Human myometrium –
the ultrastructural 3D network of telocytes

Sanda M. Crețoiu a, b, Dragos Crețoiu a, c, Laurentiu M. Popescu d, *
a Division of Cellular and Molecular Medicine, Department of Morphological Sciences,
Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
b Department of Ultrastructural Pathology, Victor Babeș National Institute of Pathology, Bucharest, Romania
c Molecular Medicine Department, Victor Babeș National Institute of Pathology, Bucharest, Romania
d Division of Advanced Studies, Victor Babeș National Institute of Pathology, Bucharest, Romania

Received: July 19, 2012; Accepted: September 22, 2012

Abstract

Telocytes (TCs), a novel type of interstitial cells, were recently described in the interstitial space of tissues (www.telocytes.com). Telocytes TCs have several very long, moniliform extensions, namely telopodes (Tps). However, the functional role(s) of TCs is not yet understood. Successive photomicrographs of ultrathin sections were concatenated to capture the entire length of Tps which usually measure tens to hundreds of micrometres. Besides the podoms (dilations) and podomers (thin segments), ultrastructural features of Tps include the dichotomous branching and establishing homo- and heterocellular contacts. Telopodes make a labyrinthine system by 3D convolution and overlapping, their number being roughly estimated at approximately 20 per 1000 μm2. Moreover, the presence of extracellular vesicles (shedding vesicles/exosomes) along the Tps suggests an active intercellular signalling (micro- and macromolecules), with possible significance in regulating uterine contractility.

Keywords: telocytes • telopodes • podoms • podomers • human uterus • extracellular vesicles

Introduction

Telocytes, were recently described as interstitial cells with specific cellular extensions called telopodes [1–3]. A telopode consists of a succession of thin segments called podomers and dilated regions named podoms. Usually podoms accommodate mitochondria, endoplasmic reticulum, and caveolae assembled as ‘Ca$^{2+}$’uptake/release units’. Telocytes were reported initially to display electrical activity [4–7] and described in close vicinity to myocytes, nerve endings and blood capillaries. Telocytes presumably correspond to former ICLCs [8], but their roles are now considered to be different [9].

Telocytes were identified in human myometrium by transmission electron microscopy and immunohistochemistry [10]. Recently, TCs were described in the endometrial stroma of the stratum functionalis, underlying the shape of the adjacent epithelial architecture [11].

Telocytes are also present in a wide variety of organs in humans and mammals [12–20].

In this study, we report ultrastructural evidence of 3D network created by homocellular contacts of the TCs in the human uterus. Extracellular vesicles (shedding microvesicles/exosomes) are frequently found in the close proximity of telopodes, a topography suggestive of the possible involvement of the TCs in the process of intercellular signal transmission.

Materials and methods

Human myometrial tissue samples

Tissue samples from human non-pregnant and pregnant myometrium were obtained and processed for ultrastructural investigation as previously described [2, 4].

Five biopsies of human myometrium were obtained from different hysterectomy specimens (benign indications) of premenopausal women. Other five specimens were obtained from uteri of pregnant
Fig. 1. Representative ultrathin section of human non-pregnant myometrium. Two-dimensional sequenced concatenation from eight serial electron micrographs depicting the 3D network of telocytes. Oblique section through smooth myocytes (SMC) are bordered by numerous Tps (blue) interconnected by homocellular junctions (dotted circles) forming a 3D network. The inset illustrates the diagram of the interstitial network built-up by TCs and Tps with uneven calibres: podoms and podomers. Exosomes and shedding vesicles (arrowheads) are digitally coloured in purple. coll: collagen; m: mitochondria; mvb: multivesicular bodies; N: nucleus. Scale bar = 5 μm.

ª 2012 The Authors

Journal of Cellular and Molecular Medicine

ª 2012 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd

J. Cell. Mol. Med. Vol 16, No 11, 2012
Fig. 2 Representative ultrathin section of human pregnant myometrium. Two-dimensional sequenced concatenation from 11 serial electron micrographs depicting the 3D network of TCs (blue) interconnected by homocellular junctions (dotted circles). Smooth myocytes (SMC) are depicted in cross section digitally coloured in brown. In their vicinity, numerous Tps (blue) establish a network and release extracellular organelles (exosomes and shedding vesicles) (arrowheads) digitally coloured in purple. One mast cell (green) is in the vicinity of this network. Some vesicles are captured at the moment of being shed from Tps (marked with *). Cav: caveolae; coll: collagen; m: mitochondria; rER: rough endoplasmic reticulum; N: nucleus. Scale bar = 3 µm.
women (between 38 and 40 weeks of gestation), at the time of caesarean section. All patients received information about the study and signed an informed consent file. All experiments have been carried out in accordance with the EU guidelines and approved by the Bioethics Committee of ‘Carol Davila’ University of Medicine Bucharest.

Electron microscopy (TEM)

Tissue samples were immersed in 4% buffered glutaraldehyde during transportation from the hospital to the laboratory. Each biopsy was cut into 1 mm³ small fragments and fixed for 4 hrs in 4% glutaraldehyde in 0.1 M cacodylate buffer, pH 7.4 at 4°C. The fragments were post fixed for 1 hr in buffered 1% OsO₄, dehydrated in an ethanol series and then processed for Epon 812 embedding. One-micrometre-thick sections stained with 1% toluidine blue were examined for a precise orientation of the subsequent thin sections. The ultrathin sections were cut using a MT-7000 ultramicrotome (Research Manufacturing Company Inc., Tucson, AZ, USA), mounted on 50-mesh grids, and double stained with uranyl acetate and lead citrate. The grids were examined on a CM 12 Philips electron microscope (Eindhoven, The Netherlands), at an acceleration voltage of 60 kV. Digital electron photomicrographs (negatives) were taken with Olympus Morada CCD camera (16 bit, 11 Mpx) (Olympus Soft Imaging Solutions, Münster, Germany) on the electron microscope. Images were processed using Adobe Photoshop© (Adobe Systems, San Jose, CA, USA) to outline cell contours.

Two-dimensional reconstructions

Successive images of microscopic fields were captured at high magnification, then aligned with each other and merged to form a collage. Alignment and merging were performed using Adobe Photoshop software (Adobe Systems).

Digital colouring of electron micrographs

Transmission electron microscopy images were digitally coloured to increase the visual contrast between several structures: TCs, telopodes and microvesicles. The purpose of such a technique is to make them more visible for the untrained eye. Contours of all structures have been manually traced in Adobe Photoshop software (Adobe Systems) using a Wacom digital tablet (Wacom Europe GmbH, Krefeld, Germany).

Results

Telocytes were revealed in non-pregnant and pregnant myometrium by TEM as interstitial cells with long processes (Figs 1 and 2). These cells fulfill ultrastructural criteria for TCs: have long (up to 74 µm) and thin (50–200 nm) cellular processes called telopodes (Tps). Telopodes are branching in a dichotomous pattern having a moniliform appearance because of uneven width: podomers (thin segments) alternating with podoms (dilated segments). The entire length of a Tp cannot be surprised in the same section plane because of its tortuous trajectory. Table 1 illustrates the lengths values of the Tps visible in Figs 1 and 2. Telopode number was estimated to be approximately 20 per 1000 µm² of interstitial space. In non-pregnant myometrium Tps were thinner and longer compared to those in pregnant myometrium. Telopodes are connected to each other by homocellular junctions and appear to form a 3D network in the interstitial space at the border of smooth muscle cell bundles. The very high resolution of the images was obtained after the concatenation of eight (Fig. 1) and 11 (Fig. 2) successive photomicrographs (1 µm equals 1.1 cm for Fig. 1 and 1.8 cm for Fig. 2 respectively) of ultrathin sections. The wide fields (115 µm for Fig. 1 and 70 µm for Fig. 2) allowed us to observe ultrastructural details such as the presence of calcium uptake/release units (caveolae, mitochondria and endoplasmic reticulum) in the podoms. Along Tps and sometimes emerging from it, we can observe numerous exosomes (60–100 nm vesicles) and shedding vesicles (diameters: 250–350 nm up to 1 µm). We can even describe Tps terminal endings structures, which we believe to be multivesicular bodies responsible for exosomes release (Fig. 1).

Discussion

In both physiological states (non-pregnant or pregnant), human uterus is known to develop myogenic contractions [21]. However, numerous attempts to evidence myometrial pacemaker cells [22] similar to those in the gut [23] failed. Instead, we observed a new interstitial cell type – the TCs, a heterogeneous population of cells found in many organs in mammals. Uterine TCs can be investigated and identified using TEM, a reliable diagnostic tool, because usually podomers are below the resolving power of light microscope [1].

Table 1 Telopodes lengths in non-pregnant and pregnant myometrium

Telopode length (µm)	Non-pregnant myometrium	Pregnant myometrium
9.3	4.4	
9.3	7.1	
10.8	8.4	
11.9	12.1	
12.7	12.5	
13.8	15.7	
17.0	19.1	
30.2	22.9	
39.9	25.0	
73.2	42.5	

© 2012 The Authors
Journal of Cellular and Molecular Medicine © 2012 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd
uterine interstitial cells that were observed in this study fulfilled all the necessary criteria for TCs: very long telopodes with alternating regions of podoms and podomers, which form a 3D network, by homocellular contacts, at the border of smooth muscle fascicles. In the close proximity of telopodes and/or even emerging from them, numerous extracellular organelles (exosomes and shedding vesicles) were observed and these are in correlation with similar aspects found in heart [24], lungs [25], mammary gland [10], pancreas [20] and parotid gland [14]. It is well known that cells use microvesicles released in the extracellular space as mediators of cell-to-cell communication, guaranteeing short- and long-range exchange of information [26–29]. The release of exosomes and clusters of shedding microvesicles suggested that uterine TCs are equipped to communicate via their Tps and could be involved in intercellular signalling and regulation, facilitating cell-to-cell contact over long distances. TCs may also contribute to a wide variety of (for the moment, only supposed) functions (for details, see [10, 30]).

To conclude, TCs are a rather unique cell type of the interstitial space of human myometrium. Our future advances in their study will have to establish whether: (i) TCs are involved in endometrial or myometrial renewal because fundamental studies witness the presence of such stromal stem/progenitor cells [31–33]; (ii) TCs may become a promising target for therapeutic (non) hormonal interventions as we have proved the existence of shedding microvesicles/exosomes.

Acknowledgements

This work was supported (for SMC) by the Sectorial Operational Programme Human Resources Development (SOP HRD), financed from the European Social Fund and by the Romanian Government under the contract number POSDRU/89.1/S/56109. This project was partially conducted through the Partnerships in priority areas-PN II, developed with the support of ANCS, CNDI-UEFISCDI, project no. 82/2012.

Conflict of interest

The authors confirm that there are no conflicts of interest.

References

1. Popescu LM, Faussone-Pellegrini MS. Telocytes, a case of serendipity: the winding road from interstitial cells of Cajal (ICC), via interstitial Cajal-like cells (ICLC) to TECytes. J Cell Mol Med. 2010; 14: 729–40.
2. Suciu L, Popescu LM, Gherghiceanu M, et al. Telocytes in human term placenta: morphology and phenotype. Cells Tissues Organs. 2010; 192: 325–39.
3. Gherghiceanu M, Popescu LM. Cardiac telocytes – their functions and functional implications. Cell Tissue Res. 2012; 348: 265–79.
4. Clonteas SM, Radu E, Regalia T, et al. C-kit immunopositive interstitial cells (Cajal type) in human myometrium. J Cell Mol Med. 2005; 9: 407–20.
5. Popescu LM, Vidulescu C, Curici A, et al. Imatinib inhibits spontaneous rhythmic contractions of human uterus and intestine. Eur J Pharmacol. 2006; 546: 177–81.
6. Allix S, Reyes-Gomez E, Aubin-Houzein G, et al. Uterine contractions depend on KIT positive interstitial cells in the mouse: genetic and pharmacological evidence. Biol Reprod. 2008; 79: 510–7.
7. Cretoiu SM, Simionescu AA, Caravia L, et al. Complex effects of imatinib on spontaneous and oxytocin-induced contractions in non-pregnant myometrium. Acta Physiol Hung. 2011; 98: 329–38.
8. Hutchings G, Williams O, Cretoiu D, Clonteas SM. Myometrial interstitial cells and the coordination of myometrial contractility. J Cell Mol Med. 2009; 13: 4268–82.
9. Cretoiu D, Cretoiu SM, Simionescu AA, Popescu LM. Telocytes, a distinct type of cell among the stromal cells present in the lamina propria of jejunum. Histol Histopathol. 2012; 27: 1067–78.
10. Cretoiu SM, Cretoiu D, Simionescu AA, Popescu LM. Telocytes in human fallopian tube and uterus express estrogen and progesterone receptors. In: Kahn SM, editor. Sex steroids. Intech, Rijeka: Croatia; 2012: pp. 91–114, ISBN 978-953-307-857-1.
11. Hatta K, Huang ML, Weissl RD, Li RK. Culture of rat endometrial telocytes. J Cell Mol Med. 2012; 16: 1392–6.
12. Cantarero I, Luesma MJ, Junquera C. The primary cilium of telocytes in the vasculature: electron microscope imaging. J Cell Mol Med. 2011; 15: 2594–600.
13. Gevaert T, De Vos R, Van Der Aa F, et al. Identification of telocytes in the upper lamina propria of the human urinary tract. J Cell Mol Med. 2012; 16: 2085–93.
14. Nicolescu MI, Bucur A, Dinca O, et al. Telocytes in parotid glands. Anat Rec (Hoboken). 2012; 295: 378–85.
15. Zheng Y, Bai C, Wang X. Potential significance of telocytes in the pathogenesis of lung diseases. Expert Rev Respir Med. 2012; 6: 45–9.
16. Suciu LC, Popescu BO, Kostin S, Popescu LM. Platelet-derived growth factor receptor-β-positive telocytes in skeletal muscle interstitium. J Cell Mol Med. 2012; 16: 701–7.
17. Popescu BO, Gherghiceanu M, Kostin S, et al. Telocytes in meninges and choroid plexus. Neurosci Lett. 2012; 516: 265–9.
18. Rusu MC, Pop F, Hostilcu S, et al. Telocytes form networks in normal cardiac tissues. Histol Histopathol. 2012; 27: 807–16.
19. Ceafalan L, Gherghiceanu M, Popescu LM, Simionescu O. Telocytes in human skin – are they involved in skin regeneration? J Cell Mol Med. 2012; 16: 1405–20.
20. Nicolescu MI, Popescu LM. Telocytes in the interstitium of human exocrine pancreas: ultrastructural evidence. Pancreas. 2012; 41: 949–56.
21. Taggart MJ, Arthur P, Zielnik B, Mitchell BF. Molecular pathways regulating contractility in rat uterus through late gestation and parturition. Am J Obstet Gynecol. 2012; 207: 76.e15–24.
22. Duquette RA, Shmygol A, Vaillant C, et al. Vimentin-positive, c-kit-negative interstitial cells in human and rat uterus: a role in pacemaking? Biol Reprod. 2005; 72: 276–83.
23. Faussone-Pellegrini MS. Interplay among enteric neurons, interstitial cells of Cajal, resident and not resident connective tissue cells. J Cell Mol Med. 2009; 13: 1191–2.
24. Mandache E, Popescu LM, Gherghiceanu M. Myocardial interstitial Cajal-like cells (ICLC) and their nanostructural relationships with...
intercalated discs: shed vesicles as intermediates. J Cell Mol Med. 2007; 11: 1175–84.

25. Popescu LM, Gherghiceanu M, Suciu LC, et al. Telocytes and putative stem cells in the lungs: electron microscopy, electron tomography and laser scanning microscopy. Cell Tissue Res. 2011; 345: 391–403.

26. Waldenström A, Gennebäck N, Hellman U, et al. Cardiomyocyte microvesicles contain DNA/RNA and convey biological messages to target cells. PLoS ONE. 2012; 7: e34653.

27. Ludwig AK, Giebel B. Exosomes: small vesicles participating in intercellular communication. Int J Biochem Cell Biol. 2012; 44: 11–5.

28. Gilabert-Estelles J, Braza-Boils A, Ramon LA, et al. Role of microRNAs in gynecological pathology. Curr Med Chem. 2012; 19: 2406–13.

29. Holder BS, Tower CL, Jones CJ, et al. Heightened pro-inflammatory effect of pre-eclamptic placental microvesicles on peripheral blood immune cells in humans. Biol Reprod. 2012; 86: 103.

30. Popescu LM. Telocytes – a novel type of interstitial cells. In: Braisant O, Wakamatsu H, Kang I, Allegaert K, Lenbury Y, Wacholtz A, editors. Recent researches in modern medicine – HISTRM’11. Cambridge: WSEAS Press; 2011. pp. 424–32.

31. Gargett CE, Chan RW, Schwab KE. Hormone and growth factor signaling in endometrial renewal: role of stem/progenitor cells. Mol Cell Endocrinol. 2008; 288: 22–9.

32. Gálvez BG, Martín NS, Salama-Cohen P, et al. An adult myometrial pluripotential precursor that promotes healing of damaged muscular tissues. In Vivo. 2010; 24: 431–41.

33. Spitzer TL, Rojas A, Zelenko Z, et al. Perivascular human endometrial mesenchymal stem cells express pathways relevant to self-renewal, lineage specification, and functional phenotype. Biol Reprod. 2012; 86: 58.