Application of Artificial Neural Network for Modeling and Prediction of MTT Assay on Human Lung Epithelial Cancer Cell Lines

Taghipour M1,2, Vand AA3, Rezaei A2 and Karim GR*4
1Department of Biomedical Engineering, Faculty of medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
2Department of Computer Engineering, Islamic Azad University, Kermanshah, Iran
3Electrical Faculty, Kermanshah University of Technology, Kermanshah, Iran
4Department of Electrical Engineering, Razi University, Kermanshah, Iran

Abstract

In this paper, a three-layer artificial neural network (ANN) was investigated to predict the inhibitory concentration (IC) values assessed via MTT cell viability assay on the four types of human lung epithelial cancer cell lines. In order to achieve this purpose, a multilayer perceptron (MLP) neural network trained with back-propagation algorithm was employed for developing the ANN model. To develop the model, the input parameters were concentrations and types of cell lines and the outputs were IC10, IC20, IC30, IC40, IC50, IC60, IC70 and IC80 values in the A549, H157, H460 and H1975 cell lines. The proposed ANN model has achieved good agreement with the experimental data and has a small error between the estimated and experimental values. The obtained results show that the proposed ANN model is a useful, reliable, fast and cheap tool to predict the IC values assessed via MTT cell viability assays.

Keywords: MTT assay; Artificial neural network; Multilayer perceptron; Modeling; Inhibitory concentration

Abbreviations: ANN: Artificial Neural Network; RBF: Radial Basis Function; ANOVA: Analysis of Variance; CF: Correlation Factor; CO2: Carbon Dioxide; DMSO: Dimethyl Sulfoxide; DOX: Doxorubicin; FBS: Fetal Bovine Serum; IC: Inhibitory Concentration; IC50: Inhibitory Concentration of 50% Of Enzyme Activity; MAF: Mean Absolute Error; MRE: Mean Relative Error; MTT: 3-(4,5-Dimethyl-2-Thiazol)-2:5-Diphenyl-2H-Tetrazolium Bromide; MLP: Multilayer Perceptron; RMSE: Root Mean Square Error; RPMI: Roswell Park Memorial Institute Medium

Introduction

Many biological assays require the measurement of surviving and/or proliferating mammalian cells. This can be achieved by several methods, e.g., counting cells that include/exclude a dye, measuring released 51Cr-labeled protein after cell lysis, and measuring several methods, e.g., counting cells that include/exclude a dye, and/or proliferating mammalian cells. This can be achieved by RMSE: Root Mean Square Error; RPMI: Roswell Park Memorial Institute Medium

Artificial neural network (ANN) is a highly simplified model of the biological network structure[16,17]. The basic advantage of ANN is that it does not need any mathematical model; an ANN learns from examples and recognizes patterns in a series of input and output data without any prior assumptions about their nature and interrelations [17]. Moreover, ANN is a good alternative to conventional empirical modeling based on polynomial and linear regressions [18]. Thus, ANN is a typical non-mechanistic model for modeling complex information and is known to have two intrinsic advantages. The first is its flexible capacity in apprehending the data used for training. Being intrinsically nonlinear, a trained ANN can grasp certain subtle patterns that tend to be overlooked by common statistical methods. The second advantage is its high predictive accuracy, i.e., the predictive capability for “new” data (untrained data) [19-23]. The high predictive accuracy is an assured outcome of the ability of ANN to apprehend the data [21,24,25]. On recognizing and application these advantages of ANN in MTT assays, in the current study, we report the design, training and validation of a feed-forward ANN to predict the inhibitory concentration (IC) data such that the designed ANN would (A) make sufficient use of the existing ICs data of a table available of experimental data about chrysin enhances doxorubicin-induced cytotoxicity in human lung epithelial cancer cell lines by Brechbuhl et al. [13], (B) predict the ICs evaluated with a MTT assay in human lung epithelial cancer cell lines treated with chrysin before exposure to DOX. The predicted ICs are expected to fill the data gap for untested IC values with less waste of time and resources.

*Corresponding author: Karim GR, Department of Electrical Engineering, Razi University, Kermanshah, Iran, Tel: +98 0918237 9045; Fax: +98 831 427 4623; E-mail: ghkarimi@razi.ac.ir

Received March 18, 2015; Accepted June 17, 2015; Published June 27, 2015

Citation: Taghipour M, Vand AA, Rezaei A, Karim GR (2015) Application of Artificial Neural Network for Modeling and Prediction of MTT Assay on Human Lung Epithelial Cancer Cell Lines. J Biosens Bioelectron 6: 170. doi:10.4172/2155-6210.1000170

Copyright: © 2015 Taghipour M. et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Materials and Methods

Compiling MTT assay data for the ANN model

Materials, cell culture and MTT assay conditions: For training the ANN model, we used experimental data evaluated by Brechbuhl [13]. The cytotoxic effects of combination drug therapy with chrysin and DOX were determined against cell lines using MTT [1]. The lung non-small cell epithelial cancer cell lines A549, H157, H460 and H1975 were cultured at 37°C with 5% CO₂ and grown in media and supplements purchased from Mediatech (Manassas, VA). All cells were grown in RPMI media containing L-glutamine and supplemented with 10% FBS (Gemini Bio-Products, West Sacramento, CA). Cells were maintained in T-150 flasks and split into 96-well plates at least 18 h prior to treatment. H157 and A549 cells were seeded for treatment at 12,000 cells per well. H460 and H1975 cells were seeded for treatment at 10,000 cells per well. At the time of treatment all wells were approximately 70-75% confluent and were treated with fresh media containing the indicated compounds. After exposure, 20 µl/well of MTT solution (5 mg/ml phosphate buffered saline) was added and incubated for 3-4 h. The medium was aspirated and replaced with 150 µl/well DMSO to dissolve the formazan salt. The color intensity of the formazan solution, which reflects the cell growth condition, was measured at 570 nm using a Spectra Max 340PC plate reader (Molecular Devices, Sunnyvale, CA).

Statistical analysis of the MTT assay data: Experimental data evaluated by Brechbuhl [13] were expressed as the mean ± standard error of the mean (S.E.M.). All experiments included at least triplicate treatment groups and each experiment was repeated at least two times. ANOVA comparison, Tukey comparison, t-tests, linear regression curves and cytotoxities (IC₅₀) were calculated using Prism version 5 (GraphPad, San Diego, CA).

Modeling Approach

Artificial neural network

Artificial neural networks (ANN) is a good technique used to handle problems of modeling, prediction, control and classification [22]. An ANN is based on the operation of biological neural networks. The fundamental processing element of ANN is an artificial neuron (or simply a neuron). A biological neuron receives inputs from other sources, combines them, performs generally a nonlinear operation on the result, and then outputs the final result [20,23,25]. ANNs have been used in many different applications such as finance, medicine, engineering, geology and physics [19,22,23]. ANN eliminates the limitations of the classical approaches by extracting the desired information using the input data. Applying ANN to a system needs sufficient input and output data instead of a mathematical equation (or simply a neuron). A biological neuron receives inputs from other sources, combines them, performs generally a nonlinear operation on the result, and then outputs the final result [20,23,25]. ANNs have been used in many different applications such as finance, medicine, engineering, geology and physics [19,22,23]. ANN eliminates the limitations of the classical approaches by extracting the desired information using the input data. Applying ANN to a system needs sufficient input and output data instead of a mathematical equation (or simply a neuron). A biological neuron receives inputs from other sources, combines them, performs generally a nonlinear operation on the result, and then outputs the final result [20,23,25]. ANNs have been used in many different applications such as finance, medicine, engineering, geology and physics [19,22,23]. ANN eliminates the limitations of the classical approaches by extracting the desired information using the input data. Applying ANN to a system needs sufficient input and output data instead of a mathematical equation (or simply a neuron).

The output from qth neuron of the first hidden layer is given by [20]:

\[y_q = f \left(\sum_{k=1}^{p} (x_k W_{1q}) + b_1 \right) \quad q = 1,2,\ldots,Q \quad (1) \]

Where \(x \) is the inputs, \(Q \) is the number of neurons in the first hidden layer, \(p \) is the number of neurons in the input layer, \(b \) is the bias term, \(W \) is the weighting factor and \(f \) is the activation function of the first hidden layer. The output of the mth neuron in the output layer is given by:

\[y_m = \sum_{n=1}^{M} (\theta_n W_{mn}) + b_m \quad m = 1,2,\ldots,M \quad (2) \]

Where \(b \) is the bias term, \(W \) is weighting factor, \(s \) is the number of neurons in the second hidden layer, \(M \) is the number of neurons in the output layer.

Developing the model

The simplified overview of the proposed MLP model is shown in Figure 2. The inputs are concentrations and types of cell lines and the outputs are IC₁₀, IC₂₀, IC₃₀, IC₄₀, IC₅₀, IC₆₀, IC₇₀ and IC₈₀ values in the A549, H157, H460 and H1975 cell lines. The data set required for training the network is obtained using the experimental values [13]. For developing the ANN model, the experimental data are divided into two sets. The number of samples for training and testing are 21 (about 75%) and 7 (about 25%).

In this study, different ANN structures were tested and optimized to obtain the best ANN configuration. We tested many different structures with one, two, three and four hidden layers with different number of neurons in each layer also we tested Radial basis function (RBF) for prediction output. Table 1 show the comparison between these structures, where the mean relative error percentage (MRE %) is given by:

\[MRE\% = 100 \times \frac{\sum_{i=1}^{N} |X_i(Exp) - X_i(Pr ed)|}{X_i(Exp)} \]

Where \(X_i(Exp) \) is the experimental value, \(X_i(Pr ed) \) is the predicted value and \(N \) is the number of samples.
Citation: Taghipour M, Vand AA, Rezaei A, Karim GR (2015) Application of Artificial Neural Network for Modeling and Prediction of MTT Assay on Human Lung Epithelial Cancer Cell Lines. J Biosens Bioelectron 6: 170. doi:10.4172/2155-6210.1000170

Where N is the number of data and 'X(Exp)' and 'X(Pred)' stand for experimental and predicted (ANN) values respectively.

Also we tested many ANN configurations with different structure, different training algorithm and different number of epochs. Table 2 shows the obtained MRE% for these different ANN configurations. The best obtained ANN structure in Table 1 is the latest ANN structure in Table 2.

As it is shown in Tables 1 and 2, the MLP model with 2-11-8-9-8 structure (i.e., 2 neurons in the input layer, 11 neurons in the first hidden layer, 8 neurons in the second hidden layer, 9 neurons in the third hidden layer and 8 neurons in the output layer) has the least MRE%. Therefore, we selected this structure in this paper.

Results and Discussions

Table 3 shows the specification of the proposed ANN model. The training and testing results for the proposed ANN model in comparison with experimental results [13] are shown in Tables 4 and 5 respectively.

Table 6 shows the obtained errors for the proposed ANN model, where the mean absolute error percentage (MAE %), the root mean square error (RMSE), and the correlation factor (CF) of the proposed ANN models are calculated by:

\[
MAE\% = 100 \times \frac{1}{N} \sum_{i=1}^{N} \frac{|X(Exp) - X(Pred)|}{X(Exp)} \quad (7)
\]

\[
RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (X(Exp) - X(Pred))^2} \quad (8)
\]

\[
CF = 1 - \frac{\sum_{i=1}^{N} (X(Exp) - X(Pred))^2}{\sum_{i=1}^{N} X(Exp)^2} \quad (9)
\]

Where N is the number of data and 'X(Exp)' and 'X(Pred)' stand for experimental and predicted (ANN) values respectively.

Conclusion

In this paper, the inhibitory concentration (IC) values assessed via MTT cell viability assay on the four types of human lung epithelial cancer cell lines is modeled and predicted by artificial neural network. The proposed ANN model has achieved good agreement with the experimental data with minimum error. According to the obtained results from the ANN model and comparing them with the experimental results, it can be shown that ANN can be used in modeling and output prediction of the IC values assessed via MTT cell viability assays. Seems that the biggest achievement of the Modeling and prediction of the inhibitory concentration values assessed via MTT cell viability assay on human lung epithelial cancer cell lines co-treated with chrysin and doxorubicin.

Table 1: Average of MRE% for all outputs for different ANN structures.

ANN Structure	Average of MRE%	
	Train	Test
2-8-11-8	1.203	15.375
2-12-10-8	4.635	22.25
2-7-8-8	6.505	21.625
2-9-8	8.95	23.5
2-11-8-9-8	0.311	11.375
2-10-8-11-8	2.78	16.05
2-7-2-12-8	3.437	16.5
2-7-10-12-8	2.020	14.5
2-9-7-11-8	7.046	14.625
RBF	1.977e-13	61.323

Table 2: Comparison of the ANN configurations with different training algorithm, number of hidden layers and number of epochs.
Table 3: Comparison of the ANN configurations with different training algorithms, number of hidden layers and number of epochs.

Type of cell lines	Concentration	Experimental (Brechbuhl et al., 2012)	ANN						
		IC10	IC20	IC30	IC40	IC50	IC60	IC70	IC80
A549	0	0.04	0.039	0.158	0.245	0.365	0.543	0.639	1.43
	5	0.041	0.085	0.137	0.203	0.291	0.418	0.62	1
	10	0.04	0.081	0.128	0.187	0.264	0.374	0.545	0.864
	20	0.029	0.061	0.099	0.147	0.212	0.306	0.456	0.742
	25	0.018	0.048	0.085	0.14	0.223	0.354	0.587	1.087
A549	30	0.017	0.045	0.086	0.146	0.238	0.388	0.661	1.267
H157	5	0.075	0.135	0.199	0.274	0.367	0.492	0.678	1
	10	0.095	0.153	0.212	0.275	0.35	0.446	0.581	0.801
	15	0.072	0.124	0.179	0.241	0.317	0.417	0.562	0.809
	20	0.062	0.114	0.171	0.239	0.325	0.442	0.671	0.928
	25	0.075	0.132	0.193	0.264	0.351	0.467	0.638	0.932
H157	30	0.075	0.132	0.193	0.264	0.351	0.467	0.638	0.932

Table 4: Specification of the best proposed ANN model.

Type of cell lines	Concentration	Experimental (Brechbuhl et al., 2012)	ANN						
		IC10	IC20	IC30	IC40	IC50	IC60	IC70	IC80
A549	0	0.031	0.062	0.1	0.147	0.21	0.3	0.441	0.707
	5	0.065	0.147	0.253	0.393	0.589	0.884	1.38	2.36
	10	0.091	0.15	0.209	0.247	0.351	0.451	0.591	0.823
	20	0.05	0.016	0.021	0.026	0.033	0.035	0.052	0.07
	25	0.004	0.007	0.009	0.013	0.016	0.026	0.026	0.036
H157	0	0.014	0.025	0.036	0.05	0.066	0.087	0.119	0.173
	5	0.018	0.024	0.03	0.036	0.042	0.049	0.058	0.072
	10	0.013	0.017	0.021	0.024	0.028	0.033	0.038	0.047
	15	0.013	0.019	0.024	0.029	0.034	0.041	0.056	0.065
	20	0.013	0.019	0.024	0.029	0.034	0.041	0.056	0.065
	25	0.015	0.025	0.033	0.043	0.041	0.049	0.057	0.065

Table 5: The Comparison between experimental and predicted ANN results for training data.
Testing data.

Table 6: The Comparison between experimental and predicted ANN results for testing data.

IC	Output	MAE	RMSE	CF		
	Train	Test	Train	Test	Train	Test
IC10	1.52E-05	0.006638	2.62E-05	0.010782	0.999999	0.935947
IC20	4.28E-05	0.007065	7.21E-05	0.011347	0.999999	0.98275
IC30	7.02E-05	0.006433	1.01E-04	0.011026	0.999999	0.96767
IC40	0.000134	0.009188	0.000218	0.016406	0.999998	0.994751
IC50	0.000138	0.009188	0.000218	0.016406	0.999998	0.994751
IC60	0.000121	0.035157	0.000216	0.077989	0.999999	0.9862
IC70	0.000139	0.072462	0.000288	0.157204	0.999999	0.971827
IC80	0.000139	0.072462	0.000288	0.157204	0.999999	0.971827
IC90	1.52E-05	0.006638	2.62E-05	0.010782	0.999999	0.935947

Figure 3: Comparison with the experimental for IC\textsubscript{50} as a function of Chrysin on DOX-induced cytotoxicity in A549, H157, H460 and H1975 cell lines.

Figure 4: Comparison of the ANN and experimental results for IC\textsubscript{50} as a function of Chrysin on DOX-induced cytotoxicity in A549, H157, H460 and H1975 cell lines.

References

1. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65: 55-63.
2. Stockert JC, Blázquez-Castro A, Caffete M, Horobin RW, Villanueva A (2012) MTT assay for cell viability: Intracellular localization of the formazan product is in lipid droplets. Acta Histochem 114: 785-796.
3. Kimen JA (2001) Classification and naming of dyes, stains and fluorochromes. Biotech Histochem 76: 261-278.
4. Berridge MV, Herst PM, Tan AS (2005) Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnol Annu Rev 11: 127-152.
5. van Meerloo J, Kaspers GJ, Gloos J (2011) Cell sensitivity assays: the MTT assay. Methods Mol Biol 731: 237-245.
6. Tan F, Wang M, Wang W, Lu Y (2008) Comparative evaluation of the cytotoxicity sensitivity of six fish cell lines to four heavy metals in vitro. Toxicol In Vitro 22: 164-170.
7. Carmichael D, DeGraff WG, Gazdar AF, Minna JD, Mitchell JB (1987) Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res 47: 936-942.
8. Chiba K, Kawakami K, Tohyama K (1998) Simultaneous evaluation of cell viability by neutral red, MTT and crystal violet staining assays of the same cells. Toxicol In Vitro 12: 251-258.
9. Denizol F, Lang R (1986) Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods 89: 271-277.
10. Gerlier D, Thomasell N (1986) Use of MTT colorimetric assay to measure cell activation. J Immunol Methods 94: 57-63.
11. Bogdanov A, Gko A, Dordov A, Canadanovi-Brunet J, Vojinovic-Miloradov M, et al. (2004) Modulating activity of fullerol C60(OH)22 on doxorubicin-induced cytotoxicity. Toxicol In Vitro 18: 629-637.
12. Stewart CF, Ratian M (2001) Pharmacology of cancer chemotherapy, topoisomerase interactive agents, Lippincott Williams and Wilkins, Philadelphia.
13. Brechbuhl HM, Kachadorian R, Min E, Chan D, Day BJ (2012) Chrysirnin enhances doxorubicin-induced cytotoxicity in human lung epithelial cancer cell lines: the role of glutathione. Toxicol Appi Pharmacol 258: 1-9.
14. Ramos S (2008) Cancer chemoprevention and chemotherapy: dietary polyphenols and signalling pathways. Mol Nutr Food Res 52: 507-526.
15. Walle UK1, Galijatovic A, Walle T (1999) Transport of the flavonoid chrysirnin and its conjugated metabolites by the human intestinal cell line Caico-2. Biochem Pharmacol 58: 431-438.
16. Khajeh M, Moghadam MG, Shakeri M (2012) Application of artificial neural network in predicting the extraction yield of essential oils of Diplotaenia cachrydifolia by supercritical fluid extraction. The Journal of Supercritical Fluids 69: 91-6.
17. Mandal S, Sivaprasad PV, Venugopal S, Murthy KPN (2009) Artificial neural network modeling to evaluate and predict the deformation behavior of stainless steel type AISI 304L during hot torsion. Applied Soft Computing 9: 237-244.
18. Kose E (2008) Modelling of colour perception of different age groups using artificial neural networks. Expert Systems with Applications An International Journal 34: 2129-2139.
19. Dehlaghi V, Taghipour M, Haghparast A, Roshani GH, Rezaei A, et al. (2015) Prediction of the thickness of the compensator filter in radiation therapy using artificial neural networks. Expert Systems with Applications An International Journal archive 34: 2129-2139.
20. Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Networks 2: 53-67.
21. Hornik K (1991) Approximation capabilities of multilayer feedforward networks. Neural Networks 4: 251-257.
22. Mahbub M, Taghipour M, Roshani G, Habibi M (2014) Approach to the Highest HXR Yield in Plasma Focus Device Using Adaptive Neurofuzzy Inference System to Optimize Anode Configuration. Journal of Experimental Physics.
23. Salehizadeh A, Taghipour M, Nazemi R, Roshani GH, Amir S, et al. (2014) Prediction of Optimum Design of Anode Shape for Obtaining Highest Soft
X-Ray Yield in plasma Focus Device Using Adaptive Neuro-Fuzzy Inference System.

24. Adineh-Vand A, Torabi M, Roshani G, Taghipour M, Feghhi S, et al. (2014) Application of Adaptive Neuro-Fuzzy Inference System for Prediction of Neutron Yield of IR-IECF Facility in High Voltages. Journal of Fusion Energy 33: 13-9.

25. Meng Y, Lin BL (2008) A feed-forward artificial neural network for prediction of the aquatic ecotoxicity of alcohol ethoxylate. Ecotoxicol Environ Saf 71: 172-186.

26. Taylor JG (1996) Neural networks and their applications, John Wiley and Sons Ltd, West Sussex, United Kingdom.

27. Bas D, Boyaci IH (2007) Modeling and optimization II: Comparison of estimation capabilities of response surface methodology with artificial neural networks in a biochemical reaction. Journal of Food Engineering 78: 846-854.