Some Properties of Alphabet Overlap Graphs

Anant P. Godbole, Debra Knisley, and Rick Norwood
Department of Mathematics
East Tennessee State University

March 29, 2022

Abstract

Consider a graph $G = G(k, d, s)$ with the vertex set $V = \{v : v = (v_1, \ldots, v_k); v_i \in \{1, 2, \ldots, d\}(1 \leq i \leq k)\}$, the set of all k-letter “words” over an “alphabet” of size d. Furthermore, there will be an edge between vertices $v \neq w$ iff the last $k - s$ letters of v are the same as the first $k - s$ letters of w or the first $k - s$ letters of v are the same as the last $k - s$ letters of w. In this paper, we show that G is Hamiltonian for all non-trivial values of the parameters, and obtain exact values for its chromatic number when $s \geq k/2$ and bounds on its chromatic number when $s < k/2$.

Keywords: Alphabet overlap graphs; Hamiltonicity; chromatic number; planarity; domination number.

Abstract

Consider a graph $G = G(k, d, s)$ with the vertex set $V = \{v : v = (v_1, \ldots, v_k); v_i \in \{1, 2, \ldots, d\}(1 \leq i \leq k)\}$, the set of all k-letter “words” over an “alphabet” of size d. Furthermore, there will be an edge between vertices $v \neq w$ iff the last $k - s$ letters of v are the same as the first $k - s$ letters of w or the first $k - s$ letters of v are the same as the last $k - s$ letters of w. In this paper, we show that G is Hamiltonian for all non-trivial values of the parameters, and obtain exact values for its chromatic number when $s \geq k/2$ and bounds on its chromatic number when $s < k/2$.

Keywords: Alphabet overlap graphs; Hamiltonicity; chromatic number; planarity; domination number; deBruijn cycles.
1 Introduction

Consider a graph $G = G(k, d, s)$ with the vertex set

$$V = \{v : v = (v_1, \ldots, v_k); v_i \in \{1, 2, \ldots, d\} (1 \leq i \leq k)\},$$

the set of all k-letter “words” over an “alphabet” of size d. We shall refer to the coordinates of v as “letters,” and draw the reader’s attention to the cases $d = 2, d = 4, d = 20, \text{and } d = 26$ as providing concrete applications to binary words; DNA sequences; protein sequences; and words from the English language respectively. Furthermore, there is an edge between vertices v and w iff $v \neq w$ and the last $k - s$ letters of v are the same as the first $k - s$ letters of w or the first $k - s$ letters of v are the same as the last $k - s$ letters of w. In this paper, we

(a) show that G is Hamiltonian for all non-trivial values of the parameters $k, d,$ and s, and

(b) find exact values for the chromatic number $\chi(G)$ when $s \geq k/2$ and bounds on $\chi(G)$ when $s < k/2$.

(The result in part (a) is well known when $s = 1$ and can easily be extended to the case where $s \leq k/2$, so the novelty lies in the method of proof and the case where $s > k/2$.)

We exhibit similarities and distinctions between G and (i) the standard k-cube and (ii) the k-dimensional grid on d^k points. We call G an alphabet overlap graph, noting that the authors of [2] have studied similar graphs - calling them (α, k) labeled graphs (their “α” is the same as our “d”). In their nomenclature, our graphs would be best termed complete (d, k) labeled graphs. The motivation in [2] was (i) to investigate connections between families of such graphs with different parameter values; (ii) to develop recognition algorithms; and (iii) to consider the case $d \to \infty$, whereas we are more interested in the structural properties of alphabet overlap graphs.

Discrete mathematics, graph theory in particular, is playing an ever increasing role in the science of molecular biology. This is evidenced, in part, by DIMACS’s “Special Years of Focus on Computational Biology” (2000-2003); see [9] for details. With the increased quantity and complexity of biodata, new tools and frameworks are being developed to recognize and understand the many processes involved. Graph theoretical approaches which employ such tools as minimum spanning trees and bipartite matchings are appearing more frequently in the literature. The whole field representing the interplay between graph theory and molecular biology thus appears to be one
of the more exciting emerging areas of interdisciplinary research, as further evidenced by, e.g., the Special Session on Applications of Graph Theory in Molecular Biology held at the 2002 SIAM Discrete Mathematics Meeting in San Diego, and chaired by the second-named author of this paper. Earlier work on the interface between graph theory and biology may be found in [13].

Researchers in discrete probability have long studied *random letter generation* from a *d*-letter alphabet; see, e.g., [1] or the collection of papers in [11]. In this case, a Markov chain model is often appropriate with a “transition” from the state \(v = (v_1, \ldots, v_k) \) to \(w = (v_2, \ldots, v_k, w_1) \) occurring, for each value of \(w_1 \), with probability \(1/d \). (In our context, however, the stated caveat that \(v \neq w \) does somewhat more than simply reflect that fact that our graph has no loops; it states that probabilistically feasible transitions such as those from AAAAA to AAAAAA will not be allowed in the graph structure). If we randomly generate \(n \) letters from a *d*-letter alphabet, then there are \(n-k \) transitions of the type described above, and researchers have studied random variables such as \(X \), defined as the number of occurrences, with overlaps possibly allowed, of fixed words such as “ABRACADABRA”. The literature is replete with results along these lines, complete with distributional approximations, multivariate analogs, and connections with the overlap structure of the word in question. See [15] for results of a different kind and [12] for a landmark paper than provides necessary and sufficient conditions for a set \(A \) of integers to be the set of periods of some string.

From a lay point of view, our main result on Hamiltonicity alluded to above states, for example, that we may start with any eight letter English word such as CATACOMB, make a “transition” to ATACOMBO, and continue to make transitions so that no word is obtained twice; each of the \(26^8 \) words of length 8 are covered; and the starting word CATACOMB is recovered at the end of the Hamiltonian cycle. The same is true of any longer starting document such as President George W. Bush’s inaugural address, or, using the standard keyboard as an alphabet, even the .tex file corresponding to a long mathematical paper. From a technical point of view, we note that when \(s = 1 \), the Hamiltonicity of \(G \) is equivalent to the existence of a deBruijn cycle on the set of all \(k \)-letter words on a *d*-letter alphabet, which in turn may be viewed as an efficient ordering of this set. An entire workshop was held recently at the Banff International Research Station that focused exclusively on deBruijn cycles and Gray codes; see [10] for details.

The standard sufficient conditions for Hamiltonicity due to Dirac et al.
e.g., Chapter 10 in [7] are simply not valid in our context, nor are more recent criteria such as the one in [14]. Of particular note is the fact that our proof is elementary, and uses induction on the alphabet size and not the word length (as is done, e.g., in [11] for the k-cube.)

There are important differences between the geometry or “architecture” of the k-cube Q^k and the k-grid $\{1,2,\ldots,d\}^k$ on the one hand, and that of alphabet overlap graphs on the other. In the former case, there is an edge between vertices v and w iff $h(v,w) = 1$, where h represents Hamming distance. On the other hand, for small values of the parameters our graphs are more-or-less like “twisted” cubes or grids; see Figure 1 for a drawing of $G = G(k,d,s) = G(3,2,1)$ from which a comparison with Q^3 can be readily made. The adjective “twisted” should be used with caution, however, when we look at larger structures. If, for example, $s = 1$, it is clear that $\deg(v_i) \leq 2d$ for each i, and that the inequality could be strict: the degree of words such as AAA...A is $2d - 2$, whereas that of words such as ABAB...◊ is $2d - 1$, where ◊ is either A or B. It follows that the number of edges in alphabet overlap graphs with $s = 1$ equals

$$\frac{2d(d^k - d - d(d - 1)) + (2d - 1)(d(d - 1)) + (2d - 2)d}{2} = d^{k+1} + O(d^3) \ (d \to \infty).$$

Now in the k-cube there are $k \cdot 2^{k-1}$ edges and each vertex has degree k. For alphabet overlap graphs, if $d = 2$ and $s = 1$, there are $\sim 2^{k+1}$ edges, but the degree of the vertices is 2, 3, or 4. For general values of
d, grids have $\sim C_k \cdot k \cdot d^k$ edges (where C_k is a constant depending on k), roughly comparable to the cardinality of the edge set of alphabet overlap graphs, but the vertex degrees of the latter graphs are around $2d$ – smaller, in high dimensions, than the degrees $\sim 2k$ of grid vertices. Alphabet overlap graphs are thus more efficient in allowing Hamiltonicity as Proposition 1 and Theorem 2 below reveal. The pivotal point that we wish to make is that the different architecture of alphabet overlap graphs permits Hamiltonicity in all cases, whereas this is only possible in the even case for grids. In a similarly unexpected result, the chromatic number $\chi(G)$ of alphabet overlap graphs is shown to be larger, and often much larger, than that of bipartite grids.

The proof of Proposition 1 below is well-known (see, e.g., Theorem 5.3 in [3] for a partial proof) but given for completeness; in addition, there are several papers, for example [5] and [6], that focus on the nuances of the rectangular two dimensional case $P_m \times P_n$, with special attention being paid to the numbers of Hamiltonian cycles or paths in these graphs.

Proposition 1 For $k \geq 2$, the grid $\{1, 2, \ldots, d\}^k$ permits a Hamiltonian cycle if and only if d is even, with the value of k being irrelevant.

Proof Assume the grid has a Hamiltonian cycle. We must, in d^k steps, travel from the “origin” back to itself. At each step, the ℓ^1 (“taxicab”) distance to the origin changes by ± 1, with the first return to the origin being at the d^kth step. The numbers of $+1$ and -1 distance changes must thus be equal, which is possible only if d^k is divisible by 2, i.e., if d is even. Conversely, let d be even. We use induction on k. It is easy to verify that $\{1, 2, \ldots, d\}^2$ is Hamiltonian. Assume next that $\{1, 2, \ldots, d\}^r$ is Hamiltonian and let

$$\{v_1, v_2, \ldots, v_{d^r}, v_1\} \quad (1)$$

be any Hamiltonian cycle. Since $\{1, 2, \ldots, d\}^{r+1}=\{1, 2, \ldots, d\}^r \times P_d$, where the d-path P_d consists of vertices w_1, w_2, \ldots, w_d, we may construct a Hamiltonian cycle on $\{1, 2, \ldots, d\}^{r+1}$ as follows:

$$\{(v_1, w_1), (v_1, w_2), \ldots, (v_1, w_d),$$
$$ (v_2, w_d), (v_2, w_{d-1}), \ldots, (v_2, w_1),$$
$$ (v_3, w_1), (v_3, w_2), \ldots, (v_3, w_d),$$
$$ \ldots$$
$$ (v_{d^r-1}, w_1), (v_{d^r-1}, w_2), \ldots, (v_{d^r-1}, w_d),$$

5
\[(v_{d'}, w_d), (v_{d'}, w_{d-1}), \ldots, (v_1, w_1), \]
\[(v_1, w_1), \quad (2)\]

where the \(v_i\) are as in (1). This completes the proof; note, moreover that the same argument works in any dimension for grids of the form \(P_{d_1} \times \ldots \times P_{d_k}\) as long as at least one \(d_i\) is even. \(\square\)

2 Hamiltonicity

Theorem 2 Alphabet overlap graphs \(G(k, d, s)\) are Hamiltonian for all \(k, d \geq 2\) and \(s \leq k - 1\).

We provide two proofs of this fact, the first more constructive than the second, which, furthermore works only for \(s < \lfloor k/2 \rfloor\) (\(d\) arbitrary). In fact, this second proof is an extension of the “standard” proof for the case \(s = 1\). Other demonstrations of this special case include an ingenious greedy algorithm proof due to Fredricksen and Maiorana [8]. It is our hope that the elementary Proof 1 below may be of use to exhibit the existence of deBruijn cycles in other contexts.

Proof 1 We start by proving that each alphabet overlap graph \(G(k, d, 1)\) is Hamiltonian. The proof is by induction on \(d\). If \(d = 1\) the graph is Hamiltonian because it has only one vertex. Assume the claim is true when \(d = n\). Consider the alphabet overlap graph \(G(k, n + 1, 1)\). Let \(L\) be an ordered set that lists the vertices along a Hamiltonian path for the alphabet overlap graph \(G(k, n, 1)\). Let “\(a\)” be the first letter of the alphabet, and “\(b\)” the \((n + 1)st\) letter of the alphabet. Let \(\Sigma\) be a string which contains one \textit{and only one} \(b\), that \(b\) being its final letter. Then there are directed edges from \(\Sigma\) to the cyclic permutation of \(\Sigma\) with \(b\) in the next-to-last position, and so on, through all distinct cyclic permutations of \(\Sigma\). Now, somewhere in \(L\) is the vertex which begins with \(a\) followed by the first \(k - 1\) letters of \(\Sigma\). In \(G(k, n + 1, 1)\) there is an edge from that vertex to the vertex \(\Sigma\). There is also an edge between (i) the cyclic permutation of \(\Sigma\) with \(b\) at the front and (ii) the next vertex in \(L\). Therefore we can form \(L'\) by inserting all of the cyclic permutations of \(s\) into \(L\) as indicated. We can do the same for each distinct string which contains one and only one \(b\), that \(b\) being its final letter. We next employ a similar process for the insertion of each distinct string with two \(b\)’s, one of which is its final letter, not counting strings as
distinct if they are cyclic permutations of one another. We continue in this fashion until every string of length \(k \) in an alphabet of size \(n + 1 \) is included. This gives a Hamiltonian list for \(G(k, n + 1, 1) \).

As an example, here is the construction of a Hamiltonian list for \(G(3, 2, 1) \). We will use alphabet \(\{a, b\} \). We begin with \(G(3, 1, 1) \), which has one vertex, \(aaa \). Our Hamiltonian list has therefore a single entry, i.e.,

\[
L = \{aaa\}.
\]

Now, in \(G(3, 2, 1) \) there is only one vertex with only one \(b \) and that in the last position: \(aab \). The cyclic permutations of \(aab \) are: \(\{aab, aba, baa\} \), with each permutation adjacent to the next. We insert these into \(L \) to form \(L' \):

\[
L' = \{aaa, aab, aba, baa\}.
\]

Next, in \(G(3, 2, 1) \) there are two vertices with exactly two \(b \)'s, one of which is at the end. But since each is a cyclic permutation of the other, they are not distinct, so we only need consider one of them. Choose \(abb \). The cyclic permutations of \(abb \) are: \(abb, bba \), and \(bab \), with each adjacent to the next. Following our algorithm, we insert these three strings into \(L' \) between \(aab \) and \(aba \), thus obtaining:

\[
L'' = \{aaa, aab, abb, bba, bab, aba, baa\}.
\]

Finally, there is one vertex with three \(b \)'s, namely \(bbb \). Following our algorithm, we insert this between \(abb \) and \(bba \) thus obtaining the required Hamiltonian cycle

\[
H = \{aaa, aab, abb, bbb, bba, bab, aba, baa, aaa\}.
\]

The proof of the case of general \(s \) now follows easily. The only change is that in choosing the string \(\Sigma \) we only require that the new letter be part of the terminal string of length \(s \). Then, instead of all cyclic permutations of \(\Sigma \), we use all distinct cyclic permutations that move the last letter of \(\Sigma \) forward \(k - s \) steps. Then we insert this list of distinct cyclic permutations after the label with all \(a \)'s except in the final \(k - s \) positions, those positions agreeing with the initial segment of \(\Sigma \) of length \(k - s \). The last element of this set of cyclic permutations is adjacent to \(\Sigma \), and thus to the next element of the list \(L \), as in the \(s = 1 \) case. This gives an algorithm for constructing a Hamiltonian path in any alphabet overlap graph \(G(k, d, s) \). \(\square \)
Proof 2 We illustrate the method first for \(s = 1 \) and \(d = 2 \). We wish to arrange \(2^k \) binary digits in a circular array so that the set \(A \) of \(k \) consecutive digits has maximal cardinality \(2^k \), i.e., these are all distinct. For \(k = 4 \) this may be accomplished as 0000101001101111. Note that this gives the Hamiltonian cycle

\[
0000 \rightarrow 0001 \rightarrow \ldots \rightarrow 1111 \rightarrow 1110 \rightarrow 1100 \rightarrow 1000 \rightarrow 0000
\]

in \(G(4, 2, 1) \). For general values of \(k \) we consider the alphabet overlap graph \(G(k - 1, 2, 1) \) as a starting point. We draw a directed edge from vertex \((a_1, \ldots, a_{k-1})\) to vertex \((a_2, \ldots, a_{k-1}, 0)\), which we label \(a_1 \ldots a_{k-1}10 \); and a directed edge from vertex \((a_1, \ldots, a_{k-1})\) to vertex \((a_2, \ldots, a_{k-1}, 1)\), which we label \(a_1 \ldots a_{k-1}1 \). Notice that we thus obtain a directed version of \(G(k - 1, 2, 1) \), with loops at the vertices \((0, 0, \ldots, 0)\) and \((1, 1, \ldots, 1)\). Moreover, each vertex has both in- and out-degree equal to 2. It thus (see, e.g., Theorem 1.8.1 in [7]) has an Eulerian circuit \((e_1, e_2, \ldots, e_{2^k})\) which yields, since the edges are labeled with distinct binary sequences, the required ensemble of \(2^k \) distinct sets of \(k \)-consecutive digits – which we identify with a Hamiltonian cycle for \(G(k, 2, 1) \).

When \(d \geq 3 \), we employ the same process starting with \(G(k - 1, d, 1) \) and observe that each vertex now has both in- and out-degree equal to \(d \). An Eulerian circuit \((e_1, e_2, \ldots, e_{d^k})\) is guaranteed to exist. We get the required Hamiltonian cycle as before. Finally when \(\lceil k/2 \rceil > s \geq 2 \) and we are faced with showing that \(G(k, d, s) \) is Hamiltonian, we consider the directed version of \(G(k - s, d, s) \). Each vertex has both in- and out-degree equal to \(d^s \), so that an Eulerian circuit \((e_1, e_2, \ldots, e_{d^k})\) exists, where an edge between vertices \((a_1, \ldots, a_{k-s})\) and \((a_{s+1}, \ldots, a_k)\) is denoted by \((a_1 \ldots a_k)\). The rest of the argument is as before. \(\square\)

3 Chromatic Number of Alphabet Overlap Graphs

In this section and the next we will often use symbol \(t \) to denote the “tag length” \(k - s \). This is particularly convenient when \(s \geq k/2 \), when we can think of a word of length \(k \) as being of the form \(t_1vt_2 \), where (i) \(t_1, t_2 \) are tags of length \(t \), and (ii) \(v \), possibly the empty word, has length \(k - 2t \).
Theorem 3 If \(t \leq k/2 \), i.e. if \(s \geq k/2 \), then the chromatic number of \(G(k, d, s) \) is given by \(\chi(G(k, d, s)) = d^{k-2t} + d^t \).

Proof Let \(w^* \) be any fixed word of length \(k-2t \) (if \(k-2t \) is zero, then \(w^* \) is the empty word). \(G(k, d, s) \) has an induced subgraph consisting of all words of the form \(t_1w^*t_2 \), where the values of \(t_1 \) and \(t_2 \) range over all tags with \(t_1 \neq t_2 \). If we order the \(d^k \) tags, lexicographically for example, we can arrange these words in a square array, in the form of a matrix missing its main diagonal, so that the word \(t_iw^*t_j \) is in the \(i \)th row and \(j \)th column. Given any word in this array, we can find all adjacent words in the array as follows. The word symmetric about the main diagonal is adjacent, as are all words on the same row or the same column with the symmetric word. For the purposes of this paper, call any graph whose vertices are \(v_{ij}, i \neq j, 1 \leq i, j \leq n, n \geq 2 \), with an edge between \(v_{ij} \) and \(v_{xy} \) iff \(x = j \) or \(i = y \), an alphabet overlap (AO-) matrix graph of order \(n \). For any \(n \) we obtain an AO matrix graph of order \(n \) from \(G(2, n, 1) \). The chromatic number of any AO matrix graph of order \(n \) is \(n \), as we prove in the following paragraphs.

Since no two words in the same column are adjacent, we can color an AO matrix graph of degree \(n \) with \(n \) colors, by coloring every word in a given column the same color, while coloring words in different columns different colors. We use induction to prove that this is a minimal coloring.

The AO matrix graph of order 3 has chromatic number at least 3 since it contains a triangle, and chromatic number at most 3 because we can color all entries in each column the same color. By inspection, the only minimal colorings of this graph either have all entries in each column the same color or else have all the entries in each row the same color. Also by inspection, the AO matrix graph of order 4 has chromatic number exactly 4, and the only minimal colorings have either monochromatic columns or monochromatic rows. Assume that the AO matrix graph of order \(n = N \geq 4 \) has chromatic number \(N \) and that the only minimal colorings have either monochromatic columns or monochromatic rows. Consider a minimal coloring of the AO matrix graph of order \(N+1 \). We know that \(N+1 \) colors suffice. Is an \(N \) coloring possible? The upper left hand \(N \times N \) corner satisfies the induction hypothesis, and so requires \(N \) colors. Further, for any \(N \)-coloring of the upper left hand corner, either all entries in each row are the same color or all entries in each column are the same color. Assume, without loss of generality, that all entries in each column are the same color. The same is true of the lower right hand \(N \times N \) corner, which in the case of \(N \geq 4 \) overlaps the upper
left hand corner in at least two places in each of the middle $N - 1$ columns, and so must have monochromatic columns rather than monochromatic rows. Therefore the middle $N - 1$ columns are monochromatic, as are the first column, excepting possibly its last entry, and the last column, excepting possibly its first entry.

There are four sets of colors to be considered, namely the color of the entries in the last column (except for the first entry); the color of the entries in the first column (except for the last entry); the color of the entry in the $(1, N + 1)$ position; and the color of the entry in the $(N + 1, 1)$ position. Call these χ_1, χ_2, χ_3 and χ_4 respectively. Now if $\chi_1 = \chi_2$, it is easy to verify that χ_3 and χ_4 must be two new colors forcing us to use $N + 2$ colors. We thus set $\chi_1 \neq \chi_2$. From this it follows that $\chi_1 = \chi_3 \neq \chi_2 = \chi_4$ for a total of $N + 1$ colors with each column monochromatic. This establishes that the chromatic number of AO matrix graphs is equal to the number of columns.

Now fix a tag t^*, and consider the clique of all words of the form $t^*m_it^*$. All of the d^{k-2t} words of this form are adjacent to one word in every column of each AO matrix graph that is an induced subgraph of $G(k, d, s)$. Thus none of them can be colored any of the d^t colors used in an AO matrix graph. Since they form a clique, we must color them all different colors. Therefore $G(k, d, s)$ requires at least $d^{k-2t} + d^t$ colors.

To see that this number of colors suffices, given any word $t_a m_t c$, if $t_a = t_c \neq t^*$, color that word the same color as $t^*m_b t^*$. Otherwise, color it the same color as $t_a w^* t_c$. If w^* is the empty word, we have already colored $t_a m_t c = t_a t_c$ in the AO matrix graph.

Theorem 4 If $t > k/2$, then $\chi(G(k, d, s)) \leq 1 + d^t = 1 + d^{k-s}$.

Proof Let $t > k/2$. There is an isomorphism between $G(k, d, s)$ and a subgraph of $G(2t, d, t)$ under which vertex xmq corresponds to vertex $xmmqz$, where x and z are words of length $k - t = s$ and m is a word of length $2t - k$, and where xm and mq are tags both in $G(k, d, s)$ and in $G(2t, d, t)$. In other words, the induced subgraph of $G(2t, d, t)$ isomorphic to $G(k, d, s)$ is the graph whose vertices have the form $xmqz$. We call a graph having this form a *reduced AO matrix graph*. Since in $G(2t, d, t)$ each tag is exactly half of each word, Theorem 3 applies and we conclude that the chromatic number of $G(2t, d, t)$ is $d^{2t-2t} + d^t = 1 + d^t$, which establishes the theorem.

Remark We can improve on the upper bound in Theorem 4 using the following algorithm:
Consider the columns of the reduced AO matrix graph for \(G(2t, d, t) \). We can color two of these columns the same color if they contain no adjacent pairs of entries. The column containing words ending in \(t_i \) and the column containing words ending in \(t_j \) have adjacent entries if and only if either the word \(t_it_j \) or the word \(t_jt_i \) is in the subgraph. This happens if and only if the last \(2t-k \) letters in \(t_i \) match the first \(2t-k \) letters in \(t_j \) or vice versa. This happens if and only if \(t_i \) and \(t_j \) are adjacent in \(G(t, d, k-t) \). Thus there is a one-to-one correspondence between the colorings of the columns of the reduced AO matrix graph of \(G(2t, d, t) \) and the colorings of \(G(t, d, k-t) \). If \(k-t \geq t/2 \), that is if \(t \leq \frac{2}{3}k \), then by Theorem 3, the chromatic number of \(G(t, d, k-t) \) is \(d^{2k-3t} + d^{2t-k} \), so the columns of the reduced AO matrix graph of \(G(2t, d, t) \) can be colored with that number of colors. Therefore \(G(k, d, s) \) can be colored with \(1 + d^{2k-3t} + d^{2t-k} \) colors, a better bound on the chromatic number than the one in Theorem 4. For example, Theorem 4 gives \(\chi(G(5, 2, 2)) \leq 9 \), while the algorithm outlined in this remark reduces the upper bound to \(\chi(G(5, 2, 2)) \leq 5 \).

If \(t > \frac{2}{3}k \), we can repeat the process. Eventually we find an upper bound on the chromatic number better than the upper bound in Theorem 4. We do not get an exact value for the chromatic number by this method, however, because reduced AO matrix graphs, unlike AO matrix graphs, may have minimal colorings in which neither the columns nor the rows are monochromatic.

4 Planarity and domination number of AO graphs

In this section, we provide some baseline results on planarity and domination numbers of alphabet overlap graphs.

Theorem 5 If \(t \leq k/2 \) the only non-trivial planar AO-graphs are when \(d = 2, 3, t = 1 \), and \(k = 2 \).

Proof If we have 4 distinct tags \(\alpha, \beta, \gamma, \delta \), then we can construct a \(K_{3,3} \) subgraph as follows. Let \(w \) be any word of length \(k-2t \) (possibly the empty word). Then \(\alpha w \beta, \alpha w \gamma, \alpha w \delta, \beta w \alpha, \gamma w \alpha, \delta w \alpha \) form a non-planar \(K_{3,3} \) subgraph. If there are not 4 distinct tags, then \(d = 2 \) or 3 and \(t = 1 \). Now if \(d = 2 \) it is easy to verify that \(G(2, 2, 1) \) is planar but that \(G(3, 2, 2) \) isn’t since it contains a bipartite \(K_{4,4} \) subgraph with classes \(\{101, 111, 010, 000\} \).
and \{110, 100, 001, 011\} (there are additional edges between vertices in the same color classes). In a similar fashion, it is not too hard to draw a planar version of \(G(2, 3, 1)\). Since for \(a < b\), \(G(k, a, s)\) is a subgraph of \(G(k, b, s)\), this completes the proof. \(\square\)

Theorem 6 If \(t \leq k/2\), then the domination number of \(G(k, d, s)\) is \(d^t\).

Proof Clearly, if \(x\) is any word of length \(k - t = s\), and if we name the \(n = d^t\) tags \(t_1, \ldots, t_n\), then the words \(t_i x\) form a dominating set. Now, suppose we have a minimal dominating set \(S\) in which some tag, say \(t_1\), does not appear at the beginning of any word in \(S\). Consider the set of all words of the form \(t_i w t_1\), for any fixed word \(w\) of length \(k - 2t\). For every tag \(t_i\) there must be some word in \(S\) that ends in \(t_i\), so there are \(d^t\) vertices in \(S\). \(\square\)

5 Open Problems

We mention two open problems. First, it would be most interesting, in line with the investigations in [5] and [6], to estimate the number of Hamiltonian cycles in alphabet overlap graphs \(G(k, d, s)\); this number is known when \(s = 1\). Second, we feel that several structural properties of \(G(k, d, s)\) are worth studying. These might include

1. connectivity properties;
2. distance properties;
3. existence of cycles of various lengths (e.g., Is \(G(k, d, s)\) pancyclic?);
4. colorings and cliques (e.g., What is \(\chi(G(k, d, s))\) when \(s = 1\)? What are the exact values of \(\chi\) in general? What is the clique number of \(G(k, d, s)\)?); and
5. the existence of special substructures.

Acknowledgment The research of the first named author was supported by NSF Grants DMS-0049015 and DMS-0139291. The research of both the first and second named authors was supported by NSF Grant DMS-0122278.
References

[1] N. Balakrishnan and M. Koutras, *Runs and Scans with Applications*, Wiley, New York, 2002.

[2] J. Blasewicz, A. Hertz, D. Kobler, and D. de Werra (1999), On some properties of DNA graphs, *Discrete Appl. Math.* 98, 1–19.

[3] F. Buckley and M. Lewinter, *A Friendly Introduction to Graph Theory*, Prentice Hall, New Jersey, 2003.

[4] P. Cameron, *Combinatorics: Topics, Techniques, Algorithms*, Cambridge University Press, 1994.

[5] L. Clark (1996), The number of Hamiltonian cycles in a rectangular grid, *Bull. Inst. Combin. Appl.* 16, 77–80.

[6] K. Collins and L. Krompart (1997), The number of Hamiltonian paths in a rectangular grid, *Discrete Math.* 169, 29–38.

[7] R. Diestel, *Graph Theory*, 2nd Edition, Springer Verlag, New York, 2000.

[8] H. Fredricksen and J. Maiorana (1978), Necklaces of beads in k colors and k-ary de Bruijn sequences, *Discrete Math.* 23, 207–210.

[9] http://dimacs.rutgers.edu/SpecialYears

[10] http://www.pims.math.ca/birs/workshops/2004/04w5039/

[11] *Runs and Patterns in Probability: Selected Papers*, A. Godbole and S. Papastavridis, eds., Kluwer Academic Publishers, Boston, 1994.

[12] L. Guibas and A. Odlyzko (1981), Periods in strings, *J. Combin. Theory, Series A* 30, 19–42.

[13] *Applications of Combinatorics and Graph Theory in the Biological and Social Sciences*, F.S. Roberts (ed.), Vol. 17 of IMA Volumes in Mathematics and its Applications, Springer-Verlag, New York, 1989.

[14] R. Thomas and X. Yu (1994), 4-connected projective-planar graphs are Hamiltonian *J. Combin. Theory Ser. B* 62, 114–132.
[15] P. Shields, *The Ergodic Theory of Discrete Sample Paths*, American Mathematical Society, Providence, 1996.