The Black Hole and Central Stellar Population of MCG–6-30-15

S. I. Raimundo1,2†, R. I. Davies2, P. Gandhi3, A. C. Fabian4, R. E. A Canning4, V. D. Ivanov5

1SISSA - International School for Advanced Studies, via Bonomea, 265, 34136 Trieste, Italy
2Max-Planck-Institut für extraterrestrische Physik, 85741 Garching, Germany
3Institute of Space and Astronomical Science (ISAS), JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 229-8510, Japan
4Institute of Astronomy, Madingley Road, Cambridge CB3 0HA
5European Southern Observatory, Ave. Alonso de Cordova 3107, Vitacura, Santiago 19001, Chile

22 February 2013

ABSTRACT

We present the first near-infrared integral field spectroscopy observations of the galaxy MCG–6-30-15. The H-band data studied in this paper cover the central 500 pc of the galaxy at the best resolution (0.05'') so far. The spectra of the innermost regions are dominated by broad Brackett series emission lines and non-stellar continuum, under which we are able to trace the distribution and kinematics of the stars and also the [Fe II] line emission. We find that there is a counter-rotating stellar core extending out to 125 pc, which appears to be associated with the [Fe II] emission. Based on the mass-to-light ratio, and the presence of this emission line, we estimate the age of the central stellar population to be of order of 65 Myr. We show that the gas needed to fuel the black hole is, at most, only 1 per cent of that needed to form these stars. We derive independent constraints on the black hole mass using the dynamical information and determine an upper limit for the black hole mass, $M_{BH} < 6 \times 10^7 M_\odot$, that is consistent with other estimates.

Key words: galaxies: nuclei – galaxies: active – black hole physics – galaxies: individual: MCG–6-30-15 – infrared: galaxies

1 INTRODUCTION

The galaxy MCG–6-30-15 is an elongated lenticular (S0) galaxy and classified as a Seyfert 1.2 (Boissin et al. 2002). It presents a dust lane south of the nucleus and parallel to the photometric major axis of the galaxy (Malkan et al. 1998; Ferruit et al. 2000). The spectral energy distribution (SED) peaks in the mid-IR and is probably due to thermal emission from warm/dust grains. In the optical, the spectrum is dominated by broad Balmer lines and narrow forbidden oxygen lines (including [O III] λ5007 Å), and the narrow line region appears to have a large spatial extent (Bennert et al. 2008). Strong internal reddening is observed ($E(B-V) \sim (0.5 - 1.0)$) (Reynolds et al. 1997; Boissin et al. 2002) and the spectrum show signs of complex obscuration (Reynolds et al. 1997; Ballantyne et al. 2003). Reynolds et al. (1997) do a multi-wavelength analysis of this galaxy, with optical, UV, IR and X-ray data and find evidence of a dusty warm absorber (i.e. a column of dusty ionised material, usually in the form of an outflowing wind) along our line-of-sight. Ballantyne et al. (2003) argue that the dust lane could be responsible for the reddening observed and for part of the warm absorber. MCG–6-30-15 has an Active Galactic Nucleus (AGN) which has been studied extensively in the X-ray band ($L_X (2-10keV) \sim 4 \times 10^{42} \text{ erg s}^{-1}$) (Winter et al. 2009; Vasudevan et al. 2009). The non-stellar continuum can also be observed in the infrared (Oliva et al. 1999) and is detected but only marginally resolved in the radio (Nagar et al. 1999; Mundell et al. 2009). High angular resolution observations in the mid-IR (Horst et al. 2003; Gandhi et al. 2009), reaching resolutions of the order of ~ 0''.35, show the nucleus as a point source.

This galaxy is best-known for having provided the first detection of a relativistic broadened Fe Kα emission line generated in the inner regions of an accretion disc (Tanaka et al. 1995), hence providing evidence for the presence of a supermassive black hole. The X-ray spectral variability has been studied in detail (e.g. Reynolds et al. 1995; Nowak & Chiang 2000; Uttley et al. 2002; Vaughan & Fabian 2004; McHardy et al. 2005; Emmanoulopoulos et al. 2011) and has provided approximate constraints for the mass of the black hole, assuming that the break frequency scales with the black hole mass. The black hole spin has been measured from the spectral fitting of the Fe Kα emission line to be $a = 0.989$ (Brenneman & Reynolds 2006), i.e. a rapidly rotating black hole.

Despite the detailed studies mentioned above, the mass of the black hole responsible for the AGN activity is still not very well constrained. The galaxy is too distant for current instruments to}

© 0000 RAS
The advent of integral field spectroscopy (IFS) has opened a new perspective on the black hole fuelling process and the AGN activity. Studies using this technique have unveiled features in the gas kinematics which are likely due to the dynamics of inflowing and outflowing gas. Observations of local Seyfert galaxies show evidence for gas inflowing or outflowing on a scale of tens to hundreds of parsecs (e.g. Prieto et al. 2005, Fathi et al. 2006, Storchi-Bergmann et al. 2007, Müller-Sánchez et al. 2011). Combined with adaptive optics, IFS provides the opportunity to map with high resolution the inner regions of nearby galaxies and determine the mass of the central black hole (e.g. NGC3227 - Davies et al. 2006, Centaurus A - Neumayer et al. 2007, Cappellari et al. 2008, Fornax A - Nowak et al. 2008, NGC524 and NGC2549 - Krajnović et al. 2009, M87 - Gebhardt et al. 2011). We can also employ IFS to investigate the AGN nature (e.g. Valencia-S. et al. 2012) and the relationship between the star formation and the AGN activity (e.g. Davies et al. 2007). The high level of detail and amount of information that comes out of these observations makes them a very useful probe of the physics in the central regions of galaxies.

MCG–6-30-15 is an ideal system in which to investigate the physics of black hole accretion, but there are still many aspects about its nature that remain unknown. By observing the inner regions of this galaxy, we can study its stellar and dynamical properties and draw conclusions on the black hole and AGN activity. In this work we present the first study of this galaxy using IFS data in the H-band, and determine the kinematic properties in the central regions of MCG–6-30-15. Section 2 gives the details on the data reduction. In Section 3 we present the results obtained for the stellar kinematics and gas dynamics traced by the [Fe II] emission line. We use dynamical arguments to constrain the black hole mass and the star formation history of the galaxy. The results are summarised in Section 4.

We adopt the standard cosmological parameters of \(H_0 = 70 \text{ km s}^{-1} \text{ Mpc}^{-1}, \Omega_m = 0.27 \) and \(\Omega_{\Lambda} = 0.73 \). The scale for our measurements is approximately 0.158 kpc/" at a redshift \(z = 0.0077 \) (Fisher et al. 1995 value quoted at the NASA/IPAC Extragalactic database). The distance to MCG–6-30-15 used in this paper is 33.2 Mpc (Wright 2006).

2 DATA ANALYSIS

2.1 Data reduction

We obtained spectroscopy data for our source, with the near-IR integral field spectrograph SINFONI on the VLT (Eisenhauer et al. 2003, Bonnet et al. 2004), using a natural guide star for the adaptive optics (AO). The observations were carried out in the H-band mainly to avoid the contamination from the non-stellar continuum. In the near-infrared, the relative contribution of the non-stellar emission compared with the stellar emission is lower than in other
were taken on three nights, (April 2006, 4th, 5th and 20th), with a master dark and master flat frames (recipes pixel maps (non-linear pixels, hot pixels and reference bad pixels), and use the recipe SINFO_REC_JITTER to correct for bad-pixels and distortions, flat-field the data, wavelength calibrate and reconstruct 32 data cubes for object and sky. The SINFO_REC_JITTER routine is run with the sky subtraction options turned off, to allow us to correct the object data cubes for sky emission following the method described in Davies (2007). From this routine we obtain each input data cube corrected for the sky emission. Our final 16 object data cubes are then checked for any remaining bad pixels using a 3D Laplacian edge detection IDL code (Davies et al. 2010), which is a 3D version of LA cosmic (van Dokkum 2001).

In the near-IR, the atmosphere greatly affects the transmission and there are several telluric absorption signatures visible in the spectrum. We observed four telluric standard stars in the H-band but we found those were not suitable due to low signal-to-noise ratios. Instead, we divide our data cubes by a normalised theoretical template telluric spectrum re-scaled to the air-mass of our observations. The last step was to combine the 16 individual exposure cubes into a final cube. We re-sample each cube to a half-pixel scale both in x and y dimensions and offset them using the values recorded in their headers (CUMOFFSET and TEL TARG ALPHA/Delta), verifying that the bright galactic nucleus is aligned in every spatially shifted cube, and then median combine them. The final data cube (collapsed to two dimensions for plotting purposes) is shown in the right panel of Fig. 1. The pixel scale of the final reduced cube is 0′′.05 × 0′′.05 and the horizontal x-axis is aligned with the galaxy’s major axis, which means a tilt of ≈ 25′′ in relation to the East-West direction.

2.2 Flux calibration
The flux calibration of our data cube is done based on the 2MASS H-band image of the galaxy, since our standard stars were not suitable (low S/N or saturated). We integrate the counts in a 3″ diameter circular aperture in the 2MASS image, which gives an observed magnitude of $m_H = 11.3$ and a flux of 3.37×10^{-14} W m$^{-2}$ μm$^{-1}$ (Cohen et al. 2003). We then integrate the spectra in our data cube in a 3″ aperture centred at the same physical position as for the 2MASS image. We compare the median count number of our integrated spectrum in the range $\lambda = [1.509 - 1.799]$ μm with the flux from the 2MASS image and use this as our count to flux calibration. Our calibration was checked using different apertures in 2MASS and is consistent to ~ 20 per cent.

2.3 Emission components
In the case of MCG–6-30-15, the broad hydrogen Brackett AGN emission lines, $v_{FWHM} \sim 1800$ km/s, are very strong in the...
central pixels and dominate over the wavelength range of interest, making the stellar absorption features hard to identify. The following method is adopted to remove the broad emission lines. We first select an integrated central 6 by 4 pixel region where the broad lines are stronger and fit the five strongest emission lines with Lorentzian profiles, since these provide a good fit to the lines (Véron-Cetty et al. 2001). We fix the atomic parameters and the velocity width of the line (relative half-width at half-maximum and \(\sigma_{\text{inst}} \)) to \(\approx 3.1 \) \(\AA \) at \(r = 0'' \). The non-stellar continuum can include a second order polynomial function to fit the non-stellar continuum and a giant-star template spectrum convolved with a Gaussian as a basic model to the stellar continuum and its absorption features. The stellar template is of a M1 III star observed previously with SINFONI in the 100 mas scale. It was chosen due to its deep CO absorption lines which are also observed in our spectra. The plot in Fig. 2 shows the spectral components fitted to the data. The best-fit parameters for the Brackett emission for each spaxel are obtained from the integrated spectrum are used as initial guesses when fitting every spaxel. The spaxel-by-spaxel fitting determines the line parameters for the Brackett emission at each spatial position and removes it from the data cube.

With this approach we can decompose the emission into the individual AGN and stellar contributions. The broad Brackett emission is due to the AGN, while the absorption lines are due to the stellar population. However, the continuum is composed of stellar emission and AGN heated dust. To separate these two contributions we use the equivalent width of one of the strongest absorption lines present in our data: CO (6-3) \(\lambda = 1.6187 \) \(\mu \)m. The argument is that the deviations of the equivalent width from the intrinsic value will be caused by dilution due to the non-stellar continuum. By measuring the equivalent width at different radial positions and comparing the measurements to an intrinsic value, it is possible to determine the relative AGN and stellar contributions at each position. The stellar fraction will be,

\[
f_{\text{stellar}}(r) = \frac{W_{\text{obs}}}{W_{\text{intr}}}(r),
\]

where \(W_{\text{obs}} \) is the observed equivalent width and \(W_{\text{intr}} \) is the intrinsic equivalent width. We measure the equivalent width of the line in integrated radial bins, and plot it as a function of distance from the nucleus in Fig. 3. We fit a Gaussian to the distribution and use it to decompose the continuum. The maximum equivalent width \(\sim 3.1 \) \(\AA \) at \(r = 0'' \) is taken as the intrinsic value for our case. Although it is lower than what has been observed before \(\sim 4 \) \(\AA \) Davies et al. (2007), Valencia-S. et al. (2012), this could be due to the presence of dust farther out in the galaxy. Lower values have also been observed by Oliva et al. (1999) using slit-spectroscopy on MCG–6-30-15. In Fig. 2 we show the decomposition maps of the observed emission into the separate contributions from the stellar continuum (left), the Brackett broad emission (centre) and the non-stellar continuum (right). In Fig. 3 we show the cuts along the major axis, passing through the AGN position determined by the peak of the Brackett emission (offset = 0 arcsec). From the plot, it is clear that the Brackett emission and the AGN continuum have approximately the same distribution, which is what we would expect since they are both spatially unresolved. Bennert et al. (2006) estimate the broad line region to be 9 light-days across. The stellar continuum shows more extended wings which correspond to the stellar population spatially distributed in the galaxy.

2.4 PSF and spectral resolution

We determine the point spread function (PSF) from the Brackett emission map. The broad Brackett emission is coming from a very small region around the AGN and it is not resolved in our data. The spatial extent of the observed emission will be caused by the instrument and the atmosphere and we can measure the PSF by modelling its distribution. In our data the PSF is well modelled by a double Gaussian: a Gaussian with small width to model the peak (FWHM = 1.4 pixels \(\sim 0'' \)) and a wider one with (FWHM = 4.0 pixels \(\sim 0'' \)) to model the wings. The non-stellar continuum can also be used to determine the PSF since the dust-emitting region is unresolved. We obtain similar results: FWHM = 1.4 pixels \(\sim 0'' \) and FWHM = 3.7 pixels \(\sim 0'' \).

The spectral resolution is obtained from the sky lines. These emission lines are present in our sky exposures, and their width is due to SINFONI’s instrumental broadening. We use the combined sky cube and fit an unblended sky line with a Gaussian. The half width at half maximum (HWHM) is taken as the instrumental broadening \(\sigma_{\text{inst}} = \text{HWHM}/\sqrt{2 \ln(2)} \). We repeat this procedure for all spatial positions in a masked cube, to exclude the noisy outer regions of the field-of-view. The mean value for the instrumental broadening is \(\sigma_{\text{inst}} = 60 \) \(\text{km/s} \) \((3.2 \ A \lambda = 1.6187 \mu \text{m}) \),
library contains only ten G, K and M giant stars, but as we found previously, K and M stars reproduce our spectra well and are suitable to model the stellar absorption features. To remove the effects of differential instrumental broadening between the SINFONI data and the templates, we broaden the stellar templates (FWHM$_{temp} = 8$ pixels $\sim 3.2 \times 10^{-4}$ μm) to the resolution of SINFONI by convolving them with a Gaussian kernel (PSF$_GAUSSIAN$ in IDL) of $\sigma_{convol} = \sqrt{\sigma_{inst}^2 + \sigma_{temp}^2}$. σ_{inst} is the SINFONI instrumental resolution which we measure from the sky emission lines.

2.5 Extracting stellar kinematics

The velocity map and stellar velocity dispersion distribution are determined from our fully reduced and broad line subtracted data cube, by fitting the spectra with pPXF (Cappellari & Emsellem 2004; van der Marel & Franx 1993). This IDL routine uses a set of stellar templates to find the best weighted spectral combination and line-of-sight velocity distribution to fit the input spectrum. The line-of-sight velocity distribution is based on the form of a Gaussian-Hermite series expansion, with the first two moments being the velocity offset and the velocity dispersion. It is also possible to fit higher moments such as the asymmetric and symmetric deviations from a Gaussian (namely the $h3$ and $h5$ parameters which are related to the skewness and kurtosis of the distribution). In this work we fit only the first two moments of the distribution due to the limited signal-to-noise of our data.

In the H-band, there are not many medium or high resolution stellar templates. Our data have a resolution $R \sim 3000$, which is higher than most of the templates found in the literature. For this reason we use different sets of stars to determine the stellar population and the line-of-sight distribution. The stellar templates of Meyer et al. (1998), which include several spectral types and luminosity classes, have spectral resolution of the order of our data resolution ($R \sim 3000$), but we encountered problems when determining the velocity properties. We use this library to determine that our spectra can be well fit based on a set of K and M stars. To determine the velocity properties we use the more recent stellar templates at higher resolution of $R \sim 5000$ obtained by Le et al. (2011). This

3 DISCUSSION

3.1 Stellar kinematics

The stellar kinematic properties are determined by running pPXF on our binned data cube. The input stellar library is the one mentioned above (Le et al. 2011), and we include an additive polynomial of fourth order to model the AGN continuum. The emission lines of [Fe II] and a residual from the telluric subtraction are masked out when fitting the spectra. The code output includes the best fit spectrum at each pixel, the velocity offset and the velocity dispersion. We do not fit the higher moments $h3$ and $h4$ as mentioned in the previous section due to our low signal-to-noise.

We first run pPXF in the integrated field-of-view, excluding the central regions dominated by the AGN continuum to increase the signal-to-noise ratio. We plot the results, which correspond to our maximum signal-to-noise ratio for these data ($S/N \sim 10$ for the deepest absorption features or $S/N \sim 150$ in relation to the total continuum) (Fig. 5). Our stellar templates provide a good fit to the data, with the main contributions of the stellar templates of a K5 III and a M0 III star. We removed an absorption feature that the stellar templates were not able to fit, it coincides with the wavelength of the Fe I stellar absorption and a telluric feature. The fact that we are not able to fit it could be due to telluric residuals and/or a metallicity higher than the metallicity of our templates (which do not include super-metallicity stars).

In Fig. 5 we show the spectral data and spectral fitting at four different regions of the field-of-view (numbered boxes in the
Spectrum with S/N deviations in each parameter are taken as our errors for a typical velocity dispersion. For this reason we masked out the inner regions (r < 0.1 arcsec), for each of the four different regions. It is clear that the stellar features are deeper close to the major axis of the galaxy (regions 1 and 3), where we also see the stronger stellar continuum.

We follow the same procedure as described above but now across the entire field-of-view on a spaxel-by-spaxel basis, fitting the wavelength range $\lambda_{\text{rest}} = (1.57 - 1.716) \, \mu$m, to obtain a map of stellar velocity and velocity dispersion. We show the results in Fig. 8. The systemic velocity is determined using the method described in Appendix C of Krajinovic et al. (2000), using the velocity maps of the central $r > 1''$. We obtain best fit values of $V_{\text{sys}} = 2396$ km/s and a kinematic PA of 112 ± 16 degrees. The velocity is corrected for the galaxy’s systemic velocity, but not for the inclination. From work of Lauberts (1982) compiled in de Zotti & Gaskell (1985), the axis ratio for this galaxy is $b/a = 0.58$. The axis ratio of our stellar continuum is consistent with the value quoted above, indicating that the axis ratio at small and large scales is the same. From the axis ratio of the stellar continuum (and assuming a flat geometry), we derive an inclination of ~ 55 degrees. Our rotation velocities could be up to 40 km/s, instead of the observed ~ 40 km/s. As described in Section 3, the velocity dispersion obtained already takes into account the instrumental broadening. In the central regions ($r < 0.1$ arcsec) around the black hole, the non-stellar continuum is very strong, and the relative intensity of the stellar absorption lines is low, which increases the error in determining the velocity dispersion. For this reason we masked out the inner $r < 0.1$ (white bins in Fig. 8). The errors in the parameters are measured using a Monte Carlo approach. We generate a random set of 100 spectra with the same noise properties (S/N ~ 5) as our galaxy spectra and fit them with pPXF. The starting values and the wavelength limits of the fit are changed randomly as well. The final 1σ deviations in each parameter are taken as our errors for a typical spectrum with S/N ~ 5 (which corresponds to the S/N in each bin). We find errors of ± 4.5 km/s for the mean line-of-sight velocity and ± 5.1 km/s for the velocity dispersion.

The counter-rotating core

The results show a low rotational velocity when compared with the velocity dispersion. The zero point in the velocity map corresponds to the systemic velocity of the galaxy, negative velocities are associated with blue-shifted absorption lines and positive velocities with red-shifted absorption lines. The central ~ 1.4 arcsec radius region shows the evidence of two distinct kinematic components. The inner and outer regions of our map indicate different and counter-rotating components, with the $r < 0''$.8 ~ 125 pc region rotating clockwise and the $r > 0''$.8 rotating counter-clockwise. The two kinematic components have similar absolute velocity values ($40 \sim 50$ km/s). The rotation of the counter rotating core is seen clearly in the figure. The outer region is only beginning at the limits of our analysed region of the field-of-view - corresponding to the region above the flux threshold. It is visible in the top right (yellow/red zone) and top left (blue zone) of the velocity map. The velocity dispersion map presents values that decrease inwards and are flat at the centre. It has values of ~ 130 km/s in the outer regions $r > 0''$.8 but drops by ~ 30 km/s in the inner regions, which coincides with the counter-rotating core. The dispersion values are in general higher than the line-of-sight velocity, which suggests that the galaxy core is not rotationally supported.

Although we do not use the $h3$ distribution in our analysis due to the low signal-to-noise ratio, we did a test to check if it was consistent with the velocity map of the top panel of Fig. 8. A value of $h3$ different from zero indicates that the line-of-sight velocity distribution profile deviates from a Gaussian distribution. The value of $h3$ is related with the skewness, and measures the asymmetry in the distribution. As expected, the $h3$ map is very clearly anticorrelated with the line-of-sight velocity distribution for $r < 0''$.8 and in the upper regions of the map where the velocity changes sign (although not as clearly due to the higher noise level in those pixels).

The general kinematic properties mentioned above, indicate that we are most likely in the presence of a kinematically distinct
core. These type of systems are fairly common in ellipticals but counter-rotating systems are rarer (< 10 per cent) in S0 type galaxies [Kuijken et al. 1996; Krajnović et al. 2011; Bois et al. 2011]. The drop in the velocity dispersion occurs for $r < 0''.8$ and is possibly related with the counter-rotating core. This phenomenon has been observed for another S0 galaxy with a kinematically-distinct core, NGC 7332, where the velocity dispersion increases from $r \sim 10''$ or 1 kpc towards the centre of the galaxy, but drops by ~ 10 km/s when in the region of the counter-rotating core (Falcón-Barroso et al. 2004). Our data cover a smaller radii ($r_{\text{max}} \sim 1''.4$ or 200 pc) than the work of Falcón-Barroso et al. (2004), which allow us to measure the drop in velocity dispersion in the inner regions, but does not permit us to evaluate if the velocity dispersion decreases again as we move to larger radii. The dynamically decoupled core could be the result of an inflow of gas into the central regions of the galaxy via, for example, a past minor merger event. For our target, the majority of the stellar population is old and fairly homogeneous, not showing any variations with radius (Boisson et al. 2002). There is nevertheless indication of a series of previous star formation bursts (Bonatto et al. 2004). The evolution for this galaxy is not expected to be through major mergers, since only about 2 – 2.5 per cent of S0 galaxies are expected to have had a major merger in their past (Parry et al. 2009). On the other hand, secular evolution is expected to dominate the evolution of Narrow Line Seyfert 1 galaxies such as MCG–6-30-15 (e.g. Orban de Xivry et al. 2011).

3.2 Gas kinematics

When subtracting the stellar and AGN continuum from our data cube using the results from pPXF, we are left with the gas emission spectra at each spatial location. The $\lambda = 1.644 \mu$m forbidden
emission line of [Fe II] is the strongest emission line, and clearly observed by eye in the spectra. In Fig. 9 we plot the fit to the emission line integrated in two regions of the same size (10 x 10 pixels) offset by 0″.5 from the AGN position on the East and on the West side of the nucleus. As we can see from the plot, the intensity is larger on the West than on the East side. The line velocity is also different, the West side is blueshifted (−8 km/s) and the East side is redshifted (+129 km/s). The lines show a broadening of 49 km/s and 74 km/s on the East and West side of the nucleus respectively. In the individual pixels, the S/N of the line is not as strong. To get the spatial distribution of [Fe II], we fit a Gaussian to this line and fit the continuum using regions on the left and right of the line using the algorithm MPFIT [Markwardt 2009, Moré 1978]. We require a signal-to-noise ratio S/N > 3 in relation to the RMS scatter of the spectrum, a condition that in general holds in the central regions of the galaxy and coincides with the kinematically-distinct core. We show the two-dimensional line properties in the three panels of Fig. 10, the top panel shows the velocity offset, the middle panel the velocity dispersion and the bottom panel the line intensity. In these plots, the velocities are measured in relation to the systemic velocity of the galaxy. The instrumental broadening is subtracted in quadrature using the dispersion of an unblended sky emission line close to the [Fe II] line emission. We excluded regions that showed velocity dispersion values similar to the instrumental broadening.

The lines show a gradient from the minimum values blueshifted by ∼ −30 km/s on the West side of the nucleus to the larger redshifted values (+120 km/s) on the East side. We observe an asymmetry in the intensity map, with larger values on the West side of the nucleus than on the East. The velocity dispersion is harder to interpret, it is higher on the West side of the nucleus (∼ 60 km/s) but decreases around the AGN position. It seems to increase again on the East side although the signal-to-noise ratio there is not as good.
Black Hole and Stellar Population of MCG–6-30-15

The origin of the [Fe II] emission

Since the signal in the data is weak, we cannot say with certainty what causes this [Fe II] emission, but we can discuss the two possibilities: an AGN outflow or supernova shocks. The intensity of [Fe II] is asymmetric, with stronger emission on the West side of the nucleus. The velocity map for [Fe II] shows that the gas has a distribution along the main axis of the galaxy and the values show a deviation from the rotation velocity of the stars. The distribution of [O III] 5007 Å emission using HST observations (Schmitt et al. 2003 and Bennert et al. 2006) show an elongation along the major axis of the galaxy, as we see in the [Fe II] distribution. The [O III] emission also shows an asymmetric distribution but on a larger scale than the field-of-view of our observations. The fact that we see a velocity structure distinct from the stellar rotation pattern, and an elongation similar to the [O III] emission, could indicate that we are in the presence of an AGN driven outflow, with [Fe II] and [O III] emission tracing the same geometry (e.g. Müller-Sánchez et al. 2011). The gas kinematics could be consistent with emission from a cone that is outflowing away from us.

There are nevertheless some caveats in this hypothesis. The velocity offset from the rotational velocity is not very large, \(\sim 10\) km/s on the West side and \(\sim 80\) km/s on the East side of the nucleus (where the S/N is lower), and could be due to uncertainties in the velocity measurements. The transition in velocity as it moves across the nucleus is fairly smooth and resembles a rotation pattern. Our data samples a much smaller spatial scale than the [O III] maps, and we cannot check if the asymmetry of the [Fe II] intensity is observed at the larger scales as well. We are limited to the small scale of our observations and the low signal-to-noise. With new data on a larger scale, it would be possible to investigate if the asymmetry in the gas emission holds for larger radii. It is also known that at the very small scales probed by the X-ray observations of this source, there are spectroscopic signs of a warm absorber (e.g. Reynolds et al. 1997, Ballantyne et al. 2003), and hence a form of outflow. It would be interesting to investigate this topic further to determine if there is any connection between

Figure 9. [Fe II] emission integrated in two regions (10\times 10 pixel each) of the field-of-view and plotted as a function of the rest-frame wavelength. East (top panel) and West (bottom panel) of the nucleus, along the galaxy major axis. The gas shows a different velocity in both regions, as can be seen from the wavelength shift in the plot. The integrated Western region shows a larger velocity dispersion and intensity than the emission from the Eastern region. The specific values are given in the text.

Figure 10. Panels showing the [Fe II] \(\lambda = 1.644\mu m\) emission properties of MCG–6-30-15 obtained by fitting the line with MPFIT. The white cross marks the position of the AGN and the map orientation is the same as for the right panel of Fig 1. The regions referred to in the text as to the East and to the West of the nucleus are measured along the major axis. Bins with S/N < 3 were excluded and bins for which the velocity dispersion is lower or similar to the instrumental broadening were also excluded (the region surrounding the black hole position did not obey this condition and hence was masked out). Top panel: Velocity corrected for the systemic velocity of the galaxy in km/s. Middle panel: Velocity dispersion corrected for the instrumental broadening in km/s. Bottom panel: Line intensity. The line intensity is higher on the West side of the nucleus than on the East side. The velocity shows an asymmetry, with higher absolute values on the East side of the nucleus than on the West. The two hypothesis for this [Fe II] emission (AGN outflow and most likely supernova induced shocks) are discussed in the text.
the accretion disc scale outflow and the tens of parsecs of the [Fe II] emission.

The [Fe II] emission is excited by electron collisions and is a good tracer of shocks. In the case of MCG–6-30-15, the extended emission could be caused by nuclear mass outflow shocks with ambient clouds, or by supernova-driven shocks (Mouri et al. 2000). The spatial distribution of the [Fe II] coincides with the region where we see the strongest signal-to-noise in the stellar absorption features. This and the arguments presented above, imply that most likely the [Fe II] emission is due to shock fronts from supernova remnants. These shocks destroy the dust grains which allows for a higher abundance of iron in the gas phase. The iron is then ionised by the interstellar medium. The [Fe II] line is therefore a good indicator for the presence of supernova remnants and a tracer of the supernova rate (Moorwood & Oliva 1988; Colina 1993; Rosenberg et al. 2012).

In this case, the [Fe II] emission can be used to constrain the supernova rate and investigate the properties of the stellar population of MCG–6-30-15, as we will discuss in Section 3.3.

3.3 Central stellar population

From the observations and results of the previous sections, we can investigate the properties of the stellar population of MCG–6-30-15. Assuming that the supernova shocks were the main excitation mechanism for [Fe II], we can determine the supernova rate (SNR) based on the [Fe II] 1.644 µm line flux. We measure a flux (integrated in the r < 0.08 region) of F$_{[\text{Fe II}]1.64}$ = 8.2 × 10$^{-16}$ erg s$^{-1}$ cm$^{-2}$ which corresponds to a luminosity of L$_{[\text{Fe II}]1.64}$ = 1.2 × 1028 erg s$^{-1}$. This [Fe II] is not particularly strong, its flux is comparable to the lower values found for narrow line Seyfert 1 galaxies in the sample of Rodríguez-Ardila et al. (2004). Using the equations from Rosenberg et al. (2012):

$$\log \frac{\text{SNR}}{\text{yr}^{-1}} = (0.89 \pm 0.2) \times \log \frac{L_{[\text{Fe II}]1.64} \text{erg s}^{-1}}{10^{26} \text{erg s}^{-1}} - (36.19 \pm 0.9)$$

and the theoretical ratio [Fe II] 1.64 µm/[Fe II] 1.26 µm = 0.7646 from Nussbaumer & Storey (1988), we calculate a supernova rate of SNR = 6.6 × 10$^{-3}$ yr$^{-1}$.

We used the evolutionary synthesis code STARS (Sternberg 1998; Thornley et al. 2004; Sternberg et al. 2003) to follow the evolution of a stellar population as in Förster Schreiber et al. 2003; Davies et al. 2005 and Davies et al. 2007. In the code, the star formation declines exponentially with a characteristic timescale, which we assume to be 10 Myr, adopted from Davies et al. (2007). Assuming a Salpeter Initial Mass Function and this star formation timescale, STARS calculates the distribution of stars in function of age. The code results are scaled to the case in study by comparing the K-band luminosity in the model with our observed H-band luminosity. The conversion between H and K-band luminosities is done using the magnitude relation H - K = 0.15 which is very weakly dependent on the stellar age. The code calculates parameters of interest for our investigation, such as the supernova rate, K-band luminosity, mass loss rate and total stellar mass at any time. Using the relation between predicted SNR and the stellar age from the code, we determine the age of the starburst that produced the SNR observed. From our SNR we obtain an age of 6.5 × 107 yr. We note that although two values for the age are consistent with the supernova rate measured, the alternative younger age (3 × 106 yr) is inconsistent with the presence of deep absorption features that indicate the presence of late-type stars. With a stellar age of 6.5 × 107 yr we obtain from the model a mass-to-light ratio of M/L$H = 0.98$ M$_\odot$/L$_\odot$. From the model we also know the mass loss rate, which can be compared with the mass accreted by the black hole. The stronger stellar and [Fe II] emission coincide with the counter-rotating core. This type of structure is thought to be formed by an inflow of new gas via, for example, a minor merger that generates a stellar population with different properties in the nucleus of the galaxy. New gas may have generated the stellar population we observe and model with STARS, but can also have fuelled the AGN. From the bolometric luminosity ($\sim 1.3 \times 10^{44}$ erg s$^{-1}$; Vasudevan et al. 2005), and assuming an efficiency of $\epsilon = 0.1$ we can obtain an estimate for the mass accretion rate $\dot{M} = L_{\text{bol}}/\epsilon c^2$. For this AGN the mass accretion rate is around 0.022 M$_\odot$yr$^{-1}$, which gives, assuming a constant mass accretion rate during the age of the starburst, a total mass accreted of:

$$M_{\text{tot}} = 6.5 \times 10^7 \times 0.022 = 1.4 \times 10^6 M_{\odot}$$

The model-derived total mass used to form stars is 2 × 108 M$_\odot$. This means that of the new inflow of gas, only around 1 per cent of the mass used to form stars has been used to fuel the supermassive black hole.

Another alternative would be for the mass loss by the stars to be the main source of fuel for the AGN. The mass loss rate for this population is 1 M$_\odot$yr$^{-1}$, which is larger than the mass needed to maintain the AGN activity, providing that the process of transferring ejected mass from stars to the black hole is reasonably efficient. In either case, it is, nevertheless, still uncertain how this mass can move inwards to < 1 pc scales to fuel the black hole.

As a cross check, we investigated the influence of considering a larger characteristic timescale in our STARS models. We repeated the above calculations for a timescale of 100 Myr. The conversion between the supernova rate measured and the age from the STARS model will be different, and will provide an upper limit for the age (2.5 × 108 yr). The mass-to-light ratio would be $M/L_H = 1.3 M_{\odot}/L_{\odot}$, and a mass loss rate of $\dot{M}_{\text{gas}} = 2.1 M_{\odot}$/yr. The conclusions remain unchanged, the mass loss rate of the stars would in principle be enough to fuel the black hole, or, if the gas that created the stars also fuelled the black hole, the fraction of gas for the AGN compared with gas used to form stars is again around 1 per cent.
In summary, it is possible that the counter-rotating core is associated with new inflow of gas which fuelled the formation of a new stellar population with distinct stellar kinematics. The [Fe II] emission traces the supernova and is observed in the inner regions where the counter-rotating core is. We used the measured [Fe II] flux and the STARS code to learn more about the episode of star formation and its relation with the black hole fuelling. The spatial zone where the black hole potential dominates over the galaxy potential, the black hole sphere of influence, is given by the spatial zone where the black hole potential dominates over the galaxy potential. These calculations provide approximate values only, but are useful in understanding the general mass budget in the central region of the galaxy.

3.4 Black hole mass

The spatial zone where the black hole potential dominates over the galaxy potential, the black hole sphere of influence, is given by the radius from the black hole: \(R = G M_{\text{BH}} / \sigma^2 \). For MCG–6-30-15, using the upper limit values from McHardy et al. (2005), the radius of influence is \(R \sim 3 \) pc or \(0'.02 \). This scale is not resolved in our data, since our spaxel size is \(0'.05 \) and the PSF has a FWHM \(\sim 0'.1 \). The galaxy potential will contribute significantly to the measured dynamics, which makes it harder to determine the black hole mass directly from the central stellar kinematics, without doing a multi-component dynamical model. Previously, the black hole mass for this galaxy was determined from the black hole relation with the host galaxy \((M_{\text{BH}} - \sigma) \). The effective radius in this galaxy is \(R_e \sim 9'' \) (Boisson et al. 2002). McHardy et al. (2005) use the relation from Ferrarese (2002) defined at a radius of \(R_e / 8 \sim 1''.12 \) and velocity dispersion from long slit spectroscopy to obtain a black hole mass of \((3 - 6) \times 10^6 M_\odot \). We determine the velocity dispersion from a pseudo slit with the same size as the one used by McHardy et al. (2005). The integrated value is \(\sigma = 109 \) km/s, which is slightly higher than that obtained by McHardy et al. (2005) of \(93.5 \pm 8.5 \) km/s. The values agree marginally within the errors. The difference could also be related with the distinct stellar population that we probe using infrared observations compared with the one observed in the optical. The method of inferring the black hole mass based on the velocity dispersion is known to be subject to large uncertainties. In the case of MCG–6-30-15, the decoupled kinematic components in the centre of the galaxy could also affect the velocity dispersion measurement.

As a first approach, we use the velocity and velocity dispersion at the closest resolved region around the black hole to determine an upper limit for the black hole mass. The enclosed mass within radius \(R \) is, from virial arguments, \(M_{\text{enc}} = (\sigma^2 + 3 \times \sigma^2) R / G \). We determine the velocity dispersion from the integrated spectra in the inner \(R < 0''.2 \) region around the black hole, excluding the \(R < 0''.1 \) due to the high non-stellar continuum. The value obtained is \(\sigma = 89 \pm 8 \) km/s, and the typical velocity is 10 km/s which gives an enclosed mass of \(M_{\text{enc}} = 1.7 \times 10^6 M_\odot \). From the calculations in Section 3.3, we can obtain a lower limit estimate (because it is only the mass of the young stellar population) for the stellar mass using the observed luminosity in the H-band within a radius of \(R < 0''.2 \) and the mass-to-light ratio determined from STARS: \(M_{\text{stellar}} = 2.4 \times 10^5 M_\odot \). An upper limit for the black hole mass can be found by subtracting the stellar mass from the enclosed dynamical mass: \(M_{\text{BH}} < 1.5 \times 10^5 M_\odot \).

Alternatively, we try to constrain the mass of the black hole and the dynamics of the galaxy with the Jeans Anisotropic Model (JAM) method of Cappellari (2008). This model generalises the asymmetric Jeans equations to the case of anisotropy by including an anisotropy parameter \(\beta = 1 - \sigma_T^2 / \sigma^2 \). The model we use assumes axisymmetric geometry and takes as input the galaxy surface brightness to generate a prediction for the second velocity moments \((V_{\text{rms}} = \sqrt{\sigma^2 + \sigma_T^2}) \), for a combination of physical parameters: inclination, black hole mass, mass-to-light ratio and \(\beta \). The output model is then compared, and adjusted if necessary, to the observed kinematic map of the galaxy. The galaxy surface brightness is given as a combination of gaussians, parametrised by a Multi-Gaussian Expansion (MGE) fitting software developed by Cappellari (2002). We start by doing a multi-Gaussian expansion of our H-band map, constrained to a region of \(r < 0''.8 \) to exclude the outer counter-rotating component. The surface brightness can be described by three gaussians, we plot the resulting contours in Fig. 11. The gaussian parameters are converted to the units required by JAM using the guidelines from the JAM code release by Michelle Cappellari. We are conservative in the number of bins we fit, and exclude the central pixels that show the largest errors in the velocity disper-

Figure 12. Comparison between the symmetrised observed (left) and the JAM predicted \(V_{\text{rms}} \) (center) for the best-fit set of parameters. The absolute values of the residuals are shown in the right panel: \(|V_{\text{JAM}} - V_{\text{rms}}| \). The colour-bar is in km/s.
sion determination. The errors in velocity and velocity dispersion at each bin were determined using the same method as in Section 3.1. We run 100 Monte Carlo simulations for each bin, setting the error statistics to be the same as at that position. The result is a two-dimensional map of velocity and velocity dispersion errors that are taken as an optional input map for the Jeans modelling.

The model output and parameters are affected by the area in which the modelling is done. A change in the black hole mass affects mainly the central bins and does not change much the \(V_{\text{rms}} \) map in the outer regions. The lower limit for the black hole mass is difficult to determine, since the \(V_{\text{rms}} \) is consistent with a null black hole mass (the \(x^2 \) of the model is not very sensitive to variations in the mass below \(\sim 10^7 M_\odot \)). The black hole mass value and the mass limit will depend on the area where we calculate the \(x^2 \). For a larger area, and hence more degrees of freedom, the reduced \(x^2 \) will increase more slowly. We use the region \(r < 0'4 \) to limit the analysis to the area of higher black hole influence and at the same time to have enough bins for the calculation. The least-squares fitting routine MPFIT is used to search the parameter space for the best fit parameters. We then fix all parameters, except the black hole mass, to their best fit values and determine an upper limit for the black hole mass based on the \(x^2 - x_{\text{min}} \) distribution. The absolute values of the parameters in the fit are hard to constrain, due to possible degeneracies and the effect of the radius of the area analysed. The degeneracy between the inclination and \(\beta \) parameters for example, could be removed with observationally motivated constraints (e.g. Cappellari 2008). Unfortunately we do not have external information on the inclination of the galaxy. Following the arguments presented above, we focus on using the model to determine an upper limit for the black hole mass.

The 1σ confidence limit gives an upper limit for the black hole mass of \(M_{\text{BH}} < 6 \times 10^6 M_\odot \). The best-fit black hole mass is \(4 \times 10^6 M_\odot \) and a comparison between the data and model is shown in Fig. 12. However, this best-fit value should be taken with caution due to the arguments discussed above; the upper limit provides a stronger constraint on the black hole mass.

An increase in the black hole mass causes the \(V_{\text{rms}} \) of the previous analysis to increase in the inner regions of the galaxy. In Fig. 13 we plot an example of this effect, by fixing the parameters to be the same as in Fig. 12 but increasing the black hole mass to the upper limit determined from the simple calculation with the integrated velocity dispersion: \(1.5 \times 10^8 M_\odot \). It is clear that the increase in \(V_{\text{rms}} \) expected from models with high black hole mass is not observed in the data, which confirms qualitatively the value determined as an upper limit. This upper limit was not derived based on the M-σ correlation, and hence provides an independent measurement. Nevertheless, if we take the upper limit for the black hole mass \((6 \times 10^7 M_\odot) \) and the integrated velocity dispersion (\(\sigma = 109 \) km/s) we measure, the location of MCG–6-30-15 in the \(M_{\text{BH}} - \sigma \) plot is in agreement with the M-σ relation (e.g. Gültekin et al. 2009). We conclude that the mass of the black hole in MCG–6-30-15 is lower than \(6 \times 10^7 M_\odot \) which is in agreement with the previous estimates.

For a bolometric luminosity of \(1.3 \times 10^{44} \) erg s\(^{-1}\) (Vasudevan et al. 2009), we obtain a lower limit for the Eddington ratio of \(\lambda > 0.02 \).

4 CONCLUSIONS

In this work we studied for the first time the inner \(\sim 470 \) pc of the galaxy MCG–6-30-15 using integral field spectroscopy. We were able to remove the AGN broad hydrogen Brackett emission lines which were dominating the spectra in the central region of the field-of-view, and measure the properties of the stellar absorption lines. The stellar kinematics of this galaxy can be characterised by a low rotational velocity (\(\sim 40 \) km/s) compared with the velocity dispersion (\(80 - 140 \) km/s). The velocity dispersion is higher at larger radii and close to the major axis and decreases when approaching the position of the black hole. There is a change in the direction of the stellar rotation when comparing the central core (\(r < 0'8 \)) with the outer regions. We argue that we are in the presence of a galaxy with a counter-rotating core, due to the rotation curve and the observed drop in velocity dispersion at small radii. The gas dynamics traced by the [Fe II] emission line show an asymmetric distribution in the inner \(r < 0'8 \) arcsec, with a higher intensity and larger velocity dispersion on the West side of the nucleus. It also shows a velocity gradient with blueshifted velocities of \(\sim 30 \) km/s on the West side and \(+120 \) km/s on the East side of the nucleus.

The quality of the data does not allow us to exclude the possibility of an outflow, but due to the smooth velocity curve and its spatial distribution we argue that the [Fe II] has been excited by supernova shocks. In this scenario we use a model to reproduce the supernova rate inferred and determine the star formation history. If the counter-rotating core is a result of a recent inflow of gas that formed the stars and led to the supernova explosions, we can determine how much gas was used to form stars and how much gas was used to fuel the black hole. The percentage of gas used to fuel the black hole is at most 1 per cent of the gas used to form stars. If on
the other hand the outflows from stars fuel the black hole, we conclude that with this supernova rate, the winds from stars would be enough to fuel the AGN during the age of the starburst $\sim 6.5 \times 10^7$ yr. These arguments are of course dependent on how efficient the process of transferring gas from larger scales to the black hole is, but can give us a general overview of the mass budget in the vicinity of the nucleus.

Using the measured kinematics at $r < 0''$.2, we are able to determine an independent upper limit for the black hole mass of $1.5 \times 10^{5} M_{\odot}$, which is consistent with other estimates. We also reproduce our observations using a dynamical model, and determine an upper limit based on the model predictions for the $V_{\text{rms}} = \sqrt{V^2 + \sigma^2}$ in the central $r < 0''.4$ of the galaxy, of $M_{\text{BH}} < 6 \times 10^{5} M_{\odot}$.

The study of MCG–6-30-15 allowed us to determine the dynamical properties of the inner regions of this galaxy and infer its stellar history. There are a growing number of galaxies that have been observed in detail using integral field spectroscopy. MCG–6-30-15 has a larger mass accretion rate (high AGN activity), which is not common among the usually selected targets due to the difficulty in removing the AGN contamination. We have shown here that it is possible to obtain the stellar kinematics with the presence of Brackett broad emission lines, allowing in the future to increase the parameter range in AGN activity of the galaxies studied. The kinematically distinct core in the centre of the galaxy may be associated with bar-driven gas inflow, which could, on a smaller scale, be related with the fuelling necessary for AGN activity. We relate the available gas to form stars with the observed AGN activity and obtain general constraints on the mass budget in the centre of the galaxy. Combined studies of stellar properties and AGN activity in the centre of galaxies, will in the future help clarifying the relation between star formation and black hole fuelling at small scales.

5 ACKNOWLEDGEMENTS

The authors would like to thank Roderick Johnstone for useful discussions and the anonymous referee for useful comments that improved this paper.

Some of the images presented in this paper were based on observations made with the NASA/ESA Hubble Space Telescope, and obtained from the Hubble Legacy Archive, which is a collaboration between the Space Telescope Science Institute (STScI/NASA), the Space Telescope European Coordinating Facility (ST-ECF/ESA) and the Canadian Astronomy Data Centre (CADC/NRC/CSA).

This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

REFERENCES

Ballantyne D. R., Weingartner J. C., Murray N., 2003, A&A, 409, 503
Bennert N., Jungwiert B., Komossa S., Haas M., Chini R., 2006, A&A, 459, 55
Boisson M. et al., 2011, MNRAS, 416, 1654
Boisson C., Coupé S., Cuby J. G., Joly M., Ward M. J., 2002, A&A, 396, 489
Boisson C., Joly M., Pelat D., Ward M. J., 2004, A&A, 428, 373
Bonatto C., Bica E., Pastoriza M. G., Alloin D., 2000, A&A, 355, 99
Bonnet H. et al., 2004, The Messenger, 117, 17
Brenneman L. W., Reynolds C. S., 2006, ApJ, 652, 1028
Cappellari M., 2002, MNRAS, 333, 400
Cappellari M., 2008, MNRAS, 390, 71
Cappellari M., Copin Y., 2003, MNRAS, 342, 345
Cappellari M., Emsellem E., 2004, PASP, 116, 138
Cappellari M., Neumayer N., Reunanen J., van der Werf P. P., de Zeeuw P. T., Rix H. W., 2009, MNRAS, 394, 660
Cohen M., Wheaton W. A., Megeath S. T., 2003, AJ, 126, 1090
Colina L., 1993, ApJ, 411, 565
Davies R., Agudo Berbel A., Wiezorrek E., Ott T., Förster-Schreiber N. M., 2010, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7735
Davies R. I., 2007, MNRAS, 375, 1099
Davies R. I., Sternberg A., Lehnert M. D., Tacconi-Garman L. E., 2005, ApJ, 633, 105
Davies R. I., Müller Sánchez F., Genzel R., Tacconi L. J., Hicks E. K. S., Friedrich S., Sternberg A., 2007, ApJ, 671, 1388
Davies R. I. et al., 2006, ApJ, 646, 754
de Zotti G., Gaskell C. M., 1985, A&A, 147, 17
Eisenhauer F. et al., 2003, in M. Iye & A. F. M. Moorwood, ed., Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. Vol. 4841, pp. 1548–1561
Emmanoulopoulos D., McHardy I. M., Papadakis I. E., 2011, MNRAS, 416, L94
Falcón-Barroso J. et al., 2004, MNRAS, 350, 35
Fathi K., Storchi-Bergmann T., Riffel R. A., Winge C., Axon D. J., Robinson A., Capetti A., Marconi A., 2006, ApJ, 641, L25
Ferrarese L., 2002, ApJ, 578, 90
Ferruit P., Wilson A. S., Mulchaey J., 2000, ApJS, 128, 139
Fisher K. B., Huchra J. P., Strauss M. A., Davis M., Yahil A., Schlegel D., 1995, ApJ, 100, 69
Fürster Schreiber N. M., Genzel R., Lutz D., Sternberg A., 2003, ApJ, 599, 193
Gandhi P., Horst H., Smette A., Höning S., Comastri A., Gilli R., Vignali C., Duschl W., 2009, A&A, 502, 457
Gebhardt K., Adams J., Richstone D., Lauer T. R., Faber S. M., Gültekin K., Murphy J., Tremaine S., 2011, ApJ, 729, 119
Gültekin K. et al., 2009, ApJ, 698, 198
Horst H., Duschl W. J., Gandhi P., Smette A., 2009, A&A, 495, 137
Hummer D. G., Storey P. J., 1987, MNRAS, 224, 801
Krajnović D., Cappellari M., de Zeeuw P. T., Copin Y., 2006, MNRAS, 366, 787
Krajnović D., McDermid R. M., Cappellari M., Davies R. L., 2009, MNRAS, 399, 1839
Krajnović D. et al., 2011, MNRAS, 414, 2923
Kuijken K., Fisher D., Merrifield M. R., 1996, MNRAS, 283, 543
Lauberts A., 1982, ESO/Uppsala survey of the ESO(B) atlas
Le H. A. N., Kang W., Pak S., Im M., Lee J. E., Ho L. C., Pyo T. S., Jaffe D. T., 2011, arXiv e-prints 1108.1499
Malkan M. A., Gorjian V., Tam R., 1998, ApJS, 117, 25
Markwardt C. B., 2009. Astronomical Society of the Pacific Conference Series, Vol. 411, p. 251
McHardy I. M., Gunn K. F., Uttley P., Goad M. R., 2005, MNRAS, 359, 1469
Meyer M. R., Edwards S., Hinkle K. H., Strom S. E., 1998, ApJ, 508, 397
Moorwood A. F. M., Oliva E., 1988, A&A, 203, 278
Moré J., 1978, in G. Watson, ed., Numerical Analysis, Lecture Notes in Mathematics, Vol. 630, pp. 105–116
Mouri H., Kawara K., Taniguchi Y., 2000, ApJ, 528, 186
Müller-Sánchez F., Prieto M. A., Hicks E. K. S., Vives-Arias H., Davies R. I., Malkan M., Tacconi L. J., Genzel R., 2011, ApJ, 739, 69
Mundell C. G., Ferruit P., Nagar N., Wilson A. S., 2009, ApJ, 703, 802
Mushotzky R. F., Winter L. M., McIntosh D. H., Tueller J., 2008, ApJ, 684, L65
Nagar N. M., Wilson A. S., Mulchaey J. S., Gallimore J. F., 1999, ApJS, 120, 209
Neumayer N., Cappellari M., Reunanen J., Rix H. W., van der Werf P. P., de Zeeuw P. T., Davies R. I., 2007, ApJ, 671, 1329
Nowak M. A., Chiang J., 2000, ApJ, 531, L13
Nowak N., Saglia R. P., Thomas J., Bender R., Davies R. I., Gebhardt K., 2008, MNRAS, 391, 1629
Nussbaumer H., Storey P. J., 1988, A&A, 193, 327
Oliva E., Origlia L., Maiolino R., Moorwood A. F. M., 1999, A&A, 350, 9
Orban de Xivry G., Davies R., Schartmann M., Komossa S., Marconi A., Hicks E., Engel H., Tacconi L., 2011, MNRAS, 417, 2721
Parry O. H., Eke V. R., Frenk C. S., 2009, MNRAS, 396, 1972
Prieto M. A., Maciejewski W., Reunanen J., 2005, AJ, 130, 1472
Reynolds C. S., Fabian A. C., Nandra K., Inoue H., Kunieda H., Iwasawa K., 1995, MNRAS, 277, 901
Reynolds C. S., Ward M. J., Fabian A. C., Celotti A., 1997, MNRAS, 291, 403
Rodriguez-Ardila A., Pastoriza M. G., Viegas S., Sigut T. A. A., Pradhan A. K., 2004, A&A, 425, 457
Rosenberg M. J. F., van der Werf P. P., Israel F. P., 2012, A&A, 540, A116
Schmitt H. R., Donley J. L., Antonucci R. R. J., Hutchings J. B., Kinney A. L., 2003, ApJS, 148, 327
Sternberg A., 1998, ApJ, 506, 721
Sternberg A., Hoffmann T. L., Pauldrach A. W. A., 2003, ApJ, 599, 1333
Storchi-Bergmann T., Dors Jr. O. L., Riffel R. A., Fathi K., Axon D. J., Robinson A., Marconi A., Östlin G., 2007, ApJ, 670, 959
Tanaka Y. et al., 1995, Nat, 375, 659
Thornley M. D., Schreiber N. M. F., Lutz D., Genzel R., Spoon H. W. W., Kunze D., Sternberg A., 2000, ApJ, 539, 641
Tremaine S. et al., 2002, ApJ, 574, 740
Uttley P., McHardy I. M., Papadakis I. E., 2002, MNRAS, 332, 231
Valencia-S. M., Zuther J., Eckart A., Garcia-Marín M., Islerlohe C., Wright G., 2012, ArXiv e-prints
van der Marel R. P., Franx M., 1993, ApJ, 407, 525
van Dokkum P. G., 2001, PASP, 113, 1420
Vasudevan R. V., Mushotzky R. F., Winter L. M., Fabian A. C., 2009, MNRAS, 399, 1553
Vaughan S., Fabian A. C., 2004, MNRAS, 348, 1415
Véron-Cetty M. P., Véron P., Gonçalves A. C., 2001, A&A, 372, 730
Winter L. M., Mushotzky R. F., Reynolds C. S., Tueller J., 2009, ApJ, 690, 1322
Wright E. L., 2006, PASP, 118, 1711