Every function is the representation function of an additive basis for the integers

Melvyn B. Nathanson†
Department of Mathematics
Lehman College (CUNY)
Bronx, New York 10468
Email: nathansn@alpha.lehman.cuny.edu

Abstract

Let \(A \) be a set of integers. For every integer \(n \), let \(r_{A,h}(n) \) denote the number of representations of \(n \) in the form \(n = a_1 + a_2 + \cdots + a_h \), where \(a_1, a_2, \ldots, a_h \in A \) and \(a_1 \leq a_2 \leq \cdots \leq a_h \). The function

\[
r_{A,h} : \mathbb{Z} \rightarrow \mathbb{N}_0 \cup \{\infty\}
\]

is the representation function of order \(h \) for \(A \). The set \(A \) is called an asymptotic basis of order \(h \) if \(r_{A,h}^{-1}(0) \) is finite, that is, if every integer with at most a finite number of exceptions can be represented as the sum of exactly \(h \) not necessarily distinct elements of \(A \). It is proved that every function is a representation function, that is, if \(f : \mathbb{Z} \rightarrow \mathbb{N}_0 \cup \{\infty\} \) is any function such that \(f^{-1}(0) \) is finite, then there exists a set \(A \) of integers such that \(f(n) = r_{A,h}(n) \) for all \(n \in \mathbb{Z} \). Moreover, the set \(A \) can be arbitrarily sparse in the sense that, if \(\varphi(x) \geq 0 \) for \(x \geq 0 \) and \(\varphi(x) \rightarrow \infty \), then there exists a set \(A \) with \(f(n) = r_{A,h}(n) \) and \(\text{card} \{ a \in A : |a| \leq x \} < \varphi(x) \) for all \(x \).

It is an open problem to construct dense sets of integers with a prescribed representation function. Other open problems are also discussed.

1 Additive bases and the Erdős-Turán conjecture

Let \(\mathbb{N}, \mathbb{N}_0, \) and \(\mathbb{Z} \) denote the positive integers, nonnegative integers, and integers, respectively. Let \(A \) be a set of integers. For every positive integer \(h \), we define the sumset

\[
hA = \{a_1 + \cdots + a_h : a_i \in A \text{ for all } i = 1, \ldots, h\}.
\]

*2000 Mathematics Subject Classification: 11B13, 11B34, 11B05. Key words and phrases. Additive bases, sumsets, representation functions, density, Erdős-Turán conjecture, Sidon set.

†This work was supported in part by grants from the NSA Mathematical Sciences Program and the PSC-CUNY Research Award Program.
We denote by \(r_{A,h}(n) \) the number of representations of \(n \) in the form \(n = a_1 + a_2 + \cdots + a_h \), where \(a_1, a_2, \ldots, a_h \in A \) and \(a_1 \leq a_2 \leq \cdots \leq a_h \). The function \(r_{A,h} \) is called the representation function of order \(h \) of the set \(A \).

We denote the cardinality of the set \(A \) by \(\text{card}(A) \). If \(A \) is a finite set of integers, we denote the maximum element of \(A \) by \(\max(A) \). For any integer \(t \) and set \(A \subseteq \mathbb{Z} \), we define the translate

\[
t + A = \{ t + a : a \in A \}.
\]

In this paper we consider additive bases for the set of all integers. The set \(A \) of integers is called a basis of order \(h \) for \(\mathbb{Z} \) if every integer can be represented as the sum of \(h \) not necessarily distinct elements of \(A \). The set \(A \) of integers is called an asymptotic basis of order \(h \) for \(\mathbb{Z} \) if every integer with at most a finite number of exceptions can be represented as the sum of \(h \) not necessarily distinct elements of \(A \). Equivalently, the set \(A \) is an asymptotic basis of order \(h \) if the representation function \(r_{A,h} : \mathbb{Z} \to \mathbb{N}_0 \cup \{ \infty \} \) satisfies the condition

\[
\text{card} \left(r_{A,h}^{-1}(0) \right) < \infty.
\]

For any set \(X \), let \(\mathcal{F}_0(X) \) denote the set of all functions

\[
f : X \to \mathbb{N}_0 \cup \{ \infty \}
\]

such that

\[
\text{card} \left(f^{-1}(0) \right) < \infty.
\]

We ask: Which functions in \(\mathcal{F}_0(\mathbb{Z}) \) are representation functions of asymptotic bases for the integers? This question has a remarkably simple and surprising answer. In the case \(h = 1 \) we observe that \(f \in \mathcal{F}_0(\mathbb{Z}) \) is a representation function if and only if \(f(n) = 1 \) for all integers \(n \notin f^{-1}(0) \). For \(h \geq 2 \) we shall prove that every function in \(\mathcal{F}_0(\mathbb{Z}) \) is a representation function. Indeed, if \(f \in \mathcal{F}_0(\mathbb{Z}) \) and \(h \geq 2 \), then there exist infinitely many sets \(A \) such that \(f(n) = r_{A,h}(n) \) for every \(n \in \mathbb{Z} \). Moreover, we shall prove that we can construct arbitrarily sparse asymptotic bases \(A \) with this property. Nathanson \[7\] previously proved this theorem for \(h = 2 \) and the function \(f(n) = 1 \) for all \(n \in \mathbb{Z} \).

This result about asymptotic bases for the integers contrasts sharply with the case of the nonnegative integers. The set \(A \) of nonnegative integers is called an asymptotic basis of order \(h \) for \(\mathbb{N}_0 \) if every sufficiently large integer can be represented as the sum of \(h \) not necessarily distinct elements of \(A \). Very little is known about the class of representation functions of asymptotic bases for \(\mathbb{N}_0 \). However, if \(f \in \mathcal{F}_0(\mathbb{N}_0) \), then Nathanson \[13\] proved that there exists at most one set \(A \) such that \(r_{A,h}(n) = f(n) \).

Many of the results that have been proved about asymptotic bases for \(\mathbb{N}_0 \) are negative. For example, Dirac \[2\] showed that the representation function of an asymptotic basis of order 2 cannot be eventually constant. Erdős and Fuchs \[4\] proved that the average value of a representation function of order 2
cannot even be approximately constant, in the sense that, for every infinite set A of nonnegative integers and every real number $c > 0$,

$$\sum_{n \leq N} r_{A,2}(n) \neq cN + o\left(N^{1/4} \log^{-1/2} N\right).$$

Erdős and Turán [3] conjectured that if A is an asymptotic basis of order h for the nonnegative integers, then the representation function $r_{A,h}(n)$ must be unbounded, that is,

$$\limsup_{n \to \infty} r_{A,h}(n) = \infty.$$

This famous unsolved problem in additive number theory is only a special case of the general problem of classifying the representation functions of asymptotic bases of finite order for the nonnegative integers.

2 Two lemmas

We use the following notation. For sets A and B of integers and for any integer t, we define the sumset

$$A + B = \{a + b : a \in A, b \in B\},$$

the translation

$$A + t = \{a + t : a \in A\},$$

and the difference set

$$A - B = \{a - b : a \in A, b \in B\}.$$

For every nonnegative integer h we define the h-fold sumset hA by induction:

$$0A = \{0\},$$

$$hA = A + (h-1)A = \{a_1 + a_2 + \ldots + a_h : a_1, a_2, \ldots, a_h \in A\}.$$

The counting function for the set A is

$$A(y, x) = \text{card}\{a \in A : y \leq a \leq x\}.$$

In particular, $A(-x, x)$ counts the number of integers $a \in A$ with $|a| \leq x$.

Let $[x]$ denote the integer part of the real number x.

Lemma 1 Let $f : \mathbb{Z} \to \mathbb{N}_0 \cup \{\infty\}$ be a function such that $f^{-1}(0)$ is finite. Let Δ denote the cardinality of the set $f^{-1}(0)$. Then there exists a sequence $U = \{u_k\}_{k=1}^\infty$ of integers such that, for every $n \in \mathbb{Z}$ and $k \in \mathbb{N}$,

$$f(n) = \text{card}\{k \geq 1 : u_k = n\}$$

and

$$|u_k| \leq \left\lfloor \frac{k + \Delta}{2} \right\rfloor.$$

3
Proof. Every positive integer m can be written uniquely in the form

$$m = s^2 + s + 1 + r,$$

where s is a nonnegative integer and $|r| \leq s$. We construct the sequence

$$V = \{0, -1, 0, 1, -2, -1, 0, 1, 2, -3, -2, -1, 0, 1, 2, 3, \ldots \}$$

where

$$v_{s^2+s+1+r} = r \quad \text{for } |r| \leq s.$$

For every nonnegative integer k, the first occurrence of $-k$ in this sequence is $v_{k^2} = -k$, and the first occurrence of k in this sequence is $v_2^2 = k$.

The sequence U will be the unique subsequence of V constructed as follows. Let $n \in \mathbb{Z}$. If $f(n) = \infty$, then U will contain the terms $v_{s^2+s+1+n}$ for every $s \geq |n|$. If $f(n) = \ell < \infty$, then U will contain the ℓ terms $v_{s^2+s+1+n}$ for $s = |n|, |n| + 1, \ldots, |n| + \ell - 1$ in the subsequence U, but not the terms $v_{s^2+s+1+n}$ for $s \geq |n| + \ell$. Let $m_1 < m_2 < m_3 < \cdots$ be the strictly increasing sequence of positive integers such that $\{v_{m_k}\}_{k=1}^\infty$ is the resulting subsequence of V. Let $U = \{u_k\}_{k=1}^\infty$, where $u_k = v_{m_k}$. Then

$$f(n) = \text{card}(\{k \geq 1 : u_k = n\}).$$

Let $\text{card}(f^{-1}(0)) = \Delta$. The sequence U also has the following property: If $|u_k| = n$, then for every integer $m \notin f^{-1}(0)$ with $|m| < n$ there is a positive integer $j < k$ with $u_j = m$. It follows that

$$\{0, 1, -1, 2, -2, \ldots, n - 1, -(n - 1)\} \setminus f^{-1}(0) \subseteq \{u_1, u_2, \ldots, u_{k-1}\},$$

and so

$$k - 1 \geq 2(n - 1) + 1 - \Delta.$$

This implies that

$$|u_k| = n \leq \frac{k + \Delta}{2}.$$

Since u_k is an integer, we have

$$|u_k| \leq \left[\frac{k + \Delta}{2} \right].$$

This completes the proof. □

Lemma 1 is best possible in the sense that for every nonnegative integer Δ there is a function $f: \mathbb{Z} \to \mathbb{N}_0 \cup \{\infty\}$ with $\text{card}(f^{-1}(0)) = \Delta$ and a sequence $U = \{u_k\}_{k=1}^\infty$ of integers such that

$$|u_k| = \left[\frac{k + \Delta}{2} \right] \quad \text{for all } k \geq 1. \quad (1)$$
For example, if $\Delta = 2\delta + 1$ is odd, define the function f by

$$f(n) = \begin{cases}
0 & \text{if } |n| \leq \delta \\
1 & \text{if } |n| \geq \delta + 1
\end{cases}$$

and the sequence U by

$$u_{2i-1} = \delta + i,$$
$$u_{2i} = -(\delta + i)$$

for all $i \geq 1$.

If $\Delta = 2\delta$ is even, define f by

$$f(n) = \begin{cases}
0 & \text{if } -\delta \leq n \leq \delta - 1 \\
1 & \text{if } n \geq \delta \text{ or } n \leq -\delta - 1
\end{cases}$$

and the sequence U by $u_1 = \delta$ and

$$u_{2i} = \delta + i,$$
$$u_{2i+1} = -(\delta + i)$$

for all $i \geq 1$. In both cases the sequence U satisfies (1).

The set A is called a **Sidon set of order h** if $r_{A,h}(n) = 0$ or 1 for every integer n. If A is a Sidon set of order h, then A is a Sidon set of order j for all $j = 1, 2, \ldots, h$.

Lemma 2 Let A be a finite Sidon set of order h and $d = \max\{|a| : a \in A\}$. If $|c| > (2h - 1)d$, then $A \cup \{c\}$ is also a Sidon set of order h.

Proof. Let $n \in h(A \cup \{c\})$. Suppose that

$$n = a_1 + \cdots + a_j + (h-j)c = a'_1 + \cdots + a'_\ell + (h-\ell)c,$$

where

$$0 \leq j \leq \ell \leq h,$$
$$a_1, \ldots, a_j, a'_1, \ldots, a'_\ell \in A,$$

and

$$a_1 \leq \cdots \leq a_j \quad \text{and} \quad a'_1 \leq \cdots \leq a'_\ell.$$

If $j < \ell$, then

$$|c| \leq |(\ell-j)c|$$
$$= |a'_1 + \cdots + a'_\ell - (a_1 + \cdots + a_j)|$$
$$\leq (\ell + j)d$$
$$\leq (2h - 1)d$$
$$< |c|,$$

which is absurd. Therefore, $j = \ell$ and $a_1 + \cdots + a_j = a'_1 + \cdots + a'_\ell$. Since A is a Sidon set of order j, it follows that $a_i = a'_i$ for all $i = 1, \ldots, j$. Consequently, $A \cup \{c\}$ is a Sidon set of order h. □
3 Construction of asymptotic bases

We can now construct asymptotic bases of order h for the integers with arbitrary representation functions.

Theorem 1 Let $f : \mathbb{Z} \to \mathbb{N}_0 \cup \{\infty\}$ be a function such that the set $f^{-1}(0)$ is finite. Let $\varphi : \mathbb{N}_0 \to \mathbb{R}$ be a nonnegative function such that $\lim_{x \to \infty} \varphi(x) = \infty$. For every $h \geq 2$ there exist infinitely many asymptotic bases A of order h for the integers such that

$$r_{A,h}(n) = f(n) \quad \text{for all } n \in \mathbb{Z},$$

and

$$A(-x,x) \leq \varphi(x)$$

for all $x \geq 0$.

Proof. By Lemma 1 there is a sequence $U = \{u_k\}_{k=1}^\infty$ of integers such that

$$f(n) = \text{card}\left(\{k \geq 1 : u_k = n\}\right)$$

for every integer n.

Let $h \geq 2$. We shall construct an ascending sequence of finite sets $A_1 \subseteq A_2 \subseteq A_3 \subseteq \cdots$ such that, for all positive integers k and for all integers n,

(i)$$r_{A_k,h}(n) \leq f(n),$$

(ii)$$r_{A_k,h}(n) \geq \text{card}\left(\{i : 1 \leq i \leq k \text{ and } u_i = n\}\right),$$

(iii)$$\text{card}(A_k) \leq 2k,$$

(iv)$$A_k \text{ is a Sidon set of order } h-1.$$ Conditions (i) and (ii) imply that the infinite set

$$A = \bigcup_{k=1}^{\infty} A_k$$

is an asymptotic basis of order h for the integers such that $r_{A,h}(n) = f(n)$ for all $n \in \mathbb{Z}$.

We construct the sets A_k by induction. Since the set $f^{-1}(0)$ is finite, there exists an integer d_0 such that $f(n) \geq 1$ for all integers n with $|n| \geq d_0$. If $u_1 \geq 0$, choose a positive integer $c_1 > 2hd_0$. If $u_1 < 0$, choose a negative integer $c_1 < -2hd_0$. Then

$$|c_1| > 2hd_0.$$
Let
\[A_1 = \{-c_1, (h-1)c_1 + u_1\}. \]
The sumset \(hA_1 \) is the finite arithmetic progression
\[
hA_1 = \{-hc_1 + (hc_1 + u_1)i : i = 0, 1, \ldots, h\}
\[
= \{-hc_1, u_1, hc_1 + 2u_1, 2hc_1 + 3u_1, \ldots, (h-1)hc_1 + hu_1\}.
\]
Then \(|n| \geq hc_1 > d_0\) for all \(n \in hA_1 \setminus \{u_1\} \), and so
\[
r_{A_1,h}(n) = 1 \leq f(n)
\]
for all \(n \in hA_1 \). It follows that \(r_{A_1,h}(n) \leq f(n) \) for all \(n \in \mathbb{Z} \). The set \(A_1 \) is a Sidon set of order \(h \), hence also a Sidon set of order \(h - 1 \). Thus, the set \(A_1 \) satisfies conditions (i)–(iv).

We assume that for some integer \(k \geq 2 \) we have constructed a set \(A_{k-1} \) satisfying conditions (i)–(iv). If
\[
r_{A_{k-1},h}(u_k) = \text{card} \left(\{i : 1 \leq i \leq k \text{ and } u_i = u_k\} \right) - 1 < f(u_k).
\]
We shall construct a Sidon set \(A_k \) of order \(h - 1 \) such that
\[
\text{card}(A_k) = \text{card}(A_{k-1}) + 2
\]
and
\[
r_{A_k,h}(n) = \begin{cases}
r_{A_{k-1},h}(n) + 1 & \text{if } n = u_k \\
r_{A_{k-1},h}(n) & \text{if } n \in hA_{k-1} \setminus \{u_k\} \\
1 & \text{if } n \in hA_k \setminus (hA_{k-1} \cup \{u_k\}). \end{cases} \tag{2}
\]
Define the integer
\[
d_{k-1} = \max \left(\{|a| : a \in A_{k-1} \cup \{u_k\}\} \right). \tag{3}
\]
Then
\[
A_{k-1} \subseteq [-d_{k-1}, d_{k-1}].
\]
If \(u_k \geq 0 \), choose a positive integer \(c_k \) such that \(c_k > 2hd_{k-1} \). If \(u_k < 0 \), choose a negative integer \(c_k \) such that \(c_k < -2hd_{k-1} \). Then
\[
|c_k| > 2hd_{k-1}. \tag{4}
\]
Let
\[
A_k = A_{k-1} \cup \{-c_k, (h-1)c_k + u_k\}.
\]
Then
\[
\text{card}(A_k) = \text{card}(A_{k-1}) + 2 \leq 2k.
\]

We shall assume that \(u_k \geq 0 \), hence \(c_k > 0 \). (The argument in the case \(u_k < 0 \) is similar.) We decompose the sumset \(hA_k \) as follows:

\[
hA_k = \bigcup_{r+i+j=h, \ r,i,j \geq 0} (r(h-1)c_k + ru_k - ic_k + jA_{k-1}) = \bigcup_{r=0}^h B_r,
\]

where

\[
B_r = r(h-1)c_k + ru_k + \bigcup_{i=0}^{h-r} (-ic_k + (h - r - i)A_{k-1}).
\]

If \(n \in B_r \), then there exist integers \(i \in \{0, 1, \ldots, h-r\} \) and \(y \in (h-r-i)A_{k-1} \) such that

\[
n = r(h-1)c_k + ru_k - ic_k + y.
\]

Since

\[
|y| \leq (h-r-i)d_{k-1},
\]

it follows that

\[
n \geq r(h-1)c_k + ru_k - ic_k - (h-r-i)d_{k-1}
\]

and

\[
n \leq r(h-1)c_k + ru_k - ic_k + (h-r-i)d_{k-1}.
\]

Let \(m \in B_{r-1} \) and \(n \in B_r \) for some \(r \in \{1, \ldots, h\} \). There exist nonnegative integers \(i \leq h-r \) and \(j \leq h-r+1 \) such that

\[
n - m \geq (r(h-1)c_k + ru_k - ic_k - (h-r-i)d_{k-1})
\]

\[
- ((r-1)(h-1)c_k + (r-1)u_k - jc_k + (h-r+1-j)d_{k-1})
\]

\[
= (h-1+j-i)c_k + u_k - (2h-2r-i-j+1)d_{k-1}
\]

\[
\geq (h-1-i)c_k - 2hd_{k-1}.
\]

If \(r \geq 2 \), then \(i \leq h-2 \) and inequality (4) implies that

\[
n - m \geq c_k - 2hd_{k-1} > 0.
\]

Therefore, if \(m \in B_{r-1} \) and \(n \in B_r \) for some \(r \in \{2, \ldots, h\} \), then \(m < n \).

In the case \(r = 1 \) we have \(m \in B_0 \) and \(n \in B_1 \). If \(i \leq h-2 \), then (4) implies that

\[
n - m \geq (h-1-i)c_k - 2hd_{k-1} \geq c_k - 2hd_{k-1} > 0
\]

and (5) implies that

\[
n \geq (h-1-i)c_k + u_k - (h-1-i)d_{k-1} > c_k - hd_{k-1} > 0.
\]

If \(r = 1 \) and \(i = h-1 \), then \(n = u_k \). Therefore, if \(m \in B_0 \) and \(n \in B_1 \), then \(m < n \) unless \(m = n = u_k \). It follows that the sets \(B_0, B_1 \setminus \{u_k\}, B_2, \ldots, B_h \) are pairwise disjoint.
Let $n \in B_r$ for some $r \geq 1$. Suppose that $0 \leq i \leq j \leq h - r$, and that
\[n = r(h - 1)c_k + ru_k - ic_k + y \quad \text{for some } y \in (h - r - i)A_{k-1} \]
and
\[n = r(h - 1)c_k + ru_k - jc_k + z \quad \text{for some } z \in (h - r - j)A_{k-1}. \]
Subtracting these equations, we obtain
\[z - y = (j - i)c_k. \]
Recall that $|a| \leq d_{k-1}$ for all $a \in A_{k-1}$. If $i < j$, then
\[c_k \leq (j - i)c_k = z - y \leq |y| + |z| \leq (2h - 2r - i - j)d_{k-1} < 2hd_{k-1} < c_k, \]
which is impossible. Therefore, $i = j$ and $y = z$. Since $0 \leq h - r - i \leq h - 1$ and A_{k-1} is a Sidon set of order $h - 1$, it follows that
\[r_{A_{k-1},h-r-i}(y) = 1 \]
and so
\[r_{A_k,h}(n) = 1 \leq f(n) \quad \text{for all } n \in (B_1 \setminus \{u_k\}) \cup \bigcup_{r=2}^{h} B_r. \]
Next we consider the set
\[B_0 = hA_{k-1} \cup \bigcup_{i=1}^{h} (-ic_k + (h - i)A_{k-1}). \]
For $i = 1, \ldots, h$, we have
\[c_k > 2hd_{k-1} \geq (2h - 2i + 1)d_{k-1} \]
and so
\[\max (-ic_k + (h - i)A_{k-1}) \leq -ic_k + (h - i)d_{k-1} < -(i - 1)c_k + (h - i + 1)d_{k-1} \leq \min (-ic_k + (h - i)A_{k-1}). \]
Therefore, the sets $-ic_k + (h - i)A_{k-1}$ are pairwise disjoint for $i = 0, 1, \ldots, h$. In particular, if $n \in B_0 \setminus hA_{k-1}$, then
\[n \leq \max (-c_k + (h - 1)A_{k-1}) \leq -c_k + (h - 1)d_{k-1} < -d_{k-1} \leq -d_0 \]
and $f(n) \geq 1$. Since A_{k-1} is a Sidon set of order $h - 1$, it follows that
\[r_{A_k,h}(n) = 1 \leq f(n) \quad \text{for all } n \in \bigcup_{i=1}^{h} (-ic_k + (h - i)A_k) = B_0 \setminus hA_{k-1}. \]
It follows from (3) that for any \(n \in B_0 \setminus hA_{k-1} \) we have
\[
n < -d_{k-1} \leq u_k,
\]
and so \(u_k \notin B_0 \setminus hA_{k-1} \). Therefore,
\[
r_{A_k,h}(u_k) = r_{A_{k-1},h}(u_k) + 1,
\]
and the representation function \(r_{A_k,h} \) satisfies the three requirements of (2).

We shall prove that
\[
A_k = A_{k-1} \cup \{-c_k, (h-1)c_k + u_k\}.
\]
is a Sidon set of order \(h - 1 \). Since \(A_{k-1} \) is a Sidon set of order \(h - 1 \) with
\[
d_{k-1} \geq \max\{|a| : a \in A_{k-1}\},
\]
and since
\[
c_k > 2hd_{k-1} > (2(h - 1) - 1)d_{k-1},
\]
Lemma 2 implies that \(A_{k-1} \cup \{-c_k\} \) is a Sidon set of order \(h - 1 \).

Let \(n \in (h - 1)A_k \). Suppose that
\[
n = r(h-1)c_k + ru_k - ic_k + x
\]
\[
= s(h-1)c_k + su_k - jc_k + y,
\]
where
\[
0 \leq r \leq s \leq h - 1,
\]
\[
0 \leq i \leq h - 1 - r,
\]
\[
0 \leq j \leq h - 1 - s,
\]
\[
x \in (h - 1 - r - i)A_{k-1},
\]
and
\[
y \in (h - 1 - s - j)A_{k-1}.
\]
Then
\[
|x| \leq (h - 1 - r - i)d_{k-1}
\]
and
\[
|y| \leq (h - 1 - s - j)d_{k-1}.
\]
If \(r < s \), then \(j \leq h - 2 \) and
\[
(h-1)c_k \leq (s-r)(h-1)c_k + (s-r)u_k
\]
\[
= (j-i)c_k + x - y
\]
\[
\leq (j-i)c_k + (2h - 2 - r - s - i - j)d_{k-1}
\]
\[
\leq (h-2)c_k + 2hd_{k-1}
\]
\[
< (h-1)c_k,
\]
which is absurd. Therefore, \(r = s \) and

\[-ic_k + x = -jc_k + y \in (h - 1 - r)(A_k \cup \{-c_k\}).\]

Since \(A_k \cup \{-c_k\} \) is a Sidon set of order \(h - 1 \), it follows that \(i = j \) and that \(x \) has a unique representation as the sum of \(h - 1 - r - i \) elements of \(A_k \). Thus, \(A_k \) is a Sidon set of order \(h - 1 \).

The set \(A_k \) satisfies conditions (i) – (iv). It follows by induction that there exists an infinite increasing sequence \(A_1 \subseteq A_2 \subseteq \cdots \) of finite sets with these properties, and that \(A = \cup_{k=1}^{\infty}A_k \) is an asymptotic basis of order \(h \) with representation function \(r_{A,h}(n) = f(n) \) for all \(n \in \mathbb{Z} \).

Let \(A_0 = \emptyset \), and let \(K \) be the set of all positive integers \(k \) such that \(A_k \neq A_{k-1} \). Then

\[A = \cup_{k \in K} A_k = \cup_{k \in K} \{-c_k, (h-1)ck\}. \]

For \(k \in K \), the only constraints on the choice of the number \(c_k \) in the construction of the set \(A_k \) were the sign of \(c_k \) and the growth condition

\[|c_k| > 2hd_{k-1} \quad \text{for all integers } k \in K. \]

We shall prove that we can construct the asymptotic basis \(A \) with counting function \(A(-x, x) \leq \varphi(x) \) for all \(x \geq 0 \). Since \(\varphi(x) \to \infty \) as \(x \to \infty \), for every integer \(k \geq 0 \) there exists an integer \(w_k \) such that

\[\varphi(x) \geq 2k \quad \text{for all } x \geq w_k. \]

We now impose the following additional constraint: Choose \(c_k \) such that

\[|c_k| \geq w_k \quad \text{for all integers } k \in K. \]

Then

\[A_1(-x, x) = 0 \leq \varphi(x) \quad \text{for } 0 \leq x < |c_1| \]

and

\[A_1(-x, x) \leq 2 \leq \varphi(x) \quad \text{for } x \geq |c_1| \geq w_1. \]

Suppose that \(k \geq 2 \) and the set \(A_{k-1} \) satisfies \(A_{k-1}(-x, x) \leq \varphi(x) \) for all \(x \geq 0 \). Since

\[A_k \cap (-|c_k|, |c_k|) = A_{k-1} \cap (-|c_k|, |c_k|), \]

it follows that

\[A_k(-x, x) = A_{k-1}(-x, x) \leq \varphi(x) \quad \text{for } 0 \leq x < |c_k| \]

and

\[A_k(-x, x) \leq 2k \leq \varphi(x) \quad \text{for } x \geq |c_k| \geq w_k. \]

This proves by induction that \(A_k(-x, x) \leq \varphi(x) \) for all \(k \) and \(x \). Since \(\lim_{k \to \infty} |c_k| = \infty \), it follows that for any nonnegative integer \(x \) we can choose \(c_k \) so that \(|c_k| > x \) and

\[A(-x, x) = A_k(-x, x) \leq \varphi(x). \]
For every integer $k \in K$ we had infinitely many choices for the integer c_k to use in the construction of the set A_k, and so there are infinitely many asymptotic bases A with the property that $r_A(n) = f(n)$ for all $n \in \mathbb{Z}$. This completes the proof. □

4 Sums of pairwise distinct integers

Let A be a set of integers and h a positive integer. We define the sumset $h \wedge A$ as the set consisting of all sums of h pairwise distinct elements of A, and the restricted representation function

\[\hat{r}_{A,h} : \mathbb{Z} \to \mathbb{N}_0 \cup \{ \infty \} \]

by

\[\hat{r}_{A,h}(n) = \text{card}\left(\{ \{a_1, \ldots, a_h\} \subseteq A : a_1 + \cdots + a_h = n \text{ and } a_1 < \cdots < a_h \} \right) . \]

The set A of integers is called a restricted asymptotic basis of order h if $h \wedge A$ contains all but finitely many integers, or, equivalently, if $\hat{r}_{A,h}^{-1}(0)$ is a finite subset of \mathbb{Z}.

The following theorem can also be proved by the method used to prove Theorem 1.

Theorem 2 Let $f : \mathbb{Z} \to \mathbb{N}_0 \cup \{ \infty \}$ be a function such that $f^{-1}(0)$ is a finite set of integers. Let $\varphi : \mathbb{N}_0 \to \mathbb{R}$ be a nonnegative function such that $\lim_{x \to \infty} \varphi(x) = \infty$. For every $h \geq 2$ there exist infinitely many sets A of integers such that

\[\hat{r}_{A,h}(n) = f(n) \quad \text{for all } n \in \mathbb{Z} \]

and

\[A(-x,x) \leq \varphi(x) \]

for all $x \geq 0$.

5 Open problems

Let X be an abelian semigroup, written additively, and let A be a subset of X. We define the h-fold sumset hA as the set consisting of all sums of h not necessarily distinct elements of A. The set A is called an asymptotic basis of order h for X if the sumset hA consists of all but at most finitely many elements of X. We also define the h-fold restricted sumset $h \wedge A$ as the set consisting of all sums of h pairwise distinct elements of A. The set A is called a restricted asymptotic basis of order h for X if the restricted sumset $h \wedge A$ consists of all but at most finitely many elements of X. The classical problems of additive number theory concern the semigroups \mathbb{N}_0 and \mathbb{Z}.

12
There are four different representation functions that we can associate to every subset \(A \) of \(X \) and every positive integer \(h \). Let \((a_1, \ldots, a_h)\) and \((a'_1, \ldots, a'_h)\) be \(h \)-tuples of elements of \(X \). We call these \(h \)-tuples equivalent if there is a permutation \(\sigma \) of the set \(\{1, \ldots, h\} \) such that \(a'_{\sigma(i)} = a_i \) for all \(i = 1, \ldots, h \). For every \(x \in X \), let \(r_{A,h}(x) \) denote the number of equivalence classes of \(h \)-tuples \((a_1, \ldots, a_h)\) of elements of \(A \) such that \(a_1 + \cdots + a_h = x \). The function \(r_{A,h} \) is called the unordered representation function of \(A \). This is the function that we studied in this paper. The set \(A \) is an asymptotic basis of order \(h \) if \(r_{A,h}(0) \) is a finite subset of \(X \).

Let \(R_{A,h}(x) \) denote the number of \(h \)-tuples \((a_1, \ldots, a_h)\) of elements of \(A \) such that \(a_1 + \cdots + a_h = x \). The function \(R_{A,h} \) is called the ordered representation function of \(A \).

Let \(\hat{r}_{A,h}(x) \) denote the number of equivalence classes of \(h \)-tuples \((a_1, \ldots, a_h)\) of pairwise distinct elements of \(A \) such that \(a_1 + \cdots + a_h = x \), and let \(\hat{R}_{A,h}(x) \) denote the number of \(h \)-tuples \((a_1, \ldots, a_h)\) of pairwise distinct elements of \(A \) such that \(a_1 + \cdots + a_h = x \). These functions are called the unordered restricted representation function of \(A \) and the ordered restricted representation function of \(A \), respectively. The two restricted representation functions are essentially identical, since \(\hat{R}_{A,h}(x) = h! \hat{r}_{A,h}(x) \) for all \(x \in X \).

In the discussion below, we use only the unordered representation function \(r_{A,h} \), but each of the problems can be reformulated in terms of the other representation functions.

For every countable abelian semigroup \(X \), let \(F(X) \) denote the set of all functions \(f : X \to \mathbb{N}_0 \cup \{\infty\} \), and let \(F_0(X) \) denote the set of all functions \(f : X \to \mathbb{N}_0 \cup \{\infty\} \) such that \(f^{-1}(0) \) is a finite subset of \(X \). Let \(F_c(X) \) denote the set of all functions \(f : X \to \mathbb{N}_0 \cup \{\infty\} \) such that \(f^{-1}(0) \) is a cofinite subset of \(X \), that is, \(f(x) \neq 0 \) for only finitely many \(x \in X \), or, equivalently,

\[
\text{card}(f^{-1}(\mathbb{N} \cup \{\infty\})) < \infty.
\]

Let \(R(X,h) \) denote the set of all \(h \)-fold representation functions of subsets \(A \) of \(X \). If \(r_{A,h} \) is the representation function of an asymptotic basis \(A \) of order \(h \) for \(X \), then \(r_{A,h}^{-1}(0) \) is a finite subset of \(X \), and so \(r_{A,h} \in F_0(X) \). Let \(R_0(X,h) \) denote the set of all \(h \)-fold representation functions of asymptotic bases \(A \) of order \(h \) for \(X \). Let \(R_c(X,h) \) denote the set of all \(h \)-fold representation functions of finite subsets of \(X \). We have

\[
R(X,h) \subseteq F(X),
\]

\[
R_0(X,h) \subseteq F_0(X),
\]

and

\[
R_c(X,h) \subseteq F_c(X),
\]

In the case \(h = 1 \), we have, for every set \(A \subseteq X \),

\[
r_{A,1}(x) = \begin{cases}
1 & \text{if } x \in A, \\
0 & \text{if } x \notin A,
\end{cases}
\]

13
and so
\[R(X, 1) = \{ f : X \to \{0, 1\} \}, \]
\[R_0(X, 1) = \{ f : X \to \{0, 1\} : \text{card}(f^{-1}(0)) < \infty \}, \]
and
\[R_c(X, 1) = \{ f : X \to \{0, 1\} : \text{card}(f^{-1}(\mathbb{N} \cup \{\infty\})) < \infty \}. \]

In this paper we proved that
\[R_0(\mathbb{Z}, h) = \mathcal{F}_0(\mathbb{Z}) \quad \text{for all } h \geq 2. \]

Nathanson [8] has extended this result to certain countably infinite groups and semigroups. Let \(G \) be any countably infinite abelian group such that \(\{2g : g \in G\} \) is infinite. For the unordered restricted representation function \(\hat{r}_{A,2} \), we have
\[R_0(G, 2) = \mathcal{F}_0(G). \]

More generally, let \(S \) is any countable abelian semigroup such that for every \(s \in S \) there exist \(s', s'' \in S \) with \(s = s' + s'' \). In the abelian semigroup \(X = S \oplus G \), we have
\[R_0(X, 2) = \mathcal{F}_0(X). \]

If \(\{12g : g \in G\} \) is infinite, then \(R_0(X, 2) = \mathcal{F}_0(X) \) for the unordered representation function \(r_{A,2} \).

The following problems are open for all \(h \geq 2 \):

1. Determine \(R_0(\mathbb{N}_0, h) \). Equivalently, describe the representation functions of additive bases for the nonnegative integers. This is a major unsolved problem in additive number theory, of which the Erdős-Turán conjecture is only a special case.

2. Determine \(R(\mathbb{Z}, h) \). In this paper we computed \(R_0(\mathbb{Z}, h) \), the set of representation functions of additive bases for the integers, but it is not known under what conditions a function \(f : \mathbb{Z} \to \mathbb{N}_0 \cup \{\infty\} \) with \(f^{-1}(0) \) infinite is the representation function of a subset \(A \) of \(X \). It can be proved that if \(f^{-1}(0) \) is infinite but sufficiently sparse, then \(f \in R(\mathbb{Z}, h) \).

3. Determine \(R(\mathbb{N}_0, h) \). Is there a simple list of necessary and sufficient conditions for a function \(f : \mathbb{N}_0 \to \mathbb{N}_0 \) to be the representation function of some set of nonnegative integers?

4. Determine \(R_c(\mathbb{Z}, h) \). Describe the representation functions of finite sets of integers. If \(A \) is a finite set of integers and \(t \) is an integer, then for the translated set \(t + A \) we have
\[r_{t+A,h}(n) = r_{A,h}(n - ht) \]
for all integers \(n \). This implies that if \(f(n) \in R_c(\mathbb{Z}, h) \), then \(f(n - ht) \in R_c(\mathbb{Z}, h) \) for every integer \(b \), so it suffices to consider only finite sets \(A \) of nonnegative integers with \(0 \in A \), and functions \(f \in \mathcal{F}_c(\mathbb{N}_0, h) \) with \(f(0) = 1 \).
5. Determine $R_0(G, 2)$, $R(G, 2)$, and $R_c(G, 2)$ for the infinite abelian group $G = \oplus_{i=1}^{\infty} \mathbb{Z}/2\mathbb{Z}$. Note that $\{2g : g \in G\} = \{0\}$ for this group.

6. Determine $R_0(G, h)$ and $R(G, h)$, where G is an arbitrary countably infinite abelian group and $h \geq 2$.

7. There is a class of problems of the following type. Do there exist integers h and k with $2 \leq h < k$ such that

$$R(\mathbb{Z}, h) \neq R(\mathbb{Z}, k)?$$

We can easily find sets of integers to show that that $R_0(\mathbb{N}_0, h) \neq R_0(\mathbb{N}_0, k)$. For example, let $A = \mathbb{N}$ be the set of all positive integers, and let $h \geq 1$. Then $r_{\mathbb{N}, h}(0) = 0$ and $r_{\mathbb{N}, h}(h) = 1$. If B is any set of nonnegative integers and $k > h$, then either $r_{B, k}(0) = 1$ or $r_{B, k}(h) = 0$, and so $r_{\mathbb{N}, h} \not\in R_0(\mathbb{N}_0, k)$. Is it true that

$$R_0(\mathbb{N}_0, h) \cap R_0(\mathbb{N}_0, k) = \emptyset$$

for all $h \neq k$?

8. By Theorem 1, for every $h \geq 2$ and every function $f \in F_0(\mathbb{Z})$, there exist arbitrarily sparse sets A of integers such that $r_{A, h}(n) = f(n)$ for all n. It is an open problem to determine how dense the sets A can be. For example, in the special case $h = 2$ and $f(n) = 1$, Nathanson [7] proved that there exists a set A such that $r_{A, 2}(n) = 1$ for all n, and $\log x \ll A(-x, x) \ll \log x$. For an arbitrary representation function $f \in F_0(\mathbb{Z})$, Nathanson [6] constructed an asymptotic basis of order h with $A(-x, x) \gg x^{1/(2h-1)}$. In the case $h = 2$, Cilleruelo and Nathanson [1] improved this to $A(-x, x) \gg x^{\sqrt{2}-1}$.

References

[1] J. Cilleruelo and M. B. Nathanson, Dense sets of integers with prescribed representation functions, in preparation.

[2] G. A. Dirac, Note on a problem in additive number theory, J. London Math. Soc. 26 (1951), 312–313.

[3] P. Erdős and P. Turán, On a problem of Sidon in additive number theory and some related questions, J. London Math. Soc. 16 (1941), 212–215.

[4] P. Erdős and W. H. J. Fuchs, On a problem of additive number theory, J. London Math. Soc. 31 (1956), 67–73.

[5] M. B. Nathanson, Representation functions of sequences in additive number theory, Proc. Amer. Math. Soc. 72 (1978), 16–20.
[6] , *The inverse problem for representation functions of additive bases*, Number Theory: New York 2003 (New York), Springer-Verlag, 2004.

[7] , *Unique representation bases for the integers*, Acta Arith. 108 (2003), no. 1, 1–8.

[8] , *Representation functions of additive bases for abelian semigroups*, Int. J. Math. Math. Sci. (2004), to appear.