Ecoengineering Solutions for the Impairment of Spreading and Growth of Invasive Spartina patens in Mediterranean Salt Marshes

Ricardo Cruz de Carvalho 1,2*, Eduardo Feijão 1, Irina Duarte 1, Vanessa Pinto 1, Marisa Silva 1, Ana Rita Matos 3,4, Anabela Bernardes da Silva 3,4, Isabel Caçador 1,3, Patrick Reis-Santos 1,5, Vanessa F. Fonseca 1,6 and Bernardo Duarte 1,3

1 MARE – Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal, 2 cE3c – Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal, 3 Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal, 4 Biosystems and Applied Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal, 5 Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia, 6 Departamento de Biologia Animal da Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal

The invasion of natural communities by non-indigenous species represents one of the most serious threats to biodiversity. Understanding the ecophysiology of invasive species can provide insights into potential physiological handicaps relative to native species. By doing so, we can leverage the development of ecoengineering solutions for the removal of non-indigenous species, preferably using non-chemical methods. Spartina patens is a known invasive species of cordgrass aggressively proliferating in Mediterranean salt marshes, producing impenetrable monospecific stands. As its occurrence is delimited by the upper high tide water level, we hypothesized that S. patens is intolerant to waterlogging. Therefore, we developed a field experiment where strands of S. patens were kept waterlogged over the entire tidal cycle for 30 days. At the end of the experimental period, plants in the trial plots exhibited severe stress symptoms at different physiological levels compared with control plots (no intervention). At the photobiological level, intervened plants exhibited lower efficiency in producing chemical energy from light, whilst at the biochemical level waterlogging impaired the antioxidant system and increased lipid peroxidation products. Furthermore, the application of chlorophyll a pulse amplitude modulated (PAM) fluorometry, a non-invasive technique, allowed us to evaluate the effectiveness of the implemented measures, being the tool that provided the best separation between the control and intervened population. Considering the physiological traits observed here, ecoengineering solutions...
INTRODUCTION
Salt marshes provide a wide range of ecological services, including nursery habitats for many animals, protection against coastal erosion, water purification, having the considerable capacity to store and sequester carbon, and are key players in the ecosystem natural remediation capacity (Couto et al., 2013; Teixeira et al., 2014; Duarte et al., 2018, 2021), being these services valued in several millions of euros per year (Duarte et al., 2021). Being preferred locations for human settlement and a profusion of anthropogenic activities, coastal, and transitional areas have been severely impacted in their health and functioning worldwide. Habitat loss and degradation, climate change and the introduction of invasive species are amongst the major threats to salt marsh ecosystems (Duarte et al., 2015, 2018; Repolho et al., 2017; Pérez-Romero et al., 2018). Therefore, in the context of increasing degradation rates, the need to restore salt marsh ecosystems has been recognized as a priority by managers, scientists, and general society. This is well-emboldened in the EU Biodiversity Strategy for 2030 and its EU Nature Restoration Plan (EU, 2020) and reinforced by the UN Decade on Ecosystem Restoration (UN, 2020).

Salt marshes have been widely affected by non-indigenous species (NIS) being a serious threat to wetland biodiversity (Heywood, 1989). Although many NIS plants were introduced long ago (more than a century), recent arrivals are of much concern (Aguia and Ferreira, 2013; Ainouche and Gray, 2016; Martinez-Jauregui et al., 2018). The Spartina genus is highly successful amongst the halophyte plant group, being widespread across the globe. These plants have C4-type photosynthesis, in which a CO2 concentration mechanism at ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) level, involving the fixation of atmospheric CO2 by phosphoenol-pyruvate carboxylase (PEPC), increases Rubisco carboxylase activity and allows a faster growth rate (von Caemmerer, 2020). Spartina patens (Ait.) Muhl. (Gramineae) is a perennial grass distributed circa 35% coverage), and Sarcocornia fruticosa (circa 35% coverage) (Caçador et al., 2013). More recently, the halophyte invasive species Spartina maritima in the lower marsh (circa 12% coverage), Halimione portulacoides in the mid-upper marsh (circa 35% coverage), and Sarcocornia fruticosa in the upper marsh (circa 20% coverage) (Caçador et al., 2013). More recently, the halophyte invasive species S. patens has managed to establish itself in the margins, justifying the importance of the current study.

Plant Material and Collection Site
Sampling occurred before the start of the growing season (February 2020) in the Hortas salt marsh (Alcochete; 38°45.661’ N, 8°56.116’ W), located in the middle estuary, adjacent to the Tagus Estuary Natural Reserve (Figure 1). This salt marsh is flooded twice per day, being dominated by the halophyte species Spartina maritima in the lower marsh (circa 12% coverage), Halimione portulacoides in the mid-upper marsh (circa 35% coverage), and Sarcocornia fruticosa in the upper marsh (circa 20% coverage) (Caçador et al., 2013). More recently, the halophyte invasive species S. patens has managed to establish itself in the margins, justifying the importance of the current study.

Applied Treatments
Spartina patens plants were subjected to two treatments: (1) control, where the plants did not undergo any intervention, and (2) the waterlogging treatment (waterlogged) where plant turfs filled the inside of a 50 cm long and 10 cm diameter PVC tube buried down into the sediments, leaving an 8 cm margin outside, which allowed the tidal water to enter the tube and remain longer inside and, thus, increase the waterlogging of the plants (n = 5 for each treatment). The experiment lasted for 30 days. Several
field measurements were made, namely, in vivo chlorophyll a pulse amplitude modulated (PAM) fluorometry measurements. Moreover, 20 leaves from each treatment were also collected directly into individual tubes with liquid nitrogen (see sections below). Finally, whole plants of *S. patens* from both treatments were also collected, transported to the lab, washed, removed from excess water, weighted (fresh weight), and oven-dried at 60°C to constant weight (dry weight).

Chlorophyll a Pulse Amplitude Modulated Fluorometry

Ten leaves from plants from each treatment were dark-adapted for 15 min and PAM measurements were performed using a FluoroPen FP100 (Photo System Instruments, Czechia). For the analysis of chlorophyll transient light curves (Kautsky plot), and the derived fluorometric parameters (Table 1), the JIP-test was used (Duarte et al., 2017).

Leaf Infrared Thermography

Thermal images were obtained with a FLIR E50bx infrared camera (FLIR Systems, Inc., Wilsonville, OR, United States) producing images of 320 × 240 resolution with an accuracy of ±0.045°C. Ten leaves were randomly selected from plants of both treatments, having a water bottle at ambient temperature near the leaves as reference. The average temperature of each leaf was calculated on each image. All image processing and analysis were performed in FLIR Tools software (version 6.4.18039.1003, FLIR Systems, Inc.).

Root Respiration

Fresh fine roots of each treatment weighing approximately 100 mg were transferred to 10-mL reaction tubes, and 6 mL of TTC-solution [0.6% (w/v) triphenyl-tetrazolium chloride in 0.06 M Na2HPO4–KH2PO4 and 0.05% (v/v) Tween 20] was added to each tube (n = 5) (Brunner et al., 2002). In duplicate tubes, 0.15 mM KCN was added to determine the inhibited respiration. The samples were then incubated for 24 h at 25°C. After incubation, the TTC solution was decanted and triphenyl formazan (TPF) extraction was made by adding 2 mL of ethanol and boiling at 80°C for 15 min (Ruf and Brunner, 2003). After collecting the supernatant in new tubes, the absorbance of 1 mL was measured at 520 nm with a spectrophotometer (UV500 UV-Visible Spectrometer, Unicam, Waltham, MA, United States). The root residues in the test tubes were dried at 80°C for 72 h and weighed. Reduction of TTC was calculated as μg of TPF produced per hour per g dry weight (DW).

Proline Quantification

Proline content was determined according to Bates et al. (1973). For each treatment, plant leaves (n = 5) were homogenized in 3% aqueous sulfosalicylic acid and the homogenate centrifuged a 9,000 g for 15 min at 0°C (Sigma...
ETR/CS Electron transport energy flux per cross-section

TABLE 1 | Fluorometric analysis parameters and their description.

Parameter	Description
Area	Corresponds to the oxidized quinone pool size available for reduction and is a function of the area above the Kautsky plot
N	Reaction center turnover rate
Sm	Corresponds to the energy needed to close all reaction centers
M0	Net rate of PS II RC closure
P1	Probability that a PS II chlorophyll molecule function as a RC
P2	Probability that an absorbed photon will move an electron into the ETC
P3	Probability that a trapped excitation moves an electron into the ETC beyond QA
P4	Efficiency of the transfer of an electron from P680 to final PS I acceptors
P5	Flux of electrons transferred from P680 to final PSI acceptors per active PS II
P6	Absorbed energy flux per cross-section
P7	Trapped energy flux per cross-section
P8	Electron transport energy flux per cross-section
P9	Dissipated energy flux per cross-section
P10	Number of available reaction centers per cross-section
P11	Grouping probability of the connectivity between the two PS II units
P12	Contribution of PSI, reducing its end acceptors
P13	Contribution of the dark reactions from QA to PC
P14	Equilibrium constant for the redox reactions between PS II and PS I
P15	Reaction center II density within the antenna chlorophyll bed of PS II
P16	Contribution or partial performance due to the light reactions for primary photochemistry
SFI	Structure functional index for photosynthesis
SFI (NO)	Non-photosynthetic or dissipation structure functional index

2-16K, SIGMA Laborzentrifugen GmbH, Osterode am Harz, Germany). The supernatant was collected, and the reaction consisted of 2 mL of extract combined with 2 mL of glacial acetic acid and 2 mL of acid ninhydrin. The reaction occurred for 1 h at 100°C, after which the reaction was stopped in an ice bath. The reaction mixture was extracted with 4 mL of toluene and its absorbance read at 520 nm with a spectrophotometer (UV500 UV-Visible spectrophotometer, Unicam, Cambridge, United Kingdom) according to Bakrim et al. (1992) with some modifications (Carmo-Silva et al., 2007). The reaction mixture consisted of 50 mM HEPES-KOH pH 8.0, 10 mM MgCl2, 10 mM NaHCO3, 2.5 mM PEP (Sigma), 12 units of MDH (Sigma) and 20 µL of crude extract. For Vmax, the reaction mixture consisted of 50 mM HEPES-KOH pH 8.0, 10 mM MgCl2, 10 mM NaHCO3, 10 mM PEP (Sigma), 12 units of MDH (Sigma) and 20 µL of extract. In both cases, the reaction was started by the addition of 0.2 mM (final concentration) NADH (Sigma). Each measured activity is the mean of three replicate on the same extract. PEPC activation state (%) was determined by the Vphysiol/Vmax ratio.

For pigment analysis, each 20 µL aliquot previously retrieved from the leaf extract was diluted in 980 µL of methanol. After mixing in the vortex, the samples were left in the dark at 4°C overnight. After centrifuging for 1 min at 13,000 g at 4°C (Sigma 2-16K, SIGMA Laborzentrifugen GmbH, Osterode am Harz, Germany), the absorbance at 470, 652.4, 665.2, and 700 nm were measured in an Epoch™ 2 Microplate Spectrophotometer (BioTek, Winooski, VT, United States). Pigment concentrations were determined according to the equations in Lichtenenthaler and Buschmann (2001).

Antioxidant Enzyme Assays

To extract the soluble protein fraction, leaf samples were ground in a cooled mortar with 0.5 mL of 50 mM sodium/potassium phosphate extraction buffer (with 0.1 mM Na-EDTA, 2 mM PVP, 10 mM DTT, 0.1 mM PMSF, and 24 µM NADP, pH 7.6).
The homogenate was centrifuged at 13,000 g for 10 min at 4°C (Sigma 2-16K, SIGMA Laborzentrifugen GmbH, Osterode am Harz, Germany) and the supernatant was collected to a new tube. Protein concentration was determined according to Bradford (1976) in an Epoch™ 2 Microplate Spectrophotometer (BioTek, Winooski, VT, United States).

Catalase (CAT; EC 1.11.1.6) activity was measured according to Teranishi et al. (1974), through H$_2$O$_2$ consumption monitoring and the decrease in absorbance at 240 nm ($\varepsilon = 39.4$ mM$^{-1}$ cm$^{-1}$). The reaction mixture contained 50 mM of sodium/potassium phosphate buffer (pH 7.0), and 30 mM of H$_2$O$_2$ with the reaction being started by the addition of 5 μL of extract. Ascorbate peroxidase (APx; EC 1.11.1.11) was assayed according to Tiryakioglu et al. (2006). The reaction mixture contained 50 mM of sodium/potassium phosphate buffer (pH 7.0), 0.1 mM of H$_2$O$_2$, and 0.25 mM L-ascorbate, and the reaction was also initiated with the addition of 5 μL of the extract. The activity was recorded as the decrease in absorbance at 290 nm and the amount of ascorbate oxidized calculated from the molar extinction coefficient ($\varepsilon = 2.8$ mM$^{-1}$ cm$^{-1}$). Guaiacol peroxidase (GOPx; EC 1.11.1.7) activity was assayed according to Mika and Lüthje (2003) through the monitoring of guaiacol oxidation at 470 nm ($\varepsilon = 26.6$ mM$^{-1}$ cm$^{-1}$). The reaction mixture contained 50 mM of sodium/potassium phosphate buffer (pH 7.0), 10 mM of H$_2$O$_2$, and 8 mM guaiacol, and the reaction was initiated with the addition of 5 μL of the extract. Superoxide dismutase (SOD; EC 1.15.1.1) activity was assayed according to Marklund and Marklund (1974) by measuring the reduction of pyrogallol at 325 nm. The reaction mixture contained 30 mM of sodium/potassium phosphate buffer (pH 7.0) and 0.24 mM of pyrogallol, with the reaction being started by the addition of 5 μL of extract. Glutathione reductase (GR; EC 1.8.1.7) activity was assayed according to Feijão et al. (2018):

$$DBI = \frac{2 \times (\% \text{ monoenes} + 2 \times \% \text{ dienes} + 3 \times \% \text{ trienes})}{100}$$

Statistical Analysis

Since the data lacked normality and homogeneity, the statistical analysis was based on Mann-Whitney non-parametric tests (GraphPad Prism 8.4.2 for Windows, GraphPad Software, San Diego, CA, United States). Multivariate statistical analyses [SIMPER and Canonical Analysis of Principal Coordinates (CAP)] were performed using Primer 6 software (Clarke and Gorley, 2006). The data obtained from the Kautsky plots, thermography data, oxidative stress and fatty acids were used.
as the basis for the construction of the respective resemblance matrices based on the Euclidean distances between samples. To evaluate the different metabolic datasets obtained as a whole (in opposition to univariate analysis), statistical multivariate models based on Kautsky plots, thermography data, oxidative stress and fatty acids were generated using Principal Coordinates Analysis (PCO) (Clarke and Gorley, 2006).

RESULTS

Chlorophyll a PAM Analysis
Observing the Kautsky plots resultant from the in vivo PAM fluorometric analysis, lower fluorescence values could be observed in plants subjected to the treatment when compared with control plants (Figure 2).

FIGURE 3 | Boxplots of leaf energy fluxes [A, absorbed (ABS/CS); B, trapped (TR₀/CS); C, transported (ET₀/CS); D, dissipated (D₁₀/CS)] and (E) the number of available reaction centers per cross-section (RC/CS) in leaves of control plants (white boxes) and waterlogged plants (gray boxes) of Spartina patens after 30 days (n = 10, different letters indicate significant differences at p < 0.05).
The four energy fluxes [Figure 3: A, energy absorbed by the photosystem II (PS II) antennae (ABS/CS); B, energy trapped inside the PS II (TR0/CS); C, energy transported within the electron transport chain (ETC) (ET0/CS); and D, the energy dissipation flux (DI0/CS)] showed the same pattern presenting lower values in the
FIGURE 5 | Boxplots of the photosystems I (PS I) and II (PS II) photochemical traits. (A) Active oxygen-evolving complexes (OECs); (B) grouping probability between the two PS II units (PG); (C) the contribution of the dark reactions from quinone A to plastoquinone \([\psi_0/(1 - \psi_0)] \); (D) the equilibrium constant for the redox reactions between PS II and PS I \([\psi_E(1 - \psi_E)] \); (E) electron transport from PQH \(_2\) to the reduction of PS I end electron acceptors (RE \(_0\)/RC); (F) the contribution of PS I reducing its end acceptors \([\psi_0/(1 - \psi_0)] \); (G) reaction center II density within the antenna chlorophyll bed of PS II (RC/ABS); (H) contribution or partial performance due to the light reactions for primary photochemistry (TR \(_0\)/D \(_0\)). In leaves of control plants (white boxes) and waterlogged plants (gray boxes) of Spartina patens after 30 days \((n = 10) \), different letters indicate significant differences at \(p < 0.05 \).
waterlogged plants, although that decrease was only statistically significant for TR₀/CS and ET₀/CS. It was also a similar reduction in the number of oxidized PS II reaction centers (RC/CS) (Figure 3E).

Further analysis of the functioning of different components of the photosystems and ETC (Figure 4) showed a decrease in the oxidized quinone pool size in the waterlogged plants, followed by an enhancement in the number of QA redox turnovers until maximum fluorescence was reached (N). Although no significant changes were observed in the energy needed to close all RCs (S₉₀), there was a decrease in the probability of a PS II chlorophyll molecule functioning as a RC (γ₉₀) in the treated plants. However, no significant differences were observed in the QA reduction rate (M₀).

Although the active oxygen-evolving complexes (OEC) showed no differences between control and waterlogged plants (Figure 5A), the P₅₀, the grouping probability that correlates with the disconnection between the two PS II units, increased in the later plant group (Figure 5B).

Regarding PS II and PS I, waterlogged plants presented a significant decrease in photochemical processes, both in the contribution of light (TR₀/DI₀; Figure 5H) and dark [ψ₀/(1 - ψ₀); Figure 5C] reactions of the photochemical cycle. On the other hand, at the PS I level there was a significant increase in the activity of this photosystem [δR₀/(1 - δR₀); Figure 5F] in the intervened plants, although there was a decrease in the equilibrium constant for the redox reaction between both photosystems toward the PS II [ψₑ₀/(1 - ψₑ₀); Figure 5D]. Nevertheless, there were no significant changes in the reaction center density within the PS II antenna chlorophyll bed (RC/ABS; Figure 5G) or in the electron transport from PQH₂ to the reduction of the PS I end acceptors (RE₀/RC; Figure 5E).

In summary and observing the structure functional indexes, there was a decrease of the photochemical processes (Figure 6A) and an increase of the non-photochemical or dissipative processes (Figure 6B) in the waterlogged plants.

Leaf Thermography

Regarding leaf surface temperature measured through infrared thermography, there was a statistically significant increase in temperature in the treated plants (11.06°C) relatively to control ones (10.77°C) (Figure 7).

![Figure 6](image1.png)

FIGURE 6 Boxplots of the structure functional indexes for photosynthesis (A, SFI) and non-photosynthetic or dissipation processes (B, SFI [NO]) in leaves of control plants (white boxes) and waterlogged plants (gray boxes) of Spartina patens after 30 days (n = 10, different letters indicate significant differences at p < 0.05).

![Figure 7](image2.png)

FIGURE 7 Boxplots of the leaf surface temperature measured through infrared thermography in leaves of control plants (white box) and waterlogged plants (gray box) of Spartina patens after 30 days (n = 10, different letters indicate significant differences at p < 0.05).
Root Respiration

An increase of root respiration in waterlogged plants was measured (Figure 8A), resulting not from changes in the alternative oxidase (AOX) activity (Figure 8B) but rather from a twofold increase in KCN-sensitive respiration (Figure 8C).

Proline

Leaves of waterlogged plants of *S. patens* experienced a fivefold increase in proline (Figure 9), to circa 20 µmol g\(^{-1}\) FW, contrasting with the leaves of control plants with circa 4 µmol g\(^{-1}\).

C4-Photosynthetic Carboxylating Enzymes and Pigment Analysis

Relatively to the C4-photosynthetic carboxylating enzymes activities, no statistically significant changes were observed either in the activation state, or maximal (\(V_{\text{max}}\)) and physiological (\(V_{\text{physiol}}\)) rates of PEPC (Supplementary Figure 1), or the activation state, or initial (\(V_{i}\)) and total (\(V_{t}\)) rates of Rubisco (Supplementary Figure 2). The same was observed for pigments Chl \(a\), Chl \(b\), total chlorophyll, and carotenoids (Supplementary Figure 3).
Antioxidant Enzyme Analysis

Regarding the antioxidant enzymes CAT, APx, GOX, SOD, and GR (Figure 10), only the latter two showed a significant decrease in activity on waterlogged plants, with a decrease of twofold in SOD and almost a threefold in GR.

Lipid Peroxidation and Fatty Acid Profile

While lipid peroxidation products increased in waterlogged plants (Figure 11A), no changes occurred in total fatty acids content (Figure 11B).

Regarding the relative abundance of fatty acids, there was a decrease in triunsaturated hexadecatrienoic acid (16:3), exclusively present in plastidial lipids, whilst there was an increase in stearic acid (C18:0) of waterlogged plants relative to controls (Figure 12). Although there were no significant changes in the major fatty acids classes (Supplementary Figure 4), the ratio of saturated to unsaturated fatty acids ratio (SFA/UFA) increased in waterlogged plants (Supplementary Figure 5).

Biophysical and Biochemical Profiles

The multivariate PCO analysis allowed to distinguish the control from the waterlogged plants of *S. patens* using the Kautsky plot, leaf thermography, oxidative stress data and fatty acid profiles (Figures 13, 14), which explain the variables’ total variation with various degrees. Through the simple application of remote tools (Figure 13), the Kautsky plot first PCO axis explains 98.9% of the whole variation between the two evaluated groups (Figure 13A), while due to a higher dispersion along the second PCO axis, the thermography data PCO1 has a lower explanatory power (64.8% of total variation) (Figure 13B).

Observing the biochemical profiles, the oxidative stress measurements reveal good separation of the two groups (87.3% of total variation), along only one axis of the PCO (Figure 14A). On the other hand, when evaluating the samples fatty acid profiles, it was possible to observe a dispersion along the two PCO axis, indicative of a higher dispersion in the biochemical characteristics of the samples and lower explanatory power (46.2% of total variation) (Figure 14B).

DISCUSSION

The impacts of a highly aggressive and invasive species, such as *S. patens* urges the need to develop measures, to counteract its spreading. Control measures should be directed to this species and are less harmful to the surrounding environment and co-occurring species. Our proposed alternative method for eliminating the invasive halophyte *S. patens* proved to be a very effective method to significantly increase the stress levels of the plants in 30 days, using the species physiology drawbacks. Results provide new insights for an ecoengineering solution to be applied in future *S. patens* control measures in intertidal systems. The fact that *S. patens* do not tolerate waterlogging is the only limiting factor that is currently preventing full occupation of the intertidal border (Burdick, 1989; Bertness, 1991; Curado et al., 2020), and fully replacing other halophyte native species. Furthermore, once the NIS is removed, indigenous species, such as *H. portulacoides* and *S. fruticosa* can reoccupy that area and restore habitat functionality (Curado et al., 2020). Thus, any tool that facilitates this NIS dieback, is of added value to recover the ecosystem floristic diversity.

The effect of waterlogging on *S. patens* was very clear in different photochemical-related variables and showed lower photosynthetic efficiency when compared with the non-intervened plants, although no significant changes were observed in C4 photosynthesis-related enzymes PEPC and Rubisco as well as in the pigment profile.

The observation of the two distinct treatments of *S. patens* showed a depression in the Kautsky curves of the waterlogged plants, presenting lower fluorescence values, a characteristic of stress effects (Duarte et al., 2015). Energy fluxes suffered a major impact at the level of electron transport (ET0/CS), with a reduction in the quinone pool size, given by the area above the transient curve (Strasser et al., 1995; Joliot and Joliot, 2002), and a decrease in the number of available reaction centers (RC/CS). This leads to an excessive energy accumulation (Kalaji et al., 2011) that can destroy the D1 protein, and eventually impair all photochemical machinery (Demmig-Adams and Adams, 1992; Qiu et al., 2003; Duarte et al., 2013). To prevent oxidative damage in the chloroplasts, this high energy accumulation needs to be dissipated, frequently through the xanthophyll cycle (Demmig-Adams and Adams, 1992). However, no changes were observed in the carotenoid pool, occurring a decrease in photochemical
FIGURE 10 | Boxplots of catalase (CAT, A), ascorbate peroxidase (APX, B), guaiacol peroxidase (GOPx, C), superoxide dismutase (SOD, D) and glutathione reductase (GR, E) enzymatic activities in leaves of control plants (white boxes) and waterlogged plants (gray boxes) of Spartina patens after 30 days ($n = 5$, different letters indicate significant differences at $p < 0.05$).
FIGURE 11 | Boxplots of lipid peroxidation quantification measured as malondialdehyde (MDA) equivalents (A) and total fatty acid content (B) in leaves of control plants (white boxes) and waterlogged plants (gray boxes) of Spartina patens after 30 days ($n = 5$, different letters indicate significant differences at $p < 0.05$).

FIGURE 12 | Fatty acid profile in leaves of control plants (white boxes) and waterlogged plants (gray boxes) of Spartina patens after 30 days ($n = 5$, different letters indicate significant differences at $p < 0.05$).

quenching and an increase in non-photochemical quenching (NPQ), leading to a decrease in the lumen pH, attributed to protonation of the light-harvesting complexes (LHC) proteins associated with the PSII (Cousins et al., 2002). This, in turn, can explain the increase in leaf temperature observed in the waterlogged plants (Zhang et al., 2019). Moreover, it was possible to observe that waterlogged plants had their trapped and transported energy fluxes reduced, but no increase in the energy dissipation. Under stress, a common feature observed is a maintenance of the absorbed and trapped energy flux, but a low energy use in the electron transport, leading to energy bursts inside the chloroplast that are normally diverted to dissipation in the form of heat or fluorescence (Duarte et al., 2016). In this case, only a reduction of the trapped and energy transport fluxes indicating a lower ability of the plants to harvest light, a condition that can promote leaf senescence and plant mortality.

With the roots under water for a more prolonged time, it would be expected to observe a decrease in root respiration (Pan et al., 2021). However, $S. \text{patens}$ can develop aerenchyma, pumping atmospheric oxygen through the leaves to ventilate the roots and, thus, allowing it to increase its respiration (Burdick and Mendelssohn, 1987; Burdick, 1989). Nevertheless, and considering the lower energy harvested by waterlogged plants, increased root respiration and consequent consumption of energy reserves (such as carbohydrates), will inevitably increase the energetic stress of the plants. $S. \text{patens}$ also presented an increased proline content in its leaves, increasing leaf water potential to counteract the differential osmotic pressures between soil and leaves (Briens and Larher, 1982; Koyro et al., 2006; Aziz et al., 2011). This mechanism also poses significant energetic costs to the individuals, that while trying to counteract the waterlogging osmotic constraints, end up increasing the degree of energetic stress of the plants (Iqbal et al., 2014).

Oxygen deprivation will lead inevitably to the increase of intracellular reactive oxygen species (ROS) due to metabolism impairment under stress (Bailey-Serres and Chang, 2005; Pucciariello et al., 2012), severely damaging, amongst others, proteins, and lipids of cells membranes (Sharma et al., 2012; Baxter et al., 2014). Nevertheless, under waterlogging no increase in the antioxidant enzymatic activity could be observed, thus contributing to the accumulation of ROS inside the cells of the waterlogged plants. In fact, two first-line defense enzymes (SOD and GR) had their activities severely reduced. All these impairments of the antioxidant enzymatic system are concomitant with the observed increase in lipid peroxidation. Once again, this will impose severe energetic stress, due to damage in the membranes of the energetic organelles and thus impacting the electronic transport systems and the cell energy budgets.
Additionally, exposure to waterlogging also induced changes in the fatty acid profile of *S. patens*, which increased the ratio between saturated and unsaturated fatty acids, mainly contributed by an increase in stearic acid (C18:0), which likely resulted in a decrease in membrane fluidity. Moreover, there was a significant decrease in the triunsaturated hexadecatrienoic acid (16:3), which is present in the major plastidial lipid monogalactosyldiacylglycerol and can be linked to lower photosynthetic efficiency measured in waterlogged plants (Kobayashi et al., 2016).

Using multivariate analysis of the assessed biophysical and biochemical traits it was possible to observe that techniques, such as PAM and infrared thermography, are the most efficient tools to evaluate *in situ* the success of the intervention and the stress levels imposed on the plants targeted to be removed. As in previous ecological studies in response to stress (Cruz de Carvalho et al., 2020a,b; Duarte et al., 2020), the use of bio-optical techniques (e.g., Kautsky plot) allowed an efficient identification of the waterlogged plants and, thus, provide efficient and reliable tools to monitor the success of control interventions, without disturbing the process itself and allowing repeated measures over the intervention period.

In terms, of the ecoengineering solution tested in the present work, the physiological changes observed indicate that...
the adopted strategy can be an eco-friendly control measure, increasing the plants stress levels significantly, although in the considered 30-day period there was no plant mortality, indicating that these control measures should be performed in more prolonged periods.

CONCLUSION

The application of a simple barrier to allow waterlogging proved to be an effective and low-cost solution to impair the physiology and biochemical pathways of the invasive halophyte.
S. patens. Although long-term studies need to be performed, this ecoengineering solution has the potential to control and eliminate this species from salt marshes and other intertidal systems in future ecosystem restoration programs. Since S. patens turfs are easily identified, the upscaling of this technique could involve the application of tubes with different diameters according to plant turfs density, allowing waterlogging to be prolonged in space and time. Furthermore, the application of a simple bio-optical tool will allow the stakeholders to easily follow the process of suppressing the species without the interference of the process and allowing repeated measures over the intervention period.

DATA AVAILABILITY STATEMENT
The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS
BD, VF, and PR-S: conceptualization. BD: methodology, supervision, project administration, and funding acquisition. RC and BD: formal analysis. RC, EF, ID, VP, MS, AS, and AM: investigation. RC: data curation and writing—original draft preparation. EF, ID, VP, MS, AM, AS, IC, PR-S, VF, and BD: writing—review and editing. All authors have read and agreed to the published version of the manuscript.

FUNDING
BD and VF were supported by investigation contracts (CEECIND/00511/2017 and DL57/2016/CP1479/CT0024). PR-S was supported by FCT through a postdoctoral grant (SFRH/BPD/95784/2013). We would like to thank the Fundação para a Ciência e a Tecnologia (FCT) for funding the research via project grants PTDC/CTA-AMB/30056/2017 (OPTOX), UID/MAR/04292/2019, and UIDB/04046/2020. We would also like to thank the MAR2020 program through the project REASTAR2020 (16-01-04-FMP-0014).

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmars.2021.699528/full#supplementary-material

REFERENCES
Aguiar, F. C. F., and Ferreira, M. T. (2013). Plant invasions in the rivers of the Iberian Peninsula, south-western Europe: A review. Plant Biol. 147, 1107–1119. doi: 10.1080/11263504.2013.861539
Aimouche, M., and Gray, A. (2016). Invasive Spartina: lessons and challenges. Biol. Invas. 18, 2119–2122. doi: 10.1007/s10530-016-1201-7
Aziz, I., Gul, B., Gulzar, S., and Ajmal Khan, M. (2011). Seasonal variations in plant water status of four desert halophytes from semi-arid region of Karachi. Pak. J. Bot. 43, 587–594.
Bailey-Sерres, J., and Chang, R. (2005). Sensing and signalling in response to oxygen deprivation in plants and other organisms. Ann. Bot. 96, 507–518. doi: 10.1093/aob/mci206
Bakrim, N., Echevarria, C., Cretin, C., Arrio-Dupont, M., Pierre, J. N., Vidal, J., et al. (1991). Regulatory phosphorylation of Sorghum leaf phosphoenolpyruvate carboxylase. Identification of the protein-serine kinase and some elements of the signal-transduction cascade. Eur. J. Biochem. 204, 821–830. doi: 10.1111/j.1432-1329.1992.tb16701.x
Bates, L. S., Waldren, R. P., and Teare, I. D. (1973). Rapid determination of free proline in water-stress studies. Plant Soil 39, 203–207. doi: 10.1007/BF00018060
Brannon, A., Rousseau-Gueutin, M., Sapienza-Bianchi, C., Gareil, A., Duong, N., Rousseau, H., et al. (2016). Spartina versicolor Fabre: Another case of Spartina trans-Atlantic introduction? Biol. Invasions 18, 2123–2135. doi: 10.1007/s10530-016-1128-z
Bamforth, N., Echevarria, C., Cretin, C., Arrio-Dupont, M., Pierre, J. N., Vidal, J., et al. (1992). Zonation of Spartina patens and Spartina alterniflora in New England Salt Marsh. Ecology 73, 138–148. doi: 10.2307/1937888
Baxter, A., Mittler, R., and Suzuki, N. (2014). ROS as key players in plant stress signalling. J. Exp. Bot. 65, 1229–1240. doi: 10.1093/jxb/ert375
Bertness, M. D. (1991). Zonation of Spartina patens and Spartina alterniflora in New England Salt Marsh. Ecology 72, 138–148. doi: 10.2307/1939899
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254. doi: 10.1016/0003-2697(76)90527-3
Briens, M., and Larher, F. (1982). Osmoregulation in halophytic higher plants: a comparative study of soluble carbohydrates, polyols, betaines and free proline. Plant Cell Environ. 5, 287–292. doi: 10.1111/j.1365-3040.ep.11572682
Bruuner, L., Brodbeck, S., and Walthert, L. (2002). Fine root chemistry, starch concentration, and “vitality” of subalpine conifer forests in relation to soil pH. For. Ecol. Manage. 165, 75–84. doi: 10.1016/S0378-1127(01)00633-8
Burck, D. M. (1989). Root aerenchyma development in Spartina patens in response to flooding. Am. J. Bot. 76, 777–780. doi: 10.2307/2444425
Burck, D. M., and Mendelsohn, I. A. (1987). Waterlogging responses in dune, swale and marsh populations of Spartina patens under field conditions. Oecologia 74, 321–329. doi: 10.1007/BF00378924
Catacora, L., Neto, J. M., Duarte, B., Barroso, D. V., Pinto, M., and Marques, J. C. (2013). Development of an Angiosperm Quality Assessment Index (AQuA-Index) for ecological quality evaluation of Portuguese water bodies - A multi-metric approach. Ecol. Indic. 25, 141–148. doi: 10.1016/j.ecolind.2012.09.021
Carmo-Silva, A. E., Powers, S. J., Keys, A. J., Arrobajo, M. C., and Parry, M. A. J. (2008). Photosorpiration in C4 grasses remains slow under drought conditions. Plant Cell Environ. 31, 925–940. doi: 10.1111/j.1365-3040.2008.01805.x
Carmo-Silva, A. E., Soares, A. S., Marques, da Silva, J., Bernardes da Silva, A., Keys, A. J., et al. (2007). Photosynthetic responses of three C4 grasses of different metabolic subtypes to water deficit. Funct. Plant Biol. 34, 204–213. doi: 10.1071/FB06278
Clarke, K. R., and Gorley, R. N. (2006). PRIMER v6: User Manual/Tutorial. England: Plymouth.
Correia, P. M. P., Silva, A. B., Roitsch, T., Carmo—Silva, E., and Marques da Silva, J. (2020). Photoprotection and optimization of sucrose usage contribute to faster recovery of photosynthesis after water deficit at high temperatures in wheat. Physiol. Plant. 2020:13227. doi: 10.1111/ppl.13227
Cousins, A. B., Adam, N. R., Wall, G. W., Kimball, B. A., Pinter, P. J., Ottman, M. J., et al. (2002). Photosystem II energy use, non-photochemical quenching and the xanthophyll cycle in Sorghum bicolor grown under drought and free-air CO2 enrichment (FACE) conditions. Plant Cell Environ. 23, 1551–1559. doi: 10.1046/j.1365-3040.2002.00935.x
Couto, T., Duarte, B., Barroso, D., Caçador, I., and Marques, J. C. (2013). Halophytes as sources of metals in estuarine systems with low levels of contamination. Function. Plant Biol. 2013, 931–939. doi: 10.1071/FB12300
Cruz de Carvalho, R., Feijão, E., Kletschkus, E., Marques, J. C., Reis-Santos, P., Fonseca, V. F., et al. (2020a). Halophyte bio-optical phenotyping: A multivariate...
photocatalytic pressure index (Multi-PP) to classify salt marsh anthropogenic pressures levels. *Ecol. Indic.* 119:106816. doi: 10.1016/j.ecolind.2020.106816

Cruz de Carvalho, R., Feijão, E., Matos, A. R., Cabrita, M. T., Novais, S. C., Lemos, M. F. L., et al. (2020b). Glycosyl-Base Herbicide Toxicophenomics in Marine Diatoms: Impacts on Primary Production and Physiological Fitness. *Appl. Sci.* 10:10217391. doi: 10.3390/app10217391

Curado, G., Gallego-Tévar, B., Figueroa, E., and Castillo, J. M. (2020). Effects of removal of alien Spartina densiflora and restoration of native S. maritima on succession and zonation in European salt marshes. *Estuuar. Coast. Shelf Sci.* 244:105815. doi: 10.1016/j.ecss.2018.04.011

Demmg-Adams, B., and Adams, W. W. (1992). *Lipids in Plant and Algae Development*, eds Y. Nakamura and Y. Li-Beisson (Cham: Springer International Publishing), 21–49. doi: 10.1007/978-3-319-25979-6_2

Koyro, H. W., Geissler, N., Hussin, S., and Huchzermeyer, B. (2006). *Mechanisms Of Cash Crop Halophytes To Maintain Yields And Reclaim Saline Soils In Arid Areas in Ecophysiology of High Salinity Tolerant Plants*. Netherlands: Springer, 345–366. doi: 10.1007/1-4020-4018-0_22

Lichtenthaler, H. K., and Buschmann, C. (2001). Chlorophylls and Carotenoids: Measurement and Characterization by UV-VIS Spectroscopy. *Curr. Protoc. Food Anal. Chem.* 1, A–1. Available online at: https://hsiv.eu-law.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32012L0196

Feijão, E., Gameiro, C., Franzitta, M., Duarte, B., Caçador, I., Cabrita, M. T., et al. (2018). *Lipids in Plant and Algae Development*., eds Y. Nakamura and Y. Li-Beisson (Cham: Springer International Publishing), 21–49. doi: 10.1007/978-3-319-25979-6_2

Noltii development probing using chlorophyll a transient analysis (*JIP*-test) of native and invasive *Spartina species* probing. *Biol. Invasions* 9, 1–18. doi: 10.1007/s10530-018-0478-2

Hultén, E. (1958). *Flora of the British Isles*. Stockholm: Almquist & Wiksell.

Iqbal, N., Umar, S., and Nazar, R. (2014). “Manipulating Osmylates for Breeding Salinity-Tolerant Plants,” in *Evaluating Technologies and Management of Crop Stress Tolerance*, (Amsterdam: Elsevier Inc.), 385–404. doi: 10.1016/B978-0-12-800875-1.00016-8

Iqbal, N., Umar, S., and Nazar, R. (2014). “Manipulating Osmylates for Breeding Salinity-Tolerant Plants,” in *Evaluating Technologies and Management of Crop Stress Tolerance*, (Amsterdam: Elsevier Inc.), 385–404. doi: 10.1016/B978-0-12-800875-1.00016-8

Joliot, P., and Joliot, A. (2002). Cyclic electron transfer in plant leaf. *Proc. Natl. Acad. Sci. U. S. A.* 99, 10209–10214. doi: 10.1073/pnas.102306999

Kalaji, H. M., Bosa, K., and Ko, J. (2011). Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. *Environ. Exp. Bot.* 73, 64–72. doi: 10.1016/j.envexpbot.2010.10.009

Kerr, D. W., Hogle, J. B., Ori, B. S., and Thornton, W. J. (2016). A review of 15 years of Spartina management in the San Francisco Estuary. *Biol. Invasions* 18, 2247–2266. doi: 10.1007/s10530-016-1178-2

Kobayashi, K., Endo, K., and Wada, H. (2016). “Roles of Lipids in Photosynthesis,” in *Lipids in Plant and Algae Development*, eds Y. Nakamura and Y. Li-Beisson (Cham: Springer International Publishing), 21–49. doi: 10.1007/978-3-319-25979-6_2

Major, W., Grue, C., Grassley, J., and Conquest, L. (2003). Mechanical and Chemical Control of Smooth Cordgrass in Waillapa Bay, Washington. *J. Aquat. Plant Manag.* 41, 6–12.

Marklund, S., and Marklund, G. (1974). Involvement of the Superoxide Anion Radical in the Autoxidation of Pyrogallol and a Convenient Assay for Superoxide Dismutase. *Eur. J. Biochem.* 47, 469–474. doi: 10.1111/j.1432-1327.1974.tb03714.x

Martínez-Jauregui, M., Soliño, M., Martínez-Fernández, J., and Touza, J. (2018). Managing the Early Warning Systems of Invasive Species of Plants, Birds, and Mammals in Natural and Planted Pine Forests. *Front. Plant Sci.* 9:400170. doi: 10.3389/fpls.2018.040170

Mika, A., and Lüthje, S. (2003). Properties of Guaiacol Peroxidase Activities of smooth cordgrass in willapa bay, Washington. *J. Aquat. Plant Manag.* 41, 6–12.

Mika, A., and Lüthje, S. (2003). Properties of Guaiacol Peroxidase Activities Isolated from Corn Root Plasma Membranes. *Plant Physiol.* 132, 1489–1498. doi: 10.1104/pp.2002.020396

Pan, J., Sharif, R., Xu, X., and Chen, X. (2021). Mechanisms of Waterlogging Tolerance in Plants: Research Progress and Prospects. *Front. Plant Sci.* 11:2319. doi: 10.3389/fpls.2020.627331

Perry, M. A., Andralojc, P. J., Parmar, S., Keys, A. J., Habash, D., Paul, M. J., et al. (1997). Regulation of Rubisco by inhibitors in the light. *Plant Cell Environ.* 20, 528–534. doi: 10.1046/j.1365-3040.1997.001-ds5.8

Patten, K., O’Casey, C., and Metzger, C. (2017). Large-Scale Chemical Control of Smooth Cordgrass (Spartina alterniflora) in Willapa Bay, WA: Towards Eradication and Ecological Restoration. *Invasive Plant Sci. Manag.* 10, 284–292. doi: 10.1109/mp.2017.25

Pérez-Romero, J. A., Idasakin, Y. L., Duarte, B., Baeta, A., Marques, J. C., Redondo-Gómez, S., et al. (2018). Atmospheric CO2 enrichment effect on the CO2 tolerance of the C4 cordgrass Spartina densiflora. *J. Plant Physiol.* 220, 155–166. doi: 10.1016/j.jplph.2017.11.005

Pucciarelli, C., Parlanti, S., Banti, V., Novi, G., and Perata, P. (2012). Reactive oxygen species-driven transcription in Arabidopsis under oxygen deprivation. *Plant Physiol.* 159, 184–196. doi: 10.1104/pp.111.191122

Qiu, N., Lu, Q., and Lu, C. (2003). Photosynthesis, photosystem II efficiency and the xanthophyll cycle in the salt–adapted halophyte *Atriplex centralasiatica*. *New Phytol.* 159, 479–486. doi: 10.1046/j.1469-8137.2003.00825.x

Repollol, T., Duarte, B., Dionisio, G., Paula, J. R., Lopes, A. R., Rosa, I. C., et al. (2017). Seagrass ecophysiological performance under ocean warming and acidification. *Sci. Rep.* 7:41443. doi: 10.1038/s41598-017-0127

Ruf, M., and Brunner, I. (2003). Vitality of fine tree roots: reevaluation of the tetrazolium test. *Tree Physiol.* 23, 257–263. doi: 10.1093/treephys/23.4.257

Sharma, P., Jha, A. B., Dubey, R. S., and Pessarakli, M. (2012). Reactive oxygen species-driven transcription in Arabidopsis under oxygen deprivation. *Plant Physiol.* 159, 184–196. doi: 10.1104/pp.111.191122

Strasser, R. J., Srivastava, A., and Govindjee. (1995). Polyphasic Chlorophyll a Fluorescence Transient in Plants and Cyanobacteria. *Photochem. Photobiol.* 61, 32–42. doi: 10.1111/j.1751-1097.1995.tb09240.x

Teixeira, A., Duarte, B., and Caçador, I. (2014). “Salt Marshes and Biodiversity,” in *Sabbk Ecosystems: Volume IV: Cash Crop Halophyte and Biodiversity Conservation*, eds M. A. Khan, B. Börer, M. Öztürk, T. Z. Al Abdessalaam, M.
Cruz de Carvalho, Clüsener-Godt, and B. Gul (Dordrecht: Springer), 283–298. doi: 10.1007/978-94-007-7411-7_20
Teranishi, Y., Tanaka, A., Osumi, M., and Fukui, S. (1974). Catalase activities of hydrocarbon-utilizing candida yeasts. *Agric. Biol. Chem.* 38, 1213–1220. doi: 10.1080/00021369.1974.10861301
Tiryakioğlu, M., Eker, S., Özkütlu, F., Husted, S., and Cakmak, I. (2006). Antioxidant defense system and cadmium uptake in barley genotypes differing in cadmium tolerance. *J. Trace Elem. Med. Biol.* 20, 181–189. doi: 10.1016/j.jtemb.2005.12.004
UN (2020). *UN Decade on Ecosystem Restoration*. Available online at: https://www.decadeonrestoration.org/. (accessed April 16, 2021).
von Caemmerer, S. (2020). Rubisco carboxylase/oxygenase: From the enzyme to the globe: A gas exchange perspective. *J. Plant Physiol.* 252:153240. doi: 10.1016/j.jplph.2020.153240
Zhang, R., Zhou, Y., Yue, Z., Chen, X., Cao, X., Ai, X., et al. (2019). The leaf-air temperature difference reflects the variation in water status and photosynthesis of sorghum under waterlogged conditions. *PLoS One* 14:e0219209. doi: 10.1371/journal.pone.0219209

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Cruz de Carvalho, Feijão, Duarte, Pinto, Silva, Matos, da Silva, Caçador, Reis-Santos, Fonseca and Duarte. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.