NAHM’S, BASU-HARVEY-TERASHIMA’S EQUATIONS AND LIE SUPERALGEBRAS

ROGER BIELAWSKI

Abstract. We discuss the correspondence between Nahm’s equations, the Basu-Harvey-Terashima equations, and Lie superalgebras.

1. Introduction

This paper arose from the following observation. Consider $\text{Mat}_{n,m}(\mathbb{C}) \oplus \text{Mat}_{m,n}(\mathbb{C})$ with its flat $U(n) \times U(m)$-invariant hyperkähler structure. Let μ_1, μ_2, μ_3 be the hyperkähler moment map for the $U(n)$-action and ν_1, ν_2, ν_3 the hyperkähler moment map for the $U(m)$-action. Then, along the gradient flow of

$$F = |\mu_1|^2 - |\nu_1|^2,$$

μ_1, μ_2, μ_3 and $-\nu_1, -\nu_2, -\nu_3$ satisfy Nahm’s equations.

This fact has several explanations and consequences. At the simplest level, it follows from the fact that

$$I_1(X_{\mu_1} - X_{\nu_1}) = I_2(X_{\mu_2} - X_{\nu_2}) = I_3(X_{\mu_3} - X_{\nu_3}),$$

where X_ρ is the vector field generated by a ρ in the Lie algebra of the symmetry group.

The function (1.1) is a quartic polynomial on $W = \text{Mat}_{n,m}(\mathbb{C}) \oplus \text{Mat}_{m,n}(\mathbb{C})$ and the gradient flow equations are

$$\dot{A} = \frac{1}{2}(ABB^* - B^*BA),$$
$$\dot{B} = \frac{1}{2}(A^*AB - BAA^*).$$

These equations are known as the ABJM version of the Basu-Harvey equations and are due to Terashima [7], and, consequently, we shall refer to them as the BHT-equations. We observe that they have a very natural interpretation as double superbracket equations on the odd part of the Lie superalgebra $\mathfrak{gl}_{n|m}(\mathbb{C})$:

$$\dot{C} = \frac{1}{2}[[J(C), C], C],$$

where $C = \begin{pmatrix} 0 & A \\ B & 0 \end{pmatrix}$ and J is the quaternionic automorphism $J(A, B) = (-B^*, A^*)$.

This equation makes sense for any complex anti-Lie triple system [8] equipped with a quaternionic automorphism, and we observe that any solution of (1.4) in this general setting leads to a solution to Nahm’s equations (with values in an appropriate Lie algebra).

We give two more interpretations of equations (1.3). Firstly, there is a geometric interpretation as a gradient flow on a $GL_n(\mathbb{C}) \times GL_m(\mathbb{C})$-orbit in $\text{Mat}_{n,m}(\mathbb{C}) \oplus \text{Mat}_{m,n}(\mathbb{C})$ for a quadratic function with respect to certain indefinite metric (§3).
Secondly, similarly to Nahm’s equations [3, 4], there is an interpretation as a linear flow on the Jacobian of an algebraic curve. This time, however, the spectral curve is a subscheme of \(\mathbb{P}^2 \) and the flow is restricted to line bundles equivariant with respect to certain involution \(\tau \) of the spectral curve.

2. Moment maps, Nahm’s and the Basu-Harvey-Terashima equations

We consider the vector space \(W_{n,m} = \text{Mat}_{n,m}(\mathbb{C}) \oplus \text{Mat}_{m,n}(\mathbb{C}) \) with its natural flat hyperkähler structure: the quaternionic structure \(J \) is given by \(J(A, B) = (-B^*, A^*) \) and the metric is

\[
\frac{1}{2} \text{Re} \left(dA \otimes dA^* + dB \otimes dB^* \right).
\]

This hyperkähler structure is invariant under the natural \(U(n) \times U(m) \)-action, given by

\[
(g, h)(A, B) = (gAh^{-1}, hBg^{-1}).
\]

The hyperkähler moment map for the \(U(n) \)-action is

\[
i\mu_1(A, B) = \frac{1}{2}(AA^* - B^*B), \quad (\mu_2 + i\mu_3)(A, B) = AB,
\]

while the moment map for the \(U(m) \)-action is

\[
i\nu_1(A, B) = -\frac{1}{2}(A^*A - BB^*), \quad (\nu_2 + i\nu_3)(A, B) = -BA.
\]

Here we identified Lie algebras with their duals using the Ad-invariant metrics \(\|X\|^2 = -\text{tr} X^2 \). A simple calculation shows that for \(i = 1, 2, 3 \) and any \((A, B) \in W_{n,m} \)

\[
\|\mu_i(A, B)\|^2 - \|\nu_i(A, B)\|^2 = \frac{1}{2} \text{tr}(A^*ABB^* - B^*BAA^*).
\]

The fact that \(\|\mu_i\|^2 - \|\nu_i\|^2 \) is independent of \(i \) has the following consequence.

Proposition 2.1. Let \(m(t) \in W_{n,m} \) be a gradient flow curve of the function \(F = \frac{1}{2}\|\mu_1(A, B)\|^2 - \frac{1}{2}\|\nu_1(A, B)\|^2 \). Then the \(u(n) \)-valued functions \(T_i(t) = \mu_i(m(t)) \) satisfy Nahm’s equations

\[
\dot{T}_1 = [T_2, T_3], \quad \dot{T}_2 = [T_3, T_1], \quad \dot{T}_3 = [T_1, T_2].
\]

Similarly, the \(u(m) \)-valued functions \(S_i(t) = -\nu_i(m(t)) \) satisfy the Nahm equations.

Proof. The gradient vector field of \(F \) is \(I_1X_{\mu_1} - I_1X_{\nu_1} \). Since \(F \) is also equal to \(\frac{1}{2}\|\mu_i(A, B)\|^2 - \frac{1}{2}\|\nu_i(A, B)\|^2 \) for \(i = 2, 3 \), we obtain

\[
I_1X_{\mu_1} - I_1X_{\nu_1} = I_2X_{\mu_2} - I_2X_{\nu_2} = I_3X_{\mu_3} - I_3X_{\nu_3}.
\]

We compute, using the fact that the moment map for a group action is invariant with respect to any commuting Lie group action,

\[
\dot{T}_1 = d\mu_1(\nabla F) = d\mu_1(I_2X_{\mu_2} - I_2X_{\nu_2}) = d\mu_1(I_2X_{\mu_2}) = d\mu_3(X_{\mu_2}) = [\mu_2, \mu_3] = [T_2, T_3],
\]

and similarly for \(T_2, T_3 \). The argument for the \(S_i \) is completely analogous.

The gradient flow equations for the function \(F = \text{tr}(A^*ABB^* - B^*BAA^*) \) are

\[
\dot{A} = \frac{1}{2}(ABB^* - B^*BA) \\
\dot{B} = \frac{1}{2}(A^*AB - BAA^*).
\]
One can also check directly that, for a solution A, B of these equations, the functions $T_1 = \frac{1}{2}(AA^* - B^*B)$, $T_2 + iT_3 = AB$ satisfy Nahm’s equations, and similarly the functions $S_1 = \frac{1}{2}(A^*A - BB^*), S_2 + iS_3 = BA$.

For the reason mentioned in the introduction, we shall refer to equations \eqref{eq:BHT} as the Basu-Harvey-Terashima (BHT) equations.

Remark 2.2. Similarly to Nahm’s equations, there exists a gauge-dependent version of the BHT-equations. Introduce two more matrix valued functions $u(t) \in \mathfrak{u}(n)$ and $v(t) \in \mathfrak{u}(m)$ and consider the following equations:

$$\begin{align*}
\dot{A} + uA - Av &= \frac{1}{2}(ABB^* - B^*BA) \\
\dot{B} + vB - Bu &= \frac{1}{2}(A^*AB - BAA^*).
\end{align*}$$

These equations are invariant under the following $U(n) \times U(m)$-valued gauge group action:

$$
A \mapsto gAh^{-1}, \quad B \mapsto hBg^{-1}, \quad u \mapsto gug^{-1} - gg^{-1}, \quad v \mapsto hvh^{-1} - hh^{-1}.
$$

3. Lax pair interpretation

Proposition 3.1. Let I be an interval and $n \geq m$ be two positive integers. Let $X : I \to \text{Mat}_{n,m}, Y : I \to \text{Mat}_{m,n}$ be of class C^k, $k \geq 1$, and of rank m for all $t \in I$. Suppose that $Z = XY$ satisfies the Lax equation $\dot{Z} = [M, Z]$ for some $M : I \to \text{Mat}_{n,m}$ of class C^{k-1}. Then there exists a unique $N : I \to \text{Mat}_{m,n}$ of class C^{k-1}, such that the following equations are satisfied:

$$\begin{align*}
\dot{X} &= MX + XN \\
\dot{Y} &= -YM - NY.
\end{align*}$$

Conversely, if \eqref{eq:Lax} are satisfied, then $\dot{Z} = [M, Z]$, and, moreover, $W = YX$ satisfies the Lax equation $\dot{W} = [W, N]$.

Proof. A direct computation shows that if \eqref{eq:Lax} are satisfied, then both Z and W satisfy the relevant Lax equations. Conversely, suppose that $\dot{Z} = [Z, M]$, i.e. $XY + X\dot{Y} - MXY + XYM = 0$. We rewrite this as

$$(\dot{X} - MX)Y + X(\dot{Y} + YM) = 0.$$

Let $U = \dot{X} - MX$ and $V = -\dot{Y} - YM$. Then $UY = XV$. Since X and Y have rank m, there are unique N_1, N_2 such that $U = XN_1, V = N_2Y$. It follows that $X(N_1 - N_2)Y = 0$, and using the maximality of the rank of X, Y, we conclude that $N_1 = N_2$. The equations \eqref{eq:Lax} are satisfied with $N = N_1 = N_2$. The differentiability class of N follows from its uniqueness. \hfill \square

Equations \eqref{eq:Lax} can also be written in the Lax form. Set

$$
C = \begin{pmatrix} 0 & X \\ Y & 0 \end{pmatrix}, \quad C_+ = \begin{pmatrix} M & 0 \\ 0 & -N \end{pmatrix}.
$$

Then \eqref{eq:Lax} is equivalent to

$$\begin{align*}
\dot{C} &= [C_+, C].
\end{align*}$$

We now introduce a spectral parameter, and consider $X(\zeta) = A_0 + A_1\zeta, Y(\zeta) = B_0 + B_1\zeta$. We suppose that $Z(\zeta) = X(\zeta)Y(\zeta)$ satisfies the Lax equation

$$\dot{Z} = [Z_\#, Z],$$
where \(Z_\# = \frac{1}{2}(A_0 B_1 + A_1 B_0) + A_1 B_1 \zeta \). According to the previous proposition, we can find an \(N(\zeta) \), so that \(S_3 \) holds. We have then \(W = [-N, W] \), where \(W(\zeta) = Y(\zeta) X(\zeta) \). We try \(N(\zeta) \) of the form \(N = -W_\# \), i.e. \(-N = \frac{1}{2}(B_0 A_1 + B_1 A_0) + B_1 A_1 \zeta \). Substituting into the equations (3.1) we obtain:

\[
\begin{align*}
\dot{A}_0 &= \frac{1}{2} (A_1 B_0 A_0 - A_0 B_0 A_1) \\
\dot{A}_1 &= -\frac{1}{2} (A_1 B_1 A_0 - A_0 B_1 A_1) \\
\dot{B}_0 &= \frac{1}{2} (B_1 A_0 B_0 - B_0 A_0 B_1) \\
\dot{B}_1 &= -\frac{1}{2} (B_1 A_1 B_0 - B_0 A_1 B_1).
\end{align*}
\]

(3.3)

Thus, these equations are equivalent to

\[
(3.4) \quad \dot{Z} = [Z_\#, Z], \quad \dot{W} = [W_\#, W],
\]

where \(Z, Z_\#, W, W_\# \) are defined above. Now suppose that the \(A_i \) and \(B_i \) satisfy the reality condition: \(A_1 = -B_0^* \), \(B_1 = A_0^* \). We write simply \(A, B \) for \(A_0, B_0 \). It follows that the equations (3.4) are equivalent to Nahm’s equations for \((T_1, T_2, T_3) \) and \((S_1, S_2, S_3) \), where

\[
(3.5) \quad T_2 + iT_3 = AB, \quad iT_1 = \frac{1}{2} (A^* - B^* B),
\]

(3.6) \quad \quad S_2 + iS_3 = BA, \quad iS_1 = \frac{1}{2} (A^* A - BB^*).

On the other hand, (3.3) becomes the BHT-equations (2.4). Therefore we have a different proof of Proposition 2.1, the statement of which can be strengthened as follows:

Corollary 3.2. Let \(n \geq m \). The equations (2.4) are equivalent to Nahm’s equations for \((T_1, T_2, T_3) \) defined by (3.5). In addition, they imply Nahm’s equations for \((S_1, S_2, S_3) \) defined by (3.6). \(\Box \)

We now rewrite (2.4) in the form (3.2). Thus

\[
C = \begin{pmatrix} 0 & A - B^* \zeta \\ B + A^* \zeta & 0 \end{pmatrix}, \quad C_+ = \begin{pmatrix} \frac{1}{2} (AA^* - B^* B) - B^* A^* \zeta & 0 \\ 0 & \frac{1}{2} (A^* A - BB^*) - A^* B^* \zeta \end{pmatrix}.
\]

Let us write \(\mathcal{M}_0 \) for the block-diagonal part of \(\text{Mat}_{m+n,m+n} \) and \(\mathcal{M}_1 \) for the off-diagonal part. Thus \(C \in \mathcal{M}_1 \) and \(C_+ \in \mathcal{M}_0 \). Let \(J : \mathcal{M}_1 \to \mathcal{M}_1 \) be the canonical quaternionic structure on \(\mathcal{M}_1 = \text{Mat}_{n,m} \oplus \text{Mat}_{m,n} \), i.e.

\[
J \begin{pmatrix} 0 & A \\ B & 0 \end{pmatrix} = \begin{pmatrix} 0 & -B^* \\ A^* & 0 \end{pmatrix}.
\]

We have \(J^2 = -1 \) and equations (2.4) can be written as

\[
(3.7) \quad \dot{C} = \frac{1}{2} [C J(C) + J(C) C, C] = \frac{1}{2} [J(C), C^2].
\]

This equation implies that the flow of \((A, B) \) remains in an orbit of \(GL_n(\mathbb{C}) \times GL_m(\mathbb{C}) \) (in fact \(S(GL_n(\mathbb{C}) \times GL_m(\mathbb{C})) \) and \(SL_n(\mathbb{C}) \times SL_m(\mathbb{C}) \) for \(n = m \)). We shall now interpret the flow as a gradient flow on such an orbit, with respect to certain metric. First of all, let us view \(\text{Mat}_{m+n,m+n} \) as the Lie superalgebra \(\mathfrak{gl}_{n|m}(\mathbb{C}) \) with
\(\mathcal{M}_0 \) being the even part and \(\mathcal{M}_1 \) the odd part. The Lie superbracket is defined as
\[[A, B] = AB - (-1)^{|A||B|}BA. \]
Equation (3.7) can be then written as
\[(3.8) \quad \dot{C} = \frac{1}{2} [J(C), C]. \]

Remark 3.3. The map \(J \) is the restriction of the following antilinear map on \(\mathfrak{gl}_{n|m}(\mathbb{C}) \):
\[(3.9) \quad \left(\begin{array}{cc} U & A \\ B & V \end{array} \right) \mapsto \left(\begin{array}{cc} -U^* & -B^* \\ A^* & -V^* \end{array} \right), \]
which we also denote by \(J \). It is the negative of complex conjugation followed by the supertranspose, and, hence, it commutes with the superbracket. One could therefore consider equation (3.8) on all of \(\mathfrak{gl}_{n|m}(\mathbb{C}) \), rather than just on the odd part.

Recall now the notion of the supertrace:
\[\text{str} \left(\begin{array}{cc} U & A \\ B & V \end{array} \right) = \text{tr} U - \text{tr} V. \]
It has the following ad-invariance property:
\[(3.10) \quad \text{str}[X, Y]Z + (-1)^{|X||Y|} \text{str} Y[X, Z] = 0. \]

We define the following symmetric form on \(\mathfrak{gl}_{n|m}(\mathbb{C}) \):
\[(3.11) \quad \langle X, Y \rangle = -\frac{1}{2} \text{str}(J(X)Y + J(Y)X). \]
If we write \(X \) and \(Y \) in the block form as \((X_{ij}) \) and \((Y_{ij}) \), \(i, j = 0, 1 \), then
\[\langle X, Y \rangle = \frac{1}{2} \sum_{i,j=0}^1 (-1)^{ij} \text{tr}(X_{ij}^*Y_{ij} + Y_{ij}^*X_{ij}). \]

In what follows \(G \) denotes \(SL_n(\mathbb{C}) \times SL_m(\mathbb{C}) \) for \(n \neq m \) and \(G = SL_n(\mathbb{C}) \times SL_m(\mathbb{C}) \) for \(n = m \), and \(\mathfrak{g} \) denotes its Lie algebra. In order to define an appropriate metric on an orbit of \(G \) in \(\mathcal{M}_1 = \text{Mat}_{n,m}(\mathbb{C}) \oplus \text{Mat}_{m,n}(\mathbb{C}) \) we adopt the following definition.

Definition 3.4. An element \(C \) of \(\mathcal{M}_1 \) is called \(\langle \cdot, \cdot \rangle \)-regular if \(\ker \text{ad} C \subset \mathfrak{g} \) is nondegenerate with respect to the form (3.11).

If \(C \) is \(\langle \cdot, \cdot \rangle \)-regular, then \(\ker \text{ad} C \) has an \(\langle \cdot, \cdot \rangle \)-orthogonal complement \(V_C \), which is also \(\langle \cdot, \cdot \rangle \)-nondegenerate. In this case, we can decompose uniquely any \(X \in \mathfrak{g} \) as \(X = X^C + X^0 \) with \(X^C \in V_C \) and \(X^0 \in \ker \text{ad} C \).

Let now \(\mathcal{O} \) be an orbit of \(G \) in \(\mathcal{M}_1 \) and \(C \in \mathcal{O} \) its \(J \)-regular element. For two vectors \([C, X]\) and \([C, Y]\) tangent to \(\mathcal{O} \) at \(C \) we define their inner product to be \(\langle X^C, Y^C \rangle \). We obtain a pseudo-Riemannian metric on the \(J \)-regular part of \(\mathcal{O} \), which we denote by \(\langle \cdot, \cdot \rangle_\mathcal{O} \).

Theorem 3.5. On the \(\langle \cdot, \cdot \rangle \)-regular part of \(\mathcal{O} \) the flow (3.8) is the gradient flow of the function \(H(C) = \frac{1}{4} \langle C, C \rangle \) with respect to the metric \(\langle \cdot, \cdot \rangle_\mathcal{O} \).
Proof. The function \(H \) can be written as \(-\frac{1}{4} \text{str} \ J(C) C\). By the definition of the gradient we have, for any tangent vector \([C, \rho]_s\),

\[
\langle \text{grad} \, H, [C, \rho]_s \rangle_C = -\frac{1}{4} \text{str} \left(J([C, \rho]_s) C + J(C) [C, \rho]_s \right) = -\frac{1}{2} \text{Re str} \ J(C) [C, \rho]_s.
\]

Setting \(\text{grad} \, H = [C, X]_s \), we can rewrite this as

\[
\langle X^C, \rho^C \rangle = \frac{1}{2} \text{Re str} \ J(C) [C, \rho]_s.
\]

Recalling (3.10) and using the fact that \([C] = [J(C)] = 1\) we obtain

\[
\langle X^C, \rho^C \rangle = \frac{1}{2} \text{Re str} \ J(C) [C]_s \rho = -\frac{1}{2} \langle [J(C), C]_s, \rho \rangle.
\]

Since \(\text{Ker ad} \, C \) is \(\langle , \rangle \)-orthogonal to \(\text{Im ad} \, J(C) \), we have \(\langle [J(C), C]_s, \rho \rangle = \langle [J(C), C]_s, \rho^C \rangle \) and \([J(C), C]_s \in \text{V}_C\). Since the metric \(\langle , \rangle \) is nondegenerate on \(\text{V}_C \), we can conclude that \(X^C = -\frac{1}{2} [J(C), C]_s \). Thus \(\text{grad} \, H = [C, X]_s = [C, X^C]_s = \frac{1}{2} [J(C), C]_s, C]_s \).

\[\square \]

4. Nahm’s equations from anti-Lie triple systems

As observed in the previous section, the BHT-equation (1.3) have a natural interpretation as a double superbracket equation on the odd part of the Lie superalgebra \(\mathfrak{gl}_{n,m} (\mathbb{C}) \). We shall now generalise this to arbitrary Lie superalgebras, or, equivalently to the anti-Lie triple systems (3).

An anti-Lie triple system (ALTS) is a vector space with a triple (trilinear) product \([\cdot, \cdot, \cdot]\) satisfying the following identities

\[
[x, y, z] = [y, x, z]
\]

\[
[x, y, z] + [z, x, y] + [y, z, x] = 0,
\]

\[
[u, v, [x, y, z]] = [[u, v, x, y, z] + [x, [u, v, y], z] + [x, y, [u, v, z]].
\]

The third equation can be rewritten as a condition on left multiplications \(L(\cdot, \cdot) \) (defined via \(L(x, y) z = [x, y, z] \)):

\[
[L(u, v), L(x, y)] = L(L(u, v)x, y) + L(x, L(u, v)y).
\]

A basic example is the vector space of \(k \times k \)-matrices with the triple product:

\[
[A, B, C] = ABC + BAC - CBA - BCA
\]

This triple product leaves invariant the subspace \(\text{Mat}_{n,m} \oplus \text{Mat}_{m,n} \) of off-diagonal blocks, and so the latter is also an ALTS.

We recall (3) the construction of a Lie superalgebra associated to an anti-Lie triple system \((V, [\cdot, \cdot, \cdot])\).

Let \(D(V) \) denote the Lie algebra of all left multiplications \(L(x, y) \) on \((V, [\cdot, \cdot, \cdot])\). Then \(D(V) \oplus V \) becomes a Lie superalgebra \(l(V) \) under the following bracket:

\[
[L(x, y), L(u, v)] = L(x, y) \circ L(u, v) - L(u, v) \circ L(x, y)
\]

\[
[L(x, y), z] = L(x, y) z
\]

\[
[x, y] = L(x, y).
\]

The even part of \(l(V) \) is \(l_0 = D(V) \) and the odd one is \(l_1 = V \). Conversely, given a Lie superalgebra \(l = l_0 \oplus l_1 \), the double superbracket defines an anti-Lie triple product on \(l_1 \):

\[
[x, y, z] = [[x, y], z].
\]
Example 4.1. Applying this construction to the ALTS Mat\(_{n,m}\) \(\oplus\) Mat\(_{m,n}\) with the triple product given by (4.3) produces the Lie superalgebra \(\mathfrak{gl}_{n|m}(\mathbb{C})\).

Let now \((V, [\cdot,\cdot,\cdot])\) be a complex ALTS and \(J\) a quaternionic automorphism, i.e. \(J\) preserves the triple product, is antilinear, and satisfies \(J^2 = -1\). We can extend \(J\) to an antilinear automorphism of \((V)\) by setting \(J(L(x,y)) = L(J(x),J(y))\). On \(l_0\) it satisfies \(J^2 = 1\), an so the Lie algebra \(l_0\) has a symmetric pair decomposition \(l_0 = \mathfrak{k} \oplus \mathfrak{m}\), where \(\mathfrak{k}\) is the +1-eigenspace and \(\mathfrak{m}\) the −1-eigenspace of \(J\). The antilinearity of \(J\) implies that, the following three functions

\[
T_1 = -\frac{i}{2}[C,J(C)] \quad T_2 = \frac{1}{2}[C,C]_\mathfrak{k} \quad T_3 = -\frac{i}{2}[C,C]_\mathfrak{m}
\]

take values in \(\mathfrak{k}\).

We consider the following ODE on \(V\):

(4.6) \[
\dot{C} = \frac{1}{2}[J(C),C,C],
\]

Proposition 4.2. \(C = C(t)\) is a solution of (4.6) if and only if \(T_1, T_2, T_3\) satisfy the Nahm equations.

Proof. The definition implies that \(T_2 = \frac{1}{2}([C,C] + J[C,C])\) and \(T_3 = -\frac{i}{2}([C,C] - J[C,C])\). Setting \(\alpha = iT_1\) and \(\beta = T_2 + iT_3\), we have

\[
\alpha = \frac{1}{2}[C,J(C)], \quad \beta = \frac{1}{2}[C,C].
\]

The super-Jacobi identity implies that if \(x\) is an odd element of a Lie superalgebra \(\mathfrak{g}\), then for any \(y \in \mathfrak{g}\)

(4.7) \[
[x, [x, y]] = \frac{1}{2}i[x, x, y].
\]

In particular, the equation (4.6) can be rewritten as

\[
\dot{C} = \frac{1}{4}[[J(C), C], C].
\]

We compute using (4.7):

\[
\dot{\alpha} = \frac{1}{2}[\dot{C}, J(C)] + \frac{1}{2}[C, J(\dot{C})] = \frac{1}{8}[[J(C), [C,C]],J(C)] - \frac{1}{8}[C,[C,[J(C),J(C)]]] = \frac{1}{8}[[J(C),[J(C),C]],C] = \frac{1}{2}[J(\beta),\beta] = \frac{1}{2}[T_2 - iT_3, T_2 + iT_3] = iT_2 T_3.
\]

Similarly:

\[
\dot{\beta} = [\dot{C},C] = \frac{1}{2}[[J(C),C],C] = \frac{1}{4}[[J(C), C], [C,C]] = [\alpha,\beta],
\]

which is equivalent to the remaining two Nahm equations. \(\square\)

Remark 4.3. We can also consider an arbitrary, real or complex, anti-Lie triple system \((V, [\cdot,\cdot,\cdot])\) equipped with an automorphism \(J\) such that \(J^2 = -1\). The even part of the Lie algebra \(l_0\) still has the symmetric decomposition \(l_0 = \mathfrak{k} \oplus \mathfrak{m}\) into the ±-eigenspaces of \(J\) extended to \(l_0\). We can define the three functions:

\[
R_1 = \frac{1}{2}[C,J(C)] \in \mathfrak{m}, \quad R_2 = \frac{1}{2}[C,C]_\mathfrak{k} \in \mathfrak{k}, \quad R_3 = \frac{1}{2}[C,C]_\mathfrak{m} \in \mathfrak{m}.
\]
Equation 1.6 implies that R_1, R_2, R_3 satisfy the *Nahm-Schmid* equations [6]:

\[\hat{R}_1 = \frac{1}{2}[R_2, R_3], \quad \hat{R}_2 = \frac{1}{2}[R_1, R_3], \quad \hat{R}_3 = \frac{1}{2}[R_1, R_2]. \]

5. Flows on Jacobians

It is well-known [11, 5] that Nahm’s equations correspond to a linear flow on the Jacobian of an algebraic curve embedded in $T\mathbb{P}^1$, i.e. in the total space $|\mathcal{O}(2)|$ of the line bundle $\mathcal{O}_{\mathbb{P}^1}(2)$. Similarly, as we shall shortly see, the Basu-Harvey-Terashima equations (2.4) correspond to a linear flow on the *equivariant* Jacobian of a curve in $\mathbb{P}^2 \setminus \mathbb{P}^1$, i.e. in the total space of the line bundle $\mathcal{O}_{\mathbb{P}^1}(1)$.

In this section we aim to make precise the correspondence between the Nahm flow and the Basu-Harvey-Terashima flow on the Jacobians. We consider first the purely holomorphic picture in the spirit of Beauville [2]. Thus the Nahm matrices are replaced by a quadratic matrix polynomial $X(\zeta) = X_0 + X_1\zeta + X_2\zeta^2$ with $X_i \in \mathfrak{gl}_n(\mathbb{C})$. Such a polynomial corresponds to an acyclic 1-dimensional sheaf \mathcal{F} on $T = |\mathcal{O}(2)|$ defined via

\[(5.1) \quad 0 \to \mathcal{O}_T(-3)^{\oplus n} \xrightarrow{\eta - X(\zeta)} \mathcal{O}_T(-1)^{\oplus n} \to \mathcal{F} \to 0. \]

The support of \mathcal{F} is the 1-dimensional scheme S cut out by $\det(\eta - X(\zeta))$. As long as this polynomial is irreducible, S is integral and \mathcal{F} is a line bundle on S. More generally, \mathcal{F} is a line bundle (i.e. an invertible sheaf) on S as long as $X(\zeta)$ is a regular element of $\mathfrak{gl}_n(\mathbb{C})$ for each $\zeta \in \mathbb{P}^1$ (with $X(\infty) = X_2$). In fact, we have the following result of Beauville:

Theorem 5.1 (Beauville [2]). Let d be a positive integer and $P(\zeta, \lambda) = \lambda^k + a_1(\zeta)\lambda^{k-1} + \cdots + a_k(\zeta)$ a polynomial with $\deg a_i(\zeta) = \text{id}$, $i = 1, \ldots, k$. Consider the variety

\[M(P) = \{ X(\zeta) \in \mathfrak{gl}_n(\mathbb{C})|\zeta| ; \deg X(\zeta) = d, \; \deg(\lambda - X(\zeta)) = P(\zeta, \lambda), \} \]

and its subvariety $M(P)^{\text{reg}}$ consisting of $X(\zeta)$ which are regular for each $\zeta \in \mathbb{P}^1$.

The following exact sequence on $T = |\mathcal{O}(d)|$

\[(5.2) \quad 0 \to \mathcal{O}_T(-d-1)^{\oplus k} \xrightarrow{\lambda - X(\zeta)} \mathcal{O}_T(-1)^{\oplus k} \to \mathcal{F} \to 0 \]

induces a 1-1 correspondence between $M(P)^{\text{reg}}/GL_k(\mathbb{C})$ and $\text{Jac}^g(\mathcal{O}(d))$, where $S \subset |\mathcal{O}(d)|$ is the curve of (arithmetic) genus $g = (k-1)(dk-2)/2$ defined by the equation $P(\zeta, \lambda) = 0$.

We shall call this correspondence the *Beauville isomorphism*.

5.1. τ-sheaves. We now replace $W_{n,m}$ by its complexification, i.e. the vector space $R_{n,m}$ of quadruples of complex matrices (A_0, A_1, B_0, B_1) with A_0, A_1 of size $n \times m$, B_0, B_1 of size $m \times n$. $R_{n,m}$ a biquaternionic vector space, i.e. a module over $\text{Mat}_{2,2}(\mathbb{C})$, and comes equipped with a 2-sphere of complex symplectic structures:

\[(5.3) \quad \omega : \text{tr} \; d(A_0 + A_1\zeta) \wedge d(B_0 + B_1\zeta), \]

\footnote{This is true if the curve is smooth or integral; in general, the flow is on the generalised Jacobian or on the moduli space of higher rank vector bundles.}
where \(\zeta \) denotes the affine coordinate on \(\mathbb{P}^1 \). We can view \(\omega \) itself as an \(\mathcal{O}(2) \)-twisted symplectic form. It is clearly \(GL(m, \mathbb{C}) \times GL(n, \mathbb{C}) \)-invariant. The (twisted) moment map for the \(GL(n) \)-action is given by:

\[
(5.4) \quad \mu : (A_0, A_1, B_0, B_1) \mapsto A_0B_0 + (A_0B_1 + A_1B_0)\zeta + A_1B_1\zeta^2,
\]

while the one for the \(GL(m) \)-action is:

\[
(5.5) \quad \nu : (A_0, A_1, B_0, B_1) \mapsto B_0A_0 - (B_0A_1 + B_1A_0)\zeta - B_1A_1\zeta^2.
\]

These are complexifications of the moment maps defined in [2]. As in section 4.3 we can view \(R_{n,m} \) as the following subset of \(\text{gl}(m+n) \otimes \mathbb{C}^2 \):

\[
(5.6) \quad C_0 = \begin{pmatrix} 0 & A_0 \\ B_0 & 0 \end{pmatrix}, \quad C_1 = \begin{pmatrix} 0 & A_1 \\ B_1 & 0 \end{pmatrix}.
\]

For any pair \(C_0, C_1 \) of quadratic matrices, say of size \(k \times k \), we can define an acyclic 1-dimensional sheaf on \(\tilde{T} = |\mathcal{O}(1)| \) via the exact sequence \((5.2) \) with \(d = 1 \) and \(X(\zeta) = C_0 + C_1\zeta \). We are interested in the structure of these sheaves and their supports for \(C_0, C_1 \) of the form \((5.6) \), and in their relation to sheaves on \(|\mathcal{O}(2)| \) defined via maps \((5.4) \) and \((5.5) \). Observe that \(|\mathcal{O}(2)| \) is the quotient of \(|\mathcal{O}(1)| \) by the following involution on \(|\mathcal{O}(1)| \):

\[
(5.7) \quad \tau(\zeta, \lambda) = (\zeta, -\lambda).
\]

For an element \((A_0, A_1, B_0, B_1) \) of \(R_{n,m} \) with \(n \geq m \), the polynomial \(\det(\lambda - C_0 - C_1\zeta) \) is \(\tau \)-invariant and of the form

\[
(5.8) \quad P(\zeta, \lambda) = \lambda^{n-m}(\lambda^{2m} + a_1(\zeta)\lambda^{2m-2} + \cdots + a_{m-1}(\zeta)\lambda^2 + a_m(\zeta)), \quad \deg a_i(\zeta) = 2i.
\]

\(GL_n(\mathbb{C}) \times GL_m(\mathbb{C}) \)-orbits of elements of \(R_{n,m} \) correspond to acyclic \(\tau \)-sheaves on \(\tilde{S} = \{(\zeta, \lambda); P(\zeta, \lambda) = 0\} \), i.e. sheaves equivariant with respect to the action of \(\tau \). In the case of a line (or vector) bundle \(\mathcal{F} \) on \(\tilde{S} \) this means that \(\tau \) lifts to an involutive bundle map on the total space of \(\mathcal{F} \).

Let us write \(R_{n,m}(P) \) for \(R_{n,m} \cap M(P) \) and \(R_{n,m}(P)_{\text{reg}} \) for \(R_{n,m} \cap M(P)_{\text{reg}} \). We have

Proposition 5.2. The Beauville isomorphism induces a 1−1 correspondence between \(R_{n,m}(P)_{\text{reg}}/GL_n(\mathbb{C}) \times GL_m(\mathbb{C}) \) and the isomorphism classes of acyclic \(\tau \)-line bundles on \(\tilde{S} \).

Proof. Let \((A_0, A_1, B_0, B_1) \) with the corresponding \(C(\zeta) = C_0 + C_1\zeta \) given by \((5.6) \) belong to \(R_{n,m}(P)_{\text{reg}} \). Then \(g_0C(\zeta)g_0^{-1} = -C(\zeta), \) where \(g_0 = \begin{pmatrix} \text{Id}_n & 0 \\ 0 & -\text{Id}_m \end{pmatrix} \). The commutative diagram on \(|\mathcal{O}(1)| \) (with \(k = n + m \))

\[
\begin{array}{ccc}
0 & \longrightarrow & \mathcal{O}(-2)^{\oplus k} \\
\downarrow g_0 & & \downarrow g_0 \\
0 & \longrightarrow & \mathcal{O}(-2)^{\oplus k}
\end{array}
\]

\[
\begin{array}{ccc}
\longrightarrow & \mathcal{O}(-1)^{\oplus k} & \longrightarrow & \mathcal{F} & \longrightarrow & 0 \\
\lambda + C(\zeta) & \lambda - C(\zeta) & \longrightarrow & \mathcal{F} & \longrightarrow & 0
\end{array}
\]

defines a lift \(\tilde{\tau} : \mathcal{F} \rightarrow \mathcal{F} \) of \(\tau \). Conjugating \(C(\zeta) \) by an element \(T \) of \(GL_n(\mathbb{C}) \times GL_m(\mathbb{C}) \) commutes with \(g_0 \) and so \(C(\zeta) \) and \(TC(\zeta)T^{-1} \) induce isomorphic \(\tau \)-sheaves. Conversely, suppose that we are given a lift \(\tilde{\tau} \) of \(\tau \) on an acyclic line bundle \(\mathcal{F} \), satisfying \(\tilde{\tau}^2 = 1 \). We obtain the corresponding involution \(\tilde{\tau} \) on \(\mathbb{C}^{n+m} = \mathbb{C}^n \times \mathbb{C}^m \).
$H^0(\hat{S}, \mathcal{F}(1))$. We can choose a basis of $H^0(\hat{S}, \mathcal{F}(1))$ so that \hat{t} is represented by the matrix $g_0 = \left(\begin{array}{cc} \text{Id}_n & 0 \\ 0 & -\text{Id}_m \end{array} \right)$. It follows from the above commutative diagram that $g_0C(\zeta)g_0^{-1} = -C(\zeta)$, so that (A_0, A_1, B_0, B_1) belongs to $R_{n,m}$. □

5.2. **The case** $n = m$. In this case the quotient of the curve \hat{S} by the involution τ is (as a scheme) a curve S in $T = |\mathcal{O}(2)|$. The maps $[54]$ and $[56]$ induce, via the above Proposition and Theorem $[5.3]$, correspondences between acyclic τ-line bundles on \hat{S} and acyclic line bundles on S. We wish to understand these correspondences.

We shall write $A(\zeta)$ for $A_0 + A_1\zeta$ and $B(\zeta)$ for $B_0 + B_1\zeta$, so that the map μ gives the quadratic matrix polynomial $A(\zeta)B(\zeta)$ and ν the polynomial $B(\zeta)A(\zeta)$. Let us write $\hat{P}(\zeta, \lambda)$ for the polynomial $\det(\lambda - C(\zeta))$ and $P(\zeta, \eta)$ for the polynomial $\det(\eta - A(\zeta)B(\zeta)) = \det(\eta - B(\zeta)A(\zeta))$. Denote by \hat{S} the curve in \mathbb{P}^2 cut out by \hat{P} and by S the curve cut out by P in $T\mathbb{P}^1$. We have

$$\hat{P}(\zeta, \lambda) = P(\zeta, \lambda^2),$$

so that \hat{S} is a double cover of S ramified over $\eta = 0$. The genus of S is equal to $(n - 1)^2$ and the genus of \hat{S} is equal to $(n - 1)(2n - 1)$.

We shall denote by \mathcal{L} the acyclic τ-sheaf on \hat{S} defined by $C(\zeta)$ and by \mathcal{F} (resp. \mathcal{G}) the acyclic sheaf on S defined by $A(\zeta)B(\zeta)$ (resp. $B(\zeta)A(\zeta)$). We shall assume that the zeros of $\det A(\zeta)$ are distinct from the zeros of $\det B(\zeta)$, and we shall write Δ_A (resp. Δ_B) for the divisor $\det A(\zeta) = 0$, $\lambda = 0$ (resp. $\det B(\zeta) = 0$, $\lambda = 0$) on \hat{S}. Thus $\Delta_A + \Delta_B$ is the ramification divisor of the projection τ.

Proposition 5.3. With the above assumptions $\mathcal{L} \simeq \pi^* \mathcal{F} \otimes [\Delta_B] \simeq \pi^* \mathcal{G} \otimes [\Delta_A]$, where $\pi : \hat{S} \to S$ is the projection.

Proof. We consider the sheaves $\mathcal{L}(1)$, $\mathcal{F}(1)$ and $\mathcal{G}(1)$ which are cokernels of $\lambda - C(\zeta) : \mathcal{O}(-1)^{\oplus 2n} \to \mathcal{O}^{\oplus 2n}$, $\eta - A(\zeta)B(\zeta) : \mathcal{O}(-2)^{\oplus 2n} \to \mathcal{O}^{\oplus 2n}$, and of $\eta - B(\zeta)A(\zeta) : \mathcal{O}(-2)^{\oplus 2n} \to \mathcal{O}^{\oplus 2n}$, respectively. Any vector $u \in \mathbb{C}^{2n}$ defines a global section s_u of $\mathcal{F}(1)$ via $[5.1]$. We choose u so that the zeros of s_u are disjoint from $\eta = 0$ and from the singular locus of S. In other words $u \notin \text{Im} A(\zeta)B(\zeta)$ if $\det A(\zeta)B(\zeta) = 0$ and $u \notin \text{Im}(\eta - A(\zeta)B(\zeta))$ for a singular point $(\zeta, \eta) \in S$. Consider the vector $(u, 0) \in \mathbb{C}^{2n}$ which defines a global section \hat{s}_u of $\mathcal{L}(1)$. It is then easy to check that $(u, 0) \in \text{Im}(\lambda - C(\zeta))$ if either $\lambda \neq 0$ and $u \in \text{Im}(\lambda^2 - A(\zeta)B(\zeta))$ or $\lambda = 0$, $\det B(\zeta) = 0$ and $u \in \text{Im} A(\zeta)$. Since Δ_A and Δ_B are assumed to be disjoint, the condition $u \in \text{Im} A(\zeta)$ follows from $\lambda = 0$ and $\det B(\zeta) = 0$. Thus the divisor (\hat{s}_u) of \hat{s}_u is $\pi^{-1}(s_u) + \Delta_B$ and the first isomorphism follows. The proof of $\mathcal{L} \simeq \pi^* \mathcal{F} \otimes [\Delta_A]$ is completely analogous. □

5.3. **Flows.** The Beauville correspondence implies that the flow of matrices satisfying the Nahm equations corresponds to a flow on $J^{n-1}(S) - \Theta$. It is well-known $[52]$ that this latter flow is the linear flow $\mathcal{F} \mapsto \mathcal{F} \otimes L^t$, where L is the line bundle with transition function $\exp(\eta/\zeta)$. Similarly the BHT-flow corresponds to a linear flow on the moduli space of acyclic τ-line bundles on \hat{S} in the direction of the line bundle with transition function $\exp(\lambda^2/\zeta)$. In addition, in order to obtain the Basu-Harvey-Terashima equations, rather than purely holomorphic equations $[53]$, one needs to restrict the flow further to σ-line bundles on \hat{S}, i.e. line bundles equipped with a lift of the quaternionic structure of $|\mathcal{O}_{\mathbb{P}^2(1)}|$.
References

[1] A. Basu and J. A. Harvey, ‘The M2-M5 brane system and a generalized Nahm’s equation’,
Nucl. Phys. B 713, 136 (2005), 136–150.

[2] A. Beauville, ‘Jacobiennes des courbes spectrales et systèmes hamiltoniens complètement
intégrables, *Acta Math.* 164 (1990), 211–235.

[3] P. de Medeiros, J. Figueroa-O’Farrill, E. Méndez-Escobar, P. Ritter, ‘On the Lie-algebraic
origins of metric 3-algebras’, *Commun. Math. Phys.* 290 (2009), 871–902.

[4] N.J. Hitchin, ‘On the construction of monopoles, *Commun. Math. Phys.* 89 (1983), 145–190.

[5] N.J. Hitchin, ‘Integrable systems in Riemannian geometry’, in *Surveys in Differential Geom-
etry: Integrable Systems*, International Press, 1998.

[6] W. Schmid, ‘Variation of Hodge structure: the singularities of the period mapping’, *Invent.
Math.*, 22 (1973), 211–319.

[7] S. Terashima, ‘On M5-branes in N = 6 Membrane Action’, *JHEP* 0808:080 (2008).