First study of the two-body scattering involving charm hadrons

ALICE Collaboration

Abstract

This article presents the first measurement of the interaction between charm hadrons and nucleons. The two-particle momentum correlations of pD⁻ and pD⁺ pairs are measured by the ALICE Collaboration in high-multiplicity pp collisions at √s = 13 TeV. The data are compatible with the Coulomb-only interaction hypothesis within (1.1–1.5)σ. The level of agreement slightly improves if an attractive nucleon(N)D strong interaction is considered, in contrast to most model predictions which suggest an overall repulsive interaction. This measurement allows for the first time an estimation of the 68% confidence level interval for the isospin I = 0 inverse scattering length of the NΔ state f⁻¹ₐ₈₀ ∈ [−0.4, 0.9] fm⁻¹, assuming negligible interaction for the isospin I = 1 channel.
1 Introduction

The study of the residual strong interaction among hadrons is a very active field within nuclear physics. This interaction can lead to the formation of bound states, such as nuclei, or molecular states as, for example, the $\Lambda(1405)$, which is considered as being generated from the attractive forces in the nucleon(N)$K^-\Sigma\pi$ channels [1–4]. One of the most fervent discussions in this context is nowadays revolving around systems involving charm mesons (D, D^*). Studies of their interaction are motivated by the observation of several new states with hidden charm and/or beauty (so-called XYZ states) [5–9], as well as with open charm such as the T_{cc}^{++} [10, 11], and also of pentaquark states like $P_c(4380)$ and $P_c(4450)$ [12, 13]. These exotic hadrons can be described as compact multiquark states in the context of the constituent-quark model [14], but are also considered as natural candidates for loosely bound molecular states [5, 6]. For example, the structure of the $X_{c1}(3872)$ (formerly X(3872)) has been interpreted as a D^*/D^*-meson properties [20]. Similarly to kaons and antikaons, it is theoretically predicted that possible modifications of the charm-meson spectral function at large baryonic densities can be connected to a decrease of the chiral condensate, thus providing sensitivity to chiral-symmetry restoration [21].

So far, the topic of the strong interaction between hadrons containing charm quarks was addressed only from a theoretical point of view [22, 23] by employing different effective models anchored to the successful description of other baryon–meson final states, such as the $N\bar{K}$ and NK systems, while data are missing. Scattering experiments [26] and systematic studies of stable and unstable nuclei [27], accompanied by sophisticated calculations achieved within effective field theories [28, 29], allowed us to reach a solid comprehension of the interaction among nucleons. When extending these studies to interactions including strange hadrons, the average properties of the interactions of some strange nucleon–hadron combinations (pK^\pm [30–32], pΛ, and pΣ^0 [33–35]) could be gauged with the help of scattering data and measurements of kaonic atoms [36]. The study of A hypernuclei [37] led to the extraction of an average attractive potential. The situation has drastically changed in recent years, thanks to the novel employment of the femtoscopy technique [38] in pp and p–Pb collisions at the LHC applied to almost all combinations of protons and strange hadrons [39]. The ALICE Collaboration could precisely study the following interactions: pp, pK^\pm, pΛ, pΣ^0, pΣ^-, p$\Lambda\Lambda$, pΣ^-, pΩ^-, and pϕ [39–47].

Since conventional scattering experiments cannot be performed with D mesons and charm nuclei [48] have not been discovered yet (searches for charm nuclear states are included in the scientific program of the Japan Proton Accelerator Research Complex [49]), the femtoscopy technique can be employed to study the ND and $N\bar{D}$ interactions. In this article, the first measurement of the strong interaction between a D^- meson and a proton is reported. This pioneering analysis employs D^- instead of the more abundantly produced D^0 mesons because of the smaller contribution from decays of excited charm states and the possibility to separate particles and antiparticles without ambiguity.

2 Experimental apparatus and data samples

The analysis was performed using a sample of high-multiplicity pp collisions at $\sqrt{s} = 13$ TeV collected by ALICE [50, 51] during the LHC Run 2 (2016–2018). The main detectors used for this analysis to reconstruct and identify the protons and the D-meson decay products are the Inner Tracking System
First study of the two-body scattering involving charm hadrons

ALICE Collaboration

3 Data analysis

3.1 Selection of proton and D±-meson candidates

The proton candidates are selected according to the methods described in [39]. Charged-particle tracks reconstructed with the TPC are required to have transverse momentum $0.5 < p_T < 4.05$ GeV/c and pseudorapidity $|\eta| < 0.8$. Particle identification (PID) is conducted by measuring the specific energy loss and the time of flight with the TPC and TOF detectors, respectively. The selection is based on the deviation n_σ between the measured and expected values for protons, normalized by the detector resolution σ. For proton candidates with a momentum $p < 0.75$ GeV/c, only the TPC is used by requiring $|n_\sigma^{TPC}| < 3$, while for larger momenta the PID information of TPC and TOF are combined and tracks are accepted only if the condition $\sqrt{(n_\sigma^{TPC})^2 + (n_\sigma^{TOF})^2} < 3$ is fulfilled. With these selection criteria, the purity of the proton sample averaged over p_T is $P_p = 98\%$ [39]. The contribution of secondary protons originating from weak decays or interactions with the detector material is assessed by using MC template fits to the measured distribution of the distance of closest approach of the track to the primary vertex. The estimated average fraction of primary protons is 86% [39].

The D± mesons are reconstructed via their hadronic decay channel $D^\pm \rightarrow K^\mp \pi^\pm \pi^\pm$, having a branching ratio $\text{BR} = (9.38 \pm 0.15)\%$ [60]. D-meson candidates are defined combining triplets of tracks reconstructed in the TPC and ITS detectors with the proper charge signs, $|\eta| < 0.8$, $p_T > 0.3$ GeV/c, and a minimum of two (out of six) hits in the ITS, with at least one in either of the two innermost layers to ensure a good pointing resolution. To reduce the large combinatorial background and the contribution of D± mesons originating from beauty-hadron decays (non-prompt), a machine-learning multi-class classification algorithm based on Boosted Decision Trees (BDT) provided by the XGBOOST library [61, 62] is employed. The variables utilized for the candidate selection in the BDT are based on the displaced decay-vertex topology, exploiting the mean proper decay length of D± mesons of $c\tau \approx 312$ μm [60], and on the PID of charged pions and kaons. Before that, a preselection of the D± candidates based on the PID information of the decay products is applied by requiring a 3σ compatibility either with the TPC or the TOF expected signals of the daughter tracks. Signal samples of prompt (originating from charm-quark hadronization or decays of excited charm states) and non-prompt D± mesons for the BDT training are obtained from MC simulations. The background samples are obtained from the sidebands of the candidate invariant mass distributions in data. The BDT outputs are related to the candidate probability to be a prompt or non-prompt D meson, or combinatorial background. D-meson candidates are selected in the p_T interval between 1 and 10 GeV/c by requiring a high probability to be a prompt D± meson and a low
The width of the Gaussian function used to describe the signal peak, \(\text{background} \). The left panel of Fig. 1 shows the \(M \) in the range \(1 < p_T < 3 \) \(\text{GeV}/c \) via the corresponding acceptance-times-efficiency factors for prompt (obtained with the method relying on the definition of different selection criteria, as explained in the text). Right: example of raw-yield distribution as a function of the BDT-based selection employed in the procedure adopted for the determination of the fraction of \(D^\pm \) originating from beauty-hadron decays for the \(2 < p_T < 3 \) \(\text{GeV}/c \) interval.

The contributions of prompt and non-prompt \(D^\pm \) mesons originating from charm hadronisation and beauty-hadron decays are obtained with the method relying on solving a system of equations that relate the raw yield value \(Y_i \) (obtained with the \(i \)-th threshold on the BDT output score) to the corrected yields of prompt (\(N_{\text{prompt}} \)) and non-prompt (\(N_{\text{non-prompt}} \)) \(D^\pm \) mesons via the corresponding acceptance-times-efficiency factors for prompt (\((\text{Acc} \times \varepsilon)_i^{\text{prompt}} \)) and non-prompt (\((\text{Acc} \times \varepsilon)_i^{\text{non-prompt}} \)) \(D^\pm \) mesons as follows

\[
\begin{pmatrix}
(\text{Acc} \times \varepsilon)_1^{\text{prompt}} & (\text{Acc} \times \varepsilon)_1^{\text{non-prompt}} \\
\vdots & \vdots \\
(\text{Acc} \times \varepsilon)_n^{\text{prompt}} & (\text{Acc} \times \varepsilon)_n^{\text{non-prompt}}
\end{pmatrix}
\times
\begin{pmatrix}
N_{\text{prompt}} \\
N_{\text{non-prompt}}
\end{pmatrix}
-
\begin{pmatrix}
Y_1 \\
\vdots \\
Y_n
\end{pmatrix}
=
\begin{pmatrix}
\delta_1 \\
\vdots \\
\delta_n
\end{pmatrix}. \tag{1}
\]

The \(\delta_i \) factors represent the residuals that account for the equations not holding exactly due to the
uncertainty of \(Y_i, (\text{Acc} \times \epsilon)_i^{\text{non-prompt}}, \) and \((\text{Acc} \times \epsilon)_i^{\text{prompt}}\). The system of equations can be solved via a \(\chi^2 \) minimization, which leads to the determination of \(N_i^{\text{prompt}} \) and \(N_i^{\text{non-prompt}} \). The right panel of Fig. I shows an example of a raw-yield distribution as a function of the BDT-based selection used in the minimization procedure for \(D^\pm \) mesons with \(2 < p_T < 3 \) GeV/c. The leftmost data point of the distribution represents the raw yield corresponding to the loosest selection on the BDT output related to the candidate probability of being a non-prompt \(D^\pm \) meson, while the rightmost one corresponds to the strictest selection, which is expected to preferentially select non-prompt \(D^\pm \) mesons. The prompt and non-prompt components, obtained for each BDT-based selection using the procedure described above, are represented by the red and blue filled histograms, respectively, while their sum is reported by the magenta histogram.

The obtained corrected yields \(N_i^{\text{prompt}} \) and \(N_i^{\text{non-prompt}} \) can then be used to compute the fraction of non-prompt \(D^\pm \) mesons \(f_i^{\text{non-prompt}} \) for a given selection \(j \),

\[
f_i^{\text{non-prompt}} = \frac{(\text{Acc} \times \epsilon)_i^{\text{non-prompt}} \times N_i^{\text{non-prompt}}}{(\text{Acc} \times \epsilon)_j^{\text{non-prompt}} \times N_j^{\text{non-prompt}} + (\text{Acc} \times \epsilon)_j^{\text{prompt}} \times N_j^{\text{prompt}}},
\]

The \(f_i^{\text{non-prompt}} \) factor for the selections used to build the \(pD^- \) and \(\bar{p}D^+ \) pairs is estimated to be \((7.7 \pm 0.5\text{ (stat)} \pm 0.2\text{ (syst)})\)%. The systematic uncertainty of \(f_i^{\text{non-prompt}} \) is evaluated by repeating the procedure with different sets of selection criteria and varying the fitting parameters in the raw-yield extraction. In addition, since the efficiency depends on the charged-particle multiplicity, the multiplicity distribution in the MC sample used for the efficiency computation was weighted in order to reproduce the one in data.

Differently from the component originating from beauty-hadron weak decays, \(D^\pm \) mesons originating from excited charm-meson strong decays cannot be experimentally resolved from promptly produced \(D^\pm \) mesons due to their short lifetime. The two largest sources are the \(D^{\pm \pm} \to D^{\pm} \pi^0 \) and \(D^{\pm \pm} \to D^{\pm} \gamma \) decays, having \(\text{BR} = (30.7 \pm 0.5)\% \) and \(\text{BR} = (1.6 \pm 0.4)\% \)\cite{60}, respectively. Their contribution is estimated from the production cross sections of \(D^+ \) and \(D^{++} \) mesons measured in pp collisions at \(\sqrt{s} = 5.02\text{ TeV} \)\cite{63, 64} and employing the PYTHIA 8 decayer for the description of the \(D^{\pm \pm} \to D^{\pm} X \) decay kinematics. The fraction of \(D^\pm \) mesons in \(1 < p_T < 10 \) GeV/c originating from \(D^{\pm \pm} \) decays is estimated to be \(f_{D^{\pm \pm}} = (27.6 \pm 1.3\text{ (stat)} \pm 2.4\text{ (syst)})\)%\, where statistical and systematic uncertainties are propagated from the measurements of the \(D^+ \) and \(D^{++} \) production cross sections.

3.2 The correlation function

The proton and \(D^- \) candidates are then combined and their relative momentum \(k^* \) is evaluated as \(k^* = \frac{1}{2} \times |\mathbf{p}_p - \mathbf{p}_{D^-}| \), where \(\mathbf{p}_p, \mathbf{p}_{D^-} \) are the momenta of the two particles in the pair rest frame. The \(k^* \) distribution of \(pD^- \) pairs, \(N_{\text{same}}(k^*) \), is then divided by the one obtained combining proton and \(D^- \) candidates from different events, \(N_{\text{mixed}}(k^*) \), to compute the two-particle momentum correlation function, which is defined as \(C_{\text{corr}}(k^*) = \mathcal{N} \times N_{\text{same}}(k^*)/N_{\text{mixed}}(k^*) \)\cite{68}. The latter provides a correction for the acceptance of the detector and the normalization for the phase space of the particle pairs. To ensure the same geometrical acceptance as for \(N_{\text{same}} \), the mixing procedure is conducted only between particle pairs produced in events with similar \(z \) position of the primary vertex and similar charged-particle multiplicity. Since the correlation functions for \(pD^- \) and \(\bar{p}D^+ \) are consistent with each other within statistical uncertainties, they are combined and in the following \(pD^- \) will represent \(pD^- \oplus \bar{p}D^+ \). The normalization constant \(\mathcal{N} \) is obtained from \(k^* \in [1500, 2000] \) MeV/c where the correlation function is independent of \(k^* \), as expected since in this region of \(k^* \) the pairs of particles are not affected by any interaction. The resulting correlation function \(C_{\text{corr}}(k^*) \) is displayed in the left panel of Fig. 2. The data are compatible with unity for \(k^* > 500 \) MeV/c, while they show a possible hint of an increase for lower \(k^* \) values. In total 200 \(pD^- \) and 221 \(\bar{p}D^+ \) pairs contribute to \(N_{\text{same}}(k^*) \) in the region of \(k^* < 200 \) MeV/c, where model calculations\cite{22, 25} predict a deviation from unity. The systematic
contributions are not scaled by the respective λ radius. The resulting overall source is parametrized by a Gaussian profile characterized by an effective relative distance in the pair rest frame, r. The width of the dark (light) shaded bands depicts the statistical (total) uncertainty of the parametrized background contributions.

The measured two-particle momentum correlation function can be related to the source function and the two-particle wave function via the Koonin–Pratt equation $C(k^*) = \int dr^* S(r^*) |\Psi(k^*, r^*)|^2$, where $S(r^*)$ is the source function, $\Psi(k^*, r^*)$ is the two-particle wave function, and r^* refers to the relative distance between the two particles. The source function for the pD$^-$ pairs is estimated by employing the hypothesis of a common source for all hadrons in high-multiplicity pp collisions at the LHC corrected for strong decays of extremely short-lived resonances ($c\tau \lesssim 5$ fm) feeding into the particle pairs. This is the case for resonances strongly decaying into protons. In contrast, both beauty-hadron and D$^+\pi^-$ decays occur at larger distances than the typical range for the strong interaction. This implies that the correlation function for D$^-$ mesons originating from these decays will only carry the imprint of the interaction of the parent particle with the proton without impacting the size of the emitting source. The core source determined in [66] features a dependence on the transverse mass m_T of the particle pair, which can be attributed to a collective expansion of the system [65, 67, 69]. The collective behavior has been studied in high-multiplicity pp collisions by the CMS Collaboration and found to be comparable for light-flavor and charm hadrons [70]. Hence, the core source of pD$^-$ pairs with $k^* < 200$ MeV/c is estimated by parameterizing the measured m_T dependence of the source radius extracted from pp correlations in [66] and evaluating it at the $\langle m_T \rangle = 2.7$ GeV/c2 of the pD$^-$ pairs. Since the production mechanism of charm mesons might not be identical to that of light-flavor baryons, the emission of the pp and pD$^-$ pairs is studied by simulating pp collisions with PYTHIA 8.301 [57] and computing their relative distance in the pair rest frame, r^*, considering only D$^-$ mesons originating directly from charm-quark hadronization. These studies indicate that the core source of pD$^-$ at the pertinent $\langle m_T \rangle$ is smaller by about 25% compared to that of pp pairs. This is included in the systematic uncertainty of the source radius. The resulting overall source is parametrized by a Gaussian profile characterized by an effective radius $R_{\text{eff}} = 0.89_{-0.22}^{+0.08}$ fm, where the uncertainty includes both the one arising from the m_T-dependent parametrization and the PYTHIA 8 study.

The correlation function due to the genuine pD$^-$ interaction can be extracted from the measured $C_{\text{exp}}(k^*)$ uncertainties of $C_{\text{exp}}(k^*)$ are assessed by varying the proton and D$^-$ selection criteria.

![Figure 2](image-url)
by estimating and subtracting the contributions of D\(^-\) mesons originating from beauty-hadron and D\(^*^-\) decays, protons originating from strange-hadron decays, as well as misidentified protons and combinatorial-background D-meson candidates. The experimental correlation function is decomposed as

\[
C_{\exp}(k^*) = \lambda_{\text{pD}^-} \times C_{\text{pD}^-}(k^*) + \lambda_{p(K^+\pi^-\pi^-)} \times C_{p(K^+\pi^-\pi^-)}(k^*) + \lambda_{\text{pD}^+} \times C_{\text{pD}^+}(k^*) + \lambda_{\text{flat}} \times C_{\text{flat}}.
\]

(3)

The combinatorial (K\(^+\)\(\pi^-\)\(\pi^-\)) background below the D\(^-\) peak and the final-state interaction among protons and D\(^-\) from D\(^*^-\) decays play a significant role. All other contributions are assumed to be characterized by a C(k\(^*\)) compatible with unity and are therefore included in the C\(_{\text{flat}}\) contribution. The relative weights, \(\lambda_i\), are evaluated considering the contributions to D\(^-\) candidates described above and following the procedure explained in Ref. 39 for the protons. They are about 33.9% for C\(_{\text{pD}^-}\)(k\(^*\)) and 38.8%, 14.4%, and 13.4% for the p(K\(^+\)\(\pi^-\)\(\pi^-\)), pD\(^+\), and flat contributions, respectively.

The correlation function \(C_{p(K^+\pi^-\pi^-)}\) is extracted from the sidebands of the D\(^-\) candidates, chosen as [\(M_{D^-}\) (\(p_T\)) \(-\) 200 MeV/c, \(M_{D^-}\) (\(p_T\)) \(+\) 5 \(\times\) \(\sigma_{D^-}\) (\(p_T\))] and [\(M_{D^-}\) (\(p_T\)) \(+\) 5 \(\times\) \(\sigma_{D^-}\) (\(p_T\)), \(M_{D^-}\) (\(p_T\)) \(+\) 200 MeV/c] for the left and right sidebands, respectively. The contamination from D\(^*^-\) \(\rightarrow\) D\(^0\)\(\pi^-\) \(\rightarrow\) K\(^+\)\(\pi^-\)\(\pi^-\) decays in the right sideband is suppressed by a 2.5\(\sigma_{D^-}\) rejection around the mean value of the D\(^*^-\) invariant mass peak. The resulting correlation function is parametrized by a third-order polynomial in \(k^*\) \(\in\) [0, 1.5] GeV/c and is displayed by the green curve reported in the right panel of Fig. 2. The observed behavior is determined by meson–meson and baryon–meson mini-jets and residual two-body interactions among the quadruplet, as obtained from previous studies [42, 46].

The residual pD\(^-\) correlation function is computed employing the Koonin–Pratt formalism using the CATS framework [71] to obtain a two-particle wave function \(\Psi(k^*, r^*)\) considering only the Coulomb interaction and assuming that the source radius is the same as for pD\(^-\) pairs. The obtained pD\(^*^-\) correlation function is transformed to the momentum basis of the pD\(^-\) relative momentum by considering the kinematics of the D\(^*^-\) \(\rightarrow\) D\(^-\)X decay [72]. The resulting correlation function is shown in the right panel of Fig. 2 as a red band. The purple band in the same figure represents the total background that includes all contributions with their corresponding weights. Finally, the genuine pD\(^-\) correlation function is obtained by solving Eq. 3 for C\(_{\text{pD}^-}\)(k\(^*\)) and is shown in Fig. 3.

The systematic uncertainties of the genuine pD\(^-\) correlation function, C\(_{\text{pD}^-}\)(k\(^*\)), include (i) the uncertainties of C\(_{\exp}\)(k\(^*\)), (ii) the uncertainties of the \(\lambda_i\) weights, and (iii) the uncertainties related to the parametrization of the background sources, C\(_{p(K^+\pi^-\pi^-)}\)(k\(^*\)) and C\(_{pD^+}\)(k\(^*\)). In particular, as previously mentioned, the systematic uncertainty on C\(_{\exp}\)(k\(^*\)) is estimated by varying the proton and D\(^-\)-candidate selection criteria and ranges between 0.5% and 3% as a function of k\(^*\). The uncertainties of the \(\lambda_i\) weights are derived from the systematic uncertainties on the proton and D\(^-\) purities (\(P_{p}\) and \(P_{D^-}\)), \(f_{D^-}\), and \(f_{\text{non-prompt}}\) reported in Section 5.1. The systematic uncertainties of C\(_{p(K^+\pi^-\pi^-)}\)(k\(^*\)) are estimated following the same procedure adopted for C\(_{\exp}\)(k\(^*\)) and, in addition, by varying the range of the fit of the correlation function parametrized from the sidebands regions of the invariant mass distribution. Additional checks are performed by varying the invariant mass interval used to define the sidebands region of up to 100 MeV/c\(^2\). The resulting systematic uncertainty ranges from 1% to 5%. The systematic uncertainty of C\(_{pD^+}\)(k\(^*\)) is due to the uncertainty on the emitting source. Considering the small \(\lambda_{pD^+}\)(k\(^*\)) this uncertainty results to be negligible compared to the other sources of uncertainty. The overall relative systematic uncertainty on C\(_{pD^-}\)(k\(^*\)) resulting from the different sources ranges between 3% and 10% and is maximum in the lowest k\(^*\) interval.

4 Results
The resulting genuine C\(_{pD^-}\)(k\(^*\)) correlation function can be employed to study the pD\(^-\) strong interaction that is characterized by two isospin configurations and is coupled to the nD\(^0\) channel. First of all, in order
to assess the effect of the strong interaction on the correlation function, a reference calculation including only the Coulomb interaction is considered. The corresponding correlation function is obtained using CATS [71]. Secondly, various theoretical approaches to describe the strong interaction are benchmarked, including meson exchange (J. Haidenbauer et al. [22]), meson exchange based on heavy quark symmetry (Y. Yamaguchi et al. [25]), an SU(4) contact interaction (J. Hofmann and M. Lutz [23]), and a chiral quark model (C. Fontoura et al. [24]). The relative wave functions for the model of J. Haidenbauer et al. [22] are provided directly, while for the other models [23–25] they are evaluated by employing a Gaussian potential whose strength is adjusted to describe the corresponding published scattering lengths listed in Table 1. The pD correlation function is computed within the Koonin–Pratt formalism, taking into account explicitly the coupling between the pD and nD channels [73] and including the Coulomb interaction [74]. The finite experimental momentum resolution is considered in the modeling of the correlation functions [39].

The outcome of these models is compared in Fig. 3 with the measured genuine pD correlation function. The degree of consistency between data and models is quantified by the p-value computed in the range \(k^* < 200 \text{ MeV/c} \). It is expressed by the number of standard deviations \(n_\sigma \) reported in Table 1 where the \(n_\sigma \) range accounts, at one standard deviation level, for the total uncertainties of the data points and the models. The values of the scattering lengths \(f_0 \) for the different models are also reported in Table 1. Here, the high-energy physics convention on the scattering-length sign is adopted: a negative value corresponds to either a repulsive interaction or to an attractive one with presence of a bound state, while a positive value corresponds to an attractive interaction. The data are compatible with the Coulomb-only hypothesis within \((1.1–1.5) \sigma\). Nevertheless, the level of agreement slightly improves in case of the models by J. Haidenbauer et al. (employing \(g^2/4\pi = 2.25 \)) which predicts an attractive interaction, and by Y. Yamaguchi et al. which foresees the formation of a \(N\overline{D} \) bound state with a mass of 2804 MeV/c\(^2\) in the \(I = 0 \) channel.

Finally, the scattering parameters can be constrained by comparing the data with the outcome of calculations carried out varying the strength of the potential and the source radius. In this case the interaction potential is parametrized by a Gaussian-type functional form with the range of p-meson exchange. In this estimation, it is assumed that the interaction in the \(I = 1 \) channel is negligible for simplicity. The correlation function \(C_{pD^*}(k^*) \) is computed including also the Coulomb interaction and the coupled channel.
The same procedure was repeated for fixed values of the interaction potential (right panel) for $I = 0$. The blue dotted lines represent the value of $f_{0,1=0}^{-1}$ and $V_I = 0$ for which the χ^2 is minimum and for the 1 σ confidence interval.

This procedure is repeated for different values of the interaction potential for the $I = 0$ channel ($V_{1=0}$). For all the correlation functions corresponding to the different interaction potentials, the agreement with the data is evaluated by computing the χ^2 using a bootstrap procedure. Both the statistical and systematic uncertainties of the data are considered in the bootstrap procedure, as well as the uncertainty on the emitting source radius (R_{em}) in the computed $C_{\pi D^+}(k^*)$, which is varied within 1 σ of its uncertainty. The resulting overall χ^2 distributions are shown in Fig. 4 as a function of $f_{0,1=0}^{-1}$ and $V_{I=0}$ in the left and right panels, respectively. The data are found to be consistent with a potential strength of $V_{I=0} \in [-1450, -1050]$ MeV within 1 σ. This corresponds to an inverse scattering-length interval of $f_{0,1=0}^{-1} \in [-0.4, 0.9]$ fm$^{-1}$. Since the determined potential strength is always attractive, the positive values of the scattering length imply an attractive interaction without bound states, while the negative values are consistent with the presence of a $N\overline{D}$ bound state. The same procedure was repeated for fixed values of R_{em} in order to obtain the 1 σ confidence interval as a function of the emitting source radius. Figure 5 shows the confidence interval as a function of the source radius varied within 1 σ of its uncertainty. The dashed interval corresponds to the radius uncertainty due to only the m_r dependence while the full-shaded interval shows the total radius uncertainty. The most probable value reported in Fig 5 with the star symbol corresponds to an attractive interaction with the formation of a bound state. Given that most models predict a repulsive $I = 1$ interaction, in reality the $I = 0$ interaction might have to be even more attractive. The herewith presented limits provide valuable guidance for further theoretical studies advancing the understanding of

Table 1: Scattering parameters of the different theoretical models for the $N\overline{D}$ interaction [22,25] and degree of consistency with the experimental data computed in the range $k^* < 200$ MeV/c.

Model	f_0 ($I = 0$)	f_0 ($I = 1$)	n_σ
Coulomb			
Haidenbauer et al.	0.67	0.04	(1.1–1.5)
($g_5^2/4\pi = 2.25$)			
Hofmann and Lutz	−0.16	−0.26	(1.3–1.6)
Yamaguchi et al.	−4.38	−0.07	(0.6–1.1)
Fontoura et al.	0.16	−0.25	(1.1–1.5)
the strong interaction in the charm sector.

5 Summary

In conclusion, this article presents the first measurement of correlation functions involving charm hadrons, which allows one to access to the strong interaction between a proton and a charm meson. The genuine pD\(^-\) correlation function reflects the pattern of an overall attractive interaction. The data are compatible within (1.1–1.5)\(\sigma\) with the correlation function obtained from the hypothesis of a Coulomb-only interaction. The degree of consistency improves when considering, in addition, state-of-the-art models that predict an attractive strong N\(\bar{D}\) interaction with or without a bound state. Finally, assuming no interaction for the \(I = 1\) channel, the scattering length of the N\(\bar{D}\) system in the isospin \(I = 0\) channel is estimated as \(f_{0, I=0}^{-1} \in [-0.4, 0.9] \text{ fm}^{-1}\). This exploratory study paves the way for precision studies of the strong interactions involving charm hadrons, facilitated by about one order of magnitude larger pp data samples expected to be collected in the next years during the LHC Runs 3 and 4 [75].

Acknowledgements

The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) collaboration. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: A. I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy of Sciences, Austrian Science Fund (FWF): [M 2467-N36] and Nationalstiftung für Forschung, Technologie und Entwicklung, Austria; Ministry of Communications and High Technologies, National Nuclear Research Center, Azerbaijan; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (Finep), Fundação de Amparo à
First study of the two-body scattering involving charm hadrons

ALICE Collaboration

Pesquiza do Estado de São Paulo (FAPESP) and Universidade Federal do Rio Grande do Sul (UFRGS), Brazil; Ministry of Education of China (MOEC), Ministry of Science & Technology of China (MSTC) and National Natural Science Foundation of China (NSFC), China; Ministry of Science and Education and Croatian Science Foundation, Croatia; Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Cubaenergía, Cuba; Ministry of Education, Youth and Sports of the Czech Republic, Czech Republic; The Danish Council for Independent Research | Natural Sciences, the VILLUM FONDEN and Danish National Research Foundation (DNRF), Denmark; Helsinki Institute of Physics (HIP), Finland; Commissariat à l’Energie Atomique (CEA) and Institut National de Physique Nucléaire et de Physique des Particules (IN2P3) and Centre National de la Recherche Scientifique (CNRS), France; Bundesministerium für Bildung und Forschung (BMBF) and GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany; General Secretariat for Research and Technology, Ministry of Education, Research and Religions, Greece; National Research, Development and Innovation Office, Hungary; Department of Atomic Energy Government of India (DAE), Department of Science and Technology, Government of India (DST), University Grants Commission, Government of India (UGC) and Council of Scientific and Industrial Research (CSIR), India; Indonesian Institute of Science, Indonesia; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) and Japan Society for the Promotion of Science (JSPS) KAKENHI, Japan; Consejo Nacional de Ciencia (CONACYT) y Tecnología, through Fondo de Cooperación Internacional en Ciencia y Tecnología (FONCICYT) and Dirección General de Asuntos del Personal Académico (DGAPA), Mexico; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; The Research Council of Norway, Norway; Commission on Science and Technology for Sustainable Development in the South (COMSATS), Pakistan; Pontificia Universidad Católica del Perú, Peru; Ministry of Education and Science, National Science Centre and WUT-ID-UB, Poland; Korea Institute of Science and Technology Information and National Research Foundation of Korea (NRF), Republic of Korea; Ministry of Education and Scientific Research, Institute of Atomic Physics, Ministry of Research and Innovation and Institute of Atomic Physics and University Politehnica of Bucharest, Romania; Joint Institute for Nuclear Research (JINR), Ministry of Education and Science of the Russian Federation, National Research Centre Kurchatov Institute, Russian Science Foundation and Russian Foundation for Basic Research, Russia; Ministry of Education, Science, Research and Sport of the Slovak Republic, Slovakia; National Research Foundation of South Africa, South Africa; Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW), Sweden; European Organization for Nuclear Research, Switzerland; Suranaree University of Technology (SUT), National Science and Technology Development Agency (NSDTA), Suranaree University of Technology (SUT), Thailand Science Research and Innovation (TSRI) and National Science, Research and Innovation Fund (NSRF), Thailand; Turkish Energy, Nuclear and Mineral Research Agency (TENMAK), Turkey; National Academy of Sciences of Ukraine, Ukraine; Science and Technology Facilities Council (STFC), United Kingdom; National Science Foundation of the United States of America (NSF) and United States Department of Energy, Office of Nuclear Physics (DOE NP), United States of America.

References

[1] T. Hyodo and D. Jido, “The nature of the \(\Lambda(1405) \) resonance in chiral dynamics”,

Prog. Part. Nucl. Phys. **67** (2012) 55–98,

arXiv:1104.4474 [nucl-th].

[2] U.-G. Meißner, “Two-pole structures in QCD: Facts, not fantasy!”,

Symmetry **12** (2020) 981,

arXiv:2005.06909 [hep-ph].

[3] M. Mai, “Review of the \(\Lambda(1405) \) A curious case of a strangeness resonance”,

Eur. Phys. J. ST **230** (2021) 1593–1607,

arXiv:2010.00056 [nucl-th].
First study of the two-body scattering involving charm hadrons

ALICE Collaboration

[4] T. Hyodo and M. Niiyama, “QCD and the strange baryon spectrum”,
Prog. Part. Nucl. Phys. **120** (2021) 103868, arXiv:2010.07592 [hep-ph].

[5] E. S. Swanson, “The New heavy mesons: A Status report”,
Phys. Rept. **429** (2006) 243–305, arXiv:hep-ph/0601110.

[6] F.-K. Guo, C. Hanhart, U.-G. Meißner, Q. Wang, Q. Zhao, and B.-S. Zou, “Hadronic molecules”,
Rev. Mod. Phys. **90** (2018) 015004, arXiv:1705.00141 [hep-ph].

[7] A. Hosaka, T. Iijima, K. Miyabayashi, Y. Sakai, and S. Yasui, “Exotic hadrons with heavy flavors: X, Y, Z, and related states”, _PTEP_ **2016** (2016) 062C01, arXiv:1603.09229 [hep-ph].

[8] N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C.-P. Shen, C. E. Thomas, A. Vairo, and C.-Z. Yuan, “The _XY Z_ states: experimental and theoretical status and perspectives”,
Phys. Rept. **873** (2020) 1–154, arXiv:1907.07583 [hep-ex].

[9] LHCb Collaboration, R. Aaij et al., “Near-threshold D ¯D spectroscopy and observation of a new charmonium state”, _JHEP_ **07** (2019) 035, arXiv:1903.12240 [hep-ex].

[10] LHCb Collaboration, R. Aaij et al., “Observation of an exotic narrow doubly charmed tetraquark”, _Nature Phys._ **18** (2022) 751–754, arXiv:2109.01038 [hep-ex].

[11] LHCb Collaboration, R. Aaij et al., “Study of the doubly charmed tetraquark _T_+”, _Nature Commun._ **13** (2022) 3351, arXiv:2109.01056 [hep-ex].

[12] LHCb Collaboration, R. Aaij et al., “Observation of _J/ψ p_ Resonances Consistent with Pentaquark States in _Λ_+ → _J/ψ K_− _p_ Decays”, _Phys. Rev. Lett._ **115** (2015) 072001, arXiv:1507.03414 [hep-ex].

[13] LHCb Collaboration, R. Aaij et al., “Observation of a narrow pentaquark state, _P_(4312)+, and of two-peak structure of the _P_(4450)+”, _Phys. Rev. Lett._ **122** (2019) 222001, arXiv:1904.03947 [hep-ex].

[14] M. Gell-Mann, “A Schematic Model of Baryons and Mesons”, _Phys. Lett._ **8** (1964) 214–215.

[15] H.-X. Chen, W. Chen, X. Liu, and S.-L. Zhu, “The hidden-charm pentaquark and tetraquark states”, _Phys. Rept._ **639** (2016) 1–121, arXiv:1601.02092 [hep-ph].

[16] B. Borasoy, R. Nissler, and W. Weise, “Kaonic hydrogen and _K−p_ scattering”, _Phys. Rev. Lett._ **94** (2005) 213401, arXiv:hep-ph/0410305.

[17] SIIDHARTA Collaboration, M. Bazzi et al., “A New Measurement of Kaonic Hydrogen X-rays”, _Phys. Lett. B_ **704** (2011) 113–117, arXiv:1105.3090 [nucl-ex].

[18] Y. Ikeda, T. Hyodo, and W. Weise, “Improved constraints on chiral SU(3) dynamics from kaonic hydrogen”, _Phys. Lett. B_ **706** (2011) 63–67, arXiv:1109.3005 [nucl-th].

[19] Y. Ikeda, T. Hyodo, and W. Weise, “Chiral SU(3) theory of antikaon-nucleon interactions with improved threshold constraints”, _Nucl. Phys. A_ **881** (2012) 98–114, arXiv:1201.6549 [nucl-th].

[20] M. He, R. J. Fries, and R. Rapp, “Thermal Relaxation of Charm in Hadronic Matter”, _Phys. Lett. B_ **701** (2011) 445–450, arXiv:1103.6279 [nucl-th].

[21] L. Tolós, C. García-Recio, and J. Nieves, “The Properties of _D_ and _D*_ mesons in the nuclear medium”, _Phys. Rev. C_ **80** (2009) 065202, arXiv:0905.4859 [nucl-th].
First study of the two-body scattering involving charm hadrons

ALICE Collaboration

[22] J. Haidenbauer, G. Krein, U.-G. Meißner, and A. Sibirtsev, “TN interaction from meson-exchange and quark-gluon dynamics”, Eur. Phys. J. A 33 (2007) 107–117, arXiv:0704.3668 [nucl-th].

[23] J. Hofmann and M. F. M. Lutz, “Coupled-channel study of crypto-exotic baryons with charm”, Nucl. Phys. A 763 (2005) 90–139, arXiv:hep-ph/0507071.

[24] C. E. Fontoura, G. Krein, and V. E. Vizcarra, “DN interaction in a color-confining chiral quark model”, Phys. Rev. C 87 (2013) 025206, arXiv:1208.4058 [nucl-th].

[25] Y. Yamaguchi, S. Ohkoda, S. Yasui, and A. Hosaka, “Exotic baryons from a heavy meson and a nucleon – Negative parity states –”, Phys. Rev. D 84 (2011) 014032, arXiv:1105.0734 [hep-ph].

[26] Stoks, Klomp, Rentmeester, and J. deSwart, “Partial-wave analysis of all nucleon-nucleon scattering data below 350 mev.”, Physical review. C, Nuclear physics 48 2 (1993) 792–815.

[27] F. Nowacki, A. Obertelli, and A. Poves, “The neutron-rich edge of the nuclear landscape: Experiment and theory.”, Prog. Part. Nucl. Phys. 120 (2021) 103866, arXiv:2104.06238 [nucl-th].

[28] K. Hebeler, J. D. Holt, J. Menendez, and A. Schwenk, “Nuclear forces and their impact on neutron-rich nuclei and neutron-rich matter”, Ann. Rev. Nucl. Part. Sci. 65 (2015) 457–484, arXiv:1508.06893 [nucl-th].

[29] G. S. Abrams and B. Sechi-Zorn, “Charge-Exchange Scattering of Low-Energy K- Mesons in Hydrogen”, Phys. Rev. 139 (1965) B454–B457.

[30] J. S. Hyslop, R. A. Arndt, L. D. Roper, and R. L. Workman, “Partial wave analysis of K+ nucleon scattering”, Phys. Rev. D 46 (1992) 961–969.

[31] A. Olin and T. S. Park, “Kaon nucleon scattering and reactions at low energies”, Nucl. Phys. A691 (2001) 295–303.

[32] F. Eisele, H. Filthuth, W. Foehlisch, V. Hepp, and G. Zech, “Elastic Σ±p scattering at low energies”, Phys. Lett. B 37 (1971) 204–206.

[33] G. Alexander, U. Karshon, A. Shapira, G. Yekutieli, R. Engelmann, H. Filthuth, and W. Lugohefer, “Study of the Λ–N system in low-energy Λ–p elastic scattering”, Phys. Rev. 173 (1968) 1452–1460.

[34] B. Sechi-Zorn, B. Kehoe, J. Twitty, and R. Burnstein, “Low-energy Λ–proton elastic scattering”, Phys. Rev. 175 (1968) 1735–1740.

[35] J. Hrtánková and J. Mareš, “K- nuclear states: Binding energies and widths”, Phys. Rev. C 96 (2017) 015205, arXiv:1704.07205 [nucl-th].

[36] A. Feliciello and T. Nagae, “Experimental review of hypernuclear physics: recent achievements and future perspectives”, Rept. Prog. Phys. 78 (2015) 096301.

[37] S. Pratt, “Pion Interferometry of Quark-Gluon Plasma”, Phys. Rev. D 33 (1986) 1314–1327.

[38] ALICE Collaboration, S. Acharya et al., “p-p, p-Λ and Λ-Λ correlations studied via femtoscopy in pp reactions at √s = 7 TeV”, Phys. Rev. C 99 (2019) 024001, arXiv:1805.12455 [nucl-ex].
First study of the two-body scattering involving charm hadrons

ALICE Collaboration, S. Acharya et al., “Scattering studies with low-energy kaon-proton femtoscopy in proton-proton collisions at the LHC”, Phys. Rev. Lett. 124 (2020) 092301, arXiv:1905.13470 [nucl-ex].

ALICE Collaboration, S. Acharya et al., “Exploring the NΛ–NΣ coupled system with high precision correlation techniques at the LHC”, Phys. Lett. B 833 (2022) 137272, arXiv:2104.04427 [nucl-ex].

ALICE Collaboration, S. Acharya et al., “Investigation of the p-Σ0 interaction via femtoscopy in pp collisions”, Phys. Lett. B 805 (2020) 135419, arXiv:1905.14407 [nucl-ex].

ALICE Collaboration, S. Acharya et al., “Study of the Λ–Λ interaction with femtoscopy correlations in pp and p–Pb collisions at the LHC”, Phys. Lett. B 797 (2019) 134822, arXiv:1905.07209 [nucl-ex].

ALICE Collaboration, S. Acharya et al., “First Observation of an Attractive Interaction between a Proton and a Cascade Baryon”, Phys. Rev. Lett. 123 (2019) 112002, arXiv:1904.12198 [nucl-ex].

ALICE Collaboration, S. Acharya et al., “Unveiling the strong interaction among hadrons at the LHC”, Nature 588 (2020) 232–238, arXiv:2005.11495 [nucl-ex].

ALICE Collaboration, S. Acharya et al., “Experimental evidence for an attractive p-φ interaction”, Phys. Rev. Lett. 127 (2021) 172301, arXiv:2105.05578 [nucl-ex].

ALICE Collaboration, S. Acharya et al., “Investigating the role of strangeness in baryon–antibaryon annihilation at the LHC”, Phys. Lett. B 829 (2022) 137060, arXiv:2105.05190 [nucl-ex].

A. Hosaka, T. Hyodo, K. Sudoh, Y. Yamaguchi, and S. Yasui, “Heavy Hadrons in Nuclear Matter”, Prog. Part. Nucl. Phys. 96 (2017) 88–153, arXiv:1606.08685 [hep-ph].

H. Noumi, “Physics in J-PARC Hadron-Hall Extension”, JPS Conf. Proc. 13 (2017) 010017.

ALICE Collaboration, K. Aamodt et al., “The ALICE experiment at the CERN LHC”, J. Instrum. 3 (2008) S08002.

ALICE Collaboration, B. B. Abelev et al., “Performance of the ALICE Experiment at the CERN LHC”, Int. J. Mod. Phys. A 29 (2014) 1430044, arXiv:1402.4476 [nucl-ex].

ALICE Collaboration, K. Aamodt et al., “Alignment of the ALICE Inner Tracking System with cosmic-ray tracks”, JINST 5 (2010) P03003, arXiv:1001.0502 [physics.ins-det].

J. Alme et al., “The ALICE TPC, a large 3-dimensional tracking device with fast readout for ultra-high multiplicity events”, Nucl. Instrum. Meth. A 622 (2010) 316–367, arXiv:1001.1950 [physics.ins-det].

A. Akindinov et al., “Performance of the ALICE Time-Of-Flight detector at the LHC”, Eur. Phys. J. Plus 128 (2013) 44.

ALICE Collaboration, E. Abbas et al., “Performance of the ALICE VZERO system”, JINST 8 (2013) P10016, arXiv:1306.3130 [nucl-ex].

T. Sjöstrand, S. Mrenna, and P. Z. Skands, “PYTHIA 6.4 Physics and Manual”, JHEP 05 (2006) 026, arXiv:hep-ph/0603175.
First study of the two-body scattering involving charm hadrons

ALICE Collaboration

[57] T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel, C. O. Rasmussen, and P. Z. Skands, “An introduction to PYTHIA 8.2”, Comput. Phys. Commun. 191 (2015) 159–177, arXiv:1410.3012 [hep-ph].

[58] P. Skands, S. Carrazza, and J. Rojo, “Tuning PYTHIA 8.1: the Monash 2013 Tune”, Eur. Phys. J. C 74 (2014) 3024, arXiv:1404.5630 [hep-ph].

[59] R. Brun, F. Bruyant, M. Maire, A. C. McPherson, and P. Zanarini, GEANT 3: user’s guide Geant 3.10, Geant 3.11; rev. version. CERN, Geneva, 1987.

[60] Particle Data Group Collaboration, P. A. Zyla et al., “Review of Particle Physics”, PTEP 2020 (2020) 083C01.

[61] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system”, in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. arXiv:1603.02754 [cs.LG].

[62] L. Barioglio, F. Catalano, M. Concas, P. Fecchio, F. Grosa, F. Mazzaschi, and M. Puccio, “hipe4ml/hipe4ml”, July, 2021. https://doi.org/10.5281/zenodo.5070132.

[63] ALICE Collaboration, S. Acharya et al., “Measurement of beauty and charm production in pp collisions at \(\sqrt{s} = 5.02 \) TeV via non-prompt and prompt D mesons”, JHEP 05 (2021) 220, arXiv:2102.13601 [nucl-ex].

[64] ALICE Collaboration, S. Acharya et al., “Measurement of D\(^0\), D\(^+\), D\(^{\ast+}\), and D\(^{\ast+}\) production in pp collisions at \(\sqrt{s} = 5.02 \) TeV with ALICE”, Eur. Phys. J. C 79 (2019) 388, arXiv:1901.07979 [nucl-ex].

[65] M. A. Lisa, S. Pratt, R. Soltz, and U. Wiedemann, “Femtoscopy in relativistic heavy ion collisions”, Ann. Rev. Nucl. Part. Sci. 55 (2005) 357–402, arXiv:nucl-ex/0505014.

[66] ALICE Collaboration, S. Acharya et al., “Search for a common baryon source in high-multiplicity pp collisions at the LHC”, Phys. Lett. B 811 (2020) 135849, arXiv:2004.08018 [nucl-ex].

[67] I. G. Bearden et al., “Space-time evolution of the hadronic source in peripheral to central Pb + Pb collisions”, Eur. Phys. J. C 18 (2000) 317–325.

[68] A. Kisiel, M. Galążyn, and P. Bożek, “Pion, kaon, and proton femtoscopy in Pb–Pb collisions at \(\sqrt{S_{NN}}=2.76 \) TeV modeled in (3+1)D hydrodynamics”, Phys. Rev. C 90 (2014) 064914, arXiv:1409.4571 [nucl-th].

[69] V. M. Shapoval, P. Braun-Munzinger, I. A. Karpenko, and Y. M. Sinyukov, “Femtoscopy correlations of kaons in Pb+Pb collisions at LHC within hydrokinetic model”, Nucl. Phys. A 929 (2014) 1–8, arXiv:1404.4501 [hep-ph].

[70] CMS Collaboration, A. M. Sirunyan et al., “Studies of charm and beauty hadron long-range correlations in pp and pPb collisions at LHC energies”, Phys. Lett. B 813 (2021) 136036, arXiv:2009.07065 [hep-ex].

[71] D. L. Mihaylov, V. Mantovani Sarti, O. W. Arnold, L. Fabbietti, B. Hohlweger, and A. M. Mathis, “A femtoscopic Correlation Analysis Tool using the Schrödinger equation (CATS)”, Eur. Phys. J. C 78 (2018) 394, arXiv:1802.08481 [hep-ph].

[72] A. Kisiel, H. Zbrosczyk, and M. Szymański, “Extracting baryon-antibaryon strong interaction potentials from p\(\bar{A} \) femtoscopic correlation functions”, Phys. Rev. C 89 (2014) 054916, arXiv:1403.0433 [nucl-th].
[73] R. Lednicky, V. Lyuboshitz, and V. Lyuboshitz, “Final-state interactions in multichannel quantum systems and pair correlations of nonidentical and identical particles at low relative velocities”, *Physics of Atomic Nuclei* **61** (11, 1998) 2050–2063.

[74] Y. Kamiya, T. Hyodo, K. Morita, A. Ohnishi, and W. Weise, “$K^- p$ Correlation Function from High-Energy Nuclear Collisions and Chiral SU(3) Dynamics”, *Phys. Rev. Lett.* **124** (2020) 132501, arXiv:1911.01041 [nucl-th].

[75] ALICE Collaboration, S. Acharya *et al.*, “Future high-energy pp programme with ALICE”, Tech. Rep. ALICE-PUBLIC-2020-005, 2020. https://cds.cern.ch/record/2724925.
A The ALICE Collaboration

S. Acharya1,2,3, D. Adamov1,2,3,4, A. Adlofsson2,3,4, A. Aglieri Rinella1,2,5, M. Agnew1,6, N. Agrawal1,2,7, Z. Ahammed1,2,8, S. Ahmad9,10, S.U. Ahn2,3,4,1, A. Ahmed11,12, A. Akindinov1,11,13, M. Al-Turany1,13, S.N. Alam1,2,3,4, D. Aleksandrov1,2,3,4, B. Alessandro14,5,6, H.M. Alfantazi1,2,3,4, R. Alfaro Molina2,3,4, B. Alis1,2,5, A. Alic1,6, N. Alizadeh-Vanach1,2,3,4, A. Alkhatib1,2,3,4, J. Alvarez2,3,4, G. Alway3,4, L. Aloisio3,4, T. Alphee1,2,5, I. Altsybeev1,2,5, M.N. Anaam1,2, C. Andre1,2,3,4, D. Andreo2,5,6, A. Andronic1,2,7, V. Anguelov4,6, T. Antinori4,5, P. Antonini4,5, C. Anufriev1,2,3,4, L. Appelt1,2,3,4, H. Appelshäuser1,2,3,4, S. Arcelli1,2,3,4, R. Arndt1,2,3,4, J.C. Arsenian3,4, M. Arslan1,2,3,4, A. Augustin1,2,7, R. Averbeck7,8, S. Azzi3,4, M.D. Azmi3,4, A. Badam3,4, Y.W. Baek1,2,3,4, X. Bai1,2,7, R. Bajiac1,2,7, Y. Baidian4,5, R. Baidila3,4, A. Baldin1,2,3,4, A. Baldissera1,2,5, B. Balle1,2,3,4, D. Banerjee1,2,3,4, R. Banerji1,2,3,4, M. Barbera1,2,3,4, L. Barbarigo1,2,3,4, M. Barlow4,5, G.G. Barnafoldi6,5,6, L.S. Barnby1,2,3,4, V. Barre1,2,3,4, C. Bartel1,2,3,4, K. Barth1,2,3,4, F. Bartusch2,3,4, F. Baru1,2,3,4, N. Bastida1,2,3,4, S. Basler1,2,3,4, G. Batigne1,2,3,4, D. Battistin1,2,3,4, B. Baty1,2,3,4, D. Bauer4,5, J.L. Bazo Albi1,6, I.G. Bearden1,2,5, C. Beattie1,2, P. Becchetti1,2,5, I. Belikov1,2,3, A.C.D. Bell Hechavarria1,2,5, F. Bellini1,2,3,4, R. Bellwied1,2,3,4, S. Belokurov1,2,3,4, V. Belyaev1,2,3,4, G. Bencse1,2,3,4, S. Beol1,2,3,4, A. Bercue1,2,3,4, Y. Berdnikov1,2,3,4, A. Berdnikov1,2,3,4, L. Bergmann1,2,3,4.

M.G. Besou1,2,3, L. Betev4,5, P.P. Bhaduri1,2,3, A. Bhasin2,3,4, I.R. Bha1,2,3,4, M.A. Bha1,2,3,4, B. Bhattacharjee1,2,3,4, P. Bhattachary4,5,6, L. Bianchi1,2,3,4, N. Bianchi1,2,3,4, B. Bielcik7,8,7, J. Bielcikov7,8,7, J. Biernat7,8,7, A. Bilandzic7,8,7, G. Bird8,9,3,4, S. Biswas1,2, J.T. Blair1,2,3,4, D. Blair1,2,3,4, M.B. Bildard1,2,3,4, C. Blum1,2,3,4, G. Boc1,2,5,6, F. Boc1,2,5,6, A. Bogdanov1,2,3,4, S. Bo1,2,3,4, J. Bok1,2,3,4, L. Boldizsár1,2,3,4, A. Bolotzyn1,2,3,4, M. Bombard1,2,3,4, P.M. Bond1,2,3,4, G. Bonomi1,2,3,4, H. Bore1,2,3,4, A. Borisso1,2,3,4, H. Boss1,2,3,4, E. Bott1,2,3,4, L. Bratrud1,2,3,4, P. Braun-Munzinger1,2,3,4, M. Bregant1,2,3,4, M. Bro1,2,3,4, G.E. Bruneau1,2,3,4, M.D. Buckland1,2,3,4, D. Budnikov1,2,3,4, H. Buesching1,2,3,4, S. Bufalino1,2,3,4, O. Bugnoli1,2,3,4, P. Buhler1,2,3,4, Z. Buthelezi1,2,3,4, J.L. Bazo1,2,3,4, I.G. Beard1,2,5, C. Beattie1,2, P. Becchetti1,2,5, I. Belikov1,2,3,4, A.C.D. Bell Hechavarria1,2,5, F. Bellini1,2,3,4, R. Bellwied1,2,3,4, S. Belokurov1,2,3,4, V. Belyaev1,2,3,4, G. Bencse1,2,3,4, S. Beol1,2,3,4, A. Bercue1,2,3,4, Y. Berdnikov1,2,3,4, A. Berdnikov1,2,3,4, L. Bergmann1,2,3,4.

1First study of the two-body scattering involving charm hadrons

ALICE Collaboration
First study of the two-body scattering involving charm hadrons

ALICE Collaboration

A. Horzyl, R. Hosokawa, Y. Hori, P. Hristov, C. Hughe, P. Huhn, L.M. Huh, C.V. Hulsta, T.J. Humano, H. Hushamu, L.A. Husova, A. Hutson, T. Hyodo, J.P. Iddon, R. Ilkae, H. Ilyas, M. Inaba, G.M. Innocenti, I. Ippolitov, A. Isakov, T. Isidor, M.S. Islan, M. Ivanov, V. Ivanov, V. Izucheeva, M. Jablonski, B. Jacal, J. Nachaz, P.M. Jacoby, S. Jadlovsk, J.J. Jadlovsk, S. Jaelen, C. Jahne, C. Karasev, M.J. Jakubowska, J. Jalotra, M.A. Janik, T. Jansor, M.P. Jerc, O. Jevoa, A.A.P. Jimenez, F. Jonas, P.G. Jones, J.M. Jowett, J. Jun, M. Junj, A. Juniqu, A. Jusko, J.M. Kabus, J. Kaew, P. Kalinak, A.S. Kaltey, A. Kalwe, Y. Kamiya, V. Kaplin, A. Karasu Uys, D. Karatov, O. Karavichev, T. Karavicheva, P. Karczmarzy, E. Karpeche, V. Kashyap, A. Kazant, U. Kebschu, R. Keid, D.L.D. Kejed, M. Kei, B. Kette, A.M. Khat, J. Khat, A. Khan, Y. Kharlov, A. Khuntia, D. Kihl, B. Kim, C. Kim, D.J. Kim, E.J. Kim, J. Kim, J.S. Kim, J. Kim, J. Kim, M. Kim, S. Kim, T. Kim, K. Kirso, M. Kiselev, A. Kisiel, J.P. Kitowski, J.L. Klay, J. Klei, S. Klein, C. Klein-Bosing, M. Kleine, T. Klemen, A. Klug, A.G. Knop, C. Kobda, T. Kolleg, A. Kondratyev, E. Kondratyev, J. König, S.A. Königstorf, P.J. Konopk, G. Kornako, S.D. Korciay, A. Kotliaro, O. Kovalenk, V. Kovalenk, M. Kovalsk, I. Krail, A. Kravčěk, L. Krej, M. Krvda, F. Krizek, K. Krizkova Gadys, M. Kroes, T.E. Kroger, D.M. Krupov, T. Krzov, K. Krizov, V. Kucer, C. Kuh, P.G. Kuijs, T. Ku, D. Kuma, K. Kuma, N. Kuma, S. Kunda, P. Kurasvit, A. Kurepin, A.B. Kurepin, A. Kuryakin, S. Kushn, J. Kvas, M.J. Kweo, J.Y. Kwos, Y. Kwos S.L. La Point, P. La Rocca, Y.S. La; A. Lakrathok, M. Laman, R. Lang, P. Larionov, E. Lau, D. Lautne, R. Lavic, R. Lazareva, R. Lec, J. Lehrbach, R.C. Lemmon, I. León Monzó, M.M. Lesc, E.D. Lessor, M. Lettrie, T. Lept, P. Léval, X. Li, L.L. Li, L. Liet, R. Lietav, B. Lin, S. H. Liu, V. Lindenstruth, A. Lindnor, C. Lipsman, A. Liu, D.H. Liu, J. Liu, I.M. Lofn, V. Loginov, C. Loiz, P. Lonc, J.A. Lope, X. Lope, E. López Torres, J.R. Luhde, M. Lunardon, G. Luperce, Y.G. Ma, M. Maevsky, M. Mager, T. Mahmoud, A. Mair, M. Malae, N.M. Malinka, Q.W. Mall, S.K. Malia, L. Malinina, T. Mal’Kevici, D. Mallici, N. Mallick, G. Mandagl, V. Manko, F. Mans, M. Manz, J. Masa, G.V. Margagli, A. Margoli, A. Marri, J. Marker, M. Marqu, N.A. Martin, P. Martineg, J.L. Martine, M.I. Martine, G. Martínez García, S. Mascioce, M. Masera, L. Massar, A. Mastroseri, A.M. Math, O. Matonoh, P.F.T. Matuk, A. Maty, C. Maye, A. Mazucca, F. Mazzach, M. Mazzilli, J.E. Mdlhu, A.F. Mechet, Y. Meliky, A. Menchaca-Roch, E. Meninno, A. Meno, A. Mere, S. Mihanga, Y.A. Mika, A. Micheletti, L.C. Miglieri, D.L. Milia, P. Mihaylov, K. Mikhaylov, A.N. Mishr, D. Miškovi, A. Modak, A.P. Mohan, B. Mohan, M. Mohsin Kh, M.A. Molander, Z. Moravcov, M. Mordasin, D.A. Moreira De Godoy, J.M. Moroz, A. Morose, T. Mrnjavac, V. Muccifor, E. Muddin, E. Mühlenh, S. Muhuri, J.D. Mulligai, M. Mullir, M.G. Munho, R.H. Munze, H. Murakam, S. Murray, L. Mus, J. Musinsky, J.W. Mych, B. Naik, R. Nai, B.K. Nand, R. Nana, E. Nappi, A.F. Nassistipou, A. Nath, J. Nattra, J. Nagi, A. Neagu, A. Negri, L. Nelle, S.V. Nesb, G. Neskov, D. Nester, B.S. Nie, E.G. Niel, S. Nikolae, S. Nikulin, V. Nikulin, F. Noferi, S. Noli, P. Nonomok, J. Nor, N. Novitzky, P. Nowakowski, Y. Nyamn, J. Nystrand, M. Ogino, A. Ohl, O. Ohnishi, V.A. Okorok, J. Oleniac, A.C. Oliveira Da Silva, M.H. Oliver, A. Oner, M. Oppedins, A. Ortiz Velasque, T. Osako, O. Oskarsson, J. Otowins, M.O. Oy, K. Oyama, Y. Pachmayr, S. Padh, D. Pagado, J. Pain, J.E. Parkil, S.P. Pathak, R.N. Patil, B. Pahu, H. Pe, P. Peitzmann, X. Pen, L.G. Perei, H. Pereira Da Costa, D. Peresunko, G.M. Perei, S. Perr, Y. Pes, V. Petčač, V. Petvo, M. Petrici, R.P. Pezza, S. Pine, M. Pi, P. Pip, O. Pinazza, Y. Pince, L. Pints, S. Pirani, M. Plosko, M. Pla, T. Fliquer, M.G. Poghosyan, B. Polichtchou, S. Politand, N. Poljak, A. Pol, S. Porteboeuf-Houss, J. Porte, V. Pozd, J.K. Prasad, R. Preghenelli, F. Frindo, C.A. Prune, I. Pleshich, M. Pucc, S. Qi, L. Quagli, R.E. Quish, S. Ragagn, A. Rakotofafindrab, L. Ramelli, F. Ram, S.A.R. Ramirez, T.A. Rancier, R. Ranieri, S. Ranier, S.S. Rässin, R. Rait, I. Rassenga, K.F. Rea, A.R. Redelb, K. Redlich, A. Rehan, P. Rechel, F. Reid, H.A. Rem-nes, Z. Reska, K. Rege, A. Rib, A. Ribor, V. Ribor, T. Ric, M. Rich.
Affiliation notes

1 Deceased
2 Also at: Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Bologna, Italy
3 Also at: Dipartimento DET del Politecnico di Torino, Turin, Italy
4 Also at: M.V. Lomonosov Moscow State University, D.V. Skobeltsyn Institute of Nuclear Physics, Moscow, Russia
5 Also at: Department of Applied Physics, Aligarh Muslim University, Aligarh, India
6 Also at: Institute of Theoretical Physics, University of Wrocław, Poland
7 Also at: A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation, Yerevan, Armenia

Collaboration Institutes

1 A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation, Yerevan, Armenia

W. Riegler, F. Riggi, C. Rister, M. Rodríguez Cahuanta, K. Roč, R. Rogale, E. Rogochaya, T.S. Rososchina, D. Röhl, D. Röhrich, P.F. Rojas, S. Rojas Torres, P.S. Rosch, F. Ronchetti, A. Rosand, E.D. Rosas, A. Rossi, P. Roy, S. Royce, N. Rubin, O.V. Rueda, D. Ruggiano, R. Ru, B. Rumyantsev, P.G. Russell, R. Russo, A. Rustamov, E. Ryabinkin, Y. Ryabov, A. Rybicki, H. Rykton, W. Rzeszotarski, O.A.M. Saarimakki, R. Sadek, S. Sadovsky, J. Saetre, S. Saker, S. Sahai, B. Sahoi, P. Sah, S. Sahai, D. Sahi, P.K. Sahai, J. Sain, S. Safari, M.P. Salvar, S. Sambya, T.B. Saramela, D. Sarkanen, N. Sarkar, P. Sarm, M.M. Sarvatelly, M.H.P. Sarvith, J. Schambach, H.S. Schein, C. Schiaua, R. Schieke, A. Schmalz, C. Schmid, H.R. Schmid, M.O. Schmid, M. Schmid, N.V. Schmied, I.R. Schmied, R. Schotte, J. Schukraft, K. Schwab, K. Schwed, G. Scioli, E. Scopelliti, J.E. Segui, Y. Sekiguchi, D. Sekihau, I. Selyuzhenkov, S. Senyukov, J.J. Seo, D. Serebryakov, L. Sereňský, A. Sevcencek, T.J. Shabab, A. Shabanov, A. Shabeta, R. Shahaya, W. Shaikl, A. Shangaraev, A. Sharma, D. Sharma, H. Sharmal, N. Sharma, M. Sharma, M. Sharma, M. Shaikh, O. Sheiban, K. Shigaki, M. Shimomura, S. Shirinkin, Q. Shou, Y. Sibiriak, S. Siddhant, T. Siemiarczuk, T.F. Silvander, D. Silvermyr, T. Simantathammakul, G. Simonetti, B. Singh, R. Singh, R. Singh, V.K. Singh, V. Singh, T. Singh, B. Sitar, M. Sittar, T.B. Skaal, G. Skordoudou, M. Slupecki, N. Smirnov, R.I.M. Snelling, D. Soncco, J. Song, A. Songnoolma, F. Soramel, S. Sorensen, S. Spatouw, D. Stach, M. Stast, P.J. Steffaniak, S.F. Steifelmaier, D. Stocco, I. Storehau, M.M. Storeyved, P. Stratman, S. Strauss, C.P. Stylianidou, A.A.P. Susaïda, C. Suin, M. Sukhanov, M. Suljic, R. Sultanov, V. Sumbor, S. Sumowidagdo, S. Swain, A. Szabo, I. Szarka, E. Tabassani, S.F. Taghavi, J. Taillefer, T. Takahashi, G.J. Tamburello, Y. Tang, G. Tang, J.D. Tapia Takaki, N. Tapu, M.G. Tarzil, A. Tauro, G. Tejeda Muñoz, A. Telesca, L. Terliizzie, A. Testoni, G. Teveri, G. Tersimonov, S. Thakur, D. Thomas, R. Tieulent, A. Tikhonov, A.R. Timmins, M. Tkach, A. Toi, N. Topilskaya, M. Topps, F. Torales-Acosta, I. Tork, V.G. Torres Ramos, A. Trianni, A.S. Triolo, S. Tripathy, T. Tripathy, S. Trogold, T.V. Trubnikov, W.H. Trzaska, T.P. Trzciński, A. Tumik, R. Turrisi, T.S. Tveter, K. Ullalan, A. Ura, M. Urios, M.L. Usai, M. Vali, N. Vallese, S. Vallet, L.V.R. van Doremalen, M. van Leeuwen, R.J.G. van Weelde, P. Vande Vyvre, D. Varg, L. Vars, Z. Varga, M. Varga-Kofarags, M. Vasileiou, A. Vasiliev, O. Vázquez Doce, V. Vecherini, A. Velue, E. Vercellin, S. Vergara Limón, L. Vermeur, R. Vértés, M. Verweij, L. Vicković, Z. Vilakazi, O. Villalobos Baille, G. Vinciguerra, A. Vinogradov, T. Virgil, V. Vislavicius, A. Vodopyanov, B. Volke, O.T. Volkl, M.A. Volk, K. Voloshin, S.A. Voloshin, G. Volp, B. von Halle, I. Vorobyev, N. Vozniut, J. Vrálková, B. Wagner, C. Wang, D. Wang, M. Webe, I. Weidinger, A. Wegzryn, S.C. Wenzel, J.P. Wessel, S.L. Weyhmeiler, J.J. Wiechula, L. Wig, G. Will, J. Wilkinson, O.G. Willems, B. Windelband, M. Wind, W.E. Witek, A.R. Wright, W. Wi, Y. Wu, R. Xu, A.K. Yadav, S. Yalcin, Y. Yamaguchi, K. Yamakawa, S. Yang, Y. Yan, Y. Yau, I.-K. You, J.H. Yoon, S. Yuan, Y. A. Yuncu, V. Zacek, C. Zampolli, I. Zanelli, F. Zanoli, N. Zardoshti, A. Zarochentsev, P. Závada, N. Zaviyalov, M. Zhavoronkov, S. Zhang, X. Zhang, Y. Zhang, V. Zherebyetskii, Y. Zhi, N. Zhigareva, D. Zhou, Y. Zhou, J. Zhu, Y. Zhu, G. Zinoviev, N. Zard, P.
First study of the two-body scattering involving charm hadrons

ALICE Collaboration

2 AGH University of Science and Technology, Cracow, Poland
3 Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, Kiev, Ukraine
4 Bose Institute, Department of Physics and Centre for Astroparticle Physics and Space Science (CAPSS), Kolkata, India
5 Budker Institute for Nuclear Physics, Novosibirsk, Russia
6 California Polytechnic State University, San Luis Obispo, California, United States
7 Central China Normal University, Wuhan, China
8 Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Havana, Cuba
9 Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City and Mérida, Mexico
10 Chicago State University, Chicago, Illinois, United States
11 China Institute of Atomic Energy, Beijing, China
12 Chungbuk National University, Cheongju, Republic of Korea
13 Comenius University Bratislava, Faculty of Mathematics, Physics and Informatics, Bratislava, Slovakia
14 COMSATS University Islamabad, Islamabad, Pakistan
15 Creighton University, Omaha, Nebraska, United States
16 Department of Physics, Aligarh Muslim University, Aligarh, India
17 Department of Physics, Pusan National University, Pusan, Republic of Korea
18 Department of Physics, Sejong University, Seoul, Republic of Korea
19 Department of Physics, University of California, Berkeley, California, United States
20 Department of Physics, University of Oslo, Oslo, Norway
21 Department of Physics and Technology, University of Bergen, Bergen, Norway
22 Dipartimento di Fisica dell’Università and Sezione INFN, Cagliari, Italy
23 Dipartimento di Fisica dell’Università and Sezione INFN, Trieste, Italy
24 Dipartimento di Fisica dell’Università and Sezione INFN, Turin, Italy
25 Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Bologna, Italy
26 Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Catania, Italy
27 Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Padova, Italy
28 Dipartimento di Fisica e Nucleare e Teorica, Università di Pavia, Pavia, Italy
29 Dipartimento di Fisica ‘E.R. Caianiello’ dell’Università and Gruppo Collegato INFN, Salerno, Italy
30 Dipartimento DISAT del Politecnico and Sezione INFN, Turin, Italy
31 Dipartimento di Scienze e Innovazione Tecnologica dell’Università del Piemonte Orientale and INFN Sezione di Torino, Alessandria, Italy
32 Dipartimento di Scienze MIFT, Università di Messina, Messina, Italy
33 Dipartimento Interateneo di Fisica ‘M. Merlin’ and Sezione INFN, Bari, Italy
34 European Organization for Nuclear Research (CERN), Geneva, Switzerland
35 Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Split, Croatia
36 Faculty of Engineering and Science, Western Norway University of Applied Sciences, Bergen, Norway
37 Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic
38 Faculty of Science, P.J. Šafárik University, Košice, Slovakia
39 Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
40 Fudan University, Shanghai, China
41 Gangneung-Wonju National University, Gangneung, Republic of Korea
42 Gauhati University, Department of Physics, Guwahati, India
43 Helmholtz-Institut für Strahlen- und Kernphysik, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
44 Helsinki Institute of Physics (HIP), Helsinki, Finland
45 High Energy Physics Group, Universidad Autónoma de Puebla, Puebla, Mexico
46 Hiroshima University, Hiroshima, Japan
47 Hochschule Worms, Zentrum für Technologietransfer und Telekommunikation (ZTT), Worms, Germany
48 Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania
49 Indian Institute of Technology Bombay (IIT), Mumbai, India
50 Indian Institute of Technology Indore, Indore, India
51 Indonesian Institute of Sciences, Jakarta, Indonesia
First study of the two-body scattering involving charm hadrons

ALICE Collaboration

INFIN, Laboratori Nazionali di Frascati, Frascati, Italy
INFIN, Sezione di Bari, Bari, Italy
INFIN, Sezione di Bologna, Bologna, Italy
INFIN, Sezione di Cagliari, Cagliari, Italy
INFIN, Sezione di Catania, Catania, Italy
INFIN, Sezione di Padova, Padova, Italy
INFIN, Sezione di Pavia, Pavia, Italy
INFIN, Sezione di Torino, Turin, Italy
INFIN, Sezione di Trieste, Trieste, Italy
Inha University, Incheon, Republic of Korea
Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany
Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University/Nikhef, Utrecht, Netherlands
Institute for Nuclear Research, Academy of Sciences, Moscow, Russia
Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia
Institute of Physics, Homi Bhabha National Institute, Bhubaneswar, India
Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
Institute of Space Science (ISS), Bucharest, Romania
Institut für Kernphysik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico City, Mexico
Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico
iThemba LABS, National Research Foundation, Somerset West, South Africa
Jeonbuk National University, Jeonju, Republic of Korea
Johann-Wolfgang-Goethe Universität Frankfurt Institut für Informatik, Fachbereich Informatik und Mathematik, Frankfurt, Germany
Joint Institute for Nuclear Research (JINR), Dubna, Russia
Korea Institute of Science and Technology Information, Daejeon, Republic of Korea
KTO Karatay University, Konya, Turkey
Laboratoire de Physique des 2 Infinis, Irène Joliot-Curie, Orsay, France
Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS-IN2P3, Grenoble, France
Lawrence Berkeley National Laboratory, Berkeley, California, United States
Lund University Department of Physics, Division of Particle Physics, Lund, Sweden
Moscow Institute for Physics and Technology, Moscow, Russia
Nagasaki Institute of Applied Science, Nagasaki, Japan
Nara Women’s University (NWU), Nara, Japan
National and Kapodistrian University of Athens, School of Science, Department of Physics, Athens, Greece
National Centre for Nuclear Research, Warsaw, Poland
National Institute of Science Education and Research, Homi Bhabha National Institute, Jatni, India
National Nuclear Research Center, Baku, Azerbaijan
National Research Centre Kurchatov Institute, Moscow, Russia
Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
Nikhef, National institute for subatomic physics, Amsterdam, Netherlands
NRC Kurchatov Institute IHEP, Protvino, Russia
NRC «Kurchatov» Institute - ITEP, Moscow, Russia
NRNU Moscow Engineering Physics Institute, Moscow, Russia
Nuclear Physics Group, STFC Daresbury Laboratory, Warrington, United Kingdom
Nuclear Physics Institute of the Czech Academy of Sciences, Rež u Prahy, Czech Republic
Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States
Ohio State University, Columbus, Ohio, United States
Petersburg Nuclear Physics Institute, Gatchina, Russia
Physics department, Faculty of science, University of Zagreb, Zagreb, Croatia
Physics Department, Panjab University, Chandigarh, India
Physics Department, University of Jammu, Jammu, India
