Abstract. Background/Aim: The BRAFV600E mutation acts as an initiator of cancer development in papillary thyroid carcinoma (PTC). Gene expression changes caused by the BRAFV600E mutation may have an important role in thyroid cancer development. Materials and Methods: To study genomic alterations caused by the BRAFV600E mutation, we made human thyroid cell lines that harbor the wild-type BRAF gene (Nthy/WT) and the V600E mutant-type BRAF gene (Nthy/V600E). Results: Flow cytometry and western blotting showed stable transfection of the BRAF gene. In functional experiments, Nthy/V600E showed increased anchorage-independent growth and invasion through Matrigel, compared to Nthy/WT. Microarray analysis revealed that 2,441 genes were up-regulated in Nthy/V600E compared to Nthy/WT. Gene ontology analysis showed that the up-regulated genes were associated with cell adhesion, migration, and the ERK and MAPK cascade, and pathway analysis showed enrichment in cancer-related pathways. Conclusion: Our Nthy/WT and Nthy/V600E cell line pair could be a suitable model to study the molecular characteristics of BRAFV600E PTC.

The BRAFV600E mutation is a well-known driver mutation with a single nucleotide change of thymine to adenine at position 1799. This mutation results in a valine to glutamic acid substitution at amino acid 600 (c1799T\textrightarrow{}A, pV600E) and leads to carcinogenesis by activating the BRAF kinase cascade (1). The BRAFV600E mutation accounts for 95% of BRAF gene alterations and is the most common genetic variation in papillary thyroid carcinoma (PTC) (2). The prevalence of BRAFV600E mutation in PTC is 29-83% (3). Previous studies have reported that the BRAFV600E mutation correlates with advanced disease such as extrathyroidal extension or lymph node metastasis, but is not clearly linked with overall survival. To explain cancer progression according to BRAF mutation, secondary gene expression alterations caused by the BRAFV600E mutation may play important roles (4-6).

Nthy-ori 3-1 (hereafter referred to as Nthy) is an immortalized thyroid follicular epithelial cell line derived from normal adult thyroid tissue that has been transfected with a plasmid encoding the SV40 large T gene. Nthy cells are useful for studies involving the control of growth and function of the human thyroid, since it is the only human normal thyrocyte-derived cell line (7). Using a MCSV promoter-based lentivirus system, Nthy/BRAF cells expressing either wild-type or mutant BRAF were successfully developed. Functional and genomic tests were conducted to explore the biological and genomic alterations caused by BRAFV600E in normal thyroid cells.

Materials and Methods

BRAF expression in Nthy cells by lentivirus transduction. The full-length coding sequences of wild-type BRAF and BRAFV600E were amplified by PCR from TPC1 and 8505c cells. PCR amplification products were cloned into the pCDH-MCS-T2A-copGFP-MCSV lentiviral vector (System Biosciences, Mountain View, CA, USA) and packaged by co-transfection with psPAX2 and pMD2.G plasmids with Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA) in HEK293FT (Invitrogen, Carlsbad, CA, USA) cells. Virus was harvested and concentrated by ultracentrifugation 48 h later. Titers

This article is freely accessible online.

*These Authors contributed equally to this study.

Correspondence to: Kyu Eun Lee, Seoul National University Hospital & College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea. Tel: +82 220722081, Fax: +82 27663975, e-mail: kyueunlee@snu.ac.kr

Key Words: Thyroid cancer, Nthy-ori 3-1 cell, BRAFV600E, signal transduction, microarrays.
were determined by flow cytometry as percentage of green fluorescent protein (GFP)-positive cells. For stable cell line generation, Nthy-ori 3-1 cells were treated with different titers of lentivirus for 24 h and examined for GFP expression after 3 days. Titers that generated at least 95% GFP-positive cells were chosen for further culture. Cells with low/intermediate/high GFP expression were sorted using a FACSARia flow cytometer (BD biosciences, San Jose, CA, US), and only cells with high GFP expression survived and proliferated.

Cell morphology and DNA sequencing. Transfected cells were observed using a microscope. The cells were cultured in 60-mm dishes until confluent monolayers were reached and then detached using a cell scraper. Genomic DNA was extracted using the QIaamp DNA kit (Qiagen, Hilden, Germany) according to the manufacturer’s recommendations. DNA was quantified using a Nanodrop ND-1000 spectrophotometer and used as template for PCR amplification of BRAF exon 15. PCR was performed using GeneAmp® PCR System 9700 (Applied Biosystems; Life Technologies, Carlsbad, CA, USA) as follows: initial denaturation at 95°C for 1 min was followed by 35 cycles of denaturation at 95°C for 15 sec, annealing at 58°C for 15 sec, and extension at 72°C for 15 sec. The PCR primer and DNA sequencing services were provided by Cosmo Genetech (Cosmo Genetech, Seoul, Korea). The primer sequences used in this study were as follows: BRAF exon 15: F 5'-TGAAGACCTCACATGAAAATGGTG-3', BRAF exon 15: R 5'-TCCACAAAATGGATCCAGACA-3'.

Flow cytometry. Nthy cells infected with empty vector, vector encoding wild-type BRAF, or vector encoding BRAF V600E were fixed with FCM fixation buffer (Santa Cruz Biotechnology, Santa Cruz, CA, USA) on ice for 15 min. Fixed samples were washed in phosphate buffered saline (PBS) and permeabilized on ice for 10 min in FCM Permeabilization (Santa Cruz Biotechnology). Samples were washed and resuspended. Single cell suspensions were incubated with phycoerythrin (PE)-conjugated anti-phospho-p44/42 MAPK (Cell Signaling Technology; Beverly, MA, USA) for 1 h. The labeled cells were detected using a BD FACS Diva 8.0 System (Becton Dickinson, San Jose, CA, USA) according to the manufacturer’s protocols. Gating was implemented on the basis of negative control staining profiles.

Western blotting. Cells were cultured in 100 mm dishes until confluent monolayers were reached. Cells were cultured for 24 h with 10% fetal bovine serum (FBS) or no FBS. Cells were washed twice with PBS and detached from the culture plate using a cell scraper. Cells were lysed on ice for 15 min with radio-immuno-precipitation assay (RIPA) buffer (Thermo Scientific, Rockford, IL, USA), which contains 1% proteinase inhibitors. The samples were loaded onto a 10% SDS-polyacrylamide gel and subjected to electrophoresis on ice. The proteins resolved were transferred onto polyvinylidene fluoride (PVDF) membrane for 1 h and blocked for 1 h at room temperature with 5% skim milk. The membranes were incubated overnight at 4°C with the primary antibodies. Anti-alpha tubulin (diluted 1:1,000) was obtained from Santa Cruz Biotechnology. Anti-ERK1/2 (diluted 1:1,000) and anti-phospho-ERK1/2 (diluted 1:1,000) were obtained from Cell Signaling Technology. The membranes were washed in Tris-buffered saline-Tween 20 (TBST) and incubated with the secondary antibody.

Soft-agar assay. Nthy cells infected with empty vector, vector encoding wild-type BRAF, or vector encoding BRAF V600E were seeded at 3,000 cells per well in 24-well plates in a top layer of 0.4% agarose (Cell Biolabs) on a base layer of 0.6% agarose. Culture medium containing DMSO or BRAF V600E kinase inhibitors (PLX-4032, BioVision, San Francisco, CA, USA) was added to each well and cultured at 37°C in the presence of 5% CO2 for 7 days. The number of colonies containing more than 25 cells was counted using a microscope.

Invasion assay. The invasion assay was performed using the xCELLigence DP Real Time Cell Analyzer and CIM-16 plates with 8-μm pore membranes. The bottom electrodes of the CIM-16 plates were coated with 0.2% gelatin and incubated in a laminar air flow chamber for 30 min. The upper chambers of CIM-16 plates were coated with 20 μl of 0.5 mg/ml growth factor-reduced Matrigel (BD Bioscience, Bedford, MA, USA) prepared in FBS-free RPMI medium. Matrigel was allowed to equilibrate for 2 h at 37°C in 5% CO2. RPMI medium with 10% FBS was added to the bottom chambers. Empty vector control cells (Nthy/Vector), wild-type BRAF cells (Nthy/WT), or BRAF V600E cells (Nthy/V600E) were added to the top compartments (8×104 cells per well). The impedance data, reported as cell index and proportional to the area of the bottom electrodes covered by migrated/invasive cells, were collected every 15 min. The percentage of invasion was calculated as the ratio between the invasive cells and the migrated cells (8).

Gene expression microarray. Cells were cultured in 100-mm dishes until confluent monolayers were reached. Total RNA was extracted using the easy-spin (DNA free) Total RNA Extraction kit (iNIRON Biotechnology, Seoul, Korea) and quantified using a Nanodrop ND-1000 spectrophotometer (NanoDrop, Wilmington, DE, USA). Microarray services were provided by Macrogen (Macrogen Inc., Seoul, Korea) using the Illumina HumanHT-12 v4 Expression BeadChip (Illumina, Inc., San Diego, CA, USA). Total RNA was amplified and purified using the TargetAmp-Nano Labeling kit for Illumina Expression BeadChip (EPICENTRE, Madison, WI, USA) to yield biotinylated cRNA according to the manufacturer’s instructions. Briefly, 500 ng of total RNA was reverse-transcribed to cDNA using a T7 oligo (dT) primer. Second-strand cDNA was synthesized, in vitro-transcribed, and labeled with biotin-NTP. After purification, the cRNA was quantified using the ND-1000 Spectrophotometer (NanoDrop, Wilmington, MA, USA). Labeled cRNA samples (750 ng) were hybridized to each Human HT-12 v4.0 Expression Beadchip for 17 h at 58°C according to the manufacturer’s instructions (Illumina, Inc., San Diego, CA, USA). Detection of the array signal was carried out using Amersham fluorolink streptavidin-Cy3 (GE Healthcare Bio-Sciences, Little Chalfont, UK) following the bead array manual. Arrays were scanned with an Illumina bead array reader confocal scanner according to the manufacturer’s instructions.

Statistical methods for microarray data analysis. Microarray data were analyzed with two groups based on the BRAF V600E mutation status. The “Wild-type BRAF” group consisted of two Nthy/WT cultures, and the “Mutant-type BRAF” group consisted of two Nthy/V600E cultures. All statistical analyses were performed using R version 3.2.1 (9). Raw data derived from the Illumina Genome Studio version 2011.1 and Gene Expression Module version 1.9.0 were transformed.
into a "LumiBatch" object using "Lumi R package" version 1.1.0. Variance stabilization of gene expression counts was performed using the variance-stabilizing transformation (VST) method. Quantile normalization method was applied to gene expression data after VST. Packages “Annotate” and “IlluminaHumanv4.db” were used for microarray chip probe annotation, provided by bioconductor (http://www.bioconductor.org). To find differentially expressed genes (DEGs), moderated t-test using the “Limma” was applied. The Benjamini-Hochberg (BH) method was applied to correct false positive rate from multiple comparisons. p<0.05 after BH correction was considered statistically significant. A log fold change value of 2 was used as the cutoff to identify significant DEGs. Based on the DEGs identified from limma, “GO stat” package was used for gene ontology (GO) analysis (13). In the gene ontology test, false discover rate (FDR) corrected p-value under 0.01 was considered statistically significant. Pathway analysis using up-regulated DEGs in Nthy/BRAF cells was performed by Database for Annotation, Visualization and Integrated Discovery (DAVID) v6.7 (14).

Results

Effect of BRAF gene transduction into Nthy cells. Nthy cells were stably transfected with empty vector, wild-type BRAF, or BRAF^{V600E} and named Nthy/Vector, Nthy/WT, and Nthy/V600E, respectively. The cell morphology of the Nthy/Vector and Nthy/WT cells was similar to that of the parental Nthy-ori 3-1 cells; however, Nthy/V600E cells had a spindle transformed shape, as shown in Figure 1A.

BRAF gene sequences were confirmed by Sanger sequencing. As shown in Figure 1B, the BRAF exon 15 sequences of Nthy/Vector and Nthy/WT cells were normal. Nthy/V600E cells, however, had a T>A mutation at position 1799. This result shows that the BRAF^{V600E} recombinant plasmid was successfully constructed and the BRAF^{V600E} expression level in Nthy-ori 3-1 cells surpassed that of the original wild-type BRAF.

By flow cytometry (Figure 2A), GFP showed a similar peak fluorescence intensity in Nthy/Vector, Nthy/WT, and Nthy/V600E cells, indicating similar BRAF protein levels. The intensity of p-ERK was increased in Nthy/V600E cells compared to Nthy/Vector or Nthy/WT cells (Figure 2A). Increased p-ERK was also confirmed by western blot (Figure 2B).
Increased anchorage-independent growth and invasion in Nthy/V600E cells. Soft-agar assay results estimating anchorage-independent growth are illustrated in Figure 3. The number of colonies observed was higher in Nthy/V600E cells than in Nthy/Vector or Nthy/WT cells. Treatment with PLX4032, a potent \(\text{BRAF}^{\text{V600E}}\) kinase inhibitor, inhibited colony growth, but the effect was small in Nthy/Vector or Nthy/WT cells; however, colony formation was decreased in a concentration-dependent manner in Nthy/V600E cells. In the invasion assay, the invasion/migration ratio was increased in Nthy/V600E cells, but not in Nthy/WT and control cells (Figure 4). This result indicates that Nthy/V600E cells are highly invasive compared to Nthy/Vector or Nthy/WT cells. Altogether, Nthy/V600E cells have increased anchorage-independent growth and a stronger invasive potential compared to Nthy/Vector or Nthy/WT cells.

Gene expression microarray. In total, 2,441 genes were differentially expressed at a higher level in Nthy/V600E cells compared to Nthy/WT cells (BH \(p<0.05\) and absolute log fold change \(>0\)). Forty-four genes were considered as significantly up-regulated DEGs in Nthy/V600E cells compared to Nthy/WT (BH \(p\)-value \(<0.05\) and absolute log fold change \(>2\). Table I. Among them, the top 20 up-regulated genes in Nthy/V600E cells and their ontology terms are listed on Table II. Their gene ontologies included carcinogenesis-related terms such as “MAPK pathway activation (\(\text{IL1B}, \text{DCLK1}, \text{TRIB1}\)”, “Wnt receptor signaling pathway (\(\text{SFRP1}\)”, “TOR signaling (\(\text{AGPAT9}\)”, “inflammation (\(\text{PLA2G7}, \text{NT5E}\)”, “cell proliferation (\(\text{IL24}\)”, migration (\(\text{SERPINE1}\)”, adhesion (\(\text{ITGA2}\)”, and “apoptosis (\(\text{G0S2}, \text{PHLDA1}\)”. 2,724 genes were differentially expressed at a lower level in Nthy/V600E cells compared to Nthy/WT cells. Forty-eight genes were considered significantly down-regulated DEGs. Information of down-regulated DEGs were also listed in Table III.

In GO analysis, 210 gene ontologies were enriched in Nthy/V600E cells (Table IV). Enriched GO terms in Nthy/V600E cells that were concordant with our functional
Figure 3. Colony formation in Nthy/Vector, Nthy/WT, and Nthy/V600E cells. Cells were grown in a 3-dimensional agar gel and treated with PLX4032, a potent inhibitor of BRAF^{V600E} kinase. Representative images are shown.

Figure 4. Invasion/migration ratio in Nthy/Vector, Nthy/WT, and Nthy/V600E cells. The coverage of bottom electrodes, which is proportional to the number of cells that have invaded through a Matrigel-coated porous membrane or migrated through an uncoated porous membrane, was measured using a Real Time Cell Analyzer. The percentage of invasion was calculated by the ratio between the invasive cells and the migrated cells.

Analysis were as follows: morphological change to spindle shape ("cell morphogenesis"), increased cell growth in soft agar ("cell differentiation", "cell growth", "cell motility", "cell migration"), increased invasion ("cell motility", "cell adhesion"), overexpression of p-ERK ("ERK1 and ERK2 cascade", "MAPK cascade").
Significantly enriched pathways by up-regulated genes in Nthy/V600E are listed in Table V. Apoptosis, small cell lung cancer, pathways in cancer, colorectal cancer, cell cycle, and p53 signaling pathway were enriched in Nthy/V600E cells, but not in Nthy/WT cells. This result shows that the activation of cancer-related genes and pathways is increased in Nthy/BRAF cells compared to Nthy/WT cells.
Table II. Top 20 up-regulated DEGs and their gene ontology terms in Nthy/V600E mutant cells with growth factor treatment.

Genes	Full name	Log FC	BH p-value	Gene ontology terms
IL1B	Interleukin 1, Beta	4.826	<0.001	Activation of MAPK activity
ANO1	Anoctamin 1, Calcium-Activated Chloride Channel	4.339	<0.001	Ion transmembrane transport, multicellular organisational development
SERPINE2	Serpin Peptidase Inhibitor, Clade E, Member 2	3.634	<0.001	Regulation of cell migration
SFRP1	Secreted Frizzled-Related Protein 1	3.553	<0.001	Wnt receptor signaling pathway, regulation of peptidyl-tyrosine phosphorylation
MPP4	Membrane Protein, Palmitoylated 4	3.26	<0.001	Protein localization to synapse
KHDRBS3	Kh Domain-Containing, Rna-Binding, Signal Transduction-Associated 3	3.236	<0.001	Regulation of transcription
TMEM200A	Transmembrane Protein 200A	2.988	<0.001	Integral to membrane
IL24	Interleukin 24	2.986	<0.001	Regulation of cell proliferation
G0S2	G0/G1 Switch 2	2.911	<0.001	Regulation of apoptotic signaling pathway
ANTXR2	Anthrax Toxin Receptor 2	2.847	<0.001	Integral to membrane
FOXQ1	Forkhead Box Q1	2.82	<0.001	Tissue development
DCLK1	Doublecortin-Like Kinase 1	2.705	<0.001	Protein kinase activity, phosphorylation
AGPAT9	1-Acylglycerol-3-Phosphate	2.601	<0.001	Regulation of TOR signaling
SNTB1	Syndotrophin, Beta 1	2.591	<0.001	Protein binding, phospholipid binding
CALB2	Cabandin 2	2.461	<0.001	Calcium ion binding, cytoplasm, gap junction
PHLD1A	Pleckstrin Homology-Like Domain, Family A, Member 1	2.384	<0.001	Protein binding, phospholipid binding, apoptotic process
PLA2G7	Phospholipase A2, Group Vii	2.371	<0.001	Regulation of inflammatory response
LAMB3	Laminin, Beta 3	2.36	<0.001	Structural molecule activity, extracellular matrix organization
ITGA2	Integrin, Alpha 2	2.303	<0.001	Cell-matrix adhesion, integrin-mediated signaling pathway
STC1	Stanniocalcin 1	2.229	<0.001	Cell surface receptor signaling pathway

Discussion

The characteristics of Nthy/V600E cells were as follows: shape change to spindle type, increased anchorage-independent growth and invasion potential, increased p-ERK and overexpression of MAPK-related genes, and enrichment of cancer-related pathways.

The cell shape change in Nthy/V600E may be the result of epithelial-mesenchymal transition (EMT) induced by the BRAF mutation. A previous study reported that thyroid cancer cells differed in shape from wild-type epithelial thyroid cells and appeared spindle-shaped in BRAFV600E mice. The hallmark of EMT is the down-regulation of E-cadherin and up-regulation of vimentin expression. A significant loss of E-cadherin gene expression and an increase in vimentin gene expression were seen in BRAFV600E thyroid tumors compared to normal thyroid (15). EMT is a normal morphological event during embryonic development, tissue remodeling, and wound-healing but also occurs in neoplastic cells, especially in metastases (16). BRAFV600E expression in the rat thyroid PCCL3 cell line promotes EMT and invasion through an autocrine transforming growth factor (TGF)-β loop (1). In concordance with the previous literature, genes associated with EMT, i.e., vimentin, were highly expressed in Nthy/V600E cells compared to Nthy/WT cells in microarray experiments (data not shown). We plan to perform further functional studies to validate this observation.

The oncogenic BRAF protein is always phosphorylated to activate ERK signaling. The mechanism of phosphorylation of oncogenic BRAF has been described by Wang et al. Normal BRAF is maintained in a conformational state, where the ATP-binding domain is bound to the phosphorylation domain. However, in mutant BRAF, the combination is scattered and activates to be phosphorylated (17). PLX4032 is a selective BRAFV600E inhibitor. In cells harboring BRAFV600E, PLX4032 inhibits MAP kinase signaling effectively and suppresses phosphorylation of ERK. In tumor xenograft models of BRAFV600E melanoma, PLX4032 suppresses the proliferation of tumor cells and improves the survival of animals in a dose-dependent manner (18,19). Likewise, PLX4032 inhibited anchorage-independent growth in Nthy/V600E cells in the present study (Figure 3), suggesting that BRAFV600E may play an important role in anchorage-independent growth. In another study using PCCL3 rat thyroid cell lines with doxycycline-inducible expression of BRAFV600E, BRAFV600E protein expression and ERK phosphorylation were doxycycline dose-dependent (6, 20). In another study using PCCL3 cells to
obtain doxycycline-inducible expression of BRAFV600E,
BRAFV600E-induced invasion through Matrigel (21). In a study
using the human PTC-derived cell lines KAT5 and KAT10
harboring a heterozygous BRAFV600E mutation, stable
knockdown of BRAF using BRAF small interfering RNA (siRNA)
suppressed anchorage-independent colony formation
in soft agar (22). Our results are consistent with previous
reports of thyroocyte cell lines. The clinical features of
BRAFV600E generally thought to be associated with aggressive
thyroid cancers, also correlate with our \textit{in vitro} data.
GO ID	GO Term	p-Value	Numbers of matched genes	Numbers of total genes in GO
GO:0008219	Cell death	<0.001	62	1843
GO:0060560	Developmental growth involved in morphogenesis	<0.001	17	166
GO:0016265	Death	<0.001	62	1847
GO:0009653	Anatomical structure morphogenesis	<0.001	74	2438
GO:0007155	Cell adhesion	<0.001	50	1344
GO:0022610	Biological adhesion	<0.001	50	1351
GO:0010941	Regulation of cell death	<0.001	51	1406
GO:0012301	Programmed cell death	<0.001	58	1755
GO:0030155	Regulation of cell adhesion	<0.001	29	561
GO:0006915	Apoptotic process	<0.001	57	1737
GO:0043067	Regulation of programmed cell death	<0.001	48	1337
GO:0048585	Negative regulation of response to stimulus	<0.001	45	1219
GO:0060429	Epithelium development	<0.001	41	1049
GO:0042981	Regulation of apoptotic process	<0.001	47	1328
GO:0008283	Cell proliferation	<0.001	57	1809
GO:0012427	Regulation of cell proliferation	<0.001	48	1397
GO:0044011	Locomotion	<0.001	51	1546
GO:0009888	Tissue development	<0.001	54	1687
GO:0009668	Negative regulation of signal transduction	<0.001	38	986
GO:0032502	Developmental process	<0.001	119	5301
GO:0016477	Cell migration	<0.001	40	1077
GO:0048856	Anatomical structure development	<0.001	109	4706
GO:0009605	Response to external stimulus	<0.001	60	2047
GO:0048522	Positive regulation of cellular process	<0.001	98	4116
GO:0048589	Developmental growth	<0.001	22	404
GO:0006928	Movement of cell or subcellular component	<0.001	52	1663
GO:0048583	Regulation of response to stimulus	<0.001	83	3275
GO:0043065	Positive regulation of apoptotic process	<0.001	26	547
GO:0007275	Multicellular organismal development	<0.001	104	4483
GO:0044767	Single-organism developmental process	<0.001	116	5217
GO:0043068	Positive regulation of programmed cell death	<0.001	26	552
GO:0023057	Negative regulation of signaling	<0.001	39	1079
GO:0048519	Negative regulation of biological process	<0.001	98	4157
GO:001648	Negative regulation of cell communication	<0.001	39	1086
GO:0060602	Branch elongation of an epithelium	<0.001	6	20
GO:0003401	Axis elongation	<0.001	7	32
GO:0048468	Cell development	<0.001	56	1906
GO:0042325	Regulation of phosphorylation	<0.001	42	1240
GO:0008285	Negative regulation of cell proliferation	<0.001	27	609
GO:0048513	Organ development	<0.001	74	2845
GO:0010942	Positive regulation of cell death	<0.001	26	573
GO:0003269	Cell motility	<0.001	40	1159
GO:00000574	Localization of cell	<0.001	40	1159
GO:00000668	Protein phosphorylation	<0.001	46	1439
GO:0001763	Morphogenesis of a branching structure	<0.001	15	210
GO:0048729	Tissue morphogenesis	<0.001	26	584
GO:0019220	Regulation of phosphate metabolic process	<0.001	46	1447
GO:0040007	Growth	<0.001	33	866
GO:0022407	Regulation of cell-cell adhesion	<0.001	19	336
GO:0035295	Tube development	<0.001	26	587
GO:0051174	Regulation of phosphorus metabolic process	<0.001	46	1460
GO:0009790	Embryo development	<0.001	35	969
GO:1902532	Negative regulation of intracellular signal transduction	<0.001	20	379
GO:0048731	System development	<0.001	92	3928
GO:0030154	Cell differentiation	<0.001	83	3424
GO:0001932	Regulation of protein phosphorylation	<0.001	36	1023
GO:0009666	Regulation of signal transduction	<0.001	67	2549
Table IV. Continued

GO ID	GO Term	p-Value	Numbers of matched genes	Numbers of total genes in GO
GO:0002009	Morphogenesis of an epithelium	<0.001	22	458
GO:0044763	Single-organism cellular process	<0.001	203	11513
GO:0048518	Positive regulation of biological process	<0.001	107	4851
GO:0061338	Morphogenesis of a branching epithelium	<0.001	14	199
GO:0006469	Negative regulation of protein kinase activity	<0.001	14	201
GO:0048869	Cellular developmental process	<0.001	86	3640
GO:0048523	Negative regulation of cellular process	<0.001	89	3818
GO:0051246	Regulation of protein metabolic process	<0.001	58	2123
GO:0006935	Chemotaxis	<0.001	27	674
GO:0042330	Taxis	<0.001	27	674
GO:0072001	Renal system development	<0.001	16	271
GO:0009887	Organ morphogenesis	<0.001	32	888
GO:0016049	Cell growth	<0.001	20	409
GO:0040082	Regulation of locomotion	<0.001	26	644
GO:0001655	Urogenital system development	<0.001	17	310
GO:0033673	Negative regulation of kinase activity	<0.001	14	215
GO:0048598	Embryonic morphogenesis	<0.001	24	569
GO:0001933	Negative regulation of protein phosphorylation	<0.001	16	284
GO:0042326	Negative regulation of phosphorylation	<0.001	18	353
GO:0042221	Response to chemical	<0.001	86	3731
GO:0060562	Epithelial tube morphogenesis	<0.001	17	322
GO:0035556	Intracellular signal transduction	<0.001	59	2243
GO:0098602	Single organism cell adhesion	<0.001	27	706
GO:0016337	Single organism cell-cell adhesion	<0.001	26	665
GO:2000145	Regulation of cell motility	<0.001	24	585
GO:0001704	Formation of primary germ layer	<0.001	10	114
GO:0048754	Branching morphogenesis of an epithelial tube	<0.001	12	167
GO:0023051	Regulation of signaling	<0.001	70	2843
GO:0035239	Tube morphogenesis	<0.001	18	361
GO:0007369	Gastrulation	<0.001	12	169
GO:0010646	Regulation of cell communication	<0.001	70	2856
GO:0016310	Phosphorylation	<0.001	52	1898
GO:0048646	Anatomical structure formation involved in morphogenesis	<0.001	34	1024
GO:0033334	Regulation of cell migration	<0.001	23	554
GO:0044267	Cellular protein metabolic process	<0.001	92	4125
GO:0048588	Developmental cell growth	<0.001	10	119
GO:0080134	Regulation of response to stress	<0.001	34	1034
GO:0022408	Negative regulation of cell-cell adhesion	<0.001	10	120
GO:0070887	Cellular response to chemical stimulus	<0.001	60	2336
GO:0060548	Negative regulation of cell death	<0.001	30	861
GO:0006793	Phosphorus metabolic process	<0.001	68	2781
GO:0032268	Regulation of cellular protein metabolic process	<0.001	52	1926
GO:0048584	Positive regulation of response to stimulus	<0.001	48	1726
GO:0051270	Regulation of cellular component movement	<0.001	25	654
GO:0006796	Phosphate-containing compound metabolic process	<0.001	67	2737
GO:0006904	Cell morphogenesis involved in differentiation	<0.001	29	832
GO:0048699	Generation of neurons	<0.001	39	1298
GO:0019538	Protein metabolic process	<0.001	101	4736
GO:0010563	Negative regulation of phosphorus metabolic process	<0.001	20	464
GO:0045936	Negative regulation of phosphate metabolic process	<0.001	20	464
GO:0042493	Response to drug	<0.001	18	394
GO:0043594	Regulation of kinase activity	<0.001	27	764
GO:0001822	Kidney development	<0.001	14	256
GO:0043409	Negative regulation of MAPK cascade	<0.001	10	134
GO:0043069	Negative regulation of programmed cell death	<0.001	82	812
GO:0007162	Negative regulation of cell adhesion	<0.001	12	193
GO:0044707	Single-multicellular organism process	<0.001	124	6230

Table IV. Continued
Table IV. Continued

GO ID	GO Term	p-Value	Numbers of matched genes	Numbers of total genes in GO
GO:0044092	Negative regulation of molecular function	<0.001	31	952
GO:0030182	Neuron differentiation	<0.001	36	1193
GO:0051247	Positive regulation of protein metabolic process	<0.001	37	1243
GO:0051239	Regulation of multicellular organismal process	<0.001	56	2221
GO:0072073	Kidney epithelium development	<0.001	10	140
GO:0031399	Regulation of protein modification process	<0.001	38	1298
GO:0007417	Central nervous system development	<0.001	28	831
GO:005680	Negative regulation of epithelial cell proliferation	<0.001	9	114
GO:2000026	Regulation of multicellular organismal development	<0.001	40	1403
GO:0022603	Regulation of anatomical structure morphogenesis	<0.001	27	792
GO:1902531	Regulation of intracellular signal transduction	<0.001	44	1608
GO:0007165	Signal transduction	<0.001	106	5162
GO:0033993	Response to lipid	<0.001	25	711
GO:0040166	Negative regulation of apoptotic process	<0.001	27	803
GO:0014070	Response to organic cyclic compound	<0.001	25	716
GO:0022008	Neurogenesis	<0.001	39	1374
GO:0056739	Regulation of protein kinase activity	<0.001	25	719
GO:0061564	Axon development	<0.001	22	592
GO:0044700	Single organism signaling	<0.001	113	5638
GO:0023052	Signaling	<0.001	113	5640
GO:0032270	Positive regulation of cellular protein metabolic process	<0.001	34	1141
GO:0014812	Muscle cell migration	<0.001	6	50
GO:0048732	Gland development	<0.001	17	395
GO:0050673	Epithelial cell proliferation	<0.001	15	320
GO:0023014	Signal transduction by phosphorylation	<0.001	24	685
GO:0022612	Gland morphogenesis	<0.001	9	124
GO:2000736	Regulation of stem cell differentiation	<0.001	8	98
GO:0007154	Cell communication	<0.001	114	5728
GO:0043407	Negative regulation of MAP kinase activity	<0.001	7	74
GO:0070371	ERK1 and ERK2 cascade	<0.001	11	187
GO:0032989	Cellular component morphogenesis	<0.001	36	1255
GO:0071901	Negative regulation of protein serine/threonine kinase activity	<0.001	9	127
GO:0001525	Angiogenesis	<0.001	17	404
GO:0000165	MAPK cascade	<0.001	23	653
GO:0031175	Neuron projection development	<0.001	27	832
GO:0007409	Axonogenesis	<0.001	21	569
GO:0032501	Multicellular organismal process	<0.001	125	6465
GO:0007492	Endoderm development	<0.001	7	77
GO:0051248	Negative regulation of protein metabolic process	<0.001	27	839
GO:0048608	Reproductive structure development	<0.001	17	410
GO:0050186	Response to stimulus	<0.001	141	7532
GO:0000902	Cell morphogenesis	<0.001	34	1173
GO:0071310	Cellular response to organic substance	<0.001	48	1892
GO:0051903	Negative regulation of developmental process	<0.001	26	798
GO:0051716	Cellular response to stimulus	<0.001	121	6227
GO:0043086	Negative regulation of catalytic activity	<0.001	25	753
GO:0061458	Reproductive system development	<0.001	17	413
GO:0051904	Positive regulation of developmental process	<0.001	30	986
GO:0048863	Stem cell differentiation	<0.001	15	337
GO:0017066	Endoderm formation	<0.001	6	56
GO:0045785	Positive regulation of cell adhesion	<0.001	15	338
GO:0010033	Response to organic substance	<0.001	58	2443
GO:0014910	Regulation of smooth muscle cell migration	<0.001	5	36
GO:0007399	Nervous system development	<0.001	50	2008
GO:0030198	Extracellular matrix organization	<0.001	16	378
GO:0001934	Positive regulation of protein phosphorylation	<0.001	24	715
GO:0043062	Extracellular structure organization	<0.001	16	379

Table IV. Continued
GO analysis of microarrays supported our functional results. DEGs up-regulated in Nthy/V600E cells are associated with cancer-related gene ontologies and pathways, showing that Nthy/V600E cells, but not Nthy/Vector or Nthy/WT cells, have carcinogenic potential.

We searched about the top four up-regulated genes in Nthy/V600E cells analyzed in light of previous research. IL-1 is a principal component of the interleukin-1 family (23). High-dose IL-1β administration causes broad inflammation and is accompanied by tissue damage and tumor invasiveness (24). In vitro analysis of melanocytes and melanoma cell lines showed that \(\text{BRAF}^{\text{V600E}} \) increases, while \(\text{BRAF}^{\text{V600E}} \) inhibition reduces the transcription of IL-1α and IL-1β (25, 26). In human thyrocytes, IL-1β alters the expression and localization of junction proteins (27). IL-1β induces the activation of cAMP responsive element-binding protein (CREB) through ERK1/2 signaling, and this mechanism was associated with poor prognosis in gastric carcinoma, non-small cell lung cancer, and breast cancer patients in previous reports (28-30).

The \(\text{ANO1} \) gene encodes the protein \(\text{ANO1} \) [transmembrane member 16A (TMEM16A)], a voltage-sensitive calcium-activated chloride channel (31). In a study in head and neck squamous cell carcinoma, \(\text{ANO1} \) overexpression significantly promoted anchorage-independent growth in vitro, whereas loss of \(\text{ANO1} \) resulted in inhibition of tumor growth. \(\text{ANO1} \)-induced cell proliferation and tumor growth were accompanied by an
increase in ERK1/2 activation and cyclin D1 induction (32). In lung cancer and colorectal cancer, ANO1 overexpression was related to tumor growth and invasion (33, 34).

The SERPINE2 gene encodes a member of the serpine protein family that inhibits serine proteases. In a study using human colorectal cell lines, BRAFV600E increased SERPINE2 mRNA and protein levels and subsequent MEK/ERK activity (35). In a pancreatic cancer study using nude mouse xenografts, SERPINE2 overexpression increased invasion through the extracellular matrix. In addition, cancer cells in SERPINE2-expressing tumors showed a spindle-shaped morphology and expressed the mesenchymal intermediate filament marker vimentin, which is consistent with our experimental results (36).

SFRP1 is the most extensively characterized gene in the SFRP family. This well-established tumor-suppressor gene generally acts as a Wnt inhibitor (37, 38). In expression and functional analysis using glioma stem cells, SFRP1 regulated the cell cycle and p53 pathways to inhibit Wnt (39). SFRP1 also increased ERK activity in lung epithelial cell lines (40).

Although Nthy is an immortalized cell line and may incompletely represent characteristics of normal human thyroid cells in vivo, our Nthy/V600E cells showed distinctive BRAFV600E mutation-associated features compared with Nthy/Vector cells. Nthy/V600E cells show a spindle-shaped morphology, anchorage-independent growth, increased invasive potential, and increased ERK phosphorylation. This cellular behavior was supported by GO analysis (cell adhesion, migration, and proliferation) of microarrays. Genes overexpressed in Nthy/V600E cells were also associated with ERK1/2, the MAPK cascade, and cancer-related pathways. Even if the results of this study cannot fully explain the pathogenesis of thyroid cancer, these Nthy/BRAF cells may be useful for basic research to evaluate the effect of the BRAFV600E mutation in normal human thyroid cells.

In conclusion, we generated a new cell line model aiming to study the carcinogenic mechanism of the BRAFV600E mutation. Functional experiments and microarrays revealed that Nthy/V600E cells have increased growth and invasion potential and increased expression of MAPK pathway components. Our Nthy/WT and Nthy/BRAF cell lines model human BRAFV600E PTC and may be useful in revealing the molecular characteristics of BRAF-mutant thyroid cancer.

Conflicts of Interest

None.

Acknowledgements

This study was supported by grants from Seoul National University Hospital (nos. 03-2012-0420, 04-2012-1050, and 30-2012-0070). Handling of lentivirus and genetically modified cells were performed in biosafety level 2 facilities with a permission from the Ministry of Science, ICT and Future Planning of Korea (Permit number: LML08-986).

References

1. Nucera C, Goldfarb M, Hodin R and Parangi S: Role of B-Raf(V600E) in differentiated thyroid cancer and preclinical validation of compounds against B-Raf(V600E). Biochim Biophys Acta 1795(2): 152-161, 2009.
2. Garnett MJ, Marais R: Guilty as charged: B-RAF is a human oncogene. Cancer Cell 6(4): 313-319, 2004.
3. Carta C, Moretti S, Passeri L, Barbi F, Avenia N, Cavaliere A, Monacelli M, Macchiarulo A, Santeusiano F, Tartaglia M and Puxeddu E: Genotyping of an Italian papillary thyroid carcinoma cohort revealed high prevalence of BRAF mutations, absence of RAS mutations and allowed the detection of a new mutation of BRAF oncogene (BRAF(V599Ins)). Clin Endocrinol 64(1): 105-109, 2006.
4 Kim TY, Kim WB, Song JY, Rhee YS, Gong G, Cho YM, Kim SY, Kim SC, Hong SJ and Shong YK: The BRAF mutation is not associated with poor prognostic factors in Korean patients with conventional papillary thyroid microcarcinoma. Clin Endocrinol 63(5): 588-593, 2009.

5 Ahn D, Park JS, Sohn JH, Kim JH, Park S-K, Seo AN and Park JY: BRAFV600E mutation does not serve as a prognostic factor in Korean patients with papillary thyroid carcinoma. Auris Nasus Larynx 39(2): 198-203, 2012.

6 Mitsutake N, Knauf JA, Mitsutake S, Mesa C Jr., Zhang L and Fagin JA: Conditional BRAFV600E expression induces DNA synthesis, apoptosis, dedifferentiation, and chromosomal instability in thyroid PCCL3 cells. Cancer Res 65(6): 2465-2473, 2005.

7 Lemoine NR, Mayall ES, Jones T, Sheer D, McDermid S, Kendall-Taylor P and Wynford-Thomas D: Characterisation of human thyroid epithelial cells immortalised in vitro by simian virus 40 DNA transfection. Brit J Cancer 60(6): 897-903, 1989.

8 Eisenberg MC, Kim Y, Li R, Ackerman WE, Kniss DA and Friedman A: Mechanistic modeling of the effects of myoferlin on tumor cell invasion. PNAS 108(50): 20078-20083, 2011.

9 Team RC: R: A language and environment for statistical computing. R Foundation for Statistical Computing, 2015.

10 Du P, Kibbe WA and Lin SM: ‘lumi: a pipeline for processing microarray data’. Bioinformatics 24(13): 1547-1548, 2008.

11 Lin SM, Du P and Kibbe WA: Model-based Variance-stabilizing Transformation for Illumina Microarray Data. Nucleic Acids Res 36: e11, 2008.

12 Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W and Smyth GK: Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43(7): e47, 2015.

13 Falcon S and Gentleman R: Using GO stats to test gene lists for GO term association. Bioinformatics 23(2): 257-258, 2007.

14 Huang DW, Sherman BT, Tan Q, Kir J, Liu D, Bryant D, Guo Y, Stephens R, Baseler MW, Lane HC and Lempicki RA: DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res 35(Web Server issue): W169-75, 2007.

15 Welander J, Andreasson A, Juhlin CC, Wiseman RW, Bäckdahl M, Höög A, Larsson C, Gimm O and Söderkvist P: Rare germline mutations identified by targeted next-generation sequencing of susceptibility genes in pheochromocytoma and paraganglioma. J Clin Endocrinol Metab 99(7): E1352-1360, 2014.

16 Sato R, Semba T, Saya H and Ariga Y: Concise Review: Stem Cells and Epithelial-Mesenchymal Transition in Cancer: Biological Implications and Therapeutic Targets. Stem Cells 34(8): 1997-2007, 2016.

17 Wan PT, Garnett MJ, Roe SM, Lee S, Niculescu-Duvaz D, Good VM, Jones CM, Marshall CJ, Springer CJ, Barford D and Marais R: Mechanism of activation of the RAF-ERK signaling pathway by oncopgenic mutations of B-RAF. Cell 116(6): 855-867, 2004.

18 Xing J, Liu R, Xing M and Trink B: The BRAF T 1799A mutation confers sensitivity of thyroid cancer cells to the BRAFV600E inhibitor PLX4032 (RG7204). Biochem Biophys Res Commun 404(4): 958-962, 2011.

19 Yang H, Higgins B, Kolinsky K, Packman K, Go Z, Iyer R, Kolis S, Zhao S, Lee R, Gripp R, Stochast K, Simcox ME, Heimbrook D, Bollag G and Su F: RG7204 (PLX4032), a selective BRAFV600E inhibitor, displays potent antitumor activity in preclinical melanoma models. Cancer Res 70(13): 5518-5527, 2010.

20 Melillo RM, Castellone MD, Guarino V, De Falco V, Cirafici AM, Salvatore G, Caiazzo F, Basolo F, Giannini R, Kruhoffer M, Orntoft T, Fusco A and Santoro M: The RET/PTC-RAS-BRAF linear signaling cascade mediates the motile and mitogenic phenotype of thyroid cancer cells. J Clin Invest 115(4): 1068-1081, 2005.

21 Melillo RM, Castellone MD, Guarino V, De Falco V, Cirafici AM, Salvatore G, Caiazzo F, Basolo F, Giannini R, Kruhoffer M, Orntoft T, Fusco A and Santoro M: Conditional activation of RET/PTC3 and BRAFV600E in thyroid cells is associated with gene expression profiles that predict a preferential role of BRAF in extracellular matrix remodeling. Cancer Res 66(13): 6521-6529, 2006.

22 Liu D, Liu Z, Condouris S and Xing M: BRAF V600E maintains proliferation, transformation, and tumorigenicity of BRAF-mutant papillary thyroid cancer cells. J Clin Endocrinol Metab 92(6): 2264-2271, 2007.

23 Borthwick LA: The IL-1 cytokine family and its role in inflammation and fibrosis in the lung. Semin Immunopathol 38(4): 517, 2016.

24 Apte RN and Voronov E: Interleukin-1--a major pleiotropic cytokine in tumor-host interactions. Semin Cancer Biol 12(4): 277-290, 2002.

25 Khalihi JS, Liu S, Rodriguez-Cruz TG, Whittington M, Wardell S, Liu C, Zhang M, Cooper ZA, Frederick DT, Li Y, Zhang M, Joseph RW, Bernatchez C, Ekmeckcioglu S, Grimm E, Radvanjy LG, Davies RE, Davies MA, Wargo JA, Hwu P and Lizzé G: Oncogenic BRAF(V600E) promotes stromal cell-mediated immunosuppression via induction of interleukin-1 in melanoma. Clin Cancer Res 18(19): 5329-5340, 2012.

26 Khalihi JS, Hwu P and Lizzé G: Forging a link between oncogenic signaling and immunosuppression in melanoma. Oncoimmunology 2(2): e22745, 2013.

27 Rebuffat SA, Kammann-Krichen M, Charfeddine I, Ayahi H, Bougacha-Elleuch N and Peraldi-Roux S: IL-1beta and TSH disturb thyroid epithelium integrity in autoimmune thyroid diseases. Immunobiology 218(3): 285-291, 2013.

28 Resende C, Regalo G, Duras C, Pinto MT, Wen X, Figueiredo C, Carneiro F and Machado JC: Interleukin-1B signalling leads to increased survival of gastric carcinoma cells through a CREB/C/EBPbeta-associated mechanism. Gastric cancer 19(1): 74-84, 2016.

29 Sun H, Chung WC, Rya SH, Ju Z, Tran HT, Kim E, Kurie JM and Koo JS: Cyclic AMP-responsive element binding protein- and nuclear factor-kappaB-regulated CXC chemokine gene expression in lung carcinogenesis. Cancer Prev Res (Phila) 1(5): 316-328, 2008.

30 Chhabra A, Fernando H, Watkins G, Mansel RE and Jiang WG: Expression of transcription factor CREB1 in human breast cancer and its correlation with prognosis. Oncol Rep 18(4): 953-958, 2007.

31 Seo Y, Park J, Kim M, Lee HK, Kim JH, Jeong JH and Namkung W: Inhibition of ANO1/TEMEM16A Chloride Channel by Idebenone and Its Cytotoxicity to Cancer Cell Lines. PLoS One 10(7): e0133656, 2015.
32 Duvvuri U, Shiwarski DJ, Xiao D, Bertrand C, Huang X, Edinger RS, Rock JR, Harfe BD, Henson BJ, Kunzelmann K, Schreiber R, Seethala RS, Egloff AM, Chen X, Lui VW, Grandis JR and Gollin SM: TMEM16A induces MAPK and contributes directly to tumorigenesis and cancer progression. Cancer Res 72(13): 3270-3281, 2012.

33 Jia L, Liu W, Guan L, Lu M and Wang K: Inhibition of Calcium-Activated Chloride Channel ANO1/TMEM16A Suppresses Tumor Growth and Invasion in Human Lung Cancer. PloS one 10(8): e0136584, 2015.

34 Sui Y, Sun M, Wu F, Yang L, Di W, Zhang G, Zhou L, Ma Z, Zheng J, Fang X and Ma T: Inhibition of TMEM16A expression suppresses growth and invasion in human colorectal cancer cells. PloS one 9(12): e115443, 2014.

35 Bergeron S, Lemieux E, Durand V, Cagnol S, Carrier JC, Lussier JG, Boucher MJ and Rivard N: The serine protease inhibitor serpinE2 is a novel target of ERK signaling involved in human colorectal tumorigenesis. Mol Cancer 9: 271, 2010.

36 Buchholz M, Biebl A, Neesse A, Wagner M, Iwamura T, Leder G, Adler G and Gress TM: SERPINE2 (protease nexin I) promotes extracellular matrix production and local invasion of pancreatic tumors in vivo. Cancer Res 63(16): 4945-4951, 2003.

37 Bovolenta P, Esteve P, Ruiz JM, Cisneros E and Lopez-Rios J: Beyond Wnt inhibition: new functions of secreted Frizzled-related proteins in development and disease. J Cell Sci 121(6): 737-746, 2008.

38 Rubin JS, Barshishat-Kupper M, Feroze-Merzoug F and Xi ZF: Secreted WNT antagonists as tumor suppressors: pro and con. Front Biosci 11: 2093-2105, 2006.

39 Kierulf-Vieira KS, Sandberg CJ, Greg Z, Gunther CC, Langmoen IA and Vik-Mo EO: Wnt inhibition is dysregulated in gliomas and its re-establishment inhibits proliferation and tumor sphere formation. Exp Cell Res 340(1): 53-61, 2016.

40 Foronjy R, Imai K, Shiom T, Mercer B, Sklepiewicz P, Thankachen J, Bodine P and D’Armiento J: The divergent roles of secreted frizzled related protein-1 (SFRP1) in lung morphogenesis and emphysema. Am J Pathol 177(2): 598-607, 2010.

Received October 7, 2016
Revised December 5, 2016
Accepted December 6, 2016