Title Page

Title – How to minimise airborne droplet contamination while performing laparoscopy in the COVID-19 era

Authors:

Benjamin Birch¹, MBBS
Yuchen Luo¹, MBBS
Arun Dhir¹, MBBS, FRCS, FRACS

¹ Northern Health, 185 Cooper Street, Epping, VIC, Australia, 3076

Corresponding Author:

Yuchen Luo
Postal address: 185 Cooper Street, Epping, VIC, Australia, 3076

Keywords:

COVID-19, airborne droplet contamination, laparoscopy, pneumoperitoneum

Abbreviations:

COVID-19 Coronavirus disease 2019

Acknowledgements BB, AD conceived and designed the project. BB and YL drafted the manuscript. AD provided senior supervision and contributed to the direction of the project. All authors edited the manuscript and approved the final version for submission.

Compliance with ethical standards
Conflict of interest All authors have no conflict of interest to disclose

Manuscript word count: 965
Introduction

The emergence of COVID-19 pandemic increased the awareness of occupational hazards in healthcare delivery. The operating room environment exposes health care workers to a unique set of biological hazards and risk of transmission. COVID-19 has reinforced the need for availability and appropriate usage of personal protective equipment and developing strategies to reduce the risk of transmissible infection. The presence of aerosolised droplets during open and laparoscopic surgery have been reported, with a presumed increased risk of transmissible infection1,2,3,4. Whilst the exact risk of COVID-19 transmission during surgical procedures has not been quantified, aerosol-generating procedures are known to increase the risk of COVID-19 infection amongst operating room workers1. Several specialty bodies have questioned the use of laparoscopic surgery, due to concern of viral transmission5. The exact transmission risk of COVID-19 during laparoscopic surgery has not been quantified. Risk minimisation strategies are important to help reduce the risk to operating room staff.

The presumed premise of unregulated surgical smoke and positive pneumoperitoneum leading to increased exposure to operating theatre workers. To date, the exact level of COVID-19 transmission in laparoscopic surgery has not been quantified. Despite this the need for appropriate risk-minimisation strategies should be employed.

Over the years, there have been many who have questioned the safety of uncontained surgical smoke. With several studies demonstrating potentially harmful chemicals, including carcinogenic compounds2,3. There are reported, although rare, rates of disease transmission from surgical smoke. This has most widely been reported with Human Papilloma Virus, transmission during anogenital surgery4. The contents of surgical smoke are mostly water vapour with particulate matter containing the carcinogenic and potentially biologically active components6. As the exact transmissibility of COVID-19 through surgical smoke is unknown, it has been urged to treat the smoke with caution7.

A variety of measures are used in operating theatre to reduce the risk of transmission and reduce operating theatre pollution. There are a number of devices available to reduce the release of surgical plumes throughout procedures, including passive and active filter systems. Such measures in laparoscopic surgery include smoke evacuating air filters, closed insufflation circuits and automatic filtered suction systems8. These additional devices although effective, add to the consumable cost of procedures.

Deflation of pneumoperitoneum at the completion of a laparoscopic procedure is an important step, however, also provides an opportunity of increased pollution risk. Uncontrolled deflation of pneumoperitoneum, by removal of access ports or opening of the gas taps, results in rapid release of intra-peritoneal air into the operating room. An appropriate method of containment is recommended to reduce contamination of the operating room.

There have been several methods described for controlling pneumoperitoneal gas pollution. These methods have mostly been developed for intra-operative control of gas and preservation of laparoscopic vision5. The method we describe is simple, safe, inexpensive and effective. It has been designed for the completion of the surgical procedure but can be modified for any stage where pneumoperitoneum would need to be deflated. It can also be used in combination with commercially available filter systems.
Technique

Basic laparoscopic equipment including laparoscope, light source and suction cannula with wall suction is required. Upon completion of laparoscopic procedure or at time pneumoperitoneum deflation the following steps for controlled deflation can be followed.

Step 1: Insert suction cannula
The standard laparoscopic suction cannula is inserted via a laparoscopic port.

Step 2: Withdraw all laparoscopic ports into the abdominal wall layer
All ports are partially removed such that the port tips are within the layers of the abdominal wall, thereby maintaining the pneumoperitoneum with laparoscope and suction catheter within the peritoneal cavity.

Step 3: Stop gas insufflation and aspirate pneumoperitoneum under vision then all ports are completely removed, including laparoscope and suction catheter.
All laparoscopic access port taps are closed, and CO2 insufflation is stopped. Whilst maintaining a view of the peritoneal cavity, the suction cannula is used to evacuate the pneumoperitoneum. Once deflated, the camera, suction catheter and all ports are removed. Routine closure of the fascia and skin is performed, and dressings applied.

Discussion

Laparoscopic surgery offers many benefits to open surgery, including reduced post-operative pain, shorter length of stay and improved recovery. During laparoscopic surgery, the use of electrosurgery, bipolar and advanced surgical dissection devices including ultrasonic dissectors and advanced bipolar devices contributes to the development of a surgical plume. Many laparoscopic procedures routinely use these devices. These devices heat tissue to different temperatures. As such, devices like the Harmonic scalpel do not heat the tissue, thereby creating a cold smoke that may contain more biologically active components and have a higher risk of transmissibility. In laparoscopic surgery, the surgical smoke created from dissection is contained within the abdominal cavity with the use of laparoscopic ports. This smoke obscure intra-operative vision, in addition to the accumulation of surgical plume, which may be released into the operating theatre.

Complete deflation of the abdomen results in reduced intra-abdominal pressure, reduced post-operative shoulder pain and assists fascial and skin closure. On the contrary, uncontrolled deflation of pneumoperitoneum, by removal of access ports or opening of the gas taps, results in rapid release of intra-peritoneal air into the operating room.

The technique can be used in conjunction with a variety of measures are used in operating theatre to reduce the risk of transmission and reduce operating theatre pollution. The method of controlled pneumoperitoneum deflation described, is a simple and safe method to prevent release of surgical and potentially transmissible particulate matter into the operating room environment. The technique, although simple, allows the surgeon to evacuate intra-abdominal gas under vision and protecting visceral and peritoneal structures. The technique utilised common laparoscopic equipment that is routinely used in many centres, thereby reducing the additional cost and financial impact of specialised smoke-regulating systems. In addition, the
technique is versatile and can be adapted for use in other closed cavity, video-assisted surgery.

References

1. Alp E, Bijl D, Bleichrodt RP, Hansson B, Voss A. Surgical smoke and infection control. J Hosp Infect. 2006 Jan;62(1):1-5
2. Kwak HD, Kim SH, Seo YS, et al. Detecting hepatitis B virus in surgical smoke emitted during laparoscopic surgery. Occup Environ Med. 2016, 73:857-863.
3. Choi SH, Kwon TG, Chung SK, Kim T. Surgical smoke may be a biohazard to surgeons performing laparoscopic surgery, Surg Endosc. 2014, 28: 2374-2380.
4. Gloster HM, Roenigk RK. Risk of acquiring human papillomavirus from the plume produced by the carbon dioxide laser in the treatment of warts. 1994, 32(3): 436-441.
5. SAGES, Resources for smoke & gas evacuation during open, laparoscopic, and endoscopic procedures. https://www.sages.org/resources-smoke-gas-evacuation-during-open-laparoscopic-endoscopic-procedures/, accessed 2nd August 2020
6. Bigony L, Risks associated with exposure to surgical smoke plume: A review of the literature, AORN Journal, 86(6): 1013-1020
7. King B, McCullough J. Health hazard evaluation report, NIOSH, 2001-0030-3020. https://www.cdc.gov/niosh/hhe/reports/pdfs/2001-0030-3020.pdf
8. Medical Advisory Secretariat Ministry of Health and Long-Term Care. Air cleaning technologies an evidence-based analysis, Ontario Health Technology Assessment Series 2005. 5(17): 1-52.
9. DesCoteaux J, Picard P, Poulin EC, Baril M, Preliminary study of electrocautery smoke particles produced in vitro and during laparoscopic procedures, Surg Endosc. 1996. 10(2): 152-158.
10. Barrett WL, Garber, Surgical smoke: a review of the literature. Is this just a lot of hot air? Surg Endosc. 2003. 17(6): 979-987.
11. Takahashi H, Yamasaki M, Hirota M, et al. Automatic smoke evacuation in laparoscopic surgery: a simplified method for objective evaluation. Surg Endosc. 2013. 27: 2980-2987
12. Phelps P, Cakmakkaya OS, Apfel CC, Radke OC, A simple clinical maneuver to reduce laparoscopy-induced shoulder pain: a randomized control trial, Obstet Gynecol. 2008, 111(5): 1155-1160