VARIATION IN GROWTH RATE, CARBON ASSIMILATION, AND PHOTOSYNTHETIC EFFICIENCY IN RESPONSE TO NITROGEN SOURCE AND CONCENTRATION IN PHYTOPLANKTON ISOLATED FROM UPPER SAN FRANCISCO BAY

Gry Mine Berg, Sara Driscoll
Applied Marine Sciences, 911 Center Street, Santa Cruz, California 95060, USA

Kendra Hayashi
Ocean Sciences Department, University of California, 1156 High Street, Santa Cruz, California 95064, USA

Melissa Ross
Applied Marine Sciences, 911 Center Street, Santa Cruz, California 95060, USA

and Raphael Kudela
Ocean Sciences Department, University of California, 1156 High Street, Santa Cruz, California 95064, USA

Six species of phytoplankton recently isolated from upper San Francisco Bay were tested for their sensitivity to growth inhibition by ammonium (NH$_4^+$), and for differences in growth rates according to inorganic nitrogen (N) growth source. The quantum yield of photosystem II (F$_V$/F$_M$) was a sensitive indicator of NH$_4^+$ toxicity, manifested by a suppression of F$_V$/F$_M$ in a dose-dependent manner. Two chlorophytes were the least sensitive to NH$_4^+$ inhibition, at concentrations of >3,000 μmoles NH$_4^+$.L$^{-1}$, followed by two estuarine diatoms that were sensitive at concentrations >1,000 μmoles NH$_4^+$.L$^{-1}$, followed lastly by two freshwater diatoms that were sensitive at concentrations between 200 and 500 μmoles NH$_4^+$.L$^{-1}$. At non-inhibiting concentrations of NH$_4^+$, the freshwater diatom species grew fastest, followed by the estuarine diatoms, while the chlorophytes grew slowest. Variations in growth rates with N source did not follow taxonomic divisions. Of the two chlorophytes, one grew significantly faster on nitrate (NO$_3^-$), whereas the other grew significantly faster on NH$_4^+$. All four diatoms tested grew faster on NH$_4^+$ compared with NO$_3^-$ values. We showed that in cases where growth rates were faster on NH$_4^+$ than they were on NO$_3^-$, the difference was not larger for chlorophytes compared with diatoms. This holds true for comparisons across a number of culture investigations suggesting that diatoms as a group will not be at a competitive disadvantage under natural conditions when NH$_4^+$ dominates the total N pool and they will also not have a growth advantage when NO$_3^-$ is dominant, as long as N concentrations are sufficient.

Key index words: ammonium tolerance; carbon assimilation; chlorophytes; diatoms; growth rates; nitrogen source; PSII efficiency; upper San Francisco Bay

Abbreviations: C$_0$, starting cell abundance; C, cell abundance; Chl a, chlorophyll a; DIC, dissolved inorganic carbon; EC$_{50}$, 50% decrease in growth rate; F$_0$, background Chl a fluorescence; F$_{m}$, maximal Chl a fluorescence; F$_V$/F$_M$, quantum yield of photosystem II; F$_V$, variable fluorescence; k, growth constant; LED, light-emitting diode; N:P, nitrogen:phosphorus; NH$_3$, ammonia; NH$_4^+$, ammonium; N, nitrogen; NO$_3^-$, nitrate; PAM, pulse-amplitude-modulated; PSII, photosystem II; t, time

Seasonally high NO$_3^-$ concentrations drive primary productivity and biomass accumulation in coastal and freshwater systems world-wide (Sieracki et al. 1993, Malone et al. 1996, Collos et al. 1997, Berg et al. 2001, Kristiansen et al. 2001). However, in some coastal systems subjected to concentrated inputs of wastewater effluent, NH$_4^+$ has become an equally important, and at times even a dominant, N source. For example, NH$_4^+$ concentrations have increased dramatically in Lake Taihu, China (Chen et al. 2003), Deep Bay and Victoria Harbor, Hong Kong (Xu et al. 2010, 2011), and Colne Estuary, UK (Underwood and Provot 2000), to mention a few. Recent reports of seasonal succession of phytoplankton with changes in the dominant N source have questioned whether diatoms may be more competitive vis-a-vis other members of the phytoplankton community at times when NO$_3^-$ dominates the total N pool compared to when NH$_4^+$ does (Berg et al. 2003, Heil et al. 2007). As a result, it has been predicted that in systems with increased inputs of wastewater effluent, phytoplankton community...
composition may become skewed away from diatoms (Glibert et al. 2011). Confounding investigations into the effect of changes in N sources on phytoplankton succession is that total N concentrations typically change concomitantly, making it difficult to separate the effect of changes in N species from change in total N concentration (Berg et al. 2003, Flynn 2010, Davidson et al. 2012).

Suisun Bay, situated in the northern region of San Francisco Bay, California (Fig. S1 in the Supporting Information), receives elevated inputs of nutrients from the Sacramento River and is dominated by diatoms, making it an ideal system to investigate the nitrogenous nutrition of diatoms. While diatoms comprise the principal fraction of the phytoplankton community in Suisun Bay, their biomass has decreased over the last two decades (Alpine and Cloern 1992, Lehman 1996, 2000, Jassby 2008). Among the many hypotheses advanced to explain the decline in phytoplankton standing stocks is a change in the dominance of N species from NO$_3^-$ to NH$_4^+$. It has been hypothesized that NH$_4^+$ inhibits diatom growth and spring bloom formation at concentrations of 4 μmol L$^{-1}$ or greater (Dugdale et al. 2007). In contrast, chlorophytes and flagellates are hypothesized not be sensitive to NH$_4^+$ at the same low concentrations and therefore will not experience the same levels of growth inhibition (Glibert et al. 2011).

To test the hypothesis that diatoms have a low tolerance for NH$_4^+$, and grow faster when using NO$_3^-$ compared with NH$_4^+$ as a source of N for growth, we isolated a number of diatom and non-diatom taxa directly from Suisun Bay and the Sacramento River into pure culture. This avoided several of the confounding factors with field investigations, including using a mixed plankton community as well as the difficulty of separating the effect of a change in the type of N (NO$_3^-$ vs. NH$_4^+$), from a change in the absolute N concentration. It also provided standardization for all other factors, including light, temperature, and base media composition. In addition, using freshly isolated strains rather than strains from culture collections avoided issues related to genetic adaptations from growing at unnaturally high N concentrations for many decades (e.g., Lake et al. 2009), and issues with extrapolation of results using strains isolated from other geographic regions to our particular locale.

The specific questions we asked were: (i) Do diatoms grow faster when using NO$_3^-$ compared with using NH$_4^+$ as the sole source of N? (ii) Do non-diatoms grow faster when using NH$_4^+$ compared with using NO$_3^-$ as the sole source of N? (iii) Are lower growth rates on NH$_4^+$ the result of NH$_4^+$ inhibition or toxicity? (iv) If so, what are the levels of NH$_4^+$ that will result in a 50% decrease in phytoplankton growth rate (i.e., EC$_{50}$)? The EC$_{50}$ is commonly used in ecotoxicological studies as the benchmark of growth inhibition, and has also been applied with respect to inhibition of phytoplankton growth by NH$_4^+$ (Collos and Harrison 2014). Here, we use NH$_4^+$ to refer to ammonium + unionized ammonia (NH$_4^+$+NH$_3$), both of which were present at the pH of the cultures (i.e., pH > 8.0). We use the word “toxic” to describe concentrations of NH$_4^+$ that reduce phytoplankton growth by 50% or more, acknowledging that the majority of the toxic effect of NH$_4^+$+NH$_3$ may have been due to NH$_3$ alone (e.g., Kalleqvist and Svenson 2007).

While changes in phytoplankton growth rate are typically used as the benchmark for interpreting toxicity effects, a more rapid response to NH$_4^+$ toxicity can be obtained by probing the quantum yield of photosystem II (PSII) in photosynthetic cells (Drath et al. 2008). PSII yield or efficiency, measured as variable over maximal fluorescence (F_v/F_m), is very sensitive to any condition that perturbs electron transport in the cell and is widely used in phytoplankton ecology to characterize stressful conditions for phytoplankton growth (Kromkamp and Forster 2003, Suggett et al. 2009), including nutrient limitation (Kolber et al. 1988, Geider et al. 1993, Kromkamp and Peene 1999, Berg et al. 2008), excessive irradiance or UV exposure (Behrenfeld et al. 1998, Six et al. 2007, Berg et al. 2011), oxidative stress (Drabkova et al. 2007), and toxicity from herbicides, pesticides, and other halogenated compounds (Muller et al. 2008, Choi et al. 2012, Kudela et al. 2015). The advantage of using F_v/F_m is that the response time is on the order of minutes to hours following the onset of the stress, resulting in significant time savings compared with waiting for a response in growth rates (Kromkamp et al. 2005). In this study, we compared F_v/F_m, carbon assimilation, and growth in six species of phytoplankton to test their sensitivity to growth inhibition by NH$_4^+$, and to examine differences in growth rates according to inorganic N growth source.

MATERIALS AND METHODS

Sampling locations and strain isolation. Near-surface samples for phytoplankton isolations were collected using a plankton net at several stations in Suisun Bay and in the Sacramento River in the fall of 2013 and spring of 2014. Clonal cultures of six phytoplankton species, Asterionella ralfsii, Fragilaria capucina, Thalassiosira weissflogii, Entomoneis paludosa, Chlorella minutissima, and Radioococcus planktonicus, were established by micropipette isolations of single cells. Asterionella ralfsii and F. capucina were isolated from the Sacramento River (freshwater) while the other species were isolated from Suisun Bay (estuarine). The identity of the strains and purity of the cultures were confirmed by John Beaver (BSA Environmental) using microscopic evaluation and acid digestion of the diatom frustules. Chlorella minutissima and R. planktonicus are presently available from the National Center for Marine Algae and Microbiota under strain numbers CCMP3451 and CCMP3452, respectively. Strains were maintained in either filtered Sacramento River Water (SRW, salinity = 0) or filtered Monterey Bay seawater adjusted to a salinity of 10 with Millipore Milli-Q water (MBSW, salinity = 10). Mixing with Milli-Q water resulted...
in a dissolved inorganic carbon (DIC) concentration of ~700 µmol L\(^{-1}\). Although lower than in Suisun Bay (i.e., Schemel 1984), the concentration was sufficient to maintain optimal growth as evidenced by the high F\(_{v}/F_{m}\) in the cultures. Cultures were maintained on a 12:12 light:dark cycle under cool-white fluorescent lights (85 µmol photons \(\cdot m^{-2} \cdot s^{-1}\) at the culture vessel surface) at a temperature of 15.5°C. These nutrient, temperature, and light conditions were comparable to those measured in Suisun Bay at the time of isolation of the cells.

Experimental conditions. Stock cultures grown with NO\(_3^-\) as the N-source were transferred to media containing NH\(_4^+\), at various concentrations, as the sole source of N for growth. After 1 week of growth, aliquots of the NH\(_4^+\)-grown cells were centrifuged and transferred into media containing NO\(_3^-\), at various concentrations, as the sole source of N for growth. To start the experiment, cultures were spun down, rinsed with N-free medium (salinity = 0 or 10), and resuspended in 200 mL medium in Erlenmeyer glass flasks containing SRW or MBSW with 1/2 nutrient solution lacking N. To the MBSW base, silicate was added to a final concentration of f/2 medium (i.e., twice the concentration of f/2 medium) to keep consistent concentrations between the SRW-base (~200 µmoles silicate \(-L^{-1}\)) and MBSW-base media. To triplicate flasks, NH\(_4^+\) was added to final concentrations of 20, 100, 200, 500, or 1,000 µmol L\(^{-1}\) (low addition series), and 20, 100, 500, 1,000 or 3,000 µmol L\(^{-1}\) (high addition series). The low and high addition series were used for strains with relatively lower and higher tolerance to NH\(_4^+\), respectively. Relative tolerance levels were determined prior to the start of the experiments by simple growth tests using in vivo chlorophyll \(a\) (Chl \(a\)) fluorescence and F\(_{v}/F_{m}\) as endpoints. After growth in NH\(_4^+\)-medium for a week, aliquots of the cultures were spun down and re-suspended in triplicate 200 mL Erlenmeyer flasks to which NO\(_3^-\) was added to the same final concentrations as in the NH\(_4^+\)-addition series. Because only the N concentration was varied among the treatments, and all other nutrients, trace metals and vitamins were kept constant, the nitrogen:phosphorus (N:P) ratio of the medium varied as follows: 20 µmol L\(^{-1}\) (N:P = 1), 100 µmol L\(^{-1}\) (N:P = 3), 200 µmol L\(^{-1}\) (N:P = 6), 500 µmol L\(^{-1}\) (N:P = 14), 1,000 µmol L\(^{-1}\) (N:P = 28), 3,000 µmol L\(^{-1}\) (N:P = 83). Culture biomass was inoculated at low levels and changes in F\(_{v}/F_{m}\), cell abundance, Chl \(a\) and N concentrations were measured daily in order to characterize the growth response (Fig. S2 in the Supporting Information). Cultures were mixed by swirling prior to sampling each day.

Measurements and sample analyses. The physiology of the strains was evaluated through a combination of measurements occurring either daily (F\(_{v}/F_{m}\), Chl \(a\), cell abundance) or once during mid-exponential growth as for carbon (C) fixation.

The F\(_{v}/F_{m}\) was measured by pulse-amplitude-modulated (PAM) fluorometry using a WATER-PAM (Heinz-Walz GmbH, Germany), with a standard array of three measuring light-emitting diodes (LEDs) peaking in the red at 650 nm and 12 pulse LEDs peaking in the red at 660 nm. The WATER-PAM was blanked with 0.2 µm filtered culture media. For measurements of F\(_{v}/F_{m}\), aliquots were removed from the primary culture after swirling and dark adapted for 10 min. Potential biases caused by a short (10 min) dark-adaptation period were checked by comparing F\(_{v}/F_{m}\) values at 10, 20, 30, and 40 min from samples collected during exponential phase (concurrent with the carbon uptake experiments) for electron transport rate curves using the WATER-PAM. There were no significant trends in dark-adapted F\(_{v}/F_{m}\) as a function of adaptation time. After dark adaptation, background Chl \(a\) fluorescence, F\(_{o}\), and maximal Chl \(a\) fluorescence following a saturating pulse (F\(_{m}\)) was measured to derive the variable (F\(_{v}\)) over maximum fluorescence according to:

\[
F_{v}/F_{m} = (F_{m} - F_{o})/F_{m}
\]

(1)

The percent suppression of F\(_{v}/F_{m}\) over time in response to NH\(_4^+\) was calculated as:

\[
\% \text{Suppression} = \left[1 - \left(F_{v}/F_{m}(t) \div F_{v}/F_{m}(0) \right) \right] \times 100
\]

(2)

where F\(_{v}/F_{m}\)(0) is the initial F\(_{v}/F_{m}\) at time zero and F\(_{v}/F_{m}\)(t) is the F\(_{v}/F_{m}\) after exposure time t.

Samples for cell enumeration (all species except *Chlorella*) were preserved with acid Lugol’s solution (20 mL Lugol’s L\(^{-1}\) culture volume) and stored cool (4°C) until enumeration with a Zeiss (Thornwood, NY, USA) Axiovert 200 inverted microscope using a Parsons counting chamber. Abundances were estimated by random field counts totaling at least 400 unicells. Cell volumes were estimated by applying the geometric shapes that most closely matched the cell shape (Hillebrand et al. 1999). Volume calculations were based on measurements of the dimensions of 10 cells per strain. The abundance of *Chlorella* was measured by flow cytometry. Samples (3 mL) were fixed with 1% formaldehyde and analyzed using a Becht-Dickinson Influx flow cytometer and cell sorter. Data acquisition was triggered on red fluorescence using stock cultures of *Chlorella* to set rejection gates for background noise. Samples were analyzed for 3-5 min and the number of events was normalized to volume counted to obtain cell abundance per unit volume. Samples for Chl \(a\) determination were collected onto uncoated glass-fiber filters (Whatman GF/F, Pittsburgh, PA, USA) and processed immediately using the non-acidification method (Welschmeier 1994). Samples for N (NO\(_3^-\) and NH\(_4^+\)) analysis were filtered (Whatman GF/F) and stored frozen until processing. Ammonium was analyzed using the OPA method and relative fluorescence units were obtained via fluorometry (TD-700; Turner Designs, San Jose, CA USA) according to Holmes et al. (1999). Nitrate was analyzed using a Lachat QuikChem 8500 Flow Injection Analyt System and Omnion 3.0 software (Lachat Instruments; Hach Company, Loveland, CO, USA). Nitrogen uptake rates were calculated from the ratio of the change in N concentration over time to the change in cell concentration over time to yield uptake as µmol N \cdot cell\(^{-1}\).

Carbon uptake rates were measured as described in Kudela et al. (2006). Briefly, aliquots were removed from the cultures at noon and added to 25 mL glass scintillation vials to which ~1 µg (~37,000 Bq) NaH\(^{14}\)CO\(_3\) was added. The vials were subsequently incubated under the same light/temperature conditions as the cultures for ~60 min. \(^{14}\)C additions were calculated by measuring total activity using 1 mL volume from three random samples (per experiment), and time-zero samples (three replicates) were collected by immediately spiking the vials with acid. Replica samples for each light/nutrient treatment were inoculated and maintained in the dark to account for dark-uptake. At the end of the incubation, the entire volume was acidified and allowed to degas for 24 h before 20 mL MP Biochemicals Ecolume scintillation cocktail was added. Samples were then counted using a Beckman 6500 liquid scintillation counter. Samples for DIC were filtered through GF/F filters and stored frozen until analysis. DIC concentration in the samples was measured on a Shimadzu (Columbia, MD, USA) total carbon/tota nitrogen system according to manufacturer’s directions. We did not have samples available from all experiments therefore a subset of samples was analyzed from each set of experiments. Measured DIC concentrations varied by less than 10% across treatments. The lowest DIC was in the high-biomass treatments, but no measured DIC was less than 600 µmol \cdot L\(^{-1}\) suggesting that carbon-limitation was not a significant issue.
Biomass-dependent correction factors for DIC consumption were calculated for each experiment based on the measured DIC concentrations. These were used to estimate final DIC concentrations in each culture. Carbon uptake rates were calculated from scintillation counts and final DIC concentrations after adjusting for the time-zero blank and correcting for dark-uptake. Carbon assimilation rates were obtained by normalizing C uptake rates to Chl \(a\) (mg C \(\cdot\) mg Chl \(^{-1}\) \(\cdot\) h \(^{-1}\)), hereafter referred to simply as “C assimilation.”

To directly assess the impact of transient additions of either NH\(_4\)\(^+\) or NO\(_3\)\(^-\) on productivity in the cultures, samples from cultures grown on 20 \(\mu\)g L\(^{-1}\) NO\(_3\)\(^-\) collected during mid-exponential growth were split into two aliquots that were incubated for 24 h following an addition of either 5 \(\mu\)g NO\(_3\)\(^-\) \(\cdot\) L\(^{-1}\) or 5 \(\mu\)g NH\(_4\)\(^+\) \(\cdot\) L\(^{-1}\). At the end of the incubation, C fixation was measured by adding \(^{14}\)C-labeled bicarbonate and incubating for an additional h using the same environmental conditions.

The rate of cell-specific growth on each N source was computed by fitting the exponential function to the data:

\[
C = C_0 e^{kt}
\]

Where \(C\) is the cell abundance, \(C_0\) is the starting cell abundance, \(k\) is the growth constant (d \(^{-1}\)), and \(t\) is time. Two-way analysis of variances (ANOVA) were conducted on all the data using species and N source as factors; in tests with significant interactions, two-way ANOVAs were also conducted within each species using N source and concentration as factors. All calculations and statistical tests were carried out using R software (R Core Team 2016).

RESULTS

Species-specific differences in physiological responses. Two-way ANOVAs were performed to determine whether there was an effect related to N source or species on the mean response of a range of physiological parameters. With respect to most, there was a significant effect of species but not of N source (Table 1).

The phytoplankton strains differed by three orders of magnitude in average cell volume (Fig. 1a). The smallest species were the chlorophytes \(C.\) minutissima and \(R.\) planktonicus, 4 and 33 \(\mu\)m \(^3\), respectively, and the largest species were the diatoms \(T.\) weissflogii and \(E.\) paludosa, 6,430 and 13,850 \(\mu\)m \(^3\), respectively. The chain-forming freshwater diatoms \(A.\) ralfsii and \(F.\) capucina were intermediate in average cell volume at 155 and 427 \(\mu\)m \(^3\), respectively (Fig. 1a). Relative differences in C assimilation were similar to relative differences in size among species, with \(E.\) paludosa and \(T.\) weissflogii having the greatest rates of C assimilation (Fig. 1, a and b). Chl \(a\) per cell was significantly greater in \(T.\) weissflogii compared with any other species whereas \(C.\) minutissima had the least amount of Chl \(a\) per cell (Fig. 1c). Nitrogen uptake per cell was also significantly greater in \(T.\) weissflogii compared with the other species (Fig. 1d). Again, N uptake per cell was least for \(C.\) minutissima (Fig. 1d). The fastest mean cell-specific growth rates were observed in \(F.\) capucina (0.89 \(\pm\) 0.19 \(\cdot\) d \(^{-1}\)) and \(A.\) ralfsii (0.78 \(\pm\) 0.17 \(\cdot\) d \(^{-1}\)) while \(C.\) minutissima grew significantly slower (0.47 \(\pm\) 0.10 \(\cdot\) d \(^{-1}\)) than the other isolated genera (Fig. 1e). Relative differences in mean cell-specific growth rates among species did not correspond with relative differences in carbon assimilation and N uptake rates in that the fastest growing species, \(F.\) capucina and \(A.\) ralfsii, had the second to lowest rates of C assimilation and N uptake (Fig. 1, b, d, and e). At concentrations of nutrients that were not toxic, maximal \(F_v/F_m\) was 0.6 or above in all the cultures (Fig. 1f).

Effect of N source and concentration on productivity and growth. Although N source in most cases did not have a significant effect on the mean response of most physiological parameters, it did exhibit a significant effect in the mean response of C assimilation (Table 1). However, growth rate, C assimilation and \(F_v/F_m\) all exhibited significant interactions of species with N source, such that the effect of the N source varied depending on species (Table 2). Analyzing the variance of both N type and concentration within each species at the concentration range where NH\(_4\)\(^+\) did not appear to be toxic demonstrated significant effect of N type in some species and not in others (Table 2).

With the exception of \(R.\) planktonicus, rates of growth (estimated from changes in cell abundance) were generally faster when growing on NH\(_4\)\(^+\) compared with NO\(_3\)\(^-\) as a sole source of N (Fig. 2, a-f). At a concentration of 1,000 \(\mu\)mole L\(^{-1}\) or below, cell-specific growth rates of \(T.\) weissflogii, \(C.\) minutissima and \(E.\) paludosa were 61%, 49% and 20%, respectively, greater on NH\(_4\)\(^+\) than NO\(_3\)\(^-\) (Fig. 2, a, c and d). These differences were significant for all three species (Table 2). At a concentration of 100 \(\mu\)mole L\(^{-1}\) and below, growth rates of \(F.\) capucina and \(A.\) ralfsii were 18% and 10% greater on NH\(_4\)\(^+\) than NO\(_3\)\(^-\) (Fig. 2, e and f). These differences in the growth rates with N type were not significant.

Table 1. Probabilities and F values (in parenthesis) resulting from two-way ANOVAs of \(F_v/F_m\), C-assimilation (mg C \(\cdot\) mg Chl \(^{-1}\) \(\cdot\) h \(^{-1}\)), growth rate (d \(^{-1}\)), Chl \(a\) (pg per cell), and N uptake (\(\mu\)mol N per cell) using species and N source as factors. Significant probabilities (\(\alpha \leq 0.05\)) is bold.

Parameter	Species (factor 1), df = 5	N Source (factor 2), df = 1	Interaction, df = 5	Residuals
\(F_v/F_m\)	\(<2.2 \times 10^{-16}\) (83)	0.051 (3.9)	\(7.88 \times 10^{-9}\) (11)	df = 114
C assimilation	\(7.2 \times 10^{-8}\) (15)	\(9.1 \times 10^{-6}\) (37)	\(1.6 \times 10^{-3}\) (93)	df = 78
Growth Rate	\(4.5 \times 10^{-18}\) (43)	0.120 (2.5)	\(7.2 \times 10^{-9}\) (11)	df = 114
Chl \(a\)	\(<2.2 \times 10^{-16}\) (836)	0.450 (0.55)	0.051 (3.3)	df = 880
N uptake	\(6.8 \times 10^{-6}\) (24)	0.850 (0.94)	0.060 (0.75)	df = 12
Radiococcus planktonicus had a 35% lower growth rate on NH$_4^+$ than NO$_3^−$/C$_0$ (Fig. 2b) which was significant (Table 2). In contrast with rates of cell-specific growth, four out of the six species exhibited higher rates of C assimilation when growing on NO$_3^−$/C$_0$ compared with NH$_4^+$ (Fig. 3, a–f). Both C. minutissima and R. planktonicus exhibited greater rates of C assimilation when growing on NO$_3^−$ than NH$_4^+$ below 3,000 µmoles · L$^{-1}$, but the difference was only significant in R. planktonicus (Table 2; Fig. 3, a and b). Entomoneis paludosa and T. weissflogii exhibited no significant difference in C assimilation with N source below 1,000 µmol · L$^{-1}$ and below, there was no difference in F$_v$/F$_m$ with N source in E. paludosa (Fig. 4c), but F$_v$/F$_m$ was significantly greater in T. weissflogii when growing on NH$_4^+$ than when growing on NO$_3^−$ (Fig. 4d). Below 200 µmol · L$^{-1}$, there was no impact of N source on F$_v$/F$_m$ in A. ralfsii or F. capucina. Above 200 µmol · L$^{-1}$, there was a significant negative effect of NH$_4^+$ concentration on F$_v$/F$_m$ ($F_{1,7}$ = 255, $P = 9.2 \times 10^{-7}$ for A. ralfsii and $F_{1,7}$ = 54, $P = 1.5 \times 10^{-4}$ for F. capucina) in both species (Fig. 4, e and f).

Patterns in F$_v$/F$_m$ with N source mirrored patterns in growth rates with N source (Figs. 2 and 4). In C. minutissima, F$_v$/F$_m$ was significantly greater when growing on NH$_4^+$ than when growing on NO$_3^−$. In contrast, F$_v$/F$_m$ in R. planktonicus was significantly greater when growing on NO$_3^−$ compared with NH$_4^+$ (Fig. 4, a and b). At 1,000 µmol · N L$^{-1}$ and below, there was no difference in F$_v$/F$_m$ with N source in E. paludosa (Fig. 4c), but F$_v$/F$_m$ was significantly greater in T. weissflogii when growing on NH$_4^+$ than when growing on NO$_3^−$ (Fig. 4d). Below 200 µmol · L$^{-1}$, there was no impact of N source on F$_v$/F$_m$ in A. ralfsii or F. capucina. Above 200 µmol · L$^{-1}$, there was a significant negative effect of NH$_4^+$ concentration on F$_v$/F$_m$ ($F_{1,7}$ = 255, $P = 9.2 \times 10^{-7}$ for A. ralfsii and $F_{1,7}$ = 54, $P = 1.5 \times 10^{-4}$ for F. capucina) in both species (Fig. 4, e and f).

Toxicity effects. Based on this six-species comparison, A. ralfsii and F. capucina were the most sensitive to NH$_4^+$ toxicity as evidenced by suppression in F$_v$/
Table 2. Probabilities and F-values (in parenthesis) resulting from within-species two-way ANOVAs of F/Fm, C-assimilation, and growth rate using N source and concentration as factors. Significant probabilities (α ≤ 0.05) in bold.

Species	df	Factor	F/Fm Carbon-assimilation	Growth rate
Chlorella	1	N type	2.26 × 10⁻² (51)	1.30 × 10⁻¹⁴ (273)
	5	Concentration	2.06 × 10⁻³ (5.3)	1.13 × 10⁻⁸ (15)
	5	Interaction	7.20 × 10⁻³ (6.3)	0.34 (1.2)
	24	Residuals		
Radiococcus	1	N type	3.25 × 10⁻⁷ (56)	1.08 × 10⁻⁶ (47)
	4	Concentration	0.52 (1.3)	0.080 (2.5)
	4	Interaction	0.550 (1.2)	0.056 (3.2)
	20	Residuals		
Entomoneis	1	N type	0.130 (2.6)	2.90 × 10⁻³ (12)
	3	Concentration	0.720 (0.3)	0.350 (1.2)
	3	Interaction	0.230 (1.7)	0.063 (3.8)
	16	Residuals		
Thalassiosira	1	N type	3.21 × 10⁻⁶ (41)	1.2 × 10⁻¹¹ (288)
	3	Concentration	0.053 (3.2)	0.052 (3.1)
	3	Interaction	0.051 (3.1)	0.220 (1.6)
	16	Residuals		
Asterionella	1	N type	0.930 (0.0)	3.6 × 10⁻⁸ (229)
	2	Concentration	0.560 (1.1)	0.072 (3.3)
	2	Interaction	0.510 (0.7)	0.052 (4.2)
	12	Residuals		
Fragilaria	1	N type	0.170 (1.9)	1.4 × 10⁻⁸ (526)
	2	Concentration	0.100 (2.4)	0.430 (0.9)
	2	Interaction	0.850 (0.2)	0.640 (0.5)
	12	Residuals		

* a3,000 μmoles N · L⁻¹ and below.
 * b1,000 μmoles N · L⁻¹ and below.
 * c200 μmoles N · L⁻¹ and below.

F/Fm, C assimilation, and growth, at higher concentrations of NH₄⁺ (Figs. 2–4). Suppression of F/Fm was evident after 1 h (data not shown) and significant after only 1 day in both species (Fig. 5, a and b). In *A. ralfsii*, suppression continued to increase linearly at the highest NH₄⁺ concentration with each day, whereas in *F. capucina* suppression increased until day 2 then leveled off (Fig. 5, a and b). Suppression was approximately linear as a function of NH₄⁺ concentration regardless of the day (Fig. 5, c and d). For *A. ralfsii*, the degree of suppression increased each day such that the steepest slope was observed on day 6 when >75% suppression occurred at the highest NH₄⁺ concentration. For *F. capucina*, the maximum degree of suppression was reached on day 2 (Fig. 5, c and d). Although suppression of F/Fm was linear with NH₄⁺ concentration above a concentration of 200 μmoles · L⁻¹, decrease in growth rate was not and F/Fm declined logarithmically as a function of growth rate decreases (Fig. 5e). Below F/Fm of 0.35, growth rates did not decrease further in either *A. ralfsii* or *F. capucina*. These data suggest that an F/Fm of 0.35 represents the point where minimal growth rates were reached (Fig. 5e).

The concentration of NH₄⁺ at which cell-specific growth was depressed by 50% occurred at ~350 μmoles NH₄⁺ · L⁻¹ and ~800 μmoles NH₄⁺ · L⁻¹, for *A. ralfsii* and *F. capucina*, respectively (Table S1 in the Supporting Information). *Asterionella ralfsii* was acutely sensitive at concentrations above 200 μmoles NH₄⁺ · L⁻¹ with an 88% decrease in growth rate at a concentration of 500 μmoles NH₄⁺ · L⁻¹. *Fragilaria capucina* was not as sensitive to NH₄⁺ toxicity exhibiting only a 14% decrease in growth rate at 500 μmoles NH₄⁺ · L⁻¹ but an 80% decrease at 1,000 μmoles NH₄⁺ · L⁻¹. *Entomoneis paludosa* and *T. weissflogii* were not sensitive to NH₄⁺ concentration at 1,000 μmoles NH₄⁺ · L⁻¹ or below. There was a 48% decrease in growth rate between 1,000 and 3,000 μmoles NH₄⁺ · L⁻¹ in *T. weissflogii*, with corresponding decreases in F/Fm and C assimilation (Figs. 2–4; Table S1). The chlorophytes *C. minutissima* and *R. planktonicus* were the two most tolerant strains to NH₄⁺ with a toxicity threshold ~3,000 μmoles NH₄⁺ · L⁻¹. Growth rates of *C. minutissima* were invariant with increases in NH₄⁺ concentration between 100 and 1,000 μmoles NH₄⁺ · L⁻¹, but increased 21% between 1,000 and 3,000 μmoles NH₄⁺ · L⁻¹. Growth rates of *R. planktonicus* increased 40% between 100 and 1,000 μmoles NH₄⁺ · L⁻¹, then decreased 30% between 1,000 and 3,000 μmoles · L⁻¹; however, at 3,000 μmoles NH₄⁺ · L⁻¹ rates were still 16% above those measured at 20 μmoles NH₄⁺ · L⁻¹ (Fig. 2; Table S1).

With the exception of *C. minutissima*, which evidenced an increase in the rate of growth at 3,000 μmoles N · L⁻¹ and a dissolved N:P ratio of 83, changes in the dissolved N:P ratio of the medium had no impact on C assimilation or growth.
rates in any of the species tested here below their toxicity thresholds (Table S2 in the Supporting Information). This was consistent with the effect of changes in N concentration (Table 2), demonstrating a lack of effect of changes in dissolved nutrient ratios, from 1 to 83, at non-limiting nutrient concentrations.

Effect of small, transient pulses of N on productivity. To test whether low additions of \(\text{NH}_4^+ \) would decrease productivity in cells growing on \(\text{NO}_3^- \), the effect of adding 5 \(\mu \text{moles} \ \text{NH}_4^+ \cdot \text{L}^{-1} \) on C assimilation was compared with the effect of adding 5 \(\mu \text{moles} \ \text{NO}_3^- \cdot \text{L}^{-1} \). The effect of \(\text{NH}_4^+ \) addition was either no different than that of \(\text{NO}_3^- \) addition, or it stimulated productivity. The former was true for \(C. \ minutissima, T. \ weissflogii, \) and \(F. \ capucina, \) whereas the latter was true for \(R. \ planktonicus, E. \ paludosa, \) and \(A. \ ralfsii \) (Fig. 6). Productivity was stimulated 32% by a transient addition of \(\text{NH}_4^+ \) compared to addition of \(\text{NO}_3^- \) in \(R. \ planktonicus; \) this was the largest difference among the six species assayed (Fig. 6).

DISCUSSION

\(\text{NH}_4^+ \) toxicity thresholds. The results from testing four species of diatoms and two species of chlorophytes exposed to a range of \(\text{NH}_4^+ \) concentrations demonstrated that only two of the species, \(A. \ ralfsii \) and \(E. \ capucina, \) exhibited toxicity effects at the concentrations of \(\text{NH}_4^+ \) tested here, and, that these effects were not evident below a concentration of 200 \(\mu \text{moles} \ \text{NH}_4^+ \cdot \text{L}^{-1}. \) This threshold was corroborated by three different endpoints including \(F_v/F_m. \)
carbon assimilation, and growth rate. As a consequence, it does not appear that toxicity to NH$_4^+$ provides a physiological explanation for why diatoms would potentially grow more slowly when exclusively using NH$_4^+$ compared with NO$_3^-$ at environmental concentrations of NH$_4^+$.

Above a concentration of 200 μmoles NH$_4^+$ · L$^{-1}$, changes in F$_v$/F$_m$ provided a rapid and reliable method of detecting the NH$_4^+$ toxicity response. Toxicity to NH$_4^+$ was manifested by a suppression of F$_v$/F$_m$ in a dose-dependent manner that was significant after 1 day, providing a substantial time savings over traditional 4-day growth bioassays to detect toxicity. In A. ralfsii and F. capucina, F$_v$/F$_m$ displayed a logarithmic relationship with growth rates, where minimal growth rates were reached at an F$_v$/F$_m$ of 0.35. Below this threshold, growth rates did not decrease further but F$_v$/F$_m$ rapidly decreased to near-zero suggesting that an F$_v$/F$_m$ of ~0.35 represented a point of “no return” for phytoplankton growth in the two cultures examined here. However, because F$_v$/F$_m$ cannot be compared in an absolute sense among species (or taxonomic groups) as F$_0$ may vary as a function of the accessory pigments or ratios of photosystems I and II (Schreiber 2004, Suggett et al. 2009), this threshold may not hold for other species of phytoplankton.

Recent studies suggest that the effect of NH$_4^+$ toxicity in phytoplankton is actually due to unionized NH$_3$ which competitively binds with the oxygen evolution complex, inhibits the water splitting reaction, and causes direct damage to the PSII reaction center protein D1 (Kallqvist and Svenson 2003, FIG. 3. Carbon assimilation (mg C · mg Chl$^{-1}$ · h$^{-1}$) in mid-exponential phase as a function of N concentration and N source for the chlorophytes (A) Chlorella minutissima, (B) Radiococcus planktonicus, and the estuarine diatoms (C) Entomoneis paludosa, (D) Thalassiosira weissflogii, and the freshwater diatoms (E) Asterionella ralfsii and (F) Fragilaria capucina. Each bar (black=NH$_4^+$ as the N source, grey=NO$_3^-$ as the N source) represents the mean and standard deviation of triplicate cultures.
Damage to PSII from NH₃ is accelerated in mutants lacking D1 protein repair enzymes, as well as under high light (Drath et al. 2008). In contrast with NH₄⁺, whose transport across the plasma membrane is tightly regulated by the transporter AMT1, NH₃ can diffuse freely into the cell (Loque et al. 2009). The fraction of total ammonia (NH₄⁺ + NH₃) that is comprised of NH₃ varies depending on temperature and pH, and increases substantially above pH 9.2 (Khoo et al. 1977). At a given temperature and pH, the amount of NH₃ increases with increased NH₄⁺ concentration; therefore Fv/Fm suppression and growth inhibition increases in a dose-dependent manner with NH₄⁺ concentration (Kallqvist and Svenson 2003, Drath et al. 2008). Based on our experiments it’s clear that lower growth rates observed in the chlorophyte *R. planktonicus* on NH₄⁺ compared with NO₃⁻ were not due to NH₄⁺ toxicity as the difference in the growth rate between NH₄⁺ and NO₃⁻ did not increase with increasing concentrations of NH₄⁺.

Given that 3%-6% of NH₄⁺ is unionized NH₃ at a salinity of 10, temperature of 15°C, and pH of 8.0-8.3 (i.e., Khoo et al. 1977), we calculate that *A. ralfsii* has a toxicity threshold of ~15-20 μmoles NH₃ · L⁻¹ and *F. capucina* has a toxicity threshold of 30-44 μmoles NH₃ · L⁻¹. Because we isolated all the species in these experiments at the same time, and cultured them under the same conditions, it is clear that the differences in the NH₄⁺ toxicity thresholds among them is due to inherent genetic differences, for example, in accordance with the efficiency of their D1 protein repair cycles, and not due to an acclimation response. Moreover, the toxicity thresholds differed...
according to taxa and agree with previously published thresholds in that chlorophytes are substantially more resistant to NH$_4^+$ toxicity than diatoms, although diatom thresholds vary widely (Collos and Harrison 2014 and references therein). In turn, diatoms appear more resistant to NH$_4^+$ toxicity than dinoflagellates and some raphidophytes that have relatively low NH$_4^+$ tolerance thresholds (Clark and Flynn 2002, Suksomjit et al. 2009, Collos and Harrison 2014).

Differences in growth rates on NH$_4^+$ and NO$_3^-$ While toxicity thresholds appear to vary according to taxa, differences in growth rates on NH$_4^+$ and NO$_3^-$ do not. Under the conditions in this study, the diatom _T. weissflogii_ and the chlorophyte _C. minutissima_ both grew nearly 50% faster on NH$_4^+$ compared with NO$_3^-$, The only isolate that demonstrated a significantly faster rate of growth on NO$_3^-$ compared with NH$_4^+$ was the chlorophyte _R. planktonicus_. Comparing the results obtained in this study with a number of similar culture investigations illustrates that variation in growth rates with NH$_4^+$ and NO$_3^-$ is highly species-specific (Table 3). Therefore, the notion that diatoms as a group grow better on NO$_3^-$ and members of other phytoplankton groups grow better on NH$_4^+$ is not borne out in these culture studies. It appears that most phytoplankton, including diatoms, grow faster when using NH$_4^+$ compared with NO$_3^-$ as a sole source of N for growth, but that this difference is typically on the order of $\leq 25\%$ (Table 3).

Although we did not test different strains of the same species in this study, others have found that differences in growth rate when using NH$_4^+$ compared to using NO$_3^-$ varies as much among strains within a species as among different species (Saker and Neilan 2001, Thessen et al. 2009). For example,
eight strains of the harmful cyanobacteria *Cylindrospermopsis raciborskii* grew on average 20% faster on NH$_4^+$ than they did on NO$_3^-$, but ranged from −33% to 103% depending on the strain (Saker and Neilan 2001). Similarly, percent differences in growth on NH$_4^+$ compared with NO$_3^-$ in five strains of the diatom *Pseudo-nitzschia fraudulenta* ranged from −17% to 67%, with an average of 15% faster growth on NH$_4^+$ compared with NO$_3^-$ (Thessen et al. 2009). Based on these data one cannot conclude that cyanobacteria, or chlorophytes, are at an advantage when growing on NH$_4^+$ because diatoms have the same advantage.

As a group, the diatoms in this study exhibited faster rates of growth compared to the chlorophytes. This difference in growth rates among taxonomic groups coupled with initial phytoplankton community composition may matter more for final phytoplankton community composition than initial composition of the N pool. This is difficult to test under natural conditions because NH$_4^+$ very rarely dominates the total N pool in marine systems. But, a few investigations from eutrophic coastal communities demonstrate that when that is the case, and diatoms are present in the initial assemblage, they outcompete other phytoplankton and form monospecific blooms (Admiraal 1977, Tada et al. 2001, Esparza et al. 2014). For example, blooms of the diatom *Skeletonema* sp. dominates eutrophic Dokai Bay, Japan, where NH$_4^+$ concentrations are typically >200 μmoles·L$^{-1}$ (Suksomjit et al. 2009, Tada et al. 2009). Similarly, NH$_4^+$ is the main source of N sustaining summer blooms of the diatoms *Skeletonema costatum*, *Thalassiosira* spp. and *Chaetoceros* spp. in Hong Kong coastal waters (Xu et al. 2009, 2012). Therefore, patterns observed in field investigations linking diatoms to NO$_3^-$ uptake are probably due to NH$_4^+$ being depleted more quickly, leaving only NO$_3^-$ at a high enough concentration at the time that diatom biomass starts to accumulate in the early stages of a bloom, and not because diatoms prefer NO$_3^-$ or grow faster on NO$_3^-$ than NH$_4^+$.

An interesting question is why would different phytoplankton species have evolved to grow at slightly different rates when using NH$_4^+$ vs. NO$_3^-$ as a sole source of N for growth? A common argument is that it is energetically more favorable for phytoplankton to grow on NH$_4^+$ compared with NO$_3^-$ because reductant does not need to be expended to reduce NO$_3^-$ to NH$_4^+$ before the N can be assimilated, saving the cell greater than 20% on energy costs (Syrett 1981, Thompson et al. 1989, Levassuer et al. 1993). This extra cost may be reflected in a greater photosynthetic quotient (mol O$_2$ evolved per CO$_2$ assimilated) or Chl a per cell (Raine 1983, Thompson et al. 1989). In addition to the energetic expenditure, reduction in NO$_3^-$ to NH$_4^+$ requires the processing of the N through an extra enzyme pathway, which at higher growth rates can lead to an enzymatic bottleneck. In turn, the bottleneck may result in lower N and protein contents, leading cells grown on NO$_3^-$ to appear more N stressed (Wood and Flynn 1995, Page et al. 1999) and exhibit lower growth rates (Paaache 1971, Thompson et al. 1989, Turpin 1991, Clark and Flynn 2000).

Dependence of NO$_3^-$ assimilation on carbon fixation. In contrast with growth rates, rates of mid-day carbon assimilation were similar or greater when phytoplankton grew on NO$_3^-$ as a sole source of N compared with NH$_4^+$. In addition, relative differences in daytime carbon assimilation were correlated with relative differences in growth rates among species when they were grown on NO$_3^-$ as a sole source of N but not with NH$_4^+$ (Fig. 7). One potential reason for these observations could be the tight regulation of NO$_3^-$ uptake by C-fixation (Flores et al. 1983, 2005, Lara and Romero 1986, Turpin 1991). Because reduction in NO$_3^-$ to NH$_4^+$ is an energy intensive process, phytoplankton cells do not take up NO$_3^-$ in the absence of C-fixation in order that cells lacking C skeletons for synthesis of amino acids will not carry out futile and costly NO$_3^-$ reduction (Turpin 1991, Flores et al. 2005, Mariscal et al. 2006, Sánz-Luque et al. 2015). As a result, rates of NO$_3^-$ uptake and C-fixation are tightly correlated, and occur during daytime when light is plentiful (Romero et al. 1985, Lara and Romero 1986). In contrast, more C may be fixed in darkness via phosphoenolpyruvate carboxylase in conjunction with anapleurotic C-fixation by cells growing on NH$_4^+$ than by cells growing on NO$_3^-$ (Syrett 1956, Guy et al. 1989). This and other factors may contribute to a more moderate association of rates of NH$_4^+$ uptake and daytime C-fixation (Lara and Romero 1986). In turn, this could explain the lack of correlation between growth rates and daytime C-assimilation rates among different species when growing on NH$_4^+$, and overall faster...
Table 3. Percent difference in growth rate, μ, of phytoplankton growing on NH$_4^+$ vs. NO$_3^-$ \([(\frac{\mu_{NH4}}{\mu_{NO3}}) - 1] \times 100\) as the sole source of N for growth.

Taxon	Species	Difference (%)	Source	Culture conditions
Diatom	Thalassiosira weissflogii	61.9	This study	Batch culture, 16°C, 85 μmol photons \cdot m$^{-2} \cdot$ s$^{-1}$ (L:D cycle)
Chlorophyte	Chlorella minutissima	49.7	This study	Batch culture, 16°C, 85 μmol photons \cdot m$^{-2} \cdot$ s$^{-1}$ (L:D cycle)
Diatom	Thalassiosira pseudonana	39.0	Clark and Flynn 2000	Batch culture, 16°C, 200 μmol photons \cdot m$^{-2} \cdot$ s$^{-1}$ (L:D cycle)
Raphidophyte	Heterosigma carteraea	31.0	Wood and Flynn 1995	Batch culture, 18°C, 50, 200, 350 μmol photons \cdot m$^{-2} \cdot$ s$^{-1}$ (L:D cycle)
Raphidophyte	Heterosigma carterae	29.5	Clark and Flynn 2000	Batch culture, 16°C, 200 μmol photons \cdot m$^{-2} \cdot$ s$^{-1}$ (L:D cycle)
Diatom	Pseudo-nitzschia callianthab	24.4	Thessen et al. 2009	Batch culture, 15°C, 150–200 μmol photons \cdot m$^{-2} \cdot$ s$^{-1}$ (L:D cycle)
Diatom	Skeletonema costatum	21.1	Tada et al. 2009	Batch culture, 21°C, 30°C, 150 μmol photons \cdot m$^{-2} \cdot$ s$^{-1}$ (L:D cycle)
Cyanobacteria	Cylindropermopos nicolorsb	20.7	Saker and Neilan 2001	Batch culture, 25°C, 50 μmol photons \cdot m$^{-2} \cdot$ s$^{-1}$ (L:D cycle)
Diatom	Entomoneis paludosa	20.3	This study	Batch culture, 16°C, 85 μmol photons \cdot m$^{-2} \cdot$ s$^{-1}$ (L:D cycle)
Dinoflagellate	Prorocentrum minimum	19.2	Fan et al. 2003	Semi-batch culture, 20°C, 100 μmol photons \cdot m$^{-2} \cdot$ s$^{-1}$ (L:D cycle)
Diatom	Frugulia capucina	18.5	This study	Batch culture, 16°C, 85 μmol photons \cdot m$^{-2} \cdot$ s$^{-1}$ (L:D cycle)
Chlorophyte	Dunaliella tertiolectac	18.1	Pasche 1971	Batch culture, 25°C, 55, 300 μmol photons \cdot m$^{-2} \cdot$ s$^{-1}$ (L:D cycle)
Haptophyte	Emiliania huxleyi	15.4	Strom and Bright 2009	Batch culture, 15°C, 150–200 μmol photons \cdot m$^{-2} \cdot$ s$^{-1}$ (L:D cycle)
Diatom	Pseudo-nitzschia multiseriesb	14.8	Thessen et al. 2009	Batch culture, 15°C, 150–200 μmol photons \cdot m$^{-2} \cdot$ s$^{-1}$ (L:D cycle)
Diatom	Thalassiosira pseudonana	13.8	Levasseur et al. 1993	Batch culture, 18°C, 170 μmol photons \cdot m$^{-2} \cdot$ s$^{-1}$ (Continuous light)
Diatom	Asterionella raftsi	10.5	This study	Batch culture, 16°C, 85 μmol photons \cdot m$^{-2} \cdot$ s$^{-1}$ (L:D cycle)
Raphidophyte	Heterosigma akashiwii	8.5	Herndon and Gochlan 2007	Batch culture, 15°C, 110 μmol photons \cdot m$^{-2} \cdot$ s$^{-1}$ (Continuous light)
Diatom	Thalassiosira weissflogii	8.5	Clark and Flynn 2000	Batch culture, 16°C, 200 μmol photons \cdot m$^{-2} \cdot$ s$^{-1}$ (L:D cycle)
Chlorophyte	Stichococcus bacillarisc	5.0	Clark and Flynn 2000	Batch culture, 16°C, 200 μmol photons \cdot m$^{-2} \cdot$ s$^{-1}$ (L:D cycle)
Dinoflagellate	Gymnodinium sanguinum	4.9	Levasseur et al. 1993	Batch culture, 18°C, 170 μmol photons \cdot m$^{-2} \cdot$ s$^{-1}$ (Continuous light)
Diatom	Thalassiosira pseudonanad	4.9	Parker and Ambrust 2005	Semi-Batch culture, 22°C, 50, 300 μmol photons \cdot m$^{-2} \cdot$ s$^{-1}$ (Continuous light)
Chlorophyte	Dunaliella tertiolectad	0.7	Levasseur et al. 1993	Batch culture, 18°C, 170 μmol photons \cdot m$^{-2} \cdot$ s$^{-1}$ (Continuous light)
Diatom	Pseudo-nitzschia multiseriesb	-2.8	Thessen et al. 2009	Batch culture, 15°C, 150–200 μmol photons \cdot m$^{-2} \cdot$ s$^{-1}$ (L:D cycle)
Haptophyte	Emiliania huxleyi	-4.0	Clark and Flynn 2000	Batch culture, 16°C, 200 μmol photons \cdot m$^{-2} \cdot$ s$^{-1}$ (L:D cycle)
Pelagophyte	Aureococcus anophagefferens	-5.4	Berg et al. 2008	Batch culture, 18°C, 45 μmol photons \cdot m$^{-2} \cdot$ s$^{-1}$ (L:D cycle)
Diatom	Thalassiosira weissflogii	-14.7	Fan et al. 2003	Semi-Batch culture, 20°C, 100 μmol photons \cdot m$^{-2} \cdot$ s$^{-1}$ (Continuous light)
Diatom	Chaetoceros gracilis	-15.2	Levasseur et al. 1993	Batch culture, 18°C, 170 μmol photons \cdot m$^{-2} \cdot$ s$^{-1}$ (Continuous light)
Chlorophyte	Radiococcus planktonicus	-25.0	This study	Batch culture, 16°C, 85 μmol photons \cdot m$^{-2} \cdot$ s$^{-1}$ (L:D cycle)
All Mean		13.5 ± 19		

aPercent difference calculated from two or more irradiance levels.

bPercent difference calculated based on a mix of strains of the same species.

cPercent difference calculated from carbon-specific growth rates, C_μ, at DIC ≥1 mM.
growth rates of cells grown on NH$_4^+$, as they fix additional C at night-time, compared with NO$_3^-$-grown cells. It is possible that the magnitude of these processes vary in a species-specific manner, giving rise to the variability in growth rate differences with NH$_4^+$ and NO$_3^-$ observed in Table 3. Adding complexity to this picture is the fact that some species of phytoplankton are able to assimilate NO$_3^-$ at night time (i.e., Clark et al. 2002), thereby grow faster on NO$_3^-$, which may help explain the observation of slightly greater growth rates on NO$_3^-$ compared with NH$_4^+$ for R. planktonicus in the present experiments.

Extrapolation of results from cultures grown on a single source of N to natural systems. While neither energetic considerations nor diel patterns in C and N assimilation may fully explain why most of the phytoplankton tested here exhibited faster rates of growth on NH$_4^+$ compared with NO$_3^-$, we question (i) how robust the patterns observed among species in these experiments are with variations in growth conditions (i.e., irradiance, temperature and N sufficiency) and (ii) how applicable the observed differences among species are to growth in natural systems where phytoplankton typically use more than one N source simultaneously. For example, N-uptake measurements during monospecific blooms (>90% of community composition comprised of one species) demonstrate that phytoplankton take up two to three different forms of N at once (Maestrini et al. 1982, 1986, Berg et al. 1997, 2001, Kudela and Cochlan 2000, Collos et al. 2005). Moreover, culture studies investigating uptake of phytoplankton on a single source of N versus multiple sources demonstrate that total N-uptake rate may be greater when multiple N sources are present at once compared with only one source (Lund 1987, Jauzein et al. 2008). This is consistent with our results with transient pulses of NO$_3^-$ or NH$_4^+$ in which C assimilation rates increased more when NH$_4^+$ was added (supplying cells with two different N sources) than when NO$_3^-$ was added (only one source of N present in culture) in NO$_3^-$ grown cultures. This indicates that not only is total N-uptake greater but C-assimilation may also be greater when multiple sources of N are available. If that is the case, growth rates may also be higher in the presence of multiple N sources and the utility of measuring growth rates in phytoplankton grown on single sources of N to predict competition among species may be limited. For the future it would be interesting to compare growth rates on multiple versus single sources of N, and also to monitor the hierarchy of N-uptake and depletion in the culture grown on multiple sources of N, to investigate differences among species that may be more applicable to natural conditions.

CONCLUSIONS

Experiments with diatoms freshly isolated from the Sacramento River and Suisun Bay demonstrate that none are sensitive to NH$_4^+$ at concentrations up to 200 µmoles NH$_4^+$/L, and some are not sensitive up to 1,000 µmoles NH$_4^+$/L. Therefore, while manifestations of NH$_4^+$ toxicity are apparent in these data, onset of toxicity is unlikely to occur under typical environmental conditions, even when taking into consideration changes in pH and temperature. At environmentally relevant concentrations of N, we demonstrate that differences in
growth rates calculated based on changes in cell abundance are detected in a number of species as a function of N source. Two diatom species and one chlorophyte grew significantly faster on NH$_4^+$ compared with NO$_3^-$, while a second chlorophyte grew significantly faster on NO$_3^-$ compared with NH$_4^+$. We show that in cases where growth rates are faster on NH$_4^+$ than they are on NO$_3^-$, the difference is not larger for chlorophytes compared with diatoms. This holds true for comparisons across a number of culture investigations suggesting that diatoms as a group will not be at a competitive disadvantage under natural conditions when NH$_4^+$ dominates the total N pool, and they will also not have a growth advantage when NO$_3^-$ is dominant, as long as N concentrations are sufficient. As demonstrated here, differences in growth rates among species, consistently higher in diatoms compared with the chlorophytes at 15°C–16°C, may play a greater role in determining competitive outcomes than variation in N source. These results have broad implications for evaluating phytoplankton community shifts in all estuarine systems where changes in N speciation are occurring, and particularly for high nutrient, low chlorophyll systems such as upper San Francisco Bay where resource managers are focusing on decreasing NH$_4^+$ concentrations specifically in an effort to boost growth of diatoms.

We sincerely thank Captains David Morgan and David Bell on the R/V Questuary and the other cruise participants for their support during the cruises in San Francisco Bay and the Sacramento River where we collected samples for phytoplankton isolations. We also thank three reviewers whose comments greatly improved this manuscript. This research was funded through the Interagency Ecological Program by the State and Federal Contractors Water Agency grant 13-34 to GMB and the USDA Bureau of Reclamation award R14AP00053 to RMK. Further support was provided through the California Water Resources Control Board Award 22-1509-5082 to RMK, the Central Contra Costa Sanitation District award 42218 to GMB and 40969 to RMK, the Central Contra Costa Sanitation District award 22-1509-5082 to RMK, the Sacramento Regional County Sanitation District award 90000094 to RMK. We show that in cases where growth rates are faster where resource managers are focusing on decreasing NH$_4^+$ concentrations specifically in an effort to boost growth of diatoms.

Admiral, W. 1977. Tolerance of estuarine benthic diatoms to high concentrations of ammonia, nitrite ion, nitrate ion, and orthophosphate. *Mar. Biol.* 43:307–15.

Alpine, A. E. & Golen, J. E. 1992. Trophic interactions and direct physical effects control phytoplankton biomass and production in an estuary. *Limnol. Oceanogr.* 37:946–55.

Benhelfen, M. J., Prasad, O., Kolber, Z. S., Babin, M. & Falkowski, P. G. 1998. Compensatory changes in photosystem II electron turnover rates protect photosynthesis from photoinhibition. *Photosynth. Res.* 58:259–68.

Berg, G. M., Balode, M., Purina, I., Bekere, S., Bechemin, C. & Maestrini, S. Y. 2003. Plankton community composition in relation to availability and uptake of oxidized and reduced nitrogen. *Aquat. Microb. Ecol.* 30:263–74.

Berg, G. M., Gilbert, P. M., Jorgenson, N. O. G., Balode, M. & Purina, I. 2001. Variability in inorganic and organic nitrogen uptake associated with riverine nutrient input in the Gulf of Riga, Baltic Sea. *Estuaries* 24:294–14.

Berg, G. M., Gilbert, P. M., Lomas, M. W. & Burford, M. 1997. Organic nitrogen uptake and growth by the chrysophyte *Aureococcus anophagefferens* during a brown tide event. *Mar. Biol.* 129:377–87.

Berg, G. M., Shrager, J., Glockner, G., Arrigo, K. R. & Grossman, A. R. 2008. Understanding nitrogen limitation in *Aureococcus anophagefferens* (Pelagophyceae) through RdNA and qRT-PCR analysis. *J. Phycol.* 44:1235–49.

Berg, G. M., Shrager, J., van Dijken, G., Mills, M. M., Arrigo, K. R. & Grossman, A. R. 2011. Responses of pahA, bph and pta genes to changes in irradiance in marine *Synechococcus* and *Prochlorococcus*. *Aquat. Microb. Ecol.* 65:1–14.

Chen, Y., Fan, C., Teubner, K. & Dokulil, M. 2003. Changes of nutrients and phytoplankton chlorophyll-a in a large shallow lake, Taihu, China: an 8-year investigation. *Hydrobiologia* 506:273–9.

Choi, C. J., Berges, J. A. & Young, E. B. 2012. Rapid effects of diverse toxic water pollutants on chlorophyll a fluorescence: variable responses among freshwater microalgae. *Water Res.* 46:2615–26.

Clark, D. R. & Flynn, K. J. 2000. The relationship between the dissolved inorganic carbon concentration and growth rate in marine phytoplankton. *Proc. R. Soc. Lond. B* 267:953–9.

Clark, D. R. & Flynn, K. J. 2002. N-assimilation in the noxious flagellate *Heterosigma carterae* (Raphidophyceae): dependence on light, N-source, and physiological state. *J. Phycol.* 38:505–12.

Clark, D. R., Flynn, K. J. & Owens, N. J. P. 2002. The large capacity for dark nitrogen assimilation in diatoms may overcome nitrate limitation of growth. *New Phytol.* 155:101–8.

Collos, Y. & Harrison, P. J. 2014. Acclimation and toxicity of high ammonium concentrations to unicellular algae. *Mar. Pollut. Bull.* 80:8–23.

Collos, Y., Vaquer, A., Bihent, B., Slawyk, G., García, N. & Souchu, P. 1997. Variability in nitrate uptake kinetics of phytoplankton communities in a Mediterranean coastal lagoon. *Est. Coast. Shelf. Sci.* 44:369–75.

Collos, Y., Vaquer, A. & Souchu, P. 2005. Acclimation of nitrate uptake by phytoplankton to high substrate levels. *J. Phycol.* 41:466–78.

Davidson, K., Gowen, R. J., Tett, P., Bresnan, E., Harrison, P. J., McKinney, A., Milligan, S., Mills, D. K., Silke, J. & Crooks, A.-M. 2012. Harmful algal blooms: how strong is the evidence that nutrient ratios and forms influence their occurrence? *Est. Coast. Shelf Sci.* 115:399–413.

Drabkova, M., Admiral, W. & Marsalek, B. 2007. Combined exposure to hydrogen peroxide and light – selective effects on cyanobacteria, green algae, and diatoms. *Environ. Sci. Tech.* 41:309–14.

Drath, M., Klotz, N., Batschauer, A., Marin, K., Novak, J. & Forchammer, K. 2008. Ammonia triggers photodamage of photosystem II in the cyanobacterium *Synechocystis* sp. strain PCC 6803. *Plant Physiol.* 147:206–15.

Dugdale, R. C., Wilkerson, F. P., Hogue, V. E. & Marchi, A. 2007. The role of ammonium and nitrate in spring bloom development in San Francisco Bay. *Est. Coast. Shelf. Sci.* 73:17–29.

Esparza, M. L., Farrell, A. E., Craig, D. J., Swanson, C., Dhaliwal, B. S. & Berg, G. M. 2014. Impact of atypical ammonium concentrations on phytoplankton abundance and composition in fresh versus estuarine waters. *Aquat. Biol.* 21:191–204.

Fan, C., Gilbert, P. M., Alexander, J. & Lomas, M. W. 2003. Characterization of urease activity in three marine phytoplankton species, *Aureococcus anophagefferens*, *Prorocentrum minimum*, and *Thalassiosira weissflogii*. *Mar. Biol.* 142:949–58.

Flores, E., Frias, J. E., Rubio, L. M. & Herrero, A. 2005. Photosynthetic nitrate assimilation in cyanobacteria. *Photosynth. Res.* 85:117–33.

Flores, E., Romero, J. M., Guerrero, M. G. & Losada, M. 1983. Regulatory interaction of photosynthetic nitrate utilization and carbon dioxide fixation in the cyanobacterium *Anacystis nidulans*. *Biochim. Biophys. Acta* 725:529–32.

Flynn, K. J. 2010. Do external resource ratios matter? Implications for modeling eutrophication events and controlling harmful algal blooms. *J. Marine Syst.* 85:170–80.
Kromkamp, J. C., Dijkman, N. A. & Peene, J. 2005. Estimating
678 GRY MINE BERG ET AL.
Kudela, R. M. & Cochlan, W. P. 2007. Nitrogen utilization by the
raphidophyte Heterosigma akashiwo: growth and uptake kinetics
in laboratory cultures. Harmful Algae 6:260–70.
Hillebrand, H., Durselen, C.-D., Kirschtel, D., Pollingher, U. &
Zohary, T. 1999. Biomass calculation for pelagic and benthic
microalgae. J. Phycol. 35:403–424.
Holmes, R. M., Aminot, A., Kerouel, R., Hooker, B. A. & Peter-
son, B. J. 1999. A simple and precise method for measuring
ammonium in marine and freshwater ecosystems. Can. J. Fish
Aquat. Sci. 56:1801–8.
Jassby, A. D. 2008. Phytoplankton in the upper San Francisco
Estuary: recent biomass trends, their causes and their
trrophic significance. San Francisco Estuary Watershed Sci. 61–
24.
Jauzein, C., Loureiro, S., Garces, E. & Collos, Y. 2008. Interactions
between ammonium and urea uptake by five strains of
Alexandrium catenella (Dinophyceae) in culture. Aquat. Microb.
Ecol. 53:271–80.
Kallepist, T. & Svensson, A. 2003. Assessment of ammonia toxicity
in test with the microalgae, Nephroelmis pyriformis. Chlorophyta.
Water Res. 37:477–84.
Kallepist, T. & Svensson, A. 2007. Assessment of ammonia toxicity
in tests with the microalgae, Nephroelmis pyriformis. Chlorophy-
tha. Water Res. 41:477–484.
Khoo, K. H., Gabler, C. H. & Bates, R. G. 1977. Thermodynamics
of the dissociation of ammonia ion in seawater from 5 to 40°C.
J. Soil. Chem. 6:281–90.
Kolber, Z. S., Zehr, J. & Falkowski, P. 1988. Effects of growth irra-
diance and nitrogen limitation on photosynthetic energy
conversion in photosystem II. Plant Physiol. 88:923–9.
Kristiansen, S., Ravot, T. & Naustvoll, L. J. 2001. Spring bloom
nutrient dynamics in the Oslofjord. Mar. Ecol. Prog. Ser. 219:41–9.
Kromkamp, J. C., Dijkman, N. A. & Peene, J. 2005. Estimating
phytoplankton primary productivity by means of PAM, FRRF,
oxogen exchange and C-fixation. In van der Est, A. & Bruce,
D. [Eds.] Proceedings 13th International Congress of Photosyn-
etic acclimation of marine phytoplankton to different nitro-
ogen sources. J. Phycol. 29:587–95.
Loque, D., Mora, S. I., Andrade, S. L. A., Pantoja, O. & Frommer,
W. B. 2009. Pore mutations in ammonium transporter AMT1
with increased electrogenic ammonium transport activity. J.
Biol. Chem. 284:24988–24995.
Lund, B. A. 1987. Mutual interference of ammonium, nitrate,
and urea on uptake of 15N sources by the marine diatom
Skeletonema costatum (Grev.) Cleve. J. Exp. Mar. Biol. Ecol.
113:167–80.
Maestrini, S. Y., Robert, J. M., Leftley, J. W. & Collos, Y. 1986.
Ammonium thresholds for simultaneous uptake of ammo-
nium and nitrate by oyster-pond algae. J. Exp. Mar. Biol.
Ecol. 102:75–98.
Maestrini, S. Y., Robert, J. M. & Traquet, I. 1982. Simultaneous
uptake of ammonium and nitrate by oyster-pond algae. Mar.
Biol. Lett. 3:43–53.
Malone, T. C., Conley, D. C., Fisher, T. R., Gilbert, P. M., Hard-
ing, L. W. & Sellner, K. G. 1996. Scales of nutrient-limited
phytoplankton productivity in Chesapeake Bay. Estuaries
19:371–85.
Mariscal, V., Mouline, P., Orsel, M., Miller, A. J., Fernandez, E.
& Galvan, A. 2006. Differential regulation of the Chlamydo-
monas Ear1 gene family by carbon and nitrogen. Protist
157:421–33.
Muller, R., Schreiber, U., Escher, B. I., Quayle, P., Bengston
Nash, S. M. & Mueller, J. F. 2008. Rapid exposure assessment
of SPII herbicides in surface water using a novel chlorophyll
a fluorescence imaging assay. Sci. Total Environ. 401:51–9.
Paasche, E. 1971. Effect of ammonia and nitrate on growth, pho-
tosynthesis, and ribulosediphosphate carboxylase content of
Dunaliella tertiolecta. Physiol. Plant. 25:294–9.
Page, S., Hipkin, C. R. & Flynn, K. J. 1999. Interactions between
nitrate and ammonium in Emiliania huxleyi. J. Exp. Mar. Biol.
Ecol. 236:307–19.
Parker, M. S. & Ambrust, E. V. 2005. Synergistic effects of light,
temperature, and nitrogen source on transcription of genes
for carbon and nitrogen metabolism in the centric diatom
Cylindrospermopsis raciborskii (Nostocales, Cyanophyceae) from
northern Australia. Appl. Microbiol. 67:1839–45.
Sanz-Luque, E., Chamizo-Ampudia, A., Llamas, A., Galvan, A. & Fernandez, E. 2015. Understanding nitrate assimilation and its regulation in microalgae. *Front. Plant Sci.* 6:899.

Schemel, L. E. 1984. Salinity, alkalinity and dissolved and particulate organic carbon in the Sacramento River water at Rio Vista, California, and at other locations in the Sacramento-San Joaquin Delta, 1980. USGS water resource investigations report 85-4059.

Schreiber, U. 2004. Pulse-amplitude (PAM) fluorometry and saturation pulse method. In Papagerorghiou, G. & Govindjee, [Eds.] *Chlorophyll Fluorescence: A Signature of Photosynthesis*. Kluwer, Dordrecht, pp. 279–319.

Sieracki, M. E., Verity, P. G. & Stoecker, D. K. 1993. Plankton community response to sequential silicate and nitrate depletion during the 1989 North Atlantic spring bloom. *Deep Sea Res. II* 40:213–25.

Six, C., Joubin, L., Partensky, F., Hintzendorff, J. & Garccarek, L. 2007. UV-induced phycobilisome dismantling in the marine picocyanobacterium *Synechococcus sp.* WH8102. *Photosynth. Res.* 92:75–86.

Strom, S. I. & Bright, K. J. 2009. Inter-strain differences in nitrogen use by the coccolithophore *Emiliania huxleyi* and consequences for predation by a planktonic ciliate. *Harmful Algae* 8:811–16.

Suggett, D. J., Moore, C. M., Hickman, A. E. & Geider, R. J. 2009. Interpretation of fast repetition rate (FRR) fluorescence: signatures of phytoplankton community structure versus physiological state. *Mar. Ecol. Prog. Ser.* 376:1–19.

Suksomjit, M., Tada, K., Ichimi, K. & Montani, S. 2009. High tolerance of phytoplankton for extremely high ammonium concentrations in the eutrophic coastal water of Dokai Bay (Japan). *La Mer* 47:75–88.

Syrett, P. J. 1956. The assimilation of ammonia and nitrate by nitrogen-starved cells of *Chlorella vulgaris*. IV. The dark fixation of carbon dioxide. *Physiol. Plant.* 9:165–71.

Syrett, P. J. 1981. Nitrogen metabolism of microalgae. *Can. Bull. Fish. Aquat. Sci.* 210:182–210.

Tada, K., Morishita, M., Hamada, K. I., Montain, S. & Yamada, M. 2001. Standing stock and production rate of phytoplankton and a red tide outbreak in heavily eutrophic embayment, Dokai Bay, Japan. *Mar. Pollut. Bull.* 42:1177–86.

Tada, K., Suksomjit, M., Ichimi, K., Funaki, Y., Montani, S., Yamada, M. & Harrison, P. J. 2009. Diatoms grow faster using ammonium in rapidly flushed eutrophic Dokai Bay, Japan. *J. Oceanogr.* 65:885–91.

Thessen, A. E., Bower, H. A. & Stoecker, D. K. 2009. Intracellular and inter-specific differences in *Pseudo-nitzschia* growth and toxicity while utilizing different nitrogen sources. *Harmful Algae* 8:792–810.

Thompson, P. A., Levasseur, M. E. & Harrison, P. J. 1989. Light-limited growth on ammonium vs. nitrate: what is the advantage for marine phytoplankton? *Limnol. Oceanogr.* 34:1014–24.

Turpin, D. H. 1991. Effects of inorganic N availability on algal photosynthesis and carbon metabolism. *J. Physiol.* 27:14–20.

Underwood, G. & Provot, L. 2000. Determining the environmental preferences of four estuarine epipelagic diatom taxa: growth across a range of salinity, nitrate, and ammonium conditions. *Eur. J. Phycol.* 35:173–82.

Welshmeyer, N. A. 1994. Fluorometric analysis of chlorophyll *a* in the presence of chlorophyll *b* and phaeo pigments. *Limnol. Oceanogr.* 39:1985–92.

Wood, G. & Flynn, K. J. 1995. Growth of *Heterosigma carterae* (Raphidophyceae) on nitrate and ammonium at three photon flux densities: evidence for N-stress in nitrate-growing cells. *J. Physiol.* 31:859–67.

Xu, J., Gilbert, P. M., Liu, H., Yin, K., Yuan, X., Chen, M. & Harrison, P. J. 2012. Nitrogen sources and rates of phytoplankton uptake in different regions of Hong Kong waters in summer. *Eur. J. Phycol.* 35:559–71.

Xu, J., Lee, J. H. W., Yin, K., Liu, H. B. & Harrison, P. J. 2011. Environmental response to sewage treatment strategies: Hong Kong’s experience in long term water quality monitoring. *Mar. Pollut. Bull.* 62:2775–87.

Xu, J., Yin, K., Ho, A. Y. T., Lee, J. H. W., Anderson, D. M. & Harrison, P. J. 2009. Nutrient limitation in Hong Kong waters inferred from comparison of nutrient ratios, bioassays and 32P turnover times. *Mar. Ecol. Prog. Ser.* 388:81–97.

Xu, J., Yin, K., Lee, J. H. W., Liu, H., Ho, A. Y. T., Yuan, X. & Harrison, P. J. 2010. Long-term and seasonal changes in nutrients, phytoplankton biomass, and dissolved oxygen in Deep Bay, Hong Kong. *Eur. J. Phycol.* 35:399–416.

Supporting Information

Additional Supporting Information may be found in the online version of this article at the publisher’s web site:

Figure S1. Map of San Francisco Bay, composed of four main subembayments: South Bay, Central Bay, San Pablo Bay, and Suisun Bay. The phytoplankton cultured for this study was isolated from Suisun Bay and the Sacramento River, a region denoted by the square.

Figure S2. Representative time course of changes in cell abundance (solid circle), Chl *a* (solid triangle), *F*_r/*F*<sub>m* (solid square), NH₄⁺ (open circle) during exponential growth in a culture (*Chlorella minutissima*) grown on low (20 μmoles NH₄⁺ · L^{−1}) and high (200 μmoles NH₄⁺ · L^{−1}) initial additions of NH₄⁺. Initial and final cell abundances were 2.12 × 10⁷ ± 3.21 × 10⁷ cells · L^{−1} and 5.05 × 10⁸ ± 5.9 × 10⁸ cells · L^{−1}, respectively. Initial and final Chl *a* concentration were 0.76 ± 0.7 μg · L^{−1} and 12.53 ± 5 μg · L^{−1}, respectively. Increase in Chl *a* over course of the experiment was 16-fold. Gray vertical line represents time point at which aliquots of the cultures were removed for determination of carbon fixation. Each data point represents the mean of three replicate cultures.

Table S1. Percent change in growth rates (relative to 20 μmoles NH₄⁺ · L^{−1}) with increasing concentrations of NH₄⁺. Fifty percent decrease in the growth rates of *Asterionella ralfsii* and *Fragilariopsis capucina* was calculated to occur at NH₄⁺ concentrations of 345 and ~762 μmoles · L^{−1}, respectively.

Table S2. Regressions of growth rate (d^{−1}) and Carbon assimilation (mg C · mg Chl^{−1} · h^{−1}) as a function of medium N:P ratio (mol:mol) for each species.