Fermentative hydrogen production from Jerusalem artichoke by Clostridium tyrobutyricum expressing exo-inulinase gene

Ling Jiang¹, Qian Wu², Qing Xu⁴, Liying Zhu³ & He Huang⁴

Clostridium tyrobutyricum ATCC25755 has been reported as being able to produce significant quantities of hydrogen. In this study, the exo-inulinase encoding gene cloned from Paenibacillus polymyxa SC-2 was into the expression plasmid pSY6 and expressed in the cells of C. tyrobutyricum. The engineered C. tyrobutyricum strain efficiently fermented the inulin-type carbohydrates from Jerusalem artichoke, without any pretreatment being necessary for the production of hydrogen. A comparatively high hydrogen yield (3.7 mol/mol inulin-type sugar) was achieved after 96 h in a batch process with simultaneous saccharification and fermentation (SSF), with an overall volumetric productivity rate of 620 ± 60 mL/h/L when the initial total sugar concentration of the inulin extract was increased to 100 g/L. Synthesis of inulinase in the batch SSF culture was closely associated with strain growth until the end of the exponential phase, reaching a maximum activity of 28.4 ± 0.26 U/mL. The overall results show that the highly productive and abundant biomass crop Jerusalem artichoke can be a good substrate for hydrogen production, and that the application of batch SSF for its conversion has the potential to become a cost-effective process in the near future.

Hydrogen production technologies have received growing research attention all over the world in recent years, due to the significant increase in hydrogen demand as an alternative energy source as well as a feedstock for the production of chemicals and food-oil industries. Nowadays, approximately 90% of the current hydrogen production is obtained by the conversion of fossil fuels, which requires a mass of energy and emits huge greenhouse gasses¹. In contrast to chemical methods, biological processes using carbohydrate-based substrates for hydrogen production, such as indirect photolysis, photo-fermentation, and dark fermentation, are economical and environmentally friendly²,³. Extensive researches in the past two decades have been focused on the promising route of biohydrogen production via dark fermentation using pure strains in batch and continuous systems, which can be operated at ambient temperature and pressure with minimal energy requirements⁴. Clostridia are the most significant microorganisms in anaerobic hydrogen fermentation⁵. So far, a wide range of organic compounds, such as glucose, xylose, ribose, glycerol, hydrolysates of diverse starch sources, and sugar beet molasses, have been used as substrates for hydrogen fermentation using Clostridium species (Table 1). In general, the carbon source is usually used in relatively high concentrations compared with other media components, and thus contributes most to the total cost of raw materials. Considering the cost-efficiency of fermentative hydrogen production, the exploitation of non-food residues originating from agro-industrial activities as carbon sources has therefore been strongly stimulated.

Jerusalem artichoke is one of the least expensive and most widely available non-grain crops⁶. It shows high resistance to frost and various plant diseases, which resulted in its wide cultivation in northern China for environmental protection⁶. Fresh Jerusalem artichoke tubers are rich in carbohydrates, of which 70–90% (w/w) is inulin. Moreover, Jerusalem artichoke has been widely utilized as a biotechnological feedstock in recent years.
including in the microbial production of lactic acid, propionic acid, butyric acid, ethanol, 2,3-butanediol, lipids as well as single-cell protein. However, because most wild-type microorganisms cannot secrete inulinas, an acidic or enzymatic hydrolysis pretreatment of the inulin was traditionally required prior to fermentation, which significantly increases the cost of the process. Inulin consists of linear chains of D-fructofuranose molecules terminated by a glucose residue through a sucrose-type linkage at the reducing end. Inulinas are fructofuranosyl hydrolases, the general reaction of which mainly involves the action of two enzymes: exo-inulinase (EC 3.8.1.80) and endo-inulinase (EC 3.2.1.7). Exo-inulinases can be used for the production of high-fructose syrup from natural inulin (saccharification), while endo-inulinases can be used for the production of fructooligosaccharides of varying lengths (Fig. 1).

Table 1. Summary of hydrogen fermentation with Clostridium species.

Clostridium species	Substrates profile	Yield of hydrogen (mol/mol glucose)	Reference
C. tyrobutyricum ATCC 25755 wild type	glucose	2.61	33
C. tyrobutyricum ATCC 25755 DG-8	cassava starch	3.20	28
C. tyrobutyricum ATCC 25755 (Δpfr)	glucose and xylose	2.34	34
C. tyrobutyricum FYa102	glucose	1.47	33
C. tyrobutyricum MPP-41 (DQ911273)	glucose	1.96	36
C. tyrobutyricum JM1	glucose	1.79	37
C. butyricum IFO13949	sweet potato starch	2.40	38
C. butyricum CWBI009	glucose	1.7	39
C. butyricum DSM 10702	starch	2.74	40
C. acetobutylicum ATCC 824	glucose	3.01	41
C. acetobutylicum DSM 792	beet molasses	2.80	42
C. beijerinckii DSM 791	wheat starch	0.60	43
C. beijerinckii DSM 1820	glucose	2.91	44
C. beijerinckii YA001	xylose	2.31	45
C. pasteurianum	crude glycerol	0.63	46
Clostridium sp. 6A-5	glucose	0.68	47
Clostridium sp. YM1	xylose	0.82	48
Clostridium sp. IBUN	glycerol	0.20	49
Clostridium sp. PROH2	ribose	1.23	50

Experimental details.

Plasmids, strains and cultivation. The plasmids and strains used in the present study are listed in Table 2. P. polymyxa SC-2 was isolated from the rhizosphere of pepper in Guizhou, China. It was cultivated in 10 mL of selective medium (30.0 g/L inulin, 1.0 g/L (NH₄)₂HPO₄, 0.50 g/L MgSO₄·7H₂O, 1.0 g/L NaCl, 2.0 g/L (NH₄)₂SO₄, K₂HPO₄, 0.6 g/L MgSO₄·7H₂O, 0.03 g/L FeSO₄·7H₂O, and was sterilized by autoclaving at 121 °C for 20 min as reported previously. In order to promote plasmid retention in C. tyrobutyricum ATCC 25755, which enabled the host bacterium to efficiently convert inulin from Jerusalem artichokes into hydrogen. Further experiments were conducted to develop a simultaneous saccharification and fermentation (SSF) process for hydrogen production from inulin utilizing this heterologous inulinase in C. tyrobutyricum.

Construction of the expression vector carrying the exo-inulinase gene and transformation of C. tyrobutyricum. Plasmid pSY6 with lac promoter was used as the vector backbone for cloning. E. coli DH5α was used for vector construction. The inu gene encoding exo-inulinase was amplified by PCR using the genomic DNA of P. polymyxa SC-2 strain as template with the primers F: 5'-CCGCTGCTGATGAGAACGTCGTTGGAAGCGGCAAGAGAAAT-3' and R: 5'-GGCTTCGATATCACTTCTACGCGCATATAAGCTCCAGC-3' (the bases underlined are the recognition sites of restriction enzymes XhoI and BsrGI). The PCR product was cloned into the XhoI and BsrGI sites of plasmid pSY6, supplemented with ampicillin (100 μg/mL), yielding exo-inulinase expression recombinant plasmid pSY6-inu, then methylated in E. coli TOP10 (pAN2). The recombinant plasmids extracted from the positive

Table 1. Summary of hydrogen fermentation with Clostridium species.

Clostridium species	Substrates profile	Yield of hydrogen (mol/mol glucose)	Reference
C. tyrobutyricum ATCC 25755 wild type	glucose	2.61	33
C. tyrobutyricum ATCC 25755 DG-8	cassava starch	3.20	28
C. tyrobutyricum ATCC 25755 (Δpfr)	glucose and xylose	2.34	34
C. tyrobutyricum FYa102	glucose	1.47	33
C. tyrobutyricum MPP-41 (DQ911273)	glucose	1.96	36
C. tyrobutyricum JM1	glucose	1.79	37
C. butyricum IFO13949	sweet potato starch	2.40	38
C. butyricum CWBI009	glucose	1.7	39
C. butyricum DSM 10702	starch	2.74	40
C. acetobutylicum ATCC 824	glucose	3.01	41
C. acetobutylicum DSM 792	beet molasses	2.80	42
C. beijerinckii DSM 791	wheat starch	0.60	43
C. beijerinckii DSM 1820	glucose	2.91	44
C. beijerinckii YA001	xylose	2.31	45
C. pasteurianum	crude glycerol	0.63	46
Clostridium sp. 6A-5	glucose	0.68	47
Clostridium sp. YM1	xylose	0.82	48
Clostridium sp. IBUN	glycerol	0.20	49
Clostridium sp. PROH2	ribose	1.23	50
transformants were digested with BglII. After verification by DNA sequencing (GENEWIZ, China), the recombinant plasmid was used for the electrotransformation of C. tyrobutyricum (Fig. S1). Plasmid pSY6 without the insert was used as the empty vector control. After cultivation on agar plates with 25 μg/mL of erythromycin for 2 days, positive transformants were selected at random, used to inoculate the inulinase production medium in replicates, and cultivated at 37 °C for 3 days. The cultures were centrifuged at 12,000 × g and 4 °C, and the inulinase activity in the supernatants of different transformants was determined as described below.

Preparation of inulin extracts from Jerusalem artichoke. Jerusalem artichoke tubers were purchased from a local market (Nanjing, Jiangsu, China) during the harvest season from October to November 2015. About 200 g of the Jerusalem artichoke tubers were washed, peeled, smashed, suspended in 500 mL of distilled water and cooked at 100 °C for 5 min. The inulin extract was filtered under vacuum and the total sugar concentration in the filtrate was adjusted to 20 g per 100 mL of the supernatant, which was finally autoclaved at 121 °C for 20 min.

Analysis methods. For protein expression analysis, cell-free extracts (CFE) were mixed with an equal amount of 3-fold concentrated loading buffer (10 mmol/L Tris-HCl pH 6.8, 4% (w/v) sodium dodecyl sulfate, 20% (v/v) glycine, 0.2% bromophenol blue, 2% (v/v) 2-mercaptoethanol). After boiling for 10 min, 10 µl of each sample was analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Protein concentrations were determined by the method of Bradford using bovine serum albumin as a standard. Cell concentrations were analyzed by measuring the optical density of the cell suspension at OD600 with a spectrophotometer (Ultrospec 3300 pro, Amersham Bioscience). Quantitative analysis of acids (butyric and acetic acid) and reducing sugars (glucose and fructose) was performed by HPLC (Agilent 1100, Agilent Technologies) equipped with an HPX 87H column (Bio-Rad, Hercules, CA, USA) and a refractive index detector (Agilent1100, G1362A)23. The H₂ and CO₂ concentrations in the exhaust gas were determined using the PGM 54 MultiRAE IR gas monitor (RAE system Inc., San Jose, USA).

The inulinase activity was assayed by the method of Mughal et al.24. A reaction mixture containing 0.1 mL of the enzyme extract (the supernatant obtained earlier) and 0.9 mL of a sodium acetate buffer (0.1 M, pH 5.5) containing 2% (w/v) inulin was incubated at 50 °C for 15 min. The enzyme was inactivated by keeping the reaction mixture at 90 °C for 10 min. The amount of reducing sugars in the reaction mixture was assayed by the Nelson–Somogyi method25. One unit of inulinase activity is defined as the amount of reducing sugar produced (µmol) per minute under the assay conditions used in this study. All results were obtained from the means of triplicate assays.
strain clostridia to the low transformation efficiency in the genus further illustrated by colony PCR identifications not yielding the target band (data not shown), may be partly due might be the restriction and modification system which degrades foreign DNA. However, the transformant revealed that most of the clones had inulinase activities lower than 10.0 U/mL. Furthermore, there was a 46.3% inulinase activities in the supernatants were examined to ensure that they were positive transformants. It was revealed that most of the clones had inulinase activities lower than 10.0 U/mL. Furthermore, there was a 46.3% false-positive rate (139 out of the 300 clones shown in Fig. 2). A relatively high false-positive rate, which was further illustrated by colony PCR identifications not yielding the target band (data not shown), may be partly due to the low transformation efficiency in the genus clostridia. It is generally acknowledged that genetic engineering of the genus clostridia has been developed slowly compared with that of other bacteria, one of the major reasons might be the restriction and modification system which degrades foreign DNA. However, the transformant J66 was showed the highest activity of 28.2 U/mL among the top 16 values (Table 3). As expected, the wild-type strain C. tyrobutyricum had no inulinase activity as shown in Table 3, which was in accordance with the genome sequencing result.

In order to confirm that the recombinant plasmids encompassing the exo-inulinase gene from P. polymyxa SC-2 had indeed been electro-transferred into C. tyrobutyricum, sequence analysis of the cloned inu gene in transformant J66 was subsequently carried out. The PCR products were obtained with the expected size, approximately 1,458 bp (Fig. 3), which encoded a protein of 485 amino acids with a calculated molecular mass of 55.5 kDa. The expressed recombinant exo-inulinase with a fused (His)$_6$-tag was further purified by Ni$^{2+}$ affinity chromatography. The purified exo-inulinase induced by IPTG exhibited an activity of 126.9 U/mL, which was 4.5-fold higher than that of the crude recombinant enzyme. The final preparation migrated as a single protein band on SDS-PAGE (Fig. 4), with a mobility corresponding to a molecular mass of about 56 kDa, which was in agreement with the predicted molecular mass of the exo-inulinase protein. A comparison of the deduced amino acid sequence of P. polymyxa SC-2 exo-inulinase with entries in the DDBJ database indicated that this enzyme is highly homologous with many Paenibacillus exo-inulinases as expected, for example, exo-inulinases from P. polymyxa Sb3-1 (sequence identity 99%), P. polymyxa ZJ-9 (93%), P. polymyxa SQR-21 (90%), and P. polymyxa YC0136 (86%) (Fig. 5). The invariability of the conserved domain in the exo-inulinase from P. polymyxa SC-2 indicates that its function in substrate binding and catalysis may not be very different from that of all known exo-acting inulinases. As expected, no such PCR products were amplified from the wild-type C. tyrobutyricum which carried no cloned exo-inulinase gene. Therefore, the transformant J66 was used for further investigations as the engineered inulin-consuming strain of C. tyrobutyricum.

Utilization of different sugars by the engineered C. tyrobutyricum in batch SSF. Inulin typically has a degree of polymerization (DP) between 3 and 60, and chemical degradation (e.g., acid or low-pH treatment) or controlled enzymatic hydrolysis with endo-inulinases yields fructooligosaccharide compounds with a DP between 2 and 20. Since wild-type C. tyrobutyricum cannot directly utilize inulin, Jerusalem artichoke need to be hydrolyzed prior to the fermentation step in order to transform inulin into available glucose and fructose. In order to study the feasibility of directly using inulin as a low-cost substrate for fermentative hydrogen production, batch fermentation of inulin extract as the sole carbon source by C. tyrobutyricum mutant were studied, and compared with the two fermentable monosaccharides glucose and fructose. The total carbon source concentrations were all adjusted to 60 g/L in a 5-L fermentor system.

As shown in Table 4, C. tyrobutyricum mutant was able to utilize glucose and fructose to produce hydrogen at high yields. When the cells were grown in the fructose-containing medium, the hydrogen yield (2.8 ± 0.12 mol/
mol) and overall volumetric production rate (430 ± 50 mL/h/L) were about the same as with glucose as the sole carbon source (2.6 ± 0.12 mol/mol, and 410 ± 40 mL/h/L), which was almost equivalent with that of the wild-type C. tyrobutyricum. It should be noted that the hydrogen yield from glucose or fructose depends on the fermentation end-products in C. tyrobutyricum. It has been widely accepted that the highest theoretical yield of 4 mol/mol glucose can be obtained if acetic acid is the end by-product of metabolism, while a maximum 2 mol/mol glucose

Transformants of C. tyrobutyricum	Exo-inulinase activity (U/mL)
J49	13.0 ± 0.35
J66	28.2 ± 1.36
J72	16.5 ± 0.29
J89	14.7 ± 0.42
J111	12.8 ± 0.33
J128	18.4 ± 0.58
J147	11.9 ± 0.62
J165	12.1 ± 0.48
J179	18.8 ± 0.87
J187	21.1 ± 1.01
J202	20.0 ± 0.98
J213	23.1 ± 1.23
J232	16.2 ± 0.78
J245	14.9 ± 0.55
J265	19.2 ± 0.66
J279	13.6 ± 0.79
Wild-type	0

Table 3. Exo-inulinase activities of the different transformants.

Figure 3. PCR products (Lane 2, 3, 4 and 5) amplified from the genomic DNA of the P. polymyxa SC-2 excreting inulinase by using the primers as described in section 2.2. Lane 1 was DNA markers; the marker sizes from top to bottom were 5.0, 3.0, 2.0, 1.5, 1.0, 0.75, 0.5, 0.25 and 0.1 kb, respectively.
can be obtained with butyric acid as the sole by-product. However, actual yields of hydrogen are always associated with a mixture of acetic and butyric acid, and in most cases, are lower than 3 mol/mol glucose.

Since exo-inulinase splits the terminal fructose units from inulin, it was found that the inulin extract was fermented efficiently by the engineered C. tyrobutyricum, enabling high levels of production with a yield of 3.5 ± 0.13 mol/mol inulin-type sugar and an overall volumetric production rate of 540 ± 50 mL/h/L. Monosaccharides, disaccharides, and trisaccharides were released after inulin was hydrolyzed by the inulinase expressed by the engineered cells, while only a small amount of monosaccharides and oligosaccharides could be detected after the autoclaving process (Fig. S2). This once again proved that the inulinase engineered into the C. tyrobutyricum cells was an exo-inulinase. The results of this study therefore indicate a great potential for producing hydrogen from inulin-containing materials, such as Jerusalem artichoke. In addition, the growth of mutant cells was not significantly influenced by different sugars.

Effects of initial inulin concentration on hydrogen production in batch SSF. Bacterial growth and productivity tends to be low if high initial concentrations of reducing sugars are used in the medium due to substrate inhibition, which is a common phenomenon in practical applications. A relevant characteristic of the media formulated with high initial sugar concentrations is the intrinsic high osmolarity due to the elevated amounts of media components. For instance, the osmolality of media with 120 g/L of glucose was as high as 1.8 Osm/kg in the most concentrated medium, which would inhibit the growth of saccharolytic clostridia. By contrast, we used initial concentrations of 60–120 g/L of inulin extract in batch SSF mode with engineered C. tyrobutyricum (Table 5) without a problem. When the initial total sugar concentration was set at a level of 100 g/L, the highest hydrogen yield of 3.7 ± 0.22 mol/mol inulin-type sugar and overall volumetric production rate of 650 ± 70 mL/h/L were achieved. Further addition of inulin did not improve hydrogen production, but decreased both the yield and productivity due to the exhaustion of other nutrients, which was consistent with previous studies.

Scale-up of hydrogen fermentation in batch SSF. To examine the feasibility of using Jerusalem artichoke as a low-cost feedstock for fermentative hydrogen production on a pilot scale, the batch SSF of C. tyrobutyricum with 100 g/L of inulin extracted from Jerusalem artichoke as carbon source was studied in a 500-L fermentor, and the results are shown in Fig. 6. In this SSF process, the consumption of inulin started at the beginning of the fermentation, while the accumulation of free fructose was negligible throughout the fermentation. The activity of exo-inulinase was the decisive factor with regard to the conversion efficiency of inulin into reducing sugars. The time course of exo-inulinase production by C. tyrobutyricum showed that the heterologously expressed enzyme had a remarkably high inulin hydrolysis activity, reaching 28.4 ± 0.26 U/mL in the supernatant at the end of the exponential phase, which was consistent with the efficient utilization of sugar and synthesis of products. The production of hydrogen and other end-products such as organic acids (e.g., butyric, acetic and lactic acid) and gases (e.g., CO₂) was maintained at a low level for the first 24 h, but increased afterwards and continued in the stationary phase, while the activity peak of exo-inulinase in the culture supernatant of the strain was reached after around 50 h of fermentation. The formation of hydrogen was completed at 96 h when inulin was no longer consumed. A maximum hydrogen yield of 3.5 ± 0.23 mol of H₂ per mol of inulin-type sugar was obtained, with a volumetric productivity rate of 620 ± 60 mL/h/L based on the consumed total sugar, which was comparable to our previous results with glucose as the carbon source. Importantly, the fermentative hydrogen production performance in a process model with the same experimental conditions, but
with separate hydrolysis and fermentation steps (unpublished data), was much lower compared with the results of the SSF process presented in the current study. The most probable reason for this discrepancy is that the high concentration of inulin was gradually degraded to fermentable sugars in the SSF process, so that the inhibition by high substrate concentrations was avoided. Therefore, SSF has an absolute competitive advantage when it comes to high initial substrate concentrations, which enables it to be operated with lower reactor volumes and therefore lower fermentation costs.

Figure 5. Multiple sequence alignment of inulinase from *Paenibacillus polymyxa* SC-2 (Pp SC-2), *P. polymyxa* ZJ-9 (Pp ZJ-9), *P. polymyxa* SQ-21 (Pp SQ-21), *P. polymyxa* Sb3-1 (Pp Sb3-1) and *P. polymyxa* YCO136 (Pp YCO136). The alignment was performed using NCBI database and decorated using the GenDoc software. Three highly conserved regions were found. The putative active site of glycosyl hydrolases family was marked with downward arrows for the sequence comparison using the PROSITE software at the Expasy website.
Conclusions
Jerusalem artichoke is an abundant resource in China and is suited to serve as a cost-effective feedstock for the bio-based fermentation of value-added products. However, producing hydrogen via direct fermentation of inulin-containing materials was historically out of the question, and the necessary inulin hydrolysis was often the rate-limiting step. This study represents the first report, to our best knowledge, that inulin derived from Jerusalem artichoke was directly converted to hydrogen by an engineered *C. tyrobutyricum* expressing an exo-inulinase coding gene. A high hydrogen yield of 3.5 ± 0.23 mol/mol inulin-type sugar with an overall volumetric productivity rate of 620 ± 60 mL/h/L was achieved in the SSF process in a 500-L fermentator. The present study may therefore pave the way for economical bio-based hydrogen production on an industrial scale.

References
1. Gonzalez-Garcia, R. A., Aispuro-Castro, R. & Salgado-Manjarrez, E. et al. Metabolic pathway and flux analysis of H₂ production by an anaerobic mixed culture. *Int. J. Hydrogen Energ.* 42(7), 4069–4082 (2017).
2. Sinha, P. & Pandey, A. An evaluative report and challenges for fermentative biohydrogen production. *Int. J. Hydrogen Energ.* 36, 7460–7478 (2011).
3. Rajhi, H., Conthe, M. & Puyol, D. et al. Dark fermentation: isolation and characterization of hydrogen-producing strains from sludges. *Int. Microbiol.* 16(1), 53–62 (2013).
4. Lee, D. J., Show, K. Y. & Su, A. Dark fermentation on biohydrogen production: pure culture. *Bioresource Technol.* 102(18), 8393–8402 (2011).
5. Cai, G., Jin, B. & Monis, P. et al. A genetic and metabolic approach to redirection of biochemical pathways of *Clostridium butyricum* for enhancing hydrogen production. *Biotechnol. Bioeng.* 110(1), 338–342 (2013).
6. Singh, P. & Gill, P. K. Production of Inulinases: Recent Advances. *Food Technol. Biotechnol.* 44(2), 151–162 (2006).

Carbon sources	H₂ Yield (mol/mol glucose)	Volumetric H₂ production rate (mL/h/L) Maximum	Overallb	Cell growth (g/L)
Fructose	2.8 ± 0.12	940 ± 20	430 ± 50	11.4 ± 0.87
Glucose	2.6 ± 0.16	870 ± 30	410 ± 40	10.8 ± 0.95
Inulin extract	3.5 ± 0.13*	1300 ± 60	540 ± 50	11.1 ± 1.09

Table 4. Comparison of different sugars for hydrogen fermentation and cell growth of engineered *C. tyrobutyricum*. *Yield of 1 mol H₂/mol glucose is equal to 1.11 mol hydrogen/mol inulin on the basis of the stoichiometric equation. bOverall volumetric H₂ production rate = \(\frac{V_{H_2, max}}{(time \cdot required \cdot to \cdot reach \cdot V_{H_2, max} \cdot working \cdot volume)} \). \(V_{H_2, max} \): maximum cumulative hydrogen production.

Total sugar con. (g/L)	Total residual sugar con. (g/L)	Total amount (L)	Fermentation time (h)	Yield (mol/mol glucose)	Volumetric production rate (mL/h/L)
60	0.8 ± 0.4	66.1 ± 0.05	72	3.5 ± 0.13	540 ± 50
80	1.5 ± 0.2	73.1 ± 0.05	90	3.5 ± 0.14	570 ± 80
100	6.0 ± 0.3	84.4 ± 0.06	96	3.7 ± 0.22	650 ± 70
120	10.1 ± 0.2	52.5 ± 0.04	126	2.2 ± 0.24	400 ± 30

Table 5. Effects of initial inulin concentration on hydrogen production of engineered *C. tyrobutyricum* in batch SSF. *Yield of 1 mol hydrogen/mol glucose is equal to 1.11 mol hydrogen/mol inulin on the basis of the stoichiometric equation.

Figure 6. Time courses of fermentative hydrogen production by engineered *C. tyrobutylicum* with Jerusalem artichoke powder as the carbon source (100 g/L inulin-type sugar). For clarity, the three acid products as well as CO₂ were all shown in grey lines. Hydrogen, ▲; Exo-inulinase, ■; Inulin, ○; Biomass, ▼; Butyric acid, □; Acetic acid, ▽; Lactic acid, ×; CO₂, ◊.
40. Ortigueira, J., Alves, L. & Gouveia, L. Feasibility of installing and maintaining anaerobiosis using Lactobacillus paracasei without acidic or enzymatic inulin hydrolysis. Biotechnol. bioeng. 114, 745–747 (2012).

41. Liang, Z. X., Li, L. & Li, S. et al. Enhanced propionic acid production from Jerusalem artichoke hydrolysate by immobilized Propionibacterium acidipropionici in a fibrous-bed bioreactor. Bioproc. Biosyst. Eng. 35(6), 915–921 (2012).

42. Avcı, A., Kılıç, N. K. & Dönmez, G. Enhanced production of butyric acid from Jerusalem artichoke immobilized Clostridium tyrobutyricum in a fibrous-bed bioreactor. Biotechnol. Bioeng. 102(4), 3923–3926 (2011).

43. Argun, H. & Kargi, F. Biohydrogen production from ground wheat starch by continuous combined fermentation using annular-hybrid bioreactor. Int. J. Hydrogen Energ. 35, 6170–6178 (2010).

44. Masset, J., Calusinska, M. & Hamilton, C. Expression of inulinase gene in the oleaginous yeast Geotrichum candidum ATCC 25755 mutant of Geotrichum candidum System in Clostridium tyrobutyricum. Biotechnol. Bioeng. 109(3), 708–712 (2011).

45. Neagu, C. & Bahrim, G. Inulinases-a versatile tool for biotechnology. Innov. Rom. Food Biotechnol. 9, 1–11 (2011).

46. Ma, M., Wang, C. & Ding, Y. et al. Complete genome sequence of Paenibacillus polymyxa SC2, a strain of plant growth-promoting rhizobacterium with broad-spectrum antimicrobial activity. J. Bacteriol. 193(1), 311–312 (2011).

47. Li, L. & Hu, Y. et al. Adaptive Evolution for Fast Growth on Glucose and the Effects on the Regulation of Glucose Transport System in Clostridium tyrobutyricum. Biotechnol. Bioeng. 109(10), 3087–3092 (2011).

48. Cui, G. Z., Hong, W. & Zhang, J. Expression of inulinase production by agro-industrial residues: optimization of pretreatment of substrates and production medium. Food Bioprocess Technol. 2(4), 409–414 (2009).

49. Jiang, L., Wang, J. & Liang, S. et al. Control and Optimization of Clostridium tyrobutyricum ATCC 25575 Adhesion into Fibrous Matrix in a Fibrous Bed Bioreactor. Appl. Biochem. Biotechnol. 165, 98–108 (2011).

50. Mughal, M. S., Ali, S. & Ashiq, M. et al. Kinetics of an extracellular exo-inulinase production from a 5-flurocytosine resistant mutant of Geotrichum candidum using two-factorial design. Biotechnol. Bioeng. 100, 3657–3662 (2009).

51. Zhao, C. H., Cui, W. & Liu, X. Y. et al. Expression of inulinase gene in the oleaginous yeast Yarrowia lipolytica and single cell oil production from inulin-containing materials. Met. Eng. 12(6), 516–517 (2010).

52. Jiang, L., Zhu, L. & Xu, X. et al. Genome sequence of Clostridium tyrobutyricum ATCC 25755, a butyric acid-overproducing strain. Genome Announcements 1(3), e00308–13 (2014).

53. Van De Wiele, T., Boon, N. & Possemiers, S. et al. Inulin-type fructans of longer degree of polymerization exert more pronounced effects on lipids, glucose, and satiety in high-fat diet fed men. Brain Res. 1470, 52–60 (2012).

54. Cui, G. Z., Xie, X., Xu, X. & Yuan, Y. et al. Control and Optimization of Clostridium tyrobutyricum ATCC 25575 adherence into fibrous matrix in a fibrous bed bioreactor. Appl. Biochem. Biotechnol. 165, 98–108 (2011).

55. Walter, R. P., Morris, J. G. & Kell, D. B. The roles of osmotic stress and water activity in the inhibition of the growth, glycolysis and glucose phosphotransferase system of Clostridium pasteurianum. J. Gen. Microbiol. 133, 259–66 (1987).

56. Kim, D. Y., Yim, S. C. & Lee, P. C. et al. Batch and continuous fermentation of succinic acid from wood hydrolysate by Mannheimia succiniciproducens MBE555. Enzym. Microb. Technol. 35, 468–468 (2004).

57. John, R. P., Anisha, G. S. & Nampoothiri, K. M. et al. Direct lactic acid fermentation: focus on simultaneous saccharification and lactic acid production. Biotechnol. Adv. 27, 145–152 (2009).

58. Liu, X., Zhu, Y. & Yang, S. T. Butyric acid and hydrogen production by Clostridium tyrobutyricum ATCC 25755 and mutants. Enzyme Microb. Tech. 38(3), 521–528 (2006).

59. Zhang, Y., Yu, M. & Yang, S. T. Effects of pH on butyric acid fermentation by Clostridium tyrobutyricum. Biotechnol. Prog. 17(1), 35–40 (2001).

60. Lin, P. Y., Whang, L. M. & Su, Y. R. et al. Biological hydrogen production of the genus Clostridium: Metabolic study and mathematical model simulation. Int. J. Hydrogen Energ. 32(12), 1728–1735 (2007).

61. Ren, N. Q., Guo, W. Q. & Wang, X. J. et al. Effects of different pretreatment methods on fermentation types and dominant bacteria for hydrogen production. Int. J. Hydrogen Energ. 33(16), 4318–4324 (2008).

62. Jo, J. H., Lee, D. S. & Park, D. et al. Biological hydrogen production by immobilized cells of Clostridium tyrobutyricum JM1 isolated from a food waste treatment process. Bioresource Technol. 99(14), 6666–6672 (2008).

63. Yokoi, H., Saiwa, A. & Uchida, H. et al. Microbial hydrogen production from sweet potato starch residue. J. Biosci. Bioeng. 91(1), 58–63 (2001).

64. Masset, J., Hiligsmann, S. & Hamilton, C. et al. Effect of pH on glucose and starch fermentation in batch and sequenced-batch mode with a recently isolated strain of hydrogen-producing Clostridium butyricum CWBI1009. Int. J. Hydrogen Energ. 35(8), 3371–3378 (2010).

65. Ortigueira, J., Alves, L. & Gouveia, L. et al. Third generation biohydrogen production by Clostridium butyricum and adapted mixed cultures from scenedesmus obliquus microalga biomass. Fuel 153, 128–134 (2015).

66. Hassan, S. H. & Morys, F. M. Feasibility of installing and maintaining anaerobiosis using Escherichia coli HD701 as a facultative anaerobe for hydrogen production by Clostridium acetobutylicum ATCC 824 from various carbohydrates. Enzyme Microb. Tech. 81, 56–62 (2015).

67. Avcı, A., Koço, N. K. & Dönmez, G. et al. Evaluation of hydrogen production by Clostridium strains on beet molasses. Environ. Technol. 35, 278–285 (2014).

68. Argun, H. & Kargi, F. Biohydrogen production from ground wheat starch by continuous combined fermentation using annular-hybrid bioreactor. Int. J. Hydrogen Energ. 35, 6170–6178 (2010).

69. Masset, J., Calusinska, M. & Hamilton, C. et al. Fermentative hydrogen production from glucose and starch using pure strains and artificial co-cultures of Clostridium sp. Biotechnol. Biofuels. 5, 32 (2012).

70. Zhu, D., Li, Q. & Wang, X. et al. Characterization on hydrogen production performance of a newly isolated Clostridium beijerinckii YA001 using xylose. Int. J. Hydrogen Energ. 39, 19928–19936 (2014).

71. Sarma, S., Dubey, V. K. & Moholkar, V. S. Kinetic and thermodynamic analysis (with statistical optimization) of hydrogen production from crude glycerol using Clostridium pasteurianum. Int. J. Hydrogen Energ. 41, 19972–19986 (2016).
47. Cai, J., Wu, Q., Wang, G. & Deng, C. Fermentative hydrogen production by a new mesophilic bacterium Clostridium sp. 6A-5 isolated from the sludge of a sugar mill. *Renew. Energ.* **59**, 202–209 (2013).
48. Abdeshahian, P., Al-Shorgani, N. K. N. & Salih, N. K. M. *et al.* The production of biogas by a novel strain *Clostridium* sp. YM1 in dark fermentation process. *Int. J. Hydrogen Energ.* **39**, 12524–12531 (2014).
49. Bernal, M., Tinoco, L. K. & Torres, I. *et al.* Evaluating Colombian *Clostridium* spp. strains hydrogen production using glycerol as substrate. *Electron. J. Biotechn.* **16**, 5–5 (2013).
50. Mei, N., Zergane, N. & Postec, A. *et al.* Fermentative hydrogen production by a new alkaliophilic *Clostridium* sp. (strain PROH2) isolated from a shallow submarine hydrothermal chimney in Prony Bay, New Caledonia. *Int. J. Hydrogen Energ.* **39**, 19465–19473 (2014).
51. Heap, J. T., Kuehne, S. A. & Kuehne, M. *et al.* The ClosTron: Mutagenesis in *clostridium* refined and streamlined. *J. Microbiol. Meth.* **80**, 49–55 (2010).
52. Xiao, H., Li, Z. & Jiang, Y. *et al.* Metabolic engineering of D-xylose pathway in *clostridium beijerinckii* to optimize solvent production from xylose mother liquid. *Metab. Eng.* **14**, 569–578 (2012).
53. Shao, L. J., Hu, S. Y. & Yang, Y. *et al.* Targeted gene disruption by use of a group II intron (targetron) vector in *Clostridium acetobutylicum*. *Cell Res.* **17**, 963 (2007).

Acknowledgements
This work was supported by the National Science Foundation for Young Scholars of China (21506101, U1603112), the State Key Laboratory of Bio-organic and Natural Products Chemistry, CAS (SKLBNPC15429), the Six Talent Peaks Project in Jiangsu Province (2015-JY-009), and the Environmental Protection Project in Jiangsu Province (2015053).

Author Contributions
L.J. and Q.W. performed the experiments, collected and analyzed the data, and drafted the manuscript; Q.X. and L.Y.Z. assisted in conceiving and designing the experiments, and revised the manuscript; H.H. contributed reagents, materials and analytical tools. All authors read and approved the final manuscript.

Additional Information
Supplementary information accompanies this paper at doi:10.1038/s41598-017-07207-7

Competing Interests: The authors declare that they have no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2017