UNIVOQUE BASES OF REAL NUMBERS: SIMPLY NORMAL BASES, IRREGULAR BASES AND MULTIPLE RATIONALS

YU HU, YAN HUANG, AND DERONG KONG

Abstract. Given a positive integer M and a real number $x \in (0,1]$, we call $q \in (1, M+1]$ a univoque simply normal base of x if there exists a unique simply normal sequence $(d_i) \in \{0,1,\ldots,M\}^\mathbb{N}$ such that $x = \sum_{i=1}^{\infty} d_i q^{-i}$. Similarly, a base $q \in (1, M+1]$ is called a univoque irregular base of x if there exists a unique sequence $(d_i) \in \{0,1,\ldots,M\}^\mathbb{N}$ such that $x = \sum_{i=1}^{\infty} d_i q^{-i}$ and the sequence (d_i) has no digit frequency. Let $U_{SN}(x)$ and $U_{Ir}(x)$ be the sets of univoque simply normal bases and univoque irregular bases of x, respectively.

In this paper we show that for any $x \in (0,1]$ both $U_{SN}(x)$ and $U_{Ir}(x)$ have full Hausdorff dimension. Furthermore, given finitely many rationals $x_1, x_2, \ldots, x_n \in (0,1]$ so that each x_i has a finite expansion in base $M+1$, we show that there exists a full Hausdorff dimensional set of $q \in (1, M+1]$ such that each x_i has a unique expansion in base q.

1. Introduction

Non-integer base expansions were pioneered by Rényi [35] and Parry [34]. It was extensively studied after the surprising discovery by Erdös et al. [16, 17] that for any $k \in \mathbb{N} \cup \{\aleph_0\}$ there exist $q \in (1,2]$ and $x \in [0,1/(q-1)]$ such that x has precisely k different q-expansions. This phenomenon is completely different from the integer base expansions that each x has a unique expansion, except for countably many x having two expansions. In the literature of non-integer base expansions there is a great interest in unique expansions due to its close connection with open dynamical systems [15, 20] and kneading theory of unimodal maps or Lorentz maps [8, 19, 31].

Given a positive integer M and $q \in (1, M+1]$, a point $x \in [0,M/(q-1)]$ is called a univoque point in base q if there exists a unique sequence $(d_i) \in \{0,1,\ldots,M\}^\mathbb{N}$ such that

$$x = \sum_{i=1}^{\infty} \frac{d_i}{q^i} =: ((d_i))_q.$$ (1.1)

The infinite sequence (d_i) is called the (unique) expansion of x in base q. Throughout the paper we will fix the alphabet $\{0,1,\ldots,M\}$. Let \mathcal{U}_q denote the set of all univoque points in base q. De Vries and Komornik [11, 13] studied the topology of \mathcal{U}_q, and showed that \mathcal{U}_q is closed if and only if q does not belong to the topological closure of

$$\mathcal{U} := \{p \in (1, M+1] : 1 \in \mathcal{U}_p\}.$$
Each base \(p \in \mathcal{U} \) is called a univoque base of 1. It is known that \(\mathcal{U} \) is a Lebesgue null set of full Hausdorff dimension \([10, 11]\). Furthermore, it has a smallest element \(\min \mathcal{U} = q_{KL} \), called the Komornik-Loreti constant, which was shown to be transcendental \([3, 26]\). Its topological closure \(\overline{\mathcal{U}} \) is a Cantor set \([13, 25]\). Some local dimension properties of \(\mathcal{U} \) was studied in \([2]\). The set \(\mathcal{U} \) is also related to the bifurcation set of \(\alpha \)-continued fractions, kneading sequences of unimodal maps, and also the real slice of the boundary of the Mandelbrot set \([7]\).

Motivated by the study of \(\mathcal{U} \), Lü, Tan and Wu \([29]\) initiated the study of univoque bases of real numbers. Given \(x \geq 0 \), let
\[
\mathcal{U}(x) := \{ q \in (1, M + 1] : x \in U_q \}.
\]
Then \(\mathcal{U} = \mathcal{U}(1) \). Clearly, for \(x = 0 \) we have \(\mathcal{U}(0) = (1, M + 1] \), since 0 always has a unique expansion \(0^\infty = 00... \) in any base \(q \in (1, M + 1] \). When \(x \in (0, 1] \) and \(M = 1 \), Lü, Tan and Wu showed in \([29]\) that \(\mathcal{U}(x) \) is a Lebesgue null set but has full Hausdorff dimension. Dajani et al. \([9]\) showed that for \(x \in (0, 1] \) the algebraic difference \(\mathcal{U}(x) - \mathcal{U}(x) \) contains an interval. The third author and his coauthors \([27]\) studied the local dimension of \(\mathcal{U}(x) \), and showed that the Hausdorff dimension of \(\mathcal{U}(x) \) is strictly smaller than one for \(x > 1 \). Recently, Allaart and the third author \([2]\) described the smallest element of \(\mathcal{U}(x) \) for all \(x > 0 \) under the condition \(M = 1 \).

In this paper we focus on \(x \in (0, 1] \), and study those bases of \(\mathcal{U}(x) \) satisfying some statistical properties. Given \(x \in (0, 1] \), a base \(q \in (1, M + 1] \) is called a univoque simply normal base of \(x \) if \(q \in \mathcal{U}(x) \) and the unique expansion \((d_i) \in \{0, 1, \ldots, M\}^\infty \) of \(x \) in base \(q \) is simply normal. Let \(\mathcal{U}_{SN}(x) \) be the set of all univoque simply normal bases of \(x \). Then for any \(q \in \mathcal{U}_{SN}(x) \) the unique \(q \)-expansion \((d_i) \) of \(x \) has the same digit frequency, i.e.,
\[
\text{freq}_q((d_i)) := \lim_{n \to \infty} \frac{\# \{1 \leq i \leq n : d_i = b \}}{n} = \frac{1}{M + 1} \quad \forall \ b \in \{0, 1, \ldots, M\}.
\]
Here \# \(A \) denotes the cardinality of a set \(A \).

On the other hand, a base \(q \in (1, M + 1] \) is called a univoque irregular base of \(x \) if \(q \in \mathcal{U}(x) \) and the unique expansion \((d_i) \) of \(x \) in base \(q \) has no digit frequency. Let \(\mathcal{U}_{\ell}(x) \) be the set of all univoque irregular bases of \(x \). Then for any \(q \in \mathcal{U}_{\ell}(x) \) the unique expansion \((d_i) \) of \(x \) in base \(q \) satisfies
\[
\liminf_{n \to \infty} \frac{\# \{1 \leq i \leq n : d_i = b \}}{n} < \limsup_{n \to \infty} \frac{\# \{1 \leq i \leq n : d_i = b \}}{n} \quad \forall \ b \in \{0, 1, \ldots, M\}.
\]
Note that a sequence \((d_i) \) satisfying (1.2) is called essential non-normal in \([1]\).

It is clear that \(\mathcal{U}_{\ell}(x) \) and \(\mathcal{U}_{SN}(x) \) are disjoint subsets of \(\mathcal{U}(x) \). Our first result states that both \(\mathcal{U}_{SN}(x) \) and \(\mathcal{U}_{\ell}(x) \) have full Hausdorff dimension for \(0 < x \leq 1 \).

Theorem 1.1. For any \(x \in (0, 1] \) we have \(\dim_H \mathcal{U}_{SN}(x) = \dim_H \mathcal{U}_{\ell}(x) = 1 \).

Note that \(\mathcal{U}(x) \) consists of all \(q \in (1, M + 1] \) such that a given \(x \) has a unique \(q \)-expansion. Then it is natural to ask if we give finitely many points \(x_1, x_2, \ldots, x_\ell > 0 \), can we find a base
q ∈ (1, M + 1] such that each x_i has a unique expansion in base q? In general this q may not exist, since for example, if x_1 > 2 then the only base such that x_1 has a unique expansion is q = 1 + M/x_1 (see [27] Theorem 1.5). On the other hand, when x_1, x_2, . . . , x_ℓ ∈ (0, 1] are all rationals with a finite expansion in base M + 1, we show that there exists a full Hausdorff dimensional set of q ∈ (1, M + 1] such that each x_i has a unique q-expansion.

More precisely, let

\[D_M := \left\{ \sum_{i=1}^{n} \frac{d_i}{(M+1)^i} : d_i \in \{0, 1, \ldots, M\} \quad \forall 1 \leq i \leq n; \ n \in \mathbb{N} \right\}. \]

Then D_M is a dense subset of (0, 1]. Given finitely many points x_1, x_2, . . . , x_ℓ ∈ D_M, by constructing Cantor subsets of each \(U(x_i) \) and exploring their thicknesses we show that the intersection \(\cap_{i=1}^{\ell} U(x_i) \) has full Hausdorff dimension.

Theorem 1.2. For any x_1, . . . , x_ℓ ∈ D_M we have

\[\dim_H \bigcap_{i=1}^{\ell} U(x_i) = 1. \]

The rest of the paper is organized as follows. In Section 2 we recall some basic properties of univoque bases of real numbers. The proof of Theorem 1.1 will be presented in Section 3. To prove Theorem 1.2 we construct in Section 4 a sequence of Cantor subsets of U(x), and therefore, by using the thickness we show in Theorem 1.1 that the algebraic sum U(x) + λU(x) contains an interval for any x ∈ (0, 1] and λ ≠ 0. The proof of Theorem 1.2 is in Section 5.

In the final section we give some remarks on Theorems 1.1 and 1.2.

2. Univoque bases of real numbers

The study of univoque bases relies on symbolic dynamics (cf. [28]). Given M ≥ 1, let \{0, 1, . . . , M\}^\mathbb{N} be the set of all infinite sequences \((d_i) = d_1d_2 \ldots \) with each digit d_i from the alphabet \{0, 1, . . . , M\}. By a word we mean a finite string of digits over \{0, 1, . . . , M\}. Denote by \{0, 1, . . . , M\}^\ast the set of all finite words including the empty word \(\epsilon \). For two words c = c_1 . . . c_m and d = d_1 . . . d_n we write cd = c_1 . . . c_md_1 . . . d_n for their concatenation. In particular, for any k ∈ \mathbb{N} we denote by \(c^k \) the k-fold concatenation of c with itself, and by c^\infty the periodic sequence which is obtained by the infinite concatenation of c with itself.

Throughout the paper we will use lexicographical order \(<, \prec, \succ \) or \(\succ \) between sequences in \{0, 1, . . . , M\}^\mathbb{N}. For example, we say \((i_n) \succ (j_n) \) if \(i_1 > j_1 \), or there exists \(n \in \mathbb{N} \) such that \(i_1 . . . i_n = j_1 . . . j_n \) and \(i_{n+1} > j_{n+1} \). We write \((i_n) \succeq (j_n) \) if \((i_n) \succ (j_n) \) or \((i_n) = (j_n) \). Similarly, we say \((i_n) \prec (j_n) \) if \((j_n) \succ (i_n) \), and say \((i_n) \preceq (j_n) \) if \((j_n) \succeq (i_n) \). Equipped with the metric \(\rho \) defined by

\[\rho((i_n), (j_n)) = (M + 1)^{-\inf\{n \geq 1 : i_n \neq j_n\}} \]

(2.1)
the symbolic space \(\{0,1,\ldots,M\}^\mathbb{N} \) becomes a compact metric space. One can verify that the induced topology by the metric \(\rho \) coincides with the order topology on \(\{0,1,\ldots,M\}^\mathbb{N} \).

Given \(x \in (0,1] \) and \(q \in (1, M + 1] \), let

\[
\Phi_x(q) = a_1(x,q)a_2(x,q)\ldots \in \{0,1,\ldots,M\}^\mathbb{N}
\]

be the lexicographically largest \(q \)-expansion of \(x \) not ending with \(0^\infty \), called the quasi-greedy \(q \)-expansion of \(x \). In particular, for \(x = 1 \) we reserve the notation \(\alpha(q) = (\alpha_i(q)) \) for the quasi-greedy \(q \)-expansion of \(1 \). The following property for the quasi-greedy expansion \(\Phi_x(q) \) was proven in [12, Lemma 2.3 and Lemma 2.5].

Lemma 2.1. Let \(x \in (0,1] \). The map \(\Phi_x : (1,M + 1] \to \{0,1,\ldots,M\}^\mathbb{N} \); \(q \mapsto \Phi_x(q) \) is left continuous under the metric \(\rho \), and is strictly increasing with respect to the lexicographical order. In particular, for \(x = 1 \) the map \(q \mapsto \alpha(q) \) is bijective from \((1,M + 1]\) to the set

\[
\left\{ (a_i) \in \{0,1,\ldots,M\}^\mathbb{N} : 0^\infty \prec a_{n+1}a_{n+2} \ldots \preceq a_1a_2 \ldots \quad \forall \ n \geq 0 \right\}.
\]

Given \(x \in (0,1] \), recall that \(\mathcal{U}(x) \) consists of all univoque bases \(q \in (1,M + 1] \) of \(x \). When \(M = 1 \), the infimum of \(\mathcal{U}(x) \) was characterized in [2]. For a general \(M \geq 1 \) we still have the following lower bound.

Lemma 2.2. For any \(x \in (0,1] \) we have

\[
\inf \mathcal{U}(x) \geq q_G(M) \geq \frac{M}{2} + 1,
\]

where

\[
q_G(M) := \begin{cases}
\frac{k + 1}{2 + \sqrt{1+6k+8}} & \text{if } M = 2k, \\
\frac{k + 1}{2 - \sqrt{1+6k+8}} & \text{if } M = 2k + 1.
\end{cases}
\]

Proof. Note by [6] that for \(q \in (1,q_G(M)) \) we have \(\mathcal{U}_q = \{0,M/(q-1)\} \). Observe that \(q_G(M) \in \left[\frac{M}{2} + 1,M \right) \). So, if \(x \in (0,1] \cap \mathcal{U}_q \), then we must have \(q > q_G(M) \). This implies \(\inf \mathcal{U}(x) \geq q_G(M) \) for any \(x \in (0,1] \). \(\square \)

For \(x \in (0,1] \) let

\[
\mathcal{U}(x) := \Phi_x(\mathcal{U}(x)) = \{ \Phi_x(q) : q \in \mathcal{U}(x) \}.
\]

Then \(\Phi_x \) is a bijective map from \(\mathcal{U}(x) \) to \(\mathcal{U}(x) \). Furthermore, the following property of \(\Phi_x \) on \(\mathcal{U}(x) \) was shown in [27, Proposition 3.1 and Proposition 3.3].

Lemma 2.3. Let \(x \in (0,1] \). Then the map \(\Phi_x : \mathcal{U}(x) \to \mathcal{U}(x) \) is locally bi-Hölder continuous under the metric \(\rho \) in \(\{0,1,\ldots,M\}^\mathbb{N} \). Furthermore, for any \(1 < a < b < M + 1 \) we have

\[
\frac{\dim_H \Phi_x(\mathcal{U}(x) \cap (a,b))}{\log b} \leq \dim_H(\mathcal{U}(x) \cap (a,b)) \leq \frac{\dim_H \Phi_x(\mathcal{U}(x) \cap (a,b))}{\log a}.
\]
Here and throughout the paper we keep using base $M + 1$ logarithms. In view of Lemma 2.3 to study the fractal properties of $\mathcal{U}(x)$ and its subsets $\mathcal{U}_{SN}(x), \mathcal{U}_I(x)$ it suffices to study their symbolic analogues

$$U(x) = \Phi_x(\mathcal{U}(x)), \quad U_{SN}(x) = \Phi_x(\mathcal{U}_{SN}(x)) \quad \text{and} \quad U_I(x) = \Phi_x(\mathcal{U}_I(x)).$$

The following result was essentially obtained in [29, Section 4] (see also, [27, Lemma 4.2]).

Lemma 2.4. Given $x \in (0, 1]$, let $(\varepsilon_i) = \Phi_x(M + 1)$ be the quasi-greedy expansion of x in base $M + 1$. Then there exist a word w, a non-negative integer N and a strictly increasing sequence $\{N_j\}_{j=1}^{\infty} \subset \mathbb{N}$ such that

$$U_{N_j}(x) \subset U(x) \quad \text{for all} \quad j \geq 1,$$

where

$$U_{N_j}(x) := \{\varepsilon_1 \ldots \varepsilon_{N+N_j} w d_1 d_2 \ldots : d_{n+1} \ldots \varepsilon_{N_j} \notin \{0^{N_j}, M^{N_j}\} \quad \forall \ n \geq 0 \}.$$

In particular, if $x \in D_M$, that is $(\varepsilon_i) = \Phi_x(M + 1) = \varepsilon_1 \ldots \varepsilon_m M^\infty$ for some $m \geq 1$, then we can choose $w = \varepsilon, N = m$ and $N_j = m + j$.

3. Univoque simply normal bases and univoque irregular bases

Let $x \in (0, 1]$. Recall that $\mathcal{U}_{SN}(x)$ consists of all $q \in \mathcal{U}(x)$ such that x has a unique q-expansion which is simply normal. Furthermore, we recall from (1.2) that $\mathcal{U}_I(x)$ consists of all $q \in \mathcal{U}(x)$ such that x has a unique q-expansion with no digit frequency. Clearly, $\mathcal{U}_{SN}(x)$ and $\mathcal{U}_I(x)$ are disjoint subsets of $\mathcal{U}(x)$. Note that $\mathcal{U}(x)$ is a Lebesgue null set of full Hausdorff dimension. In this section we will prove Theorem 1.1 that $\dim H \mathcal{U}_{SN}(x) = \dim H \mathcal{U}_I(x) = \dim H \mathcal{U}(x) = 1$ for all $x \in (0, 1]$.

3.1. Univoque simply normal bases

First we consider the univoque simply normal bases.

Proposition 3.1. For any $x \in (0, 1]$ we have $\dim_H \mathcal{U}_{SN}(x) = 1$.

Our strategy to prove Proposition 3.1 is to construct a sequence of subsets $\{\mathcal{U}_{SN,j}(x)\}_{j=1}^{\infty}$ in $\mathcal{U}_{SN}(x)$ such that $\dim_H \mathcal{U}_{SN,j}(x) \to 1$ as $j \to \infty$. In view of Lemma 2.3 we can do this construction in the symbolic space. For $j \geq 1$ let $U_{N_j}(x)$ be the subset of $U(x)$ defined as in Lemma 2.4. Without loss of generality we assume $N_1 > 6M$, since otherwise we can delete the first few terms from the sequence $\{N_j\}_{j=1}^{\infty}$. In the following we construct for each $j \geq 1$ a subset $U_{SN,j}(x)$ of $U_{N_j}(x) \cap U_{SN}(x)$.

Take $j \geq 1$. Then $N_j \geq N_1 > 6M$. For $k \geq 0$ let

$$m_k = 2^k (M + 1) \lfloor \frac{N_j}{3} \rfloor,$$
where \(|r|\) denotes the integer part of a real number \(r\). Now for \(k \geq 0\) let \(\mathcal{N}_k\) be the set of all vectors \(\vec{n}_k := (n_{k,0}, n_{k,1}, \ldots, n_{k,M})\) satisfying

\[
\sum_{b=0}^{M} n_{k,b} = m_k, \quad \text{and} \quad n_{k,b} \in \left\{ \frac{m_k}{M+1}, \frac{m_k}{M+1} - 1 \right\} \quad \forall \ 0 \leq b < M.
\]

It is easy to see that \(#\mathcal{N}_k = 2^M\) for all \(k \geq 0\). Furthermore, for any \(\vec{n}_k \in \mathcal{N}_k\) we have

\[
(3.2) \quad \left|\frac{n_{k,b}}{m_k} - \frac{1}{M+1}\right| \leq \frac{M}{m_k} \quad \forall \ b \in \{0, 1, \ldots, M\}.
\]

So \(\frac{\vec{n}_k}{m_k}\) is a \((M + 1)\)-dimension probability vector with each element approximately the same. Note that \(m_k\) and \(\mathcal{N}_k\) both depend on \(j\). In the following we define the sets \(D_{j,k}, k \geq 0\) recursively, which will be used to construct our set \(U_{SN,j}(x)\).

First we define \(D_{j,0}\). For a vector \(\vec{n}_0 = (n_{0,0}, n_{0,1}, \ldots, n_{0,M}) \in \mathcal{N}_0\) let

\[
D(\vec{n}_0) := \{d_1 \ldots d_{m_0} : \xi_b(d_1 \ldots d_{m_0}) = n_{0,b} \ \forall \ b \in \{0, 1, \ldots, M\}\},
\]

where \(\xi_b(\vec{c})\) denotes the number of digit \(b\) in the word \(\vec{c}\). Then \(D(\vec{n}_0)\) consists of all words of length \(m_0\) in which each digit \(b\) occurs precisely \(n_{0,b}\) times. The set \(D_{j,0}\) is defined by

\[
D_{j,0} := \bigcup_{\vec{n}_0 \in \mathcal{N}_0} D(\vec{n}_0).
\]

Next suppose \(D_{j,k-1}\) has been defined for some \(k \geq 1\). We define \(D_{j,k}\) recursively. Note by (3.1) that \(m_k = 2m_{k-1}\). For \(\vec{n}_k = (n_{k,0}, n_{k,1}, \ldots, n_{k,M}) \in \mathcal{N}_k\) let

\[
D(\vec{n}_k) := \{d_1 \ldots d_{m_k} \in D_{j,k-1} \times D_{j,k-1} : \xi_b(d_1 \ldots d_{m_k}) = n_{k,b} \ \forall \ b \in \{0, 1, \ldots, M\}\},
\]

and set

\[
D_{j,k} := \bigcup_{\vec{n}_k \in \mathcal{N}_k} D(\vec{n}_k).
\]

Since \(\mathcal{N}_k\) consists of \(2^M\) vectors, one can verify that

\[
(3.3) \quad \#D_{j,k} \geq \sum_{\vec{n}_k \in \mathcal{N}_k} \#D(\vec{n}_k) \geq 2^M \min_{\vec{n}_k \in \mathcal{N}_k} \#D(\vec{n}_k) \geq 2^M \left(\min_{\vec{n}_0 \in \mathcal{N}_0} \#D(\vec{n}_0) \right)^{2^k} = 2^M \left(\min_{\vec{n}_0 \in \mathcal{N}_0} \left(\frac{m_0}{\vec{n}_0} \right) \right)^{2^k},
\]

where \(\left(\frac{m_0}{\vec{n}_0} \right) = \left(\frac{m_0}{n_{0,0}, n_{0,1}, \ldots, n_{0,M}} \right)\) is a multinomial coefficient, and the second inequality holds because each block in \(D(\vec{n}_k)\) belongs to \((D_{j,0})^{2^k}\).

Given \(x \in (0, 1]\), let \((\varepsilon_i) = \Phi_x(M + 1)\). Based on the sets \(D_{j,k}, k \geq 0\) we define

\[
U_{SN,j}(x) := \{\varepsilon_1 \ldots \varepsilon_{N+N_j} \mathbf{w} \mathbf{d}_0 \mathbf{d}_1 \ldots : \mathbf{d}_k \in D_{j,k} \ \forall \ k \geq 0\},
\]

where \(N, N_j\) and \(\mathbf{w}\) are defined as in Lemma (2.4).
Lemma 3.2. Let $x \in (0, 1]$. Then for any $j \geq 1$ we have $U_{SN,j}(x) \subset U_{N_j}(x) \cap U_{SN}(x)$.

Proof. Note by our construction that each word $d_k \in D_{j,k}$ has length $m_k = 2^k m_0$ and $d_k \in (D_{j,0})^{2^k}$. Furthermore, observe that for each $d_0 \in D_{j,0}$ the lengths of consecutive zeros and consecutive Ms in d_0 are both bounded by $\lceil N_j/3 \rceil + M$, which is strictly smaller than the length of d_0. So, the lengths of consecutive zeros and consecutive Ms in each $d_k \in D_{j,k}$ should be bounded by

$$2 \left(\lceil N_j/3 \rceil + M \right) \leq \frac{2N_j}{3} + 2M < N_j,$$

where the last inequality holds since $N_j > 6M$. Therefore, by Lemma 2.4 it follows that $U_{SN,j}(x) \subset U_{N_j}(x)$.

To complete the proof we only need to show that each sequence in $U_{SN,j}(x)$ has equal digit frequency. Note that the digit frequency of a sequence is determined by its tail sequences. So, by using (3.2) and that $m_k \to \infty$ as $k \to \infty$ one can verify that $U_{SN,j}(x) \subset U_{SN}(x)$. □

Proof of Proposition 3.1. Let $\gamma_j = \max \gamma(N_j)$. Note by Lemma 2.4 that $\Phi_x(\gamma_j) \not\prec \Phi_x(M + 1)$ as $j \to \infty$. Then by Lemmas 2.1 and 2.3 it gives that $\gamma_j \not\prec M + 1$ as $j \to \infty$. By Lemma 2.3, Lemma 3.2 and [18] Theorem 2.1 it follows that

$$\dim_H U_{SN}(x) \geq \frac{\dim_H U_{SN}(x)}{\log \gamma_j} \geq \frac{\dim_H U_{SN,j}(x)}{\log \gamma_j},$$

$$= \liminf_{n \to \infty} \frac{\log \prod_{k=0}^n \#D_{j,k}}{\sum_{k=0}^n m_k \log \gamma_j} = \liminf_{n \to \infty} \frac{\sum_{k=0}^n \log \#D_{j,k}}{m_0 \sum_{k=0}^n 2^k \log \gamma_j} \geq \frac{(n + 1) \log 2^M + \sum_{k=0}^n 2^k \log \left(\frac{m_0}{\bar{n}_0^*} \right)}{m_0 \sum_{k=0}^n 2^k \log \gamma_j} = \frac{\log \left(\frac{m_0}{\bar{n}_0^*} \right)}{m_0 \log \gamma_j},$$

where the last inequality follows by (3.3) and $\left(\frac{m_0}{\bar{n}_0} \right) := \min_{i \in \delta} \left(\frac{m_0}{\bar{n}_0^*} \right)$. Note that $\left(\frac{m_0}{\bar{n}_0^*} \right) = \mathop{\text{min}}_{(n_0,0), (n_0,1), \ldots, (n_0,M)}$ and $m_0 = m_0(j) = (M + 1) \left\lfloor \frac{N_j}{3} \right\rfloor \to \infty$ as $j \to \infty$. By using $\sum_{b=0}^M n_{0,b}^* = m_0$ and the Stirling’s formula that $\log n! = n \log n - n + O(\log n)$ as $n \to \infty$, it follows that

$$\frac{\log \left(\frac{m_0}{\bar{n}_0^*} \right)}{m_0 \log \gamma_j} = \frac{\log(m_0!) - \sum_{b=0}^M \log(n_{0,b}^*)}{m_0 \log \gamma_j},$$

$$= \frac{m_0 \log m_0 - \sum_{b=0}^M n_{0,b}^* \log n_{0,b}^* + O(\log m_0)}{m_0 \log \gamma_j} = \frac{1}{\log \gamma_j} \left(- \sum_{b=0}^M \frac{n_{0,b}^*}{m_0} \log \frac{n_{0,b}^*}{m_0} + O \left(\frac{\log m_0}{m_0} \right) \right).$$
Observe by (3.2) that for any \(b \in \{0, 1, \ldots, M\} \),
\[
\left| \frac{n^{*}_{0,b}}{m_{0}} - \frac{1}{M+1} \right| \leq \frac{M}{m_{0}} = \frac{M}{(M+1)\left\lfloor \frac{N}{M} \right\rfloor} \to 0 \quad \text{as} \quad j \to \infty.
\]
Furthermore, \(\gamma_{j} \to M + 1 \) as \(j \to \infty \). So by (3.3) and (3.5) we conclude that
\[
\dim_{H} \mathcal{U}_{SN}(x) \geq \frac{1}{\log \gamma_{j}} \left(-\sum_{b=0}^{M} \frac{n^{*}_{0,b}}{m_{0}} \log \frac{n^{*}_{0,b}}{m_{0}} + O\left(\frac{\log m_{0}}{m_{0}} \right) \right) \to 1 \quad \text{as} \quad j \to \infty.
\]
This completes the proof. \(\square \)

3.2. Univoque irregular bases

Now we consider the univoque irregular bases.

Proposition 3.3. For any \(x \in (0,1] \) we have \(\dim_{H} \mathcal{U}_{I_{r}}(x) = 1 \).

To prove Proposition 3.3 we will construct a sequence of subsets of \(\mathcal{U}_{I_{r}}(x) \) whose Hausdorff dimension can be arbitrarily close to one. In view of Lemma 2.3 it suffices to construct subsets in \(U_{I_{r}}(x) = \Phi_{x}(\mathcal{U}_{I_{r}}(x)) \). Recall from Lemma 2.4 that for any \(j \geq 1 \),
\[
U_{N_{j}}(x) = \{ \varepsilon_{1} \ldots \varepsilon_{N+M_{j}}w_{d_{1}}d_{2} \ldots : d_{n+1} \ldots d_{n+M_{j}} \notin \{0^{N_{j}}, M^{N_{j}}\} \quad \forall \ n \geq 0 \}
\]
is a subset of \(U(x) \).

First we assume \(M \geq 2 \). For \(k \geq 0 \) let \(\Delta_{j,k} \) be the set of all length \(2^{k}(M+1)N_{j}(N_{j}+1) \) words of the form
\[
(3.6) \quad c_{1} \ldots c_{2^{k}(M+1)N_{j}^{2}}(0^{N_{j}-1})^{2^{k}}(1^{N_{j}})^{2^{k}} \ldots ((M-1)^{N_{j}})^{2^{k}}(M^{N_{j}-1}(M-1))^{2^{k}},
\]
where \(c_{i} \in \{0,1,\ldots, M\} \) for all \(i \), and \(c_{i} \notin \{0,M\} \) if \(i = N_{j}n \) for some \(n \in \mathbb{N} \). Then each block in \(\Delta_{j,k} \) has neither \(N_{j} \) consecutive zeros nor \(N_{j} \) consecutive ones. Furthermore,
\[
(3.7) \quad \# \Delta_{j,k} = (M+1)^{2^{k}(M+1)N_{j}(N_{j}-1)}(M-1)^{2^{k}(M+1)N_{j}} \quad \forall \ k \geq 0.
\]
This is because each digit \(c_{i} \) has \(M-1 \) choices if the index \(i \) is a multiple of \(N_{j} \), and otherwise \(c_{i} \) has \(M \) choices.

Now we define the subset \(U_{I_{r},j}(x) \) of \(U_{N_{j}}(x) \) by
\[
(3.8) \quad U_{I_{r},j}(x) := \{ \varepsilon_{1} \ldots \varepsilon_{N+M_{j}}w_{b_{0}}b_{1}b_{2} \ldots : b_{k} \in \Delta_{j,k} \quad \forall \ k \geq 0 \},
\]
where each \(\Delta_{j,k} \) is defined in (3.6). Since \(M \geq 2 \), each block \(b_{k} \) ends with \(M-1 \notin \{0,M\} \). Thus, each sequence \(b_{0}b_{1} \ldots \) contains neither \(N_{j} \) consecutive zeros nor \(N_{j} \) consecutive ones. So, \(U_{I_{r},j}(x) \) is indeed a subset of \(U_{N_{j}}(x) \).

Lemma 3.4. Let \(x \in (0,1] \) and \(M \geq 2 \). Then for any \(j \geq 1 \) we have \(U_{I_{r},j}(x) \subset U_{I_{r}}(x) \).

Proof. Note by Lemma 2.4 that \(U_{I_{r},j}(x) \subset U_{N_{j}}(x) \subset U(x) \). So it suffices to prove that any sequence in \(U_{I_{r},j}(x) \) does not have a digit frequency. Taking a sequence \(\varepsilon_{1} \ldots \varepsilon_{N+M_{j}}w_{b_{0}}b_{1} \ldots \in \)
Suppose on the contrary that \(\lim_{n \to \infty} \xi_b(n) = 0 \). For \(n \in \mathbb{N} \) let
\[
\xi_b(n) := \xi_b(d_1 \ldots d_n) = \# \{ 1 \leq i \leq n : d_i = b \}.
\]
We will show that the limit of the sequence \(\{ \xi_b(n) / n \} \) does not exist.

Observe by (3.6) and (3.8) that each block \(b_k \) has length \(2^k(M+1)N_j(N_j+1) \) and can be written as
\[
b_k = c_k (0^{N_j-1}1)^{2^k} (1^{N_j})^{2^k} \cdots ((M-1)^{N_j})^{2^k} (M^{N_j-1}(M-1))^{2^k},
\]
where
\[
c_k = c_1c_2 \cdots c_{2^k(M+1)N_j^2} \quad \text{with } c_i \notin \{0,M\} \text{ if } i = N_jn \text{ for some } n \in \mathbb{N}.
\]
Let \((\ell_k) \) and \((n_k) \) be two subsequences of \(\mathbb{N} \) such that \(\ell_k = \ell_k(b) \) and \(n_k = n_k(b) \) are the lengths of blocks \(b_0 \ldots b_{k-1}c_k(0^{N_j-1})^{2^k} (1^{N_j})^{2^k} \cdots ((b-1)^{N_j})^{2^k} \) and \(b_0 \ldots b_{k-1}c_k(0^{N_j-1})^{2^k} (1^{N_j})^{2^k} \cdots ((b-1)^{N_j})^{2^k} (b^{N_j})^{2^k} \), respectively. Then
\[
\ell_k = 2^k(M+1)N_j^2 + 2^kN_jb + \sum_{i=0}^{k-1} 2^i(M+1)N_j(N_j+1),
\]
\[
n_k = 2^k(M+1)N_j^2 + 2^kN_j(b+1) + \sum_{i=0}^{k-1} 2^i(M+1)N_j(N_j+1).
\]
Furthermore, let \(\theta_b(k) \) be the number of digit \(b \) appearing in the block \(c_0c_1 \ldots c_k \). By our definition of \(c_i \) we must have
\[
\theta_b(k) \leq \sum_{i=0}^{k} 2^i(M+1)N_j(N_j-1) = (2^{k+1} - 1)(M+1)N_j(N_j-1) \quad \text{if } b \in \{0,M\};
\]
\[
\theta_b(k) \leq \sum_{i=0}^{k} 2^i(M+1)N_j^2 = (2^{k+1} - 1)(M+1)N_j^2 \quad \text{if } b \in \{1,2,\ldots,M-1\}.
\]

In view of our construction of \((d_i) = b_0b_1 \ldots \), we will finish our proof by considering the following three cases: (I) \(b \in \{0,M\} \); (II) \(b \in \{1,M-1\} \); (III) \(b \in \{2,3,\ldots,M-2\} \).

Case (I). \(b \in \{0,M\} \). Then by (3.9) and the definition of \((d_i) = b_0b_1 \ldots \) it follows that
\[
\xi_b(\ell_k) = \theta_b(k) + \sum_{i=0}^{k-1} 2^i(N_j-1) = \theta_b(k) + (N_j-1)(2^k - 1).
\]
Suppose on the contrary that \(\lim_{n \to \infty} \xi_b(n)/n \) exists. Then by (3.9) and (3.11) the following limit
\[
\lim_{k \to \infty} \xi_b(\ell_k) = \lim_{k \to \infty} \frac{\theta_b(k) + (N_j-1)(2^k - 1)}{2^k(M+1)N_j^2 + 2^kN_jb + (2^k - 1)N_j(M+1)(N_j+1)}
\]
\[
= \lim_{k \to \infty} \frac{\theta_b(k) + N_j - 1}{(M+1)(2N_j+1) + b}
\]
exists, which implies that the limit
\[\lim_{k \to \infty} \frac{\theta_b(k)}{2^k N_j} =: A_b \text{ exists for } b \in \{0, M\}. \]

Similarly,
\[\xi_b(n_k) = \theta(b) + \sum_{i=0}^{k} 2^i (N_j - 1) = \theta_b(k) + (N_j - 1)(2^{k+1} - 1), \]
and then by (3.9) and (3.12) it follows that
\[A_b + \frac{N_j - 1}{N_j} \frac{\xi_b(\ell_k)}{\ell_k} = \lim_{k \to \infty} \frac{\xi_b(n_k)}{n_k} = \frac{\theta_b(k) + (N_j - 1)(2^{k+1} - 1)}{(M + 1)(2N_j + 1) + b + 1}. \]

which implies that
\[A_b = \frac{N_j - 1}{N_j} \left[(M + 1)(2N_j + 1) + b - 1 \right] \geq \frac{N_j - 1}{N_j} \left[(M + 1)(2N_j + 1) - 1 \right]. \]
This leads to a contradiction, since by (3.10) we have \(A_b \leq 2(M + 1)(N_j - 1) \) for \(b \in \{0, M\} \).

Case (II). \(b \in \{1, M - 1\} \). First we assume \(M \geq 3 \). Then by (3.9) it follows that
\[\xi_1(\ell_k) = \theta_1(k) + \sum_{i=0}^{k} 2^i (N_j + 1) + 2^k, \quad \xi_{M-1}(\ell_k) = \theta_{M-1}(k) + \sum_{i=0}^{k-1} 2^i (N_j + 1); \]
and
\[\xi_1(n_k) = \theta_1(k) + \sum_{i=0}^{k} 2^i (N_j + 1), \quad \xi_{M-1}(n_k) = \theta_{M-1}(k) + \sum_{i=0}^{k} 2^i (N_j + 1) - 2^k. \]
Suppose the limit \(\lim_{n \to \infty} \frac{\xi_b(n)}{n} \) exists for \(b \in \{1, M - 1\} \). Then the limit \(A_b := \lim_{k \to \infty} \frac{\theta_b(k)}{2^k N_j} \) also exists. By (3.9) and the same argument as in Case (I) it follows that
\[A_1 + \frac{N_j+2}{N_j} \frac{\xi_1(\ell_k)}{\ell_k} = \lim_{k \to \infty} \frac{\xi_1(n_k)}{n_k} = \frac{A_1 + \frac{N_j+2}{N_j} + 1}{(M + 1)(2N_j + 1) + 2} \]
and
\[A_{M-1} + \frac{N_j+1}{N_j} \frac{\xi_{M-1}(\ell_k)}{\ell_k} = \lim_{k \to \infty} \frac{\xi_{M-1}(n_k)}{n_k} = \frac{A_{M-1} + \frac{N_j+1}{N_j} + 1}{(M + 1)(2N_j + 1) + M}. \]
This leads to a contradiction with (3.10) that \(A_b \leq 2(M + 1)N_j \) for \(b \in \{1, M - 1\} \).

Next we consider \(M = 2 \). Then \(b = 1 \). By (3.9) it follows that
\[\xi_1(\ell_k) = \theta_1(k) + \sum_{i=0}^{k-1} 2^i (N_j + 2) + 2^k, \quad \xi_1(n_k) = \theta_1(k) + \sum_{i=0}^{k} 2^i (N_j + 2) - 2^k. \]
By (3.9) and the same argument as above it follows that
\[
\frac{A_1 + \frac{N_j+3}{N_j}}{(M+1)(2N_j + 1) + 1} = \lim_{k \to \infty} \frac{\xi_1(\ell_k)}{\ell_k} = \lim_{k \to \infty} \frac{\xi_1(n_k)}{n_k} = \frac{A_1 + \frac{N_j+3}{N_j}}{(M+1)(2N_j + 1) + 2}.
\]
Again this leads to a contradiction with (3.10) that \(A_1 \leq 2(M+1)N_j \).

Case (III). \(b \in \{2,3,\ldots,M-2\} \). Then \(M \geq 4 \). By (3.9) we obtain that
\[
\xi_b(\ell_k) = \theta_b(k) + \sum_{i=0}^{k-1} 2^i N_j, \quad \xi_b(n_k) = \theta_b(k) + \sum_{i=0}^{k} 2^i N_j.
\]
Suppose on the contrary that the limit \(\lim_{n \to \infty} \frac{\xi_b(n)}{n} \) exists for \(b \in \{2,3,\ldots,M-2\} \). Then the limit \(A_b := \lim_{k \to \infty} \frac{\theta_b(k)}{2^k N_j} \) exists. By the same argument as in Case (I) and using (3.9) we obtain that
\[
\frac{A_b + 1}{(M+1)(2N_j + 1) + b} = \lim_{k \to \infty} \frac{\xi_b(\ell_k)}{\ell_k} = \lim_{k \to \infty} \frac{\xi_b(n_k)}{n_k} = \frac{A_b + 2}{(M+1)(2N_j + 1) + b + 1},
\]
which leads to a contradiction, since by (3.10) we have \(A_b \leq 2(M+1)N_j \) for \(b \in \{2,\ldots,M-2\} \).

Therefore, by Cases (I)–(III) we conclude that the frequency of digit \(b \) in \((d_i) = b_0 b_1 b_2 \ldots \) does not exist for any \(b \in \{0,1,\ldots,M\} \). This completes the proof.

Proof of Proposition 3.3 First we consider \(M \geq 2 \). Let \(x \in (0,1] \) and let \((\varepsilon_i) = \Phi_x(M+1) \). Suppose \(U_{N_j}(x), j = 1,2,\ldots \) are the subsets of \(U(x) \) defined as in Lemma 2.4. For \(j \geq 1 \) let \(\gamma_j \) be the largest element of \(\mathcal{U}_{N_j}(x) := \Phi_x^{-1}(U_{N_j}(x)) \). Then \(\Phi_x(\gamma_j) = \varepsilon_1 \varepsilon_2 \varepsilon_3 \ldots \varepsilon_{N_j+1} w(M^{N_j-1}(M-1))^\infty \) for \(j \to \infty \). So by Lemmas 2.1 and 2.3 it follows that \(\gamma_j \nearrow M+1 \) as \(j \to \infty \).

Note by Lemma 3.4 that \(U_{I_r,j}(x) \subset U_{I_r}(x) \). So, by Lemma 2.3 it follows that
\[
\dim_H \mathcal{U}_{I_r, j}(x) \geq \dim_H \mathcal{U}_{I_r}(x) \geq \frac{\dim_H U_{I_r,j}(x)}{\log \gamma_j}
\]
for all \(j \geq 1 \). Note that \(\{0,1,\ldots,M\} \) is a compact metric space, where \(\rho \) is defined in (2.1). Then by (3.6), (3.7) and [18] Theorem 2.1 it follows that
\[
\dim_H U_{I_r,j}(x) = \liminf_{n \to \infty} \frac{\log \prod_{k=0}^{N_j} |b_k| \log(M+1)}{\sum_{k=0}^{N_j} 2^{k(N_j+1)}(N_j - 1) \log(M+1)}
\]
\[
= \liminf_{n \to \infty} \frac{\sum_{k=0}^{N_j} 2^{k(N_j+1)}(N_j - 1) \log(M+1)}{\sum_{k=0}^{N_j} 2^{k(N_j+1)}(N_j - 1) \log(M+1)}
\]
\[
= \frac{N_j - 1}{N_j + 1} \log(M+1) + \frac{\log(M-1)}{(N_j+1) \log(M+1) \log \gamma_j}.
\]
Since \(\gamma_j \to M+1 \) and \(N_j \to \infty \) as \(j \to \infty \), by (3.13) this implies that
\[
\dim_H \mathcal{U}_{I_r}(x) \geq \frac{N_j - 1}{(N_j + 1) \log \gamma_j} + \frac{\log(M-1)}{(N_j+1) \log(M+1) \log \gamma_j} \to 1 \quad \text{as} \quad j \to \infty.
\]
Here we emphasize that the logarithm is in base \(M+1 \).
Now we consider $M = 1$. The proof is similar. We modify the definition of $U_{I_i,j}(x)$ as

$$\tilde{U}_{I_i,j}(x) = \left\{ \varepsilon_1 \ldots \varepsilon_{N+j} \omega_0 b_1 \ldots : b_k \in \tilde{\Delta}_{j,k} \quad \forall \ k \geq 0 \right\},$$

where each $\tilde{\Delta}_{j,k}$ consists of all length $2^{k+1} N_j (N_j + 1) + 2$ blocks of the form

$$c_1 \ldots c_{2^{k+1} N_j^2} (0^{N_j - 1})^{2^k} (01^{N_j - 1})^{2^k} 01$$

with each $c_i \in \{0, 1\}$, and $c_{i-1} c_i = 01$ if $i = N_j n$ for some $n \in \mathbb{N}$. Then each sequence $\omega_0 b_1 \ldots \in \prod_{k=0}^{\infty} \tilde{\Delta}_{j,k}$ contains neither N_j consecutive zeros nor N_j consecutive ones. So, $\tilde{U}_{I_i,j}(x) \subset U_{N_j}(x)$. By the same argument as in the proof of Lemma 3.4 one can verify that $\tilde{U}_{I_i,j}(x) \subset U_{I_i}(x)$. Hence, by similar argument as above we can prove that $\dim_H U_{I_i}(x) = 1$ for $M = 1$.

\[\square \]

Proof of Theorem 4.1 The theorem follows by Propositions 3.1 and 3.3. \[\square \]

4. Cantor subsets of $U(x)$ and thickness

In this section we will show that $U(x) + \lambda U(x)$ contains an interval for any $x \in (0, 1]$ and $\lambda \neq 0$, which generalizes the main result of [3] where they proved this result only for $M = 1$.

Theorem 4.1. If $f : \mathbb{R}^2 \to \mathbb{R}$ is C^1 such that the partial derivatives are not vanishing in $(M + 1 - \delta, M + 1)^2$ for some $\delta > 0$, then for any $x \in (0, 1]$ the set

$$U_f(x) := \{ f(p, q) : p, q \in U(x) \}$$

contains an interval.

Remark 4.2.

(i) If $f(x, y) = x + \lambda y$ for some $\lambda \neq 0$, then f is C^1 with its partial derivatives not vanishing.

So, by Theorem 4.1 it follows that $U(x) + \lambda U(x)$ contains an interval for any $x \in (0, 1]$.

(ii) For possible extension of this theorem we refer to a recent paper [22] and the references therein.

4.1. Thickness of a Cantor set in \mathbb{R}.

The thickness of a Cantor set in \mathbb{R} was introduced by Newhouse [32], and it has been applied in dynamical systems and number theory (cf. [5]). Let $E \subset \mathbb{R}$ be a Cantor set with the convex hull E_0. Then the complement $E_0 \setminus E = \bigcup_{i=1}^{\infty} O_i$ is the union of countably many disjoint open intervals. The sequence $\mathcal{O} = (O_1, O_2, O_3, \ldots)$ is called a derived sequence of E. If the lengths of these open intervals are in a non-increasing order, i.e., $|O_i| \geq |O_{i+1}|$ for all $i \geq 1$, then we call the sequence \mathcal{O} an ordered sequence.

Let $E_n := E_0 \setminus \bigcup_{k=1}^{n} O_k$. Then for any $n \geq 1$ the open interval O_n must belong to a unique connected component C of $E_0 \setminus E$. In this case, $C \setminus O_n$ is the union of two disjoint closed intervals $L_\mathcal{O}(O_n)$ and $R_\mathcal{O}(O_n)$. Hence, the thickness of E with respect to the derived sequence \mathcal{O} is defined by

$$\tau_\mathcal{O}(E) := \inf_{n \geq 1} \min \left\{ \frac{|L_\mathcal{O}(O_n)|}{|O_n|}, \frac{|R_\mathcal{O}(O_n)|}{|O_n|} \right\};$$
and the thickness of E is then defined by

$$
\tau(E) := \sup \{ \tau_{\vartheta}(E) : \vartheta(\theta) \text{ is a permutation of } \theta \}.
$$

Note by [5] that the supremum in (4.1) is attainable. Indeed, for any ordered sequence θ we have $\tau(E) = \tau_\theta(E)$.

The following result for the relationship between the thickness of a Cantor set and its Hausdorff dimension was given by Newhouse [32] (see also, [33]).

Lemma 4.3. Let $E \subset \mathbb{R}$ be a Cantor set. Then

$$
\dim_H E \geq \frac{\log 2}{\log (2 + 1/\tau(E))}.
$$

From Lemma 4.3 it follows that if the thickness of a Cantor set E is very large, then its Hausdorff dimension is close to 1. The next result, which can be derived from [21], describes how the thickness can be used to study the intersection of two Cantor sets.

Lemma 4.4. Let E and F be two Cantor sets in \mathbb{R} having the same maximum point ξ. If ξ is an accumulation point of $E \cap F$, and their thicknesses $\tau(E) \geq t$ and $\tau(F) \geq t$ for some large $t > 0$, then there exists a Cantor subset $K \subset E \cap F$ such that $\max K = \xi$ and $\tau(K) \geq C \sqrt{t}$ for some $C > 0$.

The following result on the image of two Cantor sets E and F can be deduced from [30] and [36] (see also, [22]).

Lemma 4.5. Let E and F be two Cantor sets in \mathbb{R} with $\tau(E) \tau(F) > 1$. If $f : \mathbb{R}^2 \to \mathbb{R}$ is a C^1 function with non-vanishing partial derivatives, then the set $\{ f(x, y) : x \in E, y \in F \}$ contains an interval.

4.2. **Proof of Theorem 4.1.** Fix $x \in (0, 1]$ let $(\varepsilon_i) = \Phi_x(M + 1)$. Recall from Lemma 2.4 that $\{ U_{N_j}(x) \}_{j \geq 1}$ is a sequence of subsets in $U(x)$. Then for any $j \geq 1$, each sequence of $U_{N_j}(x)$ ends neither with N_j consecutive zeros nor N_j consecutive Ms. Set

$$
\mathcal{U}_{N_j}(x) = \{ q \in (1, M + 1] : \Phi_x(q) \in U_{N_j}(x) \}.
$$

Then by Lemma 2.1 it follows that $\Phi_x : \mathcal{U}_{N_j}(x) \to U_{N_j}(x)$ is an increasing homeomorphism. Observe that each $U_{N_j}(x)$ is a Cantor set with respect to the metric ρ defined in (2.1). This implies that $\mathcal{U}_{N_j}(x)$ is a Cantor subset of $(1, M + 1]$, and so it can be geometrically constructed by successively removing a sequence of open intervals from a closed interval.

To describe the geometrical construction of $\mathcal{U}_{N_j}(x)$ we first define a sequence of symbolic intervals. For $j \geq 1$ let

$$
\Omega^*_j(x) := \bigcup_{n=0}^{\infty} \Omega^*_j(x),
$$

where

$$
\Omega^*_j(x) := \{ \varepsilon_1 \ldots \varepsilon_{N_j} w d_1 d_2 \ldots d_n : d_{i+1} \ldots d_{i+N_j} \not\in \{ 0^{N_j}, M^{N_j} \} \quad \forall 0 \leq i \leq n - N_j \}.
$$
Lemma 4.6. Let \(x \in (0, 1) \) and \(j \geq 1 \). Take \(\omega = \varepsilon_1 \ldots \varepsilon_{N+N_j} \omega \in \Omega_j^*(x) \).

(i) If \(\omega \) ends with neither 0 nor \(M \), then
\[
I_\omega = [\omega(0^{N_j-1})^\infty, \omega(M^{N_j-1}(M-1))^{\infty}] .
\]

(ii) If \(\omega \) ends with \(0^k \) for some \(k \in \{1, 2, \ldots, N_j - 1\} \), then
\[
I_\omega = [\omega 0^{N_j-1-k}(10^{N_j-1})^\infty, \omega(M^{N_j-1}(M-1))^{\infty}] .
\]

(iii) If \(\omega \) ends with \(M^k \) for some \(k \in \{1, 2, \ldots, N_j - 1\} \), then
\[
I_\omega = [\omega(0^{N_j-1})^\infty, \omega M^{N_j-1-k}(M-1)M^{N_j-1})^{\infty}] .
\]

Now we describe the geometrical construction of \(\mathcal{Y}_{N_j}(x) \) in terms of the symbolic intervals \(\{I_\omega : \omega \in \Omega_j^*(x)\} \). For a symbolic interval \(I_\omega = [(a_i), (b_i)] \) with \(\omega \in \Omega_j^*(x) \) we define the associated interval \(I_\omega = [p, q] \) by
\[
\Phi_x(p) = (a_i) \quad \text{and} \quad \Phi_x(q) = (b_i) .
\]

Since \(\Phi_x \) is an increasing homeomorphism from \(\mathcal{Y}_{N_j}(x) \) to \(U_{N_j}(x) \), it follows that the convex hull of \(\mathcal{Y}_{N_j}(x) \) is \(I_{\varepsilon_1 \ldots \varepsilon_{N+N_j} \omega} \). Furthermore, for any \(n \geq 0 \) and any \(\omega \in \Omega_j^n(x) \) the intervals \(I_{\omega} \) and \(\omega \in \Omega_j^{n+1}(x) \) are pairwise disjoint subintervals of \(I_\omega \). It turns out that the set
\[
\{I_\omega : \omega \in \Omega_j^*(x)\}
\]
of basic intervals has a tree structure. Therefore,
\[
\mathcal{Y}_{N_j}(x) = \bigcap_{n=0}^{\infty} \bigcup_{\omega \in \Omega_j^n(x)} I_\omega .
\]

Each closed interval \(I_\omega \) with \(\omega \in \Omega_j^n(x) \) is called an \(n \)-level basic interval. We emphasize that the endpoints of each \(n \)-level basic interval belong to \(\mathcal{Y}_{N_j}(x) \). Now for a \(n \)-level basic interval \(I_\omega \) we define the \((n+1)\)-level gaps associated to \(I_\omega \) as follows: suppose \(I_{\omega d} \) and \(I_{\omega(d+1)} \) are two consecutive \((n+1)\)-level basic intervals, then the gap between them, denoted by \(G_{\omega d} \), is a \((n+1)\)-level gap (see Figure [1]). By Lemma 4.6 it follows that the number of \((n+1)\)-level gaps associated to \(I_\omega \) is either \(M \) or \(M-1 \), and the later case refers to items (ii) and (iii) in Lemma 4.6.

Based on the geometrical construction of \(\mathcal{Y}_{N_j}(x) \) in (4.3) it is convenient to define its thickness according to the basic intervals \(I_\omega \) and gaps \(G_{\omega} \) for \(\omega \in \Omega_j^*(x) \). Let
\[
\tau_*(\mathcal{Y}_{N_j}(x)) = \inf_{n \geq 0} \min_{\omega \in \Omega_j^n(x)} \left\{ \frac{|I_\omega|}{|G_{\omega}|}, \frac{|I_{\omega+}|}{|G_{\omega}|} \right\} ,
\]
Then (4.6) which together with (4.5) implies
\[G \]

Then the gap \(G_{\omega d} \), \(d = 0, \ldots, M - 1 \) implies to the \(n \)-level basic interval \(I_\omega \) in the construction of \(\mathcal{V}_{N_j}(x) \).

\[\begin{array}{cccccc}
I_\omega & G_{\omega 0} & I_{\omega 1} & \cdots & G_{\omega d} & I_{\omega (d+1)} & \cdots & G_{\omega (M-1)} & I_{\omega M} \\
I_{\omega 0} & & & & & & & & \\
\end{array} \]

Figure 1. The \((n + 1)\)-level gaps \(G_{\omega d}, d = 0, \ldots, M - 1 \) associated to the \(n \)-level basic interval \(I_\omega \).

where for \(\omega \in \Omega_j^n(x) \), if \(\omega^+ \notin \Omega_j^n(x) \) we set \(\frac{|I_{\omega^+}|}{|G_{\omega^+}|} = +\infty \). Here for a word \(c = c_1 \ldots c_k \) we set \(c^+ := c_1 \ldots c_k-1(c_k + 1) \). By (4.1) and (4.4) it follows that \(\tau(\mathcal{V}_{N_j}(x)) \geq \tau_*(\mathcal{V}_{N_j}(x)) \).

Proposition 4.7. For any \(x \in (0, 1] \) we have \(\tau_*(\mathcal{V}_{N_j}(x)) \rightarrow \infty \) as \(j \rightarrow \infty \).

Proof. Let \(x \in (0, 1] \). Then \((\varepsilon_i) = \Phi_x(M + 1) > 0^{\infty} \), and there exists \(\ell \in \mathbb{N} \) such that \(\varepsilon_1 \ldots \varepsilon_\ell \ni 0^{\ell-1}1 \). So, we can take \(\ell \in \mathbb{N} \) large enough such that

\[(4.5) \quad \varepsilon_1 \ldots \varepsilon_{N+N_j} w 0^{\infty} > 0^{\ell-1}10^{\infty}. \]

Then each sequence in \(U_{N_j}(x) \) is lexicographically larger than \(0^{\ell-1}10^{\infty} \). For \(n \geq 0 \) let \(\omega = \varepsilon_1 \ldots \varepsilon_{N+N_j} w d_1 \ldots d_n \in \Omega_j^n(x) \). For brevity we write \(n_j := |\omega| = N + N_j + |w| + n \) for its length. Suppose \(\omega_d, \omega(d + 1) \in \Omega_j^{n+1}(x) \). Write

\[I_{\omega d} = [q_1, q_2], \quad I_{\omega (d+1)} = [q_3, q_4]. \]

Then the gap \(G_{\omega d} = (q_2, q_3) \). By Lemma 4.6 it follows that

\[\begin{align*}
\omega d(0^{N_j-1})^\infty &\leq \Phi_x(q_1) \leq \omega d(10^{N_j-1})^\infty, \\
\Phi_x(q_2) &= \omega d(M^{N_j-1}(M - 1))^\infty, \\
\Phi_x(q_3) &= \omega (d + 1)(0^{N_j-1})^\infty, \\
\omega (d + 1)((M - 1)M^{N_j-1})^\infty &\leq \Phi_x(q_4) \leq \omega (d + 1)(M^{N_j-1}(M - 1))^\infty.
\end{align*} \]

Then

\[(\omega d(M^{N_j-1}(M - 1))^\infty)_{q_2} = x = (\omega (d + 1)(0^{N_j-1})^\infty)_{q_3}, \]

which together with (4.5) implies

\[(0^{N_j}1(0^{N_j-1}1)^\infty)_{q_3} - (0^{N_j+1}(M^{N_j-1}(M - 1))^\infty)_{q_2} \]

\[= (\omega d0^\infty)_{q_2} - (\omega d0^\infty)_{q_3} \geq \frac{1}{q_2} - \frac{1}{q_3} \geq \frac{q_3 - q_2}{q_2 q_3} \geq \frac{q_3 - q_2}{q_3^{\ell+1}}. \]
On the other hand,

\[
(0^{n_j+1}(0^{N_j}1^1)^{\infty})_{q_3} - (0^{n_j+1}(M^{N_j}1^1(M - 1))^{\infty})_{q_2} \\
\leq (0^{n_j+1}(0^{N_j}1^1)^{\infty})_{q_3} - (0^{n_j+1}(M^{N_j}1^1(M - 1))^{\infty})_{q_2} \\
\leq (0^{n_j+1}(M^{N_j-1}(M + 1))^{\infty})_{q_3} - (0^{n_j+1}(M^{N_j-1}(M - 1))^{\infty})_{q_3} \\
= \frac{2}{q_3^{n_j+N_j+1}(1 - 1/q_3^{N_j})} < \frac{4}{q_3^{n_j+N_j+1}},
\]

where the second inequality follows by \((0^{n_j+1}M^{\infty})_{q_3} \geq (0^{n_j+1}10^{\infty})_{q_3}\), and the last inequality holds since \(1/q_3^{N_j} < 1/2\) for large \(j\). Hence, by (4.7) and (4.8) we obtain an upper bound on the length of \(G_{\omega d}\):

\[
|G_{\omega d}| = q_3 - q_2 < \frac{4}{q_3^{n_j+N_j-\ell}}.
\]

In the following we consider the lower bounds on the lengths of \(I_{\omega d}\) and \(I_{\omega (d+1)}\). To do this we need the following inequalities.

Claim: for all sufficiently large \(j\) we have

\[
(0^{n_j+1}(10^{N_j}1^1)^{\infty})_{q_3} \leq (0^{n_j+1}M(M - 1)(M^{N_j-3}(M - 1)}\)^{\infty})_{q_2}, \\
(0^{n_j+1}(0^{N_j}10^{2})^{\infty})_{q_3} \leq (0^{n_j+1}((M - 1)^{N_j-1})^{\infty})_{q_3}.
\]

Since the proofs of the two inequalities in (4.10) are similar, we only prove the first inequality. Note by (4.6) that

\[
(\omega d(0^{N_j}1^1)^{\infty})_{q_1} \leq (\omega d(M^{N_j-1}(M - 1))^{\infty})_{q_2}.
\]

This together with (4.5) implies that

\[
(0^{n_j+1}M^{\infty})_{q_2} \geq (0^{n_j+1}(M^{N_j-1}(M - 1))^{\infty})_{q_2} - (0^{n_j+1}(0^{N_j}1^1)^{\infty})_{q_1} \\
\geq (\omega d0^{\infty})_{q_1} - (\omega d0^{\infty})_{q_2} \geq \frac{1}{q_1^{\ell}} - \frac{1}{q_2^{\ell}} \geq \frac{q_2 - q_1}{q_1 q_2^{\ell}}.
\]

Whence,

\[
\frac{q_2 - q_1}{q_1} \leq \frac{M}{q_2^{n_j+1-\ell}(q_2 - 1)} \leq \frac{M}{q_2^{n_j-\ell}}.
\]
where the last inequality holds since \(q_i \geq q_G = q_G(M) \) by Lemma 2.2. Therefore, the first inequality of (4.10) can be deduced as follows:

\[
(0^{n_j+1}(10^{N_j-1})^\infty)_{q_1} = \left(1 + \frac{q_2 - q_1}{q_1}\right)^{n_j+1} \frac{((10^{N_j-1})^\infty)_{q_1}}{q_2^{n_j+1}} \leq \left(1 + \frac{M}{q_G^{n_j+1}}\right)^{n_j+1} \frac{((10^{N_j-1})^\infty)_{q_G}}{q_2^{n_j+1}} \leq \frac{(M(M-1)(M^{N_j-3}(M-1)M^2)^\infty)_{M+1}}{q_2^{n_j+1}} \leq (0^{n_j+1} M(M-1)(M^{N_j-3}(M-1)M^2)^\infty)_{q_2},
\]

where the first inequality follows by (4.12), and the second inequality holds for all sufficiently large \(j \) since

\[
\lim_{j \to \infty} \left(1 + \frac{M}{q_G^{n_j}}\right)^{n_j+1} = 1 < \lim_{j \to \infty} \frac{(M(M-1)(M^{N_j-3}(M-1)M^2)^\infty)_{M+1}}{((10^{N_j-1})^\infty)_{q_G}}.
\]

This proves the claim.

Now by (4.6) we have

\[
(\omega d(10^{N_j-1})^\infty)_{q_1} \geq x = (\omega d(M^{N_j-1}(M-1))^\infty)_{q_2},
\]

which implies that

\[
(0^{n_j+1}(M^{N_j-1}(M-1))^\infty)_{q_2} - (0^{n_j+1}(10^{N_j-1})^\infty)_{q_1} \leq (\omega d0^\infty)_{q_1} - (\omega d0^\infty)_{q_2} \leq (M^\infty)_{q_1} - (M^\infty)_{q_2} = \frac{M}{(q_1 - 1)(q_2 - 1)}(q_2 - q_1) \leq \frac{M}{(q_G - 1)^2}(q_2 - q_1).
\]

On the other hand, by the first inequality of (4.10) it follows that

\[
(0^{n_j+1}(M^{N_j-1}(M-1))^\infty)_{q_2} - (0^{n_j+1}(10^{N_j-1})^\infty)_{q_1} \geq (0^{n_j+1}(M^{N_j-1}(M-1))^\infty)_{q_2} - (0^{n_j+1} M(M-1)(M^{N_j-3}(M-1)M^2)^\infty)_{q_2} = (0^{n_j+2}10^\infty)_{q_2} = \frac{1}{q_2^{n_j+3}}.
\]

So, by (4.13) and (4.14) we obtain a lower bound on the length of \(I_{\omega d} \):

\[
|I_{\omega d}| = q_2 - q_1 \geq \frac{(q_G - 1)^2}{M q_2^{n_j+3}} > \frac{(q_G - 1)^2}{M q_3^{n_j+3}}.
\]

Similarly, by (4.6) we also have

\[
(\omega(d + 1)(10^{N_j-1})^\infty)_{q_3} = x \geq (\omega(d + 1)((M-1)M^{N_j-1})^\infty)_{q_4},
\]
which implies that
\begin{equation}
(0^{n_j+1}(M - 1)M^{N_j-1})_{q_4} - (0^{n_j+1}(0^{N_j-1})_{q_3} - (\omega(d + 1)0^\infty)_{q_4} - (\omega(d + 1)0^\infty)_{q_3},
\end{equation}
On the other hand, by the second inequality of (4.10) it follows that
\begin{equation}
(0^{n_j+1}(M - 1)N_j-1)_{q_4} - (0^{n_j+1}(0^{N_j-1})_{q_3} \geq (0^{n_j+1}10^2)_{q_4} - (0^{n_j+1}(0^{N_j-1})_{q_3} = \frac{1}{q_3^j+3}.
\end{equation}
So, by (4.16) and (4.17) we obtain a lower bound on the length of $I_{\omega(d+1)}$:
\begin{equation}
|I_{\omega(d+1)}| = q_4 - q_3 \geq \frac{(qG - 1)^{2}}{Mq_3^{j+3}}.
\end{equation}
Hence, by (4.9), (4.15) and (4.18) we conclude that
\begin{equation}
\min \left\{ \frac{|I_{\omega(d+1)}|}{|G_{\omega(d+1)}|}, \frac{|I_{\omega(d+1)}|}{|G_{\omega(d+1)}|} \right\} \geq \frac{(qG - 1)^{2}}{4Mq_3^{N_j-1}} \to \infty \quad \text{as } j \to \infty.
\end{equation}
Since ω was taken from Ω^α (arbitrarily), this completes the proof by (4.4).

Proof of Theorem 4.1. Take $x \in (0, 1]$. Note by Proposition 4.7 that
\begin{equation}
\tau(U_{N_j}(x)) \geq \tau(U(x)) \to \infty \quad \text{as } j \to \infty.
\end{equation}
Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a C^1 function with partial derivatives not vanishing on $(M + 1 - \delta, M + 1]^2$ for some $\delta > 0$. Observe that $U_{N_j}(x) \subset (M + 1 - \delta, M + 1]$ for all large j. Then by Lemma 4.5 it follows that $\mathcal{B}_f(x) = \{f(p, q) : p, q \in \mathcal{B}(x)\}$ contains an interval.

5. Univoque bases of multiple rationals

In this section we will prove Theorem 1.2. Recall that D_M consists of all rationals in $[0, 1]$ with a finite expansion in base $M + 1$. Given $x_1, x_2, \ldots, x_t \in D_M$, we will show that the intersection $\bigcap_{i=1}^{t} \mathcal{B}(x_i)$ has full Hausdorff dimension.

Take $x \in D_M$. Then $\Phi_x(M + 1) = \varepsilon_1 \ldots \varepsilon_m M^\infty$ for some $\varepsilon_m < M$ with $m \geq 1$. Let $j \geq m$. Then $2^j > m$, and by Lemma 2.4 it follows that
\begin{equation}
U_{2^j}(x) \subset U(x),
\end{equation}
where
\begin{equation}
U_{2^j}(x) = \left\{ \varepsilon_1 \ldots \varepsilon_m M^{2^j}d_1d_2 \ldots d_{n+1} \ldots d_{n+2^j} \notin 0^{2^j}M^{2^j} \right\} \quad \forall \; n \geq 0.
\end{equation}
Accordingly, $\mathcal{B}_{2^j}(x) = \Phi_x^{-1}(U_{2^j}(x)) \subset \mathcal{B}(x)$. Let $[\alpha_j, \beta_j]$ be the convex hull of $\mathcal{B}_{2^j}(x)$. In the following we show that these subintervals $[\alpha_j, \beta_j], j \geq m$ are pairwise disjoint and converge to $\{M + 1\}$ under the Hausdorff metric (see Figure 2).
follows that Proposition 5.2. is also a Cantor set.

\[\alpha_j < \beta_j < \alpha_{j+1} \quad \forall \ j \geq m, \quad \text{and} \quad \alpha_j \not\succ M + 1 \quad \text{as} \ j \to \infty. \]

Proof. Take \(j \geq m \). By the definition of \(\mathcal{U}_j(x) \) it follows that

\[
\Phi_x(\alpha_j) = \varepsilon_1 \cdots \varepsilon_m M^{2^j} (0^{2^j-1}).
\]

(5.1)

Then \(\Phi_x(\alpha_j) < \Phi_x(\beta_j) < \Phi_x(\alpha_{j+1}) \), and thus \(\alpha_j < \beta_j < \alpha_{j+1} \) by Lemma 2.1. Furthermore, \(\Phi_x(\alpha_j) \) increasingly converges to \(\varepsilon_1 \cdots \varepsilon_m M^\infty = \Phi_x(M + 1) \) under the metric \(\rho \). By Lemma 2.1 and Lemma 2.3 it follows that \(\alpha_j \not\succ M + 1 \) as \(j \to \infty. \)

Note that each \(\mathcal{U}_j(x) \) is a Cantor set, i.e., a nonempty compact set has neither interior nor isolated points. So, by Lemma 5.1 it follows that for any \(k \geq m \),

\[E_k(x) := \bigcup_{j=k}^\infty \mathcal{U}_j(x) \cup \{ M + 1 \} \]

is also a Cantor set.

Proposition 5.2. For any \(x \in D_M \) we have \(\tau(E_k(x)) \to \infty \) as \(k \to \infty. \)

Proof. Since \(E_k(x) = \bigcup_{j=k}^\infty \mathcal{U}_j(x) \cup \{ M + 1 \} \) is a Cantor set, by (5.1) it suffices to prove that for each \(k \in \mathbb{N} \) there exists a derived sequence \(\mathcal{O}_k \) of \(E_k(x) \) such that \(\tau_{\mathcal{O}_k}(E_k(x)) \to \infty \) as \(k \to \infty. \) Observe that

\[\text{conv}(E_k(x)) \setminus E_k(x) = \bigcup_{j=k}^\infty \cap_{j=k}^\infty \bigcup_{t=1}^\infty \mathcal{O}_{j(t)}, \]

where \(\mathcal{O}^{(j)} = (O_1^{(j)}, O_2^{(j)}, O_3^{(j)}, \ldots) \) is an ordered sequence of \(\mathcal{U}_j(x) \). By Proposition 4.7 it follows that

(5.2) \[\tau(\mathcal{U}_j(x)) = \tau_{\mathcal{O}^{(j)}}(\mathcal{U}_j(x)) \to \infty \quad \text{as} \ j \to \infty. \]
Now we define a derived sequence O_k of $E_k(x)$ which consists of open intervals ordered in the following way:

$$(\beta_k, \alpha_{k+1}), \quad O_1^{(k)};$$
$$(\beta_{k+1}, \alpha_{k+2}), \quad O_2^{(k)};$$
$$(\beta_{k+2}, \alpha_{k+3}), \quad O_3^{(k)};$$
$$\cdots;$$
$$(\beta_{k+n-1}, \beta_{k+n}), \quad O_n^{(k)}; \quad O_n^{(k+1)}, \quad \cdots; \quad O_1^{(k+n-1)}, \quad \cdots.$$

So, by our definition of the derived sequence O_k and (5.2) it suffices to prove that

$$\min \left\{ \alpha_j - \beta_j, \frac{M + 1 - \alpha_{j+1}}{\alpha_{j+1} - \beta_j} \right\} \to \infty \quad \text{as} \quad j \to \infty. \quad (5.3)$$

First we give an upper bound of $\alpha_{j+1} - \beta_j$. Note by (5.1) that

$$\langle \varepsilon_1 \ldots \varepsilon_m M^{2^j} (M^{2^{j-1}} - 1)^\infty \rangle_{\alpha_{j+1}} = \langle \varepsilon_1 \ldots \varepsilon_m M^{2^{j+1}} (0^{2^{j+1}-1})^\infty \rangle_{\alpha_{j+1}}.$$

Then

$$\langle \varepsilon_1 \ldots \varepsilon_m M^{2^{j+1}} - (M^{2^{j-1}} - 1)^\infty \rangle_{\alpha_{j+1}} = \langle \varepsilon_1 \ldots \varepsilon_m M^{2^{j+1}} - (M^{2^{j-1}} - 1)^\infty \rangle_{\alpha_{j+1}} \geq \frac{M}{\beta_{j+1}^{m+1}} \geq \frac{M}{\alpha_{j+1}^{m+1}} (\alpha_{j+1} - \beta_j).$$

This implies that

$$\alpha_{j+1} - \beta_j \leq \frac{\alpha_{j+1}^{m+2}}{M} \left[\langle \varepsilon_1 \ldots \varepsilon_m M^{2^{j+1}} - (M^{2^{j-1}} - 1)^\infty \rangle_{\alpha_{j+1}} - \langle \varepsilon_1 \ldots \varepsilon_m M^{2^{j+1}} - (M^{2^{j-1}} - 1)^\infty \rangle_{\alpha_{j+1}} \right] \leq \frac{\alpha_{j+1}^{m+2}}{\alpha_{j+1}^{m+2}} \langle \varepsilon_1 \ldots \varepsilon_m M^{2^{j+1}} - (M^{2^{j-1}} - 1)^\infty \rangle_{\alpha_{j+1}}.$$

Thus, by Lemma 2.2 we obtain an upper bound of $\alpha_{j+1} - \beta_j$:

$$\alpha_{j+1} - \beta_j \leq \frac{\langle 20^{2^j - 1} \rangle_{\alpha_{j+1}}}{\alpha_{j+1}^{m+2}} \leq \frac{C_0}{\alpha_{j+1}^{m+2}}, \quad (5.4)$$

where $C_0 := \frac{2(M+1)^3}{x_0^{2^j-1}}$.

Next we consider the lower bounds of $\beta_j - \alpha_j$ and $M + 1 - \alpha_{j+1}$, respectively. These are based on the following two inequalities.
This proves the claim.

Claim: for all sufficiently large j we have

$$
(0^{m+2j}(0^{2j-1}1)\infty)_{\alpha_j} \leq (0^{m+2j}0(M^{2j-2}(M-1)M)\infty)_{\beta_j},
$$

$$
(0^{m+2j+1}M(0^{2j+1-2}10)\infty)_{\alpha_{j+1}} \leq (0^{m+2j+1}M^\infty)_{M+1}.
$$

Since the proof of the first inequality in (5.5) is similar to the proof of (4.10), we only prove the second inequality. Note by (5.1) that

$$(\varepsilon_1\ldots\varepsilon_mM^\infty)_{M+1} = (\varepsilon_1\ldots\varepsilon_mM^{2j+1}(0^{2j+1-1}1)\infty)_{\alpha_{j+1}}.$$

Then

$$(0^{m+2j+1}M^\infty)_{M+1} \geq (0^{m+2j+1}M^\infty)_{M+1} - (0^{m+2j+1}(0^{2j+1-1}1)\infty)_{\alpha_{j+1}}$$

$$= (\varepsilon_1\ldots\varepsilon_mM^{2j+1}0^\infty)_{\alpha_{j+1}} - (\varepsilon_1\ldots\varepsilon_mM^{2j+1}0^\infty)_{M+1}$$

$$\geq \frac{1}{\alpha_{j+1}} - \frac{1}{(M+1)^{m+1}} \geq \frac{M+1 - \alpha_{j+1}}{\alpha_{j+1}(M+1)^{m+1}}.$$

Whence,

$$
(0^{m+2j+1}M(0^{2j+1-2}10)\infty)_{\alpha_{j+1}} = \left(1 + \frac{M+1 - \alpha_{j+1}}{\alpha_{j+1}}\right)^{m+2j+1} \frac{(M(0^{2j+1-2}10)\infty)_{\alpha_{j+1}}}{(M+1)^{m+2j+1}}$$

$$\leq \left(1 + \frac{1}{(M+1)^{m+2j+1}}\right)^{m+2j+1} \frac{(M(0^{2j+1-2}10)\infty)_{\alpha_{j+1}}}{(M+1)^{m+2j+1}}$$

$$\leq \frac{1}{(M+1)^{m+2j+1}} = (0^{m+2j+1}M^\infty)_{M+1},$$

where the first inequality follows by (5.6), and the second inequality holds for all sufficiently large j since

$$
\lim_{j \to \infty} \left(1 + \frac{1}{(M+1)^{2j+1}-1}\right)^{m+2j+1} = 1 < \lim_{j \to \infty} \frac{1}{(M(0^{2j+1-2}10)\infty)_{\alpha_{j+1}}}.
$$

This proves the claim.

Note by (5.1) that

$$(\varepsilon_1\ldots\varepsilon_mM^{2j}(M^{2j-1}(M-1))\infty)_{\beta_j} = x = (\varepsilon_1\ldots\varepsilon_mM^{2j}(0^{2j-1}1)\infty)_{\alpha_j}.$$

Then

$$
(0^{m+2j}(M^{2j-1}(M-1))\infty)_{\beta_j} - (0^{m+2j}(0^{2j-1}1)\infty)_{\alpha_j}
$$

$$= (\varepsilon_1\ldots\varepsilon_mM^{2j}0^\infty)_{\alpha_j} - (\varepsilon_1\ldots\varepsilon_mM^{2j}0^\infty)_{\beta_j}$$

$$\leq (M^\infty)_{\alpha_j} - (M^\infty)_{\beta_j} = \frac{M}{(\alpha_j-1)(\beta_j-1)}(\beta_j - \alpha_j) \leq \frac{M}{(qG-1)^2}(\beta_j - \alpha_j).$$
This implies that
\[
\beta_j - \alpha_j \geq \left(\frac{q_G - 1}{M} \right)^2 \left[(0^{m+2j}M^j - 1) \right)_{\beta_j} - (0^{m+2j}2^{j-1}1)_{\alpha_j} \right] \geq \left(\frac{q_G - 1}{M} \right)^2 \left[(0^{m+2j}M^j - 1) \right)_{\beta_j} - (0^{m+2j}0M^{j-2}2^{j-1}1)_{\beta_j} \right]
\]
for sufficiently large \(j \), where the second inequality follows by the first inequality in (5.5).
Therefore,
\[
\beta_j - \alpha_j \geq \left(\frac{q_G - 1}{M} \right)^2 \left[(0^{m+2j}M^j - 1) \right)_{\beta_j} - (0^{m+2j}2^{j-1}1)_{\alpha_j} \right] \geq \frac{C_1}{\beta_j^{\alpha_j + 1}},
\]
where \(C_1 := \left(\frac{q_G - 1}{M} \right)^{m+1} \).

Now we turn to a lower bound of \(M + 1 - \alpha_{j+1} \). Note by (5.1) that
\[
(\varepsilon_1 \ldots \varepsilon_m M^{2^{j+1}} (0^{2^{j+1}-1}1))_{\alpha_{j+1}} = x = (\varepsilon_1 \ldots \varepsilon_m M^\infty)_{M+1}.
\]
Then
\[
(0^{m+2^{j+1}}M^\infty)_{M+1} - (0^{m+2^{j+1}}(0^{2^{j+1}-1}1))_{\alpha_{j+1}} = (\varepsilon_1 \ldots \varepsilon_m M^{2^{j+1}}0^\infty)_{\alpha_{j+1}} - (\varepsilon_1 \ldots \varepsilon_m M^{2^{j+1}}0^\infty)_{M+1}
\]
\[
\leq (M^\infty)_{\alpha_{j+1}} - (M^\infty)_{M+1} \leq \frac{1}{q_G - 1}(M + 1 - \alpha_{j+1}).
\]
This implies that
\[
M + 1 - \alpha_{j+1} \geq (q_G - 1) \left[(0^{m+2^{j+1}}M^\infty)_{M+1} - (0^{m+2^{j+1}}(0^{2^{j+1}-1}1))_{\alpha_{j+1}} \right] \geq (q_G - 1) \left[(0^{m+2^{j+1}}M(0^{2^{j+1}-2}10))_{\alpha_{j+1}} - (0^{m+2^{j+1}}(0^{2^{j+1}-1}1))_{\alpha_{j+1}} \right]
\]
for \(j \) sufficiently large, where the second inequality follows by the second inequality in (5.5).
So,
\[
M + 1 - \alpha_{j+1} \geq \frac{M(q_G - 1)}{\alpha_{j+1}^{m+2^{j+1}+1}} \geq \frac{C_2}{\alpha_{j+1}^{2^{j+1}+1}},
\]
where \(C_2 := \frac{M(q_G - 1)}{(M+1)^{m+1}} \).

Hence, by (5.4), (5.7) and (5.8) it follows that
\[
\min \left\{ \frac{\beta_j - \alpha_j}{\alpha_{j+1} - \alpha_j}, \frac{M + 1 - \alpha_{j+1}}{\alpha_{j+1} - \beta_j} \right\} \geq \min \left\{ \frac{C_1}{C_0^{2^{j+1}}}, \frac{C_2}{C_0^{2^{j+1}}} \right\} \to \infty
\]
as \(j \to \infty \). This proves (5.3) and then completes the proof. \(\square \)

Proof of Theorem 1.2. Let \(x_1, x_2, \ldots, x_\ell \in D_M \). Then there exists \(m \in \mathbb{N} \) such that for each \(x_i \) the sequence \(\Phi_{x_i}(M + 1) = d_1 d_2 \ldots \) satisfies \(d_{m+1}d_{m+2} \ldots = M^\infty \). By our construction each set \(\mathcal{W}(x_i) \cup \{ M + 1 \} \) contains a sequence of Cantor subsets \(E_k(x_i) = \bigcup_{j=k}^{\infty} \mathcal{W}_j(x_i) \cup \{ M + 1 \}, k \geq m \). By Proposition 5.2 the thickness \(\tau(E_k(x_i)) \to \infty \) as \(k \to \infty \). Furthermore, each \(E_k(x_i) \) has a maximum value \(M + 1 \). So, by Lemma 4.3 and Lemma 5.1 it follows that for
any \(k \geq m \) and any \(i_1, i_2 \in \{1, 2, \ldots, \ell\} \) the intersection \(E_k(x_{i_1}) \cap E_k(x_{i_2}) \) contains a Cantor subset \(E_k(x_{i_1}, x_{i_2}) \) such that

\[
\max E_k(x_{i_1}, x_{i_2}) = M + 1, \quad \text{and} \quad \tau(E_k(x_{i_1}, x_{i_2})) \to \infty \quad \text{as} \quad k \to \infty.
\]

Proceeding this argument for all \(x_1, x_2, \ldots, x_\ell \in D_M \) we obtain that for any \(k \geq m \) the intersection \(\bigcap_{i=1}^{\ell} E_k(x_i) \) contains a Cantor subset \(E_k(x_1, \ldots, x_\ell) \) satisfying

\[
\max E_k(x_1, x_2, \ldots, x_\ell) = M + 1, \quad \text{and} \quad \tau(E_k(x_1, x_2, \ldots, x_\ell)) \to \infty \quad \text{as} \quad k \to \infty.
\]

Hence, by Lemma 4.3 we conclude that

\[
\dim_H \bigcap_{i=1}^{\ell} U(x_i) \geq \dim_H \bigcap_{i=1}^{\ell} E_k(x_i) \geq \dim_H E_k(x_1, \ldots, x_\ell) \geq \frac{\log 2}{\log \left(2 + \frac{1}{\tau(E_k(x_1, \ldots, x_\ell))}\right)} \to 1 \quad \text{as} \quad k \to \infty.
\]

This completes the proof. \(\square \)

6. Final remarks

In the way of proving Theorem 1.1 we can also obtain that

\[
\sup U_{SN}(x) = \sup U_I(x) = M + 1 \quad \text{for any} \quad x \in (0, 1].
\]

On the other hand, for \(M = 1 \) and \(x = 1 \) the smallest element of \(U(1) \) is \(q_{KL} \approx 1.78723 \), and \(\Phi_1(q_{KL}) \) is the shift of the Thue-Morse sequence (cf. [23]). Note that the Thue-Morse sequence is simply normal (cf. [3]). So, \(\min U_{SN}(1) = q_{KL} \) for \(M = 1 \). However, when \(M > 1 \) the smallest element of \(U(1) \) is not univoque simply normal (cf. [24]). Then it is natural to ask what \(\inf U_{NS}(1) \) is for \(M > 1 \). In general, for \(x \in (0, 1) \) and \(M \geq 1 \) it is interesting to determine \(\inf U_{SN}(x) \). Also, it might be interesting to investigate \(\inf U_I(x) \) for a general \(x \in (0, 1] \) and \(M \geq 1 \).

In Theorem 1.2 we show that the intersection \(\bigcap_{i=1}^{\ell} U(x_i) \) has full Hausdorff dimension for any \(x_1, \ldots, x_\ell \in D_M \). However, if some \(x_i \) does not belong to \(D_M \), then our method does not work. So it is worth exploring whether Theorem 1.2 holds for any finitely many \(x_1, x_2, \ldots, x_\ell \in (0, 1] \).

Acknowledgements

The first author was supported by CYS22075. The third author was supported by NSFC No. 11971079.
References

[1] S. Albeverio, M. Pratsiovytyi, and G. Torbin. Topological and fractal properties of real numbers which are not normal. *Bull. Sci. Math.*, 129(8):615–630, 2005.

[2] P. Allaart and D. Kong. On the smallest base in which a number has a unique expansion. *Trans. Amer. Math. Soc.*, 374(9):6201–6249, 2021.

[3] J.-P. Allouche and M. Cosnard. The Komornik-Loreti constant is transcendental. *Amer. Math. Monthly*, 107(5):448–449, 2000.

[4] J.-P. Allouche and J. Shallit. The ubiquitous Prouhet-Thue-Morse sequence. In *Sequences and their applications (Singapore, 1998)*, Springer Ser. Discrete Math. Theor. Comput. Sci., pages 1–16. Springer, London, 1999.

[5] S. Astels. Cantor sets and numbers with restricted partial quotients. *Trans. Amer. Math. Soc.*, 352(1):133–170, 2000.

[6] S. Baker. Generalized golden ratios over integer alphabets. *Integers*, 14:Paper No. A15, 28, 2014.

[7] C. Bonanno, C. Carminati, S. Isola, and G. Tiozzo. Dynamics of continued fractions and kneading sequences of unimodal maps. *Discrete Contin. Dyn. Syst.*, 33(4):1313–1332, 2013.

[8] P. Collet and J.-P. Eckmann. *Iterated maps on the interval as dynamical systems*, volume 1 of *Progress in Physics*. Birkhäuser, Boston, Mass., 1980.

[9] K. Dajani, V. Komornik, D. Kong, and W. Li. Algebraic sums and products of univoque bases. *Indag. Math. (N.S.)*, 29(4):1087–1104, 2018.

[10] Z. Daróczy and I. Kátai. On the structure of univoque numbers. *Publ. Math. Debrecen*, 46(3-4):385–408, 1995.

[11] M. de Vries and V. Komornik. Unique expansions of real numbers. *Adv. Math.*, 221(2):390–427, 2009.

[12] M. de Vries and V. Komornik. A two-dimensional univoque set. *Fund. Math.*, 212(2):175–189, 2011.

[13] M. de Vries, V. Komornik, and P. Loreti. Topology of the set of univoque bases. *Topology Appl.*, 205:117–137, 2016.

[14] M. de Vries, V. Komornik, and P. Loreti. Topology of univoque sets in real base expansions. *Topology Appl.*, 312:Paper No. 108085, 36, 2022.

[15] P. Erdős, I. Joó, and V. Komornik. Characterization of the unique expansions $1 = \sum_{i=1}^{\infty} q^{-n_i}$ and related problems. *Bull. Soc. Math. France*, 118:377–390, 1990.

[16] P. Erdős, M. Horváth, and I. Joó. On the uniqueness of the expansions $1 = \sum q^{-n_i}$. *Acta Math. Hungar.*, 58(3-4):333–342, 1991.

[17] P. Erdős and I. Joó. On the number of expansions $1 = \sum q^{-n_i}$. *Ann. Univ. Sci. Budapest. Eötvös Sect. Math.*, 35:129–132, 1992.

[18] D. Feng, Z. Wen, and J. Wu. Some dimensional results for homogeneous Moran sets. *Sci. China Ser. A*, 40(5):475–482, 1997.

[19] P. Glendinning. *Stability, instability and chaos: an introduction to the theory of nonlinear differential equations*. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 1994.

[20] P. Glendinning and N. Sidorov. Unique representations of real numbers in non-integer bases. *Math. Res. Lett.*, 8:535–543, 2001.

[21] B. R. Hunt, I. Kan, and J. A. Yorke. When Cantor sets intersect thickly. *Trans. Amer. Math. Soc.*, 339(2):869–888, 1993.

[22] K. Jiang. Obtaining an explicit interval for a nonlinear Newhouse thickness theorem. *Math. Z.*, 301(1):1011–1037, 2022.

[23] V. Komornik and P. Loreti. Unique developments in non-integer bases. *Amer. Math. Monthly*, 105(7):636–639, 1998.
[24] V. Komornik and P. Loreti. Subexpansions, superexpansions and uniqueness properties in non-integer bases. *Period. Math. Hungar.*, 44(2):197–218, 2002.

[25] V. Komornik and P. Loreti. On the topological structure of univoque sets. *J. Number Theory*, 122(1):157–183, 2007.

[26] D. Kong and W. Li. Hausdorff dimension of unique beta expansions. *Nonlinearity*, 28(1):187–209, 2015.

[27] D. Kong, W. Li, F. Lü, Z. Wang, and J. Xu. Univoque bases of real numbers: local dimension, devil’s staircase and isolated points. *Adv. in Appl. Math.*, 121:102103, 31, 2020.

[28] D. Lind and B. Marcus. *An introduction to symbolic dynamics and coding*. Cambridge University Press, Cambridge, 1995.

[29] D. Kong and W. Li. Hausdorff dimension of unique beta expansions. *Nonlinearity*, 28(1):187–209, 2015.

[30] A. McDonald and K. Taylor. Finite point configurations in products of thick cantor sets and a robust nonlinear newhouse gap lemma. *arXiv:2111.00393*, 2021.

[31] J. Milnor and W. Thurston. On iterated maps of the interval. In *Dynamical systems (College Park, MD, 1986–87)*, volume 1342 of *Lecture Notes in Math.*, pages 465–563. Springer, Berlin, 1988.

[32] S. E. Newhouse. The abundance of wild hyperbolic sets and non-smooth stable sets for diffeomorphisms. *Inst. Hautes Études Sci. Publ. Math.*, 50:101–151, 1979.

[33] J. Palis and F. Takens. *Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations. Fractal dimensions and infinitely many attractors*, volume 35 of *Cambridge Studies in Advanced Mathematics*. Cambridge University Press, Cambridge, 1993.

[34] W. Parry. On the β-expansions of real numbers. *Acta Math. Acad. Sci. Hungar.*, 11:401–416, 1960.

[35] A. Rényi. Representations for real numbers and their ergodic properties. *Acta Math. Acad. Sci. Hungar.*, 8:477–493, 1957.

[36] K. Simon and K. Taylor. Interior of sums of planar sets and curves. *Math. Proc. Cambridge Philos. Soc.*, 168(1):119–148, 2020.

(Y. Hu) **College of Mathematics and Statistics, Chongqing University, Chongqing 401331, People’s Republic of China.**

Email address: huyu2908@gmail.com

(Y. Huang) **College of Mathematics and Statistics, Chongqing University, Chongqing 401331, People’s Republic of China.**

Email address: yanhuangyh@126.com

(D. Kong) **College of Mathematics and Statistics, Chongqing University, Chongqing 401331, People’s Republic of China.**

Email address: derongkong@126.com