Title: Chemical rescue of mutant proteins in living cells by naturally occurring small molecules

Daniel S. Hassell, Marc G. Steingesser, Ashley S. Denney, Courtney R. Johnson, and Michael A. McMurray*
Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 USA
*Corresponding author. Correspondence should be addressed to michael.mcmurray@ucdenver.edu

Running title: Natural small molecules rescue mutant protein function

Keywords: chemical biology, yeast genetics, mutant, drug action, chaperone
Abstract

Intracellular proteins function in a complex milieu wherein small molecules influence protein folding and act as essential cofactors for enzymatic reactions. Thus protein function depends not only on amino acid sequence but also on the concentrations of such molecules, which are subject to wide variation between organisms, metabolic states, and environmental conditions. We previously found evidence that exogenous guanidine reverses the phenotypes of specific budding yeast septin mutants by binding to a WT septin at the former site of an Arg side chain that was lost during fungal evolution. Here we used a combination of targeted and unbiased approaches to look for other cases of “chemical rescue” by naturally occurring small molecules. We report in vivo rescue of hundreds of yeast mutants representing a variety of genes, including likely examples of Arg or Lys side chain replacement by the guanidinium ion. Failed rescue of targeted mutants highlight features required for rescue, as well as key differences between the in vitro and in vivo environments. Some non-Arg mutants rescued by guanidine likely result from “off-target” effects on specific cellular processes in WT cells. Molecules isosteric to guanidine and known to influence protein folding had a range of effects, from essentially none for urea, to rescue of a few mutants by DMSO. Strikingly, the osmolyte trimethylamine-N-oxide rescued ~20% of the mutants we tested, likely reflecting combinations of direct and indirect effects on mutant protein function. Our findings illustrate the potential of natural small molecules as therapeutic interventions and drivers of evolution.
INTRODUCTION

Physicochemical variability in the environment drives selection for traits that allow organisms to adapt to prevailing conditions with minimal energetic cost. Temperature, hydrostatic pressure, and the concentrations of intracellular molecules strongly influence protein structure and, consequently, function. Whereas protein sequences in extremophiles provide clear signatures of adaptation to temperature, pressure, intracellular pH and salinity (1), many proteins also depend on the presence of other small molecule ligands as folding or enzymatic cofactors that confer changes in tertiary structure or catalytic activity, respectively. Thus the amino acid sequence of a protein is not sufficient to confer proper folding and function in all environments; likewise, which changes in protein sequence affect function depends on the physicochemical environment.

Researchers commonly exploit “conditional” mutant alleles as powerful tools to manipulate gene function in living cells. Temperature-sensitive (TS) mutants typically harbor one or more missense mutations that shift the folding equilibrium such that the mutant protein functions at least somewhat normally at the “permissive” temperature but loses function at the “nonpermissive”/“restrictive” temperature. Other examples of conditional alleles include analog-sensitive kinases, in which substitutions of one or more key residues in the active site of a protein kinase allow only the mutant form to accept an ATP analog that inhibits kinase activity (2). Here the side chains of the replacement residues are carefully chosen to make critical molecular contacts with the inhibitor molecule.

A conceptually similar approach, but with the goal of investigating the molecular details of enzyme function in vitro, involves substituting key amino acids for which the side chains are suspected to make critical contacts in the active site, and attempting to restore function by adding small molecules that bind at the molecular vacancy created by the mutation and restore the missing contacts. There are numerous instances in which this approach, often called “chemical rescue” or “chemical complementation”, has been successful (reviewed in (3–5)). However, we are aware of only a handful of cases in which chemical rescue of a mutant protein has been demonstrated in vivo using simple, common small molecules (as opposed to complex molecules tailored to a specific mutant protein). The first example of in vivo chemical rescue
involved a mutant of the protein kinase Csk in which a key Arg residue was mutated to Ala (6). This study followed earlier *in vitro* studies of the same mutant in which the authors found that the activity of the mutant enzyme could be partially restored by the addition of guanidine hydrochloride (GdnHCl) or, with even greater effect, imidazole (7). GdnHCl dissociates to produce the guanidinium ion (Gdm), which mimics the guanidino group at the end of an Arg side chain and had been used successfully in many *in vitro* chemical rescue experiments of Arg-mutant enzymes. It was a surprise that imidazole, which resembles a His side chain and had been used previously to rescue His-mutant enzymes, also rescued Csk(R318A). Within 15 minutes after exposure of mouse embryonic fibroblasts expressing the Csk(R318A) enzyme to 50 mM imidazole, cellular indications of restored Csk activity were observed, though the extent of rescue was estimated as about 5% of WT (7). Recognizing that the Arg in question is highly conserved among protein kinases in the same family as Csk, the same group went on to mutate the equivalent Arg in the protein kinase Src and show that imidazole could also rescue Src(R388A), this time to nearly 50% of WT activity using only 2 mM imidazole (8).

While free imidazole is not commonly found in nature, the choice of this molecule as a rescue agent has been touted as advantageous relative to guanidine, which is often considered to be toxic (3). Likely for this reason, GdnHCl had not (to our knowledge) been tested for its effectiveness in chemical rescue of Arg-mutant proteins *in vivo*. However, there is abundant evidence that GdnHCl can specifically alter protein function without grossly disrupting cellular function. For decades, researchers have added 3-5 mM GdnHCl to the growth medium of the budding yeast *Saccharomyces cerevisiae* to inhibit the function of the disaggregase protein Hsp104, a non-essential protein required for the propagation of most prions (9–11). Gdm binds in the ATP-binding pocket of this AAA+-family ATPase (12). Notably, ≥5 mM GdnHCl cures yeast cells of the prion [ISP*] in an Hsp104-independent manner, and inhibits growth specifically of [ISP*] cells (13), providing evidence of additional, Hsp104-independent effects and reinforcing the idea that GdnHCl is well tolerated by WT cells. Studies in cultured mammalian cells showed that exogenous GdnHCl blocks replication of enteroviruses (14, 15), with no adverse cellular effects up to 10 mM (14). Subsequent work pointed to the viral 2C protein as the direct target (16). [That 2C and Hsp104 are both AAA+ ATPases may be a coincidence.] Gdm also binds in the pores of voltage-gated potassium channels and promotes
acetylcholine release (17), representing the likely mechanism of action in the treatment of Lambert-Eaton Myasthenic Syndrome and botulism, for which GdnHCl is approved by the Food and Drug Administration of the United States of America. When combined with another drug with a distinct target, low-dose GdnHCl is effective as a treatment of Lambert-Eaton Myasthenic Syndrome, with few side effects (18). Thus, far from being non-specifically toxic, at low concentrations GdnHCl is innocuous or even beneficial, curing yeast cells of some prions and mammalian cells of some viruses, and treating some human disorders.

We were inspired to investigate the potential of GdnHCl for chemical rescue in living cells by our prior, serendipitous discovery that GdnHCl reverses the TS phenotypes of S. cerevisiae cells carrying mutations in the CDC10 gene (19). CDC10 encodes a subunit of the essential yeast septin protein complex. Our data indicate that, rather than binding to mutant Cdc10 molecules, Gdm binds to WT molecules of another septin protein in the same complex, at the former site of an Arg side chain that was “lost” during fungal evolution. In many yeast species, loss of the Arg and of GTPase activity by the same septin constrained the kinds of septin hetero-oligomers that are able to assemble in those cells (19). Specifically, we think that Gdm alters the conformation of the homodimerization interface that encompasses the GTP-binding pocket in a way that promotes bypass of Cdc10 subunits during septin complex assembly (19). Restoring the “missing” Arg residue was insufficient to recapitulate the effect of GdnHCl, but it blocked the ability of GdnHCl to rescue, consistent with a model in which multiple amino acid changes during evolution disfavored Cdc10 bypass, and Gdm acts as a “chemical chaperone” to influence folding of a single septin protein in ways that cannot be predicted by protein sequence alone. Nonetheless, our findings lent further support to the idea that GdnHCl might be able to restore function to an Arg-mutant protein in living cells.

Guanidine is not unique among naturally occurring small molecules in its ability to rescue mutant enzyme activity in vitro by replacing a functional group from a “missing” side chain. For example, the crystal structure of a mutant form of the protease trypsin, in which an active site Asp residue was replaced by Ser, revealed an unexpected acetate ion from the crystallization solution bound in the void created by the mutation (20). Subsequent tests revealed that exogenous acetate partially restored in vitro activity of the mutant enzyme (20). In such cases where the exogenous ligand plays a direct role in catalysis, the high
entropic cost of properly ordering the ligand in the mutant active site likely constrains the extent of chemical rescue to a fraction of the activity of a WT enzyme, where the functional group(s) are tethered to the polypeptide backbone in the context of a side chain. With this in mind, it is worth noting previous studies of “chemical repair” of Arg-to-Cys-mutant proteins, in which a synthetic compound with a sulfhydryl-reactive group at one end and a guanidino group at the other is attached covalently to the Cys side chain (21). Here some rescue was observed in vitro, but these studies could not exclude the possibility that rescue resulted from more general effects of the small molecule acting at other sites on the mutant protein.

Indeed, guanidine itself (22) and other small molecules isosteric with guanidine, including urea (22) and DMSO (23), are also able to interact with proteins rather non-specifically to alter their conformations, driving complete unfolding at sufficiently high concentrations. The effects of urea are particularly relevant in vivo. Some marine animals accumulate intracellular urea at high concentrations (~0.4 M), the denaturing effects of which they counteract by also accumulating methylamine compounds, including trimethylamine N-oxide (TMAO) (24). Deep-sea creatures also accumulate TMAO to counteract protein-unfolding effects of hydrostatic pressure (25). TMAO, like DMSO, is also used by some organisms as an alternative electron receptor for respiration in anaerobic conditions (26). Exogenously added TMAO has further been found to restore function to three otherwise misfolded mutant proteins in living S. cerevisiae and E. coli cells (27, 28) and one in cultured mammalian cells (29). Thus intracellular TMAO and other naturally occurring compounds with similar effects on protein folding may allow the organisms that produce them to explore a larger protein sequence space (30, 31). The recent discoveries that multiple bacterial species evolved ways to sense and export or detoxify intracellular Gdm (32) raise the possibility that Gdm could also influence protein function and evolution in natural settings. However, we are unaware of any thorough comparison of the effects of naturally occurring small molecules on mutant protein function in living cells.

In this study, we tested the ability of GdnHCl to provide chemical rescue to a variety of Arg-mutant proteins in living cells. We also performed an unbiased search for cases of chemical rescue by GdnHCl using collections of TS mutants and then, based on our findings, examined the potential for rescue by urea, DMSO and TMAO. Our findings document what are to our knowledge the first examples of bona fide
GdnHCl chemical rescue *in vivo*, and provide a number of molecular insights into the “on-target” and “off-target” effects of GdnHCl, as well as mechanistic comparisons with other naturally-occurring small molecules on mutant protein function.

RESULTS AND DISCUSSION

E. coli β-gal R599A, a mutant enzyme with reduced activity for specific substrates *in vitro*, functions normally *in vivo*

We first tested *in vivo* chemical rescue by GdnHCl using the most obvious candidate from the *in vitro* chemical rescue literature. *E. coli* β-gal is widely used as a reporter of transcription due to its chromogenic activity on specific analogs of lactose, its native substrate. Arg at position 599 makes intramolecular contacts that position the active site in an “open” conformation with high affinity for substrates (33). *In vitro*, binding of β-gal(R599A) to ortho- or para-nitrophenyl-β-D-galactoside (oNPG or pNPG) is reduced ~10-fold relative to WT, and the kinetics of oNPG catalysis are reduced ~5-fold but can be improved ~2-fold (to ~2.5-fold less than WT) by the addition of 100-150 mM GdnHCl (33). As a first step towards asking if GdnHCl can rescue β-gal(R599A) activity *in vivo*, we grew *E. coli* cells mutated for the endogenous lacZ gene (encoding β-gal) and expressing WT β-gal or β-gal(R599A) from plasmids on solid medium containing X-gal (5-bromo-4-chloro-3-indoyl-β-d-galactopyranoside; neither oNPG nor pNPG are not suitable for *in vivo* analysis). The R599A mutation had no obvious effect on blue colony color resulting from X-gal cleavage (Fig. S1). To more sensitively monitor enzyme activity *in vivo*, we exposed growing cultures to X-gal and chloramphenicol, to prevent new β-gal synthesis. X-gal cleavage was assessed in aliquots of cells taken at various timepoints thereafter by adding strong base to lyse the cells and denature the enzyme, and quantifying the blue product using a 96-well plate reader. The R599A mutation had no discernable effect on the kinetics of X-gal cleavage *in vivo* (Fig. S1). We confirmed the presence of the R599A mutation by restriction enzyme digestion of plasmid DNA isolated from the same cells at the end of the experiment (Fig. S1).

The strain we used for these experiments, DH5α, harbors at the genomic lacZ an N-terminally truncated allele that can be functionally complemented by any other allele that contains the missing residues (34). lac
operon transcription is repressed unless a galactoside is present in the medium (35). While we added no galactoside in our experiments, to rule out the possibility that the truncated lacZ allele contributed to the β-gal activity we observed, we introduced the plasmids into a strain carrying a complete deletion of lacZ. X-gal cleavage by β-gal(R599A) was indistinguishable from WT (Fig. S1), confirming our findings in DH5α.

Our findings with X-gal as an in vivo β-gal(R599A) substrate fit with other results from the literature. Arg at the position corresponding to Arg 599 in E. coli is not conserved in β-galactosidases from several other closely-related bacterial species, including Lactobacillus bulgaricus (Fig. S1), the β-gal-encoding gene of which was originally cloned via in vivo X-gal activity upon heterologous expression in E. coli (36). E. coli ebgA, a paralog of β-gal active towards X-gal in vivo (37), also lacks Arg in this position (Fig. S1). Thus, despite the apparent importance of this residue for β-gal activity on oNPG in vitro, it is not very important for lactose cleavage in vivo. Even in vitro the effects of the R599A depend on the substrate: in contrast to oNPG, the kinetics of pNPG catalysis by β-gal(R599A) are actually slightly faster relative to WT (33). These experiments taught us an important lesson: in the search for examples of chemical rescue in vivo, focus on mutants for which there is already some evidence of an in vivo defect.

In vivo chemical rescue of Arg-mutant ornithine transcarbamylase by GdnHCl

The drastic reduction of E. coli ornithine transcarbamylase (EcOTC) activity in vitro observed upon substitution to Gly of Arg57, a residue in the active site, can be partially reversed (back to 10% of WT) by the addition of GdnHCl (38). Human OTC (HsOTC) is 38% identical to EcOTC, solved structures of the two proteins are superimposable, and the Arg57 equivalent is found at position 92 (Fig. 1A,B). Mutations in HsOTC cause ornithine transcarbamylase deficiency (OTCD), the most frequent inherited defect in the urea cycle (~1 in 14,000 live births) characterized by hyperammonemia and a requirement for dietary Arg (39). Among known HsOTC mutations linked to OTCD, Arg92 has been found in a number of cases substituted to other amino acids, including Gly (39), indicating that HsOTC(R92G) is likely a loss-of-function allele in vivo. We asked if GdnHCl could rescue mutant OTC function in living yeast cells.
In *S. cerevisiae*, OTC is encoded by the ARG3 gene, so named because loss-of-function mutants cannot synthesize Arg (40). The Arg3 protein (which we also refer to as “ScOTC”) is 33% identical to EcOTC and is able to complement the Arg auxotrophy of an *E. coli* argF mutant (40). Arg69 in ScOTC corresponds to Arg57 in EcOTC (Fig. 1B). We predicted that arg3(R69G) mutant yeast would be auxotrophic for Arg and that this auxotrophy would be rescued by the addition of 3 mM GdnHCl to the medium, a concentration that rescues cdc10 mutants (19). We engineered the R69G substitution in a plasmid-encoded copy of ARG3 and introduced the mutant plasmid or its WT parent into arg3Δ cells. As predicted, Arg prototrophy was conferred by the WT plasmid but not by the R69G mutant unless GdnHCl was present (Fig. 1C). Rescue of ScOTC(R69G) function was also observed by placing a disc of GdnHCl-soaked paper onto a lawn of cells (Fig. 1D). Notably, an equivalent experiment with urea, which provided weak *in vitro* rescue of EcOTC(R57G) (38), revealed no such effect *in vivo* (Fig. 1D). We interpret these data as evidence of partial chemical rescue by GdnHCl of ScOTC(R69G) in living cells.

We wanted to test if GdnHCl could rescue the function of HsOTC(R92G) upon heterologous expression in yeast. WT HsOTC expressed in arg3 mutant yeast partially complements the Arg auxotrophy (41) (Fig. 1C). Adding ornithine to the medium to increase substrate concentration did not increase the extent of complementation (Fig. 1C). By contrast, HsOTC(R92G) completely failed to complement (Fig. 1C). The addition of 3 mM GdnHCl barely rescued HsOTC(R92G), visualized as slightly larger microcolonies after extended incubation (Fig. 1C). Considering the partial GdnHCl rescue of ScOTC(R69G) and the partial complementation by WT HsOTC, our observation of minimal GdnHCl rescue of HsOTC(R92G) was not surprising. We wondered if we could improve the function of HsOTC in yeast, and thereby improve our chances of detecting rescue of HsOTC(R92G). One way HsOTC differs from ScOTC and EcOTC is that it harbors a 32-residue N-terminal leader peptide directing import into mitochondria (Fig. 1B). In yeast cells, import of WT HsOTC into the mitochondrial matrix and proteolytic removal of the leader peptide is inefficient, and some HsOTC remains stuck in the mitochondrial membrane (41). Considering that ScOTC is a cytosolic enzyme, citrulline production by HsOTC in the yeast mitochondrion is likely not optimal for *arg3* cells, and HsOTC stuck in the membrane is non-functional (41). We thought that cytosolic HsOTC might generate more usable citrulline. To retain HsOTC in the cytosol, we removed the import sequence,
but rather than improving HsOTC function, this alteration eliminated it (Fig. 1C). Whereas HsOTC requires (re-)folding assistance from the mitochondrial chaperonin (42), ScOTC requires cytosolic Hsp70 chaperones (43). Thus the poor function of WT HsOTC in yeast and the correspondingly slight rescue by GdnHCl of HsOTC(R92G) likely represent multiple compartment-specific incompatibilities arising from heterologous expression.

Weak GdnHCl rescue of Arg-mutant orotidine-5'-phosphate decarboxylase, the URA3 gene product

Due to an exceptionally high affinity for a transition state of its substrate, orotidine-5'-phosphate decarboxylase (ODCase) displays one of the largest rate enhancements (>10¹⁷-fold) of any known enzyme (44). The guanidino group in the side chain of Arg 235 of the S. cerevisiae ODCase, Ura3, contacts the substrate in its transition state (45). *In vitro*, Ura3(R235A) decarboxylates orotidine-5'-phosphate ~15-fold more slowly than does WT Ura3, but the addition of GdnHCl at 100 mM restores activity to ~70% of WT (46). To look for rescue by GdnHCl *in vivo*, we introduced the R235A substitution into the URA3 locus of otherwise WT cells. A guide RNA targeted Cas9 cleavage in the protein-coding sequence, which was repaired by homologous recombination with a synthetic double-stranded DNA molecule encoding WT Ura3 or Ura3(R235A) harboring synonymous substitutions within the sequences between the site of cleavage and codon 235 (Fig. S2). Consistent with the decreased ODCase activity of Ura3(R235A) *in vitro* (46), *ura3(R235A)* cells formed very small colonies on medium lacking uracil (Fig. 2A). These cells proliferated slightly faster when 3 mM GdnHCl was added to the media (Fig. 2A), indicating weak rescue of ODCase activity.

In yeast, Ura3 converts 5-fluoro-orotic acid (FOA) to a toxic product (47). The threshold of Ura3 activity that allows growth in the absence of uracil is distinct from the threshold that inhibits colony growth on FOA (48), potentially allowing us to detect more subtle changes in Ura3 activity. On medium containing 20 µg/mL uracil and 400 µg/mL FOA, colony growth by *ura3(R235A)* cells was indistinguishable from that of cells with WT Ura3 activity, and much slower than *ura3Δ* cells (Fig. 2B). Addition of 3 mM GdnHCl had no discernable effect (Fig. 2B). We conclude from these data that GdnHCl is able to rescue the function of Ura3(R235A) in living yeast cells, but to a very minor extent.
What might explain the greater extent of *in vivo* GdnHCl rescue for ScOTC(R69G) compared to Ura3(R235A)? Each Arg residue is thought to electrostatically stabilize the substrate in the active site. The key difference may be the extent to which the Arg mutation cripples the enzyme-substrate interaction. K_M, the substrate concentration at which a reaction rate is half-maximum, is a reliable indicator of an enzyme’s affinity for its substrate. The R57G mutation increases the K_M of the *in vitro* reaction catalyzed by EcOTC only about five-fold (from 50 µM to 260 µM), whereas the R235A mutation in Ura3 increases the K_M of the ODCase reaction over 1000-fold (1.4 µM to 1800 µM). That Ura3 relies so heavily on Arg235 to stabilize its substrate suggests that a much higher Gdm concentration would be needed for rescue *in vivo*. Indeed, the *in vitro* study estimated that restoring Ura3(R235A) activity to that of WT would require an effective Gdm concentration of 160 M (46). Our findings provide evidence that for mutant enzymes in which the mutation affects substrate binding, chemical rescue by GdnHCl *in vivo* may only be possible in cases where the mutation is only mildly destabilizing. In support of this notion, for the kinase Src the R388A substitution increased the K_M for ATP only about two-fold (81 µM to 182 µM) and actually decreased the K_M for a peptide substrate, allowing *in vivo* rescue by a non-toxic concentration of imidazole (8). Of course, if the Arg mutation has too minor of an effect on enzyme function, there may be no *in vivo* phenotype to rescue, such as what we found with β-gal(R599A) (Fig. S1); *in vitro*, the R599A mutation increased the K_M for the substrate αNPG less than two-fold (33).

GdnHCl fails to rescue Arg-mutant asparagine synthetase

Mutation to Ala of Arg325 in *E. coli* asparagine synthetase B abolishes activity *in vitro* but 50 mM GdnHCl restores activity to ~15% of WT (49). This enzyme has multiple substrates (ATP, glutamine, and aspartate); the R325A mutation slightly decreases the K_M for glutamine and increases the K_M for ATP just over two-fold (49). Substitution in the human homolog of the equivalent Arg (Fig. 3A) to His causes Asparagine Synthetase Deficiency (50). Based on these criteria, this Arg-mutant enzyme seemed like a good candidate for chemical rescue *in vivo*. The redundant *S. cerevisiae* paralogs Asn1 and Asn2 are 47% identical to *E. coli* asparagine synthetase B. Deletion of both genes renders yeast cells auxotrophic for asparagine (51). We introduced the mutation R344A, corresponding to the *E. coli* mutation (Fig. 3A), into Asn1 encoded on
a plasmid and under control of the GAL1/10 promoter, and looked for growth by an asn1Δ asn2Δ strain on media containing galactose and lacking asparagine. Only WT Asn1 allowed asparagine prototrophy, regardless of the presence or absence of 3 mM GdnHCl in the medium (Fig. 3B). We interpret these data as evidence that the Asn1(R344A) protein is not amenable to rescue in vivo by GdnHCl, at least to an extent that is detectable by our approach.

A recent study also examined the R344A mutation in yeast Asn1 in the context of the filaments that Asn1 and Asn2 form in nutrient-deprived cells, the functional significance of which remain unknown (52). Asn1(R344A) was unable to form filaments (52), suggesting either that enzymatic activity is required for polymerization or that Arg 344 is required for both polymerization and activity. Structures of E. coli (53) and human (54) asparagine synthetase solved after the in vitro GdnHCl rescue study revealed that the Arg 344 equivalent in both enzymes projects away from the substrate-binding sites and towards solvent, at least in the dimeric crystal form (Fig. 3C). It is thus unclear how Arg in this position contributes to substrate binding or enzymatic activity, and the inter- or intramolecular contacts made by the guanidino group remain unknown. That GdnHCl rescues activity of the mutant protein in vitro but not in vivo may simply reflect a role for this Arg residue that is not recapitulated in vitro.

Failure of GdnHCl to rescue a “rationally designed” mutant allele of p53

We next looked for Arg-mutant proteins that would be good candidates for in vivo chemical rescue by GdnHCl but had not been previously tested in vitro. The transcriptional activator p53 is a potent tumor suppressor and about half of all tumors express mutant forms of p53 (55). Five of the seven most common tumor-derived missense p53 mutations affect Arg residues (56). Accordingly, Arg-mutant forms of p53 have been studied extensively, including numerous attempts to rescue function using small molecules that occupy voids created by Arg substitutions (reviewed in (57)). We were particularly interested in p53(R249S) due to the identification (58) of a second-site suppressor mutation, H168R, in which the “missing” Gdm group of Arg249 is structurally replaced by the “new” Gdm group of Arg168 (59) (Fig. 4A). The ability of a Gdm group to occupy a void “in trans” despite the presence of a Ser side chain was particularly intriguing, since most previous examples of chemical rescue by GdnHCl involved Arg
substitutions to Ala or Gly. We hypothesized that free Gdm might bind in the void created by the R249S substitution to restore conformational stability to the DNA-binding domain and rescue p53(R249S) function in vivo. Using a yeast URA3 assay for p53 function equivalent to the one used to identify H168R as a suppressor (Fig. 4B), we confirmed that p53(R249S) acts as a null allele (Fig. 4C). However, addition of 3 mM GdnHCl to the medium had no discernable effect (Fig. 4C).

We suspected that the His168 side chain might interfere with occupancy of Gdm in the R249S void. However, we detected no effect of GdnHCl on the function of p53(H168A R249S) (Fig. 4C). Finally, we considered that H168 was isolated as a second-site suppressor of R249S only in the context of a third mutation, T123A, which makes critical but poorly understood contributions to cellular function of the triple-mutant protein (59). However, GdnHCl conferred no discernable rescue of activity to p53(T123A H168A R249S) (Fig. 4C). We suspect that in the case of p53(R249S) and derivatives thereof, the chemical environment surrounding the former site of Arg249 is not conducive to occupancy by free Gdm to an extent that allows the DNA-binding domain to achieve an active conformation long/often enough to confer function, at least to detection limits of our assays.

In vivo chemical rescue by GdnHCl of a specific Arg-mutant actin allele

To use an unbiased approach to identify other examples of GdnHCl rescue of mutant proteins, we screened two collections of TS mutants for high-temperature colony growth in the presence and absence of 3 mM GdnHCl. One collection included multiple cdc10 mutants, which served as convenient positive controls (Fig. 5A). No other mutant in this collection displayed GdnHCl rescue comparable to that of cdc10 mutants, but one of the clearest non-cdc10 examples was observed for act1-105 (Fig. 5A,B). The act1-105 allele encodes a mutant of the sole yeast actin with two surface-exposed charged residues, Glu311 and Arg312, substituted to Ala (60). The mutant cells proliferated slightly slower than WT on rich medium at room temperature (RT; ~22˚C, see Fig. S3) and not at all at 37˚C unless GdnHCl was added (Fig. 5D). The equivalent Arg residue in human cardiac actin, Arg312, is frequently mutated in dilated cardiomyopathy (DCM), a hereditary cardiac condition (61). act1(R312H) mutants are TS (62) and, when synthesized in vitro, human cardiac actin with the R312H substitution displays prolonged interactions with chaperone
proteins essential for actin folding (63). Consistent with folding defects in the mutant proteins, Arg312 makes multiple intramolecular contacts in yeast Act1 (Fig. 5C). Of 19 other actin mutants in the collections we screened, including six with Arg-to-Ala substitutions (Fig. 5C, Table S1), only act1-105 showed any evidence of GdnHCl rescue (Fig. 5B and data not shown). Rescue of act1-105 proliferation at 37°C by GdnHCl was also observed in liquid culture and was specific to GdnHCl, as we saw no effect of metformin or DMSO, two small molecules with similar chemical composition (Fig. 5E). These data are consistent with a model in which the Gdm ion binds at the site of the “missing” Arg at position 312 and restores intramolecular contacts that allow the mutant protein to fold, escape chaperone sequestration, and function at high temperature.

In vivo chemical rescue by GdnHCl of a mutant allele of the essential GPI-mannosyltransferase II subunit Pga1

In another TS collection we found a single, very clear example of GdnHCl rescue, for a mutant allele of the PGA1 gene (hereafter “pga1-ts”) (Fig. 6A). Pga1 encodes a fungi-specific subunit of the essential GPI-mannosyltransferase II (64). We sequenced the pga1-ts allele and found five mutations predicted to result in amino acid substitutions: T25A, I28T, K40R, K98N, and E147G (Fig. 6B). To test if GdnHCl suppression was specific to the pga1-ts allele, we obtained two additional TS pga1 alleles, pga1-1 and pga1-3, each of which carries multiple distinct amino acid substitutions (Fig. 6B) (64). 3 mM GdnHCl failed to suppress the TS colony growth defect of pga1-1 or pga1-3 cells (Fig. 6A).

The GdnHCl derivatives aminoguanidine hydrochloride (“aGdnHCl”) and N-ethylguanidine hydrochloride (“eGdnHCl”) provide partial rescue of other Arg-mutant proteins *in vitro* in a manner that relates to the size of each molecule and thus presumably to steric compatibility with the site of binding (38). We previously showed that, relative to guanidine, aGdnHCl and eGdnHCl are less able to rescue the cdc10 TS phenotype (19). At 0.375 mM, aGdnHCl provided a barely detectable level of rescue of pga1-ts growth at 37°C, while GdnHCl and eGdnHCl had no discernable effect (Fig. 6C). However, a cocktail of GdnHCl and aGdnHCl at a total concentration of 0.75 mM supported nearly WT colony growth by pga1-ts cells (Fig. 6C). The GdnHCl/eGdnHCl cocktail had no such effect (Fig. 6C). The pga1-1 and pga1-3 strains showed no
response to any single drug or cocktail (Fig. 6C). These results are consistent with a model in which Gdm and, to a greater extent, aGdm make specific molecular contacts with the Pga1-ts protein that restore high-temperature function.

There is no structural information for Pga1 or any homolog, and ab initio structure predictions for this transmembrane protein generate low-confidence results (unpublished observations). However, only two of the substitutions in the Pga1-ts mutant protein affect highly conserved residues, and one of these, K98N, substitutes to Asn a Lys residue that is Arg in the Pga1 homologs from Lachancea kluyveri and Ashbya gossypii (Fig. 6B). Lys sidechains are, like those of Arg, long and positively charged at physiological pH. Thus we speculate that Gdm provides molecular contacts that are missing in the Pga1-ts protein due to the K98N substitution, and thereby restores function to the mutant cells. We note that in the crystal structure of an Arg-mutant human protein (mitochondrial aldehyde dehydrogenase R475Q) a Gdm ion occupies the position of a Gdm group not from the “missing” Arg, but from another Arg that was mispositioned due to the mutation (65). Thus in principle GdnHCl could rescue various non-Arg-mutant proteins in which a positively-charged side chain (of Arg, Lys or even His) is missing from a particular location as a direct or indirect result of a mutation.

Rescue of a mutant allele of the C-3 sterol dehydrogenase Erg26 points to GdnHCl inhibition of specific steps in ergosterol biosynthesis

We found that the TS phenotype of the erg26-1 mutant is partially rescued by 3 mM GdnHCl (Fig. 7A). The lack of 4α-carboxysterol-C3 dehydrogenase activity in erg26-1 mutants cultured at 37°C leads to the accumulation of toxic 4-carboxysterol intermediates (Fig. 7B) (66). A previous search for genetic suppressors of the erg26-1 phenotype identified mutations in ERG1 or ERG7 and found that these mutations decreased levels of the toxic intermediates (67). If GdnHCl inhibits the function of Erg1, Erg7, and/or other enzymes acting upstream of Erg26 in the ergosterol biosynthesis pathway, it might indirectly rescue high-temperature proliferation by erg26-1 cells. On the other hand, for erg mutants with TS phenotypes that reflect a failure to produce sufficient ergosterol, rather than an accumulation of toxic intermediates, GdnHCl might inhibit proliferation at temperatures at which the mutants normally proliferate,
rather than rescue proliferation at temperatures at which it otherwise fails. Looking for mutants that exhibited such GdnHCl sensitivity was complicated by the fact that at our “permissive” temperature, 3 mM GdnHCl inhibited colony growth of WT cells (Fig. 7C), whereas at 30˚C the same concentration of GdnHCl had almost no effect (Fig. 2A). This effect was most pronounced when cells were diluted serially and spotted onto plates, as opposed to streaked onto plates with a toothpick (Fig. S4). Hence, it was easiest to see GdnHCl sensitivity for erg8-1, erg9-ts, erg11-td, and erg20-ts, each of which showed some degree of colony growth at 37˚C in the absence of GdnHCl but none in its presence (Fig. 7C and see Fig. S4). The erg10-1 mutant could not form any colony at 37˚C (Fig. 7C), and neither erg1 nor erg7 was represented in these mutant collections, so we could not make conclusions about their GdnHCl sensitivity. Inhibition of any reaction in the ergosterol biosynthesis pathway upstream of Erg26, including those catalyzed by Erg8, Erg9, Erg11 and Erg20 (68–70) (Fig. 7B), likely reduces the production of toxic intermediates in the erg26-1 mutant at 37˚C, whereas it exacerbates ergosterol synthesis defects in the other erg mutants. We thus interpret our findings as evidence that GdnHCl inhibits one or more steps in ergosterol biosynthesis upstream of that catalyzed by Erg26.

We also addressed an alternative explanation for the GdnHCl sensitivity of erg mutants. Loss-of-function mutations in ERG6, the product of which acts late in the ergosterol pathway (Fig. 7B), increase plasma membrane fluidity and are commonly used to increase permeability of yeast cells to various small molecules (71). Indeed, we found that colony formation by erg6Δ mutants at 37˚C was also inhibited by 3 mM GdnHCl (Fig. 7C). Other non-essential erg pathway mutants (erg2Δ, erg3Δ, and erg4Δ) also display increased permeability to a variety of drugs (72). If the erg8, erg9, erg11, or erg20 mutant cells are similarly more permeable, they might accumulate higher intracellular concentrations of GdnHCl, mimicking the growth-inhibitory effects at temperatures ≥30˚C of very high GdnHCl concentrations (≥5 mM) on WT cells (10). To test this possibility, we engineered cdc10(D182N) erg6Δ mutants and grew them on medium containing 1 mM GdnHCl, a concentration that provides only partial rescue of the TS phenotype of cdc10(D182N) ERG6+ cells (19) and has no obvious effect on the colony growth of CDC10+ erg6Δ cells (Fig. S4). We predicted that if erg mutations generally increase permeability, then 1 mM GdnHCl should be better able to rescue the cdc10(D182N) TS phenotype in an erg6Δ background. Instead, cdc10(D182N)
erg6Δ cells were unable to form colonies at 37°C in the absence or presence of GdnHCl (Fig. S4). Thus it is unlikely that the inhibitory effects of 3 mM GdnHCl on erg mutants can be explained solely by increased intracellular Gdm relative to WT.

Finally, we noticed that erg6Δ mutant cells exhibited a cold-sensitive colony growth defect, in that colony growth was slower than WT at RT (Fig. 7C) but not at 30°C (data not shown). A cold-sensitive colony growth phenotype was previously observed (at 22°C) for erg6 mutants and was attributed to a cold-sensitive defect in tryptophan uptake (73); our erg6Δ mutant is prototrophic for tryptophan, but other uptake defects were not excluded in the original study. We therefore considered the possibility that in WT cells GdnHCl, like erg6Δ, also causes cold-sensitive defects in nutrient uptake. Interestingly, the erg8 strain grew slightly better than WT at RT on 3 mM GdnHCl (Fig. 7C), providing further support for a role for membrane sterols in the inhibitory effects of GdnHCl at low temperatures. However, two pieces of evidence argue against the idea that nutrient uptake is inhibited by GdnHCl. First, while it partially improved colony growth by some erg mutant strains at 37°C (Fig. 7C), supplementing the rich medium with all nutrients for which our strains are auxotrophic did not improve growth of any strain at RT in the presence of 3 mM GdnHCl (Fig. 7C). Second, a fully prototrophic strain was also unable to form colonies on rich medium with 3 mM GdnHCl at RT (Fig. S4). We thus favor a model in which GdnHCl inhibits one or more specific steps in the ergosterol biosynthesis pathway. Molecular details remain unknown.

GdnHCl rescues multiple mutants that are subject to increased proteasomal turnover

Several cases of GdnHCl rescue and sensitivity that emerged from our unbiased screens pointed to a possible inhibitory effect of GdnHCl on proteasome function. First, we found weak GdnHCl rescue of the TS growth defects of orc2-1, stu1-5 and stu1-8 mutants (Fig. 7A). The mutation in the orc2-1 mutation, P603L, decreases protein expression levels ~10-fold and this decrease together with the TS phenotype can be suppressed by mutations in subunits of the proteasome or the ubiquitin-activating enzyme Uba1 (74). The orc2-1 allele displays positive genetic interactions with mutations in multiple genes encoding subunits of the proteasome (PRE2, RPN6, RPN11, RPT5, and RPT6 (75)). Similarly, in stu1-5 cells levels of the mutant protein are reduced and these levels are further reduced, to the point of synthetic lethality,
when the deubiquitinylating enzyme Uba3 is mutated (76). The *stu1*-5 allele also displays positive genetic interactions with mutations in many genes encoding proteasome subunits (*PUP1, PUP3, RPN1, RPN5, RPN6, RPN11, RPT3, RPT4, and RPT6* (75)). We sequenced the *stu1*-5 allele and found a number of predicted amino acid substitutions, none of which alters an Arg or Lys (Table 1). The *stu1*-8 mutant has not been sequenced or characterized in detail, but since it was generated in the same way as *stu1*-5 and displays similar phenotypes (77), we speculate that it is also subject to proteasomal degradation at high temperature. Second, we found that a TS mutant allele of *PRE4*, which encodes a subunit of the proteasome (78), was sensitive to GdnHCl (Fig. S4). We then tested another TS proteasome mutant, *pre1*-1, and found that it was also sensitive to GdnHCl (Fig. 8A,B; note that the restrictive temperature for *pre1*-1 is 38.5˚C (79), thus colonies formed at 37˚C in the absence, but not the presence, of GdnHCl). If GdnHCl inhibits proteasomal activity, this could explain the rescue of the *stu1*-5 and *orc2*-1 mutants and the sensitivity of *pre4* and *pre1* cells.

To address this possibility, we asked whether the proteasome inhibitor MG132 also rescues the TS phenotypes of the *orc2*-1 mutant. Pharmacological proteasome inhibition in *S. cerevisiae* has been previously shown to rescue the function of mutant proteins with reduced steady-state levels relative to WT (80). To include a range of MG132 concentrations, we used the paper disc assay. In addition to the expected halo of *orc2*-1 rescue observed around the GdnHCl-soaked disc, we saw a zone of colony growth next to the MG132-soaked disc (Fig. 8B). (The sprinkling of *orc2*-1 colonies dispersed across the entire plate reflects non-TS derivatives that arise spontaneously at 37˚C independently of added chemicals and which we have not characterized further.)

These findings are consistent with various non-exclusive rescue mechanisms. GdnHCl might directly (or indirectly, such as by inducing chaperone expression) stabilize the conformations of mutant proteins, thereby precluding proteasomal fates. GdnHCl might directly inhibit the proteasome. GdnHCl might also indirectly inhibit the proteasome by changing the conformations of other, WT proteins in the mutant cells and increasing their targeting to the proteasome, bringing the degradation machinery near to its functional limit and allowing some molecules of the mutant protein to escape destruction. When a distinct TS allele of
pre4 is combined with hypomorphic alleles of other proteasome subunits, the double-mutant cells are hypersensitive to canavanine (81), an Arg analog that is incorporated into proteins and, like Gdm, alters protein structures and interactions. Thus our identification of pre4 mutants as GdnHCl-hypersensitive likely reflects a mild, global proteostatic stress induced by Gdm. Indeed, at 22°C 3 mM GdnHCl clearly induced the cytosolic stress response, as assessed using a strain expressing GFP under control of an Hsf1-responsive promoter (82) (Fig. 8B).

By comparison, another mutant with a non-Arg substitution that we identified in our unbiased GdnHCl screens, mcm3-1 (substitution G246E), is expressed at levels similar to WT (83), has no documented positive genetic interaction with any proteasome mutation, and is suppressed by overexpression of another subunit of the MCM complex, Mcm2 (84). These properties are most consistent with a model in which at high temperature the Mcm3(G246E) protein adopts a non-native conformation that perturbs MCM complex function, and Gdm binding to the mutant-containing complex partially restores the native conformation. [We note here that we verified that, in addition to rescuing the mcm3-1 mutant in the isogenic TS collection we screened, GdnHCl rescued the original mcm3-1 strain in which this mutant allele was first studied (Fig. 7A)]. Thus while the present data do not exclude other mechanisms, we favor a model in which Gdm restores the functions of a subset of unstable TS mutant proteins by binding directly to them (or to their direct binding partners) and altering protein conformations in ways that allow the mutant proteins to escape proteolysis. If GdnHCl directly or indirectly inhibited the proteasome, we would expect to have found a far greater number of TS mutants rescued by GdnHCl, since we suspect that proteasomal degradation at high temperature drives the TS phenotype in a significant fraction of the mutants in the collections that we screened. It is also likely that in some mutant proteins Gdm occupies molecular vacancies created by substitutions and exacerbates, rather than alleviates, mutant protein dysfunction, which may explain some of the GdnHCl-sensitive mutants that we identified.

GdnHCl rescue or sensitivity in wild-type cells and other temperature-sensitive mutants points to a small number of cellular targets
Hsp10 is a “co-chaperonin” of Hsp60, the chaperonin that refolds numerous proteins following their import into mitochondria (85). We found weak GdnHCl rescue of the TS proliferation defect of hsp10(P36H) cells (Fig. 7A). The mutant protein shows normal thermal stability and overexpression does not improve function (86). Instead, elevated temperature appears to perturb allosteric communication between Hsp10(P36H) and Hsp60 (86). We suspect that GdnHCl could improve hsp10(P36H) proliferation in three non-exclusive ways. First, if there is a single essential client of Hsp60 chaperone activity that misfolds in the mutant cells at 37˚C, Gdm might bind to it and directly promote acquisition of the native conformation, acting as a true “chemical chaperone”. Second, Gdm may directly act on Hsp10(P36H) and/or Hsp60 to alter the conformations of these proteins in a manner that restores allosteric communication. Third, Gdm likely inhibits Hsp78, the mitochondrial homolog of Hsp104 and of prokaryotic ClpB, which is also inhibited by GdnHCl (87). When yeast cells mutated for other mitochondrial chaperones are incubated at 37˚C, mitochondria collapse into aggregates (88), and overexpression of Hsp78 partially reverses this effect (89). In hsp10(P36H) cells at 37˚C Hsp78 may unfold mitochondrial proteins that would otherwise function normally, and GdnHCl inhibition of Hsp78 may thereby restore normal mitochondrial function. Indeed, since Hsp10 directly promotes the assembly of Hsp60 subunits into functional chaperonins (90), it may be that unassembled Hsp60 subunits themselves are targets of Hsp78 unfoldase activity. We think this third proposed mechanism is the least likely because it predicts that hsp78Δ should also rescue hsp10(P36H), and while deletion of any one of >60 non-essential genes displays a positive genetic interaction with hsp10(P36H), hsp78Δ (or hsp104Δ) is not among them (91). We note that hsp104Δ displays positive interactions with 10 TS mutants but not any of those we found to be rescued by GdnHCl (91), strongly suggesting that in no case is GdnHCl inhibition of Hsp104 responsible for rescue.

Inn1 is, like septins, required for cytokinesis (92, 93) and an inn1 TS mutant displays negative genetic interactions with TS alleles of multiple septin genes (75). We found that inn1(F59S K210E) cells are GdnHCl sensitive at 37˚C (Fig. S4). In cells with WT septins GdnHCl may slightly alter septin function in a way that is exacerbated by inn1 mutation. Our previous studies (19) do not support the idea that GdnHCl creates a significant population of Cdc10-less hexamers in WT cells. Instead, we suspect that inn1
sensitivity to GdnHCl reflects subtle GdnHCl-induced defects in the efficiency of septin octamer assembly at 37°C that have no overt consequence in WT cells.

We identified GdnHCl sensitivities in other TS mutants that may point to some general problem with transcription and/or mRNA processing in GdnHCl-treated cells. As shown in Fig. S4, *med6(K39R N43S M69V K75T R173G N252S D281G)*, *mpe1-ts*, *rad3(C590Y)*, and *ipa1-ts* mutants were sensitive to 3 mM GdnHCl at 37°C. Rad3 is a subunit of RNA Pol II initiation factor TFIH (94) and Med6 is part of the RNA Pol II mediator complex (95). Mpe1 (96) is a subunit of the CPF mRNA cleavage and polyadenylation factor, which interacts physically and genetically with Ipa1 (75).

Finally, in light of the slight resistance to the inhibitory effects of 3 mM GdnHCl at RT conferred by the *erg8-1* mutation (Fig. 7C) we wondered if it would be possible to obtain spontaneous mutants that are resistant to inhibition by high GdnHCl concentrations. If, on the other hand, GdnHCl perturbs many distinct cellular functions, too large number of mutations would be required. We spread cells from a liquid culture of a WT haploid strain to a rich medium plate containing 10 mM GdnHCl. After 7 days incubation at 30°C, three colonies appeared, each of which was able to form new colonies when restreaked to a new 10 mM GdnHCl plate (Fig. S4). Testing for auxotrophies present in the parent strain verified that they were not contaminants (data not shown). While future work will be required to determine what change(s) promote GdnHCl tolerance in these clones, we interpret these findings as evidence that the inhibitory effects of GdnHCl in *S. cerevisiae* represent one or a small number of essential targets.

Failure of urea to rescue any TS mutant suggests GdnHCl rescue is not due to general thermal stabilization

A model in which guanidine restores native conformations to a variety of mutant proteins, including those without Arg substitutions, is reminiscent of the non-specific conformational stabilization that has been reported for both GdnHCl and urea at subdenaturing concentrations (97). In this scenario, Gdm or urea interacts both with side chains and the backbone of the stabilized protein, suggesting that global protein stabilization is the cumulative result of many weakly stabilizing interactions, including direct electrostatic
interactions and changes in surface hydration (97). In general, TS-causing mutations inhibit the ability of the mutant protein to adopt the native conformation(s) at high temperature. Hence, for some TS mutants, GdnHCl might rescue function by conferring general thermal stability. If so, we predicted that urea might do the same.

To test this hypothesis, we screened a collection of TS mutants we had previously screened for GdnHCl rescue, but this time looking for proliferation on medium containing or lacking urea at 37˚C. At concentrations above 0.5 mM, urea in the medium readily enters S. cerevisiae cells, and enzymes that convert urea to ammonia for use as a nitrogen source are repressed if other nitrogen sources are present in the medium (98). Consequently, we predicted that in cells cultured in rich medium containing 10 mM urea, free urea should be available for interaction with intracellular proteins. However, we were unable to identify any TS mutant in this collection that was clearly rescued by, or especially sensitive to, 10 mM urea. Fig. S5 shows results of retesting several candidate mutants, each of which ultimately failed to display anything more than the slightest evidence of rescue by urea.

To test a range of urea concentrations, we chose a single TS mutant with a non-Arg substitution, orc2-1 (substitution P603L), and placed a paper disc soaked in 5 M urea (or 5 M GdnHCl, as a positive control) on a lawn of orc2-1 cells. Whereas a zone of proliferation was obvious surrounding the GdnHCl-soaked disc at 37˚C (and a zone of no proliferation at RT), urea had no discernable effect on proliferation of the mutant cells at any temperature (Fig. S5). These negative results provide some evidence that general thermal stabilization is not sufficient to explain the rescue by GdnHCl of TS mutants, though we cannot rule out the possibility that the concentrations of available intracellular urea required for thermal stabilization of a mutant protein exceed that tested in our experiments, and may in fact be lethal.

Chemical rescue of TS mutants by DMSO and TMAO point to effects on multiple cellular pathways, rather than on specific mutant proteins

Our findings with GdnHCl led us to investigate other naturally occurring small molecules known to alter protein conformations. DMSO is found in many natural sources including fruit (99) and marine algae (100).
In the laboratory setting DMSO is widely used as a solvent and cryoprotectant due to effects on cellular membranes, which vary with membrane lipid composition and DMSO concentration but include thinning, stiffening, softening, and probably formation of pores (101–103). DMSO also affects protein folding and stability in vitro (104). Like GdnHCl, DMSO (at 2.5% v/v) cures yeast cells of at least one prion (10). While screening various compounds for rescue of mutant protein function in yeast, a previous study of human cystathionine β-synthase discovered that DMSO, intended as a solvent control, itself showed an effect (27). At 614 mM, mutant function was nearly equal to WT (27). We first tested for rescue of the TS phenotype of act1(E311A R312A) by DMSO at 250 mM and 500 mM and saw no effect (Fig. 5E). We next screened a collection of TS mutants for rescue by 705 mM (5% v/v) DMSO. Colony growth by WT and most TS mutants was slower on DMSO-containing medium, particularly at low temperature (Fig. 9A), reminiscent of the temperature-dependent inhibition we observed with GdnHCl. Nonetheless, ten mutants representing nine genes formed colonies at 37˚C only in the presence of 5% DMSO (Fig. 9A), indicative of chemical rescue. Based on known phenotypes and genetic interactions, we placed them into three categories with distinct possible mechanisms of DMSO action.

DMSO weakly rescued kar2-159 (Fig. 9A), a TS allele (substitution G417S) of the Hsp70-family ER chaperone Kar2, the yeast homolog of mammalian BiP (Binding immunoglobulin Protein) (105). Gene expression analysis of S. cerevisiae cells exposed to 1M DMSO found that Kar2 transcript levels increase slightly (106). Hence a trivial explanation is that elevated levels of the Kar2(G417S) protein compensate for its dysfunction. Alternatively, if DMSO generally improves protein folding, it might improve the folding of essential proteins otherwise prone to misfolding when Kar2 is non-functional. If so, we predicted that DMSO might also rescue a TS mutant in which Hsp70 function in folding cytosolic proteins fails at 37˚C. Due to redundancy between multiple cytosolic Hsp70 family members, no cytosolic Hsp70 is represented in the collection of single-gene TS mutants that we screened. Instead, we tested two strains, one in which three of the four SSA (Stress-Seventy subfamily A) genes is deleted and only WT SSA1 remains, and an otherwise isogenic strain carrying a TS allele of SSA1 (107). 5% DMSO failed to rescue the ssa1-ts strain and blocked colony growth by the SSA1 strain at 37˚C (Fig. S6). These results are consistent with a model in which DMSO alters protein conformations, but in ways that do not generally substitute for the action of
Hsp70 chaperones, and may in fact exacerbate defects in Hsp70-mutant cells, depending on the affected cellular compartment.

Several mutants rescued by DMSO represent proteins directly or indirectly involved in lipid synthesis and membrane dynamics. Lcb1 (lcb1-2 and lcb1-5, Fig. 9A) is a serine palmitoyltransferase required for sphingolipid synthesis (108). The substitutions in these alleles are distinct (Table 1) and other lcb1 mutants in the collection were not rescued (Fig. 9A and data not shown), suggesting that DMSO does not specifically act on one mutant form of the protein and also that DMSO does not prevent or counteract the effects of Lcb1 dysfunction in general. Addition of DMSO to S. cerevisiae is known to upregulate lipid synthesis genes, resulting in increased phospholipid content in membranes, which presumably counteracts direct membrane effects of the drug (109). Accordingly, in one model for DMSO rescue of lcb1 mutants, proliferation fails due to altered membrane properties of the mutant cells cultured at 37˚C, resulting from altered sphingolipid content, and DMSO restores membrane properties to something compatible with proliferation. However, sphingoid bases also act as signaling molecules and thereby influence many cellular processes, including the response to high temperature itself: in cells carrying a distinct TS allele of LCB1 that was not present in the collection we screened, proliferation at 37˚C is restored by overexpressing ubiquitin, which appears to promote proteasomal clearance of misfolded proteins without restoring normal sphingolipid content (110). Thus DMSO could rescue lcb1 mutants in a number of ways among which our current data are unable to distinguish.

Arp2 and Arp3 are 30% identical, actin-related proteins that are essential subunits of a heptameric complex that nucleates actin filaments (111) and is required for the motility of cortical actin patches (112) and, in turn, the internalization step of endocytosis (112). While arp2-14 is the only allele of ARP2 in the collection we screened, arp3-G15C was the only of six arp3 alleles to be scored as rescued by DMSO in our screen (Table 1, Table S1). It is unclear why DMSO rescue was specific to arp3-G15C, though the study that characterized these arp3 mutants found a unique combination of phenotypes for arp3-G15C with regard to sensitivity to temperature, 0.9 M NaCl, and 3% formamide (113). In cultured mammalian cells, DMSO and other amphiphilic compounds alter membrane tension and thereby increase the rate of endocytosis (114).
Hence in a simple model for DMSO rescue of Arp2/3 mutants, altered membrane tension facilitates endocytic events that are otherwise stalled at the plasma membrane. Interestingly, \textit{arp2-14} and \textit{arp3-G15C} cells also proliferated better than WT at RT in the presence of 5\% DMSO (Fig. 9A). Thus DMSO may synergize with low temperature to alter membrane properties in a way that perturbs endocytosis and is counteracted by subtle changes in actin patch motility in these \textit{arp} mutants. A previous screen of the \textit{S. cerevisiae} homozygous diploid deletion collection identified nine mutants that were more resistant than WT to 8\% DMSO (115), none of which has any obvious functional relationship to endocytosis or membrane tension. However, a recent study found that \textit{chm7}Δ also confers improved colony growth in the presence of 4\% DMSO, which presumably relates to Chm7’s function in membrane dynamics in the ER and nuclear envelope (116). Why loss of Chm7 would ameliorate effects of DMSO on membrane properties remains unclear.

The final category of TS mutants rescued by DMSO – \textit{stu1-5, stu1-6, tub4ΔDSYLD, cdc23-4, and smc3-1} – had links to microtubule function, which in yeast is mostly restricted to the mitotic spindle. Stu1 directly binds microtubules and mutations in tubulin subunits suppress the TS defect of \textit{stu1-5} mutants (77). \textit{TUB4} encodes gamma tubulin, which nucleates microtubules, and drugs that alter the stability of microtubules rescue the TS phenotype of the \textit{tub4ΔDSYLD} mutant (117). [We note that DMSO rescue of \textit{tub4ΔDSYLD} was subtle at best and altogether absent in some experiments (see Fig. S7).] Cdc23 is a subunit of the anaphase-promoting complex that localizes to microtubule ends (118). Smc3 is a subunit of the cohesin complex that holds sister chromatids together, contributing to tension that is crucial for stable microtubule–kinetochore attachments (119). A recent study (120) identified a genetic interaction between \textit{smc3-1} and \textit{irc15}Δ, which eliminates a microtubule-binding protein that regulates microtubule dynamics (121). DMSO exerts profound effects on purified tubulin \textit{in vitro}, lowering the critical concentration for microtubule polymerization (122) and lifting the requirement for microtubule-associated proteins (123). In cultured mouse oocytes, exposure to ~10\% DMSO rapidly induced the formation of cold-resistant microtubules (124). We therefore speculate that direct DMSO effects on microtubule stability/dynamics underlie chemical rescue of this category of mutants.
Studies with mutant alleles of human cystathionine β-synthase expressed in yeast found that some mutant proteins could be rescued by DMSO or TMAO, whereas other mutants could be rescued only by TMAO (27). We screened the same collection of TS mutants with 0.5 M TMAO at 37˚C and found nearly 140 candidate examples of rescue, six of which were also rescued by DMSO (Table 1, Table S2, Fig. S7, Fig. S8). Put another way, DMSO rescued <5% of the mutants rescued by TMAO, but TMAO rescued over half of the mutants that were rescued by DMSO. Validating all the candidates by dilution series would have been impractical, so we tested only a subset (Fig. 10 and Fig. S7). Four alleles of PKC1, which encodes a kinase crucial for cell wall integrity, are known to be rescued by a variety of osmolytes (125, 126); higher osmolarity of the medium counteracts intracellular turgor pressure and prevents cell lysis when cell walls are structurally compromised. Each of these pck1 mutants was also rescued by TMAO (Fig. 10A). One allele of cdc10 showed weak rescue by TMAO (Table 1 and see Fig. 10C). Septins are also required for proper cell wall biogenesis (127, 128), and two other septin-mutant strains, cdc12-1 and cdc12-6, are also known to be partially rescued by the osmolyte sorbitol (129). Since and all TS septin mutants show similar cellular defects at the restrictive temperature (130), we suspected that TMAO rescue of cdc10-2 may also represent a case of “osmotic support”. Indeed, at 37˚C 1 M sorbitol rescued pkc1-1 and cdc10-2 (Fig. 10B). However, it was unclear why the cdc12-1 mutant and other cdc10 mutants in the collection we screened did not show TMAO rescue. Sorbitol rescue of cdc12-1 in the published study was only apparent up to 34˚C (129), and we confirmed that at 37˚C 1 M sorbitol failed to rescue the cdc12-1 mutant present in the collection (Fig. 10B). We assessed a range of temperatures in liquid cultures and found that cdc10-2 has a higher permissive temperature than cdc12-1 and the other cdc10 mutants in the collection (Fig. S7). Thus only for cdc10-2 did moderate TMAO rescue exceed the threshold of detection in our screen. We conclude that for many mutants TMAO acts as a general osmolyte to prevent cell lysis when the integrity of the cell wall is compromised.

Might we have found even more examples of TMAO rescue had we screened at lower temperatures? Comparison of the annotated restrictive temperatures of the mutant collection as a whole with those that showed apparent TMAO rescue at 37˚C suggested a slight bias towards mutants with restrictive temperatures closer to 37˚C, but not a strict threshold below which no rescue is possible (Fig. S7). Thus
while it appears to act quite generally, TMAO does not universally improve mutant protein function; indeed, some mutants were inhibited by TMAO (see Table S2, Fig. S8 and the brl1-2221 and brl1-3231 mutants in Fig. S7).

Dam1 and Duo1 are subunits of the Dam1 complex (also called DASH) that links kinetochores to the microtubules of the mitotic spindle (131, 132). TMAO rescued duo1-2 and multiple distinct TS alleles of DAM1 (Fig. 10A, Table 1, Table S2), and also rescued tub4ΔDSLYD (Fig. 10C). Multiple studies in the literature observed rescue of TS mutants with spindle defects by sorbitol (133, 134), and sorbitol provides resistance to WT cells against drugs that destabilize microtubules, leading to the idea that osmotic support stabilizes microtubules (134). We found that, like TMAO (Fig. 10A), 1 M sorbitol also rescued dam1-1, dam1-9, and duo1-2 (Fig. 10B). We propose that in these cases TMAO acts as an osmolyte to stabilize microtubules.

It is worth noting that a recent study found that upon exposure to elevated temperatures yeast cells accumulate intracellular trehalose as a way to increase cytosolic viscosity and maintain normal kinetics of protein folding, higher-order assembly, and enzymatic reactions in the face of increased kinetic energy (135). Thus at 37˚C a mutant protein faces not only an intrinsically different folding environment than at RT, but once folded any subsequent intermolecular interactions, including between enzyme and substrate, are also fundamentally altered by the presence of osmolytes like trehalose and TMAO. TS mutant rescue by TMAO could result from multiple direct and indirect effects, which may explain why TMAO was able to rescue so many different TS mutants.

The human cystathionine β-synthase studies found that a cocktail including TMAO, DMSO, and sorbitol appeared to have a synergistic rescue effect (27). We tested cocktails of TMAO plus GdnHCl and TMAO plus DMSO on selected mutants and found that in some cases the combinations provided approximately additive positive effects on mutant proliferation (e.g. TMAO plus GdnHCl for cdc10-2) whereas in others (e.g. TMAO plus DMSO for lcb1-5) the combination eliminated rescue altogether (Fig. 10C). We imagine that additive effects could arise from a combination of a direct effect of one small molecule on the mutant
protein plus a direct effect of the other small molecule on a cellular process altered as a result of the mutation. For example, Gdm binding to the septin Cdc3 bypasses incorporation of the mutant Cdc10 (19), but the resulting hexameric septin complexes are not fully functional, leading at 37°C to slight cell wall/cytokinesis defects and slower colony growth that are further remedied by the osmotic support TMAO provides. On the other hand, in lcb1-5 cells TMAO might change the conformation of the Lcb1(D299Y) protein or its reaction kinetics in a way that increases serine palmitoyltransferase activity, but the resulting lipid composition may be incompatible with the direct membrane effects of DMSO.

Finally, given the apparent effectiveness of TMAO in rescuing TS mutant protein function, and the natural accumulation of TMAO in organisms with high intracellular urea, we predicted that if the toxic effects of high concentrations of exogenous urea on S. cerevisiae reflect mis- or un-folding of essential proteins, then TMAO might counteract these effects and restore viability. To test this prediction, we streaked WT haploid cells on rich medium with 600 mM urea in the absence or presence of 300 mM TMAO, a concentration chosen to mimic the 2:1 urea:TMAO ratio found in many marine organisms (24). Urea completely blocked colony formation at 37°C and the addition of TMAO almost completely reversed this effect (Fig. 10D). While there are many possible mechanistic explanations for this result, it is consistent with a model in which exogenous urea denatures proteins and TMAO counteracts this effect, as in the organisms inside which both molecules are found naturally.

Conclusions
Our unbiased screens of large collections of mutants and our targeted tests of Arg-mutant proteins illustrate just how lucky we were to identify GdnHCl rescue of cdc10 mutants (19). Only one other mutant, pga1-ts, showed a similar extent of GdnHCl rescue. Weaker GdnHCl rescue of act1(E311A R312A) but not ~30 other Arg-to-small-side-chain mutants in the same TS collection (Table S1) confirms that such examples are rare and cannot be predicted based on structure alone. Our findings further suggest that GdnHCl rescue is most likely to be effective when Gdm acts as a “chemical chaperone” to promote native folding by restoring specific intramolecular contacts, rather than replacing in an enzyme the functional
group of a missing Arg residue that makes direct contact with a substrate. Towards the latter goal, modified compounds able to covalently attach to the mutant protein (i.e., “chemical repair”) may be more effective.

Nonetheless, in the context of human disease, even the slightest increase in function might improve quality of life. Due to the abundance of mutation-prone CpG dinucleotides in Arg-encoding codons, Arg is the most frequently mutated residue in human disease (136). To estimate just how many human diseases arise from Arg mutations, we analyzed a published list of single missense mutations linked to human disease and found that 18% (538 of 2960) represent Arg substitutions (137). If GdnHCl has the potential to restore function to even a fraction of these, then it should be considered as a possible therapeutic. With regard to side effects, our findings also provide additional insights into the cellular processes likely to be affected directly by GdnHCl in WT cells (e.g. ergosterol/cholesterol synthesis) and conditions in which these effects are most pronounced (low temperature). Our results with other small molecules suggest that, unlike them, GdnHCl does not act very generally to stabilize protein conformations *in vivo*. DMSO and TMAO likely have their own direct effects on specific cellular processes but each, particularly TMAO, also appears to act on protein conformations in general ways that ameliorate functional defects in multiple mutant proteins. DMSO is found in many natural foods (99) and has a long history of over-the-counter use as a remedy for many ailments, whereas TMAO is produced by gut microbes and enters the circulatory system, particularly following high-protein meals (138). Hence, these two molecules also have the potential to influence cellular function in humans, whether administered intentionally or otherwise.

In the laboratory context, our findings provide multiple clear illustrations of how standard *in vitro* conditions can fail to recapitulate conditions encountered by proteins in living cells, and also establish potential new tools in the form of “conditional alleles” of numerous genes whose activity can be controlled pharmacologically. Apart from these laboratory research and clinical therapeutic considerations, by modifying the chemical environment in which proteins fold and function and potentially buffering fitness against the effects of mutations, these naturally occurring small molecules have almost certainly influenced the evolution of protein sequence space in at least some organisms in some environments.
EXPERIMENTAL PROCEDURES

Microbial strains and plasmids

We screened two collections of TS mutants. Screening methods are provided below. The “Hieter collection” has the following genotype for each haploid TS mutant: \(\text{MAT}a \, \text{ura}3\Delta0 \, \text{leu}2\Delta0 \, \text{his}3\Delta1 \, \text{can}1\Delta::\text{LEU2-}P_{\text{MFA1}}::\text{HIS3} \, \text{yfeg-ts::URA3} \), where “yfeg-ts” is “your favorite essential gene”, of which 600 are represented (139). The allele at \(\text{MET}15 \) was either \(\text{met}15\Delta0 \) or \(\text{MET}15^{+} \), and at \(\text{LYS}2 \) was either \(\text{lys}2\Delta0 \) or \(\text{LYS}2^{+} \), but this information is not available for all mutants. From this collection, a separate stock of the \(\text{pga}1\)-ts mutant was made and assigned the inventory number H06474. The “Boone collection” that we screened comprises 684 mutants representing 444 essential genes, based on the parent strain \(\text{BY4741 (MAT}a \, \text{his}3\Delta1 \, \text{leu}2\Delta0 \, \text{met}15\Delta0 \, \text{ura}3\Delta0) \) with each TS allele integrated using a \(\text{kanMX} \) marker 3’ of the stop codon (140). Table S1 is an updated copy of a previously published table from the Boone lab (140) that lists the mutants in the version of the collection we screened along with the temperature(s) at which the TS phenotype is manifested and, where known, the mutations in the TS allele. The following are yeast strains not in these collections. S288C is \(\text{MAT}a \, \text{SUC2 ho mal mel gal2 CUP1 flo1 flo8-1 hap1} \) (141). \(\text{BY4741} \) is derived from S288C and is \(\text{MAT}a \, \text{his}3\Delta1 \, \text{leu}2\Delta0 \, \text{met}15\Delta0 \, \text{ura}3\Delta0 \) (142). The \(\text{erg}6\Delta::\text{kanMX} \) derivative from the \(\text{BY4741} \) deletion collection (143, 144) is named H06534 in our lab collection and was confirmed by cycloheximide sensitivity (145). The \(\text{cdc}10(D182N) \) \(\text{erg}6\Delta \) strain H06537 was made by crossing H06534 with the \(\text{cdc}10(D182N) \) strain DDY2334, a gift from David Drubin (University of California Berkeley), sporulating the resulting diploid, and dissecting tetrads. Other strains from the deletion collections were confirmed by other phenotypes: the \(\text{arg}3\Delta::\text{kanMX} \) derivative of \(\text{BY4741} \) (strain H06538) was confirmed by arginine auxotrophy, the \(\text{asn}1\Delta::\text{kanMX} \) derivative of \(\text{BY4741} \) and \(\text{asn}2\Delta::\text{kanMX} \) derivative of \(\text{BY4742 (MAT}a \, \text{his}3\Delta1 \, \text{leu}2\Delta0 \, \text{lys}2\Delta0 \, \text{ura}3\Delta0) \) were confirmed by the asparagine auxotrophy of H06544, the haploid \(\text{asn}1\Delta::\text{kanMX} \, \text{asn}2\Delta::\text{kanMX} \) haploid strain created by mating those two mutants, sporulating the resulting diploid, and dissecting tetrads. Strains H06744, H06745 and H06746 are spontaneous derivatives of \(\text{BY4741} \) derived by plating to 10 mM GdnHCl. Strains AKY19 (pga1-1) and KSY182 (pga1-3) are \(\text{MET}15 \) derivatives of \(\text{BY4741} \) and have \(\text{LEU}2 \) integrated at the \(\text{PGA}1 \) locus (64). The p53 reporter strain RBy33 is \(\text{MAT}a \, \text{his}3\Delta200 \, \text{leu}2\Delta1 \, \text{lyh}2\Delta202 \, \text{trp}1\Delta63 \, \text{1cUAS}53::\text{URA3} \) (146). The cytosolic stress reporter strain YJW1741 is \(\text{MAT}a \, \text{his}3\Delta1 \, \text{leu}2\Delta0 \, \text{cyh}2 \, \text{can}1\Delta::P_{\text{STE2}}\cdot\text{spHIS5} \, \text{lyp}1\Delta::P_{\text{STE3}}\cdot\text{LEU2} \, \text{ura}3\Delta::P_{\text{TEF2}}\cdot\text{mKate}^{-} \)
URA3–4xHSE-EmeraldGFP (147). The original mcm3-1 mutant strain Rc61-3c is MATα his4Δ34 leu2-3,112 ura3-52 mcm3(G246E) (83). The ssaΔ strains ECY487 (SSA1) and ECY567 (ssa1-45BKD) are both MATα leu2-3,112 his3-11,3-15 trp1Δ1 ura3-52 ssa2::LEU2 ssa3::TRP1 ssa4::LYS2 (43).

The original mcm3-1 mutant strain Rc61-3c is MATα his4Δ34 leu2-3,112 ura3-52 mcm3(G246E) (83). The ssaΔ strains ECY487 (SSA1) and ECY567 (ssa1-45BKD) are both MATα leu2-3,112 his3-11,3-15 trp1Δ1 ura3-52 ssa2::LEU2 ssa3::TRP1 ssa4::LYS2 (43).

The E. coli strains used were DH5α (fhuA2 lac(del)U169 phoA glnV44 Φ80' lacZ(del)M15 gyrA96 recA1 relA1 endA1 thi-1 hsdR17) and RS302 (alias AMA1004), which is based on strain M182 (148) with the following modifications: hsdR- del(ara, leu) trpC9830 leuB6 ara+ Δ(laclPOZ)C29 lacY+.

All yeast transformations were performed using the Frozen-EZ Yeast Transformation II Kit (#T2001, Zymo Research). To integrate the ura3(R235A) allele, the Cas9-encoding plasmid (Cas9-NAT (149), a gift from Yong-Su Jin, Addgene plasmid # 64329; http://n2t.net/addgene:64329; RRID:Addgene_64329) was transformed into S288C and selected with nourseothricin. A geneblock repair template (see Fig. S2) containing the R235A mutation or a recoded version of WT URA3 was amplified by PCR using primers ura3_GBfw (5'TCCATGGAGGGCACAGTTAA) and ura3_GBre (5'CACCCTCTACCTTAGCATCC) and the PCR product was co-transformed into S288C cells carrying the Cas9 plasmid with a gRNA-encoding plasmid, gRNA-ura-HYB (149) (a gift from Yong-Su Jin, Addgene plasmid #64330; http://n2t.net/addgene:64330; RRID:Addgene_64330). Transformants arising on YPD medium with nourseothricin and hygromycin B were screened by isolation of genomic DNA, PCR of the URA3 coding sequence, and DNA sequencing, resulting in the strains H06537 (ura3(R235A)) and H06700 (URA3).

The appropriate Arg, His, or Thr mutations were introduced into plasmids pPact1-lacZ, YCpU-Pgal-ARG3, pGALOTC, YCpU-Pgal-ASN1, pMAM71, via site-directed mutagenesis performed by Keyclone Technologies (San Marcos, CA). To introduce the R249S mutant of p53 into a yeast plasmid, pLT11, a low-copy HIS3-marked plasmid encoding p53(V272M) under control of the yeast ADH1 promoter (150), was digested with SnaBI and EcoRI to excise the region including codons 249 and 272, and co-transformed into yeast cells with uncut plasmid pCMV-Neo-Bam p53(R249S), a gift from Bert Vogelstein (Addgene plasmid #16438; http://n2t.net/addgene:16438; RRID:Addgene_16438) (151). WT p53 in the same vector backbone was created by digestion with SnaBI and Stul of the low-copy HIS3-marked plasmid pTW456 (150) and co-
transformation into yeast cells with pMAM38b, a LEU2-marked plasmid encoding WT p53. (The WT p53 sequence in pMAM38 was derived from plasmid p663/LR78 (152).) Transformants arising on medium lacking histidine were rescued to E. coli and confirmed by sequencing with appropriate primers. The R249S plasmid, called pMAM71, was subjected to site-directed mutagenesis to introduce the H168A or T123A and H168A mutations by Keyclone Technologies, generating plasmids pMAM70 and pMAM113, respectively. Deletion of the mitochondrial import sequence of HsOTC was performed by co-transforming into WT (BY4741) yeast cells BamHI-digested pGALOTC and a double-stranded DNA molecule made by annealing oligonucleotides newhOTCdelNfw

TCCTTTACACAAATTAAAGAAGATGCTGGTTAAATCTGAGGGACCTTCTCACTCTCTAAAAACCTTTACCAGGA
GAAGAAATTAA

hOTCdelNre

TAATTTCTTTCTCGGTAAGGTTTTTAGAGTGAGGTTCCCTCATCGATTAAACAGCAGATTTTTTATTGTGAAAGGA). Transformants arising on medium lacking uracil were rescued to E. coli and confirmed by PCR and sequencing with appropriate primers.

Media and additives

S. cerevisiae rich growth medium was YPD (1% yeast extract (#Y20020, Research Products International, Mount Prospect, IL), 2% peptone (#P20241, RPI), 2% dextrose (#G32045, RPI)). Supplementation with extra nutrients to test for defects in nutrient uptake was done by adding Leu, His, and uracil to 0.1mg/mL, 0.05mg/mL, and 0.1mg/mL, respectively. Synthetic complete growth medium was based on YC (0.1 g/L Arg, Leu, Lys, Thr, Trp and uracil; 0.05 g/L Asp, His, Ile, Met, Phe, Pro, Ser, Tyr and Val; 0.01 g/L adenine; 1.7 g/L Yeast Nitrogen Base without amino acids or ammonium sulfate; 5 g/L ammonium sulfate; 2% dextrose or galactose) with individual components (from Sigma Aldrich, St. Louis, MO, or RPI) eliminated as appropriate for plasmid selection. For solid media, agar (#A20030, RPI Corp.) was added to 2%. For counterselection against URA3, 5-fluoro-orotic acid monohydrate (#F5050, United States Biological, Salem, MA) was added to modified YC medium with 50 µg/mL uracil and 0.1% FOA, for experiments with p53 mutants, or 20 µg/mL uracil and 400 µg/mL FOA for experiments with Ura3 mutants. Nourseothricin (#N5375-74, US Biological) was added to YPD at 100 µg/mL. Hygromycin B (#H-270-1, Gold Biotechnology) was added to YPD at 200 µg/mL. GdnHCl (#G4505, Sigma Aldrich, St. Louis, MO or
aminoguanidine HCl (#sc-202931, Santa Cruz Biotechnology, Santa Cruz, CA), N-ethylguanidine HCl (#sc-269833, Santa Cruz), metformin hydrochloride (#M2009, TCI Chemicals), urea (#1610730, Bio-Rad Laboratories, Inc.), TMAO (#AAA1491614, Alfa Aesar), were dissolved in water. MG132 (#10012628, Cayman Chemical Company) was dissolved in ethanol to make a 75 mM stock solution. Medium for MG132 contained, per L: 20 g agar, 20 g dextrose, 0.017 g Yeast Nitrogen Base without amino acids or ammonium sulfate, 1 g Pro, 0.1 g Leu, 0.1 g uracil, 0.05 g His, 0.05 g Met, 0.03 g SDS. Rich medium for *E. coli* was LB (per L: 5 g yeast extract, 10 g tryptone, 10 g sodium chloride), supplemented with carbenicillin or ampicillin and, as appropriate, X-gal (Fisher BioReagents #bp1615-1) from a stock dissolved in dimethylformamide (for experiments with strain RS302) or DMSO (for experiments with DH5α).

Kinetic β-gal assay

We grew 5-mL LB+ampicillin cultures with DH5α carrying pACT1-lacZ or its R599A derivative to mid-log phase at 37°C, then added 8 µL of X-gal (20 mg/mL in DMSO) and 5 µL of chloramphenicol (Sigma-Aldrich # C0378, 34 mg/mL dissolved in ethanol). After time intervals of 0, 10, 20, 50, 100, 120 or 150 minutes, a 500-µL aliquot of cells was removed and pelleted, then resuspended in 250 µL of 50 mM Tris-HCl, 10 mM EDTA, pH 8.0, 100 µg/mL RNase A, followed by addition of 250 µL 200 mM sodium hydroxide, 1% SDS to lyse the cells. 100-µL aliquots of this lysate were transferred to the wells of a flat-bottom 96-well microplate. Absorbance at 615 nm was measured with a BioTek Cytation 3 plate reader. Plasmid was isolated from the remainder of the original 5-mL culture of the R599A culture using standard methods and digested with *Pvu*I-HF (New England Biolabs #R3151) according to manufacturer’s instructions. Digested DNA was separated by 1% agarose gel electrophoresis in Tris-acetate EDTA buffer and visualized with ethidium bromide.

Screening the TS collections

We obtained the Hieter collection as a set of seven plates with colonies on solid medium from the lab of Mark Johnston (University of Colorado Anschutz Medical Campus). A Rotor bench-top robot (Singer Instruments, Somerset, England) was used to duplicate the colonies to YPD. After incubation at RT, 531 of
the 604 mutants formed colonies. These were then pinned by the robot in 384-colony format to two YPD plates and two YPD plates containing 3 mM GdnHCl. One of each type was incubated at RT and the other at 37°C. Growth was scored after 6 days incubation. Unfortunately, photos of these plates were lost, so we do not know the identity of the 73 mutants that did not grow even on YPD at RT. Candidate mutants showing rescue or sensitivity to GdnHCl were streaked to new plates for re-testing.

For GdnHCl rescue, as with the Hieter collection, seven plates of the Boone collection in 96-well format, this time in liquid form, were first robotically transferred to YPD at RT. The resulting colonies were condensed to 384-well format on four YPD plates, and this was done in duplicate for each of three conditions: RT without GdnHCl, 37°C without GdnHCl, and 37°C with 3 mM GdnHCl. After 5 days at the indicated temperature, plates were screened visually to compare colony sizes. We note that a single mutant from the Boone collection that we scored as being rescued by GdnHCl, erg26-1, is also represented in the Hieter collection, albeit in a slightly different genetic background. Why it was not identified in the Hieter collection screen is unclear. For urea, DMSO, and TMAO rescue, the colonies arising on YPD after transfer from liquid stocks were pinned in quadruplicate for each of four conditions: YPD at RT and 37°C, and YPD with the selected concentration of experimental small molecule (10 mM urea, 5% DMSO, or 0.5 M TMAO) at RT and 37°C. After 3 days at the indicated temperature, plates were screened visually to compare colony sizes.

Sequence alignments

Multiple protein sequence alignments were performed using the COBALT tool at the NCBI server (https://www.ncbi.nlm.nih.gov/tools/cobalt/) or, for sequences of yeast species not available via NCBI, using the “Fungal Alignment” function at the Yeast Genome Database (153). In some cases, sequences obtained via the Yeast Genome Database were aligned with other sequences via COBALT.

DNA sequencing

Genomic DNA from strains pga1-ts (H06474), “cdc20-1” (the strain found in the well of the Boone TS collection where the cdc20-1 was supposed to be), cdc20-2, cdc20-3, stu1-5 (H06573), the strain with WT
“recoded” URA3 (H06700), or the *ura3(R235A)* strain (H06701) was isolated as described previously and used as template in a Phusion (New England Biolabs, Ipswich, MA) or Taq DNA Polymerase ((New England Biolabs, Ipswich, MA) PCR reaction with primers flanking to or within the coding sequences, according to the polymerase manufacturer’s instructions. These were: 5’PGA1fw (5’ TGTTGACCCTTGGATTTGC), 3’PGA1re (5’ CCAAGGGGCTCAGGCTTC), cdc20_fwd (5’ ATCAGGCCTAGGACTAATCTGGC), cdc20_rev (5’ CTTAACATGTGAGGTTATATCTGGATG), STU1midre (5’GATAACTCATCAGTCAAGTGG), STU1-Nmidfw (5’GAATTGTTGGACACCGTTC), STU1-Nmidre (5’CGCTGGGTCTTTACTGCTC), 5’STU1fw (5’GCTGGCAATATAAACACAAGT), 5’URA3fw (5’GGCTGTGGTTCAGGGTCCAT), 3’URA3re (5’GTCATTAGAAATCTACGC). Following treatment with alkaline phosphatase (#EF0651) and Exonuclease I (#EN0581, Thermo Scientific Fermentas, Waltham, MA), the purified PCR product was directly sequenced at the sequencing facility of the Barbara Davis Center for Childhood Obesity or Quintara Bioscience, Inc. Additional primers used for sequencing were: midPGA1fw (5’ GTCTTGTCTGACTCTG), midPGA1re (5’ CTGACTTGGCTCTCC), midURA3re (5’TCATTCTGATGCTCC), midURA3fw (5’AAATTGCAGTACTCT).

Fluorescence microscopy

For each sample, a 1-mL aliquot of a 5-mL YPD cultures was pelleted in a microcentrifuge and resuspended in 200 µL of water, then 3 µL was transferred to a 1-mm-thick 1% agarose pad and after the liquid was absorbed, a #1.5 18 mm x 18 mm coverslip was placed on top. Images were captured using an EVOSfl all-in-one microscope (Advanced Microscopy Group, Mill Creek, Washington) using a 60X objective and RFP and GFP LED/filter cubes, as described previously (154). Cytoplasmic fluorescence was quantified using a 6-pixel-diameter circular region, as described previously (155).

DATA AVAILABILITY

All data are contained within the manuscript.

SUPPORTING INFORMATION

This article contains supporting information.
ACKNOWLEDGEMENTS

We thank J.P. Darling-Munson for technical assistance with strain construction, Yoichi Noda (University of Tokyo, Bunkyō-ku) for pga1 TS strains, Onn Brandman (Stanford University) for the Hsf1 reporter strain, Mark Johnston (University of Colorado Anschutz Medical Campus) for access to the Hieter TS and deletion strain collections and the ROTOR machine, Jay Hesselberth (University of Colorado Anschutz Medical Campus) for access to the Boone TS collection, Bob Sclafani (University of Colorado Anschutz Medical Campus) for the S288C, erg6Δ and mcm3-1 strains, Michael Yeager (University of Colorado Anschutz Medical Campus) for use of the CellASIC temperature monitor, Eric Ross (Colorado State University) for pointing out the Hsp104-independence of [ISP] curing by GdnHCl, Joe Nickels (Drexel University College of Medicine) for pointing out the suppression of the TS phenotype of the erg26-1 mutant, Peter Kaiser (University of California Irvine School of Medicine) for locating and sending the pLT11 and pTW456 plasmids, Stan Fields (University of Washington) for pACT1-lacZ plasmid, and Galit Lahav (Harvard Medical School) for the p53 plasmid p663.

FUNDING AND ADDITIONAL INFORMATION

This work was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award R00GM086603 and by a Rare Disease Competition Technology Prize from the BeHEARD Initiative of the Rare Genomics Institute. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest with the contents of this article.

FIGURE LEGENDS

Figure 1. Chemical rescue by GdnHCl of Arg-mutant ornithine transcarbamylase in living yeast cells. (A) Superimposition of crystal structures of human and E. coli ornithine transcarbamylase (OTC). The zoomed-in image shows the locations of the side chains of Arg57 from the bacterial enzyme (blue) and Arg92 from
the human enzyme. (B) Sequence alignment of portions of the OTC homologs from E. coli (EcOTC), human (HsOTC), and S. cerevisiae (ScOTC). Bold residues are identical. Blue highlights the leader sequence that directs import of HsOTC into mitochondria. Pink highlights the position of Arg57 in EcOTC, Arg92 in HsOTC, and Arg69 in ScOTC. (C) Dilution series of cells of the indicated genotypes on rich (YPD) or synthetic medium lacking arginine (“-arg”) and thus selective for OTC function. Where indicated, ornithine (“+orn”) and/or GdnHCl were added to final concentration of 100 µg/mL or 3 mM, respectively. Selective plates were incubated at 30˚C for the indicated number of days (“3 d” or “9 d”) prior to imaging; YPD plate was incubated for 3 days. (D) A lawn of cells of the indicated genotype was plated to media selective for OTC function and a sterile paper disc soaked with GdnHCl or urea at the indicated concentrations was placed on the lawn. The plate was then imaged after 6 days incubation at 30˚C. Strains were: “ARG3”, ; “WT recoded”, H06700; “ura3(R253A)”, H06701; “ura3Δ”, BY4741.

Figure 2. In vivo chemical rescue by GdnHCl of Ura3(R235A). (A) Dilution series of cells of the indicated genotypes on rich (YPD) or synthetic medium lacking uracil and thus selective for Ura3 function. Plates were incubated at 30˚C for the indicated number of days prior to imaging. Strains were: “WT”, S288C; “WT recoded”, H06700; “ura3(R253A)”, H06701; “ura3Δ”, BY4741. (B) As in (A) but on medium with 20 µg/mL uracil and 400 µg/mL FOA, which is converted by Ura3 to a toxic product that inhibits colony growth.

Figure 3. No evidence of chemical rescue of Asn1(R344A) by GdnHCl in living yeast cells. (A) Sequence alignment of a region of asparagine synthase from S. cerevisiae (“ScAsn1”), E. coli (“EcAsnB”), and H. sapiens (“HsASNS”). The Arg residue corresponding to EcAsnB Arg 325 is highlighted in red. (B) Dilution series of cells of the indicated genotypes on complete (but lacking uracil) or synthetic medium lacking asparagine (and uracil) and thus selective for Asn1 function (and the URA3-marked plasmid). Plates were incubated at 30˚C for 6 days prior to imaging. Strains were: “asn1Δasn2Δ”, H06544 carrying empty vector plasmid pRS426; “ASN1”, H06544 carrying plasmid YCpU-Pgal-ASN1; “asn1(R344A)”, H06544 carrying plasmid YCpU-Pgal-asn1(R344A). (C) Overlay of crystal structures of EcAsnB (PDB 1CT9) and HsASNS (PDB 6GQ3) showing the locations of EcAsnB Arg 325 and HsASNS Arg 339 and two bound substrates, glutamine (“Gln”) and AMP.
Figure 4. GdnHCl fails to rescue p53(R249S). (A) Crystal structures of the DNA-binding domain of WT p53 (PDB 2AC0) and p53(R249S H168R) (PDB 3D0A) showing the locations of relevant side chains and, in particular, the guanidino group ("Gdm") occupying the same position in both proteins. Glu 171 is shown because in both cases it forms a salt bridge with the guanidino group. (B) Schematic of yeast reporter system. (C) Dilution series of cells of the reporter strain (Rby33) carrying HIS3-marked plasmids ("WT", pMAM44; "R249S", pMAM71; "R249S H168A", pMAM70; "R249S H168A T123A", pMAM113) were plated on synthetic medium lacking uracil ("-ura") or containing 50 µg/mL uracil and 0.1% FOA and incubated at 30˚C prior to imaging.

Figure 5. Chemical rescue by GdnHCl of Arg-mutant actin. (A) Cells from a collection of TS mutants were pinned using a screening robot to rich (YPD) plates with or without 3 mM GdnHCl and incubated at 37˚C prior to imaging. Circles are color-coded with text below to indicate specific mutants. Dashed circles indicate failure to form a colony. (B) As in (A) but imaging a portion of a different plate, and using squares to indicate specific mutants. (C) Crystal structure of yeast Act1 (PDB 1YAG) showing the location of Arg 312 and nearby residues, and other Arg residues substituted in other TS mutants present in the collection we screened. Inset shows the distances (all 2.9 Å) between atoms in the guanidino group and nearby amino acids, representing presumed intramolecular contacts. (D) Dilution series of WT (BY4741) or act1-105 cells on rich (YPD) medium at the indicated temperatures ("RT", room temperature) with or without GdnHCl. (E) 100-µL cultures of act1-105 cells in rich (YPD) medium with the indicated additives (three cultures for each condition) were incubated with constant shaking at 37˚C in a 96-well plate and the absorbance at 600 nm was measured every 5 min.

Figure 6. GdnHCl rescue of a Lys-mutant allele of Pga1. (A) Dilution series on rich (YPD) medium with or without 3 mM GdnHCl at the indicated temperatures for strains carrying the indicated alleles of PGA1. Strains were H06474, KSY182, and AKY19. (B) Sequence alignment of Pga1 sequences from various fungal species, obtained from the Yeast Genome Database and NCBI server and aligned using COBALT. Residues identical in all WT sequences are in bold. Substitutions in TS mutant ScPga1 alleles are
indicated above, those in Pga1-ts are highlighted by shading. Pink, K98N substitution in Pga1-ts at a position where Arg is found in other species. Sc, *S. cerevisiae*; Sp, *S. paradoxus*; Sk, *S. kudriavzevii*; Lk, *Lachancea kluyveri*; Nc, *Naumovozyma castelli*; Ag, *Ashbya gossypii*. (C) As in (A) but with, where indicated, 0.375 mM of GdnHCl (“guanidine”) or derivatives thereof. Where multiple drugs were added, the concentration of each was 0.375 mM.

Figure 7. Rescue of erg26 mutant by GdnHCl and sensitivity of WT cells and other erg mutants points to GdnHCl inhibition of ergosterol biosynthesis. (A) TS mutants rescued by GdnHCl identified by screening large collections. Dilution series of cells of the indicated genotypes on rich medium (YPD) with or without GdnHCl at the indicated temperatures (“RT”, room temperature). The pga1-ts cells were grown on a different part of the same plate as the others; the image was cropped and moved to preserve space. Strains were: “WT”, BY4741; “act1-105”, CBY07857; “orc2-1”, CBY08224; “stu1-5”, CBY08183; “stu1-6”, CBY09448; “hsp10-ts”, CBY10708; “erg26-1”, CBY11254; “mcm3-1”, RSY723; “pga1-ts”, H06474. (B) Schematic of the budding yeast ergosterol biosynthesis pathway with single reactions indicated as arrows, and labels for enzymes represented by mutants whose response to GdnHCl we tested, or, in italics, mutants known to suppress the TS defect of erg26-1 mutants. Red asterisks indicate steps at which defects generate toxic intermediates. (C) As in (A) but with the strains of the indicated genotypes and, where indicated, rich medium was supplemented with additional nutrients for which these strains are auxotrophic (uracil, histidine, leucine and methionine). Strains were: “WT”, BY4741; “erg10-1”, CBY09883; “erg6Δ”, H06534; “erg8-1”, CBY08334; “erg11-td”, CBY04662.

Figure 8. GdnHCl induces proteostatic stress and synergizes with proteasomal inhibition to rescue orc2-1. (A) Dilution series of BY4741 (“WT”) and CBY08187 (“pre1-1”) plated on rich (YPD) medium with or without 3 mM GdnHCl and incubated at room temperature or 37˚C. (B) Cells from liquid rich (YPD) cultures of the indicated strains (“WT”, BY4741; “pre1-1”, CBY08187; “orc2-1”, CBY08224) were plated to medium containing Pro as the nitrogen source and 0.003% SDS to allow uptake of MG132 (156). Immediately after plating, paper discs were placed on the plate surface and 10 µL of the indicated chemicals were spotted onto the discs: 100% DMSO, 40 mM MG132 in DMSO, or 5M GdnHCl in water. Plates were then incubated
at 37°C prior to imaging. The square image at right is a close-up of the MG132 disc from an independent experiment with no GdnHCl-soaked disc on the plate, ruling out any contribution from GdnHCl to the observed rescue. (C) Induction of the Hsf1-dependent cytosolic stress response measured using a strain (YJW1741) expressing RFP (mKate) from the constitutive TEF2 promoter and GFP from an artificial Hsf1-inducible promoter containing four heat shock elements (4xHSE). Cells (23 per sample) were imaged following overnight growth at RT with or without 3 mM GdnHCl. Error bars, mean ± SEM. “A.U.”, arbitrary units.

Figure 9. Chemical rescue of TS mutants by DMSO. Dilution series of cells of the indicated genotypes on rich medium (YPD) with or without 5% DMSO incubated at the indicated temperatures (“RT”, room temperature). Strains were: “WT”, BY4741; “kar2-159”, CBY07833; “cdc23-4”, CBY06436; “nop4-3”, CBY10671; “lcb1-10”, CBY10175; “lcb1-2”, CBY10161; “lcb1-5”, CBY10156; “arp3-G15C”, CBY08235; “arp2-14”, CBY04958; “stu1-5”, CBY08183; “stu1-6”, CBY10325; “smc3-1”, CBY08012; “tub4ΔDSYLD”, CBY11146.

Figure 10. Chemical rescue of TS mutants by TMAO. (A) Dilution series of cells of the indicated genotypes on rich medium (YPD) with or without 0.5 M TMAO incubated at the indicated temperatures (“RT”, room temperature). Strains were: “WT”, BY4741; “dam1-1”, CBY07974; “dam1-9”, CBY07966; “duo1-2”, CBY07958; “pkc1-1”, CBY09957; “pkc1-2”, CBY09962; “pck1-3”, CBY09972; “pkc1-4”, CBY09967. (B) As in (A) but with different mutants and 1 M sorbitol instead of TMAO. Strains were: “WT”, BY4741; “cdc10-1”, CBY06417; “cdc10-2”, CBY06420; “cdc12-1”, CBY05110; “duo1-2”, CBY07958; “dam1-1”, CBY07974; “dam1-9”, CBY07966; “pkc1-1”, CBY09957. (C) As in (A) but with different mutants, 0.5 M TMAO, 3 mM GdnHCl and/or 5% DMSO, and all plates were incubated at 37°C. Strains were: “WT”, BY4741; “cdc10-2”, CBY06420; “arp3-G15C”, CBY08235; “kar2-159”, CBY07833; “smc3-1”, CBY08012; “lcb1-5”, CBY10156; “tub4ΔDSYLD”, CBY11146. (D) BY4741 was streaked on rich (YPD) medium with or without 600 mM urea or 300 mM TMAO and incubated at 37°C for 4 days prior to imaging.
REFERENCES

1. Brininger, C., Spradlin, S., Cobani, L., and Evilia, C. (2018) The more adaptive to change, the more likely you are to survive: Protein adaptation in extremophiles. *Semin. Cell Dev. Biol.* **84**, 158–169

2. Lopez, M. S., Kliegman, J. I., and Shokat, K. M. (2014) The logic and design of analog-sensitive kinases and their small molecule inhibitors. *Methods Enzymol.* **548**, 189–213

3. Marletta, M. A. (2006) Raising Enzymes from the Dead and the Secrets They Can Tell. *ACS Chem. Biol.* **1**, 73–74

4. Peracchi, A. (2008) How (and Why) to Revive a Dead Enzyme: The Power of Chemical Rescue. *Curr. Chem. Biol.* **2**, 32–49

5. Bishop, A. C., and Chen, V. L. (2009) Brought to life: targeted activation of enzyme function with small molecules. *J. Chem. Biol.* **2**, 1–9

6. Lowry, W. E., Huang, J., Ma, Y.-C., Ali, S., Wang, D., Williams, D. M., Okada, M., Cole, P. A., and Huang, X.-Y. (2002) Csk, a critical link of g protein signals to actin cytoskeletal reorganization. *Dev. Cell* **2**, 733–744

7. Williams, D. M., Wang, D., and Cole, P. A. (2000) Chemical rescue of a mutant protein-tyrosine kinase. *J. Biol. Chem.* **275**, 38127–38130

8. Qiao, Y., Molina, H., Pandey, A., Zhang, J., and Cole, P. A. (2006) Chemical rescue of a mutant enzyme in living cells. *Science* **311**, 1293–1297

9. Jung, G., and Masison, D. C. (2001) Guanidine hydrochloride inhibits Hsp104 activity in vivo: a possible explanation for its effect in curing yeast prions. *Curr. Microbiol.* **43**, 7–10

10. Tuite, M. F., Mundy, C. R., and Cox, B. S. (1981) Agents that cause a high frequency of genetic change from [psi+] to [psi-] in *Saccharomyces cerevisiae*. *Genetics* **98**, 691–711

11. Ferreira, P. C., Ness, F., Edwards, S. R., Cox, B. S., and Tuite, M. F. (2001) The elimination of the yeast [PSI+] prion by guanidine hydrochloride is the result of Hsp104 inactivation. *Mol. Microbiol.* **40**, 1357–1369

12. Grimminger, V., Richter, K., Imhof, A., Buchner, J., and Walter, S. (2004) The Prion Curing Agent Guanidinium Chloride Specifically Inhibits ATP Hydrolysis by Hsp104. *J. Biol. Chem.* **279**, 7378–7383

13. Volkov, K. V., Aksenova, A. Y., Soom, M. J., Osipov, K. V., Svitin, A. V., Kurischko, C., Shkundina, I. S., Ter-Avanesyan, M. D., Inge-Vechtomov, S. G., and Mironova, L. N. (2002) Novel non-Mendelian determinant involved in the control of translation accuracy in *Saccharomyces cerevisiae*. *Genetics* **160**, 25–36

14. Loddo, B., Ferrari, W., Brotzu, G., and Spanedda, A. (1962) In vitro inhibition of infectivity of polio viruses by guanidine. *Nature* **193**, 97–98

15. Righetsl, W. A., Dice, J. R., McALPINE, R. J., Timm, E. A., McLEAN, I. W., Dixon, G. J., and Schabel, F. M. (1961) Antiviral effect of guanidine. *Science* **134**, 558–559

16. Pfister, T., and Wimmer, E. (1999) Characterization of the nucleoside triphosphatase activity of poliovirus protein 2C reveals a mechanism by which guanidine inhibits poliovirus replication. *J. Biol. Chem.* **274**, 6992–7001

17. Kalia, J., and Swartz, K. J. (2011) Elucidating the molecular basis of action of a classic drug: guanidine compounds as inhibitors of voltage-gated potassium channels. *Mol. Pharmacol.* **80**, 1085–1095

18. Oh, S. J., Kim, D. S., Head, T. C., and Claussen, G. C. (1997) Low-dose guanidine and pyridostigmine: relatively safe and effective long-term symptomatic therapy in Lambert-Eaton myasthenic syndrome. *Muscle Nerve* **20**, 1146–1152

19. Johnson, C. R., Steingesser, M. G., Weems, A. D., Khan, A., Gladfelter, A., Bertin, A., and McMurray, M. A. (2020) Guanidine hydrochloride reactivates an ancient septin hetero-oligomer assembly pathway in budding yeast. *eLife* **9**, e54355

20. Perona, J. J., Hedstrom, L., Wagner, R. L., Rutter, W. J., Craik, C. S., and Fletterick, R. J. (1994) Exogenous acetate reconstitutes the enzymatic activity of trypsin Asp189Ser. *Biochemistry* **33**, 3252–3259
21. Gallego-Villar, L., Hannibal, L., Häberle, J., Thöny, B., Ben-Omran, T., Nasrallah, G., Al-Dewik, N., Kruger, W., and Blom, H. (2017) Cysteamine revisited: repair of arginine to cysteine mutations. *J. Inherit. Metab. Dis.* 40, 555–567

22. Makhadzige, G. I., and Privalov, P. L. (1992) Protein interactions with urea and guanidinium chloride. A calorimetric study. *J. Mol. Biol.* 226, 491–505

23. Arakawa, T., Kita, Y., and Timasheff, S. N. (2007) Protein precipitation and denaturation by dimethyl sulfoxide. *Biophys. Chem.* 131, 62–70

24. Yancey, P. H., and Somero, G. N. (1979) Counteraction of urea destabilization of protein structure by methylamine osmoregulatory compounds of elasmobranch fishes. *Biochem. J.* 183, 317–323

25. Yancey, P. H., Rhea, M. D., Kemp, K. M., and Bailey, D. M. (2004) Trimethylamine oxide, betaine and other osmolytes in deep-sea animals: depth trends and effects on enzymes under hydrostatic pressure. *Cell. Mol. Biol. Noisy--Gd. Fr.* 50, 371–376

26. McCrindle, S. L., Kappler, U., and McEwan, A. G. (2005) Microbial dimethylsulfoxide and trimethylamine-N-oxide respiration. *Adv. Microb. Physiol.* 50, 147–198

27. Singh, L. R., Chen, X., Kožich, V., and Kruger, W. D. (2007) Chemical chaperone rescue of mutant human cystathionine β-synthase. *Mol. Genet. Metab.* 91, 335–342

28. Bandyopadhyay, A., Saxena, K., Kasturia, N., Dalal, V., Bhatt, N., Rajkumar, A., Maity, S., Sengupta, S., and Chakraborty, K. (2012) Chemical chaperones assist intracellular folding to buffer mutational variations. *Nat. Chem. Biol.* 8, 238–245

29. Brown, C. R., Hong-Brown, L. Q., and Welch, W. J. (1997) Correcting temperature-sensitive protein folding defects. *J. Clin. Invest.* 99, 1432–1444

30. Bandyopadhyay, A., Saxena, K., Kasturia, N., Dalal, V., Bhatt, N., Rajkumar, A., Maity, S., Sengupta, S., and Chakraborty, K. (2012) Chemical chaperones assist intracellular folding to buffer mutational variations. *Nat. Chem. Biol.* 8, 238–245

31. De Los Rios, P., and Goloubinoff, P. (2012) Protein folding: Chaperoning protein evolution. *Nat. Chem. Biol.* 8, 226–228

32. Breaker, R. R., Atilho, R. M., Malkowski, S. N., Nelson, J. W., and Sherlock, M. E. (2017) The Biology of Free Guanidine As Revealed by Riboswitches. *Biochemistry.* 56, 345–347

33. Dugdale, M. L., Vance, M. L., Wheatley, R. W., Driedger, M. R., Nibber, A., Tran, A., and Huber, R. E. (2010) Importance of Arg-599 of β-galactosidase (Escherichia coli) as an anchor for the open conformations of Phe-601 and the active-site loop. *Biochem. Cell Biol. Biochim. Biol. Cell.* 88, 969–979

34. Ullmann, A., Jacob, F., and Monod, J. (1967) Characterization by in vitro complementation of a peptide corresponding to an operator-proximal segment of the beta-galactosidase structural gene of Escherichia coli. *J. Mol. Biol.* 24, 339–343

35. Jacob, F., and Monod, J. (1961) Genetic regulatory mechanisms in the synthesis of proteins. *J. Mol. Biol.* 3, 318–356

36. Schmidt, B. F., Adams, R. M., Requadt, C., Power, S., and Mainzer, S. E. (1989) Expression and nucleotide sequence of the Lactobacillus bulgaricus beta-galactosidase gene cloned in Escherichia coli. *J. Bacteriol.* 171, 625–635

37. Hall, B. G. (1976) Methyl galactosidase activity: an alternative evolutionary destination for the ebga0 gene. *J. Bacteriol.* 126, 536–538

38. Rynkiewicz, M. J., and Seaton, B. A. (1996) Chemical rescue by guanidine derivatives of an arginine-substituted site-directed mutant of Escherichia coli ornithine transcarbamylase. *Biochemistry.* 35, 16174–16179

39. Yamaguchi, S., Brailey, L. L., Morizono, H., Bale, A. E., and Tuchman, M. (2006) Mutations and polymorphisms in the human ornithine transcarbamylase (OTC) gene. *Hum. Mutat.* 27, 626–632

40. Crabbeel, M., Messenguy, F., Lacroute, F., and Glansdorff, N. (1981) Cloning arg3, the gene for ornithine carbamoyltransferase from Saccharomyces cerevisiae: expression in Escherichia coli requires secondary mutations; production of plasmid beta-lactamase in yeast. *Proc. Natl. Acad. Sci. U. S. A.* 78, 5026–5030
41. Cheng, M. Y., Pollock, R. A., Hendrick, J. P., and Horwich, A. L. (1987) Import and processing of human ornithine transcarbamoylase precursor by mitochondria from Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U. S. A. 84, 4063–4067
42. Hartman, D. J., Hoogenraad, N. J., Condron, R., and Høj, P. B. (1992) Identification of a mammalian 10-kDa heat shock protein, a mitochondrial chaperonin 10 homologue essential for assisted folding of trimeric ornithine transcarbamoylase in vitro. Proc. Natl. Acad. Sci. U. S. A. 89, 3394–3398
43. Kim, S., Schilke, B., Craig, E. A., and Horwich, A. L. (1998) Folding in vivo of a newly translated yeast cytosolic enzyme is mediated by the SSA class of cytosolic yeast Hsp70 proteins. Proc. Natl. Acad. Sci. 95, 12860–12865
44. Radzicka, A., and Wolfenden, R. (1995) A proficient enzyme. Science. 267, 90–93
45. Miller, B. G., Hassell, A. M., Wolfenden, R., Milburn, M. V., and Short, S. A. (2000) Anatomy of a proficient enzyme: the structure of orotidine 5’-monophosphate decarboxylase in the presence and absence of a potential transition state analog. Proc. Natl. Acad. Sci. U. S. A. 97, 2011–2016
46. Barnett, S. A., Amyes, T. L., Wood, B. M., Gerlt, J. A., and Richard, J. P. (2010) Activation of R235A mutant orotidine 5’-monophosphate decarboxylase by the guanidinium cation: effective molarity of the cationic side chain of Arg-235. Biochemistry. 49, 824–826
47. Boeke, J. D., LaCroute, F., and Fink, G. R. (1984) A positive selection for mutants lacking orotidine-5’-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol. Gen. Genet. 197, 345–346
48. Gottschling, D. E., Aparicio, O. M., Billington, B. L., and Zakian, V. A. (1990) Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell. 63, 751–762
49. Boehlein, S. K., Walworth, E. S., Richards, N. G., and Schuster, S. M. (1997) Mutagenesis and chemical rescue indicate residues involved in beta-aspartyl-AMP formation by Escherichia coli asparagine synthetase B. J. Biol. Chem. 272, 12384–12392
50. Sun, J., McGillivray, A. J., Pinner, J., Yan, Z., Liu, F., Bratkovic, D., Thompson, E., Wei, X., Jiang, H., Asan, null, and Chopra, M. (2017) Diaphragmatic Eventration in Sisters with Asparagine Synthetase Deficiency: A Novel Homozygous ASNS Mutation and Expanded Phenotype. JIMD Rep. 34, 1–9
51. Dang, V. D., Valens, M., Bolotin-Fukuhara, M., and Daignan-Fornier, B. (1996) Cloning of the ASN1 and ASN2 genes encoding asparagine synthetases in Saccharomyces cerevisiae: differential regulation by the CCAAT-box-binding factor. Mol. Microbiol. 22, 681–692
52. Noree, C., Sirinonthanawech, N., and Wilhelm, J. E. (2019) Saccharomyces cerevisiae ASN1 and ASN2 are asparagine synthetase paralogs that have diverged in their ability to polymerize in response to nutrient stress. Sci. Rep. 9, 278
53. Larsen, T. M., Boehlein, S. K., Schuster, S. M., Richards, N. G., Thoden, J. B., Holden, H. M., and Rayment, I. (1999) Three-dimensional structure of Escherichia coli asparagine synthetase B: a short journey from substrate to product. Biochemistry. 38, 16146–16157
54. Zhu, W., Radadiya, A., Bisson, C., Wenzel, S., Nordin, B. E., Martínez-Márquez, F., Imasaki, T., Sedelnikova, S. E., Coricello, A., Baumann, P., Berry, A. H., Nomanbhoy, T. K., Kozarich, J. W., Jin, Y., Rice, D. W., Takagi, Y., and Richards, N. G. J. (2019) High-resolution crystal structure of human asparagine synthetase enables analysis of inhibitor binding and selectivity. Commun. Biol. 2, 345
55. Kandoth, C., McLellan, M. D., Vandin, F., Ye, K., Niu, B., Lu, C., Xie, M., Zhang, Q., McMichael, J. F., Wyczalkowski, M. A., Leiserson, M. D. M., Miller, C. A., Welch, J. S., Walter, M. J., Wendl, M. C., Ley, T. J., Wilson, R. K., Raphael, B. J., and Ding, L. (2013) Mutational landscape and significance across 12 major cancer types. Nature. 502, 333–339
56. IARC p53 Database (p53.iarc.fr)
57. Loh, S. N. (2020) Follow the Mutations: Toward Class-Specific, Small-Molecule Reactivation of p53. Biomolecules. 10.3390/biom10020303
58. Brachmann, R. K., Yu, K., Eby, Y., Pavletich, N. P., and Boeke, J. D. (1998) Genetic selection of intragenic suppressor mutations that reverse the effect of common p53 cancer mutations. EMBO J. 17, 1847–1859
59. Joerger, A. C., Ang, H. C., Veprintsev, D. B., Blair, C. M., and Fersht, A. R. (2005) Structures of p53 cancer mutants and mechanism of rescue by second-site suppressor mutations. J. Biol. Chem. 280, 16030–16037

60. Wertman, K. F., Drubin, D. G., and Botstein, D. (1992) Systematic mutational analysis of the yeast ACT1 gene. Genetics. 132, 337–350

61. Reza, N., and Owens, A. T. (2020) Advances in the Genetics and Genomics of Heart Failure. Curr. Cardiol. Rep. 22, 132

62. Wong, W. W., Doyle, T. C., Cheung, P., Olson, T. M., and Reisler, E. (2001) Functional studies of yeast actin mutants corresponding to human cardiomyopathy mutations. J. Muscle Res. Cell Motil. 22, 665–674

63. Vang, S., Corydon, T. J., Børglum, A. D., Scott, M. D., Frydman, J., Mogensen, J., Gregersen, N., and Bross, P. (2005) Actin mutations in hypertrophic and dilated cardiomyopathy cause inefficient protein folding and perturbed filament formation. FEBS J. 272, 2037–2049

64. Sato, K., Noda, Y., and Yoda, K. (2007) Pga1 is an essential component of Glycosylphosphatidylinositol-mannosyltransferase II of Saccharomyces cerevisiae. Mol. Biol. Cell. 18, 3472–3485

65. Larson, H. N., Zhou, J., Chen, Z., Stamler, J. S., Weiner, H., and Hurley, T. D. (2007) Structural and functional consequences of coenzyme binding to the inactive asian variant of mitochondrial aldehyde dehydrogenase: roles of residues 475 and 487. J. Biol. Chem. 282, 12940–12950

66. Baudry, K., Swain, E., Rahier, A., Germann, M., Batta, A., Rondet, S., Mandala, S., Henry, K., Tint, G. S., Edlind, T., Kurtz, M., and Nickels, J. T. (2001) The effect of the erg26-1 mutation on the regulation of lipid metabolism in Saccharomyces cerevisiae. J. Biol. Chem. 276, 12702–12711

67. Germann, M., Gallo, C., Donahue, T., Shirzadi, R., Stukey, J., Lang, S., Ruckenstuhl, C., Oliaro-Bosso, S., McDonough, V., Turnowsky, F., Balliano, G., and Nickels, J. T. (2005) Characterizing sterol defect suppressors uncovers a novel transcriptional signaling pathway regulating zymosterol biosynthesis. J. Biol. Chem. 280, 35904–35913

68. Fegueur, M., Richard, L., Charles, A. D., and Karst, F. (1991) Isolation and primary structure of the ERG9 gene of Saccharomyces cerevisiae encoding squalene synthetase. Curr. Genet. 20, 365–372

69. Jennings, S. M., Tsay, Y. H., Fisch, T. M., and Robinson, G. W. (1991) Molecular cloning and characterization of the yeast gene for squalene synthetase. Proc. Natl. Acad. Sci. U. S. A. 88, 6038–6042

70. Anderson, M. S., Yarger, J. G., Burck, C. L., and Poulter, C. D. (1989) Farnesyl diphosphate synthetase. Molecular cloning, sequence, and expression of an essential gene from Saccharomyces cerevisiae. J. Biol. Chem. 264, 19176–19184

71. Emter, R., Heese-Peck, A., and Kralli, A. (2002) ERG6 and PDR5 regulate small lipophilic drug accumulation in yeast cells via distinct mechanisms. FEBS Lett. 521, 57–61

72. Mukhopadhyay, K., Kohli, A., and Prasad, R. (2002) Drug susceptibilities of yeast cells are affected by membrane lipid composition. Antimicrob. Agents Chemother. 46, 3695–3705

73. Gaber, R. F., Copple, D. M., Kennedy, B. K., Vidal, M., and Bard, M. (1989) The yeast gene ERG6 is required for normal membrane function but is not essential for biosynthesis of the cell-cycle-sparking sterol. Mol. Cell. Biol. 9, 3447–3456

74. Shimada, K., Pasero, P., and Gasser, S. M. (2002) ORC and the intra-S-phase checkpoint: a threshold regulates Rad53p activation in S phase. Genes Dev. 16, 3236–3252

75. Costanzo, M., VanderSluis, B., Koch, E. N., Baryshnikova, A., Pons, C., Tan, G., Wang, W., Usaj, M., Hanchard, J., Lee, S. D., Pelechano, V., Styles, E. B., Billmann, M., van Leeuwen, J., van Dyk, N., Lin, Z.-Y., Kuzmin, E., Nelson, J., Piotrowski, J. S., Srikumar, T., Bahr, S., Chen, Y., Deshpande, R., Kurat, C. F., Li, S. C., Li, Z., Usaj, M. M., Okada, H., Pascoe, N., San Luis, B.-J., Sharifpoor, S., Shuteriqi, E., Simpkins, S. W., Snider, J., Suresh, H. G., Tan, Y., Zhu, H., Malod-Dognin, N., Janjic, V., Przulj, N., Troyanskaya, O. G., Stagljar, I., Xia, T., Ohya, Y., Gingras, A.-C., Raught, B., Boutros, M., Steinmetz, L. M., Moore, C. L., Rosebrock, A. P., Caudy, A. A., Myers, C. L., Andrews,
B., and Boone, C. (2016) A global genetic interaction network maps a wiring diagram of cellular function. *Science.* 10.1126/science.aaf1420

76. Brew, C. T., and Huffaker, T. C. (2002) The yeast ubiquitin protease, Ubp3p, promotes protein stability. *Genetics.* 162, 1079–1089

77. Yin, H., You, L., Pasqualone, D., Kopski, K. M., and Huffaker, T. C. (2002) Stu1p is physically associated with beta-tubulin and is required for structural integrity of the mitotic spindle. *Mol. Biol. Cell.* 13, 1881–1892

78. Hilt, W., Enenkel, C., Gruhler, A., Singer, T., and Wolf, D. H. (1993) The PRE4 gene codes for a subunit of the yeast proteasome necessary for peptidylglutamyl-peptide-hydrolyzing activity. Mutations link the proteasome to stress- and ubiquitin-dependent proteolysis. *J. Biol. Chem.* 268, 3479–3486

79. Heinemeyer, W., Gruhler, A., Möhrle, V., Mahé, Y., and Wolf, D. H. (1993) PRE2, highly homologous to the human major histocompatibility complex-linked RING10 gene, codes for a yeast proteasome subunit necessary for chymotryptic activity and degradation of ubiquitinated proteins. *J. Biol. Chem.* 268, 5115–5120

80. Singh, L. R., Gupta, S., Honig, N. H., Kraus, J. P., and Kruger, W. D. (2010) Activation of mutant enzyme function in vivo by proteasome inhibitors and treatments that induce Hsp70. *PLoS Genet.* 6, e1000807

81. Hilt, W., Enenkel, C., Gruhler, A., Singer, T., and Wolf, D. H. (1993) The PRE4 gene codes for a subunit of the yeast proteasome necessary for peptidylglutamyl-peptide-hydrolyzing activity. Mutations link the proteasome to stress- and ubiquitin-dependent proteolysis. *J. Biol. Chem.* 268, 3479–3486

82. Brandman, O., Stewart-Ornstein, J., Wong, D., Larson, A., Williams, C. C., Li, G.-W., Zhou, S., King, D., Shen, P. S., Weibezahn, J., Dunn, J. G., Rouskin, S., Inada, T., Frost, A., and Weissman, J. S. (2012) A ribosome-bound quality control complex triggers degradation of nascent peptides and signals translation stress. *Cell.* 151, 1042–1054

83. Lei, M., Cheng, I. H., Roberts, L. A., McAlear, M. A., and Tye, B. K. (2002) Two mcm3 mutations affect different steps in the initiation of DNA replication. *J. Biol. Chem.* 277, 30824–30831

84. Yan, H., Gibson, S., and Tye, B. K. (1991) Mcm2 and Mcm3, two proteins important for ARS activity, are related in structure and function. *Genes Dev.* 5, 944–957

85. Höhfeld, J., and Hartl, F. U. (1994) Role of the chaperonin cofactor Hsp10 in protein folding and sorting in yeast mitochondria. *J. Cell Biol.* 126, 305–315

86. Dubaquié, Y., Looser, R., and Rospert, S. (1997) Significance of chaperonin 10-mediated inhibition of ATP hydrolysis by chaperonin 60. *Proc. Natl. Acad. Sci. U. S. A.* 94, 9011–9016

87. Kummer, E., Oguchi, Y., Seyffer, F., Bukau, B., and Mogk, A. (2013) Mechanism of Hsp104/ClpB inhibition by prion curing Guanidinium hydrochloride. *FEBS Lett.* 587, 810–817

88. Kawai, A., Nishikawa, S., Hirata, A., and Endo, T. (2001) Loss of the mitochondrial Hsp70 functions causes aggregation of mitochondria in yeast cells. *J. Cell Sci.* 114, 3565–3574

89. Lewandowska, A., Gierszewska, M., Marszalek, J., and Liberek, K. (2006) Hsp78 chaperone functions in restoration of mitochondrial network following heat stress. *Biochim. Biophys. Acta.* 1763, 141–151

90. Böttinger, L., Oeljeklaus, S., Guiard, B., Rospert, S., Warscheid, B., and Becker, T. (2015) Mitochondrial heat shock protein (Hsp) 70 and Hsp10 cooperate in the formation of Hsp60 complexes. *J. Biol. Chem.* 290, 11611–11622

91. Costanzo, M., VanderSluis, B., Koch, E. N., Baryshnikova, A., Pons, C., Tan, G., Wang, W., Usaj, M., Hanchard, J., Lee, S. D., Pelechano, V., Styles, E. B., Billmann, M., van Leeuwen, J., van Dyk, N., Lin, Z.-Y., Kuzmin, E., Nelson, J., Piotrowski, J. S., Srikumar, T., Bahr, S., Chen, Y., Deshpande, R., Kurat, C. F., Li, S. C., Li, Z., Usaj, M. M., Okada, H., Pascoe, N., San Luis, B.-J., Shariifpoor, S., Shuteriqi, E., Simpkins, S. W., Snider, J., Suresh, H. G., Tan, Y., Zhu, H., Malod-Dognin, N., Janjic, V., Przulj, N., Troyanskaya, O. G., Stagljar, I., Xia, T., Ohya, Y., Gingras, A.-C., Raught, B., Boutros, M., Steinmetz, L. M., Moore, C. L., Rosebrock, A. P., Caudy, A. A., Myers, C. L., Andrews,
B., and Boone, C. (2016) A global genetic interaction network maps a wiring diagram of cellular function. Science. 10.1126/science.aaf1420
92. Nishihama, R., Schreiter, J. H., Onishi, M., Vallen, E. A., Hanna, J., Moravec, K., Lippincott, M. F., Han, H., Lemmon, M. A., Pringle, J. R., and Bi, E. (2009) Role of Inn1 and its interactions with Hof1 and Cyk3 in promoting cleavage furrow and septum formation in S. cerevisiae. J. Cell Biol. 185, 995–1012
93. Sanchez-Diaz, A., Marchesi, V., Murray, S., Jones, R., Pereira, G., Edmondson, R., Allen, T., and Labib, K. (2008) Inn1 couples contraction of the actomyosin ring to membrane ingression during cytokinesis in budding yeast. Nat. Cell Biol. 10, 395–406
94. Feaver, W. J., Svejstrup, J. Q., Bardwell, L., Bardwell, A. J., Buratowski, S., Gulyas, K. D., Donahue, T. F., Friedberg, E. C., and Kornberg, R. D. (1993) Dual roles of a multiprotein complex from S. cerevisiae in transcription and DNA repair. Cell. 75, 1379–1387
95. Lee, Y. C., Min, S., Gim, B. S., and Kim, Y. J. (1997) A transcriptional mediator protein that is required for activation of many RNA polymerase II promoters and is conserved from yeast to humans. Mol. Cell. Biol. 17, 4622–4632
96. Vo, L. T., Minet, M., Schmitter, J. M., Lacroute, F., and Wyers, F. (2001) Mpe1, a zinc knuckle protein, is an essential component of yeast cleavage and polyadenylation factor required for the cleavage and polyadenylation of mRNA. Mol. Cell. Biol. 21, 8346–8356
97. Bhuyan, A. K. (2002) Protein stabilization by urea and guanidine hydrochloride. Biochemistry. 41, 13386–13394
98. Magasanik, B., and Kaiser, C. A. (2002) Nitrogen regulation in Saccharomyces cerevisiae. Gene. 290, 1–18
99. Pearson, T. W., Dawson, H. J., and Lackey, H. B. (1981) Natural occurring levels of dimethyl sulfoxide in selected fruits, vegetables, grains, and beverages. J. Agric. Food Chem. 29, 1089–1091
100. Lee, P. A., and Mora, S. J. D. (1999) Intracellular Dimethylsulfoxide (DMSO) in Unicellular Marine Algae: Speculations on Its Origin and Possible Biological Role. J. Phycol. 35, 8–18
101. Gurtovenko, A. A., and Anwar, J. (2007) Modulating the structure and properties of cell membranes: the molecular mechanism of action of dimethyl sulfoxide. J. Phys. Chem. B. 111, 10453–10460
102. Netman, R., Noro, M., O’Malley, B., and Anwar, J. (2006) Molecular basis for dimethylsulfoxide (DMSO) action on lipid membranes. J. Am. Chem. Soc. 128, 13982–13983
103. Gironi, B., Kahveci, Z., McGill, B., Lechner, B.-D., Pagliara, S., Metz, J., Morresi, A., Palombo, F., Sassi, P., and Petrov, P. G. (2020) Effect of DMSO on the Mechanical and Structural Properties of Model and Biological Membranes. Biophys. J. 119, 274–286
104. Rammler, D. H., and Zaffaroni, A. (1967) Biological implications of DMSO based on a review of its chemical properties. Ann. N. Y. Acad. Sci. 141, 13–23
105. Vogel, J. P., Misra, L. M., and Rose, M. D. (1990) Loss of BiP/GRP78 function blocks translocation of secretory proteins in yeast. J. Cell Biol. 110, 1885–1895
106. Momose, Y., Matsumoto, R., Maruyama, A., and Yamaoka, M. (2010) Comparative analysis of transcriptional responses to the cryoprotectants, dimethyl sulfoxide and trehalose, which confer tolerance to freeze-thaw stress in Saccharomyces cerevisiae. Cryobiology. 60, 245–261
107. Becker, J., Walter, W., Yan, W., and Craig, E. A. (1996) Functional interaction of cytosolic hsp70 and a DnaJ-related protein, Ydj1p, in protein translocation in vivo. Mol. Cell. Biol. 16, 4378–4386
108. Bued, R., Rinker-Schaffer, C., Pinto, W. J., Lester, R. L., and Dickson, R. C. (1991) Cloning and characterization of LCB1, a Saccharomyces gene required for biosynthesis of the long-chain base component of sphingolipids. J. Bacteriol. 173, 4325–4332
109. Murata, Y., Watanabe, T., Sato, M., Momose, Y., Nakahara, T., Oka, S., and Iwahashi, H. (2003) Dimethyl sulfoxide exposure facilitates phospholipid biosynthesis and cellular membrane proliferation in yeast cells. J. Biol. Chem. 278, 33185–33193
110. Friant, S., Meier, K. D., and Riezman, H. (2003) Increased ubiquitin-dependent degradation can replace the essential requirement for heat shock protein induction. EMBO J. 22, 3783–3791
111. Welch, M. D., Iwamatsu, A., and Mitchison, T. J. (1997) Actin polymerization is induced by Arp2/3 protein complex at the surface of Listeria monocytogenes. *Nature* **385**, 265–269

112. Winter, D., Podtelejnikov, A. V., Mann, M., and Li, R. (1997) The complex containing actin-related proteins Arp2 and Arp3 is required for the motility and integrity of yeast actin patches. *Curr. Biol. CB* **7**, 519–529

113. Martin, A. C., Xu, X.-P., Rouiller, I., Kaksonen, M., Sun, Y., Belmont, L., Volkmann, N., Hanein, D., Welch, M., and Drubin, D. G. (2005) Effects of Arp2 and Arp3 nucleotide-binding pocket mutations on Arp2/3 complex function. *J. Cell Biol.* **168**, 315–328

114. Raucher, D., and Sheetz, M. P. (1999) Membrane expansion increases endocytosis rate during mitosis. *J. Cell Biol.* **144**, 497–506

115. Zhang, L., Liu, N., Ma, X., and Jiang, L. (2013) The transcriptional control machinery as well as the cell wall integrity and its regulation are involved in the detoxification of the organic solvent dimethyl sulfoxide in Saccharomyces cerevisiae. *FEMS Yeast Res.* **13**, 200–218

116. Capella, M., Caballero, L. M., Pfander, B., Braun, S., and Jentsch, S. (2020) ESCRT recruitment by the inner nuclear membrane protein Heh1 is regulated by Hub1-mediated alternative splicing. *J. Cell Sci.* 10.1242/jcs.250688

117. Vogel, J., and Snyder, M. (2000) The carboxy terminus of Tub4p is required for gamma-tubulin function in budding yeast. *J. Cell Sci.* **113 Pt 21**, 3871–3882

118. Melloy, P. G., and Holloway, S. L. (2004) Changes in the localization of the Saccharomyces cerevisiae anaphase-promoting complex upon microtubule depolymerization and spindle checkpoint activation. *Genetics* **167**, 1079–1094

119. Tanaka, T., Fuchs, J., Loidl, J., and Nasmyth, K. (2000) Cohesin ensures bipolar attachment of microtubules to sister centromeres and resists their precocious separation. *Nat. Cell Biol.* **2**, 492–499

120. Ming Sun, S., Batté, A., Elmer, M., van der Horst, S. C., van Welsem, T., Bean, G., Ideker, T., van Leeuwen, F., and van Attikum, H. (2020) A genetic interaction map centered on cohesin reveals auxiliary factors involved in sister chromatid cohesion in *S. cerevisiae*. *J. Cell Sci.* 10.1242/jcs.237628

121. Keyes, B. E., and Burke, D. J. (2009) Irc15 Is a microtubule-associated protein that regulates microtubule dynamics in Saccharomyces cerevisiae. *Curr. Biol. CB* **19**, 472–478

122. Algaier, J., and Himes, R. H. (1988) The effects of dimethyl sulfoxide on the kinetics of tubulin assembly. *Biochim. Biophys. Acta BBA - Protein Struct. Mol. Enzymol.* **954**, 235–243

123. Himes, R. H., Burton, P. R., Kersey, R. N., and Pierson, G. B. (1976) Brain tubulin polymerization in the absence of “microtubule-associated proteins.” *Proc. Natl. Acad. Sci. U. S. A.* **73**, 4397–4399

124. Johnson, M. H., and Pickering, S. J. (1987) The effect of dimethylsulphoxide on the microtubular system of the mouse oocyte. *Dev. Camb. Biol.** Engl.* **100**, 313–324

125. Levin, D. E., and Bartlett-Heubusch, E. (1992) Mutants in the *S. cerevisiae* PKC1 gene display a cell cycle-specific osmotic stability defect. *J. Cell Biol.* **116**, 1221–1229

126. Huang, K. N., and Symington, L. S. (1994) Mutation of the gene encoding protein kinase C 1 stimulates mitotic recombination in Saccharomyces cerevisiae. *Mol. Cell. Biol.* **14**, 6039–6045

127. Cid, V. J., Adamiková, L., Sánchez, M., Molina, M., and Nombela, C. (2001) Cell cycle control of septin ring dynamics in the budding yeast. *Microbiology* **147**, 1437–1450

128. DeMarini, D. J., Adams, A. E., Fares, H., De Virgilio, C., Valle, G., Chuang, J. S., and Pringle, J. R. (1997) A septin-based hierarchy of proteins required for localized deposition of chitin in the Saccharomyces cerevisiae cell wall. *J. Cell Biol.* **139**, 75–93

129. Merlini, L., Bolognesi, A., Juanes, M. A., Vandermoere, F., Courtellemont, T., Pascolutti, R., Séveno, M., Barral, Y., and Piatti, S. (2015) Rho1- and Pkc1-dependent phosphorylation of the F-BAR protein Syp1 contributes to septin ring assembly. *Mol. Biol. Cell.* **26**, 3245–3262

130. Hartwell, L. H. (1971) Genetic control of the cell division cycle in yeast. IV. Genes controlling bud emergence and cytokinesis. *Exp. Cell Res.* **69**, 265–276
131. Westermann, S., Avila-Sakar, A., Wang, H.-W., Niederstrasser, H., Wong, J., Drubin, D. G., Nogales, E., and Barnes, G. (2005) Formation of a dynamic kinetochore-microtubule interface through assembly of the Dam1 ring complex. Mol. Cell. 17, 277–290

132. Hofmann, C., Cheeseman, I. M., Goode, B. L., McDonald, K. L., Barnes, G., and Drubin, D. G. (1998) Saccharomyces cerevisiae Duo1p and Dam1p, novel proteins involved in mitotic spindle function. J. Cell Biol. 143, 1029–1040

133. Gerson-Gurwitz, A., Movshovich, N., Avunie, R., Fridman, V., Moyal, K., Katz, B., Hoyt, M. A., and Gheber, L. (2009) Mid-anaphase arrest in S. cerevisiae cells eliminated for the function of Cin8 and dynein. Cell. Mol. Life Sci. CMLS 66, 301–313

134. Korolyev, E., Steinberg-Neifach, O., and Eshel, D. (2005) Mutations in the yeast kinesin-like Cin8p are alleviated by osmotic support. FEMS Microbiol. Lett. 244, 379–383

135. Persson, L. B., Ambati, V. S., and Brandman, O. (2020) Cellular Control of Viscosity Counters Changes in Temperature and Energy Availability. Cell. 183, 1572-1585.e16

136. Cooper, D. N., and Youssoufian, H. (1988) The CpG dinucleotide and human genetic disease. Hum. Genet. 78, 151–155

137. Sahni, N., Yi, S., Taipale, M., Fuxman Bass, J. I., Coulombe-Huntington, J., Yang, F., Peng, J., Weile, J., Karrras, G. I., Wang, Y., Kovács, I. Á., Kamburov, A., Krykbaeva, I., Lam, M. H., Tucker, G., Khurana, V., Sharma, A., Liu, Y.-Y., Yachie, N., Zhong, Q., Shen, Y., Palagi, A., San-Miguel, A., Fan, C., Balcha, D., Dricot, A., Jordan, D. M., Walsh, J. M., Shah, A. A., Yang, X., Stoyanova, A. K., Leighton, A., Calderwood, M. A., Jacob, Y., Cusick, M. E., Salehi-Ashtiani, K., Whitesell, L. J., Sunyaev, S., Berger, B., Barabási, A.-L., Charleux, B., Hill, D. E., Hao, T., Roth, F. P., Xia, Y., Walthour, A. J. M., Lindquist, S., and Vidal, M. (2015) Widespread macromolecular interaction perturbations in human genetic disorders. Cell. 161, 647–660

138. Mitchell, S. M., Milan, A. M., Mitchell, C. J., Gillies, N. A., D’Souza, R. F., Zeng, N., Ramzan, F., Sharma, P., Knowles, S. O., Roy, N. C., Sjödin, A., Wagner, K.-H., Zeisel, S. H., and Cameron-Smith, D. (2019) Protein Intake at Twice the RDA in Older Men Increases Circulatory Concentrations of the Microbiome Metabolite Trimethylamine-N-Oxide (TMAO). Nutrients. 10.3390/nu11092207

139. Kofoad, M., Milbury, K. L., Chiang, J. H., Sinha, S., Ben-Aroya, S., Giaever, G., Nislow, C., Hieter, P., and Stirling, P. C. (2015) An Updated Collection of Sequence Barcoded Temperature-Sensitive Alleles of Yeast Essential Genes. G3 Bethesda Md. 5, 1879–1887

140. Li, Z., Vizeacoumar, F. J., Bahr, S., Li, J., Warringer, J., Vizeacoumar, F. S., Min, R., Vandersluis, B., Bellay, J., Devit, M., Fleming, J. A., Stephens, A., Haase, J., Lin, Z.-Y., Baryshnikova, A., Lu, H., Yan, Z., Jin, K., Barker, S., Datti, A., Giaever, G., Nislow, C., Bulawa, C., Myers, C. L., Costanzo, M., Gingras, A.-C., Zhang, Z., Blomberg, A., Bloom, K., Andrews, B., and Boone, C. (2011) Systematic exploration of essential yeast gene function with temperature-sensitive mutants. Nat. Biotechnol. 29, 361–367

141. Mortimer, R. K., and Johnston, J. R. (1986) Genealogy of Principal Strains of the Yeast Genetic Stock Center. Genetics. 113, 35–43

142. Brachmann, C. B., Davies, A., Cost, G. J., Caputo, E., Li, J., Hieter, P., and Boeke, J. D. (1998) Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast. 14, 115–132

143. Winzeler, E. A., Shoemaker, D. D., Astromoff, A., Liang, H., Anderson, K., Andre, B., Bangham, R., Benito, R., Boeke, J. D., Bussey, H., Chu, A. M., Connelly, C., Davis, K., Dietrich, F., Dow, S. W., Bakkoury, M. E., Foury, F., Friend, S. H., Gentalen, E., Giaever, G., Hegemann, J. H., Jones, T., Laub, M., Liao, H., Liebundguth, N., Lockhart, D. J., Lucau-Danila, A., Lussier, M., M’Rabet, N., Menard, P., Mittmann, M., Pai, C., Rebischung, C., Revuelta, J. L., Riles, L., Roberts, C. J., Ross-MacDonald, P., Scherens, B., Snyder, M., Sookhia-Mahadeo, S., Storms, R. K., Véroneau, S., Voet, M., Volckaert, G., Ward, T. R., Wysocki, R., Yen, G. S., Yu, K., Zimmermann, K., Philippsen, P., Johnston, M., and Davis, R. W. (1999) Functional Characterization of the S. cerevisiae Genome by Gene Deletion and Parallel Analysis. Science. 285, 901–906
Giaever, G., Chu, A. M., Ni, L., Connelly, C., Riles, L., Véronneau, S., Dow, S., Lucau-Danila, A., Anderson, K., André, B., Arkin, A. P., Astromoff, A., El-Bakkoury, M., Bangham, R., Benito, R., Brachat, S., Campanaro, S., Curtiss, M., Davis, K., Deutschbauer, A., Entian, K.-D., Flaherty, P., Fourny, F., Garfinkel, D. J., Gerstein, M., Gotte, D., Güldener, U., Hegemann, J. H., Hempel, S., Herman, Z., Jaramillo, D. F., Kelly, D. E., Kelly, S. L., Kötter, P., LaBonte, D., Lamb, D. C., Lan, N., Liang, H., Luo, C., Lussier, M., Mao, R., Meléndez, A., Menard, P., Ooi, S. L., Revuelta, J. L., Roberts, C. J., Rose, M., Ross-Macdonald, P., Scherens, B., Schimmack, G., Shafer, B., Shoemaker, D. D., Sookhai-Mahadeo, S., Storms, R. K., Strathern, J. N., Valle, G., Voet, M., Volckaert, G., Wang, C., Ward, T. R., Wilhelm, J., Winzeler, E. A., Yang, Y., Yen, G., Youngman, E., Yu, K., Bussey, H., Boeke, J. D., Snyder, M., Philippsen, P., Davis, R. W., and Johnston, M. (2002) Functional profiling of the Saccharomyces cerevisiae genome. *Nature* **418**, 387–391

Parsons, A. B., Brost, R. L., Ding, H., Li, Z., Zhang, C., Sheikh, B., Brown, G. W., Kane, P. M., Hughes, T. R., and Boone, C. (2004) Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways. *Nat. Biotechnol.* **22**, 62–69

Brachmann, R. K., Vidal, M., and Boeke, J. D. (1996) Dominant-negative p53 mutations selected in yeast hit cancer hot spots. *Proc. Natl. Acad. Sci. U. S. A.* **93**, 4091–4095

Brandman, O., Stewart-Ornstein, J., Wong, D., Larson, A., Williams, C. C., Li, G.-W., Zhou, S., King, D., Shen, P. S., Weibezahn, J., Dunn, J. G., Rouskin, S., Inada, T., Frost, A., and Weissman, J. S. (2012) A ribosome-bound quality control complex triggers degradation of nascent peptides and signals translation stress. *Cell* **151**, 1042–1054

Casadaban, M. J., and Cohen, S. N. (1980) Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. *J. Mol. Biol.* **138**, 179–207

Zhang, G.-C., Kong, I. I., Kim, H., Liu, J.-J., Cate, J. H. D., and Jin, Y.-S. (2014) Construction of a quadruple auxotrophic mutant of an industrial polyploid saccharomyces cerevisiae strain by using RNA-guided Cas9 nuclease. *Appl. Environ. Microbiol.* **80**, 7694–7701

Dearth, L. R., Qian, H., Wang, T., Baroni, T. E., Zeng, J., Chen, S. W., Yi, S. Y., and Brachmann, R. K. (2006) Inactive full-length p53 mutants lacking dominant wild-type p53 inhibition highlight loss of heterozygosity as an important aspect of p53 status in human cancers. *Carcinogenesis* **28**, 289–298

Baker, S. J., Markowitz, S., Fearon, E. R., Willson, J. K., and Vogelstein, B. (1990) Suppression of human colorectal carcinoma cell growth by wild-type p53. *Science* **249**, 912–915

Gaglia, G., and Lahav, G. (2014) Constant rate of p53 tetramerization in response to DNA damage controls the p53 response. *Mol. Syst. Biol.* **10**, 753

FOOTNOTES

Abbreviations: GdnHCl, guanidine hydrochloride; Gdm, guanidinium; TMAO, Trimethylamine N-oxide; TS, temperature-sensitive; RT, room temperature
Gene	GdnHCl (3 mM)	TMAO* (0.5 M)	DMSO (5%)	Notes, known mutations
ACT1	act1-105	act1-111	act1-129	act1-105 (E311A, R312A)
				act1-111 (D222A, E224A, E226A)
				act1-129 (R177A, D179A)
ARG3	arg3(R69G)			arg3(R69G) not tested for TMAO, DMSO rescue
ARP2		arp2-14		
ARP3		arp3-D11A	arp3-G15C	
		arp3-G15C		
		arp3-H161A		
CDC10	cdc10-1	cdc10-2		GdnHCl binds Cdc3, bypassing mutant Cdc10 during septin hetero-oligomerization
	cdc10-2			
	cdc10-4			
	cdc10-5			
CDC23		cdc23-4		T94M
ERG26	erg26-1	erg26-1		
HSP10	hsp10-ts			
KAR2	kar2-159	kar2-159		G417S, variable DMSO rescue
LCB1	lcb1-2	lcb1-2	lcb1-2	lcb1-2 (M261R)
	lcb1-4	lcb1-5		lcb1-4 (D320Y)
	lcb1-5			lcb1-5 (D299Y)
MCM3	mcm3-1	mcm3-1		G246E
ORC2	orc2-1	orc2-1	orc2-1	orc2-1 (P603L)
PGA1	pga1-ts			T25A, I28T, K40R, K98N, E147G. Not tested for TMAO, DMSO rescue.
SMC3	smc3-1	smc3-1		
STU1	stu1-5	stu1-5	stu1-5	stu1-5 (S88T Q257K T492A F483L Y534H L561S V575A T579S N596I P616L S621T)
	stu1-8	stu1-6		stu1-6 (mutation in N-region)
				stu1-8 (mutation in mid-region)
TUB4	tub4-ΔDSY	tub4-ΔDSY		Variable DMSO rescue
URA3	ura3(R235A)			ura3(R235A) not tested for TMAO, DMSO rescue

For a complete list of TMAO rescues, see Table S2
E. coli OTC
H. sapiens OTC

EcOTC 1
mito. import signal
-------SGFYHKHFLKLLDFTPAE 18
HaOTC 1 MLFNLRILLNAAFRNGHNFVMVRFRCQPLQNKVQLKGRDLILTGLKLNFTGEE 52
SeOTC 1 MSTTASTPSSLRLISIKDLSDEE 24

EcOTC 30 KADKKSGK------EAEKLTGNIALEKSTRTCSPEVAAYDQGARVT 74
HaOTC 64 KFRIKQGEYL------PLLQGKLMIFERKSTRTLSSTETGLALLGHPV 109
ScOTC 36 KNVFKANKTNDfqsNHLKLLGRTIALIFTKRSTTRISTEGAATFFGAQPM 86

Figure 1

C
arg3Δ
ARG3
arg3(R69G)
hOTC
hOTC(R92G)
hOTC(Δ6-34)

D
argin3(R69G)

1M GdnHCl
1M Urea
3M GdnHCl

arg3(R69G)
Figure 2

A
WT recoded
ura3(R235A)
ura3Δ
WT

rich -ura -ura + 3mM GdnHCl

3 days
5 days
6 days
8 days

B
WT recoded
ura3(R235A)
ura3Δ
WT

FOA FOA + 3 mM GdnHCl

8 days
Figure 3

A

ScAsn1 330 DVIYHLETYDVTIRASTPMFLSRK 355
EcAsnB 311 DVIYHLETYDVTIRASTPMYLMRSK 336
HsASNS 325 EVIFSLETYDITTVRASVGMYLISKY 350

B

\[\text{asn1(R344A)}\]
\[
\text{ASN1} \quad \text{-asn}
\]
\[
\text{asn1\Delta asn2\Delta} \quad \text{-asn + 3 mM GdnHCl}
\]
\[
\text{asn1(R344A)} \quad \text{ASN1}
\]
\[
\text{asn1\Delta asn2\Delta}
\]

C

E. coli asnB
H. sapiens ASNS

AMP

Arg 325
Arg 339
Gln
Figure 4

A

WT p53

Glu171

His168

Arg249

DNA

p53(R249S H168R)

Glu171

Arg168

Ser249

DNA

B

repressed promoter

URA3

binding site

C

WT

-his

-his -ura

-his -ura + 3 mM GdnHCl

-his + FOA

-his + FOA + 3 mM GdnHCl

R249S

R249S H168A

R249S H168A T123A

WT

R249S

R249S H168A

R249S H168A T123A
Figure 5

A. Panels show the effect of GdnHCl on S. cerevisiae act1-105.

B. Molecular structures illustrating the role of act1-105 in TS mutants.

C. Close-up of the molecular structure highlighting Arg312 and its nearby side chains.

D. Growth assays for WT and act1-105 in various conditions.

E. Time course analysis of growth with different treatments, including DMSO and metformin.
Figure 6

A

pga1-ts
pga1-t
pga1-3

RT
37˚C
37˚C + 3 mM GdnHCl

B

pga1-ts
pga1-l
pga1-3

Sc 1 --MVRFPQNVHWFIAITVFIGFVHANTESILYKVPHNFPLKPRDSST...MSQITIEANTTDLEL 78
Sp 1 --MARSQDVHMPVAFIIFCTGFVCANTEISILYKVPHNFPLSNGDGLS...MSQITIREANTTDLOL 78
Sk 1 MKVAQNQFVQWIIAIFVLCFEGFVQANTESILYKVPHNFPLSKLRDRV...MEQTTIKVNTNLQ 80
LK 1 MKV--------YHLLYLQAQFVCPYANTESFVRIPHDYQPLFVGYKN--------TNNHKQTYNVPL 80
Nc 1 MNYGILTLLQW-LIIFQGLTTVANTESILISIPYDIHLHHLY...MQMSTIQIPAMK--- 71
Ag 1 [23]YAIALVALCRVCLANTETENYIIPGDFPV-----ST...NYKMQRFDVVP-GEM 89

C

pga1-ts
pga1-t
pga1-3

RT
37˚C
+ 0.375 mM of:

- guanidine
- aminoguanidine
- N-ethyl guanidine

N-ethyl
guanidine

- guanidine
- aminoguanidine
Figure 7

A
	RT	37°C	37°C + 3 mM GdnHCl
WT			
act1-105			
orc2-1			
stu1-5			
stu1-8			
hsp10-ts			
erg26-1			
mcm3-1			
pga1-ts			

B
- Acetyl-CoA
- HMG-CoA
- Mevalonate
- Farnesyl pyrophosphate
- Squalene
- Squalene epoxide
- Erg1
- Erg20
- Erg9
- Erg7
- Lanosterol
- Erg11
- Erg26
- Zymosterol
- Erg6
- Ergosterol

C
	RT	37°C	37°C + 3 mM GdnHCl
WT			
erg10-1			
erg6Δ			
erg8-1			
erg11-td			

	rich	rich + 3 mM GdnHCl	rich	rich + 3 mM GdnHCl
WT				
erg10-1				
erg6Δ				
erg8-1				
erg11-td				

rich + ura + his + leu + met + 3 mM GdnHCl
Figure 8

A

WT
pre1-1

WT
pre1-1 + 3 mM GdnHCl

B

WT
pre1-1

orc2-1

D = DMSO
M = MG132
G = GdnHCl

C

\[\frac{P_{\text{TEF2}}^{\text{RFP}}}{P_{(4\times\text{HSE})}^{\text{GFP}}} \]

cytosolic fluorescence (A.U.)

no GdnHCl + GdnHCl
Figure 9

Gene	Condition	Temperature	DMSO
WT	RT	+ 5% DMSO	37°C
kar2-159			
cdc23-4			
nop4-3			
lcb1-10			
lcb1-2			
lcb1-5			
arp3-G15C			
arp2-14			
stu1-5			
stu1-6			
smc3-1			
tub4ΔDSYLD			
Chemical rescue of mutant proteins in living cells by naturally occurring small molecules

Daniel S. Hassell, Marc G. Steingesser, Ashley S. Denney, Courtney R. Johnson, and Michael A. McMurray*

Running title: Natural small molecules rescue mutant protein function

Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO

*Correspondence should be addressed to: Michael A. McMurray: Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Email: michael.mcmurray@ucdenver.edu; Tel: +1 (303)-724-6569

Keywords: chemical biology, yeast genetics, mutant, drug action, chaperone

This file includes: Figure S1 to S8, Table S1: List of Mutants Screened From the Boone TS Collection, and Table S2: List of TS Mutants Rescued by TMAO
Supplementary Figure 1. Arg 599 in E. coli β-gal is dispensable for activity in vivo. (A) E. coli cells of strain DH5α, carrying the lacZ∆M15 allele at the endogenous locus, were transformed with plasmids carrying WT lacZ or the R599A mutant allele under control of the yeast ACT1 promoter and streaked on medium containing the chromogenic β-gal substrate X-gal at 32 µg/mL. Plates were incubated overnight at 37°C prior to imaging. (B) β-gal activity in cells as in (A) but grown in liquid culture selective for the plasmids, and then lysed at the indicated timepoints following the addition of X-gal and chloramphenicol (to halt new translation). Cleaved X-gal at each timepoint was measured in triplicate by absorbance at 615 nm after the indicated times following X-gal addition. Points show the mean, error bars are standard error of the mean. (C) Plasmid was isolated from the remainder of the R599A culture used in (B) and digested with PvuI before separation by agarose gel electrophoresis. Band sizes are shown in basepairs. Red color indicates saturated pixels. The PvuI recognition site overlapping with the Arg 599 codon is shown with a map (not to scale) of PvuI sites in lacZ. DNA ladder was Thermo Scientific GeneRuler DNA Ladder Mix (#SM0331). (D) As in (A) but with the E. coli strain RS302, which carries the Δ(lacIPOZ)C29 allele at the endogenous locus, and with X-gal at 200 µg/mL. (E) Protein sequence alignment of a portion of the indicated β-gal homologs, with E. coli Arg 599 highlighted in red and identical residues in bold.
Supplementary Figure 2

Sequence of “recoded” URA3 genes used for CRISPR-Cas9-based integration into the yeast genome. “protein”, the amino acid sequence of WT Ura3 starting with residue 69. “WT”, a portion of the DNA sequence of WT URA3 corresponding to the synthetic sequences below that were used as donor templates for recombination. The sequence corresponding to the guide RNA targeting Cas9 cleavage is italicized. Periods indicate no change in the donor sequences relative to WT.

Supplementary Figure 2
Supplementary Figure 3. Defining room temperature. Temperature over a nearly 48-hour period was recorded at the location where the majority of the room temperature incubation steps were performed using a CellASIC ONIX™ temperature calibration plate and DirecTemp™ temperature monitoring software.
Supplementary Figure 4

A

Supplementary Figure 4

A
Supplementary Figure 4. GdnHCl sensitivity in WT, TS, and erg6Δ mutants. (A) Rich (YPD) plates with or without 3 mM GdnHCl were streaked with TS mutant strains of the indicated genotypes from the Hieter TS collection and incubated at room temperature ("RT") or 37˚C. (B) Rich (YPD) media plates with or without 1 mM GdnHCl were streaked with CBY06147 ("cdc10(D182N) ERG6"”), H06534 ("CDC10+ erg6Δ"”), and H06537 and another cdc10(D182N) erg6Δ haploid clone from the same cross that was not saved as a freezer stock. The plates were then incubated at the indicated temperatures. (C) S288C, a prototrophic WT strain, and BY4741, a strain auxotrophic for histidine, leucine, methionine and uracil but otherwise WT, were streaked to rich (YPD) medium with or without 3 mM GdnHCl and incubated at room temperature ("RT"). (D) Three spontaneously arising GdnHCl-resistant clones (strains H06744, H06745, and H06746, numbered “1”, “2”, and “3”, respectively) were streaked alongside their parent strain, BY4741 ("WT parent"), and S288C ("WT prototrophic") on rich (YPD) plates with or without 10 mM GdnHCl and incubated at 30˚C for 2 or 6 days, respectively, prior to imaging.
Supplementary Figure 5. Failure of urea to rescue TS mutants. (A) Mutants from the Boone TS collection scored as possible examples of urea rescue based on robotic screening were serially diluted and spotted on rich (YPD) medium with or without 10 mM urea and incubated at the indicated temperatures. “WT”, BY4741. Note that the bottom row of images is of the same plates as the top, but was cropped and moved to preserve figure space. “cdc20-1” is the strain isolated from the well in the TS collection that should have contained the cdc20-1 mutant, but subsequent PCR and sequencing of the CDC20 coding region revealed WT sequence at the location of the Gly 544 codon that is mutated in cdc20-1 (see panel D). (B) As in (A) but with the “cdc20-1”, cdc20-2, and cdc20-3 mutants from the Boone TS collection and incubated at additional temperatures. (C) A lawn of orc2-1 cells (strain CBY08224) was spread on rich (YPD) plates and a paper disc soaked in 5 M GdnHCl or 5 M urea was placed in the center of the plate, after which the plates were incubated at the indicated temperatures. (D) Chromatogram showing dideoxy sequencing results of a PCR product made from genomic DNA of the strain found in the well of the Boone TS collection where the cdc20-1 mutant (substitution G544R) should have been. Sequencing of PCR products from elsewhere in the CDC20 coding region of this strain revealed no mutation, whereas sequencing of the same products from the cdc20-2 and cdc20-3 strains revealed mutations causing substitutions G360S and E494K, respectively (data not shown).
Supplementary Figure 6. DMSO or TMAO cannot replace cytosolic Hsp70 function. Dilution series spotted on rich (YPD) medium with or without 5% DMSO or 0.5 M TMAO, indicated at the indicated temperatures. The kar2-159 TS mutant is strain CBY07833 and its WT parent is BY4741. The other two strains, from a distinct strain background, have deletions of three of the four cytosolic SSA-family Hsp70 chaperones (ssa2Δ ssa3Δ ssa4Δ) and at the SSA1 locus carry either a WT allele (“SSA1+”, strain ECY487) or a TS allele (“ssa1-ts”, strain ECY567).
Supplementary Figure 7. Rescue of TS mutants by TMAO is influenced by restrictive temperature but there is no strict temperature threshold. (A) Strains from the Boone TS collection were serially diluted and spotted on rich (YPD) medium with or without 0.5 M TMAO and incubated at the indicated temperatures. The top row of images represents an independent experiment from the bottom two rows, which were plated at the same time. Note that the *scd5-PP1D2* mutant, identified as rescued by TMAO in the initial robotized screen, showed rescue in only one of the experiments shown here. (B) Cells of the indicated genotypes were suspended in 100 µL rich medium (YPD) in PCR tubes and incubated in a thermal cycler at the indicated temperatures for 20 hours, then the cultures were transferred to a 96-well plate and the optical density was measured at 600 nm. Two technical replicates were performed for each strain; points represent the mean and error bars are standard deviation. Strains were: BY4741 (“WT”), CBY06147 (“cdc10-1”), CBY06420 (“cdc10-2”), CBY064221 (“cdc10-4”), CBY06424 (“cdc10-5”), and CBY05110 (“cdc12-1”). (C) Histogram of the first temperature listed (140) (see Table S1) as the restrictive temperature for each TS mutant strain from the Boone collection (“All TS mutants”, n = 680) and for the mutants from this collection scored as showing some evidence of rescue by TMAO (“TMAO rescued, n = 139”). (D) Venn diagram of overlap between TS mutants from the Boone collection identified as being rescued by the indicated small molecule. Shape sizes are not to scale.
Supplementary Figure 8

Supplementary Figure 8. Examples of TMAO rescue. Plate 5A of the Boone collection was pinned in quadruplicate to rich (YPD) medium with or without 0.5 mM TMAO and the plates were incubated at 37°C prior to imaging.