Identification of Novel Conjugative Plasmids with Multiple Copies of \textit{fosB} that Confer High-Level Fosfomycin Resistance to Vancomycin-Resistant Enterococci

Lingyan Sun1,2, Ping Zhang1,2, Tingting Qu3, Yan Chen1,2, Xiaoting Hua1,2, Keren Shi1,2 and Yunsong Yu1,2,*

1 Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China, 2 Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China, 3 State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China

To further characterize the \textit{fosB}-carrying plasmids of 19 vancomycin-resistant enterococci, the complete sequences of the \textit{fosB}- and \textit{vanA}-containing plasmids of \textit{Enterococcus faecium} (pEMA120) and \textit{E. avium} (pEA19081) were obtained by single-molecule, real-time sequencing. We found that these two plasmids are essentially identical (99.99% nucleotide sequence identity), which proved the possibility of interspecies transmission. Comparative analysis of the plasmids revealed that the backbone of pEMA120 is 99% similar to a conjugative \textit{fosB}-negative \textit{E. faecium} plasmid, pZB18. There is a \textit{traE} disrupted in the transfer region of pEMA120, in comparison to pZB18 with an intact \textit{traE}. The difference of their transfer frequencies between pEMA120 and pZB18 suggests this interruption of \textit{traE} might affect conjugative transfer. Two copies of the \textit{fosB} gene linked to a \textit{tnpA} gene, forming an \textit{IS}\textsubscript{L3}-like transposon, were found at separate locations within pEMA120, which had not been reported previously. These two \textit{fosB}-carrying transposons were confirmed to form circular intermediates by inverse PCR. The hybridization of plasmid DNA digested by \textit{BsaI}, having restriction site within the \textit{fosB} sequence, demonstrated that the presence of multiple copies of \textit{fosB} per plasmid is common. The total copy number of the \textit{fosB} gene as revealed by qRT-PCR did not correlate with fosfomycin MICs or growth rates at sub-MICs of fosfomycin in different transconjugants. From susceptibility tests, the \textit{fosB} gene, regardless of the copy number, conferred high fosfomycin MICs that ranged from 16384 to 65536 \(\mu\)g/ml. This first complete nucleotide sequence of a plasmid carrying two copies of \textit{fosB} in VRE suggests that the \textit{fosB} gene can transfer to multiple loci of plasmids by the \textit{IS}\textsubscript{L3} family transposase \textit{TnpA}, possibly in the form of circular intermediates, leading to the dissemination of high fosfomycin resistance in VRE.

Keywords: \textit{fosB}, fosfomycin resistance, vancomycin resistant enterococci, single-molecule real-time sequencing, copy number
INTRODUCTION

Nowadays, the colonization and infection of vancomycin-resistant enterococci (VRE) is a global public health concern due to the increasing dissemination of these bacteria and limited clinical treatment options (Ranotkar et al., 2014). Fosfomycin, a drug discovered in 1969 that is primarily used to treat uncomplicated urinary tract infections (Keating, 2013), has been shown to be effective against VRE (Superti et al., 2009; Descourouez et al., 2013; Tang et al., 2013). Therefore, fosfomycin has gained attention as a potential therapeutic option for treating VRE infections (Popovic et al., 2010). However, resistance to fosfomycin emerges rapidly, likely because of the high frequency at which fosfomycin-resistant mutants arise (Greenwood, 1990; Hamilton-Miller, 1992). Therefore, additional studies on fosfomycin resistance mechanisms are required to better guide clinical practices. Until now, the fosfomycin resistance enzyme FosB, which catalyzes the Mg(II)-dependent addition of L-cysteine, or bacillithiol, to the epoxide ring of fosfomycin (Thompson et al., 2014), was the only known plasmid-borne fosfomycin-resistance determinant in Enterococcus spp. (Xu et al., 2013; Qu et al., 2014). The fosB gene was reported to be located on a transferable circular intermediate (Xu et al., 2013). Additionally, the fosB gene has also been reported to be present in plasmids of Staphylococcus spp. (99% nucleotide similarity) (Zilhao and Courvalin, 1990; Fu et al., 2016) and in the chromosome of Bacillus subtilis (63% nucleotide similarity) (Cao et al., 2001). In our previous study, we characterized 18 VRE isolates that were resistant to fosfomycin (Qu et al., 2014). The plasmid-encoded fosB gene inserted into the vanA type Tn1546-like transposon, likely accounts substantially for the high fosfomycin resistance rate observed in VRE. This paper reports on the detailed plasmid environment of fosB gene by third-generation sequencing and the formation of circular fosB intermediates. We also discuss the contribution of fosB copy number on the fosfomycin MIC and bacterial growth rate at a sub-MIC level of fosfomycin in the assayed VRE strains.

MATERIALS AND METHODS

Bacterial Isolates

Enterococcus faecium A120 and 17 additional fosB-carrying, vancomycin resistant E. faecium isolates were characterized in our previous paper (Qu et al., 2014). E. avium 19081 is a clinical isolate that was collected during the same time period from fecal specimens carrying fosB and vanA. Using these isolates as donor strains, fosfomycin resistant transconjugants were obtained by filter mating experiments using E. faecium BM4105RF as the recipient strain (Qu et al., 2014).

Antimicrobial Susceptibility Testing

The MICs of fosfomycin against 19 VRE isolates and their respective E. faecium BM4105RF transconjugants were determined by the agar dilution method. E. faecalis ATCC 29212 was used as the control. The results were interpreted according to the Clinical and Laboratory Standards Institute (CLSI) 2015 guidelines (CLSI, 2015).

Conjugation Experiment

Broth mating and filter mating of E. faecium A120 were performed to get the transfer frequency of plasmid pEMA120 using E. faecium BM4105RF as the recipient strain with a donor/recipient ratio of 1:10 as previously described (Zheng et al., 2007).

Bacterial Growth at Sub-MIC Levels

Single colonies were grown at 37°C with shaking at 200 r.p.m. in 2 ml of brain heart infusion (BHI) broth. Independent overnight cultures were diluted (1:1000) and 200 µl was transferred to a 96-well plate that was incubated at 37°C. The turbidity was measured at OD600 using a BioTEK Synergy plate reader (BioTEK, Winooski, VT, United States) every 5 min for 16 h.

A preliminary experiment using isolate A120 was carried out using a fosfomycin concentration gradient from 1/128 the MIC to the MIC. The growth of the 19 transconjugants that were exposed to 1/4 the MIC of fosfomycin was measured and compared with an antibiotic-free control. Each sample was performed in triplicate.

Plasmid Isolation, BsaI Restriction Enzyme Digestion and Southern Blot Hybridization

Plasmids were isolated from the 19 transconjugants using a QIAGEN Plasmid Midi Kit (Qiagen, Germany). The manufacturer’s instructions were followed with the inclusion of the lysozyme treatment (10 mg/mL, 60 min at 37°C) prior to the lysis step with buffer P2 [200 mM NaOH, 1% SDS (w/v)].

The restriction enzyme BsaI (New England Biolabs, United States), for which a target site is present within the fosB gene, was used to digest plasmid DNA. The hybridization probe was designed to bind within the latter half of the fosB gene after BsaI digestion (Supplementary Figure S1A) and was synthesized using the primers fosB-latter-F (5′-GTG GTA TAT) and fosB-latter-R (5′-TGA GGT TTA GCC TCT TTA TAA CTC-3′).

Plasmid DNA was first digested by BsaI at 37°C in a water bath overnight. After the digested DNA was agarose gel electrophoresed for 2 h, the DNA fragments were transferred to a positively charged nylon membrane (Millipore, United States), hybridized with a DIG-labeled fosB-latter specific probe, and then was detected with a NBT/BCIP color detection kit (Roche, Germany).

Quantification of the fosB Gene by Real-Time PCR Amplification

The copy number of fosB was measured via quantitative real-time PCR (qRT-PCR). The chromosomal housekeeping gene purK was chosen as an internal control. The sequences of the fosB and purK primers used are as follows:
Q-fosB-F (5′-CTCAATCTATCTTCTAAAATCTCTG-3′), Q-fosB-R (5′-CGATTTTGAATGGTGATCTG-3′), Q-purK-F (5′-GATATCCAAGTGAGTGAGCG-3′), and Q-purK-R (5′-CTCTTAAACACACCTCCCTTC-3′).

Quantitative PCR reactions were carried out in a 10 µl reaction that contained 5 µl SYBR® Premix Ex Taq™ PCR kit (Takara Bio, Japan), 2 ng of genomic DNA as template, and 2 pmol of each primer. The Ct values of each sample was measured under appropriate PCR conditions (preheated at 95°C for 5 min; 40 amplification cycles at 95°C for 5 s, 54°C for 30 s and 72°C for 30 s) on an Applied Biosystems ViiA™ 7 Dx instrument (Applied Biosystems, United States). Data were calculated based on the 2-ΔΔCt method.

DNA Sequencing and Analysis

Single-molecule, real-time sequencing (Pacific Biosciences, United States) was carried out to complete the whole genome sequencing of *E. faecium* (GenBank accession no. AB206333) from a hospital in the United States, 2003 (Tomita et al., 2001). Plasmid-borne *fosB* in *Staphylococcus haemolyticus* and *Staphylococcus aureus* share 99.8 and 99.5% nucleotide identity with *fosB* in the plasmid of *E. faecium*, respectively. As to surrounding environment, there is a rep gene downstream *fosB* on *Staphylococcus* spp. plasmid instead of a *tnpA* gene adjacent to *fosB* on *E. faecium* plasmids.

The surrounding environment of *fosB* on pEMA120 was compared with *fosB* in other species (Figure 2) Plasmid-borne *fosB* in *Staphylococcus haemolyticus* and *Staphylococcus aureus* have high homology, which is depicted in the figure as the blue shades. In particular, plasmid pZB18 shares 99% identity at the amino acid level with the pMG1-like plasmid from *Staphylococcus aureus* which was obtained from a hospital in the United States, 2003 (Tomita et al., 2003). Plasmid-pZB18 (GenBank accession no. AB611033.1) acquired from Beijing, 2004 (Zheng et al., 2007) is a vancomycin resistance plasmid which was obtained from a clinical strain of *E. faecium* in Japan, 1998 (Ike et al., 1998). Plasmid pHTβ(GenBank accession no. AB206333) is a vancomycin resistance pMG1-like plasmid which was obtained from a hospital in the United States, 2003 (Tomita et al., 2003). Plasmid-pZB18 (GenBank accession no. AB611033.1) acquired from Beijing, 2004 (Zheng et al., 2007) is also a vancomycin resistance conjugative *E. faecium* plasmid but without conserved traA gene or traB specific for pMG1-like plasmid. The distinctive feature of pEMA120 is the structure of the *fosB* connected by *tnpA*, which does not exist in other three plasmids. In general, the backbones of the four plasmids have high homology, which is depicted in the figure as the blue shades. In particular, plasmid-pZB18 shares 99% identity and 85% query cover with pEMA120. Plasmid pMG1 and pHTβ contain highly efficient conjugative system, especially the similar oriT and transfer-related regions, which have a high degree of homology with the conjugal transfer region of pEMA120.

The surrounding environment of *fosB* on pEMA120 was compared with *fosB* in other species (Figure 2) Plasmid-borne *fosB* in *Staphylococcus haemolyticus* and *Staphylococcus aureus* share 99.8 and 99.5% nucleotide identity with *fosB* in the plasmid of *E. faecium*, respectively. As to surrounding environment, there is a rep gene downstream *fosB* on *Staphylococcus* spp. plasmid instead of a *tnpA* gene adjacent to *fosB* on *E. faecium* plasmids.

The surrounding environment of *fosB* on pEMA120 was compared with *fosB* in other species (Figure 2) Plasmid-borne *fosB* in *Staphylococcus haemolyticus* and *Staphylococcus aureus* share 99.8 and 99.5% nucleotide identity with *fosB* in the plasmid of *E. faecium*, respectively. As to surrounding environment, there is a rep gene downstream *fosB* on *Staphylococcus* spp. plasmid instead of a *tnpA* gene adjacent to *fosB* on *E. faecium* plasmids.

As shown in Figure 1, the *E. avium* plasmid pEA19081 was found to share 99.99% nucleotide sequence identity with the *E. faecium* plasmid pEMA120 after sequence comparison by BLASTN. Thus, the two plasmids are virtually identical.
containing the same two copies of fosB as well as a Tn1546 transposon.

The Effect of Interruption of traE on the Conjugative Transfer

As mentioned in above section, a transfer related gene traE which might play an important role in conjugal transfer process, was disrupted by a gene encoding RNA-directed DNA polymerase. To investigate whether this interruption could affect the conjugal transfer, we compared the transfer frequency of plasmid pEMA120 with a disrupted traE and plasmid pZB18 with an intact traE. From Supplementary Table S1, the transfer frequency of pEMA120 was distinctly lower than that of pZB18, using broth mating or filter mating.
The *fosB*-Carrying Circular Intermediate

To determine whether *fosB* gene-containing circular intermediates are present in isolate A120, an inverse PCR was performed using previously reported primers (Xu et al., 2013). As expected, a ~1 kb band was present after agarose gel electrophoresis, indicating the presence of circular intermediates. However, the sequencing electropherogram had imperfect signals, suggesting that this amplified 0.92-kb PCR product was probably a combination of two or more sequences (Supplementary Figure S2). Thus, TA-based cloning and sequencing was employed to obtain unique sequences. All sequences of PCR products that were ligated into pMD20-T vectors aligned similarly except for two regions. The first region was located 26–31 bp upstream of the *fosB* gene, showing two variants (ATTTG or TAACAT) (Supplementary Figure S2A), matching the corresponding positions of each *fosB*-carrying ISL3-like transposon within pEMA120. Another polymorphism region, 5-bp in length, was situated between the two IRs of ISL3-like transposon, i.e., the circle-junction region. Three kinds of sequences were observed, ATTTT, TATTT, or TTATC, as shown in Figure S2B. The complete *fosB*-transposon circular intermediate is 2425 or 2426 bp in length, consisting of the ISL3-like transposon and a 5-bp intervening DNA sequence (Figure 4). In addition, this *fosB*-transposon circular intermediate could also be acquired by inverse PCR in the other 18 VRE isolates. However, the circular intermediates could not be detected by southern hybridization (using the *fosB*-latter specific probe) after gel electrophoresis using the uncut or S1 nuclease digested pEMA120 plasmid (data not shown).

The *fosB* Copy Number in Other *fosB*-Containing Plasmids

Our previous study suggested each of 19 VRE isolates contained one *fosB*-carrying plasmid by performing S1 nuclease-pulsed-field gel electrophoresis (PFGE) (Qu et al., 2014). The third-generation sequence analysis showed that both pEMA120 and pEA19081 carry two copies of the *fosB* gene. To determine the *fosB* copy number in these plasmids from transconjugants of 19 VRE isolates, a special hybridization protocol after a restriction enzyme digestion was used. The principle is depicted in Supplementary Figure S1 using pEMA120 as an example on basis of its clear plasmid sequence.

As Figure 5A shown, the DNA band pattern generated by *Bsa*I digestion showed diverse restriction patterns in the plasmids from the transconjugants of 19 VRE isolates. The hybridization bands of isolate A120 in Figure 5B were well in accordance with the simulating graph of pEMA120 in Supplementary Figure S1, which proved the reliability of *Bsa*I-digestion method to explore the *fosB* copy number in a plasmid.

With regards to isolate A3, four bands were observed on the nylon membranes of isolates A67, A13, A9, B42, IA14, IB3, A157 and A92 showed a single band, suggesting that there was one *fosB* copy per plasmid. This results were verified by PCR amplification using primers (“between *vanSH*” and “*fosB*-2th”) designed to amplify an approximately 3-kb fragment surrounding each *fosB* (Supplementary Table S2). It was found that all the above isolates contained the two DNA fragments with *fosB*.

The nylon membranes of isolates A67, A13, A9, B42, IA14, IB3, A157 and A92 showed a single band, suggesting that there was one *fosB* copy per plasmid. This results were verified by PCR amplification using primers (“between *vanSH*” and “*fosB*-2th”) designed to amplify an approximately 3-kb fragment surrounding each *fosB* (Supplementary Table S2). It was found that all the above isolates contained the two DNA fragments with *fosB*.

The *fosB* Copy Number Measured by qRT-PCR

To investigate whether *fosB* copy number has any relevance to the fosfomycin MICs and bacterial growth rate at sub-MIC levels, the *fosB* copy number in every transconjugant isolate was determined by qRT-PCR. *Table 1* shows the total *fosB* copy number in every isolate, using the housekeeping gene *purK* as an internal control.
The total *fosB* copy numbers \(2^{\Delta \text{ct} (\text{fosB-purK})}\) reported in Table 1 range from 17.17 to 55.68 in the isolates with two-copies of *fosB* per plasmid (transconjugants A165, IA110, 19081, A166, 1001, A96, A155, A158, A120, and IA28). In the A3, A13, A9, A92, B42, IA14, A67, and A157 transconjugants, their total *fosB* copy number was less than 10, except isolate A9 (188.45).

The Contribution of *fosB* Copy Number to Fosfomycin MICs

The detailed fosfomycin MICs (without an upper limitation) of 19 VRE isolates and their transconjugants is shown in Table 1. From the susceptibility tests, the MICs of fosfomycin for these isolates and their transconjugants were extremely high, ranging from 16384 to 131,072 µg/ml (Table 1). The MICs of the transconjugants was discussed due to their purer genetic background. As shown in Supplementary Figure S3A, the MIC of fosfomycin did not correlate with the copy number of *fosB* (Pearson’s \(R^2\), 0.1550). For example, although the *fosB* copy number of isolate A67 and B42 were low, their MICs of fosfomycin were higher than most of the other isolates.

The Effect of *fosB* Copy Number on Bacterial Growth Rate at Sub-MIC Levels

From a preliminary analysis of isolate A120, fosfomycin concentrations of 1/4 or 1/2 the MIC notably affected the bacterial growth, including a prolonging of the lag phase and a decrease in growth rate and max biomass (data not shown). The growth of the 19 transconjugants following exposure to 1/4 MICs of fosfomycin was measured (Supplementary Table S3), but no correlation was observed between the copy number of *fosB* and growth rate, maximum optical density (OD\(_{600}\)) or lag time (Supplementary Figure S3).

DISCUSSION

Recently, a series of complete genome sequences of *Enterococcus* have been obtained by high-throughput sequencing (Lam et al., 2012; Boyd et al., 2015; McKenney et al., 2016; Peng et al., 2016). However, the complete sequence of the *fosB*-carrying *Enterococcus* plasmid has not been reported. In this study, the complete sequence of a novel *E. faecium* plasmid containing two copies of *fosB* was obtained by third-generation DNA sequencing.
Determinations of the \(\text{fosB} \) gene copy number by enzyme \(\text{BsaI} \) digestion binding hybridization. Shown is (A) agarose (1%) gel electrophoresis in 0.5 \(\times \) Tris-boric acid-EDTA buffer of \(\text{BsaI} \)-digested plasmids from the transconjugants of A92, IA14, A157, A67, A120, A13, A3, B42, and A9 stained with Gel Red and visualized under UV light, and (B) Southern blot hybridization with the \(\text{fosB} \)-latter probe. M is a 15-kb size DNA marker.

technology, with long read lengths obtained. The coexistence of a \(\text{vanA} \) transposon and a \(\text{fosB} \) gene in the same plasmid, which was primarily determined by S1-PFGE in our previous study (Qu et al., 2014), was verified by third-generation sequencing in this report. Furthermore, the fact that \(\text{E. avium} \) 19081 contained a similar \(\text{fosB} \)- and \(\text{vanA} \)-carrying plasmid proved a possibility of interspecies transmission, which could accelerate the dissemination of fosfomycin and vancomycin resistance. The comparison of pEMA120 and three related \(\text{E. faecium} \) plasmids revealed that their plasmid backbones are relatively conserved. In particular, the \(\text{fosB} \)-negative \(\text{E. faecium} \) plasmid pZB18 has a 99% sequence identity with the backbone of pEMA120. It suggested that the two \(\text{fosB} \) genes along with \(\text{tnpA} \) and some other sequences, such as \(\text{IS1485} \) and a gene encoding a retron-type RNA-directed DNA polymerase, were incorporated into plasmid pZB18 to generate pEMA120. Plasmid pZB18 may have evolved from earlier conjugative plasmids, such as pMG1 (Japan, 1998) and pHTβ (United States, 2003) reflecting a stepwise evolutionary process through several recombination events.

Conjugative transfer is an important means of horizontal spread of antibiotic resistance and an important driver in evolution (Frost et al., 2005; Thomas and Nielsen, 2005; Goessweiner-Mohr et al., 2014). The plasmid pEMA120 was tested to be a conjugative plasmid that can transfer from \(\text{E. faecium} \) A120 to the recipient strain \(\text{E. faecium} \) BM4105RF, using filter mating at a rate of 3.4 \(\times \) 10\(^{-4}\)/donor CFU. The \(\text{tra} \) region of plasmid pEMA120, of highly homology with that of pZB18, has \(\text{traB} \), \(\text{traA} \), \(\text{traC} \), \(\text{traI} \), \(\text{traG/D} \), \(\text{traE} \) and other transfer related genes. It is noteworthy that the gene encoding \(\text{TraE} \) of plasmid pEMA120 was disrupted, compared with that of plasmid pZB18. The plasmid transfer rate of pZB18 with an intact \(\text{traE} \) was 7.0 \(\times \) 10\(^{-1}\) (filter mating) as provided by Zheng et al. (2007), obviously higher than that of plasmid pEMA120. It suggests that the interruption of \(\text{traE} \) might affect conjugative transfer and would limit the dissemination of this \(\text{fosB} \)- and

TABLE 1

The \(\text{fosB} \) copy number and fosfomycin MICs without limitation of 19 vancomycin-resistant enterococci isolates.

Strain no.	Copy number of \(\text{fosB} \) gene per plasmid	Total copy number of \(\text{fosB} \) gene \([2^{-\Delta\text{ct}(\text{fosB-purK})}]\)	Fosfomycin MICs (µg/ml)
Clinical strains			
IA14	1	4.33 ± 1.77	32768
A157	1	5.23 ± 2.14	32768
A92	1	7.64 ± 0.24	65536
A13	1	1.50 ± 0.23	32768
A67	1	4.06 ± 0.13	32768
B42	1	9.06 ± 3.92	65536
A9	1	188.45 ± 8.39	65536
A120	2	27.44 ± 9.37	65536
19081	2	19.86 ± 3.73	65536
A158	2	25.25 ± 10.97	65536
A96	2	19.52 ± 8.38	65536
IB3	2	17.17 ± 4.36	65536
A165	2	32.70 ± 4.96	65536
A166	2	27.02 ± 4.75	65536
A155	2	24.94 ± 10.65	65536
1001	2	29.50 ± 5.52	313072a
IA110	2	34.83 ± 7.14	313072a
IA28	2	55.68 ± 8.98	65536
A3	UND\(^b\)	7.59 ± 2.38	65536

\(^a\)The MIC of 131072 µg/ml was a presumptive value based on the fact that there were some colonies grown on the agar of fosfomycin concentration 65536 µg/ml as the maximum concentration. \(^b\)Undetermined.
vanA-carrying plasmid to some extent compared to plasmid pZB18. However, it cannot be ignored that the transfer rate of 3.4×10^{-4} of pEMA120 still confer high capability of fosB- and vanA co-transmission.

The fosB gene in the *E. faecium* plasmid has a close phylogenetic relationship with that of *Staphylococcus*, with more than a 99% shared sequence identity. However, the sequence surrounding the fosB gene is diverse among different genera. Instead of the rep genes that are adjacent to fosB in staphylococcal plasmids (Takeuchi et al., 2005; Fu et al., 2016), there is a trpA gene (an ISL3-like transposase-encoding gene) downstream of fosB that forms an ISL3-like transposon in enterococcus plasmids, as previously reported (Chen et al., 2014; Qu et al., 2014). This ISL3-like transposon is a 2,516 or 2517-bp element that is flanked by two perfect 25-bp inverse repeats (IRs), which generates two AT-rich 8-bp target duplications upon insertion. ISL3-family elements have been reported to be involved in gene inactivation or transcriptional activation of silent genes in *Pseudomonas* strains (Kallastu et al., 1998; Christie-Oleza et al., 2008). Recently, Sivertsen et al. (2016) demonstrated that an ISL3-like element insertion upstream of vanHAX mediated a silenced VanA phenotype in enterococci. However, in our study, a similar insertion of the fosB-carrying ISL3-like transposon between vanRS and vanHAX did not cause the transcriptional inactivation of vanA.

In addition to the fosB gene within plasmids, the formation of fosB-carrying circular intermediates that were 2425 or 2426 bp in length was confirmed by inverse PCR in our isolates, as was reported by Xu et al. (2013). Interestingly, two types of circular intermediates with slight sequence differences (26–31 bp) upstream of the fosB gene were observed in the genome of isolate A120, corresponding to the two fosB carrying transposons within plasmid pEMA120. This suggested the two fosB-carrying transposons are not copies but likely result from two separate insertion events. In addition, the junction region of the loop exhibited sequence diversity in a 5-bp DNA sequence between the two IRs of the ISL3-like transposon. The 5-bp intervening DNA sequence was likely derived from the IS flanking regions (Christie-Oleza et al., 2009).

The third generation sequencing has been shown to have advantages in finding multi-copy genes (Guo et al., 2016) because of its genome-wide sequencing scale and high accuracy (McCarthy, 2010). However, the cost of single-molecule, real-time sequencing is high at present. Restriction enzyme digestion and Southern blotting can be a good supplementary tool to explore the copy number of a certain gene in a collection of strains. Here, the hybridization results revealed that the presence of multiple copies of fosB per plasmid was a frequent occurrence in VRE isolates (12 of 19). But this method used in our study had a limitation — if the digested fragments of different fosB copies were in similar sizes, it would be difficult to separate them clearly by agarose gel electrophoresis and distinguish them by Southern blotting. Therefore we also performed quantitative PCR to determine the total copy number of fosB in an isolate. It revealed that the total copy number of fosB in isolates carrying two copies of fosB per plasmid was more than double that of isolates carrying a single copy of fosB per plasmid, possibly due to the higher frequency of fosB-carrying circle formation in the former, as was reported previously (Kallastu et al., 1998). The variable total fosB copy number in different isolates measured by qRT-PCR might be the result of the variety of three factors: fosB copy number per plasmid, plasmid copy number, and probably the amount of fosB-carrying circular intermediates. This complicated existence of fosB could explain why isolate A9 with only one copy of fosB per plasmid has a huge total fosB copy number while A3 is the opposite. Thus, multiple research tools, such as whole-genome sequencing, Southern blotting and quantitative PCR, should be conducted to confirm the distribution and copies of fosB gene in enterococci.

The copy number of some resistance genes has been reported to affect the MICs of the corresponding antibiotics (Bertini et al., 2007). In our study, however, no correlation between the fosB copy number and the fosfomycin MICs was observed. Of note, the fosfomycin MICs observed in this study ranged from 64 to 512 times of 256 µg/ml (the breakpoint of MIC of fosfomycin resistant *Enterococcus*), far exceeding the normal clinical theoretical dose as well as the maximum serum drug concentration (C_{max}) used for intravenous fosfomycin (606 mg/l) (Roussos et al., 2009). In this case, the influence of the fosB copy number on fosfomycin MICs may have minimal practical significance but may be a theoretical reference. However, it is certain that the plasmid-encoded fosB gene, even a single copy, can confer high levels of fosfomycin resistance in enterococci. Subinhibitory concentrations of fosfomycin tended to affect the growth of the bacteria by increasing the lag period and decreasing the growth rate and maximum biomass in our study. However, the copy number of fosB had little correlation with the variance of bacterial growth rate at sub-MIC levels of fosfomycin in our study. That is to say, the increase in fosB copy number did not necessarily help bacterial growth at sub-MIC levels of fosfomycin.

CONCLUSION

A novel plasmid with two copies of the fosB gene in VRE was first reported in this study. The transfer region and comparative analysis of closely related plasmids suggested that pEMA120 is a pZB18-like conjugative plasmid that has undergone a series of evolutionary changes. The identification of a similar plasmid in *E. avium* proved the possibility of inter-species dissemination of the fosfomycin resistance. The multiple copies of the fosB gene in plasmids is common in our VRE isolates. However, plasmid-borne fosB, whether single- or multi-copy, can confer a high level fosfomycin resistance. Nevertheless, the fosB ISL3-like transposon, which can translocate to multiple loci in the plasmid, possibly in the form of circular intermediates, may accelerate the dissemination of fosfomycin resistance in VRE.

AUTHOR CONTRIBUTIONS

Conceived and designed the experiments: YY, YC, TQ, and LS; Performed the experiments: LS, PZ, and KS; Analyzed the data: XH and LS; Wrote the manuscript: YY, LS, TQ, YC, and PZ; All authors read and approved the final manuscript.
Superti, S., Dias, C. A., and d’Azevedo, P. A. (2009). In vitro fosfomycin activity in vancomycin-resistant Enterococcus faecalis. Braz. J. Infect. Dis. 13, 123–124. doi: 10.1590/S1413-86702009000200010

Takeuchi, F., Watanabe, S., Baba, T., Yuzawa, H., Ito, T., Morimoto, Y., et al. (2005). Whole-genome sequencing of Staphylococcus haemolyticus uncovers the extreme plasticity of its genome and the evolution of human-colonizing staphylococcal species. J. Bacteriol. 187, 7292–7308. doi: 10.1128/JB.187.21.7292-7308.2005

Tang, H. J., Chen, C. C., Zhang, C. C., Su, B. A., Li, C. M., Weng, T. C., et al. (2013). In vitro efficacy of fosfomycin-based combinations against clinical vancomycin-resistant Enterococcus isolates. Diagn. Microbiol. Infect. Dis. 77, 254–257. doi: 10.1016/j.diagmicrobio.2013.07.012

Tanimoto, K., and Ike, Y. (2008). Complete nucleotide sequencing and analysis of the 65-kb highly conjugative Enterococcus faecium plasmid pMG1: identification of the transfer-related region and the minimum region required for replication. FEMS Microbiol. Lett. 288, 186–195. doi: 10.1111/j.1574-6968.2008.01342.x

Thomas, C. M., and Nielsen, K. M. (2005). Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat. Rev. Microbiol. 3, 711–721. doi: 10.1038/nrmicro1234

Thompson, M. K., Keithly, M. E., Goodman, M. C., Hammer, N. D., Cook, P. D., Jagessar, K. L., et al. (2014). Structure and function of the genomically encoded fosfomycin resistance enzyme, FosB, from Staphylococcus aureus. Biochemistry 53, 735–765. doi: 10.1021/bi4015852

Tomita, H., Tanimoto, K., Hayakawa, S., Morinaga, K., Ezaki, K., Oshima, H., et al. (2003). Highly conjugative pMG1-Like plasmids carrying Tn1546-Like transposons that encode vancomycin resistance in Enterococcus faecium. J. Bacteriol. 185, 7024–7028. doi: 10.1128/jb.185.23.7024-7028.2003

Xu, X., Chen, C., Lin, D., Guo, Q., Hu, F., Zhu, D., et al. (2013). The fosfomycin resistance gene fosB3 is located on a transferable, extrachromosomal circular intermediate in clinical Enterococcus faecium isolates. PLoS ONE 8:e78106. doi: 10.1371/journal.pone.0078106

Zheng, B., Tomita, H., Xiao, Y. H., Wang, S., Li, Y., and Ike, Y. (2007). Molecular characterization of vancomycin-resistant Enterococcus faecium isolates from mainland China. J. Clin. Microbiol. 45, 2813–2818. doi: 10.1128/JCM.00457-07

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2017 Sun, Zhang, Qu, Chen, Hua, Shi and Yu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.