COUNTING THE NUMBER OF SUBGROUPS AND NORMAL SUBGROUPS OF THE GROUP U_{2np}, p IS AN ODD PRIME

Haider Baqer Shelash

© 2019 by University of Niš, Serbia | Creative Commons Licence: CC BY-NC-ND

Abstract. The aim of this paper is to compute the number of subgroups and normal subgroups of the group $U_{2np} = \langle a, b \mid a^{2n} = b^p = e, aba^{-1} = b^{-1} \rangle$, where p is an odd prime. Suppose $n = 2^r \prod_{1 \leq i \leq s} p_i^{\alpha_i}$ in which p_i’s are distinct odd primes, α_i’s are positive integers and $t = \prod_{1 \leq i \leq s} p_i^{\alpha_i}$. It is proved that the number of subgroups is $2\tau(2n) + (p - 1) \left(\tau(\frac{n}{p}) + \tau(\frac{t}{p}) \right)$, when $p \mid n$ and $2\tau(2n) + (p - 1) \lfloor \tau(t) \rfloor$, otherwise. It will be also proved that this group has $\tau(2n) + \tau(n)$ normal subgroups.

Keywords. group; subgroup; dihedral group; finite group.

1. Introduction

Cavior [1] proved that the number of subgroups of a dihedral group of order $2n$ can be computed by $\tau(n) + \sigma(n)$. After publishing this work Calhoun [2] computed the number of subgroups in certain finite groups. For more information on this problem, we encourage the readers to consult the interesting book of Tărnăuceanu [6].

Following Darafsheh and Yaghoobian [3], we define:

$$U_{2nm} = \langle a, b \mid a^{2n} = b^m = e, aba^{-1} = b^{-1} \rangle.$$

This group has order $2nm$ and can be written as the semi-direct product of two cyclic groups that one of them is of order m and another one has order $2n$. Set $n = 2^r \prod_{1 \leq i \leq s} p_i^{\alpha_i}$, where p_i’s are distinct odd prime numbers and α_i’s are positive integers. Shelash [4], introduced an algorithm for computing all subgroups and normal subgroups of a finite group. Shelash and Ashrafi [5] applied this algorithm to compute the number of minimal and maximal subgroups of certain finite groups.

Received May 18, 2019; accepted September 29, 2019

2010 Mathematics Subject Classification. Primary 20F12, 20F14; Secondary 20F18, 20D15.

755
Lemma 2.1, one can see that

For example if $|\Phi = 1 2 4 \leq 2^4 1 2 4 | 1 2 4 c_i |

Proof. By presentation of the group U_{2n_p} we assumed that $c_0 < c_1 < \cdots < c_{\alpha -1}$, where $\alpha = \tau(\prod_{1 \leq i \leq s} p_i^{\alpha_i})$. For example if $|G| = 60$, then the order table of G is as follows:

c_i	1	2	22
c_0	1	2	4
c_1	3	6	12
c_2	5	10	20
c_3	15	30	60

Throughout this paper our notations are standard and can be taken from the standard books on group theory. The function $\sigma(n)$ is defined as the summation of all divisors of n. Furthermore, the number of subgroups and normal subgroups of a group G are denoted by $Sub(G)$ and $NSub(G)$, respectively. Our calculations are done with the aid of GAP [7].

2. Main Results

The group $U_{2n_p} = \langle a, b \mid a^{2n} = b^p = e \mid aba^{-1} = b^{-1} \rangle$ is a finite group of order $2n_p$, where p is an odd prime. Suppose $n = 2^r \prod_{1 \leq i \leq s} p_i^{\alpha_i}$ in which p_i's are distinct odd primes and α_i's are positive integers. For simplicity of our argument, we assume that $t = \prod_{1 \leq i \leq s} p_i^{\alpha_i}$. If $p = p_k | n$ then the order of U_{2n_p} is equal to $2^{r+1} p_{k}^{\alpha_k+1} \cdots p_s^{\alpha_s}$, otherwise it is $2^{r+1} p \prod_{1 \leq i \leq s} p_i^{\alpha_i}$.

Lemma 2.1. The following hold:

1. If q is even then $a^q b^w = b^w a^q$;
2. If q is odd then $a^q b^w = b^{-w} a^q$.

Proof. By presentation of the group U_{2n_p}, we have $aba^{-1} = b^{-1}$ and so if q is even then $a^q b = ba^q$. Furthermore, if q is odd then $a^q b = b^{-1} a^q$. Choose positive integer w. Then $a^q b^w = ba^q b^{w-1}$. If q is even number, thus $a^q b^w = b^w a^q$. If q is odd number then $a^q b^w = b^{-1} a^q b^{w-1}$, then $a^q b^w = b^{-w} a^q$. \hfill \Box

Proposition 2.1. Let $n = 2^r t$, $t = \prod_{1 \leq i \leq s} p_i^{\alpha_i}$ and $m = p$ be an odd prime number. Then the structure description of the group U_{2n_p} is $C_t \times (C_p : C_{2^r+1})$.

Proof. Suppose $\Phi = \langle a^{2^{r+1}} \rangle$, $\Psi = \langle b \rangle$ and $\Omega = \langle a^t \rangle$ are subgroups of U_{2n_p}. By Lemma 2.1, one can see that $g \Phi g^{-1} = g \langle a^{2^{r+1}} \rangle g^{-1} = \langle a^{2^{r+1}} \rangle = \Phi$, for all $g \in U_{2n_p}$.

Number of Subgroups and Normal Subgroups of the Group U_{2np}, p is an Odd Prime

Thus $\Phi \leq U_{2np}$. Define $(\Psi : \Omega) = \langle b, a^i \rangle$. If i is odd then,
\[
 a^i b^j (\Psi : \Omega) b^{-j} a^{-i} = a^i b^j (\langle b, a^i \rangle b^{-j} a^{-i} = \langle a^i b^j b^{-j} a^{-i}, a^i b^j a^i b^{-j} a^{-i} \rangle = \langle b, a^i b^j a^i b^{-j} a^{-i} \rangle = \langle b, a^i b^j \rangle = (\Psi : \Omega),
\]
and if i is an even number,
\[
 a^i b^j (\Psi : \Omega) b^{-j} a^{-i} = a^i b^j (\langle b, a^i \rangle b^{-j} a^{-i} = \langle a^i b^j b^{-j} a^{-i}, a^i b^j a^i b^{-j} a^{-i} \rangle = \langle b, a^i b^j a^i b^{-j} a^{-i} \rangle = \langle b, a^i b^j \rangle = (\Psi : \Omega).
\]

Hence $(\Psi : \Omega)$ is a normal subgroup of U_{2np}. On the other hand,
\[
 \langle a^{2^{r+1}} \rangle \cap \langle b, a^i \rangle = e
\]
and
\[
 \frac{|\langle a^{2^{r+1}} \rangle \times |\langle b, a^i \rangle|}{|\langle a^{2^{r+1}} \rangle \cap \langle b, a^i \rangle|} = 2np,
\]
which completes our argument.

Lemma 2.2. The group U_{2np} has the following types of subgroup:

1. The cyclic subgroups $\langle a^i \rangle$ of order $\frac{2np}{i}$, where $i \mid 2n$;
2. The subgroups $\langle a^i, b \rangle$ of order $\frac{2np}{i}$, where $i \mid 2n$;
3. The cyclic subgroups $\langle a^i b^j \rangle$, where $i \mid 2n$, $2p^k \nmid i$ and $j = 1, \ldots, p - 1$.

Proof. Set $H = \langle a^i \rangle$ and $K = \langle b \rangle$, $i \mid 2n$. By presentation of U_{2np}, K is normal and so $HK = \langle a^i, b \rangle$ has order $\frac{2np}{i}$. The result now follows from Lemma 2.1.

Proposition 2.2. Let $n = 2^r \prod_{1 \leq i \leq s, p_i}$ be a positive integer and p be an odd prime number. The following hold:

1. There is at most one subgroup of order k such that $2 \mid k, 2^{r+1} \nmid k$ and $p \nmid k$;
2. If $p \mid n$, then there exists one subgroup of order k such that $p^{\alpha_i+1} \mid k$;
3. There exists p subgroups of order k when $p \nmid k$ and $2^{r+1} \mid k$;
4. There exists $\sigma(p)$ subgroups of order k when $p \mid k$ and $p^{\alpha_i+1} \nmid k$.

Proof. Our main proof will consider the following parts:

1. Suppose $p \nmid 2^h v$, $1 \leq h \leq r$, and $v \mid n$. Then $\langle a^{\frac{2^{r+1} - h}{v}} \rangle$ is a cyclic group of order $2^h v$ and the order of subgroups $\langle a^{\frac{2^{r+1} - h}{v}} b \rangle$ and $\langle a^{\frac{2^{r+1} - h}{v}} \rangle$ are not $2^h v$. We now apply Lemma 2.2 to get the result.
2. Suppose $2^{r+1} \mid k$. Since $\frac{k}{2}$ is an odd number, by Lemma 2.1 $\langle a^\frac{k}{2} b^i \rangle$ are cyclic subgroups of order $2^{r+1}v$, $1 \leq j \leq p$.

3. Consider the subgroups $\langle a^{\frac{k}{2}p} \rangle$ and $\langle a^{\frac{k}{2}p}, b \rangle$, where $1 \leq h \leq r + 1$. Since there are $p - 1$ subgroups of type $\langle a^{\frac{k}{2}p} b^j \rangle$, $1 \leq j \leq p - 1$, the number of all subgroups of order k is equal to $\sigma(p)$.

Hence the result. □

Theorem 2.1. Let p be an odd prime and $n = 2^r \prod_{1 \leq i \leq s} p_i^{\alpha_i}$, where p_i's are distinct odd primes, α_i's are positive integers and $t = \prod_{1 \leq i \leq s} p_i^{\sigma_i}$. Then the number of all subgroups of the group U_{2np} is given by the following:

1. If $p \mid n$ then $\text{Sub}(U_{2np}) = 2\tau(2n) + (p - 1) \left[\tau\left(\frac{2n}{p}\right) + \tau\left(\frac{2n}{p^2}\right) \right]$.

2. If $p \nmid n$ then $\text{Sub}(U_{2np}) = 2\tau(2n) + (p - 1) \lfloor \tau(t) \rfloor$.

Proof. By presentation of the group U_{2np}, it has $\tau(2n)$ subgroups contained in $\langle a \rangle$. Since $\langle b \rangle$ is a normal subgroup, the group U_{2np} has $\tau(2n)$ subgroups of the form $H \langle b \rangle$ such that H is a subgroup of $\langle a \rangle$. We now assume that $p \mid n$. By Lemma 2.2, it is enough to count the number of subgroups in the form $\langle a^ib^j \rangle$, where $i \mid 2n$, $2p^\alpha \nmid i$ and $1 \leq j \leq p - 1$. Note that $2n$ has exactly $\tau\left(\frac{2n}{p}\right) = \tau\left(\frac{2n}{p^2}\right)$ odd divisors and the number of all divisors of $2n$ such that $2p \mid i$ and $2p^\alpha \nmid i$ is equal to $\tau\left(\frac{2n}{p}\right) = \tau\left(\frac{2n}{p^2}\right)$. So the group U_{2np} has exactly $(p - 1)\left[\tau\left(\frac{2n}{p}\right) + \tau\left(\frac{2n}{p^2}\right) \right]$ subgroups, when $p \mid n$. If $p \nmid n$, then the number of subgroups of type $\langle a^ib^j \rangle$ is equal to $(p - 1)\tau\left(\frac{2n}{p}\right) = (p - 1)\tau(t)$. □

We are now ready to count the number of normal subgroups of the group U_{2np}.

Lemma 2.3. The normal subgroup of the group U_{2np} has one of the following forms:

1. All cyclic subgroups $\langle a^i \rangle$ such that $2 \mid i \mid 2n$;

2. All subgroups $\langle a^i, b \rangle$, when $i \mid 2n$.

Proof. The first part follows from Lemma 2.1. We apply the presentation of U_{2np} to prove that $\langle a^k, b \rangle$ is normal, when $k \mid 2n$. Choose the element a^ib^j in U_{2np}. Then we have four cases for the subgroup $a^ib^j \langle a^k, b \rangle$ as follows:

1. k and i are even numbers. In this case $\langle a^ib^ja^{-i}, a^ib^jb^{-j}a^{-i} \rangle = \langle a^k, b \rangle$, as desired.

2. k is even and i is odd. Then, $\langle a^ib^ja^{-i}, a^ib^jb^{-j}a^{-i} \rangle = \langle a^k, b \rangle$ which proves our claim.
Number of Subgroups and Normal Subgroups of the Group U_{2np}, p is an Odd Prime

3. k and i are odd numbers. This shows that $\langle a^ib^j a^kb^{-j} a^{-i}, a^ib^j b^{-j} a^{-i} \rangle = \langle a^k b^2, b \rangle = \langle a^k, b \rangle$.

4. k is even and i is odd. In this case, $\langle a^ib^j a^kb^{-j} a^{-i}, a^ib^j b^{-j} a^{-i} \rangle = \langle a^k b^{-2j}, b \rangle = \langle a^k, b \rangle$.

Note that a^k and a^kb^j has the same order, when k is odd number. □

Choose $a^i \in U_{2np}$, where i is an odd number. Then $a^i \langle a^ib^j \rangle a^{-i} = \langle a^ib^j a^{-i} \rangle = \langle a^ib^{-j} \rangle$. Since $\langle a^ib^{-j} \rangle \neq \langle a^ib^j \rangle$, all subgroups $\langle a^ib^j \rangle$, $1 \leq j \leq p$ and $i | 2n$, are not normal in U_{2np}.

Theorem 2.2. The number of normal subgroups in the group U_{2np} is given by $NSub(U_{2np}) = \tau(2n) + \tau(n)$.

Proof. Let p be an odd prime and $n = 2^r \prod_{1 \leq i \leq s} p_i^{\alpha_i}$, where p_i's are distinct odd primes, α_i's are positive integers and $t = \prod_{1 \leq i \leq s} p_i^{\alpha_i}$. To prove the theorem, we apply Lemma 2.3. We now that each subgroup of type $\langle a^i \rangle$, i is even, is normal. Since

$$\begin{align*}
\tau(2^{r+1}t) - \tau(t) &= \\
\tau(2^{r+1} p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_s^{\alpha_s}) - \tau(p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_s^{\alpha_s}) &= (r+2)\tau(p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_s^{\alpha_s}) - \tau(p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_s^{\alpha_s}) \\
&= (r+1)\tau(p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_s^{\alpha_s}) \\
&= \tau(2^{r+1} p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_s^{\alpha_s}) \\
&= \tau(n),
\end{align*}$$

$\tau(2^{r+1}t)$ is the number all divisors of $2n$ and $\tau(t)$ is the number of odd divisors of $2n$, $\tau(2^{r+1}t) - \tau(t) = \tau(2^n) = \tau(n)$ is the number of even divisors of $2n$. On the other hand, the number of all normal subgroups of type $\langle a^i, b \rangle$, $i | 2n$, is equal to $\tau(2^n)$. Therefore, $NSub(U_{2np}) = \tau(2n) + \tau(n)$. □

Acknowledgement. I am very pleased from the referee for his/her suggestions and helpful remarks.

References

1. W. C. Calhoun: Counting the subgroups of some finite groups. Amer. Math. Monthly 94 (1) (1987) 54–59
2. S. R. Cavitor: The subgroups of the dihedral groups. Math. Mag. 48 (1975) 107.
3. M. R. Darafsheh and M. Yaghoobian: Tetravalent normal edge-transitive Cayley graphs on a certain group of order 6n. Turkish J. Math. 41 (5) (2017) 1354–1359.
4. H. B. Shelash: Counting the Number of Subgroups, Normal Subgroups and Characteristic Subgroups in Certain Finite Groups. Ph. D. thesis, University of Kashan, 2018.
5. H. B. Shelash and A. R. Ashrafi: Computing maximal and minimal subgroups with respect to a given property in certain finite groups. Quasigroups Related Systems 27 (1) (2019) 133–146.
6. M. Tărnăuceanu: *Contributions to the Study of Subgroup Lattices*, Matrix Rom, Bucharest, 2016.

7. The GAP Team, GAP, Groups, Algorithms and Programming, Lehrstuhl für Mathematik, RWTH, Aachen, 1995.

Haider Baqer Shelash
Faculty of Computer Sciences and Mathematics
Department of Mathematics, University of Kufa.
Najaf, Iraq
hayder.ameen@uokufa.edu.iq