On a Subclass of p-Valent Functions with Negative Coefficients Defined by Using Rafid Operator

A. H. El-Qadeem\(^1\) & S. K. Al-ghazal\(^2\)
Department of Mathematics, Faculty of Science, Zagazig University, Zagazig 44519, Al-Sharkia, Egypt

ahhassan@science.zu.edu.eg\(^1\) & z1z10z78z@gmail.com\(^2\)

Abstract

By using Rafid operator we define the subclass \(R_{\mu,p}^\delta(\alpha; A, B)\) and \(P_{\mu,p}^\delta(\alpha; A, B)\) of analytic and p-valent functions with negative coefficients we investigate some sharp results including coefficients estimates, distortion theorem, radii of starlikeness, convexity, close-to-convexity, and modified-Hadamard product. Finally, we give an application of fractional calculus and Bernadi-Libora-Livingston operator.

Keywords and phrases: analytic, p-valent functions, Hadamard product, differential subordination, fractional calculus.

2010 Mathematics Subject Classification: 30C45.

1. Introduction

Let \(T(p)\) denotes the class of normalized p-valent functions \(f\) which are analytic in \(U = \{z \in \mathbb{C} : |z| < 1\}\), and given by

\[
f(z) = z^p - \sum_{k=p+1}^{\infty} a_k z^k \quad (a_k \geq 0, p \in \mathbb{N} = \{1, 2, 3\ldots\}),
\]

(1.1)

A function \(f \in T(p)\) is called p-valent starlike of order \(\alpha (0 \leq \alpha < p)\), if and only if

\[
\text{Re} \left\{ \frac{zf'(z)}{f(z)} \right\} > \alpha \quad (0 \leq \alpha < p; z \in U),
\]

(1.2)

we denote by \(T^*(p, \alpha)\) the class of all p-valent starlike functions of order \(\alpha\). Also a function \(f \in T(p)\) is called p-valent convex of order \(\alpha (0 \leq \alpha < p)\), if and only if

\[
\text{Re} \left\{ 1 + \frac{zf''(z)}{f'(z)} \right\} > \alpha \quad (0 \leq \alpha < p; z \in U),
\]

(1.3)

we denote by \(C(p, \alpha)\) the class of all p-valent convex functions of order \(\alpha\). For more informations about the subclasses \(T^*(p, \alpha)\) and \(C(p, \alpha)\), see [6]. Motivated by Atshan and Rafid see [1], we introduce the following p-valent analogue \(R_{\mu,p}^\delta : T(p) \rightarrow\)
For $0 \leq \mu < 1$ and $0 \leq \delta \leq 1$,

\[
R_{\mu,p}^\delta f(z) = \frac{1}{\Gamma(p+\delta)(1-\mu)p+\delta} \int_0^\infty t^{p-1}e^{-(\frac{t}{1-\mu})}f(zt)dt
\] \hspace{1cm} (1.4)

where Γ stands for Euler’s Gamma function (which is valid for all complex numbers except the non-positive integers).

Let f and g be analytic in U. Then we say that the function g is subordinate to f if there exists an analytic function in U such that $|w(z)| < 1$ ($z \in U$) and $g(z) = f(w(z))$. For this subordination, the symbol $g(z) \prec f(z)$ is used. In case $f(z)$ is univalent in U, the subordination $g(z) \prec f(z)$ is equivalent to $g(0) = f(0)$ and $g(U) \subset f(U)$, see [7].

For the function f given by (1.1) and $g(z) = z^p - \sum_{k=p+1}^\infty a_k b_k z^k$, the modified Hadamard product (or convolution) of f and g is denoted by $f \ast g$ and is given by

\[
(f \ast g)(z) = z^p - \sum_{k=p+1}^\infty a_k b_k z^k = (g \ast f)(z).
\] \hspace{1cm} (1.5)

Definition 1. For $-1 \leq B < A \leq 1$ and $0 \leq \alpha < p$, let $R_{\mu,p}^\delta(\alpha; A, B)$ be the subclass of functions $f \in T(p)$ for which:

\[
\frac{z(R_{\mu,p}^\delta f(z))'}{R_{\mu,p}^\delta f(z)} \prec (p - \alpha)\frac{1 + A z}{1 + B z} + \alpha,
\] \hspace{1cm} (1.6)

that is, that

\[
R_{\mu,p}^\delta(p, \alpha; A, B) = \left\{ f \in T(p) : \left| \frac{z(R_{\mu,p}^\delta f(z))'}{R_{\mu,p}^\delta f(z)} - p}{\frac{z(R_{\mu,p}^\delta f(z))'}{R_{\mu,p}^\delta f(z)} - [Bp(A-B)(p-\alpha)]} < 1, z \in U \right\}. \hspace{1cm} (1.7)
\]

Note that $\text{Re}\{ (p - \alpha)\frac{1 + A z}{1 + B z} + \alpha \} > \frac{1 - A + \alpha(A-B)}{1 - B}$.

Also, for $-1 \leq B < A \leq 1$ and $0 \leq \alpha < p$, let $P_{\mu,p}^\delta(\alpha; A, B)$ be subclass of functions $f \in T(p)$ for which:

\[
1 + \frac{z(R_{\mu,p}^\delta f(z))''}{(R_{\mu,p}^\delta f(z))'} \prec (p - \alpha)\frac{1 + A z}{1 + B z} + \alpha,
\] \hspace{1cm} (1.8)

For (1.6) and (1.8) it is clear that

\[
f(z) \in P_{\mu,p}^\delta \iff \frac{zf'(z)}{p} \in R_{\mu,p}^\delta
\] \hspace{1cm} (1.9)

2. Main Results

Unless otherwise mentioned, we assume in the remainder of this paper that, $0 \leq \alpha < p$, $0 \leq \mu < 1$, $0 \leq \delta \leq 1$,

$-1 \leq B < A \leq 1$, $p \in \mathbb{N}$ and $z \in U$.

2.1. Coefficients Estimate

Theorem 1. Let the function \(f(z) \) be given by (1.1). Then \(f(z) \in R^\delta_{\mu,p}(\alpha; A, B) \), if and only if
\[
\sum_{k=p+1}^{\infty} [(1 - B)(k - p) + (A - B)(p - \alpha)] (1 - \mu)^{k-p} \frac{\Gamma(k + \delta)}{\Gamma(p + \delta)} a_k \leq (A - B)(p - \alpha).
\] (2.1)

Proof. Assume that the inequality (2.1) holds true. We find from (1.1) and (2.1) that thus we have
\[
\left| z(R^\delta_{\mu,p}f(z))' - p(R^\delta_{\mu,p}f(z)) \right| - \left| B \left[z(R^\delta_{\mu,p}f(z))' \right] - [Bp + (A - B)(p - \alpha)] [R^\delta_{\mu,p}f(z)] \right|
\]
\[
\leq \sum_{k=p+1}^{\infty} [(1 - B)(k - p) + (A - B)(p - \alpha)] \frac{\Gamma(k + \delta)}{\Gamma(p + \delta)} (1 - \mu)^{k-p} a_k - (A - B)(p - \alpha) \leq 0.
\]
Hence, by the maximum modulus theorem, we have
\[
\left| \frac{z(R^\delta_{\mu,p}f(z))'}{R^\delta_{\mu,p}f(z)} - p \right| < 1.
\]
Thus \(f \in R^\delta_{\mu,p}(\alpha; A, B) \).

Conversely, let \(f \in R^\delta_{\mu,p}(\alpha; A, B) \) be given by (1.1), then from (1.1) and (1.7), we have
\[
\left| \frac{z(R^\delta_{\mu,p}f(z))'}{R^\delta_{\mu,p}f(z)} - p \right| = \left| B \left[z(R^\delta_{\mu,p}f(z))' \right] - [Bp + (A - B)(p - \alpha)] [R^\delta_{\mu,p}f(z)] \right|
\]
\[
= \left| \sum_{k=p+1}^{\infty} (k - p)(1 - \mu)^{k-p} \frac{\Gamma(k + \delta)}{\Gamma(p + \delta)} a_k z^k \right| < 1.
\]
Since \(\text{Re}(z) \leq |z| \) for all \(z \), we have
\[
\text{Re} \left\{ \frac{\sum_{k=p+1}^{\infty} (k - p)(1 - \mu)^{k-p} \frac{\Gamma(k + \delta)}{\Gamma(p + \delta)} a_k z^k}{(A - B)(p - \alpha)z^p + \sum_{k=p+1}^{\infty} [-B(k - p) + (A + B)(p - \alpha)](1 - \mu)^{k-p} \frac{\Gamma(k + \delta)}{\Gamma(p + \delta)} a_k z^k} \right\} < 1,
\] (2.2)
choose values of \(z \) on the real axis so that \(\frac{z(R^\delta_{\mu,p}f(z))'}{R^\delta_{\mu,p}f(z)} \) is real. It is clearing the denominator in (2.2) and letting \(z \to 1^- \) through real values, we have
Theorem 3. If the function \(f(z) \) defined by (1.1) is in the class \(R_{\mu,p}^\delta(\alpha; A, B) \). Then

\[
\sum_{k=p+1}^{\infty} (k-p)(1-\mu)k-p\frac{\Gamma(k+\delta)}{\Gamma(p+\delta)}a_k \leq (A-B)(p-\alpha) - \sum_{k=p+1}^{\infty} [-B(k-p)+(A-B)(p-\alpha)](1-\mu)k-p\frac{\Gamma(k+\delta)}{\Gamma(p+\delta)}a_k.
\]

(2.3)

This gives the required condition.

Corollary 1. Let the function \(f(z) \) defined by (1.1) be in the class \(R_{\mu,p}^\delta(\alpha; A, B) \). Then

\[
a_k \leq \frac{(A-B)(p-\alpha)}{[(1-B)(k-p)+(A-B)(p-\alpha)](1-\mu)k-p\frac{\Gamma(k+\delta)}{\Gamma(p+\delta)}} (k \geq p+1),
\]

(2.4)

the result is sharp for the function \(f_0 \) given by

\[
f_0(z) = z^p - \frac{(A-B)(p-\alpha)}{[(1-B)(k-p)+(A-B)(p-\alpha)](1-\mu)k-p\frac{\Gamma(k+\delta)}{\Gamma(p+\delta)}} z^k \quad (k \geq p+1).
\]

(2.5)

By using (1.9) and Theorem 1, it is easily to obtain the following result.

Theorem 2. Let the function \(f(z) \) be given by (1.1). Then \(f \in P_{\mu,p}^\delta(\alpha; A, B) \) if and only if

\[
\sum_{k=p+1}^{\infty} \frac{k}{p}(1-B)(k-p)k-p\frac{\Gamma(k+\delta)}{\Gamma(p+\delta)}a_k \leq (A-B)(1-\alpha)\frac{\Gamma(k+\delta)}{\Gamma(p+\delta)}
\]

(2.6)

Corollary 2. Let the function \(f(z) \) defined by (1.1) be in the class \(P_{\mu,p}^\delta(\alpha; A, B) \). Then

\[
a_k \leq \frac{(A-B)(p-\alpha)}{\frac{k}{p}(1-B)(k-p)k-p\frac{\Gamma(k+\delta)}{\Gamma(p+\delta)}} (k \geq p+1),
\]

(2.7)

the result is sharp for the function \(f_1(z) \) give by

\[
f_1(z) = z^p - \frac{(A-B)(p-\alpha)}{\frac{k}{p}(1-B)(k-p)k-p\frac{\Gamma(k+\delta)}{\Gamma(p+\delta)}} z^k \quad (k \geq p+1),
\]

(2.8)

2.2. Distortion Theorem

Theorem 3. If the function \(f(z) \) defined by (1.1) is in the class \(R_{\mu,p}^\delta(\alpha; A, B) \). Then

\[
\left| \delta(p,m) - \frac{(A-B)(p-\alpha)(p+1)!}{(p+1-m)!(1-B)+(A-B)(p-\alpha)(1-\mu)\frac{\Gamma(p+\delta+1)}{\Gamma(p+\delta)}} |z| \right| \leq |f^{(m)}(z)| \leq \left| \delta(p,m) + \frac{(A-B)(p-\alpha)(p+1)!}{(p+1-m)!(1-B)+(A-B)(p-\alpha)(1-\mu)\frac{\Gamma(p+\delta+1)}{\Gamma(p+\delta)}} |z| \right| |z|^{p-m}.
\]

(2.6)

\((m \in \mathbb{N}_0, p > \{m\})\)
The result is sharp for the function f_0 given by

$$f_0(z) = z^p - \frac{(A - B)(p - \alpha)}{[(1 - B) + (A - B)(p - \alpha)](1 - \mu)\frac{\Gamma(p + \mu + 1)}{\Gamma(p + \delta)}(1 - \mu)}z^{p+1}$$

Proof. In view of Theorem 1, we have

$$\frac{[(1 - B) + (A - B)(p - \alpha)](1 - \mu)\frac{\Gamma(p + \mu + 1)}{\Gamma(p + \delta)}}{(A - B)(p - \alpha)(p + 1)!}\sum_{k=p+1}^{\infty} k!a_k \leq \frac{\sum_{k=p+1}^{\infty} [(1 - B)(k - p) + (A - B)(p - \alpha)](1 - \mu)^{k-p}\frac{\Gamma(k + \delta)}{\Gamma(p + \delta)}a_k}{((1 - B) + (A - B)(p - \alpha))(1 - \mu)\frac{\Gamma(p + \mu + 1)}{\Gamma(p + \delta)}},$$

which readily yields

$$\sum_{k=p+1}^{\infty} k!a_k \leq \frac{(A - B)(p - \alpha)(p + 1)!}{[(1 - B) + (A - B)(p - \alpha)](1 - \mu)\frac{\Gamma(p + \mu + 1)}{\Gamma(p + \delta)}}.$$

Now by differentiating both sides of (1.1) m-times we have

$$f^{(m)}(z) = \delta(p, m)z^{p-m} - \sum_{k=p+1}^{\infty} \delta(k, m)a_kz^{k-m}.$$ \hspace{1cm} (2.8)

and Theorem 3 would follow from (2.7) and (2.8).

2.3. Radii of Starlikeness, Convexity and Close-to-Convexity

Theorem 4. Let the function $f(z)$ defined by (1.1) be in the class $R^\delta_{\mu, p}(\alpha; A, B)$, then

(i) $f(z)$ is p-valently starlike of order $\zeta(0 \leq \zeta < p)$ in $|z| < r_1$, where

$$r_1 = \inf_k \left[\frac{[(1 - B)(k - p) + (A - B)(p - \alpha)](1 - \mu)^{k-p}\frac{\Gamma(k + \delta)}{\Gamma(p + \delta)}(p - \zeta)}{(A - B)(p - \alpha)k(k - \zeta)} \right]^{\frac{1}{k-p}} (k \geq p + 1),$$ \hspace{1cm} (2.9)

(ii) $f(z)$ is p-valently convex of order $\zeta(0 \leq \zeta < p)$ in $|z| < r_2$, where

$$r_2 = \inf_k \left[\frac{[(1 - B)(k - p) + (A - B)(p - \alpha)](1 - \mu)^{k-p}\frac{\Gamma(k + \delta)}{\Gamma(p + \delta)}(p(p - \zeta)}{(A - B)(p - \alpha)k(k - \zeta)} \right]^{\frac{1}{k-p}} (k \geq p + 1),$$ \hspace{1cm} (2.10)

(iii) $f(z)$ is p-valently close-to-convex of order $\zeta(0 \leq \zeta < p)$ in $|z| < r_3$ where

$$r_3 = \inf_k \left[\frac{[(1 - B)(k - p) + (A - B)(p - \alpha)](1 - \mu)^{k-p}\frac{\Gamma(k + \delta)}{\Gamma(p + \delta)}(p - \zeta)}{(A - B)(p - \alpha)k} \right]^{\frac{1}{k-p}} (k \geq p + 1),$$ \hspace{1cm} (2.11)

Each of these results are sharp for the function $f(z)$ given by (2.5)

Proof. It is sufficient to show that
\[
\left| \frac{zf'(z)}{f(z)} - p \right| \leq p - \zeta \quad (|z| < r_1; 0 \leq \zeta < p),
\]
(2.12)

or

\[
\left| \frac{zf'(z)}{f(z)} - p \right| = \left| \sum_{k=p+1}^{\infty} (k-p)a_k z^{k-p} \right| \\
\leq \frac{\sum_{k=p+1}^{\infty} (k-p)a_k |z|^{k-p}}{1 - \sum_{k=p+1}^{\infty} a_k |z|^{k-p}}.
\]
(2.13)

Inequality (2.12) holds true, when

\[
\sum_{k=p+1}^{\infty} (k-p)a_k |z|^{k-p} \\
\leq p - \zeta,
\]
or, when

\[
\sum_{k=p+1}^{\infty} \left(\frac{k-\zeta}{p-\zeta} \right) a_k |z|^{k-p} \leq 1,
\]
(2.14)

using inequality (2.1), then (2.14) holds true if

\[
\left(\frac{k-\zeta}{p-\zeta} \right) a_k |z|^{k-p} \leq \frac{[(1-B)(k-p) + (A-B)(p-\alpha)](1-\mu)^{-p} \Gamma(k+\delta)}{(A-B)(p-\alpha)} a_k, \quad (k \geq p+1),
\]
(2.15)

or

\[
|z| \leq \left\{ \frac{[(1-B)(k-p) + (A-B)(p-\alpha)](1-\mu)^{-p} \Gamma(k+\delta)}{(A-B)(p-\alpha)} \left(\frac{p-\zeta}{k-\zeta} \right) \right\}^{\frac{1}{p-k}} \quad (k \geq p+1),
\]
(2.16)

or

\[
\quad r_1 = \inf_k \left\{ \frac{[(1-B)(k-p) + (A-B)(p-\alpha)](1-\mu)^{-p} \Gamma(k+\delta)}{(A-B)(p-\alpha)} \left(\frac{p-\zeta}{k-\zeta} \right) \right\}^{\frac{1}{p-k}} \quad (k \geq p+1).
\]
(2.17)

This completes the proof (2.9).

To prove (ii) and (iii) it is sufficient to note that

\[
\left| 1 + \frac{zf''(z)}{f'(z)} - p \right| \leq p - \zeta \quad (|z| < r_2; 0 \leq \zeta < p)
\]
(2.18)

and

\[
\left| \frac{f'(z)}{z^{p-1}} - p \right| \leq p - \zeta \quad (|z| < r_3; 0 \leq \zeta < p)
\]
(2.19)

respectively.
2.4 Modified-Hadamard Product

In this subsection, we obtain some results of the modified Hadamard product of functions f_1 and f_2, which are defined by

$$f_v(z) = z^p - \sum_{k=p+1}^{\infty} a_{k,v} z^k \quad (a_{k,v} \geq 0, v = 1, 2), \quad (2.20)$$

Theorem 5. If $f_v \in R^{\delta}_{\mu,p}(\alpha; A, B)$ ($v = 1, 2$) defined by (2.20), then $(f_1 \ast f_2)(z) \in R^{\delta}_{\mu,p}(\lambda; A, B)$, where

$$\lambda = p - \frac{(1 - B)(A - B)(p - \alpha)^2}{[(1 - B) + (A - B)(p - \alpha)]^2 (1 - \mu) \frac{\Gamma(p + \delta + 1)}{\Gamma(p + \delta)}} - \frac{[(A - B)(p - \alpha)]}{(1 - \mu) \frac{\Gamma(p + \delta + 1)}{\Gamma(p + \delta)}}. \quad (2.21)$$

The result is sharp for that function $f_v(z)$ ($v = 1, 2$) given by

$$f_v(z) = z^p - \frac{(A - B)(p - \alpha)}{[(1 - B) + (A - B)(p - \alpha)](1 - \mu) \frac{\Gamma(p + \delta + 1)}{\Gamma(p + \delta)}} z^{p+1}. \quad (2.22)$$

Proof. Employing the technique used earlier by Schild and Silverman [5], we need to find the largest λ such that

$$\sum_{k=p+1}^{\infty} \frac{[(1 - B)(k - p) + (A - B)(p - \lambda)](1 - \mu)^{k-p} \frac{\Gamma(k + \delta)}{\Gamma(p + \delta)}}{(A - B)(p - \lambda)} a_{k,1} a_{k,2} \leq 1. \quad (2.23)$$

Since $f_v \in R^{\delta}_{\mu,p}(p, \alpha; A, B)$ ($v = 1, 2$), we readily see that

$$\sum_{k=p+1}^{\infty} \frac{[(1 - B)(k - p) + (A - B)(p - \alpha)](1 - \mu)^{k-p} \frac{\Gamma(k + \delta)}{\Gamma(p + \delta)}}{(A - B)(p - \alpha)} a_{k,v} \leq 1 \quad (v = 1, 2).$$

Therefore, by the Cauchy-Schwarz inequality, we obtain

$$\sum_{k=p+1}^{\infty} \frac{[(1 - B)(k - p) + (A - B)(p - \alpha)](1 - \mu)^{k-p} \frac{\Gamma(k + \delta)}{\Gamma(p + \delta)}}{(A - B)(p - \alpha)} \sqrt{a_{k,1} a_{k,2}} \leq 1. \quad (2.24)$$

From (2.23) and (2.24), we need only to show that

$$\frac{[(1 - B)(k - p) + (A - B)(p - \lambda)]}{(p - \lambda)} \sqrt{a_{k,1} a_{k,2}} \leq \frac{[(1 - B)(k - p) + (A - B)(p - \alpha)]}{(p - \alpha)} a_{k,1} a_{k,2} \quad (k \geq p + 1),$$

or, equivalently, that

$$\sqrt{a_{k,1} a_{k,2}} \leq \frac{(p - \lambda)[(1 - B)(k - p) + (A - B)(p - \alpha)]}{(p - \alpha)(1 - B)(k - p) + (A - B)(p - \lambda)} \quad (k \geq p + 1). \quad (2.25)$$

Hence, in the light of inequality (2.24). It is sufficient to prove that

$$\frac{(A - B)(p - \alpha)}{[(1 - B)(k - p) + (A - B)(p - \alpha)](1 - \mu)^{k-p} \frac{\Gamma(k + \delta)}{\Gamma(p + \delta)}}$$
In our present investigation, we shall make use of the familiar integral operator

\[J_{c,p}(f)(z) = \frac{c + p}{z^{c}} \int_{0}^{z} t^{c-1} f(t) \, dt \quad (f \in T(p); c > -p), \] (3.1)

also, the fractional integral of order \(\eta \) is defined, for a function \(f \), by

\[D_{z}^{-\eta}f(z) = \frac{1}{\Gamma(\eta)} \int_{0}^{z} f(\xi) \left(\frac{z}{z - \xi} \right)^{1-\eta} d\xi \quad (\eta > 0), \] (3.2)

3. Applications of Fractional Calculus

In our present investigation, we shall make use of the familiar integral operator \(J_{c,p} \) defined by (see [2], [3] and [4])

\[\lambda \leq \frac{(p - \lambda)[(1 - B)(k - p) + (A - B)(p - \alpha)]}{(p - \alpha)[(1 - B)(k - p) + (A - B)(p - \lambda)]} \quad (k \geq p + 1). \] (2.26)

It follows from (2.26) that,

\[\lambda \leq p - \frac{(1 - B)(k - p)(A - B)(p - \alpha)^2}{[(1 - B)(k - p) + (A - B)(p - \alpha)]^2(1 - \mu)k^{p+\eta} - [(A - B)(p - \alpha)]^2} \quad (k \geq p + 1). \]

Now, defining the function \(\Phi(k) \) by

\[\Phi(k) = p - \frac{(1 - B)(k - p)(A - B)(p - \alpha)^2}{[(1 - B)(k - p) + (A - B)(p - \alpha)]^2(1 - \mu)^{k+\eta} - [(A - B)(p - \alpha)]^2} \quad (k \geq p + 1). \]

We see that \(\Phi(k) \) is an increasing function of \(k \) \((k \geq p + 1)\). Therefore, we conclude that

\[\lambda = \Phi(p + 1) = p - \frac{(1 - B)(A - B)(1 - \alpha)^2}{[(1 - B) + (A - B)(p - \alpha)]^2(1 - \mu)^{p+\eta} - [(A - B)(p - \alpha)]^2}, \] (3.2)

this completes the proof.

Theorem 6. If \(f_1 \in R^{\delta}_{\mu,p}(\alpha; A, B) \) and \(f_2 \in R^{\delta}_{\mu,p}(\beta; A, B) \), which are defined by (2.22), then \((f_1 * f_2)(z) \in R^{\delta}_{\mu,p}(\xi; A, B)\), where

\[\xi = p - \frac{(1 - B)(A - B)(p - \alpha)(p - \beta)}{[(1 - B) + (A - B)(p - \alpha)][(1 - B) + (A - B)(p - \beta)][(1 - \mu)^{k+\eta} - (A - B)^2(p - \alpha)(p - \beta)]} \] (3.28)

the result is the best possible for the functions

\[f_1(z) = z^{p} - \frac{(A - B)(p - \alpha)}{[(1 - B) + (A - B)(p - \alpha)]^2(1 - \mu)^{p+\eta} - [(A - B)(p - \alpha)]^2} z^{p+1}, \] (3.29)

and

\[f_2(z) = z^{p} - \frac{(A - B)(p - \beta)}{[(1 - B) + (A - B)(p - \beta)]^2(1 - \mu)^{p+\eta} - [(A - B)(p - \beta)]^2} z^{p+1}. \] (3.30)
where the function f is analytic in a simply-connected domain of the complex plane containing the origin and the multiplicity of $(z - \xi)^{-\eta}$ is removed by requiring $\log(z - \xi)$ to be real when $z - \xi > 0$.

The fractional derivative of order η is defined, for a function f, by

$$D_z^\eta f(z) = \frac{1}{\Gamma(1 - \eta)} \frac{d}{dz} \int_0^z \frac{f(\xi)}{(z - \xi)^{\eta}} d\xi \quad (0 \leq \eta < 1),$$

where the function $f(z)$ is constrained, and the multiplicity of $(z - \xi)^{-\eta}$ is removed, as above. In this section, we investigate the distortion properties of functions in the class $R^\delta_{\mu,p}(\alpha; A, B)$ involving the operator $J_{c,p}$ and the fractional calculus $D_z^{-\eta}$ and D_z^η. By using (3.1), (3.2), (3.3) and (1.1) it is easily deduced that:

$$D_z^\eta (J_{c,p}f(z)) = \frac{\Gamma(p + 1)}{\Gamma(2 - \eta)} z^{p-\eta} - \sum_{k=p+1}^{\infty} \frac{(c + p)\Gamma(k + 1)}{(c + k)\Gamma(k - \eta + 1)} a_k z^{-k - \eta},$$

and

$$D_z^{-\mu} (J_{c,p}f(z)) = \frac{\Gamma(p + 1)}{\Gamma(2 + \eta)} z^{p+\eta} - \sum_{k=p+1}^{\infty} \frac{(c + p)\Gamma(k + 1)}{(c + k)\Gamma(k + \eta + 1)} a_k z^{k + \eta}.$$

Theorem 7. Let the function f defined by (1.1) be in the class $R^\delta_{\mu,p}(\alpha; A, B)$. Then

$$|D_z^{-\eta} (J_{c,p}f(z))| \geq \left\{ \frac{\Gamma(p + 1)}{\Gamma(p + 1 + \eta)} - \frac{(c + p)\Gamma(p + 2)(B - A)(p - \alpha)}{(c + p + 1)\Gamma(p + 2)(1 - B)(A - B)(p - \alpha)\Gamma(2 - \eta)} |z| \right\} |z|^{p + \eta},$$

and

$$|D_z^{-\eta} (J_{c,p}f(z))| \leq \left\{ \frac{\Gamma(p + 1)}{\Gamma(p + 1 + \eta)} + \frac{(c + p)\Gamma(p + 2)(A - B)(p - \alpha)}{(c + p + 1)\Gamma(p + 2)(1 - B)(A - B)(p - \alpha)\Gamma(2 + \eta)} |z| \right\} |z|^{p + \eta},$$

these results are sharp.

Proof. In view of Theorem 1 we have

$$\sum_{k=p+1}^{\infty} \frac{[(1 - B) + (A - B)(p - \alpha)](1 - \mu)\Gamma(p + \delta + 1)}{(A - B)(p - \alpha) \Gamma(p + \delta) \Gamma(p + \eta)} a_k \leq \frac{(A - B)(p - \alpha)}{[(1 - B) + (A - B)(p - \alpha)](1 - \mu) \Gamma(p + \delta + 1) \Gamma(p + \eta)}.$$

which readily yields

$$\sum_{k=p+1}^{\infty} a_k \leq \frac{(A - B)(p - \alpha)}{[(1 - B) + (A - B)(p - \alpha)](1 - \mu) \Gamma(p + \delta + 1) \Gamma(p + \eta)}.$$

Suppose that function $F(z)$ defined in U by

$$F(z) = \frac{\Gamma(p + \eta + 1)}{\Gamma(p + 1)} z^{-\eta} [D_z^{-\eta} (J_{c,p}f(z))] = z^p - \sum_{k=p+1}^{\infty} \frac{(c + p)\Gamma(k + 1)\Gamma(p + \eta + 1)}{(c + k)\Gamma(p + 1)\Gamma(k + \eta + 1)} a_k z^k$$

$$= z^p - \sum_{k=p+1}^{\infty} \Upsilon(k) a_k z^k,$$

(3.9)
where

$$\Upsilon(k) = \frac{(c+p)\Gamma(k+1)\Gamma(p+\eta+1)}{(c+k)\Gamma(p+1)\Gamma(k+\eta+1)}.$$ \hspace{1cm} (3.10)

Since \(\Upsilon(k)\) is a decreasing function of \(k\),

\[
0 < \Upsilon(k) \leq \Upsilon(p+1) = \frac{(c+p)(p+1)\Gamma(p+\eta+1)}{(c+p+1)(p+\eta+1)}.
\] \hspace{1cm} (3.11)

By using (3.9) and (3.11) we have

\[
|F(z)| = \left| z^p - \sum_{k=p+1}^{\infty} \Upsilon(k) a_k z^k \right| \geq |z|^p - |z|^p \ Upsilon(p+1) \sum_{k=p+1}^{\infty} a_k z^k
\] \hspace{1cm} (3.12)

and

\[
|F(z)| = \left| z^p + \sum_{k=p+1}^{\infty} \Upsilon(k) a_k z^k \right| \leq |z|^p - |z|^p \ Upsilon(p+1) \sum_{k=p+1}^{\infty} a_k z^k
\] \hspace{1cm} (3.13)

which yield the inequalities (3.6) and (3.7) of Theorem 8.

This equalities in (3.6) and (3.7) are attained for the function \(f\) of which

\[
D_z^{-\eta} (J_{c,p} f(z)) = \left\{ \frac{\Gamma(p+1)}{\Gamma(p+1+\eta)} - \frac{(c+p)\Gamma(p+2)(A-B)(p-\alpha)}{(c+p+1)\Gamma(p+1)\Gamma(p+\eta+2)(1-B)+(A-B)(p-\alpha)(1-\mu)\Gamma(p+1+\eta)} z \right\} z^{p+1},
\] \hspace{1cm} (3.14)

or, equivalently

\[
J_{c,p} f(z) = z^p - \frac{(c+p)(A-B)(p-\alpha)}{(c+p+1)(1-B)+(A-B)(p-\alpha)(1-\mu)\Gamma(p+1+\eta)} z^{p+1},
\]

Thus the proof of Theorem 7 is completed.

Another inequalities can be given and the proof is omitted.

Theorem 8. Let the function \(f\) defined by (1.1) be in the class \(R^\alpha_{\mu,p}(\alpha; A, B)\). Then

\[
|D_z^n (J_{c,p} f(z))| \geq \left\{ \frac{\Gamma(p+1)}{\Gamma(p+1+\eta)} - \frac{(c+p)\Gamma(p+2)(A-B)(p-\alpha)}{(c+p+1)\Gamma(p+1)\Gamma(p+\eta+2)(1-B)+(A-B)(p-\alpha)(1-\mu)\Gamma(p+1+\eta)} z \right\} |z|^{p-\eta},
\] \hspace{1cm} (3.15)

and

\[
|D_z^n (J_{c,p} f(z))| \leq \left\{ \frac{\Gamma(p+1)}{\Gamma(p+1+\eta)} + \frac{(c+p)\Gamma(p+2)(A-B)(p-\alpha)}{(c+p+1)\Gamma(p+1)\Gamma(p+\eta+2)(1-B)+(A-B)(p-\alpha)(1-\mu)\Gamma(p+1+\eta)} z \right\} |z|^{p-\eta}.
\] \hspace{1cm} (3.16)

Each of the assertions (3.15) and (3.16) is sharp.

Then, we can easily obtain the following two theorems and the proofs are omitted.

Theorem 9. Let the function \(f\) defined by (1.1) be in the class \(R^\alpha_{\mu,p}(\alpha; A, B)\). Then

\[
|J_c (D_z^n f(z))| \geq \left\{ \frac{(c+p)}{\Gamma(p+1-\eta)} - \frac{(c+p)\Gamma(p+2)(A-B)(p-\alpha)}{(c+p+1)\Gamma(p+1)\Gamma(p+\eta+2)(1-B)+(A-B)(p-\alpha)(1-\mu)\Gamma(p+1+\eta)} z \right\} |z|^{p-\eta},
\] \hspace{1cm} (3.17)
and

\[|J_c \, (D^\eta_z \, f(z))| \leq \left\{ \frac{(c+p)}{(c+\eta+1)\Gamma(p+1-\eta)} - \frac{(c+p)\Gamma(p+2)(A-B)(p-\alpha)}{(c+p+1)\Gamma(p+\eta+2)(1-B)+(A-B)(p-\alpha)[(1-\mu)\Gamma(p+\eta+1)]} \right\} |z|^{p-\eta}. \]

(3.18)

Theorem 10. If the function \(f \) given by (1.1) be in the class \(R^\delta_{\mu,p}(\alpha; A, B) \). Then

\[|J_c \, (D^{-\eta}_z \, f(z))| \geq \left\{ \frac{(c+p)}{(c+\eta+1)\Gamma(p+1+\eta)} - \frac{(c+p)\Gamma(p+2)(A-B)(p-\alpha)}{(c+p+1)\Gamma(p+\eta+2)(1-B)+(A-B)(p-\alpha)[(1-\mu)\Gamma(p+\eta+1)]} \right\} |z|^{p+\eta}, \]

(3.19)

and

\[|J_c \, (D^{-\eta}_z \, f(z))| \leq \left\{ \frac{(c+p)}{(c+\eta+1)\Gamma(p+1+\eta)} + \frac{(c+p)\Gamma(p+2)(A-B)(p-\alpha)}{(c+p+1)\Gamma(p+\eta+2)(1-B)+(A-B)(p-\alpha)[(1-\mu)\Gamma(p+\eta+1)]} \right\} |z|^{p+\eta}. \]

(3.20)

Remark

By using the coefficients estimates (given by Theorem 2) of functions belonging to the subclass \(P^\delta_{\mu,p}(\alpha; A, B) \) and performing the same techniques of proofs given during Sections 2 and 3, then we can obtain the corresponding results of \(P^\delta_{\mu,p}(\alpha; A, B) \).

References

[1] W. G. Atshan and R. H. Buti, Fractional calculus of a class of negative coefficients defined by Hadamard product with Rafid-operator, European J. Pure Appl. Math, 4(2011), no. 2, 162-173.

[2] S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc., 135(1969), 429-446.

[3] R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc., 16(1996), 755-758.

[4] A. E. Livingston, On the radius of univalence of certain analytic functions, Proc. Amer. Math. Soc., 17(1966), 352-357.

[5] A. Schild, and H. Silverman, Convolutions of univalent functions with negative coefficients, Ann. Mariae Curie-Skłodowska Sect. A, 29(1975), 99-107.

[6] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51(1975), 109-116.

[7] S. S. Miller and P. T. Mocanu. Differential subordinations: theory and applications. Marcel Dekker, New York, 2000.