significant differences in the amyloid beta protein, Neprilysin (NEP), and SOX2 levels were not observed among the groups.

Conclusion: Our study showed that a single dose of 1×10^6 hUCB-MSCs injected intravenously into AD transgenic mice resulted in neither delivery into the brain nor generation of therapeutic benefits via paracrine activity. In order to utilize the intravenous route as an effective delivery route for AD stem cell therapy, it will be crucial to perform additional studies on how to increase the permeability of the BBB and how to decrease the entrapment of cells in organs such as the lung and liver.

PT578

Endothelial-monocyte-activating polypeptide-2 (EMAP-2) may be a novel treatment target of Alzheimer’s disease

Sooh Janga,*, Jiheyeon Jeonga,*, Eosu Kima,*, Chul Hoon Kima,b,*, Kee Namkoonga,*

Department of *Psychiatry and *Pharmacology, Institute of Behavioral Science in Medicine, *Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea

Abstract

Inflammation has been raised as a possible target of disease-modifying strategy for Alzheimer’s disease (AD). A cytokine, endothelial-monocyte-activating polypeptide-2 (EMAP-2) which amplifies actions of tumor necrosis factor alpha (TNF-alpha), might be an important target, since it is involved in microglial activation and neuronal death. We hypothesize that EMAP-2 is associated with the Alzheimer’s disease, and anti-EMAP-2 antibody could have therapeutic effects on cognitive impairment in amyloid beta-induced AD model animals.

We investigated the association between the EMAP-2 gene, the -9299A/G polymorphism and cognitive impairment in 641 subjects aged from 60 to 80. In addition, we compared EMAP-2 concentration in peripheral blood among people with AD (n = 30), mild cognitive impairment (n = 29), or normal cognition (n = 27). Finally, we examined the effects of anti-EMAP-2 antibody following injecting it to AD model rats on cognitive function using water maze and passive avoidance tests and on a level of cell death in the brain tissue using TUNEL assay.

We found a significant association between the -9299A/G polymorphism (GG vs AG/AA) of EMAP-2 gene and cognitive impairment. GG homozygote compared to A-allele carriers was related to lower mini-mental status examination score (p = 0.001). In addition, EMAP-2 level was significantly higher in the peripheral blood of people with AD than in that of healthy control group (p = 0.05). In the AD model rats, injection of EMAP-2 antibody improved short-term memory (p < 0.01) and fear memory (p < 0.05), and lowered the levels of neuronal cell death in the brain tissue (p < 0.05).

Our results suggested a possible involvement of EMAP-2 in AD pathogenesis, as well as the potential of humanized anti-EMAP-2 antibody as a novel option for AD treatment.

PT579

Disease-modifying therapy through enhancement of neuronal Aβ-degrading enzyme neprilysin activity for Alzheimer’s disease

Nobuhisa Iwata, Masashi Asai, Daisuke Hatta, Mikako Honda, Yuma Hori, Momoka Kinoshita, Naotaka Kuroda, Kaname Ohyma, Keiro Shirotani, Takashi Tanaka, Koshi Watanabe

Nagasaki University, Japan

Abstract

Aggregation and deposition of amyloid-β peptide (Aβ) in the brain are triggering events of the long-term pathological cascade of Alzheimer’s disease (AD), and are closely associated with the metabolic balance between Aβ anabolic and catabolic activities. As almost all familial AD mutations cause an increase in the anabolism of a particular form of Aβ, Aβ$_{1–42}$, leading to Aβ deposition and accelerating AD pathology, a chronic reduction in the catabolic activity would also promote Aβ deposition. Neprilysin is a rate-limiting peptidase involved in brain Aβ catabolism. Mounting evidence that expression levels of neprilysin are decreased in the hippocampus and cerebral cortex of AD patients from the early stages of disease development and also with aging in humans, suggests a close association of neprilysin with the etiology and pathogenesis of AD. Thus, a subtle but long-term decline in neprilysin activity appears to be at least partly responsible for the memory-related symptoms of AD, and up-regulation of neprilysin would be a promising strategy for disease-modifying therapy of AD.

We screened a compound modulating brain neprilysin activity and/or gene expression using a natural product library, and found that catechins, such as EGCg were capable of up-regulating neprilysin via gene expression. However, their bioavailabilities and blood-brain barrier permeability are not always so good, because these compounds are highly hydrophilic. So, we synthesized aliphatic catechin derivatives by introducing an alkyl chain or aliphatic moiety into EGCg to increase Log P values. Interestingly, some of the aliphatic catechin derivatives more strongly up-regulated not only neprilysin but also α-secretase, which acts to preclude Aβ production, than EGCg did. The aliphatic catechins would be promising drug candidates for therapy and prevention of AD. Currently, we are analyzing their in vivo effects on up-regulation of neprilysin.

PT580

Alteration of neuronal nitric oxide synthase dimerization contributes to the development of Alzheimer’s disease

Kyoung Ja Kuwon1, Ryueng Eun Kim1, Seung Hwa Park1, Chan Young Shin1, Du-Hyong Cho2,* and Seol-Heui Han1,*

1Department of Neurology, Konkuk University Medical Center and Department of Neuroscience, Center for Geriatric Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University School of Medicine, 120 Neungdong-ro, Guwangjin-gu, Seoul 143–701, Korea. 2Department of Pharmacology, School of Medicine, Eulji University, 77, Gyeryong-ro, 771 Beon-gil, Jung-gu, Daejeon 301–746, Korea.

Abstract

Background and purpose: Although previous studies have suggested that nNOS-derived NO has neuroprotective effects on the development of AD, the underlying molecular mechanisms are not fully elucidated. Here, we investigated whether and how disruption of nNOS dimerization contributes to the development of AD.

Methods: Two-month-old hemizygous 5xFAD mice and non-transgenic control, and 6-month-old hemizygous 5xFAD mice and non-transgenic control mice were used in the experiments. A histological investigation for neuronal cell death and CD51/p35 localization, DHE injection for measurement of ROS increase, LT-PAGE for nNOS dimerization/monomerization, and Western blot for CD51/p35 expression were performed.