Equations of state for rubidium and cesium at high pressures in shock waves

To cite this article: K V Khishchenko 2019 J. Phys.: Conf. Ser. 1147 012001

View the article online for updates and enhancements.
Equations of state for rubidium and cesium at high pressures in shock waves

K V Khishchenko

1 Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya 13 Bldg 2, Moscow 125412, Russia
2 Moscow Institute of Physics and Technology, Institutskiy Pereulok 9, Dolgoprudny, Moscow Region 141700, Russia
E-mail: konst@ihed.ras.ru

Abstract. A simple equation-of-state model, which relates the pressure with the density and the specific internal energy, is applied for rubidium and cesium in the bcc-solid and liquid phases. Thermodynamic characteristics along the principal Hugoniots are calculated for these metals and compared with available data from shock-wave experiments at high pressures.

1. Introduction
Equations of state (EOSs) for substances over wide range of pressures and densities are needed for numerical simulations of processes at powerful interactions with condensed matter [1–3]. Such processes occur, in particular, when intense laser [4–9] and particle [10–13] beams, high current pulses [14–20], detonation products from chemical explosives [21–24] and high-velocity bodies [25–28] influence upon materials. In some experimental studies, numerical simulations are often necessary for interpretation of results of complex measurements at extreme conditions [29–33].

Alkali elements rubidium and cesium are used as working fluids in turboelectric generators and heat-transfer media in power plants. EOSs for these metals are of interest for simulating various working regimes of such systems at intense mechanical and thermal actions.

In this work, a semiempirical approach is used for thermodynamic description of properties of rubidium and cesium at high energy densities. A simple caloric form of EOS [34–36] is adapted for these two metals in the bcc-solid and liquid phases. The EOS-calculation results are compared with available data from shock-wave experiments [37, 38].

2. EOS model
The used EOS model is formulated in the general form as

\[P(V, E) = P_c(V) + \Gamma(V, E) \frac{E - E_c(V)}{V}, \]

where \(P \) is the pressure; \(V = \rho^{-1} \) is the specific volume; \(\rho \) is the density; \(E \) is the specific internal energy; \(E_c \) is a cold component of the energy at zero temperature \(T = 0 \); \(P_c = -\frac{dE_c}{dV} \) is the corresponding cold pressure at \(T = 0 \); \(\Gamma \) is a coefficient determining the contribution of thermal components of the EOS.
The cold energy is given by the relation \[39–43\]

\[E_c(V) = B_{0c}V_{0c} \left(\frac{\sigma_m^{n}}{m} - \frac{\sigma_n^{n}}{n} \right) + E_{\text{sub}}. \]

(2)

Here, \(\sigma_c = V_{0c}/V; \) \(V_{0c} \) and \(B_{0c} \) are the specific volume and bulk modulus at \(P = 0 \) and \(T = 0 \).

Value \(E_{\text{sub}} \) has meaning of the sublimation energy and is determined by a normalizing condition

\[E_c(V_{0c}) = 0, \]

(3)

which gives

\[E_{\text{sub}} = B_{0c}V_{0c}. \]

(4)

The coefficient \(\Gamma \) as a function of the specific volume and internal energy is defined analogously to caloric models \[42–48\] in the following form:

\[\Gamma(V, E) = \gamma_i + \frac{\gamma_c(V) - \gamma_i}{1 + \sigma^{-2/3} [E - E_c(V)]/E_a}, \]

(5)

\[\gamma_c(V) = 2/3 + (\gamma_{0c} - 2/3) \frac{\sigma_n^2 + \ln^2 \sigma_m}{\sigma_n^2 + \ln^2 (\sigma/\sigma_m)}, \]

(6)

where \(\sigma = V_0/V; \) \(V_0 \) is the specific volume under normal conditions \(P = 0.1 \) MPa, \(E = E_0; \) the function \(\gamma_c(V) \) corresponds to the case of low thermal energies, and the constant \(\gamma_i \) characterizes the case of highly-heated condensed substance. The energy \(E_a \), which sets the thermal energy of a transition of \(\Gamma \) from one limiting case to another, is determined from the results of shock-wave experiments at high pressures.

From equations (1), (5) and (6), one can obtain a relation of the quantity \(\gamma_{0c} \) with values of the Grüneisen coefficient \(\gamma = V(\partial P/\partial E)_V \), the specific internal energy and the specific volume under normal conditions (\(\gamma_0, E_0 \) and \(V_0 \)):

\[\gamma_{0c} = \gamma_i + (\gamma_0 - \gamma_i) \left[1 + \frac{E_0 - E_c(V_0)}{E_a} \right]^2. \]

(7)

The functional form (6) ensures validity of the condition \(\gamma(V_0, E_0) = \gamma_0 \), and gives the asymptotic value \(\gamma_c = 2/3 \) in the limiting cases of low and high compression ratios \(\sigma \). The parameters \(\sigma_n \) and \(\sigma_m \) are generally found from the condition of optimum description of experimental data on shock compressibility of substances.

3. EOSs for the two metals

Under normal pressure, the solid phases of rubidium and cesium have a body-centered cubic (bcc) structure \[49\]; Rb melts at 312 K, Cs—at 301 K. Under compression at room temperature, the bcc phase I transforms at pressure 7 (Rb) and 2.26 GPa (Cs) to the phase II with a face-centered cubic (fcc) structure. With a further increase in pressure at room temperature, other crystalline phases of rubidium and cesium are also observed \[49–52\].

Shock compressibility of rubidium and cesium is studied with the use of traditional explosive systems up to about 40 GPa \[37, 38\]. Shock compression of these metals leads to an increase in temperature and melting of the phase I.

In this work, EOSs for the bcc-solid and liquid phases of rubidium and cesium are constructed. The EOS coefficients for Rb and Cs obtained within the framework of the model are listed in table 1.

Calculated principal Hugoniots of Rb and Cs are displayed in figures 1 and 2 in comparison with data from shock-wave experiments \[37, 38\]. Analysis of the comparison results in figures 1 and 2 shows that the obtained EOSs provide for a reliable description of thermodynamic properties of these two metals over a whole investigated range of shock and particle velocities \((U_s \) and \(U_p \)), pressures and densities.
Figure 1. The principal Hugoniots of rubidium (red) and cesium (blue): curves correspond to the present calculations; markers—experimental data (R1 and C1—[37]; R2 and C2—[38]).

Figure 2. The principal Hugoniots of rubidium and cesium: notations are analogous to figure 1.
Table 1. The EOS coefficients for rubidium and cesium.

Metal	V_0 (cm3/g)	V_{0c} (cm3/g)	B_{0c} (GPa)	m	n	σ_m	σ_n	γ_{0c}	γ_i	E_a (kJ/g)
Rb	0.65359	0.61659	2.17169	1	1.5	0.9	1	0.8	0.45	6
Cs	0.54765	0.51182	0.41743	1	3.6	0.9	1	0.9	0.45	6

4. Conclusion
EOSSs in the form of an analytic function are proposed for rubidium and cesium in the bcc-solid and liquid phases. These EOSs agree well with available shock-wave data; one can use the EOSs effectively in numerical simulations of physical processes in the metals at high pressures.

Acknowledgments
The work is supported by the Russian Science Foundation (grant No. 14-50-00124).

References
[1] Zel’dovich Ya B and Raizer Yu P 1967 Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (New York: Academic Press)
[2] Bushman A V, Fortov V E, Kanel’ G I and Ni A L 1993 Intense Dynamic Loading of Condensed Matter (Washington: Taylor & Francis)
[3] Fortov V E 2016 Extreme States of Matter: High Energy Density Physics 2nd ed (Springer Series in Materials Science vol 216) (Berlin: Springer-Verlag)
[4] Povarnitsyn M E, Itina T E, Khishchenko K V and Levashov P R 2011 Appl. Surf. Sci. 257 5168–71
[5] Abrosimov S A, Bazhulin A P, Voronov V V et al 2012 Dokl. Phys. 57 64–6
[6] Inogamov N A, Petrov Yu V, Zhakhovsky V V et al 2012 AIP Conf. Proc. 1464 593–608
[7] Inogamov N A, Zhakhovsky V V, Petrov Yu V et al 2013 Contrib. Plasma Phys. 53 796–810
[8] Andreev N E, Povarnitsyn M E, Veysman M E et al 2015 Laser Part. Beams 33 541–50
[9] Krasyuk I K, Pashinin P P, Semenov A Yu et al 2016 Laser Phys. 26 094001
[10] Kurilenkov Yu K, Skowronek M and Dufty J 2006 J. Phys. A: Math. Gen. 39 4375–86
[11] Gnyusov S F, Rotshtein V P, Mayer A E et al 2016 Tech. Phys. 54 397–49
[12] Frolova A A, Khishchenko K V and Charakhch’yan A A 2016 Comput. Math. Math. Phys. 56 437–49
[13] Kurilenkov Yu K, Gus’kov S Yu, Karpukhin V T et al 2018 J. Phys.: Conf. Ser. 946 012025
[14] Rousskikh A G, Baksht R B, Chaikovsky S A et al 2006 IEEE Trans. Plasma Sci. 34 2223–8
[15] Oreshkin V I, Khishchenko K V, Levashov P R et al 2012 High Temp. 50 584–95
[16] Senchenko V N, Belikov R S and Popov V S 2015 J. Phys.: Conf. Ser. 653 012100
[17] Rososhek A, Efimov S, Nitishinski M et al 2017 Phys. Plasmas 24 122705
[18] Senchenko V N and Belikov R S 2018 J. Phys.: Conf. Ser. 946 012105
[19] Rososhek A, Efimov S, Tewari S V et al 2018 Phys. Plasmas 25 062709
[20] Barengolts S A, Mesyats V G, Oreshkin V I et al 2018 Phys. Rev. Accel. Beams 21 061004
[21] Nikolaev D, Ternovoi V, Kim V and Shutov A 2014 J. Phys.: Conf. Ser. 500 142026
[22] Shutov A V, Sultanov V G and Dudin S V 2016 J. Phys.: Conf. Ser. 774 012075
[23] Efremov V P, Zakatilova E I, Maklashova I V and Shevchenko N V 2018 J. Phys.: Conf. Ser. 946 012107
[24] Mintsev V B, Shilkin N S, Ternovoi V Ya et al 2018 Contrib. Plasma Phys. 58 93–8
[25] Lomonosov I V, Fortov V E, Frolova A A et al 2003 Tech. Phys. 48 727–35
[26] Mayer A E, Khishchenko K V, Levashov P R and Mayer P N 2013 J. Appl. Phys. 113 193508
[27] Popova T V, Mayer A E and Khishchenko K V 2018 J. Appl. Phys. 123 235902
[28] Grabovskii E V, Alexandrov V V, Baranitskii A V et al 2018 J. Phys.: Conf. Ser. 946 012041
[29] Tkachenko S I, Levashov P R and Khishchenko K V 2006 J. Phys. A: Math. Gen. 39 7597–603
[30] Iosilevskiy I L 2015 J. Phys.: Conf. Ser. 653 012077
[31] Kadatskiy M A and Khishchenko K V 2015 J. Phys.: Conf. Ser. 653 012079
[32] Chigintsev A Yu, Porizma I G, Noginova L Yu and Iosilevskiy I L 2018 J. Phys.: Conf. Ser. 946 012092
[33] Kadatskiy M A and Khishchenko K V 2018 Phys. Plasmas 25 112701
[34] Khishchenko K V 2017 Mathematica Montisnigri 40 140–7
[35] Khishchenko K V 2018 J. Phys.: Conf. Ser. 946 012082
[36] Khishchenko K V 2018 Mathematica Montisnigri 41 91–8
[37] Rice M H 1965 J. Phys. Chem. Solids 26 483–92
[38] Marsh S P (ed) 1980 LASL Shock Hugoniot Data (Berkeley, CA: University of California Press)
[39] Bushman A V, Zhernokletov M V, Lomonosov I V et al 1993 Dokl. Akad. Nauk 329 581–4
[40] Bushman A V, Lomonosov I V, Fortov V E et al 1993 JETP Lett. 58 620–4
[41] Lomonosov I V, Bushman A V, Fortov V E and Khishchenko K V 1994 Caloric equations of state of structural materials High-Pressure Science and Technology—1993 ed Schmidt S C et al (New York: AIP Press) pp 133–6
[42] Lomonosov I V, Fortov V E and Khishchenko K V 1995 Khim. Fiz. 14(1) 47–52
[43] Bushman A V, Zhernokletov M V, Lomonosov I V et al 1996 Zh. Eksp. Teor. Fiz. 109 1662–70
[44] Khishchenko K V, Lomonosov I V and Fortov V E 1996 AIP Conf. Proc. 370 125–8
[45] Khishchenko K V 2004 Tech. Phys. Lett. 30 829–31
[46] Khishchenko K V, Zhernokletov M V, Lomonosov I V and Sutulov Yu N 2005 Tech. Phys. 50 197–201
[47] Khishchenko K V 2015 J. Phys.: Conf. Ser. 653 012081
[48] Khishchenko K V 2016 J. Phys.: Conf. Ser. 774 012001
[49] Tonkov E Yu 1979 Phase Diagrams of Elements at High Pressures (Moscow: Nauka)
[50] Maksimov E G, Magnitskaya M V and Fortov V E 2005 Phys. Usp. 48 761–80
[51] Degtyareva V F 2006 Phys. Usp. 49 369–88
[52] Degtyareva O 2010 High Pressure Res. 30 343–71