THE TIME DERIVATIVE IN A SINGULAR PARABOLIC EQUATION

Peter Lindqvist

Department of Mathematical Sciences
Norwegian University of Science and Technology
NO–7491 Trondheim, Norway

Dedicated to Olli Martio on his seventy-fifth birthday

Abstract: We study the Evolutionary p-Laplace Equation in the singular case $1 < p < 2$. We prove that a weak solution has a time derivative (in Sobolev’s sense) which is a function belonging (locally) to a L^q-space.

1 Introduction

The regularity theory for parabolic partial differential equations of the type

$$\frac{\partial u}{\partial t} = \text{div} A(x, t, u, \nabla u)$$

aims at establishing boundedness and continuity of the solution $u = u(x, t)$ and its gradient

$$\nabla u = \left(\frac{\partial u}{\partial x_1}, \ldots, \frac{\partial u}{\partial x_n} \right).$$

The celebrated methods of DeGiorgi, Nash, and Moser do not directly treat the time derivative u_t, which is regarded as merely a distribution. Yet, for many specific equations the time derivative is more than that, it is a function.

\footnotesize
\begin{enumerate}
\item AMS classification 35K67, 35K92, 35B45
\end{enumerate}
in Lebesgue’s theory. We shall prove that the solutions of the Evolutionary p-Laplace Equation
\[
\frac{\partial u}{\partial t} = \text{div} \left(|\nabla u|^{p-2} \nabla u \right)
\] (1)
have a first order time derivative u_t in Sobolev’s sense. Thus the time derivative exists as a measurable function satisfying the definition
\[
\int_0^T \int_\Omega u_t \phi \, dx \, dt = - \int_0^T \int_\Omega u \phi \, dx \, dt
\]
for all test functions $\phi \in C^\infty_0(\Omega_T)$. Here $\Omega_T = \Omega \times (0, T)$ and Ω is a domain in the n-dimensional space \mathbb{R}^n. The so-called degenerate case $p \geq 2$ (or slow diffusion case) was treated in [L1] and [L2] and now we shall focus our attention on the so-called singular case (or fast diffusion case) $1 < p < 2$, which is much more demanding, because the operator
\[
\text{div}(|\nabla u|^{p-2} \nabla u) = |\nabla u|^{p-2} \Delta u + (p - 2)|\nabla u|^{p-4} \sum_{i,j} \frac{\partial u}{\partial x_i} \frac{\partial u}{\partial x_j} \frac{\partial^2 u}{\partial x_i \partial x_j}
\]
is undefined at the critical points $\nabla u = 0$ when $p < 2$. (It is known that the second derivatives $u_{x_ix_j}$ exist in the singular case, but the negative power $p - 2$ spoils the formula.) — We refer to the books [DB], [WYZ] about the Evolutionary p-Laplace Equation. Our method is to differentiate the regularized equation
\[
\frac{\partial u}{\partial t} = \text{div} \left(\{ |\nabla u|^2 + \epsilon^2 \}^{\frac{p-2}{2}} \nabla u \right)
\] (2)
with respect to the x-variables and then to derive careful estimates which are passed over to the limit as $\epsilon \to 0$. The appearing identities are, of course, not new. The main formula to start from has been used for other purposes in [Y] and [WZY]. The case $p \geq \frac{3}{2}$ can be extracted from [Y]. See also [AMS] for systems. Unfortunately, there is an extra complication when p is small; in our proofs it appears in the range $1 < p < \frac{3}{2}$. To wit, the natural definition that weak solutions belong only to
\[
\mathcal{H} \subset C(0, T; L^2(\Omega)) \cap L^p(0, T; W^{1,p}(\Omega))
\]
is problematic, because it allows for unbounded solutions, when $1 < p < \frac{2n}{n+2}$. See [DB] and [DH] for this striking phenomenon. Various attempts to deal
with this situation are suggested in [BIV], where it is even proposed to assume that u_t and $\text{div}(\nabla|u|^{p-2}\nabla u)$ both belong to the space L^1. (Lemma III.3.6 in [DH] states that $u_t \in L^1_{\text{loc}}$ under the condition that the Bénilan-Crandall estimate

$$u_t \leq \frac{1}{2 - p} \frac{u}{t},$$

is valid, which requires some restrictions.) The common definition is to add the condition

$$u \in L^r(\Omega_T), \quad \text{where } p(n + r) > 2n$$

for some exponent r in this range. This extra assumption has the effect that the weak solutions become locally bounded. See [DH], in particular III.6 and III.7 for further information about this sharp condition.

We shall directly assume that $\|u\|_{\infty} < \infty$, if $1 < p < \frac{3}{2}$. However, in the one-dimensional case ($n = 1$) we have, without any extra hypothesis, a short proof that the time derivative is square summable.

Theorem 1 Suppose that u is a weak solution of the equation

$$u_t = \text{div}(\nabla|u|^{p-2}\nabla u)$$

in the domain Ω_T. In the case $1 < p < \frac{3}{2}$, $n \geq 2$, we make the extra assumption that u is bounded. Then the time derivative u_t exists in Sobolev’s sense and $u_t \in L^\theta(\Omega_T)$ for some $\theta > 1$.

If $p \geq \frac{3}{2}$ or $n = 1$, we can take $\theta = 2$.

If $1 < p < \frac{3}{2}$ and $n \geq 2$, we have the restriction $1 < \theta < \frac{1}{2 - p}$.

A quantitative proof is the object of this work. It is noteworthy that the proper regularity theory is not invoked.

2 Preliminaries

We use standard notation. See [DB] about time dependent Sobolev Spaces. Suppose that Ω is a bounded domain in \mathbb{R}^n and consider the space \times time cylinder $\Omega_T = \Omega \times (0, T)$. We shall always keep $1 < p \leq 2$, although many

\[\text{Neither is any extra condition needed for } n = 2, \text{ since } p(2 + r) > 2 \cdot 2, \text{ if } r = 2.\]
formulas are valid also for $p > 2$. Denote $\|D^2 u\|^2 = \sum u^2_{x_i x_j}$. Once and for all, we fix a test function $\zeta \in C^\infty_0(\Omega)$, $0 \leq \zeta \leq 1$. In the sequel, the constants in the estimates can depend on $\|\zeta\|_\infty$ and $\|\nabla \zeta\|_\infty$.

Definition 2 Assume that $u \in C(0, T; L^2(\Omega)) \cap L^p(0, T; W^{1,p}(\Omega))$. We say that u is a weak solution of the equation $u_t = \text{div}(|\nabla u|^{p-2} \nabla u)$ in Ω_T if

$$\int_0^T \int \nabla u |^{p-2} \langle \nabla u, \nabla \phi \rangle \, dx \, dt \quad \text{when} \quad \phi \in C_0(\Omega_T).$$

Especially, $u \in L^2(\Omega_T)$ by the assumption. The weak solutions for the regularized equation (2) are defined in a similar way, see (4). According to Theorem 4.2 on page 599 in [LSU] they have continuous second derivatives in all variables. We shall use the notation u_ε for the solution of the regularized equation with boundary values u on the parabolic boundary of Ω_T. The boundary values are taken in the following sense:

- $u_\varepsilon - u \in L^p(0, T; W^{1,p}_0(\Omega))$ and
- $\lim_{\delta \to 0} \frac{1}{\delta} \int_0^\delta \int \|u_\varepsilon - u\|^2 \, dx \, dt = 0$.

3 The Time Derivative

Our proof depends on the applicability of the rule

$$\int_0^T \int \nabla u |^{p-2} \langle \nabla u, \phi \rangle \, dx \, dt = \int_0^T \phi \nabla \cdot (|\nabla u|^{p-2} \nabla u) \, dx \, dt,$$

when $\phi \in C^\infty_0(\Omega_T)$. Thus the theorem follows, if we can prove that the derivatives $\partial/\partial x_j (|\nabla u|^{p-2} \nabla u)$ in the formula exist and belong to $L^2_{\text{loc}}(\Omega_T)$. Indeed, that we can do for $p > \frac{3}{2}$. Yet, for smaller values of p, the negative exponent $p - 2$ forces us to circumvent this expression, which is problematic when $\nabla u = 0$. We use the regularized equation

$$\int_0^T \int \nabla u_\varepsilon \phi \, dx \, dt = \int_0^T \phi \nabla \cdot \left(\frac{|\nabla u_\varepsilon|^2 + \varepsilon^2}{2} \nabla u_\varepsilon\right) \, dx \, dt$$

(4)
and prove that, as $\varepsilon \to 0$, the derivatives

$$\frac{\partial}{\partial x_j}\left(\{|\nabla u_\varepsilon|^2 + \varepsilon^2\}^{\frac{p-2}{2}} \frac{\partial u_\varepsilon}{\partial x_k}\right)$$

converge weakly in $L^p_{\text{loc}}(\Omega_T)$ with some $\theta > 1$. Since u_ε converges to u locally in $L^2(\Omega_T)$ by Proposition 4, the Theorem follows from the compactness result below, when we take into account that

$$\left|\frac{\partial}{\partial x_j}\left(\{|\nabla u_\varepsilon|^2 + \varepsilon^2\}^{\frac{p-2}{2}} \frac{\partial u_\varepsilon}{\partial x_k}\right)\right| \leq 2\left\{|\nabla u_\varepsilon|^2 + \varepsilon^2\}^{\frac{p-2}{2}} |\nabla u_\varepsilon|^2\right|$$

Assume that $u \in C(0, T; L^2(\Omega)) \cap L^p(0, T; W^{1,p}(\Omega))$ is a weak solution to $u_t = \text{div}(|\nabla u|^{p-2}\nabla u)$ in Ω_T. Let u_ε denote the solution of the regularized equation

$$\frac{\partial u_\varepsilon}{\partial t} = \text{div}\left(\{|\nabla u_\varepsilon|^2 + \varepsilon^2\}^{\frac{p-2}{2}} \nabla u_\varepsilon\right)$$

with the same boundary values as u on the parabolic boundary of Ω_T.

Lemma 3 We have uniformly with respect to ε:

- **$p \geq \frac{3}{2}$**:
 $$\int_0^T \int_\Omega \zeta^2\left(|\nabla u_\varepsilon|^2 + \varepsilon^2\right)^{2(p-2)} |\nabla u_\varepsilon|^2 dx dt \leq L < \infty, \quad \varepsilon \leq 1. \quad (\star)$$

- **$1 < p < \frac{3}{2}$**. Under the extra assumption that $\|u\|_\infty < \infty$, the quantity
 $$\int_0^T \int_\Omega \zeta^2\left(|\nabla u_\varepsilon|^2 + \varepsilon^2\right)^{\theta(p-2)} |\nabla u_\varepsilon|^2 dx dt \leq L(\theta) < \infty, \quad \varepsilon \leq 1.$$

 is uniformly bounded in ε when

 $$1 < \theta < \frac{1}{2 - p}.$$

- **$n = 1$**. In the one-dimensional case (\star) holds for all $p > 1$.

Proof: The second case is Proposition 7 and the two other cases are in Section 5. Formally, (\star) is equation (2.16) in [Y]. □
4 Convergence of the Approximation

In this section we shun the extra assumption about the boundedness of the weak solution u. This effort complicates the convergence proof for the u_ε's. Recall the equations
\[
\begin{aligned}
\frac{\partial u}{\partial t} &= \text{div} \left(|\nabla u|^{p-2} \nabla u \right) \\
\frac{\partial u_\varepsilon}{\partial t} &= \text{div} \left(\{ |\nabla u_\varepsilon|^2 + \varepsilon^2 \}^{\frac{p-2}{2}} \nabla u_\varepsilon \right)
\end{aligned}
\]
where $u = u_\varepsilon$ on the parabolic boundary of Ω_T.

Proposition 4 Under the assumption
\[
u \in C(0, T; L^2(\Omega)) \cap L^p(0, T; W^{1,p}(\Omega))
\]
the convergence
\[
u_\varepsilon \to u \quad \text{in} \quad L^2(\Omega_T), \quad \nabla u_\varepsilon \to \nabla u \quad \text{in} \quad L^p(\Omega_T)
\]
is valid.

Proof: Using the test function $\phi = u_\varepsilon - u$ in both equations we get
\[
W_\varepsilon \equiv \int_0^T \int_\Omega \langle |\nabla u_\varepsilon|^2 + \varepsilon^2 \rangle^{\frac{p-2}{2}} \nabla u_\varepsilon - |\nabla u|^{p-2} \nabla u, \nabla u_\varepsilon - \nabla u \rangle \, dxdt
= -\frac{1}{2} \int_\Omega (u_\varepsilon(x, T) - u(x, T))^2 \, dx \leq 0. \tag{5}
\]
Strictly speaking, in the equation for u we must go via a time regularization; the Steklov average works well and the final inequality $W_\varepsilon \leq 0$ follows. Thus
\[
J_\varepsilon \equiv \int_0^T \int_\Omega \{ |\nabla u_\varepsilon|^2 + \varepsilon^2 \}^{\frac{p-2}{2}} |\nabla u_\varepsilon|^2 \, dxdt
\leq - \int_0^T |\nabla u|^p \, dxdt + \int_0^T \int_\Omega \nabla u|^{p-2} \langle \nabla u, \nabla u_\varepsilon \rangle \, dxdt
+ \int_0^T \int_\Omega \{ |\nabla u_\varepsilon|^2 + \varepsilon^2 \}^{\frac{p-2}{2}} \langle \nabla u_\varepsilon, \nabla u \rangle \, dxdt.
\]
By Young’s inequality the last integrand satisfies
\[
\left| \frac{\mu}{q} \langle \nabla u, \nabla u \rangle \right| \leq \frac{1}{p} |\nabla u|^p + \frac{1}{q} \left\{ |\nabla u|^2 + \varepsilon^2 \right\}^{\frac{p}{2}} |\nabla u|^2,
\]
where \(q = p/(p-1) \). In the same way
\[
|\nabla u|^{p-2} \langle \nabla u, \nabla u \rangle \leq \frac{\sigma^p}{p} |\nabla u|^p + \frac{1}{\sigma q} |\nabla u|^p, \quad \sigma > 0.
\]
Upon integration and absorption of a term, we arrive at
\[
J_\varepsilon \leq (p-1)(\sigma^q-1) \int_0^T \int_0^\Omega |\nabla u|^p \, dx \, dt + \sigma \int_0^T \int_0^\Omega |\nabla u_\varepsilon|^p \, dx \, dt. \tag{6}
\]
In order to handle the last integral, we divide the domain of integration into two parts: the set \(|\nabla u_\varepsilon| \leq \varepsilon\) and the set \(|\nabla u_\varepsilon| \geq \varepsilon\). We have
\[
\int_0^T \int_0^\Omega |\nabla u_\varepsilon|^p \, dx \, dt \leq \varepsilon^p \text{mes}(\Omega_T) + \int_0^T \int_{|\nabla u_\varepsilon| \geq \varepsilon} |\nabla u_\varepsilon|^2 |\nabla u_\varepsilon|^{p-2} \, dx \, dt
\]
\[
\leq \varepsilon^p \text{mes}(\Omega_T) + 2^{\frac{2-p}{2}} \int_0^T \int_{|\nabla u_\varepsilon| \geq \varepsilon} \left\{ |\nabla u_\varepsilon|^2 + \varepsilon^2 \right\}^{\frac{p}{2}} |\nabla u_\varepsilon|^2 \, dx \, dt
\]
\[
\leq \varepsilon^p \text{mes}(\Omega_T) + 2^{\frac{2-p}{2}} J_\varepsilon.
\]
We insert this in equation (6) and obtain
\[
J_\varepsilon \leq (p-1)(\sigma^q-1) \int_0^T \int_0^\Omega |\nabla u|^p \, dx \, dt + \sigma \varepsilon^p \text{mes}(\Omega_T) + \sigma^p 2^{\frac{2-p}{2}} J_\varepsilon.
\]
We fix \(\sigma > 0 \) equal to a number, depending only on \(p \), so small that the last \(J_\varepsilon \)-term can be absorbed into the left-hand side. It follows that
\[
J_\varepsilon \leq C_p \left\{ \int_0^T \int_0^\Omega |\nabla u|^p \, dx \, dt + \varepsilon^p \text{mes}(\Omega_T) \right\},
\]
\[
\int_0^T \int_0^\Omega |\nabla u_\varepsilon|^p \, dx \, dt \leq 3C_p \left\{ \int_0^T \int_0^\Omega |\nabla u|^p \, dx \, dt + \varepsilon^p \text{mes}(\Omega_T) \right\}.
\]
In particular, we have a uniform bound:

$$\int_0^T \int_\Omega |\nabla u_\varepsilon|^p \, dx \, dt \leq K, \quad 0 \leq \varepsilon \leq 1.$$ \hspace{1cm} (7)

Now we split W_ε as

$$W_\varepsilon = \int_0^T \int_\Omega \langle |\nabla u_\varepsilon|^{p-2} \nabla u_\varepsilon - |\nabla u|^{p-2} \nabla u, \nabla u_\varepsilon - \nabla u \rangle \, dx \, dt$$

$$+ \int_0^T \int_\Omega \{ |\nabla u_\varepsilon|^2 + \varepsilon^2 \}^{\frac{p-2}{2}} \nabla u_\varepsilon - |\nabla u|^{p-2} \nabla u, \nabla u_\varepsilon - \nabla u \rangle \, dx \, dt,$$

and since $W_\varepsilon \leq 0$ by (5),

$$M_\varepsilon \equiv \int_0^T \int_\Omega \langle |\nabla u_\varepsilon|^{p-2} \nabla u_\varepsilon - |\nabla u|^{p-2} \nabla u, \nabla u_\varepsilon - \nabla u \rangle \, dx \, dt$$

$$\leq \int_0^T \int_\Omega \langle |\nabla u_\varepsilon|^{p-2} \nabla u_\varepsilon - \{ |\nabla u_\varepsilon|^2 + \varepsilon^2 \}^{\frac{p-2}{2}} \nabla u_\varepsilon, \nabla u_\varepsilon - \nabla u \rangle \, dx \, dt \equiv O_\varepsilon.$$

We claim that $O_\varepsilon \to 0$ as $\varepsilon \to 0$. Recall that $1 < p \leq 2$. Thus the inequality \hspace{1cm} 3

$$0 \leq |a|^{p-2} - (|a|^2 + \varepsilon^2)^{\frac{p-2}{2}} < \frac{2-p}{2} \varepsilon^2 |a|^{p-2} \delta^{-2} \quad |a| \geq \delta,$$

$$0 \leq |a|^{p-2} - (|a|^2 + \varepsilon^2)^{\frac{p-2}{2}} = -\int_0^1 \frac{d}{dt}(|a|^2 + t\varepsilon^2)^{\frac{p-2}{2}} \, dt$$

$$= \frac{2-p}{2} \varepsilon^2 \int_0^1 (|a|^2 + t\varepsilon^2)^{\frac{p-4}{2}} \, dt \leq \frac{2-p}{2} \varepsilon^2 |a|^{p-4}, \quad a \neq 0.$$
is available. Now we split the domain of integration for O_ε into two parts and achieve

$$
|O_\varepsilon| \leq \frac{2-p}{2} \varepsilon^2 \delta^{-2} \iint_{|\nabla u_\varepsilon| \geq \delta} |\nabla u_\varepsilon|^{p-1} |\nabla u_\varepsilon - \nabla u| \, dx \, dt
$$

$$
+ 2 \iint_{|\nabla u_\varepsilon| \leq \delta} |\nabla u_\varepsilon|^{p-1} |\nabla u_\varepsilon - \nabla u| \, dx \, dt.
$$

By Hölder’s inequality

$$
\iint |\nabla u_\varepsilon|^{p-1} |\nabla u_\varepsilon - \nabla u| \, dx \, dt \leq \left(\iint |\nabla u_\varepsilon|^{p} \, dx \, dt \right)^{\frac{p-1}{p}} \left\{ \|\nabla u_\varepsilon\|_{p} + \|\nabla u\|_{p} \right\}.
$$

Recalling the uniform bound (7), we see that

$$
|O_\varepsilon| \leq \frac{2-p}{2} \varepsilon^2 \delta^{-2} K^{1+\frac{1}{p}} \left(K^{\frac{1}{p}} + \|\nabla u\|_{p} \right) + 2 \varepsilon^{2} \left(K^{\frac{1}{p}} + \|\nabla u\|_{p} \right).
$$

It follows that

$$
\lim_{\varepsilon \to 0} O_\varepsilon = 0.
$$

The inequality\(^4\)

$$
\iint_{0}^{T} \int_{0}^{\Omega} \frac{|\nabla u_\varepsilon - \nabla u|^2 \, dx \, dt}{\left(1 + |\nabla u|^2 + |\nabla u_\varepsilon|^2 \right)^{\frac{2-p}{2}}} \leq M_\varepsilon \leq O_\varepsilon \quad (8)
$$

shows in combination with

$$
\iint_{0}^{T} \int_{0}^{\Omega} |\nabla u_\varepsilon - \nabla u|^{p} \, dx \, dt = \iint_{0}^{T} \int_{0}^{\Omega} |\nabla u_\varepsilon - \nabla u|^{p} \left\{ \frac{1 + |\nabla u|^2 + |\nabla u_\varepsilon|^2}{1 + |\nabla u|^2 + |\nabla u_\varepsilon|^2} \right\}^{\frac{p(2-p)}{4}} \, dx \, dt
$$

$$
\leq \left\{ \iint_{0}^{T} \int_{0}^{\Omega} \frac{|\nabla u_\varepsilon - \nabla u|^2 \, dx \, dt}{\left(1 + |\nabla u|^2 + |\nabla u_\varepsilon|^2 \right)^{\frac{2-p}{2}}} \right\}^{\frac{p}{2}} \iint_{0}^{T} \int_{0}^{\Omega} \left(1 + |\nabla u|^2 + |\nabla u_\varepsilon|^2 \right)^{\frac{p}{2}} \, dx \, dt
$$

\(^4\)For vectors

$$
\langle |b|^{p-2}b - |a|^{p-2}a, b - a \rangle \geq (p-1)|b - a|^2 \left(1 + |a|^2 + |b|^2 \right)^{\frac{p-2}{2}}, \quad 1 < p \leq 2.
$$
and the uniform bound (7) that
\[
\lim_{\varepsilon \to 0} \int_0^T \int_\Omega |\nabla u_\varepsilon - \nabla u|^p \, dx \, dt = 0. \tag{9}
\]

The convergence \(u_\varepsilon \to u\) in \(L^2(\Omega_T)\) can be extracted from the above proof, according to which
\[
\frac{1}{2} \int_\Omega (u_\varepsilon(x,T) - u(x,T))^2 \, dx = -W_\varepsilon = O_\varepsilon - M_\varepsilon \leq O_\varepsilon \to 0.
\]

When we replace \(T\) by \(t\), \(0 < t < T\), the same bound as before will majorize \(O_\varepsilon\) simultaneously for all \(t\). Integrating with respect to \(t\), we obtain
\[
\int_0^T \int_\Omega (u_\varepsilon(x,t) - u(x,t))^2 \, dx \, dt \leq 2T O_\varepsilon.
\]

This concludes the convergence proof. \(\square\)

5 The Main Identity

In order to derive estimates for the derivatives
\[
\frac{\partial}{\partial x_j} \left(|\nabla u|^{p-2} \nabla u \right)
\]
we differentiate the *regularized* equation
\[
\frac{\partial u_\varepsilon}{\partial t} = \text{div} \left((|\nabla u_\varepsilon|^2 + \varepsilon^2)^{\frac{p-2}{2}} \nabla u_\varepsilon \right).
\]

Using the abbreviations
\[
\begin{align*}
 u_{\varepsilon,j} &= \frac{\partial}{\partial x_j} u_\varepsilon, \quad v_\varepsilon = |\nabla u_\varepsilon|^2, \quad V_\varepsilon = |\nabla u_\varepsilon|^2 + \varepsilon^2 = v_\varepsilon^2 + \varepsilon^2
\end{align*}
\]
we have
\[
\frac{\partial}{\partial t} u_{\varepsilon,j} = \text{div} \left(V_\varepsilon^{\frac{p-2}{2}} \nabla u_{\varepsilon,j} + \nabla u_{\varepsilon,j} \frac{\partial}{\partial x_j} V_\varepsilon^{\frac{p-2}{2}} \right). \tag{10}
\]
We note
\[\frac{\partial}{\partial x_j} v_\varepsilon = 2 \langle \nabla u_\varepsilon, \nabla u_{\varepsilon,j} \rangle, \quad |\nabla v_\varepsilon|^2 \leq 4|\nabla u_\varepsilon|^2 |\nabla^2 u_\varepsilon|^2 \]
\[\frac{\partial}{\partial x_j} V_\varepsilon^{\varepsilon - 2} = (p - 2) V_\varepsilon^{\varepsilon - 2} \langle \nabla u_\varepsilon, \nabla u_{\varepsilon,j} \rangle.\]

In weak form the equation becomes
\[-\int_0^T \int_\Omega \phi_j \frac{\partial u_{\varepsilon,j}}{\partial t} \, dx \, dt \]
\[= \int_0^T \int_\Omega \left(V_\varepsilon^{\varepsilon - 2} \langle \nabla u_{\varepsilon,j}, \nabla \phi_j \rangle + (p - 2) V_\varepsilon^{\varepsilon - 2} \langle \nabla u_\varepsilon, \nabla u_{\varepsilon,j} \rangle \langle \nabla u_\varepsilon, \nabla \phi_j \rangle \right) \, dx \, dt,\]
valid at least for all test functions \(\phi_j \in C^\infty_0(\Omega_T), \ j = 1, 2, \ldots, n.\) (In fact, it is not needed that \(\phi_j = 0\) when \(t = 0\) or \(t = T.\)) We use the test functions
\[\phi_j = \zeta^2 V_\varepsilon^{\alpha} u_{\varepsilon,j}, \quad \zeta \in C^\infty_0(\Omega_T)\]
and sum the formulas to reach the identity below. (Such identities often serve to derive Caccioppoli inequalities.) We shall keep \(1 - p < 2\alpha < 0.\) Always, \(0 \leq \zeta \leq 1.\)
Fundamental formula

\[
\begin{align*}
\int_0^T \int_\Omega \zeta^2 V_\epsilon^{\frac{p-2+2\alpha}{2}} |\nabla^2 u_\epsilon|^2 \, dx \, dt & \quad \text{Main Term} \tag{I} \\
+ \frac{p - 2 + 2\alpha}{4} \int_0^T \int_\Omega \zeta^2 V_\epsilon^{\frac{p-2+2\alpha}{2}-1} |\nabla v_\epsilon|^2 \, dx \, dt & \tag{II} \\
+ \frac{\alpha(p - 2)}{2} \int_0^T \int_\Omega \zeta^2 V_\epsilon^{\frac{p-2+2\alpha}{2}-2} (\nabla u_\epsilon, \nabla v_\epsilon)^2 \, dx \, dt & \tag{III} \\
+ \frac{1}{2(\alpha + 1)} \left[\int_\Omega \zeta^2 V_\epsilon^{\alpha+1} \, dx \right]^T_0 & \tag{IV} \\
= (2 - p) \int_0^T \int_\Omega \zeta^2 V_\epsilon^{\frac{p-2+2\alpha}{2}-1} (\nabla u_\epsilon, \nabla v_\epsilon) (\nabla \zeta, \nabla u_\epsilon) \, dx \, dt \tag{V} \\
- \int_0^T \int_\Omega \zeta^2 V_\epsilon^{\frac{p-2+2\alpha}{2}} (\nabla \zeta, \nabla u_\epsilon) \, dx \, dt & \tag{VI} \\
+ \frac{1}{\alpha + 1} \int_0^T \int_\Omega V_\epsilon^{\alpha+1} \zeta \zeta_t \, dx \, dt & \tag{VII}
\end{align*}
\]

The proof is a straightforward calculation. (Compare with formula (2.5) in [Y] and formula (2.20) on page 166 in [WZY].) We only mention how to treat the part with the time derivative:

\[
\phi_j \frac{\partial}{\partial t} u_{\epsilon,j} = \zeta^2 V_\epsilon^\alpha \frac{\partial}{\partial t} \left(\frac{u_{\epsilon,j}^2}{2} \right) \\
\zeta^2 V_\epsilon^\alpha \frac{\partial}{\partial t} \left(\frac{v_\epsilon}{2} \right) = \frac{1}{2} \zeta^2 \frac{\partial}{\partial t} \left(\frac{V_\epsilon^{\alpha+1}}{\alpha + 1} \right).
\]

Thus, upon summation, the left-hand side of (\text{\textsc{\textbf{III}}}\text{)} becomes

\[
- \sum_{j=1}^n \int_0^T \int_\Omega \phi_j \frac{\partial u_{\epsilon,j}}{\partial t} \, dx \, dt = \frac{1}{2} \left[\int_\Omega \zeta^2 V_\epsilon^{\alpha+1} \, dx \right]^T_0 - \int_0^T \zeta \zeta_t \frac{V_\epsilon^{\alpha+1}}{\alpha + 1} \, dx \, dt.
\]
The right-hand side yields six terms, since the right-hand side of (10) is multiplied by
\[
\nabla \phi_j = \zeta^2 V_\epsilon \nabla u_{\epsilon,j} + \alpha \zeta^2 v_\epsilon^{a-1} u_{\epsilon,j} \nabla V_\epsilon + 2 V_\epsilon^a u_{\epsilon,j} \zeta \nabla \zeta;
\]
two similar terms are joined in term \(I I\).

Always, \(0 > 2\alpha > 1 - p\) and \(1 < p \leq 2\), which means that the factor in front of term \(I I\) is negative. The integral itself is of the same magnitude as term \(I\), and
\[
|\nabla v_\epsilon|^2 \leq 4 v_\epsilon |\nabla^2 u_\epsilon|^2 \leq 4 V_\epsilon |\nabla^2 u_\epsilon|^2.
\]
(12)
This causes the constraint: \(p - 1 + 2\alpha > 0\). Term \(I I\) is positive, but since the expression
\[
\langle \nabla u_\epsilon, \nabla v_\epsilon \rangle = 4 \sum_{i,j=1}^n \frac{\partial u_\epsilon}{\partial x_i} \frac{\partial u_\epsilon}{\partial x_j} \frac{\partial^2 u_\epsilon}{\partial x_i \partial x_j}
\]
may vanish, it is of little use, except in the one dimensional case when term \(I I\) matches term \(I\).

Estimation of some terms

Vanishing of term \(I V\) It is zero, as \(\zeta\) has compact support also in the time direction.

Absorption of term \(V\) We can use Young’s inequality to absorb term \(V\) into the main term \(I\). Now by (12)
\[
|\langle \nabla u_\epsilon, \nabla v_\epsilon \rangle \langle \nabla \zeta, \nabla u_\epsilon \rangle| \leq |\nabla u_\epsilon|^2 |\nabla \zeta| |2 V_\epsilon^{1/2} |\nabla^2 u_\epsilon|
\]
and with a small parameter \(\sigma > 0\)
\[
|V| \leq (2 - p) \sigma I + (2 - p) \sigma^{-1} \int_0^T V_\epsilon^{\frac{p+2\alpha}{2}} |\nabla \zeta|^2 dxdt.
\]
(13)
Term \(VI\) Since \(|\langle \nabla \zeta, \nabla v_\epsilon \rangle| \leq 2 |\nabla \zeta| |\nabla u_\epsilon| |\nabla^2 u_\epsilon|\), we get the same as above:
\[
|VI| \leq \sigma I + \sigma^{-1} \int_0^T V_\epsilon^{\frac{p+2\alpha}{2}} |\nabla \zeta|^2 dxdt.
\]
(14)
With these arrangements the main formula yields the estimate

\[(1 - (3 - p)\sigma)I + I + \ II + \ III \leq (3 - p)\sigma^{-1} \int_0^T V_{\varepsilon}^{p+2\alpha} |\nabla \zeta|^2 \, dx \, dt + \ VII\]

The one-dimensional case

In one space dimension we have

\[u'_{\varepsilon} = \frac{\partial u_{\varepsilon}}{\partial x}, \quad u''_{\varepsilon} = \frac{\partial^2 u_{\varepsilon}}{\partial x^2}\]

We fix \(2\alpha = p - 2\), which is negative. Then the sum \(I + I + \ III\) can be written as

\[\int_0^T \int_\Omega \zeta^2 V_{\varepsilon}^{p-2} \left|\frac{\partial^2 u_{\varepsilon}}{\partial x^2}\right|^2 \left\{1 + 2(p - 1)u_{\varepsilon}^2 v_{\varepsilon}^{-1} + (p - 2)^2 u_{\varepsilon}^4 v_{\varepsilon}^{-2}\right\} \, dx \, dt.\]

The expression in braces is a perfect square and can be estimated as

\[\{1 + \ldots v_{\varepsilon}^{-2}\} = \left(\frac{(p - 1)u_{\varepsilon}^2 + \varepsilon^2}{u_{\varepsilon}^2 + \varepsilon^2}\right)^2 \geq (p - 1)^2.\]

Thus the total estimate in one dimension reads

\[((p - 1)^2 - (3 - p)\sigma) \int_0^T \zeta^2 V_{\varepsilon}^{p-2} \left|\frac{\partial^2 u_{\varepsilon}}{\partial x^2}\right|^2 \, dx \, dt\]

\[\leq (3 - p)\sigma^{-1} \int_0^T V_{\varepsilon}^{p-1} |\nabla \zeta|^2 \, dx \, dt + \frac{2}{p} \int_0^T \int_\Omega V_{\varepsilon}^{p} |\zeta\zeta_t| \, dx \, dt.\]

Now we only have to fix \(\sigma\) small enough, noticing that

\[V_{\varepsilon}^{p-1} \leq u_{\varepsilon}^p + 1, \quad V_{\varepsilon}^{p} \leq 2(u_{\varepsilon}^p + \varepsilon^p),\]

to obtain the majorant

\[\int_0^T \int_\Omega \zeta^2 V_{\varepsilon}^{p-2} \left|\frac{\partial^2 u_{\varepsilon}}{\partial x^2}\right|^2 \, dx \, dt \leq C(p) \left\{\int_0^T \int_\Omega |\nabla u_{\varepsilon}|^p \, dx \, dt + 1\right\}. \quad (16)\]
The majorant is finite and, by (7) independent of \(\varepsilon \), but the constant factor \(C (p) \) depends also on \(\| \zeta_t \|_\infty \).

To proceed, use

\[
\frac{\partial}{\partial x} \left\{ u'_\varepsilon^2 + \varepsilon^2 \right\}^{\frac{p-2}{2}} u'_\varepsilon \leq (p - 1) V_{\varepsilon}^{\frac{p-2}{2}} \frac{\partial^2 u'_\varepsilon}{\partial x^2}^2
\]

to conclude that

\[
\frac{\partial}{\partial x} \left\{ u'_\varepsilon^2 + \varepsilon^2 \right\}^{\frac{p-2}{2}} u'_\varepsilon \text{ converges weakly in } L^2_{\text{loc}}(\Omega_T)
\]
at least through a subsequence. Thus we may pass to the limit under the integral signs in

\[
- \iint_0^T \int_\Omega u_\varepsilon \frac{\partial \phi}{\partial t} \, dx \, dt = \iint_0^T \int_\Omega \phi \frac{\partial}{\partial x} \left(\{ u'_\varepsilon + \varepsilon^2 \}^{\frac{p-2}{2}} u'_\varepsilon \right) \, dx \, dt
\]

and conclude that the time derivative \(u_t \) exists and belongs locally to \(L^2 \). The limit is some function.

General Estimate, 1 < p < 2

In several space dimensions term III is no longer so useful, so one may as well skip it since it is positive when \(\alpha < 0 \). However, it is convenient to use it to counterbalance a portion of term V:

\[
|V| \leq \text{III} + \frac{2 - p}{|\alpha|} \iint_0^T V_{\varepsilon}^{\frac{p+2\alpha}{2}} |\nabla \zeta|^2 \, dx \, dt,
\]

where Young’s inequality was used. Now we have the general estimate

Lemma 5 (1 < p < 2.) Let \(\sigma > 0 \). We have

\[
(p - 1 + 2\alpha - \sigma) \iint_0^T \zeta^2 V_{\varepsilon}^{\frac{p+2\alpha}{2}} |\nabla^2 u'_\varepsilon|^2 \, dx \, dt
\]

\[
\leq \left(\sigma^{-1} + \frac{2 - p}{|\alpha|} \right) \iint_0^T V_{\varepsilon}^{\frac{p+2\alpha}{2}} |\nabla \zeta|^2 \, dx \, dt + \frac{1}{\alpha + 1} \iint_0^T V_{\varepsilon}^{\alpha+1} \zeta_t \, dx \, dt.
\]

15
This is worthless if one does not obey the

\[p - 1 + 2\alpha > 0 \]

6 The case \(\frac{3}{2} < p < 2 \)

Again, we take \(2\alpha = p - 2 \). Then by (17)

\[
(2p - 3 - \sigma) \int_0^T \int_\Omega \zeta^2 V_{\varepsilon}^{p-2} |\nabla^2 u_{\varepsilon}|^2 \, dx \, dt \\
\leq (\sigma^{-1} + 2) \int_0^T \int_\Omega V_{\varepsilon}^{p-1} |\nabla \zeta|^2 \, dx \, dt + \frac{1}{p - 1} \int_0^T \int_\Omega V_{\varepsilon}^{p} \zeta \zeta_t \, dx \, dt,
\]

Provided that \(2p > 3 \), this yields the desired local bound with a majorant free of \(\varepsilon \) according to (17).

7 An ”Energy Term” with \(p < \frac{3}{2} \)

In the demanding case \(p < \frac{3}{2} \) we need to estimate the last integral in (17). In this case, we assume that the solution is bounded: \(\|u\|_{\infty} < \infty \). Obviously

\[
V_{\varepsilon}^{\alpha+1} = V_{\varepsilon}^{\alpha} (\varepsilon^2 + |\nabla u_{\varepsilon}|^2) \leq \varepsilon^{2(\alpha+1)} + V_{\varepsilon}^{\alpha} \langle \nabla u_{\varepsilon}, \nabla u_{\varepsilon} \rangle,
\]

since \(\alpha < 0 \). If \(\zeta \in C_0^\infty(\Omega) \), then\(^5\)

\[
\int_0^T \int_\Omega \zeta \zeta_t V_{\varepsilon}^{\alpha+1} \, dx \, dt \leq \varepsilon^{2(\alpha+1)} \int_0^T \int_\Omega |\zeta \zeta_t| \, dx \, dt + \int_0^T \int_\Omega \zeta \zeta_t V_{\varepsilon}^{\alpha} \langle \nabla u_{\varepsilon}, \nabla u_{\varepsilon} \rangle \, dx \, dt.
\]

\(^5\)It is essential that this holds also when \(\zeta \zeta_t < 0 \).
Integration by parts yields
\[
\int_0^T \int_\Omega \zeta_t V^\alpha \langle \nabla u_\varepsilon, \nabla u_\varepsilon \rangle \, dx \, dt = - \int_0^T u_\varepsilon \nabla \cdot (\zeta_t V^\alpha \nabla u_\varepsilon) \, dx \, dt
\]
\[
= - \int_0^T (u_\varepsilon V^\alpha \langle \nabla (\zeta_t), \nabla u_\varepsilon \rangle - 2\alpha \zeta_t u_\varepsilon V^\alpha \langle \nabla u_\varepsilon, \nabla u_\varepsilon \rangle) - u_\varepsilon \zeta_t V^\alpha \Delta u_\varepsilon) \, dx \, dt
\]
\[
\leq \int_0^T \left| u_\varepsilon V^\alpha \nabla (\zeta_t) \right| \| \nabla u_\varepsilon \| \, dx \, dt + (1 + 2|\alpha|) \int_0^T |\zeta_t u_\varepsilon| V^\alpha |\nabla^2 u_\varepsilon| \, dx \, dt.
\]

The last integral can now be absorbed into the main term in (17). To see this, factorize
\[
\zeta_t V^\alpha = \zeta V^\frac{p+2\alpha-2}{4} \cdot \zeta_t V^\frac{2-p+2\alpha}{4}
\]
and select a small \(\kappa > 0 \) for Young’s inequality \(2ab \leq \kappa a^2 + \kappa^{-1}b^2 \). We arrive at the final bound below, after some arrangements.

Lemma 6 (Energy Estimate) We have

\[
\underbrace{\int_0^T \zeta_t V^\alpha \, dx \, dt}_{\text{(Term VII)}} \leq \varepsilon^{2(\alpha+1)} \int_0^T |\zeta_t| \, dx \, dt + 2\| u_\varepsilon \|_\infty \int_0^T |\nabla (\zeta_t)| V^\frac{2\alpha+1}{2} \, dx \, dt
\]
\[
\frac{1 + 2|\alpha|}{2} \left\{ \kappa \int_0^T \zeta^2 V^\frac{p+2\alpha-2}{2} |\nabla^2 u_\varepsilon|^2 \, dx \, dt + \kappa^{-1} \int_0^T \zeta_t^2 V^\frac{2-p+2\alpha}{2} \, dx \, dt \right\} \| u_\varepsilon \|_\infty
\]

8 **The Case \(p < \frac{3}{2} \)**

We combine the estimate in Lemma 6 with the general inequality (17) writing
\[
p - 2 + 2\alpha = \theta(p - 2), \quad 2\alpha = (\theta - 1)(p - 2) > 1 - p
\]
We must obey the restriction \(p - 1 + 2\alpha > 0 \), which means that

\[
1 < \theta < \frac{1}{2 - p}
\]

We obtain

\[
(1 + \theta(p - 2) - \sigma - \frac{2\kappa\|u_\varepsilon\|_\infty}{2 - p}) \int_0^T \int_\Omega \zeta^2 V_\varepsilon^{\theta(p-2)}|\nabla^2 u_\varepsilon|^2 \, dx \, dt
\]

\[
\leq \frac{\varepsilon^{2(\alpha+1)}}{\alpha + 1} \int_0^T \int_\Omega |\nabla \zeta_\varepsilon| \, dx \, dt + \frac{2\|u_\varepsilon\|_\infty}{\alpha + 1} \int_0^T \int_\Omega |\nabla (\zeta_\varepsilon)| V_\varepsilon^{2(\alpha+1)} \, dx \, dt
\]

\[
+ \frac{2\kappa^{-1}\|u_\varepsilon\|_\infty}{2 - p} \int_0^T \int_\Omega \zeta_\varepsilon^2 V_\varepsilon^{-p+2\alpha} \, dx \, dt
\]

\[
+ \left(\sigma^{-1} + \frac{2 - p}{\|\alpha\|}\right) \int_0^T \int_\Omega V_\varepsilon^{\frac{p+2\alpha}{2}} |\nabla \zeta|^2 \, dx \, dt,
\]

where simplifying estimations like \(\frac{1+2|\alpha|}{2(\alpha+1)} \leq \frac{2}{2-p} \) have been made. Notice that \(\alpha + 1 > 0 \). Now the powers of \(V_\varepsilon \) are decisive; they must be positive and no greater than \(p/2 \). Our permanent restriction \(0 > 2\alpha > 1 - p \) leads to

\[
0 < \frac{2\alpha+1}{2} < \frac{p}{2}, \quad \frac{1}{2} < \frac{p+2\alpha}{2} < \frac{p}{2}, \quad \frac{3-2p}{2} < \frac{2-p+2\alpha}{2} < \frac{p}{2},
\]

but now we need \(p < \frac{3}{2} \) in order to assure

\[
\frac{2 - p + 2\alpha}{2} > 0.
\]

We see that the exponents are in the right range, and for the last three integrals we can use

\[
V_\varepsilon^\beta \leq |\nabla u_\varepsilon|^p + 1 \quad \text{for} \quad 0 < \beta < \frac{p}{2}, \quad 0 < \varepsilon \leq 1
\]

and then the uniform bound \((7)\). By the Maximum Principle \(\|u_\varepsilon\|_\infty \leq \|u\|_\infty \) (equality holds). Hence we have the following result:
Proposition 7 Let $1 < p < \frac{3}{2}$. Fix θ in the range $1 < \theta < \frac{1}{2-p}$. Then the integral
\[
\int_0^T \int_0^\Omega \zeta^2 \nu^{\theta(p-2)} \|\nabla^2 u_\epsilon\|^2 \, dx \, dt \leq L(\theta), \quad 0 < \epsilon \leq 1,
\]
is uniformly bounded in ϵ. The bound $L(\theta)$ depends also on p, $\|u\|_\infty$, $\|\nabla \zeta\|_\infty$, $\|\zeta_t\|_\infty$, and the constant K in [7].

References

[AMS] E. Acerbi, G. Mingione, G. Seregin, Regularity results for parabolic systems related to a class of non-Newtonian fluids, Annales de l’Institut Henri Poincaré - Analyse Non Linéaire 21, 2004, pp. 25–60.

[BIV] M. Bonforte, R. Iagar, J-L. Vázquez, Local smoothing effects, positivity, and Harnack inequalities for the fast p-Laplacian equation, Advances in Mathematics 224, 2010, pp.2151–2215.

[C] H. Choe, A regularity theory for a more general class of quasilinear parabolic partial differential equations and variational inequalities, Differential Integral Equations 5, 1992, pp. 915–944.

[DB] E. DiBenedetto, Degenerate Parabolic Equations, Springer-Verlag, New York 1993.

[DH] E. DiBenedetto, M. Herrero, Non-negative solutions of the evolution p-Laplacian equation. Initial traces and Cauchy problem when $1 < p < 2$, Archive for Rational Mechanics and Analysis 111, 1990, pp. 225–290.

[DGV] E. DiBenedetto, U. Gianazza, V. Vespri, Harnack’s Inequality for Degenerate and Singular Parabolic Equations, Springer, New York 2012.

[LSU] O. Ladyzhenskaya, V. Solonnikov, N. Uraltseva, Linear and Quasilinear Equations of Parabolic Type, Mathematical Monographs 23, American Mathematical Society, Providence RI 1967.

[L1] P. Lindqvist, On the time derivative in a quasilinear equation, Transactions of The Royal Norwegian Society of Sciences and Letters, 2008 no. 2, pp. 1–7.
[L2] P. Lindqvist, *On the time derivative in an obstacle problem*, Revista Mathematica Iberoamericana 28, 2012, pp. 577–590.

[WZY] Z. Wu, J. Zhao, J. Yin, H. Li, *Non-linear Diffusion Equations*, World Scientific, Singapore 2001.

[Y] C. Yazhe, *Hölder continuity of the gradient of certain degenerate parabolic equations*, Chinese Annals of Mathematics, Series B, 8 no. 3, 1987, pp. 343–356.