Distant mood monitoring for psychiatric disorders: A systematic review

CURRENT STATUS: POSTED

Alberta Susanna Johanna van der Watt
Stellenbosch University

Corresponding Author
ORCiD: https://orcid.org/0000-0002-9005-8948

Willem Odendaal
South African Medical Research Council

Kerry Louw
Stellenbosch University

Soraya Seedat
Stellenbosch University

DOI:
10.21203/rs.2.14069/v1

SUBJECT AREAS
Psychiatry
Abstract
Background: Whilst electronic self-monitoring and intervention programmes for mood disturbances in psychiatric disorders may promote self-management and patient empowerment, some level of interaction with professionals (such as clinicians, counsellors, and researchers) coupled with support is still positively valued by patients. This can allow for a more personalised approach, improve the efficiency of treatment, and adverse events can be managed in a time-appropriate manner, thereby mitigating some of the risks associated with mood fluctuations.
Methods: This systematic review synthesises quantitative and qualitative evidence on the effectiveness and feasibility of daily/weekly/monthly remote mood monitoring by distant supporters (clinicians, lay counsellors, and researchers) (or with regular feedback by distant supporters in cases where mood monitoring was self-assessed), in participants with any psychiatric disorder.
Effectiveness was defined by the change in depression and/or mania scores. Feasibility was determined according to completion/attrition rates and participant feedback. Studies were assessed for quality using the Mixed Methods Appraisal Tool (MMAT) version 2018.
Results: Eight studies met our inclusion criteria. Distant mood monitoring was effective in improving depression scores but not mania scores. Feasibility, as measured through compliance and completion rates and participant feedback, varied.
Conclusion: Distant mood monitoring with feedback is an appealing intervention, particularly in low resourced settings; however, further studies are needed to better understand the utility, feasibility, and effectiveness of these interventions in routine clinical care.
Introduction
Broadening our knowledge of the longitudinal course of mood symptoms in psychiatric disorders is central to our understanding of patterns of chronicity, episodicity, relapse, and recurrence. Temporal changes in mood symptoms are a cardinal feature of depressive and bipolar disorder (Proudfoot et al., 2014; Sadock & Sadock, 2007).
Persistent mood symptoms are often accompanied by a variety of other symptoms (e.g. anxiety, cognitive, and functional disturbances) (Iosifescu, 2012). Additionally, persistent mood symptoms
have been documented in patients with other psychiatric disorders including schizophrenia, anxiety, post-traumatic stress, and substance use disorders (Sadock & Sadock, 2007). Mood symptoms in these disorders have consistently been shown to impact on treatment outcomes, function, and prognosis (Strejilevich et al., 2013). Investigation of the longitudinal course of mood symptoms can contribute to knowledge of pathophysiological mechanisms of chronicity, episodicity, relapse, and recurrence; assist in guiding and optimising treatment (e.g. dose, duration) (Glasziou, Irwig, & Mant, 2005); and inform the development of novel and more effective treatments (van der Watt, Suryapranata, & Seedat, 2018).

Previous research indicates that patients with psychiatric disorders readily engage in the use of information technology (IT) platforms such as telemonitoring (Ure et al., 2011) and mobile technology (Bopp et al., 2010; Miklowitz et al., 2012) for mood assessment, monitoring, and treatment. These technologies allow for more regular data collection to track mood symptom trajectories. A systematic review of the validity of electronic self-monitoring of mood using IT platforms in adults with bipolar disorder found evidence for their validity when compared to clinical rating scales for depression (Faurholt-Jepsen, Munkholm, Frost, Bardram, & Kessing, 2016). Furthermore, weekly telemonitoring or text messaging has been shown to improve access to professional care in patients with bipolar disorder (Depp et al., 2015; Wenze, Armey, & Miller, 2014). Additionally, bipolar patients endorsed lower levels of illness experienced during facilitated integrated mood management (Miklowitz et al., 2012). Telemonitoring and text messaging to monitor patients’ mood fluctuations, whilst not cost-free, are far less expensive methods than traditional clinical interviews (Miklowitz et al., 2012; Wenze et al., 2014). These interventions can also assist in increasing adherence to treatment which is of benefit as non-adherence is a major, and costly, concern in the treatment of psychiatric disorders (see for example Wenze et al., 2014).

Whilst electronic self-monitoring and intervention programmes may promote self-management and patient empowerment; keeping some sort of interaction underpinned by professional support (such as with clinicians, lay counsellors, and researchers) is positively valued by patients (van der Watt, Roos, Beyer, & Seedat, 2018). Additionally, it provides a more personalised approach, improves efficiency of
treatment (Newman, Szkodny, Llera, & Przeworski, 2011; Proudfoot et al., 2014; Todd, Jones, Hart, & Lobban, 2014), and allows for adverse events to be managed in a time-appropriate manner, thereby mitigating some of the risks associated with mood fluctuations (Newham & Martin, 2013). This systematic review evaluates the effectiveness and feasibility of distant mood monitoring involving clinicians, lay counsellors, and researchers, in individuals with psychiatric disorders.

Objectives

We synthesised quantitative and qualitative evidence on the effectiveness and feasibility of daily/weekly/monthly remote mood monitoring in participants with any psychiatric disorder by clinicians, lay counsellors, and researchers (hereafter referred to as distant supporters), or where regular feedback was provided by distant supporters in cases where mood states were self-assessed.

Assessment of effectiveness was based on the change in depression and/or mania scores. Feasibility was determined according to completion/attrition rates and participant feedback. Studies were assessed for quality using the Mixed Methods Appraisal Tool (MMAT) version 2018.

Methods

This review has been registered on PROSPERO (CRD42017057227).

Literature search

The following data bases were searched by the first author to identify eligible articles:

i. Academic search premier—EBSCOhost

ii. PubMed—Medline

iii. SAGE journals

Additionally, the reference lists of included studies were searched to identify potentially relevant studies that may have been missed by electronic searches (Greenhalgh, 2005). After the first phase of the screening process (see Figure 1), relevant articles to which we did not have full text access were flagged. These articles were requested through an inter-library loan process at Stellenbosch University. The full text of one article (Whalen et al., 2006) could not be accessed and was excluded.

Search strategy

The following keywords (and MeSH terms) were used in searching for relevant literature:

Telephonic OR telephone OR mobile phone OR cellular phone OR cell phone OR smartphone OR
Eligibility criteria
Only peer reviewed studies published in English between 01 January 2000 and 31 March 2019, were considered for the review. Inclusion criteria were not limited to study setting or location. Thus, all studies from low-, middle-, and high-income countries were eligible for inclusion. For a study to be eligible, it had to primarily focus on the effectiveness of daily/weekly/monthly, distant mood monitoring of participants diagnosed with a psychiatric disorder as defined by the Diagnostic and Statistical Manual of Mental Disorders (DSM: American Psychiatric Association, 2000, 2013) or the International Statistical Classification of Diseases and Related Health Problems (ICD: World Health Organization, 2018).

Study design
All quantitative studies were included as well as studies that qualitatively assessed participants’ perceived effectiveness of distant mood monitoring offered by distant supporters. Systematic reviews and commentaries were excluded. Studies that had been included in systematic reviews that met our inclusion criteria were included, but not the systematic reviews themselves.

Method of monitoring
Only studies in which the mood monitoring was done \emph{distantly} were included, and the monitoring had to take place without any face-to-face contact (i.e. physical presence) between the patient and the person conducting the distant mood monitoring. Thus, studies where mood monitoring took place via telephone, internet, smartphone, e-mail, and/or pen-and-paper methods were included. This monitoring had to be done by a distant supporter. Studies where mood monitoring was done by the patient him/herself, were only included if a distant supporter provided feedback upon the patient completing a self-monitoring assessment.

Studies that focused only on participants’ self-monitoring of mood states were excluded. Additionally,
we excluded studies where mood monitoring was not conducted by a distant supporter, but by the patient him/herself, and where feedback was only computer generated without the assistance of a distant supporter. The decision to focus on mood monitoring conducted by a distant supporter (or which at least included some feedback by a distant supporter) was based on research indicating the effectiveness of participants being listened to (Billsborough et al., 2014) or simply talking to a researcher who is interested in what they have to say (Lowes & Paul, 2006). As such, mood monitoring which involves contact, albeit distant, with a distant supporter may have therapeutic benefits in and of itself (van der Watt, Roos, et al., 2018). Moreover, research has indicated that participants often take part in research studies, such as mood monitoring, in order to gain the aforementioned therapeutic benefits (Patel, Doku, & Tennakoon, 2003).

Screening process

Articles identified through the search were exported to Rayyan (Ouzzani, Hammady, Fedorowicz, & Elmagarmid, 2016) where the first and second author independently assessed their eligibility, using the blind function in Rayyan. As indicated in Figure 1, the screening process consisted of three phases: (i) Removing duplicates; (ii) Title and abstract screening; and (iii) Full text screening. After each phase, the blind function was turned off in order to resolve conflicts between the screeners. The quality of included studies was independently assessed by the first and second author using the Mixed Methods Appraisal Tool (MMAT) version 2018 (Hong, Gonzalez-Reyes, & Pluye, 2018; Pace et al., 2012). However, since two of the included studies [blinded] were authored by the first author, a third independent researcher was asked to assess the quality of these two studies. A summary is presented in Table 3. Overall, the included studies were deemed to be of acceptable quality.

Of the 43 full text articles screened, 35 articles were excluded due to: lack of full text access \(n = 1 \); monitoring/feedback taking place in person \(n = 2 \); review papers \(n = 2 \) or protocol papers \(n = 1 \); lack of feedback to participants \(n = 6 \); studies of participants without any psychiatric diagnosis \(n = 8 \); and studies that did not report on mood outcomes \(n = 15 \).

Figure 1 Screening Process

Data collection
The first author extracted the relevant information from the included studies, and the second author corroborated the information. The data extracted included study design, setting, sample, psychiatric disorder, method of monitoring, any additional information deemed important, and study findings.

Outcomes
The two main outcomes for which the data were sought were (i) effectiveness, and (ii) feasibility of daily/weekly/monthly quantitative remote/distant mood monitoring by distant supporters of participants with psychiatric disorders.

Results And Discussion
Eligible papers
Eight articles (Cole et al., 2006; Faurholt-Jepsen, Vinberg, et al., 2015; Gensichen et al., 2009; Rosen et al., 2013; Ross, Tenhave, Eakin, Difilippo, & Oslin, 2008; Timko, Harris, Jannausch, & Ilgen, 2019; van der Watt, Roos, et al., 2018; van der Watt, Suryapranata, et al., 2018) met the inclusion criteria for this systematic review. Mood monitoring studies were conducted in South Africa (van der Watt, Roos, et al., 2018; van der Watt, Suryapranata, et al., 2018), the United States (Cole et al., 2006; Rosen et al., 2013; Ross et al., 2008; Timko et al., 2019), Germany (Gensichen et al., 2009), and Denmark (Faurholt-Jepsen, Frost, et al., 2015). Details regarding study designs and monitoring procedures are presented in Table 1. Details regarding outcome measures, effectiveness, adverse events, and completion rates are presented in Table 2, while information on Population, Intervention, Comparison, Outcome, and Time (PICOT) is embedded in Table 1 (P, I, C, T) and Table 2 (C, O).

Table 1 Description of study designs and monitoring procedures
Table 2 Descriptions of outcome measures, effectiveness, adverse events, and completion rates
Table 3 MMAP quality appraisal of included articles
Description of participants, assessments, and outcomes
As indicated in Table 1, participants mainly comprised patients with mood and/or anxiety disorders (n = 6 studies Cole et al., 2006; Faurholt-Jepsen, Frost, et al., 2015; Gensichen et al., 2009; Ross et al., 2008; van der Watt, Roos, et al., 2018; van der Watt, Suryapranata, et al., 2018); only studies by Rosen and colleagues (2013) and Timko and colleagues (2019) included patients with comorbid psychiatric disorders (viz., depression, anxiety disorder, substance use disorder, schizophrenia, or
bipolar disorder). The proportion of females across the studies ranged from 6.7% (Ross et al., 2008),
to 89.2% (van der Watt, Roos, et al., 2018). The age ranges varied widely (see Table 1) indicating
towards the usefulness of such interventions across age groups. The ethnicity of participants was only
reported by Rosen and colleagues (2013: Caucasian = 65%, African American = 21%), Ross and
colleagues (2008: white = 43.1%), Van der Watt, Roos and colleagues (2018: white = 43.2%, coloured
= 51.4%), and Van der Watt, Suryapranata and colleagues (2018: African/black = 3.3%, white =
44.3%, coloured = 50.8%). Only four studies (Rosen et al., 2013; Timko et al., 2019; van der Watt,
Roos, et al., 2018; van der Watt, Suryapranata, et al., 2018) specified the exact time at which mood
monitoring commenced (1 week, or 2 weeks post-discharge). Other studies merely indicated that
outpatients were recruited. As such, mood monitoring commenced at various stages of the illness.
Depression outcome measures included the Patient Health Questionnaire 9 (PHQ–9: Cole et al., 2006;
Gensichen et al., 2009; Ross et al., 2008), the Hamilton Rating Scale for Depression (HAMD–17:
Faurholt-Jepsen, Frost, et al., 2015), the Center for Epidemiologic Studies Depression Scale (CESDS:
Rosen et al., 2013), the Mini-International Neuropsychiatric Interview (MINI: Ross et al., 2008), and the
Quick Inventory of Depressive Symptomatology (QIDS: van der Watt, Roos, et al., 2018; van der Watt,
Suryapranata, et al., 2018). Timko and colleagues (2019) did not specify the measure used, simply
stating the “psychological problems” were recorded. Mania outcome measures included the Young
Mania Rating Scale (YMRS: Faurholt-Jepsen, Frost, et al., 2015), and the Altman Self-Rating Mania
Scale (ASRM: van der Watt, Roos, et al., 2018; van der Watt, Suryapranata, et al., 2018).

Effectiveness

We defined effectiveness (or lack thereof) in terms of an increase and/or decrease in depression
and/or mania scores on a rating scale. Based on this definition, two studies (Faurholt-Jepsen, Frost, et
al., 2015; Rosen et al., 2013) reported no significant improvement in depression and/or mania scores
over the course of the study. Whilst Ross and colleagues (2008) at first reported lower depression
scores and a lower rate of diagnoses for their intervention group, as compared to the control group;
at study completion this difference was not significant.

Three studies (Cole et al., 2006; Gensichen et al., 2009; van der Watt, Suryapranata, et al., 2018)
reported significant improvement in depression scores over the course of the study. In addition, one study (van der Watt, Roos, et al., 2018) reported that participants qualitatively reported mood monitoring to be effective. Furthermore, Timko and colleagues (2019) indicated that psychological problems decreased over time. However, mood monitoring did not appear to be effective in improving mania scores for either of the studies that reported on mania scores (Faurholt-Jepsen, Frost, et al., 2015; van der Watt, Suryapranata, et al., 2018).

Feasibility

For the purpose of this systematic review, feasibility was determined based on compliance and completion rates, and on feedback provided by participants. Completion rates ranged from 45.9% (van der Watt, Suryapranata, et al., 2018) to 86% (Faurholt-Jepsen, Frost, et al., 2015) for the intervention groups. This is similar to the completion rate of distant self-mood monitoring which did not include contact with (or feedback from) a clinician/lay counsellor/researcher (Faurholt-Jepsen et al., 2016). Specifically, in their systematic review of distant self-mood monitoring, Faurholt-Jepsen and colleagues (2016), reported completion rates of between 42.1% (Depp et al., 2010) and 93.9% (Bauer et al., 2004; Whybrow et al., 2003).

In the present review, the only study that included subjective qualitative reports (van der Watt, Roos, et al., 2018), indicated high acceptability of distant mood monitoring. However, it should be noted that the subjective qualitative findings reported by van der Watt, Roos, and colleagues (2018) mostly included participants who completed the study, with only a few participants who dropped out of monitoring reporting their experiences. As such, these findings should be interpreted with caution.

Conclusion And Recommendations

This systematic review focused on the effectiveness of distant mood monitoring offered by clinicians, lay counsellors, or researchers, to patients with psychiatric disorders. Patient (self-) assessments were also included, provided that feedback was distantly provided by distant supporters. Mood monitoring was not specifically compared to other interventions. Only eight studies were found to be eligible for inclusion. The majority of studies were conducted in patients where mood disorder was the primary or co-morbid diagnosis. The studies used varying methodologies. Given the differences in sample
characteristics, methodology, and outcome measures it is difficult to draw comparisons across the studies.

From the above findings, we tentatively conclude that distant mood monitoring may be effective in improving depression scores, but not mania scores. Feasibility, as measured through compliance and completion rates and participant feedback, varied. These findings are based on eight studies only, of which one included a placebo-control group and four a treatment-as-usual control group. Additionally, effectiveness and feasibility were loosely defined across studies. Changes in depression and mania scores may not necessarily correlate with improvement in quality of life or functioning. Furthermore, the present study is limited by the fact that only the first author located relevant studies through a systematic search of limited databases. Important databases such as PsychInfo could not be accessed since the study university did not have access to it. An additional independent systematic search would have been preferable. This, however, was not possible due to resource constraints. Yet, the use of a second, blinded, author in the screening process did add rigour to the study.

Distant mood monitoring with distant supporter feedback is an appealing intervention, particularly in low resource settings; however, further studies are needed to understand the role of these interventions and confirm their feasibility and effectiveness in routine clinical care across different settings. This includes a better understanding of the effectiveness and feasibility of this form of monitoring in different psychiatric disorders with and without comorbidity, the timing of the intervention in terms of the phase of illness, the potential harmful effects of regular mood monitoring with feedback, and barriers to the use and implementation of such monitoring systems.

More rigorous mood monitoring studies are needed to draw more definitive conclusions. These studies should provide more detail on (i) the mechanisms of monitoring (for example what the feedback entails), (ii) mood trajectories (e.g. at different time-points instead of only at baseline and endpoint), (iii) adverse events related/unrelated to the mood monitoring itself, (iv) the experiences and perceptions of participants during mood monitoring, and (v) the quality of life impact of treatment.

List Of Abbreviations

AD Anxiety Disorder
ASRM Altman Self-Rating Mania Scale
BD Bipolar Disorder
BHS Behavioural Health Specialist
CESDS Center for Epidemiologic Studies Depression Scale
CHF Congestive Heart Failure
DSM Diagnostic and Statistical Manual of Mental Disorders
HAMD-17 Hamilton Rating Scale for Depression
ICD International Statistical Classification of Diseases and Related Health Problems
IT Information Technology
MDD Major Depressive Disorder
MMAT Mixed Methods Appraisal Tool
Ms months
NA Not Applicable
NS Not Specified
PHQ Patient Health Questionnaire
PICOT Population, Intervention, Comparison, Outcome, and Time
PTSD Posttraumatic Stress Disorder
QIDS Quick Inventory of Depressive Symptomatology
RCT Randomized Controlled Trial
SD Standard Deviation
SUD Substance Use Disorder (incl. Alcohol Use Disorder)
TAU Treatment as usual
Tel Telephonic
Ws weeks
YMRS Young Mania Rating Scale

Declarations
Ethics approval and consent to participate
No ethics approval was required for this systematic review, nor consent to participate.

Consent for publication
No individual person’s data is included in the present study. As such, consent for publication is not needed.

Availability of data and materials
No original data was included in this review.

Competing interests
We have no financial or non-financial competing interests to declare.

Funding
This review is supported by the South African Research Chair in PTSD hosted by the Stellenbosch University, funded by the DST and administered by the NRF. The funding body was not directly involved in the design of the study; the data collection, analysis, and interpretation; or the writing of the manuscript.

Authors’ contributions
AvdW conducted the literature search, the screening process, the quality check, data extraction, and writing of the article. WO served as second review during the screening process, quality check and data extraction. WO also contributed to writing the article. KL contributed to writing the article. SS contributed to writing the article.

Acknowledgments
We would like to thank the library staff for their kind assistance.

References
American Psychiatric Association. (2000). Diagnostic and Statistical Manual of Mental Disorders (4th-Revise ed.). Washington: American Psychiatric Association.

American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Arlington, VA: American Psychiatric Association.

Bauer, M., Grof, P., Gyulai, L., Rasgon, N., Glenn, T., & Whybrow, P. C. (2004). Using technology to improve longitudinal studies: self-reporting with ChronoRecord in bipolar disorder. Bipolar Disorders,
Billsborough, J., Mailey, P., Mailey, P., Hicks, A., Sayers, R., Smith, R., ... Larsen, J. (2014). “Listen, empower us and take action now!”: reflexive-collaborative exploration of support needs in bipolar disorder when “going up” and “going down”. *Journal of Mental Health (Abingdon, England)*, 23(1), 9-14. https://doi.org/10.3109/09638237.2013.815331

Bopp, J. M., Miklowitz, D. J., Goodwin, G. M., Stevens, W., Rendell, J. M., & Geddes, J. R. (2010). The longitudinal course of bipolar disorder as revealed through weekly text messaging: a feasibility study. *Bipolar Disorders*, 12(3), 327–334. https://doi.org/10.1111/j.1399-5618.2010.00807.x

Cole, S. A., Farber, N. C., Weiner, J. S., Sulfaro, M., Katzelnick, D. J., & Blader, J. C. (2006). Double-Disease Management or One Care Manager for Two Chronic Conditions: Pilot Feasibility Study of Nurse Telephonic Disease Management for Depression and Congestive Heart Failure. *Disease Management*, 9(5), 266–276. https://doi.org/10.1089/dis.2006.9.266

Depp, C. A., Ceglowski, J., Wang, V. C., Yaghouti, F., Mausbach, B. T., Thompson, W. K., & Granholm, E. L. (2015). Augmenting psychoeducation with a mobile intervention for bipolar disorder: A randomized controlled trial. *Journal of Affective Disorders*, 174, 23–30. https://doi.org/10.1016/j.jad.2014.10.053

Depp, C. A., Mausbach, B., Granholm, E., Cardenas, V., Ben-Zeev, D., Patterson, T. L., ... Jeste, D. V. (2010). Mobile interventions for severe mental illness: design and preliminary data from three approaches. *The Journal of Nervous and Mental Disease*, 198(10), 715–721. https://doi.org/10.1097/NMD.0b013e3181f49ea3

Faurholt-Jepsen, M., Frost, M., Ritz, C., Christensen, E. M., Jacoby, A. S., Mikkelsen, R. L., ... Kessing, L. V. (2015). Daily electronic self-monitoring in bipolar disorder using smartphones - The MONARCA i trial: A randomized, placebo-controlled, single-blind, parallel group trial. *Psychological Medicine*, 45(13), 2691-2704. https://doi.org/10.1017/S0033291715000410

Faurholt-Jepsen, M., Munkholm, K., Frost, M., Bardram, J. E., & Kessing, L. V. (2016). Electronic self-monitoring of mood using IT platforms in adult patients with bipolar disorder: A systematic review of the validity and evidence. *BMC Psychiatry*, 16(1), 7. https://doi.org/10.1186/s12888-016-0713-0
Faurholt-Jepsen, M., Vinberg, M., Frost, M., Christensen, E. M., Bardram, J. E., & Kessing, L. V. (2015). Smartphone data as an electronic biomarker of illness activity in bipolar disorder. *Bipolar Disorders, 17*(7), 715–728. https://doi.org/10.1111/bdi.12332

Gensichen, J., von Korff, M., Peitz, M., Muth, C., Beyer, M., Güthlin, C., ... PRoMPT (PRimary care Monitoring for depressive Patients Trial). (2009). Case management for depression by health care assistants in small primary care practices: a cluster randomized trial. *Annals of Internal Medicine, 151*(6), 369–378. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/19755362

Glasziou, P., Irwig, L., & Mant, D. (2005). Monitoring in chronic disease: a rational approach. *BMJ (Clinical Research Ed.), 330*(7492), 644–648. https://doi.org/10.1136/bmj.330.7492.644

Greenhalgh, T. (2005). Effectiveness and efficiency of search methods in systematic reviews of complex evidence: audit of primary sources. *Bmj, 331*(7524), 1064–1065. https://doi.org/10.1136/bmj.38636.593461.68

Hong, Q. N., Gonzalez-Reyes, A., & Pluye, P. (2018). Improving the usefulness of a tool for appraising the quality of qualitative, quantitative and mixed methods studies, the Mixed Methods Appraisal Tool (MMAT). *Journal of Evaluation in Clinical Practice, 24*(3), 459–467. https://doi.org/10.1111/jep.12884

Iosifescu, D. V. (2012). The relation between mood, cognition and psychosocial functioning in psychiatric disorders. *European Neuropsychopharmacology, 22*, S499–S504. https://doi.org/10.1016/j.euroneuro.2012.08.002

Lowes, L., & Paul, G. (2006). Participants’ experiences of being interviewed about an emotive topic. *Journal of Advanced Nursing, 55*(5), 587–595. https://doi.org/10.1111/j.1365-2648.2006.03950.x

Miklowitz, D. J., Price, J., Holmes, E. A., Rendell, J., Bell, S., Budge, K., ... Geddes, J. R. (2012). Facilitated Integrated Mood Management for adults with bipolar disorder. *Bipolar Disorders, 14*(2), 185–197. https://doi.org/10.1111/j.1399-5618.2012.00998.x

Newham, J. J., & Martin, C. R. (2013). Measuring fluctuations in maternal well-being and mood across pregnancy. *Journal of Reproductive and Infant Psychology, 31*(5), 531–540. https://doi.org/10.1080/02646838.2013.834040

Newman, M. G., Szkodny, L. E., Llera, S. J., & Przeworski, A. (2011). A review of technology-assisted
self-help and minimal contact therapies for anxiety and depression: Is human contact necessary for therapeutic efficacy? *Clinical Psychology Review, 31*(1), 89–103.

https://doi.org/10.1016/j.cpr.2010.09.008

Ouzzani, M., Hammady, H., Fedorowicz, Z., & Elmagarmid, A. (2016). Rayyan—a web and mobile app for systematic reviews. *Systematic Reviews, 5*(1), 210. https://doi.org/10.1186/s13643-016-0384-4

Pace, R., Pluye, P., Bartlett, G., Macaulay, A. C., Salsberg, J., Jagosh, J., & Seller, R. (2012). Testing the reliability and efficiency of the pilot Mixed Methods Appraisal Tool (MMAT) for systematic mixed studies review. *International Journal of Nursing Studies, 49*(1), 47–53.

https://doi.org/10.1016/j.ijnurstu.2011.07.002

Patel, M. X., Doku, V., & Tennakoon, L. (2003). Challenges in recruitment of research participants. *Advances in Psychiatric Treatment, 9*(3), 229–238. https://doi.org/10.1192/apt.9.3.229

Proudfoot, J., Whitton, A. E., Parker, G., Manicavasagar, V., Nicholas, J., & Smith, M. (2014). Evidence of weekly cyclicity in mood and functional impairment in those with a bipolar disorder. *Psychiatry Research, 218*(3), 290–294. https://doi.org/10.1016/j.psychres.2014.04.047

Rosen, C. S., Tiet, Q. Q., Harris, A. H. S., Julian, T. F., McKay, J. R., Moore, W. M., … Schnurr, P. P. (2013). Telephone Monitoring and Support After Discharge From Residential PTSD Treatment: A Randomized Controlled Trial. *Psychiatric Services, 64*(1), 13–20.

https://doi.org/10.1176/appi.ps.201200142

Ross, J. T., Tenhave, T., Eakin, A. C., Difilippo, S., & Oslin, D. W. (2008). A randomized controlled trial of a close monitoring program for minor depression and distress. *Journal of General Internal Medicine, 23*(9), 1379–1385. https://doi.org/10.1007/s11606-008-0663-4

Sadock, B. J., & Sadock, V. A. (2007). *Kaplan & Sadock’s synopsis of psychiatry: Behavioural sciences/clinical psychiatry* (10th ed.). Philadelphia: Wolters Kluwer.

Strejilevich, S. A., Martino, D. J., Murru, A., Teitelbaum, J., Fassi, G., Marengo, E., … Colom, F. (2013). Mood instability and functional recovery in bipolar disorders. *Acta Psychiatrica Scandinavica, 128*(3), 194–202. https://doi.org/10.1111/acps.12065

Timko, C., Harris, A. H. S., Jannausch, M., & Ilgen, M. (2019). Randomized controlled trial of telephone
monitoring with psychiatry inpatients with co-occurring substance use and mental health disorders. *Drug and Alcohol Dependence, 194*, 230–237. https://doi.org/10.1016/j.drugalcdep.2018.09.010

Todd, N. J., Jones, S. H., Hart, A., & Lobban, F. A. (2014). A web-based self-management intervention for Bipolar Disorder ‘Living with Bipolar’: A feasibility randomised controlled trial. *Journal of Affective Disorders, 169*, 21–29. https://doi.org/10.1016/j.jad.2014.07.027

Ure, J., Pinnock, H., Hanley, J., Kidd, G., Smith, E. M., Tarling, A., … McKinstry, B. (2011). Piloting tele-monitoring in COPD: a mixed methods exploration of issues in design and implementation. *Primary Care Respiratory Journal, 21*(1), 57–64. https://doi.org/10.4104/pcrj.2011.00065

van der Watt, A. S. J., Roos, T., Beyer, C., & Seedat, S. (2018). Participants’ perspectives of weekly telephonic mood monitoring in South Africa: a feasibility study. *Pilot and Feasibility Studies, 4*(56), 1–11. https://doi.org/https://doi.org/10.1186/s40814-018-0245-0

van der Watt, A. S. J., Suryapranata, A. P. S. P., & Seedat, S. (2018). Prospective interepisodal mood monitoring in patients with affective disorders: A feasibility study. *Neuropsychiatric Disease and Treatment, 14*, 517–524. https://doi.org/10.2147/NDT.S152620

Wenze, S. J., Armey, M. F., & Miller, I. W. (2014). Feasibility and Acceptability of a Mobile Intervention to Improve Treatment Adherence in Bipolar Disorder. *Behavior Modification, 38*(4), 497–515. https://doi.org/10.1177/0145445513518421

Whalen, C. K., Henker, B., Ishikawa, S. S., Jamner, L. D., Floro, J. N., Johnston, J. A., & Swindle, R. (2006). An Electronic Diary Study of Contextual Triggers and ADHD: Get Ready, Get Set, Get Mad. *Journal of the American Academy of Child & Adolescent Psychiatry, 45*(2), 166–174. https://doi.org/10.1097/01.chi.0000189057.67902.10

Whybrow, P. C., Grof, P., Gyulai, L., Rasgon, N., Glenn, T., & Bauer, M. (2003). The electronic assessment of the longitudinal course of bipolar disorder: the ChronoRecord software. *Pharmacopsychiatry, 36 Suppl 3*, S244–9. https://doi.org/10.1055/s-2003-45137

World Health Organization. (2018). International statistical classification of diseases and related health problems. Retrieved from https://icd.who.int/browse11/l-m/en

Tables
Author	Study Design	Sample Characteristics (Population and Comparison)	Mood Monitoring Information (Intervention and Time)			
Cole et al., 2006	Observational	Depress with comorbid CHF	MDD: $n = 19$ Other depression: $n = 8$ Mean Age (Range; SD): MDD: 73.8 (61–93 years; NS) Other depression: 77 (73–80 years; NS)	Paper-and-pencil, telephonic Telephone calls At least monthly 24Ws NS: Outpatient population		
Faurholt-Jepsen et al., 2015	RCT single blind	BD	Intervention: $n = 39$ Placebo-control group provided with mobile phone for daily use: $n = 39$ Intervetion: 29.1 (NS; 7.5 years) Control: 29.5 (NS; 9.4 years)	Smartphone application Contacted by nurse when necessary; graphic visualization Daily 24Ws NS: Outpatient population		
Gensichen et al., 2009	Cluster RCT	MDD	Intervention: $n = 310$ TAU control: $n = 316$ Intervetion: 51.7 (NS; 14.05 years) Control: 50.53 (NS; 14.32 years)	Telephonic Telephonic First month: twice a week Following 11 months: monthly 12Ms NS: Outpatient population		
Rosen et al., 2013	Multisite RCT	PTSD with comorbid depression, AD, SUD, schizophrenia, BD	Intervention: $n = 412$ TAU control: $n = 425$ Intervetion: 50.2 (NS; 0.62 years) Control: 49.9 (NS; 0.86 years)	Telephonic Telephonic First 3 months: Bi-weekly 3Ms Two weeks post-discharge		
Ross et al., 2008	RCT	Minor Depression	Intervention: $n = 130$ TAU control: $n = 93$ Intervetion: 59.8 (NS; 14.6 years) Control: 58.5 (NS; 17.7 years)	Telephonic Telephonic Weekly 8Ws NS: Outpatient population		
Timko et al., 2019	RCT	Depression, AD, PTSD, schizophrenia /	Intervention: $n = 207$ TAU: n Intervetion: 45.1 (NS; 12.6)	Telephonic Telephonic Weekly 3Ms 1 week post-discharge		
Authors	Depression scale/instrument	Mania	Frequency	AE reported	Completion Rate	Effective
-------------------------------	------------------------------	-------	-----------	---	-----------------	----------------------------
Cole et al., 2006	PHQ	NA	6Ws, 12Ws, 6Ms	Use of a formal, structured suicide assessment instrument. Results NS	24/35 = 68.57%	Significant improvement in PHQ scores.
Faurholt-Jepsen et al., 2015[2]	HAMD-17	YMRS	Monthly for 6 months	Trained nurse contacted participant if deterioration in symptoms detected. Results NS	Intervention: 33/39 = 82.62%	No significant improvement in HAMD-17 or YMRS scores.
Gensichen et al., 2009	PHQ	NA	6Ms; 12Ms	NS	6 months: 84.8%	Significant improvement in PHQ scores.
Rosen et al., 2013	CESD	NA	4Ms; 12Ms	Serious suicidal ideation	Intervention: 86%	No significant improvement in PHQ scores.

Note: AD = Anxiety Disorder; ASRM = Altman Self-Rating Mania Scale; BD = Bipolar Disorder; BHS = Behavioural Health Specialist; CESDS = Center for Epidemiologic Studies Depression Scale; CHF = Congestive Heart Failure; HAMD-17 = Hamilton Rating Scale for Depression; Ms = months; MDD = Major Depressive Disorder; NA = Not Applicable; NS = Not Specified; PHQ = Patient Health Questionnaire; PTSD = Posttraumatic Stress Disorder; QIDS = Quick Inventory of Depressive Symptomatology; RCT = Randomized Controlled Trial; SD = Standard Deviation; SUD = Substance Use Disorder (incl. Alcohol Use Disorder); TAU = Treatment as usual; Tel = Telephonic; YMRS = Young Mania Rating Scale, Ws = weeks

Table 2 Descriptions of outcome measures, effectiveness, adverse events, and completion rates
Study	Measure	Group	Timepoint	Findings
Ross et al., 2008	PHQ; MINI	NA	6Ms	Participants (37.7%) referred to BHS.
				Intervention: 96/130 = 73.85%
				Control: 72/93 = 77.42%
Timko et al., 2019	NS	NA	3Ms, 9Ms, 15Ms	Deceased participants indicated at 3Ms (n = 2); 9Ms (n = 13), and 15Ms (n = 16) follow-up. Relation to study NS.
				Intervention attrition indicated at 3Ms (n = 32); 9Ms (n = 58), and 15Ms (n = 58) follow-up.
				TAU attrition indicated at 3Ms (n = 41); 9Ms (n = 57), and 15Ms (n = 50) follow-up. Relation to study NS.
Van der Watt, Roos et al., 2018	QIDS	ASRM	26Ws	Participants reported negative (10.8%) and apprehensive (16.2%) experience of baseline assessment.
				Interviews conducted regarding effectiveness: 60.7%
Van der Watt, Suryaprana et al., 2018	QIDS	ASRM	26Ws	NS
				45.9%

Note: AD = Anxiety Disorder; ASRM = Altman Self-Rating Mania Scale; BD = Bipolar Disorder; BHS = Behavioural Health Specialist; CESDS = Center for Epidemiologic Studies Depression Scale; CHF =
Congestive Heart Failure; HAMD-17 = Hamilton Rating Scale for Depression; Ms = months; MDD = Major Depressive Disorder; NA = Not Applicable; NS = Not Specified; PHQ = Patient Health Questionnaire; PTSD = Posttraumatic Stress Disorder; QIDS = Quick Inventory of Depressive Symptomatology; RCT = Randomized Controlled Trial; SD = Standard Deviation; SUD = Substance Use Disorder (incl. Alcohol Use Disorder); TAU = Treatment as usual; Tel = Telephonic; YMRS = Young Mania Rating Scale, Ws = weeks

Table 3 MMAP quality appraisal of included articles

MMAP Mixed Methods quality appraisal	MMAP Quantitative RCT quality appraisal	MMAP Quantitative non-RCT quality appraisal	
1. Is randomization appropriately performed?	Yes: Participants were randomized with a balanced ration of 1:1 to receive either an intervention Android smartphone (the intervention group) or a control Android smartphone (the control group) for a 6-month trial period.	Yes: The data safety and monitoring board stratified the practices according to the size of the city and performed computer-based randomization. Participant random assignment status was nested within the practice status.	Yes: Randomization by site, gender, and service in the recent wars in Iraq or Afghanistan was done centrally by Efron randomization by someone blind to participants’ treatment histories.
2. Are the groups comparable at baseline?	Yes: Randomization was stratified on age (<29 or ≥29 years) and former hospitalization (yes/no) since these were considered to be possible prognostic variables, and a fixed block size of 10 within each stratum was used.	Yes: See Table 2 in the article. There was no statistical difference between the two groups’ characteristics at baseline.	Yes: See Table 1 in the article. There was no statistical difference between the two groups’ characteristics at baseline.
3. Are there complete outcome data?	Yes: 82.62% of the intervention group data, and 87.18% of the control group data could be analysed.	Yes: 86.13% of the intervention group data, 91.14% of the control group data could be analysed at 12 month assessment.	Yes: 99% group data could be analysed.
4. Are outcome assessors blinded to the intervention provided?	Partial: Due to the type of intervention, this trial was single-blinded since blinding of the participants, the clinicians, and the study nurse handling the intervention was not possible.	No: Because of the practice staff training required for the behavioural intervention, participants, health care assistants, family physicians, and researchers were not blinded to assignment once the trial was started.	No: Due to inter-rater possible
5. Did the participants adhere to the assigned intervention?	Yes: A total of 3.7% of participant visits were missing (3.6% in the intervention group and 3.8% in the control group) due to participants not attending.	Unclear: Follow-up data is reported for 84.8% of the participants at 6 months and 84.2% at 12 months. However, it is not clear how many completed the weekly/monthly assessments.	No: Follow-up data is reported for 67% (4 months) group; 66% (12 months) group. It is unclear how many completed the weekly/monthly assessments.

MMAP Mixed Methods quality appraisal

| **1. Is there an adequate rationale for using a mixed methods design to address the research question?** | No: There is no rationale provided | No: There is no rationale provided |

MMAP Quantitative non-RCT quality appraisal

| **1. Are the participants representative of the target population?** | Yes: Positive through All patients offered initiative indicate | Yes: Positive through All patients offered initiative indicate |
2. Are the different components of the study effectively integrated to answer the research question?

| Yes: | The qualitative and quantitative components complement each other and function well as a unified whole to answer the research question. |

3. Are the outputs of the integration of qualitative and quantitative components adequately interpreted?

| Yes: | The qualitative component provides detailed evidence for acceptability and perceived effectiveness of mood monitoring and reasons for participant drop-out. This information is effectively supported by quantitative data including baseline assessment and post-discharge assessment using established questionnaires. |

4. Are divergences and inconsistencies between quantitative and qualitative results adequately addressed?

| Unclear: | There appears to be no mention of any divergence or inconsistencies between quantitative and qualitative results. |

5. Do the different components of the study adhere to the quality criteria of each tradition of the methods involved?

| Yes: | It is reflected in the analysis and reporting of the data. |

2. Are the measurements appropriate regarding both the outcome and intervention (or exposure)?

| Yes: | Depression was measured using the PHQ which is a reliable and valid measure of depression symptoms. |

3. Are there complete outcome data?

| Yes: | 68.57% of the data could be analysed. |

4. Are the confounders accounted for in the design and analysis?

| Yes: | A detailed description is provided on how the regression analysis accounted for variable. |

5. During the study period, is the intervention administered (or exposure occurred) as intended?

| No: | Because many patients reported difficulty with the IVR version of the HADS, this assessment tool was eliminated a few weeks into the trial. |

[1] Demographic data only presented for participants who completed the study.
[2] Demographic data only presented for participants who completed the study.

Figures

![Screening Process Diagram](image)

Figure 1
Screening Process
Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

MM-SR - 20190812 - PRISMA 2009 checklist.doc