On the Structure of the Minimum Critical Independent Set of a Graph

Vadim E. Levit
Ariel University Center of Samaria, Israel
levitv@ariel.ac.il

Eugen Mandrescu
Holon Institute of Technology, Israel
eugen_m@hit.ac.il

Abstract

Let $G = (V, E)$. A set $S \subseteq V$ is independent if no two vertices from S are adjacent, and by $\text{Ind}(G)$ we mean the set of all independent sets of G. The number $d(X) = |X| - |N(X)|$ is the difference of $X \subseteq V$, and $A \in \text{Ind}(G)$ is critical if

$$d(A) = \max\{d(I) : I \in \text{Ind}(G)\}.$$

Let us recall the following definitions:

$$\ker(G) = \cap \{S : S \text{ is a critical independent set}\}$$

$$\text{core}(G) = \cap \{S : S \text{ is a maximum independent set}\}.$$

Recently, it was established that $\ker(G) \subseteq \text{core}(G)$ is true for every graph \cite{5}, while the corresponding equality holds for bipartite graphs \cite{6}.

In this paper we present various structural properties of $\ker(G)$. The main finding claims that

$$\ker(G) = \cup \{S_0 : S_0 \text{ is an inclusion minimal independent set with } d(S_0) > 0\}.$$

Keywords: independent set, critical set, ker, core, matching

1 Introduction

Throughout this paper $G = (V, E)$ is a simple (i.e., a finite, undirected, loopless and without multiple edges) graph with vertex set $V = V(G)$ and edge set $E = E(G)$. If $X \subseteq V$, then $G[X]$ is the subgraph of G spanned by X. By $G - W$ we mean either the subgraph $G[V - W]$, if $W \subseteq V(G)$, or the partial subgraph $H = (V, E - W)$ of G, for $W \subseteq E(G)$. In either case, we use $G - w$, whenever $W = \{w\}$.

The neighborhood of a vertex $v \in V$ is the set $N(v) = \{w : w \in V \text{ and } vw \in E\}$, while the closed neighborhood of $v \in V$ is $N[v] = N(v) \cup \{v\}$; in order to avoid ambiguity,
we use also $N_G(v)$ instead of $N(v)$. The \textit{neighborhood} of $A \subseteq V$ is denoted by $N(A) = N_G(A) = \{ v \in V : N(v) \cap A \neq \emptyset \}$, and $N[A] = N(A) \cup A$.

A set $S \subseteq V(G)$ is \textit{independent} if no two vertices from S are adjacent, and by $\text{Ind}(G)$ we mean the set of all the independent sets of G.

An independent set of maximum size will be referred to as a \textit{maximum independent set} of G, and the \textit{independence number} of G is $\alpha(G) = \max\{|S| : S \in \text{Ind}(G)\}$. Let $\Omega(G)$ denote the family of all maximum independent sets, and $\text{core}(G) = \cap\{S : S \in \Omega(G)\}$ \cite{7}.

A \textit{matching} is a set of non-incident edges of G; a matching of maximum cardinality is a \textit{maximum matching}, and its size is denoted by $\mu(G)$.

The number $d(X) = |X| - |N(X)|$, $X \subseteq V(G)$, is called the \textit{difference} of the set X. The number $d_c(G) = \max\{d(X) : X \subseteq V\}$ is called the \textit{critical difference} of G, and a set $U \subseteq V(G)$ is \textit{critical} if $d(U) = d_c(G)$ \cite{7}. The number $id_c(G) = \max\{d(I) : I \in \text{Ind}(G)\}$ is called the \textit{critical independence difference} of G. If $A \subseteq V(G)$ is independent and $d(A) = id_c(G)$, then A is called \textit{critical independent} \cite{7}. Clearly, $d_c(G) \geq id_c(G)$ is true for every graph G.

\textbf{Theorem 1.1} \cite{7} The equality $d_c(G) = id_c(G)$ holds for every graph G.

For a graph G, let denote $\ker(G) = \cap\{S : S$ is a critical independent set$\}$. It is known that $\ker(G) \subseteq \text{core}(G)$ is true for every graph \cite{5}, while the equality holds for bipartite graphs \cite{6}.

For instance, the graph G from Figure 1 has $X = \{v_1, v_2, v_3, v_4\}$ as a critical set, since $N(X) = \{v_3, v_4, v_5\}$ and $d(X) = 1 = d_c(G)$, while $I = \{v_1, v_2, v_3, v_6, v_7\}$ is a critical independent set, because $d(I) = 1 = id_c(G)$; other critical sets are $\{v_1, v_2\}$, $\{v_1, v_2, v_3\}$, $\{v_1, v_2, v_3, v_4, v_6, v_7\}$. In addition, $\ker(G) = \{v_1, v_2\}$, and $\text{core}(G)$ is a critical set.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{core.png}
\caption{core(G) = $\{v_1, v_2, v_6, v_{10}\}$.}
\end{figure}

It is easy to see that all pendant vertices are included in every maximum critical independent set. It is known that the problem of finding a critical independent set is polynomially solvable \cite{1,7}.

\textbf{Theorem 1.2} For a graph $G = (V, E)$, the following assertions are true:

(i) \cite{5} the function d is supermodular, i.e.,
\[d(A \cup B) + d(A \cap B) \geq d(A) + d(B) \text{ for every } A, B \subseteq V; \]

(ii) \cite{5} G has a unique minimal critical independent set, namely, $\ker(G)$.

(iii) \cite{5} there is a matching from $N(S)$ into S, for every critical independent set S.

In this paper we characterize $\ker(G)$. In addition, a number of properties of $\ker(G)$ are presented as well.
2 Results

Deleting a vertex from a graph may decrease, leave unchanged or increase its critical difference. For instance, \(d_c(G - v_1) = d_c(G) - 1 \), \(d_c(G - v_{13}) = d_c(G) \), while \(d_c(G - v_3) = d_c(G) + 1 \), where \(G \) is depicted in Figure 1.

Proposition 2.1 Let \(G = (V, E) \) and \(v \in V \). Then the following assertions hold:

(i) \(d_c(G - v) = d_c(G) - 1 \) if and only if \(v \in \ker(G) \);
(ii) if \(v \in \ker(G) \), then \(\ker(G - v) \subseteq \ker(G) - \{v\} \).

Proof. (i) Let \(v \in V \) and \(H = G - v \).

If \(v \notin \ker(G) \), then \(\ker(G) \subseteq V(G) - \{v\} \). Hence

\[
d_c(G - v) \geq |\ker(G)| - |N_H(\ker(G))| \geq |\ker(G)| - |N_G(\ker(G))| = d_c(G).
\]

Consequently, we infer that \(d_c(G - v) < d_c(G) \) implies \(v \in \ker(G) \).

Conversely, assume that \(v \in \ker(G) \). Each \(u \in N(v) \) satisfies \(|N(u) \cap \ker(G)| \geq 2 \), because otherwise, \(d(\ker(G) - \{v\}) = d(\ker(G)) \) and this contradicts the minimality of \(\ker(G) \). Therefore, \(N(\ker(G) - \{v\}) = N(\ker(G)) \) and hence

\[
d(\ker(G) - \{v\}) = |\ker(G) - \{v\}| - |N(\ker(G) - \{v\})| =
= |\ker(G)| - 1 - |N(\ker(G))| = d_c(G) - 1.
\]

If there is some independent set \(A \) in \(G - v \), such that \(d(A) = d_c(G) \), then \(A \) is critical in \(G \) and, hence we get the following contradiction: \(v \in \ker(G) \subseteq A \subseteq V - \{v\} \). Therefore, \(\ker(G) - \{v\} \) is a critical independent set of \(G - v \) and

\[
d_c(G - v) = d(\ker(G) - \{v\}) = d_c(G) - 1.
\]

(ii) Assume that \(\ker(G - v) \neq \emptyset \). In part (i), we saw that \(\ker(G) - \{v\} \) is a critical independent set of \(G - v \). Hence, we get that \(\ker(G - v) \subseteq \ker(G) - \{v\} \). □

Remark 2.2 Actually, \(\ker(G - v) \) may be different from \(\ker(G - \{v\}) \); for instance, if \(K_{3,2} = (A, B, E), |A| = 3 \), then \(\ker(K_{3,2}) = A \) and \(\ker(K_{3,2} - v) = \emptyset \neq \ker(K_{3,2}) - \{v\} \), for every \(v \in A \). It is also possible \(\ker(G - \{v\}) = \emptyset \), while \(\ker(G - v) \neq \emptyset \); e.g., \(G = C_4 \).

By Theorem 2.2(iii), there is a matching from \(N(S) \) into \(S = \{v_1, v_2, v_3\} \), for instance, \(M = \{v_2v_5, v_3v_4\} \), since \(S \) is critical independent for the graph \(G \) from Figure 1.

On the other hand, there is no matching from \(N(S) \) into \(v_3 \). The case of the critical independence set \(\ker(G) \) is more specific.

Theorem 2.3 Let \(A \) be a critical independent set in a graph \(G \). Then the following statements are equivalent:

(i) \(A = \ker(G) \);
(ii) there is no set \(B \subseteq N(A) \), \(B \neq \emptyset \) such that \(|N(B) \cap A| = |B| \);
(iii) for each \(v \in A \) there exists a matching from \(N(A) \) into \(A - v \).
Proof. (i) \implies (ii) By Theorem 1.2(iii), there is a matching, say M, from $N(\ker(G))$ into $\ker(G)$. Suppose, to the contrary, that there is some non-empty set $B \subseteq N(\ker(G))$ such that
$$|M(B)| = |N(B) \cap \ker(G)| = |B|.$$
It contradicts the fact that, by Theorem 1.2(ii), $\ker(G)$ is a minimal critical independent set, because
$$d(\ker(G) - N(B)) = d(\ker(G)), \text{ while } \ker(G) - N(B) \subseteq \ker(G).$$

(ii) \implies (i) Suppose $A - \ker(G) \neq \emptyset$. By Theorem 1.2(iii), there is a matching, say M, from $N(A)$ into A. Since there are no edges connecting vertices belonging to $\ker(G)$ with vertices from $N(A) - \ker(G)$, we obtain that $M(N(A) - \ker(G)) \subseteq A - \ker(G)$. Moreover, we have that $|N(A) - \ker(G)| = |A - \ker(G)|$, otherwise
$$|A| - |N(A)| = (|\ker(G)| - |N(\ker(G))|) + (|A - \ker(G)| - |N(A) - \ker(G)|) > (|\ker(G)| - |N(\ker(G))|) = d_e(G).$$

It means that the set $N(A) - \ker(G)$ contradicts the hypothesis of (ii), because
$$|N(A) - \ker(G)| = |A - \ker(G)| = |N(A) - \ker(G)| \cap A.$$
Consequently, the assertion is true.

(ii) \implies (iii) By Theorem 1.2(iii), there is a matching, say M, from $N(A)$ into A. Suppose, to the contrary, that there is no matching from $N(A)$ into $A - v$. Hence, by Hall’s Theorem, it implies the existence of a set $B \subseteq N(A)$ such that $|N(B) \cap A| = |B|$, which contradicts the hypothesis of (ii).

(iii) \implies (ii) Assume, to the contrary, that there is a non-empty subset B of $N(A)$ such that $|N(B) \cap A| = |B|$. Let $v \in N(B) \cap A$. Hence, we obtain that
$$|N(B) \cap A - v| < |B|.$$
Then, by Hall’s Theorem, it is impossible to find a matching from $N(A)$ into $A - v$, in contradiction with the hypothesis of (iii). ■

Since $\ker(G)$ is a critical set, Theorem 1.2(iii) assures that there is a matching from $N(\ker(G))$ into $\ker(G)$. The following result shows that there are at least two such matchings.

Corollary 2.4 For a graph G the following are true:

(i) every edge $e \in (\ker(G), N(\ker(G)))$ belongs to a matching from $N(\ker(G))$ into $\ker(G)$;

(ii) every edge $e \in (\ker(G), N(\ker(G)))$ is not included in one matching from $N(\ker(G))$ into $\ker(G)$ at least.

Proof. Let $e = xy \in (\ker(G), N(\ker(G)))$, such that $x \in \ker(G)$. By Theorem 2.3(iii) there is a matching M from $N(\ker(G))$ into $\ker(G) - x$, that matches y with some $z \in \ker(G) - x$. Clearly, M is a matching from $N(\ker(G))$ into $\ker(G)$ that does not contain the edge $e = xy$, while $(M - \{yz\}) \cup \{xy\}$ is a matching from $N(\ker(G))$ into $\ker(G)$, which includes the edge $e = xy$. ■
Let us notice that the graphs G_1, G_2 from Figure 2 have: $\ker(G_1) = \text{core}(G_1)$, $\ker(G_2) = \{x, y, z\} \subset \text{core}(G_2)$, and both $\text{core}(G_1)$ and $\text{core}(G_2)$ are critical sets of maximum size. The graph G_3 from Figure 2 has $\ker(G_3) = \{u, v\}$, the set $\{t, u, v\}$ as a critical independent set of maximum size, while $\text{core}(G_3) = \{t, u, v, w\}$ is not a critical set. If S_{min} denotes an inclusion minimal independent set with $d(S_{\text{min}}) > 0$, one can see that: $S_{\text{min}} = \ker(G_1)$ for G_1, while the graph G_2 in the same figure has $S_{\text{min}} \in \{\{x, y\}, \{x, z\}, \{y, z\}\}$ and $\ker(G_2) = \{x, y\} \cup \{x, z\} \cup \{y, z\}$.

In [5] we have shown that $\ker(G)$ is equal to the intersection of all critical, independent or not, sets of G.

Theorem 2.5 For every graph G

$$
\ker(G) = \cup \{S_0 : S_0 \text{ is an inclusion minimal independent set with } d(S_0) > 0\}.
$$

Proof. Let A be a critical set and S_0 be an inclusion minimal independent set such that $d(S_0) > 0$. Then, Theorem 1.2(i) implies

$$
d(A \cup S_0) + d(A \cap S_0) \geq d(A) + d(S_0) > d(A) = d_c(G).
$$

Since S_0 is an inclusion minimal independent set such that $d(S_0) > 0$, we obtain that if $A \cap S_0 \neq S_0$, then $d(A \cap S_0) \leq 0$. Hence

$$
d(A) = d_c(G) \geq d(A \cup S_0) \geq d(A) + d(S_0) > d(A),
$$

which is impossible. Therefore, $S_0 \subseteq A$ for every critical set A. Consequently,

$$
S_0 \subseteq \cap \{B : B \text{ is a critical set of } G\} = \ker(G).
$$

Thus we obtain

$$
\cup \{S_0 : S_0 \text{ is an inclusion minimal independent set such that } d(S_0) > 0\} \subseteq \ker(G).
$$

Conversely, it is enough to show that every vertex from $\ker(G)$ belongs to some inclusion minimal independent set with positive difference. Let $v \in \ker(G)$. According to Theorem 2.3(iii) there exists a matching, say M, from $N(\ker(G))$ into $\ker(G) - v$.

Let us build the following sequence of sets

$$
\{v\} \subseteq M(N(v)) \subseteq ... \subseteq [MN]^k(v) \subseteq ...,
$$

where MN is a superposition of two mappings $N : 2^V \rightarrow 2^V$ ($N(A)$ is the neighborhood of A) and $M : 2^{N(\ker(G))} \rightarrow 2^{\ker(G)}$ ($M(A)$ is set of the vertices matched by M with vertices belonging to A).
Since the set \(\ker(G) \) is finite, there is an index \(j \) such that \([MN]^j (v) = [MN]^{j+1} (v) \). Hence \(|N ([MN]^j (v))| = |[MN]^{j+1} (v)| - 1 \). In other words, we found an independent set, namely, \([MN]^j (v) \) such that \(v \in [MN]^j (v) \) and \(d ([MN]^j (v)) = 1 \). Therefore, there must exist an inclusion minimal independent set \(X \) such that \(v \in X \) and \(d (X) = 1 \).

Remark 2.6 In a graph \(G \), the union of all minimum cardinality independent sets \(S \) with \(d (S) > 0 \) may be a proper subset of \(\ker(G) \); e.g., the graph \(G \) in Figure 3 that has \(\{x,y\} \subseteq \ker(G) = \{x,y,u,v,w\} \).

![Figure 3](image)

Figure 3: Both \(S_1 = \{x,y\} \) and \(S_2 = \{u,v,w\} \) are inclusion minimal independent sets satisfying \(d (S) > 0 \).

Proposition 2.7 \(\min \{|S_0| : d (S_0) > 0, S_0 \in \text{Ind}(G)\} \leq |\ker(G)| - d_c (G) + 1 \).

Proof. Since \(\ker(G) \) is a critical independent set, Theorem \(\ref{thm:critical} \) implies that there is a matching, say \(M \), from \(N (\ker(G)) \) into \(\ker(G) \). Let \(X = M (N (\ker(G))) \). Then \(d (X) = 0 \). For every \(v \in \ker(G) - X \) we have

\[
N (\ker(G)) \subseteq N (X) \subseteq N (X \cup \{v\}) \subseteq N (\ker(G)).
\]

Hence we get \(|X \cup \{v\}| - |N (X \cup \{v\})| = 1 \), while \(|X \cup \{v\}| = |\ker(G)| - d_c (G) + 1 \).

Remark 2.8 All the inclusion minimal independent sets \(S \), with \(d (S) > 0 \), of the graph \(H \) from Figure 3 are of the same size. However, there are inclusion minimal independent sets \(S \) with \(d (S) > 0 \), of different cardinalities; e.g., the graph \(G \) from Figure 3.

Proposition 2.9 If \(S_0 \) is an inclusion minimal independent set with \(d (S_0) > 0 \), then \(d (S_0) = 1 \).

Proof. For each \(v \in S_0 \), it follows that \(N (S_0 - v) = N (S_0) \), otherwise,

\[
d (S_0 - v) = |S_0 - v| - |N (S_0 - v)| = |S_0| - 1 - |N (S_0 - v)| \geq |S_0| - |N (S_0)| > 0,
\]

i.e., \(S_0 \) is not an inclusion minimal independent set with positive difference. Since \(S_0 \) is an inclusion minimal independent set with positive difference, we know that \(d (S_0 - v) \leq 0 \). On the other hand, it follows from the equality \(N (S_0 - v) = N (S_0) \) that

\[
d (S_0 - v) = |S_0 - v| - |N (S_0 - v)| = |S_0| - 1 - |N (S_0)| = d (S_0) - 1 \leq 0.
\]

Consequently, \(0 < |S_0| - |N (S_0)| \leq 1 \), which means that \(|S_0| - |N (S_0)| = 1 \).
Remark 2.10 The converse of Proposition 2.9 is not true. For instance, \(S = \{x, y, u\} \) is independent in the graph \(G \) from Figure 3 and \(d(S) = 1 \), but \(S \) is not minimal with this property.

Proposition 2.11 If \(S_i, i = 1, 2, \ldots, k, k \geq 1 \), are inclusion minimal independent sets, such that \(d(S_i) > 0, S_i \not\subset \bigcup_{j=1, j \neq i}^{k} S_j, 1 \leq i \leq k \), then \(d(S_1 \cup S_2 \cup \ldots \cup S_k) \geq k \).

Proof. For \(k = 1 \) the claim has been treated in Proposition 2.9, where we have achieved a stronger result.

We continue by induction on \(k \).

Let \(k = 2 \). Since \(S_1 \neq S_1 \cap S_2 \subset S_1 \), it follows that \(d(S_1 \cap S_2) \leq 0 \). Hence, Theorem 1.2(i) and Proposition 2.9 imply

\[
d(S_1 \cup S_2) \geq d(S_1 \cup S_2) + d(S_1 \cap S_2) \geq d(S_1) + d(S_2) = 2.
\]

Assume that the assertion is true for each \(k \geq 2 \), and let \(\{S_i, 1 \leq i \leq k+1\} \) be a family of inclusion minimal independent sets with

\[
d(S_i) > 0 \text{ and } S_i \not\subset \bigcup_{j=1, j \neq i}^{k+1} S_j, 1 \leq i \leq k+1.
\]

Since \(S_{k+1} \neq (S_1 \cup S_2 \cup \ldots \cup S_k) \cap S_{k+1} \subset S_{k+1} \), we obtain that

\[
d((S_1 \cup S_2 \cup \ldots \cup S_k) \cap S_{k+1}) \leq 0.
\]

Further, using the supermodularity of the function \(d \) and Proposition 2.9 we get

\[
d(S_1 \cup S_2 \cup \ldots \cup S_k \cup S_{k+1}) \geq d(S_1 \cup S_2 \cup \ldots \cup S_k \cup S_{k+1}) + d((S_1 \cup S_2 \cup \ldots \cup S_k) \cap S_{k+1}) \geq d(S_1 \cup S_2 \cup \ldots \cup S_k) + d(S_{k+1}) \geq k + 1,
\]

as required. □

Remark 2.12 The sets \(S_1 = \{v_1, v_2\}, S_2 = \{v_2, v_3\}, S_3 = \{v_3, v_4\} \) are inclusion minimal independent sets of the graph \(H \) from Figure 3 such that

\[
d(S_i) > 0, S_i \not\subset \bigcup_{j=1, j \neq i}^{3} S_j, i = 1, 2, 3.
\]

Notice that both families \(\{S_1, S_2\}, \{S_1, S_3\} \) have two elements, and \(d(S_1 \cup S_2) = 2 \), while \(d(S_1 \cup S_3) > 2 \).
3 Conclusions

In this paper we investigate structural properties of \(\text{ker}(G) \).

Having in view Theorem 2.5 notice that the graph:

- \(G_1 \) from Figure 2 has only one inclusion minimal independent set \(S \) such that \(d(S) > 0 \), and \(d_c(G_1) = 1 \);

- \(G \) from Figure 3 has only two inclusion minimal independent sets \(S \) such that \(d(S) > 0 \), and \(d_c(G) = 2 \);

- \(H \) from Figure 3 has 6 inclusion minimal independent sets \(S \) such that \(d(S) > 0 \), and \(d_c(H) = 3 \).

These remarks motivate the following.

Conjecture 3.1 The number of inclusion minimal independent set \(S \) such that \(d(S) > 0 \) is greater or equal to \(d_c(G) \).

References

[1] A. A. Ageev, *On finding critical independent and vertex sets*, SIAM Journal of discrete mathematics 7 (1994) 293-295.

[2] E. Boros, M. C. Golumbic, V. E. Levit, *On the number of vertices belonging to all maximum stable sets of a graph*, Discrete Applied Mathematics 124 (2002) 17-25.

[3] C. E. Larson, *A note on critical independence reductions*, Bulletin of the Institute of Combinatorics and its Applications 5 (2007) 34-46.

[4] V. E. Levit, E. Mandrescu, *Combinatorial properties of the family of maximum stable sets of a graph*, Discrete Applied Mathematics 117 (2002) 149-161.

[5] V. E. Levit, E. Mandrescu, *Vertices belonging to all critical independent sets of a graph*, arXiv:1102.0401v1 [cs.DM] 9 pp.

[6] V. E. Levit, E. Mandrescu, *Critical sets in bipartite graphs*, arXiv:1102.1138v1 [cs.DM] 13 pp.

[7] C. Q. Zhang, *Finding critical independent sets and critical vertex subsets are polynomial problems*, SIAM Journal of Discrete Mathematics 3 (1990) 431-438.