Systematic review and subgroup analysis of the incidence of acute kidney injury (AKI) in patients with COVID-19

Zhenjian Xu
Sun Yat-Sen University

Ying Tang
Sun Yat-Sen University

Qiuyan Huang
Sun Yat-Sen University

Sha Fu
Sun Yat-sen University

Xiaomei Li
Sun Yat-Sen University

Baojuan Lin
Sun Yat-Sen University

Anping Xu
Sun Yat-Sen University

Junzhe Chen (chenjzh23@mail.sysu.edu.cn)

Research article

Keywords: COVID-19, SARS-CoV-2, acute kidney injury (AKI), Remdesivir

Posted Date: January 20th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-52615/v3

License: ☭ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Version of Record: A version of this preprint was published on February 5th, 2021. See the published version at https://doi.org/10.1186/s12882-021-02244-x.
Abstract

Background: Acute kidney injury (AKI) occurs among patients with coronavirus disease-19 (COVID-19) and has also been indicated to be associated with in-hospital mortality. Remdesivir has been authorized for the treatment of COVID-19. We conducted a systematic review to evaluate the incidence of AKI in hospitalized COVID-19 patients. The incidence of AKI in different subgroups was also investigated.

Methods: A thorough search was performed to find relevant studies in PubMed, Web of Science, medRxiv and EMBASE from 1 Jan 2020 until 1 June 2020. The systematic review was performed using the meta package in R (4.0.1).

Results: A total of 16199 COVID-19 patients were included in our systematic review. The pooled estimated incidence of AKI in all hospitalized COVID-19 patients was 10.0% (95% CI: 7.0-12.0%). The pooled estimated proportion of COVID-19 patients who needed continuous renal replacement therapy (CRRT) was 4% (95% CI: 3-6%). According to our subgroup analysis, the incidence of AKI could be associated with age, disease severity and ethnicity. The incidence of AKI in hospitalized COVID-19 patients being treated with remdesivir was 7% (95% CI: 3-13%) in a total of 5 studies.

Conclusion: We found that AKI was not rare in hospitalized COVID-19 patients. The incidence of AKI could be associated with age, disease severity and ethnicity. Remdesivir probably did not induce AKI in COVID-19 patients. Our systematic review provides evidence that AKI might be closely associated with SARS-CoV-2 infection, which should be investigated in future studies.

Background

Coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to more than 60 million infections and over 1 million deaths worldwide [1]. The mortality due to COVID-19 is particularly high among older patients with chronic diseases, including hypertension, diabetes, obesity, chronic kidney disease and cardiac disease [2]. In 2003, the incidence of acute kidney injury (AKI) in patients with SARS was reported to be 6.7%, and 91.7% of patients who died were diagnosed with AKI as a complication [3]. Recent studies have suggested that the incidence of AKI during hospitalization in patients with COVID-19 has a wide range and that AKI is associated with a poor prognosis [4-6]. Continuous renal replacement therapy (CRRT) is usually required for critically ill COVID-19 patients, not only for the treatment of AKI but also to effectively eliminate the cytokine storm [7]. The need for CRRT in COVID-19 patients should be evaluated.

Given the current ongoing pandemic of COVID-19, there is a need to identify safe and effective treatment options. Remdesivir, a broad-spectrum antiviral agent, has been shown to have antiviral activity against several RNA viruses, including MERS-CoV and Ebola virus (EV) [8, 9]. As remdesivir was found to effectively inhibit SARS-CoV-2 in vitro and in a mouse model [10, 11], it has been authorized for the treatment of COVID-19 patients in some countries, including the United States [12]. The incidence of AKI in COVID-19 patients being treated with remdesivir is still uncertain. Overall, the exact incidence rate and characteristics of AKI associated with COVID-19 are not well understood. In this study, we performed a systematic review of the incidence of AKI in hospitalized patients with COVID-19.

Methods

Search strategy

A systematic literature search was performed using PubMed, Web of Science, medRxiv and EMBASE from 1 Jan 2020 until 1 June 2020 to summarize the incidence of AKI in patients hospitalized with COVID-19. Two authors independently carried out systematic literature searches employing the terms “kidney” OR “renal” OR “acute kidney injury” OR “acute renal failure” AND “COVID-19” OR “SARS-COV-2” to obtain the AKI incidence in patients hospitalized with COVID-19. No language restrictions were applied.

Inclusion and exclusion criteria

Studies were included if they met the following criteria: 1) observational studies that reported the incidence of AKI in all hospitalized patients with COVID-19 and 2) observational studies or randomized, placebo-controlled trials (RCTs) that reported the incidence of AKI in hospitalized patients with COVID-19 being treated with remdesivir.
Studies that 1) were editorials, review articles or case reports, 2) were preprint articles, 3) had incomplete information about AKI, and 4) did not utilize the 2012 KDIGO criteria to define AKI were excluded.

Quality assessment

The methodological quality of the retrospective cross-sectional studies was assessed independently by two reviewers (Chen and Xu) using the method of the Agency for Healthcare Research and Quality (AHRQ) (http://www.ncbi.nlm.nih.gov/books/NBK35156). An item was scored as 0 if it was answered NO or UNCLEAR; if it was answered YES, then the item was scored as 1. Studies achieving a score of 8 or above were considered high quality. At the same time, the RCTs in our study were analysed using the Cochrane Collaboration tool (http://handbook-5-1.cochrane.org/). Studies were divided into groups A, B and C. Studies that were assigned to the A group were considered high quality.

Statistical analysis

The systematic review was performed using the meta package in R (4.0.1). The incidence of AKI in COVID-19 patients (proportion) was used in our study. The incidences and their 95% CIs are presented as forest plots generated by the Metaprop function. Statistical heterogeneity among studies was assessed using the I^2 statistic. The random-effects model was used if there was heterogeneity between studies ($I^2<50\%$); otherwise, the fixed-effects model was adopted. Rate consolidation was conducted using five methods (untransformed, log transformation, logit transformation, arcsine transformation, and Freeman-Tukey double arcsine transformation), and the logit transformation that yielded the results with the lowest I^2 was selected for inclusion in our study. Sensitivity analysis was performed by the leave-one-out method. Peter's test was performed to assess publication bias, and significance was determined by a $P<0.05$.

Results

Literature search and study characteristics

A total of 1852 papers were identified according to our search criteria. After an initial round of exclusion based on titles and abstracts, two authors independently assessed 204 papers. Of those 204 papers, 159 publications were unrelated to AKI and therefore excluded from the study. Forty-five papers received a full-text review, and 23 were excluded based on the exclusion criteria. The flow diagram of the selection process is shown in Fig. 1. Finally, 22 studies including 16199 COVID-19 patients met the predefined inclusion criteria and were used to determine the incidence of AKI in COVID-19 patients. Five of the 22 studies including 972 patients were used to determine the incidence of AKI in COVID-19 patients being treated with remdesivir.

Table 1 shows the characteristics of the studies in this systematic review. All studies in our systematic review reporting the incidence of AKI were retrospective cross-sectional studies, and most of them were of high quality (12/19). The RCTs included in our study were also of high quality.

Incidence of AKI in COVID-19 patients

Overall, 16199 COVID-19 patients were included in our systematic review [5, 6, 13-32]. The pooled estimated incidence of AKI in all hospitalized COVID-19 patients was 10% (95% CI: 7%-12%, Figure 2), and significant heterogeneity ($I^2=97\%$, chi-square= 0.26, $P<0.0001$) was observed. Meanwhile, a total of 12633 COVID-19 patients in 12 studies were included to investigate the need for CRRT [5, 14-18, 20-25]. A total of 566 patients (15.6%) needed CRRT among 3612 COVID-19 patients with AKI. The pooled estimated proportion of COVID-19 patients who needed CRRT was 4% (95% CI: 3-6%, Figure 3).

Incidence of AKI in different subgroups of COVID-19 patients

Subgroup analyses were performed according to ethnicity, age and disease severity (Supplementary Figure 1-3). The pooled estimated AKI incidences in the Asian subgroup and non-Asian subgroup were 7% (95% CI: 4%-11%) and 15% (95% CI: 11%-20%), respectively (Supplementary Figure 1). At the same time, the incidences of AKI in the subgroup with a median/mean age greater than 60 years and the subgroup with a median/mean age less than 60 years were 12% (95% CI: 9%-16%) and 6% (95% CI: 3%-12%), respectively (Supplementary Figure 2). In the subgroup of hospitalized patients, the incidence of AKI was 8% (95% CI: 6%-11%), but it
was 26% (95% CI: 21%-31%) in ICU patients (Supplementary Figure 3). There was still significant heterogeneity in most of the subgroups in our subgroup analysis.

Incidence of AKI in the subgroup of COVID-19 patients being treated with remdesivir

A total of 5 studies with 972 COVID-19 patients investigated the incidence of AKI in hospitalized COVID-19 patients being treated with remdesivir [28-32]. The pooled estimated AKI incidence in hospitalized COVID-19 patients being treated with remdesivir was 7% (95% CI: 3%-13%) (Figure 4). In the subgroup of COVID-19 patients not treated with remdesivir, the incidence of AKI was 10% (95% CI: 8%-13%).

Sensitivity analysis and publication bias

In the sensitivity analysis, we used the leave-one-out method (Supplementary Figures 4 and 5) and found similar results to those in our main study. Peter’s test was performed to evaluate publication bias (Table 2), and no significant difference was detected in the incidence of AKI in COVID-19 patients.

Discussion

In this systematic review, the results from 22 retrospective cross-sectional studies including 16199 patients hospitalized with COVID-19 from 1 January 2020 to 1 June 2020 demonstrated that AKI was not rare in COVID-19 patients. The incidence of AKI might be associated with age, disease severity and ethnicity, according to our subgroup analyses.

COVID-19 is primarily a respiratory disease, but other organs, including the kidneys, are often involved. SARS-CoV-2 enters cells via the angiotensin-converting enzyme 2 (ACE2) receptor and is highly homologous to SARS-CoV [33]. High ACE2 expression in proximal tubular epithelial cells may make the kidneys a potential target, leading to kidney injury [34]. Renal abnormalities, such as proteinuria, haematuria, and AKI, occur in patients with COVID-19 [35]. AKI is characterized by a rapid increase in serum creatinine, a decrease in urine output, or both [36]. The current widely used AKI definition was developed by the Kidney Disease Improving Global Outcomes (KDIGO) group in 2012 [37]. The most common causes of AKI are septic shock, major surgery, cardiogenic shock, drug toxicity and hypovolemia [38]. The cause of AKI in COVID-19 patients is likely to be multifactorial, including a direct attack by SARS-CoV-2 (COVID-19-associated acute kidney injury: consensus report of the 25th Acute Disease Quality Initiative (ADQI) Workgroup) or haemodynamic instability, microcirculatory dysfunction, tubular cell injury, renal congestion, microvascular thrombi and endothelial dysfunction [39], which are commonly found in critically ill patients. Pathological reports from autopsies of patients with COVID-19 with renal failure revealed that the kidneys contained viral particles within both the tubular epithelium and the podocytes that were visible with electron microscopy [40], varying degrees of acute tubular necrosis (ATN), diffuse proximal tubule injury with the loss of the brush border, nonisometric vacuolar degeneration, haemosiderin granules and pigmented casts [40, 41].

We found that the incidence of AKI in COVID-19 patients was 10%. A similar AKI incidence in COVID-19 patients (10.8%) was also reported in another study [34]. The diversity of patients included in our systematic review resulted in heterogeneity. According to the subgroup analysis, the estimated AKI incidence in patients with an average age greater than 60 years old was 12%, while that in patients with an average age less than 60 years old was 6%. Many reports on COVID-19 have highlighted age-related differences in health outcomes, and the mortality due to COVID-19 is particularly high among older patients [42, 43]. Age is also an important risk factor for AKI [44]. The pooled estimated AKI incidence in the Asian subgroup was 7%. However, in the non-Asian subgroup, it was 15%. African ancestry is also a risk factor for AKI [45]. In a large cohort study of hospitalized COVID-19 patients, 76.9% of the patients who were hospitalized with COVID-19 and 70.6% of those who died were Black, whereas the Black population only accounted for 31% of the total population [46]. There might be a difference between the criteria for hospital admission in Asian and non-Asian COVID-19 patients. A European study showed that 190/1457 (13%) COVID-19 patients were diagnosed with AKI on arrival [47]. The incidence of AKI in ICU patients with COVID-19 is particularly high, ranging from 8%-62% [14, 17, 22-24, 26, 27]. In our subgroup analysis, we found that the incidence of AKI was 26% in ICU patients. Critically ill patients hospitalized with COVID-19 who stayed in the ICU were more likely to develop AKI [5]. Lin L proved that disease severity was associated with the incidence of AKI in COVID-19 patients [34].

The proportion of COVID-19 patients who needed CRRT was 4%, according to our investigation. CRRT has been administered to many sepsis patients complicated with AKI [48]. Growing evidence suggests that patients with severe COVID-19 may develop...
cytokine storm syndrome [49, 50]. CRRT can remove inflammatory factors, thus blocking cytokine storm syndrome and ultimately reducing the damage inflicted on multiple organs [51]. However, the timing of the initiation of CRRT in patients with severe COVID-19 remains controversial [49]. Additional research is needed to determine whether the early initiation of CRRT could improve the prognosis of COVID-19 patients with AKI.

The initiation of treatment with antiviral drugs is a common cause of drug-induced AKI [52, 53]. As shown in Figure 4, the incidence of AKI in hospitalized COVID-19 patients being treated with remdesivir was 7%. In clinical studies of remdesivir, AKI was the most frequent adverse event leading to drug discontinuation [29, 31]. Antiviral drugs cause AKI through many mechanisms, including direct renal tubular toxicity, allergic interstitial nephritis (AIN), and crystal nephropathy [54, 55]. However, in animal models, remdesivir was effective against MERS-CoV and did not cause any side effects, such as AKI [56]. According to a recently published multicentre matched cohort study of remdesivir, remdesivir was not significantly associated with an increased incidence of AKI in COVID-19 patients, even in patients who had a baseline eCrCl<30 mL/min [57]. In our study, we also did not observe remdesivir-associated AKI in COVID-19 patients. More RCTs should be performed on this topic in the future.

Limitations

Our systematic review had some limitations. First, most of the studies included were retrospective cross-sectional studies, although the majority of them (65%) were of high quality. Second, the systematic review was performed using studies with single groups, leading to greater heterogeneity. There was statistically significant heterogeneity in the systematic review of the incidence of AKI in COVID-19 patients. The diversity of the included studies, which involved different disease stages or activities, ages, ethnicities and sexes, might also be associated with the heterogeneity. Although we performed subgroup analyses, the results still had significant heterogeneity. As COVID-19 is a new and unknown infectious disease, our review could only summarize the studies that have already been published on this topic. The potential bias in the reported COVID-19 patients means that they may not represent all of the patients hospitalized with COVID-19 worldwide. Third, there were few original studies (n<10) that could be included in the systematic review of the incidence of AKI in hospitalized COVID-19 patients being treated with remdesivir. Finally, since investigations of COVID-19 are ongoing, additional clinical data are expected to be published.

Conclusion

According to our study, AKI is common in hospitalized COVID-19 patients. The incidence of AKI could be associated with age, disease severity and ethnicity. Remdesivir probably does not induce AKI in COVID-19 patients. Our systematic review demonstrated the clinical characteristics of AKI in COVID-19 patients, providing evidence that AKI might be closely associated with SARS-CoV-2 infection, which should be assessed in future studies.

Abbreviations

AKI: acute kidney injury
COVID-19: Coronavirus disease 2019
CRRT: Continuous renal replacement therapy
ICU: Intensive care unit
SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2
EV: Ebola virus
RCTs: Randomized controlled trials

Declarations

Ethics approval

This study was approved by the institutional review board of Sun Yat-sen University.
Consent to publication
Not applicable.

Availability of data and materials
The datasets used and/or analysed during the current study are available from the corresponding author upon reasonable request.

Competing interests
All of the authors declare that they have no competing interests.

Funding
This work was in part supported by grants from the National Natural Science Foundation of China (General Program: 81870481), the Sun Yat-Sen Clinical Research Cultivating Program (SYS-C-201905) and the Medical Scientific Research Foundation of Guangdong Province of China (A2020431).

Author Contributions
Concept and design: AX and JC.
Acquisition, analysis, or interpretation of data: ZX and JC.
Drafting of the manuscript: ZX and YT.
Critical revision of the manuscript: AX and JC.
Statistical analysis: QH, SF, XL and BL.

Acknowledgements
The authors appreciate the assistance of all participants.

References
1. Johns Hopkins Coronavirus Resource Center. https://coronavirus.jhu.edu/
2. Cummings MJ, Baldwin MR, Abrams D, Jacobson SD, Meyer BJ, Balough EM, Aaron JG, Claassen J, Rabbani LE, Hastie J, et al. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study. Lancet. 2020; 395(10239):1763-70.
3. Chu KH, Tsang WK, Tang CS, Lam MF, Lai FM, To KF, Fung KS, Tang HL, Yan WW, Chan HW, et al. Acute renal impairment in coronavirus-associated severe acute respiratory syndrome. Kidney Int. 2005; 67(2):698-705.
4. Batlle D, Soler MJ, Sparks MA, Hiremath S, South AM, Welling PA, Swaminathan Acute Kidney Injury in COVID-19: Emerging Evidence of a Distinct Pathophysiology. J Am Soc Nephrol. 2020; 31(7):1380-3.
5. Hirsch JS, Ng JH, Ross DW, Sharma P, Shah HH, Barnett RL, Hazzan AD, Fishbane S, Jhaveri KD, Northwell C-Rc, et al. Acute kidney injury in patients hospitalized with COVID-19. Kidney Int. 2020; 98(1):209-18.
6. Cheng Y, Luo R, Wang K, Zhang M, Wang Z, Dong L, Li J, Yao Y, Ge S, Xu G. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int. 2020; 97(5):829-38.
7. Forest SJ, Michler RE, Skendelas JP, DeRose JJ, Friedmann P, Parides MK, Forest SK, Chauhan D, Goldstein D.J. De Novo Renal Failure and Clinical Outcomes of Patients With Critical Coronavirus Disease 2019. Crit Care Med. 2020.
8. Sheahan TP, Sims AC, Leist SR, Schafer A, Won J, Brown AJ, Montgomery SA, Hogg A, Babusis D, Clarke MO, et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun. 2020; 11(1):222.

9. Mulangu S, Dodd LE, Davey RT, Jr., Tshianyi Mbaya O, Proschman M, Mukadi D, Lusakibanza Manzo M, Nzolo D, Tshomba Oloma A, Ibanda A, et al. A Randomized, Controlled Trial of Ebola Virus Disease Therapeutics. N Engl J Med. 2019; 381(24):2293-303.

10. Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, Shi Z, Hu Z, Zhong W, Xiao G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020; 30(3):269-71.

11. Sheahan TP, Sims AC, Zhou S, Graham RL, Prijssers AJ, Agostini ML, Leist SR, Schafer A, Dinnon KH, 3rd, Stevens LJ, et al. An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. Sci Transl Med. 2020; 12(541).

12. Lim S, DeBruin DA, Leider JP, Sederstrom N, Lynfield R, Baker JV, Kline S, Kesler S, Rizza S, Wu J, et al. Developing an Ethics Framework for Allocating Remdesivir in the COVID-19 Pandemic. Mayo Clin Proc. 2020; 95(9):1946-54.

13. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, Liu J, Shan H, Lei CL, Hui DSC, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020; 382(18):1708-20.

14. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395(10223):497-506.

15. Shi S, Qin M, Shen B, Cai Y, Liu T, Yang F, Gong W, Liu X, Liang J, Zhao Q, et al. Association of Cardiac Injury With Mortality in Hospitalized Patients With COVID-19 in Wuhan, China. JAMA Cardiol. 2020; 5(7):802-10.

16. Wang L, Li X, Chen H, Yan S, Li D, Li Y, Gong Z. Coronavirus Disease 19 Infection Does Not Result in Acute Kidney Injury: An Analysis of 116 Hospitalized Patients from Wuhan, China. Am J Nephrol. 2020; 51(5):343-8.

17. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, Wang B, Xiang H, Cheng Z, Xiong Y, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020; 323(11):1061-9.

18. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020; 395(10229):1054-62.

19. Wang D, Yin Y, Hu C, Liu X, Zhang X, Zhou S, Jian M, Xu H, Prowle J, Hu B, et al. Clinical course and outcome of 107 patients infected with the novel coronavirus, SARS-CoV-2, discharged from two hospitals in Wuhan, China. Crit Care. 2020; 24(1):188.

20. Chen T, Wu D, Chen H, Yan W, Yang D, Chen G, Ma K, Xu D, Yu H, Wang H, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ. 2020; 368:m1091.

21. Li X, Xu S, Yu M, Wang K, Tao Y, Zhou Y, Shi J, Zhou M, Wu B, Yang Z, et al. Risk factors for severity and mortality in adult COVID-19 inpatients in Wuhan. J Allergy Clin Immunol. 2020; 146(1):110-8.

22. Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, Wu Y, Zhang L, Yu Z, Fang M, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020; 8(5):475-81.

23. Yu Y, Xu D, Fu S, Zhang J, Yang X, Xu L, Xu J, Wu Y, Huang C, Ouyang Y, et al. Patients with COVID-19 in 19 ICUs in Wuhan, China: a cross-sectional study. Crit Care. 2020; 24(1):219.

24. Hong KS, Lee KH, Chung JH, Shin KC, Choi EY, Jin HJ, Jang JG, Lee W, Ahn JH. Clinical Features and Outcomes of 98 Patients Hospitalized with SARS-CoV-2 Infection in Daegu, South Korea: A Brief Descriptive Study. Yonsei Med J. 2020; 61(5):431-7.

25. Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, the Northwell C-RC, Barnaby DP, Becker LB, Chelico JD, et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the
26. Ferguson J, Rosser JI, Quintero O, Scott J, Subramanian A, Gumma M, Rogers A, Kappagoda S. Characteristics and Outcomes of Coronavirus Disease Patients under Nonsurge Conditions, Northern California, USA, March-April 2020. Emerg Infect Dis. 2020; 26(8):1679-85.

27. Arentz M, Yim E, Klaff L, Lokhandwala S, Riedo FX, Chong M, Lee M. Characteristics and Outcomes of 21 Critically Ill Patients With COVID-19 in Washington State. JAMA. 2020; 323(16):1612-4.

28. Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS, Kalil AC, Hohmann E, Chu HY, Luetkemeyer A, Kline S, et al. Remdesivir for the Treatment of Covid-19- Final Report. N Engl J Med. 2020; 383(19):1813-26.

29. Antinori S, Cossu MV, Ridolfo AL, Rech R, Bonazzetti C, Pagani G, Gubertini G, Coen M, Magni C, Castelli A, et al. Compassionate remdesivir treatment of severe Covid-19 pneumonia in intensive care unit (ICU) and Non-ICU patients: Clinical outcome and differences in post-treatment hospitalisation status. Pharmacol Res. 2020; 158:104899.

30. Grein J, Ohmagari N, Shin D, Diaz G, Asperges E, Castagna A, Feldt D, Green G, Green ML, Lescure FX, et al. Compassionate Use of Remdesivir for Patients with Severe Covid-19. N Engl J Med. 2020; 382(24):2327-36.

31. Wang Y, Zhou F, Zhang D, Zhao J, Du R, Hu Y, Cheng Z, Gao L, Jin Y, Luo G, et al. Evaluation of the efficacy and safety of intravenous remdesivir in adult patients with severe COVID-19: study protocol for a phase 3 randomized, double-blind, placebo-controlled, multicentre trial. Trials. 2020; 21(1):422.

32. Goldman JD, Lye DCB, Hui DS, Marks KM, Bruno R, Montejano R, Spinner CD, Galli M, Ahn MY, Nahass RG, et al. Remdesivir for 5 or 10 Days in Patients with Severe Covid-19. N Engl J Med. 2020; 383(19):1827-37.

33. Raza A, Estepa A, Chan V, Jafar MS. Acute Renal Failure in Critically Ill COVID-19 Patients With a Focus on the Role of Renal Replacement Therapy: A Review of What We Know So Far. Cureus. 2020; 12(6):e8429.

34. Lin L, Wang X, Ren J, Sun Y, Yu R, Li K, Zheng L, Yang J. Risk factors and prognosis for COVID-19-induced acute kidney injury: a meta-analysis. BMJ Open. 2020; 10(11):e042573.

35. Pei G, Zhang Z, Peng J, Liu L, Zhang C, Yu C, Ma Z, Huang Y, Liu W, Yao Y, et al. Renal Involvement and Early Prognosis in Patients with COVID-19 Pneumonia. J Am Soc Nephrol. 2020; 31(6):1157-65.

36. Ronco C, Bellomo R, Kellum JA. Acute kidney injury. Lancet. 2019; 394(10212):1949-64.

37. Khwaaja A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract. 2012; 120(4):c179-84.

38. Gameiro J, Fonseca JA, Outerelo C, Lopes JA. Acute Kidney Injury: From Diagnosis to Prevention and Treatment Strategies. J Clin Med. 2020; 9(6).

39. Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS, Mehra MR, Schuepbach RA, Ruschitzka F, Moch H. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020; 395(10234):1417-8.

40. Su H, Yang M, Wan C, Yi LX, Tang F, Zhu HY, Yi F, Yang HC, Fogo AB, Nie X, et al. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney Int. 2020; 98(1):219-27.

41. Farkash EA, Wilson AM, Jentzen JM. Ultrastructural Evidence for Direct Renal Infection with SARS-CoV-2. J Am Soc Nephrol. 2020; 31(8):1683-7.

42. Jing QL, Liu MJ, Zhang ZB, Fang LQ, Yuan J, Zhang AR, Dean NE, Luo L, Ma MM, Longini I, et al. Household secondary attack rate of COVID-19 and associated determinants in Guangzhou, China: a retrospective cohort study. Lancet Infect Dis. 2020; 20(10):1141-50.
43. Collaborative CO. Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study. Lancet. 2020; 396(10243):27-38.

44. Thongprayoon C, Hansrivijit P, Kovvuru K, Kanduri SR, Torres-Ortiz A, Acharya P, Gonzalez-Suarez ML, Kaewput W, Bathini T, Cheungpasitporn W. Diagnostics, Risk Factors, Treatment and Outcomes of Acute Kidney Injury in a New Paradigm. J Clin Med. 2020; 9(4).

45. Demirjian S. Race, class, and AKI. J Am Soc Nephrol. 2014; 25(8):1615-7.

46. Price-Haywood EG, Burton J, Fort D, Seoane L. Hospitalization and Mortality among Black Patients and White Patients with Covid-19. N Engl J Med. 2020; 382(26):2534-43.

47. Portoles J, Marques M, Lopez-Sanchez P, de Valdenebro M, Munez E, Serrano ML, Malo R, Garcia E, Cuervas V. Chronic kidney disease and acute kidney injury in the COVID-19 Spanish outbreak. Nephrol Dial Transplant. 2020; 35(8):1353-61.

48. Cai C, Qiu G, Hong W, Shen Y, Gong X. Clinical effect and safety of continuous renal replacement therapy in the treatment of neonatal sepsis-related acute kidney injury. BMC Nephrol. 2020; 21(1):286.

49. Chen G, Zhou Y, Ma J, Xia P, Qin Y, Li X. Is there a role for blood purification therapies targeting cytokine storm syndrome in critically severe COVID-19 patients? Ren Fail. 2020; 42(1):483-8.

50. Antinori S, Bonazzetti C, Gubertini G, Capetti A, Pagani C, Morena V, Rimoldi S, Galimberti L, Sarzi-Puttini P, Ridolfo AL. Tocilizumab for cytokine storm syndrome in COVID-19 pneumonia: an increased risk for candidemia? Autoimmun Rev. 2020; 19(7):102564.

51. Neveu H, Kleinknecht D, Brivet F, Loirat P, Landais P. Prognostic factors in acute renal failure due to sepsis. Results of a prospective multicentre study. The French Study Group on Acute Renal Failure. Nephrol Dial Transplant. 1996; 11(2):293-9.

52. Zavras P, Su Y, Fang J, Stem A, Gupta N, Tang Y, Raval A, Giralt S, Perales MA, Jakubowski AA, et al. Impact of Preemptive Therapy for Cytomegalovirus on Toxicities after Allogeneic Hematopoietic Cell Transplantation in Clinical Practice: A Retrospective Single-Center Cohort Study. Biol Blood Marrow Transplant. 2020;26(8):1482-91.

53. Maan R, Al Marzooqi SH, Clar JS, Karkada J, Cerocchi O, Kowgier M, Harrell SM, Rhodes KD, Janssen HLA, Feld JJ, et al. The frequency of acute kidney injury in patients with chronic hepatitis C virus infection treated with sofosbuvir-based regimens. Aliment Pharmacol Ther. 2017; 46(1):46-55.

54. Xing W, Gu L, Zhang X, Xu J, Lu H. A metabolic profiling analysis of the nephrotoxicity of acyclovir in rats using ultra performance liquid chromatography/mass spectrometry. Environ Toxicol Pharmacol. 2016; 46:234-40.

55. Izzedine H, Launay-Vacher V, Deray G. Antiviral drug-induced nephrotoxicity. Am J Kidney Dis. 2005; 45(5):804-17.

56. Williamson BN, Feldmann F, Schwarz B, Meade-White K, Porter DP, Schulz J, van Doremalen N, Leighton I, Yinda CK, Perez-Perez L, et al. Clinical benefit of remdesivir in rhesus macaques infected with SARS-CoV-2. Nature. 2020; 585(7824):273-6.

57. Ackley TW, Mcmanus D, Topal JE, Cicili B, Shah S. A Valid Warning or Clinical Lore: An Evaluation of Safety Outcomes of Remdesivir in Patients with Impaired Renal Function from a Multicenter Matched Cohort. Anti-microb Agents Chemother. 2020; AAC.02290-20.

Tables

Table 1. Characteristics of the studies included in the analysis of the incidence of AKI in hospitalized COVID-19 patients
Study	Year	Country	Design	Sample size	Age (median/mean)	Male (%)	The diagnosis criteria of AKI	Department	Quality score
Yichun Cheng⁶	2020	China, Wuhan	Retrospective Cross-sectional study	701	63	52.4%	2012 KDIGO criteria Stage 1 (n=13); Stage 2 (n=9); Stage 3 (n=14)	Hospitalized Patients	AHRQ 8
Weijie Guan¹³	2020	China, Wuhan	Retrospective Cross-sectional study	1099	47	58.1%	2012 KDIGO criteria	Hospitalized Patients	AHRQ 9
Chaolin Huang¹⁴	2020	China, Wuhan	Retrospective Cross-sectional study	41	49	73.0%	2012 KDIGO criteria CRRT 3(7%)	Hospitalized Patients	AHRQ 8
Shaobo Shi¹⁵	2020	China, Wuhan	Retrospective Cross-sectional study	416	64	49.7%	2012 KDIGO criteria	Hospitalized Patients	AHRQ 9
Liwen Wang¹⁶	2020	China, Wuhan	Retrospective Cross-sectional study	116	54	57.8%	2012 KDIGO criteria	Hospitalized Patients	AHRQ 6
Dawei Wang¹⁷	2020	China, Wuhan	Retrospective Cross-sectional study	138	56	54.3%	2012 KDIGO criteria CRRT 2(1.45%)	Hospitalized Patients	AHRQ 8
Fei Zhou¹⁸	2020	China, Wuhan	Retrospective Cross-sectional study	191	56	62.0%	2012 KDIGO criteria CRRT 10(5%)	Hospitalized Patients	AHRQ 8
Dawei Wang¹⁹	2020	China, Wuhan	Retrospective Cross-sectional study	107	51	53.3%	2012 KDIGO criteria	Hospitalized Patients	AHRQ 7
Tao Chen²⁰	2020	China, Wuhan	Retrospective Cross-sectional study	274	62.0	62.4%	2012 KDIGO criteria CRRT 3(1%)	Hospitalized Patients	AHRQ 8
Xiaochen Li²¹	2020	China, Wuhan	Retrospective Cross-sectional study	548	60	50.9%	2012 KDIGO criteria CRRT 2(0.4%)	Hospitalized Patients	AHRQ 8
Xiaobo Yang²²	2020	China, Wuhan	Retrospective Cross-sectional study	52	51.9	70%	2012 KDIGO criteria CRRT 9(17%)	ICU Patients	AHRQ 7
Yuan Yu²³	2020	China, Wuhan	Retrospective Cross-sectional study	226	64	61.5%	2012 KDIGO criteria Stage 1 (n=23); Stage 2 (n=12); Stage 3 (n=22)	ICU Patients	AHRQ 7
KyungSoo Hong²⁴	2020	Korea, Daegu	Retrospective Cross-sectional study	98	55.4	38.8%	2012 KDIGO criteria	Hospitalized Patients	AHRQ 6
Saliya Richardson²⁵	2020	USA, New York	Retrospective Cross-sectional study	5700	63	60.3%	2012 KDIGO criteria CRRT 81(3.2%)	Hospitalized Patients	AHRQ 8
Jaime S. Hirsch³	2020	USA, New York	Retrospective Cross-sectional study	5449	64.0	60.9%	2012 KDIGO	Hospitalized Patients	AHRQ 8
Study	COVID-19 patients	Proportion/OR (95%CI)	Study heterogeneity						
-------	------------------	-----------------------	---------------------						
No.	No.		Chi-square test						
			df						
			i²						
			Peter’s test (P value)						

Table 2. Results of the systematic review of the incidence of AKI and the proportion of patients who needed CRRT among all COVID-19 patients

The incidence of AKI in COVID-19 patients

Study No.	COVID-19 patients	Proportion/OR (95%CI)	Study heterogeneity
22	16199	0.10(0.07-0.12)	0.26
			21
			97%
			0.18

The incidence of CRRT in COVID-19 patients

Study No.	COVID-19 patients	Proportion/OR (95%CI)	Study heterogeneity
12	12633	0.04(0.03-0.06)	0.17
			11
			84%
			0.24
Figure 1

Flow diagram of studies identified, included, and excluded
Figure 2

Forest plot of the incidence of AKI in COVID-19 patients
Figure 3

Forest plot of the incidence of CRRT in COVID-19 patients. A total of 12,633 COVID-19 patients in 12 studies were included. I² > 50% indicated the heterogeneity existed between studies. The random-effects model was used to combine the data. The pooled estimated incidence of CRRT in all hospitalized COVID-19 patients was 4% (95% CI: 3-6%).

Figure 4

Forest plot of the incidence of AKI in remdesivir or no remdesivir subgroup in COVID-19 patients. A total of 972 COVID-19 patients in 5 studies were included in the remdesivir subgroup, and 15,227 patients were included in the no remdesivir subgroup. The pooled estimated incidence of AKI in COVID-19 patients being treated with remdesivir was 7% (95% CI: 3%-13%). In the no remdesivir subgroup of COVID-19 patients, the incidence of AKI was 10% (95% CI: 8%-13%).

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- SupplementaryFigure1.pdf
- SupplementaryFigure2.pdf
• SupplementaryFigure3.pdf
• SupplementaryFigure4.pdf
• SupplementaryFigure5.pdf
• PRISMA2009checklist.doc