GENERALIZED ARTIN-SCHREIER POLYNOMIALS

N. H. GUERSENZVAIG AND FERNANDO SZECHTMAN

Abstract. Let F be a field of prime characteristic p containing F_{p^n} as a subfield. We refer to $q(X) = X^p - X - a \in F[X]$ as a generalized Artin-Schreier polynomial. Suppose that $q(X)$ is irreducible and let $C_q(X)$ be the companion matrix of $q(X)$. Then $ad C_q(X)$ has such highly unusual properties that any $A \in \text{gl}(m)$ such that $ad A$ has like properties is shown to be similar to the companion matrix of an irreducible generalized Artin-Schreier polynomial.

We discuss close connections with the decomposition problem of the tensor product of indecomposable modules for a 1-dimensional Lie algebra over a field of characteristic p, the problem of finding an explicit primitive element for every intermediate field of the Galois extension associated to an irreducible generalized Artin-Schreier polynomial, and the problem of finding necessary and sufficient conditions for the irreducibility of a family of polynomials.

1. Introduction

Let F be an arbitrary field and let $M_m(F)$ the associative algebra of all $m \times m$ matrices over F. This becomes a Lie algebra, denoted by $\text{gl}(m, F)$ or simply $\text{gl}(m)$, under the usual bracket $[A, B] = AB - BA$. Each $A \in \text{gl}(m)$ gives rise to the linear map $ad A : \text{gl}(m) \to \text{gl}(m)$, given by $B \mapsto [A, B]$.

If F has prime characteristic p and $q(X) = X^p - X - a \in F[X]$ is an irreducible Artin-Schreier polynomial with companion matrix $C_q \in \text{gl}(p)$, it is not difficult to verify that:

- All eigenvalues of $ad C_q$ are in F;
- The eigenvalues of $ad C_q$ form a subfield of F;
- The centralizer of C_q is a subfield of $M_p(F)$;
- All eigenvectors of $ad C_q$ are invertible in $M_p(F)$;
- All eigenspaces of $ad C_q$ have the same dimension;
- $ad C_q$ is diagonalizable with minimal polynomial $X^p - X$.

We wish to find all matrices $A \in \text{gl}(m)$ such that $ad A : \text{gl}(m) \to \text{gl}(m)$ has like properties.

Theorem 1.1. Let F be a field and let $A \in \text{gl}(m, F)$. Then

(C1) All eigenvalues of $ad A$ are in F;
(C2) The eigenvalues of $ad A$ form a subfield of F;
(C3) The centralizer of A is a subfield of $M_m(F)$,
if and only if
(C4) F has prime characteristic p.

2000 Mathematics Subject Classification. Primary 12F10; Secondary 12F20, 17B50, 15A21.
Key words and phrases. Artin-Schreier polynomial; Lie algebra; Clebsch-Gordan formula; primitive element; Galois group; Dickson invariants.

The second author was supported in part by an NSERC discovery grant.
(C5) A is similar to the companion matrix of a monic irreducible polynomial $h \in F[X]$ of degree m.

(C6) If $q \in F[X]$ is the separable part of h, i.e., $h(X) = q(X^p)$, $e \geq 0$, and q is separable, then $q = X^{p^e} - X - a$, where $a \in F$, $n \geq 1$, and F_{p^e} is a subfield of F.

Moreover, if (C4)-(C6) hold then: q is irreducible; the subfield of F formed by the eigenvalues of $ad A$ is precisely F_{p^e}; all eigenvectors of $ad A$ are invertible in $M_n(F)$; all eigenspaces of $ad A$ have dimension p^{n+e}; $ad A$ is diagonalizable if and only if h itself is separable; the invariant factors of $ad A$ are

$$X^{p^{n+e}} - X^{p^e}, \ldots, X^{p^{n+e}} - X^{p^e},$$

so, in particular, the minimal polynomial of $ad A$ is $X^{p^{n+e}} - X^{p^e}$.

The most challenging part of the proof of Theorem 1.1 is to find the invariant factors of $ad A$, as this is depends on the solution to the following problem.

Let $L = \langle x \rangle$ be a 1-dimensional Lie algebra over a field F and let V and W be indecomposable L-modules of respective dimensions n and m upon which x acts with at least one eigenvalue from F.

Question. How does the L-module $V \otimes W$ decompose as the direct sum of indecomposable L-modules?

When F has characteristic 0 we may derive an answer from the Clebsch-Gordan formula by imbedding L into $\mathfrak{sl}(2)$. A direct computation in the complex case already appeared in [Ro] in 1934. The results in characteristic 0 fail, in general, in prime characteristic p, which is the case we require. The analogue problem for a cyclic p-group when F has prime characteristic p was solved by B. Srinivasan [S].

Her solution is of an algorithmic nature. Since then several algorithms have appeared. We mention [Ra], [Re] and, most recently, [I], although the literature is quite vast on this subject. For information on the decomposition of the exterior and symmetric squares of an indecomposable module of a cyclic p-group in prime characteristic p see [GL]. What we need to be able to compute the invariant factors of $ad A$ in Theorem 1.1 is a closed formula for the decomposition of the L-module $V \otimes W$ when $n \leq m = p^e$, $e \geq 0$. This is achieved in [G].

In [G] we give an application to Galois theory of the polynomials appearing in Theorem 1.1. Let F be a field of prime characteristic p containing F_{p^e} as a subfield and suppose that $q(X) = X^{p^e} - X - a \in F[X]$ is irreducible. Let K/F be the corresponding Galois extension. Here $K = F[\alpha]$, where $\alpha \in K$ is a root of $q(X)$. Given an arbitrary intermediate field E of K/F we find a primitive element α_E such that $E = F[\alpha_E]$. We actually give a recursive formula to write α_E as a polynomial in α with coefficients in F_{p^e}. This is achieved by means of the so-called Dickson invariants, discovered by L. E. Dickson [D] in 1911.

Finally, in [G] we discuss the actual existence of irreducible polynomials $q(X) = X^{p^e} - X - a \in F[X]$, with F as in the previous paragraph. As explained in [G] if $n > 1$ and $q(X)$ is irreducible then α must be transcendental over F. This fact, together with the more general polynomials $q(X^p)$ considered in Theorem 1.1, lead us to study the irreducibility of polynomials of the form

$$h(X) = X^{p^{n+e}} - X^{p^e} - g(Z^r) \in F[X],$$

where X and Z are algebraically independent elements over an arbitrary field K of prime characteristic p, $n > 0$, $r > 0$, $e \geq 0$, $F = K(Z)$, and $g(Z) \in K[Z]$ is a non-zero polynomial of degree relatively prime to p. Using results from [MS] and [G],
we obtain in [8] necessary and sufficient conditions for the irreducibility of \(h(X) \). In particular, \(X^{p^n} - X - g(Z^r) \in F[X] \) is irreducible for any \(n > 0, r > 0 \) and non-zero \(g \in K[Z] \) whose degree relatively prime to \(p \). This limitation on \(\deg(g) \) is needed, as the example \(X^{p^n} - X - Z^{p^n} - Z \) shows.

2. Eigenvalues

Let \(F \) be a field. For \(A \in M_m(F) \) let \(\chi_A \) and \(\mu_A \) denote the characteristic and minimal polynomials of \(A \). If \(b \in F \) is an eigenvalue of \(A \) we write \(E_b(A) \) for the corresponding eigenspace. If \(B \in M_m(F) \) we write \(A \sim B \) whenever \(A \) and \(B \) are similar. The companion matrix to a monic polynomial \(g \in F[X] \) of degree \(m \) will be denoted by \(C_g \).

Lemma 2.1. Let \(A \in M_m(F) \) and let \(C \) be the centralizer of \(A \) in \(M_m(F) \). Then \(C \) is a subfield of \(M_m(F) \) if and only if \(A \) is similar to the companion matrix of a monic irreducible polynomial in \(F[X] \) of degree \(m \).

Proof. If \(A \) is similar to the companion matrix of a monic polynomial of degree \(m \) - necessarily \(\mu_A \) - it is well-known \([8]\), §3.11, that \(C = F[A] \). If, in addition, \(\mu_A \) is irreducible, then \(C = F[A] \cong F[X]/(\mu_A) \) is a field.

Assume that \(C \) is a field. Then \(K = F[A] \) is a field, so \(\mu_A \) is irreducible and \(V \) is a vector space over \(K \). As such, \(C = \text{End}_K(V) \). If \(\dim_K(V) > 1 \) then \(\text{End}_K(V) \) is not a field. Thus \(\dim_K(V) = 1 \), so \(\dim_F(V) = [K : F] = \deg(\mu_A) \), whence \(A \) is similar to the companion matrix of \(\mu_A \).

Lemma 2.2. Let \(A \in \mathfrak{gl}(m) \) and let \(K \) be a splitting field of \(\mu_A \) over \(F \). Then \(\mu_{ad A} \) splits over \(K \). Moreover, if \(S_A \) and \(S_{ad A} \) denote the sets of eigenvalues of \(A \) and \(ad A \) in \(K \), respectively, then \(S_{ad A} = \{ \alpha - \beta : \alpha, \beta \in S_A \} \).

Proof. According to \([8]\), §4.2, we have \(A = D + N \), where \(D, N \in \mathfrak{gl}(m, K) \), \(D \) is diagonalizable, \(N \) is nilpotent, and \([D, N] = 0 \). In particular, \(\chi_D = \chi_A \).

Moreover, \(ad A = ad D + ad N \), where \(ad D \) is diagonalizable, \(ad N \) is nilpotent, \([ad D, ad N] = 0 \). As above, \(\chi_{ad D} = \chi_{ad A} \). It thus suffices to prove the statement for \(D \) instead \(A \), a well-known result also found in \([8]\), §4.2.

Lemma 2.3. Let \(A \in \mathfrak{gl}(m) \) and suppose that the centralizer \(C \) of \(A \) is a subfield of \(M_m(F) \). Suppose further that \(ad A \) has at least one non-zero eigenvalue \(b \) in \(F \). Then \(F \) has prime characteristic \(p \), every \(b \)-eigenvector of \(ad A \) is invertible in \(M_m(F) \), and \(E_b(ad A) \) has the same dimension as \(C = E_0(ad A) \).

Proof. Let \(K \) be a splitting field for \(\mu_A \) over \(F \). By Lemma 2.2 and assumption, there are eigenvalues \(\alpha, \beta \in K \) of \(A \) such that \(\alpha = \beta + b \) for some \(b \in F \). By Lemma 2.1 \(\mu_A \) is irreducible. By \([8]\), Theorem 4.4, there is an automorphism of \(K/F \) such that \(\beta \mapsto \beta + b \), where \(|\text{Aut}(K/F)| \leq [K : F] \) is finite. Since \(b \neq 0 \), \(F \) must have prime characteristic \(p \). Alternatively, \(\mu_A(X) \) and \(\mu_A(X + b) \) have a common root \(\beta \). Since they are irreducible in \(F[X] \), they must be equal. It follows that \(\mu_A(X) = \mu_A(X + ib) \), and hence \(\alpha + ib \) is a root of \(\mu_A(X) \), for every \(i \) in the prime field of \(F \). This forces the prime field of \(F \) to be finite.

Now \(X \in E_b(ad A) \) if and only if

\[
AX - XA = bX,
\]
i.e.

\[
(2.1) \quad AX = X(A + bI).
\]
By Lemma 2.3, \(A \sim C_{\mu_A(X)} \). But \(\mu_A(X) = \mu_A(X + b) \), so \(A + bI \sim C_{\mu_A(X + b)} + bI \). On the other hand, \(C_{\mu_A(X + b)} \) and \(C_{\mu_A(X + b)} + bi \) generate the same subalgebra, so their minimal polynomials have the same degree. Since, clearly, \(\mu_A(X) \) annihilates \(C_{\mu_A(X + b)} + bI \), it follows that \(\mu_A(X) \) is the minimal polynomial of \(C_{\mu_A(X + b)} + bI \). But \(\mu_A(X) \) has degree \(m \), so \(C_{\mu_A(X)} \sim C_{\mu_A(X + b)} + bI \). All in all, we deduce that \(A \sim A + bI \). Thus, there is \(S \in \text{GL}_m(F) \) such that \(A + bI = SAS^{-1} \). Replacing this in (2.1), yields

\[
AX = XSAS^{-1},
\]

i.e.

\[
AXS = XSA.
\]

Since \(A \) is cyclic, this equivalent, by [1], §3.11, to \(XS \in F[A] \), or \(X = f(A)S^{-1} \), for some \(f \in F[X] \). But \(F[A] \) is a field, so the result follows. □

We digress here to take another look at the fact, used above, that

\[
(2.2) \quad C_f(X) \sim C_{f(X + b)} + bI.
\]

This holds for any \(f \in F[X] \) and \(b \in F \). The interesting point here is that we can choose a similarity transformation realizing (2.2) that is completely independent of \(f \), i.e., the same transformation works for all \(f \).

Lemma 2.4. Let \(b \in F \). Then there exists \(S \in \text{GL}_m(F) \) such that for any monic polynomial \(f \in F[X] \) of degree \(m \), we have

\[
(2.3) \quad S^{-1}(C_{f(X)} + bI_m)S = C_{f(X)}.
\]

Proof. Let \(S \in \text{GL}_m(F) \) have diagonal entries 1, first superdiagonal entries \(b \), second superdiagonal entries \(b^2 \), and so on. For instance, if \(m = 4 \) then

\[
\begin{pmatrix}
1 & b & b^2 & b^3 \\
0 & 1 & b & b^2 \\
0 & 0 & 1 & b \\
0 & 0 & 0 & 1
\end{pmatrix}.
\]

We claim that (2.3) holds. Why is this true? It is a simple matrix calculation, but there is no need to calculate anything. Indeed, it is obvious that \(e_1 \), the first canonical vector of the column space \(F^m \), is a cyclic vector for \(B = C_{f(X + b)} + bI \). As seen the proof of Lemma 2.3, the minimal polynomial of \(B \) must be \(f(X) \). Therefore, relative to the basis \(e_1, Be_1, \ldots, B^{m-1}e_1 \) the matrix of the linear transformation that \(B \) represents in the canonical basis will be exactly \(C_{f(X)} \). If the columns of \(T \in \text{GL}_m(F) \) are formed by \(e_1, Be_1, \ldots, B^{m-1}e_1 \), this says that

\[
T^{-1}(C_{f(X)} + bI)T = C_{f(X)}.
\]

But \(e_1, Be_1, \ldots, B^{m-1}e_1 \) are exactly the columns \(S \), so \(S = T \). □

A more general result than (2.2) is [CS], Proposition 2.4:

Proposition 2.5. Let \(f, g \in F[X] \), where \(f \) is monic of degree \(m \geq 1 \), and \(g \) has degree \(d \geq 1 \) and leading coefficient \(a \). Then

\[
(2.4) \quad g(C_{a - m}f(g(X))) \sim C_f \oplus \cdots \oplus C_f, \quad d \text{ times}.
\]

We leave it to the reader to determine if, in analogy with Lemma 2.3, it is possible to choose a similarity transformation that depends on only \(g \) and not on \(f \).
3. Decomposition numbers

Let F be a field and let $L = \langle x \rangle$ be a 1-dimensional Lie algebra over F. Let V be an L-module of dimension n and let x_V be the linear operator that x induces on V. Suppose that x_V has at least one eigenvalue in F and that V is an indecomposable L-module. This means that there is a basis B of V relative to which the matrix $M_B(x_V)$ of x_V is the upper triangular Jordan block $J_n(\alpha)$, where $\alpha \in F$ is the only eigenvalue of x_V.

Suppose next that W is an indecomposable L-module of dimension m and that x_W has eigenvalue $\beta \in F$. As above, there is a basis C of W relative to which $M_C(x_V) = J_m(\beta)$.

As usual, we may view $V \otimes W$ as an L-module via

$$x(v \otimes w) = xv \otimes w + v \otimes xw, \quad v, w \in V.$$

Let $x_{V \otimes W}$ be the linear operator that x induces on $V \otimes W$. It is easy to see that the minimal polynomial of $x_{V \otimes W}$ splits in F and a single eigenvalue, namely $\alpha + \beta$. This follows from the well-known formula:

$$(3.1) \quad (x - (\alpha + \beta) \cdot 1)^{k}(v \otimes w) = \sum_{0 \leq i \leq k} \binom{k}{i} (x - \alpha \cdot 1)^{k-i}(v) \otimes (x - \beta \cdot 1)^{i}(w).$$

Question 3.1. How does $V \otimes W$ decompose as a direct sum of indecomposable L-modules?

That is, what is the length ℓ of $V \otimes W$ and what are the decomposition numbers $d_1 \geq \cdots \geq d_\ell$ such that

$$x_{V \otimes W} \sim J_{d_1}(\alpha + \beta) \oplus \cdots \oplus J_{d_\ell}(\alpha + \beta)?$$

Replacing x_V by $x_V - \alpha \cdot 1$, x_W by $x_W - \beta \cdot 1$, and $x_{V \otimes W}$ by $x_{V \otimes W} - (\alpha + \beta) \cdot 1$, we see that ℓ and the decomposition numbers $d_1 \geq \cdots \geq d_\ell$ are independent of α and β, and can be computed when $\alpha = 0 = \beta$.

When F has characteristic 0 and $n \leq m$ then $\ell = n$, with decomposition numbers

$$m + n - 1, m + n - 3, \ldots, m - n + 3, m - n + 1.$$

This can obtained by imbedding L into $\mathfrak{sl}(2)$ and using the Clebsch-Gordan formula [H], §22.5. These decomposition numbers are used in [CS] to classify all uniserial modules for a class of solvable Lie algebras.

The analogue of Question 3.1 for a cyclic p-group and F of prime characteristic p was solved by B. Srinivasan [S]. The answer is given recursively, rather than as a closed formula. Alternative algorithms can be found in [Ra] and [Re]. Presumably, Srinivasan’s results translate to our present set-up mutatis mutandis.

This section furnishes a closed formula in answer to Question 3.1 albeit only in the special case $m = p^e$, where F has prime characteristic p and $e \geq 0$, as required in the proof of Theorem 1.1.

Lemma 3.2. Let p be a prime and let $e \geq 0$. Then $p|\binom{p^e}{i}$ for any $0 < i < p^e$.

Proof. Suppose $i, j, N \geq 0$ satisfy $i + j = N$. Let $v_p(a)$ denote the number of times that p divides a given integer $a \neq 0$. Then

$$(3.2) \quad v_p(i! \times j!) \leq v_p(N!).$$

Indeed, according to the well-know formula [V], chapter 2:

$$v_p(N!) = \lfloor N/p \rfloor + \lfloor N/p^2 \rfloor + \lfloor N/p^3 \rfloor + \cdots.$$
Therefore,
\[v_p(i! \times j!) = v_p(i!) + v_p(j!) = (i/j) + ([i/p] + [j/p]) + ([i/p^2] + [j/p^2]) + ([i/p^3] + [j/p^3]) + \cdots. \]

On the other hand, if \(a, b \) are real numbers then
\[\{a\} + \{b\} \leq [a + b], \]
with equality if and only if
\[\{a\} + \{b\} < 1, \]
where \(\{a\} = x - [x] \). This proves (3.2).

In the special case \(N = p^e \) and \(0 < i, j < p^e \), where \(i + j = p^e \), we have
\[\{i/p^e\} + \{j/p^e\} = i/p^e + j/p^e = 1, \]
so the result follows. \(\square \)

Proposition 3.3. Let \(F \) be a field of prime characteristic \(p \) and let \(e \geq 0 \). Let \(L = \langle x \rangle \) be a 1-dimensional Lie algebra over \(F \). Let \(V \) and \(W \) be indecomposable \(L \)-modules of dimensions \(n \) and \(p^e \), respectively, where \(n \leq p^e \). Suppose that \(x \) has eigenvalues \(\alpha, \beta \in F \) when acting on \(V \) and \(W \), respectively. Then the \(L \)-module \(V \otimes W \) decomposes as the direct sum of \(n \) isomorphic indecomposable \(L \)-modules, each of which has dimension \(p^e \) and is acted upon by \(x \) with a single eigenvalue \(\alpha + \beta \). In symbols,
\[\ell = n \text{ and } d_1 = \cdots = d_{p^e} = p^e. \]

Proof. As mentioned above, we may assume without loss of generality that \(\alpha = 0 \) and \(\beta = 0 \), and we will do so, mainly for simplicity of notation. For the same reason, we let \(m = p^e \).

Let \(B = \{v_1, \ldots, v_m\} \) and \(C = \{w_1, \ldots, w_m\} \) be bases of \(V \) and \(W \) relative to which \(M_B(x_V) = J_m(0) \) and \(M_C(x_W) = J_m(0) \).

Since \(n \leq m \), we have
\[x_V^m = 0 \quad \text{and} \quad x_W^m = 0. \]

Therefore, Lemma 3.2 and 3.1 imply
\[x_V^m \otimes W = 0. \]

We next view \(M = V \otimes W \) as a module for the polynomial algebra \(F[X] \) via \(x_V \otimes W \). We wish to show that \(M \) has elementary divisors \(X^m, \ldots, X^m \), with multiplicity \(n \).

It follows from (3.1) that
\[x^{m-1}(v_1 \otimes w_m) = v_1 \otimes w_1 \neq 0. \]

Let \(N_1 \) be the \(F[X] \)-submodule of \(M \) generated by \(v_1 \otimes w_m \). Then \(N_1 \) has a single elementary divisor, namely \(X^m \).

Suppose that \(1 \leq i < n \) and the \(F[X] \)-submodule of \(M \), say \(N_i \), generated by \(v_1 \otimes w_m, \ldots, v_i \otimes w_m \) has elementary divisors \(X^m, \ldots, X_m \), with multiplicity \(i \). Using (3.1) we see that \(v_{i+1} \otimes w_1 \) appears in \(x^{m-1}(v_{i+1} \otimes w_m) \) with coefficient 1. Since \(v_{i+1} \otimes w_1 \notin N_i \), the minimal polynomial of the vector \(v_{i+1} \otimes w_m + N_i \in M/N_i \) is \(X^m \).

The theory of finitely generated modules over a principal ideal domain implies that the \(F[X] \)-submodule of \(M \) generated by \(v_1 \otimes w_m, \ldots, v_i \otimes w_m, v_{i+1} \otimes x_m \) has elementary divisors \(X^m, \ldots, X_m \), with multiplicity \(i+1 \). The result now follows. \(\square \)
Note 3.4. Unlike what happens in characteristic 0, the decomposition of $V \otimes W$ for L is not, in general, the same as for $\mathfrak{sl}(2)$. Indeed, suppose F has characteristic 2 and let $V = W$ be the natural module for $\mathfrak{sl}(2)$. Then $V \otimes W$ is an indecomposable $\mathfrak{sl}(2)$-module, but decomposes as the direct sum of two indecomposable L-modules for $L = \langle x \rangle$, where x, h, y is the standard basis of $\mathfrak{sl}(2)$.

Resuming our prior discussion, let F be a field and let $L = \langle x \rangle$ be a 1-dimensional Lie algebra over F. Let V_1, \ldots, V_s be L-modules with bases B_1, \ldots, B_s relative to which $M_{B_i}(x_V) = J_{m_i}(\alpha_i)$, where $1 \leq i \leq s$ and $\alpha_i \in F$. Consider the L-module $V = V_1 \oplus \cdots \oplus V_s$. We may view $\mathfrak{gl}(V)$ as an L-module via:

$$x \cdot f = x V f - f x V .$$

Thus x acts on $\mathfrak{gl}(V)$ via $ad x_V$. By Lemma 2.2, the eigenvalues of $ad x_V$ are $\alpha_i - \alpha_j$, where $1 \leq i, j \leq s$. We can view $\mathfrak{gl}(V)$ as the direct sum of the L-submodules

$$\text{Hom}(V_j, V_i) \cong V_j^* \otimes V_i, \quad 1 \leq i, j \leq s .$$

Here V_j^* is an indecomposable L-module upon which x acts with eigenvalue $-\alpha_j$. It is then clear that the generalized eigenspace of $ad x_V$ for a given eigenvalue γ is the sum of all $\text{Hom}(V_j, V_i)$ such that $\alpha_i - \alpha_j = \gamma$.

Corollary 3.5. Keep the above notation and suppose, further, that F has prime characteristic p and all L-modules V_i have the same dimension p^e, for some $e \geq 0$. Let $S = \{ \alpha_i - \alpha_j \mid 1 \leq i, j \leq s \}$, the set of distinct eigenvalues of $ad x_V$. Then the minimal polynomial of $ad x_V$ is $\prod (X - \gamma)^{p^e}$. Moreover, the elementary divisors of $ad x_V$ are $(X - \gamma)^{p^e}, \gamma \in S$, with multiplicity $p^e m(\gamma)$, where

$$m(\gamma) = \left| \{(i, j) \mid 1 \leq i, j \leq s, \alpha_i - \alpha_j = \gamma \} \right| .$$

4. Proof of Theorem

Suppose conditions (C4)-(C6) hold. Then q is irreducible, since so is h. Let K be a splitting field for h over F. Since q is separable, the number of distinct roots of h in K is exactly p^n.

Let $\beta \in K$ be a root of h. The $\beta + b$ is a root of h for every $b \in F_p^n$. Indeed, since $b^n = b$, we have

$$h(\beta + b) = \beta^{p^n + n} + (b^n)^{p^e} - \beta^{p^e} - b^{p^e} - a = h(\beta) = 0 .$$

It follows that $\beta + b, b \in F_p^n$, are the distinct roots of h in K, each repeated p^e times. By Lemma 2.2, $\mu_{ad A}$ splits in K and the set of eigenvalues of $ad A$ is precisely F_p^n. Moreover, by Lemma 2.4, the centralizer of A is a subfield of $M_m(F)$. In particular, conditions (C1)-(C3) hold.

Furthermore, by Lemma 2.3, all eigenvectors of $ad A$ are invertible in $M_m(F)$ and all eigenspaces of $ad A$ have dimension p^{n+c}. Thus, the sum of the dimensions of all eigenspaces of $ad A$ is p^{2n+c}. This equals the dimension of $\mathfrak{gl}(m)$, namely $m^2 = p^{2(n+c)}$, if and only if $e = 0$. Therefore, $ad A$ is diagonalizable if and only if h is separable.

Regardless of whether $e = 0$ or not, we claim that the invariant factors of $ad A$ are $X^{p^n+c} - X^{p^e}, \ldots, X^{p^n+c} - X^{p^e}$, with multiplicity p^{n+c}. For this purpose, we may assume without loss of generality that $F = K$. Hence $\mu_{ad A}$ splits in F, by Lemma 2.2. Thus A is similar to the direct sum of the companion matrices to $X^{p^e} - \beta^{p^e} = (X - \beta)^{p^e}$, as β runs through the p^n distinct roots of h in F. Hence,
Lemma 2.1 shows that (C5) holds.

It follows from Corollary 3.5 that the elementary divisors of \(ad A\) are \((X - b)^{p^n}\), \(b \in F_{p^n}\), each with multiplicity \(p^{n+e}\). Since \(\Pi \prod_{b \in F_{p^n}} (X - b) = X^{p^n} - X\), the claim follows.

Suppose conversely that (C1)-(C3) hold. Since the eigenvalues of \(ad A\) form a subfield of \(F\), we see that \(ad A\) has a non-zero eigenvalue in \(F\). It follows from Lemma 2.2 that (C4) holds. Since the centralizer of \(\alpha\) is a root of \(F\), we deduce that all irreducible factors of \(\alpha\) have the same degree. Let \(\sigma \in G\). Then \(\sigma \alpha \sigma^{-1}\) is also a root of \(q\). Indeed, \(b \mapsto b^{\sigma}\) is an automorphism of \(F_{p^n}\), so \(c = b^{\sigma}\) for some \(b \in F_{p^n}\). Therefore,

\[
q(\alpha + c) = \mu_A(\beta + b) = 0.
\]

Thus \(F[\alpha]\) is a splitting field for \(q\) over \(F\). Since \(q\) is separable, we deduce that \(F[\alpha]/F\) is a finite Galois extension, whose Galois group we denote by \(G\). We claim that \(\alpha^{p^n} - \alpha \in F\). To see this, it suffices to show that \(\alpha^{p^n} - \alpha \in F\) is fixed by every \(\sigma \in G\). Let \(\sigma \in G\). Then \(\sigma(\alpha)\) must be a root of \(q\), so \(\sigma(\alpha) = \alpha + b\) for some \(b \in F_{p^n}\). Therefore,

\[
\sigma(\alpha^{p^n} - \alpha) = (\alpha + b)^{p^n} - (\alpha + b) = \alpha^{p^n} - \alpha,
\]

as required. Thus \(\alpha^{p^n} - \alpha = a \in F\), so \(X^{p^n} - X - a \in F[X]\) has \(\alpha\) as root. Hence \(q(X^{p^n} - X - a)\). Since these polynomials have the same degree and are monic, they must be equal. This completes the proof of the theorem.

5. Primitive elements of intermediate fields in a Galois extension

Let \(F\) be a field of prime characteristic \(p\) having \(F_{p^n}\) as a subfield and consider the generalized Artin-Schreier polynomial \(q = X^{p^n} - X - a \in F[X]\). Let \(\alpha\) be a root of \(q\) in a field extension of \(F\). Then \(\alpha + b, b \in F_{p^n}\), are all roots of \(q\). Indeed,

\[
q(\alpha + b) = \alpha^{p^n} + b^{p^n} - \alpha - b - a = q(\alpha) = 0.
\]

Thus \(F[\alpha]\) is a splitting field for \(q\) over \(F\). Moreover, all roots of \(q\) have the same degree over \(F\), since \(F[\alpha] = F[\alpha + b]\) for any \(b \in F_{p^n}\). Thus, all irreducible factors of \(q\) in \(F[X]\) have the same degree. Let \(G\) be the Galois group of \(F[\alpha]/F\). We claim that \(G\) is elementary abelian \(p\)-group. Indeed, let \(\sigma, \tau \in G\). Then \(\sigma(\alpha) = \alpha + b\) and \(\tau(\alpha) = \alpha + c\) for some \(b, c \in F_{p^n}\). Therefore \(\sigma^p = 1\) and \(\sigma \tau = \tau \sigma\), as claimed. Since \(|G| = [F[\alpha] : F]\), which is the degree the minimal polynomial of \(\alpha\) over \(F\), we deduce that all irreducible factors of \(q\) in \(F[X]\) have degree \(p^m\) for a unique \(0 \leq m \leq n\).
If \(a = 0 \) it is obvious that \(m = 0 \). If \(a \neq 0 \) and \(F = F_p^m \) then \(m = 1 \). More generally, if \(F \) algebraic over \(F_p^a \) and there is no \(b \in F \) such that \(q(b) = 0 \) then \(m = 1 \). Indeed, let \(f \) be the minimal polynomial of \(a \) over \(F \) and let \(p^m \) be its degree. By assumption \(m > 0 \). Let \(E \) be the subfield of \(F \) obtained by adjoining \(a \) and the coefficients of \(f \) to \(F_p^a \). Then \(f \) is irreducible and a factor of \(q \) in \(E[X] \). By above, \(\text{Gal}(E[a]/E) \) is an elementary abelian group of order \(p^m \). Since \(E \) is a finite field, \(\text{Gal}(E[a]/E) \) is cyclic, so \(m = 1 \).

Assume henceforth that \(q \) is actually irreducible. Then \(K = F[a] \) is a splitting field for \(q \) over \(F \) and \(G = \text{Gal}(K/F) \) is an elementary abelian \(p \)-group of order \(p^m \). More explicitly, for \(b \in F_p^m \), let \(\sigma_b \in G \) be defined by \(\sigma_b(a) = a + b \). Then \(b \mapsto \sigma_b \) defines a group isomorphism \(F_p^m \to G \). In particular, \(G \) has normal subgroups of all possible orders.

Suppose that \(m \) satisfies \(0 \leq m \leq n \). Let \(H \) be a subgroup of \(G \) of order \(p^m \). Then the fixed field \(E = K^H \) of \(H \) satisfies \([K : E] = p^m \). Since \(F[a] = E[a] \), the minimal polynomial \(\mu_{a,E} \) of \(a \) over \(E \) must have degree \(p^m \). In fact,

\[
\mu_{a,E}(X) = \prod_{\sigma \in H} (X - \alpha^\sigma).
\]

Since \(\mu_{a,E}(X) \) divides \(q = X^{p^n} - X - a \in E[X] \), it follows that all irreducible factors of \(q \) in \(E[X] \) have degree \(q^m \). In fact,

\[
X^{p^n} - X - a = \prod_{\sigma \in \text{Gal}(E/F)} \mu_{a,E}(X)^\sigma.
\]

Let

\[
(5.1) \quad \alpha_H = \prod_{\sigma \in H} \alpha^\sigma.
\]

Since every \(\sigma \in G \) is of the form \(\sigma_b \) for \(b \in F_p^m \), it follows that \(\alpha_H \) is a monic polynomial in \(a \) of degree \(p^m \) with coefficients in \(F_p^m \). Since \(a \) has degree \(p^n \) over \(F \), the degree of \(\alpha_H \) over \(F \) is at least \(p^{n-m} \). But clearly \(\alpha_H \in E \), where \([E : F] = p^{n-m} \). It follows that \(E = F[\alpha_H] \).

As just noted, \(\alpha_H \) as an \(F_p^m \)-linear combination of powers of \(a \). In fact, we may use the so-called Dickson invariants, found by L. E. Dickson [D] in 1911, to obtain a sharper result. These invariants have been revisited numerous times (see, for instance, [H2] and [SH]).

Consider the polynomial \(\Phi_m \) in the polynomial algebra \(F[a, B_1, \ldots, B_m] \), defined as follows:

\[
(5.2) \quad \Phi_m(A, B_1, \ldots, B_m) = \prod_{s_1, \ldots, s_m} (A + s_1 B_1 + \cdots + s_m B_m).
\]

Clearly \(\Phi_m \) is \(\text{GL}_m(F_p) \)-invariant. Dickson showed that

\[
\Phi_m = A^{p^m} + f_{m-1}(B_1, \ldots, B_m) A^{p^{m-1}} + \cdots + f_1(B_1, \ldots, B_m) A p + f_0(B_1, \ldots, B_m) A,
\]

where \(f_0, \ldots, f_{m-1} \in F_p[B_1, \ldots, B_m] \) are algebraically independent and generate \(F_p[B_1, \ldots, B_m] \) as an \(\text{GL}_m(F_p) \)-module. Moreover, \(\Phi_m \), and hence \(f_{m-1}, \ldots, f_0 \), can be recursively computed from

\[
(5.3) \quad \Phi_0 = A,
\]

\[
(5.4) \quad \Phi_i = \Phi_{i-1}(A, B_1, \ldots, B_{i-1})^p - \Phi_{i-1}(B_1, B_1, \ldots, B_{i-1}) p^i \Phi_{i-1}(A, B_1, \ldots, B_{i-1}).
\]
Let $\sigma_{b_1}, \ldots, \sigma_{b_m}$ be generators of H. This means that $\sigma_{b_1}, \ldots, \sigma_{b_m}$ are in H and that b_1, \ldots, b_m are linearly independent over F_p. It follows from (5.1) that

$$\alpha_H = \prod_{s_1, \ldots, s_m \in F_p} (\alpha + s_1 b_1 + \cdots + s_m b_m) = \Phi_m(\alpha, b_1, \ldots, b_m).$$

This, together with (5.3) and (5.4) allows us to recursively find $c_0, \ldots, c_{m-1} \in F_p^n$ such that

$$\alpha_H = \alpha^{p^m} + c_{m-1} \alpha^{p^{m-1}} + \cdots + c_1 \alpha^p + c_0 \alpha.$$

In certain special cases we actually have $c_0, \ldots, c_{m-1} \in F_p$, in which case we will say that H has property P.

Let R be the subgroup of F_p^n that corresponds to H under $F_p^n \to G$. Thus, R is an F_p-subspace of F_p^n, namely the F_p-span of b_1, \ldots, b_m.

Lemma 5.1. H has property P if and only if R is invariant under the Frobenius automorphism of F_p^n, in which case

$$\alpha_H = f_R(\alpha),$$

where

$$f_R(Y) = \prod_{b \in R} (Y + b).$$

Proof. We start by showing that H has property P if and only if $f_R \in F_p^n[Y]$ has coefficients in F_p.

Suppose first that there exist $c_{m-1}, \ldots, c_0 \in F_p$ such that

$$\alpha_H = \alpha^{p^m} + c_{m-1} \alpha^{p^{m-1}} + \cdots + c_1 \alpha^p + c_0 \alpha.$$

Set

$$f(Y) = Y^{p^m} + c_{m-1} Y^{p^{m-1}} + \cdots + c_1 Y^p + c_0 Y \in F_p[Y].$$

Let $b \in R$. Since $\alpha_H^\sigma_b = \alpha_H$, it follows that

$$f(b) = 0.$$

Therefore $f_R = f \in F_p[Y]$. Conversely, if $f_R \in F_p[Y]$ then

$$\alpha_H = \prod_{b \in R} (\alpha + b) = f_R(\alpha),$$

which is an F_p-linear combination of $\alpha^{p^m}, \ldots, \alpha^p, \alpha$ with first coefficient 1.

Let τ be the Frobenius automorphism of F_p^n. Then $f_R \in F_p^n[Y]$ if and only if

$$f_R(Y) = f_R(Y^\tau) = \prod_{b \in R} (Y^\tau + b^\tau) = \prod_{b \in R^\tau} (Y + b) = f_R^\tau(Y),$$

which is equivalent to $R = R^\tau$. □

Suppose that R is actually a subfield of F_p^n. Then R is certainly invariant under $b \mapsto b^\tau$. Moreover, $f_R(Y) = Y^{p^m} - Y$. Therefore, in this case,

$$\alpha_H = \alpha^{p^m} - \alpha.$$

In particular, $\alpha_H = a$.

Corollary 5.2. If $b_1, \ldots, b_m \in F_p^n$ are linearly independent over F_p, then

$$f_0(b_1, \ldots, b_m) = -1,$$

whereas $f_j(b_1, \ldots, b_m) = 0$, if $1 \leq j \leq m - 1$.

Corollary 5.2 is not true, in general, if $b_1, \ldots, b_m \in R$ are linearly dependent over F_p, as the case $m = 2$ will confirm by taking $b_1 = 1 = b_2$ for $j = 0, 1$.

Example 5.3. Here we furnish examples of subspaces \(R \) of \(F_p^n \) that are invariant under \(b \mapsto b^p \) but are not subfields of \(F_p^n \), even when \(m | n \).

Suppose first \(m = 1 \), where \((p - 1) | n \) and \(p \) is odd. Take \(c \in F_p \), \(c \neq 0 \), and set

\[
 f(Y) = Y^p - cY \in F_p[Y].
\]

Since \(Y^{p^{n-1}} \equiv Y \mod f \), it follows that \(f \) splits in \(F_{p^{n-1}} \) and hence in \(F_{p^n} \). The roots of \(f \) in \(F_{p^n} \) form a 1-dimensional, Frobenius-invariant, subspace \(R \) of \(F_{p^n} \), which is not a field, since \(F_p \) is the only 1-dimensional subfield of \(F_{p^n} \) and 0 is the only element of \(F_p \) that is a root of \(f \).

Suppose next that \(m = 2 \), where \(2p | n \) and \(p \) is odd. Let

\[
(5.6) \quad f(Y) = \prod_{j \in F_p} (Y^p - Y - j).
\]

Thus, \(f \) is the product of all Artin-Schrier polynomials in \(F_p[Y] \). This readily implies that the roots of \(f \) form a 2-dimensional, Frobenius-invariant, subspace \(R \) of \(F_{p^n} \) containing \(F_p \). In particular, \(f(cY) = f(Y) \) for all \(0 \neq c \in F_p \). Since \(Y | f(Y) \) and \(f(Y) \) has degree \(p^2 \), it follows that

\[
 f(Y) = Y^{p^2} + aY^p + bY,
\]

where \(a, b \in F_p \). Using (5.6) and \(p > 1 \) to compute \(a, b \) reveals that

\[
 f(Y) = Y^{p^2} - Y^p - Y.
\]

However, the subfield of \(F_{p^n} \) obtained by adjoining \(R \) to \(F_p \) is \(F_{p^n} \). Since \(p > 2 \), it follows that \(R \) is not a subfield of \(F_{p^n} \).

6. Existence of irreducible generalized Artin-Schreier polynomials

We begin this section by giving an elementary example of an irreducible Artin-Schreier polynomial. We then furnish substantially more general examples, which require the use of preliminary results from \([G]\) and \([MS]\). In fact, we give necessary and sufficient conditions for a polynomial

\[
 g(X) = X^{p^{n+e}} - X^{p^e} - g(Z') \in F[X]
\]

to be irreducible, where \(X \) and \(Z \) are algebraically independent elements over an arbitrary field \(K \) of prime characteristic \(p \), \(n > 0 \), \(r > 0 \), \(e \geq 0 \), \(F = K(Z) \), and \(g(Z) \in K[Z] \) is non-zero of degree relatively prime to \(p \).

Recall that an element \(\pi \) of and an integral domain \(D \) is irreducible if \(d \) is neither 0 nor a unit and whenever \(\pi = ab \) with \(a, b \in D \) then \(a \) or \(b \) is a unit.

It is easy to see that \(X^{p^r} - X - Z \) is irreducible in \(K[X][Z] \), hence in \(K[X, Z] \) and therefore in \(K[Z][X] \). It follows from Gauss’ Lemma (see \([J]\), §2.16) that \(X^{p^r} - X - Z \) is irreducible in \(F[X] \).

Theorem 6.1. (see \([MS]\), Proposition 1.8.9). Let \(D \) be an integral domain. Let \(X, Z \) be algebraically independent elements over \(D \). Let \(f \in D[X] \) and \(g \in D[Z] \). If \(\gcd(\deg(f), \deg(g)) = 1 \), then \(h(X, Z) = f(X) - g(Z) \) is irreducible in \(D[X, Z] \).

Theorem 6.2. (see \([G]\), Theorem 1.1). Let \(D \) be a unique factorization domain. Let \(t \) be any positive integer and let \(f \) be an irreducible polynomial in \(D[Z] \) of positive degree \(m \), leading coefficient \(a \) and nonzero constant term \(b \). Suppose that for each prime \(p \) dividing \(t \) and any unit \(u \) of \(D \) at least one of the two following statements is true:

(A) \(ua \notin D^p \);
Theorem 6.4. Let $\langle B \rangle$ (i) $(−1)^m ub \notin D^p$ and (ii) $ub \notin D^2$, if $4|t$.

Then $f(Z^t)$ is irreducible in $D[Z]$.

Theorem 6.3. (see [G], Corollary 4.6 (b)). Let D be a unique factorization domain of prime characteristic p. Let $f(Z) \in D[Z]$ be an arbitrary polynomial of positive degree that is irreducible in $D[Z]$, and let s be any positive integer. Then $f(Z^s)$ is reducible in $D[Z] \iff$ there exists a unit u of D such that $uf(Z) \in D^p[Z]$.

We can now prove the following result.

Theorem 6.4. Let K be a field of prime characteristic p. Let X, Z be algebraically independent elements over K and set $F = K(Z)$. Let n, e, r be integers such that $n > 0, r > 0$ and $e \geq 0$.

Let $g(Z) = c_0 + c_1 Z + \cdots + c_n Z$ be any polynomial whose degree d is coprime with p. Then $h(X, Z) = (Xp^n)^r - X^p - g(Z)$ is irreducible in $F[X]$ if and only if at least one of the following conditions is satisfied:

(i) $p \nmid r$, (ii) $e = 0$, (iii) $g(Z) \notin K^p[Z]$.

Proof. By unique factorization in \mathbb{Z} there exist a positive integer r_0 coprime with p and a non-negative integer s such that $r = r_0 p^s$, so $p|s$ if and only if $s \geq 1$.

Suppose first none of the conditions (i)-(iii) is fulfilled. Thus $e \geq 1$, $s \geq 1$ and $g(Z) \in K^p[Z]$. The last two conditions imply $g(Z^r) = Q^p(Z)$ for some $Q(Z)$ in $K[Z]$, and now the first condition implies that $h(X, Z)$ is a pth power in $F[X]$.

Suppose next that at least one of the conditions (i)-(iii) holds. We wish to show that $h(X, Z)$ is irreducible in $F[X]$.

Case (i). Suppose $p \mid r$. Therefore $p \mid dr$. Since $g(Z^r)$ has degree dr, from the case $D = K$, $f(X) = Xp^{se} - X^{p^e}$ of Theorem 6.1 with $g(Z^r)$ instead of $g(Z)$, we see that $h(X, Z)$ is irreducible in $K[X, Z]$, hence in $K[Z][X]$ and therefore in $F[X]$ by Gauss’ Lemma.

Case (ii). Suppose $e = 0$. The previous case guarantees that $Xp^n - X - g(Z^{r_0})$ is irreducible in $F[X]$, so we can suppose $s \geq 1$. Let $D = K[X]$. Therefore $f(Z) = Xp^n - X - g(Z^{r_0})$ is an irreducible polynomial in $D[Z]$ of degree $m = dr_0$ and constant term $b = Xp^n - X - c_0$. Since $Xp^n - X - c_0$ has no repeated roots, for any $u \in K^*$ (i.e., for any unit u of D) we have $(-1)^m ub \notin D^p$ as well as $ub \notin D^2$ if $4|p^s$ (i.e., if $p = 2$ and $s \geq 2$). Thus part (B) of Theorem 6.2 is satisfied with $D = K[X]$ and $t = p^s$. We conclude that $f(Z^p)$ is irreducible in $D[Z]$, and therefore in $K[Z][X]$. Hence $h(X, Z) = f(Z^{p^s})$ is irreducible in $F[X]$ by Gauss’ Lemma.

Case (iii). Assume $g(Z) \notin K^p[Z]$. From the cases (i) and (ii) we can assume $s \geq 1$ and $e \geq 1$. Suppose, if possible, that $h(X, Z)$ is reducible in $F[X]$. Letting $D = K[X]$ we get, via Gauss’ Lemma, that $h(X, Z)$ is irreducible in $K[Z][X]$, and therefore in $D[Z]$. Letting $f(Z) = Xp^n - X - g(Z^{r_0})$ we get that $f(Z^p) = h(X, Z)$ is reducible in $D[Z]$. But, as seen above, $f(Z) = Xp^n - X - g(Z^{r_0})$ is irreducible in $D[Z]$ of positive degree $m = dr_0$. Hence, by Theorem 6.3 there exists a unit u of D and $Q \in D^p[Z]$ such that $uf(Z) = Q(Z)$. In other words, there exist $u \in K^*$ and $Q_0, Q_1, \ldots, Q_m \in K[X]$ such that

$$u\left(X^{p^n+r} - X^p - \sum_{0 \leq k \leq d} c_k Z^{k r_0}\right) = \sum_{0 \leq k \leq m} Q_k Z^k.$$
Equating coefficients of like monomials we obtain
\[u(X^{p^{n+e}} - X^{p^e} - c_0) = Q_0^p \] and \[uc_k = Q_{kr_0}^p \in K^p \] for \(k = 1, \ldots, d \).

Since \(Q_0 \) has degree \(m_0 = p^{n+e-1} \), there must exist \(d_0, d_1, \ldots, d_{m_0} \) in \(K \) such that
\[
Q_0 = \sum_{0 \leq k \leq m_0} d_k X^k,
\]
whence
\[
(6.1) \quad u(X^{p^{n+e}} - X^{p^e}) - uc_0 = \sum_{0 \leq k \leq m_0} d_k^p X^{kp}.
\]
Equating leading coefficients yields
\[u = d_{m_0}^p \in K^p, \]
so \(c_k \in K^p \) for \(k = 1, \ldots, d \).

But
\[u(X^{p^{n+e}} - X^{p^e}) = \left(d_{m_0} X^{p^{e-1}} (X - 1)^{p^{n-1}} \right)^p, \]
so (6.1) gives
\[uc_0 = u(X^{p^{n+e}} - X^{p^e}) - Q_0^p = \left(d_{m_0} X^{p^{e-1}} (X - 1)^{p^{n-1}} - Q_0 \right)^p \in K[X]^p \cap K = K^p, \]
and a fortiori \(c_0 \in K^p \). Hence all \(c_i \in K^p \), against the fact that \(g(Z) \notin K^p[Z] \). □

Acknowledgments. We are grateful to D. Stanley for fruitful conversations, and R. Guralnick and A. Zalesski for useful references.

References

[CS] L. Cagliero and F. Szechtman, *Uniserial modules of certain solvable Lie algebras*, in preparation.

[D] L. E. Dickson, *A Fundamental System of Invariants of the General Modular Linear Group with a Solution of the Form Problem*, Trans. A.M.S. 12 (1911) 75-98.

[G] N. H. Guersenzvaig, *Elementary criteria for irreducibility of \(f(X^r) \)*, Israel J. Math. 169 (2009) 109-123.

[I] K. Iima and R. Iwamatsu, *On the Jordan decomposition of tensored matrices of Jordan canonical forms*, Math. J. Okayama Univ. 51 (2009) 133-148.

[GL] R. Gow and T. J. Laffey, *J. Group Theory*, 9 (2006) 659-672.

[GS] N. Guerszenzvaig and F. Szechtman, *Is every matrix similar to a polynomial in a companion matrix?*, Linear Algebra Appl. 437 (2012) 1611-1627.

[J] N. Jacobson, *Basic Algebra I*, Freeman, New York, 1985.

[H] J. E. Humphreys, *Introduction to Lie Algebras and Representation Theory*, Springer-Verlag, New York, 1972.

[H2] J. E. Humphreys, *Another look at Dickson’s invariants for finite linear groups*, Comm. Algebra 22 (1994) 4773-4779.

[MS] M. Mignotte and D. Ţeţeşcu, *Polynomials, An Algorithmic Approach*, Springer-Verlag, Singapore, 1999.

[Ra] T. Ralley, *Decomposition of products of modular representations*, Bull. Amer. Math. Soc. 72 (1966) 1012–1013.

[Re] J.-C. Renaud, *The decomposition of products in the modular representation ring of a cyclic group of prime power order*, J. Algebra 58 (1979) 1–11.

[Ro] W. E. Roth, *On direct product matrices*, Bull. Amer. Math. Soc. 40 (1934) 461–468.

[S] B. Srinivasan, *The modular representation ring of a cyclic \(p \)-group*, Proc. London Math. Soc. (3) 14 (1964) 677-688.

[St] R. Steinberg, *On Dickson’s theorem on invariants*, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34 (1987) 699-707.

[V] I. M. Vinogradov, *An introduction to the theory of numbers*, Pergamon Press, London, 1955.
Av. Corrientes 3985 6A, (1194) Buenos Aires, Argentina
E-mail address: nguersenz@fibertel.com.ar

Department of Mathematics and Statistics, University of Regina, Canada
E-mail address: fernando.szechtman@gmail.com