Evaluation of IL-23p19/Ebi3 (IL-39) gingival crevicular fluid levels in periodontal health, gingivitis, and periodontitis

Aysegul Sari1,2 · Serdar Dogan3 · Luigi Nibali2 · Serhat Koseoglu4

Received: 5 March 2022 / Accepted: 10 August 2022 / Published online: 20 August 2022 © The Author(s) 2022

Abstract
Objectives IL-23p19/Ebi3 (IL-39) was described as a new IL-12 family member. The aim of this study is to evaluate the gingival crevicular fluid (GCF) IL-39 levels in periodontal diseases and health and to correlate them to GCF levels of IL-1β and periostin.

Materials and methods Sixty-six adult patients were included in the study. The study design was comprised of three groups, each containing 22 individuals: the periodontally healthy (PH), gingivitis (G), and periodontitis (P) groups. The clinical periodontal parameters were recorded and GCF samples were collected from the participants. GCF interleukin (IL)-39, IL-1β, and periostin levels were examined using the enzyme-linked immunosorbent assay.

Results GCF IL-1β, periostin, and IL-39 levels were higher in the P and G groups than in the PH group (p < 0.001). Positive correlations were detected between all GCF biochemical parameters and clinical periodontal parameters (p < 0.05). In the multivariate generalized linear regression analysis, the P (β = 37.6, 95% CI = 22.9–52.4) and G (β = 28.4, 95% CI = 15.8–41) groups were associated with GCF IL-39 levels (p < 0.001).

Conclusion IL-39 levels were elevated in the presence of periodontal disease paralleling the increase in IL-1β and periostin levels. IL-39 may have a role in the periodontal inflammation process.

Statement of clinical relevance IL-39, a new cytokine from the IL-12 family, can be a possible predictor marker of periodontal diseases.

Keywords Periodontal disease · Periodontitis · Inflammation · IL-23p19/Ebi3 (IL-39) · Cytokine

Introduction

Periodontal diseases are multifactorial chronic inflammatory diseases. The main driver of periodontal disease in susceptible individuals is the interaction and development of dysbiotic communities and destructive inflammation which co-develop and are reciprocally reinforced [1]. The nature of microbial stimuli that trigger disruptions in periodontal homeostasis are determinants of host responses in the gingiva [2]. Host modulation therapies, such as anti-cytokine therapy and engineered exosomes derived from dendritic cells, can restore the balance between pro-inflammatory and anti-inflammatory mediators and create an environment that can reverse dysbiosis [3, 4]. For these reasons and to understand the role of cytokines in periodontitis, cytokine studies are currently being conducted.

The complex cytokine network involved in the immune system includes specific cytokine receptors, pro-inflammatory and anti-inflammatory cytokines. In this context, cytokines in inflamed periodontal tissues are thought to have a prominent effect on the host modulation and initiation and progression of periodontal disease [5]. One of the most studied is interleukin 1 (IL-1), which is an important proinflammatory mediator.
in the host inflammatory response. IL-1β has a crucial role in activating proteinase, collagenase, stimulating the production of prostaglandin E2, and enhancing bone resorption and degradation of the extracellular matrix in periodontal diseases [6, 7].

Periodontal tissue destruction is mediated by interactive relationships between proinflammatory and anti-inflammatory mediators in the host response [8]. Periostin, a secreted hematopoietic stem cell protein of 90 kDa containing glutamate, is expressed in the periosteum and periodontal ligaments [9]. It is thought to enhance cell survival and differentiation, promote cell adhesion and fibrogenesis, and to affect periodontal tissue remodeling and bone formation by affecting differentiation, adhesion, and proliferation of osteoblasts [10, 11]. This protein regulates cell functions to favor tissue regeneration by different signaling pathways such as the PI3K/Akt/mTOR, αvβ3 integrin/FAK/PI3K/Akt, αvβ3 integrin/extracellular-related kinase [10, 12–14].

Previous studies suggested that periostin expression is regulated by various factors such as interleukin-4, interleukin-13, and transforming growth factor-β (TGF-β) [15]. Periostin expression in the periodontal ligament is regulated by TGF-β, mechanical stress such as during mastication and tooth movement [11]. A study stated that periostin values increased in the presence of periodontitis in gingival crevicular fluid (GCF) [16].

The IL-12 family of cytokines regulates adaptive immune responses and endogenous responses by inducing natural killer and Th1 cells to produce interferon-gamma (IFN-γ) [17]. IL-1β has a major role in IL-12β b production and IL-12 αβ heterodimer secretion and can synergize with IFN-γ secretions of high amounts of IL-12 [18]. IL-12 is higher in GCF in the presence of periodontitis [19]. In recent years, IL-23p19/Ebi3 (IL-39) was described as a new IL-12 family member as an additional combination to the four known members of this cytokine by Wang et al. [20]. This cytokine has been proposed as pro-inflammatory and a potential predictor and prognostic marker in acute coronary syndrome (ACS) [21]. The association of IL-39 with inflammatory diseases, except for ACS and systemic lupus erythematosus, has not been clarified yet [22].

To our knowledge, there is no study in the literature investigating IL-39 cytokine levels in periodontal disease. We aimed to assess IL-39 levels in GCF in patients with different periodontal phenotypes and to correlate them with IL-1β and periostin levels. Our null hypothesis is that no differences exist in GCF levels of patients with periodontitis, gingivitis, and gingival health.

Materials and methods

The present case–control study was conducted in the Department of Periodontology in the Faculty of Dentistry at Hatay Mustafa Kemal University, Hatay, Turkey. The study protocol was approved by the Ethics Committee for the Use of Human Subjects in Research of Hatay Mustafa Kemal University (Protocol No: 2021/70) and the study was carried out in accordance with the tenets of the Declaration of Helsinki. Individuals were included in the study from July 2021 through November 2021. Written informed consent was obtained from each participant before the clinical periodontal examination.

Study groups

Sixty-six adult individuals were enrolled in the study. Participants were recruited into 3 sex, age-, and body mass index (BMI)-matched groups with 22 participants in each periodontally healthy (PH), gingivitis (G), and periodontitis (P) groups. In accordance with the demographic variables of the patients included in the P group, the patients in the G and PH groups were included.

The inclusion criteria included the following: (a) individuals who had more than 18 teeth; (b) individuals who had had no antibiotic therapy in the past 3 months; (c) individuals who had no history of periodontal treatment in the past 6 months; and (d) individuals who had never smoked.

The exclusion criteria included the following: (a) individuals who had any self-reported systemic condition or disease, which are confounding factors, e.g., AIDS, rheumatoid arthritis, cardiovascular diseases, diabetes; (b) individuals who were current or former smokers; (c) individuals were pregnant, and (d) individuals with BMIs ≥ 25 kg/m².

Clinical measurements

Periodontal parameters

Periodontal clinical parameters were recorded by a single calibrated examiner (k = 0.93) (author AS). Intra-examiner agreement was determined for CAL. The intra-examiner reproducibility was determined through repeated examinations of 10 subjects with a one-hour interval. Clinical periodontal measurements were assessed using the following periodontal measurements for periodontal diagnosis.

The measurements were performed using a Williams periodontal probe (Hu-Friedy, Chicago, IL, USA) and
Measurement of IL-39 levels in GCF samples

IL-39 levels were studied with commercially available kits using the ELISA method (MyBioSource, catalog no: MBS167915). The optical density was measured spectrophotometrically at a wavelength of 450 nm (Thermo Scientific MultiscanGo, Finland). The assay ranges for the IL-39 kit were 2–600 ng/L, sensitivity 1.07 ng/L, and the intra- and interassay coefficients of variance (CV%) were <10%. The results were presented as ng.

Measurement of periostin levels in GCF samples

Periostin levels were determined with commercially available kits using the ELISA method (Elabscience, catalog no: E-EL-H6113). The optical density was measured spectrophotometrically at a wavelength of 450 nm (Thermo Scientific MultiscanGo, Finland). The assay ranges for the periostin kit were 3.13–200 ng/mL, sensitivity 1.88 ng/mL, and the intra- and interassay coefficients of variance (CV%) were <10%. The results were presented as pg.

Statistical analysis

The main study outcome was IL-39 (pg/30sn) GCF levels between different periodontal phenotypes (periodontitis, gingivitis, healthy). In the absence of previous data about IL-39 GCF levels, a convenience sample of 66 participants was chosen for this study. Post-hoc sample size calculation revealed that 22 patients per group would give 100% power for effect size f of 1.04 (standard deviation: 13.72) and α = 0.05. Gpower package version 3.1 was used for sample size calculations.

The normality of continuous variables was evaluated by Shapiro–Wilk’s test. Non-parametric statistical methods were performed for values with skewed distribution.
Descriptive statistics were presented as median (interquartile range) for the non-normally distributed variables. Kruskal–Wallis test was performed for comparison of more than two non-normally distributed variables and Dunn multiple comparison test was performed for post hoc pairwise multiple comparison analyses. One-way ANOVA test was performed for comparison of more than two normally distributed groups and Tukey test was performed for post hoc pairwise multiple comparison analyses. In addition, significance values have been adjusted by the Bonferroni correction for multiple tests. The chi-square test was used to analyze the associations between categorical variables. ROC analysis was performed in order to evaluate diagnostic performance of IL-39 levels (pg/30sn) for periodontal diseases. Area under curve value and also sensitivity and specificity values have been calculated according to presence of periodontal diseases and absence. The correlation between two non-normally distributed variables was evaluated by Spearman Rho correlation coefficient. Multivariate generalized linear model was performed to evaluate the association between the presence of periodontal disease and IL-39 levels. The variables were included in the multivariate model, provided that significance at the 5% level was obtained in the univariate generalized linear model analysis. Variance inflation factors were calculated to check multicollinearity. IL-39 levels (pg/30sn) were selected as dependent variable, while age, sex, BMI, IL-1β levels (pg/30sn), periostin levels (pg/30sn), and periodontal groups were set as independent variables in the multivariate model. The MedCalc Statistical Software (ver. 12.7.7; MedCalc Software bvba, Ostend, Belgium) was used for statistical analyses and \(p < 0.05 \) was considered statistically significant.

Results

Demographic findings

Table 1 shows the demographic characteristics of the groups. Sex, age, and BMI were not statistically significantly different among the groups (\(p = 0.999, p = 1, \) and \(p = 0.997 \) respectively).

Variable	PH group (n=20)	G group (n=20)	P group (n=20)	\(p \) value*
Age (IQR: 25–75)	33 (29.0–45.3)	32.5 (25.8–51.3)	39.5 (29.5–46)	0.999
Sex (males/females) n (%)	9/13	9/13	9/13	1
BMI (kg/m²) (IQR: 25–75)	23.2 (21.4–245)	23.2 (21.4–24.5)	24 (19.6–24.7)	0.997

* \(p \) values obtained from Kruskal Wallis test and Chi-square test

Data are expressed as median and 25% to 75% and \(n \) (%). Statistically significant at \(p < 0.05 \)

Clinical periodontal parameters and GCF volume among all groups

Variable	PH group (n=22)	G group (n=22)	P group (n=22)	\(p \) value **
PI	0.05 (0–0.5)	1.8 (1–2.1) †	2.6 (2.0–3.0) †	<0.001*
GI	0.2 (0.05–0.3)	2 (1.9–2.2) †	2.74 (2–2.89) †	<0.001*
BOP (%)	3.1 (0–7.1)	90.63 (83.37–100) †	96.43 (81.25–100) †	<0.001*
PPD	1.5 ± 0.2	3.2 ± 0.5 †	4.2 ± 0.7 †	<0.001**
CAL	0 (0–0)	0 (0–0)	4.5 (3.8–4.8) †, †	<0.001*
Number of missing teeth	0 (0–1)	1 (0–4) †	2 (0–5.5) †	0.004*
GCF volume (μl)	0.1 (0.1–0.2)	0.6 (0.4–0.8) †	0.8 (0.4–1.1) †	<0.001*

* \(p \) values obtained from Kruskal–Wallis test and Dunn multiple comparison test for non-parametric variables

** \(p \) values obtained from Anova test and Tukey test for parametric variables

Significance values adjusted by the Bonferroni correction for multiple tests

Data are expressed as median and 25% to 75% and mean ± SD

Statistically significant at \(p < 0.05; † p < 0.05 \) versus PH; † † \(p < 0.05 \) versus G

PH periodontally healthy, G gingivitis, P periodontitis, PI plaque index, GI gingival index, BOP percentage bleeding on probing, PPD probing pocket depth, CAL clinical attachment level, GCF gingival cervical fluid
Clinical findings

Table 2 shows the clinical periodontal parameters. PI, GI, BOP (%), and GCF volume were higher in the P and G groups than in the PH group (p < 0.001). As by definition, PPD was higher in the P and G groups than in the PH group and was higher in the P group than in the G group (p < 0.001). CAL were higher in the P group than in the G and PH groups (p < 0.001).

Laboratory findings

Table 3 shows the intergroup comparisons of biochemical markers. GCF IL-1β, periostin, and IL-39 total amounts were higher in the P and G groups than in the PH group (p < 0.001). GCF IL-1β and periostin concentrations were not significantly different among the groups (p = 0.571 and p = 0.071 respectively). GCF IL-39 concentrations were higher in the PH group than in the P and G groups (p < 0.001).

Correlations

Table 4 shows correlations between clinical periodontal parameters and GCF IL-1β, periostin, and IL-39 total amounts. Positive correlations were detected between GCF IL-1β, periostin, and GCF IL-39 total amounts and all clinical periodontal parameters (p < 0.05).

Table 5 shows univariate and multivariate generalized linear regression analyses of factors affecting GCF IL-39 total amounts (p < 0.001) in the univariate generalized linear regression analysis. P (β = 37.6, 95% CI = [22.9–52.4]) and G (β = 28.4, 95% CI = [15.8–41]) groups were associated with higher GCF IL-39 total amounts (p < 0.001 and 0.031, respectively) in the multivariate generalized linear regression analysis.

Roc analysis

In ROC analysis, area under curve (AUC) value was calculated as 0.947 for IL-39 levels (pg/30sn). Sensitivity was

Table 3 Biochemical markers among all groups

Variable	PH group (n = 22)	G group (n = 22)	p value
IL-1β total amount (pg/30sn)	18 ± 6.4	68.5 ± 26.2 †	< 0.001*
IL-1β concentration (pg/μl)	24.55 (14.6–32.1)	19.2 (12.8–25.6)	0.571
Periostin total amount (ng/30sn)	19.3 ± 9.5	59.5 ± 24.2 †	< 0.001**
Periostin concentration (ng/μl)	23.2 (14.8–39.2)	15.4 (11.7–20.1)	0.071
IL-39 total amount (pg/30sn)	102.9 (92.6–113.3)	123.8 (119.5–130.1) †	< 0.001*
IL-39 concentration (pg/μl)	121.1 (73.6–223.9)	34.6 (27.6–51.7) †	< 0.001*

* P values obtained from Kruskal–Wallis test and Dunn multiple comparison test for non-parametric variables
** P values obtained from Anova test and Tukey test for parametric variables

Significance values adjusted by the Bonferroni correction for multiple tests

Data are expressed as median and 25% to 75% and mean ± SD

Statistically significant at p < 0.05; † p < 0.05 versus PH

PH periodontally healthy, G gingivitis, P periodontitis, IL-1β interleukin 1β, IL-39 interleukin 3
calculated as 95.5%, whereas specificity values as 81.82%. The cut off value was found as > 114.7 (Fig. 1).

Discussion

This is the first study to evaluate GCF IL-39, IL-1β, and periostin levels in periodontitis, gingivitis and periodontal health to the best of the authors’ knowledge. The findings of the present study show that IL-39, IL-1β, and periostin levels were elevated in GCF in presence of periodontal disease.

We presented data for both total levels and concentrations and discussed both in the current study. It is interesting to notice that higher ‘concentrations’ of the 3 studied cytokines were detected in healthy vs. gingivitis and periodontitis patients. However, total amounts of cytokines in GCF samples per sampling time have been suggested as a better indicator of relative GCF constituent activity rather than concentration because concentrations are directly affected by the sample volume [34–36]. Several studies have indicated that the expression of GCF data as the total amount per standardized sampling time is a more sensitive way than reporting them as concentration, and should be used when estimating periodontal disease activity [34, 35, 37, 38]. This is particularly true in the present study, as GCF volume was 8 times higher in periodontitis vs. controls and 6 times higher in gingivitis vs. controls. Therefore, total amounts have been taken as the main results in the current study.

The main novel finding of the study relates to IL-39, which was discovered as a new inflammatory marker in recent years, is produced in vivo and in vitro by activated mouse B cells and upregulates neutrophils [20, 39]. IL-39 total levels were higher in GCF of periodontitis and gingivitis patients compared with healthy controls. Also, P and G groups were associated with higher GCF IL-39 total levels compared to PH group in generalized linear regression analysis. These results were independent confounding factors such as BMI, age, and sex. Therefore, IL-39 levels appeared to increase in the presence of periodontal infection, suggesting that IL-39 may be an inflammatory marker in humans, playing a role in the inflammatory processes of periodontal diseases as well as in different disease groups. This is in agreement with some previous literature [21, 39, 40]. In a preclinical study, Wang et al. suggested that IL-39 may have a role in lupus immunopathogenicity [20]. It has been demonstrated that the number of B cells involved in the production of IL-39 increases in mice with lupus, and the
Periostin, playing a role in the remodeling of periodontal tissues, is an important adhesion molecule and structural mediator [10]. This protein is localized among the cytoplasmic processes of periodontal cementoblasts and fibroblasts and the adjacent collagen fibrils [52]. Thus, it can be used as a marker of the periodontal regeneration process [53]. The results of the present study indicated that periostin total amounts were higher in the P and G groups than in the PH group. There are some contradictory results in the literature. It has been noticed that Porphyromonas gingivalis lipopolysaccharide and TNF-α decrease periostin levels in the periodontal ligament [54]. In contrast with the present study, GCF periostin levels were previously shown to decrease in relation to the severity of periodontitis [55, 56]. These results may support the idea that periodontal inflammation can cause of periostin downregulation. However, in agreement with the present study, Arslan and co-workers found that periostin GCF levels decreased from the periodontitis group to the gingivitis and to the healthy control group [16]. As in the present study, samples had been taken from bleeding sites (GI = 2 and BOP positive). It can be considered that the inconsistency with some of the previous studies may be related to the differences in the disease activity in the site of the GCF samples taken. Previous studies have also shown that periostin differentially expressed and upregulated contributes to the development and progression of various inflammatory diseases such as cancer, diabetes, and bowel disease [57, 58]. The results may suggest that in addition to playing a role in the regeneration processes, periostin can also be effective in regulating inflammatory responses [11, 59]. It can be thought that periostin increases as a protective mechanism and response in the periodontal inflammation process. In this process, periostin may increase to allow tissue repair and remodeling.

Lending further support to the association with the periodontal groups in this study are the correlations between the assessed biomarkers and continuous measures of disease severity. We detected positive correlations between GCF IL-1β, periostin and IL-39 levels, and all periodontal clinical parameters, in keeping with some previous studies [21, 43, 60, 61]. In the Roc analysis, IL-39 showed strong performance in presence of periodontal disease. IL-39 showed a high specificity for periodontal disease and high sensitivity for periodontal health. Thus, GCF IL-39 levels could potentially be used as a biomarker for the presence of periodontal diseases, upon confirmation of the findings of the present study.

The strengths of this study are the novelty in assessing GCF levels of IL-39, the rigorous pre-sampling protocol, and the fact that smokers were excluded, while sex, age, and BMI were matched among the groups to reduce the risk of finding spurious associations [62, 63]. Biochemical findings are given as both concentration and total amount values in the present study.

The case–control design and relatively small sample size may be limitations of the present study.
Conclusions

The present study findings showed that GCF IL-39, IL-1β, and periostin total amounts were higher in patients with periodontitis and gingivitis than in the healthy controls. These results suggest that the presence of periodontal diseases is associated with increased GCF IL-39, IL-1β, and periostin levels. IL-39, a new cytokine from the IL-12 family, may have a role in the periodontal inflammation process and it can be a possible marker of periodontal diseases. Further studies with larger sample size and longitudinal assessment post-treatment are needed to clarify the functions of IL-39 and its possible role in the pathogenesis of periodontal diseases.

Supplementary information The online version contains supplementary material available at https://doi.org/10.1007/s00784-022-04681-w.

Acknowledgements The authors would like to thank Arzu BAYGUL, Assistant Prof., from Koc University Medical Faculty Biostatistics Department for carrying out statistical analyses of the study.

Authors’ contributions All authors contributed to the study conception and design. Deciding the method and material were performed by Aysegul SARI, Serhat KOSEOGLU, and Serdar DOGAN. Data collection was performed by Aysegul SARI. Carrying out biochemical analyses by Serdar DOGAN. The first draft of the manuscript was written by Aysegul SARI, Serhat KOSEOGLU, and Serdar DOGAN. Data interpretations and manuscript revisions were made by Luigi NIBALL, Aysegul SARI, and Serhat KOSEOGLU. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Funding The present study was self-funded by the authors.

Declarations

Ethics approval The study protocol was approved by the Ethics Committee for the use of Human Subjects in Research, Hatay Mustafa Kemal University, Hatay, Turkey (Protocol No. 2021/70) and the study was carried out pursuant to the Declaration of Helsinki.

Informed consent Informed consent was obtained from all individual participants included in the study.

Conflict of interest The authors declare no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Hajishengallis G, Lamont RJ (2021) Polymicrobial communities in periodontal disease: their quasi-organismal nature and dialogue with the host. Periodontol 2000 86:210–230. https://doi.org/10.1111/prd.12371
2. Abusleme L, Hoare A, Hong BY, Diaz PI (2021) Microbial signatures of health, gingivitis, and periodontitis. Periodontol 2000 86:57–78. https://doi.org/10.1111/prd.12362
3. Hajishengallis G, Chavakis T, Lambris JD (2020) Current understanding of periodontal disease pathogenesis and targets for host-modulation therapy. Periodontol 2000 84:14–34. https://doi.org/10.1111/prd.12331
4. El-Awdy AR, Elashiry M, Morandini AC, Meghil MM, Cutler CW (2022) Dendritic cells a critical link to alveolar bone loss and systemic disease risk in periodontitis: Immunotherapeutic implications. Periodontol 2000 89:41–50. https://doi.org/10.1111/prd.12428
5. Cecici A, Kantarci A, Hasturk H, Van Dyke TE (2014) Inflammatory and immune pathways in the pathogenesis of periodontal disease. Periodontol 2000 64(1):57–80
6. Mundy GR (1991) Inflammatory mediators and the destruction of bone. J Periodontal Res 26(3 Pt 2):213–217. https://doi.org/10.1111/j.1600-0765.1991.tb01647.x
7. Schwartz Z, Goultschin J, Dean DD, Boyan BD (1997) Mechanisms of alveolar bone destruction in periodontitis. Periodontol 2000 14:158–172. https://doi.org/10.1111/j.1600-0757.1997.tb00196.x
8. Van Dyke TE (2017) Pro-resolving mediators in the regulation of periodontal disease. Mol Aspects Med 58:21–36. https://doi.org/10.1016/j.mam.2017.04.006
9. Horiiuchi K, Amizuka N, Takeshita S, Takamatsu H, Katsuraya M, Ozawa H, Toyama Y, Bonewald LF, Kudo A (1999) Identification and characterization of a novel protein, periostin, with restricted expression to periosteum and periodontal ligament and increased expression by transforming growth factor beta. J Bone Miner Res 14(7):1239–1249. https://doi.org/10.1359/jbmr.1999.14.7.1239
10. Du J, Li M (2017) Functions of Periostin in dental tissues and its role in periodontal tissues’ regeneration. Cell Mol Life Sci 74(23):4279–4286. https://doi.org/10.1007/s00018-017-2645-3
11. Duchamp de Lageneeste O, Colnot C (2019) Periostin in bone regeneration. Adv Exp Med Biol 1132:49–61. https://doi.org/10.1007/978-981-13-6657-4_6
12. Padial-Molina M, Volk SL, Rios HF (2014) Periostin increases migration and proliferation of human periodontal ligament fibroblasts challenged by tumor necrosis factor-alpha and Porphyromonas gingivalis lipopolysaccharides. J Periodontal Res 49:405–414. https://doi.org/10.1111/jre.12120
13. Matsuzawa M, Arai C, Nomura Y, Murata T, Yamakoshi Y, Oida S, Hanada N, Nakamura Y (2015) Periostin of human periodontal ligament fibroblasts promotes migration of human mesenchymal stem cell through the alphavbeta3 integrin/FAK/PI3K/Akt pathway. J Periodontal Res 50:855–863. https://doi.org/10.1111/jre.12277
14. Watanabe T, Yasue A, Fujihara S, Tanaka E (2012) PERIOSTIN regulates MMP-2 expression via the alphavbeta3 integrin/ERK pathway in human periodontal ligament cells. Arch Oral Biol 57:52–59. https://doi.org/10.1016/j.archoralbio.2011.07.010
15. Izuhara K, Nunomura S, Nani Y, Ogawa M, Ono J, Mitamura Y, Yoshihara T (2017) Periostin in inflammation and allergy. Cell Mol Life Sci 74(23):4293–4303. https://doi.org/10.1007/s00018-017-2648-0
16. Arslan R, Karsiyaka Hendek M, Kisa U, Olgun E (2021) The effect of non-surgical periodontal treatment on gingival crevicular
fluid periostrin levels in patients with gingivitis and periodontitis. Oral Dis 27(6):1478–1486. https://doi.org/10.1111/odi.13664
17. Zandler S, Neurath MF (2015) Interleukin-12: Functional activities and implications for disease. Cytokine Growth Factor Rev 26(5):559–568. https://doi.org/10.1016/j.cytogfr.2015.07.003
18. Wesa AK, Galy A (2001) IL-1 beta induces dendritic cells to produce IL-12. Int Immunol 13(8):1053–1061. https://doi.org/10.1093/intimm/13.8.1053
19. Tsai IS, Tsai CC, Ho YP, Ho KY, Wu YM, Hung CC (2005) Interleukin-12 and interleukin-16 in periodontal disease. Cytokine 31(1):34–40. https://doi.org/10.1016/j.cyto.2005.02.007
20. Wang X, Wei Y, Xiao H, Liu X, Zhang Y, Han G, Chen G, Hou C, Ma N, Shen B et al. A novel IL-23p19/Ebi3 (IL-39) cytokine mediates inflammation in Lupus-like mice. Eur J Immunol 46(6):1343–1350. https://doi.org/10.1002/eji.201546095
21. Luo Y, Liu F, Liu H, Chen H, Cheng W, Dong S, Xiong W (2017) Elevated serum IL-39 in patients with SR-segment elevation myocardial infarction was related with left ventricular systolic dysfunction. Biomark Med 11(6):419–426. https://doi.org/10.2217/bmm.2016-0361
22. Lu Z, Xu K, Wang X, Li Y, Li M (2020) Interleukin 39: a new member of interleukin 12 family. Cent Eur J Immunol 45(2):214–217. https://doi.org/10.5114/ceij.2020.97911
23. Silness J, Loe H (1964) Periodontal disease in pregnancy. II. Correlation between Oral Hygiene and Periodontal Condition. Acta Odontol Scand 22:121–135. https://doi.org/10.3109/001635640 8093268
24. Loe H, Silness J (1963) Periodontal Disease in pregnancy. J. Preva- lence and Severity. Acta Odontol Scand 21:S53–S55. https://doi.org/10.3109/001635630901121420
25. Ainamo J, Bay I (1975) Problems and proposals for recording gingivitis and plaque. Int Dent J 25(4):229–235
26. Caton JG, Armitage G, Berglundh T, Chapple ILC, Jepsen S, Kornman KS, Mealey BL, Papapanou PN, Sanz M, Tonetti MS (2018) A new classification scheme for periodontal and peri-implant diseases and conditions—introduction and key changes from the 1999 classification. J Periodontol 89(Suppl 1):S1–S8. https://doi.org/10.1002/JPER.18-0157
27. Tonetti MS, Sanz M (2019) Implementation of the new classification of periodontal diseases: decision-making algorithms for clinical practice and education. J Clin Periodontol 46(4):398–405. https://doi.org/10.1111/jcpe.13104
28. Trombelli L, Farina R, Silva CO, Tatakis DN (2018) Plaque- induced gingivitis: case definition and diagnostic considerations. J Clin Periodontol 45(Suppl 20):S44–S67. https://doi.org/10.1111/jcpe.12939
29. Tonetti MS, Greenwell H, Kornman KS (2018) Staging and grading of periodontitis: Framework and proposal of a new classification and case definition. J Clin Periodontol 45(Suppl 20):S149–S161. https://doi.org/10.1111/jcpe.12945
30. Akalin FA, Baltacioglu E, Alver A, Karabulut E (2007) Lipid peroxidation levels and total oxidant status in serum, saliva and gingival crevicular fluid in patients with chronic periodontitis. J Clin Periodontol 34(7):558–565. https://doi.org/10.1111/j.1600-051X.2007.01091.x
31. Rudin HJ, Overdiek HF, Rateitschak KH (1970) Correlation between sulcus fluid rate and clinical and histological inflammation of the marginal gingiva. Helv Odontol Acta 14(1):21–26
32. Chapple IL, Landini G, Griffiths GS, Patel NC, Ward RS (1999) Calibration of the Periotron 8000 and 6000 by polynomial regression. J Periodontal Res 34(2):79–86. https://doi.org/10.1111/j.1600-0765.1999.tb02226.x
33. Chapple IL, Mason GI, Garner I, Matthews JB, Thorpe GH, Maxwell SR, Whitehead TP (1997) Enhanced chemiluminescent assay for measuring the total antioxidant capacity of serum, saliva and crevicular fluid. Ann Clin Biochem 34(Pt 4):412–421. https://doi.org/10.1177/000456329703400413
34. Lamster IB, Oshrin RL, Gordon JM (1986) Enzyme activity in human gingival crevicular fluid: consideration in data reporting based on analysis of individual crevicular sites. J Clin Periodontol 13(8):799–804
35. Tsai CC, Ho YP, Chen CC (1995) Levels of interleukin-1 beta and interleukin-8 in gingival crevicular fluids in adult periodontitis. J Periodontol 66:852–859. https://doi.org/10.1902/jop.1995.66.10.852
36. Chapple IL, Matthews JB, Thorpe GH, Glenwright HD, Smith JM, Saxby MS (1993) A new ultra-sensitive chemiluminescent assay for the site-specific quantification of alkaline phosphatase in gingival crevicular fluid. J Periodontal Res 28:266–273. https://doi.org/10.1111/j.1600-0765.1993.tb02093.x
37. Ikezawa I, Tai H, Shimada Y, Komatsu Y, Galicia JC, Yoshiie H (2005) Imbalance between soluble tumour necrosis factor receptors type 1 and 2 in chronic periodontitis. J Clin Periodontol 32:1047–1054. https://doi.org/10.1111/j.1600-051X.2005.00832.x
38. Giannopoulou C, Cappuyens I, Mombelli A (2003) Effect of smoking on gingival crevicular fluid cytokine profile during experimen- tal gingivitis. J Clin Periodontol 30:996–1002. https://doi.org/10.1034/j.1600-0765.2003.00416.x
39. Wang X, Liu X, Zhang Y, Wang Z, Zhu G, Han G, Chen G, Hou C, Wang T, Ma N, Shen B, Li Y, Xiao H, Wang R (2016) Interleukin (IL)-39 [IL-23p19/Epstein-Barr virus-induced 3 (Ebi3)] induces differentiation/expansion of neutrophils in lupus-prone mice. Clin Exp Immunol 186:144–156. https://doi.org/10.1111/cei.12840
40. Ecouf F, Weiss J, Schleger S, Guntermann C (2020) Lack of evidence for expression and function of IL-39 in human immune cells. PLoS One 15(12):e0242329. https://doi.org/10.1371/journ al.pone.0242329
41. Wang X, Zhang Y, Wang Z, Liu X, Zhu G, Han G, Chen G, Hou C, Wang T, Shen B et al (2018) AntiIL39 (IL23p19/Ebi3) poly- clonal antibodies ameliorate autoimmune symptoms in lupuslike mice. Mol Med Rep 17(1):1660–1666. https://doi.org/10.3892/mmr.2017.8048
42. Manning AA, Zhao L, Zhu Z, Xiao H, Redington CG, Ding VA, Stewart-Hester T, Bai Q, Dunlap J, Wakefield MR et al (2018) IL-39 acts as a friend to pancreatic cancer. Med Oncol 36(1):12. https://doi.org/10.1007/s12323-018-1236-y
43. Yang MG, Tian S, Zhang Q, Han J, Liu C, Zhou Y, Zhu J, Jin T (2020) Elevated serum interleukin-39 levels in patients with neuromyelitis optica spectrum disorders correlated with disease severity. Mult Scler Relat Disord 46:102430. https://doi.org/10.1016/j.msard.2020.102430
44. Bridgewood C, Alase A, Wadat A, Wittmann M, Cuthbert R, McGonagle D (2019) The IL-23p19/EBI3 heterodimeric cytokine termed IL-39 remains a theoretical cytokine in man. Inflamm Res 68(6):423–426. https://doi.org/10.1007/s00011-019-01235-x
45. Ohshima M, Otsuka K, Suzuki K (1994) Interleukin-1 beta stimu- lates collagenase production by cultured human periodontal liga- ment fibroblasts. J Periodontal Res 34(2):79–86. https://doi.org/10.1111/j.1600-0765.1999.tb02226.x
33. Chapple IL, Mason GI, Garner I, Matthews JB, Thorpe GH, Maxwell SR, Whitehead TP (1997) Enhanced chemiluminescent assay for measuring the total antioxidant capacity of serum, saliva and c...
diabetes. J Periodontal Res 25:156–163. https://doi.org/10.1111/j.1600-0765.1990.tb01038.x
49. Ebersole JL, Nagarajan R, Akers D, Miller CS (2015) Targeted salivary biomarkers for discrimination of periodontal health and disease(s). Front Cell Infect Microbiol 5:62. https://doi.org/10.3389/fcimb.2015.00062
50. Ke S, Wang XZ, Gallagher JE (2020) Diagnostic sensitivity and specificity of host-derived salivary biomarkers in periodontal disease amongst adults: systematic review. J Clin Periodontol 47:289–308. https://doi.org/10.1111/jcpe.13218
51. Hunter CA, Chizzonite R, Remington JS (1995) IL-1 beta is required for IL-12 to induce production of IFN-gamma by NK cells. A role for IL-1 beta in the T cell-independent mechanism of resistance against intracellular pathogens. J Immunol 155:4347–4354
52. Suzuki H, Amizuka N, Kii I, Kawano Y, Nozawa-Inoue K, Suzuki A, Yoshie H, Kudo A, Maeda T (2004) Immunohistochemical localization of periostin in tooth and its surrounding tissues in mouse mandibles during development. Anat Rec A Discov Mol Cell Evol Biol 281:1264–1275. https://doi.org/10.1002/ar.a.20080
53. Park CH, Rios HF, Taut AD, Padrion M, Flanagan CL, Pilipchuk SP, Hollister SJ, Giannobile WV (2014) Image-based, fiber guiding scaffolds: a platform for regenerating tissue interfaces. Tissue Eng Part C Methods 20:533–542. https://doi.org/10.1089/tenc.2013.0619
54. Padrion M, Volk SL, Rodriguez JC, Marchesan JT, Galindo-Moreno P, Rios HF (2013) Tumor necrosis factor-alpha and Porphyromonas gingivalis lipopolysaccharides decrease periostin in human periodontal ligament fibroblasts. J Periodontol 84:694–703. https://doi.org/10.1902/jop.2012.120078
55. Kumaresan D, Balasundaram A, Naik VK, Appukuttan DP (2016) Gingival crevicular fluid periostin levels in chronic periodontitis patients following nonsurgical periodontal treatment with low-level laser therapy. Eur J Dent 10:546–550. https://doi.org/10.4103/1305-7456.195179
56. Aral CA, Koseoglu S, Saglam M, Pekbagiryanik T, Savran L (2016) Gingival crevicular fluid and salivary periostin levels in non-smoker subjects with chronic and aggressive periodontitis: periostin levels in chronic and aggressive periodontitis. Inflammation 39:986–993. https://doi.org/10.1007/s10753-016-0328-0
57. Prakoura N, Chatziantoniou C (2017) Periostin in kidney diseases. Cell Mol Life Sci 74:4315–4320. https://doi.org/10.1007/s00018-017-2650-6
58. Ding Y, Ge Q, Qu H, Feng Z, Long J, Wei Q, Zhou Q, Wu R, Yao L, Deng H (2018) Increased serum periostin concentrations are associated with the presence of diabetic retinopathy in patients with type 2 diabetes mellitus. J Endocrinol Invest 41:937–945. https://doi.org/10.1007/s40618-017-0820-x
59. Prakoura N, Kavvadas P, Kormann R, Dussaule JC, Chadjichristos CE, Chatziantoniou C (2017) NFkB-induced periostin activates integrin-beta3 signaling to promote renal injury in GN. J Am Soc Nephrol 28:1475–1490. https://doi.org/10.1681/ASN.2016070709
60. Baeza M, Garrido M, Hernandez-Rios P, Dezerega A, Garcia-Sesinich J, Strauss F, Aitken JP, Lesaffre E, Vanbelle S, Gamonal J, Brignardello-Petersen R, Tervahartiala T, Sorsa T, Hernandez M (2016) Diagnostic accuracy for apical and chronic periodontitis biomarkers in gingival crevicular fluid: an exploratory study. J Clin Periodontol 43:34–45. https://doi.org/10.1111/jcpe.12479
61. Engebretson SP, Grbic JT, Singer R, Lamster IB (2002) GCF IL-1beta profiles in periodontal disease. J Clin Periodontol 29:48–53. https://doi.org/10.1034/j.1600-065x.2002.290108.x
62. Nishida N, Tanaka M, Hayashi N, Nagata H, Takeshita T, Nakayama K, Morimoto K, Shizukuishi S (2005) Determination of smoking and obesity as periodontitis risks using the classification and regression tree method. J Periodontol 76:923–928. https://doi.org/10.1902/jop.2005.76.6.923
63. Brock GR, Butterworth CJ, Matthews JB, Chapple IL (2004) Local and systemic total antioxidant capacity in periodontitis and health. J Clin Periodontol 31:515–521. https://doi.org/10.1111/j.1600-051X.2004.00509.x

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.