hi^F4/80^low^) and immature neutrophils (CD11b^Ly6^hi^F4/80^low^) were cultured at a concentration of 4x10^5 cells/well in 500 µL RPMI 1640 supplemented with 10% FBS and 15% WEHI-conditioned medium in a 24-well nonculture treatment plate (Falcon®; Corning). Monocytes/macrophages (CD11b^Ly6^hi^F4/80^high^) were cultured at a concentration of 2x10^5 cells/well in 500 µL RPMI 1640 supplemented with 10% FBS in a 24-well tissue culture plate (Falcon®; Corning) at 37°C, 5% CO₂ with indicated concentrations of dobutamine, clenbuterol, BRL37344, GSK3787, EPA, and DHA. Cultured cells were harvested for mRNA assessment at 3 h for PPARδ and 12 h for Cpt1α and Angpt14.

Tissue preparation and immunohistochemistry

Femoral bone tissues were fixed in 4% paraformaldehyde/PBS at 4°C for 48 h and decalcified in 10% EDTA for 2 weeks at 4°C. For immunohistochemical staining of PPARδ in BM,
paraffin-embedded sections (4 µm thick) were used. After inhibition of endogenous peroxidase activity with methanol-containing 0.3% hydrogen peroxide for 30 min, antigen retrieval was done with L.A.B.Solution (Polysciences, Warrington, PA, USA). Sections were blocked with 5% goat serum (Jackson Immunoresearch Labs) and 5% FBS/PBS for 1 h. Staining with the rabbit anti-PPARδ polyclonal antibody (ab23673; Abcam) at 1:200 dilution or normal rabbit IgG (sc-3888; Santa Cruz Biotechnology) as control was visualized using horseradish peroxidase polymer for mouse tissue, Histostar™ (anti-rabbit) mouse immunostaining reagent (MBL, Nagoya, Japan) followed by ImmPACT™ DAB peroxidase substrate kit (Vectorlabs, Burlingame, CA, USA), and hematoxylin staining.

Evans blue dye assay
BM vascular permeability was assessed by Evans blue dye assay as described previously,5 with minor modifications. Briefly, 0.5% Evans blue dye (Fujifilm-Wako Pure Chemical Corporation) in 200 µL PBS was injected to 12-week-old mice via tail vein. After 30 min, mice were euthanized and perfused with 30 mL PBS to remove excess Evans blue from the vessels. Femur was flushed with 500 µL ice-cold PBS. BM cells were centrifuged, and the amount of Evans blue in the supernatant was measured at 610 nm in a 96-well plate using an absorbance microplate reader (iMARK™, Bio-Rad Laboratories, Inc., Hercules, CA, USA).

RNA extraction and quantitative reverse transcription-PCR (qRT-PCR)
Total RNA was extracted with TRIzol solution (Invitrogen, Carlsbad, CA, USA). Total RNA was treated with DNase I (Invitrogen) and reverse transcribed using first-strand cDNA synthesis with random primers (Promega, Madison, WI, USA). qRT-PCR was performed using SYBR Green (Life Technologies, Tokyo, Japan) on a LightCycler 480 System (Roche Diagnostics, Mannheim, Germany). The primers used are listed in Supplemental Table S1. All experiments were done in triplicate and normalized to β-actin or EF1α.

Enzyme-linked immunosorbent assay (ELISA)
BM extracellular fluid (BMEF) was obtained by flushing femoral BM with 500 µL PBS followed by centrifugation after several pipetting steps. Angptl4 quantification in plasma and BMEF was done using Angptl4 ELISA kit according to the manufacturer’s recommendations (MyBioSource, San Diego, CA, USA).
References

1. Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819-823.

2. Kawano Y, Fukui C, Shinohara M, et al. G-CSF-induced sympathetic tone provokes fever and primes antimobilizing functions of neutrophils via PGE2. Blood. 2017;129(5):587-597.

3. Li L, Chong HC, Ng SY, et al. Angiopoietin-like 4 increases pulmonary tissue leakiness and damage during influenza pneumonia. Cell Rep. 2015;10(5):654-663.

4. Kawamori Y, Katayama Y, Asada N, et al. Role for vitamin D receptor in the neuronal control of the hematopoietic stem cell niche. Blood. 2010;116(25):5528-5535.

5. Bowers E, Slaughter A, Frenette PS, Kuick R, Pello OM, Lucas D. Granulocyte-derived TNFα promotes vascular and hematopoietic regeneration in the bone marrow. Nat Med. 2018;24(1):95-102.
| Gene | Primer sequence |
|----------|--|
| Ppara | forward 5’-GTCATCACAGACACCCTCTCTCC-3’ |
| | reverse 5’-ACGACACAGGCACTTGTGAAAAAC-3’ |
| Ppard | forward 5’-CCACGAGTTCTTGCGAAGTCTCC-3’ |
| | reverse 5’-GCAGAATGCTGTCCTGGATGCG-3’ |
| Pparg | forward 5’-TGACAGGAAGACAACGGACAA-3 |
| | reverse 5’-ATCTTCTCCCATCAAAGGAATTCA-3’ |
| Angptl4 | forward 5’-CACGCACCTAGACAATGGAGT-3’ |
| | reverse 5’-AGTCATCTCACAGTGGACCAA-3’ |
| Cpt1a | forward 5’-ATGTCAAGCCAGACAAGAACATC-3’ |
| | reverse 5’-CCTGACCATAGCCATCCAGATTC-3’ |
| β-actin | forward 5’-CTTCTTTTCAGCTTTCTGTGATG-3’ |
| | reverse 5’-CGACCAGCGCGAGCATATC-3’ |
| Cxcl12 | forward 5’-CAAC TCC AAA CTG TGC CCT TCA-3’ |
| | reverse 5’-TCC TTT GGG CTG TTG TGC SSA CT-3’ |
| Runx2 | forward 5’-TCC GAA ATG CCT CCG CTG TTA T-3’ |
| | reverse 5’-GGA CCG TCC ACT GTC ACT TTA A-3’ |
| Bglap | forward 5’-CCC TGA GTC TGA CAA AGC CTT CA-3’ |
| (Osteocalcin) | reverse 5’-TAG ATG CTG TTG TAG GCG GTC T-3’ |
| Eef1a1 (EF1α) | forward 5’-GGTTTGCCGTCAGAAACGAG-3’ |
| | reverse 5’-GTTCGCTTGTGCATTCCACCAC-3’ |

Supplemental Table 1. Primer sequences used for PCR.
Supplemental Figure 1. Gating strategy for LSK cells in mobilized blood and BM data in G-CSF mobilization experiments related to Figure 1B.
Supplemental Figure 2. BM mRNA expression of mobilization related genes.
Supplemental Figure 3. Correlation between mobilized LSK cells and BM PPARδ mRNA expression related to Figure 2E.
Supplemental Figure 4. PPARδ protein expression in myeloid cells in peripheral blood.
Supplemental Figure 5. Confirmation of mature neutrophil depletion in BM by the anti-Ly6G antibody.
Supplemental Figure 6. Mobilization experiments with or without mature neutrophil depletion.
Supplemental Figure 7. Alteration of PPARδ mRNA expression by G-CSF in myeloid and nonmyeloid BM cell fractions.
Supplemental Figure 8. Induction of PPARδ in the 32D neutrophil precursor cell line by β-adrenergic stimulation.
Supplemental Figure 9. BM data in G-CSF mobilization experiments related to Figure 4.
Supplemental Figure 10. Function of ω3-fatty acids as PPARδ ligands in vitro.
Supplemental Figure 11. BM data in G-CSF mobilization experiments with EPA treatment related to Figure 6B-C.
Supplemental Figure 12. Expression and function of Angptl4 in G-CSF mobilization.
Supplemental Figure 13. Modulation of BM vascular permeability during G-CSF mobilization by the PPARδ agonist.
Supplemental Figure Legends

Supplemental Figure 1. Gating strategy for LSK cells in mobilized blood and BM data in G-CSF mobilization experiments related to Figure 1B.
(A) Gating strategy for LSK cells in mobilized blood. (B) BM nucleated cells (BMNCs), LSK, and CFU-Cs in BM (n=4 for PBS/BSA group and n=9 for G-CSF group). ND: normal diet, FFD: fat-free diet. Combined data of at least three independent experiments are shown. Data are mean±SEM. **p<0.01 (ANOVA).

Supplemental Figure 2. BM mRNA expression of mobilization related genes.
Alteration of BM mRNA expression in (A) Runx2, (B) Osteocalcin, and (C) Cxcl12 in mice fed with ND or FFD during G-CSF mobilization (n=3-5). Combined data of three independent experiments are shown. ns: not significant. Data are mean±SEM. *p<0.05, **p<0.01, ***p<0.001 (ANOVA).

Supplemental Figure 3. Correlation between mobilized LSK cells and BM PPARδ mRNA expression related to Figure 2E.
Correlation of mobilization efficiency of LSK cells in the blood with BM PPARδ mRNA expression (n=22). Combined data of at least three independent experiments are shown. (Pearson correlation coefficient).

Supplemental Figure 4. PPARδ protein expression in myeloid cells in peripheral blood.
Flow cytometric analysis of PPARδ protein expression in three major myeloid cell fractions (CD11b⁺Ly6GhighF4/80low mature neutrophils, CD11b⁺Ly6GdullF4/80low immature neutrophils, and CD11b⁺Ly6GdullF4/80high monocytes/macrophages) in the blood after treatment with eight doses of PBS/BSA or G-CSF. (A) Gating strategy and (B) representative histograms of PPARδ protein expression from three independent experiments are shown.

Supplemental Figure 5. Confirmation of mature neutrophil depletion in BM by the anti-Ly6G antibody.
In vivo depletion of mature neutrophils was performed by intraperitoneal injection with two doses of the anti-Ly6G antibody (200 µg/body/dose, clone 1A8; 9-12 h before the initial dose and just before the fourth dose of G-CSF). Efficient depletion of BM CD11b⁺Gr-1highF4/80low fraction is shown in both PBS/BSA- and G-CSF-treated groups.

Supplemental Figure 6. Mobilization experiments with or without mature neutrophil depletion.
G-CSF mobilization in mice with or without mature neutrophil depletion. (A-B) Absolute cell
number of each major myeloid cell fraction in (A) BM and (B) blood. (C-H) Mobilization of (C) WBC, (D) LSK, and (E) CFU-Cs in the blood and (F) BMNCs, (G) LSK, and (H) CFU-Cs in BM. (I) BM PPARδ mRNA expression in G-CSF mobilization with or without mature neutrophil depletion. n=4-6. Combined data of three independent experiments are shown. ns: not significant. Data are mean±SEM. *p<0.05, **p<0.01, ***p<0.001 (Student’s t test and ANOVA).

Supplemental Figure 7. Alteration of PPARδ mRNA expression by G-CSF in myeloid and nonmyeloid BM cell fractions.
PPARδ mRNA expression in sorted myeloid and nonmyeloid BM cell fractions after treatment with eight doses of PBS/BSA or G-CSF. Data are normalized to the mean of the PBS/BSA group of each cell fraction to evaluate the alteration by G-CSF treatment (n=3-4). Combined data of three independent experiments are shown. ns: not significant. Data are mean±SEM. *p<0.05, **p<0.01 (Student’s t test).

Supplemental Figure 8. Induction of PPARδ in the 32D neutrophil precursor cell line by β-adrenergic stimulation.
(A-B) PPARδ mRNA expression in 32D cells treated with (A) G-CSF and/or isoproterenol (n=5) and (B) selective agonists for each β-AR (dobutamine, clenbuterol, and BRL37344 for β1-, β2-, and β3-AR, respectively; n=4-6). (C) Representative histograms and geometric means of PPARδ protein expression in 32D cells after stimulation with clenbuterol or dobutamine by flow cytometry (n=3). Combined data of three independent experiments are shown. ns: not significant. Data are mean±SEM. *p<0.05, **p<0.01 (ANOV A).

Supplemental Figure 9. BM data in G-CSF mobilization experiments related to Figure 4.
BMNCs, LSK, and CFU-Cs in G-CSF mobilization experiments in (A) WT mice with the PPARδ agonist GW501516 (n=6-7 for PBS/BSA group and n=10 for G-CSF group), (B) WT mice with the PPARδ antagonist GSK3787 (n=6-7), (C) BM PPARδ+/− chimeric mice (n=8-11), and (D) WT mice with the PPARδ agonist GW501516 fed with ND or FFD (n=4-5).

Supplemental Figure 10. Function of ω3-fatty acids as PPARδ ligands in vitro.
(A) Up-regulation of Angptl4 and Cpt1α mRNA by the PPARδ agonist GW501516 in 32D cells (n=4). (B) Up-regulation of PPARδ downstream genes (Angptl4 and Cpt1α mRNA) by lipid mediators in 32D cells (EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid; α-LA, α-linolenic acid; LA, linoleic acid, n=4-6). (C) Interference of EPA/DHA-induced PPARδ signaling in 32D cells by the PPARδ antagonist GSK3787 (n=4). (D) Alteration of PPARδ mRNA expression by EPA/DHA in sorted three major myeloid cell fractions (CD11b+Ly6GhighF4/80low mature neutrophils,
CD11b^Ly6G_{dull}F4/80_{low} immature neutrophils, and CD11b^Ly6G_{dull}F4/80_{high} monocytes/macrophages) from steady-state BM (n=3-7). Combined data of at least three independent experiments are shown. ns: not significant. Data are mean±SEM. *p<0.05, **p<0.01, ***p<0.001 (Student’s t test and ANOVA).

Supplemental Figure 11. BM data in G-CSF mobilization experiments with EPA treatment related to Figure 6B-C.
BMNCs, LSK, and CFU-Cs in G-CSF mobilization experiments in the FFD condition in (A) WT mice treated with EPA (n=8) and (B) chimeric mice with PPARδ^{+/+} or PPARδ^{−/−} BM treated with EPA (n=4-6). Combined data of at least three independent experiments are shown. Data are mean±SEM. *p<0.05 (Student’s t test and ANOVA).

Supplemental Figure 12. Expression and function of Angptl4 in G-CSF mobilization.
(A) Angptl4 protein level in plasma after eight doses of PBS/BSA or G-CSF (n=6). (B) Angptl4 mRNA expression in sorted BM major myeloid cell fractions (CD11b^Ly6G_{dull}F4/80_{low} mature neutrophils, CD11b^Ly6G_{dull}F4/80_{low} immature neutrophils, and CD11b^Ly6G_{dull}F4/80_{high} monocytes/macrophages) after eight doses of PBS/BSA or G-CSF treatment with or without the PPARδ agonist GW501516 (n=3). (C) Alteration of Angptl4 and Cpt1α mRNA in BM cells during G-CSF mobilization with the PPARδ agonist GW501516 in mice fed with ND or FFD (n=5). (D) BM data (BMNCs, LSK, and CFU-Cs) in G-CSF mobilization experiments in WT mice treated with the anti-Angptl4 antibody 3F4F5 (n=3-7). Combined data of at least three independent experiments are shown. ns: not significant. Data are mean±SEM. *p<0.05, **p<0.01, ***p<0.001 (ANOVA).

Supplemental Figure 13. Modulation of BM vascular permeability during G-CSF mobilization by the PPARδ agonist.
BM vascular permeability assessed by Evans blue dye concentration in BMEF during G-CSF mobilization with or without the PPARδ agonist GW501516 (n=5-9). Combined data of three independent experiments are shown. Data are mean±SEM. *p<0.05 (ANOVA).