Notes on the Two-brane Model with Variable Tension

M. C. B. Abdalla1, 1J. M. Hoff da Silva1 and R. da Rocha1,1

1Instituto de Física Teórica, Universidade Estadual Paulista,
2Centro de Matemática, Computação e Cognição,
Universidade Federal do ABC, 09210-170, Santo André, SP, Brazil

Motivated by possible extensions of the braneworld models with two branes, we investigate some consequences of a variable brane tension using the well-established results on consistency conditions. By a slight modification of the usual stress-tensor used in order to derive the braneworld sum rules, we find out some important constraints obeyed by time-dependent brane tensions. In particular it is shown that the tensions of two Randall-Sundrum like branes obeying, at the same time, an Eötvös law, aggravate the fine-tuning problem. Also, it is shown that if the hidden brane tension obeys an Eötvös law, then the visible brane has a mixed behavior allowing a bouncing-like period at early times while it is dominated by an Eötvös law nowadays. To finalize, we discuss some qualitative characteristics which may arise in the scope of dynamical brane tensions, as anisotropic background and branons production.

PACS numbers: 11.25.-w, 04.50.-h

I. INTRODUCTION

In the last years the amount of works dealing with the possibility of a universe with extra dimensions is widely increasing. It is, in part, due to formal progress in string theory \cite{5}, but also (and perhaps mainly) to the possibility of the hierarchy problem explanation \cite{2}. Moreover, the scenarios investigated by Randall and Sundrum (RS) in \cite{3,4} allow the existence of a large extra dimension in a non-factorizable background geometry, where an exponential warp factor intervenes in the Higgs mechanism on the brane, making any hierarchy unnecessary. The basic setup of the RS model \cite{3} is composed by two mirror domain walls (the 3-branes) placed at the extremities of an extra transverse dimension, an S^1/Z_2 orbifold. Our universe is described by one of those branes (the so-called visible brane) and the metric is established due to the premise. Besides, physical arguments point into the light of \cite{4}, it is the physical-motivated situation. In such case, when the Einstein’s equations are computed, starting from a diagonal metric ansatz ($G_{\mu\nu}$), a non-diagonal component of the Einstein tensor appears in the form

$$\sqrt{-G} \frac{\partial^2 \sigma}{\partial t \partial \phi} = - \frac{1}{12M^3} \left[\Lambda \sqrt{-G} G_{04} + V_{vis} \sqrt{-g^{vis}} \right] \delta(\phi - \pi) + \sqrt{-g^{hid}} \delta(\phi), \quad (1)$$

and since the right hand side of the above equation is zero, one arrives at $\partial^2 \sigma / \partial t \partial \phi = 0$, which invalidates the premise. Besides, physical arguments point into the same direction: σ is present in the warp factor and, consequently, it enters in the rescaling of masses in the Higgs mechanism. Therefore it cannot be time dependent.

The crucial point is that once the idea of a constant tension is not taken into account in the two-brane model, the line element may be no longer diagonal, since it may also lead to an anisotropic background. In such a case the brane tension cannot be understood as the brane vacuum energy, since the brane is not a boost-invariant isotropic brane anymore \cite{3}. It is possible to show, however, that starting from an off-diagonal five-dimensional metric, after a diagonalization by an anholonomic frame, the hierarchy problem can be solved \cite{4}.

We should emphasize, however, that the variable braneworld tension models arising from a generalization of \cite{2} do not lead to an anisotropic background. In the case of an Eötvös brane tension, like the one studied in reference \cite{3}, it is shown a complete solution highly compatible to the observable symmetries.
In the presence of a complete solution obtained from first principles, it is important to support the model by respecting general consistence conditions obtained from Einstein’s equations, when applied to the braneworld scenario. The consistence conditions are even more essential in the absence of a complete solution. Such conditions were first developed in the context of five-dimensional braneworlds [8] and then extended to arbitrary dimensions [9]. In particular, those works corroborate the necessity of equalbrane tensions — of opposite signs — in RS model [3] in order to describe a nearly flat universe.

The main aim of this paper is to look at the consistence conditions of RS-like braneworlds in five dimensions taking into account variable tensions in both mirror branes. It is possible to implement a variable brane tension into the general stress-tensor used to develop the braneworld sum rules. We are specially concerned about Eötvös branes, i.e., branes whose tensions are given by the phenomenological law [10]

\[T_3 = \lambda(T_c - T), \]

where \(\lambda \) is a constant and \(T_c \) the critical temperature above what any brane exists. The usual interpretation is given as follows: the tension \(T_3 \) is an intrinsic characteristic of the brane and it increases as the temperature continuously decreases with time. Therefore, as the universe expands the temperature decreases and the brane becomes more rigid. The case encoded in the equation [2] is the physical one analyzed in reference [5] for the one-brane model. Here we study some possible configurations for a time dependent brane tension. In particular we show that two mirror branes endowed with Eötvös tensions at the same time are not allowed, except if the branes tensions obey a dynamical fine tuning, i.e., if the branes tensions are equal and opposite, time-dependent. It is, in some sense, an aggravation of the fine tuning problem, indicating that both branes should at least be part of a more general (unknown) global dynamics.

Going one step further, it is shown that, if the hiddenbrane gets an Eötvös tension, then the visiblebrane tension is dominated by an exponential damping factor at early times, showing an Eötvös-like behavior nowadays. The damping era, in which the brane tension decreases, is finished at a specific time, say \(t \), which denotes the inflection point of the tension variation. Keeping the usual interpretation of variable tensions, the present time (of increasing tension) can be associated with an expanding universe, while the damping era (before \(t \)) may be understood as a bouncing-like behavior of the universe.

We emphasize that all this paper content is based upon toy models, since a complete scenario for a dynamical tension must be obtained from first principles. However, it is still interesting to study those specific cases. The impossibility of both branes present Eötvös tensions at the same time, and a bouncing-like behavior of the visiblebrane, are quite important characteristics which can serve, in some sense, as guidelines for the study of more elaborated variable braneworld tension models.

We remark that in the string theory framework, the possibility of variable tensions was analyzed in several contexts. For example, in [12] it was implemented as an integration constant while in [13] as a dynamical variable. Apart of that, some stabilization mechanisms as well as supersymmetric branes in singular spaces also used variable brane tensions, but in those cases the tension depends on a bulk scalar field in order to stabilize the distance between the branes [14], and also on the superpotential [15], respectively.

Here, we shall keep the scope of the analysis only about braneworld models. In fact, we are not concerned with the mechanism under which the tension becomes variable, instead we are looking for possible dynamics it obeys. As a first approximation, we consider only time variable tensions. In this way, the Eötvös law [2] should be replaced by

\[T_3^{(i)} = \pm \lambda^{(i)} t + \beta^{(i)}, \]

where \(\lambda^{(i)} \) is a positive constant and \(\beta^{(i)} \) a constant representing the lower value for the brane tension. The upper index \((i) \) denotes a specific brane and runs in the range \(i = \text{vis}, \text{hid}, \) the visible and the hiddenbrane. In what follows we absorb the constant \(\beta^{(i)} \) into the definition of \(T_3^{(i)} \), just for convenience, in such a way that eq. [8] can be rewritten just as \(T_3^{(i)} = \pm \lambda^{(i)} t \). Note that the standard interpretation still holds for the universe evolution: for a positive tension, for instance, as the universe expands — and cools — the tension increases. We just change the order parameter from temperature to time. In fact, it can be accomplished just in very strict cases in which the relation between time and temperature is linear. We assume that it is the case for an Eötvös tension. As we will see in the next Section (C), this assumption does not preclude the possibility of non linear effects in the tension.

This paper is organized in the following way: in the next Section we derive the consistence conditions for braneworld in five dimensions in the scope of variable tensions. After that, we study the possible time variations in three specific cases: both branes endowed with Eötvös tensions, both branes respecting the obtained sum rules independently, and the last case when we fix the hiddenbrane tension as an Eötvös one. We finalize pointing out some important effects to be explored in the framework of variable brane tension models.

\[\text{II. ALLOWED DYNAMIC TENSIONS} \]

In this Section we shall reobtain, for book-keeping purposes, the basic results about consistence conditions in five dimensions, in close analogy to the results in [8, 9].

1 The subindex of \(T_3 \) denotes a 3-brane.
This preliminary setup allows the future analysis of the possible dynamics for the branes tensions.

We analyze a D-dimensional bulk spacetime endowed with a non-factorizable geometry, characterized by a metric given by

\[ds^2 = G_{AB}dX^A dX^B = W^2(r)g_{\alpha\beta}dx^\alpha dx^\beta + g_{ab}(r)dv_a dv_b, \]

where \(W^2(r) \) is the warp factor, \(X^A \) denotes the coordinates of the full D-dimensional spacetime, \(x^a \) stands for the \((p + 1)\) non-compact coordinates of the spacetime, and \(r^a \) labels the \((D - p - 1)\) directions in the internal compact space. The D-dimensional Ricci tensor can be related to its lower dimensional partners by

\[R_{\mu\nu} = \tilde{R}_{\mu\nu} - \frac{g_{\mu\nu}}{(p + 1)W} \nabla^2 W_{p+1}, \]

\[R_{ab} = \tilde{R}_{ab} - \frac{p + 1}{W} \nabla_a \nabla_b W, \]

where \(\tilde{R}_{ab} \) and \(\nabla^2 \) are respectively the Ricci tensor, the covariant derivative and the Laplacian operator constructed by means of the internal space metric \(g_{ab}. \) \(\tilde{R}_{\mu\nu} \) is the Ricci tensor derived from \(g_{\mu\nu}. \) Denoting the three curvature scalars by \(R = G^{AB}R_{AB}, \tilde{R} = g^{\mu\nu}\tilde{R}_{\mu\nu} \) and \(\tilde{R} = g^{ab}\tilde{R}_{ab} \) we have, from equations (5) and (6),

\[\frac{1}{p + 1}(W^{-2}\tilde{R} - R^\mu_\mu) = \pi W^{-2}\nabla W \cdot \nabla W + W^{-1}\nabla^2 W, \]

and

\[\frac{1}{p + 1}(\tilde{R} - \tilde{R}_a^a) = W^{-1}\nabla^2 W, \]

where \(R^\mu_\mu \equiv W^{-2}g^{\mu\nu}\tilde{R}_{\mu\nu} \) and \(\tilde{R}_a^a \equiv g^{ab}\tilde{R}_{ab}. \) Note that with such notation we have \(R = R^\mu_\mu + \tilde{R}_a^a. \) It can be verified that for an arbitrary constant \(\xi \) the following identity holds

\[\nabla \cdot (W^\xi \nabla W) = \frac{1}{W^{\xi + 1}}[\xi(W^{-2}\tilde{R} - R^\mu_\mu) + (p - \xi)(\tilde{R} - \tilde{R}_a^a)]. \]

By using the D-dimensional Einstein equation

\[R_{AB} = 8\pi G_D(T_{AB} - \frac{1}{D - 2}G_{AB}T), \]

where \(G_D \) is the gravitational constant in D dimensions, it is easy to write down the following equations

\[R^\mu_\mu = \frac{8\pi G_D}{D - 2}(T^\mu_\mu(D - p - 3) - T^m_m(p + 1)), \]

\[R^m_m = \frac{8\pi G_D}{D - 2}(T^m_m(p - 1) - T^\mu_\mu(D - p - 1)). \]

In the equations above we set \(T^\mu_\mu = W^{-2}\pi G_D T^\mu_\mu, \) so that \(T^M_M = T^\mu_\mu + T^m_m. \) Now, it is possible to relate \(R^\mu_\mu \) and \(R^m_m \) in equation (10) in terms of the stress-tensor. Note also that the left hand side of the equation (10) vanishes upon a line integration over a closed path along the compact internal space. Hence, taking all that into account we have

\[\int W^{\xi + 1}(T^\mu_\mu[(p - 2\xi)(D - p - 1) + 2\xi] + T^m_m p(2\xi - p + 1) + \frac{D - 2}{8\pi G_D}((p - \xi)\tilde{R} + \xi\tilde{R} W^{-2}) = 0. \]

This last equation provides a one parameter family of consistency conditions for warped braneworlds in arbitrary dimensions, just like in [9]. Each choice of \(\xi \) lead to a specific consistency condition. Let us hereon, particularize the analysis to the five-dimensional bulk case, since it is, indeed, the current case in variable tension one-brane models [3]. In such codimension one case, we have \(D = 5, p = 3, \) and \(\tilde{R} = 0. \) Besides, we shall consider the specific case where \(\xi = -1, \) since it eliminates the overall warp factor, resulting in the most interesting case. With these assumptions, the equation (14) takes a simple form given by

\[\int (T^\mu_\mu - 4T^m_m) = \frac{\tilde{R}}{8\pi G_5} \int W^{-2}. \]

In order to put the consistence conditions in terms of thebrane tensions let us establish the following stress-tensor ansatz

\[T_{MN} = \frac{\Lambda G_{MN}}{8\pi G_5} + \tau_{MN} - \sum_i T^{(i)}_3 \kappa^{(i)} \frac{\partial T^{(i)}_3}{\partial \tau} \Delta(r - r_i), \]

where \(\Lambda \) is the bulk cosmological constant, \(\tau_{MN} \) is the bulk matter fields stress-tensor, \(T^{(i)}_3 \) is the (time variable) tension of the \(i^{th} \) 3-brane, \(p[G_{MN}]^{(i)} \) is the pull-back of the metric to the 3-brane and \(\Delta(r - r_i) \equiv \delta(r - r_i)/\sqrt{(r - r_i)}, \) stands for the covariant delta function necessary to position the brane. The time variation of the \(i^{th} \)-brane tension is, as usual, computed by the \(\partial_\tau T^{(i)}_3 \) term and the positive constant \(\kappa^{(i)} \) responsible to the magnitude of the variation, has units of (energy)\(^{-1}\), while the brane tension still has units of [energy/(lenght)]\(^3\). We emphasize that the equation (10) is nothing but a slightly modification of the ansatz presented in [3]. Imposing \(\kappa^{(i)} \) to vanish or, equivalently, taking both the tensions constant, the same stress-tensor
of reference \cite{9} is obtained2.

We remark that the generalization implemented by equation (19) is just a first approximation, since it only takes linear contributions coming from the variation of the tension. We shall, however, keep our analysis in this straightforward case for two main reasons: firstly, as we will see, there are important results coming from such simplest case. Secondly, there are no physical reasons to encode higher derivatives as well as non linear terms in the time variation of the tension in the classical approach. The possibility of a spatial variation of the tension will be briefly discussed in the final Section.

Before computing the necessary partial traces of the stress-tensor to complete the analysis via equation (15), let us assume for simplicity $\tau_{MN} = 0$, i.e. there is no contribution from bulk matter fields. Hence, it is easy to see from (16) that

$$T^i_{\mu} = -\frac{4\Lambda}{8\pi G_5} - 4 \sum_i \left[T^{(i)}_3 + \kappa^{(i)} \partial_t T^{(i)}_3 \right] \Delta (r - r_i)$$

(17)

and

$$T^m_m = -\frac{\Lambda}{8\pi G_5}.$$

(18)

Taking into account the equations (15), (17), and (18), we find

$$-\bar{R} \oint W^{-2} = 32\pi G_5 \sum_{i} \left[T^{(i)}_3 + \kappa^{(i)} \partial_t T^{(i)}_3 \right].$$

(19)

Note that in the equation above the bulk cosmological constant is factored out. Furthermore, the equation (19) is valid only for tensions which do not depend on the extra dimension. Now, in trying to describe our universe, one can affirm that $\bar{R} = 0$ with an accuracy of $10^{-120} M_{Pl}$, where M_{Pl} is the four-dimensional Planck mass. Then, the final result of the consistency analysis appears to be quite simple. In fact, from equation (19) one has simply

$$\sum_{i} \left[T^{(i)}_3 + \kappa^{(i)} \partial_t T^{(i)}_3 \right] = 0.$$

(20)

Note that in the context of constant tensions we recover the well known RS fine tuning between the brane tensions

$$T^{vis}_3 = -T^{hid}_3,$$

(21)

as expected.

Hereon, some specific cases are analyzed in order to obtain physical insights about the variable tension possibility. We start by showing an aggravation of the fine tuning problem, appearing in the scope of time variable tensions.

A. Eötvös branes and the dynamical fine tuning

The first case we consider is when both branes are endowed of tensions obeying the Eötvös law $T^{(i)}_3 = \pm \lambda^{(i)} t$. To do so respecting the positivity of the T^{vis}_3 we impose

$$T^{vis}_3 = \lambda^{vis} t,$$

$$T^{hid}_3 = -\lambda^{hid} t,$$

(22)

where, as remarked, $\lambda^{(i)} > 0$. Substituting the equations (22) into (20) one obtains easily the following constraints

$$\lambda^{vis} = \lambda^{hid},$$

(23)

and

$$\kappa^{vis} = \kappa^{hid}.$$

(24)

However, in the light of equations (22), it means that the fine tuning must be time dependent, i.e.,

$$T^{vis}_3 + T^{hid}_3 = 0 \Rightarrow T^{vis}_3(t) + T^{hid}_3(t) = 0.$$

(25)

Therefore, in order to satisfy the consistency conditions the time variable Eötvös brane tensions must obey a dynamical fine tuning. It is indubitably a worsening of the previous (static tension) case. In particular, the relation (25) indicates that both branes need, at least, to respect some global (unknown) dynamics. It is hard to accept that the condition (25) is satisfied by chance. As a first consequence, we emphasize by passing, a weak brane tension (as on the hidden brane at later times) complicates the modulo stabilization mechanism \cite{16}, indicating once more the necessity of including the backreaction on the metric to stabilize the distance between the branes \cite{8}.

In order to circumvent the cumbersome situation of a dynamical fine tuning, several different approaches that lead to consistency conditions other then (20) can be used. Here we just enumerate some possibilities. The first possibility one can try is by working in a model with more than one extra dimension. In this case \bar{R} can be different from zero in (14) and the bulk cosmological constant is not factored out, both contributing to relax the constraint (20). In this case two possibilities emerge: higher codimension scenarios and hybrid compactification models (when there is codimension one with a p-brane, being $p > 3$). If the codimension is greater than one it is very difficult to extract gravitational information from the system. There are very interesting results in codimension two models \cite{17} \cite{18}, but it is far from being a closed issue. Indeed, for higher codimension the problem is completely open. Another possibility, the hybrid compactification models, is potentially interesting, specially

3 Note that for our universe in a RS-like model the brane tension must be positive in order to recover a positive Newton’s gravitational constant.
in the context of $\mathbb{R}^{10} \times S^1 / \mathbb{Z}_2$ Horava-Witten compactifications [1]. But there are strong restrictions, coming from experiment, concerning to the size of the extra on-brane dimensions [10]. Such constraints can, in some cases, aggravate the hierarchy problem for static brane tension models. To sum up, more dimensions do not seem to be the best strategy to solve the dynamical fine tuning problem.

In the five-dimensional General Relativity scope, one can escape from the implications of equations (20) and (22) by allowing the presence of (unknown) matter fields in the bulk. Obviously, if τ_{MN} is not zero in (16) the sum over the branes tensions (plus time variations) can be counterbalanced by the presence of the traces (τ^m_m, τ^μ_μ) in the consistency conditions. Of course, it can lead to another strong constraint, this time on the bulk matter but the dynamical fine tuning is not necessary anymore. The crucial problem arising from this approach rests, perhaps, on the fact that we do not have any information \textit{a priori} about the behavior, and even the nature, of those bulk fields.

In this vein, we shall point out another way to overcome the dynamical fine tuning problem simply by lifting the necessity of two E"otv"os branes tensions at the same time. In fact, in the light of the previous discussion, two E"otv"os branes appear to be problematic enough. So, the first different situation that might be thought is when we impose that, just one of the two mirror branes obeys the E"otv"os law. More precisely, what happens if we fix the behavior of the hidden brane as an E"otv"os brane? Before looking at that point, let us briefly comment one more situation in the next Section.

B. Independent branes tensions

The equation (20) means that the sum of the bracket terms must vanish. However it is possible that the terms $T_3^{(i)}(t) + \kappa^{(i)} \partial_t T_3^{(i)}(t)$ vanish for each brane independently. This is not the most interesting case, nevertheless we shall make a brief comment on it, since it will be important for the next case.

Setting $T_3^{(i)}(t) + \kappa^{(i)} \partial_t T_3^{(i)}(t) = 0$ for all (i) one finds

$$T_3^{(i)}(t) \sim \exp \left(-t / \kappa^{(i)} \right).$$

C. Bouncing-like behavior

A very interesting case is found when one of the branes tension configuration is taken into account, with the constraint that the another brane tension must obey the E"otv"os law. In order to implement it, let us impose $T_3^{h_i} = -\lambda^{h_i} t$.

Substituting the previous requirement into the consistency condition (20) we arrive at the following ordinary differential equation

$$\frac{dT_3^{\text{vis}}(t)}{dt} + \frac{T_3^{\text{vis}}(t)}{\kappa^{\text{vis}}} = \frac{\lambda^{h_i}}{\kappa^{\text{vis}}} t - \frac{\lambda^{h_i} \lambda^{h_i}}{\kappa^{\text{vis}}} = 0,$$ (27)

whose solution is given by

$$T_3^{\text{vis}}(t) = \lambda^{h_i} t + C e^{-t / \kappa^{\text{vis}}} + \lambda^{h_i} \left(e^{t / \kappa^{h_i}} - 1 \right),$$ (28)

where C is an arbitrary integration constant with $(\text{energy})^{-2}$ units, just as $\lambda^{(i)} t$. Absorbing the last factor into the visible brane tension, equation (29) reads

$$T_3^{\text{vis}}(t) = -T_3^{\text{hid}}(t) + C e^{-t / \kappa^{\text{vis}}}.$$ (29)

The first characteristic to note is the mixed behavior of T_3^{vis}. It is governed by a negative exponential at early times in such way that the tension was decreasing. Nevertheless after a critical time, say \bar{t}, the dominant term is given by the E"otv"os law of the hidden brane. It is easy to compute the critical time \bar{t}, since it is the minimal point of the T_3^{vis} function. By imposing $\frac{dT_3^{\text{vis}}(t)}{dt} = 0$ it follows that

$$\bar{t} = \kappa^{\text{vis}} \ln \left(\frac{C}{\lambda^{h_i} \kappa^{\text{vis}}} \right),$$ (30)

in such way that the constant C should be positive. So, it is reasonable to interpret C as an independent contribution to $T^{(\text{vis})}$.

The qualitative behavior of $T_3^{\text{vis}}(t)$ can be better visualized in the Figure 1. The usual interpretation of this result is given as follows: for times $t > \bar{t}$ the exponential term is suppressed and the dominant term of the visible brane tension is given by the E"otv"os one. As time goes the brane becomes more rigid, and the universe expands. In particular this dominant term is given by the hidden brane tension with opposite signal. For times $t < \bar{t}$, however, the dominant factor is the exponential one. Nevertheless, as time flows the visible brane tension decreases allowing a bouncing-like period for the universe described by such brane. It is an interesting characteristic of this toy model. It emerges naturally from the consistency conditions in five dimensions by requiring an E"otv"os hidden brane tension. We should emphasize that this bouncing-like period can be eliminated by imposing the additional fine tuning on the couplings

$$C = \lambda^{h_i} \kappa^{\text{vis}}.$$ (31)
as one can see from equation (36).

The functional form of the visible brane tension can be used then, at least qualitatively, as a tool to understand the general behavior of the universe it describes. Returning again to the content of the Figure 1, one sees that at early times ($0 < t < \bar{t}$) the visible brane has, predominantly, a independent behavior (in the sense of the previous subsection) from the hidden brane. It contracts until \bar{t}, and after that the effects coming from the presence of the hidden brane begin to dominate. The complete dynamics involved in such a process is far beyond the scope of this paper. The point, however, is that some interesting possibilities arise even studying simple models like that, based upon the formal context of the consistency conditions.

III. CONCLUDING REMARKS AND OUTLOOK

By applying the consistency conditions to five-dimensional variable tension branes in a RS-like setup we investigate the behavior of some time variable tension specific scenarios. In particular we demonstrate that the requirement of two Eötvös branes seems to aggravate the fine tuning problem, indicating that both branes should obey a more general unknown dynamic.

An interesting scenario arises, however, when we require that just one of the branes respects the Eötvös law. For instance, if the hidden brane satisfies this last requirement, the visible brane tension shows up a mixed behavior indicating a bouncing-like period at early times. It occurs when the visible brane seems not to “feel” the hidden brane, after which an expansion period, encoded in a mainly Eötvös tension term, comes to dominate. We remark that the contracting period can be eliminated by an additional fine tuning in the couplings of the model.

This work deals only with the possibility of time variable brane tensions, in particular when time variations related by the Eötvös law, since it is a physically motivated one \cite{5}. We shall however make some brief comments about the possibility of a spatial tension variation. Perhaps a more complete scenario can arise from the implementation of a spatial variation in the tension in addition to the time variation. In the context of consistency conditions, it can be accomplished by another extension of the stress-tensor (36). We expect a class of non-trivial solutions arising from such an extension, since the spacial variations must be suppressed by, for instance, a time damping factor in order to reproduce the observable isotropic universe at large scales. However, a definitive word requires a more careful analysis.

After these brief notes concerning the viability of variable tensions braneworld models, we shall use part of this final Section pointing out some possible future research lines, in order to bring some reasons why the analysis of such scenarios are worthwhile. Firstly, it has to be taken very seriously how to match an essentially anisotropic brane coming from some variable tension models with a large scale isotropic universe, as the one we experiment. As showed in \cite{5} it is not the case of Eötvös branes in the one-brane setup. However, new cosmological signatures are also expected in the scope of those (not-Eötvös) variable tension branes. The anisotropic background generated by such branes in the two-brane models breaks some standard model fields symmetries as well as can lead to subtle violation of the Equivalence Principle. Therefore, it constitutes a good laboratory to the study of fundamental principles limits.

Apart of that, a variable tension braneworld model can also incorporate, at least in some regime, the production of branons \cite{21,22}. Starting from the fact that any brane must fluctuate, because a completely rigid object cannot exist in the scope of a relativistic theory, one concludes that a new (scalar) field has to be included to represent the brane position in the bulk. Such field gives rise to Goldstone bosons (the branons) arising from the spontaneous symmetry breaking of the full bulk diffeomorphism due the presence of the brane. It seems that when the brane is flexible enough (with a tension scale much smaller then the fundamental gravity scale), branons are the unique particles to be expected. We remark that this kind of analysis was also developed in the context of orbifold compactifications \cite{23}. In the context analyzed in the previous Section it is not ruled out a set of parameters for branons production on the visible brane, for instance, in the early universe.

We conclude by saying that variable tension braneworlds can also impose an imprint in effective projected four-dimensional field theory, since the Kaluza-Klein mass spectrum of higher dimensional theories is indirectly affected by the brane tension. Therefore, it can, potentially, lead to new phenomena in particle physics. We shall finish emphasizing the usefulness of the consistency conditions in the establishment of this type of
braneworld models, in the sense of avoid ill defined scenarios. In this vein, the consistency conditions are also useful as starting point of further investigations in variable tension models, in order to study links with experimental signatures coming from new phenomenology obtained by studying mathematically consistent models.

Acknowledgments

The authors thanks to prof. M. E. X. Guimarães for useful conversation and prof. Ion Vancea for many interesting viewpoints, discussions, and for calling our attention for such a variety of references. We also thanks to an anonymous referee for important comments about the paper. M. C. B. Abdalla acknowledges CNPq for support, J. M. Hoff da Silva thanks to CAPES-Brazil for financial support.

[1] P. Horava and E. Witten, Nucl. Phys. B 460, 506 (1996) [arXiv:hep-th/9510209v2].
[2] N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Lett. B 429, 263 (1998) [arXiv:hep-ph/9803315].
[3] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999) [arXiv:hep-ph/9905221v1].
[4] L. A. Gergely, Phys. Rev. D 78, 084006 (2008) [arXiv:0806.3857v3[gr-qc]]; L. A. Gergely, Phys. Rev. D 68, 124011 (2003) [arXiv:gr-qc/0308072v2].
[5] P. K. Townsend and M. Zamaklar, Class. Quant. Grav. 18, 5209 (2001) [arXiv:hep-th/0107228].
[6] S. I. Vacaru, Chapter 7 in: Clifford and Riemann Finsler Structures in Geometric Mechanics and Gravity, Selected Works by S. Vacaru, P. Stavrinos, E. Gaburov and D. Gonta, Geometry Balkan Press, (2000) [arXiv:hep-th/0106268v3].
[7] G. Gibbons, R. Kallosh, and A. Linde, JHEP 0101, 022 (2001) [arXiv:hep-th/0011225v2].
[8] F. Leblond, R. C. Myers, and D. J. Winters, JHEP 0107, 031 (2001) [arXiv:hep-th/0106140v2].
[9] R. Eötvös, Wied. Ann. 27, 448 (1886).
[10] J. Scherk and J. Schwarz, Nucl. Phys. B 81, 223 (1974); C. G. Callan, D. Friedan, E. J. Martinec, and M. J. Perry, Nucl. Phys. B 262, 593 (1985).
[11] E. Bergshoeff, L. A. J. London, and P. K. Townsend, Class. Quant. Grav. 9, 2545 (1992) [arXiv:hep-th/9208026v4].
[12] O. DeWolfe, D. Z. Freedman, S. S. Gubser, and A. Karch, Phys. Rev. D 62, 046008 (2000) [arXiv:hep-th/9909134v4].
[13] E. Bergshoeff, R. Kallosh, and A. Van Proeyen, JHEP 0010, 033 (2000) [arXiv:hep-th/0007044v3].
[14] W. D. Goldberger and M. B. Wise, Phys. Rev. Lett. 83, 4922 (1999) [arXiv:hep-ph/9907447v2].
[15] J. Traschen, Class. Quant. Grav. 26, 075002 (2009) [arXiv:0809.2923v4[hep-th]].
[16] C. D. Hoyle, U. Schmidt, B. R. Heckel, E. G. Adelberger, J. H. Gundlach, D. J. Kapner, and H. E. Swanson, Phys. Rev. Lett. 86, 1418 (2001) [hep-ph/0011014v1].
[17] M. B. Green, J. H. Schwarz, and E. Witten, Superstring Theory, (Cambridge: Cambridge University Press), 1987.
[18] J. R. Cembranos, A. Dobado, and A. L. Maroto, Phys. Rev. Lett. 90, 241301 (2003) [arXiv:hep-ph/0302041v2].
[19] I. Antoniadis and K. Benakos, Phys. Lett. B 326, 69 (1994) [arXiv:hep-th/9310151].