Adversarial Robustness against the Union of Multiple Perturbation Models

Pratyush Maini1, Eric Wong2, J. Zico Kolter2,3

https://github.com/locuslab/robust_union

1Indian Institute of Technology Delhi
New Delhi, India

2School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213, USA

3Bosch Center for Artificial Intelligence
Pittsburgh, PA 15222, USA
Overview

• Robustness to multiple perturbation types is non-trivial, yet important
• Prior baselines can be difficult to tune and have suboptimal trade-offs
• MSD offers consistent benefits on both MNIST and CIFAR10
Deep networks are vulnerable to adversarial attacks

Imperceptible Adversaries can fool deep networks

The attack is staged using the ‘Fast Gradient Sign Method’ which restricts an adversary within a small ℓ_∞ ball of radius ϵ_∞ around the original image.
Exclusivity of different ℓ_p balls

Different perturbation types have non-overlapping regions

- ℓ_∞ ball: $\max |\delta_i| \leq \epsilon_\infty$
- ℓ_2 ball: $\sqrt{\sum |\delta_i|^2} \leq \epsilon_2$
- ℓ_1 ball: $\sum |\delta_i| \leq \epsilon_1$
Exclusivity of different ℓ_p balls

Different perturbation types have non-overlapping regions

*The distinction is more significant in high-dimensional spaces
PGD adversary for ℓ_∞ attacks

PGD (x, y, θ):

$\delta = 0$ // or randomly initialized

for $j = 1$... N:

$\delta := \delta + \alpha \cdot \text{sign}(\nabla_\delta \ell(f_\theta(x_i + \delta), y_i))$ // step

$\delta := \max(\min(\delta, \epsilon), -\epsilon)$ // project

end for
Adversaries confined within different ℓ_p balls have different optimal perturbations

Different perturbation types have different characteristics

- **ℓ_∞ attack**
 \[\max |\delta_i| \leq \epsilon_\infty \]

- **ℓ_2 attack**
 \[\sqrt{\sum |\delta_i|^2} \leq \epsilon_2 \]

- **ℓ_1 attack**
 \[\sum |\delta_i| \leq \epsilon_1 \]
Adversarial Training

[Goodfellow et. al. 2014]

repeat:
- Select minibatch \mathcal{B}
 - for $(x, y) \in \mathcal{B}$,
 - $\delta^*(x \mid y, \theta) = \text{PGD}(x, y, \theta)$
 - $x_{adv} = x + \delta^*(x, y, \theta)$
 - end for
- // Update parameters
 - $\theta := \theta - \frac{1}{|\mathcal{B}|} \sum_{x,y} \nabla_{\theta} \ell(f_{\theta}(x_{adv}), y)$
- until convergence

[Kolter & Madry, 2018]
Robustness does not transfer across perturbation types
Robustness against multiple perturbation types is important

- Adversaries can attack a system irrespective of the perturbation ball it was ‘trained’ to be robust against.
- Robustness against ‘all’ types of ‘imperceptible’ noises is essential for real world deployment.

Goal: Develop an algorithm to train a single model robust against multiple perturbation types
Naïve approaches

Let S represent a set of threat models, such that $p \in S$ corresponds to the ℓ_p threat model $\Delta_{p,\epsilon}$.

- **MAX** (Worst-case Perturbation) (Tramer et. al. 2019)
 \[
 \delta_p = \arg \max_{\delta \in \Delta_{p,\epsilon}} \ell(f_\theta(x + \delta), y)
 \]
 \[\delta^* \approx \arg \max_{\delta_p} \ell(f_\theta(x + \delta_p), y)\]

- **AVG** (Train over all perturbations) (Tramer et. al. 2019)
 \[
 \min_{\theta} \sum_i \sum_{p \in S} \max_{\delta \in \Delta_{p,\epsilon}} \ell(f_\theta(x_i + \delta), y)
 \]

While the naïve approaches work to some extent, they converge to suboptimal local minima and are difficult to tune.
Multi Steepest Descent

\[MSD \left(x, y, \theta \right) : \]

\[\delta = 0 \quad // or \quad randomly \quad initialized \]

\textbf{for} \ j = 1 \ldots N:\
\textbf{for} \ p \in \{1, 2, \infty\}:
\quad \delta_p = \text{step-and-project} \left(\delta, x, y, p; \theta \right)
\textbf{end for}
\quad \delta = \text{argmax}_{\delta_p} \ell(f_{\theta}(x + \delta_p), y)
\textbf{end for}
Multi Steepest Descent

\[\text{MSD} \left(x, y, \theta \right): \]

\[\delta = 0 \quad // \text{or randomly initialized} \]

\textbf{for} $j = 1 \ldots N$:

\textbf{for} $p \in \{1, 2, \infty\}$:

\[\delta_p = \text{step-and-project} \left(\delta, x, y, p; \theta \right) \]

\textbf{end for}

\[\delta = \arg \max_{\delta_p} \ell(f_\theta(x + \delta_p), y) \]

\textbf{end for}
How do MSD attacks look

Original Adversarial

Original Adversarial
MSD is significantly more robust on MNIST

- Evaluation is performed over a wide-suite of 15 gradient-based and gradient-free attacks
- MSD significantly improves over naïve approaches on the MNIST dataset.

Gradient-based Attacks	Gradient-free Attacks
Fast Gradient Sign Method	Salt & Pepper Attack
Projected Gradient Descent	Pointwise Attack
Momentum Iterative Method	Gaussian Noise Attack
DeepFool Attack	Boundary Attack
DDN Attack	
C&W Attack	
MSD is significantly more robust on MNIST

Adversarial Robustness on the MNIST dataset

Accuracy (in %)

Adversarially Robust Models

L_inf attacks L_2 attacks L_1 attacks All attacks
MSD is less sensitive to hyperparameter changes

The algorithm is much more stable to train and does not require any heuristic adjustments for different datasets unlike previous work.
MSD improves over previous baselines on CIFAR10

- The results on both MNIST and CIFAR10 have been reproduced.¹

¹David Stutz, Matthias Hein and Bernt Schiele. (ICML 2020) Confidence-Calibrated Adversarial Training: Generalizing to Unseen Attacks
Conclusions from multiple perturbation adversarial training

• PGD training can be extended to make models robust to multiple perturbation types

• Naïve approaches
 • Can be highly variable (across parameters and datasets)
 • Are difficult to tune
 • Converge to suboptimal local minima

• MSD consistently outperforms them across both MNIST and CIFAR10

https://github.com/locuslab/robust_union
Different perturbation types have non-overlapping regions

- Robustness to multiple perturbation types is non-trivial, yet important
- Prior baselines can be difficult to tune and have suboptimal trade-offs
- MSD offers consistent benefits on both MNIST and CIFAR10

\\[
\text{MSD}(x, y, \theta) := \\
\delta = 0 \quad \text{// or randomly initialized} \\
\text{for } j = 1 \ldots N: \\
\quad \text{for } p \in \{1, 2, \infty\}: \\
\quad \quad \delta_p = \text{step-project}(\delta, x, y, p; \theta) \\
\quad \text{end for} \\
\quad \delta = \arg\max_{\delta_p} \ell(f_{\theta}(x + \delta_p), y) \\
\text{end for}
\\
\]

Comparison of MSD with Baselines

- Adversarial Accuracy (in %)
- Datasets

- MAX
- AVG
- MSD

- MNIST
- CIFAR10