THIN SUBALGEBRAS OF LIE ALGEBRAS OF MAXIMAL CLASS

BY

M. Avitabile
Dipartimento di Matematica e Applicazioni, Università degli Studi di Milano - Bicocca
via Cozzi, 55, I-20125 Milano, Italy
e-mail: marina.avitabile@unimib.it

AND

A. Caranti
Dipartimento di Matematica, Università degli Studi di Trento
via Sommarive, 14, I-38123 Trento, Italy
e-mail: andrea.caranti@unitn.it

AND

N. Gavioli
Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica
Università degli Studi dell’Aquila
via Vetoio, I-67100 Coppito (AQ), Italy
e-mail: norberto.gavioli@univaq.it

AND

V. Monti
Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria
via Valleggio, 11, I-22100 Como, Italy
e-mail: valerio.monti@uninsubria.it

AND

M. F. Newman
Mathematical Sciences Institute, Australian National University
Canberra, ACT 2600, Australia
e-mail: mike.newman@anu.edu.au

AND

E. A. O’Brien
Department of Mathematics, University of Auckland, Auckland 1142, New Zealand
e-mail: e.obrien@auckland.ac.nz

Received December 23, 2020
ABSTRACT
For every field F which has a quadratic extension E we show there are non-metabelian infinite-dimensional thin graded Lie algebras all of whose homogeneous components, except the second one, have dimension 2. We construct such Lie algebras as F-subalgebras of Lie algebras M of maximal class over E. We characterise the thin Lie F-subalgebras of M generated in degree 1. Moreover, we show that every thin Lie algebra L whose ring of graded endomorphisms of degree zero of L^3 is a quadratic extension of F can be obtained in this way. We also characterise the 2-generator F-subalgebras of a Lie algebra of maximal class over E which are ideally r-constrained for a positive integer r.

1. Introduction

A thin Lie algebra is a Lie algebra

$$L = \bigoplus_{i=1}^{\infty} L_i,$$

over a field F, graded over the positive integers, such that $\dim_F L_1 = 2$ and the following covering property holds: for every $i \geq 1$ and for every nonzero $u \in L_i$,

$$[u, L_1] = L_{i+1}.$$

Hence each homogeneous component of L has dimension at most 2. If $\dim L_i = 1$ for every $i \geq 2$, the algebra L is referred to as a (graded) Lie algebra of maximal class (see Section 2 for details). We use the convention that, unless otherwise specified, thin algebras are infinite-dimensional and not of maximal class. The smallest integer $k \geq 2$ such that $\dim L_k = 2$ is a parameter that has been studied in several papers ([5, 1, 2]); in particular, k can be 3.

In this paper we study the class of thin algebras all of whose homogeneous components, except the second, have dimension 2. The only known examples of such algebras are those considered in [11]. There it is proved that all metabelian thin Lie algebras belong to this class, and they are in one-to-one correspondence with the quadratic extensions of the field F. In particular, in one of the constructions in [11], a thin metabelian Lie algebra is realised as a subalgebra over F of the tensor product of the unique infinite-dimensional metabelian Lie algebra of maximal class by a quadratic extension of F.
The main goal of this paper is to generalise the results of [11] to the non-metabelian case. Let E be a quadratic extension of F and let M be a Lie algebra of maximal class over E. In Theorem 4 we consider the F-subalgebras of M generated by two elements of degree 1. Amongst these we explicitly characterise those which are thin and prove that every homogeneous component, except the second one, has dimension 2. We also prove that, for every such thin algebra L, the ring of L-endomorphisms of the L-module L^3 preserving each homogeneous component is isomorphic to E.

We consider more generally the F-subalgebras of M which are 2-generated in degree 1 under the assumption that E is an arbitrary extension of F. In Proposition 3 we characterise those subalgebras which are of maximal class over F. The covering property for a graded Lie algebra $L = \bigoplus_{i=1}^{\infty} L_i$ can be restated as follows (see [9]): every nonzero graded ideal of L is located between two consecutive terms of the lower central series of L. A natural generalisation is to require that there is a positive integer r such that every graded nonzero ideal of L is located between L^i and L^{i+r} for some i. Lie algebras generated by L_1 satisfying this condition are ideally r-constrained. They were introduced in [9]. In Proposition 8 we characterise the 2-generator ideally r-constrained F-subalgebras of M in positive characteristic under the assumption that E is a quadratic extension of F.

In Section 4 we consider a just infinite-dimensional algebra T over F with $\dim_F T_i = 2$ in each degree i different from 2. We prove that the ring E of T-endomorphisms of the T-module T^3 preserving the homogeneous components is a field extension of F of degree at most 2. When $E \neq F$, we construct a Lie algebra of maximal class over E which contains T as an F-subalgebra generated by two elements in degree 1.

Finally, we show that if we apply this construction, starting from a thin F-subalgebra of a Lie algebra M of maximal class over a quadratic extension E of F, then up to isomorphism we recover M. We deduce that the number of thin Lie F-algebras, all of whose homogeneous components of degree at least 3 have dimension 2, is $|F|^{\aleph_0}$, the maximum possible. The work of [3, 14] provided a lower bound 2^{\aleph_0} for the number of thin Lie algebras over an arbitrary field of positive characteristic.
Acknowledgements. M. Avitabile, A. Caranti, N. Gavioli and V. Monti are members of the Italian INdAM-GNSAGA and thank the Department of Mathematics and its Applications of the University of Milano – Bicocca for the hospitality. A. Caranti thanks the Department of Mathematics of the University of Trento for its support. E. A. O’Brien was supported by the Marsden Fund of New Zealand grant UOA 107.

2. Preliminaries

Throughout the paper all Lie algebras are infinite-dimensional over the underlying field, unless explicitly mentioned.

We briefly recall the definition and the basic notions of Lie algebras of maximal class, referring the reader to [4, 6] for details. A (graded) Lie algebra of maximal class (generated in degree 1) is a Lie algebra

\[M = \bigoplus_{i=1}^{\infty} M_i \]

over a field \(\mathbb{E} \), graded over the positive integers, having \(\dim_{\mathbb{E}} M_1 = 2 \), \(\dim_{\mathbb{E}} M_i = 1 \) otherwise and \([M_i, M_1] = M_{i+1} \). The last condition is equivalent to the requirement that \(M_1 \) generates \(M \) as a Lie algebra. The name is motivated by the observation that the quotient \(M/M^j \), where \(M^j = \bigoplus_{i \geq j} M_i \) is the \(j \)-th Lie power, is a Lie algebra of (finite) dimension \(j \) and nilpotency class \(j - 1 \), the maximum possible value.

See [13, 7, 8] for Lie algebras of maximal class not generated in degree 1.

The 2-step centralisers of \(M \) are the 1-dimensional subspaces of \(M_1 \) defined by

\[C_i = C_{M_1}(M_i) = \{ a \in M_1 \mid [a, M_i] = 0 \} \]

for \(i \geq 2 \). Note that \(C_i = C_{M_1}(u_i) \) for every \(0 \neq u_i \in M_i \). Homogeneous generators, \(x \) and \(y \), of \(M \) are chosen as follows. Let \(y \in M_1 \) such that \(C_2 = \mathbb{E}y \). If all other \(C_i \) coincide with \(C_2 \), then \(M \) is the unique metabelian Lie algebra of maximal class (this is the only possibility if the underlying field has characteristic zero), and we choose \(x \) in \(M_1 \) such that \(x \) and \(y \) are \(\mathbb{E} \)-linearly independent. Otherwise, if \(i \) is the smallest integer such that \(C_i \neq C_2 \), then we choose \(x \) such that \(C_i = \mathbb{E}x \). Such \(x \) and \(y \) are standard generators of \(M \); each is defined up to a nonzero constant in \(\mathbb{E} \).
The sequence of centralisers of M consists of consecutive occurrences of Ey interrupted by isolated occurrences of other centralisers. If C is a 2-step centraliser and m is the smallest integer such that $C_m = C$, then $m = 2p^n$ for some non-negative integer n. If C_i and C_j are successive occurrences of C, then $j - i \leq m$ (see [6, Secs. 3 and 10] and [12, p. 439]). Furthermore, as a consequence of the specialisation technique (see [6, Proposition 4.1]), every 2-step centraliser occurs infinitely often.

3. From maximal class to thin

Let \mathbb{E} be an arbitrary extension of \mathbb{F} and let M be a Lie algebra of maximal class over \mathbb{E}. We start with the following result whose proof is immediate.

Lemma 1: Let $i \geq 2$ and $\ell \in M_1 \setminus C_i$. The map

$$\text{ad } \ell : M_i \rightarrow M_{i+1}$$

$$v \mapsto [v, \ell]$$

defines an \mathbb{E}-isomorphism; it is also an \mathbb{F}-isomorphism. If V is an \mathbb{F}-subspace of M_i, then $\dim_\mathbb{F} \text{ad } \ell(V) = \dim_\mathbb{F}[V, \ell] = \dim_\mathbb{F} V$.

We now consider the \mathbb{F}-subalgebra L of M generated by two elements X and Y of M_1. If X and Y are \mathbb{E}-linearly dependent then $[Y, X] = 0$; thus L has \mathbb{F}-dimension at most 2 and the Lie product is trivial. So assume that X and Y are \mathbb{E}-linearly independent. Now $[Y, X] \neq 0$, so $\dim_\mathbb{F} L_2 = 1$. Let l be a nonzero element of L_i for $i \geq 2$. Since $C_{M_1}(l) = C_i$ it follows that $C_{L_1}(l) = C_i \cap L_1$. Define $d_i = \dim_\mathbb{F} C_i \cap L_1$.

The following lemma is crucial for what follows.

Lemma 2: Let L be the Lie \mathbb{F}-subalgebra of M generated by two \mathbb{E}-linearly independent elements X and Y of M_1. The following hold:

1. $\dim_\mathbb{F} L_2 = 1$;
2. $\dim_\mathbb{F} L_{i+1} \geq \dim_\mathbb{F} L_i$ for every $i \geq 2$ (in particular, L is infinite-dimensional);
3. $d_i \leq 1$ for every $i \geq 2$;
4. if $d_i = 0$ then $\dim_\mathbb{F}[l, L_1] = 2$ for every $l \in L_i \setminus \{0\}$;
5. if $d_i = 1$ then $\dim_\mathbb{F}[l, L_1] = 1$ for every $l \in L_i \setminus \{0\}$.

Proof. Item (1) is trivial. Since X and Y are E-linearly independent, there is no integer i such that both X and Y belong to C_i (whose E-dimension is 1). This immediately yields (3), and (2) follows by $L_{i+1} = [L_i, X] + [L_i, Y]$ and Lemma 1. Items (4) and (5) are obvious.

We now characterise the 2-generator F-subalgebras of M of maximal class.

PROPOSITION 3: The algebra L has maximal class if and only if $d_i = 1$ for every $i \geq 2$.

Proof. Observe L has maximal class if and only if $\dim F L_i = 1$ for every $i \geq 2$. Lemma 2, items (1), (5) and (4) imply the claim.

We now restrict to quadratic extensions. In this case we show that L is thin if and only if L_1 intersects every 2-step centraliser of M trivially.

THEOREM 4: If $|E : F| = 2$, then L is a thin Lie algebra if and only if $d_i = 0$ for every $i \geq 2$. In this case $\dim F L_i = 2$ for every $i \neq 2$.

Proof. If l is a nonzero element of L_1 then $[l, L_1] = L_2$. Thus L is thin if and only if $[l, L_1] = L_{i+1}$ for every $i \geq 2$ and every nonzero $l \in L_i$ (and L is not of maximal class).

Suppose that $d_i = 0$ for every $i \geq 2$. Let $0 \neq l \in L_i$ with $i \geq 2$: by Lemma 2, item (4), $\dim F [l, L_1] = 2$. Since

$$\dim F L_{i+1} \leq \dim F M_{i+1} = 2,$$

it follows that $[l, L_1] = L_{i+1}$ and L is thin. In particular, $\dim F L_i = 2$ for every $i \neq 2$.

Conversely, suppose that L is thin. The covering property and items (4) and (5) of Lemma 2 imply that $\dim F L_{i+1} = 2 - d_i$, for every $i \geq 2$. Thus, Lemma 2, item (2), yields $d_i \geq d_{i+1}$. By [4, Lemma 3.3], $d_i = d_2$ for infinitely many values of i. This implies that the sequence of d_is is constant. By Proposition 3, $d_i = 0$ for every $i \geq 2$.

Example 5: Suppose that M has exactly two distinct 2-step centralisers E_x and E_y. For every $\gamma, \delta \in E \setminus F$ with $\gamma \neq \delta$, the F-subalgebra of M generated by $x + y$ and $\gamma x + \delta y$ is non-metabelian and thin and every homogeneous component of degree different from 2 has dimension 2.
Remark 6: Let $E = \mathbb{F}(\lambda)$ be a quadratic extension of \mathbb{F}. Let x and y be standard generators of M and set $X = \alpha x + \beta y$, $Y = \gamma x + \delta y$, where $\alpha, \beta, \gamma, \delta \in E$ are such that $\alpha \delta - \beta \gamma \neq 0$. But $E y$ is a 2-step centraliser of M, so $s \alpha + t \gamma \neq 0$ for every $s, t \in \mathbb{F}$, not both zero. In particular, $\alpha, \gamma \neq 0$. Since the linear map that multiplies each homogeneous component M_i by α^{-i} is an automorphism of M, we can assume that $X = x + \beta y$ and $Y = \gamma x + \delta y$ with $\gamma \notin \mathbb{F}$. By possibly adding to Y an \mathbb{F}-multiple of X and multiplying by a nonzero element of \mathbb{F}, we obtain $\gamma = \lambda$.

If M is not metabelian, then $E x$ is also a 2-step centraliser of M, so $s \beta + t \delta \neq 0$ for every $s, t \in \mathbb{F}$, not both zero. It follows that β and δ are independent over \mathbb{F}, so both are nonzero. Since y is defined up to a nonzero constant in E, we can take $y' = \beta y$ in place of y. Under this assumption, we can represent the generators of L, with respect to this new basis of M_1, as $X = x + \beta y$ and $Y = \lambda x + \delta y$, with $\delta \in E \setminus \mathbb{F}$, $\delta \neq \lambda$. Conversely, these generate a thin subalgebra of M under the assumptions of Theorem 4. Hence there exist at most $|E \setminus \mathbb{F}|$ isomorphism classes of thin subalgebras of M.

Remark 7: Let L be a thin algebra as in Theorem 4. Then $L_i = M_i$ as sets, for $i \geq 3$, but we regard L_i as a vector space over \mathbb{F} and M_i as a vector space over E. Consider the L-module L^3 via the adjoint representation. Observe E acts by multiplication as a ring of L-endomorphisms of L^3, preserving each $L_i = M_i$. Conversely, let f be an L-endomorphism of L^3 preserving the homogeneous components. For each $i \geq 3$ take a nonzero $l_i \in L_i$. Then $f(l_i) = \sigma_i l_i$ for some $\sigma_i \in E$. The covering property implies that $l_{i+1} = [l_i, l_1]$ for some $l_1 \in L_1$, hence $\sigma_{i+1} l_{i+1} = f(l_{i+1}) = f([l_i, l_1]) = [f(l_i), l_1] = \sigma_i [l_i, l_1] = \sigma_i l_{i+1}$, and so $\sigma_{i+1} = \sigma_i$. In particular, this shows that σ_i is independent of the choice of l_i in L_i. It follows that f acts on L^3 as multiplication by $\sigma_3 \in E$.

In characteristic zero, the unique Lie algebra of maximal class has just one 2-step centraliser, so $d_i = d_2$ for every $i \geq 2$. Therefore the previous results settle the case of characteristic zero.

Recall from the introduction that L is ideally r-constrained if, for every graded nonzero ideal I, there is a positive integer i such that $L^i \supset I \supset L^{i+r}$. It is shown in [9, Proposition 2] that a 2-generated ideally 1-constrained Lie algebra is either thin or of maximal class. By Proposition 3 and Theorem 4 this happens if and only if the sequence $(d_i)_{i \geq 2}$ is constant.
We now address the case of the subalgebras L for which this sequence is not constant.

Proposition 8: Let $|E : F| = 2$. Assume that the sequence $(d_i)_{i \geq 2}$ is not constant and set $D_0 = \{i \geq 2 \mid d_i = 0\}$. Let $t_1 < t_2 < \cdots < t_{j-1} < t_j < \cdots$ be the elements of D_0. Then $t_j - t_{j-1} \leq t_1$ for every $j \geq 2$. Let $r = \max(t_j - t_{j-1})$: then $2 \leq r \leq t_1$ and L is an ideally r-constrained Lie algebra but L is not ideally $(r - 1)$-constrained. Moreover,

$$\dim_F L_i = 1 \quad \text{if } 2 \leq i \leq t_1$$

and

$$\dim_F L_i = 2 \quad \text{otherwise}.$$

Proof. As $|E : F| = 2$, we have $\dim_F L_i \leq 2$ for every $i \geq 2$. Since d_{t_1} is the first 0, by Lemma 2, items (4) and (5), $\dim_F L_i = 1$ for every $2 \leq i \leq t_1$ and $\dim_F L_{t_1+1} = 2$. Lemma 2, item (2) then yields that $\dim_F L_i \geq 2$ for every $i \geq t_1 + 1$ and equality holds since $|E : F| = 2$ and $\dim_E L_i \leq \dim_E M_i = 1$.

As mentioned in Section 2, there are infinitely many occurrences of C_{t_1} and if C_u and C_v are two successive such occurrences then $v - u \leq t_1$. Hence D_0 is infinite and $t_j - t_{j-1} \leq t_1$ for every $j \geq 2$. Also $D_1 = \{i \geq 2 \mid d_i = 1\}$ is infinite, so $r \geq 2$.

Let I be a nonzero graded ideal of L and let i be such that $I \subseteq L^i$ but $I \not\supseteq L^{i+1}$. We claim that the ideal generated by a nonzero element l of I of degree i contains L^{i+r}. In particular, $I \supseteq L^{i+r}$ and therefore we need only consider the case when I is generated by l. If $i = 1$, then $[l, L_1] = L_2$ and we are done. If $2 \leq i \leq t_1$ then l generates L_i as an F-vector space and we are done. So assume that $i > t_1$ and let t_j be such that $t_j \geq i > t_{j-1}$; then $t_j < i + r$ by definition of r. By Lemma 2, items (4) and (5), we have $\dim_F(I \cap L_h) = 1$ for $i \leq h \leq t_j$ and $\dim_F(I \cap L_{t_j+1}) = 2$, thus

$$I \supseteq L^{i+1} \supseteq L^{i+r}$$

and $I \not\supseteq L^{t_j}$. If we choose j_0 such that $t_{j_0} - t_{j_0-1} = r$ and put

$$i_0 = t_{j_0} + 1,$$

then the ideal generated by an element of degree i_0 does not contain L^{i_0+r-1}. Hence L is not ideally $(r - 1)$-constrained. □
4. From thin to maximal class

Let \(L = \bigoplus_{i=1}^{\infty} L_i \) be a graded Lie algebra, over a field \(\mathbb{F} \), generated by \(L_1 \) as a Lie algebra. A **graded** module is an \(L \)-module \(V = \bigoplus_{i=0}^{\infty} V_i \) over \(\mathbb{F} \), for some \(n_0 \in \mathbb{N} \), such that \(V_i \cdot L_j \leq V_{i+j} \). The module \(V \) is just infinite-dimensional if it is infinite-dimensional and every graded submodule is either trivial or has finite codimension. If the image of the adjoint representation of \(L \) is a just infinite-dimensional \(L \)-module, then we say that \(L \) is a just infinite-dimensional Lie algebra. This is always the case when \(L \) is an ideally \(r \)-constrained Lie algebra. Every non-trivial (possibly non-graded) submodule of a just infinite-dimensional graded module \(V \) has finite codimension (see [10, Lemma 2.3]). In particular, a finite-dimensional submodule of \(V \) is necessarily trivial. A linear map \(\varphi: V \to V \) is **graded of degree** \(d \) if \(\varphi(V_i) \leq V_{i+d} \) for a non-negative integer \(d \). Let \(\text{GrEnd}(V) \) be the ring generated by the graded \(\mathbb{F} \)-linear maps of \(V \). Thus \(\text{GrEnd}(V) = \bigoplus_{d=0}^{\infty} \text{GrEnd}_d(V) \) is a graded ring, where each homogeneous component \(\text{GrEnd}_d(V) \) consists of the \(\mathbb{F} \)-linear maps of \(V \) having degree \(d \).

Lemma 9 (Schur’s lemma): Let \(V \) be a graded just infinite-dimensional \(L \)-module. If \(0 \neq \varphi \in \text{End}(V) \) is an \(L \)-endomorphism of \(V \), then \(\varphi \) is injective.

Proof. Let \(U = \ker \varphi \) and \(W = \text{Im} \varphi \). By assumption, \(W \neq 0 \) so \(\dim U = \text{codim} W \) is finite. Hence \(\ker \varphi = 0 \).

Corollary 10: Let \(V \) be a graded just infinite-dimensional \(L \)-module. The ring \(\text{GrEnd}_L(V) \), consisting of the \(L \)-endomorphisms in \(\text{GrEnd}(V) \), is a graded domain whose homogeneous component \(\text{GrEnd}_d(V) \) of degree \(d \) has \(\mathbb{F} \)-dimension at most \(\inf_{i \geq n_0}(\dim V_{d+i}) \). In particular, the subring \(\mathbb{E} = \text{GrEnd}_{L,0}(V) \) of the graded \(L \)-endomorphisms of \(V \) of degree 0 is a skew-field extension of \(\mathbb{F} \) of degree at most \(\inf_{i \geq n_0}(\dim V_i) \) and contains \(\mathbb{F} \) in its centre.

Proof. Let \(v \) be a nonzero element in \(V_i \). The map \(\psi: \text{GrEnd}_{L,d}(V) \to V_{d+i} \) defined by \(\varphi \mapsto \varphi(v) \) is an injective \(\mathbb{F} \)-linear map, so

\[
\dim_{\mathbb{F}} \text{GrEnd}_{L,d}(V) = \dim_{\mathbb{F}} \text{Im} \psi \leq \dim_{\mathbb{F}} V_{i+d}.
\]

Remark 11: For every \(i \) the homogeneous component \(V_i \) is an \(\mathbb{E} \)-module. In particular, \(|\mathbb{E} : \mathbb{F}| \cdot \dim_{\mathbb{F}} V_i = \dim_{\mathbb{F}} V_i \). If \(\dim_{\mathbb{F}} V_i \) is a prime \(p \) for some \(i \), then \(|\mathbb{E} : \mathbb{F}| \) is 1 or \(p \), so \(\mathbb{E} \) is a simple extension of the field \(\mathbb{F} \).
Remark 12: Let I be a non-trivial graded ideal in a just infinite-dimensional Lie algebra L. The centraliser $C_L(I)$ is also a graded ideal of L, so either $C_L(I) = 0$, or the quotient $L/C_L(I)$ has finite dimension. In the latter case, $C_L(I) \cap I$ is abelian and has finite codimension. Hence L is soluble if and only if L has a non-trivial graded ideal I with $C_L(I) \neq 0$. Also, a graded ideal I of L is abelian if and only if $C_L(I) \neq 0$ (see [10, Proposition 2.9 and Corollary 2.11]). Therefore L is insoluble if and only if for every non-trivial graded ideal I of L the adjoint representation of L over I is faithful.

From now on, T is a just infinite-dimensional Lie algebra over F such that $\dim F T_i = 2$ for every $i \neq 2$. By Corollary 10 and Remark 11, the ring E of T-endomorphisms of T^3 preserving the homogeneous components is a field extension of F of degree at most 2.

Lemma 13: Suppose the field E has degree 2 over F. If I is a non-trivial maximal abelian graded ideal of T, then it equals T^k for some $k \geq 2$ and is unique.

Proof. Let k be the smallest integer such that $I \cap T_k \neq 0$. Note $k \geq 2$ because $\dim_F T_3 = 2$. We claim that $I = T^k$: since the ideal generated by T_k is T^k, it is enough to show that $I \cap T_k = T_k$. When $k = 2$, this is obvious as $\dim_F T_2 = 1$. When $I \leq T^3$, the ideal αI is abelian for every $\alpha \in E$. As $[x, \alpha y] = \alpha[x, y] = 0$ for every x and y in I, the ideal $I + \alpha I$ is abelian and $\alpha I \subseteq I$ by the maximality of I. Therefore $I \cap T_k$ is a nonzero vector space over E, whence the claim. □

When $|E : F| = 2$ we construct a Lie algebra $N = \bigoplus_{i=1}^{\infty} N_i$ of maximal class over E containing T as an F-subalgebra generated by two elements of N_1.

Assume first that T is not metabelian. Let $R = \mathfrak{gl}_E(E \oplus I)$ be the Lie algebra of E-linear maps of the vector space $E \oplus I$, where $I = T^3$ if T is insoluble, or $I = T^k$ is the unique maximal abelian graded ideal of T, otherwise. Note that $k \geq 3$ as T is not metabelian, so I is an E-vector space. Let $z \in T \setminus I$ be a homogeneous element which is central modulo I. By Remark 12, the map

$$\rho: t \mapsto \begin{bmatrix} 0 & [z, t] \\ 0 & \text{ad} t|_I \end{bmatrix},$$

which is the adjoint representation of T over the ideal $\langle z \rangle \oplus I$, is a faithful representation of T in R. This is easy in the insoluble case; for soluble T, see [10, Lemma 2.8], taking $J = Fz + I$.

The field \mathbb{E} and $\rho(T)$ are \mathbb{F}-subspaces of R. We claim that
\[N = \mathbb{E} \cdot \rho(T) = \{ \lambda \cdot \rho(t) \mid \lambda \in \mathbb{E} \text{ and } t \in T \} \subseteq R \]
is a Lie algebra of maximal class over \mathbb{E}. Let $N_i = \mathbb{E} \cdot \rho(T_i)$. If $i \geq 3$ then
\[N_i = \mathbb{E} \cdot \rho(T_i) = \rho(\mathbb{E} \cdot T_i) = \rho(T_i). \]
Hence N_i is a module over \mathbb{E} of dimension 1 for every $i \geq 3$. Clearly, the homogeneous component $N_2 = \mathbb{E} \cdot \rho(T_2)$ has dimension 1 over \mathbb{E}. The dimension of N_1 over \mathbb{E} is 2, otherwise T is abelian. Let S be the \mathbb{E}-subalgebra of N generated by N_1. This algebra contains the \mathbb{F}-algebra generated by $\rho(T_1)$, namely $\rho(T)$, so S contains also $\mathbb{E} \cdot \rho(T) = N$. Hence N is generated over \mathbb{E} by its first homogeneous component N_1.

When T is metabelian, the construction must be modified by considering, instead of ρ, the adjoint representation ρ' over the ideal $\langle Y \rangle \oplus T^2$:
\[
\rho' : t \mapsto \begin{bmatrix}
0 & \alpha & [Y, s] \\
0 & 0 & [[Y, X], t] \\
0 & 0 & \text{ad } t |_{T^3}
\end{bmatrix} \in R' = \mathfrak{gl}(\mathbb{E} \oplus \mathbb{E} \oplus T^3)
\]
where $T_1 = \mathbb{F} \cdot X + \mathbb{F} \cdot Y$ and $t = \alpha X + \beta Y + s$ with $s \in T^2$. As above, the Lie algebra $N = \mathbb{E} \cdot \rho'(T)$ is of maximal class over \mathbb{E}.

Now let $\mathbb{E} \supset \mathbb{F}$ be a quadratic extension of fields and let M be a Lie algebra of maximal class over \mathbb{E}. Let L be the thin \mathbb{F}-subalgebra of M generated by two elements of M_1 as in Theorem 4. By Remark 7, we can apply the above construction, starting from the algebra L, to obtain a Lie algebra N of maximal class over \mathbb{E} containing L as an \mathbb{F}-subalgebra. We show that we can recover the algebra M up to isomorphism.

Proposition 14: The Lie algebras M and N of maximal class are isomorphic.

Proof. Observe $N = \mathbb{E} \cdot \rho(L) = \rho(\mathbb{E} \cdot L) = \rho(M) \cong M$ where the last isomorphism holds because M is a just infinite-dimensional Lie algebra.

Remark 15: Let M be an arbitrary algebra of maximal class over \mathbb{E} with standard generators x and y. Every 2-step centraliser other than $\mathbb{E}y$ can be written as $\mathbb{E}(x + \lambda y)$ for unique $\lambda \in \mathbb{E}$. Let \mathcal{L} be the set of all such λs. Let
\[X = \alpha x + \beta y = \alpha(x + \alpha^{-1} \beta y) \quad \text{and} \quad Y = \gamma x + \delta y = \gamma(x + \gamma^{-1} \delta y) \]
be two \mathbb{E}-linearly independent elements in M_1. By Theorem 4 the \mathbb{F}-subalgebra of M generated by X and Y is thin if and only if $\mathbb{F} \cdot X + \mathbb{F} \cdot Y$ intersects...
every 2-step centraliser trivially. This occurs if and only if the affine line
\[\Lambda = \{ t\alpha^{-1}\beta + (1 - t)\gamma^{-1}\delta \mid t \in \mathbb{F} \} \]
intersects \(L \) trivially, so \(L \subseteq E \setminus \Lambda \). There are at least \(|E \setminus F|^{\aleph_0} = |E|^{\aleph_0} = |F|^{\aleph_0} \) algebras of maximal class satisfying this condition [4]. By Proposition 14, there are at least as many thin \(\mathbb{F} \)-algebras all of whose homogeneous components of degree at least 3 have dimension 2. Hence the upper bound \(|F|^{\aleph_0} \) for the number of such thin \(\mathbb{F} \)-algebras is attained.

References

[1] M. Avitabile and G. Jurman, *Diamonds in thin Lie algebras*, Bollettino della Unione Matematica Italiana. Serie VIII. Sezione B. Articoli di Ricerca Matematica 4 (2001), 597–608.
[2] M. Avitabile, G. Jurman and S. Mattarei, *The structure of thin Lie algebras with characteristic two*, International Journal of Algebra and Computation 20 (2010), 731–768.
[3] A. Caranti and S. Mattarei, *Some thin Lie algebras related to Albert–Frank algebras and algebras of maximal class*, Journal of the Australian Mathematical Society 67 (1999), 157–184.
[4] A. Caranti, S. Mattarei and M. F. Newman, *Graded Lie algebras of maximal class*, Transactions of the American Mathematical Society 349 (1997), 4021–4051.
[5] A. Caranti, S. Mattarei, M. F. Newman and C. M. Scoppola, *Thin groups of prime-power order and thin Lie algebras*, Quarterly Journal of Mathematics. Oxford 47 (1996), 279–296.
[6] A. Caranti and M. F. Newman, *Graded Lie algebras of maximal class. II*, Journal of Algebra 229 (2000), 750–784.
[7] A. Caranti and M. R. Vaughan-Lee, *Graded Lie algebras of maximal class. IV*, Annali della Scuola Normale Superiore di Pisa. Classe di Scienze 29 (2000), 269–312.
[8] A. Caranti and M. R. Vaughan-Lee, *Graded Lie algebras of maximal class. V*, Israel Journal of Mathematics 133 (2003), 157–175.
[9] N. Gavioli and V. Monti, *Ideally constrained Lie algebras*, Journal of Algebra 253 (2002), 31–49.
[10] N. Gavioli, V. Monti and C. M. Scoppola, *Just infinite periodic Lie algebras*, in *Finite Groups 2003*, Walter de Gruyter, Berlin, 2004, pp. 73–85.
[11] N. Gavioli, V. Monti and D. S. Young, *Metabelian thin Lie algebras*, Journal of Algebra 241 (2001), 102–117.
[12] G. Jurman, *Graded Lie algebras of maximal class. III.*, Journal of Algebra 284 (2005), 435–461.
[13] A. Shalev and E. I. Zelmanov, *Narrow Lie algebras: a coclass theory and a characterization of the Witt algebra*, Journal of Algebra 189 (1997), 294–331.
[14] D. S. Young, *Thin Lie algebras with long second chains*, Ph. D. thesis, The Australian National University, Canberra, ACT, 2001.