Comparison of the Antioxidant Nutrient Profile among Normal Pregnant Women and Women having Pregnancy Induced Hypertension

Kausar Aamir¹, Arfa Azhar², Fatima Abid³, Shamaila Khalid⁴, Fiza Ali Khan⁵

Abstract

Background: Preeclampsia is a multifactorial disorder comprising many organs. Oxidative stress (OS) has been intensely linked to its occurrence. Vitamin E, a lipophilic chain breaking antioxidant has been proved to suppress the OS. Present study was designed to investigate antioxidant nutrient profile in patients with different grades of pregnancy induced hypertension (PIH) and to compare them with normal pregnant controls.

Methods: The study group comprised 110 patients divided in three groups as Group A (n=40) Normotensive patients, Group B (n=40) Mild hypertensive, Group C (n=30) Severe hypertensive. Vitamin A, B-carotene, serum alpha tocopherol (vitamin E) and vitamin C levels were analysed.

Results: Serum alpha tocopherol (vitamin E) was significantly low in severe and mild cases (0.32±0.00 mg/dl, 0.74±0.03 mg/dl respectively), when compared with normal pregnant women levels (0.78±0.040). All other nutrients were also found to be in reduced quantity for Group C when compared to control group (P value <0.001).

Conclusion: It was therefore concluded that in patients with risk of preeclampsia (PE) adequate antioxidant nutrients may have a role in cessation of free radical-mediated cell disturbances, and thereby protecting against endothelial cell damage, which is the key factor in PE development.

Keywords: Preeclampsia, Pregnancy induced hypertension, oxidative stress, antioxidants, Vitamin E

Introduction

Pre-eclampsia (PE) affects approximately 7-10% of all pregnancies. It is concomitant with improved perinatal ill health and mortality associated to intrauterine growth impedance, premature delivery and perinatal asphyxia. Furthermore, the pregnant women stand at increased risk for abortion placenta, intracerebral hemorrhage and hepatic and renal shut down (1). Vascular endothelial hurt is recognized to show a part in the pathophysiologic etiology of PE (2). Endothelial cell damage is believed to decrease prostacyclin formation ensuing in an increase peripheral vascular resistance and platelet aggregation (3). The pathogenesis of such endothelial cell harm however rests unclear. It has been advocated that free radical mediated lipid peroxidation might be complicated in the endothelial impairment perceived in PE (4). Several justifications support this notion, together with a proliferation in lipid peroxidation
products and a drop in antioxidant activity in PE as matched with normal gestation (5).
Antioxidant nutrients neutralize free radical instabilities and therapy protect cell membranes from free radical mediated lipid peroxidation (6). Additional free radical instabilities are classically complemented by improved consumption of antioxidants (7).
Gathering confirmation from clinical and epidemiologic studies, proposes that diffuse endothelial dysfunction occasioning from oxidative stress (OS), shows a central part in the pathophysiological basis of PE (8). Human plasma comprises an assortment of low molecular weight, non-enzymatic antioxidants that assist to look after the vasculature from oxidative damage (2) and nitrogen species (3). In addition, ascorbic acid can spare or recover glutathione and vitamin E (α-tocopherol) which are two other vital physiologic antioxidants. In the red to these important characteristics of antioxidants, investigators have theorized that ascorbic acid influence prevents or ameliorate OS prompted endothelial dysfunction and PE (4).
Women with EP have a little concentration of antioxidant vitamins. They reinforce the concept of increased OS. The early provision of antioxidants such as vitamins C and E to women at high risk of developing PE is a marked clinical benefit. The use of vitamins has been related with better endothelial function and less placental dysfunction. Tocopherols can act as scavengers of free radicals and alphatocopherol, particularly in vivo, in this regard (9). There is also substantiation for abridged antioxidant status and improved free radical production (OS) in PE, a number of antioxidants have been reported to be reduced in PE, including this, vitamin E, ascorbate and carotenoids (10).

Peroxidic lipids (resulting from lipid oxidation), plasma concentrations of antioxidants and plasma concentrations of vitamins E and C (antioxidants) equivalent to those of pregnant women are normal in women with EP (11). Women with PE had clearly reduced antioxidant activity, which supports the idea that lipid peroxidation by free radicals and associated antioxidant consumption may play a role in the pathophysiological mechanism of PE. Free radicals can diffuse into the cell membranes that cause lipid peroxidation, the propagation of which can be suppressed by alpha-tocopherol (5). Vitamin E and C supplementation in pregnant women at high risk of PE was helpful for PE inhibition. This study was the basis for the use of vitamins E and C and the likely clarification of the observed beneficial effect was to reduce OS (12).

Methodology
A cross-sectional study with 110 pregnant women who fulfill the inclusion criteria attending Obstetric OPD or admitted in the department of gynecology and obstetrics of Jinnah Postgraduate Medical Centre (JPMC), Karachi, was carried, after informed paper consent. The study procedure was sanctioned by Institutional Review panel. The identification of PE was established in accordance with the delineations of “The American College of Obstetricians and Gynecologists (ACOG)”. PE remained categorized mild least one or more of the subsequent signs or indications were present wherein situation the PE was ordered as severe:

1. Systolic blood pressure ≥160 mmHg or 110 mmHg diastolic taking place two occasion 6 hours apart.
2. Oliguria in 24 hours (urinary output < 400 to 500 ml).
3. Cerebral or optical instabilities.
4. Pulmonary edema or cyanosis.
5. Epigastric or right upper quadrant pain.
6. Impaired liver function of uncertain source or
7. Thrombocytopenia

They were divided in three groups as:

Group	n	Description
A:	40	Normotensive patients (control group)
B:	40	Mild hypertensive > 140/90 mmHg
C:	30	Severe hypertensive > 160/110 mmHg

Inclusion Criteria:
Age 18-38 years, gestational age 20-42 weeks and single pregnancy female were included in the study. A small epidemiologic form was completed by each partaker related to personal history, maternal age, weight, height, systolic and diastolic blood pressure readings, parity, gestational age, any underlying illness, drug abuse history, family history of PIH or any complication occurred in previous pregnancies etc. Recent dietary intake was also recorded.
Women having a history of vitamin supplementation before pregnancy, having prolonged hypertension...
Comparison of the Antioxidant Nutrient Profile among Normal Pregnant Women and Women having Pregnancy Induced Hypertension

(either essential or next to renal disease, endocrine disease, anemia, malnutrition, malabsorption or other diseases), multiple pregnancies and abnormal levels of serum creatinine (i.e. 1.5 mg/dl) were omitted from the study.

Fasting venous blood testers were collected in heparin coated tubes. Plasma was parted by centrifugation and initially kept at -80°C to be analysed later but within 1 week. α-tocopherol level was tested using means of HPLC (high pressure liquid chromatography). Vitamin A and B-Carotene and vitamin C were analysed by Micro techniques of clinical chemistry by (13) Samuel Natelson (1961). Platelet count was done by fractional centrifugation after citric acid blood coagulation. A 24 hour urine sample was collected for proteinuria estimation by urine dipstick method.

All the parameters were statistically evaluated by Chi-square test at the completion of study period.

Results

Levels of vitamin E were assessed in blood samples of mild, severe cases of PIH and normal pregnant controls.

Table 1 displays the mean maternal age, weight, height, gestational age and birth weight of normal pregnant and pregnancy induced hypertensive women. Maternal Age and birth weight of group B was found to be significantly reduced when compared with control group and group A (P<0.001).

Table 2 compares the blood pressure and proteinuria among three groups. The increase in systolic (144.5±1.11 mmHg) and diastolic (93.0±0.8 mmHg) blood pressure of mild cases and systolic (172.6±3.31 mmHg) and diastolic (127.5±2.07 mmHg) of severe cases were extremely noteworthy (P<0.001) when associated to controls; systolic (121±1.69 mmHg) and (77.7±1.11 mmHg). The rise in the systolic and diastolic blood pressure values for severe cases (group C) were again very important (P<0.001) when compared with the mild cases of PIH. Proteinuria was detected in 3 (7.5%) cases of normal pregnant women, 21 (52.5%) cases of mild PIH and 30 (100%) cases of severe PIH women.

Table 3 compares the antioxidant nutrient profile among the three groups. Serum alpha tocopherol (vitamin E) was significantly low in severe and mild cases (0.32±0.00 mg/dl, 0.74±0.03 mg/dl respectively), when compared with normal pregnant women levels (0.78±0.040).

Table 4 compares the antioxidant nutrient profile among the three groups A, B and C respectively. Except for vitamin A levels, all the nutrients were found to be in reduced quantity for Group C when compared to control group and Group B (P value <0.001). Vitamin A levels were also significantly decreased in group C when compared with Group A (P value <0.001).

Table 1. Maternal Age, Weight, Height, Gestational Age and Birth Weight of Normal Pregnant and Pregnancy Induced Hypertensive Women

Parameters	Control (n=40)	Group A Mild cases (n=40)	Group B Severe cases (n=30)
Maternal age (Years)	25.00±0.60	23.37±0.78	20.30±0.5036*
Weight (Kg)	60.40±0.50	58.05±0.50	56.60±0.36
Height (cm)	154.00±0.90	154.00±0.60	151.70±0.80
Gestational age (weeks)	36.60±0.37	33.63±0.23	31.16±0.50
Birth weight (Kg)	3.10±0.024	2.924±0.019	2.391±0.067*

*P value <0.001 (significantly low when compared to control group).

a P value <0.001 (significantly low when compared to group A).

Table 2. Blood Pressure Values and Proteinuria of Normal Pregnant and Pregnancy Induced Hypertensive Women

Parameters	Control (n=40)	Mild cases Group A (n=40)	Severe cases Group B (n=30)
Systolic BP (mm Hg)	121.00±1.69	144.50±1.11	172.60±3.31*
Diastolic BP (mm Hg)	77.70±1.11	93.00±0.80	127.83±2.07*
Proteinuria	7.5 (3)	52.50 (21)	100.0 (30)

*P value <0.001 (significantly high when compared to control group).

a P value <0.001 (significantly high when compared to group A).
Table 3. Detection of alpha tocopherol vitamin E (mg/dl) in normal pregnant and pregnancy induced hypertensive women

Parameters	Control (n=40)	Mild cases (n=40)	Severe cases (n=30)
Alpha tocopherol Vitamin E			
Vitamin E (mg/dl)	0.78±0.040	0.74±0.03	0.32±0.001*

* P value <0.001 (significantly low when compared to control group).
α P value <0.001 (significantly low when compared to group A).

Table 4. Comparison of The Antioxidant Nutrient Profile Among Normal Pregnant and Pregnancy Induced Hypertensive Women

Groups	Ascorbic acid vitamin C (mg/dl)	Alpha tocopherol vitamin E (mg/dl)	Beta carotene (mg/dl)	Vitamin A (mg/dl)
Group A (n = 40)				
Control Group	0.49±0.028	0.74±0.040	0.13±0.004	0.02±0.01
Group B (n = 40)	0.36±0.001	0.74±0.03	0.12±0.01	0.019±0.01
Mild cases of PIH				
Group C (n = 30)	0.30±0.02	0.32±0.001	0.04±0.002	0.019±0.004
Severe cases of PIH				

Number of cases are given as ‘n’.
* P value <0.001 (significantly low when compared to control group).
α P value <0.001 (significantly low when compared to group B).

Discussion

PE is the main contributor to maternal and fetal mortality and morbidity (14). OS has been associated in the pathophysiology of PE. Physiologic irregularities of PE have been attributed to abnormalities in endothelial cells of maternal vessels due to emergence of free radicals from defective placenta (15, 16). The role of nourishment in usual and unusual gestations has long been discussed (17). This study focused on plasma / serum concentration and the possible role of antioxidant in pregnancy-induced hypertension (PIH). Our results determine that plasma levels of ascorbic acid were expressively reduced in mild and severe patients of PIH, while alpha-tocopherol and beta-carotene levels were meaningfully reduced only in patients with severe cases of PIH. These discoveries are comparable to those distinguished by Al-Gubory (18).

The mean maternal age and parity of the severe cases of pregnancy induced hypertension were significantly low as compared to normal pregnancy. Primigravida and teenage, were at a higher risk of developing the disease. There is a sharp rise in incidence above the age of 35 years (19, 20). The present outcomes remain in settlement through a current finding of decreased antioxidant action in females having pregnancy induced hypertension. In normal gestation there is an alteration in the percentage of vitamin E to lipid peroxides in maternal blood that gradually favours vitamin E through progressing pregnancy (21).

Sarwar et al. 21 in his study also proved that vitamin E levels were unchanged in mild cases of pregnancy induced hypertension but were significantly decreased in the severe cases. The proportion of lipid peroxides to alpha tocopherol was improved in mild cases, besides significantly improved in severe cases of pregnancy induced hypertension. Alpha tocopherol is a free radical scavenger and thus applies antioxidant action. On the other hand, alpha tocopherol is used up in applying its usage, so unusual upsurge in lipid peroxides in pregnancy induced hypertension would increases consumption resulting in the increased alpha tocopherol levels (22).

Concentrated ascorbic acid is a bioavailable type of ascorbic acid. This works as per the antioxidant is transformed from the reduced to the oxidized pattern. It has been reported that ascorbic acid is a hydrophilic antioxidant acts as a first-line antioxidant against oxygen particles, which appear mainly in plasma. Unlikely, alpha-tocopherol and beta-carotene are the hydrophobic antioxidants that can quench oxygen free radicals, which are mainly present in the membrane of lipid cells (23).

Ascorbic acid and free radicals, that entraps the major part of the water present in the plasma. Since ascorbic acid exceeded capability of free radicals in the cell membrane through extensive lipid peroxidation, which can be inhibited by the disclosure of alpha tocopherol and beta-carotene (24) antioxidants i.e. ascorbic acids and beta carotene make alpha tocopherol an efficient antioxidant (25).

The right levels of vitamin C maintain and strengthen the powerful antioxidant, namely vitamin E. We restrained the concentrations of three powerful
antioxidants, ascorbic acids, alpha-tocopherol and plasma / serum beta-carotene together with vitamin A. Decreasing the antioxidant nutrients levels witnessed in this study indirectly sustenance an idea that hyperoxidation of free radicals mediated lipid per oxidation and the relative utilization of antioxidants may be involved in the pathophysiological mechanism PIH (26).

Our findings that vitamin C levels stayed reduced in patients with mild and severe PIH however alpha-tocopherol and beta carotene concentrations merely decreased while the disease existed severe suggest that antioxidant radical interactions in PIH might be introduced in the water-soluble part of plasma. We estimate that the progression can then be transmitted to the endothelial cell membrane as the disease developments.

Conclusion
In Pakistan, severe PE due to PIH is very common as a result of low socioeconomic status and lack of prenatal care. An improved understanding of PIH and its management is the main outcome of the study with good control PIH and safe prolongation of pregnancy till term. PIH treatment includes routine antihypertensive drugs along with antioxidants to prevent PE. Vitamin E is powerful antioxidant circulating in blood and detoxifying free radicals which prevents damage to the cell membrane, thereby reducing the risk of cardiac disease and malignancies.

References
1. Katsiki N, Godosis D, Komaitis S, Hatzitolios A. Hypertension in pregnancy: classification, diagnosis and treatment. Aristotle University Medical Journal. 2010 Aug 3;37(2):9-18.
2. Chen Q, Sousa JD, Snowise S, Chamley L, Stone P. Reduction in the severity of early onset severe preeclampsia during gestation may be associated with changes in endothelial cell activation: A pathological case report. Hypertension in pregnancy. 2016 Jan 2;35(1):32-41.
3. Goulopoulou S, Davidge ST. Molecular mechanisms of maternal vascular dysfunction in preeclampsia. Trends in molecular medicine. 2015 Feb 1;21(2):88-97.
4. Ardalić D, Stefanović A, Kotur-Stevuljević J, Ninić A, Spasić S, Spasojević-Kalimanovska V, Jelić-Ivanović Z, Miković Z. Lipid indexes and parameters of lipid peroxidation during physiological pregnancy. Journal of Laboratory Medicine. 2019 Apr 24;43(2):93-9.
5. Davis M. Maternal Cholesterol Levels during Pregnancy. Michigan State University; 2018.
6. Khalid S, Shaikh F, Imran-ul-Haq HS. Oxidative stress associated with altered activity of glutathione peroxidase and superoxide dismutase enzymes with IDA during pregnancy. Pakistan journal of pharmaceutical sciences. 2019 Jan 1;32(1).
7. Mason SA, Della Gatta PA, Snow RJ, Russell AP, Wadley GD. Ascorbic acid supplementation improves skeletal muscle oxidative stress and insulin sensitivity in people with type 2 diabetes: findings of a randomized controlled study. Free Radical Biology and Medicine. 2016 Apr 1;93:227-38.
8. Hansson SR, Näär Å, Erlandsson L. Oxidative stress in preeclampsia and the role of free fetal hemoglobin. Frontiers in physiology. 2015 Jan 3;5:516.
9. Egea J, Fabregat I, Frapart YM, Ghezzi P, Görłach A, Kietzmann T, Kubaihch K, Knaus UG, Lopez MG, Olaso-Gonzalez G, Petry A. European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS). Redox biology. 2017 Oct 1;13:94-162.
10. Boeldt DS, Bird IM. Vascular adaptation in pregnancy and endothelial dysfunction in preeclampsia. The Journal of endocrinology. 2017 Jan;232(2):R27.
11. Soma-Pillay P, Catherine NP, Tolppanen H, Mebazaa A, Tolppanen H, Mebazaa A. Physiological changes in pregnancy. Cardiovascular journal of Africa. 2016 Mar;27(2):89.
12. Mundim GJ, Paschoini MC, Júnior EA, Costa FD, Júnior VR. Assessment of angiogenesis modulators in pregnant women with pre-eclampsia: a case–control study. Archives of gynecology and obstetrics. 2016 Feb 1;293(2):369-75.
13. Natelson S. Microtechniques of clinical chemistry. CC Thomas; 1961.
14. Shamim AA, Schulze K, Merrill RD, Kabir A, Christian P, Shaikh S, Wu L, Ali H, Labrique AB, Mehra S, Klemm RD. First-trimester plasma tocopherols are associated with risk of miscarriage in rural Bangladesh. The American journal of clinical nutrition. 2015 Feb 1;101(2):294-301.
15. Adekola H, Romero R, Chaemsaithong P, Korzeniewski SJ, Dong Z, Yeo L, Hassan SS, Chaiworapongs T. Endocan, a putative endothelial cell marker, is elevated in preeclampsia, decreased in acute pyelonephritis, and unchanged in other obstetrical syndromes. The Journal of Maternal-Fetal & Neonatal Medicine. 2015 Sep 22;28(14):1621-32.
16. Roberts JM, Myatt L, Spong CY, Thom EA, Hauth JC, Leveno KJ, Pearson GD, Wapner RJ, Varner MW, Thorp Jr JM, Mercer BM. Vitamins C and E to prevent complications of pregnancy-associated hypertension. New England Journal of Medicine. 2010 Apr 8;362(14):1282-91.
17. Khalid S, Shaikh F, Moeen S. Decreased activity of glutathione peroxidase with oral ferrous iron administration: A cause of oxidative stress. Pakistan journal of pharmaceutical sciences. 2018 Mar 1;31(2).

18. Al-Gubory KH, Fowler PA, Garrel C. The roles of cellular reactive oxygen species, oxidative stress and antioxidants in pregnancy outcomes. The international journal of biochemistry & cell biology. 2010 Oct 1;42(10):1634-50.

19. Mol BW, Roberts CT, Thangaratinam S, Magee LA, De Groot CJ, Hofmeyr GJ. Pre-eclampsia. The Lancet. 2016 Mar 5;387(10022):999-1011.

20. Oyston C, Baker PN. Therapeutic strategies for the prevention and treatment of pre-eclampsia and intrauterine growth restriction. Obstetrics, Gynaecology & Reproductive Medicine. 2017 Jan 1;27(1):22-8.

21. Sarwar MS, Sarkar RC, Bhowmick R, Dewan SM, Ahmed MU, Hasnat A, Rashid M, Islam MS. Effect of socio-economic status and estimation of lipid peroxidation and antioxidant in preeclamptic pregnant women: a case-control study. Hypertension in pregnancy. 2015 Jan 2;34(1):125-35.

22. Sultana Z, Maiti K, Aitken J, Morris J, Dedman L, Smith R. Oxidative stress, placental ageing-related pathologies and adverse pregnancy outcomes. American Journal of Reproductive Immunology. 2017 May;77(5):e12653.

23. Park S, Ham JO, Lee BK. Effects of total vitamin A, vitamin C, and fruit intake on risk for metabolic syndrome in Korean women and men. Nutrition. 2015 Jan 1;31(1):111-8.

24. Aversa R, Buzea EM, Petrescu RV, Apicella A, Neacsu M, Petrescu FL. Present a mechatronic system having able to determine the concentration of carotenoids. American Journal of Engineering and Applied Sciences. 2016 Dec 6;9(4):1106-11.

25. Alshehr RG, Hess JL. Antioxidants in higher plants. CRC press; 2017 Jul 28.

26. Chen W, Maghazal GJ, Ayer A, Suarna C, Dunn LL, Stocker R. Absence of the biliverdin reductase-a gene is associated with increased endogenous oxidative stress. Free Radical Biology and Medicine. 2018 Feb 1;115:156-65.