A 3-Item Measure of Digital Health Care Literacy: Development and Validation Study

Lyndsay A Nelson1,2, PhD; Jacquelyn S Pennings3,4, PhD; Evan C Sommer5, BSc, BA; Filoteia Popescu5, BSc; Shari L Barkin5, MSHS, MD

1Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
2Center for Clinical Quality and Implementation Research, Vanderbilt University Medical Center, Nashville, TN, United States
3Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
4Center for Musculoskeletal Research, Vanderbilt University Medical Center, Nashville, TN, United States
5Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States

Corresponding Author:
Lyndsay A Nelson, PhD
Department of Medicine
Vanderbilt University Medical Center
2525 West End Ave
Suite 450
Nashville, TN, 37203
United States
Phone: 1 6156009027
Email: lyndsay.a.nelson@vumc.org

Abstract

Background: With increased reliance on digital health care, including telehealth, efficient and effective ways are needed to assess patients’ comfort and confidence with using these services.

Objective: The goal of this study was to develop and validate a brief scale that assesses digital health care literacy.

Methods: We first developed an item pool using existing literature and expert review. We then administered the items to participants as part of a larger study. Participants were caregivers of children receiving care at a pediatric clinic who completed a survey either on the web or over the telephone. We randomized participants into development and confirmatory samples, stratifying by language so that exploratory factor analysis and confirmatory factor analysis could be performed with separate samples of participants. We assessed the scale’s validity by examining its associations with participants’ demographics, digital access, and prior digital health care use.

Results: Participants (N=508) were, on average, aged 34.7 (SD 7.7) years, and 89.4% (454/508) were women. Of the 508 participants, 280 (55.1%) preferred English as their primary language, 157 (30.9%) preferred Spanish, and 71 (14%) preferred Arabic; 228 (45%) had a high school degree or less; and 230 (45.3%) had an annual household income of <US $35,000. Using exploratory factor analysis, 3 items were retained in a reduced scale with excellent reliability (Cronbach α=0.90) and a high variance explained (78%). The reduced scale had excellent fit, with factor loadings between 0.82 and 0.94. All fit statistics exceeded the criteria for good fit between the proposed factor structure and the data. We refer to this scale as the Digital Health Care Literacy Scale. The scale was positively associated with education (ρ=0.139; P=0.005) and income (ρ=0.379; P<0.001). Arabic speakers had lower scores than English (P<.001) and Spanish speakers (P=.02), and Spanish speakers had lower scores than English speakers (P<.001). Participants who did not own a smartphone (P=.13) or laptop computer (P<.001) had lower scores than those who owned these devices. Finally, participants who had not used digital tools, including health apps (P<.001) and video telehealth (P<.001), had lower scores than those who had used these tools.

Conclusions: Despite the potential for digital health care to improve quality of life and clinical outcomes, many individuals may not have the skills to engage with and benefit from it. Moreover, these individuals may be those who already experience worse outcomes. A screening tool such as the Digital Health Care Literacy Scale could be a useful resource to identify patients who require additional assistance to use digital health services and help ensure health equity.

(JMIR Form Res 2022;6(4):e36043) doi: 10.2196/36043
KEYWORDS
digital literacy; digital health care; telehealth; health equity; scale development; mobile phone

Introduction

Background

Digital technologies for managing health have proliferated in recent years, in large part as a response to the COVID-19 pandemic [1-3]. These technologies include telehealth, patient portals, and mobile health, such as app-based programs. Telehealth or the delivery of health care services at a distance using information and communication technology has been particularly helpful for allowing individuals to still receive treatment when in-person interaction is not possible. Given its convenience and now integration with many clinic workflows, it is likely that telehealth will continue to be offered as a delivery modality [4]. From a clinical trial standpoint, evidence supports the efficacy of telehealth to improve clinical outcomes across a variety of conditions [5]. Moreover, it may be more cost-effective than other approaches and patients who use it are generally satisfied with the experience [6,7]. However, to promote the continued utility of telehealth, consideration must be given to the types of individuals who have both access to, and confidence in using, it.

Despite increased access to technology over the past decade, disparities in access persist among those with lower income, with less education, or who are racial or ethnic minorities [8,9]. With respect to telehealth access, specifically, numerous studies have demonstrated stark racial and socioeconomic disparities during the COVID-19 pandemic [10-13]. This concept, known as the digital divide or the gap between people who do and do not have access to technology, affects health equity. Namely, there is concern that with the advancement in digital technologies, we may leave behind those individuals who tend to have worse health outcomes and need help the most, thereby widening the gap [14,15]. Recent efforts to expand broadband and telehealth access have begun at the federal and state levels and will require long-term, widespread investment [16,17]. An additional component of addressing the digital divide includes determining whether individuals who have access to the internet and digital devices also have the skills to use technology for accessing health care.

A certain level of digital literacy is necessary to effectively engage with, and benefit from, digital health tools. For example, individuals must feel somewhat confident in their skills using technology to install and engage with a health app or start up a telehealth visit with their provider. The telehealth modality of today’s world requires that patients initiate the visit compared with prior telehealth approaches where clinics provided all required digital health care connection. Digital literacy is considered unique and separate from technology access. In a recent study of patients admitted to the hospital, most of the participants with low health literacy had access to digital devices and had used the internet previously but were unable to perform web-based tasks without assistance [18]. Digital literacy may in fact present as a larger barrier to using digital tools than access, which underscores the need to appropriately measure and understand it.

There have been attempts in the past to measure digital literacy, although many are based on using computers generally or using the internet to find health information [19-22]. For example, the Computer Literacy Scale focuses only on computers and recognizing computer symbols and terms [22]. Likewise, the eHealth Literacy Assessment Toolkit is a compilation of scales for assessing both health literacy and digital literacy; however, the digital literacy scales primarily focus on familiarity with computer terms and confidence using computers [21]. The eHealth Literacy Scale is a popular scale for assessing electronic health literacy, but all items are anchored on using the internet to find health information [20,23]. Another scale for assessing digital literacy, the Digital Health Literacy Instrument, assesses competencies for both gathering health information and using the internet; however, the skills it assesses are very specific (ie, protecting privacy and adding self-generated content, such as writing health-related messages to a physician) [19]. It was also developed among a highly educated sample, limiting its generalizability, and the full scale consists of 21 items, limiting its efficiency [19]. To our knowledge, there are no scales that assess one’s comfort and confidence with the foundational digital skills necessary to use digital health care services such as telehealth. We refer to this as digital health care literacy. Such a scale has critical implications for clinical care and understanding the types of patients who are strong candidates for telehealth versus those who may need additional assistance.

Objectives

To address these gaps, we sought to develop a brief measure that assesses digital health care literacy called the Digital Health Care Literacy Scale (DHLS). The item pool was developed using existing literature and expert review, and the survey was then administered to participants as part of a larger study on telehealth equity. Participants in the larger study were randomly split into development and confirmatory samples to identify a reduced version of the survey. We assessed the scale’s validity in a variety of ways, including examining its associations with digital access; prior digital health care use; and demographics, including education, income, language, race, and ethnicity.

Methods

Data Collection and Sample

This research was conducted as part of a larger study that sought to examine telehealth use among caregivers of young children from diverse populations. Participants were recruited from the Vanderbilt Pediatric Primary Care Clinic at Vanderbilt University Medical Center (VUMC) in Nashville, Tennessee. This clinic predominantly cares for underserved populations with higher medical and social needs. Eligible participants were aged ≥18 years; spoke a primary language of English, Spanish, or Arabic; and were a parent or guardian of a child aged <13 years who received care at the clinic between March 1, 2020, and...
and September 30, 2020. We used the electronic medical record to query for caregivers of children who met the inclusion criteria and received permission from their providers to recruit them through telephone calls.

Interested and eligible caregivers completed informed consent and a baseline survey. All data were collected using REDCap (Research Electronic Data Capture; Vanderbilt University), a secure web-based application designed exclusively to support data capture for research studies. Surveys were administered either on the web or over the telephone and in the participant’s primary language (English, Spanish, or Arabic). Because of technical specifications in REDCap at the time of this study (i.e., content was formatted to only read from left to right), all Arabic speakers (except for a single participant) completed the survey over the telephone. All key study personnel (KSP) were trained and certified before data collection and survey administration. KSP who collected survey data in a non-English language were either native speakers or fluent in the language concerned.

KSP started making telephone calls to caregivers on December 14, 2020. Rolling recruitment occurred for approximately 6 months until 500 eligible families of pediatric patients completed the survey. The final participant completed the survey on June 6, 2021. Participants were compensated with a US $15 Walmart gift card for completing the survey.

Table 1. Finalized item pool for administration and factor analysis.

Item number	Refined item pool
1	I can install applications/programs (like Zoom) on my cell phone, computer, or another electronic device on my own (without asking for help from someone else).
2	I can use applications/programs (like Zoom) on my cell phone, computer, or another electronic device on my own (without asking for help from someone else).
3	I can set up a video chat using my cell phone, computer, or another electronic device on my own (without asking for help from someone else).
4	I can solve or figure out how to solve basic technical issues on my own (without asking for help from someone else).
5	If you encounter a technical issue while using your cell phone, computer, or another electronic device, what do you do first?
6	How often do you need someone (like your child/children) to help you with using your digital devices?

Response options range from 0 (strongly disagree) to 4 (strongly agree).

Response options include 0 (ask someone for help) and 1 (try and solve the technical issue on my own—without help from someone else).

Response options include 0 (always), 1 (almost always), 2 (about half the time), 3 (not very often), and 4 (never).

Translation Process

The items were translated into Spanish by a native Spanish speaker from the VUMC Division of Academic General Pediatrics. The items were translated into Arabic by a formally trained medical translator and native Arabic speaker from the VUMC Interpreter Services Department. Both translators are fluent in, and understand, both English and their native language (Spanish or Arabic). Other than their role as translators, the Spanish and Arabic translators had no other involvement in the study. Both the Spanish and Arabic translations were checked by KSP from the research team to ensure that the translations were accurate. KSP who were involved in this process were either native speakers of, or fluent in, the language concerned.

The original documents (in English), translated documents (in Spanish and Arabic), and translator declaration forms (for the Spanish and Arabic translators) were submitted to, and approved by, the Vanderbilt University institutional review board before participant recruitment and data collection.

Measures

The survey included (1) the 6 digital health care literacy items (Table 1), (2) demographic questions, (3) questions about digital access, and (4) questions about digital health care use.

To score the digital health care literacy items (Table 1), we used a sum score of all the items such that higher scores indicated higher digital health care literacy. For item 5, we recoded the response values—0=1 and 1=3—to better align with the

Ethics Approval

The Vanderbilt University institutional review board approved all study procedures (approval number: 201990).
Demographic data included age, gender, race, ethnicity, language, education, and income. Regarding digital access, participants were asked whether they owned a smartphone, a laptop computer, and/or a desktop computer. Participants were also asked about the stability of their network connection to use Internet at home and a cell phone data plan. Response options ranged from 1 (no internet or cell phone data plan) to 4 (very good). Finally, several questions assessed participants’ prior experience using digital health care. Specifically, among participants who said that they owned a smartphone, we asked whether they had ever accessed a health app. We also asked participants whether they were currently signed up for the patient portal at VUMC. The portal is a secure, web-based tool that provides patients with 24-hour access to personal health information, visit summaries, test results, and secure messaging. Finally, we asked participants whether they had used video telehealth to get care for their child in the past year. Those who had used telehealth in the past year were asked how easy it was to schedule the visit, and those who had not used telehealth in the past year were asked how difficult they thought it would be to schedule a visit. For both these items, response options ranged from 1 (very difficult) to 5 (very easy).

Analyses

Data cleaning included evaluation of missing data, checking implausible values, and evaluating variable distributions. To evaluate the proposed scale, the participants were first divided into development and confirmatory samples so that exploratory factor analysis (EFA) and confirmatory factor analysis (CFA) could be conducted with separate samples of participants. To ensure a balanced number of surveys in each language, participants were randomized into the development and confirmatory samples stratified by language. Demographic characteristics were reported for the overall sample as well as divided by sample. Chi-square tests of independence and independent samples 2-tailed t tests were computed to check for balance in demographic characteristics by sample. SPSS software (version 28.0; IBM Corp) was used for data cleaning, EFA, and validation analysis. The lavaan package in R (version 3.6.2; The R Foundation for Statistical Computing) was used for CFA analysis [24], and α was set at .05 for statistical significance.

EFA of Development Sample

EFA was performed on the development sample using principal axis factoring, and varimax rotation was allowed in the case of a solution with more than one factor. EFA was used to evaluate the factor structure of the 6 items proposed for inclusion in the scale as well as to reduce the 6 items to a smaller set of items that could potentially be used to measure digital health care literacy more parsimoniously. Eigenvalues > 1, factor loadings >0.4, Cronbach α >.75, and variance explained >0.40 were used as the criteria to evaluate the items retained in the full factors and to attempt to create a reduced factor [25-27]. Once the full and reduced factors were finalized, CFA was performed on the confirmatory sample using the items suggested by the EFA.

CFA of Confirmatory Sample

The CFA was conducted using robust maximum likelihood estimation to test the goodness of fit between the theorized factor structure suggested by the EFA and the confirmatory sample data set. The robust estimation was used because of the Likert-type ordinal responses of the items and does not assume multivariate normality of the items. A constraint value of 1 was placed on 1 item in the factor as is common in modeling analyses with a defined scale. Goodness of fit for the CFA was assessed evaluating the absolute fit, incremental fit, and parsimonious fit of the full and reduced factors [28]. The absolute fit criteria to conclude good fit between the proposed factor structure and the data included nonsignificant chi-square values, root mean square error of approximation, and standardized root mean square residual <0.08 [29]. Incremental fit criteria included the comparative fit index and nonnormed fit index >0.95. Parsimonious fit was indicated by adjusted chi-square (c2/df)<3.0 [30]. To assess the reliability of the full and reduced factors, Cronbach α was computed for the EFA and CFA. Composite reliabilities, calculated according to the weighted Ω formula from McDonald [31], were also calculated for the CFA because of concerns that Cronbach α may be inappropriate for use in structural equation modeling [32]. The variance explained was also reported for the EFA, and the average variance explained (AVE) values were calculated for the CFA with the recommended critical value >.50 indicating that the factors explained enough of the variance in the construct [33].

Validation

We assessed the scale’s validity by examining its associations with participants’ demographics (ie, gender, race, ethnicity, language, education, and income), digital access, and prior digital health care use. We used the Spearman ρ for continuous variables and the Kruskal-Wallis test for categorical variables.

Results

Sample Characteristics

Participants were, on average, aged 34.7 (SD 7.7) years. Of the 508 participants, 454 (89.4%) were women; 173 (34.1%) were Hispanic, 129 (25.4%) Black, 95 (18.7%) White, and 78 (15.4%) Middle Eastern; 280 (55.1%) preferred English as their primary language, 157 (30.9%) preferred Spanish, and 71 (14%) preferred Arabic; 228 (45%) had an educational attainment of high school degree or less; 230 (45.4%) had an annual household income of <$US 35,000; and 351 (69.1%) had children with Medicaid insurance (Table 2). Chi-square and independent samples 2-tailed t tests revealed no significant differences between the development and confirmatory samples for any demographic characteristics.
Table 2. Demographic characteristics of the sample overall and by development and confirmatory samples (N=508).

Characteristic	Overall	Development sample (n=254)	Confirmatory sample (n=254)
Participant age (years), mean (SD)	34.7 (7.7)	34.3 (7.9)	35.0 (7.6)
Gender, female, a n (%)	454 (89.4)	223 (87.8)	231 (90.9)
Race and ethnicity, b n (%)			
White	95 (18.7)	46 (18.1)	49 (19.3)
Black	129 (25.4)	64 (25.2)	65 (25.6)
Hispanic	173 (34.1)	88 (34.6)	85 (33.5)
Asian	13 (2.6)	5 (2)	8 (3.1)
Middle Eastern	78 (15.4)	39 (15.4)	39 (15.4)
Multiple	13 (2.6)	7 (2.8)	6 (2.4)
Prefer not to answer	7 (1.4)	5 (2)	2 (0.8)
Preferred language, n (%)			
English	280 (55.1)	139 (54.7)	141 (55.5)
Spanish	157 (30.9)	79 (31.1)	78 (30.7)
Arabic	71 (14)	36 (14.2)	35 (13.8)
Education level, n (%)			
Less than a high school graduate or GEDc	97 (19.1)	51 (20.2)	46 (18.1)
High school graduate or GED	131 (25.8)	67 (26.4)	64 (25.2)
Some college or technical or vocational school	125 (24.6)	62 (24.4)	63 (24.8)
College degree (associate’s or bachelor’s)	105 (20.7)	47 (18.5)	58 (22.8)
Postgraduate or professional degree	49 (9.6)	26 (10.2)	23 (9.1)
Missing	1 (0.2)	1 (0.4)	0 (0)
Annual household income (US $), n (%)			
<10,000	56 (11)	33 (13)	23 (9.1)
10,000-19,999	45 (8.9)	26 (10.2)	19 (7.5)
20,000-34,999	129 (25.4)	63 (24.8)	66 (26)
35,000-49,999	75 (14.8)	36 (14.2)	39 (15.4)
≥50,000	93 (18.3)	43 (16.9)	50 (19.7)
Don’t know or not sure	110 (21.7)	53 (20.9)	57 (22.4)
Child’s or children’s insurance, n (%)			
None	7 (1.4)	3 (1.2)	4 (1.6)
Medicaid	351 (69.1)	184 (72.4)	167 (65.7)
Private insurance	75 (14.8)	33 (13)	42 (16.5)
Other type of insurance	74 (14.6)	34 (13.4)	40 (15.7)
Missing	1 (0.2)	0 (0)	1 (0.4)
Digital Health Care Literacy Scale reduced score, mean (SD)	8.6 (3.1)	8.7 (3.0)	8.5 (3.3)
EFA of Development Sample

To evaluate the full digital health care literacy score, all 6 items were initially entered into the EFA, and 1 factor was extracted with an eigenvalue >1 and factor loadings between 0.45 and 0.96. Cronbach α was excellent at .89, and the variance explained was high at 62% (Table 3). Next, a reduced factor was created by eliminating items from the full factor one at a time and evaluating the resulting factor loadings and variance explained. Items were eliminated based on correlations with other items >0.90 with conceptual overlap (1 item; I can install applications/programs... overlapped with I can use applications/programs...) and the lowest factor loadings (2 items). On the basis of these criteria, 3 items were retained in the reduced scale (Table 3), with a resulting excellent reliability (Cronbach $\alpha=.90$) and a high variance explained (78%).

Table 3. Summary of factor loadings and fit statistics for the full and reduced models.
Factor
I can use applications/programs (such as Zoom) on my cell phone, computer, or another electronic device on my own (without asking for help from someone else)
I can set up a video chat using my cell phone, computer, or another electronic device on my own (without asking for help from someone else)
I can solve or figure out how to solve basic technical issues on my own (without asking for help from someone else)
I can install applications/programs (such as Zoom) on my cellphone, computer, or another electronic device on my own (without asking for help from someone else)
If you encounter a technical issue while using your cell phone, computer, or another electronic device, what do you do first?
How often do you need someone (like your child/children) to help you with using your digital devices?

Absolute fit
Chi-square
RMSEAd
SRMRe

Incremental fit
CFIf
NNFIg

Parsimonious fit, adjusted chi-square
N/A

Reliability
Cronbach α
Composite reliability (coefficient Ω)
Variance explained (EFA); average variance explained (CFA)

aEFA: exploratory factor analysis.
bCFA: confirmatory factor analysis.
cN/A: not applicable.
dRMSEA: root mean square error of approximation.
eSRMR: standardized root mean square residual.
fCFI: comparative fit index.
gNNFI: nonnormed fit index.

CFA of Confirmatory Sample

Both the full and reduced factors were evaluated with CFA (Table 3). The factor loadings for the full factor ranged from 0.38 to 0.95, with model statistics of $\chi^2=16.0; P=0.07$. All the fit statistics exceeded the criteria for good fit between the proposed factor structure and the data. The reliability was excellent, with coefficient $\Omega=0.88$, and the AVE was high at 0.62. The reduced scale also had excellent CFA fit, with factor loadings between 0.82 and 0.94. The chi-square value was 0, meaning the model was saturated (equal number of parameters and df). This also means that the factor was perfectly parsimonious (adjusted chi-square value of 0). All the fit statistics well exceeded the criteria for good fit between the proposed factor structure and the data. The reliability was excellent.
excellent, with coefficient $\Omega=0.90$, and the AVE was high at 0.75.

DHLS Validation

Overview

Because of the excellent fit of the reduced factor, we focus on this version of the scale and its validity in the following sections.

Figure 1 shows the final version of the scale with response options and scoring instructions. The associations between the DHLS and measured categorical variables are shown in box plots in Figure 2. Associations with continuous variables are described only in the text.

Figure 1. Digital Health Care Literacy Scale (DHLS).
Figure 2. Associations between scores on the Digital Health Care Literacy Scale and participants’ demographic variables, digital access, and digital health care use. For all variables with the same superscripted designator, the difference between the medians is not statistically different. If 2 variables have different superscripted designators, they are significantly different from each other.

Demographics

The DHLS score was negatively associated with age (\(\rho = -0.164; P < .001\)) and positively associated with both education (\(\rho = 0.139; P = .005\)) and income (\(\rho = 0.379; P < .001\)). There was not a significant association with gender, \(H_1 = 1.267; P = .26\). The overall model for language was significant, \(H_2 = 117.115; P < .001\). Arabic speakers had lower scores than English and Spanish speakers, and Spanish speakers had lower scores than English speakers (Figure 2). The model for race was also significant, \(H_3 = 93.167; P < .001\). Middle Eastern participants had lower scores than all other racial groups, and Hispanic participants had lower scores than all groups, except Middle Eastern (Figure 2).

Digital Access

Among the 508 participants in the study, 25 (4.9%) did not own a smartphone, 191 (37.6%) did not own a laptop computer, and 401 (78.9%) did not own a desktop computer; in addition, 30 (5.9%) did not have internet access at home and 43 (8.5%) said that their internet connection was not good. We found significant associations between most of our digital access items and the DHLS score such that participants who did not have digital tool access had lower scores than those who did. Specifically, participants who did not own a smartphone or a laptop computer had lower digital literacy scores (Figure 2). However, there was not an association between desktop computer ownership and scores (Figure 2). Having a more stable network connection to use the internet at home (\(\rho = 0.343; P < .001\)) and to use a cell phone data plan (\(\rho = 0.312; P < .001\)) were both associated with higher scores.

Digital Health Care Use

Nearly half of the participants (211/508, 41.5%) had never accessed a health app, and 35.8% (182/508) were not signed up for the patient portal. Most (341/508, 67.1%) had not used video telehealth to obtain care for their children. Participants who had never used a health app had lower digital health care literacy scores than those who had (Figure 2). In addition, participants who were not signed up for the patient portal had lower scores than those who were signed up. Participants who had not used video telehealth to obtain care for their children had lower literacy scores than those who had (Figure 2). Among those who had, there was a positive association between the ease of scheduling the visit and their DHLS score (\(\rho = 0.279; P = .001\)). Among those who had not used video telehealth, perceived difficulty of scheduling a visit was associated with lower scores (\(\rho = 0.459; P < .001\)).

Discussion

Principal Findings

Given the increased reliance on digital technologies during the COVID-19 pandemic, it is critical that we understand which
patients are and are not equipped for this shift in health care delivery. Without gauging patients’ confidence in skills for using telehealth and similar health care technologies, we risk exacerbating health disparities [14,17]. We developed the D HLS, a scale designed to measure an individual’s digital health care literacy, and validated it among a diverse sample of caregivers of young children. Overall, the scale had strong psychometric properties, and the reduced version of the scale performed just as well as the full version, supporting its continued and more efficient use. Participants with lower digital health care literacy had less experience with digital health care and were less likely to own digital tools. In addition, those with lower education, lower income, and people of color had lower digital health care literacy.

To our knowledge, this is one of the first tools intended to measure confidence with the skills necessary for using digital health care services, including telehealth. The Digital Health Literacy Instrument is another scale designed to measure digital health literacy; however, the items are complex and highly specific (e.g., When typing a message [e.g., to your doctor, on a forum, or on social media such as Facebook or Twitter] how easy or difficult is it for you to clearly formulate your question or health-related worry); furthermore, the scale is long (21 items), which could lead to attrition among users with less education or literacy. The D HLS is a brief, 3-item assessment developed among a racially and socioeconomically diverse sample, and it measures the basic skills necessary for using digital health services. Of note, we focused our application of the scale in this paper on telehealth; however, it may have application to other types of digital tools. This is supported by our study, which validated the scale against the use of similar technologies (e.g., whether patients had used a health app and whether they were signed up for a patient portal). Although the reduced 3-item scale is easier to administer, we encourage other researchers to use either the reduced or full scale (the latter includes additional items about digital skills, more broadly, beyond video chat) to explore other applications.

Overall, we found similar associations between participants’ characteristics and D HLS scores as other studies reporting on similar digital literacy tools. For example, having less education and lower income has previously been associated with lower eHealth Literacy Scale scores [34]. Although lower telehealth literacy was associated with older age, aligning with other studies examining digital literacy [35,36], the effect was very small. This is likely due to the limited variation in age among our sample: all participants were caregivers of children aged <13 years, with the average caregiver age being only 34.7 (SD 7.7) years. In our study, we found that Hispanic and Middle Eastern participants had lower digital health care literacy than White and Black participants, and Middle Eastern participants had significantly lower scores than Hispanic participants. A similar pattern emerged when looking at language such that Arabic speakers had the lowest digital health care literacy, followed by Spanish speakers, and then English speakers. The findings highlight the importance of examining differences in race and language by unique groups rather than collapsing groups into non-White or non-English.

Our scale could be applied as a brief assessment in clinical settings when assessing individuals’ ability to use telehealth. If a participant identifies as more digitally fluent, they may be a strong candidate for telehealth and can receive subsequent instructions for setting up a visit. However, if they identify as being less digitally fluent, resources can be provided to help that individual be better equipped for a visit. Several organizations are exploring solutions to help those with lower technology literacy prepare for telehealth appointments. For example, at VUMC, a medical student–led volunteer initiative was started to help patients set up and test devices for their telehealth appointments [37]. Students used a standardized telephone script to guide patients with downloading the proper software and understanding what to expect for the visit [37]. Another approach in Harris County, Texas, included a nonphysician staff member reaching out to ensure that patients had the proper technology and had resolved issues before the appointment [38]. Primary care practices at University of California San Francisco started an outreach program to all patients aged >65 years with scheduled visits to walk them through setting up and using the video platform app [39]. Although such initiatives have had success with preparing patients for telehealth, they are extremely time and resource intensive; a screening tool such as the D HLS could help identify only those who are most in need of assistance, thereby increasing efficiency and effectiveness. Another approach could be to simply ask patients whether they need extra help setting up a telehealth visit; however, this may have the opposite effect and lead to missing patients who do require help. That is, it is possible that some individuals may not know they need the help, especially if they have never had a telehealth visit. By using items that target the basic skills necessary to use digital tools, the scale could help to accurately identify patients who are unaware that they need assistance. Moreover, some patients may feel uncomfortable communicating that they need help. We hope that this tool provides a respectful approach for identifying those patients who require assistance.

With respect to research, the D HLS could be used as a way to help describe the digital literacy of the sample and determine whether there was representation from low digital literacy communities. It could also be useful to assess whether the use rates or efficacy of a digital technology or program were related to digital literacy. In general, we hope that the scale is included in other studies, whether for descriptive purposes, as a predictor, or as a covariate, to broaden our understanding of its applications and how it functions.

This study includes several limitations. First, these data were collected cross-sectionally; therefore, we cannot draw conclusions regarding causality. It is possible that having lower digital health care literacy leads to a lower likelihood of accessing digital health care services or vice versa. Similarly, as part of a cross-sectional study, we are limited in our ability to propose a cutoff score for determining who requires additional assistance with digital health care; however, certain study designs can effectively answer this question. For example, a future study might administer the D HLS and then attempt to conduct a telehealth visit with all participants. By examining the difference in scores between those who were and were not
successful with completing the visit, we could determine a cutoff score that helps identify the likelihood of being able to successfully carry out a telehealth visit in typical circumstances. In this study, one of our goals was to explore associations between the scale and a variety of barriers to telehealth, of which scheduling a visit was one; however, scheduling a visit is likely reflecting both clinic-level and patient-level characteristics and therefore we recommend interpreting this association with some degree of caution. All participants were caregivers of children and recruited from a clinic in Middle Tennessee, which limits generalizability to other populations and other regions; however, we enrolled a racially, ethnically, and socioeconomically diverse sample of participants. We developed the items such that they can theoretically be used widely with different types of individuals, and we encourage researchers to use and validate the scale in other populations. Although the D HLS was negatively correlated with age, the sample was, on average, of younger age (mean age 34.7, SD 7.7 years), and it will be especially important to see how the scale functions with older populations who tend to experience more barriers to digital health [40-42]. In addition, although we included participants who spoke English, Spanish, and Arabic, there were likely confounding differences among the groups, and we did not use a sample-matching approach to ensure comparability of participant characteristics among languages. To consider the scale validated for all languages, a future study would need to include large numbers of individuals who spoke each language with sufficient heterogeneity and representation of participant characteristics. Relatedly, because our scale items were originally written and derived by English speakers, it is possible that the lower mean scores observed within the Spanish and Arabic groups could have been at least partially caused by intrinsic bias. Full validation within each language would help to confirm whether intrinsic bias was present. Finally, patients were not included in the development of the scale; it is possible that the inclusion of patient input could have strengthened it.

Conclusions
Widespread adoption of telehealth by clinicians and patients alike has the potential to revolutionize health care delivery, improving both quality of life and clinical outcomes. However, as part of this quest, we must consider those patients who may not have the digital access or skills to use telehealth—in many cases, these are the same patients who tend to have worse outcomes. A screening tool such as the D HLS can be a useful resource to identify patients who require additional assistance to effectively engage with telehealth. Validating the scale among other patient populations and in other settings will support the scale’s ultimate utility to reduce health care inequities.

Acknowledgments
This work was supported by the National Institute on Minority Health and Health Disparities (3U54MD010722-05S1 and COEUS M2003140). LAN was supported by a career development award from the National Heart, Lung, and Blood Institute (K12HL137943). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The authors thank the Vanderbilt Pediatric Primary Care Clinic at Vanderbilt University Medical Center and the participants for their contributions to this research.

Conflicts of Interest
None declared.

References
1. Keesara S, Jonas A, Schulman K. Covid-19 and health care's digital revolution. N Engl J Med 2020 Jun 04;382(23):e82. [doi: 10.1056/NEJMp2005835] [Medline: 32240581]
2. Budd J, Miller BS, Manning EM, Lampos V, Zhuang M, Edelstein M, et al. Digital technologies in the public-health response to COVID-19. Nat Med 2020 Aug;26(8):1183-1192. [doi: 10.1038/s41591-020-1011-4] [Medline: 3270165]
3. Monaghen E, Hajizadeh A. The role of telehealth during COVID-19 outbreak: a systematic review based on current evidence. BMC Public Health 2020 Aug 01;20(1):1193 [FREE Full text] [doi: 10.1186/s12889-020-09301-4] [Medline: 32738884]
4. Experts say the ‘new normal’ in 2025 will be far more tech-driven, presenting more big challenges. Pew Research Center. 2021. URL: https://www.pewresearch.org/internet/2021/02/18/experts-say-the-new-normal-in-2025-will-be-far-more-tech-driven-presenting-more-big-challenges/ [accessed 2022-04-10]
5. Snowsill CL, Chelberg G, De Guzman KR, Haydon HH, Thomas EE, Caffery LJ, et al. The clinical effectiveness of telehealth: a systematic review of meta-analyses from 2010 to 2019. J Telemed Telecare 2021 Jun 29:1357633X211022907. [doi: 10.1177/1357633x211022907]
6. Eze ND, Mateus C, Cravo Oliveira Hashiguchi T. Telemedicine in the OECD: an umbrella review of clinical and cost-effectiveness, patient experience and implementation. PLoS One 2020;15(8):e0237585 [FREE Full text] [doi: 10.1371/journal.pone.0237585] [Medline: 32790752]
7. Wade VA, Karnon J, Elshaug AG, Hiller JE. A systematic review of economic analyses of telehealth services using real time video communication. BMC Health Serv Res 2010 Aug 10;10:233 [FREE Full text] [doi: 10.1186/1472-6963-10-233] [Medline: 20696073]
8. Atske S, Perrin A. Home broadband adoption, computer ownership vary by race, ethnicity in the U. S. Pew Research Center. URL: https://www.pewresearch.org/fact-tank/2021/07/16/home-broadband-adoption-computer-ownership-vary-by-race-ethnicity-in-the-u-s/ [accessed 2022-04-10]

9. Vogels E. Digital divide persists even as lower-income Americans make gains in tech adoption. Pew Research Center. URL: https://www.pewresearch.org/fact-tank/2021/06/22/digital-divide-persists-even-as-americans-with-lower-incomes-make-gains-in-tech-adoption/ [accessed 2022-04-10]

10. Eberly LA, K Allan MJ, Julien HM, Haynes N, Khattana SA, Nathan AS, et al. Patient characteristics associated with telemedicine access for primary and ambulatory care during the COVID-19 pandemic. JAMA Netw Open 2020 Dec 01;3(12):e2031640 [FREE Full text] [doi: 10.1001/jamanetworkopen.2020.31640] [Medline: 33372974]

11. HSiao V, Changdereng T, Lantkon RL, Huebner JA, Baltus JJ, Flood GE, et al. Disparities in telemedicine access: a cross-sectional study of a newly established infrastructure during the COVID-19 pandemic. Appl Clin Inform 2021 May;12(3):445-458. [doi: 10.1055/s-0041-1730026] [Medline: 34107542]

12. Chen EM, Andoh JE, Nwananyekwu K. Socioeconomic and demographic disparities in the use of telemedicine for ophthalmic care during the COVID-19 pandemic. Ophthalmology 2022 Jan;129(1):15-25 [FREE Full text] [doi: 10.1016/j.ophtha.2021.07.003] [Medline: 34245753]

13. Rivera V, Aldridge MD, Ornstein K, Moody KA, Chun A. RESEARCHRacial and socioeconomic disparities in access to telehealth. J Am Geriatr Soc 2021 Jan 24;69(1):44-45 [FREE Full text] [doi: 10.1111/jgs.16904] [Medline: 33075143]

14. Ramsay A, Adams C. Impact of the digital divide in the age of COVID-19. J Am Med Inform Assoc 2020 Jul 01:27(7):1147-1148 [FREE Full text] [doi: 10.1093/jamia/ocaao78] [Medline: 32343813]

15. Veinot TC, Mitchell H, Ancker JS. Good intentions are not enough: how informatics interventions can worsen inequality. J Am Med Inform Assoc 2018 Aug 01:25(8):1080-1088 [FREE Full text] [doi: 10.1093/jamia/ocy052] [Medline: 29788380]

16. How states are expanding broadband access. Pew Trust. URL: https://www.pewtrusts.org/en/research-and-analysis/reports/2020/02/how-states-are-expanding-broadband-access [accessed 2022-04-10]

17. Gray DM, Joseph JJ, Olayiwola JN. Strategies for digital care of vulnerable patients in a COVID-19 world—keeping in touch. JAMA Health Forum 2020 Jun 12;1(6):e200734. [doi: 10.1001/jamahealthforum.2020.0734]

18. Vollbrecht H, Arora V, Otero S, Carey K, Meltzer D, Press VG. Evaluating the need to address digital literacy among hospitalized patients: cross-sectional observational study. J Med Internet Res 2020 Jun 04;22(6):e17519 [FREE Full text] [doi: 10.2196/17519]

19. van der Vaart R, Drossaert C. Development of the digital health literacy instrument: measuring a broad spectrum of health 1.0 and 2.0 skills. J Med Internet Res 2017 Jan 24;19(1):e27 [FREE Full text] [doi: 10.2196/mir.6709] [Medline: 28119275]

20. Norman CD, Skinner HA. eHEALS: the eHealth literacy scale. J Med Internet Res 2006 Nov 14;8(4):e27 [FREE Full text] [doi: 10.2196/mir.8.4.27] [Medline: 17213046]

21. Karnoe A, Furstrand D, Christensen KB, Norgaard O, Kayser L. Assessing competencies needed to engage with digital health services: development of the eHealth literacy assessment toolkit. J Med Internet Res 2018 May 10;20(5):e178 [FREE Full text] [doi: 10.2196/jmir.8347] [Medline: 29748163]

22. Sengpiel M, Jochems N. Validation of the Computer Literacy Scale (CLS). In: Human Aspects of IT for the Aged Population. Cham: Springer; 2015.

23. Chung S, Nahm E. Testing reliability and validity of the eHealth Literacy Scale (eHEALS) for older adults recruited online. Comput Inform Nurs 2015 Apr;33(4):150-156 [FREE Full text] [doi: 10.1097/CIN.0000000000000146] [Medline: 25783223]

24. Rosseel Y. lavaan: an R package for structural equation modeling. J Stat Softw 2012;48(2):1-36. [doi: 10.2196/jmir.17519] [Medline: 23496196]

25. Cortina JM. What is coefficient alpha? An examination of theory and applications. J Applied Psychol 1993;78(1):98-104. [doi: 10.1037/0021-9010.78.1.98]

26. Encyclopedia of Survey Research Methods. Thousand Oaks, California: SAGE Publications; 2008.

27. Applied Multivariate Statistics for the Social Sciences. Oxfordshire United Kingdom: Taylor & Francis; 2015.

28. Hu L, Bentler PM. Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives. Structural Equation Modeling Multidisciplinary J 1999 Jun;6(1):1-55. [doi: 10.1080/10705519909540118]

29. Browne MW, Cudeck R. Alternate ways of assessing model fit. Sociol Methods Res 2016 Jun 29;21(2):230-258. [doi: 10.1177/004912411920200205]

30. Marsh HW, Hocevar D. Application of confirmatory factor analysis to the study of self-concept: first- and higher order factor models and their invariance across groups. Psychol Bulletin 1985 May;97(3):562-582. [doi: 10.1037/0033-2909.97.3.562]

31. McDonald R. Test Theory A Unified Treatment. Abingdon-on-Thames, Oxfordshire, England, UK: Taylor & Francis; 1998.

32. Bacon DR, Sauer PL, Young M. Composite reliability in structural equations modeling. Educ Psychol Measure 2016 Jul 02;55(3):394-406. [doi: 10.1177/001316449505503003]

33. Fornell C, Larcker DF. Evaluating structural equation models with unobservable variables and measurement error. J Market Res 2018 Nov 28;18(1):39-50. [doi: 10.1177/002224378101800104]
34. Richtering SS, Hyun K, Neubeck L, Coorey G, Chalmers J, Usherwood T, et al. eHealth literacy: predictors in a population with moderate-to-high cardiovascular risk. JMIR Hum Factors 2017 Jan 27;4(1):e4 [FREE Full text] [doi: 10.2196/humanfactors.6217] [Medline: 28130203]

35. Schrauben SJ, Appel L, Rivera E, Lora CM, Lash JP, Chen J, CRIC Study Investigators. Mobile health (mHealth) technology: assessment of availability, acceptability, and use in CKD. Am J Kidney Dis 2021 Jun;77(6):941-50.e1. [doi: 10.1053/j.ajkd.2020.10.013] [Medline: 33309860]

36. Knitza J, Simon D, Lambrecht A, Raab C, Tascilar K, Hagen M, et al. Mobile health usage, preferences, barriers, and eHealth literacy in rheumatology: patient survey study. JMIR Mhealth Uhealth 2020 Aug;8(8):e19661 [FREE Full text] [doi: 10.2196/19661] [Medline: 32678796]

37. Triana AJ, Gusdorf RE, Shah KP, Horst SN. Technology literacy as a barrier to telehealth during COVID-19. Telederm J E Health 2020 Sep 01;26(9):1118-1119. [doi: 10.1089/tmj.2020.0155] [Medline: 32429770]

38. Rogg J, Ben MZ, Pandya M, Medina G, Walker B, Sharma K. How to make telemedicine more equitable. Harvard Business Review. URL: https://hbr.org/2021/10/how-to-make-telemedicine-more-equitable [accessed 2022-04-10]

39. Addressing equity in telemedicine for chronic disease management during the Covid-19 pandemic. NEJM Catalyst Innovations in Care Delivery. URL: https://catalyst.nejm.org/doi/full/10.1056/CA2T.20.0123 [accessed 2022-04-10]

40. Wildenbos GA, Peute L, Jaspers M. Aging barriers influencing mobile health usability for older adults: a literature based framework (MOLD-US). Int J Med Inform 2018 Jun;114:66-75. [doi: 10.1016/j.ijmedinf.2018.03.012] [Medline: 29673606]

41. Hirvonen N, Enwald H, Känsäkoski H, Eriksson-Backa K, Nguyen H, Huhta A, et al. Older adults’ views on eHealth services: a systematic review of scientific journal articles. Int J Med Inform 2020 Mar;135:104031. [doi: 10.1016/j.ijmedinf.2019.104031] [Medline: 31918340]

42. Lee C, Coughlin J. PERSPECTIVE: older adults’ adoption of technology: an integrated approach to identifying determinants and barriers. J Prod Innov Manag 2014 Jun 03;32(5):747-759 [FREE Full text] [doi: 10.1111/jpim.12176]

Abbreviations

- AVE: average variance explained
- CFA: confirmatory factor analysis
- DHLS: Digital Health Care Literacy Scale
- EFA: exploratory factor analysis
- KSP: key study personnel
- REDCap: Research Electronic Data Capture
- VUMC: Vanderbilt University Medical Center

©Lyndsay A Nelson, Jacquelyn S Pennings, Evan C Sommer, Filoteia Popescu, Shari L Barkin. Originally published in JMIR Formative Research (https://formative.jmir.org), 29.04.2022. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Formative Research, is properly cited. The complete bibliographic information, a link to the original publication on https://formative.jmir.org, as well as this copyright and license information must be included.