Natural Supersymmetry and Unification
in Five Dimensions

Ammar Abdalgabar,⋆◊ Alan S. Cornell,⋆ Aldo Deandrea♣† and Moritz McGarrie♠

⋆National Institute for Theoretical Physics; School of Physics and Mandelstam Institute for Theoretical Physics, University of the Witwatersrand, Johannesburg, Wits 2050, South Africa
◊Department of Physics, Sudan University of Science and Technology, Khartoum 407, Sudan
♣Université de Lyon, F-69622 Lyon, France; Université Lyon 1, CNRS/IN2P3, UMR5822 IPNL, F-69622 Villeurbanne Cedex, France
†Institut Universitaire de France, 103 boulevard Saint-Michel, 75005 Paris, France
♠Faculty of Physics, University of Warsaw, Hoża 69, 00-681 Warsaw, Poland

E-mail: ammar.abdalgabar@wits.ac.za, alan.cornell@wits.ac.za, deandrea@ipnl.in2p3.fr, moritz.mcgarrie@fuw.edu.pl

ABSTRACT: We explore unification and natural supersymmetry in a five dimensional extension of the standard model in which the extra dimension may be large, of the order of 1-10 TeV. Power law running generates a TeV scale A_t term allowing for the observed 125 GeV Higgs and allowing for stop masses below 2 TeV, compatible with a natural SUSY spectrum. We supply the full one-loop RGEs for various models and use metastability to give a prediction that the gluino mass should be lighter than 3.5 TeV for $A_t \leq -2.5$ TeV, for such a compactification scale, with brane localised 3rd generation matter. We discuss why models in which the 1st and 2nd generation of matter fields are located in the bulk are likely to be ruled out. We also look at electroweak symmetry breaking in these models.

KEYWORDS: Large A-term, extra dimension, light third-generation squarks
1 Introduction

In the context of supersymmetry and through the prism of the naturalness aesthetic, the discovery of a Standard Model-like scalar particle of mass $m_h \sim 125$ GeV [1, 2], and no direct evidence so far of superparticles has motivated renewed interest in non-minimal extensions of the Supersymmetric Standard Model (SSM) that can help to compellingly explain such results. Within the Minimal-SSM (MSSM), for the lightest CP even charge neutral scalar to be the discovered scalar then requires either multi-TeV stops, which is disfavoured from naturalness, an enhancement to the tree-level Higgs mass such as for example [3–6], or a near maximal mixing scenario whereby $|A_t(M_Z)| \gtrsim 1$ TeV. There are few models that compellingly achieve a large enough A_t if one first assumes A_t to vanish at some initial supersymmetry breaking scale. Even if one obtains such a large A_t, one must still explain why stops are lighter than their first and second generation counterpart squarks, consistent with colliders bounds [7, 8]. One such framework that can address both problems is a five dimensional-SSM.

In five dimensional (5D) supersymmetric standard models, power law running for a sufficiently low compactification radius R, generates at low energies a large enough A_t to explain the observed Higgs mass [9]. Furthermore, through spatially localising different generations along the extra dimension(s), one can explain geometrically why the third generation can be consistently lighter than its first and second generation counterparts [9].

This framework is sufficiently compelling that it should understandably endure further scrutiny. In particular, five dimensional theories are effective field theories with a cutoff and are (often over-dramatically) defined as non-renormalisable as many parameters such as gauge couplings, can be sensitive to this UV scale. It is therefore important to confirm that results and conclusions made at one loop that are sensitive to this scale are still consistent and under control at two (and higher) loops. For instance one might be concerned that one loop linear sensitivity to the cutoff behaving as ΛR do not result in terms of the form $(\Lambda R)^2$ at two-loop, which would then indicate a break-down of perturbation theory at renormalisation scales of the order of the compactification radius [10]. Whilst this might be of concern to non-supersymmetric theories, the five dimensional SSM is reinterpreted in the language of $\mathcal{N} = 2$ four dimensional supersymmetry. This additional supersymmetry and the protection it affords, helps to reduce such terms [11, 12], at least for gauge couplings. The effect remains but has opposite sign for both Yukawa couplings and their soft breaking trilinear counterparts and so is still under complete control. For the case of bulk matter and in particular the top Yukawa in the bulk, a Landau pole appears and one must then seriously consider that either perturbation theory is problematic for these models (just
as one would in any four dimensional theory with a Landau pole), or that a compelling explanation of how the top Yukawa may arise must be found such that this pathology may be avoided.

There are further criteria for our model to be truly compelling: We require that it is supersymmetric and that supersymmetry is softly broken, that the superpotential is renormalisable and that the theory’s gauge couplings unify in the five dimensional description with a large enough extra dimensional scale as to make the extra dimensional features practically relevant to the phenomenology of the model. In other words we require a \(1/R \sim 1\) to \(10^3\) TeV scale extra dimension and not simply an (almost) GUT scale extra dimension. Such a criteria is useful to rule out certain models, for instance by this criteria one can straightforwardly rule out flat extra dimensional models in which the 1st and 2nd generation are in the bulk, with the 3rd generation either in the bulk or on a brane, as such a model can only unify with an extra dimensional scale of the order of the GUT scale, a topic we discuss in more detail later.

The outline of the paper is as follows: In section 2 we describe the models in detail and discuss unification. In section 3 we describe our boundary conditions and how the four dimensional (4D) and 5D renormalisation group equations (RGEs) are matched and solved. We discuss the various energy scales of the model and then look at the running of various parameters including the gaugino mass spectrum and trilinear soft breaking terms. In section 4 we explore how to obtain the correct 125 GeV Higgs mass, with stops lighter than 2 TeV. In section 5 we give our conclusions. We also include two detailed appendices, appendix A including all the one-loop and two-loop RGEs of the four dimensional low energy model, of which we used the one-loop RGEs in the plots, and appendix B includes the one-loop RGEs for the five dimensional models 1 and 2 of the main paper. The conventions and notation of this paper follow closely that of [9], which are based on conventions found in [13–17].

2 5D-SSM with additional states: unification

A TeV scale supersymmetric standard model in which the gauge coupling is precisely unified is proposed in [18]. The key idea is to add two new hypermultiplets \(F^\pm\) which are singlets under \(SU(3)_c \times SU(2)_L\) and charged under \(U(1)_Y\) with \(Y_{F^\pm} = \pm 1\). The SSM chiral fermions are located on a boundary and in the 5D picture do not have Kaluza-Klein (KK) modes. The SSM Higgs chiral multiplets live in the bulk and we embed them as hypermultiplets in 5D. The gauge fields and the additional states also live in the bulk as listed in table 1: we call this model 1. We will also explore our own model in which the third generation of superfields lives in the bulk, as in table 2: we call this model 2 and this too may unify. We compute and collate all supersymmetric and soft-term RGEs. These new states modify the beta function coefficient \(b_1\) and lead to precision unification at one-loop. The superpotential for both models is given by

\[
W = Y_u \bar{u} \epsilon_{ij} \bar{q}^i \tilde{H}_u^j - Y_d \bar{d} \epsilon_{ij} \bar{q}^i \tilde{H}_d^j - Y_e \bar{e} \epsilon_{ij} \bar{l}^i \tilde{H}_d^j + \mu H_u H_d + \mu \bar{F}^- F^+. \tag{2.1}
\]
Table 1. The matter content of model 1. All superfields of chiral fermions live on a brane and all Higgs-type superfields and gauge vector fields live in the bulk. The superscript \(f = 1, 2, 3 \) denotes the generations. Neutrino superfields may be included straightforwardly. The gauge couplings of this model unify as in figure 1 (top left).

Superfields	Brane	Bulk	\(U(1)_Y \times SU(2)_L \times SU(3)_c \)
\(\tilde{q}^f \)	✓	-	\(\left(\frac{2}{3}, 2, 1 \right) \)
\(\tilde{d}^f \)	✓	-	\(\left(\frac{1}{3}, 1, 3 \right) \)
\(\tilde{u}^f \)	✓	-	\(\left(\frac{2}{3}, 1, 3 \right) \)
\(\tilde{l}^f \)	✓	-	\(\left(-\frac{1}{3}, 2, 1 \right) \)
\(\tilde{\ell}^f \)	✓	-	\((1, 1, 1) \)
\(H_d \)	-	✓	\(\left(-\frac{1}{2}, 2, 1 \right) \)
\(H_u \)	-	✓	\(\left(\frac{1}{2}, 2, 1 \right) \)
\(F_- \)	-	✓	\((-1, 1, 1) \)
\(F_+ \)	-	✓	\((1, 1, 1) \)
\(B_V \)	-	✓	\((0, 1, 1) \)
\(W_V \)	-	✓	\((0, 3, 1) \)
\(G_V \)	-	✓	\((0, 1, 8) \)

Table 2. The matter content of model 2. In this case the third generation also live in the bulk. The gauge couplings of this model unify as in figure 1 (top right).
2.1 Gauge coupling unification

A sufficient condition for unification in a five dimensional model is [19, 20] that

$$R_{ij} = \frac{b_{i}^{(5D)} - b_{j}^{(5D)}}{b_{i}^{SSM} - b_{j}^{SSM}}$$ \hspace{1cm} (2.2)$$

does not depend on \((i,j)\), where \(b_{i}^{5D}\) are the five dimensional beta function coefficients, at one-loop. The \(\beta\)-function of an \(SU(N)\) gauge theory at one-loop is

$$\beta_{g} = \mu \frac{d \log g}{d \mu} = - \frac{g^{3}}{16\pi^{2}} \left(\frac{11}{3} T(Adj) - \frac{2}{3} T_{f\nu}(R) - \frac{1}{3} T_{s\nu}(R) \right) = \frac{b_{g}^{(1-loop)} g^{3}}{(2\pi)^{4}}$$ \hspace{1cm} (2.3)$$

for gauge fields, Weyl fermions and complex scalars respectively. \(R\) is the representation and in particular \(T(Adj) = N\) and \(T(\Box) = \frac{1}{2}\).

For a \(U(1)\) theory [21] the gauge field is uncharged, there is also an overall normalisation constant which can be fixed to embed the particular \(U(1)\) in a larger group. Such that focusing on the \(U(1)\) of the SSM one finds

$$b_{1} = \frac{3}{5} \left(\frac{2}{3} \sum_{f} Y_{f}^{2} + \frac{1}{3} \sum_{s} Y_{s}^{2} \right) \quad \text{or} \quad b_{1} = \frac{3}{5} \left(\sum_{\Phi} Y_{\Phi}^{2} \right),$$ \hspace{1cm} (2.4)$$

Table 3. The matter content of model 3. In this case the 1st and 2nd generation live in the bulk. The gauge couplings of this scenario do not unify, as in figure 1 (bottom).
Table 4. The one-loop beta function coefficients of the gauge couplings for various scenarios. Requiring gauge coupling unification puts a bound on the inverse radius of the extra dimension in five dimensional models, which is estimated in the right-most column.

Scenario	(b_1, b_2, b_3)	Refs.	$1/R$-GUT
4D SM	$(\tfrac{11}{10}, -19/6, -7)$	-	
4D MSSM	$(\tfrac{11}{10}, 1, -3)$	[23, 24]	-
5D MSSM: Chiral Higgses in the bulk	$(\tfrac{11}{10}, -3, -6)$	[11, 20]	(does not exist)
5D MSSM: Hyper Higgses in the bulk	$(\tfrac{11}{10}, -2, -6)$	[9, 18]	$\sim 10^{10}$ GeV
5D MSSM-UED	$(\tfrac{11}{10}, 10, 6)$	[25, 26]	$\geq 5 \times 10^{10}$ GeV
5D 3rd Gen & Hyper Higgses in the bulk	$(\tfrac{11}{10}, 2, -2)$	[27]	$\sim 10^{10}$ GeV
5D 1st,2nd Gen & Hyper Higgses in the bulk	$(\tfrac{11}{10}, 4, 2)$		
5D Gauge only in the bulk	$(0, -4, -6)$		
4D $SSMF^{\pm}$	$(\tfrac{11}{10}, 1, -3)$	model 1	≥ 1 TeV
5D$SSMF^{\pm}$:Hyper Higgses in bulk	$(\tfrac{11}{10}, -2, -6)$	model 2	≥ 1 TeV
5D$SSMF^{\pm}$:3rd Gen & Hyper Higgses in bulk	$(\tfrac{11}{10}, 2, -2)$	model 3	\times
5D$SSMF^{\pm}$:1st,2nd Gen & Hyper Higgses in bulk	$(\tfrac{11}{10}, 4, 2)$		
4D MSSM+Dirac	$(\tfrac{11}{10}, -1, 0)$	-	
4D M-Dirac-SSM	$(\tfrac{11}{10}, 4, 0)$	[28]	-
5D MSYM only in the bulk	$(0, 0, 0)$	[17]	any
5D MSYM Hyper-Higgs in the bulk	$(\tfrac{11}{10}, 2, 0)$		\times

the latter is for chiral superfields, and the Y’s are hypercharges, where the hypercharge is rescaled by $g_1 \equiv \sqrt{5/3}g'$ as usual in unified models [22]. The results for various models may be found in table 4. In a number of these scenarios additional matter is required to obtain unification, or indeed the extra dimensional scale $1/R > 10^{10}$ GeV, which for phenomenological purposes is essentially four dimensional and so not of interest.

A useful comment is appropriate here that the additional matter of the 5D MSSM-UED scenario means that all beta function coefficients are positive. This forces $1/R \gtrsim 10^{10}$ GeV for unification to still be possible [25]. Low scale (supersymmetric) extra dimensions therefore require that most of the MSSM matter does not live in the bulk. Our preferred scenarios are therefore ones in which the matter multiplets all live on a brane (model 1) or where the 1st and 2nd generation live on an opposite brane to the 3rd generation, or where only the third generation lives in the bulk (model 2). In either case the Higgses can live in the bulk or on a brane. Additional fields may be added to accomplish precision unification at low scales [29]. This leads to three options: the models 1 and 2 that we consider in this paper (plotted in figure 1) and one might also be able to combine a 4D M-Dirac-SSM [28] with a maximal super Yang-Mills theory only in the bulk [17] to, rather remarkably, achieve unification for any and all sizes of inverse radius. In this theory the gauge couplings only run in the four dimensional theory as the beta functions for the gauge couplings vanish exactly to all orders in perturbation theory in the maximal super Yang-Mills theory. As a result there are no power law contributions for gauge couplings (but there may be for the Yukawas and soft terms) and an inverse radius of a few TeV is possible with gauge coupling unification at 10^{17} GeV, which is very counter-intuitive. The effective cutoff of a five dimensional theory is essentially defined as the scale at which some parameter, such as
the gauge couplings, hit a Landau pole: as no Landau pole arises this allows for the range of validity of this theory to extend further.

A case that fails to unify (which is denoted as model 3 in figure 1 (bottom)) is a scenario in which the 1st and 2nd generation of matter fields (as well as the Higgs doublets and gauge theories) live in the bulk, listed in table 3. Such a theory has a hard time unifying its gauge couplings as in the near four dimensional limit it does not even reduce to the MSSM, due to the additional F^\pm.

3 Exploring the models

In this section we explore the typical scales of the models, we describe how we solve the various RGEs and the boundary conditions that we use and then look at many of the running parameters of the model, such as trilinear soft breaking parameters and the gaugino mass spectrum.

3.1 Typical scales of the models

It is useful to set the mass and energy scales in which we wish to consider these models. We wish for a large extra dimension, which then leads us to fix the gauge coupling unification scale and the scale of the cut off, where the gauge couplings hit a Landau pole (see figure
Figure 2. Running of the Yukawa couplings $Y_i(Q)$, for two different models with compactification scales 10 TeV as a function of $\log_{10}(Q/\text{GeV})$. The top Yukawa coupling typically hits a Landau pole before the GUT scale when the 3rd generation matter is located in the bulk (right).

1):
\[\frac{1}{R} \sim 10 \text{ TeV, } M_{\text{GUT}} \sim 300 \text{ TeV, } \Lambda \sim 1,000 \text{ TeV}. \]

Although they differ in magnitude, this is natural in that fixing any one of these determines the other two. Next we wish for a gluino mass above collider exclusions and to determine the Higgs mass correctly to be $m_h = 125$ GeV from a sizeable A_t. We find (see for instance figure 3)

\[M_3 = 900 \text{ GeV leads to } A_t \sim -700 \text{ GeV, } M_3 = 1700 \text{ GeV leads to } A_t \sim -1250 \text{ GeV}. \]

(3.2)

Strong exclusion limits on the gluino arise from ATLAS and CMS null searches for jets plus missing energy, for example $m_{\tilde{g}} > 1600 \text{ GeV for } m_{\tilde{q}_{1,2}} > 2000 \text{ GeV} \ [30, 31]$, although this can be lowered if one wishes to also include R-parity violation with our models, hence the $M_3 = 900 \text{ GeV}$ case. Conversely, allowing for an upper bound on the top trilinear coupling, from considering metastability of the electroweak vacuum,

\[A_t = -2 \text{ TeV leads to } M_3 \sim 2.77 \text{ TeV and } A_t = -2.5 \text{ TeV leads to } M_3 \sim 3.5 \text{ TeV}. \]

(3.3)

To allow for the correct Higgs mass $m_h = 125$ GeV, the electroweak parameters should be in the range

\[\tan \beta \subset (5, 30), \quad \mu \leq 1 \text{ TeV}, \]

(3.4)

represented in figure 6. We do not expect $\tan \beta$ to be much larger, due to $B_s \rightarrow X_s \gamma$ flavour constraints and μ is bounded by naturalness considerations of the renormalisation group effects on the Higgs tadpole equations (minimisation of the scalar potential).

3.2 Implementation and results

To obtain our results we computed by hand the various RGEs of the four dimensional (zero mode) description that both model 1 and 2 (tables 1 and 2) reduce to at low energies. We then confirmed these with the output of an implementation of the four dimensional regime.
Table 5. A table of the boundary conditions used in our study.

Parameter	Value	Name
Q_0	1000	(SUSY Scale)
$g_1(Q_0)$	0.360945804	g_1
$g_2(Q_0)$	0.633371083	g_2
$g_3(Q_0)$	1.02739852	g_3
$\tan \beta$	10	(Tan beta)
$Y_t(Q_0)$	0.849348847	(Top Yukawa)
$Y_b(Q_0)$	0.128188819	(Bottom Yukawa)
$Y_\tau(Q_0)$	0.0999653768	(Tau Yukawa)

In SARAH [32–35]. We then computed, by hand only, the one-loop RGEs for each of model, model 1 and 2, including all the additional fields of the KK sector. Using MATHEMATICA we solve the combined set of RGEs and match the four and five dimensional RGEs at the matching compactification scale such that at low energies the theory is described by the four dimensional RGEs only.

Once we have a combined set of RGEs, we must specify a set of boundary conditions. In this case we must simply specify all boundary conditions at the same scale (rather than, for example having a set of boundary conditions at both the GUT/SUSY-breaking scale and at the electroweak scale), which we took to be $t=3$, or $Q = 10^3$ GeV (where we define $t = \log_{10} Q$). The gauge couplings and Yukawa couplings are easily obtained by running up from m_Z and are listed in table 5, for example in figure 2 for $\tan \beta \sim 10$. Regarding the soft breaking terms we made some specific choices which we enforce by choosing a low-scale boundary value such that it holds true once run up to the high scale. We also make the assumption that the SUSY breaking scale is equal to the GUT scale, but of course other scenarios should be considered. For model 1:

- We assume supersymmetry breaking occurs at the unification scale, which is found by finding the scale at which $g_1 = g_2 = g_3$, which is lowered compared to the 4D MSSM, by the effects of the compactification. This is pictured in figure 1 (top left).
- We specify the value of the gluino mass, $M_3(Q)$, at $Q = 10^3$ GeV. We then find the bino and wino soft masses M_1 and M_2 such that all gaugino masses $M_1 = M_2 = M_3$ at the GUT scale. This is pictured in figure 3.
- We take the trilinear soft breaking terms, $A_{u/d/e}$, to vanish at the unification scale, also pictured in figure 3.
- We take $\mu(t = 3) \sim 500$ GeV and $B_\mu(M_{GUT}) = 0$, as pictured in figure 5 (left).

The results are rather different for model 2:

- We found the scale at which $g_1 = g_2 = g_3$, which is lowered compared to the 4D MSSM, pictured in figure 1 (top right).
Figure 3. Running of the gaugino masses and trilinear couplings $M_i(Q)$ and $A_i(Q)$, for the two different models with compactification scales 10 TeV, as a function of $\log_{10}(Q/\text{GeV})$.

- The top Yukawa coupling hits a Landau pole just after $t = 4.595$, as pictured in figure 2 (right).

The result was that we could not set the supersymmetry breaking scale at M_{GUT} and instead chose the supersymmetry breaking scale to occur below the top Yukawa Landau pole, at $t = 4.4$. We then chose for the plots in model 2:

- We choose the gaugino masses to unify $M_3(t = 4.4) = M_2(t = 4.4) = M_1(t = 4.4)$ and let $M_3(t = 3) = 1700$ GeV.

- $A_{u/d/e}(t = 4.4)$ are set to vanish and this model does not develop a TeV scale $A_t(t = 3)$, as pictured in figure 3 (right).

- Whilst electroweak symmetry breaking is possible starting from the condition $m_{H_u}^2 = m_{H_d}^2$, it does not automatically arise from using $(m_0^2 + \mu^2)^{1/2}$, where m_0^2 would set the scalar soft mass boundary condition. This is pictured in figure 4 (right), where a representative case is given that achieves the correct Higgs mass.

- We take $\mu(t = 3) \sim 500$ GeV and $B_\mu(M_{\text{GUT}}) = 0$, as pictured in figure 5 (left).

3.3 Two ways to accommodate natural supersymmetry

The two models we explore in this paper can accommodate a natural spectrum of sparticles in two very different ways, whilst still obtaining the correctly observed Higgs mass:

In model 2 the third generation are located in the bulk and feel the effects of supersymmetry more indirectly than the first and second generation. This will allow for a spectrum of light stops with a heavier first and second generation, above present collider exclusions. One may use the NMSSM or D-terms to lift the Higgs mass to its correct value.

In model 1 the Higgs mass is obtained through a TeV scale A_t term that is generated entirely through RGE evolution, allowing for the correct Higgs mass with stops much below 2 TeV even within an MSSM-like Higgs sector, but does not yet explain any hierarchy between the generation of squarks. In this subsection we explain these details of each model further.
3.3.1 The third generation in the bulk

Exclusions on first and second generation squarks are presently nearing 2 TeV [36, 37], while the aesthetic of naturalness for the Higgs sector (and much weaker bounds on 3rd generation squarks of around 300-400 GeV [7, 8] from direct searches) favour a 3rd generation below a TeV. In order for this hierarchy to emerge at low scales it is likely to be imprinted in the soft SUSY breaking terms and not simply a renormalisation group effect. At the supersymmetry breaking scale this might imply that the soft terms, in the flavour basis, take the form,

\[m^2_{\tilde{f}} \sim \Lambda^2 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} + ... \]

or indeed

\[m^2_{\tilde{f}} \sim \Lambda^2 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -\varepsilon \end{pmatrix} + ... \]

the \(\varepsilon \) denoting any subleading effects, as one does not require exactly zero entries. Some ideas have been put forward to explain such a hierarchy, see for instance [5, 9, 38, 39], and we wish to advance the argument that a five dimensional model with the third generation in the bulk, i.e our model 2, explains such a hierarchy.

We put forward the idea that the first and second generation of squarks live on the same brane as the source of supersymmetry breaking. They will feel directly the effect of supersymmetry breaking and generate large soft breaking terms. The 3rd generation is, however, located in the bulk and will feel the supersymmetry breaking indirectly through either gravity or gauge mediation. This will lead to the boundary conditions in Eqn. (3.5). For a calculation of gauge mediated soft terms from a brane to a bulk field see [15, 40], for brane to other brane see [14, 15, 40]. Such an effect is still felt directly by the gauginos (and the gravitino) and they will also have a large SUSY breaking soft mass, which have important RGE effects as discussed in this paper.

3.3.2 A large \(A_t \) term

Our model 1 does not geometrically explain why the first and second generation might be much heavier than the 3rd, but it does allow for a large \(A_t \) term generated entirely through RGE evolution, and this can still allow for stops much below 2 TeV and still obtain the correct Higgs mass from the usual MSSM Higgs sector. Therefore for model 1, we do not yet offer an explanation of the source of supersymmetry breaking. We discuss obtaining the correct Higgs mass in model 1 in the next section.

4 The one-loop Higgs mass

The leading one-loop self energy contributions to the lightest CP even Higgs mass is given by [41–45]

\[m^2_{h,1} \approx m^2 \cos^2 2\beta + \frac{3}{4\pi^2} \frac{m^4_t}{v^2_{ew}} \left[\ln \frac{M^2_S}{m^2_t} + \frac{X^2_t}{M^2_S} \left(1 - \frac{X^2_t}{12M^2_S} \right) \right], \]
Figure 4. Running of the various soft masses for the two models.

Figure 5. The running of μ and B_{μ} for the two models.

where v_{ew} is the electroweak Higgs vev, $X_t = A_t - \mu \cot \beta$ and $M_S^2 = m_{\tilde{t}_1} m_{\tilde{t}_2}$. If μ is a few 100 GeV and $A_t \gg \mu$ then $X_t \sim A_t$. We plot, in figure 6, the Higgs mass formula for representative values of A_t in our setup. This allows for a prediction of $\tan \beta$ and the stop squark masses which can be below 2 TeV. One could also lift the tree-level Higgs mass with the $NMSSM + F$ or else through non decoupling D-terms (see for example [5, 6]) which would require introducing an additional $U(1)$ or $SU(2)$ or both. Such an additional feature would be necessary for model 2 as a large A_t does not arise in this case.

5 Conclusions

In this paper we explore various five dimensional extensions of the supersymmetric standard model that unify, with an inverse radius of the extra dimension of roughly a 10 TeV scale. Such models are compelling extensions of the MSSM in that they may achieve interesting phenomenological features such as additional Z', W' and G' bosons in the $1-10$ TeV range and achieve the correct 125 GeV Higgs mass and a relatively natural sparticle spectrum for model 1, while for model 2 this spectrum is heavier, without sacrificing unification of gauge couplings. Such models achieves a natural spectrum by generating a TeV scale A_t.
term from “power-law” running and unification of gauge couplings through the addition of two charged superfields F^{\pm} in the bulk.

In particular we look at two models that can achieve unification, either all chiral matter superfields on the boundaries, or just the third generation in the bulk and the first two on a boundary. In either case the Higgs doublet superfields H_u, H_d and F^{\pm} are located in the bulk along with all three gauge groups $SU(3)_c \times SU(2)_L \times U(1)_Y$. We also point out that five dimensional models in which the 1st and 2nd generation are located in the bulk cannot possibly achieve unification unless the inverse radius of the extra dimension is essentially at the GUT scale (and in any case not with this matter content), and so are entirely four dimensional from a phenomenological perspective.

This paper can be extended in a number of ways and we discuss just a few. In many models of supersymmetry breaking, electroweak symmetry breaking is not optimal both in terms of fine tuning and in obtaining electroweak breaking from a given parameterisation.

Figure 6. Contours of the lightest Higgs mass $m_h = 125$ GeV in the plane ($m_{\tilde{t}_1}, X_t$) for various values of $\tan \beta$. The dashed gray lines represent the gluino mass for values of X_t found in model 1. Stop masses below 2 TeV are obtainable in our model due to the TeV-scale A_t term.
of soft breaking terms at the high scale. These remain an interesting open question, and may benefit from further discoveries or exclusions in the Higgs sector, at the LHC13/14. Our results are representative only, and clearly a more dedicated spectrum generator built using the RGEs and including threshold corrections will give more precise results, and we provide in this paper a concrete set of RGEs from which this spectrum generator can be constructed. Different supersymmetry breaking parameterisations and how flavour arises is also an interesting further direction to consider.

6 Acknowledgements

This work was partially supported by the Foundation for Polish Science International PhD Projects Programme co-financed by the EU European Regional Development Fund. This work has been partially supported by National Science Centre under research grant DEC-2012/04/A/ST2/00099. AD is partially supported by Institut Universitaire de France. We also acknowledge partial support from the Labex-LIO (Lyon Institute of Origins) under grant ANR-10-LABX-66 and FRAMA (FR3127, Fédération de Recherche “André Marie Ampère”).

A Renormalisation group equations for 4D-SSM+E^\pm

In this appendix we document the one- and two-loop RGEs for the four dimensional low energy model for which the 5D models 1 and 2 are completions. Recall that the output of our implementation in the four dimensional regime was done using SARAH [32–35], as such as we have used the same conventions and notations, where $T_i = A_i y_i \ (i = t, b, \tau \text{ etc.})$ in these appendices.

A.1 Anomalous Dimensions

\[
\begin{align*}
\gamma^{(1)}_q &= -\frac{1}{30} \left(45 g^2_2 + 80 g^2_3 + g_1^2 \right) 1 + Y_d^\dagger Y_d + Y_u^\dagger Y_u \\
\gamma^{(2)}_q &= +\frac{1}{180} \left(2 g_1^2 \left(16 g^2_2 + 9 g^2_3 \right) + 47 g^4_2 + 5 \left(135 g^2_2 + 288 g^2_3 - 32 g_4^1 \right) \right) 1 \\
&+ \frac{4}{5} g_1^2 Y_u^\dagger Y_u - 2 Y_d^\dagger Y_d Y_d Y_u - 2 Y_u^\dagger Y_u Y_u Y_u \\
&+ Y_d^\dagger Y_d \left(-3 \text{Tr} \left(Y_d Y_d^\dagger \right) \right) + \frac{2}{5} g_1^2 - \text{Tr} \left(Y_e Y_e^\dagger \right) - 3 Y_u^\dagger Y_u \text{Tr} \left(Y_u Y_u^\dagger \right) \\
\gamma^{(1)}_l &= -\frac{3}{10} \left(5 g^2_2 + g_1^2 \right) 1 + Y_e^\dagger Y_e \\
\gamma^{(2)}_l &= -2 Y_e^\dagger Y_e Y_e^\dagger Y_e + \frac{3}{100} \left(125 g^4_2 + 30 g_1^2 g_2^2 + 81 g_4^1 \right) 1 \\
&+ Y_e^\dagger Y_e \left(-3 \text{Tr} \left(Y_d Y_d^\dagger \right) + \frac{6}{5} g_1^2 - \text{Tr} \left(Y_e Y_e^\dagger \right) \right) \\
\gamma^{(1)}_{H_d} &= 3 \text{Tr} \left(Y_d Y_d^\dagger \right) - \frac{3}{10} \left(5 g^2_2 + g_1^2 \right) + \text{Tr} \left(Y_e Y_e^\dagger \right) \\
\gamma^{(2)}_{H_d} &= +\frac{243}{100} g_1^4 + \frac{9}{10} g_2^3 g_2 + \frac{15}{4} g_2^2 + \frac{17}{5} \left(-40 g^2_3 + g_1^2 \right) \text{Tr} \left(Y_d Y_d^\dagger \right) + \frac{6}{5} g_1^2 \text{Tr} \left(Y_e Y_e^\dagger \right)
\end{align*}
\]
\[-9 \text{Tr}(Y_d Y_d^\dagger Y_d Y_d^\dagger) - 3 \text{Tr}(Y_d Y_u^\dagger Y_u Y_u^\dagger) - 3 \text{Tr}(Y_e Y_e^\dagger Y_e Y_e^\dagger) \]
(A.6)

\[\gamma_H^{(1)} = -\frac{3}{10} \left(-10 \text{Tr}(Y_u Y_u^\dagger) + 5g_3^2 + g_1^2 \right) \]
(A.7)

\[\gamma_H^{(2)} = -3 \text{Tr}(Y_d Y_u^\dagger Y_u Y_u^\dagger) - 9 \text{Tr}(Y_e Y_e^\dagger Y_u Y_u^\dagger) + \frac{15}{4} g_2^4 + \frac{243}{100} g_1^4 \]
(A.8)

\[+ \frac{4}{5} \left(20g_3^2 + g_1^2 \right) \text{Tr}(Y_u Y_u^\dagger) + \frac{9}{10} g_1^2 g_2^2 \]
(A.9)

\[\gamma_d^{(1)} = 2Y_d^* Y_d^T - \frac{2}{15} \left(20g_3^2 + g_1^2 \right) \mathbf{1} \]
(A.10)

\[\gamma_d^{(2)} = \frac{2}{225} \left(-100g_3^2 + 119g_1^4 + 80g_1^2 g_3^2 \right) \mathbf{1} - 2 \left(Y_d Y_d^\dagger Y_d^T Y_d Y_d^T + Y_d^* Y_d Y_d^T Y_d^* Y_d^T \right) \]
(A.11)

\[+ Y_d^* Y_d^T \left(6g_2^2 - 6 \text{Tr}(Y_d Y_d^\dagger) - \frac{2}{5} g_1^2 \right) \]
(A.12)

\[\gamma_u^{(1)} = 2Y_u^* Y_u^T - \frac{8}{15} \left(5g_3^2 + g_1^2 \right) \mathbf{1} \]
(A.13)

\[\gamma_u^{(2)} = \frac{8}{45} \left(16g_1^2 g_3^2 + 25g_1^4 - 5g_1^2 \right) \mathbf{1} - 2 \left(Y_u^* Y_u^T Y_u^* Y_u^T + Y_u^* Y_u^T Y_u^* Y_u^T \right) \]
(A.14)

\[+ Y_u^* Y_u^T \left(6g_2^2 - 6 \text{Tr}(Y_u Y_u^\dagger) - \frac{2}{5} g_1^2 \right) \]
(A.15)

A.2 Gauge Couplings

\[\beta_{g_{1/2}}^{(1)} = \frac{39}{5} g_1^3 \quad , \quad \beta_{g_{2/3}} = g_2^3 \quad , \quad \beta_{g_1}^{(1)} = -3g_3^3 \]
(A.16)

\[\beta_{g_{2/3}}^{(2)} = \frac{1}{25} g_3^3 \left(-130 \text{Tr}(Y_u Y_u^\dagger) + 135g_2^2 + 271g_1^2 + 440g_3^2 - 70 \text{Tr}(Y_d Y_d^\dagger) - 90 \text{Tr}(Y_e Y_e^\dagger) \right) \]
(A.17)

\[\beta_{g_{2/3}}^{(2)} = \frac{1}{5} g_3^3 \left(-10 \text{Tr}(Y_e Y_e^\dagger) + 120g_3^2 + 125g_2^2 - 30 \text{Tr}(Y_d Y_d^\dagger) - 30 \text{Tr}(Y_u Y_u^\dagger) + 9g_1^2 \right) \]
(A.18)

\[\beta_{g_{2/3}}^{(2)} = \frac{1}{5} g_3^3 \left(11g_1^2 - 20 \text{Tr}(Y_d Y_d^\dagger) - 20 \text{Tr}(Y_u Y_u^\dagger) + 45g_2^2 + 70g_3^2 \right) \]
(A.19)

A.3 Gaugino Mass Parameters

\[\beta_{M_1}^{(1)} = \frac{78}{5} g_2^2 M_1 \quad , \quad \beta_{M_2}^{(1)} = 2g_2^2 M_2 \quad , \quad \beta_{M_3}^{(1)} = -6g_3^2 M_3 \]
(A.20)

\[\beta_{M_1}^{(2)} = \frac{2}{25} g_3^2 \left(542g_1^2 M_1 + 135g_2^2 M_1 + 440g_3^2 M_1 + 440g_3^2 M_3 + 135g_2^2 M_2 - 70M_1 \text{Tr}(Y_d Y_d^\dagger) \right) \]
\[-90M_1 \text{Tr}(Y_d Y_d^\dagger) - 130M_1 \text{Tr}(Y_u Y_u^\dagger) + 70 \text{Tr}(Y_d^\dagger T_d) + 90 \text{Tr}(Y_e^\dagger T_e) + 130 \text{Tr}(Y_u^\dagger T_u)\]

(\text{A.21})

\[\beta_{M_2}^{(2)} = \frac{2}{5} g_2^2 \left(9 g_1^2 M_1 + 120 g_3^2 M_3 + 9 g_1^2 M_2 + 250 g_2^2 M_2 + 120 g_3^2 M_2 - 30 M_2 \text{Tr}(Y_d Y_d^\dagger) \right.\]

\[-10 M_2 \text{Tr}(Y_e Y_e^\dagger) - 30 M_2 \text{Tr}(Y_u Y_u^\dagger) + 30 \text{Tr}(Y_e^\dagger T_e) + 10 \text{Tr}(Y_u^\dagger T_u)\]

(\text{A.22})

\[\beta_{M_3}^{(2)} = \frac{2}{5} g_3^2 \left(11 g_1^2 M_1 + 11 g_2^2 M_2 + 250 g_3^2 M_3 + 140 g_2^2 M_3 + 45 g_2^2 M_2 - 20 M_3 \text{Tr}(Y_d Y_d^\dagger) \right.\]

\[-20 M_3 \text{Tr}(Y_u Y_u^\dagger) + 20 \text{Tr}(Y_d^\dagger T_d) + 20 \text{Tr}(Y_u^\dagger T_u)\]

(\text{A.23})

A.4 Trilinear Superpotential Parameters

\[\beta_{Y_d}^{(1)} = 3 Y_d Y_d^\dagger Y_d + Y_d \left(-3 g_2^2 + 3 \text{Tr}(Y_d Y_d^\dagger) \right) - \frac{16}{3} g_3^2 - \frac{7}{15} g_1^2 + \text{Tr}(Y_e Y_e^\dagger) \]

\[+ Y_d Y_d^\dagger Y_d \left(-3 \text{Tr}(Y_e Y_e^\dagger) \right) + 6 g_3^2 - 9 \text{Tr}(Y_d Y_d^\dagger) + \frac{4}{5} g_1^2 \right) - 3 Y_d Y_d^\dagger Y_d \text{Tr}(Y_u Y_u^\dagger)\]

(\text{A.24})

\[\beta_{Y_d}^{(2)} = \frac{4}{5} g_2^2 Y_d Y_d^\dagger Y_u - 4 Y_d Y_d^\dagger Y_d Y_d^\dagger Y_d - 2 Y_d Y_d^\dagger Y_u Y_d Y_d - 2 Y_d Y_d^\dagger Y_d Y_u Y_u\]

\[+ Y_d \left(168 T_7 \frac{g_1^4}{2} + g_1^2 g_2 + 15 \frac{g_2^2}{2} + \frac{8}{9} g_1^3 g_3 + 8 g_2^2 g_3 \right) - \frac{16}{9} g_3^2 - \frac{2}{5} \left(-40 g_3^2 + g_1^2 \right) \text{Tr}(Y_d Y_d^\dagger)\]

(\text{A.25})

\[\beta_{Y_e}^{(1)} = 3 Y_e Y_e^\dagger Y_e + Y_e \left(-3 g_2^2 + 3 \text{Tr}(Y_d Y_d^\dagger) \right) - \frac{9}{5} g_1^2 + \text{Tr}(Y_e Y_e^\dagger) \]

(\text{A.26})

\[\beta_{Y_e}^{(2)} = -4 Y_d Y_d^\dagger Y_e Y_e + Y_e Y_e^\dagger Y_e \left(-3 \text{Tr}(Y_d Y_d^\dagger) + 6 g_2^2 - 9 \text{Tr}(Y_d Y_d^\dagger) \right)\]

\[+ Y_e \left(783 g_1^4 \frac{g_1^4}{2} + g_1^2 g_2 + 15 \frac{g_2^2}{2} - \frac{2}{5} \left(-40 g_3^2 + g_1^2 \right) \text{Tr}(Y_d Y_d^\dagger) + \frac{6}{5} g_1^2 \text{Tr}(Y_e Y_e^\dagger) \right)\]

(\text{A.27})

\[\beta_{Y_u}^{(1)} = 3 Y_u Y_u^\dagger Y_u - \frac{1}{15} Y_u \left(13 g_1^2 + 45 g_2^2 - 45 \text{Tr}(Y_u Y_u^\dagger) \right) + \frac{80 g_3^2}{3} + Y_u Y_d^\dagger Y_d\]

(\text{A.28})

\[\beta_{Y_u}^{(2)} = \frac{2}{5} g_1^2 Y_u Y_u^\dagger Y_u + 6 g_2^2 Y_u Y_u^\dagger Y_u - 2 Y_u Y_d^\dagger Y_d Y_d^\dagger Y_d - 2 Y_u Y_d^\dagger Y_u Y_u Y_u\]

\[+ Y_u \left(\frac{3211}{450} g_1^4 + \frac{g_1^2 g_2}{2} + \frac{15}{2} g_2^2 + \frac{136}{45} g_1^3 g_3 + 8 g_2^2 g_3 \right) - \frac{16}{9} g_3^2 + \frac{4}{5} \left(20 g_3^2 + g_1^2 \right) \text{Tr}(Y_u Y_u^\dagger)\]

(\text{A.29})

\[+ 3 \text{Tr}(Y_d^\dagger Y_d Y_d Y_u^\dagger Y_u) - 9 \text{Tr}(Y_u Y_u Y_u Y_u^\dagger Y_u)\]
A.5 Bilinear Superpotential Parameters

\[
\beta^{(1)}_\mu = 3\mu \text{Tr} (Y_d Y_d^\dagger) - \frac{3}{5} \mu (5g_2^2 - 5\text{Tr}(Y_u Y_u^\dagger) + g_1^2) + \mu \text{Tr}(Y_e Y_e^\dagger) \tag{A.30}
\]

\[
\beta^{(2)}_\mu = \frac{1}{50} \mu \left(243g_1^4 + 90g_2^2g_2^2 + 375g_4^2 - 20 \left(-40g_3^2 + g_1^2 \right) \text{Tr}(Y_e Y_e^\dagger) + 60g_1^2 \text{Tr}(Y_e Y_e^\dagger) \\
+ 40g_1^2 \text{Tr}(Y_u Y_u^\dagger) + 800g_3^2 \text{Tr}(Y_u Y_u^\dagger) - 450 \text{Tr}(Y_d Y_d^\dagger Y_u Y_u^\dagger) - 300 \text{Tr}(Y_d Y_d^\dagger Y_u Y_u^\dagger) \\
- 150 \text{Tr}(Y_e Y_e^\dagger Y_e Y_e^\dagger) - 450 \text{Tr}(Y_u Y_u^\dagger Y_u Y_u^\dagger) \right) \tag{A.31}
\]

\[
\beta^{(1)}_\nu = -\frac{12}{5} g_1^2 \nu, \quad \beta^{(2)}_\nu = \frac{108}{5} g_1^4 \nu \tag{A.32}
\]

A.6 Trilinear Soft-Breaking Parameters

\[
\beta^{(1)}_{T_d} = +4Y_d Y_d^\dagger T_d + 2Y_d Y_u^\dagger T_u + 5T_d Y_d^\dagger Y_d + T_d Y_u^\dagger Y_u - \frac{7}{15} g_2^2 T_d - 3g_2^2 T_d - \frac{16}{3} g_3^2 T_d + 3T_d \text{Tr}(Y_d Y_d^\dagger) \\
+ T_d \text{Tr}(Y_e Y_e^\dagger) + Y_d \left(2T_d Y_e Y_e^\dagger + 6g_2^2 M_2 + 6T_d (Y_d^\dagger T_d) + \frac{14}{15} g_1^2 M_1 + \frac{32}{3} g_3^2 M_3 \right) \tag{A.33}
\]

\[
\beta^{(2)}_{T_d} = +\frac{6}{5} g_1^2 Y_d Y_d^\dagger T_d + 6g_2^2 Y_d Y_d^\dagger T_d + \frac{8}{5} g_1^2 M_1 Y_d Y_d^\dagger Y_u + \frac{8}{5} g_1^2 Y_d Y_u^\dagger T_u \\
+ \frac{6}{5} g_1^2 T_d Y_d^\dagger Y_d + 12g_2^2 T_d Y_d^\dagger Y_u + 45g_1^2 T_d Y_u^\dagger Y_u - 6Y_d Y_d^\dagger Y_d Y_d^\dagger T_d \\
- 8Y_d Y_d^\dagger T_d Y_d^\dagger Y_d - 2Y_d Y_u^\dagger Y_u^\dagger T_u - 4Y_d Y_d^\dagger Y_u^\dagger Y_u - 4Y_u Y_d^\dagger Y_u^\dagger Y_u - 4T_u Y_u^\dagger Y_u Y_u^\dagger Y_u \\
- 4Y_d Y_u^\dagger T_u Y_u^\dagger Y_u - 6T_d Y_d^\dagger Y_d Y_u^\dagger Y_u - 4T_d Y_u^\dagger Y_u Y_d^\dagger Y_d - 2T_d Y_u^\dagger Y_u Y_u^\dagger Y_u \\
+ \frac{1687}{450} g_1^2 T_d + g_1^2 g_2^2 T_d + \frac{15}{2} g_1^2 g_3^2 T_d + \frac{8}{5} g_1^2 g_3^2 T_d + g_1^2 g_3^2 T_d - \frac{16}{9} g_3^2 T_d \\
- 12g_2^2 T_d \text{Tr}(Y_d Y_d^\dagger) - 15T_d Y_d^\dagger Y_d \text{Tr}(Y_d Y_d^\dagger) - \frac{2}{5} g_1^2 T_d \text{Tr}(Y_d Y_d^\dagger) \\
+ 16g_3^2 T_d \text{Tr}(Y_d Y_d^\dagger) - 4Y_d Y_d^\dagger T_d \text{Tr}(Y_e Y_e^\dagger) - 5T_d Y_d^\dagger Y_d \text{Tr}(Y_e Y_e^\dagger) \\
+ \frac{6}{5} g_1^2 T_d \text{Tr}(Y_e Y_e^\dagger) - 6Y_d Y_u^\dagger T_u \text{Tr}(Y_u Y_u^\dagger) - 3T_d Y_u^\dagger Y_u \text{Tr}(Y_u Y_u^\dagger) \\
- \frac{2}{5} Y_d Y_d^\dagger T_d \left(15 \text{Tr}(Y_e Y_e^\dagger) + 30g_2^2 M_2 + 45T_d \text{Tr}(Y_d^\dagger T_d) + 4g_1^2 M_1 \right) - 6Y_d Y_u^\dagger Y_u \text{Tr}(Y_u^\dagger T_u) \\
- 9T_d \text{Tr}(Y_u Y_u^\dagger Y_u Y_u^\dagger) - 3T_d \text{Tr}(Y_u Y_u^\dagger Y_u Y_u^\dagger) - 3T_d \text{Tr}(Y_e Y_e^\dagger Y_u Y_u^\dagger) \\
+ g_2^2 \left(-\frac{3374}{225} g_1^4 M_1 - 2g_1^2 g_2^2 M_1 - \frac{16}{9} g_1^2 g_2^2 M_3 - \frac{16}{9} g_1^2 g_3^2 M_3 - \frac{16}{9} g_2^2 g_3^2 M_3 + \frac{64}{9} g_3^2 M_3 \right) \\
- 2g_2^2 M_2 - 30g_2^2 M_2 - 16g_2^2 g_2^2 M_2 + \frac{4}{5} \text{Tr}(Y_u Y_u^\dagger) \\
- \frac{12}{5} g_1^2 M_1 \text{Tr}(Y_e Y_e^\dagger) - 4g_1^2 \text{Tr}(Y_e Y_e^\dagger) + 32g_3^2 \text{Tr}(Y_d^\dagger T_d) + \frac{12}{5} g_1^2 \text{Tr}(Y_e Y_e^\dagger) \\
- 36 \text{Tr}(Y_d Y_d^\dagger T_d Y_d^\dagger) - 6T_d \text{Tr}(Y_d Y_d^\dagger T_d Y_d^\dagger) - 12T_d \text{Tr}(Y_e Y_e^\dagger T_d Y_d^\dagger) - 6T_d \text{Tr}(Y_d Y_d^\dagger T_d Y_d^\dagger) \tag{A.34}
\]

\[
\beta^{(1)}_{T_e} = +4Y_e Y_e^\dagger Y_e + 5T_e Y_e^\dagger Y_e - \frac{9}{5} g_1^2 T_e - 3g_2^2 T_e + 3T_e \text{Tr}(Y_e Y_e^\dagger) + T_e \text{Tr}(Y_e Y_e^\dagger)
\]
\[
\beta^{(2)}_{Te} = \frac{6}{5}g_1^2Y_uY_v^*T_e + \frac{6}{5}g_2^2Y_uY_v^*T_e - \frac{6}{5}g_1^2T_eY_v^*Y_e + 12g_2^2T_eY_v^*Y_e \\
- 6Y_eY_v^*Y_eY_e^*T_e - 8Y_eY_e^*Y_eY_e^*T_e - 6T_eY_v^*Y_eY_e^* + \frac{783}{50}g_1^4T_e + \frac{9}{5}g_1^2g_2^2T_e + \frac{15}{2}g_2^4T_e \\
- 12Y_eY_v^*T_eTr\left(Y_dY_u^*\right) - 15T_eY_v^*Y_eTr\left(Y_dY_u^*\right) - \frac{2}{5}g_1^2T_eTr\left(Y_dY_u^*\right) \\
+ 16g_1^2T_eTr\left(Y_dY_u^*\right) - 4Y_eY_v^*Y_eTr\left(Y_dY_u^*\right) - 5T_eY_v^*Y_eTr\left(Y_dY_u^*\right) \\
+ 6g_1^2T_eTr\left(Y_v^*Y_v\right) - 6Y_eY_v^*Y_e\left(2g_2^2M_2 + 3Tr\left(Y_dT_d\right) + Tr\left(Y_e^*T_e\right)\right) - 9T_eTr\left(Y_dY_u^*Y_dY_u^*\right) \\
- 37T_eTr\left(Y_v^*Y_vY_v^*\right) - 37T_eTr\left(Y_e^*Y_vY_v^*\right) \\
- \frac{2}{25}Y_e\left(783g_1^4M_1 + 45g_2^2g_2^2M_1 + 45g_1^2g_2^2M_2 + 375g_2^2M_2 - 10\left(-40g_2^3M_3 + g_1^3M_1\right)Tr\left(Y_dY_u^*\right) \\
+ 30g_1^3M_1Tr\left(Y_eY_v^*\right) + 10g_2^3Tr\left(Y_dT_d\right) - 400g_2^2Tr\left(Y_dT_d\right) - 30g_1^2Tr\left(Y_e^*T_e\right) \\
+ 450Tr\left(Y_dY_u^*T_dY_u^*\right) + 75Tr\left(Y_e^*T_eY_v^*\right) + 150Tr\left(Y_eY_v^*T_dY_u^*\right) + 75Tr\left(Y_y^*Y_dT_dY_u^*\right)\right)
\] (A.35)

\[
\beta^{(1)}_{Te} = 2Y_eY_v^*T_d + 4Y_uY_v^*T_d + T_uY_dY_d + 5T_uY_u^*Y_u - \frac{13}{15}g_1^2T_u - 3g_2^2T_u - \frac{16}{3}g_2^4T_u \\
+ 3T_uTr\left(Y_uY_u^*\right) + Y_u\left(6g_2^2M_2 + 6Tr\left(Y_uT_u\right) + \frac{26}{15}g_1^2M_1 + \frac{32}{3}g_3^2M_3\right)
\] (A.36)

\[
\beta^{(2)}_{Te} = \frac{4}{5}g_2^2Y_uY_v^*T_d - \frac{4}{5}g_2^2M_1Y_uY_v^*Y_u - 12g_2^2M_2Y_uY_v^*Y_u + \frac{6}{5}g_1^2Y_uY_v^*Y_u \\
+ 6g_2^2Y_uY_v^*T_u + \frac{2}{5}g_1^2T_uY_u^*Y_u + 12g_2^2T_uY_u^*Y_u - 4Y_uY_v^*Y_uY_u^*T_d \\
- 2Y_uY_u^*T_uY_u^*Y_u - 4Y_uY_u^*T_dY_u^*Y_u - 4T_uY_u^*Y_uY_u^*T_d - 6T_uY_u^*Y_uY_u^*Y_u + \frac{3211}{450}g_4^4T_u \\
+ \frac{9}{2}g_2^4T_u + \frac{16}{15}g_2^4T_u + \frac{136}{45}g_1^2g_3^2T_u + 8g_2^2g_2^2T_u - \frac{16}{9}g_3^2g_3^2T_u - 6Y_uY_u^*T_uTr\left(Y_dY_u^*\right) \\
- 3T_uY_u^*T_uTr\left(Y_uY_u^*\right) - 2Y_uY_u^*T_dTr\left(Y_uY_u^*\right) - T_uY_u^*Y_uTr\left(Y_uY_u^*\right) \\
- 12Y_uY_u^*T_uTr\left(Y_uY_u^*\right) - 15T_uY_u^*Y_uTr\left(Y_uY_u^*\right) + \frac{4}{5}g_1^2T_uTr\left(Y_uY_u^*\right) \\
+ 16g_1^2T_uTr\left(Y_uY_u^*\right) - \frac{2}{5}Y_uY_u^*Y_u\left(15Tr\left(Y_dT_d\right) + 2g_1^2M_1 + 5Tr\left(Y_e^*T_e\right)\right) \\
- 18Y_uY_u^*Y_uTr\left(Y_uY_u^*\right) - 37T_uTr\left(Y_uY_u^*Y_uY_u^*\right) - 9T_uTr\left(Y_uY_u^*Y_uY_u^*\right) \\
- \frac{2}{225}Y_u\left(3211g_1^4M_1 + 225g_1^2g_2^2M_1 + 680g_1^2g_3^2M_1 + 680g_2^2g_2^2M_3 + 1800g_2^2g_3^2M_3 - 800g_4^4M_3 \\
+ 225g_2^2g_2^2M_2 + 3375g_1^2g_3^2M_2 + 1800g_2^2g_3^2M_2 + 180\left(20g_2^3M_3 + g_1^2M_1\right)Tr\left(Y_uY_u^*\right) \\
- 180\left(20g_2^3 + g_1^2\right)Tr\left(Y_uY_u^*\right) + 675Tr\left(Y_uY_u^*T_uY_u^*\right) + 675Tr\left(Y_uY_u^*T_uY_u^*\right) \\
+ 4050Tr\left(Y_uY_u^*T_uY_u^*\right)\right)\right)
\] (A.37)

\[
\beta^{(2)}_{Te} = \frac{6}{5}g_3^2Y_uY_v^*T_e + \frac{6}{5}g_2^2Y_uY_v^*T_e - \frac{6}{5}g_1^2T_eY_v^*Y_e + 12g_2^2T_eY_v^*Y_e \\
- 6Y_eY_v^*Y_eY_e^*T_e - 8Y_eY_e^*Y_eY_e^*T_e - 6T_eY_v^*Y_eY_e^* + \frac{783}{50}g_1^4T_e + \frac{9}{5}g_1^2g_2^2T_e + \frac{15}{2}g_2^4T_e \\
- 12Y_eY_v^*T_eTr\left(Y_dY_u^*\right) - 15T_eY_v^*Y_eTr\left(Y_dY_u^*\right) - \frac{2}{5}g_1^2T_eTr\left(Y_dY_u^*\right) \\
+ 16g_1^2T_eTr\left(Y_dY_u^*\right) - 4Y_eY_v^*Y_eTr\left(Y_dY_u^*\right) - 5T_eY_v^*Y_eTr\left(Y_dY_u^*\right) \\
+ 6g_1^2T_eTr\left(Y_v^*Y_v\right) - 6Y_eY_v^*Y_e\left(2g_2^2M_2 + 3Tr\left(Y_dT_d\right) + Tr\left(Y_e^*T_e\right)\right) - 9T_eTr\left(Y_dY_u^*Y_dY_u^*\right) \\
- 37T_eTr\left(Y_v^*Y_vY_v^*\right) - 37T_eTr\left(Y_e^*Y_vY_v^*\right) \\
- \frac{2}{25}Y_e\left(783g_1^4M_1 + 45g_2^2g_2^2M_1 + 45g_1^2g_2^2M_2 + 375g_2^2M_2 - 10\left(-40g_2^3M_3 + g_1^3M_1\right)Tr\left(Y_dY_u^*\right) \\
+ 30g_1^3M_1Tr\left(Y_eY_v^*\right) + 10g_2^3Tr\left(Y_dT_d\right) - 400g_2^2Tr\left(Y_dT_d\right) - 30g_1^2Tr\left(Y_e^*T_e\right) \\
+ 450Tr\left(Y_dY_u^*T_dY_u^*\right) + 75Tr\left(Y_e^*T_eY_v^*\right) + 150Tr\left(Y_eY_v^*T_dY_u^*\right) + 75Tr\left(Y_y^*Y_dT_dY_u^*\right)\right)
\] (A.38)
A.7 Vacuum expectation values

\[\beta_{v_d}^{(1)} = \frac{1}{20} v_d \left(-20 \text{Tr} \left(Y_u Y_u^\dagger \right) + 3 \left(5g_2^2 + g_1^2 \right) \left(1 + \xi \right) - 60 \text{Tr} \left(Y_d Y_d^\dagger \right) \right) \]
(A.39)

\[\beta_{v_d}^{(2)} = \frac{1}{400} v_d \left(-486g_1^4 - 180g_1^2g_2^2 - 1200g_2^4 - 9g_1^4\xi - 90g_1^2g_2^2\xi + 875g_2^4\xi + 9g_1^4\xi^2 + 90g_1^2g_2^2\xi^2
- 225g_2^4\xi^2 - 40 \left(5 \left(32g_3^2 + 9g_2^2\xi \right) + g_1^2 \left(9\xi - 4 \right) \right) \text{Tr} \left(Y_d Y_d^\dagger \right)
- 120 \left(5g_2^4\xi + g_1^2 \left(4 + \xi \right) \right) \text{Tr} \left(Y_u Y_e^\dagger \right)
+ 3600 \text{Tr} \left(Y_d Y_d^\dagger Y_d Y_d^\dagger \right) + 1200 \text{Tr} \left(Y_d Y_u^\dagger Y_u Y_u^\dagger \right) + 1200 \text{Tr} \left(Y_u Y_e^\dagger Y_e Y_e^\dagger \right) \right) \]
(A.40)

\[\beta_{v_u}^{(1)} = \frac{3}{20} v_u \left(-20 \text{Tr} \left(Y_u Y_u^\dagger \right) + \left(5g_2^2 + g_1^2 \right) \left(1 + \xi \right) \right) \]
(A.41)

\[\beta_{v_u}^{(2)} = \frac{1}{400} v_u \left(-486g_1^4 - 180g_1^2g_2^2 - 1200g_2^4 - 9g_1^4\xi - 90g_1^2g_2^2\xi + 875g_2^4\xi + 9g_1^4\xi^2 + 90g_1^2g_2^2\xi^2
- 225g_2^4\xi^2 - 40 \left(5 \left(32g_3^2 + 9g_2^2\xi \right) + g_1^2 \left(9\xi + 8 \right) \right) \text{Tr} \left(Y_u Y_u^\dagger \right)
+ 1200 \text{Tr} \left(Y_d Y_u^\dagger Y_u Y_u^\dagger \right) + 3600 \text{Tr} \left(Y_u Y_u^\dagger Y_u Y_u^\dagger \right) \right) \]
(A.42)

Note that \(\xi \) is the gauge-fixing parameter, where we are using the \(R_\xi \) gauge.

A.8 Bilinear Soft-Breaking Parameters

\[\beta_{B_\mu}^{(1)} = + \frac{6}{5} g_1^2 M_1 \mu + 6g_2^2 M_2 \mu + B_{\mu} \left(-3g_2^2 + 3 \text{Tr} \left(Y_u Y_u^\dagger \right) + 3 \text{Tr} \left(Y_u Y_u^\dagger \right) - \frac{3}{5} g_1^2 + \text{Tr} \left(Y_u Y_e^\dagger \right) \right)
+ 6 \mu \text{Tr} \left(Y_d Y_d^\dagger T_d \right) + 2 \mu \text{Tr} \left(Y_u Y_e^\dagger T_e \right) + 6 \mu \text{Tr} \left(Y_u Y_u T_u \right) \]
(A.43)

\[\beta_{B_\nu}^{(2)} = + B_{\nu} \left(\frac{243}{50} g_1^4 + \frac{9}{5} g_1^2 g_2^2 + \frac{15}{2} g_2^4 - \frac{2}{5} \left(-40g_3^2 + g_1^2 \right) \text{Tr} \left(Y_d Y_d^\dagger \right) + \frac{6}{5} g_1^2 \text{Tr} \left(Y_u Y_u^\dagger \right) + \frac{4}{5} g_1^2 \text{Tr} \left(Y_u Y_u^\dagger \right)
+ 16g_1^2 \text{Tr} \left(Y_u Y_u^\dagger \right) + 9g_1^2 \text{Tr} \left(Y_u Y_u^\dagger \right) + 6 \text{Tr} \left(Y_u Y_u^\dagger Y_u Y_u^\dagger \right) - 3 \text{Tr} \left(Y_u Y_u^\dagger Y_u Y_e^\dagger \right) - 9 \text{Tr} \left(Y_u Y_u^\dagger Y_u Y_u^\dagger \right) \right)
- \frac{2}{25} \mu \left(243g_1^4 M_1 + 45g_1^2 g_2^2 M_2 + 45g_2^2 M_2 + 375g_2^4 M_2 - 10 \left(-40g_3^2 M_3 + g_1^2 M_1 \right) \text{Tr} \left(Y_d Y_d^\dagger \right)
+ 30g_1^2 M_1 \text{Tr} \left(Y_e Y_e^\dagger \right) + 20g_1^2 M_1 \text{Tr} \left(Y_u Y_u^\dagger \right) + 400g_3^2 M_3 \text{Tr} \left(Y_u Y_u^\dagger \right) + 10g_2^2 \text{Tr} \left(Y_d T_d \right)
- 400g_3^2 \text{Tr} \left(Y_d T_d \right) - 30g_2^2 \text{Tr} \left(Y_e T_e \right) - 20g_1^2 \text{Tr} \left(Y_u T_u \right) - 400g_3^2 \text{Tr} \left(Y_e T_u \right)
+ 450 \text{Tr} \left(Y_d Y_d^\dagger T_d Y_d^\dagger \right) + 150 \text{Tr} \left(Y_d Y_u^\dagger T_u Y_u^\dagger \right) + 150 \text{Tr} \left(Y_d Y_e^\dagger T_e Y_e^\dagger \right) + 150 \text{Tr} \left(Y_u Y_d^\dagger T_d Y_u^\dagger \right) \right) \]
(A.44)

\[\beta_{B_\nu}^{(1)} = \frac{12}{5} g_1^2 (2M_1 \nu - B_{\nu}) , \quad \beta_{B_\nu}^{(2)} = - \frac{108}{5} g_1^2 (4M_1 \nu - B_{\nu}) . \]
(A.45)
A.9 Soft-Breaking Scalar Masses

\[
\sigma_{1,1} = \sqrt{\frac{3}{5}} g_1 \left(-2 \text{Tr} \left(m_u^2 \right) - \text{Tr} \left(m_t^2 \right) - m_{H_d}^2 - m_{H_u}^2 + m_{H_d}^2 + m_{H_u}^2 + \text{Tr} \left(m_d^2 \right) + \text{Tr} \left(m_e^2 \right) + \text{Tr} \left(m_q^2 \right) \right)
\]

\[
\sigma_{2,1} = \frac{1}{10} g_1^2 \left(2 \text{Tr} \left(m_d^2 \right) + 3 \text{Tr} \left(m_q^2 \right) + 3m_{H_d}^2 + 3m_{H_u}^2 + 6 \text{Tr} \left(m_e^2 \right) + 6m_{F_+}^2 + 6m_{F_-} + 6m_{F_+}^2 \right)
+ 8 \text{Tr} \left(m_u^2 \right) + \text{Tr} \left(m_q^2 \right)
\]

\[
\sigma_{3,1} = \frac{1}{20 \sqrt{3}} g_1 \left(-9g_3^2 m_{H_d}^2 - 45g_2^2 m_{H_d}^2 + 9g_1^2 m_{H_u}^2 + 45g_2^2 m_{H_u}^2 - 36g_1^2 m_{F_-} - 36g_1^2 m_{F_+} \right)
+ 4 \left(20g_3^2 + g_1^2 \right) \text{Tr} \left(m_u^2 \right) + 36g_2^2 \text{Tr} \left(m_q^2 \right) - 9g_3^2 \text{Tr} \left(m_t^2 \right) - 45g_2^2 \text{Tr} \left(m_t^2 \right) + g_1^2 \text{Tr} \left(m_q^2 \right)
+ 45g_2^2 \text{Tr} \left(m_d^2 \right) + 80g_3^2 \text{Tr} \left(m_u^2 \right) - 32g_2^2 \text{Tr} \left(m_u^2 \right) - 160g_3^2 \text{Tr} \left(m_u^2 \right) + 90m_{H_u}^2 \text{Tr} \left(Y_d Y_d \right)
+ 30m_{H_d}^2 \text{Tr} \left(Y_e Y_e \right) - 90m_{H_u}^2 \text{Tr} \left(Y_u Y_u \right) - 60 \text{Tr} \left(Y_2 Y_d m_{F_+}^2 \right) - 30 \text{Tr} \left(Y_d m_{F_+}^2 Y_d \right)
- 60 \text{Tr} \left(Y_e Y_e m_{F_+}^2 \right) + 30 \text{Tr} \left(Y_e m_{F_+} Y_e \right) + 120 \text{Tr} \left(Y_u Y_u m_{F_+}^2 \right) - 30 \text{Tr} \left(Y_u m_{F_+} Y_u \right)
\]

\[
\sigma_{2,2} = \frac{1}{2} \left(3 \text{Tr} \left(m_q^2 \right) + m_{H_d}^2 + m_{H_u}^2 + \text{Tr} \left(m_t^2 \right) \right)
\]

\[
\sigma_{2,3} = \frac{1}{2} \left(2 \text{Tr} \left(m_u^2 \right) + \text{Tr} \left(m_d^2 \right) + \text{Tr} \left(m_q^2 \right) \right)
\]

\[
\beta_{m_q^{(1)}} = -\frac{2}{15} g_2^2 1 |M_1|^2 - \frac{32}{3} g_3^2 1 |M_3|^2 - 6g_2^2 1 |M_2|^2 + 2m_{H_d}^2 Y_d^\dagger Y_d + 2m_{H_u}^2 Y_u^\dagger Y_u + 2T_d^\dagger T_d
+ 2T_u^\dagger T_u + m_q^2 Y_d^\dagger Y_d + m_q^2 Y_u^\dagger Y_u + 2Y_d^\dagger T_d m_q^2 Y_d + Y_d^\dagger Y_d m_q^2 Y_d + 2Y_u^\dagger m_q^2 Y_u
+ Y_u^\dagger Y_u m_q^2 + \frac{1}{15} g_1 \sigma_{1,1}
\]

\[
\beta_{m_q^{(2)}} = +\frac{2}{5} g_1^2 g_2^2 1 |M_2|^2 + 33g_3^2 1 |M_2|^2 + 32g_2^2 g_3^2 1 |M_2|^2
+ \frac{7}{45} g_3^2 \left(15 \left(3g_2^2 \left(2M_3 + M_2 \right) - 8g_3^2 M_3 \right) + g_1^2 \left(2M_3 + M_1 \right) \right) 1 M_3^*
+ \frac{1}{5} g_3^2 g_2^2 M_1 M_3^* + 16g_2^2 g_3 M_3 1 M_2^* + \frac{4}{5} g_1^2 m_{H_d}^2 Y_d^\dagger Y_d + \frac{8}{5} g_1^2 m_{H_u}^2 Y_u^\dagger Y_u
+ \frac{1}{45} g_3^2 M_3^* \left(141g_4^2 M_1 + 16g_3^2 \left(2M_1 + M_3 \right) + 9g_2^2 \left(2M_1 + M_2 \right) \right) 1
+ 36 \left(2M_1 Y_d^\dagger Y_d - 2Y_u^\dagger T_u + 4M_1 Y_u^\dagger Y_u - Y_u^\dagger T_u \right)
+ \frac{4}{5} g_1^2 M_1 T_d^\dagger Y_d + \frac{2}{5} g_1^2 T_d^\dagger T_d - \frac{8}{5} g_1^2 M_1 T_d^\dagger Y_u + \frac{8}{5} g_1^2 T_d^\dagger T_u
+ \frac{2}{5} g_1^2 m_{H_d}^2 Y_d^\dagger Y_d + \frac{4}{5} g_1^2 m_{H_d}^2 Y_u^\dagger Y_u + \frac{4}{5} g_1^2 Y_d^\dagger m_{H_d}^2 Y_d + \frac{2}{5} g_1^2 Y_d^\dagger Y_d m_q^2
+ \frac{8}{5} g_1^2 Y_u^\dagger m_{H_u}^2 Y_u + \frac{4}{5} g_1^2 Y_u^\dagger Y_u m_q^2 - 8m_{H_d}^2 Y_d^\dagger Y_d Y_d^\dagger Y_d - 4Y_d^\dagger T_d^\dagger Y_d
- 4Y_u^\dagger T_d^\dagger Y_d - 8m_{H_u}^2 Y_u^\dagger Y_u Y_u^\dagger Y_u - 4Y_u^\dagger Y_u T_d^\dagger T_u - 4Y_u^\dagger T_u T_d^\dagger Y_u
\]
\[
\begin{align*}
\beta_{m_1}^{(1)} &= \frac{6}{5} g_1^2 |M|^2 - 6g_2^2 |M_2|^2 + 2m_H Y_e Y_e + 2T_{eY_e} + m_f Y_e + 2\xi_{eY_e}^2 \\
&+ Y_e Y_e m_f^2 - \sqrt{\frac{3}{5}} g_1 M_{11} \\
\beta_{m_1}^{(2)} &= + \frac{3}{5} g_2^2 \left(3g_1^2 \left(2M_2 + M_1 \right) + 55g_2^2 M_2 \right) M_e^2 + \frac{12}{5} g_1^2 m_{Hd}^2 Y_e Y_e \\
&+ \frac{3}{25} \frac{1}{g_1^2 M_1 \left(20 M_1^2 + 3 \left(5g_2^2 (1 + 40 M_1 M_e) \right) 1 + 40 M_1 M_e \right) - \frac{12}{5} g_1^2 M_1 T_1 Y_e \\
&+ \frac{12}{5} g_1^2 T_e Y_e + \frac{6}{5} g_2^2 m_{Y_e}^2 + \frac{12}{5} g_1^2 m_{Y_e}^2 + \frac{6}{5} g_2^2 Y_e m_f^2 \\
&- \frac{8}{5} m_{Hd}^2 Y_e Y_e - 4 Y_e Y_e T_e^e - 4 Y_e^e T_e^e - 4 Y_e^e T_e^e - 4 T_{eY_e}^e \\
&- 4 T_{eY_e}^e Y_e - 2 m_{Y_e}^2 Y_e Y_e - 4 Y_e^e m_{Y_e}^2 Y_e - 4 Y_e^e m_{Y_e}^2 Y_e \\
&- 4 Y_e^e Y_e Y_e m_f^2 - 2 Y_e^e Y_e Y_e m_f^2 + 6g_1^2 |M_{22}|^2 + 6g_2^2 |M_{22}|^2 - 4 \sqrt{\frac{3}{5}} g_1 \sigma_{2,1} - 4 \sqrt{\frac{3}{5}} g_1 \sigma_{3,1} \\
&- 12 m_{Hd}^2 Y_e Y_e T_e^e - 6 T_{eY_e}^e Y_e^e T_e^e - 3 m_{Y_e}^2 Y_e T_e^e Y_e^e \\
&- 6 Y_e^e Y_e m_f^2 Y_e T_e^e - 3 Y_e^e Y_e m_f^2 Y_e T_e^e - 4 m_{Hd} Y_e Y_e T_e^e Y_e^e \\
&+ 2 T_e T_e Y_e^e Y_e^e Y_e - 2 Y_e^e m_{Y_e}^2 Y_e T_e^e Y_e^e \\
&- Y_e^e Y_e m_f^2 Y_e T_e^e Y_e^e - 6 T_e Y_e T_e^e Y_e^e T_e^e - 2 T_e Y_e T_e^e Y_e^e T_e^e \\
&- 6 Y_e^e Y_e T_e^e Y_e^e T_e^e Y_e - 6 Y_e^e Y_e T_e^e Y_e^e Y_e - 6 m_{Y_e}^2 Y_e Y_e T_e^e Y_e^e \\
&+ 32 \frac{1}{3} g_1^2 |\sigma_{2,2}| + 2 \frac{1}{15} g_1^2 |\sigma_{2,3}| + 4 \frac{1}{\sqrt{15}} g_1 \sigma_{3,1} \\
\end{align*}
\]
\[
\beta^{(1)}_{\text{m}_{H_d}} = - \frac{6}{5} g_1^2 |M_1|^2 - 6 g_2^2 |M_2|^2 - \sqrt{\frac{3}{5}} g_1 \sigma_{1,1} + 6 m^2_{H_d} \text{Tr}(Y_d Y_d^\dagger) + 2 m^2_{H_d} \text{Tr}(Y_e Y_e^\dagger) + 6 \text{Tr}(T_{d}^u T_{d}^\dagger) \\
+ 2 \text{Tr}(T_{e}^u T_{e}^\dagger) + 6 \text{Tr}(m^2_{d} Y_d Y_d^\dagger) + 2 \text{Tr}(m^2_{e} Y_e Y_e^\dagger) + 2 \text{Tr}(m^2_{Y} Y Y^\dagger) + 6 \text{Tr}(m^2_{Y_d} Y_d Y_d^\dagger) \\
(A.54)
\]

\[
\beta^{(2)}_{\text{m}_{H_d}} = \frac{1}{25} \left(15 g_2^2 \left(2 M_2 + M_1 \right) + 55 g_2^2 M_2 \right) M_2^2 \\
+ g_1^2 M_1^2 \left(729 g_2^2 M_1 + 90 g_2^2 M_1 + 45 g_2^2 M_2 - 40 M_1 \text{Tr}(Y_d Y_d^\dagger) + 120 M_1 \text{Tr}(Y_e Y_e^\dagger) + 20 \text{Tr}(Y_d^\dagger T_d) \\
- 60 \text{Tr}(Y_e^\dagger T_e) \right) \\
+ 10 \left(15 g_2^2 \sigma_{1,2} + 3 g_2^2 \sigma_{2,1} + 2 \sqrt{\frac{5}{3}} g_1 \sigma_{3,1} + \left(160 g_2^2 |M_3|^2 - 2 g_2^2 m^2_{H_d} + 80 g_2^2 m^2_{H_d} \right) \text{Tr}(Y_d Y_d^\dagger) \right) \\
+ 6 g_2^2 m^2_{H_d} \text{Tr}(Y_e Y_e^\dagger) - 80 g_2^2 M_3^2 \text{Tr}(Y_d T_d^\dagger) + 2 g_1^2 M_1 \text{Tr}(T_{d}^u T_{d}^\dagger) - 80 g_2^2 M_3 \text{Tr}(T_{d}^\dagger Y_d) \\
- 2 g_1^2 \text{Tr}(T_{d}^u T_{d}^\dagger) + 80 g_2^2 \text{Tr}(T_{d}^\dagger Y_d) - 6 g_1^2 M_1 \text{Tr}(T_{e}^u T_{e}^\dagger) + 6 g_2^2 T_{d}^\dagger Y_d \\
- 2 \text{Tr}(m^2_{d} Y_d Y_d^\dagger) + 80 g_2^2 \text{Tr}(m^2_{d} Y_d Y_d^\dagger) + 60 g_1^2 \text{Tr}(m^2_{e} Y_e Y_e^\dagger) + 6 g_1^2 \text{Tr}(m^2_{Y} Y Y^\dagger) \\
- 2 g_1^2 \text{Tr}(m^2_{d} Y_d Y_d^\dagger) + 80 g_2^2 \text{Tr}(m^2_{d} Y_d Y_d^\dagger) - 90 m^2_{H_d} \text{Tr}(Y_d Y_d^\dagger Y_d Y_d^\dagger) - 90 \text{Tr}(Y_d Y_d^\dagger T_d T_d^\dagger) \\
- 15 m^2_{H_d} \text{Tr}(Y_d Y_d^\dagger Y_d Y_d^\dagger) - 15 m^2_{H_d} \text{Tr}(Y_d Y_d^\dagger Y_d Y_d^\dagger) - 15 \text{Tr}(Y_d Y_d^\dagger T_d T_d^\dagger) \\
- 90 \text{Tr}(Y_d T_d^\dagger T_d Y_d^\dagger) - 15 \text{Tr}(Y_d T_d^\dagger T_d Y_d^\dagger) - 30 m^2_{H_d} \text{Tr}(Y_e Y_e^\dagger Y_e Y_e^\dagger) - 30 \text{Tr}(Y_e Y_e^\dagger T_e T_e^\dagger) \\
- 30 \text{Tr}(Y_e T_e^\dagger T_e Y_e^\dagger) - 15 \text{Tr}(Y_e Y_e^\dagger T_e T_e^\dagger) - 15 \text{Tr}(Y_e Y_e^\dagger T_e T_e^\dagger) - 90 \text{Tr}(m^2_{Y_d} Y_d Y_d Y_d^\dagger) \\
- 15 \text{Tr}(m^2_{Y_d} Y_d Y_d Y_d^\dagger) - 30 \text{Tr}(m^2_{Y_d} Y_d Y_d Y_d^\dagger) - 30 \text{Tr}(m^2_{Y_d} Y_d Y_d Y_d^\dagger) - 90 \text{Tr}(m^2_{Y_d} Y_d Y_d Y_d^\dagger) \\
- 15 \text{Tr}(m^2_{Y_d} Y_d Y_d Y_d^\dagger) - 15 \text{Tr}(m^2_{Y_d} Y_d Y_d Y_d^\dagger) - 15 \text{Tr}(m^2_{Y_d} Y_d Y_d Y_d^\dagger) \\
(A.55)
\]

\[
\beta^{(1)}_{\text{m}_{H_u}} = - \frac{6}{5} g_1^2 |M_1|^2 - 6 g_2^2 |M_2|^2 + \sqrt{\frac{3}{5}} g_1 \sigma_{1,1} + 6 m^2_{H_u} \text{Tr}(Y_u Y_u^\dagger) + 6 \text{Tr}(T_{u}^u T_{u}^\dagger) + 6 \text{Tr}(m^2_{Y_u} Y_u^\dagger Y_u) \\
(A.56)
\]

\[
\beta^{(2)}_{\text{m}_{H_u}} = \frac{3}{5} g_2^2 \left(3 g_1^2 \left(2 M_2 + M_1 \right) + 55 g_2^2 M_2 \right) M_2^2 + 6 g_2^2 \sigma_{2,1} + \frac{6}{5} g_1^2 \sigma_{2,1} + 4 \sqrt{\frac{3}{5}} g_1 \sigma_{3,1} \\
+ 8 g_1^2 m^2_{H_u} \text{Tr}(Y_u Y_u^\dagger) + 32 g_2^3 m^2_{H_u} \text{Tr}(Y_u Y_u^\dagger) + 64 g_2^2 |M_3|^2 \text{Tr}(Y_u Y_u^\dagger) \\
+ \frac{1}{25} g_1^2 \text{Tr}(Y_u Y_u^\dagger) - 40 \text{Tr}(Y_u Y_u^\dagger T_u) + 45 g_2^2 M_2 + 729 g_2^2 M_1 + 80 M_1 \text{Tr}(Y_u Y_u^\dagger) + 90 g_2^2 M_1) \\
- 32 g_2^3 M_3 \text{Tr}(Y_u Y_u^\dagger T_u) - 8 g_1^2 M_1 \text{Tr}(T_{u}^u Y_u^\dagger T_{u}^\dagger) - 32 g_2^3 M_3 \text{Tr}(T_{u}^u Y_u^\dagger T_{u}^\dagger) + 8 g_1^2 \text{Tr}(T_{u}^u T_{u}^\dagger) \\
+ 32 g_2^3 \text{Tr}(T_{u}^u T_{u}^\dagger) + 8 g_1^2 \text{Tr}(m^2_{Y_u} Y_u^\dagger Y_u) + 32 g_3^2 \text{Tr}(m^2_{Y_u} Y_u^\dagger Y_u) + 8 g_1^2 \text{Tr}(m^2_{Y_u} Y_u^\dagger Y_u) \\
(A.57)
\]
\[\beta^{(1)}_{m_d^2} = \frac{-8}{15} g_1^2 |M_1|^2 - \frac{32}{3} g_2^2 |M_3|^2 + 4 m_{H_d}^2 y_d Y_d^\dagger + 4 T_d Y_d^\dagger + 2 m_{H_d}^2 y_d Y_d^\dagger + 4 m_{y_d}^2 Y_d^\dagger + 2 y_d y_d m_d^2 + 2 - \frac{1}{\sqrt{15}} g_1^2 1 \sigma_{1,1} \]
(A.58)

\[\beta^{(2)}_{m_d^2} = \frac{64}{45} g_2^3 \left(-30 g_1^2 M_3 + g_1^2 \left(2 M_3 + M_1 \right) \right) M_3^2 + \frac{4}{5} g_1^2 m_{H_d}^2 y_d Y_d^\dagger + 12 g_2^2 m_{H_d}^2 y_d Y_d^\dagger + 24 g_2^2 |M_3|^2 y_d Y_d^\dagger - \frac{4}{5} g_1^2 M_3 T_d^\dagger - 12 g_2^2 M_3 y_d T_d^\dagger + \frac{4}{225} g_1^2 g_2^2 M_3^2 \left(2 \left(357 g_1^2 M_1 + 40 g_1^2 \left(2 M_3 + M_1 \right) \right) - 45 T_d Y_d^\dagger + 90 M_1 y_d Y_d^\dagger \right) - 12 g_2^2 M_3^2 T_d Y_d^\dagger + \frac{4}{5} g_1^2 T_d Y_d^\dagger + 12 g_2^2 T_d Y_d^\dagger + \frac{2}{5} g_1^2 m_d^2 y_d Y_d^\dagger + 6 g_2^2 m_d^2 y_d Y_d^\dagger + \frac{4}{5} g_1^2 y_d m_d^2 y_d^\dagger + 12 g_2^2 y_d m_d^2 y_d^\dagger + \frac{2}{5} g_1^2 y_d Y_d^\dagger m_d^2 + 6 g_2^2 y_d Y_d^\dagger m_d^2 - 8 m_{H_d}^2 y_d Y_d^\dagger y_d Y_d^\dagger - 4 y_d Y_d^\dagger T_d^\dagger - 4 m_{H_d}^2 y_d Y_d^\dagger y_d Y_d^\dagger - 4 y_d T_d^\dagger T_d^\dagger Y_d^\dagger - 4 y_d T_d^\dagger T_d^\dagger Y_d^\dagger - 4 T_d Y_d^\dagger Y_d^\dagger + 4 y_d Y_d^\dagger T_d^\dagger Y_d^\dagger - 4 T_d Y_d^\dagger Y_d^\dagger - 4 T_d T_d^\dagger Y_d^\dagger - 2 m_{Y_d}^2 Y_d^\dagger Y_d^\dagger - 2 m_{y_d}^2 y_d Y_d^\dagger y_d Y_d^\dagger - 4 y_d m_{y_d}^2 Y_d^\dagger y_d Y_d^\dagger - 4 Y_d^\dagger m_d^2 y_d Y_d^\dagger - 4 Y_d^\dagger m_d^2 y_d Y_d^\dagger - 2 y_d m_d^2 y_d Y_d^\dagger m_d^2 - 2 y_d m_d^2 y_d Y_d^\dagger m_d^2 - 4 Y_d^\dagger y_d m_d^2 y_d Y_d^\dagger - 2 Y_d^\dagger y_d m_d^2 y_d Y_d^\dagger - 2 Y_d^\dagger y_d m_d^2 y_d Y_d^\dagger - \frac{32}{3} g_1^2 1 \sigma_{2,3} + \frac{8}{15} g_1^2 1 \sigma_{2,1} + \frac{8}{15} g_1^2 1 \sigma_{3,1} - 24 m_{H_d}^2 y_d Y_d^\dagger Tr \left(Y_d Y_d^\dagger \right) - 12 T_d T_d^\dagger Tr \left(Y_d Y_d^\dagger \right) - 6 m_{H_d}^2 y_d Y_d^\dagger Tr \left(Y_d Y_d^\dagger \right) - 12 y_d m_{y_d}^2 Y_d^\dagger Tr \left(Y_d Y_d^\dagger \right) - 8 m_{H_d}^2 y_d Y_d^\dagger Tr \left(Y_d Y_d^\dagger \right) - 4 T_d T_d^\dagger Tr \left(Y_e e_e^\dagger \right) - 2 m_{Y_d}^2 Y_d^\dagger Tr \left(Y_e e_e^\dagger \right) - 4 y_d m_{y_d}^2 Y_d^\dagger Tr \left(Y_e e_e^\dagger \right) - 2 Y_d^\dagger m_d^2 y_d Tr \left(Y_e e_e^\dagger \right) - 12 y_d T_d^\dagger Tr \left(Y_e^\dagger T_d \right) - 4 y_d T_d^\dagger Tr \left(Y_e^\dagger T_d \right) - 12 T_d Y_d^\dagger Tr \left(T_d^\dagger T_d^\dagger \right) - 12 y_d Y_d^\dagger Tr \left(T_d^\dagger T_d^\dagger \right) - 4 y_d Y_d^\dagger Tr \left(T_d^\dagger T_d^\dagger \right) - 12 y_d Y_d^\dagger Tr \left(m_{Y_d}^2 Y_d^\dagger \right) - 4 y_d Y_d^\dagger Tr \left(m_{Y_d}^2 Y_d^\dagger \right) - 12 y_d Y_d^\dagger Tr \left(m_{Y_d}^2 Y_d^\dagger \right) \]
\]
(A.60)

\[\beta^{(1)}_{m_u^2} = \frac{-32}{15} g_1^2 |M_1|^2 - \frac{32}{3} g_1^2 |M_3|^2 + 4 m_{H_u}^2 y_u Y_u^\dagger + 4 T_u T_u^\dagger + 2 m_{y_u}^2 Y_u^\dagger + 4 y_u m_{y_u}^2 Y_u^\dagger \]
\[\beta^{(2)}_{m^2_u} = \frac{128}{45} g_1^2 \left(\frac{15}{2} g_{2\mu}^2 M^2_3 - 2 g_1^2 \left(2 M_3 + M_1 \right) \right) M^*_u - \frac{4}{5} g_1^2 \left(2 m^2_{H_u} Y_u Y^*_u + 12 g_{2\mu}^2 m^2_{H_u} Y_u Y^*_u \right) \\
+ 24 g_2^2 M^2_3 Y_u Y^*_u + \frac{4}{5} g_1^2 Y_u T^*_u - 12 g_{2\mu}^2 M^2_2 Y_u T^*_u - 12 g_{2\mu}^2 T^*_u T_{u}\] \\
+ \frac{4}{45} g_1^2 M^*_1 \left(75 g_{2\mu}^2 M^2_1 + 8 g_1^2 \left(2 M_1 + M_3 \right) \right) 1 + 9 \left(-2 M_1 Y_u Y^*_u + T_u Y^*_u \right) \right) - \frac{4}{5} g_1^2 T^*_u T_{u}\] \\
+ 12 g_{2\mu}^2 T^*_u T_{u} - \frac{2}{5} g_1^2 Y_u Y^*_u + 6 g_2^2 Y_u Y^*_u - \frac{4}{5} g_1^2 Y_u m^2_{H_u} Y_u Y^*_u \\
+ 12 g_{2\mu}^2 Y_u m^2_{H_u} Y^*_u - \frac{2}{5} g_1^2 Y_u Y^*_u m^2_{H_u} + 6 g_2^2 Y_u Y^*_u Y_u Y^*_u - 6 m^2_{H_u} Y_u Y^*_u Y^*_u - 6 g_{2\mu}^2 Y_u Y^*_u Y^*_u \\
- 4 m_{H_u}^2 Y_u Y^*_u Y^*_u - 4 Y_u Y^*_u Y^*_u Y_u Y^*_u - 8 m_{H_u}^2 Y_u Y^*_u Y^*_u Y^*_u - 6 Y_u Y^*_u Y^*_u Y_u Y^*_u \\
- 4 Y_u Y^*_u Y^*_u Y^*_u Y^*_u - 4 Y_u Y^*_u Y^*_u Y^*_u Y^*_u - 4 m_{H_u}^2 Y_u Y^*_u Y^*_u Y^*_u - 2 m_{H_u}^2 Y_u Y^*_u Y^*_u Y^*_u \\
- 2 Y_u Y^*_u Y^*_u Y^*_u Y^*_u m^2_{H_u} + \frac{32}{3} g_1^2 \left(\sigma_{2,3} + \frac{32}{15} g_1^2 \sigma_{2,1,1} - \frac{1}{15} g_1^2 \sigma_{3,1} - 24 m_{H_u}^2 Y_u Y^*_u \right) (\text{A.62}) \\
\beta^{(1)}_{m^2_u} = \sum \frac{2}{5} g_1^2 \left[M^2_1 Y_u X^*_u + 2 \left(m_{H_u}^2 Y_u X^*_u + 2 T^*_u T^*_u + 2 m_{H_u}^2 Y_u X^*_u + m_{H_u}^2 Y_u X^*_u \right) + Y_u X^*_u \right] + 2 \sqrt{3} g_1^2 \left(\sigma_{3,1} + \sqrt{\frac{15}{3}} \sigma_{3,1} \right) (\text{A.63}) \\
\beta^{(2)}_{m^2_e} = \frac{2}{5} \left[\left(-6 m_{H_u}^2 m^2_{H_u} Y_u Y^*_u + 30 g_{2\mu}^2 m^2_{H_u} Y_u Y^*_u + 60 g_2^2 m^2_{M^2_3} Y_u Y^*_u + 6 g_{2\mu}^2 M^2_2 Y_u Y^*_u \right) \\
- 30 g_{2\mu}^2 M^2_3 Y^*_u Y^*_u - 30 g_{2\mu}^2 M^2_2 Y^*_u Y^*_u + 6 g_{2\mu}^2 M^2_1 Y^*_u Y^*_u - 2 m_{H_u}^2 Y^*_u Y^*_u + 54 g_{2\mu}^2 M^2_1 + T^*_u Y^*_u \right] \\
- 6 g_{2\mu}^2 T^*_u Y^*_u + 30 g_{2\mu}^2 T^*_u Y^*_u - 3 g_1^2 m^2_{H_u} Y^*_u Y^*_u + 15 g_{2\mu}^2 m^2_{H_u} Y^*_u Y^*_u \\
- 6 m_{H_u}^2 Y^*_u Y^*_u Y^*_u + 30 g_{2\mu}^2 Y^*_u Y^*_u Y^*_u - 2 m_{H_u}^2 Y^*_u Y^*_u Y^*_u + 15 g_{2\mu}^2 Y^*_u Y^*_u Y^*_u \\
- 20 m^2_{H_u} Y^*_u Y^*_u Y^*_u Y^*_u + 10 Y^*_u Y^*_u Y^*_u Y^*_u - 10 Y^*_u Y^*_u Y^*_u Y^*_u - 10 T^*_u Y^*_u Y^*_u Y^*_u \\
- 10 Y^*_u Y^*_u Y^*_u Y^*_u m^2_{H_u} + 5 Y^*_u Y^*_u Y^*_u Y^*_u m^2_{H_u} + 4 g_1^2 \left(\sigma_{2,1,1} + \sqrt{15} \sigma_{3,1} \right) \\
- 60 m_{H_u}^2 Y^*_u Y^*_u X^*_u (Y^*_u Y^*_u + 30 T^*_u T^*_u Y^*_u Y^*_u - 15 m^2_{H_u} Y^*_u Y^*_u Y^*_u \\
- 30 Y^*_u m^2_{H_u} Y^*_u Y^*_u - 15 Y^*_u m^2_{H_u} Y^*_u Y^*_u Y^*_u - 20 m^2_{H_u} Y^*_u Y^*_u Y^*_u - 10 T^*_u Y^*_u Y^*_u Y^*_u \\
- 10 T^*_u Y^*_u Y^*_u Y^*_u Y^*_u + 5 m^2_{H_u} Y^*_u Y^*_u Y^*_u Y^*_u - 10 Y^*_u m^2_{H_u} Y^*_u Y^*_u Y^*_u \\
+ 10 T^*_u Y^*_u Y^*_u Y^*_u Y^*_u Y^*_u Y^*_u} + 2 \sqrt{3} g_1^2 \left(\sigma_{3,1} + \sqrt{\frac{15}{3}} \sigma_{3,1} \right) (\text{A.63})
In this appendix we supply the one-loop beta functions used in the main paper for the five dimensional model 1 and model 2, including the five dimensional Kaluza-Klein states and extra fields. We define the one-loop beta function for the gauge couplings if $t > \ln(1/R)/\ln(10)$ are given by

$$16\pi^2 \frac{dg_i(t)}{dt} = \beta_{MSSM}^i g_i^3(t) + \beta_{5D}^i g_i^3(t)(S(t) - 1),$$

where $i = 1, 2, 3$ and $S(t) = R10^t$, the power law contribution. For the 4DSSM + F^{\pm}, $b^i = (39/5, 1, -3)$ and for five dimensions $b_{5D}^i = (18/5, -2, -6) + 4\eta$, where η is the number of fermion generation in the bulk. The fine structure constants may be defined from $\alpha_i = g_i^2/4\pi$.

B.2 Yukawa couplings

The beta functions for the Yukawa couplings may be related to the matrices of anomalous dimensions

$$\beta^{ij}_{Y} = \gamma^{i}_{nj} Y^{nj} + \gamma^{i}_{nk} Y^{nk} + \gamma^{i}_{n} Y^{ijn}.$$ (B.3)
B.2.1 Anomalous dimensions for model 1

\[\gamma_{\tilde{H}_u} = 3 \text{Tr} \left(Y_u Y_u^\dagger \right) - \left(\frac{3}{10} g_1^2 + \frac{3}{2} g_2^2 \right) S(t) \] (B.4)

\[\gamma_{\tilde{H}_d} = 3 \text{Tr} \left(Y_d Y_d^\dagger \right) + \text{Tr} \left(Y_e Y_e^\dagger \right) - \left(\frac{3}{10} g_1^2 + \frac{3}{2} g_2^2 \right) S(t) \] (B.5)

\[\gamma_{\tilde{F}_\pm} = Y_F Y_F^\dagger - \frac{12}{10} g_1^2 S(t) \] (B.6)

\[\gamma_\ell = \left(2 \left(Y_u Y_d^\dagger + Y_d Y_u^\dagger \right) - \left(\frac{1}{15} g_1^2 + \frac{4}{5} g_2^2 + \frac{16}{3} g_3^2 \right) \right) S(t) \] (B.7)

\[\gamma_\tau = \left(4 Y_u Y_u^\dagger - \left(\frac{16}{15} g_1^2 + \frac{16}{3} g_3^2 \right) \right) S(t) \] (B.8)

\[\gamma_\lambda = \left(4 Y_d Y_d^\dagger - \left(\frac{4}{15} g_1^2 + \frac{16}{3} g_3^2 \right) \right) S(t) \] (B.9)

\[\gamma_\mu = \left(2 Y_e Y_e^\dagger - \left(\frac{3}{5} g_1^2 + \frac{3}{2} g_2^2 \right) \right) S(t) \] (B.10)

\[\gamma_\gamma = \left(4 Y_e Y_e^\dagger - \frac{12}{5} g_1^2 \right) S(t). \] (B.11)

B.2.2 Anomalous dimensions for model 2

\[\gamma_{\tilde{H}_u} = 3 \text{Tr} \left(Y_u Y_u^\dagger \right) \pi S(t)^2 - \left(\frac{3}{10} g_1^2 + \frac{3}{2} g_2^2 \right) S(t) \] (B.12)

\[\gamma_{\tilde{H}_d} = \left(3 \text{Tr} \left(Y_d Y_d^\dagger \right) + \text{Tr} \left(Y_e Y_e^\dagger \right) \right) \pi S(t)^2 - \left(\frac{3}{10} g_1^2 + \frac{3}{2} g_2^2 \right) S(t) \] (B.13)

\[\gamma_{\tilde{F}_\pm} = Y_F Y_F^\dagger \pi S(t)^2 - \frac{12}{10} g_1^2 S(t) \] (B.14)

\[\gamma_\ell^3 = \left(Y_l Y_l^\dagger + Y_b Y_b^\dagger \right) \pi S(t)^2 - \left(\frac{1}{30} g_1^2 + \frac{3}{2} g_2^2 + \frac{8}{3} g_3^2 \right) S(t) \] (B.15)

\[\gamma_{\ell_3} = 2 Y_l Y_l^\dagger \pi S(t)^2 - \left(\frac{8}{15} g_1^2 + \frac{8}{3} g_3^2 \right) S(t) \] (B.16)

\[\gamma_{\ell_3} = 2 Y_b Y_b^\dagger \pi S(t)^2 - \left(\frac{2}{15} g_1^2 + \frac{8}{3} g_3^2 \right) S(t) \] (B.17)

\[\gamma_{\ell_3} = Y_e Y_e^\dagger \pi S(t)^2 - \left(\frac{3}{10} g_1^2 + \frac{3}{2} g_2^2 \right) S(t) \] (B.18)

\[\gamma_{\ell_3} = 2 Y_e Y_e^\dagger \pi S(t)^2 - \frac{6}{5} g_1^2 S(t). \] (B.19)

B.2.3 Yukawa coupling RGEs for model 1

The five dimensional contributions for model 1 are given by

\[\beta^{(1)}_{\text{(5D)}Y_u} = Y_u \left(6 Y_u^\dagger Y_u + 2 Y_d^\dagger Y_d + 2 Y_e^\dagger Y_F \right) - \left(\frac{79}{30} g_1^2 + \frac{9}{2} g_2^2 + \frac{32}{3} g_3^2 \right) S(t) \] (B.20)

\[\beta^{(1)}_{\text{(5D)}Y_d} = Y_d \left(6 Y_d^\dagger Y_d + 2 Y_u^\dagger Y_u + 2 Y_e^\dagger Y_F \right) - \left(\frac{55}{30} g_1^2 + \frac{9}{2} g_2^2 + \frac{32}{3} g_3^2 \right) S(t) \] (B.21)

\[\beta^{(1)}_{\text{(5D)}Y_e} = Y_e \left(6 Y_e^\dagger Y_e + 2 Y_F^\dagger Y_F - \frac{9}{5} g_1^2 + \frac{9}{2} g_2^2 \right) S(t) \] (B.22)

\[\beta^{(1)}_{\text{(5D)}Y_F} = Y_F \left(4 Y_F^\dagger Y_F - \left(3 g_1^2 + 3 g_2^2 \right) \right) S(t). \] (B.23)
B.2.4 Yukawa coupling RGEs for model 2

The five dimensional contributions for model 2 are given by

\[
\beta_{(5D)Y_i}^{(1)} = Y_i \left(3 \text{Tr}(Y_i^\dagger Y_i) + 3 Y_i^\dagger Y_i + Y_b^\dagger Y_b + Y_d^\dagger Y_d \right) \pi S(t)^2
\]
- \(Y_i \left(\frac{31}{15} g_1^2 + 3 g_2^2 + \frac{16}{3} g_3^2 \right) S(t) \) \hspace{1cm} (B.24)

\[
\beta_{(5D)Y_b}^{(1)} = Y_b \left(3 \text{Tr}(Y_b^\dagger Y_b) + \text{Tr}(Y_b^\dagger Y_b) + 3 Y_b^\dagger Y_b + Y_u^\dagger Y_u + Y_d^\dagger Y_d \right) \pi S(t)^2
\]
- \(Y_b \left(\frac{25}{15} g_1^2 + 3 g_2^2 + \frac{16}{3} g_3^2 \right) S(t) \) \hspace{1cm} (B.25)

\[
\beta_{(5D)Y_	au}^{(1)} = Y_	au \left(3 \text{Tr}(Y_	au^\dagger Y_	au) + \text{Tr}(Y_	au^\dagger Y_	au) + 3 Y_	au^\dagger Y_	au + Y_d^\dagger Y_d \right) \pi S(t)^2
\]
- \(Y_	au \left(\frac{15}{5} g_1^2 + 3 g_2^2 \right) S(t) \) \hspace{1cm} (B.26)

\[
\beta_{(5D)Y_F}^{(1)} = Y_F \left(2 Y_F^\dagger Y_F + 3 \text{Tr}(Y_F^\dagger Y_F) + \text{Tr}(Y_F^\dagger Y_F) + \text{Tr}(Y_F^\dagger Y_F) \right) \pi S(t)^2
\]
- \((3 g_1^2 + 3 g_2^2) S(t) \) \hspace{1cm} (B.27)

Note that the evolution equations for \(Y_{u,c} \), \(Y_{d,s} \) and \(Y_{e,\mu} \) can be read from Eq. (B.20), since the first and second generation live on the brane.

B.3 Trilinear soft breaking parameters

B.3.1 Trilinear soft breaking parameters for model 1

\[
\beta_{(5D)Y_u}^{(1)} = T_u \left(18 Y_u^\dagger Y_u + 2 Y_d^\dagger Y_d + 2 Y_F^\dagger Y_F \right) \left(\frac{79}{30} g_1^2 + \frac{9}{2} g_2^2 + \frac{32}{3} g_3^2 \right) S(t)
\]
+ \(Y_u \left(4 T_d Y_d + 4 Y_F^\dagger T_F + \frac{79}{15} g_1^2 M_1 + 9 g_2^2 M_2 + \frac{64}{3} g_3^2 M_3 \right) S(t) \) \hspace{1cm} (B.28)

\[
\beta_{(5D)Y_d}^{(1)} = T_d \left(18 Y_d^\dagger Y_d + 2 Y_d^\dagger Y_d + 2 Y_F^\dagger Y_F \right) \left(\frac{55}{30} g_1^2 + \frac{9}{2} g_2^2 + \frac{32}{3} g_3^2 \right) S(t)
\]
+ \(Y_d \left(4 Y_F^\dagger T_F + 4 T_u Y_u + 2 T_e Y_e^\dagger + \frac{55}{15} g_1^2 M_1 + 9 g_2^2 M_2 + \frac{64}{3} g_3^2 M_3 \right) S(t) \) \hspace{1cm} (B.29)

\[
\beta_{(5D)Y_e}^{(1)} = T_e \left(18 Y_e^\dagger Y_e + 2 Y_e^\dagger Y_e \right) \left(\frac{9}{2} g_1^2 + \frac{9}{2} g_2^2 \right) S(t)
\]
+ \(Y_e \left(6 T_d Y_d + 4 Y_F^\dagger T_F + \frac{18}{2} g_1^2 M_1 + 9 g_2^2 M_2 \right) S(t) \) \hspace{1cm} (B.30)

\[
\beta_{(5D)Y_F}^{(1)} = T_F \left(12 Y_F^\dagger Y_F - (3 g_1^2 + 3 g_2^2) \right) S(t) + Y_F \left(6 g_1^2 M_1 + 6 g_2^2 M_2 \right) S(t) \). \hspace{1cm} (B.31)
B.3.2 Trilinear soft breaking parameters for model 2

\[
\beta_{(5D)T_i}^{(1)} = -T_i \left(\frac{31}{15} g_1^2 + 3 g_2^2 + \frac{16}{3} g_3^2 \right) S(t) + Y_i \left(\frac{62}{15} g_1^2 M_1 + 6 g_2^2 M_2 + \frac{32}{3} g_3^2 M_3 \right) S(t) \\
+ Y_i \left(6 \mathrm{Tr} \left(Y_i^\dagger T_i \right) + 6 Y_i^\dagger T_i + 2 Y_i^\dagger T_b + 2 Y_i^\dagger T_F \right) \pi S(t)^2 \\
+ T_i \left(3 \mathrm{Tr} \left(Y_i^\dagger Y_i \right) + 3 Y_i^\dagger Y_i + Y_i^\dagger Y_b + Y_i^\dagger Y_F \right) \pi S(t)^2 \tag{B.32}
\]

\[
\beta_{(5D)T_b}^{(1)} = -T_b \left(\frac{25}{15} g_1^2 + 3 g_2^2 + \frac{16}{3} g_3^2 \right) S(t) + Y_b \left(\frac{50}{15} g_1^2 M_1 + 6 g_2^2 M_2 + \frac{32}{3} g_3^2 M_3 \right) S(t) \\
+ Y_b \left(6 \mathrm{Tr} \left(Y_b^\dagger T_b \right) + 2 \mathrm{Tr} \left(Y_b^\dagger T_r \right) + 6 Y_b^\dagger T_b + 2 Y_b^\dagger T_i + 2 Y_b^\dagger T_F \right) \pi S(t)^2 \\
+ T_b \left(3 \mathrm{Tr} \left(Y_b^\dagger Y_b \right) + \mathrm{Tr} \left(Y_b^\dagger Y_r \right) + 3 Y_b^\dagger Y_b + Y_b^\dagger Y_i + Y_b^\dagger Y_F \right) \pi S(t)^2 \tag{B.33}
\]

\[
\beta_{(5D)T_r}^{(1)} = -T_r \left(3 g_1^2 + 3 g_2^2 \right) S(t) + Y_r \left(6 g_1^2 M_1 + 6 g_2^2 M_2 \right) S(t) \\
+ Y_r \left(6 \mathrm{Tr} \left(Y_r^\dagger T_r \right) + 2 \mathrm{Tr} \left(Y_r^\dagger T_r \right) + 6 Y_r^\dagger T_r + 2 Y_r^\dagger T_i + 2 Y_r^\dagger T_F \right) \pi S(t)^2 \\
+ T_r \left(3 \mathrm{Tr} \left(Y_r^\dagger Y_r \right) + \mathrm{Tr} \left(Y_r^\dagger Y_r \right) + 3 Y_r^\dagger Y_r + Y_r^\dagger Y_i + Y_r^\dagger Y_F \right) \pi S(t)^2 \tag{B.34}
\]

\[
\beta_{(5D)T_F}^{(1)} = -T_F \left(3 g_1^2 + 3 g_2^2 \right) S(t) + Y_F \left(6 g_1^2 M_1 + 6 g_2^2 M_2 \right) S(t) \\
+ Y_F \left(6 \mathrm{Tr} \left(Y_F^\dagger T_F \right) + 6 \mathrm{Tr} \left(Y_F^\dagger T_F \right) + 2 \mathrm{Tr} \left(Y_F^\dagger T_r \right) + 4 Y_F^\dagger T_F \right) \pi S(t)^2 \\
+ T_F \left(3 \mathrm{Tr} \left(Y_F^\dagger Y_F \right) + 3 \mathrm{Tr} \left(Y_F^\dagger Y_F \right) + \mathrm{Tr} \left(Y_F^\dagger Y_r \right) + 2 Y_F^\dagger Y_F \right) \pi S(t)^2. \tag{B.35}
\]

B.4 Soft mass parameters

B.4.1 Gaugino soft mass parameters

The gaugino soft masses in 5D run following

\[
\beta_{M_i}^{(1)} = 2 b_i g_1^2 M_i + 2 (S(t) - 1) b_{5D} g_1^2 M_i. \tag{B.36}
\]

- 27 -
B.4.2 Scalar soft mass parameters for model 1

\[
\beta^{(1)}_{m_2^2} = \left(-\frac{8}{15}g_2^2|M_1|^2 - \frac{64}{3}g_2^2|M_2|^2 - 12g_2^2|M_3|^2 + 4m_{H_d}^2Y_d^\dagger Y_d + 4m_{H_u}^2Y_u^\dagger Y_u \right)S(t) \\
+ \left(4T_d^\dagger T_d + 4T_u^\dagger T_u + 2m_{q_d}^2Y_d^\dagger Y_d + 2m_{q_u}^2Y_u^\dagger Y_u + Y_d^\dagger m_{q_d}^2 Y_d + 2Y_d^\dagger Y_d m_{q_d}^2 \right) S(t) \\
+ \left(4Y_u^\dagger m_{q_u}^2 Y_u + 2Y_u^\dagger Y_u m_{q_u}^2 + \frac{2}{\sqrt{15}}g_1 Y_t \sigma_{1,1} \right) S(t) \tag{B.37}
\]

\[
\beta^{(1)}_{m_2^2} = \left(-\frac{64}{15}g_2^2|M_1|^2 - \frac{64}{3}g_2^2|M_3|^2 + 8m_{H_u}^2Y_u Y_u^\dagger + 8T_u^\dagger T_u + 4m_Y^2 Y_u Y_u^\dagger \right)S(t) \\
+ \left(8Y_u m_Y^2 Y_u^\dagger + 4Y_u Y_u^\dagger m_Y^2 \right) \frac{2}{\sqrt{15}}S(t) \tag{B.38}
\]

\[
\beta^{(1)}_{m_2^2} = \left(-\frac{16}{5}g_2^2|M_1|^2 - \frac{64}{3}g_2^2|M_3|^2 + 8m_{H_d}^2 Y_d Y_d^\dagger + 8T_d^\dagger T_d + 4m_Y^2 Y_d Y_d^\dagger \right)S(t) \\
+ \left(8Y_d m_Y^2 Y_d^\dagger + 4Y_d Y_d^\dagger m_Y^2 \right) \frac{2}{\sqrt{15}}S(t) \tag{B.39}
\]

\[
\beta^{(1)}_{m_2^2} = \left(-\frac{12}{5}g_2^2|M_1|^2 - 12g_2^2|M_3|^2 + 4m_{H_d}^2 Y_c Y_c^\dagger + 4T_c^\dagger T_c + 2m_Y^2 Y_c Y_c^\dagger \right)S(t) \\
+ \left(4Y_c^\dagger m_Y^2 Y_c + 2Y_c^\dagger Y_c m_Y^2 - \frac{6}{5}g_1 Y_t \sigma_{1,1} \right) S(t) \tag{B.40}
\]

\[
\beta^{(1)}_{m_2^2} = 2 \left(4m_{H_d}^2 Y_c Y_c^\dagger + 4T_c^\dagger T_c + 4Y_c m_Y^2 Y_c^\dagger + 2m_Y^2 Y_c Y_c^\dagger + 2Y_c^\dagger Y_c m_Y^2 \right) S(t) \\
+ \left(2\sqrt{\frac{6}{5}}g_1 Y_t \sigma_{1,1} - \frac{48}{5}g_1^2|M_1|^2 \right) S(t) \tag{B.41}
\]

In model 1 the two Higgs doublet soft masses obey the RGE’s

\[
\beta^{(1)}_{m_{H_d}^2} = \left(-\frac{6}{5}g_2^2|M_1|^2 - 6g_2^2|M_2|^2 - \sqrt{\frac{3}{5}}g_1 \sigma_{1,1} + 6m_{H_d}^2 \text{Tr}(Y_d Y_d^\dagger) \right) S(t) \\
+ \left(2m_{H_d}^2 \text{Tr}(Y_d Y_d^\dagger) + 6 \text{Tr}(T_d^\dagger T_d^T) + 2 \text{Tr}(T_e^\dagger T_e^T) + 6 \text{Tr}(m_{H_d}^2 Y_d Y_d^\dagger) \right) S(t) \\
+ \left(2 \text{Tr}(m_Y^2 Y_c Y_c^\dagger) + 2 \text{Tr}(m_Y^2 Y_c Y_c^\dagger) + 6 \text{Tr}(m_Y^2 Y_d Y_d^\dagger) \right) S(t) \tag{B.42}
\]

\[
\beta^{(1)}_{m_{H_u}^2} = \left(-\frac{6}{5}g_2^2|M_1|^2 - 6g_2^2|M_2|^2 + \sqrt{\frac{3}{5}}g_1 \sigma_{1,1} + 6m_{H_u}^2 \text{Tr}(Y_u Y_u^\dagger) \right) S(t) \\
+ \left(6 \text{Tr}(T_u^\dagger T_u^T) + 6 \text{Tr}(m_Y^2 Y_u Y_u^\dagger) + 6 \text{Tr}(m_Y^2 Y_u Y_u^\dagger) \right) S(t) \tag{B.43}
\]

\[
\beta^{(1)}_{m_{F}^2} = \left(-\frac{24}{5}g_2^2|M_1|^2 + 2m_{H_u}^2 Y_c^\dagger Y_F + 2T_c^\dagger T_c + m_Y^2 Y_F Y_F^\dagger \right) S(t) \\
+ \left(Y_F^\dagger Y_F m_Y^2 \right) S(t) \tag{B.44}
\]
B.4.3 Scalar soft mass parameters for model 2

\[\beta_{m_{d_3}^{(1)}} = \left(\frac{-2}{15} g_1^2 |M_1|^2 - \frac{32}{3} g_1^2 |M_3|^2 - 6 g_2^2 |M_2|^2 \right) S(t) + \left(2 m_{H_d}^2 Y_b^\dagger Y_b + 2 m_{H_u}^2 Y_t^\dagger Y_t \right) \pi S(t)^2 \]
\[+ \left(2 T_b^\dagger T_b + 2 T_t^\dagger T_t + m_{q_3}^2 Y_b^\dagger Y_b + m_{q_3}^2 Y_t^\dagger Y_t + 2 Y_b^\dagger m_{d_3}^2 Y_b + Y_b^\dagger Y_b m_{q_3}^2 \right) \pi S(t)^2 \]
\[+ \left(2 Y_t^\dagger m_{u_3}^2 Y_t + Y_t^\dagger Y_t m_{q_3}^2 \right) \pi S(t)^2 + \left(\frac{1}{\sqrt{15}} g_1 \sigma_{1,1} \right) S(t) \] (B.45)

\[\beta_{m_{d_3}^{(1)}} = \left(\frac{-32}{15} g_1^2 |M_1|^2 - \frac{32}{3} g_1^2 |M_3|^2 \right) S(t) + \left(4 m_{H_d}^2 Y_b^\dagger Y_b + 4 T_t^\dagger T_t + 2 m_{u_3}^2 Y_t^\dagger Y_t \right) \pi S(t)^2 \]
\[+ \left(4 Y_t^\dagger m_{q_3}^2 Y_t + 2 Y_t^\dagger m_{d_3}^2 \right) \pi S(t)^2 + \left(\frac{4}{\sqrt{15}} g_1 \sigma_{1,1} \right) S(t) \] (B.46)

\[\beta_{m_{d_3}^{(1)}} = \left(\frac{-8}{15} g_1^2 |M_1|^2 - \frac{32}{3} g_1^2 |M_3|^2 \right) S(t) + \left(4 m_{H_d}^2 Y_b^\dagger Y_b + 4 T_t^\dagger T_t + 2 m_{u_3}^2 Y_b^\dagger Y_b \right) \pi S(t)^2 \]
\[+ \left(4 Y_b^\dagger m_{q_3}^2 Y_b + 2 Y_b^\dagger m_{d_3}^2 \right) \pi S(t)^2 + \left(\frac{2}{\sqrt{15}} g_1 \sigma_{1,1} \right) S(t) \] (B.47)

\[\beta_{m_{t_3}^{(1)}} = \left(\frac{-6}{5} g_1^2 |M_1|^2 - 6 g_2^2 |M_2|^2 \right) S(t) + \left(4 m_{H_d}^2 Y_t^\dagger Y_t + 4 T_t^\dagger Y_t + 2 m_{u_3}^2 Y_t^\dagger Y_t \right) \pi S(t)^2 \]
\[+ \left(2 Y_t^\dagger m_{q_3}^2 Y_t + Y_t^\dagger m_{d_3}^2 \right) \pi S(t)^2 + \left(\frac{3}{5} g_1 \sigma_{1,1} \right) S(t) \] (B.48)

\[\beta_{m_{t_3}^{(1)}} = 2 \left(2 m_{H_d}^2 Y_t^\dagger Y_t + 2 T_t^\dagger T_t + 2 Y_t^\dagger m_{d_3}^2 Y_t^\dagger + m_{u_3}^2 Y_t^\dagger Y_t^\dagger \right) \pi S(t)^2 \]
\[+ \left(2 \sqrt{\frac{3}{5}} g_1 \sigma_{1,1} - \frac{24}{5} g_1^2 |M_1|^2 \right) S(t) \] (B.49)

In model 2 the two Higgs doublet soft masses obey the RGE’s

\[\beta_{m_{H_d}^{(1)}} = \left(\frac{-6}{5} g_1^2 |M_1|^2 - 6 g_2^2 |M_2|^2 - \sqrt{\frac{3}{5}} g_1 \sigma_{1,1} \right) S(t) + \left(6 m_{H_d}^2 \text{Tr} \left(Y_b^\dagger Y_b \right) \right) \pi S(t)^2 \]
\[+ \left(2 m_{H_d}^2 \text{Tr} \left(Y_t^\dagger Y_t \right) + 6 \text{Tr} \left(T_b^\dagger T_b^T \right) + 2 \text{Tr} \left(T_t^\dagger T_t^T \right) + 6 \text{Tr} \left(m_{d_3}^2 Y_b^\dagger Y_b \right) \right) \pi S(t)^2 \]
\[+ \left(2 \text{Tr} \left(m_{q_3}^2 Y_b^\dagger Y_b \right) + 2 T_t^\dagger m_{d_3}^2 \right) \pi S(t)^2 \] (B.50)

\[\beta_{m_{H_u}^{(1)}} = \left(\frac{-6}{5} g_1^2 |M_1|^2 - 6 g_2^2 |M_2|^2 + \sqrt{\frac{3}{5}} g_1 \sigma_{1,1} \right) S(t) + \left(6 m_{H_u}^2 \text{Tr} \left(Y_t^\dagger Y_t \right) \right) \pi S(t)^2 \]
\[+ \left(6 \text{Tr} \left(T_t^\dagger T_t^T \right) + 2 \text{Tr} \left(m_{d_3}^2 Y_b^\dagger Y_b \right) + 6 \text{Tr} \left(m_{q_3}^2 Y_t^\dagger Y_t \right) \right) \pi S(t)^2 \] (B.51)

\[\beta_{m_{F_{\pm}}^{(1)}} = \frac{-24}{5} g_1^2 |M_1|^2 S(t) + \left(2 m_{H_u}^2 Y_b^\dagger Y_b + 2 T_t^\dagger Y_t + m_{F_{\pm}}^2 Y_t^\dagger Y_t \right) \pi S(t)^2 \]
\[+ \left(Y_t^\dagger Y_t m_{F_{\pm}}^2 \right) \pi S(t)^2 \] (B.52)
Bilinear parameters μ and B_μ

In 5D these are given by:

\begin{align}
\beta^{(1)}_\mu &= \mu \left(3 \text{Tr} \left(Y_u^\dagger Y_u \right) + 3 \text{Tr} \left(Y_d^\dagger Y_d \right) + \text{Tr} \left(Y_e^\dagger Y_e \right) - \frac{3}{5} g_1^2 - 3 g_2^2 \right) S(t) \quad (B.53) \\
\beta^{(1)}_\mu &= \left(2 \mu \left(Y_F^\dagger Y_F \right) - \frac{12}{5} \mu g_1^2 \right) S(t) \quad (B.54) \\
\beta^{(1)}_{B_\mu} &= B_\mu \left(-3 g_2^2 + \frac{3}{5} g_1^2 + 3 \text{Tr} \left(Y_u^\dagger Y_u \right) + 3 \text{Tr} \left(Y_d^\dagger Y_d \right) + \text{Tr} \left(Y_e^\dagger Y_e \right) \right) S(t) \\
&\quad + \mu \left(6 g_2^2 M_2 + \frac{6}{5} g_1^2 M_1 + 6 \text{Tr} \left(Y_d^\dagger T_u \right) + 6 \text{Tr} \left(Y_u^\dagger T_d \right) + 2 \text{Tr} \left(Y_e^\dagger T_e \right) \right) S(t) \quad (B.55) \\
\beta^{(1)}_{B_\mu} &= \left(-\frac{12}{5} B_\mu g_1^2 + \frac{24}{5} \mu g_1^2 M_1 + 2 B_\mu Y_F^\dagger Y_F + 4 \mu Y_F^\dagger Y_F \right) S(t). \quad (B.56)
\end{align}

References

[1] ATLAS Collaboration, G. Aad et al., Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys.Lett. B716 (2012) 1–29, [arXiv:1207.7214].

[2] CMS Collaboration, S. Chatrchyan et al., Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys.Lett. B716 (2012) 30–61, [arXiv:1207.7235].

[3] P. Batra, A. Delgado, D. E. Kaplan, and T. M. Tait, The Higgs mass bound in gauge extensions of the minimal supersymmetric standard model, JHEP 0402 (2004) 043, [hep-ph/0309149].

[4] A. Maloney, A. Pierce, and J. G. Wacker, D-terms, unification, and the Higgs mass, JHEP 0606 (2006) 034, [hep-ph/0409127].

[5] A. Bharucha, A. Goudelis, and M. McGarrie, En-gauging Naturalness, Eur.Phys.J. C74 (2014) 2858, [arXiv:1310.4500].

[6] M. McGarrie, G. Moortgat-Pick, and S. Porto, Confronting Higgs couplings from D-term extensions and Natural SUSY at the LHC and ILC, arXiv:1411.2040.

[7] G. A. et al. [ATLAS Collaboration] arXiv:1308.2631 [hep-ex]; ATLAS-CONF-2013-068; ATLAS-CONF-2013-065; ATLAS-CONF-2013-061; ATLAS-CONF-2013-048; ATLAS-CONF-2013-037; ATLAS-CONF-2013-025; ATLAS-CONF-2013-024.

[8] S. C. et al. [CMS Collaboration] arXiv:1308.1586 [hep-ex]; CMS-PAS-SUS-13-014; CMS-PAS-SUS-13-008; CMS-PAS-SUS-12-023.

[9] A. Abdalgabar, A. S. Cornell, A. Deandrea, and M. McGarrie, Large Λ Without the Desert, JHEP 1407 (2014) 158, [arXiv:1405.1038].

[10] J. Oliver, J. Papavassiliou, and A. Santamaria, Can power corrections be reliably computed in models with extra dimensions?, Phys.Rev. D67 (2003) 125004, [hep-ph/0302083].

[11] M. Masip, Unification through extra dimensions at two loops, Phys.Rev. D62 (2000) 065011, [hep-ph/0001115].

[12] S. Hossenfelder, Running coupling with minimal length, Phys.Rev. D70 (2004) 105003, [hep-ph/0405127].

[13] A. Hebecker, 5-D superYang-Mills theory in 4-D superspace, superfield brane operators, and applications to orbifold GUTs, Nucl.Phys. B632 (2002) 101–113, [hep-ph/0112230].
E. A. Mirabelli and M. E. Peskin, *Transmission of supersymmetry breaking from a four-dimensional boundary*, Phys.Rev. **D58** (1998) 065002, [hep-th/9712214].

M. McGarrie and R. Russo, *General Gauge Mediation in 5D*, Phys.Rev. **D82** (2010) 035001, [arXiv:1004.3305].

A. S. Cornell, A. Deandrea, L.-X. Liu, and A. Tarhini, *Scaling of the CKM Matrix in the 5D MSSM*, Phys.Rev. **D85** (2012) 056001, [arXiv:1110.1942].

M. McGarrie, *5D Maximally Supersymmetric Yang-Mills in 4D Superspace: Applications*, JHEP **1304** (2013) 161, [arXiv:1303.4534].

A. Delgado, A. Pomarol, and M. Quiros, *Supersymmetry and electroweak breaking from extra dimensions at the TeV scale*, Phys.Rev. **D60** (1999) 095008, [hep-ph/9812489].

K. R. Dienes, E. Dudas, and T. Gherghetta, *Extra space-time dimensions and unification*, Phys.Lett. **B436** (1998) 55–65, [hep-ph/9803466].

K. R. Dienes, E. Dudas, and T. Gherghetta, *Grand unification at intermediate mass scales through extra dimensions*, Nucl.Phys. **B537** (1999) 47–108, [hep-ph/9806292].

I. Aitchison, *Supersymmetry in Particle Physics. An Elementary Introduction*. Cambridge University Press, 2007.

R. Mohapatra, *Supersymmetric grand unification*, [hep-ph/9801235].

S. P. Martin, *A Supersymmetry primer*, Adv.Ser.Direct.High Energy Phys. **21** (2010) 1–153, [hep-ph/9709356].

M. Drees, R. Godbole, and P. Roy, *Theory and phenomenology of sparticles: An account of four-dimensional N=1 supersymmetry in high energy physics*. World Scientific; 1st Edition (November 15), 2004.

G. Bhattacharyya, A. Datta, S. K. Majee, and A. Raychaudhuri, *Power law blitzkrieg in universal extra dimension scenarios*, Nucl.Phys. **B760** (2007) 117–127, [hep-ph/0608208].

A. Abdalgabar and A. Cornell, *Evolution of Yukawa Couplings and Quark Flavour Mixings in the 5D MSSM*, J.Phys.Conf.Ser. **455** (2013) 012050, [arXiv:1305.3729].

G. Bhattacharyya and T. S. Ray, *A phenomenological study of 5d supersymmetry*, JHEP **1005** (2010) 040, [arXiv:1003.1276].

K. Benakli, M. Goodsell, F. Staub, and W. Porod, *The Constrained Minimal Dirac Gaugino Supersymmetric Standard Model*, arXiv:1403.5122.

F. Paccetti Correia, M. G. Schmidt, and Z. a. Tavartkiladze, *Gauge coupling unification and phenomenology of selected orbifold 5-D N=1 SUSY models*, Nucl.Phys. **B649** (2003) 39–87, [hep-ph/0204080].

ATLAS Collaboration, *Search for squarks and gluinos with the atlas detector in final states with jets and missing transverse momentum and 20.3 fb^{-1} of \sqrt{s}=8 \text{ TeV} \text{ proton-proton collision data, Tech. Rep. ATLAS-CONF-2013-047, CERN, Geneva, May, 2013.}

CMS Collaboration, S. Chatrchyan et al., *Search for new physics in the multijet and missing transverse momentum final state in proton-proton collisions at \sqrt{s}=7 \text{ TeV}, Phys.Rev.Lett. **109** (2012) 171803, [arXiv:1207.1898].

F. Staub, *From Superpotential to Model Files for FeynArts and CalcHep/CompHep, Comput.Phys.Commun. **181** (2010) 1077–1086, [arXiv:0909.2863].

– 31 –
[33] F. Staub, Automatic Calculation of supersymmetric Renormalization Group Equations and Self Energies, Comput. Phys. Commun. 182 (2011) 808–833, [arXiv:1002.0840].

[34] F. Staub, SARAH 3.2: Dirac Gauginos, UFO output, and more, Computer Physics Communications 184 (2013) pp. 1792–1809, [arXiv:1207.0906].

[35] F. Staub, SARAH 4: A tool for (not only SUSY) model builders, Comput. Phys. Commun. 185 (2014) 1773–1790, [arXiv:1309.7223].

[36] G. A. et al. [ATLAS Collaboration] arXiv:1308.1841 [hep-ex]; ATLAS-CONF-2013-089; ATLAS-CONF-2013-062; ATLAS-CONF-2013-047.

[37] S. C. et al. [CMS Collaboration] Eur. Phys. J. C 73 (2013) 2568 [arXiv:1303.2985 [hep-ex]]; CMS-PAS-SUS-13-013; CMS-PAS-SUS-13-012; CMS-PAS-SUS-13-004.

[38] F. Brümmer, M. McGarrie, and A. Weiler, Light third-generation squarks from flavour gauge messengers, JHEP 1404 (2014) 078, [arXiv:1312.0935].

[39] S. Abel and M. McGarrie, Natural supersymmetry and dynamical flavour with meta-stable vacua, JHEP 1407 (2014) 145, [arXiv:1404.1318].

[40] M. McGarrie, Gauge Mediated Supersymmetry Breaking in Five Dimensions, arXiv:1109.6245.

[41] J. R. Ellis, G. Ridolfi, and F. Zirwer, On radiative corrections to supersymmetric Higgs boson masses and their implications for LEP searches, Phys. Lett. B262 (1991) 477–484.

[42] J. L. Lopez and D. V. Nanopoulos, New theoretical lower bounds on the Higgs sector of minimal SUSY, Phys. Lett. B266 (1991) 397–402.

[43] M. S. Carena, J. Espinosa, M. Quiros, and C. Wagner, Analytical expressions for radiatively corrected Higgs masses and couplings in the MSSM, Phys. Lett. B355 (1995) 209–221, [hep-ph/9504316].

[44] H. E. Haber, R. Hempfling, and A. H. Hoang, Approximating the radiatively corrected Higgs mass in the minimal supersymmetric model, Z. Phys. C75 (1997) 539–554, [hep-ph/9609331].

[45] G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich, and G. Weiglein, Towards high precision predictions for the MSSM Higgs sector, Eur. Phys. J. C28 (2003) 133–143, [hep-ph/0212020].