Molecular Typing of the Etiologic Agent of Human Granulocytic Ehrlichiosis

SARAH E. CARTER, M.dana Ravyn, YANING Xu, AND RUSSELL C. JOHNSON

Department of Microbiology, University of Minnesota Academic Health Center, Minneapolis, Minnesota 55455

Received 15 March 2001/Returned for modification 1 June 2001/Accepted 1 July 2001

The p44 gene of the agent of human granulocytic ehrlichiosis (aoHGE) encodes a 44-kDa major outer surface protein. A technique was developed for the typing of the aoHGE based on the PCR amplification of the p44 gene followed by a multiple restriction digest with HindIII, EcoRV, and AspI to generate restriction fragment length polymorphism patterns. Twenty-four samples of the aoHGE were collected from geographically dispersed sites in the United States and included isolates from humans, equines, canines, small mammals, and ticks. Six granulocytic ehrlichiosis (GE) types were identified. The GE typing method is relatively simple to perform, is reproducible, and is able to differentiate among the various isolates of granulocytic ehrlichiae in the United States. These characteristics suggest that this GE typing method may be an important epizootiological and epidemiological tool.

Human granulocytic ehrlichiosis (HGE) is an emerging infectious disease first reported in the United States in 1994 (7). The disease is caused by a as-yet unnamed Ehrlichia species similar or identical to Ehrlichia equi and Ehrlichia phagocytophila, which are known veterinary pathogens. Clinical symptoms of HGE include fever, myalgias, leukopenia, and thrombocytopenia (1, 3). HGE can be treated readily with tetracyclines; however, the disease has proven fatal for several patients with serious underlying medical conditions (3, 13, 18).

Most cases of HGE are reported from the northeast and upper midwestern United States. The four states reporting the highest overall incidence of HGE are New York, Connecticut, Wisconsin, and Minnesota (21). The geographic locations of reported cases correspond to the natural habitat of the implicated tick vectors. In the northeast and upper midwestern United States, the agent of HGE (aoHGE) is transmitted to humans by the black-legged tick, Ixodes scapularis (8, 14, 24, 25, 31), and in the western United States it is transmitted to humans by Ixodes pacificus (4, 5, 9, 26, 27). The HGE agent can also infect a variety of small mammals. HGE agent has been detected by PCR or culture in white-footed mice (Peromyscus leucopus) (25, 30), deer mice (Peromyscus maniculatus) (23, 33), meadow voles (Microtus pennsylvaticus) (32), eastern chipmunks (Tamias striatus) (32), and dusky-footed woodrats (Neotoma fuscipes) (20, 23). One drawback to studying the epidemiology and epizootiology of HGE is that, at present, there is no standard typing method to distinguish between unique strains of the HGE agent. Attempts to compare 16S sequences and the ank gene sequences of isolates of the HGE agent have shown little or no variability (6, 19).

We investigated the possibility of using the gene that encodes the P44 protein for the typing of the aoHGE. P44 is the designated name of a family of HGE agent outer membrane surface proteins. P44 is capable of eliciting immunogenic responses in infected patients (2, 16, 34). The gene that encodes the outer membrane protein P44 is present in multiple copies in the genome and has shown significant sequence diversity. The p44 gene was first cloned and sequenced by Ijdo et al. (17) and is homologous to the multigene family msp-2 genes in Anaplasma marginale (22). Zhi et al. (35) have estimated the copy number of the p44 gene at 18 to 22. They are of different sizes and are random dispersed throughout the HGE agent genome. Zhi and coworkers have reported the transcription of at least 5 copies of the p44 gene by reverse transcription-PCR (35). This indication of genetic diversity makes p44 an attractive target for restriction fragment length polymorphism (RFLP) analysis. PCR amplification of specific gene sequences followed by RFLP analysis has been used successfully to type other organisms, such as Helicobacter pylori (29), Staphylococcus aureus (15), Borrelia spp. (10), and Rickettsia spp. (11).

Bacterial isolates were supplied as viable cultures or DNA extracts as described in Table 1. The HGE agents were cultivated in the HL60 cell line (CCL240; American Type Culture Collection), grown in RPMI 1640 (Gibco, Grand Island, N.Y.) containing 10% fetal bovine serum (Gibco) at 37°C with 5% CO2 as described by Goodman et al. (12). The HL60 cells were harvested by centrifugation at 500 × g for 5 min when greater than 70% of the HL60 cells had visible morulae upon microscopic examination of Giemsa-stained cytopsin preparations. The cellular DNA was extracted from the HGE-infected HL60 cells using the guanidium isothiocyanate method (IsoQuick; ORCA Research Industries, Inc., Bothell, Wash.). The purified HGE agent DNA was used as template DNA in the PCR. The 50 µl of PCR contained 25 ml of Taq PCR Master Mix (Qiagen Inc., Valencia, Calif.), 1 to 5 µl of DNA template (about 0.5 µg of DNA), 5 µl of each primer (10 pmol/µl), and distilled water to bring the reaction mixture to a volume of 50 µl. The primers used were previously published by Ijdo et al.: 5'AGCGTAATGATGTCTATGGC-3' and 5'-ACCCTAAC-3', which amplify a 1,279-bp portion of the p44 gene (17). The PCR was carried out by denaturation at 94°C for 2 min and then 40 cycles at 94°C for 1 min, 58°C for 2 min, and 72°C for 3 min (1 s was automatically added to each

* Corresponding author. Mailing address: University of Minnesota Academic Health Center, 420 Delaware St. SE, Mayo Mail Code 196, Minneapolis, MN 55455-0312. Phone: (612) 624-7944. Fax: (612) 626-0623. E-mail: johnson@mail.ahc.umn.edu.
TABLE 1. Source of HGE specimens

Sample	Source	State	Provided by
1003	Meadow vole (M. pennsylvanica)	Minn.	Johnson*
1007	Eastern chipmunk (T. striatus)	Minn.	Johnson
1008	Eastern chipmunk (T. striatus)	Minn.	Johnson
1011	White-footed mouse (P. leucopus)	Minn.	Johnson
1014	Eastern chipmunk (T. striatus)	Minn.	Johnson
1023	Meadow vole (M. pennsylvanica)	Minn.	Johnson
1026	Eastern chipmunk (T. striatus)	Minn.	Johnson
1029	White-footed mouse (P. leucopus)	Minn.	Johnson
1033	Southern red-backed vole (Clethrionomys gapperi)	Minn.	Johnson
PL59	White-footed mouse (P. leucopus)	Minn.	Johnson
HGE-1	Human	Minn.	Goodmanb
HGE-2	Human	Minn.	Goodman
HGE-3	Human	Minn.	Goodman
HGE-4	Human	N.Y.	Goodman
HGE-5	Human	N.Y.	Goodman
HGE-6	Human	N.Y.	Goodman
Marim	Canine	Minn.	Munderloh
Equi	Equine (E. equi MRK strain)	Calif.	Munderloh
GOM2	Tick (I. spinipalpis)	Colo.	Piesmand
GOM4	Tick (I. spinipalpis)	Colo.	Piesman
TB41	Mexican wood rat (Neotoma mexicana)	Colo.	Piesman
TB64	Deer mouse (P. maniculatus)	Colo.	Piesman
TB80	Deer mouse (P. maniculatus)	Colo.	Piesman
TB108	Mexican wood rat (N. mexicana)	Colo.	Piesman

* Cultures from mammals trapped in Morrison and Washington counties, Minn.
* Cultures supplied by Jesse Goodman, University of Minnesota, Minneapolis.
* Cultures supplied by Ulrike Munderloh, University of Minnesota, St. Paul.
* DNA extracts supplied by Joseph Piesman and William Nicholson, Centers for Disease Control and Prevention, Fort Collins, Colo.

TABLE 2. GE types characterized by restriction fragment sizes

GE type	Fragment sizes (bp)
A1,100, 610, 470, 225
B1,100, 490, 480, 225
C1,100, 570, 430, 310, 225
D1,100, 610, 560, 490, 470, 225
E1,100, 610, 570, 490, 470, 225
F1,100, 890, 600, 530, 490, 470, 225

a May also have a faint band at 750 bp.
b May also have a faint band at 750 bp.

g eoHGE from the various hosts analyzed are shown in Table 3. Although the number of samples from the northeast and the western regions were limited, the results suggest that this typing method has strong discriminatory potential. GE types B and F were present in Colorado, and types C, D, and E were found in the north-central states (Minnesota and Wisconsin). In contrast, GE type A was present in specimens from California, Minnesota, and New York.

Three GE types were identified among the six human specimens. They were type A for the two New York patients, type C for the three Minnesota patients, and type E for the Wisconsin isolate. The Minnesota canine isolate was GE type C, which also contained molecular size markers (Kb DNA Ladder; Stratagene, La Jolla, Calif.)
the same GE type as that of the three Minnesota human isolates. The Minnesota human isolate, type C, was also present in a chipmunk and a southern red-backed vole from Minnesota. The Wisconsin human isolate, type E, was also present in eastern chipmunks captured in Minnesota. The GE type A, present in the two New York human isolates, was also present in white-footed mice and meadow voles from Minnesota as well as a horse isolate from California (Table 3). Four different GE types were represented among the 14 isolates of the aoHGE from Minnesota. GE type F, present in the Mexican wood rat and the deer mouse from Colorado, was also identified in the tick vector, *Ixodes spinipalpis*.

We investigated the stability of the GE type in two isolates, one from a human and one from a white-footed mouse. The human isolate was determined to be GE type C at tissue culture passage number 15, and after 164 passages in HL60 cells it remained type C. A white-footed mouse isolate was identified as GE type A at its second passage in HL60 cells. Its GE type remained type A after isolation from an experimentally infected mouse, 1 week postinoculation, and following 48 passages in HL60 cells. Based on the above typing results of these two aoHGE isolates, we conclude that the GE type is a stable characteristic.

The GE typing method we described is relatively simple to perform, is very reproducible, and appears to be a sensitive means to differentiate among the various isolates of granulocytic ehrlichiae. Another advantage of this technique is that it can be performed on animal and human specimens without the need to cultivate the organism. These characteristics suggest that the GE typing method has the potential of being an important epizootiological and epidemiological tool.

This research was supported in part by Public Health Service grants AI40952 and AI47896 from the National Institutes of Health.

We thank the following persons for providing cultures or DNA extracts of the HGE agent: Jesse Goodman, University of Minnesota, Minneapolis; Uli Munderloh, University of Minnesota, St. Paul; and William Nicholson and Joseph Piesman, Centers for Disease Control and Prevention, Fort Collins, Colo. We also thank the personnel at Camp Ripley, Little Falls, Minn., and the Metropolitan Mosquito Control District, St. Paul, Minn., for providing animal specimens.

REFERENCES

1. Aguero-Rosenfeld, M. E., H.-W. Horowitz, G. P. Wormser, D. F. McKenna, J. Nowakowski, J. Munoz, and J. S. Dumler. 1996. Human granulocytic ehrlichiosis: a case series from a medical center in New York State. Ann. Intern. Med. 125:804–908.

2. Asanovich, K. M., J. S. Bakken, J. E. Madigan, M. Aguero-Rosenfeld, G. P. Wormser, and J. S. Dumler. 1997. Antigenic diversity of granulocytic *Ehrlichia* isolates from humans in Wisconsin and New York and a horse in California. J. Infect. Dis. 176:1034–1037.

3. Bakken, J. S., J. Kruech, C. Wilson-Nordskog, R. L. Tilden, K. Asanovich, and J. S. Dumler. 1996. Clinical and laboratory characteristics of human granulocytic ehrlichiosis. JAMA 275:199–205.

4. Barlough, J. E., J. E. Madigan, E. DeRock, and L. Bigornia. 1996. Nested polymerase chain reaction for detection of *Ehrlichia equi* genomic DNA in horses and ticks (*Ixodes pacificus*). Vet. Parasitol. 63:319–329.

5. Barlough, J. E., J. E. Madigan, V. L. Kramer, J. R. Clover, L. T. Hui, J. P. Webb, and L. K. Vredenoo. 1997. *Ehrlichia phagocytophila* genogroup rickettsiae in ixodid ticks from California collected in 1995 and 1996. J. Clin. Microbiol. 35:2018–2021.

6. Chae, J., J. E. Foley, J. S. Dumler, and J. E. Madigan. 2000. Comparison of the nucleotide sequences of 16S rRNA, 44A-Ep-Ak, and groESL heat shock operon genes in naturally occurring *Ehrlichia equi* and human granulocytic ehrlichiosis agent isolates from northern California. J. Clin. Microbiol. 38:910–914.

7. Chen, S. M., J. S. Dumler, J. S. Bakken, and D. H. Walker. 1994. Identification of a granulocytotropic *Ehrlichia* species as the etiologic agent of human disease. J. Clin. Microbiol. 32:589–595.

8. Des Vignes, F., and D. Fish. 1997. Transmission of the agent of human granulocytic ehrlichiosis by host-seeking *Ixodes scapularis* (Acari: Ixodidae) in southern New York state. J. Med. Entomol. 34:379–382.

9. Foley, J. E., L. Crawford-Miksza, J. S. Dumler, C. Glaser, J. S. Chae, E. Yeh, D. Schnurr, R. Hood, W. Hunter, and J. E. Madigan. 1999. Human granulocytic ehrlichiosis in northern California: two case descriptions with genetic analysis of the *Ehrlichia* genus. Clin. Infect. Dis. 29:388–392.

10. Fukunaga, M., K. Okada, M. Nakao, T. Konishi, and Y. Sato. 1996. Phylogenetic analysis of *Borrelia* species based on flagellin gene sequences and its application for molecular typing of Lyme disease *borreliae*. Int. J. Syst. Bacteriol. 46:896–905.

11. Gage, K. L., M. E. Schrumpf, R. H. Karstens, W. Burdger, and T. G. Schwan. 1994. DNA typing of rickettsiae in naturally infected ticks using a polymerase chain reaction/restriction fragment length polymorphism system. Am. J. Trop. Med. Hyg. 50:247–260.

12. Goodman, J. L., C. M. Nelson, B. Vitale, J. E. Madigan, J. S. Dumler, T. K. Kurtt, and U. G. Munderloh. 1996. Direct cultivation of the causative agent of human granulocytic ehrlichiosis. N. Engl. J. Med. 334:209–215. (Erratum, 335:561.)

13. Hardalo, C. J., V. Quagliarello, and J. S. Dumler. 1995. Human granulocytic ehrlichiosis in Connecticut: report of a fatal case. Clin. Infect. Dis. 21:1083–1089.

14. Hodicz, E., D. Fish, C. M. Maretski, A. M. De Silva, S. Feng, and S. W. Barthold. 1998. Acquisition and transmission of the agent of human granulocytic ehrlichiosis by *Ixodes scapularis* ticks. J. Clin. Microbiol. 36:3574–3578.

15. Hookey, J. V., J. F. Richardson, and B. D. Cookson. 1998. Molecular typing of *Staphylococcus aureus* based on PCR restriction fragment length polymorphism and DNA sequence analysis of the coagulase gene. J. Clin. Microbiol. 36:1083–1089.

16. Ijdo, J. W., Y. Zhang, E. Hodicz, L. A. Magnarelli, M. L. Wilson, S. R. Telford III, S. W. Barthold, and E. Fikrig. 1997. The early humoral response in human granulocytic ehrlichiosis. J. Infect. Dis. 176:392–397.

17. Ijdo, J. W., W. Sun, Y. Zhang, L. A. Magnarelli, and E. Fikrig. 1998. Cloning of the gene encoding the 44-kilodalton antigen of the agent of human granulocytic ehrlichiosis and characterization of the humoral response. Infect. Immun. 66:3264–3269.

18. Jahangir, A., C. Kolbert, W. Edwards, P. Mitchell, J. S. Dumler, and D. H. Persing. 1998. Fatal pancytopenia associated with human granulocytic ehrlichiosis in a 44-year-old man. Clin. Infect. Dis. 27:1424–1427.

19. Massung, R. F., J. H. Owens, D. Ross, K. D. Reed, M. Petrovec, A. Bjoersdorff, R. T. Coughlin, G. A. Beltz, and C. L. Murphy. 2000. Sequence analysis of the *ark* gene of granulocytic ehrlichiae. J. Clin. Microbiol. 38:2917–2922.

20. Maupin, G. O., K. L. Gage, J. Piesman, J. Montenieri, S. L. Stav, L. VanderZanden, C. M. Hopp, M. Dolan, and B. J. Johnson. 1994. Discovery of an enzootic cycle of *Borrelia burgdorferi* in *Neotoma muscina* and *Ixodes spinipalpis* from northern Colorado, an area where Lyme disease is nonendemic. J. Infect. Dis. 170:636–643.

21. McQuiston, J. H., C. D. Patrick, R. C. Holman, and J. E. Childs. 1999. The human granulocytic ehrlichioses in the United States. Emerg. Infect. Dis. 5:635–642.

22. Murphy, C. I., J. R. Storey, J. Recchia, L. A. Doros-Richert, C. Gingrich-Baker, K. Munroe, J. S. Bakken, R. T. Coughlin, and G. A. Beltz. 1998. Major antigenic proteins of the agent of human granulocytic ehrlichiosis are encoded by members of a multigene family. Infect. Immun. 66:3711–3718.

23. Nicholson, W. L., M. B. Castro, V. L. Kramer, J. W. Summer, and J. E. Childs. 1999. Dusky-footed wood rats (*Neotoma fuscipes*) as reservoirs of granulocytic *Ehrlichia* (*Rickettsiales: Ehrlichiae*) in northern California. J. Clin. Microbiol. 37:3232–3237. (Erratum, 37:3206.)

24. Pancholi, P. C., C. P. Kolbert, P. D. Mitchell, K. D. Reed, J. S. Dumler, J. S. Bakken, S. R. Telford III, and D. H. Persing. 1995. *Ixodes dammini* as a
potential vector of human granulocytic ehrlichiosis. J. Infect. Dis. 172:1007–1012.
25. Ravyn, M. D., C. B. Kodner, S. E. Carter, J. L. Jarnsfeld, and R. C. Johnson. 2001. Isolation of the etiologic agent of human granulocytic ehrlichiosis from the white-footed mouse (Peromyscus leucopus). J. Clin. Microbiol. 39:335–338.
26. Reubel, G. H., R. B. Kimsey, J. E. Barlough, and J. E. Madigan. 1998. Experimental transmission of Ehrlichia equi to horses through naturally infected ticks (Ixodes pacificus) from northern California. J. Clin. Microbiol. 36:2131–2134.
27. Richter, P. J., Jr., R. B. Kimsey, J. E. Madigan, J. E. Barlough, J. S. Dumler, and D. L. Brooks. 1996. Ixodes pacificus (Acar: Ixodidae) as a vector of Ehrlichia equi (Rickettsiales: Ehrlichiae). J. Med. Entomol. 33:1–5.
28. Schaffer, H. E., and R. R. Sederoff. 1981. Improved estimation of DNA fragment lengths from agarose gels. Anal. Biochem. 115:113–122.
29. Shortridge, V. D., G. G. Stone, R. K. Flamm, J. Beyer Versalovic, D. W. Graham, and S. K. Tanaka. 1997. Molecular typing of Helicobacter pylori isolates from a multicenter U.S. clinical trial by ureC restriction fragment length polymorphism. J. Clin. Microbiol. 35:471–473. (Erratum, 36:1468, 1998.)
30. Stafford, K. C., R. F. Massung, L. A. Magnarelli, J. W. Ijdo, and J. F. Anderson. 1999. Infection with agents of human granulocytic ehrlichiosis, Lyme disease, and babesiosis in wild white-footed mice (Peromyscus leucopus) in Connecticut. J. Clin. Microbiol. 37:2887–2892.
31. Telford III, S. R., J. E. Dawson, P. Katavolos, C. K. Warner, C. P. Kolbert, and D. H. Persing. 1996. Perpetuation of the agent of human granulocytic ehrlichiosis in a deer tick-rodent cycle. Proc. Natl. Acad. Sci. USA 93:6209–6214.
32. Walls, J. J., B. Greig, D. F. Neitzel, and J. S. Dumler. 1997. Natural infection of small mammal species in Minnesota with the agent of human granulocytic ehrlichiosis. J. Clin. Microbiol. 35:853–855.
33. Zeidner, N. S., T. R. Burkot, R. Massung, W. L. Nicholson, M. C. Dolan, J. S. Rutherford, B. J. Biggerstaff, and G. O. Maupin. 2000. Transmission of the agent of human granulocytic ehrlichiosis by Ixodes spinipalpis ticks: evidence of an enzootic cycle of dual infection with Borrelia burgdorferi in northern Colorado. J. Infect. Dis. 182:616–619.
34. Zhi, N., N. Ohashi, Y. Rikihisa, H. W. Horowitz, G. P. Wormser, and K. Hechemy. 1998. Cloning and expression of the 44-kilodalton major outer membrane protein gene of the human granulocytic ehrlichiosis agent and application of the recombinant protein to serodiagnosis. J. Clin. Microbiol. 36:1666–1673.
35. Zhi, N., N. Ohashi, and Y. Rikihisa. 1999. Multiple p44 genes encoding major outer membrane proteins are expressed in the human granulocytic ehrlichiosis agent. J. Biol. Chem. 274:17828–17836.