Average-Reward Learning and Planning with Options

Yi Wan†, Abhishek Naik†, Richard S. Sutton‡
{wan6,anaik1,rsutton}@ualberta.ca
†University of Alberta, Amii
Edmonton, Canada
‡DeepMind
Edmonton, Canada

Abstract
We extend the options framework for temporal abstraction in reinforcement learning from discounted Markov decision processes (MDPs) to average-reward MDPs. Our contributions include general convergent off-policy inter-option learning algorithms, intra-option algorithms for learning values and models, as well as sample-based planning variants of our learning algorithms. Our algorithms and convergence proofs extend those recently developed by Wan, Naik, and Sutton. We also extend the notion of option-interrupting behavior from the discounted to the average-reward formulation. We show the efficacy of the proposed algorithms with experiments on a continuing version of the Four-Room domain.

1 Introduction
Reinforcement learning (RL) is a formalism of trial-and-error learning in which an agent interacts with an environment to learn a behavioral strategy that maximizes a notion of reward. In many problems of interest, a learning agent may need to predict the consequences of its actions over multiple levels of temporal abstraction. The options framework provides a way for defining courses of actions over extended time scales, and for learning, planning, and representing knowledge with them (Sutton, Precup, & Singh 1999, Sutton & Barto 2018). The options framework was originally proposed within the discounted formulation of RL in which the agent tries to maximize the expected discounted return from each state. We extend the options framework to the average-reward formulation in which the goal is to find a policy that maximizes the rate of reward.

The average-reward formulation is of interest because, once genuine function approximation is introduced, there is no longer a well-defined discounted formulation of the continuing RL problem (see Sutton & Barto 2018, Section 10.4; Naik et al. 2019). If we want to take advantage of options in acting, learning, and planning in the continuing (non-episodic) RL setting, then we must extend options to the average-reward formulation.

Given a Markov decision process (MDP) and a fixed set of options, learning and planning algorithms can be divided into two classes. The first class consists of inter-option algorithms, which enable an agent to learn or plan with options instead of primitive actions. Given an option, the learning and planning updates for this option in these algorithms occur only after the option’s actual or simulated execution. Algorithms in this class are also called semi-MDP (SMDP) algorithms because given an MDP, the decision process that selects among a set of options, executing each to termination, is an SMDP (Sutton et al. 1999). The second class consists of algorithms in which learning or planning updates occur after each state-action transition within options’ execution — these are called intra-option algorithms. From a single state-action transition, these algorithms can learn or plan to improve the values or policies for all options that may generate that transition, and are therefore potentially more efficient than SMDP algorithms.

Several inter-option (SMDP) learning algorithms have been proposed for the average-reward formulation (see, e.g., Das et al. 1999, Gosavi 2004, Vien & Chung 2008). To the best of our knowledge,
We formalize an agent’s interaction with its environment by a finite Markov decision process (MDP). At an option termination, one way to govern an agent’s behavior is to choose a new option according to the option’s policy \(\pi(o) \) and its length by \(T_n \). Note that every option’s length is a random variable taking values among positive integers. The option’s transition probability is then defined as \(\hat{p}(s', r, l | s, o) \). Throughout the paper, we assume that the expected execution time of every option starting from any state is finite.

Additionally, the literature lacks intra-option learning and planning algorithms within the average-reward formulation. We fill this gap by proposing such algorithms in the average-reward formulation and provide their convergence results. These algorithms are stochastic approximation algorithms solving the average-reward intra-option value and model equations, which are also introduced in this paper for the first time.

Sutton et al. (1999) also introduced an algorithm to improve an agent’s behavior given estimated option values. Instead of letting an option execute to termination, this algorithm involves potentially interrupting an option’s execution to check if starting a new option might yield a better expected outcome. If so, then the currently-executing option is terminated, and the new option is executed. Our final contribution involves extending this notion of an interruption algorithm from the discounted to the average-reward formulation.

2 Problem Setting

We formalize an agent’s interaction with its environment by a finite Markov decision process (MDP) \(\mathcal{M} \) and a finite set of options \(\mathcal{O} \). The MDP is defined by the tuple \(\mathcal{M} = (\mathcal{S}, \mathcal{A}, \mathcal{R}, p) \), where \(\mathcal{S} \) is a set of states, \(\mathcal{A} \) is a set of actions, \(\mathcal{R} \) is a set of rewards, and \(p : \mathcal{S} \times \mathcal{R} \times \mathcal{S} \times \mathcal{A} \rightarrow [0, 1] \) is the dynamics of the environment. Each option \(o \) in \(\mathcal{O} \) has two components: the option’s policy \(\pi(o) : \mathcal{A} \times \mathcal{S} \rightarrow [0, 1] \), and a probability distribution of the option’s termination \(\beta(o) : \mathcal{S} \rightarrow [0, 1] \). For simplicity, for any \(s \in \mathcal{S}, o \in \mathcal{O} \), we use \(\pi(a | s, o) \) to denote \(\pi(o)(a, s) \) and \(\beta(s, o) \) to denote \(\beta(o)(s) \). Sutton et al.’s (1999) options additionally have an initiation set that consists of the states at which the option can be initiated. To simplify the presentation in this paper, we allow all options to be initiated in all states of the state space; the algorithms and theoretical results can easily be extended to incorporate initiation from specific states.

In the continuing (non-episodic) setting, the agent-environment interactions go on forever without any resets. If an option \(o \) is initiated at time \(t \) in state \(S_t \), then the action \(A_t \) is chosen according to the option’s policy \(\pi(o) | S_t, o \). The agent then observes the next state \(S_{t+1} \) and reward \(R_{t+1} \) according to \(p \). The option terminates at \(S_{t+1} \) with probability \(\beta(S_{t+1}, o) \) or continues with action \(A_{t+1} \) chosen according to \(\pi(o) | S_{t+1}, o \). It then possibly terminates in \(S_{t+2} \) according to \(\beta(S_{t+2}, o) \), and so on.

At an option termination, one way to govern an agent’s behavior is to choose a new option according to a hierarchical policy \(\mu_h : \mathcal{S} \times \mathcal{O} \rightarrow [0, 1] \). In this case, when an option terminates at time \(t \), the next option is selected stochastically according to \(\mu_h(o) | S_t \). The option initiates at \(S_t \) and terminates at \(S_{t+K} \), where \(K \) is a random variable denoting the number of time steps the option executed. At \(S_{t+K} \), a new option is again chosen according to \(\mu_h(o) | S_{t+K} \), and so on. We use the notation \(O_t \) to denote whatever option is being executed at time step \(t \). Note that \(O_t \) will remain the same for as many steps as the option executes. Also note that actions are a special case of options: every action \(a \) is an option \(o \) that terminates after exactly one step \((\beta(s, o) = 1, \forall s) \) and whose policy is to pick \(a \) in every state \((\pi(a | s, o) = 1, \forall s) \).

Let \(T_n \) denote the time step when the \(n - 1 \)th option terminates and the \(n \)th option is chosen. Denote the \(n \)th option by \(O_n = O_{T_n} \), its starting state by \(S_n = S_{T_n} \), the cumulative reward during its execution by \(R_n = \sum_{t=0}^{T_n} R_t \), the state it terminates in by \(\hat{S}_{n+1} = S_{T_n+1} \), and its length by \(L_n \). Note that every option’s length is a random variable taking values among positive integers. The option’s transition probability is then defined as \(\hat{p}(s', r, l | s, o) = \Pr(\hat{S}_{n+1} = s', \hat{R}_n = r, L_n = l | S_n = s, O_n = o) \). Throughout the paper, we assume that the expected execution time of every option starting from any state is finite.

Gosavi’s (2004) algorithm is the only proven-convergent off-policy inter-option learning algorithm. However, its convergence proof requires the underlying SMDP to have a special state that is recurrent under all stationary policies. Recently, Wan, Naik, and Sutton (2021) proposed Differential Q-learning, an off-policy control learning algorithm for average-reward MDPs that is proved to converge without requiring any special state. We extend this algorithm and its convergence proof from primitive actions to options and highlight some challenges we faced in developing inter-option Differential Q-learning. For planning, we propose inter-option Differential Q-planning, which is the first convergent incremental (sampled-based) planning algorithm. The existing proven-convergent inter-option planning algorithms (e.g., Schweitzer 1971, Puterman 1994, Li & Cao 2010) are not incremental because they perform a full sweep over states for each planning step.

Additionally, the literature lacks intra-option learning and planning algorithms within the average-reward formulation for both values and models.
An MDP \mathcal{M} and a set of options \mathcal{O} results in an SMDP $\hat{\mathcal{M}} = (\mathcal{S}, \mathcal{O}, \hat{\mathcal{L}}, \hat{\mathcal{R}}, \hat{p})$, where $\hat{\mathcal{L}}$ is the set of all possible lengths of options and $\hat{\mathcal{R}}$ is the set of all possible options’ cumulative rewards. For this SMDP, the reward rate of a policy μ given a starting state s and option o can be defined as $r_C(\mu)(s, o) \doteq \lim_{n \to \infty} \mathbb{E}_\mu[\sum_{t=0}^n R_t \mid S_0 = s, O_0 = o]/t$. Alternatively, at the level of option transitions, $r(\mu)(s, o) \doteq \lim_{n \to \infty} \mathbb{E}_\mu[\sum_{t=0}^n \hat{R}_t \mid S_0 = s, O_0 = o]/\mathbb{E}_\mu[\sum_{t=0}^n \hat{L}_t \mid S_0 = s, O_0 = o]$. Both the limits exist and are equivalent (Puterman’s (1994) propositions 11.4.1 and 11.4.7) under the following assumption:

Assumption 1. The Markov chain induced by any stationary policy in the MDP $(\mathcal{S}, \mathcal{O}, \hat{\mathcal{R}}, p')$ is unichain, where $p'(s', r \mid s, o) \doteq \sum_{s'} \hat{p}(s', r, l \mid s, o)$ for all $s' \neq s$. This implies that the MDP is unichain, where $p(\cdot)(s,o) \doteq \sum_{s'} \hat{p}(s', r, l \mid s, o)$ for all $s' \neq s$. In other words, these states are transient under all stationary policies. Thus, their values can not be correctly estimated by any learning algorithm. However, this inaccurate value estimation is not a problem because the decisions made in these transient states do not affect the reward rate. We refer to the non-transient states as recurrent states and denote their set by $\mathcal{S}' \subseteq \mathcal{S}$.

Under Assumption 1, the reward rate does not depend on the starting state-option pair and hence we can denote it by just $r(\mu)$. The optimal reward rate can then be defined as $r_* = \sup_{\mu \in \Pi} r(\mu)$, where Π denotes the set of all policies. The differential option-value function for a policy μ is defined for all $s \in \mathcal{S}, o \in \mathcal{O}$ as $q_\mu(s, o) \doteq \mathbb{E}_\mu[R_{t+1} - r(\mu) + R_{t+2} - r(\mu) + \cdots | S_t = s, O_t = o]$. The evaluation and optimality equations for SMDPs, as given by Puterman (1994), are:

$$q(s, o) = \sum_{s', r, l} \hat{p}(s', r, l \mid s, o)(r - \bar{r} \cdot l + \sum_{o'} \mu(o' \mid s') q(s', o')), \quad (1)$$

$$q(s, o) = \sum_{s', r, l} \hat{p}(s', r, l \mid s, o)(r - \bar{r} \cdot l + \max_{o'} q(s', o')), \quad (2)$$

where q and \bar{r} denote estimates of the option-value function and the reward rate respectively. If Assumption 1 holds, the SMDP Bellman equations have a unique solution for q_μ and r_μ for evaluation and r_* for control — and a unique solution for q only up to a constant (Schweitzer & Federgruen 1978). Given an MDP and a set of options, the goal of the prediction problem is, for a given policy μ, to find the reward rate $r(\mu)$ and the differential value function (possibly with some constant offset). The goal of the control problem is to find a policy that achieves the optimal reward rate r_*.

3 Inter-Option Learning and Planning Algorithms

In this section, we present our inter-option learning and planning, prediction and control algorithms, which extend Wan et al.’s (2021) differential learning and planning algorithms for average-reward MDPs from actions to options. We begin with the control learning algorithm and then move on to the prediction and planning algorithms.

Consider Wan et al.’s (2021) control learning algorithm:

$$Q_{t+1}(S_t, A_t) \doteq Q_t(S_t, A_t) + \alpha_t \delta_t, \quad \bar{R}_{t+1} \doteq \bar{R}_t + \eta \alpha_t \delta_t,$$

where Q is a vector of size $|\mathcal{S} \times \mathcal{A}|$ that approximates a solution of q in the Bellman optimality equation for MDPs, \bar{R} is a scalar estimate of the optimal reward rate, α_t is a step-size sequence, η is a positive constant, and δ_t is the temporal-difference (TD) error: $\delta_t \doteq \bar{R}_t - \bar{R}_t + \max_a Q_t(S_{t+1}, a) - Q_t(S_t, A_t)$. The most straightforward inter-option extension of Differential Q-learning is:

$$Q_{n+1}(\hat{S}_n, \hat{O}_n) \doteq Q_n(\hat{S}_n, \hat{O}_n) + \alpha_n \delta_n, \quad (3)$$

$$\bar{R}_{n+1} \doteq \bar{R}_n + \eta \alpha_n \delta_n, \quad (4)$$

where Q is a vector of size $|\mathcal{S} \times \mathcal{O}|$ that approximates a solution of q in (2), \bar{R} is a scalar estimate of r_*, α_n is a step-size sequence, and δ_n is the TD error:

$$\delta_n \doteq \bar{R}_n - \hat{L}_n \bar{R}_n + \max_o Q_n(\hat{S}_{n+1}, o) - Q_n(\hat{S}_n, \hat{O}_n). \quad (5)$$

Such an algorithm is prone to instability because the sampled option length \hat{L}_n can be quite large, and any error in the reward-rate estimate \bar{R}_n gets multiplied with the potentially-large option length.
Using small step sizes might make the updates relatively stable, but at the cost of slowing down learning for options of shorter lengths. This could make the choice of step size quite critical, especially when the range of the options’ lengths is large and unknown. Alternatively, inspired by Schweitzer (1971), we propose scaling the updates by the estimated length of the option being executed:

\[Q_{n+1} \left(\hat{S}_n, \hat{O}_n \right) \triangleq Q_n \left(\hat{S}_n, \hat{O}_n \right) + \alpha_n \delta_n / L_n \left(\hat{S}_n, \hat{O}_n \right), \]
\[R_{n+1} \triangleq R_n + \eta \alpha_n \delta_n / L_n \left(\hat{S}_n, \hat{O}_n \right), \]

where \(\alpha_n \) is a step-size sequence, \(L_n \cdot (\cdot, \cdot) \) comes from an additional vector of estimates \(\hat{L}_n : \mathcal{S} \times \mathcal{O} \rightarrow \mathbb{R} \) that approximates the expected lengths of state-option pairs, updated from experience by:

\[L_{n+1} \left(\hat{S}_n, \hat{O}_n \right) \triangleq L_n \left(\hat{S}_n, \hat{O}_n \right) + \beta_n \left(\hat{L}_n - L_n \left(\hat{S}_n, \hat{O}_n \right) \right), \]

where \(\beta_n \) is another step-size sequence. The TD-error \(\delta_n \) in (6) and (7) is

\[\delta_n \triangleq \hat{R}_n - L_n \left(\hat{S}_n, \hat{O}_n \right) \hat{R}_n + \max_o Q_n \left(\hat{S}_{n+1}, o \right) - Q_n \left(\hat{S}_n, \hat{O}_n \right), \]

which is different from (5) with the estimated expected option length \(L_n \left(\hat{S}_n, \hat{O}_n \right) \) being used instead of the sampled option length \(\hat{L}_n \). (6–9) make up our inter-option Differential Q-learning algorithm.

Similarly, our prediction learning algorithm, called inter-option Differential Q-evaluation, also has update rules (6–8) with the TD error:

\[\delta_n \triangleq \hat{R}_n - L_n \left(\hat{S}_n, \hat{O}_n \right) \hat{R}_n + \sum_o \mu(o \mid \hat{S}_{n+1}) Q_n \left(\hat{S}_{n+1}, o \right) - Q_n \left(\hat{S}_n, \hat{O}_n \right). \]

Theorem 1 (Convergence of inter-option algorithms; informal). If Assumption 1 holds, step sizes are decreased appropriately, all state-option pairs \((s, o)\) in \(\mathcal{S}' \) and \(\mathcal{O} \) are visited for an infinite number of times, and the relative visitation frequency between any two pairs is finite:

1. inter-option Differential Q-learning (6–9) converges almost surely, \(\hat{R}_n \) to \(r \), and \(Q_n(s, o) \) to a solution of \(q(s, o) \) in (2) for all \(s \in \mathcal{S}', o \in \mathcal{O} \), and \(r(\mu_n) \) to \(r^* \), where \(\mu_n \) is a greedy policy w.r.t. \(Q_n \).

2. inter-option Differential Q-evaluation (6–8, 10) converges almost surely, \(\hat{R}_n \) to \(r(\mu) \) and \(Q_n(s, o) \) to a solution of \(q(s, o) \) in (1) for all \(s \in \mathcal{S}', o \in \mathcal{O} \).

The convergence proofs for the inter-option (as well as the subsequent intra-option) algorithms are based on a result that generalizes Wan et al.’s (2021) and Abounadi et al.’s (2001) proof techniques from primitive actions to options. We present this result in Appendix A.1; the formal theorem statements and proofs in Appendix A.2.

Remark: It is important for the scaling factor in the algorithm to be the expected option length \(L_n \left(\hat{S}_n, \hat{O}_n \right) \) and not the sampled option length \(\hat{L}_n \). Scaling the updates by the expected option lengths ensures that fixed points of the updates are the solutions of (2). This is not guaranteed to be true when using the sampled option length. We discuss this in more detail in Appendix C.1.

The inter-option planning algorithms for prediction and control are similar to the learning algorithms except that they use simulated experience generated by a (given or learned) model instead of real experience. In addition, they only have two update rules, (6) and (7), not (8), because the model provides the expected length of a given option from a given state (see Section 5 for a complete specification of option models). The planning algorithms and their convergence results are presented in Appendix A.2.

Empirical Evaluation. We tested our inter-option Differential Q-learning with Gosavi’s (2004) algorithm as a baseline in a variant of Sutton et al.’s (1999) Four-Room domain (shown in Figure 1). The agent starts in the yellow cell. The goal states are indicated by green cells. Every experiment in this paper uses only one of the green cells as a goal state; the other two are considered as empty cells.
There are four primitive actions of moving up, down, left, right. The agent receives a reward of +1 when it moves into the goal cell, 0 otherwise.

In addition to the four primitive actions, the agent has eight options that take it from a given room to the hallways adjoining the room. The arrows in Figure 1 illustrate the policy of one of the eight options. For this option, the policy in the empty cells (not marked with arrows) is to uniformly-randomly pick among the four primitive actions. The termination probability is 0 for all the cells with arrows and 1 for the empty cells. The other seven options are defined in a similar way. Denote the set of primitive actions as A and the set of hallway options as H. Including the primitive actions, the agent has 12 options in total.

In the first experiment, we tested inter-option Differential Q-learning with three different sets of options, $O \in \{A, H, A + H\}$. The task was to reach the green cell G_1, which the agent can achieve with a combination of options and primitive actions. The shortest path to G_1 from the starting state takes 16 time steps, hence the best possible reward rate for this task is $1/16 = 0.0625$. The agent used an ϵ-greedy policy with $\epsilon = 0.1$. For each of the two step-sizes α_n and β_n, we tested five choices: $2^{-x}, x \in \{1, 3, 5, 7, 9\}$. In addition, we tested five choices of $\eta : 10^{-x}, x \in \{0, 1, 2, 3, 4\}$. Q and \vec{R} were initialized to 0. L to 1. Each parameter setting was run for 200,000 steps and repeated 30 times. The left subfigure of Figure 2 shows a typical learning curve for each of the three sets of options, with $\alpha = 2^{-3}$, $\beta = 2^{-1}$, and $\eta = 10^{-1}$. The parameter study for $O = A + H$ w.r.t. α and η, with $\beta = 2^{-1}$, is presented in the right subfigure of Figure 2. The metric is the average reward obtained over the entire training period. Complete parameter studies for all the three sets of options are presented in Appendix B.1.

The learning curves in the left panel of Figure 2 show that the agent achieved a relatively stable reward rate after 100,000 steps in all three cases. Using just primitive actions A, the learning curve rises the slowest, indicating that hallway options indeed help the agent reach the goal faster. But solely using the hallway options H is not very useful in the long run as the goal G_1 is not a hallway state. Note that because of the ϵ-greedy behavior policy, the learning curves do not reach the optimal reward rate of 0.0625. These observations mirror those by Sutton et al. (1999) in the discounted formulation.

The sensitivity curves of inter-option Differential Q-learning (right panel of Figure 2) indicate that, in this Four-Room domain, the algorithm was not sensitive to parameter η, performed well for a wide range of step sizes α, and showed low variance across different runs. We also found that the algorithm was not sensitive to β either; this parameter study is also presented in Appendix B.1.

Figure 2: Plots showing some learning curves and the parameter study of inter-option Differential Q-learning on the continuing Four-Room domain when the goal was to go to G_1. Left: A point on the solid line denotes reward rate over the last 1000 time steps and the shaded region indicates one standard error. The behavior using the three different sets of options was as expected. Right: Sensitivity of performance to α and η when using $O = A + H$ and $\beta = 2^{-1}$. The x-axis denotes step size α; the y-axis denotes the rate of the rewards averaged over all 200,000 steps of training, reflecting the rate of learning. The error bars denote one standard error. The algorithm’s rate of learning varied little over a broad range of η.

5
We also tested Gosavi’s (2004) algorithm as a baseline. We chose not to compare the proposed algorithms in this paper with Sutton et al.’s (1999) discounted versions because the discounted and average-reward problem formulations are different; comparing the performance of their respective solution methods would be inappropriate and difficult to interpret. We have proposed new solution methods for the average-reward formulation, hence in this case Gosavi’s (2004) algorithm is the most appropriate baseline. Recall it is the only proven-convergent average-reward SMDP off-policy control learning algorithm prior to our work. It estimates the reward rate by tracking the cumulative reward C obtained by the options and dividing it by another estimate T the tracks the length of the options. If the nth option executed is a greedy choice, then these estimates are updated using:

$$
\bar{C}_{n+1} \doteq \bar{C}_n + \beta_n (\bar{R}_n - \bar{C}_n),
$$

$$
\bar{T}_{n+1} \doteq \bar{T}_n + \beta_n (\bar{L}_n - \bar{T}_n),
$$

$$
\bar{R}_{n+1} \doteq \bar{C}_{n+1}/\bar{T}_{n+1}.
$$

When \bar{O}_n is not greedy, $\bar{R}_{n+1} = \bar{R}_n$. The option-value function is updated with (3) with δ_n as defined in (5). α_n and β_n are two step-size sequences. The sensitivity of this algorithm with $\mathcal{O} = \mathcal{A} + \mathcal{H}$ is shown in Figure 3. Compared to inter-option Differential Q-learning, this baseline has one less parameter, but its performance was found to be more sensitive to the values of both its step-size parameters. In addition, the error bars were generally larger, suggesting that the variance across different runs was also higher.

To conclude, our experiments with the continuing Four-Room domain show that our inter-option Differential Q-learning indeed finds the optimal policy given a set of options, in accordance with Theorem 1. In addition, its performance seems more robust to the choices of parameters compared to the baseline. Experiments with the prediction algorithm, inter-option Differential Q-evaluation, are presented in Appendix B.4.

4 Intra-Option Value Learning and Planning Algorithms

In this section, we introduce intra-option value learning and planning algorithms. The objectives are same as that of inter-option value learning algorithms. As mentioned earlier, intra-option algorithms learn from every transition $S_t, A_t, R_{t+1}, S_{t+1}$ during the execution of a given option O_t. Moreover, intra-option algorithms also make updates for every option $o \in \mathcal{O}$, including ones that may potentially never be executed.

To develop our algorithms, we first establish the intra-option evaluation and optimality equations in the average-reward case. The general form of the intra-option Bellman equation is:

$$
q(s, o) = \sum_a \pi(a \mid s, o) \sum_{s', r} p(s' \mid s, a) \left(r - \bar{r} + u^q(s', o) \right)
$$

where $q \in \mathbb{R}^{\mathcal{S} \times \mathcal{O}}$ and $\bar{r} \in \mathbb{R}$ are free variables. The optimality and evaluation equations use $u^q = u^q_s$ and $u^q = u^q_o$, respectively, defined $\forall s' \in \mathcal{S}, o \in \mathcal{O}$ as:

$$
u^q(s', o) = u^q_s(s', o) \doteq (1 - \beta(s', o)) q(s', o) + \beta(s', o) \max_{o'} q(s', o'),
$$

$$
u^q(s', o) = u^q_o(s', o) \doteq (1 - \beta(s', o)) q(s', o) + \beta(s', o) \sum_{o'} \mu(o' \mid s') q(s', o').
$$

Intuitively, the u^q term accounts for the two possibilities of an option terminating or continuing in the next state. These equations generalize the average-reward Bellman equations given by Puterman (1994). The following theorem characterizes the solutions to the intra-option Bellman equations.
Theorem 2 (Solutions to intra-option Bellman equations). If Assumption 1 holds, then:

1. a) there exists a \(\bar{r} \in \mathbb{R} \) and a \(q \in \mathbb{R}^{\left|S\right| \times \left|O\right|} \) for which (11) and (12) hold,
 b) the solution of \(\bar{r} \) is unique and is equal to \(r_{*} \), let \(q_{1} \) be one solution of \(q \), the solutions of \(q \) form a set \(\{ q_{1} + c e \mid c \in \mathbb{R} \} \) where \(e \) is an all-one vector of size \(\left|S\right| \times \left|O\right| \),
 c) a greedy policy w.r.t. a solution of \(q \) achieves the optimal reward rate \(r_{*} \).

2. a) there exists a \(\bar{r} \in \mathbb{R} \) and a \(q \in \mathbb{R}^{\left|S\right| \times \left|O\right|} \) for which (11) and (13) hold,
 b) the solution of \(\bar{r} \) is unique and is equal to \(r(\mu) \), the solutions of \(q \) form a set \(\{ q_{\mu} + c e \mid c \in \mathbb{R} \} \).

The proof extends those of Corollary 8.2.7, Theorem 8.4.3, Theorem 8.4.4 by Puterman (1994) and is presented in Appendix A.3.

Our intra-option control and prediction algorithms are stochastic approximation algorithms solving the intra-option optimality and evaluation equations respectively. Both the algorithms maintain a vector of estimates \(Q(s,o) \) and a scalar estimate \(\bar{R} \), just like our inter-option algorithms. However, unlike inter-option algorithms, intra-option algorithms need not maintain an estimator for option lengths \((L) \) because they make updates after every transition. Our control algorithm, called intra-option Differential Q-learning, updates the estimates \(Q \) and \(\bar{R} \) by:

\[
Q_{t+1}(s_{t},o) \doteq Q_{t}(s_{t},o) + \alpha_{t}(o)\delta_{t}(o), \quad \forall \quad o \in \mathcal{O},
\]

\[
\bar{R}_{t+1} \doteq \bar{R}_{t} + \eta \alpha_{t} \sum_{o \in \mathcal{O}} \rho_{t}(o)\delta_{t}(o),
\]

where \(\alpha_{t} \) is a step-size sequence, \(\rho_{t}(o) = \frac{\pi(A_{t}|s_{t},o)}{\pi(A_{t}|s_{t},o)} \) is the importance sampling ratio, and:

\[
\delta_{t}(o) \doteq R_{t+1} - \bar{R}_{t} + \mu_{t}^{Q_{t}}(s_{t+1},o) - Q_{t}(s_{t},o).
\]

Our prediction algorithm, called intra-option Differential Q-evaluation, also updates \(Q \) and \(\bar{R} \) by (14) and (15) but with the TD error:

\[
\delta_{t}(o) \doteq R_{t+1} - \bar{R}_{t} + \mu_{t}^{Q_{t}}(s_{t+1},o) - Q_{t}(s_{t},o).
\]

Theorem 3 (Convergence of intra-option algorithms; informal). Under the conditions of Theorem 1:

1. intra-option Differential Q-learning algorithm (14–16) converges almost surely, \(\bar{R}_{t} \) to \(r_{*} \), \(Q_{t}(s,o) \) to a solution of \(q(s,o) \) in (11) and (12) for all \(s \in S^{'}, o \in \mathcal{O} \), and \(r(\mu_{t}) \) to \(r_{*} \), where \(\mu_{t} \) is a greedy policy w.r.t. \(Q_{t} \).

2. intra-option Differential Q-evaluation algorithm (14,15,17) converges almost surely, \(\bar{R}_{t} \) to \(r(\mu) \), \(Q_{t}(s,o) \) to a solution of \(q(s,o) \) in (11) and (13) for all \(s \in S^{'}, o \in \mathcal{O} \).

Remark: The intra-option learning methods introduced in this section can be used with options having stochastic policies. This is possible with the use of the important sampling ratios as described above. Sutton et al.’s (1999) discounted intra-option learning methods were restricted to options having deterministic policies.

Again, the intra-option value planning algorithms are similar to the learning algorithms except that they use simulated experience generated by a given or learned model instead of real experience. The planning algorithms and their convergence results are presented in Appendix A.4.

Empirical Evaluation. We conducted another experiment in the Four-Room domain to show that intra-option Differential Q-learning can learn the values of hallway options \(\mathcal{H} \) using only primitive actions \(\mathcal{A} \). As mentioned earlier, there are no baseline intra-option average-reward algorithms, so this is a proof-of-concept experiment.

The goal state for this experiment was \(G_{2} \), which can be reached using the option that leads to the lower hallway.
We now present a set of recursive equations that are key to our model-learning algorithms. These equations are solutions to Bellman equations for option models.

Theorem 4: There exist unique \(\tilde{m}^P \in \mathbb{R}^{|S| \times |O| \times |S|} \), \(\tilde{m}^r \in \mathbb{R}^{|S| \times |O|} \), and \(\tilde{m}^l \in \mathbb{R}^{|S| \times |O|} \) for which (18), (19), and (20) hold. Further, if \(\tilde{m}^P, \tilde{m}^r, \tilde{m}^l \) satisfy (18), (19), and (20), then \(\tilde{m}^P = m^P, \tilde{m}^r = m^r, \tilde{m}^l = m^l \).

Figure 4 shows the learning curve of this average reward across the 30 independent runs for parameters \(\alpha = 0.125, \eta = 0.1 \). The agent indeed succeeds in learning the option-value function corresponding to the hallway options using a behavior policy consisting only of primitive actions. The parameter study of intra-option Differential Q-learning is presented in Appendix B.2. Experiments with the prediction algorithm, intra-option Differential Q-evaluation, are presented in Appendix B.4.

5 Intra-Option Model Learning and Planning Algorithms

In this section, we first describe option models within the average-reward formulation. We then introduce an algorithm to learn such models in an intra-option fashion. This option-model learning algorithm can be combined with the planning algorithms from the previous section to obtain a complete model-based average-reward options algorithm that learns option models and plans with them (we present this combined algorithm in Appendix C.2).

The average-reward option model is similar to the discounted options model but with key distinctions. Sutton et al.'s (1999) discounted option model has two parts: the dynamics part and the reward part. Given a state and an option, the dynamics part predicts the discounted occupancy of states upon termination, and the reward part predicts the expected (discounted) sum of rewards during the execution of the option. In the average-reward setting, apart from the dynamics and the reward parts, an option model has a third part — the duration part — that predicts the duration of execution of the option. In addition, the dynamics part predicts the state distribution upon termination without discounting and reward part predicts the undiscounted cumulative rewards during the execution of the option.

Formally, the dynamics part approximates \(m^P(s'|s,o) \approx \sum_{s',r} \hat{p}(s',r,l|s,o) \), the probability that option \(o \) terminates in state \(s' \) when starting from state \(s \). The reward part approximates \(m^r(s,o) \approx \sum_{s',r} \hat{p}(s',r,l|s,o) r \), the expected cumulative reward during the execution of option \(o \) when starting from state \(s \). Finally, the duration part approximates \(m^l(s,o) \approx \sum_{s',r} \hat{p}(s',r,l|s,o) l \), the expected duration of option \(o \) when starting from state \(s \).

We now present a set of recursive equations that are key to our model-learning algorithms. These equations extend the discounted Bellman equations for option models (Sutton et al. 1999) to the average-reward formulation.

\[
\tilde{m}^P(x | s, o) = \sum_a \pi(a | s, o) \sum_{s',r} p(s', r | s, o) \left(\beta(s', o) \mathbb{I}(x = s') + (1 - \beta(s', o)) \tilde{m}^P(x | s', o) \right),
\]

(18)

\[
\tilde{m}^r(s,o) = \sum_a \pi(a | s, o) \sum_{s',r} p(s', r | s, o) \left(r + (1 - \beta(s', o)) \tilde{m}^r(s', o) \right),
\]

(19)

\[
\tilde{m}^l(s,o) = \sum_a \pi(a | s, o) \sum_{s',r} p(s', r | s, o) \left(1 + (1 - \beta(s', o)) \tilde{m}^l(s', o) \right).
\]

(20)

The first equation are different from the other two because the total reward and length of the option \(o \) are incremented irrespective of whether the option terminates in \(s' \) or not. The following theorem shows that \((\tilde{m}^P, \tilde{m}^r, \tilde{m}^l) \) is the unique solution of (18–20) and therefore the models can be obtained by solving these equations (see Appendix A.5 for the proof).

\[\tilde{m}^P = m^P, \tilde{m}^r = m^r, \tilde{m}^l = m^l. \]
Our intra-option model-learning algorithm solves the above recursive equations using the following TD-like update rules for each option o:

$$
M^p_{t+1}(x \mid S_t, o) = M^p_t(x \mid S_t, o) + \alpha_t \rho_t(o) \left(\beta(S_{t+1}, o) \mathbb{I}(S_{t+1} = x) + (1 - \beta(S_{t+1}, o))M^p_t(x \mid S_t, o) - M^p_t(x \mid S_t, o) \right), \quad \forall x \in S,
$$

$$
M^r_{t+1}(S_t, o) = M^r_t(S_t, o) + \alpha_t \rho_t(o) \left(R_{t+1} + (1 - \beta(S_{t+1}, o))M^r_t(S_{t+1}, o) - M^r_t(S_t, o) \right)
$$

$$
M^{\ell}_{t+1}(S_t, o) = M^{\ell}_t(S_t, o) + \alpha_t \rho_t(o) \left(1 + (1 - \beta(S_{t+1}, o))M^{\ell}_t(S_{t+1}, o) - M^{\ell}_t(S_t, o) \right)
$$

where M^p is a $|S| \times |O| \times |S|$-sized vector of estimates, M^r and M^{ℓ} are both $|S| \times |O|$-sized vectors of estimates, and α_t is a sequence of step sizes. Standard stochastic approximation results can be applied to show the algorithm’s convergence (see Appendix A.6 for details).

Theorem 5 (Convergence of the intra-option model learning algorithm; informal). If the step sizes are set appropriately and the state-option pairs are updated an infinite number of times, then intra-option model-learning (21–23) converges almost surely, M^p_t to m^p, M^r_t to m^r, and M^{ℓ}_t to m^{ℓ}.

Our intra-option model-learning algorithms (21–23) can be applied with simulated one-step transitions generated by a given action model, resulting in a planning algorithm that produces an estimated option model. The planning algorithm and its convergence result are presented in Appendix A.6.

6 Interruption to Improve Policy Over Options

In all the algorithms we considered so far, the policy over options would select an option, execute the option policy till termination, then select a new option. Sutton et al. (1999) showed that the policy over options can be improved by allowing the interruption of an option midway through its execution to start a seemingly better option. We now show that this interruption result applies for average-reward options as well (see Appendix A.7 for the proof).

Theorem 6 (Interruption). For any MDP, any set of options \mathcal{O}, and any policy $\mu : \mathcal{S} \times \mathcal{O} \rightarrow [0, 1]$, define a new set of options, \mathcal{O}', with a one-to-one mapping between the two option sets as follows: for every $o = (\pi, \beta) \in \mathcal{O}$, define a corresponding $o' = (\pi', \beta') \in \mathcal{O}'$ where $\beta' = \beta$, but for any state s in which $q_\mu(s, o) < v_\mu(s)$, $\beta'(s, o) = 1$ (where $v_\mu(s) = \sum_o \mu(o \mid s)q_\mu(s, o)$). Let the interrupted policy μ' be such that for all $s \in \mathcal{S}$ and for all $o' \in \mathcal{O}'$, $\mu'(s, o') = \mu(s, o)$, where o is the option in \mathcal{O} corresponding to o'. Then:

1. the new policy over options μ' is not worse than the old one μ, i.e., $r(\mu') \geq r(\mu)$.
2. if there exists a state $s \in \mathcal{S}$ from which there is a non-zero probability of encountering an interruption upon initiating μ' in s, then $r(\mu') > r(\mu)$.

In short, the above theorem shows that interruption produces a behavior that achieves a higher reward rate than without interruption. Note that interruption behavior is only applicable with intra-option algorithms; complete option transitions are needed in inter-option algorithms.

Empirical Evaluation. We tested the intra-option Differential Q-learning algorithm with and without interruption in the Four-Room domain. We set the goal as G3 and allowed the agent to choose and learn only from the set of all hallway options \mathcal{H}. With just hallway options, without interruption, the best strategy is to first move to the lower hallway and then try to reach the goal by following options that pick random actions in the states near the hallway and goal. With interruption, the agent can first move to the left hallway, then take the option that moves the agent to the lower hallway but terminate when other options have higher option-values. This termination is most likely to occur in the cell just above G3. The agent then needs a fewer number of steps in expectation to reach the goal.

![Figure 5: Learning curves showing that executing options with interruptions can achieve a higher reward rate than executing options till termination in the domain described in the adjoining text.](image-url)
Figure 5 shows learning curves using intra-option Differential Q-learning with and without interruptions on this problem. Each parameter setting was run for 400,000 steps and repeated 30 times. The learning curves shown correspond to $\alpha = 0.125$ and $\eta = 0.1$. As expected, the agent achieved a higher reward rate by using interruptions. The parameter study of the interruption algorithm along with the rest of the experimental details is presented in Appendix B.3.

7 Conclusions, Limitations, and Future Work

In this paper, we extended learning and planning algorithms for the options framework — originally proposed by Sutton et al. (1999) for discounted-reward MDPs — to average-reward MDPs. The inter-option learning algorithm presented in this paper is more general than previous work in that its convergence proof does not require existence of any special states in the MDP. We also derived the intra-option Bellman equations in average-reward MDPs and used them to propose the first intra-option learning algorithms for average-reward MDPs. Finally, we extended the interruption algorithm and its related theory from the discounted to the average-reward setting. Our experiments on a continuing version of the classic Four-Room domain demonstrate the efficacy of the proposed algorithms. We believe that our contributions will enable widespread use of options in the average-reward setting.

We now briefly comment on the novelty of our theoretical and algorithmic contributions. Our primary theoretical contribution is to generalize Wan et al.’s (2021) proof techniques to obtain a unified convergence proof for actions and options. The same proof techniques then apply for both the inter- and intra-option algorithms. Our primary algorithmic contribution is the scaling of the updates by option lengths in the inter-option algorithms. The lack of scaling makes the algorithms unstable and prone to divergence. Furthermore, we show the correct way of scaling involves estimated option lengths, not sampled option lengths.

The most immediate line of future work involves extending these ideas from the tabular case to the general case of function approximation, starting with linear function approximation. One way to incorporate function approximation is to extend algorithms presented in this paper to those using linear options (Sorg & Singh 2010, Yao et al. 2014), perhaps by building on Zhang et al.’s (2021) work. Using the results developed in this paper, we also foresee extensions to more ideas from the discounted formulation involving function approximation, such as Bacon et al.’s (2017) option-critic architecture, to the average-reward formulation.

This paper assumes that a fixed set of options is provided and the agent then learns or plans using them. One of the most important challenges in the options framework is the discovery of options. We think the discovery problem is orthogonal to the problem formulation. Hence, another line of future work is to extend existing option-discovery algorithms developed for the discounted formulation to the average-reward formulation (e.g., algorithms by McGovern & Barto 2001, Menache et al. 2002, Şimşek & Barto 2004, Singh et al. 2004, Van Dijk & Polani 2011, Machado et al. 2017). Relatively more work might be required in extending approaches that couple the problems of option discovery and learning (e.g., Gregor et al. 2016, Eysenbach et al. 2018, Achiam et al. 2018, Veeriah et al. 2021).

Another limitation of this paper is that it deals with learning and planning separately. We also need combined methods that learn models as well as plan with them; we discuss some ideas in Appendix C. Finally, we would like to get more empirical experience with the algorithms proposed in this paper, both in pedagogical tabular problems and challenging large-scale problems. Nevertheless, we believe this paper makes novel contributions that are significant for the use of temporal abstractions in average-reward reinforcement learning.

Acknowledgements

The authors were supported by DeepMind, Amii, and CIFAR. The authors wish to thank Huizhen Yu for extensive discussions on several related works; Benjamin Van Roy, Csaba Szepesvári, Dale Schuurmans, Martha White, and the anonymous reviewers for valuable feedback.
References

Abounadi, J., Bertsekas, D., & Borkar, V. S. (2001). Learning Algorithms for Markov Decision Processes with Average Cost. *SIAM Journal on Control and Optimization.*

Achiam, J., Edwards, H., Amodei, D., & Abbeel, P. (2018). Variational Option Discovery Algorithms. *ArXiv:1807.10299.*

Almezel, S., Ansari, Q. H., & Khamsi, M. A. (2014). *Topics in Fixed Point Theory (Vol. 5).* Springer.

Bacon, P. L., Harb, J., & Precup, D. (2017). TheOption-Critic Architecture. *AAAI Conference on Artificial Intelligence.*

Borkar, V. S. (1998). Asynchronous Stochastic Approximations. *SIAM Journal on Control and Optimization.*

Borkar, V. S. (2009). *Stochastic Approximation: A Dynamical Systems Viewpoint.* Springer.

Borkar, V. S., & Soumyanatha, K. (1997). An Analog Scheme for Fixed Point Computation. I. Theory. *IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications.*

Brunskill, E., & Li, L. (2014). PAC-inspired Option Discovery in Lifelong Reinforcement Learning. *International Conference on Machine Learning.*

Das, T. K., Gosavi, A., Mahadevan, S., & Marchalleck, N. (1999). Solving Semi-Markov Decision Problems Using Average Reward Reinforcement Learning. *Management Science.*

Eysenbach, B., Gupta, A., Ibarz, J., & Levine, S. (2018). Diversity is All You Need: Learning Skills without a Reward Function. *ArXiv:1802.06070.*

Fruit, R., & Lazaric, A. (2017). Exploration-Exploitation in MDPs with Options. *Artificial Intelligence and Statistics.*

Gosavi, A. (2004). Reinforcement Learning for Long-run Average Cost. *European Journal of Operational Research.*

Gregor, K., Rezende, D. J., & Wierstra, D. (2016). Variational Intrinsic Control. *ArXiv:1611.07507.*

Li, Y., & Cao, F. (2010). RVI Reinforcement Learning for Semi-Markov Decision Processes with Average Reward. *IEEE World Congress on Intelligent Control and Automation.*

Machado, M. C., Bellemare, M. G., & Bowling, M. (2017). A Laplacian Framework for Option Discovery in Reinforcement Learning. *International Conference on Machine Learning.*

McGovern, A., & Barto, A. G. (2001). Automatic Discovery of Subgoals in Reinforcement Learning using Diverse Density. *International Conference on Machine Learning.*

Menache, I., Mannor, S., & Shimkin, N. (2002). Q-Cut—Dynamic Discovery of Sub-goals in Reinforcement Learning. *European Conference on Machine Learning.*

Puterman, M. L. (1994). *Markov Decision Processes: Discrete Stochastic Dynamic Programming.* John Wiley & Sons.

Schweitzer, P. J. (1971). Iterative Solution of the Functional Equations of Undiscounted Markov Renewal Programming. *Journal of Mathematical Analysis and Applications.*

Schweitzer, P. J., & Federgruen, A. (1978). The Functional Equations of Undiscounted Markov Renewal Programming. *Mathematics of Operations Research.*

Şimşek, Ö., & Barto, A. G. (2004). Using Relative Novelty to Identify Useful Temporal Abstractions in Reinforcement Learning. *International Conference on Machine Learning.*

Singh, S., Barto, A. G., & Chentanez, N. (2004). Intrinsically Motivated Reinforcement Learning. *Advances in Neural Information Processing Systems.*

Sorg, J., & Singh, S. (2010). Linear Options. *International Conference on Autonomous Agents and Multiagent Systems.*

Sutton, R. S., Precup, D., & Singh, S. (1999). Between MDPs and Semi-MDPs: A Framework for Temporal Abstraction in Reinforcement Learning. *Artificial Intelligence.*

Sutton, R. S., & Barto, A. G. (2018). *Reinforcement Learning: An Introduction.* MIT Press.
Tsitsiklis, J. N. (1994). Asynchronous Stochastic Approximation and Q-learning. *Machine Learning*.

van Dijk, S. G., & Polani, D. (2011). Grounding Subgoals in Information Transitions. *IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning*.

Veeriah, V., Zahavy, T., Hessel, M., Xu, Z., Oh, J., Kemaev, I., van Hasselt, H., Silver, D., & Singh S. (2021). Discovery of Options via Meta-Learned Subgoals. *ArXiv:2102.06741*.

Vien, N. A., & Chung, T. (2008). Policy Gradient Semi-Markov Decision Process. *IEEE International Conference on Tools with Artificial Intelligence*.

Wan, Y., Naik, A., & Sutton, R. S. (2021). Learning and Planning in Average-Reward Markov Decision Processes. *International Conference on Machine Learning*.

Yao, H., Szepesvári, C., Sutton, R. S., Modayil, J., & Bhatnagar, S. (2014). Universal Option Models. *Advances in Neural Information Processing Systems*.

Zhang, S., Wan, Y., Sutton, R. S., & Whiteson, S. (2021). Average-Reward Off-Policy Policy Evaluation with Function Approximation. *International Conference on Machine Learning*.
A Formal Theoretical Results and Proofs

In this section, we provide formal statements of the theorems presented in the main text of the paper and show their proofs. This section has several subsections. The first subsection introduces General RVI Q, which will be used in later subsections. The other six subsections correspond to six theorems presented in the main text.

A.1 General RVI Q

Wan et al. (2021) extended the family of RVI Q-learning algorithms (Abounadi, Bertsekas, and Borkar et al. 2001) to prove the convergence of their Differential Q-learning algorithm. Unlike RVI Q-learning, Differential Q-learning does not require a reference function. We further extend Wan et al.’s extended family of RVI Q-learning algorithms to a more general family of algorithms, called General RVI Q. We then prove convergence for this family of algorithms and show that inter-option algorithms and intra-option value learning algorithms are all members of this family.

We first need the following definitions:

1. a set-valued process \(\{Y_n\} \) taking values in the set of nonempty subsets of \(\mathcal{I} \) with the interpretation: \(Y_n = \{ i : i^{th} \text{ component of } Q \text{ was updated at time } n \} \),
2. \(\nu(n, i) \triangleq \sum_{k=0}^{n} I \{ i \in Y_k \} \), where \(I \) is the indicator function. Thus \(\nu(n, i) \) is the number of times the \(i \) component was updated up to step \(n \),
3. i.i.d. random vectors \(R_n, G_n \) and \(F_n \) for all \(n \geq 0 \) satisfying \(\mathbb{E} [R_n(i)] = r(i) \), where \(r \) is a fixed real vector; \(\mathbb{E} [G_n(Q)(i)] = g(Q)(i) \) for any \(Q \in \mathbb{R}^{\mathcal{I}} \) where \(g : \mathcal{I} \rightarrow \mathbb{R} \) is a function satisfying Assumption A.2.

Assumption A.1. 1) \(g \) is a max-norm non-expansion, 2) \(g \) is a span-norm non-expansion, 3) \(g(x + ce) = g(x) + ce \) for any \(c \in \mathbb{R}, x \in \mathbb{R}^{\mathcal{I}}, \) 4) \(g(cx) = cg(x) \) for any \(c \in \mathbb{R}, x \in \mathbb{R}^{\mathcal{I}} \).

Assumption A.2. 1) \(f \) is \(L \)-Lipschitz, 2) there exists a positive scalar \(u \) s.t. \(f(\epsilon) = u \) and \(f(x + ce) = f(x) + cf(x) \).

Assumption A.3. For \(n \in \{ 0, 1, 2, \ldots \} \), \(\mathbb{E} [\|R_n - r\|_2^2] \leq K, \mathbb{E} [\|G_n(Q) - g(Q)\|_2^2] \leq K(1 + \|Q\|^2) \) for any \(Q \in \mathbb{R}^{\mathcal{I}} \), and \(\mathbb{E} [\|F_n(Q) - f(Q)\epsilon\|_2^2] \leq K(1 + \|Q\|^2) \) for any \(Q \in \mathbb{R}^{\mathcal{I}} \) for a suitable constant \(K > 0 \).

The above assumption means that the variances of \(R_n, G_n(Q), \) and \(F_n(Q) \) for any \(Q \) are bounded.

General RVI Q’s update rule is

\[
Q_{n+1}(i) = Q_n(i) + \alpha_{\nu(n,i)}(R_n(i) - F_n(Q_n)(i) + G_n(Q_n)(i) - Q_n(i) + \epsilon_n(i))I \{ i \in Y_n \},
\]

(A.1)

where \(\alpha_{\nu(n,i)} \) is the stepsize and \(\epsilon_n \) is a sequence of random vectors of size \(|\mathcal{I}| \).

We make following assumption on \(\epsilon_n \).

Assumption A.4 (Noise Assumption). \(\|\epsilon_n\|_\infty \leq K(1 + \|Q_n\|_\infty) \) for some scalar \(K \). Further, \(\epsilon_n \) converges in probability to 0.

We make following assumptions on \(\alpha_{\nu(n,i)} \).

Assumption A.5 (Stepsize Assumption). For all \(n \geq 0, \alpha_n > 0, \sum_{n=0}^{\infty} \alpha_n = \infty, \) and \(\sum_{n=0}^{\infty} \alpha_n^2 < \infty \).

Assumption A.6 (Asynchronous Stepsize Assumption A). Let \([\cdot] \) denote the integer part of \(\cdot \), for \(x \in (0, 1) \),

\[
\sup_i \frac{\alpha_{[x]}(i)}{\alpha_i} < \infty
\]

and

\[
\frac{\sum_{j=0}^{[y]} \alpha_j}{\sum_{j=0}^{x} \alpha_j} \to 1
\]

uniformly in \(y \in [x, 1] \).
Assumption A.7 (Asynchronous Stepsize Assumption B). There exists $\Delta > 0$ such that
\[
\liminf_{n \to \infty} \frac{\nu(n,i)}{n+1} \geq \Delta,
\]
a.s., for all $s \in S$, $o \in O$. Furthermore, for all $x > 0$, let
\[
N(n, x) = \min \left\{ m > n : \sum_{i=n+1}^{m} \alpha_i \geq x \right\},
\]
the limit
\[
\lim_{n \to \infty} \frac{\sum_{i=\nu(n,i)}^{\nu(N(n,x),i)} \alpha_i}{\sum_{i=\nu(n,i')}^{\nu(N(n,x),i')} \alpha_i}
\]
exists a.s. for all s, s', o, o'.

Assumption A.8. $r(i) - \bar{r} + g(q)(i) - q(i) = 0, \forall i \in I$ has a unique solution for \bar{r} and a unique for q only up to a constant.

Denoted the unique solution of \bar{r} by r_∞. Further, it can be seen that the solution of q satisfying both $r - \bar{r} - g(q) - q = 0$ and $f(q) = r_\infty$ is unique because our assumption on f (Assumption A.2).

Denote the unique solution as q_∞. We have,
\[
f(q_\infty) = r_\infty. \tag{A.2}
\]

Theorem A.1. Under Assumptions A.1-A.8, General RVI Q converges, almost surely, Q_n to q_∞ and $f(Q_n)$ to r_∞.

Proof. Because (A.1) is in the same form as the asynchronous update (Equation 7.1.2) by Borkar (2009), we apply the result in Section 7.4 of the same text (Borkar 2009) (see also Theorem 3.2 by Borkar (1998)) which shows convergence for Equation 7.1.2, to show the convergence of (A.1). This result, given Assumption A.6 and A.7, only requires showing the convergence of the following synchronous version of the General RVI Q algorithm:
\[
Q_{n+1}(i) = Q_n(i) + \alpha_n (R_n(i) - F_n(Q_n)(i) + g(Q_n)(i) - Q_n(i)) \quad \forall i \in I. \tag{A.3}
\]

Define operators T_1, T_2:
\[
T_1(Q)(i) = r(i) + g(Q)(i) - r_\infty,
\]
\[
T_2(Q)(i) = r(i) + g(Q)(i) - f(Q)
\]
\[= T_1(Q)(i) + (r_\infty - f(Q)).
\]

Consider two ordinary differential equations (ODEs):
\[
y_t = T_1(y_t) - y_t, \tag{A.4}
\]
\[
x_t = T_2(x_t) = T_1(x_t) - x_t + (r_\infty - f(x_t)) e. \tag{A.5}
\]

Note that because g is a non-expansion by Assumption A.1, both (A.4) and (A.5) have Lipschitz R.H.S.’s and thus are well-posed.

Because g is a non-expansion, T_1 is also a non-expansion. Therefore we have the next lemma, which restates Theorem 3.1 and Lemma 3.2 by Borkar and Soumyanath (1997).

Lemma A.1. Let \bar{y} be an equilibrium point of (A.4). Then $\|y_t - \bar{y}\|_\infty$ is nonincreasing, and $y_t \to \bar{y}$ for some equilibrium point \bar{y}, of (A.4) that may depend on y_0.

Lemma A.2. (A.5) has a unique equilibrium at q_∞.

Proof. Because $f(q_\infty) = r_\infty$, we have that $q_\infty = T_1(q_\infty) = T_2(q_\infty)$, thus q_∞ is an equilibrium point for (A.5). Conversely, if $T_2(Q) - Q = 0$, then $T_1 Q + (r_\infty - f(Q)) e = Q$. But the equation $T_1 Q + ce = Q$ only has a solution when $c = 0$ because of Assumption A.1. We have $c = 0$ and thus $f(Q) = r_\infty$, which along with $T_1 Q = Q$, implies $Q = q_\infty$. □
Lemma A.3. Let \(x_0 = y_0 \), then \(x_t = y_t + z_t e \), where \(z_t \) satisfies the ODE \(\dot{z}_t = -u z_t + (r_\infty - f(y_t)) \), and \(k \equiv \|z\| \).

Proof. From (A.4), (A.5), by the variation of parameters formula,

\[
x_t = \exp(-t)x_0 + \int_0^t \exp(t - \tau) T_1(x_\tau) d\tau + \left[\int_0^t \exp(t - \tau) (r_\infty - f(x_\tau)) d\tau \right] e,
\]

\[
y_t = \exp(-t)y_0 + \int_0^t \exp(t - \tau) T_1(y_\tau) d\tau.
\]

Then we have

\[
\max_{s,o}(x_t(s,o) - y_t(s,o)) \leq \int_0^t \exp(t - \tau) \max_{s,o}(T_1(x_\tau)(s,o) - T_1(y_\tau)(s,o)) d\tau + \left[\int_0^t \exp(t - \tau) (r_\infty - f(x_\tau)) d\tau \right],
\]

\[
\min_{s,o}(x_t(s,o) - y_t(s,o)) \geq \int_0^t \exp(t - \tau) \min_{s,o}(T_1(x_\tau)(s,o) - T_1(y_\tau)(s,o)) d\tau + \left[\int_0^t \exp(t - \tau) (r_\infty - f(x_\tau)) d\tau \right].
\]

Subtracting, we have

\[
sp(x_t - y_t) \leq \int_0^t \exp(t - s) sp(T_1(x_\tau) - T_1(y_\tau)) d\tau,
\]

where \(sp(x) \) denotes the span of vector \(x \).

Because we assumed that \(g \) is span-norm non-expansion, \(T_1 \) is also a span-norm non-expansion and thus

\[
sp(x_t - y_t) \leq \int_0^t \exp(t - s) sp(T_1(x_\tau) - T_1(y_\tau)) d\tau \leq \int_0^t \exp(t - s) sp(x_\tau - y_\tau) d\tau.
\]

By Gronwall’s inequality, \(sp(x_t - y_t) = 0 \) for all \(t \geq 0 \). Because \(sp(x) = 0 \) if and only if \(x = ce \) for some \(c \in \mathbb{R} \), we have

\[
x_t = y_t + z_t e, \quad t \geq 0.
\]

for some \(z_t \). Also \(x_0 = y_0 \implies z_0 = 0 \).

Now we show that \(\dot{z}_t = -u z_t + (r_\infty - f(y_t)) \). Note that \(f(x_t) = f(y_t + z_t e) = f(y_t) + u z_t \). In addition, \(T_1(x_t) - T_1(y_t) = T_1(y_t + z_t e) - T_1(y_t) = T_1(y_t) + z_t e - T_1(y_t) = z_t e \); therefore we have, for \(z_t \in \mathbb{R} \):

\[
\dot{z}_t e = \dot{x}_t - \dot{y}_t
\]

\[
= (T_1(x_t) - x_t + (r_\infty - f(x_t)) e) - (T_1(y_t) - y_t) \quad \text{(from (A.4) and (A.5))}
\]

\[
= -(x_t - y_t) + (T_1(x_t) - T_1(y_t)) + (r_\infty - f(x_t)) e
\]

\[
= -z_t e + z_t e + (r_\infty - f(x_t)) e
\]

\[
= -u z_t e + u z_t e + (r_\infty - f(x_t)) e
\]

\[
= -u z_t e + (r_\infty - f(y_t)) e
\]

\[
\implies \dot{z}_t = -u z_t + (r_\infty - f(y_t)).
\]

\[
\square
\]

Lemma A.4. \(q_\infty \) is the globally asymptotically stable equilibrium for (A.5).

Proof. We have shown that \(q_\infty \) is the unique equilibrium in Lemma A.2.

With that result, we first prove Lyapunov stability. That is, we need to show that given any \(\epsilon > 0 \), we can find a \(\delta > 0 \) such that \(\|q_\infty - x_0\|_\infty \leq \delta \) implies \(\|q_\infty - x_t\|_\infty \leq \epsilon \) for \(t \geq 0 \).
First, from Lemma A.3 we have \(\dot{z}_t = -u z_t + (r_\infty - f(y_t)) \). By variation of parameters and \(z_0 = 0 \), we have

\[
z_t = \int_0^t \exp(u(t - \tau)) (r_\infty - f(y_\tau)) d\tau.
\]

Then

\[
\|q_\infty - x_t\|_\infty = \|q_\infty - y_t - z_t u e\|_\infty
\leq \|q_\infty - y_t\|_\infty + u \int_0^t \exp(u(t - \tau)) |r_\infty - f(y_\tau)| d\tau
\]

\[
= \|q_\infty - x_0\|_\infty + u \int_0^t \exp(u(t - t)) |f(q_\infty) - f(y_\tau)| d\tau \quad \text{(from (A.2)).} \tag{A.6}
\]

Because \(f \) is \(L \)-lipschitz, we have

\[
|f(q_\infty) - f(y_\tau)| \leq L \|r_\infty - y_\tau\|_\infty
\leq L \|r_\infty - y_0\|_\infty \quad \text{(from Lemma A.1)}
\]

\[
= L \|r_\infty - x_0\|_\infty.
\]

Therefore

\[
\int_0^t \exp(u(t - t)) |f(q_\infty) - f(y_\tau)| d\tau \leq \int_0^t \exp(u(t - t)) L \|q_\infty - x_0\|_\infty d\tau
\]

\[
= L \|q_\infty - x_0\|_\infty \int_0^t \exp(u(t - t)) d\tau
\]

\[
= L \|q_\infty - x_0\|_\infty \frac{1}{u} (1 - \exp(-ut))
\]

\[
= \frac{L}{u} \|q_\infty - x_0\|_\infty (1 - \exp(-ut)).
\]

Substituting the above equation in (A.6), we have

\[
\|q_\infty - x_t\|_\infty \leq (1 + L) \|q_\infty - x_0\|_\infty.
\]

Lyapunov stability follows.

Now in order to prove the asymptotic stability, in addition to Lyapunov stability, we need to show that there exists \(\delta > 0 \) such that if \(\|x_0 - q_\infty\|_\infty < \delta \), then \(\lim_{t \to \infty} \|x_t - q_\infty\|_\infty = 0 \). Note that

\[
\lim_{t \to \infty} z_t = \lim_{t \to \infty} \int_0^t \exp(u(t - \tau)) (r_\infty - f(y_\tau)) d\tau
\]

\[
= \lim_{t \to \infty} \int_0^t \exp(u(t)) (r_\infty - f(y_\tau)) d\tau
\]

\[
= \lim_{t \to \infty} \frac{\exp(u(t))(r_\infty - f(y_\tau))}{u \exp(u(t))} \quad \text{(by L’Hospital’s rule)}
\]

\[
= \frac{r_\infty - f(y_\infty)}{u} \quad \text{(by Lemma A.1)}.
\]

Because \(x_t = y_t + z_t e \) (Lemma A.3) and \(y_t \to y_\infty \) (Lemma A.1), we have \(x_t \to y_\infty + (r_\infty - f(y_\infty))e/u \), which must coincide with \(q_\infty \) because that is the only equilibrium point for (A.5) (Lemma A.2). Therefore \(\lim_{t \to \infty} \|x_t - q_\infty\|_\infty = 0 \) for any \(x_0 \). Asymptotic stability is shown and the proof is complete. \(\square \)

Lemma A.5. Equation A.3 converges a.s. \(Q_n \) to \(q_\infty \) as \(n \to \infty \).
Proof. The proof uses Borkar’s (2008) Theorem 2 in Section 2 and is essentially the same as Lemma 3.8 by Abounadi et al. (2001). For completeness, we repeat the proof (with more details) here.

First write the synchronous update (A.3) as

\[Q_{n+1} = Q_n + \alpha_n (h(Q_n) + M_{n+1} + \epsilon_n), \]

where

\[h(Q_n)(i) = r(i) - f(Q_n) + g(Q_n)(i) - Q_n(i) \]
\[= T_2(Q_n)(i) - Q_n(i), \]
\[M_{n+1}(i) = R_n(i) - F_n(Q_n)(i) + G_n(Q_n)(i) - T_2(Q_n)(i). \]

It can be shown that \(\epsilon_n \) is asymptotically negligible and therefore does not affect the conclusions of Theorem 2 (text after Equation B.66 by Wan et al. 2021).

Theorem 2 requires verifying following conditions and concludes that \(Q_n \) converges to a (possibly sample path dependent) compact connected internally chain transitive invariant set of ODE \(\dot{x}_t = h(x_t) \). This is exactly the ODE defined in (A.5). Lemma A.2 and A.4 conclude that this ODE has \(q_\infty \) as the unique globally asymptotically stable equilibrium. Therefore the (possibly sample path dependent) compact connected internally chain transitive invariant set is a singleton set containing only the unique globally asymptotically stable equilibrium. Thus Theorem 2 concludes that \(Q_n \rightarrow q_\infty \) a.s. as \(n \rightarrow \infty \). We now list conditions required by Theorem 2:

- **(A1)** The function \(h \) is Lipschitz: \(\| h(x) - h(y) \| \leq L \| x - y \| \) for some \(0 < L < \infty \).
- **(A2)** The sequence \(\{ \alpha_n \} \) satisfies \(\alpha_n > 0 \), and \(\sum \alpha_n = \infty \), \(\sum \alpha_n^2 < \infty \).
- **(A3)** \(\{ M_n \} \) is a martingale difference sequence with respect to the increasing family of \(\sigma \)-fields

\[F_n = \sigma(Q_i, M_i, i \leq n), n \geq 0. \]

That is

\[\mathbb{E}[M_{n+1} \mid F_n] = 0 \quad \text{a.s., } n \geq 0. \]

Furthermore, \(\{ M_n \} \) are square-integrable

\[\mathbb{E}[\| M_{n+1} \|^2 \mid F_n] \leq K(1 + \| Q_n \|^2) \quad \text{a.s., } n \geq 0, \]

for some constant \(K > 0 \).

- **(A4)** \(\sup_n \| Q_n \| \leq \infty \) a.s.

Let us verify these conditions now.

(A1) is satisfied because \(T_2 \) is Lipschitz.

(A2) is satisfied by Assumption A.5.

(A3) is also satisfied because for any \(i \in I \)

\[\mathbb{E}[M_{n+1}(i) \mid F_n] = \mathbb{E}[R_n(i) - F_n(Q_n)(i) + G_n(i) - T_2(Q_n)(i) \mid F_n] \]
\[= \mathbb{E}[R_n(i) - F_n(Q_n)(i) + G_n(Q_n)(i) - T_2(Q_n)(i) \mid F_n] - T_2(Q_n)(i) \]
\[= 0, \]

and \(\mathbb{E}[\| M_{n+1} \|^2 \mid F_n] \leq \mathbb{E}[\| R_n - r \|^2 \mid F_n] + \mathbb{E}[\| F_n(Q_n) - f(Q_n)e \|^2 \mid F_n] + \mathbb{E}[\| G_n(Q_n) - g(Q_n) \|^2 \mid F_n] \leq K(1 + \| Q_n \|^2) \) for a suitable constant \(K > 0 \) can be verified by a simple application of triangle inequality.

To verify (A4), we apply Theorem 7 in Section 3 by Borkar (2008), which shows \(\sup_n \| Q_n \| \leq \infty \) a.s., if (A1), (A2), and (A3) are all satisfied and in addition we have the following condition satisfied:

- **(A5)** The functions \(h_d(x) = h(dx)/d, d \geq 1, x \in \mathbb{R}^k \), satisfy \(h_d(x) \rightarrow h_\infty(x) \) as \(d \rightarrow \infty \), uniformly on compacts for some \(h_\infty \in C(\mathbb{R}^k) \). Furthermore, the ODE \(\dot{x}_t = h_\infty(x_t) \) has the origin as its unique globally asymptotically stable equilibrium.
Note that
\[h_\infty(x) = \lim_{d \to \infty} h_d(x) = \lim_{d \to \infty} (T_2(dx) - dx) / d = g(x) - f(x)e - x, \]
because \(g(cx) = cg(x) \) and \(f(cx) = cf(x) \) by our assumption.

The function \(h_\infty \) is clearly continuous in every \(x \in \mathbb{R}^k \) and therefore \(h_\infty \in C(\mathbb{R}^k) \).

Now consider the ODE \(\dot{x}_t = h_\infty(x_t) = g(x_t) - f(x_t)e - x_t \). Clearly the origin is an equilibrium. This ODE is a special case of (A.5), corresponding to the \(r(s,o)\mathcal{g} \in \mathcal{S}, o \in \mathcal{O} \) being always zero. Therefore Lemma A.2 and A.4 also apply to this ODE and the origin is the unique globally asymptotically stable equilibrium.

(A1), (A2), (A3), (A4) are all verified and therefore
\[Q_n \to q_\infty \text{ a.s. as } n \to \infty. \]

\[\square \]

A.2 Theorem 1

For simplicity, we will only provide formal theorems and proofs for our control learning and planning algorithms. The formal theorems and proofs for our prediction algorithms are similar to those for the control algorithms and are thus omitted. To this end, we first provide a general algorithm that includes both learning and planning control algorithms. We call it General Inter-option Differential Q. We first formally define it and then explain why both inter-option Differential Q-learning and inter-option Differential Q-planning are special cases of General Inter-option Differential Q. We then provide assumptions and the convergence theorem of the general algorithm. The theorem would lead to convergence of the special cases. Finally, we provide a proof for the theorem.

Given an SMDP \(\mathcal{M} = (\mathcal{S}, \mathcal{O}, \mathcal{L}, \mathcal{R}, \mathcal{p}) \), for each state \(s \in \mathcal{S} \), option \(o \in \mathcal{O} \), and discrete step \(n \geq 0 \), let \(\hat{R}_n(s,o), \hat{S}_n(s,o), \hat{L}_n(s,o) \sim \mathcal{p}((\cdot, \cdot, \cdot)|s,o) \) denote a sample of resulting state, reward and the length. We hypothesize a set-valued process \(\{Y_n\} \) taking values in the set of nonempty subsets of \(\mathcal{S} \times \mathcal{O} \) with the interpretation: \(Y_n = \{(s,o) : (s,o) \text{ component of } Q \text{ was updated at time } n\} \). Let \(\nu(n,s,o) = \sum_{k=0}^{n} I\{(s,o) \in Y_k\} \), where \(I \) is the indicator function. Thus \(\nu(n,s,o) \) is the number of times the \((s,o)\) component was updated up to step \(n \). The update rules of General Inter-option Differential Q are
\begin{align*}
Q_{n+1}(s,o) &\doteq Q_n(s,o) + \alpha_{\nu(n,s,o)} \delta_n(s,o)/L_n(s,o)I\{(s,o) \in Y_n\}, \quad \forall s \in \mathcal{S}, o \in \mathcal{O}, \quad (A.7) \\
\hat{R}_{n+1} &\doteq \hat{R}_n + \eta \sum_{s,o} \alpha_{\nu(n,s,o)} \delta_n(s,o)/L_n(s,o)I\{(s,o) \in Y_n\}, \quad (A.8) \\
L_{n+1}(s,o) &\doteq L_n(s,o) + \beta_n(s,o)(\hat{L}_n(s,o) - L_n(s,o))I\{(s,o) \in Y_n\}, \quad (A.9)
\end{align*}
where
\[\delta_n(s,o) = \hat{R}_n(s,o) - \hat{R}_nL_n(s,o) + \max_{o'} Q_n(\hat{S}_n(s,o), o') - Q_n(s,o) \] (A.10)
is the TD error.

Here \(\alpha_{\nu(n,s,o)} \) is the stepsize at step \(n \) for state-action pair \((s,o)\). The quantity \(\alpha_{\nu(n,s,o)} \) depends on the sequence \(\{\alpha_n\} \), which is an algorithmic design choice, and also depends on the visitation of state-option pairs \(\nu(n,s,o) \). To obtain the stepsize, the algorithm could maintain a \(|\mathcal{S} \times \mathcal{O}|\)-size table counting the number of visitations to each state-option pair, which is exactly \(\nu(\cdot,\cdot,\cdot) \). Then the stepsize \(\alpha_{\nu(n,s,o)} \) can be obtained as long as the sequence \(\{\alpha_n\} \) is specified.

\(Q_0 \) and \(R_0 \) can be initialized arbitrarily. Note that \(L_0 \) can not be initialized to 0 because it is the divisor for both (A.7) and (A.8) for the first update. Because the expected length of all options would be greater than or equal to 1, we choose \(L_0 \) to be 1. In this way, \(L_n \) will never be 0 because it is initialized to 1 and all the sampled option lengths are greater than or equal to 1. Therefore the problem of division by 0 will not happen in the updates.

\[\square \]
Now we show inter-option Differential Q-learning and inter-option Differential Q-planning are special cases of General Inter-option Differential Q. Consider a sequence of real experience \(\ldots, S_n, O_n, R_n, \tilde{L}_n, \hat{S}_{n+1}, \ldots \)

\[
Y_n(s, o) = 1, \text{ if } s = \hat{S}_n, o = \hat{O}_n, \\
Y_n(s, o) = 0 \text{ otherwise},
\]

and \(\hat{S}_{n+1}, \hat{R}_n(\hat{S}_n, \hat{O}_n) = \hat{R}_{n+1}, \tilde{L}_n(\hat{S}_n, \hat{O}_n) = \tilde{L}_n, \) update rules (A.7), (A.8), and (A.10) become

\[
Q_{n+1}(\hat{S}_n, \hat{O}_n) = Q_n(\hat{S}_n, \hat{O}_n) + \alpha_{v(n, \hat{S}_n, \hat{O}_n)} \hat{\delta}_n/L_n(\hat{S}_n, \hat{O}_n), \\
\hat{R}_{n+1} = \hat{R}_n + \eta \alpha_{v(n, \hat{S}_n, \hat{O}_n)} \hat{\delta}_n/L_n(\hat{S}_n, \hat{O}_n), \\
\hat{\delta}_n = \hat{R}_n - \hat{R}_n \hat{L}_n + \max_{o'} Q_n(\hat{S}_{n+1}, o') - Q_n(\hat{S}_n, \hat{O}_n), \\
\tilde{L}_{n+1}(\hat{S}_n, \hat{O}_n) = \tilde{L}_n(\hat{S}_n, \hat{O}_n) + \beta_n(\hat{S}_n, \hat{O}_n)(\tilde{L}_n - L_n(\hat{S}_n, \hat{O}_n))
\]

which are inter-option Differential Q-learning’s update rules (Section 3) with stepsize \(\alpha_n \) in the \(n \)-th update being \(\alpha_{v(n, \hat{S}_n, \hat{O}_n)} \), and the stepsize \(\beta_n \) being \(\beta_n(\hat{S}_n, \hat{O}_n) \).

If we consider a sequence of simulated experience \(\ldots, \hat{S}_n, \hat{O}_n, \tilde{R}_n, \tilde{L}_n, \hat{S}_n, \ldots \)

\[
Y_n(s, o) = 1, \text{ if } s = \hat{S}_n, o = \hat{O}_n, \\
Y_n(s, o) = 0 \text{ otherwise},
\]

and \(\hat{S}_{n+1}(s, o) = \hat{S}_n' \hat{R}_n(s, o) = \hat{R}_n, \hat{L}_n(s, o) = \hat{L}_n, \) update rules (A.7)-(A.10) become

\[
Q_{n+1}(\hat{S}_n, \hat{O}_n) = Q_n(\hat{S}_n, \hat{O}_n) + \alpha_{v(n, \hat{S}_n, \hat{O}_n)} \hat{\delta}_n/L_n, \\
\hat{R}_{n+1} = \hat{R}_n + \eta \alpha_{v(n, \hat{S}_n, \hat{O}_n)} \hat{\delta}_n/L_n, \\
\hat{\delta}_n = \hat{R}_n - \hat{R}_n \hat{L}_n + \max_{o'} Q_n(\hat{S}_{n+1}, o') - Q_n(\hat{S}_n, \hat{O}_n), \\
\tilde{L}_{n+1}(\hat{S}_n, \hat{O}_n) = \tilde{L}_n(\hat{S}_n, \hat{O}_n) + \beta_n(\hat{S}_n, \hat{O}_n)(\tilde{L}_n - L_n(\hat{S}_n, \hat{O}_n))
\]

Now, in the planning setting, the model can produce an expected length, instead of a sampled one. And there estimating the expected length using \(L_n \) is no longer needed. The above updates reduce to

\[
Q_{n+1}(\hat{S}_n, \hat{O}_n) = Q_n(\hat{S}_n, \hat{O}_n) + \alpha_{v(n, \hat{S}_n, \hat{O}_n)} \hat{\delta}_n/L_n, \\
\hat{R}_{n+1} = \hat{R}_n + \eta \alpha_{v(n, \hat{S}_n, \hat{O}_n)} \hat{\delta}_n/L_n, \\
\hat{\delta}_n = \hat{R}_n - \hat{R}_n \hat{L}_n + \max_{o'} Q_n(\hat{S}_{n+1}', o') - Q_n(\hat{S}_n, \hat{O}_n).
\]

The above update rules are our inter-option Differential Q-planning’s update rules with stepsize at planning step \(n \) being \(\alpha_{v(n, \hat{S}_n, \hat{O}_n)} \).

We now provide a theorem, along with its proof, showing the convergence of General Inter-option Differential Q.

Theorem A.2. Under Assumptions 1, A.5, A.6, A.7, and that \(0 \leq \beta_n(s, o) \leq 1, \sum \beta_n(s, o) = \infty, \) and \(\sum \beta_n^2(s, o) < \infty, \) and \(\beta_n(s, o) = 0 \) unless \(s = \hat{S}_n \), General Inter-option Differential Q (Equations A.7-A.10) converges, almost surely, \(Q_n \) to \(q \) satisfying both (2) and

\[
\eta(\sum q - \sum Q_0) = r_* - \hat{R}_0,
\]

\(\hat{R}_n \) to \(r_* \), and \(r(\mu_n) \) to \(r_* \) where \(\mu_n \) is a greedy policy w.r.t. \(Q_n \).
We now verify the assumptions of Theorem A.1 for Inter-option General Differential Q. Assumption A.8 is satisfied because the MDP mapping theorem, converges to 0 almost surely (and thus in probability).

Proof. At each step, the increment to \(\bar{R}_n \) is \(\eta \) times the increment to \(Q_n \) and \(\sum Q_n \). Therefore, the cumulative increment can be written

\[
\bar{R}_n - \bar{R}_0 = \eta \sum_{i=0}^{n-1} \sum_{s,o} \alpha_{\nu(i,s,o)} \delta_i(s,o)/L_i(s,o) I\{ (s,o) \in Y_i \}
\]

\[
= \eta \left(\sum Q_n - \sum Q_0 \right)
\]

\[
\Rightarrow \bar{R}_n = \eta \sum Q_n - \eta \sum Q_0 + \bar{R}_0 = \eta \sum Q_n - c,
\]

where \(c \equiv \sum Q_0 - \bar{R}_0 \). (A.11)

Now substituting \(\bar{R}_n \) in (A.7) with (A.11), we have \(\forall s \in S, o \in O \):

\[
Q_{n+1}(s,o) = Q_n(s,o) + \alpha_{\nu(n,s,o)}
\]

\[
\frac{\bar{R}_n(s,o) - L_n(s,o)(\eta \sum Q_n - c) + \max_{o'} Q_n(\hat{S}_n(s,o),o') - Q_n(s,o)}{\bar{L}_n(s,o)} I\{ (s,o) \in Y_n \}
\]

\[
= Q_n(s,o) + \alpha_{\nu(n,s,o)}
\]

\[
\left(\frac{\bar{R}_n(s,o) - l_n(s,o)(\eta \sum Q_n - c) + \max_{o'} Q_n(\hat{S}_n(s,o),o') - Q_n(s,o)}{l(s,o)} + \epsilon_n(s,o) \right) I\{ (s,o) \in Y_n \},
\]

where \(l(s,o) \) is the expected length of option \(o \), starting from state \(s \), and \(\epsilon_n(s,o) \equiv (\bar{R}_n(s,o) - L_n(s,o)(\eta \sum Q_n - c) + \max_{o'} Q_n(\hat{S}_n(s,o),o') - Q_n(s,o))/L(s,o) - (\bar{R}_n(s,o) - l(s,o)(\eta \sum Q_n - c) + \max_{o'} Q_n(\hat{S}_n(s,o),o') - Q_n(s,o))/l(s,o) \).

Standard stochastic approximation result can be applied to show that \(L_n \) converges to \(l \). Further, it can be seen that \(\epsilon_n \) satisfies that \(\| \epsilon_n \|_\infty \leq K(1 + \| Q_n \|) \) for some positive \(K \) and, by continuous mapping theorem, converges to 0 almost surely (and thus in probability).

We now show that (A.13) is a special case of (A.1). To see this point, let

\[
i = (s,o),
\]

\[
R_n(i) = \frac{\bar{R}_n(s,o)}{l(s,o)} + c,
\]

\[
G_n(Q_n)(i) = \frac{\max_{o'} Q_n(\hat{S}_n(s,o),o')}{{l(s,o)}} + \frac{l(s,o) - 1}{l(s,o)} Q_n(s,o),
\]

\[
F(Q_n)(i) = \eta \sum Q_n,
\]

\[
\epsilon_n(i) = \epsilon_n(s,o).
\]

We now verify the assumptions of Theorem A.1 for Inter-option General Differential Q. Assumption A.1 and Assumption A.2 can be verified easily. Assumption A.3 satisfies because the MDP is finite. Assumption A.4 is satisfied as shown above. Assumption A.5-A.7 are satisfied due to assumptions of the theorem being proved. Assumption A.8 is satisfied because

\[
\begin{align*}
r(i) - \bar{r} + g(q)(i) - q(i) \\
= \mathbb{E}[R_n(i) - \bar{r} + G_n(q)(i) - q(i)] \\
= \mathbb{E} \left[\frac{\bar{R}_n(s,o) + cl(s,o) - \bar{r}l(s,o) + \max_{o'} q(\hat{S}_n(s,o),o') + (l(s,o) - 1)q(s,o) - l(s,o)q(s,o)}{l(s,o)} \right] \\
= \mathbb{E} \left[\frac{\bar{R}_n(s,o) + cl(s,o) - \bar{r}l(s,o) + \max_{o'} q(\hat{S}_n(s,o),o') - q(s,o)}{l(s,o)} \right].
\end{align*}
\]

From (2) we know if the above equation equals to 0, then under Assumption 1, \(\bar{r} = r_\pi + c \) is the unique solution and the solutions for \(q \) form a set \(q = q_\pi + \epsilon c. \)
All the assumptions are verified and thus from Theorem A.1 we conclude that Q_n converges to a point satisfying $\eta \sum q = r_\star + c = r_\star + \eta \sum Q_0 - R_0$ and $R_n = \eta \sum Q_n - c$ to $\eta \sum q - c = r_\star + c - c = r_\star$.

Finally, in order to show $r(\mu_n) \to r_\star$, we first extend Theorem 8.5.5 by Puterman (1994) to deal with SMDP.

Lemma A.6. Under Assumption 1, for all $Q \in \mathbb{R}^{[S \times O]}$

$$\min_{s,o} TQ(s,o) \leq r(\mu_Q) \leq r_\star \leq \max_{s,o} TQ(s,o),$$

where $TQ(s,o) \triangleq \sum_{s',r,l} \hat{p}(s',r,l \mid s,o)(r + \max_{o'} Q(s', o'))$ and μ_Q denotes a greedy policy w.r.t. Q.

Proof. Note that

$$r(\mu_Q) = \sum_{s',r,l} \hat{p}(s',r,l \mid s,o)(r + \sum_{o'} \mu_Q(o' \mid s')Q(s', o') - Q(s,o)).$$

Therefore

$$\min_{s,o}(TQ_n(s,o) - Q_n(s,o)) \leq r(\mu_n) \leq r_\star \leq \max_{s,o}(TQ_n(s,o) - Q_n(s,o))$$

$$\implies |r_\star - r(\mu_n)| \leq s_p(TQ_n - Q_n).$$

Because $Q_n \to q_\infty$ a.s., and $s_p(TQ_n - Q_n)$ is a continuous function of Q_n, by continuous mapping theorem, $s_p(TQ_n - Q_n) \to s_p(Tq_\infty - q_\infty) = 0$ a.s. Therefore we conclude that $r(\mu_n) \to r_\star$.

The convergence of General Inter-option Differential Q that we showed above implies Theorem 1 when there are no transient states ($S' = S$) and thus all states can be visited for an infinite number of times. When $S' \subset S$, option values associated states in $S - S'$ do not converge to a solution of the Bellman equation. However, the option values associated with recurrent states S' still converge to a solution of the Bellman equation, the reward rate estimator converges to r_\star, and the $r(\mu_n)$ converges to r_\star. The point that option values (associated with recurrent states) converge to depends on the sample trajectory. Specifically, it depends on the transient states visited in the trajectory.

A.3 Theorem 2

The proof for the intra-option evaluation equation is simple. First note that these equations can be written in the vector form:

$$0 = r - \bar{r} + (P_\mu - I)q,$$

where $r(s,o) = \mathbb{E}[R_{t+1} \mid S_t = s, O_t = o], P_\mu((s,o),(s',o')) = \Pr(S_{t+1} = s', O_{t+1} = o' \mid S_t = s, O_t = o, \mu) = \beta(s', o)\mu(o' \mid s') + (1 - \beta(s', o))\mu(o = o'),$ and e is a all-one vector. Intuitively, the intra-option evaluation equation can be viewed as the evaluation equation for some average-reward MRP with reward and dynamics being defined as r and P_μ.

By Theorem 8.2.6 and Corollary 8.2.7 in Puterman (1994), the intra-option evaluation equation part in Theorem 2 is shown as long as the Markov chain associated with P_μ is unichain. Note that by our Assumption 1, there is only one recurrent class of states under any policy. Therefore no matter what the start state-option pair is, the agent will enter in the same recurrent class of states. Therefore we have, for every state s in the recurrent class and an option \hat{o} such that $\mu(\hat{o} \mid s) > 0$, the MDP visits (s, \hat{o}) an infinite number of times. This shows that any two state-option pairs can not be in two separate recurrent sets of state-option pairs. Therefore the Markov chain associated with P_μ is unichain.

The proof for the Intra-option Optimality Equations is more complicated. First, similar as what we know in the discounted primitive action case, we have the following lemma for the discounted option case.

Lemma A.7. For every $0 < \gamma < 1$, there exists a stationary deterministic discount optimal policy.
The proof uses similar arguments as Theorem 6.2.10 and Proposition 4.4.3 by Puterman (1994).

Now choose a sequence of discount factors \(\{\gamma_n\} \), \(0 \leq \gamma_n < 1 \) with the property that \(\gamma_n \uparrow 1 \). By lemma A.7, for each \(\gamma_n \), there exists a stationary discount optimal policy. Because the total number of Markov deterministic policies is finite, we can choose a subsequence \(\{\gamma_n'\} \) for which the same Markov deterministic policy, \(\mu \), is discount optimal for all \(\gamma_n' \). Denote this subsequence by \(\{\gamma_n\} \).

Because \(\mu \) is discount optimal for \(\gamma_n, \forall n, q_{\mu}^{\gamma_n} = q_{\mu}^{\gamma_n}, \forall n \). By intra-option optimality equations in the discounted case (Sutton et al., 1999), for all \(s \in S, o \in O \),

\[
0 = \sum_a \pi(a|s,o) \sum_{s',r} p(s',r|s,a) (r + \gamma_n \beta(s',o)q_{\mu}^{\gamma_n}(s',o)) + \gamma_n (1 - \beta(s',o))q_{\mu}^{\gamma_n}(s',o) - q_{\mu}^{\gamma_n}(s,o)
\]

\[
= \sum_a \pi(a|s,o) \sum_{s',r} p(s',r|s,a) (r + \gamma_n \beta(s',o) \max_{o'} q_{\mu}^{\gamma_n}(s',o') + \gamma_n (1 - \beta(s',o))q_{\mu}^{\gamma_n}(s',o)) - q_{\mu}^{\gamma_n}(s,o).
\]

(A.14)

By corollary 8.2.4 by Puterman (1994),

\[
q_{\mu}^{\gamma_n} = (1 - \gamma_n)^{-1} r(\mu) e + q_{\mu} + f(\gamma_n),
\]

(A.15)

where \(r(\mu) \) and \(q_{\mu} \) are the reward rate and differential value function under policy \(\mu \), and \(f(\gamma) \) is a function of \(\gamma \) that converges to 0 as \(\gamma \uparrow 1 \).

Substituting (A.15) into (A.14), we have

\[
0 = \sum_a \pi(a|s,o) \sum_{s',r} p(s',r|s,a) (r + \gamma_n \beta(s',o) \max_{o'} [(1 - \gamma_n)^{-1} r(\mu) + q_{\mu}(s',o') + f(\gamma_n, s', o')])
\]

\[
+ \gamma_n (1 - \beta(s',o)) [(1 - \gamma_n)^{-1} r(\mu) + q_{\mu}(s',o) + f(\gamma_n, s', o)]
\]

\[
- [(1 - \gamma_n)^{-1} r(\mu) + q_{\mu}(s,o) + f(\gamma_n, s, o)]
\]

\[
= \sum_a \pi(a|s,o) \sum_{s',r} p(s',r|s,a) (r - r(\mu) + \gamma_n \beta(s',o) \max_{o'} q_{\mu}(s',o') + f(\gamma_n, s', o'))
\]

\[
+ \gamma_n (1 - \beta(s',o)) [q_{\mu}(s',o) + f(\gamma_n, s', o)]
\]

\[
- [q_{\mu}(s,o) + f(\gamma_n, s, o)]
\]

= \sum_a \pi(a|s,o) \sum_{s',r} p(s',r|s,a) (r - r(\mu) + \beta(s',o) \max_{o'} q_{\mu}(s',o') + (1 - \beta(s',o)) q_{\mu}(s',o)) - q_{\mu}(s,o).
\]

We see that \(\bar{r} = r(\mu) \) and \(q = q_{\mu} \) is a solution of (11)-(12).

Now we show that the solution for \(\bar{r} \) is unique. Define

\[
B(\bar{r}, q) = \sum_a \pi(a|s,o) \sum_{s',r} p(s',r|s,a) \left(r - \bar{r} + \beta(s',o) \max_{o'} q(s',o') + (1 - \beta(s',o)) q(s',o) \right) - q(s,o).
\]
First we show if $B(\bar{r}, q) = 0$, then $\bar{r} \geq r_*$.

$$0 = B(\bar{r}, q)$$

$$= \sum_a \pi(a|s, o) \sum_{s', r} p(s', r|s, a)(r - \bar{r} + \beta(s', o) a) q(s', o') + (1 - \beta(s', o)) q(s', o) - q(s, o)$$

$$\geq \sup_{\mu \in \Pi^{MR}} \sum_a \pi(a|s, o) \sum_{s', r} p(s', r|s, a)$$

$$\left(r - \bar{r} + \beta(s', o) \mu(s'|s) q(s', o') + (1 - \beta(s', o)) q(s', o) \right) - q(s, o),$$

where Π^{MR} denotes the set of all Markov randomized policies. In vector form, the above equation can be written as:

$$0 \geq \sup_{\mu \in \Pi^{MR}} \{ r - \bar{r} e + (P_\mu - I) q \}.$$

Therefore $\forall \mu \in \Pi^{MR}$,

$$\bar{r} e \geq r + (P_\mu - I) q.$$

Apply P_μ to both sides,

$$P_\mu \bar{r} e \geq P_\mu r + P_\mu (P_\mu - I) q,$$

$$\bar{r} e \geq P_\mu r + P_\mu (P_\mu - I) q.$$

Repeating this process we have:

$$\bar{r} e \geq P^n_\mu r + P^n_\mu (P_\mu - I) q.$$

Summing these expressions from $n = 0$ to $n = N - 1$ we have:

$$N \bar{r} e \geq \sum_{n=0}^{N-1} (P^n_\mu r + P^n_\mu (P_\mu - I) q) = \sum_{n=0}^{N-1} P^n_\mu r + (P_\mu - P_\mu^{N-1}) q. $$

Because $\lim_{N \to \infty} \frac{1}{N}(P_\mu^N - P_\mu^{N-1}) q = 0$,

$$\bar{r} e \geq \lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} P^n_\mu r = r(\mu)e,$$

for all $\mu \in \Pi^{MR}$. Therefore $\bar{r} \geq r_*$.

Then we show that if $0 = B(\bar{r}, q)$ then $\bar{r} \leq r_*$. As we proved above, if (\bar{r}, q) satisfies that $0 = B(\bar{r}, q)$ then there exists a policy μ such that $\bar{r} e = r + (P_\mu - I) q$ is true. Therefore,

$$P^n_\mu \bar{r} e = P^n_\mu r + P^n_\mu (P_\mu - I) q,$$

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} P^n_\mu \bar{r} e = \lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} (P^n_\mu r + P^n_\mu (P_\mu - I) q),$$

$$\bar{r} e = \lim_{N \to \infty} \sum_{n=0}^{N-1} P^n_\mu r = r(\mu)e \leq r_* e.$$

Therefore $\bar{r} \leq r_*$. Combining $\bar{r} \geq r_*$ and $\bar{r} \leq r_*$ we have $\bar{r} = r_*$.

Finally, we show that the solution for q is unique only up to a constant. Note that one could iteratively replace q in the r.h.s. of the intra-option Optimality equation (11)-(12) by the entire r.h.s. of the intra-option Optimality equation, resulting to the inter-option Optimality equation (2). Therefore any solution of (11)-(12) must be a solution of (2). But we know that the solutions for q in (2) is unique only up to a constant. Therefore the solutions for q in (11)-(12) can not differ by a non-constant. Further, it is easy to see that if q is a solution, then $q + ce, \forall c$ is also a solution. The theorem is proved.

\square
A.4 Theorem 3

For simplicity, we will only provide formal theorems and proofs for our control learning and planning algorithms. The formal theorems and proofs for our prediction algorithms are similar to those for the control algorithms and are thus omitted. To this end, we first provide a general algorithm that includes both learning and planning control algorithms. We call it General Intra-option Differential Q. We first formally define it and then explain why both Intra-option Differential Q-learning and Intra-option Differential Q-planning are special cases of General Intra-option Differential Algorithm. We then provide assumptions and the convergence theorem of the general algorithm. The theorem would lead to convergence of the special cases. Finally, we provide a proof for the theorem.

Given an MDP \(M = (S, A, R, p) \) and a set of options \(O \), for each state \(s \in S \), option \(o \in O \), a reference option \(\bar{o} \), and discrete step \(n \geq 0 \), let \(A_n(s, \bar{o}) = \pi(\cdot \mid s, \bar{o}) \), \(R_n(s, A_n(s, \bar{o})) = p(\cdot \mid s, A_n(s, \bar{o})) \) denote, given state-option pair \((s, \bar{o})\), a sample of the chosen action and the resulting state and reward. We hypothesize a set-valued process \(\{Y_n\} \) taking values in the set of nonempty subsets of \(S \times O \) with the interpretation: \(Y_n = \{(s, o) : (s, o) \text{ component of } Q \text{ was updated at time } n\} \). Let \(\nu(n, s, o) = \sum_{t=0}^{n} I\{(s, o) \in Y_t\} \), where \(I \) is the indicator function. Thus \(\nu(n, s, o) \) is the number of times the \((s, o)\) component was updated up to step \(n \). In addition, we hypothesize a set-valued process \(\{Z_n\} \) taking values in the set of nonempty subsets of \(O \) with the interpretation: \(Z_n = \{\bar{o} : \bar{o} \text{ component was visited at time } n\} \). \(\sum_{\bar{o}} I\{\bar{o} \in Z_n\} \) means the number of reference options used at update step \(n \). For simplicity, we assume this number is always 1.

Assumption A.9. \(\sum_{\bar{o}} I\{\bar{o} \in Z_n\} = 1 \) for all discrete \(n \geq 0 \).

The update rules of General Intra-option Differential Q are

\[
Q_{n+1}(s, o) = Q_n(s, o) + \alpha_{\nu(n, s, o)} \rho_n(s, o, \bar{o}) \delta_n(s, o, \bar{o}) I\{(s, o) \in Y_n\} I\{\bar{o} \in Z_n\}, \quad \forall s \in S, \text{ and } o \in O
\]

(A.16)

\[
R_{n+1} = R_n + \eta \sum_{s, o} \alpha_{\nu(n, s, o)} \rho_n(s, o, \bar{o}) \delta_n(s, o, \bar{o}) I\{(s, o) \in Y_n\} I\{\bar{o} \in Z_n\},
\]

(A.17)

where \(\rho_n(s, o, \bar{o}) = \pi(A_n(s, \bar{o}) \mid s, o)/\pi(A_n(s, \bar{o}) \mid s, \bar{o}) \) and

\[
\delta_n(s, o, \bar{o}) = R_n(s, A_n(s, \bar{o})) - R_n + \beta(s_n'(s, A_n(s, \bar{o})), o) \max Q_n(s_n'(s, A_n(s, \bar{o})), o') + (1 - \beta(s_n'(s, A_n(s, \bar{o})), o)) Q_n(s_n'(s, A_n(s, \bar{o})), o) - Q_n(s, o)
\]

(A.18)

is the TD error.

Here \(\alpha_{\nu(n, s, o)} \) is the stepsize at step \(n \) for state-option-option triple \((s, o)\). The quantity \(\alpha_{\nu(n, s, o)} \) depends on the sequence \(\{\alpha_n\} \), which is an algorithmic design choice, and also depends on the visitation of state-option pairs \(\nu(n, s, o) \). To obtain the stepsize, the algorithm could maintain a \(|S \times O|\)-size table counting the number of visitations to each state-option pair, which is exactly \(\nu(\cdot, \cdot, \cdot) \). Then the stepsize \(\alpha_{\nu(n, s, o)} \) can be obtained as long as the sequence \(\{\alpha_n\} \) is specified.

Now we show Intra-option Differential Q-learning and Intra-option Differential Q-planning are special cases of General Intra-option Differential Q. Consider a sequence of real experience \(\ldots, S_t, O_t, A_t, R_{t+1}, S_{t+1}, \ldots \). By choosing step \(n = \text{time step } t, \)

\[
Y_n(s, o) = 1, \text{ if } s = S_t
\]

\[
Y_n(s, o) = 0 \text{ otherwise},
\]

\[
Z_n(\bar{o}) = 1, \text{ if } \bar{o} = O_t
\]

\[
Z_n(\bar{o}) = 0 \text{ otherwise},
\]

and \(A_n(S_t, O_t) = A_t, s_n'(s, A_n(S_t, O_t)) = S_{t+1}, R_n(S_t, A_n(S_t, O_t)) = R_{t+1}, \) update rules (A.16), (A.17), and (A.18) become

\[
Q_{t+1}(s, o) = Q_t(s, o) + \alpha_{\nu(t, s, o)} \rho_t(o) \delta_t(o), \forall o \in O \), and \(Q_{t+1}(s, o) = Q_t(s, o), \forall o \in O \) and \(\forall s \neq S_t, \)

\[
R_{t+1} = R_t + \eta \sum_{o} \alpha_{\nu(t, s, o)} \rho_t(o) \delta_t(o),
\]

\[
\delta_t(o) = R_{t+1} - R_t + \beta(s_{t+1}, o) \max Q_t(s_{t+1}, o') + (1 - \beta(s_{t+1}, o)) Q_t(s_{t+1}, o) - Q_t(s, o),
\]

24
where \(\rho_i(o) \doteq \pi(A_i \mid S_i, o)/\pi(A_i \mid S_i, O_i) \). The above equations are Intra-option Differential Q-learning’s update rules (Equations 14, 15, 16) with stepsize at time \(t \) being \(\alpha_{\nu(t, S_t, o)} \) for each option \(o \).

If we consider a sequence of simulated experience \(\ldots, \tilde{S}_n, \tilde{O}_n, \tilde{\Phi}_n, \tilde{R}_n, \tilde{S}'_n, \ldots \), by choosing step \(n = \) planning step \(n \),

\[
Y_n(s, o) = 1, \text{ if } s = \tilde{S}_n \\
Y_n(s, o) = 0 \text{ otherwise,}
\]

\[
Z_n(o) = 1, \text{ if } o = \tilde{O}_n \\
Z_n(o) = 0 \text{ otherwise,}
\]

and \(A_n(\tilde{S}_n, \tilde{O}_n) = \tilde{A}_n, S'_n(\tilde{S}_n, A_n(\tilde{S}_n, \tilde{O}_n)) = \tilde{S}'_n, R_n(\tilde{S}_n, A_n(\tilde{S}_n, \tilde{O}_n)) = \tilde{R}_n, \) update rules (A.16), (A.17), and (A.18) become

\[
Q_{n+1}(\tilde{S}_n, o) \doteq Q_n(\tilde{S}_n, o) + \alpha_{\nu(n, S_n, o)} \rho_n(o) \delta_n(o), \forall o \in O, \text{ and } Q_{n+1}(s, o) \doteq Q_n(s, o), \forall s \neq \tilde{S}_n, \forall o \in O.
\]

\[
\tilde{R}_{n+1} = \tilde{R}_n + \eta \sum o \alpha_{\nu(n, S_n, o)} \rho_n(o) \delta_n(o),
\]

\[
\delta_n(o) \doteq \tilde{R}_n - \tilde{R}_n + \beta(\tilde{S}_n, o) \max o' Q_n(\tilde{S}_n, o') + (1 - \beta(\tilde{S}_n, o)) Q_n(\tilde{S}_n, o) - Q_n(\tilde{S}_n, o),
\]

where \(\rho_n(o) \doteq \pi(A_n \mid \tilde{S}_n, o)/\pi(A_n \mid S_n, O_n) \). The above equations are Intra-option Differential Q-planning’s update rules (Equations 14, 15, 16) with stepsize at planning step \(n \) being \(\alpha_{\nu(n, S_n, o)} \) for each option \(o \).

Finally, note that for both Intra-option Differential Q-learning and Q-planning algorithms, because for each time step \(t \) or update step \(n \), there is only one option which is actually chosen to generate data, Assumption A.9 is satisfied.

Theorem A.3. Under Assumptions 1, A.5, A.6, A.7, A.9, General Intra-option Differential Q (Equations A.16-A.18) converges, almost surely, \(Q_n \) to \(q \) satisfying both (11)-(12) and

\[
\eta(\sum q - \sum Q_0) = r_s - \tilde{R}_0, \tag{A.19}
\]

\(\tilde{R}_n \) to \(r_s \), and \(r(\mu_n) \) to \(r_s \) where \(\mu_n \) is a greedy policy w.r.t. \(Q_n \).

Proof. At each step, the increment to \(\tilde{R}_n \) is \(\eta \) times the increment to \(Q_n \) and \(\sum Q_n \). Therefore, the cumulative increment can be written as:

\[
\tilde{R}_n - \tilde{R}_0 = \eta \sum_{i=0}^{n-1} \sum_{s,o} \alpha_{\nu(i, s, o)} \sum_{\tilde{o}} \rho_i(s, o, \tilde{o}) \delta_i(s, o, \tilde{o}) I\{(s, o) \in Y_i\} I\{\tilde{o} \in Z_i\}
\]

\[
= \eta \left(\sum Q_n - \sum Q_0 \right)
\]

\[
\implies \tilde{R}_n = \eta \sum Q_n - \eta \sum Q_0 + \tilde{R}_0 = \eta \sum Q_n - c, \tag{A.20}
\]

where \(c = \eta \sum Q_0 - \tilde{R}_0 \).

Now substituting \(\tilde{R}_n \) in (A.16) with (A.20), we have \(\forall s \in S, o \in O \):

\[
Q_{n+1}(s, o) = Q_n(s, o) + \alpha_{\nu(n, s, o)} \sum_{\tilde{o}} \pi(A_n(s, \tilde{o}) \mid s, o) \]

\[
\left(R_n(s, A_n(s, \tilde{o})) - \eta \sum Q_n + c + \beta(S'_n(s, A_n(s, \tilde{o})), o) \max o' Q_n(S'_n(s, A_n(s, \tilde{o})), o') + (1 - \beta(S'_n(s, A_n(s, \tilde{o})), o)) Q_n(S'_n(s, A_n(s, \tilde{o})), o) - Q_n(s, o) \right) \]

\[
I\{(s, o) \in Y_n\} I\{\tilde{o} \in Z_n\}. \tag{A.21}
\]
We now show that \((A.21)\) is a special case of \((A.1)\). To see this point, let \(i = (s, o)\),

\[
R_n(i) = \sum_\tilde{o} \frac{\pi(A_n(s, \tilde{o}) \mid s, o)}{\pi(A_n(s, \tilde{o}) \mid s, \tilde{o})} I\{\tilde{o} \in Z_n\}(R_n(s, A_n(s, \tilde{o})) + c),
\]

\[
F_n(Q_n)(i) = \sum_\tilde{o} \frac{\pi(A_n(s, \tilde{o}) \mid s, o)}{\pi(A_n(s, \tilde{o}) \mid s, \tilde{o})} I\{\tilde{o} \in Z_n\} \eta \sum Q_n,
\]

\[
G_n(Q_n)(i) = \sum_\tilde{o} \frac{\pi(A_n(s, \tilde{o}) \mid s, o)}{\pi(A_n(s, \tilde{o}) \mid s, \tilde{o})} I\{\tilde{o} \in Z_n\} (\beta(S'_n(s, A_n(s, \tilde{o})), o) \max q(S'_n(s, A_n(s, \tilde{o})), o') + (1 - \beta(S'_n(s, A_n(s, \tilde{o})), o)) q(S'_n(s, A_n(s, \tilde{o})), o) - q_n(s, o)),
\]

\[
\epsilon_n(i) = 0.
\]

Then we have:

\[
r(i) = E[R_n(i)]
\]

\[
= \sum_\tilde{o} \frac{\pi(A_n(s, \tilde{o}) \mid s, o)}{\pi(A_n(s, \tilde{o}) \mid s, \tilde{o})} I\{\tilde{o} \in Z_n\}(R_n(s, A_n(s, \tilde{o})) + c)
\]

\[
= \sum_\tilde{o} \frac{\pi(A_n(s, \tilde{o}) \mid s, o)}{\pi(A_n(s, \tilde{o}) \mid s, \tilde{o})} I\{\tilde{o} \in Z_n\}(R_n(s, A_n(s, \tilde{o})) + c)
\]

\[
= \sum_\tilde{o} I\{\tilde{o} \in Z_n\} \sum_a \pi(a \mid s, o) \sum_{s', r} p(r, s' \mid s, a)(r + c),
\]

By Assumption A.9,

\[
f(q) = E[F(q)(i)] = \eta \sum q,
\]

\[
g(q)(i) = E[G_n(q)(i)]
\]

\[
= \sum_\tilde{o} \frac{\pi(A_n(s, \tilde{o}) \mid s, o)}{\pi(A_n(s, \tilde{o}) \mid s, \tilde{o})} I\{\tilde{o} \in Z_n\} (\beta(S'_n(s, A_n(s, \tilde{o})), o) \max q(S'_n(s, A_n(s, \tilde{o})), o') + (1 - \beta(S'_n(s, A_n(s, \tilde{o})), o)) q(S'_n(s, A_n(s, \tilde{o})), o) - q_n(s, o))
\]

\[
= \sum_\tilde{o} I\{\tilde{o} \in Z_n\} \sum_a \pi(a \mid s, o)
\]

\[
E[(\beta(S'_n(s, a), o) \max q(S'_n(s, a), o') + (1 - \beta(S'_n(s, a), o)) q(S'_n(s, a), o) - q(s, o))] = \sum_\tilde{o} \sum_a \pi(a \mid s, o) \sum_{s', r} p(s', r \mid s, a)(\beta(s', o) \max q(s', o') + (1 - \beta(s', o)) q(s', o) - q(s, o)),
\]

for any \(i \in I\).

We now verify the assumptions of Theorem A.1 for Intra-option General Differential Q. Assumption A.1 can be verified for \(g(q)(s, o) = \sum_a \pi(a \mid s, o) \sum_{s', r} p(s', r \mid s, a)(\beta(s', o) \max q(s', o') + (1 - \beta(s', o)) q(s', o) - q(s, o))\) easily. Assumption A.2 is satisfied for \(f(q) = \eta \sum q\). Assumption A.3 satisfies because the MDP is finite. Assumption A.4 is satisfied for \(\epsilon_n = 0\). Assumption A.5-A.7 are satisfied due to assumptions of the theorem being proved. Assumption A.8 is satisfied because

\[
r(i) - \bar{r} + g(q)(i) - q(i)
\]

\[
= \sum_\bar{a} \pi(a \mid s, o) \sum_{s', r} p(s', r \mid s, a)(r - \bar{r} + \beta(s', o) \max q(s', o') + (1 - \beta(s', o)) q(s', o)).
\]

By Theorem 2, we know that if the above equation equals to 0, then under Assumption 1, \(\bar{r} = r_* + c\) is the unique solution and the solutions for \(q\) form a set \(q = q_* + k c\) for all \(k \in \mathbb{R}\).

Therefore Theorem A.1 applies and we conclude that \(Q_n\) converges to a point satisfying \(\eta \sum q = r_* + c = r_* + \eta \sum Q_n - R_0\) and \(R_n = \eta \sum Q_n - c\) to \(\eta \sum q - c = r_* + c - c = r_*\). Finally, by Lemma A.6, we have \(r(\mu_n) \to r_*\).
Applying a similar argument as one presented in the last paragraph of Section A.2 finishes the proof of Theorem 3.

A.5 Theorem 4

Proof. We will show that there exists a unique solution for (18). Results for (19) and (20) can be shown in a similar way. To show that (18) has a unique solution, we apply a generalized version of the Banach fixed point theorem (see, e.g., Theorem 2.4 by Almezel, Ansari, and Khamsi 2014). Once the unique existence of the solution is shown, we easily verify that \(m^p \) is the unique solution by showing that it is one solution to (18) as follows. With a little abuse of notation, let \(\hat{p}(s', r \mid s, o) = \sum_{i,j} p(x, r, l \mid s, o) \), we have

\[
m^n(x|s, o) = \sum_{r,l} \hat{p}(x, r, l|s, o) = \sum_{i=1}^{\infty} \hat{p}(x, l|s, o) = \sum_{i=1}^{\infty} \pi(a|s, o) \sum_{r} p(s', r|s, a) \beta(s', o) \|x = s'\| + \sum_{i=2}^{\infty} \hat{p}(x, l|s, o)
\]

Consider the difference between \(T \) and \(T^m \), for any \(x, s \in \mathcal{S}, o \in \mathcal{O} \), \(Tm(x \mid s, o) = \sum_{a} \pi(a|s, o) \sum_{s', r} p(s', r|s, a) (\beta(s', o) \|x = s'\| + (1 - \beta(s', o)) m(x|s', o)) \). We further define \(T^n m = T(T^{n-1} m) \) for any \(n \geq 2 \) and any \(m \in \mathbb{R}^{\mathcal{S} \times \mathcal{S} \times \mathcal{O}} \). The generalized Banach fixed point theorem shows that if \(T^n \) is a contraction mapping for any integer \(n \geq 1 \) (this is called a \(n \)-stage contraction), then \(Tm = m \) has a unique fixed point. The unique fixed point immediately leads to the existence of the unique solution of (18). The existence of the unique solution and that \(m^p \) is a solution imply that \(m^p \) is the unique solution.

The only work left is to verify the following contraction property:

\[
\|T^{|\mathcal{S}|} m_1 - T^{|\mathcal{S}|} m_2\|_{\infty} \leq \gamma \|m_1 - m_2\|_{\infty},
\]

\text{A.22}

where \(m_1 \) and \(m_2 \) are arbitrary members in \(\mathbb{R}^{\mathcal{S} \times \mathcal{S} \times \mathcal{O}} \), and \(\gamma < 1 \) is some constant.

Consider the difference between \(T^{|\mathcal{S}|} m_1 \) and \(T^{|\mathcal{S}|} m_2 \) for arbitrary \(m_1, m_2 \in \mathbb{R}^{\mathcal{S} \times \mathcal{S} \times \mathcal{O}} \). For any \(x, s \in \mathcal{S}, o \in \mathcal{O} \), we have

\[
T^{|\mathcal{S}|} m_1(x \mid s, o) - T^{|\mathcal{S}|} m_2(x \mid s, o)
\]

\[
= \sum_{a} \pi(a \mid s, o) \sum_{s', r} p(s', r \mid s, a) (1 - \beta(s', o)) (T^{|\mathcal{S}|} m_1(x \mid s, o) - T^{|\mathcal{S}|} m_2(x \mid s', o))
\]

\[
= \sum_{s_1} \Pr(S_{t+1} = s_1 \mid S_t = s, O_t = o)(1 - \beta(s_1, o)) (T^{|\mathcal{S}|} m_1(x \mid s_1, o) - T^{|\mathcal{S}|} m_2(x \mid s_1, o))
\]

\[
= \sum_{s_1} \Pr(S_{t+1} = s_1 \mid S_t = s, O_t = o)(1 - \beta(s_1, o)) \sum_{s_2} \Pr(S_{t+2} = s_2 \mid S_{t+1} = s_1, O_{t+1} = o)(1 - \beta(s_2, o))
\]

\[
(T^{|\mathcal{S}|} m_1(x \mid s_2, o) - T^{|\mathcal{S}|} m_2(x \mid s_2, o))
\]

\[
+ \sum_{s_1} \Pr(S_{t+1} = s_1 \mid S_t = s, O_t = o) \prod_{i=1}^{|\mathcal{S}|} (1 - \beta(s_i, o)) (m_1(x \mid s_{[i]}, o) - m_2(x \mid s_{[i]}, o))
\]

\[
\leq \sum_{s_1} \Pr(S_{t+1} = s_1 \mid S_t = s, O_t = o) \prod_{i=1}^{|\mathcal{S}|} (1 - \beta(s_i, o)) \|m_1 - m_2\|_{\infty}.
\]
Here $\tilde{p}(s, o) = \sum_{s_1, \ldots, s_{|S|}} \Pr(S_{t+1} = s_1 \cdots, S_{t+|S|} = s_{|S|} \mid S_t = s, O_t = o) \prod_{i=1}^{|S|} (1 - \beta(s_i, o))$ is the probability of executing option o for $|S|$ steps starting from s without termination. If $\tilde{p}(s, o) = 0$, then option o will surely terminate within the first $|S|$ steps and if $\tilde{p}(s, o) = 1$, then option o will surely not terminate within the first $|S|$ steps.

If option o would surely not terminate within the first $|S|$ steps ($\tilde{p}(s, o) = 1$), then it would surely not terminate forever. This is because there are only $|S|$ number of states, and thus an option could visit all states that are possible to be visited by the option within the first $|S|$ steps. $\tilde{p}(s, o) = 1$ means that option o has a zero probability of terminating in all states that are possible to be visited by option o. This non-termination of a state-option pair implies that the expected option length is infinite, which is contradict to our assumption of finite expected option lengths (Section 2). Therefore $\tilde{p}(s, o) = 1$ is not allowed by our assumption and thus $\tilde{p}(s, o) < 1$. So there must exist some $\gamma(s, o) < 1$ such that $\tilde{p}(s, o) \leq \gamma(s, o)$. With $\gamma = \max_{s, o} \gamma(s, o)$, we obtain (A.22).

A.6 Theorem 5

We first provide a formal statement of Theorem 5. The formal theorem statement needs stepsizes to be specific for each state-option pair. We rewrite (21–23) to incorporate such stepsizes:

$$M_{t+1}^p(x \mid S_t, o) \equiv M_t^p(x \mid S_t, o) + \alpha_t(S_t, o)p_t(o) \left(\beta(S_{t+1}, o)\|S_{t+1} = x \right.$$

$$+ (1 - \beta(S_{t+1}, o))M_t^p(x \mid S_{t+1}, o) - M_t^p(x \mid S_t, o) \right), \quad \forall x \in S,$$

(A.23)

$$M_{t+1}^1(S_t, o) \equiv M_t^1(S_t, o) + \alpha_t(S_t, o)p_t(o) \left(R_{t+1} + (1 - \beta(S_{t+1}, o))M_t^1(S_{t+1}, o) - M_t^1(S_t, o) \right)$$

(A.24)

$$M_{t+1}^1(S_t, o) \equiv M_t^1(S_t, o) + \alpha_t(S_t, o)p_t(o) \left(1 + (1 - \beta(S_{t+1}, o))M_t^1(S_{t+1}, o) - M_t^1(S_t, o) \right).$$

(A.25)

Theorem A.4 (Convergence of the intra-option model learning algorithm, formal). If $0 \leq \alpha_t(s, o) \leq 1$, $\sum_t \alpha_t(s, o) = \infty$ and $\sum_t \alpha_t^2(s, o) < \infty$, and $\alpha_t(s, o) = 0$ unless $s = S_t$, then the intra-option model-learning algorithm (A.23–A.25) converges almost surely, M_0^p to m^p, M_0^1 to m^1, and M_1^1 to m^1.

Here the assumptions on α_t guarantee that each state-option pair is updated for an infinite number of times. Because the three update rules are independent, we only show convergence of the first update rule; the other two can be shown in the same way.

Proof. We apply a slight generalization of Theorem 3 by Tsitsiklis (1994) to show the above theorem. The generalization replaces Assumption 5 (an assumption for Theorem 3) by:

Assumption A.10. There exists a vector $x^* \in \mathbb{R}^n$, a positive vector v, a positive integer m, and a scalar $\beta \in [0, 1)$, such that

$$\|F^m(x) - x^*\|_v \leq \beta \|x - x^*\|_v, \quad \forall x \in \mathbb{R}^n.$$

That is, we replace the one-stage contraction assumption by a m-stage contraction assumption. The proof of Tsitsiklis’ Theorem 3 also applies to its generalized form and is thus omitted here.

Notice that our update rule (A.23) is a special case of the general update rule considered by Theorem 3 (equations 1-3), and is thus a special case of its generalized version. Therefore we only need to verify the above $m-$stage contraction assumption, as well as Assumption 1, 2, and 3 required by Theorem 3. According to the proof in Appendix A.5, the operator T associated with the update rule (21) is a $|S|$-stage contraction (and thus is a $|S|$-stage pseudo-contraction). Other assumptions (Assumptions 1, 2, 3) required by Theorem 3 are also satisfied given our step-size, and finite MDP assumptions.
A.7 Theorem 6

Proof. We first show that
\[
\sum_{o'} \mu'(o' \mid s) \sum_{s', r, l} \hat{p}(s', r, l \mid s, o')(r - lr(\mu) + v_\mu(s')) \\
\geq \sum_{o} \mu(o \mid s) \sum_{s', r, l} \hat{p}(s', r, l \mid s, o)(r - lr(\mu) + v_\mu(s')) = v_\mu(s). \tag{A.26}
\]

Note that for all \(s, o\) and its corresponding \(o', \mu(o \mid s) = \mu'(o' \mid s)\). In order to show (A.26), we show \(\sum_{s', r, l} \hat{p}(s', r, l \mid s, o')(r - lr(\mu) + v_\mu(s')) \geq \sum_{s', r, l} \hat{p}(s', r, l \mid s, o)(r - lr(\mu) + v_\mu(s'))\) for all \(s, o\) and corresponding \(o'\).

\[
\sum_{s', r, l} \hat{p}(s', r, l \mid s, o)(r - lr(\mu) + v_\mu(s')) \\
= \mathbb{E} [\hat{R}_n - \hat{L}_n r(\mu) + v_\mu(\hat{S}_{n+1}) \mid S_n = s, O_n = o'] \\
= \mathbb{E} [\hat{R}_n - \hat{L}_n r(\mu) + v_\mu(\hat{S}_{n+1}) \mid S_n = s, O_n = o', \text{Not encountering an interruption}] \\
+ \mathbb{E} [\hat{R}_n - \hat{L}_n r(\mu) + v_\mu(\hat{S}_{n+1}) \mid S_n = s, O_n = o', \text{Encountering an interruption}] \\
\geq \mathbb{E} [\beta(s')(\hat{R}_n - \hat{L}_n r(\mu) + v_\mu(\hat{S}_{n+1})) + (1 - \beta(s'))(\hat{R}_n - \hat{L}_n r(\mu) + q_\mu(\hat{S}_{n+1}, o)) \mid S_n = s, O_n = o', \text{Encountering an interruption}] \\
= \sum_{s', r, l} \hat{p}(s', r, l \mid s, o)(r - lr(\mu) + v_\mu(s')).
\]

The above inequality holds because \(\hat{S}_{n+1}\) is the state where termination happens and thus \(q_\mu(\hat{S}_{n+1}, o) \leq v_\mu(\hat{S}_{n+1})\). The last equality holds because \(\mathbb{E} [\beta(s')(\hat{R}_n - \hat{L}_n r(\mu) + v_\mu(\hat{S}_{n+1})) + (1 - \beta(s'))(\hat{R}_n - \hat{L}_n r(\mu) + q_\mu(\hat{S}_{n+1}, o)) \mid S_n = s, O_n = o', \text{Encountering an interruption}]\) is the expected differential return when the agent could interrupt its old option but chooses to stick on the old option. (A.26) is shown.

Now write the l.h.s. of (A.26) in the matrix form
\[
\sum_{o'} \mu'(o' \mid s) \sum_{s', r, l} \hat{p}(s', r, l \mid s, o', o)(r - lr(\mu) + v_\mu(s')) = r_{\mu'}(s) - l_{\mu'}(s)r(\mu) + (P_{\mu'} v_\mu)(s),
\]
where \(r_{\mu'}(s) \doteq \sum_{o'} \mu'(o' \mid s) \sum_{s', r, l} \hat{p}(s', r, l \mid s, o', o)r\) is the expected one option-transition reward, \(l_{\mu'}(s) \doteq \sum_{o'} \mu'(o' \mid s) \sum_{s', r, l} \hat{p}(s', r, l \mid s, o', o)l\) is the expected one option-transition length, and \(P_{\mu'}(s, s') \doteq \sum_{o'} \mu'(o' \mid s) \sum_{s' r l} \hat{p}(s', r, l \mid s, o, o' l)\) is the probability of terminating at \(s'\).

Combined with the r.h.s. of (A.26), we have
\[
r_{\mu'}(s) - l_{\mu'}(s)r(\mu) + (P_{\mu'} v_\mu)(s) \geq v_\mu(s).
\]

Iterating the above inequality for \(K - 1\) times, we have
\[
\sum_{k=0}^{K-1} (P_{\mu'}^k r_{\mu'}(s) - P_{\mu'}^k l_{\mu'}(s)r(\mu)) + P_{\mu'}^K v_\mu(s) \geq v_\mu(s)
\]
\[
\sum_{k=0}^{K-1} (P_{\mu'}^k r_{\mu'}(s) - P_{\mu'}^k l_{\mu'}(s)r(\mu)) \geq v_\mu(s) - P_{\mu'}^K v_\mu(s).
\]

Divide both sides by \(\sum_{k=0}^{K-1} P_{\mu'}^k l_{\mu'}(s)\) and take \(K \to \infty\):
\[
\lim_{K \to \infty} \frac{1}{\sum_{k=0}^{K-1} P_{\mu'}^k l_{\mu'}(s)} \sum_{k=0}^{K-1} (P_{\mu'}^k r_{\mu'}(s) - P_{\mu'}^k l_{\mu'}(s)r(\mu)) \geq \lim_{K \to \infty} \frac{1}{\sum_{k=0}^{K-1} P_{\mu'}^k l_{\mu'}(s)} (v_\mu(s) - P_{\mu'}^K v_\mu(s)).
\]

29
For the l.h.s.:

\[
\lim_{K \to \infty} \frac{1}{\sum_{k=0}^{K-1} P_{\mu'}^k l_{\mu'}(s)} \sum_{k=0}^{K-1} \left(P_{\mu'}^k r_{\mu'}(s) - P_{\mu'}^k l_{\mu'}(s)r(\mu) \right) = \lim_{K \to \infty} \frac{\sum_{k=0}^{K-1} P_{\mu'}^k r_{\mu'}(s)}{\sum_{k=0}^{K-1} P_{\mu'}^k l_{\mu'}(s)} - r(\mu) = r(\mu') - r(\mu).
\]

For the r.h.s.:

\[
\lim_{K \to \infty} \frac{1}{\sum_{k=0}^{K-1} P_{\mu'}^k l_{\mu'}(s)} (v_{\mu}(s) - P_{\mu'}^K v_{\mu}(s)) = 0.
\]

Therefore \(r(\mu') - r(\mu) \geq 0\).

Finally, note that a strict inequality holds if the probability of interruption when following policy \(\mu'\) is non-zero.
B Additional Empirical Results

B.1 Inter-option Learning

Figure B.1: Plots showing a parameter study for inter-option Differential Q-learning and the set of options $\mathcal{O} = \mathcal{H} + \mathcal{A}$ in the continuing Four-Room domain when the goal was to go to $G1$. Same experimental setups are used as what was described in Section 3. The x-axis denotes step size α; the y-axis denotes the rate of the rewards averaged over all 200,000 steps of training, reflecting the rate of learning. The error bars denote one standard error. The algorithm’s rate of learning varied little over a broad range of its parameters α, β and η. Small standard error bars show that the algorithm’s performance varied little over multiple runs.
Figure B.2: Plots showing a parameter study for inter-option Differential Q-learning and the set of options \(O = \mathcal{H} \) in the continuing Four-Room domain when the goal was to go to \(G_1 \). The experimental setting and the plot axes are the same as mentioned in Figure B.1. Compared with Figure B.1, it can be seen that the algorithm’s rate of learning with \(O = \mathcal{H} \) was worse than it with \(O = \mathcal{H} + \mathcal{A} \). This is because there is no hallway option from \(\mathcal{H} \) can takes the agent to \(G_1 \). The algorithm’s rate of learning varied little over a broad range of its parameters \(\alpha, \beta \) and \(\eta \), and also varied little over multiple runs.
Figure B.3: Plots showing a parameter study for inter-option Differential Q-learning and the set of options $O = A$ in the continuing Four-Room domain when the goal was to go to G_1. Note that with options being primitive actions, the algorithm becomes exactly the same as Differential Q-learning by Wan et al. (2021). The experimental setting and the plot axes are the same as mentioned in Figure B.1. Compared with Figure B.1, it can be seen that the algorithm’s rate of learning with $O = A$ was worse than it with $O = H + A$, particularly for small α. The algorithm’s rate of learning did not vary too much over a broad range of its parameters β and η, and also varied little over multiple runs. The algorithm’s performance is more sensitive to the choice of α.
B.2 Intra-option Q-learning

Figure B.4: Plots showing a parameter study for intra-option Differential Q-learning with the set of options $O = \mathcal{H}$ in the continuing Four-Room domain when the goal was to go to G_2. The algorithm used a behavior policy consisting only of primitive actions. The hallway options were never executed. The experimental setting and the plot axes are the same as mentioned in Section 4. The algorithm’s rate of learning varied little over a broad range of its parameters α and η, and also varied little over multiple runs.

B.3 Interruption

Figure B.5: Plots showing parameter studies for intra-option Differential Q-learning with and without interruption in the continuing Four-Room domain when the goal was to go to G_3. The algorithm used the set of hallway options $O = \mathcal{H}$. The experimental setting and the plot axes are the same as mentioned in Section 6. The algorithm’s rate of learning with interruption was higher than it without interruption for medium sized choices of α. When a large or small α was used, interruption produced a worse rate of learning. The algorithm’s rate of learning varied not too much over a broad range of its parameters η and varied little over multiple runs, regardless of interruption. The algorithm’s rate of learning was more sensitive to α when interruption is used.

B.4 Prediction Experiments

We also performed a set of experiments to show that both inter- and intra-option Differential Q-evaluation can learn the reward rate well. The tested environment is the same as the one used to test inter-option Differential Q-learning (with G_1). The set of options consists of 4 primitive actions and 8 hallway options. For each state, the behavior policy randomly picks an option. The target policy is an optimal policy, which induces a reward rate 0.0625. We ran both inter- and intra option Differential Q-evaluation in this problem. The parameters used are the same with those used in inter- and intra-option Differential Q-learning experiments. The sensitivity of the two algorithms w.r.t. the parameters is shown in Figure B.6 and Figure B.7. Inter-option algorithm’s reward rate error is quite robust to β. Intra-option algorithm’s reward rate error is generally better than Inter-option algorithm’s reward rate error unless a large stepsize like $\alpha = 0.5$ is used.
Figure B.6: Plots showing parameter studies for inter-option Differential Q-evaluation in the continuing Four-Room domain when the goal was to go to G1. The algorithm used the set of primitive actions and the set of hallway options $O = A + H$. The y-axis is the absolute difference between the optimal reward rate 0.0625 and the estimated reward rate, averaged over all 200,000 steps.

Figure B.7: Plots showing parameter studies for intra-option Differential Q-evaluation in the continuing Four-Room domain when the goal was to go to G1. The setting is the same as the one used for intra-option Differential Q-evaluation.
C Additional Discussion

C.1 Two Failed Attempts on Extending Differential Q-learning to an Inter-option Algorithm

The authors have tried two other ways of extending Differential Q-learning to an Inter-option Algorithm (cf. Section 3). While these two ways appear to work properly at the first glance, they do not actually. We now show these two approaches and explain why they do not work properly.

The first extension uses, for each option, the average-reward rate per-step instead of the total reward as the reward of the option. In particular, such an extension use update rules (3) and (4), but with TD error defined as:

$$\delta'_n = \frac{\hat{R}_n}{\hat{L}_n} - \left(\frac{\bar{R}_n}{\hat{L}_n} + \max_o Q_n(\hat{S}_{n+1}, o) - Q_n(\hat{S}_n, \hat{O}_n) \right)$$ \hspace{2cm} (C.1)

Unfortunately, such an extension can not guarantee convergence to a desired point. Specifically, the extension, if converges, will converge to a solution of $E[\delta'_n] = 0$ which is not necessarily a solution of the Bellman equation $E[\delta_n] = 0$ (Equation 2).

An alternative approach to avoid the instability issue is to shrink the entire update, not the option’s cumulative reward, by the sample length:

$$Q_{n+1}(\hat{S}_n, \hat{O}_n) = Q_n(\hat{S}_n, \hat{O}_n) + \frac{\alpha_n \delta_n}{\hat{L}_n},$$ \hspace{2cm} (C.2)

$$\bar{R}_{n+1} = \bar{R}_n + \eta \alpha_n \delta_n / \hat{L}_n.$$ \hspace{2cm} (C.3)

Still, the above two updates can not guarantee convergence to the desired values because, again, $E[\delta_n / \hat{L}_n] = 0$ does not imply that the Bellman equation $E[\delta_n] = 0$ is satisfied.

C.2 Pseudocodes

\begin{algorithm}
\textbf{Algorithm 1:} Inter-option Differential Q-learning
\begin{algorithmic}[1]
\State \textbf{Input:} Behavioral policy μ_b’s parameters (e.g., ϵ for ϵ-greedy)
\State \textbf{Algorithm parameters:} step-size parameters α, η, β
\State Initialize $Q(s, o) \forall s \in S, o \in O$, \hat{R} arbitrarily (e.g., to zero); $L(s, o) \leftarrow 1 \forall s \in S, o \in O$
\State Obtain initial S
\While{still time to train}
\State Initialize $\hat{L} \leftarrow 0, \hat{R} \leftarrow 0, S_{tmp} \leftarrow S$
\State $O \leftarrow$ option sampled from $\mu_b(\cdot | S)$
\Do
\State Sample primitive action $A \sim \pi(\cdot | S, O)$
\State Take action A, observe R, S'
\State $\hat{L} \leftarrow \hat{L} + 1$
\State $\hat{R} \leftarrow \hat{R} + R$
\State $S \leftarrow S'$
\EndDo
\While{O doesn’t terminate in S'}
\State $S \leftarrow S_{tmp}$
\State $L(S, O) \leftarrow L(S, O) + \beta(\hat{L} - L(S, O))$
\State $\delta \leftarrow \hat{R} - \bar{R} \cdot L(S, O) + \max_o Q(S', o) - Q(S, O)$
\State $Q(S, O) \leftarrow Q(S, O) + \alpha \delta / L(S, O)$
\State $\bar{R} \leftarrow \bar{R} + \eta \alpha \delta / L(S, O)$
\State $S \leftarrow S'$
\EndWhile
\State return Q
\end{algorithmic}
\end{algorithm}
Algorithm 2: Inter-option Differential Q-evaluation (learning)

Input: Behavioral policy \(\mu_b \), target policy \(\mu \)

Algorithm parameters: step-size parameters \(\alpha, \eta, \beta \)

1. Initialize \(Q(s, o) \forall s \in S, o \in O, \bar{R} \) arbitrarily (e.g., to zero); \(L(s, o) \leftarrow 1 \forall s \in S, o \in O \)
2. Obtain initial \(S \)
3. **while still time to train do**
 4. Initialize \(\hat{L} \leftarrow 0, \hat{R} \leftarrow 0, S_{\text{tmp}} \leftarrow S \)
 5. \(O \leftarrow \) option sampled from \(\mu_b(\cdot | S) \)
 6. **do**
 7. Sample primitive action \(A \sim \pi(\cdot | S, O) \)
 8. Take action \(A \), observe \(R, S' \)
 9. \(\hat{L} \leftarrow \hat{L} + 1 \)
 10. \(\hat{R} \leftarrow \hat{R} + R \)
 11. \(S \leftarrow S' \)
 12. **while** \(O \) doesn’t terminate in \(S' \)
 13. \(S \leftarrow S_{\text{tmp}} \)
 14. \(L(S, O) \leftarrow L(S, O) + \beta(\hat{L} - L(S, O)) \)
 15. \(\delta \leftarrow \hat{R} - \bar{R} - \beta \hat{L}(S, O) + \sum_o \mu(o | S') Q(S', o) - Q(S, O) \)
 16. \(Q(S, O) \leftarrow Q(S, O) + \alpha \delta / L(S, O) \)
 17. \(\bar{R} \leftarrow \bar{R} + \eta \alpha \delta / L(S, O) \)
 18. \(S \leftarrow S' \)
 19. **end**
20. return \(Q \)

Algorithm 3: Intra-option Differential Q-learning

Input: Behavioral policy \(\mu_b \)'s parameters (e.g., \(\epsilon \) for \(\epsilon \)-greedy)

Algorithm parameters: step-size parameters \(\alpha, \eta \)

1. Initialize \(Q(s, o) \forall s \in S, o \in O, \bar{R} \) arbitrarily (e.g., to zero)
2. Obtain initial \(S \)
3. **while still time to train do**
 4. \(O \leftarrow \) option sampled from \(\mu_b(\cdot | S) \)
 5. **do**
 6. Sample primitive action \(A \sim \pi(\cdot | S, O) \)
 7. Take action \(A \), observe \(R, S' \)
 8. \(\Delta = 0 \)
 9. **for all options \(o \) do**
 10. \(\rho \leftarrow \pi(A | S, o) / \pi(A | S, O) \)
 11. \(\delta \leftarrow R - \bar{R} - (1 - \beta(S', o)) Q(S', o) + \beta(S', o) \max_{o'} Q(S', o') - Q(S, o) \)
 12. \(Q(S, o) \leftarrow Q(S, o) + \alpha \rho \delta \)
 13. \(\Delta \leftarrow \Delta + \eta \alpha \rho \delta \)
 14. **end**
 15. \(\hat{R} \leftarrow \hat{R} + \Delta \)
 16. \(S \leftarrow S' \)
 17. **while** \(O \) doesn’t terminate in \(S \)
 18. **end**
20. return \(Q \)
Algorithm 4: Intra-option Differential Q-learning with interruption

\textbf{Input}: Behavioral policy \(\mu_b\)’s parameters (e.g., \(\epsilon\) for \(\epsilon\)-greedy)

\textbf{Algorithm parameters}: step-size parameters \(\alpha, \eta\)

1. Initialize \(Q(s, o) \forall s \in S, o \in O, R\) arbitrarily (e.g., to zero)
2. Obtain initial \(S\)
3. \(O \leftarrow \text{option sampled from } \mu_b(\cdot | S)\)
4. \textbf{while} still time to train \textbf{do}
5. \hspace{1em} if \(O \notin \text{argmax } Q(S, \cdot)\) then
6. \hspace{2em} \(O \leftarrow \text{option sampled from } \mu_b(\cdot | S)\)
7. \hspace{1em} end
8. \hspace{1em} Sample primitive action \(A \sim \pi(\cdot | S, O)\)
9. \hspace{1em} Take action \(A\), observe \(R, S'\)
10. \(\Delta = 0\)
11. \textbf{for} all options \(o\) \textbf{do}
12. \hspace{1em} \(\rho \leftarrow \pi(A | S, o) / \pi(A | S, O)\)
13. \hspace{1em} \(\delta \leftarrow R - \bar{R} + \left((1 - \beta(S', o))Q(S', o) + \beta(S', o) \max_{o'} \mu(o' | S')Q(S', o') \right) - Q(S, o)\)
14. \hspace{1em} \(Q(S, o) \leftarrow Q(S, o) + \alpha\rho\delta\)
15. \hspace{1em} \(\Delta \leftarrow \Delta + \eta\alpha\rho\delta\)
16. \hspace{1em} end
17. \(\bar{R} \leftarrow \bar{R} + \Delta\)
18. \(S \leftarrow S'\)
19. end
20. return \(Q\)

Algorithm 5: Intra-option Differential Q-evaluation (learning)

\textbf{Input}: Behavioral policy \(\mu_b\), target policy \(\mu\)

\textbf{Algorithm parameters}: step-size parameters \(\alpha, \eta\)

1. Initialize \(Q(s, o) \forall s \in S, o \in O, R\) arbitrarily (e.g., to zero)
2. Obtain initial \(S\)
3. \textbf{while} still time to train \textbf{do}
4. \hspace{1em} \(O \leftarrow \text{option sampled from } \mu_b(\cdot | S)\)
5. \hspace{1em} \textbf{do}
6. \hspace{2em} Sample primitive action \(A \sim \pi(\cdot | S, O)\)
7. \hspace{2em} Take action \(A\), observe \(R, S'\)
8. \hspace{2em} \(\Delta = 0\)
9. \hspace{2em} \textbf{for} all options \(o\) \textbf{do}
10. \hspace{3em} \(\rho \leftarrow \pi(A | S, o) / \pi(A | S, O)\)
11. \hspace{3em} \(\delta \leftarrow R - \bar{R} + \left((1 - \beta(S', o))Q(S', o) + \beta(S', o) \sum_{o'} \mu(o' | S')Q(S', o') \right) - Q(S, o)\)
12. \hspace{3em} \(Q(S, o) \leftarrow Q(S, o) + \alpha\rho\delta\)
13. \hspace{3em} \(\Delta \leftarrow \Delta + \eta\alpha\rho\delta\)
14. \hspace{3em} end
15. \hspace{2em} \(\bar{R} \leftarrow \bar{R} + \Delta\)
16. \hspace{2em} \(S \leftarrow S'\)
17. \hspace{2em} \textbf{while } O \text{ doesn’t terminate in } S \textbf{do}
18. \hspace{3em} end
19. \hspace{1em} end
20. return \(Q\)
Algorithm 6: Combined Algorithm: Intra-option Model-learning + Inter-option Q-planning

Input: Behavioral policy μ_b’s parameters (e.g., ϵ for ϵ-greedy)

Algorithm parameters: step-size parameters α, β, η; number of planning steps per time step n

1. Initialize $Q(s, o), P(x \mid s, o), R(s, o) \forall s, x \in S, o \in O, \bar{R},$ arbitrarily (e.g., to zero);

 $L(s, o) = 1 \forall s \in S, o \in O; T \leftarrow False$

2. **while** still time to train **do**
3. $S \leftarrow$ current state
4. $O \leftarrow$ option sampled from $\mu_b(\cdot \mid S)$
5. **while** T is False **do**
6. Sample primitive action $A \sim \pi(\cdot \mid S, O)$
7. Take action A, observe R', S'
8. for all options o such that $\pi(A \mid S, o) > 0$ **do**
9. $\rho \leftarrow \pi(A \mid S, o)/\pi(A \mid S, O)$
10. for all states $x \in S$ **do**
11. $P(x \mid S, o) \leftarrow P(x \mid S, o) + \beta \rho \left(\beta(S', o) \mathbb{I}(S' = x) + (1 - \beta(S', o)) P(x \mid S', o) - P(x \mid S, o) \right)$
12. end
13. $R(S, o) \leftarrow R(S, o) + \beta \rho \left(R' + (1 - \beta(S', o)) R(S', o) - R(S, o) \right)$
14. $L(S, o) \leftarrow L(S, o) + \beta \rho \left(1 + (1 - \beta(S', o)) L(S', o) - L(S, o) \right)$
15. end
16. $T \leftarrow$ indicator of termination sampled from $\beta(S', O)$
17. **for all of the n planning steps** **do**
18. $S \leftarrow$ a random previously observed state
19. $O \leftarrow$ a random option previously taken in S
20. $S' \leftarrow$ a sampled state from $P(\cdot \mid S, O)$
21. $\delta \leftarrow R(S, O) - L(S, O) \bar{R} + \max_o Q(S', o) - Q(S, O)$
22. $Q(S, O) \leftarrow Q(S, O) + \alpha \delta/L(S, O)$
23. $\bar{R} \leftarrow \bar{R} + \eta \alpha \delta/L(S, O)$
24. end
25. end
26. return Q