Munc18c in Adipose Tissue Is Downregulated in Obesity and Is Associated with Insulin

Lourdes Garrido-Sanchez1,2, Xavier Escote1,2, Leticia Coin-Aragüez3,4, Jose Carlos Fernandez-Garcia3, Rajaa El Bekay3,4,5, Joan Vendrell1,2, Eduardo Garcia-Fuentes4,5,6,9, Francisco J. Tinahones3,4,9

1 Endocrinology and Diabetes Unit, Joan XXIII University Hospital, IISPV, Universitat Rovira i Virgili, Tarragona, Spain, 2 CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Tarragona, Spain, 3 Servicio de Endocrinología y Nutrición, Hospital Clínico Virgen de la Victoria, Malaga, Spain, 4 Ciber Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Malaga, Spain, 5 Instituto de Investigaciones Biomédicas de Malaga (IBIMA), Malaga, Spain, 6 Servicio de Endocrinología y Nutrición, Hospital Regional Universitario Carlos Haya, Malaga, Spain

Abstract

Objective: Munc18c is associated with glucose metabolism and could play a relevant role in obesity. However, little is known about the regulation of Munc18c expression. We analyzed Munc18c gene expression in human visceral (VAT) and subcutaneous (SAT) adipose tissue and its relationship with obesity and insulin.

Materials and Methods: We evaluated 70 subjects distributed in 12 non-obese lean subjects, 23 overweight subjects, 12 obese subjects and 23 non-diabetic morbidly obese patients (11 with low insulin resistance and 12 with high insulin resistance).

Results: The lean, overweight and obese persons had a greater Munc18c gene expression in adipose tissue than the morbidly obese patients (p < 0.001). VAT Munc18c gene expression was predicted by the body mass index (B = −0.001, p = 0.009). In SAT, no associations were found by different multiple regression analysis models. SAT Munc18c gene expression was the main determinant of the improvement in the HOMA-IR index 15 days after bariatric surgery (B = −2148.4, p = 0.038). SAT explant cultures showed that insulin produced a significant down-regulation of Munc18c gene expression (p = 0.048). This decrease was also obtained when explants were incubated with liver X receptor alpha (LXRα) agonist, either without (p = 0.038) or with insulin (p = 0.050). However, Munc18c gene expression was not affected when explants were incubated with insulin plus a sterol regulatory element-binding protein-1c (SREBP-1c) inhibitor (p = 0.504).

Conclusions: Munc18c gene expression in human adipose tissue is down-regulated in morbid obesity. Insulin may have an effect on the Munc18c expression, probably through LXRα and SREBP-1c.

Introduction

Obesity has been considered to be associated with a proinflammatory state, generating an increased incidence of diabetes [1]. It has been well established that insulin stimulates glucose uptake in adipose tissue through the translocation of glucose transport protein 4 (GLUT4)-containing vesicles from intracellular storage sites to the plasma membrane [2–6]. This ultimately results in a large increase in the number of functional glucose transporters on the cell surface. The insulin-stimulated translocation of GLUT4-containing vesicles is a complex multistep process [4–6]. Numerous proteins are involved in the vesicular transport of GLUT4 [7–10]. Some of these proteins appear to regulate the assembly of these vesicles, such as syntaxin-binding protein 3 (STXBP3 or Munc18c) [11]. This protein is a mammalian homolog of two regulators of vesicle trafficking in Saccharomyces cerevisiae (Sec1) and Caenorhabditis elegans (UNC-18). Three human isoforms of Munc18 have been identified: Munc18-1 (Munc18a), Munc18b and Munc18c [11–13]. Munc18a is expressed in neuronal tissue [13,14], whereas Munc18b and Munc18c are expressed ubiquitously, though only Munc18c is involved in the regulation of GLUT4 translocation in adipocytes [11,15–17]. These proteins bind with high affinity to their cognate plasma membrane syntaxins, and null mutations in these genes cause reduction in vesicle exocytosis [18,19]. This protein family is thought to play important roles in membrane trafficking and membrane fusion reactions [20].

The function of Munc18c in insulin-stimulated exocytosis of GLUT4-containing vesicles in adipose tissue is unclear. Different studies have suggested that overexpression of Munc18c plays an
Munc18c and Obesity

Factors.

Munc18c can be regulated by insulin. However, little is known about its regulatory role in GLUT4 traffic [26]. These studies suggest that this phosphorylation impairs the ability of Munc18c to bind its cognate soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins and may therefore represent a regulatory step in GLUT4 traffic [26]. These studies suggest that Munc18c can be regulated by insulin. However, little is known about the regulation of Munc18c expression by insulin, either directly or through different nuclear receptors and transcription factors.

As the amount of adipose tissue is very important in severe obesity, Munc18c from adipose tissue could play a relevant role in the regulation of insulin-stimulated exocytosis of GLUT4-containing vesicles. Despite the evidence, few data exist about Munc18c levels in the most extreme form of obesity. Given this situation, we analyzed Munc18c expression levels in visceral and subcutaneous adipose tissue from groups of lean controls, overweight and morbidly obese patients and their association with insulin and different nuclear receptors related to lipid and carbohydrate metabolism in these tissues. We also undertook a prospective study of the association of Munc18c expression with the changes produced in morbidly obese patients after bariatric surgery.

Materials and Methods

Subjects

We evaluated 70 subjects distributed in two different cohorts. The first cohort included 23 non-diabetic morbidly obese patients (body mass index, BMI) 57.4±5.2 Kg/m²). These morbidly obese patients included 11 with low insulin resistance (MO-L-IR) (homeostasis model assessment of insulin resistance index (HOMA-IR)<4.7) and 12 with high insulin resistance (MO-H-IR) (HOMA-IR>0) [27, 28]. All the morbidly obese patients underwent biliopancreatic diversion (BPD) of Scopinaro, and were also studied 15 days after bariatric surgery. Patients were excluded if they had type 2 diabetes mellitus, cardiovascular disease, arthritis, acute inflammatory disease, infectious disease, or were receiving drugs that could alter the lipid profile or the metabolic parameters at the time of inclusion in the study. The weight of all the patients had been stable for at least one month before bariatric surgery and none had renal involvement. A second cohort included 12 non-obese lean subjects (BMI 22.6±1.9 Kg/m²), 23 overweight subjects (BMI 27.2±1.2 Kg/m²) and 12 obese subjects (BMI 32.1±2.4 Kg/m²). These non-morbidly obese patients underwent laparoscopic surgery for hiatus hernia or cholelithiasis, with no alterations in lipid or glucose metabolism, and with a similar age and with the same selection criteria as those for the morbidly obese group. All subjects were of Caucasian origin and reported that their body weight had been stable for at least 3 months before the study. All participants gave their written informed consent and the study was reviewed and approved by the Ethics and Research Committee of Virgen de la Victoria Clinical University Hospital, Malaga, Spain.

Laboratory Measurements

Blood samples from all subjects were collected after a 12-hour fast. The serum was separated and immediately frozen at –80°C. Serum biochemical parameters were measured in duplicate. Serum glucose, cholesterol, high density lipoprotein (HDL) cholesterol and triglycerides (Randox Laboratories Ltd., Antrim, UK) were measured by standard enzymatic methods. Adiponectin levels were measured by enzyme-linked immunosorbent assay (ELISA) kits (DRG Diagnostics, Marburg, Germany). The insulin was analyzed by an immunoradiometric assay (BioSource International, Camarillo, CA). The HOMA-IR was calculated from fasting insulin and glucose with the following equation: HOMA-IR = fasting insulin (µIU/mL)×fasting glucose (mol/L)/22.5. The percent change (Δ) of anthropometric and biochemical variables 15 days after bariatric surgery was calculated as (baseline variable - variable at 15 days)×100/baseline variable [30].

Table 1. Anthropometric and biochemical variables in the lean, overweight, obese and morbidly obese persons classified according to their insulin resistance.

| Table 1. Anthropometric and biochemical variables in the lean, overweight, obese and morbidly obese persons classified according to their insulin resistance. |
Lean	Overweight	Obese	MO-L-IR	MO-H-IR	
Sex (male/female)	6/6	14/9	7/5	5/6	6/6
Age (years)	39.6±12.6	57.1±15.0	57.4±12.8	42.4±11.1	37.5±10.1
Weight (Kg)	65.0±10.6a	74.7±10.2ab	91.5±15.5ab	135.8±30.6b	157.0±27.8a
BMI (Kg/m²)	22.6±1.9a	27.3±1.4b	32.5±2.6c	52.4±9.4c	59.0±7.8a
Waist (cm)	80.0±9.5a	99.6±10.7b	114.5±10.7c	131.2±15.0b	149.5±17.1a
Hip (cm)	88.4±7.9a	93.7±11.8b	109.0±13.3c	152.0±17.4b	159.5±14.0a
Glucose (mmol/L)	4.63±0.61b	5.51±0.51a	5.61±0.45a	4.83±0.55b	5.51±0.53a
Cholesterol (mmol/L)	5.04±1.03	5.01±1.10	5.32±0.79	5.21±1.11	4.51±0.86
Triglycerides (mmol/L)	1.00±0.55b	1.29±0.77ab	1.00±0.36ab	1.18±0.66ab	1.57±0.48b
Insulin (µIU/ml)	7.3±3.3b	5.2±3.6b	9.5±6.1b	10.1±3.6b	34.9±10.2a
HOMA-IR	1.48±0.58b	1.31±0.94b	2.48±1.61b	2.23±0.66b	8.51±2.03a
Adiponectin (ng/ml)	12.7±4.5	12.1±5.9	15.2±7.6	10.6±4.9	8.1±4.6

The results are given as the mean ± standard deviation. MO-L-IR: Morbid obesity with low insulin resistance; MO-H-IR: Morbid obesity with high insulin resistance; BMI: body mass index; HOMA-IR: homeostasis model assessment of insulin resistance index. Different letters indicate significant differences between the means of the different groups (P<0.05).

doi:10.1371/journal.pone.0063937.t001
Adipose Tissue Samples

Visceral (VAT) and subcutaneous (SAT) adipose tissues were obtained during bariatric surgery in the morbidly obese patients and during laparoscopic surgery in the non-morbidly obese patients [28,31]. The biopsy samples were washed in physiological saline and immediately frozen in liquid nitrogen. Biopsy samples were maintained at -80°C until analysis. Another SAT sample from the lean subjects was placed in phosphate buffered saline (PBS) supplemented with 5% bovine serum albumin (BSA) to perform adipose tissue explant cultures.

Adipose Tissue Culture

Adipose tissue explants from 4 lean subjects were prepared by cutting samples into 5 mg portions, which were subsequently incubated for 30 min in PBS +5% BSA (3 ml/g). After 30 seconds of centrifugation (400 g), samples were incubated in M199 medium (Life Technologies, Grand Island, NY) supplemented with 10% fetal bovine serum (FBS), 100 U/ml penicillin, and 100 µg/ml streptomycin. Explants were incubated in triplicate in the presence of liver X receptor-α (LXRα) agonist (T0901317) (10 µM) (Sigma-Aldrich, St. Louis, MO) and sterol regulatory element-binding protein-1c (SREBP-1c) inhibitor (Betalutin) (6 µg/ml) [32] (Sigma-Aldrich, St. Louis, MO), in the presence or absence of insulin (1000 nM) (Actrapid M) (Sigma-Aldrich, St. Louis, MO) and sterol regulatory element-binding protein-1c (SREBP-1c) inhibitor (Betalutin) (6 µg/ml) [32] (Sigma-Aldrich, St. Louis, MO) and sterol regulatory element-binding protein-1c (SREBP-1c) inhibitor (Betalutin) (6 µg/ml) [32] (Sigma-Aldrich, St. Louis, MO) and sterol regulatory element-binding protein-1c (SREBP-1c) inhibitor (Betalutin) (6 µg/ml) [32] (Sigma-Aldrich, St. Louis, MO) and sterol regulatory element-binding protein-1c (SREBP-1c) inhibitor (Betalutin) (6 µg/ml) [32] (Sigma-Aldrich, St. Louis, MO) and sterol regulatory element-binding protein-1c (SREBP-1c) inhibitor (Betalutin) (6 µg/ml) [32] (Sigma-Aldrich, St. Louis, MO). This dose of insulin has been shown to be effective in inducing hyperinsulinism. This dose has been used to analyze whether high hyperinsulinism can exert an effect on Munc18c expression [33–35]. Following these treatments, adipose tissue explants were collected and frozen in liquid nitrogen and stored at -80°C for further processing.

RNA Extraction

Frozen VAT, SAT and culture explants were homogenized with an Ultra-Turrax 8 (Ika, Staufen, Germany). Total RNA was extracted by RNeasy lipid tissue midi kit (QIAGEN Science, Hilden, Germany), and total RNA was treated with 55U RNase-free deoxyribonuclease (QIAGEN Science, Hilden, Germany) following the manufacturer’s instructions. The purity of the RNA was determined by the absorbance260/absorbance280 ratio on a Nanodrop ND-1000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA). The integrity of total purified RNA was checked by denaturing agarose gel electrophoresis.

Real-time Quantitative Polymerase Chain Reaction (PCR)

Total RNA was reverse transcribed to cDNA by using a high-capacity cDNA reverse transcription kit with RNase inhibitor (Applied Biosystems, Foster City, CA). The cDNA was used for quantitative real-time PCR with duplicates. We analyzed the relative baseline mRNA expression levels of Munc18c (Hs01029364_m1, RefSeq. NM_007269.2), LXRα (Hs00172885_m1, RefSeq. NM_00130102.1, NM_001130101 and NM_005693.2), SREBP-1c (Hs001088691_m1, RefSeq. NM_004176.3 and NM_001130102.1, NM_001130101.1 and NM_005693.2), and Peroxisome proliferator-activated receptor gamma (PPARγ) (Hs01115510_m1, RefSeq. NM_007269.2). The cycle threshold (Ct) value for each sample was normalized with the expression of cyclophilin A (PPIA) (4326316E, RefSeq. NM_021130.3). The amplifications were performed using a Micro-Amp® Optical 96-well reaction plate (Applied Biosystems, Foster City, CA) on an ABI 7500 Fast Real-Time PCR System (RT-qPCR) (Applied Biosystems, Foster City, CA). RT-qPCR reactions were carried out for all genes using specific TaqMan® Gene Expression Assays (Applied Biosystems, Foster City, CA). During PCR, the Ct values for each amplified product were determined using a threshold value of 0.1. SDS software 2.3 and RQ Manager 1.2 (Applied Biosystems, Foster City, CA) were used to analyze the results with the comparative Ct method (2^(-ΔΔCt)). All data were expressed as an n-fold difference relative to the calibrator (a mixture of the SAT and VAT tissues was used as the calibrator sample).

Statistical Analysis

The statistical analysis was done with Statistical Package for the Social Sciences (SPSS) (Version 11.5 for Windows; SPSS, Chicago, IL). Because most of the parameters analyzed do not have a normal distribution, we used non-parametric tests. Differences between two related variables were analyzed by the Wilcoxon test. Differences between more than two groups were compared using the Kruskal-Wallis test. The Spearman correlation coefficients were calculated to estimate the correlations between variables. Multiple linear regressions were used to determine the association between variables. Values were considered to be statistically significant when P<0.05. The results are given as the mean ± standard deviation (SD).

Results

Anthropometric and Biochemical Characteristics

Table 1 summarizes the characteristics of the different groups of patients. The MO-H-IR patients had a higher weight, BMI, waist circumference, serum insulin and HOMA-IR than the MO-L-IR, lean, overweight and obese persons (Table 1).

Munc18c is Down-regulated in Adipose Tissue from Morbidly Obese Patients

The lean, overweight and obese persons had a significantly greater Munc18c gene expression in VAT and SAT depots than the morbidly obese cohort (both MO-L-IR and MO-H-IR patients; p<0.001) (Figure 1). No significant differences were detected between the Munc18c gene expression regarding VAT and SAT depots in any of the study groups (Figure 1).

Munc18c Expression Mainly Correlates with BMI

Munc18c gene expression levels in VAT and SAT correlated negatively with weight, BMI, and waist and hip circumferences (Table 2). Munc18c gene expression in VAT correlated negatively with glucose and positively with adiponectin (Table 2). Munc18c gene expression in SAT correlated negatively with insulin and HOMA-IR (Table 2). The expression of Munc18c in VAT and SAT did not correlate significantly with any of the other anthropometric and biochemical variables studied (data not shown).

In order to strengthen the independence of these associations as predictors of Munc18c gene expression, a multiple regression analysis model was constructed for each depot. In the VAT depot model, sex, age, BMI, waist and hip circumferences and adiponectin were selected as independent variables. VAT Munc18c gene expression was mainly predicted by the BMI (B = -0.001, p = 0.009; 95% confidence interval [CI] = -0.001–0.000). In SAT, no associations were found with different multiple regression analysis models.
Munc18c Expression Correlates with Improvement in BMI and Insulin Resistance in Morbidly Obese Patients After Bariatric Surgery

Table 3 shows the differences in the anthropometric and biochemical variables between before the bariatric surgery and 15 days after the surgery. There was a significant improvement in the anthropometric and biochemical variables as a result of the bariatric surgery (Table 3). Munc18c gene expression in VAT correlated positively with the Δ-weight (R = 0.522, p = 0.045) and with the Δ-BMI (R = 0.522, p = 0.045). The Munc18c gene expression in SAT correlated negatively with the Δ-HOMA-IR (R = −0.708, p = 0.010). In a multiple linear regression model, the Δ-HOMA-IR was mainly predicted by the SAT Munc18c gene expression (R² = 0.947) (B = −2214.4, p = 0.038; 95% CI = (−2407.2)−(−224.1)), adjusting for age, sex, Δ-BMI, Δ-waist and Δ-hip circumference. No significant associations were observed between the Munc18c gene expression in SAT or VAT and the evolution of the Δ-waist and Δ-hip circumferences and Δ-adiponectin during the prospective study (data not shown).

Munc18c Expression Correlates with Different Nuclear Receptors

Associations between Munc18c gene expression with different genes related to lipid and carbohydrate metabolism were explored in VAT and SAT. In VAT, Munc18c gene expression levels did not correlate with any of genes analyzed (LXRα, SREBP-1c and PPARγ) (data not shown). In SAT, Munc18c gene expression correlated significantly and negatively with SREBP-1c (r = −0.626, p = 0.017) and LXRα (r = −0.590, p = 0.026), but not with PPARγ expression levels (r = 0.114, p = 0.808).

Table 2. Bivariate correlations between Munc18c gene expression from subcutaneous (SAT) and visceral (VAT) adipose tissue gene expression and anthropometric and metabolic characteristics in the whole population.

Variables	SAT MUNC-18c	VAT MUNC-18c		
	R	P	R	P
Weight	−0.402	0.018	−0.380	0.022
BMI	−0.411	0.016	−0.458	0.005
Waist	−0.374	0.032	−0.429	0.010
Hip	−0.453	0.008	−0.419	0.012
Glucose	Ns	Ns	−0.359	0.027
Insulin	−0.359	0.032	Ns	Ns
HOMA-IR	−0.349	0.037	Ns	Ns
Adiponectin	Ns	Ns	0.458	0.010

R: Spearman correlation coefficient. Ns: Not significant. BMI: body mass index; HOMA-IR: homeostasis model assessment of insulin resistance index.

doi:10.1371/journal.pone.0063937.t002

Table 3. Course of biochemical and anthropometric variables in the morbidly obese patients before and after bariatric surgery.

Variables	Before surgery	15 days after surgery	p
Weight (Kg)	153.0 ± 30.1	142.2 ± 23.0	0.002
Waist (cm)	142.7 ± 18.1	137.5 ± 13.9	0.040
BMI (Kg/m²)	56.2 ± 8.7	52.2 ± 6.9	0.002
Glucose (mmol/L)	5.10 ± 0.66	5.32 ± 0.57	0.195
Cholesterol (mmol/L)	4.85 ± 1.05	4.11 ± 1.20	0.048
Triglycerides (mmol/L)	1.50 ± 0.88	2.00 ± 0.70	0.057
Insulin (μIU/ml)	225 ± 13.1	143.3 ± 5.9	0.005
HOMA-IR	5.72 ± 3.21	3.67 ± 1.55	0.011
Adiponectin (ng/ml)	8.77 ± 4.34	7.65 ± 3.82	0.141

The results are given as the mean ± standard deviation. BMI: body mass index; HOMA-IR: homeostasis model assessment of insulin resistance index.
doi:10.1371/journal.pone.0063937.t003
Insulin Down-regulates Munc18c Expression in vitro

Given the significant correlation found between insulin and Munc18c gene expression in SAT, we checked whether co-incubation with insulin could modify the Munc18c gene expression. Accordingly, SAT explants from 4 lean subjects were incubated without or with insulin (1000 nM). After 24 hours of incubation, a significant down-regulation of Munc18c gene expression was observed (p = 0.016) (Figure 2a). However, a significant up-regulation of LXRα (p = 0.039) (Figure 2b) and SREBP-1c expression (p = 0.024) (Figure 2c) was also found.

To determine whether Munc18c is related to LXRα and SREBP-1c, we made different experiments with 10 μM T0901317, a LXRα agonist, and with 6 μg/ml betulin, a SREBP-1c inhibitor, both with and without 1000 nM insulin. Figure 2d shows that Munc18c gene expression was significantly decreased when SAT explants were incubated with T0901317, both without (p = 0.038) and with insulin (p = 0.050). However, Munc18c gene expression was not affected when SAT explants were incubated with betulin, either without (p = 0.806) or with insulin (p = 0.504) (Figure 2d).

Discussion

The results show that Munc18c gene expression in human VAT and SAT were down-regulated in morbidly obese patients. However, human data are very scarce regarding adipose tissue expression. Also, SAT Munc18c gene expression was inversely associated with insulin. Moreover, insulin down-regulated the Munc18c gene expression in SAT culture.

A new finding of this study is the inverse association between Munc18c gene expression in adipose tissue and many clinical variables associated with a poorly metabolic profile, such as weight, BMI, and waist and hip circumferences. Although these bivariate associations were observed both in SAT and VAT depots, after controlling for confounding variables, BMI was the only factor determining Munc18c gene expression in VAT, with no effect on SAT. We are aware of the observational design of the study and that no cause-consequence events may be inferred. However, in the prospective study in the morbidly obese cohort, basal Munc18c VAT gene expression levels were inversely associated with weight loss at the short-term evaluation after bariatric procedure. This finding tempted us to speculate a role of VAT Munc18c in the early metabolic events that occur in the few days after surgery in morbidly obese patients.

Munc18c is part of the insulin-signalling steps in GLUT4 vesicle exocytosis. Reduced protein and/or mRNA levels of Munc18c is reported in obese and type 2 diabetic human subjects as well as in obese rodent and diabetic models [36]. The inverse association with circulating levels of glucose and insulin may link Munc18c gene expression in adipose tissue with the effects of insulin. Despite the lack of differences in the basal study between the high and low insulin resistant morbidly obese patients regarding Munc18c gene expression, the prospective analysis in the surgically treated cohort showed that the HOMA-IR index improvement after bariatric surgery was associated with SAT Munc18c gene expression. This suggests that Munc18c in SAT may be involved in the early improvement of the morbidly obese subjects after bariatric surgery. This association opens a new path to understand the switch in glucose metabolism that takes place in the early days after bariatric surgery, before the appearance of a significant weight loss.

Emerging evidence suggests that Munc18c can be regulated by insulin. Insulin regulates various aspects of GLUT4 exocytosis. Stimulation of 3T3-L1 adipocytes with insulin promotes tyrosine phosphorylation and translocation of GLUT4 to the cell surface. Munc18c is part of the insulin-signalling steps in GLUT4 vesicle exocytosis. Reduced protein and/or mRNA levels of Munc18c is reported in obese and type 2 diabetic human subjects as well as in obese rodent and diabetic models [36]. The inverse association with circulating levels of glucose and insulin may link Munc18c gene expression in adipose tissue with the effects of insulin. Despite the lack of differences in the basal study between the high and low insulin resistant morbidly obese patients regarding Munc18c gene expression, the prospective analysis in the surgically treated cohort showed that the HOMA-IR index improvement after bariatric surgery was associated with SAT Munc18c gene expression. This suggests that Munc18c in SAT may be involved in the early improvement of the morbidly obese subjects after bariatric surgery. This association opens a new path to understand the switch in glucose metabolism that takes place in the early days after bariatric surgery, before the appearance of a significant weight loss.

Emerging evidence suggests that Munc18c can be regulated by insulin. Insulin regulates various aspects of GLUT4 exocytosis. Stimulation of 3T3-L1 adipocytes with insulin promotes tyrosine phosphorylation and translocation of GLUT4 to the cell surface. Munc18c is part of the insulin-signalling steps in GLUT4 vesicle exocytosis. Reduced protein and/or mRNA levels of Munc18c is reported in obese and type 2 diabetic human subjects as well as in obese rodent and diabetic models [36]. The inverse association with circulating levels of glucose and insulin may link Munc18c gene expression in adipose tissue with the effects of insulin. Despite the lack of differences in the basal study between the high and low insulin resistant morbidly obese patients regarding Munc18c gene expression, the prospective analysis in the surgically treated cohort showed that the HOMA-IR index improvement after bariatric surgery was associated with SAT Munc18c gene expression. This suggests that Munc18c in SAT may be involved in the early improvement of the morbidly obese subjects after bariatric surgery. This association opens a new path to understand the switch in glucose metabolism that takes place in the early days after bariatric surgery, before the appearance of a significant weight loss.

Emerging evidence suggests that Munc18c can be regulated by insulin. Insulin regulates various aspects of GLUT4 exocytosis. Stimulation of 3T3-L1 adipocytes with insulin promotes tyrosine phosphorylation and translocation of GLUT4 to the cell surface. Munc18c is part of the insulin-signalling steps in GLUT4 vesicle exocytosis. Reduced protein and/or mRNA levels of Munc18c is reported in obese and type 2 diabetic human subjects as well as in obese rodent and diabetic models [36]. The inverse association with circulating levels of glucose and insulin may link Munc18c gene expression in adipose tissue with the effects of insulin. Despite the lack of differences in the basal study between the high and low insulin resistant morbidly obese patients regarding Munc18c gene expression, the prospective analysis in the surgically treated cohort showed that the HOMA-IR index improvement after bariatric surgery was associated with SAT Munc18c gene expression. This suggests that Munc18c in SAT may be involved in the early improvement of the morbidly obese subjects after bariatric surgery. This association opens a new path to understand the switch in glucose metabolism that takes place in the early days after bariatric surgery, before the appearance of a significant weight loss.
in vitro Munc18c regulation by different nuclear receptors and transcribed by insulin [37–39]. To date, little is known about the SREBP-1c expression levels. This finding is in agreement with a LXR agonist. It is known that LXR ligands may inhibit a SREBP-1c inhibitor or with insulin plus a SREBP-1c inhibitor prevented the decrease found in Munc18c gene expression when SAT was incubated only with insulin. The results, together the LXREs in the Munc18c promoter, suggest that the effect of insulin on the Munc18c gene expression in cultured SAT may be through LXRα and SREBP-1c.

There is a wealth of evidence implicating Munc18c in the control of insulin-stimulated GLUT4 translocation to the plasma membrane [15–17,23,26,47–49]. We suggest that the decrease in Munc18c expression found in our study in the morbidly obese subjects may be a compensatory mechanism to favour GLUT4 translocation. However, other proteins may also be involved. The Munc18c protein is known to be regulated by different mechanisms. However, this is the first study to show that insulin can produce a decrease in SAT Munc18c gene expression. A precise characterization of the mechanisms by which Munc18c is regulated will allow us to better understand the trafficking itinerary of GLUT4.

In conclusion, our data demonstrate for the first time that the level of Munc18c gene expression in human adipose tissue is down-regulated in morbid obesity. We found that Munc18c gene expression was associated with the short-term metabolic improvement after bariatric surgery. However, the data reported in this study are only descriptive and only show an association. Also, Munc18c gene expression was inversely associated with insulin in SAT. To our knowledge, the present study is the first to report the effects of insulin on SAT Munc18c gene expression in an in vitro model. As our preliminary experiment shows, this effect may be through LXRα and SREBP-1c. This observation clearly warrants further functional studies to show the precise mechanism involved in the regulation of Munc18c gene expression.

Acknowledgments

The authors wish to thank all the subjects for their collaboration. We also gratefully acknowledge the help of Ian Johnstone and Mercedes López Román for their expertise in preparing this manuscript. CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) and CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN) are ISCIII projects.

Author Contributions

Conceived and designed the experiments: LGS EGF JV. Performed the experiments: XE LG JC FG LGS. Analyzed the data: LGS EGF JC FG JJT. Contributed reagents/materials/analysis tools: RE JV EGF JJT. Wrote the paper: LGS EGF. Reviewed the manuscript and contributed to the discussion: JJT JC FG JJT.

References

1. Libby P, Ridker PM, Maseri A (2002) Inflammation and atherosclerosis. Circulation 105: 1135–1143. Review.
2. James DE, Piper RC, Slot JW (1994) Insulin stimulation of GLUT-4 translocation: a model for regulated recycling. Trends Cell Biol 4: 120–126.
3. Czech MP (1995) Molecular actions of insulin on glucose transport. Annu Rev Nutr 15: 441–471. Review.
4. Klip A, Tsakiridis T, Marette A, Ortiz PA (1994) Regulation of expression of glucose transporters by glucose: a review of studies in vivo and in cell cultures. FASEB J 8: 43–53. Review.
5. Thurmond DC, Pesin JE (2001) Molecular machinery involved in the insulin regulated fusion of GLUT4-containing vesicles with the plasma membrane. Mol Membr Biol 18: 237–245. Review.
6. Pesin JE, Saltiel AR (2000) Signaling pathways in insulin action: molecular targets of insulin resistance. J Clin Invest 106: 165–169. Review.
7. Foster LJ, Klip A (2006) Mechanism and regulation of GLUT-4 vesicle fusion in muscle and fat cells. Am J Physiol Cell Physiol 279: C677–C690. Review.
8. Kavanashi M, Tamori Y, Okazawa H, Arai S, Shioda H, et al. (2000) Role of SNAP23 in insulin-induced translocation of GLUT4 in 3T3-L1 adipocytes:
mediation of complex formation between syntaxin and VAMP2. J Biol Chem 275: 82490-7.
9. Vokchuk A, Wang Q, Ewart HS, Liu Z, He L, et al. (1996) Syntaxin 4 in 3T3-L1 adipocytes: regulation by insulin and participation in insulin-dependent glucose transport. Mol Biol Cell 7: 1075-82.
10. Yang C, Coker KJ, Kim K, Mora S, Thurmond DC, et al. (2001) Syntaxin 4 heterozygous knockout mice develop muscle insulin resistance. J Clin Invest 107: 1311-8.
11. Tellman JT, Macaulay SL, Meltsch S, Hewish DR, Ward CW, et al. (1997) Characterization of Munc-18c and syntaxin-4 in 3T3-L1 adipocytes. Putative role in insulin-dependent movement of GLUT4. J Biol Chem 272: 6179-86.
12. Hata Y, Sudhof TC. (1995) A novel ubiquitous form of Munc-18 interacts with syntaxin of plasma membrane fusion. J Biol Chem 270: 13022-8.
13. Pevsner J, Hsu SC, Scheller RH (1994) n-Sec1: a neural-specific syntaxin-binding protein. Proc Natl Acad Sci USA 91: 1445-9.
14. Garcia EP, Gatti E, Butler M, Burton J, De Camilli P, et al. (1994) A rat brain Sec1 homologue related to Rop and UNC18 interacts with syntaxin. Proc Natl Acad Sci USA 91: 2005-7.
15. Tamori Y, Watanishi M, Niki T, Shinoda H, Araki S, et al. (1998) Inhibition of insulin-induced GLUT4 translocation by Munc18c through interaction with syntaxin in 3T3-L1 adipocytes. J Biol Chem 273: 19740-6.
16. Thurmond DC, Ceresa BP, Okada S, Elmendorf JS, Coker K, et al. (1998) Regulation of insulin-stimulated GLUT4 translocation by Munc18c in 3T3L1 adipocytes. J Biol Chem 273: 33876-83.
17. Thurmond DC, Kanazaki M, Khan AH, Pessin JE. (2000) Munc18c function is required for insulin-stimulated plasma membrane fusion of GLUT4 and insulin-responsive amino peptide storage vesicles. Mol Cell Biol 20: 379-88.
18. Hosono R, Hekimi S, Kamiya Y, Sassa T, Murakami S, et al. (1992) The unc-18 gene of the nematode Caenorhabditis elegans. J Neurochem 58: 1317-25.
19. Harrison SD, Brodie K, van de Goor J, Robin GM (1994) Mutations in the Drosophila Rop gene suggest a function in general secretion and synaptic transmission. Neuron 13: 555-66.
20. Jahn R, Stahlhof TC. (1999) Membrane fusion and exocytosis. Annu Rev Biochem 68: 863-911. Review.
21. Spurlin BA, Thomas RM, Nevins AK, Kim HJ, Kim VJ, et al. (2003) Insulin resistance in tetracycline-repressible Munc18c transgenic mice. Diabetes 52: 1910-7.
22. Ob E, Spurlin BA, Pessin JE, Thurmond DC (2005) Munc18c heterozygous knockout mice display increased susceptibility for severe glucose intolerance. Diabetes 54: 638-47.
23. Umahara M, Okada S, Yamada E, Saito T, Ohshima K, et al. (1998) Tyrosine phosphorylation of Munc18c regulates platelet-derived growth factor-stimulated glucose transporter 4 translocation in 3T3L1 adipocytes. Endocrinology 149: 40-9.
24. Jewell JL, Ob E, Ramalingam L, Kalwat MA, Tagliabue VS, et al. (2011) Munc18c phosphorylation by the insulin receptor links cell signaling directly to SNARE exocytosis. J Cell Biol 193: 185-99.
25. Schmelze K, Kane S, Gridley S, Lienhard GE, White FM (2006) Temporal dynamics of tyrosine phosphorylation in insulin signaling. Diabetes 55: 2171-9.
26. Aran V, Bryant NJ, Gould GW (2011) Tyrosine phosphorylation of Munc18c on residue 521 abrogates binding to Syntaxin 4. BMC Biochem 12: 19.
27. Garcia-Fuentes E, Murri M, Garrido-Sanchez L, Garcia-Serrano S, Garcia-Almeida JM, et al. (2010) PPARγ expression after a high-fat meal is associated with plasma superoxide dismutase activity in morbibly obese persons. Obesity (Silver Spring) 18: 952-9.
28. Tinahones FJ, Garrido-Sanchez L, Miranda M, Garcia-Almeida JM, Macias-Gonzalez M, et al. (2010) Obesity and insulin resistance-related changes in the expression of lipogenic and lipolytic genes in morbibly obese subjects. Obes Surg 20: 1539-67.
29. Tinahones FJ, Murri-Pierrre M, Garrido-Sanchez L, Garcia-Almeida JM, Garcia-Serrano S, et al. (2009) Oxidative stress in severely obese persons is greater in those with insulin resistance. Obesity (Silver Spring) 17: 240-6.
30. Garrido-Sanchez L, Murri M, Ricco-Beccera J, Ocatia-Wilhelmh L, Cohen RV, et al. (2012) Bypass of the duodenum improves insulin resistance much more rapidly than sleeve gastrectomy. Surg Obes Relat Dis 8: 145-50.
31. Garcia-Serrano S, Moreno-Santos I, Garrido-Sanchez L, Gutierrez-Repio C, Garcia-Almeida JM, et al. (2010) Steraryl-CoA desaturase-1 is associated with insulin resistance in morbibly obese subjects. Mol Med 17: 273-80.
32. Tang, JJ, Li JG, QI W, Qiu WW, Li PS, et al. (2011) Inhibition of SREBP by a small molecule, betulin, improves hyperlipidemia and insulin resistance and reduces atherogenic plaques. Cell Metab 13: 46–56.
33. Hugo ER, Becchering DC, Gersin KS, Lefus J, Ben-Jonathan N (2008) Prolactin Release by Adipose Explants, Primary Adipocytes, and LS14 Adipocytes. J Clin Endocrinol Metab 93: 4006-12.
34. Harte AJ, McCorman CL, Fernan CL, Crocker J, Starczynski J, et al. (2003) Insulin increases angiotensinogen expression in human abdominal subcutaneous adipocytes. Diabetes Obes Metab 5: 462-7.
35. Yu X, Shen N, Zhang ML, Pan FY, Wang C, et al. (2011) Egor-1 decreases adipocyte insulin sensitivity by tilting PFK/Akt and MAPK signal balance in mice. EMBO J 30: 3754-65.
36. Bergman BC, Cornier MA, Horton JT, Bessesen DH, Eckel RH (2008) Skeletal muscle munc18c and syntaxin 4 in human obesity. Nutr Metab (Lond) 5: 21.
37. Chen G, Liang G, Ou J, Goldstein JL, Brown MS (2004) Central role for liver X receptor in insulin-mediated activation of Srebp-1c transcription and stimulation of fatty acid synthesis in liver. Proc Natl Acad Sci USA 101: 11245-50.
38. Def N, Enthine V, Gonneau E, Laville M, Vidal H, et al. (2006) Insulin activates human sterol-regulatory-element-binding protein-1c (SREBP-1c) promoter through SRE motifs. Biochem J 400: 179-88.
39. Tobin KA, Ulven SM, Schuster GU, Steineger HH, Andresen SM, et al. (2002) Liver X receptors as insulin-mediating factors in fatty acid and cholesterol biosynthesis. J Biol Chem Mar 277: 10901-7.
40. Wójcicka G, Jamroz-Wieniewska A, Horoszewicz K, Behnoksi J (2007) Liver X receptors (LXRs). Part I: structure, function, regulation of activity, and role in lipidal metabolism. Postepy Hig Med Dosw (Online) 61: 760-85. Review.
41. Kuiper I, Li J, Vreeseijk-Baudoin I, Koster J, van der Hart P, et al. (2010) Activation of liver X receptors with T0901317 attenuates cardiac hypertrophy in vivo. Eur J Heart Fail 12: 1042-50.
42. Phan TQ, Low MJ, Privalsky ML (2010) DNA recognition by thyroid hormone and retinoid acid receptors: 3,4,5 rule modified. Mol Cell Endocrinol 319: 88-98.
43. Repa JJ, Liang G, Ou J, Bashmakov Y, Lobaccaro JM, et al. (2000) Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oestrogen receptors, LXRαs and LXRβs. Genes Dev 14: 2859-70.
44. Boergesen M, Pedersen TÅ, Gross B, van Heeringen SJ, Hagenbeek D, et al. (2012) Genome-wide profiling of liver X receptor, retinoid X receptor, and peroxisome proliferator-activated receptor α in mouse liver reveals extensive sharing of binding sites. Mol Cell Biol 32: 852-67.
45. Pekkonen P, Welber-Stahl I, Dwee Rymänen J, Wienecke-Baldaccino A, et al. (2012) Genome-wide landscape of liver X receptor chromatin binding and gene regulation in human macrophages. BMC Genomics 13: 50.
46. Mounier E, Ye T, Ghoshkhalil MA, Urban S, Oz C, et al. (2012) Retinoic acid receptors recognize the mouse genome through binding elements with diverse spacing and topology. J Biol Chem 287: 26328-41.
47. Macaulay SL, Grussin J, Stoichevska V, Ryan JM, Castelli LA, et al. (2002) Cellular munc18c levels can modulate glucose transport rate and GLUT4 translocation in 3T3L1 cells. FEBS Lett 528: 154-60.
48. Khan AH, Thurmond DC, Yang C, Ceresa BP, Sigmund CD, et al. (2001) Munc18c regulates insulin-stimulated ghrelin translocation to the transverse tubules in skeletal muscle. J Biol Chem 276: 4063-9.
49. Spurlin BA, Park SY, Nevins AK, Kim JK, Thurmond DC (2004) Syntaxin 4 transgenic mice exhibit enhanced insulin-mediated glucose uptake in skeletal muscle. Diabetes 53: 2223-31.