Exact solution of the Izergin-Korepin model with general non-diagonal boundary terms

Kun Haoa, Junpeng Caob,c, Guang-Liang Lid, Wen-Li Yanga,e, Kangjie Shia and Yupeng Wangb,c

aInstitute of Modern Physics, Northwest University, Xian 710069, China
bBeijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
cCollaborative Innovation Center of Quantum Matter, Beijing, China
dDepartment of Applied Physics, Xian Jiaotong University, Xian 710049, China
eBeijing Center for Mathematics and Information Interdisciplinary Sciences, Beijing, 100048, China

Abstract

The Izergin-Korepin model with general non-diagonal boundary terms, a typical integrable model beyond A-type and without $U(1)$-symmetry, is studied via the off-diagonal Bethe ansatz method. Based on some intrinsic properties of the R-matrix and the K-matrices, certain operator product identities of the transfer matrix are obtained at some special points of the spectral parameter. These identities and the asymptotic behaviors of the transfer matrix together allow us to construct the inhomogeneous $T-Q$ relation and the associated Bethe ansatz equations. In the diagonal boundary limit, the reduced results coincide exactly with those obtained via other methods.

\textit{PACS:} 75.10.Pq, 02.30.Ik, 11.30.-j, 71.10.Pm

\textit{Keywords:} Spin chain; reflection equation; Bethe Ansatz; $T-Q$ relation

1Corresponding author: wlyang@nwu.edu.cn
2Corresponding author: yupeng@iphy.ac.cn
1 Introduction

Exactly solvable models (or quantum integrable systems) \([1]\) have provided important benchmarks for the non-perturbative analysis of quantum systems appearing in string and supersymmetric Yang-Mills (SYM) theories \([2]\) (see also \([3]\) and references therein), low-dimensional condensed matter physics \([4, 5]\) and statistical physics \([6, 7]\). However, it has been well known for many years that there exists a quite usual class of integrable models, which do not possess \(U(1)\)-symmetry and thus make the conventional Bethe ansatz methods almost inapplicable. Some famous examples are the closed XYZ chain with odd number of sites \([8]\), the anisotropic spin torus \([9]\), the quantum spin chains with non-diagonal boundary fields \([10, 11]\) and their multi-component generalizations \([12, 13, 14, 15]\). The broken \(U(1)\)-symmetry in those models leads to the absence of an obvious reference state, which is crucial for the usage of the conventional Bethe ansatz (BA) methods \([1, 8, 16, 17, 18, 19, 20]\). There have been numerous efforts \([6, 10, 11, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30]\) to approach the BA solutions to this class of models over the last 20 years.

Very recently, based on the intrinsic properties of the \(R\)-matrix and the \(K\)-matrices for quantum integrable models, a systematic method for solving the integrable models without \(U(1)\)-symmetry, i.e., the off-diagonal Bethe ansatz (ODBA) method was proposed in \([30]\) for the models associated with \(su(2)\) algebra. Subsequently, the nested-version of ODBA for the models associated with \(su(n)\) algebra was developed in \([15]\). Several long-standing models were then solved exactly \([15, 30, 31, 32]\) by the ODBA \(^3\). Despite those progresses, an important issue, i.e., whether the ODBA can be applied to other multi-component integrable models defined beyond the \(su(n)\) algebra, is still open.

In this paper, we study the Izergin-Korepin (IK) model \([38]\) with generic integrable boundaries. This model has played a fundamental role in quantum integrable models associated with algebras beyond \(su(n)\) (or non A-type models). It was introduced as a quantum integrable model related to the Dodd-Bullough-Mikhailov or Jiber-Mikhailov-Shabat model \([39, 40]\), one of two integrable relativistic models containing one scalar field (the other is sine-Gordon model). The \(R\)-matrix of the model corresponds to the simplest twisted affine algebra \(A_2^{(2)}\). The IK model with open boundary condition is related to the loop models

\(^3\)The completeness of the solutions for the (an-)isotropic spin-\(\frac{1}{2} \) chain has been checked numerically \([33, 34]\) and by the quantum separation variables method (SOV) \([35, 36]\). An expression for the corresponding eigenvectors in the framework of algebraic Bethe ansatz was also proposed recently in \([37]\).
and self-avoiding walks at a boundary \cite{1,41}. The IK model with $U(1)$-symmetry, i.e. with periodic boundary condition or with diagonal boundaries have been extensively studied \cite{9,42,43,44,45,46,47,48,49,50,51,52}. Even the most general integrable boundary condition (corresponding to the non-diagonal reflection matrix) has been known almost for 20 years \cite{44,49,51}, its exact solution is still missing. The purpose of the present paper is to solve this interesting problem with ODBA.

The paper is organized as follows. Section 2 serves as an introduction to the model and our notations. In Section 3, we derive certain operator product identities for the transfer matrix of the model with general non-diagonal boundary terms by using some intrinsic properties of the R-matrix and K-matrices. The asymptotic behaviors of the transfer matrix are also obtained. Section 4 is devoted to the construction of the inhomogeneous $T - Q$ relation and the corresponding Bethe ansatz equations. Section 5 is attributed to the reduction to case of diagonal boundaries. It is found that the reduced results coincide exactly with those obtained by other Bethe ansatz methods. In section 6, we summarize our results and give some discussions. Some detailed technical proof is given in Appendix A.

2 Transfer matrix

Throughout, \mathbf{V} denotes a three-dimensional linear space and let $\{|i\rangle|i = 1,2,3\}$ be an orthonormal basis of it. The R-matrix $R(u) \in \text{End}(\mathbf{V} \otimes \mathbf{V})$ of the IK model is given by \cite{38}

$$
R_{12}(u) =
\begin{pmatrix}
 c(u) & b(u) & e(u) & f(u) \\
 d(u) & e(u) & g(u) & f(u) \\
 \bar{e}(u) & b(u) & a(u) & g(u) \\
 \bar{g}(u) & b(u) & d(u) & e(u) \\
 f(u) & \bar{g}(u) & \bar{e}(u) & c(u)
\end{pmatrix},
$$

(2.1)

where the matrix elements are

$$
a(u) = \sinh(u - 3\eta) - \sinh 5\eta + \sinh 3\eta + \sinh \eta, \quad b(u) = \sinh(u - 3\eta) + \sin 3\eta,$$

$$
c(u) = \sinh(u - 5\eta) + \sinh \eta, \quad d(u) = \sinh(u - \eta) + \sinh \eta,$$
\begin{align*}
e(u) &= -2e^{-\frac{u}{2}} \sinh 2\eta \cosh \left(\frac{u}{2} - 3\eta\right), \quad \bar{e}(u) = -2e^{\frac{u}{2}} \sinh 2\eta \cosh \left(\frac{u}{2} - 3\eta\right), \\
f(u) &= -2e^{-u+2\eta} \sinh \eta \sinh 2\eta - e^{-\eta} \sinh 4\eta, \\
\bar{f}(u) &= 2e^{u-2\eta} \sinh \eta \sinh 2\eta - e^{\eta} \sinh 4\eta, \\
g(u) &= 2e^{-\frac{u}{2}+2\eta} \sinh \left(\frac{u}{2} - 2\eta\right) \sinh 2\eta, \quad \bar{g}(u) = -2e^{\frac{u}{2}-2\eta} \sinh \left(\frac{u}{2} - 2\eta\right) \sinh 2\eta. \quad (2.2)
\end{align*}

The \(R \)-matrix satisfies the quantum Yang-Baxter equation (QYBE)
\begin{equation}
R_{12}(u_1 - u_2)R_{13}(u_1 - u_3)R_{23}(u_2 - u_3) = R_{23}(u_2 - u_3)R_{13}(u_1 - u_3)R_{12}(u_1 - u_2), \quad (2.3)
\end{equation}

and possesses the following properties,

\begin{enumerate}
\item Initial condition : \(R_{12}(0) = (\sinh \eta - \sinh 5\eta)P_{12} \),
\item Unitarity relation : \(R_{12}(u)R_{21}(-u) = \rho_1(u) \times \text{id} \),
\item Crossing relation : \(R_{12}(u) = V_1 R_{12}^t(-u + 6\eta + i\pi)V_1^{-1} \),
\item PT-symmetry : \(R_{21}(u) = R_{12}^{t_1 t_2}(u) \),
\item Periodicity : \(R_{12}(u + 2i\pi) = R_{12}(u) \).
\end{enumerate}

Here \(R_{21}(u) = P_{12} R_{12}(u) P_{12} \) with \(P_{12} \) being the usual permutation operator and \(t_i \) denotes transposition in the \(i \)-th space. The function \(\rho_1(u) \) and the crossing matrix \(V \) are given by
\begin{align*}
\rho_1(u) &= -4 \sinh \left(\frac{u}{2} - 2\eta\right) \sinh \left(\frac{u}{2} + 2\eta\right) \cosh \left(\frac{u}{2} - 3\eta\right) \cosh \left(\frac{u}{2} + 3\eta\right), \\
V &= \begin{pmatrix}
-4 \sinh \left(\frac{u}{2} - 2\eta\right) & -e^{-\eta} \\
-e^\eta & 1
\end{pmatrix}, \quad V^2 = 1. \quad (2.9)
\end{align*}

Throughout this paper we adopt the standard notations: for any matrix \(A \in \text{End}(V) \), \(A_j \) is an embedding operator in the tensor space \(V \otimes V \otimes \cdots \), which acts as \(A \) on the \(j \)-th space and as identity on the other factor spaces; \(R_{ij}(u) \) is an embedding operator of \(R \)-matrix in the tensor space, which acts as identity on the factor spaces except for the \(i \)-th and \(j \)-th ones.

The unitarity property \((2.5) \) and crossing relation \((2.6) \) of the \(R \)-matrix and expressions \((2.9)-(2.10) \) of the function \(\rho_1(u) \) and the \(V \)-matrix imply that the \(R \)-matrix satisfies the crossing-unitarity relation
\begin{equation}
R_{12}^{t_1 t_2}(u) \mathcal{M}_1 R_{21}^{t_1}(-u + 12\eta) \mathcal{M}_1^{-1} = \rho_2(u) \times \text{id}, \quad (2.11)
\end{equation}
\[\mathcal{M} = V^t V = \begin{pmatrix} e^{2\eta} & 1 \\ e^{-2\eta} & 1 \end{pmatrix}, \]
(2.12)

\[\rho_2(u) = -4 \cosh\left(\frac{u}{2} - 5\eta\right) \cosh\left(\frac{u}{2} - \eta\right) \sinh\left(\frac{u}{2} - 6\eta\right). \]
(2.13)

It is easily to check that the \(R \)-matrix also satisfies the following relation

\[M_1 \mathcal{M}_2 R_{12}(u) M_1^{-1} \mathcal{M}_2^{-1} = R_{12}(u), \quad R_{12}(u) R_{21}(v) = R_{21}(v) R_{12}(u). \]
(2.14)

Let us introduce the “row-to-row” (or one-row) monodromy matrices \(T(u) \) and \(\hat{T}(u) \), which are \(3 \times 3 \) matrices with operator-valued elements acting on \(V^\otimes N \),

\[T_0(u) = R_{0N}(u - \theta_N) R_{0N-1}(u - \theta_{N-1}) \cdots R_{01}(u - \theta_1), \]
(2.15)

\[\hat{T}_0(u) = R_{10}(u + \theta_1) R_{20}(u + \theta_2) \cdots R_{N0}(u + \theta_N). \]
(2.16)

Here \(\{ \theta_j | j = 1, \cdots, N \} \) are arbitrary free complex parameters which are usually called as inhomogeneous parameters. The transfer matrix can be constructed as follows \([20, 53]\).

Let us introduce further a pair of \(K \)-matrices \(K^-(u) \) and \(K^+(u) \). The former satisfies the reflection equation (RE)

\[R_{12}(u_1 - u_2) K_1^-(u_1) R_{21}(u_1 + u_2) K_2^-(u_2) = K_2^-(u_2) R_{12}(u_1 + u_2) K_1^-(u_1) R_{21}(u_1 - u_2), \]
(2.17)

and the latter satisfies the dual RE

\[R_{12}(u_2 - u_1) K_1^+(u_1) \mathcal{M}_1^{-1} R_{21}(-u_1 - u_2 + 12\eta) \mathcal{M}_1 K_2^+(u_2) = K_2^+(u_2) \mathcal{M}_2^{-1} R_{12}(-u_1 - u_2 + 12\eta) \mathcal{M}_2 K_1^+(u_1) R_{21}(u_2 - u_1). \]
(2.18)

For open boundaries, one needs to consider the double-row monodromy matrix \(\mathbb{T}(u) \)

\[\mathbb{T}(u) = T(u) K^-(u) \hat{T}(u). \]
(2.19)

The double-row transfer matrix \(t(u) \) is thus given by

\[t(u) = tr(K^+(u) \mathbb{T}(u)). \]
(2.20)

The QYBE (2.3) and (dual) REs (2.17) and (2.18) lead to the fact that the transfer matrices with different spectral parameters commute with each other \([20]\): \([t(u), t(v)] = 0\). Therefore
In this paper we consider the generic non-diagonal K-matrix $K^-(u)$ found in \cite{44} and was classified as type II4 in \cite{49,51}.

\[
K^-(u) = \begin{pmatrix}
1 + 2e^{-u-\epsilon}\sinh \eta & 0 & 2e^{-\epsilon+\sigma}\sinh u \\
0 & 1 - 2e^{-\epsilon}\sinh(u-\eta) & 0 \\
2e^{-\epsilon-\sigma}\sinh u & 0 & 1 + 2e^{u-\epsilon}\sinh \eta
\end{pmatrix},
\]

(2.21)

and non-diagonal $K^+(u)$ given by

\[
K^+(u) = \mathcal{M} K^-(\text{\textbf{u}} + 6\eta + i\pi)|_{(\epsilon,\sigma) \rightarrow (\epsilon',\sigma')}
\]

(2.22)

Besides the crossing parameter η, the corresponding transfer matrix $t(u)$ given by (2.20) has four other free parameters $\{\epsilon, \sigma, \epsilon', \sigma'\}$ describing the boundary fields.

3 Operator identity of the transfer matrix

Following \cite{15} we apply the fusion technique to study the the present model. In this case, we need to use the fusion techniques both for R-matrices \cite{54} and for K-matrices \cite{46,55}. Similar as that in \cite{15}, the fusion procedure will lead to the desired operator identities to determine the spectrum of the transfer matrix $t(u)$ given by (2.20). For this purpose, let us introduce the following vectors in the tensor space $\mathbf{V} \otimes \mathbf{V}$

\[
|\Phi_0\rangle = \frac{1}{\sqrt{2\cosh 2\eta + 1}} (e^{-\eta}|1, 3\rangle - |2, 2\rangle + e^{\eta}|3, 1\rangle),
\]

(3.1)

\[
|\Phi_1\rangle = \frac{1}{\sqrt{2\cosh 2\eta}} (e^{-\eta}|1, 2\rangle - e^{\eta}|2, 1\rangle),
\]

(3.2)

\[
|\Phi_2\rangle = \frac{1}{\sqrt{2\cosh 2\eta}} (|1, 3\rangle - 2\sinh \eta|2, 2\rangle - |3, 1\rangle),
\]

(3.3)

\[
|\Phi_3\rangle = \frac{1}{\sqrt{2\cosh 2\eta}} (e^{-\eta}|2, 3\rangle - e^{\eta}|3, 2\rangle),
\]

(3.4)

and the associated projectors

\[
P_{12}^{(1)} = |\Phi_0\rangle \langle \Phi_0|, \quad P_{12}^{(3)} = \sum_{i=1}^{3} |\Phi_i\rangle \langle \Phi_i|.
\]

(3.5)

4The generalization to the non-diagonal K-matrices of type I in \cite{49,51} is straightforward.

5In contrast to most of rational models, here $P_{12}^{(i)} \neq P_{21}^{(i)}$.

6
Direct calculation shows that the R-matrix given by \((2.11)\) at some degenerate points is proportional to the projectors,

\[
R_{12}(6\eta + i\pi) = P_{12}^{(1)} \times S_{12}^{(1)}, \quad R_{12}(4\eta) = P_{12}^{(3)} \times S_{12}^{(3)}, \tag{3.6}
\]

where $S_{12}^{(i)}$ are some non-degenerate matrices $\in \text{End}(V \otimes V)$. After some calculations, we find

\[
P_{12}^{(1)} R_{23}(u) R_{13}(u + 6\eta + i\pi) P_{12}^{(1)} = \rho_1(u) P_{12}^{(1)} \otimes \text{id} = \text{Det}_q(R(u)) P_{12}^{(1)} \otimes \text{id}, \tag{3.7}
\]

\[
P_{12}^{(1)} R_{31}(u) R_{32}(u + 6\eta + i\pi) P_{12}^{(1)} = \rho_1(u) P_{12}^{(1)} \otimes \text{id}, \tag{3.8}
\]

\[
P_{12}^{(3)} R_{23}(u) R_{13}(u + 4\eta) P_{12}^{(3)} = \rho_3(u) R_{13}(u + 2\eta + i\pi), \tag{3.9}
\]

\[
P_{12}^{(3)} R_{31}(u) R_{32}(u + 4\eta) P_{12}^{(3)} = \rho_3(u) R_{31}(u + 2\eta + i\pi), \tag{3.10}
\]

where the function $\rho_3(u)$ is

\[
\rho_3(u) = -2 \sinh(\frac{u}{2} + 2\eta) \cosh(\frac{u}{2} - 3\eta). \tag{3.11}
\]

The above relations imply that the associated one-row monodromy matrices satisfy the following relations

\[
P_{12}^{(1)} T_2(u) T_1(u + 6\eta + i\pi) P_{12}^{(1)} = \prod_{l=1}^{N} \rho_1(u - \theta_l) T_{12}^{(1)} \otimes \text{id}, \tag{3.12}
\]

\[
P_{12}^{(1)} \hat{T}_1(u) \hat{T}_2(u + 6\eta + i\pi) P_{12}^{(1)} = \prod_{l=1}^{N} \rho_1(u + \theta_l) P_{12}^{(1)} \otimes \text{id}, \tag{3.13}
\]

\[
P_{12}^{(3)} T_2(u) T_1(u + 4\eta) P_{12}^{(3)} = \prod_{l=1}^{N} \rho_3(u - \theta_l) T_{12}^{(3)} \otimes \text{id}, \tag{3.14}
\]

\[
P_{12}^{(3)} \hat{T}_1(u) \hat{T}_2(u + 4\eta) P_{12}^{(3)} = \prod_{l=1}^{N} \rho_3(u + \theta_l) \hat{T}_{12}^{(3)} \otimes \text{id}. \tag{3.15}
\]

Now let us construct the corresponding fusion procedures for the K-matrices following \((46, 55)\). The properties \((3.6)\) of the R-matrix at the degenerate points and the RE \((2.17)\) and its dual RE \((2.18)\) allow us to construct the fused K-matrices from the origin ones \((2.21)\) and \((2.22)\). After some tedious calculations, we find that

\[
P_{21}^{(1)} K_{1}^{-}(u) R_{21}(2u + 6\eta + i\pi) K_{2}^{-}(u + 6\eta + i\pi) P_{12}^{(1)} = \text{Det}_q(K_{-}^{-}(u)) P_{21}^{(1)}, \tag{3.16}
\]

\[
P_{12}^{(1)} K_{2}^{+}(u + 6\eta + i\pi) \mathcal{M}_{1} R_{12}(-2u + 6\eta + i\pi) \mathcal{M}_{1}^{-1} K_{1}^{+}(u) P_{21}^{(1)} = \text{Det}_q(K_{+}^{+}(u)) P_{12}^{(1)}, \tag{3.17}
\]

7
Following the method in (15), and using the relations (3.12)-(3.19), after a long calculation, we find the transfer matrix given by (2.20) satisfies the following operator identities

\[P_{21}^{(3)} K_{1}^{-}(u) R_{21}(2u + 4\eta) K_{2}^{-}(u + 4\eta) P_{12}^{(3)} = f_{-}(u) K_{1}^{-}(u + 2\eta + i\pi), \]

\[P_{12}^{(3)} K_{2}^{+}(u + 4\eta) M_{1} R_{12}(-2u + 8\eta) M_{1}^{-1} K_{1}^{+}(u) P_{21}^{(3)} = f_{+}(u) K_{1}^{+}(u + 2\eta + i\pi), \]

where the functions \(f_{\pm}(u) \) and \(\text{Det}_{q}(K_{\pm}^{\pm}(u)) \) are

\[f_{-}(u) = -2(1 - 2e^{-\epsilon} \sinh(u - \eta)) \cosh(u - \eta) \sinh(u + 4\eta), \]

\[f_{+}(u) = 2(1 - 2e^{-\epsilon} \sinh(u - \eta)) \cosh(u - \eta) \sinh(u - 6\eta). \]

\[\text{Det}_{q}(K^{-}(u)) = tr_{12} \left\{ P_{21}^{(1)} K_{1}^{-}(u) R_{21}(2u + 6\eta + i\pi) K_{2}^{-}(u + 6\eta + i\pi) P_{12}^{(1)} \right\} \]

\[= -2(1 - 2e^{-\epsilon} \sinh(u - \eta))(1 + e^{-\epsilon} \sinh(u + \eta)) \]

\[\times \sinh(u + 6\eta) \cosh(u + \eta), \]

\[\text{Det}_{q}(K^{+}(u)) = tr_{12} \left\{ P_{12}^{(1)} K_{2}^{+}(u + 6\eta + i\pi) M_{1} R_{12}(-2u + 6\eta + i\pi) M_{1}^{-1} K_{1}^{+}(u) P_{21}^{(1)} \right\} \]

\[= 2(1 - 2e^{-\epsilon} \sinh(u - \eta))(1 + e^{-\epsilon} \sinh(u + \eta)) \]

\[\times \sinh(u - 6\eta) \cosh(u - \eta). \]

Following the method in (15) and using the relations (3.12)-(3.19), after a long calculation, we find the transfer matrix given by (2.20) satisfies the following operator identities

\[t(\pm \theta_{j}) t(\pm \theta_{j} + 6\eta + i\pi) = \frac{\delta_{1}(u) \times \text{id}}{\rho_{1}(2u)} \big|_{u=\pm \theta_{j}}, \quad j = 1, \ldots, N \]

\[t(\pm \theta_{j}) t(\pm \theta_{j} + 4\eta) = \frac{\delta_{2}(u) \times t(u + 2\eta + i\pi)}{\rho_{2}(-2u + 8\eta)} \big|_{u=\pm \theta_{j}}, \quad j = 1, \ldots, N. \]

Here the functions \(\delta_{1}(u) \) and \(\delta_{2}(u) \) are

\[\delta_{1}(u) = \text{Det}_{q}(K^{-}(u)) \text{Det}_{q}(K^{+}(u)) \prod_{l=1}^{N} \rho_{1}(u - \theta_{l}) \rho_{1}(u + \theta_{l}), \]

\[\delta_{2}(u) = f_{-}(u) f_{+}(u) \prod_{l=1}^{N} \rho_{3}(u - \theta_{l}) \rho_{3}(u + \theta_{l}). \]

Following the method in (56) and using the the explicit expressions (2.21) and (2.22) of the \(K \)-matrices, we find that the transfer matrix (2.20) possesses the crossing symmetry

\[t(u) = t(-u + 6\eta + i\pi). \]

The proof of the above relation is given in Appendix A. We remark that the very operator identities (3.24)-(3.25) at the points \(-\theta_{j}\) is guaranteed by their equalities at the points \(\theta_{j}\).
and the crossing symmetry (3.28) of the transfer matrix. Therefore, in the following we will use the operator identities (3.24)-(3.25) at the points θ_j and the crossing symmetry (3.28) to determine the eigenvalues of the transfer matrix.

Now let us derive some properties of the transfer matrix. Firstly the expressions of the K-matrices $K^\pm(u)$ given by (2.21) and (2.22) imply that $K^\pm(u)$ have the following periodicity

$$K^\pm(u + 2i\pi) = K^\pm(u).$$

This leads to the periodicity of the transfer matrix $t(u)$

$$t(u + 2i\pi) = t(u). \quad (3.29)$$

Moreover the explicit expressions of the R-matrix and the K-matrices allow us to have the following asymptotic behaviors of the transfer matrix

$$\lim_{u \to \pm \infty} t(u) = \left(\frac{1}{2}\right)^{2N} e^{-c-c'} e^{\pm 2(N+1)(u-3\eta)} (1 + 2 \cosh(\sigma' - \sigma + 2\eta)) \times \text{id} + \ldots \quad (3.30)$$

The explicit expressions of the K-matrices given by (2.21) and (2.22) also imply that $K^\pm(u)$ satisfy the following properties

$$K^-(0) = (1 + 2e^{-\sigma} \sinh \eta), \quad K^+(6\eta + i\pi) = (1 + 2e^{-\sigma'} \sinh \eta)\mathcal{M},$$

$$K^-(i\pi) = (1 - 2e^{-\sigma} \sinh \eta), \quad K^+(6\eta) = (1 - 2e^{-\sigma'} \sinh \eta)\mathcal{M}. \quad (3.31)$$

The unitarity (2.5) and the crossing unitarity (2.11) of the R-matrix imply that the one-row monodromy matrices $T(u)$ given by (2.15) and $\hat{T}(u)$ given by (2.16) satisfy the following relations

$$T_0(u)\hat{T}_0(-u) = \prod_{l=1}^{N} \rho_1(u - \theta_l) \times \text{id}, \quad (3.33)$$

$$T_0^\dagger(u)\mathcal{M}_0 \hat{T}_0(-u + 12\eta)\mathcal{M}_0^{-1} = \prod_{l=1}^{N} \rho_2(u - \theta_l) \times \text{id}. \quad (3.34)$$

The above relations allow us to work out the transfer matrix at special points 0, $i\pi$, 6η, $6\eta + i\pi$ as follows

$$t(0) = t(6\eta + i\pi) = (1 + 2e^{-\sigma} \sinh \eta)tr\{K^+(0)\} \prod_{l=1}^{N} \rho_1(-\theta_l) \times \text{id}, \quad (3.35)$$

$$t(i\pi) = t(6\eta) = (1 - 2e^{-\sigma} \sinh \eta)tr\{K^+(i\pi)\} \prod_{l=1}^{N} \rho_1(i\pi - \theta_l) \times \text{id}. \quad (3.36)$$
4 Functional relations and the T-Q relation

The property \([t(u), t(v)] = 0\) implies that the eigenstates of \(t(u)\) are independent of \(u\). Suppose \(|\Psi\rangle\) is an eigenstate of \(t(u)\) with an eigenvalue \(\Lambda(u)\), namely,

\[
t(u)|\Psi\rangle = \Lambda(u)|\Psi\rangle.
\]

The very operator identities (3.24)-(3.25) of the transfer matrix at the points \(\theta_j\) imply the corresponding eigenvalue \(\Lambda(u)\) satisfies the similar relations

\[
\Lambda(\theta_j)\Lambda(\theta_j + 6\eta + i\pi) = \frac{\delta_1(u)}{\rho_1(2u)} |_{u=\theta_j}, \quad j = 1, \ldots, N
\]

\[
\Lambda(\theta_j)\Lambda(\theta_j + 4\eta) = \frac{\delta_2(u) \times \Lambda(u + 2\eta + i\pi)}{\rho_2(-2u + 8\eta)} |_{u=\theta_j}, \quad j = 1, \ldots, N.
\]

where the functions \(\delta_i(u)\) are given by (3.26) and (3.27). The crossing symmetry (3.28) of the transfer matrix leads to the crossing symmetry of its eigenvalues

\[
\Lambda(u) = \Lambda(-u + 6\eta + i\pi).
\]

The properties of the transfer matrix \(t(u)\) given by (3.29), (3.30) and (3.35)-(3.36) imply that the corresponding eigenvalue \(\Lambda(u)\) satisfies the following relations:

\[
\Lambda(u + 2i\pi) = \Lambda(u),
\]

\[
\Lambda(0) = (1 + 2e^{-\epsilon}\sinh \eta)tr\{K^+(0)\}\prod_{l=1}^{N} \rho_1(-\theta_l),
\]

\[
\Lambda(i\pi) = (1 - 2e^{-\epsilon}\sinh \eta)tr\{K^+(i\pi)\}\prod_{l=1}^{N} \rho_1(i\pi - \theta_l).
\]

\[
\lim_{u \to \pm \infty} \Lambda(u) = \left(\frac{1}{2}\right)^{2N} e^{-\epsilon - \epsilon'} e^{\pm 2(N + 1)(u - 3\eta)} (1 + 2 \cosh(\sigma' - \sigma + 2\eta)) + \ldots.
\]

The periodicity (4.4) and the asymptotic behavior (4.7) of the eigenvalue \(\Lambda(u)\), the analyticity of the R-matrix and K-matrices and the \(u\)-free eigenstate lead to the fact that the eigenvalue \(\Lambda(u)\) further possesses the property

\[
\Lambda(u), \text{ as an entire function of } u, \text{ is a trigonometric polynomial of degree } 2N + 2.
\]

Namely, \(\Lambda(u)\) is a Laurent polynomial of \(e^u\) with \(4(N + 1) + 1\) unknown coefficients. The crossing relation (4.3) reduces the number of the independent unknown coefficients to \(2(N + 1)\).
1) + 1. Thus one needs $2(N + 1) + 1$ conditions to determine these coefficients. Therefore the relations \([4.1]-[4.8]\) completely characterize the spectrum of the transfer matrix of the model.

4.1 T-Q ansatz

Let us introduce the following $T - Q$ ansatz

$$\Lambda(u) = \prod_{i=1}^{N} c(u - \theta_i)c(u + \theta_i)(1 - 2e^{-t} \sinh(u - \eta))(1 - 2e^{-t'} \sinh(u - \eta))$$

$$\times \frac{\sinh(u - 6\eta) \cosh(u - \eta)}{\sinh(u - 2\eta) \cosh(u - 3\eta)} \frac{Q_1(u + 4\eta)}{Q_2(u)}$$

$$+ \prod_{i=1}^{N} d(u - \theta_i)d(u + \theta_i)(1 - 2e^{-t} \sinh(u - 5\eta))(1 - 2e^{-t'} \sinh(u - 5\eta))$$

$$\times \frac{\sinh u \cosh(u - 5\eta)}{\sinh(u - 4\eta) \cosh(u - 3\eta)} \frac{Q_2(u - 6\eta + i\pi)}{Q_1(u - 2\eta + i\pi)}$$

$$+ \prod_{i=1}^{N} b(u - \theta_i)b(u + \theta_i)(1 + 2e^{-t} \sinh(u - 3\eta))(1 + 2e^{-t'} \sinh(u - 3\eta))$$

$$\times \frac{\sinh u \sinh(u - 6\eta)}{\sinh(u - 2\eta) \sinh(u - 4\eta)} \frac{Q_1(u + 2\eta + i\pi)Q_2(u - 4\eta)}{Q_2(u - 2\eta + i\pi)Q_1(u)}$$

$$+ 4^{1-N} c \frac{\sinh u \sinh(u - 6\eta)}{\cosh(u - 3\eta)} \prod_{i=1}^{N} c(u - \theta_i)c(u + \theta_i)d(u - \theta_i)d(u + \theta_i)$$

$$\times \left[\frac{Q_1(u + 2\eta + i\pi) \sinh^{l_1}(u - 3\eta) \sinh^{l_1}(u - \eta) \cosh^{l_2}(u - 2\eta)}{Q_1(u)Q_2(u)} \right. $$

$$\left. - (-1)^{l_2} \frac{Q_2(u - 4\eta) \sinh^{l_1}(u - 3\eta) \sinh^{l_1}(u - 5\eta) \cosh^{l_2}(u - 4\eta)}{Q_1(u - 2\eta + i\pi)Q_2(u - 2\eta + i\pi)} \right] , \quad (4.9)$$

where the functions $c(u), b(u)$ and $d(u)$ are the elements of the R-matrix given by \([2.2]\) and the functions $Q_i(u)$ and the constant c are given by

$$Q_1(u) = \prod_{k=1}^{\tilde{N}} \sinh\left[\frac{u - \lambda_k}{2} - \eta\right] \quad \tilde{N} = 4(N + l_1) + 2(l_2 - 1), \quad (4.10)$$

$$Q_2(u) = \prod_{k=1}^{\tilde{N}} \sinh\left[\frac{u + \lambda_k}{2} - \eta\right], \quad (4.11)$$
\[c = (-1)^{(l_2-1)} e^{-\epsilon - \epsilon'} \left\{ \frac{\cosh(\sigma' - \sigma + 2\eta) - \cosh(\delta_{l_1, l_2}\eta - \sum_{j=1}^{\tilde{N}} \lambda_j)}{\cosh\left(\frac{\delta_{l_1, l_2}\eta}{2} - \frac{1}{2} \sum_{j=1}^{\tilde{N}} \lambda_j\right)} \right\}, \quad (4.12) \]

\[\delta_{l_1, l_2} = 4N + 8l_1 + 4l_2 - 2. \quad (4.13) \]

Here \(l_1 \) and \(l_2 \) are arbitrary non-negative integers. It is easily to check that the functions \(Q_i(u) \) possess the following properties

\[Q_i(u + 2i\pi) = Q_i(u), \quad \text{for} \quad i = 1, 2, \quad \text{and} \quad Q_2(u) = Q_1(-u + 4\eta). \quad (4.14) \]

With the help of the above relations, we have checked that the \(T - Q \) ansatz \((4.9) \) indeed satisfies the relations \((4.3) - (4.6) \). Moreover the special choice of the constant \(c \) given by \((4.12) \) implies that the ansatz also satisfies the asymptotic behavior \((4.7) \). The explicit expressions of the functions \(b(u), c(u) \) and \(d(u) \) given by \((2.1) - (2.2) \) imply that

\[b(0) = d(0) = c(6\eta + i\pi) = b(6\eta + i\pi) = c(4\eta) = d(2\eta + i\pi) = 0. \quad (4.15) \]

These properties give rise to the fact that the \(T - Q \) ansatz \((4.9) \) satisfies the very functional relations \((4.1) - (4.2) \). This means that our ansatz \((4.9) \) actually satisfies the relations \((4.1) - (4.7) \) except the analytic properties \((4.8) \).

From the explicit expression \((4.9) \) of \(\Lambda(u) \), one may find that the \(T - Q \) ansatz \((4.9) \) might have some apparent simple poles at the following points:

\[2\eta, \ 4\eta, \ 3\eta + 3\pi/2, \quad \text{mod}(i\pi), \quad (4.16) \]

and

\[\lambda_j + 2\eta, \ -\lambda_j + 2\eta, \ \lambda_j + 4\eta + i\pi, \ -\lambda_j + 4\eta + i\pi, \quad \text{mod}(2i\pi), \quad j = 1, \ldots, \tilde{N}. \quad (4.17) \]

Direct calculation shows that the residues of the \(T - Q \) anstz \((4.9) \) at the points given by \((4.16) \) vanishes, or the ansatz has no singularity at these points. Moreover we have checked that the \(T - Q \) anstz \((4.9) \) also has no singularity at the points given by \((4.17) \) provided that the \(\tilde{N} \) parameters \(\{\lambda_j|j = 1, \ldots, \tilde{N}\} \) satisfy the following BAEs

\[\frac{(1 + 2e^{-\epsilon} \sinh(\lambda_j - \eta))(1 + 2e^{-\epsilon'} \sinh(\lambda_j - \eta)) \cosh(\lambda_j - \eta)Q_2(\lambda_j - 2\eta)Q_2(\lambda_j + 2\eta)}{4 \sinh \lambda_j \sinh(\lambda_j - 2\eta) \sinh^{l_1}(\lambda_j + \eta) \sinh^{l_2}(\lambda_j - \eta) \cosh^{l_2} \lambda_j} \]

\[= \frac{1}{4} \quad (4.18) \]

\(^6\)The results of anisotropic spin-\(1/2 \) chains [30] strongly suggest that fixed \(l_1 \) and \(l_2 \) might give a complete set of eigenvalues of the transfer matrix. In such a sense, different \(l_1 \) and \(l_2 \) might only give different parameterizations of the eigenvalues but not different states.
\[-c Q_2(\lambda_j + i\pi) \prod_{l=1}^N \sinh\left[\frac{\lambda_j - \theta_l}{2} - \eta\right] \sinh\left[\frac{\lambda_j + \theta_l}{2} - \eta\right] \cosh\left[\frac{\lambda_j - \theta_l}{2}\right] \cosh\left[\frac{\lambda_j + \theta_l}{2}\right],\]

\[j = 1, \ldots, \bar{N},\]

(4.18)

where the function $Q_2(u)$ is given by (4.11). The non-singular property of the $T - Q$ ansatz (4.9) at the points (4.17) can be verified by directly calculating the residues of the anstz at these points.

Finally we conclude that the $T - Q$ ansatz (4.9) indeed satisfies (4.1)-(4.8) as it is required, if the the \bar{N} parameters \{\$\lambda_j | j = 1, \ldots, \bar{N}\$\} satisfy the associated BAEs (4.18). Thus the $\Lambda(u)$ given by (4.9), when the \bar{N} parameters \{\$\lambda_j | j = 1, \ldots, \bar{N}\$\} satisfy the associated BAEs (4.18), becomes the eigenvalue of the transfer matrix $t(u)$ given by (2.20) for the Izergin-Korepin model with the general non-diagonal boundary terms specified by the non-diagonal K-matrices $K^\pm(u)$ given by (2.21) and (2.22).

4.2 Reduction to the conventional $T - Q$ ansatz

It follows from (4.12) that the parameter c does depend on not only the boundary parameters but also the parameters \{\λ_j\} (such a dependence also appeared in the anisotropic spin-$1/2$ chains with arbitrary boundary fields [30]). The vanishing condition of c, i.e. $c = 0$, will lead to the constraint (see (1.23) below) among the boundary parameters, in this case one might find a proper “local vacuum” to apply the conventional Bethe ansatz [11, 57]. The Bethe ansatz equations (4.18) imply that for this case the parameters \{\λ_j\} have to form two types of pairs:

\[(\lambda_j, -\lambda_j), \quad (\lambda_j, -\lambda_j + 4\eta).\]

(4.19)

Suppose the number of the first type pairs is M (M being a non-negative integer such that $0 \leq M \leq \frac{\bar{N}}{2}$), the resulting $T - Q$ relation (4.9) becomes the conventional one [1]

\[
\Lambda(u) = \prod_{l=1}^N c(u - \theta_l)c(u + \theta_l)(1 - 2e^{-\epsilon} \sinh(u - \eta))(1 - 2e^{-\epsilon'} \sinh(u - \eta)) \\
\times \frac{\sinh(u - 6\eta) \cosh(u - \eta)}{\sinh(u - 2\eta) \cosh(u - 3\eta)} \frac{Q(u + 4\eta)}{Q(u)} \\
+ \prod_{l=1}^N d(u - \theta_l)d(u + \theta_l)(1 - 2e^{-\epsilon} \sinh(u - 5\eta))(1 - 2e^{-\epsilon'} \sinh(u - 5\eta))
\]
\[
\times \frac{\sinh u \cosh(u - 5\eta)}{\sinh(u - 4\eta) \cosh(u - 3\eta)} \frac{Q(u - 6\eta - i\pi)}{Q(u - 2\eta + i\pi)}
\]
\[+ \prod_{l=1}^{N} b(u - \theta_l)b(u + \theta_l)(1 + 2e^{-\epsilon} \sinh(u - 3\eta))(1 + 2e^{-\epsilon'} \sinh(u - 3\eta))\]
\[\times \frac{\sinh u \sinh(u - 6\eta)}{\sinh(u - 2\eta) \sinh(u - 4\eta)} \frac{Q(u + 2\eta + i\pi)Q(u - 4\eta)}{Q(u - 2\eta + i\pi)Q(u)}, \quad (4.20)\]

where the resulting function \(Q(u)\) is
\[
Q(u) = \prod_{j=1}^{M} \sinh\left[\frac{u - \lambda_j}{2} - \eta\right] \sinh\left[\frac{u + \lambda_j}{2} - \eta\right]. \quad (4.21)
\]

The resulting BAEs become
\[
\prod_{l=1}^{N} \frac{\sinh\left[\frac{\lambda_j - \theta_l}{2} - \eta\right] \sinh\left[\frac{\lambda_j + \theta_l}{2} - \eta\right]}{\sinh\left[\frac{\lambda_j - \theta_l}{2} + \eta\right] \sinh\left[\frac{\lambda_j + \theta_l}{2} + \eta\right]} \frac{(1 - 2e^{-\epsilon} \sinh(\lambda_j + \eta))(1 - 2e^{-\epsilon'} \sinh(\lambda_j + \eta))}{(1 + 2e^{-\epsilon} \sinh(\lambda_j - \eta))(1 + 2e^{-\epsilon'} \sinh(\lambda_j - \eta))}
\]
\[= -\frac{\sinh(\lambda_j + 2\eta) \cosh(\lambda_j - \eta)}{\sinh(\lambda_j - 2\eta) \cosh(\lambda_j + \eta)} \frac{Q(-\lambda_j - 2\eta)Q(-\lambda_j + 4\eta + i\pi)}{Q(\lambda_j - 2\eta)Q(\lambda_j + 4\eta + i\pi)}, \quad j = 1, \ldots, M. \quad (4.22)\]

On the other hand, the form of the pairs (4.19) implies that
\[
\sum_{j+1}^{N} \lambda_j = \sum_{j=1}^{N+2M} \left(\lambda_j - \lambda_j + 4\eta\right) = (2\bar{N} - 4M)\eta.
\]

The relation (4.12) and the definition (4.10) of \(\bar{N}\) give rise to the following constraint between the boundary parameters
\[
cosh(\sigma' - \sigma + 2\eta) = \cosh(4M\eta - 4N\eta + 2\eta), \quad 0 \leq M. \quad (4.23)\]

4.2.1 For a generic \(\eta\)

For a generic \(\eta\), there exist three solutions to the constraint (4.23). If the boundary parameters \(\sigma\) and \(\sigma'\) satisfy the constraint
\[
\sigma' - \sigma = -4k\eta \mod(2i\pi), \quad k \leq -N, \quad \text{and} \quad k \in \mathbb{Z}, \quad (4.24)
\]
the corresponding \(M\) can take only one allowed value,
\[
M = N - k. \quad (4.25)
\]

\[\text{One can always choose the non-negative integers } l_1 \text{ and } l_2 \text{ such that } M \text{ becomes any non-negative integer since that } 0 \leq M \leq 2(N + l_1) + l_2 - 1 = \bar{N}/2.\]
If the boundary parameters σ and σ' satisfy the following constraint
\[
\sigma' - \sigma = -4k\eta \mod(2i\pi), \quad 1 - N \leq k \leq N, \quad \text{and } k \in \mathbb{Z},
\] (4.26)
then M can take the two allowed values denoted by M^{\pm} respectively,
\[
M^{-} = N - k, \quad M^{+} = N + k - 1.
\] (4.27)

If the boundary parameters σ and σ' satisfy
\[
\sigma' - \sigma = -4k\eta \mod(2i\pi), \quad N + 1 \leq k, \quad \text{and } k \in \mathbb{Z},
\] (4.28)
M can take only one allowed value,
\[
M = N + k - 1.
\] (4.29)

For the case that the boundary parameters satisfy the relation (4.24) (or (4.28)), the eigenvalue of the transfer matrix is characterized by a fixed M in (4.25) (or (4.29)). This $\Lambda(u)$ itself might give the complete set of the eigenvalues of the transfer matrix. However, if the boundary parameters obey the relation (4.26), there exist two $\Lambda^{\pm}(u)$ corresponding to the two different allowed M in (4.27). Similar as that of the anisotropic spin-$\frac{1}{2}$ chain with arbitrary boundary fields [11, 26, 58, 59], these two $\Lambda^{\pm}(u)$ together might constitute the complete set of the eigenvalues of the transfer matrix.

4.2.2 For some degenerate η

Similar as that in the closed XYZ chain and the anisotropic spin-$\frac{1}{2}$ chain with arbitrary boundary fields [30], if the isotropic (or crossing) parameter η takes the following discrete value
\[
\eta = \frac{\sigma - \sigma'}{4N - 4M} + \frac{2i\pi m}{4N - 4M}, \quad m, M \in \mathbb{Z}, \quad \text{and } 0 \leq M,
\] (4.30)
the constraint (4.23) is automatically satisfied for arbitrary boundary parameters ϵ, ϵ', σ and σ'. Thus in this case the eigenvalue of the transfer matrix is given by (4.20) and the corresponding BAEs are given by (4.22). It should be emphasized that these degenerate points (4.30) become dense in the thermodynamic limit ($N, m, M \to \infty$). This enables one to obtain the thermodynamic properties (up to the order of $O(N^{-2})$) of the model for generic values of η via the conventional thermodynamic Bethe ansatz methods [60, 61]. This method has been proven to be very successful in the derivation of the surface energy of the XXZ spin chain with arbitrary boundary fields [62].
5 Reduction to the case with diagonal K-matrices

Now let us consider the diagonal K-matrices (i.e., taking the limits $\epsilon, \epsilon' \to +\infty$ of (2.21) and (2.22)). The resulting K-matrices read

$$K^-(u) = \text{id}, \quad K^+(u) = M,$$

where the matrix M is given by (2.12). The $T - Q$ ansatz (4.20) is reduced to the one obtained by analytic Bethe ansatz method

$$\Lambda(u) = \prod_{l=1}^{N} c(u - \theta_l) c(u + \theta_l) \frac{\sinh(u - 6\eta) \cosh(u - \eta)}{\sinh(u - 2\eta) \cosh(u - 3\eta)} \frac{Q(u + 4\eta)}{Q(u)} \frac{\sinh u \cosh(u - 5\eta)}{\sinh(u - 4\eta) \cosh(u - 3\eta)} \frac{Q(u - 6\eta + i\pi)}{Q(u - 2\eta + i\pi)} \frac{\sinh u \sinh(u - 6\eta)}{\sinh(u - 2\eta) \sinh(u - 4\eta)} \frac{Q(u - 4\eta)Q(u + 2\eta + i\pi)}{Q(u - 2\eta + i\pi)Q(u)},$$

where the function $Q(u)$ is still given by (4.21). In particular, in this case the vanishing condition of c is automatically satisfied thanks to the relation (4.12). In this case the $U(1)$-symmetry is recovered and M can take any of the following values

$$M = 0, 1, \ldots, 2N.$$ (5.3)

For each of the above allowed values, the resulting BAEs become

$$\prod_{l=1}^{N} \frac{\sinh[\Lambda_j - \theta_l - \eta] \sinh[\Lambda_j + \theta_l - \eta]}{\sinh[\Lambda_j - \theta_l + \eta] \sinh[\Lambda_j + \theta_l + \eta]} \frac{\sinh(\Lambda_j - 2\eta) \cosh(\Lambda_j + \eta)}{\sinh(\Lambda_j - \eta) \cosh(\Lambda_j + 2\eta) \cosh(\Lambda_j - \eta)} = -\frac{Q(-\Lambda_j - 2\eta)Q(-\Lambda_j + 4\eta + i\pi)}{Q(\Lambda_j - 2\eta)Q(\Lambda_j + 4\eta + i\pi)}, \quad j = 1, \ldots, M.$$ (5.4)

6 Conclusions

The Izergin-Korepin model with general non-diagonal boundary terms specified by the most general non-diagonal K matrices given by (2.21) and (2.22) has been studied by the off-diagonal Bethe ansatz method. Based on some intrinsic properties of the R-matrix and

\footnote{The allowed values (5.3) of M can be deduced by studying the asymptotic behaviors of the eigenvalue of transfer matrix [46].}
K-matrices, we derive the very functional relations (3.24) and (3.25) of the transfer matrix. These relations, together with other properties, allow us to construct an off-diagonal (or inhomogeneous) $T - Q$ relation (4.9) of the eigenvalue of the transfer matrix and the associated BAEs (4.18). When the boundary parameters satisfy one constraint (4.23), the resulting $T - Q$ relation is reduced to the conventional one (4.20), which might allow one to use the method developed in [62] to study the thermodynamic properties (up to the order of $O(N^{-2})$) of the model for generic values of η via the conventional thermodynamic Bethe ansatz methods [60, 61]. Taking the limit $\epsilon, \epsilon' \to +\infty$, the corresponding K-matrices become diagonal ones and the resulting $T - Q$ relation is recovered to that in [46].

Acknowledgments

The financial support from the National Natural Science Foundation of China (Grant Nos. 11174335, 11031005, 11375141, 11374334), the National Program for Basic Research of MOST (973 project under grant No.2011CB921700), the State Education Ministry of China (Grant No. 20116101110017) and BCMIIS are gratefully acknowledged.

Appendix A: Proof of the crossing symmetry

Direct calculation shows that the K-matrices given by (2.21)-(2.22) satisfy the following relations

$$K^-(u)K^-(u) = \Delta_-(u) \times \text{id},$$

(A.1)

$$V^t K^+(u + 6\eta + i\pi) V V^t K^+(u + 6\eta + i\pi) V = \Delta_+(u) \times \text{id},$$

(A.2)

where the matrix V is given by (2.10) and the functions $\Delta_{\pm}(u)$ are

$$\Delta_-(u) = (1 - 2e^{-\epsilon} \sinh(u - \eta))(1 + 2e^{-\epsilon} \sinh(u + \eta)), \quad (A.3)$$

$$\Delta_+(u) = (1 - 2e^{-\epsilon} \sinh(u - \eta))(1 + 2e^{-\epsilon'} \sinh(u + \eta)). \quad (A.4)$$

Similar as those in [56], let us introduce the following matrices $\bar{K}^\pm(u)$

$$\bar{K}_1^-(u) = \text{tr}_2 \left\{ P_{12} R_{21}(-2u) V_2 K_{2}^{-t_2}(u + 6\eta + i\pi) V_2^{t_2} \right\}, \quad (A.5)$$

$$\bar{K}_1^+(u + 6\eta + i\pi) = \text{tr}_2 \left\{ P_{12} R_{12}(2u) K_{2}^{+t_2}(u) \right\}. \quad (A.6)$$
Substituting the expressions (2.21)-(2.22) of the K-matrices into the above relations, we have that the K-matrices satisfy the following crossing relation

$$\bar{K}^-(u) = \frac{\text{Det}_q(K^-(u))}{\Delta_-(u)} K^-(u), \quad (A.7)$$

$$\bar{K}^+(u + 6\eta + i\pi) = \frac{\text{Det}_q(K^+(u))}{\Delta_+(u)} V^t K^+(-u + 6\eta + i\pi) V, \quad (A.8)$$

where the functions $\text{Det}(K^-(u))$ and $\text{Det}(K^+(u))$ are given respectively by (3.22) and (3.23).

Combining the crossing relation (2.6) and PT-symmetry (2.7) of the R-matrix, one may derive the following relations

$$R_{21}(u) = V_{1}^{t} R_{12}^{t}(-u + 6\eta + i\pi) V_{1}, \quad (A.9)$$

$$R_{21}(u) = V_{2} R_{12}^{t}(-u + 6\eta + i\pi) V_{2}. \quad (A.10)$$

Then the above relations, (2.6) and the expression (2.10) give rise to the following relation between the one-row monodromy matrices $T(u)$ and $\hat{T}(u)$ give by (2.15) and (2.16)

$$T_{0}^{t_0}(-u + 6\eta + i\pi) = V_{0}^{t_0} \hat{T}_{0}(u) V_{0}^{t_0}, \quad (A.11)$$

$$\hat{T}_{0}^{t_0}(-u + 6\eta + i\pi) = V_{0} T_{0}(u) V_{0}. \quad (A.12)$$

Following the method in [56] and using the QYBE (2.3), we can prove that the transfer matrix specified by the R-matrix given by (2.1) and the K-matrices given by (2.21) and (2.22) satisfies the crossing symmetry (3.28).

References

[1] R.J. Baxter, *Exactly Solved Models in Statistical Mechanics* (Academic Press, 1982).

[2] L. Dolan, C.R. Nappi and E. Witten, *JHEP* **0310** (2003), 017.

[3] N. Beisert, C. Ahn, L. F. Alday, Z. Bajnok, J. M. Drummond, et al., *Lett. Math. Phys.* **99** (2012), 1.

[4] A.A. Zvyagin, *Finite Size Effects in Correlated Electron Models: Exact Results*, Imperial College Press, London, 2005.

[5] X.-W. Guan, M.T. Batchelor, C. Lee, *Rev. Mod. Phys.* **85** (2013), 1633.
[6] J. de Gier and F. H. L. Essler, *Phys. Rev. Lett.* **95** (2005), 240601; *J. Stat. Mech.* (2006), P 12011.

[7] J. Sirker, R. G. Pereira, and I. Affleck. *Phys. Rev. Lett.* **103** (2009), 216602.

[8] L. A. Takhtadzhan and L. D. Faddeev, Rush. Math. Surveys **34** (1979), 11.

[9] C.M. Yung, M.T. Batchelor, Nucl. Phys. B 446 (1995) 461.

[10] R.I. Nepomechie, *J. Phys.* **34** (2001), 9993; *Nucl. Phys. B* **622** (2002), 615; *J. Stat. Phys.* **111** (2003), 1363; *J. Phys. A* **37** (2004), 433.

[11] J. Cao, H.-Q. Lin, K.-J. Shi and Y. Wang, *Nucl. Phys. B* **663** (2003), 487.

[12] W.-L. Yang and R. Sasaki, *J. Math. Phys.* **45** (2004), 4301; *Nucl. Phys. B* **679** (2004), 495.

[13] W. Galleas and M. J. Martins, *Phys. Lett. B A* **335** (2005), 167.

[14] W.-L. Yang and Y.-Z. Zhang, *JHEP* **12** (2004), 019; *JHEP* **01** (2005), 021.

[15] J. Cao, W.-L. Yang, K.-J. Shi and Y. Wang, arXiv:1312.4770.

[16] H. Bethe, *Z. Phys.* **71** (1931), 205.

[17] F.C. Alcaraz, M.N. Barber, M.T. Batchelor, R. J. Baxter and G.R.W. Quispel, *J. Phys. A* **20** (1987), 6397.

[18] R. J. Baxter, *Phys. Rev. Lett.* **26** (1971), 832; **26** (1971), 834; *Ann. Phys. (N.Y.)* **70** (1967), 323.

[19] E. K. Sklyanin and L. D. Faddeev, Sov. Phys. Dokl. **23** (1978), 902.

[20] E.K. Sklyanin, *J. Phys. A* **21** (1988), 2375.

[21] W.-L. Yang, Y.-Z. Zhang and M. Gould, *Nucl. Phys. B* **698** (2004), 503.

[22] J. de Gier and P. Pyatov, *J. Stat. Mech.* (2004), P03002; A. Nichols, V. Rittenberg and J. de Gier, *J. Stat. Mech.* (2005), P05003; J. de Gier, A. Nichols, P. Pyatov and V. Rittenberg, *Nucl. Phys. B* **729** (2005), 387.
[23] A. Doikou and P. P. Martins, *J. Stat. Mech.* (2006), P06004; A. Doikou, *J. Stat. Mech.* (2006), P09010.

[24] Z. Bajnok, *J. Stat. Mech.* (2006), P06010.

[25] P. Baseilhac and K. Koizumi, *J. Stat. Mech.* (2007), P09006.

[26] W.-L. Yang, R. I. Nepomechie and Y.-Z. Zhang, *Phys. Lett. B* 633 (2006), 664.

[27] W. Galleas, *Nucl. Phys.* B 790 (2008), 524.

[28] H. Frahm, A. Seel and T. Wirth, *Nucl. Phys.* B 802 (2008) 351.

[29] G. Niccoli, *J. Stat. Mech.* (2012), P10025; *Nucl. Phys. B* 870 (2013), 397; *J. Phys. A* 46 (2013), 075003.

[30] J. Cao, W.-L. Yang, K. Shi and Y. Wang, *Phys. Rev. Lett.* 111 (2013), 137201; J. Cao, W.-L. Yang, K. Shi and Y. Wang, *Nucl. Phys. B* 875 (2013), 152; J. Cao, W.-L. Yang, K. Shi and Y. Wang, [arXiv:1307.0280](http://arxiv.org/abs/1307.0280); J. Cao, W.-L. Yang, K. Shi and Y. Wang, *Nucl. Phys. B* 877 (2013), 152.

[31] Y.-Y. Li, J. Cao, W.-L. Yang, K. Shi, Y. Wang, *Nucl. Phys. B* 879 (2014), 98.

[32] X. Zhang, J. Cao, W.-L. Yang, K. Shi, Y. Wang, [arXiv:1312.0376](http://arxiv.org/abs/1312.0376).

[33] R.I. Nepomechie, *J. Phys. A* 46 (2013), 442002.

[34] Y. Jiang, S. Cui, J. Cao, Wen-Li Yang and Y. Wang, [arXiv:1309.6456](http://arxiv.org/abs/1309.6456).

[35] S. Faldella, N. Kitanine and G. Niccoli, [arXiv:1307.3960](http://arxiv.org/abs/1307.3960).

[36] N. Kitanine, J.-M. Maillet and G. Niccoli, [arXiv:1401.4901](http://arxiv.org/abs/1401.4901).

[37] S. Belliard and N. Cramparé, [arXiv:1309.6165](http://arxiv.org/abs/1309.6165).

[38] A. G. Izergin and V. E. Korepin, *Commun. Math. Phys.* 79 (1981), 303.

[39] R. K. Dodd and R. K. Bullough, *Proc. R. Soc. Lond.* A 352 (1977), 481.

[40] A.V. Zhiber and A.B. Shabat, *Dokl. Akad. Nauk. SSSR* 247 (1979), 1103.

[41] M. T. Batchelor and C. M. Yung, *Phys. Rev. Lett.* 74 (1995), 2026.
[42] N. Yu. Reshetikhin, *Sov. Phys. JETP* **57** (1983), 691.

[43] V. A. Tarasov, *Theor. Math. Phys.* **56** (1988), 793.

[44] J. D. Kim, *hep-th/9412192*.

[45] M. J. Martins, *Nucl. Phys. B* **450** (1995), 768.

[46] L. Mezincescu and R. I. Nepomechie, *Nucl. Phys. B* **372** (1992), 597.

[47] H. Fan, *Nucl. Phys. B* **488** (1997), 409.

[48] B.-Y. Hou, W.-L. Yang and Y.-Z. Zhang, *Nucl. Phys. B* **556** (1999), 485.

[49] A. Lima-Santos, *Nucl. Phys. B* **558** (1999), 637.

[50] W.-L. Yang and Y.-Z. Zhang, *Nucl. Phys. B* **596** (2001), 495.

[51] R. I. Nepomechie, *Lett. Math. Phys.* **62** (2002), 83.

[52] G.-L. Li, K.-J. Shi and R.-H. Yue, *Nucl. Phys. B* **670** (2003), 401.

[53] L. Mezincescu and R. I. Nepomechie, *Int. J. Mod. Phys.* **A6** (1991), 5231.

[54] M. Karowski, *Nucl. Phys. B* **153** (1979), 244;
 P. P. Kulish, N. Yu. Reshetikhin and E. K. Sklyanin, *Lett. Math. Phys.* **5** (1981), 393;
 P. P. Kulish and E. K. Sklyanin, *Lecture Notes in Physics* **151** (1982), 61;
 A. N. Kirillov and N. Yu. Reshetikhin, *J. Sov. Math.* **35** (1986), 2627;
 A. N. Kirillov and N. Yu. Reshetikhin, *J. Phys. A* **20** (1987), 1565.

[55] Y.-K. Zhou, *Nucl. Phys. B* **458** (1996), 504.

[56] W.-L. Yang and Y.-L. Zhang, *Nucl. Phys. B* **744** (2006), 312.

[57] W.-L. Yang and Y.-Z. Zhang, *JHEP* **04** (2007), 044.

[58] R.-I. Nepomechie and F. Ravanini, *J. Phys. A* **36** (2003), 11391.

[59] R.-I. Nepomechie and F. Ravanini, *J. Phys. A* **37** (2004), 1945.

[60] V. E. Korepin, N. M. Boliubov and A. G. Izergin, *Quantum Inverse Scattering Method and Correlation Functions* (1993), (Cambridge: Cambridge University Press).
[61] M. Takahashi, *Thermodynamics of One-Dimensional Solvable Models* (1999) (Cambridge: Cambridge University Press).

[62] Y.-Y. Li, J. Cao, W.-L. Yang, K. Shi, Y. Wang, [arXiv:1401.3045](http://arxiv.org/abs/1401.3045).