ON THE DENOMINATOR OF THE POINCARÉ SERIES FOR MONOMIAL QUOTIENT RINGS

HARA CHARALAMBOUS

Abstract. Let $S = k[x_1, \ldots, x_n]$ be a polynomial ring over a field k and I a monomial ideal of S. It is well known that the Poincaré series of k over S/I is rational. We describe the coefficients of the denominator of the series and study the multigraded homotopy Lie algebra of S/I.

CONTENTS

1. Introduction 1
2. The monomials of $Q_R(y, t)$ 2
3. Multigraded deviations and acyclic closures 4
References 6

1. Introduction

Let $S = k[x_1, \ldots, x_n]$ be a polynomial ring over a field k, I a monomial ideal of S and $R = S/I$. If J is a subset of the minimal monomial generating set I of I, we let m_J denote the least common multiple of the monomials in J or the corresponding monomials in $k[y_1, \ldots, y_n]$ as appropriate. The multigraded Poincaré series of R, $P_R(y, t)$ is rational, [Ba82]:

$$P_R(y, t) = \frac{\prod_{i=1}^{m_1}(1 + ty_i)}{Q_R(y, t)}$$

where $Q_R(y, t) \in Z[y_1, \ldots, y_n][t]$.

The few facts that are known in general about the multigraded expansion $Q_R(y, t)$ also date back to [Ba82]: the degree of $Q_R(y, t)$ in t is bounded above by the total degree of m_1, and the monomial coefficients of t divide m_1. In this paper we discuss the monomial coefficients of $Q_R(y, t)$.

In the first section of this paper we show that the monomial coefficients of t in $Q_R(y, t)$ are least common multiples of the monomial generators of I. We discuss the Koszul homology of R when R is Golod. We also present a free resolution of R when I is generic. In the second section we discuss the multigraded acyclic closure of R as well as the multigraded deviations in terms of the multigraded homotopy Lie algebra of R, and show that the LCM lattice determines the Poincaré series of R. This is the multigraded version of Theorem 1 of [Av02].

Thanks are due to J. Backelin and the faculty of the Department of Mathematics in Stockholm, for useful discussions during my brief stay in 1996.

Date: July 10, 2018.
2. The monomials of $Q_R(y, t)$

The argument used in the proof of the next proposition has the flavor of [Ba82] and uses Golod theory. It uses Lescot’s result, [Le86], that the Poincaré series M over R

$$P^M_R(y, t) = \sum_{i=0}^{\infty} \sum_{j \geq 0} y^i \dim_k (\text{Tor}^R_i(M, k)) j^t = \frac{f^M_R(y, t)}{Q_R(y, t)}$$

where $f^M_R(y, t)) \in \mathbb{Z}[y_1, \ldots, y_n][t]$.

Proposition 2.1. Let $Q_R(y, t) = 1 + \sum (\sum c_j y^j) t^j$. Then y^j is equal to a least common multiple of a subset of the minimal monomial generating set of I.

Proof. By a standard argument, [Ba82], it is enough to prove Proposition 2.1 when I is generated by squarefree monomials. In this case the y monomials of $Q_R(y, t)$ are squarefree, [Ba82]. We do induction on the number of variables n that divide the monomials of the minimal generating set of I, the case $n = 1$ being trivial. Consider a term of $Q_R(y, t)$ whose coefficient in y does not involve y_i. We separate the generators of I that involve x_i. Let $I = L_i + x_i J_i$ where $L_i, J_i \subset k[x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n]$ and let $A = k[x_1, \ldots, x_i, \ldots, x_n]/L_i$ and $A' = k[x_1, \ldots, x_i, \ldots, x_n]/(L_i + J_i)$. Therefore $R \cong A[x_i]/x_i J_i$ and $A[x_i] \to R$ is Golod, which implies that

$$P_R(y, t) = \frac{P_A[x_i]}{1 - t(P_A^R[x_i] - 1)} = \frac{(1 + t y_i) P_A}{(1 - t^2 P_A^R[x_i])} = \frac{(1 + t y_i) P_A}{(1 - t^2 y_i P_A^R[x_i])} = \frac{(1 + t y_i) P_A}{(1 - t y_i P_A^R[x_i] - 1)} = \prod (1 + t y_i) = \frac{Q_A + t y_i Q_A - t y_i f_A}{Q_A + t y_i Q_A - t y_i f_A}.$$

The y monomials that do not involve y_i are terms of Q_A, so by induction they have the desired form. Suppose now that a monomial of $Q_R(y, t)$ involves all y_i: it is the product of all the variables y_i and is equal to the least common multiple of all the generators in I.

In [ChRe95] we noticed that the terms of $Q_R(y, t)$ when I is a complete or almost complete intersection come from the set $\{-1\}^{l_1} t (\{1\}^{l_1} + \{1\}^{l_2}) M_j \}$. Here J ranges over the subsets of the minimal monomial generating set of I and l_j is the number of connected components of the graph we get when we connect the elements of J by an edge if they have a variable in common. In [ChRe95] we also confirmed that this is the case when the Taylor resolution [Ta60], [El97] of S/I over S is minimal.

In Remark 2.3 we confirm that the same holds for the monomial ideals I such that R/I is Golod. First we recall and expand a comment by Fröberg, [Fr79].

Remark 2.2. Let $R = S/I$ be Golod and K_* be the Koszul complex on the variables \bar{x}_i of R. Then $H(K_*)$ is isomorphic to $k[X_{A_1}, \ldots, X_{A_r}]$ where A_1 is a subset of the minimal monomial generating set of I and the degree of X_{A_r} equals the cardinality of A_r. Indeed since K_* admits trivial Massey operations the product of two elements of $H_{\geq 1}(K_*)$ is zero, [GuLe69], [Av98]. Moreover $H(K_*)$ is always of the form $k[X_1, \ldots, X_n]/L$: L is generated by quadratics, the X_i’s form a minimal multiplicative generating set for $H(K_*)$, and $X_i X_j = (-1)^{\deg X_i} X_j X_i$ where $\deg X_i$ is the degree of X_i. Let F_* be the Taylor complex on the minimal monomial generators of I over S, [Ta60] and let E_* be the minimal multigraded resolution of S/I over
Q. E_\bullet is a direct summand of F_\bullet. It follows that the multidegrees of the generators of E_i are among the multidegrees of the generators of F_i. Therefore they are the multidegrees of least common multiples of subsets A_j of I. It follows that $H(K\bullet) = H(k \otimes E_\bullet) = k[X_{A_1}, \ldots, X_{A_r}] / L$. Since $X_{A_j}X_{A_{i}} = 0$, $X_{A_j}X_{A_{i}} \in L$.

Remark 2.3. Thus monomial Golod rings are special Golod rings. Let $m_{A} \neq m_{A_{1}} \cdots m_{A_{r}}$, for any partition of A where X_{A} and $X_{A_{j}}$ are among the generators of $H(K\bullet)$ we see that A is connected and $l_{A} = 1$. Let $H_{i}(K)_{j}$ denote the subspace of $H_{i}(K)$ of multidegree j. Thus the terms of the denominator of the Poincaré series of R, $Q_{R}(y, t) = 1 - \sum_{i} \sum_{j} \dim_{k} H_{i}(K)_{j} y^{i} t^{j+1}$ of the Golod ring R come from the set $\{(−1)^{d_{i}+1}m_{j}\}$ where J ranges over the subsets of the minimal monomial generating set of I.

Generic ideals and their minimal resolutions were first introduced in [BaPeSt98] and generalized in [MiStYa00]. Let I be a generic ideal. If the multidegrees of two minimal monomial generators of I are equal for some variable then there is a third monomial generator of I whose multidegree is strictly smaller than the multidegree of the least common multiple of the other two. The minimal resolution E_\bullet of S/I over S is determined by the Scarf complex of Δ_{f}. The latter consists of the subsets J of the index set of I, Φ, such that $m_{J} \neq m_{L}$ for any other subset L of Φ. We note that E_\bullet has the structure of a DG algebra, [BaPeSt98]. The Eagon resolution of k over $R = S/I$ was discussed in [GuLe69]. Below we give the generators for the Eagon resolution when I is generic.

Theorem 2.4. Let $R = S/I$ where I is a generic ideal of S, let K_\bullet be the Koszul complex on the x_{i} over R, $X_{0} = 0$, and X_{i} be the free R-module with generators T_{i}, where $|L| = i$ and L is in Δ_{f}, the Scarf complex of I. Then (Y_\bullet, d_\bullet) is a free resolution of k over R, where

$$\delta_{i} = \sum_{j+t_{1}+\cdots+t_{i}+t = i} K_{j} \otimes X_{t_{1}} \otimes \cdots \otimes X_{t_{i}},$$

and
d$(T_{1}) = (m_{J}/x_{J})e_{1},$
d$(T_{1} \otimes \cdots \otimes T_{i}) = d(T_{1} \otimes \cdots \otimes T_{i-1}) \otimes T_{i} + \sum_{i=1}^{I-1} \sum_{i=1}^{(|I_{i}| + 1)T_{i} \otimes \cdots \otimes T_{i-2} \otimes \delta(I_{i-1}, I_{i})(T_{i-1} \wedge T_{i}),$

where $\delta(I_{i-1}, I_{i}) = m_{I_{i-1} \cup I_{i}} \wedge m_{I_{i-1} \cup I_{i}}$ if $I_{i-1} \cup I_{i} \in \Delta_{f}$ and 0 otherwise
d$(e_{L} \otimes T_{1} \otimes \cdots \otimes T_{i})d(e_{L}) \otimes T_{1} \otimes \cdots \otimes T_{i} + (−1)^{|L|}e_{L} \otimes d(T_{1} \otimes \cdots \otimes T_{i}).$

Proof. The theorem follows immediately from [Iy97], Theorem 1.2 and the preceding comments. \hfill \Box

As an immediate corollary we immediately get the characterization of Golod rings when I is a generic ideal, which generalizes Proposition 2.4 of [Ga00].

Proposition 2.5. Let I be a generic ideal. S/I is Golod if and only if $m_{1}m_{2} \neq m_{1}m_{2}$ whenever $I_{1} \cup I_{2} \in \Delta_{f}$.
3. Multigraded deviations and acyclic closures

In this section we introduce the multigraded acyclic closure \(R<X> \) of \(k \) over \(R \). For the construction of the usual acyclic closure, we refer to Construction 6.3.1, [Av98]. To this end we choose \(x_j \), the \(\Gamma \)-variables of \(X_n \) so that \(\text{cls}(\theta(x_j)) \) has multidegree \(j \) and \(\{\text{cls}(\theta(x_j))\} \) is a minimal multigraded generating set of \(H_{n-1}(R<X\leq n-1>) \). We define the multidegree of \(x_j \) to be \(j \) and we let \(X_{n,j} \) consist of all \(x \in X_n \) whose multidegree is \(j \). We will show that the cardinality of \(X_{n,j} \) appears as an exponent in a product decomposition of the multigraded Poincaré series.

First we state and prove the multigraded version of Remark 7.1.1, [Av98].

Proposition 3.1. For each formal multigraded power series with integer coefficients

\[
P(y, t) = 1 + \sum_{i=1}^{\infty} \left(\sum_{j} a_{i,j} y^j \right) t^i
\]

where for each \(i \), \(a_{i,j} = 0 \) for all but finitely many values of \(j \), there exist uniquely defined integers \(e_{n,j} \in Z \) such that

\[
P(y, t) = \frac{\prod_{i=1}^{\infty} \prod_{j}(1 + y^j t^{(i-1)e_{i-1,j}})}{\prod_{i=1}^{\infty} \prod_{j}(1 - y^j t^{(i-1)e_{i-1,j}})}
\]

and the product converges in the \((t)\)-adic topology of the ring \(Z[y, t] \).

Proof. We set \(P_0(t) = 1 \) and assume by induction that \(P(y, t) \equiv P_{n-1}(y, t) \) modulo \(t^{n+1} \). If \(P(y, t) - P_{n-1}(y, t) = \sum a_{n,j} y^j t^n \) (mod \(t^{n+1} \)), then we set \(P_n(y, t) = P_{n-1}(y, t) \prod_{j}(1 + y^j t^{n})^{e_{n,j}} \) if \(n \) is odd and \(P_n(y, t) = P_{n-1}(y, t) / \prod_{j}(1 - y^j t^{n})^{e_{n,j}} \) if \(n \) is even. Then it is clear that \(P(t) \equiv P_n(t) \) (mod \(t^{n+1} \)) and the other assertions follow as well.

We define the multigraded \((n, j)\) deviation of \(R \), denoted by \(e_{n,j} \), to be the exponent \(e_{n,j} \) in the product decomposition of the Poincaré series of \(R \). As in Theorem 7.1.3, [Av98] it follows that

Proposition 3.2. Let \(I \) be a monomial ideal of \(S \), \(R = S/I \) and \(R<X> \) be the multigraded acyclic closure of \(k \) over \(R \). Then

\[
P_H(y, t) = \frac{\prod_{i=1}^{\infty} \prod_{j}(1 + y^j t^{2(i-1)\text{card}(X_{2i-1,j})})}{\prod_{i=1}^{\infty} \prod_{j}(1 - y^j t^{2(i-1)\text{card}(X_{2i,j})})}
\]

and \(\text{card} X_{n,j} = e_{n,j}(R) \).

Since \(R<X> \) is multigraded, it follows that the homotopy Lie algebra of \(R \), \(\pi^*(R) = \text{HDer}_{\mathbb{Q}}(R<X>, R<X>) \) has a multigraded structure. Moreover \(\pi^n(R) \cong \text{Hom}_k(kX_{n,j}, k) \) (Theorem 10.2.1, [Av98]), and \(\pi^j(R) \cong \text{Hom}_k(kX_{n,-j}, k) \) while \(\text{rank}_k \pi^j(R) = e_{n,-j} \).

Remark 3.3. We let \(K_\bullet \) denote the Koszul complex on \(x_1, \ldots, x_n \) over \(S \) and \(T_\bullet \) the Taylor complex on the minimal generators of \(I \) over \(S \). The complexes \(K_\bullet, T_\bullet \) have the structure of a DG \(\Gamma \) algebra by Lemma 9, [Av02]; they are also multigraded and \(H_\bullet(T \otimes_S K_j) \cong H_\bullet(T \otimes_S k_j) \cong H_\bullet(R \otimes_S K_j) \), where \(j \in L_I \). In Lemma 11 of [Av02], it is shown that \(\pi^{\geq 2}(R) \cong \pi^*(R \otimes_S K) \). We remark that \(R \otimes_S K \) is a multigraded DG \(\Gamma \) algebra, and one can choose a multigraded DG \(\Gamma \)
algebra U so that we have the factorization $R \otimes_S K \longrightarrow U \longrightarrow k$ with the properties of Lemma 11 and Remark 10 of [Av02]: $\pi(R \otimes_S K)$ is the graded k dual of the residue of $H_1(U \otimes_{R \otimes_S K} k)$ modulo multigraded relations and is multigraded. The homomorphisms of Lemma 11, [Av02] are multigraded and $\pi^{1+2}_j(R) \cong \pi^{1}_j(R \otimes_S K)$. Finally we have $\pi^{1}_j(T \otimes_S K) \cong \pi^{0}_j(T \otimes_S k) \cong \pi^{1}_j(R \otimes_S K)$.

Next we will make use of the LCM lattice L_I, [GaPeWe99] and the GCD graph G_I, [Av02]. We recall that L_I and G_I have vertices the least common multiples of the monomial generators of I while the edges of G_I join least common multiples that are relatively prime. In [Av02] it is shown that if I and I' are two monomial ideals of S and S' respectively with an isomorphism of lattices $\lambda : L_I \longrightarrow L_{I'}$ which induces an isomorphism of the GCD graphs $\lambda : G_I \longrightarrow G_{I'}$ then the homotopy Lie algebras of $R = S/I$ and $R' = S/I'$ are isomorphic and the Poincaré series of R and R' have the same denominator. We will show that the multigraded version of this result is actually true. We consider the multigraded acyclic closures $R < X >$ and $R' < X' >$ of k over R and R'.

Remark 3.4. Let $I \subset S = k[x]$ and $I' \subset S' = k[x']$ be two monomial ideals, K, K' the Koszul complexes on the x_i and x'_i respectively and $\lambda : L_I \longrightarrow L_{I'}$, an isomorphism of lattices. If λ induces an isomorphism of the GCD graphs $\lambda : G_I \longrightarrow G_{I'}$ then $H(K \otimes R) \cong H(K' \otimes R')_{\lambda(j)}$ through the isomorphism that sends the algebra generators X_A of $H(K \otimes R) = k[X_A]/L$ to the generators $X'_{\lambda(A)}$ of $H(K' \otimes R') = k[X'_{\lambda(A)}/L']$ (here our notation is as in the remarks preceding Proposition 2.2). Indeed, let λ be as above. Since λ is an isomorphism of the LCM lattices the minimal resolution of I gives rise to a minimal resolution of I' and the generators X_A of $H(K \otimes R)$ correspond to generators $X'_{\lambda(A)}$ of $H(K' \otimes R')$. Since λ is an isomorphism of the GCD graphs the relations among the X_A correspond to relations among the $X'_{\lambda(A)}$. Conversely if the Koszul homology algebras are isomorphic as above then there is an isomorphism of multigraded vector spaces between the minimal resolutions of the two ideals and a map λ which is an isomorphism of lattices and GCD graphs for the multidegrees that appear in the resolutions.

Proposition 3.5. Let I' be a monomial ideals of $S' = k[x']$ such that $\lambda : L_I \longrightarrow L_{I'}$ is an isomorphism of lattices that induces an isomorphism of the GCD graphs $\lambda : G_I \longrightarrow G_{I'}$. Then there is a map λ from the set of the multidegrees of the variables X_n to the set of the multidegrees of the variables X'_n such that $\text{card } X_{n,j} = \text{card } X'_{n,\lambda(j)}$ and $\epsilon_{n,j} = \epsilon'_{n,\lambda(j)}$.

Proof. We define λ by induction on n. Let T' be the Taylor complex of I'. Then there is an isomorphism of vector spaces $(T' \otimes_S k)_j \cong (T' \otimes_{S'} k)_{\lambda(j)}$, for $j \in L_I$. Suppose that λ is an extension of λ and $R[X_{\leq n,j}] \otimes k \cong R'[X'_{\leq n,\lambda(j)}] \otimes k$. Extend λ to the multidegrees of the multigraded generators of $H_n(R[X_{\leq n}])$ and $H_n(R'[X'_{\leq n}])$. It follows that there is an isomorphism of homotopy Lie algebras $\pi^{*}_j(T \otimes_S k) \cong \pi^{*}_{\lambda(j)}(T' \otimes_{S'} k)$, and the proposition now follows. \hfill \square

Remark 3.6. Let I be a monomial ideal and I_{pol} be the square free monomial ideal in $A = k[z]$ that corresponds to I, [Fr82]. The map λ that sends a monomial of I to a squarefree monomial in I_{pol} is an isomorphism of lattices and of GCD graphs. Moreover $Q_H(y,t)$ can be obtained from $Q_A(z,t)$ by applying λ^{-1} to the monomial coefficients of t, [Ba82].
Theorem 3.7 now completes the multigraded version of Theorem 1, \[Av02\].

Theorem 3.7. Let \(S = k[x] \) and \(S' = k[x'] \) be polynomial rings over a field \(k \), and \(I \subset S \), \(I' \subset S' \) be ideals generated by monomials of degree at least 2. Let \(\lambda: L_I \rightarrow L_{I'} \) and the induced \(\lambda: G_I \rightarrow G_{I'} \) be isomorphisms. Suppose that \(Q_R(y, t) = 1 + \sum (\sum c_j y^{j}) t^i \) then \(Q_{R'}(y', t) = 1 + \sum (\sum c_j y^{j}) t^i \).

Proof. By Proposition 2.1 the multidegrees \(j \) in \(Q_R(y, t) \) are in \(L_I \), so \(\lambda(j) \) makes sense. By the above remark it is enough to examine the case where \(I \) and \(I' \) are both squarefree. The key point is that since \(I \) and \(I' \) are squarefree, \(\lambda \) is additive: \(\lambda(j + i) = \lambda(j) + \lambda(i) \). It follows that its extension \(\hat{\lambda} \) is also additive. Since

\[
Q_R(y, t) = \prod_{i=1}^{\infty} \frac{(1 + ty_i)}{P_R(y, t)} = \prod_{i=1}^{\infty} \frac{\prod_{j=1}^{\infty} (1 - y^2 t^{2i})^{\text{rank} \pi_{j}^{2i}}}{\prod_{i=2}^{\infty} \prod_{j=1}^{\infty} (1 + y^2 t^{2i-1})^{\text{rank} \pi_{j}^{2i-1}}}
\]

the linear coefficient \(c_j \) of the monomial \(y^j t^n \) of \(Q_R(y, t) \), depends on the deviations \(\epsilon_i, f \) when \(i \leq n \). The corresponding combination of the deviations \(\epsilon_i, f \) gives a term of \(Q_{R'}(y', t) \) of \(t \)-degree \(n \). The theorem now follows. \(\square \)

The condition that \(\lambda \) is an isomorphism of GCD graphs is a necessary condition as the example from \[Ga00\] shows. The isomorphism of LCM lattices for \(I = (x_1^2, x_2^2, x_3^3) \) and \(I' = (x_1 x_2^2, x_1 x_3^3) \) is not an isomorphism of GCD graphs and

\[
Q_{S/I}(y, t) = 1 - t^2(y_1^2 - y_2^2 y_3) + t^4(y_1^2 y_2^2 y_3)
\]

while

\[
Q_{S/I'}(y, t) = 1 - t^2(y_1 y_2^2 + y_1 y_3^2) - t^3(y_1 y_2^2 y_3^2).
\]

REFERENCES

[Av98] L. Avramov *Infinite Free Resolutions*, in: Six Lectures in Commutative Algebra, Bellaterra, 1996, Progress in Math. 166, Birkhäuser, Boston, (1998), 1-118

[Av02] L. Avramov *Homotopy Lie Algebras and Poincaré series of Algebras with Monomial Relations*, Homology Homotopy Appl. 4(2), (2002), 17-27

[Ba92] J. Backelin *Les anneaux locaux à relations monomiales ont des séries de Poincaré-Betti rationnelles*. C.R. Acad. Sc. Paris, Série I, 295 (1982),607-610.

[BaPeSt98] D. Bayer, I. Peeva, and B. Sturmfels *Monomial resolutions*, Mathematical Research Letters, 5 1998, 31-46

[ChRe95] H. Charalambous and A. Reeves *Poincaré Series and Resolutions of the Residue Field over Monomial Rings*, Com. Algebra, 23(6), 1995, 2389-2399

[Ei97] D. Eisenbud *Commutative Algebra with a View Toward Algebraic Geometry*, Springer Verlag, 1994

[Fr79] R. Fröberg *Some complex constructions with applications to Poincaré series*, Séminaire d’algèbre P. Dubreil 1977/78, Lecture Notes in Mathematics, Springer-Verlag, 470, (1979), 272-284.

[Fr82] R. Fröberg *A study of graded extremal rings and of monomial rings*, Math. Scand. 51, (1982), 22-34

[Ga00] V. Gasharov *Infinite Monomial Resolutions*, Comm. Algebra, 28(11), (2000), 5455-5460

[GaPeWe99] V. Gasharov, I. Peeva, and V. Welker *The LCM-Lattice in Monomial Resolutions*, Math. Research Letters, 6, (1999), 521-532

[GuLe69] T.H. Gulliksen and G. Levin *Homology of local rings*, Queen’s Paper no. 20, Queen’s University, Kingston (1969).

[Iy97] S. Iyengar *Free resolutions and change of rings*, J. Algebra, 190, (1990), pp 195-213.
[Le86] J. Lescot *Séries de Poincaré des modules multi-gradués sur les anneaux monomiaux* Algebraic topology-rational homotopy, Lect. Notes in Math., Springer, 1318 (1988), 155-161

[MiStYa00] E. Miller, B. Sturmfels, and K. Yanagawa *Generic and Cogeneric monomial ideals*, Symbolic Computation in Algebra, Analysis, and Geometry (Berkeley, CA, 1998), J. Symbolic Comput., 29 (2000), 691–708.

[Ta60] D. Taylor *Ideals generated by monomials in an R-sequence*, Thesis, University of Chicago, 1960.

Department of Mathematics, University at Albany, SUNY, Albany, NY 12222

E-mail address: hara@math.albany.edu