Introduction: Helicobacter pylori is one of the main causes of gastroduodenal diseases, such as chronic gastritis and peptic ulcer. It has been shown that eosinophils increase in the stomach in H. pylori infection. Eosinophilic cationic protein (ECP) is a cytotoxic molecule secreted by the activated eosinophils. However, there are no sufficient data about the role of ECP in H. pylori infection and its effect on ulcer development. In this study we investigated the gastric eosinophilic infiltration, gastric juice and serum ECP levels in patients with chronic gastritis and gastric ulcer associated with H. pylori.

Materials and methods: Forty-four H. pylori-positive and 20 H. pylori-negative patients who underwent upper gastrointestinal system endoscopy after admitting with dyspeptic complaints were enrolled in the study. Twenty-one of the H. Pylori-positive patients had gastric ulcer while 23 patients had none. During endoscopy, multiple gastric biopsies and juices were taken. In gastric biopsies, H. pylori and eosinophilic infiltration were assessed. Additionally, gastric juice and serum ECP levels were measured.

Results: Eosinophil infiltration, gastric juice ECP levels, and gastric juice/serum ECP ratios in the H. pylori-positive group were greater than in the H. pylori-negative group (p < 0.01). There was no statistically significant difference regarding serum ECP levels between the two groups (p > 0.05). When H. pylori-positive patients were compared with regard to gastric ulcer presence, however, there was no significant difference in gastric eosinophil infiltration, gastric juice ECP levels, serum ECP levels, and gastric juice/serum ECP ratios (p > 0.05).

Conclusion: The results of this study suggest that eosinophils and eosinophil-released ECP may contribute to inflammatory changes seen in chronic gastritis, whereas there is no proof that they play a role in ulcer development.

Key words: Helicobacter pylori, Gastric ulcer, Eosinophil, Eosinophil cationic protein, Gastric juice, Serum

Eosinophil infiltration, gastric juice and serum eosinophil cationic protein levels in Helicobacter pylori-associated chronic gastritis and gastric ulcer

Selim Aydemir¹,CA, Isak Ozel Tekin², Gamze Numanoglu³, Ali Borazan⁴ and Yucel Ustundag¹

¹Department of Gastroenterology, ²Department of Immunology, ³Department of Pathology, and ⁴Department of Internal Medicine, Zonguldak Karaelmas University, Faculty of Medicine, İç Hastalıkları ABD, Gastroenteroloji BD, 67800 Zonguldak, Turkey

CA Corresponding Author
Tel: +90 372 2576169
Fax: +90 372 2610155
E-mail: selimaydemir@hotmail.com

Introduction

Helicobacter pylori is one of the main causes of gastroduodenal diseases, such as chronic gastritis and peptic ulcer. In addition, it is closely associated with gastric carcinoma and gastric B-cell mucosa-associated lymphoid tissue lymphoma.¹–⁴ H. pylori causes chronic gastritis in all patients whereas only a small proportion of patients infected with this microorganism develop a peptic ulcer.³ Inflammatory response is pivotal in the epithelial dysfunction and mucosal injury caused by H. pylori. H. pylori leads to mucosal increases in many proinflammatory and immunoregulatory cytokines.⁶–⁸ Eosinophils are involved in a broad range of diseases such as allergic, inflammatory, and malignant disorders.⁹–¹¹ Several recent studies focused on the function of eosinophils in gastrointestinal disease.¹⁰,¹²,¹³ They are present only in small amounts in healthy gut mucosa.¹⁴,¹⁵ Their presence has been considered to be a protective mechanism against bacteria and parasites.¹¹ The specific granules of the eosinophils contain a number of highly cationic proteins.¹⁶,¹⁷ One of the very important of these is the eosinophil cationic protein (ECP). They are markedly cationic proteins with cytotoxic capacities probably leading to tissue destruction as well as modulators of the immune response.¹⁸,¹⁹ There is increasing evidence that eosinophils are functionally involved in the pathophysiology of various inflammatory disorders of the gut.¹²,²⁰ It has been shown that eosinophils increase in the stomach in H. pylori infection.²¹–²⁵ However, there are not sufficient studies about the role of ECP
in *H. pylori* infection and its effect on ulcer development. We investigated in this study gastric eosinophil infiltration, gastric juice and serum ECP levels in patients with chronic gastritis and gastric ulcer associated with *H. pylori*.

Research design and methods

Patients

In total, 44 *H. pylori*-positive patients above the age of 20 years who underwent endoscopy in the gastroenterology laboratory because of dyspeptic complaints (group 1) were enrolled into the study. The patients were divided into two subgroups according to the presence of a gastric ulcer (group 1a, ulcer present; group 1b, ulcer absent). As the control group we selected 20 *H. pylori*-negative patients admitted with dyspeptic complaints who were gastric ulcer negative (group 2). Exclusion criteria were prior eradication therapy for *H. pylori*, anti-ulcer drug use within the past 1 month, gastrointestinal system and other organ malignancies, inflammatory and infectious diseases, and prior gastric surgery.

Endoscopic procedure

Gastroduodenal endoscopic examination was performed following overnight fasting using a Pentax EG2930K (Asahi Optical, Tokyo, Japan). In each patient, 5 cm³ of gastric juice, obtained during endoscopy through a sterilised tube fitted in the operation channel of the gastroscope, were collected. For the histopathological examination, multiple biopsies from the antrum and the corpus were taken. The biopsy specimens were fixed in 10% buffered formalin and embedded in paraffin. The precense of typical gently spiralled or curved bacteria was determined by Giemsa staining as the presence of *H. pylori* was determined by Giemsa staining as the presence of a gastric ulcer (group 1a, ulcer present; group 1b, ulcer absent). As the control group we selected 20 *H. pylori*-negative patients admitted with dyspeptic complaints who were gastric ulcer negative (group 2). Exclusion criteria were prior eradication therapy for *H. pylori*, anti-ulcer drug use within the past 1 month, gastrointestinal system and other organ malignancies, inflammatory and infectious diseases, and prior gastric surgery.

Assessment of the state of *H. pylori* infection

The state of *H. pylori* infection was assessed histologically. The biopsy specimens were fixed in 10% formalin and embedded in paraffin. The precense of *H. pylori* was determined by Giemsa staining as the presence of typical gently spiralled or curved bacteria. When at least one of the biopsies of each patient yielded a positive result, the patient was considered positive for *H. pylori*.

Histological assessment eosinophil infiltration

Sections were also stained with hematoxylin and eosin. For each section, five superficial fields (×400 magnification) were randomly selected; eosinophils were individually counted by the same investigator and a mean score between five fields was obtained from each patient. The hematoxylin and eosin-stained specimen was given one overall score from 0 to 3 for eosinophil infiltration (0 = no eosinophil infiltration, 1 = mild or patchy eosinophil infiltration, 2 = moderate eosinophil infiltration, 3 = marked, confluent eosinophil infiltration).

Serum and gastric juice ECP measurement

Sera were obtained in a fasting state before endoscopy. Serum and gastric juice ECP levels were measured with a fluoroenzymeeimmunoassay kit and a UNICAP device (Pharmacia & Upjohn, Uppsala, Sweden).

Statistical analysis

Results are expressed as the mean ± standard deviation. In the comparison between groups, statistically significant differences were assessed by the Student *t*-test and the Mann–Whitney *U*-test. *P* < 0.05 was considered statistically significant.

Results

When the patients were divided into two groups according to *H. pylori* presence, group 1 had a total of 44 patients (25 males and 19 females). The mean age of the patients was 43.2 ± 11.3 years. Group 2 included a total of 20 patients (11 males and nine females). In this group the mean age was 42.5 ± 10.1 years. The age and sex distribution had an insignificant difference in both groups (*p* > 0.05). Demographic characteristics, mean eosinophil scores, gastric juice ECP levels, serum ECP levels, and gastric juice/serum ECP ratios for both groups are presented in Table 1. Eosinophil scores, gastric juice ECP levels, and gastric juice/serum ECP ratios were apparently greater in group 1 than group 2 (*p* < 0.01). Serum ECP levels were higher in the *H. pylori*-positive group than the *H. pylori*-negative group, although a statistically significant difference was not present (*p* > 0.05).

The age, sex, mean eosinophil scores, gastric juice ECP levels, serum ECP levels, gastric juice/serum ECP ratios of group 1a and group 1b are presented in Table 2. Both the age and sex distribution had an insignificant difference between the two groups (*p* > 0.05). There was no significant difference in gastric eosinophil scores, gastric juice ECP levels, serum ECP levels, and gastric/serum ECP ratios between group 1a and group 1b (*p* > 0.05).

In a comparison of group 1a and group 1b with group 2, gastric eosinophil scores, gastric juice ECP levels, gastric juice/serum ECP ratios were greater in both group 1 subgroups than in group 2 (*p* < 0.01). There was no significant difference between groups according to the serum ECP levels (*p* > 0.05).
Discussion

Helicobacter pylori is the most common bacterial infection worldwide. It is estimated that 60% of the world's population is infected by this microorganism. *H. pylori* is generally acquired in childhood and causes lifelong chronic gastritis unless initial acute gastritis is adequately managed. Approximately 20% of persons infected by *H. pylori* develop peptic ulcer disease in some period of their lifespan. Antral biopsies of individuals infected with *H. pylori* show focal epithelial cell damage as well as an inflammatory infiltrate in the lamina propria. This infiltrate consists of polymorphonuclear leukocytes, eosinophils, and mononuclear cells. Inflammatory response is pivotal in the epithelial dysfunction and mucosal injury caused by *H. pylori*. *H. pylori* stimulates the release of a variety of inflammatory mediators both directly by bacterial products such as vaculating cytotoxin, lipopolysaccharide, neutrophil-activating factor and porins, and indirectly as a result of interaction with gastric epithelial cells. The role of eosinophils in the pathogenesis of *H. pylori*-associated gastritis and ulcer is not clearly explained.

The present study provides some evidence of an association between gastric eosinophil infiltration, gastric juice ECP and serum ECP levels in *H. pylori* infection and gastric ulcer disease.

Eosinophils play a role in many disorders, such as allergic, immunologic, and malignant diseases. Eosinophil granulocytes, predominantly tissue-dwelling cells, are normally present in low numbers in healthy gut mucosa. A possible role of the eosinophil in several intestinal diseases has been suggested. Patients with celiac disease have been shown to have prominent infiltration of eosinophils in the lamina propria, and activation of eosinophils was suggested by the release of ECP in the tissue and lumen of the intestine. The eosinophil may also be a major actor in the pathogenesis of inflammatory bowel disease because bowel biopsies from patients with inflammatory bowel disease have demonstrated an infiltration of eosinophils in the lamina propria and marked extracellular deposits of ECP. Moreover, eosinophilic gastrointestinal tract infiltration is encountered in food allergies and eosinophilic gastroenteritis.

The presence of eosinophils is assumed as a protective mechanism of unspecific mucosal immunity response against bacteria and parasites. Since eosinophil granules contain many proinflammatory and cytotoxic mediators, their protective role has become controversial. Activation of eosinophils seems to contribute to the pathophysiology of several inflammatory conditions. The role of the eosinophil granulocyte in the inflammatory reaction still remains obscure. One of the major constituents of the granule matrix is the eosinophil cationic protein. It is not only a strong helminthotoxic mediator, but it can also turn its destructive mechanisms against the host by cytotoxicity toward a variety of target cells including epithelial cells, smooth muscle cells, and nerve cells.

We found that gastric mucosal eosinophil infiltration and the gastric juice ECP level were apparently greater in *H. pylori*-infected subjects. According to

Table 1. Demographic characteristics, mean eosinophil score, gastric juice ECP level, serum ECP level and gastric juice/serum ECP ratio in *H. pylori* presence

Parameter	Group 1	Group 2	p value
Subjects (n)	44	20	
Mean age (years)	43.2±11.3 (20–60)	42.5±10.1 (22–54)	Not significant
Sex (male/female)	25/19	11/9	
Eosinophil score	1.14 ± 0.95	0.35 ± 0.59	<0.01
Gastric juice ECP (µg/l)	54.8±51.6	19.1±18.6	<0.01
Serum ECP (µg/l)	19.7±20.1	14.1±8.1	Not significant
Gastric juice/serum ECP ratio	4.24±4.06	1.24±1.01	<0.01

Group 1 = *H. pylori* positive, Group 2 = *H. pylori* negative.

Table 2. Demographic characteristics, mean eosinophil scores, gastric juice ECP level, serum ECP level and gastric juice/serum ECP ratio in *H. pylori*-positive patients according to the presence or absence of gastric ulcer

Parameter	Group 1a	Group 1b	p value
Subjects (n)	21	23	
Mean age (years)	41.1±10.7 (20–60)	45.2±11.7 (29–59)	Not significant
Sex (male/female)	12/9	13/10	
Eosinophil score	1.29±0.85	1.02±1.4	Not significant
Gastric juice ECP (µg/l)	56.51±47.1	53.3±56.6	Not significant
Serum ECP (µg/l)	20.5±19.3	19.1±21.1	Not significant
Gastric juice/serum ECP ratio	4.64±4.54	3.88±3.63	Not significant

Group 1a = *H. pylori* positive, gastric ulcer present. Group 1b = *H. pylori* positive, gastric ulcer absent.
the serum ECP level, however, no significant differ-

ence between two groups was found. On the other

hand, gastric juice/serum ECP ratios were greater in

patients infected by H. pylori. We failed to find any

significant difference in regard to gastric mucosal
eosinophil infiltration, gastric juice ECP levels, serum

ECP levels and gastric juice/serum ECP ratios be-
tween those patients having gastric ulcer disease and

those having not.

There are inadequate data in the literature on the
role of eosinophil-associated ECP on diseases caused
by H. pylori. In a study by McGovern et al.,
eosinophil infiltration and degranulation in gastric
mucosa were investigated histopathologically in
H. pylori infection, and eosinophil infiltration and
degranulation in gastric mucosa were greater in
patients with H. pylori gastritis. Berstad et al.35 in
their study revealed that gastric juice ECP concentra-
tion was apparently greater in H. pylori-positive
patients than the negative ones. We also found in
accordance with the aforementioned studies that
eosinophil infiltration in gastric mucosa and gastric
juice ECP levels increased in H. pylori-positive
patients. Ojetti et al.34 assessed serum/gastric juice
ECP levels and gastric mucosal eosinophil infiltration
in idiopathic chronic urticaria patients infected or not
with H. pylori and evaluated the modification after
bacterium eradication. However, they found that
H. pylori infection affects gastric juice ECP and
eosinophil infiltration of only idiopathic chronic
urticaria patients.

As a result, it has been demonstrated that eosino-
phil infiltration in gastric mucosa and ECP levels in
the gastric juice are increased in H. pylori-positive
patients whereas serum ECP levels do not change
significantly. No apparent difference was found in
eosinophil infiltration in gastric mucosa, gastric
juice and serum ECP levels between patients with
and without gastric ulcer. This result, although it
supports the role of eosinophils and eosinophil-
derived ECP in inflammatory changes in chronic
gastritis, suggests that these two factors do not
contribute to gastric ulcer disease development.

References

1. Bertram TA, Murray PD, Morgan DR, Jerdak G, Yang P, Czinn S. Gastritis
associated with infection by Helicobacter pylori in humans: geographi-
cal differences. Scand J Gastroenterol Suppl 1991, 13 (Suppl 1) 114–124.
2. Wyle JA. Helicobacter pylori: current perspectives. J Clin Gastroenterol
1991, 13 (Suppl 1) 1–9.
3. Tytgat GN, Neach L, Raouw EA. Helicobacter pylori. Scand J Gastro-
enterol Suppl 1991, 137: 1–9.
4. Takemura K, Yokota K, Mizuno M et al. Serum antibodies to
Helicobacter pylori and its heat-shock protein 60 correlate with the
response of gastric mucosa-associated lymphoid tissue lymphoma to
eradication of H. pylori. Helicobacter 2004, 9: 94–200.
5. Blaser MJ. Not all Helicobacter pylori strains are created equal; should all
be eliminated? Lancet 1997, 349: 1020–1022.
6. Crabtree JE. Role of cytokines in pathogenesis of Helicobacter pylori-
induced mucosal damage. Dig Dis Sci 1998, 43: 46–55.
7. Bodger KE, Crabtree JE. Helicobacter pylori and gastric inflammation. Br
Med Bull 1998, 54: 139–150.
8. Bayraktaroglu T, Aras AS, Aydemir S et al. Serum levels of tumor
necrosis factor-alpha, interleukin-6 and interleukin-8 are not increased in
dyspeptic patients with Helicobacter pylori-associated gastritis. Mediators Inflamm 2004, 13: 25–28.
9. Weller PF. The immunobiology of eosinophils. N Engl J Med 1991, 324:
1110–1118.
10. Satoh T, Kojima K, Sugii K et al. Fecal eosinophil granule-derived
proteins reflect disease activity in inflammatory bowel disease. Am J
Gastroenterol 1999, 94: 3514–3520.
11. Entenberg ME. Eosinophilia. N Engl J Med 1998, 338: 1592–1600.
12. Levy AM, Kita K. The eosinophil in gut inflammation: effector or
director? Gastroenterology 1996, 110: 952–954.
13. Bishoff SC, Mayer J, Nguyen QT, Stolte M, Manns MP. Immunohis-
tochemical assessment of intestinal eosinophil activation in patients with
oesophageal gastroenteritis and inflammatory bowel disease. Am J
Gastroenterol 1999, 94: 3521–3529.
14. Winterkamp S, Rathel M, Hahn EG. Secretion and tissue content of
eosinophil cationic protein in Crohn’s disease. J Clin Gastroenterol 2000;
30: 170–175.
15. Talley NJ, Kephart GM, McGovern TW, Carpenter HA, Gleich GJ.
Deposition of eosinophil granule major basic protein in eosinophilic
gastritens and celiac disease. Gastroenterology 1992, 103: 137–145.
16. Miyasato M, Tsuda S, Nakama T et al. Serum levels of eosinophil
cationic protein reflect the state of in vitro degranulation of blood
hypodense eosinophils in atopic dermatitis. J Dermatol 1996, 23: 382–
388.
17. Verge P, Bystrom J. Eosinophil cationic protein (ECP). Int J Biochem Cell
Biol 1998, 30: 453–457.
18. Peterson CG, Elkind E, Taha Y, Rabhi Y, Carlson M. A new method for
the quantification of neutrophil and eosinophil cationic proteins in
fevcs: establishment of normal levels and clinical application in patients
with inflammatory bowel disease. Am J Gastroenterol 2002, 97: 1755–
1762.
19. Giembycz MA, Lelande MA. Pharmacology of the eosinophil. Pharmaco-
Rev 1999, 51: 213–340.
20. Galli SJ. New concepts about the mast cell. N Engl J Med 1993, 328:
257–265.
21. McGovern TW, Talley NJ, Kephart GM, Carpenter HA, Gleich GJ.
Eosinophil infiltration and degranulation in Helicobacter pylori-associated
chronic gastritis. Dig Dis Sci 1991, 36: 445–446.
22. Morris A, Nicholson G. Ingestion of Campylobacter pylori gastritis.
Ann Intern Med 1988, 108: 192–198.
23. Everhart JE. Recent developments in the epidemiology of
Helicobacter pylori. Gastroenterol Clin North Am 2000, 29: 559–578.
24. Niemela S, Karttunen T, Kerola T. Chronic gastritis in patients with
gastric ulcer; a 10-year follow-up. Scand J Gastroenterol 1995, 30: 428–
435.
25. Yang HB, Shu B, Su JL, Chien CH, Lin XZ. Clinical application of gastric
histology to monitor treatment of dual therapy in H. pylori eradication.
Dig Dis Sci 1997, 42: 1835–1840.
26. Fiocca R, Luziatti O, Villani L, Chiavaralli AM, Capella C, Solca E.
Epithelial cytotoxicity, immune responses, and inflammatory compo-
nents of Helicobacter pylori gastritis. Scand J Gastroenterol Suppl 1994;
205: 11–21.
27. Whitney AE, Guarnier J, Hutwagner L, Gold BD. Helicobacter pylori
gastritis in children and adults: comparative histopathologic study. Ann
Diagn Pathol 2000, 4: 279–285.
28. Crabtree JE. Gastric mucosal inflammatory responses to Helicobacter
pylori. Aliment Pharmacol Ther 1995, 10 (Suppl 2) 35–39.
29. Hallgren R, Colombel JF, Dahl R et al. Neutrophil and eosinophil
involvement of the small bowel in patients with celiac disease and
Crohn’s disease: studies on the secretion rate and immunohistochemical
localization of granulocyte granule constituents. Am J Med 1989, 86:
56–64.
30. Raab Y, Fredens K, Gerardin B, Hallgren R. Eosinophil activation in
ulcerative colitis: studies on mucosal release and localization of
eosinophilic granule constituents. Dig Dis Sci 1998, 43: 1061–1070.
31. Berstad K, Berstad A, Jr, Sødalh R, Weberg R, Berstad A. Eosinophil
cationic protein and phospholipase A2 activity in human gastric juice,
With emphasis on Helicobacter pylori status and effects of antacids.
Scand J Gastroenterol 1992, 27: 1011–1017.
32. Ojetti V, Armuzzi A, De Luca A et al. Helicobacter pylori infection
affects eosinophilic cationic protein in the gastric juice of patients with
idiopathic chronic urticaria. Int Arch Allergy Immunol 2001, 125:
66–72.