Dental Characteristics of Different Types of Cleft and Non-cleft Individuals

Mohammad Khursheed Alam1† and Ahmed Ali Alfawzan2†

1 Orthodontic Division, Department of Preventive Dental Science, College of Dentistry, Jouf University, Sakaka, Saudi Arabia, 2 Department of Preventive Dentistry, College of Dentistry in Ar Rass, Qassim University, Ar Rass, Saudi Arabia

Objective: The objective of this study was to compare the novel artificial intelligence (A.I.)-driven lateral cephalometric (Late. Ceph.) analysis of 14 different dental characteristics (DC) among different types of cleft lip and palate (CLP) and non-cleft (NC) individuals.

Materials and Methods: A retrospective study was conducted on 123 individuals [31 = NC, 29 = BCLP (bilateral cleft lip and palate), 41 = UCLP (unilateral cleft lip and palate), 9 = UCLA (unilateral cleft lip and alveolus), and 13 = UCL (unilateral cleft lip)] with an average age of 14.77 years. Demographic details were gathered from the clinical records. A novel artificial intelligence-driven Webceph software has been used for the Late. Ceph. analysis. A total of 14 different types of angular and linear DC measurements were analyzed and compared among groups. Two-way ANOVA and multiple-comparison statistics tests were applied to see the differences between gender and among different types of CLP versus NC subjects.

Results: Of the 14 DC tested, no significant gender disparities were found (p > 0.05). In relation to different types of CLP versus NC subjects, 8 over 14 DC were statistically significant (p < 0.001 to p = 0.03). Six other DC variables show insignificant (p > 0.05) noteworthy alterations in relation to type of CLP.

Conclusion: Based on the results, type of CLP revealed significantly altered DC compared to NC. Among different types of CLP, BCLP exhibited a maximum alteration in different DC.

Keywords: non-syndromic cleft lip and palate, bilateral cleft lip and palate, unilateral cleft lip and palate, dental characteristics, overjet, overbite, incisal display

INTRODUCTION

Any deformations (anatomical or chromosomal) that start during pregnancy and their belongings identified after birth are considered intrinsic oddities (Sekhon et al., 2011). Among them, cleft lip and palate (CLP) is one of the most widely recognized and major inherent craniofacial peculiarities in humans, brought about by strange facial development during embryogenesis that presents during childbirth and portrayed by halfway or complete clefting of the upper lip, with or without clefting of the alveolar edge or the hard or soft palate (Erverdi and Motro, 2015). Cleft can happen along with...
CLP or independently like a detached cleft lip and or isolated cleft palate. The point when cleft lip and palate emerge together is named as CLP. The highlights of CLP went from the least serious to the most extreme structure with a unilateral or bilateral manner. CLP can be syndromic or non-syndromic. Clinically, when CLP shows up with other deformities (normally at least two or more), for an inconspicuous example, it is delegated syndromic CLP. In the event that it shows up as a secluded deformity or if the disorder cannot be recognized, the term non-syndromic CLP (NSCLP) is utilized (Kohli and Kohli, 2012).

The etiology of CLP is still controversial. According to previous studies, it is to be thought that both genetic and environmental factors are responsible for CLP (Alam et al., 2012; Berkowitz, 2013; Haque et al., 2015; Haque and Alam, 2015a,c). Studies of the etiology of non-syndromic clefts pivot on candidate genes associated with craniofacial development, genes influenced by environmental teratogens or deficiencies, and genes associated with syndromic clefts (Murray, 2002; Haque et al., 2015). CLP shows significant heterogeneity among different ethnic groups.

Numerous strategies for the evaluation of the craniofacial characteristics, dental relationship, and maxillary morphometry measurement of CLP individuals have been depicted already (Alam et al., 2008, 2013, 2019; Kajii et al., 2013; Asif et al., 2016; Arshad et al., 2017a,b, 2018; Haque et al., 2017a,b, 2018). The result of the craniofacial characteristics of CLP can be evaluated from multifacets of factors, for example, dental relationship (Haque et al., 2018), cephalogram (Alam et al., 2013, 2019; Wu et al., 2013; Batwa et al., 2018; Alam and Alfwazan, 2020), cone-beam computed tomography (Parveen et al., 2018), and maxillary morphometry (Haque et al., 2020). Oral clefts show an assortment of clinical inconsistencies (Batwa et al., 2018). Lee et al. (2020) and Kunz et al. (2020) uncovered artificial intelligence (A.I.) into dentistry, particularly in orthodontics ready to break down obscure Late. Ceph. at nearly a similar quality level as the ongoing highest-quality level estimated by a calibrated specialist. Lee et al. (2020) used A.I.-driven profound convolutional neural system-based assessment of Late. Ceph. for the sign of orthognathic surgery cases of differential determination and discovered 95.6% exactness.

This first-in-human study in a Saudi Arabian population, among different types of NSCLP and NC individuals, is yet to be investigated in regard to different dental characteristics (DC). Hence, in the present study an attempt is made to contribute a novel A.I.-driven analysis of different DC in multiple types of NSCLP and to compare the findings with gender- and age-matched NC individuals. Hence, this study aimed to investigate (1) how the DC are different among gender, (2) how the disparities in DC exist in multiple types of NSCLP and NC individuals, and (3) how the disparities exist in gender times multiple types of NSCLP and NC individuals. The hypothesis of this study is as follows: types of DC are different in relation to gender, type of NSCLP, and NC subjects.

MATERIALS AND METHODS

All the records (clinical and demographic details, X-rays) were collected from Saudi Board of dental residents. The research protocol was arranged by one calibrated orthodontist, and the data was stored. The research protocol was presented to the Ethical Committee of Al rass Dental Research Center, Qassim University. Full Ethical approval was obtained with the code #: DRC/009FA/20. The following inclusion and exclusion criteria are followed, non-syndromic cleft subjects with good-quality x-ray images. There was no history of craniofacial surgical treatment besides cleft lip and palate surgery. No orthodontic treatment was done. A match with healthy control without any craniofacial deformity was found.

Digital Late. Ceph. X-rays were used to investigate 14 different DC of 123 NC and cleft subjects based on convenient sampling

TABLE 1 | Dental characteristic measured in NSCLP and NC individuals.

Variables	Short form	Details
Overjet	OJ	Extent of horizontal (anterior-posterior) overlap of the maxillary central incisors over the mandibular central incisors
Overbite	OB	Extent of vertical (superior-inferior) overlap of the maxillary central incisors over the mandibular central incisors
Upper 1 to Frankfort horizontal plane	U1 to FH	Angle between long axis of upper incisor and Frankfort horizontal plane
Upper 1 to sella-nasion plane	U1 to SN	Angle between long axis of upper incisor and sella-nasion plane
Upper 1 to upper occlusal plane	U1 to UOP	Angle between long axis of upper incisor and upper occlusal plane
Incisor mandibular plane angle	IMPA	Angle between long axis of lower incisor and mandibular plane angle
Lower 1 to lower occlusal plane	L1 to LOP	Angle between long axis of lower incisor and lower occlusal plane
Inter-incisor angle	IIA	Angle between long axis of upper and lower incisor
Cant of occlusal plane	COP	Occlusal plane to FH plane
Upper 1 to nasion and point A	U1 to NA (mm)	Distance from upper incisor edge to nasion to point A plane
Upper 1 to nasion and point A	U1 to NA (degree)	Angle between long axis of upper incisor and nasion to point A plane
Lower 1 to nasion and point B	L1 to NB (mm)	Distance from lower incisor edge to nasion to point B plane
Lower 1 to nasion and point B	L1 to NB (degree)	Angle between long axis of lower incisor and nasion to point B plane
Upper incisal display	UID	Maxillary incisal display is one of the most important attributes of smile esthetics. The maximum distance from the lowest point of upper lip to the incisal edge of any of the upper incisor
following inclusion and exclusion criteria. Among them, 31 NC subjects and 92 cleft subjects [29 had BCLP (bilateral cleft lip and palate), 41 had UCLP (unilateral cleft lip and palate), 9 had UCLA (unilateral cleft lip and alveolus), and 13 had UCL (unilateral cleft lip)]. According to gender, male = 14 NC + 19 BCLP + 26 UCLP + 3 UCLA + 7 UCL and female = 17 NC + 10 BCLP + 15 UCLP + 6 UCLA + 6 UCL. Ages of the subjects were 13.29 ± 3.52 NC, 14.07 ± 4.73 BCLP, 14.32 ± 4.46 UCLP, 12.78 ± 4.09 UCLA, and 13.31 ± 4.46 UCL. In this retrospective study, clinical and radiographic details were used. Fourteen (14) different DC were measured by one examiner using automated A.I.-driven Webceph software (South Korea). The angular and linear measurements used in this study are detailed in Table 1 and Figure 1.

Statistical Analyses
To survey the estimation mistake, 20 Late. Ceph. cases were arbitrarily chosen and the means of A.I.-driven investigation were rehashed by one analyst following 2 weeks of first examination. Intra-class correlation coefficients were performed to evaluate the unwavering quality for the two arrangements of estimations. The estimations of coefficients of unwavering quality were seen as more prominent than 0.95 and 0.91 for all linear and angular variables, respectively. Data were analyzed in SPSS (SPSS Inc., Chicago, IL, United States). The Kolmogorov–Smirnov test was utilized to check the normality of the estimations. A two-way ANOVA examination was utilized for gender orientation, types of cleft and gender*types of cleft. A p-estimate < 0.05 was considered as significant statistically.

RESULTS
Tables 2–8 show the details of the analyzed results of 14 different DC among gender, types of cleft and gender*types of cleft. Figures 2A–C show the profile plot of estimated marginal means of types of cleft and gender*types of cleft.

In Table 2A, overjet DC is presented, which shows no significant gender disparities and highly significant disparities among NC and different types of clefts (BCLP
TABLE 2 | Dental characteristics – (A) Overjet and (B) Overbite: Gender, types of cleft and gender times types of cleft two-way ANOVA analysis results.

Gender	Type	Mean	SD	Cleft Type	Mean	Multiple comparison	SD	SE	p-value 95% CI	
(A) Overjet										
Male	NC	4.449	2.016	NC	4.429	NC vs BCLP	11.573	1.144	0.000	8.299
	BCLP	−5.801	5.104	BCLP	−7.144	vs UCLP	8.064	0.992	0.000	5.224
	UCLP	−4.098	5.299	UCLP	−3.615	vs UCL	4.359	1.378	0.020	0.413
	UCL	0.021	5.147	UCL	0.071	vs UCLA	4.548	1.650	0.068	−0.176
	UCLA	−0.523	4.547	UCLA	−0.118	BCLP vs UCLP	−3.509	1.080	0.015	−6.602
Total		−2.153	5.960			vs UCL	−7.215	1.443	0.000	−11.346
Female	NC	4.410	2.602							
	BCLP	−8.486	5.485							
	UCLP	−3.173	3.342							
	UCL	0.120	1.266							
UCLA	0.287	2.725								
Total		−1.015	5.506							

(B) Overbite

Gender	Type	Mean	SD	Cleft Type	Mean	Multiple comparison	SD	SE	p-value 95% CI	
Male	NC	1.237	2.441	NC	1.571	NC vs BCLP	0.764	1.000	−2.271	2.107
	BCLP	1.638	3.978	BCLP	1.653	vs UCLP	0.663	1.000	−1.921	1.876
	UCLP	1.643	3.147	UCLP	1.593	vs UCL	0.921	1.000	−1.170	4.104
	UCL	1.159	1.650	UCL	0.104	vs UCLA	1.103	1.000	−0.022	3.292
	UCLA	1.470	1.972	UCLA	1.437	BCLP vs UCLP	0.722	1.000	−2.008	2.127
Total		1.495	3.045			vs UCL	0.964	1.000	−1.212	4.310
Female	NC	1.905	1.240							
	BCLP	1.669	3.872							
	UCLP	1.544	2.381							
	UCL	−0.950	0.856							
UCLA	1.103	1.270								
Total		1.391	2.309							

p-value |

		Lower bound	Upper bound
Gender	0.846	0.000	
Cleft Type	0.000	0.512	
Gender * Cleft Type	0.566	0.026	

SD, standard deviation; MD, mean difference; SE, standard error; CI, confidence interval; and PES, partial eta square.

p < 0.001, UCLP p < 0.001 and UCL, p = 0.020). UCLP p = 0.015, UCL p < 0.001, and UCLA, p = 0.001, showed a significant difference in comparison with BCLP. In relation to overbite DC, no significant disparities were observed (Table 2B).

Tables 3A,B shows U1 to FH and U1 to SN DC with no significant gender disparities and highly significant disparities among NC and different types of clefts (BCLP p < 0.001 and UCLP p < 0.001) in comparison with NC. UCLP p = 0.015, UCL p < 0.001, and UCLA, p = 0.002, showed significant difference in comparison with BCLP in relation to U1 to FH DC. Moreover, UCLP p = 0.009, UCL p < 0.001, and UCLA, p = 0.001, showed a significant difference in comparison with BCLP in relation to U1 to SN DC.
Table 3 | Dental characteristics – (A) U1 to FH and (B) U1 to SN: Gender, types of cleft and gender times types of cleft two-way ANOVA analysis results.

Gender	Type	Mean	SD	Cleft type	Mean	Multiple comparison	SE	p-value	95% CI	
A) U1 to FH										
Male	NC	116.074	8.465	NC	115.416	NC vs BCLP	2.988	0.000	17.360	34.473
BCLP	86.171	11.990	89.500	BCLP	98.710	vs UCLP	3.601	0.381	17.867	
UCLP	99.056	14.532	103.914	UCLP	107.860	vs UCLA	4.311	0.470	21.001	
UCL	107.443	5.413	106.758	BCLP	2.823	vs UC vs UCL	3.770	0.000	29.155	7.564
Female	NC	114.759	4.750	BCLP	92.829	vs UCLP	3.465	0.094	19.070	7.711
BCLP	98.365	9.516	111.805	UCLP	4.198	vs UCLA	4.198	0.577	20.067	3.971
UCL	106.073	10.698	104.627	UCL	4.886	vs UC vs UCL	3.770	0.000	29.155	7.564
Total	NC	115.353	6.597	BCLP	88.008	vs UCLP	3.465	0.094	19.070	7.711
Female	UCLP	98.719	12.195	UC vs UCLP	4.198	vs UCLA	4.198	0.577	20.067	3.971
UCL	107.556	11.956	106.987	UCL	4.886	vs UC vs UCL	3.770	0.000	29.155	7.564
Total	UC	101.925	14.620	BCLP	88.008	vs UCLP	3.465	0.094	19.070	7.711
B) U1 to SN										
Male	NC	106.671	8.479	NC	105.731	NC vs BCLP	3.172	0.000	17.509	35.673
BCLP	76.177	13.008	79.140	BCLP	2.751	vs UCLP	2.751	0.000	8.487	24.242
UCLP	90.420	15.290	99.285	UCLP	4.576	vs UCLP	4.576	0.987	17.389	
UCL	95.234	13.828	98.113	BCLP	2.996	vs UC vs UCL	3.770	0.000	31.604	9.887
Female	NC	104.792	5.593	BCLP	82.104	vs UCLP	4.727	0.001	32.506	5.439
BCLP	88.314	9.676	103.337	UCLP	4.455	vs UCLP	4.455	0.521	21.502	4.011
UCL	96.830	10.398	94.724	UCL	5.186	vs UCLP	5.186	1.000	13.674	16.020
Total	NC	105.640	6.982	BCLP	77.812	vs UCLP	4.727	0.001	32.506	5.439
Female	BCLP	88.314	9.676	UCL vs UCLP	4.455	vs UCLA	4.455	0.521	21.502	4.011
UCL	98.974	12.447	98.540	UCL	5.186	vs UCLP	5.186	1.000	13.674	16.020
Total	UC	92.439	15.256	BCLP	77.812	vs UCLP	4.727	0.001	32.506	5.439

SD, standard deviation; MD, mean difference; SE, standard error; CI, confidence interval; and PES, partial eta square.

Tables 4A, B shows U1 to UOP and IMPA DC with significant disparities among NC and different types of clefts (BCLP < 0.001 and p = 0.001 and UCLP < 0.001 and p = 0.009, respectively).

In relation to L1 to LOP DC, no significant disparities were observed (Table 5A). Table 5B shows inter-incisor angle DC with highly significant disparities among NC and different types of clefts (BCLP < 0.001, UCLP < 0.001, and UCLA < 0.001). UCL < 0.001 and UCLA < 0.001 showed a significant difference in comparison with BCLP. UCL p = 0.03 showed a significant difference in comparison with UCLA.

In relation to Cant of occlusal plane, upper incisal display DC, and U1 to NA (mm), no significant disparities were observed.
TABLE 4 | Dental characteristics – (A) U1 to UOP and (B) IMPA: Gender, types of cleft and gender times types of cleft two-way ANOVA analysis results.

Gender	Type	Mean	SD	Cleft type	Mean	Multiple comparison	SE	p-value	95% CI	Lower bound	Upper bound
(A) U1 to UOP											
Male	NC	54.119	6.073	NC	54.075	NC vs BCLP	2.658	0.000	-24.426	-9.207	
	BCLP	73.341	12.229	BCLP	70.891	vs UCLP	2.305	0.000	-21.969	-8.768	
	UCLP	70.295	12.922	UCLP	69.443	vs UCL	3.202	0.033	-18.783	-0.444	
	UCL	65.503	7.232	UCL	63.688	vs UCLA	3.834	0.740	-17.890	4.063	
	UCLA	60.197	3.379	UCLA	60.988	BCLP vs UCLP	2.510	1.000	-5.740	8.636	
	Total	66.576	12.636			vs UCL	3.353	0.338	-2.398	16.804	
Female	NC	54.030	4.391	NC	54.030	vs UCLA	3.961	0.138	-1.437	21.243	
	BCLP	68.441	11.177	BCLP	65.387	vs UCLP	3.081	0.644	-3.067	14.578	
	UCLP	68.592	10.414	UCLP	67.345	vs UCLA	3.733	0.254	-2.234	19.144	
	UCL	61.873	3.587	UCL	60.592	vs UCLA	4.345	1.000	-9.741	15.140	
	UCLA	61.780	5.103	UCLA	61.240						
	Total	62.860	10.280								
(B) IMPA											
Male	NC	71.990	11.959	NC	71.794	Gender	0.412	0.006	0.000	0.333	
	BCLP	89.673	4.159	BCLP	91.200	Cleft Type	0.000	0.338			
	UCL	63.828	5.921	UCL	63.599	Gender * Cleft Type	0.878	0.010			
	UCLA	60.724	3.778	UCLA	60.407						
	Total	64.945	11.761								
Female	NC	91.971	8.365	NC	92.173	Gender	0.412	0.006	0.000	0.333	
	BCLP	81.274	8.759	BCLP	83.920	Cleft Type	0.000	0.338			
	UCL	84.625	8.473	UCLP	86.109	Gender * Cleft Type	0.878	0.010			
	UCLA	89.982	4.400	UCLA	90.519						
	Total	85.855	8.741								
Female	NC	92.374	6.227	NC	92.173	Gender	0.412	0.006	0.000	0.333	
	BCLP	86.565	2.899	BCLP	88.112	Cleft Type	0.000	0.338			
	UCL	87.593	7.980	UCLP	89.241	Gender * Cleft Type	0.878	0.010			
	UCLA	89.057	5.356	UCLA	90.519						
	Total	89.230	6.841								

SD, standard deviation; MD, mean difference; SE, standard error; CI, confidence interval; and PES, partial eta square.

(Tables 6A, B, 7A). Table 7B shows U1 to NA (degree) DC with significant disparities among NC and different types of clefts (BCLP p = 0.001 and UCLP p = 0.009).

Table 8A shows L1 to NB (mm) DC, no significant disparities were observed. L1 to NB (degree) DC show significant disparities among NC and different types of clefts (BCLP p = 0.017 and UCLP p = 0.009) **(Table 8B).**

DISCUSSION

Fourteen (14) distinctive DC of five unique groups of individuals are researched in the present study. As far as we could possibly know, A.I.-driven computerized Late. Ceph. examination in such gatherings and populace is yet to be researched. Irrelevant mistake in the estimations; exact, automated, basic, brisk, savvy,
future orthodontic computerized apparatuses; and different types of cleft examples are the novelty of the current examination (Lee et al., 2020; Kunz et al., 2020). The current investigation results may help the clinician in approaching where the impacts of essential CLP medical procedures are on various DC, supporting the restoration procedure in subjects with various sorts of NSCLP in building up a positive administration convention. Batwa et al. (2018) recommended broadly that analysts in the CLP field should embrace exhaustive activities to survey a wide range of CLP. Longitudinal and extensive examination studies will empower social insurance suppliers to actualize substantial treatment conventions that are suitable for the extraordinary nature and intricacy of the CLP populace. The unilateral complete type of CLP subjects with multiple missing
Gender	Type	Mean	SD	Cleft type	Mean	Multiple comparison	SE	p-value	95% CI	Lower bound	Upper bound
(A) Cant of occlusal plane											
Male	NC	8.480	3.892	NC	124.704	NC vs BCLP	1.433	1.000	−3.378	4.829	
	BCLP	12.146	4.315	BCLP	157.186	vs UCLP	1.243	1.000	−2.576	4.543	
	UCLP	8.377	5.113	UCLP	147.149	vs UCL	1.727	1.000	−5.118	4.771	
	UCL	9.430	5.911	UCL	132.468	vs UCLA	2.067	1.000	−6.661	5.178	
	UCLA	7.943	3.873	UCLA	132.786	BCLP vs UCLP	1.354	1.000	−3.618	4.134	
	Total	9.614	4.818							−6.076	4.278
Female	NC	9.334	3.494	NC	124.704	BCLP vs UCLP	1.243	1.000	−5.914	3.601	
	BCLP	4.216	7.823	BCLP	157.186	vs UCL	2.013	1.000	−7.489	4.039	
	UCLP	7.470	6.710	UCLP	147.149	vs UCL	2.343	1.000	−7.277	6.140	
	UCL	8.730	5.553	UCL	132.468	vs UCLA	2.343	1.000	−6.076	4.278	
	UCLA	11.353	5.241	UCLA	132.786	BCLP vs UCLP	1.354	1.000	−3.618	4.134	
	Total	7.930	5.948								
Total	NC	9.334	3.494	NC	124.704	vs UCLA	2.343	1.000	−7.582	4.648	
	BCLP	4.216	7.823	BCLP	157.186	vs UCL	2.343	1.000	−7.582	4.648	
	UCLP	7.470	6.710	UCLP	147.149	vs UCL	2.343	1.000	−7.582	4.648	
	UCL	8.730	5.553	UCL	132.468	vs UCLA	2.343	1.000	−7.582	4.648	
	UCLA	11.353	5.241	UCLA	132.786	BCLP vs UCLP	1.354	1.000	−7.582	4.648	
	Total	7.930	5.948							−6.542	3.509
(B) Upper incisal display											
Male	NC	3.750	3.093	NC	3.982	NC vs BCLP	0.792	0.607	−0.767	3.770	
	BCLP	2.640	3.650	BCLP	2.480	vs UCLP	0.667	0.215	−0.365	3.570	
	UCLP	2.579	2.497	UCLP	2.379	vs UCL	0.955	0.320	−0.536	4.932	
	UCL	2.560	2.290	UCL	1.784	vs UCLA	1.143	0.803	−1.255	5.290	
	UCLA	1.525	2.960	UCLA	1.964	BCLP vs UCLP	0.749	1.000	−2.042	2.244	
	Total	2.741	3.007							−1.666	3.559
Female	NC	4.214	2.099	NC	3.982	vs UCLA	1.181	1.000	−2.865	3.897	
	BCLP	2.321	3.649	BCLP	2.480	vs UCL	0.919	1.000	−2.035	3.226	
	UCLP	2.180	2.806	UCLP	1.113	vs UCL	1.113	1.000	−2.772	3.602	
	UCL	1.008	1.927	UCL	1.296	vs UCLA	1.296	1.000	−3.889	3.529	
	UCLA	2.403	2.680							−3.889	3.529
	Total	2.723	2.778							−3.889	3.529

SD, standard deviation; MD, mean difference; SE, standard error; CI, confidence interval; and PES, partial eta square.

Table 6: Dental characteristics—(A) Cant of occlusal plane and (B) Upper incisal display: Gender, types of cleft and gender times types of cleft two-way ANOVA analysis results.

Teeth had the significantly smallest overjet (−3.89 ± 2.75 mm) among the three groups (without missing teeth, with only one missing tooth, and with two or more missing teeth). In the current study, overjet in NC = 4.429, BCLP = −7.144, UCLP = −3.635, UCL = 0.071, and UCLA = −0.118 exhibits significant disparities. Maximum alterations are found in the BCLP group. UCLP results almost coincide with the results of Batwa et al. (2018) in which the smallest overjet was found in the unilateral complete type of CLP subjects with multiple missing teeth. These disparities may be due to multiple-factor relations. When a patient is born with CLP, a number of surgeries take
TABLE 7 | Dental characteristics – (A) U1 to NA (mm) and (B) U1 to NA (degree): Gender, types of cleft and gender times types of cleft two-way ANOVA analysis results.

Gender	Type	Mean	SD	Cleft type	Mean	Multiple comparison	SE	p-value	95% CI	
									Lower bound	Upper bound
(A) U1 to NA (mm)										
Male	NC	4.823	2.557	NC	4.645	vs	0.699	1.000	−1.007	2.996
	BCLP	3.907	2.706	BCLP	3.650	vs	0.606	0.059	−0.033	3.439
	UCLP	3.792	3.049	UCLP	2.942	vs	0.842	1.000	−1.223	3.600
	UCL	3.646	2.417	UCL	3.456	vs	1.008	1.000	−1.410	4.365
	UCLA	3.032	2.393	UCLA	3.167	BCLP	0.660	1.000	−1.183	2.599
	Total	3.905	2.706			vs	0.882	1.000	−2.332	2.719
Female	NC	4.466	1.927	NC	4.645	vs	1.042	1.000	−2.501	3.465
	BCLP	3.393	3.429	BCLP	3.650	vs	0.811	1.000	−2.635	1.806
	UCLP	2.902	1.715	UCLP	2.942	vs	0.982	1.000	−3.037	2.586
	UCL	3.267	2.428	UCL	3.456	vs	1.143	1.000	−2.984	3.561
	UCLA	3.303	3.260	UCLA						
	Total	3.965	2.706							
						Gender	0.340	0.008		
						Cleft Type	0.091	0.068		
						Gender * Cleft Type	0.729	0.018		
(B) U1 to NA (degree)										
Male	NC	27.376	8.148	NC	25.938	vs	1.584	0.000	3.903	12.974
	BCLP	16.857	4.241	BCLP	17.499	vs	1.374	0.000	3.807	11.675
	UCLP	19.793	5.928	UCLP	18.197	vs	1.909	1.000	−2.642	8.289
	UCL	22.557	5.838	UCL	23.114	vs	2.285	0.659	−2.300	10.785
	UCLA	20.850	5.838	UCLA	21.695	BCLP	1.496	1.000	−4.982	3.586
	Total	20.810	6.925			vs	1.999	0.058	−11.338	1.027
Female	NC	24.500	3.660	NC	25.938	vs	2.361	0.782	−10.955	2.563
	BCLP	18.141	5.246	BCLP	17.499	vs	1.837	0.085	−10.176	3.41
	UCLP	16.601	5.426	UCLP	18.197	vs	2.225	1.000	−9.869	2.873
	UCL	23.672	9.276	UCL	23.114	vs	2.590	1.000	−5.996	8.834
	UCLA	22.540	5.545	UCLA						
	Total	20.431	6.371							
						Gender	0.755	0.001		
						Cleft Type	0.000	0.274		
						Gender * Cleft Type	0.417	0.034		

SD, standard deviation; MD, mean difference; SE, standard error; CI, confidence interval; and PES, partial eta square.

place in the 1st 2 years of life. One study used the presurgical orthopedic feeding plate after birth (Haque and Alam, 2015b); at 3–6 months of age, the patients underwent cheiloplasty (Haque and Alam, 2014), and at 9–18 months of age they underwent palatoplasty (Haque and Alam, 2015c). There was a formation of excessive scar tissues, and the undermining of soft tissue was observed after these surgeries, which may have resulted in maxillary contracture which finally leads to class III malocclusion. Maxillary growth retardation is often observed in patients with repaired unilateral cleft lip and palate (UCLP) (Alam et al., 2008; Kajii et al., 2013). Altered craniofacial morphology was also observed in relation to postnatal treatment factors and congenital factors in the Japanese population (Alam et al., 2013, 2019).
TABLE 8 | Dental characteristics – (A) L1 to NB (mm) and (B) L1 to NB (degree): Gender, types of cleft and gender times types of cleft two-way ANOVA analysis results.

Gender	Type	Mean	SD	Cleft type	Mean	Multiple comparison	SE	p-value	95% CI	Lower bound	Upper bound
(A) L1 to NB (mm)											
Male	NC	5.654	3.036	NC	25.938	NC vs BCLP	0.721	0.447	−0.601	3.530	
	BCLP	3.811	2.436	BCLP	17.499	vs UCLP	0.626	0.187	−0.299	3.285	
	UCLP	4.660	2.710	UCLP	18.197	vs UCL	0.869	1.000	−2.716	2.262	
	UCL	5.397	1.772	UCL	23.114	vs UCLP	1.041	1.000	−3.474	2.486	
	UCLA	6.062	1.504	UCLA	21.695	BCLP vs UCLP	0.681	1.000	−1.922	1.980	
	Total	4.800	2.597			vs UCL	0.910	0.658	−4.297	0.915	
Female	NC	5.930	3.053	NC	25.582	vs UCLA	1.075	0.712	−5.036	1.120	
	BCLP	4.844	2.575	BCLP	19.168	vs UCL	0.806	0.421	−4.115	0.675	
	UCLP	3.938	2.126	UCLP	18.712	vs UCL	1.013	0.524	−4.889	0.914	
	UCL	6.640	2.782	UCL	21.179	vs UCLA	1.179	1.000	−3.644	3.110	
	UCLA	6.510	4.526			UCL vs UCLA	1.179	1.000	−3.644	3.110	
	Total	5.142	2.817								
Total	NC	5.805	2.998								

(B) L1 to NB (degree)											
Male	NC	24.875	6.460	NC	25.582	NC vs BCLP	1.993	0.017	0.708	12.120	
	BCLP	17.726	7.604	BCLP	19.168	vs UCLP	1.729	0.009	0.920	10.819	
	UCLP	19.421	8.771	UCLP	19.712	vs UCL	2.401	1.000	−6.173	7.578	
	UCL	22.524	4.887	UCL	24.880	vs UCLP	2.875	1.000	−7.664	8.798	
	UCLA	24.787	4.940	UCLA	25.015	BCLP vs UCLP	1.882	1.000	−5.934	4.846	
	Total	20.793	7.755			vs UCL	2.514	0.250	−12.911	1.488	
Female	NC	26.289	6.619	NC	25.582	vs UCLA	2.970	0.514	−14.350	2.656	
	BCLP	20.610	5.193	BCLP	19.168	vs UCL	2.311	0.273	−11.783	2.172	
	UCLP	20.004	7.808	UCLP	19.712	vs UCL	2.799	0.607	−13.318	2.712	
	UCL	27.235	6.745	UCL	23.114	vs UCLA	3.258	1.000	−9.464	9.193	
	UCLA	25.243	8.616			UCL vs UCLA	3.258	1.000	−9.464	9.193	
	Total	23.167	7.466								

| Total | NC | 25.650| 6.478 | | | | | | | | |

p-value	PES	
Gender	0.431	0.005
Cleft Type	0.030	0.090
Gender * Cleft Type	0.666	0.021

SD, standard deviation; MD, mean difference; SE, standard error; CI, confidence interval; and PES, partial eta square.

Wu et al. (2013) proposed that further investigations are expected to investigate the skeletal and dental attributes of individuals with CLP in other ethnic gatherings, especially in the Middle Eastern region. They assessed only individuals with unilateral complete CLP among various kinds of CLP. They found various cephalometric characteristics present in Taiwanese people with unilateral complete CLP and found a general decrease in their skeletal vertical measurements and a decrease in the overjet. The current study also revealed a significant alteration in overjet. However, overbite, which determines the vertical dental relationship, shows no significant alterations. Five other DC—L1 to LOP, Cant of occlusal plane, U1 to NA (mm), L1 to NB (mm), and upper incisal display DC—also showed no significant disparities among genders, types of CLP, and NC individuals.
Alam et al. (2019), Alam and Alfawzan (2020) investigated the craniofacial morphology of Japanese UCLP patients and investigated the association with congenital (2019) and postnatal treatment factors (2013). Among congenital factors, gender and DC (U1-SN) showed insignificant disparities, which coincide with the results of the present study. Among postnatal treatment factors, significantly larger U1-SN measurements are found in subjects that underwent preoperative orthopedic treatment with a Hotz plate in comparison with the subjects that underwent no preoperative orthopedic treatment (HOTZ plate) or an active plate. These investigations are researched in UCLP subjects only. The current study compared four types of NSCLP and NC individuals. These disparities may be due to the fact that the management protocol of a patient with cleft is complex and requires a lengthy procedure. The involvement of multispecialties working in tandem is suggested to bring out physical, psychological, and social rehabilitation. Likewise, maxillary arch constriction (maxillary growth retardation) is a common dental problem of CLP patients, resulting in a concave facial profile (Alam et al., 2019), class III malocclusion (Alam et al., 2013), midfacial growth deficiency (Alam et al., 2013, 2019), and congenitally missing and malformed teeth. Orthodontic anomalies like crowding, rotation, and malposition of teeth are also commonly observed (Haque and Alam, 2015a; Haque et al., 2018; Adetayo et al., 2019). In the current study, maximum alterations in 8 different DC were found to be mostly altered in relation to upper incisors [U1-FH, U1-SN, U1-UOP, IIA, and U1-NA (degree)]. Our results clearly indicate that NSCLP subjects exhibit a class III malocclusion pattern based on investigated multiple DC. Also, the results are more prominent in BCLP individuals.

Batwa et al. (2018) found U1-SN values of 85.04 ± 12.13 and 91.63 ± 10.62 (mean ± SD) in the control and case groups (UCCLP), respectively. Utilizing the mean ± SD values
of the two groups, the calculated Cohen’s d and effect-size r were 0.578 and 0.277, respectively. Sample power analysis was done using G*Power software, and the effect size was calculated (Batwa et al., 2018). Based on this, the total sample in the five groups is required to be 103. In each group, 20 or 21 individuals are required with α err prob and power (1-β err prob) values of 0.05 and 80, respectively. Strict inclusion criteria were followed to recruit the data. A good number of BCLP and UCLP samples and age- and sex-matched NC individuals are recruited; however, the sample size of UCLA and UCL is lacking. To draw any strong conclusion in different CLP problems, a genetic investigation may play a beneficial role. Furthermore, genetic/congenital/postnatal treatment factors may influence or alter the shape/growth of the DC. Future studies involving effects of genetic/congenital/postnatal treatment factors along with a greater number of samples may be beneficial in drawing a strong conclusion. The current study cannot state whether comparative discoveries may have been obtained from different individuals with numerous sorts of NSCLP. It may be helpful to do this type of two-way ANOVA examination in bunches from different hospitals/clinics. Future investigations with bigger example sizes are justified.

CONCLUSION

- The current study investigated 14 different DC. Among 14 different DC, 8 variables showed a significant alteration among different types of NSCLP and NC individuals.
- No significant gender disparities were found in relation to types of different NSCLP and NC individuals.
- Among CLP, BCLP showed maximum alterations in different DC in relation to NC individuals as well as within other types of CLP individuals.

DATA AVAILABILITY STATEMENT

All datasets presented in this study are included in the article/Supplementary Material.

ETHICS STATEMENT

The studies involving human participants were reviewed and approved by the Ethical Committee of Al Rass Dental Research Center, Qassim University, Code #: DRC/009FA/20. Written informed consent to participate in this study was provided by the participants’ legal guardian/next of kin.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fcell.2020.00789/full#supplementary-material
REFERENCES

Adetayo, A. M., Adetayo, M. O., Adeyemo, W. L., James, O. O., and Adeyemi, M. O. (2019). Unilateral cleft lip: evaluation and comparison of treatment outcome with two surgical techniques based on qualitative (subject/guardian and professional) assessment. J. Korean Assoc. Oral. Maxillofac. Surg. 45, 141–151.

Alam, M. K., and Alfawzian, A. A. (2020). Evaluation of sella turcica bridging and morphology in different types of cleft patients. Front. Cell Dev. Biol. 8:656. doi: 10.3389/fcell.2020.00656

Alam, M. K., Iida, J., Sato, Y., and Kajii, T. S. (2013). Postnatal treatment factors affecting craniofacial morphology of unilateral cleft lip and palate (UCLP) patients in a Japanese population. Br. J. Oral. Maxillofac. Surg. 51, 205–210.

Alam, M. K., Kajii, T. S., and Iida, J. (2012). “Spectrum of factors affecting dental arch relationships in Japanese unilateral cleft lip and palate patients,” in Orthodontics-Basic Aspects and Clinical Considerations ed. F. Bourzgui, (London: Intech Open). 13, 301–324.

Alam, M. K., Kajii, T. S., Matsuno, M. K., Kato, Y. S., and Iida, J. (2008). Multivariate analysis of factors affecting dental arch relationships in Japanese unilateral cleftlip and palate patients at Hokkaido University Hospital. Orthod. Waves. 67, 45–53. doi: 10.1016/j.odw.2007.12.001

Alam, M. K., Kajii, T. S., Sato, Y., and Iida, J. (2019). Clinical investigation of congenital factor affecting craniofacial morphology of unilateral cleft lip and palate in Japanese patients. Pesqui Bra. Odontopediatr Clin. Integr. 19:4642.

Arshad, A. I., Alam, M. K., and Khamis, M. F. (2017a). Assessment of complete unilateral cleft lip and palate patients: determination of factors effecting dental arch relationships. Int. J. Paed. Otorhinolaryng. 92, 70–74. doi: 10.1016/j.ijporl.2016.11.006

Arshad, A. I., Alam, M. K., and Khamis, M. F. (2017b). Assessment of complete unilateral cleft lip and palate treatment outcome using EUROCRAN index and associated factors. Int. J. Paed. Otorhinolaryng. 100, 91–95. doi: 10.1016/j.ijporl.2017.06.025

Arshad, A. I., Alam, M. K., and Khamis, M. F. (2018). Dentouvalvoar cleft treatment outcome using modified Huddart-Bodenham index and regression analysis of associated factors. Cleft. Palate. Craniofac. J. 55, 682–687. doi: 10.1177/1055665618758278

Asif, J. A., Alam, M. K., Haque, S., and Pochhi, A. (2016). Treatment outcome and factors affecting dental arch relationship in Malay children with unilateral cleft lip and palate (UCLP). J. Hard. Tissue Biolog. 25, 371–376. doi: 10.2485/jhtb.25.371

Batwa, W., Almarhoon, H. A., Almoammar, K. A., Alqahtani, N., Albarakati, S. F., and Al-Jewair, T. (2018). Dento-skeletal characteristics of cleft patients with missing teeth. Clin. Cosmet. Investig. Dent. 10, 237–244. doi: 10.2147/icid.2017.170717

Berkowitz, S. (2013). Cleft Lip and Palate: Diagnosis and Management. Berlin: Springer.

Erverdi, N., and Motro, M. eds. (2015). “Cleft lip and palate treatment,” in, Alveolar Distraction Osteogenesis. Berlin: Springer. 7–17.

Haque, S., Alam, M. K., and Basri, R. (2015). Gene involvement in cleft lip and palate (CLP) patients. Bangladesh J. Med. Sci. 14, 113–116. doi: 10.3329/bjms.v14i1.20928

Haque, S., Alam, M. K., and Khamis, M. F. (2017a). Factors responsible for unfavorable dental arch relationship in non syndromic unilateral cleft lip and palate children. J. Clin. Pediatr. Dent. 41, 236–242. doi: 10.17796/1053-4628-41.3.236

Haque, S., Alam, M. K., and Khamis, M. F. (2017b). The effect of various factors on the dental arch relationship in non-syndromic unilateral cleft lip and palate children assessed by new approach: a retrospective study. BMC Pediatr. 17:119. doi: 10.1186/s12887-017-0870-4

Haque, S., Alam, M. K., and Khamis, M. F. (2018). Treatment outcome of Bangladeshi UCLP patients based on both phenotype and postnatal treatment factors using modified Huddart Bodenham (mHB) index. Cleft. Palate. Craniofac. J. 55, 966–973. doi: 10.1097/15-293

Haque, S., and Alam, M. K. (2014). Spectrum of cheiloplasty has detrimental effect on maxillary growth: myth or fact? Bangladesh J. Med. Sci. 13, 473–476. doi: 10.3329/bjms.v13i4.20653

Haque, S., and Alam, M. K. (2015a). Common dental anomalies in cleft lip and palate patients. Malaysian J. Med. Sci. 21, 55–60.

Haque, S., and Alam, M. K. (2015b). Pre-surgical orthopedic treatment using Hotz plate: an update. Int. J. Pharm. Bio. Sci. 6, 318–327.

Haque, S., and Alam, M. K. (2015c). Spectrum of palatoplasty has detrimental effect on: myth or fact? Bangladesh J. Med. Sci. 14, 109–110. doi: 10.3329/bjms.v14i11.20926

Haque, S., Khamis, M. F., Alam, M. K., and Ahmed, W. M. A. W. (2020). Effects of multiple factors on treatment outcome in the 3d maxillary arch morphometry of unilateral cleft lip and palate children. J. Craniofac. Surg. doi: 10.1097/SCS.0000000000006464 Online ahead of print

Kajii, T. S., Alam, M. K., Milkoya, T., Oyama, A., Matsuno, M. K., Kato, Y. S., et al. (2013). Congenital and postnatal factors including malocclusion in Japanese unilateral cleft lip and palate patient- determination using logistic regression analysis. Cleft. Palate. Craniofac. J. 50, 466–472. doi: 10.1097/SCS.0b013e31828e1150

Kohli, S. S., and Kohli, V. S. (2012). A comprehensive review of the genetic basis of cleft lip and palate. Int. J. Maxillofac. Pathol. 16, 64–72.

Kunz, F., Stellzig-Eisenhauer, A., Zeman, F., and Boldt, J. (2020). Evaluation of a fully automated cephalomorph analysis using a customized convolutional neural network. J. Orofac. Orthop. 81, 52–68. doi: 10.1007/s00056-019-00203-8

Lee, K. S., Ryu, J. J., Jang, H. S., Lee, D. Y., and Jung, S. K. (2020). Deep convolutional neural networks based analysis of cephalomorphographs for differential diagnosis of orthognathic surgery indications. Appl. Sci. 10:2124. doi: 10.3390/app10062124

Murray, J. C. (2002). Gene/environment causes of cleft lip and/or palate. Clin. Genet. 61, 248–256. doi: 10.1034/j.1399-0004.2002.610402.x

Parveen, S., Shetty, R., Hussain, A., Mascaréthas, R., D’Souza, N., and Shetty, N. K. (2018). Three-dimensional assessment of alveolar bone thickness in individuals with nonsyndromic unilateral complete cleft lip and palate. J. Cleft Lip Palate Craniofac. Anomal. 5, 106–112. doi: 10.4103/jclpa.jclpa_11_18

Sekhon, P. S., Ethunandan, M., Markus, A. F., Krishnan, G., and Rao, C. B. (2011). Congenital anomalies associated with cleft lip and palate-an analysis of 1623 consecutive patients. Cleft. Palate. Craniofac. J. 48, 371–378. doi: 10.1597/09-264

Wu, T. T., Ko, E. W., Chen, P. K., and Huang, C. S. (2013). Craniofacial characteristics in unilateral complete cleft lip and palate patients with congenitally missing teeth. Am. J. Orthod. Dentofacial Orthop. 144, 381–390. doi: 10.1016/j.ajodo.2013.04.019

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Alam and Alfawzian. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.