The Effect of Adding *Bacillus* NP5 to Feed on Growth, Survival Rate, and Protection Against *Aeromonas hydrophila* of Catfish (*Clarias* sp.)

Mustahal1,2, Sevia1, M Herjayanto1, M B Syamsunarno1, A N Putra1,2*

1 Department of Fisheries, Faculty of Agriculture, University of Sultan Ageng Tirtayasa Jl. Raya Jakarta Km. 04 Pakupatan, Serang City, Banten Province, Indonesia, 42121
2 Indonesia-Center of Excellence for Food Security (Local Food Innovation), University of Sultan Ageng Tirtayasa. Jl. Raya Jakarta Km. 04 Pakupatan, Serang City, Banten Province, Indonesia, 42121

*E-mail: putra.achmadnp@untirta.ac.id

Abstract. Probiotics are useful organisms in preventing the spread of disease in aquaculture. Therefore this study aims to evaluate the effect of administering *Bacillus* NP5 on the growth, survival rate, and histology of catfish with *Aeromonas hydrophila* infection. To achieve this, catfish (7.75 ± 0.02 g) were reared for 45 days with a density of 20 per tank. Furthermore, the study consisted of 4 treatments and 3 replications, namely K+: 0% *Bacillus* NP5 + 0.1 mL *A. hydrophila* injection, K-: 0% *Bacillus* NP5 + without *A. hydrophila* injection, A: 0.3% *Bacillus* NP5, and B: 0.8% *Bacillus* NP5. The results showed that the addition of probiotics significantly increased the growth and survival rate of catfish (P <0.05) compared to K+. The higher value of specific growth rate was found in treatments A and B (0.22 ± 0.03 and 0.23 ± 0.03% day⁻¹, respectively) and the lowest in K+ (0.14 ± 0.03% day⁻¹). Also, the tissue damage in K+ was higher than in the probiotic treatment. Besides, hyperplasia, congestion, and secondary lamella fusion in the gill tissue were found in the K+, while other treatments were found only in hyperplasia. Melanomacrophages occurred in catfish kidney tissue for all treatments, however, hydropic degeneration was found in the control treatment. The addition of *Bacillus* NP5 in feed resulted in higher growth, survival, and tissue damage compared to K+. Also, the addition of 0.8% *Bacillus* NP5 resulted in less catfish tissue damage.

Keywords: *Bacillus* NP5, catfish, histology, probiotic.

1. Introduction

Catfish is a freshwater commodity with high economic value and is widely cultivated in Indonesia. However, the density of high in catfish culture has led to a decrease in the environmental quality of the rearing media and an increase in disease infection [1]. One of the most common diseases in catfish farming, especially in the intensive culture systems is Motile Aeromonas Septicemia (MAS) caused by the bacterium *Aeromonas hydrophila*. The clinical symptoms of this bacterium disease are lesions and necrosis of the skin with various sizes, reddish ulcers, hemorrhage, and inflammation of the stomach.
lining and fins [2]. MAS also attacks the fish digestive tract, which results in reduced feed efficiency and growth decrease [3]. The use of antibiotics to prevent diseases in aquaculture has long been abandoned because it causes bacterial resistance to antibiotics and leaves residues in the fish environment [4, 5].

Probiotics is an approach to prevent the spread of the pathogen in aquaculture [6]. These are live microbes that benefit the host by stimulating the growth of the microbial population in the digestive tract, increasing feed digestibility, enhancing the immune response to pathogen infection, and improving environmental quality [7]. *Bacillus* NP5 is a probiotic isolated from the digestive tract of tilapia [8], which has a positive effect on increasing the growth performance of its host [9]. Furthermore, the administration of *Bacillus* NP5 has been investigated to improve the immune response of tilapia [10, 11], white shrimp [12], Common carp [13], and *Pangasius* sp. [14]. However, no studies have evaluated the effect of its addition on the growth and tissue histology of catfish. Therefore, this study aims to evaluate the effect of the addition of *Bacillus* NP5 as a probiotic on growth, survival rate, and tissue histology of catfish infected by *A. hydrophila*.

2. Material and Methods

2.1 Preparation of Feed

The probiotics were inoculated into 25 mL of *Tryptic Soy Broth* (TSB) media and incubated for 24 hours with a water bath shaker at 29 °C. Subsequently, they were harvested by centrifugation at a speed of 6000 rpm for 30 minutes and diluted from a density of 10^{11} CFU/mL to 10^8 CFU/mL. Meanwhile, commercial feed with a protein content of 33.9% was mixed with *Bacillus* NP5 and 2% egg yolk according to the method described by [15]. It was dried for 15 minutes to reduce moisture and then the feed was ready to be fed to the fish.

2.2 Catfish Rearing and Growth Parameters

Twelve round fiberglass tanks with a volume of 60 L and a diameter of 50 cm were used for catfish rearing. The tank was sterilized using freshwater and 30 ppm chlorine for 24 hours. Furthermore, catfish with an average weight of 77.75±0.02 g were reared at a density of 20 fish/35 L and were fasted for 24 hours to eliminate the effect of residual feed. Also, as much as 10% of the water was changed every morning. Feeding was carried out using the satiation method with a frequency of three times daily for 45 days. A completely randomized design was adopted, which consist of four treatments and three replications, namely: K+ (positive control with 0.1 mL *A. hydrophila* injection), K- (negative control without *A. hydrophila* injection), A (0.3% *Bacillus* NP5 with 0.1 mL *A. hydrophila* injection), and B (0.8% *Bacillus* NP5 with 0.1 mL *A. hydrophila* injection).

At the end of the experiment (45 days), the weight and number of fish were calculated to determine their growth and survival rate. The growth parameters in this study consisted of specific growth rate (SGR), feed efficiency (FE), and survival rate (SR), which were in line with [17].

$$\text{SGR (\% day}^{-1}) = \frac{\ln W_t - \ln W_0}{45 \text{ days}} \times 100\%$$

$$\text{FE (\%) = } \frac{(W_t + W_d) - W_0}{I} \times 100\%$$

$$\text{SR (\%) = } \frac{F_t}{F_0} \times 100\%$$

Note:

- W_0 = initial biomass of catfish, W_t = final biomass of catfish, W_d = biomass of dead catfish, I = feed intake, F_t = final number of catfish, F_0 = initial number of catfish.

2.3 A. Hydrophila Injection and Histopathology

After 20 days, catfish (except for treatment K-) were injected intramuscularly with *A. hydrophila* using a syringe. The dose is 0.1 mL/fish with a density of 10^6 CFU/mL according to [1]. At the end of the experiment, 5 catfish from each treatment were taken for histological analysis according to the method
described by [18]. This was performed on the catfish gill, liver, and kidney at Histopathology Laboratorium, Station for Investigation of Fish Health and Environment, (SIFHE) Serang, Indonesia.

2.4 Statistical Analysis
The histology of gill, liver, and kidney tissue of catfish was analyzed descriptively and the growth data were analyzed using ANOVA (analysis of variance). Furthermore, the Duncan multiple range tests were adopted to analyze the different data [19].

3. Result and Discussion
3.1 Growth and Survival Rate of Catfish
Probiotics do not have a specific mechanism of action in their host body. However, it maintains a balance of microorganism populations in the digestive tract of the host [20]. The effect of probiotics on the growth and survival rate of catfish is shown in Table 1.

Parameters**	Probiotic treatments***			
	K+	K-	A	B
SGR (% day\(^{-1}\))	0.14±0.03\(^a\)	0.24±0.01\(^b\)	0.22±0.03\(^b\)	0.23±0.03\(^b\)
FE (%)	40.79±7.78	53.72±16.86	55.20±17.31	54.43±13.23
SR (%)	56.67±7.63\(^a\)	88.33±5.77\(^b\)	86.67±2.88\(^b\)	83.33±2.88\(^b\)

*The same superscript letter on the same line indicates an insignificant value (P>0.05).
**SGR (specific growth rate), FE (feed efficiency), SR (survival rate).
***K+ (positive control with \(A. hydrophila\) injection), K- (negative control without \(A. hydrophila\) injection), A (0.3\% Bacillus NP5 with \(A. hydrophila\) injection), B (0.8\% Bacillus NP5 with \(A. hydrophila\) injection).

The result shows that there is no significant value for the FE parameter between all treatments. Furthermore, the SGR and SR values in probiotic and K- treatments were higher than those of K+ (P<0.05), but there is no significant difference for SGR and SR values between K-, A, and B treatments. Also, the highest SGR was recorded at K- (0.24±0.03 % day\(^{-1}\)), followed by B (0.23±0.03 % day\(^{-1}\)), A (0.22±0.03 % day\(^{-1}\)) and the smallest value was K+ (0.14±0.03 % day\(^{-1}\)). Besides, the increased growth in probiotic treatment might be due to increased enzyme activity in the digestive tract of catfish. Hauville [21] reported that the addition of probiotics to feed increases the normal microflora population which was helped in the process of digestion. Also, several studies have shown that the applications of Bacillus NP5 as probiotics in the feed increased growth due to the improved activity of enzymes in the digestive tract [9, 22]. Similar results were found by [23] in white shrimp and [24] in snakehead.

The survival rate is a measure of the success of a population in percentage at a given time during fish culture. After \(A. hydrophila\) infection, the survival rate in probiotic treatments showed a better result than K+. This was an indication that the addition of Bacillus NP5 as a probiotic was able to suppress \(A. hydrophila\) infection. Similarly, [10] reported that the survival rate of tilapia with the administration of Bacillus NP5 and infected streptococcus agalactiae is 80.56\% and 13.89 in the positive control treatment.

3.2 Histology of Catfish Tissue
The histology of catfish gill tissue after \(A. hydrophila\) infection is shown in figure 1. Furthermore, hyperplasia, congestion, and fusion of lamella were found in K+. Also, hyperplasia was found in all treatments except K- and lamella fusion was found in K+, K-, and A. The hydropic degeneration in liver tissue (Figure 2) is found in all treatments and congestion is found in K+ and A. Besides, lipid differentiation was found in K+. Melanomacrophages occur in catfish kidney tissue in all treatments (Figure 3). However, hydropic degeneration was found in K+.
Hyperplasia is the most common histopathological change in gills. Meanwhile, the congestion found in K+ is believed to be caused by *A. hydrophila* infection. This result was in line with [25] that congestion was a state of increased blood volumes in the vessels that accumulate in a part of the body due to physical trauma caused by a pathogen or circulatory system disorders. Furthermore, congestion was found in the catfish livers of K+ and lipid degeneration of the liver was characterized by swollen and vacuole tissue. This results in loss of lipid metabolism in fish [26]. In catfish kidneys, the damage was found in the form of melanomacrophages, which are characterized by the presence of inflamed parts and macrophages. Furthermore, tissue damage in probiotic treatment was smaller than K+, which is caused by the role of probiotics in increasing Immune response. A similar result was found by [10] in tilapia and [27] in African catfish.
Figure 3. The kidney of catfish after *A. hydrophila* infection with 400× magnification. M: Melanomacrophages, D: hydropic degeneration. K+ (positive control with *A. hydrophila* injection), K- (negative control without *A. hydrophila* injection), A (0.3% *Bacillus* NP5 with *A. hydrophila* injection), B (0.8% *Bacillus* NP5 with *A. hydrophila* injection).

4. Conclusions
Conclusively, the addition of *Bacillus* NP5 as a probiotic increased the growth and survival rate of catfish after *A. hydrophila* infection. Furthermore, tissue damage in probiotic treatment was smaller than K+, besides, there was no significant difference between 0.3% and 0.8% *Bacillus* NP5 for all parameters.

Acknowledgments
The authors are grateful to LPPM-UNTIRTA for funding this research with the scheme Hibah Penelitian Terapan Internal 2020.

References
[1] Putra AN, Syamsunarno MB, Ningrum W, Jumyanah, Mustahal. 2020. Effect of the administration of probiotik *Bacillus* NP5 in the rearing media on water quality, growth, and disease resistance of African catfish (*Clarias gariepinus*). *Biodiversitas* 21(6) 2566-2575.
[2] Angka SL. 2005. Kajian Penyakit Motile Aeromonas Septicemia (MAS) pada Ikan Lele Dumbo (*Clarias* sp.) Patologi, Pencegahan dan Pengobatannya dengan Fitofarmaka [DISERTASI]. Bogor: Sekolah Pasca Sarjana, Institut Pertanian Bogor. 129 hal.
[3] Ardita N, Budiharjo A, Sari SLA. 2015. Pertumbuhan dan Rasio Konversi Pakan Ikan Nila (*Oreochromis niloticus*) dengan Penambahan Prebiotik. *Jurnal Bioteknologi* 12(1) 16-21.
[4] Cabello FC. 2006. Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. *Environmental Microbiology* 8(7) 1137-1144.
[5] Akinbowale OL, Peng H, Barton MD. 2006. Antimicrobial resistance in bacteria isolated from aquaculture source in Australia. *Journal of Applied Microbiology* 100(5) 1103-1113.
[6] Adeoye AA, Yomla R, Torren AJ, Rodiles A, Merrifield DL., Davies SJ. 2016. Combined effects of exogenous enzymes and probiotic on Nile tilapia (*Oreochromis niloticus*) growth, intestinal morphology and microbiome. *Aquaculture* 463 61-70.
[7] Verschuere L, Rombaut G, Sorgeloos P, Verstraete W. 2000. Probiotic Bacteria as Biological Control Agents in Aquaculture. *Journal Microbiological and Molecular Biology Review*. 64(4) 655-671.
[8] Putra AN & Widanarni. 2015. Screening of amylolytic bacteria as candidates of probiotics in tilapia *Oreochromis* sp.. *Research Journal of Microbiology* 10 1–13.
[9] Putra AN, Mustahal, Syamsunarno MB. 2020. Effects of dietary probiotic *Bacillus* NP5 on the growth performances of catfish (*Clarias* sp.). *Biotropia* 27(1) 51-59.
[10] Tanbiyaskur, Widanarni, Lusiastuti AM. 2015. Administration of *Bacillus* NP5 and Oligosaccharide to enhance the immune response in tilapia *Oreochromis*. *International Journal of Sciences Basuc and Applied Research* 20(2) 304-315.
[11] Agung AL, Widananrni, Yuhana M. 2015. Application of micro-encapsulated probiotic *Bacillus*...
NP5 and prebiotic mannan oligosaccharide (MOS) to prevent streptococcosis on tilapia *Oreochromis niloticus*. *Research Journal of Microbiology* 10 571‒581.

[12] Widanarni, Yuhana M, Muhamad A. 2014. *Bacillus* NP5 improves growth performance and resistance against infectious myonecrosis virus in white shrimp *Litopenaeus vannamei*. *Ilmu Kelautan* 19 211‒218.

[13] Djuhahari R, Widanarni, Sukenda, Suprayudi MA, Zairin M. 2016. Characterization of *Bacillus* sp. NP5 and its application as probiotic for common carp (*Cyprinus carpio*). *Research Journal of Microbiology* 11(4-5): 101-111.

[14] Tamamdusturi R, Widanarni, Yuhana M. 2016. Administration of microencapsulated probiotic *Bacillus* sp. NP5 and prebiotic Mannan Oligosaccharide for prevent of *Aeromonas hydrophila* infection on *Pangasianodon hypophthalmus*. *Journal of Fisheries and Aquatic Science*. 11(1) 67-76.

[15] Putra AN, Utomo NBP, Widanarni. 2015. Growth Performance of Tilapia (*Oreochromis niloticus*) Fed with Probiotic, Prebiotic and Symbiotic in Diet. *Pakistan Journal of Nutrition* 14(5) 263-268.

[16] Putra AN & Widanarni. 2015. Screening of amylolytic bacteria as candidates of probiotics in tilapia *Oreochromis* sp.. *Research Journal of Microbiology* 10 1–13.

[17] Akinwole AO & Faturoti EO. 2007. Biological performance of African Catfish (*Clarias gariepinus*) cultures in recirculating system in Ibadan. *Aquacultural Engineering*. 36 18-23.

[18] Wada S, Atami H, Kurata O, Hatai K, Kasuya K, Watanebe Y, Fukuda H. 2011. Histopathology of gill lesions of ayu *Plecoglossus altivelis* clinically diagnosed with ‘Boke’ Disease. Fish Pathology 46 (2): 59-61.

[19] Duncan DB. 1955. Multiple range and multiple ‘F’ test. *Biometrics* 11 1-42.

[20] Dawood, M., A., O., & Koshio, S. 2016. Recent advances in the role probiotics and prebiotics in carp aquaculture: A review. *Aquaculture*, 454, 243-251

[21] Hauville MR, Zambonino-Infante JL, Bell JG, Migaud H, Main KL. 2015. Effects of mix of *Bacillus* sp. as a potential probiotic for Florida pompano, common snook and red drum larvae performances and digestive enzyme activities. *Aquaculture Nutrition* 22(1) 51-60.

[22] Putra AN and Romdhonah Y. 2019. Effects of dietary *Bacillus* NP5 and sweet potato extract on growth and digestive enzyme activity of dumbo catfish, *Clarias* sp.. *Jurnal Akuakultur Indonesia* 46(2): 80-88.

[23] Zubaiddah A, Yuhana M, Widanarni. 2015. Encapsulated Synbiotik Dietary Supplementation at Different Dosages to Prevent Vibriosis in White Shrimp *Litopenaeus Vannamei*. *Journal of Biosciences*. 22 : 163-168.

[24] Munir MB, Hashim R, Chai YH, Marsh TL, Nor, SAM. 2016. Dietary probiotic and prebiotics influence growth performance, nutrient digestibility and the expression of immune regulatory genes in snakehead (*Channa striata*) fingerlings. *Aquaculture* 460 59-68.

[25] Hadi AA & Alwan SF. 2012. Histopathological Changes in Gills, Liver and Kidney of Freshwater Fish, Tilapia zillii, Exposed to Aluminium. *Int. J. Of Pharm and Life Sci*. 3(11) 2071-2081.

[26] Kalaiyarasi T, Jayakumar N, Jawahar P, Ahilan B dan Subburaj A. 2017. Histological Changes in The Gill and Liver of Marine Spotted Catfish, *Arius maculatus* from Sewage Disposal Site, Therespuram off Thothupudi Southeast Coast of India. *Journal of Entomology and Zoology Studies* 5(5) 1710-1715.

[27] Ulkhaq MF, Widanarni dan Lusiastuti AM. 2014. Aplikasi probiotik *Bacillus* untuk pencegahan infeksi *Aeromonas hydrophillla* pada ikan lele. *Jurnal Akuakultur Indonesia*. 13(2) 105-114.