A FUNCTION WITH SUPPORT OF FINITE MEASURE
AND “SMALL” SPECTRUM

FEDOR NAZAROV, ALEXANDER OLEVSKII

Abstract. We construct a function on \(\mathbb{R} \) supported on a set of finite measure whose spectrum has density zero.

1. The result

Let \(F \) be a function in \(L^2(\mathbb{R}) \). We say that it is supported on \(S \) if
\[
F = 0 \text{ almost everywhere on } \mathbb{R} \setminus S.
\]
Suppose the set \(S \subset \mathbb{R} \) is of finite Lebesgue measure. Then the Fourier transform \(\hat{F} \) of \(F \) is a continuous function, so the spectrum of \(F \) is naturally defined as the closure of the set where \(\hat{F} \) takes non-zero values.

According to the uncertainty principle, the support and the spectrum of a (non-trivial) function \(F \) cannot be both “small sets”. This principle has various versions (see e.g. [HAJ94]).

In particular, the classic uniqueness theorem for analytic functions implies that if \(F \) is supported on an interval and it has a “spectral gap” (that is, \(\hat{F} = 0 \) on an interval) then \(F = 0 \).

Another important result says that if the support \(S \) and the spectrum \(Q \) of \(F \) are both of finite measure then \(F = 0 \) [Ben74/85], [AB77].

On the other hand, \(F \) may have a support of finite measure and a spectral gap; see [Kr82], where such an example was constructed with \(F = 1_S \).

Answering a question posed by Benedicks, Kargaev and Volberg [KV92] constructed an example of a function \(F \) such that
\[
|S| < +\infty, |\mathbb{R} \setminus Q| = +\infty
\]
(here and below by \(|A| \) we denote the Lebesgue measure of the set \(A \)).

The goal of this note is to prove the following

Theorem. There is a function \(F \in L^2(\mathbb{R}) \) supported by a set \(S \) of finite measure, such that
\[
|Q \cap (-R, R)| = o(R) \text{ as } R \to \infty.
\]
In addition, \(F \) can be chosen as the indicator function of \(S \).
The proof below is based on a simple construction, completely different from the ones in the cited papers.

2. Proof

2.1. Take a Schwartz function F_0 such that

$$0 \leq F_0(t) \leq 1 \quad (t \in \mathbb{R})$$

and its Fourier transform \hat{F}_0 is positive on $(-1, 1)$ and vanishes outside that interval. Define a sequence of functions F_n recursively by

$$F_n := F_{n-1} + G_n \quad (n = 1, 2, \ldots),$$

where

$$G_n(t) := F_{n-1}(t)[1 - F_{n-1}(t)] \cos k_n t$$

We are going to prove that if the numbers k_n grow sufficiently fast, then the sequence F_n converges to a function F satisfying the requirements of the theorem.

2.2. Clearly, F_n and G_n are Schwartz functions.

A simple induction shows that for every $t \in \mathbb{R}$, we have

$$|G_n(t)| \leq \max\{F_{n-1}(t), 1 - F_{n-1}(t)\}$$

and

$$0 \leq F_n(t) \leq 1.$$

The Fourier transforms of $F_{n-1}[1 - F_{n-1}]$, $F_{n-1}^2[1 - F_{n-1}]$, and $F_{n-1}^2[1 - F_{n-1}]^2$ vanish outside a compact interval, so for each $n \geq 1$, we have:

$$\int_\mathbb{R} G_n = \int_\mathbb{R} F_{n-1} G_n = 0$$

and

$$\int_\mathbb{R} G_n^2 = \frac{1}{2} \int_\mathbb{R} F_{n-1}^2[1 - F_{n-1}]^2,$$

provided that k_n is chosen sufficiently large. It follows that

$$\int_\mathbb{R} F_n = \int_\mathbb{R} F_0 =: C$$

and, thereby,

$$I_n := \int_\mathbb{R} F_n (1 - F_n) \leq C$$

(here, as usual, by C we denote a positive constant that may vary from line to line).

Observe also that

$$I_n = \int_\mathbb{R} [F_{n-1} + G_n][1 - F_{n-1} - G_n] = I_{n-1} - \int_\mathbb{R} G_n^2.$$
which implies that
\[\sum_{n \in [1,N]} \int_{\mathbb{R}} G_n^2 \leq I_0 - I_N \leq C, \]
and so
\[\sum_n \int_{\mathbb{R}} G_n^2 \leq C \]

2.3. Define the sequence \(Q_n \) of intervals on (another copy of) \(\mathbb{R} \) recursively as follows:

\[Q_0 := [-1,1], \]
\[Q_n := \text{conv}(Q_{n-1} \cup [k_n + 2Q_{n-1}] \cup [-k_n + 2Q_{n-1}]) \]

(here \(\text{conv} E \) denotes the convex hull of a set \(E \subset \mathbb{R} \)). Clearly, for every \(n \),

\[\text{spec } F_{n-1} \subset Q_{n-1}; \]
\[\text{spec } G_n \subset [k_n + 2Q_{n-1}] \cup [-k_n + 2Q_{n-1}]. \]

Set \(Q := Q_0 \cup \bigcup_n ([k_n + 2Q_{n-1}] \cup [-k_n + 2Q_{n-1}]). \)

Choosing \(k_n \) growing sufficiently fast we can ensure that the spectra of \(G_n \) are pairwise disjoint and
\[|Q \cap (-R,R)| = o(R) \text{ as } R \to \infty. \]

2.4. Consider the series \(F_0 + G_1 + G_2 + \ldots \). Since the spectra of the terms are pairwise disjoint, this series is orthogonal in \(L^2(\mathbb{R}) \). Then (3) implies that it converges in \(L^2(\mathbb{R}) \) to some non-trivial function \(F \). The partial sums of this series are \(F_n \). Take a subsequence \(F_{n_\ell} \) such that

\[F_{n_\ell} \to F \text{ almost everywhere on } \mathbb{R} \text{ as } \ell \to \infty. \]

Recall that all \(F_n \) are non-negative functions, so (2) implies that
\[F \geq 0 \text{ almost everywhere and } \int_{\mathbb{R}} F < \infty. \]

It follows from (1) and (3) that
\[\sum_n \int_{\mathbb{R}} [F_n(1 - F_n)]^2 = 2 \sum_n \int_{\mathbb{R}} G_n^2 < +\infty, \]
so we must have
\[F(1 - F) = \lim_{\ell \to \infty} F_{n_\ell}(1 - F_{n_\ell}) = 0 \text{ almost everywhere}, \]
which implies that F is the indicator-function of a set S. According to (5), this set has finite measure. Clearly the spectrum of F is a subset of Q. Due to (4) it has density zero. This finishes the proof.

Remark. Consider the function

$$h(R) := |Q \cap (-R, R)|.$$

In the conditions of the Theorem, it can not be bounded. However the proof above shows that it may increase arbitrarily slowly. It remains an open question, however, if Q can have uniform density 0, i.e., if it is possible that

$$\lim_{R \to \infty} \sup_{x \in \mathbb{R}} \frac{1}{2R} |Q \cap (x - R, x + R)| = 0.$$

References

[AB77] Amrein, W.O., Bertier, A.M. *On support properties of L^p-functions and their Fourier transforms.* J.Funct.Anal. 24 (1977), 258-267.

[Ben74/85] Benedicks M., *On Fourier transforms of functions supported on sets of finite Lebesgue measure.* - Royal Institute of Technology, Stockholm (1974), preprint; - J.of Math.Anal.and Appl. 106 (1985), 180-183.

[HAJ94] Havin, V.P., Jöricke B., *The Uncertainty Principle in Harmonic Analysis,* Springer-Verlag, Berlin, Heidelberg, 1994.

[Kr82] Kargaev, P.P. *The Fourier transform of the characteristic function of a set vanishing on an interval* (Russian), Mat. Sb. (N.S.) 117 (1982), 397-411. English translation in Math. USSR-Sb 45 (1983), 397-411.

[KV92] Kargaev, P.P., Volberg A.L., *Three results concerning the support of functions and their Fourier transforms,* Indiana Univ. Math. J. 41 (1992), 1143-1164.