Physical Activity and Risks of Esophageal and Gastric Cancers: A Meta-Analysis

Yi Chen, Chaohui Yu, Youming Li*

Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China

Abstract

Background: The incidence of esophageal and gastric cancer has been increasing rapidly worldwide in recent years, although the reason for this increase is unclear. Here, a statistical synthesis of studies that evaluated the association between physical activity, a well-known protecting factor against death and other chronic diseases, and the risk of esophageal and gastric cancer was performed.

Methods: Potentially suitable studies were identified using Medline and Embase. The reference lists of all included articles and those of several recent reviews were searched manually. Studies were included if they (1) were published as case-control or cohort studies evaluating the association between physical activity and risk of esophageal or gastric cancer; and (2) reported point estimates (i.e., risk ratios, odds ratios) and measures of variability (i.e., 95% confidence intervals [CIs]) for physical activity and risk of esophageal or gastric cancer.

Results: Fifteen studies were identified (7 cohorts, 8 case-controls; 984 esophageal and 7,087 gastric cancers). Collectively, they indicated that the risk of gastric cancer was 13% lower among the most physically active people than among the least active people (RR = 0.87, 95% confidence interval [CI] = 0.78 to 0.97) and that of esophageal cancer was 27% lower (RR = 0.73, 95% CI = 0.56 to 0.97).

Conclusions: Pooled results from observational studies support a protective effect of physical activity against both esophageal and gastric cancer.

Introduction

The incidence of esophageal and gastric cancer has been increasing rapidly worldwide in recent years, although the reason for this increase is unclear. Every year, an estimated 934,000 new cases of gastric cancer and 450,000 cases of esophageal cancer are diagnosed [1]. Gastric cancer (GC) is the fourth most common type of cancer and esophageal cancer (EC) is the sixth [1–3]. The mortality from these cancers is high and the response to treatments during advanced stages is poor, suggesting that an effective means of reducing mortality would be through early intervention of modifiable risk factors [4–6].

Physical activity (PA) is defined as movements produced by skeletal muscles that result in energy expenditure [7]. It has repeatedly been shown to be associated with reductions in the risk of any-cause mortality and reductions in major causes of death, such as cardiovascular disease and cancers [8–14].

The relationship between physical activity and the upper digestive tract has between widely researched and reviewed [11,15]. Both protective role and risk factor associated with physical activity have been found, but some showing no statistical significance. No pooled analysis has yet been performed. In order to provide more reliable evidence of the relationship between physical activity and gastric and esophageal cancer, a meta-analysis of observational studies was performed with a focus on the evaluation of differences in study design, study populations and risk of bias.

Materials and Methods

Search Strategy and Selection Criteria

In the present work, Yi Chen and Chaohui Yu independently searched Medline and Embase (from its commencement to May 2013) with no language restrictions for studies in humans of the association between physical activity and cancers of esophagus and stomach. The core search consisted of terms related to physical activity (“exercise,” “physical activity,” “walking,” and “motor activity,”) These were combined with specific terms for cancer sites of interest (“stomach,” “gastric,” “cardia,” “esophagus,” and “esophageal”) and with descriptions of cancer (“cancer,” “neoplasm,” and “carcinoma”).
The reference lists of all included articles and those of several recent reviews were also searched [11,15]. After eliminating duplicate studies, the titles and abstracts of all articles obtained were screened by Yi Chen and Chaohui Yu to exclude those clearly not relevant. The remaining articles were read thoroughly and those met the selection criteria were included. Differences were resolved by consulting with the third author, Youming Li. Inclusion criteria were as follows: (1) Published as case-control or cohort study evaluating the association between physical activity and risk of esophageal or gastric cancer; (2) reported point estimates (i.e., rate ratios, odds ratios) and measures of variability (i.e., 95% confidence intervals [CIs]) for physical activity and risk of esophageal or gastric cancer.

Data Extraction and Quality Assessment

The following information was extracted from relevant studies: first author’s name, year of publication, country in which the study was performed (nationality), study design (i.e., case-control or cohort), the sexes of the participants, cancer anatomical and histological subtypes included and risk approximations for comparisons between the highest and lowest categories of physical activities. Attention was also paid to physical activity domains and whether confounders that were controlled during the analysis (i.e., age and obesity). Extracted data were inspected for concordance by two authors Yi Chen and Chaohui Yu. If a study did not report enough data to be included in the meta-analysis (i.e., no risk estimates and/or 95% confidence intervals), the corresponding author was contacted via email and the missing data were requested at least twice. If a study reported the effect estimates of two or more domains of physical activity but did not combine them, then the results of recreational physical activity for the primary meta-analysis were used. This was because recreational physical activity is the most commonly measured domain in observational studies of physical activity and cancer. It has been suggested that it is the main modifiable aspect of energy expenditure [12,16]. Methodological quality was assessed using three study components that might affect the strength of the association between physical activity and the risk of gastric or esophageal cancer risk [12]: study design (i.e., population-based case-control and cohort studies were believed to have a lower risk of bias and hospital-based studies were believed to have a high risk of bias); measurement of physical activity (i.e., studies that reported that the method used to measure physical activity was valid and/or reliable or was similar to another questionnaire with known validity and/or reliability were considered to have a lower risk of bias and those did not were considered high); and the confounding effects (i.e., studies that considered/controlled/matched confounding effects such as age and obesity were considered to have a lower risk of bias and those did not were considered high). Studies that showed a lower risk of bias according to all three criteria were classified as having a low risk of bias, and the rest were classified as having a high risk of bias.

Statistical Analysis

All analyses used the STATA statistical package with the metan and metabias commands (version 12, STATA Corporation, College Station, TX, U.S.). Summary RR estimates were calculated using either RRs (for cohort studies) or ORs (for case-control studies). For case-control studies, odds ratios with 95% CI were evaluated, and for cohort studies, risk ratios with 95% CI were evaluated. With relatively low incidence worldwide, gastric or esophagus cancer affects only a small proportion of general population. Odds ratios and risk ratios were combined in the analysis and reported as a relative risk (RR). If a study reported results for males and females separately, both risk estimates were included in the primary analysis. Heterogeneity was investigated by subgroup analysis, in which the magnitude of the combined risk estimates and the respective tests of heterogeneity, and meta-regression in each stratum to assess the independent contribution of each variable to explain heterogeneity. Publication bias was evaluated using funnel plots [17], the Begg adjusted rank correlation test [18] and Egger’s test [19].

Subgroup Analysis

Six pre-specified subgroup analyses were conducted, one each by sex (males vs females); by study type (cohort vs case-control); by risk of bias (lower vs higher risk of bias); by study population; and by physical activity domain (occupational, recreational).

Meta-regression analysis was used to calculate ratios of risk estimates to test for statistically significant effect modification by sex, study type, risk of bias, study population, and domain of physical activity.

Results

Search Results

879 potentially relevant articles were screened. Of these, 91 were considered potentially valuable and full texts were retrieved for detailed evaluation. Of these 91 articles, 79 were subsequently excluded from the meta-analysis for various reasons. Of these, 70 were excluded for not evaluating the relationship between physical activity and esophageal or gastric cancer specifically. Another 5 were then excluded because the cancer death rate was investigated, and cancer risk was not [20–24]. Another 3 articles because they did not provide point estimates with confidence intervals and the authors did not reply us to require for further detailed data [25–27]. Another study was dropped because it was cross-sectional [28]. An additional 3 articles were included from reference reviews. In this way, a total of 15 articles (7 cohort and 8 case-control studies) were included. (Figure S1).

Study Characteristics

The main characteristics of the 15 studies included in the primary meta-analysis are given in Table 1. Of all the studies included, 7 were cohort studies [29–35] and 8 were case-control studies [36–43]. A total of 7,087 GC patients and 984 EC patients were identified among 1,507,436 participants. Six studies were conducted in Asia [two in Japan [32,34], two in China [36,39], one in Korea [30] and one in Turkey [43]]. Three were conducted in Europe (one in multiple European countries [35], one in UK [33], and one in Norway [31]). Four studies were conducted in the United States [29,38,41,42] and two were in Canada [37,40]. Five studies involved males only [30,33,37,41,42], eight involved both males and females but provided combined data only [29,31,32,35,39,40,43,44], and only two involved both males and females and did report sex-specific results [34,38]. All the fifteen articles provided data regarding the risk of gastric cancer, of which five did anatomical subtype analysis including cardiac gastric cancer and noncardiac [29,31,35,38,40]. One focused on cardiac cancer only [44]. Eight studies reported relationship among EC and physical activity, one [29] of which offered histological subtype analysis including esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EA) separately, one [43] on ESCC only and one [35] only about EA. The main results of four studies were based on occupational activity only [38,41–43]. Five studies reported recreational activity [30,31,33,40,44]. Two studies used total physical activity.
First author, year, subject nationality (reference)	Sex	Cancers investigated	Physical activity domain in main result (in subgroup analyses)	Physical activity measurement mode, validity reported, and reliability reported	Confounding effect of age and obesity considered?	Main result RR or OR (95% CI)	Dose-response P
Case-control studies							
Brownson, 1991, US (43)	Male	EC, GC	OCC	Job-title based, no, no	Age: yes Obesity: no	EC: 1.43 (0.66, 3.08) GC: 0.71 (0.45, 1.11)	EC: 0.18 GC: 0.13
Dosemeci, 1993, US (42)	Male	GC	OCC	Job-title based, yes, yes	Age: no Obesity: no	0.91 (0.54, 1.53)	0.32
Vigen, 2006, US (39)	Both	EC, GC (cardiac and non-cardiac)	OCC	Job-title based, yes, yes	Age: yes Obesity: yes	0.91 (0.54, 1.53)	0.32
Campbell, 2006, Canada (41)	Both	Population GC (cardiac and non-cardiac)	REC	Self-administrated, yes, yes	Age: yes Obesity: yes	0.99 (0.73, 1.34)	0.40
Chen, 2009, China (45)	Both	Hospital-based GC (cardiac)	REC	Interview, no, no	Age: yes Obesity: no	0.50 (0.31, 0.99)	0.04
Leitzmann, 2009, US (30)	Both	Retired Persons EC (EA and ESCC), GC (cardiac and non-cardiac)	Total physical activity	Self-administrated, yes, yes	Male: 1.04 (0.84, 1.29) Female: 0.63 (0.42, 0.94)	Men: 0.785 Women: 0.020	
Parent, 2011, Canada (38)	Male	Population GC, EC	REC, OCC	Interview, no, no	Age: yes Obesity: yes	1.04 (0.63, 1.61)	0.10
Yun, 2008, Korea (31)	Male	Population EC, GC	REC	Self-administrated, yes, yes	Age: yes Obesity: yes	0.94 (0.86, 0.98)	0.10

Cohort							
Serverson, 1989, Japan (33)	Both	Population GC	OCC, REC/HH	Self-administrated, yes, no	Age: yes Obesity: yes	1.45 (1.07, 1.97)	0.101 for total PA
Wannamethee, 2001, UK (54)	Male	Population GC	REC	Self-administrated, yes, yes	Age: yes Obesity: yes	0.60 (0.14, 2.47)	0.15
Inoue, 2008, Japan (33)	Both	Population GC	Total physical activity	Self-administrated, yes, yes	Male: 1.04 (0.84, 1.29) Female: 0.63 (0.42, 0.94)	Men: 0.785 Women: 0.020	
Spodahl, 2008, Norway (32)	Both	Population GC	REC	Self-administrated, yes, no	Age: yes Obesity: yes	0.50 (0.3, 0.9)	0.01
Huerta, 2010, Europe (36)	Both	Population EC (EA, GC (cardiac and non-cardiac, intestinal and diffuse))	OCC, REC	Self-administrated, yes, yes	Age: yes Obesity: yes	0.69 (0.50, 0.94)	EC: 0.006 GC: 0.051
Leitzmann, 2009, US (30)	Both	Retired Persons EC (EA and ESCC), GC(cardiac and non-cardiac)	Total physical activity	Self-administrated, yes, no	Age: yes Obesity: yes	0.84 (0.63, 1.11)	EC: 0.147 Noncardiac: 0.024
Yun, 2008, Korea (31)	Male	Population EC, GC	REC	Self-administrated, yes, yes	Age: yes Obesity: yes	0.94 (0.86, 0.98)	EC: ESCC: 0.759 EA: 0.240

* GC = gastric cancer; EC = Esophageal cancer; ESCC = esophageal squamous cell carcinoma; EA = esophageal adenocarcinoma; OCC = occupational physical activity; REC = recreational Physical activity; NR = not reported; HH = household physical activity; OR = odds ratio; RR = relative risk; doi:10.1371/journal.pone.0088082.t001
Egger's test was 0.134 for the highest versus lowest analysis. For significant publication bias in the studies considered. For the regression analyses on this association (Table S1).

(I2 = 49.8%, P = .012). A similar result was found for esophageal cancer (RR = 0.73, 95% CI = 0.56 to 0.97), again with moderate heterogeneity (I2 = 58.4% P = .019). There was some evidence of publication bias in the primary meta-analysis. Visual inspection of the funnel plots revealed a small degree of asymmetry, due primarily to one or two studies, in both the gastric cancer and esophageal cancer results (Figure S3). Meta-regression analyses showed no variables had a significant effect (P>.05 in all regression analyses) on this association (Table S1).

Results of Begg's and Egger's tests gave no evidence of publication bias in the studies considered. For the association between physical activity and GC, the P value of Egger's test was 0.134 for the highest versus lowest analysis. For studies on GC, the P value of Egger's test was 0.328 for the highest versus lowest.

Subgroup analysis. No significant difference was found in any subgroup analysis with respect to study designs, sex, risk of bias, study population, PA domain and subtype. This was true of both GC and EC. However, in several subgroup analyses about EC, considerable heterogeneity was discovered with respect to study population, PA domain and histological subtype (Table 2, Figure S4).

Dose-Response Analyses
A total of 16 dose-response analyses (5 in men, 1 in women, and 10 in men and women combined) were conducted in the 12 studies that examined whether there was a dose-response relationship between physical activity and esophageal or gastric cancer (four for EC [29,35,38,42,43] and ten for GC [29,31–35,38–42]). Four analyses of physical activity and the risk of gastric cancer (one in females, and three in male and females combined) found a statistically significant (P<.05) dose-response relationship [29,31,34,39]. One analyses of physical activity and the risk of esophageal cancer (in men and women combined) found a statistically significant negative dose-response relationship [43].

Meta-analysis
Primary meta-analysis. The summary relative risk of the main results from the 15 studies indicated that the risk of gastric cancer was 13% lower among the most physically active people compared that among the least active people (RR = 0.87, 95% CI = 0.78 to 0.97). (Figure S2) There was moderate heterogeneity (I2 = 49.8%, P = .012). A similar result was found for esophageal cancer (RR = 0.73, 95% CI = 0.56 to 0.97), again with moderate heterogeneity (I2 = 58.4% P = .019). There was some evidence of publication bias in the primary meta-analysis. Visual inspection of the funnel plots revealed a small degree of asymmetry, due primarily to one or two studies, in both the gastric cancer and esophageal cancer results (Figure S3). Meta-regression analyses showed no variables had a significant effect (P>.05 in all regression analyses) on this association (Table S1).

Risk of Bias
Five of the 15 studies were neither a cohort nor a population-based case-control study [39,41–44]. Nine studies reported that the method used to measure physical activity was valid and/or reliable or similar to other valid and/or reliable questionnaires [29,30,32–35,38,40,41]. All studies except three matched on, adjusted for, or considered the confounding effects of both age and obesity [41,42,44]. Of the three which did not, two were adjusted for age only [42,44]. One was not adjusted for any confounding factors [41].

Eight studies were categorized as having a lower risk of bias according to all three criteria and were so classified [31–35,38,40,41]. Another seven studies met zero, one, or two criteria and were classified as having a higher risk of bias [29,30,37,39,42–44].

Discussion
The results of this meta-analysis suggest that physical activity plays a protective role in both esophageal and gastric cancer. The total estimated risk from the 15 studies indicates that the risks of gastric cancer is approximately 13% lower among the most physically active people compared with the least active people and the risk of esophageal cancer was 27% lower.

There was no strong evidence that the results differed in subgroup analysis, between men and women, between studies with a higher or lower risk of bias, between differently designed studies, or between different physical activity domains. In anatomical and histological subtype analysis, cardiac cancer showed a stronger relationship with physical activity, but not statistically significant. Several analyses (study population, PA domain and histological subtype analysis) of EC could not be conducted because of considerable heterogeneity. Risk estimates were not combined.
of the least active. The present conclusion should be refined to state that most physically active individuals have a lower risk than the most inactive ones. Fourth, another potential limitation of the present work is the residual confounding factors that were not adjusted for in the included studies. This may have affected the results.

In conclusion, a synthesis of existing studies supports the conclusion that physical activity offers some protection against esophageal and gastric cancer. This finding suggests that future research on the relationship between physical activity and gastric and esophageal cancer should focus on those aspects of the association that remain unclear, such as whether sedentary behavior and nonaerobic physical activity are associated with higher risk of cancer and whether the intensity of physical activity affects the association between physical activity and the risk of gastric and esophageal cancer. More studies are needed to gather more information regarding the mechanism through which physical activity may protect against these cancers and whether increases in physical activity can decrease the risk of cancer.

Supporting Information

Table 2. Summary of results from the primary meta-analysis and subgroup analysis.

Meta-analysis	GC RR(95%CI) I², % P	Within Group (95%CI)	EC RR(95%CI) I², % P	Within Group (95%CI)
Primary meta-analysis	0.87 (0.78, 0.97) 49.6 0.012	–	0.73 (0.56, 0.97) 58.4 0.018	–
Subgroup analysis				
Study design				
Case-control	0.64 (0.74, 0.96) 0 0.554	Reference	0.55 (0.28, 1.10) 73.4 0.005	Reference
Cohort	0.87 (0.73, 1.04) 68.3 0.002	0.97 (0.78, 1.21) 78.0 0.066	0.92 (0.76, 1.11)	0.71 (0.35, 1.43)
Sex				
Male	0.91 (0.79, 1.05) 7.6 0.368	Reference	0.81 (0.64, 1.02) 26.8 0.251	Reference
Female	0.64 (0.43, 0.93) 0 0.887	1.42 (0.94, 2.13) 0.35 (0.04, 3.15) – –	2.31 (0.26, 20.8)	
Risk of bias				
Low	0.85 (0.71, 1.02) 61.8 0.005	Reference	0.79 (0.58, 1.08) 0 0.637	Reference
High	0.90 (0.80, 1.02) 14.8 0.319	0.94 (0.76, 1.17) 0.68 (0.46, 1.02) 74.8 0.003	1.16 (0.70, 1.92)	
Study population				
Europe and America	0.82 (0.73, 0.92) 1.9 0.421	Reference	0.75 (0.62, 0.90) 2.3 0.402	Reference
Asia	0.93 (0.76, 1.13) 69.2 0.006	0.88 (0.70, 1.11)	– 91.3 0.001	–
PA domain				
OCC	0.79 (0.65, 0.95) 0 0.908	Reference	– 78.7 0.003	Reference
REC	0.89 (0.74, 1.06) 62.8 0.006	0.89 (0.68, 1.16) 0.80 (0.63, 1.01) 8.8 0.334	–	
Subtype				
Cardiac/EA	0.78 (0.65, 0.94) 0 0.472	Reference	0.79 (0.58, 1.08) 0 0.510	Reference
Noncardiac/ESCC	0.71 (0.54, 0.94) 60.0 0.028	1.10 (0.79, 1.53)	– 92.0 0.000	–

* GC = gastric cancer; EC = Esophageal cancer; ESCC = esophageal squamous cell carcinoma; EA = esophageal adenocarcinoma; RR = relative risk.

doi:10.1371/journal.pone.0088082.t002

Supporting Information

Figure S1 Flow diagram of systematic literature search on physical activity and the risk of esophageal or gastric cancer.

(DOCX)

Figure S2 Highest versus lowest meta-analysis of physical activity and the risk of esophageal or gastric cancer. Squares represent study-specific relative risks (RR); horizontal lines represent 95% confidence intervals (CIs); diamonds represent summary relative risks.

(DOCX)

Figure S3 Funnel plot of risk estimates from studies that investigated the associations between physical activity and the risks of gastric cancer (A) and esophageal cancer.

(DOCX)

Figure S4 Subgroup analysis of (A) study design, (B) risk of bias, (C) sex, (D) PA domain, (E) study population and (F) subtype of association between physical activity and gastric or esophageal cancer. Squares represent study-specific relative risks (RR); horizontal lines represent 95% confidence intervals (CIs); diamonds represent summary relative risks.

(ZIP)

Table S1 Results of meta-regression of included studies. (P value)

(DOCX)

Checklist S1 PRISMA 2009 Checklist.

(DOC)

Author Contributions

Conceived and designed the experiments: YC. Performed the experiments: YS CY YL. Analyzed the data: YS CY YL. Contributed reagents/materials/analysis tools: YC. Wrote the paper: YC.
References

1. Accardi R, Adelabumow C, Anderson B, Autier P, Baan R, et al. (2008) World cancer report. IARC.
2. Brenner H, Rohslicher D, Arutt V (2009) Epidemiology of Stomach Cancer. In: Verbasa M, editor. Methods in Molecular Biology: Humana Press Inc, 999 Riverview Dr, Ste 208, Totowa, NJ 07512–1165 USA. pp. 467–477.
3. Umar SB, Fleisher DE (2008) Esophageal cancer: epidemiology, pathogenesis and prevention. Nature Clinical Practice Gastroenterology & Hepatology 3: 517–526.
4. Daly JM, Karmell LH, Mench HR (1996) National Cancer Data Base report on esophageal carcinoma. Cancer 78: 1820–1828.
5. Hartgrink HH, Jansen EPM, van Grieken NCT, van de Velde CJH (2009) Gastric cancer. Lancet 374: 477–490.
6. Khushalani NI (2003) Cancer of the esophagus and stomach. Mayo Clinic Proceedings 83: 712–722.
7. Caspersen CJ, Powell KE, Christenson GM (1985) Physical activity, exercise, and cardiovascular definitions and distinctions for health-related research. Public Health Rep 100: 126–131.
8. Lee CD, Folsom AR, Blair SN (2003) Physical activity and stroke risk: a meta-analysis. Stroke 34: 2473–2481.
9. Sofi F, Capalbo A, Cesari F, Abbate R, Gensini GF (2008) Physical activity during leisure time and primary prevention of coronary heart disease: an updated meta-analysis of cohort studies. Eur J Cardiovasc Prev Rehabil 15: 247–257.
10. Sun JY, Shi L, Guo XD, Xu SF (2012) Physical activity and risk of lung cancer: a meta-analysis of prospective cohort studies. Asian Pac J Cancer Prev 13: 3143–3147.
11. Wu Y, Zhang D, Kang S (2013) Physical activity and risk of breast cancer: a meta-analysis of prospective studies. Breast Cancer Res Treat 137: 869–882.
12. Balbuena L, Casson AG (2009) Physical activity, obesity and risk for esophageal adenocarcinoma. Future Oncol 5: 1051–1063.
13. Wu Y, Zhang D, Kang S (2013) Physical activity, obesity, and risk of esophageal adenocarcinoma. Future Oncol 5: 1051–1063.
14. Wolin KY, Tuchman H (2011) Physical activity and gastrointestinal cancer prevention. Recent Results Cancer Res 186: 73–100.
15. Thornton A, Lee P (2000) Publication bias in meta-analysis: its causes and consequences. J Clin Epidemiol 53: 207–216.
16. Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis of studies of observational data. BMJ 315: 629–634.
17. Boyle T, Keegel T, Bull F, Heyworth J, Fritschi L (2012) Physical activity and risks of proximal and distal colon cancers: a systematic review and meta-analysis. J Natl Cancer Inst 104: 1548–1561.
18. Parent ME, Rousseau MC, El-Zein M, Latreille B, Desy M, et al. (2011) Occasional and recreational physical activity during adult life and the risk of cancer among men. Cancer Epidemiol 35: 151–159.
19. Vigen C, Bernstein L, Wu AH (2006) Occupational physical activity and risk of gastric cancer. Am J Ind Med 48: 554–561.
20. Leitzmann MF, Koebnick C, Freedman ND, Park Y, Ballard-Barbash R, et al. (2009) Physical activity and esophageal and gastric carcinoma in a large prospective study. Am J Prev Med 36: 112–119.
21. Umar SB, Fleischer DE (2008) Esophageal cancer: epidemiology, pathogenesis and prevention. Nature Clinical Practice Gastroenterology & Hepatology 3: 517–526.
22. Lugtregen J, Bergstrom R, Nyren O (1999) Association between body mass and adenocarcinoma of the esophagus and gastric cardia. Annals of Internal Medicine 130: 383–4.
23. Paj D, Wolters LM, Steyerberg EW, H VAND, Kusters JG, et al. (2007) Environmental risk factors in the development of adenocarcinoma of the oesophagus or gastric cardia: A cross-sectional study in a Dutch cohort. Alimentary Pharmacology and Therapeutics 26: 31–39.
24. Leitzmann MF, Koebnick C, Freedman ND, Park Y, Ballard-Barbash R, et al. (2009) Physical activity and esophageal and gastric carcinoma in a large prospective study. Am J Prev Med 36: 112–119.
25. Orsini N, Vercellino L, Lucchini F, Negri E, Franceschi S, et al. (2009) Physical activity and risk of gastric cancer in a population-based cohort study in Norway. Cancer Epidemiol Biomarkers Prev 17: 135–140.
26. Severson RK, Nomura AM, Grove JS, Stemmermann GN (1989) A prospective analysis of physical activity and cancer. Am J Epidemiol 130: 522–529.
27. Etemadi A, Golozar A, Kamangar F, Freedman ND, Shakeri R, et al. (2012) Adenocarcinomas of the esophagus and stomach. Int J Cancer 130: 351–359.
28. Pouliot S, Bouchard C, Vallerand J, Tremblay A, Lessard J, et al. (2000) Physical activity and risk of cancer in middle-aged men. Br J Cancer 85: 1311–1316.
29. Dosemeci M, Hayes RB, Vetter R, Hoover RN, Tucker M, et al. (1993) OCCUPATIONAL PHYSICAL-ACTIVITY, SOCIOECONOMIC-STATUS, AND RISKS OF 15 CANCER SITES IN TURKEY. Cancer Causes & Control 4: 313–321.
30. Wannamethee SG, Shaper AG, Walker M (2001) Physical activity and risk of cancer in middle-aged men. Br J Cancer 85: 1311–1316.
31. Severson RK, Nomura AM, Grove JS, Stemmermann GN (1989) A prospective analysis of physical activity and cancer. Am J Epidemiol 130: 522–529.
32. Severson RK, Nomura AM, Grove JS, Stemmermann GN (1989) A prospective analysis of physical activity and cancer. Am J Epidemiol 130: 522–529.
33. Wannamethee SG, Shaper AG, Walker M (2001) Physical activity and risk of cancer in middle-aged men. Br J Cancer 85: 1311–1316.
34. Inoue M, Yamamoto S, Kurahashi N, Iwasaki M, Sasazuki S, et al. (2008) Daily total physical activity level and total cancer risk in men and women: results from a large-scale population-based cohort study in Japan. Am J Epidemiol 168: 391–403.
35. John BJ, Irukulla S, Abulafi AM, Kumar D, Mendall MA (2006) Systematic review: adipose tissue, obesity and gastrointestinal diseases. Aliment Pharmacol Ther 23: 1593–1600.
36. Chen MJ, Wu DC, Lin MJ, Wu MT, Sung FC (2009) Eotoxic factors of gastric cardiac adenocarcinoma among men in Taiwan. World Journal of Gastroenterology 15: 3472–3480.
37. Bradley RL, Leon JY, Liu FF, Maratos-Flier E (2008) Voluntary exercise improves insulin sensitivity and adipose tissue inflammation in diet-induced obese mice. Am J Physiol Endocrinol Metab 295: E586–594.
38. Feinle B, Nossent JH, Marchi L, Bredel M, Joubert D, et al. (2006) Interleukin-6 blood level is associated with circulating carcinoembryonic antigen and prognosis in patients with colorectal cancer. Ann Surg Oncol 7: 133–138.