Clinicopathological and prognostic significance of GLUT1 in breast cancer

A meta-analysis

Yu Deng, PhDa,∗, Jialing Zou, PhDb, Ting Deng, PhDc, Junying Liu, PhDd

Abstract

Background: Previous studies examining the prognostic value of glucose transporter 1 in breast cancer have yielded inconsistent results. We, therefore, performed a meta-analysis to clarify this issue.

Methods: The research was reported according to the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. Relevant studies were retrieved from PubMed, Web of Science, EMBASE, and Cochrane library.

Results: A total of 7 reports with 1861 patients were finally chosen. GLUT1 overexpression was found to be associated with high histological grade (OR=3.74, 95% CI=2.45–5.69, P<.001), negative PR status (OR=0.33, 95% CI=0.22–0.49, P<.001), and negative estrogen receptor (ER) status (OR=0.27, 95% CI=0.17–0.42, P<.001). However, no significant correlation was seen between GLUT1 levels and presence of lymph node metastasis, tumor size or the status of human epidermal growth factor receptor 2 (HER2). Overexpression of GLUT1 also correlated with a poor overall survival (hazard ratio [HR]=1.65, 95% confidence interval [CI]=1.17–2.31, P=.004) and disease-free survival (HR=2.35, 95% CI=1.4–3.94, P<.001). No evidence of significant publication bias was found.

Conclusion: This meta-analysis indicates that GLUT1 expression is associated with poor prognostic and a series of clinicopathological features in breast cancer. GLUT1 might be a potential biomarker and therapeutic target in breast cancer.

Abbreviations: CI= confidence interval, DFS = disease-free survival, ER= estrogen receptor, GLUT1 = Glucose transporter 1, HER2 = human epidermal growth factor receptor 2, HR = hazard ratio, OS = overall survival, PR = progesterone receptor.

Keywords: breast cancer, carcinogenesis, GLUT1, meta-analysis, prognosis

1. Introduction

Breast cancer remains the most frequently diagnosed cancer in women worldwide, with a high mortality rate. According to a recent report, published in 2017, 252,710 women will be newly diagnosed and 40,610 women are expected to die of breast cancer in the United States. The therapeutic strategies for breast cancer include surgery, radiotherapy, and systemic treatment including chemotherapy, and endocrine therapy. A series of clinicopathological parameters including tumor stage, histological grade, and biological tumor subtypes are applied to guide the selection of a treatment regimen and to predict survival outcomes. In spite of these efforts, the prognosis of breast cancer remains unsatisfactory. Therefore, there is a pressing need to explore new biomarkers that can provide an accurate prognosis for individual patients.

It is well known that cancer cell growth is an energy-dependent process. As a result, glucose metabolism in cancer cells is typically altered. The metabolic reprogramming of cancer cells is an emerging hallmark of cancer. Altered energy metabolism is observed in many kinds of cancer. Glucose transporter (GLUT1) proteins transport glucose across the plasma membrane and GLUT1 plays an important role in metabolic remodeling in cancer cells. In normal tissues, expression of GLUT1 is limited to the erythrocytes. However, various malignant tumors have shown an overexpression of GLUT proteins, especially GLUT1. The prognostic role of GLUT1 in breast cancer has also been widely investigated; however, the results have been inconsistent. Hussein et al reported that GLUT1 expression did not correlate with the overall survival (OS) (P=.13) in breast cancer. However, other investigators have presented significant associations between GLUT1 and a poor prognosis in breast cancer. We thus conducted a meta-analysis by pooling data from different studies, with an aim to identify definite correlations between GLUT1, other clinicopathological features, and prognosis in breast cancer.

2. Materials and methods

2.1. Literature search strategy

This study was performed according to the preferred reporting items for systematic reviews and meta-analyses (PRISMA)
ethical approval and patient consent are required. All analyses are based on previously-published studies; moreover, 2.5. Ethical approval software (Stata Corporation, College Station, TX). statistical analyses were performed using the Stata version 12.0 test.

heterogeneity. Publication bias was evaluated by using the Begg Cochran Q test and Higgins Heterogeneity among the studies was assessed by using the correlations of GLUT1 with the clinicopathological characteristics of the included studies are detailed in Table 1. Four studies were conducted in Korea and 1 each in Taiwan, the USA, and Portugal, respectively. All eligible studies were published in English. Ethical approval and patient consent are required. All analyses are based on previously-published studies; moreover, 2.5. Ethical approval software (Stata Corporation, College Station, TX). statistical analyses were performed using the Stata version 12.0 test.

3. Results 3.1. Literature search and study characteristics The process of the study selection is shown in Figure 1. A total of 839 records were identified through an initial search. After removing the duplicate records, 601 records were screened, of which 538 were excluded by scanning their titles and abstracts. Sixty-three full-text articles were further evaluated. Subsequently, 48 studies were excluded for the following reasons: 41 studies lacked the necessary information, 8 of them were non-English studies, 5 of them were meeting abstracts, 1 was a case report, and 1 was a duplicate study. Finally, 7 studies with 1861 patients were included in this meta-analysis. The baseline characteristics of the included studies are detailed in Table 1. Four studies were conducted in Korea and 1 each in Taiwan, the USA, and Portugal, respectively. All eligible studies were published in English. Ethical approval and patient consent are required. All analyses are based on previously-published studies; moreover, 2.5. Ethical approval software (Stata Corporation, College Station, TX). statistical analyses were performed using the Stata version 12.0 test.

3. Results 3.1. Literature search and study characteristics The process of the study selection is shown in Figure 1. A total of 839 records were identified through an initial search. After removing the duplicate records, 601 records were screened, of which 538 were excluded by scanning their titles and abstracts. Sixty-three full-text articles were further evaluated. Subsequently, 48 studies were excluded for the following reasons: 41 studies lacked the necessary information, 8 of them were non-English studies, 5 of them were meeting abstracts, 1 was a case report, and 1 was a duplicate study. Finally, 7 studies with 1861 patients were included in this meta-analysis. The baseline characteristics of the included studies are detailed in Table 1. Four studies were conducted in Korea and 1 each in Taiwan, the USA, and Portugal, respectively. All eligible studies were published in English.

3.2. Association of GLUT1 with clinicopathological characteristics The relationship between GLUT1 and 6 clinicopathological factors was investigated. The 6 clinicopathological parameters were lymph node metastasis, histological grade, progesterone receptor (PR) status, estrogen receptor (ER) status, and human epidermal growth factor receptor 2 (HER2) status and tumor size. The pooled results are summarized in Table 2 and Figure 2. The results demonstrate that GLUT1 overexpression is associated with high histological grade (OR = 3.74, 95% CI = 2.45–5.69, P < .001), negative PR status (OR = 0.33, 95% CI = 0.22–0.49, P < .001), and negative ER status (OR = 0.27, 95% CI = 0.17–0.42, P < .001). However, no significant correlation was seen between GLUT1 levels and presence of lymph node metastasis, tumor size or the status of HER2.

3.3. Correlation between GLUT1, and OS and DFS Three studies with a total of 899 patients reported an association between GLUT1 and OS. The pooled HR and 95% CI of these studies were 1.65 and 1.17 to 2.31, respectively (P = .004; Fig. 3), indicating that GLUT1 overexpression predicted poor OS in breast cancer. Another 2 studies comprising 376 patients investigated the link between GLUT1 and DFS. The aggregated HR and 95% CI were 2.35 and 1.4 to 3.94, respectively (P < .001; Fig. 4). Taken together, these results demonstrate that overexpression of GLUT1 is associated with a shorter OS and DFS in breast cancer.

3.4. Publication bias The Begg’s linear regression model was applied to detect potential publication bias. The P values of the Begg test for OS and DFS were .602 and .41, respectively, indicating no significant publication bias in this meta-analysis.

4. Discussion A number of studies have evaluated the prognostic significance of GLUT1 in breast cancer, and the results have been conflicting. To address this issue, we conducted a meta-analysis of the available data. The pooled results from 7 studies with 1861 patients showed that elevated GLUT1 expression is associated with high histological grade, negative PR status, and negative ER status. Furthermore, GLUT1 overexpression also correlated with poor OS and DFS. Therefore, GLUT1 has the potential to be a new biomarker indicative of an aggressive and lethal phenotype of breast cancer. To the best of our knowledge, this is the first meta-analysis exploring the prognostic value of GLUT1 in breast cancer.
Cancer cells can reprogram energy metabolism in order to fuel cell growth and proliferation. Reprogramming energy metabolism is a hallmark of cancer.[6] GLUT1 is overexpressed in various tumors to sustain the elevated glucose levels in cancer cells.[18] In addition, GLUT1 is also reported to promote the proliferation, migration, and invasion of tumor cells by activating the EGFR/MAPK pathway as well as the integrinβ3/Src/FAK pathway.[18] GLUT1 expression is also associated with 18F-FDG uptake,[19] indicating the potential connection between GLUT1 and tumor progression.

The impact of GLUT1 on the prognosis of different cancers has been previously studied, using a meta-analysis.[20–24] Wang et al pooled data from 26 studies and showed that the overexpression

Table 1
Baseline characteristics of included studies.

Study	Year	Country/Region	No. of patients	Age, mean (range)	Stage	Cut-off value	Method	Language
Choi	2013	Korea	740	49.7	I-II	NR	IHC	English
Hussein	2011	USA	520	56.9 (26–94)	I-II	50%	IHC	English
Jang	2012	Korea	276	50	I-IV	10%	IHC	English
Kang	2002	Korea	100	48.3 (23–74)	NR	10%	IHC	English
Kim	2013	Korea	59	50.8	I-II	10%	IHC	English
Kuo	2006	Taiwan	39	NR	NR	Score 3	IHC	English
Pinheiro	2011	Portugal	124	NR	I-II	5%	IHC	English

IHC = immunohistochemistry, NR = not reported.
Table 2

Variables	No. of studies	Effect model	I² (%)	P	OR (95% CI)	P
LN metastasis (+ vs -)	7	Fixed model	22.6	.257	1.15 (0.93–1.42)	.203
Histological grade (III vs I-II)	7	Random model	60.8	.018	3.74 (2.45–5.69)	<.001
PR status (+ vs -)	7	Random model	58.3	.026	0.33 (0.22–0.49)	<.001
ER status (+ vs -)	6	Random model	60.7	.026	2.37 (0.17–0.42)	<.001
HER2 status (+ vs -)	6	Random model	24.5	.25	0.91 (0.69–1.19)	.483
Tumor size (>2cm vs ≤2 cm)	6	Random model	74.8	.001	1.43 (0.86–2.37)	.171

ER = estrogen receptor, HER2 = human epidermal growth factor receptor 2, PR = progesterone receptor.

Figure 2. Forrest plot of ORs and 95% CIs for the association of GLUT1 expression with (A) lymph node metastasis, (B) histological grade, (C) PR status, (D) ER status, (E) HER2 status and (F) tumor size in breast cancer patients. CI = confidence interval, DFS = disease-free survival, ER = estrogen receptor, GLUT1 = Glucose transporter 1, HER2 = human epidermal growth factor receptor 2, OR = odds ratio, PR = progesterone receptor.
Yang and colleagues have reported that GLUT1 is associated with poor DFS in rectal cancer and is also an indicator of aggressive clinical features. In addition, Chen et al reported that the overexpression of GLUT1 is associated with a poor prognosis in the Asian population. Our results are in line with the results of these previous meta-analyses. Notably, only 4 studies on breast cancer were included in a previous meta-analysis. Our meta-analysis included 15 studies; therefore, it is the most comprehensive study that evaluates the correlation between GLUT1 and breast cancer. Recent studies also indicated that glucose metabolism-related gene GLUT1, and its functional Single Nucleotide Polymorphisms (SNP), might contribute to CRC susceptibility and prognosis in colorectal cancer. Furthermore, Pinheiro’s work revealed that GLUT1 overexpression was a promising candidate to predict clinical behavior in pediatric adrenocortical tumors. This study suggests the potential role of GLUT1 in a metabolic remodeling towards a hyperglycolytic phenotype in this malignancy. Therefore, the alteration of tumor metabolism after GLUT1 was up-regulated needs to be further investigated.

There are several limitations of this study. First, most included studies were from Asia, and therefore, the results could be more applicable to Asian patients. Moreover, as only a few studies analyzing the OS and DFS were included, the analysis might be biased.

5. Conclusion
In summary, this meta-analysis indicates that overexpression of GLUT1 is associated with poor prognosis in breast cancer and should be considered as a marker to stratify high-risk patients.

Figure 3. Forrest plot of HR and 95% CI for the association of GLUT1 expression with OS in breast cancer patients. CI = confidence interval, GLUT1 = Glucose transporter 1, HR = hazard ratio, OS = overall survival.

Figure 4. Forrest plot of HR and 95% CI for the association of GLUT1 expression with DFS in breast cancer patients. CI = confidence interval, DFS = disease-free survival, GLUT1 = Glucose transporter 1, HR = hazard ratio.
However, owing to the aforementioned limitations, further large-scale prospective studies on the prognostic value on OS and DFS are needed to verify our results.

Author contributions

Conceptualization: Yu Deng, Ting Deng, Junying Liu, Weiguo Zhang.

Data curation: Yu Deng, Weiguo Zhang.

Formal analysis: Yu Deng, Jialing Zou, Junying Liu, Weiguo Zhang.

Funding acquisition: Yu Deng, Ting Deng, Junying Liu, Weiguo Zhang.

Investigation: Yu Deng, Jialing Zou, Junying Liu, Weiguo Zhang.

Methodology: Yu Deng, Ting Deng, Junying Liu.

Project administration: Yu Deng, Ting Deng, Junying Liu, Weiguo Zhang.

Resources: Yu Deng.

Supervision: Yu Deng, Jialing Zou, Ting Deng, Weiguo Zhang.

Validation: Yu Deng, Ting Deng, Junying Liu.

Visualization: Yu Deng, Ting Deng.

Writing – original draft: Ting Deng.

Writing – review & editing: Yu Deng, Jialing Zou, Junying Liu.

Software: Jialing Zou, Weiguo Zhang.

References

[1] Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012. Ca-a Cancer J Clin 2015;65:87–108.

[2] Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2017. CA: Cancer J Clin 2015;65:87–108.

[3] Gradishar WJ, Anderson BO, Balassanian R, et al. Breast cancer version 2.2015. J Natl Compr Cancer Netw 2015;13:448–73.

[4] Harbeck N, Gnant M. Breast cancer. Lancet 2017;389:1134–50.

[5] Szablewski L. Expression of glucose transporters in cancers. Biochim Biophys Acta Rev Cancer 2013;1835:164–9.

[6] Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011;144:646–74.

[7] Partridge WM, Boado RJ, Farrell CR. Brain-type glucose transporter (GLUT-1) is selectively localized to the blood-brain barrier, Studies with quantitative western blotting and in situ hybridization. J Biol Chem 1990;265:18035–40.

[8] Medina RA, Owen GI. Glucose transporters: expression, regulation and cancer. Biol Res 2002;35:9–26.

[9] Hussein YR, Bandypadhyay S, Semaan A, et al. Glut-1 expression correlates with basal-like breast cancer. Transl Oncol 2011;4:321–7.

[10] Jang SM, Han H, Jang KS, et al. The glycolytic phenotype is correlated with aggressiveness and poor prognosis in invasive ductal carcinomas. J Breast Cancer 2012;15:172–80.

[11] Kang SS, Chun YK, Hur MH, et al. Clinical significance of glucose transporter 1 (GLUT1) expression in human breast carcinoma. Jpn J Cancer Res 2002;93:1123–8.

[12] Mohler D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 2009;151:264–9.

[13] Tierney JF, Stewart LA, Ghersi D, et al. Practical methods for incorporating summary time-to-event data into meta-analysis. Trials 2007;8:1–16.

[14] Choi J, Kim DH, Jung WH, et al. Metabolic interaction between cancer cells and stromal cells according to breast cancer molecular subtype. Breast Cancer Res 2013;15:1–20.

[15] Pinheiro C, Sousa B, Albergaria A, et al. GLUT1 and CAIX expression profiles in breast cancer correlate with adverse prognostic factors and MCT1 overexpression. Histol Histopathol 2011;26:1279–86.

[16] Kim S, Jung WH, Koo JS. The expression of Glut-1, CAIX, and MCT4 in mucinous carcinoma. J Breast Cancer 2013;16:446–51.

[17] Kuo SJ, Wu YC, Chen CP, et al. Expression of glucose transporter-1 in Taiwanese patients with breast carcinoma—a preliminary report. Kaohsiung J Med Sci 2006;22:339–45.

[18] Oh S, Kim H, Nam K, et al. Glut1 promotes cell proliferation, migration and invasion by regulating epidermal growth factor receptor and integrin signaling in triple-negative breast cancer cells. BMC Reports 2017;3:13–7.

[19] Hiyoshi Y, Watanabe M, Inamura Y, et al. The relationship between the glucose transporter type 1 expression and F-fluorodeoxyglucose uptake in esophageal squamous cell carcinoma. Oncology 2009;76:286–92.

[20] Li CX, Sun JL, Gong ZC, et al. Prognostic value of GLUT-1 expression in oral squamous cell carcinoma: A prisma-compliant meta-analysis. Medicine 2016;95:1–7.

[21] Chen X, Lu P, Zhou S, et al. Predictive value of glucose transporter-1 and glucose transporter-3 for survival of cancer patients: a meta-analysis. Oncotarget 2017;8:13206–13.

[22] Sharen G, Peng Y, Cheng H, et al. Prognostic value of GLUT-1 expression in pancreatic cancer: results from 538 patients. Oncotarget 2017;8:19760–7.

[23] Wang J, Ye C, Chen C, et al. Glucose transporter GLUT1 expression and clinical outcome in solid tumors: a systematic review and meta-analysis. Oncotarget 2017;8:16875–86.

[24] Yang J, Wen J, Tian T, et al. GLUT-1 overexpression as an unfavorable prognostic biomarker in patients with colorectal cancer. Oncotarget 2016;7:11788–96.

[25] Feng W, Cui G, Tang CW, et al. Role of glucose metabolism related gene GLUT1 in the occurrence and prognosis of colorectal cancer. Oncotarget 2017;8:56850–7.

[26] Pinheiro G, Granja S, Longatto-Filho A, et al. GLUT1 expression in pediatric adrenocortical tumors: a promising candidate to predict clinical behavior. Oncotarget 2017;8:63835–45.