Suicide after cancer diagnosis in South Korea: a population-based cohort study

Young Choi, Eun-Cheol Park

ABSTRACT

Objective The present study aimed to determine whether the suicide risk increased after a cancer diagnosis.

Design Population-based cohort study.

Setting and participants This study incorporated the National Health Insurance Service-National Sample Cohort in South Korea. Of the 975,348 subjects, 39,027 with cancer and 936,321 who were cancer free participated between 2005 and 2013.

Primary outcome measure Suicide.

Results A total of 110 suicides (82 men, 28 women) were identified among these 39,027 subjects with cancer during a total of 127,184 person-years; among the 936,321 cancer-free subjects, 2,163 suicides were reported during a total of 8,222,479 person-years. Cox proportional hazards models were used to compare all-cause and suicide mortalities after cancer diagnosis following adjustment for possible confounding covariates. After adjusting for factors related to suicide, we identified an elevated relative risk of suicide among patients with cancer (HR: 1.480, 95% CI: 1.209 to 1.812). Among men, the relative risk was substantially increased among patients with lip, oral cavity/pharyngeal, colon and rectal, pancreatic and lung cancers when compared with cancer-free subjects; whereas among women, the relative risk was substantially increased among patients with colon and rectal cancers.

Conclusion Our study observed an increased risk of suicide among patients with cancer that varied according to the anatomical cancer site, even after accounting for clinical comorbidities and psychiatric illness. Our findings indicate a need for social support and suicide prevention strategies for patients with cancer.

INTRODUCTION

Suicide is considered a major public health challenge and is among the leading global causes of a loss of life years. Notably, South Korea has the highest suicide rate among member nations of the Organization for Economic Co-operation and Development. Suicide rates have continued to increase in South Korea throughout the past two decades with a peak in 2010, leading to the current designation of suicide as the fourth leading cause of death nationwide.

A cancer diagnosis is a stressful and life-threatening event that causes considerable physical and psychological suffering. The associated distress might not only worsen the quality of life and accelerate disease progression, but may also promote non-cancer mortality. Patients with cancer, particularly, have a higher risk of suicide relative to that of the general population, and this risk may increase by up to twofold in many countries. A large body of evidence has identified many factors related to suicide among patients with cancer, including particular clinical characteristics, age at diagnosis, prognosis, stage, time since diagnosis, psychiatric health, and sociodemographic factors such as sex, race, and marital status. Previous studies also have found that the incidence of suicide is relatively high among patients with pancreatic, lung, colon and rectal, oral cavity/pharyngeal, stomach, and cervical cancer.

Despite the accumulation of evidence in support of an association between cancer and suicide, several studies have calculated the standardised mortality ratios (SMRs) to compare the suicide rate between patients with cancer and the general population while only evaluating differences in sociodemographic and clinical characteristics.
Additionally, previous studies have been limited by a failure to adjust for underlying psychiatric conditions, particularly as cancer itself has been identified as a suicide risk factor when coupled with comorbidities such as psychiatric disease. Therefore, we investigated whether the suicide rate is higher among Korean patients with cancer than among the general population after controlling for underlying diseases including psychiatric disorders as well as sociodemographic and clinical characteristics. We further compared the risk of suicide according to the anatomical site of cancer with the risk observed in the general population.

METHODS AND MATERIALS

Data sources
As described in detail previously, data were acquired from the National Health Insurance Service-National Sample Cohort (NHIS-NSC) from 2002 to 2013 and included 1025340 representative subjects (2.2% of the population) who were randomly stratified and selected based on age, sex, insurance type, income, residential region and individual total medical costs at 2002. As all Korean citizens are obligated to enrol in the single-payer, national health insurance and medical aid programme administered by the National Health Insurance Corporation, this sample cohort is representative of the general Korean population. The NHIS-NSC database includes information regarding patients’ unique de-identification numbers, age, sex, insurance type, diagnosis according to the International Classification of Diseases (ICD-10), medical costs and prescribed drugs. In addition, these numbers are linked to mortality information from the Korean National Statistical Office (KNSO). By law, all causes of death must be reported to the KNSO within 1 month of occurrence. Details of the NHIS-NSC database have been provided in a previous report.

Study participants and follow-up
Of the 1 025 340 subjects, we eliminated 17297 patients who had been diagnosed with cancer between 2002 and 2004, thus ensuring the selection of cancer-free subjects at baseline. We additionally eliminated 32095 subjects for whom information was missing due to a follow-up loss (death, emigration or disqualification from national health insurance) between 2002 and 2004. Overall, this study included 975348 subjects (online supplemental figure 1).

Outcome and follow-up
The outcome variables for this study were all-cause mortality and suicide (ICD-10 code X64–80). All subjects were observed from 1 January 2005 to follow-up loss, death (by suicide or any other cause) or 31 December 2013, whichever occurred first. For subjects who did not develop cancer, follow-up ended on the date of suicide, other death, emigration or 31 December 2013, whichever occurred first; accumulated person-time was defined as the exposed person-time. For those who were diagnosed with cancer, the follow-up ended with the occurrence of suicide, other death, emigration out of Korea or 31 December 2013, whichever came first; accumulated person-time was defined as the exposed person-time. Participants diagnosed with cancer during the study period contributed unexposed person-time prior to the date of diagnosis (as recorded in the national health insurance data) and exposed person-time thereafter.

Cancer diagnosis
Cancer diagnoses were organised into 13 diagnostic groups: lip, oral cavity and pharynx (ICD-10 codes C00, C11, C12, C13, C14); stomach (C16); colon and rectum (C17, C18, C19, C20, C21); liver (C22); gallbladder and pancreas (C23, C24, C25); lung (C33, C34); breast (C50); gynaecological (cervix, uterus and ovary: C53, C54, C56); prostate (C61); testis and other male genital organs (C62); bladder (C67); thyroid (C73); and others (oesophagus: C15; larynx: C32; skin: C43, C44; kidney: C64, C65, C66, C68; brain and central nervous system: C70, C71, C72; Hodgkin’s lymphoma: C81; non-Hodgkin’s lymphoma: C82, C83, C84, C85, C96; leukaemia: C91, C92, C93, C94, C95).

Covariates
Sociodemographic and clinical risk factors for suicide were included in this study. Sociodemographic factors recorded on the date of entry into the study included sex, age (≤39, 40–49, 50–59, 60–69 and ≥70 years), region (urban or rural) and household income (income quintiles Q1 (low) to Q5 (high)). We used the average monthly insurance premium as a proxy for household income. In Korea, individuals qualify for medical aid if their household income is less than $600 per month; otherwise, they qualify for national health insurance. Individuals enrolled in the national health insurance programme were distributed between the 1st and 100th income percentiles, whereas those receiving medical aid were classified at the zero percentile. In this study, the following household income classification was used: Q1, <20%; Q2, 21%–40%; Q3, 41%–60%; Q4, 61%–80% and Q5, >80%. We also included the experience of at least one disability (according to the disabled person welfare law), including intellectual disability, brain lesion, deafness, physical disability, visual impairment, mental disorder, kidney disorder, language disorder, autism, heart disability, respiratory disorder, hepatopathy, facial disorders, having undergone ostomy and epilepsy.

Regarding clinical factors, patients’ comorbidities were identified via review of their medical histories 12 months prior to study entry. Using the Charlson Comorbidity Index, we measured 17 comorbidities to control for the case mix. Additionally, underlying diagnoses related to psychiatric disorders included substance abuse (F10–F19), schizophrenia disorder (F20–F29), bipolar disorder...
Table 1 Characteristics of study participants comparing between patients with cancer and those who were cancer free

Characteristic	Total	Cancer	All-cause mortality	Suicide	Cancer free	All-cause mortality	Suicide
	n	%	PY	n	%*	PY	n
Total	975348	39027	127184	10789	27.64	110	0.28
Sex							
Male	487620	49.99	19191	56723	35.74	82	0.43
Female	487728	50.01	19836	70461	19.81	28	0.14
Age							
≤39	563511	57.78	4046	16769	318	1	0.02
40–49	170799	17.51	6226	23865	766	16	0.26
50–59	107302	11.00	8625	29806	1608	21	0.24
60–69	74493	7.64	9122	30926	2602	28	0.31
≥70	59243	6.07	11008	25818	5495	44	0.40
Income							
Q1 (low)	159583	16.36	6953	19998	2357	21	0.30
Q2	148029	15.18	5183	16891	1480	14	0.27
Q3	182919	18.75	6309	20634	1810	12	0.19
Q4	222648	22.83	8012	27231	2044	32	0.40
Q5 (high)	262169	26.88	12570	42431	3998	31	0.25
City							
Rural	303762	31.14	13516	43288	4126	30	0.33
Urban	671586	68.86	25511	83896	6663	26	0.31
Disability							
No	937155	96.08	34639	115090	9032	88	0.25
Yes	38193	3.92	4388	12094	1757	22	0.50
Charlson Comorbidity Index							
0	773214	79.28	17047	60965	3503	42	0.25
1	162128	16.62	13327	42582	3963	37	0.28
2	28415	2.91	5283	15114	1917	20	0.38
≥3	11591	1.19	3370	8524	1406	11	0.33
Substance abuse							
No	974052	99.87	38839	126696	10701	105	0.27
Yes	1296	0.13	188	488	88	5	2.66
Schizophrenia							
No	972723	99.73	38887	126828	10728	110	0.28
Yes	2625	0.27	140	357	61	0	0.00

Continued
Characteristic	Total	Cancer	All-cause mortality	Suicide	Cancer free	All-cause mortality	Suicide
	n	%	n	%	PY	n	%
No	974537	99.92	38332	99.76	126999	10761	27.64
			108	0.28		935605	99.92
						8218249	30624
						3.27	2147
						0.23	
Yes	811	0.08	95	0.24	195	28	29.47
				2	1.11	716	0.08
						6230	53
						7.40	16
						2.23	
Major depressive disorder	No	964018	98.84	37644	96.46	123124	27.54
			103	0.27		926374	98.94
						8136480	29787
						3.22	2028
						0.22	
	Yes	11330	1.16	1383	3.54	4060	30.51
			7	0.51		9947	1.06
						85999	890
						8.95	135
						1.36	
Stress-related disorders	No	943433	96.73	35604	91.23	116429	27.30
			102	0.29		907829	96.96
						7971462	28968
						3.19	1996
	Yes	31915	3.27	3423	8.77	10755	31.26
			8	0.23		28492	3.04
						251017	1709
						6.00	167
						0.59	
Sleep disorders	No	965698	99.01	37165	95.23	122067	27.38
			103	0.28		928533	99.17
						8155600	29788
						3.21	2082
	Yes	9650	0.99	1862	4.77	5117	32.98
			7	0.38		7788	0.83
						66879	889
						11.41	81
						1.04	
Personality disorders	No	975030	99.97	39014	99.97	127158	27.64
			109	0.28		936016	99.97
						8219825	30660
						3.28	2155
	Yes	318	0.03	13	0.03	27	53.85
				7	7.69	305	0.03
						2654	17
						5.57	8
						2.62	

*% of patients with cancer or subjects who were cancer free.
PY, person-years.
(F31), major depressive disorder (F32–F33), anxiety and stress disorders (F40–F48), sleep disorders (F51, G47) and personality disorders (F6).

Statistical analysis
For this study, we determined the distributions of general characteristics by diagnosis of cancer. Additionally, relationships between household income level and suicide were analysed using time-to-event methods. The Kaplan-Meier method was used to generate curves of unadjusted mortality rates, which were compared using the log-rank test. To determine whether the suicide rate was higher among patients with cancer relative to the general population, multivariable analyses involving Cox proportional hazards models were conducted to calculate adjusted HRs plus 95% CIs as estimates of relative suicide rates. The proportionality assumption was tested by examining log curves (−log (survivor function)) versus time. A p value of <0.05 was considered to indicate statistical significance. All statistical analyses were conducted using the SAS software package (V.9.4; SAS Institute).

Patient and public involvement
Patients and the public were not involved in the design or planning of this study.

RESULTS
Table 2 presents the results of a Cox proportional hazards analysis of the association between cancer diagnosis and suicide risk. Even after adjusting for factors related to suicide among patients with cancer, we observed an elevated relative risk of suicide (HR: 1.480, 95% CI: 1.209 to 1.812). Notably, the relative suicide risk was significantly more elevated among male subjects (HR: 1.513, 95% CI: 1.191 to 1.922), compared with female subjects (HR: 1.320, 95% CI: 0.895 to 1.947). Higher suicide rates were found to associate with male sex, older age, lower income, presence of a disability, higher Charlson Comorbidity Index and presence of psychiatric illness.

Figures 2–4 present the adjusted risks of suicide according to anatomical cancer site in both male and female subjects. Among men, the relative risk was increased substantially for patients with lip, oral cavity and pharyngeal cancer (HR: 1.987, 95% CI: 1.025 to 3.853), colon and rectal (HR: 1.906; 95% CI: 1.174 to 3.093), pancreatic (HR: 3.777; 95% CI: 1.211 to 11.784) and lung cancers (HR: 2.502; 95% CI: 1.463 to 4.280), compared with the cancer-free group. Among women, the relative risk was substantially increased for patients with colon and rectal cancers (HR: 2.376, 95% CI: 1.120 to 5.041).

DISCUSSION
Summary
In this population-based cohort study, we used data from the NHIS-NSC to investigate whether the risk of suicide was higher among patients with cancer than among the general population. We found that the suicide risk was indeed higher among those diagnosed with cancer during the study period, and that the risk of suicide varied according to the anatomical cancer site, as men diagnosed with lip, oral cavity and pharyngeal, colon and rectal, liver, pancreatic and lung cancers and women diagnosed with colon and rectal cancers had a significantly higher risk of suicide relative to the general population.

Comparison with studies
Our findings were consistent with those of other studies that examined the relationship between cancer diagnosis and suicide, in which the incidence rates of suicide among male and female patients with cancer were, respectively, 1.5 and 1.3 times higher than the rates in the general population after adjusting for factors associated with suicide. Similarly, in the USA, the suicide risk among patients with cancer is approximately twofold of the risk in the general population,13 and European studies have also observed increased suicide rates among patients with cancer. For example, Yousaf et al.3 calculated SMRs of 1.7 and 1.4 for suicide among men and women, respectively, from a Danish cancer registry relative to the general Danish population. A similar study in Norway reported SMRs of 1.55 and 1.35.12 In Sweden, Björkenstam et al.11 observed SMRs of 2.5 (men and women combined) for the period from 1965 to 1974 and 1.5 for the period from...
Cancer	Overall suicide (male + female)	Male	Female
Yes	HR 1.480	95% CI 1.209 to 1.812	P value 0.000
	1.513	95% CI 1.191 to 1.922	0.001
No	1.000	1.000	1.000

Sex			
Male	HR 2.332	95% CI 2.133 to 2.549	<0.0001
Female	1.000		

Age			
≤39	1.000	1.000	1.000
40–49	1.906	95% CI 1.696 to 2.143	<0.0001
	2.252	95% CI 1.952 to 2.598	<0.0001
50–59	2.098	95% CI 1.837 to 2.396	<0.0001
	2.799	95% CI 2.394 to 3.272	<0.0001
60–69	3.281	95% CI 2.871 to 3.750	<0.0001
	4.360	95% CI 3.713 to 5.120	<0.0001
≥70	6.355	95% CI 5.561 to 7.263	<0.0001
	7.875	95% CI 6.611 to 9.381	<0.0001

Income			
Q1 (low)	1.972	95% CI 1.742 to 2.233	<0.0001
Q2	1.692	95% CI 1.479 to 1.936	<0.0001
Q3	1.352	95% CI 1.180 to 1.549	<0.0001
Q4	1.287	95% CI 1.130 to 1.465	0.000
Q5 (high)	1.000	1.000	1.000

City			
Rural	1.087	95% CI 0.997 to 1.185	0.058
	1.098	95% CI 0.988 to 1.221	0.082
	1.081	95% CI 0.930 to 1.256	0.310
Urban	1.000	1.000	1.000

Disability			
No	1.000	1.000	1.000
Yes	1.669	95% CI 1.457 to 1.912	<0.0001
	1.723	95% CI 1.479 to 2.006	<0.0001
	1.304	95% CI 0.955 to 1.782	0.095

Charlson Comorbidity Index	Overall suicide (male + female)	Male	Female
0	1.000	1.000	1.000
1	0.935	95% CI 0.836 to 1.046	0.243
	0.901	95% CI 0.783 to 1.038	0.149
	0.899	95% CI 0.823 to 1.188	0.905
2	1.225	95% CI 1.018 to 1.475	0.032
	1.367	95% CI 1.093 to 1.710	0.006
	0.986	95% CI 0.706 to 1.377	0.933
≥3	1.328	95% CI 1.031 to 1.710	0.028
	1.381	95% CI 1.017 to 1.874	0.039
	1.254	95% CI 0.798 to 1.971	0.327

Substance abuse	Overall suicide (male + female)	Male	Female
No	1.000	1.000	1.000
Yes	3.196	95% CI 2.210 to 4.622	<0.0001
	3.049	95% CI 2.010 to 4.625	<0.0001
	4.742	95% CI 2.082 to 10.804	0.000

Schizophrenia	Overall suicide (male + female)	Male	Female
No	1.000	1.000	1.000
Yes	4.004	95% CI 2.974 to 5.390	<0.0001
	4.366	95% CI 3.021 to 6.310	<0.0001
	3.507	95% CI 2.112 to 5.823	<0.0001
In Asia, a Korean study used cancer registry data to calculate SMRs of 2.05 among male patients and 1.87 among female patients for the period from 1993 to 2005. Several studies have found associations of cancers at certain anatomical sites with particularly elevated suicide rates. However, reports differ with regard to the anatomical sites associated with the greatest suicide risks. In our study of patients in Korea, we found that the suicide risks were especially high among male patients with lip, oral cavity and pharyngeal, colon and rectal, liver, pancreatic, and lung cancers and among female patients with colon and rectal cancer, findings that were concordant with reports from Western countries. Although the reasons underlying the associations of particular cancer types with increased suicide rates are unknown, a high prevalence of depression has been observed among patients with head and neck cancers.

Overall suicide (male + female)	Male	Female
Bipolar disorders		
No	1.000	1.000
Yes	1.912	2.264
Major depressive disorder		
No	1.000	1.000
Yes	2.891	2.339
Stress-related disorders		
No	1.000	1.000
Yes	1.349	1.449
Sleep disorders		
No	1.000	1.000
Yes	1.717	1.377
Personality disorders		
No	1.000	1.000
Yes	2.949	3.428

Table 2

Continued
provide further evidence of a relationship between cancer diagnosis and suicide. Further research into the suicide risks of patients with cancer should extend the range of concerns to include disease stage and clinical treatment.

Acknowledgements The authors appreciate the Yonsei University Institute of Health Services Research for its administrative support.

Contributors YC designed the study, analysed the data and wrote the draft. YC and E-CP performed the literature review and interpretation for data analysis. All authors read and approved the manuscript.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Patient consent for publication Not required.

Ethics approval This study adhered to the tenets of the Declaration of Helsinki. The study design was reviewed and approved by the ethical review board at the Graduate School of Public Health in Yonsei University (2-1040939-AB-N-01-2014-239). Since our study used administrative cohort data, the requirement for informed consent was waived as the National Health Insurance Service-National Sample Cohort was constructed after anonymisation according to strict confidentiality guidelines.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement Data may be obtained from a third party and are not publicly available.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iDs Young Choi http://orcid.org/0000-0002-8314-6130
Eun-Cheol Park http://orcid.org/0000-0002-2306-5398

REFERENCES

1. Murray CJL, Barber RM, et al. GBD 2013 DALYs and HALE Collaborators. Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990-2013: quantifying the epidemiological transition. Lancet 2015;386:2145–91.

2. OECD. Health at a glance 2015: OECD indicators. Paris: OECD Publishing, 2015.

3. Statistic Korea. Annual report on the cause of death statistics. Statistic Korea, 2015.

4. Cordova MJ, Andrykowski MA. Responses to cancer diagnosis and treatment: postradical stress and postraumatic growth. Semin Clin Neuropsychiatry 2003;8:286–96.

5. Zabora J, BritzentheofeSzcoc K, Curbow B, et al. The prevalence of psychological distress by cancer site. Psychooncology 2001;10:19–28.

6. Jie B, Qiu Y, Feng Z-Z, et al. Impact of disclosure of diagnosis and patient autonomy on quality of life and illness perceptions In Chinese patients with liver cancer. Psychooncology 2016;25:927–32.

7. Reiche EM, Nunes SOV, Morimoto HK, Stress, depression, the immune system, and cancer. Lancet Oncol 2004;5:817–25.

8. Fang F, Fall K, Mittleman MA, et al. Suicide and cardiovascular death after a cancer diagnosis. N Engl J Med 2012;366:1310–8.

CONCLUSION

In our study of a cohort representative of the Korean population, patients with cancer were found to exhibit an increased risk of suicide, which varied according to the anatomical cancer site even after accounting for clinical comorbidities and psychiatric illness. These results

Figure 4 Adjusted risks of suicide by cancer type (women).
Baade PD, Fritschi L, Eakin EG. Non-Cancer mortality among people diagnosed with cancer (Australia). Cancer Causes Control 2006;17:287–97.

Ahn E, Shin DW, Cho S-I, et al. Suicide rates and risk factors among Korean cancer patients, 1993-2005. Cancer Epidemiol Biomarkers Prev 2010;19:2097–105.

Björkenstam C, Edberg A, Ayoubi S, et al. Are cancer patients at higher suicide risk than the general population? A nationwide register study in Sweden from 1965 to 1999. Scand J Public Health 2005;33:206–14.

Hem E, Loge JH, Haldorsen T, et al. Suicide risk in cancer patients from 1960 to 1999. J Clin Oncol 2004;22:4209–16.

Misono S, Weiss NS, Fann JR, et al. Incidence of suicide in persons with cancer. J Clin Oncol 2006;24:4731–8.

Robinson D, Renshaw C, Okello C, et al. Suicide in cancer patients in South East England from 1996 to 2005: a population-based study. Br J Cancer 2009;101:198–201.

Robson A, Scrutton F, Wilkinson L, et al. The risk of suicide in cancer patients: a review of the literature. Psychooncology 2010;19:1250–8.

Innos K, Rahu K, Rahu M, et al. Suicides among cancer patients in Estonia: a population-based study. Eur J Cancer 2003;39:2223–8.

Ahn MH, Park S, Lee HB, et al. Suicide in cancer patients within the first year of diagnosis. Psychooncology 2015;24:601–7.

Kendal WS. Suicide and cancer: a gender-comparative study. Ann Oncol 2007;18:381–7.

Lu D, Fall K, Sparén P, et al. Suicide and suicide attempt after a cancer diagnosis among young individuals. Ann Oncol 2013;24:3112–7.

Quan H, Sundararajan V, Halfon P, et al. Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. Med Care 2005;43:1130–9.

Semple C, Parahoo K, Norman A, et al. Psychosocial interventions for patients with head and neck cancer. Cochrane Database Syst Rev 2013:8.

Duffy SA, Ronis DL, Valenstein M, et al. Depressive symptoms, smoking, drinking, and quality of life among head and neck cancer patients. Psychosomatics 2007;48:142–8.