On polynomials orthogonal with respect to an inner product involving higher order differences. The Meixner case

Roberto S. Costas-Santos, Anier Soria-Lorente and Jean-Marie Vilaire

URL: http://www.rscosan.com
E-mail: rscosa@gmail.com

1 Facultad de Ciencias Técnicas, Universidad de Granma, Km. 17.5 de la carretera de Bayano-Manzanillo, Bayamo, Cuba
E-mail: asorial@udg.co.cu, asorial1983@gmail.com

2 Institut des Sciences, des Technologies et des Études Avancées d’Haïti, # 10, Rue Mercier-Laham, Delmas 60, Musseau, Port-au-Prince, Haiti. B.P. 15953
E-mail: jeanmarievilaire@yahoo.fr

Received: 15 April 2022 Accepted: 3 June 2022 Published: 6 June 2022
doi:10.3390/math10111952

Abstract. In this contribution we consider sequences of monic polynomials orthogonal with respect to the Sobolev-type inner product

$$\langle f, g \rangle = \langle u^M, fg \rangle + \lambda T^j f(\alpha) T^j g(\alpha),$$

where u^M is the Meixner linear operator, $\lambda \in \mathbb{R}_+$, $j \in \mathbb{N}$, $\alpha \leq 0$, and T is the forward difference operator Δ, or the backward difference operator ∇.

We derive an explicit representation for these polynomials. The ladder operators associated with these polynomials are obtained, and the linear difference equation of second order is also given. In addition, for these polynomials we derive a $(2j + 3)$-term recurrence relation.

Finally, we find the Mehler-Heine type formula for the particular case $\alpha = 0$.

Keywords: Meixner polynomials; Meixner-Sobolev orthogonal polynomials; Discrete kernel polynomials.

2020 Mathematics Subject Classification: Primary 33C47; Secondary 39A12

1 Introduction

The Meixner orthogonal polynomials, usually denoted in the literature as $M_n(x; \beta, c)$, constitute a family of classical orthogonal polynomials, introduced by J. Meixner in 1934, in his seminal paper [15]. When $\beta > 0$ and $0 < c < 1$ they are orthogonal with respect to the well-known negative binomial distribution of the probability theory, i.e. in such a case

$$\sum_{x=0}^{\infty} \binom{x + \beta - 1}{x} c^x M_n(x; \beta, c) M_m(x; \beta, c) = 0, \quad m \neq n, \ m, n = 0, 1, \ldots$$

so the Meixner linear functional is

$$u^M = \sum_{x=0}^{\infty} \binom{x + \beta - 1}{x} c^x \delta_x.$$

So, they are orthogonal on the uniform lattice in the interval $[0, +\infty)$ and they satisfy an hypergeometric-type difference equation on the aforesaid uniform lattice. Because their classical...
character, their finite differences constitute as well an orthogonal polynomial family, their corresponding orthogonality weight satisfy a Pearson-type difference equation, and even they satisfy two different kinds structure relations. A distinctive and interesting characteristic of this family is that they have certain dual character, that is, every formula one can derives for \(M_n(x; \beta, c) \) has a dual formula with \(x \) and \(n \) interchanged

\[
c^{m-n}m!(1+\beta)m-1M_m(m; \beta, c) = c^{n-m}n!(1+\beta)n-1M_m(n; \beta, c),
\]

(see, for example [7, Ch. VI, Sec. 3], [11, Sec. 6.1], [18, Sec. 2.4], and the references therein).

On the other hand, since the first paper [1] on Sobolev orthogonal polynomials published by Althammer, until the present time, the results connected to these polynomials have attracted the attention of several mathematicians. The name of Sobolev orthogonal polynomials was given to those families of polynomials orthogonal with respect to inner products involving positive Borel measures supported on infinite subsets of the real line, and also involving regular derivatives. Moreover, in the case that the derivatives appear only on function evaluations on a finite discrete set, the corresponding families are called Sobolev-type or discrete Sobolev orthogonal polynomial sequences. For a recent and comprehensive survey on the subject, see [14] and the references therein. In the last decade of the past century, H. Bavinck introduced the study of orthogonal polynomials with respect to the inner product involving differences instead of derivatives

\[
\langle f, g \rangle_\lambda = \int_{\mathbb{R}} f(x)g(x)d\psi(x) + \lambda(\Delta f)(c)(\Delta g)(c), \tag{1}
\]

where \(\lambda \in \mathbb{R}^+, c \in \mathbb{R} \) and \(\psi \) is a distribution function with infinite spectrum, see [3, 4]. Moreover, in these works Bavinck obtained algebraic properties and some results connected to the location of the zeros of the orthogonal polynomials with respect to the inner product (1). On the other hand, in [4] he proved that the orthogonal polynomials with respect to inner product defined in equation (1) satisfy a five term recurrence relation. Furthermore, in [5] the author considered the inner product

\[
\langle f, g \rangle = (1-c)^{\beta} \sum_{x=0}^{\infty} f(x)g(x) \frac{c^\beta \Gamma(\beta + x)}{\Gamma(\beta)\Gamma(x+1)} + \lambda f(0)g(0), \tag{2}
\]

where \(\beta > 0, 0 < c < 1, \lambda > 0 \) and \(\mathbb{P} \) denote the linear space of all polynomials with real coefficients. Here, he obtained a second order difference equation with polynomial coefficients, which the orthogonal polynomials with respect to (2) satisfy. Then, in [6] the author showed that the Sobolev type Meixner polynomials orthogonal with respect to the inner product

\[
\langle f, g \rangle = (1-c)^{\beta} \sum_{x=0}^{\infty} f(x)g(x) \frac{c^\beta \Gamma(\beta + x)}{\Gamma(\beta)\Gamma(x+1)} + Mf(0)g(0) + N(\Delta f)(0)(\Delta g)(0),
\]

where \(\beta > 0, 0 < c < 1 \) and \(M, N \geq 0 \), are eigenfunctions of a difference operator. Other results a little most recent, connected with the Sobolev Meixner polynomials, can be found in [12, 16].

The structure of the paper is the following: In Section 2, we introduce some preliminary results about Meixner polynomials which will be very useful in the analysis presented. In Section 3, we obtain the connection formula between the Meixner polynomials and the polynomials orthogonal with respect to the Sobolev-type inner product

\[
\langle f, g \rangle = \langle \mathcal{M}^\lambda f, g \rangle + \lambda \mathcal{S}^j f(\alpha)\mathcal{S}^j g(\alpha), \tag{3}
\]

where \(\mathcal{M}^\lambda \) is the Meixner linear operator, \(\lambda \in \mathbb{R}^+, j \in \mathbb{N}, \alpha \leq 0 \), and \(\mathcal{S} \) is the forward or the backward difference operator, as well as we deduce the hypergeometric representation of
On polynomials orthogonal with respect to an inner product involving higher order differences. The Meixner case

such polynomials. In Section 4, we find the ladder (creation and annihilation) operators for the sequence of orthogonal polynomials of Sobolev type. As a consequence, the second order linear difference equation associated with them is deduced. And on the other hand, in Section 5, we determine the \((2j + 3)\)-term recurrence relation that these polynomials satisfy. Finally, in Section 6, we determine the Mehler-Heine type formula for the especial case \(\alpha = 0\). Indeed, the techniques used in Sections 3, 4 and 5 are based on those used in\([2, 10, 11]\), respectively.

2 Preliminaries

We adopt the following set notations: \(N_0 := \{0\} \cup \mathbb{N} = \{0, 1, 2, 3, \ldots\}\), and we use the sets \(\mathbb{Z}, \mathbb{R}, \mathbb{C}\) which represent the integers, real numbers and complex numbers respectively. \(\mathbb{P}\) denotes the vector space of univariate, complex-valued, polynomials, and let \(\mathbb{P}'\) denote its algebraic dual space.

We also adopt the following notation and conventions. We denote by \(\langle u, p \rangle\) the duality bracket for \(u \in \mathbb{P}'\) and \(p \in \mathbb{P}\).

Definition 2.1. For \(u \in \mathbb{P}, \pi \in \mathbb{P}, \) and \(c \in \mathbb{C}, \) let \(\pi u, (x - c)^{-1}u, \nabla u, \) and \(\Delta u\) be the linear functional defined by

\[
\langle \pi u, p \rangle := \langle u, \pi p \rangle, \quad p \in \mathbb{P},
\]

\[
\langle (x - c)^{-1}u, p \rangle := \left\langle u, \frac{p(x) - p(c)}{x - c} \right\rangle, \quad p \in \mathbb{P},
\]

\[
\langle \nabla u, p \rangle := -\langle u, \Delta p \rangle,
\]

and thus \(\langle \Delta u, p \rangle := -\langle u, \nabla p \rangle\), where \(\nabla\) and \(\Delta\) are the backward and forward difference operator defined as:

\[
\Delta f(x) := f(x + 1) - f(x), \quad \nabla f(x) := f(x) - f(x - 1).
\]

The Dirac delta functional, \(\delta_c\), is the functional defined by \(\langle \delta_c, p \rangle := p(c), p \in \mathbb{P}\).

In order to obtain our derived identities, we rely on properties of the Pochhammer symbol (shifted factorial). For any \(n \in \mathbb{N}_0, a \in \mathbb{C}\), the Pochhammer symbol is defined as

\[
(a)_n := (a)(a + 1) \cdots (a + n - 1), \quad n \in \mathbb{N}_0,
\]

Furthermore, define for all \(a, b \in \mathbb{C}\),

\[
(a)_b := \frac{\Gamma(a + b)}{\Gamma(a)},
\]

where \(a + b \notin -\mathbb{N}_0\), and we will also use the common notational product convention

\[
(a_1, \ldots, a_k)_b := (a_1)_b \cdots (a_k)_b,
\]

The hypergeometric series, which we will often use, is defined for \(z \in \mathbb{C}\) such that \(|z| < 1\), \(s, r \in \mathbb{N}_0\), as \([17, (1.4.1)]\)

\[
{}_rF_s\left(\begin{array}{c} a_1, \ldots, a_r \\ b_1, \ldots, b_s \end{array}; z \right) := \sum_{k=0}^{\infty} \frac{(a_1, \ldots, a_r)_k z^k}{(b_1, \ldots, b_s)_k k!}.
\]

where, of course, the parameters must be such that the denominator factors in the terms of the series are never zero.
2.1 The Meixner polynomials

Let β and c be two complex numbers such that $c \neq 0, 1$ and β is not a negative integer. We write $\{M_n(x; \beta, c)\}_{n \geq 0}$ for the sequence of Meixner polynomials defined by

$$M_n(x; \beta, c) = \frac{x^n n!}{(1-c)^n} \sum_{j=0}^{n} c^{-j} \binom{x}{j} \binom{-x - \beta}{n-j}.$$

These polynomials are orthogonal with respect to the linear functional $u^M \in \mathbb{P}'$ which is a classical functional since it fulfills the Pearson difference equation

$$\Delta \left(xu^M \right) = (x(c-1) + \beta c) u^M,$$

which is equivalent to the Pearson difference equation

$$\nabla \left(c(x + \beta)u^M \right) = (x(c-1) + \beta c) u^M.$$

Remark 2.2. Observe that when $\beta > 0$ and $0 < c < 1$, then

$$\langle u^M, f \rangle := \sum_{x=0}^{\infty} \frac{(x + \beta - 1)}{x} c^x f(x),$$

which is a positive definite linear functional. Observe this definition can be extended to $|c| < 1$ and $\beta \in \mathbb{C}$ nor a negative integer. Moreover, since

$$M_n(x; \beta, c) = (-1)^n M_n(-x - \beta; \beta, c^{-1}),$$

then one can extend the Meixner functional for $|c| > 1$. In [8, Proposition 9] the authors obtained an integral representation for this operator for $\beta, c \in \mathbb{C}$, with $c \notin [0, \infty]$ and $-\beta \notin \mathbb{N}$:

$$\langle u^M, f \rangle = \int_{C} f(z) \Gamma(-z) \Gamma(\beta + z) (-c)^z dz,$$

where C is a complex contour from $-\infty i$ to ∞i separating the increasing poles $\{0, 1, 2, \ldots \}$ from the decreasing poles $\{-\beta, -\beta - 1, -\beta - 2, \ldots \}$.

When $c \neq 0, 1$, they satisfy the following three term recurrence formula:

$$x M_n(x; \beta, c) = M_{n+1}(x; \beta, c) + \frac{(c + 1)n + \beta c}{1-c} M_n(x; \beta, c) + \gamma_n M_{n-1}(x; \beta, c),$$

where

$$\gamma_n = \frac{cn(n + \beta - 1)}{(1-c)^2},$$

which can be explicitly in terms of hypergeometric series as [17, (9.10.1)]

$$M_n(x; \beta, c) = \frac{c^n (\beta)_n}{(c-1)^n} \, _2F_1 \left(\frac{-n, -x}{\beta}; 1 - \frac{1}{c} \right).$$

Next, we summarize some basic properties of Meixner orthogonal polynomials to be used in the sequel.

Proposition 2.3. The following identities hold true for the Meixner polynomials:
1. Second order difference equation.
\[c(x + \beta)y_n(x + 1) - (x(c + 1) + \beta c)y_n(x) + xy_n(x - 1) = n(c - 1)y_n(x). \] (8)

2. Structure relations. For every \(n \in \mathbb{N} \),
\[(x + \beta)\Delta M_n(x; \beta, c) = nM_n(x; \beta, c) + \frac{n(n + \beta - 1)}{1 - c}M_{n-1}(x; \beta, c), \] (9)
\[x\nabla M_n(x; \beta, c) = nM_n(x; \beta, c) + \frac{nc(n + \beta - 1)}{1 - c}M_{n-1}(x; \beta, c). \] (10)

3. Squared norm. For every \(n \in \mathbb{N} \),
\[d_n^2 = \|M_n(x; \beta, c)\|^2 = \langle u^n, M_n^2(x; \beta, c) \rangle = \frac{(\beta)_n c^n n!}{(1-c)^{\beta+2n}}. \] (11)

4. Value in the initial extreme of the orthogonality interval,
\[M_n(0; \beta, c) = \frac{(\beta)_n c^n}{(c - 1)^n}. \] (12)

5. Forward and backward difference operators. For every \(n, k \in \mathbb{N} \),
\[\Delta^k M_n(x; \beta, c) = (m - k + 1)_k M_{n-k}(x; \beta + k, c), \] (13)
where \(\Delta^k f(x) = \Delta^{k-1} \Delta f(x) \) for \(k = 1, 2, \ldots \), and \(\nabla^0 f(x) = f(x) \).

6. Mehler–Heine type formula \[9, \text{eq. 35}\]
\[\lim_{n \to \infty} \frac{(1-c)^{n+\beta+z}M_n(z; \beta, c)}{(z-n+1)_n} = 1, \quad z \in \mathbb{C} \setminus \mathbb{N}. \] (14)

To complete this section we present some useful results we need along the paper.

Proposition 2.4. (Christoffel-Darboux formula). Let \(\{p_n\}_{n \in \mathbb{N}_0} \) be a sequence of monic polynomials orthogonal with respect to the linear functional \(u \). If we denote the \(n \)-th reproducing kernel by
\[K_n(x, y) := \sum_{k=0}^{n-1} \frac{p_k(x)p_k(y)}{\langle u, p_k^2 \rangle}. \] (15)

Then, for all \(n \in \mathbb{N} \),
\[K_n(x, y) = \frac{1}{\langle u, p_{n-1}^2 \rangle} \frac{p_n(x)p_{n-1}(y) - p_n(y)p_{n-1}(x)}{x - y}. \] (16)

Taking into account the inner product we have considered, then it is natural to consider the partial derivatives of \(K_n(x, y) \) we will use the following notation:
\[\mathcal{K}_{n,1}^{(i,j)}(x, y) := \sum_{k=0}^{n-1} \frac{\nabla^i p_k(x)\nabla^j p_k(y)}{\langle u, p_k^2 \rangle}, \] (17)
and
\[\mathcal{K}_{n,2}^{(i,j)}(x, y) := \sum_{k=0}^{n-1} \frac{\Delta^i p_k(x)\Delta^j p_k(y)}{\langle u, p_k^2 \rangle}. \]
Corollary 2.7. From this expression it is a direct calculation to get the desired expression.

Proof. Having (12)-(15) into account and by definition (17) we have

\[\mathcal{K}_{n,1}^{(0,j)}(x,y) = \frac{j!}{d_{n-1}^2} \sum_{k=0}^j \left(M_n(x;\beta,c)\nabla^k M_{n-1}(y;\beta,c) - M_{n-1}(x;\beta,c)\nabla^k M_n(y;\beta,c) \right), \quad (18) \]

\[\mathcal{K}_{n,2}^{(0,j)}(x,y) = \frac{j!}{d_{n-1}^2} \sum_{k=0}^j \left(M_n(x;\beta,c)\Delta^k M_{n-1}(y;\beta,c) - M_{n-1}(x;\beta,c)\Delta^k M_n(y;\beta,c) \right). \quad (19) \]

Proof. We are going to prove the first identity. After applying to (15) the difference operator \(\nabla^j\) with respect to \(y\) we obtain

\[\mathcal{K}_{n,1}^{(0,j)}(x,y) = \frac{1}{d_{n-1}^2} \left(M_n(x;\beta,c)\nabla^j \left(\frac{M_{n-1}(x;\beta,c)}{x-y} \right) - M_{n-1}(x;\beta,c)\nabla^j \left(\frac{M_n(y;\beta,c)}{x-y} \right) \right). \quad (20) \]

Using a analogue of the Leibnitz’s rule

\[\nabla^n(f(x)g(x)) = \sum_{k=0}^n \binom{n}{k} \nabla^k f(x) \nabla^{n-k} g(x-k), \quad (21) \]

and since for any positive integer \(k\) we have

\[\nabla^k \left(\frac{1}{x-y} \right) = \frac{k!}{(x-y)^{k+1}}, \]

the result follows after a straightforward calculation. The proof of the second identity is analogous and it will be omitted. Hence the result follows.

Proposition 2.6. The following identity holds for the kernel associated to the Meixner polynomials:

\[\mathcal{K}_{n,2}^{(j,j)}(0,0) = \frac{j!(1-c)^{\beta+2j}}{c^j(\beta)_j} \sum_{k=0}^{n-j-1} \frac{(j+1)_k(\beta+j)_k c^k}{(1)_k}. \]

Proof. Having (12)-(15) into account and by definition (17) we have

\[\mathcal{K}_{n,2}^{(j,j)}(0,0) = \sum_{k=0}^{n-j-1} \frac{(k-j+1)^2(\beta+j)_2 c^{2k-2j}(1-c)^{\beta+2k}}{(c-1)^{2k-2j}(\beta)_j c^k k!} \]

\[= \frac{(1-c)^{2j+\beta}}{c^{2j}(\beta)_j^2} \sum_{k=0}^{n-j-1} \frac{(k-j+1)^2(\beta)_k c^k}{k!}. \]

By using some identities of the pochhammer symbols we obtain

\[\mathcal{K}_{n,2}^{(j,j)}(0,0) = \frac{(1-c)^{2j+\beta}}{c^{2j}(\beta)_j^2} \sum_{k=0}^{n-1-j} \frac{(k-j+1)^2(\beta)_k c^k}{(1)_k^2} \]

\[= \frac{(1-c)^{2j+\beta}}{c^{2j}(\beta)_j^2} \sum_{k=0}^{n-1-j} \frac{(1)_{k+j}(\beta)_{k+j} c^{k+j}}{(1)_k^2}, \]

from this expression it is a direct calculation to get the desired expression.

Corollary 2.7. The following limit for the kernels associated to the Meixner polynomials holds:

\[\lim_{n\to\infty} \mathcal{K}_{n,2}^{(j,j)}(0,0) = \frac{j!(1-c)^{\beta+2j}}{c^j(\beta)_j} \left(_2F_1 \left(\begin{array}{c} 1+j,\beta+j \end{array} ; c \right) \right). \]
3 The Sobolev-type Meixner polynomials

We start this section introducing the Sobolev-type inner product (3)

\[(f,g)_{\lambda,j,\ell} = \langle u^f, f g \rangle + \lambda \mathcal{T}^j f(\alpha) \mathcal{T}^j g(\alpha),\]

where \(u^f\) is the Meixner linear operator, \(j \in \mathbb{N}\), \(\alpha \leq 0\), and \(\mathcal{T}\) is the operator \(\nabla\) when \(\ell = 1\), and it is the operator \(\Delta\) when \(\ell = 2\).

We denote by \(\mathcal{M}^{j,\ell}_n(x; \beta, c; \lambda)\) the sequence of monic polynomials, orthogonal with respect to the inner product (22). These polynomials are said to be Sobolev-type Meixner polynomials.

3.1 Connection formula and hypergeometric representation

We first express the Sobolev-type Meixner polynomials in terms of the monic Meixner polynomials and the Kernel polynomials associated to the Meixner polynomials.

Taking into account the Fourier expansion and using orthogonality conditions of \((M_n(x))\) and \((\mathcal{M}_n(x; \beta, c; \lambda))\) we obtain (see cf. [13, eq. (2.8)])

\[\mathcal{M}^{j,\ell}_n(x; \beta, c; \lambda) = M_n(x; \beta, c) - \frac{\lambda \mathcal{T}^j M_n(\alpha; \beta, c)}{1 + \lambda \mathcal{K}^{(\ell,j)}(\alpha, \alpha)} \mathcal{M}_n^{(0,j)}(x, \alpha), \quad \ell = 1, 2.\] (23)

We can express the Sobolev-type Meixner polynomials in terms of the Meixner and their associated Kernel polynomials. Moreover, starting from (23) and by using the recurrence relation of the Meixner polynomials (6) we have

\[\mathcal{M}^{j,\ell}_n(x; \beta, c; \lambda) = A_{1,n}^{j,\ell}(x) M_n(x; \beta, c) + B_{1,n}^{j,\ell}(x) M_{n-1}(x; \beta, c),\] (24)

where

\[A_{1,n}^{1,1}(x) = 1 - \frac{\lambda \mathcal{T}^j M_n(\alpha; \beta, c)}{1 + \lambda \mathcal{K}^{(\ell,j)}(\alpha, \alpha)} \frac{j!}{d_{n-1}^2} \sum_{k=0}^{j} \frac{\nabla^k M_{n-1}(y; \beta, c)}{k!(x - y + k)_{j+1-k}},\] (25)

\[A_{1,n}^{1,2}(x) = 1 - \frac{\lambda \mathcal{T}^j M_n(\alpha; \beta, c)}{1 + \lambda \mathcal{K}^{(\ell,j)}(\alpha, \alpha)} \frac{j!}{d_{n-1}^2} \sum_{k=0}^{j} \frac{\nabla^k M_{n-1}(y; \beta, c)}{k!(x - y - j)_{j+1-k}},\] (26)

\[B_{1,n}^{1,1}(x) = \frac{\lambda \mathcal{T}^j M_n(\alpha; \beta, c)}{1 + \lambda \mathcal{K}^{(\ell,j)}(\alpha, \alpha)} \frac{j!}{d_{n-1}^2} \sum_{k=0}^{j} \frac{\nabla^k M_n(y; \beta, c)}{k!(x - y + k)_{j+1-k}},\] (27)

\[B_{1,n}^{1,2}(x) = \frac{\lambda \mathcal{T}^j M_n(\alpha; \beta, c)}{1 + \lambda \mathcal{K}^{(\ell,j)}(\alpha, \alpha)} \frac{j!}{d_{n-1}^2} \sum_{k=0}^{j} \frac{\nabla^k M_n(y; \beta, c)}{k!(x - y - j)_{j+1-k}},\] (28)

From these identities we can express the Sobolev-type Meixner polynomials in terms of hypergeometric series.

Theorem 3.1. The monic Sobolev-type Meixner polynomial \(\mathcal{M}^{j,\ell}_n(x; \beta, c; \lambda)\) has the following hypergeometric representation for \(\ell = 1, 2\),

\[\mathcal{M}^{j,\ell}_n(x; \beta, c; \lambda) = \frac{(\beta)_{n-1} c^{n-1}}{(c-1)^{n-1}} h^n_{\ell}(x) \binom{-n, -x, -f^{\ell}_n(x)}{\beta, -f^{\ell}_n(x) - 1} \binom{1 - \frac{1}{c}}{1},\] (29)

where \(f^{\ell}_n(x)\) is given in (31) and

\[h^n_{\ell}(x) = c(\beta + n - 1) \frac{A_{1,n}^{j,\ell}(x) - B_{1,n}^{j,\ell}(x)}{1-c}.\]
Proof. Taking into account \((-x)_k = 0\) if \(x < k\) as well as (7) and (24) we deduce
\[
\mathcal{M}_n^{j,\ell}(x; \beta, c; \lambda) = \frac{e^n(\beta)_n}{(c - 1)^n} A_{1,n}^{j,\ell}(x) \sum_{k=0}^{n} \frac{(-n)_k(-x)_k}{(\beta)_k k!} \left(1 - \frac{1}{c}\right)^k
+ \frac{e^{n-1}(\beta)_{n-1}}{(c - 1)^{n-1}} B_{1,n}^{j,\ell}(x) \sum_{k=0}^{n-1} \frac{(1-n)_k(-x)_k}{(\beta)_k k!} \left(1 - \frac{1}{c}\right)^k.
\]

By using the identity
\[(a + k)(a)_k = a(a + 1)_k,\] we get
\[
\mathcal{M}_n^{j,\ell}(x; \beta, c; \lambda) = \frac{e^n(\beta)_n}{(c - 1)^n} A_{1,n}^{j,\ell}(x) \sum_{k=0}^{n} \frac{(-n)_k(-x)_k}{(\beta)_k k!} \left(1 - \frac{1}{c}\right)^k
+ \frac{e^{n-1}(\beta)_{n-1}}{(c - 1)^{n-1}} B_{1,n}^{j,\ell}(x) \sum_{k=0}^{n-1} \frac{(n-k)(-n)_k(-x)_k}{(\beta)_k k!} \left(1 - \frac{1}{c}\right)^k.
\]

Thus, we have
\[
\mathcal{M}_n^{j,\ell}(x; \beta, c; \lambda) = \frac{(\beta)_{n-1}e^{n-1} B_{1,n}^{j,\ell}(x)}{(c - 1)^{n-1}} \sum_{k=0}^{n} \left(f_n^{\ell}(x) - k + 1\right) \frac{(-n)_k(-x)_k}{(\beta)_k k!} \left(1 - \frac{1}{c}\right)^k,
\]

where
\[f_n^{\ell}(x) = n - 1 - \frac{nc(\beta + n - 1)A_{1,n}^{j,\ell}(x)}{(1 - c)B_{1,n}^{j,\ell}(x)}.\] (31)

And after a straightforward calculation and by using (30) with \(a \rightarrow -f_n^{\ell}(x) - 1\) the identity (29) follows. This completes the proof. ■

4 Second Order Linear Difference equation

In this section we obtain a second order linear difference equation that the sequence \(\mathcal{M}_n^{j,\ell}(x; \beta, c; \lambda)\) satisfies. In order to do that, we will find the ladder (creation and annihilation) operators, using the connection formula (24), the three-term recurrence relation(6), and the structure relations (9), (10) satisfied by them.

From (24) and the recurrence relation(6) we deduce the following result
\[
\mathcal{M}_{n-1}^{j,\ell}(x; \beta, c; \lambda) = A_{2,n}^{j,\ell}(x) M_n(x; \beta, c) + B_{2,n}^{j,\ell}(x) M_{n-1}(x; \beta, c),
\]

where
\[A_{2,n}^{j,\ell}(x) = \frac{(c - 1)B_{1,n}^{j,\ell}(x)}{(c + 1)(n-1) + \beta c},\quad \text{and} \quad B_{2,n}^{j,\ell}(x) = A_{1,n}^{j,\ell}(x) + A_{2,n}^{j,\ell}(x)(1 - x).\] (32)

Applying the operator \(\mathcal{T}\) to (24) and by using (21) we have
\[
\mathcal{T} \mathcal{M}_n^{j,\ell}(x; \beta, c; \lambda) = M_n(x; \beta, c) \mathcal{T} A_{1,n}^{j,\ell}(x) + A_{1,n}^{j,\ell}(x + (-1)^\ell) \mathcal{T} M_n(x; \beta, c)
+ M_{n-1}(x; \beta, c) \mathcal{T} B_{1,n}^{j,\ell}(x) + A_{1,n}^{j,\ell}(x + (-1)^\ell) \mathcal{T} M_{n-1}(x; \beta, c).
\]
Then, multiplying the previous expression by x and using the structure relation (10) if $\ell = 1$ and $x + \beta$ and using the structure relation (9) if $\ell = 2$, and as well as the recurrence relation (6) we deduce the following expressions

\[x \nabla \mu_n^{(1)}(x; \beta, c; \lambda) = C_{1,n}^{(1)}(x)M_n(x; \beta, c) + D_{1,n}^{(1)}(x)M_{n-1}(x; \beta, c), \]

\[(x + \beta)\Delta \mu_n^{(2)}(x; \beta, c; \lambda) = C_{2,n}^{(2)}(x)M_n(x; \beta, c) + D_{2,n}^{(2)}(x)M_{n-1}(x; \beta, c), \]

\[x \nabla \mu_{n-1}^{(1)}(x; \beta, c; \lambda) = C_{2,n}^{(1)}(x)M_n(x; \beta, c) + D_{2,n}^{(1)}(x)M_{n-1}(x; \beta, c), \]

and

\[(x + \beta)\Delta \mu_{n-1}^{(2)}(x; \beta, c; \lambda) = C_{2,n}^{(2)}(x)M_n(x; \beta, c) + D_{2,n}^{(2)}(x)M_{n-1}(x; \beta, c), \]

respectively, where all the coefficients can be computed explicitly. Moreover, from (24)-(32) for $\ell = 1, 2$ we have

\[\Theta_n(x; \ell)M_n(x; \beta, c) = B_{2,n}^{(\ell)}(x)\mu_n^{(\ell)}(x; \beta, c; \lambda) - B_{1,n}^{(\ell)}(x)\mu_{n-1}^{(\ell)}(x; \beta, c; \lambda), \]

and

\[\Theta_n(x; \ell)M_{n-1}(x; \beta, c) = A_{1,n}^{(\ell)}(x)\mu_n^{(\ell)}(x; \beta, c; \lambda) - A_{2,n}^{(\ell)}(x)\mu_{n-1}^{(\ell)}(x; \beta, c; \lambda), \]

where

\[\Theta_n(x; \ell) = \det \begin{pmatrix} A_{1,n}^{(\ell)}(x) & B_{1,n}^{(\ell)}(x) \\ A_{2,n}^{(\ell)}(x) & B_{2,n}^{(\ell)}(x) \end{pmatrix}, \quad \ell = 1, 2. \]

After replacing the above in (33), (34) and (35), (36), we conclude

\[\left(\tilde{\Theta}_n(x; \ell)\mathcal{T} + \Lambda_{2,n}^{(1)}(x; \ell) \right) \left[\mu_n^{(\ell)}(x; \beta, c; \lambda) \right] = \Lambda_{1,n}^{(1)}(x; \ell)\mu_{n-1}^{(\ell)}(x; \beta, c; \lambda), \]

and

\[\left(\tilde{\Theta}_n(x; \ell)\mathcal{T} + \Lambda_{1,n}^{(2)}(x; \ell) \right) \left[\mu_{n-1}^{(\ell)}(x; \beta, c; \lambda) \right] = \Lambda_{2,n}^{(2)}(x; \ell)\mu_n^{(\ell)}(x; \beta, c; \lambda), \]

respectively, where

\[\tilde{\Theta}_n(x; \ell) = \begin{cases} x\Theta_n(x; \ell), & \text{if } \ell = 1, \\ (x + \beta)\Theta_n(x; \ell), & \text{if } \ell = 2, \end{cases} \]

and

\[\Lambda_{k,n}^{(k)}(x; \ell) = (-1)^k \det \begin{pmatrix} C_{k,n}^{(k)}(x) & A_{k,n}^{(k)}(x) \\ D_{k,n}^{(k)}(x) & B_{k,n}^{(k)}(x) \end{pmatrix}, \quad \nu = 1, 2, \quad k = 1, 2, \quad \ell = 1, 2. \]
Proposition 4.1. Let $\{M_n^{j,\ell}(x; \beta, c; \lambda)\}_{n \in \mathbb{N}_0}$ be the sequence of monic Sobolev-type Meixner polynomials defined by (29) and let I be the identity operator. Then, the ladder (destruction and creation) operators a, a^\dagger are defined by
\[
a = \tilde{\Theta}_n(x; \ell) I + \Lambda_n^{(1)}(x; \ell),
a^\dagger = \tilde{\Theta}_n(x; \ell) I + \Lambda_n^{(2)}(x; \ell),
\]
which verify
\[
a(M_n^{j,\ell}(x; \beta, c; \lambda)) = \Lambda_n^{(1)}(x; \ell) M_n^{j,\ell}(x; \beta, c; \lambda),
a^\dagger(M_n^{j,\ell}(x; \beta, c; \lambda)) = \Lambda_n^{(2)}(x; \ell) M_n^{j,\ell}(x; \beta, c; \lambda),
\]
where I is the identity operator, $\tilde{\Theta}_n(x; \ell)$ and $\Lambda_n^{(j,\ell)}(x; \beta, c; \lambda)$ with $j, k, \ell = 1, 2$ are given in (37)-(38).

Theorem 4.2. The monic Sobolev-type Meixner polynomials sequence, which is orthogonal with respect to the inner product (22), fulfills the second order difference equation:
\[
F_n(x; \ell) T^2 y(x) + G_n(x; \ell) T y(x) + H_n(x; \ell) y(x) = 0,
\]
where
\[
F_n(x; \ell) = \frac{\tilde{\Theta}_n(x; \ell) \tilde{\Theta}_n(x + (-1)^\ell; \ell)}{\Lambda_n^{(1)}(x + (-1)^\ell; \ell)},
G_n(x; \ell) = \frac{\tilde{\Theta}_n(x; \ell)}{\Lambda_n^{(1)}(x + (-1)^\ell; \ell)} \left(T \tilde{\Theta}_n(x; \ell) - \frac{\tilde{\Theta}_n(x; \ell) T \Lambda_n^{(1)}(x; \ell)}{\Lambda_n^{(1)}(x; \ell)} \right) + \frac{\tilde{\Theta}_n(x; \ell) \Lambda_n^{(2)}(x; \ell)}{\Lambda_n^{(1)}(x; \ell)},
H_n(x; \ell) = \frac{\tilde{\Theta}_n(x; \ell) T \Lambda_n^{(2)}(x; \ell)}{\Lambda_n^{(1)}(x; \ell)} - \frac{\tilde{\Theta}_n(x; \ell) \Lambda_n^{(1)}(x; \ell) T \Lambda_n^{(1)}(x; \ell)}{\Lambda_n^{(1)}(x; \ell) \Lambda_n^{(2)}(x; \ell)} - \frac{\Lambda_n^{(2)}(x; \ell)}{\Lambda_n^{(1)}(x; \ell)}.
\]

Proof. From (39) we have
\[
\frac{1}{\Lambda_n^{(1)}(x; \ell)} a(M_n^{j,\ell}(x; \beta, c; \lambda)) = M_n^{j,\ell}(x; \beta, c; \lambda).
\]
Next, applying the operator a^\dagger to both members of the previous expression, we get
\[
a^\dagger \left[\frac{1}{\Lambda_n^{(1)}(x; \ell)} a(M_n^{j,\ell}(x; \beta, c; \lambda)) \right] = \Lambda_n^{(2)}(x; \ell) M_n^{j,\ell}(x; \beta, c; \lambda).
\]
Thus, by using the definitions of the operators a and a^\dagger, taking into account the identity
\[
T \left\{ \frac{f(x)}{g(x)} \right\} = \frac{g(x) T f(x) - f(x) T g(x)}{g(x) g(x + (-1)^\ell)},
\]
and after tedious calculations we obtain (40). Hence the result follows.
5 The \((2j+3)\)-term recurrence relation

In this section we find the \((2j+3)\)-term recurrence relation that the sequence of monic Sobolev-type Meixner polynomials \((29)\) fulfill. For this purpose, we use the fact, which is a straightforward consequence of \((3)\), that the multiplication operator by \(S\) is a symmetric operator with respect to such a discrete Sobolev inner product. Indeed, for any \(p, q \in \mathbb{P}\) we have for \(\ell = 1\)

\[
\langle (x - \alpha)_{j+1} p(x), q(x) \rangle_{\lambda; j, \ell} = \langle (x - \alpha)_{j+1} u^M p(x)q(x) \rangle_{\lambda; j, \ell},
\]

and for \(\ell = 2\)

\[
\langle (x - \alpha - j)_{j+1} p(x), q(x) \rangle_{\lambda; j, \ell} = \langle (x - \alpha - j)_{j+1} u^M p(x)q(x) \rangle_{\lambda; j, \ell}.
\]

Taking these identities into account and by using the three-term recurrence relation \((6)\) we can state the following result.

Lemma 5.1. The following identities related to the monic Sobolev-type Meixner polynomials hold:

\[
(x - \alpha)_{j+1} A_{n+1}^\ell(x; \beta, \gamma; \lambda) = A_n^\ell(x) M_n(x; \beta, \gamma) + B_n^\ell(x) M_{n-1}(x; \beta, \gamma),
\]

\[
(x - \alpha - j)_{j+1} A_{n+2}^\ell(x; \beta, \gamma; \lambda) = A_n^\ell(x) M_n(x; \beta, \gamma) + B_n^\ell(x) M_{n-1}(x; \beta, \gamma),
\]

where \(A_n^\ell(x), B_n^\ell(x)\) are polynomials which can be computed explicitly.

Theorem 5.2. Let \(\lambda \in \mathbb{R}_+, \text{ and } j \in \mathbb{N}, \text{ let } \left\{ A_n^\ell(x; \beta, \gamma; \lambda) \right\}_{n \in \mathbb{N}_0} \) be the sequence of monic Sobolev-type Meixner polynomials defined by \((29)\).

Then, the norm of these polynomials fulfills the following identity:

\[
\| A_n^\ell(x; \beta, \gamma; \lambda) \|_{\lambda; j, \ell}^2 = \| M_n(x; \beta, \gamma) \|^2 + b_n^\ell \| M_{n-1}(x; \beta, \gamma) \|^2,
\]

where

\[
b_n^\ell = \frac{\lambda}{\| M_{n-1}(x; \beta, \gamma) \|^2} \frac{\mathcal{F}^j M_n(\alpha; \beta, \gamma) \mathcal{F}^j M_{n-1}(\alpha; \beta, \gamma)}{1 + \lambda \mathcal{F}^j \mathcal{F}^j(\alpha; \alpha)} \geq 0.
\]

Proof. We will consider the \(\ell = 1\) case. The \(\ell = 2\) case is analogous.

By the property of orthogonality of Sobolev-type Meixner polynomials we have

\[
\| A_n^\ell(x; \beta, \gamma; \lambda) \|_{\lambda; j, \ell}^2 = \left\langle A_n^\ell(x; \beta, \gamma; \lambda), (x - \alpha)_{j+1} \pi_{n-j-1}(x) \right\rangle_{\lambda; j, \ell},
\]

for any monic polynomial \(\pi\) of degree \(n - j - 1\). From \((41)\) we have

\[
\left\langle A_n^\ell(x; \beta, \gamma; \lambda), (x - \alpha)_{j+1} \pi(x) \right\rangle_{\lambda; j, \ell} = \left\langle (x - \alpha)_{j+1} A_n^\ell(x; \beta, \gamma; \lambda), \pi(x) \right\rangle_{\lambda; j, \ell}.
\]

By using the connection formula \((43)\) and taking into account that \(A_n^\ell(x)\) is a monic polynomial of degree \(j + 1\) and \(B_n^\ell(x)\) is a polynomial of degree \(j\) with the leading coefficient \(b_n^\ell\) we deduce

\[
\| A_n^\ell(x; \beta, \gamma; \lambda) \|_{\lambda; j, \ell}^2 = \left\langle (x - \alpha)_{j+1} A_n^\ell(x; \beta, \gamma; \lambda), \pi(x) \right\rangle_{\lambda; j, \ell}
\]

\[
= \left\langle u^\mathcal{N}_n A_n^\ell(x; \beta, \gamma; \lambda), \pi(x) \right\rangle_{\lambda; j, \ell} + \left\langle u^\mathcal{N}_n B_n^\ell(x) M_{n-1}(x; \beta, \gamma; \lambda), \pi(x) \right\rangle_{\lambda; j, \ell}
\]

\[
= \left\langle u^\mathcal{N}_n M_n(x; \beta, \gamma; \lambda), \pi(x) \right\rangle_{\lambda; j, \ell} + b_n^\ell \left\langle u^\mathcal{N}_n M_{n-1}(x; \beta, \gamma; \lambda), \pi(x) \right\rangle_{\lambda; j, \ell},
\]

which coincides with \((45)\). □
Thus, by using the property of orthogonality of the sequence polynomials, then

Thus, the same orthogonality conditions. The proof of the another identity is similar and it will be

\[M_{\alpha}(x; \beta, c) = 0 \]

The main result of this section will be to establish Mehler–Heine type formula of the polynomial

\[\mathcal{M}_{n}^{j, \ell}(x; \beta, c; \lambda) = 0 \]

Using (42) and the property of orthogonality of \(\mathcal{M}_{n}^{j, \ell}(x; \beta, c; \lambda) \) we obtain

\[c_{n,k}^{j, \ell} = \frac{(x - \alpha - j)_{j+1} \mathcal{M}_{n+1}^{j, \ell}(x; \beta, c; \lambda), \mathcal{M}_{k}^{j, \ell}(x; \beta, c; \lambda)}{|| \mathcal{M}_{k}^{j, \ell}(x; \beta, c; \lambda) ||_{L^2}^{2}} \lambda_{j, \ell}, \quad k = 0, ... , n + j. \]

Using (42) and the property of orthogonality of \(\mathcal{M}_{n}^{j, \ell}(x; \beta, c; \lambda) \), we deduce that \(c_{n,k}^{j, \ell} = 0 \) for \(k = 0, ... , n - j - 2 \). Observe that the rest of the coefficients can be computed by using again the same orthogonality conditions. The proof of the another identity is similar and it will be omitted.

\[\text{Remark 5.3.} \text{ Observe that a direct consequence is} \]

\[\frac{|| \mathcal{M}_{n}^{j, \ell}(x; \beta, c; \lambda) ||_{L^2}^{2}}{|| M_{n}(x; \beta, c) ||^{2}} = 1 + \lambda \mathcal{M}_{n+1}^{j, \ell}(\alpha, \alpha) \]

\[\text{Theorem 5.4} \text{ (}(2j + 3)\text{-term recurrence relation).} \text{ Let} \lambda \in \mathbb{R}^{+}, \ j \in \mathbb{N}_0. \text{ Then, the monic Sobolev-type Meixner orthogonal polynomials sequence with respect to the inner product (22) satisfies the following (}(2j + 3)\text{-term recurrence relation:} \]

\[(x - \alpha)_{j+1} \mathcal{M}_{n}^{j, 1}(x; \beta, c; \lambda) = \mathcal{M}_{n+j+1}^{j, 1}(x; \beta, c; \lambda) + \sum_{k=n-j-1}^{n+j} c_{n,k}^{j, 1} \mathcal{M}_{k}^{j, 1}(x; \beta, c; \lambda), \]

and

\[(x - \alpha - j)_{j+1} \mathcal{M}_{n}^{j, 2}(x; \beta, c; \lambda) = \mathcal{M}_{n+j+1}^{j, 2}(x; \beta, c; \lambda) + \sum_{k=n-j-1}^{n+j} c_{n,k}^{j, 2} \mathcal{M}_{k}^{j, 2}(x; \beta, c; \lambda), \]

where the constant coefficients \(c_{n,k}^{j, \ell} \) can be explicitly computed for \(\ell = 1, 2 \).

\[\text{Proof.} \text{ In such a case we will consider the} \ \ell = 2 \ \text{case.} \]

Since the Sobolev-type Meixner polynomials form a basis in \(L_{2}(\cdot, \cdot)_{\lambda, j, \ell} \), if we consider the Fourier expansion of \((x - \alpha - j)_{j+1} \mathcal{M}_{n}^{j, \ell}(x; \beta, c; \lambda) \) in terms of the Sobolev-type Meixner polynomials, then

\[(x - \alpha - j)_{j+1} \mathcal{M}_{n}^{j, \ell}(x; \beta, c; \lambda) = \mathcal{M}_{n+j+1}^{j, \ell}(x; \beta, c; \lambda) + \sum_{k=0}^{n+j} c_{n,k}^{j, \ell} \mathcal{M}_{k}^{j, \ell}(x; \beta, c; \lambda), \]

Thus, by using the property of orthogonality of the sequence \(\{ \mathcal{M}_{n}^{j, \ell}(x; \beta, c; \lambda) \} \) we obtain

\[c_{n,k}^{j, \ell} = \frac{(x - \alpha - j)_{j+1} \mathcal{M}_{n}^{j, \ell}(x; \beta, c; \lambda), \mathcal{M}_{k}^{j, \ell}(x; \beta, c; \lambda)}{|| \mathcal{M}_{k}^{j, \ell}(x; \beta, c; \lambda) ||_{L^2}^{2}} \lambda_{j, \ell}, \quad k = 0, ... , n + j. \]

\[\text{6} \text{ Mehler-Heine type formula} \]

The main result of this section will be to establish Mehler–Heine type formula of the polynomial \(\mathcal{M}_{n}^{j, \ell}(x; \beta, c; \lambda) \) for the \(\alpha \leq 0 \) case. Let us see the following result.

\[\text{lem 6.1.} \text{ Let} \beta, c \in \mathbb{C}, \text{ with} \ |c| < 1 \ \text{and} \ -\beta \notin \mathbb{N}, \ \text{and let} \ m \ \text{be a positive integer. Then, the following limit holds:} \]

\[\lim_{n \to \infty} \frac{(\beta)n^{m}c^{n}}{(n-1)!} = 0, \]

\[(48) \]
On polynomials orthogonal with respect to an inner product involving higher order differences. The Meixner case

Proof. If we use the identity [19, p. 23]
\[\Gamma(z) = \lim_{n \to \infty} \frac{(n-1)!n^z}{(z)_n}, \]
we deduce
\[\lim_{n \to \infty} \frac{(\beta)n^m c^n}{(n-1)!} = \frac{1}{\Gamma(\beta)} \lim_{n \to \infty} n^{\beta+m} c^n. \] (49)

Therefore, if \(\text{Re}(\beta + m) > 0 \) then applying to (49) L'Hôpital’s rule several times we obtain the desired result; otherwise the limit is zero. Hence the result holds. ■

lem 6.2. Let \(\beta, c \in \mathbb{R} \), with \(|c| < 1 \) and \(\beta \) is not a negative integer, and let \(k, j \) be integers, with \(0 \leq k \leq j \). If we set \(\alpha = 0 \) in (23). Then, the following limits hold:
\[\lim_{n \to \infty} A_{i,n}^{j,\ell}(x) = 1 \quad \text{and} \quad \lim_{n \to \infty} B_{i,n}^{j,\ell}(x) = 0, \quad \ell = 1, 2. \] (50)

Proof. By starting with (23) and using (19) we obtain
\[A_{i,n}^{j,\ell}(x) = 1 - \frac{\lambda \mathcal{T}^j M_n(\alpha; \beta, c)}{1 + \lambda \mathcal{H}^{(j,j)}_{n,\ell}(\alpha, \alpha)} \frac{j!}{d_{n-1}^2} \sum_{k=0}^{j} \frac{k! (x - \alpha + k)_{j+1-k}}{(x - \alpha + k)_{j+1-k}}. \]

and
\[B_{i,n}^{j,\ell}(x) = \frac{\lambda \mathcal{T}^j M_n(\alpha; \beta, c)}{1 + \lambda \mathcal{H}^{(j,j)}_{n,\ell}(\alpha, \alpha)} \frac{j!}{d_{n-1}^2} \sum_{k=0}^{j} \frac{k! (x - \alpha + k)_{j+1-k}}{(x - \alpha + k)_{j+1-k}}. \]

where \(i = 1, 2 \). Then, to prove this result it is enough to check
\[\lim_{n \to \infty} (1 - c)^n a_{k,n}^{j,\ell} = \lim_{n \to \infty} (1 - c)^n b_{k,n}^{j,\ell} = 0, \quad k = 0, 1, \ldots, n, \quad i = 1, 2, \quad \ell = 1, 2, \]
where
\[a_{k,n}^{j,\ell} = \frac{\lambda j! \mathcal{T}^j M_n(\alpha; \beta, c) \mathcal{T}^k M_{n-1}(\alpha; \beta, c)}{k!(1 + \lambda \mathcal{H}^{(j,j)}_{n,\ell}(\alpha, \alpha))d_{n-1}^2}, \]
and
\[b_{k,n}^{j,\ell} = \frac{\lambda j! \mathcal{T}^j M_n(\alpha; \beta, c) \mathcal{T}^k M_n(\alpha; \beta, c)}{k!(1 + \lambda \mathcal{H}^{(j,j)}_{n,\ell}(\alpha, \alpha))d_{n-1}^2}. \]

After a straightforward calculation, by using (14) we have that for any \(0 \leq k \leq j \)
\[\mathcal{T}^k M_n(\alpha; \beta, c) \approx \mathcal{T}^j M_n(\alpha; \beta, c), \]
for \(n \) large, and since \(c - 1 < c \), then by using Lemma 6.1 it is clear that both limits related to such coefficients tend to zero. Hence we deduce (50). ■

Theorem 6.3. Let \(\beta, c \in \mathbb{R} \), with \(0 < c < 1 \) and \(\beta \) is not a negative integer, and let \(m \) be a positive integer. Then, we have
\[\lim_{n \to \infty} \frac{(1 - c)^{n+\beta+z} \mathcal{M}_{n}^{j,\ell}(z; \beta, c; \lambda)}{(z - n + 1)_n} = 1, \quad z \in \mathbb{C} \setminus \mathbb{N}. \] (51)
uniformly on compact subsets of the complex plane.
Proof. Multiplying (24) by the factor \((1 - c)^{n + \beta + z} / (z - n + 1)_n\) we have

\[
\frac{(1 - c)^{n + \beta + z} \mathcal{M}^j_\lambda(z; \beta, c)}{(z - n + 1)_n} = A^{(j, \ell)}_{i, n}(z) \frac{(1 - c)^{n + \beta + z} M_n(z; \beta, c)}{(z - n + 1)_n} + B^{(j, \ell)}_{1, n}(z) \frac{(1 - c)^{n + \beta + z} M_{n-1}(z; \beta, c)}{(z - n + 1)_n}.
\]

Then, applying the previous Lemma as well as the (14) we arrived to the desired result. ■

Remark 6.4. Observe that we can extend some of the previous results even for \(c \in \mathbb{C}\) so that \(|c - 1| < |c| < 1\), or even into a wider region of the complex plane taking into account (5).

Finally, we show some graphical experiments of the limit function in (51) for several values of \(n\) using Mathematica software at the masspoint \(\alpha = 0\), see Figures 1, 2, and 3.

![Figure 1](image1.png)

Figure 1. Limit function in (51) for \(n = 50\), (red color) left member and right member in blue.
Data: \(\beta = 7\), \(c = 1/5\), \(\lambda = 10^{-21}\) and \(j = 2\).

Acknowledgments:

The research of RSCS was funded by Agencia Estatal de Investigación of Spain, grant number PGC-2018-096504-B-C33. The work of ASL is supported by Dirección General de Investigación e Innovación, Consejería de Educación e Investigación of the Comunidad de Madrid (Spain) and Universidad de Alcalá under grant CM/JIN/2021-014, Proyectos de I+D para Jóvenes Investigadores de la Universidad de Alcalá 2021. We are grateful for the exhaustive work of the referees. Their comments and suggestions have improved the presentation of the manuscript.

References

[1] P. Althammer. Eine Erweiterung des Orthogonalitätsbegriffes bei Polynomen und deren Anwendung auf die beste Approximation. *J. Reine Angew. Math.* **211** (1962), 192–204.

[2] R. Álvarez Nodarse and F. Marcellán. Difference equation for modifications of Meixner polynomials. *J. Math. Anal. Appl.* **194** (1995), 250–258.
Figure 2. Limit function in (51) for $n = 70$, (red color) left member and right member in blue. Data: $\beta = 7$, $c = 1/5$, $\lambda = 10^{-21}$ and $j = 2$.

Figure 3. Limit function in (51) for $n = 100$, (red color) left member and right member in blue. Data: $\beta = 7$, $c = 1/5$, $\lambda = 10^{-21}$ and $j = 2$.

[3] H. Bavinck. On polynomials orthogonal with respect to an inner product involving differences. *J. Comp. Appl. Math.* **57** (1995), 17–27.

[4] H. Bavinck. On polynomials orthogonal with respect to an inner product involving differences (the general case). *Appl. Anal.* **59** (1995), 233–240.

[5] H. Bavinck and H. V. Haeringen. Difference equations for generalized Meixner polynomials. *J. Math. Anal. Appl.* **184** (1994), 453–463.

[6] H. Bavinck and R. Koekoek. Difference operators with sobolev type meixner polynomials as eigenfunctions. *Computers Math. Appl.* **36**(12) (1998), 163–177.
[7] T. S. Chihara. *An Introduction to Orthogonal Polynomials*. Mathematics and its Applications Series, Gordon and Breach, New York, 1978.

[8] R. S. Costas and J. F. Sanchez-Lara. Extensions of discrete classical orthogonal polynomials beyond the orthogonality. *J. Comp. Appl. Math.* **225** (2009) 440–451.

[9] D. Dominici. Mehler–Heine type formulas for Charlier and Meixner polynomials. *Ramanujan J.*, **39**(2) (2016), 271–289.

[10] E. J. Huertas, F. Marcellán, M. F. Pérez-Valero, and Y. Quintana. Asymptotics for Laguerre–Sobolev type orthogonal polynomials modified within their oscillatory regime. *Appl. Math. Comput.* **236** (2014), 260–272.

[11] M. E. H. Ismail. *Classical and quantum orthogonal polynomials in one variable*. Encyclopedia of Mathematics and its Applications, vol. **98**, Cambridge University Press. Cambridge, 2005.

[12] S. F. Khwaja and A. B. Olde-Daalhui. Uniform asymptotic approximations for the Meixner–Sobolev polynomials. *Anal. Appl.* **10**(3) (2012), 345–361.

[13] F. Marcellán and A. Ronveaux. On a class of polynomials orthogonal with respect to a discrete Sobolev inner product. *Indag. Math. (N.S.)* **4** (1990), 451–464.

[14] F. Marcellán and Y. Xu. On Sobolev orthogonal polynomials. *Expo. Math.* **33**(3), (2015), 308–352.

[15] J. Meixner, Orthogonale polyemomssysteme mit einem besonderen Gestalt der erzeugenden funktion. *J. London Math. Soc.* **9** (1934), 6–13.

[16] J. Moreno-Balcázar. δ-Meixner-Sobolev orthogonal polynomials: Mehler–heine type formula and zeros. *J. Comput. Appl. Math.* **284** (2015), 228–234.

[17] R. Koekoek, P. A. Lesky, and R. F. Swarttouw. *Hypergeometric orthogonal polynomials and their q-analogues*. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2010. With a foreword by Tom H. Koornwinder.

[18] A. F. Nikiforov, V. B. Uvarov, and S. K. Suslov. *Classical orthogonal polynomials of a discrete variable*. Springer Series in Computational Physics, Springer Verlag, Berlin, 1991.

[19] D. Rainville. *Special functions*. The Macmillan Company, New York, 1960.