Complete mitogenome of the giant panda tick *Haemaphysalis longicornis* (Ixodida: Ixodidae) and its phylogenetic implications

Lidan Wang, Xuan Zhou, Linhua Deng, Yunjian Liu, Yingxin Li, Yijun Chen, Shan Huang, Guo Li, Yan Huang, Hemin Zhang, Chengdong Wang, Desheng Li and Yue Xie

Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China; Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China; China Conservation and Research Center for the Giant Panda, Sichuan Province of Southwest China; China Conservation and Research Center for the Giant Panda, Dujiangyan, China

The giant panda (*Ailuropoda melanoleuca*) is a flagship species for wildlife conservation in the world (O’Brien et al. 1994; Wang et al. 2018). The ticks are common blood-feeding ectoparasites found in giant pandas and poses significant health burden to wild and captive populations. In the present study, the complete mitogenome of the giant panda tick *H. longicornis* was sequenced using Illumina sequencing technology. The entire mitogenome was 14,706 bp in length and encoded 37 genes including 13 protein-coding genes, 22 transfer RNAs and two ribosomal RNAs. Phylogeny showed that four isolates of *H. longicornis*, regardless of host origins or locations, clustered together and had a closer relationship with *Haemaphysalis恨tici* than other *Haemaphysalis* species among the subfamily Haemaphysalinae of Ixodidae. The cumulative mitochondrial DNA resources provide insights into genetic and phylogenetic studies of *Haemaphysalis* ticks.
and placed between tRNA-Leu and tRNA-Ile with a separation by tRNA-Val. The control region (also known as D-loop region) was located between tRNA-Leu and tRNA-Cys, similar to other Haemaphysalis ticks, suggesting its conservation and function in regulation of transcription and control of DNA replication (Clayton 1991).

Building on a concatenated amino acid sequences of 13 protein-coding genes from *H. longicornis* and 29 other ticks, the maximum-likelihood (ML)-based phylogeny demonstrated that four isolates of *H. longicornis*, regardless of host origins or locations, clustered together and shared a more close relationship to *Haemaphysalis hystricis* than to other *Haemaphysalis* ticks, with 100% bootstrap confidence (Figure 1), supporting their species validity in the subfamily Haemaphysalinae. In addition, the genera including Archaeocroton, Bothriocroton, Dermacentor, Rhipicephalus, Amblyomma and Aponomma were treated as monophyletic relationships with *Haemaphysalis* in the family Ixodidae, agreement with recent molecular studies (Burger et al. 2013; Geng et al. 2017; Tian et al. 2019; Liu et al. 2020). In summary, the *H. longicornis* mitogenome sequenced here provides novel insights into genetic and phylogenetic studies of this tick.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This study was supported by the Project of Key Open Laboratory of Conservation Biology of Rare Animals in Giant Panda National Park, State Forestry and Grassland Administration [No. KLSFGAGP2020.014], Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Sichuan Province [No. 2020721] and Giant Panda International Project [No. GH201708].

Data availability statement

The data that support the findings of this study are openly available in GenBank of NCBI at https://www.ncbi.nlm.nih.gov, reference number MT780294.

References

Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, Pütz J, Middendorf M, Studler PF. 2013. MITOS: improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol. 69(2): 313–319.

Burger TD, Shao R, Barker SC. 2013. Phylogenetic analysis of the mitochondrial genomes and nuclear rRNA genes of ticks reveals a deep phylogenetic structure within the genus *Haemaphysalis* and further elucidates the polyphyly of the genus *Amblyomma* with respect to *Amblyomma sphenodonti* and *Amblyomma elaphense*. Ticks Tick Borne Dis. 4(4):265–274.

Burger TD, Shao R, Barker SC. 2014. Phylogenetic analysis of mitochondrial genome sequences indicates that the cattle tick, *Rhipicephalus (Boophilus) microplus*, contains a cryptic species. Mol Phylogenet Evol. 76:241–253.
Cheng WY, Zhao GH, Jia YQ, Bian QQ, Du SZ, Fang YQ, Qi MZ, Yu SK. 2013. Characterization of Haemaphysalis flavus (Acari: Ixodidae) from Qingling subspecies of giant panda (Ailuropoda melanoleuca qinlingensis) in Qinling mountains (Central China) by morphology and molecular markers. PLoS One. 8(7):e69793.

Clayton DA. 1991. Replication and transcription of vertebrate mitochondrial DNA. Annu Rev Cell Biol. 7:453–478.

de la Fuente J, Estrada-Pena A, Venzal JM, Kocan KM, Sonenshine DE. 2008. Overview: ticks as vectors of pathogens that cause disease in humans and animals. Front Biosci. 13:6938–6946.

Geng J, Zheng A, Zou Z, Zhang X. 2017. The complete mitochondrial genome and phylogenetic analysis of Haemaphysalis longicornis Neumann (Acari: Ixodidae). Mitochondrial DNA B Resour. 2(2):856–857.

Hahn C, Bachmann L, Chevreux B. 2013. Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads—a baiting and iterative mapping approach. Nucleic Acids Res. 41(13):e129–e129.

Hwang UW, Park CJ, Yong TS, Kim W. 2001. One-step PCR amplification of complete arthropod mitochondrial genomes. Mol Phylogenet Evol. 19(3):345–352.

Liu GH, Chen F, Chen YZ, Song HQ, Lin RQ, Zhou DH, Zhu XQ. 2013. Complete mitochondrial genome sequence data provides genetic evidence that the brown dog tick Rhipicephalus sanguineus (Acari: Ixodidae) represents a species complex. Int J Biol Sci. 9(4):361–369.

Liu Y, Wang L, Wang L, Deng L, Wei M, Wu K, Huang S, Li G, Huang Y, Zhang H, et al. 2020. Characterization of the complete mitogenome sequence of the giant panda tick Haemaphysalis hystricis. Mitochondrial DNA Part B Resour. 5(2):1191–1193.

O’Brien SJ, Pan W, Lu Z. 1994. Pandas, people and policy. Nature. 369:179–180.

Qin XC, Tian JH, Wang JB, Lu X, Sun QZ, Jin D, Zhou DJ, Xu JG, Zhang YZ. 2011. Identification of Haemaphysalis longicornis and Rhipicephalus microplus. Chin J Epidemiol. 32:608–612.

Tanskul P, Inlao I. 1989. Keys to the adult ticks of Haemaphysalis Koch, 1844, in Thailand with notes on changes in taxonomy (Acari: Ixodoidea: Ixodidae). J. Med. Entomol. 26(6):573–600.

Tian J, Ge M, Xu H, Wu T, Yu B, Lei C. 2019. The complete mitochondrial genome and phylogenetic analysis of Haemaphysalis hystricis (Parasitiformes: Ixodidae). Mitochondrial DNA B Resour. 4(1):1049–1050.

Tian Z, Liu G, Xie J, Yin H, Luo J, Zhang L, Zhang P, Luo J. 2011. Discrimination between Haemaphysalis longicornis and H. qinghaiensis based on the partial 16S rDNA and the second internal transcribed spacer (ITS-2). Exp Appl Acarol. 54(2):165–172.

Wang T, Xie Y, Zheng Y, Wang C, Li D, Koehler AV, Gasser RB. 2018. Parasites of the giant panda: a risk factor in the conservation of a species. Adv Parasitol. 99:1–33.