Elucidating the Molecular Determinants of Aβ Aggregation with Deep Mutational Scanning

Vanessa E. Gray,* Katherine Sitko,* Floriane Z. Ngako Kameni,* Miriam Williamson,* Jason J. Stephany,* Nicholas Hasle,* and Douglas M. Fowler*†,‡

*Department of Genome Sciences, †Department of Bioengineering, University of Washington, Seattle, WA, and ‡Genetic Networks Program, CIFAR, Toronto, ON, Canada

ORCID IDs: 0000-0001-8007-4891 (V.E.G.); 0000-0001-7614-1713 (D.M.F.)

ABSTRACT Despite the importance of Aβ aggregation in Alzheimer’s disease etiology, our understanding of the sequence determinants of aggregation is sparse and largely derived from in vitro studies. For example, in vitro proline and alanine scanning mutagenesis of Aβ40 proposed core regions important for aggregation. However, we lack even this limited mutagenesis data for the more disease-relevant Aβ42. Thus, to better understand the molecular determinants of Aβ aggregation in a cell-based system, we combined a yeast DHFR aggregation assay with deep mutational scanning. We measured the effect of 791 of the 798 possible single amino acid substitutions on the aggregation propensity of Aβ42. We found that ~75% of substitutions, largely to hydrophobic residues, maintained or increased aggregation. We identified 11 positions at which substitutions, particularly to hydrophilic and charged amino acids, disrupted Aβ aggregation. These critical positions were similar but not identical to critical positions identified in previous Aβ mutagenesis studies. Finally, we analyzed our large-scale mutagenesis data in the context of different Aβ aggregate structural models, finding that the mutagenesis data agreed best with models derived from fibrils seeded using brain-derived Aβ aggregates.

Protein aggregation affects all known organisms from bacteria to humans and is implicated in a number of human diseases. Decades of genetic, biochemical and epidemiological work suggests that aggregation of the amyloid β (Aβ) peptide is related to the incurable neurodegeneration associated with Alzheimer’s disease (Hardy and Selkoe 2002; Lesné et al. 2008; Bertram and Tanzi 2008; Shankar et al. 2009; Masters and Selkoe 2012; Hardy 2017). Aβ peptide is generated by post-translational cleavage of the transmembrane amyloid β precursor protein at variable positions to produce peptides that range from 38 to 43 amino acids in length. The most aggregation-prone form of Aβ is 42 amino acids long (Aβ42), though Aβ40 is present at higher concentrations in human cerebrospinal fluid (Jarrett et al. 1993; Iwatsubo et al. 1994; Dahlgren et al. 2002). The aggregation of Aβ begins with a shift in equilibrium from soluble monomers to oligomers, and these oligomers may nucleate amyloidogenesis (Matsumura et al. 2011; Barz et al. 2018). In Alzheimer’s disease, Aβ fibrils accumulate in the extracellular space forming the major component of amyloid plaques, a defining feature of the disease.

Despite the importance of Aβ aggregation in Alzheimer’s disease etiology, our understanding of the sequence determinants of aggregation is sparse and largely derived from in vitro studies. In the past decade, several assays based on the budding yeast S. cerevisiae have been used to study protein aggregation (Bagriantsev and Liebman 2006; Haar et al. 2007; Caine et al. 2007; Morell et al. 2011; D’Angelo et al. 2013). Notably, a growth-based assay that separates toxicity from aggregation offers a way to investigate how changes in Aβ sequence impact aggregation propensity (Morell et al. 2011) (Figure 1A). In this assay, Aβ is cytoplasmically localized to eliminate its aggregation-associated toxicity (Treusch et al. 2011; D’Angelo et al. 2013). To link Aβ aggregation to yeast growth, Aβ is fused to an essential protein, dihydrofolate reductase (DHFR) via a short peptide linker. The result is that DHFR activity depends on the solubility of Aβ. Thus, upon
treatment with the competitive DHFR inhibitor methotrexate, yeast expressing soluble Aβ variants grow rapidly, whereas yeast expressing aggregating Aβ variants grow slowly.

Mutagenesis can elucidate the role of individual residues in protein aggregation. For example, in *vitro* proline (Williams et al. 2004) and alanine (Williams, Shivaprasad, and Wetzel 2006) scanning mutagenesis of Aβ42 revealed core regions important for aggregation. However, we lack even this limited mutagenesis data for the more disease-relevant Aβ42 and, so far, the majority of mutagenesis studies have been performed in *vitro*.

Thus, to fully understand the molecular determinants of Aβ42 aggregation in a cell-based system, we combined the yeast growth-based aggregation assay with deep mutational scanning (Araya and Fowler 2011; Fowler and Fields 2014; Fowler et al. 2014) to measure the effect of 791 of the possible 798 single amino acid substitution on the aggregation propensity of Aβ42. We used high-throughput DNA sequencing to track the frequency of each Aβ42 variant during the selection, enabling us to assign a solubility score to every variant. We present the first large-scale, cell-based mutational analysis of Aβ, illuminating the physicochemical properties of amino acids that abrogate, promote or do not affect Aβ aggregation. Of 791 single amino acid Aβ variants we evaluated, ~75% maintained or increased aggregation. In addition, we identified 11 positions at which substitutions, particularly to hydrophilic and charged amino acids, disrupted Aβ aggregation. These critical positions were similar but not identical to critical positions identified in previous Aβ mutagenesis studies. Finally, we analyzed our large-scale mutagenesis data in the context of different Aβ aggregate structural models, finding that some structures were plausible whereas others were not.

METHODS

Library construction

The library was cloned using in *vivo* assembly (García-Nafría et al. 2016). First, a forward primer containing a 5' homology region, an NNK codon, and a 3' extension region was designed for each codon in Aβ42 (Table S1). The homology and extension regions were at least 15 nucleotides in length and had melting temperatures greater than 55°C. Reverse primers were the reverse complement of the 5' homology region.

A separate PCR reaction was performed for each codon. These reactions contained 40 ng template (p416GAL1-Aβ-DHFR) and 10 μM forward and reverse primers (IDT, custom oligos) in a total reaction volume of 30 μL. The following cycling conditions were used: 95°C 3 min, 8x [98°C 20 sec, 60°C 15 sec, 72°C 9 min], 72°C 9 min. After PCR, 7.5 μL of each product was run on a 1.5% agarose gel for 30 min at 100V to check for a single product. The remaining 22.5 μL aliquots of product were each digested for an hour at 37°C with 0.6 μL of DpnI (NEB, R0176S). After digestion, 4 μL of each linear product was transformed into a 50 μL of TOP10F Chemically Competent *E. coli* (ThermoFisher, C303003) according to manufacturer’s instructions, with the following modifications: the protocol was done in a 96 well plate, and cells were recovered in a total volume of 200 μL SOC. After recovery, cells were transferred to a deep well plate with 1.6-1.8 mL of ampicillin LB and shaken overnight. To estimate colony count, 50 μL of culture was plated on an LB + ampicillin agar plate.

Variant effect analysis

Enrich2 was used to calculate solubility scores for each Aβ variant from sequencing fastq files (Rubin et al. 2017). The Enrich2 pipeline calculates a variant’s score in three steps. First, a variant’s normalized frequency ratios are tabulated for each timepoint by dividing the frequency of a variant over 48h using a spectrophotometer that detects 660 nm wavelengths. The following equation was used to calculate doubling times from two time points: \((Log_{10}(OD_{T2}/OD_{T1})/Log_{10}(2)) / ΔT\), where OD represents the optical density at 600nm at a time point (T). For co-culture experiments, yeast with aggregating and nonaggregating variants were inoculated at equal densities in 300 mL. Ten OD units of yeast were collected from 300 mL cultures every 12h, spun down, concentrated and stored in -80°C. At the end of the experiment, frozen yeast were thawed and then their plasmids were extracted using a DNA Clean and Concentrator Kit (Zymo Research, D4013). Extracted plasmids were prepped and sequenced using Sanger sequencing. For the deep mutational scan, 300 mL cultures were sampled at the following timepoints: input, 28h (OD ≈ 1.0), 31.5h (OD ≈ 2.0), 35h (OD ≈ 3.0), 38h (OD ≈ 4.5), and 40h (OD ≈ 6.0). Cultures were spun down, concentrated and stored in -80°C. Plasmids were extracted from yeast with Yeast Plasmid Miniprep 1 kit (Zymo Research, D-2001). Library fragments were amplified in 17 PCR cycles using primers specific to DNA sequences that flank Aβ-DHFR in p416, and sequenced by an Illumina NextSeq sequencer using paired-end reads (Table S1).

Classifying Aβ variants using synonymous mutations

Variant classifications (i.e., WT-like, more aggregation-prone, more soluble) were assigned using the distribution of 39 synonymous mutations from the deep mutational scan. We define WT-like as any variant
with a score within \pm 2$ SD of the synonymous variant mean [-0.26,0.39]. A variant is more-aggregation prone than wildtype if its score is greater than 0.39 or more soluble if its score is lower than -0.26.

Data and code availability

Raw sequencing data is available in the NCBI GEO database (accession number GSE139122). Code and variant scores are available at https://github.com/FowlerLab/amyloidBeta2019. Supplemental material available at FigShare: https://doi.org/10.6084/m9.figshare.8330297.

RESULTS

First, we verified that the DHFR-based yeast aggregation assay could differentiate between aggregating wild type Aβ (AβWT) and a nonaggregating (Aβ19FD) variant (Morell et al. 2011). As expected, in a mixed culture treated with methotrexate, Aβ19FD outcompeted AβWT (Figure 1B). We used fluorescence microscopy of Aβ-GFP fusions to confirm that ~30-70% of yeast expressing AβWT-GFP had cytoplasmic punctae compared to ~0-20% of cells expressing Aβ19FD-GFP across five fields of view (Figure 1C-D). Thus, we concluded the assay could be used in a deep mutational scan to measure the aggregation propensity of variants of Aβ.

Using this assay, we conducted a deep mutational scan of Aβ that yielded solubility scores for 791 single amino acid variants, representing 99.1% of the possible single variants. Solubility scores were calculated by taking the weighted least squares slope of each variant’s frequency ratios across six time points. (see Methods). The slopes from each replicate were well correlated (Pearson’s R 0.78 to 0.92; Figure 2A, Figure S1A). Replicate slopes were averaged and log₂ transformed to produce final solubility scores such that wild-type had a solubility score of zero (Table S2). Positive solubility scores indicated less aggregation and negative scores indicated increased aggregation.

Solubility scores ranged from -2.38 (most aggregating) to 1.45 (most soluble). The mean (median) solubility score for all variants was 0.09 (0.08), which was similar to the solubility scores of the 39 synonymous variants in our library (mean: 0.06; median: 0.08). Because we did not expect synonymous variants to affect aggregation propensity, we used their distribution of scores to identify WT-like variants (Figure 2B). In total, we found that 344 (43.4%) of Aβ variant scores were within two
standard deviations of the synonymous score mean and thus had WT-like effects (WT-like range: [-0.26, 0.39]). Additionally, we found 246 (31.1%) variants to be more aggregation-prone than AβWT and 201 (25.4%) variants to be more soluble. Therefore, ~75% of Aβ variants maintained or increased the peptide’s propensity to aggregate in yeast cells.

To verify that our deep mutational scan accurately measured variant effects on aggregation, we tested six Aβ variants, G38F, K16V, A42V, 19

Figure 2

A-F. Solubility scores for 791 Aβ variants. Solubility scores reliably measure the effects of Aβ sequence on aggregation propensity. A scatter plot shows the correlation between two of three biological replicates that were averaged to yield final solubility scores (A; Figure S1A). The distribution of solubility scores (x-axis) of synonymous variants was used to determine cutoffs that define variants that are wild-type-like or more/less aggregation-prone than wild-type. The density plot shows distributions of nonsynonymous (light gray) and synonymous (dark gray) variants and the white lines show the lower (-0.26) and upper (0.39) bounds for wild-type-like variants (B). The scatterplot shows the correlation between our solubility scores (y-axis) and a low-throughput yeast growth assay that measured yeast growth rate as a proxy for Aβ solubility (C; Figure S1B). The heatmap shows the effect of 791 Aβ variants on solubility with Aβ positions on the x-axis and mutant amino acids on the y-axis. A variant’s color denotes its solubility: red is most soluble, white is wild-type-like and, dark blue is most aggregated, whereas yellow variants are missing from our variant library and dots denote the wild-type amino acid at a given position. The annotation tracks on the x- and y-axes display the hydrophobicity of each wild-type and mutant amino acid, respectively. The heatmap’s y-axis has been re-ordered using hierarchical clustering on the solubility score vectors (D). For each position, the mean solubility score at each position is depicted using the same color scheme as the main heatmap. Additionally, the mean solubility scores for all hydrophobic and polar substitutions are shown (E; Figure S2A). Hierarchical clustering on the x-axis yielded 6 distinct clusters: 1 (red), 2 (orange), 3 (yellow), 4 (green), 5 (light blue), and 6 (dark blue; F; Figure S2B-C).
Substitutions to aspartic acid and proline were most associated with aggregation, we created an Aβ structural model. The Aβ regions in the wild type Aβ sequence include positions in cluster 1. Both clusters 1 and 2 are largely comprised of hydrophobic amino acids, with a mean solubility score of 0.64 and 0.56, respectively (Figure S2A). Conversely, the most aggregation-associated substitutions were hydrophobic tryptophan and phenylalanine, with a mean solubility score of -1.56. Hydrophobic substitutions generally increase protein aggregation (all mean: -0.15, -0.12 and -0.45; hydrophobic means: -0.29, -0.65, and -1.04). Cluster 3 contains only two positions, 37 and 38. Here, every substitution except proline increased aggregation (all mean: -0.99, hydrophobic mean: -1.56). Given that cluster 1 is characterized by hydrophobic positions where hydrophilic substitutions profoundly decreased aggregation, we suggest that this cluster defined buried β-strands in the Aβ sequence.

Next, we compared our solubility scores to previous alanine and proline scans, which reported Aβ fibril thermodynamic stability in vitro (ΔΔG). ΔΔG values were determined by measuring variant Aβ monomer concentration remaining in solution after fibril formation reached equilibrium (Williams et al. 2004; Williams, Shivaprasad, and Wetzel 2006). We found that the effects of proline substitution in our assay were correlated with proline and alanine scanning together (Williams et al. 2004; Williams, Shivaprasad, and Wetzel 2006). The third track shows positions with the greatest increase in solubility when mutated in our large-scale mutagenesis study, found in cluster 1 (B). The next nine tracks show the secondary structure of nine models of Aβ aggregate structure for each Aβ position (x-axis; C). The Aβ wild-type sequence is shown at the top.

To explore the effects of each amino acid substitution on Aβ aggregation, we created an Aβ sequence-assembly map (Figure 2D). Substitutions to aspartic acid and proline were most associated with Aβ solubility, as evinced by their median scores of 0.64 and 0.56, respectively (Figure S2A). Conversely, the most aggregation-associated substitutions were hydrophobic tryptophan and phenylalanine, with scores of -0.64 and -0.56, respectively. Moreover, hierarchical clustering of all 791 solubility scores by amino acid revealed that hydrophobic substitutions, except alanine, clustered together and were associated with greater aggregation than other classes of substitutions.

Next, we characterized each position in Aβ based on its mutational profile. Hierarchical clustering of variant solubility scores by position identified six distinct clusters (Figures 2E-F; S2B-C). In cluster 1, comprising positions 17-20, 31-32, 34-36, 39 and 41, substitutions tended to decrease Aβ aggregation compared to substitutions in other clusters (cluster 1 mean solubility score = 0.64, all other clusters = -0.28; Figure S2D). In cluster 1, even substitutions to hydrophobic amino acids slightly decreased aggregation (mean solubility score = 0.17). The effects of substitutions in cluster 2 were similar to but less extreme than in cluster 1. Both clusters 1 and 2 are largely comprised of hydrophobic positions in the wild type Aβ sequence. Indeed, 80% of Aβ positions with hydrophobic wild type residues are in clusters 1 and 2. In stark contrast, within clusters 4, 5 and 6, hydrophobic substitutions generally increase protein aggregation (all mean: -0.15, -0.12 and -0.45; hydrophobic means: -0.29, -0.65, and -1.04). Cluster 3 contains only two positions, 37 and 38. Here, every substitution except proline increased aggregation (all mean: -0.99, hydrophobic mean: -1.56). Given that cluster 1 is characterized by hydrophobic positions where hydrophilic substitutions profoundly decreased aggregation, we suggest that this cluster defined buried β-strands in the Aβ sequence.

Next, we compared our solubility scores to previous alanine and proline scans which reported Aβ fibril thermodynamic stability in vitro (ΔΔG). ΔΔG values were determined by measuring variant Aβ monomer concentration remaining in solution after fibril formation reached equilibrium (Williams et al. 2004; Williams, Shivaprasad, and Wetzel 2006). We found that the effects of proline substitution in our assay were correlated with proline ΔΔG values (R² = 0.40), while the effects of alanine substitutions in our assay were less correlated with alanine ΔΔG values (R² = 0.17; Figure S3A). In our alanine and proline comparisons, we found the greatest correlation at positions 17-20 and 31-32, where substitutions decreased aggregation in all studies (Figure S3). The most notable disagreement between studies was for alanine substitutions at positions 37 and 38. In our assay, alanine substitutions caused a profound increase in aggregation, whereas the in vitro alanine scan showed the opposite effect.

We also compared our buried β-strand positions from cluster 1 to β-strands proposed based on the in vitro alanine and proline scans, finding some concordance (Figure 3B). The single amino acid scans identify three regions that disrupt fibril elongation thermodynamics when mutated. The regions include positions 15-21, 24-28, and...
31-36 for the proline scan and positions 18–21, 25–26, and 32–33 for the combined alanine and proline scans (Williams et al. 2004; Williams, Shivaprasad, and Wetzel 2006). Given the generally highly disruptive nature of proline substitutions (Gray et al. 2017), it is not surprising that the proline scan would nominate many positions. Our deep mutational scan, on the other hand, does not reveal a central β-strand or strong decrease in aggregation with alanine or proline substitution from positions 24–28. We speculate that this difference is due either to the distinct experimental approaches used or to the different Aβ species (Aβ40 vs. Aβ42).

DISCUSSION

We used deep mutational scanning to characterize 791 Aβ variants in a yeast-based aggregation assay. Proline and aspartic acid substitutions were most disruptive of Aβ aggregation, while tryptophan and phenylalanine increased aggregation most. Additionally, we used unsupervised clustering to determine the regions of Aβ most important for aggregation. We conclude that these regions are most likely to form buried β-stands, which are necessary for aggregation and sensitive to amino acid substitutions (Jahn et al. 2010; Abrusán and Marsh 2016). These include positions 17-20, 31-32, 34-35, 39 and 41. While other positions could also form β-stands, the positions in cluster 1 are most likely to form the buried cores of Aβ aggregates in our cell-based assay.

Due to the noncrystalline nature of Aβ fibrils, traditional techniques such as X-ray crystallography and solution-state NMR cannot be used to solve Aβ’s aggregate structure. Instead, structural models have been developed by asassing constraints, such as the direction and register of β-sheets. For example, solid-state nuclear magnetic resonance studies suggest that Aβ fibrils are parallel, in register β-sheets (Benzinger et al. 1998; Gregory et al. 1998; Antzutkin et al. 2002; Tycko 2011). Many of these structural models are problematic because they are generated from constraints derived from in vitro experimental data, which may not be representative of in vivo conditions.

ACKNOWLEDGMENTS

This work was supported by the National Institute of General Medical Sciences (grant R01GM109110 to D.M.F.) and the Alzheimer’s Association. D.M.F. is a CIFAR Azrieli Global Scholar. V.E.G. was supported by a National Science Foundation Graduate Research Fellowship and a NHGRI Ruth L. Kirschstein National Research Service Award (T32HG000035). N.H. was supported by a NCI Ruth L. Kirschstein National Research Service Award (F30CA236335-01). D.M.F. conceived of the project. D.M.F., V.E.G. and K.S. designed experiments. N.H designed the Aβ library, V.E.G., K.S., F.N.K., J.S. executed experiments. V.E.G., M.W. and F.N.K. analyzed data. V.E.G. and D.M.F. wrote the manuscript.

LITERATURE CITED

Abbrusán, G., and J. A. Marsh, 2016 Alpha Helices Are More Robust to Mutations than Beta Strands. PLOS Comput. Biol. 12: e1005242. https://doi.org/10.1371/journal.pcbi.1005242

Antzutkin, O. N., R. D. Leapman, J. J. Balbach, and R. Tycko, 2002 Supramolecular structural constraints on Alzheimer’s beta-amyloid fibrils from electron microscopy and solid-state nuclear magnetic resonance. Biochemistry 41: 15436–15450. https://doi.org/10.1021/bi0204185

Araya, C. L., and D. M. Fowler, 2011 Deep mutational scanning: assessing protein function on a massive scale. Trends Biotechnol. 29: 435–442. https://doi.org/10.1016/j.tibtech.2011.04.003

Bagriantsiev, S., and S. Lieberman, 2006 Modulation of Abeta42 low-n oligomerization using a novel yeast reporter system. BMC Biol. 4: 32. https://doi.org/10.1186/1741-7007-4-32

Bajaj, K. P. C., Dewan, P. Chakrabarti, D. Goswami, B. Barua et al., 2008 Structural correlates of the temperature sensitive phenotype derived from saturation mutagenesis studies of CεB. Biochemistry 47: 12964–12973. https://doi.org/10.1021/bi8014345

Barz, B., Q. Liao, and B. Strodel, 2018 Pathways of Amyloid-β Aggregation Depend on Oligomer Shape. J. Am. Chem. Soc. 140: 319–327. https://doi.org/10.1021/jacs.7b10343

Benzing, T. L., D. M. Gregory, T. S. Burkoth, H. Miller-Auer, D. G. Lynn et al., 1998 Propagating structure of Alzheimer’s beta-amyloid(10–35) is parallel beta-sheet with residues in exact register. Proc. Natl. Acad. Sci. USA 95: 13407–13412. https://doi.org/10.1073/pnas.95.23.13407
Bertram, L., and R. E. Tanzi, 2008 Thirty years of Alzheimer’s disease genetics: the implications of systematic meta-analyses. Nat. Rev. Neurosci. 9: 768–778. https://doi.org/10.1038/nrn2494

Caine, J., S. Sankovich, H. Antony, L. Waddington, P. Macreadie et al., 2007 Alzheimer’s Abeta fused to green fluorescent protein induces growth stress and a heat shock response. FEMS Yeast Res. 7: 1230–1236. https://doi.org/10.1111/j.1567-1346.2007.00285.x

Colvin, M. T., R. Silvers, Q. Z. Ni, T. V. Can, I. Sergeev et al., 2016 Atomic Resolution Structure of Monomorphous Aβ42 Amyloid Fibrils. J. Am. Chem. Soc. 138: 9663–9674. https://doi.org/10.1021/jacs.6b05129

Crescenzi, O., S. Tomaselli, R. Guerri, S. Salvadori, A. M. D’Urso et al., 2002 Solution structure of the Alzheimer amyloid beta-peptide (1–42) in an apolar microenvironment. Similarity with a virus fusion domain. Eur. J. Biochem. 269: 5642–5648. https://doi.org/10.1046/j.1432-1033.2002.03271.x

D’Angelo, F., H. Vignaud, J. Di Martino, B. Salin, A. Devin et al., 2013 A yeast model for amyloid-β aggregation exemplifies the role of membrane trafficking and PICALM in cytotoxicity. Dis. Model. Mech. 6: 206–216. https://doi.org/10.1242/dmm.010108

Dahlgren, K. N., A. M. Manelli, W. B. Stine, L. K. Baker, G. A. Krafft et al., 2017 Analysis of Large-Scale Mutagenesis Data To Assess the Impact of Single Amino Acid Substitutions on Amyloid-β Protein Variants on a Large Scale using Deep Mutational Scanning. Nat. Chem. Soc. 138: 9663–9674. https://doi.org/10.1021/jacs.6b05129

Gremer, L., D. Schölzel, C. Schenk, E. Reinartz, J. Labahn et al., 2017 Fibril structure of amyloid-b(1–42) by cryo-electron microscopy. Science 358: 116–119. https://doi.org/10.1126/science.aao2825

Haar, van der, T., L. J. P. Wright, J. Zentzon, and M. F. Tuive, 2007 Development of a novel yeast cell-based system for studying the aggregation of Alzheimer’s disease-associated Abeta peptides in vivo. Neurodegener Dis 4: 136–147.

Hardy, J., 2017 The discovery of Alzheimer-causing mutations in the APP gene and the formulation of the “amyloid cascade hypothesis”. FEBS J. 284: 1040–1044. https://doi.org/10.1111/febs.14004

Hardy, J., and D. J. Selkoe, 2002 The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297: 353–356. https://doi.org/10.1126/science.1072994

Iwatsubo, T., A. Odaka, N. Suzuki, H. Mizusawa, N. Nukina et al., 1994 Visualization of a beta 42(43) and A beta 40 in senile plaques with end-specific A beta monoclonals: evidence that an initially deposited species is A beta 42(43). Neuron 13: 45–53. https://doi.org/10.1016/0896-6273(94)90458-8

Jahn, T. R., O. S. Makin, K. L. Morris, K. E. Marshall, P. Tian et al., 2010 The common architecture of cross-beta amyloid. J. Mol. Biol. 395: 717–727. https://doi.org/10.1016/j.jmb.2009.09.039

Jarrett, J., T. E. P. Berger, and P. T. Lansbury, 1993 The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer’s disease. Biochemistry 32: 4693–4697. https://doi.org/10.1021/bi00069a001

Khare, S., M. Bhasin, A. Sahoo, and R. Varadarajan, 2019 Protein model discrimination attempts using mutational sensitivity, predicted secondary structure, and model quality information. Proteins 87: 326–336. https://doi.org/10.1002/prot.25654

Lesné, S., L. Kottlinek, and K. H. Ashe, 2008 Plaque-bearing mice with reduced levels of oligomeric amyloid-beta ensembles have intact memory function. Neuroscience 151: 745–749. https://doi.org/10.1016/j.neuroscience.2007.10.054

Lu, J.-X., W. Qiang, W.-M. You, C. D. Schwieters, S. C. Meredith et al., 2013 Molecular structure of β-amyloid fibrils in Alzheimer’s disease brain tissue. Cell 154: 1257–1268. https://doi.org/10.1016/j.cell.2013.08.035

Lübbers, T., C. Ritter, M. Adrian, D. Rieke-Hoger, B. Bohrmann et al., 2005 3D structure of Alzheimer’s amyloid-beta(1–42) fibrils. Proc. Natl. Acad. Sci. USA 102: 17342–17347. https://doi.org/10.1073/pnas.0506723102

Masters, C. L., and D. J. Selkoe, 2012 Biochemistry of amyloid β-protein and amyloid deposits in Alzheimer disease. Cold Spring Harb. Perspect. Med. 2: a006262. https://doi.org/10.1101/cshperspect.a006262

Matsumura, S., K. Shinoda, M. Yamada, S. Yokojima, M. Inoue et al., 2011 Two distinct amyloid beta-protein (Abeta) assembly pathways leading to oligomers and fibrils identified by combined fluorescence correlation spectroscopy, morphology, and toxicity analyses. J. Biol. Chem. 286: 11555–11562. https://doi.org/10.1074/jbc.M110.181313

Morell, M., N. S. de Groot, J. Vendrell, F. X. Avilés, and S. Ventura, 2011 Linking amyloid protein aggregation and yeast survival. Mol. Biosyst. 7: 1121–1128. https://doi.org/10.1039/c0mb00297f

Rollins, N. J., K. P. Brock, F. J. Poelwijk, M. A. Stiffler, N. P. Gauthier et al., 2017 Inferring protein 3D structure from deep mutagenic scans. Nat. Genet. 51: 1170–1176. https://doi.org/10.1038/ng.3418

Rubin, A. F., H. Gelman, N. Lucas, S. M. Bajjalieh, A. T. Papenfuss et al., 2017 A statistical framework for analyzing deep mutational scanning data. Genome Biol. 18: 150: 17. https://doi.org/10.1186/s13059-017-1272-5

Schmiedel, J., and B. Lehner, 2019 Determining protein structures using genetics. Nat. Genet. 51: 1177–1186. https://doi.org/10.1038/s41588-019-0431-x

Shankar, G. M., M. A. Leissring, A. Adame, X. Sun, E. Spooner et al., 2009 Biochemical and immunohistochemical analysis of an Alzheimer’s disease mouse model reveals the presence of multiple cerebral Abeta assembly forms throughout life. Neurobiol. Dis. 36: 293–302. https://doi.org/10.1016/j.nbd.2009.07.021

Treusch, S., S. Hamamichi, J. L. Goodman, K. E. S. Matlack, C. Y. Chung et al., 2011 Functional links between Aβ toxicity, endocytic trafficking, and Alzheimer’s disease risk factors in yeast. Science 334: 1241–1245. https://doi.org/10.1126/science.1213210

Tycko, R., 2011 Solid-state NMR studies of amyloid fibril structure. Annu. Rev. Phys. Chem. 62: 279–299. https://doi.org/10.1146/annurev-physchem-032210-105339

Wali, M. A., F. Ravotti, H. Ara, C. G. Glabe, J. S. Wall et al., 2016 Atomic-resolution structure of a disease-relevant Aβ(1–42) amyloid fibril. Proc. Natl. Acad. Sci. USA 113: E4976–E4979. https://doi.org/10.1073/pnas.1600749113

Williams, A. D., E. Portelius, I. Kheterpal, J.-T. Guo, K. D. Cook et al., 2004 Mapping abeta amyloid fibril secondary structure using scanning probe mutagenesis. J. Mol. Biol. 335: 833–842. https://doi.org/10.1016/j.jmb.2003.11.008

Williams, A. D., S. Shivaprasad, and R. Wetzel, 2006 Alamine scanning mutagenesis of Abeta(1–40) amyloid fibril stability. J. Mol. Biol. 357: 1283–1294. https://doi.org/10.1016/j.jmb.2006.01.041

Xiao, Y., B. Ma, D. McElheny, S. Parthasarathy, F. Long et al., 2015 Aβ(1–42) fibril structure illuminates self-recognition and replication of amyloid in Alzheimer’s disease. Nat. Struct. Mol. Biol. 22: 499–505. https://doi.org/10.1038/nsmb.2991

Communicating editor: B. Andrews