EXPERT CONSENSUS DOCUMENT

Periodontitis and Cardiovascular Diseases. Consensus Report

M. Sanz1, A. Marco del Castillo2, S. Jepsen3, J. R. Gonzalez-Juanatey4, F. D’Aiuto5, P. Bouchard6, I. Chapple7, T. Dietrich7, I. Gotsman8, F. Graziani9, D. Herrera1, B. Loos10, P. Madianos11, J. B. Michel12, P. Perel13,14, B. Pieske15,16, L. Shapira17, M. Shechter18, M. Tonetti19, C. Vlachopoulos20 and G. Wimmer21

1 Department of Dental Clinical Specialties and ETEP Research Group, Faculty of Odontology, University Complutense of Madrid, Plaza Ramon y Cajal, Madrid, ES
2 Cardiology Department, Hospital Universitario Ramon y Cajal, Madrid, ES
3 Department of Periodontology, Operative and Preventive Dentistry, University of Bonn, Bonn, DE
4 Cardiology Department, University Hospital, University of Santiago de Compostela, IDIS, CIBERCV, ES
5 Department of Periodontology, Eastman Dental Institute and Hospital, University College London, London, UK
6 U.F.R. d'odontologie, Université Paris Diderot, Hôpital Rothschild AP-HP, Paris, FR
7 School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, The University of Birmingham, Birmingham, UK
8 Heart Institute, Hadassah University Hospital, Jerusalem, IL
9 Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, IT
10 ACTA University, Amsterdam, NL
11 Department of Periodontology, School of Dentistry, National and Kapodistrian University of Athens, GR
12 INSERM Unit 1148, Laboratory for translational CV science, X. Bichat hospital, Paris, FR
13 World Heart Federation, Geneva, CH
14 Centre for Global Chronic Conditions, London School of Hygiene and Tropical Medicine, UK
15 Charité Universitätsmedizin Berlin, Department of Internal Medicine and Cardiology, Berlin, DE
16 DZHK (German Center for Cardiovascular Research) Partnersite Berlin, German Heart Institute Berlin, DE
17 Department of Periodontology, Hebrew University – Hadassah Faculty of Dental Medicine, Jerusalem, IL
18 Leviev Heart Center, Chaim Sheba Medical Center, tel Hashomer and the Sackler Faculty of Medicine, Tel Aviv University, IL
19 Department of Periodontology, The University of Hong Kong, Prince Philip Dental Hospital, HK
20 Department of Cardiology, National and Kapodistrian University of Athens, GR
21 Department of Prosthetic Dentistry, School of Dental Medicine, Karl-Franzens University Graz, AT
Corresponding author: M. Sanz (marsan@ucm.es)

Background: In Europe cardiovascular disease (CVD) is responsible for 3.9 million deaths (45% of deaths), being ischaemic heart disease, stroke, hypertension (leading to heart failure) the major cause of these CVD related deaths. Periodontitis is also a chronic noncommunicable disease (NCD) with a high prevalence, being severe periodontitis, affecting 11.2% of the world’s population, the sixth most common human disease.

Material and Methods: There is now a significant body of evidence to support independent associations between severe periodontitis and several NCDs, in particular CVD. In 2012 a joint workshop was held between the European Federation of Periodontology (EFP) and the American Academy of Periodontology to review the literature relating periodontitis and systemic diseases, including CVD. In the last five years important new scientific information has emerged providing important emerging evidence to support these associations.

Results and Conclusions: The present review reports the proceedings of the workshop jointly organised by the EFP and the World Heart Federation (WHF), which has updated the existing epidemiological evidence for significant associations between periodontitis and CVD, the mechanistic links and the impact of periodontal therapy on cardiovascular and surrogate
outcomes. This review has also focused on the potential risk and complications of periodontal therapy in patients on anti thrombotic therapy and has made recommendations for dentists, physicians and for patients visiting both the dental and medical practices.

Keywords: Periodontitis; periodontal therapy; cardiovascular diseases; chronic inflammation; bacteremia; atherosclerosis; antitrombolic therapy

1. Introduction
Non-communicable diseases (NCDs) are rising in prevalence globally in line with an increasingly ageing population, refined diets and sedentary lifestyles. NCDs account for 41 million deaths each year, or 71% of all global deaths [40]. Approximately 80% of people over the age of 65 in the USA are affected by one or more NCDs, and 77% exhibit at least two NCDs, creating a significant burden of disease to individuals and to the healthcare economy [13]. The co-morbid presence of two or more NCDs presents a major challenge to the economy, equating to two thirds of all health costs in the USA [14]; however, less than 1% of health expenditure in the USA is focussed on prevention to improve overall health [129].

The greatest global NCD burden arises due to cardiovascular disease (CVD), which is responsible for 17.9 million deaths (one third of total mortality) and 45% of NCD-induced mortality [104]. In Europe, CVD is responsible for 3.9 million deaths (45% of deaths), and whilst CVD mortality rates are reducing, the absolute numbers have increased in the last 25 years due to an increasingly ageing population [135]. Ischaemic heart disease, stroke, hypertension (leading to heart failure), rheumatic heart disease, cardiomyopathy and atrial fibrillation cause over 95% of CVD-related deaths [103].

In this consensus report, the term CVD is used as a general term for atherosclerotic diseases, principally coronary heart disease, cerebrovascular disease and peripheral vascular disease. A number of chronic infectious-inflammatory-immune diseases are associated with significantly higher risks of adverse cardiovascular events, including rheumatoid arthritis, psoriasis, systemic lupus erythematosus and periodontitis [103], consistent with the thesis that chronic elevations in the systemic inflammatory burden are causally related to CVD development and its sequelae. Whilst there is evidence for over 50 gene polymorphisms playing a role in the modulation of atherogenesis [46], effect sizes are small and the major traditional risk factors for CVD remain lifestyle factors, principally tobacco smoking, dyslipidaemia, hypertension and altered glucose metabolism. The latter correlate strongly with diets high in saturated fats, salt and refined sugars and contribute to obesity and type 2 diabetes mellitus, major attributable risk factors for myocardial infarction [50]. The same risk factors account for over 90% of the stroke burden [87], yet all are modifiable through improved lifestyles, including reducing salt, saturated fat and refined carbohydrate intake, exercising, increasing intake of antioxidant micronutrients and regular moderate alcohol consumption [50].

Periodontitis is also an NCD with a high prevalence of 45–50% overall, with the most severe form affecting 11.2% of the world’s population, making it the sixth most common human disease [52]. The Global Burden of Diseases, Injuries, and Risk Factors Study (2017) of Years Lost to Disability (YLD) reported that from 1990 to 2017 oral diseases (mainly periodontitis and caries) contributed the most YLD in age-standardised prevalence rates from 354 diseases and injuries across 195 countries [39]. There is now a significant body of evidence to support independent associations between severe periodontitis and several NCDs, including diabetes [17], cardiovascular disease [128], chronic obstructive pulmonary disease [64] and chronic kidney disease (CKD) [117]. Indeed, severe periodontitis is independently and significantly associated with all-cause and cardiovascular mortality in several different populations [63, 117]. Proposed mechanisms include bacteraemia and the associated systemic inflammatory sequelae, including elevations in C-reactive protein and oxidative stress [113]. In populations with multi-morbidity, for example chronic kidney disease with co-morbid diabetes and periodontitis, periodontitis is associated with significantly reduced survival from all-cause and cardiovascular mortality [117]. It appears, therefore, that periodontitis may be a modifiable non-traditional risk factor for CVD.

In 2012 a joint workshop was held between the European Federation of Periodontology (EFP) and the American Academy of Periodontology to review the literature relating periodontitis and systemic diseases, including CVD. The consensus report was based upon four technical papers that systematically reviewed the evidence for epidemiological associations between periodontitis and incident CVD [28], mechanisms of biological plausibility relating to periodontal bacteria and systemic inflammation [101, 113] and periodontal intervention studies [23]. The workshop concluded there was consistent and strong epidemiological
evidence that periodontitis imparts increased risk for future atherosclerotic cardiovascular disease. It also concluded the impact of periodontitis on CVD was biologically plausible, via translocated circulating oral microbiota, which may directly or indirectly induce systemic inflammation that impacts upon the development of atherothrombogenesis, and whilst in vitro, pre-clinical and clinical studies supported the interaction and associated biological mechanisms, intervention trials were not sufficiently adequate to draw further conclusions at that time.

The present workshop was jointly organised by the EFP and the World Heart Federation (WHF) to include global experts in both periodontal and cardiovascular disciplines and was held in Madrid on 18 and 19 February 2019. Four technical reviews updating the evidence base from the 2012 workshop were prepared and supplemented by additional studies discussed at the workshop. The reviews focussed on epidemiological associations [45], mechanistic links [114], results from intervention studies [89] and the potential risk and complications of periodontal therapy in patients undertaking antithrombotic (antiplatelet and anticoagulant) therapy.

While this consensus report focuses predominantly on relevant evidence published since the 2012 workshop, there are biological areas that have subsequently come to prominence, and where the underpinning body of evidence was not covered in the 2013 consensus report; hence, certain pre-2012 manuscripts are referenced to ensure the context of these recent studies is clear.

Furthermore, sections 4.3: What is the effect of statin intake on clinical periodontal outcomes? and section 5: Cardiovascular risks and complications of periodontal therapeutic interventions were not dealt with in the previous workshop; hence, a full appraisal of the scientific evidence was carried out in this consensus meeting.

Finally, following the review of the presented evidence, recommendations for both medical and dental teams, as well as patients and the public, were elaborated.

2. Epidemiologic evidence on the association between periodontitis and CVD

2.1. Do people with periodontitis have a higher prevalence of subclinical cardiovascular disease?

There is evidence from epidemiological studies that periodontitis patients exhibit significant endothelial dysfunction, measured by flow mediated dilation (FMD), arterial stiffness (e.g., pulse wave velocity – PWV) and a significantly greater thickness of the carotid intima media (cIMT) and elevated arterial calcification scores. There is one imaging study (ATHEROREMO-IVUS study) associating high levels of antibodies against periodontal pathogens and a lower extent of positive atheromatous plaque remodelling [24].

2.2. Do people with periodontitis have a higher prevalence of coronary artery disease and risk of myocardial infarction and other coronary events?

There is robust evidence from epidemiological studies for a positive association between periodontitis and coronary heart disease. A systematic review [28], which was updated in preparation for this workshop, identified a total of six case-control and cohort epidemiological studies, published in the last five years, which demonstrated an increased risk of a first coronary event in patients with clinically diagnosed periodontitis or more severe periodontitis compared to patients without periodontitis or less severe periodontitis. Relative risk estimates vary between studies, depending on population characteristics and periodontitis case definitions. There are two cohort studies reporting an association between periodontitis and higher cardiovascular mortality (due to coronary heart disease and cerebrovascular disease).

2.3. Do people with periodontitis have a higher prevalence of cerebrovascular disease and risk of stroke?

There is evidence from epidemiologic studies for a positive association between periodontitis and cerebrovascular disease. A systematic review [28], which was updated in preparation for this workshop, identified a total of three case-control and cohort studies, which demonstrate an increased risk of a first cerebrovascular event in patients with clinically diagnosed periodontitis or more severe periodontitis compared to patients without periodontitis or less severe periodontitis. Relative risk estimates vary between studies, depending on population characteristics and periodontitis case definitions. Furthermore, a recent analysis of data from the Atherosclerosis Risk in Communities (ARIC) study demonstrated an association between periodontal profile class and incident ischemic stroke. In this cohort, patients with periodontitis had more than double the risk of cardioembolic and thrombotic stroke compared to periodontally healthy individuals [115]. In addition, as previously documented, there are two cohort studies reporting an association between periodontitis and higher cardiovascular mortality (due to coronary heart disease and cerebrovascular disease) [28].
2.4. Do people with periodontitis have a higher prevalence and incidence of Peripheral Artery Disease (PAD)?

There is limited but consistent evidence that individuals with periodontitis have a higher prevalence and incidence of PAD compared to individuals without periodontitis [140]. For cross-sectional data, the most significant evidence comes from two large, population-based studies in the USA (NHANES 1999–2002) and South Korea (KoGES-CAVAS). Both studies found a positive association between the extent of clinical attachment loss (NHANES 1999–2002) and severity of radiographic bone loss (KoGES-CAVAS) with PAD, defined using the Ankle Brachial Index (ABI), with adjusted odd ratios (OR) of 2.2 (95% confidence interval - CI - [1.2; 2.4]) and 2.0 (95% CI [1.1; 3.9]), respectively [2, 70]. One prospective cohort study, conducted in male veterans in the USA, reported a positive association between periodontitis (measured by severity of radiographic bone loss) and the incidence of PAD over a 25–30 year follow-up period, with an adjusted OR of 2.3 (95% CI [1.3; 3.9]) [77]. There are no studies that have evaluated the association between periodontitis and the incidence of Major Adverse Limb Events (MALE).

2.5. Do people with periodontitis have a higher risk of other CVDs or conditions (heart failure, atrial fibrillation)?

Several studies report positive associations between periodontitis and heart failure. There is evidence from a large Asian study using the Taiwanese National Health Insurance Research Database reporting a significantly higher incidence of atrial fibrillation in individuals with periodontal diseases compared to individuals without periodontal diseases (hazard ratio –HR = 1.31, 95% CI [1.25; 1.36]) [18].

2.6. Do people with a history of cardiovascular disease have a different incidence or progression of periodontitis?

There is currently limited scientific evidence that CVD is a risk factor for the onset or progression of periodontitis.

2.7. Do people with periodontitis with history of cardiovascular disease have a higher chance of experiencing a subsequent event?

From three studies investigating the association between periodontitis and secondary cardiovascular events, two large studies did not find a significant association [31, 100]; however, a small study (100 subjects) reported a significant association (HR = 2.8, 95% CI [1.2; 6.5]) with recurrent cerebro-vascular events [116].

3. Mechanisms that may explain the epidemiological associations between periodontitis and CVD

3.1. Is there evidence of a higher incidence of bacteremia following oral function/intervention in periodontitis patients compared to periodontally healthy subjects?

There is evidence that oral bacterial species can enter the circulation and cause bacteremia, which has been demonstrated following daily life activities (tooth brushing, flossing, chewing or biting an apple), although it has been studied more frequently following professional interventions (tooth polishing, scaling, tooth extraction, surgical extraction of third molars and periodontal probing).

The risk of bacteremia has been associated with periodontal health status in a systematic review, suggesting a higher risk of bacteremia associated with gingival inflammation [127]. A recent randomized clinical trial (RCT) concluded that periodontal therapy (by means of scaling and root planing, SRP) induced bacteremia in both gingivitis and periodontitis patients, but the magnitude and frequency were greater among periodontitis patients [5].

Whilst there are methodological limitations in some of the reported studies, the overall picture supports the contention that bacteremia results from daily life activities and oral interventions, and it is more frequent, of longer duration and involves more virulent bacteria in periodontitis patients.

3.2. Is there evidence for the presence of oral bacteria in atheroma lesions?

There is evidence through traces of DNA, RNA or antigens derived from oral bacterial species, mainly periodontal pathogens, that have been identified in atherothrombotic tissues. Studies have attempted to correlate the presence of these bacteria in atherothrombotic tissues with other sample sources (subgingival plaque, serum, etc.) in the same patients, and these suggest that in periodontitis patients there
3.3. Do we have evidence that periodontal bacteria and/or bacterial products and virulence factors influence the pathophysiology of atherosclerosis?

Different animal models have been employed to provide evidence that periodontal pathogens can promote atheroma formation. P. gingivalis has been shown to accelerate atherosclerosis in murine models, to induce fatty streaks in the aorta of rabbits and to induce aortic and coronary lesions after bacteremia in normocholesterolaemic pigs (Schenkein & Loos. 2003).

Recently, further evidence has emerged using hyperlipidemic ApoEnull mice after infection with P. gingivalis and also with a polymicrobial experimental infection (P. gingivalis, Treponema denticola, Tannerella forsythia and Fusobacterium nucleatum). A polymicrobial infection was shown to induce aortic toll-like receptor (TLR) and inflammasome signaling, with an enhanced oxidative stress reaction generated within the aortic endothelial cells [20, 131, 132].

There is also in vitro evidence of intracellular entry by periodontal pathogens (P. gingivalis, A. actinomycetemcomitans, etc.) [101]. In vivo and in vitro studies demonstrate the importance of the fimbriae of P. gingivalis to host cell entry and to promote atherothrombotic lesions in experimental models [138]. In vitro experiments have shown certain bacterial strains expressing P. gingivalis hemagglutinin A (HagA) have an increased capability to adhere and enter human coronary artery endothelial cells (HCAEC) [7].

3.4. Do we have evidence that periodontitis patients exhibit increased production and/or levels of inflammatory mediators also associated with the pathophysiology of atherosclerosis?

There is evidence of significantly higher levels of C-reactive protein (CRP) in periodontitis patients versus healthy controls and in CVD and periodontitis patients compared with either condition alone. The effect of periodontal therapy has been shown to associate with a significant decrease in CRP levels, along with improvements in surrogate measurements of cardiovascular health [27, 55, 93].

There is evidence of elevated levels of serum interleukin (IL)-6 in periodontitis patients and lower levels of IL-4 and IL-18. The effect of periodontal therapy has shown a significant decrease in the serum levels of IL-6, serum amyloid A and alpha 1 anti-chymotripsin. Peripheral neutrophils from periodontitis patients release excess IL-1β, IL-8, IL-6 and tumour necrosis factor (TNF)-α when stimulated by periodontal pathogens. Periodontal therapy only partially reduces the cytokine hyperreactivity with some evidence of a constitutively elevated response [66].

3.5. Do we have evidence that periodontitis patients develop elevations in thrombotic factors that are also associated with the pathophysiology of atherothrombosis?

There is evidence of significantly higher levels of fibrinogen in periodontitis patients versus healthy controls and in CVD and periodontitis patients compared with either condition alone [15]. Periodontal therapy appears to result in a significant decrease in fibrinogen levels [69, 133].

There is evidence from different studies of significantly higher levels of platelet activation markers in periodontitis patients and that these higher levels may be reversed by periodontal therapy [4]. However, there is conflicting evidence that significantly higher levels of plasminogen activator inhibitor (PAI) are found in periodontitis patients (Schenkein & Loos. 2003).

3.6. Do we have evidence that periodontitis patients demonstrate elevated serum antibody levels that cross-react with antigens in cardiovascular tissues?

There is evidence that Heat Shock Proteins (HSP) from periodontal pathogens (Porphyromona gingivalis, Tannerella forsythia, Aggregatibacter actinomycetemcomitans and Fusobacterium nucleatum) generate antibodies that can cross-react with human HSPs. These antibodies have been shown to activate cytokine production, as well as monocyte and endothelial cell activation.

Presence of anti-cardiolipin antibodies have been significantly associated in periodontitis patients, which reversed following periodontal therapy. There is some evidence that periodontal pathogens can elicit antibodies that cross-react with cardiolipin (Schenkein & Loos. 2003).
In three out of four population-based studies (Parogene study, NHANES III, DANHES), higher levels of serum immunoglobulin (Ig)G against *P. gingivalis* were associated with periodontitis patients and cardiovascular disease (acute coronary syndrome, death from cardiovascular disease and cardiovascular disease). The Atherosco-IVUS study failed to demonstrate an association between serum levels of IgG and IgA against *P. gingivalis, A. actinomycetemcomitans, T. forsythia* and *P. intermedia* and major adverse cardiac events (MACE) [24]. This is consistent with data from Boillot et al. [11].

3.7. **Do we have evidence that periodontitis patients exhibit dyslipidemia?**

There is evidence from systematic reviews that serum total cholesterol levels, low-density lipoproteins (LDL), triglycerides, very low-density lipoproteins (VLDL), oxidized LDL and phospholipase A2 are elevated in periodontitis. High-density lipoprotein (HDL) levels are reduced in periodontitis patients compared with controls (Schenkein & Loos. 2003). These levels are reversed after periodontal therapy [125].

3.8. **Do we have evidence for peripheral blood neutrophil hyperresponsiveness in reactive oxygen species and protease production in periodontitis patients?**

There is strong mechanistic evidence that peripheral blood neutrophils (PBNs) from periodontitis patients produce higher levels of total and extracellular reactive oxygen species (ROS) than healthy controls, under various conditions of priming and stimulation and from unstimulated cells [66, 74]. This hyper-reactivity to stimulation by periodontal bacteria is reduced following successful periodontal therapy to control patient levels, but the unstimulated hyperactivity remains, suggesting constitutive and reactive mechanisms underlie neutrophil hyper-responsiveness in periodontitis [75]. Gene expression data in PBNs supports the functional data [136]. Serum antioxidant levels and those in gingival crevicular fluid (GCF) are reduced in periodontitis patients, reflecting increased ROS activity [16]. This data is supported by a study of endarterectomy samples, which demonstrated evidence for activation of the ROS-generating systems in neutrophils, specifically the presence of myeloperoxidase (MPO), cell-free DNA and DNA-MPO complexes [99].

3.9. **Are there common genetic risk factors between periodontitis and CVDs?**

There is scientific evidence of pleiotropy between periodontitis and cardiovascular diseases [1, 83, 111, 112]. The highly pleiotropic genetic locus *CDKN2B-AS1* (chromosome 9, p21.3) associated with coronary artery disease, type 2 diabetes, ischemic stroke and Alzheimer’s disease is also consistently associated with periodontitis [1, 33, 68, 83]. Its function appears to be related to the regulation of gene expression [48]. Interestingly, a pilot study identified that a genetic variant in the *CDKN2B-AS1* locus was associated with the extent of elevated levels of C-reactive protein in periodontitis [124].

A conserved non-coding element within *CAMTA1* upstream of *VAMP3*, also first identified as a genetic susceptibility locus for coronary artery disease, was found to be associated with periodontitis [111]. A GWAS suggested the *VAMP3* locus was associated with a higher probability of subgingival overgrowth of periodontal pathogens [29].

There is evidence for plasminogen (PLG) as a shared genetic risk factor for coronary artery disease and periodontitis [111].

The fourth pleiotropic locus between coronary artery disease and periodontitis is a haplotype block at the *VAMP8* locus [83].

These shared genetic factors suggest a mechanistic link or immunological commonalities between coronary artery disease and periodontitis. The impairment of the regulatory pathways by genetic factors may be a common pathogenic denominator of at least coronary artery disease and periodontitis. There are indications that aberrant inflammatory reactivity, determined by genetic variants in the loci *CDKN2B-AS1 (ANRIL), PLG, CAMTA1/VAMP3* and *VAMP8* could partially explain the epidemiological link between periodontitis and cardiovascular diseases.

4. Evidence from intervention studies

4.1. **Is there an effect of periodontitis treatment in preventing or delaying ACVD events?**

4.1.1. **Primary Prevention**

There have been no prospective randomized controlled periodontal intervention studies on primary prevention of cardiovascular diseases (including first ischemic events or cardiovascular death) since the last consensus report [128]. The Group questioned the feasibility of performing adequately powered RCTs in primary prevention at a population level due to important ethical, methodological and financial considerations.
However, consistent observational evidence suggests several oral health interventions, including self-performed oral hygiene habits (toothbrushing) (two studies: [25, 91]), dental prophylaxis (one study: [60]), increased self-reported dental visits (one study: [115]) and periodontal treatment (three studies: [47, 60, 91]) produced a reduction in the incidence of ACVD events.

Cross-sectional data of the Scottish Health Surveys from 1995 to 2003 pertaining to 11,869 men and women (mean age of 50 years) was linked to a database of hospital admissions and deaths with follow-up until December 2007 (Information Services Division, Edinburgh) [25]. Participants who brushed less than once a day exhibited the highest incidence of ACVD events (HR = 1.7, 95% CI [1.3; 2.3]) compared with those who brushed twice a day, indicating that self-performed oral hygiene routines may reduce the incidence of ACVD.

A retrospective nationwide, population-based study in Taiwan, including 511,630 participants with periodontitis and 208,713 controls, used the Longitudinal Health Insurance Database 2000 to estimate the incidence rate of ACVD events from 2000 to 2015 [60]. The hazard ratio for acute myocardial infarction was reduced more in the group of periodontitis patients who received dental prophylaxis (HR = 0.90, 95% CI [0.86; 0.95]) than intensive treatment (including gingival curettage, scaling and root planing, and/or periodontal flap operation and/or tooth extraction) (HR = 1.09, 95% CI [1.03; 1.15]). Consistent reductions in the incidence rate of Ischemic Stroke were observed in both the dental prophylaxis (HR = 0.78, 95% CI [0.75; 0.91]) and intensive treatment groups (HR = 0.95, 95% CI [0.91; 0.99]).

A cohort of 8,999 patients with periodontitis who received a complete (non-surgical and if needed surgical) periodontal treatment protocol were followed between 1979 and 2012 [47]. During the study follow-up, poor responders to the periodontal treatment had an increased incidence of ACVD events (incidence rate –IR = 1.28, 95% CI [1.07; 1.53]) compared with good responders, suggesting successful periodontal treatment could reduce the incidence of ACVD events.

In the Atherosclerosis Risk in Communities (ARIC) study, including 6,736 participants followed during 15 years, self-reported regular dental care users had a lower risk for ischemic stroke (HR = 0.77, 95% CI [0.63; 0.94]) compared to episodic care users [115].

A prospective population-based study using data from the National Health Insurance System-National Health Screening Cohort (NHISHEALS), including 247,696 participants free from any CVD history recruited between 2002 and 2003, reported an increased number of dental caries lesions, the presence of periodontitis and a greater loss of teeth were all associated with an increased risk of future major cardiovascular events (MACES), including cardiovascular death, acute myocardial infarction, heart failure and stroke [91]. One additional toothbrushing episode per day was associated with a reduced incidence of ACVD events (HR = 0.91, 95% CI [0.89, 0.93]), and regular professional cleaning reduced the risk even further (HR = 0.86, 95% CI [0.82; 0.90]).

In summary, progression of ACVD may be influenced by successful periodontal treatment independent of traditional CVD risk factor management.

4.1.2. Secondary Prevention

There is only one pilot multi-centre study on secondary prevention of ACVD events (PAVE: [21, 88]), which reported no statistically significant difference in the rate of CVD events between patients who underwent treatment of periodontitis versus community care (risk ratio –RR = 0.72, 95% CI [0.23; 2.22]). Several methodological limitations highlighted in the trial limit the applicability/usefulness of such evidence to inform the research and healthcare communities.

Thus, there is insufficient evidence to support or refute the potential benefit of the treatment of periodontitis in preventing or delaying ACVD events [61].

4.2. What is the effect of the treatment of periodontitis in improving surrogate parameters of CVD?

Table 1 summarizes the evidence on the effect of periodontal therapy on surrogate markers of CVD. There is moderate evidence for reduction of low-grade inflammation as assessed by serum levels of CRP, IL-6 and improvements in surrogate measures of endothelial function (flow-mediated dilatation of the brachial artery).

Moderate evidence suggests periodontal treatment does not have an effect on lipid fractions, whilst there is limited evidence suggesting periodontal treatment reduces arterial blood pressure and stiffness, subclinical ACVD (as assessed by mean carotid Intima-Media-Thickness), and there is insufficient evidence of an effect on ACVD biomarkers of coagulation, endothelial cell activation and oxidative stress.
4.3. What is the effect of statin intake on clinical periodontal outcomes?

Statins are medications prescribed to decrease LDL cholesterol. Numerous trials have demonstrated their benefit for the prevention of cardiovascular diseases [141]. Interestingly, statins possess various additional properties relevant to the pathogenesis and treatment of periodontitis [34]. In particular, it has been reported that statins are anti-inflammatory [54, 94, 97, 102, 106], can promote bone formation [41, 67, 81, 134], can inhibit matrix metalloproteinases (MMPs) [54, 71, 96] and possess anti-microbial properties [126].

A systematic review with meta-analysis of pre-clinical in vivo trials reported a positive effect of local or systemic statin administration for the prevention of alveolar bone loss in experimental periodontitis models in rodents [9].

Several observational clinical studies have evaluated the effect of systemic statin intake on periodontal conditions [65, 76, 107, 109, 110, 123]. Statin use was not found to be associated with decreased tooth loss in adults with chronic periodontitis when analysing administrative health plan data [109]. However, a five-year population-based follow-up study comparing participants treated with statins with those who did not medicate with statins concluded long-term treatment with statins was associated with reduced tooth loss [76]. Furthermore, patients on statin medication were reported to exhibit significantly fewer signs of periodontal inflammatory lesions than patients without a statin regimen [65]. A cross-sectional study compared the periodontal status of patients with hyperlipidaemia (with or without statin intake) to normolipidaemic individuals and found higher gingival bleeding and probing depths in the hyperlipidaemic patients who were not statin users [107]. In an RCT, periodontal patients with risk factors or with established atherosclerosis were assigned to either a high or low dose statin intake [123]. After three months, a significant reduction of periodontal inflammation was seen in the high-dose compared to the low-dose group. Thus, within the limits of the above reported studies, there is some limited evidence suggesting statins may have a positive impact on periodontal health.

Very few clinical studies have been designed to evaluate the effect of adjunctive systemic statin intake in conjunction with periodontal therapy [35, 36, 108]. In a randomized placebo-controlled pilot study in 38 patients with chronic periodontitis, adjunctive statin intake led to beneficial effects on radiological bone loss and tooth mobility after 3 months [35]. Another 3 month-study compared the treatment response to nonsurgical periodontal therapy in 107 chronic periodontitis patients (35 normolipidemic as control, 36

Table 1: Summary of the evidence on the effect of periodontal therapy on surrogate markers of cardiovascular diseases.

Topic	Outcome	Number of RCTs and SR since last consensus	References	Effect	Overall Level of Evidence
Effect of Periodontal Therapy on Lipids	Lipids (multiple)	6 RCTs	[12, 22, 26, 38, 44, 51]	No	Moderate
Effect of Periodontal Therapy on Blood Pressure	Systolic, diastolic	3 RCTs	[22, 44, 142]	Yes	Limited
Effect of Periodontal Therapy on Endothelial Function	Endothelial Function (multiple measures)	2 RCTs, 1 SR	[22, 105, 122]	Yes	Moderate
Effect of Periodontal Therapy on interleukin (IL)-6	IL-6	3 RCTs	[38, 51, 142]	Yes	Moderate
Effect of Periodontal Therapy on C-Reactive Protein (CRP)	CRP	5 SR	[27, 37, 49, 90, 125]	Yes	Moderate
Effect of Periodontal Therapy on Pulse Wave Velocity (PWV)	PWV	1 RCT	[51]	No	Limited
Effect of Periodontal Therapy on carotid Intima-Media Thickness (c-IMT)	Common c-IMT	1 RCT	[51]	Yes	Limited

RCT, randomised clinical trial; SR, systematic review.
hyperlipidaemic on nonpharmacological therapy and 36 hyperlipidemic on statins) and found a greater improvement in gingival index in the nomolipidemic control and in the statin groups [108]. Based on this limited evidence, two recent systematic reviews with meta-analysis on the effects of (local and systemic) statins on periodontal treatment concluded systemic statin intake does not enhance the outcomes of periodontal therapy [8, 82].

5. Cardiovascular risks and complications of periodontal therapeutic interventions

5.1. Is there an ischemic cardiovascular risk for patients undergoing periodontal therapy?

Non-surgical treatment of periodontitis involving supra- and sub-gingival instrumentation of the affected dentition (under local anaesthesia) is often delivered in several short sessions. Alternatively, full-mouth non-surgical periodontal treatment can be performed within 24 hours.

Delivering periodontal treatment in a full-mouth fashion (i.e., within 24 hours) triggers a one-week acute systemic inflammatory response associated with a transient impairment of endothelial function [89]. This distant effect is not observed when periodontal treatment is delivered across several separate sessions [42]. This is achieved by limiting the number of teeth involved and the time devoted to completing the dental instrumentation. These findings raise the question of whether performing longer sessions of periodontal treatment could contribute to an individual’s inflammatory burden/risk and increase their short-term risk of suffering from a vascular event. There is consistent and strong observational evidence that common acute infections/inflammatory responses are associated at a population level with an increased risk of vascular events within the first four weeks of the infectious/inflammatory event [120].

5.1.1. At population level

There is no evidence for specific effects of periodontal treatment procedures on increasing ischemic cardiovascular risk. Two observational studies reported no effect of invasive dental treatment in elevating ischemic cardiovascular risk [19, 86], and one study suggested a minimal increased risk within four weeks following treatment [79].

Chen et al. [19] performed a case-crossover and self-controlled case series using the Taiwanese National Health Insurance Research Database, including over 110,000 myocardial Infarction cases and 290,000 Ischemic Stroke patients, between 1999 and 2014. They reported a non-significant increase in the incidence of myocardial infarction within the first 24 weeks following invasive dental treatment (including periodontal procedures) except for a modest risk of myocardial infarction during the first week for patients without other comorbidities (OR = 1.31, 95% CI [1.08; 1.58], after 3 days).

A registry-based case-control study between 2011 and 2013 including 51,880 cases who underwent an invasive dental procedure compared to 246,978 controls reported no association with increased incidence of myocardial infarction (OR 0.98, 95% CI [0.91; 1.06]) [86].

Minassian et al. [79] performed a self-controlled case series including nearly 10 million participants included in an insurance database from 2002 and 2006 in the USA. The analysis showed that invasive dental treatment (largely comprising of tooth extractions and only 4% being non-surgical and surgical periodontal procedures) is associated with an increased risk of incident acute cardiovascular events (IR = 1.5, 95% CI [1.09; 2.06]) within the first four weeks of treatment recorded.

In summary, the Group concluded delivering periodontal treatment is safe with regard to cardiovascular risk.

5.1.2. In patients with established CVD

There is limited evidence on the effects of invasive dental treatment on the incidence of Ischemic Events in patients with established CVD or after an event.

A small RCT on the effects of the treatment of periodontitis on CVD biomarkers in patients with established CVD [80] showed no cardiovascular adverse events within three months of completion of scaling and root planing (periodontal therapy).

In the PAVE feasibility randomized secondary prevention trial, provision of periodontal scaling and root planing treatment in patients with established CVD did not increase the incidence of cardiovascular events compared to the control group (community treatment) within six months [6].

In summary, the Group concluded delivering periodontal treatment is safe with regards to cardiovascular risk in patients with established CVD.
5.2. What is the perioperative bleeding risk when performing periodontal therapy?

Periodontal treatment consists of numerous procedures with different levels of bleeding risk. However, this risk of bleeding is low in the vast majority of procedures and can be easily controlled with local haemostatic measures.

Perioperative bleeding risk varies according to the extent and invasiveness of the periodontal procedure performed. The majority of periodontal procedures may be grouped within the ESC/AHA/EHRA [121, 122]. Low Bleeding Risk (frequency less than 1% of post-operative bleeding) group: supragingival polishing, non-surgical periodontal treatment, conventional surgical periodontal treatment (conservative, resective or regenerative), tooth extractions and dental implant placement. Moderate bleeding risk (frequency between 2–5%) may be observed in major autogenous bone augmentation procedures, such as block bone harvesting, sinus floor elevation and procedures where healing is by secondary intention, such as free gingival grafting. Appendix 1 summarizes the main recommendations for patients with antithrombotic therapy when performing periodontal therapy.

5.2.1. In patients undergoing anti-platelet therapy

Individuals undergoing single acetylsalicylic acid (ASA) therapy (aspirin) in different therapeutic dosages, as well as therapy with clopidogrel, ticlopidine or ticagrelor show no statistically significant differences in frequency of bleeding events when compared to controls (i.e., subjects not undergoing anti-platelet therapy) [30, 62].

Dual antiplatelet therapy, most commonly ASA in combination with clopidogrel, may pose a certain risk for postoperative bleeding complications; however, it appears these haemorrhagic events may be managed safely with local haemostatic measures [84, 85].

Thus, current evidence does not support discontinuation of antiplatelet therapy before dental procedures, irrespective of the type of therapy employed (single or dual antiplatelet therapy) or the type of procedure performed (single, multiple tooth extractions, non-surgical and surgical periodontal therapy and dental implant procedures).

5.2.2. In patients undergoing anti-coagulant therapy

5.2.2.1. Vitamin-K antagonists

In patients taking oral anticoagulant therapy (vitamin-K antagonists, VKA) and undergoing dental extraction, minor dental procedures and dental implant placement do not seem to increase the risk of bleeding compared to patients who discontinue oral anticoagulant therapy [118, 139]. There may be a higher post-operative bleeding risk in patients continuing VKA and undergoing either minor dental surgery or other higher-risk procedures when compared to non-VKA patients [10, 118], but local haemostatic agents appear to be effective in controlling post-operative bleeding [72].

5.2.2.2. Novel/direct anticoagulants (DOAC/NOAC)

Limited trials and evidence are available on the management of patients on novel oral anticoagulant (NOAC) therapy undergoing dental treatment; hence, the Group concluded further studies regarding dental procedures in these patients are strongly encouraged.

It appears there is no need for interruption of NOAC therapy in most dental treatments due to a low incidence of bleeding complications, which can be successfully managed with local haemostatic measures when comparing groups continuing NOAC and groups discontinuing NOAC therapy [58, 59, 92, 137], and with reported timing of discontinuation and reinstitution varying greatly. When comparing NOAC patients with healthy individuals, there seems to be a higher incidence of delayed bleeding (2 days and later) in those patients who do not discontinue NOAC therapy [78].

6. Recommendations

6.1. Recommendations for oral health professionals for use in dental practice/office for people with cardiovascular disease (CVD)

- Patients with periodontitis should be advised there is a higher risk for cardiovascular diseases, such as myocardial infarction or stroke, and as such they should actively manage all their cardiovascular risk factors (smoking, exercise, excess weight, blood pressure, lipid and glucose management and sufficient periodontal therapy and periodontal maintenance).
- Patients with periodontitis and a diagnosis of CVD should be informed they may be at higher risk for subsequent CVD complications and, therefore, they should regularly adhere to the recommended dental therapeutic, maintenance and preventive regimes.
• Collect a careful history to assess for CVD risk factors, such as diabetes, obesity, smoking, hypertension, hyperlipidemia and hyperglycemia. Suggest the patient consults his/her physician if any of these risk factors are not appropriately controlled.

• Oral health education should be provided to all patients with periodontitis and a tailored oral hygiene regime, including twice-daily brushing, inter-dental cleaning and in some cases the use of adjunctive chemical plaque control may be appropriate.

• People presenting with a diagnosis of CVD should receive a thorough oral examination, which embeds a comprehensive periodontal evaluation, including full-mouth probing and bleeding scores.

• If no periodontitis is diagnosed initially, patients with CVD should be placed on a preventive care regime and monitored regularly (at least once a year) for changes in periodontal status.

• In people with CVD, if periodontitis is diagnosed, they should be managed as soon as their cardiovascular status permits.

• Irrespective of the level of CVD or specific medication, non-surgical periodontal therapy should be provided, preferably in several 30–45 minute sessions to minimize a spike of acute systemic inflammation.

• Surgical periodontal and implant therapy, when indicated, should be provided in a similar manner as in patients without CVD.

However, attention should be paid to:

• Hypertension. It is recommended to measure the patients’ blood pressure (after appropriate relaxation) before the surgical intervention, and in cases of high blood pressure (above 180/100 according to expert opinion), the surgery should be postponed until the patient’s blood pressure is stabilized.

• Medication with antiplatelet and anticoagulant drugs. Because periodontal and implant surgical procedures usually impart only a low to medium risk of bleeding in general terms, the dentist should not change a patient’s medication or in cases of doubt he/she should consult the physician/cardiologist prior to the surgical intervention. Consideration should also be given to the local management of bleeding complications that may arise.

Current AHA/ACC/SCAI/ACS/ADA/ESC/ACCP guidelines on perioperative management of antithrombotic therapy do not suggest discontinuation of anti-platelet therapy for Low Bleeding Risk procedures [32, 43, 57].

Various approaches for perioperative management of anticoagulant therapy have been suggested. The Group reviewed the guidelines on perioperative management of vitamin K antagonists (VKA) and suggests discontinuation of medication treatment if the INR is 4 or below for Low or Medium Bleeding Risk procedures [95]. However, if the internationalised normalised ratio (INR) is 3.5 or above, the expert Group recommends dental clinicians seek advice and consult with the responsible medical professional. Management of high thromboembolic risk cases should be collaborative in consultation with the medical professional responsible for the VKA therapy [57, 130].

After reviewing novel anticoagulant (non VKA) and direct anticoagulant (NOAC/DOAC) therapies guidelines, the Group concluded that for Low Bleeding Risk periodontal procedures no discontinuation of anticoagulants is recommended [121, 122]. These procedures could be performed 18–24 hrs after the last intake (depending on a renal function assessment for the medication in question) and then restarted 6 hrs following treatment. The expert Group, however, strongly recommends the dental clinician consult with the responsible medical professional. When a Medium Bleeding Risk periodontal procedure is planned, discontinuation of therapy should be agreed with the medical professional responsible for and/or prescribing the anticoagulant therapy.

Lastly, in cases of combined anti-platelet and anticoagulant therapies, which pertain to patients with the highest thrombotic and ischemic risk (i.e., chronic atrial fibrillation or after an acute myocardial infarction or recent coronary stenting), when periodontal procedures (either of Low or Medium Bleeding Risk) are required, any alterations in medication should be discussed and agreed upon with the responsible medical professional [121, 122]. In elective periodontal procedures, the operation should be delayed until after treatment stabilization and appropriate consultation with the medical specialist.

In cases of triple therapy (dual anti-platelet and one anticoagulant) or one anticoagulant plus one anti-platelet, such patients need individualised management by the responsible medical professional according to their thrombotic and haemorrhagic risk [130].
It is important to highlight that local haemostatic agents (such as oxidised cellulose, absorbable gelatin sponges, sutures, tranexamic acid mouthwashes, compressive gauze soaked in tranexamic acid) should be used and dental clinicians should consider the confounding effect of local anaesthetic with vasoconstrictors.

- Patients with a risk of endocarditis should be premedicated with antibiotics following current guidelines (such as the European or the American guidelines).
- People with cardiovascular disease who have extensive tooth loss should be encouraged to pursue dental rehabilitation to restore adequate mastication for proper nutrition.
- People without a diagnosis of CVD but with risk factors for CVD should be informed about their CVD risk and referred to a physician for appropriate risk assessment, diagnostic testing and follow-up care. For oral health professionals, risk assessment may be performed based upon the recommendations of the European Society of Cardiology (Systematic COronary Risk Evaluation, SCORE) [119].

6.2. Recommendations for physicians and other medical health professions for use in cardiology practice

Because of the potential negative impact of periodontitis on CVD complications, the following recommendations are made:

- Patients with CVD should be advised periodontitis may have a negative impact on CVD and may also increase the risk of CVD events.
- Patients should be advised effective periodontal therapy may have a positive impact upon CVD health.
- For people with CVD, physicians should ask about a prior diagnosis of periodontitis. If a positive diagnosis has been made, the physician should seek to ascertain that appropriate periodontal care and maintenance are being provided.
- Patients with CVD should be asked about any signs and symptoms of periodontitis, including bleeding gums during brushing or eating, loose teeth, spacing or spreading/drifting of the teeth, oral malodor and/or abscesses of the gums or gingival suppuration.
 - If a positive history is elicited, then a prompt periodontal evaluation should be recommended before their scheduled annual check-up.
 - In the case of a negative history, people with CVD should be advised to check for the above symptoms, and if a positive sign appears, they should visit their dentist at least once per year.
- For all patients with newly diagnosed CVD, referral for a periodontal examination should occur as part of their ongoing management of CVD. Even if no periodontitis is diagnosed initially, an annual oral/dental check-up is recommended.
- The physician should liaise with the dental surgeon over periodontitis management in CVD patients on anticoagulant/antiplatelet therapy prior to the oral intervention and/or periodontal surgery to avoid excess bleeding or the risk of ischaemic events.

6.3. Recommendations for patients at the dental surgery/office who have CVD or are found to be at risk of CVD

- People with CVD must be aware that gum disease is a chronic condition, which may aggravate their CVD, and requires lifelong attention and professional care.
- There is a need to clean the teeth and gums very carefully at home. Personalized advice will be provided by the oral health professional.

This may include
- Twice-daily brushing with either a manual or electric toothbrush;
- Cleaning between teeth using inter-dental brushes where they fit; where they do not fit, then flossing may be useful;
- Use of specific dentifrices and/or mouth rinses with proven activity against dental plaque, if advised by oral health professionals;
- If left untreated, gum disease can lead to tooth loss and may also make CVD preventive measures harder to control;
• Gum disease may be present and deteriorate with no apparent symptoms, so the dentist should advise their patient that even without current gum disease, they should still receive regular dental check-ups as part of managing their CVD.

Dentists should be able to identify the early signs of gum disease, but patients should also suspect gum disease if noticing
- Red or swollen gums;
- Bleeding from the gums or blood in the sink after tooth brushing;
- Foul taste;
- Longer looking teeth;
- Loose teeth;
- Increasing spaces between teeth/teeth moving apart;
- Calculus (tartar) on teeth.

Patients should inform their dentist about the outcome of their visits to the physician and provide an update on their CVD history and any changes in medications. Patients should inform the dentist if they are on anticoagulant therapy.

Patients should understand it is important to keep their mouth and whole body as healthy as possible with regular dental and medical visits.

6.4. Recommendations for patients with CVD at the physician’s practice/office

6.4.1. Why should I have my gums checked?
If your physician has told you that you have cardiovascular disease (CVD), you should make an appointment with a dental surgeon to have your mouth and gums checked.

This is because people with CVD may have a higher chance of getting further complications when they have gum disease. The earlier you seek help, the better the outcome will be.

6.4.2. What should I look for that may tell me I have problems with my gums?
You may have gum disease if you have ever noticed

- Red or swollen gums;
- Bleeding from your gums or blood in the sink after you brush your teeth;
- Foul taste;
- Longer looking teeth;
- Loose teeth;
- Increasing spaces between your teeth, or your teeth drifting apart;
- Calculus (tartar) on your teeth.

If you have noticed any of these problems, it is important to see a dentist as soon as possible.

6.4.3. Can I have gum disease without these signs being present?
Gum disease may also be present and get worse with no apparent that you have it, especially if you smoke, so even if you do not think you have gum disease now, you should still have annual check-ups of your mouth as part of managing your CVD. Your dentist will be able to pick up early signs of gum disease.

6.4.4. What can I do to prevent gum disease?
You need to clean your teeth and gums twice daily at home for a minimum of two minutes. Also, cleaning between your teeth daily is important, and your oral health professional will show you how to do this. You should visit a dental surgeon as soon as possible for a diagnosis and advice on what you need to do. It is important to keep your mouth as healthy as possible with regular oral and dental care, according to the recommendations of your oral health professional.

Additional File
The additional file for this article can be found as follows:

- Supplementary Appendix 1. Antithrombotic therapy: when, how and why. Comprehensive approach for oral health professionals. DOI: https://doi.org/10.5334/gh.400.s1
Competing Interests
This workshop was funded through an unrestricted grant from DENTAID SA to the European Federation of Periodontology to organize the EFP/EHF Workshop. All individual experts participating in the workshop have declared no conflict of interest with the results of the consensus workshop or the publication.

References
1. Aarabi G, Zeller T, Seedorf H, Reissmann DR, Heydecke G, Schaefer AS, Seedorf U. Genetic Susceptibility Contributing to Periodontal and Cardiovascular Disease. Journal of Dental Research. 2017; 96: 610–617. DOI: https://doi.org/10.1177/0022034517699786
2. Ahn YB, Shin MS, Han DH, Sukhbaatar M, Kim MS, Shin HS, Kim HD. Periodontitis is associated with the risk of subclinical atherosclerosis and peripheral arterial disease in Korean adults. Atherosclerosis. 2016; 311: e318. DOI: https://doi.org/10.1016/j.atherosclerosis.2016.07.898
3. Armingohar Z, Jørgensen JJ, Kristoffersen AK, Abesha-Belay E, Olsen I. Bacteria and bacterial DNA in atherosclerotic plaque and aneurysmal wall biopsies from patients with and without periodontitis. Journal of Oral Microbiology. 2014; 6. DOI: https://doi.org/10.3402/jom.v6.23408
4. Arvanitidis E, BizzarroS, Alvarez Rodriguez E, Loos BG, Nicu EA. Reduced platelet hyper-reactivity and platelet-leukocyte aggregation after periodontal therapy. Thrombosis Journal. 2017; 15. DOI: https://doi.org/10.1186/s12959-016-0125-x
5. Balejo RDP, Cortelli JR, Costa FO, Cyrino RM, Aquino DR, Cogo-Müller K, Miranda TB, Moura SP, Cortelli SC. Effects of chlorhexidine preprocedural rinse on bacteremia in periodontal patients: A randomized clinical trial. Journal of Applied Oral Science. 2017; 25: 586–595. DOI: https://doi.org/10.1590/1678-7757-2017-0112
6. Beck JD, Couper DJ, Falkner KL, Graham SP, Grossi SG, Gunsolley JC, Madden T, Maupome G, Offenbacher S, Stewart DD, Trevisan M, Van Dyke TE, Genco RJ. The Periodontitis and Vascular Events (PAVE) pilot study: Adverse events. Journal of Periodontology. 2008; 79: 90–96. DOI: https://doi.org/10.1902/jop.2008.070223
7. Belanger M, Kozarov E, Song H, Whitlock J, Pregulske-Fox A. Both the unique and repeat regions of the Porphyromonas gingivalis hemagglutin A are involved in adhesion and invasion of host cells. Anaerobe. 2012; 18: 128–134. DOI: https://doi.org/10.1016/j.janaerobe.2011.10.005
8. Bertl K, Parllaku, A, Pandis, N, Buhlin, K, Klingen, B, Stavropoulos, A. The effect of local and systemic statin use as an adjunct to non-surgical and surgical periodontal therapy-A systematic review and meta-analysis. Journal of Dentistry. 2017; 67: 18–28. DOI: https://doi.org/10.1016/j.jdent.2017.08.011
9. Bertl K, Steiner I, Pandis N, Buhlin K, Klinger B, Stavropoulos A. Statins in nonsurgical and surgical periodontal therapy. A systematic review and meta-analysis of preclinical in vivo trials. Journal of Periodontal Research. 2018; 53: 267–287. DOI: https://doi.org/10.1111/jre.12514
10. Biedermann JS, Rademacher WMH, Hazendonk HCAM, van Diemen DE, Leebeek FWG, Rozema FR, Krup MJHA. Predictors of oral cavity bleeding and clinical outcome after dental procedures in patients on vitamin K antagonists. Thrombosis and Haemostasis. 2017; 117: 1432–1439. DOI: https://doi.org/10.1160/TH17-01-0040
11. Boillot A, Range H, Danchin N, Kotti S, Cosler G, Czernichow S, Meihoc H, Puymirat E, Zeller M, Tchetchte D, Bouchard P, Simon T. Periodontopathogens antibodies and major adverse events following an acute myocardial infarction: Results from the French Registry of Acute ST-Elevation and Non-ST-Elevation Myocardial Infarction (FAST-MI). Journal of Epidemiology and Community Health. 2016; 70: 1236–1241. DOI: https://doi.org/10.1136/jech.2015-207043
12. Caula AL, Lira-Junior R, Tinoco EM, Fischer RG. The effect of periodontal therapy on cardiovascular risk markers: A 6-month randomized clinical trial. Journal of Clinical Periodontology. 2014; 41: 875–882. DOI: https://doi.org/10.1111/jcpe.12290
13. Centers for Disease Control and Prevention. Healthy Aging at a Glance. 2011. Atlanta, GA: Centers for Disease Control and Prevention; 2011.
14. Centers for Disease Control and Prevention. The State of Aging and Health in America 2013. Atlanta, GA: Centers for Disease Control and Prevention; 2013.
15. Chandy S, Joseph K, Sankaranarayanan A, Issac A, Babu G, Wilson B, Joseph J. Evaluation of C-Reactive Protein and Fibrinogen in Patients with Chronic and Aggressive Periodontitis: A Clinico-Biochemical Study. Journal of Clinical and Diagnostic Research. 2017; 11: ZC41–ZC45. DOI: https://doi.org/10.7860/JCDR/2017/23100.9552
16. Chapple IL, Brock GR, Milward MR, Ling N, Matthews JB. Compromised GCF total antioxidant capacity in periodontitis: Cause or effect? *Journal of Clinical Periodontology*. 2007; 34: 103–110. DOI: https://doi.org/10.1111/j.1600-051X.2006.01029.x

17. Chapple IL, Genco R, Working group 2 of joint EFPAAPw. Diabetes and periodontal diseases: Consensus report of the Joint EFP/AAP Workshop on Periodontitis and Systemic Diseases. *Journal of Clinical Periodontology*. 2013; 40(Suppl 14): S106–112. DOI: https://doi.org/10.1111/jcpe.12077

18. Chen DY, Lin CH, Chen YM, Chen HH. Risk of Atrial Fibrillation or Flutter Associated with Periodontitis: A Nationwide, Population-Based, Cohort Study. *PLoS One*. 2016; 11: e0165601. DOI: https://doi.org/10.1371/journal.pone.0165601

19. Chukkapalli SS, Velsko IM, Rivera-Kweh MF, Zheng D, Lucas AR, Kesavalu L. Polymicrobial Oral Infection with Four Periodontal Bacteria Orchestrates a Distinct Inflammatory Response and Atherosclerosis in ApoEnull Mice. *PLoS One*. 2015; 10: e0143291. DOI: https://doi.org/10.1371/journal.pone.0143291

20. Couper DJ, Beck JD, Falkner KL, Graham SP, Grossi SG, Gunsolley JC, Madden T, Maupome G, Offenbacher S, Stewart DD, Trevisan M, Van Dyke TE, Genco RJ. The Periodontitis and Vascular Events (PAVE) pilot study: Recruitment, retention, and community care controls. *Journal of Periodontology*. 2008; 79: 80–89. DOI: https://doi.org/10.1902/jop.2008.070216

21. D’Aiuto F, Gkranias N, Bhowruth D, Khan T, Orlandi M, Suvan J, Hurel S, Hingorani AD, Donos N, Deanfield JE, Group T. Systemic effects of periodontal treatment in patients with type 2 diabetes: A 12-month, single-centre, investigator-masked, randomised trial. *Lancet Diabetes and Endocrinology*. 2018; 6: 954–965. DOI: https://doi.org/10.1016/S2213-8587(18)30038-X

22. D’Aiuto F, Orlandi M, Gunsolley JC. Evidence that periodontal treatment improves biomarkers and CVD outcomes. *Journal of Clinical Periodontology*. 2013; 40(Suppl 14): S85–105. DOI: https://doi.org/10.1111/jcpe.12061

23. de Oliveira C, Watt R, Hamer M. Toothbrushing, inflammation, and risk of cardiovascular disease: Results from Scottish Health Survey. *British Medical Journal*. 2010; 340: c2451. DOI: https://doi.org/10.1136/bmj.c2451

24. Dietrich T, Sharma P, Walter C, Weston P, Beck J. The epidemiological evidence behind the association between periodontitis and incident atherosclerotic cardiovascular disease. *Journal of Clinical Periodontology*. 2013; 40: S70–84. DOI: https://doi.org/10.1111/jcpe.12062

25. Doganay O, Atalay B, Karadag E, Aga U, Tugrul M. Bleeding frequency of patients taking ticagrelor, aspirin, clopidogrel, and dual antiplatelet therapy after tooth extraction and minor oral surgery. *Journal of the American Dental Association*. 2018; 149: 132–138. DOI: https://doi.org/10.1016/j.adaj.2017.09.052

26. Dorn JM, Genco RJ, Grossi SG, Falkner KL, Hovey KM, Iacoviello L, Trevisan M. Periodontal disease and recurrent cardiovascular events in survivors of myocardial infarction (MI): The Western
New York Acute MI Study. *Journal of Periodontology*. 2010; 81: 502–511. DOI: https://doi.org/10.1902/jop.2009.090499

32. Douketis JD, Spyropoulos AC, Spencer FA, Mayr M, Jaffer AK, Eckman MH, Dunn AS, Kunz R. Perioperative management of antithrombotic therapy: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. *Chest*. 2012; 141: e326S–e350S. DOI: https://doi.org/10.1378/chest.11-2298

33. Ernst FD, Uhr K, Teumer A, Fanghanel J, Schulz S, Noack B, Gonzales J, Reichert S, Eickholz P, Holtfreter B, Meisel P, Linden GJ, Homuth G, Kocher T. Replication of the association of chromosomal region 9p21.3 with generalized aggressive periodontitis (gAgP) using an independent case-control cohort. *BMC Medical Genetics*. 2010; 11: 119. DOI: https://doi.org/10.1186/1471-2350-11-119

34. Estanislau IM, Terceiro IR, Lisboa MR, Teles Pde B, Carvalho Rde S, Martins RS, Moreira MM. Pleiotropic effects of statins on the treatment of chronic periodontitis—A systematic review. *British Journal of Clinical Pharmacology*. 2015; 79: 877–885. DOI: https://doi.org/10.1111/bcp.12564

35. Fajardo ME, Rocha ML, Sanchez-Marin FJ, Espinosa-Chavez EJ. Effect of atorvastatin on chronic periodontitis: A randomized pilot study. *Journal of Clinical Periodontology*. 2010; 37: 1016–1022. DOI: https://doi.org/10.1111/j.1600-051X.2010.01619.x

36. Fentoglu O, Kirzioglu FY, Ozdem M, Kocak H, Sutcu R, Sert T. Proinflammatory cytokine levels in hyperlipidemic patients with periodontitis after periodontal treatment. *Oral Diseases*. 2012; 18: 299–306. DOI: https://doi.org/10.1111/j.1601-0825.2011.01880.x

37. Freitas CO, Gomes-Filho IS, Naves RC, Nogueira Filho Gda R, Cruz SS, Santos CA, Dunningham L, Miranda LF, Barbosa MD. Influence of periodontal therapy on C-reactive protein level: A systematic review and meta-analysis. *Journal of Applied Oral Science*. 2012; 20: 1–8. DOI: https://doi.org/10.1590/S1678-77572012000100002

38. Fu YW, Li XX, Xu HZ, Gong YQ, Yang Y. Effects of periodontal therapy on serum lipid profile and proinflammatory cytokines in patients with hyperlipidemia: a randomized controlled trial. *Clinical Oral Investigations*. 2016; 20: 1263–1269. DOI: https://doi.org/10.1007/s00784-015-1621-2

39. GBD. Disease Injury and Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. *Lancet*. 2018; 392: 1789–1858. DOI: https://doi.org/10.1016/S0140-6736(18)32279-7

40. GBD. Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. *Lancet*. 2016; 388: 1659–1724. DOI: https://doi.org/10.1016/S0140-6736(16)31679-8

41. Garrett IR, Gutierrez G, Mundy GR. Statins and bone formation. *Current Pharmaceutical Design*. 2001; 7: 715–736. DOI: https://doi.org/10.2174/1381612013397762

42. Graziani F, Cei S, Orlandi M, Gennai S, Gabriele M, Filice N, Nisi M, D’Aiuto F. Acute-phase response following full-mouth versus quadrant non-surgical periodontal treatment: A randomized clinical trial. *Journal of Clinical Periodontology*. 2015; 42: 843–852. DOI: https://doi.org/10.1111/jcpe.12451

43. Grines CL, Bonow RO, Casey DE, Jr, Gardner TJ, Lockhart PB, Moliterno DJ, O’Gara P, Whitlow P, American Heart A, American College of C, Society for Cardiovascular A, Interventions American College of S, American Dental A, American College of P. Prevention of premature discontinuation of dual antiplatelet therapy in patients with coronary artery stents: A science advisory from the American Heart Association, American College of Cardiology, Society for Cardiovascular Angiography and Interventions, American College of Surgeons, and American Dental Association, with representation from the American College of Physicians. *Journal of the American Dental Association*. 2007; 138: 652–655. DOI: https://doi.org/10.14219/jada.archive.2007.0237

44. Hada DS, Garg S, Ramteke GB, Ratre MS. Effect of Non-Surgical Periodontal Treatment on Clinical and Biochemical Risk Markers of Cardiovascular Disease: A Randomized Trial. *Journal of Periodontology*. 2015; 86: 1201–1211. DOI: https://doi.org/10.1902/jop.2015.150249

45. Herrera D, Molina A, Buhlin K, Klinge B. Periodontal Diseases and Association with Atherosclerotic Disease. *Periodontology*. 2000. 2019 (in press).
46. Holdt MH, Teupser D. Genetic background of atherosclerosis and its risk factors. In: The ESC Textbook of Preventive Cardiology. Oxford: Oxford University Press. 2015; 21–25. DOI: https://doi.org/10.1093/med/9780199656653.003.0002

47. Holmlund A, Lampa E, Lind L. Poor Response to Periodontal Treatment May Predict Future Cardiovascular Disease. Journal of Dental Research. 2017; 96: 768–773. DOI: https://doi.org/10.1177/0022034517701901

48. Hubberten M, Bochenek G, Chen H, Hasler R, Wiehe R, Rosenstiel P, Jepsen S, Domnisch H, Schaef er AS. Linear isoforms of the long noncoding RNA CDKN2B-AS1 regulate the c-myc-enhancer binding factor RBMS1. European Journal of Human Genetics. 2019; 27: 80–89. DOI: https://doi.org/10.1038/s41431-018-0210-7

49. Ioannidou E, Malekzadeh T, Dongari-Bagtzoglou A. Effect of periodontal treatment on serum C-reactive protein levels: A systematic review and meta-analysis. Journal of Periodontology. 2006; 77: 1635–1642. DOI: https://doi.org/10.1902/jop.2006.050443

50. Joseph P, Leong D, McKee M, Anand SS, Schwalm JD, Teo K, Mente A, Yusuf S. Reducing the global burden of cardiovascular disease. Part 1: The epidemiology and risk factors. Circulatory Research. 2017; 121(6): 677–694. DOI: https://doi.org/10.1161/CIRCRESAHA.117.308903

51. Kapellas K, Maple-Brown LJ, Jamieson LM, Do LG, O’Dea K, Brown A, Cai TY, Anstey NM, Sullivan DR, Wang H, Celermajer DS, Slade GD, Skilton MR. Effect of periodontal therapy on arterial structure and function among aboriginal Australians: A randomized, controlled trial. Hypertension. 2014; 64: 702–708. DOI: https://doi.org/10.1161/HYPERTENSIONAHA.114.03359

52. Kassebaum NJ, Bernabe E, Dahiya M, Bhandari B, Murray CJ, Marcenes W. Global burden of severe periodontitis in 1990–2010: A systematic review and meta-regression. Journal of Dental Research. 2014; 93: 1045–1053. DOI: https://doi.org/10.1177/0022034514552491

53. Kaushal S, Singh AK, Lal N, Das SK, Mahdi AA. Effect of periodontal therapy on disease activity in patients of rheumatoid arthritis with chronic periodontitis. Journal of Oral Biology and Craniofacial Research. 2019; 9: 128–132. DOI: https://doi.org/10.1016/j.jobcr.2019.02.002

54. Koh KK, Son JW, Ahn JY, Jin DK, Kim HS, Choi YM, Kim DS, Jeong EM, Park GS, Choi IS, Shin EK. Comparative effects of diet and statin on NO bioactivity and matrix metalloproteinases in hypercholesterolemic patients with coronary artery disease. Arteriosclerosis, Thrombosis, and Vascular Biology. 2002; 22: e19–23. DOI: https://doi.org/10.1161/01.ATV.0000030997.02059.BB

55. Koppolu P, Durvasula S, Palaparthi R, Rao M, Sagar V, Reddy SK, Lingam S. Estimate of CRP and TNF-alpha level before and after periodontal therapy in cardiovascular disease patients. Pan African Medical Journal. 2013; 15: 92. DOI: https://doi.org/10.11604/pamj.2013.15.92.2326

56. Kozarrov EV, Dorn BR, Shelburne CE, Dunn WA, Jr, Progulske-Fox A. Human atherosclerotic plaque contains viable invasive Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis. Arteriosclerosis, Thrombosis, and Vascular Biology. 2005; 25: e17–18. DOI: https://doi.org/10.1161/01.ATV.0000155018.67835.1a

57. Kristensen SD, Knuti J, Saraste A, Anker S, Botker HE, Hert SD, Ford I, Gonzalez-Juanatey JR, Gorenhek B, Heyndrickx GR, Hoeft A, Huber K, Jhung B, Kjeldsen KP, Longoisl D, Luscher TF, Pierard L, Pocock S, Price S, Roffi M, Sirnes PA, Sousa-Uva M, Voudris V, Funck-Brentano C, Authors/Task Force M. 2014 ESC/ESA Guidelines on non-cardiac surgery: Cardiovascular assessment and management: The Joint Task Force on non-cardiac surgery: Cardiovascular assessment and management of the European Society of Cardiology (ESC) and the European Society of Anaesthesiology (ESA). European Heart Journal. 2014; 35: 2383–2431. DOI: https://doi.org/10.1093/eurheartj/ehu282

58. Kwak EJ, Nam S, Park KM, Kim SY, Huh J, Park W. Bleeding related to dental treatment in patients taking novel oral anticoagulants (NOACs): A retrospective study. Clinical Oral Investigations. 2019; 23: 477–484. DOI: https://doi.org/10.1007/s00784-018-2458-2

59. Lababidi E, Breik O, Savage J, Engelbrecht H, Kumar R, Crossley CW. Assessing an oral surgery specific protocol for patients on direct oral anticoagulants: A retrospective controlled cohort study. International Journal of Oral and Maxillofacial Surgery. 2018; 47: 940–946. DOI: https://doi.org/10.1016/j.ijom.2018.03.009

60. Lee YL, Hu HY, Chou P, Chu D. Dental prophylaxis decreases the risk of acute myocardial infarction: A nationwide population-based study in Taiwan. Clinical Interventions in Aging. 2015; 10: 175–182. DOI: https://doi.org/10.2147/CIA.S67854
61. Li C, Lv Z, Shi Z, Zhu Y, Wu Y, Li L, Iheozor-Ejiofor Z. Periodontal therapy for the management of cardiovascular disease in patients with chronic periodontitis. Cochrane Database of Systematic Reviews. 2017; 11: CD009197. DOI: https://doi.org/10.1002/14651858.CD009197.pub3

62. Lillis T, Ziakas A, Koskinas K, Tsirilis A, Giannoglou G. Safety of dental extractions during interrupted single or dual antiplatelet treatment. American Journal of Cardiology. 2011; 108: 964–967. DOI: https://doi.org/10.1016/j.amjcard.2011.05.029

63. Linden GJ, Linden K, Yarnell J, Evans A, Kee F, Patterson CC. All-cause mortality and periodontitis in 60–70-year-old men: A prospective cohort study. Journal of Clinical Periodontology. 2012; 39: 940–946. DOI: https://doi.org/10.1111/j.1600-051X.2012.01923.x

64. Linden GJ, Lyons A, Scannapieco FA. Periodontal systemic associations: Review of the evidence. Journal of Clinical. 2013; 40(Suppl 14): S8–19. DOI: https://doi.org/10.1111/jcpe.12064

65. Lindy O, Suomalainen K, Mäkelä M, Lindy S. Statin use is associated with fewer periodontal lesions: A retrospective study. BMC Oral Health. 2008; 15: 16. DOI: https://doi.org/10.1186/1472-6831-8-16

66. Ling MR, Chapple IL, Matthews JB. Neutrophil superoxide release and plasma C-reactive protein levels pre- and post-periodontal therapy. Journal of Clinical Periodontology. 2016; 43: 652–658. DOI: https://doi.org/10.1111/jcpe.12575

67. Liu S, Bertl K, Sun H, Liu ZH, Andruskov O, Rausch-Fan X. Effect of simvastatin on the osteogenic behavior of alveolar osteoblasts and periodontal ligament cells. Human Cell. 2012; 25: 29–35. DOI: https://doi.org/10.1007/s13577-011-0028-x

68. Loos BG, Papantonopoulos G, Jepsen S, Laine ML. What is the Contribution of Genetics to Periodontal Risk? Dental Clinics of North America. 2015; 59: 761–780. DOI: https://doi.org/10.1016/j.dcden.2015.06.005

69. Lopez NJ, Quintero A, Casanova PA, Ibietra CI, Baelum V, Lopez R. Effects of periodontal therapy on systemic markers of inflammation in patients with metabolic syndrome: A controlled clinical trial. Journal of Periodontology. 2012; 83: 267–278. DOI: https://doi.org/10.1902/jop.2011.110227

70. Lu B, Parker D, Eaton CB. Relationship of periodontal attachment loss to peripheral vascular disease: An analysis of NHANES 1999–2002 data. Atherosclerosis. 2008; 200: 199–205. DOI: https://doi.org/10.1016/j.atherosclerosis.2007.12.037

71. Luan Z, Chase AJ, Newby AC. Statins inhibit secretion of metalloproteinases-1, -2, -3, and -9 from vascular smooth muscle cells and macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology. 2003; 23: 769–775. DOI: https://doi.org/10.1161/01.ATV.0000068646.76823.AE

72. Madrid C, Sanz M. What influence do anticoagulants have on oral implant therapy? A systematic review. Clinical Oral Implants Research. 2009; 20(Suppl 4): 96–106. DOI: https://doi.org/10.1111/j.1600-0501.2009.01770.x

73. Mahendra J, Mahendra L, Felix J, Romanos G. Prevalence of periodontopathogenic bacteria in subgingival biofilm and atherosclerotic plaques of patients undergoing coronary revascularization surgery. Journal of Indian Society of Periodontology. 2013; 17: 719724. DOI: https://doi.org/10.4103/0972-124X.124476

74. Matthews JB, Wright HJ, Roberts A, Cooper PR, Chapple IL. Hyperactivity and reactivity of peripheral blood neutrophils in chronic periodontitis. Clinical and Experimental Immunology. 2007a; 147: 255–264. DOI: https://doi.org/10.1111/j.1365-2249.2006.03276.x

75. Matthews JB, Wright HJ, Roberts A, Ling-Mountford N, Cooper PR, Chapple IL. Neutrophil hyper-responsiveness in periodontitis. Journal of Dental Research. 2007b; 86: 718–722. DOI: https://doi.org/10.1177/1540591070860080

76. Meisel P, Kroemer HK, Nauck M, Holtfreter B, Kocher T. Tooth loss, periodontitis, and statins in a population-based follow-up study. Journal of Periodontal. 2014; 85: e160–168. DOI: https://doi.org/10.1902/jop.2013.130456

77. Mendez MV, Scott T, LaMorte W, Vokonas P, Menzoian JO, Garcia R. An association between periodontal disease and peripheral vascular disease. American Journal of Surgery. 1998; 176: 153–157. DOI: https://doi.org/10.1016/0002-9610(98)00158-5

78. Miclotte I, Vanhaeverbeke M, Agbaje JO, Legrand P, Vanassche T, Verhamme P, Politis C. Pragmatic approach to manage new oral anticoagulants in patients undergoing dental extractions: A prospective case-control study. Clinical Oral Investigations. 2017; 21: 2183–2188. DOI: https://doi.org/10.1007/s00784-016-2010-1

79. Minassian C, D’Auito F, Hingorani AD, Smeeth L. Invasive dental treatment and risk for vascular events: A self-controlled case series. Annals of Internal Medicine. 2010; 153: 499–506. DOI: https://doi.org/10.7326/0003-4819-153-8-201010190-00006
80. Montenegro MM, Ribeiro IWJ, Kampits C, Saffi MAL, Furtado MV, Polanczyk CA, Haas AN, Rosing CK. Randomized controlled trial of the effect of periodontal treatment on cardiovascular risk biomarkers in patients with stable coronary artery disease: Preliminary findings of 3 months. *Journal of Clinical Periodontology*. 2019; 46: 321–331. DOI: https://doi.org/10.1111/jcpe.13085

81. Mundy G, Garrett R, Harris S, Chan J, Chen D, Rossini G, Boyce B, Zhao M, Gutierrez G. Stimulation of bone formation in vitro and in rodents by statins. *Science*. 1999; 286: 1946–1949. DOI: https://doi.org/10.1126/science.286.5446.1946

82. Muniz F, Taminski K, Cavagni J, Celeste RK, Weidlich P, Rosing CK. The effect of statins on periodontal treatment—A systematic review with meta-analyses and meta-regression. *Clinical Oral Investigations*. 2018; 22: 671–687. DOI: https://doi.org/10.1007/s00078-018-2354-9

83. Munz M, Richter GM, Loos BG, Jepsen S, Divaris K, Offenbacher S, Teumer A, Holtfreter B, Kocher T, Bruckmann C, Jockel-Schneider Y, Graetz C, Munoz L, Bhandari A, Tennstedt S, Staufenbiel I, van der Velde N, Uitterlinden AG, de Groot L, Wellmann J, Berger K, Krone B, Hoffmann P, Laudes M, Lieb W, Franke A, Domnisch H, Erdmann J, Schaefer AS. Genome-wide association meta-analysis of coronary artery disease and periodontitis reveals a novel shared risk locus. *Scientific Reports*. 2018; 8: 13678. DOI: https://doi.org/10.1038/s41598-018-31980-8

84. Napenas JJ, Hong CH, Brennan MT, Furney SL, Fox PC, Lockhart PB. The frequency of bleeding complications after invasive dental treatment in patients receiving single and dual antiplatelet therapy. *Journal of the American Dental Association*. 2009; 140: 690–695. DOI: https://doi.org/10.14219/jada.archive.2009.0255

85. Nathwani S, Martin K. Exodontia in dual antiplatelet therapy: The evidence. *British Dental Journal*. 2016; 220: 235–238. DOI: https://doi.org/10.1038/sbjd.2016.173

86. Nordendahl E, Kjellstrom B, Fored CM, Ekbaum A, Svensson T, Norhammar A, Gustafsson A. Invasive Dental Treatment and Risk for a First Myocardial Infarction. *Journal of Dental Research*. 2018; 97: 1100–1105. DOI: https://doi.org/10.1177/0022034518767834

87. O’Donnell MJ, Chin SL, Rangarajan S, Xavier D, Liu L, Zhang H, Rao-Melacini P, Zhang X, Pais P, Agapay S, Lopez-Jaramillo P, Damasceno A, Langhorne P, McQueen MJ, Rosengren A, Dehghan M, Hallal PC, Lopez G, Parra M, Ribeiro AL, Xu J, Yusuf S, Yusufali A, Zavala-Ponce de Leon E, investigators I. Global and regional effects of potentially modifiable risk factors associated with acute stroke in 32 countries (INTERSTROKE): A case-control study. *Lancet*. 2016; 388: 761–775. DOI: https://doi.org/10.1016/S0140-6736(16)30506-2

88. Offenbacher S, Beck JD, Moss K, Mendoza L, Paquette DW, Barrow DA, Couper DJ, Stewart DD, Falkner KL, Graham SP, Grossi S, Gunsolley JC, Madden T, Maupome G, Trevisan M, Van Dyke TE, Genco RJ. Results from the Periodontitis and Vascular Events (PAVE) Study: A pilot multicentered, randomized, controlled trial to study effects of periodontal therapy in a secondary prevention model of cardiovascular disease. *Journal of Periodontology*. 2009; 80: 190–201. DOI: https://doi.org/10.1902/jop.2009.080007

89. Orlandi M, Graziani F, D’Aiuto F. Periodontal Therapy and Cardiovascular Risk. Periodontology 2000. 2018; (in press).

90. Parasevas S, Huizinga JD, Loos BG. A systematic review and meta-analyses on C-reactive protein in relation to periodontitis. *Journal of Clinical Periodontology*. 2008; 35: 277–290. DOI: https://doi.org/10.1111/j.1600-051X.2007.01173.x

91. Park SY, Kim SH, Kang SH, Yoon CH, Lee HJ, Yun PY, Youn TJ, Chae IH. Improved oral hygiene care attenuates the cardiovascular risk of oral health disease: A population-based study from Korea. *European Heart Journal*. 2019; 40: 1138–1145. DOI: https://doi.org/10.1093/eurheartj/ehy836

92. Patel JP, Woolcombe SA, Patel RK, Obisesan O, Roberts LN, Bryant C, Arya R. Managing direct oral anticoagulants in patients undergoing dentoalveolar surgery. *British Dental Journal*. 2017; 222: 245–249. DOI: https://doi.org/10.1038/sj.bdj.2017.165

93. Patil VA, Desai MH. Effect of periodontal therapy on serum C-reactive protein levels in patients with gingivitis and chronic periodontitis: A clinicobiomedical study. *Journal of Contemporary Dental Practice*. 2013; 14: 233–237. DOI: https://doi.org/10.5005/jp-journals-10024-1305

94. Paumelle R, Blanquart C, Briand O, Barbier O, Duhem C, Woerly G, Percevault F, Fruchart JC, Dombrowicz D, Glineur C, Staels B. Acute antiinflammatory properties of statins involve peroxisome proliferator-activated receptor-alpha via inhibition of the protein kinase C signaling path-
95. Perry DJ, Noakes TJ, Helliwell PS, British Dental S. Guidelines for the management of patients on oral anticoagulants requiring dental surgery. British Dental Journal. 2007; 203: 389–393. DOI: https://doi.org/10.1038/bdj.2007.892

96. Poston CJ, Pierce TC, Li Y, Brinson CW, Lu Z, Lauer AW, Leite RS, Huang Y. Statin intake is associated with MMP-1 level in gingival crevicular fluid of patients with periodontitis. Oral Diseases. 2016; 22: 438–444. DOI: https://doi.org/10.1111/odi.12474

97. Quist-Paulsen P. Statins and inflammation: An update. Current Opinion in Cardiology. 2010; 25: 399–405. DOI: https://doi.org/10.1097/HCO.0b013e3283398e53

98. Rafferty B, Jönsson D, Kalachikov S, Demmer RT, Nowygrod R, Elkind MS, Bush H, Jr, Kozarov E. Impact of monocyctic cells on recovery of uncultivable bacteria from atherosclerotic lesions. Journal of Internal Medicine. 2011; 270: 273–280. DOI: https://doi.org/10.1111/j.1365-2796.2011.02373.x

99. Range H, Labreuche J, Loudenec L, Rondeau P, Planesse C, Sebbag U, Bourdon E, Michel JB, Bouchard P, Meilhac O. Periodontal bacterial in human carotid atherothrombosis as a potential trigger for neutrophil activation. Atherosclerosis. 2014; 236: 448–455. DOI: https://doi.org/10.1016/j.atherosclerosis.2014.07.034

100. Reichert S, Schulz S, Benten AC, Lutze A, Seifert T, Schlitt M, Werdan K, Hofmann B, Wienke A, Schaller HG, Schlitt A. Periodontal conditions and incidence of new cardiovascular events among patients with coronary vascular disease. Journal of Clinical Periodontology. 2016; 43: 918–925. DOI: https://doi.org/10.1111/jcpe.12611

101. Reyes L, Herrera D, Kozarov E, Roldan S, Pogrulske-Fox A. Periodontal bacterial invasion and infection: Contribution to atherosclerotic pathology. Journal of Clinical Periodontology. 2013; 40: S30–S50. DOI: https://doi.org/10.1111/jcpe.12079

102. Rosenson RS, Tangey CC, Casey LC. Inhibition of proinflammatory cytokine production by pravastatin. Lancet. 1999; 353: 983–984. DOI: https://doi.org/10.1016/S0140-6736(98)05917-0

103. Roth GA, Forouzanfar MH, Moran AE, Barber R, Nguyen G, Feigin VL, Naghavi M, Mensah GA, Murray CJ. Demographic and epidemiologic drivers of global cardiovascular mortality. New England Journal of Medicine. 2015; 372: 1333–1341. DOI: https://doi.org/10.1056/NEJMoa1406656

104. Roth GA, Johnson C, Abajobir A, Abd-Allah F, Ahera SF, Abyu G, Ahmed M, Aksut B, Alam T, Alam K, Alla F, Alvis-Guzman N, Amrock S, Ansari H, Arnlov J, Asayesh H, Atey TM, Avila-Burgos L, Awashti A, Banerjee A, Barac A, Barnighaunen T, Barregard L, Bedi N, Belay Ketema E, Bennett D, Berhe G, Bhutta Z, Bitew S, Carapetis J, Carrero JJ, Malta DC, Castaneda-Orjuela CA, Castillo-Rivas J, Catala-Lopez F, Choi JY, Christensen H, Cirllo M, Jr, Cooper L, Criqui M, Cundiff D, Damsaceno A, Dandona L, Dandona R, Davletov K, Dharmaratne S, Dolairaj P, Dubey M, Ehrenkrantz R, El Sayed Zaki M, Faraon EJA, Esteghamati A, Farid T, Farvid M, Feigin V, Ding D, Eowkes G, Gebrehiwot T, Gillum R, Gold A, Gona P, Gupta R, Habtewold TD, Hafezi-Nejad N, Hailu T, Hailu GB, Hankey G, Hassen HY, Abate KH, Haymoeller R, Hay SI, Horino M, Hotje PJ, Jacobsen K, James S, Javenbakht M, Jeemon P, John D, Jonas J, Kalkonde Y, Karimkhani C, Kasaeian A, Khader Y, Khan A, Khang YH, Khera S, Khoja AT, Khubchandani J, Kim D, Kolde T, Kosen S, Krohn KJ, Kumar GA, Kwan GF, Lai DK, Larssson A, Linn S, Lopez A, Lotufo PA, El Razek HMA, Malekzadeh R, Mazidi M, Meier T, Meles K G., Mensah G, Meretoja A, Mezgebe H, Miller T, Mirrakhimov E, Mohammed S, Moran AE, Musa KI, Narula J, Neal B, Ngalesoni F, Nguyen G, Obermeyer CM, Owolabi M, Patton G, Pedro J, Qato D, Qorbani M, Rahimi K, Rai RK, Rawaf S, Ribeiro A, Safari S, Salomon JA, Santos I, Santric Milicevic M, Sartorius B, Schutte A, Seplanou S, Shaik MA, Shin MJ, Shishehbor M, Shore H, Silva DAS, Sobngwi E, Stranges S, Swaminathan S, Tabares-Seisdedos R, Tadele Atnafu N, Tesfay F, Thakur JS, Thrift A, Topor-Madry R, Truelson T, Tyrovolas S, Ukwaaja KN, Uthman O, Vasankari T, Vlassov V, Vollset SE, Wakayo T, Watkins D, Weintraub R, Werdecker A, Westerman R, Wiysonge CS, Wolfe C, Workicho A, Xu G, Yano Y, Yip P, Yonemoto N, Younis M, Yu C, Yous T, Naghavi M, Murray C. Global, Regional, and National Burden of Cardiovascular Diseases for 10 Causes, 1990 to 2015. Journal of the American College of Cardiology. 2017; 70: 1–25. DOI: https://doi.org/10.1016/j.jacc.2017.04.052

105. Saffi ML, Rabelo-Silva ER, Polanczyk CA, Furtado MV, Montenegro MM, Ribeiro IWJ, Kamptits C, Rosing CK, Haas AN. Periodontal therapy and endothelial function in coronary artery disease: A way. Circulation Research. 2006; 98: 361–369. DOI: https://doi.org/10.1161/01.RES.0000202706.70992.95
randomized controlled trial. *Oral Diseases.* 2018; 24: 1349–1357. DOI: https://doi.org/10.1111/odi.12909

106. Sakoda K, Yamamoto M, Negishi Y, Liao JK, Node K, Izumi Y. Simvastatin decreases IL-6 and IL-8 production in epithelial cells. *Journal of Dental Research.* 2006; 85: 520–523. DOI: https://doi.org/10.1177/154405910608500608

107. Sangwan A, Tewari S, Singh H, Sharma RK, Narula SC. Periodontal status and hyperlipidemia: Statin users versus non-users. *Journal of Periodontology.* 2013; 84: 3–12. DOI: https://doi.org/10.1902/jop.2012.110756

108. Sangwan A, Tewari S, Singh H, Sharma RK, Narula SC. Effect of hyperlipidemia on response to nonsurgical periodontal therapy: Statin users versus nonusers. *European Journal of Dentistry.* 2016; 10: 69–76. DOI: https://doi.org/10.4103/1305-7456.175685

109. Saver BG, Hujoel PP, Cunha-Cruz J, Maupome G. Are statins associated with decreased tooth loss in chronic periodontitis? *Journal of Clinical Periodontology.* 2007; 34: 214–219. DOI: https://doi.org/10.1111/j.1600-051X.2006.01046.x

110. Saxlin T, Suominen-Taipale L, Knuuttila M, Alha P, Ylostalo P. Dual effect of statin medication on the periodontium. *Journal of Clinical Periodontology.* 2009; 36: 997–1003. DOI: https://doi.org/10.1111/j.1600-051X.2009.01484.x

111. Schaefer AS, Bochenek G, Jochens A, Ellinghaus D, Dommsch H, Guzeldemir-Ackakanat E, Graetz C, Harks J, Jockel-Schneider Y, Weinspach K, Meyle J, Eickholz P, Linden GJ, Cine N, Nohutcu R, Weiss E, Houri-Haddad Y, Iraqi F, Folwaczny M, Noack B, Strauch K, Gieger C, Waldenberger M, Peters A, Wijmenga C, Yilmaz E, Lieb W, Rosenstiel P, Doerfer C, Bruckmann C, Erdmann J, Konig I, Jepsen S, Loos BG, Schreiber S. Genetic evidence for PLASMINOGEN as a shared genetic risk factor of coronary artery disease and periodontitis. *Circulation: Cardiovascular Genetics.* 2015; 8: 159–167. DOI: https://doi.org/10.1161/CIRCGENETICS.114.000554

112. Schaefer AS, Richter GM, Dommisch H, Reinartz M, Nothnagel M, Noack B, Laine ML, Groessner-Schreiber B, Loos BG, Jepsen S, Schreiber S. CDKN2BAS is associated with periodontitis in different European populations and is activated by bacterial infection. *Journal of Medical Genetics.* 2011; 48: 38–47. DOI: https://doi.org/10.1136/jmg.2010.078998

113. Schenkein HA, Papapanou PN, Genco R, Sanz M. Mechanisms underlying the association between periodontitis and atherosclerotic disease. *Periodontology 2000.* 2019 (in press).

114. Sen S, Giamberardino LD, Moss K, Morelli T, Rosamond WD, Gottesman RF, Beck J, Offenbacher S. Periodontal Disease, Regular Dental Care Use, and Incident Ischemic Stroke. *Stroke.* 2018; 49: 355–362. DOI: https://doi.org/10.1161/STROKEAHA.117.018990

115. Sen S, Sumner R, Hardin J, Barros S, Moss K, Beck J, Offenbacher S. Periodontal disease and recurrent vascular events in stroke/transient ischemic attack patients. *Journal of Stroke and Cerebrovascular Diseases.* 2013; 22: 1420–1427. DOI: https://doi.org/10.1016/j.jstrokecerebrovasdis.2013.06.024

116. Sharma P, Dietrich T, Ferro CJ, Cockwell P, Chapple IL. Association between periodontitis and mortality in stages 3–5 chronic kidney disease: NHANES III and linked mortality study. *Journal of Clinical Periodontology.* 2016; 43: 104–113. DOI: https://doi.org/10.1111/jcpe.12502

117. Shi Q, Xu J, Zhang T, Zhang B, Liu H. Post-operative Bleeding Risk in Dental Surgery for Patients on Oral Anticoagulant Therapy: A Meta-analysis of Observational Studies. *Frontiers in Pharmacology.* 2017; 8: 58. DOI: https://doi.org/10.3389/fphar.2017.00058

118. Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice. European Guidelines on CVD Prevention in Clinical Practice 2016. *European Journal of Preventive Cardiology.* 2016; 23: NP1–NP96. DOI: https://doi.org/10.1177/204748316653709

119. Smeeth L, Thomas SL, Hall AJ, Hubbard R, Farrington P, Vailance P. Risk of myocardial infarction and stroke after acute infection or vaccination. *New England Journal of Medicine.* 2004; 351: 2611–2618. DOI: https://doi.org/10.1056/NEJMoa041747

120. Steffel J, Verhamme P, Potpara TS, Albaladejo P, Antz M, Desteghe L, Georg Haeusler K, Oldgren J, Reinecke H, Roldan-Schilling V, Rowell N, Sinnaeve P, Collins R, Camm AJ, Heidbuchel H, Group ESCED. The 2018 European Heart Rhythm Association Practical Guide on the use of
non-vitamin K antagonist oral anticoagulants in patients with atrial fibrillation: Executive summary.
European. 2018a; 20: 1231–1242. DOI: https://doi.org/10.1093/europe/jey054

122. Steffel J, Verhamme P, Potpara TS, Albaladejo P, Antz M, Destehe L, Haesler KG, Oldgren J, Reinecke H, Roldan-Schilling V, Rowell N, Sinnaeve P, Collins R, Camm AJ, Heidbuchel H, Group ESCSD. The 2018 European Heart Rhythm Association Practical Guide on the use of non-vitamin K antagonist oral anticoagulants in patients with atrial fibrillation. *European Heart Journal*. 2018b; 39: 1330–1393. DOI: https://doi.org/10.1093/eurheartj/ehy136

123. Subramanian S, Emami H, Vucic E, Singh P, Vijayakumar J, Fifer KM, Alon A, Shankar SS, Farkouh M, Rudd JHF, Fayad ZA, Van Dyke TE, Tawakol A. High-dose atorvastatin reduces periodontal inflammation: A novel pleiotropic effect of statins. *Journal of the American College of Cardiology*. 2013; 62: 2382–2391. DOI: https://doi.org/10.1016/j.jacc.2013.08.1627

124. TEEW WJ, LAINE ML, BIZZARRO S, LOOS BG. A Lead ANRIL Polymorphism Is Associated with Elevated CRP Levels in Periodontitis: A Pilot Case-Control Study. *PLoS One*. 2015; 10: e0137335. DOI: https://doi.org/10.1371/journal.pone.0137335

125. TEEW WJ, SLOT DE, SUSANTO H, GERDES VE, ABBAS F, D’AIUTO F, KASTELEIN JJ, LOOS BG. Treatment of periodontitis improves the atherosclerotic profile: A systematic review and meta-analysis. *Journal of Clinical Periodontology*. 2014; 41: 70–79. DOI: https://doi.org/10.1111/jcpe.12171

126. Ting M, Whitaker EJ, Albandar JM. Systematic review of the in vitro effects of statins on oral and perioral microorganisms. *European Journal of Oral Sciences*. 2016; 124: 4–10. DOI: https://doi.org/10.1111/eos.12239

127. Tomas I, Diz P, Tobias A, Scully, C, Donos N. Periodontal health status and bacteraemia from daily oral activities: Systematic review/meta-analysis. *Journal of Clinical Periodontology*. 2012; 39: 213–228. DOI: https://doi.org/10.1016/j.jcpe.2011.07.084

128. Tonetti MS, Van Dyke TE, Working group 1 of the joint EFPAAPw. Periodontitis and atherosclerotic cardiovascular disease: Consensus report of the Joint EFP/AAP Workshop on Periodontitis and Systemic Diseases. *Journal of Clinical Periodontology*. 2013; 40(Suppl 14): S24–29. DOI: https://doi.org/10.1111/jcpe.12089

129. U.S. Senate Committee on Health, E., Labor, and Pensions. The State of Chronic Disease Prevention: Hearing Before the Committee on Health, Education, Labor, and Pensions. 2011.

130. Valgimigli M, Bueno H, Byrne RA, Collet JP, Costa F, Jeppsson A, Juni P, Kastrati A, Kolh P, Mauri L, Montalescot G, Neumann FJ, Petriccione M, Roffi M, Steg PG, Windecker S, Zamorano J, Levine GN, Group ESCSD. 2017 ESC focused update on dual antiplatelet therapy in coronary artery disease developed in collaboration with EACTS. *European Journal of Cardio-Thoracic Surgery*. 2018; 53: 34–78. DOI: https://doi.org/10.1093/ejcts/ezx334

131. Velsko IM, Chukkapalli SS, Rivera MF, Lee JY, Chen H, Zheng D, Bhattacharyya I, Gangula PR, Lucas AR, Kesavalu L. Active Invasion of Oral and Aortic Tissues by Porphyromonas gingivalis in Mice Causally Links Periodontitis and Atherosclerosis. *PLoS One*. 2014; 9: e97811. DOI: https://doi.org/10.1371/journal.pone.0097811

132. Velsko IM, Chukkapalli SS, Rivera-Kweh MF, Zheng D, Aukhil I, Lucas AR, Larsva H, Kesavalu L. Periodontal pathogens invade gingival and aortic adventitia and elicit inflammasome activation in v6 integrin-deficient mice. *Infection and Immunity*. 2015; 83: 4582–4593. DOI: https://doi.org/10.1128/IAI.01077-15

133. Vidal F, Cordovil I, Figueredo CM, Fischer RG. Non-surgical periodontal treatment reduces cardiovascular risk in refractory hypertensive patients: A pilot study. *Journal of Clinical Periodontology*. 2013; 40: 681–687. DOI: https://doi.org/10.1111/jcpe.12110

134. Viereck V, Grundker C, Blaschke S, Frosh KH, Schoppmet E, Emonts G, Hofbauer LC. Atorvastatin stimulates the production of osteoprotegerin by human osteoblasts. *Journal of Cellular Biochemistry*. 2005; 96: 1244–1253. DOI: https://doi.org/10.1002/jcb.20598

135. Wilkins E, Wilson L, Wickramasinghe K, Bhatnagar P, Leal J, Luengo-Fernandez R, Burns R, Rayner M, Townsend N. European Cardiovascular Disease Statistics 2017. Brussels: European Heart Network. 2017.

136. Wright HJ, Matthews JB, Chapple IL, Ling-Mountford N, Cooper PR. Periodontitis associates with a type 1 IFN signature in peripheral blood neutrophils. *Journal of Immunology*. 2008; 181: 5775–5784. DOI: https://doi.org/10.4049/jimmunol.181.8.5775

137. Yagyu T, Kawakami M, Ueyama Y, Imada M, Kurihara M, Matusue Y, Imai Y, Yamamoto K, Kirita T. Risks of postextraction bleeding after receiving direct oral anticoagulants or warfarin:
A retrospective cohort study. *BMJ Open*. 2017; 7: e015952. DOI: https://doi.org/10.1136/bmjopen-2017-015952

138. **Yang J, Wu J, Liu Y, Huang J, Lu Z, Xie L, Sun W, Ji Y.** Porphyromonas gingivalis infection reduces regulatory T cells in infected atherosclerosis patients. *PLoS One*. 2014; 9: e86599. DOI: https://doi.org/10.1371/journal.pone.0086599

139. **Yang S, Shi Q, Liu J, Li J, Xu J.** Should oral anticoagulant therapy be continued during dental extraction? A meta-analysis. *BMC Oral Health*. 2016; 16: 81. DOI: https://doi.org/10.1186/s12903-016-0278-9

140. **Yang S, Zhao L, Cai C, Shi Q, Wen N, Xu J.** Association between periodontitis and peripheral artery disease: A systematic review and meta-analysis. *BMC Cardiovascular Disorders*. 2018; 18: 141. DOI: https://doi.org/10.1186/s12872-018-0879-0

141. **Yebyo HG, Aschmann HE, Kaufmann M, Puhan MA.** Comparative effectiveness and safety of statins as a class and of specific statins for primary prevention of cardiovascular disease: A systematic review, meta-analysis, and network meta-analysis of randomized trials with 94,283 participants. *American Heart Journal*. 2019; 210: 18–28. DOI: https://doi.org/10.1016/j.ahj.2018.12.007

142. **Zhou QB, Xia WH, Ren J, Yu BB, Tong XZ, Chen YB, Chen S, Feng L, Dai J, Tao J, Yang JY.** Effect of Intensive Periodontal Therapy on Blood Pressure and Endothelial Microparticles in Patients With Prehypertension and Periodontitis: A Randomized Controlled Trial. *Journal of Periodontology*. 2017; 88: 711–722. DOI: https://doi.org/10.1902/jop.2017.160447