ON THE cd-INDEX AND γ-VECTOR OF S*-SHELLABLE CW-SPHERES

SATOSHI MURAI AND ERAN NEVO

Abstract. We show that the γ-vector of the order complex of any polytope is the f-vector of a balanced simplicial complex. This is done by proving this statement for a subclass of Stanley’s S-shellable spheres which includes all polytopes. The proof shows that certain parts of the cd-index, when specializing $c = 1$ and considering the resulted polynomial in d, are the f-polynomials of simplicial complexes that can be colored with “few” colors. We conjecture that the cd-index of a regular CW-sphere is itself the flag f-vector of a colored simplicial complex in a certain sense.

1. Introduction

Let P be an $(n-1)$-dimensional regular CW-sphere (that is, a regular CW-complex which is homeomorphic to an $(n-1)$-dimensional sphere). In face enumeration, one of the most important combinatorial invariants of P is the cd-index. The cd-index $\Phi_P(c, d)$ of P is a non-commutative polynomial in the variables c and d that encodes the flag f-vector of P. By the result of Stanley [St1] and Karu [Ka], it is known that the cd-index $\Phi_P(c, d)$ has non-negative integer coefficients. On the other hand, a characterization of the possible cd-indices for regular CW-spheres, or other related families, e.g. Gorenstein* posets, is still beyond reach. In this paper we take a step in this direction and establish some non-trivial upper bounds, as we detail now.

If we substitute 1 for c in $\Phi_P(c, d)$, we obtain a polynomial of the form

$$\Phi_P(1, d) = \delta_0 + \delta_1 d + \cdots + \delta_{\lfloor \frac{n}{2} \rfloor} d^{\lfloor \frac{n}{2} \rfloor},$$

where $\lfloor \frac{n}{2} \rfloor$ is the integer part of $\frac{n}{2}$, such that each δ_i is a non-negative integer. In other words, δ_i is the sum of coefficients of monomials in $\Phi_P(c, d)$ for which d appears i times.

Let Δ be a (finite abstract) simplicial complex on the vertex set V. We say that Δ is k-colored if there is a map $c : V \to [k] = \{1, 2, \ldots, k\}$, called a k-coloring map of Δ, such that if $\{x, y\}$ is an edge of Δ then $c(x) \neq c(y)$. Let $f_i(\Delta)$ denote the number of elements $F \in \Delta$ having cardinality $i + 1$, where $f_{-1}(\Delta) = 1$. The main result of this paper is the following.

Theorem 1.1. Let P be an $(n-1)$-dimensional S^*-shellable regular CW-sphere, and let $\Phi_P(1, d) = \delta_0 + \delta_1 d + \cdots + \delta_{\lfloor \frac{n}{2} \rfloor} d^{\lfloor \frac{n}{2} \rfloor}$. Then there exists an $\lfloor \frac{n}{2} \rfloor$-colored simplicial complex Δ such that

$$\delta_i = f_{i-1}(\Delta) \quad \text{for} \quad i = 0, 1, \ldots, \lfloor \frac{n}{2} \rfloor.$$
The precise definition of the S*-shellability is given in Section 2. The most important class of S*-shellable CW-spheres are the boundary complexes of polytopes. By the Kruskal-Katona Theorem (see e.g. [St2, II, Theorem 2.1]), the above theorem gives certain upper bound on δ_i in terms of δ_{i-1}. Better upper bounds are given by Frankl-Füredi-Kalai theorem which characterizes the f-vectors of k-colored complexes [FFK].

The numbers $\delta_0, \delta_1, \delta_2, \ldots$ relate to the γ-vector (see Section 4 for the definition) of the barycentric subdivision (order complex) of P, namely the simplicial complex whose elements are the chains of nonempty cells in P ordered by inclusion. Indeed, as an application of Theorem 1.1 we prove the following.

Theorem 1.2. Let P be an $(n-1)$-dimensional S*-shellable regular CW-sphere and let $sd(P)$ be the barycentric subdivision of P. Then there exists an $\lfloor \frac{n}{2} \rfloor$-colored simplicial complex Γ such that $\gamma_i(sd(P)) = f_{i-1}(\Gamma)$ for $i = 0, 1, \ldots, \lfloor \frac{n}{2} \rfloor$.

Recall that an $(n-1)$-dimensional simplicial complex is said to be balanced if it is n-colored. If P is the boundary complex of an arbitrary convex n-dimensional polytope, then $\delta_{\lfloor \frac{n}{2} \rfloor}(P) > 0$ and we conclude the following.

Corollary 1.3. Let P be the boundary complex of an n-dimensional polytope. Then the γ-vector of $sd(P)$ is the f-vector of a balanced simplicial complex.

The above corollary supports the conjecture of Nevo and Petersen [NP, Conjecture 6.3] which states that the γ-vector of a flag homology sphere is the f-vector of a balanced simplicial complex. This conjecture was verified for the barycentric subdivision of simplicial homology spheres (in this case all the cells are simplices) in [NPT].

It would be natural to ask if the above theorems hold for all regular CW-spheres (or more generally, Gorenstein* posets). We conjecture a stronger statement on the cd-index, see Conjecture 4.3.

This paper is organized as follows: in Section 2 we recall some known results on the cd-index and define S*-shellability, in Section 3 we prove our main theorem, Theorem 1.1, in Section 4 we derive consequences for γ-vectors and present a conjecture on the cd-index, Conjecture 4.3.

2. cd-index of S*-shellable CW-spheres

In this section we recall some known results on the cd-index.

Let P be a graded poset of rank $n+1$ with the minimal element $\hat{0}$ and the maximal element $\hat{1}$. Let ρ denote the rank function of P. For $S \subseteq [n] = \{1, 2, \ldots, n\}$, a chain $\hat{0} = \sigma_0 < \sigma_1 < \sigma_2 < \cdots < \sigma_{k+1} = \hat{1}$ of P is called an S-flag if $\{\rho(\sigma_1), \ldots, \rho(\sigma_k)\} = S$. Let $f_S(P)$ be the number of S-flags of P. Define $h_S(P)$ by

$$h_S(P) = \sum_{T \subseteq S} (-1)^{|S|-|T|} f_T(P),$$

where $|X|$ denotes the cardinality of a finite set X. The vectors $(f_S(P) : S \subseteq [n])$ and $(h_S(P) : S \subseteq [n])$ are called the flag f-vector and flag h-vector of P respectively.
Now we recall the definition of the cd-index. For \(S \subseteq [n] \), we define a non-commutative monomial \(u_S = u_1 u_2 \cdots u_n \) in variables \(a \) and \(b \) by \(u_i = a \) if \(i \notin S \) and \(u_i = b \) if \(i \in S \). Let
\[
\Psi_P(a, b) = \sum_{S \subseteq [n]} h_P(S) u_S.
\]

For a graded poset \(P \), let \(sd(P) \) be the order complex of \(P - \{0, 1\} \). Thus
\[
sd(P) = \{ \{\sigma_1, \sigma_2, \ldots, \sigma_k\} \subset P - \{0, 1\} : \sigma_1 < \sigma_2 < \cdots < \sigma_k \}.
\]

We say that \(P \) is Gorenstein* if the simplicial complex \(sd(P) \) is a homology sphere. It is known that if \(P \) is Gorenstein* then \(\Psi_P(a, b) \) can be written as a polynomial \(\Phi_P(c, d) \) in \(c = a + b \) and \(d = ab + ba \) \([BK]\), and this non-commutative polynomial \(\Phi_P(c, d) \) is called the cd-index of \(P \). Moreover, by the celebrated results due to Stanley \([SL]\) (for convex polytopes) and Karu \([Ka]\) (for Gorenstein* posets), the coefficients of \(\Phi_P(c, d) \) are non-negative integers.

Next, we define S*-shellability of regular CW-spheres by slightly modifying the definition of S-shellability introduced by Stanley \([SL]\) Definition 2.1.

Let \(P \) be a regular CW-sphere (a regular CW-complex which is homeomorphic to a sphere) and \(F(P) \) its face poset. Then the order complex of \(F(P) \) is a triangulation of a sphere, so the poset \(F(P) \cup \{0, 1\} \) is Gorenstein*. We define the cd-index of \(P \) by \(\Phi_P(c, d) = \Phi_{F(P) \cup \{0, 1\}}(c, d) \). For any cell \(\sigma \) of \(P \), we write \(\overline{\sigma} \) for the closure of \(\sigma \). For an \((n-1)\)-dimensional regular CW-sphere \(P \), let \(\Sigma P \) be the suspension of \(P \), in other words, \(\Sigma P \) is the \(n \)-dimensional regular CW-sphere obtained from \(P \) by attaching two \(n \)-dimensional cells \(\tau_1 \) and \(\tau_2 \) such that \(\partial \overline{\tau_1} = \partial \overline{\tau_2} = P \). Also, for an \((n-1)\)-dimensional regular CW-ball \(P \) (a regular CW-complex which is homeomorphic to an \((n-1)\)-dimensional ball), let \(P' \) be the \((n-1)\)-dimensional regular CW-sphere which is obtained from \(P \) by adding an \((n-1)\)-dimensional cell \(\tau \) so that \(\partial \overline{\tau} = \partial P \).

Definition 2.1. Let \(P \) be an \((n-1)\)-dimensional regular CW-sphere. We say that \(P \) is S*-shellable if either \(P = \{\emptyset\} \) or there is an order \(\sigma_1, \sigma_2, \ldots, \sigma_r \) of the facets of \(P \) such that the following conditions hold.

(a) \(\partial \sigma_1 \) is S*-shellable.
(b) For \(1 \leq i \leq r - 1 \), let
\[
\Omega_i = \overline{\sigma_1} \cup \overline{\sigma_2} \cup \cdots \cup \overline{\sigma_i}
\]
and for \(2 \leq i \leq r - 1 \) let
\[
\Gamma_i = \left[\partial \sigma_i \setminus (\partial \sigma_i \cap \Omega_{i-1}) \right].
\]

Then both \(\Omega_i \) and \(\Gamma_i \) are regular CW-balls of dimension \((n-1)\) and \((n-2)\) respectively, and \(\Gamma_i' \) is S*-shellable with the first facet of the shelling being the facet which is not in \(\Gamma_i \).

Remark 2.2. The difference between the above definition and Stanley’s S-shellability is that S-shellability only assume that \(P \) and \(\Gamma_i' \) are Eulerian and assume no conditions on \(\Omega_i \). However, S*-shellable regular CW-spheres are S-shellable, and the boundary complex of convex polytopes are S*-shellable by the line shelling \([BM]\). We leave the verification of this fact to the readers.
The next recursive formula is due to Stanley [St1].

Lemma 2.3 (Stanley). With the same notation as in Definition 2.1, for $i = 1, 2, \ldots, r - 2$, one has

$$\Phi_{\Omega_i'}(c, d) = \Phi_{\Omega_i}(c, d) + \left\{ \Phi_{\partial\Omega_i'}(c, d) - \Phi_{\Sigma(\partial\Gamma_{i+1})}(c, d) \right\} c + \Phi_{\partial\Gamma_{i+1}}(c, d) d.$$

Since $\Omega_{r-1}' = P$ the above formula gives a way to compute the cd-index of P recursively.

Next, we recall a result of Ehrenborg and Karu proving that the cd-index increases by taking subdivisions. Let P and Q be regular CW-complexes, and let $\phi : \mathcal{F}(P) \to \mathcal{F}(Q)$ be a poset map. For a subcomplex $Q' = \sigma_1 \cup \cdots \cup \sigma_s \subset Q$, where each σ_i is a cell of Q, we write $\phi^{-1}(Q') = \phi^{-1}(\sigma_1) \cup \cdots \cup \phi^{-1}(\sigma_s)$.

Following [EK] Definition 2.6, for $(n - 1)$-dimensional regular CW-spheres P and \hat{P}, we say that \hat{P} is a subdivision of P if there is an order preserving surjective poset map $\phi : \mathcal{F}(\hat{P}) \to \mathcal{F}(P)$, satisfying that for any cell σ of P, $\phi^{-1}(\sigma)$ is a homology ball having the same dimension as σ and $\phi^{-1}(\partial\sigma) = \partial(\phi^{-1}(\sigma))$.

The following result was proved in [EK] Theorem 1.5.

Lemma 2.4 (Ehrenborg-Karu). Let P and \hat{P} be $(n - 1)$-dimensional regular CW-spheres. If \hat{P} is a subdivision of P then one has a coefficientwise inequality $\Phi_{\hat{P}}(c, d) \geq \Phi_{P}(c, d)$

Back to S^*-shellable regular CW-spheres, with the same notation as in Definition 2.1, Ω_i' is a subdivision of $\Sigma(\partial\Omega_i)$ and $\partial\Omega_i$ is a subdivision of $\Sigma(\partial\Gamma_{i+1})$. Indeed, for the first statement, if τ_1 and τ_2 are the facets of $\Sigma(\partial\Omega_i)$ then define $\phi : \mathcal{F}(\Omega_i') \to \mathcal{F}(\Sigma(\partial\Omega_i))$ by

$$\phi(\sigma) = \begin{cases}
\sigma, & \text{if } \sigma \in \partial\Omega_i, \\
\tau_1, & \text{if } \sigma \text{ is an interior face of } \Omega_i, \\
\tau_2, & \text{if } \sigma \notin \Omega_i.
\end{cases}$$

Similarly, for the second statement, if τ_1 and τ_2 are the facets of $\Sigma(\partial\Gamma_{i+1})$ then define $\phi : \mathcal{F}(\partial\Omega_i) \to \mathcal{F}(\Sigma(\partial\Gamma_{i+1}))$ by

$$\phi(\sigma) = \begin{cases}
\sigma, & \text{if } \sigma \in \partial\Gamma_{i+1}, \\
\tau_1, & \text{if } \sigma \in \partial\Gamma_{i+1} \setminus \partial\Gamma_{i+1}, \\
\tau_2, & \text{otherwise}.
\end{cases}$$

Since $\Phi_{\Sigma P}(c, d) = \Phi_{P}(c, d) c$ for any regular CW-sphere P (see [St1, Lemma 1.1]), Lemma 2.4 shows

Lemma 2.5. With the same notation as in Definition 2.1, for $i = 2, 3, \ldots, r - 2$, one has $\Phi_{\Omega_i'}(c, d) \geq \Phi_{\partial\Gamma_{i+1}}(c, d) c^2$.

3. **Proof of the main theorem**

In this section, we prove Theorem 1.1.

For a homogeneous cd-polynomial Φ (i.e., homogeneous polynomial of $\mathbb{Z}^n(c, d)$ with $\deg c = 1$ and $\deg d = 2$) of degree n, we define $\Phi_0, \Phi_2, \ldots, \Phi_n$ by

$$\Phi = \Phi_0 + \Phi_2 dc^{n-2} + \Phi_3 dc^{n-3} + \cdots + \Phi_{n-1} dc + \Phi_n d$$
where $\Phi_0 = \alpha c^n$ for some $\alpha \in \mathbb{Z}$ and each Φ_k is a cd-polynomial of degree $k - 2$ for $k \geq 2$. Also, we write $\Phi_{\leq k} = \Phi_0 + \Phi_2 dc^{n-2} + \cdots + \Phi_k dc^{n-k}$.

Definition 3.1.

- A vector $(\delta_0, \delta_1, \ldots, \delta_s) \in \mathbb{Z}^{s+1}$ is said to be k-FFK if there is a k-colored simplicial complex Δ such that $\delta_i = f_{i-1}(\Delta)$ for $i = 0, 1, \ldots, s$. ($\{\emptyset\}$ is a 0-colored simplicial complex.) A homogeneous cd-polynomial $\Phi = \Phi(c, d)$ is said to be k-FFK if, when we write $\Phi(1, d) = \delta_0 + \delta_1 d + \cdots + \delta_s d^s$, the vector $(\delta_0, \delta_1, \ldots, \delta_s)$ is k-FFK.
- A homogeneous cd-polynomial Φ of degree n is said to be primitive if the coefficient of c^n in Φ is 1.
- Let Φ be a homogeneous cd-polynomial. A primitive homogeneous cd-polynomial Ψ is said to be k-good for Φ if Ψ is k-FFK and $\Phi(1, d) \geq \Psi(1, d)$. Also, we say that a homogeneous cd-polynomial Ψ is k-good for Φ if it is the sum of primitive homogeneous cd-polynomials that are k-good for Φ.

We will use the following observation, which follows from [NPT, Lemma 3.1]:

Lemma 3.2. If Φ is a k-FFK homogeneous cd-polynomial of degree n, and if Ψ' and Ψ'' are homogeneous cd-polynomials of degree n' and n'' respectively, where $n', n'' \leq n - 2$, which are k-good for Φ then

$$\Phi + \Psi' dc^{n-n'-2} \quad \text{and} \quad \Phi + \Psi' dc^{n-n'-2} + \Psi'' dc^{n-n''-2}$$

are $(k + 1)$-FFK.

Proof. By Frankl-Füredi-Kalai theorem [FFK], for any k-colored simplicial complex Γ, there is the unique k-colored simplicial complex $\mathcal{C}(\Gamma)$, called a k-colored compressed complex, such that $f_i(\Gamma) = f_i(\mathcal{C}(\Gamma))$ for all i. Moreover, if Γ' is a k-colored complex satisfying $f_i(\Gamma) \leq f_i(\Gamma')$ for all i, then one has $\mathcal{C}(\Gamma) \subseteq \mathcal{C}(\Gamma')$.

For a simplicial complex Γ, we write $f(\Gamma, d) = 1 + f_0(\Gamma)d + f_1(\Gamma)d^2 + \cdots$. There are k-colored complexes $\Delta, \Delta^{(1)}, \ldots, \Delta^{(m)}, \ldots, \Delta^{(s)}$ such that $f(\Delta, d) = \Phi(1, d)$, $\sum_{1 \leq i \leq m} f(\Delta^{(i)}, d) = \Psi'(1, d)$, $\sum_{m+1 \leq i \leq s} f(\Delta^{(i)}, d) = \Psi''(1, d)$ and each $\Delta^{(i)}$ is a subcomplex of Δ. Let

$$\Gamma^{(i)} = \Delta \cup \left\{ \bigcup_{k=1}^i \left\{ F \cup \{v_k\} : F \in \Delta^{(k)} \right\} \right\},$$

where v_1, \ldots, v_s are new vertices. Since each $\Delta^{(k)}$ is a subcomplex of Δ, $\Gamma^{(i)}$ is a simplicial complex. Also, $f(\Gamma^{(m)}, d) = (\Phi + \Psi' dc^{n-n'-2})(1, d)$ and $f(\Gamma^{(s)}, d) = (\Phi + \Psi' dc^{n-n'-2} + \Psi'' dc^{n-n''-2})(1, d)$. We claim that each $\Gamma^{(i)}$ is $(k + 1)$-colored.

Let V be the vertex set of Δ and $c : V \rightarrow [k]$ a k-coloring map of Δ. Then the map $\hat{c} : V \cup \{v_1, \ldots, v_s\} \rightarrow [k + 1]$ defined by $\hat{c}(x) = c(x)$ if $x \in V$ and $\hat{c}(x) = k + 1$ if $x \notin V$ is a $(k + 1)$-coloring map of $\Gamma^{(i)}$. \qed

Let P be an $(n - 1)$-dimensional S^s-shellable regular CW-sphere with the shelling $\sigma_1, \ldots, \sigma_r$. Keeping the notation in Definition 2.1 to simplify notations, we use the
following symbols.

\[
\Phi^{(i)} = \Phi^{(i)}(c, d) = \Phi_{\Omega_i}(c, d) \\
\Phi = \Phi_P(c, d) = \Phi^{(r-1)} \\
\Psi^{(i)} = \Phi_{\Gamma_{i+1}}(c, d) - \Phi_{\Sigma(\partial \Gamma_{i+1})}(c, d) \\
\Psi = \sum_{i=1}^{r-2} \Psi^{(i)} \\
\Pi = \Phi - \Phi^{(1)} .
\]

Thus Stanley’s recursive formula, Lemma 2.3, says

\[
\Phi^{(i+1)} = \Phi^{(i)} + \Psi^{(i)}c + \Phi_{\partial \Gamma_{i+1}}d
\]

and

\[
\Pi = \Psi c + \sum_{i=1}^{r-2} \Phi_{\partial \Gamma_{i+1}}(c, d)d .
\]

The last part of the following proposition is a restatement of Theorem 1.1.

Proposition 3.3. With notation as above, the following holds.

1. For \(2 \leq k \leq n\), \(\Psi^{(k)}\) is \(\lfloor \frac{k}{2} - 1 \rfloor\)-good for \(\Phi^{(i)}_{\leq k-2} + \Psi^{(i)}_{\leq k-2}c\).
2. For \(2 \leq k \leq n\), \(\Pi_k\) is \(\lfloor \frac{k}{2} - 1 \rfloor\)-good for \(\Phi^{(i)}_{\leq k-2} + \Pi_{\leq k-2}\).
3. For \(2 \leq k \leq n\), \(\Phi_{\leq k}\) is \(\lfloor \frac{k}{2} - 1 \rfloor\)-good for \(\Phi_{\leq k-2}\).
4. For \(0 \leq k \leq n\), \(\Phi_{\leq k}\) is \(\lfloor \frac{k}{2} \rfloor\)-FFK. In particular, the cd-index of \(P\) is \(\lfloor \frac{n}{2} \rfloor\)-FFK.

Proof. The proof is by induction on dimension, where all statements clearly hold for \(n = 0, 1\). Suppose that all statements are true up to dimension \(n - 2\). To simplify notations, for a regular CW-sphere \(Q\), we write \(\Phi_Q = \Phi_Q(c, d)\).

Proof of (1). By applying the induction hypothesis to \(\Gamma_{i+1}'\) (use statement(2)), each \(\Psi^{(i)}\) is \(\lfloor \frac{k}{2} - 1 \rfloor\)-good for \((\Phi_{\Sigma(\partial \Gamma_{i+1})})^{(i)}_{\leq k-2} + \Psi^{(i)}_{\leq k-2}\) and \((\Phi_{\Sigma(\partial \Gamma_{i+1})})^{(i)}_{\leq k-2} + \Psi^{(i)}_{\leq k-2}\) is \(\lfloor \frac{k}{2} - 1 \rfloor\)-good for \(\Phi_{\Sigma(\partial \Gamma_{i+1})})^{(i)}_{\leq k-2} + \Psi^{(i)}_{\leq k-2}\). By Lemma 2.5,

\[
\Phi_{\Sigma(\partial \Gamma_{i+1})})^{(i)}c = \Phi_{\partial \Gamma_{i+1}}c^2 \leq \Phi_{\Omega_i'}^{(i)},
\]

thus \(\Psi^{(i)}\) is \(\lfloor \frac{k}{2} - 1 \rfloor\)-good for \(\Phi^{(i)}_{\leq k-2} + \Psi^{(i)}_{\leq k-2}c\).

Proof of (2). By the definition of \(\Pi\),

\[
\Pi_k = \sum_{i=1}^{r-1} \Psi^{(i)}_k \text{ for } k < n
\]

and

\[
\Pi_n = \sum_{i=1}^{r-2} \Phi_{\partial \Gamma_{i+1}} .
\]

By (1), each \(\Psi^{(i)}_k\) is \(\lfloor \frac{k}{2} - 1 \rfloor\)-good for \(\Phi^{(i)}_{\leq k-2} + \Psi^{(i)}_{\leq k-2}c\). Then since

\[
\Phi^{(i)}_{\leq k-2} + \Psi^{(i)}_{\leq k-2}c \leq \Phi_{\leq k-2} = \Phi^{(1)}_{\leq k-2} + \Pi_{\leq k-2} ,
\]
Π_0 is \([k/2 - 1]\]-good for \(\Phi_{(k-2)}^{(i)} + \Pi_{k-2}^{(i)}\) for \(k < n\). Also, each \(\Phi_{\partial^i+1}\) is \([n/2 - 1]\]-FFK by the induction hypothesis (use (4)), and \(\Phi_{\partial^i+1}c^2 \leq \Phi^{(i)}\) by Lemma 2.5. The latter condition clearly says

\[
\Phi_{\partial^i+1}c^2 \leq \Phi_{\leq n-2}^{(i)} \leq \Phi_{\leq n-2} = \Phi_{\leq n-2} + \Pi_{\leq n-2}.
\]

Hence \(\Pi_n\) is \([n/2 - 1]\]-good for \(\Phi_{\leq n-2} + \Pi_{\leq n-2}\).

Proof of (3). Observe that since \(\Phi^{(1)} = \Phi_{\partial^2}, c\),

\[
\Phi_k = \Phi_{k}^{(1)} + \Psi_k \quad \text{for} \quad k < n
\]

and

\[
\Phi_n = \Pi_n.
\]

We already proved that \(\Phi_n = \Pi_n\) is \([n/2 - 1]\]-good for \(\Phi_{\leq n-2}\) in the proof of (2).

Suppose \(k < n\). Since \(\Phi^{(1)} = \Phi_{\partial^2}, c\) by the induction hypothesis (use (3)), \(\Phi^{(1)}_{\leq k-2}\) is \([k/2 - 1]\]-good for \(\Phi_{\leq k-2}\). Since \(\Phi^{(1)}_{\leq k-2} \leq \Phi_{\leq k-2}\) and since we already proved that \(\Psi_k = \Pi_k\) is \([k/2 - 1]\]-good for \(\Phi_{\leq k-2}\) in the proof of (2), \(\Phi_k\) is \([k/2 - 1]\]-good for \(\Phi_{\leq k-2}\).

Proof of (4). This statement easily follows from (3). For \(k = 0, 1\), the statement is obvious (as \(\Phi_{\leq 0} = \Phi_{\leq 1} = c^n\)). Suppose that \(\Phi_{\leq 2m+1}\) is \(m\)-FFK, where \(m \in \mathbb{Z}_{\geq 0}\). Then both \(\Phi_{2m+2}\) and \(\Phi_{2m+3}\) are \(m\)-good for \(\Phi_{\leq 2m+1}\) by (3), and therefore \(\Phi_{\leq 2m+2}\) and \(\Phi_{\leq 2m+3}\) are \((m + 1)\)-FFK by Lemma 3.2.

\[\Box\]

4. \(\gamma\)-vectors of polytopes and a conjecture on the cd-index

\(\gamma\)-vectors and the cd-index. Let \(\Delta\) be an \((n-1)\)-dimensional simplicial complex. Then the \(h\)-vector \(h(\Delta) = (h_0, h_1, \ldots, h_n)\) of \(\Delta\) is defined by the relation

\[
\sum_{i=0}^{n} h_i x^{n-i} = \sum_{i=0}^{n} f_{i-1}(\Delta)(x - 1)^{n-i}.
\]

If \(\Delta\) is a simplicial sphere (that is, a triangulation of a sphere), or more generally a homology sphere, then \(h_i = h_{n-i}\) for all \(i\) by the Dehn-Sommerville equations, and in this case the \(\gamma\)-vector \((\gamma_0, \gamma_1, \ldots, \gamma_{\lfloor n/2 \rfloor})\) of \(\Delta\) is defined by the relation

\[
\sum_{i=0}^{n} h_i x^i = \sum_{i=0}^{\lfloor n/2 \rfloor} \gamma_i x^i (1 + x)^{n-2i}.
\]

It was conjectured by Gal [Ga] that if \(\Delta\) is a flag homology sphere then its \(\gamma\)-vector is non-negative. Recently Nevo and Peterson [NP] further conjectured that the \(\gamma\)-vector of a flag homology sphere is the \(f\)-vector of a balanced simplicial complex. These conjectures are open in general, the latter conjecture was verified for barycentric subdivisions of simplicial homology spheres [NPT], and Gal’s conjecture is known to be true for barycentric subdivisions of regular CW-spheres by the following fact, combined with Karu’s result on the nonnegativity of the cd-index for Gorenstein* posets:

Let \(P\) be an \((n - 1)\)-dimensional regular CW-sphere. The barycentric subdivision \(sd(P)\) of \(P\) is the order complex of \(\mathcal{F}(P)\). Let \((h_0, h_1, \ldots, h_n)\) and \((\gamma_0, \gamma_1, \ldots, \gamma_{\lfloor n/2 \rfloor})\) be the \(h\)-vector and \(\gamma\)-vector of \(sd(P)\), respectively. Then it is easy to see that
$$h_i = \sum_{S \subseteq [n], |S| = i} h_S(P).$$ Thus if \(\Phi_P(1, d) = \delta_0 + \delta_1 d + \delta_2 d^2 + \cdots + \delta_{\lceil \frac{n}{2} \rceil} d^{\lceil \frac{n}{2} \rceil} \), then for all \(i \geq 0 \),

$$\gamma_i = 2^i \delta_i.$$

Since \(\delta_i \) is non-negative, we conclude that \(\gamma_i \) is also non-negative.

The next simple statement, combined with Theorem \ref{thm:1.1} proves Theorem \ref{thm:1.2}.

Lemma 4.1. With the same notation as above, if \((\delta_0, \delta_1, \ldots, \delta_{\lceil \frac{n}{2} \rceil})\) is k-FFK then \((\gamma_0, \gamma_1, \ldots, \gamma_{\lceil \frac{n}{2} \rceil})\) is also k-FFK.

Proof. Let \(\Delta \) be a \(k \)-colored simplicial complex on the vertex set \(V \) with \(f_{i-1}(\Delta) = \delta_i \) for all \(i \geq 0 \) and let \(c : V \to [k] \) be a \(k \)-coloring map of \(\Delta \). Consider a collection of subsets of \(W = \{ x_v : v \in V \} \cup \{ y_v : v \in V \} \)

$$\hat{\Delta} = \{ x_G \cup y_F \mid G \in \Delta, F \subseteq G \},$$

where \(x_H = \{ x_v : v \in H \} \) and \(y_H = \{ y_v : v \in H \} \) for any \(H \subseteq V \). Then \(\hat{\Delta} \) is a simplicial complex with \(f_{i-1}(\hat{\Delta}) = 2^i f_{i-1}(\Delta) = \gamma_i \) for all \(i \). The map \(\hat{c} : W \to [k], \hat{c}(x_v) = \hat{c}(y_v) = c(v) \), shows that \(\hat{\Delta} \) is \(k \)-colored. \(\square \)

Proof of Corollary \ref{cor:3.3}. By Theorem \ref{thm:1.2} in order to prove Corollary \ref{cor:3.3} it is enough to show that \(\delta_{\lceil \frac{n}{2} \rceil}(P) > 0 \) where \(P \) is the boundary complex of an \(n \)-polytope.

Billera and Ehrenborg showed that the cd-index of \(n \)-polytopes is minimized (coefficient-wise) by the \(n \)-simplex, denoted \(\sigma^n [BE] \). Thus, it is enough to verify that \(\delta_{\lceil \frac{n}{2} \rceil}(\sigma^n) > 0 \). It is known that all the cd-coefficients of \(\sigma^n \) are positive (e.g., by using the Ehrenborg-Readdy formula for the cd-index of a pyramid over a polytope [ER Theorem 5.2]). \(\square \)

A conjecture on the cd-index. It would be natural to ask if Theorems \ref{thm:1.1} and \ref{thm:1.2} hold for all regular CW-spheres (or all Gorenstein* posets). We phrase a conjecture on the the cd-index, that, if true, immediately implies Theorem \ref{thm:1.1} as well as the entire Proposition \ref{prop:3.3} (4).

For an arbitrary cd-monomial \(w = c^{s_0} d^{s_1} d \cdots d^{s_k} \) of degree \(n \) (where \(0 \leq s_i \) for all \(i \) and \(s_0 + \cdots + s_k + 2k = n \)), let \(F_w \) be the following subset of \([n-1]\):

$$F_w = \{ s_0 + 1, s_0 + s_1 + 3, s_0 + s_1 + s_2 + 5, \ldots, s_0 + \cdots + s_{k-1} + 2k - 1 \}.$$

Note that \(F_w \) contains no two consecutive numbers. For example, \(F_{e^n} = \emptyset \), \(F_{d^k} = \{ 1, 3, \ldots, 2k-1 \} \) and \(F_{cd^k} = \{ 2, 4, \ldots, 2k \} \). Let \(\mathcal{A} \) be the set of subsets of \([n-1]\) that have no two consecutive numbers, and let \(\mathcal{B} \) be the set of cd-monomials of degree \(n \). Then \(w \mapsto F_w \) is a bijection from \(\mathcal{B} \) to \(\mathcal{A} \) (as \(k = |F_w| \) and \(s_k = n-2k-s_{k-1}-\cdots-s_0 \) we see that the inverse map exists).

Let \(\Delta \) be a \(k \)-colored simplicial complex with the vertex set \(V \) and a \(k \)-coloring map \(c : V \to [k] \). For any subset \(S \subseteq [k] \), let \(f_S(\Delta) = |\{ F \in \Delta : c(F) = S \}| \). The vector \((f_S(\Delta) : S \subseteq [k]) \) is called the flag f-vector of \(\Delta \). Note that the flag f-vector of a Gorenstein* poset \(P \) is equal to the flag f-vector of \(sd(P) \) by the coloring map defined by the rank function.

Definition 4.2. Let \(\Phi = \sum_w a_w w \) be a homogeneous cd-polynomial of degree \(n \) with \(w \) the cd-monomials and \(a_w \in \mathbb{Z} \). For \(S \subseteq [n-1] \), we define

$$\alpha_S(\Phi) = \begin{cases} a_w, & \text{if } S = F_w \text{ for some } w \in \mathcal{B} \\ 0, & \text{if } S \notin \mathcal{A}. \end{cases}$$
Conjecture 4.3. Let \(P \) be an \((n - 1)\)-dimensional regular CW-sphere (or more generally, Gorenstein* poset of rank \(n + 1 \)). Then there exists an \((n - 1)\)-colored simplicial complex \(\Delta \) such that \(f_S(\Delta) = \alpha_S(\Phi_P) \) for all \(S \subset [n - 1] \).

Thus the above conjecture states that the \(cd \)-index is itself the flag \(f \)-vector of a colored complex. If the above conjecture is true then \(\Phi_P(1, d) = 1 + f_0(\Delta) + d + \cdots + f_{\lfloor \frac{n}{2} \rfloor - 1}(\Delta) d^{\lfloor \frac{n}{2} \rfloor} \). Although \(\Delta \) is \((n - 1)\)-colored, this fact implies Theorem \[\[11\]. Indeed, since \(f_S(\Delta) = \alpha_S(\Phi_P) = 0 \) if \(S \) has consecutive numbers, if \(c : V \to [n - 1] \) is an \((n - 1)\)-coloring map of \(\Delta \) then the map \(\hat{c} : V \to [\lfloor \frac{n}{2} \rfloor] \) defined by \(\hat{c}(v) = \lfloor \frac{c(v) + 1}{2} \rfloor \) is an \([\frac{n}{2}]\)-coloring map of \(\Delta \).

The next result supports the conjecture in low dimension.

Proposition 4.4. Let \(P \) be a Gorenstein* poset of rank \(n + 1 \). For all \(i, j \in [n - 1] \),
\[
\alpha_{\{i\}}(\Phi_P)\alpha_{\{j\}}(\Phi_P) \geq \alpha_{\{i,j\}}(\Phi_P).
\]

Proof. Let \((h_S(P) : S \subset [n]) \) be the flag \(h \)-vector of \(P \). Let \(\{i, i + j\} \subset [n - 1] \) with \(j \geq 2 \). What we must prove is \(\alpha_{\{i\}}(\Phi_P)\alpha_{\{i+j\}}(\Phi_P) \geq \alpha_{\{i,i+j\}}(\Phi_P) \).

Observe that
\[
\begin{align*}
\alpha_{\{i\}}(\Phi_P) & = \alpha_{\{i,i+j\}}(\Phi_P) + \alpha_{\{i\}}(\Phi_P) + \alpha_{\{i+j\}}(\Phi_P), \\
\alpha_{\{i+j\}}(\Phi_P) & = \alpha_{\{i\}}(\Phi_P) + \alpha_{\{i+j\}}(\Phi_P) + \alpha_{\emptyset}(\Phi_P), \\
\alpha_{\{i,j\}}(\Phi_P) & = \alpha_{\{i\}}(\Phi_P) + \alpha_{\{i,j\}}(\Phi_P) + \alpha_{\emptyset}(\Phi_P)
\end{align*}
\]
(as \(h_{\{i\} \cup \{i+j+1,...,n\}}(P) \) is the coefficient of \(b^i a^j b^{n-i-j} \) in \(\Psi_P(a, b) \), etc.). Since \(\alpha_{\emptyset} = 1 \), it is enough to prove that
\[
h_{\{i\}}(P)h_{\{i+j+1,...,n\}}(P) \geq h_{\{n-i-j\} \cup \{n-i+1,...,n\}}(P).
\]
It follows from \[\[St2\] III, Theorem 4.6\] that there is an \(n \)-colored simplicial complex \(\Delta \) with a coloring \(c : V \to [n] \) such that \(f_S(\Delta) = h_S(P) \) for all \(S \subset [n] \). Let
\[
\Delta_S = \{ F \in \Delta : c(F) = S \}
\]
for \(S \subset [n] \). Then it is clear that
\[
\Delta_{\{i\} \cup \{i+j+1,...,n\}} \subset \{ F \cup G : F \in \Delta_{\{i\}}, G \in \Delta_{\{i+j+1,...,n\}} \},
\]
which implies the desired inequality. \(\square \)

It is straightforward that the above proposition proves the next statement.

Corollary 4.5. Conjecture \[\[4.3\] holds for \(n \leq 5 \).

Non-existence of \(d \)-polynomials. For a Gorenstein* poset \(P \), we call \(\Phi_P(1, d) \) the \(d \)-polynomial of \(P \). It is a challenging problem to classify all possible \(d \)-polynomials of Gorenstein* posets, which give a complete characterization of all possible face vectors of Gorenstein* order complexes since knowing \(d \)-polynomials is equivalent to knowing \(\gamma \)-vectors. The problem is open even for the 3-dimensional case. To study this problem, by virtue of Theorem \[\[11\] it is natural to ask which FFK vector is realizable as the \(d \)-polynomial of a Gorenstein* poset. The next result shows that not all \([\frac{n}{2}]\)-FFK vectors are realizable as the \(d \)-polynomial of a Gorenstein* poset of rank \(n + 1 \).

First recall that the ordinal sum \(Q_1 + Q_2 \) of two disjoint posets \(Q_1 \) and \(Q_2 \) is the poset whose elements are the union of elements in \(Q_1 \) and \(Q_2 \) and whose relations
are those in \(Q_1 \) union those in \(Q_2 \) union all \(q_1 < q_2 \) where \(q_1 \in Q_1 \) and \(q_2 \in Q_2 \).

For Gorenstein* posets \(Q_1 \) and \(Q_2 \), the poset \(Q_1 \ast Q_2 = (Q_1 - \{ \hat{1} \}) + (Q_2 - \{ \hat{0} \}) \) is called the join of \(Q_1 \) and \(Q_2 \), and \(\Sigma Q_1 = Q_1 \ast B_2 \), where \(B_2 \) is a Boolean algebra of rank 2, is called the suspension of \(Q_1 \). By [ST] Lemma 1.1, \(\Phi_{Q_1 \ast Q_2}(c, d) = \Phi_{Q_1}(c, d) \cdot \Phi_{Q_2}(c, d) \).

Proposition 4.6. Let \(P \) be a Gorenstein* poset of rank 5, and let

\[
\Phi_P(c, d) = c^4 + \alpha_{\{1\}}c^2d + \alpha_{\{2\}}cdc + \alpha_{\{3\}}dc^2 + \alpha_{\{1,3\}}d^2
\]

be its cd-index. Suppose \(\alpha_{\{2\}} = 0 \). Then there are Gorenstein* posets \(P_1 \) and \(P_2 \) of rank 3 such that \(P = P_1 \ast P_2 \). In particular, \(\alpha_{\{1,3\}} = \alpha_{\{1\}}\alpha_{\{3\}} \).

Proof. Let \(r \) denote the rank function \(r: P \to \{0, 1, \ldots, 5\} \) \((r(\hat{0}) = 0, r(\hat{1}) = 5) \). Let \(P_1 := \{ F \in P : r(F) \leq 2 \} \) and \(P_2 := \{ F \in P : r(F) \geq 3 \} \).

As \(P \) is Gorenstein*, to show that \(P = P_1 \cup P_2 \) it is enough to show that \(P_2 \cup \{ \hat{0} \} \) is Gorenstein* (as a Gorenstein* poset contains no proper subposet which is Gorenstein* of the same rank, and each interval \([F, \hat{1}]\) with \(r(F) = 2 \) in \(P \) is Gorenstein*).

For this, it is enough to show that any rank 4 element in \(P \) covers exactly two rank 3 elements in \(P \). Indeed, this guarantees that the dual poset to \(P \), denoted \(P^*_2 \), is the face poset of a union of CW 1-spheres, and as \(P \) is Gorenstein* so is its dual \(P^*_2 \), hence \(P^*_2 \) is Cohen-Macaulay since \(P^*_2 \) is a rank selected poset [ST2] III, Theorem 4.5], which implies that \(P^*_2 \) is the face poset of one CW 1-sphere, i.e. \(P_2 \cup \{ \hat{0} \} \) is Gorenstein*.

Let \(F \) be a rank 4 element of \(P \). Then \(P \) is a subdivision of \(\Sigma(0, F) \) (Recalling [EK] Definition 2.6], this is shown by the map \(\phi: P \to \Sigma(0, F) \), \(\phi(\sigma) = \sigma \) if \(\sigma < F \), \(\phi(\sigma) = \sigma_1 \) if \(\sigma \) and \(F \) are incomparable, and \(\phi(\sigma) = \sigma_2 \), where \(\sigma_1, \sigma_2 \) are the rank 4 elements in \(\Sigma(0, F) \). Thus, by Lemma 2.4, the coefficient of \(cdc \) in the cd-index of \(\Sigma(0, F) \) is zero, hence the coefficient of the monomial \(cd \) in the cd-index of \([0, F] \) is zero.

This fact implies, when expanding the cd-index of \([0, F] \) in terms of \(a, b \), that \(h_{\{3\}}([0, F]) \) equals the coefficient of \(c^3 \), namely \(h_{\{3\}}([0, F]) = 1 \). Switching to the flag f-vector of \([0, F] \) we get \(f_{\{3\}}([0, F]) = h_{\{3\}}([0, F]) + h_{\{3\}}([0, F]) = 1 + 1 = 2 \). Thus, \(F \) covers exactly two rank 3 elements in \(P \).

Example 4.7. Consider the 2-FFK vector \((1, 6, 7)\). We claim that \(\Phi_P(1, d) \neq 1 + 6d + 7d^2 \) for all Gorenstein* poset \(P \) of rank 5. Indeed, if \(\Phi_P(1, d) = 1 + 6d + 7d^2 \), then \(\alpha_{\{1,3\}} = 7 \). Then \(\alpha_{\{1\}} + \alpha_{\{3\}} = 6 \) and \(\alpha_{\{2\}} = 0 \) by Proposition 4.3 which contradicts Proposition 4.6.

A similar argument shows that \((1, 2a, a^2 - 2)\), where \(a \geq 3 \), is 2-FFK, but not realizable as the d-polynomial of a Gorenstein* poset of rank 5.

References

[BK] M.M. Bayer and A. Klapper, A new index for polytopes, *Discrete Comput. Geom.* 6 (1991), 33–47.

[BE] L. J. Billera and R. Ehrenborg, Monotonicity of the cd-index for polytopes, *Math. Z.* 233 (2000), 421–441.

[BM] H. Bruggesser and P. Mani, Shellable decompositions of cells and spheres, *Math. Scand.* 29 (1971), 197–205.
[EK] R. Ehrenborg and K. Karu, Decomposition theorem for the \(cd \)-index of Gorenstein posets, *J. Algebraic Combin.* 26 (2007), 225–251.

[ER] R. Ehrenborg and M. Readdy, Coproducts and the \(cd \)-index, *J. Algebraic Combin.* 8 (1998), 273–299.

[FFK] P. Frankl, Z. Füredi and G. Kalai, Shadows of colored complexes, *Math. Scand.* 63 (1998), 169–178.

[Ga] Š.R. Gal, Real root conjecture fails for five- and higher-dimensional spheres, *Discrete Comput. Geom.* 34 (2005), 269–284.

[Ka] K. Karu, The \(cd \)-index of fans and posets, *Compos. Math.* 142 (2006), 701–718.

[NP] E. Nevo and T.K. Petersen, On \(\gamma \)-vectors satisfying the Kruskal-Katona inequalities, *Discrete Comput. Geom.*, to appear.

[NPT] E. Nevo, K.T. Petersen and B. Tenner, The \(\gamma \)-vector of a barycentric subdivision, to appear in *J. Combin. Theory Ser. A*, arXiv:1003.2544 (2010).

[St1] R.P. Stanley, Flag \(f \)-vectors and the \(cd \)-index, *Math. Z.* 216 (1994), 483–499.

[St2] R.P. Stanley, Combinatorics and commutative algebra, Second edition, Progr. Math., vol. 41, Birkhäuser, Boston, 1996.

Satoshi Murai, Department of Mathematical Science, Faculty of Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8512, Japan

Department of Mathematics, Ben Gurion University of the Negev, Be’er Sheva 84105, Israel

E-mail address: nevoe@math.bgu.ac.il