A CLASS OF RECURSIVE SETS

Florentin Smarandache
University of New Mexico
200 College Road
Gallup, NM 87301, USA
E-mail: smarand@unm.edu

In this article one builds a class of recursive sets, one establishes properties of these sets and one proposes applications. This article widens some results of [1].

1) Definitions, properties.
One calls recursive sets the sets of elements which are built in a recursive manner: let T be a set of elements and f_i for i between 1 and s, of operations n_i, such that $f_i : T^n \rightarrow T$. Let’s build by recurrence the set M included in T and such that:

(Def. 1) $1^o)$ certain elements $a_1,...,a_n$ of T, belong to M.

$2^o)$ if $(\alpha_{i_1},...\alpha_{i_n})$ belong to M, then $f_i(\alpha_{i_1},...\alpha_{i_n})$ belong to M for all $i \in \{1,2,...,s\}$.

$3^o)$ each element of M is obtained by applying a number finite of times the rules 1^o or 2^o.

We will prove several proprieties of these sets M, which will result from the manner in which they were defined. The set M is the representative of a class of recursive sets because in the rules 1^o and 2^o, by particularizing the elements $a_1,...,a_n$ respectively $f_1,...,f_s$ one obtains different sets.

Remark 1: To obtain an element of M, it is necessary to apply initially the rule 1.

(Def. 2) The elements of M are called elements M-recursive.
(Def. 3) One calls order of an element a of M the smallest natural $p \geq 1$ which has the propriety that a is obtained by applying p times the rule 1^o or 2^o.

One notes M_p the set which contains all the elements of order p of M. It is obvious that $M_1 = \{a_1,...,a_n\}$.

$$M_2 = \bigcup_{i=1}^{s} \bigcup_{(\alpha_{i_1},...\alpha_{i_n}) \in M_1}^{(a_{i_1},...a_{i_n}) \in M_1^n} f_i(\alpha_{i_1},...\alpha_{i_n}) \setminus M_1.$$

One withdraws M_1 because it is possible that $f_j(a_{j_1},...,a_{j_n}) = a_i$ which belongs to M_1, and thus does not belong to M_2.

One proves that for $k \geq 1$ one has:
\[M_{k+1} = \bigcup_{i=1}^{s} \left(\bigcup_{(a_n_1, \ldots, a_n_k) \in \prod_{i}^{(i)}} f_i(\alpha_i_1, \ldots, \alpha_i_n) \right) \setminus \bigcup_{h=1}^{k} M_h \]

where each

\[\prod_{i}^{(i)} = \left\{ (\alpha_i_1, \ldots, \alpha_i_n) / \alpha_i_j \in M_{q_j}, \ j \in \{1, 2, \ldots, n_i\}; \ 1 \leq q_j \leq k \right\} \]

The sets \(M_p, \ p \in \mathbb{N}^+ \), form a partition of the set \(M \).

Theorem 1:

\[M = \bigcup_{p \in \mathbb{N}^+} M_p, \text{ where } \mathbb{N}^+ = \{1, 2, 3, \ldots\} \]

Proof:

From the rule 1° it results that \(M_1 \subseteq M \).

One supposes that this propriety is true for values which are less than \(p \). It results that \(M_p \subseteq M \), because \(M_p \) is obtained by applying the rule 2° to the elements of \(\bigcup_{i=1}^{p-1} M_i \).

Thus \(\bigcup_{p \in \mathbb{N}^+} M_p \subseteq M \). Reciprocally, one has the inclusion in the contrary sense in accordance with the rule 3°.

Theorem 2: The set \(M \) is the smallest set, which has the properties 1° and 2°.

Proof:

Let \(R \) be the smallest set having properties 1° and 2°. One will prove that this set is unique.

Let’s suppose that there exists another set \(R' \) having properties 1° and 2°, which is the smallest. Because \(R \) is the smallest set having these proprieties, and because \(R' \) has these properties also, it results that \(R \subseteq R' \); of an analogue manner, we have \(R' \subseteq R \): therefore \(R = R' \).

It is evident that \(M' \subseteq R \). One supposes that \(M_i \subseteq R \) for \(1 \leq i < p \). Then (rule 3°), and taking in consideration the fact that each element of \(M_p \) is obtained by applying rule 2° to certain elements of \(M_i \), \(1 \leq i < p \), it results that \(M_p \subseteq R \). Therefore \(\bigcup_{p \in \mathbb{N}^+} M_p \subseteq R \), thus \(M \subseteq R \). And because \(R \) is unique, \(M = R \).

Remark 2. The theorem 2 replaces the rule 3° of the recursive definition of the set \(M \) by: “ \(M \) is the smallest set that satisfies proprieties 1° and 2°°.”

Theorem 3: \(M \) is the intersection of all the sets of \(T \) which satisfy conditions 1° and 2°.

Proof:
Let T_{12} be the family of all sets of T satisfying the conditions 1° and 2°. We note $I = \bigcap_{A \in T_{12}} A$.

I has the properties 1° and 2° because:

1) For all $i \in \{1,2,...,n\}$, $a_i \in I$, because $a_i \in A$ for all A of T_{12}.
2) If $\alpha_1,\ldots,\alpha_n \in I$, it results that α_1,\ldots,α_n belong to A that is A of T_{12}.

Therefore, $\forall i \in \{1,2,...,s\}$, $f_i(\alpha_1,\ldots,\alpha_n) \in A$ which is A of T_{12}, therefore $f_i(\alpha_1,\ldots,\alpha_n) \in I$ for all i from $\{1,2,...,s\}$.

From theorem 2 it results that $M \subseteq I$.

Because M satisfies the conditions 1° and 2°, it results that $M \in T_{12}$, from which $I \subseteq M$. Therefore $M = I$.

(Def. 4) A set $A \subseteq I$ is called closed for the operation f_{i_0} if and only if for all $\alpha_{i_0,1},\ldots,\alpha_{i_0,n}$ of A, one has $f_{i_0}(\alpha_{i_0,1},\ldots,\alpha_{i_0,n})$ belong to A.

(Def. 5) A set $A \subseteq T$ is called M-recursively closed if and only if:

1) $\{a_1,...,a_n\} \subseteq A$.
2) A is closed in respect to operations $f_1,...,f_s$.

With these definitions, the precedent theorems become:

Theorem 2': The set M is the smallest M-recursively closed set.

Theorem 3': M is the intersection of all M-recursively closed sets.

(Def. 6) The system of elements $\langle \alpha_1,\ldots,\alpha_m \rangle$, $m \geq 1$ and $\alpha_i \in T$ for $i \in \{1,2,...,m\}$, constitute a M-recursive description for the element α, if $\alpha_m = \alpha$ and that each α_i ($i \in \{1,2,...,m\}$) satisfies at least one of the proprieties:

1) $\alpha_i \in \{a_1,...,a_n\}$.
2) α_i is obtained starting with the elements which precede it in the system by applying the functions f_j, $1 \leq j \leq s$ defined by property 2° of (Def. 1).

(Def. 7) The number m of this system is called the length of the M-recursive description for the element α.

Remark 3: If the element α admits a M-recursive description, then it admits an infinity of such descriptions.

Indeed, if $\langle \alpha_1,\ldots,\alpha_m \rangle$ is a M-recursive description of α then $\langle \alpha_1,\ldots,\alpha_h,\alpha_1,\ldots,\alpha_m \rangle$ is also a M-recursive description for α, h being able to take all values from \mathbb{N}.
Theorem 4: The set M is identical with the set of all elements of T which admit a M-recursive description.

Proof: Let D be the set of all elements, which admit a M-recursive description. We will prove by recurrence that $M_p \subseteq D$ for all p of \mathbb{N}^+. For $p = 1$ we have: $M_1 = \{a_1,\ldots,a_n\}$, and the a_j, $1 \leq j \leq n$, having as M-recursive description: $<a_j>$. Thus $M_1 \subseteq D$. Let’s suppose that the property is true for the values smaller than p. M_p is obtained by applying the rule 2o to the elements of $\bigcup_{i=1}^{p-1} M_i$; $\alpha \in M_p$ implies that $\alpha \in f_j(\alpha_i,\ldots,\alpha_n)$ and $\alpha_i \in M_{h_i}$ for $h_j < p$ and $1 \leq j \leq n_i$. But a_j, $1 \leq j \leq n_i$, admits M-recursive descriptions according to the hypothesis of recurrence, let’s have $\langle\beta_{j_1},\ldots,\beta_{j_n}\rangle$. Then $\langle\beta_{j_1},\ldots,\beta_{j_n},\beta_{2},\ldots,\beta_{2x_2},\ldots,\beta_{n_1},\ldots,\beta_{n_{x_n}},\alpha\rangle$ constitute a M-recursive description for the element α. Therefore if α belongs to D, then $M_p \subseteq D$ which is $M = \bigcup_{p \in \mathbb{N}} M_p \subseteq D$.

Reciprocally, let x belong to D. It admits a M-recursive description $\langle b_1,\ldots,b_t \rangle$ with $b_1 = x$. It results by recurrence by the length of the M-recursive description of the element x, that $x \in M$. For $t = 1$ we have $\langle b_1 \rangle$, $b_1 = x$ and $b_1 \in \{a_1,\ldots,a_n\} \subseteq M$. One supposes that all elements y of D which admit a M-recursive description of a length inferior to t belong to M. Let $x \in D$ be described by a system of length $t : \langle b_1,\ldots,b_t \rangle$, $b_t = x$. Then $x \in \{a_1,\ldots,a_n\} \subseteq M$, where x is obtained by applying the rule 2o to the elements which precede it in the system: b_1,\ldots,b_{t-1}. But these elements admit the M-recursive descriptions of length which is smaller that $t : \langle b_1, b_2,\ldots,b_{t-1} \rangle$. According to the hypothesis of the recurrence, b_1,\ldots,b_{t-1} belong to M. Therefore b_t belongs also to M. It results that $M = D$.

Theorem 5: Let b_1,\ldots,b_q be elements of T, which are obtained from the elements a_1,\ldots,a_n by applying a finite number of times the operations f_1, f_2,\ldots, f_s. Then M can be defined recursively in the following mode:

1) Certain elements $a_1,\ldots,a_n,b_1,\ldots,b_q$ of T belong to M.

2) M is closed for the applications f_i, with $i \in \{1,2,\ldots,s\}$.

3) Each element of M is obtained by applying a finite number of times the rules (1) or (2) which precede.

Proof: evident. Because b_1,\ldots,b_q belong to T, and are obtained starting with the elements a_1,\ldots,a_n of M by applying a finite number of times the operations f_i, it results that b_1,\ldots,b_q belong to M.

4
Theorem 6: Let's have \(g_j \), \(1 \leq j \leq r \), of the operations \(n_j \), where \(g_j : T^n \rightarrow T \) such that \(M \) to be closed in rapport to these operations. Then \(M \) can be recursively defined in the following manner:
1) Certain elements \(a_1,...,a_n \) de \(T \) belong to \(M \).
2) \(M \) is closed for the operations \(f_i \), \(i \in \{1,2,...,s\} \) and \(g_j \), \(j \in \{1,2,...,r\} \).
3) Each element of \(M \) is obtained by applying a finite number of times the precedent rules.
Proof is simple: Because \(M \) is closed for the operations \(g_j \) (with \(j \in \{1,2,...,r\} \)), one has, that for any \(\alpha_{j_1},...\alpha_{j_n} \) from \(M \), \(g_j(\alpha_{j_1},...\alpha_{j_n}) \in M \) for all \(j \in \{1,2,...,r\} \).

From the theorems 5 and 6 it results:
Theorem 7: The set \(M \) can be recursively defined in the following manner:
1) Certain elements \(a_1,...,a_n,b_1,...,b_q \) of \(T \) belong to \(M \).
2) \(M \) is closed for the operations \(f_i \), \(i \in \{1,2,...,s\} \) and for the operations \(g_j \) (\(j \in \{1,2,...,r\} \)) previously defined.
3) Each element of \(M \) is defined by applying a finite number of times the previous 2 rules.

(Def. 8) The operation \(f_i \) conserves the property \(P \) iff for any elements \(\alpha_{i_1},...\alpha_{i_n} \) having the property \(P \), \(f_i(\alpha_{i_1},...\alpha_{i_n}) \) has the property \(P \).

Theorem 8: If \(a_1,...,a_n \) have the property \(P \), and if the functions \(f_1,...,f_s \) preserve this property, then all elements of \(M \) have the property \(P \).
Proof:
\[M = \bigcup_{p \in \mathbb{N}} M_p \]. The elements of \(M_1 \) have the property \(P \).

Let’s suppose that the elements of \(M_i \) for \(i < p \) have the property \(P \). Then the elements of \(M_p \) also have this property because \(M_p \) is obtained by applying the operations \(f_1,f_2,...,f_s \) to the elements of: \(\bigcup_{i=1} M_i \), elements which have the property \(P \). Therefore, for any \(p \) of \(\mathbb{N} \), the elements of \(M_p \) have the property \(P \).

Thus all elements of \(M \) have it.

Corollary 1: Let’s have the property \(P \): "\(x \) can be represented in the form \(F(x) \)".

If \(a_1,...,a_n \) can be represented in the form \(F(a_1),...,F(a_n) \), and if \(f_1,...,f_s \) maintains the property \(P \), then all elements \(\alpha \) of \(M \) can be represented in the form \(F(\alpha) \).

Remark. One can find more other equivalent def. of \(M \).

2) APPLICATIONS, EXAMPLES.
In applications, certain general notions like: M - recursive element, M - recursive description, M - recursive closed set will be replaced by the attributes which characterize the set M. For example in the theory of recursive functions, one finds notions like: recursive primitive functions, primitive recursive description, primitively recursive closed sets. In this case “M” has been replaced by the attribute “primitive” which characterizes this class of functions, but it can be replaced by the attributes ”general”, ”partial”.

By particularizing the rules 1° and 2° of the def. 1, one obtains several interesting sets:

Example 1: (see [2], pp. 120-122, problem 7.97).

Example 2: The set of terms of a sequence defined by a recurring relation constitutes a recursive set.

Let’s consider the sequence: $a_{n+k} = f(a_n, a_{n+1}, \ldots, a_{n+k-1})$ for all n of \mathbb{N}^+, with $a_i = a_0^i$, $1 \leq i \leq k$. One will recursively construct the set $A = \{a_m\}_{m \in \mathbb{N}^+}$ and one will define in the same time the position of an element in the set A:

1°) a_1^0, \ldots, a_k^0 belong to A, and each a_i^0 ($1 \leq i \leq k$) occupies the position i in the set A;

2°) if $a_n, a_{n+1}, \ldots, a_{n+k-1}$ belong to A, and each a_j for $n \leq j \leq n+k-1$ occupies the position j in the set A, then $f(a_n, a_{n+1}, \ldots, a_{n+k-1})$ belongs to A and occupies the position $n+k$ in the set A.

3°) each element of B is obtained by applying a finite number of times the rules 1° or 2°.

Example 3: Let $G = \{e, a^1, a^2, \ldots, a^p\}$ be a cyclic group generated by the element a. Then $\left(G, \square \right)$ can be recursively defined in the following manner:

1°) a belongs to G.

2°) if b and c belong to G then $b\square c$ belongs to G.

3°) each element of G is obtained by applying a finite number of times the rules 1 or 2.

Example 4: Each finite set $ML = \{x_1, x_2, \ldots, x_n\}$ can be recursively defined (with $ML \subseteq T$):

1°) The elements x_1, x_2, \ldots, x_n of T belong to ML.

2°) If a belongs to ML, then $f(a)$ belongs to ML, where $f : T \to T$ such that $f(x) = x$;

3°) Each element of ML is obtained by applying a finite number of times the rules 1° or 2°.

Example 5: Let L be a vectorial space on the commutative corps K and $\{x_1, \ldots, x_m\}$ be a base of L. Then L, can be recursively defined in the following manner:

1°) x_1, \ldots, x_m belong to L;

2°) if x, y belong to L and if a belongs to K, then $x \perp y$ y belong to L and $a \times x$ belongs to L;

3°) each element of L is recursively obtained by applying a finite number of times the rules 1° or 2°.
The operators \bot and \ast are respectively the internal and external operators of the vectorial space L.

Example 6: Let X be an A-module, and $M \subset X$ ($M \neq \emptyset$), with $M = \{x_i\}_{i \in I}$.

The sub-module generated by M is:

$$\langle M \rangle = \{x \in X / x = a_1 x_1 + \ldots + a_n x_n, \ a_i \in A, \ x_i \in M, \ i \in \{1, \ldots, n\}\}$$

can be recursively defined in the following way:

1°) for all i of $\{1, 2, \ldots, n\}$, $\{1, 2, \ldots, n\}x_i \in \langle M \rangle$;

2°) if x and y belong to $\langle M \rangle$ and a belongs to A, then $x + y$ belongs to $\langle M \rangle$, and ax also;

3°) each element of $\langle M \rangle$ is obtained by applying a finite number of times the rules 1° or 2°.

In accordance to the paragraph 1 of this article, $\langle M \rangle$ is the smallest sub-set of X that verifies the conditions 1° and 2°, that is $\langle M \rangle$ is the smallest sub-module of X that includes M. $\langle M \rangle$ is also the intersection of all the subsets of X that verify the conditions 1° and 2°, that is $\langle M \rangle$ is the intersection of all sub-modules of X that contain M. One also directly refines some classic results from algebra.

One can also talk about sub-groups or ideal generated by a set: one also obtains some important applications in algebra.

Example 7: One also obtains like an application the theory of formal languages, because, like it was mentioned, each regular language (linear at right) is a regular set and reciprocally. But a regular set on an alphabet $\Sigma = \{a_1, \ldots, a_n\}$ can be recursively defined in the following way:

1°) $\emptyset, \{e\}, \{a_1\}, \ldots, \{a_n\}$ belong to R.

2°) if P and Q belong to R, then $P \cup Q$, PQ, and P^* belong to R, with $P \cup Q = \{x / x \in P \text{ or } x \in Q\}$; $PQ = \{xy / x \in P \text{ and } y \in Q\}$, and $P^* = \bigcup_{n=0}^{\infty} P^n$ with $P^n = \underbrace{P \cdot P \cdot \ldots \cdot P}_{n \text{ times}}$ and, by convention, $P^0 = \{e\}$.

3°) Nothing else belongs to R other than those which are obtained by using 1° or 2°.

From which many properties of this class of languages with applications to the programming languages will result.

REFERENCES:

[1] C. P. Popovici, L. Livovschi, H. Georgescu. N. Ţăndăreanu, ”Curs de bazele informaticii (funcţii booleene şi circuite combinaţionale)”, Tipografia Universităţii din Bucureşti, 1976

[2] F. Smarandache, ”Problèmes avec et sans…problèmes!”, Somipress, Fès (Maroc), 1983.