High prevalence and persistence of Escherichia coli strains producing Shiga toxin 2k subtype in goat herds

Yanwen Xiong, Xi Yang, Qian Liu, Xiangning Bai, Bin Hu, Deshui Jiang, Hongbo Jiao, Liangmei Lu, Ruyue Fan, Peibin Hou, and Andreas Matussek

Corresponding Author(s): Yanwen Xiong, State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, China CDC

Review Timeline:

Event	Date
Submission Date	April 29, 2022
Editorial Decision	May 29, 2022
Revision Received	June 8, 2022
Accepted	July 18, 2022

Editor: Sadjia Bekal

Reviewer(s): Disclosure of reviewer identity is with reference to reviewer comments included in decision letter(s). The following individuals involved in review of your submission have agreed to reveal their identity: Kenichi Lee (Reviewer #2)

Transaction Report:

(Note: With the exception of the correction of typographical or spelling errors that could be a source of ambiguity, letters and reports are not edited. The original formatting of letters and referee reports may not be reflected in this compilation.)

DOI: https://doi.org/10.1128/spectrum.01571-22
May 29, 2022

Prof. Yanwen Xiong
State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, China CDC
P.O. Box 5, Changping
Beijing 102206
China

Re: Spectrum01571-22 (High prevalence and persistence of Escherichia coli strains producing Shiga toxin 2k subtype in goat herds)

Dear Prof. Yanwen Xiong:

Thank you for submitting your manuscript to Microbiology Spectrum. When submitting the revised version of your paper, please provide (1) point-by-point responses to the issues raised by the reviewers as file type "Response to Reviewers," not in your cover letter, and (2) a PDF file that indicates the changes from the original submission (by highlighting or underlining the changes) as file type "Marked Up Manuscript - For Review Only". Please use this link to submit your revised manuscript - we strongly recommend that you submit your paper within the next 60 days or reach out to me. Detailed instructions on submitting your revised paper are below.

Link Not Available

Below you will find instructions from the Microbiology Spectrum editorial office and comments generated during the review.

ASM policy requires that data be available to the public upon online posting of the article, so please verify all links to sequence records, if present, and make sure that each number retrieves the full record of the data. If a new accession number is not linked or a link is broken, provide production staff with the correct URL for the record. If the accession numbers for new data are not publicly accessible before the expected online posting of the article, publication of your article may be delayed; please contact the ASM production staff immediately with the expected release date.

The ASM Journals program strives for constant improvement in our submission and publication process. Please tell us how we can improve your experience by taking this quick Author Survey.

Sincerely,

Sadjia Bekal
Editor, Microbiology Spectrum

Journals Department
American Society for Microbiology
1752 N St., NW
Washington, DC 20036
E-mail: spectrum@asmusa.org

Reviewer comments:

Reviewer #1 (Comments for the Author):

This is a well written paper and was an interesting and informative read. The manuscript is built on a solid scientific foundation and includes a thorough sequence analysis of selected strains. The large scale sample collection survey conducted in this study is a huge undertaking and deserves much praise. The prevalence data is an important contribution to the research community as there is limited data available in the literature which investigates the prevalence of STEC within goats. The subsequent identification of a novel Stx2k subtype is an interesting and novel discovery. The authors must be commended for their thorough evaluation of the genomic architecture of the Stx2k prophage and the phylogenetic comparisons carried out, particularly with
Stx2k subtypes of clinical origin. The accompanying figures and supplementary figures are informative and very well designed.

Reviewer #2 (Comments for the Author):

Comments
In this study, authors found that recently found stx subtype, stx2k, can be isolated from goat at high rate. Whole-genome analyses of the isolates show the characteristics of the isolates (a few adhesins and other virulence factors, but half of them are positive for LT gene).

General comments
1. It is novel and informative that authors found that goat carry stx2k-positive E. coli at high rate, and characteristics of stx2k-positive isolates and Stx2k phage.
2. There are some technical concerns and points that should be clarified.

Specific comments
Line 27. It is better to mention LT gene (elt) rather than "virulence determinant."
Line 40. Highly homogeneous phage sequences suggest they are transmitting horizontally rather than vertically.
Line 114. It is important to mention that major adhesins of STEC (T3SS) and ETEC (e.g., F4, F5, F18) are absent.
Line 114. astA is very short gene and has high similarity with transposase gene. Therefore, usual homology search (e.g., 60% length match and 90% similarity match, VirulenceFinder default setting) often generates false positive. Please check whole coding region and start codon are conserved in this isolates.
Line 124. In Table S2, there are genes that are not directly gain antimicrobial resistance (e.g., H-NS). Authors should revise the genes.
Line 131. What about the similarities to the other stx2 phages?
Line 135. It is unclear how stx2 phages were clustered. Please show the results if possible.
Line 169. What are the criteria for clusters?
Line 178. It is difficult to say isolates in Fig S3d are clustered. There are thousands of SNPs.
Line 192. Can stx2k gene amplified by previous primers for stx2.
Line 237. The results suggest that horizontal gene transfer.
Line 269. It is not mentioned in the Results section.
Line 288. How many farms were included in this study? Were multiple isolates used in this study? If so, please include farm ID in Table S1.
Line 294. I suppose the original reference for stx-PCR is Bai et al. (2013, PLOS ONE, doi.org/10.1371/journal.pone.0065537). However, it is not mentioned which primers were used. The primer selection is important for this study and thus they should be mentioned clearly.
Line 307. Probably 250 bp would be correct.
Line 311. What was the criteria for PacBio sequencing? It would be helpful to show PacBio-sequenced isolates in Fig. 3.
Line 353. Were insertion sites detected by draft genomes?
Line 334. Were novel O-types that DebRoy et al. (PLoS One 2016 Vol. 11 Issue 1 Pages e0147434) proposed included?

Is it possible to measure the amount of Stx2k by commercial kits?

Staff Comments:

Preparing Revision Guidelines
To submit your modified manuscript, log onto the eJP submission site at https://spectrum.msubmit.net/cgi-bin/main.plex. Go to Author Tasks and click the appropriate manuscript title to begin the revision process. The information that you entered when you first submitted the paper will be displayed. Please update the information as necessary. Here are a few examples of required updates that authors must address:

• Point-by-point responses to the issues raised by the reviewers in a file named "Response to Reviewers," NOT IN YOUR COVER LETTER.
• Upload a compare copy of the manuscript (without figures) as a "Marked-Up Manuscript" file.
• Each figure must be uploaded as a separate file, and any multipanel figures must be assembled into one file.
• Manuscript: A .DOC version of the revised manuscript
• Figures: Editable, high-resolution, individual figure files are required at revision, TIFF or EPS files are preferred

For complete guidelines on revision requirements, please see the journal Submission and Review Process requirements at https://journals.asm.org/journal/Spectrum/submission-review-process. Submissions of a paper that does not conform to
Microbiology Spectrum guidelines will delay acceptance of your manuscript.

Please return the manuscript within 60 days; if you cannot complete the modification within this time period, please contact me. If you do not wish to modify the manuscript and prefer to submit it to another journal, please notify me of your decision immediately so that the manuscript may be formally withdrawn from consideration by Microbiology Spectrum.

If your manuscript is accepted for publication, you will be contacted separately about payment when the proofs are issued; please follow the instructions in that e-mail. Arrangements for payment must be made before your article is published. For a complete list of Publication Fees, including supplemental material costs, please visit our website.

Corresponding authors may join or renew ASM membership to obtain discounts on publication fees. Need to upgrade your membership level? Please contact Customer Service at Service@asmusa.org.

Thank you for submitting your paper to Microbiology Spectrum.
High prevalence and persistence of *Escherichia coli* strains producing Shiga
toxin 2k subtype in goat herds

Xi Yang\(^a\), Qian Liu\(^a\), Xiangning Bai\(^{a,b,c}\), Bin Hu\(^d\), Deshui Jiang\(^e\), Hongbo Jiao\(^e\),
Liangmei Lu\(^e\), Ruyue Fan\(^d\), Peibin Hou\(^d\), Andreas Matussek\(^{h,e,f}\), Yanwen Xiong\(^a,\ast\)

\(^a\) State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable
Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
\(^b\) Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm,
Sweden
\(^c\) Division of Laboratory Medicine, Oslo University Hospital, Oslo, Norway
\(^d\) Shandong Center for Disease Control and Prevention, Jinan, Shandong, China
\(^e\) Lanling Center for Disease Control and Prevention, Lanling, Shandong, China
\(^f\) Division of Laboratory Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway

Abstract
Shiga toxin (Stx)-producing *Escherichia coli* (STEC) is a zoonotic pathogen with the ability
to cause severe disease such as hemorrhagic colitis (HC) and hemolytic uremic syndrome
(HUS). Shiga toxin (Stx) is the key virulence factor in STEC, which can be classified into
two types, Stx1 and Stx2, and different subtypes. Stx2k is a newly-reported Stx2 subtype in
E. coli strains from diarrheal patients, animals, and raw meats exclusively in China so far. To
understand the reservoir of Stx2k-producing *E. coli* (Stx2k-STEC), we investigated
Stx2k-STEC in goat herds and characterized their genetic characteristics using
whole-genome sequencing. A total of 448 STEC strains were recovered from 2,896 goat
fecal samples and 37.95% (170/448) were Stx2k-STEC. Stx2k-STEC strains of O93:H28
serotype and ST4038 sequence type were the most predominant and detected over years.
Notably, 55% of Stx2k-STECs carried virulence determinant defining enterotoxigenic *E. coli*
(ETEC), thereby exhibiting the hybrid STEC/ETEC pathotype. Stx2k-converting prophage
genomes trended to cluster into four groups and exhibited high similarity within each group.
Strains from patients, raw meats, sheep and goat were mix-distributed in the phylogenetic
tree, indicating the risk for spread of Stx2k-STEC cross-species and pathogenic potential to
humans. Further studies are required to investigate the Stx2k-STECs in other reservoirs and to understand the mechanism of persistence in these hosts.

Importance

The recently reported Stx2k-STEC strains are circulating in a variety of sources over time in China. Here, we depicted a high prevalence of Stx2k-STEC in goat herds. More than half of the strains were hybrid STEC/ETEC pathotype. Stx2k-STECs of predominant serotypes were widespread in the goat herds over years. Stx2k-converting prophages exhibit a high level of similarity across geographical regions and time, and might be maintained and inherited vertically. The high prevalence of Stx2k-STEC in the goat suggests the spread risk cross-species, given that goat-derived Stx2k-STECs share similar genetic backbones as patients-derived strains, these strains may pose pathogenetic potential to humans. Our study thus highlights the need of monitoring human Stx2k-STEC infections in this region, by extension, in other geographic locations.

Keywords Escherichia coli, Shiga toxin (Stx), Stx2k subtype, Stx2k-converting prophage, Whole-genome sequencing
Introduction

Shiga toxin-producing *Escherichia coli* (STEC) is a significant zoonotic foodborne pathogen worldwide. The clinical manifestations of STEC infection range from asymptomatic carriage, diarrhea or hemorrhagic colitis (HC) to the potentially life-threatening complication hemolytic uremic syndrome (HUS), which could lead to acute renal failure (1). Ruminants are important reservoirs of STEC, although cattle have been recognized as the primary source of STEC, recent epidemiological studies have suggested that goats and sheep are also significant sources of human STEC infection (2-4). Human STEC infection occur through direct or indirect contact with animals, e.g., animal slaughter process or exposing to feces-contaminated water, soils, animal-derived food and agricultural products.

STEC pathogenicity is mainly due to the production of one or more kinds of Shiga toxins (Stxs), which is encoded in the lysogenized lambdoid prophages late region. Stx-converting prophages, as horizontal gene transfer (HGT) elements, can convert a harmless commensal into an enteric pathogen and promote the emergence of hybrid pathotypes (5), thereby playing an important role in STEC pathogenesis and evolution. Stx is an AB$_5$ toxin and includes two antigenic forms, Stx1 and Stx2. According to the nomenclature proposed by Scheutz et al., several subtypes of Stx1 (Stx1a, Stx1c and Stx1d) and Stx2 (Stx2a to Stx2g) have been described (6). Based on epidemiological studies, different Stx subtypes vary in toxicity leading to different patient outcomes (7). Stx2 producing strains are associated with more severe disease than Stx1 producing strains, particularly strains harboring Stx2a and Stx2d subtypes (8). In recent years, new Stx2 subtypes have been identified: Stx2h to Stx2m and Stx2o (8-13). Of these, Stx2j, Stx2k, Stx2m and Stx2o subtypes have been identified in clinical isolates (11, 13), suggesting the clinical relevance of new Stx subtypes. Interestingly, Stx2k-STECs have been identified in *E. coli* strains from a variety of hosts including diarrheal patients, animals (goat, sheep and pig) and raw meat (mutton and beef) in China over time(12, 14), while not yet been reported in any other countries.

In this study, we investigated the Stx2k-STECs in goat herd as one important reservoir through our continuous STEC monitoring over years, whole-genome sequencing (WGS) was
used to characterize Stx2k-STECC strains, including their molecular traits, Stx2k-converting phages, and genetic relatedness of strains from diverse sources.

Results

High Prevalence of Stx2k-STECC Strains in Goat Herds

In total, 448 STEC strains were isolated from 2,896 goat fecal samples, giving a culture positive rate of 15.47% (448/2896). The isolation rate of STEC from goat feces during the study period is shown in Table 1. A total of 12 different stx subtypes/combinations were identified among 448 STEC isolates, with stx2k (169/448, 37.72%) being the most predominant, followed by stx1c (120/448, 26.69%) and stx1c+stx2b (65/448 14.51%). One isolate carried stx2k and stx2e. The proportion of stx2k-positive strains was highest in 2019 and 2021 (Figure 1).

Among the 170 stx2k-positive STEC strains, 167 shared identical stx2k sequence as the previously reported Stx2k-STECC strain STEC309 (GenBank: CP041435.1) (12), the remaining three strains harbored the same stx2k sequence which differed from strain STEC309 at position 346 in the A subunit, leading to a change in one amino acid (from D to N). The B subunit and intergenic region between A and B subunit (aggagtaagt) were highly conserved among all goat-derived Stx2k-STECCs in this study.

Molecular Characteristics of Goat-derived Stx2k-STECC Isolates

Among the 170 goat-derived Stx2k-STECC strains, 16 different O:H serotypes were found. O93:H28 was the most predominant serotype accounting for 30.59% (52/170) of all strains (Table S1). Two novel O-serogroup genotypes (OgN-RKI3:H21 and OgN17:H21) were found among 34 Stx2k-STECC isolates (20.0%) (Table 2). Sixteen MLST sequence types (STs) were assigned among all isolates, of these, ST4038 was most predominant (52/170, 30.59%). Isolates with the same serotype were assigned as the same sequence type, with the exception of OgN-RKI3:H21 (ST683 and ST58) and O116:H25 (ST155 and ST58) (Table 2). The dominant serotype (sequence type) in 2017 and 2019 was O93:H28 (ST4038), whereas in 2018 and 2021, OgN-RKI3:H2 (ST683) predominated.
A total of 95 virulence genes were identified among 170 Stx2k-STEC strains based on the VFDB database. These virulence genes can be classified into several groups based on their functions, in addition to stx, the enteroaggregative E. coli heat-stable enterotoxin (EAST1) encoding gene astA was observed in 17 strains. Ninety-four Stx2k-STEC strains (55.3%) in this study carried heat-labile toxin (LT) encoding gene, a virulence determinant for enterotoxigenic E. coli (ETEC), thereby exhibiting the hybrid STEC/ETEC pathotype. All of the STEC/ETEC strains carried the heat-labile toxin-encoding gene lt-II (Table S1). Other virulence genes were involved in adherence (fdeC, cfaABCDE, cgsABCDEFG, fimABCDEFGH and ecpABCDEFG), invasion (aslA, ibeB, ompA and AAA92657), iron uptake (ybtS, fepABCDEG and fur), secretion system effectors (yopP, espLRXY, fha rhs, tssABCDEGHJKLM and gspCDE-KLM), regulation (phoP, rcsB and rpoS), etc. (Table S2a).

Sixty-seven AMR genes were identified, 42 of them were efflux-related transporter protein-encoding genes (Table S2b). AMR genes associated with resistance to peptide antibiotics (pmrF) and class C β-lactamase (blaEC, ampH and ampC1) were found in all strains. Other predominant AMR genes were tet(B) (n=29), aph(6)-Id (n=17), qnrS1 (n=16), blaTEM-181 (n=16) and sul3 (n=16).

Genetic Feature of Stx2k-Converting Prophages

Twelve intact and 158 incomplete Stx2k-converting prophages were identified from 170 Stx2k-STEC genomes. To assess the genetic relationships among all of the Stx2k-converting prophages in this study and reference Stx2k-STECs reported previously, intergenomic similarities were calculated reciprocally between pairs of prophage genomes using VIRIDIC, four Stx2k prophage groups, termed as Stx2k-prophage G1, G2, G3 and G4, were designated based on the cluster assignment. Stx2k prophages in this study (n=170) were distributed in G1 to G3, and one Stx2k prophage from a reference pig-derived STEC strain was grouped as G4 (Figure S1). Prophages identified from draft genomes with length≤8,000 bp were assigned as unknown group (Gx). Three different integrases were identified in 44 prophages (data not shown), consistently, three insertion sites were found, i.e., yccA (Modulator of FtsH protease YccA), dusA (tRNA dihydroxyuridine synthase A), and yecE (DUF72...
domain-containing protein YecE) (Table S1). The integrases and insertion sites corresponded to the three Stx2k-prophage groups (Figure 2).

To characterize and compare the Stx2k-converting prophages from strains of different molecular characteristics, Stx2k-STEC strains representative of different serotypes and sequence types were selected for further comparisons. The progressive Mauve alignment revealed the blocks with collinearity between Stx2k-converting prophages (Figure S2). Stx2k prophages of the same group displayed nearly identical collinearity blocks component. Consistent results were observed using Easyfig. The Stx2k-converting prophages were generally organized into three major modules, i.e., integration cassette, lysis cassette functions and morphogenetic related genes. The Stx2k-converting prophage aligned across the length of the prophage with few structural variations in each group. For instance, the insertion sites, integrase, replication proteins and the antiterminator protein Q of the phages (Figure 2). All of the Stx2k prophages shared a conserved region surrounding stx of approximately 40 kb. The prophage structure among those groups mainly differed in their early regions (upstream of stx2k), especially the genes encoding regulator and replication, while only minor structural variations were observed in their late regions coding the morphogenetic and lysis cassette functions.

Phylogenetic analysis

To determine the phylogenetic relationships of Stx2k-STEC strains isolated from goat in this study and 17 previously reported Stx2k-STEC strains from diverse sources (12, 14), a whole-genome phylogeny tree was constructed from alignment of concatenated CDSs of the 1,909 shared-loci found in all 187 Stx2k-STEC isolates (Figure 3). Strains isolated from different years were inner-mixed in the phylogenetic tree. Strains belonging to the same serotype and MLST type showed the tendency to cluster together. Pairwise SNP distance heatmaps were produced to illustrate the dissimilarity of strains within each cluster (Figure S3). Two large clusters were observed comprising of 36% and 31% isolates respectively, referred to as cluster 1 and cluster 2. Cluster 1 primarily consisted of 47 OgN-RKI3:H21 isolates from goat, sheep and patient from three different provinces, patient-derived strains and other isolates differed in 292 to 720 SNPs (Figure S3a). All isolates from the cluster 2
belonged to O93:H28 isolated from goat in this study. Besides cluster 1, four clusters possessed strains isolated from different sources or geographical locations were observed. All isolates in cluster 3 belonged to O100:H19 serotype isolated from goat and raw meat, strains from the two sources differed in 62 to 265 SNPs (Figure S3b). Goat-derived STECs isolated from two provinces were grouped in cluster 4, which differed in 458 to 459 SNPs (Figure S3c). Cluster 5 consisted of one patient-derived isolate and goat isolates belonging to different serotypes, the differences between strains from the two sources ranged from 8,915 to 9,984 SNPs (Figure S3d). One pig-derived O159:H16 STEC isolate formed a separate cluster. Strains of same phylogenetic cluster carried Stx2k-phages assigned as different phage groups (Figure 3).

Discussion

Stx2k-producing E. coli strains have been identified from a broad range of hosts exclusively in China so far, including diarrheal patients, pig, raw meat (beef and mutton), sheep and goat(12, 14). In this study, 170 Stx2k-STEC strains were isolated from goat and the proportion of Stx2k (37.95%) was the highest among all stx subtypes detected. Goat have been identified as significant reservoirs of STEC and are capable to carry STEC without clinical signs themselves (3, 4). Previous studies have suggested that the most frequent stx type encountered in goat-derived isolates was stx1 (15-17) and especially stx1c subtype (18, 19). This might be due to the lack of systematic investigation of STEC among goat (4), besides, since the application of WGS becomes routine for STEC genotyping, the diversity of stx subtypes in STEC from different sources is accumulating. Stx2k-STECs have only been reported in China so far, it is not unlikely that Stx2k-STEC may occur in other countries but not identified or assigned as other Stx2 subtype, for instance, Stx2k was initially assigned as a new Stx2e variant (20). One example is that the recently designated Stx2h subtype has previously only been detected in isolates from Tibetan marmots (9), however, it has now also been reported recently from sprouts in Canada (11). The host range and specificity of different stx subtypes need further study.

Previous studies have reported differences between Stx1/Stx2 types and subtypes in terms of host specificity and binding strength (21, 22). One Stx2k variant was reported less toxic in
Vero cell assay than Stx2a but similar in receptor-binding preference, acid tolerance, and thermostability (23). It has been proposed that the two amino acid differences in the receptor binding site might explain difference in cytotoxicity between Stx2a and Stx2k. The similarity between Stx2k and Stx2a, and the high prevalence of Stx2k-STECh in goat herds suggest a possible risk to cause human infections. In addition to three stx2k variants previously reported (12), a new stx2k variant was identified in this study, thus there are four variants in Stx2k-STECh to date. It remains to be investigated whether the amino acid change between different variants in the catalytically active A-subunit plays a role in the toxicity of Stx2k.

The WGS-based molecular characterization revealed that O93:H28 was the most predominant serotype in goat-derived Stx2k-STECh strains. To the best of our knowledge, no human disease has been reported to be associated with this serotype thus far. The reason for this may be that most of the serotyping is performed by conventional slide agglutination tests using antisera against the recognized E. coli O antigens established by the International Centre for Reference and Research on Escherichia and Klebsiella, and the former scheme did not include O93 (24, 25). The novel O-serogroup genotypes OgN-RKI3 has exclusively been reported in human-derived STECh strain 16-04178 (GCA_016116345.1) (26, 27), carrying stx2e subtype, our finding that 18% goat-derived Stx2k-STECh strains in this study possessed the same O genotype as strain 16-04178, indicating that OgN-RKI3 strains have a potentially wide distribution. Remarkably, 55% of Stx2k-STECh strains in our study carried the heat-labile toxin (LT)-encoding gene lt, exhibiting a STECh/ETEC hybrid pathotype. In a recent study, 56% of Stx2e-STECh strains exhibited the STECh/ETEC hybrid pathotype (28). Notably Stx2k was initially assigned as a new Stx2e variant from its type strain STEC388 isolated from a healthy pig (20). Stx2k- and Stx2e-producing STECh strains may share similar genetic backbones that can drive the transmission of genes among strains, facilitating the emergence of hybrid pathotypes, further research is needed to elucidate this.

Clustering of Stx2k-converting prophages demonstrates the similarity among Stx2k-prophages. This was consistent with a previous study indicating that Stx2a phages exhibited overall sequence similarities to each other (29), and that the Stx2c phages of the O157 strains were highly homogeneous (30, 31). In contrast Stx2e prophages exhibits a considerable
diversity (28, 32). In this study, Stx2k-converting phages from diverse sources or geographical regions were distributed in three designed prophage groups. This might be due to vertically maintain and inherit of the Stx2k-converting prophages. Comparing of Stx2k-converting prophages in terms of genomic organization and nucleotide sequence of homologous genes highlighted the similarity within each group. Stx phage integrases determined the reorganization of different insertion sites within the bacterial chromosome (5). Among the three insertion sites in the goat-derived Stx2k-STECS, yecE was commonly found in stx prophages (28, 32-34), whereas the other two insertion sites were rarely reported. yccA, associated with the Sp4-prophage in O157:H7 (30), was found as insertion site in stx2e, stx2k and stx2a-converting prophages (12, 28, 35). Insertion site was usually located upstream of the phage, in the predominate group G1, insertion site dusA was located downstream of the phage and was found in stx2k, stx2a and stx2d-converting Stx prophages (12, 35). This tRNA-dihydrouridine synthase also carries a phage scar in O157:H7 (30). Our study showed that the genomic diversity between each Stx2k phage group mainly occur at their early regions that contained regulator and replication related genes. This region mediates the switch between repression and induction of the prophage (36), thus may influence the expression level of the Shiga toxin (29) as well as the potential to produce phage particles without inducer agents of STEC strains (37). The difference between Stx2k prophage groups and the presence of conserved regions highlighted the modular structure of lambdoid phages (38).

The whole-genome phylogeny of all goat-derived Stx2k-STECS in this study demonstrated a considerable genetic diversity. The dominant clusters (Cluster 1: OgN-RKI3:H21, ST6830 and Cluster 2: O93:H28, ST4038) were widespread in this region in the goat herds over years. When compared with other reported Stx2k-STECS from different sources, a high degree of genetic similarity was observed between Stx2k-STECS from goat and other sources. Here patient-derived and goat-derived strains clustered phylogenetically closely, suggesting the pathogenic potential of goat-derived Stx2k-STECS. Further studies are essential to investigate the prevalence of Stx2k-STECS among humans in this region, and to assess their pathogenic potentials. The genomic similarity between aforementioned Stx2k-STECS isolates, despite their timing of isolation, geographic differences, and origin of isolation, may indicate
the widespread of these strains cross-species and in different regions in China. Further
studies are required to investigate Stx2k-STE C in diverse sources especially humans, and in
other georgical regions in China and abroad. Furthermore, the distribution of Stx2k prophage
groups in the phylogeny tree demonstrates that the Stx2k prophage does not parallel the
whole-genome phylogeny, suggesting that Stx2k phage and its bacterial host evolve
independently. Strains in the same clusters might descend from one ancestor and acquire the
Stx2k prophages in independent transduction events.

In conclusion, this study reports a high prevalence of the newly-reported Stx2k subtype in
STE C strains in goat herds. Strains of predominant serotypes and Stx2k-converting prophage
groups were recovered over years. The goat-derived Stx2k-STE C strains in this study
demonstrated genetic similarity with those from other sources. Thus, possible transmission
and pathogenic potential of Stx2k-STE C to humans should be noted.

Materials and Methods

Ethics statement

The current study has been reviewed and approved by the ethic committee of the National
Institute for Communicable Diseases Control and Prevention, China CDC, with the number
ICDC-2017006. Fecal samples of goat were acquired with the consent of the owners of
animals.

Sample Collection and Isolation of STEC Strains

In total, 2,896 fecal samples from healthy-looking goat were collected from different
family-scale farms in Lanling county, Shandong province, China, from November 2017 to
October 2021. Fecal samples were collected in 2 mL sterile tubes containing Luria-Bertani
(LB) medium in 30% glycerol, and transported to the laboratory in the National Institute for
Communicable Disease Control and Prevention, China CDC in ice-bags for the isolation of
STE C. Strains were isolated and confirmed by methods described previously (39). Briefly,
after enrichment with EC broth, the samples were examined by PCR for presence of stx.
Samples positive for stx were inoculated on CHROMagar™ ECC agar (CHROMagar, Paris,
France). After overnight incubation at 37°C, green-blue or colorless colonies on agar were
picked and tested for \textit{stx} by a single colony duplex PCR assay (39). API 20E biochemical test strips (bioMérieux, Lyon, France) were used to confirm that all \textit{stx}-containing isolates were \textit{E. coli}.

Whole Genome Sequencing (WGS) and Genome Assembly

Bacterial DNA extraction was performed with the Wizard Genomic DNA purification kit (Promega, Madison, WI, USA) according to the manufacturer’s protocol. Library preparation and WGS were performed at Beijing Novogene Bioinformatics Technology Co., Ltd., China. To obtain the draft genomes of STEC, DNA library preparation was done using NEBNext® Ultra™ DNA Library Prep Kit (New England Biolabs, Ipswich, MA, USA). The library was then paired-end (2 × 350 bp) sequenced using the Illumina NovaSeq platform (Illumina, San Diego, CA, USA). The low-quality reads (quality score < Q20) were filtered by fastp 0.20.1 (https://github.com/OpenGene/fastp) and then \textit{de novo} assembled using SKESA version 2.4.0 (https://github.com/ncbi/SKESA), low-quality contigs (length < 500 bp) were filtered with Seqkit version 0.11.0. To obtain the complete genomes of selected Stx2k- STEC strains, two sequencing libraries were prepared, besides the Illumina DNA library, a 10Kb library was done using a SMRT bell Template Prep kit (version 1.0). The long library was sequenced using PacBio Sequel platform (Pacific Biosciences, Menlo Park, CA, USA). The long reads were preliminarily quality-controlled using “RUN QC” module in SMRT Link version 5.1.0 (www.pacb.com/support/software-downloads), and \textit{de novo} assembled using the Hierarchical Genome Assembly Process (HGAP) pipeline, then corrected using the Illumina short reads to get complete genomes. All genomes were annotated with Prokka (version 1.13.3) (40).

Molecular Characterization of STEC Isolates

Molecular characterization was based on WGS data including \textit{stx} subtyping, serotyping, multi-locus sequence typing (MLST), detection of virulence factor genes and antimicrobial resistance genes. Briefly, an in house \textit{stx} subtyping database including representative nucleotide sequences of all identified \textit{stxl} (\textit{stxl}a, \textit{stxl}c, and \textit{stxl}d) and \textit{stx2} (\textit{stx2}a to \textit{stx2}m and \textit{stx2}o) subtypes was created, assemblies were compared against the \textit{stx} subtyping database using ABRicate version 0.8.10 (https://github.com/tseemann/abricate) to determine
the \textit{stx} subtypes. Similarly, a serotyping database was created including all known \textit{wzx/wzy} sequences from typical \textit{E. coli} O-serogroups from O1 to O188, \textit{fliC} and its homologs sequences from typical \textit{E. coli} H types from H1 to H56, download from Center for Genomic Epidemiology (CGE) (database version 1.0.0) (https://bitbucket.org/genomicepidemiology/serotypefinder_db/src/master/)(41), and a set of recently defined novel O-antigen biosynthesis gene cluster types (Og types) types of \textit{E. coli} (26, 42). MLST of seven housekeeping genes was performed through an on-line tool provided by the Warwick \textit{E. coli} MLST scheme website (https://enterobase.warwick.ac.uk/species/ecoli/allele_st_search). Detection of virulence genes and antimicrobial resistance genes was performed by comparing assemblies against the virulence factor database (VFDB) (43), and the Comprehensive Antibiotic Resistance Database (http://arpcard.mcmaster.ca), respectively, using ABRicate with default parameters (coverage \geq 80\% and identity \geq 80\%). Given that some Stx2k-STEa strains carried heat-stable and heat-labile enterotoxin encoding genes (\textit{st} and \textit{lt}) according to a previous study (12), we further subtyped \textit{st} and \textit{lt} genes by comparing assemblies against an \textit{in-house} database including representative nucleotide sequences of \textit{st} and \textit{lt}, using ABRicate version 0.8.10. Nucleotide sequences of different \textit{st} and \textit{lt} subtypes were obtained from previous reports (44-46).

\textbf{Identification and Characterization of Stx2k-converting Prophages}

Stx2k prophage sequences were extracted from genomes and characterized using methods previously described (28). Briefly, PHAge Search Tool Enhanced Release (PHASTER, http://phaster.ca/) was used to identify Stx prophages, the intact and incomplete Stx2k prophage sequences were extracted from complete and draft genomes, respectively. The RAST server (http://rast.nmpdr.org/) was used to annotate the genomes of Stx prophages. The phage insertion site was defined as the gene adjacent to the integrase (32). To assess the genetic relationship of Stx2k prophages, intergenomic similarities between pairs of prophage genomes was calculated using the VIRIDIC (Virus Intergenomic Distance Calculator) phage genome comparison tool with default parameters (47). The sequences of Stx2k prophage were compared and visualized in details using Easyfig (48) and Mauve (49).
Whole-Genome Phylogenetic Analysis of Stx2k-STECs

Genome assemblies of 170 Stx2k-STECs in this study together with other reported Stx2k-STECs (12, 14) were assessed by whole-genome multilocus typing (wgMLST) and whole-genome phylogeny. The complete whole-genome sequence of O157:H7 strain Sakai (NC_002695.2) was used as a reference to perform an *ad hoc* fast-GeP analysis (https://github.com/jizhang-nz/fast-GeP) to define wgMLST allelic profiles (50). Whole-genome phylogeny was inferred from the coding sequences (CDSs) shared by all genomes using Gubbins (version 2.3.4) with default settings (51). Single-nucleotide polymorphisms (SNPs) distances were executed using snp-dist v0.7.0 (https://github.com/tseemann/snp -dists), the input align files were calculated by snippy v4.3.6 (github. com/tseemann/snippy) with default settings and Gubbins (version 2.3.4). An online tool ChiPlot (https://www.chiplot.online/#Phylogenetic-Tree) was used to visualize and annotate the phylogenetic tree.

Data Availability

The assembled genomes of Stx2k-STEC strains in this study were uploaded to NCBI GenBank database with accession numbers shown in Table S1.

ACKNOWLEDGMENTS

This study was supported by grants from the National Natural Science Foundation of China (82072254) and the National Science and Technology Major Project (2018ZX10301407-002).
Reference

1. Majowicz SE, Scallan E, Jones-Bitton A, Sargeant JM, Stapleton J, Angulo FJ, Yeung DH, Kirk MD. 2014. Global incidence of human Shiga toxin-producing Escherichia coli infections and deaths: a systematic review and knowledge synthesis. Foodborne Pathog Dis 11:447-55.

2. Álvarez-Suárez ME, Otero A, García-López ML, Dahbi G, Blanco M, Mora A, Blanco J, Santos JA. 2016. Genetic characterization of Shiga toxin-producing Escherichia coli (STEC) and atypical enteropathogenic Escherichia coli (EPEC) isolates from goat’s milk and goat farm environment. Int J Food Microbiol 236:148-54.

3. Göttling J, Heckel JO, Hotzel H, Fruth A, Pfeifer Y, Henning K, Kopp P, Mertens-Scholz K, Rietschel W, Pfeffer M. 2022. Zoonotic bacteria in clinically healthy goats in petting zoo settings of zoological gardens in Germany. Zoonoses Public Health doi:10.1111/zph.12922.

4. Persad AK, LeJeune JT. 2014. Animal Reservoirs of Shiga Toxin-Producing Escherichia coli. Microbiol Spectr 2:Ehec-0027-2014.

5. Rodríguez-Rubio L, Haarmann N, Schwidder M, Muniesa M, Schmidt H. 2021. Bacteriophages of Shiga Toxin-Producing Escherichia coli and Their Contribution to Pathogenicity. Pathogens 10.

6. Scheutz F, Teel LD, Beutin L, Pierard D, Buvens G, Karch H, Mellmann A, Caprioli A, Tozzoli R, Morabito S, Stockbne NA, Melton-Celsa AR, Sanchez M, Persson S, O'Brien AD. 2012. Multicenter evaluation of a sequence-based protocol for subtyping Shiga toxins and standardizing Stx nomenclature. J Clin Microbiol 50:2951-63.

7. Scheutz F. 2014. Taxonomy Meets Public Health: The Case of Shiga Toxin-Producing Escherichia coli. Microbiol Spectr 2.

8. Panel EB, Koutsoumanis K, Allende A, Alvarez-Ordóñez A, Bover-Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F. 2020. Pathogenicity assessment of Shiga toxin-producing Escherichia coli (STEC) and the public health risk posed by contamination of food with STEC. EFSA Journal 18:e05967.

9. Bai X, Fu S, Zhang J, Fan R, Xu Y, Sun H, He X, Xu J, Xiong Y. 2018. Identification and pathogenomic analysis of an Escherichia coli strain producing a novel Shiga toxin 2 subtype. Sci Rep 8:6756.

10. Lacher DW, Gangiredla J, Patel I, Elkins CA, Feng PC. 2016. Use of the Escherichia coli Identification Microarray for Characterizing the Health Risks of Shiga Toxin-Producing Escherichia coli Isolated from Foods. J Food Prot 79:1656-1662.

11. Gill A, Dussault F, McMahon T, Petronella N, Wang X, Cebelinski E, Scheutz F, Weedmark K, Blais B, Carrillo C. 2022. Characterization of Atypical Shiga Toxin Gene Sequences and Description of Stx2j, a New Subtype. J Clin Microbiol 60:e022921.

12. Yang X, Bai X, Zhang J, Sun H, Fu S, Fan R, He X, Scheutz F, Matussek A, Xiong Y. 2020. Escherichia coli strains producing a novel Shiga toxin 2 subtype circulate in China. Int J Med Microbiol 310:151377.

13. Bai X, Scheutz F, Dahlgren HM, Hedenström I, Jernberg C. 2021. Characterization of Clinical Escherichia coli Strains Producing a Novel Shiga Toxin 2 Subtype in Sweden and Denmark. Microorganisms 9.

14. Han Y, Liu M, Han Y, Shi N, Wang Q, Cui T, Yang L, Zhang X, Zhu L, Qian H, Jin H, Dong C. 2022. Genetic and phylogenetic characterization of Shiga toxin-producing Escherichia coli and enteropathogenic E. coli from livestock in Jiangsu by using whole-genome sequencing. J Appl Microbiol doi:10.1111/jam.15494.

15. Das Gupta M, Das A, Islam MZ, Biswas PK. 2016. Prevalence of sorbitol non-fermenting Shiga toxin-producing Escherichia coli in Black Bengal goats on smallholdings. Epidemiol Infect 144:2501-8.

16. Gupta MD, Sen A, Das A. 2018. Occurrence of Escherichia coli carrying Shiga toxin-producing genes in buffaloes on smallholdings in Bangladesh. Vet World 11:1454-1458.

17. Johura FT, Parveen R, Islam A, Sadique A, Rahim MN, Monira S, Khan AR, Ahsan S, Ohnishi M, Watanabe H, Chakraborty S, George CM, Cravioto A, Navarro A, Hasan B, Alam M. 2016. Occurrence of Hybrid Escherichia coli Strains Carrying Shiga Toxin and Heat-Stable Toxin in Livestock of Bangladesh. Front Public Health 4:287.

18. Vu-Khac H, Cornick NA. 2008. Prevalence and genetic profiles of Shiga toxin-producing Escherichia coli strains isolated from buffaloes, cattle, and goats in central Vietnam. Vet Microbiol 126:356-63.
19. Taghadosi R, Shakibaie MR, Alizade H, Hosseini-Nave H, Askari A, Ghanbarpour R. 2018. Serogroups, subtypes and virulence factors of shiga toxin-producing *Escherichia coli* isolated from human, calves and goats in Kerman, Iran. Gastroenterol Hepatol Bed Bench 11:60-67.

20. Meng Q, Bai X, Zhao A, Lan R, Du H, Wang T, Shi C, Yuan X, Bai X, Ji S, Jin D, Yu B, Wang Y, Sun H, Liu K, Xu J, Xiong Y. 2014. Characterization of Shiga toxin-producing *Escherichia coli* isolated from healthy pigs in China. BMC Microbiol 14:5.

21. Scheutz F, Teel LD, Beutin L, Piéard D, Buvens G, Karch H, Mellmann A, Caprioli A, Tozzoli R, Morabito S, Stockbne NA, Melton-Celsa AR, Sanchez M, Persson S, O'Brien AD. 2012. Multicenter evaluation of a sequence-based protocol for subtyping Shiga toxins and standardizing Stx nomenclature. J Clin Microbiol 50:2951-63.

22. Biernbaum EN, Kudva IT. 2022. AB(5) Enterotoxin-Mediated Pathogenesis: Perspectives Gleaned from Shiga Toxins. Toxins (Basel) 14.

23. Hughes AC, Zhang Y, Xiong Y, Wang Y, Yang X, Xu Q, He X. 2019. Structural and Functional Characterization of Stx2k, a New Subtype of Shiga Toxin 2. Microorganisms 8.

24. Orskov F, Orskov I. 1992. *Escherichia coli* serotyping and disease in man and animals. Can J Microbiol 38:699-704.

25. Scheutz F, Cheasty T, Woodward D, Smith HR. 2004. Designation of O174 and O175 to temporary O groups OX3 and OX7, and six new *E. coli* O groups that include Verocytotoxin-producing *E. coli* (VTEC): O176, O177, O178, O179, O180 and O181. Apmis 112:569-84.

26. Lang C, Hiller M, Konrad R, Fruth A, Flieger A. 2019. Whole-Genome-Based Public Health Surveillance of Less Common Shiga Toxin-Producing *Escherichia coli* Serovars and Untypeable Strains Identifies Four Novel O Genotypes. J Clin Microbiol 57.

27. Iguchi A, Nishii H, Seto K, Mitobe J, Lee K, Konishi N, Obata H, Kikuchi T, Iyoda S. 2020. Additional Og-Typing PCR Techniques Targeting *Escherichia coli*-Novel and Shigella-Unique O-Antigen Biosynthesis Gene Clusters. J Clin Microbiol 58.

28. Yang X, Wu Y, Liu Q, Sun H, Luo M, Xiong Y, Matussek A, Hu B, Bai X. 2021. Genomic Characteristics of Stx2e-Producing *Escherichia coli* Strains Derived from Humans, Animals, and Meats. Pathogens 10.

29. Ogura Y, Mondal SI, Islam MR, Mako T, Arisawa K, Katsura K, Ooka T, Gotoh Y, Murase K, Ohnishi M, Hayashi T. 2015. The Shiga toxin 2 production level in enterohemorrhagic *Escherichia coli* O157:H7 is correlated with the subtypes of toxin-encoding phage. Sci Rep 5:16663.

30. Eppinger M, Mammel MK, Leclerc JE, Ravel J, Cebrala TA. 2011. Genomic anatomy of *Escherichia coli* O157:H7 outbreaks. Proc Natl Acad Sci U S A 108:20142-7.

31. Strauch E, Hammerl JA, Konietzny A, Schneiker-Bekel S, Arnold W, Goesmann A, Pühler A, Beutin L. 2008. Bacteriophage 2851 is a prototype phage for dissemination of the Shiga toxin variant gene 2c in *Escherichia coli* O157:H7. Infect Immun 76:5466-77.

32. Steyert SR, Sahil JW, Fraser CM, Teel LD, Scheutz F, Rasko DA. 2012. Comparative genomics and stx phase characterization of LEE-negative Shiga toxin-producing *Escherichia coli*. Front Cell Infect Microbiol 2:133.

33. Hauser E, Mellmann A, Semmler T, Stoeber H, Wieler LH, Karch H, Kuebler N, Fruth A, Harmsen D, Weniger T, Tietze E, Schmidt H. 2013. Phylogenetic and molecular analysis of food-borne shiga toxin-producing *Escherichia coli*. Appl Environ Microbiol 79:2731-40.

34. Bonanno L, Loukiadis E, Mariani-Kurkdjian P, Oswald E, Garnier L, Michel V, Auvray F. 2015. Diversity of Shiga Toxin-Producing *Escherichia coli* (STEC) O26:H11 Strains Examined via stx Subtypes and Insertion Sites of Stx and EspK Bacteriophages. Appl Environ Microbiol 81:3712-21.

35. Allué-Guardia A, Koenig SSK, Martinez RA, Rodriguez AL, Bosilevac JM, Feng P, Eppinger M. 2022. Pathogenomes and variations in Shiga toxin production among geographically distinct clones of *Escherichia coli* O113:H21. Microb Genom 8.

36. Fagerlund A, Aspholm M, Węgrzyn G, Lindbäck T. 2022. High diversity in the regulatory region of Shiga toxin encoding bacteriophages. BMC Genomics 23:230.
37. Pinto G, Sampaio M, Dias O, Almeida C, Azeredo J, Oliveira H. 2021. Insights into the genome architecture and evolution of Shiga toxin encoding bacteriophages of Escherichia coli. BMC Genomics 22:366.

38. Krüger A, Lucchini PM. 2015. Shiga toxins and stx phages: highly diverse entities. Microbiology (Reading) 161:451-62.

39. Fan R, Shao K, Yang X, Bai X, Fu S, Sun H, Xu Y, Wang H, Li Q, Hu B, Zhang J, Xiong Y. 2019. High prevalence of non-O157 Shiga toxin-producing Escherichia coli in beef cattle detected by combining four selective agars. BMC Microbiol 19:213.

40. Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068-9.

41. Joensen KG, Tetzschner AM, Iguchi A, Aarestrup FM, Scheutz F. 2015. Rapid and Easy In Silico Serotyping of Escherichia coli Isolates by Use of Whole-Genome Sequencing Data. J Clin Microbiol 53:2410-26.

42. Nguyen TTH, Iguchi A, Ohata R, Kawai H, Ooka T, Nakajima H, Iyoda S. 2021. Distribution of Novel Og Types in Shiga Toxin-Producing Escherichia coli Isolated from Healthy Cattle. J Clin Microbiol 59.

43. Chen L, Yang J, Yu J, Yao Z, Sun L, Shen Y, Jin Q. 2005. VFDB: a reference database for bacterial virulence factors. Nucleic Acids Res 33:D325-8.

44. Zhang P, Wang J, Wang X, Bai X, Ma J, Dang R, Xiong Y, Fanning S, Bai L, Yang Z. 2019. Characterization of Five Escherichia coli Isolates Co-expressing ESBL and MCR-1 Resistance Mechanisms From Different Origins in China. Front Microbiol 10:1994.

45. Jobling MG. 2020. Novel Type II Heat-Labile Enterotoxin Produced by Human Disease Outbreak Isolates of Escherichia coli Is a Member of the LT-IIa Family and Should Not Form a New Group: Clarification of Nomenclature and Precedent. Open Forum Infect Dis 7:ofaa408.

46. Ishimaru K, Sasaki M, Narimatsu H, Arimizu Y, Gotoh Y, Nakamura K, Hayashi T, Ogura Y. 2020. Escherichia coli O8:H8 Carrying a Novel Variant of the Heat-Labile Enterotoxin LT2 Gene Caused Outbreaks of Diarrhea. Open Forum Infect Dis 7:ofaa021.

47. Moraru C, Varsani A, Kropinski AM. 2020. VIRIDIC-A Novel Tool to Calculate the Intergenomic Similarities of Prokaryote-Infecting Viruses. Viruses 12.

48. Sullivan MJ, Petty NK, Beatson SA. 2011. Easyfig: a genome comparison visualizer. Bioinformatics 27:1009-10.

49. Darling AE, Mau B, Perna NT. 2010. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 5:e11147.

50. Zhang J, Xiong Y, Rogers L, Carter GP, French N. 2018. Genome-by-genome approach for fast bacterial genealogical relationship evaluation. Bioinformatics 34:3025-3027.

51. Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA, Bentley SD, Parkhill J, Harris SR. 2015. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res 43:e15.
Table 1. Prevalence of STEC in goat herd from 2017 to 2021.

Year	No. of samples	No. of STEC isolates (%)^a	No. of Stx2k-STECs (%)^b
2017	407	83 (20.39)	20 (24.10)
2018	325	32 (9.85)	12 (37.5)
2019	512	86 (16.80)	37 (43.02)
2020	646	108 (16.72)	36 (33.33)
2021	1006	139 (13.82)	65 (46.76)
Total	**2896**	**448 (15.47)**	**170 (37.95)**

^a Culture-positive rate of STEC strains among all samples.

^b Prevalence of Stx2k-STEC among all STEC isolates.

Table 2. Serotypes and sequence types of the 170 Stx2k-STEC isolates from 2017 to 2021.

Serotype	MLST (No. of isolates)	2017	2018	2019	2020	2021
O93:H28	ST4038 (52)	12	-	31	8	1
OgN-RKI3:H21	ST683 (30), ST58 (1)	-	10	1	2	18
O184:H19	ST6313 (17)	-	-	-	-	17
O174:H2	ST13029 (13)	-	-	-	-	13
O22:H8	ST446 (12)	3	-	1	3	5
O133:H25	ST10326 (11)	-	1	2	8	-
O16:H32	ST1286 (8)	-	-	-	8	-
O22:H16	ST295 (5)	-	-	-	-	5
O116:H25	ST155 (3), ST58 (1)	2	-	1	1	-
O8:H19	ST162 (4)	-	-	-	4	-
OgN17:H21	ST602 (3)	-	1	2	2	-
O100:H19	ST1611 (3)	-	-	-	-	3
O159:H25	ST155 (3)	-	-	-	-	3
O8:H53	ST345 (2)	2	-	-	-	-
O86:H51	ST155 (1)	1	-	-	-	-
O48:H21	ST5221 (1)	-	1	-	-	-
Total	170	20	12	37	36	65
Figure Legends

Figure 1. Distribution of Shiga toxin subtypes from 2017 to 2021.

Figure 2. EasyFig plot comparing Stx2k-converting prophages from Stx2k-STEC strains representative of different serotypes and sequence types within each prophage group. Arrows indicate gene directions. Coding sequences are represented by arrows and linked by blue bars shaded to represent the nucleotide identity, as indicated in the legend. The color of the text indicates the source of strains, black represents goat-derived strains in this study and light blue represents other source-derived strains from other studies. The asterisk (*) signifies incomplete prophages. Prophages belonging to the same groups are shown in grey rectangle and the Stx2k-prophage group is shown at the bottom-right corner.

Figure 3. Whole-genome phylogeny of Shiga toxin 2k-producing *E. coli* (Stx2k-STEC) isolates. Circular representation of the Gubbins phylogenetic tree generated from the concatenated sequences of the shared loci found in the wgMLST analysis. Gubbins tree was annotated with relevant metadata using an online tool ChiPlot (https://www.chiplot.online/). From the outer to inner circle, each represents serotype, year of isolation, phylogeny cluster, Stx2k prophage group and isolation source. The leaves of the tree indicated MLST sequence type.

SUPPLEMENTARY MATERIALS

Table S1. Molecular characteristics of Stx2k-STEC strains in this study and other sources.

Table S2. Virulence genes and antimicrobial resistance genes of the 170 Stx2k-STEC strains in this study.

Figure S1. VIRIDIC comparisons of 187 *stx2k* prophages genomes. The comparison, clustering and intergenomic similarity values between pairs of prophage genomes were performed using Viridic. Online tool ChiPlot (https://www.chiplot.online/#Phylogenetic-Tree) was used to visualize and annotate the heatmap. The colored bar represents Stx2k prophage groups.

Figure S2. Sequence comparison of the Stx2k-converting prophages from Stx2k-STEC strains representative of different serotypes and sequence types. Phage sequences extracted from the genomes of the Stx2k-STEC isolates were subjected to sequence analysis using Mauve. Similar color denotes regions of shared sequence, and the height of the bars denotes
level of similarity of the shared sequence regions. The color of the text indicates the source of strains, black represents goat-derived strains in this study, and light blue represents other source-derived strains in other studies. The asterisk (*) signifies incomplete prophages. The location of the stx genes is shown with a red arrow. The colored bar in the right represents the four prophage groups.

Figure S3. SNP differences of Stx2k-STE C strains within same phylogenetic clusters. Heatmap illustrating pairwise SNP distances for (a) 62 isolates and reference strain STEC309 (NZ_CP041435.1) in cluster 1, (b) 6 isolates and reference strain STEC367 (NZ_CP041429.1) in cluster 3, (c) 5 goat-derived isolates from different regions and reference strain STEC005 (NZ_CP041437.1) in cluster 4, (d) 26 isolates and reference strain STEC409 (NZ_CP041422.1) in cluster 5. The maximum likelihood trees presented as cladograms, constructed using all isolates and reference strain in each cluster as mentioned above. All trees were constructed using SNP alignments.
Dear Editor,

We sincerely thank editor and reviewers for critical assessments and valuable suggestions on the manuscript (Spectrum01571-22) entitled "High prevalence and persistence of Escherichia coli strains producing Shiga toxin 2k subtype in goat herds". We have revised the manuscript according to the reviewer’s comments. We addressed reviewers’ comments point by point as detailed below. We have uploaded manuscript with track changes in PDF file named ‘Marked Up Manuscript-For Review Only’ for comparison.

Reviewer #1 (Comments for the Author):
This is a well written paper and was an interesting and informative read. The manuscript is built on a solid scientific foundation and includes a thorough sequence analysis of selected strains. The large scale sample collection survey conducted in this study is a huge undertaking and deserves much praise. The prevalence data is an important contribution to the research community as there is limited data available in the literature which investigates the prevalence of STEC within goats. The subsequent identification of a novel Stx2k subtype is an interesting and novel discovery. The authors must be commended for their thorough evaluation of the genomic architecture of the Stx2k prophage and the phylogenetic comparisons carried out, particularly with Stx2k subtypes of clinical origin. The accompanying figures and supplementary figures are informative and very well designed.

We sincerely thank the reviewer’s positive evaluation on our manuscript. We didn’t find other specific comments from the reviewer (if any), the attachment is the original manuscript.

Reviewer #2 (Comments for the Author):
Comments
In this study, authors found that recently found stx subtype, stx2k, can be isolated from goat at high rate. Whole-genome analyses of the isolates show the characteristics of the isolates (a few adhesins and other virulence factors, but half of them are positive for LT gene).

General comments
1. It is novel and informative that authors found that goat carry stx2k-positive E. coli at high rate, and characteristics of stx2k-positive isolates and Stx2k phage.
2. There are some technical concerns and points that should be clarified.
Specific comments

Line 27. It is better to mention LT gene (\textit{elt}) rather than "virulence determinant."

We changed this as suggested (line 29).

(Line number in this letter correspond to that shown in PDF file ‘Marked Up Manuscript-For Review Only’, which differ from clean .doc file ‘Revised manuscript’.)

Line 40. Highly homogeneous phage sequences suggest they are transmitting horizontally rather than vertically.

Thanks for the correction. We have checked and corrected this throughout the manuscript.

Line 114. It is important to mention that major adhesins of STEC (T3SS) and ETEC (e.g., F4, F5, F18) are absent.

We have mentioned that the major adhesin of STEC (T3SS) (e.g., intimin encoded by \textit{eae} on the locus of enterocyte effacement (LEE) pathogenicity island) and ETEC (e.g., F4, F18, F5, and F6) are absent in Result and Discussion sections as suggested (line 132, line 267).

Line 114. \textit{astA} is very short gene and has high similarity with transposase gene. Therefore, usual homology search (e.g., 60\% length match and 90\% similarity match, VirulenceFinder default setting) often generates false positive. Please check whole coding region and start codon are conserved in this isolates.

We sincerely thank for the reviewer’s critical comments. We screened the virulence factor genes using ABRicate with default parameters (coverage \(\geq\) 80\% and identity \(\geq\) 80\%) against reference sequences downloaded from VirulenceFinder database, 17 identical sequences (114 bp) showed closest nucleotides sequences identity (97.32\%) and coverage (95.73\%) with \textit{astA}.

As suggested, we tried to extract the whole coding region and start codon of these proposed \textit{astA} genes, but failed. We observed that the start codon in the reference \textit{astA} sequence (GenBank: L11241.1) were missing in the 17 sequences in this study, see result (Figure 1) attached below. As the reviewer mentioned, partial coding sequence of IS256-like element IS1414 family transposase (GenBank: WP_000343747.1) were similar with \textit{astA} (Figure 1), while their reading frames were different. The sequence in this study (114 bp)
was identical to the partial sequence of IS1414 family transposase, but a complete coding sequence of the transposase was not identified among genomes in this study.

Figure 1. The alignment of proposed astA sequences in this study, whole coding region of reference nucleotide sequence of astA and partial coding sequence of IS1414 family transposase.

We have deleted relative information concerning astA from manuscript and Table S2. It should be noted that this is a sort of classic problem when screening genes spectrum based on WGS data with a fixed cut-off value of sequence identify/coverage, one should manually check genes of particular interest, genes that have high similarity with other genes, etc. We apologize for our neglection and thank you again for this critical comment.

Line 124. In Table S2, there are genes that are not directly gain antimicrobial resistance (e.g., H-NS).

Authors should revise the genes.

Thanks for the suggestion. We checked the genes and moved bacA and eptA to the class of peptide antibiotics, other genes that are not directly gain antimicrobial resistance, e.g., efflux pump were deleted, we revised text in the manuscript accordingly (Results, Table S2).

Line 131. What about the similarities to the other Stx2 phages?

In our previous study (Yang et al. Int J Med Microbiol. 2020 Jan;310(1):151377.) we have compared nine Stx2k-converting prophages with eight reference Stx2 subtype a – h, the results showed that different Stx2 phages (with different Stx2 subtypes) had diverse insertion sites and extensive non-homologous regions (Figure 2 from paper 2020).
Figure 2. Genome alignment of the nine Stx2k prophages and representative prophages carrying different stx2 subtypes. Homologous regions between the genomes are represented with blocks of identical colors.

Due to the extensive non-homologous regions of different Stx2 phages, it might not make much sense to compare sequence similarity between different Stx2 phages as a whole, especially in the current situation that a few Stx2 phages genomes are intact, while most are not. In terms of structure similarity, as we mentioned above, we observed extensive non-homologous regions in different Stx2 phage. In addition, we have now compared each Stx2k prophage group (G1-G4) in this study with other Stx2 phage that exhibited similar structure to a specific Stx2k phage group (Figure 3). We observed structure difference in the phages that are more similar compared to other Stx2 phages. However, the reference Stx2 phage selected for comparison could affect the result, since Stx2 phages carrying the same Stx2 subtype may be diverse, as we reported previously (Yang et al. Pathogens. 2021 Nov 28;10(12):1551). As part of our ongoing work, we will try to induce different Stx2 phages to get complete genomes of different Stx2 subtype phages and explore this question in detail. We hope to share these data soon.
Figure 3. Easyfig plot comparing of Stx2k-converting prophages from each prophage group with the similar Stx2 prophages. Arrows indicate gene directions. Coding sequences are represented by arrows and linked by grey bars shaded to represent the nucleotide identity, as indicated in the legend. Red arrows indicate Shiga toxin. The color of the text indicates the Stx subtype of strains, red represents Stx2k-STEaC strains in this study and blue represents Stx2e-STEaC strains, green is Stx2d and yellow is Stx2a. The GenBank accession numbers are listed in bracket.

Line 135. It is unclear how stx2 phages were clustered. Please show the results if possible.

The clustering of Stx2k prophage genomes was calculated using the VIRIDIC (Virus Intergenomic Distance Calculator). Briefly, the clustering was based on genomic similarity of prophages. First, each prophage was aligned against all other genomes in the dataset, using BLASTN 2.9.0+ with the core parameters “-evalue 1 -max_target_seqs 10,000 -num_threads 6”, the default alignment parameters were “-word_size 7 -reward 2 -penalty -3 -gapopen 5 -gapextend 2”. Second, the BLASTN output was used to calculate pairwise intergenomic similarities. Third, VIRIDIC performed a hierarchical clustering of the intergenomic similarity values by using the fastcluster v. 1.1.25 R package (https://cran.r-project.org/web/packages/fastcluster/index.html). Fourth, VIRIDIC clustered and graphically represented the intergenomic similarity values as a heatmap visualization (see Figure 4a), using the ComplexHeatmap v.
2.5.3 R package. Since prophages extracted from draft genomes were incomplete, character of prophage structure (e.g., downstream or upstream gene) should also be considered when analyzing similarity among Stx2k prophages. Stx2k-converting prophages clusters sharing identical downstream or upstream gene were recognized as the same group (Figure 4b). We modified the method and result in line 417 and 155, and Figure S1.

Figure 4. (a). VIRIDIC heatmap incorporating intergenomic similarity values (right half) and alignment indicators (left half and top annotation) of Stx2k-converting prophages. Colored rectangle indicates hierarchical clusters. (b). Heatmap of pairwise intergenomic distances of 187 Stx2k-converting prophages assigned as different phage groups. The comparison, clustering and intergenomic similarity values between pairs of prophage genomes were performed using VIRIDIC. Online tool ChiPlot (https://www.chiplot.online/#Phylogenetic-Tree) was used to visualize and annotate the heatmap. The colored bar represents Stx2k prophage groups.

Line 169. What are the criteria for clusters?
Based on the whole genome phylogenetic tree, six phylogenetic clusters were designed for further comparison. The purpose is to understand the genetic difference of strains with similar genetic background but from different sources or geographical locations. We modified this in line 194.

Line 178. It is difficult to say isolates in Fig S3d are clustered. There are thousands of SNPs.
We understand the reviewer’s concern. As mentioned above, the clusters were defined more from a phylogenetic point of view, when isolates 1) were phylogenetically grouped based on whole genome phylogeny; and 2) were isolated from different sources or geographical locations, the purpose was to compare the genetic difference of the isolates with similar genetic background but from different sources or locations. Strains within cluster 5 were indeed more diversely distributed compared to other clusters, if we have used a stricter cut-off value based on sequences similarity (e.g., SNP difference), cluster 5 could be divided into different sub-clusters as the reviewer mention, however, this is not our ambition, we have clarified this in the manuscript (line 205).

Line 192. Can stx2k gene amplified by previous primers for stx2.
Yes, stx2k gene can be amplified by our previous primers for stx2. We also have mentioned in our previous study (Yang, Bai et al.2020) “stx2k subtype is covered by the screening PCR recommended by the EU reference lab for stx2 detection (http://old.iss.it/vtec/index.php?lang=2&tipo=3) with one mismatch in the forward primer (Supplementary Fig. S2)”.

Line 237. The results suggest that horizontal gene transfer.
We have corrected it.

Line 269. It is not mentioned in the Results section.
We mentioned it in the result under subtitle Phylogenetic analysis: Different Stx2k prophage groups were observed within the same phylogenetic cluster (line 208-209).

Line 288. How many farms were included in this study? Were multiple isolates used in this study? If so, please include farm ID in Table S1.
We collected 2,896 samples in Lanling county from 2017 to 2021. For 2164 samples collected from 2019 to 2021, we collected detailed information including the family-scale farms (n=121), the sampling numbers
ranged from 1 to 122 (average 18) in each farm. STEC strains were isolated from samples collected from 73 farms, and 138 Stx2k- STEC strains described in this study were detected from 32 farms. The average number of isolates from one farm was ~ 4 in three years (2019-2021).

Samples obtained in 2017 and 2018 (n=732) were collected by local center for disease control and prevention (CDC), the corresponding farms for these samples were missing unfortunately. We have added the farm ID for 138 isolates from 2019 to 2021 in Table S1 as suggested.

Line 294. I suppose the original reference for stx-PCR is Bai et al. (2013, PLOS ONE, doi.org/10.1371/journal.pone.0065537). However, it is not mentioned which primers were used. The primer selection is important for this study and thus they should be mentioned clearly.

Thanks for the reviewer’s suggestion. We added this as reference 42.

Line 307. Probably 250 bp would be correct.

Thanks for the reviewer’s careful checking. The whole genome was paired-end (2 × 150 bp) sequenced using Illumina NovaSeq, 350 bp was the fragmented size of DNA sample, we apologize for this mistake and corrected this.

Line 311. What was the criteria for PacBio sequencing? It would be helpful to show PacBio-sequenced isolates in Fig. 3.

The selection for PacBio sequencing is based on sampling sites and molecular traits of strains, as well as the budget for sequencing each year. Due to the high cost of PacBio sequencing, a small number of strains representative of different farms and molecular traits (e.g., serotype, MLST type) were subjected to PacBio sequencing to get closed genomes. We have indicated those PacBio-sequenced isolates in Figure 3 as suggested.

Line 353. Were insertion sites detected by draft genomes?

Insertion sites were detected in 12 complete genomes and 42 draft genomes in this study (Table S1). Among draft genomes, insertion sites were defined only when they were located at the same contig with stx2k.

Line 334. Were novel O-types that DebRoy et al. (PLoS One 2016 Vol. 11 Issue 1 Pages e0147434) proposed included?
Yes, our in-house serotyping database included the novel *E. coli* OX serogroups as reviewer mentioned. Besides, our database includes a set of sequences that were recently defined O-types. Given that there were a large number of novel O-types, those undetected in this study were not mentioned in the method to avoid any confusion.

Is it possible to measure the amount of Stx2k by commercial kits?

We have detected the Stx2k production using commercial Duopath® STEC Rapid Test purchased from Germany in our publication where Stx2 was proposed (Yang, Bai et al.2020). Stx2k from most trains were measurable using Vero cell cytotoxicity assay (VCA) and commercial lateral flow immunoassay like Duopath® STEC Rapid Test, though the toxin production level varies significantly among different strains. Due to COVID-19 pandemic, it is presently difficult to purchase commercial kits abroad. We are planning functional study on Stx2k and will measure the amount of Stx2k by commercial kits and other *in vitro* assay in our future studies. We added a statement in discussion (line 303-306).

Again, we sincerely thank all the reviewers for their constructive suggestions. We hope that these modifications will render our paper acceptable for publication in Microbiology Spectrum.

Yours sincerely,

Dr. Yanwen Xiong

State Key Laboratory of Infectious Disease Prevention and Control,

National Institute for Communicable Disease Control and Prevention, China CDC.
July 18, 2022

Prof. Yanwen Xiong
State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, China CDC
P.O. Box 5, Changping
Beijing 102206
China

Re: Spectrum01571-22R1 (High prevalence and persistence of Escherichia coli strains producing Shiga toxin 2k subtype in goat herds)

Dear Prof. Yanwen Xiong:

Your manuscript has been accepted, and I am forwarding it to the ASM Journals Department for publication. You will be notified when your proofs are ready to be viewed.

The ASM Journals program strives for constant improvement in our submission and publication process. Please tell us how we can improve your experience by taking this quick Author Survey.

As an open-access publication, Spectrum receives no financial support from paid subscriptions and depends on authors’ prompt payment of publication fees as soon as their articles are accepted. You will be contacted separately about payment when the proofs are issued; please follow the instructions in that e-mail. Arrangements for payment must be made before your article is published. For a complete list of Publication Fees, including supplemental material costs, please visit our website.

ASM policy requires that data be available to the public upon online posting of the article, so please verify all links to sequence records, if present, and make sure that each number retrieves the full record of the data. If a new accession number is not linked or a link is broken, provide production staff with the correct URL for the record. If the accession numbers for new data are not publicly accessible before the expected online posting of the article, publication of your article may be delayed; please contact the ASM production staff immediately with the expected release date.

Corresponding authors may join or renew ASM membership to obtain discounts on publication fees. Need to upgrade your membership level? Please contact Customer Service at Service@asmusa.org.

Thank you for submitting your paper to Spectrum.

Sincerely,

Sadjia Bekal
Editor, Microbiology Spectrum

Journals Department
American Society for Microbiology
1752 N St., NW
Washington, DC 20036
E-mail: spectrum@asmusa.org

Supplemental file 1: Accept
Supplemental file 2: Accept