Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Efficient inactivation of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in human apheresis platelet concentrates with amotosalen and ultraviolet A light

Inactivation efficace du coronavirus-2 du syndrome respiratoire aigu sévère (SARS-CoV-2) dans des concentrés de plaquettes humaines d’aphérèse traités par amotosalen et rayons ultraviolets A

S.I. Hindawi a, *, S.A. El-Kafrawy b, A.M. Hassan b, M.A. Badawi a, M.M. Bayoumi c, A.A. Almalki c, H.M. Zowawi d, A.M. Tolah b, T.A. Alandijany b, Q. Abunada e, M. Picard-Maureau e, G.A. Damanhouri f, E.I. Azhar b, *

* Corresponding authors.
E-mail addresses: sihindawi@yahoo.com (S.I. Hindawi), eazhar@kau.edu.sa (E.I. Azhar).

https://doi.org/10.1016/j.traci.2021.08.005
1246-7820/© 2021 Société française de transfusion sanguine (SFTS). Published by Elsevier Masson SAS. All rights reserved.
1. Introduction

On 11th of March 2020 the WHO declared a pandemic of the respiratory COVID-19 disease caused by SARS-CoV-2, a beta-Coronavirus spreading rapidly by respiratory transmission throughout the globe. To date, more than 214 million infections have been confirmed and more than 4.4 million disease-related deaths were reported globally according to the WHO.

The detection of SARS-CoV-2 genomic RNA at low viral loads in serum and blood samples of symptomatic patients was reported, but only in a minority of approximately 10% of the samples (linked to disease severity) in a quantity often close to the limit of detection (CT values above 35) [1]. Low viral load SARS-CoV-2 genomic RNA was also detected in rare occasions in screening samples, post-donation information (PDI) samples and blood products from asymptomatic donors, as well as in platelet units, but infectious virus could not be isolated [2–4]. Interestingly, platelets of symptomatic patients were shown to be associated with viral RNA [5]. In vitro studies showed the attachment of viral particles to the surface of platelets, as well as the presence of viral particles inside platelets, but the meaning of these findings is still unclear [6]. The transmission of infectious SARS-CoV-2 through blood transfusion has not been reported yet, but even unlikely it cannot be excluded and is perceived as a theoretical risk [2–4].

The amotosalen/UVA pathogen reduction (PR) process uses a photochemical reaction to crosslink nucleic acids, resulting in the inhibition of cell and pathogen replication and transcription [7,8]. Efficient inactivation was shown for a broad variety of viruses and parasites [9]. A recent study showed an effective inactivation of many bacterial species with a breakpoint of > 7 log cfu/ml [10] in human platelet concentrates, which is in line with former findings [11]. The treatment of platelet units also efficiently inactivates white blood cells, eliminating the need for gamma-irradiation [12,13]. The treated platelets have been shown clinically comparable to untreated platelets with respect to hemostasis [14] and component utilization [15].

To address potential concerns regarding the theoretical transmission of human coronaviruses by blood transfusion, and after the demonstration of efficient inactivation of MERS-CoV in plasma and platelets with amotosalen/UVA [16,17], we recently demonstrated the effective inactivation of a local clinical SARS-CoV-2 isolate in human plasma with amotosalen/UVA [18]. In the current study, we expanded that work assessing the pathogen inactivation efficacy of the amotosalen/UVA PR treatment for SARS-CoV-2 in human apheresis platelet concentrates in 100% plasma.

2. Materials and methods

2.1. Viral stock and culture

We used a clinical SARS-CoV-2 isolate (SARS-CoV-2/human/SAU/85791C/2020, gene bank accession number: MT630432) maintained in Vero E6 cells (ATCC# CRL-1586) in Dulbecco’s modified Eagle medium (DMEM) with 10% fetal bovine serum (FBS). Vero E6 cells and SARS-CoV-2/human/SAU/85791C/2020 were used in all experiments as described previously [18].

2.2. Preparation of the SARS-CoV-2 viral stock

The SARS-CoV-2 stock was prepared as described previously [18]. Briefly, 90–95% confluent Vero E6 cells were inoculated with a multiplicity of infection (MOI) of one and incubated at 37 °C with 5% CO2 in a tissue culture incubator until 80%–90% of cells showed a cytopathic effect (CPE). Supernatant was then collected; cellular debris removed, and aliquots of the viral stock were subsequently stored at −80 °C. The infectious titer was determined by plaque assay.

2.3. Platelet preparation

Apheresis platelet units in 100% donor plasma (~380 mL volume, 4.6 × 1011 platelets per unit) were collected at the King Abdulaziz University Hospital (KAUH) Transfusion Services, Jedda, Saudi Arabia, from voluntary donors with a Trima apheresis unit (Terumo BCT, Japan) as described previously [17]. The platelet units were stored at 20–22 °C under continuous agitation. All platelet units were screened for antibodies against HCV, HBsAg, Hbc, HIV (1/2), HTLV (1/2) and Treponema as well as for HCV, HBV and HIV by NAT. All units were assessed for the presence of anti-SARS-CoV-2 neutralizing antibodies using an in-house micro-neutralization (MN) assay. The assay was conducted as previously described using a local SARS-CoV-2 clinical isolate (SARS-CoV-2/human/SAU/85791C/2020) (Genbank accession
number MT630432.1) [19]. MN titers of ≥ 1:20 were considered positive.

2.4. SARS-CoV-2 inactivation

Platelet units were spiked with SARS-CoV-2 viral stock in a 1:100 dilution. The spiked units were subsequently treated with the INTERCEPT Blood System for Platelets using the Large Volume Processing Set and the INTERCEPT Illuminator INT-100 (Cerus Corporation, USA) according to the manufacturer’s instructions. The platelet container was sterile connected to the processing set (a closed system), followed by mixing the platelet concentrate with 17.5 mL amotosalen solution (3 mM) in the illumination container. Subsequently the illumination container was exposed to 3 J/cm² UVA light (320–400 nm) under reciprocal shaking to induce the photochemical reaction (using the INTERCEPT illuminator). Amotosalen intercalates in nucleic acids and forms irreversible convalescent bonds in the presence of UVA light, cross-linking nucleic acids, inhibiting replication and transcription. After illumination, the platelet concentrate was transferred to the compound absorption device (CAD) container followed by a 16 h to 20 h incubation step under gentle agitation in a platelet incubator to reduce residual amotosalen and photoproducts by non-specific binding to surface of a polystyrene matrix. After the CAD incubation step, the platelets were transferred to platelet storage containers. The following samples were collected for analysis: a negative control (the platelet units before spiking), a positive control (viral stock), a pretreatment sample (spiked unit post-inoculation) and a post-treatment sample (spiked unit post-PR treatment). All samples were stored at −80 °C until testing.

2.5. SARS-CoV-2 passaging experiments

SARS-CoV-2 passaging experiments to detect low-abundant replication-competent particles in human apheresis platelet units in 100% plasma pre- and post-PR treatment were conducted as previously described [18] with minor modifications. Pre- and post-treatment samples were diluted in a 1:10 dilution in DMEM with 2% FBS, transferred to susceptible Vero E6 cells in duplicates, and incubated for 1 h at 37 °C. Then, the inoculum was exchanged against 2 mL DMEM with 2% FBS and the cells were cultured for 3 days at 37 °C in a tissue culture incubator. Supernatants were collected, diluted 1:10 with DMEM with 2% FBS and re-transferred to non-infected Vero E6 cells for two more passages. Supernatants were collected at day 3 of inoculation of each passage for viral load determination.

2.6. SARS-CoV-2 plaque assay

Plaque assays were conducted as previously described [18] with a minor modification. Samples were serially diluted in DMEM with 2% FBS and 1 mL from each dilution was inoculated on susceptible confluent Vero E6 cells and incubated for 1 h at 37 °C. The inoculum was subsequently removed and overlaid with DMEM with 0.8% agarose and incubated for 3 more days at 37 °C in a tissue culture incubator. Cells were then stained with crystal violet for 4 h at 37 °C. The viral infectious titer was expressed as plaque forming unit (PFU)/mL.

2.7. Quantitative detection of viral genomes

RNA was extracted from all samples directly from the platelet units with a QiAmp Viral RNA Mini Kit (Qiagen, Germany) according to the manufacturer's instructions. Quantitative one-step dual-target RT-PCR was conducted with a RealStar SARS-CoV-2 RT-PCR Kit 1.0 (Altona Diagnostics, Germany) detecting an E-gene (beta-Coronavirus specific) and a S-gene (SARS-CoV-2 specific) target as well as an internal control using a 7500 Fast Real-Time PCR System (Applied Biosystems, USA) according to the manufacturer’s instructions. The decrease in viral load was expressed by comparing the cycle threshold (CT) values from each sample relative to the CT values of the pretreatment inoculated sample (with the S-gene primers). The SARS-CoV-2 titers were expressed as PFU equivalents per mL (PFU/mL) using a standard curve (standard: serial dilutions of the viral stock based on the PFU titer) and choosing dilutions of the original sample (10-1 to 10-8) with CT values in the exponential phase. Each run included a positive viral template control and no-template negative control. Each sample was tested in duplicate, and the mean is reported as PFU/mL.

2.8. IRB approval

The study was approved by the Unit of Biomedical Ethics of the King Abdulaziz University Hospital (approval #285-20).

3. Results

3.1. Inactivation of infectious SARS-CoV-2 particles in human apheresis platelet units

The platelet units used for this experiment were tested negative for the presence of SARS-CoV-2 neutralizing antibodies using the MN assay. Five human apheresis platelet units (A-E) in 100% donor plasma were collected and spiked with SARS-CoV-2. The units were subsequently treated with amotosalen/UVA. The mean infectious titer in the pre-PR treatment samples was 3.31 ± 0.23 log_{10} PFU/mL (3.68–3.11 log_{10} PFU/mL) (Table 1). The PR treatment resulted in a reduction of > 3.31 ± 0.23 log_{10} PFU/mL, since no infectious virus was detected in the PR samples in the plaque assay (Table 1). Fig. 1 shows a representative plaque assay for the units tested in this study. Negative control samples and post-PR treatment samples showed no detectable replication-competent viral particles. The mean infectivity of the viral stock was 5.27 ± 0.19 log_{10} PFU/mL and post-spiking in a 1:10 dilution in the pre-PR treatment samples 3.31 ± 0.23 log_{10} PFU/mL, which is close to the expected post-spiking titer of 3.27 log_{10} PFU/mL, confirming no unexpected loss of infectivity by dilution and the addition of amotosalen.

3.2. The impact of amotosalen and UVA light treatment on the viral genomic titer

For further confirmation of the results, the viral genomic titer was assessed for all collected samples. The median Ct value in the spiked samples pre-PR treatment was 20.1 (18.0–22.2) for the SARS-CoV-2 S-protein specific primers. The mean pre-PR treatment viral genomic titer was 4.46 ± 0.51 log_{10} PEq/mL (3.71–4.99 log_{10} PEq/mL) (Table 2), approximately one level of magnitude higher than the infectious titer (3.31 ± 0.23 log_{10} PFU/mL). Post-PR treatment, very low viral genome titers were detectable (Table 2). The internal control was always positive indicating no PCR inhibition, confirming that the decrease of the signal from the SARS-CoV-2 S-gene specific primers in the PR samples is due to a mean minimum inactivation of 4.46 ± 0.51 log_{10} PEq/mL.

3.3. Passaging of pathogen-reduced platelets to confirm complete inactivation of infectious SARS-CoV-2 particles

To exclude the possibility of any remaining replicating SARS-CoV-2 particles in the treated platelet units (Table 1), we inoculated the collected samples on Vero E6 cells and evaluated infectivity
Table 1
Reduction of infectious SARS-CoV-2 titers in human platelet units after amotosalen/UVA treatment.

Experiment	Viral infectivity titer, log_{10} PFU/mL	Log reduction			
	Positive control	Negative control	Pretreatment sample	Posttreatment sample	
A	5.34	ND	3.2	ND	> 3.2
B	5.53	ND	3.68	ND	> 3.68
C	5.19	ND	3.36	ND	> 3.36
D	5.02	ND	3.19	ND	> 3.19
E	5.27	ND	3.11	ND	> 3.11
Mean ± SD	5.27 ± 0.19	ND	3.31 ± 0.23	ND	> 3.31 ± 0.23

ND: not detected.

a After addition of amotosalen.

![Positive Control, Negative Control, Spiked Platelet Unit, Post Inactivation](image)

Fig. 1. Inactivation of SARS-CoV-2 in platelets by amotosalen and UVA treatment assessed by a plaque assay. Vero E6 cells were inoculated for 1 h with the following samples in a 1:10 dilution in DMEM: the SARS-CoV-2 viral stock (positive control), human platelets (negative control), platelets from a SARS-CoV-2 spiked pretreatment sample (spiked plasma unit) and amotosalen/UVA-treated, SARS-CoV-2 spikes platelets (post-inactivation). The cells were overlaid with agarose, incubated for three more days followed by crystal violet staining. Experiments were conducted in serial dilutions. Photographs (4×) are shown from one of five representative experiments.

Table 2
SARS-CoV-2 genomic load in platelets before and after amotosalen/UVA treatment.a,b,c.

Experiment	Positive control	Negative control	Pretreatment sample	Posttreatment sample
A	6.84	ND	4.35	0.10
B	6.35	ND	4.36	0.21
C	6.39	ND	3.71	0.15
D	6.30	ND	4.99	0.30
E	6.23	ND	4.87	0.04
Mean ± SD	6.02 ± 0.99	ND	4.46 ± 0.51	0.16 ± 0.1

ND: not detected.

a Data are shown as log_{10} PEq/mL.

b Titers were determined from the same samples used in Table 1.

c Internal controls were positive for all tested samples with an average CT value of 24.2 showing less than 10% variation between samples.

![Positive Control, Negative Control, Passage 1, Passage 2, Passage 3](image)

Fig. 2. Complete inactivation of replicative SARS-CoV-2 post-amotosalen/UVA treatment by passaging experiments. Vero E6 cells were inoculated for 1 h with the following samples in a 1:10 dilution in DMEM: plasma from a SARS-CoV-2 spiked pretreatment sample (positive control), human platelets (negative control) and amotosalen/UVA-treated, SARS-CoV-2 spikes platelets (passage 1–3) passaged for three consecutive passages. Both, the positive control and the pretreatment sample caused extensive CPE by day 3 post-inoculation in all three passages. Negative control and inactivated sample did not show any CPE in Vero E6 cells. Photographs (4×) are shown from one of five representative experiments on day 3 post-inoculation from each passage.

over three successive passages. While culture of all pre-PR treatment samples showed viral replication and complete CPE within 3 days post-inoculation comparable to the positive control, neither viral replication nor CPE was observed in cells inoculated with PR samples similar to the negative controls (Fig. 2), even after 9 days of incubation in all three passages. For further confirmation, we determined the genomic viral load from supernatants collected from all passages inoculated with either pre-PR treatment or PR samples. As
shown in Table 3, passaging of pre-PR treatment samples showed viral replication as evident by CPE. On the other hand, viral genomes in cells inoculated with PR samples in culture supernatants were not detectable. Together, these data confirm the complete inactivation of SARS-CoV-2 in the tested platelet units and the absence of replication-competent virus post-PR treatment.

4. Discussion

When a new pathogen spreads rapidly, like during the current COVID-19 pandemic, there is likely not sufficient time to develop and implement blood screening assays to prevent collection and transfusion of contaminated blood products and protect patients from transfusion-transmitted infections while ensuring blood continuity. With universal PR technology, such risks could be mitigated proactively. The amotosalen/UV-A PR technology has already shown potential during emerging arbovirus outbreaks including chikungunya virus, dengue virus and Zika virus [20]. However, the implementation of PR takes a certain time, to be prepared against newly emerging pathogens it should be already in place [20].

We showed complete inactivation of >3.31 ± 0.23 log PFU/mL and >4.64 ± 0.5 log PEq/mL SARS-CoV-2 in human apheresis platelets in 100% donor plasma. In the present study, the genomic titer was 10-fold higher compared to the infectious titer (Tables 1 and 2). No CPE and no genomic viral load were detectable after 3 consecutive rounds of passaging on Vero E6 cells, pointing towards complete inactivation. The reported genomic viral load in the blood of symptomatic patients and asymptomatic donors is relatively low, often close to the limit of detection [1–4], indicating sufficient inactivation efficacy of amotosalen/UV-A to mitigate potential transfusion-transmission (Table 2). In an earlier study analyzing the capacity of amotosalen/UV-A PR to inactivate SARS-CoV-1, Pinna et al. showed a mean log10-reduction of >6.2 [21]. The maximum inactivation capacity which can be shown is dependent on the input titer in a given experiment and is usually several magnitudes lower in clinical isolates compared to tissue culture attenuated viral stock preparations. Therefore, it is needed to ensure experimentally that the entire viral inoculum is inactivated, underlining the importance of passaging experiments or, as is the case for bacteria, the inclusion of enrichment culture analyses.

A study evaluating the inactivation of SARS-CoV-2 using the Riboflavin/UVB PR technology reported a reduction capacity of ≥4.79 ± 0.15 log in human plasma [22], ≥4.35 log in human apheresis platelets in 100% plasma [23] and ≥3.3 ± 0.26 log in whole blood [22]. This difference in results between the two technologies could be attributed to the different SARS-CoV-2 isolates translating into different maximum input titers reported in the studies. The inactivation efficacy of a photochemical PR system largely depends on the pathogen structure and genomic organization [24]. For nucleic acid targeting PR technologies using photoactive compounds and UV light illumination, the photoactive substance must penetrate the viral particle and reach the pathogen’s genome, as well as the UV-light during illumination. That points towards a comparable sensitivity of taxonomically closely related pathogens to a PR-system due to their closely related morphology and genome structure. Considering previous data showing the efficient inactivation of MERS-CoV [16,17] and SARS-CoV-1 [21,25], coronavirus sensitivity to amotosalen/UV-A PR is high likely. Amotosalen/UV-A treatment of platelet concentrates and plasma units likely benefits coronaviruses TTI risk mitigation.

Disclosure of interest

M.P.M. is employee and Q.A. consultant of Cerus Europe B.V., the manufacturer of the INTERCEPT Blood System. All other authors declare that they have no competing interest.

Acknowledgements

We thank Jean-Marc Payrat for critical reading. We thank Cerus Corporation for supporting our study with equipment and consumables/reagents.

References

[1] Anderson MI, Arancibia-Carcamo CV, Auckland K, Baillie JK, Barnes E, Beneke T, et al. SARS-CoV-2 RNA detected in blood products from patients with COVID-19 is not associated with infectious virus. Wellcome Open Res 2020;5:181.
[2] Chang L, Zhao L, Gong H, Wang L, Wang L. Severe acute respiratory syndrome coronavirus 2 RNA detected in blood donations. Emerg Infect Dis 2020;26:1631–3.
[3] Pham TD, Huang C, Wirz OF, Rolfgen K, Sahoo MK, Layon A, et al. SARS-CoV-2 RNAemia in a healthy blood donor 40 days after respiratory illness resolution. Ann Intern Med 2020;173:853–4.
[4] Cappy P, Candotti D, Sauvage V, Lucas Q, Boizeau L, Gomez J, et al. No evidence of SARS-CoV-2 transfusion-transmission despite RNA detection in blood donors showing symptoms after donation. Blood 2020;1888–91.
[5] Zaid Y, Puhl F, Aliayes I, Naja A, Ouahidi M, Khalki L, et al. Platelets can associate with SARS-CoV-2 RNA and are hyperactivated in COVID-19. Circ Res 2020;127:1404–18.
[6] Zhang S, Liu Y, Wang X, Yang L, Li H, Wang Y, et al. SARS-CoV-2 binds platelet ACE2 to enhance thrombosis in COVID-19. J Hematol Oncol 2020;13:120.
[7] Schlenke P. Pathogen inactivation technologies for cellular blood components: an update. Transfus Med Hemother 2014;41:309–25.
[8] Wollowitz S. Fundamentals of the psoralen-based Helinx technology for inactivation of infectious pathogens and leukocytes in platelets and plasma. Semin Hematol 2001;38:4–11.

[9] Lanteri MC, Santa-Maria F, Laughhunn A, Girard YA, Picard-Maureau M, Payrat JM, et al. Inactivation of a broad spectrum of viruses and parasites by photochemical treatment of plasma and platelets using amotosalen and ultraviolet A light. Transfusion 2020;60:1319–31.

[10] McDonald CP, Bearne J, Aplin K, Sawicka D. Assessing the inactivation capabilities of two commercially available platelet component pathogen inactivation systems: effectiveness at end of shelf life. Vox Sang 2021;116:416–24, http://doi.org/10.1111/vox.13040.

[11] Schmidt M, Hourfar MK, Sireis W, Pfeiffer U, Gottig S, Kempl VA, et al. Evaluation of the effectiveness of a pathogen inactivation technology against clinically relevant transfusion-transmitted bacterial strains. Transfusion 2015;55:2104–12.

[12] Cid J. Prevention of transfusion-associated graft-versus-host disease with pathogen-reduced platelets with amotosalen and ultraviolet A light: a review. Vox Sang 2017;112:607–13.

[13] Castro G, Merkel PA, Giclaser HE, Gbula A, Andersen GE, Corash LM, et al. Amotosalen/UVA treatment inactivates T cells more effectively than the recommended gamma dose for prevention of transfusion-associated graft-versus-host disease. Transfusion 2018;58:1566–15.

[14] Cid J, Escolar G, Lozano M. Therapeutic efficacy of platelet components treated with amotosalen and ultraviolet A pathogen inactivation method: results of a meta-analysis of randomized controlled trials. Vox Sang 2012;103:322–30.

[15] Amato M, Schenack H, Astl M, Chen CY, Lin JS, Benjamin RJ, et al. Impact of platelet pathogen inactivation on blood component utilization and patient safety in a large Austrian Regional Medical Centre. Vox Sang 2017;112:47–55.

[16] Hindawi SI, Hashem AM, Damanhour GA, El-Kafrawy SA, Tolah AM, Hassan AM, et al. Inactivation of Middle East respiratory syndrome coronavirus in human plasma using amotosalen and ultraviolet A light. Transfusion 2018;58:52–9.

[17] Hashem AM, Hassan AM, Tolah AM, Alsaaadi MA, Abunada Q, Damanhour GA, et al. Amotosalen and ultraviolet A light efficiently inactivate MERs-coronavirus in human platelet concentrates. Transfus Med 2019;29:434–41.

[18] Azhar EI, Hindawi SI, El-Kafrawy SA, Hassan AM, Tolah AM, Alandijany TA, et al. Amotosalen and ultraviolet A light treatment efficiently inactivates severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in human plasma. Vox Sang 2020;116:673–81.

[19] Alandijany TA, El-Kafrawy SA, Tolah AM, Sohrab SS, Faizo AA, Hassan AM, et al. Development and optimization of in-house ELISA for detection of human IgG antibody to SARS-CoV-2 full length spike protein. Pathogens 2020;9:803.

[20] Domanovic D, Ushiro-Lumb I, Compernelle V, Brusin S, Funk M, Gallian P, et al. Pathogen reduction of blood components during outbreaks of infectious diseases in the European Union: an expert opinion from the European Centre for Disease Prevention and Control consultation meeting. Blood Transfus/Transfus Sangue 2019;17:433–48.

[21] Pinna D, Sampson-Johannes A, Clementi M, Poli G, Rossini S, Lin L, et al. Amotosalen photochemical inactivation of severe acute respiratory syndrome coronavirus in human platelet concentrates. Transfus Med 2005;15:269–76.

[22] Ragan I, Hartson L, Picdcoke H, Bowen R, Goodrich R. Pathogen reduction of SARS-CoV-2 virus in plasma and whole blood using riboflavin and UV light. PLoS One 2020;15:e0233947.

[23] Keel SD, Ragan I, Yonemura S, Hartson L, Dart NK, Bowen R. Inactivation of severe acute respiratory syndrome coronavirus 2 in plasma and platelet products using a riboflavin and ultraviolet light-based photochemical treatment. Vox Sang 2020;119:495–501.

[24] Sawyer L, Hanson D, Castro G, Luckett W, Dubensky Jr TW, Stassinopoulos A. Inactivation of parvovirus B19 in human platelet concentrates by treatment with amotosalen and ultraviolet A illumination. Transfusion 2007;47:1062–70.

[25] Singh Y, Sawyer LS, Pinkoski LS, Dupuis KW, Hsu JC, Lin L, et al. Photochemical treatment of plasma with amotosalen and long-wavelength ultraviolet light inactivates pathogens while retaining coagulation function. Transfusion 2006;46:1108–77.