Impact of Physician’s Education on Adherence to Tuberculosis Treatment for Patients of Low Socioeconomic Status in Bangladesh

Shinwon Lee, Omar Faruk Khan, Jeong Ho Seo, Dong Yeon Kim, Kyung-Hwa Park1, Sook-In Jung1, Eun-Kyung Chung2 and Hee-Chang Jang*

Department of Medicine, Bangladesh-Korea Friendship Hospital, Savar, Bangladesh, Departments of 1Infectious Diseases and 2Medical Education, Chonnam National University Medical School, Gwangju, Korea

Successful tuberculosis control depends on good adherence to treatment. Yet, limited data are available on the efficacy of methods for improving the adherence of patients of low socioeconomic status. We evaluated the impact of physician-provided patient education on adherence to anti-tuberculosis medication in a low socioeconomic status and resource-limited setting. A pre-/post-intervention study was conducted at a suburban primary health care clinic in Bangladesh where an intensive education strategy was established in May 2006. Treatment outcomes of tuberculosis patients from March 2005 to April 2006 (pre-intervention) and from May 2006 to December 2007 (post-intervention) were compared. Among 354 patients, 198 (56%) were treated before intervention and 156 (44%) were treated after intervention. Cumulative adherence to anti-tuberculosis medication was significantly greater in the intervention group than in the control group in univariate and multivariate analyses. Physician’s education can contribute to increasing the adherence of patients in resource-limited settings.

Key Words: Tuberculosis; Education; Socioeconomic factors

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

The public-private mix (PPM) approach is an effective way to improve detection rates of the directly observed treatment, short course (DOTS) approach with comparative treatment success rate in tuberculosis.\(^1\)\(^2\) However, the PPM approach has a lower rate of success than expected in some situations.\(^3\) For the PPM strategy to be successful, it is important to find ways to improve the adherence of patients in clinics, especially those patients of low socioeconomic status (SES). However, few studies have investigated the impact of education on adherence, and existing findings are inconsistent.\(^4\)\(^5\) We evaluated the impact of physician-provided education on adherence to treatment in patients of low SES in a primary health care clinic.

MATERIALS AND METHODS

The current study was designed as a pre-/post-intervention study. The control group consisted of tuberculosis patients treated from March 2005 to April 2006, and the intervention group consisted of patients treated from May 2006 to December 2007 at Bangladesh-Korea Friendship Hospital. The facility is a primary health care clinic located in Savar, a suburban industrial complex area adjacent to Dhaka, the capital of Bangladesh. We followed the standard short course treatment regimen recommended by the World Health Organization and used a fixed-dose formula provided free of charge by the national tuberculosis control program in Bangladesh. This study was approved by the institutional review board of Daegu Fatima Hospital (No. DFH100T088).

From May 2006, we changed the irregular visiting schedules of the patients into regular ones as follows: every week during the initial month of treatment, every other week during the next month, and then every month until the end of treatment. We scheduled the next visit 3 days before drug exhaustion and directed each patient to bring the remaining pills at every visit. Education was performed directly by the physicians on every visit. The contents of our educa-
Physician’s Education and Adherence to Tuberculosis Treatment

Table 1. Baseline characteristics and outcomes of 354 patients with tuberculosis

Variable	Pre-intervention group (N=198)	Post-intervention group (N=156)	p value
Age (years)	35 (±15)	35 (±16)	0.90
Male sex	126 (64)	85 (55)	0.08
Pulmonary tuberculosis	142 (72)	130 (83)	0.01
Extrapulmonary tuberculosis	56 (28)	26 (17)	
AFB results			0.24
AFB-positive	79 (56)	63 (49)	
AFB-negative	63 (44)	67 (52)	
Treatment experience			0.64
New cases	180 (91)	144 (92)	
Relapsed or defaulted cases	18 (9)	12 (8)	
Body weight (kg)	42 (±9)	42 (±7)	0.46
Distance from home to clinic	145 (73)	118 (76)	0.43
Family income per month (USD)	62 (±22)	63 (±30)	0.89
Duration of education in school	3.6 (±3.5)	3.5 (±3.8)	0.78
Illiterate	112 (57)	84 (54)	0.67
Outcome			
Remain adherent at day 168	139 (70)	125 (80)	0.03
Treatment success	138 (70)	122 (78)	0.07

AFB: acid-fast bacilli staining, USD: united states dollar.
TABLE 2. Independent risk factors for nonadherence in 354 patients with tuberculosis

Variable	Univariate analysis	Multivariate analysis				
	Number (%) of patients	p value	HR	95% C.I.	p value	
	Adherent (N= 264)	Non-adherent (N=90)				
Age*	33 (±15)	41 (±16)	< 0.01	1.02	1.01-1.04	0.002
Male sex	148 (56)	63 (70)	0.02	1.81	1.12-2.92	0.015
AFB-negative	85 (32)	45 (50)	< 0.01	0.58	0.36-0.93	0.024
Intervention group	125 (47)	31 (34)	0.03	0.36-0.93	0.024	

The multivariate analysis included the following variables: age, male sex, AFB-negative, intervention group, and tuberculosis type. HR: hazard ratio, CI: confidence interval, AFB: acid-fast bacilli staining. *Continuous variables are expressed as means (±SD).
improved adherence of the educated patients. Third, this study was not designed as randomized controlled trial but was designed as a before and after study.

In conclusion, our data demonstrate that direct education from physicians can improve the adherence of patients to tuberculosis treatment even when the patients are poorly educated and of low SES. Physician’s education is also important and can contribute to increasing the adherence of patients in resource-limited settings, as can the education of other health care workers.

ACKNOWLEDGEMENTS

We express our gratitude to Chang-Sup Kim and Myoung-Jin Kim, chief and vice chief of the Bangladesh office of the Korea International Cooperation Agency (KOICA), for their executive support performing this project.

We express our gratitude to Sang-Won Park and Chang-Seop Lee, predecessors in the Department of Medicine of Bangladesh-Korea Friendship Hospital, for their advice and support.

REFERENCES

1. Arora VK, Sarin R, Lönnroth K. Feasibility and effectiveness of a public-private mix project for improved TB control in Delhi, India. Int J Tuberc Lung Dis 2003;7:1131-8.
2. World Health Organization. The Stop TB Strategy: Building on and Enhancing DOTS to Meet the TB-related Millennium Development Goals. Geneva: World Health Organization, 2006.
3. Quy HT, Lönnroth K, Lan NT, Buu TN. Treatment results among tuberculosis patients treated by private lung specialists involved in a public-private mix project in Vietnam. Int J Tuberc Lung Dis 2003;7:1139-46.
4. Liefooghe R, Suetens C, Meulemans H, Moran MB, De Muynck A. A randomised trial of the impact of counselling on treatment adherence of tuberculosis patients in Sialkot, Pakistan. Int J Tuberc Lung Dis 1999;3:1073-80.
5. Morisky DE, Malotte CK, Choi P, Davidson P, Rigler S, Sugland B, et al. A patient education program to improve adherence rates with antituberculosis drug regimens. Health Educ Q 1990;17:253-67.
6. Thiam S, LeFevre AM, Hane F, Ndiaye A, Ba F, Fielding KL, et al. Effectiveness of a strategy to improve adherence to tuberculosis treatment in a resource-poor setting: a cluster randomized controlled trial. JAMA 2007;297:380-6.
7. Volmink J, Garner P. Systematic review of randomised controlled trials of strategies to promote adherence to tuberculosis treatment. BMJ 1997;315:1403-6.
8. World Health Organization. Global Tuberculosis Control 2009: Epidemiology, Strategy, Financing. Geneva: World Health Organization, 2009.
9. Menzies R, Rocher I, Vissandjee B. Factors associated with compliance in treatment of tuberculosis. Tuberc Lung Dis 1993;74:32-7.
10. Hill PC, Stevens W, Hill S, Bah J, Donkor SA, Jallow A, et al. Risk factors for defaulting from tuberculosis treatment: a prospective cohort study of 301 cases in the Gambia. Int J Tuberc Lung Dis 2005;9:1349-54.
11. Khan MA, Walley JD, Witter SN, Imran A, Safdar N. Costs and cost-effectiveness of different DOT strategies for the treatment of tuberculosis in Pakistan. Directly observed treatment. Health Policy Plan 2002;17:178-86.
12. Hane F, Thiam S, Fall AS, Vidal L, Diop AH, Ndir M, et al. Identifying barriers to effective tuberculosis control in Senegal: an anthropological approach. Int J Tuberc Lung Dis 2007;11:539-43.