Research Article

Variable λ-Central Morrey Space Estimates for the Fractional Hardy Operators and Commutators

Amjad Hussain 1, Muhammad Asim, 1 and Fahd Jarad 2,3

1Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000, Pakistan
2Department of Mathematics, Çankaya University, 06790 Etimesgut, Ankara, Turkey
3Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan

Correspondence should be addressed to Fahd Jarad; fahd@cankaya.edu.tr

Received 28 October 2021; Accepted 1 April 2022; Published 9 May 2022

Academic Editor: Valerii Obukhovskii

Copyright © 2022 Amjad Hussain et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper aims to show that the fractional Hardy operator and its adjoint operator are bounded on central Morrey space with variable exponent. Similar results for their commutators are obtained when the symbol functions belong to λ-central bounded mean oscillation (λ-central BMO) space with variable exponent.

1. Introduction

The boundedness of operators on function spaces is one of the core issues in harmonic analysis [1–3]. It is mainly because many problems in the theory of partial differential equations, in their simplified form, are reduced to the boundedness of operators on function spaces. It stimulates the research community to embark on such problems in this field. In this paper, we mainly obtain the boundedness of fractional Hardy operators [4]:

$$H_\beta g(z) = \frac{1}{|z|^{n-\beta}} \int_{|t|<|z|} g(t) \, dt,$$

$$H_\beta^* g(z) = \int_{|t|>|z|} \frac{g(t)}{|t|^{n-\beta}} \, dt, \quad 0 \leq \beta < n, \quad z \in \mathbb{R}^n \setminus \{0\}, \quad (1)$$
on variable exponent central Morrey spaces. In addition, commutators of these operators

$$[b, H_\beta] g = bH_\beta g - H_\beta (bg),$$

$$[b, H_\beta^*] g = bH_\beta^* g - H_\beta^* (bg), \quad (2)$$

with symbol functions b in variable λ-central BMO spaces are shown bounded on central Morrey spaces with variable exponent. However, before stating our main results, we need to introduce the reader to some basic definitions and preliminary results regarding variable exponent function spaces.

Notably, the function spaces with variable exponents have considerable importance in Harmonic analysis as well. Back in 1931, Orlicz [5] started the theory of variable exponent Lebesgue space. Musielak Orlicz spaces were defined and studied in [6]. The study of Sobolev and Lebesgue spaces with variable exponents in [7–11] further stimulated the subject. In the meantime, λ-central Morrey space, central BMO space, and associated function spaces have attractive applications by exploring estimates for operators along with their commutators [12–20]. Mizuta et al. defined the variable exponent nonhomogeneous λ-central Morrey space in [21]. The central BMO space first appeared in [22]. Meanwhile, the authors in [23] gave the definition of variable exponent central Morrey and λ-central BMO space along with some important results regarding the estimation of some operators. Recently, some publications [24–26] discussing the continuity of multilinear integral operators on these function spaces have added substantially to the existing literature on this topic.

The one-dimensional Hardy operator was firstly defined by Hardy in [27] and is considered a classical operator in operator theory. Its mathematical form can be obtained from...
(1) by taking \(n = 1 \) and \(\beta = 0 \). Later on, different authors extended the definition of the one-dimensional Hardy operator to multidimensions in [28, 29]. As stated earlier, the fractional Hardy operator and its adjoint operator were introduced first in [4]. Following these publications, a flux of new results emerged discussing the boundedness of Hardy-type operators and their commutators on different function spaces [30–35]. The commutator operator also enjoyed a lot of attention from different zones of the globe [4,20,36–40]. However, the continuity of Hardy-type operators and their commutators on variable exponent function spaces took less attention by the research community worldwide [41–44]. The same is the case with central Morrey space with variable exponent. The present article aims to fill this gap by proving the boundedness of the fractional Hardy operator and its adjoint operator in this space. In addition, this article also introduces new results discussing the boundedness of commutators generated by \(H^\beta \) (or \(H^-\beta \)) and the \(\lambda \)-central BMO function \(b \) on the variable central Morrey space.

Let us describe the framework of this paper. In Section 2, we will remind some lemmas and propositions related to variable exponent function spaces. In Section 3 of this article, we will demonstrate the boundedness for Hardy operators and their commutators on central Morrey space with variable exponent. In Section 4, we shall investigate the similar estimates for the adjoint fractional Hardy operator and its commutators.

2. Function Spaces with Variable Exponents

In this section, we are going to introduce some notations and definitions related to the variable exponent function spaces. Throughout this article, we denote by \([B]\) and \(\chi_B \) the Lebesgue measure and characteristic function of a measurable set \(B \subset \mathbb{R}^n \), respectively. Also, \(B_j = B(0, 2^j) = \{ x \in \mathbb{R}^n : |x| \leq 2^j \} \) with \(A_j = \{ x \in \mathbb{R}^n : 2^{j-1} < |x| \leq 2^j \} \) and \(\chi_j = \chi_{A_j} \) for \(j \in \mathbb{Z} \). The notation \(g = f \) implies that there exist two positive constants \(C_1 \) and \(C_2 \) such that \(C_1 g \leq f \leq C_2 f \). Furthermore, if \(E \subset \mathbb{R}^n \) represents an open set and \(p(\cdot) \) is a measurable function, and \(p'(\cdot) \) denotes the conjugate exponent of \(p(\cdot) \) which satisfies

\[
\frac{1}{p(\cdot)} + \frac{1}{p'(\cdot)} = 1.
\]

The set \(P(E) \) consists of all \(p(\cdot) \) and \(p'(\cdot) \) such that

\[
1 < p(\cdot) = \essinf \{ p(x) : x \in E \} < p'(\cdot) = \esssup \{ p(x) : x \in E \} < \infty.
\]

The space \(L^{p(\cdot)} \) is a set of all measurable function \(f \) on the open set \(E \), in such a way that, for positive \(\eta \),

\[
\int_E \left(\frac{|f(x)|}{\eta} \right)^{p(x)} \, dx < \infty,
\]

which becomes a Banach function space when equipped with the Luxemburg-norm

\[
\|f\|_{L^{p(\cdot)}(E)} = \inf \{ \eta > 0 : \int_E \left(\frac{|f(x)|}{\eta} \right)^{p(x)} \, dx \leq 1 \}.
\]

Local version of variable exponent Lebesgue space is denoted by \(L^{p(\cdot)}_{loc} \) and is defined by

\[
L^{p(\cdot)}_{loc} = \left\{ f : f \in L^{p(\cdot)}(F) \forall \text{compact subset } F \subset E \right\}.
\]

We use \(\mathcal{B}(\mathbb{R}^n) \) to denote a set containing \(p(\cdot) \in P(\mathbb{R}^n) \) satisfying the condition that the Hardy-Littlewood maximal operator \(M \):

\[
Mf = \sup_{r>0} \frac{1}{|B_r|} \int_{B_r} |f(x)| \, dy,
\]

where \(B_r = \{ y \in \mathbb{R}^n : |x-y| < r \} \) is bounded on \(L^{p(\cdot)}(\mathbb{R}^n) \).

Proposition 1 (see [8,45]). Let \(E \) denote an open set and \(p(\cdot) \in P(E) \) fulfill the following inequalities:

\[
|p(x) - p(y)| \leq \frac{-C}{\log(|x-y|)} \left(\frac{1}{2} \right) \geq |x-y|, \quad (9)
\]

\[
|p(x) - p(y)| \leq \frac{C}{\log(|x| + \delta)} \left(|x| \leq |y| \right), \quad (10)
\]

then \(p(\cdot) \in \mathcal{B}(E) \), where \(\delta \) is a positive constant independent of \(x \) and \(y \).

Lemma 1 (see [7]) (generalized Hölder inequality). Let \(p(\cdot), p_1(\cdot), p_2(\cdot) \in P(E) \).

(a) If \(g \in L^{p(\cdot)}(E) \) and \(f \in L^{p'(\cdot)}(E) \), then we have

\[
\int_E |g(x)f(x)| \leq r_p \|g\|_{L^{p(\cdot)}(E)} \|f\|_{L^{p'(\cdot)}(E)},
\]

where \(r_p = 1 + 1/p_p - 1/p \).

(b) If \(g \in L^{p(\cdot)}(E) \), \(f \in L^{p(\cdot)}(E) \), and \(1/p(\cdot) = 1/p_1(\cdot) + 1/p_2(\cdot) \), then we have

\[
\|gf\|_{L^{p(\cdot)}(E)} \leq r_{p,p_1} \|g\|_{L^{p(\cdot)}(E)} \|f\|_{L^{p(\cdot)}(E)},
\]

where \(r_{p,p_1} = 1 + 1/(p_1)_+ - 1/(p_1)_-^{1/p_1} \).

Lemma 2 (see [46]). If \(p(\cdot) \in \mathcal{B}(\mathbb{R}^n) \), then there exist constants \(0 < \delta < 1 \) and a positive constant \(C \) such that for all balls \(B \) in \(\mathbb{R}^n \) and all measurable subsets \(S \subset B \),

\[
\|\chi_S\|_{L^{p(\cdot)}(\mathbb{R}^n)} \leq C \frac{|B|}{|S|}.
\]

Remark 1. Let \(p(\cdot) \in P(\mathbb{R}^n) \) and meet conditions (9) and (10) in Proposition 1, then so does \(p'(\cdot) \). This implies that
where, we have constants \(\delta_1 \in (0,1/(\mathbf{2}_1)) \) and \(\delta_2 \in (0,1/(\mathbf{2}_2)) \) such that
\[
\| \mathbf{x}_n \|_{L^{p_1}(\mathbb{R}^n)} \leq C \left(| \mathbf{S}_n | \right)^{\delta_1} \left(| \mathbf{B} | \right)^{\delta_2},
\]
and \(\| \mathbf{x}_n \|_{L^{p_1}(\mathbb{R}^n)} \leq C \left(| \mathbf{S}_n | \right)^{\delta_2} \left(| \mathbf{B} | \right)^{\delta_1},
\]
for all balls \(\mathbf{B} \subset \mathbb{R}^n \) and for \(S \subset B \).

Lemma 3 (see [46]). Assuming that \(p(\cdot) \in \mathfrak{B}(\mathbb{R}^n) \), for all balls \(\mathbf{B} \subset \mathbb{R}^n \) and for a positive constant \(C \), the following inequality holds:
\[
C^{-1} \leq \frac{1}{|B|} \| x_n \|_{L^{p_1}(\mathbb{R}^n)} \| x_n \|_{L^{p_1}(\mathbb{R}^n)} \leq C.
\]

Definition 1 (see [47]). Let \(f \in L^1_{\text{loc}}(\mathbb{R}^n) \), set
\[
\| b \|_{BMO(\mathbb{R}^n)} = \sup_{B \subset \text{Ball}} \frac{1}{|B|} \int_B \left| b(x) - b_B \right| \, dx,
\]
where supremum is taken all over the ball \(B \subset \mathbb{R}^n \) and \(b_B = |B|^{-1} \int_B b(y) \, dy \). The function \(b \) is known as bounded mean oscillation if \(\| b \|_{BMO(\mathbb{R}^n)} < \infty \) and \(BMO(\mathbb{R}^n) \) consist of all \(f \in L^1_{\text{loc}}(\mathbb{R}^n) \) with \(BMO(\mathbb{R}^n) < \infty \).

Lemma 4 (see [48]). Let \(\mathbf{p}(\cdot) \in P(\mathbb{R}^n) \), then for all \(b \in BMO(\mathbb{R}^n) \) and all \(i, l \in \mathbb{Z} \) with \(l > i \), we have
\[
C^{-1} \| b \|_{BMO(\mathbb{R}^n)} \leq \frac{1}{|B|} \| x_n \|_{L^{p_1}(\mathbb{R}^n)} \| (b - b_B) x_n \|_{L^{p_1}(\mathbb{R}^n)} \leq C \| b \|_{BMO(\mathbb{R}^n)},
\]
\[
\| b - b_B \|_{L^{p_1}(\mathbb{R}^n)} \leq C (|l - i|) \| b \|_{BMO(\mathbb{R}^n)} \| x_n \|_{L^{p_1}(\mathbb{R}^n)}.
\]

Definition 2 (see [23]). Let \(\mathbf{p}(\cdot) \in P(\mathbb{R}^n) \) and \(\lambda \in \mathbb{R} \). Then, the variable exponent central Morrey space \(B^{p(\cdot),\lambda}(\mathbb{R}^n) \) is defined as
\[
B^{p(\cdot),\lambda}(\mathbb{R}^n) = \left\{ f \in L^1_{\text{loc}}(\mathbb{R}^n) : \| f \|_{B^{p(\cdot),\lambda}(\mathbb{R}^n)} < \infty \right\},
\]
where
\[
\| f \|_{B^{p(\cdot),\lambda}(\mathbb{R}^n)} = \sup_{R>0} \frac{\| f \|_{L^{p(\cdot)}(B(0,R))}}{|B(0,R)|^{\lambda/p(\cdot)}}.
\]

Definition 3 (see [23]). Let \(p(\cdot) \in P(\mathbb{R}^n) \) and \(\lambda < 1/n \). Then, the variable exponent \(\lambda \)-central BMO space \(CBMO^{p(\cdot),\lambda}(\mathbb{R}^n) \) is defined as
\[
CBMO^{p(\cdot),\lambda}(\mathbb{R}^n) = \left\{ f \in L^1_{\text{loc}}(\mathbb{R}^n) : \| f \|_{CBMO^{p(\cdot),\lambda}(\mathbb{R}^n)} < \infty \right\},
\]
where
\[
\| f \|_{CBMO^{p(\cdot),\lambda}(\mathbb{R}^n)} = \sup_{R>0} \frac{\| f \|_{L^{p(\cdot)}(B(0,R))}}{|B(0,R)|^{\lambda/p(\cdot)}}
\]

While proving our main results, we control the boundedness of the fractional Hardy operator using the boundedness of the fractional integral operator \(I_\beta \):
\[
I_\beta(x) = \int_{\mathbb{R}^n} \frac{g(t)}{|t|^\beta} \, dt,
\]
on variable Lebesgue space. In this regard, we need the following proposition.

Proposition 2 (see [49]). Let \(p_1(\cdot) \in P(\mathbb{R}^n), 0<\beta < n/p_1(\cdot) \) and define \(p_2(\cdot) \) by
\[
\frac{1}{p_2(\cdot)} = \frac{1}{p_1(\cdot)} - \frac{\beta}{n}
\]

Then,
\[
\| I_\beta f \|_{L^{p_2}(\mathbb{R}^n)} \leq C \| f \|_{L^{p_1}(\mathbb{R}^n)}
\]

Proposition 2 is useful in establishing the following Lemma (see [50]).

Lemma 5. Suppose \(\beta, p_1(\cdot), p_2(\cdot) \) be as defined in Proposition 2, then
\[
\| x_n \|_{L^{p_2}(\mathbb{R}^n)} \leq C 2^{-2\beta} \| x_n \|_{L^{p_1}(\mathbb{R}^n)}
\]
for all balls \(B_j = \{ x \in \mathbb{R}^n : |x| \leq 2^j \} \) with \(j \in \mathbb{Z} \).

3. Fractional Hardy Operator and Commutator

In this section, we present theorems on the boundedness of the fractional Hardy operator and commutators on central Morrey space with their proofs.

Theorem 1. Let \(p_1(\cdot) \in P(\mathbb{R}^n) \) and satisfy conditions (9) and (10) in Proposition 1. Define the variable exponent \(p_2(\cdot) \) by
\[
\frac{1}{p_2(x)} = \frac{1}{p_1(x)} - \frac{\beta}{n}
\]

If \(\lambda_2 = \lambda_1 + \beta/n \) and \(\lambda_3 > (\delta_1 + \delta_2), \) where \(\delta_1 \) and \(\delta_2 \) are the same constants as appeared in inequalities (14) and (15), then
\[
\| H_{p_2} f \|_{B^{p_2(\cdot),\lambda_2}(\mathbb{R}^n)} \leq C \| f \|_{B^{p_1(\cdot),\lambda_1}(\mathbb{R}^n)}
\]
Proof. By definition of the fractional Hardy operator and Lemma 1, it is easy to see that
\[
\left| H_\beta f(x) \chi_k(x) \right| \leq \frac{1}{|x|^{n-\beta}} \int_{B_k} |f(t)| dt \chi_k(x)
\]
and
\[
\leq C 2^{-k(n-\beta)} \sum_{j=0}^{k} \left\| f \right\|_{L^{p_1}(\mathbb{R}^n)}
\]
Finally, inequality (14) helps us to have
\[
\left\| f \right\|_{L^{p_1}(\mathbb{R}^n)} \leq 2^{\alpha_1 \beta / p_1} \left\| f \right\|_{L^{p_1}(\mathbb{R}^n)}
\]
Taking the $L^{p_1}(\mathbb{R}^n)$ norm on both sides, we have
\[
\left\| H_\beta f \chi_k \right\|_{L^{p_2}(\mathbb{R}^n)} \leq C 2^{\delta_1} \sum_{j=0}^{k} \left\| f \right\|_{L^{p_1}(\mathbb{R}^n)} \left\| f \right\|_{L^{p_1}(\mathbb{R}^n)}
\]
In view of the condition $1/p_1 = 1/p_2 - \beta/n$ and Lemma 5, the last inequality reduces to the following inequality:
\[
\left\| H_\beta f \chi_k \right\|_{L^{p_2}(\mathbb{R}^n)} \leq C \left\| f \right\|_{L^{p_1}(\mathbb{R}^n)} \sum_{j=0}^{k} 2^{\delta_1 (j-k)} \left\| f \right\|_{L^{p_1}(\mathbb{R}^n)}
\]
Since
\[
\left\| f \right\|_{L^{p_1}(\mathbb{R}^n)} \approx |B|^{1/p_1} \approx |B|^{1/p_2 + \beta/n} \approx |B|^\delta_{\beta/n} \left\| f \right\|_{L^{p_2}(\mathbb{R}^n)}
\]
therefore, from the inequality (32), we infer that
\[
\left\| H_\beta f \chi_k \right\|_{L^{p_2}(\mathbb{R}^n)} \leq C \left\| f \right\|_{L^{p_1}(\mathbb{R}^n)} \sum_{j=0}^{k} 2^{\delta_1 (j-k)} \left\| f \right\|_{L^{p_1}(\mathbb{R}^n)}
\]
Finally, inequality (14) helps us to have
\[
\left\| H_\beta f \right\|_{\mathcal{B}^{p_1}(\mathbb{R}^n)} \leq C \left\| f \right\|_{\mathcal{B}^{p_1}(\mathbb{R}^n)} \sum_{j=0}^{k} 2^{\delta_1 (j-k)} \left(\delta_1 + \beta/n \right).
\]
Since $\delta_1 + \beta/n > 0$, so we get
\[
\left\| H_\beta f \right\|_{\mathcal{B}^{p_1}(\mathbb{R}^n)} \leq C \left\| f \right\|_{\mathcal{B}^{p_1}(\mathbb{R}^n)} \sum_{j=0}^{k} 2^{\delta_1 (j-k)} \left(\delta_1 + \beta/n \right).
\]

Theorem 2. Let $0 < \beta < n$ and let $p(\cdot), q(\cdot), r(\cdot) \in P(\mathbb{R}^n)$ and satisfying conditions (9) and (10) in Proposition 1 with $p(\cdot) < n/\beta, p'(\cdot) < r(\cdot)$ and
\[
\frac{1}{q(\cdot)} = \frac{1}{p(\cdot)} + \frac{1}{r(\cdot)} - \frac{\beta}{n}
\]

(37)

Let \(0 < \nu < 1/n\) and \(-1/ q_+ < \mu\). If \(\mu = \nu + \lambda + \beta/n\), with \(\max\{-(\nu + 1), -\delta_1 + \delta_3 + \beta/n\} < \lambda\), where \(\delta_1, \delta_3\) are the same constants as appeared in inequalities (14) and (15), and \(b \in \|b\|_{CBMO^{\nu}(\mathbb{R})}\), then

\[
\left\| [b, H_\beta] f \right\|_{B^{(\nu)}(\mathbb{R})} \leq C \|b\|_{CBMO^{\nu}(\mathbb{R})} \|f\|_{B^{(\nu)}(\mathbb{R})},
\]

(38)

Proof. We decompose the integral appearing in the commutator operator as

Let us first estimate \(A_1\). By taking the variable Lebesgue space norm on both sides, we get

\[
\left\| A_1 \right\|_{L^{n/(\nu)}(\mathbb{R}^n)} = \left\| (b(\cdot) - b_B) H_\beta^r f(\cdot) \chi_B(\cdot) \right\|_{L^{n/(\nu)}(\mathbb{R}^n)}.
\]

(40)

Taking into consideration the condition \(1/q(\cdot) = 1/s(\cdot) + 1/r(\cdot), (1/s(\cdot) = 1/p(\cdot) - \beta/n)\), the generalized Hölder inequality gives us the following estimation of \(A_1\):

\[
\left\| A_1 \right\|_{L^{n/(\nu)}(\mathbb{R}^n)} \leq \left\| (b(\cdot) - b_B) \right\|_{L^{n/(\nu)}(\mathbb{R}^n)} \left\| (H_\beta f(\cdot) \chi_B(\cdot)) \right\|_{L^{n/(\nu)}(\mathbb{R}^n)}
\]

\[
= C \|b\|_{CBMO^{\nu}(\mathbb{R})} \|B^{n/(\nu)}\| \|f\|_{L^{n/(\nu)}(\mathbb{R}^n)}\|\chi_B\|_{L^{n/(\nu)}(\mathbb{R}^n)}
\]

(41)

where \(\sigma = \lambda + \beta/n\). Using the result of Theorem 1, we obtain

\[
A_1 = \sum_{k=0}^{\infty} \left| \int_{|y| < 2^{k+1}B} (b(y) - b_B) f(y) dy \right| \chi_{2^{k+1}B, 2^{k+1}B}(x)
\]

\[
\leq \sum_{k=0}^{\infty} \left| \int_{|y| < 2^{k+1}B} (b(y) - b_{2^{k+1}B}) f(y) dy \right| \chi_{2^{k+1}B, 2^{k+1}B}(x)
\]

\[+ \sum_{k=0}^{\infty} \left| \int_{|y| < 2^{k+1}B} (b_B - b_{2^{k+1}B}) f(y) dy \right| \chi_{2^{k+1}B, 2^{k+1}B}(x)
\]

(46)

\[
= A_{21} + A_{22},
\]
where
\[
A_{21} = \sum_{k=\infty}^{0} 2^k B^{\beta n - 1} \sum_{j=\infty}^{k} \int_{2^j B - 2^{j+1} B} |(b(y) - b_{2^j B}) f(y)| dy \cdot \chi_{2^j B - 2^{j+1} B}(x).
\] (47)

We define a new variable \(t(\cdot)\) such that \(1/t(\cdot) = 1/p'/(\cdot) - 1/r/(\cdot)\), then by the generalized Hölder inequality, we have
\[
A_{21} \leq C \sum_{k=\infty}^{0} 2^k B^{\beta n - 1} X_{2^j B - 2^{j+1} B}(x) \sum_{j=\infty}^{k} \| (b(y) - b_{2^j B}) X_{2^j B} \|_{L^{t'}} \| f X_{2^j B} \|_{L^p} \| X_{2^j B} \|_{L^{r'}}
\]
\[
= C \sum_{k=\infty}^{0} 2^k B^{\beta n - 1} X_{2^j B - 2^{j+1} B}(x) \sum_{j=\infty}^{k} \| b \|_{CBMO^{(\cdot)}} L^{t'} \| f \|_{L^p(\cdot)} \sum_{j=\infty}^{k} 2^j B \| X_{2^j B} \|_{L^{r'}}
\]
\[
= C \sum_{k=\infty}^{0} 2^k B^{\beta n - 1} X_{2^j B - 2^{j+1} B}(x) \| b \|_{CBMO^{(\cdot)}} \sum_{j=\infty}^{k} 2^j B \| X_{2^j B} \|_{L^{r'}}.
\] (48)

With the Lebesgue space with variable exponent norm on both sides, the above inequality takes the following form:

\[
\| A_{21} \|_{L^{t'}(\cdot)} \leq C \| b \|_{CBMO^{(\cdot)}} \| f \|_{L^p(\cdot)} \sum_{k=\infty}^{0} 2^k B^{\beta n - 1} \| X_{2^j B} \|_{L^{t'}(\cdot)}
\]
\[
= C \| b \|_{CBMO^{(\cdot)}} \| f \|_{L^p(\cdot)} \| B \|^{1/q(\cdot)} \| B \|^{\mu/q(\cdot)} \sum_{k=\infty}^{0} 2^{k(\mu + 1/q(\cdot))}
\]
\[
= C \| b \|_{CBMO^{(\cdot)}} \| f \|_{L^p(\cdot)} \| X_{2^j B} \|_{L^{r'}(\cdot)} \| B \|^{\mu/q(\cdot)} \sum_{k=\infty}^{0} 2^{k(\mu + 1/q(\cdot))}.
\] (49)

Hence,
\[
\| A_{21} \|_{L^{t'}(\cdot)} \leq C \| b \|_{CBMO^{(\cdot)}} \| f \|_{L^p(\cdot)} \| X_{2^j B} \|_{L^{r'}(\cdot)} \| B \|^{\mu/q(\cdot)}.
\] (50)

Finally, consider
\[
A_{22} = \sum_{k=\infty}^{0} 2^k B^{\beta n - 1} \sum_{j=\infty}^{k} \int_{2^j B - 2^{j+1} B} |(b(y) - b_{2^j B}) f(y)| dy \cdot \chi_{2^j B - 2^{j+1} B}(x).
\] (51)

The factor \((b_B - b_{2^j B})\) in the above inequality needs to be dealt with first. So,
\(|b_B - b_{2:B}| \leq C \sum_{i=j}^{n} \frac{1}{2^i B} \| (b - b_{2i+1}^{+}) X_{2i+1}^B \|_{L^p} |2^{i+1} B| \)

\[\leq C \sum_{i=j}^{n} \| b \|_{CBMOR^{(\lambda)}} |2^{i+1} B|^\gamma \]

\[\leq C \| b \|_{CBMOR^{(\lambda)}} \sum_{i=j}^{n} |2^{i+1} B|^\gamma \]

\[\leq C \| b \|_{CBMOR^{(\lambda)}} |2^{j+1} B|^\gamma |j|. \]

In turn, \(A_{22} \) satisfies the below inequality:

\[A_{22} \leq C \sum_{n=-\infty}^{0} X_{2^n B - 2^{n+1}}^B(x) \| 2^k B \|_{CBMOR^{(\lambda)}}^\beta n \gamma + 1 \] \[\leq C \| b \|_{CBMOR^{(\lambda)}} \sum_{n=-\infty}^{0} X_{2^n B - 2^{n+1}}^B(x) \| 2^k B \|_{\mathcal{B}(\mathbb{R}^n)} |2^k B|^\gamma |j| \]

\[\leq C \| b \|_{CBMOR^{(\lambda)}} \| f \|_{\mathcal{B}^{(\lambda)}} \sum_{n=-\infty}^{0} X_{2^n B - 2^{n+1}}^B(x) \| 2^k B \|_{\mathcal{B}(\mathbb{R}^n)} |2^k B|^\gamma |j| \]

Ultimately, our last step would be applying the norm on both sides to get

\[\| A_{22} \|_{L^p} \leq C \| b \|_{CBMOR^{(\lambda)}} \| f \|_{L^p} \sum_{k=\infty}^{0} |k| \| 2^k B \|_{\mathcal{B}(\mathbb{R}^n)} |X_{2^n B}^B|_{L^p} \]

\[\leq C \| b \|_{CBMOR^{(\lambda)}} \| f \|_{L^p} \sum_{k=\infty}^{0} |k| \| 2^k B \|_{\mathcal{B}(\mathbb{R}^n)} |2^k B|^\gamma \]

\[\leq C \| b \|_{CBMOR^{(\lambda)}} \| f \|_{L^p} \sum_{k=\infty}^{0} |k| \| 2^k \|_{\mathcal{B}^{(\lambda)}} |2^k B|^\gamma \| X_{2^n B}^B \|_{L^p} \]

\[\leq C \| b \|_{CBMOR^{(\lambda)}} \| f \|_{L^p} \sum_{k=\infty}^{0} |k| \| 2^k \|_{\mathcal{B}^{(\lambda)}} \| B \|_{\mathcal{B}(\mathbb{R}^n)} |X_{2^n B}^B|_{L^p} \]

\[\leq C \| b \|_{CBMOR^{(\lambda)}} \| f \|_{L^p} \sum_{k=\infty}^{0} |k| \| 2^k \|_{\mathcal{B}^{(\lambda)}} \| B \|_{\mathcal{B}(\mathbb{R}^n)} \| X_{2^n B}^B \|_{L^p} \]

(55)

4. Adjoint Fractional Hardy Operator and Commutator

In this last section, we first establish the boundedness of adjoint fractional Hardy operator and then use it to prove the boundedness of commutator generated by this operator and \(\lambda \)-central BMO function \(b \). The first result is as follows.

Theorem 3. Let \(p_1(\cdot) \in \mathcal{P}(\mathbb{R}^n) \) and satisfying conditions (9) and (10) in Proposition 1, define the variable exponent \(p_2(\cdot) \) by

\[\frac{1}{p_2(x)} = \frac{1}{p_1(x)} - \frac{\beta}{n}, \]

(57)

If \(\lambda_2 = \lambda_1 + \beta/n \) and \(\lambda_1 < (\delta_2 - 1) - \beta/n \), where \(\delta_2 \) is the same constant as appeared in inequality (15), then

\[\| H^\ast \|_{L^p(\mathbb{R}^n)} \leq C \| f \|_{L^p}, \]

(58)

Proof. Since
\[H^*_\beta f(x)\chi_k(x) \leq \int_{R^n} |f(t)|t^{\beta-n}dt\chi_k(x) \]
\[\leq C \sum_{j=k+1}^{\infty} 2^{j(\beta-n)} \|f\|_{L^p((R^n)\chi_k(x), (R^n)\chi_k(x))} \]
from which we infer that
\[\|H^*_\beta f(x)\chi_k\|_{L^p((R^n)\chi_k(x), (R^n)\chi_k(x))} \leq C \sum_{j=k+1}^{\infty} 2^{j(\beta-n)} \]
\[\cdot \|f\|_{L^p((R^n)\chi_k(x), (R^n)\chi_k(x))} \|\chi_k\|_{L^p((R^n)\chi_k(x), (R^n)\chi_k(x))} \]
\[\|H^*_\beta f(x)\chi_k\|_{L^p((R^n)\chi_k(x), (R^n)\chi_k(x))} \leq C \sum_{j=k+1}^{\infty} 2^{j(\beta-n)} \]
\[\leq C \sum_{j=k+1}^{\infty} 2^{(j-k)} \|f\|_{L^p((R^n)\chi_k(x), (R^n)\chi_k(x))} \|\chi_k\|_{L^p((R^n)\chi_k(x), (R^n)\chi_k(x))} \]
\[\|H^*_\beta f(x)\chi_k\|_{L^p((R^n)\chi_k(x), (R^n)\chi_k(x))} \leq C \sum_{j=k+1}^{\infty} 2^{(j-k)} \|f\|_{L^p((R^n)\chi_k(x), (R^n)\chi_k(x))} \|\chi_k\|_{L^p((R^n)\chi_k(x), (R^n)\chi_k(x))} \]
Let 0 < \nu < 1/n and -1/q_\nu < \mu < 0. If \mu = \nu + \lambda + \beta/n, with \lambda < min\{\delta_2 - 1 - \beta/n, -(\nu + \beta/n)\}, where \delta_2 is the same constant as appeared in inequality (14) and \(b \in [l]_{CMBMO(\nu)} \), then
\[\|b, H^*_\beta f\|_{BM(\nu)} \leq C\|b\|_{CMBMO(\nu)} \|f\|_{BM(\nu)}. \]

Proof. As in the previous section, we start from decomposing the integral:
\[\|b, H^*_\beta f\|_{BM(\nu)} \leq \int_{R^n} \frac{|b(x) - b(y)|f(x)}{|y|^\nu} dy \cdot \chi_B(x) \]
\[\leq \int_{R^n} \frac{|b(y) - b(y)|f(x)}{|y|^\nu} dy \cdot \chi_B(x) \]
\[+ \int_{R^n} \frac{|b(x) - b(y)|f(x)}{|y|^\nu} dy \cdot \chi_B(x) \]
\[= D_1 + D_2. \]
where \(\sigma = \lambda + \beta/n. \) Now, the result (43) and Theorem 3 help us to write

\[
\|D_1\|_{L^q(B^n)} \leq C \|b\|_{CBMO^{(\epsilon)}(B^n)} \|f\|_{L^p(B^n)} \|X_{2B^n}^1\|_{L^p(B^n)},
\]

(69)

Next, comparing \(D_2 \) with \(A_2 \) of Theorem 2, we arrive at

\[
D_2 \leq \sum_{k=-\infty}^{0} X^{2B_{2^{-1}B^n}}_k(x) \sum_{j=k+1}^{\infty} \left| 2^j B^{\beta(n-1)} \int_{2B_{2^{-1}B^n}} \right| (b(y) - b_{2B^n}) f(y) \, dy \right| \, dy + \sum_{k=-\infty}^{0} X^{2B_{2^{-1}B^n}}_k(x) \sum_{j=k+1}^{\infty} \left| 2^j B^{\beta(n-1)} \int_{2B_{2^{-1}B^n}} \right| (b(y) - b_{2B^n}) f(y) \, dy \right| \, dy
\]

(70)

\[
= D_{21} + D_{22}.
\]

and for the approximation of \(D_{21} \), we follow a procedure similar to the one followed in the estimation of \(A_{21} \). Hence, we get

\[
D_{21} \leq C \sum_{k=-\infty}^{0} X^{2B_{2^{-1}B^n}}_k(x) \sum_{j=k+1}^{\infty} \left| 2^j B^{\beta(n-1)} \|b\|_{CBMO^{(\epsilon)}(B^n)} \|X_{2B^n}^1\|_{L^p(B^n)} \|f\|_{L^p(B^n)} \|X_{2B^n}^1\|_{L^p(B^n)} \right|
\]

(71)

Eventually, it is easy to see that

\[
\|D_{21}\|_{L^q(B^n)} \leq C \|b\|_{CBMO^{(\epsilon)}(B^n)} \|f\|_{L^p(B^n)} \sum_{k=-\infty}^{0} \left| 2^{(k+1)} B^p \|X_{2B^n}^1\|_{L^p(B^n)} \right|
\]

(72)
Next, by virtue of inequality (53), D_{22} satisfies

$$D_{22} \leq C \sum_{k=0}^{0} \chi_{2^k B} \cdot \sum_{j-k+1}^{j} \left| 2^j B \right|^{\beta/n - 1} \left| j \int \left(|2^j B|^{1/n} \| f \|_{CBMO^{\lambda} b} \right) \right| \left(\| X_{2^j B} \|_{L^p(b)} \right) \left(\| X_{2^j B} \|_{L^q(b)} \right)$$

$$\leq C \| b \|_{CBMO^{\lambda} b} \sum_{k=0}^{0} \chi_{2^k B} \cdot \sum_{j-k+1}^{j} \left| 2^j B \right|^{\beta/n - 1} \left| j \int \left(|2^j B|^{1/n} \| f \|_{CBMO^{\lambda} b} \right) \right| \left(\| X_{2^j B} \|_{L^p(b)} \right) \left(\| X_{2^j B} \|_{L^q(b)} \right)$$

$$\leq C \| b \|_{CBMO^{\lambda} b} \sum_{k=0}^{0} \chi_{2^k B} \cdot \sum_{j-k+1}^{j} \left| 2^j B \right|^{\beta/n - 1} \left| j \int \left(|2^j B|^{1/n} \| f \|_{CBMO^{\lambda} b} \right) \right| \left(\| X_{2^j B} \|_{L^p(b)} \right) \left(\| X_{2^j B} \|_{L^q(b)} \right)$$

(73)

To finish the estimation, we take norm on both sides of the above inequality to obtain

$$\| D_{22} \| \leq C \| b \|_{CBMO^{\lambda} b} \| f \|_{CBMO^{\lambda} b} \sum_{k=0}^{0} \left| k+1 \right| \left| 2^{k+1} B \right|^{\mu} \left(\| X_{2^k B} \|_{L^p(b)} \right) \left(\| X_{2^k B} \|_{L^q(b)} \right)$$

$$\leq C \| b \|_{CBMO^{\lambda} b} \| f \|_{CBMO^{\lambda} b} \sum_{k=0}^{0} \left| k+1 \right| \left| 2^{k+1} B \right|^{\mu} \left(\| X_{2^k B} \|_{L^p(b)} \right) \left(\| X_{2^k B} \|_{L^q(b)} \right)$$

(74)

In the end, combining all the estimates of D_1, D_2, D_{21}, D_{22}, we arrive at the following conclusive inequality:

$$\left\| \left[b, H^\ast_f \right] f \chi_b \right\|_{L^p(b) L^q(b)} \leq C \| b \|_{CBMO^{\lambda} b} \| f \|_{CBMO^{\lambda} b} \| B \|^{\mu} \left\| \chi_b \right\|_{L^p(b) L^q(b)}$$

(75)

which is as desired.

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This research was supported by the Higher Education Commission (HEC) of Pakistan through the National Research Program for Universities (NRPU), Project No. 7098/ Federal/NRPU/R&D/HEC/2017, and the Quaid-I-Azam University Research Fund URF FY 2018-2019.

References

[1] A. Meskhi, "Essential norm estimates for multilinear singular and fractional integrals," *Commentationes Mathematicae*, vol. 59, pp. 81–93, 2019.

[2] K.-P. Ho, "Fractional geometrical maximal functions on Morrey spaces with variable exponents," *Results in Mathematics*, vol. 77, no. 1, p. 32, 2022.

[3] M. Sarikaya and H. Budak, "Weighted generalization of some inequalities for double integrals," *Publications de l’Institut Mathématique (Belgrade)*, vol. 110, no. 124, pp. 71–79, 2021.

[4] Z.-w. Fu, Z.-g. Liu, S.-z. Lu, and H.-b. Wang, "Characterization for commutators of n-dimensional fractional Hardy operators," *Science in China, Series A: Mathematics*, vol. 50, no. 10, pp. 1418–1426, 2007.

[5] W. Orlicz, "Über konjugierte Exponentenfolgen," *Studia Mathematica*, vol. 3, no. 1, pp. 200–211, 1931.

[6] N. Nakano, *Modulared Semi-ordered Linear Spaces*, Maruzen Co, Ltd, Tokyo, Japan, 1951.

[7] O. Kováčik and J. Rákosník, "On spaces $L^{p(x)}$ and $W^{k,p(x)}$", *Czechoslovak Mathematical Journal*, vol. 41, pp. 592–618, 1991.

[8] D. Cruz-Uribe, A. Fiorenza, and A. Neugebauer, "The maximal function on variable L^p spaces," *Annales Academiae Scientiarum Fennicae, Mathematica*, vol. 28, pp. 223–238, 2003.

[9] D. Cruz-Uribe, A. Fiorenza, J. M. Martell, and C. Pérez, "The boundedness of classical operators on variable L^p spaces," *Annales Academiae Scientiarum Fennicae, Mathematica*, vol. 31, pp. 239–266, 2006.

[10] L. Diening, P. Harjulehto, P. Hästö, and M. Různ{í}ka, *Lebesgue and Sobolev Spaces with Variable Exponent*, Springer, Heidelberg, Germany, Lecture Notes Math. 2017, 2011.

[11] D. Cruz-Uribe and A. Fiorenza, *Variable Lebesgue Spaces: Foundations and Harmonic Analysis*, Springer, Heidelberg, Germany, 2013.

[12] J. Alvarez, J. Lakey, and M. G. Partida, "Spaces of bounded λ-central mean oscillation, Morrey spaces, and λ-central Carleson measures," *Collectanea Mathematica*, vol. 51, pp. 1–47, 2000.

[13] Z. W. Fu, Y. Lin, and S. Z. Lu, "λ-central BMO estimates for commutators of singular integral operators with rough kernels," *Acta Mathematica Sinica, English Series*, vol. 24, no. 3, pp. 373–386, 2008.

[14] A. Hussain and G.-I. Gao, "Some new estimates for the commutators of n-dimensional Hausdorff operator," *Applied Mathematics-A Journal of Chinese Universities*, vol. 29, no. 2, pp. 139–150, 2014.

[15] N. Sarfraz and A. Hussain, "Estimates for the commutators of p-adic Hausdorff operator on herz-morrey spaces," *Mathematics*, vol. 7, no. 2, p. 127, 2019.

[16] A. Ajai and A. Hussain, "Weighted CBMO estimates for commutators of matrix Hausdorff operator on the Heisenberg group," *Open Mathematics*, vol. 18, no. 1, pp. 496–511, 2020.

[17] S. Shi and S. Lu, "Characterization of the central Campanato space via the commutator operator of Hardy type," *Journal of Mathematical Analysis and Applications*, vol. 429, no. 2, pp. 713–732, 2015.

[18] A. Hussain and A. Ajai, "Some weighted inequalities for Hausdorff operators and commutators," *Journal of Inequalities and Applications*, vol. 2018, no. 1, p. 6, 2018.

[19] Z. Y. Si, "λ-Central BMO estimates for multilinear commutators of fractional integrals," *Acta Mathematica Sinica, English Series*, vol. 26, no. 11, pp. 2093–2108, 2010.

[20] Z. Fu, "λ-central BMO estimates for commutators of n-dimensional Hardy operators," *Journal of Inequalities in Pure and Applied Mathematics*, vol. 9, p. 111, 2008.

[21] Y. Mizuta, T. Ohno, and T. Shimomura, "Boundedness of maximal operators and Sobolev's theorem for non-homogeneous central Morrey spaces of variable exponent," *Hokkaido Mathematical Journal*, vol. 44, pp. 185–201, 2015.

[22] D. Wang, Z. Liu, J. Zhou, and Z. Teng, "Central BMO spaces with variable exponent," 2017, http://arxiv.org/abs/1708.00285.

[23] Z. Fu, S. Lu, H. Wang, and L. Wang, "Singular integral operators with rough kernels on central Morrey spaces with variable exponent," *Annales Academiae Scientiarum Fennicae Mathematica*, vol. 44, no. 1, pp. 505–522, 2019.

[24] H. Wang and J. Xu, "Multilinear fractional integral operators on central Morrey spaces with variable exponent," *Journal of Inequalities and Applications*, vol. 2019, no. 1, p. 311, 2019.

[25] H. Wang, J. Xu, and J. Tan, "Boundedness of multilinear singular integrals on central Morrey spaces with variable exponents," *Frontiers of Mathematics in China*, vol. 15, no. 5, pp. 1011–1034, 2020.

[26] L. Wang, "Multilinear Calderón-Zygmund operators and their commutators on central morrey spaces with variable exponent," *Bulletin of the Korean Mathematical Society*, vol. 57, pp. 1427–1449, 2020.

[27] G. H. Hardy, "Note on a theorem of Hilbert," *Mathematische Zeitschrift*, vol. 6, no. 3–4, pp. 314–317, 1920.

[28] W. G. Faris, "Weak Lebesgue spaces and quantum mechanical binding," *Duke Mathematical Journal*, vol. 43, pp. 365–373, 1976.

[29] M. Christ and L. Grafakos, "Best constants for two non-convolution inequalities," *Proceedings of the American Mathematical Society*, vol. 123, no. 6, pp. 1687–1693, 1995.

[30] G. A. Bliss, "An integral inequality," *Journal of the London Mathematical Society*, vol. s1–5, no. 1, pp. 40–46, 1930.

[31] Z. Fu, L. Grafakos, S. Lu, and F. Zhao, "Sharp bounds for m-linear Hardy and Hilbert operators," *Houston Journal of Mathematics*, vol. 38, no. 1, pp. 225–244, 2012.

[32] E. Persson and S. Samko, "A note on the best constants in some Hardy inequalities," *Journal of Mathematical Inequalities*, vol. 9, no. 2, pp. 437–447, 2015.

[33] A. Hussain and N. Sarfraz, "Optimal weak type estimates for p-adic Hardy operator," *P-Adic Numbers Ultrametric Analysis and Applications*, vol. 12, pp. 12–21, 2020.

[34] Y. Mizuta, A. Nekvinda, and T. Shimomura, "Optimal estimates for the fractional Hardy operator," *Studia Mathematica*, vol. 227, no. 1, pp. 1–19, 2015.

[35] T.-L. Yee and K.-P. Ho, "Hardy’s inequalities and integral operators on Herz-Morrey spaces," *Open Mathematics*, vol. 18, no. 1, pp. 106–121, 2020.

[36] S. Long and J. Wang, "Commutators of Hardy operators," *Journal of Mathematical Analysis and Applications*, vol. 274, pp. 626–644, 2002.

[37] Z. Fu and Y. Lin, "λ-central BMO estimates for commutators of higher dimensional fractional Hardy operators," *Acta Mathematica Sinica, Chinese Series*, vol. 53, pp. 925–931, 2010.

[38] Z. Fu, S. Lu, and F. Zhao, "Commutators of n-dimensional rough Hardy operators," *Science China Mathematics*, vol. 54, no. 1, pp. 95–104, 2011.

[39] A. Hussain, N. Sarfraz, I. Khan, A. Alsublic, and N. N. Hamadneh, "The boundedness of commutators of rough p-adic fractional Hardy type operators on Herz-type spaces," *Journal of Inequalities and Applications*, vol. 2021, no. 1, p. 123, 2021.

[40] A. Hussain, N. Sarfraz, I. Khan, and A. M. Alqahtani, "Estimates for commutators of bilinear fractional p-Adic Hardy operator on Herz-type spaces," *Journal of Function Spaces*, vol. 2021, p. 7, Article ID 6615604, 2021.

[41] J. L. Wu and W. J. Zhao, "Boundedness for fractional Hardy-type operator on variable-exponent Herz-Morrey spaces," *Kyoto Journal of Mathematics*, vol. 56, pp. 831–845, 2016.
[42] S. Wang and J. Xu, "Commutators of the bilinear Hardy operator on Herz type spaces with variable exponents," *Journal of Function Spaces*, vol. 2019, Article ID 7607893, 11 pages, 2019.

[43] A. Hussain, M. Asim, M. Aslam, and F. Jarad, "Commutators of the fractional Hardy operator on weighted variable Herz-Morrey spaces," *Journal of Function Spaces*, vol. 2021, Article ID 9705250, 10 pages, 2021.

[44] M. Asim, A. Hussain, and N. Sarfraz, "Weighted variable Morrey-Herz estimates for fractional Hardy operators," *Journal of Inequalities and Applications*, vol. 2022, no. 2, 2022.

[45] A. Nekavinda, "Hardy-Littlewood maximal operator on $L^{p(x)}$," *Mathematical Inequalities and Applications*, vol. 7, pp. 255–265, 2004.

[46] M. Izuki, "Fractional integrals on Herz-Morrey spaces with variable exponent," *Hiroshima Mathematical Journal*, vol. 40, pp. 343–355, 2010.

[47] L. Grafakos, *Modern Fourier Analysis*, Springer, Berlin, Germany, 2nd edition, 2008.

[48] M. Izuki, "Boundedness of commutators on Herz spaces with variable exponent," *Rendiconti del Circolo Matematico di Palermo*, vol. 59, no. 2, pp. 199–213, 2010.

[49] C. Capone, D. Cruz-Uribe, and A. Fiorenza, "The fractional maximal operator and fractional integrals on variable $L^{p(x)}$ spaces," *Revista Matemática Iberoamericana*, vol. 23, pp. 743–770, 2007.

[50] J. L. Wu, "Boundedness of some sublinear operators on Herz-Morrey spaces with variable exponent," *Georgian Mathematical Journal*, vol. 21, pp. 101–111, 2014.