Evaluation of ferritin level in COVID-19 patients and its inflammatory response

Jing Chen1 · Zheng-Xin He1 · Fun-kun Wang1

Received: 11 July 2021 / Accepted: 24 September 2021 © King Abdulaziz City for Science and Technology 2021

Abstract
The importance of ferritin as an inflammatory marker is well recognized. However, it is unknown whether this differs between Covid-19 and non-Covid-19 patients. The blood levels of ferritin, white blood cells (WBC), C-reactive protein (CRP), and lactate dehydrogenase may all be measured to check whether there is a difference. The researchers want to see if the inflammatory process changes between these two kinds (LDH). Methodology: Blood samples were collected from 119 COVID-19 patients in the hospital and 50 healthy persons. Corona virus was discovered when a nasopharyngeal swab was collected and tested using the RT-PCR technique. Ferritin, LDH, WBC, and CRP were also tested using Min Vidus, AccEnT 200, Ruby system, and Latx in that sequence. The study revealed that COVID-19 patients had higher levels of ferritin, WBC, CRP, and LDH in their blood than healthy people, with values of 539.08 ng/mL, 44.7109/L, 22.95 mg/L, and 403.95 U/L for COVID-19 patients versus 77.103 ng/mL, 4.9.4109/L, 6.53 mg/L, and 171.56 U/L for healthy people. According to the existing data, males are more likely to be infected with COVID-19 (81%) than females (32%), and females had greater ferritin, CRP, WBC, and LDH levels than males. Because they are related to an optimum test for predicting COVID-19 infection, the recommended cut-off values for ferritin, WBC, CRP, and LDH are 109.8 ng/mL, 14.9109/L, 10.15 mg/L, and 229.33 U/L, respectively. Finally, an increase in ferritin levels in the inflammatory response to COVID-19 is linked to an increase in inflammatory markers including CRP, WBC, and LDH, which may assist in the diagnosis of COVID-19 infection.

Keywords COVID-19 · Ferritin · CRP · WBC · LDH · Inflammatory response

Introduction
Coronavirus disease 19 (COVID-19) is a multisystemic disorder. The majority of COVID-19 patients, according to clinical data and statistics from the literature, have an abnormal inflammatory response to the viral infection, which leads to multi-organ failure and death (He et al. 2020; Wang et al. 2020b). Clinical symptoms in COVID-19 patients have been linked to a condition described as a “cytokine storm” (Tisoncik et al. 2012). As a result, when the host’s immune response to the virus is inadequate, the main response against the infection develops. To start the process, COVID-19 penetrates cells and binds with surface receptors (angiotensin-converting enzyme 2 receptor—ACE2-) (Guan et al. 2020; Wang et al. 2020b). The bulk of these receptors, located in upper respiratory epithelial type 2 cells, deliver damage-associated chemicals and activate the innate immune system (Xu et al. 2020; Cao 2020). Epithelial and endothelial cells, as well as macrophages, are then activated with the aid of monocytes and T cells, releasing IL-6, IP-10 (interferon gamma-induced protein-10), MIG chemokine, and monocyte chemotactic protein-1 mediators and causing further inflammation. According to a recent study, iron metabolism may fluctuate drastically, and that these variations can be used to predict death in critical care patients. In COVID-19 patients, serum ferritin has recently been shown to be a predictor of death (Chen et al. 2020a; Spiezia et al. 2020; García 2020). As a result, we decided to compare ferritin levels in hospitalized COVID-19 patients with acute respiratory syndrome admitted in the Emergency Department versus non-COVID-19 patients to see if serum ferritin might be used as an inflammatory marker. Early detection of COVID-19 patients with poor prognostic features might
be quite useful in deciding the treatment strategy (Zhang et al. 2020; Martinez-Outschoorn et al. 2011), preventing catastrophic effects and death. Inflammatory markers such as white blood cell count, lactate dehydrogenase, C-reactive protein, fibrinogen, and d-dimer are commonly employed in clinical practice to monitor sepsis progression (Yuan et al. 2020; Nienhold et al. 2020; Tan et al. 2020; Poggiali et al. 2020). In adult COVID-19 patients, white blood cell, lymphocyte, and cytokine levels can be used as important immune-inflammatory indicators (Faroogh et al. 2021b; Gao et al. 2020). Lymphocytes and their subtypes are essential for the immune system's proper functioning. Viral infections, like other infectious and immunological diseases, can cause lymphocyte and subgroup dysregulation (Abosasooda et al. 2021; Chan et al. 2004).

Lactate dehydrogenase is an enzyme that converts lactate to pyruvate and so contributes to energy production. It can be found in virtually every cell in the body, with the heart, liver, lungs, muscles, kidneys, and blood cells having the greatest concentrations. LDH is an inflammatory marker that may be used to determine if tissue damage is acute or persistent (Holmes and Goldberg 2009; Moghadasi et al. 2021). LDH levels have been reported to rise after acute and severe lung injury, and higher LDH levels have been identified in several interstitial lung infections (Shi and Pinto 2014). CRP is a good indicator of bodily inflammation. CRP is a liver protein whose transcription is influenced by the cytokines IL-6 and IL-1 (Black et al. 2004). Iron metabolism has been linked to several pathogenic disease processes, including infections and a number of hematological and immunological disorders (Black et al. 2004). Despite the fact that ferritin is classified as an acute-phase protein, nothing is known about its involvement in monitoring inflammation, therefore, it is rarely employed for clinical evaluation. Despite the absence of a clear interpretation, iron metabolism is becoming more important in COVID-19 infections, and our data corroborate this.

Patients and methods

Study design and samples collection

Blood samples were obtained from 119 hospitalized COVID-19 patients at one hospital in China, from February 22, 2020, to June 23, 2020, as well as 50 healthy persons as a control group. After gaining consent from all participants, blood samples were taken and data were gathered. The questionnaire asked for participant's (both patient and the healthy control) name, age, and gender. Furthermore, the study followed the hospital's ethics (Alhayani and Ilhan 2021; Alhayani et al. 2021; Zhang et al. 2014; Widjaja et al. 2021).

Laboratory tests

A nasopharyngeal swab was used to identify the presence of Coronavirus in the Virology and Immunology Laboratory at the hospital, and the virus was examined using the RT-PCR method. Medical examination and X-rays were also performed to track the progress of the patient's health and determine the severity of the illness (Jalil et al. 2021). In addition, LDH, WBC, and CRP were measured in the hematology lab utilizing Min Vidus, AccENT 200 (Kaplan and Meier-Kriesche 2002; Patschan et al. 2006; Failed 2020), Ruby system, and Latx, respectively.

Statistical analysis

Results with a probability value less than 0.05 were deemed statistically significant. The analysis was performed using Statistics Package for Social Sciences version 20 (SPSS20) computer program and Microsoft Excel 2010.

Results

The current study included blood samples of 119 patients infected with the Coronavirus. All the patients were aged between 19 and 85 years, with a mean age of 51.36 ± 7.83 years. All these patients were clinically diagnosed by an RT-PCR examination. The control group included 50 uninfected healthy individuals their ages ranged between 18 and 86 years, with a mean age of 49.88 ± 9.11 years. No significant differences were reported when comparing the ages and genders of patients with healthy people, as in Table 1. On the other hand, the results of the current study showed that the number of COVID-19-infected males 81(68%) is more than COVID-19-infected females 38(32%).

The results of the current study showed a high level of ferritin, WBC, CRP, and LDH in the blood of individuals infected with the Coronavirus (539.08 ng/ml, 44.7 × 10^9/L, 22.95 mg/L, and 403.95 U/L, respectively) compared to the healthy group (77.103 ng/mL, 4.9.4 × 10^9/L, 6.53 mg/L, and 171.56 U/L, respectively). Moreover, this difference was found to be statistically significant (p = 0.002, 0.0018, 0.20, 0.025, respectively) as in Table 2.

On the other hand, the serum ferritin, blood WBC, and LDH showed a significant increase (p = 0.0322, 0.048 and 0.0379) among females (598.74 ng/mL, 47.9 × 10^9/L and 468.51 U/L, respectively) compared to males (511.21 ng/mL, 35.3 × 10^9/L and 373.66 U/L, respectively) except for the CRP appeared with a close concentration in both sexes.
(23.06 mg/L and 21.69 mg/L, respectively) with a small increase in females, which was not accompanied by statistical differences ($p = 0.371$) as in Table 3.

As shown in Table 4, the optimum cut-off values for serum ferritin, WBC, CRP, and LDH are ≥ 109.8 ng/mL, $\geq 14.9 \times 10^9$/L, ≥ 10.15 mg/L, and ≥ 229.33 U/L, respectively. Moreover, increased values were associated with a perfect test for predicting COVID-19 infection so positive serum ferritin, WBC, CRP, and LDH at these cut-off values are 100% sensitive and specific and can establish a possible diagnosis of COVID-19 infection with 100% confidence. At the same time, testing negative (blood ferritin, WBC, CRP and LDH are < 109.8 ng/mL, $< 14.9 \times 10^9$/L, < 10.15 mg/L and < 229.33 U/L, respectively) can exclude a possible diagnosis of Covid-19 infection with 100% confidence.

To determine the pathological course of ferritin and its relationship to the studied inflammatory indicators, a linear Pearson correlation was conducted, which showed a strong positive linear correlation between ferritin and CRP ($r = 0.601$, $p < 0.0001$) while the relationship between ferritin and WBC was a linear moderate positive relationship with significant differences ($r = 0.541$, $p < 0.0001$), while the relationship between ferritin and LDH was linear positive ($r = 0.407$, $p < 0.0001$) but weaker than CRP and WBC as shown in Table 5.

Discussion

Increasing evidence suggests that older age and male gender are important variables linked with a considerably higher risk of COVID-19-related incidents and mortality (Richardson et al. 2020; Onder et al. 2020; Guan et al. 2020). The present study found that males are more likely to be...
infected with the Coronavirus and that the number of deaths increases with age, which is consistent with numerous previous studies from other nations. In the Lombardy area of Italy, 82% of the 1591 patients admitted to ICU were male (Grasselli et al. 2020). Several other variables have been proposed to explain the gender discrepancy in COVID-19, including smoking and drinking habits, social and psychological characteristics, and the comorbidity profile of the sexes (Wenham et al. 2020). An inflammatory process involving acute-phase response is characterized by a set of physiological and metabolic changes that occur shortly after tissue damage (Lucena et al. 2020). The change in the quantities of different plasma proteins, known as “acute-phase proteins,” is one of the many systemic symptoms of this acute-phase response (Lagadinou et al. 2020). Ferritin, C-reactive protein, amyloid material serum A, haptoglobin, fibrinogen, and LDH are the most commonly used markers in clinical practice (Lagadinou et al. 2020). Although serum ferritin has long been studied as a biomarker of iron metabolism (Faroogh et al. 2021; Sajjad et al. 2021), it has recently gained prominence as a biomarker for inflammation in the context of COVID-19 development, as demonstrated by the current work and previous research in this field (Kell and Pretorius 2014; Cheung et al. 2020). As a result, a connection between ferritin and CRP, WBC, and LDH was identified in the current study. Ferritin is an acute-phase protein that is commonly elevated in inflammatory responses of various kinds (Henry et al. 2019).

The initial examination includes a complete blood count, ferritin, CRP, LDH, liver function tests, and other tests to detect laboratory abnormalities most commonly linked with cytokine storm syndromes. The majority of healthcare institutions perform these tests and hence they are readily available in every health care setting. Furthermore, as Kell pointed out in 2014, ferritin can be a direct indication of cellular damage, especially when levels exceed 600 ng/mL (Kell and Pretorius 2014; Cheung et al. 2020; Banchini et al. 2021), indicating a link between organ damage and ferritin production. When this process becomes too vigorous, it results in cell death, known as ferroptosis. Acute respiratory distress syndrome is caused by this pneumonia, which is similar to COVID pneumonia (Sarjito et al. 2021) (ARDS). These findings suggest that the typical inflammatory process begins with SRIS-SEPSIS and then impacts iron metabolism. Iron deficiency, on the other hand, is the first sign in COVID patients, followed by SIRS and perhaps severe sepsis.

Ferritin may also be used as an indirect marker to determine if surgical patients with a negative SARS-CoV-2 swab were infected with COVID during their hospitalization, as well as an indicator of severe sepsis (Alunno et al. 2020; Colafrancesco et al. 2019; Perricone et al. 2020). The number of white blood cells, as well as CRP and LDH levels, were all high in the blood samples of COVID-19 patients, especially in men. According to the current study, it was reported that in COVID-19 patients a high CRP concentration can be found. However, the concentration of WBC and LDH differed. The difference in inflammatory markers between males and females infected with COVID-19 might be due to hormonal changes linked to pregnancy and the menstrual cycle (Ruscitti and Giacomelli 2020; Bataille et al. 2020; Zhou et al. 2020a). The liver produces large amounts of acute-phase proteins (APPs), such as CRP, in response to infections (Khalil and Al-Humadi 2020; Kamal et al. 2019).

Acute inflammatory protein (Sproston and Ashworth 2018) is a very sensitive biomarker for inflammation, tissue damage, and infection. The intensity of inflammation has been associated with CRP levels (Rainer et al. 2009). CRP activates the complement system, which stimulates phagocytosis (Gershov et al. 2000). In other words, CRP attaches to bacteria and helps phagocytosis to remove them (Povoa et al. 2009). The non-severe and severe COVID groups had no statistically significant difference in CRP levels in the Chen et al. trial, however, the severe group’s mean CRP level was greater than the non-severe group (Chen et al. 2020b). It was reported previously that certain patients with COVID-19 had increased white blood cell and neutrophil counts, as well as a decreased lymphocyte count. Moreover, it was also reported that the neutrophil-to-lymphocyte ratio can be utilized as a biomarker to predict how the infection will progress. Other studies, on the other hand, claim that the specific roles and subtypes of white blood cells in severe COVID-19 remain unclear (Guan et al. 2020; Zhou et al. 2020b). The researchers added that the frequency of different cell types might be influenced by several factors, including age, gender, sickness, and medications.

Table 5	Linear correlation between ferritin and studied inflammatory parameters			
Inflammatory parameters	**Inflammatory parameters range**	**Ferritin range (ng/mL)**	**Pearson correlation coefficient (r)**	**p value**
CRP	5–35 mg/L	20–2000	0.601	<0.0001*
LDH	92–1240 U/L	20–2000	0.407	<0.0001*
WBC	10 × 10^9/L–77 × 10^9/L	20–2000	0.541	<0.0001*

*Significant association (p < 0.05)
According to research (Mao et al. 2020; Saleh et al. 2020), White WBC count and peripheral blood lymphocytes are normal or slightly decreased in the early stages of COVID-19 infection, when patients have no symptoms, but these markers may change as the disease progresses. In a study of 140 hospitalized patients diagnosed with COVID-19 based on CT scan results, Zhang et al. found that the leucocyte count was within normal limits in 68.1% of patients diagnosed with COVID-19, which is increased in 12.3% of patients, and decreased in 19.6% of patients.

Increased LDH level indicated that multiple organ damage may have a bigger role in deciding clinical outcomes in patients with COVID-19. Cytokines and LDH production can induce tissue damage, which can lead to serious infections (Jalil et al. 2020). Patients with severe COVID-19 infections can expect to produce more LDH into the blood since LDH is present in lung tissue (isozyme 3), as the disease is characterized by a severe kind of interstitial pneumonia that generally leads to acute respiratory distress syndrome. However, the contribution of different LDH isoenzymes to the observed LDH rise in COVID-19 has yet to be established. Thrombotic microangiopathy, which is associated with renal failure and heart injury and may be caused by COVID-19 infection, also has elevated LDH levels (Kwekha-Rashid et al. 2021; Zhang et al. 2020; Martinez-Outschoorn et al. 2011).

The small number of patients enrolled, and the lower incidence of which was primarily abnormal serum ferritin tests in the early period is one of the major shortcomings of this study. Moreover, the retrospective nature of the study, which needs a bigger analysis to reveal current results is another limitation of the present study.

Conclusions and recommendations

The current study showed that most of the COVID-19-infected patients in the intensive care unit were males, and laboratory tests showed an elevated serum level of ferritin, which was accompanied by a high percentage of WBC, CRP, and LDH especially in females. The optimum cut-off values for serum ferritin, WBC, CRP, and LDH are ≥ 109.8 ng/ml, ≥1.7 × 109/L, ≥ 10.15 mg/L, and ≥ 229.33 U/L, respectively, and can be included as a possible diagnosis of COVID-19 infection with 100% confidence, and these levels in COVID-19 patients should be closely monitored for any signs of disease progression or decompensation.

Funding This study was self-funded.

Declarations

Conflict of interest All authors declare and have no conflict of interest.

References

Abosaooda M et al (2021) Role of vitamin C in the protection of the gum and implants in the human body: theoretical and experimental studies. Int J Corrosion Scale Inhib. https://doi.org/10.17675/2305-6894-2021-10-3-32
Alhayani BSA, Ilhan H (2021) Visual sensor intelligent module based image transmission in industrial manufacturing for monitoring and manipulation problems. Intell Manuf 62:597–610. https://doi.org/10.1007/s11277-021-0865-4
Alhayani B, Abbas ST, Mohamed M et al (2021) Intelligent secured two-way image transmission using Corvus corone module over WSN. Wireless Pers Commun. https://doi.org/10.1007/s11277-021-0865-4
Banchini F, Cattaneo GM, Angelli P (2021) Serum ferritin levels in inflammatory diseases: a retrospective comparative analysis between COVID-19 and emergency surgical non-COVID-19 patients. World J Emerg Surg 16:9
Bataille S, Pedinelli N, Bergounioux JP (2020) Could ferritin help the screening for COVID-19 in hemodialysis patients? Kidney Int 90(2):223–236
Black S, Fushner I, Samols D (2004) C-reactive protein. J Biol Chem 279(4):48487–48490
Cao X (2020) COVID-19: immunopathology and its implications for therapy. Nat Rev Immunol 20:269–270
Chan MH, Wong VW, Wong CK, Chan PK et al (2004) Serum LDH isoenzyme, and blood lymphocyte subsets as prognostic indicators for the severe acute respiratory syndrome. J Intern Med 255(4):512–518
Chen G, Wu D, Guo W, Cao Y et al (2020a) Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Inves 130(5):2620–2629
Chen L, Liu HG, Liu W, Liu J, Liu K, Shang J (2020b) Analysis of clinical features of 29 patients with 2019 novel coronavirus pneumonia. Zhonghua Jie He He Hu Xi Za Zhi 43(3):203–208 (In Chinese)
Cheung KS, Hung IFN, Chan PYY, Lung KC et al (2020) Gastrointestinal manifestations of SARS-CoV-2 infection and virus load in fecal samples from the Hong Kong cohort and systematic review and meta-analysis. Gastroenterology 159(1):81–95
Colafrancesco S, Alessandri C, Conti F, Priori R (2020) COVID-19 gone bad: a new character in the spectrum of the hyperferritinemic syndrome? Autoimmun Rev 19(7):102573
de Lucena TM, da Silva SAF, de Lima BR, de Albuquerque Borborema ME et al (2020) Silva mechanism of inflammatory response in associated comorbidities in COVID-19 diabetes. Metab Syndr 14:597–600
Farrogh M, Rahman HS, Al-Obaidi ZMJ, Jalil AT, Abdelhasset WK, Sukstavan W, Dorofeev AE, Shomali N, Chartrand MS, Pathak Y, Hassanzadeh A, Baradaran B, Ahmadi M, Saeedi H, Tahmasebi S, Jarahian M (2021a) Novel CAR T therapy is a ray of hope in the treatment of seriously ill AML patients. Stem Cell Res Ther. https://doi.org/10.1186/s13287-021-02420-8
Farrogh M, Abdul-Rasheed OF, Rahman HS, Jalil AT, Yumashev AV, Hassanzadeh A, Yazdanifar M, Chartrand RMMS, Ahmadi M, Cid-Arreguid A, Jarahian M (2021b) CAR-NK cell in cancer immunotherapy: A promising frontier. Cancer Sci 112(9):3427–3436. https://doi.org/10.1111/cas.14993
Gao Y, Li T, Han M, Li X et al (2020) Diagnostic utility of clinical laboratory data determinations for patients with the severe COVID-19. J Med Virol 92(7):791–796

García LF (2020) Immune response, inflammation, and the clinical spectrum of COVID-19. Front Immunol 11:1441

Gershov D, Kim S, Brot N, Elkon KB (2000) C-reactive protein binds to apoptotic cells, protects the cells from an assembly of the terminal complement components, and sustains an antiinflammatory innate immune response. J Exp Med 192(9):1353–1364

Grasselli G, Zangrillo A, Zarrella A et al (2020) Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy region. Italy JAMA 323(16):1574–1581

Guo WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX (2020) Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 382(18):1708–1720

He R, Lu Z, Zhang L, Fan T et al (2020) The clinical course and its correlated immune status in COVID-19 pneumonia. J Clin Virol 127:104361

Henry BM, de Oliveira MH, Benoît S, Plebani M, Lippi G (2020) Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): a meta-analysis. Clin Chem Lab Med 2020:1021–1028

Holmes RS, Goldberg E (2009) Computational analyses of mammalian lactate dehydrogenases: human, mouse, opossum and platypus LDHs. Comput Biol Chem 33(5):379–385

Jalil AT, Dilly SH, Karevskiy A, Najah N (2020) Viral hepatitis in Dhi-Qar Province: demographics and hematological characteristics of patients. Int J Pharmaceut Res. https://doi.org/10.31838/ijpr/2020.12.01.326

Jalil AT, Kadhum WR, Khan MUF, Karevsky A, Hanan ZK, Sukatana W et al (2021) Cancer stages and demographic study of HPV16 in gene L2 isolated from cervical cancer in Dhi-Qar province, Iraq. Appl Nanosci. https://doi.org/10.1007/s13204-021-01947-9

Kamal EM, Abd El-Hakeem MA, El Sayed AM, Ahmed M (2019) Validity of C-reactive protein and procalcitonin in the prediction of bacterial infection in patients with liver cirrhosis. Minia J Med Res 30(3):124–132

Kaplan B, Meier-Kriesche HU (2002) Death after graft loss: an important late study endpoint in kidney transplantation. Am J Transplant 2(10):970–974

Kell DB, Pretorius E (2014) Serum ferritin is an important inflammatory disease marker, as it is mainly a leakage product from damaged cells. Metallomics 2014:748–773

Khalil RH, Al-Humadi N (2020) Types of acute phase reactants and their importance in vaccination. Jomed Top 12(4):143–152

Kwewa-Rashid AS, Abduljabbar HN, Alhayani B (2021) Coronavirus disease 2019 (COVID-19) trends—clinical characteristics, risk factors, and outcomes. Nephrol Dial Transplant 26(1):1549–1554

Lagadinou M, Salomou EE, Zareifopoulos N, Marangos M et al (2020) Manifestations and correlations associated with severe illness and mortality in COVID-19 patients. Clin Chim Acta 509:1–78

Lopian J, Hoche A, Ouladsmane M (2021) CFD-based simulation to reduce greenhouse gas emissions from industrial plants. Int J Chem Reactor Eng. https://doi.org/10.1515/ijcre-2021-0063

Mao R, Qin H, Gu S, Tan JY, Li XH, Liang J (2020) Manifestations and prognosis of gastrointestinal and liver involvement in patients with COVID-19: a systematic review and meta-analysis. Lancet Gastroenterol Liver 5:667–678

Mogi J, Onischoum H, Prisco M, Ertel A (2011) Ketones and lactate increase cancer cell “stemness”, driving recurrence, metastasis and poor clinical outcome in breast cancer: achieving personalized medicine via metabolo-genomics. Cell Cycle 10(8):1271–1286

Nienhold R, Ciani Y, Koelzer VH, Tzankov A, Haslbauer JD, Menter T (2020) Two distinct immunopathological profiles in autopsy lungs of COVID-19. Nat Commun. https://doi.org/10.1038/s41467-020-18854-2

Onder G, Rezza G, Brasuferro S (2020) Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. JAMA 323(18):1775–1776

Patschan D, Witzke O, Duhrsren U, Erbel R, Philipp T, Herget-Rosenthal S (2006) Acute myocardial infarction in thrombotic microangiopathies—clinical characteristics, risk factors, and outcome. Nephrol Dial Transplant 21(6):1549–1554

Perricone C, Bartoloni E, Bursi R, Cafaro G, Guidelli AM, Shoenfeld Y, Gerli R (2020) COVID-19 report of the hyperferritinemic syndromes: the role of iron depletion therapy. Immunol Res 68(4):213–224

Poggioli E, Zaino D, Terracciano G et al (2020) Lactate dehydrogenase and C-reactive protein as predictors of respiratory failure in COVID-19 patients. Clin Chim Acta 509:1–78

Povoa P, Pereira J, Coelho L (2020) C-reactive protein: structure, synthesis, and function. J C-Reactive Protein: New Research. View at: Publisher Site, arXiv:1016/j. dnpdr. 2021. 103203

Perricone C, Bartoloni E, Bursi R, Cafaro G, Guidelli AM, Shoenfeld Y, Gerli R (2020) COVID-19 report of the hyperferritinemic syndromes: the role of iron depletion therapy. Immunol Res 68(4):213–224

Rainer TH, Chan CP, Leung MF et al (2009) Diagnostic utility of CRP to neopterin ratio in patients with acute respiratory tract infections. J Infect. 39(3):135–140

Richardson S, Hober JS, Narasimhan M et al (2020) Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA 323(20):2052–2059

Rusci P, Giacomelli R (2020) Ferritin and severe COVID-19, from clinical observations to pathogenic implications and therapeutic perspectives. Isr Med Assoc J 8(22):450–452

Said V-S, Jalil AT, Abdellabess W, Yumasheh AV, Karpisheh V, Jalili P, Adibfar S, Ahmadi M, Feizi AAH, Jadidi-Niaragh F (2021) Targeting Wee1 kinase as a therapeutic approach in Hematological Malignancies. DNA Repair. https://doi.org/10.1016/j.dnarep.2021.103203

Sarjito, Elveny M, Jalal A, Davarpanah A, Allahmee A, Awadh Bahajaj A, Ouladsmane M (2021) CFD-based simulation to reduce greenhouse gas emissions from industrial plants. Int J Chem Reactor Eng. https://doi.org/10.1515/ijcre-2020-0063

Salem MM, Jalil AT, Abdulkerem RA, Saleemian AA (2020) Evaluation of immunoglobulins, CD4/CD8 T lymphocyte ratio and interleukin-6 in COVID-19 patients. Turkish J Immunol 8(3):129–134. https://doi.org/10.25002/tji.2020.1347

Shi Y, Pinto BM (2014) Human lactate dehydrogenase an inhibitor: a molecular dynamics investigation. PLoS ONE 9(1):e86365

Spezia L, Boscolo A, Poletto F et al (2020) COVID-19-related severe hypercoagulability in patients admitted to intensive care unit for acute respiratory failure. Thromb Haemost 120:998–1000

Sproston NR, Ashworth JJ (2018) Role of C-reactive protein at sites of inflammation and infection. Front Immunol 9:1441

Tisoncik JR, Korth MJ, Simmons CP, Farrar J et al (2012) Into the eye of the cytokine storm. Microbiol Mol Biol Rev 76:16–32

Wang F, Hou H, Luo Y, Tang G et al (2020a) The laboratory tests and host immunity of COVID-19 patients with different severity of illness. JCI Insight. https://doi.org/10.1172/jci.insight.137790

Wang D, Hu B, Hu C, Zhu F et al (2020b) Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 323:1061–1069

Wellman C, Smith J, Morgan R (2020) COVID-19: the gendered impacts of the outbreak. Lancet 395:846–848

Widjaja G, Jalil AT, Rahman HS, Abdelbasst W, Bokov DO, Sukastan W et al (2021) Humoral Immune mechanisms involved in...
protective and pathological immunity during COVID-19. Human Immunol. https://doi.org/10.1016/j.humimm.2021.06.011
Xu Z, Shi L, Wang Y, Zhang J et al (2020) Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med 8:420–422
Yuan J, Zou R, Zeng L et al (2020) The correlation between viral clearance and biochemical outcomes of 94 COVID-19 infected discharged patients. Inflamm Res 69:599–606
Zhang T, Chen H, Liang S (2014) A non-invasive laboratory panel as a diagnostic and prognostic biomarker for thrombotic microangiopathy: development and application in a Chinese cohort study. PLoS ONE 9(11):e111992
Zhang JJ, Dong X, Cao YY, Yuan YD, Yang YB, Yan YQ (2020) Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy Eur J Allergy Clin Immunol. https://doi.org/10.1111/all.14238
Zhou C, Chen Y, Ji Y, He X, Xue D (2020a) Increased serum levels of hepcidin and ferritin are associated with the severity of COVID-19. Med Sci Monit 26:e926178
Zhou Y, Fu B, Zheng X, Wang D, Zhao C, Qi Y (2020b) Aberrant pathogenic GM-CSF+ T cells and inflammatory CD14+CD16+ monocytes in severe pulmonary syndrome patients of a new coronavirus. BioRxiv. https://doi.org/10.1101/2020.02.12.945576

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.