Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Degradation of iopromide by combined UV irradiation and peroxydisulfate

Ting W. Chan, Nigel J.D. Graham, Wei Chu

A R T I C L E I N F O

Article history:
Received 22 December 2009
Received in revised form 10 May 2010
Accepted 11 May 2010
Available online 16 May 2010

Keywords:
Iodinated X-ray contrast media
Iopromide
UV irradiation
Peroxydisulfate
AOPs

A B S T R A C T

The aqueous degradation of iopromide, an iodinated X-ray contrast media (ICM) compound, by the combination of UV254 irradiation and potassium peroxydisulfate (K2S2O8) has been studied in laboratory scale experiments. The influence of various parameters on the performance of the treatment process has been considered, namely the UV irradiation light intensity, the initial concentrations of iopromide and peroxydisulfate, and the initial solution pH. Iopromide degradation increased with UV light intensity and peroxydisulfate concentration, but decreased with initial pH. Under specific conditions complete removal of iopromide was achieved within 30 min, and near-complete mineralisation (loss of solution TOC) within 80 min. Degradation was believed to be caused by a combination of direct photolysis, sulfate radical attack, and, to a minor degree, direct oxidation by peroxydisulfate. Approximate values for the reaction rate constants have been determined and found to be equal to 1–2 × 104 M−1 s−1 for sulfate radicals, and 1–2 M−2 s−1 for S2O82−. Overall compound degradation was observed to follow first-order kinetics where the rate constant decreased with initial solution pH. During the reaction, the solution pH decreased as a consequence of sulfate radical scavenging.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

There is much interest currently in the occurrence and control of pharmaceutical contaminants in the aqueous environment. One specific group of compounds, iodinated X-ray contrast media (ICM), has become the focus of environmental concern due to the presence of these compounds in wastewaters and potential contamination of, and harm to, the aquatic environment. As halogenated compounds, they are the main contributors to the burden of total adsorbable organic halogen (AOX) in clinical wastewater [1] and several ICM compounds have been measured at relatively high concentrations (>1 μg L−1) in many aqueous environments, including water treatment plant effluents, groundwaters, creeks, rivers, and drinking water [2]. At present, it is unclear whether ICM compounds themselves at the concentrations likely to be present pose a significant risk to human health, but iopromide has been shown recently to have estrogen activity [3]. There is also concern about the ecotoxicity of metabolite/transformation products of ICM, whose presence in environmental waters is suspected [4].

The ICM compounds are derivatives of 2,4,6-tri-iodobenzoic acid possessing polar carboxylic and hydroxyl moieties in their branch chains. Most ICM compounds are non-ionic, such as iopromide, while others are ionic ICM compounds, such as diatrizoate. As a consequence of their physico-chemical nature, they are recalcitrant, and conventional municipal treatment plants are not able to remove them effectively from influent wastewaters [2,4]. In view of this it may be necessary for water utilities to employ an advanced oxidation process (AOP) to control these contaminants.

While some recent studies have reported on the degradation of iopromide by UV photolysis [5], ozone [6] and ozone-sonolysis AOP [7], previous research by the authors [16] has identified the combination of UV irradiation and peroxydisulfate as another potential AOP for the effective treatment of ICM compounds. Peroxydisulfate (S2O82− ion) is a strong oxidant (E° = 2.05 V) which has been used widely in the petroleum industry for the treatment of hydraulic fluids or as a reaction initiator [8]. The peroxydisulfate is normally available as a salt associated with ammonium, sodium or potassium. Potassium peroxydisulfate (KPS) recently was shown to be an effective disinfectant and/or oxidant for the Norwalk virus, foot-and-mouth disease and Coronaviridae (causing severe acute respiratory syndrome—SARS) [9]. It has also been reported to be effective for degrading organics in hazardous wastewaters in acidic or basic media through direct chemical oxidation [8], where peroxydisulfate is used as a sacrificial reagent [10]. However, since the reactions of peroxydisulfate are generally slow at normal temper-
structural isomers. The chemical structure of the isomers was not
peaks for iopromide in their studies indicating the presence of
iopromide (C_{18}H_{24}I_{3}N_{3}O_{8}) is shown in Fig. 1, and its IUPAC name is
in salt content in the effluent. The SO_{4}^{2-}
end-product [12], which leads to a decrease in pH and an increase
peroxydisulfate will start reacting exothermally only at 100
oxydisulfate for reuse in water as shown by Balazs et al. [14]. Since
Theoretically, sulfate ion can be regenerated electrolytically to per-
the secondary drinking water standards with a maximum concen-

In the oxidation process, sulfate ions will be generated as the end-product [12], which leads to a decrease in pH and an increase
in salt content in the effluent. The SO_{4}^{2-} is practically inert and is
not considered to be a pollutant; the USEPA has listed it under
various conditions of UV254 light intensity, reactant concentrations,
and standard solutions were stored in a refrigerator prior to use.

This study has been undertaken to investigate the degradation
behaviour of iopromide, as a representative non-ionic ICM
compound, with photo-activated potassium peroxysulfate under
various conditions of UV254 light intensity, reactant concentrations,
and solution pH. The study has considered the influence of each
of these factors and has determined approximate values for the
reaction rate constants.

2. Experimental methods

2.1. Chemicals

All solutions were prepared using 18 Ω deionized distilled
water produced from a NANO pure water treatment system (Spec-
ichrom, Milli-Q, LibraS12). All chemicals and solvents were HPLC
grade, and they were used without further purification. Potassium
peroxysulfate (K_{2}S_{2}O_{8}, KPS) was obtained from Sigma–Aldrich
with the reaction rate of isomer 2 significantly greater than isomer
in 30 min for both isomers under a light intensity of 6 lamps
lyzer with an ASI-5000A autosampler. All experiments were carried
out in an air-conditioned room temperature of 23 ± 2 °C.

3. Results and discussion

3.1. Effect of UV light intensity

The degradation kinetics of one of the two iopromide isomers
(isomer 1) is shown in Fig. 2 with different light intensities (number
of UV254 lamps) at an initial pH value of 3.5. As expected,
the rate of compound degradation increased systematically with
light intensity, and an overall degradation of 90% was achieved
in 30 min for both isomers under a light intensity of 6 lamps
(≈9 × 10^{-6} Einstein L^{-1} s^{-1}). The degradation kinetics were found
to be approximately first-order (viz. In C - In C_{0} = -kt), and the first-order rate constant was linearly related to the light intensity
(number of lamps), as shown in Fig. 3. It can be seen that there
was a noticeable difference in reactivity between the two isomers,
with the reaction rate of isomer 2 significantly greater than isomer
1. The linear relationship between the rate constant and the light
intensity can be explained by the effects of both direct photolysis and
SO_{4}^{•-} radical reactions. For direct photolysis, the compound
degradation rate, k_{p} (s^{-1}), can be shown to be directly proportional
to the light intensity as follows [19]:

k_{p} = 2.303\Phi l_{0} \varepsilon_{l} l

where \Phi is the quantum yield (mol Einstein^{-1}), \varepsilon_{l} is the intensity
of the incident light at 253.7 nm (Einstein L^{-1} s^{-1} cm^{-1}), \varepsilon_{l} is the compound
molar absorptivity at 253.7 nm (L mol^{-1} cm^{-1}), and l is the light

2.2. Experimental methods

Photodegradation experiments were carried out in a 300 mL
(56 mm i.d. × 130 mm H) quartz beaker with magnetic stirring,
where 250 mL of the test solution was placed in the centric of the
UV photoreactor, Rayonet™ RPR-200 (Southern New England
Ultraviolet Co.). The reactor was equipped with two to six phosphor-coated low-pressure mercury lamps (approximately
35 W each), emitting 253.7 nm monochromatic UV at a light intensity
of 1.5 × 10^{-6} Einstein L^{-1} s^{-1} per lamp. Unless otherwise stated,
reactions were carried out with 0.126 mM (∼100 mg L^{-1}) iopro-
mine and 2 mM KPS in blank solutions with the requisite amount of
H_{2}SO_{4} or NaOH for the desired initial pH. To terminate the reaction,
samples were mixed with an excess of sodium azide (1 mM) prior to
the quantification of the probe compound and TOC. In general, the
initial concentration ranges for iopromide (0.076–0.506 mM), KSP
(0.4–20 mM) and the pH (2.6–11), were selected to monitor accu-
ately the chemical reactions, ensure a reasonable reaction time
(within 30–60 min), and examine a wide range of reaction kinetics
for both academic and practical purposes.

Analysis of iopromide concentration was performed by HPLC
(Waters 515 HPLC pump), connected to a Waters 2487 dual-

\[
\begin{align*}
S_{2}O_{8}^{2-} + \text{photons} & \rightarrow 2SO_{4}^{•-} \quad (1) \\
SO_{4}^{•-} + RH_{2} & \rightarrow SO_{4}^{2-} + H^{+} + RH^{•} \quad (2) \\
RH^{•} + S_{2}O_{8}^{2-} & \rightarrow R + SO_{4}^{2-} + H^{+} + SO_{4}^{•-} \quad (3) \\
SO_{4}^{•-} + R & \rightarrow R^{•} \quad (4) \\
2R^{•} & \rightarrow RR(\text{dimer}) \quad (5)
\end{align*}
\]
path (cm). Based on this formula and using values of \(\Phi_{Iop} \) and \(\varepsilon_{Iop}/\eta \) recently reported for iopromide (viz. \(\Phi = 0.039\ \text{mol Einstein}^{-1} \), \(\varepsilon_{Iop}/\eta = 210.4\ \text{L mol}^{-1}\ \text{cm}^{-1} \); Canonica et al. [5]), the corresponding values for \(k_P \) are 0.019 min\(^{-1} \) (2 lamps), 0.038 min\(^{-1} \) (4 lamps) and 0.057 min\(^{-1} \) (6 lamps). By comparing these calculated values with those in Fig. 3 it can be seen that the measured values from UV/KPS are greater, particularly for isomer 2, and this increase may be attributed to simultaneous reactions with SO\(_4^{\cdot-} \) radicals, and KPS. The relationship between the rate constant and SO\(_4^{\cdot-} \) radical reactions is discussed in the next section.

3.2. Reaction kinetics

In theory, the kinetics of the iopromide degradation may be described as a combination of direct photolysis and chemical reactions between iopromide and KPS and SO\(_4^{\cdot-} \) radicals. The overall reaction rate may be expressed as follows:

\[
- \frac{d[C_{Iop}]}{dt} = k_P[C_{Iop}]^q + k_{SO4}[SO_4^{\cdot-}]^r + k_{KPS}[KPS]^p
\]

(7)

where \([C_{Iop}]\), \([SO_4^{\cdot-}]\) and \([KPS]\) are the iopromide, radical and KPS concentrations, respectively, and \(k_P \), \(k_{SO4} \) and \(k_{KPS} \) are the corresponding reaction rate constants. The exponent for iopromide concentration, 'q', was assumed for simplicity to be the same for all the \([C_{Iop}]\) terms and this was justified subsequently. To evaluate the reaction exponents, 'p', 'q' and 'r', iopromide degradation experiments were carried out with varying concentrations of iopromide and KPS; varying the KPS concentration also varied the SO\(_4^{\cdot-} \) concentration. In the first set of experiments the reaction conditions were kept constant (i.e. KPS concentration, UV intensity, pH), except for the initial iopromide concentration \((C_{Iop}) \) which was varied in the range, 0.0758–0.506 mM. From Eq. (7) it can be seen that if the value of the exponent 'q' can be assumed to be unity, then the equation describes a first-order reaction for the temporal change of \(C_{Iop} \) (assuming all other reaction conditions are constant); whereupon after integration, the variation of \(C_{Iop} \) is given by the linear relationship: \(\ln(C_0/C) = kt \). The results of the tests for isomer 1 for each initial iopromide concentration \((C_0) \) can be seen in Fig. 4, where the value of \(\ln(C_0/C) \) is plotted versus time. It can be seen that in each case the first-order model fitted the results closely, within experimental error, and thus the value of the exponent 'q' can be assumed to be one. Therefore, Eq. (7) can be simplified as:

\[
- \frac{d[C_{Iop}]}{dt} = \{ k_P + k_{SO4}[SO_4^{\cdot-}]^r + k_{KPS}[KPS]^p \} [C_{Iop}]
\]

(8)

The SO\(_4^{\cdot-} \) radical concentration is the result of SO\(_4^{\cdot-} \) generation by the photolysis of KPS (Eq. (1)) and consumption by reactions and scavenging within the water matrix. The photolytic generation of SO\(_4^{\cdot-} \) radicals can be expressed as follows, where 2 radical molecules are produced from one S\(_2\)O\(_8^{2-} \) molecule:

\[
- \frac{d[SO_4^{\cdot-}]}{dt} = 2(2.303)\Phi_{S_2O_8}(I_\lambda)\lambda S_2O_8^2(\varepsilon_\lambda)\lambda S_2O_8[I\text{KPS}]
\]

(9)

The value of \(\Phi_{S_2O_8} \) has been determined to be 0.52 [20], and \(\varepsilon_\lambda \lambda S_2O_8 \) has been reported as 24.1 L mol\(^{-1} \) cm\(^{-1} \) [21]. The consump-
The rate constant for this reaction (Eq. (10)), \(k_W\), has been reported to lie in the range of 360–1000 s\(^{-1}\) [20]. It is assumed that parallel reactions with iopromide, KPS, and SO\(_4^{2-}\) chain reactions are minor relative to the reaction with water and can be incorporated approximately into the rate constant, \(k_W\). For example, the rate constant for SO\(_4^{2-}\) scavenging by KPS has been reported to be \(-10^4\) M\(^{-1}\) s\(^{-1}\) [20], so for [KPS] = 2 mM, the scavenging rate is approximately 20 s\(^{-1}\) (\(\ll k_W\)). By assuming a steady state, whereby the rate of SO\(_4^{2-}\) radical generation is equal to the radical consumption rate, the net rate will be zero. Thus:

\[
-\frac{d[SO_4^{2-}]}{dt} = \left(2(2.303)\Phi_{SO_4}(I_2\pi r_{SO_4}) [KPS]\right) / k_W
- k_W[SO_4^{2-}] = 0
\]

(11)

Rearranging Eq. (11) gives the steady state SO\(_4^{2-}\) radical concentration:

\[
[SO_4^{2-}] = \left\{2(2.303)\Phi_{SO_4}(I_2\pi r_{SO_4}) [KPS]\right\} / k_W
\]

(12)

Simplifying Eq. (12) by substituting \(k'\) for \[2(2.303)\Phi_{SO_4}(I_2\pi r_{SO_4}) [KPS]\], then \([SO_4^{2-}]* = (k'/k_W) [KPS]\] and substituting for \([SO_4^{2-}]*\) in Eq. (8) gives:

\[
-\frac{d[C_{iop}]}{dt} = \left\{k_p + k_{SO_4} \left(\frac{k'}{k_W}\right) [KPS] + k_{KPS}[KPS]^2\right\} [C_{iop}]
\]

(13)

A second series of tests were undertaken in which the initial concentration of iopromide was kept constant (0.126 mM), and the initial KPS concentration varied in the range, 0.4–20 mM, whilst under a constant UV irradiation intensity (4 lamps). The results of the tests indicated that the iopromide degradation rate increased with KPS concentration. The form of the relationship was found to be semi-logarithmic, as shown in Fig. 5, with the following general form: \(\ln(k_1) = h[KPS] + f\), where \(h\) and \(f\) are constants. Thus, it can be shown that \(k_1 = (g) \exp[h[KPS]]\), where \(g\) is a new constant \((f = \ln(g))\). The exponential term, \(\exp[h[KPS]]\), can be represented approximately by the first three terms of the exponential series expansion, \(1 + h[KPS] + (h/2)[KPS]^2\). Thus, the iopromide degradation rate equation can be expressed as:

\[
-\frac{d[C_{iop}]}{dt} = \left\{g + gh[KPS] + \left(\frac{gh}{2}\right)[KPS]^2\right\} [C_{iop}]
\]

(14)
between pH 9 and 11 (22–29%). At pH 11, the iopromide degradation rate was close to the theoretical rate for direct photolysis alone \((0.038 \text{ min}^{-1})\), indicating a high degree of SO$_4$•• radical scavenging under such conditions. The following are possible scavenging reactions responsible for this [20]:

\[
\begin{align*}
\text{SO}_4^{••} + \text{OH}^- & \rightarrow \text{SO}_4^{2–} + \text{OH}^* \quad (k \sim 6 \times 10^7 \text{ M}^{-1} \text{s}^{-1}) \quad (16) \\
\text{SO}_4^{••} + \text{OH}^* & \rightarrow \text{HSO}_4^- + 0.5\text{O}_2 \quad (k = 1–10 \times 10^9 \text{ M}^{-1} \text{s}^{-1}) \quad (17)
\end{align*}
\]

Criquet and Karpel Vel Leitner [20] also reported a decrease in reaction rate with pH for acetic acid degradation by UV/KPS between pH 5 and 11, citing the reaction between the sulphate radical and OH as the principal cause. At very low pH (\(<4\)) the slightly greater iopromide degradation rate may be due to significant complementary, indirect reactions with OH• radicals arising from the scavenging of SO$_4$•• (Eq. (10)). Such indirect reactions could be very rapid since Ning and Graham [6] have reported an iopromide/OH• radical rate constant of \(2 \times 10^{-3} \text{ M}^{-1} \text{s}^{-1}\).

3.4. Overall reaction

It was observed that with each degradation reaction there was a decrease in solution pH with time. These changes are illustrated in Fig. 7a and b. In Fig. 7a, the influence of KPS concentration is shown whereby the decrease in solution pH increased systematically with KPS concentration for the initial period (0–5 min). This is consistent with the direct relationship between sulfate radical generation and KPS concentration, as represented by Eq. (9), thereby leading to increasing H$^+$ ions being generated as a consequence of aqueous SO$_4$•• scavenging (Eq. (10)). After the initial period, the further decrease in pH with time was relatively gradual and similar for all the KPS concentrations. It seems reasonable to speculate that in the initial reaction period (0–5 min), substantial degradation of iopromide occurs leading to intermediate products, some of which may behave as weak organic acids leading to the buffering of solution pH, both during the initial period and subsequently. Similarly, the results shown in Fig. 7b, for the same specific oxidation conditions (4 lamps, 0.126 mM iopromide, 2 mM KPS) but different initial pH values, show a reduction in solution pH with time corresponding to approximately equivalent H$^+$ production as a result of the scavenging of sulfate radicals.

Although no investigation of reaction products was carried out in this study, there were clear indications that substantial quantities of reaction intermediates were formed. Changes in iopromide concentration and solution TOC (total organic carbon) can be seen in Fig. 8, which demonstrated that there was very little loss of TOC (conversion to CO$_2$–mineralisation) in the early stages of the reactions (<10 min) where the corresponding degradation of iopromide was substantial. Continuation of the oxidation conditions beyond the point of full iopromide degradation leads to near-complete mineralisation of the reaction products (i.e. loss of solution TOC) after approximately 70–80 min. In general, little work has been reported on the degradation mechanisms of ICM compounds, but one recent study has indicated that oxidation by OH• radicals of iomeprol lead to the conversion of hydroxyl moieties on the compound side chains by hydrogen abstraction to aldehyde or ketone groups [22]; similar products have been reported for iopromide undergoing biodegradation [23]. In contrast, Ning and Graham [6] observed in ozone reactions with ICM compounds the release of iodine during the period of compound degradation, suggesting cleavage of the iodine–carbon bond on the aromatic ring. Further work is required to investigate the degradation mechanisms for iopromide in the UV/KPS system, and the pathways arising from direct photolysis and sulphate radical reaction.
4. Conclusions

The aqueous degradation behaviour of iopromide, as a representative non-ionic ICM compound, in the presence of photo-activated potassium peroxydisulfate (KPS) has been studied under various conditions of UV254 light intensity, reactant concentrations, and solution pH. As iopromide has been found to be a recalcitrant environmental contaminant, the application of advanced oxidation processes to wastewaters containing ICM compounds represents the most viable method of treatment. The results of laboratory experiments with photo-activated KPS have shown that under specific conditions complete removal of iopromide was achieved within 30 min, and near-complete mineralisation within 80 min. The mechanisms of degradation are believed to involve a combination of direct photolysis, sulphate radical attack, and, to a minor degree, direct oxidation by peroxydisulfate. Approximate values for the reaction rate constants have been determined and found to be equal to 1–2 × 10^8 M^−1 s^−1 for sulfate radicals, and 1–2 M^−2 s^−1 for direct reactions with KPS (S_2O_8^2−). The rate constants appear to be relatively low compared to published values for sulphate radical reactions with other organic substrates, but this is believed to be due to the discriminating nature of SO_4^− radical reactions, involving electron transfer, addition or hydrogen abstraction, and the recalcitrant nature of the iopromide molecule. Overall compound degradation was observed to follow first-order kinetics where the rate constant decreased with initial solution pH. During the reaction the pH of the solution was observed to decrease with time, which was believed to be the consequence of sulfate radical scavenging.

Acknowledgements

The authors gratefully acknowledge the assistance of Mr. James Fung, Dr. Ada Chan, Dr. Amy Rao and Mr. Wai Shung Lam, and the financial support of The Hong Kong Polytechnic University (GU-406).

References

[1] S. Gartiser, L. Brinker, T. Erbe, K. Kummerer, R. Willmund, Contamination of hospital wastewater with hazardous compounds as defined by 7a WHG, Acta Hydrochim. Hydrobiol. 24 (1996) 90–97.
[2] T.A. Ternes, R. Hirsch, Occurrence and behaviour of X-ray contrast media in sewage facilities and the aquatic environment, Environ. Sci. Technol. 34 (2000) 2741–2748.
[3] H. Krause, B. Schweiger, J. Schuhmacher, S. Scholl, U. Steinfield, Degradation of the endocrine disrupting chemicals (EDCs) carbamazepine, clofibric acid, and iopromide by corona discharge over water, Chemosphere 75 (2009) 163–168.
[4] W. Kalsch, Biodegradation of the iodinated X-ray contrast media diatrizoate and iopromide, Sci. Total Environ. 225 (1999) 143–153.
[5] S. Canonica, L. Meunier, U. von Gunten, Photoconversion of selected pharmaceuticals during UV treatment of drinking water, Water Res. 42 (2008) 121–128.
[6] B. Ning, N.J.D. Graham, Ozone degradation of iodinated pharmaceutical compounds, J. Environ. Eng. ASCE 134 (2008) 944–953.
[7] R. Ning, N.J.D. Graham, P. Lickiss, Degradation of X-ray contrast media compounds by combined ozone and ultrasound, Water Environ. Res. 79 (2007) 2427–2436.
[8] J.E.B. McCallum, S.A. Madison, S. Alkan, R.L. Depinto, R.U.R. Wahl, Analytical studies on the oxidative degradation of the reactive textile dye unblue A, Environ. Sci. Technol. 34 (2000) 5157–5164.
[9] A. Thayer, Fighting SARS—common disinfectants may slow SARS, Chem. Eng. News 81 (2003) 9.
[10] M. Romero, J. Blanco, B. Sanchez, A. Vidal, S. Malato, A.I. Cardona, E. Garcia, Solar photocatalytic degradation of water and air pollutants: challenges and perspectives, Sol. Energy 66 (1999) 169–182.
[11] D.A. House, Kinetics and mechanism of oxidations by peroxydisulfate, Chem. Rev. 62 (1962) 185–203.
[12] V. Maurino, P. Calza, C. Minero, E. Pelizzetti, M. Vincenti, Light-assisted 1,4-dioxane degradation, Chemosphere 35 (1997) 2675–2688.
[13] E.R.A. Weiner, Dictionary of inorganic water quality parameters and pollutants, in: Applications of Environmental Chemistry, A Practical Guide for Environmental Professionals, Lewis Publishers, CRC Press LLC, Boca Raton, FL, 2000, p. 27 (Chapter 7).
[14] G.B. Balazs, J.F. Cooper, T.E. Shell, Effect of trace additives on the efficiency of peroxysulfate degradation, J. Appl. Electrochem. 29 (1999) 285–292.
[15] J. Kronholm, P. Jyske, M.L. Riekkola, Oxidation efficiencies of potassium peroxide and hydrogen peroxide in pressurized hot water with and without preheating, Ind. Eng. Chem. Res. 39 (2000) 2207–2213.
[16] T.K. Lau, W. Chu, N.J.D. Graham, The aqueous degradation of butylated hydroxyanisole by UV/S_2O_8^2−: Study of reaction mechanisms via dimerization and mineralization, Environ. Sci. Technol. 41 (2007) 613–619.
[17] M. Schulz, D. Löffler, M. Wagner, T.A. Ternes, Transformation of the X-ray contrast medium iopromide in soil and biological wastewater treatment, Environ. Sci. Technol. 42 (2008) 7207–7217.
[18] A. Putschew, U. Miehe, A.S. Tellez, M. Jekel, Ozonation and reductive deiodination of iopromide to reduce the environmental burden of iodinated X-ray contrast media, Water Sci. Technol. 56 (2007) 159–165.
[19] W. Chu, C.T. Jalvert, Photodechlorination of polychlorobenzene congeners in surfactant micelle solutions, Environ. Sci. Technol. 28 (1994) 2415–2422.
[20] J. Crouzet, N. Karpel Vol Leitner, Degradation of acetic acid with sulphate radical generated by persulfate ions photolysis, Chemosphere 77 (2009) 194–200.
[21] M. Sudha Svaraga, M. Adinarayana, Kinetics and mechanism of protection of thymine from sulphate radical anion under anoxic conditions, Proc. Indian Acad. Sci. (Chem. Sci.) 115 (2003) 123–128.
[22] W. Seitz, J.-Q. Jiang, W. Schulz, W.H. Weber, D. Maier, M. Maier, Formation of oxidation by-products of the iodinated X-ray contrast medium iomeprol during ozonation, Chemosphere 70 (2008) 1238–1246.
[23] S. Pérez, P. Eichhorn, M.D. Celiz, D.S. Aga, Structural characterization of metabolites of the X-ray contrast agent iopromide in activated sludge using ion trap mass spectrometry, Anal. Chem. 78 (2006) 1866–1874.