Quantifying the presence of feral cat colonies and *Toxoplasma gondii* in relation to bird conservation areas on O'ahu, Hawai'i

Christopher A. Lepczyk | Katherine H. Haman | Grant C. Sizemore | Chris Farmer

Abstract

Free-ranging feral cats (*Felis catus*) are increasingly found in colonies loosely managed by people. These colonies increase cat densities and, hence, pose threats to wildlife via disease and predation, particularly in insular ecosystems where native species have smaller populations and reduced pathogen exposure compared to continental systems. Given such concerns, our objectives were to: (a) identify feral cat colonies on the island of O'ahu in the vicinity of important native bird sites; and (b) test for *Toxoplasma gondii*, a parasite-causing disease (Toxoplasmosis) of concern to native birds, at cat colony sites. We identified 32 important native bird locations and surveyed public lands near these sites to determine presence of cat colonies. Where cat colonies were present, we collected feces and used molecular tools to identify the presence of *T. gondii*. We identified 25 cat colonies near an important bird area and collected feces at four of these colonies, with three testing positive for *T. gondii*. The presence of cats near a majority of native bird areas suggests that cats may impose a serious threat to bird species. Our finding of *T. gondii* at three of the four colonies where cat feces were collected raises serious health concerns for humans, birds, and many other terrestrial and aquatic organisms. Native birds in Hawai'i, including highly endangered species, are susceptible to both predation and *T. gondii*, and finding its presence in locations relatively near to important native bird areas provides further evidence that reducing free-ranging feral cat numbers is critical for reducing impacts on birds.

Keywords
cat colony, *Felis catus*, invasive species, island ecosystems, *Toxoplasma gondii*

1 | INTRODUCTION

Cats (*Felis catus*) have been associated with humans for 5,000–10,000 years (Driscoll et al., 2007; Hu et al., 2014) and were subsequently introduced by humans throughout the world (Medina et al., 2011). Humans have introduced cats to at least 5% of the world’s roughly 179,000 small to medium islands (Loss, Will, & Marra, 2013;
Medina et al., 2011), which has resulted in a variety of ecological problems (Medina, Bonnaud, Vidal, & Nagales, 2014, Shionosaki, Yamada, Ishikawa, & Shibata, 2015, Doherty, Glen, Nimmo, Ritchie, & Dickman, 2016). Native island faunas are especially susceptible to cat predation because they have little or no behavioral, morphological, or life history traits to aid in defense. Furthermore, cats carry a multitude of pathogens, such as Toxoplasma gondii, many of which may be detrimental to both native species and people (Aguirre et al., 2019; Lepczyk, Lohr, & Duffy, 2015). As a result, cats are listed among the world’s 100 worst invasive species and have been directly linked to animal species populations’ declines and extinctions in numerous studies on islands (Doherty et al., 2016; Lowe, Browne, Boudjelas, & De Poorter, 2000; Medina et al., 2011).

European ships introduced domestic cats to the Hawaiian Islands in the late 1700s (King, 1984), and within decades feral cats were noted in the wild (Brackenridge, 1841). Today, cats are the only felid in the Hawaiian Islands, and unfortunately are common and widespread throughout the main Hawaiian Islands. Since their introduction in Hawai‘i, cats have been documented to depredate a wide variety of bird species, including palila (Loxoides bailleui), Hawaiian petrel (Pterodroma sandwichensis), Hawai‘i ‘amakih (Chlorodrepanis virens), and Hawai‘i ‘elepaio (Chasiempis sandwichensis; Hess, Banko, Goltz, Danner, & Brinck, 2004, Hess, 2011), and likely impact many other species (Table A1). In addition to cats’ lethal predatory habits, they are the only known definitive host in Hawai‘i of the parasite T. gondii, which causes the disease toxoplasmosis (Dubey, 2010). T. gondii can infect any warm-blooded host, ranging from humans to both marine and terrestrial wildlife species (Aguirre et al., 2019). Within Hawai‘i, these species include ‘alalā (Corvus hawaiiensis), nēnē (Branta sandvicensis), Hawaiian monk seal (Monachus schauinslandi), spinner dolphin (Stenella longirostris), and Atlantic bottlenosed dolphin (Tursiops truncatus; Barbieri et al., 2016; Dubey, 2010; Inskeep, Gardiner, Harris, Dubey, & Goldston, 1990; Migaki, Sawa, & Dubey, 1990; Mikaelian, Boisclair, Dubey, Kennedy, & Martineau, 2000; Work et al., 2000, 2016; Work, Massey, Lindsay, & Dubey, 2002). Thus, cats potentially pose a very serious threat to native birds and mammals across the Hawaiian Islands.

In the Hawaiian Islands, as elsewhere around the world, feral cats are often managed in open colonies (Lohr & Lepczyk, 2014; Longcore, Rich, & Sullivan, 2009). These colonies range in size from a few to hundreds of cats and are typically open to immigration and free-fed by caretakers (e.g., Peterson, Hartis, Rodriguez, Green, & Lepczyk, 2012). Because cat colonies artificially concentrate cats at a small location, the colonies pose an increased concern to native birds in the adjacent areas due to both pathogens, such as T. gondii, and predation issues (Courchamp, Chapuis, & Pascal, 2003; Lepczyk & Duffy, 2018). Of particular concern is that T. gondii and the associated disease, toxoplasmosis, has been found in people and wildlife in Hawai‘i for over half a century (Tilden, 1953; Work et al., 2002), and the parasite is present in cats living in colonies (Davis et al., 2018). Hence, cat colonies may be of particular concern to the long-term conservation of native birds living in close proximity due to both predation and disease exposure, both in continental and island ecosystems.

Though cat colonies are of conservation concern to native wildlife in Hawai‘i, little to no work has been targeted towards evaluating them in terms of disease and predation risk. Hence, given the ecological impacts that cats pose to native birds in island ecosystems, our goal was to assess the potential risk of cat colonies near important native bird areas in Hawai‘i. We focus on native birds because the Hawaiian Islands are home to a variety of rare and evolutionarily unique assemblage of birds, many of which are rapidly declining or going extinct (Banko & Banko, 2009; Pratt, 2009). Furthermore, of the 152 land bird species originally present in the archipelago, 110 have gone extinct since the arrival of humans, with 33 of the 42 remaining endemic birds listed as endangered or threatened, resulting in one of the most endangered avifaunas in the world (American Bird Conservancy, 2016; Walther 2016). Finally, except for sea turtles, two bat species, and the Hawaiian monk seal, the islands have no native herpetofauna or mammals, making birds the primary native terrestrial wildlife of conservation concern (Lepczyk, Hess, & Johnson, 2011). Furthermore, the birds that are present in islands have evolved in the absence of mammalian predators and thus lack behavioral responses to them. Considering these points in the context of our overarching goal, our objectives were to: (a) identify feral cat colonies on the island of O‘ahu that were in the vicinity of important native bird sites; and (b) test for T. gondii at cat colony sites using molecular methods.

2 METHODS

To address our research objectives, we compiled a list of important native bird sites that housed one or more native bird species on the island of O‘ahu from published agency reports, field guides, and first-hand accounts from bird conservation professionals. We considered important native bird sites to be those that were regularly used by native birds as noted from these three sources. We did not use an abundance threshold as a criterion for
designated as an important native bird site due to lack of abundance estimates at many locations and because low abundance does not necessarily mean low conservation value to many bird species given that many Hawaiian species are rare, threatened, or endangered. To ensure the accuracy and inclusiveness of our list of important native bird sites, the list was reviewed and edited by Dr. Eric Vanderwerf of Pacific Rim Conservation, an expert on Hawaiian avifauna. The process resulted in the identification of 61 locations that potentially supported native birds on the island (Table A2 and Figure A1). Using these 61 locations we then identified all public parks and lands, including schools, beaches, and arboretums that fell within a 1.61 km (1 mile) buffer from each important native bird site, resulting in 33 locations (Figure 1; Note that two locations within 250 m of one another [He’eia State Park and He’eia Boat Ramp] were considered as a single site and thus total sample was considered to be 32 locations). We chose public parks and lands because these locations are where cat colonies are commonly found on the island, likely due to their relative ease of access for feeding and abandoning cats throughout the day, and lack of enforcement for feeding feral animals. Sites that had restricted access or required permit or paid entry were excluded from consideration as these sites tend not to have colonies, unless being maintained by an on-site employee. We selected the 1.61 km buffer as it approximates the upper range of 15.2 ha for feral cat home ranges in urban areas, based on linear distance. The transects were run roughly in the middle of a site, where the cover consisted primarily of parking lots/impervious surface, grassy areas, and shrubs, with mixed solitary trees. Given that each site differed in area and the relative amount of cat activity observed, each transect was unique in length and the time required to survey it. Sites were visited at least once, and if no indication was found of any cat presence or cat feeding activity (i.e., presence of cat food, food containers, water, etc.) after a thorough search, they were not evaluated again. The remainder of the sites were visited between 1 and 3 times (Table 1). Because our objectives focused on identifying T. gondii, we did not seek to determine relative abundance or population estimates of colonies via distance sampling.

At locations where cats were found, we also inspected the site thoroughly for cat feces. Cat feces were collected following University of Hawai‘i biohazard protocols and placed in plastic bags for transport to the university. Fecal samples were then frozen (−20°C) until processed. Because feces were infrequently located through random searches, we also remained at locations that had colonies and observed cats for possible defecations, which increased the number of samples obtained in a given evening’s sampling period.

We used approximately 25 mg of macerated feces from each sample for molecular analyses to determine presence of coccidian parasites. Fecal floats were not performed prior to collecting the subsample for molecular analyses. In order to break open the hardy oocysts of coccidian parasites, we put samples through five rapid freeze/thaw cycles using liquid nitrogen (−80°C, 4 min) and a hot water bath set to 57°C (4 min) (Manore, Harper, Aguilar, Weeze, & Shapiro, 2019; Staggs, Keely, Ware, et al., 2015). We then froze (−20°C) the samples again until DNA extraction and PCR analyses. Briefly, we extracted DNA using Qiagen’s DNeasy Blood and Tissue Kit according to the manufacturer’s protocol; extracted DNA was eluted in 100 μL of elution buffer and stored at −20°C until PCRs were performed.

We used previously published pan-coccidian ApiITS1 primers (Gibson et al., 2011) anchored in the 18S and 5.8S small subunit (SSU) rDNA gene array to screen all samples for the presence of coccidian parasites. These nested primers amplify across the internal transcribed spaces 1 (ITS-1) region to distinguish between closely related and novel species of coccidian parasites. We conducted PCR using 3 μL of each DNA extraction with 5 μL of PCR buffer (10X containing MgCl2; Sigma, St. Louis, MO), 5 μL of 2 mM dNTP (Sigma-Aldrich, DNTP100-1KT), 1 μM of each primer, and 1.5 μL of Taq DNA Polymerase (Sigma-Aldrich, D1806), in a total reaction volume of 50 μL. We then carried out PCR amplification for 35 cycles (94°C for 40 s, 58°C for 40 s, 72°C for 40 s, followed by one 10-min extension at 72°C). Extracted DNA from T. gondii was used as a positive control, and molecular-grade water was used as negative controls (n = 4). All PCRs were nested; the second PCR reaction was done with 1 μL of the PCR mixture from the primary PCR and all other concentrations remained the same. We visualized amplicons in gel-red (Biotium Inc., Hayward, CA) stained 1% agarose gels and purified using SAP-Exo according to manufacturer’s instructions. We sequenced positive amplicons using Sanger sequencing.
Results were quality checked by visual examination using FinchTV (Version 1.5.0, Geospiza Inc.) and BLASTed for identification.

3 | RESULTS

Of the 32 public areas investigated, 25 (78.1%) had cats (Table 1). The number of cats observed at these 25 locations during a single survey ranged from 1–99, with a mean of 23.4 cats observed per survey per site with cats present. Furthermore, the number of cats observed at each site varied greatly (Table 1). Some colonies were spread over large areas, such as the colonies at Koko Head District Park (~24 ha) and Kea’īwa Heiau State Park (~155 ha). Other colonies were confined to smaller areas, such as the colonies observed at Sunset Beach Elementary (~3 ha) and Diamond Head Road (~2 ha). A total of 23 (71.9%) of the sites had colonies included a wide abundance of cats, but averaged 23.4 per colony. Both the large percentage of sites that had cat colonies, coupled with the colony size, is of notable concern in terms of the potential risk of cat predation on birds.

Of colonies identified, at least 75% (n = 3) of the sites where cat feces were obtained (n = 4 total) tested positive for T. gondii. Given that we did not conduct fecal floats, we cannot be certain that the T. gondii DNA detected in cat feces was associated with oocysts; it may be associated with infected prey, and the DNA from the prey’s T. gondii tissue cysts was detected in the cat feces. Further, fecal floats are typically conducted to concentrate the oocysts, if present. Since we did not do this, it is likely we obtained false negatives as a cat would have to be shedding high numbers of oocysts in order for them to be detected using our methods and lack of concentration techniques. Therefore, our results may actually underestimate the number of cats infected with and/or shedding T. gondii oocysts into the terrestrial and near-shore environments of Hawai‘i.

T. gondii is a zoonotic pathogen that poses a risk to humans (Aguirre et al., 2019; Ikeda, 2000) and the native wildlife of Hawai‘i. Specifically, T. gondii has been documented to infect and kill the ‘alalā, the most endangered corvid in the world (Work et al., 2000). Acute, fatal toxoplasmosis has also been documented in two other species of birds found in the Hawaiian Islands—nēnē and the red-footed booby (Sula sula; Work et al., 2002). Indeed, T. gondii is the most common infectious disease in nēnē (Work, Dagenais, Rameyer, & Breeden, 2015). The impact of T. gondii on native wildlife of Hawai‘i extends beyond the terrestrial and into the coastal marine waters, where it has been documented as an important cause of mortality in the endangered Hawaiian monk seal (Barbieri et al., 2016).

Though one sample amplified using the ITS1 primers and had an amplicon consistent with the size expected for T. gondii (~550 bp), we were unable to get clean a sequence for this sample. We therefore did not include this sample in our results as being positive for a protozoal infection. In general, sequence quality for most samples was poor, which is to be expected when dealing with scat samples due to the degraded nature of the DNA in general and also inhibitors in feces prior to and after the DNA extraction. This may have been minimized had we conducted fecal floats and only extracted the top 100 μL of the float. Further, we could likely have improved the quality of DNA by using a DNA extraction kit specifically for feces. Regardless, clean sequence traces for six samples provided sequences of approximately ~190–450 base pairs that were able to be identified as T. gondii, and in a...
seventh sample both *T. gondii* and *C. felis*, via BLAST searches (Table 2).

Although *T. gondii* was identified, based on the methods employed to sample feces, we cannot make a statement regarding the prevalence of *T. gondii* in feral cats on O‘ahu. We did not conduct fecal floats to concentrate any *T. gondii* oocysts that may have been present. Further, we did not homogenize the individual scat samples. Therefore, a false negative cannot be ruled out. Furthermore, because only a small number of infected cats may actively be shedding oocysts in their feces at any given point in time (Dabritz et al., 2007), fecal analysis provides only a partial picture of pathogen prevalence in comparison to approaches such as serology, or testing for antibodies to *T. gondii* in the blood. In fact, as Tenter, Heckeroth, and Weiss (2000) noted, up to 74% of cat populations may show antibodies to *T. gondii*. Given that feces were collected at four locations and three tested positive for *T. gondii* and the ability of oocysts to persist for an extended time in the environment (Tenter et al., 2000), our results suggest that the parasite may be quite prevalent on the island. In particular, recent work on O‘ahu has also found *T. gondii* at cat colonies at the University of Hawai‘i at Mānoa campus and from feral cats removed from a seabird nesting site Ka‘ena Point Natural Area Reserve when a predator proof fence was installed (Davis et al., 2018). Furthermore, *T. gondii* has been identified in nēnē carcasses from the islands of Hawai‘i, Moloka‘i, Kaua‘i, and Maui (Work et al., 2015, 2016). Taken together, our results highlight the potential threat of feral cats and the non-native parasites they shed to the native wildlife of Hawai‘i.

Our current findings have positively demonstrated that feral cats supported by people are near important native bird areas and house a disease of notable concern to birds, other wildlife, and humans. Furthermore, the locations of these cat colonies pose a risk to birds due to predation by cats. Importantly, however, our findings are likely conservative for several reasons. First, finding cat colonies and identifying the number of cats in each colony is a time-consuming process whereby only one to several locations can be accurately assessed on any given day. Thus, if we happened to survey a site at a time when no visible signs of supporting cats (e.g., cat food, water, dishes/bowls) or cats themselves, we would have excluded it from our analysis, when in fact it was a false negative. Second, our analysis only evaluated public lands because these locations are where cat colonies are commonly found on the island, likely due to their relative

FIGURE 1 Location of public lands, with the addition of site names for each location. The figure notes all locations that were investigated for feral cat colonies. Locations noted in red font were found to house feral cat colonies whereas those in white font denote locations where no feral cat colonies were found.
ease of access for feeding and abandoning cats throughout the day, and lack of enforcement for feeding wildlife. However, cat colonies can exist on business, residential, or other private lands. Third, the number of cats observed within a colony varied widely depending on environmental conditions and time of day, making accurate counts

TABLE 1 Locations and summary statistics of cat colony surveys across 32 parks and public lands on O’ahu, Hawai’i

Location	# of visits	Cats present	Max. # of cats observed	Supported by people	Feces collected	Toxoplasma. gondii detected
Ali'i Beach Park	1	No	0	NA	NA	NA
Black Point	1	No	0	NA	NA	NA
Diamond Head Road	1	Yes	6	Yes	0	NA
Hanauma Bay	1	Yes	22	Yes	0	NA
Hawaii Prince Golf Club	2	Yes	9	Yes	0	NA
He'eia Boat Ramp/State Park	3	Yes	99	Yes	12	1
Ho'omaluhia Botanical Gardens	1	Yes	1	Yes	0	NA
Ka'ena Point end of Road North Shore Side	1	No	0	NA	NA	NA
Kailua Beach Park	1	Yes	8	Yes	0	NA
Kawaiinui Park	1	No	0	NA	0	NA
Kea'iwa Heiau State Park	3	Yes	35	Yes	0	NA
Ke'ehi Lagoon Park	3	Yes	50	Yes	12	0
Koko Head District Park	3	Yes	97	Yes	20	2
Kualoa Regional Park	2	Yes	21	Yes	0	NA
Lagoon Drive	2	No	0	NA	12	1
Lyon Arboretum	3	Yes	5	Yes	0	NA
Malaekahana	1	Yes	12	Yes	0	NA
Mokule'ia Beach Park	1	No	0	NA	NA	NA
Oneula Beach Park	1	Yes	4	Yes	0	NA
Pua'ena Point Beach Park	2	Yes	11	Yes	0	NA
Pu'u O Mahuka Heiau	1	Yes	5	No	0	NA
Sand Island State Recreation Area	1	Yes	88	Yes	0	NA
Sand Island Boat Ramp	1	Yes	53	Yes	0	NA
Sandy Beach Park	2	Yes	1	Yes	0	NA
Sunset Beach Elementary	1	Yes	8	Yes	0	NA
Ted Makalena Golf Course	3	Yes	17	Yes	0	NA
Turtle Bay Resort	1	Yes	4	No	0	NA
Waimea Bay Beach Park	1	Yes	11	Yes	0	NA
Waipio Soccer Park	3	Yes	8	Yes	0	NA
West Loch Community Shoreline Park	3	Yes	1	Yes	0	NA
West Loch Homes next to West Loch Shoreline Park	1	Yes	9	Yes	0	NA

*aLocations identified as “Yes” (n = 25) are locations used to determine average cat number across sites.

*bMax. # of cats observed during a single site visit.

*cYes indicates that people were observed feeding cats or that evidence of cat feeding, such as cat food or cat food containers, was apparent.

*dNA refers to locations where no feces collections were attempted, or there were no cats available to be supported by people; whereas zeros are sites that were attempted but in which no feces could be located or sites with cats but no evidence of human support.

*eFor locations where feces collections did not occur, the cells have been left blank, whereas locations that were sampled but yielded no positive results are indicated with a zero. In locations where T. gondii was identified the number refers to the number of fecal samples that tested positive.
extremely challenging. Although we did not specifically test for the effects of these factors, they are often found to influence free-ranging animal numbers. Furthermore, our goal was not focused on explicit enumeration of cats in colonies, but rather determining locations of cat colonies and occurrence of *T. gondii*. As a result, the counts of cats are the minimum number present. Fourth, we did not observe people feeding cats at many locations directly, but anecdotally we did note that where feeding was occurring the number of cats was much greater. Thus, feeding rates and times likely influence the number of locations where the parasite is present. Fifth, only a small number of infected cats (~1–6%) may actively be shedding oocysts in their feces at any given point in time (Dabritz et al., 2007; Lilly & Wortham, 2013). Hence, at a minimum, power analysis suggests that at least 20 fecal samples need to be collected per site in order to be confident of the presence or absence of the disease at study locations (Davis, 2013). Only one site met this minimum criterion, therefore the number of locations where the parasite is present is likely higher. In fact, as 75% (3/4) of sites where we did collect feces yielded positive results for *T. gondii* even without meeting the requirements of the power analysis, the parasite may be widely present in feral cats on O‘ahu and possibly other islands. Thus, our results should be considered *an absolute minimum*, and the occurrence of *T. gondii* in O‘ahu’s environment is almost certainly higher.

In order to improve upon the research presented here, we suggest the following elements be considered for future studies. First, as with all field studies, there is a tradeoff between the number of sites or plots that can be visited and the amount of information that can be collected at each site given the number of individuals collecting data. Thus, if the goal of the study is to increase detection of *T. gondii* from feces or count cats in a robust manner, we recommend selecting fewer sites and conducting a higher repetition of sampling at a given site or considering additional personnel or even the use of a citizen science monitoring approach. Second, if assessing *T. gondii* is of interest, a mechanism to improve the estimated prevalence of the parasite in feral cat populations would be to collect blood samples from cats for serological analyses. To monitor shedding rate of *T. gondii* oocysts in the environment, and thus better understand risk of exposure to native wildlife and humans, additional fecal samples should also be collected. To overcome the challenge of feces collections, it would be valuable to direct more attention to fewer sites in order to observe cats defecating. Finally, because many feral cat colonies are supplemented by people, it is imperative to understand the frequency and amounts of cat food being provided. Without such knowledge it is difficult to discern how cat numbers may be related to supplemental feeding.

5 | CONSERVATION IMPLICATIONS

Our findings have a number of important repercussions for management of feral cats on the island of O‘ahu specifically, as well as more broadly across Hawai‘i and other island systems. The presence of feral cats at ~78% of public spaces near important native bird habitats on O‘ahu indicates cats are likely having a substantial impact on the populations of the island’s endangered birds due to their generalist predatory behavior and high mobility (Blancher, 2013; Bonnington, Gaston, & Evans, 2013; Loss et al., 2013). Though we did not attempt to quantify predation rates here, the reality of cat colonies and free-ranging feral cats on the landscape near important native bird areas have caused real world population effects for native birds (Doherty et al., 2016; Medina et al., 2011). In addition to
predation, cats also pose a significant threat in terms of disease transmission. In our results, the detection of *Toxoplasma gondii* at three of the four sites where cat feces were collected raises serious health concerns for humans, birds, and other native terrestrial and aquatic organisms. Native birds in Hawai`i, including highly endangered species such as `alalā, are susceptible to *Toxoplasma gondii*, and finding its presence in locations relatively near to important native bird areas provides further evidence that reducing feral cat numbers is critical for reducing impacts on birds. In the case of people, it should be noted that sites where *Toxoplasma gondii* was detected are high-use areas for a variety of activities by people. Specifically, these locations include parks and beaches which could provide opportunities for people or pets to come into contact with oocysts during aquatic activities (e.g., snorkeling or swimming) or on land, or while eating uncooked seafood that may be contaminated. Overall, given the numbers of cats at some colony sites and the detection of *Toxoplasma gondii*, disease transmission is a serious threat for birds and public health on O`ahu, and likely the other main Hawaiian Islands. As a result, our findings provide further evidence of the need to effectively manage feral cats on public lands in the state.

ACKNOWLEDGMENTS

We would like to thank all the professionals who provided input on where important bird areas are located on O`ahu and Dan House for collecting cat feces. We would also like to thank the subject editor and two anonymous reviewers who provided a critical evaluation of the manuscript. Financial support for the project was provided by American Bird Conservancy.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

C.A.L., G.C.S., and C.F. conceptualized the project, K.E.H. analyzed the samples, and C.A.L., G.C.S., C.F., and K.E.H. wrote the manuscript.

ETHICS STATEMENT

All research was carried out in accordance with standard research practices.

DATA AVAILABILITY STATEMENT

All data are presented in the manuscript.

ORCID

Christopher A. Lepczyk https://orcid.org/0000-0002-5316-3159
Grant C. Sizemore https://orcid.org/0000-0002-1642-7258

REFERENCES

Aguirre, A. A., Longcore, T., Barbieri, M., Dabritz, H., Hill, D., Lepczyk, C., ... Sizemore, G. C. (2019). The one health approach to toxoplasmosis: Epidemiology, control, and prevention strategies. *EcoHealth*, 16, 378–390. https://doi.org/10.1007/s10393-019-01405-7

Ainley, D. G., Podolsky, R., DeForest, L., Spencer, G., & Nur, N. (2001). The status and population trends of the Newell's Shearwater on Kaua`i: Insights from modelling. *Studies in Avian Biology*, 22, 108–123.

American Bird Conservancy. 2016. Paradise for some—But an ongoing extinction crisis for birds. https://abcbirds.org/program/hawaii/.

Baker, P. J., Soulsbury, C. D., Iossa, G., & Harris, S. (2010). Domestic cat (*Felis catus*) and domestic dog (*Canis familiaris*). In S. D. Gehrt, S. P. D. Riley, & B. L. Cypher (Eds.), *Urban carnivores: Ecology, conflict, and conservation* (pp. 157–171). Baltimore, MD: Johns Hopkins University Press.

Banko, W. E., & Banko, P. C. (2009). Historic decline and extinction. In T. K. Pratt, C. T. Atkinson, P. C. Banko, J. D. Jacobi, & B. L. Woodworth (Eds.), *Conservation biology of Hawaiian forest birds: Implications for Island Avifauna* (pp. 25–58). New Haven, CT: Yale University Press.

Barbieri, M. M., Kashinsky, L., Rotstein, D. S., Colegrove, K. M., Haman, K. H., Magargal, S. L., ... Littnan, C. L. (2016). Protozoal-related mortalities in endangered Hawaiian monk seals *Neomonachus schauinslandi*. *Diseases of Aquatic Organisms*, 121, 85–95.

Blancher, P. (2013). Estimated number of birds killed by house cats (*Felis catus*) in Canada. *Avian Conservation and Ecology*, 8(2), 3.

Bonnington, C., Gaston, K. J., & Evans, K. L. (2013). Fearing the invaders on islands: Impact, control and control impact. *Biological Reviews*, 78, 347–383.

Cove, M. V., Gardner, B., Simons, T. R., Kays, R., & O’Connell, A. F. (2017). Free-ranging domestic cats (*Felis catus*) on public lands: Estimating density, activity, and diet in the Florida keys. *Biological Invasions*, 20, 333–344.

Dabritz, H., Miller, M., Atwell, E., Gardner, I., Leutenegger, C., Mell, A., & Conrad, P. (2007). Detection of *Toxoplasma gondii*-like oocysts in cat feces and estimates of the environmental oocyst burden. *Journal of the American Veterinary Medical Association*, 231, 1676–1684.

Davis, A. (2013). *Toxoplasma gondii* detection from naturally infected cats (*Felis catus*) in Hawai`i. (M.S. Thesis). Mānoa: University of Hawai`i.

Davis, A. A., Lepczyk, C. A., Haman, K., Morden, C. W., Crow, S. E., Jensen, N., & Lohr, M. T. (2018). *Toxoplasma gondii* detection in in fecal samples from cats (*Felis catus*) in Hawai`i. *Pacific Science*, 72, 501–511.
Doherty, T. S., Glen, A. S., Nimmo, D. G., Ritchie, E. G., & Dickman, C. R. (2016). Invasive predators and global biodiversity loss. *Proceedings of the National Academy of Sciences, 113*, 11261–11265.

Driscoll, C. A., Menotti-Raymond, M., Roca, A. L., Hupe, K., Johnson, W. E., Gefen, E., ... Macdonald, D. W. (2007). The near eastern origin of cat domestication. *Science, 317*, 519–523.

Dubey, J. P. (2010). *Toxoplasmosis of animals and humans*. Boca Raton, FL: CRC Press.

Gibson, A. K., Raverty, S., Lambourn, D. M., Huggins, J., Magargal, S. L., & Grigg, M. E. (2011). Polyparasitism is associated with increased disease severity in *Toxoplasma gondii*-infected marine sentinel species. *PLoS Neglected Tropical Diseases, 5*, e1142.

Hess, S. C. (2011). By land and by sea: The widespread threat of feral cats on Hawaiian wildlife. *The Wildlife Professional, 5(1)*, 66–67.

Hess, S. C., & Banko, P. C. (2006). Feral cats: Too long a threat to Hawaiian wildlife. USGS Fact Sheet 2006–3006.

Hess, S. C., Banko, P. C., Goltz, D. M., Danner, R. M., & Brink, K. W. (2004). Strategies for reducing feral cat threats to endangered Hawaiian birds. In R. M. Timm, & W. P. Gorencz (Eds.), *Proceedings 21st vertebrate pest conference*, 21–26.

Hess, S. C., Hansen, H., Nelson, D., Swift, R., & Banko, P. C. (2007). Diet of feral cats in Hawai‘i Volcanoes National Park. *Pacific Conservation Biology, 13*, 244–249.

Horn, J. A., Mateus-Pinilla, N., Warner, R. E., & Heske, E. J. (2011). Home range, habitat use, and activity patterns of free-roaming domestic cats. *Journal of Wildlife Management, 75*, 1177–1185.

Hoshide, H. M., Price, A. J., & Katahira, L. (1990). A progress report on Nēnē (*Branta sandvicensis*) in Hawaii Volcanoes National Park from 1974-89. *Wildfowl, 41*, 152–155.

Hu, Y., Hu, S., Wang, W., Wu, X., Marshall, F. B., Chen, X., ... Wang, C. (2014). Earliest evidence for commensal processes of domestic cats. *Proceedings of the National Academy of Sciences, 111*, 116–120.

Ikeda, J. K. (2000). *Toxoplasmosis in Hawai‘i: A review and evaluation of its implications*. Report to Environmental Health Administration, Department of Health [State of Hawaii].

Inskeep, W., Gardiner, C. H., Harris, R. K., Dubey, J. P., & Goldston, R. T. (1990). Toxoplasmosis in Atlantic bottlenosed dolphins (*Tursiops truncatus*). *Journal of Wildlife Diseases, 26*, 377–382.

Judge, S., Lippert, J. S., Misajon, K., Hu, D., & Hess, S. C. (2012). Videographic evidence of endangered species depredation by feral cat. *Pacific Conservation Biology, 18*, 293–296.

KESRP (Kaua‘i Endangered Seabird Recovery Project). (2015). unpublished. Threats: Predation. https://kauaiseabirdproject.org/the-threats/

King, C. (Ed.). (1984). *Immigrant killers: Introduced predators and the conservation of birds in New Zealand*. Auckland: Oxford University Press.

KNWRC (Kaua‘i National Wildlife Refuge Complex). 2015, unpublished. Depredated carcasses of endangered and migratory waterbirds 2012–2014, Hanalei NWR, Kaua‘i, Hawai‘i. Prepared for Hanalei watershed hui.

KNWRC (Kaua‘i National Wildlife Refuge Complex). 2018, unpublished. Trail camera loan project #1296J. Final Report to American Bird Conservancy.

Kowaisky, J. R., Pratt, T. K., & Simon, J. C. (2002). Prey taken by feral cats (*Felis catus*) and Barn Owls (*Tyto alba*) in Hanawi Natural Area Reserve, Maui, Hawai‘i. *Elepaio, 62*, 1217–1130.

Laut, M. E., Banko, P. C., & Gray, E. M. (2003). Nesting behavior of Palila, as assessed from video recordings. *Pacific Science, 57*, 385–392.

Lepczyk, C. A., & Duffy, D. C. (2018). Feral cats. In W. C. Pitt, J. C. Beasley, & G. W. Witmer (Eds.), *Ecology and management of terrestrial vertebrate invasive species in the United States* (pp. 269–310). Boca Raton, FL: CRC Press.

Lepczyk, C. A., Hess, S. C., & Johnson, E. D. (2011). Hawaii and the North American model of wildlife conservation: One size fits all? *The Wildlife Professional, 2011*, 64–66.

Lepczyk, C. A., Lohr, C. A., & Duffy, D. C. (2015). A review of cat behavior in relation to disease risk and management options. *Applied Animal Behaviour Science, 173*, 29–39.

Lilly, E. L., & Wortham, C. D. (2013). High prevalence of *Toxoplasma gondii* oocyst shedding in stray and pet cats (*Felis catus*) in Virginia, United States. *Parasites & Vectors, 6*, 266.

Lohr, C. A., & Lepczyk, C. A. (2014). Desires and management preferences of stakeholders regarding feral cats in the Hawaiian Islands. *Conservation Biology, 28*, 392–403.

Longcore, T., Rich, C., & Sullivan, L. M. (2009). Critical assessment of claims regarding management of feral cats by trap-neuter-return. *Conservation Biology, 23*, 887–894.

Loss, S. R., Will, T., & Marra, P. P. (2013). The impact of free-ranging domestic cats on wildlife of the United States. *Nature Communications, 4*, 1396.

Lowe, S., Browne, M., Boudjelas, S., & De Poorter, M. (2000). *100 of the world's worst invasive alien species: A selection from the global invasive species database* (p. 12). Auckland, New Zealand: Invasive Species Specialist Group.

Manore, A. J. W., Harper, S. L., Aguilar, B., Weeze, J. S., & Shapiro, K. (2019). Comparison of freeze-thaw cycles for nucleic acid extraction and molecular detection of *Cryptosporidium parvum* and *Toxoplasma gondii* oocysts in environmental matrices. *Journal of Microbiological Methods, 156*, 1–4.

Medina, F. M., Bonnaud, E., Vidal, E., & Nogales, M. (2014). Underlying impacts of invasive cats on islands: Not only a question of predation. *Biodiversity and Conservation, 23*, 327–342.

Medina, F. M., Bonnaud, E., Vidal, E., Tershy, B. R., Zavaleta, E. S., Donlan, J., & Nogales, M. (2011). A global review of the impacts of invasive cats on Island endangered vertebrates. *Global Change Biology, 17*, 3503–3510.

Migaki, G., Sawa, T. R., & Dubey, J. P. (1990). Fatal disseminated toxoplasmosis in a spinner dolphin (*Stenella longirostris*). *Veterinary Pathology, 27*, 463–464.

Mikaelian, I., Boisclair, J., Dubey, J. P., Kennedy, S., & Martineau, D. (2000). Toxoplasmosis in BelugaWhales (*Delphinapterus leucas*) from the St. Lawrence Estuary: Two case reports and a serological survey. *Journal of Comparative Pathology, 122*, 73–76.

Peterson, M. N., Hartis, B., Rodriguez, S., Green, M., & Lepczyk, C. A. (2012). Opinions from the front lines of cat colony management conflict. *PLoS One, 7*(9), e44616.

Pratt, H. D. (2009). A new genus for the Hawaii Creeper, with comments on generic limits among insectivorous Hawaiian honeycreepers. *Elepaio, 69*, 47–50.
Robinson, J. A., Reed, J. M., Skorupa, J. P., & Oring, L. W. (1999). Black-necked Stilt (*Himantopus mexicanus*), version 2.0. In A. F. Poole & F. B. Gill (Eds.), *The Birds of North America*. Ithaca, NY: Cornell Lab of Ornithology https://doi.org/10.2173/bna.449

Shionosaki, K., Yamada, F., Ishikawa, T., & Shibata, S. (2015). Feral cat diet and predation on endangered endemic mammals on a biodiversity hot spot (Amami-Ohshima Island, Japan). *Wildlife Research, 42*, 343–352.

Simons, T. R. (1983). *Biology and conservation of the endangered Hawaiian Dark-rumped Petrel (Pterodroma phaeopygia sandwicensis)*. (PhD dissertation), University of Washington. 286 pp.

Smith, D. G., Polhemus, J. T., & VanderWerf, E. A. (2002). Comparison of managed and unmanaged Wedge-tailed Shearwater colonies on O’ahu: Effects of predation. *Pacific Sciences, 56*, 451–457.

Smucker, T. D., Lindsay, G. D., & Mosher, S. M. (2000). Home range and diet of feral cats in Hawaii forests. *Pacific Conservation Biology, 6*, 229–237.

Snetsinger, T. J., Fancy, S. G., Simon, J. C., & Jacobi, J. D. (1994). Diets of owls and feral cats in Hawaii. *Elepaio, 54*, 47–50.

Staggs, S. E., Keely, S. P., Ware, M. W., Schable, N., See, M. J., Gregorio, D., ... Villegas, E. N. (2015). The development and implementation of a method using blue mussels (Mytilus spp.) as biosentinels of Cryptosporidium spp. and toxoplasma gondii contamination in marine aquatic environments. *Parasitology Research, 114*(12), 4655–4667.

Tenter, A. M., Heckeroth, A. R., & Weiss, L. M. (2000). *Toxoplasma gondii*: From animals to humans. *International Journal of Parasitology, 30*, 1217–1258.

Tilden, I. L. (1953). Congenital toxoplasmosis: Report of a fatal case in Hawaii. *Hawaii Medical Journal, 12*, 355–358.

Walther, M. (2016). *Extinct birds of Hawaii*. Honolulu, HI: Mutual Publishing, LLC.

Work, T., Massey, J., Lindsay, D., & Dubey, J. (2002). Toxoplasmosis in three species of native and introduced Hawaiian birds. *Journal of Parasitology, 88*, 1040–1042.

Work, T., Massey, J., Rideout, B., Gardiner, C., Ledig, D., Kwok, C., & Dubey, J. (2000). Fatal toxoplasmosis in free-ranging endangered ‘Alala from Hawaii. *Journal of Wildlife Diseases, 36*, 205–212.

Work, T. M., Dagenais, J., Rameyer, R., & Breeden, R. (2015). Mortality patterns in endangered Hawaiian Geese (Nene: Branta sandvicensis). *Journal of Wildlife Disease, 51*, 688–695.

Work, T. M., Verma, S. K., Su, C., Medeiros, J., Kaiakapu, T., Kwok, O. C., & Dubey, J. P. (2016). *Toxoplasma gondii* antibody prevalence and two new genotypes of the parasite in endangered Hawaiian geese (nene: Branta sandvicensis). *Journal of Wildlife Disease, 52*, 253–257.

How to cite this article: Lepczyk CA, Haman KH, Sizemore GC, Farmer C. Quantifying the presence of feral cat colonies and *Toxoplasma gondii* in relation to bird conservation areas on O’ahu, Hawai’i. *Conservation Science and Practice*. 2020;2:e179. https://doi.org/10.1111/csp2.179
FIGURE A1 Map of initial important bird sites O‘ahu, Hawai‘i listed in Table A2
Species	**USFWS status**	**IUCN status**	**Location**	**Source**
Hawai‘i ‘Amakihi (*Chlorodrepanis virens*)	Unlisted	Least concern	Mauna Kea FR, Hawai‘i; Hanawi, Maui	Snetsinger, Fancy, Simon, & Jacobi, 1994; Hess, Banko, Goltz, Danner, & Brinck, 2004; Kowalsky, Pratt, & Simon, 2002
Hawai‘i ‘Elepaio (*Chasiempis sandwichensis*)	Unlisted	Vulnerable	Mauna Kea FR, Hawai‘i	Snetsinger et al., 1994; Hess, Banko, Goltz, Danner, & Brinck, 2004
Hawaiian Coot, ‘Alae ke‘oke‘o (*Fulica alai*)	Endangered	Vulnerable	Hanalei NWR, Kaua‘i	KNWRC, 2015
Hawaiian Duck, Koloa (*Anas wyvilliana*)	Endangered	Endangered	Hanalei NWR, Kaua‘i	KNWRC, 2015
Hawaiian Gallinule, ‘Alae ‘ula (*Gallinula galeata sandvicensis*)	Endangered	n/a	Hanalei NWR, Kaua‘i	KNWRC, 2015; KNWRC, 2018; Byrd & Zeilmaker, 1981
Hawaiian Goose, Nēnē (*Branta sandvicensis*)	Endangered	Vulnerable	Volcanoes NP, Hawai‘i	Hoshide, Price, & Katahira, 1990; Hess & Banko, 2006
Hawaiian Petrel, ‘Ua‘u (*Pterodroma sandwichensis*)	Endangered	Vulnerable	Mauna Loa, Hawai‘i, Haleakalā, Maui	Hess, Hansen, Nelson, Swift, & Banko, 2007; Judge, Lippert, Misajon, Hu, & Hess, 2012; Simons, 1983
Hawaiian Stilt, Ae‘o (*Himantopus mexicanus knudseni*)	Endangered	n/a	Hanalei NWR, Kaua‘i, unspecified, Maui/ O‘ahu/Kaua‘i	KNWRC, 2015; Robinson, Reed, Skorupa, & Oring, 1999
Tiwi (*Drepanis coccinea*)	Threatened	Vulnerable	Hakalau NWR, Hawai‘i, Mauna Kea FR, Hawai‘i	Smucker, Lindsay, & Mosher, 2000; Snetsinger et al., 1994
Maui ‘Alauahio (*Paroreomyza montana*)	Unlisted	Endangered	Hanawi, Maui	Kowalsky et al., 2002
Newell’s Shearwater, ‘A‘o (*Puffinus novelli*)	Threatened	Endangered	undisclosed, Kaua‘i	Ainley, Podolsky, DeForest, Spencer, & Nur, 2001; KESRP, 2015
‘Ōma‘o (*Myadestes obscurus*)	Unlisted	Vulnerable	Hakalau NWR, Hawai‘i	Smucker et al., 2000
Palila (*Loxioides bailleui*)	Endangered	Crit. endangered	Mauna Kea FR, Hawai‘i	Laut, Banko, & Gray, 2003
Wedge-tailed Shearwaters, ‘Ua‘u kani (*Ardenna pacifica*)	Unlisted	Least concern	Mālaekahana and Moku‘auia, O‘ahu	Smith, Polhemus, & VanderWerf, 2002

aThe gallinule and stilt subspecies are not listed independent by IUCN so have a “n/a” entered.

bMauna Kea FR is the State of Hawai‘is Mauna Kea Forest Reserve and is a “donut” of subalpine mixed dry forest around Mauna Kea; Hakalau NWR is the Hakalau Forest National Wildlife Refuge, a wet ‘ōhi‘a-koa forest on the lower eastern slope of Mauna Kea.
Table A2: Locations of important bird sites on the island of O'ahu, Hawai'i

Location name
'Aiea Loop Trail
Black Point
Chevron Refinery
Enchanted Lakes Shopping Center
End of Road Ka'ena (West Side)
Ewa Forest Reserve
Hale'iwa/Pua'ena Point Beach Park
Hamakua Marsh
Hanauma Bay
Hawaii Prince Golf Club
He'eua Pond/Kaneohe Bay Boat Ramp
Hoakalei Country Club
Ho'omaluhia Botanical Garden
James Campbell National Wildlife Refuge
Ka'ena
Kahana Bay Beach Park
Kahuku Golf Course
Kaiaka Bay Beach Park
Kailua District Park
Kalaniana'ole Highway Cliffs
Kalihi Valley
Kawainui Marsh
Kawainui Park
Kawela Bay Beach Park
Ke'awa Heiau State Park
Keolu Hills Neighborhood Park
Koko Head Crater
Kualoa Beach Park
Lagoon Drive
La'ie Beach Park
Lyon Arboretum/Manoa Falls Trail
Makaha Valley
Makapu'u
Malaekahana
Maunawili Park
Mokule'ia Rock Quarry
Nanakuli
Nu'uanu Reservoir Area
O'ahu Forest National Wildlife Refuge
Paiko Lagoon
Pearl Harbor National Wildlife Refuge
Pearl Harbor National Wildlife Refuge Kalaeloa

(Continues)