Charlier, Émilie; Cistermino, Célia; Stipulanti, Manon

Regular sequences and synchronized sequences in abstract numeration systems. (English) Eur. J. Comb. 101, Article ID 103475, 34 p. (2022)

Summary: The notion of b-regular sequences was extended to linear recurring bases by Allouche, Scheicher and Tichy in 2000, and to abstract numeration systems by Maes and Rigo in 2002. Their definitions are based on a notion of S-kernel that extends that of b-kernel. However, these definitions do not allow us to generalize all of the many characterizations of b-regular sequences. In this paper, we present an alternative definition of S-kernel, and hence an alternative definition of S-regular sequences, which enables us to use recognizable formal series in order to generalize most (if not all) known characterizations of b-regular sequences to abstract numeration systems. We then give two characterizations of S-automatic sequences as particular S-regular sequences. Next, we present a general method to obtain various families of S-regular sequences by enumerating S-recognizable properties of S-automatic sequences. As an example of the many possible applications of this method, we show that, provided that addition is S-recognizable, the factor complexity of an S-automatic sequence defines an S-regular sequence. In the last part of the paper, we study S-synchronized sequences. Along the way, we provide a constructive proof, only based on weighted automata, that the formal series obtained as the composition of a synchronized relation and a recognizable series is recognizable. As a consequence, the composition of an S-synchronized sequence and an S-regular sequence is shown to be S-regular. All our results are presented in an arbitrary dimension d and for an arbitrary semiring \mathbb{K}.

MSC:

68Qxx Theory of computing
11Bxx Sequences and sets
68Rxx Discrete mathematics in relation to computer science

Full Text: DOI arXiv

References:

[1] Allouche, Jean-Paul; Scheicher, Klaus; Tichy, Robert F., Regular maps in generalized number systems, Math. Slovaca, 50, 1, 41-58 (2000) - Zbl 0957.11014
[2] Allouche, Jean-Paul; Shallit, Jeffrey, The ring of $\langle k \rangle$-regular sequences, Theoret. Comput. Sci., 98, 2, 163-197 (1992) - Zbl 0774.68072
[3] Allouche, Jean-Paul; Shallit, Jeffrey, Automatic Sequences. Theory, Applications, Generalizations, xvi+571 (2003), Cambridge University Press: Cambridge University Press Cambridge - Zbl 1086.11015
[4] Baranwal, Aseem R.; Shallit, Jeffrey, Critical exponent of infinite balanced words via the Pell number system, (Combinatorics on Words. Combinatorics on Words, Lecture Notes in Comput. Sci., vol. 11682 (2019), Springer: Springer Cham), 80-92 - Zbl 1447.68009
[5] Berstel, Jean; Reutenauer, Christophe, (Noncommutative Rational Series with Applications. Noncommutative Rational Series with Applications, Encyclopedia of Mathematics and its Applications, vol. 137 (2011), Cambridge University Press: Cambridge University Press Cambridge), xiv+248 - Zbl 1250.68007
[6] Bertrand-Mathis, Anne, Comment écrire les nombres entiers dans une base qui n’est pas entière, Acta Math. Hungar., 54, 3-4, 237-241 (1989) - Zbl 0695.10005
[7] Berthé, Valérie; Frougny, Christiane; Rigo, Michel; Sakarovitch, Jacques, The carry propagation of the successor function, Adv. Appl. Math., 120, 10262 (2020), 55 - Zbl 07242715
[8] Bruyère, Véronique; Hansel, Georges, Bertrand numeration systems and recognizability, Theoret. Comput. Sci., 181, 1, 17-43 (1997) - Zbl 0957.11015
[9] Bruyère, Véronique; Hansel, Georges; Michaux, Christian; Villemaire, Roger, Logic and (p)-recognizable sets of integers, Bull. Belg. Math. Soc. Simon Stevin, 1, 2, 191-238 (1994), Journées Montoises (Mons, 1992) - Zbl 0804.11024
[10] Carpi, Arturo; Maggi, Cristiano, On synchronized sequences and their separators, Theor. Inform. Appl., 35, 6, 513-524 (2001) - Zbl 1003.68064
[11] Charlier, Émilie, First-order logic and numeration systems, (Sequences, Groups, and Number Theory. Sequences, Groups, and Number Theory, Trends Math. (2018), Birkhäuser/Springer: Birkhäuser/Springer Cham), 89-141 - Zbl 07006267
