Complete Mitochondrial Genomes Reveal Population-Level Patterns in the Widespread Red Alga Gelidiella fanii (Gelidiales, Rhodophyta)

Ga Hun Boo1,2,3,*, Mayalen Zubia4, Jeffery R. Hughey5, Alison R. Sherwood6, Mutue T. Fujii1, Sung Min Boo2 and Kathy Ann Miller3

1 Nucleus for Research in Phycology, Institute of Botany, São Paulo, Brazil, 2 Department of Biology, Chungnam National University, Daejeon, South Korea, 3 University Herbarium, University of California, Berkeley, Berkeley, CA, United States, 4 UMR EIO (UPF-IRD-ILM-IFREMER), Université de la Polynésie Française, Labex Coral, Fa’aa, French Polynesia, 5 Division of Mathematics, Science, and Engineering, Hartnell College, Salinas, CA, United States, 6 School of Life Sciences, University of Hawai‘i at Mānoa, Honolulu, HI, United States

*Correspondence: Ga Hun Boo gahunboo@gmail.com

Although complete mitogenomic data have been widely applied in human and other animal population studies, they are extremely limited for florideophycean red algal populations. Gelidiella fanii is a recently described rhodophyta, previously misidentified as G. acerosa, a cosmopolitan agar-yielding species from tropical to subtropical waters. To decipher patterns in genetic diversity and geographic distribution for G. fanii, we obtained 10 complete mitogenomes including two outgroups, G. acerosa and G. flabella. The mitogenomes ranged in size from 25,223 to 25,281 bp and had 48 genes, which are similar in general structure, gene order and content, and presence of a group II intron. Phylogenomic analysis revealed that G. fanii was monophyletic and clearly separate from G. acerosa. The range of G. fanii was extended from Southeast Asia and northern Australia to Eritrea, Juan de Nova Island, and Kenya in the west, and to Hawai‘i and Tetiaroa Atoll to the east. Haplotype network analysis of cox1 revealed seven geographically structured groups: Southeast Asia, Kenya/Juan de Nova Island, Indonesia, northern Australia, the Philippines, Tetiaroa Atoll, and Hawai‘i. This regional structure has likely resulted from the separation and isolation of an ancient widespread population during the Pleistocene. This study demonstrates that mitogenome sequencing is a powerful genotyping tool for studies of genetic diversity, biogeography, and conservation of economically valuable marine algal species.

Keywords: agar-yielding algae, biogeography, Gelidiales, haplotype lineages, mitogenomes, widespread species

INTRODUCTION

In red algae, the mitochondrial genome (mitogenome) comprises circular, maternally inherited chromosomes with fast evolving genes (Hughey et al., 2014; Yang et al., 2015). First sequenced from Chondrus crispus Stackhouse (Leblanc et al., 1995), mitogenomes have improved our knowledge of evolution, genetics and the taxonomy of red algae. Hughey et al. (2014) was the first to analyze...
mitogenomes from archival type specimens of bangiophycean *Pyropia* species, and proposed a genome-based metric for distinguishing species. Yang et al. (2015) analyzed the mitogenomes of representatives of all five subclasses in the Florideophyceae. They documented the rapid radiation of the class, but concluded that gene synteny in these phylogenetically diverse red algae was highly conserved. In a review of 16 mitogenomes among 30 datasets publicly available at that time, Salomaki and Lane (2016) reported that red algal mitogenomes were more highly conserved than previously reported. Boo et al. (2018) analyzed 10 mitogenomes from type specimens of species in the order Gelidiales and proposed that, of 23 protein-coding genes (PCGs) present, six PCGs with low non-synonymous (Ka)/synonymous (Ks) ratios were suitable markers for species identification. Mitogenomes have also been used for the purpose of merging morphological species, describing new species and genera, and identifying introduced species (Hughey and Boo, 2016; Suzuki et al., 2016; Song et al., 2017; Gabrielson et al., 2018; Boo and Hughey, 2019; Bustamante et al., 2019). However, red algal mitogenomes have yet to be analyzed from a population perspective.

Gelidiella fanii S.-M.Lin (Gelidiellaceae) is one of 15 species in the widespread genus *Gelidiella* Feldmann and Hamel, found on coral reefs and intertidal rocky shores in tropical to subtropical waters (Abbott, 1999; Costa et al., 2002; Boo et al., 2015; Huisman et al., 2018). *Gelidiella fanii* is morphologically similar to *G. acerosa* (Forsskål) Feldmann and Hamel, a cosmopolitan species yielding high-grade bacteriological and pharmaceutical agarose, as well as agar for food (Rioux and Turgeon, 2015). *Gelidiella fanii* is a recently described species from Taiwan that was previously misidentified as *G. acerosa* (Lin and Freshwater, 2008). It has been shown to be clearly distinct using mitochondrial cox1 and plastid *rbcL* DNA sequences, as well as by morphology. Thalli are iridescent under water and have downward curved branches with slender unilateral branchlets, numerous surface hairs on the distal end of branches and branchlets, and smaller tetrasporangia (Lin and Freshwater, 2008; Wiriyadamrikul et al., 2010). There have been no reports of sexual reproduction in *G. fanii* (Lin and Freshwater, 2008; Wiriyadamrikul et al., 2010; Boo et al., 2016c; Huisman et al., 2018), a characteristic common in other species of *Gelidiella*. Molecular analyses have confirmed the presence of *G. fanii* in Indonesia, Japan, the Philippines, Thailand, Vietnam, and northern Australia, in addition to Taiwan (Lin and Freshwater, 2008; Wiriyadamrikul et al., 2010; Boo et al., 2016c; Huisman et al., 2018). However, the taxonomy and distribution of *G. fanii* remains understudied outside of Southeast Asia and northern Australia because of its morphological similarity to *G. acerosa*, a species that is recorded globally and is morphologically variable depending on habitat.

To date, 40 individual gene sequences of *G. fanii* are publicly available in GenBank; 23 mitochondrial cox1, and 14 plastid *rbcL*, two *psaA*, and one *psbA* from Southeast Asia and northern Australia (Lin and Freshwater, 2008; Wiriyadamrikul et al., 2010; Boo et al., 2016b; Huisman et al., 2018). These data have been used for taxonomic studies and analyses of the biogeographical structure of cox1 haplotype networks in Southeast Asia. However, limited taxon sampling and individual gene datasets are insufficient for full molecular characterization of the populations of this presumably widespread species. We wished to determine how complete mitogenomes vary among geographically isolated populations of *G. fanii*, and which individual genes have useful resolution at the population level. The aims of this study were i) to obtain complete mitogenomes using High Throughput Sequencing (HTS) techniques, ii) to investigate the utility of intergenic spacer regions as well as PCGs for population studies, and iii) to establish haplotype networks of cox1 to understand the distribution of *G. fanii* in the Indo-Pacific Ocean.

MATERIALS AND METHODS

Habitat and Collection of Specimens

Like *G. acerosa*, *G. fanii* occurred on subtidal coral reefs and/or intertidal rocky reefs in the Indo-Pacific regions; however, *G. fanii* was very rare compared with *G. acerosa*. Specimens were mostly typical of the species, but they sometimes displayed fewer unilateral branchlets. All specimens collected in this study were vegetative or tetrasporic; and neither spermatangial (male) nor cystocarpic (female) plants were found.

Fresh specimens were collected in Hawai‘i, Juan de Nova Island in the Mozambique Channel, Tetiaroa Atoll in French Polynesia, the Philippines, Taiwan and Vietnam, and were placed in individual bags with silica gel until processed. Specimens were identified based on morphological observation as well as analyses using mitochondrial cox1 and plastid *rbcL* sequences. In addition, herbarium specimens identified as *G. acerosa* were studied on loan from University of California at Berkeley, United States. Voucher specimens are housed in the Natural History Museum, Chungnam National University, Korea (CNUK) and the herbarium of the University of French Polynesia, Tahiti (UPF). Information on all specimens used in this investigation is provided in **Supplementary Table S1**.

DNA Extraction and Genome Sequencing

Eight *Gelidiella fanii* individuals were selected to represent the species’ broad geographic distribution in the Indo-Pacific Ocean and the topology of the cox1 phylogeny (below). DNA was extracted from −5 mg of dried tissue using NucleoSpin Plant II Kit (Macherey-Nagel, Düren, Germany) according to the manufacturer’s protocol or DNeasy Blood and Tissue Kit (Qiagen, Valencia, California, USA) following Boo et al. (2016a). Two genomic DNAs extracted in the previous studies (Wiriyadamrikul et al., 2010; Huisman et al., 2018), one from the Philippines (CNU026931) and the other from northern Australia (CNU066493), were also used for genome sequencing. Two outgroup species, *G. acerosa* and *G. flabella* G.H.Boo and L.Le Gall, were included for HTS. Library preparation and HTS were performed by Genotech Co. (Daejeon, Korea) with Illumina platforms, HiSeq2500 or HiSeqX, using 100 bp or 150 bp paired-end library constructions, respectively.
Genome Assembly and Annotation
The raw reads were assembled using a combination of approaches, NOVOPlasty 3.5 (Dierckxsens et al., 2016), SPAdes assembler 3.13.0 (Nurk et al., 2013) and MEGAHIT (Li et al., 2015). Assembled contigs were sorted and reassembled using Geneious Prime 2019.2.3 to construct consensus mitochondrial genome sequences. To confirm the accuracy of the assembly, raw reads were mapped to the draft mitochondrial genomes using Bowtie2 in Geneious Prime.

Mitochondrial genomes were annotated using BlastX and NCBI ORFfinder. Transfer RNA (tRNA) genes were predicted by tRNAscan-SE v. 2.0 (Lowe and Chan, 2016) with default settings and the “Mold/Protozoan Mito” model, RNAweasel server, and Aragorn v.1.2.38 (Laslett and Canback, 2004). Only tRNA positions supported by at least two programs were retained for further analysis. Ribosomal RNA (rDNA) genes were predicted by RNAmmer 1.2 server (Lagesen et al., 2007).

Comparison of Mitogenome Structure and Phylogenetic Analysis
The physical map of the mitogenome was prepared for visualization using OrganellarGenomeDRAW (OGDraw) (Lohse et al., 2013). Locally collinear blocks (LCBs) alignments were generated using ProgressiveMauve (Darling et al., 2004) with a seed of 21 for the mitochondrial alignments and the ‘Use seed families’ option selected. CREx (Bernt et al., 2007) was performed to compare the gene order and their rearrangement events (e.g., inversion, transpositions, reverse transpositions, and tandem-duplication-random-loss [TDRL]) using heuristic pairwise comparisons with the common interval measurement in the genus Gelidiella. Twenty-three PCGs were translated into amino acid sequences and aligned using MAFFT 7.450 (Katoh and Standley, 2013) under the default setting in Geneious Prime. The alignment was manually adjusted and the ambiguous sites were deleted by GBLOCKS v.0.19b (Castresana, 2000). The phylogenetic tree of the concatenated dataset of 23 PCGs was reconstructed using Maximum Likelihood (ML) and Bayesian inference (BI). For the ML analysis, the best-fitting partitioning schemes and models of molecular evolution were inferred by using ModelFinder (Kalyaanamoorthy et al., 2017). Based on the Bayesian information criterion (BIC), ModelFinder identified two partitions: mtVer + F + I + G for atp4 + atp8 + rpl16 + rps3 + rps11 + sdh3 + sdhD + tatC and mtVer + F + I + G for atp6 + atp9 + cob + cox1 + cox2 + cox3 + nad1 + nad2 + nad3 + nad4 + nad4L + nad5 + nad6 + rps12 + sdh2. The ML analyses were performed using the W-IQ-tree webserver (Trifinopoulos et al., 2016) with 1,000 ultrafast bootstrap (BS) replicates. For the BI analysis, PartitionFinder v.2.1.1 (Lanfear et al., 2016) was used to select the best-fitting partitioning schemes and models of molecular evolution using the greedy algorithm with unlinked branch lengths. The PartitionFinder identified three partitions: CPREV + I + G for nad2 + nad5 + nad3 + nad4 + sdh2 + rps12 + nad6 + rpl16 + atp8 + rps11 + rps3 + atp4, MTMAM + I + G for cox1 + atp9 + cob + cox2 + cox3 + atp6 + nad1 + nad4L, and MTMAM + I + G for tatC + sdh3 + sdhD. The BI was performed with MrBayes v.3.2.1 (Ronquist et al., 2012) using the Metropolis-coupled Markov Chain Monte Carlo (MC3) with the models selected by PartitionFinder. For each matrix, four million generations of two independent runs were performed with four chains and sampling trees every 100 generations. The burn-in period was identified graphically by tracking the likelihoods at each generation to determine when they reached a plateau. Twenty-five percent of saved trees were removed, and the remaining trees used to calculate the Bayesian posterior probabilities (BPP).

Genetic diversities, in mitogenomes, PCGs, and intergenic spacer levels, were calculated by DnaSP v.5.10.1 (Librado and Rozas, 2009). To test the selection pressure of mitochondrial PCGs, ratios of non-synonymous (Ka) versus synonymous substitutions (Ks) were measured using DnaSP. Pairwise genetic distances were computed to assess the divergences of G. fanii, G. acrosa and G. flabella. Haplotype networks were constructed from PCGs and intergenic spacer regions with PopART v.1.7 (Leigh and Bryant, 2015) using the median-joining networks (MJN) (Bandelt et al., 1999).

Molecular Analyses of Mitochondrial cox1 and Plastid rbcL
DNA extractions, polymerase chain reaction (PCR) amplification, and sequencing followed Boo et al. (2016b). The primers used for amplifying and sequencing were F7, F645, R753, and RbcS start for rbcL (Freshwater and Rueness, 1994; Lin et al., 2001; Gavio and Fredericq, 2002), and COXI43F and COXI1549R for cox1 (Geraldino et al., 2006). When large fragments of the analyzed loci could not be amplified in one herbarium specimen (UC1461694, collected in 1962), we were able to amplify and sequence 237 bp of rbcL using primers F577, F993, and R753 (Freshwater and Rueness, 1994). Sequences of the forward and reverse strands were determined for all taxa, and the electropherograms were edited using MEGA7 (Kumar et al., 2016) and checked manually. Newly generated sequences were deposited in GenBank. Sequences were aligned using the MUSCLE algorithm in MEGA7 with default parameters and the alignment was manually adjusted.

Phylogenies of individual datasets were reconstructed with Maximum Likelihood (ML) analysis using the W-IQ-tree webserver. The best-fitting substitution model was determined with the model test option (auto), followed by the ML tree search, and 1,000 ultrafast bootstrap replicates. Haplotype network of mitochondrial cox1 was constructed with PopART v.1.7 using the median-joining networks (MJN). Haplotype diversity (h) and nucleotide diversity (π) were calculated for each population and at the species level using DnaSP v.5.1. Non-hierarchical and hierarchical analyses of molecular variance (AMOVA) was performed using Arlequin v.3.5 (Excoffier and Lischer, 2010) with Φ-statistics to quantify the proportion of total genetic variance, with significance of fixation indices tested using 10,000 permutations. The hierarchical partition was set to seven
groups (I–VII) based on the phylogeny and haplotype network of cox1.

RESULTS

Gelidiella Mitogenomes

Ten complete mitogenomes were sequenced using HTS; eight from *Gelidiella fanii* and one of each from *G. acerosa* and *G. flabella* (**Table 1**). The sequences of *Gelidiella* mitogenomes showed 91.5% identity in most regions relative to *G. fanii*. Pairwise divergences of mitogenomes within *G. fanii* were in a range of 2.4 ± 0.8% (between Hawai‘i and northern Australia). Interspecific pairwise divergences were 14.4 ± 0.1% between *G. fanii* and *G. acerosa* and 18.0 ± 0.08% between *G. fanii* with *G. flabella*.

The mitogenomes of *G. fanii* ranged in size from 25,223 bp (JN071, Juan de Nova Island) to 25,263 bp (CNU026931, the Philippines), with highly conserved gene syntenY (**Table 1** and **Supplementary Figure S1**). The GC content was in a range of 50.3 ± 0.1%. The mitogenomes contained 48 genes, consisting of 23 PCGs, 23 tRNAs, and 2 rRNA subunits, a result similar to the publicly available mitogenomes of *Gelidium* J.V.Lamouroux and *Pterocladia* B.Santelices and Hommersand (Boo et al., 2016a), which were included in our phylogenomic analysis. All eight *G. fanii* mitogenomes had a group II intron between the *nad5* and *nad4* genes. Three types of tRNAs were found between the *trnA* and *trnN* regions (**Figure 1A**). TYPE1 (*trnY-trnR-trnS* insertion) was found in most of *G. fanii* and *G. acerosa* samples. TYPE2 (*trnS-trnR-trnY* inversion) was present in *G. fanii* from northern Australia (CNU066493). This tRNA inversion rearrangement was inferred from the putative ancestral state of *G. acerosa* (*trnY-trnR-trnS*). TYPE3 (lacking *trnY-trnR-trnS*) was most common in the Gelidiellas and *Gelidiella flabella* (**Figure 1A** and **Supplementary Table S2**).

Phylogenomics and Gene Characteristics

The concatenated dataset of 23 PCGs (5,555 amino acid positions) from 23 mitogenomes, including 13 previously published mitogenomes (nine *Gelidium* and four *Pterocladia*), was used for phylogenetic analysis. Because the topologies of ML and BI were identical, we show the ML tree with branch supports of MLBS and BPP. Mitochondrial phylogenomics revealed that the three species of *Gelidiella* formed a fully supported clade. *Gelidiella fanii* was monophyletic (BS: 100, BPP: 1.0) and clearly segregated from *G. acerosa* and *G. flabella* (**Figure 1B**). Two *G. fanii* mitogenomes from the Philippines clustered with full support with those from Tetiaroa Atoll (BS: 100, BPP: 1.0) and those formed a moderately supported clade with Hawai‘i (BS: 79, BPP: 0.97). *Gelidiella fanii* from Taiwan formed a clade (BS: 100, BPP: 1.0) with Vietnam, and was sister to Juan de Nova Island.

The characteristics of the 23 PCGs are provided in **Table 2**. The mean value of the ratio of non-synonymous (Ka) versus synonymous substitutions (Ks) for 23 PCGs was in a range of 0.0000–0.2827 (**Supplementary Figure S2**). The value was low in *atp9* (0.0000), cox1 (0.0189), cob (0.0258), cox2 (0.0416), cox3 (0.0519), and *nad4L* (0.0538) compared to the other PCGs. The number of haplotypes for 23 PCGs is provided in **Table 2**. The haplotype networks of six genes with a low Ka/Ks ratio are shown in **Supplementary Figure S3**.

Intergeneric spacers, mostly less than 100 bp in size, were detected in 46 regions (**Table 3**). Six spacer regions were > 100 bp in size: 144 bp in *trnA-trnY*, 145 bp in *rps11-nad3*, 158 bp in *cox2-cox3*, 247 bp in *trnM-rns*, 409 bp in *trnW-trnA*, and 526 bp in *nad4-nad5* of *G. fanii* samples. TYPE1 and TYPE2 had a group II intron between the *nad5* and *nad4* genes. Three types of tRNAs were found between the *trnA* and *trnN* regions (**Figure 1A**). TYPE1 (*trnY-trnR-trnS* insertion) was found in most of *G. fanii* and *G. acerosa* samples. TYPE2 (*trnS-trnR-trnY* inversion) was present in *G. fanii* from northern Australia (CNU066493). This tRNA inversion rearrangement was inferred from the putative ancestral state of *G. acerosa* (*trnY-trnR-trnS*). TYPE3 (lacking *trnY-trnR-trnS*) was most common in the Gelidiellas and *Gelidiella flabella* (**Figure 1A** and **Supplementary Table S2**).

Phylogeny of Mitochondrial cox1 and Plastid rbcL

Both markers newly confirmed the occurrence of *G. fanii* in Kenya, Juan de Nova Island, and Tetiaroa Atoll; rbcL sequences confirmed its presence in Eritrea (**Supplementary Figure S4**). The unrooted phylogeny of *G. fanii* based on 47 cox1 sequences, including 21 newly generated sequences, consisted of seven groups (I–VII) (**Figure 3**). Group I from Southeast Asia (Taiwan, Thailand, the Philippines, Vietnam, Japan), II from Eastern Africa (Juan de Nova Island, Kenya), III

TABLE 1 | Characteristics of 10 complete mitogenomes of *Gelidiella fanii*, *G. acerosa*, and *G. flabella*.

Species	Voucher	Length (bp)	G + C (%)	PCGs	tRNAs	rRNAs	Group II intron	Total genes
Gelidiella fanii	CNU026931	25,263	30.4	23	23	2	17123–17078 (c)	48
Gelidiella fanii	CNU040585	25,257	30.4	23	23	2	17123–17078 (c)	48
Gelidiella fanii	CNU066493	25,260	30.4	23	23	2	17127–17082 (c)	48
Gelidiella fanii	CNU070344	25,239	30.1	23	23	2	17123–17078 (c)	48
Gelidiella fanii	CNU070353	25,229	30.3	23	23	2	17124–17079 (c)	48
Gelidiella fanii	CNU080505	25,228	30.3	23	23	2	17123–17078 (c)	48
Gelidiella fanii	JN071	25,223	30.3	23	23	2	17120–17075 (c)	48
Gelidiella fanii	PF447	25,230	30.4	23	23	2	17112–17067 (c)	48
Gelidiella acerosa	CNU026920	25,281	29.3	23	23	2	17123–17078 (c)	48
Gelidiella flabella	PC0166624a	24,948	31.2	23	20	2	17149–17104 (c)	45

PCGs, protein-coding genes; (c), complement.
Boo et al. Complete Mitogenomes of Gelidiella fanii

FIGURE 1 | (A) The tRNA insertion and inversion rearrangement of trnY-trnR-trnS region in Gelidiales. (B) Maximum likelihood phylogeny of Gelidiella using 23 protein-coding genes generated in this study and previously published data of the Gelidiales. Both ML bootstrap values (≥ 50%) and Bayesian posterior probabilities (≥ 0.9) are indicated near branches. Bold letter indicates newly generated sequences in this study. Red bar indicates tRNA inversion rearrangement inferred by CREx analysis.

from Indonesia, IV from northern Australia, V from the Philippines, VI from Tetiaroa Atoll, and VII from Hawai’i. Groups III and IV formed a strongly supported clade (BS: 94); groups V and VI were clustered with moderate support (BS: 84).

Of a total of 23 rbcL sequences from G. fanii, 10 were generated in this study. The short rbcL sequences (237 bp) were successfully amplified from the herbarium specimen from Eritrea (UC1461694, as G. acerosa) that we identified as G. fanii. It differed by 0 to 1 bp (0–0.4%) from all other G. fanii specimens (Supplementary Table S3), but was 6 bp (2.5%) different from G. acerosa and 16 bp (6.8%) from G. flabella. The unrooted phylogeny of rbcL was similar to that of cox1 (Supplementary Figure S4), except that the Hawaiian sequences grouped with Kenya and Juan de Nova Island.

Genetic Diversity, Haplotype Network, and Population Structure of Mitochondrial cox1

The cox1 dataset revealed high estimates of haplotype diversity ($h = 0.931$) and nucleotide diversity ($\pi = 0.00951$), indicating
genetic heterogeneity within the species. The median-joining network consisted of 19 haplotypes in seven groups, connected by many missing haplotypes related to the geographical distances between sampling locations (Figure 4). Haplotypes from Indonesia (C13) and northern Australia (C14) were distinctly related (32 missing haplotypes) while Southeast Asian haplotypes (C1–C10) were connected by 1–3 missing haplotypes. Two haplotypes from Taiwan shared sequences with Thailand (C2) and the Philippines (C6), respectively. Haplotypes from the Philippines were separated into two groups: one was restricted to Cebu (C15–C17), while the other (C6), shared with Taiwan, clustered with Southeast Asian haplotypes. The Indonesian haplotype (C13) was distantly connected to those from Southeast Asia. Haplotypes from northern Australia (C14), Tetiaroa Atoll (C18), and Hawai‘i (C19) were also isolated.

Non-hierarchical AMOVA showed that most of the cox1 variation within species was found among populations (85.36%; Table 4), while a smaller amount of genetic variation was found within populations (14.64%). Genetic subdivision was highly significant among populations (ΦST = 0.85, P < 0.001). The hierarchical AMOVA indicated the total genetic variance was mainly explained by the variance among groups (88.16%, ΦCT = 0.88, P < 0.001); the variances among populations within groups (6.23%, ΦSC = 0.53, P < 0.001) and within populations (5.62%, ΦST = 0.94, P < 0.001) were much lower (Table 4).

DISCUSSION

We sequenced eight complete mitogenomes of *Gelidiella fanii* and two outgroup species, *G. acerosa* and *G. flabella*. Gene content and organization in the newly determined *Gelidiella* mitogenomes are similar to published reports for *Gelidium* and *Pterocladiella*. However, the *Gelidiella* mitogenome is slightly larger (45–48 genes and 25,223–25,281 bp) than those (43–44 genes and 24,901–24,970 bp) of *Gelidium* and *Pterocladiella* (Yang et al., 2015; Boo et al., 2016a; Boo and Hughey, 2019). The pairwise divergences in mitogenome data ranged from 0.07 to 3.4% within *G. fanii*, which is higher than

Gene	Lengtha	V (%)	S	PI	π ± SD	πa	πns	h	Indel sites	Ka/Ks ratiob
atp4	543	50 (9.2)	36	14	0.0291 ± 0.0049	0.0819	0.0152	7	NA	0.2095
atp6	762	53 (7.0)	33	20	0.0238 ± 0.0026	0.0838	0.0055	7	NA	0.0614
atp8	402	39 (9.7)	25	14	0.0336 ± 0.0052	0.0884	0.0193	7	15	0.2369
atp9	231	14 (6.1)	9	5	0.0206 ± 0.0028	0.0848	0.0000	7	NA	0.0000
cob	1146	78 (6.8)	47	31	0.0236 ± 0.0037	0.0939	0.0027	7	NA	0.0258
COI-SP†	664	35 (5.3)	23	12	0.0175 ± 0.0026	0.0728	0.0000	7	NA	0.0000
cox1	1602	85 (5.3)	58	27	0.0170 ± 0.0026	0.0677	0.0014	8	NA	0.0189
cox2	783	49 (6.3)	31	18	0.0208 ± 0.0025	0.0835	0.0034	6	NA	0.0416
cox3	819	55 (8.7)	36	19	0.0225 ± 0.0029	0.0854	0.0039	7	NA	0.0519
nad1	981	54 (5.5)	30	24	0.0196 ± 0.0021	0.0695	0.0039	7	NA	0.0635
nad2	1473	117 (7.9)	58	59	0.0294 ± 0.0029	0.0831	0.0135	7	NA	0.1553
nad3	366	27 (7.4)	21	6	0.0220 ± 0.0035	0.0769	0.0051	7	NA	0.0627
nad4	1473	108 (7.3)	68	40	0.0246 ± 0.0030	0.0835	0.0069	7	NA	0.0833
nad4L	306	16 (5.2)	8	8	0.0186 ± 0.0025	0.0718	0.0029	7	NA	0.0538
nad5	1986	151 (7.6)	99	52	0.0253 ± 0.0035	0.0811	0.0081	8	NA	0.0950
nad6	609	56 (9.2)	28	28	0.0344 ± 0.0037	0.1174	0.0094	8	NA	0.0740
rpl16	405	36 (8.9)	20	16	0.0323 ± 0.0044	0.1106	0.0127	8	NA	0.1173
rps3	723	80 (11.1)	45	35	0.0399 ± 0.0050	0.0909	0.0260	7	NA	0.2827
rps11	363	37 (10.2)	23	14	0.0345 ± 0.0046	0.0961	0.0184	7	NA	0.1940
rps12	366	24 (6.6)	11	13	0.0249 ± 0.0024	0.0833	0.0066	6	NA	0.0836
rps15	381	42 (11.0)	19	23	0.0436 ± 0.0046	0.1094	0.0251	7	NA	0.2236
tatC	750	76 (10.1)	42	34	0.0361 ± 0.0039	0.1033	0.0179	8	NA	0.1825
LSU	2538	78 (3.1)	56	22	0.0098 ± 0.0018	NA	NA	6	NA	
SSU	1354	36 (2.7)	29	7	0.0080 ± 0.0013	NA	NA	7	4	NA

Length, variable sites, nucleotide diversity, and Ka/Ks ratio. V, variable site; S, singleton; PI, parsimony informative site; π, nucleotide diversity; SD, standard deviation; πa, synonymous diversity; πns, non-synonymous diversity; h, number of haplotype; a aligned length; b mean value; † DNA barcoding region; NA, not applicable.

Table 2: A comparison of 23 protein-coding and two ribosomal genes in *Gelidiella fanii*.
that in *Pterocladilla capillacea* (S.G.Gmelin) Santelices and Hommersand from the Galápagos Islands and Pacific Mexico (Boo et al., 2016a). However, pairwise divergence in *rbcL* was 0–0.5%, a value lower than interspecific divergences (0.8–0.9%) in the Gelidiales, with the exception of a closely related sibling species (Boo et al., 2014). The pairwise divergences in *rbcL* fell within the large range of reported rhodomelacean divergences, e.g., 0.4–1% in *Symphyocladiella dendroidea* (Montagne) D.Bustamante, B.Y.Won, S.C.Lindstrom and T.O.Cho, and 0.3–0.7% in
Melanothamnus harveyi (Bailey) Díaz-Tapia and Maggs (Díaz-Tapia et al., 2018).

Pairwise divergence within or between species is a relative value rather than an absolute criterion for species recognition. The Australian G. fanii, differed by 2.4–2.8% in cox1 and 0.3–0.5% in rbcL from other populations of G. fanii, may represent a closely related sibling species. This hypothesis may be supported by the unique tRNA inversion. However, because the Long Reef specimen was used in its entirety for the molecular analyses, additional material was not available for further morphological examination to determine whether it is a closely related cryptic species or not (Huisman et al., 2018).

Phylogenomic analyses corroborate the monophyly of G. fanii and its independence from outgroup species. The close relationship of G. fanii with G. acerosa and G. flabella has been supported by previous multigene phylogenies (Boo et al., 2016b,c). Gelidiella fanii is sympatric with G. acerosa in Juan de Nova Island, Tetiaroa Atoll, and Vietnam (this study) as well as Southeast Asia (Lin and Freshwater, 2008; Wiriyadamrikul et al., 2010). Because asexual propagation via tetrasporangia or fragmentation is apparently the only means of reproduction in the genus Gelidiella, we speculate that G. fanii may have arisen by sympatric asexual speciation from an ancestor of the G. acerosa complex. Alternatively, it is possible that sexual reproduction was lost in the genus after speciation, reinforcing the isolation of populations.

The mitogenome and cox1 sequences demonstrate the widespread distribution of G. fanii from Kenya and Juan de Nova Island (Mozambique Channel) to Hawai‘i and Tetiaroa Atoll (this study) as well as in northern Australia and Southeast Asia (Lin and Freshwater, 2008; Wiriyadamrikul et al., 2010; Boo et al., 2016c; Huisman et al., 2018). Its occurrence in Eritrea is confirmed by a short, conserved region of rbcL from an archival herbarium specimen. We found several archival herbarium specimens from Samoa and Tonga housed in UC that were morphologically similar to G. fanii; however, our efforts to isolate genomic data from those specimens were unsuccessful.

The broad range of G. fanii, spanning the east and west margins of the Indo-Pacific Ocean, is part of an interesting biogeographical story. In contrast, recent molecular studies have revealed that many so-called widespread species are introduced, misidentified species, or consisted of a complex of local cryptic species (Won et al., 2009; Sherwood et al., 2010; Boo et al., 2018; Díaz-Tapia et al., 2018; Leliaert et al., 2018). That said, this and
Boo et al. Complete Mitogenomes of Gelidiella fanii

FIGURE 3 Unrooted phylogeny of *Gelidiella fanii* obtained by maximum-likelihood inference of mitochondrial cox1 sequences. ML bootstrap values (≥ 50%) are indicated near branches. Seven genetic groups are marked from I to VII.

Previous studies have recently distinguished *G. fanii* from its very similar and widespread congener, *G. acerosa*, with which it has been long confused. The phylogeny and haplotype network of *Gelidiella fanii* detected strong signals of genetic differentiation into seven geographical groups; i) Southeast Asia, ii) Kenya/Juan de Nova Island, iii) Indonesia, iv) northern Australia, v) the Philippines, vi) Tetiaroa Atoll, and vii) Hawai‘i. The origin of these groups may be interpreted via two scenarios. One hypothesis is that ancient populations of *G. fanii* were widely distributed in the Tethys Ocean and the local populations accumulated genetic changes at the geographical periphery. Subsequently, local populations have likely been geographically isolated by changes in sea level and other oceanographic conditions during the Pleistocene epoch (2.6 Ma – 11.7 ka), which experienced many glacial-interglacial cycles (Herzschuh et al., 2016). A similar hypothesis has been proposed for *Gelidiophycus* G.H.Boo, J.K.Park and S.M.Boo and *Mazzaella* G.De Toni (Montecinos et al., 2012; Boo et al., 2019). This hypothesis is supported by low dispersal capacity of *G. fanii*, a small species lacking flotation and with asexual reproduction. Our second hypothesis is that Southeast Asia, rich in haplotypes, was the center of origin of *G. fanii*. Populations may have subsequently migrated to marginal regions of the Indo-Pacific Ocean. This hypothesis has been proposed for *Portieria* Zanardini species (Gigartinales) that originated in the Central Indo-Pacific and then dispersed in all directions, although the origins of species in remote islands were uncertain (Leliaert et al., 2018). Additional sampling in more regions is necessary to differentiate the two hypotheses, but the logistics of sampling are currently difficult. It is unlikely that *G. fanii* has recently spread via introductions because of the paucity of shared haplotypes among the seven groups. The many missing haplotypes also indicate deep history.

The mitochondrial genome is a significant source of molecular markers at different levels of resolution. The *cox1* gene, with the lowest Ka/Ks ratio (0.0189), is considered a good marker at the population level and has a high degree of resolution at the species level (Boo et al., 2016b). The large size (1,602 bp) of *cox1* also provides evolutionarily important information with many singletons (58) and haplotypes (8). Its utility as a population marker has been demonstrated for *Gelidiophycus* species (Boo et al., 2019). COI-5P (≈664 bp), a conserved part of *cox1* gene, is the well-known DNA barcoding marker for identifying red algal species and populations (e.g., Saunders, 2005; Sherwood et al., 2010; Hu et al., 2015; Freshwater et al., 2017; Leliaert et al., 2018). The haplotype number (7) and nucleotide diversity (0.0175 ± 0.0026) of COI-5P are similar to those of *cox1* gene, supporting its utility in population studies. Both *cox2* and *cox3* can also be useful markers; *cox2* (783 bp) contained 31 singletons and 6 haplotypes, and *cox3* (819 bp) contained 36 singletons and...
seven haplotypes. The cytochrome b gene (cob, 1,146 bp), with 47 singletons and seven haplotypes, has been used as a DNA barcode at the species and population levels (Saunders and Moore, 2013; Yoon et al., 2014).

Five intergenic spacers described in this study are candidates for markers to distinguish populations. The cox2-cox3 (158 bp)-contained six haplotypes with a nucleotide diversity of 0.0204 ± 0.0036. This spacer region (~350–400 bp including flanking parts) has been used to identify red algal species and populations (e.g., Zuccarello et al., 1999; Lim et al., 2013; Kamiya and West, 2014; Pezzolesi et al., 2019). Rps11-nad3 (145 bp) may be a suitable marker with its six haplotypes and nucleotide diversity of 0.0235 ± 0.0037. Nad4-nad5, trnW-trnA, and trnM-rns contained seven haplotypes; however, nucleotide diversity was higher in trnW-trnA (0.0422 ± 0.0050) and trnM-rns (0.0483 ± 0.0046) than nad4-nad5 (0.0131 ± 0.0024). Suitable primers for amplifying the above spacer regions have yet to be designed and tested for their practical use in population studies.

CONSERVATION AND CONCLUSION

This study, a detailed characterization of the phylogeography of *G. fanii* using data from the mitogenomes of eight populations,
reveals significant genetic structure correlated with geographic distribution. The continued persistence of G. fanii is unclear, considering its rarity and close association with G. acerosa, with which it likely competes for substrate, nutrients and light. There is a critical shortage of gelidioid biomass for the production of high-grade bacteriological and pharmaceutical agar (Callaway, 2015; Santos and Melo, 2018). The harvest of Gelidiella is possible due to the higher productivity of populations in tropical waters compared to those of temperate species of Gelidium (Ganzon-Fortes, 1994; Santos and Melo, 2018). Commercial harvest of G. acerosa for agar impacts G. fanii and, because it is rare, population reduction over time is probable. Minimizing the loss of genetic diversity is a key factor for conserving economically important marine species. Populations with distinct haplotypes can be recognized and managed as independent conservation units. Populations could also be protected within marine reserves or marine protected areas. Systematic management of natural populations can improve biomass yields for the agar industry. Ecological and phenological studies will be needed in the future to detect changes in population sizes and shifts in geographical ranges due to overharvesting and anticipated oceanographic climate change.

Mitogenome data are currently unavailable for population studies of florideophycean red algae, a large and diverse group comprising 7,000 species. Our results represent a new path toward a mitogenomic picture of the evolution and biogeography of widespread red algal species. This study is the first to describe and analyze complete mitogenomes from the family Gelidiellaceae and to test their utility for population-level studies. We have extended the range of G. fanii from Southeast Asia and northern Australia to the eastern and western margins of the Indo-Pacific Ocean, and have suggested that the observed patterns of genetic groups may have resulted from sea level fluctuations or other environmental changes that occurred during the Pleistocene. On the basis of our mitogenome sequences, we propose that intergenic spacer regions as well as PCGs can be explored as suitable markers at the population level for red algae. Markers derived from mitogenomic analyses are important tools for tracking species ranges and developing future conservation strategies for ecologically and economically important red algal species.

DATA AVAILABILITY STATEMENT

The datasets generated for this study can be found in GenBank under the accession numbers, MT742595–MT742604 for mitogenomes, MT758387–MT758400 for mitochondrial cox1, and MT758377–MT758386 for plastid rbcL sequences.

REFERENCES

Abbott, I. A. (1999). Marine Red Algae of the Hawaiian Islands. Honolulu, HI: Bishop Museum Press.

Bandelt, H. J., Forster, P., and Rohl, A. (1999). Median-joining networks for inferring intraspecific phylogenies. *Mol. Biol. Evol.*, 16, 37–48. doi: 10.1093/oxfordjournals.molbev.a026036

Boo, G. H. (2019). Phylogenomics and multigene phylogenies decipher two new cryptic marine algae from California, Gelidium gabrielsonii and Gelidium kathyanniae (Gelidiales, Rhodophyta). *J. Phycol.* 55, 160–172. doi: 10.1111/jpy.12802

AUTHOR CONTRIBUTIONS

GHB, MTF, SMB, and KAM conceived and designed the study. GHB, MZ, ARS, SMB, and KAM performed the collections and provided samples. GHB and JRH performed laboratory work and the data analyses. All authors participated in the interpretation of the data and writing the manuscript.

FUNDING

This study was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) by the Ministry of Education (2018R1A6A3A03012648), the São Paulo Research Foundation (FAPESP) for Bolsas Concedidas como Itens Orçamentários em Auxílios/BCO – Pós-Doutorado (2019/16956-2), and postdoctoral funding from the Silva Center for Psychological Documentation, University Herbarium, University of California at GHB; BIORECIE program with the financial support of the Institut National des Sciences de l’Univers (INSU), the Institut de Recherche pour le Développement (IRD), the Agence des Aires Marines Protégées (AAMP), the Fondation pour la Recherche sur la Biodiversité (FRB), and the TAAF (“Terres Australes et Antarctiques Françaises”) to MZ; the U.S. National Science Foundation (DEB-1754117) to ARS; and the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP 2016/50370-7) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq for the Productivity Fellowship (304899/2017-8) to MTF.

ACKNOWLEDGMENTS

The authors thank Olivier de Clerck, Eric Coppejans, John Huisman, Paul Geraldino, Line Le Gall, Shao-Lun Liu, and Tu van Nguyen for providing materials or help with collection trips. The authors also thank Tetiaroa Society for the logistical support in Tetiaroa atoll sampling.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmars.2020.583957/full#supplementary-material
Boo, G. H., Hijar, J. R., Miller, K. A., and Boo, S. M. (2016a). Mitogenomes from type specimens, a genotyping tool for morphologically simple species: ten genomes of agar-producing red algae. *Sci. Rep.* 6:35337. doi: 10.1038/srep35337

Boo, G. H., Le Gall, L., Miller, K. A., Freshwater, D. W., Wernberg, T., Terada, R., et al. (2016b). A novel phylogeny of the Gelidiales (Rhodophyta) based on five genes including nuclear *Cae*. with descriptions of *Orthogononadiacea* gen. nov. and *Orthogononadiaceae* fam. nov. *Mol. Phylogenet. Evol.* 101, 359–372. doi: 10.1016/j.ympev.2016.05.018

Boo, G. H., Nguyen, T. V., Kim, J. Y., Le Gall, L., Rico, J. M., Bottalico, A., et al. (2016c). A revised classification of the Gelidiellaceae (Rhodophyta) with description of three new genera: *Huismania*, *Millerea*, and *Perronella*. *Taxon* 65, 965–979. doi: 10.12705/655.2

Boo, G. H., Kim, K. M., Nelson, W. A., Riosmena-Rodriguez, R., Yoon, K. I., and Boo, S. M. (2014). Taxonomy and distribution of selected species of the agarophytes genus *Gelidium* (Gelidiales, Rhodophyta). *J. Appl. Phycol.* 26, 1243–1251. doi: 10.1007/s10811-013-0111-7

Boo, G. H., Le Gall, L., Rousseau, F., de Reviers, B., Coppejans, E., Anderson, R., et al. (2016). Mitogenomes of *Grateloupia turuturu* (Halymeniaceae, Rhodophyta) is the correct name of the nonnative species in the Atlantic known as *Grateloupia doryphora*. *Eur. J. Phycol.* 37, 349–359. doi: 10.1017/S0967026520003839

Geraldivad, F. J. L., Yang, E. C., and Boo, S. M. (2006). Morphology and molecular phylogeny of *Hypnea fuscobasii* (Gigartinales, Rhodophyta) from Korea. *Algae* 21, 417–423. doi: 10.4490/alga.2006.21.4147

Herzschuh, U., Birks, H. J. B., Laepple, T., Andreev, A., Melles, M., and Bringham-Grette, J. (2016). Glacial legacies on interglacial vegetation at the Pliocene-Pleistocene transition in NE Asia. *Nat. Commun.* 7:11967. doi: 10.1038/ncomms11967

Hu, Z. M., Li, J. J., Sun, Z. M., Oak, J. H., Zhang, J., Fresa, P., et al. (2015). Phylogeographic structure and deep lineage diversification of the red alga *Chondrus ocellatus* Holmes in the northwest Pacific. *Mol. Ecol. Evol.* 24, 5020–5033. doi: 10.1111/mee.12455

Hughey, J. R., and Boo, G. H. (2016). Genomic and phylogenetic analysis of *Ceramium cimbricum* (Ceramiales, Rhodophyta) from the Atlantic and Pacific oceans supports the naming of a new invasive Pacific entity *Ceramium sungminbi* sp. nov. *Bot. Mar.* 59, 211–222. doi: 10.1515/bot-2016-0036

Hughey, J. R., Gabrielson, P. W., Rohmer, L., Tortolani, J., Silva, M., Miller, K. A., et al. (2014). Minimally destructive sampling of type specimens of *Pyropia* (Bangiales, Rhodophyta) recovers complete plastid and mitochondrial genomes. *Sci. Rep.* 4:5113. doi: 10.1038/srep05113

Huisman, J. M., Boo, G. H., and Boo, S. M. (2018). “Gelidiales,” in *Algae of Australasia: Marine Benthic Algae of North-Western Australia*, 2. Red Algae, ed. J. M. Huisman (Canberra: ABRS & CSIRO), 245–264.

Kalyaanamoorthy, S., Min, B. Q., Wong, T. K. F., van Haeseler, A., and Jermin, L. S. (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. *Nat. Meth.* 14, 587–589. doi: 10.1038/nmeth.4285

Kamiya, M., and West, J. A. (2014). Cryptic diversity in the euryhaline red alga *Caloglossa ogasawaraiensis* (Delesseriaceae, Ceramiales). *Phyloccia* 53, 374–382. doi: 10.1111/1477-2053.12321

Kato, K., and Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. *Mol. Biol. Evol.* 30, 772–780. doi: 10.1093/molbev/mso10

Kumar, S., Stecher, G., and Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. *Mol. Biol. Evol.* 33, 1870–1874. doi: 10.1093/molbev/msw054

Lagesen, K., Hallin, P., Redland, E. A., Staerfeldt, H.-H., Rognes, T., and Usery, D. W. (2007). RNaMMer: consistent and rapid annotation of ribosomal RNA genes. *Nucleic Acids Res.* 35, 3100–3108. doi: 10.1093/nar/gkm160

Lanfear, R., and fridge, B. A., Menfled, T., and Calcott, B. (2016). PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. *Mol. Biol. Evol.* 34, 772–773. doi: 10.1093/molbev/msw260

Laslett, D., and Canback, B. (2004). ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. *Nucleic Acids Res.* 32, 11–16. doi: 10.1093/nar/gkh152

Leblanc, C., Boyen, C., Richard, O., Bonnard, G., Grienbenberger, J. M., and Kloareg, B. (1995). Complete sequence of the mitochondrial DNA of the rhodophyte *Chondrus crispus* (Gigartinales). Gene content and genome organization. *J. Mol. Biol.* 250, 484–495. doi: 10.1016/0022-2836(95)00258-7

Leigh, J. W., and Bryant, D. (2015). *PopART*: full-feature software for haplotype network construction. *Methods Ecol. Evol.* 6, 1110–1116. doi: 10.1111/2041-1210.X.12410

Leliart, F., Payo, D. A., Gurgel, C. F. D., Schils, T., Draisma, S. G. A., Saunders, G. W., et al. (2018). Patterns and drivers of species diversity in the Indo-Pacific red seaweed *Portieria*. *J. Biogeogr.* 45, 2299–2313. doi: 10.1111/jbi.13410

Li, D., Liu, C. M., Luo, R., Sadakane, K., and Lam, T. W. (2015). MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. *Bioinformatics* 31, 1674–1676. doi: 10.1093/bioinformatics/btv333

Librado, P., and Rozas, J. (2009). *DnaSP v5*: a software for comprehensive analysis of DNA polymorphism data. *Bioinformatics* 25, 1451–1452. doi: 10.1093/bioinformatics/btp187

Lim, P.-E., Tan, J., Phang, S. M., Nikmatullah, A., Hong, D. E., Sunarpi, H., et al. (2013). Genetic diversity of *Kappaphycus Doty and Eucheuma J. Agardh"
Boo et al. Complete Mitogenomes of Gelidiella fanii

(Solieriaceae, Rhodophyta) in Southeast Asia. *J. Appl. Phycol*. 26, 1253–1272. doi: 10.1007/s10811-013-0197-y

Lin, S.-M., Fredericq, S., and Hommersand, M. H. (2001). Systematics of the Delesseriaceae (Ceramiales, Rhodophyta) based on large subunit rDNA and rbcL sequences, including the Phycodryoidae subfam. nov. *J. Phycol*. 37, 881–899. doi: 10.1046/j.1529-8817.2001.01012.x

Lin, S.-M., and Freshwater, D. W. (2008). The red algal genus Gelidiella (Gelidiales, Rhodophyta) from Taiwan, including *Gelidiella fanii* sp. nov. *Phycologia* 47, 168–176. doi: 10.2216/07-30.1

Lohse, M., Drechsel, O., Kahlaü, S., and Bock, R. (2013). OrganellarGenomeDRAW – a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. *Nucleic Acids Res*. 41, W575–W581. doi: 10.1093/nar/gkt289

Lowe, T. M., and Chan, P. P. (2016). tRNAscan-SE On-line: search and contextual analysis of transfer RNA genes. *Nucleic Acids Res*. 44, W54–W57. doi: 10.1093/nar/gkw413

Montecinos, A., Broitman, B. R., Faugeron, F., Haye, P. A., Tellier, F., and Guillenmin, M. L. (2012). Species replacement along a linear coastal habitat: phylogeography and speciation in the red alga *Mazzaella laminarioides* along the south east Pacific. *BMC Evol. Biol*. 12:97. doi: 10.1186/1471-2148-12-97

Nurk, S., Bankevich, A., Antipov, D., Gurevich, A. A., Korobeynikov, A., Lapidus, A., et al. (2013). Assembling single-cell genomes and mini-metagenomes from chimeric MDA products. *J. Comput. Biol*. 20, 714–737. doi: 10.1089/cmb.2013.0084

Pezzolesi, L., Peña, V., Le Gall, L., Gabrielson, P. W., Kaleb, S., Hughey, J. R., et al. (2016). Mediterranean *Lithothamnium strictiforme* (Corallinaceae, Rhodophyta) is a genetically diverse species complex: implications for species circumscription, biogeography and conservation of coralligenous habitats. *J. Phycol*. 55, 473–492. doi: 10.1111/jpy.12837

Picoulet, L., Peña, V., Le Gall, L., Gabrielson, P. W., Kaleb, S., Hughey, J. R., et al. (2019). Mediterranean *Lithothamnium strictiforme* (Corallinaceae, Rhodophyta) is a genetically diverse species complex: implications for species circumscription, biogeography and conservation of coralligenous habitats. *J. Phycol*. 55, 473–492. doi: 10.1111/jpy.12837

Rioü, L., and Turgeon, S. L. (2015). “Seaweed carbohydrates,” in Seaweed Sustainability: Food and Non-Food Applications, eds B. J. Tiwari, and D. J. Troy (London: CRC Press), 141–192. doi: 10.1016/b978-0-12-418697-2.00007-6

Ronquist, F., Teslenko, M., van Der Mark, P., Ayres, D., Darling, A., Hohna, S., et al. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. *Syst. Biol*. 61, 539–542. doi: 10.1093/sysbio/sys029

Salomäki, E. D., and Lane, C. E. (2016). Red algal mitochondrial genomes are more complete than previously reported. *Genome Biol. Evol*. 9, 48–63. doi: 10.1093/gbe/evw267

Santos, R., and Melo, R. A. (2018). Global shortage of technical agars: back to basics (resource management). *J. Appl. Phycol*. 30, 2463–2473. doi: 10.1007/s10811-018-1425-2

Saunders, G. W. (2005). Applying DNA barcoding to red macroalgae: a preliminary appraisal holds promise for future applications. *Philos. Trans. R. Soc. B* 360, 1879–1888. doi: 10.1098/rstb.2005.1719

Saunders, G. W., and Moore, T. E. (2013). Refinements for the amplification and sequencing of red algal DNA barcode and RedToL phylogenetic markers: a summary of current primers, profiles and strategies. *Algae* 28, 31–43. doi: 10.4490/algae.2013.28.1.031

Sherwood, A. R., Sauvage, T., Kurihara, A., Conklin, K. Y., and Presting, G. G. (2010). The Hawaiian Rhodophyta biodiversity survey (2006–2010): a summary of principal findings. *BMC Plant Biol*. 10:258. doi: 10.1186/1471-2229-10-258

Song, S. L., Yong, H. S., Lim, P. E., and Phang, S. M. (2017). Complete mitochondrial genome of *Gracilaria changii* (Rhodophyta: Gracilariaceae). *J. Appl. Phycol*. 29, 2129–2134. doi: 10.1007/s10811-017-1100-z

Suzuki, M., Segawa, T., Morii, H., Akiyoshi, A., Ootsuki, R., Kurihara, A., et al. (2016). Next-generation sequencing of an 88-year-old specimen of the poorly known species *Liagora japonica* (Nemaliales, Rhodophyta) supports the recognition of *Otohimella* gen. nov. *PloS One* 11:e0158944. doi: 10.1371/journal.pone.0158944

Trifinopoulos, J., Nguyen, L.-T., von Haeseler, A., and Minh, B. Q. (2016). W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. *Nucleic Acids Res*. 44, W232–W235. doi: 10.1093/nar/gkw256

Wiriadamsrikul, J., Park, J. K., Khan, W., and Boo, S. M. (2010). Additional records of *Gelidiella fanii* (Gelidiales, Rhodophyta) from the southeast Pacific based on morphology, rbcL and cox1 analyses. *Bot. Mar*. 53, 343–350. doi: 10.1515/BOT.2010.037

Won, B. Y., Cho, T. O., and Fredericq, S. (2009). Morphological and molecular characterization of species of the genus Centroceras (Ceramiaceae, Rhodophyta), including two new species. *J. Phycol*. 45, 227–250. doi: 10.1111/j.1365-294x.1999.00710.x

Yang, E. C., Kim, K. M., Kim, S. Y., Lee, J. M., Boo, G. H., Lee, J.-H., et al. (2015). Highly conserved mitochondrial genomes among multicellular red algae of the Florideophyceae. *Genome Biol. Evol*. 7, 2394–2406. doi: 10.1093/gbe/evv147

Yoon, K. J., Kim, K. M., Boo, G. H., Miller, K. A., and Boo, S. M. (2014). Mitochondrial cox1 and cob sequence diversities in *Gelidium vagum* (Gelidiales, Rhodophyta) in Korea. *Algae* 29, 15–25. doi: 10.4490/algae.2014.29.1.015

Zuccarello, G. C., Burger, G., West, J. A., and King, R. J. (1999). A mitochondrial molecular characterization of species of the genus Centroceras (Ceramiaceae, Rhodophyta). *Bot. Mar*. 44, W54–W57. doi: 10.1515/BOT.1999.53.5.343

Copyright © 2020 Boo, Zuhia, Hughey, Sherwood, Fuji, Boo and Miller. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.