INTRODUCTION

Aquaculture is an important industry. Global aquaculture production in 2016 was 110.2 million tonnes (USD 243.5 billion), occupying 46.8% of the combined production of fisheries and aquaculture, with growth rate faster than many food production sectors (FAO, 2018). However, continuous development of aquaculture causes rampant infectious disease outbreak, may be due to movements of hatchery produced stocks, introduction of new cultured species and trade liberalization (Subasinghe, 2009). To control disease outbreak, chemotherapeutic agents and control strategies such as vaccination were employed. However, use of chemotherapeutic agents such as antibiotic results in development of antibiotic resistance microbial pathogens, and vaccination was mainly as prophylactic and limited for immunocompromised organisms (Subasinghe, 2009). Therefore, alternative disease control agent such as postbiotic was explored.

Postbiotics are soluble factors secreted by living bacteria or released after bacterial lysis (Aguilar-Toalá et al., 2018). Currently, application of postbiotic in pharmaceutical products, commercial food-based products and terrestrial agriculture have been reviewed (Aguilar-Toalá et al., 2018). However, review of application of postbiotic in aquaculture is limited, even though there is vast literature addressing the use of short chain fatty acids and organic acids, peptides, peptidoglycan, exopolysaccharide, cell surface proteins and vitamins in aquaculture. Hence, this mini review provides new information regarding antimicrobial and health promoting properties of postbiotics, either in vitro or in vivo from different bacterial species, in aquaculture animals.

Key words: Postbiotic / Aquaculture / Disease Control / Alternative Treatment Method.
SHORT CHAIN FATTY ACIDS

Short chain fatty acids (SCFAs) are organic acids containing aldehyde and one or more carboxyl groups. SCFAs such as propionic acid and butyric acid are commonly used as salts in aquaculture. Propionic acid could be produced by Propionibacterium and butyric acid is produced by Clostridium tyrobutyricum. Propionate and butyrate salts supplementation in white leg shrimp (da Silva et al., 2013; da Silva et al., 2016) and butyrate salts in gilthead sea bream (Sparus aurata) (Piazzon et al., 2017) and grass carp (Ctenopharyngodon idella) (Tian et al., 2017) showed modulation in gut microbiota. SCFAs salts protected hosts from infectious diseases. Butyrate salts induced protection in grass carp, white leg shrimp (Litopenaeus vannamei) and gilthead sea bream from enteritis morbidity caused by Aeromonas hydrophila, Vibrio alginolyticus and Photobacterium damselae spp. piscicida respectively (Tian et al. 2017; Ramírez et al. 2017; Piazzon et al. 2017). Protection from pathogens primarily due to stimulation of immune responses. Stimulation of immune responses was shown in Caspian Sea white fish (Rutilus frisii kutum) (Hoseinifar et al., 2016), zebra fish (Danio rerio) (Safari et al., 2016) and white leg shrimp (Pourmozzaffar et al., 2017; da Silva et al., 2016) through propionate or propionic acid supplementation. In other reports, common carp (Cyprinus carpio) (Liu et al., 2014), European sea bass (Dicentrarchus labrax) (Rimoldi et al., 2016), grass carp (Tian et al., 2017), Nile tilapia (Oreochromis niloticus) (Ali et al., 2018) and white leg shrimp (da Silva et al., 2016) showed stimulation in their immune responses through butyrate supplementation.

PEPTIDES

One of the common peptides from bacteria is bacteriocin, which is an antimicrobial protein. The studies for bacteriocin are very extrusive, due to its potential to replace antibiotics as an alternative aquatic diseases treatment. Bacteriocins against aquatic pathogens are show in Table 1. Bacteriocins have good potential to replace antibiotics. Bacteriocins are mostly active against closely related bacteria species, leaving non-related or beneficial bacteria (Deraz et al., 2005). Therefore, reducing problem such as the development of antibiotic resistant bacteria. In addition, bacteriocins as proteinaceous agents can be digested by proteolytic enzymes such as trypsin, ficin, pepsin, papain, and proteinase K in digestive tract (Deraz et al., 2005). Therefore, problem such as antibiotic residue in aquaculture food will not cause allergic reactions and other medical problems when consumed.

EXOPOLYSACCHARIDES

Exopolysaccharides (EPS) is polymer secreted into external environment. EPS of Bacillus cereus and Brachybacterium sp. isolated from Asian seabass (Lates calcarifer) showed antimicrobial properties (Orsod et al., 2012). However, EPS of B. licheniformis strain of marine sponge (Sayem et al., 2011) and Pseudomonas stutzeri (Wu et al., 2016) showed anti-biofilm properties, with EPS from P. stutzeri reduced virulence factor of P. aeruginosa. Therefore, EPS could decrease the risk of pathogenic infection to aquaculture animals.

VITAMINS

Vitamin C or ascorbic acid is a co-factor for biological processes such as collagen synthesis and cellular functions related to neuromodulation, hormone and immune systems (Mastan, 2015). Therefore, vitamin C is widely used as immunostimulant in aquaculture. Vitamin C was industrially produced by Ketogulonicigenium vulgare and Bacillus spp. It was reported to improve immune responses (non-specific and specific immunity) and increased infectious disease resistance in rainbow trout (Oncorhynchus mykiss) (Wahli et al., 1998), rohu (Labeo rohita) (Tewary and Patra, 2008), gilthead sea bream (Mulero et al., 1998), mirgal (Cirrhinus mirgala) (Sobhana et al., 2002) and channel catfish (Ictalurus punctatus) (Li and Lovell, 1985).

PEPTIDOGLYCAN

Peptidoglycan (PG) is a polymer of sugars and amino acids, and is reported as immunostimulant in aquaculture. PG from Bifidobacterium sp., Brevibacterium lactofermentum and B. thermophilum had been tested in sea cucumber (Apostichopus japonicus) (Zhang et al., 2014), Japanese flounder (Paralichthys olivaceus) (Jorge et al., 2006) and rainbow trout (Matsuo et al., 1993). Generally, PG showed enhanced immune responses and protection against pathogens. Modification of PG from B. thermophilum through hydrolysis showed similar effects in white leg shrimp (Song et al., 2013).

LIPOPOLYSACCHARIDES

Lipopolysaccharides (LPS) or endotoxin is a molecule of lipid and polysaccharide, and also reported to be used as immunostimulant in aquaculture. LPS from Escherichia coli, V. anguillarum, Edwardsiella tarda, A. hydrophila and V. harveyi have been tested in striped catfish (Pangasianodon hypophthalmus) (Bich Hang et
Bacteriocin	Producer Strain	Inhibited Strain	References
BLIS	Roseobacter sp. BS107	Vibrio	Ruiz-Ponte et al. (1999)
Carnocin U149	Carnobacterium sp.	Lactobacillus, Lactococcus, Pediococcus, Carnobacterium	Stoffels et al. (1992)
Divergicin M35	Carnobacterium divergens M35	Carnobacterium, Listeria	Tahiri et al. (2004)
Piscococin V1a, Piscococin V1b	Carnobacterium pisciocola V1	Lactobacillus, Listeria, Enterococcus, Pediococcus, Carnobacterium	Bhugaloo-Vial et al. (1996)
BLIS	Vibrio sp. NM 10	Photobacterium	Sugita et al. (1997)
BLIS	Vibrio mediterranei 1	Vibrio, Aeromonas	Carraturo et al. (2006)
BLIS	Vibrio harveyi VIB 571	Vibrio	Prasad et al. (2005)
Harveyicin	Vibrio harveyi (formerly known as Beneckea harveyi SY)	Vibrio	McCall and Sizemore (1979)
MW1	Vibrio vulnificus	Vibrio	Shehane and Sizemore (2002)
BC1	Vibrio	Vibrio	Kumar and Arul (2009)
BC2		Vibrio, Plesiomonas, Escherichia	Ruiz-Ponte et al. (1999)
Phocaecin P180	Streptococcus phocae P180	Escherichia, Listeria, Vibrio	Stoffels et al. (1992)
-	E. coli	Aeromonas, Citrobacter, Edwardsiella, Flavobacterium, Pseudomonas, Vibrio	Lee et al. (2014)
-	Enterobacter cloacae, Cronobacter sakazakii	Vibrio	Thu Thuy et al. (2014)
-	Bacillus subtilis KY808492	Salmonella, Vibrio	Ashwitha et al. (2017)
Enterocin MC13	Enterococcus faecium MC13	Listeria, Vibrio	Satish Kumar et al. (2011)
Bacteriocin JFP2	Bacillus amyloiquefaciens JFP2	Aeromonas	Kim et al. (2017)
-	Lactobacillus lactis ssp. lactis	Listeria, Brochothrix, Salmonella, Staphylococcus, Bacillus, Aeromonas, Pseudomonas, Escherichia	Sahnouni et al. (2014)
TW34 bacteriocin	Lactococcus lactis TW34	Lactococcus	Sequeiros et al. (2015)
-	Bacillus subtilis NCIMB 3610	Enterococcus, Vibrio, Photobacterium	Touraki et al. (2012)
Garvivin A	Lactococcus garvieae 21881	Lactococcus	Maldonado-Barragán et al. (2013)
Atlantic salmon (Salmo salar) (Dalmo and Seljelid, 1995), Asian stinging catfish (Heteropeustes fossilis) (Pattnaik et al., 2001), rainbow trout (Nya and Austin, 2010), common crab (Selvaraj et al., 2004), tiger shrimp (Penaeus monodon) (Genio et al., 2014; Traifagar et al., 2010; Sritunyalucksana et al., 1999) and Chinese white shrimp (Fenneropenaeus chinensis) (Qiao et al., 2013) showed stimulation at their immune responses (upregulation of immune related genes, non-specific immunity, specific immunoglobulins) and increased the survival from pathogens infection.

CELL SURFACE PROTEINS

Cell surface proteins such as outer membrane protein (OMP) is commonly used as vaccine in aquaculture. OMP (A. hydrophila, V. harveyi, Stenotrophomonas maltophilia & Valginyoticus) were tested in aquaculture animals such as rohu (Yadav et al., 2018), channel catfish (Abdelhamied et al., 2017; Wang et al., 2016), goldfish (Carassius auratus) (Divya et al., 2015), turbot (Scophthalmus maximus) (Wang et al., 2011) and tiger shrimp (Maftuch et al., 2013) showed stimulation towards immune responses (up-regulation of immune-related genes, non-specific parameters and specific antibodies), reduced bacterial load and mortality. Recombinant OMPS (Flavobacterium columnare, V. anguillarum, Piscirickettsia salmonis & A. hydrophila) were successfully synthesized and tested in grass carp (Luo et al., 2016), rohu (Hamod et al., 2012), coho salmon (Oncorhynchus kisutch) (Kuzyk et al., 2001) and common carp (Maiti et al., 2012). Development of polyvalent vaccine with OMPS from A. hydrophila (Ni et al., 2010), V. parahaemolyticus (Li et al., 2010) and V. alginolyticus (Nehlah et al., 2016) has been successful.

TEICHOIC ACIDS

Teichoic acid is bacterial copolymer between glycerol phosphate or ribitol phosphate with carbohydrates. It has potential to be vaccine because antibodies against lipoteichoic acid (LTA) of Entecococcus faecalis, an aquatic pathogen, showed opsonization against other Gram-positive species, suggesting function to immunize against multiple Gram-positive pathogens (Rahman et al., 2017; Thielacker et al., 2012). However, immunological studies by Thielacker et al. (2012) was not done in aquatic animal, and are subjected to further study.

CONCLUSION

Infectious disease is a serious issue in aquaculture development. Postbiotics such as SCFAs, peptides, exopolysaccharides, vitamins, peptidoglycan, lipopolysachharides, cell surface proteins and teichoic acids are potential alternative disease control agents in aquaculture.

ACKNOWLEDGEMENT

The study was supported by the Ministry of Education Malaysia under the Fundamental Research Grant Scheme (FRGS) No.: FRG0454-STWN-1/2016 and FRG0502-1/2019. This study was also received support from the JSPS Core-to-Core Program “Building up an international research network for successful seed production technology development and dissemination leading South-East Asian region”.

REFERENCES

Abdelhamied, H., Ibrahim, I., Nho, S. W., Banes, M. M., Wills, R. W., Karsi, A. and Lawrence, M. L. (2017) Evaluation of three recombinant outer membrane proteins, OmpA1, Tdr, and TbpA, as potential vaccine antigens against virulent Aeromonas hydrophila infection in channel catfish (Ictalurus punctatus). Fish Shellfish Immunol., 66, 480-486.

Aguilar-Toalá, J. E., Garcia-Varela, R., Garcia, H. S., Mata-Haro, V., González-Córdoba, A. F., Vallejo-Cordoba, B. and Hernández-Mendoza, A. (2018) Postbiotics: An evolving term within the functional food field. Trends Food Sci. Technol., 75, 105-114.

Ali, T. E.-S., El-Sayed, A. M., Eissa, MA-R. and Hanafi, H. M. (2018) Effects of dietary Biogen and sodium butyrate on hematological parameters, immune response, and histological characteristics of Nile tilapia (Oreochromis niloticus) fingerlings. Aquacult. Int., 26 (1), 139-150.

Ashwitha, A., Thamizharsan, K., Vithya, V., Karthik, R. and Vijaya Bharathi, S. (2017) Effectiveness of bacteriocin from Bacillus subtilis (KY808492) and its application in biopreservation. J. FisheriesSciences.com., 11 (3), 36-42.

Bhugaloo-Vial, P., Dousset, X., Metivier, A., Sorokine, O., Pagnade, P., Boyaval, P. and Marion, D. (1996) Purification and amino acid sequences of piscicinovins V1a and V1b, two class Ila bacteriocins secreted by Carnobacterium piscicola V1 that display significantly different levels of specific inhibitory activity. Appl. Environ. Microbiol., 62 (12): 4410-4416.

Bich Hang, B. T., Millia, S., Gillardin, V., Phuong, N. T. and Kestemont, P. (2013) In vivo effects of Escherichia coli lipopolysaccharide on regulation of immune response and protein expression in striped catfish (Pangasianodon hypophthalmus). Fish Shellfish Immunol., 34 (1), 339-347.

Carratro, A., Raieta, K., Ottaviani, D. and Russo, G. L. (2006) Inhibition of Vibrio parahaemolyticus by a bacteriocin-like inhibitory substance (BLIS) produced by Vibrio mediterranei 1. J. Appl. Microbiol., 101(1), 234-241.
Divya, S., Thangavijji, V., Velmurugan, S., Michaelbabu, M. and Citarasu, T. (2015). Comparative study on bacterial outer membrane protein (bomp) and bacterial outer membrane protein gene (BOMP) vaccination to goldfish Carassius auratus against Aeromonas hydrophila. J. Vaccines Vaccin., 6(9), 1-7.

FAO. (2018) The State of World Fisheries and Aquaculture 2018 - Meeting the sustainable development goals. The Food and Agriculture Organization of the United Nations, Rome.

Genio, J. E. J., Traifalgar, R. F. M. and Corre Jr., V. L. (2014) Dietary administration of crude lipopolysaccharide from Vibrio harveyi enhanced resistance of tiger shrimp, Penaeus monodon post larvae against white spot syndrome virus infection. Aquac. Aquar. Conserv. Legis., 7(5), 342-350.

Hamod, M. A., Nithin, M. S., Shukur, Y. N., Karunasagar, I. and Karunasagar, I. (2012) Outer membrane protein K as a subunit vaccine against V. anguillarum. Aquaculture, 354-355, 107-110.

Hoseinifar, S. H., Zoleiri, F. and Caipang, C. M. (2016) Dietary sodium propionate improved performance, mucosal and humoral immune responses in Caspian white fish (Rutilus frisii kutum) fry. Fish Shellfish Immunol., 55, 523–528.

Jorge, G., Toshiro, M. and Hidetsuyo, H. (2006) Effect of continuous and interval administration of peptidoglycan on innate immune response and disease resistance in Japanese flounder Paralichthys olivaceus. Aquacult. Sci., 54(2), 163-170.

Kim, D., Subramanian, D., Park, S., Jang, Y. and Heo, M. (2017) Assessment and potential application of the probiotic strain, Bacillus amylyoglucae JFP2, isolated from fermented seafood-jeotgal in flounder Paralichthys olivaceus juveniles. Isr. J. Aquac. Bamidgeh, 69, 1-12.

Matsuo, K. and Miyazono, I. (1993) The influence of long-term administration of peptidoglycan on disease resistance and growth of juvenile rainbow trout. Nippon Suisan Gakkaishi, 59(8), 1377-1379.

Neilah, R., Ina-Salwany, M.Y. and Zulperi, Z. (2016) Antigenicity analysis and molecular characterization of two outer membrane proteins of Vibrio alginolyticus strain va2 as vaccine candidates in tiger grouper culture. J. Biol. Sci. (Faisalabad), 16(1), 1-11.

Nya, E. J. and Austin, B. (2010) Use of bacterial lipopolysaccharide (LPS) as an immunostimulant for the control of Aeromonas hydrophila infections in rainbow trout Oncorhynchus mykiss (Walbaum). J. Appl. Microbiol., 108(2), 686-694.
acid on immune related transcriptional responses and growth performance in white shrimp, Litopenaeus vannamei. *Fish Shellfish Immunol.*, 60, 65-71.

Prasad, S., Morris, P. C., Hansen, R., Meaden, P. G. and Austin, B. (2005) A novel bacteriocin-like substance (BLIS) from a pathogenic strain of *Vibrio harveyi*. *Microbiology*, 151, 3051-3058.

Qiao, G., Kim, S., Cho, Y., Kim, S. and Jang, I. (2013) Expression of c-type lysozyme from the fleshy shrimp *Fenneropenaeus chinensis* is upregulated following *Vibrio anguillarum* and lipopolysaccharide injection. *Fish. Aquat. Sci.*, 16(4), 267-272.

Rahman, M., Rahman, M. M., Deb, S. C., Alam, M. S., Alam, M. J. and Islam, M. T. (2017) Molecular identification of multiple antibiotic resistant fish pathogenic Enterococcus faecalis and their control by medicinal herbs. *Sci. Rep.*, 7 (1), 3747.

Ramírez, N. C. B., Rodrigues, M. S., Guimarães, A. M., Guertler, C., Rosa, J. R., Seiffert, W. Q., Andreatta, E. R. and do Nascimento Vieira, F. (2017) Effect of dietary supplementation with butyrate and probiotic on the survival of Pacific white shrimp after challenge with *Vibrio alginolyticus*. *Revista Brasileira de Zootecnia*, 46 (6), 471-477.

Rimoldi, S., Finzi, G., Ceccotti, C., Girardello, R., Grimaldi, A., Ascione, C. and Terova, G. (2016) Butyrate and taurine exert a mitigating effect on the impaired distal intestine of European sea bass fed with a high percentage of soybean meal. *Fish. Aquat. Sci.*, 19, 40.

Riz-Ponte, C., Samain, J. F., Sanchez, J. L. and Nicolas, J. L. (1999) The benefit of a Roseobacter species on the survival of scallop larvae. *Mar. Biotechnol.*, 1 (1), 52-59.

Safari, R., Hoseinifar, S. H. and Kavandi, M. (2016) Modulation of antioxidant defence and immune response in zebra fish (*Danio rerio*) using dietary sodium propionate. *Fish Physiol. Biochem.*, 42 (6), 1733-1739.

Sahnnoui, F., Boutiba-Maatallah, A., Bouhadi, D. and Boutiba, Z. (2014) Characterization of bacteriocin produced by *Lactococcus lactis* ssp. *lactis* strains isolated from marine fish caught in the Algerian west coast. *Turk. J. Agric. Nat. Sci.*, 1(2), 1838-1843.

Selvaraj, V., Sampath, K. and Sekar, V. (2004) Extraction and characterization of lipopolysaccharide from *Aeromonas hydrophila* and its effects on survival and hematological of the carp, *Cyprinus carpio*. *Asian Fish. Sci.*, 17, 163-173.

Satish Kumar, R., Kannmani, P., Yuvaraj, N., Paari, K. A., Pattukumar, V. and Arul, V. (2011) Purification and characterization of enterocin MC13 produced by a potential aquaculture probiotic *Enterococcus faecium* MC13 isolated from the gut of *Mugil cephalus*. *Can. J. Microbiol.*, 57 (12), 993-1001.

Sayem, S. M. A., Manzo, E., Ciavatta, L., Tramice, A., Cordone, A., Zanfardino, A., De Felice, M. and Varcamonti, M. (2011) Anti-biofilm activity on an exopolysaccharide from a sponge-associated strain of *Bacillus licheniformis*. *Microb. Cell Fact.*, 10, 74.

Sequeiros, C., Garcés, M. E., Vallejo, M., Marguet, E. R. and Olivera, N. L. (2015) Potential aquaculture probiotic *Lactococcus lactis* TW34 produces nisin Z and inhibits the fish pathogen *Lactococcus garvieae*. *Arch. Microbiol.*, 197 (3), 449-458.

Shehane, S. D. and Sizemore, R. K. (2002) Isolation and preliminary characterization of bacteriocins produced by *Vibrio vulnificus*. *J. Appl. Microbiol.*, 92 (2), 322-328.

da Silva, B. C., do Nascimento Vieira, F., Mourinho, J. L. P., Ferreira, G. S. and Seiffert, W. Q. (2013) Salts of organic acids selection by multiple characteristics for marine shrimp nutrition. *Aquaculture*, 384, 104-110.

da Silva, B. C., Vieira, F. D. N., Mourinho, J. L. P., Bolivar, N. and Seiffert, W. Q. (2016) Butyrate and propionate improve the growth performance of *Litopenaeus vannamei*. *Aquac. Res.*, 47 (2), 612-623.

Sobhana, K. S., Mohan, C. V. and Shankar, K. M. (2002) Effect of dietary vitamin C on the disease susceptibility and inflammatory response of mirgal, *Cirrhinus mirgala* (Hamilton) to experimental infection of *Aeromonas hydrophila*. *Aquaculture*, 207 (3-4), 225-238.

Song, X., Zhang, Y., Wei, S. and Huang, J. (2013) Effects of different enzymatic hydrolysis methods on the bioactivity of peptidoglycan in *Litopenaeus vannamei*. *Chin. J. Oceanol. Limnol.*, 31 (2), 374-383.

Sritunyalucksana, K., Sitisarn, P., Wchayachumnarkul, B. and Flegel, T. W. (1999) Activation of prophenoloxidase, agglutinin and antibacterial activity in haemolymph of the black tiger prawn, *Penaeus monodon*, by immunostimulants. *Fish Shellfish Immunol.*, 9 (1), 21-30.

Stoffels, G., Nes, I. F. and Gutmundsddottir, A. (1992) Isolation and properties of a bacteriocin-producing *Carnobacterium piscicola* isolated from fish. *J. Appl. Bacteriol.*, 73 (4), 309-316.

Subasinghe, R. (2009) Disease control in aquaculture and the responsible use of veterinary drugs and vaccines: the issues, prospects and challenges. In *The use of veterinary drugs and vaccines in Mediterranean aquaculture* (Rogers, C., ed. and Basurco, B., ed.), pp. 5-11, OHEAM, Zaragoza.

Sugita, H., Matsuoi, N., Hirose, Y., Iwato, M. and Deguchi, Y. (1997) *Vibrio sp*. Strain NM 10, isolated from the intestine of a Japanese coastal fish, has an inhibitory effect against *Pasteurella piscicida*. *Appl. Environ. Microbiol.*, 63 (12), 4986-4989.

Tahiri, I., Desbiens, M., Benech, R., Kheadr, E., Lacroix, C., Thibault, S., Ouellet, D. and Fliss, I. (2004) Purification, characterization and amino acid sequencing of divergicin M35: a novel class Ila bacteriocin produced by *Carnobacterium divergens* M35. *Int. J. Food Microbiol.*, 97 (2), 123-136.

Tewary, A. and Patra, B. C. (2008) Use of vitamin C as an immunostimulant. Effect on growth, nutritional quality, and immune response of *Labeo rohita* (Ham.). *Fish Physiol. Biochem.*, 34, 251-259.

Theilacker, C., Kroepec, A., Hammer, F., Sava, I., Wobser, D., Sacink, T., Codée, J. D. C., Hogendorf, W. F. J., van der Marel, G. A. and Huebner, J. (2012) Protection against *Staphylococcus aureus* by antibody to the polyglycerol-phosphate backbone heterologous lipoteichoic acid. *J. Infect. Dis.*, 205 (7), 1076-1085.

Thu Thuy, P., Thi Hong, N. H. and Van Duy, N. (2014) Screening for bacteriocin-like antimicrobial activity against shrimp pathogenic vibrios and molecular identification of marine bacteria from otter clam *Lutraria philippinarum*. *Fish Shellfish Immunol.*, 44 (3), 345-353.

Tian, L., Zhou, X.-Q., Jiang, W.-D., Liu, Y., Wu, P., Jiang, J., Kuang, S.-Y., Tang, L., Tang, W.-N., Zhang, Y.-A., Xie, F. and Feng, L. (2017) Sodium butyrate improved intestinal immune function associated with NF-κB and p38MAPK signalling pathways in young grass carp (*Ctenopharyngodon idella*). *Fish Shellfish Immunol.*, 66, 548-563.

Traifalgar, R. F. M., Corre, V. L. and Serrano, A. E. (2010) Efficacy of dietary immunostimulants to enhance the immunological responses and vibriosis resistance of juvenile *Penaeus monodon*. *J. Fish. Aquat. Sci.*, 8 (2), 340-354.
Touraki, M., Frydas, I., Karamanlidou, G. and Mamara, A. (2012) Partial purification and characterization of a bacteriocin produced by *Bacillus subtilis* NCIMB 3610 that exhibits antimicrobial activity against fish pathogens. *J. Biol. Res. (Thessalon)*, **18**, 310-319.

Wahli, T., Verlhac, V., Gabaudan, J., Schüep, W. and Meier, W. (1998) Influence of combined vitamins C and E on non-specific immunity and disease resistance of rainbow trout, *Oncorhynchus mykiss* (Walbaum). *J. Fish Dis.*, **21**, 127-137.

Wang, Q., Chen, J., Liu, R. and Jia, J. (2011) Identification and evaluation of an outer membrane protein OmpU from pathogenic *Vibrio harveyi* isolate as vaccine candidate in turbot (*Scophthalmus maximus*). *Lett. Appl. Microbiol.*, **53**(1), 22-29.

Wang, X., Peng, L., Wang, K., Wang, J., He, Y., Wang, E., Chen, D., Ouyang, P., Geng, Y. and Huang, X. (2016) The outer membrane proteins of *Stenotrophomonas maltophilia* are potential vaccine candidates for channel catfish (*Ictalurus punctatus*). *Fish Shellfish Immunol.*, **57**, 318-324.

Wu, S., Jin, W., Xiu, P. and Sun, C. (2016) Antibiofilm and anti-Infection of a marine bacterial exopolysaccharide against *Pseudomonas aeruginosa*. *Front Microbiol.*, **7**, 102.

Yadav, S. K., Dash, P., Sahoo, P. K., Garg, L. C. and Dixit, A. (2018) Modulation of immune response and protective efficacy of recombinant outer-membrane protein F (rOmpF) of *Aeromonas hydrophila* in Labeo rohita. *Fish Shellfish Immunol.*, **80**, 563-572.

Zhang, C. Y., Chen, G. F., Wang, C. C., Song, X. L., Wang, Y. G. and Xu, Z. (2014) Effects of dietary supplementation of A3α-peptidoglycan on the growth, immune response and defence of sea cucumber *Apostichopus japonicus*. *Aquac. Nutr.*, **20**, 219-228.