Rhizanthella: Orchids unseen

1 | INTRODUCTION

The author and naturalist, W. H. Hudson, wrote of an atheist who went to an orchid show and left believing in the devil (Young, 1947). For centuries, orchids have captured the imagination like no other plants. These are the masters of deception. From manipulating insects with pollination “obstacle courses”, to stealing food from other plants via parasitic associations with fungi, their extraordinary biology can excite and inspire—orchids are an antidote to plant blindness. Here we place focus on some of the most obscure and enigmatic plants in this fascinating family, belonging to the genus *Rhizanthella*: the world’s only underground flowers (see Movie S1).

Many orchids have evolved a mycoheterotrophic life history, a form of parasitism that is both elusive and poorly understood. Mycoheterotrophic plants obtain carbon from other photosynthetic plants through a shared mycorrhizal fungal network, rather than by photosynthesis. Some are very rare, grow in deep shade under leaf litter, and are easily overlooked (Thorogood, 2019). None more so, than the Australian underground orchids of the genus *Rhizanthella*, in which three of the four recognized taxa, remarkably, do not even emerge above the surface of the soil when flowering (Figure 1). The discovery of this remarkable genus in Western Australia in 1928 was an international sensation (Dixon, 2003; Dixon & Christenhusz, 2018) and underground orchids remain unique among flowering plants. All discoveries of *Rhizanthella gardneri* up to 1979 were accidental and resulted from clearing or farming activities (Hågsater & Dumont, 1996). In the absence of phylogenetic data, the taxonomy of the genus is tentative (Figure 2). Until recently, the genus *Rhizanthella* was considered, generally, to comprise three rare and local species in Australia: the eastern underground orchid, *Rhizanthella slateri* in New South Wales (Clements & Cribb, 1984; Rupp, 1932); the western underground orchid, *R. gardneri* in the central Wheatbelt (Rogers, 1928) and the poorly circumscribed Lamington underground orchid, *Rhizanthella omissa* on the Lamington Plateau (Jones & Clements, 2006). Very recently, *Rhizanthella johnstonii*, known only from near the southern coast of Western Australia, was described as distinct from *R. gardneri* (Dixon & Christenhusz, 2018), resolving what was long considered to be a disjunct distribution of this species across Western Australia (Rogers, 1928; Dixon & Christenhusz, 2018). Notwithstanding this discovery, the spatial separation of the genus *Rhizanthella* several thousand kilometers from east to west suggests that extant taxa may be relict species from a time before central Australia became arid (Delannoy, Fujii, Colas des Francs-Small, Brundrett, & Small, 2011). Research into the habitat characteristics of *R. gardneri* suggest that this species tolerates a range of conditions...
and may be more widespread than previously thought, given that there are extensive areas of suitable habitat across Southern and Western Australia (Bougoure, Brundrett, Brown, & Grierson, 2008). The rarity and subterranean life history of *Rhizanthella* suggest that new taxa could await discovery. Exploration surveys and phylogenetic data from across populations are required to resolve better, this cryptic genus. Surveys are complicated by the need for excavation, which involves careful removal of the top centimeter of soil to reveal the tips of the bracts (Figure 1d; Dixon, 2003). Indeed, locating the orchids is established to be difficult and unpredictable: searches between 1980 and 1984, involving 3,000 person-hours by volunteers, identified orchids in fewer than 4% of likely habitats (Dixon, 2003).

2 | EVOLUTION AND LIFE HISTORY

Mycoheterotrophy has evolved multiple times independently among flowering plants (Merckx, Bakkerb, Huysmansa, & Smets, 2009) and is particularly prominent among orchids (family Orchidaceae; Lam et al., 2018). Like other mycoheterotrophic orchids, *Rhizanthella* is parasitic, acquiring nutrients from a specific mycorrhizal fungus that forages for soil nutrients (i.e., nitrogen) and at the same time, dependent on an autotrophic host for a continuous supply of carbon (Bougoure, Brundrett, & Grierson, 2010; Warcup, 1985). Thus, they are completely devoid of photosynthesis; indeed the plastid genome (“plastome”) of *Rhizanthella* is established to be the smallest organelle genome described in land plants (Delannoy et al., 2011).

Underground orchid species appear to be ecologically distinct. For example, *R. slateri* occurs in relatively moist, shady eucalypt woodland of central-eastern Australia (Jones, 2006) and flowers above ground; *R. omissa* is recorded to grow in casuarina forests and flowers underground, as do *R. gardneri* and *R. johnstonii*, which are associated with broom bush (*Melaleuca*) thickets (*M. scalea*, *M. hamata* and *M. uncinata*; family Myrtaceae; Bougoure et al., 2008; Dixon & Christenhusz, 2018; Hágsater & Dumont, 1996)—unusually for mycoheterotrophic plants which are typically associated with damp, shady habitats. There is also evidence that *Rhizanthella* shows extreme specificity for particular species of mycorrhizal fungi (Bougoure, Ludwig, Brundrett, & Grierson, 2009). Host specificity is suggested to drive speciation in autotrophic (parasitic plants) more broadly, in which host-defined cryptic taxa can be overlooked because of reduced morphological features such as functional leaves (Thorogood, Rumsey, & Hiscock, 2009; Thorogood, Rumsey, Hiscock, & Harris, 2008). Data on the population genetics across the genus *Rhizanthella* are lacking, however the presence of genetically distinct host specific taxa, obscured by cryptic morphology, should not be discounted.

3 | REPRODUCTIVE BIOLOGY

Very little is known about the reproductive biology of underground orchids, and for species besides *R. gardneri*, the pollinators are virtually unknown. All species produce terminal capitula of small flowers enclosed by fleshy bracts. *Rhizanthella gardneri* is apparently clonal and persistent in a given location, and produces dormant daughter tubers (Dixon & Christenhusz, 2018; Hágsater & Dumont, 1996). Termites, fungus gnats, flies, and wasps have all been suggested to be pollinators of *R. gardneri* (George, 1980; Dixon, Pate, & Kuo, 1990; Dixon, 2003; Mursidawati, 2004; Swarts & Dixon, 2009). Interestingly, *Rhizanthella* is the only known angiosperm to be pollinated by termites (Dixon & Christenhusz, 2018). Ants are established to be the pollinators of the Mediterranean parasitic plant *Cytinus hypocistis* (de Vega, Arista, Ortiz, Herrera, & Talavera, 2009), which flowers at ground-level, and is also occasionally partially submerged by sand (CJ Thorogood & SJ Hiscock, pers. obs.). Meanwhile flies and fungus gnats are also known to pollinate other rare and inconspicuous mycoheterotrophic plants in the family Thismiaceae (Mar & Saunders, 2015; Woodward, Berry, Maas-van de Kamer, & Swing, 2007). The flowers of the parasitic plant *Hydnora triceps* also produces flowers beneath the soil surface from time to time, to which insects apparently are attracted through cracks in the ground (Musselman & Visser, 1989). Given that most species of *Rhizanthella* also bloom just below the soil surface, pollinators could access the

FIGURE 2 The floral structures (capitula) of the four described species of *Rhizanthella*: (a) *R. slateri*; (b) *R. omissa*; (c) *R. johnstonii*; (d) *R. gardneri* (images not to scale)
capitula in a similar fashion. Clearly further work is required to understand better the pollination syndrome of this unique genus of orchids.

The seeds of Rhizanthella are produced in fleshy fruits which take several months to mature; seed dispersal has never been observed, although native fossorial (underground-dwelling) marsupial mammals are suggested to be likely dispersal agents for R. gardneri (Dixon & Pate, 1984; Hägsater & Dumont, 1996; Mursidawati, 2004); these animals are now extinct in the region where the plant occurs (Swarts et al., 2009).

4 | CONCLUDING REMARKS

As orchids “unseen” Rhizanthella provides a fascinating narrative to engage people with plants. All species of Rhizanthella are scarce, have complex ecological dependencies and are of critical conservation concern. For example, just a handful of locations containing fewer than 20 individuals of R. gardneri exist, and the species is critically endangered (Delannoy et al., 2011; Swarts et al., 2009). Habitat fragmentation, reduced fire occurrence and the loss of seed dispersal agents all point to grave conservation concern for R. gardneri. Indeed, up to 95% of the probable range of the species has been cleared, and remnant bushland thickets containing the orchid are isolated, and in one case, privately owned (Hägsater & Dumont, 1996). Similarly, the newly described species R. johnstonii is known from just a single location, and is projected to decline in abundance (Dixon & Christenhusz, 2018). Climate change and soil salinization, together indicate a high level of extinction risk for Rhizanthella (Swarts et al., 2009). Taken together, these exceptionally unusual plants present a highly unusual challenge for conservation biologists, and their growth characteristics make it difficult to assign an accurate conservation status to them (Hägsater & Dumont, 1996). Botanic gardens have already played a major role in the conservation of R. gardneri to date through survey work and research into propagation and conservation management options (Swarts et al., 2009). However there are no conservation efforts in place currently, and the outlook for the survival of R. gardneri, at least, is precarious indeed. Further work should explore the population genetics, complex interdependencies, and the ecology and reproductive biology of the genus Rhizanthella. A combined approach of exploration surveys and ex situ conservation and re-introduction to suitable habitats should be an urgent priority to help conserve the world’s only known underground flowers.

KEYWORDS

achlorophyllous, heterotrophic plant, mycoheterotroph, orchid, Rhizanthella

REFERENCES

Bougoue, J., Brundrett, M., Brown, A., & Grierson, P. F. (2008). Habitat characteristics of the rare underground orchid Rhizanthella gardneri. Australian Journal of Botany, 56, 501–511. https://doi.org/10.1071/BT08031

Bougoue, J. J., Brundrett, M. C., & Grierson, P. F. (2010). Carbon and nitrogen supply to the underground orchid, Rhizanthella gardneri. New Phytologist, 186, 947–956. https://doi.org/10.1111/j.1469-8137.2010.03246.x

Bougoue, J. J., Ludwig, M., Brundrett, M., & Grierson, P. (2009). Identity and specificity of the fungi forming mycorrhizas with the rare mycoheterotrophic orchid Rhizanthella gardneri. Mycological Research, 113, 1097–1106. https://doi.org/10.1016/j.mycres.2009.07.007

Clements, M. A., & Cribb, P. J. (1984). The underground orchids of Australia. Curtis’s Botanical Magazine, 1, 84–91. https://doi.org/10.1111/j.1467-8748.1984.tb00187.x

de Vega, C., Arista, M., Ortiz, P. L., Herrera, C. M., & Talavera, S. (2009). The ant-pollination system of Cytinus hypocistis (Cytinaceae), a Mediterranean root holoparasite. Annals of Botany, 103, 1065–1075. https://doi.org/10.1093/aob/mcp049

Delannoy, E., Fujii, S., Colas des Francs-Small, C., Brundrett, M., & Small, I. (2011). Rampant gene loss in the underground orchid Rhizanthella gardneri highlights evolutionary constraints on plastid genomes. Molecular Biology and Evolution., 28(7), 2077–2086. https://doi.org/10.1093/molbev/msr028

Dixon, K. (2003). Rhizanthella gardneri Orchidaceae. Curtis’s Botanical Magazine: Blackwell Publishing Ltd, Oxford and Malden, USA.

Dixon, K. W., & Christenhusz, M. J. (2018). Flowering in darkness: A new species of subterranean orchid Rhizanthella (Orchidoideae; Diurideae) from Western Australia. Phytotaxa, 334(1), 075–079. https://doi.org/10.11646/phytotaxa.334.1.12

Dixon, K. W., & Pate, J. S. (1984). Biology and distributional status of Rhizanthella gardneri Rogers. The Western Australian Underground Orchid. Kings Park Research Notes No. 9. ISSN 0157-3403. Perth, Australia: Kings Park and Botanic Gardens.

Dixon, K. W., Pate, J. S., & Kuo, J. (1990). The Western Australian subterranean orchid, Rhizanthella gardneri Rogers. In J. Arditti (Ed.), Orchid biology: Reviews and Perspectives 5 (pp. 37–62). Portland, OR: Timber Press.

George, A. S. (1980). Rhizanthella gardneri R. Rogers—the underground orchid of Western Australia. American Orchid Society Bulletin, 49, 631–646.

Hägsater, E., & Dumont, V. (1996). Orchids: Status survey and conservation action plan. Gland, Switzerland: IUCN/SSC Orchid Specialist Group, IUCN.

Jones, D. L. (2006). A complete guide to native orchids of Australia including the island territories. Sydney, Australia: Reed New Holland Publishers.
Jones, D. L., & Clements, M. A. (2006). *Rhizanthella omissa*, a new species of underground orchid from southeastern Queensland. *Orchadian*, 15, 131–132.

Lam, V. K. Y., Darby, H., Merckx, V. S. F. T., Lim, G., Yukawa, T., Neubig, K. M., & Graham, S. W. (2018). Phylogenomic inference in extremis: A case study with mycoheterotroph plastomes. *American Journal of Botany*, 105(3), 480–494. https://doi.org/10.1002/ajb2.1070

Mar, S. S., & Saunders, R. M. K. (2015). *Thismia hongkongensis* (Thiimiaceae): A new mycoheterotrophic species from Hong Kong, China, with observations on floral visitors and seed dispersal. *PhytoKeys*, 46, 21–33. https://doi.org/10.3897/phytokeys.46.8963

Merckx, V., Bakkerb, F. T., Huysmansa, S., & Smets, E. (2009). Bias and conflict in phylogenetic inference of myco heterotrophic plants: A case study in Thiimiaceae. *Cladistics*, 25, 64–77. https://doi.org/10.1111/j.1096-0031.2008.00241.x

Mursidawati, S. (2004). Mycorrhizal association, propagation and conservation of the myco-heterotrophic orchid *Rhizanthella gardneri*. Master of Science Thesis, The University of Western Australia.

Musselman, L. J., & Visser, J. H. (1989). Taxonomy and natural history of *Hydnora* (Hydnoraceae). *Aliso*, 12, 317–326. https://doi.org/10.5642/aliso.19891202.09

Rogers, R. S. (1928). A new genus of Australian orchid. *Journal of the Royal Society of Western Australia*, 15, 1–7.

Rupp, H. M. R. (1932). Notes on New South Wales orchids. *Proceedings of the Linnean Society of New South Wales*, 57: 57–61.

Swarts, N. D., & Dixon, K. W. (2009). Perspectives on orchid conservation in botanic gardens. *Trends in Plant Science*, 14, 590–598. https://doi.org/10.1016/j.tips.2009.07.008

Thorogood, C. J. (2019). *Oxygyne*: An extraordinarily elusive flower. *Plants, People, Planet*, 1(2), 67–70. https://doi.org/10.1002/ppp3.26

Thorogood, C. J., Rumsey, F. J., & Hiscock, S. J. (2009). Host-specific races in the holoparasitic angiosperm *Orobanche minor*: Implications for speciation in parasitic plants. *Annals of Botany*, 103, 1005–1014. https://doi.org/10.1093/aob/mcp034

Thorogood, C. J., Rumsey, F. J., Hiscock, S. J., & Harris, S. A. (2008). Host-driven divergence in the parasitic plant *Orobanche minor* Sm. (Orobanchaceae). *Molecular Ecology*, 17, 4289–4303. https://doi.org/10.1111/j.1365-294X.2008.03915.x

Warcup, J. H. (1985). *Rhizanthella gardneri* (Orchidaceae), its Rhizoctonia endophyte and close associations with *Melaleuca uncinata* (Myrtaceae) in Western Australia. *New Phytologist*, 99, 273–280. https://doi.org/10.1111/j.1469-8137.1985.tb03656.x

Woodward, C. L., Berry, P. E., Maas-vande Kamer, H., & Swing, K. (2007). *Tiputinia foetida*, a new mycoheterotrophic genus of Thiimiaceae from Amazonian Ecuador, and a likely case of deceit pollination. *Taxon*, 56, 157–162. https://doi.org/10.2307/25065746

Young, A. (1947). A prospect of flowers. London, UK: Jonathan Cape.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.

How to cite this article: Thorogood CJ, Bougoure JJ, Hiscock SJ. *Rhizanthella*: Orchids unseen. *Plants, People, Planet*. 2019;1:153–156. https://doi.org/10.1002/ppp3.45