Predictions for Impurity-Induced T_c Suppression in the High-Temperature Superconductors

R. J. Radtke and K. Levin

Department of Physics and the James Franck Institute,
The University of Chicago, Chicago, Illinois 60637

H.-B. Schüttler

Department of Physics and Astronomy, The University of Georgia, Athens, Georgia 30602

M. R. Norman

Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439

We address the question of whether anisotropic superconductivity is compatible with the evidently weak sensitivity of the critical temperature T_c to sample quality in the high-T_c copper oxides. We examine this issue quantitatively by solving the strong-coupling Eliashberg equations numerically as well as analytically for s-wave impurity scattering within the second Born approximation. For pairing interactions with a characteristically low energy scale, we find an approximately universal dependence of the d-wave superconducting transition temperature on the planar residual resistivity which is independent of the details of the microscopic pairing. These results, in conjunction with future systematic experiments, should help elucidate the symmetry of the order parameter in the cuprates.

PACS numbers: 74.62.Dh, 74.20.Mn, 74.72.Bk, 74.25.Fy

Typeset Using REVTEX
A growing body of experimental evidence has been interpreted as supporting an anisotropic pairing state in the high-temperature superconductors [1]. There are indications, however, that the measured values of the superconducting critical temperature T_c do not depend strongly on sample quality. Because both magnetic and non-magnetic impurities are pair-breaking in anisotropic superconductors [2], this latter statement appears to be incompatible with anisotropic pairing.

Two arguments can be offered to explain this apparent contradiction, but neither is quantitative enough to settle the issue. First, the coherence lengths $\xi \approx 10$ Å in the cuprates, while the mean free paths $l \approx 100 - 200$ Å [3]. Since one expects T_c to be affected by impurities only when $\xi \sim l$, the small ratio $\xi/l \approx 0.1$ suggests that T_c should not be sensitive to defects. However, for magnetic impurities in s-wave superconductors, superconductivity is completely destroyed for $\xi/l \approx 0.12 - 0.17$ [4], implying that ξ/l in the cuprates may not be small enough to avoid an impurity-induced reduction of T_c. Second, one observes significant inelastic scattering in these materials which could act to mask impurity effects. Inelastic scattering would only be able to screen the defects effectively if the inelastic mean free path were much shorter than the impurity mean free path. Estimates of these quantities [3,5] indicate that they are comparable in high-quality samples.

In this paper, we examine quantitatively the effect of impurities in the cuprates by generalizing the Abrikosov-Gor’kov scaling law [4] to anisotropic strong-coupling superconductors. We present model-independent predictions of T_c as a function of planar residual resistivity due to non-magnetic impurities for a 90 K d-wave superconductor and compare these results to the response of an s-wave superconductor. We also check the validity of this analytical result by calculating numerically the suppression of T_c induced by structureless impurities treated within the second Born approximation and in strong-coupling Eliashberg theory. Finally, we discuss how these predictions may be tested experimentally. Other authors have examined this question using analytical [2] as well as numerical techniques [6,7,8]. The goal of the present work, however, is to quantify the expected T_c suppression for d-wave models of the high-temperature superconductors, so that the d-wave hypothesis can be more directly
We compute T_c in the presence of impurities from the standard mean field formalism in which the electron self-energy is solved self-consistently from the single-exchange graph. This approach is justified if Migdal’s theorem applies, which is the case in conventional, phonon-mediated superconductors, but it is not clear whether a similar result holds in the high-temperature superconductors. Nonetheless, we follow other authors and assume that this result holds in what follows.

In most of our calculations, we employ the standard set of approximations to this mean-field theory in order to simplify the resulting Eliashberg equations. These simplified equations are discussed in more detail in Ref. The central approximation in this approach is to limit the wavevectors of the electron self-energy and pairing potential to the Fermi surface, so we refer to the solution of these approximate equations as the Fermi-surface-restricted solution. For comparison, we have also solved the Eliashberg equations without these approximations on two-dimensional lattices of small size (64 x 64, 32 x 32) using recently developed fast Fourier transform techniques. We refer to the solution of these equations as the exact solution.

Of the models of d-wave superconductors available, we employ a spin-fluctuation-mediated pairing interaction with a spectrum constrained by neutron scattering in $\text{YBa}_2\text{Cu}_3\text{O}_{6.7}$. Solving the Fermi-surface-restricted equations with the pairing potential and band structure discussed in Ref. gives us the critical temperature as a function of the bare impurity scattering rate τ_{imp}^{-1}. (Throughout this paper, we set $\hbar = k_B = 1$). We compute T_c vs. τ_{imp}^{-1} for a variety of critical temperatures in the absence of impurities T_{c0} and in both the weak- (inelastic scattering ignored) and strong- (inelastic scattering included) coupling cases. Although we vary the T_{c0}’s in this paper, constraints on the electron-spin fluctuation coupling constant imposed by ac conductivity require that $T_{c0} = 7.2$ K in this model. For comparison, we also compute the impurity-induced T_c suppression from the exact Eliashberg equations for the Monthoux-Pines spin-fluctuation model with a coupling constant chosen so that $T_{c0} = 100$ K.
We will show that these numerical results can be approximately collapsed to a universal curve. One can deduce that the form of this curve for d-wave superconductors is

\[-\ln\left(\frac{T_c}{T_{c0}}\right) = \psi\left(\frac{1}{2} + \frac{\alpha T_{c0}}{2\pi T_c}\right) - \psi\left(\frac{1}{2}\right), \]

(1)

where \(\psi(z)\) is the digamma function, \(\alpha = 1/(2(1 + \lambda_Z)\tau_{imp} T_{c0})\) is the strong-coupling pair-breaking parameter, and \(\lambda_Z = 1 - \langle Im[\Sigma^{boson}(k, i\omega_0)]\rangle/\omega_0\). In this last equation, \(\Sigma^{boson}(k, i\omega_0)\) refers to the self-energy of the pairing boson at the lowest fermionic Matsubara frequency \(\omega_0 = \pi T_{c0}\), and the angle brackets denote an average over the Fermi surface. We note that, for an s-wave superconductor with magnetic impurities, Eq. (1) would still apply, but without the factor of two in \(\alpha\). We note that individual aspects of this formulation have appeared in the works of other authors [2,4,9]; in particular, this form of the pair-breaking parameter can be found in Ref. [2].

In order to make contact with experiment, we represent the pair-breaking parameter \(\alpha\) in terms of the planar residual resistivity \(\rho_0\). From the Kubo formula under the standard assumptions that the pairing boson energy is small compared to the electronic energies and that vertex corrections are not important [18], the real part of the low frequency residual electrical conductivity is given by

\[\text{Re} \sigma(\omega) = \frac{\omega_{pl}^2}{4\pi} \frac{\tau_{imp}^*}{1 + \omega^2 \tau_{imp}^*}. \]

(2)

In this equation, \(\omega_{pl}^2 = \omega_{pl}^2/(1 + \lambda)\) is the renormalized plasma frequency which is measured experimentally,

\[\frac{1}{\tau_{imp}^*} = \frac{1}{1 + \lambda} \frac{1}{\tau_{imp}} \]

(3)

is the renormalized scattering rate due to impurities, and \(\lambda = -\left\langle \partial \text{Re}\Sigma^{boson}(k, \omega)/\partial \omega\right\rangle\big|_{\omega=0}\) is the mass renormalization parameter due to the pairing bosons. At zero temperature, \(\lambda\) is equal to the inelastic scattering parameter from the Eliashberg equations \(\lambda_Z\). Since the characteristic energy of the pairing boson is low compared to other electronic energy scales (i.e., of the order of \(T_c\)), we find that \(\lambda \cong \lambda_Z\) to within 5-10% at \(T_c\). Combining this result with Eq. (2) and the definition of the pair-breaking parameter \(\alpha\), we see that
\[\rho_0 \approx \frac{4\pi}{\omega_{pl}^2} 2T_{c0} \alpha. \] (4)

We emphasize that Eq. (4) allows us to predict the \(T_c \) suppression as a function of planar residual resistivity from the experimentally observed plasma frequency \(\omega_{pl}^2 \) and the critical temperature \(T_{c0} \) independently of any microscopic model.

Having set up the formalism for our calculations, we will now discuss the results. Fig. 1 shows \(T_c/T_{c0} \) vs. scattering rate from non-magnetic impurities for a selection of \(T_{c0} \)'s in the model d-wave superconductor of Ref. [15]. Since \(T_{c0} \) is inversely proportional to the coherence length \(\xi \), the different curves in each figure correspond to different \(\xi \)'s. Both weak- (Fig. 1(b)) and strong- (Fig. 1(a)) coupling calculations show that, as \(T_{c0} \) increases (\(\xi \) decreases), the superconductor becomes less sensitive to the presence of non-magnetic impurities. In addition, by comparing curves in Figs. 1(a) and 1(b) with the same \(T_{c0} \), we see that the strong-coupling curves (which include the effects of inelastic scattering) are less sensitive to impurities than the weak-coupling results [19]. These trends conform to the qualitative expectations discussed in the introduction.

To confirm the validity of our analytical results for the scaling function Eq. (1), we plot in Fig. 2 the numerical data in Fig. 1 in terms of the scaled variables \(T_c/T_{c0} \) and \(\alpha \). As can be seen from the figure, all of the scaled curves cluster near the scaling function. Note that the data in Fig. 2 include both weak- and strong-coupling results; moreover, even the curve from Fig. 1(a) with nearly the maximum achievable \(T_{c0} = 50 \) K falls near the scaling curve. In the inset to Fig. 2, we display the impurity-induced suppression of a 100 K d-wave superconductor in the Monthoux-Pines model computed from the exact Eliashberg equations. When plotted in terms of \(T_c/T_{c0} \) and \(\alpha \), this model also produces a \(T_c \) suppression which is close to the scaling function Eq. (1).

Having established the validity of the scaling law, we use this relation to predict the response of a 90 K superconductor to non-magnetic impurities. In Fig. 3, the shaded region corresponds to the d-wave \(T_c \) computed from Eqs. (1) and (4) for plasma frequencies \(\omega_{pl}^* \) ranging from 1.1 to 1.4 eV as a function of the planar residual resistivity \(\rho_0 \). These plasma
frequencies are chosen to reflect the range of experimental uncertainty in ω_{μ}^* in YBa$_2$Cu$_3$O$_7$ [20]. For comparison, Fig. 3 also shows the expected response of an s-wave superconductor to non-magnetic impurities (dashed line); in accordance with Anderson’s theorem [21], these impurities have no effect on T_c.

In addition to the uncertainty in the plasma frequency, the accuracy of the prediction in Fig. 3 is affected by the applicability of the scaling law and the assumption of structureless impurities. From Fig. 2, one can see a systematic trend away from the scaling curve as T_{C0} increases. For a 90 K superconductor, this error amounts to roughly a 20% correction to the horizontal scale in Fig. 3, which is about the same magnitude as the uncertainty in the plasma frequency. The effect of ignoring the wavevector dependence of the impurity scattering matrix element is more difficult to estimate. In extreme cases, impurities with wavevector structure could alter the scale on the horizontal axis by a factor of two [2]. Even considering these caveats, if the superconducting order parameter has d-wave symmetry, then the prediction in Fig. 3 should give the correct scale for the residual resistivity at which significant depression of the critical temperature will occur in YBa$_2$Cu$_3$O$_7$.

Experimentally, one can estimate the residual resistivity ρ_0 by extrapolating the measured linear resistivity vs. temperature for temperatures T greater than T_c to $T = 0$. It is found that this extrapolated planar ρ_0 is about 20 $\mu\Omega$-cm. in high-quality twinned crystals of YBa$_2$Cu$_3$O$_7$ and is roughly -20 $\mu\Omega$-cm. in the best untwinned crystals. A negative extrapolated value of ρ_0 means that the resistivity in the absence of superconductivity could not remain linear all the way down to zero temperature, but must turn over to some higher power law. The T_c’s of twinned and untwinned crystals are about the same, despite the fact that the change in residual resistivity is of order 20 $\mu\Omega$-cm. between the two types of samples. By contrast, if YBa$_2$Cu$_3$O$_7$ were a d-wave superconductor, then, according to Fig. 3, T_c would be strongly suppressed.

This naive argument against the d-wave scenario is not strictly correct, since our calculations have focused entirely on a single CuO$_2$ plane, which implies that the residual resistivity in Fig. 3 represents only the planar contribution to ρ_0 and does not include the contribution
from the CuO chains. For this reason, one can not simply take existing measurements of
\(T_c \) and \(\rho_0 \) in polycrystalline or untwinned samples and infer unambiguous evidence for or
against d-wave superconductivity; more systematic experiments are required.

Currently, two methods could be used to perform such systematic experiments: substitution
and irradiation. Substitutional studies [22,23,24] are able to introduce defects mainly
in the CuO\(_2\) planes, as required, but find that the induced defects are generally magnetic.
Abrikosov-Gor’kov-like behavior given by Eq. (1) is then to be expected and provides no
qualitative distinction between s- and d-wave pairing. Alternatively, defects can be induced
by irradiation [25,26,27], but the location of these defects is often uncontrolled. Recent
experiments [28], though, suggest that low-energy electrons may preferentially disorder the
Cu or O in the planes, which would enable a comparison of irradiation data with our pre-
dictions. Current irradiation studies show that \(T_c \) decreases linearly with fluence, as one
would expect for weak disorder in the scaling curve of Eq. (1), but it is not known how the
fluence is correlated to the residual resistivity or whether the induced defects carry magnetic
moments or not. Thus, although it is not yet possible to make a quantitative comparison
of our results with current experiments, such a comparison should be possible with future
systematic measurements. We hope that the present paper will serve as a stimulus for such
experiments.

ACKNOWLEDGMENTS

This work was supported by NSF-STC-9120000. HBS was also supported by NSF-
DMR-8913878 and NSF-DMR-9215123 and MRN by the U. S. Department of Energy, BES-
Materials Sciences, under Contract #W-31-109-ENG-38. We also acknowledge helpful con-
versations with G. W. Crabtree, J. Giapintzakis, D. M. Ginsberg, W.-K. Kwok, S. L. Cooper,
and T. Timusk.
REFERENCES

[1] S. E. Barrett et al., Phys. Rev. Lett. 66, 108 (1991); Z.-X. Shen et al., Phys. Rev. Lett. 70, 1553 (1993); W. N. Hardy et al. (unpublished).

[2] A. J. Millis et al., Phys. Rev. B 37, 4975 (1988). This reference contains several results regarding the effect of impurities and the consequences of pair-breaking on the critical temperatures of anisotropic superconductors which are similar to our own. However, these authors concentrate on the heavy fermion superconductors, whereas we focus on properties of the cuprate superconductors.

[3] B. Batlogg, Phys. Today, June 1991, p. 44.

[4] A. A. Abrikosov and L. P. Gor’kov, Zh. Eksp. Teor. Fiz. 39, 1781 (1960) [Sov. Phys.–JETP 12, 1243 (1961)]; see also K. Maki, in Superconductivity, edited by R. D. Parks (Marcel Dekker, New York, 1969), Vol. 2.

[5] J. Orenstein et al., Phys. Rev. B 42, 6342 (1990).

[6] P. Monthoux et al., Phys. Rev. B 46, 14803 (1992).

[7] St. Lenck and J. P. Carbotte, Phys. Rev. B 46, 14850 (1992).

[8] Takashi Hotta, J. Phys. Soc. Jpn. 62, 274 (1993).

[9] P. B. Allen and B. Mitrovic in Solid State Physics, Vol. 37, edited by H. Ehrenreich, F. Seitz, and D. Turnbull (Academic, New York, 1982).

[10] A. B. Migdal, Zh. Eksp. Teor. Fiz. 34, 1438 (1961) [Sov. Phys.–JETP 7, 996 (1958)].

[11] D. J. Scalapino in Superconductivity, edited by R. D. Parks (Marcel Dekker, New York, 1969), Vol. 1.

[12] For the case of antiferromagnetic spin-fluctuation-mediated interactions, work by A. J. Millis [Phys. Rev. B 45, 13047 (1992)] has indicated that there may be a Migdal theorem which holds for this type of pairing mechanism, but this conclusion is controversial. For
an opposing point of view, see A. Kampf and J. R. Schrieffer, Phys. Rev. B 41, 6399 (1990); ibid. 42, 7967 (1990).

[13] P. Monthoux et al., Phys. Rev. Lett. 67, 3448 (1991); ibid. 69, 961 (1992); Phys. Rev. B 47, 6069 (1993); and Nuovo Cimento D (to be published).

[14] K. Ueda et al. J. Phys. Chem. Solids 53, 1515 (1992).

[15] R. J. Radtke et al., Phys. Rev. B 46, 11975 (1992).

[16] J. W. Serene and D. W. Hess, Phys. Rev. B 44, 3391 (1991).

[17] N. Bulut et al., Phys. Rev. B 47, 2742 (1993); S. R. White et al., ibid. 39, 839 (1989).

[18] We evaluate the Kubo formula as in G. D. Mahan, Many-Particle Physics, 1st ed. (Plenum, New York, 1981), Chapter 7, and consider the zero-temperature limit.

[19] Although the \(T_{c0} = 50 \) K curve in Fig. 1(a) appears to be very insensitive to impurity content, this appearance is an artifact of plotting \(T_c/T_{c0} \) against the bare lifetime; when plotted against the (observable) renormalized lifetime, the decrease in \(T_c \) for all the curves is similar. This behavior is demonstrated explicitly in the scaling curve (Fig. 2).

[20] T. Timusk, private communication.

[21] P. W. Anderson, J. Phys. Chem. Solids 11, 26 (1959).

[22] J. T. Markert et al., in Physical Properties of High Temperature Superconductors I, edited by D. M. Ginsberg (World Scientific, Singapore, 1989), p. 265.

[23] C. I. Chien et al., in Superconductivity and Its Applications, edited by H. S. Kwok and D. T. Shaw (Elsevier, New York, 1988), p. 110.

[24] Gang Xiao et al., Nature (London) 332, 238 (1988) and Phys. Rev. B 42, 8752 (1990).

[25] A. E. White et al., Appl. Phys. Lett. 53, 1010 (1988).

[26] H. Vichery et al., Physica C 159, 697 (1989).
[27] A. Hofmann et al., Physica C 156, 528 (1988).

[28] J. Giapintzakis et al., Phys. Rev. B 45, 10677 (1992) and in Proceedings of Symposium S of the MRS Spring 1992 Meeting, Vol. 275, p. 741 (1992).
FIGURES

FIG. 1. Critical temperature T_c normalized by the critical temperature in the absence of impurities T_{c0} vs. the bare impurity scattering rate τ_{imp}^{-1} in meV for the model of Ref. [15] in the (a) strong-coupling and (b) weak-coupling cases calculated in the Fermi-surface-restricted Eliashberg formalism. The T_{c0}'s are 7.2 K (circle), 31.6 K (box), and 50.2 K (triangle); solid symbols denote strong-coupling results and empty symbols denote weak-coupling results. The solid lines are to guide the eye.

FIG. 2. Normalized critical temperature T_c/T_{c0} vs. pair-breaking parameter $\alpha = 1/2(1 + \lambda_Z)\tau_{imp}T_{c0}$ for the data in Fig. 1. Plot symbols are the same as in Fig. 1 with the solid symbols denoting strong-coupling calculations and the open symbols denoting weak-coupling calculations. For comparison, the analytic form of the scaling function [Eq. (1)] is plotted as a plain solid line. Inset: Normalized critical temperature vs. pair-breaking parameter for the model of Refs. [6] and [13] calculated from the exact Eliashberg equations with the coupling chosen so that $T_{c0} = 99.4$ K.

FIG. 3. Prediction of T_c as a function of the in-plane residual resistivity ρ_0 due to non-magnetic impurities in a 90 K superconductor with a d-wave (shaded area) or an s-wave (dashed line) order parameter. The d-wave curve is computed from the generalized Abrikosov-Gor’kov form [Eqs. (1) and (3)] for experimental plasma frequencies ω_{pl}^* between 1.1 and 1.4 eV, and the s-wave curve is simply a straight line due to Anderson’s theorem.