Intake of Fruit, Vegetables, and Fruit Juices and Risk of Diabetes in Women

Lydia A. Bazzano, MD, PhD, Tricia Y. Li, MD, MS, Kamudi J. Joshipura, BDS, MS, ScD, and Frank B. Hu, MD, PhD

From the Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine (LAB), New Orleans, Louisiana, USA; The Department of Nutrition, Harvard School of Public Health (TYL, FBH), Boston, MA, USA; The Department of Epidemiology, Harvard School of Public Health (KJJ, FBH), Boston, MA, USA; The Channing Laboratory, Brigham and Women’s Hospital, Harvard Medical School (FH), Boston, MA, USA; The University of Puerto Rico, Medical Sciences Campus, School of Dentistry (KJJ), San Juan, PR; and The Harvard School of Dental Medicine (KJJ), Boston, MA, USA.

Corresponding Author:
Lydia A. Bazzano
Tulane University School of Public Health and Tropical Medicine
1440 Canal St, SL-18
New Orleans, LA 70112-2715
Email: lbazzano@tulane.edu

Running Head: Intake of Fruit Juices and Diabetes

Received for publication 12 January 2008 and accepted in revised form 31 March 2008.
OBJECTIVE: To examine the association between fruit, vegetable, and fruit juice intake and development of type 2 diabetes mellitus (DM).

RESEARCH DESIGN AND METHODS: A total of 71,346 female nurses ages 38-63 years, who were free of cardiovascular disease, cancer, and DM in 1984 were followed for 18 years and dietary information was collected using a semi-quantitative food frequency questionnaire every 4 years. Diagnosis of DM was self-reported.

RESULTS: During follow-up, 4,529 cases of DM were documented and cumulative incidence of DM was 7.4%. An increase of 3 servings/day in total fruit and vegetable consumption was not associated with development of DM (multivariate-adjusted hazard ratio [HR], 0.99; 95% Confidence Interval [CI], 0.94 to 1.05) while the same increase in whole fruit consumption was associated with a lower hazard of DM (HR, 0.82; 95% CI, 0.72 to 0.94). An increase of 1 serving/day in green leafy vegetable consumption was associated with a modestly lower hazard of DM (HR, 0.91; 95% CI, 0.84 to 0.98), whereas the same change in fruit juice intake was associated with an increased hazard of DM (HR, 1.18; 95% CI, 1.10 to 1.26).

CONCLUSIONS: Consumption of green leafy vegetables and fruit was associated with a lower hazard of DM, whereas consumption of fruit juices may be associated with an increased hazard among women.
The worldwide burden of type 2 diabetes mellitus (DM) has increased rapidly in tandem with increases in obesity. The most recent estimate for the number of people with DM worldwide, in 2000, was 171 million, and this number is projected to increase to at least 366 million by the year 2030 (1). Fruit and vegetable consumption has been associated with decreased incidence of and mortality from a variety of health outcomes including obesity, hypertension, and cardiovascular diseases in epidemiologic studies (2-4). However, few prospective studies have examined the relationship between fruit and vegetable intake and risk of DM, and their results are not entirely consistent (5-10).

Differences in the nutrient contents of fruits and vegetables by group could lead to differences in health effects. Furthermore, the role of fruit juices could be important and has not been well studied. While fruit juices may have antioxidant activity (11), they lack fiber, are less satiating, and tend to have high sugar content. To further explore the role of fruit and vegetable consumption in the development of DM, we examined the association between intake of all fruits and vegetables, specific groups of fruits and vegetables, and fruit juices among women enrolled in the Nurses’ Health Study cohort.

RESEARCH DESIGN AND METHODS

Study Population: The Nurses’ Health Study was established in 1976 with response of 121,700 female registered nurses between the ages of 30 and 55 years from 11 different US states to an initial mailed questionnaire regarding medical history, lifestyle, diet and other health practices. Follow-up questionnaires were mailed every 2 years to update information on health-related behavior and determine incident disease, including DM and other chronic diseases. The diet cohort was established in 1980 with 98,462 participants. Of those, 81,757 completed the 1984 questionnaire, had a total energy intake that was between 600 and 3,500 kcal, and left fewer than 12 blank food items (n=16,705 excluded). We also excluded women who died prior to the return of the 1984 questionnaire (n=1), who had diagnosed cardiovascular disease (n=2,681), cancer (n=4,218) or DM (n=2,116) at the assessment in 1984, and those with missing date of diagnosis of DM (n=1,395). After these exclusions, a total of 71,346 women (72.5% of the diet cohort) contributed to the analysis, with follow-up completed in June of 2002.

Dietary Assessment

A semi-quantitative food-frequency questionnaire (FFQ) was included with the general health questionnaire in 1980, 1984, 1986, 1990, 1994, and 1998. The 1980 FFQ contained 61 items, with 6 questions regarding fruit consumption, 11 on vegetable consumption, and 3 on potato consumption. In 1984, the FFQ was substantially expanded to include 16 questions about fruit consumption, 28 on vegetable consumption, and 3 on potato consumption. In this analysis, we considered 1984 as the baseline since the FFQ remained consistent afterward.

Participants were asked to report the frequencies of their consumption of fruit and vegetable items during the previous year. For each fruit or vegetable, a standard unit or portion size was specified. Nine responses were possible ranging from “never” to “six or more times per day” (12). The response to each food item was converted to average daily intakes and then summed to compute the total intake (fruit juices were not included in total fruit intake or total fruit and vegetable intake). Average daily intakes of foods in specific groups – green leafy vegetables, legumes, and fruit juices were assessed. Green leafy vegetables included spinach, kale, and lettuces; legumes included tofu, peas and beans; fruit juices included apple, orange,
grapefruit, and other fruit juices. These categories were modified from those used in a different cohort in an earlier report (13). Potato differs from all other commonly consumed vegetables in energy density, nutrient density, glycemic index and load, and the likelihood of its presence in fast food. Therefore, we did not include potatoes in any vegetable category. The validity of the FFQ has been evaluated in previous studies (14, 15).

Assessment of Non-dietary Covariates: Data on body mass index (BMI), physical activity, smoking status, alcohol use, post-menopausal hormone therapy, family history of DM, and physician-diagnosed hypertension and high cholesterol were self-reported on biennial questionnaires. BMI (measured as weight in kilograms divided by the square of height in meters) was calculated by using updated weight information for each time period.

Ascertainment of Outcomes The primary endpoint was development of type 2 DM. At each 2-year cycle, participants were asked whether they had a diagnosis of DM. For each self-reported diagnosis of DM, a supplemental questionnaire was sent, asking about DM symptoms, diagnostic tests, and treatments. A diagnosis of DM was accepted when any one of the following criteria were met: 1) one or more classic symptoms of DM and reported elevated plasma glucose levels (fasting plasma glucose ≥7.8 mmol/l [140 mg/dl] or randomly measured plasma glucose ≥11.1 mmol/l [200 mg/dl]), 2) reported elevated plasma glucose on at least two occasions in the absence of symptoms, or 3) treatment with oral hypoglycemic medication or insulin. These criteria for diagnosis of DM are consistent with those proposed by the National Diabetes Data Group (16) because most cases were diagnosed before 1997. For diagnoses of DM established after 1998, the American Diabetes Association criteria (reported fasting plasma glucose ≥7 mmol/l [126 mg/dl]) were used. We excluded women with type 1 DM or gestational DM. The diagnosis of type 2 DM by the use of the supplemental questionnaire has been validated in this cohort (17).

Statistical Analysis Person-time of follow up was contributed by each eligible participant from the date of return of the 1984 questionnaire to the date of diagnosis of type 2 DM, June 1, 2002, or death from other causes. To reduce within-person variation and best represent long-term usual diet, the cumulative average frequency was calculated from all available questionnaires up to the start of each 2 year follow-up period (18). Participants were divided into quintiles by frequency of intake to avoid assumptions about the shape of the dose-response relationship. Cox proportional hazards models with time dependent variables were used to adjust for potential confounders, including BMI, family history of DM, smoking, postmenopausal hormone use, alcohol intake, and physical activity. We also adjusted for dietary variables which have been related to DM in this cohort, including intakes of processed meats, potatoes, nuts, coffee, sodas, and whole grains (19-24). The proportional hazards assumption was tested by modeling the interaction of time with fruit and vegetable intake. In order to assess the linearity of trends, median values of intake for quintiles were treated as continuous in Cox regression models. Statistical analyses were performed with SAS version 9.0 software (SAS Institute, Cary, NC).

RESULTS The baseline characteristics of the study participants by quintile of total fruit and vegetable intake are presented in Table 1. Women who consumed more fruits and vegetables were older, less likely to smoke cigarettes, and more likely to exercise regularly and use hormone replacement therapy than their counterparts who did not
consume fruits and vegetables as frequently. The median intake of fruit in this population throughout the follow-up period was 1.08 servings/day, while that for vegetables was 3.09 servings/day.

Over the 18 years of follow-up (1,203,994 person-years), we documented 4,529 cases of type 2 DM. No association between total fruit and vegetable intake and risk of DM was identified in age-adjusted or multivariate adjusted models (Table 2). Results were similar for intake of total vegetables. Intake of total fruit and green leafy vegetables was inversely associated with development of type 2 DM. The multivariate-adjusted HR of DM by serving frequency for fruit juice is shown in Figure 1.

To further investigate the association between fruit juice consumption and development of type 2 DM, we subdivided fruit juices into apple, grapefruit and orange juices and examined them individually in separate models. Among participants consuming >3 cups of apple juice per month compared to those who consumed <1 cup of apple juice per month, HR was 1.15 (95% CI, 1.08-1.22; P for trend <0.001). The corresponding HR for grapefruit juice consumers was 1.14 (95% CI, 1.05-1.23; P for trend=0.001). Among participants consuming ≥1 cup of orange juice per day as compared to those who consumed <1 cup of orange juice per month, the HR was 1.24 (95% CI, 1.10-1.39; P for trend<0.001).

In order to situate our results for fruit juice intake in the context of other beverages, we also examined intake of colas (sugar-sweetened and low-calorie), other carbonated beverages, and fruit punch in relation to hazard of type 2 DM. After adjustment for BMI, family history of DM, smoking, postmenopausal hormone use, alcohol intake, physical activity, smoking, total energy intake and consumption of whole grains, nuts, processed meats, coffee and potatoes, the HRs for an increase of 1 serving/day (95% CI) were 1.08 (1.04-1.12), 1.11 (1.07-1.16), 1.04 (1.00-1.09) and 1.10 (1.06-1.15) for sugar-sweetened cola, low-calorie cola, other carbonated beverages, and fruit punch, respectively.

We also examined whether the relationship between fruit juice intake and DM was affected by BMI and physical activity. In multivariate adjusted models, we identified an modest ordinal interaction that was statistically significant (p<0.001 for BMI, and p=0.03 for physical activity). Among participants with a BMI≥25, HR (95% CI) for those in the highest quintile of fruit juice intake as compared to those in the lowest was 1.33 (1.19, 1.48); for participants with a BMI<25, the corresponding value was 1.60 (1.18, 2.16). Among participants who performed ≤1.5 hours of physical activity per week, HR (95% CI) for those in the highest quintile of fruit juice intake as compared to those in the lowest was 1.34 (1.18, 1.53); for participants who performed more than 1.5 hours of physical activity per day, the corresponding value was 1.42 (1.18, 1.73).

CONCLUSIONS

In this large prospective cohort of middle-aged American women, overall fruit and vegetable intake was not associated with the development of type 2 DM. Intake of fruit juices was positively associated, while intake of whole fruits and green leafy vegetables was inversely associated with incidence of type 2 DM. These associations were independent of known risk factors for type 2 DM, including age, BMI, family history, smoking, postmenopausal hormone use, alcohol intake, physical activity, smoking, total energy intake and consumption of whole grains, nuts, processed meats, coffee and potatoes. This study is one of the first to prospectively examine fruit juice intake and the risk type 2 DM.

The positive association between fruit juice consumption and DM risk may relate to
the relative lack of fiber and other phytochemicals, liquid state, and high sugar load. The rapid delivery of a large sugar load, without many other components which are a part of whole fruits maybe an important mechanism by which fruit juices could contribute to the development of DM. Fructose consumption has also been implicated in the development of many manifestations of the insulin resistance syndrome (25, 26). Frequent consumption of fruit juices may contribute to a higher dietary glycemic load which has been positively associated with DM in this cohort (27). Fruit and green leafy vegetables may contribute to a decreased incidence of type 2 DM through their low energy density, low glycemic load, high fiber and micronutrient content (28). In particular, green leafy vegetables may supply magnesium which has been inversely linked to the development of type 2 DM in women (8).

We searched MEDLINE to January of 2008 to identify prospective studies of fruit and vegetable intake and risk of DM. In all, we identified 6 studies which are summarized in Table 3 (5-10). Many of these studies had small sample sizes, combined fruit juice intake with whole fruit intake, and did not include updated measures of dietary intake during the study.

Other investigations have related the consumption of sugar-sweetened or non-diet colas, other sodas and fruit punches to development of type 2 DM (23). In the Nurses’ Health Study II cohort, 91,249 women followed for eight years from 1991 to 1999, women consuming at least one sugar-sweetened soft drink per day were 1.83 times more likely (95% CI, 1.42 to 2.36; P for trend <0.001) to develop type 2 DM compared with those who consumed the beverages less than once per month, after adjustment for potential confounders. Consumption of fruit punches was also associated with increased DM risk (multivariate-adjusted HR, 2.00; 95% CI, 1.33-3.03; P=0.001). In that study, fruit juice consumption was not associated with DM risk, however increased consumption of fruit juices in the first 4 years from baseline was associated with a significantly greater weight gain among women over the course of follow-up (4.03 kg) compared with decreased fruit juice consumption (2.32 kg) during the same period (P<0.001). Possible reasons for the discrepancy between results in these two cohorts include misclassification of fruit juice intake in the Nurses’ Health Study II, which incorporated only 2 dietary assessments (1991 and 1995). In the present study, 5 dietary assessments were available (1984, 1986, 1990, 1994, 1998) to classify fruit juice intake. In addition, the Nurses’ Health Study II cohort is younger and over the course of 9 years of follow-up developed only 741 cases of incident type 2 DM. In the present study, 18 years of follow-up were available, with 4,529 cases of incident type 2 DM.

The primary limitation of our study is the potential for bias due to measurement error. We attempted to reduce measurement error in assessing long-term diet by using the average of all available measurements of diet up to the start of each 2 year follow-up interval (18). In addition, although our results for fruit juice consumption and type 2 DM are a relatively new finding, those for green leafy vegetable consumption have been replicated in at least one large study using different dietary assessment methods which should have differently structured measurement errors (10). The possibility of unknown confounding, which cannot be ruled out in any observational study, must also be acknowledged. The FFQ used in this study does not distinguish between canned and fresh fruits which have different nutrient profiles and may be associated with different food habits. Moreover, the food supply has changed significantly over the past decades while our FFQ has not; nevertheless, the most common foods eaten in the US population are
encompassed in our instrument. There may be underestimation of type 2 DM by self-report; however, our population is highly educated about medical conditions, so self-report error should be substantially less than in a general population. Fasting glucose criteria for DM were lowered in 1997, possibly contributing to underestimation in this study. Also, it is possible that women may have misreported fruit punches as juices. Fruit punches have been associated with an increased incidence of DM in US women (23). Due to the homogeneity of our population, generalizability of these results to women of other race and ethnicity bears further examination.

Our findings of a positive association of fruit juice intake with hazard of DM suggest that caution should be observed in replacing some beverages with fruit juices in an effort to provide healthier options. Moreover, the same caution applies to the recommendation that 100% fruit juice be considered a serving of fruit as it is in the present national dietary guidelines (30). In general, the observed associations between fruits and vegetables are weaker than those for cardiovascular disease (31). However, if fruits and vegetables are used to replace refined grains and white potatoes, both of which have been shown to be associated with increased risk of DM (20, 32), the benefits of regular consumption of fruits and vegetables should be substantial.

ACKNOWLEDGEMENTS
This study was supported by grants from the National Institutes of Health (NIH): DK58845 and CA87969. The authors would like to thank Drs. Walter C. Willett and JoAnn E. Manson for their help in the preparation of this manuscript. Dr. Lydia A. Bazzano was supported by a Building Interdisciplinary Research Careers in Women’s Health Scholarship (K12 HD43451) which was co-funded by the Office of Research on Women’s Health and Office of Dietary Supplements. Dr. Bazzano had full access to all of the data in the study and takes responsibility for the integrity and the accuracy of the data analysis.
REFERENCES

1. WHO. Global Burden of Disease, Diabetes Mellitus. Geneva: WHO; 2003.
2. He K, Hu FB, Colditz GA, Manson JE, Willett WC, Liu S. Changes in intake of fruits and vegetables in relation to risk of obesity and weight gain among middle-aged women. *Int J Obes Relat Metab Disord*. 2004;28:1569-74.
3. Hung HC, Joshipura KJ, Jiang R, et al. Fruit and vegetable intake and risk of major chronic disease. *J Natl Cancer Inst*. 2004;96:1577-84.
4. Joshipura KJ, Ascherio A, Manson JE, et al. Fruit and vegetable intake in relation to risk of ischemic stroke. *JAMA*. 1999;282:1233-9.
5. Colditz GA, Manson JE, Stampfer MJ, Rosner B, Willett WC, Speizer FE. Diet and risk of clinical diabetes in women. *Am J Clin Nutr*. 1992;55:1018-23.
6. Feskens EJ, Virtanen SM, Rasanen L, et al. Dietary factors determining diabetes and impaired glucose tolerance. A 20-year follow-up of the Finnish and Dutch cohorts of the Seven Countries Study. *Diabetes Care*. 1995;18:1104-12.
7. Meyer KA, Kushi LH, Jacobs DR, Jr., Slavin J, Sellers TA, Folsom AR. Carbohydrates, dietary fiber, and incident type 2 diabetes in older women. *Am J Clin Nutr*. 2000;71(4):921-30.
8. Ford ES, Mokdad AH. Fruit and vegetable consumption and diabetes mellitus incidence among U.S. adults. *Prev Med*. 2001;32:33-9.
9. Liu S, Serdula M, Janket SJ, et al. A prospective study of fruit and vegetable intake and the risk of type 2 diabetes in women. *Diabetes Care*. 2004;27:2993-6.
10. Montonen J, Jarvinen R, Heliovaara M, Reunanen A, Aromaa A, Knekt P. Food consumption and the incidence of type II diabetes mellitus. *Eur J Clin Nutr*. 2005;59:441-8.
11. Kris-Etherton PM, Hecker KD, Bonanome A, et al. Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. *Am J Med*. 2002;113 Suppl 9B:71S-88S.
12. Nurse's Health Study Semi-quantitative Food Frequency Questionnaire. http://www.channing.harvard.edu/nhs/questionnaires/pdfs/NHSI/1984.pdf Accessed on 2/25/2008
13. Steinmetz KA, Potter JD, Folsom AR. Vegetables, fruit, and lung cancer in the Iowa Women's Health Study. *Cancer Res*. 1993;53:536-43.
14. Willett WC, Sampson L, Stampfer MJ, et al. Reproducibility and validity of a semiquantitative food frequency questionnaire. *Am J Epidemiol*. 1985;122:51-65.
15. Salvini S, Hunter DJ, Sampson L, et al. Food-based validation of a dietary questionnaire: the effects of week-to-week variation in food consumption. *Int J Epidemiol*. 1989;18:858-67.
16. Classification and diagnosis of diabetes mellitus and other categories of glucose intolerance. National Diabetes Data Group. *Diabetes*. 1979;28:1039-57.
17. Manson JE, Rimm EB, Stampfer MJ, et al. Physical activity and incidence of non-insulin-dependent diabetes mellitus in women. *Lancet*. 1991;338:774-8.
18. Hu FB, Stampfer MJ, Rimm E, et al. Dietary fat and coronary heart disease: a comparison of approaches for adjusting for total energy intake and modeling repeated dietary measurements. *Am J Epidemiol*. 1999;149:531-40.
19. Fung TT, Schulze M, Manson JE, Willett WC, Hu FB. Dietary patterns, meat intake, and the risk of type 2 diabetes in women. *Arch Intern Med*. 2004;164:2235-40.
20. Halton TL, Willett WC, Liu S, Manson JE, Stampfer MJ, Hu FB. Potato and french fry consumption and risk of type 2 diabetes in women. *Am J Clin Nutr*. 2006;83:284-90.
21. Jiang R, Manson JE, Stampfer MJ, Liu S, Willett WC, Hu FB. Nut and peanut butter consumption and risk of type 2 diabetes in women. *JAMA*. 2002;288:2554-60.
22. Salazar-Martinez E, Willett WC, Ascherio A, et al. Coffee consumption and risk for type 2 diabetes mellitus. *Ann Intern Med.* 2004;140:1-8.
23. Schulze MB, Manson JE, Ludwig DS, et al. Sugar-sweetened beverages, weight gain, and incidence of type 2 diabetes in young and middle-aged women. *JAMA.* 2004;292:927-34.
24. de Munter JS, Hu FB, Spiegelman D, Franz M, van Dam RM. Whole grain, bran, and germ intake and risk of type 2 diabetes: a prospective cohort study and systematic review. PLoS Med. 2007; 8:e261.
25. Elliott SS, Keim NL, Stern JS, Teff K, Havel PJ. Fructose, weight gain, and the insulin resistance syndrome. *Am J Clin Nutr.* 2002;76:911-22.
26. Teff KL, Elliott SS, Tschop M, et al. Dietary fructose reduces circulating insulin and leptin, attenuates postprandial suppression of ghrelin, and increases triglycerides in women. *J Clin Endocrinol Metab.* 2004;89:2963-72.
27. Salmeron J, Manson JE, Stampfer MJ, Colditz GA, Wing AL, Willett WC. Dietary fiber glycemic load, and risk of non-insulin-dependent diabetes mellitus in women. *JAMA.* 1997;277:472-7.
28. Bazzano LA, He J, Ogden LG, et al. Fruit and vegetable intake and risk of cardiovascular disease in US adults: the first National Health and Nutrition Examination Survey Epidemiologic Follow-up Study. *Am J Clin Nutr.* 2002;76(1):93-9.
30. U.S. Department of Health and Human Services and U.S. Department of Agriculture. Dietary Guidelines for Americans, 2005. 6th ed. Washington D.C.: U.S. Government Printing Office; 2005.
31. Hu FB, Willett WC. Optimal diets for prevention of coronary heart disease. *JAMA.* 2002;288:2569-78.
32. Hu FB, Manson JE, Stampfer MJ, et al. Diet, lifestyle, and the risk of type 2 diabetes mellitus in women. *N Engl J Med.* 2001;345:790-7.
FIGURE LEGEND

Figure 1. Multivariate-adjusted* Relative Hazard of Diabetes Mellitus by Category of Cumulative-updated Fruit Juice Intake.

* adjusted for cumulatively updated body mass index, physical activity, family history of diabetes, post-menopausal hormone use, alcohol use, smoking, and total energy intake. For an increase of 1 serving/day of fruit juice, multivariate adjusted RR was 1.18 (95% CI 1.10 to 1.26; P<0.0001).
Table 1. Characteristics of the Study Population (N=71,346 women) by Quintile of Total Intake of Fruit and Vegetables in 1984.*

| Quintile 1 | Quintile 2 | Quintile 3 | Quintile 4 | Quintile 5 |
|------------|------------|------------|------------|------------|
| Participants | 14,573     | 14,408     | 14,337     | 14,118     | 13,910     |
| Median intake fruits and vegetables, servings/day † | 2.1         | 3.2         | 4.2         | 5.3         | 7.5         |
| Median intake fruit, servings/day † | 0.5         | 0.9         | 1.2         | 1.7         | 2.5         |
| Median intake vegetables, servings/day | 1.5         | 2.3         | 3.0         | 3.7         | 5.2         |
| Median intake fruit juices, servings/day | 0.2         | 0.4         | 0.5         | 0.6         | 0.7         |
| Age, y | 48.5 (7.1) | 49.4 (7.2) | 50.2 (7.1) | 50.8 (7.1) | 51.8 (7.0) |
| Body mass index, kg/m² | 23.5 (7.1) | 23.6 (7.0) | 23.6 (6.9) | 23.7 (6.9) | 23.6 (7.0) |
| Alcohol, g | 7.4 (12.7) | 7.2 (11.6) | 7.1 (11.0) | 6.9 (10.6) | 6.6 (10.5) |
| Physical activity, hours/week | 2.1 (2.0) | 2.2 (2.1) | 2.4 (2.1) | 2.5 (2.2) | 2.8 (2.3) |
| Current smoker, % | 34 | 27 | 23 | 20 | 17 |
| Hypertension, % | 19 | 20 | 19 | 20 | 21 |
| Hypercholesterolemia, % | 7 | 7 | 7 | 8 | 8 |
| Current use of hormone replacement, % | 22 | 23 | 24 | 26 | 26 |
| Pre-menopausal, % | 47 | 47 | 47 | 46 | 45 |
| Family history of diabetes, % | 25 | 25 | 25 | 25 | 26 |
| Dietary intake | | | | | |
| Total energy, kcal | 1,457 (465) | 1,621 (474) | 1,744 (486) | 1,859 (501) | 2,061 (537) |
| Carbohydrate, g | 176 (35) | 181 (31) | 184 (30) | 187 (29) | 195 (31) |
| Glycemic load, g | 98 (22) | 98 (20) | 98 (19) | 99 (18) | 101 (19) |
| Protein, g | 67 (13) | 69 (12) | 71 (12) | 73 (12) | 76 (14) |
| Polyunsaturated fat, g | 11.7 (3.3) | 11.9 (3.1) | 11.9 (3.0) | 11.8 (3.0) | 11.6 (3.2) |
| Monounsaturated fat, g | 24.0 (4.6) | 23.3 (4.1) | 22.7 (3.9) | 21.8 (3.8) | 20.3 (4.0) |
| Saturated fat, g | 23.9 (5.0) | 23.0 (4.4) | 22.3 (4.2) | 21.5 (4.0) | 20.0 (4.2) |
| Trans-unsaturated fat, g | 3.8 (1.2) | 3.6 (1.1) | 3.4 (1.0) | 3.2 (1.0) | 2.9 (0.9) |
| Cholesterol, mg | 284 (108) | 286 (94) | 287 (90) | 287 (90) | 281 (95) |
| Fiber, g | 12.1 (3.2) | 14.4 (3.1) | 16.0 (3.3) | 17.8 (3.6) | 21.3 (4.9) |

* Percentage of categorical or mean (standard deviation) of continuous population characteristics adjusted for total energy intake.
† Neither all fruits nor all fruit and vegetables include fruit juices.
Table 2. Age and Multivariate-Adjusted Hazard Ratios (95% CI) for Incident Type 2 Diabetes According to Quintile of Cumulative Averaged Intake of Fruit and Vegetables.

| Cumulative Averaged Intake of Fruit and Vegetables | Quintile 1 | Quintile 2 | Quintile 3 | Quintile 4 | Quintile 5 |
|--------------------------------------------------|------------|------------|------------|------------|------------|
| Vegetables                                       |            |            |            |            |            |
| Cases                                            | 845        | 877        | 930        | 976        | 901        |
| Person-years                                     | 223,945    | 247,049    | 249,343    | 246,076    | 227,581    |
| age-adjusted                                     | 1.00       | 0.96 (0.88-1.06) | 1.00 (0.91-1.10) | 1.05 (0.96-1.15) | 1.04 (0.95-1.15) |
| model 1*                                         | 1.00       | 0.98 (0.89-1.08) | 0.98 (0.89-1.08) | 1.03 (0.93-1.13) | 0.98 (0.88-1.09) |
| model 2†                                         | 1.00       | 1.00 (0.91-1.10) | 1.02 (0.93-1.12) | 1.08 (0.98-1.19) | 1.05 (0.94-1.16) |
| Fruit†                                           |            |            |            |            |            |
| Cases                                            | 862        | 988        | 948        | 914        | 817        |
| Person-years                                     | 237,964    | 249,649    | 247,769    | 241,595    | 227,017    |
| age-adjusted                                     | 1.00       | 1.06 (0.97-1.16) | 1.00 (0.91-1.10) | 0.97 (0.88-1.06) | 0.90 (0.82-0.99) |
| model 1*                                         | 1.00       | 1.01 (0.92-1.11) | 0.94 (0.86-1.04) | 0.89 (0.81-0.98) | 0.81 (0.73-0.91) |
| model 2†                                         | 1.00       | 1.04 (0.94-1.14) | 0.99 (0.90-1.09) | 0.96 (0.86-1.06) | 0.90 (0.80-1.00) |
| Fruit and Vegetables†                            |            |            |            |            |            |
| Cases                                            | 870        | 900        | 945        | 924        | 890        |
| Person-years                                     | 237,727    | 248,219    | 247,926    | 244,157    | 225,964    |
| age-adjusted                                     | 1.00       | 0.96 (0.88-1.06) | 0.99 (0.90-1.09) | 0.97 (0.88-1.07) | 1.00 (0.91-1.10) |
| model 1*                                         | 1.00       | 0.98 (0.89-1.07) | 0.95 (0.87-1.05) | 0.92 (0.84-1.02) | 0.92 (0.82-1.02) |
| model 2†                                         | 1.00       | 1.01 (0.92-1.11) | 1.00 (0.91-1.10) | 0.99 (0.89-1.09) | 1.01 (0.90-1.12) |
| Fruit Juices                                     |            |            |            |            |            |
| Cases                                            | 749        | 946        | 1032       | 920        | 882        |
| Person-years                                     | 239,408    | 241,268    | 250,260    | 244,157    | 230,425    |
| age-adjusted                                     | 1.00       | 1.21 (1.10-1.34) | 1.28 (1.17-1.41) | 1.17 (1.06-1.28) | 1.17 (1.06-1.29) |
| model 1*                                         | 1.00       | 1.20 (1.09-1.32) | 1.28 (1.16-1.40) | 1.25 (1.13-1.38) | 1.33 (1.20-1.48) |
| model 2†                                         | 1.00       | 1.21 (1.10-1.33) | 1.29 (1.17-1.42) | 1.25 (1.14-1.38) | 1.35 (1.22-1.50) |
| Legumes                                          |            |            |            |            |            |
| Cases                                            | 825        | 874        | 951        | 968        | 911        |
| Person-years                                     | 248,849    | 216,815    | 248,202    | 259,566    | 230,563    |
| age-adjusted                                     | 1.00       | 1.12 (1.02-1.23) | 1.09 (0.99-1.20) | 1.08 (0.99-1.19) | 1.12 (1.02-1.23) |
| model 1*                                         | 1.00       | 1.13 (1.03-1.25) | 1.10 (1.00-1.21) | 1.10 (1.00-1.21) | 1.09 (0.99-1.21) |

P-value for Trend

3 serving/d and 1 serving/d Increase in Intake

Median Intake (Quintile 1, 5) servings/d

1.00 (0.98-1.13) 3.09 (1.61 5.40)
1.06 (0.98-1.13) 3.09 (1.61 5.40)
0.003
0.84 (0.74-0.94) 1.08 (0.46, 2.64)
<0.001
0.74 (0.65-0.84)
0.008
0.82 (0.72-0.94)
4.47 (2.35, 7.66)
0.10
1.00 (0.96-1.05) 4.47 (2.35, 7.66)
0.01
1.05 (0.99-1.12) 0.54 (0.04, 1.33)
<0.001
1.17 (1.10-1.25)
<0.001
1.18 (1.10-1.26)
0.11
1.20 (0.96, 1.50)
0.17 (0.07, 0.45)
0.40
1.11 (0.87-1.40)
| Model       | Cases | Person-years | Adjusted for                                      | 95% CI          | P-value |
|-------------|-------|--------------|--------------------------------------------------|-----------------|---------|
|             | 921   | 223,958      |                                                  |                 |         |
|             | 957   | 239,419      |                                                  |                 |         |
|             | 995   | 256,196      |                                                  |                 |         |
|             | 837   | 241,036      |                                                  |                 |         |
|             | 819   | 243,385      |                                                  |                 |         |
| Model 1*    |       |              | Additionally adjusted for body mass index,      |                 |         |
|             |       |              | physical activity, family history of diabetes,  |                 |         |
|             |       |              | post-menopausal hormone use, alcohol use,       |                 |         |
|             |       |              | smoking, and total energy intake.               |                 |         |
| Model 2†    |       |              | Adjusted for all variables in model 1 and       |                 |         |
|             |       |              | additionally for whole grains, nuts, processed  |                 |         |
|             |       |              | meats, coffee, potatoes, and sugar-sweetened    |                 |         |
|             |       |              | soft drinks.                                    |                 |         |
|             |       |              | Neither fruit nor fruit and vegetables include  |                 |         |
|             |       |              | fruit juices.                                   |                 |         |

‡ Neither fruit nor fruit and vegetables include fruit juices
§ 3 serving/day increase shown for Vegetables, Fruit, and Fruit and Vegetables combined, 1 serving/day increase shown for all other items

Overall median intake for the entire category, and in parentheses the median intakes for the lowest and highest quintiles, in servings/day Distribution based on the cumulative average of median values from questionnaires from 1984, 1986, 1990, 1994, and 1998.
### Table 3. Prospective cohort studies reporting measures of association between intake of fruits and vegetables and diabetes mellitus.

| Author, year | Population | N | Age, sex | Exposure measure | Adjustments | Follow-up (years) | Case Ascertainment | Events | Association | Notes |
|--------------|------------|---|----------|------------------|-------------|------------------|--------------------|--------|-------------|-------|
| Colditz, 1992 | US Nurses | 84,360 | 34-59, F | 61 item FFQ | Age, BMI, weight change, alcohol intake, total energy | 6 | Follow-up questionnaire | 702 DM | HR Q5/1 0.76 (0.50-1.16) vegetable intake | Q5/1: ≥2.9 serving/d of vegetables vs. <1.2 |
| Feskens, 1995 | Finnish and Dutch | 338 | 70-89, M | Cross-check diet history | Age, cohort, BMI, past BMI, past energy intake | 30 | OGTT | 71 IGT, 26 DM | Inverse association of 2-hr post load glucose and intake of vegetables and legumes | Multivariate regression predicting 2 hr post load glucose |
| Meyer, 2000 | Post-menopausal Iowa women | 35,988 | 55-69, F | 127 item FFQ | Age, smoking, total energy, BMI, alcohol, WHR, education, physical activity | 6 | Iowa death register, Biennial questionnaire and NDI | 1,141 DM | HR Q5/1 fruit+ vegetables 1.05 (0.84-1.31) | Q5/1: >51 servings/wk fruit +vegetables vs. <23 |
| | | | | | | | | | HR vegetables 1.07 (0.86-1.32) | Q5/1: >33.5 serving/wk vegetable vs. <14 |
| | | | | | | | | HR fruit1.14 (0.93-1.39) | Q 5/1: >19 servings/wk fruit vs. <6.25 |
| Ford, 2001 | NHEFS | 9,665 | 25-74, M+F | Single 24 hour dietary recall | Age, race, sex, smoking, BMI, alcohol, SBP, lipids, HTN, physical activity | 19 | Follow up questionnaire and hospital records, death certificates | 1,018 DM | HR fruit+ vegetable intake 0.73 (0.54-0.98) | 5 or more times/d vs. 0 times/d, no portion size included, also identified a sex interaction |
| Liu, 2004 | WHS | 38,018 | ≥45, F | 131 item FFQ | Age, smoking, total energy, alcohol, BMI, physical activity, HTN, hyperlipidemia, FH | 8.8 | Follow-up questionnaire | 1,614 DM | HR Q5/1 fruit+ vegetables 1.04 (0.87-1.25) | Q5/1: median 10.1 serving/d fruit+ vegetables vs. 2.5 |
| | | | | | | | | HR fruit 0.97 (0.82-1.23) | Q5/1: median 3.9 serving/d fruit vs.0.62 |
| Montonen, 2005 | Finnish | 4,304 | 40-69, M+F | Diet history | Age, sex, smoking, total energy, BMI, FH, geographic area | 23 | Finnish Social Insurance Institution’s National database | 383 DM | HR Q4/1 vegetables 0.77 (0.57-1.03) | Q4/1: >130 g/d vegetables vs. <42 |
| | | | | | | | | HR green vegetables 0.69 (0.50-0.93) | Q4/1: >43 g/d green vegetables vs. <11 |
| | | | | | | | | HR fruit 0.82 (0.61-1.11) | Q4/1: >138 g/d fruit vs. <20 |

NHEFS: First National Health and Nutrition Examination Study Epidemiologic Follow-up Study; WHS: Women’s Health Study; M: male; F: female; IHD: ischemic heart disease; CVA: cerebrovascular accident; FFQ: food frequency; SBP: systolic blood pressure; BMI: body mass index; SBP: systolic blood pressure; DM: diabetes mellitus; WHR: waist to hip ratio; FH: family history of diabetes; HTN: hypertension; OGTT: oral glucose tolerance test; NDI: National Death Index; HR: hazard ratio; Q: quantile