Original article
Scand J Work Environ Health 1984;10(5):317-320
doi:10.5271/sjweh.2323

Skin absorption as a source of error in biological monitoring.
by Aitio A, Pekari K, Jarvisalo J

This article in PubMed: www.ncbi.nlm.nih.gov/pubmed/6523096
Skin absorption as a source of error in biological monitoring

by Antero Aitio, MD, Kaija Pekari, MSc, Jorma Järvisalo, MD

Absorption of a variety of different organic chemicals through intact skin is well documented (6, 7, 10, 14), and it is generally regarded as one of the reasons why one should use biological monitoring of exposure to chemicals. Concentrations of chemicals in the air need not bear any correlation to the amounts absorbed through the skin. However, it is seldom realized that skin absorption may also represent a source of error for biological monitoring (2). The organic chemical concentrations in blood collected from the forearm may not represent those in other parts of the body, but only the local concentrations at the venipuncture site. A prerequisite for this kind of error is that concentrations of the chemical itself—not a metabolite (the majority of which are primarily generated in the liver)—is measured in the blood. In our laboratory, we perform biological monitoring of toluene, tetrachloroethylene, and 1,1,1-trichloroethane routinely by analyzing the solvent concentrations of blood and have therefore studied the possible error ensuing from skin absorption.

Subjects, materials and methods

The studies were performed on two (in case of toluene, three) volunteers. In order to simulate the widely practiced habit of painters who wash their hands after the workday with a solvent, we decided to use a short exposure time of 5 min. We soaked one hand, emerged to the wrist, in a solvent [tetrachloroethylene (pa) or 1,1,1-trichloroethane (pa) or toluene (pa) or Dicco® thinner containing 65 % toluene]. In order to minimize exposure by inhalation, the vessel containing the solvent was kept in a fume hood closed with a plastic cover with a small hole for the arm. After the exposure, the hand was washed with soap and water. Blood specimens were drawn through indwelling cannulas (one volunteer, chlorinated solvents) or repeated venipunctures (all other experiments).

Blood was collected in glass vials containing heparin, carefully mixed, and either analyzed immediately (specimens collected during the first 2 h) or stored in a refrigerator and analyzed on the following day. Under these conditions of storage no loss of the solvents could be detected.

1,1,1-Trichloroethane and tetrachloroethylene concentrations in the blood were determined with capillary gas chromatography using electron capture detection after hexane extraction, as has been described earlier (11, 12); toluene was analyzed with headspace gas chromatography (5) using o-xylene as the internal standard.

Results and discussion

Skin absorption of toluene was studied with the use of pure (pa) toluene and a thinner (Dicco) containing 65 % toluene, 30 % butylacetate, and 5 % butyl alcohol (figure 1). In both cases the difference between the toluene concentrations in the blood drawn from the two arms was marked, the maximal differences being 7-, 13- and 20-fold for the three persons studied. The highest concentrations of toluene reached were 2.0, 2.6, and 5.4 μmol/l. In experi-
mental inhalation exposure to 100 ppm of toluene at rest, the concentration of toluene in blood was 4.3—
4.9 μmol/l (1, 14); during light work a concentration
of 14.6 μmol/l was detected (1). In line with the latter
finding, a blood concentration of toluene of
12.5 μmol/l, may be extrapolated from the data of
Apostoli et al (4) for work during exposure to
100 ppm; the corresponding value for the figures of
Angerer & Behling (3) is 19.0 μmol/l. After 3 h the
difference between the two arms disappeared; thus
the practical solution to toluene exposure estimation
from blood toluene concentrations is the collection
of specimens in the morning before exposure.

The highest blood concentrations of tetrachloro-
ethylene found in blood drawn from the ipsilateral
arm after exposure of the hand to the liquid solvent
were 9 and 3.5 μmol/l in the two volunteers; those for
1,1,1-trichloroethane were 4.0 and 0.7 μmol/l. These
values are in line with the findings of Stewart & Dodd
(14) that there is a marked interindividual variation
in the skin absorption of 1,1,1-trichloroethane. With
these chlorinated solvents the error that skin absorp-
tion may cause in the estimation of exposure was
even more marked than in the case of toluene; the
maximal difference between the arms was 17- and
130-fold for tetrachloroethylene and 11- and 35-fold
for 1,1,1-trichloroethane.

The data on concentrations of chlorinated solvents
in blood in inhalation exposure is scanty. Monster (9)
reported that continuous exposure (8 h/d, 5 d/week)
to 50 ppm of 1,1,1-trichloroethane caused a blood
concentration (5—15 min after exposure) of 6.7 μmol/l,
while Savolainen and co-workers (13) detected a con-
centration of 16.5 μmol/l of 1,1,1-trichloroethane in
hours 0 30 60 90 120 min

Figure 2. Blood concentrations of 1,1,1-trichloroethane (•, •) and tetrachloroethylene (○, ○) in two volunteers (A & B) who exposed one hand to the corresponding solvent. (closed symbols: ipsilateral arm, open symbols: contralateral arm)

blood after 4 h of exposure to 200 ppm at rest. Continuous exposure (8 h/d, 5 d/week) to 50 ppm of tetrachloroethylene was calculated to result in a blood concentration of 14 μmol/l 5—15 min after the exposure (8).

The concentrations of chlorinated solvents, especially that of tetrachloroethylene, showed marked fluctuations within a short time interval (figure 2). This phenomenon can probably be explained by physical activity of the arms. Movement causes a flush-out of venous blood with a concomitant decrease in the solvent concentration, whereas immobility results in stagnation of venous blood and a build-up of the solvent concentration. These rapid changes add to the uncertainty of exposure estimation. The differences between the chlorinated solvent concentrations in blood from different arms were the most marked immediately after the exposure, but they did not vanish until several hours later (figure 2A).

In conclusion, toluene, tetrachloroethylene, and 1,1,1-trichloroethylene, under conditions that probably exist in the workplace, are absorbed through the skin to such an extent that biological monitoring of exposure, based on solvent concentrations in blood specimens drawn during or up to 5 h after the exposure, may be remarkably erroneous. Correct estimations of exposure may be obtained from specimens drawn in the morning on the day after the exposure.

References
1. Åstrand I, Ehner-Samuel H, Kilbom Å, Øvrum P. Toluene exposure: I Concentration in alveolar air and
blood at rest and during exercise. Work Environ Health 9 (1972) 119—130.

2. Aitio A, Järvisalo J. Collection, processing and storage of specimens for biological monitoring of occupational exposure to chemicals. Pure Appl Chem 56 (1984) 549—566.

3. Angerer J, Behling K. Chronische Lösungsmittelbelastung am Arbeitsplatz IX: Ein Verfahren zur Evaluierung von Grenzwerten für Parameter der inneren Belastung am Beispiel der Toluolexposition. Int Arch Occup Environ Health 48 (1981) 137—146.

4. Apostoli P, Brugnone F, Perbellini L, Cocheo V, Bellomo ML, Silvestri R. Biomonitoring of occupational toluene exposure. Int Arch Occup Environ Health 50 (1982) 153—168.

5. Brugnone F, Perbellini L, Grigolini L, Gazzadori A, Gaffuri F. Alveolar air and blood toluene concentration in rotogravure workers. Int Arch Occup Environ Health 38 (1976) 45—54.

6. Engström K, Husman K, Riihimäki V. Percutaneous absorption of m-xylene in man. Int Arch Occup Environ Health 39 (1977) 181—189.

7. Lauwerss RR. Industrial chemical exposure: Guidelines for biological monitoring. Biomedical Publications, Davis, CA 1983. 150 p.

8. Monster AC. Tetrachloroethylene. In: Aitio A, Riihimäki V, Vainio H, ed. Biological monitoring and health surveillance of workers exposed to chemicals. Hemisphere Publishing Co, Washington, DC 1984, pp 131—139.

9. Monster AC. 1,1,1-Trichloroethane. In: Aitio A, Riihimäki V, Vainio H, ed. Biological monitoring and health surveillance or workers exposed to chemicals. Hemisphere Publishing Co, Washington, DC 1984, pp 141—150.

10. Monster AC, Zielhuis RL. Chlorinated hydrocarbon solvents. In: Alessio L, Berlin A, Roi M, Boni M, ed. Human biological monitoring of industrial chemicals series. Commission of the European Communities, Luxembourg 1983, pp 49—104.

11. Pekari K, Aitio A. Determination of 1,1,1-trichloroethane in blood. In: Fishbein L, ed. Halogenated alkanes and alkenes. International Agency for Research on Cancer, Lyon (in press). (IARC manual, volume 8).

12. Pekari K, Aitio A. Determination of tetrachloroethylene in blood. In: Fishbein L, ed. Halogenated alkanes and alkenes. International Agency for Research on Cancer, Lyon (in press). (IARC manual, volume 8).

13. Savolainen K, Riihimäki V, Laine A, Kekoni J. Short-term exposure of human subjects to m-xylene and 1,1,1-trichloroethane. Int Arch Occup Environ Health 49 (1981) 89—98.

14. Stewart RD, Dodd HC. Absorption of carbon tetrachloride, trichloroethylene, tetrachloroethylene, methylene chloride and 1,1,1-trichloroethane through the human skin. Am Ind Hyg Assoc J 25 (1964) 439—446.

15. Veulemans H, Masschelein R. Experimental human exposure to toluene: II Toluene in venous blood during and after exercise. Int Arch Occup Environ Health 42 (1978) 105—117.

Received for publication: 27 September 1984