Introduction

Acute lymphoblastic leukemia (ALL) is the most common cancer of childhood. Improvements in overall survival (OS) in children with ALL are among the major successes in the history of cancer treatment. OS rates obtained in countries adopting modern intensive chemotherapy schedules are in fact in the range of 85-90%. ALL represents almost 30% of all childhood cancers, but only 6% of cancers in adolescents and young adults (AYAs aged between 20 and 34 years). Survival rates in AYA patients are lower than in children, for example, 5-year OS rates were 89% for children aged under 15 years versus 50% OS for those aged 15-19 years in the early 2000s. It has therefore been suggested that treatment of AYA patients should be closer to the strategies included in pediatric ALL trials, i.e. intensified post-remission strategies including high-dose chemotherapy agents (i.e. steroids, methotrexate) and intensive use of asparaginase (ASP). In the main, adolescents tend to start receiving adult protocols at around age 18 years. Asparaginase are valuable agents widely used in the treatment of childhood ALL. Three forms are currently available: two are derived from E. coli (one native and its pegylated form, PEG-ASP) and one from Erwinia chrysanthemi (asparaginase Erwinia chrysanthemi; crisantaspase). These ASP products are not interchangeable due to their different pharmacological and antigenic properties; in addition, their use is associated with considerable variations in efficacy and toxicity depending on several factors such as the individual patient, the dosage/schedule adopted and also the ongoing line of treatment. The biological mechanism underlying ASP-related therapeutic effects is the same for all three forms, i.e. a deep and prolonged asparagine (ASN) depletion induced in plasma immediately after its administration induces apoptosis in leukemic blasts. Response to ASP varies from patient to patient; it has been suggested that the microenvironment of bone marrow-derived mesenchymal cells where leukemic cells grow has high levels of ASN-synthetase, up to 20-times higher than the leukemic blast, and that ASN produced within the microenvironment may provide protection against ASP. Downregulation of ASN-synthetase could reduce the capacity of the microenvironment to protect against ASP, whilst upregulation of ASN-synthetase could conversely confer enhanced protection against ASP. Allergic reactions or silent inactivation may develop, both of which may potentially reduce the therapeutic benefit of ASP. For this specific reason modern treatment protocols often include guidelines for timely identification of allergic reactions (and switch to another ASP product) and therapeutic drug monitoring (TDM) programs. The latter programs allow the early identification of patients with silent inactivation who do not benefit from current ASP treatment and facilitate a switch to a different ASP product. This switch ensures continued depletion of ASN, completion of the treatment schedule and maintenance of outcomes. This report summarizes the rationale for a pediatric-inspired approach in AYAs with ALL as presented and discussed during a symposium held in the framework of the 2013 European ALL Working Group (EWALL) International Meeting. A special effort to focus
on how ASP treatment might contribute to achieve better results in AYAs was one of the aims of the symposium.

Current guidelines in acute lymphoblastic leukemia: focus on adolescents and young adults

Outcomes in patients with ALL vary by age and phenotype. Patients with B-cell ALL have better outcomes than those with T-cell ALL. Indeed, optimal outcomes are seen in children aged 1-5 years with B-cell ALL, with 10-year event free survival (EFS) of around 80%. EFS falls to around 70% in children with B-cell ALL aged 10 and over, in contrast EFS rates are somewhat less favorable in children with T-cell ALL but remain fairly static when older ages are concerned.

Survival rates in AYAs are poor compared with those in younger children. Data from Surveillance Epidemiology and End Results (SEER) 2000-2004 reported 10-year OS of around 80% in children aged under 15 years, falling to 60% in adolescents aged 15-20 years and 30% in young adults aged 20-30 years; rates have improved by a further 10-15% over the past decade in the AYA group. The steepest decline in survival is seen in mid-adolescence, the sudden decrement at 18 years coincides with newly diagnosed patients receiving adult rather than pediatric regimens.

Acute lymphoblastic leukemia can be challenging to treat in AYA. There is an increased incidence of unfavorable and decreased incidence of favorable cytogenetic abnormalities in adolescents compared with children (Table 1).

As we will discuss later in this paper, data from adult cooperative groups demonstrates improved outcomes in AYAs treated with intensified post-remission strategies as per pediatric regimens. However, there is a lack of European guidance for the treatment of AYA patients, although the US-based National Comprehensive Cancer Network (NCCN) Clinical Practice Guidelines in Oncology (NCCN Guidelines) do provide guidance and consider AYA separately from the adult population.

Feature	Prognostic value	Pediatric ALL	AYA ALL
Ph chromosome			
t(12;21)	Positive	Common (25%)	Rare
Hyperdiploidy	Positive	Common (20%)	Less common
B-cell ALL	Positive	More common	Less common
T-cell ALL	Negative	10-15%	25%

Ph-negative disease

Patients should be treated in a clinical trial whenever possible. In the absence of an appropriate trial, induction therapy should be based on pediatric-inspired protocols. Treatment regimens should include adequate central nervous system prophylaxis for all patients. Testing for TPMT gene polymorphism should be considered for patients receiving 6-MP as part of maintenance therapy, especially in patients who experience severe bone marrow toxicities. Monitoring for minimal residual disease (MRD) should be considered in patients achieving CR after initial induction therapy.

In patients achieving CR, multi-agent based chemotherapy in consolidation, re-induction and maintenance phases must be given. If a matched donor is available, consolidation with allogeneic HSCT may be considered, particularly for patients with residual disease as assessed by MRD, or with high-risk features. In patients achieving less than CR after initial induction therapy, the treatment approach is similar to patients with relapsed/refractory ALL.

Ph-positive disease

Patients should be treated in a clinical trial if possible. In the absence of an appropriate clinical trial, induction therapy should be a pediatric-inspired multi-agent chemotherapy regimen combined with a TKI. Treatment regimens should include adequate central nervous system prophylaxis for all patients. In those patients achieving a complete response (CR) following initial induction therapy, consolidation with allogeneic hematopoietic stem cell transplantation (HSCT) should be considered if a matched donor is available. Emerging data suggests that in younger AYA patients (aged ≤21 years), allogeneic HSCT may confer an advantage over chemotherapy plus TKIs, and long-term data is eagerly awaited to determine whether younger patients can be successfully treated without allogeneic HSCT. If HSCT, TKI should be considered. For patients without a donor, consolidation therapy following a CR is a continuation of multi-agent chemotherapy plus a TKI. Such patients should continue to receive post-consolidation maintenance therapy with a regimen including a TKI.

Adolescents and young adults patients with Ph-positive relapsed/refractory ALL should participate in a clinical trial. In the absence of an appropriate trial, the patient may be considered for second-line therapy with multi-agent chemotherapy combined with an alternative TKI, allogeneic HSCT (if a second CR is achieved) or donor lymphocyte infusion, if the patient relapses after allogeneic HSCT.

GIMEMA ALL 1308

The Gruppo Italiano Malattie EMatologiche
Asparaginase in children, adolescents and young adults

The ASPs are a universal component of ALL therapy and are used for remission induction and intensification treatment in every pediatric regimen for ALL.8 Leukemic cells are unable to synthesize asparagine (ASN) and rely on extracellular sources. In the presence of ASP, ASN is rapidly deaminated in serum depleting extracellular sources and reducing the supply of ASN to leukemic cells. Leukemic cells are unable to undertake protein biosynthesis leading to cell death.9 Studies using intensive ASP have revealed significant benefit in terms of EFS, disease free survival (DFS), and continuous complete remission rate, when compared with less intensive ASP treatment. Also the completion of the treatment schedule is essential to ensure the expected full clinical benefit. In a study carried out by the Dana-Farber Clinical Institute (DFCI), children were treated with an extended 30 weeks of high-dose ASP during intensification (n=352). At 5-year follow-up, EFS in children who received less than 25 weeks of planned ASP therapy was significantly poorer than in those who received 26 weeks or more of therapy: 78% versus 90%, P<0.01.13 A significant improvement in EFS with continued ASP therapy was also seen in a retrospective analysis by the Tokyo Children’s Cancer Study Group, wherein children who received more than 50% of the scheduled dose had a significantly improved 5-year EFS versus those who received less than 50% of the scheduled dose: 92.9% versus 74.1%, P<0.025.14

Use of pediatric protocols in adolescents and young adults

There is considerable evidence from retrospective analyses that treating AYAs with a pediatric protocol may improve clinical outcomes compared with treatment adopted in adult protocols.3,5,17-20 Pediatric protocols have higher cumulative dosing of drugs (ASP, corticosteroids, methotrexate, vincra-alkaloids) and shorter gaps between courses of chemotherapy compared with adult protocols.17 A systematic review and meta-analysis of comparative trials of AYA patients receiving induction therapy with either adult or pediatric-inspired chemotherapy identified 11 trials (n=2489). The AYA patients receiving a pediatric-inspired regimen had a significantly lower all cause mortality at 3 years compared to those receiving an adult regimen: relative risk 0.58, 95%CI 0.51-0.67, P<0.05.24 The absolute risk reduction for all cause mortality at 3 years was 0.2 and the number needed to treat to prevent one death with pediatric-inspired regimens was 5 (95%CI 4-7). Secondary end-points included all cause mortality at the end of the trial, complete remission, 3-year EFS and relapse rate. Significant benefit was seen in the patients receiving the pediatric-inspired regimen (P<0.05 for all secondary end-points). Non-relapse mortality was similar in both groups. The German multicenter ALL (GMALL) protocols were originally based on pediatric Berlin-Frankfurt-Münster (BFM) protocols and have been optimized for AYAs since 1981. A retrospective analysis compared outcomes from GMALL 05/93 (an earlier study) and GMALL 07/03 (a later study). The main innovations in GMALL 07/03 were intensified shortened induction with dexamethasone rather than with prednisone, PEG-ASP rather than native ASP, intensified first consolidation, six doses of high dose methotrexate and ASP during consolidation, matched unrelated SCT for high risk and very high risk patients without sibling donor and SCT indication in patients with persistent minimal residual disease. AYA patients receiving the later protocol (GMALL 07/03) had significant improvements in 5-year OS compared with GMALL 05/93 (65% in GMALL 07/03 versus 46% in GMALL 05/93). This data represents the largest cohort of AYA patients treated to date with pediatric-inspired protocols (642 in GMALL 05/93 and 887 in GMALL 07/03).25 A number of other studies have been carried out using retrospective data to compare outcomes in AYAs receiving pediatric and adult inspired protocols. The results are shown in Table 2 and demonstrate that outcomes are significantly improved in AYA patients receiving a pediatric-inspired protocol compared with an adult-inspired protocol. A retrospective study compared outcomes in 177 AYAs aged 15-20 years entering either a pediatric [French Acute Lymphoblastic Leukemia Group (FRALL)-93] or an adult protocol [Leucémie Aiguë Lymphoblastique de l’Adulpe (LALA)-94]. The cumulative doses of treatment (vincristine/vindesine, prednisone, dexamethasone, ASP, daunorubicin/ doxorubicin/mitoxantrone, vepeside/cyclophosphamide) were higher in the pediatric protocol than in the adult protocol. The overall dose of ASP was 20-times higher in the pediatric protocol: 180,000 IU/m2 in the pediatric regimen versus 9000 IU/m2 in the adult regimen.18 A retrospective study compared outcomes in adolescents aged 14-18 years treated on the pediatric Associazione Italiana Ematologia Oncologia Pediatria (AIEOP) ALL 95 and 2000 protocols with those treated on adult GIMEMA ALL 0496 and 2000 protocols.19 The pediatric protocols had seven-drug induction followed by risk-modulated post-remission therapy. SCT was recommended for very high-risk patients. Another retrospective study compared outcomes in 177 AYAs aged 15-20 years entered into the pediatric protocol. Another retrospective study compared outcomes in adolescents aged 14-18 years treated on the pediatric Associazione Italiana Ematologia Oncologia Pediatria (AIEOP) ALL 95 and 2000 protocols with those treated on adult GIMEMA ALL 0496 and 2000 protocols.19 The pediatric protocols had seven-drug induction followed by risk-modulated post-remission therapy. SCT was recommended for very high-risk patients. Another retrospective study compared outcomes in adolescents aged 14-18 years treated on the pediatric Associazione Italiana Ematologia Oncologia Pediatria (AIEOP) ALL 95 and 2000 protocols with those treated on adult GIMEMA ALL 0496 and 2000 protocols.19 The pediatric protocols had seven-drug induction followed by risk-modulated post-remission therapy. SCT was recommended for very high-risk patients. Another retrospective study compared outcomes in adolescents aged 14-18 years treated on the pediatric Associazione Italiana Ematologia Oncologia Pediatria (AIEOP) ALL 95 and 2000 protocols with those treated on adult GIMEMA ALL 0496 and 2000 protocols.19 The pediatric protocols had seven-drug induction followed by risk-modulated post-remission therapy. SCT was recommended for very high-risk patients. Another retrospective study compared outcomes in adolescents aged 14-18 years treated on the pediatric Associazione Italiana Ematologia Oncologia Pediatria (AIEOP) ALL 95 and 2000 protocols with those treated on adult GIMEMA ALL 0496 and 2000 protocols.19 The pediatric protocols had seven-drug induction followed by risk-modulated post-remission therapy. SCT was recommended for very high-risk patients. Another retrospective study compared outcomes in adolescents aged 14-18 years treated on the pediatric Associazione Italiana Ematologia Oncologia Pediatria (AIEOP) ALL 95 and 2000 protocols with those treated on adult GIMEMA ALL 0496 and 2000 protocols.19 The pediatric protocols had seven-drug induction followed by risk-modulated post-remission therapy. SCT was recommended for very high-risk patients. Another retrospective study compared outcomes in adolescents aged 14-18 years treated on the pediatric Associazione Italiana Ematologia Oncologia Pediatria (AIEOP) ALL 95 and 2000 protocols with those treated on adult GIMEMA ALL 0496 and 2000 protocols.19 The pediatric protocols had seven-drug induction followed by risk-modulated post-remission therapy. SCT was recommended for very high-risk patients. Another retrospective study compared outcomes in adolescents aged 14-18 years treated on the pediatric Associazione Italiana Ematologia Oncologia Pediatria (AIEOP) ALL 95 and 2000 protocols with those treated on adult GIMEMA ALL 0496 and 2000 protocols.19 The pediatric protocols had seven-drug induction followed by risk-modulated post-remission therapy. SCT was recommended for very high-risk patients. Another retrospective study compared outcomes in adolescents aged 14-18 years treated on the pediatric Associazione Italiana Ematologia Oncologia Pediatria (AIEOP) ALL 95 and 2000 protocols with those treated on adult GIMEMA ALL 0496 and 2000 protocols.19 The pediatric protocols had seven-drug induction followed by risk-modulated post-remission therapy. SCT was recommended for very high-risk patients. Another retrospective study compared outcomes in adolescents aged 14-18 years treated on the pediatric Associazione Italiana Ematologia Oncologia Pediatria (AIEOP) ALL 95 and 2000 protocols with those treated on adult GIMEMA ALL 0496 and 2000 protocols.19 The pediatric protocols had seven-drug induction followed by risk-modulated post-remission therapy. SCT was recommended for very high-risk patients.
cytarabine. Although ASP is a pivotal drug in the treatment of ALL, protocols based on strategies not including ASP have also demonstrated benefit in AYAs. A recent study compared outcomes in 85 patients aged 12-40 years with Ph-ALL treated with the pediatric augmented BFM regimen with outcomes in 71 historical controls who received hyper-CVAD (cyclophosphamide, vincristine, doxorubicin and dexamethasone). Outcomes [3-year complete remission duration (CRD) and OS] were comparable between the two groups: CRD was 70% in the BFM arm versus 66% in the hyper-CVAD arm and OS 74% versus 71%.

Toxicity is a key issue in the use of pediatric-inspired regimens in older patients, and may limit the potential benefit of high intensity pediatric-inspired regimens. Toxicity may have the potential to lead to increased adverse events, potentially lethal toxicities and a reduction in the total dose due to dose interruption, dose reduction or early cessation of therapy. Some recent protocols include monitoring for MRD to inform clinical decisions and ensure treatment intensity is appropriate to each individual’s needs, whilst maintaining efficacy and minimizing adverse events.

Recent evidence presented at the American Society of Hematology (ASH) meeting in December 2013 suggests that pediatric-inspired protocols are feasible and well tolerated in AYA patients. Data from the prospective US intergroup trial C10403 in 318 AYA patients aged over 10 years than in younger patients, whom 16% (n=147) were aged 16-39 years. Data on some adverse events (infection, hypersensitivity to ASP, neurotoxicity to vincristine), however, the incidence of thrombotic events due to ASP increased with increasing patient age and avascular necrosis was most commonly observed in patients aged 10-19 years. Further data on toxicity comes from the Erwinaze Master Treatment Protocol (EMTP) was a compassionate use program which allowed patients with a grade 2 or higher hypersensitivity reaction to PEG-ASP or native ASP to switch to crisantaspase (trade named Erwinaze in the US). Adverse event reports or case report forms were completed for 940 patients aged 0.76 years (mean 9.7 years), of whom 16% (n=147) were aged 16-39 years. Post hoc analyses revealed that the adverse event profile in the AYA population was consistent with the profile in the full population in this trial. However, despite the potential benefits of a pediatric regimen as shown in Table 2, many AYA patients do not currently receive a pediatric regimen. This may be due to a number of factors including fear of increased incidence of side-effects and the potential for increased mortality due to toxicity, referral patterns (AYAs are referred by oncologists preferentially to adult rather than pediatric centers), cost of treatment, lack of insurance (where applicable), lack of parental vigilance and poor compliance, lack of information, guidance and patient involvement in the decision about where to be treated.

Management of toxicities with asparaginase

Asparaginase treatment is associated with a number of adverse events, which can lead to discontinuation of ASP or delay in treatment and a reduction in clinical benefit.

A retrospective analysis reviewed the records of 214 patients aged 15-59 years with ALL or lymphoblastic lymphoma and considered the reasons for early discontinuation of ASP. All patients received six doses of native *E. coli* ASP during induction. ASP was delayed in 22% of patients and the number of doses was reduced in 41%. The most common reasons for delay were coagulation abnormalities (47%) and logistical reasons (34%). The most common reasons for dose reduction were coagulation abnormalities (35%), liver toxicity (17%), logistical reasons (16%) and pancreatitis (12%).

The majority of data on adverse events with ASP is from studies using *E. coli*-derived ASP. Different definitions of adverse events make it very difficult to compare data across studies; however, the pegylated formulation has reduced immunogenicity and consequently lower rates of hypersensitivity.

Table 3 provides key information on adverse events and management strategies.

Two adverse events, hypersensitivity and coagulation disorders, are discussed in greater depth below.

Hypersensitivity

Asparaginase use may lead to the development of anti-ASP antibodies, which may result in a clinical hypersensitivity reaction or be symptom-free (known as silent inactivation). Hypersensitivity is the most commonly reported adverse reaction with all ASP; incidence varies according to a number of factors including type of ASP, dosing schedule, route of administration, concomitant medication and duration of treatment. Rates can be as high as 36% with native *E. coli* ASP and tend to be lower with PEG-ASP and crisantaspase. Silent inactivation occurs in around 30% of patients receiving native *E. coli* ASP and rates are lower with PEG-ASP and crisantaspase.

There is cross-reactivity between *E. coli*-derived ASP (native ASP and PEG-ASP) but not between *E. coli*-derived ASPs and crisantaspase, which is derived from *Eruvinia chrysanthemi*. Therefore, it has been suggested that a change to crisantaspase in cases of allergy to native or pegylated *E. coli* ASP might ensure advantages in continuation of treatment and clinical benefit.

Two recent studies demonstrate the adverse event profile seen with crisantaspase, given as second-line treatment to patients with a hyper-

Country (years of recruitment) Age range	Pediatric protocols	Adult protocols	CR (%)	EFS (%)	OS (%)
France (1995-2000) 15-20	FRALLE-93 (n=77)	LALA-93 (n=100)	94 vs 83	67 vs 41	78 vs 45
			P=0.04	P<0.001	P<0.001
Italy (1996-2003) 14-18	AIEOP 95 + 2000 (n=150)	GIMEMA 0496 + 2000 (n=95)	94 vs 89	69 vs 34	79 vs 38
			P=0.19	P<0.001	P<0.001
Netherlands (1984-2004) 15-18	DCOG ALL6+9 (n=47)	HOVON ALL-5 + ALL-18 (n=44)	98 vs 91	69 vs 34	79 vs 38
			P=0.09	P<0.001	P<0.001
USA (1988-2001) 16-20	CCG 1882+1901 (n=197)	CALGB 8811+9111+9311+9511+19802 (n=124)	90 vs 90	63 vs 34	67 vs 46
			P=0.89	P<0.001	P<0.001

CR, complete response; EFS, event free survival; OS, overall survival.
Coagulation disorders

Reduced protein synthesis with ASP leads to falls in the serum levels of key proteins. Reduced serum albumin levels impact on the clearance and metabolism of some agents, including steroids, with a potential reduction in efficacy. Reduced serum levels of immunoglobulins and lectins may also increase the risk of infection.

Coagulation disorders result from the effect of ASP on protein synthesis, which leads to reductions in plasminogen, fibrinogen, anti-thrombin, protein C and S, factors IX and X. Reductions in anti-coagulant proteins can impair thrombin inhibition or result in elevated thrombin levels which may increase the risk of bleeding or thrombosis. Therefore, ASP treatment has been associated with an increased risk of thrombo-hemorrhagic disorders. Thrombosis, mostly at venous sites, is considered the main risk.29

Coagulation disorders may occur in up to one-third of patients receiving ASP and generally occur early in treatment.29 It is difficult to compare rates across the ASPs, however, data from EMTP and AALLO7P2 showed low rates of thrombosis/hemorrhage with cisantaspase (0% in AALLO7P2,43 thrombosis rates of 2.1% and hemorrhage rates of 1% in EMTP). In adults, work has shown that a single dose of PEG-ASP leads to a reduction in plasma antithrombin III to <50% of normal in two-thirds of patients (16/25), with an overall median nadir level of 45% of normal. The reduction in plasma antithrombin III lasted for approximately 21 days, suggesting that there may be greater potential for thrombotic adverse events with PEG-ASP due to an extended duration of asparaginase depletion.46 As with all thrombotic conditions, rates are higher in adults than in children.47 A review of 548 ALL patients treated at the DFCI between 1991 and 2008 revealed that venous thrombotic events (VTE) occurred in 8% of patients, including 5% of pediatric patients and 34% of adult patients (18-50 years). Median time to VTE in this study was 3.5 months (0.5-10.1 months) with no difference between adult and pediatric patients.

Risk factors for VTE include older age at diagnosis, T-cell phenotype, high-risk ALL, use of mediastinal mass and inherited thrombophilia traits. Older children and adolescents (15-20 years) have a increased risk of thrombosis compared with younger children (6-10 years), odds ratio: 4.0 versus 11.7, P<0.01.47 However, although changes in coagulation proteins are commonly observed during ASP treatment, one recent study failed to show a clear association between coagulation derangement and the occurrence of VTE in a pediatric population.29 VTE are severe events with significant morbidity and mortality. Inpatients receiving ASP at DFCI between 1998 and 2008 the most common complication was VTE recurrence, which occurred in 44% of adults and 15% of children.47

Thrombosis has an adverse impact on outcome. In a retrospective analysis of 214 patients aged 15-59 years with ALL or lymphoblastic leukemia, treated with six doses of native E. coli ASP during induction, 9.8% of patients experienced a thrombotic event during induction.38 Treatment with ASP was stopped in 10 of the patients who experienced a thrombosis. Patients who experienced thrombosis had significantly poorer outcomes compared with those without thrombosis; 7 year OS of 19 months versus 53 months, P=0.06. Therefore, strategies to prevent VTE and allow administration of adequate doses of ASP are warranted but there is still no consensus on which diagnostic and prophylactic strategies should be used to prevent them. Prophylactic administration of antithrombin concentrates and the use of heparin have been attempted but results and indications are still far from consistent.48,51

Recommendations suggest that in general, ASP should be withheld if i) in case of severe VTE (Grade 3-4) and discontinued if symptoms do not resolve or ii) in cerebral thrombosis. In resolved non-cerebral VTE, resumption of ASP at lower doses may be tried under anticoagulation treatment.4

Re-exposure to ASP has been indeed safely performed.4,47 A retrospective analysis of 1824 patients enrolled in UKALL 2003 aged 1-25

Table 3. Main toxicities related to asparaginase treatment.
Incidence

Hyperglycemia
Pancreatitis
Liver toxicity
Serum amylase and lipase changes
Elevation of plasma triglycerides
years revealed a thrombotic event rate of 3.2%. Fifty of the 59 patients with thrombotic events required ongoing ASP and 38 (73%) were re-exposed to PEG-ASP, including 10 patients with cerebral venous sinus thrombosis. There was no recurrence of thrombosis during re-exposure and no excess bleeding due to heparin. Low molecular weight heparin was used during re-exposure in three-quarters of patients. In the DFCI study, ASP was withheld after diagnosis of VTE for a median of 9 weeks in children and 4 weeks in adults. ASP was restarted in 77% of patients and most (70%) received at least 85% of the scheduled dose of ASP. Recurrence of VTE occurred in 33% of patients restarted on ASP. There was no significant difference in clinical outcomes in the patients with VTE compared to those without VTE; 2-year OS of 86±7% versus 95±1%, P=0.12. There were no deaths directly related to VTE in either group.

Hematologists should be aware of possible treatment complications with ASP; careful vigilance can lead to necessary modulation and safe completion of treatment.

Conclusions

In conclusion, the design of modern chemotherapy protocols for AYA should be the result of cooperative efforts between pediatric and adult hematologists. It is important to consider the specific biological and response patterns of ALL subtypes affecting AYA and also their well known propensity to develop severe side-effects. In this context, ASP may represent a great opportunity, given its specific mechanism of action, the possibility of effective TDM and the established pattern of toxicity. Toxicity with ASP is easily preventable with careful ASP treatment dosage modulation and manageable with advanced supportive treatment currently available to hematologists.

References

1. Mohan SR, Advani AS. Treatment of acute lymphoblastic leukemia in adolescents and young adults. JAYAO 2011;1:19-24.
2. Pui CH, Schrappe M, Ribeiro RC, et al. Childhood and adolescent lymphoid and myeloid leukemia. Hematology Am Soc Hematol Educ Program 2004:118-45.
3. Schafer ES, Hunger SP. Optimal therapy for acute lymphoblastic leukemia in adolescents and young adults. Nat Rev Clin Oncol 2011;8:417-24.
4. Stock W, Douer D, Deangelo DJ, et al. Prevention and management of asparaginase/pegasparaginase-associated toxicities in adults and older adolescents: recommendations of an expert panel. Leuk Lymphoma 2011;52:2237-53.
5. Stock W, La M, Sanford B, et al. What determines the outcomes for adolescents and young adults with acute lymphoblastic leukemia treated on cooperative group protocols? A comparison of Children’s Cancer Group and Cancer and Leukemia Group B studies. Blood 2008;112:1646-54.
6. National Comprehensive Cancer Network Clinical Practice Guidelines in Oncology. Acute lymphoblastic leukemia. 2012. Available from: http://www.nccn.org/professionals/physician_gls/f_guidelines.asp
7. U.S. National Institutes of Health. Combination chemotherapy in treating young adult patients with acute lymphoblastic leukemia (LALL1308). Available from: http://clinicaltrials.gov/show/NCT01156883.
8. Pieters R, Hunger S, Boos J, et al. L-asparaginase treatment in acute lymphoblastic leukemia. Cancer 2011;117:238-49.
9. Müller HJ, Boos J. Use of L-asparaginase in childhood ALL. Crit Rev Oncol Hematol 1998;28:97-113.
10. Iwamoto S, Mihara K, Downing JR, et al. Mesenchymal cells regulate the response of acute lymphoblastic leukemia cells to asparaginase. J Clin Invest 2007;117:1049-57.
11. Schultz KR, Bowman WP, Aledo A, et al. Improved early event-free survival with imatinib in Philadelphia chromosome-positive acute lymphoblastic leukemia: a children’s oncology group study. J Clin Oncol 2009;27:5175-81.
12. Testi AM, Picciochi A, D’Angió et al. Italian GIMEMA 1308 protocol treatment of acute lymphoblastic leukemia (ALL) in adolescents and young adults (AYA): intensification of treatment based on the pediatric AIEOP ALL2000 protocol. Abstract presented at the 19th Congress of the European Hematology Association, Milan, 2014.
13. Silverman LB, Gelber RD, Dalton VK, et al. Improved outcome for children with acute lymphoblastic leukemia: results of Dana-Farber Consortium Protocol 91-01. Blood 2001;97:1211-8.
14. Ogawa C, Ohara A, Manabe A, et al. Tokyo Children’s Cancer Study Group (TCCSG) study L99-15. Blood 2005;106:Abstract 878.
15. Pession A, Valsecchi MG, Masera G, et al. Long-term results of a randomized trial on extended use of high dose L-asparaginase for standard risk childhood acute lymphoblastic leukemia. J Clin Oncol 2005;23:7161-7.
16. Amylon MD, Shuster J, Pullen J, et al. Intensive high-dose asparaginase consolidation improves survival for pediatric patients with T cell acute lymphoblastic leukemia and advanced stage lymphoblastic lymphoma: a Pediatric Oncology Group study. Leukemia 1999;13:335-42.
17. Rijneveld AW, van der Holt B, Daenen SM, et al. Dutch-Belgian HOVON Cooperative group. Intensified chemotherapy inspired by a pediatric regimen combined with allogeneic transplantation in adult patients with acute lymphoblastic leukemia up to the age of 40. Leukemia 2011;25:1697-703.
18. Boissel N, Auclerc MF, Lhéritier V, et al. Should adolescents with acute lymphoblastic leukemia be treated as old children or young adults? Comparison of the French FRALE-93 and LALA-94 trials. J Clin Oncol 2003;21:774-80.
19. Testi AM, Valsecchi MG, Conter V, et al. Difference in outcome of adolescents with acute lymphoblastic leukemia (ALL) enrolled in pediatric (AIEOP) and adult (GIMEMA) protocols. Blood 2004;104: Abstract1954.
20. de Bont JM, Holt B, Dekker AW, et al. Significant difference in outcome for adolescents with acute lymphoblastic leukemia treated on pediatric vs adult protocols in the Netherlands. Leukemia 2004;18:2032-33.
21. Ram R, Wolach O, Vidal L, et al. Adolescents and young adults with acute lymphoblastic leukemia have a better outcome when treated with pediatric-inspired regimens: systematic review and meta-analysis. Am J Hematol 2012;87:472-8.
22. Gokbuget N, Beck J, Brandt K, et al. Significant improvement of outcome in adolescents and young adults (AYAs) aged 15-35 years with acute lymphoblastic leukemia (ALL) with a pediatric derived adolescent ALL protocol: results of 1529 AYAs in 2 consecutive trials of the German Multicenter Study Group for Adult ALL (GMALL). Presented at 55th ASH Annual Meeting, New Orleans, December 2013.
23. Ryttig ME, Thomas DA, O’Brien SM, et al. Augmented Berlin-Frankfurt-Münster therapy in adolescents and young adults (AYAs) with acute lymphoblastic leukemia (ALL). Cancer 2014 Jul 17. [Epub ahead of print]
24. Advani AS, Sanford B, Luger S, et al. Frontline treatment of acute lymphoblastic leukemia (ALL) in older adolescents and young adults (AYAs) using a pediatric regimen is feasible: toxicity results of the prospective US intergroup trial C10403. Presented at 55th ASH Annual Meeting, New Orleans, December 2013.
25. Hough R, Rowntree C, Wade R, et al. Impact of age on toxicity associated with chemotherapy for acute lymphoblastic leukemia (ALL): results from the UK prospective study UKALL2003. Presented...
31. Raetz EA, Salzer WL. Tolerability and efficacy of L-asparaginase therapy in pediatric patients with acute lymphoblastic leukemia. J Pediatr Oncol 2010;32:554-63.

32. Lowas SR, Marks D, Malempati S. Prevalence of transient hyperglycemia during induction chemotherapy for pediatric acute lymphoblastic leukemia. Pediatr Blood Cancer 2009;52:814-8.

33. Sonabend RY, McKay SV, Okcu MF, et al. Hyperglycemia during induction therapy is associated with increased infectious complications in childhood acute lymphocytic leukemia. Pediatr Blood Cancer 2008;51:387-92.

34. Advani A, Earl M, Douer D, et al. Toxicities of intravenous (IV) pegasparaginase (ONCASPAR) in adults with acute lymphoblastic leukemia (ALL). Blood 2007;110:Abstract 2811.

35. Sonabend RY, McKay SV, Okcu MF, et al. Asparaginase-related thrombosis in patients with acute lymphoblastic leukemia: results of the PARKAA study. Blood 2009;113:1862.

36. Stock W. Disparity in outcome of young adults with ALL (response). Blood 2009;113:1862.

37. Earl M. Incidence and management of asparaginase-associated adverse events in patients with acute lymphoblastic leukemia. Clin Adv Hematol Oncol 2009;7:600-6.

38. Hunault-Berger M, Chevallier P, Delain M, et al. GOELAMS (Groupe Ouest-Est des Leucémies Aigües et Maladies du Sang). Changes in antithrombin and fibrinogen levels during induction chemotherapy with L-asparaginase in adult patients with acute lymphoblastic leukemia or lymphoblastic lymphoma. Use of supportive coagulation therapy and clinical outcome: the CAPELAL study. Haematologica 2008;93:1488-94.

39. Raetz EA, Salzer WL. Tolerability and efficacy of L-asparaginase therapy in pediatric patients with acute lymphoblastic leukemia. J Pediatr Oncol 2010;32:554-63.

40. Rizzari C, Conter V, Starý J, et al. Optimizing asparaginase therapy for acute lymphoblastic leukemia. Curr Opin Oncol 2013;25:S1-9.

41. Zalewska-Szewczyk B, Andrzejewski W, Mlynarski W, et al. The cross-reactivity of anti-asparaginase antibodies against different L-asparaginase preparations. Clin Exp Med 2007;9:113-6.

42. Zalewska-Szewczyk B, Gach A, Wyka K, et al. The cross-reactivity of anti-asparaginase antibodies against different L-asparaginase preparations. Clin Exp Med 2007;9:113-6.

43. Salzer WL, Asselin B, Supko JG, et al. Erwinia asparaginase achieves therapeutic activity after pegasparagase allergy: a report from the Children’s Oncology Group. Blood 2013;122:507-14.

44. Asselin BL. The right dose for the right patient. Blood 2012;119:1617-8.

45. Kawedia JD, Liu C, Pei D, et al. Dexamethasone exposure and asparaginase antibodies affect relapse risk in acute lymphoblastic leukemia. Blood 2012;11:1658-64.

46. Douer D, Yampolsky H, Cohen LJ, et al. Pharmacodynamics and safety of intravenous pegasparagase during remission induction in adults aged 55 years or younger with newly diagnosed ALL. Blood 2007;109:2744-50.

47. Grace RF, Dahlberg SE, Neuberg D, et al. The frequency and management of asparaginase-related thrombosis in pediatric and adult patients with acute lymphoblastic leukemia: results from a multicenter cohort study. Blood 2010;115:4999-5004.

48. Mitchell L, Lambers M, Flege S, et al. Validation of a predictive model for identifying an increased risk for thromboembolism in children with acute lymphoblastic leukemia: results of a multicenter cohort study. Blood 2010;115:4999-5004.

49. Putti MC, Randi ML. Thrombotic complications in children with haematologic malignancies. Thromb Res 2010;125:S151-4.

50. Santoro N, Colombini A, Silvestri D, et al. Screening for coagulopathy and identification of children with acute lymphoblastic leukemia at a higher risk of symptomatic venous thrombosis: an AIEOP experience. J Pediatr Hematol Oncol 2013;35:348-55.

51. Mitchell LM, Andrew K, Hanna T, et al. Trend to efficacy and safety using antithrombin concentrate in prevention of thrombosis in children receiving l-asparaginase for acute lymphoblastic leukemia: results of the PARKAA study. Thromb Haemost 2009;90:235-44.

52. Qureshi A, Mitchell C, Richards S, et al. Asparaginase-related venous thrombosis in UKALL 2003: re-exposure to asparaginase is feasible and safe. Br J Haematol 2010;149:410-3.