An Experiment with Hierarchical Bayesian Record Linkage

Michael D. Larsen
The George Washington University
Department of Statistics
mlarsen@bsc.gwu.edu

December 20, 2012

Abstract

In record linkage (RL), or exact file matching, the goal is to identify the links between entities with information on two or more files. RL is an important activity in areas including counting the population, enhancing survey frames and data, and conducting epidemiological and follow-up studies. RL is challenging when files are very large, no accurate personal identification (ID) number is present on all files for all units, and some information is recorded with error. Without an unique ID number one must rely on comparisons of names, addresses, dates, and other information to find the links. Latent class models can be used to automatically score the value of information for determining match status. Data for fitting models come from comparisons made within groups of units that pass initial file blocking requirements. Data distributions can vary across blocks. This article examines the use of prior information and hierarchical latent class models in the context of RL.

Key Words: Fellegi-Sunter, Gibbs sampling, Hierarchical model, Latent class model, Metropolis-Hastings algorithm, Mixture model.

1 Introduction

Record linkage (RL; Fellegi and Sunter 1969) is the name given to the activity of using information in two or more data bases to identify units or individuals represented in more than one of the files. One performs RL when merging files to avoid duplicate records and to correctly associate information present on the two or more files with unique individuals. RL can be used as part of population size estimation, survey frame and survey data enhancement, and epidemiological and longitudinal studies. In general when there are multiple files on a single population one could consider using RL for a number of activities. Larsen (2012) reviews some literature on the subject. See also Winkler (1995), Alvey and Jamerson (1997), and Herzog, Scheuren, and Winkler (2007).

When files are large, accurate and unique personal identification (ID) numbers are not present on all files for all units, and there are errors in some information RL can be non trivial. Without an unique ID number one must compare names, addresses, dates, and other information to find the links between files. The outcome of comparisons between two records, one on each of two files, is called a vector of
comparisons, or comparison vector. Typically comparisons are only made for records that pass initial file blocking requirements. The pairs that fall outside a block are assumed to be nonmatches.

Once a comparison vector is computed one must decide how much evidence the set of comparisons give in favor of the pair being a match. In some applications, predetermined scoring procedures are used. As an alternative, one could imagine taking a sample of cases, determining whether the pairs truly are matches, and fitting a statistical model to the results. Such an approach is a type of supervised learning similar in nature to discriminant analysis or logistic regression. Latent class models, which are a type of mixture model, can be fit to used to automatically score the value of information for determining match status. Latent class analysis (LCA) clusters the data and is a form of unsupervised learning. Data for fitting models come from comparisons made within groups of units that pass initial file blocking requirements. LCA has been used in RL by Larsen (2012), Lahiri and Larsen (2005), Larsen and Rubin (2001), Winkler (1988, 1994), Jaro (1989, 1995), and others.

This article examines the use of prior information and hierarchical latent class models in the context of RL. First, the impact of an informative prior distribution developed from record linkage operations similar to the current one is studied. Second, since data distributions can vary across blocks, a hierarchical latent class model is used to account for inter-block heterogeneity. Both developments are studied through simulation and compared to LCA in terms of RL error rates.

Section 2 presents statistical models for record linkage. Section 3.2 discusses computational algorithms. Section 4 reports on a simulation study. Section 5 gives a summary and conclusions.

2 Record Linkage Latent Class Models

Suppose that there are two files, A and B, on a single population. Consider record a in file A and record b in B. Do records a and b correspond to the same person or entity? Assume files A and B do not contain unique identification numbers for any units in the files. Variables in the two files are used to judge the similarity of the record pairs. To do so one defines agreement for each piece of information common to both files. In a household-based study, variables can include last name currently and at birth, middle name or initial, first name, house and unit number, street name, age or date of birth, sex, race/ethnicity, and relation to head of household. Files often are preprocessed before linkage is attempted. For example, names can be standardized and coded according to Soundex codes or other scheme. Names and address fields are parsed and standardized. Birth date can be separated into day, month, and year.

In the case of simple comparisons, for each pair of records (a, b) being considered, a vector of 1’s and 0’s indicating agreement and disagreement on K comparison fields is recorded. That is, for $a \in A$ and $b \in B$, define

$$
\gamma(a, b) = \{\gamma(a, b)_1, \gamma(a, b)_2, \ldots, \gamma(a, b)_K\}
$$

where $\gamma(a, b)_k$ equals 1 (agreement) or 0 (disagreement) on field k, $k = 1, \ldots, K$. Heuristically speaking, many agreements ($\gamma(a, b)$ mostly 1’s) are typical of matches, whereas many disagreements ($\gamma(a, b)$ mostly 0’s) are typical of nonmatches. Some variables (e.g., race) are informative in some locations regarding matches and nonmatches, but not in others. Disagreement on sex suggests a nonmatch, whereas agreement on sex is not persuasive by itself for being a match.

In this type of record linkage no one variable conclusively determines if a pair is a match or nonmatch. Rather it is the composite evidence that must be judged.
In census and other operations, the files are divided geographically into groups of records or 'blocks' that do not overlap. Blocking is used in other applications as well in order to reduce the number of record pairs being compared. It is assumed that there are no (or very few) matches across different blocks. Other operations use first letter of last name (individuals) or industry code (businesses) or state as blocking variables.

Let blocks be indexed by \(s = 1, \ldots, S \). Suppose that file \(A \) has \(n_a \) records and file \(B \) has \(n_b \) records, respectively, in block \(s \). For blocks \(s = 1, \ldots, S \), \(a_s = 1, \ldots, n_a \) and \(b_s = 1, \ldots, n_b \), define

\[
I(a_s, b_s) = \begin{cases}
1 & \text{a and b are matches} \\
0 & \text{a and b are nonmatches}
\end{cases}
\]

The set of match-nonmatch indicators in block \(s \) is \(I_s = \{ I(a_s, b_s) \} \).

The match/nonmatch indicators \(I = \{ I(a, b), a \in A_s, b \in B_s, s = 1, \ldots, S \} \) are unobserved unless clerical review or some verification system is used.

2.1 Latent Class Models

The mixture model (McLachlan and Peel 2000) approach to record linkage models the probability of a comparison vector \(\gamma \) as arising from a mixture distribution:

\[
\Pr(\gamma) = \Pr(\gamma|M)p_M + \Pr(\gamma|U)p_U, \tag{1}
\]

where \(\Pr(\gamma|M) \) and \(\Pr(\gamma|U) \) are the probabilities of the pattern \(\gamma \) among the matches (\(M \)) and nonmatches (\(U \)), respectively, and \(p_M \) and \(p_U = 1 - p_M \) are marginal probabilities of matches and unmatched pairs.

The conditional independence assumption of latent class models (McCutcheon 1987) simplifies the model by reducing the dimension within each mixture class from \(2^K - 1 \) parameters to \(K \):

\[
\Pr(\gamma|C) = \prod_{k=1}^{K} \Pr(\gamma_k|C)\gamma_k(1 - \Pr(\gamma_k|C))^{1-\gamma_k}, \tag{2}
\]

with \(C \in \{ M, U \} \). Interactions between comparison fields have been allowed in Larsen and Rubin (2001), Armstrong and Mayda (1993), Thibaudeau (1993), Winkler (1989), and others. Here we consider only the conditional independence model and extensions of it to a hierarchical framework. The CI assumption reduces the number of parameters needed to describe \(\Pr(\gamma) \) from \(2^K - 1 \) to \(2^K + 1 \). Maximum likelihood estimation of parameters is accomplished with the EM-algorithm (Dempster, Laird, and Rubin 1977).

By Bayes’ theorem, if the parameters were known and one does not consider restrictions from one-to-one matching, one could calculate for a pair \((a, b) \) the probability that \(a \) and \(b \) match:

\[
\Pr(I(a, b) = 1|\gamma(a, b)) = \Pr(M|\gamma(a, b)) = p_M\Pr(\gamma(a, b)|M)/\Pr(\gamma(a, b)) \tag{3}
\]

with the denominator given by (1).
2.2 Prior Information and Bayesian Latent Class Model

Experience from previous record linkage operations has been used informally to select models (Larsen and Rubin 2001) and restrict parameters (Winkler 1989, 1994). Bayesian approaches to record linkage have been suggested by Larsen (1999a, 2002, 2004, 2005), Fortini et al. (2002, 2000), and McGlinchy (2004).

Prior experience and data often are available from previous record linkage operations and sites. In previous record linkage studies, clerks at the U.S. Census Bureau looked at record pairs and determined whether or not they truly were nonmatches or matches. Belin (1993), Belin and Rubin (1995), Larsen (1999b), and Larsen and Rubin (2001) found that in some U.S. Census Bureau record linkage applications characteristics of populations being studied varied by area in ways that made a significant impact on estimates of parameters needed for record linkage. There were, however, consistent patterns across areas. The percentage of record pairs, one record from each of two files, under consideration that actually are matches corresponding to the same person is roughly similar across sites. The probability of agreeing on some key fields of information among matches and nonmatches are similar across sites. The probability of agreements are higher among matches than among nonmatches. There is, however, variability across sites in these and many other characteristics.

Assuming the conditional independence model (2) and global parameters that do not vary by block, a prior distribution on parameters can be specified conveniently as the product of independent Beta distributions as follows:

\[p_M \sim \text{Beta}(\alpha_M, \beta_M), \]
\[\Pr(\gamma_k(a, b) = 1 | M) \sim \text{Beta}(\alpha_{Mk}, \beta_{Mk}), k = 1, \ldots, K, \]

and

\[\Pr(\gamma_k(a, b) = 1 | U) \sim \text{Beta}(\alpha_{Uk}, \beta_{Uk}), k = 1, \ldots, K. \]

Instead of specifying the prior distribution in this manner, it would conceptually be possible to specify a prior distribution on the whole of the probability vector associated with the set of comparison vectors \(\gamma \) as two Dirichlet distributions. That is, independent prior distributions \(\Pr(\gamma | M) \sim \text{Dirichlet}(\delta_M) \) and \(\Pr(\gamma | U) \sim \text{Dirichlet}(\delta_U) \) could be specified. This option is not explored in this paper. It is noted, however, that pairs of records with known match status could be used as “training data” (as in Belin and Rubin 1995) for the purposes of specifying a prior distribution. The prior parameter values, \(\delta_M \) and \(\delta_U \), could be considered as ‘prior counts’ by agreement vector pattern in the matches and nonmatches.

If the match indicators \(I \) were known, the posterior distributions of individual parameters given values of the other parameters would be as follows:

\[p_M | I \sim \text{Beta}(\alpha_M + \sum_{(a,b)} I(a, b), \beta_M + \sum_{(a,b)} (1 - I(a, b))), \]

\[\Pr(\gamma_k(a, b) = 1 | M, I) \sim \text{Beta}(\alpha_{Mk} + \sum I_{ab} \gamma_k(a, b), \beta_{Mk} + \sum I_{ab} (1 - \gamma_k(a, b)) \}
\]

for \(k = 1, \ldots, K, \) and

\[\Pr(\gamma_k(a, b) = 1 | U, I) \sim \text{Beta}(\alpha_{Uk} + \sum (1 - I_{ab}) \gamma_k(a, b), \beta_{Uk} + \sum (1 - I_{ab}) (1 - \gamma_k(a, b))) \]
for \(k = 1, \ldots, K \), where \(I_{ab} = I(a, b) \) and sums are over all pairs allowed within the blocking structure.

2.3 Computing for the Bayesian Latent Class Model

The posterior distribution of parameters is simulated by sampling from alternating conditional distributions (Gibbs sampling; Geman and Geman 1984, Gelfand and Smith 1990) as follows.

1. Specify parameters for the prior distributions. Choose initial values of unknown parameters.

2. Repeat the following four steps numerous times until the distribution of draws has converged to the posterior distribution of interest.

 (a) Draw values for the components of \(I \) independently from Bernoulli distributions with the probability that \(I(a, b) = 1 \) given by formula (3).

 (b) Draw a value of \(p_M \) from the distribution specified in formula (4) and calculate \(p_U = 1 - p_M \).

 (c) Draw values of \(\Pr(\gamma_k(a, b) = 1|M, I) \) independently for \(k = 1, \ldots, K \) from distributions specified in formula (5).

 (d) Draw values of \(\Pr(\gamma_k(a, b) = 1|U, I) \) independently for \(k = 1, \ldots, K \) from distributions specified in formula (6).

3. Stop once the algorithm has converged. Convergence of the algorithm can be monitored by comparing distributions from multiple independent series as suggested by Gelman and Rubin (1992) and Brooks and Gelman (1998).

Once the algorithm has converged, it is necessary to decide which pairs of records to designate links and nonlinks and which to send to clerical review or leave undecided. One can calculate the proportion of times that a record pair \((a, b)\) has \(I(a, b) = 1 \). For record pairs with a proportion exceeding a cut off, such as 0.90, one can make the assignment of the pair to the match group. Larsen (2012) examined the impact of cutoff values.

2.4 Comments on Bayesian Latent Class Model

There are some restrictions on parameters that potentially could improve the performance of this model for record linkage. First, the range of \(p_M \) logically should be restricted to be less than or equal to the smaller of the two file sizes divided by the number of pairs under the blocking structure. When \(p_M \) is drawn in the Gibbs sampling algorithm from its conditional distribution, values of \(p_M \) greater than the cutoff should not be used. Alternatively, if \(p_M = c_M p'_M \) where \(p'_M \) has the Beta distribution given above and \(c_M < 1 \) is a scale factor appropriate for transforming \(p'_M \) to the allowable range of \(p_M \), one can sample \(p'_M \) and scale it by \(c_M \). Second, logically the probability of a record pair agreeing on a comparison field should be larger among matches than among nonmatches. That is, \(\Pr(\gamma_k|M) > \Pr(\gamma_k|U) \), for \(k = 1, \ldots, K \). Such a restriction can be added to the Gibbs sampling algorithm by simply ignoring sampled pairs of these probabilities that do not satisfy the constraint. Alternatively, one can draw one value, say \(\Pr(\gamma_k|M) \), and scale the value of \(\Pr(\gamma_k|U) \) to be in the range \((0, \Pr(\gamma_k|M))\). That is, after
drawing a value of $\Pr(\gamma_k|M)$, draw a value from the Beta distribution specified in the algorithm and multiply it by $\Pr(\gamma_k|M)$.

Instead of specifying a specific Beta prior distributions for latent class parameters, one could consider specifying a hyperprior distribution, $p(\alpha, \beta)$, for the parameters of the Beta distributions, where $\alpha = (\alpha_M, \alpha_{Mk}, \alpha_{Uk}, k = 1, \ldots, K)$ and $\beta = (\beta_M, \beta_{Mk}, \beta_{Uk}, k = 1, \ldots, K)$. One could first transform the parameters to a scale reflecting proportions and sample sizes: $\theta = \text{logit}\left(\frac{\alpha}{\alpha + \beta}\right)$ and $\tau = \log(\alpha + \beta)$, where the transformation is applied to corresponding components of the α and β vectors. Note that there is a unique bivariate inverse transformation: $\alpha = e^{\tau}\text{logit}^{-1}(\theta)$ and $\beta = e^{\tau}\text{logit}^{-1}(1 - \theta)$. The approach of specifying a hyperprior distribution is not considered here, because such an approach implicitly makes the assumption that the parameters are exchangeable. Such an assumption is unrealistic because variables have very different levels of agreement for both matches and nonmatches.

3 Record Linkage and Hierarchical Latent Class Model

A hierarchical model for record linkage specifies distributions of parameters within blocks $s = 1, \ldots, S$. The probabilities of agreeing on fields of information are allowed to vary by block. Prior distributions on parameters are as follows:

\[
p_{sMk} = \Pr(\gamma_k = 1|M, s) \sim \text{Beta}(\alpha_{sMk}, \beta_{sMk})
\]

and

\[
p_{sUk} = \Pr(\gamma_k = 1|U, s) \sim \text{Beta}(\alpha_{sUk}, \beta_{sUk})
\]

independently across blocks ($s = 1, \ldots, S$), fields ($k = 1, \ldots, K$), and classes (M and U). As before one can assume that the restriction that $p_{sMk} \geq p_{sUk}$.

3.1 Hyperprior distributions for the Hierarchical Model

Hyperprior distributions are used in this model to link estimation of probabilities across blocks. Without a model that enables 'borrowing strength' across blocks, parameters appear separately by blocks and data could be insufficient for accurately estimation. It is still the case that it is unlikely to be reasonable to model the probability of matching and the probability of agreement for K fields as exchangeable. As a result, independent hyperprior distributions are used. One version was suggested by Larsen (2004). The specification below generalizes previous approaches by allowing correlation. Let

\[
\theta_{sMk} = \text{logit}\left(\frac{\alpha_{sMk}}{\alpha_{sMk} + \beta_{sMk}}\right),
\]

\[
\tau_{sMk} = \log(\alpha_{sMk} + \beta_{sMk}),
\]

\[
\theta_{sUk} = \text{logit}\left(\frac{\alpha_{sUk}}{\alpha_{sUk} + \beta_{sUk}}\right),
\]

\[
\tau_{sUk} = \log(\alpha_{sUk} + \beta_{sUk}),
\]

\[
\theta_{sM} = \text{logit}\left(\frac{\alpha_{sM}}{\alpha_{sM} + \beta_{sM}}\right),
\]

\[
\tau_{sM} = \log(\alpha_{sM} + \beta_{sM}).
\]
and

$$\tau_{sM} = \log(\alpha_{sM} + \beta_{sM}).$$

Then

$$(\theta_{sMk}, \tau_{sMk})^t \sim N_2((\mu_{\theta Mk}, \mu_{\tau Mk})^t, \Sigma_{Mk}),$$

$$(\theta_{sUk}, \tau_{sUk})^t \sim N_2((\mu_{\theta Uk}, \mu_{\tau Uk})^t, \Sigma_{Uk}),$$

and

$$(\theta_{sM}, \tau_{sM})^t \sim N_2((\mu_{\theta M}, \mu_{\tau M})^t, \Sigma_M),$$

independently, where

$$\Sigma_{Mk} = \begin{pmatrix}
\sigma_{\theta Mk}^2 & \sigma_{\theta Mk, \tau Mk} \\
\sigma_{\theta Mk, \tau Mk} & \sigma_{\tau Mk}^2
\end{pmatrix},$$

$$\Sigma_{Uk} = \begin{pmatrix}
\sigma_{\theta Uk}^2 & \sigma_{\theta Uk, \tau Uk} \\
\sigma_{\theta Uk, \tau Uk} & \sigma_{\tau Uk}^2
\end{pmatrix},$$

and

$$\Sigma_M = \begin{pmatrix}
\sigma_{\theta M}^2 & \sigma_{\theta M, \tau M} \\
\sigma_{\theta M, \tau M} & \sigma_{\tau M}^2
\end{pmatrix}.$$

In the prior distributions, one could enforce the restriction that, for $k = 1, \ldots, K$, $\theta_{sMk} \geq \theta_{sUk}$. Similarly, the restriction that p_{sM} is smaller than the minimum of n_{A_s} and n_{B_s} divided by the number of pairs $n_{A_s}n_{B_s}$ likely will be useful. If it were not enforced, the small sample size and great variability across blocks would surely produce poor results for some blocks.

3.2 Computing for the Hierarchical Latent Class Model

The posterior distribution of parameters and unobserved match/nonmatch indicators will be simulated using Gibbs sampling. The conditional distributions for the hyperparameters will be sampled using the Metropolis-Hastings (MH) algorithm (Hastings 1970) within the Gibbs sampling framework. The procedure iterates through draws of full conditional distributions as described below.

1. Choose hyperparameter distributions. That is, select values for means ($\mu_{\theta M}$, $\mu_{\theta Mk}$, $\mu_{\theta Uk}$, $\mu_{\tau M}$, $\mu_{\tau Mk}$, and $\mu_{\tau Uk}$) and variance matrices (Σ_M, Σ_{Mk}, Σ_{Uk}).

2. Generate initial values of $(\alpha_{sM}, \beta_{sM})$ and, for $k = 1, \ldots, K$, $(\alpha_{sMk}, \beta_{sMk})$ and $(\alpha_{sUk}, \beta_{sUk})$ from their prior distributions.

3. Assign an initial match/nonmatch configuration I. One initialization option is to randomly generate a matrix of 1’s and 0’s representing matches and nonmatches by block with the number of 1’s per block below the maximum allowable number of 1’s. A possibly better way to initialize I would be to use the ordinary latent class model to assign matches and nonmatches at a high probability cutoff.

4. Cycle through the following steps numerous times until the distribution of drawn values converges to the target posterior distribution. Let I_{ab} denote $I(a, b)$.
(a) For \(s = 1, \ldots, S \), draw \(p_{sM} \) from its conditional distribution given the current indicators \(I_s \) and values of \((\alpha_{sM}, \beta_{sM})\). Specifically,
\[
p_{sM} | I_s, \alpha_{sM}, \beta_{sM} \sim \text{Beta}(\alpha_{sM} + \sum I_{ab}, \beta_{sM} + n_{a_s}n_{b_s} - \sum I_{ab}),
\]
where the sum is over all pairs \((a, b)\) in block \(s \). Enforce the constraint
\[
p_{sM} \leq \min(n_{a_s}, n_{b_s})/(n_{a_s}n_{b_s}).
\]

(b) For \(s = 1, \ldots, S \) and \(k = 1, \ldots, K \), draw \(p_{sMk} \) and \(p_{sUk} \) from their conditional distribution given the current indicators \(I_s \), the comparison vectors \(\gamma_s \) in block \(s \), and values of \((\alpha_{sCk}, \beta_{sCk})\), \(C \in \{M, U\} \). Specifically,
\[
p_{sMk} | I_s, \gamma_s, \alpha_{sMk}, \beta_{sMk} \sim \text{Beta}(\alpha_{sMk} + \sum I_{ab}\gamma_k(a, b), \beta_{sMk} + \sum I_{ab}(1 - \gamma_k(a, b))),
\]
\[
p_{sUk} | I_s, \gamma_s, \alpha_{sUk}, \beta_{sUk} \sim \text{Beta}(\alpha_{sUk} + \sum (1 - I_{ab})\gamma_k(a, b), \beta_{sUk} + \sum (1 - I_{ab})(1 - \gamma_k(a, b))),
\]
and \(p_{sMk} \geq p_{sUk} \), where sums are over all pairs \((a, b)\) in block \(s \).

(c) For \(s = 1, \ldots, S \), use the Metropolis-Hastings algorithm (Hastings 1970; see also Gelman 1992 and Gelman et al. 2004, chapter 11) to draw values of hyperparameters \(\theta_{sM} \) and \(\tau_{sM} \) from their full conditional distributions. Details of this step and the next two steps are given after this outline.

(d) For \(s = 1, \ldots, S \) and \(k = 1, \ldots, K \), use the Metropolis-Hastings algorithm to draw values of hyperparameters \(\theta_{sMk} \) and \(\tau_{sMk} \).

(e) For \(s = 1, \ldots, S \) and \(k = 1, \ldots, K \), use the Metropolis-Hastings algorithm to draw values of hyperparameters \(\theta_{sUk} \) and \(\tau_{sUk} \).

(f) For \(s = 1, \ldots, S \), \(a = 1, \ldots, n_{a_s} \), and \(b = 1, \ldots, n_{b_s} \), given values of \(p_{sM} \) and, for \(k = 1, \ldots, K \), \(p_{sMk} \) and \(p_{sUk} \), draw a value of \(I(a, b) \) from a Bernoulli distribution with the following probability:
\[
p_{sM} \prod_{k=1}^{K} \left[\frac{p_{sMk}^{\gamma_k(a,b)}(1-p_{sMk})^{1-\gamma_k(a,b)}}{p_{sMk} \prod_{k=1}^{K} \left[p_{sMk}^{\gamma_k(a,b)}(1-p_{sMk})^{1-\gamma_k(a,b)} \right] + (1-p_{sM}) \prod_{k=1}^{K} \left[p_{sUk}^{\gamma_k(a,b)}(1-p_{sUk})^{1-\gamma_k(a,b)} \right]} \right].
\]

5. Stop once the algorithm has converged.

As before, once the algorithm has converged, it is necessary to decide which pairs of records to designate as links. Suggestions were made at the end of the previous section.

Details of the three Metropolis-Hastings (Hastings 1970) steps in the simulation procedure above are now presented.

(c) For \(s = 1, \ldots, S \), use the Metropolis-Hastings algorithm to draw values of hyperparameters \(\theta_{sM} \) and \(\tau_{sM} \) from their full conditional distributions. Specifically, given current values of \(\theta_{sM} \) and \(\tau_{sM} \) (and hence \(\alpha_{sM} \) and \(\beta_{sM} \)), \(I_s \), and other parameters,
(i) Define a tuning constant $h_M > 0$.

(ii) Draw three values:
\[u \sim \text{Uniform}(0, 1) \]
and
\[(\theta^*, \tau^*) \sim N_2((\theta_{sM}, \tau_{sM})^\tau, \Sigma_M / h_M). \]

(iii) Calculate $\alpha^* = e^{\tau^* \logit(\theta^*)}$ and $\beta^* = e^{\tau^* \logit(1 - \theta^*)}$.

(iv) Calculate
\[
 r = \min \left(1, \exp \left(\frac{-h_{\theta M}}{\sigma_{\theta M}^2} (\theta_{sM} - \theta^*)^2 \right) \exp \left(\frac{-h_{\tau M}}{\sigma_{\tau M}^2} (\tau_{sM} - \tau^*)^2 \right) \right)
\]
If $u \leq r$, let $\theta_{sM} = \theta^*$ and $\tau_{sM} = \tau^*$.
Otherwise, let θ_{sM} and τ_{sM} remain the same.

(d). For $s = 1, \ldots, S$ and $k = 1, \ldots, K$, use the Metropolis-Hastings algorithm to draw values of hyperparameters θ_{sMk} and τ_{sMk}. Specifically, given current values of θ_{sMk} and τ_{sMk} (and hence α_{sMk} and β_{sMk}), I_s, and other parameters, follow the steps outlined in step (c) above but with all M indexes replaced by Mk’s. The tuning parameter $h_{Mk} > 0$ needs to be chosen.

(e). For $s = 1, \ldots, S$ and $k = 1, \ldots, K$, use the Metropolis-Hastings algorithm to draw values of hyperparameters θ_{sUk} and τ_{sUk}. Specifically, given current values of θ_{sUk} and τ_{sUk} (and hence α_{sUk} and β_{sUk}), I_s, and other parameters, follow the steps outlined in step (c) above but with all M indexes replaced by Uk’s. The tuning parameter $h_{Uk} > 0$ needs to be chosen.

The tuning parameters h_M and, for $k = 1, \ldots, K$, h_{Mk} and h_{Uk} are chosen so that the drawn values of the parameters are accepted approximately about 35% of the time (Gelman et al. 2004 chapter 11.9). The algorithm could be run for several iterations to assess the acceptance rate, adapting the tuning parameters as necessary. A second phase then could be initiated with fixed values for tuning parameters.

4 Simulation

One thousand replications are performed under each of two sets of conditions. In one set of conditions, the probabilities of agreement are constant across blocks. In the second set of conditions, the probabilities of agreement vary by block. Blocks are assumed to be linked together correctly, as they would be if they correspond to geographical areas. Pairs from different blocks are nonlinks and not used to estimate probabilities. Files A and B both have 10,000 records organized into 400 blocks of size 25 each. This arrangement yields 250,000 (400 times 25^2) pairs of records.

In the first scenario, probabilities of matching and not matching are constant across blocks. The seven matching variables have probabilities of agreement among matches of 0.90 to 0.60 in increments of 0.05. The probabilities of agreement among nonmatches is 0.5 for two variables, 0.33 for three variables, and 0.25 for two variables. Agreements on the fields of information are independent of one another.
In the second scenario, probabilities of matching and not matching vary across blocks. The seven matching variables in each block have probabilities randomly selected from the range 0.60 to 0.90. The probabilities of agreement among nonmatches have probabilities randomly selected from 0.20 to 0.50. As before, agreements on the fields of information are independent of one another.

The files A and B were generated and comparison vectors calculated.

Four statistical procedures were used to do the record linkage. The first is latent class analysis (LCA). The second is the Bayesian latent class model (BLCM) with a chosen prior distribution. The third is the BLCM with a prior distribution based on a sample of similar cases. The fourth is the hierarchical LCA.

For the LCA, the EM algorithm (Dempster, Laird, Rubin 1977) was used to fit a two-class conditional independence mixture model to the comparison vectors to estimate probabilities for the Fellegi-Sunter (1969) algorithm.

In the first Bayesian LCM, Beta prior distributions are chosen so that the probability of agreement among matches, $\Pr(\gamma_k = 1|\mathcal{M})$, is most likely between 0.65 and 0.95, the probability among nonmatches, $\Pr(\gamma_k = 1|\mathcal{U})$, tends to be between 0.10 and 0.40, and the probability of a matching pair, $\Pr(\mathcal{M})$, is likely between 0.02 and 0.04. If the mean of a Beta distribution is 0.80 and its standard deviation (SD) is 0.075, then its parameters are approximately $\alpha_{Mk} = 22.0$ and $\beta_{Mk} = 5.4$. A Beta distribution with mean 0.25 and SD 0.075 has parameters approximately $\alpha_{Uk} = 8.1$ and $\beta_{Mk} = 42.2$. A Beta distribution with mean 0.03 and SD 0.005 has parameters approximately $\alpha_{M} = 35$ and $\beta_{M} = 1128$. The prior distribution for $\Pr(\mathcal{M})$ is small narrow because logically the percent of matches has to be below 4%: $10,000/250,000 = 1/25 = 0.04$.

In the second Bayesian LCM, it is assumed that there are complete data from two blocks. That is, match status is known for all 1,250 pairs in the two blocks. Results of these comparisons are used as prior information. The number of matches and nonmatching pairs determine α_{M} and β_{M}, respectively. The number of agreements and disagreements on field k ($k = 1, \ldots, K$) among matches produces α_{Mk} and β_{Mk}, respectively. Similarly, number of agreements and disagreements on field k ($k = 1, \ldots, K$) among nonmatches produces α_{Uk} and β_{Uk}, respectively. The sum of α_{M} and β_{M} will be 1,250, which is comparable to their sum in the first BLCM approach.

In the hierarchical LCA, it is necessary to select hyperprior distributions and tuning constants for the Metropolis-Hastings steps. If one uses the means of the prior distributions from the first Bayesian LCM formulation for the hyperprior means, then $\mu_{\theta M} = \text{logit}(0.80) = 1.39$, $\mu_{\theta M k} = \text{logit}(0.25) = -1.10$, $\mu_{\theta U k} = \text{logit}(0.03) = -3.48$, $\mu_{\tau M} = \log 27.4 = 3.3$, $\mu_{\tau M k} = \log 32.3 = 3.5$, and $\mu_{\tau U k} = \log 1163 = 7.1$.

Hyperprior variances and covariances describe spread and correlation of α and β values (transformed to θ and τ) across blocks. An ad hoc way of specifying these values is suggested. Among matches under the prior distribution from the first BLCM, one expects probabilities to be between 0.65 and 0.90. On the logit scale, 0.65 is 0.61 and 0.90 is 2.20. A uniform distribution between 0.61 and 2.20 has variance $(2.20-0.61)/12 = 0.1325$. The prior “sample size” from the first BLCM was 27.4. One quarter of this is 6.85, which is 1.92 on the log scale. Four times this value is 109.60, which is 4.70 on the log scale. A uniform distribution between 1.92 and 4.70 has variance $(4.70-1.92)/12 = 0.23$. Thus $\sigma^2_{\theta M k} = 0.1325$ and $\sigma^2_{\theta M M} = 0.23$ for $k = 1, \ldots, K$.

Similar methods can be used for the other variances. The logit of 0.10 is -2.20. The logit of 0.40 is -0.41. The variance of a uniform distribution with these limits is 0.1492. One quarter of 32.3 is 8.1, which is 2.1 on the log scale. Four times 32.3 is 129.2, which is 4.86 on the log scale. The variance
of a uniform with these limits is 0.23. Thus $\sigma^2_{\theta U_k} = 0.1492$ and $\sigma^2_{\tau U_k} = 0.23$ for $k = 1, \ldots, K$. The logits of 0.02 and 0.04 are -3.89 and -3.18, respectively. One-twelfth that range is 0.059. One quarter of 1163 is 291, which is 5.67 on the log scale. Four times it is 4652, which is 8.45 after log transformation. One-twelfth the range is 0.23. Thus $\sigma^2_{\theta M} = 0.059$ and $\sigma^2_{\tau M} = 0.23$.

For the covariance terms between θ and τ parameters, an ad hoc process was followed. Values of α and β were computed for a range of Beta distributions with probabilities in various ranges. These values were transformed to θ and β. The covariance among them was computed. This was repeated for the match probability and probabilities of agreement among matches and among nonmatches. The values obtained are as follows: $\sigma_{\theta M_k, \tau M_k} = -0.08$, $\sigma_{\theta U_k, \tau U_k} = -0.01$, and $\sigma_{\theta M, \tau M} = 0.03$.

Choices for the tuning constants (h_M and for $k = 1, \ldots, K$ h_{M_k} and h_{U_k}) also need to be made. Initially these will be set of 0.5. Depending on acceptance rates in the initial set of Metropolis-Hastings steps, these values will be reassessed. The algorithm could use $2K + 1$ different values to improve algorithm performance.

Work on simulations is underway and should be completed in early 2013.

5 Conclusions and Future Work

A novel hierarchical Bayesian model for record linkage has been presented. The model allows probabilities to vary by block and reflect local information. Simulations are being completed to evaluate the performance of the proposed methods.

Several areas can be identified for future work. Many of these will be important in actual applications. It will be interesting to apply these methods to data from the U.S. Census Bureau, the U.S. National Center for Health Statistics, and other sources. An automated system for applying these models to new sets of files would be useful in this regard. In a real application, one could consider better specifications of prior distributions for the record linkage model parameters. In particular, if data are available from another record linkage site and the site differs in some ways from the current application, then one must decide the degree to which data from the previous site should be discounted or down weighted when analyzing the new site. In some applications, the size of the files will be a challenge. In order to speed computations, one might consider parallel computations; for example, many computations are performed separately in each block.

The algorithm’s performance could be improved by studying tuning parameters and the order of sampling cycles within Metropolis-Hastings and Gibbs sampling algorithms. One could study the sensitivity of results to the specification of hyperprior distributions.

Larsen (2004, 2005) considered one-to-one restrictions enforced in the indicator matrix I and in the statistical likelihood function. The one-to-one restrictions and blocking assumptions mean that $\sum_{b_s} I(a_s, b_s) \leq 1$, $\sum_{a_s} I(a_s, b_s) \leq 1$, and $\sum_{a_s} \sum_{b_s} I(a_s, b_s) = 0$ for $s \neq s'$. The number of matches in block s, n_{m_s} is defined and restricted under one-to-one matching as follows:

$$\sum_{a_s} \sum_{b_s} I(a_s, b_s) = n_{m_s} \leq \min(n_{a_s}, n_{b_s}).$$

Future work will pursue Metropolis-Hastings steps for sampling new values of I instead of the current simpler formulation.
Acknowledgments

The work contained in this report was partially supported by NSA Grant H98230-10-1-0232 and by a Selective Excellence Award from The George Washington University. The opinions expressed are those of the author and not necessarily of the National Security Agency, The George Washington University, or anyone else. The author wishes to thank Yuan Zhao and Jing Zhang for discussions on record linkage. The author also thanks the Department of Biostatistics of the University of North Carolina at Chapel Hill, Westat, the Federal Committee on Statistical Methodology, the U.S. National Center for Health Statistics, and the U.S. Census Bureau for opportunities to present seminars and discuss record linkage.

References

Alvey, W., and Jamerson, B. (1997), Record Linkage Techniques – 1997, Proceedings of an International Workshop and Exposition. Federal Committee on Statistical Methodology, Office of Management of the Budget.

Armstrong, J. B., and Mayda, J. E. (1993). Model-Based Estimation of Record Linkage Error Rates. Survey Methodology, 19, 137-147.

Belin, T. R. (1993). Evaluation of sources of variation in record linkage through a factorial experiment. Survey Methodology 19, 13-29.

Belin, T. R., and Rubin, D. B. (1995). A method for calibrating false match rates in record linkage. Journal of the American Statistical Association 90, 694-707.

Brooks, S. P., and Gelman, A. (1998). General methods for monitoring convergence of iterative simulations. Journal of Computational and Graphical Statistics, 7, 434-455.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977), “Maximum Likelihood from Incomplete Data Via the EM Algorithm,” (with comments), Journal of the Royal Statistical Society, Ser. B, 39, 1-37.

Fellegi, I. P., and Sunter, A. B. (1969), “A Theory for Record Linkage,” Journal of the American Statistical Association, 64, 1183-1210.

Fortini, M., Liseo, B., Nuccitelli, A., and Scanu, M. (2000). “On Bayesian Record Linkage,” Bayesian Methods with Applications to Science, Policy, and Official Statistics: Selected Papers from ISBA 2000: The Sixth World Meeting of the International Society for Bayesian Analysis. Editor E. I. George, 155-164.

Fortini, M., Nuccitelli, A., Liseo, B., and Scanu, M. (2002). “Modelling issues in record linkage: A Bayesian perspective,” Proceedings of the American Statistical Association, Survey Research Methods Section, 1008-1013.
Gelfand, Alan E., and Smith, Adrian F. M. (1990), “Sampling-based approaches to calculating marginal densities.” Journal of the American Statistical Association, 85, 398-409.

Gelman, A. (1992). Iterative and non-iterative simulation algorithms. Computing Science and Statistics 24, 433-438.

Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (2004). Bayesian Data Analysis, 2nd edition. Chapman & Hall/CRC.

Gelman, A., and Rubin, D.B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science 7, 457-472.

Geman, S., and Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721-741.

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97-109.

Herzog, T.N., Scheuren, F.J., and Winkler, W.E. (2007). Data quality and record linkage techniques. New York: Springer Science+Business Media.

Jaro, M. A. (1989), “Advances in Record-Linkage Methodology as Applied to Matching the 1985 Census of Tampa, Florida,” Journal of the American Statistical Association, 84, 414-420.

Jaro, M. A. (1995), “Probabilistic Linkage of Large Public Health Data Files,” Statistics in Medicine, 14, 491-498.

Lahiri, P., and Larsen, M.D. (2005). Regression Analysis with Linked Data. Journal of the American Statistical Association, 100, 222-230.

Larsen, M.D. (1999a), “Multiple Imputation Analysis of Records Linkage Using Mixture Models,” Proceedings of the Statistical Society of Canada, Survey Methods Section, 65-71.

Larsen, M.D. (1999b). “Predicting the Residency Status for Administrative Records that Do Not Match Census Records,” Administrative Records Research Memorandum Series, #20, Bureau of the Census, U.S. Department of Commerce.

Larsen, M.D. (2002), “Comment on Hierarchical Bayesian Record Linkage,” Proceedings of the Section on Bayesian Statistical Science, American Statistical Association meeting in New York City. CDROM: 1995-2000.

Larsen, M.D. (2004), Record linkage using finite mixture models, Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives. Gelman, A., and Meng, X. L., editors. New
Larsen, M.D. (2005), Hierarchical Bayesian record linkage. Technical report, Iowa State University, Department of Statistics.

Larsen, M.D. (2012), Factors affecting record linkage to the National Death index using Latent Class Models. *Journal of Survey Statistics and Methodology*, submitted.

Larsen, M. D., and Rubin, D. B. (2001), “Iterative automated record linkage using mixture models,” *Journal of the American Statistical Association*, 96, 32-41.

McCutcheon, A. L. (1987). *Latent class analysis*. Sage Publications, Inc.: Newbury Park, CA; London.

McGlinchy, M. (2004). A Bayesian record linkage methodology for multiple imputation of missing links. *Proceedings of the American Statistical Association, Section on Survey Research Methods*. Alexandria, VA: CDROM.

McLachlan, G.J., and Peel, D. (2000). *Finite Mixture Models*. New York: Wiley.

Thibaudeau, Y. (1993), “The Discrimination Power of Dependency Structures in Record Linkage,” *Survey Methodology*, 19, 31-38.

Winkler, W. E. (1988), “Using the EM Algorithm for Weight Computation in the Fellegi-Sunter Model of Record Linkage,” *American Statistical Association Proceedings of Survey Research Methods Section*, pp. 667-671.

Winkler, W. E. (1989), “Near automatic weight computation in the Fellegi-Sunter model of record linkage”, *Proceedings of the Bureau of the Census Annual Research Conference*, 5, 145-155.

Winkler, W. E. (1994), “Advanced Methods for Record Linkage,” in *American Statistical Association Proceedings of Survey Research Methods Section*, pp. 467-472.

Winkler, W. E. (1995), “Matching and Record Linkage,” in *Business Survey Methods*, ed. Cox, B. G., Binder, D. A., Chinnappa, B. N., Christianson, A., Colledge, M. J., and Kott, P. S., New York: Wiley Publications, pp. 355-384.