DEHORNOY-LIKE LEFT ORDERINGS AND ISOLATED LEFT ORDERINGS

TETSUYA ITO

Abstract. We introduce a Dehornoy-like ordering of groups, which is a generalization of the Dehornoy ordering of the braid groups. Under a weak assumption which we call Property \(F \), we show that Dehornoy-like orderings have properties similar to the Dehornoy ordering, and produce isolated left orderings. We also construct new examples of Dehornoy-like ordering and isolated orderings and study their more precise properties.

1. Introduction

A left-ordering of a group \(G \) is a total ordering \(<_G\) of \(G \) preserved by the left action of \(G \) itself. That is, \(g <_G g' \) implies \(hg <_G hg' \) for all \(g, g', h \in G \). A group \(G \) is left-orderable if \(G \) has at least one left-ordering.

One of the most important left ordering is the Dehornoy ordering of the braid group \(B_n \). The Dehornoy ordering has a simple, but still mysterious definition which uses a special kind of word representatives called \(\sigma \)-positive words. The Dehornoy ordering can be regarded as the most natural left ordering of the braid groups, but its combinatorial structure is rather complicated.

In this paper we introduce a Dehornoy-like ordering of groups. This is a left-ordering defined in a similar way to the Dehornoy ordering. The aim of this paper is to study Dehornoy-like orderings and give new examples of Dehornoy-like orderings.

The study of the Dehornoy-like ordering produces another interesting family of left-orderings. Recall that the positive cone \(P = \{ g \in G \mid 1 <_G g \} \) of a left ordering \(<_G\) has the following two properties \(\text{LO1} \) and \(\text{LO2} \).

\[
\text{LO1: } P \cdot P \subset P,
\text{LO2: } G = P \coprod \{1\} \coprod P^{-1}.
\]

Conversely, for a subset \(P \) of \(G \) having the properties \(\text{LO1} \) and \(\text{LO2} \) one can obtain a left-ordering \(<_G\) by defining \(h <_G g \) if \(h^{-1}g \in P \). Thus, the set of all left-orderings of \(G \), which we denote by \(\text{LO}(G) \), is naturally regarded as a subset of the powerset \(2^{G^{-1}} = \{+, -\}^{G^{-1}} \). We equip a discrete topology on \(2 = \{+, -\} \) and equip the power set topology on \(2^{G^{-1}} \). This induces a topology on \(\text{LO}(G) \) as the subspace topology. \(\text{LO}(G) \) is compact, totally disconnected, and metrizable [14]. It is known that for a countable group \(G \), \(\text{LO}(G) \) is either finite or uncountable [9]. So \(\text{LO}(G) \) is very similar to the Cantor set if \(G \) has infinitely many left orderings.

An isolated ordering is a left-ordering which corresponds to an isolated point of \(\text{LO}(G) \). Isolated orderings are easily characterized by their positive cones. Observe

Key words and phrases. Orderable groups, Dehornoy-like ordering, isolated ordering.
that by \(\text{LO1} \), the positive cone of a left ordering is a submonoid of \(G \). A left-ordering \(<\) is isolated if and only if its positive cone is finitely generated as a submonoid of \(G \).

We begin with a systematic study of Dehornoy-like orderings in Section 2. We introduce a property called \(\text{Property F} \) for an ordered finite generating set \(S \), which plays an important role in our study of Dehornoy-like orderings. We show that \(\text{Property F} \) allows us to relate Dehornoy-like orderings and isolated orderings in a very simple way. Moreover, using \(\text{Property F} \) we generalize known properties of the Dehornoy ordering of \(B_2 \) to Dehornoy-like orderings of a general group \(G \).

In section 3, we construct a new example of Dehornoy-like and isolated orderings and study their detailed properties. Our examples are generalization of Navas’ example of Dehornoy-like and isolated orderings given in [11].

We consider the groups of the form \(\mathbb{Z} \ast \mathbb{Z} \), the amalgamated free product of two infinite cyclic groups. Such a group is presented as

\[
G_{m,n} = \langle x, y \mid x^m = y^n \rangle \quad (m \geq n).
\]

The groups \(G_{m,n} \) appear in many contexts. Observe that \(G_{2,2} \) is the Klein bottle group and \(G_{3,2} \) is the 3-strand braid group \(B_3 \). For coprime \((m, n)\), \(G_{m,n} \) is nothing but the fundamental group of the complement of the \((m, n)\)-torus knot. The family of groups \(\{G_{m,2}\} \) are the central extension of the Hecke groups, studied by Navas in [11]. We always assume \((m, n) \neq (2, 2)\) because the Klein bottle group \(G_{2,2} \) is exceptional since it admits only finitely many left orderings. As we will see later, other groups \(G_{m,n} \) have infinitely many (hence uncountably many) left orderings.

To give a Dehornoy-like and an isolated ordering, we introduce generating sets \(S = \{s_1 = xyx^{-m+1}, s_2 = x^{m-1}y^{-1}\} \) and \(A = \{a = x, b = yx^{-m+1}\} \). Using the generator \(S \), the group \(G_{m,n} \) is presented as

\[
G_{m,n} = \langle s_1, s_2 \mid s_2s_1s_2 = ((s_1s_2)^{m-2}s_1)^{-1} \rangle
\]

Observe that for \((m, n) = (3, 2)\), this presentation agrees with the standard presentation of the 3-strand braid group \(B_3 \). Similarly, using the generators \(A \), the group \(G_{m,n} \) is presented as

\[
G_{m,n} = \langle a, b \mid (ba^{m-1})^{-1} = a \rangle.
\]

For \(n = 2 \), the above presentation coincide with Navas’ presentation of \(G_{m,2} \). We will show that \(S \) defines a Dehornoy-like ordering \(<_D\) of \(G_{m,n} \) and \(A \) defines an isolated ordering \(<_A\) of \(G_{m,n} \) in Theorem 3.

We will also give an alternative description of the Dehornoy-like ordering \(<_D\) of \(G_{m,n} \) in Theorem 5 by using the action on the Bass-Serre tree. Such an action is natural since \(G_{m,n} = \mathbb{Z} \ast \mathbb{Z} \) is an amalgamated free product. In this point of view, the Dehornoy-like ordering \(<_D\) can be regarded as a natural left ordering of \(G_{m,n} \) like the Dehornoy ordering of \(B_3 \), although the combinatorial definition seems to be quite strange.

The dynamics of ordering allows us to give more detailed properties of the Dehornoy-like ordering \(<_D\). In Theorem 6 we will show that one particular property of the Dehornoy ordering, called \(\text{Property S} \) (Subword Property), fails for the Dehornoy-like ordering of \(G_{m,n} \). However, we observe that the Dehornoy-like ordering of \(G_{m,n} \) have a slightly weaker property in Theorem 7.

As an application, by using the Dehornoy-like ordering of \(G_{m,n} \), we construct left orderings having an interesting property: a left-ordering which admits no non-trivial
proper convex subgroups. In fact, we observe that almost all normal subgroup of $G_{m,n}$ contains no non-trivial proper convex subgroup in Theorem 8.

Acknowledgments. This research was supported by JSPS Research Fellowships for Young Scientists.

2. Dehornoy-like ordering

Throughout the paper, we always assume that G is a finitely generated group.

2.1. Dehornoy-like ordering. Let $S = \{s_1, \ldots, s_n\}$ be an ordered finite generating set of G. We consider the two submonoids of G defined by S, the S-word positive monoid and the $\sigma(S)$-positive monoid.

A (S-) positive word is a word on S. We say an element $g \in G$ is (S-) word positive if g is represented by a S-positive word. The set of all S-word positive elements form a submonoid P_S of G, which we call the (S)-word positive monoid. The S-word positive monoid is nothing but a submonoid of G generated by S.

To define a Dehornoy-like ordering, we introduce slightly different notions. A word w on $S \cup S^{-1}$ is called i-positive (or, $i(S)$-positive, if we need to indicate the ordered finite generating set S) if w contains at least one s_i but contains no $s_1^{-1}, \ldots, s_{i-1}^{-1}, s_{i+1}, \ldots, s_n$. We say an element $g \in G$ is i-positive (or, $i(S)$-positive) if g is represented by an i-positive word. An element $g \in G$ is called σ-positive ($\sigma(S)$-positive) if g is i-positive for some $1 \leq i \leq n$. The notions of i-negative and σ-negative are defined in the similar way. The set of $\sigma(S)$-positive elements of G forms a submonoid Σ_S of G. We call the monoid Σ_S the σ-positive monoid (or, $\sigma(S)$-positive monoid).

Definition 1 (Dehornoy-like ordering). A Dehornoy-like ordering is a left ordering $<_D$ whose positive cone is equal to the $\sigma(S)$-positive monoid Σ_S for some ordered finite generating set S of G. In this situation, we say S defines a Dehornoy-like ordering.

To study Dehornoy-like orderings we introduce the following two properties.

Definition 2. Let S be an ordered finite generating set of G.

1. We say S has Property A (the Acyclic property) if no $\sigma(S)$-positive words represent the trivial element. That is, Σ_S does not contains the identity element 1.

2. We say S has Property C (the Comparison property) if every non-trivial element of G admits either $\sigma(S)$-positive or $\sigma(S)$-negative word expression.

Proposition 1. Let S be an ordered finite generating set of a group G. Then S defines a Dehornoy-like ordering if and only if S has both Property A and Property C.

Proof. Property C implies that $G = \Sigma_S \cup \Sigma_S^{-1} \cup \{1\}$, and the Property A implies that Σ_S, Σ_S^{-1} and $\{1\}$ are disjoint. Thus, the $\sigma(S)$-positive monoid Σ_S satisfies both LO1 and LO2. Converse is clear.

As we have already mentioned, the definition of Dehornoy-like orderings is motivated from the Dehornoy ordering of the braid groups.
Example 1 (Dehornoy ordering of \(B_n\)). Let us consider the standard presentation of the braid group \(B_n\),
\[B_n = \langle \sigma_1, \ldots, \sigma_{n-1} \mid \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j \mid |i-j| = 1 \rangle \]
and \(S = \{\sigma_1, \ldots, \sigma_{n-1}\}\) be the set of the standard generators. The seminal work of Dehornoy [3] shows that \(S\) has both Property A and Property C, hence \(S\) defines a left-ordering of \(B_n\). The ordering \(\prec_D\) defined by \(S\) is called the Dehornoy ordering.

Interestingly, there are various proof of Property A and Property C, and each proof gives a new characterization of the Dehornoy ordering. A proof of Property A or Property C provides new insights for not only the Dehornoy ordering, but also the braid group itself. See [5] for the theory of the Dehornoy orderings. Moreover, as the author showed, the Dehornoy orderings are also related to the knot theory [7,8].

Now we introduce an operation to construct new ordered finite generating sets from an ordered finite generating set, which connects a Dehornoy-like ordering and an isolated ordering.

The twisted generating set of \(S\) is an ordered finite generating set \(A = A_S = \{a_1, \ldots, a_n\}\) where each \(a_i\) is defined by
\[a_i = (s_i \cdots s_{n-1})^{(-1)^{n-i+1}}. \]

An ordered finite generating set \(D = D_S = \{d_1, \ldots, d_n\}\) whose twisted generating set is equal to \(S\) is called the detwisted generating set of \(S\). The detwisted generating set \(D\) is explicitly given as
\[d_i = \begin{cases}
 s_{n-1}^{-1} & \text{if } i = n \\
 s_{i+1}^{-1} & \text{if } n - i \text{ is even} \\
 s_is_{i+1} & \text{if } n - i \text{ is odd}
\end{cases} \]

For each \(1 \leq i \leq n\), let \(S^{(i)} = \{s_i, s_{i+1}, \ldots, s_n\}\) and \(G^{(i)}_S\) be the subgroup of \(G\) generated by \(S^{(i)}\). Thus, \(S^{(i)}\) is an ordered finite generating set of \(G^{(i)}_S\). We denote the \(S^{(i)}\)-word positive monoid \(P^{(i)}_S\) and the \(\sigma(S^{(i)})\)-positive monoid \(\Sigma^{(i)}_S\) by \(P^{(i)}_S\), \(\Sigma^{(i)}_S\) respectively. They are naturally regarded as submonoids of \(G^{(i)}_S\). By definition of the twisted generating set, \(A_{S^{(i)}} = (A_S)^{(i)}\). Thus, \(G^{(i)}_S = G^{(i)}_A\) so we will often write \(G^{(i)}\) to represent \(G^{(i)}_S = G^{(i)}_A\).

There is an obvious inclusion for \(\sigma(S)\)-positive and \(A\)-word positive monoids.

Lemma 1. Let \(S\) be an ordered finite generating set and \(A = A_S\) be the twisted generating set of \(S\). Then \(\Sigma_S \cup \Sigma_S^{-1} \supset P_A \cup P_A^{-1}\).

Proof: We show \(P_A \subset \Sigma_S \cup \Sigma_S^{-1}\). The proof of \(P_A^{-1} \subset \Sigma_S \cup \Sigma_S^{-1}\) is similar. Let \(g \in P_A\) and \(w\) be an \(A\)-positive word expression of \(g\). Put
\[i = \min \{ j \in \{1, 2, \ldots, n\} \mid w \text{ contains the letter } a_j \} \]
Since \(a_i = (s_is_{i+1} \cdots s_n)^{(-1)^{n-i+1}}\), \(g\) is \(\sigma(S)\)-positive if \((n-i)\) is odd and is \(\sigma(S)\)-negative if \((n-i)\) is even. \(\square\)

Now we introduce a key property called Property \(F\) (the Filtration property) which allows us to generalize various properties of the Dehornoy ordering for Dehornoy-like orderings.
Definition 3. Let \(S = \{s_1, \ldots, s_n\} \) be an ordered finite generating set of \(G \) and \(A = \{a_1, \ldots, a_n\} \) be the twisted generating set of \(S \). We say \(S \) has Property \(F \) (the Filtration property) if

\[
F: a_i \cdot (P_A^{(i+1)})^{-1} \cdot a_i^{-1} \subset P_A^{(i)}, a_i^{-1} \cdot (P_A^{(i+1)})^{-1} \cdot a_i \subset P_A^{(i)}
\]

holds.

We say a finite generating set \(A \) defines an isolated ordering if the \(A \)-word positive monoid is the positive cone of an isolated ordering \(<_A \). First we show a Dehornoy-like ordering and an isolated ordering are closely related if we assume Property \(F \).

Theorem 1. Let \(S \) be an ordered finite generating set of \(G \) having Property \(F \) and \(A \) be the twisted generating set of \(S \). Then \(S \) defines a Dehornoy-like ordering of \(G \) if and only if \(A \) defines an isolated left ordering of \(G \).

Proof. Let \(n \) be the cardinal of the generating set \(S \). We prove theorem by induction on \(n \). The case \(n = 1 \) is trivial. General cases follow from the following two claims.

Claim 1. \(S \) has Property \(C \) if and only if \(P_A \cup P_A^{-1} \cup \{1\} = G \) holds.

By Lemma \(\square \) \(G = P_A \cup P_A^{-1} \cup \{1\} \subset \Sigma_S \cup \Sigma_S^{-1} \cup \{1\} = G \).

To show converse, assume that \(S \) has Property \(C \). Let \(g \in G \) be a non-trivial element. We assume that \(g \) is \(\sigma(S) \)-positive. The case \(g \) is \(\sigma(S) \)-negative is proved in a similar way.

First of all, assume that \(g \) has a \(k(S) \)-positive word representative for \(k > 1 \). Then \(g \in G^{(2)} \) and \(g \) is \(\sigma(S^{(2)}) \)-positive. By inductive hypothesis, \(g \in P_A^{(2)} \cup (P_A^{(2)})^{-1} \cup \{1\} \subset P_A \cup P_A^{-1} \cup \{1\} \).

Thus we assume that \(g \) is \(1(S) \)-positive. We also assume that \(n \) is even. The case \(n \) is odd is similar. Since \(s_1 = a_1a_2 \), by rewriting a \(1(S) \)-positive word representative of \(g \) by using the twisted generating set \(A \), we write \(g \) as

\[
g = V_0a_1V_1 \cdots a_1V_m
\]

where \(V_i \) is a word on \(A^{(2)} \cup (A^{(2)})^{-1} \subset G^{(2)} \). By inductive hypothesis, we may assume that either \(V_i \in P_A^{(2)} \) or \(V_i \in (P_A^{(2)})^{-1} \). If all \(V_i \) belong to \(P_A^{(2)} \), then \(g \in P_A \). Assume that some \(V_i \) belongs to \((P_A^{(2)})^{-1} \). By Property \(F \), \(a_1V_i \subset P_A \cdot a_1 \) and \(V_i a_1 \subset a_1 \cdot P_A \), so we can rewrite \(g \) so that it belongs to \(P_A \).

Claim 2. \(S \) has Property \(A \) if and only if \(1 \notin P_A \).

Assume that \(1 \notin P_A \) and let \(g \in G \) be a \(\sigma(S) \)-positive element. If \(g \) has a \(k(S) \)-positive word representative for \(k > 1 \), then \(g \in G^{(2)} \) so inductive hypothesis shows \(g \neq 1 \). Thus we assume \(g \) is \(1(S) \)-positive. Assume that \(n \) is even. Then as we have seen in the proof of Claim \(\square \) \(g \in P_A \) so we conclude \(g \neq 1 \). The case \(n \) is odd, and the case \(g \) is \(\sigma(S) \)-negative are proved in a similar way. Converse is obvious from Lemma \(\square \). \[\square \]

Thus, we obtain a new criterion for an existence of isolated orderings.

Corollary 1. Let \(G \) be a left-orderable group. If \(G \) has a Dehornoy-like ordering having Property \(F \), then \(G \) also has an isolated left ordering.

Theorem \(\square \) is motivated from the construction of the Dubrovina-Dubrovin orderings, which are left-ordering obtained by modifying the Dehornoy ordering.

\(\square \)
Example 2 (Dubrovina-Dubrovin ordering). Let $A = \{a_1, \ldots, a_{n-1}\}$ be the twisted generating set of the standard generating set $S = \{\sigma_1, \ldots, \sigma_{n-1}\}$ of the braid group B_n. S has the property F, so, the submonoid A defines an isolated left-ordering which is known as the Dubrovina-Dubrovin ordering $<_{DD}$ [6].

2.2. Property of Dehornoy-like orderings. In this section we study fundamental properties of Dehornoy-like orderings and isolated orderings derived from the Dehornoy-like orderings.

Let $S = \{s_1, \ldots, s_n\} (n > 1)$ be an ordered finite generating set of a group G which defines a Dehornoy-like ordering $<_D$ and A be the twisted generating set of S.

We begin with recalling standard notions of left orderable groups. A left-ordering $<_G$ of G is called discrete if there is the $<_G$-minimal positive element. Otherwise, $<_G$ is called dense. $<_G$ is called a Conradian ordering if $fg^k >_G g$ holds for all $<_G$-positive $f, g \in G$ and $k \geq 2$. It is known that in the definition of Conradian orderings it is sufficient to consider the case $k = 2$. That is, $<_G$ is Conradian if and only of $fg^2 >_G g$ holds for all $<_G$-positive elements $f, g \in G$ (See [10]).

A subgroup H of G is $<_G$-convex if $h <_G g <_G h'$ for $h, h' \in H$ and $g \in G$, then $g \in H$ holds. $<_G$-convex subgroups form a chain. That is, for $<_G$-convex subgroups H, H', either $H < H'$ or $H' < H$ holds. The $<_G$-Conradian soul is the maximal (with respect to inclusions) $<_G$-convex subgroup of G such that the restriction of $<_G$ is Conradian.

First of all, we observe that a Dehornoy-like ordering have the following good properties with respect to the restrictions.

Proposition 2. Let $S = \{s_1, \ldots, s_n\}$ be an ordered finite generating set of G which defines a Dehornoy-like ordering $<_D$.

1. For $1 \leq i \leq n$, $S^{(i)}$ defines a Dehornoy-like ordering $<_D$ of $G^{(i)}$. Moreover, the restriction of the Dehornoy-like ordering $<_D$ to $G^{(i)}$ is equal to the Dehornoy-like ordering $<_D$.

2. For $1 \leq i \leq n$, the subgroup $G^{(i)}$ is $<_D$-convex. In particular, $<_D$ is discrete, and the minimal $<_D$-positive element is s_n.

3. If H is a $<_D$-convex subgroups of G, then $H = G^{(i)}$ for some $1 \leq i \leq n$.

Proof. Since S has Property A, $S^{(i)}$ has Property A. Assume that $S^{(i)}$ does not have Property C, so there is an element $g \in G^{(i)} - \{1\}$ which is neither $\sigma(S^{(i)})$-positive nor $\sigma(S^{(i)})$-negative. Assume that $1 <_D g$, so g is represented by a $\sigma(S)$-positive word W. The case $1 >_D g$ is similar. Since $g \in G^{(i)}$ we may find a word representative V of g which consists of the alphabets in $S^{(i)} \cup S^{(i)}$. Then $V^{-1}W$ is $\sigma(S)$-positive word which represents the trivial element, so this contradicts the fact that S has Property A. Thus, $S^{(i)}$ has Property C, hence $S^{(i)}$ defines a Dehornoy-like ordering $<_D$. Now the Property A and Property C of $S^{(i)}$ implies $\Sigma_{S^{(i)}} = \Sigma_S \cap G^{(i)}_S$, so $<_D$ is equal to the restriction of $<_D$ to $G^{(i)}_S$.

Next we show $G^{(i)}$ is $<_D$-convex. Assume that $1 <_D h <_D g$ hold for $g \in G^{(i)}$ and $h \in G$. If h is $j(S)$-positive for $j < i$, then $g^{-1}h$ is also $j(S)$-positive, so $g <_D h$. This contradicts the assumption, so h must be $j(S)$-positive for $j \geq i$. This implies $h \in G^{(i)}$, so we conclude $G^{(i)}$ is $<_D$-convex.

To show there are no $<_G$-convex subgroups other than $G^{(i)}$, it is sufficient to show if $H \supset G^{(2)}$ then $H = G^{(2)}$ or $G^{(1)} = G$. Assume that $H \neq G^{(2)}$, hence H
contains an element g in $G - G^{(2)}$. Let us take such g so that $1 <_D g$. Then g must be $1(S)$-positive, hence we may write $g = hs_1 P$ where $h \in G^{(2)}$ and $P >_D 1$. Then we have

$$1 <_D hs_1 \leq_D hs_1 P = g$$

Since H is convex, this implies $hs_1 \in H$. Since $h \in G^{(2)} \subset H$, we conclude $s_1 \in H$ hence $H = G$.

From now on, we will always assume that S has Property F, hence A defines an isolated left ordering $<_A$. First of all we observe that $<_A$ also has the same properties as we have seen in Proposition

Proposition 3. Let $A = \{a_1, \ldots, a_n\}$ be the twisted generating set of S which defines an isolated left ordering $<_A$.

1. For $1 \leq i \leq n$, $A^{(i)}$ defines an isolated ordering $<_A^{(i)}$ of $G^{(i)}$. Moreover, the restriction of the isolated ordering $<_A$ to $G^{(i)}$ is equal to the isolated ordering $<_A^{(i)}$.

2. For $1 \leq i \leq n$, the subgroup $G^{(i)}$ is $<_A$-convex. In particular, $<_A$ is discrete, and the minimal $<_A$-positive element is a_n.

3. If H is an $<_A$-convex subgroup of G, then $H = G^{(i)}$ for some $1 \leq i \leq n$.

Proof. The proofs of (1) and (3) are similar to the case of Dehornoy-like orderings. To show (2), assume that $1 <_A h <_A g$ hold for $g \in G^{(i)}$ and $h \in G$. If $h \neq P^{(j)}$, then we may write h as $h = h'a_j w$ where $h' \in P^{(j+1)}$ and $w \in P^{(j)} \cup \{1\}$ for $j < i$. If $g^{-1}h' \in P^{(j+1)}$, then $g^{-1}h = (g^{-1}h')a_jw >_A 1$. If $g^{-1}h' \in (P^{(j+1)})^{-1}$, then by Property F, $(g^{-1}h')a_j >_A 1$ so $g^{-1}h = [(g^{-1}h')a_j]w >_A 1$. Therefore in both cases, $g^{-1}h >_A 1$, it is a contradiction.

To deduce more precise properties, we observe the following simple lemma.

Lemma 2. If $a_n^{-1}a_n a_n^{-1}a_n \neq a_n$, then $a_n^{-1}a_n a_n^{-1}a_n a_n^{-1} \in P^{(n-1)} - P^{(n)}$.

Proof. To make notation simple, we put $p = a_n^{-1}a_n$ and $q = a_n$.

By Property F, $pq^{-1}p^{-1}, p^{-1}q^{-1}p \in P^{(n-1)}$. We show $pq^{-1}p^{-1} \neq P^{(n)}$. The proof of $p^{-1}q^{-1}p \neq P^{(n)}$ is similar. Assume that $pq^{-1}p^{-1} = q^k$ for $k > 0$. Since we have assumed that $pq \neq q$, $k > 1$. Then

$$q = p^{-1}(pq^{-1}p^{-1})^{-1}p = p^{-1}q^{-k}p = (p^{-1}q^{-1}p)^k,$$

so we have $1 <_A p^{-1}q^{-1}p <_A q$. This contradicts Proposition 3 (2), the fact that $q = a_n$ is the minimal $<_A$-positive element.

Next we show that in most cases the Dehornoy-like ordering $<_D$ is not isolated, so it makes a contrast to the isolated ordering $<_A$. For $g \in G$ and a left ordering $<_A$ of G whose positive cone is P, we define $<_g = <_A g$ as the left ordering defined by the positive cone $P \cdot g$. Thus, $x <_g x'$ if and only if $xg < x'g$. This defines a right action of G on $\text{LO}(G)$. Two left orderings are said to be conjugate if they belong to the same G-orbit.

Theorem 2. If $a_n^{-1}a_n a_n^{-1}a_n \neq a_n$, then the Dehornoy-like ordering $<_D$ is an accumulation point of the set of its conjugates $\{<_D \cdot g\}_{g \in G}$. Thus, $<_D$ is not isolated in $\text{LO}(G)$, and the $\sigma(S)$-positive monoid is not finitely generated.
Proof. Our argument is generalization of Navas-Wiest’s criterion [12]. As in the proof of Lemma 2 we put \(p = a_{n-1} \) and \(q = a_n \) to make notation simple.

We construct a sequence of left orderings \(\{<_n\} \) so that \(\{<_n\} \) non-trivially converge to \(<_D \) and that each \(<_n \) is conjugate to \(<_D \). Here the word non-trivially means that \(<_n \neq <_D \) for sufficiently large \(n > 0 \).

Let \(<_n =<_D \cdot (q^n p) \). Thus, \(1 <_n g \) if and only if \(1 <_D (q^n p)^{-1}g(q^n p) \). First we show the orderings \(<_n \) converge to \(<_D \) for \(n \to \infty \). By definition of the topology of \(LO(G) \), it is sufficient to show that for an arbitrary finite set of \(<_D \)-positive elements \(c_1, \ldots, c_r \), \(1 <_N c_i \) holds for sufficiently large \(N > 0 \).

If \(c_i \not\in G^{(n-1)} \), then \(1 <_n c_i \) for all \(n \). Thus, we assume \(c_i \in G^{(n-1)} \).

First we consider the case \(c_i \not\in G^{(n)} \). Then \(c_i \) is \((n-1)(S) \)-positive, hence by using generators \(\{p, q\} \), \(c_i \) is written as \(c_i = q^mpw \) where \(w \in S_S^{(n-1)} \) and \(m \in \mathbb{Z} \). For \(k > m \), by Property \(F \) \(p^{-1}q^{m-k}p \in P^{(n-1)}_A \). So, if we take \(k > m \), then
\[
(q^k p)^{-1}c_i(q^k p) = (p^{-1}q^{m-k}p)wq^k
\]
is \((n-1)(S) \)-positive. So \(1 <_k c_i \) for \(k > m \).

Next assume that \(c_i \in G^{(n)} \), so \(c_i = q^{-m} (m > 0) \). Then \((q^k p)^{-1}c_i(q^k p) = p^{-1}q^{-m}p \). By Lemma 2 \(p^{-1}q^{-m}p \in P^{(n-1)}_A \), so \(p^{-1}q^{-m}p \) is \((n-1)(S) \)-positive. Therefore \(1 <_D p^{-1}q^{-m}p \), hence \(1 <_k c_i \) for all \(k > 1 \).

To show the convergent sequence \(\{<_n\} \) is non-trivial, we observe that the minimal positive element of the ordering \(P_n \) is \((q^k p)^{-1}q(q^k p) = p^{-1}qp \). From the assumption, \(p^{-1}qp \) is not identical with \(q \), the minimal positive element of the ordering \(<_D \). Thus, \(<_n \) are different from the ordering \(<_D \).

It should be mentioned that our hypothesis \(a_{n-1}a_na_{n-1} \neq a_n \) is really needed. Let us consider the Klein bottle group \(G = \langle s_1, s_2 \mid s_2s_1s_2 = s_1 \rangle \). It is known that \(S = \{s_1, s_2\} \) defines a Dehornoy-like ordering \(<_D \) of \(G \) (See [11] or the proof of Theorem 4 in Section 3.1, which is valid for the Klein bottle group case, \((m, n) = (2, 2)\)). However, since \(G \) has only finitely many left orderings, \(<_D \) must be isolated. Observe that for the twisted generating set \(A = \{a_1, a_2\} \) of \(S \), the Klein bottle group has the same presentation \(G = \langle a_1, a_2 \mid a_2a_1a_2 = a_1 \rangle \).

Finally we determine the Conradian soul of \(<_D \) and \(<_A \).

Theorem 3 (Conradian properties of Dehornoy-like and isolated orderings). Let \(S = \{s_1, \ldots, s_n\} (n > 1) \) be an ordered finite generating set of a group \(G \) which defines a Dehornoy-like ordering \(<_D \). Assume that \(S \) has Property \(F \) and let \(A = \{a_1, \ldots, a_n\} \) be the twisted generating set of \(S \). Let \(<_A \) be the isolated ordering defined by \(A \). If \(a_{n-1}a_na_{n-1} \neq a_n \), then two orderings \(<_D \) and \(<_A \) have the following properties.

1. \(<_D \) is not Conradian. Thus, the \(<_D \)-Conradian soul is \(G^{(n)} \), the infinite cyclic subgroup generated by \(s_n \).
2. \(<_A \) is not Conradian. Thus, the \(<_A \)-Conradian soul is \(G^{(n)} \), the infinite cyclic subgroup generated by \(a_n \).

Proof. As in the proof of Lemma 2 we put \(p = a_{n-1} \) and \(q = a_n \). To prove theorem it is sufficient to show for \(n > 2 \), \(<_D \) and \(<_A \) are not Conradian, since by Proposition 2 and Proposition 3 if \(H \) is a \(<_D \)- or \(<_A \)- convex subgroup, then \(H = G^{(i)} \) for some \(i \). First we show \(<_A \) is not Conradian. By Lemma 2 every \(A \)-word positive representative of \(p^{-1}q^{-1}p \) contains at least one \(p \), so we put \(p^{-1}qp = Np^{-1}q^{-k} \).
where $N \leq A$ and $k \geq 0$. Then we obtain an inequality

$$(q^k p)^{-1} q (q^k p)^2 = (p^{-1} qp) q^k p = N \leq A$$

hence $<_A$ is not Conradian.

To show $<_D$ is not Conradian, we observe

$$(pq^{k+1} pq^{k+1})^{-1} (pq^{k+2})(pq^{k+1} pq^{k+1})^2 = q^{-(k+1)} (p^{-1} qp) q^{k+1} pq^{k+1} pq^{k+1}$$

$$= q^{-(k+1)} N (p^{-1} q) pq^{k+1} pq^{k+1} pq^{k+1} = \ldots$$

$$= q^{-(k+1)} N^4 p^{-1} q$$

$$<_D 1.$$

Question 1. In our study of Dehornoy-like ordering, we assumed somewhat artificial conditions, such as Property F or $a_n^{-1} a_n a_{n-1} \neq a_n$. Are such assumptions really needed? That is,

1. If S defines a Dehornoy-like ordering of G, then does S have Property F?
2. If G has infinitely many left orderings and S defines a Dehornoy-like ordering, then does $a_{n-1} a_n a_{n-1} = a_n$ hold for a_{n-1}, a_n in the twisted generating set A of S?

It is likely that the above questions have affirmative answers, hence the relationships between Dehornoy-like orderings and isolated orderings are quite stronger than stated in this paper.

3. Isolated and Dehornoy-like ordering on $\mathbb{Z} \ast_{\mathbb{Z}} \mathbb{Z}$

In this section we construct explicit examples of Dehornoy-like and isolated left orderings of the group $\mathbb{Z} \ast_{\mathbb{Z}} \mathbb{Z}$ and study more detailed properties.

3.1. Construction of orderings. First we review the notations. Let $G = \mathbb{Z} \ast_{\mathbb{Z}} \mathbb{Z}$ be the amalgamated free product of two infinite cyclic groups. As we mentioned such a groups are presented as

$$G_{m,n} = \langle x, y \mid x^m = y^n \rangle. \quad (m \geq n)$$

and we will always assume $(m, n) \neq (2, 2)$.

We consider an ordered generating set $S = \{s_1 = x y^{-m+1}, s_2 = x^{-m} y^{-1}\}$ and its twisted generating set $A = \{a = x, b = y x^{-m+1}\}$. Using S, A, the group $G_{m,n}$ is presented as

$$G_{m,n} = \langle s_1, s_2 \mid s_2 s_1 s_2 = ((s_1 s_2)^{m-2} s_1)^{n-1} \rangle$$

$$= \langle a, b \mid (ba^{n-1})^{n-1} b = a \rangle$$

respectively. In this section we present a new family of Dehornoy-like and isolated left orderings.

Theorem 4. Let S, A be the ordered finite generating sets of $G_{m,n}$ as above.

1. S defines a Dehornoy-like ordering $<_D$.
2. A defines an isolated left ordering $<_A$.

By the presentation of G, it is easy to see that S have Property F and $bab \neq b$ if $(m, n) \neq (2, 2)$. Thus from general theories developed in Section 2, we obtain various properties of $<_D$ and $<_A$.
Corollary 2. Let $<_D$ be the Dehornoy-like ordering of $G = G_{m,n}$ and $<_A$ be the isolated ordering in Theorem \[4\]

1. If H is a $<_D$-convex subgroup, then $H = \{1\}$ or $\langle s_2 \rangle$ or G.
2. If H is a $<_A$-convex subgroup, then $H = \{1\}$ or $\langle b \rangle$ or G.
3. The Conradian soul of $<_D$ is $G(2) = \langle s_2 \rangle$.
4. The Conradian soul of $<_A$ is $G(2) = \langle b \rangle$.
5. $<_D$ is an accumulation point of the set of its conjugate $\{<_D \cdot g \}_{g \in G}$. Thus, $<_D$ is not isolated in $LO(G)$ and the $\sigma(S)$-positive monoid is not finitely generated.

Before giving a proof, first we recall the structure of the group $G_{m,n}$. Let $Z_{m,n} = \mathbb{Z}_m * \mathbb{Z}_n = \langle X, Y \mid X^m = Y^n = 1 \rangle$, where \mathbb{Z}_m is the cyclic group of order m and let $\pi : G_{m,n} \to Z_{m,n}$ be a homomorphism defined by $\pi(x) = X$, $\pi(y) = Y$. The kernel of π is an infinite cyclic group generated by $x^m = y^n$ which is the center of $G_{m,n}$. Thus, we have a central extension

$$1 \to \mathbb{Z} \to G_{m,n} \to Z_{m,n} \to 1.$$

We describe an action of $Z_{m,n}$ on S^1 which is used to prove Property A. Let $T = T_{m,n}$ be the Bass-Serre tree for the free product $Z_{m,n} = \mathbb{Z}_m * \mathbb{Z}_n$. That is, $T_{m,n}$ is a tree whose vertices are disjoint union of cosets $Z_{m,n} / \mathbb{Z}_m \sqcup \mathbb{Z}_{m,n} / \mathbb{Z}_n$ and edges are $Z_{m,n}$. Here an edge $g \in Z_{m,n}$ connects vertices $g\mathbb{Z}_m$ and $g\mathbb{Z}_n$. (See Figure 1 left for example the case $(m,n) = (4,3)$).

In our situation, the Bass-Serre tree T is naturally regarded as a planer graph. More precisely, we regard T as embedded into the hyperbolic plane \mathbb{H}^2. Now X acts on $T_{m,n}$ as a rotation centered on P, and Y acts on T as a rotation centered on Q. This defines an faithful action of $Z_{m,n}$ on T. Let $E(T)$ be the set of the ends of T, which is identified with the set of infinite rays emanating from a fixed base point of T. The end of tree $E(T)$ is a Cantor set, and naturally regarded as a subset of the points at infinity S^1_∞ of \mathbb{H}^2. The action of $Z_{m,n}$ induces a faithful action on $E(T)$, and this action extends an action on S^1. We call this action the standard action of $Z_{m,n}$.

The standard action is easy to describe since X and Y act as rotations of the tree T. X acts on S^1 so that it sends an interval $[p_i, p_{i+1}]$ to the adjacent interval $[p_{i+1}, p_{i+2}]$ (here indices are taken modulo m), and Y acts on S^1 so that it sends an interval $[q_i, q_{i+1}]$ to $[q_{i+1}, q_{i+2}]$ (here indices are taken modulo n). See Figure 1 right. More detailed description of the set of ends $E(T)$ and the standard action will be given in next section.

Using the standard action, we show the Property A for S, which is equivalent to the following statement by Claim 2.

Lemma 3. If $g \in P_A$, then $g \neq 1$.

Proof. Let $g \in P_A$ and put $A = \pi(a) = X$ and $B = \pi(b) = YX^{-m+1} = YX$. If $g \in \text{Ker} \ \pi$, that is, $g = a^{mN}$ for $N > 0$, then $g \neq 1$ is obvious so we assume $g \neq a^{mN}$. Let us put

$$\pi(g) = A^{s_k} B^{r_k} \cdots A^{s_1} B^{r_1},$$

where $0 < s_i < m \ (i < k)$, $0 \leq s_k < m$ and $0 < b_i \ (i > 1)$, $0 \leq b_1$.
First observe that the dynamics of B, A and $(BA^{m-1})^i B$ are given by the following formulas.

\[
B[p_m, p_{m-1}] = YX[p_m, p_{m-1}] = Y[p_1, p_m] = Y[q_1, q_2] = [q_2, q_3] \subset [p_m, p_1]
\]

\[
A^{i}[p_m, p_1] \subset [p_m, p_{m-1}] \quad (i \neq m - 1)
\]

\[
(BA^{m-1})^i B[p_m, p_{m-1}] = (YX)^i YX[p_m, p_{m-1}] = Y^{i+1}[p_1, p_m] \subset Y^{i+1}[q_1, q_2] \subset [q_2+i, q_3+i] \subset [p_m, p_1].
\]

Here $[p_m, p_{m-1}]$ represents the interval $[p_m, p_1] \cup [p_1, p_2] \cup \ldots \cup [p_{m-2}, p_{m-1}]$. Since $(BA^{m-1})^{n-1} B = A$, we can assume that the above word expression does not contains a subword of the form $(BA^{m-1})^{n-1} B$. Thus, by using of the above formulas repeatedly, we conclude

\[
\begin{cases}
\pi(g)[p_{r_k+1}, p_{r_k}] = [p_{r_k}, p_{r_k+1}] & (s_1 \neq 0, r_k \neq 0) \\
\pi(g)[p_{m}, p_1] = [p_{r_k}, p_{r_k+1}] & (s_1 = 0, r_k \neq 0) \\
\pi(g)[p_1, p_2] = [p_m, p_1] & (s_1 \neq 0, r_k = 0)
\end{cases}
\]

So we conclude $\pi(g) \neq 1$ if $s_1 \neq 0$ or $r_1 \neq 0$. If $s_1 = r_k = 0$, we need more careful argument to treat the case the word $\pi(g)$ contains a subword of the form $(BA^{m-1})^i$. Let us write

\[
\pi(g) = B^{s_k-1}(BA^{m-1})^i B \cdots A^{r_1}
\]

where we take i the maximal among such description of the word $\pi(g)$. That is, the prefix of the word π is not BA^{m-1}. Then for $i \neq 0$,

\[
\pi(g)[q_n, q_{n+1}] \subset B^{s_k-1}(BA^{m-1})^i[p_m, p_1] \subset B^{s_k-1}[p_m, p_1].
\]

Thus if $s_k \neq 1$, then $\pi(g)[q_n, q_1] \subset [q_2, q_3]$. and if $s_k = 1$, then $\pi(g)[q_2, q_3] = [q_2+i, q_3+i]$. Thus we proved that in all cases $\pi(g)$ acts on S^1 non trivially, hence $g \neq 1$.

Next we show Property C, which is equivalent to the following statement according to Claim 1:

Lemma 4. $P_A \cup \{1\} \cup P_A^{-1} = G$.

Proof. Let $g \in G$ be a non-trivial element.

Since $a^m = (ba^{m-1})^n = (a^{m-1}b)^n$ is central, we may write g as

\[
g = a^{nM} a_{s_k} b^{r_k} \cdots a_{s_1} b^{r_1},
\]

where $0 < s_i < m$ ($i < k$), $0 \leq s_k < m$ and $0 < b_i$ ($i > 1$), $0 \leq b_1$.

Figure 1. Bass-Serre Tree and action of $Z_{m,n}$ on S^1
Among such word expressions, we choose the word expression w so that k is minimal. If $mM + s_k \geq 0$, then $g \in P_A$. So we assume that $mM + s_k < 0$ and we prove $g \in P_A^{-1}$ by induction on k. The case $k = 1$ is a direct consequence of Property F.

First observe that from a relation $a^{-1}b = (a^m b)^{-n}$, we get a relation
\[a^{-1}b^r = [(a^m b)^{(n-1)}b^{-1}a^{-m+1}]^{-1}(a^m b)^{-n} \]
for all $r > 0$. Thus, by applying this relation, g is written as
\[g = X(a^m b)^{-n} \cdot a^s b^r \cdots \]
for some $X \in P_A^{-1}$. Unless $s_{k-1} = s_{k-2} = \cdots = s_{k-n} = m$ and $r_{k-1} = r_{k-2} = \cdots = r_{k-n} = 1$, by reducing this word expression, we obtain a word expression of the form
\[g = X(a^{-1}b^r a^s \cdots) \]
where $X' \in P_A^{-1}$ and $i < k$. By inductive hypothesis, $a^{-1}b^r a^s \cdots \in P_A^{-1}$, hence we conclude $g \in P_A^{-1}$.

Now assume $s_{k-1} = s_{k-2} = \cdots = s_{k-n} = m$ and $r_{k-1} = r_{k-2} = \cdots = r_{k-n} = 1$. Since $(a^m b)^n = b^{-1}a$, by replacing the subword $(a^m b)^n$ with $b^{-1}a$ and canceling b^{-1} we obtain another word representative
\[g = a^{(m+1)M} a^{sk b^{r_1}a^{s_{k-1}} \cdots} \]
which contradicts the assumption that we have chosen the first word representative of g so that k is minimal. \qed

These two lemmas and Theorem 4 prove Theorem 4.

Question 2. Theorem 4 provides a negative answer to the Main question raised by Navas in [11], which concerns the characterization of groups having an isolated ordering defined by two elements. Now we ask the following refined version of the question:

1. If a group G has a Dehornoy-like ordering defined by an ordered generating set of cardinal two, then $G = G_{m,n}$ for some $m, n > 1$?

1'. If a group G has a Dehornoy-like ordering defined by an ordered generating set of cardinal two having Property F, then $G = G_{m,n}$ for some $m, n > 1$?

2. If a group G has an isolated ordering whose positive cone is generated by two elements, then $G = G_{m,n}$ for some $m, n > 1$?

These questions also concern the Question 1, since an affirmative answer for (1) yields an affirmative answer of Question 1 for the case $n = 2$.

We also mention that to find a group $G \neq B_n$ with a Dehornoy-like ordering defined by an ordered generating set of cardinal more than two is an open problem. In particular, does a natural candidate, a group of the form $(\cdots(Z*Z)Z*Z\cdots)*Z$ have a Dehornoy-like ordering?

3.2. Dynamics of the Dehornoy-like ordering of $\mathbb{Z} *_\mathbb{Z} \mathbb{Z}$

As is well-known, if G faithfully acts on the real line \mathbb{R} as orientation preserving homeomorphisms, then one can construct a left-ordering of G as follows. Let $\Theta : G \rightarrow \text{Homeo}_+(\mathbb{R})$ be a faithful left action of G and choose a dense countable sequence $I = \{x_i\}_{i=1,2,\ldots}$ of \mathbb{R}. For $g, g' \in G$ we define $g <_I g'$ if there exists j such that $g(x_i) = g'(x_i)$ for $i < j$ and $g(x_j) <_\mathbb{R} g'(x_j)$, where $<_\mathbb{R}$ be the standard ordering of \mathbb{R} induced by the orientation of \mathbb{R}. We say the ordering $<_I$ is defined by the action Θ and the
sequence I. Assume that the stabilizer of a finite initial subsequence $\{x_1, \ldots, x_k\}$ is trivial. Then to define the ordering, we do not need to consider the rest of sequence $\{x_{k+1}, x_{k+2}, \ldots\}$. In such case, we denote the ordering $<_I$ by $<_{\{x_1, \ldots, x_k\}}$ and call the \textit{ordering defined by} $\{x_1, \ldots, x_k\}$ (and the action Θ).

Conversely, one can construct an orientation-preserving faithful action of G_m,n on the real line \mathbb{R} from a left-ordering of G if G is countable. See [10] for details.

In this section we give an alternative definition of the Dehornoy-like ordering $<_D$ of $G_{m,n}$ by using the dynamics of $G_{m,n}$. Recall that $G_{m,n}$ is a central extension of $Z_{m,n}$ by Z. By lifting the standard action of $Z_{m,n}$ on S^1, we obtain a faithful orientation-preserving action of $G_{m,n}$ on the real line. We call this action the \textit{standard action} of $G_{m,n}$ and denote by $\Theta : G_{m,n} \to \text{Homeo}_+(\mathbb{R})$.

We give a detailed description of the action of $G_{m,n}$ on \mathbb{R}. First of all, we give a combinatorial description of the end of the tree $T = T_{m,n}$.

Let us take a basepoint \ast of T as the midpoint of P and Q. For each edge of T, we assign a label as in Figure 2. Let e be a point of $E(T)$, which is represented by an infinite ray γ_e emanating from \ast. Then by reading a label on edge along the infinite path γ_e, γ_e is encoded by an infinite sequence of integers $\pm l_1 l_2 \cdots$.

![Figure 2. Labeling of edge](image)

Now let $p : \mathbb{R} \to S^1$ be the universal cover, and $E(T) = p^{-1}(E(T)) \subset \mathbb{R}$. Then the standard action $G_{m,n}$ preserves $E(T)$. A point of $E(T)$ is given as the sequence of integers $(N; \pm l_1 l_2 \cdots)$ where $N \in \mathbb{Z}$. Observe that the set of such a sequence of integers has a natural lexicographical ordering. This ordering of $E(T)$ is identical with the ordering induced by the standard ordering $<_\mathbb{R}$ of \mathbb{R}, so we denote the ordering by the same symbol $<_\mathbb{R}$.

The action of $G_{m,n}$ on $E(T)$ is easy to describe, since X and Y act on $T_{m,n}$ as rotations of the tree.

$$x : \begin{cases}
(N; + i \cdots) & \mapsto (N; +(i+1) \cdots) \quad (i \neq m-1) \\
(N; +(m-1) \cdots) & \mapsto (N+1; - \cdots) \\
(N; - i \cdots) & \mapsto (N; +1i \cdots)
\end{cases}$$

$$y : \begin{cases}
(N; + i \cdots) & \mapsto ((N+1); -1i \cdots) \\
(N; - i \cdots) & \mapsto (N; -(i+1) \cdots) \quad (i \neq n-1) \\
(N; -(n-1) \cdots) & \mapsto (N; + \cdots)
\end{cases}$$
Therefore, the action of s_1, s_2 and s_2^{-1} are given by the formula:

\[
\begin{align*}
(s_1)_m &= \begin{cases}
(N;+i \cdots) & \mapsto (N;+11(i+1) \cdots) \quad (i \neq m-1) \\
(N;+(m-1)i \cdots) & \mapsto (N;+1(i+1) \cdots) \quad (i \neq n-1) \\
(N;+(m-1)(n-1)i \cdots) & \mapsto (N;+(i+1) \cdots) \quad (i \neq m-1) \\
(N;+(m-1)(n-1)(m-1) \cdots) & \mapsto ((N+1); \cdots) \\
(N;+ \cdots) & \mapsto (N;111 \cdots) \\
(N;+(m-1) \cdots) & \mapsto (N;m+1 \cdots) \\
(N;+(m-1)(n-1) \cdots) & \mapsto ((N+1); \cdots) \\
(N;+i \cdots) & \mapsto (N;+11(i+1) \cdots) \quad (i \neq m-1) \\
(N;+(m-1)i \cdots) & \mapsto (N;+(m-1)(i-1) \cdots) \quad (i \neq n-1) \\
(N;+(m-1)(i-1) \cdots) & \mapsto (N;+(i-1) \cdots) \quad (i \neq m-1) \\
(N;+ \cdots) & \mapsto (N;+11 \cdots) \\
(N;+ \cdots) & \mapsto (N;11 \cdots) \\
\end{cases}
\end{align*}
\]

Let $E = (0; -111 \cdots)$ and $F = (0; +1111 \cdots)$ be the point of $\tilde{E}(T)$ and let $<_{\{E,F\}}$ be a left-ordering of $G_{m,n}$ defined by the sequence $\{E, F\}$ and the standard action Θ. The following theorem gives an alternative definition of $<_D$.

Theorem 5. The left ordering $<_{\{E,F\}}$ is identical with the Dehornoy-like ordering $<_D$ defined by S.

Proof. By the formula of the action of $G_{m,n}$ on $\tilde{E}(T_{m,n})$ given above, it is easy to see that for $1(S)$-positive element $g \in G_{m,n}$, $E \preceq g(E)$. Thus by Property C of S, $g(E) = E$ if and only if $g = s_2^{k}$ for $q \in \mathbb{Z}$. Similarly, $s_2^{q}(F) = (0; +(m-1)(n-1) \cdots) > F$ if $q > 0$. Thus, we conclude $1 <_D g$ then $1 <_{\{E,F\}} g$, hence two orderings are identical.

We remark that a more direct proof is possible. That is, we can prove that $<_{\{E,F\}}$ is a Dehornoy-like ordering without using Theorem 4.

In fact, the proof of Theorem 5 provides an alternative (but essentially equivalent since it uses the standard action of $G_{m,n}$) proof of the fact that S has Property A. On the other hand, using the description of the standard action given here, we can give an completely different proof of Property C, as we give an outline here. Let $g \in G$. If $g(E) = E$, then $g = s_2^{k}$ for $q \in \mathbb{Z}$. So assume $g(E) <_R E$, so $g(E) = (N; l_1 l_2 l_3 \cdots)$ where $N \leq 0$, $l_1 \in \{+, -\}$. Let $c(g)$ be the minimal integer such that $l_j = 1$ for all $j' > j$. We define the complexity of g by $C(g) = (|N|, c(g))$. Now we can find $1(S)$-positive element p_g such that $C(p_g) < C(g)$. The construction of p_g is not difficult but requires complex case-by-case studies, so we omit the details. Here we compare the complexity by the lexicographical ordering of $\mathbb{Z} \times \mathbb{Z}$. Since $C(g) = (0,0)$ implies $g(E) = E$, by induction of the complexity we prove g is $\sigma(S)$-negative.

Remark 1. Regard $G_{3,2} = B_3$ as the mapping class group of 3-punctured disc D_3 having a hyperbolic metric and let $\tilde{D}_3 \subset \mathbb{H}^2$ be the universal cover of D_3. By considering the action on the set of points at infinity of \tilde{D}_3, we obtain an action of $G_{3,2}$ on \mathbb{R} which we call the Nielsen-Thurston action. The Dehornoy ordering $<_D$ of $B_3 = G_{3,2}$ is defined by the Nielsen-Thurston action. See [15]. In the case $(m,n) = (3,2)$, the standard action Θ derived from Bass-Serre tree is conjugate to the Nielsen-Thurston action. Thus, the Dehornoy-like ordering of $G_{m,n}$ is also...
regarded as a generalization of the Dehornoy ordering of B_3, from the dynamical point of view.

We say a Dehornoy-like ordering $<_D$ defined by an ordered finite generating set S has Property S (the Subword property) if $g <_D wg$ holds for all S-word positive element w and for all $g \in G$. The Dehornoy ordering of the braid group B_n has Property S \cite{D}.

One remarkable fact is that our Dehornoy-like ordering $<_D$ of $G_{m,n}$ does not have Property S except the braid group case.

Theorem 6. The Dehornoy-like ordering $<_D$ of $G_{m,n}$ does not have Property S unless $(m,n) = (3,2)$.

Proof. We use the dynamical description of $<_D$ given in Theorem\cite{D}. If $m > 2$ and $n \neq 2$, then

$$[s_1(s_2s_1)]E = (0; +211\cdots) <_R (0; +(m-1)(n-1)1\cdots) = [s_2s_1]E$$

hence $s_1(s_2s_1) <_D (s_2s_1)$.

However we show that the Dehornoy-like ordering $<_D$ of $G_{m,n}$ has a slightly weaker property which can be regarded as a partial subword property.

Theorem 7. Let $<_D$ be the Dehornoy-like ordering of $G_{m,n}$. Then $g <_D s_2g$ holds for all $g \in G$.

Proof. Observe that the standard action of s_2 on $\bar{E}(T)$ is monotone increasing. That is, for any $p \in \bar{E}(T)$, we have $p \leq_R s_2(p)$. Thus, $g(E) \leq s_2g(E)$. The equality holds only if $g(E) = E$, so in this case $g = s_2^k (k \in \mathbb{Z})$. So in this case we also have a strict inequality $g <_D s_2g$.

Remark 2. A direct proof of Theorem\cite{D} which does not use the dynamics is easy once we found a counter example. If $(m,n) \neq (3,2)$, then $s_2s_1s_2 = s_1s_2s_1W$ for an S-positive word W, so

$$s_1^{-1}s_2^{-1}s_1s_2s_1 = s_1^{-1}s_2^{-1}s_1(s_2s_1s_2)s_1^{-1} = s_1^{-1}s_2^{-1}s_1^{-1}(s_1s_2s_1W)s_2^{-1} = Ws_2^{-1}$$

The last word is $1(S)$-positive hence $s_1(s_2s_1) <_D (s_2s_1)$.

Using dynamics we can easily find a lot of other counter examples. The main point is that, as we can easily see, the action s_2 is not monotone increasing unlike the action of s_2. That is, there are many points $p \in \bar{E}(T)$ such that $s_2(p) <_R p$.

Remark 3. Another good property of the standard generator $S = \{\sigma_1, \sigma_2\}$ of B_3 is that the S-word-positive monoid $P_S = B_3^+$ is a Garside monoid, so B_3^+ has various nice lattice-theoretical properties. See \cite{D, E} for a definition and basic properties of the Garside monoid and Garside groups. In particular, the monoid B_3^+ is atomic. That is, if we define the partial ordering \prec on B_3^+ by $g \prec g'$ if $g^{-1}g' \in B_3^+$, then for every $g \in G$, the length of a strict chain

$$1 \prec g_1 \prec \cdots \prec g_k = g$$

is finite. However, if $m > 3$, then the S-word positive monoid P_S is not atomic. If $m > 3$, then $s_2s_1s_2 = s_1s_2s_1s_2W$ holds for $W \in P_S$ so we have a chain

$$\cdots \prec s_1^2s_2s_1s_2 \prec s_1s_2s_1s_2s_1s_2W = s_1s_2s_1s_2 \prec s_1s_2s_1s_2s_1s_2W = s_2s_1s_2$$
having infinite length. Thus for \(m > 3 \), \(P_S \) is not a Garside monoid.

On the other hand, the groups \(G_{m,n} \) have a lot of Garside group structures. For example, let \(\mathcal{X} = \{x,y\} \) be a generating set of \(G_{m,n} \). Then the \(\mathcal{X} \)-word positive monoid \(P_\mathcal{X} \) is a Garside monoid. Moreover, if \(m \) and \(n \) are coprime, that is, if \(G_{m,n} \) is a torus knot group, then there are other Garside group structures due to Picantin [13]. Thus, unlike the Dehornoy ordering of \(B_n \), a relationship between general Dehornoy-like orderings and Garside structures of groups seem to be very weak. Thus, it is interesting problem to find other family of left-orderings which is more related to Garside group structure.

In the remaining case \((m,n) = (3,3)\), the author could not determine whether \(P_S \) is a Garside monoid or not.

3.3. Exotic orderings: left orderings with no non-trivial proper convex subgroups. In [2], Clay constructed left orderings of free groups which has no non-trivial proper convex subgroups by using the Dehornoy ordering of \(B_3 \). Such an ordering is interesting, because many known constructions of left orderings, such as a method to use group extensions, produce an ordering having proper non-trivial convex subgroups.

In this section we construct such orderings by using a Dehornoy-like ordering of \(G_{m,n} \). By using the dynamics, we prove a stronger result even for the 3-strand braid group case. Let \(H \) be a normal subgroup of \(G_{m,n} \). By abuse of notation, we also use \(<_D \) to represent both the Dehornoy like ordering of \(G_{m,n} \) and its restriction to \(H \).

First we observe the following lemma, where the partial subword property plays an important role.

Lemma 5. Let \(C \) be a non-trivial \(<_D \)-convex subgroup of \(H \). If \(G^{(2)} \cap H = \{1\} \), then \(s_2^k c s_2^{-k} \in C \) for all \(k \in \mathbb{Z} \) and \(c \in C \).

Proof. Let \(c \in H \) be a \(<_D \)-positive element. Since \(G^{(2)} \cap H = \{1\} \), \(c \) must be \(1(S) \)-positive. So \(s_2^k c^{-1} s_2^{-k} \) is \(1(S) \)-negative, hence \(c s_2^k c^{-1} s_2^{-k} <_D c \). On the other hand, by Theorem 7, \(c s_2^k c^{-1} >_D 1 \). Thus \(c s_2^k c^{-1}(E) = c s_2^k c^{-1} s_2^{-k}(E) \geq E \), so \(c s_2^k c^{-1} s_2^{-k} \geq _D 1 \). \(H \) is a normal subgroup, so \(c s_2^k c^{-1} s_2^{-k} \in H \). Since \(C \) is \(<_D \)-convex subgroup, \(c s_2^k c^{-1} s_2^{-k} \in C \). Hence we conclude \(s_2^k c s_2^{-k} \in C \).

Now we show that in most cases, the restriction of the Dehornoy-like ordering to a normal subgroup of \(G_{m,n} \) yields a left-ordering having no non-trivial proper convex subgroups.

Theorem 8. Let \(H \) be a normal subgroup of \(G_{m,n} \) such that \(G^{(2)} \cap H = \{1\} \). Then the restriction of the Dehornoy-like ordering \(<_D \) to \(H \) contains no non-trivial proper convex subgroup.

Proof. Let \(C \) be a non-trivial \(<_D \)-convex subgroup of \(H \) and \(c \in C \) be \(<_D \)-positive element. Since \(c \) must be 1-positive, by Lemma 5 we may assume that \(c = s_2 s_1 s_2 w \) where \(w \) is a 1-positive element, by taking a power of \(c \) and conjugate by \(s_2 \) if necessary. Similarly, we also obtain \(c' \in C \) such that \(c' = w' s_2 s_1 s_2 \) where \(w' \) is a 1-positive element.

By computing the standard action of \(c' \), then we obtain
\[
c' c(E) = w' s_2 s_1 s_2^2 s_1 s_2 w(E) >_{\mathbb{R}} w' s_2 s_1 s_2^2 s_1 s_2 s_2(E) = w'(1; -11(n-1)11 \cdots) >_{\mathbb{R}} (1; -1111 \cdots).
\]
Thus, for any \(h \in H \), \((c'c)^N(E) \geq_R (N; -1111 \cdots) \geq_R h(E) \geq_R E \) holds for sufficiently large \(N > 0 \). Since \(C \) is convex and \(c'c \in C \), this implies \(h \in C \) so we conclude \(C = H \).

We remark that the assumption that \(G^{(2)} \cap H = \{1\} \) is necessary, since \(H \cap G^{(2)} \) yields a \(<_D \) convex subgroup of \(H \). We also remark that the hypothesis \(G^{(2)} \cap H = \{1\} \) implies that \(H \) is a free group, since \(G_{m,n} = \mathbb{Z} \ast \mathbb{Z} \).

Theorem \ref{thm:example} provides an example of a left-ordering of the free group of infinite rank which does not have any non-trivial proper convex subgroups. For example, take \(F = [B_3', B_3'] \), where \(B_3' = [B_3, B_3] \cong F_2 \) be the commutator subgroup of \(B_3 \), which is isomorphic to the rank 2 free group.

References

[1] J. Birman, V. Gebhardt and J. González-Meneses, Conjugacy in Garside groups I: cyclings, powers and rigidity, Group Geom. Dyn. 1 (2007), 221-279.
[2] A. Clay, Exotic left orderings of the free groups from the Dehornoy ordering, arXiv:0906.4997v2
[3] P. Dehornoy, Braid groups and left distributive operations, Trans. Amer. Math. Soc, 345 (1994), 115–151.
[4] P. Dehornoy, Groupes de Garside, Ann. Sci. École. Norm. Sup, 35 (2002), 267–306.
[5] P. Dehornoy, I. Dynnikov, D. Rolfsen and B. Wiest, Ordering Braids, Mathematical Surveys and Monographs 148, Amer. Math. Soc. 2008.
[6] T. Dubrovia and T. Dubrovin, On braid groups, Sb. Math, 192 (2001), 693–703.
[7] T. Ito, Braid ordering and the geometry of closed braid, Geom. Topol. to appear.
[8] T. Ito, Braid ordering and knot genus, J. Knot Theory Ramifications, to appear.
[9] P. Linnell, The space of left orders of a group is either finite or uncountable, Bull. London Math. Soc. 43 (2011), 200–202.
[10] A. Navas, On the dynamics of (left) orderable groups, Ann. Inst. Fourier, 60 (2010), 1685–1740.
[11] A. Navas, A remarkable family of left-ordered groups: Central extensions of Hecke groups, J. Algebra, 328 (2011), 31–42.
[12] A. Navas, B. Wiest, Nielsen-Thurston orders and the space of braid orders, Bull. Lond. Math. Soc. to appear.
[13] M. Picantin, Automatic structures for torus link, J. Knot Theory Ramifications, 12, (2003), 833–866.
[14] A. Sikora, Topology on the spaces of orderings of groups, Bull. London Math. Soc. 36, (2004), 519-526.
[15] H. Short, B. Wiest, Ordering of mapping class groups after Thurston, Enseign. Math, 46, (2000), 279–312.