Introduction

5’AMP-activated protein kinase (AMPK) is an enzyme that controls the cell energy balance. With energetic stress in the cell and an increase in the AMP concentration, ATP is replaced by AMP in the exchange centers, resulting in the allosteric activation of AMPK by phosphorylation of 172 threonine within alpha subunit of LKB1 complex in response to changes in cell energy or CAMKKβ, which activates intracellular Ca²⁺. The purpose was to study the activity of the main energy sensor of cells — AMPK in leukocytes in patients taking insulin preparations, metformin, and other hypoglycemic drugs in association with disease duration and glycated hemoglobin content. Materials and methods. The diabetic patients receiving single-drug or combined therapy with insulin and its analogues, metformin, dapagliflozin and sulfonylureas were randomized into 5 groups: the first group — with an HbA1c level close to the norm — 6.9–7.6 %; the second group — 7.6–9.0 %; the third group — > 9 %; the fourth group > 10 %; the fifth group — > 11 %. To determine the amount of phospho-AMPK (p-Thr172), ELISA kits were used. To get the calibration curve for the AMPK determination, a kidney cell culture HEK293T of the human embryonic kidney was used, which is recommended by manufacturer as a positive control.

Results. It was shown that with increase of blood HbA1c, the level of AMPK activity in leukocytes gradually decreased. With increase of blood HbA1c, the level of AMPK activity in leukocytes gradually decreased. The activity of AMPK in leukocytes of patients with HbA1c > 11 % was more than 3.5-fold lower compared to the group with 6.9–7.6 % of HbA1c; AMPK activity in leukocytes in patients with disease duration of 20 years was 3-fold lower. Thus, the AMPK activity in leukocytes may be an indicator of diabetic compensation in diabetic patients. Conclusions. With increase of blood HbA1c, the level of p-AMPK in leukocytes gradually decreased. AMPK activity in leukocytes in diabetes patients with disease duration of 20 years was 3-fold lower than in patients with 10-year experience.

Keywords: diabetes mellitus; 5’AMP-activated protein kinase; glycated hemoglobin
and for assessing the risk of microvascular complications [6].

The purpose: taking into account the data obtained in clinical and experimental studies, we attempted to study the activity of the main energy sensor of cells — AMPK in leukocytes in patients taking insulin preparations, metformin, and other hypoglycemic drugs in association with disease duration and glycated hemoglobin content.

Materials and methods

The study was conducted in the Diabetology Department of the V.P. Komisarenko Institute of Endocrinology and Metabolism of NAMS of Ukraine. All patients signed informed consent to conduct further diagnostic and research study. Immediately after collection, the blood was layered over a layer of Histopaque 1077 (Sigma, USA) and centrifuged at RT in 15 ml conical Falcon™ tubes.

The leukocytes collected were washed and frozen at −80 °C until use. The cells were lysed in the extraction buffer with inhibitors of proteases and phosphatases. To get the calibration curve for the AMPK determination, a kidney cell culture HEK293T of the human embryonic kidney was used, which is recommended by manufacturer as a positive control. The OD values of samples obtained (0.005–0.04) are located on the calibration curve region almost perfectly coinciding with exponential theoretical curves that indicates no scattering of the data [7].

The results of the study are presented as M ± SD and M ± m, n = 31 (3–6 per group). To compare the data groups, Student’s t-test was used. Values of P ≤ 0.05 were considered as significant.

Results

The patients received single-drug or combined therapy with insulin and its analogues, metformin, dapagliflozin and sulfonylureas. They were randomized into groups: the first group — with an HbA1c level close to the norm — 6.9—7.6 %; the second group — 7.6—9.0 %; the third group — > 9 %; the fourth group — > 10 %; the fifth group — > 11 %. In addition, the mean value for all patients (n = 31) was calculated.

AMPK activity was determined by the amount of phosphorylated Thr172 of α-subunit of the protein. Fig. 1 shows that the highest level of phospho-AMPK is observed in leukocytes in patients with low level of HbA1c — 6.9—7.6 %, which is not much higher than the indices recommended for diabetic patients, and can be considered as a condition close to compensatory. With increase of blood HbA1c, the level of p-AMPK gradually decreased. The activity of AMPK in leukocytes in patients with HbA1c > 11 % was more than 3.5-fold lower compared to group with HbA1c of 6.9—7.6 % (Fig. 1).

In the following, we calculated the AMPK activity in association with average duration of diabetes mellitus. Two groups of patients with DM duration of ~ 10 and ~ 20 years were selected.

The Table 1 demonstrates that AMPK activity in patients with disease duration ~ 20 years 3-fold lower than in patients with 10-year experience.

Discussion

Thus, regardless of the method of treatment AMPK activity may be related to the degree of diabetes mellitus compensation that reflects the level of glycated hemoglobin, with which kinase activity is linked by an inverse relationship.

It should be noted that leukocytes contain up to 11 % of monocytes/macrophages and up to 40 % of lymphocytes. Both types of cells and first of all macrophages are the main source of inflammatory effectors that promote diabetic atherosclerosis and myocardial infarction [8—10].

AMPK activity	DM duration, years
0.0069 ± 0.0013	20.25
0.0215 ± 0.0004	9.5

Note: M = m.
Оксидативна метаболізація визначає інфільтраційний стан макрофагів та процесів, що можуть відбутися до надплазматичного-ретикулярного стресу та формування пік-протеїнічних мафіонізмів. AMPK є енолемітета, на основі якої інфільтраційна інфільтрація макрофагів контролює метаболізм мітохондрії і, нарешті, визначає інфільтраційний стан макрофагів [11–14].

Conclusions. 1. У збільшенням рівня гемоглобіна A1c у відношенні до колірного значення у пацієнтів з 10-річним експеріментом. 2. AMPK активність в лейкоцитах з нефропатією зі стажем хвороби ~ 20 років у 3 рази нижчим, ніж у пацієнтів з 10-річним експеріментом. 3. Кваантитет активності AMPK в лейкоцитах пациентів з діабетом, що міг відображати показники компенсаційного стану в лейкоцитах пацієнтів з діабетом.

References. 1. Ruderman NB, Carlting D, Prentki M, Caccidno JM. AMPK, insulin resistance, and the metabolic syndrome. J Clin Invest. 2013 Jul;123(7):2764-72. doi: 10.1172/JCI66227. 2. Xiao B, Sanders MJ, Underwood E, et al. Structure of mammalian AMPK and its regulation by ADP. Nature. 2011 Apr 14;472(7342):230-3. doi: 10.1038/nature09932. 3. Racioppi L, Means AR. Calcium/calmodulin-dependent protein kinase kinase 2: roles in signaling and pathophysiology. J Biol Chem. 2012 Sep 14;287(38):31658-65. doi: 10.1074/jbc.R112.356485. 4. Jeong KJ, Kim GW, Chung SH. AMP-activated protein kinase: An emerging target for ginseng. J Ginseng Res. 2014 Apr;38(2):83-8. doi: 10.1016/j.jgr.2013.11.014. 5. Saha AK, Xu XJ, Balon TW, Brandon A, Kraegen EW, Ruderman NB. Insulin resistance due to nutrient excess. Is it a consequence of AMPK downregulation? Cell Cycle. 2011 Oct 15;10(20):3447-51. doi: 10.4161/cc.10.20.17886. 6. Kojić Damjanov S, Derič M, Eremin Kojić N. Glycated hemoglobin A1c as a modern biochemical marker of glucose regulation. Med Pregl. 2014 Sep-Oct;67(9-10):33-44. 7. Sokolova LK, Pushkarev VM, Belchina YB, Pushkarev VV, Tronko MD. Effect of combined treatment with insulin and metformin on 5'AMP-activated protein kinase activity in lymphocytes of diabetic patients. Dopov Nac akad nauk Ukr. 2018(5):100-104. doi: 10.15407/dopovidi2018.05.100. 8. Steinberg GR, Schertzer JD. AMPK promotes macrophage fatty acid oxidative metabolism to mitigate inflammation: implications for diabetes and cardiovascular disease. Immunol Cell Biol. 2014 Apr;92(4):340-5. doi: 10.1038/icb.2014.11. 9. Pushkarev VM, Sokolova LK, Pushkarev VV, Tronko MD. The role of AMPK and MTOR in the development of insulin resistance and type 2 diabetes. The mechanism of metformin action (literature review). Problemy Endokrinnoi Patologii. 2016(3):77-90. (in Ukrainian). 10. Galic S, Fullerton MD, Schertzer JD, et al. Hematopoietic AMPKβ1 reduces mouse adipose tissue macrophage inflammation and insulin resistance in obesity. J Clin Invest. 2011 Dec;121(12):4903-15. doi: 10.1172/JCI58577. 11. Hardie DG, Ross FA, Hawley SA. AMP-activated protein kinase: a target for drugs both ancient and modern. Chem Biol. 2012 Oct 26;19(10):1222-36. doi: 10.1016/j.chembiol.2012.08.019. 12. Klok MD, Jakobsdattir S, Brent ML. The role of leptin and ghrelin in the regulation of food intake and body weight in humans: a review. Obes Rev. 2007 Jan;8(1):21-34. doi: 10.1111/j.1467-789X.2006.00270.x. 13. Galic S, Oakhill JS, Steinberg GR. Adipose tissue as an endocrine organ. Mol Cell Endocrinol. 2010 Mar 25;316(2):129-39. doi: 10.1016/j.mce.2009.08.018. 14. Kirchner H, Heppner KM, Tischöp MH. The role of ghrelin in the control of energy balance. Handb Exp Pharmacol. 2012; (209):161-84. doi: 10.1007/978-3-642-24716-3_7.

Received 07.02.2019
Резюме. Актуальність. 5’АМФ-активована протеїнкіназа (АМФК) — фермент, який керує енергетичним балансом клітини. При енергетичному напружені в клітинні й збільшенні концентрації АМФ ATФ замінюється в обмінних центрах АМФ, що призводить до апостеричної активації АМФК фосфорилюванням треоніну-172 α-субодиницею LKB1-комплексу у відповідь на зміни в клітинній енергії або САМККβ, який активізує внутрішній клітинній Ca2+. Мета дослідження — вивчити діяльність головного сенсора енергії клітини — АМФК у лейкоцитах пацієнтів, які отримують препарати інсулину, метформін або інші цукрознижувальні лікарські засоби за залежності від інсулинозависимих ускладнень та вмісту гемоглобіну (HbA1c).

Матеріали та методи. Пацієнти з цукровим діабетом, які отримували моно- або комбіновану терапію інсулином і його аналогами, метформіном, дапагліфлозином і похідними сульфонілсульфоциклів, були розділені на 5 груп: перша — із рівнем HbA1c, близьким до норми, 6,9—7,6 %; друга — 7,6—9,0 %; третя — > 9 %; четверта — > 10 %; п’ята — > 11 %. Для визначення кількості фосфо-АМФК використали ІФА-набори. Результати. Встановлено, що зі збільшенням умісту HbA1c в крові рівень активності АМФК у лейкоцитах поступово знижується. Активність АМФК у лейкоцитах пацієнтів із тривалістю хвороби ~ 20 років була втричі нижчою, ніж у хворих із 10-річним стажем. Збільшення цитозолей у відновленій формі відіграє центральну роль в управлінні діабетичної компенсації.

Висновки. Таким чином, активність АМФК у лейкоцитах може бути індикатором диабетичної компенсації у пацієнтів з цукровим діабетом.

Ключові слова: цукровий діабет; 5’АМФ-активована протеїнкіназа; глікований гемоглобін