Quantum criticality has been a focus of interest both in theoretical and experimental physics over the past few decades. It is believed to be a key ingredient in the solution to the various yet unsolved problems such as the high T_c superconductivity [1]. In particular, the dynamics of a system near a continuous quantum phase transition is governed by a universal, scale invariant theory characterized by the dimensionality d, the dynamical scaling exponent z and the various other critical exponents that are independent of the microscopic Hamiltonian of the system. In these systems, the characteristic energy scale Δ, such as the gap separating the Hamiltonian of the system. We answer this question partially in the earlier results for $z = 1$, following the seminal work of [10]. We will investigate equilibration processes in strongly interacting systems that can be modeled by holography [7, 8]. There is, by now, a substantial amount of work in the literature that goes by the name holographic thermalization, concerning this problem in the case of relativistic scaling, $z = 1$, following the seminal work of [10]. The problem of equilibration is mapped onto the evolution of a black brane geometry in the dual gravitational description. Thus, we obtain the fully nonlinear evolution of the black brane starting from the aforementioned initial conditions that correspond to anisotropy in pressure and we determine the isotropization of the system in time. In accordance with the earlier results for $z = 1$, e.g. [11, 12], we find that the system equilibrates quite rapidly, with isotropization times of the order $\sim 1/T$. At later times, close to global thermal equilibrium, the evolution of the system is characterized by the quasinormal modes of the black brane [13]. In particular the relaxation time τ above is related to the lowest lying quasinormal frequency as $\tau = -1/\Delta \omega_0$. We find that the relaxation times are determined by the ratio $z/(d-1)$ and fall in a narrow range. This agrees with our results of the nonlinear evolution.

Gravitational model. — The holographic description of field theories with Lifshitz scaling at criticality and zero temperature was initiated in [14]. To describe non-relativistic plasmas holographically in the critical region at non-zero temperature, black brane solutions with Lifshitz asymptotics can be used [15]. The Hawking temperature of the black brane corresponds, via holography, to the temperature of the dual field theory. The action for this model is given by

\[S = \frac{1}{16\pi G} \int d^{d+1}x \sqrt{-g} \left[R - \Lambda - \frac{1}{2} (\partial \phi)^2 - \frac{e^{\lambda \phi^2}}{4} F^2 \right] , \]

where $\Lambda = -(d + z - 1)(d + z - 2)$ is the cosmological constant, $\lambda = -\sqrt{2(d-1)/(z+1)}$, and z is the dynamical scaling exponent, which is bounded by the null energy condition to be $z \geq 1$ [16]. The scalar field ϕ and the gauge field $F = dA$ are needed to support the Lifshitz geometry.

We consider an anisotropic but homogeneous system,
which we describe using the following Ansatz \[17\]
\[
ds^2 = - f(t, r) dt^2 + 2 r z^{-1} dt dr + \]
\[+ S(t, r)^2 \left[e^{(d-2)B(t, r)} x_1^2 + e^{-B(t, r)} d\tilde{x}_{d-2}^2 \right], \quad \text{(2)}
\]
\[A = a(r, t) dt, \quad \phi = \phi(r, t). \]

We take the gauge \[A_r = 0,\] which is essential to obtain the nested form of the equations \[9\]. The function \[B(t, r)\] expresses the anisotropy of the black brane. The boundary, where the plasma lives, is at \(r \to \infty\) and the horizon is denoted by \(r_H\). From the viewpoint of holography this setup is dual to a nonrelativistic plasma with a pressure difference between the longitudinal direction \(x_1\) and transversal directions \(\tilde{x}_{d-2}\).

By solving the equations of motion near the boundary, imposing Lifshitz asymptotics, we obtain
\[
f(r, t) = r^{2z} + \mathcal{E} r^{z+1-d} - \frac{5}{8} \mathcal{P}(t)^2 + ... , \quad \text{(3a)}
\]
\[
S(r, t) = r - n_S \frac{\mathcal{P}(t)^2}{r^{2(d-1)} - 3} + ... , \quad \text{(3b)}
\]
\[
\phi(r, t) = \phi_0 \log \frac{r^{2(d-1)}}{2(z-1)(z+d-1)} - \frac{2 n_S \mathcal{P}(t)^2}{r^{2(d-1)} - 3} + ... , \quad \text{(3c)}
\]
\[
a'(r, t) = r^{z+d-2} - (d-1) n_S \frac{\mathcal{P}(t)^2}{r^{d-1}} + ... , \quad \text{(3d)}
\]
\[
B(r, t) = \mathcal{P}(t) \frac{r^{d+z-1}}{z} + \frac{1}{z} \frac{\partial_t \mathcal{P}(t)}{r^{d+z-1}} + \quad \text{(3e)}
\]

Where \(n_S = (d-2)/8(d+z-1)/(2(d-1)+z)\) and \(\phi_0 = \sqrt{\frac{1}{2}} (z-1)/(d-1)\). In contrast to \[10\] we do not quench the system, but consider the equilibration of an out of equilibrium state, so do not turn on a source for \(B\).

In this expansion there are two free coefficients \(\mathcal{E}\) and \(\mathcal{P}\). The \(\mathcal{E}\) is the normalizable mode of \(f\) and it is proportional to the energy, which is required to be constant by the equations of motion. The function \(\mathcal{P}\) is the normalizable mode of \(B\) and will be related to the pressure difference. For \(\mathcal{P} = 0\) we recover the static black brane solution with \(\mathcal{E} = -\sqrt{16}\) \[15\]. The Hawking temperature is given by \(T_0 = \frac{d+z-1}{4\pi r_H^2}\). We stress that the scalar and gauge field do not have independent modes, they are completely determined by the metric and do not have any intrinsic dynamics.

To obtain vacuum expectation values, we need the counterterm action on the boundary. For our setup this can be obtained by generalizing e.g. the analysis of \[18\] to arbitrary dimensions,
\[
\mathcal{S}_{\text{ct}} = \frac{1}{8\pi G} \int d^4 x \sqrt{-g} \left[-2d - 3 + \frac{d + z - 1}{2} e^{\lambda \phi} A^2 \right]. \quad \text{(4)}
\]

Notice that it breaks gauge invariance, but this is not an issue since the gauge field is not normalizable and not used to induce a chemical potential on the boundary \[19\]. For \(z = 1\) there is no gauge field, so the first term is enough.

Following \[18\] this yields a boundary energy momentum tensor in the coordinate basis \((t, x_1, \tilde{x}_{d-2})\),
\[
T_{\mu \nu} = \frac{N^2}{2\pi^2} \text{diag} (E, P_L, P_T, ..., P_T), \quad \text{(5)}
\]
where \(E = -\frac{d+1}{4}\) \(\mathcal{E}\) and \(\Delta P = P_L - P_T = (\frac{d-2}{4}) P(t)\). It satisfies the Ward identity \(z E = P_L + (d-2) P_T\). In equilibrium the pressure \(P_0 = -\frac{z}{2} \mathcal{E}\).

Numerical Methods. — The numerical method we use to obtain solutions is an adaptation of \[10\] to asymptotically Lifshitz spacetimes. Using the ansatz in Eq. \[2\] and working with null derivatives \(h'' = \partial_t h\) and \(h \equiv \partial_t h + \frac{1}{2} r^{1-z} f \partial_r h\), the equations of motion can be put in a nested structure of linear ODEs,
\[
0 = S'' + \frac{1-z}{2} S' + \frac{1}{2(2d-1)} S_0'^2 + \frac{d-2}{4} S B'^2, \quad \text{(6a)}
\]
\[
0 = a'' + a' \left(\frac{1-z}{r} + (d-1) \frac{S'}{S} + \lambda \phi' \right), \quad \text{(6b)}
\]
\[
0 = (\dot{S})' + (d-2) \frac{S'}{S} \dot{S} + \frac{\Lambda z-1}{2(d-1)} \frac{r^{1-z} \phi \lambda \phi}{4(d-1)} a'^2, \quad \text{(6c)}
\]
\[
0 = (\dot{B})' + \frac{d-1}{2} \frac{S'}{S} \dot{B} + \frac{d-1}{2} \frac{S'}{S} B', \quad \text{(6d)}
\]
\[
0 = (\dot{\phi})' + \frac{d-1}{2} \frac{S'}{S} \dot{\phi} + \frac{d-1}{2} \frac{S'}{S} \phi' + \frac{\lambda}{4} r^{1-z} \phi \lambda \phi a'^2, \quad \text{(6e)}
\]
\[
0 = (f'') + \frac{1-z}{2} f' - (d-2)(d+1) r^{z-1} \frac{S'^2'}{S^2} + r^{z-1} \phi \dot{\phi}', \quad \text{(6f)}
\]
\[
+ \frac{(d-1)(d-2)}{2} r^{z-1} B B' - \frac{d-3}{d-1} \Lambda e^{2z-2} - \frac{3d-5}{2(d-1)} e^{\lambda \phi} a'^2, \quad \text{(6g)}
\]
\[
0 = (a')' + a' \left(\frac{(d-1)}{2} \frac{\dot{S}}{S} + \lambda \phi' - \frac{z-1}{2} r^{1-z} f' \right), \quad \text{(6h)}
\]

Given initial profiles \(B(t = 0, r)\) and \(\phi(t = 0, r)\), the first equation is an ODE for \(S\). Having solved this, the second becomes an ODE for \(a'\), and so we solve for the full geometry at \(t = 0\) by solving linear ODE’s. In these equations we consider \(\dot{S}\) independent of \(S\), and similarly for the other functions. Numerically, we use pseudospectral methods \[20\] to solve these equations. All plots were generated with a grid of 40 points. After solving one timestep, we can use \(B, \dot{B}\) and \(f\) to find \(\partial_t B\) from the definition of the dot. We use a 4th order Adams Bashforth stepper to evolve this to the next timestep. We do the same for \(\phi\), and then start the procedure again \[21\].

For the numerics we change the radial coordinate to \(u = r^{-z}\). One computes the event horizon by solving the equation \(\partial_t u_H(t) = -\frac{z}{2} f(u_H(t), t)\), arising from \(ds^2 = 0\), with the boundary condition at late times \(f(u_H(t), t)|_{t \to \infty} = 0\). We also have an apparent horizon, defined as the location of the largest trapped surface,
Results.— We analyse the nonlinear evolution for the cases $3 \leq d \leq 5$ and $1 \leq z \leq 4$. For the initial profiles we take the pressure to be $\frac{\Delta P(t=0)}{P_0} = 1$. This defines \mathcal{P} (we set time derivatives to 0) and to obtain consistent profiles we plug this in the near boundary expansion [3a].

We highlight the case $d = 4$ and $z = 2$, which is physically the most interesting. In Figure 1a the evolution of the anisotropy function B over the whole bulk spacetime is plotted. Next to it is a plot showing the effects of backreaction in the same evolution. We plot the area density of the event horizon and the apparent horizon in Figure 1b in [22] it is argued that the latter corresponds to the entropy, which strictly increases here. These are all consistency checks of our numerics [23]. We also see that the temperature decreases in time. In all cases considered, the above consistency checks are valid and Figure 1b looks qualitatively the same.

The bulk evolution of B describes the evolution of a pressure difference of the boundary theory through the function \mathcal{P}, which we turn to now. In Figure 2 we show the time evolution of the pressure difference. The system isotropizes on a timescale of the order of the inverse temperature. Note first that for the cases where $z \geq d - 1$, there are no oscillations, the system is overdamped. This will be more clear when we look at the quasinormal modes, and is in agreement with [24].

The anisotropy B obeys the massless Klein-Gordon equation at zero momentum. After redefining $t = zt$, this equation only depends on d and z through the ratio $\alpha \equiv z/(d-1)$, as

$$\partial_\alpha \left[u^{-1/\alpha} \partial_\alpha B - u^{2-1/\alpha} f(u) \partial_\alpha B \right] + u^{-1/\alpha} \partial_\alpha \partial_\alpha B = 0$$ \hspace{1cm} (7)

with $f(u) = u^{-2}(1 - (u/u_H)^{1+1/\alpha})$. Note that in contrast, the nonlinear equations do depend on d and z separately. To compute quasinormal modes we solve the associated generalised eigenvalue equation using pseudospectral methods [25].

We compare the nonlinear evolution with the sum of the first 10 quasinormal modes, $B_{\text{QNM}}(u,t) = \text{Re} \sum_{i=0}^{9} c_i(u) e^{-i\omega_i t}$. Here the c_i are coefficients which we obtain by fitting to the initial profile $B(u, t = 0)$, ω_i are the eigenmodes and c_i the corresponding frequencies [26]. Dashed lines in Figure 2 show the fitted quasinormal mode evolution. They always lag behind on the nonlinear evolution a little, but otherwise give a very good approximation. The late time evolution of the pressure is well approximated by the lowest quasinormal mode.

For $\alpha \geq 1$ the quasinormal modes become overdamped (purely imaginary) and we observe a bifurcation, see Figure 3 with one mode branching upwards and the other downwards, converging as $\alpha \to \infty$ to the first two modes in AdS_d. Notice $\alpha \to \infty$ can be interpreted as $z \to \infty$ at fixed d, or as $d \to 1$, at e.g. $z = 1$, matching [27] where it is stated that the $z \to \infty$ limit of Lifshitz corresponds to AdS_d. This behavior is clarified in Figure 4, where we plot the motion of the lowest quasinormal modes in the complex plane, as we vary α.

The value $\alpha = 1$ can be found from AdS_3, where one can show analytically that $\tau = \frac{1}{4\pi T_0}$ [24]. Curiously, this is not the minimal value of the relaxation time, which instead sits at $\alpha \approx 0.847227$ and reads $\tau \approx \frac{0.989002}{4\pi T_0}$. Furthermore, for $\alpha = 1 + \epsilon^2$ with $\epsilon \ll 1$ we numerically find that $4\pi T_0 \tau \approx 1 + \frac{1}{2}$.

As α is taken to zero, the relaxation time diverges. However, we observe that with $d \leq 5$, which covers all physically relevant cases and implies that $\alpha \geq 1$, we have a range of relaxation times $0.989002 \leq 4\pi T_0 \tau \leq 2$.

From the nonlinear evolution we obtain an isotropiza-
evolution closer to the evolution dictated by the quasi-normal modes, due to oscillations, which are not accounted for in the presence of higher order modes. There can be some noise due to oscillations, which are not accounted for in the definition of $\tilde{\tau}$, as seen in the point at $\alpha = 1/4$. Note also that at $\alpha = 1$ we have the three cases $(d, z) = (3, 2), (4, 3)$ and $(5, 4)$ which are very close to each other in the plot, and for $\alpha = 1/2$ the cases $(d, z) = (3, 1)$ and $(5, 2)$ nearly overlap.

Discussion.— Our main result is the holographic computation of the isotropization time of the pressure difference in a nonrelativistic plasma, taking into account full back reaction. We also confirm the existence of the overdamped regime for $d \leq z + 1$ which was predicted by [23] using quasinormal modes. Moreover, we find that for physically relevant dimensions the equilibration time is roughly of the order $1/(4\pi T_0)$, regardless of the value of z. We note that this universal behavior only applies to critical theories with no mass gap. Holographic equilibration in gapped theories such as QCD has also been studied in the literature [12, 25, 30] where the approach to equilibrium may be qualitatively different [12].

Our results are valid for large $N^2 \sim 1/G$ and strong coupling, but are consistent with the general arguments about equilibration times for general strongly coupled quantum critical systems (see e.g. [1]). This seems to indicate that our results are quite robust and the large N-limit does not affect this behavior qualitatively.

We note that the perturbations we take are large, i.e. $\Delta P \sim P_0$, yet the backreaction is quite small, i.e. the entropy increase is only a few percent. It might be interesting to consider larger profiles at fixed α but different d and z, to see which combination will reach equilibrium faster deeper into the nonlinear regime. It has proven difficult to do this with significantly larger profiles, but using domain decomposition [20] might help isolate the numerical difficulties at the boundary.

Acknowledgements.— We thank Takaaki Ishii and Wilke van der Schee for comments on the draft. This work was supported by the Netherlands Organisation for Scientific Research (NWO) under VIDI grant 680-47-518 and VICI grant 680-47-603, and the Delta-Institute for Theoretical Physics (D-ITP) that is funded by the Dutch Ministry of Education, Culture and Science (OCW).

1. S. Sachdev, Quantum phase transitions. Wiley Online Library, 2007.
2. S. A. Hartnoll, Lectures on holographic methods for condensed matter physics. Class. Quant. Grav. 26 (2009) 224002, arXiv:0903.3246.
3. A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Reviews of Modern Physics 81 (2009), no. 1 109–162.
We use the terminology *relaxation time* for equilibration after small perturbations. Equilibration also occurs after large perturbations, and the isotropization we study in this paper is an example of this. In that case, we speak of *isotropization time*.

We work in units where $\hbar = k_B = c = 1$.

[54] J. M. Maldacena, *The Large N limit of superconformal field theories and supergravity*, Int. J. Theor. Phys. 38 (1999) 1113–1116, [hep-th/9711200]. [Adv. Theor. Math. Phys. 2,231 (1998)].

[55] S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, *Gauge theory correlators from noncritical string theory*, Phys. Lett. B428 (1998) 105–114, [hep-th/9802109].

[56] E. Witten, *Anti-de Sitter space and holography*, Adv. Theor. Math. Phys. 2 (1998) 253–291, [hep-th/9802150].

[57] P. M. Chesler and L. G. Yaffe, *Horizon formation and far-from-equilibrium isotropization in supersymmetric Yang-Mills plasma*, Phys. Rev. Lett. 102 (2009) 211601, [arXiv:0812.2053].

[58] J. F. Fuini and L. G. Yaffe, *Far-from-equilibrium dynamics of a strongly coupled non-Abelian plasma with non-zero charge density or external magnetic field*, JHEP 07 (2015) 116, [arXiv:1503.07148].

[59] T. Ishii, E. Kiritsis, and C. Rosen, *Thermalization in a Holographic Confining Gauge Theory*, JHEP 08 (2015) 008, [arXiv:1503.07766].

[60] G. T. Horowitz and V. E. Hubeny, *Quasinormal modes of AdS black holes and the approach to thermal equilibrium*, Phys. Rev. D62 (2000) 024027, [hep-th/9909056].

[61] S. Kachru, X. Liu, and M. Mulligan, *Gravity duals of Lifshitz-like fixed points*, Phys. Rev. D78 (2008) 106005, [arXiv:0808.1726].

[62] M. Taylor, *Non-relativistic holography*, [arXiv:0812.0530].

[63] C. Hoyos and P. Koroteev, *On the Null Energy Condition and Causality in Lifshitz Holography*, Phys. Rev. D82 (2010) 084002, [arXiv:1007.1428]. [Erratum: Phys. Rev.D82,109905(2010)].

[64] Notice that this ansatz still has the gauge symmetry $r \rightarrow (r^2 + \eta(t))^{1/2}$ which leaves the form invariant. In this letter $\eta = 0$ is chosen.

[65] E. Kiritsis and Y. Matsuo, *Charge-hyperscaling violating Lifshitz hydrodynamics from black-holes*, JHEP 12 (2015) 076, [arXiv:1508.02494].

[66] Throughout this paper we work at zero charge density. To introduce a chemical potential, one may use the black brane solution of [31].

[67] J. P. Boyd, *Chebyshev and Fourier spectral methods*, Courier Corporation, 2001.

[68] Throughout this paper we work at zero charge density. To introduce a chemical potential, one may use the black brane solution of [31].

[69] Notice that this ansatz still has the gauge symmetry $r \rightarrow (r^2 + \eta(t))^{1/2}$ which leaves the form invariant. In this letter $\eta = 0$ is chosen.

[70] E. Kiritsis and Y. Matsuo, *Charge-hyperscaling violating Lifshitz hydrodynamics from black-holes*, JHEP 12 (2015) 076, [arXiv:1508.02494].

[71] Throughout this paper we work at zero charge density. To introduce a chemical potential, one may use the black brane solution of [31].

[72] J. P. Boyd, *Chebyshev and Fourier spectral methods*, Courier Corporation, 2001.

[73] There is a small subtlety here which does not arise in AdS. We have to specify initial profiles for both B and ϕ, but ϕ does not have any independent dynamics. Therefore we must be careful to choose self-consistent initial profiles. We use the near boundary expansion to order $3(d + z − 1)$ to achieve this.

[74] W. Sybesma and S. Vandoren, *Lifshitz quasinormal modes and relaxation from holography*, JHEP 05 (2015) 021, [arXiv:1503.07457].

[75] R. A. Janik, G. Plewa, H. Soltanpanahi, and M. Spalinski, *Linearized nonequilibrium dynamics in nonconformal plasma*, Phys. Rev. D91 (2015), no. 12 126013, [arXiv:1503.07149].

[76] M. P. Heller, D. Mateos, W. van der Schee, and M. Triana, *Holographic isotropization linearized, JHEP 09 (2013) 026, [arXiv:1304.5172].

[77] S. A. Hartnoll, J. Polchinski, E. Silverstein, and D. Tong, *Towards strange metallic holography*, JHEP 04 (2010) 120, [arXiv:0912.1061].

[78] D. Birmingham, I. Sachs, and S. N. Solodukhin, *Conformal field theory interpretation of black hole quasinormal modes*, Phys. Rev. Lett. 88 (2002) 151301, hep-th/0112055.

[79] Y. S. Myung and T. Moon, *Quasinormal frequencies and thermodynamic quantities for the Lifshitz black holes*, Phys. Rev. D86 (2012) 024006, [arXiv:1204.2116].

[80] A. Buchel, M. P. Heller, and R. C. Myers, *Equilibration rates in a strongly coupled nonconformal quark-gluon plasma*, Phys. Rev. Lett. 114 (2015), no. 25 251601, [arXiv:1503.07114].

[81] J. Tarrio and S. Vandoren, *Black holes and black branes in Lifshitz spacetimes*, JHEP 09 (2011) 017, [arXiv:1105.6335].