Effect of O-4-ethoxyl-butyl-berbamine in combination with pegylated liposomal doxorubicin on advanced hepatoma in mice

Bai-Jun Fang, Mei-Li Yu, Shao-Guang Yang, Lian-Ming Liao, Jie-Wen Liu, Robert -C-H Zhao

INTRODUCTION
O-4-ethoxyl-butyl-berbamine (EBB) [1-2], a new derivative of bisbenzylisoquinoline, is one of the most powerful and specific calmodulin (CaM) antagonist with almost no cytotoxicity on normal cells. Its IC50 value is 100 times lower than that of tetraneodrine and in the same grade with R2457. Previous studies have shown that EBB has a strong inhibitory effect on the proliferation of hepatoma cells, and can prolong the life span of tumor-bearing mice. EBB augments the antitumor activity of 5-FU [2], restores abnormal CaM content in major organs of tumor-bearing mice [3] and improves their immunofunction [4]. Therefore, EBB may have a synergistic effect with chemotherapeutic drugs and alleviate their organ toxicity clinically.

Doxorubicin (Dox) is a widely used anti-tumor agent. However, systemic treatment with Dox is complicated by its dose limiting toxicity, even at relatively low concentrations, as well as its rapid plasma clearance and distribution to non-relevant tissues [5-10]. Pegylated liposomal doxorubicin (PLD) not only increases concentration of Dox in tumor and thus enhances its antitumor activity, but also has lower toxicity to the cardiac muscle compared with Dox alone [11-15]. In this study, we adopted two strategies to enhance the anti-tumor activity and lower the cytotoxicity of Dox: Dox was administrated in liposomal form and in combination with EBB.

MATERIALS AND METHODS
Reagents
EBB was kindly provided by Dr. Xu YH (Institute of Molecular Biology, Nankai University, China). Hydrogenated egg phosphatidylcholine (HEPC) was kindly supplied by Lipod pharmachemie (Haarlem, the Netherlands). PLD (stabilized phosphatidylethanolamine (PEG-DSPE) was purchased from Pharmachemie (Haarlem, the Netherlands). PLD (stabilized long circulating liposomes, Dox-HEPC-SLL) with an average diameter of 80 nm was prepared as described earlier [16].

Animals and tumor model
Age- and sex-matched Balb/c mice (weighting 18-22 g) from the Animal Breeding Center of Peking University (Beijing, China) were used. H22 cells in 0.2 mL (2.5x106) were inoculated subcutaneously into the right backs of the mice. Tumor became apparent about 7 d after the inoculation, and the mice died approximately 18 d later without treatment.

Treatment protocol
On d 7 after inoculation, tumor-bearing mice were randomly divided into 5 groups. Control group received only saline. PLD or Dox group received 4.5 mg/kg PLD or Dox i.v. on the first
day, followed by 4 dosages of 1 mg/kg PLD or Dox in 3-d intervals. PLD+EBB or Dox+EBB group was treated in the same way, except that EBB (5 mg/kg, toxicity-free dosage) was coadministered. All these dosages could be well tolerated by mice (Dr. Yang SG, unpublished observations).

Assessment of tumor response

Tumor growth was recorded before and after the treatment by caliper measurements, and tumor size was calculated using the formula 0.4π(A x B) (where B represents the largest diameter and A the diameter perpendicular to B). Tumor response was also assessed by the life span of mice.

Tumor response rate was assessed on d 0 and 10 after commence of the treatment as follows: progressive disease (PD) = increase in tumor size above 25%, no change (NC) = tumor size equal to that at the beginning of treatment (at a range of -25% and +25%), partial remission (PR) = decrease in tumor size between -25% and -90%, and complete remission (CR) = decrease in tumor size between -90% and -100%.

Drug levels in tumor tissue

Seven days after inoculation, Dox (10 mg/kg) or PLD (equal to 10 mg/kg Dox) alone, or each of them in combination with EBB (5 mg/kg) was injected i.v. After 1, 18, and 36 h, the mice were anesthetized with pentobarbital. Tumors were excised immediately after being perfused with saline. Tissues were homogenized and subjected to acidic isopropanol extraction, and Dox level was measured by a Perkin-Elmer Model MPF44 spectrofluorometer using an excitation wave at 490 nm and the emission wave at 590 nm. Fluorescence intensity was translated to µg or ng of Dox equivalents using a standard curve of Dox.

Histological examinations

One of the major objectives of these studies was to assess whether the treatment with Dox or PLD in combination with EBB would result in any significant alleviation of their tissue damages. Light microscopy was performed to determine the histological changes in organs from tumor-bearing mice treated with saline and drugs. Mice were sacrificed by cervical dislocation on d 20. The liver, spleen, kidney, lung, and heart were removed and fixed in formalin solution and cut into 4 µm thick sections. The tissue sections were hematoxylin-eosin stained and accessed by conventional histological criteria.

Determination of anti-tumor activity in vitro

H22 cells were cultured at the concentration of 1x10^7 cells/L in 24-well plates in RPMI1640 culture medium containing 100 mL/L heat-inactivated fetal calf serum, 100 U penicillin, and 1 000 U streptomycin at 37 °C. 50 mL/L CO2. Dox (0.01-0.20 mg/L) or PLD (0.01-0.20 mg/L) alone, Dox (0.01-0.20 mg/L) + EBB (1.17 mg/L, the IC50), or PLD (0.01-0.20 mg/L) + EBB (1.17 mg/L, the IC50) were added. Cells were harvested 72 h later, and 50 µL of MTT regent was added to each well followed by 4 h incubation at room temperature. Absorbance was measured at 540 nm. Four replicate experiments were performed, and IC50 values were calculated.

Statistical analysis

SPSS9.0 for Windows 98 statistic software was used for data analysis. A P-value less than 0.05 was considered statistically significant.

RESULTS

Antitumor activity of DOX or PLD in combination with EBB

Intravenous administration of 5 injections of Dox or PLD in combination with EBB (5 mg/kg) strongly inhibited the growth of tumor, and resulted in tumor regression in some mice. The median survival time was 89.2 d in PLD+EBB group and 70.1 d in Dox+EBB group, respectively, significantly longer than that of control group (18.2 d) and Dox group (29.7 d) (Figure 1, Table 1).

Drug concentrations in tumor tissues

The Dox levels in subcutaneous hepatoma were significantly increased by EBB in both Dox+EBB and PLD+EBB groups (P<0.01) (Figure 2).

Histopathological changes

Severe histological changes were found in the liver of Dox group as compared to both Dox+EBB and PLD+EBB groups. Briefly, with control mice (Figure 3A), Dox-treated mice showed diffuse fatty degeneration and necrotic changes
in the liver (Figure 3B). Livers from Dox+EBB-treated and PLD-treated mice showed similar change, but all were milder than Dox-treated mice (Figure 3C, D). Livers from PLD+EBB-treated mice showed very mild or even undetectable changes (Figure 3E). Severe histological damage was observed in the spleens from all drug-treated mice (data not shown). However, there were no significant abnormalities in the hearts, lungs, and kidneys from all animals (data not shown).

Synergetic effect of EBB with Dox or PLD in vitro
The *in vitro* experiment confirmed that EBB (1.17 mg/L, the IC50) augmented the cytotoxicity of Dox and PLD, and reduced the IC50 of Dox or PLD on H22 cells from 0.050±0.006 mg/L and 0.054±0.004 mg/L to 0.012±0.002 mg/L and 0.013±0.002 mg/L, respectively (*P*<0.01, Figure 4).

DISCUSSION
Liposomes are attractive drug carriers for intravenous use because of their biocompatibility and versatility of formulation. As witnessed by publications, liposomes can be used for the delivery of cytotoxic drugs, antifungal agents, and biological response modifiers in humans. Phase I and some Phase II studies with liposomal doxorubicin have been reported. However, the rapid and dominant uptake of these liposomes by the reticuloendothelial system affects its distribution in tumor[16-20]. We have previously reported that encapsulation of Dox in long-circulating, pegylated liposomes could dramatically improve its mean residence time in serum[16]. In the present study, we demonstrated the ability of sonicated liposomes to deliver DOX into H22 cells. This may account for the increased antitumor effect of liposome-entrapped Dox observed in the model of hepatoma.

CaM is a ubiquitous calcium-binding protein that is responsible for many intracellular actions of calcium[21-30]. Lot of evidences suggest that CaM not only plays an important role in the proliferation of normal cells, but also is related to hepatoma growth[2,31]. In fact, an increased concentration of CaM has been demonstrated in malignant tissues and transformed cell lines[32,33], and the correlation between inhibition of cell growth and antagonism of CaM has been observed[21,34]. EBB, one of the strongest and most specific CaM antagonists with almost no cytotoxicity on normal cells, could decrease the amount of CaM in hepatoma cells and block the proliferation of hepatoma cells at G2/M phase[2].

In the present study, we demonstrated for the first time that EBB could strongly enhance the antitumor activity of liposomal doxorubicin. In *vitro*, EBB reduced the IC50 value of both Dox and PLD in inhibiting H22 cells. In *vivo*, EBB enhanced accumulation of Dox in tumor tissue. There are at least three possible mechanisms underlying these effects. First, EBB could significantly enhance intracellular accumulation of Dox. Secondly, EBB could decrease the CaM content in cytoplasm, resulting in the inhibition of hepatoma cell growth[21]. The third is that EBB upregulated the expression of wild-type p53 gene[2], which is an antioncogene.

In terms of histological damage in the livers of the tumor-bearing mice, the present study showed that the changes were milder in mice treated with Dox+EBB and PLD+EBB than in mice treated with Dox or PLD alone. Unfortunately, severe histological damage was observed in the spleens of all experimental animals treated with drugs (data not shown). The reasons for these remain to be further investigated.

In conclusion, although Dox is extremely toxic when used...
systemically, encapsulation of Dox in pegylated liposomes allows effective treatment of hepatoma when used in combination with EBB without potential hazards. In our model, administration of PLD resulted in a better tumor response. Therefore, in combination with EBB, the dosage of PLD can be reduced without loss of its antitumor activity, but with a decrease in cytotoxicity.

REFERENCES

1. Zhang JH, Geng ZH, Duan JY, Chen JT, He H, Huang JY. Calmodulin antagonist-effect of berberine and its derivatives on the cytotoxicity of normal cells. Xibao Shengwu Xue Zhai 1997; 19: 76-79
2. Liu J, Qi S, Zhu H, Zhang J, Li Z, Wang T. The effect of calmodulin antagonist berberine derivative-EBB on hepatoma in vitro and vivo. Chin M Ed 2002; 115: 759-762
3. Zhang JH, Mao QL, Xu NH, Du XM, Shan T, Chen JT. Effect of calmodulin antagonist on calmodulin content in organs of mice bearing tumor. Nankai Daxue Xuebao 1998; 31: 72-77
4. Zhang JH, Mao QL, Xu NH, Chen JT. Effect of berberine derivative (EBB) on anticancer and immune function of tumor-bearing mice. Zhonggao yao pin 1998; 29: 243-246
5. Koh E, Ueda Y, Nakamura T, Kobayashi A, Katsuta S, Takahashi H. Apoptosis in young rats with adriamycin-induced cardiomyopathy--comparison with pirarubicin, a new anthracycline derivative. Pediatr Res 2002; 51: 256-259
6. Forrest GL, Gonzalez B, Tseng W, Li X, Mann J. Human carboxy-nyl redoxase increase in the heart advances the development of doxorubicin-induced cardotoxicity in transgenic mice. Cancer Res 2000; 60: 5158-5164
7. Working PK, Newman MS, Sullivan T, Yarrington J. Reduction of the cardiotoxicity of doxorubicin in rabbits and dogs by encapsulation in long-circulating, pegylated liposomes. J Pharmocol Exp Ther 1999; 289: 1128-1133
8. Pacher P, Liaudet L, Bai P, Virag L, Bai P, Virag L, Mabley JG, Hasko G, Szabo C. Activation of poly (ADP-ribose) polymerase contributes to inactivation and facilitation of L-type calcium channels. J Biol Chem 2001; 276: 17453-17460
9. Cabanes A, Even-Chen S, Zimberoff J, Barenholz Y, Kedar E, Gabizon A. Enhancement of antitumor activity of polyethylene glycol-coated liposomal doxorubicin with soluble and liposomal interleukin-2. Clin Cancer Res 1999; 5: 687-693
10. Lyass O, Hubert A, Gabizon AA. Phase I study of doxil-cisplatin combination chemotherapy in patients with advanced malignancies. Clin Cancer Res 2001; 7: 3040-3046
11. Gabizon AA, Shalit Liposomes and tumor targeting: one step further in the quest for the magic bullet. Clin Cancer Res 2001; 7: 223-225
12. Marina NM, Cochrane D, Harney E, Zomorodi K, Blaney S, Winnick N, Bernstein M, Link MP. Dose escalation and pharmacokinetics of pegylated liposomal doxorubicin (Doxil) in children with solid tumors: a pediatric oncology group study. Clin Cancer Res 2002; 8: 413-418
13. Wang GW, Kang YJ. Inhibition of doxorubicin toxicity in cultured neonatal mouse cardiacocytes with elevated metallothionein levels. J Pharmocol Exp Ther 1999; 288: 938-944
14. Wang L, Hou BG, Hou XP, Yu ML, Yang JS. Effects of different phospholipids on the stabilities of doxorubicin liposomes in vitro and in vivo. Yaoxue Xuebao 2001; 36: 444-447
15. Hong RL, Huang CJ, Tseng YL, Pang VF, Chen ST, Liu JJ, Chang FH. Direct comparison of liposomal doxorubicin with or without polyethylene glycol coating in C-26 tumor-bearing mice is surface coating with polyethylene glycol beneficial? Clin Cancer Res 1999; 5: 3695-3692
16. Laverman P, Carstens MG, Boerman OC, Damts ET, Oyen WJ, van Rooijen N, Corstens FH, Storm G. Factors affecting the accelerated blood clearance of polyethylene glycol-liposomes upon repeated injection. J Pharmocol Exp Ther 2001; 298: 607-612
17. Laverman P, Brouwers AH, Damts ET, Oyen WJ, Storm G, van Rooijen N, Corstens FH, Boerman OC. Preclinical and Clinical evidence for disappearance of long-circulating characteristics of polyethylene glycol liposomes at low lipid dose. J Pharmocol Exp Ther 2000; 293: 906-1001
18. Damts ET, Laverman P, Oyen WJ, Storm G, Scherphof GL, van Der Meer JW, Corstens FH, Boerman OC. Accelerated blood clearance and altered biodistribution of repeated injections of sterically stabilized liposomes. J Pharmocol Exp Ther 2000; 292: 1071-1079
19. Liao B, Paschal BM, Luby-Phelps K. Mechanism of Calza2+-dependent nuclear accumulation of calmodulin. Proc Natl Acad Sci U S A 1999; 96: 6227-6232
20. Wang J, Zhou Y, Wen H, Levitan IB. Simultaneous binding of two protein kinases to a calcium-dependent potassium channel. J Neurosci 1999; 19: RC4
21. Desriveserie S, Cooke FT, Morales-Johansson H, Parker PJ, Hall MN. Calmodulin controls organization of the actin cytoskeleton via regulation of phosphorylinsitol (4,5) bisphosphate synthesis in Saccharomyces cerevisiae. Biochem J 2002; 366: Pt 3: 945-951
22. Szymanski PT, Szymanska G, Goyal RK. Differences in calmodulin and calmodulin-binding proteins in phasic and tonic smooth muscles. Am J Physiol Cell Physiol 2002; 294: C9-C104
23. Li Z, Joyal JL, Sacks DB. Calmodulin enhances the stability of the estrogen receptor. J Biol Chem 2001; 276: 17354-17360
24. DeMaria CD, Soong TW, Alseikhan BA, Alvania RS, Yue DT. Calmodulin bifurcates the local Ca2+-signal that modulates P/Q-type Ca2+-channels. Nature 2001; 41: 409-419
25. Zuhlke RD, Pitt GS, Dessereth K, Tsien RW, Reuter H. Calmodulin supports both inactivation and facilitation of L-type calcium channels. Nature 1999; 399: 159-162
26. Gillespie PG, Cyrl JL. Calmodulin binding to recombinant myo-1c and myosin-1c IQ peptides. BM C Biochem 2002; 3: 31
27. Mather SC, McDaniel AE, Nicolas V, Habermacher GM, Lin MJ, Cromer DA, King ME, Bloom GS. The mechanism for regulation of the F-actin binding activity of IQGAP1 by calcium-dependent potassium channel. J Biol Chem 2002; 277: 12324-12333
28. Briggs MW, L.J, Sacks DB. IQGAP-1 mediated stimulation of transcriptional co-activation by beta-catenin is modulated by calmodulin. J Biol Chem 2002; 277: 7453-7465
29. Wu BW, Wu Y, Wang JL, Lin JS, Yuan SY, Li A, Cui WR. Study on the mechanism of epidermal growth factor-induced proliferation of hepatoma cells. World J Gastroenterol 2003; 9: 271-275
30. McGinnis KM, Shariat-Madar Z, Gnegy ME. Cytosolic calmodulin is increased in SK-N-SH human neuroblastoma cells due to release of calcium from intracellular stores. J Neurochem 1998; 70: 139-146
31. Liu J, Sun L, Wang Q, Zhang H, Wong L. Effects of 17 beta-estradiol on intracellular free calcium, inositol-1,4,5-trisphosphate and calmodulin in human osteoblast-like osteosarcoma cell line TE85. Zhongg yu xue xue bao 1999; 21: 105-110
32. Shin SY, Kim SY, Kim JH, Min DS, Ko J, Kang UG, Kwon TK, Han MY, Kim YH, Lee YH. Induction of early growth response-1 gene expression by calmodulin antagonist trifluoperazine through the activation of Elk-1 in human fibrosarcoma HT1080 cells. J Biol Chem 2001; 276: 7797-7805

Edited by Xia HHX and Wang XL. Proofread by Xu FM