A Full Computational Evaluation of Two Novel Chalcone Derivatives as Inhibitors for Colon Cancer Related Proteins.

Manos C. Vlasiou*, Christos C. Petrou1, Yiannis Sarigiannis1 and Kyriaki S. Pafiti1

1 Affiliation 1; Department of Life and Health Sciences, University of Nicosia, Nicosia 2417, Cyprus
* Correspondence: vlasiu.m@unic.ac.cy

Abstract: Colorectal cancer is a major threat to the society causing the death through metastasis to several patients with stage IV. Computational tools provide a relatively quick procedure in order to evaluate several molecules for their drug activity. Prenylated flavonoids are well known for their anticancer properties even in colon cancer. Here, we provided altered structures of chalcones, based on theoretical studies that are showing better binding affinities to several colon cancer related proteins. Using molecular docking and dynamics, alongside with density function theory and ADMET studies we are representing two new derivatives of Xanthohumol prenylated flavonoids having promising results against this disease.

Keywords: Xanthohumol; Colon cancer; Molecular docking, DFT, ADMET

1. Introduction

The high mortality rate (90%) amongst patients with stage IV colorectal cancer indicates a necessity in new chemotherapeutic agents with an increased selectivity. In such ways scientific community may be in a position to decrease the risk of metastasis which sometimes it is associate with high resistances in monotherapy [1]. It seems that, nowadays drugs are not yet in position to withstand the resistant mechanisms of tumour cells, which are linked to the tumour microenvironment such as the accumulation of phospholipids [2].

Prenylated flavonoids are secondary metabolites occurring in hops. This group of chemicals is showing a cytotoxic potential even in multi resistant cancer cells [3]. More specifically, 8-prenylnaringenin inhibits breast cancer cells and recently has been evaluated for its antiproliferative and apoptotic activities against human colon cancer cells [4] showing remarkable results. The anticancer action of the flavonoid family is established since several studies are showing that flavonoids can regulate cell death-related cellular signalling via ROS in human colon cancer cells [5,6], oral cancer cells [7], inhibiting enzymes responsible for this disease such as reductases and dehydroxygenases [8] and mediated SIRT1 signalling activation in hepatic disorders [9]. Recently natural flavonoids and chalcones were even tested against several covid-19 related proteins with promising results [10,11].

The molecular docking, is a computational strategy resulted the predicting binding site complementarity between a drug and its therapeutic target and has been massively used to assist drug repositioning for several diseases including cancer [12,13,14]. Additionally, DFT computational approach under the B3LYP/6 311++G(d,p) level of theory by using one-dimensional potential energy surface is another tool that helps the researchers to predict the reactivity of the design molecules [15,16]. On the other hand, molecular dynamics are well used for predicting protein-ligand binding site, including binding pockets and the binding residues in each pocket [17,18].
Herein, we have performed two major computation experiments, molecular docking and molecular dynamics on several colon cancer related proteins [19], in order to evaluate the anticancer activity of 6-prenylnaringenin, 8-prenylnaringenin, xanthohumol and isoxanthohumol, compared to established anticancer drugs such as Avastin, Oxaliplatin and Xeloda. Based on the best two candidates of that group molecules, we have altered their structure in order to increase their binding affinities with the related proteins. The small molecules also evaluated using density function theory studies. Finally, the two new molecules were evaluated theoretically for their potential drug use, with the help of ADMET studies.

2. Materials and Methods

2.1 Molecular Dynamics

The protein-ligand binding site prediction has been done by using the COACH server (https://zhanglab.ccmb.med.umich.edu/COACH/). The prediction occurred using two comparative methods, TM-SITE and S-SITE, which recognize ligand-binding templates from the BioLiP protein function database by binding-specific substructure and sequence profile comparisons [20]. The molecular dynamic simulation was done in order to evaluate the molecular docking study.

2.2 Molecular Docking

Molecular docking studies were carried out by using iGEMDOCK 2.1 software [21]. The 3F6U, 4P75, 4UYA and 6MFQ proteins coded crystal structures were selected from the Protein Data Bank (www.rcsb.org). Ligand molecules were collected by Drug Bank (www.drugbank.ca). The novel ligands were drawn with the help of ChemDraw Ultra 12.0, Chem3D Pro 12.0 and Avogadro software [22]. The scoring function consisted of a simple empirical scoring function and a pharmacophore-based scoring function to reduce the number of false positives. The energy function can be dissected into the following terms:

$$ E_{\text{tot}} = E_{\text{bind}} + E_{\text{pharma}} + E_{\text{ligpre}} \quad (1) $$

where E_{bind} is the empirical binding energy used during the molecular docking; E_{pharma} is the energy of binding-site pharmacophores; and E_{ligpre} is a penalty value if the ligand unsatisfied with the ligand preferences. E_{pharma} and E_{ligpre} were used to improve the number of true positives by discriminating active compounds from hundreds of thousands of non-active compounds. The empirical binding energy (E_{bind}) is given as:

$$ E_{\text{bind}} = E_{\text{inter}} + E_{\text{intra}} + E_{\text{penal}} \quad (2) $$

where E_{inter} and E_{intra} are the intermolecular and intramolecular energy, respectively, and E_{penal} is a large penalty value if the ligand is out of the range of the search box. In this paper, E_{penal} is set to 10000. For screening: The population size was $= 200$, generations = 70, number of solutions = 3. Fitness is the total energy of a predicted pose in the binding site [23]. Here, the vdW term is van der Waal energy. Hbond and Elect terms are hydrogen bonding energy and electrostatic energy, respectively. Screenshots of the ligand-amino acid residue interactions created by CHIMERA software [24].

2.3 Density Function Theory Studies

Geometric optimization calculations were performed in accordance with the DFT method using ORCA software [25,26]. Frequency calculations were performed to obtain
thermodynamic properties and to verify that each optimization achieved an energy minimum. The quantum chemical descriptors extracted directly from the ORCA output file were total energy, Huckel atomic charges, electronic density, dipole moment, Mayer population analysis, the energy of the highest occupied molecular orbital (HOMO), and the energy of the lowest unoccupied molecular orbital (LUMO) [27,28].

2.4 Structural Modification

The best two candidates according to their binding affinities to the related proteins, Xanthohumol and 8-Prenylnaringenin were altered chemically in structure, adding at first a prenylated group unit to the second ring of their moieties. After that addition we realized that the binding affinities were declined, showing that the increase of the lipophilicity of the second ring of the chalcones altered negatively the chemical relativity with the protein. After that, we decided to introduce diethanolamine structure moiety to the second ring, increasing successfully their binding affinities, even more compared to the original molecules. The structure modification was performed using the Chem3D Pro software and structures were optimised with ORCA software.

2.5 ADMET Studies

Xanthohumol, 8-Prenyllanaringenin and their two novel derivatives were also evaluated for their pharmacological profile using the SwissADME server (http://www.swissadme.ch/). The predicted result consists of physiochemical properties, lipophilicity, water-solubility, pharmacokinetics, drug-likeness, and toxicity studies. The simulation provides in-formation about absorption, distribution, metabolism, excretion, and toxicity of the drug [29]. Moreover, in order to double-check the gained values, we used Biosig Tool online software [30]. The pharmacological profile of the best scoring inhibitors was evaluated by Toxtree software [31,32], using Cramer rules and Cytochrome P450 metabolism prediction, taking information on pKa values, logP values, solubility, refractivity, and estimated toxicity of the molecules.

3. Results and Discussion

3.1 Molecular Dynamics

The prediction of the binding sites of the related colon cancer proteins, has been done after combination of multiple prediction results of algorithms from TM-SITE, S-SITE, COFAC- TOR, FINDSITE and ConCavity. The probability of a residue to be a binding residue is calculated from individual methods, which are used as the feature vectors for the residue. The top-scoring predictions from each of the programs are combined using a linear SVM. The detailed prediction it can be found in the supplementary material S1Table. On the other hand, in Figure 1, we can see the predicted binding sites of the studied protein structures calculated with molecular dynamics simulations as predicted by the COACH server. (A: 6MFQ, B: 4P75, C: 4UYA, D: 3F6U).

6MFQ, 4P75, 4UYA and 3F6U, are 2-chain structure proteins and biomarkers for colon cancer. Defects in these proteins are the cause of hereditary non-polyposis colorectal cancer type 4 (HNPCC4). HNPCC is an autosomal, dominantly inherited disease associated with marked increase in cancer susceptibility. It is characterized by a familial predisposition to early onset colorectal carcinoma (CRC) and extra-colonic cancers of the gastrointestinal [33]. After the prediction of the binding pocket areas of the structures we proceeded with molecular docking studies using for ligands prenylated chalcones with in vitro proven anti colon cancer activity, common anticancer drugs that are in use for that disease and two novel derivatives of the best candidates in docking studies.
3.2 Molecular Docking

Using the predicted binding pockets of the studied structures, we performed molecular docking studies with the ligands: 6-Prenylnaringenin, 8-Prenylnaringenin, Isoxanthohumol, Xanthohumol, 8-Prenylnaringenin derivative, Xanthohumol derivative, Avastin, Oxylplatin and Xeloda. Avastin, Oxylplatin and Xeloda are common anticancer drugs that are in use for colon cancer treatment. 8-Prenylnaringenin and Xanthohumol exhibited relatively high binding affinities with the selected proteins, so we decided to alter their structures chemically, by substituting the second ring of the prenylated chalcone molecules with diethanolamine. As we can see on Table 1, the binding affinities of the molecules increased after the substitution. In general, all the prenylated chalcone molecules that can be found in hops plant, showed similar or even better in some cases binding affinities compared to the anticancer commercial drugs. The two substituted novel chalcone molecules exhibited even higher binding affinities with the selected proteins. In Figure 2 we can observe depicted structures of the binding protein-drug complexes. (A: 3F6U-Xanthohumol, B: 6MFQ-8Prenylnaringenin, C: 3F6U-Xanthohumol derivative, D: 6MFQ-8Prenylnaringenin derivative).

3.3 Density Function Theory Studies

Using density function theory studies, we were able to determine the optimized 3d structures of the two novel chalcone derivatives. Selected bond lengths and angles alongside with atomic charges, can be found in supplementary tables, S2Table, S3Table and S4Table respectively. The optimized structures and van der Waals sphere structures of the two novel chalcone molecules can be found in Figure 3.

The distribution and energy of HOMO is an important parameter to explain the antioxidant potential of phenolic antioxidants. The electron donating capacity of the molecule can be predicted by looking at the energy values of HOMO [34]. So, in Figure 4, we can see the HOMO and LUMO orbitals of the chalcone derivatives indicating Δ_{GAP} for Xanthohumol derivative equal to 11.265 eV and Δ_{GAP} for 8-Prenylnaringenin derivative equal to 11.403 eV. The results are in a good agreement with the docking studies revealing that 8-Prenylnaringenin derivative has higher activity than the Xanthohumol derivative.

3.4 Structural Modification

At first, we substituted the two molecules with a prenylated group leading to an increase in lipophilicity of the molecules. This resulted a decrease to the binding affinities of the molecules on the selected proteins. After this step we substitute the second ring of the chalcone derivatives with a diethanolamine, a strategic synthesis reported previously in the literature [35]. By doing this we have increased the hydrophilicity of the molecules and further more their binding affinities to the studied proteins. This will probably increase their biological activity as well, a fact that should be studied further in vitro in another work. The substitution of the two chalcone molecules can be found in Figure 5. This structural modification had an impact on the amino acid residue that the molecules interacted as well. A detailed information of the binding amino acid residues with the molecules Xanthohumol, Xanthohumol derivative, 8-Prenylnaringenin and 8-Prenylnaringenin, can be found in Table 2.

2.5 ADMET Studies

Our final approach was to evaluate theoretically the pharmacological properties of the two novel molecules. The predicted pharmacological properties of these two candidate molecules are depicted in Table 3. The pharmacological properties of the drugs, including the absorption, distribution, metabolism, excretion, and toxicity, are also presented. It is worthy to say that these two derivatives have very similar pharmacological values and
better than the in vitro evaluated Xanthohumol and 8-Prenylnaringenin, a fact that has to do probably with their increase in hydrophilicity. We believe though that further studies should be done in order these molecules to be fully evaluated as drug candidates. Regarding their toxicity their increase in polarity decreases their toxicity values as well, increasing more their potential use.

4. Conclusions

In this work we have investigated the binding pockets of several colon cancer proteins using molecular dynamics and we were evaluated theoretically the binding affinities of a family of prenylated chalcones with the help of molecular docking studies. The prenylated chalcones were used in the literature against colon cancer previously in vitro with promising results. So, Xanthohumol and 8-Prenylnaringenin were computationally revealed as promising candidates evenly compared with traditionally anticancer drugs. The molecules were then studied with density function theory and finally, we managed to increase the binding affinity of that molecules on cancer proteins by substitution with diethanolamine molecule, attached on the second phenolic ring. We do believe that these two novel chalcone derivatives will show promising results when tested in vitro and should be used in further studies against colon cancer.

Supplementary Materials: S1Table, S2Table, S3Table, S4Table, S5Table.

Author Contributions: “Conceptualization, Manos C. Vlasiou; methodology, Manos C. Vlasiou; software, Christos C. Petrou; validation, Yiannis Sarigiannis,. resources, Christos C. Petrou.; writing—original draft preparation, Kyriaki S. Pafiti; writing—review and editing, Manos C. Vlasiou; visualization, Kyriaki S. Pafiti.; supervision, Manos C. Vlasiou. All authors have read and agreed to the published version of the manuscript.”

Funding: None.

Data Availability Statement: In this section, please provide details regarding where data supporting reported results can be found, including links to publicly archived datasets analyzed or generated during the study. Please refer to suggested Data Availability Statements in section “MDPI Research Data Policies” at https://www.mdpi.com/ethics. You might choose to exclude this statement if the study did not report any data.

Acknowledgments: None.

Conflicts of Interest: “The authors declare no conflict of interest.”

References

1. Alessandra Scaglia Mrini, Aline Mathey, Virginie Aires and Dominique Delmas*, Xanthohumol, a Prenylated Flavonoid from Hops, Induces DNA Damages in Colorectal Cancer Cells and Sensitizes SW480 Cells to the SN38 Chemotherapeutic Agent. Cells 2020, 9, 932.

2. Anna A. Marusiak, Natalie L. Stephenson, Hayeon Baik, Eleanor W. Trotter, Yaoyong Li, Karen Blyth, Susan Mason, Phil Chapman, Lorena A. Puto, Jon A. Read, Claire Brassington, Hannah K. Pollard, Chris Phillips, Isabelle Green, Ross Overman, Matthew Collier, Ewelina Testoni, Crispin J. Miller, Tony Hunter, Owen J. Sansom, and John Brognard, Recurrent MLK4 Loss-of-Function Mutations Suppress JNK Signaling to Promote Colon Tumorigenesis, Cancer Res; 76(3) February 1, 2016, 724-735.
3. Corinna Urmann* and Herbert Riepl, Semi-Synthetic Approach Leading to 8-Prenylxanthohumol and 6-Prenylxanthohumol: Optimization of the Microwave-Assisted Demethylation of Xanthohumol Using Design of Experiments, Molecules 2020, 25, 4007.

4. Sanaz Kooshah, Zahurin Mohamed, Ajantha Sinniah, Zaridatul Aini Ibrahim, Atefehalsadat Seyedan, Mohammed A. Al-shawsh, Antiproliferative and apoptotic activities of 8-prenylxanthohumol against human colon cancer cells, Life Sciences 232 (2019) 116633.

5. Muzaffer Dikel, Zehra Tavsanc, Hulya Ayar Kayalı*, Flavonoids regulate cell death-related cellular signaling via ROS in human colon cancer cells, Process Biochemistry 101 (2021) 11–25.

6. Hee Won Seo, Huwion No, Hye Jin Cheon, Jin-Kyung Kim*, Sappanchalcone, a flavonoid isolated from Caesalpinia sappan L., induces caspase-dependent and AIF-dependent apoptosis in human colon cancer cells, Chemico-Biological Interactions 327 (2020) 109185.

7. Jyoti Kode, *Jeshma Kovvuri, Burri Nagaraju, Shailesh Jadhav, Madan Barkume, Subrata Sen, Nirmal Kumar Kasinathan, Pradip Chaudhari, Bhabani Shankar Mohanty, Jitendra Gour, Dileep Kumar Sigalapalli C. Ganesh Kumar, Trupti Pradhan, Manisha Banerjee, Ahmed Kamal, * Synthesis, biological evaluation, and molecular docking analysis of phenserin based indole linked chalcones as anticancer agents and tubulin polymerization inhibitors, Bioorganic Chemistry 105 (2020) 104447.

8. Jan Moritz Seliger, Hans-Jörg Martin, Edmund Maser, Jan Hintzpeter, Potent inhibition of human carbonyl reductase 1 (CBR1) by the prenylated chalconoid xanthohumol and its related prenyflavonoids isoxanthohumol and 8-prenylxanthohumol, Chemico-Biological Interactions 305 (2019) 156–162.

9. Ahmed M. Sayeda, Emad H.M. Hassaneinb, Shimaa H. Salemc, Omnia E. Husseinb, Ayman M. Mahmouda, * Flavonoids-mediated SIRT1 signaling activation in hepatic disorders, Life Sciences 259 (2020) 118173.

10. Balaji Gowrivel Vijayakumar, Deepthi Ramesh, Annu Jothi, Jayadharni Jayachandrar prakashan, Tharanikkarasu Kannan *, In silico pharmacokinetic and molecular docking studies of natural flavonoids and synthetic indole chalcones against essential proteins of SARS-CoV-2, European Journal of Pharmacology 886 (2020) 173448.

11. Manos C. Vlasiou *, Kyriaki S. Pafiti, Screening possible drug molecules for Covid-19. The example of vanadium (III/V/V) complex molecules with computational chemistry and molecular docking, Computational Toxicology 18 (2021) 100157.

12. Wesley B. Cardoso *, Sebastião A. Mendanha, Molecular dynamics simulation of docking structures of SARS-CoV-2 main protease and HIV protease inhibitors, W.B. Cardoso and S.A. Mendanha / Journal of Molecular Structure 1225 (2021) 129143.

13. Amalia Stefaniu *, Lucia Pirvu *, Bujor Albu and Lucia Pintilie, Molecular Docking Study on Several Benzoic Acid Derivatives against SARS-CoV-2, Molecules 2020, 25, 5828.

14. Ryunosuke Yoshino, Nobuaki Yasu and Masakazu Sekijima, Identification of key interactions between SARS-CoV-2 main protease and inhibitor drug candidates, Scientific Reports 1 (2020) 101249.

15. Manoj Kumar Chaudhury, Anubha Srivastavab, Keshav Kumar Singh, Poonam Tandonb, “Bhawani Datt Joshi,” Computational evaluation on molecular stability, reactivity, and drug potential of frovatriptan from DFT and molecular docking approach, Computational and Theoretical Chemistry 1191 (2020) 113031.

16. Seema A. Kulkarni, Santhosh Kumar Nagarajan, Veena Ramesh, Velusamy Palaniyandi, S. Periyar Selvam, **, Thirumurthy Madhavan, * Computational evaluation of major components from plant essential oils as potent inhibitors of SARS-CoV-2 spike protein, S.A. Kulkarni et al. / Journal of Molecular Structure 1221 (2020) 128823.

17. Q Wu, Z Peng, Y Zhang, J Yang, COACH-D: improved protein-ligand binding site prediction with refined ligand-binding poses through molecular docking, Nucleic Acids Research, 2018, 46: W438–W442.

18. J Yang, A Roy, Y Zhang, Protein-ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment, Bioinformatics, 2013, 29: 2588–2595.

19. Jie Ren, Lulu Shang, Qing Wang, and Jing Li, Ranking Cancer Proteins by Integrating PPI Network and Protein Expression Profiles, BioMed Research International, 2019, Volume 2019, Article ID 3907195, 8.

20. Tianyi Yang, Ambrish Roy, and Yang Zhang, BioLiP*: a semi-manually curated database for biologically relevant ligand-protein interactions, Nucleic Acids Research, 41: D1096-D1103 (2013).

21. Yang, J.-M.; Chen, C.-C. GEMDOCK: a generic evolutionary method for molecular docking, Proteins, 2004, 55(2), 288–304. http://dx.doi.org/10.1002/prot.20035 PMID: 15048822.

22. Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform., 2012, 4(1), 17.

23. Manos C. Vlasiou*, Kyriakos I. Ioannou and Kyriaki S. Pafiti, Molecular Docking, DFT Studies and ADMET Simulations for Evaluating Already Approved FDA Drugs as Inhibitors for SARS-CoV-2 RNA-Dependent Polymerase, Letters in Drug Design & Discovery, 2021, 18, DOI: 10.2174/1570180817999202111192513.

24. Pethersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Green- blatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.

25. Neese, F. The ORCA program system. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2004, 2, 73-78.

26. Neese, F. Software update: the ORCA program system, version 4.0. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2017, 8, e1327.
27. Rocha, J.A.; Rego, N.C.S.; Carvalho, B.T.S.; Silva, F.I.; Sousa, J.A.; Ramos, R.M.; Passos, I.N.G.; de Moraes, J.; Leite, J.R.S.A.; Lima, F.C.A. Computational quantum chemistry, molecular docking, and ADMET predictions of imidazole alkaloids of Pilocarpus microphyllus with schistosomicidal properties. PLoS One, 2018, 13(6), 13(6), e0198476.

28. Çakmak, E.; Özbaşır Işın, D. A theoretical evaluation on free radical scavenging activity of 3-styrylchromone derivatives: the DFT study. J. Mol. Model., 2020, 26(5), 98.

29. Daina, A., Michielin, O. & Zoete, V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7, 42717 (2017). https://doi.org/10.1038/srep42717.

30. Carmen Vidaurre, Tilmann H. Sander, Alois Schlögl, "BioSig: The Free and Open Source Software Library for Biomedical Signal Processing", Computational Intelligence and Neuroscience, vol. 2011, Article ID 935364, 12 pages, 2011. https://doi.org/10.1155/2011/935364.

31. Patlewicz, G.; Jeliazkova, N.; Safford, R.J.; Worth, A.P.; Aleksiev, B. An evaluation of the implementation of the Cramer classification scheme in the Toxtree software. SAR QSAR Environ. Res., 2008, 19(5-6), 495-524. http://dx.doi.org/10.1080/10629360802083871 PMID: 18853299.

32. Rydberg, P.; Gloriam, D.E.; Zaretzki, J.; Breneman, C.; Olsen, L. SMARTCyp: A 2D Method for Prediction of Cytochrome P450-Mediated Drug Metabolism. ACS Med. Chem. Lett., 2010, 1(3), 96-100. http://dx.doi.org/10.1021/ml100016x PMID: 24936230.

33. Christophe R. Berney,* Richard J. Fisher, Jia-lin Yang,* Pamela J. Russell, and Philip J. Crowe, Protein Markers in Colorectal Cancer, Predictors of Liver Metastasis, ANNALS OF SURGERY, Vol. 230, No. 2, 179–184.

34. S. Ercan, Y. S¸enses, Design and molecular docking studies of new inhibitor candidates for EBNA1 DNA binding site: a computational study, Mol. Simul. 46 (4) (2020) 332–339, https://doi.org/10.1080/08927022.2019.1709638.

35. Ioanna Hadjiadamou, Manolis Vlassiou, Smaragda Spanou, Yannis Simos, George Papanastasiou, Evangelos Kontargiris, Irida Dhimac, Vasilios Ragos, Spyridon Karkabounas*, Chryssoula Drouzas*, Anastasios D. Keramidas*, Synthesis of vitamin E and aliphatic lipid vanadium (IV) and (V) complexes, and their cytotoxic properties, Journal of Inorganic Biochemistry 208 (2020) 111074.

Figures
Figure 1: Predicted binding sites of the studied protein structures calculated with molecular dynamics simulations. (A: 6MFQ, B: 4P75, C: 4UYA, D: 3F6U).

Figure 2: Screen shots of the binding protein-drug complexes. (A: 3F6U-Xanthohumol, B: 6MFQ-8Prenylnaringenin, C: 3F6U-Xanthohumol derivative, D: 6MFQ-8Prenylnaringenin derivative).
Figure 3: Optimized structures and van der Waals sphere structures of the two novel chalcone molecules.

Figure 4: HOMO-LUMO orbitals of the two novel chalcone molecules.
Figure 5: Structural modification of Xanthohumol and 8-Prenylnaringenin, after substitution with diethanolamine on the second ring.

Tables
Table 1: Binding affinities and energy distribution of the studied protein-ligand complexes.
Complex (Protein-Ligand)	Binding Energy (Kcal/mol)	Van der Waals Contribution (Kcal/mol)	Hydrogen Bond Contribution (Kcal/mol)
3F6U-6Prenylnaringenin	-8.35	-7.87	-0.48
3F6U-8Prenylnaringenin	-8.16	-6.83	-1.33
3F6U-Isoxanthohumol	-8.17	-7.01	-1.16
3F6U-Xanthohumol	-8.42	-0.98	-7.44
3F6U-Xanthohumol Derivative	-9.91	-1.16	-8.75
3F6U-AVASTIN	-7.55	-6.70	-0.85
3F6U-OXALILPLATIN	-7.95	-4.82	-3.13
3F6U-XELODA	-8.55	-6.99	-1.56
4P75-6Prenylnaringenin	-9.95	-7.84	-2.11
4P75-8Prenylnaringenin	-8.95	-7.90	-1.05
4P75-Isoxanthohumol	-9.05	-7.99	-1.06
4P75-Xanthohumol	-8.63	-6.25	-2.38
4P75-AVASTIN	-7.78	-6.83	-0.95
4P75-OXALILPLATIN	-6.96	-4.75	-2.21
4P75-XELODA	-10.4	-2.75	-7.65
4UYA-6Prenylnaringenin	-7.53	-7.53	0
4UYA-8Prenylnaringenin	-7.36	-6.54	-0.82
4UYA-Isoxanthohumol	-7.37	-6.86	-0.50
4UYA-Xanthohumol	-6.83	-6.43	-0.40
4UYA-AVASTIN	-7.08	-6.38	-0.70
4UYA-OXALILPLATIN	-5.96	-4.7	-1.26
4UYA-XELODA	-7.83	-6.81	-1.02
6MFQ-6Prenylnaringenin	-8.92	-7.97	-0.95
6MFQ-8Prenylnaringenin	-9.11	-0.25	-8.86
6MFQ-8Prenylnaringenin Derivative	-9.22	-1.79	-7.43
6MFQ-Isoxanthohumol	-9.25	-8.98	-0.27
6MFQ-Xanthohumol	-9.95	-7.94	-2.01
6MFQ-AVASTIN	-9.07	-6.87	-2.20
6MFQ-OXALILPLATIN	-8.05	-5.05	-3.00
6MFQ-XELODA	-9.16	-6.60	-2.56

Table 2: Amino acid residue of the binding complexes with the two novel chalcone molecules.
Complex (Protein-Ligand) Hydrogen Bonded Amino Acid Residue Hydrophobic Interacted Amino Acid Residue

Complex (Protein-Ligand)	Hydrogen Bonded Amino Acid Residue	Hydrophobic Interacted Amino Acid Residue
3F6U-Xanthohumol	ARG-554, TRP-553, ASN-641	LYS-560, TRP-593, ASN-594 (M), ASN-594 (S), ALA-597, HIS-598 (M), HIS-598 (S)
3F6U-Xanthohumol Derivative-3	ARG-554 (M), ARG-554 (S)	TRP-553, ARG-554 (M), ARG-554 (S), ALA-553, TRP-593, ASN-594 (M), ASN-594 (S), ALA-597
6MFQ-8-Prenylnaringenin	ASP-55	ASN-53, ASP-70, ASN-71 (M), ASN-71 (S), PRO-152 (M), PRO-152 (S), ARG-153 (M), ARG-153 (S), THR-52, ARG-153
6MFQ-8-Prenylnaringenin Derivative	ASN-45, ASP-48, CYS-73 (M), CYS-73 (S), GLY-74	ASN-45, ALA-49, GLY-74, VAL-75, LEU-83, GLU-109

Table 3: Pharmacokinetic characteristics of the design molecules compared with their parent ones.

Molecule	Xanthohumol	Xanthohumol Derivative	8-Prenylnaringenin	8-Prenylnaringenin Derivative
Log Po/w	2.75	3.05	2.59	2.53
Consensus Log Po/w	3.72	2.89	3.26	2.32
Log S	-5.18	-4.46	-4.91	-4.10
Class	Poorly Soluble	Moderately Soluble	Moderately Soluble	Moderately Soluble
Solubility	9.26*10^-3 mg/ml	5.06*10^-4 mg/ml	7.55*10^-3 mg/ml	7.84*10^-7 mg/ml
Inhibitor	CYP1A2, CYP2C9, CYP3A4	CYP3A4	CYP1A2, CYP2C9, CYP2D6, CYP3A4	P-gp Substrate, CYP2D6
Log Kp	-4.86 cm/s	-6.66 cm/s	-5.22 cm/s	-7.12 cm/s
Lipinski	Yes	Yes	Yes	Yes
Bioavailability Score	0.55	0.55	0.55	0.55