Investigation of the Mechanism of Traditional Chinese Medicines in Angiogenesis through Network Pharmacology and Data Mining

Wingyan Yun 1,2, Wenchao Dan 1,2, Jinlei Liu 1, Xinyuan Guo 3, Min Li 1, Qingyong He 1*

1. Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
2. Graduate School of Beijing University of Chinese Medicine, Beijing 100029, China
3. Cancer Hospital Chinese Academy of Medical Sciences, Beijing 100021, China

Abstract

Background: Although traditional Chinese medicine is safe for the clinical treatment of angiogenesis, the in vivo intervention mechanism is diverse, complex, and largely unknown. Therefore, we aimed to explore the active ingredients of traditional Chinese medicine and their mechanisms for the treatment of angiogenesis.

Methods: Data on angiogenesis-related targets were collected from the GeneCards, Therapeutic Target Database, Online Mendelian Inheritance in Man, DrugBank, and DisGeNET databases. These were matched to related molecular compounds and ingredients in the traditional Chinese medicine system pharmacology platform. The data were integrated; based on the condition of Degree >1 and relevant literature, a target-compound network as well as compound-medicine and target-compound-medicine networks were constructed using Cytoscape. Molecular docking was used to predict the predominant binding combination of core targets and components.

Results: We obtained a total of 79 targets for angiogenesis, and 41 targets were matched to 3839
compounds. Then, 110 compounds were selected owing to their high correlation with angiogenesis. Fifty-five combinations in the network were obtained by molecular docking, among which PTGS2-Astragalin (-9.18 kcal/mol), KDR-Astragalin (-7.94 kcal/mol), PTGS2-quercetin (-7.41 kcal/mol), and PTGS2-myricetin (-7.21 kcal/mol) were the top combinations. These results indicated that the selected potential core compounds may have good binding activity with the core targets. Eighty new combinations were obtained from the network, and the top combinations based on affinity were KDR-beta-carotene (-10.13 kcal/mol), MMP9-beta-Sitosterol (-8.04 kcal/mol), MMP9-Astragalin (-7.82 kcal/mol), and MMP9-Diosgenin (-7.51 kcal/mol). The core targets included PTGS2, KDR, VEGFA, and MMP9. The essential components identified were astragalin, kaempferol, myricetin, quercetin, and β-sitosterol. The crucial Chinese medicines identified included Polygoni Cuspidati Rhizoma et Radix, Morus alba Root Bark, and Forsythia Fructus.

Conclusions: By systematically analysing the essential ingredients of traditional Chinese medicine and their targets, it is possible to determine their potential mechanism of action in the treatment of pathological angiogenesis. Our study provides a basis for further research and development of new therapeutics for angiogenesis.

Keywords: angiogenesis; mechanism research; network pharmacology

Background

John Hunter provided the first recorded scientific insights into the field of angiogenesis and coined the term angiogenesis in 1787. Folkman proposed the role of angiogenesis in tumour
growth in 1971. He hypothesised that tumour growth depends on angiogenesis to increase blood
supply and proposed stopping the blood supply to inhibit tumour growth, which subsequently
initiated the field of research on the relationship between angiogenesis and diseases. Angiogenesis
is the process of capillary sprouting from pre-existing vasculature, and it is highly induced by
hypoxia and other biological processes\(^5\,\,7\). The mechanism of angiogenesis can be divided into
two types. The first is sprouting angiogenesis, wherein vascular endothelial cell growth factor
(VEGF) can stimulate tip cells in the original blood vessel network to induce vascular sprouting\(^8\).
\(^9\). The second is intussusceptive angiogenesis, which proceeds through transluminal tissue pillar
formation and subsequent vascular splitting to expansion and remodelling of microvascular
networks\(^9\,\,11\).

Under normal circumstances, angiogenesis is the balance between the inhibiting factor and
growth factor. If the functions of either the inhibiting or growth factors are abnormal, it presents
as overgrowth, defect, or malformation. Angiogenesis is essential for nutrition and oxygen for the
growth and development of tumour cells. Under hypoxic conditions, tumours stimulate
neovascularization via the expression of growth factors such as VEGF\(^12\). Thus, exploring the
inhibition of angiogenesis for the treatment of tumours has gained increasing attention. However,
some studies have shown that using anti-angiogenic agents can induce potential resistance
mechanisms such as autophagy, VEGF-dependent alterations, non-VEGF pathways, and stromal
cell interactions\(^13\,\,17\). Tumour cells may become accustomed to hypoxia or nutrient deprivation, or
they may induce angiogenesis via other growth factors\(^18\,\,19\). Such events can lead to higher
survival levels of the tumour cells. Moreover, some anti-angiogenic agents can cause side effects
such as acne-like rash, hypertension, and diarrhoea20, 21.

Traditional Chinese medicine is valuable for the treatment of various diseases, especially refractory diseases. Previously, we found that many herbal extracts such as \textit{Epimedium brevicornu Maxim}, \textit{Dalbergia odorifera} T. Chen, and \textit{Trichosanthes kirilowii} Maxim can regulate angiogenesis22. Cucurbitacin E, a compound in herbal extracts, can inhibit tumour angiogenesis by inhibiting vascular endothelial growth factor receptor 2 (KDR/VEGFR2)-mediated Jak-STAT3 and mitogen-activated protein kinase (MAPK) signalling pathways23. Astragaloside IV and curcumin can suppress the expression of fibroblast growth factor-2, matrix metalloproteinase 2, VEGF, hepatocyte growth factor, thrombosis-related factor tissue factor, and coagulation factor VII, thereby reducing the microvessel count24. The above herbal studies focused on single or several compounds related to angiogenesis. Nevertheless, during treatment, multiple herbal compounds interact or cross-react to regulate different targets and pathways. Thus, even though traditional Chinese medicine is safe for clinical treatment, the \textit{in vivo} intervention mechanism is diverse, complex, and largely unknown.

In this study, the targets of angiogenesis were explored through network pharmacology, and the corresponding compound and herbs were matched. Furthermore, the effect of herbal compounds on angiogenesis and the intervention mechanism were demonstrated. The findings of this study are expected to provide insights for the development of novel therapeutics for angiogenesis. The detailed workflow of investigation is shown in Figure 1.
Methods

Collection of data regarding angiogenesis-related targets

Data were collected from GeneCards (https://www.genecards.org)\(^{25}\), Therapeutic Target Database (TTD; http://db.idrblab.net/ttd/)\(^{26}\), Online Mendelian Inheritance in Man (OMIM, omim.org)\(^{27}\), DrugBank (www.drugbank.ca)\(^{28}\), and DisGeNET (www.disgenet.org)\(^{29}\). The keyword used to search these databases was ‘angiogenesis’. After sorting and removing repeated targets, the full name of the matching targets was established using the UniProt database (https://www.uniprot.org)\(^{30}\).

Figure 1. The workflow of the investigation
Screening of related herbal compounds

The targets were used to match the compounds related to angiogenesis in the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP; http://tcmspw.com/) and Encyclopedia of Traditional Chinese Medicine (ETCM; http://www.tcmip.cn/ETCM/index.php/Home/Index/)32. The compounds and targets were imported to Cytoscape version 3.8.1 (Institute for Systems Biology, Seattle, WA, USA)33 to construct a ‘target-compound’ network. After preliminary screening, the related compounds were verified through a literature review, and the compounds closely related to diseases under the current generation research were screened as related compounds.

Collection of related traditional Chinese medicines and construction of a target-compound-traditional Chinese medicine network

By collecting the traditional Chinese medicines related to compounds and constructing the ‘compound-traditional Chinese medicine’ network combined with the ‘compound-target’ network, the ‘target-compound-traditional Chinese medicine’ network was constructed using Cytoscape 3.8.1 to explore and mine the relationships within the network. Key nodes were found by calculating the topological parameters of each node in the network using NetworkAnalyzer to preliminarily evaluate the effectiveness of traditional Chinese medicine and compounds on angiogenesis.
Molecular docking for targets and compounds

To define the reliability of the interaction relationship between the core targets and core components in the ‘target-compound-traditional Chinese medicine network’ and explore new drug–target combinations, the top five targets with a moderate value for target-compound-traditional Chinese medicine were selected as receptors. The crystal structures of these proteins were selected and preserved in PDB format from Biological Macromolecular Structures Enabling Breakthroughs in Research and Education (RCSB; http://www.rcsb.org/pdb/). The 3D structures of the candidate compounds were downloaded and saved in SDF format from PubChem (https://pubchem.ncbi.nlm.nih.gov/). These SDF files were converted to PDB format using Open Babel. The water molecules in the ligands were removed using AutoDock Tools 1.5.6 (Molecular Graphics Lab, La Jolla, CA, USA). After dispersing the ligands and receptors, non-polar hydrogen bonds were added, and Gasteiger charges were calibrated and stored as pdbqt files. The selected potential core ligands were treated with energy minimisation, and the ligand atom type and calculated charge were saved in the pdbqt format. AutoDock Vina 1.1.2 was used to calculate the docking score between the target and ligand to evaluate its matching degree and docking activity. A docking score of less than -4.25 was considered to indicate a binding between the ligand and target, a score of less than -5.0 was considered to indicate better binding activity, and a score of less than -7.0 indicated vigorous docking activity. The ideal combinations were selected according to the affinity value, and the molecular docking pattern was displayed by MOE2019.

Results
We obtained 4609 targets related to angiogenesis from the GeneCards database and identified the targets with strong correlation by calculating the median of their correlation coefficients, because of the large number of targets. After six calculations, the medians were 0.65, 1.39, 3.25, 4.96, 7.47, and 10.52 and 74 targets with higher correlation coefficients were obtained. Furthermore, 5, 1, 0, and 0 related targets were separately obtained from the TTD, OMIM, DrugBank, and DisGeNET databases, respectively. After removing duplicate values and standardising these using the UniProt database, 79 angiogenesis targets were finally acquired. The TCMSP database contained information on 49 targets. However, eight targets did not match any compound because the database did not have information on related ingredients. Thus, only 41 targets were matched with small-molecule compounds and became potential targets. Table 1 shows the targets with over 10 corresponding compounds.

Number	Gene	Uniport number	Protein
1	PTGS2	P35354	Prostaglandin G/H synthase 2
2	KDR	P35968	Vascular endothelial growth factor receptor 2
3	VEGFA	P15692	Vascular endothelial growth factor A
4	FGF1	P05230	Acidic fibroblast growth factor
5	TP53	P04637	Cellular tumor antigen p53
6	MMP9	P14780	Matrix metalloproteinase-9
7	AKT1	P31749	RAC-alpha serine/threonine-protein kinase
8	MMP2	P08253	72 kDa type IV collagenase
9	CXCL8	P10145	Interleukin-8
10	FGF2	P09038	Basic fibroblast growth factor
	Gene	Accession	Description
---	--------	-----------	--
11	HIF1A	Q16665	Hypoxia-inducible factor 1-alpha
12	TGFB1	P01137	Transforming growth factor beta-1
13	CCL2	P13500	C-C motif chemokine 2
14	NOS3	P29474	Nitric oxide synthase, endothelial

Identification of candidate compounds and target-compound network construction

A total of 3839 small-molecule compounds were matched with 41 potential targets to construct a target-compound network consisting of 3440 nodes and 3839 edges. Although many small-molecule compounds showed a match, some of them were less related to the target or were associated with fewer studies. Hence, under the condition of ‘Degree >1’, the targets and compounds with a greater degree of interaction were screened out, resulting in 28 targets and 264 candidate compounds. These were then screened through a literature review for *in vivo* and *in vitro* activities. Finally, 110 compounds with research significance and 26 related targets were determined; these were used to construct the ‘target-compound’ network (Figure 2), which contained 136 nodes and 370 edges.
Identification of traditional Chinese medicines and target-compound-Chinese medicine network construction

A total of 447 Chinese medicines were obtained from 110 candidate compounds through database and literature matching. A compound-Chinese medicine network was first constructed according to the relationship between the compounds and Chinese medicines, and it contained 594 nodes and 2240 edges. Based on the connections of the node, the top nine Chinese medicines were Puerariae Flos, Ephedra Herba, Ginkgo Folium, Scutellariae Barbatae Herba, Mori Follum, Forsythiae Fructus, Morus alba Root Bark, Mori Cortex, and Oroxyli Semen, which contain the candidate compounds 15, 14, 14, 14, 13, 13, 13, and 13, respectively. Through the bridging effect of candidate compounds, the targets of various Chinese medicines were obtained. The top six Chinese
medicines were Polygoni Cuspidati Rhizoma et Radix, *Morus alba* Root Bark, Smilacis Glabrae Rhizoma, Mori Cortex, Hippophae Fructus, and Perilla Frutescens, which contain compounds 22, 21, 21, 20, and 20, respectively. Therefore, it can be inferred that these six Chinese medicines have a strong regulatory effect on the development of angiogenesis. Figure 3 shows the top 15 candidate compounds of traditional Chinese medicines based on the number of related targets and the degree of a node in the compound-Chinese medicine network. The median compound degree value of the network was 7 according to a previous study. According to the three conditions of closeness centrality, betweenness centrality, and compound degree value greater than 20, there were 27 potential core compounds, among which the top five ingredients were quercetin, β-sitosterol, kaempferol, luteolin, and ursolic acid. The remaining potential core compounds are shown in Table 2.

![Figure 3. Number of candidate compounds and targets related to the traditional Chinese medicines](image)

| Table 2 Candidate compounds and targets information (degree > 20) |
|-----------------|-----------------|----------------|-------------|----------|-----|
| MoLID | CAS | MolName | Degree | OB | DL |
| MOL000098 | 117-39-5 | quercetin | 201 | 46.43 | 0.28 |
| MOL000358 | 83-46-5 | β-sitosterol | 192 | 36.91 | 0.75 |
| MOL000422 | 520-18-3 | kaempferol | 136 | 41.88 | 0.24 |
| MOL000675 | 112-80-1 | oleic acid | 120 | 33.13 | 0.14 |
| MOL000006 | 491-70-3 | luteolin | 99 | 36.16 | 0.25 |
| MOL000511 | 77-52-1 | ursolic acid | 88 | 16.77 | 0.75 |
| MOL000008 | 520-36-5 | apigenin | 87 | 23.06 | 0.21 |
| MOL00114 | 121-34-6 | vanillic acid | 86 | 35.47 | 0.04 |
| MOL000305 | 143-07-7 | lauric acid | 69 | 23.59 | 0.04 |
| MOL000513 | 149-91-7 | 3,4,5-trihydroxybenzoic acid (Gallic acid) | 57 | 31.69 | 0.04 |
| MOL000908 | 515-13-9 | beta-elemene | 51 | 25.63 | 0.06 |
| MOL000771 | 501-98-4 | p-coumaric acid | 48 | 43.29 | 0.04 |
| MOL000635 | 121-33-5 | vanillin | 48 | 52.00 | 0.03 |
| MOL000561 | 480-10-4 | Astragalin | 39 | 14.03 | 0.74 |
| MOL000472 | 518-82-1 | emodin | 37 | 24.40 | 0.24 |
| MOL002850 | 128-37-0 | butylated hydroxytoluene | 35 | 40.0 | 0.07 |
| MOL002773 | 7235-40-7 | beta-carotene | 34 | 37.18 | 0.58 |
| MOL001801 | 69-72-7 | salicylic acid | 30 | 32.13 | 0.03 |
| MOL000874 | 552-41-0 | paeonol | 30 | 28.79 | 0.04 |
| MOL000481 | 446-72-0 | genistein | 26 | 17.93 | 0.21 |
| MOL000421 | 59-67-6 | nicotinic acid | 25 | 47.65 | 0.02 |
| MOL002008 | 529-44-2 | myricetin | 25 | 13.75 | 0.31 |
| MOL004328 | 67604-48-2 | naringenin | 24 | 59.29 | 0.21 |
| MOL001689 | 480-44-4 | acacetin | 23 | 34.97 | 0.24 |
| MOL012744 | 501-36-0 | resveratrol | 23 | 19.07 | 0.11 |
| MOL001002 | 476-66-4 | ellagic acid | 21 | 43.06 | 0.43 |
| MOL000546 | 512-04-9 | diosgenin | 20 | 80.88 | 0.81 |
The target-compound-traditional Chinese medicine network was reconstructed by selecting traditional Chinese medicines with a degree >4 and their associated compounds and targets to display the relationship between angiogenesis-related targets, compounds, and traditional Chinese medicines more intuitively (Figure 4).

![Figure 4](image)

Figure 4. Target-compound-traditional Chinese medicine network. The diamond-shaped nodes represent the Chinese medicine, the triangular nodes represent the ingredients, and the V-shaped nodes represent the target. The icon size of each node is positively correlated with its degree value.

Molecular docking

The 27 core potential compounds were molecularly docked with five core targets, namely matrix metallopeptidase 9 (MMP9), VEGFR2, prostaglandin-endoperoxide synthase 2 (PTGS2), TP53,
and vascular endothelial growth factor A (VEGFA), and 135 sets of receptor-ligand docking results were obtained. Among the 135 receptor-ligand groups, 94 groups (69.63%) showed affinity <-5 and 22 groups (16.30%) showed affinity <-7.

Among the 135 combinations, 55 combinations were present in the target-compound network. Among these 55 combinations, the highest score for docking was observed for PTGS2-Astragalin (-9.18 kcal/mol), and the lowest docking score was observed for PTGS2-ursolic acid (4.20 kcal/mol). The average of the above combinations is -5.56 kcal/mol. This result indicates that the screened potential core compounds may have better binding activity with the core target and supports the reliability of drug–target interactions in the target-compound network to a certain extent.

In the molecular docking result, 80 new combinations outside the target-compound network were discovered. The more ideal combinations outside the target-compound network were KDR-beta-carotene (-10.13 kcal/mol), MMP9-beta-Sitosterol (-8.04 kcal/mol), MMP9-Astragalin (-7.82 kcal/mol), and MMP9-Diosgenin (-7.51 kcal/mol). There were 52 new combinations with affinity <-5 kcal/mol, suggesting that they all have good docking activity. The docking activity of these four combinations exceeded that of most combinations in the target-compound network; therefore, these are more likely to have a strong drug–target relationship. These docking results can provide data for further development of the experimental screening design of related Chinese medicines and ingredients in the future. The results are shown in Figure 5.
Considering the ideal combination of the affinity value of molecular docking and degree value of the target-compound-drug network, nine more ideal combinations were selected, and their docking conditions were displayed in three-dimensional and two-dimensional molecular docking patterns (Figure 6). As shown in Figure 6, each ligand was embedded in the active pocket of the target and interacted with multiple residues of the target through hydrophobic interaction and hydrogen bond formation.

MOL000561	MMP9	KDR	PTGS2	TP53	VEGFA
-7.82335	-9.5718	-9.18135	-7.32277	-5.67637	
-8.24394	-8.85222	-8.26616	-6.62333	-5.17593	
-7.23603	-7.12369	-7.30783	-6.44746	-4.28435	
-7.10452	-6.95756	-6.98749	-6.18573	-4.05802	
-8.04308	-6.68374	-5.31091	-5.94603	-5.20695	
-6.62527	-6.87569	-7.40635	-6.01093	-4.24525	
-7.05777	-6.8283	-6.88843	-6.16877	-4.19391	
-7.08671	-6.56789	-6.90838	-5.95674	-4.57173	
-7.08843	-6.91282	-6.67038	-6.29811	-4.10672	
-7.03395	-6.73324	-6.99618	-5.84675	-4.16333	
-6.93388	-6.66616	-6.87641	-5.82051	-4.09604	
-6.89917	-6.41787	-6.31514	-6.06935	-4.06529	
-6.64132	-6.14054	-6.33023	-6.08291	-4.02888	
-7.06956	-10.13275	0.75454	-7.16952	-5.36052	
-5.21203	-6.0174	-7.12712	-5.61033	-4.28946	
-5.11202	-5.71575	-6.82837	-5.79863	-4.1036	
-5.26792	-6.26218	-6.56646	-5.36556	-4.12358	
-5.43613	-5.79674	-6.48716	-5.4574	-4.22117	
-6.00634	-5.35106	-5.28511	-5.03919	-4.08375	
-5.92779	-5.15027	-5.23531	-4.84499	-3.82143	
-5.22866	-5.14201	-5.44846	-4.89484	-3.93763	
-5.13628	-5.10713	-5.08523	-4.82264	-3.76548	
-7.5081	-4.90232	-1.14426	-5.58743	-4.58175	
-4.85571	-4.70475	-5.21438	-4.67793	-3.93774	
-4.89869	-4.5768	-4.96711	-4.60395	-3.76184	
-4.98006	-4.51753	-4.93348	-4.59999	-3.66067	
-5.08861	-5.76577	-4.19531	-5.51307	-4.78173	

Figure 5. Molecular docking results
Figure 6. Molecular docking model. In the 3D structure of ligand–protein complexes, protein scaffolds of the protein skeleton are displayed as tube shape, different peptide chains are coloured differently, and ligands are displayed as a blue bar. The 2D interaction model shows protein residues coloured by its property in a circle; green: hydrophobicity residues; purple: polarity residues. a: KDR-6gqq-Astragalin; b: MMP9-1gkc-Astragalin; c: MMP9-1gkc-beta-Diosgenin; d: MMP9-1gkc-beta-Sitosterol; e: PTGS2-5ikq-Astragalin; f: PTGS2-5ikq-Kaempferol; g: PTGS2-5ikq-Myricetin; h: PTGS2-5ikq-Quercetin; i: tp53-1jsp-Astragalin.

Discussion

Angiogenesis is a complex process that requires the coordinated regulation of several activating and inhibitory pathways. It participates in the development of many diseases, such as cancers, atherosclerosis, rheumatoid arthritis, hepatitis, and inflammation. There are many factors involved in the regulation of angiogenesis. As traditional Chinese medicines, which have a curative effect in clinical treatment, are applied in combination, the treatment contains multiple components and targets. Therefore, elucidating the mechanism and exploring the potential components of traditional Chinese medicines are of great significance in the development of novel drugs.

Target

According to the results of the target-compound network screening, the top scores were obtained for PTGS2, KDR, VEGFA, and MMP9. The primary role of PTGS2 in angiogenesis is to induce
the synthesis of individual prostanoids such as PGD2, PGE2, PGF2α, PGI2, and TXA2.

Prostaglandin (PG) can boost VEGF production in a paracrine, intracrine, or autocrine manner. Moreover, VEGF stimulates PTGS2 expression, thereby triggering PG production. This in turn increases the levels of PGs and stimulates the expression of angiogenic factors such as VEGF and bFGF. VEGF expression is regulated by many factors such as epidermal growth factor, hypoxia-inducible factor (HIF), and platelet-derived growth factor (PDGF). During angiogenesis, VEGF signalling regulates the activities of several kinases through VEGFR2 and guides the proliferation, migration, and survival of cells. An increased number of endothelial cells, both tip and stalk cells, is a significant feature of vascular proliferation. Endothelial tip cells are induced by VEGF gradients and promote the formation of filopodia. The molecular regulation of these events occurs via the activation of Notch signalling and increased expression of Notch ligands on endothelial cells. A high level of Notch signalling can decrease VEGFR2 expression. Physiological homeostasis requires this negative feedback loop. One crucial event implicated in the migration and proliferation of vascular endothelial cells is the proteolytic degradation of basement membranes and extracellular matrix (ECM) components by matrix metalloproteinases (MMPs). The secretion of MMPs allows endothelial cells to penetrate their underlying basement membrane and eliminate the contact inhibition that blocks endothelial cell proliferation. The gene expression of MMPs may stimulate the production and secretion of major proangiogenic factors such as VEGF and fibroblast growth factor-2, which promote angiogenesis. MMP-9 cleaves ECM proteins and activates cytokines and chemokines to regulate tissue remodeling. In the intracardiac injection experiment, the injected ECM-derived substance promoted cell attachment, migration, and proliferation; induced extracellular signal-regulated kinase (Erk) 1/2 activation;
and promoted angiogenesis and arteriogenesis41. In summary, the above targets play an essential role in the regulation of angiogenesis, and they are the preferred targets for traditional Chinese medicine intervention in angiogenesis.

Ingredients

Molecular docking results showed that the components that bind well to the targets are astragaloside, kaempferol, myricetin, quercetin, and β-sitosterol. Astragalin suppresses interleukin (IL)-1β-induced inflammatory mediators by activating peroxisome proliferator-activated receptor-γ, which subsequently inhibits IL-1β-induced nuclear factor (NF)-κB and MAPK activation43. NF-κB subunit p65 activates the transcription of HIF-1α and its target gene VEGF-A. Regulating HIF-1α via NF-κB activation can contribute to angiogenesis44. Kaempferol is an antioxidant that reduces reactive oxygen species (ROS) metabolism through its inhibition of the NF-κB pathway and upregulation of the associated transcriptional pathway45. ROS regulate angiogenesis via two different mechanisms: the HIF-VEGF/VEGFR2 signalling pathway and VEGF-independent mechanism involving the generation of lipid oxidation products46. Endothelial nitric oxide synthase (eNOS) plays an essential role in regulating cell migration activities and vascular permeability47. Myricetin and quercetin inhibit thioredoxin reductase (TrxR) in an NADPH- and concentration-dependent manner48. TrxR is a part of the thioredoxin (Trx) system, which includes Trx and NADPH49. This system plays essential roles in regulating cellular redox signalling and contributes to the regulation of VEGF-mediated signalling50-52. For example, TRX1, in endothelial cells, prevents von Hippel-Lindau-mediated degradation of the transcription factor HIF1, leading
to the induction of VEGF expression. The action mechanism of myricetin and quercetin in angiogenesis is not yet well understood, but it may be related to the Trx system. β-sitosterol administration was reported to reduce the expression of chemokines and activity of MMP-2 and MMP-9. In summary, the above components of traditional Chinese medicine can be investigated for intervention in angiogenesis.

Chinese medicine

An experiment using umbilical vein endothelial cells demonstrated that angiogenesis can be regulated by the extract of Polygoni Cuspidati Rhizoma et Radix via the inhibition of the phosphorylation of downstream signalling molecules such as Erk, Akt, and eNOS by VEGF/VEGFR2. These molecules can regulate endothelial cell survival, proliferation, and migration. The extract of Morus alba Root Bark inhibits the proliferation and migration of vascular smooth muscle cells induced by PDGF and stimulates the formation of nitric oxide (NO) in endothelial cells. NO is a vital gaseous signalling molecule that participates in the growth and remodelling of essential biochemical and molecular reactions necessary for regulating angiogenesis. The NO-induced activation of soluble guanylate cyclase increases cyclic guanosine monophosphate formation and protein kinase G activity to modulate signalling cascades by the phosphorylation of MAPKs, which successively phosphorylate and activate downstream proteins such as ERK1/2. These events regulate the proliferation and migration of endothelial cells, resulting in angiogenesis. Forsythiae Fructus aqueous extract triggers the inhibition of oxidative stress and inflammation via the MAPKs/Nrf2/HO-1 signalling pathway and inhibits cancer cell
proliferation and angiogenesis61.

Conclusions

In this study, we used network pharmacology to identify proteins related to angiogenesis through databases and documentation. In addition, we constructed a target-compound-traditional Chinese medicine network, which was explored and analysed for the potential compounds and mechanism of traditional Chinese medicine that participated in angiogenesis. The findings of this study can effectively narrow the scope of screening, improve scientific research efficiency, and reduce economic costs. However, this study was preliminary and based on database analysis; therefore, it does not fully demonstrate the real situation or verify the participation of traditional Chinese medicine in angiogenesis \textit{in vivo}. The specific molecular mechanism still needs to be explored through subsequent experimental research.

List of abbreviations

- ECM: Extracellular matrix
- ETCM: Encyclopedia of Traditional Chinese Medicine
- HIF: Hypoxia-inducible factor
- OMIM: Online Mendelian Inheritance in Man
- PDGF: Platelet-derived growth factor
- ROS: Reactive oxygen species
- TTD: Therapeutic Target Database
VEGF Vascular endothelial cell growth factor

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Availability of data and materials
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Funding
This study was supported by the project Beijing Science and Technology Rising Star(Z181100006218035), the National Natural Science Foundation of China (81202803) and the National Administration of TCM Project Fund (G2T-FJS-2019-203). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Authors' contributions
WD conceived and designed the study. WY, JL, XG, and ML collected the related targets of angiogenesis and related molecular compounds. WY and WD performed the network pharmacology analysis and molecular docking, and WY wrote the manuscript. WD and QH revised the manuscript. All authors were responsible for reviewing data. All authors read and approved the final manuscript.

Acknowledgements
We gratefully acknowledge the contribution of Jianliang Li and Jianbo Guo (Beijing University of Chinese Medicine) in the study design and guidance.

Authors' information

Not applicable.

References

1. Lenzi P, Bocci G, Natale G. John Hunter and the origin of the term “angiogenesis”. 2016.
2. Folkman J. Tumor Angiogenesis: Therapeutic Implications. New England Journal of Medicine 1971; 285 (21): 1182-1186. doi: 10.1056/nejm197111182852108.
3. Gimbrone Jr MA, Leapman SB, Cotran RS, Folkman J. Tumor dormancy in vivo by prevention of neovascularization. The Journal of experimental medicine 1972; 136 (2): 261-276.
4. Ribatti D. Judah Folkman, a pioneer in the study of angiogenesis. Angiogenesis 2008; 11 (1): 3-10.
5. Folkman J. Angiogenesis. Biology of endothelial cells: Springer; 1984: 412-428.
6. Folkman J, Haudenschild C. Angiogenesis in vitro. Nature 1980; 288 (5791): 551-556.
7. Warmke N, Walker AMN, Cubbon RM. Angiogenesis. Encyclopedia of Cardiovascular Research and Medicine; 2018: 85-96.
8. Hillen F, Griffioen AW. Tumour vascularization: sprouting angiogenesis and beyond. Cancer and Metastasis Reviews 2007; 26 (3-4): 489-502. doi: 10.1007/s10555-007-9094-7.
9. Risau W. Mechanisms of angiogenesis. Nature 1997; 386 (6626): 671-674.
10. Mentzer SJ, Konerding MA. Intussusceptive angiogenesis: expansion and remodeling of microvascular networks. Angiogenesis 2014; 17 (3): 499-509. doi: 10.1007/s10456-014-9428-3.
11. Makanya AN, Hlushchuk R, Djonov VG. Intussusceptive angiogenesis and its role in vascular morphogenesis, patterning, and remodeling. Angiogenesis 2009; 12 (2): 113-123. doi: 10.1007/s10456-009-9129-5.
12. Krishna Priya S, Nagare RP, Sneha VS, Sidhanth C, Bindhya S, Manasa P, et al. Tumour angiogenesis-Origins of blood vessels. International Journal of Cancer 2016; 139 (4): 729-735. doi: 10.1002/ijc.30067.
13. Shojaei F, Ferrara N. Role of the microenvironment in tumor growth and in refractoriness/resistance to anti-angiogenic therapies. Drug Resistance Updates 2008; 11 (6): 219-230.
14. Shojaei F. Anti-angiogenesis therapy in cancer: current challenges and future perspectives. Cancer letters 2012; 320 (2): 130-137.
15. Kuczynski EA, Reynolds AR. Vessel co-option and resistance to anti-angiogenic therapy.
Haibe Y, Kreidieh M, El Haj H, Khalifeh I, Mukherji D, Temraz S, et al. Resistance Mechanisms to Anti-angiogenic Therapies in Cancer. Frontiers in Oncology 2020; 10 221.

Chandra A, Rick J, Yagnik G, Aghi MK, eds. Autophagy as a mechanism for anti-angiogenic therapy resistance. Seminars in cancer biology; 2019: Elsevier.

Crawford Y, Ferrara N. Tumor and stromal pathways mediating refractoriness/resistance to anti-angiogenic therapies. Trends in pharmacological sciences 2009; 30 (12): 624-630.

Ronca R, Benkheil M, Mitola S, Struyf S, Liekens S. Tumor angiogenesis revisited: regulators and clinical implications. Medicinal research reviews 2017; 37 (6): 1231-1274.

Viallard C, Larrivée B. Tumor angiogenesis and vascular normalization: alternative therapeutic targets. Angiogenesis 2017; 20 (4): 409-426.

Widakowich C, de Castro Jr G, De Azambuja E, Dinh P, Awada A. Side effects of approved molecular targeted therapies in solid cancers. The oncologist 2007; 12 (12): 1443-1455.

Wang S, Zheng Z, Weng Y, Yu Y, Zhang D, Fan W, et al. Angiogenesis and anti-angiogenesis activity of Chinese medicinal herbal extracts. Life sciences 2004; 74 (20): 2467-2478.

Dong Y, Lu B, Zhang X, Zhang J, Lai L, Li D, et al. Cucurbitacin E, a tetracyclic triterpenes compound from Chinese medicine, inhibits tumor angiogenesis through VEGFR2-mediated Jak2-STAT3 signaling pathway. 2010; 31 (12): 2097-2104. doi: 10.1093/carcin/bgq167.

Zhang S, Tang D, Zang W, Yin G, Dai J, Sun Y, et al. Synergistic Inhibitory Effect of Traditional Chinese Medicine Astragaloside IV and Curcumin on Tumor Growth and Angiogenesis in an Orthotopic Nude-Mouse Model of Human Hepatocellular Carcinoma. Anticancer Research 2017; 37 (2): 465-474. doi: 10.21873/anticanres.11338.

Safran M, Dalah I, Alexander J, Rosen N, Iny Stein T, Shmoish M, et al. GeneCards Version 3: the human gene integrator. Database 2010; 2010.

Wang Y, Zhang S, Li F, Zhou Y, Zhang Y, Wang Z, et al. Therapeutic target database 2020: enriched resource for facilitating research and early development of targeted therapeutics. Nucleic acids research 2020; 48 (D1): D1031-D1041.

Amberger JS, Bocchini CA, Schiettecatte F, Scott AF, Hamosh A. OMIM. org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic acids research 2015; 43 (D1): D789-D798.

Wishart DS, Feunang YD, Guo AC, Lo EJ, Ma’cur A, Grant JR, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic acids research 2018; 46 (D1): D1074-D1082.

Piñero J, Ramírez-Anguita JM, Saúch-Pitarch J, Ronzano F, Centeno E, Sanz F, et al. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic acids research 2020; 48 (D1): D845-D855.

Consortium U. UniProt: the universal protein knowledgebase. Nucleic acids research 2018; 46 (5): 2699.
pharmacology for drug discovery from herbal medicines. Journal of cheminformatics 2014; 6 (1): 13.

32. Xu H-Y, Zhang Y-Q, Liu Z-M, Chen T, Lv C-Y, Tang S-H, et al. ETCM: an encyclopaedia of traditional Chinese medicine. Nucleic Acids Research 2019; 47 (D1): D976-D982. doi: 10.1093/nar/gky987.

33. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome research 2003; 13 (11): 2498-2504.

34. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of computational chemistry 2010; 31 (2): 455-461.

35. Jin-lei L, Wen-chao D, Qing-yong H, Bo-wen X, Yi Q. Molecular Mechanism of Burnet Root Leukopoietic Tablets in Treatment of Leukopenia Based on Network Pharmacology Modern Chinese Medicine 2020; 1-16.

36. Iñiguez MA, Rodríguez A, Volpert OV, Fresno M, Redondo JM. Cyclooxygenase-2: a therapeutic target in angiogenesis. Trends in molecular medicine 2003; 9 (2): 73-78.

37. Apte RS, Chen DS, Ferrara N. VEGF in Signaling and Disease: Beyond Discovery and Development. Cell 2019; 176 (6): 1248-1264. doi: 10.1016/j.cell.2019.01.021.

38. Rundhaug JE. Matrix metalloproteinases and angiogenesis. Journal of cellular and molecular medicine 2005; 9 (2): 267-285.

39. Hollborn M, Stathopoulos C, Steffen A, Wiedemann P, Kohen L, Bringmann A. Positive Feedback Regulation between MMP-9 and VEGF in Human RPE Cells. Investigative Ophthalmology & Visual Science 2007; 48 (9): 4360. doi: 10.1167/iovs.06-1234.

40. Stamenkovic I. Extracellular matrix remodelling: the role of matrix metalloproteinases. The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland 2003; 200 (4): 448-464.

41. Yabluchanskiy A, Ma Y, Iyer RP, Hall ME, Lindsey ML. Matrix metalloproteinase-9: many shades of function in cardiovascular disease. Physiology 2013; 28 (6): 391-403.

42. Huang H. Matrix Metalloproteinase-9 (MMP-9) as a Cancer Biomarker and MMP-9 Biosensors: Recent Advances. Sensors 2018; 18 (10): 3249. doi: 10.3390/s18103249.

43. Ma Z, Piao T, Wang Y, Liu J. Astragalin inhibits IL-1β-induced inflammatory mediators production in human osteoarthritis chondrocyte by inhibiting NF-κB and MAPK activation. International Immunopharmacology 2015; 25 (1): 83-87.

44. Azoitei N, Becher A, Steinestel K, Rouhi A, Diepold K, Genze F, et al. PKM2 promotes tumor angiogenesis by regulating HIF-1α through NF-κB activation. Molecular Cancer 2016; 15 (1): doi: 10.1186/s12943-015-0490-2.

45. Imran M, Salehi B, Sharifi-Rad J, Aslam Gondal T, Saeed F, Imran A, et al. Kaempferol: A key emphasis to its anticancer potential. Molecules 2019; 24 (12): 2277.

46. Kim Y-W, Byzova TV. Oxidative stress in angiogenesis and vascular disease. Blood 2014; 123 (5): 625-631. doi: 10.1182/blood-2013-09-512749.

47. Duran WN, Breslin JW, Sanchez FA. The NO cascade, eNOS location, and microvascular permeability. Cardiovascular Research 2010; 87 (2): 254-261. doi: 10.1093/cvr/cvq139.

48. Lu J, Papp LV, Fang J, Rodriguez-Nieto S, Zhivotovsky B, Holmgren A. Inhibition of mammalian thioredoxin reductase by some flavonoids: implications for myricetin and
26

Lu J, Holmgren A. The thioredoxin antioxidant system. Free Radical Biology and Medicine 2014; 66 75–87.

Lee D, Xu IMJ, Chiu DKC, Leibold J, Tse APW, Bao MHR, et al. Induction of Oxidative Stress Through Inhibition of Thioredoxin Reductase 1 Is an Effective Therapeutic Approach for Hepatocellular Carcinoma. Hepatology 2019; 69 (4): 1768–1786. doi: 10.1002/hep.30467.

Zhang J, Yao J, Peng S, Li X, Fang J. Securinine disturbs redox homeostasis and elicits oxidative stress-mediated apoptosis via targeting thioredoxin reductase. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2017; 1863 (1): 129–138. doi: 10.1016/j.bbadis.2016.10.019.

Abdelsaid MA, Matragoon S, El-Remessy AB. Thioredoxin-Interacting Protein Expression Is Required for VEGF-Mediated Angiogenic Signal in Endothelial Cells. Antioxidants & Redox Signaling 2013; 19 (18): 2199–2212. doi: 10.1089/ars.2012.4761.

Dunn LL, Buckle AM, Cooke JP, Ng MKC. The Emerging Role of the Thioredoxin System in Angiogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology 2010; 30 (11): 2089-2098. doi: 10.1161/atvbaha.110.209643.

Yang Q, Yu D, Zhang Y. β-Sitosterol Attenuates the Intracranial Aneurysm Growth by Suppressing TNF-α-Mediated Mechanism. Pharmacology 2019; 104 (5-6): 302–310.

Hu W-H, Chan GK-L, Lou J-S, Wu Q-Y, Wang H-Y, Duan R, et al. The extract of Polygoni Cuspidati Rhizoma et Radix suppresses the vascular endothelial growth factor-induced angiogenesis. Phytomedicine 2018; 42 135–143.

Abeyrathna P, Su Y. The critical role of Akt in cardiovascular function. Vascular Pharmacology 2015; 74 38–48. doi: 10.1016/j.vph.2015.05.008.

Zhang Q, Lu S, Li T, Yu L, Zhang Y, Zeng H, et al. ACE2 inhibits breast cancer angiogenesis via suppressing the VEGFa/VEGFR2/ERK pathway. Journal of Experimental & Clinical Cancer Research 2019; 38 (1): doi: 10.1186/s13046-019-1156-5.

Panth N, Paudel KR, Gong D-S, Oak M-H. Vascular Protection by Ethanol Extract of Morus alba Root Bark: Endothelium-Dependent Relaxation of Rat Aorta and Decrease of Smooth Muscle Cell Migration and Proliferation. Evidence-Based Complementary and Alternative Medicine 2018; 2018 1–8. doi: 10.1155/2018/7905763.

Bir SC, Xiong Y, Kevil CG, Luo J. Emerging role of PKA/eNOS pathway in therapeutic angiogenesis for ischaemic tissue diseases. Cardiovascular Research 2012; 95 (1): 7–18. doi: 10.1093/cvr/cvs143.

Molina JR, Adjei AA. The Ras/Raf/MAPK Pathway. Journal of Thoracic Oncology 2006; 1 (1): 7-9. doi: 10.1016/s1556-0864(15)31506-9.

Bao J, Ding R, Zhou L, Zhang C, Wang K, Liu F, et al. Forsythiae fructus inhibits B16 melanoma growth involving MAPKs/Nrf2/HO-1 mediated anti-oxidation and anti-inflammation. The American Journal of Chinese Medicine 2016; 44 (05): 1043-1061.

Figure Legends

Figure 1. The workflow of the investigation
Figure 2. Target-compound network

Figure 3. Number of candidate compounds and targets related to the traditional Chinese medicines

Figure 4. Target-compound-traditional Chinese medicine network. The diamond-shaped nodes represent the Chinese medicine, the triangular nodes represent the ingredients, and the V-shaped nodes represent the target. The icon size of each node is positively correlated with its degree value.

Figure 5. Molecular docking results

Figure 6. Molecular docking model. In the 3D structure of ligand–protein complexes, protein scaffolds of the protein skeleton are displayed as tube shape, different peptide chains are coloured differently, and ligands are displayed as a blue bar. The 2D interaction model shows protein residues coloured by its property in a circle; green: hydrophobicity residues; purple: polarity residues. a: KDR-6gqq-Astragalin; b: MMP9-1gkc-Astragalin; c: MMP9-1gkc-beta-Diosgenin; d: MMP9-1gkc-beta-Sitosterol; e: PTGS2-5ikq-Astragalin; f: PTGS2-5ikq-Kaempferol; g: PTGS2-5ikq-Myricetin; h: PTGS2-5ikq-Quercetin; i: tp53-1jsp-Astragalin.