Abelian Repetitions in Sturmian Words

Gabriele Fici1 Alessio Langiu2 Thierry Lecroq3 Arnaud Lefebvre3 Filippo Mignosi4 Jarkko Peltomäki5 Élise Prieur-Gaston3

1 Università di Palermo, Italy
2 King’s College London, UK
3 Normandie Université, Université de Rouen, Normastic FR CNRS 3638, IRIB, LITIS EA 4108, France
4 Università dell’Aquila, Italy
5 University of Turku, Finland

Caen 2016
April 19th, 2016 – Caen, France
Outline

1. Introduction

2. Sturmian words and abelian repetitions
Outline

1 Introduction

2 Sturmian words and abelian repetitions
Notation and definitions

Given a word $w = w[1..n]$ of length n over alphabet $\Sigma = \{a_1, \ldots, a_\sigma\}$ of cardinality σ we denote by:

- $w[i]$ its i-th symbol
- $w[i..j]$ the factor from the i-th to the j-th symbols
- $|w|_a$ the number of occurrences of symbol a in w
- $P_w = (|w|_{a_1}, \ldots, |w|_{a_\sigma})$ its Parikh vector
Notation and definitions

Given a word $w = w[1..n]$ of length n over alphabet $\Sigma = \{a_1, \ldots, a_\sigma\}$ of cardinality σ we denote by:

- $w[i]$ its i-th symbol
- $w[i..j]$ the factor from the i-th to the j-th symbols
- $|w|_a$ the number of occurrences of symbol a in w
- $P_w = (|w|_{a_1}, \ldots, |w|_{a_\sigma})$ its Parikh vector
Notation and definitions

Given a word $w = w[1..n]$ of length n over alphabet $\Sigma = \{a_1, \ldots, a_\sigma\}$ of cardinality σ we denote by:

- $w[i]$ its i-th symbol
- $w[i..j]$ the factor from the i-th to the j-th symbols
- $|w|_a$ the number of occurrences of symbol a in w
- $P_w = (|w|_{a_1}, \ldots, |w|_{a_\sigma})$ its Parikh vector
Notation and definitions

Given a word $w = w[1..n]$ of length n over alphabet $\Sigma = \{a_1, \ldots, a_\sigma\}$ of cardinality σ we denote by:

- $w[i]$ its i-th symbol
- $w[i..j]$ the factor from the i-th to the j-th symbols
- $|w|_a$ the number of occurrences of symbol a in w
- $P(w) = (|w|_{a_1}, \ldots, |w|_{a_\sigma})$ its Parikh vector
Remarks on Parikh vectors

Consider $Pw = (|w|_{a_1}, \ldots, |w|_{a_\sigma})$ then

1. $Pw[i] = |w|_{a_i}$
2. $|Pw| = \sum_{i=1}^{\sigma} Pw[i] = |w|$
3. $Pw \subset Q$ iff $Pw[i] \leq Q[i]$ for every $1 \leq i \leq \sigma$ and $|Pw| < |Q|$
Remarks on Parikh vectors

Consider $\mathcal{P}w = (|w|_{a_1}, \ldots, |w|_{a_\sigma})$ then

- $\mathcal{P}w[i] = |w|_{a_i}$
- $|\mathcal{P}w| = \sum_{i=1}^{\sigma} \mathcal{P}w[i] = |w|$
- $\mathcal{P}w \subseteq \mathcal{Q}$ iff $\mathcal{P}w[i] \leq \mathcal{Q}[i]$ for every $1 \leq i \leq \sigma$ and $|\mathcal{P}w| < |\mathcal{Q}|$
Remarks on Parikh vectors

Consider \(P_w = (|w|_{a_1}, \ldots, |w|_{a_\sigma}) \) then

- \(P_w[i] = |w|_{a_i} \)
- \(|P_w| = \sum_{i=1}^{\sigma} P_w[i] = |w| \)
- \(P_w \subset Q \) iff \(P_w[i] \leq Q[i] \) for every \(1 \leq i \leq \sigma \) and \(|P_w| < |Q| \)
Remarks on Parikh vectors

Consider \(\mathcal{P}_w = (|w|_{a_1}, \ldots, |w|_{a_\sigma}) \) then

- \(\mathcal{P}_w[i] = |w|_{a_i} \)
- \(|\mathcal{P}_w| = \sum_{i=1}^\sigma \mathcal{P}_w[i] = |w| \)
- \(\mathcal{P}_w \subset Q \) iff \(\mathcal{P}_w[i] \leq Q[i] \) for every \(1 \leq i \leq \sigma \) and \(|\mathcal{P}_w| < |Q| \)

Example

\(\mathcal{P}_{caen} \)
Remarks on Parikh vectors

Consider $\mathcal{P}_w = (|w|_{a_1}, \ldots, |w|_{a_\sigma})$ then

- $\mathcal{P}_w[i] = |w|_{a_i}$
- $|\mathcal{P}_w| = \sum_{i=1}^{\sigma} \mathcal{P}_w[i] = |w|$
- $\mathcal{P}_w \subset \mathcal{Q}$ iff $\mathcal{P}_w[i] \leq \mathcal{Q}[i]$ for every $1 \leq i \leq \sigma$ and $|\mathcal{P}_w| < |\mathcal{Q}|$

Example

$\mathcal{P}_{caen} \subset \mathcal{P}_{carmen}$
Remarks on Parikh vectors

Consider $\mathcal{P}_w = (|w|_{a_1}, \ldots, |w|_{a_\sigma})$ then

- $\mathcal{P}_w[i] = |w|_{a_i}$
- $|\mathcal{P}_w| = \sum_{i=1}^{\sigma} \mathcal{P}_w[i] = |w|
- $\mathcal{P}_w \subset Q$ iff $\mathcal{P}_w[i] \leq Q[i]$ for every $1 \leq i \leq \sigma$ and $|\mathcal{P}_w| < |Q|

Example

$\mathcal{P}_{caen} \subset \mathcal{P}_{carmen} \subset \mathcal{P}_{american}$
Abelian periods

[Constantinescu and Ilie, 2006] introduced the notion of Abelian period.

Definition

A word w has Abelian period (h, p) iff $w = u_0u_1 \cdots u_{k-1}u_k$ such that:

- $P_{u_0} \subset P_{u_1} = \cdots = P_{u_{k-1}} \supset P_{u_k}$
- $|P_{u_0}| = h$, $|P_{u_1}| = p$

u_0 is called the *head* and u_k is called the *tail*.

P_w will denote the set of Abelian periods of w.

Abelian periods

\[w = a b a a b b b a a a b a b a b b a b b a a a \]
Abelian periods

\[w = \text{a b a a b b b b a a a b a b a b a b b a b b a a} \]

\[P_{w} = \{(0, 6)\} \]
Abelian periods

$$w = \text{a \ b \ a \ a \ b \ b \ b \ b \ a \ a \ a \ b \ a \ b \ a \ b \ b \ a | b \ b \ a \ a}$$

$$P_w = \{(0,6), (0,10)\}$$
Abelian periods

\[w = \text{a b a a b b b a a a b} | \text{a b a b a b b a b b a a} \]

\[P_w = \{(0, 6), (0, 10), (0, 12)\} \]
Abelian periods

\[w = \begin{array}{cccccccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 \\
\text{a} & \text{b} & \text{a} & \text{a} & \text{b} & \text{b} & \text{b} & \text{b} & \text{b} & \text{a} & \text{a} & \text{a} & \text{b} & \text{a} & \text{b} & \text{a} & \text{b} & \text{a} & \text{b} & \text{b} & \text{a} & \text{b} & \text{a} & \text{a} \\
\end{array} \]

\[P_w = \{(0,6), (0,10), (0,12), (1,9)\} \]
Abelian periods

\[w = \begin{array}{cccccccccccccccccccccc}
\text{a} & \text{b} & \text{a} & \text{a} & \text{b} & \text{b} & \text{b} & \text{b} & \text{a} & \text{a} & \text{a} & \text{b} & \text{a} & \text{b} & \text{a} & \text{b} & \text{b} & \text{a} & \text{b} & \text{a} & \text{a} & \text{b} \\
\end{array} \]

\[P_w = \{(0,6), (0,10), (0,12), (1,9), (1,11)\} \]
Abelian periods

\[w = \text{a b a a b b b a a a b a b a b a b b a a a} \]

\[P_w = \{(0, 6), (0, 10), (0, 12), (1, 9), (1, 11), (2, 8)\} \]
Abelian periods

\[w = \begin{array}{ccccccccccccccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 \\
\text{a} & \text{b} & \text{a} & \text{a} & \text{b} & \text{b} & \text{b} & \text{b} & \text{a} & \text{a} & \text{a} & \text{b} & \text{a} & \text{b} & \text{a} & \text{b} & \text{a} & \text{b} & \text{b} & \text{a} & \text{b} & \text{a} & \text{a}
\end{array} \]

\[P_w = \{ (0, 6), (0, 10), (0, 12), \\
(1, 9), (1, 11), \\
(2, 8), \\
(3, 9) \} \]
Abelian periods

$w = \begin{array}{cccccccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
\hline
a & b & a & a & b & b & b & b & a & a & a & b & a & b & a & b \\
\end{array}$

$P_w = \{(0, 6), (0, 10), (0, 12),$
\[(1, 9), (1, 11),$
\[(2, 8),$
\[(3, 9),$
\[(4, 7)\}
Abelian periods

\[w = \text{a b a a b b b a a a b a b a b a a b b a b b a a} \]

\[P_w = \{(0, 6), (0, 10), (0, 12), \\
(1, 9), (1, 11), \\
(2, 8), \\
(3, 9), \\
(4, 7), \\
(5, 7)\} \]
Abelian periods

\[w = \{a, b, a, a, b, b, b, a, a, a, b, a, b, a, b, a, b, a, b, b, b, a, a\} \]

\[P_w = \{(0, 6), (0, 10), (0, 12), \]
\[(1, 9), (1, 11), \]
\[(2, 8), \]
\[(3, 9), \]
\[(4, 7), \]
\[(5, 7), (5, 9), \ldots\} \]
Abelian periods

\[w = \overline{a b a a b b b b a a a b a b a b a b a b a b a a} \]

\[P_w = \{(0, 6), (0, 10), (0, 12), \quad \text{Abelian powers (weak Ap)} \]
\[(1, 9), (1, 11), \]
\[(2, 8), \]
\[(3, 9), \]
\[(4, 7), \]
\[(5, 7), (5, 9), \ldots \} \]
Abelian periods

Remark

a^n has n^2 Abelian periods.
Motivations

Bioinformatics
- finding CpG islands
- finding clusters of genes
- proteomics: mass spectrometry
- analysis of gene expression time series

Other fields
- approximate pattern matching
- games (letters)
Sturmian words

Definition 1

Infinite words over a binary alphabet that have exactly $n + 1$ distinct factors of length n for each $n \geq 0$
Fibonacci words

Fibonacci numbers

\[F_0 = 0, \quad F_1 = 1, \quad F_j = F_{j-1} + F_{j-2} \quad \text{for} \quad j \geq 2 \]

\((0, 1, 1, 2, 3, 5, 8, 13, 21, 34, \ldots) \)

Fibonacci words

\[f_1 = b, \quad f_2 = a, \quad f_j = f_{j-1} \cdot f_{j-2} \quad \text{for} \quad j \geq 3 \]

\((b, a, ab, aba, ababa, abaababa, abaababaabaab, \ldots) \)

Fibonacci words are Sturmian words
Outline

1. Introduction

2. Sturmian words and abelian repetitions
Our starting point

G. Fici, T. L., A. Lefebvre and É. Prieur-Gaston
Computing Abelian periods in words
In J. Holub and J. Žďárek editors, *Proceedings of the Prague Stringology Conference 2011 (PSC 2011)*, Prague, Tcheque Republic, Pages 184–196, 2011

G. Fici, T. L., A. Lefebvre, É. Prieur-Gaston and W. F. Smyth
Quasi-Linear Time Computation of the Abelian Periods of a Word
In J. Holub and J. Žďárek editors, *Proceedings of the Prague Stringology Conference 2012 (PSC 2012)*, Prague, Tcheque Republic, Pages 103–110, 2012

G. Fici, T. L., A. Lefebvre and É. Prieur-Gaston
Algorithms for Computing Abelian Periods of Words.
Discrete Applied Mathematics **163**(Part 3) (2014) 287-297
Our starting point

G. Fici, T. Lecroq, A. Lefebvre and É. Prieur-Gaston
Online Computation of Abelian Runs
In: A. Horia Dediu, E. Formenti, C. Martín-Vide and B. Truthe editors, *Proceedings of the 9th International Conference on Language and Automata Theory and Applications (LATA 2015)*, Nice, France, LNCS 8977, Springer, 391–401

G. Fici, T. Lecroq, A. Lefebvre, É. Prieur-Gaston and William F. Smyth
A Note on Easy and Efficient Computation of Full Abelian Periods of a Word
Discrete Applied Mathematics, to appear

G. Fici, T. Kociumaka, T. Lecroq, A. Lefebvre and É. Prieur-Gaston
Fast Computation of Abelian Runs
Theoretical Computer Science, to appear
Our starting point 2

i	F_i	ap
0	0	0
1	1	1
2	1	1
3	2	1
4	3	2
5	5	2
6	8	2
7	13	3
8	21	5
9	34	5
10	55	5
11	89	8
12	144	13
13	233	13
14	377	13
15	610	21

i	F_i	ap
16	987	34
17	1597	34
18	2584	34
19	4181	55
20	6765	89
21	10946	89
22	17711	89
23	28657	144
24	46368	233
25	75025	233
26	121393	233
27	196418	377
28	317811	610
29	514229	610
30	832040	610
31	1346269	987

i	F_i	ap
32	2178309	1597
33	3524578	1597
34	5702887	1597
35	9227465	2584
36	14930352	4181
37	24157817	4181
38	39088169	4181
39	63245986	6765
40	102334155	10946
41	165580141	10946
42	267914296	10946
43	433494437	17711
44	701408733	28657
45	1134903170	28657
46	1836311903	28657
47	2971215073	46368
Sturmian words

Definition 2

Let \(\alpha \) and \(\rho \), \(\alpha \in (0, 1) \) irrational. The fractional part of \(r \) is defined by \(\{r\} = r - \lfloor r \rfloor \). Therefore, for \(\alpha \in (0, 1) \), one has that \(\{-\alpha\} = 1 - \alpha \).

The sequence \(\{n\alpha + \rho\}, n > 0 \), defines an infinite word \(s_{\alpha, \rho} = a_1(\alpha, \rho)a_2(\alpha, \rho) \cdots \) by the rule

\[
a_n(\alpha, \rho) = \begin{cases}
 b & \text{if } \{n\alpha + \rho\} \in [0, \{-\alpha\}), \\
 a & \text{if } \{n\alpha + \rho\} \in [\{-\alpha\}, 1).
\end{cases}
\]

For \(\alpha = \phi - 1 \) and \(\rho = 0 \), \(\phi = (1 + \sqrt{5})/2 \), \(f = abaababaabaabab \cdots \)
The Sturmian bijection 1

Proposition

For any n, i, with $n > 0$, if $\{- (i + 1) \alpha \} < \{- i \alpha \}$ then

$$a_{n+i} = a \iff \{n \alpha + \rho\} \in [\{- (i + 1) \alpha \}, \{- i \alpha \})$$

whereas if $\{- i \alpha \} < \{- (i + 1) \alpha \}$ then

$$a_{n+i} = a \iff \{n \alpha + \rho\} \in [0, \{- i \alpha \}) \cup [\{- (i + 1) \alpha \}, 1).$$

When $\alpha = \phi - 1 \approx 0.618$ (thus $\{- \alpha \} \approx 0.382$) for $i = 1$. If $\{n \alpha + \rho\} \in [0, \{- \alpha \}) \cup [\{- 2 \alpha \}, 1)$, then $a_{n+1} = a$; otherwise $a_{n+1} = b$.
The subintervals of the Sturmian bijection obtained for $\alpha = \phi - 1$ and $m = 6$. Below each interval there is the factor of s_α of length 6 associated with that interval. For $\rho = 0$ and $n = 1$, the prefix of length 6 of the Fibonacci word is associated with $[c_4(\alpha, 6), c_5(\alpha, 6))$, which is the interval containing α.

The Sturmian bijection 2

\[
\begin{array}{cccccccc}
 c_0(\alpha, 6) & & c_1(\alpha, 6) & & c_2(\alpha, 6) & c_3(\alpha, 6) & c_4(\alpha, 6) & \alpha \\
 0 & & 0.145... & & 0.291...0.381... & 0.527... & & \\
\end{array}
\]

\[
\begin{array}{cccccccc}
 c_5(\alpha, 6) & & c_6(\alpha, 6) & c_7(\alpha, 6) & \alpha & & & \\
 0.763... & & 0.909... & & 1 & & & \\
\end{array}
\]

\[
\begin{array}{cccccccc}
 (a_n) & & (a_n+1) & & (a_n+2) & (a_n+3) & (a_n+4) & (a_n+5) \\
 b & & a & & b & a & a & b \\
 a & & a & & a & b & b & a \\
 b & & a & & a & b & a & b \\
 a & & b & & b & a & a & b \\
 a & & a & & a & a & a & b \\
\end{array}
\]
The Sturmian bijection and abelian repetitions

All factors of length m to the right of $\{-m\alpha\}$ have the same Parikh vector.
All factors of length m to the left of $\{-m\alpha\}$ have the same Parikh vector.
The two Parikh vectors are different.
Main Idea

All the points in the sequence
\(\{n\alpha\}, \{(n + m)\alpha\}, \{(n + 2m)\alpha\}, \ldots, \{(n + km)\alpha\} \) are one after the other in the unitary thorus with step \(|\{-m\alpha\}| \), i.e. the distance between \(\{(n + im)\alpha\} \) and \(\{(n + (i + 1)m)\alpha\} \) is \(|\{-m\alpha\}| \) in the unitary thorus.

HENCE, if \(|\{-m\alpha\}| \) is small and \(\{n\alpha\} \) is close to zero, there is a big number \(k \) such that all previous points are all to the left of \(\{-m\alpha\} \), in the unitary interval.

In turn, by the Sturmian bijection, the factors of length \(m \) starting at letters \(a_n, a_{n+m}, a_{n+2m}, \ldots, a_{n+km} \) have the same Parikh vector. We have an abelian power of exponent \(k \) (and conversely).
Main result

Theorem

Let m be a positive integer such that $\{m\alpha\} < 0.5$ (resp. $\{m\alpha\} > 0.5$). Then: In s_α there is an abelian power of period m and exponent $k \geq 2$ if and only if $\{m\alpha\} < \frac{1}{k}$ (resp. $\{-m\alpha\} < \frac{1}{k}$).
Idea of the Proof

⇒
There is an abelian power of period \(m\) and exponent \(k \geq 2\) at position \(n\) in \(s_\alpha\).
Then the \(k\) points \(\{(n + im)\alpha\}, 0 \leq i \leq k - 1\), are naturally ordered and lie all either in \([0, \{-m\alpha\})\) or in \([\{-m\alpha\}, 1)\).

Suppose the 1st case holds.
The distance between any 2 consecutive such points is \(\{-m\alpha\}\).
Therefore, \((k - 1)\{-m\alpha\}\) must be smaller than the size of the interval \([0, \{-m\alpha\})\) which is equal to \(\{-m\alpha\}) = 1 - \{m\alpha\}\).
Thus \(\{m\alpha\} < 1/k\).
Idea of the Proof

\[
\{m\alpha\} < \frac{1}{k}
\]

By the Kronecker Approximation Theorem, the sequence \(\{n\alpha\}_{n \geq 0}\) is dense in \([0, 1)\).

Therefore, one can find a number \(n\) such that \(\{n\alpha\}\) is (arbitrarily) close to 0 and the points \(\{(n + im)\alpha\}, 0 \leq i \leq k - 1\) lie all in \([0, \{-m\alpha\})\).
Let s_α be a Sturmian word. For any integer $q > 1$, let k_q be the maximal exponent of an abelian repetition of period q in s_α. Then

$$\limsup \frac{k_q}{q} \geq \sqrt{5},$$

and the equality holds if $\alpha = \phi - 1$.

Theorem
Idea of the Proof

Take an approximation \(\frac{n}{m} \) of \(\alpha \) such that \(|\frac{n}{m} - \alpha| < \frac{1}{\sqrt{5}m^2} \).

If \(\frac{n}{m} - \alpha < 0 \) then \(m\alpha - n < \frac{1}{\sqrt{5}} \leq 0.5 \).

Thus \(\{m\alpha\} < \frac{1}{\sqrt{5}m} \)

and thus there is in \(s_\alpha \) an abelian power of period \(m \) and exponent \(\geq \sqrt{5}m \)

Since any irrational \(\alpha \) has an infinity of approximations which satisfy

\(|\frac{n}{m} - \alpha| < \frac{1}{\sqrt{5}m^2} \) the statement holds.
Other results on Fibonacci words

Theorem

Let \(j > 1 \). The longest prefix of the Fibonacci infinite word that is an abelian repetition of period \(F_j \) has length \(F_j(F_{j+1} + F_{j-1} + 1) - 2 \) if \(j \) is even or \(F_j(F_{j+1} + F_{j-1}) - 2 \) if \(j \) is odd.

Corollary

Let \(j > 1 \) and \(k_j \) be the maximal exponent of a prefix of the Fibonacci word that is an abelian repetition of period \(F_j \). Then

\[
\lim_{j \to \infty} \frac{k_j}{F_j} = \sqrt{5}.
\]
Other results on Fibonacci words 2

Theorem

For $j \geq 3$, the (smallest) abelian period of the word f_j is the n-th Fibonacci number F_n, where $n = \lfloor j/2 \rfloor$ if $j = 0, 1, 2 \mod 4$, or $n = 1 + \lfloor j/2 \rfloor$ if $j = 3 \mod 4$.

The list of Fibonacci numbers is:

2, 2, 2, 3, 5, 5, 5, 8, 13, 13, 13, 21, 34, 34, 34, 55, 89, 89, 89

2 is the abelian period of aba, $a ba ab$ and of $a ba ab ab ab a a$.

Not of $aba aba baa baa b$ that has abelian period 3.

Instead 5 is the abelian period of $a baaba baaba ababa ababa$ and of $a baaba baaba ababa ababa abaab abaab aab$.
Open problems

1. Is it possible to find the exact value of $\limsup \frac{k_q}{q}$ for other Sturmian words s_α with slope α different from $\phi - 1$?

2. Is it possible to give the exact value of this superior limit when α is an algebraic number of degree 2?
G. Fici, A. Langiu, T. L., A. Lefebvre, F. Mignosi, and É. Prieur-Gaston
Abelian repetitions in sturmian words
In M.-P. Béal and O. Carton, editors, *Proceedings of the 17th International Conference on Developments in Language Theory (DLT 2013)*, volume 7907 of *Lecture Notes in Computer Science*, pages 227–238, Marne-la-Vallée, France, 2013. Springer-Verlag, Berlin

G. Fici, A. Langiu, T. L., A. Lefebvre, F. Mignosi, and É. Prieur-Gaston
Abelian repetitions in sturmian words
Report arXiv:1209.6013v3

G. Fici, A. Langiu, T. L., A. Lefebvre, F. Mignosi, J. Peltomäki and É. Prieur-Gaston
Abelian Powers and Repetitions in Sturmian Words
submitted to *Theoretical Computer Science*
THANK YOU FOR YOUR ATTENTION!