1 Introduction & Preliminaries

The Hadwiger-Finsler inequality is known in literature of mathematics as a generalization of the following

Theorem 1.1 In any triangle ABC with the side lengths a, b, c and S its area, the following inequality is valid

$$a^2 + b^2 + c^2 \geq 4S\sqrt{3}.$$

This inequality is due to Weitzenbock, Math. Z, 137-146, 1919, but this has also appeared at International Mathematical Olympiad in 1961. In [7.], one can find eleven proofs. In fact, in any triangle ABC the following sequence of inequalities is valid:

$$a^2 + b^2 + c^2 \geq ab + bc + ca \geq a\sqrt{bc} + b\sqrt{ca} + c\sqrt{ab} \geq 3\sqrt[3]{a^2b^2c^2} \geq 4S\sqrt{3}.$$

A stronger version is the one found by Finsler and Hadwiger in 1938, which states that ([2.])

Theorem 1.2 In any triangle ABC with the side lengths a, b, c and S its area, the following inequality is valid

$$a^2 + b^2 + c^2 \geq 4S\sqrt{3} + (a - b)^2 + (b - c)^2 + (c - a)^2.$$
In [8.] the first author of this note gave a simple proof only by using AM-GM and the following inequality due to Mitrinovic:

Theorem 1.3 In any triangle ABC with the side lengths a, b, c and s its semiperimeter and R its circumradius, the following inequality holds

$$s \leq \frac{3\sqrt{3}}{2}R.$$

This inequality also appears in [3.].

A nice inequality, sharper than Mitrinovic and equivalent to the first theorem is the following:

Theorem 1.4 In any triangle ABC with sides of lengths a, b, c and with inradius of r, circumradius of R and s its semiperimeter the following inequality holds

$$4R + r \geq s\sqrt{3}.$$

In [4.], Wu gave a nice sharpness and a generalization of the Finsler-Hadwiger inequality.

Now, we give an algebraic inequality due to I. Schur ([5.]), namely

Theorem 1.5 For any positive real numbers x, y, z and $t \in \mathbb{R}$ the following inequality holds

$$x^t(x - y)(x - z) + y^t(y - x)(y - z) + z^t(z - y)(z - x) \geq 0.$$

The most common case is $t = 1$, which has the following equivalent form:

$$x^3 + y^3 + z^3 + 3xyz \geq xy(x + y) + yz(y + z) + zx(z + x)$$

which is equivalent to

$$x^3 + y^3 + z^3 + 6xyz \geq (x + y + z)(xy + yz + zx).$$

Now, using the identity $x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx)$ one can easily deduce that

$$2(xy + yz + zx) - (x^2 + y^2 + z^2) \leq \frac{9xyz}{x + y + z}. \quad (\ast)$$

Another interesting case is $t = 2$. We have
\[x^4 + y^4 + z^4 + xyz(x + y + z) \geq xy(x^2 + y^2) + yz(y^2 + z^2) + zx(z^2 + x^2) \]

which is equivalent to

\[x^4 + y^4 + z^4 + 2xyz(x + y + z) \geq (x^2 + y^2 + z^2)(xy + yz + zx).(**) \]

Now, let’s rewrite theorem 1.2. as

\[2(ab + bc + ca) - (a^2 + b^2 + c^2) \geq 4S\sqrt{3}.(***) \]

By squaring (***) and using Heron formula we obtain

\[
4 \left(\sum_{cyc} ab \right)^2 + \left(\sum_{cyc} a^2 \right)^2 - 4 \left(\sum_{cyc} ab \right) \left(\sum_{cyc} a^2 \right) \geq 3(a + b + c) \prod(b + c - a)
\]

which is equivalent to

\[
6 \sum_{cyc} a^2b^2 + 4 \sum_{cyc} a^2bc + \sum_{cyc} a^4 - 4 \sum_{cyc} ab(a + b) \geq 3(a + b + c) \prod(b + c - a).
\]

By making some elementary calculations we get

\[
6 \sum_{cyc} a^2b^2 + 4 \sum_{cyc} a^2bc + \sum_{cyc} a^4 - 4 \sum_{cyc} ab(a + b) \geq 3(a + b + c) \left(\sum_{cyc} ab(a + b) - \sum_{cyc} a^3 - 2abc \right).
\]

We obtain the equivalent inequalities

\[
\sum_{cyc} a^4 + \sum_{cyc} a^2bc \geq \sum_{cyc} ab(a^2 + b^2)
\]

\[
a^2(a - b)(a - c) + b^2(b - a)(b - c) + c^2(c - a)(c - b) \geq 0,
\]

which is nothing else than Schur’s inequality in the particular case \(t = 2 \). In what follows we will give another form of Schur’s inequality. That is

Theorem 1.6 For any positive reals \(m, n, p \), the following inequality holds

\[
\frac{mn}{p} + \frac{np}{m} + \frac{pm}{n} + \frac{9mnp}{mn + np + pm} \geq 2(m + n + p).
\]

Proof. We denote \(x = \frac{1}{m}, y = \frac{1}{n} \) and \(z = \frac{1}{p} \). We obtain the equivalent inequality

\[
\frac{x}{yz} + \frac{y}{zx} + \frac{z}{xy} + \frac{9}{x + y + z} \geq \frac{2(xy + yz + zx)}{xyz} \Leftrightarrow 2(xy + yz + zx) - (x^2 + y^2 + z^2) \leq \frac{9xyz}{x + y + z},
\]

which is \((*)\).
2 Main results

In the previous section we stated a sequence of inequalities stronger than Weitzenbock inequality. In fact, one can prove that the following sequence of inequalities holds

\[a^2 + b^2 + c^2 \geq ab + bc + ca \geq a\sqrt{bc} + b\sqrt{ca} + c\sqrt{ab} \geq 3\sqrt[3]{a^2b^2c^2} \geq 18Rr, \]

where \(R \) is the circumradius and \(r \) is the inradius of the triangle with sides of lengths \(a, b, c \). In this moment, one expects to have a stronger Finsler-Hadwiger inequality with \(18Rr \) instead of \(4S\sqrt{3} \). Unfortunately, the following inequality holds true

\[a^2 + b^2 + c^2 \leq 18Rr + (a - b)^2 + (b - c)^2 + (c - a)^2, \]

because it is equivalent to

\[2(ab + bc + ca) - (a^2 + b^2 + c^2) \leq 18Rr = \frac{9abc}{a + b + c}, \]

which is \((*) \) again. Now, we are ready to prove the first refinement of the Finsler-Hadwiger inequality:

Theorem 2.1 In any triangle \(ABC \) with the side lengths \(a, b, c \) with \(S \) its area, \(R \) the circumradius and \(r \) the inradius of the triangle \(ABC \) the following inequality is valid

\[a^2 + b^2 + c^2 \geq 2S\sqrt{3} + 2r(4R + r) + (a - b)^2 + (b - c)^2 + (c - a)^2. \]

Proof. We rewrite the inequality as

\[2(ab + bc + ca) - (a^2 + b^2 + c^2) \geq 2S\sqrt{3} + 2r(4R + r). \]

Since, \(ab + bc + ca = s^2 + r^2 + 4Rr \), it follows immediately that \(a^2 + b^2 + c^2 = 2(s^2 - r^2 - 4Rr) \). The inequality is equivalent to

\[16Rr + 4r^2 \geq 2S\sqrt{3} + 2r(4R + r). \]

We finally obtain

\[4R + r \geq s\sqrt{3}, \]

which is exactly theorem 1.4.

The second refinement of the Finsler-Hadwiger inequality is the following
Theorem 2.2 In any triangle ABC with the side lengths a, b, c with S its area, R the circumradius and r the inradius of the triangle ABC the following inequality is valid

\[a^2 + b^2 + c^2 \geq 4S\sqrt{3 + \frac{4(R - 2r)}{4R + r}} + (a - b)^2 + (b - c)^2 + (c - a)^2. \]

Proof. In theorem 1.6 we put \(m = \frac{1}{2}(b+c-a), n = \frac{1}{2}(c+a-b) \) and \(p = \frac{1}{2}(a+b-c) \). We get

\[
\sum_{cyc} \frac{(b + c - a)(c + a - b)}{a + b - c} + \frac{9(b + c - a)(c + a - b)(a + b - c)}{\sum_{cyc}(b + c - a)(c + a - b)} \geq 2(a + b + c).
\]

Since \(ab + bc + ca = s^2 + r^2 + 4Rr \) (1) and \(a^2 + b^2 + c^2 = 2(s^2 - r^2 - 4Rr) \) (2), we deduce

\[
\sum_{cyc} (b + c - a)(c + a - b) = 4r(4R + r).
\]

On the other hand, by Heron’s formula we have \((b+c-a)(c+a-b)(a+b-c) = 8sr^2\), so our inequality is equivalent to

\[
\sum_{cyc} \frac{(b + c - a)(c + a - b)}{a + b - c} + \frac{18sr}{4R + r} \geq 4s \iff
\sum_{cyc} \frac{(s - a)(s - b)}{(s - c)} + \frac{9sr}{4R + r} \geq 2s \iff \sum_{cyc} (s - a)^2(s - b)^2 + \frac{9s^2r^3}{4R + r} \geq 2s^2r^2.
\]

Now, according to the identity

\[
\sum_{cyc} (s - a)^2(s - b)^2 = \left(\sum_{cyc}(s - a)(s - b)\right)^2 - 2s^2r^2,
\]

we have

\[
\left(\sum_{cyc}(s - a)(s - b)\right)^2 - 2s^2r^2 + \frac{9s^2r^3}{4R + r} \geq 2s^2r^2.
\]

And since

\[
\sum_{cyc} (s - a)(s - b) = r(4R + r),
\]

it follows that

\[
r^2(4R + r)^2 + \frac{9s^2r^3}{4R + r} \geq 4s^2r^2,
\]
which rewrites as
\[
\left(\frac{4R + r}{s} \right)^2 + \frac{9r}{4R + r} \geq 4.
\]
From the identities mentioned in (1) and (2) we deduce that
\[
\frac{4R + r}{s} = \frac{2(ab + bc + ca) - (a^2 + b^2 + c^2)}{4S}.
\]
The inequality rewrites as
\[
\left(\frac{2(ab + bc + ca) - (a^2 + b^2 + c^2)}{4S} \right)^2 \geq 4 - \frac{9r}{4R + r} \iff
\]
\[
\left(\frac{(a^2 + b^2 + c^2) - ((a-b)^2 + (b-c)^2 + (c-a)^2)}{4S} \right)^2 \geq 3 + \frac{4(R - 2r)}{4R + r} \iff
\]
\[
a^2 + b^2 + c^2 \geq 4S \sqrt{3 + \frac{4(R - 2r)}{4R + r}} + (a - b)^2 + (b - c)^2 + (c - a)^2.
\]

Remark. From Euler inequality, \(R \geq 2r \), we obtain theorem 1.2.

3 Applications

In this section we illustrate some basic applications of the second refinement of Finsler-Hadwiger inequality. We begin with

Application 1. In any triangle \(ABC \) with the sides of lengths \(a, b, c \) the following inequality holds
\[
\frac{1}{b + c - a} + \frac{1}{c + a - b} + \frac{1}{a + b - c} \geq \frac{1}{2r} \sqrt{4 - \frac{9r}{4R + r}}.
\]

Solution. From
\[
(b + c - a)(c + a - b)(a + b - c) = 4r(4R + r),
\]
it is quite easy to observe that
\[
\frac{1}{b + c - a} + \frac{1}{c + a - b} + \frac{1}{a + b - c} = \frac{4R + r}{2sr}.
\]
Now, applying the inequality
\[
\left(\frac{4R + r}{s} \right)^2 + \frac{9r}{4R + r} \geq 4,
\]

6
we get

\[
\left(\frac{1}{b + c - a} + \frac{1}{c + a - b} + \frac{1}{a + b - c} \right)^2 = \frac{1}{4r^2} \left(\frac{4R + r}{s} \right)^2 \geq \frac{1}{4r^2} \left(4 - \frac{9r}{4R + r} \right).
\]

The given inequality follows immediately. \(\square\)

Application 2. In any triangle ABC with the sides of lengths a, b, c the following inequality holds

\[
\frac{1}{a(b + c - a)} + \frac{1}{b(c + a - b)} + \frac{1}{c(a + b - c)} \geq \frac{r}{8R} \left(5 - \frac{9r}{4R + r} \right).
\]

Solution. From the following identity

\[
\sum_{cyc} \frac{(s - a)(s - b)}{c} = \frac{r(s^2 + (4R + r)^2)}{4sR} = \frac{S}{4R} \left(1 + \left(\frac{4R + r}{p} \right)^2 \right).
\]

Using the inequality

\[
\left(\frac{4R + r}{s} \right)^2 + \frac{9r}{4R + r} \geq 4,
\]

we have

\[
\sum_{cyc} \frac{(s - a)(s - b)}{c} \geq \frac{S}{4R} \left(5 - \frac{9r}{4R + r} \right).
\]

In this moment, the problem follows easily. \(\square\)

Application 3. In any triangle ABC with the sides of lengths a, b, c the following inequality holds

\[
\frac{1}{(b + c - a)^2} + \frac{1}{(c + a - b)^2} + \frac{1}{(a + b - c)^2} \geq \frac{1}{r^2} \left(\frac{1}{2} - \frac{9r}{4(4R + r)} \right).
\]

Solution. From \((b + c - a)(c + a - b)(a + b - c) = 4r(4R + r)\), it follows that

\[
(b + c - a)^2 + (c + a - b)^2 + (a + b - c)^2 = 4(s^2 - 2r^2 - 8Rr)
\]

and

\[
(b + c - a)^2 + (c + a - b)^2 + (a + b - c)^2 = 4r^2 \left((4R + r)^2 - 2s^2 \right).
\]

We get

\[
\frac{1}{(b + c - a)^2} + \frac{1}{(c + a - b)^2} + \frac{1}{(a + b - c)^2} = \frac{1}{4} \left(\frac{(4R + r)^2}{s^2r^2} - \frac{2}{r^2} \right).
\]
Now, applying the inequality
\[
\left(\frac{4R + r}{s} \right)^2 + \frac{9r}{4R + r} \geq 4,
\]
we have
\[
\frac{1}{(b + c - a)^2} + \frac{1}{(c + a - b)^2} + \frac{1}{(a + b - c)^2} \geq \frac{1}{4r^2} \left(2 - \frac{9r}{4R + r} \right) = \frac{1}{r^2} \left(\frac{1}{2} - \frac{9r}{4(4R + r)} \right).
\]

\textbf{Application 4.} In any triangle ABC with the sides of lengths a, b, c the following inequality holds
\[
\frac{a^2}{b + c - a} + \frac{b^2}{c + a - b} + \frac{c^2}{a + b - c} \geq 3R \sqrt{4 - \frac{9r}{4R + r}}.
\]

\textit{Solution.} Without loss of generality, we assume that $a \leq b \leq c$. It follows quite easily that $a^2 \leq b^2 \leq c^2$ and $\frac{1}{b + c - a} \leq \frac{1}{c + a - b} \leq \frac{1}{a + b - c}$. Applying Chebyshev’s inequality, we have
\[
\frac{a^2}{b + c - a} + \frac{b^2}{c + a - b} + \frac{c^2}{a + b - c} \geq \left(\frac{a^2 + b^2 + c^2}{3} \right) \left(\frac{1}{b + c - a} + \frac{1}{c + a - b} + \frac{1}{a + b - c} \right).
\]
Now, the first application and the inequality $a^2 + b^2 + c^2 \geq 18Rr$ solves the problem.

\textbf{Application 5.} In any triangle ABC with the sides of lengths a, b, c and with the exradii r_a, r_b, r_c corresponding to the triangle ABC, the following inequality holds
\[
\frac{a}{r_a} + \frac{b}{r_b} + \frac{c}{r_c} \geq 2 \sqrt{3 + \frac{4(R - 2r)}{4R + r}}.
\]

\textit{Solution.} From the well-known relations $r_a = \frac{S}{s - a}$ and the analogues, the inequality is equivalent to
\[
\frac{a}{r_a} + \frac{b}{r_b} + \frac{c}{r_c} = \frac{2(ab + bc + ca) - (a^2 + b^2 + c^2)}{2S} \geq 2S \sqrt{3 + \frac{4(R - 2r)}{4R + r}}.
\]
The last inequality follows from theorem 2.2 immediately.

\textbf{Application 6.} In any triangle ABC with the sides of lengths a, b, c and with the exradii r_a, r_b, r_c corresponding to the triangle ABC and with h_a, h_b, h_c be the altitudes of the triangle ABC, the following inequality holds
\[
\frac{1}{h_ar_a} + \frac{1}{h_br_b} + \frac{1}{h_cr_c} \geq \frac{1}{S} \sqrt{3 + \frac{4(R-2r)}{4R+r}}.
\]

Solution. From the well-known relations in triangle \(ABC\), \(h_a = \frac{2S}{a}, r_a = \frac{S}{s-a}\) we have \(\frac{1}{h_ar_a} = \frac{a(s-a)}{2S^2}\). Doing the same thing for the analogues and adding them up we get

\[
\frac{1}{h_ar_a} + \frac{1}{h_br_b} + \frac{1}{h_cr_c} = \frac{1}{2S^2} \left(a(s-a) + b(s-b) + c(s-c) \right).
\]

On the other hand by using theorem 2.2 in the form

\[
a(s-a) + b(s-b) + c(s-c) \geq 2S \sqrt{3 + \frac{4(R-2r)}{4R+r}}.
\]

we obtain the desired inequality.

Application 7. In any triangle \(ABC\) with the sides of lengths \(a, b, c\) the following inequality holds true

\[
\tan \frac{A}{2} + \tan \frac{B}{2} + \tan \frac{C}{2} \geq \sqrt{3 + \frac{4(R-2r)}{4R+r}}.
\]

Solution. From the cosine law we get \(a^2 = b^2 + c^2 - 2bc \cos A\). Since \(S = \frac{1}{2}bc \sin A\) it follows that

\[
a^2 = (b-c)^2 + 4S \left(\frac{1-\cos A}{\sin A} \right).
\]

On the other hand by the trigonometric formulae \(1-\cos A = 2\sin^2 \frac{A}{2}\) and \(\sin A = 2\sin \frac{A}{2} \cos \frac{A}{2}\) we get

\[
a^2 = (b-c)^2 + 4S \tan \frac{A}{2}.
\]

Doing the same for all sides of the triangle \(ABC\) and adding up we obtain

\[
a^2 + b^2 + c^2 = (a-b)^2 + (b-c)^2 + (c-a)^2 + 4S \left(\tan \frac{A}{2} + \tan \frac{B}{2} + \tan \frac{C}{2} \right).
\]

Now, by theorem 2.2 the inequality follows.

Application 8. In any triangle \(ABC\) with the sides of lengths \(a, b, c\) and with the exradii \(r_a, r_b, r_c\) corresponding to the triangle \(ABC\), the following inequality holds

\[
\frac{r_ar_a}{a} + \frac{r_br_b}{b} + \frac{r_cr_c}{c} \geq \frac{s(5R-r)}{R(4R+r)}.
\]
Solution. It is well-known that the following identity is valid in any triangle ABC

\[
\frac{r_a}{a} + \frac{r_b}{b} + \frac{r_c}{c} = \frac{(4R + r)^2 + s^2}{4Rs}.
\]

So, the inequality rewrites as

\[
\frac{(4R + r)^2}{s^2} + 1 \geq \frac{4(5R - r)}{4R + r},
\]

which is equivalent with

\[
\left(\frac{4R + r}{s}\right)^2 + \frac{9r}{4R + r} \geq 4.
\]

Acknowledgment. The authors would like to thank to Nicolae Constantinescu, from University of Craiova and to Marius Ghergu, from the Institute of Mathematics of the Romanian Academy for useful suggestions. This paper has been completed while the first author participated in the summer school on Critical Point theory and its applications organized in Cluj-Napoca city. We are kindly grateful to professors Vicențiu Rădulescu from the Institute of Mathematics of the Romanian Academy and to Csaba Varga from Babeș-Bolyai University, Cluj-Napoca.

References

[1] Roland Weitzenbock, Über eine Ungleichung in der Dreiecksgeometrie, Math. Z., ?, (1919), 137-146.

[2] P. Finsler, H. Hadwiger, Einige Relationen im Dreick, Comment Math. Helv., 10, (1938), 316-326.

[3] O. Bottema, R.Z. Djordjevic, R.R. Janić, D.S. Mitrinovic, P.M. Vasic, Geometric inequalities, Wolters-Noordhoff, Groningen (1969).

[4] Shanke Wu, Generalization and Sharpness of Finsler-Hadwiger’s inequality and its applications, Mathematical Inequalities and Applications, 9, no. 3, (2006), 421-426.

[5] G.N. Watson, Schur’s inequality, The Mathematical Gazette, 39, (1955), 207-208.
[6] John Steinig, Inequalities concerning the inradius and circumradius of a triangle, *Elemente der Mathematik*, **18**, (1963), 127-131.

[7] Arthur Engel, Problem solving strategies, *Springer Verlag* (1998).

[8] Cezar Lupu, An elementary proof of the Hadwiger-Finsler inequality, *Arhimede* Magazine, **3**, no.9-10, (2003), 18-19.