A Metabolomic Strategy to Screen the Prototype Components and Metabolites of *Shuang-Huang-Lian Injection* in Human Serum by Ultra Performance Liquid Chromatography Coupled with Quadrupole Time-of-Flight Mass Spectrometry

Mingxing Guo, Baosheng Zhao, Haiyu Liu, Li Zhang, Long Peng, Lingling Qin, Zhixin Zhang, Jian Li, Chengke Cai, and Xiaoyan Gao

1 Science Experiment Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11, North Third Ring Road, Chaoyang District, Beijing 100029, China
2 School of Basic Medical Sciences, Beijing University of Chinese Medicine, No. 11, North Third Ring Road, Chaoyang District, Beijing 100029, China
3 School of Chinese Material Medica, Beijing University of Chinese Medicine, South of Wangjing Middle Ring Road, Chaoyang District, Beijing, 100102, China

Correspondence should be addressed to Chengke Cai; cck98@126.com and Xiaoyan Gao; gaoxiaoyan0913@sina.com

Received 22 December 2013; Accepted 19 January 2014; Published 26 February 2014

Copyright © 2014 Mingxing Guo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Shuang-huang-lian injection (*SHLI*) is a famous Chinese patent medicine, which has been wildly used in clinic to treat acute respiratory tract infection, pneumonia, influenza, and so forth. Despite the widespread clinical application, the prototype components and metabolites of *SHLI* have not been fully elucidated, especially in human body. To discover and screen the constituents or metabolites of Chinese medicine in biofluids tends to be more and more difficult due to the complexity of chemical compositions, metabolic reactions and matrix effects. In this work, a metabolomic strategy to comprehensively elucidate the prototype components and metabolites of *SHLI* in human serum conducted by UPLC-Q-TOF/MS was developed. Orthogonal partial least squared discriminant analysis (OPLS-DA) was applied to distinguish the exogenous, namely, drug-induced constituents, from endogenous in human serum. In the S-plot, 35 drug-induced constituents were found, including 23 prototype compounds and 12 metabolites which indicated that *SHLI* in human body mainly caused phase II metabolite reactions. It was concluded that the metabolomic strategy for identification of herbal constituents and metabolites in biological samples was successfully developed. This identification and structural elucidation of the chemical compounds provided essential data for further pharmacological and pharmacokinetics study of *SHLI*.

1. Introduction

Shuang-huang-lian injection (*SHLI*) is a typical Chinese herbal injection that is made from the extracts of *Flos Lonicerae Japonicae*, *Radix Scutellariae*, and *Fructus Forsythiae*. It has been widely used for the treatment of acute upper respiratory tract infections [1, 2]. Baicalin, chlorogenic acid, and forsythin are the marker compounds representing *Radix Scutellariae*, *Flos Lonicerae Japonicae*, and *Fructus Forsythiae*, respectively, for the quality control of this medicine [3]. Though several published papers have reported the determination of major active components and metabolites in *Shuang-huang-lian* (*SHL*) preparations [4–6], there is no substantial evidence to confirm the holistic existing form of *SHLI* in vivo, especially in human body. Therefore, systematically, screening the constituents and metabolites of *SHLI* in human blood is of great significance for interpreting its material basis for pharmacological effects. Currently, the ingredients of *SHL* formula have been detected in rat blood [7]. However, the recent study suggests that
species differences in key hepatic efflux transporters are sufficiently profound to warrant careful re-examination of conclusions and to design future studies with caution [8]. Some data have revealed that rat liver contains much more (∼10-fold) apical multidrug resistance-associated protein 2 (Mrp2) resulting in a much higher capacity for the biliary excretion of organic anions in rats than human or other preclinical species [9]. Therefore, to reveal the pharmacological mechanism of SHLI, comprehensive analysis of the constituents and metabolites in human body is more scientific and rational.

The process of metabolite detection and identification is typically a labor-intensive and time-consuming process. This process has been simplified by the use of radio-labeled compounds and/or spectroscopic techniques such as mass spectrometry and NMR spectroscopy [10–13]. Of these analysis techniques, liquid chromatography coupled with electrospray ionization mass spectrometer has been widely used to detect and identify trace levels of drugs and metabolites in various biological samples due to its high sensitivity and selectivity [14–16]. Ultra performance liquid chromatography (UPLC) applied for short run times combined with a quadrupole/time of flight-mass spectrometer (Q/TOF-MS) which offers high mass accuracy has become a major tool that provides a significant source of global constituent and metabolite profiling data [17–19]. Given the chemical complexity of SHLI in vivo, UPLC-Q-TOF/MS provides faster separations for complex blood samples and valuable structural insights into the characterization of SHLI metabolites.

A straightforward approach for identifying exogenous metabolites in vivo is to compare the LC-MS chromatograms of biological samples collected before and after xenobiotic treatment. However, without using effective analysis method, it is difficult to identify exogenous metabolites through visual examination of LC-MS chromatograms that contain information from thousands of chemical species [20]. A metabolomic strategy has been developed to handle the acquired data and to search for the discriminating features from biosample sets. A xenobiotic and its metabolites only appear in the samples after xenobiotic treatment, and so when using metabolomic strategy, the differences between the control group and the xenobiotic-treated group are mainly defined by the presence of the xenobiotic and its metabolites. With appropriate data processing, the separation of the control group and the xenobiotic-treated group can be achieved in the score plot of a multivariate model, and exogenous metabolites can be conveniently identified by analyzing ions contributing to the separation of the two groups. Employing this approach, the present study aims to develop a metabolomic strategy to comprehensively elucidate the prototype components and metabolites of SHLI in human serum conducted by UPLC-Q-TOF/MS.

2. Experiment

2.1. Materials. SHLI was achieved from the Second Chinese Medicine Factory of Harbin Pharm. Group CO., Ltd. (No. 1204014). HPLC grade formic acid was obtained from Sigma Chemical Co., Ltd. (St. Louis, MO, USA). Methanol (HPLC grade) was acquired from Fisher Corporation (Michigan, USA). Water was purified with a Milli-Q system (Millipore, Bedford, USA).

2.2. Subjects and Clinical Trial Design. The study was approved by an independent ethics committee at Beijing University of Chinese Medicine, before recruitment commenced. Before the initiation of study procedures, all volunteers gave their written informed consent for participation in the study. Thirteen healthy volunteers, without taking any medication, participated in the study. They were aged between 25 and 40 years and with weight between 50 and 80 kg. After overnight fasting, early-morning blood samples (20 mL each) were collected from the medial cubital vein into evacuated tubes and marked as the control group (C group). Then participants were intravenous infusion of 60 mg/kg of SHLI (dissolved with 500 mL saline solution). The blood samples were collected at 0.5 h after SHLI administration and marked as SHLI dosed group (SHLI group). The blood supernatant was allowed to clot overnight at room temperature, and the clotted material was removed by centrifugation (3000 rpm, 15 min). The serum was collected and stored at −80°C.

2.3. Pretreatment Procedure for SHLI. The Shuang-huang-lian lyophilized powder for injection (0.1 g) was weighed and dissolved with 100 mL water. Then, it was filtered by a 0.22 μm filter before UPLC-Q-TOF/MS analysis.

2.4. Pretreatment Procedure for Serum Samples. All serum samples were thawed at room temperature followed by methanol protein precipitation. Serum (200 μL) was added with 600 μL methanol, vortexed for 30 s, and centrifuged at 14000 g for 10 min at 4°C. Then, supernatant (400 μL) was transferred to a clean tube and evaporated to dryness under a gentle stream of nitrogen. The residue was redissolved with 100 μL ultra high purity water and transferred to an autosampler vial.

2.5. UPLC-Q-TOF/MS Analysis. Separation and detection of the components and metabolites of SHLI were performed on a Waters Acquity UPLC chromatographic system (Waters Corp., Milford, USA) equipped with a EVO G2 Q/TOF (Waters MS Technologies, Manchester, UK). An electrospray ionization source (ESI) interface was used in both positive and negative ion modes. Acquit UPLC HSS T3 column (2.1 mm × 100 mm, 1.8 μm, Waters, UK) was applied for all analyses. The mobile phase was composed of A (0.1% formic acid in water) and B (methanol) with a linear gradient elution: 0–1 min, maintained at 0% B; 1–5 min, from 0% B to 40% B; 5–8 min, from 40% B to 100% B; 8–13 min, maintained at 0% B; 13.0–13.1 min, isocratic of 0% B; 13.1–15 min, maintained at 0% B. The flow rate was 0.30 mL/min. The analytic column and autosampler were maintained at temperatures of 45°C and 4°C, respectively. Then, 1 μL of sample solution was injected for each run. Data were collected from m/z 50 to m/z 1200. For positive ion mode, the capillary and cone voltage were...
set at 3 kV and 35 V. For negative ion mode, the capillary and cone voltage were set at 2.5 kV and 35 V. The conservation gas was set at 700 L/h at a temperature of 350°C. The source temperature was set at 100°C. The cone gas was set at 50 L/h. Leucine-enkephalin was used as the lock mass solution to ensure the accuracy and reproducibility.

2.6. Data Processing and Statistical Analysis. The ES+ and ES− raw data was analyzed by MarkerLynx XS software (Waters Corp., Milford, USA). For extracting data from the raw file and detecting potential markers, the retention time range was set at 0–13 min, the mass range at 50–1000 amu, and the mass tolerance as 0.01. For detecting chromatographic peaks in the Apex Track Peak, peak width at 5% height was set at 1.00, and the peak-to-peak baseline noise was 0.00. For collecting parameters, the marker intensity threshold was set at 1000 cps, the mass window was 0.02 amu, and retention time window was 0.20 min. The noise elimination level was 6. This process provided alignment of drift (retention time and accurate mass) in data and ensured that a chromatographic peak was identified with the same parameters in each sample. Subsequently, a list of intensities or peak areas of the peaks was then generated for the first chromatogram, using the ER-m/z pairs as identifiers. The procedure was applied for each UPLC/MS analysis. The ion intensities or peak area for each peak detected was also normalized within each sample to the sum of the peak intensities in that sample. The three-dimensional data were introduced into the EZinfo 2.0 software (Waters Corporation, Milford, MA, USA) for orthogonal partial least-squares-discriminate analysis (OPLS-DA).

3. Results and Discussion

3.1. Identification and Analysis of Chemical Components in SHLI. Global profiling of both positive and negative ion modes was analyzed by UPLC-Q-TOF/MS. The typical base peak intensity (BPI) chromatograms (positive ion mode and negative ion mode) of SHLI were shown in Figure 1. In total, 38 constituents were detected and tentatively characterized in SHLI (Table 1). MS² technique, a new technique used in deducing the splitting disciplinary of MS, was applied to data collection. MS² technique could provide parallel alternating scans for acquisition at low collision energy to obtain precursor ion information or at a ramping of high collision energy to obtain a full-scan accurate mass of fragments, precursor ions, and neutral loss information [21, 22]. Here, the high precision MS/MS fragments
NO.	t_r (min)	Positive ion MS	Negative ion MS	Formula	Identification	Positive ion MS/MS	Negative ion MS/MS	Class		
1	0.88	193.0722	191.0557	$C_{7}H_{12}O_{6}$	Quinic acid	112.0521	127.0400	85.0288	Quinic acid	
2	3.77	355.1033	353.0873	$C_{16}H_{18}O_{9}$	Chlorogenic acid	163.0395	145.0279	135.0454	Quinic acid	
3	3.87	—	375.1287	$C_{16}H_{24}O_{10}$	Isomer of loganic acid	—	213.0765	169.0867	151.0759	Iridoid
4	3.90	623.2080	—	$C_{28}H_{34}O_{15}$	Isomer of suspensaside A	191.0568	149.0232	205.0319	Phenylethanoid glycoside	
5	3.97	—	461.1659	$C_{20}H_{30}O_{12}$	Forsythoside E	—	315.1076	205.0718	135.0448	Phenylethanoid glycoside
6	4.20	—	375.1287	$C_{16}H_{24}O_{10}$	Loganic acid	—	213.0778	169.0853	151.0773	Iridoid
7	4.24	355.1023	353.0866	$C_{10}H_{18}O_{9}$	3-O-Caffeoylquinic acid	163.0393	145.0286	173.0450	Quinic acid	
8	4.29	—	353.0873	$C_{10}H_{18}O_{9}$	4-O-Caffeoylquinic acid	—	173.0450	145.0453	Quinic acid	
9	4.35	—	639.1925	$C_{28}H_{36}O_{16}$	Suspensaside	—	621.1841	469.1273	Phenylethanoid glycoside	
10	4.43	375.1288	373.1129	$C_{16}H_{22}O_{10}$	Secologanic acid	213.0749	195.0638	193.0494	Iridoid	
11	4.45	391.1255	389.1074	$C_{16}H_{22}O_{11}$	Monotropein	—	209.0455	165.0554	Iridoid	
12	4.58	—	639.1918	$C_{28}H_{36}O_{16}$	Isomer of suspensaside A	—	445.1318	205.0318	Phenylethanoid glycoside	
13	4.72	—	403.1239	$C_{17}H_{24}O_{11}$	Isomer of secoxyloganin	—	241.1177	179.0346	Iridoid	
14	4.73	359.1348	—	$C_{15}H_{22}O_{9}$	Sweroside	197.0812	151.0400	461.1671	Phenylethanoid glycoside	
15	4.80	625.2124	623.1982	$C_{28}H_{36}O_{15}$	Acteoside	471.1504	325.0927	443.1567	Phenylethanoid glycoside	
16	4.89	—	755.2399	$C_{14}H_{44}O_{19}$	Forsythoside B	—	593.2103	447.1500	Phenylethanoid glycoside	
17	4.93	623.1986	621.1816	$C_{28}H_{34}O_{15}$	Suspensaside A	191.0571	149.0234	487.1371	Phenylethanoid glycoside	
18	5.03	625.2133	623.1970	$C_{28}H_{36}O_{15}$	Forsythoside A	471.1512	325.0919	443.1567	Phenylethanoid glycoside	
19	5.06	405.1387	403.1236	$C_{16}H_{24}O_{11}$	Secoxyloganin	243.0880	211.0612	371.0979	Iridoid	
20	5.09	—	515.1174	$C_{28}H_{34}O_{12}$	3,4-Dicaffeoylquinic acid	—	353.0906	191.0561	Quinic acid	
21	5.13	—	515.1174	$C_{28}H_{34}O_{12}$	3,5-Dicaffeoylquinic acid	—	353.0906	173.0355	Quinic acid	

Table 1: UPLC-Q-TOF/MS identification of the constituents in SHLI.
information obtained from the MS2 technique were also listed in Table 1 to explain the structure information of the chemical constituents. All the constituents and the fragmentation information were consistent with previous reports [23, 24].

3.2. Analysis of Human Serum by Metabolomic Strategy. Figure 2 represented the typical BPI chromatograms (positive ion mode and negative ion mode) of human serum samples before and after SHLI administration. The prototype components and metabolites of SHLI in human serum were almost submerged by the endogenous metabolites due to the high level of endogenous signals. Interferences from biological matrices remain a major challenge to detection of metabolites in vivo. Without the presence of a radiolabeled isotope or a data-mining tool, it would be almost impossible to identify low level exogenous metabolites. In our work, a metabolomic strategy was employed to phenotype the differences between C group and SHLI group. The LC/MS
NO.	t_R (min)	Positive ion MS	Negative ion MS	Formula	Identification	Positive ion MS/MS	Negative ion MS/MS	Relegation
1	0.88	193.0722	191.0557	$C_7H_{12}O_6$	Quinic acid	112.0521	127.0400	85.0288
2	3.77	355.1033	353.0873	$C_{16}H_{18}O_4$	Chlorogenic acid	163.0395	179.0341	135.0449
3	3.87	—	375.1287	$C_{16}H_{24}O_{10}$	Isomer of loganic acid	—	213.0765	169.0867
4	4.20	—	375.1287	Loganic acid	—	213.0778	169.0853	151.0759
5	4.24	—	353.0873	3-O-Caffeoylquinic acid	—	191.0569	179.0365	
6	4.29	—	353.0873	4-O-Caffeoylquinic acid	—	173.0450	135.0453	
7	4.37	478.1365	—	$C_{22}H_{23}NO_{11}$	Isorhamnetin 7-glucosamine	316.0847	298.0745	280.0654
8	4.42	—	475.1816	Kanokoside A	—	313.0276	193.0493	123.0452
9	4.43	375.1288	373.1129	$C_{16}H_{22}O_{10}$	Secologanic acid	213.0749	195.0638	
10	4.45	—	389.1074	Monotropein	—	209.0455		
11	4.57	—	369.0815	4-O-glucuronide	—	193.0490	178.0263	
12	4.72	—	403.1239	Isomer of secoxyloganin	—	241.1177		
13	4.73	359.1348	—	$C_{16}H_{22}O_4$	Sweroside	197.0812	151.0440	
14	5.03	—	731.1866	Methylated and sulfated forsythiaside	—	651.2212	457.1421	
15	5.06	405.1387	403.1236	$C_{17}H_{24}O_{11}$	Secoxyloganin	243.0880	211.0612	
16	5.09	—	515.1174	$C_{25}H_{31}O_{12}$	3,4-Dicaffeoylquinic acid	—	353.0906	191.0561
17	5.16	623.1266	621.1092	$C_{27}H_{28}O_{17}$	Genistein 4',7-O-diglucuronide	447.0916	271.0607	
18	5.20	—	827.2600	$C_{37}H_{48}O_{21}$	2-(3,4-Dihydroxyphenyl)ethyl6-deoxy-mannopyranosyl glucopyranosyl-2-O-acetyl-4-O-[3-(3,4-dihydroxyphenyl)-2-propenoyl]-glucopyranoside	—	520.1801	429.1375
19	5.21	—	519.1863	$C_{26}H_{32}O_{11}$	Pinoresinol 4-O-glucoside	—	357.1336	269.0444
20	5.47	623.1250	621.1088	$C_{27}H_{28}O_{17}$	Baicalein 6,7-diglucuronide	447.0922	271.0605	
21	5.54	609.1461	607.1299	$C_{27}H_{24}O_{16}$	Luteolin 7-glucuronide-4'-rhamnoside	447.0919	271.0610	
data were processed using MarkerLynx XS to detect peaks and generate a three-dimensional data with t_R-m/z pairs and the corresponding intensities. Statistical analysis by OPLS-DA was subsequently performed on the entire dataset. Figure 3 showed the OPLS-DA score plots of human serum samples before and after SHLI injection. Clear separation was observed between the two groups, which indicated that the drug-induced constituents were contributed to the clustering.

3.3. Identification and Analysis of Prototype Components and Metabolites. In order to discover the multiple prototype components and metabolites of SHLI in human serum, S-plot, a tool for visualization and interpretation of multivariate classification models, was used. In the S-plot, each point represented an ion detected by UPLC-Q-TOF/MS. Variables that were the farthest from the origin in the S-plot were representative of the most significant changes between the two groups. Based on this, even subtle differences in the two groups could be easily extracted. Figure 4 showed the ions in S-plot that were most responsible for distinguishing the C and SHLI groups and had a higher level in SHLI group.

The S-plot responsible for the variances in the data was a combination of metabolites derived from the SHLI administration and endogenous molecules which were ubiquitous to serum and were interfered by SHLI. From a drug metabolite identification perspective, it was important that the disturbance endogenous molecules could be eliminated, and the prototype components and metabolites could be easily screened between SHLI-treated group and the control group. This comparison was achieved by using the trend plot. From the trend plots, the variables that only existed in the dosed serums were marked as the prototype components or the metabolites of SHLI.

Figure 5 showed the visualized trend plot of 7.41-285.0762 in positive mode between C group and SHLI group. The ion only appeared in the SHLI group. Therefore, 7.41-285.0762 might be a prototype component or a metabolite of SHLI.

Based on the metabolomic strategy, 35 exogenous components in human serum were found, among them, 23 prototype

NO.	t_R (min)	Positive ion MS	Negative ion MS	Formula	Identification	Positive ion MS/MS	Negative ion MS/MS	Relegation	
22	5.54	—	757.2550	C$_{34}$H$_{46}$O$_{19}$	Centaurosides	—	525.1569	493.1695, 179.031	Prototype components
23	5.69	—	287.0234	C$_{31}$H$_{12}$O$_{7}$S	5’-(3’,4’-Dihydroxyphenyl)-gamma-valerolactone sulfate	—	525.1569	493.1695, 179.031	Metabolite of flavonoids
24	5.78	—	533.2020	C$_{27}$H$_{34}$O$_{11}$	Phillyrin	—	356.1257, 121.0295	269.0455, 241.0503	Prototype component
25	5.88	447.0925	445.0771	C$_{21}$H$_{18}$O$_{11}$	Baicalin	271.0603	269.0455, 241.0503	239.0345	Prototype component
26	6.17	431.0969	429.0815	C$_{21}$H$_{18}$O$_{10}$	Chrysin 7-glucuronide	255.0645	253.0505	239.0345	Prototype component
27	6.23	461.1079	459.0927	C$_{22}$H$_{30}$O$_{11}$	Wogonoside	285.0760	283.0611, 239.0345	239.0345	Prototype component
28	6.38	—	445.0779	C$_{21}$H$_{18}$O$_{11}$	Norwogonin-7-O-glucuronide	—	269.0449, 131.0625	269.0449	Prototype component
29	6.41	—	349.0014	C$_{15}$H$_{10}$O$_{6}$S	Baicalein 7-sulfate	—	269.0449	241.0503	Metabolite of flavonoids
30	6.43	—	363.0174	C$_{28}$H$_{12}$O$_{8}$S	Wogonin 7-sulfate	—	283.0606	268.0371	Metabolite of flavonoids
31	6.46	—	283.0607	C$_{16}$H$_{12}$O$_{5}$	7,5-Dihydroxy-6-methoxyflavone	—	268.0371	268.0371	Metabolite of flavonoids
32	6.81	271.0608	269.0446	C$_{15}$H$_{10}$O$_{5}$	Baicalein	271.0623	251.0362, 223.0379, 195.0447	268.0377, 162.9845	Prototype component
33	7.26	285.0761	283.0602	C$_{16}$H$_{12}$O$_{5}$	Wogonin	270.0489	268.0377	162.9845	Prototype component
34	7.35	255.0654	—	C$_{15}$H$_{10}$O$_{4}$	Chrysin	153.0173	153.0173	—	Prototype component
35	7.41	285.0761	283.0601	C$_{16}$H$_{12}$O$_{5}$	Wogonin	270.0502	268.0409	268.0409	Prototype component
Figure 2: UPLC-Q-TOF/MS BPI chromatograms of human serum samples (a) before SHLI administration in positive ion mode, (b) after SHLI administration in positive ion mode, (c) before SHLI administration in negative ion mode, and (d) after SHLI administration in negative ion mode.
Figure 3: Score plots of OPLS-DA in human serum samples between C group (◼) and SHLI group (▲) in (a) positive ion mode and (b) negative ion mode.

Figure 4: S-plots of human serum samples between C and SHLI groups in (a) positive ion mode and (b) negative ion mode. The ions marked with box were at the higher level in SHLI group.

Figure 5: The trend plot of 7.41-285.0762 in positive mode between C group (◼) and SHLI group (▲).

3.4. Characterization Analysis of Human Serum Prototype Components and Metabolites of SHLI. In our study, the prototype components and metabolites of SHLI were identified by comparing the accurate mass and MS² fragment information obtained from the MS² technique. Figure 6 showed typical MS/MS spectra of the prototype component 6.23-461.079 and the flavonoid metabolite 6.46-363.0174. In positive ion mode, the ion at m/z 483.0906 was [M + Na]⁺ ion. The dominant fragment ion of m/z 285.0763 was produced by loss of m/z 176 (glucuronide-H₂O) fragment from [M + H]⁺ in positive ion mode. The characteristic and abundant components of SHLI and 12 metabolites were identified and their information was shown in Table 2.
fragment ion \([M + H-CH_3]^{+}\) was generated by loss of CH\(_3\) for the flavones with a methoxyl group on the side chains of an aromatic ring. Its molecular formula was speculated to be C\(_{22}\)H\(_{21}\)O\(_{11}\) based on the analysis of its elemental composition. Then the ion at \(m/z\) 483.0906 was inferred as wogonoside. The ion at \(m/z\) 363.0168 was \([M - H]^-\) ion. The major fragment ion of \(m/z\) 283.0606 was generated by loss of \(m/z\) 80 (sulfate-H\(_2\)O) fragment from \([M - H]^-\) in negative ion mode. The molecular formula was speculated to be C\(_{16}\)H\(_{12}\)O\(_8\)S, and the fragmentation information and the molecular formula were consistent with wogonin 7-sulfate. Other metabolites were determined by the same method described above and some of them were also supported by the databases such as HMDB (http://www.hmdb.ca/) and METLIN (http://masspec.scripps.edu/). As a result, 23 prototype components and 12 metabolites of SHLI were identified.
3.5. Correlative Analysis of the Prototype Components and Metabolites of SHLI. The prototype herb components could be further metabolized by various drug metabolizing enzymes. Drug metabolism is classified into phase I and phase II reactions. Phase I reactions are mediated primarily by the cytochrome P450 family of microsomal enzymes [25]. Compounds are fractionalized by oxidation, hydrolysis, or reduction, leading to the introduction of, for example, hydroxyl, amino, carboxyl, or thiol groups into the molecule. Most compounds undergo phase I oxidation prior to phase II conjugation, but molecules with sites amenable to conjugation may undergo phase II reactions directly. The most relevant phase II drug conjugation reactions are methylation, sulfation, glucuronidation, and glutathione conjugation. There were three types of components found in human serum after SHLI administration: (i) compounds found in their native form; (ii) phase I metabolites formed by chemical modifications, such as hydroxylation (M + OH) and hydration (M + H2O), and (iii) phase II metabolites formed by conjugation, such as methylation (M + CH3), glucuronidation (M + C6H3O), sulfation (M + HSO3), and other conjugation reactions. In human serum, a large number of phase II metabolites were found. Among them, 8 flavonoids metabolites, 2 phenylephrine glycosides metabolites, 1 iridoid metabolite, and 1 quinic acid metabolite were found.

Some researchers have reported the metabolites of SHL formula in rat plasma [8]. We compared the metabolites differences in human and rats after SHLI administration and found great differences on the types and quantities of the metabolites after SHLI or SHL formula administrated between human and rats. The metabolites of SHLI found in rats and human were listed in Supplementary Material (see Table S1 in Supplementary Material available online at http://dx.doi.org/10.1155/2014/241505). Large number of phase I metabolites were detected in rats such as dihydroseco-cologanic acid and 3,4-dihydroxyphenylethanol, while little was found in the human serum. Besides, sulfated metabolites which were common in human serum were less detected in the rat plasma. Such a discrepancy might be attributed to different species (human or rats), prescription (SHLI or SHL formula), or blood collection time (1 h or shorter time). Further studies of the biological properties of these metabolites would be helpful to understand the pharmacological mechanism of SHLI.

4. Conclusion

In this paper, we developed an unbiased approach for screening the prototype components and metabolites of SHLI in human serum based on metabolomic technique. Employing UPLC-Q-TOF-MS combined with multivariate statistical analysis, 23 prototype components and 12 metabolites of SHLI were rapidly and sensitively identified, which suggested that the metabolomic approach was an effective tool to discover, screen, and analyze the multiple prototype components and metabolites from complicated traditional Chinese preparations in vivo. SHLI in human body mainly caused phase II metabolite reactions such as sulfation, methylation, glucuronidation, and other complex conjugation reactions. This identification and structural elucidation of the chemical compounds provided essential data for further pharmacological and pharmacokinetics study of SHLI. The human serum metabolomic approach avoids the laborious process of predicting possible metabolites and provides information on unexpected reactive metabolites and a type of validated rapid and higher throughput methodology for the identification of constituents of traditional Chinese medicine.

Conflict of Interests

The authors declare that they have no conflict of interests regarding the publication of this paper.

Acknowledgments

This work was supported in part by National Science and Technology Major Projects for “Major New Drugs Innovation and Development” (Grant no. 2011ZX09201-201-15), National Science Foundation of China (Grant no. 81173562), and in part by the Foundation of Independent Topics at Beijing University of Chinese Medicine (Grant no. 2013-JYBZZ-XS-064).

References

[1] H. Zhang, Q. Chen, W. Zhou et al., “Chinese medicine injection Shuanghuanglian for treatment of acute upper respiratory tract infection: a systematic review of randomized controlled trials,” Evidence-Based Complementary and Alternative Medicine, vol. 2013, Article ID 987326, 7 pages, 2013.
[2] Y. Cao, L. Wang, X. Yu, and J. Ye, “Development of the chromatographic fingerprint of herbal preparations Shuang-Huang-Lian oral liquid,” Journal of Pharmaceutical and Biomedical Analysis, vol. 41, no. 3, pp. 845–856, 2006.
[3] The State Commission of Chinese Pharmacopoeia, Pharmacopoeia of People’s Republic of China, part 1, Chemical Industry Press, Beijing, China, 2005.
[4] Y. M. Zhang, D. Yan, P. Zhang et al., “Quality control of Shuanghuanglian freeze-dried powder for injection based on its HPLC-ELSD fingerprints and biological profiles,” Acta Pharmaceutica Sinica, vol. 45, no. 1, pp. 93–97, 2010.
[5] L. Liu, Z. Suo, and J. Zheng, “Simultaneous determination of four compounds in Sanjing Shuanghuanglian oral liquid by high performance liquid chromatography-diode array detection-electrochemical detection,” Chinese Journal of Chromatography, vol. 24, no. 3, pp. 247–250, 2006.
[6] H. Cao and Y. Zhu, “Content determination of chlorogenic acid and baicalin in Shuanghuanglian oral solution by HPLC,” Drug Stands in China, vol. 8, no. 2, pp. 44–46, 2007.
[7] G. L. Yan, A. H. Zhang, H. Sun et al., “An effective method for determining the ingredients of Shuanghuanglian formula in blood samples using high-resolution LC-MS coupled with background subtraction and a multiple data processing approach,” Journal of Separation Science, vol. 36, no. 19, pp. 3191-3199, 2013.
[8] M. J. Zamek-Gliszczynski, K. A. Hoffmaster, K. I. Nezasa, M. N. Tallman, and K. L. R. Brouwer, “Integration of hepatic drug
transplanters and phase II metabolizing enzymes: mechanisms of hepatic excretion of sulfate, glucuronide, and glutathione metabolites," European Journal of Pharmaceutical Sciences, vol. 27, no. 5, pp. 447–486, 2006.

[9] H. Ishizuka, K. Konno, T. Shiina et al., "Species differences in the transport activity for organic anions across the bile canalicular membrane," Journal of Pharmacology and Experimental Therapeutics, vol. 290, no. 3, pp. 1324–1330, 1999.

[10] G. B. Scarfe, J. C. Lindon, J. K. Nicholson et al., "Investigation of the metabolism of 14C/13C-practolol in rat using directly coupled radio-HPLC-NMR-MS," Xenobiotica, vol. 30, no. 7, pp. 717–729, 2000.

[11] J. Iwabu, J. Watanabe, K. Hirakura, Y. Ozaki, and K. Hanazaki, "Profiling of the compounds absorbed in human plasma and urine after oral administration of a traditional Japanese (Kampo) medicine, daikenchuto," Drug Metabolism and Disposition, vol. 38, no. 11, pp. 2040–2048, 2010.

[12] I. Iswaldi, D. Arráez-Román, A. M. Gómez-Caravaca et al., "Identification of polyphenols and their metabolites in human urine after cranberry-syrup consumption," Food and Chemical Toxicology, vol. 55, pp. 484–492, 2013.

[13] G. Tan, W. Liao, X. Dong et al., "Metabonomic profiles delineate the effect of traditional Chinese medicine Sin decoction on myocardial infarction in rats," PLoS ONE, vol. 7, no. 4, Article ID e34157, 2012.

[14] O. Corcoran and M. Spraul, "LC-NMR-MS in drug discovery," Drug Discovery Today, vol. 8, no. 14, pp. 624–631, 2003.

[15] M. S. Lee and E. H. Kerns, "LC/MS applications in drug development," Mass Spectrometry Reviews, vol. 18, no. 3-4, pp. 187–279, 1999.

[16] Y. Wu, "The use of liquid chromatography-mass spectrometry for the identification of drug degradation products in pharmaceutical formulations," Biomedical Chromatography, vol. 14, no. 6, pp. 384–396, 2000.

[17] X. Wang, W. Sun, H. Sun et al., "Analysis of the constituents in the rat plasma after oral administration of Yin Chen Hao Tang by UPLC/Q-TOF-MS/MS," Journal of Pharmaceutical and Biomedical Analysis, vol. 46, no. 3, pp. 477–490, 2008.

[18] S. L. Li, S. F. Lai, J. Z. Song et al., "Decocting-induced chemical transformations and global quality of Du-Shen-Tang, the decoction of ginseng evaluated by UPLC-Q-TOF-MS/MS based chemical profiling approach," Journal of Pharmaceutical and Biomedical Analysis, vol. 53, no. 4, pp. 946–957, 2010.

[19] L. Li, G. A. Luo, Q. L. Liang, P. Hu, and Y. M. Wang, "Rapid qualitative and quantitative analyses of Asian ginseng in adulterated American ginseng preparations by UPLC/Q-TOF-MS," Journal of Pharmaceutical and Biomedical Analysis, vol. 52, no. 1, pp. 66–72, 2010.

[20] C. Chen, F. J. Gonzalez, and J. R. Idle, "LC-MS-based metabolomics in drug metabolism," Drug Metabolism Reviews, vol. 39, no. 2-3, pp. 581–597, 2007.

[21] Y. Y. Zhao, X. L. Cheng, F. Wei, X. Bai, and R. C. Lin, "Application of faecal metabonomics on an experimental model of tubulointerstitial fibrosis by ultra performance liquid chromatography/high-sensitivity mass spectrometry with MS data collection technique," Biomarkers, vol. 17, no. 8, pp. 7221–7729, 2012.

[22] P. D. Rainville, C. L. Stumpf, J. P. Shockcor, R. S. Plumb, and J. K. Nicholson, "Novel application of reversed-phase UPLC-QTOF-MS for lipid analysis in complex biological mixtures: a new tool for lipidomics," Journal of Proteome Research, vol. 6, no. 2, pp. 552–558, 2007.