RESEARCH ARTICLE

Whole Genome DNA Sequence Analysis of Salmonella subspecies enterica serotype Tennessee obtained from related peanut butter foodborne outbreaks.

Mark R. Wilson¹, Eric Brown², Chris Keys², Errol Strain², Yan Luo², Tim Muruvanda², Christopher Grim²,³, Junia Jean-Gilles Beaubrun⁴, Karen Jarvis³, Laura Ewing³, Gopal Gopinath³, Darcy Hanes³, Marc W. Allard²*, Steven Musser²

¹ Center for Food Science and Applied Nutrition (CFSAN), Food and Drug Administration (FDA), College Park, Maryland, United States of America, ² Battelle Memorial Institute, Crystal City, Virginia, United States of America, ³ Division of Virulence Assessment (DVA), Virulence Mechanisms Branch (VMB), CFSAN/FDA, Office of Applied Research and Safety Assessment (OARSA), Laurel, Maryland, United States of America

* marc.allard@fda.hhs.gov

Abstract

Establishing an association between possible food sources and clinical isolates requires discriminating the suspected pathogen from an environmental background, and distinguishing it from other closely-related foodborne pathogens. We used whole genome sequencing (WGS) to Salmonella subspecies enterica serotype Tennessee (S. Tennessee) to describe genomic diversity across the serovar as well as among and within outbreak clades of strains associated with contaminated peanut butter. We analyzed 71 isolates of S. Tennessee from disparate food, environmental, and clinical sources and 2 other closely-related Salmonella serovars as outgroups (S. Kentucky and S. Cubana), which were also shot-gun sequenced. A whole genome single nucleotide polymorphism (SNP) analysis was performed using a maximum likelihood approach to infer phylogenetic relationships. Several monophyletic lineages of S. Tennessee with limited SNP variability were identified that recapitulated several food contamination events. S. Tennessee clades were separated from outgroup salmonellae by more than sixteen thousand SNPs. Intra-serovar diversity of S. Tennessee was small compared to the chosen outgroups (1,153 SNPs), suggesting recent divergence of some S. Tennessee clades. Analysis of all 1,153 SNPs structuring an S. Tennessee peanut butter outbreak cluster revealed that isolates from several food, plant, and clinical isolates were very closely related, as they had only a few SNP differences between them. SNP-based cluster analyses linked specific food sources to several clinical S. Tennessee strains isolated in separate contamination events. Environmental and clinical isolates had very similar whole genome sequences; no markers were found that could be used to discriminate between these sources. Finally, we identified SNPs within variable S. Tennessee genes that may be useful markers for the development of rapid surveillance and typing methods, potentially aiding in traceback efforts during future outbreaks. Using WGS can delimit contamination sources for foodborne illnesses across multiple outbreaks and reveal otherwise
undetected DNA sequence differences essential to the tracing of bacterial pathogens as they emerge.

Introduction

Salmonella enterica one of the most common causes of foodborne illness outbreaks. Although most serotypes are able to cause human disease, only about 20 of the over 2,500 identified Salmonella serotypes are typically associated with human disease. [1,2,3]. However, even serotypes that are infrequently reported can become significant threats to public health. For example, The Tennessee serovar has historically been uncommon among the Salmonella serotypes reported from food sources. In fact, the average reported cases of S. enterica Tennessee infection once represented only about 0.01% of all reported Salmonella serotypes [2]. Between 1994–2004, there were only 52 cases in which S. Tennessee was the main cause of foodborne infections [2], and only one outbreak of S. Tennessee infection, associated with powdered milk products and infant formula was reported to the Centers for Disease Control (CDC) in 1993 [4,5].

However, in November 2006, public health officials at CDC and state health departments detected a substantial increase in the reported incidence of isolates of Salmonella serotype Tennessee. As of May 22, 2007, a total of 628 persons infected with an outbreak strain of Salmonella serotype Tennessee had been reported from 47 states since August 1, 2006. In a multistate case-control study conducted during February 5–13, 2007, illness was strongly associated with consumption of either of two brands (Brand 1 and Brand 2) of peanut butter produced at the same plant [2,4,6,7]. Based on these findings, the plant ceased production and recalled both products on February 14, 2007 [6,8,9]. The outbreak strain of Salmonella Tennessee was subsequently isolated from several opened and unopened jars of Brand 1 and Brand 2 peanut butter and from environmental samples obtained from the plant. New case reports decreased drastically after the product recall.

In 2008–2009, a second national outbreak associated with peanut butter occurred. In these cases the peanut butter was found to have been contaminated with Salmonella Typhimurium. Larger numbers of children were infected in these later cases [6,10]. Interviews conducted with infected patients revealed that the outbreak occurred within 3 large institutions (2 care facilities and 1 elementary school) where the patients ate their meals [6]. Further investigation and review of food menus revealed a common food source eaten by infected patients [6]. Interestingly, during this outbreak investigation, CDC’s PulseNet identified and confirmed the presence of Salmonella serotypes other than Typhimurium in both food and environmental samples. Further investigation determined that an S. Tennessee isolate detected during this second outbreak had a pulse-field gel electrophoresis (PFGE) pattern that was indistinguishable from those S. Tennessee outbreak strains found during the 2006–2007 outbreaks, obtained from unopened and opened jars of one of the same brands of peanut butter. These findings suggested a possible association between the two outbreaks, despite being separated by an approximately two-year time frame [6,10]. Interestingly, the two implicated production plants are located approximately 70 km from one another. However, in the later outbreak the S. Tennessee strains were not directly associated with human illness [6,10].

If one accepts a common-source hypothesis of the S. Tennessee serovars in these outbreaks, it demonstrates not only the potential for widespread illness arising from locally contaminated products which are then broadly distributed, but also the possibility of illnesses arising from bacterial serovars that have not been previously implicated in major foodborne illness.
outbreaks in the United States. From what is known about the ability of *Salmonella* to thrive in particular environments, this hypothesis is reasonable. These organisms may contaminate peanuts during growth, harvest, or storage, and are able to survive high temperatures in a high-fat, low-water environment [11]. Therefore, although peanut butter typically undergoes heat treatment up to temperatures >158°F (>70°C), such heating may not always eliminate salmonellae [12]. It is also possible that processed peanut butter may be contaminated by bacteria that enter the production environment after heat treatment is complete, through raw peanuts or other sources, such as animals in the production plant. The bacteria may be brought into the plant on containers, humans from the outside environment, or other ingredients used to make peanut butter. These outbreaks suggest that the contamination of processed foods can occur after a heat-treatment step, underscoring the need for additional preventive controls in food-processing plants, and ongoing food safety surveillance.

Establishing an association between possible sources of food contamination and clinical isolates requires discriminating the suspected pathogen from the environmental background, and distinguishing it from other closely-related foodborne pathogens [13–16, 17–21]. The accurate subtyping and subsequent clustering of bacterial isolates associated with a foodborne outbreak event is important for a successful epidemiological investigation and the eventual traceback to a specific food or environmental source. However, phylogenetically closely related strains from a phylogenetic perspective can confound these investigations because of the limited genetic differentiation among serovars, such as *Salmonella* Enteritidis [22–29, 30]. Therefore, to provide a more rigorous analysis of the diversity found within these outbreaks, we performed the first whole genome DNA sequence analysis of *S*. Tennessee outbreak strains, and proceeded to perform a detailed phylogenetic analysis.

We performed whole genome shotgun sequencing (WGS) on isolates related to the *S*. Tennessee-peanut butter outbreak and other isolates derived from the same serovar. Samples of *S*. Tennessee obtained from cilantro food sources were sequenced for comparative purposes. Whole genome shotgun sequencing is an emerging molecular epidemiological tool [30–34]. Recent studies have shown that the voluminous amount of DNA sequence data accumulated via WGS can be used to distinguish among very closely related isolates, far beyond what close inspection of PFGE patterns and MLVA typing can reveal [30]. Further, WGS can identify the nature of the specific molecular difference(s) among sets of isolates, leading to the identification of characteristics that can be placed onto phylogenetic trees to show evolutionary relationships among the taxa under scrutiny. The phylogenetic trees can also serve the purpose of showing, in graphical form, the scale of the evolutionary distances between isolates that have different PFGE patterns.

In order to evaluate how WGS could assist in the identification of these isolates, we generated one closed genome sequence and 70 draft genomes of *S*. Tennessee isolates, including 28 isolates with two different PFGE patterns (JNXX01.0011 and JNXX01.0010) from the peanut butter outbreak, four related historical clinical isolates, eight environmental isolates with matching PFGE JNXX01.0011 profiles, three internal isolates, and 28 background isolates to establish the phylogenetic context of the diversity. Fig 1 shows the genome organization while Fig 2 depicts the phylogenetic results from these analyses.

Materials and Methods

Growth of bacterial strains, and genomic and plasmid DNA isolation

Genomic DNA was isolated from overnight cultures as follows: each initial pure culture sample was taken from frozen stock, plated on Trypticase Soy Agar, and incubated overnight at 37°C. After incubation, cells were taken from the plate and inoculated into Trypticase Soy Broth and
cultured for DNA extraction. All samples were representative cultures from a full-plate inoculation and were not single colonies. Genomic DNA was extracted using Qiagen DNeasy kits.

The cilantro samples were provided through the U.S. Department of Agriculture (USDA) Microbiological Data Program (MDP). Samples collected in Michigan, Florida, New York, Michigan, Florida, New York.
Ohio, and Washington were shipped overnight at room temperature and processed immediately upon receipt for the presence of *S. enterica*.

Cilantro was weighed into sterile Whirl-Pak bags, 100 g per sample, and 500 ml of modified Buffered Peptone Water (mBPW) [35] was added to each bag. The samples were manually mixed for 2 min and then incubated overnight at 37°C. The overnight enrichment cultures were subcultured into Tetrathionate Broth (TB) and Rappaport-Vassiliadis (RV) media and incubated according to the Bacteriological Analytical Manual (BAM) Chapter 5 *Salmonella* [36]. Following overnight incubation the TB and RV cultures were streaked onto Hektoen Enteric (HE), Xylose-Lysine-Tergitol 4 (XLT-4), and Bismuth Sulfite (BS) agar plates and the plates were incubated overnight at 37°C. Colonies demonstrating typical *S. enterica* morphology on each selective agar plate were subcultured onto 5% Sheep Blood Agar (SBA) plates for further characterization.

Colonies from SBA plates were confirmed as *Salmonella* using the Vitek® 2 Compact. The serotype was determined using the Premitest ® following the manufacturer’s instructions and

![Fig 2. Cladogram of *S. Tennessee* serovar diversity showing major clades C1-C4, and the number of SNPs (in green) defining and residing within each clade.](https://example.com/fig2.png)

doi:10.1371/journal.pone.0146929.g002
a PCR serotyping method [37]. The PFGE pattern for each isolate was also determined using the CDC method for *S. enterica*.

Library construction and genome sequencing

For this study, 71 *S. Tennessee* isolates from a variety of sources were sequenced. Of these, 42 isolates were shotgun sequenced using the Roche 454 GS Titanium NGS technology [38]. Each isolate was run on one quarter of a Titanium plate, producing roughly 250,000 reads per draft genome and providing an average genome coverage of ~20X. Illumina MiSeq™ was used to sequence 28 isolates. The remaining isolate served as our reference for mapping; it was used to prepare a single 10 kb library following the Pacific Biosciences sample preparation methods for C2 chemistry. That 10 kb library was then sequenced using PacBio RS II on 4 single-molecule real-time (SMRT) cells using a 120-minute collection protocol, which provided a closed genome with an average genome coverage of > 200X. Our taxon sampling also included one *S. Kentucky* and one *S. Cubana* genome (Table 1), which were sequenced using Roche 454 GS Titanium and Illumina Miseq™ chemistries, respectively. These two *Salmonella* serotypes, Cubana (Genbank accession APAG00000000) and Kentucky (Genbank accession AOYZ00000000) had previously been shown to be close relatives to *S. Tennessee* [39], and hence served as outgroups in this study.

Libraries were constructed from cilantro-derived samples using the Nextera XT DNA sample preparation kit (Illumina, San Diego, CA), and whole-genome sequencing was performed on a MiSeq™ benchtop sequencer (Illumina, San Diego, CA), using 500-cycle paired-end reagent kit v2.

Genome assembly and annotation

De novo assemblies were created for each isolate, using Roche Newbler package (v. 2.6), CLC Genomic Workbench 6.5.1, and SMRT analysis 2.0.1, for isolates sequenced by 454, Miseq™, and PacBio, respectively. All draft genomes were annotated using NCBI’s Prokaryotic Genomes Automatic Annotation Pipeline (PGAAP, [40]). The reference genome used for mapping reads was CFSAN001339, which is comprised of 1 single circular chromosome. Hence, positional information is specific for the reference. (GenBank accession: CP007505).

Phylogenetic trees were constructed using GARLI [41, 42] under the maximum likelihood criterion. The phylogenetic tree in Fig 2 was constructed using GARLI under the GTR + gamma model of nucleotide evolution. Phylogenetic analyses of the data set, including multiple outgroups, were performed on the concatenated SNP matrix described above.

Phylogenomic analysis

The raw reads of each sample were mapped to the closed reference genome, CFSAN001339, using Novoalign V2.08.02 (http://www.novocraft.com), and the variants were called using SAMtools and stored in a VCF file [43]. A custom Python script was used to read through each VCF file and construct a SNP matrix for further phylogenetic analyses, as follows. First, we estimated the site SNP allele frequencies of the strongest non-reference allele [43] and placed them into a list by collecting all of the instances which met the criteria of being present at positions in the reference where one or more isolates differed with a read depth ≥ 10 and an allele frequency equal to one. Insertions and deletions (indels) in VCF files were ignored. Second, pileup files were generated for each isolate based on the above-mentioned list to determine the appropriate nucleotide state for positions in the list for each isolate based on the following rules: a) if there was no mapped reads at a position it was treated as missing data; b) if different nucleotides were called at the position, the one with frequency larger than 50% was the consensus call.
Table 1. Isolates and metadata from the peanut butter-derived sources, including samples obtained from outbreak-associated foods and clinical samples.

Tree Label	Salmonella enterica subsp. enterica Serovar and Strain	Collection location	Isolation source	PFGE pattern (primary enzyme)	PFGE pattern (secondary enzyme)	Platform	Bio-Project	WGS SRA	
1339_Fishmeal_2008_USA:TX(PB)	Tennessee str. CFSAN001339	USA:TX	fishmeal	JNXX01.0011	Padbio	65249	AOXR00000000	SRR955294	
1340_Lamb-based_Meal_2008_NewZealand(PB)	Tennessee str. CFSAN001340	New Zealand	meat and bone meal, lamb-based poultry feathermeal, hydrolyzed	JNXX01.0011	454	65247	AOXQ00000000	SRR955295	
1341_Poultry_Feathermeal_2008_USA:TX(PB)	Tennessee str. CFSAN001341	USA:TX	fishmeal	JNXX01.0011	454	183850		SRR1048310	
1342_Fishmeal_2009_USA:TX(PB)	Tennessee str. CFSAN001342	USA:TX	fishmeal	JNXX01.0011	454	183848		SRR1048336	
1343_Cotton_Seeds_Hulls_2009_USA:TX(PB)	Tennessee str. CFSAN001343	USA:TX	cotton seed hulls	JNXX01.0011	454	183851		SRR1048291	
1344_Soy_Beans_Hulls_Pellets_2009_USA:TX(PB)	Tennessee str. CFSAN001344	USA:TX	soy bean hull pellets	JNXX01.0011	454	183847		SRR1048289	
1345_Peanut_Butter_2007_USA	Tennessee str. CFSAN001345	USA	peanut butter		454	66695			
1346_Environmental_2006_USA:GA(PB)	Tennessee str. CFSAN001346	USA:GA	environmental	JNXX01.0011	454	183850			
1347_Environmental_2007_USA:GA(PB)	Tennessee str. CFSAN001347	USA:GA	environmental	JNXX01.0011	454	183848			
1348_Clinical_2004_USA:IA(PB)	Tennessee str. CFSAN001348	USA:IA	stool	JNXX01.0011	454	183851		SRR1048318	
1349_Clinical_2006_USA:IA(PB)	Tennessee str. CFSAN001349	USA:IA	stool	JNXX01.0011	JNXA26.0001	454	183847		SRR1048241
1350_Clinical_2006_USA:IA(PB)	Tennessee str. CFSAN001350	USA:IA	stool	JNXX01.0011	JNXA26.0001	454	183850		SRR1048273
1351_Clinical_2006_USA:IA(PB)	Tennessee str. CFSAN001351	USA:IA	stool	JNXX01.0011	454	183848		SRR1048258	
1352_Clinical_2006_USA:IA(PB)	Tennessee str. CFSAN001352	USA:IA	missing	JNXX01.0011	JNXA26.0001	454	183851		
1353_Clinical_2006_USA:IA(PB)	Tennessee str. CFSAN001353	USA:IA	urine sample	JNXX01.0011	JNXA26.0001	454	183847		SRR1048254
1354_Clinical_2006_USA:IA(PB)	Tennessee str. CFSAN001354	USA:IA	stool	JNXX01.0011	JNXA26.0001	454	183850		SRR1048250
1355_Peanut_Butter_2007_USA:IA(PB)	Tennessee str. CFSAN001355	USA:IA	peanut butter	JNXX01.0011	454	183848		SRR1048333	
1365_Clinical_2004_USA:MA(PB)	Tennessee str. CFSAN001365	USA:MA	stool sample	JNXX01.0010	454	183851		SRR1048252	
1366_Clinical_2005_USA:MA(PB)	Tennessee str. CFSAN001366	USA:MA	stool sample	JNXX01.0026	454	183847		SRR1048329	
1367_Clinical_2006_USA:MA(PB)	Tennessee str. CFSAN001367	USA:MA	wound	JNXX01.0011	JNXA26.0001	454	183850		SRR1048246
1368_Peanut_Butter_2007_USA:GA(PB)	Tennessee str. CFSAN001368	USA:GA	peanut butter	JNXX01.0010	454	183848		SRR1048300	

(Continued)
Tree Label	Salmonella enterica subsp. enterica Serovar and Strain	Collection location	Isolation source	PFGE pattern (primary enzyme)	PFGE pattern (secondary enzyme)	Platform	Bio-Project	WGS SRA
1369_Environmental_2007_USA:GA(PB)	Tennessee str. CFSAN001369	USA:GA	environmental	JNX01.0011	454	183851	SRR1048323	
1370_Peanut_Butter_2007_USA:GA(PB)	Tennessee str. CFSAN001370	USA:GA	peanut butter	JNX01.0011	454	183847	SRR1048330	
1371_Peanut_Butter_2007_USA:GA(PB)	Tennessee str. CFSAN001371	USA:GA	peanut butter	JNX01.0011	454	183850		
1372_Peanut_Butter_2007_USA:GA(PB)	Tennessee str. CFSAN001372	USA:GA	peanut butter	JNX01.0011	454	183848	SRR1048334	
1373_Peanut_Butter_2007_USA:GA(PB)	Tennessee str. CFSAN001373	USA:GA	peanut butter	JNX01.0011	454	183851	SRR1048312	
1374_Clinical_2006_USA:MA(PB)	Tennessee str. CFSAN001374	USA:MA	stool sample	JNX01.0011	JNXA26.0001	454	183847	SRR1048255
1375_Clinical_2006_USA:MA(PB)	Tennessee str. CFSAN001375	USA:MA	urine sample	JNX01.0011	JNXA26.0001	454	183850	SRR1048626
1376_Clinical_2004_USA:TN(PB)	Tennessee str. CFSAN001376	USA:TN	human	JNX01.0011	454	183848	SRR1048242	
1377_Peanut_Butter_From_Patient_2007_USA:TN(PB)	Tennessee str. CFSAN001377	USA:TN	peanut butter from sick patient	JNX01.0011	JNXA26.0001	454	183851	SRR1048238
1378_Peanut_Butter_From_Patient_2007_USA:KY(PB)	Tennessee str. CFSAN001378	USA:KY	peanut butter from sick patient	JNX01.0011	JNXA26.0001	454	183847	SRR1048247
1379_Peanut_Butter_2009_USA:GA(PB)	Tennessee str. CFSAN001379	USA:GA	peanut butter	JNX01.0011	JNXA26.0001	454	183850	SRR1048331
1380_Blood_Meal_2010_USA:NY(PB)	Tennessee str. CFSAN001380	USA:NY	blood meal	JNX01.0011	454	183848	SRR1048311	
1381_Hydrolyzed_Vegetable_Protein_Powder_2010_USA:NV(PB)	Tennessee str. CFSAN001381	USA:NV	hydrolyzed vegetable protein powder	JNX01.0189	JNXA26.0016	454	183851	SRR1048335
1382_Peanut_Butter_2007_USA:GA(PB)	Tennessee str. CFSAN001382	USA:GA	peanut butter	JNX01.0011	454	183847	SRR1048290	
1383_Peanut_Butter_2007_USA:GA(PB)	Tennessee str. CFSAN001383	USA:GA	peanut butter	JNX01.0011	454	183850	SRR1048315	
1384_Peanut_Butter_2007_USA:GA(PB)	Tennessee str. CFSAN001384	USA:GA	peanut butter	JNX01.0010	454	183848	SRR1048298	
1385_Peanut_Butter_2007_USA:GA(PB)	Tennessee str. CFSAN001385	USA:GA	peanut butter	JNX01.0011	454	183851	SRR1048285	
1386_Environmental_2006_USA:GA(PB)	Tennessee str. CFSAN001386	USA:GA	environmental	JNX01.0011	454	183847	SRR1048622	
1387_Peanut_Butter_2007_USA:GA(PB)	Tennessee str. CFSAN001387	USA:GA	peanut butter	JNX01.0010	454	183850	SRR1048319	
1388_Peanut_Butter_2007_USA:GA(PB)	Tennessee str. CFSAN001388	USA:GA	peanut butter	JNX01.0011	454	183848	SRR1048236	
1389_Peanut_Butter_2007_USA:GA(PB)	Tennessee str. CFSAN001389	USA:GA	peanut butter	JNX01.0011	454	183851	SRR1048305	

(Continued)
Tree Label	Salmonella enterica subsp. enterica Serovar and Strain	Collection location	Isolation source	PFGE pattern (primary enzyme)	PFGE pattern (secondary enzyme)	Platform	Bio-Project	WGS SRA
1390_Peanut_Butter_2007_USA:GA(PB)	Tennessee str. CFSAN001390	USA:GA peanut butter	JNXX01.0011	454	183847	SRR1048239		
2961_Produce_Field_Drag_Swab_2012_USA:NY	Tennessee str. CFSAN002961	USA:NY produce field — drag swab	-	Miseq 183850	SRR1012301			
3018_Peanut_Butter_2007_USA:NY	Tennessee str. CFSAN003018	USA:NY peanut butter	JNXX01.0011	Miseq 183850	SRR949423			
3019_Peanut_Butter_2007_USA:NY	Tennessee str. CFSAN003019	USA:NY peanut butter	JNXX01.0011	Miseq 183850	SRR949424			
3170_Cilantro_2011_USA:FL	Tennessee str. CFSAN003170	USA:FL cilantro	Miseq 186035	186035	SRR1033577			
3171_Cilantro_2011_USA:FL	Tennessee str. CFSAN003171	USA:FL cilantro	Miseq 186035	186035	SRR1033550			
3172_Cilantro_2011_USA:FL	Tennessee str. CFSAN003172	USA:FL cilantro	Miseq 186035	186035	SRR952679			
3173_Cilantro_2011_USA:FL	Tennessee str. CFSAN003173	USA:FL cilantro	Miseq 186035	186035	SRR1033559			
3174_Cilantro_2011_USA:FL	Tennessee str. CFSAN003174	USA:FL cilantro	Miseq 186035	186035	SRR1033540			
3175_Cilantro_2011_USA:FL	Tennessee str. CFSAN003175	USA:FL cilantro	Miseq 186035	186035	SRR1033508			
3176_Cilantro_2011_USA:FL	Tennessee str. CFSAN003176	USA:FL cilantro	Miseq 186035	186035	SRR1033543			
3186_Cilantro_2011_USA:NY	Tennessee str. CFSAN003186	USA:NY cilantro	Miseq 186035	186035	SRR1043945			
3187_Cilantro_2011_USA:NY	Tennessee str. CFSAN003187	USA:NY cilantro	Miseq 186035	186035	SRR1041887			
3188_Cilantro_2011_USA:NY	Tennessee str. CFSAN003188	USA:NY cilantro	Miseq 186035	186035	SRR1043946			
3189_Cilantro_2011_USA:NY	Tennessee str. CFSAN003189	USA:NY cilantro	Miseq 186035	186035	SRR1033469			
3190_Cilantro_2011_USA:NY	Tennessee str. CFSAN003190	USA:NY cilantro	Miseq 186035	186035	SRR1036442			
3191_Cilantro_2011_USA:NY	Tennessee str. CFSAN003191	USA:NY cilantro	Miseq 186035	186035	SRR1036432			
3192_Cilantro_2011_USA:NY	Tennessee str. CFSAN003192	USA:NY cilantro	Miseq 186035	186035	SRR1033568			
3193_Cilantro_2011_USA:NY	Tennessee str. CFSAN003193	USA:NY cilantro	Miseq 186035	186035	SRR1041894			
3194_Cilantro_2011_USA:NY	Tennessee str. CFSAN003194	USA:NY cilantro	Miseq 186035	186035	SRR952681			
3196_Cilantro_2011_USA:NY	Tennessee str. CFSAN003196	USA:NY cilantro	Miseq 186035	186035	SRR1033564			
3197_Cilantro_2011_USA:NY	Tennessee str. CFSAN003197	USA:NY cilantro	Miseq 186035	186035	SRR1033473			
Table 1. (Continued)

Tree Label	Salmonella enterica subsp. enterica Serovar and Strain	Collection location	Isolation source	PFGE pattern (primary enzyme)	PFGE pattern (secondary enzyme)	Platform	Bio-Project	WGS SRA
3198_Cilantro_2011_USA:NY	Tennessee str. CFSAN003198 USA:NY cilantro	USA:NY	cilantro	Miseq 186035	SRR1033528			
3199_Cilantro_2012_USA:OH	Tennessee str. CFSAN003199 USA:OH cilantro	USA:OH	cilantro	Miseq 186035	SRR1033579			
3202_Cilantro_2012_USA:OH	Tennessee str. CFSAN003202 USA:OH cilantro	USA:OH	cilantro	Miseq 186035	SRR1036448			
3203_Cilantro_2012_USA:OH	Tennessee str. CFSAN003203 USA:OH cilantro	USA:OH	cilantro	Miseq 186035	SRR1036443			
5186_Celery_Stalk_Leaf_2011_USA:IL	Tennessee str. CFSAN005186 USA:IL celery stalk and leaf JNXX01.0112	USA:IL	celery stalk and leaf	Miseq 186035	SRR1048302			
5226_Environmental_Swab_2010_USA:UT	Tennessee str. CFSAN005226 USA:UT swab JNXA26.0001	USA:UT	swab	Miseq 186035	SRR1049678			
5302_Sunflower_Kernels_2010_China	Tennessee str. CFSAN005302 China sunflower kernels JNXX01.0002	China	sunflower kernels	Miseq 186035	SRR1049693			
1337_S.Kentucky	Kentucky str. CFSAN001337 USA:PA fecal sample	USA:PA	fecal sample	454 AOYZ00000000	SRR955293			
1083_S.Cubana	Cuban str. CFSAN001083 Philippines dessicated coconut	Philippines	dessicated coconut	Miseq 167394 APAG00000000	SRR955257			

doi:10.1371/journal.pone.0146929.t001
for that position; and c) if different nucleotides were called at a position but none had a frequency larger than 50%, that position for that individual isolate was coded as missing data.

Third, the mapped consensus base for each isolate at the reference SNP positions were concatenated in a multiple FASTA file for phylogenetic analysis. The maximum likelihood (ML) tree was constructed using GARLI [41,42] with 200 ML replicates and 1000 bootstrap replicates. All GARLI analyses were performed with the default parameter settings and the GTR+gamma nucleotide substitution model. Detailed descriptions of the data analysis pipeline is available [44] as well as github (see https://github.com/CFSAN-Biostatistics/snp-mutator).

Accessions

The whole genome shotgun accessions (WGS), Bioproject accession numbers, and metadata for all the isolates sequenced in this study are listed in Table 1. The NCBI accession numbers for the comparative plasmids discussed herein are: Citrobacter freundii plasmid pCAV1741-110 (CP011655); S. Typhi plasmid pHCM2 (AL513384); and Yersinia pestis pMT (CP010021).

Results

Genome Size, Order and Conservation

We present new draft genomes for 73 Salmonella isolates including CFSAN001337, and CFSAN001083, closely related outgroups, S. Kentucky and S. Cubana, respectively (Table 1). While synteny and genome organization among these isolates was largely conserved, genome size differences were observed due to variations in the presence or absence of several phages and plasmids.

Phylogenomic analysis of the S. Tennessee data set, including multiple serovars, was performed on the set of SNPs obtained from the analysis described in the methods. We used the resultant phylogenetic trees to make hypotheses about both the evolution of S. Tennessee subtypes and the outbreak strains and also to support traceback investigations.

A list of genes from which the SNPs that characterize the S. Tennessee clade were derived is provided in Table 2. A representative SNP from each of these genes is also provided in the table along with the subgroup that it defines the SNP base pair coordinates. Many of these genes were annotated previously with assigned names and functions; however, additional regions that provided signature SNPs are hypothetical and, as such, are cross-referenced by locus tags only. It is notable that a partial and select set of SNPs from these genes are nonsynonymous, and many cluster two or more S. Tennessee subgroups together, as shown in Table 2 and Fig 1, and many are protein-altering in nature. These data are intriguing given an NGS report documenting positive selection among a significant subset of core genes in adapted Salmonella serovars [45].

Genetic Variation within the Tennessee serovar

As shown in Table 1, the isolates derived from the peanut butter-derived sources, including samples obtained from outbreak-associated foods and clinical samples, were observed to have distinct PFGE profiles. The S. Tennessee isolates from the 2006–2007 outbreak displayed four closely related primary (XbaI-derived) PFGE patterns: JNXX01.0010, JNXX01.0011, JNXX01.0026. [2,6,10]. Secondary patterns (BlnI-derived) for PFGE type JNXX01.0011 were all classified as JNXA26.0001.

A set of non-peanut butter-derived S. Tennessee isolates also exhibited one of the same PFGE patterns as found in the peanut butter-derived samples: JNXX01.0011. Samples in this set included isolates from fishmeal (CFSAN001339 and CFSAN001342); lamb from New
Location	Accession	Annot.	Locus_tag	Pos. in coding	Nuc. change	Amino acid change	Syn/ Non	Strand	Product name
Clade C1									
1361235	CP007505	coding	SEET0819_06395	22	GAT->TAT	D->Y	N	-	transaldolase
Node1									
1042280	CP007505	coding	SEET0819_04945	14	TCG->TTG	S->L	N	+	phosphate-starvation-inducible protein PsiE
1486959	CP007505	coding	SEET0819_06990	1203	CTG->CTA	L->L	S	+	chitinase
248590	CP007505	coding	SEET0819_01260	2258	CAC->CTC	H->L	N	-	maltodextrin phosphorylase
4310906	CP007505	coding	SEET0819_20670	799	GAA->TAA	E->Stop	N	-	hypothetical protein
Clade C2									
1261850	CP007505	coding	SEET0819_05950	646	CGC->AGC	R->S	N	+	UDP-N-acetyl muramate: L-alanylgamma-D-glutamyl-meso-diaminopimelate ligase
1325788	CP007505	coding	SEET0819_06255	711	CTG->CTA	L->L	S	-	multifunctional aminopeptidase A
1559936	CP007505	coding	SEET0819_12365	360	GCC->GCT	A->A	S	+	peptide ABC transporter ATP-binding protein
2967521	CP007505	coding	SEET0819_14105	1042	TAC->ACT	A->T	N	+	transcriptional regulator
2977833	CP007505	coding	SEET0819_14155	400	TTC->ATC	F->I	N	-	dimethyl sulfoxide reductase
3099086	CP007505	coding	SEET0819_14720	358	GGT->AGT	G->S	N	-	XRE family transcriptional regulator
4290447	CP007505	coding	SEET0819_20620	1930	GGC->AGC	G->S	N	+	large repetitive protein
4415903	CP007505	coding	SEET0819_1115	2210	GAT->GTT	D->V	N	+	transcription accessory protein
4675774	CP007505	coding	SEET0819_22430	1074	TAC->TAT	Y->Y	S	+	S-adenosylmethionine synthetase
4779932	CP007505	coding	SEET0819_22980	627	CTG->CTA	L->L	S	+	disulfide oxidoreductase
4862200	CP007505	coding	SEET0819_23370	1544	AGC->AAC	S->N	N	-	DEAD/DEAH box helicase
968881	CP007505	coding	SEET0819_04570	2709	CTG->CTA	L->L	S	+	DNA-directed RNA polymerase subunit beta
Clade C3									
213029	CP007505	coding	SEET0819_01115	2210	GAT->GTT	D->V	N	+	transcription accessory protein
224483	CP007505	coding	SEET0819_01165	1533	CTG->CTT	L->L	S	-	maltose phosphorylase
281038	CP007505	coding	SEET0819_01400	142	TGG->TGT	W->C	N	-	leucine/isoleucine/valine transporter permease subunit
401342	CP007505	coding	SEET0819_01890	3	GTG->GTA	V->V	S	-	hypothetical protein
416151	CP007505	coding	SEET0819_01960	57	CTG->CTA	L->L	S	+	bifunctional glyoxylate/hydroxypyruvate reductase B
451802	CP007505	coding	SEET0819_02130	196	ACG->CCG	T->P	N	+	xylulose kinase
492375	CP007505	coding	SEET0819_02295	648	TTC->TTT	F->F	S	-	glycosyl transferase
516347	CP007505	coding	SEET0819_05585	428	TAT->TGT	Y->C	N	-	fumarate reductase
702891	CP007505	coding	SEET0819_03620	777	ACC->ACA	T->T	S	+	phospholipase A
766336	CP007505	coding	SEET0819_04585	561	GGA->GTT	G->G	S	+	
972049	CP007505	coding	SEET0819_04975	48	CTG->CTA	L->L	S	+	maltose-binding protein
1065827	CP007505	coding	SEET0819_05055	429	TTC->TTT	F->F	S	+	aromatic amino acid aminotransferase
1188083	CP007505	coding	SEET0819_05585	428	TAT->TGT	Y->C	N	-	fumarate reductase
1201717	CP007505	coding	SEET0819_05920	2699	GAG->GGG	E->G	N	+	hypothetical protein
1255014	CP007505	coding	SEET0819_05995	351	GGA->GGG	G->G	S	+	inosose dehydratase

(Continued)
Location	Accession	Annot.	Locus_tag	Pos. in coding	Nuc. change	Amino acid change	Syn/Non	Strand	Product name
1315853	CP007505	coding	SEET0819_06210	94	ACC->CCC	T->P	N	+	toxin-antitoxin biofilm protein TabA
1403676	CP007505	coding	SEET0819_06580	1151	CCC->CAC	P->H	N	+	sigma-54 dependent transcriptional regulator
1583841	CP007505	coding	SEET0819_07400	275	TAT->TTT	Y->F	N	+	transcriptional regulator
1623141	CP007505	coding	SEET0819_07560	2526	ATG->ATA	M->I	N	+	preprotein translocase subunit SecA
2002950	CP007505	intergenic	SEET0819_10755	774	GAG->GAA	E->E	S	+	LysR family transcriptional regulator
2293435	CP007505	coding	SEET0819_11600	552	CTG->CTT	L->L	S	-	Clp protease ClpX
2462555	CP007505	coding	SEET0819_11600	1670	CCT->CTT	P->L	N	+	leucine-responsive transcriptional regulator
2488851	CP007505	coding	SEET0819_11710	154	CTG->TTG	L->L	S	+	leucine-responsive transcriptional regulator
257852	CP007505	coding	SEET0819_11930	537	ATG->ATA	M->I	N	+	amino acid:proton symporter
2560777	CP007505	coding	SEET0819_11970	593	GAT->GCT	D->A	N	+	paraquat-inducible membrane protein A
2592656	CP007505	coding	SEET0819_12155	1222	GCC->CCC	A->P	N	-	Pyoverdin chromophore biosynthetic protein pvcC
2693215	CP007505	coding	SEET0819_12675	287	GTA->GCA	V->A	N	+	membrane protein
2823636	CP007505	coding	SEET0819_13360	692	CTC->CAC	L->H	N	+	cyclic di-GMP regulator CdgR
2901526	CP007505	coding	SEET0819_13765	303	GTG->GTT	V->V	S	+	secretion system apparatus protein SsaJ
2902776	CP007505	coding	SEET0819_13780	1352	ATT->AAT	I->N	N	-	multidrug transporter
2915852	CP007505	intergenic	SEET0819_14220	633	GAC->GAA	D->E	N	-	malonic semialdehyde reductase
2926925	CP007505	coding	SEET0819_14570	559	ACG->GCC	T->A	N	+	TetR family transcriptional regulator
3141458	CP007505	coding	SEET0819_14930	1564	GTG->TTG	V->L	N	-	hypothetical protein
3168809	CP007505	coding	SEET0819_15030	319	TTT->ATT	F->I	N	+	hypothetical protein
3282278	CP007505	coding	SEET0819_15625	248	CGC->CAC	R->H	N	-	peptide chain release factor 1
3353430	CP007505	coding	SEET0819_15955	24	AAG->AAA	K->K	S	-	transcriptional regulator
3467111	CP007505	coding	SEET0819_16576	42	CAG->CAA	Q->Q	S	-	glycine hydroxylase family 88
3556791	CP007505	coding	SEET0819_17120	110	ACT->AAT	T->N	N	-	acyl carrier protein
3564805	CP007505	intergenic	SEET0819_17515	656	ACC->ATC	T->I	N	+	imidazoylgluceral-phosphate dehydratase
3835332	CP007505	coding	SEET0819_18455	244	TCT->GCT	S->A	N	+	transcriptional regulator
3976686	CP007505	intergenic	SEET0819_19075	177	TCG->TCT	S->S	S	+	integrase
3977014	CP007505	coding	SEET0819_19095	732	GCT->GCA	A->A	S	-	hypothetical protein
3981936	CP007505	coding	SEET0819_19095	729	CGG->CCA	P->P	S	-	hypothetical protein
3981954	CP007505	coding	SEET0819_19095	711	ACG->ACT	T->T	S	-	hypothetical protein
3981966	CP007505	coding	SEET0819_19095	699	GCC->GCA	A->A	S	-	hypothetical protein
3981968	CP007505	coding	SEET0819_19095	697	GCC->TCC	A->S	N	-	hypothetical protein
3998142	CP007505	coding	SEET0819_19180	105	GGG->GGA	G->G	S	-	hypothetical protein

(Continued)
Zealand (CFSAN001340), poultry (CFSAN001341), cotton seeds (CFSAN001343), and soy beans (CFSAN001344).

Other S. Tennessee serovar isolates included in this study that came from non-peanut butter sources also exhibited different PFGE patterns; for example: celery (CFSAN005186, PFGE pattern JNXX01.0112); an environmental swab, (CFSAN005226, PFGE pattern JNXA26.0001); sunflower kernels from China (CFSAN005302, PFGE pattern JNXX01.0002); hydrolyzed vegetable protein powder (CFSAN001381, primary PFGE pattern JNXA26.0001); this isolate also carried a 30kb phage PsP3, discussed further below).

The PFGE patterns for all 22 S. Tennessee isolates obtained from cilantro were identical (JNXX01.0011). Analyses of these whole genome sequences revealed that all 22 cilantro isolates

Table 2. (Continued)

Location	Accession	Annot.	Locus_tag	Pos. in coding	Nuc. change	Amino acid change	Syn/Non	Strand	Product name
4007389	CP007505	intergenic	SEET0819_19270	528	GAT->GAA	D->E	N	replication protein	
4007514	CP007505	intergenic	SEET0819_19270	354	AAC->AAT	N->N	S	replication protein	
4008441	CP007505	intergenic	SEET0819_19300	124	GGC->TGC	G->C	N	hypothetical protein	
4010438	CP007505	coding	SEET0819_05080	360	AAT->AAA	N->K	N	lipoprotein	
1068086	CP007505	coding	SEET0819_08985	966	AAT->AAC	N->N	S	S-adenosylmethionine:tRNA ribosyltransferase-isomerase	
1389803	CP007505	coding	SEET0819_06540	1764	ATT->ATC	I->I	S	type I restriction-modification protein subunit S	
2186959	CP007505	coding	SEET0819_10205	29	TCT->TGT	S->F	N	LPS biosynthesis protein	
314299	CP007505	coding	SEET0819_01560	115	GTC->ATC	V->I	N	copper resistance protein	
4620448	CP007505	intergenic	SEET0819_19335	48	TAC->TAT	Y->Y	S	regulatory protein	

Clade C4

Node2

Location	Accession	Annot.	Locus_tag	Pos. in coding	Nuc. change	Amino acid change	Syn/Non	Strand	Product name
1001360	CP007505	coding	SEET0819_04720	856	GGC->TCG	A->S	N	isocitrate dehydrogenase	
1086089	CP007505	coding	SEET0819_05115	8047	GAT->AAT	D->N	N	membrane protein	
331099	CP007505	intergenic	SEET0819_01560	115	GTC->ATC	V->I	N	copper resistance protein	
334506	CP007505	intergenic	SEET0819_01560	115	GTC->ATC	V->I	N	copper resistance protein	

DOI:10.1371/journal.pone.0146929.t002
of S. Tennessee formed a distinct group. Our PFGE and WGS analyses suggest a common source for these isolates, even though the isolates were collected from 3 states. Cilantro is typically grown in only 2 or 3 areas of the country and provided to the consumer through a complex distribution network, such that the state of collection for this study may not be the state where the cilantro was grown. Further examination of this distribution network revealed that eight of these isolates originated in California, and five originated in Mexico; the origin of the remaining nine could not be determined.

A recent report on the potential enhanced virulence of the peanut butter-derived Salmonella isolates [46] led us to compare the genic origin of the SNPs found within the peanut butter-derived strains in our study to the SNPs found in isolates obtained from non-peanut butter sources (Table 2). Many of the observed SNP differences were non-synonymous, coding for amino-acid changes. Further investigation is needed to determine whether or not these coding changes result in virulence changes.

Cluster analyses also revealed 13 isolates with the same PFGE pattern as the most common pattern in this outbreak (JNXX01.0011) that do not belong in the outbreak clade. These isolates include those collected from the 2008 peanut butter outbreak, three clinical isolates from MA, two clinical isolate from IA, and seven isolates from animal feed. Additionally, eight of the 13 clinical and two of the environmental isolates in this study are in the outbreak clade. None of the SNPs we identified in this study were specific to clinical or environmental sources. It is noteworthy that no increases in substitutions were identified among the isolates that passed through patients compared to their environmental sources. Had there been an increase or expansion in genetic diversity among the clinical isolates we studied in comparison to isolates collected from other food and environmental sources, we would have expected that genetic diversity to have been visible as longer branch lengths among the terminal tree nodes leading back to the clinical isolates found in the tree.

Phylogenetic analysis

The phylogenetic tree arising from this analysis is depicted in Fig 2. For discussion purposes, we have identified four intra-serovar clades, C1–C4. C1 consists of 31 isolates, all closely related, containing both clinical and environmental sources, and each separated by a single SNP. The node (node 1) defining this clade consists of four unique SNPs. C2 is a small clade of three isolates defined by 16 SNPs. C3 contains 22 isolates, differentiated by 82 total SNPs. All of the C3 isolates were obtained from a cilantro food source. Node 2, defining clades C2–C4, contains 8 unique SNPs. The Tennessee clade is identified by a total of 1,153 SNPs, most of which (1,061) map to the long branch separating the outgroups from the Tennessee-specific isolates. Interestingly, the singleton-containing branches consisting of isolate numbers 1381, 2961, and 5226 all contain large mobile elements.

Specific Genes and SNP-based genetic variation defining the Tennessee serovar

A total of 114 SNPs were found in S. Tennessee genes, and including representatives from each of the four S. Tennessee clades (Table 2). Although many of these changes are synonymous, many others are non-synonymous (discussed further below). Similar to earlier studies, we observed changes in the S. enterica multicopper oxidase gene, (locus tag SEET0819_07735, position 609), a gene reported to harbor many changes within S. Enteritidis strains. Although the gene and protein alignments show many of the same non-synonymous SNP differences that appear in all the S. Tennessee isolates we examined [21], we also identified a change in the
S. Tennessee serovars at genome position 1659427, resulting in a M-I amino acid change in the multicopper oxidase gene.

Other non-synonymous SNP changes affected genes involved in redox-type chemical reactions. In particular, we found an F-I change in the dimethyl sulfoxide reductase gene at position 2977833; this is a molybdenum-containing enzyme capable of reducing dimethyl sulfoxide (DMSO) to dimethyl sulfide (DMS). This enzyme serves as the terminal reductase under anaerobic conditions in some bacterial species, with DMSO serving as the terminal electron acceptor. At genome position 1261850 there was a change from R-S within the UDP-N-acetylmuramate: L-alanyl-gamma-D-glutamyl-meso-diaminopimelate ligase gene, a gene involved in peptidoglycan recycling that reutilizes the intact tripeptide L-alanyl-gamma-D-glutamyl-meso-diaminopimelate by linking it to UDP-N-acetylmuramic acid. At position 136125 we found a change from D-Y in the transaldolase gene, an enzyme of the non-oxidative phase of the pentose phosphate pathway.

Eleven non-synonymous SNPs fell within hypothetical proteins (at positions 4310906, 2013944, 3265625, 1255014, 3141458, 3166809, 3981968, 4010438, 4010464, 4010508 and 4010580). One SNP mapped to a lipoprotein (1068806), while another fell within a large repetitive protein (4290447).

Many of SNPs resulting in amino acid changes were involved in transcriptional regulation or DNA structural modifications related to gene expression. These include changes in the XRE family of transcriptional regulator genes at position 3099086; three generic transcriptional regulator changes at positions 2967521, 1583841, and 3835332, and a change at position 4862200, a S-N alteration in the DEAD/DEAH box helicase gene, a family of DNA-unwinding and RNA-processing proteins (Table 2).

Mobile Elements

Natural selection has been reported in *Salmonella* and appears to be a major component of the evolution of this pathogen [33, 47]. Some of the variable genes in *Salmonella* are found in the mobilome, consisting of phages and plasmids, which are often the most promiscuous portions of the bacterial genomes [31, 30, 48–50]. This evolutionary strategy could provide a mechanism whereby highly selected genes could be shaped by natural selection, and then be easily distributed among the members of a serotype and other, more distant, lineages through mobile genetic elements.

We have also identified several new plasmids (Table 3) suggesting that whole genome sequencing will continue to provide novel information about the *Salmonella* genome.
contributing to virulence are often carried on mobile elements, therefore it is especially important to study these elements in pathogenic strains.

We found five mobile elements within the Tennessee serovar (Table 3). CFSAN001365 (2004 MA clinical), CFSAN001368 (2007 GA peanut butter), and CFSAN001387 (2007 GA peanut butter) cluster together in clade C1, and they all share a 110 kb phage, which is found to be similar to Salmonella phage SSU5 (103,299 bp). This phage was originally described in S. enterica serovar Typhimurium, and its whole genome was sequenced and analyzed [51]. The double-stranded DNA genome of SSU5 encodes 130 open reading frames with one tRNA for asparagine. Genomic analysis revealed that SSU5 might be the phylogenetic origin of cryptic plasmid pHCM2, harbored by Salmonella Typhi CT18. Our investigation shows that this sequence shares 77% sequence similarity (query cover) with approximately 99% sequence identity with the Citrobacter freundii plasmid pCAV1741-110 and with S. Typhi plasmid pHCM2. Further, it shows some similarity (57%) with 90% sequence identity with the virulence-associated plasmid pMT from Yersinia pestis. Further investigation is warranted to determine whether or not this sequence is carried on a distinct plasmid in Salmonella.

Table 3 lists the remaining mobile elements identified here in S. Tennessee, including a 12 kb insertion, a 30 kb PhagePsP3-like element, a 63 kb insertion, the previously mentioned 110 kb phage (SSU5-like), and a 260 kb plasmid R478-like mobile element [52]. Comparison of Figs 1 and 2 shows the relationship between the mobile elements and the phylogenetic signal which accompanies each.

Discussion

The phylogenomic analysis of the S. Tennessee serovar samples contained in this study demonstrates a number of important points that are relevant to foodborne outbreak investigations. First, these results continue to underscore the power of whole genome sequencing in outbreak investigations. Although in most cases PFGE patterns will provide sufficient resolution to determine the relationships between closely related isolates, in some cases additional resolution provides information that would not be available from PFGE patterns alone. Second, the power of genome sequencing leads to the identification of classes of SNPs and mobile elements that help us understand the molecular mechanisms of pathogen virulence. This knowledge will serve to establish new typing methods that are focused on particular genetic changes present in genomes, and may also lead to insights that will affect the development of treatments designed to protect human health.

Like other molecular epidemiology studies of Salmonella employing genomic technologies [30–34], this work demonstrates that comparative WGS methods can be employed to clearly augment food contamination investigations by genetically linking the implicated sources of contamination with environmental and clinical isolates. The genomic evidence herein corroborates epidemiological conclusions from outbreak investigations based on statistical analysis and source tracking leads. However, with WGS, one can gain additional detailed micro-evolutionary knowledge within the associated outbreak and reference isolates; thus providing additional evidence linking implicated sources to some of the clinical isolates but not to others that might have initially been associated with this foodborne contamination. Moreover, the level of genetic resolution obtained using WGS methods permits delimiting the scope of an outbreak in the context of an investigation, even for the most genetically homogeneous salmonellae [30]. Phylogenetic evolutionary hypotheses can help us identify reliable diagnostic nucleotide motifs (SNPs, rearrangements, and gene presences) for detecting outbreak strains and understanding the mechanisms that drive the outbreak occurrences. These methods allow both the rapid characterization of the genomes of foodborne pathogenic bacteria and can help to identify the particular source of contamination in the food supply.
Using the comparative WGS results and full genomic data reported here we can confirm that some clinical isolates collected during the time of the peanut butter contamination event have the same PFGE Pattern, JNXX01.0011, which has been linked to the implicated environmental isolates previously studied. Importantly, while most of the isolates collected during this time period that share a common PFGE pattern fall into the same clades (Fig 2) with the environmental isolates, several strains known to be unrelated to the outbreak, including historical isolates from earlier analyses, interrupt these lineages, indicating additional potential sources of contamination.

Our results corroborate those from a previous study [30]. We found no apparent increase in substitutions among the clinical isolates that passed through patients compared to the environmental clones of those isolates. Fig 2 shows that both clinical and environmental peanut butter isolates cluster within the same clade, with no apparent differences attributable to human gastrointestinal passage.

From the data presented, as well as from other published data on mobile elements, it would appear that the elements identified herein are not restricted to closely related isolates in the phylogenetic context. For example, a recently discovered Salmonella plasmid (pSEEE1729_15) has a DNA sequence similar to an E. coli 0157:H7 strain EC4115 [53], suggesting that parts of the mobilome may be transferred between entrobacterial species, while raising the possibility of new acquisitions into the S. Enteritidis pan genome [48]. Consistent with other studies, we did not find any distinctive differences between isolates recovered from food sources and those obtained from clinical samples. A further comparative analysis of the structure and gene organization in the mobile elements in the isolates recovered from peanut butter will be the subject of a subsequent paper.

Mining the data of these novel S. Tennessee genomes should provide new genetic targets for pathogen detection by public health laboratories, and support investigations of outbreaks that consist of closely related Salmonella pathogens. Akin to earlier findings of NGS-based differentiation of S. Montevideo isolates associated with pepper and spiced meats [30–32], the signature genetic differences uncovered here will provide additional insight into what will likely remain a common pattern of S. Tennessee associated with the food supply. By identifying unique genetic patterns that can rapidly distinguish among multiple serotypes of closely related pathogens and PFGE types, WGS has become an invaluable tool for future molecular epidemiology investigations.

Conclusions

It appears that, at least in the case of Salmonella, the natural variation observed among strains is both stable and sufficient to allow for high-resolution traceback of food and clinical isolates using NGS. It will be interesting to see whether ample genomic diversity can drive similar outcomes in other problematic taxa and closely related Salmonella serotypes. By providing the phylogenetic context on which to interpret other facile subtyping approaches that focus on more rapidly evolving genetic markers such as MLVA, rep-PCR, and CRISPRs [6–10, 22] NGS can provide a novel suite of SNPs that will be critical to partitioning common Salmonella outbreak strains. Combined with phylogenetic analysis, WGS can illuminate the genetic and evolutionary diversity of important serovars of Salmonella and expand our understanding of the associated epidemiological pathways surrounding specific outbreak strains [28, 29, 31, 32].

Supporting Information

S1 File. CFSAN, strain names, assemblies, and WGS accession numbers. (XLSX)
Acknowledgments
The authors thank Lili Fox Vélez, Ph.D. for scientific writing support. The authors wish to thank Dr. Ruth Timme for bioinformatics support.

Author Contributions
Conceived and designed the experiments: MRW MWA. Performed the experiments: TM CG GG DH. Analyzed the data: YL CK ES JJB KJ LE GG DH. Contributed reagents/materials/analysis tools: EB ES SM. Wrote the paper: MRW YL DH MWA.

References
1. Bell C, Kyriakides A. Salmonella: a practical approach to the organism and its control in foods. London, UK. Published by Blackwell Science Ltd: United Kingdom, 2002.
2. Centers for Disease Control and Prevention (CDC). Multistate outbreak of Salmonella serotype Tennessee infections associated with peanut butter- United States, 2006–2007. Morb. Mortal Wkly. Rep. 2007, 56, 521–524.
3. World Health Organization (WHO). Drug-resistant Salmonella. Available: http://www.who.int/mediacentre/factsheets/fs139/en
4. Centers for Disease Control and Prevention (CDC). From the Centers for Disease Control and Prevention. Salmonella serotype Tennessee in powdered milk products and infant formula—Canada and United States, 1993. J Amer Med Assoc. 1993 Jul 28; 270(4):432.
5. Centers for Disease Control and Prevention (CDC) Salmonella serotype Tennessee in powdered milk products and infant formula, Canada and United States, 1993. Morb. Mortal Wkly. Rep. (MMWR) 1993, 42 (26): 516–517.
6. Centers for Disease Control and Prevention (CDC). Multistate outbreak of Salmonella associated with peanut butter and peanut butter containing products- United States, 2008–2009. Morb. Mortal Wkly. Rep. 2009; Available: http://www.cdc.gov/mmwr/preview/mmwrhtml/mm58e0129a1.htm
7. Nguyen CH, Cho S, Saeed MA. Epidemiologic Attributes and Virulence Profile of Salmonella Tennessee isolates from Infections associated with Peanut Butter National Outbreak. Biology Agriculture and Healthcare 2013; Vol 3, 17, 36–42.
8. Nielsen Newswire. 2009. Salmonella outbreak taints peanut butter sales. Available: http://www.nielsen.com/us/en/insights/news/2009/salmonella-outbreak-taints-peanut-butter-sales.html
9. U.S. Food and Drug Administration (FDA) Recalls, Market Withdrawals, & Safety Alerts. Available: http://www.fda.gov/Safety/Recalls/default.htm
10. Centers for Disease Control and Prevention (CDC). Salmonella strains tables for outbreak related to peanut butter and peanut butter containing products. Available: http://www.cdc.gov/salmonella/2009/peanut-butter-2008-2009.html
11. Mattick KL, Jorgensen F, Legan JD, Lappin-Scott HM, Humphrey TJ. Habituation of Salmonella spp. at reduced water activity and its effect on heat tolerance. Appl Environ Microbiol 2001; 66:4921–5.
12. Shachar D, Yaron S. Heat tolerance of Salmonella enterica serovars Agona, Enteritidis, and Typhimurium in peanut butter. J Food Protect 2006; 69:2687–91.
13. Chin C-S, Sorenson J, Harris JB, Robins WP, Charles RC, Jean-Charles RR, et al. The Origin of the Haitian Cholera Outbreak strain. New Engl J Med 2010; 1056:1–10.
14. Harris SR, Feil EJ, Holden MT, Quail MA, Nickerson EK, Chantratita N, et al. Evolution of MRSA during hospital transmission and intercontinental spread. Science 2010; 327:469–474. doi:10.1126/science.1182395 PMID: 20093474
15. Gardy JL, Johnston JC, Ho Sui SJ, Cook VJ, Shah L, Brodkin E, et al. Whole-Genome Sequencing and Social-Network Analysis of a Tuberculosis Outbreak. New Engl J Med 2011; 364:730–739. doi: 10.1056/NEJMoa1003176 PMID: 21345102
16. Zheng J, Keys CE, Zhao S, Meng J, Brown EW. Enhanced subtyping scheme for Salmonella Enteritidis. Emerg Infect Dis 2007; 13:1932–1935. doi: 10.3201/eid1312.070715 PMID: 18258051
17. Sukhanand S, Alcaine S, Warnick LD, Su WL, Hof J, Craver MP, et al. DNA sequence-based subtyping and evolutionary analysis of selected Salmonella enterica serotypes. J Clin Microbiol 2005; 43:3688–3698. PMID: 16081897
18. McQuiston JR, Herrera-Leon S, Wertheim BC, Doyle J, Fields PI, Tauxe RV, et al. Molecular phylogeny of the salmonellae: relationships among Salmonella species and subspecies determined from four
housekeeping genes and evidence of lateral gene transfer events. J Bacteriol 2008; 190:7060–7067. doi: 10.1128/JB.01552-07 PMID: 18757540

19. Xi M, Zheng J, Zhao S, Brown EW, Meng J. An enhanced discriminatory pulsed-field gel electrophoresis scheme for subtyping Salmonella serotypes Heidelberg, Kentucky, SaintPaul, and Hadar. J Food Protection 2008; 71:2067–2072.

20. Wise MG, Siragusa GR, Plumblee J, Healy M, Cray PJ, Seal BS. Predicting Salmonella enterica serotypes by repetitive sequence-based PCR. J Microbiol Methods 2009; 76:18–24. doi: 10.1016/j.mimet.2008.09.006 PMID: 18835303

21. Allard MW, Luo Y, Strain E, Pettingill J, Timme R, Wang C, et al. On the evolutionary history, population genetics and diversity among isolates of Salmonella Enteritidis PFGE pattern JEGX01.0004. PLOS One. 2013; 8(1):e55254. doi: 10.1371/journal.pone.0055254 PMID: 23383127

22. Stanley J, Goldsworthy M, Thrall EF. Molecular phylogenetic typing of pandemic isolates of Salmonella Enteritidis. FEMS Microbiol Lett 1992; 69:153–160. PMID: 1311276

23. Ward LR, de Sa JD, Rowe B. A phage-typing scheme for Salmonella Enteritidis. Epidemiol Infect 1987; 99:291–294. PMID: 3315705

24. Saeed AM, Walk ST, Arshad M, Whittam TS. Clonal structure and variation in virulence of Salmonella Enteritidis isolated from mice, chickens, and humans. J AOAC Int 2006; 89:504–511. PMID: 16640300

25. Botteldoorn N, Van Coillie E, Goris J, Werbrouck H, Piessens V, Godard C, et al. Limited genetic divergence and evidence of lateral gene transfer events in Salmonella Enteritidis strains. Zoonoses Public Health 2010; 57(5):345–57. doi: 10.1111/j.1863-2378.2008.01216.x PMID: 19486501

26. Liu F, Kariyawasam S, Jayarao BM, Barrangou R, Germer-Smidt P, Ribot EM, et al. Subtyping Salmonella enterica serovar Enteritidis isolates from different sources by using sequence typing based on virulence genes and clustered regularly interspaced short palindromic repeats (CRISPRs). Appl Environ Microbiol 2011; 77(13):4520–6. doi: 10.1128/AEM.00468-11 PMID: 21571881

27. Olson AB, Andrysiak AK, Tracz DM, Guard-Bouldin J, Demczuk W, Ng LK, et al. Limited genetic diversity in Salmonella enterica serovar Enteritidis PT13. BMC Microbiol 2007; 1; 7:87. PMID: 17908316

28. Guard J, Morales CA, Fedorka-Cray P, Gask RK. Single nucleotide polymorphisms that differentiate two subpopulations of Salmonella Enteritidis within phage type. BMC Res Notes 2011; 26; 4:369. doi: 10.1186/1756-0500-4-369 PMID: 21942987

29. Shah DH, Casavant C, Hawley Q, Addwebi T, Call DR, Guard J. Salmonella Enteritidis strains from poultry exhibit differential responses to acid stress, oxidative stress, and survival in the egg albumen. Foodborne Pathog Dis 2012; Mar; 9(3):258–264. doi: 10.1089/fpd.2011.1009 PMID: 22304629

30. Allard MW, Luo Y, Strain E, Li C, Keys CE, Son I, et al. High resolution clustering of Salmonella enterica serovar Montevideo strains using a next-generation sequencing approach. BMC Genomics 2012; 13:32. doi: 10.1186/1471-2164-13-32 PMID: 22260654

31. Lienau EK, Strain E, Wang C, Zheng J, Ottosen AR, Keys CE, et al. Identification of a Salmonellosis Outbreak by Means of Molecular Sequencing. New Engl J Med 2011; 364:981–982. doi: 10.1056/NEJMc1100443 PMID: 21345093

32. den Bakker HC, Switt AI, Cummings CA, Hoelzer K, Degoricia L, Rodriguez-Rivera LD, et al. A whole genome SNP based approach to trace and identify outbreak linked to a common Salmonella enterica subsp. enterica serovar Montevideo Pulsed Field Gel Electrophoresis type. Appl Environ Microbiol 2011; 77(24):8655–8655. doi: 10.1128/AEM.00468-11 PMID: 22003026

33. Holt KE, Parkhill J, Mazzoni CJ, Roumagnac P, Weill FX, Goodhead I, et al. High throughput sequencing provides insights into genome variation and evolution in Salmonella Typhi. Nat Genet 2008; 40:987–993.23. doi: 10.1038/ng.195 PMID: 18660809

34. Okoro CK, Kingsley RA, Quail MA, Kankwabira AM, Feasey NA, Parkhill J, et al. High-resolution single nucleotide polymorphism analysis distinguishes recrudescence and reinfection in recurrent invasive nontyphoidal Salmonella typhimurium disease. Clin Infect Dis 2012; 54(7):955–963. doi: 10.1093/cid/cir1032 PMID: 22318974

35. Cheng CM, Lin W, Van KT, Phan L, Tran NN, Farmer D. Rapid Detection of Salmonella in foods using real-time PCR. 2008. J Food Protection 71(12):2436–41.

36. Andrews WH, Jacobson A, and Hammack, T. BAM, http://www.fda.gov/food/foodsciencesearch/laboratorymethods/ucm070149.htm

37. Jean-Gilles Beaudrun J, Ewing L, Jarvis K, Dudley K, Grim C, Gopinath G, et al. Comparison of a PCR serotyping assay, Check&Trace assay for Salmonella, and Luminex Salmonella serotyping assay for the characterization of Salmonella enterica identified from fresh and naturally contaminated cilantro. Food Microbiology 2014. 42:181–7. doi: 10.1016/j.fm.2014.02.008 PMID: 24929735
38. Partridge SR, Paulsen IT, Iredell JR. pJIE137 carrying blaCTX-M-62 is closely related to p271A carrying blaNDM-1. Antimicrob. Agents Chemother. 2012 Apr; 56(4): 2166–8. doi: 10.1128/AAC.05796-11 PMID: 2252811

39. Timme RE, Allard MW, Luo Y, Strain E, Pettengill J, Wang C, et al. Draft Genome Sequences of 21 Salmonella enterica Serovar Enteritidis Strains. J Bacteriol. 2012; Nov; 194(21): 5994–5. doi: 10.1128/JB.01289-12 PMID: 23045502

40. Klimke W, Agarwala R, Badretdin A, Chetvernin S, Ciufo S, Federov B, et al. The National Center for Biotechnology Information’s Protein Clusters Database. Nuc Acids Res 2009; 37: D216–223.

41. Zwickl DJ. Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Dissertation. The University of Texas at Austin, 2006. Available: http://www.bio.utexas.edu/faculty/antisense/garli/Garli.html.

42. Bazinet AL, Zwickl DJ, Cummings MP. A Gateway for Phylogenetic Analysis Powered by Grid Computing Featuring GARLI 2.0. Syst Biol. 2014; Apr 30. doi: 10.1093/sysbio/syu031

43. Li H, Handysaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence alignment/map (SAM) format and SAMTools. 2009; Bioinformatics, 25, 2078–9. doi: 10.1093/bioinformatics/btp352 PMID: 19505943

44. Davis S, Pettengill JB, Luo Y, Payne J, Shpuntoff A, Rand H, et al. CFSAN SNP Pipeline: an automated method for constructing SNP matrices from next-generation sequence data. PeerJ Computer Science 2015; 1:e20 https://dx.doi.org/10.7717/peerj-cs.20

45. Soyer Y, Orsi RH, Rodriguez-Rivera LD, Sun Q, Wiedmann M. Genome wide evolutionary analyses reveal serotype specific patterns of positive selection in selected Salmonella serotypes. BMC Evol Biol 2009; 9:264. doi: 10.1186/1471-2148-9-264 PMID: 19912661

46. Nguyen CH, Cho S, Saeed MA. Epidemiologic Attributes and Virulence Profile of Salmonella Tennessee isolates from Infections associated with Peanut Butter National Outbreak. Agriculture 2013; 3, 1–x manuscripts; doi: 10.3390/agriculture30x000x

47. Leekitcharoenphon P, Lukjancenko O, Friis C, Aarestrup FM, Ussery DW. Genomic variation in Salmonella enterica core genes for epidemiological typing. BMC Genomics 2012; 12; 13(1): 88.

48. Karberg KA, Olsen GJ, Davis JJ. Similarity of genes horizontally acquired by Escherichia coli and Salmonella enterica is evidence of a supraspecies pangenome. PNAS, 2011; 108 (50): 20154–20159. doi: 10.1073/pnas.1109746108 PMID: 22128332

49. Lee JH, Shin H, Ryu S. Complete Genome Sequence of Salmonella enterica Serovar Typhimurium Bacteriophage SPN3UB. J Virol 2012; 86(6): 3404–3405. doi: 10.1128/JVI.07226-11 PMID: 22354944

50. Shin H, Lee JH, Lim JA, Kim H, Ryu S. Complete genome sequence of Salmonella enterica serovar typhimurium bacteriophage SPN1S. J Virol 2012; 86(2): 1284–1285. doi: 10.1128/JVI.06696-11 PMID: 22205721

51. Kim M, Kim S, Ryu S. Complete genome sequence of bacteriophage SSU5 specific for Salmonella enterica serovar Typhimurium rough strains. J. Virol. 2012; 86(19):10894. doi: 10.1128/JVI.01796-12 PMID: 22966187

52. Gilmour MW, Thomson NR, Sanders M, Parkhill J, Taylor DE. The complete nucleotide sequence of the resistance plasmid R478: defining the backbone components of incompatibility group H conjugative plasmids through comparative genomics. Plasmid. 2004 Nov; 52(3):182–202. PMID: 15518875

53. Eppinger M, Mammel MK, Leclerc JE, Ravel J, Cebula TA. Genomic anatomy of Escherichia coli O157: H7 outbreak. Proc Natl Acad Sci USA 2011; 13; 108(50): 20142–7. doi: 10.1073/pnas.1107176108 PMID: 22135463