Cerebral aspergillosis presenting as a space occupying lesion in an immunocompetent individual

Georges El Hasbania,, Joseph Chirayilb, Sutasinee Nithisoontornb, Arturo Alvarez Antezanab, Ibrahim El Husseinib, Maria Landetab, Yasir Saeedb, Richard Assakerc

aAmerican University of Beirut, Beirut, Lebanon
bLincoln Medical and Mental Health Center, Bronx, New York, USA
cSt. Vincent’s Medical Center, Bridgeport, CT, USA

ARTICLE INFO

Keywords:
Cerebral aspergillosis
Immunocompetence
Neuroimaging

ABSTRACT

Cerebral aspergillosis has the tendency to occur in immunocompromised patients. Less commonly, immunocompetent individuals can be affected, with neuroimaging findings being difficult to interpret. The diagnosis necessitates imaging of the brain as well as the sinuses with biopsy and pathological confirmation. A surgical excision with aggressive antifungal agents are required for a proper management. This case report describes an immunocompetent patient with cerebral aspergillosis that presented radiologically as a suspicious mass to be diagnosed pathologically and excised surgically.

1. Introduction

Aspergillosis is a tissue infection caused by fungi of the genus \textit{Aspergillus}. Cerebral aspergillosis is a very rare entity that has a high mortality rate \cite{1}. \textit{Aspergillus} reaches the brain most likely through hematogenous dissemination from the lungs although other mechanisms exist \cite{2}. Despite that immunocompromised patients are the target population, several case reports have described the occurrence of invasive aspergillosis in apparently immunocompetent individuals. The classical neuroimaging finding of CNS aspergillosis described in immunocompetent patients as a mass with thick irregular walls is not often observed in immunocompromised individuals making the diagnosis a difficult one \cite{3}. This case report describes an immunocompetent person who presented for sudden onset unresponsiveness. His brain imaging was suspicious for a malignant intracerebral mass extending to the nasal cavity. Imaging of the sinuses with biopsy confirmed the diagnosis of cerebral aspergillosis. Excision of the mass with surgical debridement yielded a good outcome.

2. Case

A 56 year-old male with a history of left eye blindness due to untreated glaucoma, hypertension, and diabetes mellitus type 1 presented to the emergency department with sudden onset unresponsiveness. The son, who witnessed the event, reported that the patient suddenly became rigid, still, and unresponsive. He had labored breathing for 5 minutes. The patient returned to baseline in 20 minutes. There was no prior history of similar symptoms. The patient was working in a transporting grocery store. He used to work as a coal miner 10 years before presentation.

On examination, the patient appeared comfortable, and was alert and oriented. He had a contracted fifth finger along with an old surgical scar on the right forehead, anisocoria with slight left facial deviation. The remaining examination was within normal limits. His complete blood count, comprehensive metabolic panel, and EKG were all normal except for a hemoglobin A1C level of 9.7%.

Computed tomography (CT) scan of the head performed at the day
of presentation (Day 0) (Fig. 1) was positive for a decreased attenuation lesion in the right inferior frontal lobe, causing mass effect on the third ventricle and frontal horn of the right lateral ventricle suspicious of subacute stroke and neoplasm. Magnetic resonance imaging (MRI) brain performed on day 1 of presentation (Fig. 2) showed a heterogeneously enhancing cystic and solid mass along the cribriform plate and into right frontal lobe. These findings were suspicious of esthesioneuroblastoma or malignant neuroectodermal tumor or direct intracranial spread of a sinonasal infection. CT scan of the sinuses performed on day 1 (Fig. 3) showed an enhancing mass centered within the olfactory recess of the right nasal cavity. An endoscopic biopsy of the sinonasal mass was performed also on day 1. Cribiform plate cultures were positive for *Aspergillus* species 3 days after presentation (Fig. 4A–B). Since the organisms were detected on culture using a Grocott’s methenamine silver stain, testing for fungal genes by a PCR was not performed.

The patient tolerated well a bilateral frontal craniotomy, cranialization of frontal sinus, and removal of frontal lesion with debridement of sinus. He was started on intravenous (IV) voriconazole 6 mg/kg twice daily for 1 day then 4 mg/kg twice daily for another 6 days then switched to oral dosing of 200 mg twice daily for 12 weeks. For a period of 1 month after discharge where the he was still on oral voriconazole, no seizures, worsening symptoms, headaches, intermittent vertigo, hearing or vision loss, nausea, congestion, rhinorrhea, cough, chills, or fevers were reported. A follow-up visit after 3 months of his last voriconazole dose showed a cooperative and conscious patient with no generalized complaints.

3. Discussion

Primary mycoses of the paranasal sinus contains *Aspergillus*,...
Candida, and Mucor with Aspergillus reported as the major causative organism for the majority of cases [4]. Aspergillus species are saprophytes within the environment. Aspergillus fumigatus is the most common human pathogen. The lungs are the primary site of infection because Aspergillus tends to enter the human body in the form of spores by inhalation [5]. CNS infection may occur through different ways: Hematogenous dissemination from the lungs [2], direct extension from the paranasal sinuses and orbits [6], or direct inoculation at the time of surgery [7]. Our patient used to work as a coal miner and currently works in a transporting grocery store which might predispose him to inhalation of Aspergillus spores. Similar to other cases presented in the literature, our patient had diabetes mellitus type 1 as a possible predisposing factor for the development of cerebral aspergillosis.

Whenever cerebral aspergillosis happens, it may present with meningitis, cerebritis, infarction, abscess, granuloma, or mycotic aneurysms. Less commonly, it presents as a space occupying lesion as the clinical presentation of our patient. Table 1 highlights the case reports of cerebral aspergillosis which presented as space occupying lesions in immunocompetent hosts.

The radiological appearance of CNS aspergillosis is variable depending on the patient's immune status. A thick irregular wall of the mass on CT and MR images indicates a competent host defense mechanism that is attempting to isolate or encapsulate the offending organisms [8]. In immunocompromised patients, imaging of cerebral aspergillosis can reveal multiple ring enhancing lesions, abscess formation, meningitis/meningoencephalitis, and small infarcts with or without hemorrhage due to vasculitis and mycotic aneurysm [9–11]. In immunocompetent individuals, it presents as intracerebral, intracranial-extradural or invading orbit and/or skull base [12].

It is worth mentioning that the good outcome in our case was likely due to the combination of early diagnosis, prompt surgical removal, initiation of aggressive antifungal therapy (voriconazole), and the normal host immune response of the patient.

In conclusion, we have presented a case of cerebral aspergillosis occurring in an immunocompetent individual who presented for sudden onset unresponsiveness. Brain imaging were suspicious for a cerebral mass mimicking a neoplasm extending to the nasal cavity. Imaging of the sinuses and biopsy confirmed the diagnosis of cerebral aspergillosis. Surgical excision and aggressive antifungal treatment yielded a good response.

Fig. 4. A. H&E photomicrograph showing part of brain parenchyma replaced by granuloma comprising of multiple histiocytic giant cells and lymphocytic infiltrates compatible with inflammation. B. Grocott's methenamine silver stain of fungal hyphae showing branching at acute angle consisting with Aspergillus species.
Conflict of interest

There are none.

References

[1] G. Marzolf, M. Sabou, B. Lannes, et al., Magnetic resonance imaging of cerebral aspergillosis: imaging and pathological correlations, PLoS One 11 (4) (2016) e0152475, https://doi.org/10.1371/journal.pone.0152475.

[2] V. Golin, S.R. Sproveri, J.R. Cançado, J.W. Daniel, L.M. Mimpan, Aspergillosis of the central nervous system, Sao Paulo Med. J. Rev. Paul. Med. 114 (5) (1996) 1274–1277.

[3] D.Kumar, P.Nepal, S.Singh, et al., CNS aspergillosis mimicking tumors: review of CNS aspergillus infection imaging characteristics in the immunocompetent population, J. Neuroradiol. 45 (3) (2018) 169–176, https://doi.org/10.1016/j.j neurad.2017.11.001.

[4] C.M. Milroy, J.D. Blanshard, L. Michaels, Aspergillosis of the nose and paranasal sinuses, J. Clin. Pathol. 42 (2) (1989) 123–127.

[5] Y. Miaux, P. Ribaud, M. Williams, et al., MR of cerebral aspergillosis in patients who have had bone marrow transplantation, AJNR Am. J. Neuroradiol. 16 (3) (1995) 555–562.

[6] R.C. Ashdown, R.D. Tien, G.J. Feldberg, Aspergillosis of the brain and paranasal sinuses in immunocompromised patients: CT and MR imaging findings, AJR Am. J. Roentgenol. 162 (1) (1994) 155–159, https://doi.org/10.2214/ajr.162.1.8273655.

[7] B.G. Kim, S.C. Hong, H.J. Kim, et al., Cerebral aspergillosis in immunologically competent patients, Surg. Neurol. 40 (4) (1993) 526–531, https://doi.org/10.1016/0090-3019(93)90014-5.

[8] K. Yamada, G.H. Zosbarski, M.I. Rothman, M.T. Zagardo, T. Nishimura, C.C. Sun, An intracranial aspergillus with low signal on T2-weighted images corresponding to iron accumulation, Neurol ogy 43 (7) (2001) 559–561.

[9] J.M. Murthy, C. Sundaram, M.S. Prasad, A.K. Purohit, S. Rammurti, V. Laxmi, Aspergillosis of central nervous system: a study of 21 patients seen in a university hospital in south India, J. Assoc. Phys. India 48 (7) (2000) 677–681.

[10] D.R. DeLone, R.A. Goldstein, G. Petermann, et al., Disseminated aspergillosis involving the brain: distribution and imaging characteristics, AJNR Am. J. Neuroradiol. 20 (9) (1999) 1597–1604.

[11] M. Karim, M. Alam, A.A. Shah, R. Ahmed, H. Sheikh, Chronic invasive aspergillosis in apparently immunocompetent hosts, Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 24 (4) (1997) 723–733, https://doi.org/10.1093/clinids/24.4.723.

[12] A.A. Siddiqui, S.H. Bashir, A. Ali Shah, et al., Diagnostic MR imaging features of cranio-cerebral Aspergillus of sino-nasal origin in immunocompetent patients, Acta Neurochir. 148 (2) (2006) 155–166, https://doi.org/10.1007/s00701-005-0659-3.

[13] W. Pithatharik, J.R. Hesselink, C. Wixom, MR features of cerebral aspergillosis in an immunocompetent patient: correlation with histology and elemental analysis, Am. J. Neuroradiol. 26 (4) (2005) 835–838.

[14] N. Azarpira, M. Esfandiar, M.H. Bagherti, S. rakei, S. Salari, Cerebral Aspergillosis presenting as a mass lesion, Braz. J. Infect. Dis. Off. Publ. Braz. Soc. Infect. Dis. 12 (4) (2008) 349–351.

[15] I. Pant, S. Chaturvedi, A.K. Singh, H. Sheikh, Diagnostics MR imaging features of aspergillosis in immunocompetent patient, Clin. Neuropathol. 38 (1) (2019) 23–27, https://doi.org/10.1054/NNP.1001106.

[16] Z. Neyaz, V. Singh, A. Mehrotra, M. Jain, Cerebral Aspergillosis mimicking a neoplasm in an immunocompetent patient, Int. J. Appl. Basic Med. Res. 8 (4) (2018) 269–271, https://doi.org/10.4103/ijabmr.IJABMR_393_17.