Selective Cytotoxic Effects of *Annona Squamosa* Leaves against Breast Cancer Cells via Apoptotic Signaling Proteins

Rawan Al-Nemari 1, Abir Ben Bacha 1, Abdulrahman Al-Senaidy 1, Maha Arafah 2, Hadel Al-Saran 3, Nael Abutaha 4 and Abdelhabib Semlali 5*

1 Department of Biochemistry, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia; rawantalal.9@gmail.com, aalghanouchi@ksu.edu.sa, senaidy@ksu.edu.sa.
2 College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia.
3 Biomedical Research Department, King Fahad Medical City, Riyadh, Kingdom of Saudi Arabia; h.alsaran@hotmail.com
4 Bioproducts Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia; nabutaha@ksu.edu.sa
5 Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, Canada; abdelhabib.semlali@greb.ulaval.ca
* Correspondence: abdelhabib.semlali@greb.ulaval.ca; Tel.: +1(418) 656 2131 ext 400062

Abstract: *Annona squamosa* L. is an important medicinal plant used in traditional medicine for the treatment of various diseases. Different parts of *A. squamosa* L. have various therapeutic effects; however, the anticancer activity of the leaves has not yet been identified. *In vitro*, MTT, nuclear staining, and LDH assays were used to evaluate cell survival and proliferation in cells exposed to the extracts. The effect of the extracts on cell migration was investigated using a monolayer wound repair assay, and the apoptotic effects were evaluated using flow cytometry. A breast cancer model was used to study the effect of the extract on the tumor size, and the expression of different proliferative and apoptotic markers was evaluated by immunohistochemical analysis. At a concentration of 100 µg/mL, *A. squamosa* leaf extracts exerted strong antiproliferative and cytotoxic effects against various cell lines. The extracts reduced wound closure and strongly induced apoptosis. *In vivo* study, rats were sacrificed 24 h after the last injection, and tumor size, as well as the expression of proliferative and apoptotic markers, were observed to be greatly affected by treatment with the extracts. Therefore, *A. squamosa* leaf extract may be developed as a potential novel drug to treat breast cancer in the future.

Keywords: *Annona squamosa*; phytomedicine; proliferation; apoptosis; migration; estrogen receptor; tumor size

1. Introduction

Breast cancer is the second most common cancer and the most common cause of death in women worldwide [1]. Nevertheless, surgery, chemotherapy, and radiotherapy remain the cornerstone of breast cancer treatment [2]. Chemotherapeutic agents have several disadvantages and significant side effects, such as the inability to differentiate between cancer and normal cells and drug resistance associated with repeated treatment. Hence, there is an urgent need for new drugs. It is necessary to identify natural products that target multiple signaling pathways and cause growth inhibitory effects on cancer cells with fewer harmful effects on healthy cells and the biological environment [3]. Plant medicines have gained recognition over the last 40 years, and have been widely used as alternative or complementary medicines in many countries and ethnic groups worldwide[4]. Even today, plant-
derived compounds play a major role in primary healthcare as natural remedies in most countries, owing to their safety, effectiveness, quality, and availability[5]. It is reported that 49% of the 175 small molecules, which were approved for cancer treatment, were natural products or modified natural products. Additionally, it is estimated that almost 80% of people use plant medicines to treat inflammatory diseases [6]. Plants with a long history of use in ethnomedicine can be considered a vast resource of bioactive compounds, providing medicinal and health benefits against different diseases [7,8]. Therefore, in the field of phytoscience, researchers are working to elucidate the side effects, calculate appropriate dosages, and find the best method to extract and identify bioactive components. The bioactive compounds are secondary plant metabolites that elicit pharmacological or toxicological effects in humans and animals; however, one of the most critical challenges that researchers have faced is that a single plant may contain many bioactive compounds [9]. Currently, there is a global interest in medicinal plants as natural products that may yield the next generation of semi-synthetic derivatives, despite the decrease in the popularity of this approach in the 20th century [10].

A. squamosa L. is a small group of an edible plant of the genus *Annona* and the family Annonaceae, commonly known as a sugar apple or custard apple [11]. *A. squamosa* L. is a small tree that grows to 3–8 m in height and has conical fruits. The leaves are brilliant green on the top and bluish green on the bottom, with petioles of 0.7–1.5 cm long. The shape of leaves is oblong-elliptical; they measure 5 to 17 cm in length and 2 to 7 cm in width, with an obtuse or acuminate apex. The blade has 15 to 17 pairs of veins [12]. Different parts of *A. squamosa* L., such as the bark, root, seed, fruits, flowers, and leaves have been used in traditional medicine to treat various diseases [13]. Several bioactive compounds have been isolated from *A. squamosa* L. leaves, including alkaloids, steroids, annonaceous acetogenins, terpenoids, glycosides, saponins, flavonoids, and phenolics [14], and these compounds were found to be responsible for various biological activities [2,15].

A. squamosa L. plant parts are known to have various biological activities, although there are fewer studies of the leaves. To provide a clear understanding of the mechanism action of *A. squamosa* L leaf extracts, screening for the anticancer activity should confirm its use as an alternative to chemotherapeutic agents for breast cancer therapy. This study’s objective was to investigate the *in vitro* and *in vivo* anti-breast cancer activity of *A. squamosa* leaf extracts.

2. Results

2.1. The effect of *A. squamosa* extract on cell survival

Treatment with *A. squamosa* leaf extracts did not induce clear changes in the morphology of either breast cancer cell line; however, the treatment affected the number of viable cells (Figure 1). Therefore, the antiproliferative activity of various concentrations of *A. squamosa* extracts was determined against MCF-7 and MDA-MB-231 breast cancer cell lines using MTT assay. The methanolic extract resulted in a highly significant decrease in MCF-7 cell viability at 1 µg/mL, 10 µg/mL, and 100 µg/mL (Fig. 2-a). The 10 µg/mL of the methanolic and acetonic extracts resulted in a highly significant decrease in the viability of MDA-MB-321 cells (Fig. 2-b). However, it was found that all three extracts of *A. squamosa* leaf at 100 µg/mL resulted in a highly significant decrease in MCF-7 and MDA-MB-321 cell viability, with cell proliferation inhibition of approximately 60%. Furthermore, to determine whether
the antiproliferative activities of *A. squamosa* extracts were related to the induction of apoptosis, the morphological changes of cells were investigated using a nuclear staining assay. In both cell lines, the number of cells decreased with an increase in the extract concentration applied. Besides, nuclear damage occurred in a dose-dependent manner (Fig. 2-c). These results clearly showed the antiproliferative activity of *A. squamosa* extracts in human breast cancer ER+ and ER-cells.

![Figure 1. The effect of *A. squamosa* extracts on the morphology of breast cancer cell lines. MCF-7 and MDA-MB-231 cells were seeded at 4 × 10^5 cells/well and treated with 50 µg/mL methanol, acetone, or aqueous extract in DMEM medium with 10% FBS. Photomicrographs were taken at 24 h.](image)

![Figure 2. The effect of *A. squamosa* extracts on the proliferation of breast cancer cell lines as determined by MTT and nuclear staining assays. The cell viability of MCF-7 cells (a) and MDA-MB-231 cells (b) in the MTT assay (*n* = 5). (c) Photomicrographs of breast cell lines treated with three different concentrations of methanolic extract of *A. squamosa* leaves. The control cells were treated with DMSO (*p* < 0.05, **p** < 0.005).](image)

2.2. The cytotoxic effects of *A. squamosa* extracts
The cytotoxicity of *A. squamosa* extracts was determined through the measurement of LDH leakage from degraded cells, which resulted from the cytotoxic effects of the extract. As shown in Figure 3, the extracts exerted cytotoxicity against MCF-7 and MDA-MB-231 in a dose-dependent manner. Overall, the three different extracts showed highly significant cytotoxic effects in ER+ cells, MCF-7, compared with the ER- cells, MDA-MB-231. At the highest concentration tested (100 µg/mL), the methanolic and acetonic extracts induced 100% cell death in MCF-7 cells, and the aqueous extract induced approximately 60% cell death. *A. squamosa* extracts resulted in approximately 70%–80% cell death of MDA-MB-231 cell lines at the highest concentration tested (100 µg/mL).

![Figure 3](image-url)

Figure 3. The cytotoxic effect of *A. squamosa* extracts against breast cancer cell lines as determined by LDH assay. MCF-7 (a) and MDA-MB-231 (b) breast cancer cell lines. DMSO and Triton X-100 were used as negative and positive controls, respectively (*p* < 0.05, **p** < 0.005).

2.3. The effect of *A. squamosa* extracts on cell migration

To clarify the potential of *A. squamosa* extracts as anticancer agents, the effect of the extracts on the migration of cancer cells was tested using a monolayer wound healing assay (Figure 4). After 6 h, the cells treated with extracts had not migrated as far as the untreated cells. Furthermore, MCF-7 cells treated with the three different extracts showed 30%–33% less closure after 6 h than the DMSO-treated control cells (*p* < 0.005). It appears that the healing of ER- cells occurred much more rapidly than ER+ cells; therefore the migration of MDA-MB-231 treated cells was not greatly affected. In other words, the decrease in cell migration resulting from *A. squamosa* extract treatment was more considerable in ER+ cells.
Figure 4. The migration of breast cancer cell lines (MCF-7 and MDA-MB-231) after treatment with different *A. squamosa* extracts. A scratch was made on each monolayer, the culture medium was refreshed, and 50 μg/mL of extract was added. The cultures were maintained under the appropriate conditions, observed, and photographed at 0 and 24 h (*n* = 3, *p* < 0.05, and **p** < 0.005).

2.4. The apoptotic effect of *A. squamosa* extracts

The methanolic, acetonlic, and aqueous extracts of *A. squamosa* leaves on apoptosis induction in the breast cancer cell lines were measured using Annexin V/PI staining after 24 h of treatment at 50 μg/mL (Figure 5). For MCF-7 cells, the percentage of normal cells decreased by 65.8%, 92%, and 92.6% after treatment with the methanolic, acetonlic, and aqueous extracts. The methanolic extracts induced apoptosis in 27.5% of the cells, and necrosis in 38.3% of the cells. Apoptosis was induced in 52.8% of cells and necrosis was induced in 39.1% of cells treated with the acetonlic extract. However, the aqueous extract was found to have the most potent effect on MCF-7, inducing necrosis in 60.2% of cells and apoptosis in 32.3% of cells. In contrast, the methanolic extract induced apoptosis in almost all MDA-MB-231 cells (99.5%), the acetonlic extract induced apoptosis in 91.3% of cells, and the aqueous extract induced apoptosis in 89% of cells.
2.5. The effect of A. squamosa extracts on anti-apoptotic/pro-apoptotic gene expression

To detect the apoptotic effects of the methanolic, acetonnic, and aqueous extracts, the expression of anti-apoptotic (Bcl-2) and pro-apoptotic (Bax) genes in breast cancer cells were measured using qPCR. The exposure of MCF-7 cells to the extracts caused downregulation of the Bcl-2 mRNA; this change was significant after treatment with the methanolic and acetonnic extracts. All three extracts upregulated the expression of Bax; however, the change was only significant after treatment with the aqueous extract (Figure 6-a). In MDA-MB-231 cells, the expression of Bcl-2 was downregulated, and that of Bax was upregulated (Figure 6-b). Therefore, these findings showed that A. squamosa extracts induced apoptosis through the suppression of Bcl-2 and the activation of Bax. Consequently, the Bcl-2/Bax ratios showed a highly significant decrease (P < 0.005).

2.6. In vivo effect of A. squamosa extract on tumor growth

The therapeutic effects of A. squamosa extract in a rat model of breast cancer were assessed after treatment, via local injection, with the aqueous extract for one month. As shown in Figure 7, the tumor size in the treatment group was significantly reduced compared with that of the control (corn oil-treated) group, 1083 mm³, and 6583 mm³, respectively. These data suggested that the local treatment of A. squamosa extract significantly reduced the development and progress of tumor formation.
Injecting *A. squamosa* aqueous extract (300 mg/kg body weight) into the breast cancer model inhibited the tumor growth when compared with the control group. (b) Tumor size was measured with a caliper and calculated using the formula: \(\text{Volume} = \frac{\text{Length} \times \text{Width}^2}{2} \), \(n = 3 \), \(p < 0.05 \), and \(**p < 0.005 \).

These results were confirmed by histological analysis of the tumor tissues, which revealed a more aggressive metaplastic carcinoma in the untreated rats than the treated rats (Figure 8). In the immunohistochemical analysis, less intense positive immunostaining of Ki67, a well-established marker for tumor cell proliferation, in treated tissue compared to untreated tumor tissues. Moreover, the expression of p53, a tumor suppressor gene, was more intense in the treated tumor tissues than in the untreated tumor tissues. Overall results were indicating a pronounced decrease in proliferation and increase in apoptosis, in the treated tumor tissues.
Figure 8. Histopathological and immunohistochemical evaluation of cell proliferation and apoptotic markers following treatment with aqueous extract (300 mg/kg body weight) in the rat model of breast cancer. Representative treated and untreated rats were used for the evaluation. Hematoxylin and eosin staining was used for the histopathological examination, whereas antibodies for Ki67 and p53 were used for immunohistochemical staining. Magnification 400×.

3. Discussion

From ancient times, plants have been used for the treatment of diseases by humans. They are used as complementary medicine or to synthesize chemical compounds. According to the World Health Organization, more than 80% of the world’s population depends on nature-derived traditional alternative medicine for their primary healthcare needs [16]. One of these plants with extensive traditional use is *A. squamosa*; however, biologically, it is less well characterized. Few studies have illustrated the anticancer activity of *A. squamosa* leaf extracts. Therefore, this study aimed to investigate the anticancer effect of *A. squamosa* leaf extract on breast cancer cells.

In the current study, the anticancer activity of *A. squamosa* leaf extracts was investigated *in vitro* against two breast cancer cell lines; MCF-7 and MDA-MB-231. Our results revealed that the different *A. squamosa* leaf extracts did not induce any changes in the morphology of the cell lines (Figure 1). However, different extracts were found to induce cytotoxicity and inhibit the proliferation of MCF-7 and MDA-MB-231 cells in a dose-dependent manner (Figures 2 and 3). In this study, the antiproliferative and cytotoxicity activities of the extracts were confirmed by nuclear staining, which revealed damaged nuclei (Figure 2-c). These appear to be consistent with the results of a recent study on the isolation of different acetogenin compounds from *A. squamosa* seeds; the compounds were able to suppress the proliferation of multi-drug resistant MCF-7 cells via cell cycle arrest in the G1 phase [8]. Indeed, it is well known that the leading cause of death among patients with cancer is the ability of cancer cells to metastasize and invade [17], and our results present the first demonstration that different *A. squamosa* leaf extracts partially inhibited breast cancer migration (Figure 4). Furthermore, the current study showed that different extracts induced late apoptosis and necrosis in both MCF-7 and MDA-MB-231 cells (Figure 5). These results were confirmed by the study of the gene expression of pro-apoptotic and anti-apoptotic markers, and different extracts were found to induce the expression of *Bax* and suppress the expression of *Bel-2* (Figure 6). These results agreed with those of Pardhasaradhi et al. [18], which showed that treatment of MCF-7 with *A. squamosa* seed extracts...
resulted in nuclear condensation, DNA fragmentation, ROS generation, and apoptosis induction via downregulation of the ratio of Bcl-2/Bax.

An in vivo study can offer conclusive insights about the nature of the biological effect of A. squamosa leaf extracts; therefore, a breast cancer model developed in our laboratory was used. It was interesting to note that aqueous extracts significantly decrease tumor size. To better understand the mode of action of the extracts, immunohistochemistry was used to evaluate the expression of proliferative and tumor suppressor genes, Ki67, and p53. Stronger immunostaining intensity for p53 was found in the treated tissue than the control one, and less intense staining Ki67 was observed in the treated tissue. This finding was consistent with those of Chen et al. [19], which showed that A. squamosa seeds extracts inhibited the growth of H22 hepatoma cells by 69.55% in mice without any side effects. According to these results, we can infer that p53 directly or indirectly targeted either the apoptotic or non-apoptotic cell death pathway. For example, Caspase-3 activation drives the expression of different microRNA species that are known to target the Bcl-2 or the expression of different genes that are involved in cell cycle arrest [20].

In summary, A. squamosa leaf extracts demonstrated potential anticancer activity against breast cancer in both in vitro and in vivo experiments; therefore, further investigation may contribute to the development of a potential new anticancer therapy for both ER+ and ER- breast cancer. Further research is needed to fully understand the mechanism of action of A. squamosa leaf extracts and its role in cell autophagy, and to identify the pathway targeted by these extracts.

4. Materials and Methods

4.1. Plant material and extraction process

A. squamosa L. leaves were obtained from a local plant nursery in Ta’if City, Saudi Arabia, in December 2016. The identification and authentication were performed by Ibrahim Al-Dakhil, an agronomist, and confirmed by the Department of Botany and Microbiology, College of Science, King Saud University (KSU). A voucher specimen (KSU-No. 12068) was deposited at the Herbarium of the College of Science, KSU. The shade-dried leaves were ground into powder using an electric blender. Later, the extract was prepared by maceration of equal amounts of powdered leaves and methanol, acetone, or water (1:10 w/v) for 48 h and then filtered. The filtrate was collected in methanol and evaporated at 18–21 °C under a fume hood to obtain the crude extracts. For the aqueous filtrate, FreeZone 4.5 Liter Benchtop Freeze Dry System (Labconco, USA) was used for lyophilization. All extracts were dissolved in dimethyl sulfoxide (DMSO; Sigma, USA) for further experiments.

4.2. Cell lines and culture medium

MCF-7 and MDA-MB-231 breast cancer cell lines were obtained from American Type Culture Collection (ATCC, USA) and cultured in Dulbecco’s Modified Eagle’s medium (DMEM) (Gibco, USA) supplemented with 10% fetal bovine serum (FBS; Sigma) and 2×10⁻³ v/v penicillin-streptomycin (composed of 31 g/L penicillin and 50 g/L streptomycin) in a humidified atmosphere of 5% CO₂ at 37 °C throughout the assays.

4.3. Cell viability assay

The antiproliferative activity of the extracts was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay following the method of Semlali et al. [21]. The extracts were dissolved in DMSO and then diluted in a culture medium. Briefly, the cells were seeded in 6-well plates (4 × 10⁵ cells/well) and incubated at 37 °C for overnight growth. When cells reached 80% confluence, the culture medium was removed and replaced with 1 mL of fresh culture medium, and the cells were treated with various concentrations of the leaf extract (1 µg/mL, 10 µg/mL, and 100 µg/mL) for 24 h. The untreated cells were assayed as a negative control. After that, cells were incubated with 100 µL MTT (5 mg/mL; Sigma) in fresh medium for 3 h. The colored MTT-formazan crystals were dissolved by the addition of 0.04 N HCl in isopropanol (500 µL) to each well. Finally,
100 µL of the reaction mixture was transferred to a 96-well plate, and the maximum absorbance at 550 nm was detected using an ELISA plate reader (X-Mark Microplate Spectrophotometer, Bio-Rad, USA). The experiment was conducted in triplicate, and the percentage of viable cells was calculated using the following formula:

\[
\text{Cell viability (\%)} = \left(\frac{\text{absorbance of test sample}}{\text{absorbance of negative control}} \right) \times 100
\]

4.4. Nuclear staining

The morphology of the treated cells was assessed using a Hoechst 33342 staining assay (H42), as previously described by Semlali et al. [21]. The cells were seeded in 6-well tissue culture plates (3 × 10⁵ cells/well). After overnight incubation, the medium was removed and replaced with fresh medium. Different concentrations of the extracts were added to the medium, and the cells were incubated for 24 h. The supernatant was then removed, and the cells were washed twice with PBS and fixed in cold methanol for 15 min. After fixing, the cells were washed twice with PBS, and then stained with 2 µg/mL Hoechst 33342 (Thermo Fisher Scientific, DE) for 15 min. The stained nuclei were washed twice with PBS and observed and photographed using Leica DM2500 & DM2500 LED optical microscopes (LEICA Microsystems, DE).

4.5. Cytotoxicity assay

Breast cancer cell lines were cultured for 24 h in 6-well plates (4×10⁵ cells/well). After overnight growth, the culture medium was refreshed, and cells were treated with various concentrations of the leaf extract (1 µg/mL, 10 µg/mL, and 100 µg/mL) for 24 h. Cell injury was assessed by the measurement of the release of lactate dehydrogenase (LDH) [22]. 10 µL of the culture supernatant was transferred to a 96-well plate, and the enzyme reaction was conducted in accordance with the manufacturer’s instructions (LDH cytotoxicity colorimetric assay kit II, BioVision, USA). Briefly, LDH reaction mixture (100 µL) was added to each well and the plate was incubated for 30 min at 18-21 °C (room temperature) in the dark; thereafter, 10 µL of stop solution was added to terminate the reaction. The absorbance was measured at 450 nm using an X-Mark microplate spectrophotometer (Bio-Rad). Negative, positive, and background controls for total LDH activity were included in the experiment. The cytotoxicity was calculated as a percentage from the following formula:

\[
\text{Cytotoxicity (\%)} = \left(\frac{\text{test sample} - \text{negative control}}{\text{positive control} - \text{negative control}} \right) \times 100
\]

4.6. Monolayer wound repair assay

Breast cancer cell lines were seeded in 6-well plates and grown to confluence. A 10 µL pipette tip was used to make scratch wounds. The detached cells were removed by washing with PBS; thereafter, the cells were treated with 50 µg/mL of the methanolic, acetonic, or aqueous extracts. The migration of cells into the wounded region was observed using a LEICA DFC450 C digital camera (LEICA Microsystems, DE) at 0 and 24 h Semlali et al. [23]. The percentage of wound closure was calculated following the formula:

\[
\text{Wound closure (\%)} = \left(\frac{\text{initial scratch size} - \text{size of the scratch after an identified culture period}}{\text{initial scratch size}} \right) \times 100
\]

4.7. Annexin V/PI apoptosis assay:

To discriminate the type of cell death induced by *A. squamosa* leaf extracts, APC Annexin V Apoptosis Detection Kit with PI (BioLegend, USA) was used. This assay is based on the detection of morphological features associated with apoptosis or necrosis. First, the cells were treated with methanolic, acetonic, or aqueous extracts (50 µg/mL) for 24 h; then, adherent cells were collected, rinsed twice with cold PBS, and resuspended in 100 µL of annexin-binding buffer. This was followed by the addition of 5 µL APC Annexin V and 10 µL PI solution, and incubation at room temperature for 15 min. Subsequently, 400 µL of annexin-binding buffer was added to the reaction mixture, and the cells were immediately analyzed using BD FACSCalibur™ flow cytometer (Becton Dickinson, USA).
4.8. Cell culture conditions for RNA extraction

The breast cancer cell lines were cultured for 24 h in a T25 flask (1 × 10^6 cells/flask). The culture medium was replaced with medium containing 1% FBS for 24 h, and the cells were then treated with 50 µg/mL of the leaf extracts in 2 mL fresh medium containing 1% FBS, or 0.25% DMSO as the control. The cells were allowed to grow overnight. After washing with PBS, adherent cells were detached by the application of trypsin (Gibco, USA).

4.9. Reverse-Transcription PCR (RT-PCR)

Total RNA was extracted using the RNeasy Mini Kit (Qiagen, DE). The RNA quantity, purity, and quality were determined using a Nanodrop 8000 spectrophotometer (Thermo Fisher Scientific, USA). One microgram of RNA from each sample was reverse-transcribed into cDNA using the Hyperscript Kit (GeneAll, KR) and random hexamers (GeneAll, KR), as described in the manufacturer’s protocol.

4.10. Quantitative real-times PCR

The mRNA expression of Bcl-2 and Bax was measured using a QuantStudio 7Flex Detection System (Applied Biosystems, USA). The reactions were performed using iTaq™ Universal SYBER Green Supermix (Bio-Rad). Primers (Table 1) were added to the reaction mix at a final concentration of 10 µM. Five microliters of each cDNA sample were added to a 20 µL PCR mixture containing 12.5 µL of 2 × iTaq™ Universal SYBER Green Supermix, 0.5 µL of primers for Bcl-2, Bax, GAPDH (Macrogen, KR), and 7 µL RNase/DNase-free water (Qiagen, DE). The thermal cycling conditions for Bcl-2 and Bax were established as 5 min at 95 °C, followed by 40 cycles of 30 s at 95 °C and 30 s at 60 °C, and final 10 s at 95°C. The specificity of each primer pair was verified by the presence of a single melting temperature peak. The Applied Biosystems software automatically determined the threshold cycle. The expression of GAPDH, a housekeeping gene, was used as an endogenous control for this study.

| Table 1. Description of primers used for qPCR. |
|---|---|---|
| Gene | Primer sequence (5’ to 3’) | Product size (bp) |
| BCL-2 | Sense 5’- ACTGAGTACCTGAACCGGCATC-3’ | 108 |
| | Antisense 5’- GGAGAAATCAAACAGAGGTCGC-3’ | |
| Bax | Sense 5’- AGTGATCTCAGGCGAATTGGC-3’ | 102 |
| | Antisense 5’- CACGGAAGAAGACCTCTCGG-3’ | |
| GAPDH | Sense 5’- GGTATCGTGGAAGGACTCATGAC-3’ | 188 |
| | Antisense 5’- ATGCCAGTGAGCTTCCCGTTCAGC-3’ | |

4.11. Animal model

To confirm the in vitro results, twelve female Wistar albino rats (Rattus norvegicus), aged 5–8 weeks of age and with a bodyweight of 110 ± 20 g were used. The rats were divided into three groups, with four animals in each group. The rats were obtained from the breeding facility at the College of Pharmacy at King Saud University, Riyadh, and the written informed consent to use the animals in our study was obtained from this facility. The animals were housed in plastic cages at room temperature (25 ± 2 °C) with a constant relative humidity (45% ± 5%) under a 12 h light/dark cycle. Mammary tumors were induced in two groups of rats (groups I and II) by a single subcutaneous injection in the pectoral area with the potent carcinogen, dimethylbenzanthracene (DMBA), as
Plants 2020, 9, x FOR PEER REVIEW

12 of 14
described previously [24]. After tumor palpation (8 weeks post-injection), animals in group I received corn oil as vehicle control, whereas animals in group II were injected with A. squamosa aqueous extract dissolved in corn oil at a dose of 300 mg/kg directly into the tumor. A single dose was injected for 4 weeks every 48 h, following a previously described protocol [25,26]. After treatment, the rats were euthanized by administering a ketamine (125 mg/kg), and xylazine (10 mg/kg) overdose and mammary gland tissues were collected from all sacrificed rats. All animal procedure was reviewed and approved in accordance with ICH GCP guidelines by the Institutional Review Board at King Fahd Medical City, Riyadh, KSA (IRB log number: 18-586, registration number with KACST, KSU: H-01-12-012 and registration number with OHRP/NIH, USA: IRB00010471).

4.12. Immunohistochemistry (IHC) analysis

Polyclonal antibodies were used to assess the expression of different tumor markers, including the genes involved in the proliferation signaling pathway, such as Ki67 and p53. Briefly, IHC was performed on 3-μm slices of deparaffinized and rehydrated breast tissue by a Ventana Benchmark XT automated staining (Ventana Medical Systems Inc., Tucson, AZ) for the assessment of Ki67 and p53 (Santa Cruz Biotechnology, CA, USA), as previously described by Semlali et al. [27]. The immunostained sections were analyzed by an Olympus BX51 light microscope and DP72 Olympus digital camera with powers 400X (Olympus America Inc, Center Valley, PA, USA).

4.13. Statistical analysis

Data are presented as an arithmetical mean ± standard deviation (±SD) using Statistical Package for the Social Sciences (SPSS v.21, Chicago, IL, USA). All statistical differences were evaluated with one-way analysis of variance (ANOVA) followed by student’s t-test. p ≤0.05 was considered as statistically significant, while value ≤0.005 was taken as statistically highly significant compared to relevant control.

Author Contributions: AA, ABB, and AS conceived and supervised the research. RA conducted the experiments, analyzed, and interpreted the data. ABB and NA drafted the Materials and Methods section. NA, MA, and HA helped with animal experiments. RA and AS completed the manuscript. All of the authors read and approved the final manuscript.

Funding: This research received no external funding.

Acknowledgments: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Ethics approval and consent to participate: The present study was approved by the Institutional Review Board, King Fahd Medical City, Riyadh, Saudi Arabia (IRB log number: 18-586, Registration number with KACST, KSU: H-01-12-012 and Registration number with OHRP/NIH,USA: IRB00010471). The rats were obtained from the breeding facility at the College of Pharmacy at King Saud University, Riyadh and the written informed consent to use the animals in our study was obtained from this facility.

References

1. Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015, 136, 359–386, doi:10.1002/ijc.29210.

2. Wang, D.S.; Rizwani, G.H.; Guo, H.; Ahmed, M.; Ahmed, M.; Hassan, S.Z.; Hassan, A.; Chen, Z.S.; Xu, R.H. Annona squamosa Linn: cytotoxic activity found in leaf extract against human tumor cell lines. Pak J Pharm Sci 2014, 27, 1559–1563.

3. Maya, S.; Sabitha, M.; Nair, S. V; Jayakumar, R. Phytomedicine-Loaded Polymeric Nanomedicines: Potential Cancer Therapeutics. In Multifaceted Development and Application of Biopolymers for Biology,
4. Heinrich, M.; Barnes, J.; Gibbons, S.; Williamson, E. *Fundamentals of pharmacognosy and phytotherapy*; 2nd ed.; ELSEVIER, 2012;

5. Verpoorte, R. Medicinal Plants: A Renewable Resource for Novel Leads and Drugs. In *Herbal Drugs: Ethnomedicine to Modern Medicine*; Ramawat, K.G., Ed.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2009; pp. 1–5 ISBN 978-3-540-79114-6.

6. Tundis, R.; Xiao, J.; Loizzo, M.R. Annona species (Annonaceae): a rich source of potential antitumor agents? *Ann N Y Acad Sci* 2017, 1398, 30–36.

7. Efferth, T.; Li, P.C.; Konkimalla, V.S.; Kaina, B. From traditional Chinese medicine to rational cancer therapy. *Trends Mol Med* 2007, 13, 353–361.

8. Ma, C.; Chen, Y.; Chen, J.; Li, X.; Chen, Y. A Review on *Annona squamosa* L.: Phytochemicals and Biological Activities. *Am J Chin Med* 2017, 45, 933–964.

9. Ahmad, I.; Aqil, F.; Owais, M. *Modern phytomedicine: turning medical plants into drugs*; Wiley-VCH: Weinheim, 2006; ISBN 9783527315307 (cased alk. paper)3527315306 (cased alk. paper).

10. Ghazi-Moghadam, K.; Inancli, H.M.; Bazazy, N.; Plinkert, P.K.; Efferth, T.; Sertel, S. Phytomedicine in otorhinolaryngology and pulmonology: clinical trials with herbal remedies. *Pharm.* 2012, 5, 853–874, doi:10.3390/ph5080853.

11. Lim, T.K. *Annona squamosa*. In *Edible Medicinal and Non-Medicinal Plants: Volume 1, Fruits*; Springer Netherlands: Dordrecht, 2012; pp. 207–220 ISBN 978-90-481-8661-7.

12. Pinto, A.C.; Cordeiro, M.C.R.; Andrade, S.R.M.; Ferreira, F.R.; Filgueiras, H.A.; Alves, R.E.; Kinpara, D.J.; Williams, J.T.; Smith, R.W.; Hughes, A.; et al. *Annona Species*; International Centre for Underutilised Crops: Southampton, UK, 2005;

13. Kalidindi, N.; Thimmaiah, N. V; Jagadeesh, N. V; Nandeep, R.; Swetha, S.; Kalidindi, B. Antifungal and antioxidant activities of organic and aqueous extracts of *Annona squamosa* Linn. leaves. *J. food drug Anal.* 2015, 23, 795–802.

14. Gowdhami, M.; Sarkar, B.L.; Ayyasamy, P.M. Screening of Phytochemicals and Antibacterial Activity of *Annona Aquamosa* Extracts. *IJPSI* 2014, 3, 30–39.

15. Chen, Y.; Chen, J.W.; Wang, Y.; Xu, S.S.; Li, X. Six cytotoxic annonaceous acetogenins from *Annona squamosa* seeds. *Food Chem* 2012, 135, 960–966, doi:10.1016/j.foodchem.2012.05.041.

16. Bailon-Moscoso, N.; Benavides, J.C.R.; Orellana, M.I.R.; Karla Ojeda, G.G.; Ostrosky-Wegman, P. Cytotoxic and genotoxic effects of extracts from *Annona montana* M. fruit. *Food Agric. Immunol.* 2016, 27, 559–569.

17. Seyfried, T.N.; Huysentruyt, L.C. On the origin of cancer metastasis. *Crit Rev Oncog* 2013, 18, 43–73.

18. Pardhasaradhi, B. V; Reddy, M.; Ali, A.M.; Kumari, A.L.; Khar, A. Differential cytotoxic effects of *Annona squamosa* seed extracts on human tumour cell lines: role of reactive oxygen species and glutathione. *J Biosci* 2005, 30, 237–244.

19. Chen, Y.; Xu, S.S.; Chen, J.W.; Wang, Y.; Xu, H.Q.; Fan, N.B.; Li, X. Anti-tumor activity of *Annona squamosa* seeds extract containing annonaceous acetogenin compounds. *J Ethnopharmacol* 2012, 142, 462–466, doi:10.1016/j.jep.2012.05.019.

20. Aubrey, B.J.; Kelly, G.L.; Janic, A.; Herold, M.J.; Strasser, A. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? *Cell Death Differ.* 2017, 25, 104, doi:10.1038/cdd.2017.169.
21. Semlali, A.; Chakir, J.; Rouabhia, M. Effects of whole cigarette smoke on human gingival fibroblast adhesion, growth, and migration. *J Toxicol Env. Heal. A* 2011, 74, 848–862.

22. Smith, S.M.; Wunder, M.B.; Norris, D.A.; Shellman, Y.G. A simple protocol for using a LDH-based cytotoxicity assay to assess the effects of death and growth inhibition at the same time. *PLoS One* 2011, 6, e26908, doi:10.1371/journal.pone.0026908.

23. Semlali, A.; Jacques, E.; Koussih, L.; Gounni, A.S.; Chakir, J. Thymic stromal lymphopoietin-induced human asthmatic airway epithelial cell proliferation through an IL-13-dependent pathway. *J Allergy Clin Immunol* 2010, 125, 844–850.

24. Bersch, V.P.; Osvaldt, A.B.; Edelweiss, M.I.A.; Schumacher, R. de C.A.; Wendt, L.R.R.; Abreu, L.P.; Blom, C.B.; Abreu, G.P.; Costa, L.; Piccinini, P.; et al. Effect of nicotine and cigarette smoke on an experimental model of intraepithelial lesions and pancreatic adenocarcinoma induced by 7,12-dimethylbenzanthracene in mice. *Pancreas* 2009, 38, 65–70, doi:10.1097/MPA.0b013e318184d330.

25. Zyad, A.; Cai, Z.; Morizet, J.; Legres, L.; Benard, J.; Chouaib, S. In-vivo effect of the combination of tnf and adriamycin against a human breast cell-line expressing the mdr-phenotype. *Int. J. Oncol.* 1995, 7, 1067–1072, doi:10.3892/ijo.7.5.1067.

26. Ait M’barek, L.; Ait Mouse, H.; Jaafari, A.; Aboufatima, R.; Benharref, A.; Kamal, M.; Benard, J.; El Abbadi, N.; Bensalah, M.; Gamouh, A.; et al. Cytotoxic effect of essential oil of thyme (Thymus broussetii) on the IGR-OV1 tumor cells resistant to chemotherapy. *Brazilian J. Med. Biol. Res. = Rev. Bras. Pesqui. medicas e Biol.* 2007, 40, 1537–1544, doi:10.1590/s0100-879x2007001100014.

27. Semlali, A.; Reddy Parine, N.; Arafah, M.; Mansour, L.; Azzi, A.; Al Shahrani, O.; Al Amri, A.; Shaik, J.P.; Aljebreen, A.M.; Alharbi, O.; et al. Expression and Polymorphism of Toll-Like Receptor 4 and Effect on NF-κB Mediated Inflammation in Colon Cancer Patients. *PLoS One* 2016, 11, e0146333, doi:10.1371/journal.pone.0146333.