A Brief Retrospection on Hungarian School Atlases

István Klinghammer and José Jesús Reyes Nuñez

Department of Cartography and Geoinformatics, Eötvös Loránd University, Budapest, Hungary
Email: jesusreyes@caesar.elte.hu

The first part of this article is dedicated to the history of Hungarian school atlases to 1914. The publication of atlases for schools is dated to 1800, when professor Ézsáiás Budai created his ‘New School Atlas for elementary pupils’. For almost 90 years the school atlases were mostly translations and adaptations of foreign (e.g. German) atlases. In 1890, a talented cartographer, Manó Kogutowicz founded the Hungarian Geographical Institute, which produced school atlases for the different types of schools in Hungary. The professional quality of these school atlases was recognized by prizes won in international exhibitions. Kogutowicz laid the foundations of the current Hungarian school cartography: three of his school atlases are presented in more detail in the second part of this article, to give examples of how the pupils were introduced to the basic cartographic concepts as well as how different innovative solutions were used on the maps.

Keywords: School cartography; school atlas; Manó Kogutowicz; Hungarian Geographical Institute

BRIEF HISTORY TO THE FIRST WORLD WAR

The beginnings of Hungarian school cartography can be dated to 1781, when the book entitled ‘Introductio in geographiam Hungariae antiqui et mediae aevi’ was published with twelve historical maps. Its author was a Lutheran pastor, János Tomka-Száský, who probably made the maps in Bratislava some years earlier, in 1751 (Figure 1). Another author of the same period was István Losonczi with his ‘Triple Mirror of Hungary’ that was a book on the history and geography of Hungary and Transylvania. The first edition of this work appeared in 1770 with two inset maps without any reference to their author; however, based on the similar characteristics of both maps, it can be supposed that they were made by the same person.

The first Hungarian school atlas was printed in Debrecen in 1800, a city placed in the East region of the country at a distance of about 200 kilometres from Budapest. Its author was Professor Ézsáiás Budai, who counted with the collaboration of some of his turgatus students to make the maps from 1797. The title of the atlas was ‘New School Atlas for elementary pupils’ and only had twelve pages with the following maps: Earth globe, Europe, Asia, Africa, North America, South America, Spain, France, Italy, Germany, Poland and Hungary. A curious detail is that Hungary was not represented as a country map, but on a regional map. The country was placed to the top left corner of the page, because the map also contained the city of Kiev, Crimea Peninsula on the East as well as the city of Thessaloniki on the South.

In the immediate years after this work, only a small, ten-page school atlas was published in Hungary in 1817. From today’s perspective, its title sounds interesting: ‘Hungarian National Atlas’. Its author was a foreign-born soldier, Eduárd Greipel.

Only almost 30 years later, in 1845 a new school atlas was made by a talented Hungarian astronomer (Antal Vállas), which was printed in Vienna with the title ‘New hand- and school atlas with geographical and statistical notes. For newspapers readers and pupils’. It contained 18 pages, representing the Earth divided into two hemispheres, the continents, the European countries and Hungary with two inset maps of Pest-Buda and Fiume (currently Rijeka in Croatia). Vállas was the first to use a Hungarian nomenclature on the maps; he also added statistical data to enrich and diversify the content. Perhaps he worked with French sources to draw his maps, because Paris is the prime meridian on them.

During the period between 1845 and 1890, foreign school atlases were adapted and translated for use in Hungarian schools. The majority of them were from German-speaking countries. This situation began to change in 1891, when a School Atlas Commission was set up within the Hungarian Geographical Society. In their meeting in May of the same year, the commission addressed a document for the Ministry of Education describing the actual situation of school cartography in the country and emphasizing the erroneous and obsolete wall maps used in the Hungarian schools, but without mentioning the lack of Hungarian school atlases.
In 1887, an experienced Hungarian cartographer, Manó Kogutowicz (Figure 2) published a small school atlas (‘Small Atlas with a county map for 3rd grade pupils of Elementary Schools’). It had only five pages containing maps of Budapest, surrounds of Budapest, Pest County and an administrative map of Hungary. This was completed with new maps in the following editions and the number of pages grew to 13 in a period of ten years.

In 1890, Manó Kogutowicz convinced the Ministry of Education of the pressing national need of a Hungarian cartographic institution. Kogutowicz established the Hungarian Geographical Institute in the same year with the personal support of the minister, Albin Csáky. During the first two years, the institute was a subsidiary of the Hölzel Company (based in Vienna). It became an independent firm under the name Kogutowicz & Co. in 1892; however, Kogutowicz continued the collaboration with Hölzel. One of the results of this partnership was a Hungarian atlas using some maps of the school atlases published by Hölzel in Vienna. This atlas was entitled ‘Atlas for lower and upper classes of Elementary Schools’, which contained 16 pages and was published in 1896. A new and original map was also included, which was planned and drawn by Kogutowicz: the two-page physical map of Hungary. According to Klinghammer (2002), it was the first physical map of the country totally.
made by a Hungarian cartographer after the era of Absolutism in Hungary (1849–1867).

In the meantime, in the city of Debrecen, a book publisher, Gyula Kozma made the Hungarian versions of the contemporary Diercke Atlases from Germany. The first one was the ‘General Geographical Atlas’ in 1889, which was followed by the ‘School Atlas’ and the ‘Systematic Geographical Atlas’, both published in 1890 (Figure 3).

During these years, Kogutowicz also made maps of continents as well as county and country maps of Hungary. He used these maps in school atlases published for different types of schools in the Hungarian Educational System, e.g. the series entitled ‘Small Atlas with a county map’ for the Elementary Schools and the ‘Geographical School Atlas’ for Higher Elementary Schools.

Years earlier, Kogutowicz recognized the importance of the participation of scientists during the selection and edition of the content to be represented on a map. Following his conviction, he consolidated his company with the addition of specialists, including the most renowned Hungarian geographer in this period, Jenő Cholnoky. The first result of this collaboration was the ‘Geographical Atlas for Secondary Schools […] with the collaboration of Jenő Cholnoky […] planned and drawn by Manó Kogutowicz’, which was published in 1900. The atlas included 36 maps and four inset maps. The majority of these maps were made especially for this atlas and only some of them were adapted from foreign school maps. An innovative characteristic of this atlas was that it surpassed the traditional brief presentation of basic map concepts of former atlases by including astronomical and mathematical concepts for the first time in Hungary. It was also the first work that represented some statistical data on maritime traffic on a world map. Another acknowledged Hungarian geographer, Lajos Lóczy wrote about this atlas: This is the first, totally original school atlas made in our homeland.

The content and printing quality of this atlas competed with the level of its German equivalents (the Kozenn, Diercke, Gaebler and Wettstein school atlases). It had numerous editions up to the 1910s, reaching to include 48 main maps and many inset maps.

Two maps should be highlighted due to their significance: the ‘Geological Map of Hungary’ and the ‘Physical Map of Hungary’, both of them at the scale of 1: 2.4 million. The thematic content of the geological map was compiled by Cholnoky. The landforms in the ‘Physical Map of Hungary’ were represented using hachures in the first edition of the atlas. Later the map was changed and it became the first physical map in a Hungarian school atlas on which the relief was drawn using contour lines. Kogutowicz’s son, Károly also worked on the later editions of this map (Figure 4).

![Figure 3. World map from the ‘Systematic Geographical Atlas’ of Gyula Kozma (1890)](image-url)
The Hungarian geographical nomenclature used before this atlas was characterized by a total confusion provoked by arbitrary decisions taken to name the landforms. Jenő Cholnoky made a meritorious work to systematize and methodize the writing of geographic names of the Carpathian Basin, which became definitive on the ‘Physical Map of Hungary’.

In short, the publication of this atlas has been considered a milestone in the history of the Hungarian school cartography. After the extraordinary success of this atlas, Kogutowicz’s company was contracted by the Ministry of Defence in 1900 to supply the military schools with atlases; this task was accomplished in the same year. In 1901, the company was reorganized as the Hungarian Geographical Institute Co. The maps used in the school atlas also were the sources for the publication of the first Hungarian atlas, ‘Complete Atlas’, specifically designed for the general public. The first edition was published in 1902 and had 68 main maps. It included new topics such as vegetation and industrial production; Cholnoky collaborated in themes such as population and climatology (Márton, 2002), while Károly Kogutowicz also collaborated as a young cartographer making maps for this atlas.

In 1906, Gyula Kozma in cooperation with other publisher, Lajos Toldi, printed a new school atlas under the title ‘Illustrated Geographical Atlas for the Elementary Schools’. This work was also a Hungarian product, without any map adapted from foreign atlases, but citing Klinghammer (2002): it was made with more good will than knowledge. Jenő Cholnoky expressed his opinion in the Bulletin edited by the Hungarian Geographical Society: Its maps are inaccurate, erroneous and wrong, the pictures are tasteless and artless, they do not match the cartographic representation. The reason of this professional fiasco is that Kozma was neither a cartographer nor a geographer. He had no enough professional formation (nor collaborators with enough cartographic or geographic knowledge) to create a totally new atlas.

This regrettable incident re-affirmed the leading role played by Kogutowicz and his institute in the publication of cartographic materials for schools. In 1906, Kogutowicz made the ‘Map booklet for the 3rd grade of Elementary Schools in Budapest’ (Figure 5) in collaboration with Béla Ágotai (school principal), which was followed by another similar workbook for 4th, 5th and 6th grades (Rúzsa, 2008).

Manó Kogutowicz deceased in 1908 and his son, Károly inherited the direction of the company. Manó Kogutowicz has been remembered as the most significant figure of the Hungarian Cartography in the final years of the nineteenth and at the beginning of the twentieth century. He was awarded the Great Medal of the Millennia by the Hungarian Government in 1896. In 1900, in the World Exhibition of Paris, his products received the Golden Medal, which brought him international recognition; he was also awarded a prize.
The number of publications grew to 160 by 1912. The school atlases produced by Kogutowicz were used during the First World War too. After the end of the war and the signing of the Treaty of Trianon, Hungary lost 72% of its territory and its frontiers changed considerably. The maps of Hungary in the school atlases needed to be re-worked (updated), but this is another chapter of the more recent history of Hungarian school cartography.

SOME EXAMPLES OF SOLUTIONS USED IN OLD HUNGARIAN SCHOOL ATLASES

Manó Kogutowicz laid the foundations of the Hungarian school cartographic traditions. His institute periodically re-edited their school atlases, even enriching its content with new maps, following the practice of those countries (like Germany or the United States) that counted with a longer tradition in this relatively young area of cartography. In the period between 1890 and 1918, he created atlases with appropriate content for the different grades and the different types of schools as well as for the different regions within the country. The content of three of his atlases are detailed below:

- ‘Geographical School Atlas’ (1896): Basic map and astronomical concepts; Budapest; Budapest and surroundings; Hungary (physical map, two pages); Hungary (political map, two pages); Austro-Hungarian Empire (physical map); Austro-Hungarian Empire (political map); Europe (physical map); Europe (political map); Central Europe (Germany/physical map); Central Europe (Germany/political map); Balkans; Apennine Peninsula; France; Iberian Peninsula; Switzerland, Belgium, Netherlands, Luxembourg and Denmark; Great Britain and Ireland; Scandinavia; Russia; Asia; Near East; South and South East Asia; Palestine; Africa; America; United States, Central America and West Indies; Australia and Polynesia; The hemispheres; World map. (This list of maps comes from the 2nd revised and extended edition of the atlas published in 1900).

- ‘Map booklet for the 3rd grade of Elementary Schools in Budapest’ (extract): Illustrations (pages 1 to 6); Budapest and surroundings (Visegrád); Basic map concepts (2 pages); Typical landscapes of Hungary (2 pages); Hungary (physical map); Hungary (political map); Fiume (current Rijeka, Croatia); Hungary and Austria (political map); Europe (physical map); Europe

- ‘Map booklet for the 4th, 5th and 6th grades of Elementary Schools in Budapest’ (1906): Illustrations (pages 1 to 6); Budapest and surroundings (Visegrád); Basic map concepts (2 pages); Typical landscapes of Hungary (2 pages); Hungary (physical map); Hungary (political map); Fiume (current Rijeka, Croatia); Hungary and Austria (political map); Europe (physical map); Europe
Many of the school atlases produced in German-speaking countries during the nineteenth century has been recognized by later specialists as scientifically very good quality products of this branch of cartography. Fortunately, by historical, political and societal reasons, the German influence was also felt in the new-born Hungarian school cartography. This influence can be divided into three cycles:

- First cycle: the positive impact was noticeable in the translation and adaptation of these products to the Hungarian language, as mentioned in the first part of this article.
- Second cycle: Hungarian cartographers adapted some maps of the atlases made in German-speaking countries to include them in their own school atlases.
- Third cycle: Hungarian cartographers began to use the solutions developed by German-speaking cartographers in the maps fully made by themselves for Hungarian school atlases.

It can be affirmed that in general that extension and appearance of the school atlases printed in Hungary were much more modest than their counterparts in Germany.

Figure 6. Extract of the physical map of America with hydrography in black from the ‘Map booklet for the 4th, 5th and 6th grades of Elementary Schools in Budapest’

| Table 1. Basic cartographical (normal font) and astronomical (italic font) concepts in three school atlases |
|---|---|---|
| Geographical School Atlas (1896, 2nd edition) | Map booklet for the 4th, 5th and 6th grades of Elementary Schools in Budapest (1906) | Geographical Atlas with a county map for Elementary Schools (1909) |
| Horizon, Sun's culmination and cardinal points | The shape of the Earth | The classroom and its top-plan view |
| Curvature of the Earth, parallels and meridians | Latitude and longitude, graticule of Earth | The reduction of size |
| Compass Rose | Geographical location | Compass Rose |
| Latitude and longitude | Climatic zones | Curve of the Earth |
| Geographical location, map and graticule, cardinal points on the map | Cross-section of the land surface (sea level, absolute and relative depth and height, lowland, highland, plan, hills, mountain) | Orientation with the Big Dipper and the North Star |
| Bird's-eye view of a house, top-plan view, scale reduction | Most characteristic forms of the Earth's surface | Bird's-eye view of a house, top-plan view, scale reduction |
| Bird's-eye view of a group of houses, top-plan view, scale reduction | Comparison of two Alps maps (1: 2 500 000 and 1: 5 000 000, hachure maps) | Bird's-eye view of a building, top-plan view, scale reduction |
| Map scale reduction (from a bird's-eye view and 1: 4 000 000) | North America (1: 55 000 000, contour line map) | Image and top-plan view of a district in Budapest |
| Small county map and its legend | The apparent motion of the sky around the Earth and the apparent motion of the Sun around the Earth | |
| Cross-section of the land surface (sea level, absolute and relative depth and height, lowland, highland, plan, hills, mountain) | Constellations | |
| The Solar System and the size of the eight planets compared with the Sun | Illumination of the Earth on June 21 | |
| Orbit of the Moon in a year and monthly orbit of the Moon | Earth's translation movement | |
| Earth's translation movement | Monthly orbit of the Moon | |
| Solar and lunar eclipses | The Earth and the Moon | |
| Lunar landscapes with craters | The classroom and its top-plan view | |
| Compass Rose | The reduction of size | |
| Curvature of the Earth | Compass Rose | |
| Orientation with the Big Dipper and the North Star | Bird's-eye view of a house, top-plan view, scale reduction | |
| Bird's-eye view of a building, top-plan view, scale reduction | Image and top-plan view of a district in Budapest | |
| Map scale reduction | North America (1: 55 000 000, contour line map) | |
| Small county map and its legend | The apparent motion of the sky around the Earth | |
| Cross-section of the land surface (sea level, absolute and relative depth and height, lowland, highland, plan, hills, mountain) | Constellations | |
| The Solar System and the size of the eight planets compared with the Sun | Illumination of the Earth on June 21 | |
| Orbit of the Moon in a year and monthly orbit of the Moon | Earth's translation movement | |
| Earth's translation movement | Monthly orbit of the Moon | |
| Solar and lunar eclipses | The Earth and the Moon | |
| Lunar landscapes with craters | The classroom and its top-plan view | |
| Compass Rose | The reduction of size | |
| Curvature of the Earth | Compass Rose | |
| Orientation with the Big Dipper and the North Star | Bird's-eye view of a house, top-plan view, scale reduction | |
| Bird's-eye view of a building, top-plan view, scale reduction | Image and top-plan view of a district in Budapest | |
and Austria; by the end of the nineteenth century, however, their quality was similar to those works that inspired them.

The influence exerted by the German-speaking school cartography on Hungarian school atlases can be resumed in three specific areas:

- The presentation of basic map and astronomical concepts
- The use of thematic inset maps to expand and diversify the information represented on main maps.
- The use of inset maps of their own country or region to help the pupils to understand better the territorial differences with other faraway countries or regions.

The Hungarian school atlases produced from the middle of the nineteenth century included basic map concepts, and the atlases published by Kogutowicz’s institute were not exceptions. He considered it important to dedicate at least a page to this topic in his atlases. Some basic concepts were presented in almost all atlases made by him (e.g. the bird’s-eye and top-plan view of a house, the scale reduction). However, the more specific content and the number of pages for presenting the topic could be different according to the type of atlas and target school as shown in Table 1.

Other characteristic of his atlases was that in their consecutive editions the reader found innovative cartographic solutions. Kogutowicz did not avoid daring (and sometimes questionable) solutions like changing the colour for the representation of hydrographic elements from blue to black in the interest of more accurate printing (Figure 6). He did not merely adapt solutions from German-speaking cartographers, but consulted other internationally recognized sources too. One of the results of this openness to other cartographic schools was the adaptation of the hypsometric scale developed by the Bartholomew firm in those years for its use in the ‘Physical Map of Hungary’.

Kogutowicz also began to use consistently small inset maps on the corners of the main maps to represent additional themes as shown in Table 2. He included thematic maps as inset maps first in Hungary, representing topics such as ethnography, religions or precipitation (Figure 7). He was also the first cartographer to add a one-page thematic world map to his school atlases, which was included in the ‘Geographical School Atlas’ of 1896; this map combined the representation of colonies (differentiating them by colours) and the maritime traffic (duration of journey in days between continents).

Kogutowicz also took from German-speaking atlases a very easy and practical solution to point out the territorial differences between Hungary and countries or territories placed far away from Europe, as well as to highlight the distinctness caused by the scales of maps. A small inset map of Hungary was placed in a corner of the main map, using the same scale for both maps. In this way the pupils had an approximate idea of the real dimension of the territories represented on the main map in relation to the extension of their country at the same scale (Figure 8). This method was used very often in German-speaking school cartography, but was not widespread in other European countries and continents. This statement was confirmed after the study of the school atlases stored on the web-based David Rumsey Collection (Cartographic Associates, 2000–2016). Altogether 1648 images were found after a search with the ‘school’ keyword in this period and 2033 images after looking for ‘school atlas’. Only three European atlases (two German and one Swiss) were found, which used this solution. A similar search was also developed in the Library of the Department of Cartography and Geoinformatics at Eötvös Loránd University and only one school atlas was found: the Atlas de Géographie Physique, Politique et Historique published in Belgium in 1908, as seen in Figure 8.

In his atlases the presentation of basic concepts is mainly based on illustrations, and he also used illustrations, photos, images, etc. on some interior pages of an atlas. He never used them within the maps, and the number of pages

| Table 2. Thematic inset maps used in three atlases made by Manó Kogutowicz |

Geographical School Atlas (1896, 2nd edition)	Map booklet for the 4th, 5th and 6th grades of Elementary Schools in Budapest (1906)	Geographical Atlas with a county map for Elementary Schools (1909)
Hungary (political, 1:2 400 000) – railway stations of Budapest (1:300 000)	Hungary (political, 1:2 400 000) – railway stations of Budapest (1:300 000)	Europe (physical, 1:25 000 000) – ethnographic and religion inset maps
Austro-Hungarian Empire (physical, 1:5 000 000) – Salzkammergut (1:1 000 000) and Bocche di Cattaro (1:1 000 000)	Europe (physical, 1:25 000 000) – large structures, precipitation and drainage inset maps	Hungary (political, 1:2 400 000) – railway stations of Budapest (1:300 000)
Europe (political, 1:25 000 000) – precipitation and drainage inset maps	Europe (political, 1:25 000 000) – ethnographic and religion inset maps	Asia (physical, 1:50 000 000) – religion inset maps
Europe (political, 1:25 000 000) – ethnographic and religion inset maps	Asia (physical, 1:50 000 000) – precipitation and riverine inset maps	Africa (physical, 1:50 000 000) – large structures inset map
Asia (physical, 1:50 000 000) – riverside and political inset maps	Africa (physical, 1:50 000 000) – large structures inset map	America (physical, 1:55 000 000) – large structures inset map (1:120 000 000)
Near East (physical, 1:25 000 000) – density of population in Asia (1:120 000 000) inset map	Colonies and maritime traffic world map (1:150 000 000) – rail and cable network, isochronous map of the Earth	Colonies and maritime traffic world map (1:120 000 000) – large structures inset map
Palestine – ‘The twelve tribes of Israel’ (1:4 425 000) inset map		
Africa (physical, 1:50 000 000) – political (1:90 000 000) inset map		
United States, Central America and Western Indies (physical, 1:25 000 000) – density of population		
Colonies and maritime traffic world map (1:150 000 000) – Major railways in Europe inset map		
including illustrations was always much smaller than the number of pages with maps. At most, he placed images beside a specific map on the same page, which can be observed on the two pages occupied by the political map of Hungary (Figure 9) in his ‘Geographical School Atlas’ of 1896.

CONCLUSIONS

The authors had to limit this paper only to a brief background to the publication of geographical school atlases by the Hungarian Geographical Institute led by Manó Kogutowicz and his son, Károly. Their cartographic production was much wider, covering virtually the entire spectrum of materials for the supporting of teaching activities. Before he founded his institute, Manó Kogutowicz worked on a series of county wall maps of Hungary and completed a total of 35 by 1890. The Hungarian Geographical Institute also produced numerous wall maps for schools. The institute also supplied the Hungarian educational institutions with Earth globes. Márton (2008) specified that the diameter of the globes was 25.5 or 51 cm and some of them counted with some special details, as a small compass built into the footpad of a 25.5 cm globe made in 1910. His first known globe is dated to 1896, which had several editions (1897, 1901, 1905, 1908 and 1910). Finally, we cannot forget that Kogutowicz also published historical atlases for the schools: one of the more popular ones was the ‘Historical Atlas for Secondary Schools’ published in 1898.

Resuming, Kogutowicz Manó and his institute produced 37 physical wall maps (and about 24 wall maps of counties), 13 historical world maps and ten Hungarian historical wall maps, seven physical and three historical school atlases (with numerous editions), as well as a series of outline maps and globes for schools (Klinghammer, 2001). The Hungarian Geographical Institute remained in the history of the Hungarian school cartography as a pioneer leading
Figure 8. Examples from Kogutowicz's atlases and foreign atlases. From top left: Australia (Kogutowicz's 'Geographical Atlas with a county map for Elementary Schools', 1909); United States, Central America and West Indies (Kogutowicz's 'Geographical School Atlas', 2nd edition); United States, Mexico, Central America and West Indies (Debes' 'School Atlas', Germany, 1912) and Physical Africa (Alexis's 'Atlas of Physical, Political and Historical Geography', Belgium, 1908)

Figure 9. Images with the political map of Hungary from the 'Geographical School Atlas' (extract)
institutions, which marked the guidelines for those cartographers who follow or in the future will follow the educative activity developed by Kogutowicz and his colleagues.

BIOGRAPHICAL NOTES

José Jesús Reyes Nunez is Associate Professor at Eötvös Loránd University in Budapest, Hungary. His research interests lie in cartography for children (teaching of cartographic concepts and map use in Elementary and Secondary Schools), digital and GIS cartography, Web cartography and geovisualization. Author of more than 20 articles in scientific publications and more than 50 papers in different events, he has collaborated as cartographer in more than 40 textbooks and atlases. He is responsible for the organization of the Barbara Petchenik Map Competition in Hungary from 1999, being President of the International Jury in 2005 and 2007. He was Chair of the ICA (International Cartographic Association) Commission on Cartography and Children from 2007 to 2015 and is currently Vice-Chair of the same Commission. The ICA awarded him with the Diploma for Outstanding Services to the ICA in 2015.

REFERENCES

Cartography Associates. (2000–2016). David Rumsey collection. [online]. Accessed 2 October 2016, http://www.davidrumsey.com/Klinghammer, I. (2001). A magyar térképszet a kezdetektől napjainkig. [pdf]. Accessed 27 September 2016, http://lazarus.elte.hu/hun/tanterv/ct57/cikk1.pdf
Klinghammer, I. (2002). A földrész szemléltetés korai története - Iskolai térképek, atlaszok, föld- és éggömbök az egykori magyar iskolákban', Geodézia és Kartográfia, 54(12), pp. 1–13.
Márton, M. (2002). Atlaszkartográfia. [online]. Accessed 27 September 2016, http://lazarus.elte.hu/hun/dolgozo/marton/atlasz/04b.htm
Márton, M. (2008). Kogutowicz Manó glóbussai: Glóbusztérképek és állványra szerelt gömbök különböző gyűjteményekben. [online]. Accessed 28 September 2016, http://slideplayer.hu/slide/2229480/
Peragovics, F. (2013). Az első téri atlasz. [online]. Accessed 10 October 2016, http://pera-graner.blogspot.hu/2013/10/az-elso-tori-atlasz.html
Ruzsa, A. (2008). Magyar iskolai földrész atlaszok tematikus térképeinek vizsgálata, MSc thesis. [pdf]. Accessed 2 October 2016, http://lazarus.elte.hu/hun/digkonyv/szakdolg/ruzsar/ruzsapdf.pdf

ORCID

István Klinghammer @ http://orcid.org/0000-0002-7900-6530
José Jesús Reyes Nuñez © http://orcid.org/0000-0001-6080-8667