Phosphoantigen-Expanded Human γδ T Cells Display Potent Cytotoxicity against Monocyte-Derived Macrophages Infected with Human and Avian Influenza Viruses

Gang Qin,1 Huawei Mao,1 Jian Zheng,1 Sin Fun Sia,1,2 Yiping Liu,1 Ping-Lung Chan,1 Kwok-Tai Lam,1 J. S. Malik Peiris,2 Yu-Lung Lau,1 and Wenwei Tu1,3

Departments of 1Paediatrics and Adolescent Medicine and 2Microbiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, and 3Joint Research Centre of the West China Second University Hospital, Sichuan University, Chengdu, and the Department of Paediatrics and Adolescent Medicine, University of Hong Kong, China

Background. Influenza virus is a cause of substantial annual morbidity and mortality worldwide. The potential emergence of a new pandemic strain (eg, avian influenza virus) is a major concern. Currently available vaccines and anti-influenza drugs have limited effectiveness for influenza virus infections, especially for new pandemic strains. Therefore, there is an acute need to develop alternative strategies for influenza therapy. γδ T cells have potent antiviral activities against different viruses, but no data are available concerning their antiviral activity against influenza viruses.

Methods. In this study, we used virus-infected primary human monocyte-derived macrophages (MDMs) to examine the antiviral activity of phosphoantigen isopentenyl pyrophosphate (IPP)–expanded human Vγ9Vδ2 T cells against influenza viruses.

Results. Vγ9Vδ2 T cells were selectively activated and expanded by IPP from peripheral blood mononuclear cells. IPP-expanded Vγ9Vδ2 T cells efficiently killed MDMs infected with human (H1N1) or avian (H9N2 or H5N1) influenza virus and significantly inhibited viral replication. The cytotoxicity of Vγ9Vδ2 T cells against influenza virus–infected MDMs was dependent on NKG2D activation and was mediated by Fas–Fas ligand and perforin–granzyme B pathways.

Conclusion. Our findings suggest a potentially novel therapeutic approach to seasonal, zoonotic avian, and pandemic influenza—the use of phosphoantigens to activate γδ T cells against influenza virus infections.

Influenza A (fluA) virus is a cause of substantial annual morbidity and mortality worldwide. The potential emergence of a new pandemic strain through natural reassortment (eg, avian influenza virus) is a major concern [1–4]. Both the innate and adaptive immune systems play critical roles against fluA viruses, and direct manipulation of the immune system can protect individuals from fluA virus infections [5]. Because the next pandemic influenza virus subtype cannot be predicted with certainty, vaccines are unlikely to be available in sufficient supply to confront the next pandemic [4]. Therefore, alternative strategies to enhance innate immune responses—the first line of defense—have obvious benefits as an early therapeutic intervention for an influenza pandemic.

Unlike αβ T cells, γδ T cells constitute only a small
proportion (2%–10%) of T lymphocytes in the blood and peripheral organs of most adult animals and humans [6–8]. In humans, $\gamma\delta$V$\delta2$ T cells make up the majority of peripheral blood and lymphoid organ $\gamma\delta$ T cells [9]. Human $\gamma\delta$ T cells share characteristics of T cells, natural killer (NK) cells, and antigen-presenting cells [6–8]. Therefore, $\gamma\delta$ T cells are thought to represent one of the first lines of the host immune defense.

The antiviral activities of $\gamma\delta$ T cells have been demonstrated in different models [10–12]. In the mouse model, $\gamma\delta$ T cells were shown to contribute to recovery from influenza pneumonia [13, 14], but no data are available on the contribution of $\gamma\delta$ T cells at early stages of influenza virus infections. Activated mouse $\gamma\delta$ T cells showed profound cytotoxicity against hemagglutinin (H1 or H3) expressing target cells in a non–major histocompatibility complex–restricted manner [15]. However, it is still unknown whether human $\gamma\delta$ T cells have antiviral activities against human or avian fluA viruses or what their underlying mechanisms are.

$\gamma\delta$V$\delta2$ T cells are specifically activated in an HLA-unrestricted manner by small nonpeptidic phosphoantigens, which are metabolites of isoprenoid biosynthesis pathways in all organisms [16]. The most potent phosphoantigen is hydroxydimethylallyl-pyrophosphate, produced through a nonmevalonate pathway in microorganisms such as mycobacteria. Natural isopentenyl pyrophosphate (IPP), an intermediate produced through the mevalonate pathway that also leads to cholesterol synthesis in mammalian cells, was found to selectively activate and expand human $\gamma\delta$V$\delta2$ T cells in vitro or in vivo [17, 18]. $\gamma\delta$V$\delta2$ T cells expanded by synthetic phosphoantigens were demonstrated to have antiviral potential against other viruses [19, 20], but no data are available concerning their antiviral activities against human and avian fluA viruses.

One characteristic of the host immune response to fluA virus infection is the influx of both macrophages and T lymphocytes into the lungs [21]. We recently demonstrated that the macrophage is one of the major target cells for avian H5N1 virus in human lungs apart from alveolar epithelial cells [22]. Moreover, H1N1 and H5N1 viruses have been shown to replicate efficiently in both human primary lung epithelial cell cultures and macrophages in vitro [23]. Using the model of fluA virus–infected monocyte–derived macrophages (MDMs), we have found that macrophages infected with human and avian fluA viruses express differential proinflammatory cytokines and chemokines [23, 24] and exhibit differential apoptosis-inducing capability in T cells through the tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) pathway [25].

In the present study, we used the similar virus-infected MDMs model to examine the cytotoxicity of phosphoantigen-expanded $\gamma\delta$V$\delta2$ T cells against fluA viruses. Specifically, we demonstrated for the first time that IPP-expanded $\gamma\delta$V$\delta2$ T cells could efficiently kill MDMs infected with human (H1N1) and avian (H9N2 and H5N1) fluA viruses and inhibit virus replication. The cytotoxicity of IPP-expanded $\gamma\delta$V$\delta2$ T cells was dependent on NKG2D activation and mediated by perforin–granzyme B and Fas–Fas ligand (FasL) pathways. Our findings suggest that phosphoantigen could be used to activate $\gamma\delta$V$\delta2$ T cells against fluA infections, in particular for avian fluA virus infections.

METHODS

Generation of IPP-expanded $\gamma\delta$V$\delta2$ T cells. Peripheral blood mononuclear cells (PBMCs) were isolated from buffy-coat preparations of blood from healthy donors from the Hong Kong Red Cross by Ficoll-Paque (Pharmacia) gradient centrifugation, as described elsewhere [26]. The research protocol was approved by the Institutional Review Board of the University of Hong Kong/Hospital Authority Hong Kong West Cluster. PBMCs were cultured in Roswell Park Memorial Institute (RPMI) 1640 medium supplemented with 10% fetal bovine serum. IPP (Sigma) was added on days 0 and 3, to a final concentration of 6 μg/mL. Recombinant human interleukin 2 (IL-2) (Invitrogen) was added every 3 days beginning on day 3, to a final concentration of 500 IU/mL. After being cultured for 14 days, the cells were purified by negative selection with a TCRγ/δ^+ T cell isolation kit (Miltenyi Biotec), in accordance with the manufacturer’s instructions.

Culture of MDMs. Human MDMs were generated from mononuclear cells, as described elsewhere [25]. Briefly, adherent monocytes were seeded in 96-well flat-bottomed plates at 1×10^5 cells/well or in 24-well plates at 5×10^5 cells/well. They were then re-fed by RPMI 1640 supplemented with 5% autologous serum and allowed to differentiate to macrophages for 14 days. The purity of monocytes, as determined by flow cytometry with anti-CD14 monoclonal antibody, was consistently >90%.

Virus preparation, titration, and infection. Human fluA H1N1 (A/Hong Kong/54/98) and avian fluA H9N2 (A/Quail/Hong Kong/G1/97) and H5N1 (A/Hong Kong/483/97) viruses were used. All the viruses were cultured in Madin-Darby canine kidney cells (American Type Culture Collection), as described elsewhere [25]. The virus titer was determined by daily observation of cytopathic effect, and the median tissue culture infective dose was calculated according to the Reed-Muench formula. Differentiated MDMs on day 14 were infected by fluA viruses at a multiplicity of infection (MOI) of 2. After 1 h of viral adsorption, the cells were washed with phosphate-buffered saline to remove unadsorbed virus.

Cytotoxicity assay. $\gamma\delta$V$\delta2$ T cells (effector) were cocultured with H1N1-, H9N2-, or H5N1-infected MDMs (target) at different effector-to-target (E:T) ratios for 4–6 h. Afterward, nonadherent cells were harvested directly. Adherent cells were detached with 0.25% trypsin–ethylenediaminetetraacetic acid.
All of the adherent and nonadherent cells were then stained with anti-CD3 to identify Vg9Vd2 T cells and ethidium homodimer 2 (EthD-2) to identify dead cells [27]. The cytotoxicity of Vg9Vd2 T cells against virus-infected MDMs was assessed by flow cytometry as the percentage of EthD-2+ cells in the CD3+ population.

Transwell culture of Vg9Vd2 T cells and fluA virus–infected MDMs. To evaluate cell-cell contact requirement for Vg9Vd2 T cell cytotoxicity, a transwell system was used (24 wells; pore size, 0.4 μm; Millipore). MDMs (target) in the bottom well were infected with H1N1 or H9N2 virus at an MOI of 2. Vg9Vd2 T cells (effector) were added directly into the bottom wells or into transwell inserts at an E:T ratio of 10:1. In some inserts, the same amount of virus-infected MDMs was added to activate Vg9Vd2 T cells. After 6 h, the MDMs in the bottom wells were harvested and analyzed for cell death, as described above.

Blocking assay. Vg9Vd2 T cells (effector) were cocultured with H1N1 virus–infected or H9N2 virus–infected MDMs (target) at an E:T ratio of 10:1 for 6 h. The neutralization antibodies anti-NKG2D (10 μg/mL; 1D11, BD Biosciences), anti-FasL (10 μg/mL; 100419, R&D Systems), anti-TRAIL (10 μg/mL; RIK-2, R&D Systems) and their respective isotype controls were added in the coculture for blocking NKG2D-, FasL-, and TRAIL-mediated pathways, respectively [28]. For blocking perforin and granzyme B, the perforin inhibitor concanamycin A (CMA) (1 μg/mL; Sigma) and the granzyme B inactivator Bcl-2 (1 μg/mL; R&D Systems) were used, as described elsewhere [29]. Cytotoxicity was analyzed by flow cytometry, as described below, and calculated as the percentage of inhibition relative to that in controls.

Flow cytometry. Cells were stained for surface markers with the following antibodies: anti-CD3 (HIT3a), anti–T cell receptor (TCR)–γ (B3), anti–TCR-δ (B6), anti-NKG2D (1D11), anti-TRAIL (RIK-2), anti-CD107a (H4A3) (BD Biosciences), anti–TCR-γδ (5A6.E9), anti–CD14 (TUK4), and anti-FasL (Alf-2.1) (Invitrogen). For intracellular staining, cells were fixed, permeabilized, and then stained with anti-perforin (Pfp, δ9G) and anti–granzyme B (GrB, GB11) antibodies (BD Biosciences) or their respective isotype controls. All samples were acquired using a BD FACSArray cell sorter (BD Biosciences) and were analyzed by means of FlowJo software (version 8.8.3; Tree Star).

Quantification of fluA viral copies by reverse-transcription polymerase chain reaction. MDMs (1 × 10⁵) were infected with H1N1, H9N2, or H5N1 virus at an MOI of 2. One hour later, unadsorbed virus was washed away carefully and the MDMs were cultured alone or with 1 × 10⁶ Vg9Vd2 T cells for 48 h. The cells and supernatant were then harvested, and total RNA was extracted by means of TRIzol LS reagent (Invitrogen), in accordance with the manufacturer’s instructions. Complementary DNA was synthesized with oligo(dT)₁₂₋₁₈ primer and Superscript II reverse transcriptase (Invitrogen). Viral matrix gene copies were quantified on the basis of a SYBR green fluorescence signal after polymerase chain reaction (forward primer, 5′-TTTCTAAACCGAGGTCGAACG-3′; reverse primer, 5′-GGCATTTGGGACAAAGCGTCTA-3′) by means of the ABI PRISM 7700 sequence detection system (Applied Biosystems). Results were expressed as the number of target gene copies per 1 × 10⁵ MDMs.

Statistical analysis. Data were expressed as means ± standard errors of the mean. Statistical significance was determined by the Student t test or nonparametric tests using GraphPad Prism software (version 5). Differences were considered significant at P < .05.

RESULTS

Selective activation and expansion of Vg9Vd2 T cells by IPP. Consistent with previous findings [18, 19], we found that IPP and IL-2 could selectively expand Vg9Vd2 T cells. Freshly iso-

![Diagram](image)
Efficient killing of human and avian fluA virus–infected MDMs by Vγ9Vδ2 T cells. To determine whether Vγ9Vδ2 T cells could kill fluA virus–infected MDMs, we examined their cytolytic activities during the coculture of IPP-expanded Vγ9Vδ2 T cells with virus-infected autologous MDMs. Vγ9Vδ2 T cells did not show any cytolytic activity against mock-infected MDMs, but they displayed potent cytotoxicity against both human fluA virus–infected and avian fluA virus–infected MDMs in a dose-dependent manner (figure 2). For human fluA H1N1–infected MDMs (target), Vγ9Vδ2 T cells (effector) killed ∼50% of virus-infected MDMs at an E:T ratio of 20:1 after 6 h of coculture (figure 2A). Importantly, similar results were also found in avian fluA H9N2–infected and avian fluA H5N1–infected MDMs (figure 2B and 2C). There were no significant differences in the cytotoxicity of Vγ9Vδ2 T cells between these 3 fluA viruses (figure 2).
Cytotoxicity of $V_g9V\delta2$ T cells: dependence on cell-cell contact and requirement of virus-infected MDM activation. To determine whether efficient killing of virus-infected MDMs by $V_g9V\delta2$ T cells is dependent on cell-cell contact, we used a transwell culture system. As shown in figure 4A and 4B, $V_g9V\delta2$ T cells lost their cytotoxicity during H1N1 or H9N2 virus infections when $V_g9V\delta2$ T cells were physically separated from virus-infected MDMs. However, when virus-infected MDMs were put with $V_g9V\delta2$ T cells, cytotoxicity toward targets in the bottom wells was also observed, although their cytolytic activities were much lower than those in the direct cell-cell contact coculture. These data suggest that the cytotoxicity of $V_g9V\delta2$ T cells is dependent on cell-cell contact and requires activation of virus-infected MDMs; diffusible soluble factors, such as granules released from activated $V_g9V\delta2$ T cells, may also be involved.

We then sought to confirm granule release during the killing of fluA virus–infected MDMs by $V_g9V\delta2$ T cells. The expressions of CD107a (lysosome-associated membrane protein 1), a marker associated with the degranulation of NK cells and cytotoxic T lymphocytes (CTLs) [30], were significantly up-regulated in $V_g9V\delta2$ T cells after coculture with H1N1- and H9N2-infected MDMs for 4 h, compared with mock-infected MDMs (figure 4C). These results suggest that virus-infected MDMs trigger more intensive granule release from $V_g9V\delta2$ T cells.

Cytotoxicity of $V_g9V\delta2$ T cells: dependence on NKG2D activation and mediation by Fas/FasL and perforin–granzyme B pathways. Because IPP-expanded $V_g9V\delta2$ T cells also expressed high or medium levels of NKG2D, Fas, and TRAIL, we further determined whether NKG2D, Fas-FasL, and TRAIL pathways were involved in their cytotoxicity. Using neutralizing antibodies for NKG2D and FasL, we found that blockades of NKG2D and FasL significantly inhibited the cytolytic activities of $V_g9V\delta2$ T cells against H1N1-infected MDMs (64.08% ± 9.15% inhibition by NKG2D blocking; 41.34% ± 9.51% by FasL blocking). In contrast, there was no significant change in their cytolytic activity against H1N1-infected MDMs after treatment with TRAIL-blocking antibody (figure 5A). Similar results were also found during the killing of H9N2-infected MDMs by $V_g9V\delta2$ T cells (figure 5B). These results demonstrate that both the NKG2D and the Fas-FasL pathway are also involved in the killing of MDMs infected with human and avian fluA viruses by $V_g9V\delta2$ T cells.

To further confirm the involvement of cytolytic granule release in the killing of virus-infected MDMs by $V_g9V\delta2$ T cells, the perforin-specific inhibitor CMA and granzyme B inactivator Bcl-2 were used. As shown in figure 5A, the cytolytic activities of $V_g9V\delta2$ T cells against H1N1-infected MDMs were sig-
Figure 5. Dependency on NKG2D activation and mediation by Fas–Fas ligand (FasL) and perforin–granzyme B pathways for Vγ9Vδ2 T cell cytotoxicity. Vγ9Vδ2 T cells (effector) were cocultured with H1N1 virus–infected (A) or H9N2 virus–infected (B) human monocyte-derived macrophages (MDMs) (target) at an effector-to-target ratio of 10:1 for 6 h. The perforin inhibitor concanamycin A (CMA), the granzyme B inactivator Bcl-2, anti-NKG2D (αNKG2D), anti–tumor necrosis factor–related apoptosis-inducing ligand (αTRAIL), and anti-FasL (αFasL) blocking antibodies or their respective isotype controls were used as described in Methods. Cytotoxicity was analyzed by flow cytometry and calculated as the percentage of inhibition relative to that of controls. Data are means from 4 experiments; error bars represent standard errors of the mean. *P < 0.05 for the comparison with isotype control. gIgG, goat immunoglobulin G; mIgG1, mouse immunoglobulin G1; mIgG2b, mouse immunoglobulin G2b.

Discussion

γδ T cells have been reported to play an important role in the defense against pathogens and tumors, and they have broad antiviral activities against different viruses [10, 12, 31, 32]. In human in vitro systems, γδ T cells have been shown to have potent cytolytic activities against virus-infected cells, suppressing the replication of human immunodeficiency virus, hepatitis B virus, herpes simplex virus, vaccinia virus, human cytomegalovirus, and severe acute respiratory syndrome coronavirus [20, 33–35]. In the present study, we focused on the cytotoxic properties of γδ T cells in influenza virus infection, because cell-mediated cytotoxicity is the major mechanism to eliminate virus-infected cells and thus to eliminate potential sources of new virus. In particular, as a component of innate immunity, γδ T cells may act as early responders in viral control and clearance, compared with specific CTL activity. We showed that IPP-expanded Vγ9Vδ2 T cells could kill ~50% of human H1N1 virus–infected MDMs after 6 h of coculture. Most importantly, similar potent cytotoxic activities of these cells against MDMs infected with the newly emerged avian fluA H5N1 virus and its precursor H9N2 virus were also found after 4–6 h of coculture. Furthermore, we found that IPP-expanded Vγ9Vδ2 T cells significantly inhibited H1N1, H9N2, and H5N1 viral replication by eliminating virus-infected MDMs. To the best of our knowledge, ours is the first study to demonstrate that IPP-expanded γδ T cells have rapid and potent antiviral activity against both human and avian fluA viruses.

Consistent with findings of other in vitro studies [17, 18], we found that the phosphoantigen IPP could selectively activate and expand human Vγ9Vδ2 T cells from PBMCs in the presence of IL-2. During 2 weeks of stimulation by IPP and IL-2, Vγ9Vδ2 T cells were expanded by ~36-fold. In fact, phosphoantigens have demonstrated the potential to facilitate large-scale in vitro expansion of functional γδ T cells for use in adoptive immunotherapy for tumors [36] and infectious diseases in different models [19, 20]. Although the lack of murine counterparts of Vγ9Vδ2 T cells has dramatically hampered efforts to understand the in vivo roles of phosphoantigens in Vγ9Vδ2 T cells, the selective activation and expansion of these cells by phosphoantigens were also confirmed in some in vivo models, such as cynomolgus monkeys and severe combined immunodeficient mice engrafted with human peripheral blood leukocytes (human PBL-SCID mice) [17, 37]. Therefore, phosphoantigens such as IPP could be an alternative for treating human and avian fluA infections via targeting Vγ9Vδ2 T cells. Indeed, synthetic phosphoantigens named therapeutic amino-
bisdiphosphonates (pamidronate and zoledronate) have been commonly used clinically to treat osteoporosis through Vγ9Vδ2 T cell–mediated lysis of osteoclasts [38, 39].

One concern regarding γδ T cell–based immunotherapy as induced by phosphoantigens is whether these cells can traffic to infected sites, such as the lungs, during the fluA virus infection. Because γδ T cells express chemokine (C-C motif) receptor 5 and are capable of diapedesis [40], these cells should be able to migrate to inflammatory sites. A more recent study in a macaque model of Mycobacterium tuberculosis infection demonstrated that phosphoantigen–specific γδ T cells could accumulate at all inflammatory sites in lymphoid and nonlymphoid tissues (including the lungs) [41], suggesting that the strategy of targeting γδ T cells by phosphoantigens may be feasible for the treatment of human and avian fluA virus infections. Use of nonhuman primate models or human PBL-SCID mice to further evaluate γδ T cell–based immunotherapy for influenza virus infections in vivo may accelerate its future clinical application.

Although NKG2D was originally described as an activating receptor for NK cells, it has also been recognized as a potent costimulatory receptor of the cytotoxic functions of human Vγ9Vδ2 T cells [42, 43]. It has recently been demonstrated that NKG2D can directly activate Vγ9Vδ2 T cells and trigger their release of cytolytic granules through recognition of the NKG2D ligand [44]. In humans, it has been identified that stress-inducible major histocompatibility complex class I–related proteins A and B and members of the UL16-binding protein family (ULBP1–4 and RAET1G) are the ligands for NKG2D [45]. In different tumor models, NKG2D–mediated cytotoxicity was reported to be involved in the lysis of tumor cells by γδ T cells [18, 46]. In the present study, we showed that most IPP-expanded Vγ9Vδ2 T cells expressed NKG2D and that the cytotoxicity of Vγ9Vδ2 T cells against H1N1- and H9N2–infected MDMs was significantly blocked by NKG2D neutralizing antibody, suggesting that the killing of influenza virus–infected cells by Vγ9Vδ2 T cells requires NKG2D activation and recognition. That only influenza virus–infected MDMs expressed up-regulated major histocompatibility complex class I–related protein B, an NKG2D ligand [47], could also explain why IPP-expanded Vγ9Vδ2 T cells killed only H1N1-, H9N2–, and H5N1–infected MDMs but not mock-infected MDMs in the present study.

The Fas-FasL–mediated pathway was also shown to be involved in the killing of Listeria monocytogenes–infected macrophages by murine γδ T cells in vivo [48]. We found that IPP-expanded Vγ9Vδ2 T cells expressed high levels of Fas and that blockade of the Fas-FasL pathway significantly inhibited the cytotoxicity of Vγ9Vδ2 T cells against H1N1- and H9N2–infected MDMs, indicating that the Fas-FasL–mediated pathway is also involved in the killing of influenza virus–infected cells by Vγ9Vδ2 T cells.

We recently demonstrated that TRAIL was significantly up-regulated by both H9N2 and H5N1 avian fluA viruses in human MDMs, compared with H1N1, and that avian fluA virus–infected MDMs could induce T cell apoptosis through the TRAIL pathway [25]. The present study, however, did not show involvement of the TRAIL pathway during the killing of H1N1- or H9N2–infected MDMs by Vγ9Vδ2 T cells; blockade of the TRAIL pathway did not reduce the cytotoxicity of Vγ9Vδ2 T cells against either H1N1- or H9N2–infected MDMs.

Using the transwell system, we demonstrated that the killing of fluA virus–infected MDMs by Vγ9Vδ2 T cells was dependent on cell–cell contact and required the activation of virus–infected cells. In addition, CD107a expression was increased only in Vγ9Vδ2 T cells cocultured with fluA virus–infected MDMs and not in those cocultured with mock-infected MDMs, supporting the hypothesis that granule release from Vγ9Vδ2 T cells requires virus–infected cell activation. Using the perforin inhibitor CMA and the granzyme B inactivator Bcl-2, we confirmed that perforin and granzyme B facilitated the cytolytic responses of Vγ9Vδ2 T cells to fluA virus–infected MDMs, which is consistent with the findings of other studies in tumor and other virus–infected cells [18, 20, 33–35]. Therefore, human Vγ9Vδ2 T cells closely resemble NK and CD8+ T cells in their cytotoxic function, using a predominantly granule-exocytosis mechanism to kill virus–infected cells.

In summary, we have demonstrated for the first time that Vγ9Vδ2 T cells can recognize and efficiently kill MDMs infected with human and avian fluA viruses and thus contribute to virus clearance. The cytotoxicity of Vγ9Vδ2 T cells against fluA virus–infected MDMs is dependent on NKG2D activation and is mediated by the Fas-FasL and perforin–granzyme B pathways. Our study suggests a novel approach of using phosphoantigens to activate Vγ9Vδ2 T cells against fluA virus infections—newly emerged avian fluA virus infections in particular.

References

1. Guan Y, Poon LL, Cheung CY, et al. H5N1 influenza: a protean pandemic threat. Proc Natl Acad Sci U S A 2004; 101:8156–61.
2. Shortridge KF, Peiris JS, Guan Y. The next influenza pandemic: lessons from Hong Kong. J Appl Microbiol 2003;94(Suppl):705–795.
3. Lewis DB. Avian flu to human influenza. Annu Rev Med 2006;57:139–54.
4. Fiore AE, Shay DK, Broder K, et al. Prevention and control of influenza: recommendations of the Advisory Committee on Immunization Practices (ACIP), 2008. MMWR Recomm Rep 2008;57:1–60.
5. Holtmeier W, Kabelitz D. Gammadelta T cells link innate and adaptive immune responses. Chem Immunol Allergy 2005;86:151–83.
6. Brandes M, Willmann K, Moser B. Professional antigen-presentation function by human gammadelta T cells. Science 2005;309:264–8.
7. Born WK, Reardon CL, O’Brien RL. The function of gammadelta T cells in innate immunity. Curr Opin Immunol 2006;18:31–8.
8. Shen Y, Zhou D, Qiu L, et al. Adaptive immune response of Vgamma2Vdelta2+ T cells during mycobacterial infections. Science 2002; 295:2255–8.

9. Carding SR, Egan PJ. Gammadelta T cells: functional plasticity and heterogeneity. Nat Rev Immunol 2002; 2:336–45.

10. Poccia F, Agrati C, Martini F, Capobianchi MR, Wallace M, Malkovsky M. Antiviral reactivities of gammadelta T cells. Microbes Infect 2005; 7:518–28.

11. Poccia F, Agrati C, Martini F, Mejia G, Wallace M, Malkovsky M. Vgamma9Vdelta2 T cell-mediated non-cytolytic antiviral mechanisms and their potential for cell-based therapy. Immunol Lett 2005; 100:14–20.

12. Sciammas R, Bluestone JA. TCRgammadelta cells and viruses. Microbes Infect 1999; 1:203–12.

13. Carding SR, Allan W, Micciche A, Doherty PC. Activation of cytokine genes in T cells during primary and secondary murine influenza pneumonia. J Exp Med 1993; 177:473–82.

14. Benton KA, Misplon JA, Lo CY, Brutkiewicz RR, Prasad SA, Epstein SL. Heterosubtypic immunity to influenza A virus in mice lacking IgA, all Ig, NKT cells, or gamma delta T cells. J Immunol 2001; 166:7437–45.

15. Hoq MM, Suzutani T, Toyoda T, Horiike G, Yoshida I, Azuma M. Role of gammadelta TCR+ lymphocytes in the augmented resistance of mice to chlamydial infection. J Gen Virol 1997; 78(PT 7):1597–603.

16. Beetz S, Wesc D, Marischen L, Welte S, Oberg HH, Kabelitz D. Innate immune functions of human gammadelta T cells. Immunobiology 2008; 213:173–82.

17. Poon LL, Lau AS, et al. Tropism of avian influenza virus–infected macrophages. J Infect Dis 2006; 193:1244–9.

18. Alexander AA, Maniar A, Cummings JS, et al. Isopentenyl pyrophosphate-activated CD56-γδ T lymphocytes display potent antitumor activity toward human squamous cell carcinoma. Clin Cancer Res 2008; 14:2432–40.

19. Lisak RP, Pascual CH, Reiner SL, et al. Identification of CD11c+CD8α+ dendritic cells in humans. J Exp Med 2000; 192:1131–9.

20. Hu L, Li Y, Zhang X, et al. A new method for determining the ratio of regulatory CD8α+CD11c+ dendritic cells to CD8α+CD11c− dendritic cells in the blood of healthy donors and patients. J Immunol Methods 2007; 321:1–8.

21. Huang D, Shen Y, Qiu L, et al. Immune distribution and localization of virus-infected cells by human gammadelta CTL. J Immunol 1994; 153:5133–40.

22. Kabelitz D, Wesc D, Pitters E, Zoller M. Characterization of tumor reactivity of human Vgamma2Vdelta2 T cells in vitro and in SCID mice in vivo. J Immunol 2004; 173:6767–76.

23. Ishikawa Y, Inoue T, Koyama H, et al. Induction of proinflammatory effects of CCR5 and CCR2 deficiency in the pulmonary inflammatory syndrome coronavirus immune responses: the role played by Vgamma9Vdelta2 T cells. J Immunol 2005; 175:5471–80.

24. Xia M, Zhou J, Law HK, Cheung CY, Ng IH, Peiris JS, Lau YL. Differential activation of Vgamma9Vdelta2 T lymphocytes and Vgamma2Vdelta2 T cells in response to the systemic growth of Toxoplasma gondii and infection-induced pathology. J Immunol 2005; 175:8191–9.

25. Poccia F, Citroni B, Vaccari C, et al. Cytokine and contact-dependent complex modules both anti-viral and anti-tumoral responses of polyclonal phosphoantigen-reactive Vgamma9Vdelta2 T lymphocytes. J Immunol 1997; 159:6009–17.

26. Poccia F, Agrati C, Martini F, Wallace M, Malkovsky M. Vgamma9Vdelta2 T cell-mediated non-cytolytic antiviral mechanisms and their potential for cell-based therapy. Immunol Lett 2005; 100:14–20.

27. Sciammas R, Bluestone JA. TCRgammadelta cells and viruses. Microbes Infect 1999; 1:203–12.

28. Zhou J, Law HK, Cheung CY, Ng IH, Peiris JS, Lau YL. Differential activation of Vgamma9Vdelta2 T cells in response to the systemic growth of Toxoplasma gondii and infection-induced pathology. J Immunol 2005; 175:8191–9.

29. Zeine R, Pon R, Ladiwala U, Antel JP, Filion LG, Freedman MS. Mechanism of gammadelta T cell–induced human oligodendrocyte cytotoxicity: relevance to multiple sclerosis. J Neuroimmunol 1998; 87:49–61.

30. Rubio V, Stuke TB, Singh N, et al. Ex vivo identification, isolation and analysis of tumor-cytolytic T cells. Nat Med 2003; 9:1377–82.

31. Wang L, Kamath A, Das H, Li L, Bukowski JE. Antibacterial effect of human Vgamma2Vdelta2 T cells in vivo. J Clin Invest 2001; 108:1349–57.

32. Egan CE, Dalton JE, Andrew EM, et al. A requirement for the Vgamma1+ subset of peripheral gammadelta T cells in the control of the systemic growth of Toxoplasma gondii and infection-induced pathology. J Immunol 2005; 175:8191–9.

33. Poccia F, Citroni B, Vaccari C, et al. Cytokine and contact-dependent complex modules both anti-viral and anti-tumoral responses of polyclonal phosphoantigen-reactive Vgamma9Vdelta2 T lymphocytes. J Immunol 1997; 159:6009–17.

34. Bukowski JE, Morita CT, Brenner MB. Recognition and destruction of virus-infected cells by human gammadelta CTL. J Immunol 1994; 153:5133–40.

35. Halary E, Pitard V, Bludek D, et al. Shared reactivity of Vα2Vδ1+ γδ T cells against cytomegalovirus-infected cells and tumor intestinal epithelial cells. J Exp Med 2005; 200:1567–78.

36. Kabelitz D, Wesc D, Pitters E, Zoller M. Characterization of tumor reactivity of human Vgamma9Vdelta2 gammadelta T cells in vitro and in SCID mice in vivo. J Immunol 2004; 173:6767–76.

37. Kabelitz D, Wesc D, Pitters E, Zoller M. Characterization of tumor reactivity of human Vgamma9Vdelta2 gammadelta T cells in vitro and in SCID mice in vivo. J Immunol 2004; 173:6767–76.

38. Das H, Wang L, Kamath A, Bukowski JE. Vgamma2Vdelta2 T-cell receptor-mediated recognition of aminobisphosphonates. Blood 2001; 98:1616–8.

39. Kunzmann V, Bauer E, Wilhelm M. Gamma/delta T-cell stimulation by pamidronate. N Engl J Med 1999; 340:737–8.

40. Glazet A, Wesc D, Scieffmann F, Brandt E, Janssen O, Kabelitz D. Patterns of chemokine receptor expression on peripheral blood gammadelta T lymphocytes: strong expression of CCR5 is a selective feature of Vdelta2Vgamma9 T cells. J Immunol 2002; 168:4920–9.

41. Huang D, Shen Y, Qiu L, et al. Immune distribution and localization of phosphoantigen-specific Vgamma2Vdelta2 T cells in lymphoid and nonlymphoid tissues in Mycobacterium tuberculosis infection. Infect Immun 2008; 76:426–36.

42. Bauer S, Groh V, Wu J, et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 1999; 285:727–9.

43. Das H, Groh V, Kuijil C, et al. MICA engagement by human Vgamma2Vdelta2 T cells enhances their antigen-dependent effector function. Immunity 2001; 15:83–93.

44. Rincon-Orozco B, Kunzmann V, Wrobel P, Kabelitz D, Steinle A, Herrmann T. Activation of Vgamma9Vdelta2 T cells by NKG2D. J Immunol 2005; 175:2144–51.

45. Gonzalez S, Lopez-Soto A, Suarez-Alvarez B, Lopez-Vazquez A, Lopez-Larrea C. NKG2D ligands: key targets of the immune response. Trends Immunol 2008; 29:397–403.

46. Wrobel P, Shoaihi H, Schittek B, et al. Lysis of a broad range of epithelial tumour cells by human gammadelta T cells: involvement of NKG2D ligands and T-cell receptor–versus NKG2D-dependent recognition. Scand J Immunol 2007; 66:320–8.

47. Siren J, Sareneva T, Pirhonen J, et al. Cytokine and contact-dependent activation of natural killer cells by influenza A or Sendai virus-infected macrophages. J Gen Virol 2004; 85:2357–64.

48. Dalton JE, Howell G, Pearson J, Scott P, Carding SR. Fas-Fas ligand interactions are essential for the binding to and killing of activated macrophages by gammadelta T cells. J Immunol 2004; 173:3660–7.