CLOSURES IN VARIETIES OF REPRESENTATIONS AND IRREDUCIBLE COMPONENTS

K. R. GOODEARL AND B. HUISGEN-ZIMMERMANN

Dedicated to the memory of Peter Gabriel

Abstract. For any truncated path algebra Λ of a quiver, we classify, by way of representation-theoretic invariants, the irreducible components of the parametrizing varieties \(\text{Rep}_d(\Lambda) \) of the \(\Lambda \)-modules with fixed dimension vector \(d \). In this situation, the components of \(\text{Rep}_d(\Lambda) \) are always among the closures \(\text{Rep}_S \), where \(S \) traces the semisimple sequences with dimension vector \(d \), and hence the key to the classification problem lies in a characterization of these closures.

Our first result concerning closures actually addresses arbitrary basic finite dimensional algebras over an algebraically closed field. In the general case, it corners the closures \(\text{Rep}_S \) by means of module filtrations “governed by \(S \)”; in case \(\Lambda \) is truncated, it pins down the \(\text{Rep}_S \) completely.

The analysis of the varieties \(\text{Rep}_S \) leads to a novel upper semicontinuous module invariant which provides an effective tool towards the detection of components of \(\text{Rep}_d(\Lambda) \) in general. It detects all components when \(\Lambda \) is truncated.

1. Introduction

By strong consensus, a classification of all indecomposable finite dimensional representations of a finite dimensional algebra \(\Lambda \) is an unattainable goal in general. A far more promising alternative to this impossibly comprehensive problem is that of generically classifying the finite dimensional \(\Lambda \)-modules. This amounts to understanding the generic structure of the modules in the irreducible components of the varieties \(\text{Rep}_d(\Lambda) \) which parametrize the \(\Lambda \)-modules with dimension vector \(d \). By its very nature, this quest comes paired with the task of pinning down the irreducible components of the \(\text{Rep}_d(\Lambda) \) in representation-theoretic terms.

In the present article, the component problem is solved for arbitrary truncated path algebras \(\Lambda \) over an algebraically closed field \(K \). In tandem, significant headway is made towards determining the generic features of the modules in the components.

The classification of the components, in turn, relies on a characterization of the modules in the closures of certain representation-theoretically defined locally closed subvarieties of \(\text{Rep}_d(\Lambda) \). Our initial round of results regarding such closures, including the description of an associated upper semicontinuous module invariant which serves to test for inclusions, holds for arbitrary basic finite dimensional \(K \)-algebras. The findings lead to partial lists of components in this broad scenario. The results become tight on specialization to the truncated case.

2010 Mathematics Subject Classification. Primary 16G10; secondary 16G20, 14M99, 14M15.

Key words and phrases. Varieties of representations; irreducible components; generic properties of representations.
Throughout, we assume \(K \) to be an algebraically closed field and \(\Lambda \) a basic finite dimensional \(K \)-algebra. This means that, up to isomorphism, \(\Lambda = KQ/I \) for a quiver \(Q \) and an admissible ideal \(I \) in the path algebra. The maximal length of a path in \(KQ \setminus I \) will be denoted by \(L \); in other words, \(L \) is minimal with respect to \(J_{L+1}^{L+1} = 0 \), where \(J \) is the Jacobson radical of \(\Lambda \). Consequently, the radical layering \(S(M) \) of a \(\Lambda \)-module \(M \) has no more than \(L + 1 \) nonzero entries: \(S(M) = (J^lM/J^{l+1}M)_{0 \leq l \leq L} \). By \(\text{Rep}_d(\Lambda) \), we denote the standard affine variety parametrizing the \(\Lambda \)-modules with dimension vector \(d \). This variety is partitioned into finitely many locally closed subvarieties \(\text{Rep} S \) corresponding to the semisimple sequences \(S \) with dimension vector \(d \); these are the sequences \(S = (S_0, \ldots, S_L) \) of (isomorphism classes of) semisimple \(\Lambda \)-modules with \(\dim S := \sum_{0 \leq l \leq L} \dim S_l = d \); here \(\text{Rep} S \) consists of those points \(x \) in \(\text{Rep}_d(\Lambda) \) which represent modules \(M_x \) with \(S(M_x) = S \).

The closures \(\overline{\text{Rep} S} \) are relevant towards the problem of describing the irreducible components of \(\text{Rep}_d(\Lambda) \): Indeed, it is readily seen that the components of the ambient variety are always among those of the \(\overline{\text{Rep} S} \), where \(S \) traces the \(d \)-dimensional semisimple sequences. Less obviously, the components of the subvarieties \(\text{Rep} S \), and hence those of their closures, may be obtained from quiver and relations by way of a straightforward algorithm, each component tagged by a “generic minimal projective presentation” of the modules it encodes (see [1] and [13]). Identifying the components of \(\text{Rep}_d(\Lambda) \) thus amounts to a sorting problem: For which components \(C \) of \(\text{Rep} S \) is the closure \(\overline{C} \) maximal among the irreducible subsets of \(\text{Rep}_d(\Lambda) \)? This is an extremely taxing question in general, calling for a thorough understanding of the boundaries of the varieties \(\text{Rep} S \).

Our strategy consists of moving back and forth between the varieties \(\text{Rep}_d(\Lambda) \) and \(\text{GRASS}_d(\Lambda) \); the latter is a closed subvariety of a vector space Grassmannian which parametrizes the modules with dimension vector \(d \) by suitable submodules of a projective cover of the semisimple module with this dimension vector (see Section 2 and [13, 15]). The irreducible components of the projective variety \(\text{GRASS}_d(\Lambda) \) may be studied by “spreading them out” within a suitable flag variety (Theorem 3.9), and the subsequent transfer of information \(\text{GRASS}_d(\Lambda) \leftrightarrow \text{Rep}_d(\Lambda) \) is modeled on Gabriel’s influential work in [9]. In a first step, we show:

Theorem A. (cf. 3.8 and 4.3; see also 3.7(4).) Let \(\Lambda = KQ/I \) be a path algebra modulo relations, \(L + 1 \) its Loewy length, and \(S = (S_0, \ldots, S_L) \) a \(d \)-dimensional semisimple sequence in \(\Lambda \)-mod. Then every module in the closure \(\overline{\text{Rep} S} \) has a filtration by submodules,
\[
M = M_0 \supseteq M_1 \supseteq \cdots \supseteq M_{L+1} = 0,
\]
which is “governed by \(S \)” in the sense that the quotients \(M_l/M_{l+1} \) are semisimple and isomorphic to \(S_l \), respectively. In fact, the set \(\text{Filt} S \) consisting of those points in \(\text{Rep}_d(\Lambda) \) that correspond to modules with at least one filtration governed by \(S \) is always closed.

If \(\Lambda \) is a truncated path algebra, i.e., \(\Lambda = KQ/\langle \text{all paths of length } L+1 \rangle \), and \(\text{Rep} S \) is nonempty, then
\[
\overline{\text{Rep} S} = \text{Filt} S.
\]

For general \(\Lambda \), the inclusion \(\overline{\text{Rep} S} \subseteq \text{Filt} S \) may be proper. The question of whether a point in \(\text{Rep}_d(\Lambda) \) belongs to \(\text{Filt} S \) may be answered by testing for similarity of certain
CLOSURES IN VARIETIES OF REPRESENTATIONS AND IRREDUCIBLE COMPONENTS

matrices. By contrast, to date, there is no algorithm for deciding whether a module belongs to $\text{Rep}S$.

A semisimple sequence S is called realizable if $\text{Rep}S \neq \emptyset$. (In case Λ is a truncated path algebra, realizability is checked via mere inspection of the quiver; see [14, Criterion 3.2] and [411] below.)

Corollary B. (cf. 3.11.) For $M \in \Lambda\text{-mod}$, let $\Gamma(M)$ be the number of those realizable semisimple sequences that govern at least one filtration of M. Then

$$\Gamma_* : \text{Rep}_d(\Lambda) \to \mathbb{N}, \ x \mapsto \Gamma(M_x),$$

is an upper semicontinuous function.

In particular: Whenever C is an irreducible component of some $\text{Rep}S$ such that $1 \in \Gamma_*(C)$, the closure \overline{C} is an irreducible component of $\text{Rep}_d(\Lambda)$.

In the second part of the paper, we derive consequences for truncated path algebras. As is suggested by Theorem A, the component problem simplifies considerably in this situation. Notably, the subvarieties $\text{Rep}S$ are all irreducible, and generic minimal projective presentations of the modules in $\text{Rep}S$ are immediate from quiver and Loewy length (see [1, Section 5] and Section 5.A below). In some prominent special cases, particularly manageable solutions to the problem of sifting out the inclusion-maximal ones among the closures $\text{Rep}S$ are already available (see [14, 16]): For instance, if Λ is either local or based on an acyclic quiver Q, the semisimple sequences singled out by the minimal values of the following upper semicontinuous map furnish a complete, nonrepetitive parametrization of the components $\text{Rep}S$ of $\text{Rep}_d(\Lambda)$:

$$\Theta = (S_*, S^*_*) : \text{Rep}_d(\Lambda) \to \text{Seq}(d) \times \text{Seq}(d), \ x \mapsto (S(M_x), S^*(M_x));$$

here the codomain of Θ is partially ordered by the componentwise dominance order on the set $\text{Seq}(d)$ of all d-dimensional semisimple sequences (see Section 2), and $S^*(M_x)$ stands for the socle layering of the module M_x (the dual of the radical layering). The unique minimal sequence $S^*(M_x)$ attained on $\text{Rep}S$, that is, the generic socle layering of the modules in $\text{Rep}S$, is supplied by a closed formula based on S, Q and L [16, Theorem 3.8], which makes the Θ-test very user-friendly. But for general truncated Λ, the map Θ fails to detect all components, even when supplemented by further standard semicontinuous module invariants, such as path ranks or assortments of annihilator dimensions. The map Γ_*, on the other hand, compensates for the blind spots of Θ:

Theorem C. (cf. 4.5.) If Λ is any truncated path algebra, the irreducible components of $\text{Rep}_d(\Lambda)$ are precisely those closures $\text{Rep}S$ on which Γ_* attains the value 1.

In other words, $\text{Rep}S$ is maximal among the irreducible subsets of $\text{Rep}_d(\Lambda)$ if and only if there exists a module N in $\text{Rep}S$ such that $N \supseteq JN \supseteq \cdots \supseteq J^{L+1}N$ is the only filtration of N which is governed by a realizable semisimple sequence.

In deciding which semisimple sequences S are the generic radical layerings of the irreducible components of $\text{Rep}_d(\Lambda)$, Theorem C thus permits exclusive reliance on Γ_*. However, in practice, combining Γ_* with the test map Θ is considerably more efficient.

In the pursuit of a generic approach to the structure of Λ-modules, the hereditary case, pioneered in [17, 18] and [21], serves as a model. We further point to a selection
of existing contributions to the component problem over non-hereditary algebras: General tools were developed in [6] and [11]. Solutions to the problem over specific classes of tame algebras were given in [2, 5, 8, 10, 11, 19, 20, 22] for instance; solutions for certain classes of wild non-hereditary algebras can be found in [3, 14, 16]. As is to be expected, meaningful classifications of the irreducible components of $\text{Rep}_d(\Lambda)$ in the quoted instances are throughout obtained via partial lists of generic properties of the modules in the components. For a more detailed discussion of prior work on the topic we refer to the introduction of [14].

We add a few comments on the foundational nature of truncated path algebras with respect to the component problem. Clearly, given an arbitrary basic K-algebra $\Lambda = KQ/I$, there is a unique truncated path algebra Λ_{trunc} having the same quiver and Loewy length as Λ. In the general situation, the varieties Rep_S typically break up into multiple components. Given that all of them are contained in irreducible components of $\text{Rep}_d(\Lambda_{\text{trunc}})$, it is advantageous to first determine the latter, say

$$\text{Rep}_{\Lambda_{\text{trunc}}} S^{(1)} = \text{Filt}_{\Lambda_{\text{trunc}}} (S^{(1)}), \ldots, \text{Rep}_{\Lambda_{\text{trunc}}} S^{(m)} = \text{Filt}_{\Lambda_{\text{trunc}}} (S^{(m)}),$$

before aiming at the irreducible components of $\text{Rep}_d(\Lambda)$. Indeed, this confines the need for size comparisons among the closures of components of the varieties Rep_S to the subvarieties $\text{Filt}_{\Lambda_{\text{trunc}}} S^{(j)} \cap \text{Rep}_d(\Lambda)$; see Section 6.B.

Overview. In Section 2 we provide background for the proofs of the main results and introduce a recurring example. Section 3 addresses the general case, where Λ is basic but otherwise unrestricted. In Sections 4 and 5 we apply the findings to truncated path algebras. Section 4 contains the announced classification of the irreducible components of $\text{Rep}_d(\Lambda)$, while in Section 5 we discuss generic modules and apply the results of Section 4 towards interconnections among the components. Section 6 finally, illustrates the theory and addresses the interplay $\text{Rep}_d(\Lambda) \leftrightarrow \text{Rep}_d(\Lambda_{\text{trunc}})$.

2. **Conventions and prerequisites**

To repeat: Throughout, we assume $\Lambda = KQ/I$ to be a basic finite dimensional algebra over $K = \overline{K}$ with Jacobson radical J and Loewy length $L + 1$. The composition pq of paths stands for “p after q” in case $\text{start}(p) = \text{end}(q)$, while $pq = 0$ in KQ otherwise. By Λ_{trunc} we denote the truncated path algebra associated to Λ, namely,

$$\Lambda_{\text{trunc}} = KQ/\langle \text{the paths of length } L + 1 \rangle;$$

we make no notational distinction between the Λ- and Λ_{trunc}-structures of the objects in $\Lambda\text{-mod}$. The vertices e_1, \ldots, e_n of Q will be identified with the paths of length zero in KQ, as well as with the corresponding primitive idempotents in Λ. An element x of a Λ-module M is said to be normed by e_i if $x = e_ix$, and a normed element in $M \setminus JM$ is called a top element of M. A full sequence of top elements of M is a generating set of M consisting of top elements which are K-linearly independent modulo JM. The simple module $\Lambda e_i/Je_i$ corresponding to the vertex e_i will be denoted by S_i, and isomorphic semisimple modules will be identified.
The dominance order on the set $\text{Seq}(d)$ of all semisimple sequences with dimension vector d is defined as follows:

$$(S_0, \ldots, S_L) \leq (S'_0, \ldots, S'_L) \iff \bigoplus_{0 \leq j \leq l} S_j \subseteq \bigoplus_{0 \leq j \leq l} S'_j \quad \text{for} \quad 0 \leq l \leq L.$$

Recall that the radical and socle layerings of a Λ-module M are denoted by $S(M)$ and $S^*(M)$. For basic properties of these semisimple sequences, we refer to [14, Section 2.3].

We fix our notation for the parametrizing varieties of the d-dimensional Λ-modules. The affine variety $\text{Rep}_d(\Lambda)$ is

$$\big\{ (x_{\alpha})_{\alpha \in Q_1} \in \prod_{\alpha \in Q_1} \text{Hom}_K(K^{d_{\text{start}(\alpha)}}, K^{d_{\text{end}(\alpha)}}) \mid \text{the } x_{\alpha} \text{ satisfy all relations in } I \big\},$$

where Q_1 is the set of arrows of Q. The orbits of the obvious conjugation action on $\text{Rep}_d(\Lambda)$ by the group $\text{GL}(d) := \prod_{1 \leq i \leq n} \text{GL}_{d_i}(K)$ are in natural bijection with the isomorphism classes of the d-dimensional Λ-modules. Given $S \in \text{Seq}(d)$, we denote by $\text{Rep}S$ the locally closed subvariety of $\text{Rep}_d(\Lambda)$ which consists of the points x for which the corresponding module M_x has radical layering S. Clearly, the varieties $\text{Rep}S$, where S traces the semisimple sequences with $\text{dim}S = d$, partition $\text{Rep}_d(\Lambda)$. However, in general, this (finite) partition falls short of being a stratification of $\text{Rep}_d(\Lambda)$ in the strict sense, in that closures of strata need not be unions of strata.

To introduce the projective parametrizing variety $\text{GRASS}_d(\Lambda)$, we fix a projective Λ-module P whose top P/JP has dimension vector d, and set $d = |d|$. The variety $\text{GRASS}_d(\Lambda)$ is the closed subvariety of the vector space Grassmannian $\text{Gr}((\dim P - d), P)$ consisting of those points $C \in \text{Gr}((\dim P - d), P)$ which are Λ-submodules of P with the property that $\text{dim}(P/C) = d$. This time, the group action whose orbits determine the isomorphism classes of the quotients P/C in Λ-mod is the canonical action of $\text{Aut}_\Lambda(P)$ on $\text{GRASS}_d(\Lambda)$. The role played by $\text{Rep}S$ in the affine setting is taken over by $\text{GRASS}(S)$, the locally closed subvariety consisting of those $C \in \text{GRASS}_d(\Lambda)$ for which $S(P/C) = S$.

The following connection between the affine and projective parametrizing varieties was proved in [4, Proposition C]; it was inspired by Gabriel’s [9], as is explained in some detail in Remark 3 of [4, Section 2]. We restate the result for convenient reference.

Proposition 2.1. Consider the natural isomorphism from the lattice of $\text{GL}(d)$-stable subsets of $\text{Rep}_d(\Lambda)$ on one hand to the lattice of $\text{Aut}_\Lambda(P)$-stable subsets of $\text{GRASS}_d(\Lambda)$ on the other, which pairs orbits encoding isomorphic modules. This correspondence preserves and reflects openness, closures, irreducibility, and smoothness.

In describing generic projective resolutions of the modules in an irreducible component of $\text{Rep}_d(\Lambda)$, a key invariant of a d-dimensional Λ-module M is its set of skeleta. These skeleta live in a projective cover of M in Λ_{trunc}-mod. In the following definitions, we fix a semisimple sequence S with $\text{dim}S = d$.

Definitions 2.2. Coordinatized projective modules and skeleta.

1. Let P_{trunc} be a projective cover of S_0 in Λ_{trunc}-mod. This cover is referred to as a coordinatized projective module when it comes equipped with a fixed full sequence of top elements z_1, \ldots, z_t, where $t = \dim S_0$. In particular, we obtain a decomposition $P_{\text{trunc}} = \bigoplus_{1 \leq r \leq t} \Lambda_{\text{trunc}} z_r$. A path of length l in the coordinatized projective module P_{trunc}
is any nonzero element $p = pz_r$ where p is a path of length l in Q; thus each z_r is now viewed as a path of length zero. Note that we have a well-defined concept of path length in Λ_{trunc} and hence also in P_{trunc}. Clearly, each path $p = pz_r \in P_{\text{trunc}}$ is normed by a primitive idempotent, namely by $\text{end}(p)$, and the primitive idempotent norming z_r is $\text{start}(p)$.

(2) An (abstract) skeleton with layering S is a set σ consisting of paths in P_{trunc} which satisfies the following two conditions:

1. It is closed under initial subpaths, i.e., whenever $pz_r \in \sigma$, and q is an initial subpath of p (meaning $p = q'q$ for some path q'), the path qz_r again belongs to σ.
2. For $0 \leq l \leq L$, the number of those paths of length l in σ which end in a given vertex e_i coincides with the multiplicity of S_i in the semisimple module S_l.

Note that any skeleton σ with layering S includes the paths z_1, \ldots, z_t of length zero.

(3) Let $M \in \Lambda\text{-mod}$. An abstract skeleton σ is a skeleton of M in case M has a full sequence z_1, \ldots, z_t of top elements, each z_r normed by the same vertex as z_r, such that

1. $\{pz_r \mid pz_r \in \sigma\}$ is a K-basis for M, and
2. the layering of σ coincides with the radical layering $S(M)$ of M.

In this situation, we also say that σ is a skeleton of M relative to z_1, \ldots, z_t.

Clearly, the set of skeleta of any finite dimensional Λ-module M is non-empty, and the set of all skeleta of modules with fixed dimension vector d is finite. The relevance of skeleta towards a generic understanding of the modules in the irreducible components of $\text{Rep}_d(\Lambda)$ is underlined by the following fact:

Observation 2.3. Let P be the power set of the set of all skeleta with dimension vector d. Then the map

$$\text{Rep}_d(\Lambda) \rightarrow P, \quad x \mapsto \{\text{skeleton of } M_x\}$$

is generically constant on each irreducible component of $\text{Rep}_d(\Lambda)$.

To see this, let $C \subseteq \text{Rep}_d(\Lambda)$ be an irreducible component, and S the generic radical layering of its modules. Then $C \cap \text{Rep} S$ is open in C, and for any skeleton σ with layering S, the set

$$\text{Rep}(\sigma) := \{x \in \text{Rep}_d(\Lambda) \mid \sigma \text{ is a skeleton of } M_x\}$$

is an open subvariety of $\text{Rep} S$; see [12 Lemma 3.8]. Hence, a skeleton σ with layering S arises as a skeleton of the modules in a dense open subset of C precisely when $C \cap \text{Rep}(\sigma)$ is nonempty. Given that there are only finitely many eligible skeleta, this proves the claim.

Next, we recall more discerning graphical invariants associated to a finite dimensional Λ-module, namely its hypergraphs; see [1] Definition 3.9.

Definitions 2.4. σ-critical paths and hypergraphs. Again, we let P_{trunc} be a coordinatized projective Λ_{trunc}-module with top S_0 and assume $\sigma \subseteq P_{\text{trunc}}$ to be an abstract skeleton with layering S. Recall that the distinguished top elements z_r of P_{trunc} coincide with the paths of length zero in σ.

1. A σ-critical path is a path $q \in P_{\text{trunc}} \setminus \sigma$ such that every proper initial subpath of q belongs to σ. Thus, $q = \alpha q'$ where $q' \in \sigma$ and α is an arrow; in particular, $\text{length}(q) > 0$.

Given a σ-critical path q, we define a subset $\sigma_q \subseteq \sigma$ as follows:

$$\sigma_q := \{ \text{paths } p \in \sigma \mid \text{length}(p) \geq \text{length}(q) \text{ and } \text{end}(p) = \text{end}(q) \}.$$

The final condition in the definition of σ_q means that all paths in σ_q are normed (on the left) by the same vertex as q.

(2) Suppose $M \in \Lambda\text{-mod}$ has skeleton σ relative to a full sequence z_1, \ldots, z_t of top elements. The Λ-structure of M is then determined by the family of expansion coefficients corresponding to the σ-critical paths $q = q z_r \in P_{\text{trunc}}$, namely

$$q z_r = \sum_{p = p z_s \in \sigma_q} c_{q, p} p z_s$$

for unique scalars $c_{p, q} \in K$.

(3) We refer to any pair

$$G = (\sigma, (\tau_q)_{\sigma\text{-critical}}) \quad \text{with} \quad \tau_q \subseteq \sigma_q \quad \text{for all } \sigma\text{-critical paths } q$$

as an (undirected) hypergraph in P_{trunc}. The set τ_q is called the support set of q. Empty support sets are allowed.

In informal terms: The vertices of these hypergraphs are the elements of σ, and a typical (hyper)edge, labeled by an arrow $\gamma \in Q_1$, connects a vertex $p \in \sigma$ to the vertex γp in case $\gamma p \in \sigma$ and to the support set $\tau_{\gamma p}$ of vertices if γp is σ-critical.

(4) A hypergraph G as above is called a hypergraph of a Λ-module M (relative to a full sequence z_1, \ldots, z_t of top elements of M) if σ is a skeleton of M and, in the expansion (2.1) above, $c_{q, p} \neq 0$ precisely when $p \in \tau_q$.

While hypergraphs pin down families of modules, as opposed to individual isomorphism classes, they provide a useful tool for communicating, in a visually suggestive format, the generic structure of the modules in the components. For our diagrammatic representations of hypergraphs, we refer to [1], [7], and to the example below. This example will serve as a staple in the sequel.

Example 2.5. Let $\Lambda = KQ/\langle \text{the paths of length } 4 \rangle = \Lambda_{\text{trunc}}$, where Q is the quiver

![Quiver Diagram]

(a) First suppose that $r = 2$ and $s = 1$. Choose $S := (S_1, S_2, S_1, S_2)$, and let $P_{\text{trunc}} = \Lambda_{\text{trunc}}^z$ be the corresponding Λ_{trunc}-projective cover of $S_0 = S_1$, coordinatized by a fixed
top element z. Generically, the modules in $\text{Rep} \mathcal{S}$ then have a hypergraph of the form

$$
\begin{array}{c}
\alpha_1 & 1 & \alpha_2 \\
\beta_1 & 2 & \\
\alpha_1 & \alpha_2 & 2
\end{array}
$$

This diagram is to be read as follows: The radical layering of any module G having the above hypergraph (relative to a top element $z \in G$, say) is S, and the skeleton chosen to represent G is $\sigma := \{z, \alpha_1 z, \beta_1 \alpha_1 z, \alpha_1 \beta_1 \alpha_1 z\}$; the edges corresponding to paths in the skeleton σ are drawn as solid edges, while the dashed edges stand for the terminal arrows of σ-critical paths. Moreover, the diagram contains the information that the support sets τ_q for the two σ-critical paths $q = \alpha_2 z$ and $q = \alpha_2 \beta_1 \alpha_1 z$ in P_{trunc} (in the sense of Definition 2.4), are $\tau_{\alpha_2 z} = \{\alpha_1 z, \alpha_1 \beta_1 \alpha_1 z\}$ and $\tau_{\alpha_2 \beta_1 \alpha_1 z} = \{\alpha_1 \beta_1 \alpha_1 z\}$. Indeed, the “dotted pool” indicates that the element $\alpha_2 z$ of G is a K-linear combination of $\alpha_1 z$ and $\alpha_1 \beta_1 \alpha_1 z$ with coefficients in K^*; on the other hand, given that the set $\tau_{\alpha_2 \beta_1 \alpha_1 z}$ is a singleton, no extra pooling device is required to communicate the condition that $\alpha_2 \beta_1 \alpha_1 z \in G$ be a nonzero scalar multiple of $\alpha_1 \beta_1 \alpha_1 z$.

Next, we consider the semisimple sequence $\mathcal{S}' := (S_1^2, S_2^2, 0, 0)$. The modules in $\text{Rep} \mathcal{S}'$ generically look as follows, relative to top elements z_1, z_2 say:

$$
\begin{array}{c}
\alpha_1 & 1 & \alpha_2 \\
\beta_1 & 2 & \\
\alpha_1 & \alpha_2 & 2
\end{array}
$$

Here, the dotted pool serves double duty in indicating that both $\alpha_2 z_1$ and $\alpha_2 z_2$ are linear combinations of $\alpha_1 z_1$ and $\alpha_1 z_2$ with (unspecified) nonzero coefficients. In the sequel, we will use the fact that, generically, the modules in $\text{Rep} \mathcal{S}'$ decompose in the form

$$
\begin{array}{c}
\alpha_1 & 1 & \alpha_2 \\
\beta_1 & 2 & \\
\alpha_1 & \alpha_2 & 2
\end{array}
$$

(b) Now let $r = 3$. The hypergraphs

$$
\begin{array}{c}
\begin{array}{ccc}
\alpha_1 & 1 & \alpha_2 \\
\beta_1 & 2 & \bullet
\end{array} & \begin{array}{ccc}
\alpha_1 & \alpha_2 & 1 \\
\beta_1 & 2 & \bullet
\end{array} & \begin{array}{ccc}
\alpha_1 & \alpha_2 & \alpha_3 \\
\beta_1 & 2 & \bullet
\end{array}
\end{array}
$$
are hypergraphs of modules \(M_i = (\bigoplus_{1 \leq j \leq 3} \Lambda z_j)/U_i \), where \(z_j = e_1 \) for \(j = 1, 2, 3 \). Here the submodule \(U_1 \) is generated by \(\alpha_2 z_3 - \alpha_1 z_1, \alpha_3 z_3 \) and \(\alpha_j z_k \) for \(j \neq k \), while \(U_2 \) is generated by \(\alpha_2 z_2 - \alpha_1 z_1, \alpha_3 z_3 - \alpha_1 z_1 \) and \(\alpha_j z_k \) for \(j \neq k \); finally, \(U_3 \) is generated by \(\alpha_3 z_3 - (\alpha_1 z_1 + \alpha_2 z_2) \) and \(\alpha_j z_k \) for \(j \neq k \). The chosen reference skeleton of \(M_1 \) and \(M_2 \) is \(\sigma := \{ z_1, z_2, z_3, \alpha_1 z_1 \} \), and that of \(M_3 \) is \(\sigma \cup \{ \alpha_2 z_2 \} \). Note that the dimension of \(JM_3 \) is 2, the number of displayed vertices in the second row of the hypergraph.

Generically, the modules with radical layering \(S' := (S_1^2, S_2^2, 0, 0) \) are indecomposable and have hypergraphs of the form

\[
\begin{array}{c|ccc|c|ccc}
\alpha_1 & & & & \alpha_2 & & & \\
\alpha_3 & & & & \alpha_2 & & & \\
\alpha_1 & & & & \alpha_2 & & & \\
\end{array}
\]

The modules in \(\text{Rep} \, S \), where \(S := (S_1, S_2, S_1, S_2) \), generically have a hypergraph akin to the first one shown in part (a).

\[\square\]

3. The main results for general \(\Lambda \)

3.A. Pared-down parametrizing varieties.

Towards a description of \(\text{Rep} \, S \), we present lower-dimensional, more manageable varieties parametrizing the modules with radical layering \(S \).

Definition 3.1. Decompositions of \(K^{|d|} \) induced by semisimple sequences. Let \(S = (S_0, \ldots, S_L) \) be a realizable semisimple sequence in \(\Lambda \)-mod with \(\dim S = d \), and write \(d = |d| \). Consider a vector space decomposition of \(K^d \) which is induced by \(S \) in the following sense: Namely,

\[
K^d = \bigoplus_{0 \leq l \leq L, 1 \leq i \leq n} \mathcal{K}_{(l,i)}
\]

with the property that \(\dim \mathcal{K}_{(l,i)} = \dim e_i S_l \) for all eligible indices \(l \) and \(i \). Set \(\mathcal{K}_l = \bigoplus_{1 \leq i \leq n} \mathcal{K}_{(l,i)} \) for \(l \leq L \), and \(\mathcal{K}_{L+1} = \mathcal{K}_{(L+1,i)} = 0 \). Given a family \((f_\alpha)_{\alpha \in Q_1} \) of \(K \)-endomorphisms of \(K^d \), the following notation will be convenient: Whenever \(p = \alpha_1 \cdots \alpha_1 \) is a path of positive length \(l \) in \(Q \), we set \(f_p = f_{\alpha_1} \circ \cdots \circ f_{\alpha_1} \); if \(p \) is a path of length 0, say \(p = e_i \), then \(f_p \) is defined to be the canonical projection \(K^d \to \bigoplus_{0 \leq l \leq L} \mathcal{K}_{(l,i)} \subseteq K^d \) relative to the above decomposition. Thus, we obtain a \(K \)-algebra homomorphism \(KQ \to \text{End}_K(K^d) \) such that \(p \mapsto f_p \) for all paths \(p \) in \(Q \).

By \(Q_{\geq 1} \) we denote the set of paths of length at least \(l \) in \(Q \). The following lemma is an upgraded version of [14 Lemma 5.1] and is proved analogously.

Lemma 3.2. Triangular points in \(\text{Rep}_d(\Lambda) \).

We refer to the above notation. Suppose that \(f = (f_\alpha)_{\alpha \in Q_1} \) is a family of \(K \)-linear maps \(K^d \to K^d \) satisfying the following three conditions: For any arrow \(\alpha \) from \(e_i \) to \(e_j \) and any index \(l \in \{0, \ldots, L\} \),

(i) \(f_\alpha(\mathcal{K}_{(l,i)}) = 0 \) for all \(r \neq i \);
(ii) \(f_\alpha(\mathcal{K}_{(i,j)}) \subseteq \bigoplus_{l+1 \leq m \leq L} \mathcal{K}_{(m,j)} \);

(iii) whenever \(c_1, \ldots, c_m \in K \) and \(p_1, \ldots, p_m \) are paths of length \(\leq L \) in \(Q \), which have a common starting vertex and a common terminal vertex,

\[
\sum_{1 \leq j \leq m} c_j p_j \in I \quad \Rightarrow \quad \sum_{1 \leq j \leq m} c_j f_{p_j} = 0.
\]

Then the following statements (I) – (III) hold:

(I) The tuple \(f \) is a point in \(\text{Rep}_d(\Lambda) \), and the radical layering of the corresponding \(\Lambda \)-module \(M_f \) satisfies \(S(M_f) \geq S \). Moreover, all \(\Lambda \)-modules with radical layering \(S \) are represented by suitable points \(f \in \text{Rep}_d(\Lambda) \) satisfying (i) – (iii).

(II) \(J^l M_f = \sum_{p \in Q_{\geq l}} \text{Im}(f_p) \) for all \(l \in \{0, \ldots, L\} \).

(III) \(S(M_f) = S \) precisely when, for each \(h \in \{0, \ldots, L\} \), the linear map

\[
(K_0)^{Q_{\geq h}} \to \bigoplus_{l \geq h} \mathcal{K}_l, \quad (x_q)_{q \in Q_{\geq h}} \mapsto \sum_q f_q(x_q)
\]

has maximal rank, namely \(\sum_{l \geq h} \dim \mathcal{K}_l \).

The lemma prompts an analysis of the following two subvarieties of \(\text{Rep}_d(\Lambda) \).

3.3. The varieties \(\Delta\text{-Rep}(\geq S) \) and \(\Delta\text{-Rep}S \)

Keep \(S \) and a decomposition of \(K^d \) induced by \(S \) fixed. The collection of all \(f = (f_\alpha) \) satisfying conditions (i) – (iii) of Lemma 3.2 is a closed subvariety of \(\text{Rep}_d(\Lambda) \) which we denote by \(\Delta\text{-Rep}(\geq S) \). Indeed, the inclusion map

\[
\Delta\text{-Rep}(\geq S) \hookrightarrow \text{Rep}_d(\Lambda)
\]

provided by part (I) of Lemma 3.2 is a closed immersion.

To see this, take \(B_{(l,\mu)} = (b_{(l,\mu)}^1, \ldots, b_{(l,\mu)}^{d(l,\mu)}) \) to be an ordered basis for \(\mathcal{K}_{(l,\mu)} \) and \(B \) to be the lexicographically ordered union of the \(B_{(l,\mu)} \). Relative to this basis for \(K^d \), the image of the above embedding consists of all those families \((F_\alpha) \) of matrices in \(\text{Rep}_d(\Lambda) \) such that each \(F_\alpha \) has a strictly lower triangular form of the following ilk: • The only nonzero entries in any column labeled \((l, \mu)^{(3)} \) are confined to positions with lower label \((l + 1, \nu), \ldots, (L, \nu) \), provided \(\alpha \) is an arrow \(e_\mu \to e_\nu \), and • condition (iii) of Lemma 3.2 is satisfied. The latter requirement translates into polynomial equations for the entries of the \(F_\alpha \). This shows that the considered embedding is indeed a closed immersion.

Observe moreover that, up to isomorphism, the variety \(\Delta\text{-Rep}(\geq S) \) is determined by \(S \), irrespective of the choice of a decomposition \(K^d = \bigoplus_{l,i} \mathcal{K}_{(l,i)} \) induced by \(S \). Lemma 3.6 below will show that the \(\text{GL}(d) \)-stable hull \(\text{GL}(d).(\Delta\text{-Rep}(\geq S)) \subseteq \text{Rep}_d(\Lambda) \) is, in fact, unique in the strict sense.

We will identify \(\Delta\text{-Rep}(\geq S) \) with its image under the above immersion whenever convenient. The subset of \(\Delta\text{-Rep}(\geq S) \) consisting of the points which correspond to modules with radical layering \(S \) will be denoted by \(\Delta\text{-Rep}S \). In view of part (III) of Lemma 3.2, \(\Delta\text{-Rep}S \) is an open subvariety of \(\Delta\text{-Rep}(\geq S) \).

Next, we consider the effect of conjugation by \(\text{GL}(d) \) on the varieties \(\Delta\text{-Rep}(\geq S) \) and \(\Delta\text{-Rep}(S) \).
3.4. Δ-$\Rep(\geq S)$ under the $\GL(d)$-action. Viewed as subvarieties of $\Rep_d(\Lambda)$, the varieties Δ-$\Rep(\geq S)$ and Δ-$\Rep(S)$ fail to be stable under the $\GL(d)$-action in all non-trivial cases. However, each of these varieties carries a conjugation action by the subgroup $\GL(S)$ of $\GL(d)$ which consists of the sequences (g_1, \ldots, g_n) with the property that each g_i leaves the subspaces $\bigoplus_{j \geq l} K_{(j,i)}$ invariant for all l. Caveat: The $\GL(S)$-action does not separate the isomorphism classes of the pertinent modules in general.

By part (1) of Lemma 3.2, the closure of Δ-$\Rep(\geq S)$ under the $\GL(d)$-action on $\Rep_d(\Lambda)$ is contained in the closed subvariety $\bigcup_{S' \succeq S} \Rep S'$ of $\Rep_d(\Lambda)$. In fact, in view of the lemma,

$$\Rep S = \GL(d). (\Delta$-$\Rep(S)) \subseteq \GL(d). (\Delta$-$\Rep(\geq S)) \subseteq \bigcup_{S' \succeq S} \Rep S'.$$

Either inclusion may be proper. This is obvious for the first. Regarding the second, let $\Lambda = KQ/\langle \beta^2 \rangle$, for instance, where $Q := 1 \xrightarrow{\alpha} 2 \bigcup \beta$. Moreover, take $S := (S_1^2, S_2^2)$ and $\tilde{S} := (S_1^2 \oplus S_2, S_2)$. Then $\tilde{S} \succeq S$, but the module $N := S_1^2 \oplus \Lambda e_2$ in $\Rep(\tilde{S})$ is not isomorphic to a module in Δ-$\Rep(S)$. Indeed, since $K_{(0,2)} = 0$ and $\dim K_{(1,2)} = 2$ in the decomposition of K^4 induced by S, we have $S_2^2 \subseteq \soc M$ for all M in Δ-$\Rep(S)$, while this is not the case for N.

3.B. The closure of $\Rep S$ in $\Rep_d(\Lambda)$.

We start with an elementary lemma characterizing the modules corresponding to the points in Δ-$\Rep(S)$. For a given realizable semisimple sequence $S = (S_0, \ldots, S_L)$ with $\dim S = d$, we fix a decomposition of $K^{[d]}$ induced by S as in Definition 3.1. As we already pointed out, modulo isomorphism of varieties, this choice has no bearing on Δ-$\Rep(S)$.

Definition 3.5. Filtrations governed by S. Let M be a Λ-module. A filtration of M governed by S is any chain of submodules

$$M = M_0 \supseteq M_1 \supseteq \cdots \supseteq M_{L+1} = 0$$

such that each factor M_l/M_{l+1} is isomorphic to S_l; in other words, $JM_l \subseteq M_{l+1}$ and $\dim M_l/M_{l+1} = \dim S_l$ for $0 \leq l \leq L$. Filtrations with these properties will also be referred to more briefly as S-filtrations.

Lemma and Definition 3.6. The variety $\Filt S$. Let $\Lambda = KQ/I$ be an arbitrary basic finite dimensional K-algebra. Moreover, let S be a semisimple sequence with $\dim S = d$. Then the following conditions are equivalent for a Λ-module M:

1. M belongs to the $\GL(d)$-stable hull of Δ-$\Rep(\geq S)$, that is, to $\GL(d). (\Delta$-$\Rep(\geq S))$.
2. M has a filtration governed by S.

In particular, $\GL(d). (\Delta$-$\Rep(\geq S))$ is independent of the choice of a decomposition of $K^{[d]}$ induced by S. Motivated by the above equivalence, we will denote this subvariety of $\Rep_d(\Lambda)$ by $\Filt S$.

Proof. $(1) \implies (2)$: Suppose that M is represented by some point $f = (f_\alpha) \in \Delta$-$\Rep(\geq S)$. This means that, up to isomorphism, M equals K^d, equipped with the Λ-module structure of Lemma 3.2. In particular, we obtain a filtration of M governed by S by setting $M_l = \bigoplus_{j \geq l, 1 \leq i \leq n} K_{(j,i)}$.

(2) \implies (1): Given an S-filtration $(M_t)_{0 \leq t \leq L+1}$ of M, we take $M_{(l,i)}$ to be a vector space complement of $e_l M_{l+1}$ in $e_l M_l$ for $0 \leq l \leq L$. Moreover, we set $f = (f_a)_{a \in Q_0}$, where $f_a(x) = \alpha x$ for $x \in M$. Then the decomposition $M = \bigoplus_{0 \leq l \leq L, 1 \leq i \leq n} M_{(l,i)}$ satisfies conditions (i) – (iii) of Lemma 3.2 and thus can be shifted to a decomposition $\bigoplus_{0 \leq l \leq L, 1 \leq i \leq n} K_{(l,i)}$ of K^d induced by S via a suitable family $h = (h_{(l,i)})$ of isomorphisms $h_{(l,i)} : M_{(l,i)} \rightarrow K_{(l,i)}$. We conclude $h h^{-1} f \in \Delta \cdot \text{Rep}(\geq S)$ and $M h h^{-1} f \cong M$. \hfill \square

The upcoming remarks (1)–(3) will be tacitly invested in the sequel.

Remarks 3.7. (1) $\text{Filt } S$ is always nonempty, irrespective of whether S is realizable. Indeed, the semisimple module $\bigoplus_{0 \leq l \leq L} S_l$ has a filtration governed by S.

(2) For any $M \in \Lambda$-mod, the chain $M \supseteq JM \supseteq \cdots \supseteq J^{L+1} M = 0$ is the only filtration of M governed by $S(M)$; moreover, if S' is any semisimple sequence governing a filtration of M, then $S' \leq S(M)$.

(3) The socle layering $S^*(M)$ of M governs the socle filtration, provided the traditional indexing of the latter is reversed; i.e., if $S^*(M) = (S_0^*, \ldots, S_n^*, 0, \ldots, 0)$ with $S_m^* \neq 0$, then the filtration $\text{soc}_m M = M \supseteq \text{soc}_{m-1} M \supseteq \cdots \supseteq \text{soc}_0 M = \text{soc} M \supseteq 0$ is governed by the (not necessarily realizable) semisimple sequence $(S_m^*, \ldots, S_0^*, 0, \ldots, 0)$. In particular, $(S_m^*, \ldots, S_0^*, 0, \ldots, 0) \leq S(M)$.

(4) K. Bongartz pointed out to us that the upcoming Theorem 3.8 may alternatively be derived from a useful result of Steinberg. We state it below, but omit detail. We do fully anchor our own steppingstone to 3.3 (namely Theorem 3.9) though. The embedding of $\text{GRASS}(S)$ into a flag variety, as specified there, is instrumental in a further analysis of the closure of $\text{GRASS}(S)$ in $\text{GRASS}_d(\Lambda)$.

Lemma [21, Lemma 2, p.68]: Let V be a quasi-projective variety carrying a morphic action by a connected linear algebraic group G. Moreover, let U be a closed subvariety of V which is stable under the action of some parabolic subgroup of G. Then the G-stable hull $G . U$ of U in V is in turn closed.

Theorem 3.8. Let Λ be an arbitrary basic finite dimensional algebra, and let S be a semisimple sequence in Λ-mod with $\dim S = d$. Then the $\text{GL}(d)$-stable set $\text{Filt } S$, which consists of the points in $\text{Rep}_d(\Lambda)$ encoding modules with S-filtrations, is a closed subvariety of $\text{Rep}_d(\Lambda)$.

In particular, $\overline{\text{Rep } S} \subseteq \text{Filt } S$, meaning that every module in $\overline{\text{Rep } S}$ has an S-filtration.

To prove Theorem 3.8 we switch back and forth between the affine and projective settings, $\text{Rep}_d(\Lambda)$ and $\text{GRASS}_d(\Lambda)$, using Proposition 2.1 to transfer information from one to the other. Again, we denote by P the Λ-projective cover of $\bigoplus_{1 \leq i \leq n} S_i^d$, in whose submodule lattice the points of $\text{GRASS}_d(\Lambda)$ are located. We start by establishing a natural embedding of $\text{GRASS}(S)$ into a projective variety consisting of submodule flags $D_{L+1} \subseteq D_L \subseteq \cdots \subseteq D_0 = P$ of P which are governed by S. It is this embedding which makes information about the closure of $\text{GRASS}(S)$ in $\text{GRASS}_d(\Lambda)$ more accessible.

Theorem 3.9. Consider the subset \mathcal{U} of the partial flag variety $\mathfrak{flag}(\partial_0, \ldots, \partial_{L+1}, P)$ of P, where $\partial_i := (\dim P - |d|) + \sum_{l=L+1}^L |\dim S_l|$, consisting of the Λ-submodule flags $0 \subseteq D_{L+1} \subseteq D_L \subseteq \cdots \subseteq D_0 = P$ with $D_l / D_{l+1} \cong S_l$ for $0 \leq l \leq L$.

Then \mathcal{U} is closed, and there is a natural embedding of varieties

$$\Phi : \text{GRASS}(\mathbb{S}) \to \mathcal{U},$$

which induces an isomorphism onto its image.

Proof of [3.9] Recall that a module N belongs to $\text{GRASS}(\mathbb{S})$, meaning that $N \cong P/C$ with $C \in \text{GRASS}(\mathbb{S})$, precisely when $\dim S_l = \dim J_l N = \dim (C + J_l P)/(C + J_l^+ P)$ for all eligible l. Set $d^{(L+1)} = d$ and $d^{(l)} = d - \sum_{l \leq r \leq L} \dim S_r$ for $0 \leq l \leq L$. In particular, we obtain $\text{GRASS}_{d^{(L+1)}}(\Lambda) = \text{GRASS}_d(\Lambda)$, and $\text{GRASS}_{d^{(0)}}(\Lambda) = \{P\}$.

Clearly, \mathcal{U} is a subset of the projective variety

$$\text{GRASS}_{d^{(L+1)}}(\Lambda) \times \text{GRASS}_{d^{(L)}}(\Lambda) \times \cdots \times \text{GRASS}_{d^{(0)}}(\Lambda);$$

namely, \mathcal{U} consists of those points (D_{L+1}, \ldots, D_0) in the direct product that correspond to flags $\cdots \subseteq D_0 = P$ of Λ-submodules of P satisfying

$$(\dagger) \quad J D_l \subseteq D_{l+1} \quad \text{and} \quad \dim D_l / D_{l+1} = \dim S_l \quad \text{for} \quad 0 \leq l \leq L.$$

To verify that the set \mathcal{U} is closed in the given direct product of module Grassmannians, note that the equalities under (\dagger), specifying the dimension vectors of the consecutive quotients D_l / D_{l+1}, are actually automatic; this is due to the placement of the D_l in $\text{GRASS}_{d^{(0)}}(\Lambda)$, respectively. As for the inclusions under (\dagger): It is well-known that, given any $f \in \text{End}_K(P)$, the requirement $f(D_l) \subseteq D_{l+1}$ for all l" cuts a closed subset out of the variety

$$\{(D_l) \in \prod_{0 \leq l \leq L+1} \text{GRASS}_{d^{(l)}}(\Lambda) \mid D_{l+1} \subseteq D_l \quad \text{for} \quad 0 \leq l \leq L\}$$

of partial submodule flags. Applying this to the linear maps $P \to P$ given by $x \mapsto \alpha x$ for $\alpha \in Q_1$, and investing the fact that the displayed partial flag variety is closed in the given product of Grassmannians, one finds that \mathcal{U} is indeed closed. In particular, \mathcal{U} is a projective variety.

We have a natural embedding of $\text{GRASS}(\mathbb{S})$ into \mathcal{U}, namely

$$\Phi : \text{GRASS}(\mathbb{S}) \to \mathcal{U}, \quad C \mapsto (C + J^{L+1} P, C + J^L P, \ldots, C + J P, C + J^0 P),$$

where the leftmost entry $C + J^{L+1} P$ of the sequence equals C, and the rightmost entry equals P.

To see that Φ is a morphism, we use the open affine cover $(\text{GRASS}(\sigma))_\sigma$ of $\text{GRASS}(\mathbb{S})$, where σ traces the skeleta with layering \mathbb{S} and $\text{GRASS}(\sigma) \neq \emptyset$. For that purpose, recall the following description of $\text{GRASS}(\sigma)$ from [13]. We view the Λ-projective cover P of S_0 as a direct summand of the projective cover $P = \bigoplus_{1 \leq r \leq |d|} \Lambda z_r$ of $\bigoplus_{0 \leq l \leq L} S_l$, say $P = \bigoplus_{1 \leq r \leq t} \Lambda z_r$. On identifying the top elements z_r of P with those of P_{trunc} (see 2.2), we retrieve each of the subsets σ of P_{trunc} as a subset of P; as such, σ consists of $|d|$ linearly independent elements of P. Define $s := \dim P - |d|$, and let $\mathbf{Schu}(\sigma)$ be the big open Schubert cell of $\text{Gr}(s, P)$ consisting of the vector space complements of the subspace $\bigoplus_{p \in \sigma} K p$ in P. Then $\text{GRASS}(\sigma) := \text{GRASS}(\mathbb{S}) \cap \mathbf{Schu}(\sigma)$ is open in $\text{GRASS}(\mathbb{S})$, and the union of the $\text{GRASS}(\sigma)$, with σ as specified, equals $\text{GRASS}(\mathbb{S})$; cf. [13] Observation 3.6. By [13] Theorem 3.17, the $\text{GRASS}(\sigma)$ are affine; in fact, they can readily be realized as
closed subsets of the K-space $\wedge^s P$ relative to the Plücker coordinates $[c_1 \wedge \cdots \wedge c_s]$ of $\text{Schu}(\sigma)$.

Hence it suffices to show that, for each such skeleton σ, the restriction Φ_σ of Φ to $\text{GRASS}(\sigma)$ is a morphism. For $0 \leq j \leq L$, let σ_j be the set of all paths of length j in σ. Enumerate the elements of σ so that increasing indices correspond to weakly decreasing lengths. If $t_l := |\sigma_l| + \cdots + |\sigma_L|$, we thus obtain $\bigcup_{l \leq j \leq L} \sigma_j$ in the form

$$\bigcup_{l \leq j \leq L} \sigma_j = \{p_1, \ldots, p_t\} \quad \text{for} \quad 0 \leq l \leq L.$$

We deduce that, given any K-basis c_1, \ldots, c_s for a point $C \in \text{GRASS}(\sigma)$, the elements $c_1, \ldots, c_s, p_1, \ldots, p_t$ form a K-basis for $C + J^l P$: Indeed, $J^l P$ is generated by the paths in P of the form qz_r, where q is a path of length $\geq l$ in KQ and $r \leq |d|$. Moreover, by the definition of $\text{GRASS}(\sigma)$, p_1, \ldots, p_t induce a basis for $J^l P/C = (J^l P + C)/C$. This shows that the restriction Φ_σ sends any point $C \in \text{GRASS}(\sigma)$ to

$$\left([c_1 \wedge \cdots \wedge c_s], [c_1 \wedge \cdots \wedge c_s \wedge p_1 \wedge \cdots \wedge p_{t_1}], \ldots, [c_1 \wedge \cdots \wedge c_s \wedge p_1 \wedge \cdots \wedge p_{t_0}] \right),$$

whence Φ_σ is indeed a morphism.

Finally, we observe that Φ induces an isomorphism onto its image. Indeed, the inverse is the restriction to $\text{Im}(\Phi)$ of the projection onto the leftmost component of the direct product of the $\text{GRASS}_{d(i)}(\Lambda)$, namely the restriction of

$$\Psi : \prod_{0 \leq l \leq L+1} \text{GRASS}_{d(i)}(\Lambda) \to \text{GRASS}_d(\Lambda), \quad (D_{L+1}, \ldots, D_0) \mapsto D_{L+1}$$

to $\text{Im}(\Phi)$. Therefore $\Phi^{-1} : \text{Im}(\Phi) \to \text{GRASS}(\mathcal{S})$ is a morphism. \hfill \Box

Proof of 3.8 We refer to the notation in the proof of 3.9 Since \mathcal{U} is a projective variety, so is $\Psi(\mathcal{U})$. In particular, $\Psi(\mathcal{U})$ is closed in $\text{GRASS}_d(\Lambda)$.

By condition (†) spelled out in the proof of 3.9, the image $\Psi(\mathcal{U}) \subseteq \text{GRASS}_d(\Lambda)$ consists precisely of those points $C \in \text{GRASS}_d(\Lambda)$ which have the property that P/C has a filtration governed by \mathcal{S}; in particular $\Psi(\mathcal{U})$ is stable under the $\text{Aut}_\Lambda(P)$-action of $\text{GRASS}_d(\Lambda)$. In light of Lemma 3.6. Proposition 2.1 thus matches up $\Psi(\mathcal{U})$ with the $\text{GL}(d)$-stable subset $\text{Filt} \mathcal{S}$ of $\text{Rep}_d(\Lambda)$ and tells us that $\text{Filt} \mathcal{S}$ is in turn closed.

For the final claim, it suffices to observe that $\text{Rep} \mathcal{S} \subseteq \text{Filt} \mathcal{S}$. \hfill \Box

Theorem 3.8 prompts us to introduce a new module invariant which will turn out to be highly informative towards the detection of irreducible components of $\text{Rep}_d(\Lambda)$.

Definition 3.10. The module invariant Γ. For $M \in \Lambda$-mod, let $\Gamma(M)$ denote the number of realizable semisimple sequences which govern some filtration of M.

Corollary 3.11. The map $\Gamma_* : \text{Rep}_d(\Lambda) \to \mathbb{N}$, which sends x to $\Gamma(M_x)$, is upper semi-continuous.

In particular: Whenever \mathcal{C} is an irreducible component of some $\text{Rep} \mathcal{S}$ such that $1 \in \Gamma_* (\mathcal{C})$, the closure $\overline{\mathcal{C}}$ is an irreducible component of $\text{Rep}_d(\Lambda)$.

Proof. Let \mathcal{R} be the set of all realizable semisimple sequences with dimension vector d. Moreover, for $a \in \mathbb{N}$, let $\mathcal{R}(a)$ be the collection of all those intersections $\bigcap_i \text{Filt}(S^{(i)})$ which involve at least a distinct sequences $S^{(i)} \in \mathcal{R}$. Then the pre-image $\Gamma_*^{-1}([a, \infty))$ is
the union of the sets in $\mathcal{R}(a)$. Since each $\text{Filt}(S^{(i)})$ is closed in $\text{Rep}_d(\Lambda)$ by Theorem 3.8 and $\mathcal{R}(a)$ is finite, the union $\Gamma^{-1}(\{a, \infty\})$ is closed. This proves the claim regarding upper semicontinuity.

To justify the final assertion, suppose that $\overline{\mathcal{C}}$ is properly contained in some irreducible component \mathcal{C}' of $\text{Rep}_d(\Lambda)$. Then \mathcal{C}' is an irreducible component of some $\text{Rep}S'$ with $S' < S$. Since $\text{Rep}S' \subseteq \text{Filt}(S')$ by Theorem 3.8, all modules in $\overline{\mathcal{C}}$ have a filtration governed by S' in this situation, whence $\Gamma(M) > 1$ for all $M \in \text{Rep}S'$.

Now let $D = \text{Hom}_K(-, K) : \text{mod-}\Lambda \to \text{mod-}\Lambda$ be the standard duality. Clearly, $M \in \text{mod-}\Lambda$ contains a descending submodule chain governed by $S = (S_0, \ldots, S_L)$ if and only if $D(M)$ contains an ascending chain $M'_1 \supseteq M'_2 \supseteq \cdots \supseteq M'_L = D(M)$ which is cogoverned by $D(S) = (D(S_0), \ldots, D(S_L))$, in the sense that each of the consecutive quotients M'_i/M'_{i-1} is isomorphic to $D(S_i)$. We define $\text{Cofilt}S'$ to be the subset of $\text{Rep}_d(\Lambda)$ whose correspond to the modules which are cogoverned by a semisimple sequence S'. The duality $\tilde{D} : \text{Rep}_d(\text{mod-}\Lambda) \to \text{Rep}_d(\text{mod-}\Lambda)$ of [16, Section 2.C] thus yields the following dual of Theorem 3.8. We spell it out since, in size comparisons of $\overline{\mathcal{C}}(\Lambda)$ versus $\overline{C}^{(i)}$, for irreducible components $C^{(k)}$ of $\text{Rep}S$, one gains mileage in combining 3.8 with its dual. (Recall: The process of filtering the irreducible components of $\text{Rep}_d(\Lambda)$ out of $\{C \mid C$ is a component of some $\text{Rep}S$ with dim $S = d\}$ rests on comparisons of this ilk.)

Theorem 3.12. Dual of Theorem 3.8. If $S^* = (S^*_0, \ldots, S^*_L)$ is a semisimple sequence in $\text{mod-}\Lambda$ with dimension vector d, let $\text{Corep}S^*$, resp. $\text{Cofilt}S^*$, be the set of all points in $\text{Rep}_d(\Lambda)$ which correspond to modules with socle series S^*, resp. to modules with filtrations cogoverned by S^*.

Then $\text{Cofilt}(S^*)$ is a closed subvariety of $\text{Rep}_d(\Lambda)$, and consequently $\text{Corep}S^* \subseteq \text{Cofilt}S^*$. In particular: If C is an irreducible component of $\text{Rep}S$ such that, generically, the modules in C have socle layering S^*, then $\overline{\mathcal{C}} \subseteq \text{Filt}S \cap \text{Corep}S^*$.

We close the section with an example to the effect that, in general, the inclusion $\text{Rep}S \subseteq \text{Filt}S$ may be proper and the final implication of Corollary 3.11 need not be reversible. This contrasts the situation where $\Lambda = \Lambda_{\text{trunc}}$, as we will see in Section 4.

Example 3.13. Consider the quiver Q of Example 2.5 with $r = 2$ and $s = 1$, and set $\Lambda = KQ/(\beta_1 \alpha_2, \alpha_2 \beta_1, \text{ all paths of length } 4)$. Let $d := (2, 2)$, $S := (S_1, S_2, S_1, S_2)$, and $S' := (S'_1, S'_2, 0, 0)$. Then the varieties $\text{Rep}S$ and $\text{Rep}S'$ are irreducible, and generically their modules have hypergraphs

\[
\begin{array}{c}
1 \\
\alpha_1 \\
\beta_1 \\
2
\end{array}
\quad \text{and} \quad
\begin{array}{c}
1 \\
\alpha_1 \\
\beta_1 \\
2
\end{array}
\quad \bigoplus \quad
\begin{array}{c}
1 \\
\alpha_1 \\
\beta_1 \\
2
\end{array}
\]
respectively, whence both are contained in \(\text{Filt} S \). Clearly, \(\text{Rep} S \not\subseteq \text{Rep} S' \), due to the generic Loewy lengths of the modules in \(\text{Rep} S \) and \(\text{Rep} S' \). By comparing generic \(\alpha_2 \)-ranks, one moreover finds that \(\text{Rep} S \not\subset \text{Rep} S' \). In conclusion, both \(\text{Rep} S \) and \(\text{Rep} S' \) are components of \(\text{Filt} S \). In fact, both of these closures are even irreducible components of \(\text{Rep}_d (\Lambda) \), the latter failing to satisfy the sufficient condition of Corollary 3.11. Indeed, \(\Gamma (M) = 2 \) for all \(M \in \text{Rep} S' \).

It is readily verified that the total number of components of \(\text{Rep}_d (\Lambda) \) is three, the remaining component being \(\text{Rep} S'' = \text{Filt} (S'') \) for \(S'' = (S_2, S_1, S_2, S_1) \). By contrast: On replacing \(\Lambda \) by the associated truncated path algebra \(\Lambda_{\text{trunc}} \), two of the three components of \(\text{Rep}_d (\Lambda) \) fuse into a single component of \(\text{Rep}_d (\Lambda_{\text{trunc}}) \); see Example 6.1(b) below.

4. The main results for truncated \(\Lambda \)

Throughout this section, \(\Lambda \) stands for a truncated path algebra of Loewy length \(L + 1 \), i.e., \(\Lambda = \Lambda_{\text{trunc}} \). In particular, the irreducible components of \(\text{Rep}_d (\Lambda) \) are among the \(\text{Rep} S \), where \(S \) traces the \(d \)-dimensional realizable semisimple sequences. The upcoming theory characterizes these components in terms of their generic radical layerings \(S \) (or, equivalently, in terms of their generic modules in the sense of Section 5 below). As in the special cases already mastered – the local case and that of an acyclic quiver \(Q \) – the classification may be implemented on a computer; see Section 5.B. However, the general algorithm is considerably more labor-intensive than the \(\Theta \)-test which applies to the local and acyclic cases.

As we will recall in Section 5, the generic properties of the modules in any component \(\text{Rep} S \) may be accessed via a single generic module \(G(S) \). A key asset of the truncated situation lies in the fact that such a module \(G(S) \) is available on sight from \(S \); detail will follow in Section 5.A below.

Moreover, it is particularly easy to recognize realizability of semisimple sequences over truncated path algebras. We recall the following from [14, Criterion 3.2]:

Realizability Criterion 4.1. Let \(B = (B_{ij}) \) be the adjacency matrix of \(Q \), i.e., \(B_{ij} \) is the number of arrows from \(e_i \) to \(e_j \). Then \(S = (S_0, \ldots, S_L) \) is realizable if and only if \(\dim S_l \leq (\dim S_{l-1}) \cdot B \) for all \(1 \leq l \leq L \); the latter, in turn, is equivalent to realizability of the two-term sequences \((S_l, S_{l+1}) \) in \((\Lambda / J^2) \)-mod for \(l < L \). \(\Box \)

In more intuitive terms: \(S \) is realizable if and only if there exists an abstract skeleton with layering \(S \). Note moreover that, in the positive case, any such skeleton belongs to the generic set of skeleta of the modules in \(\text{Rep} S \).

Next, we find that the description of \(\Delta \)-\(\text{Rep}(\geq S) \) may be simplified in the truncated situation, in that requirement (iii) of Lemma 3.2 is now void.

Observation 4.2. \(\Delta \)-\(\text{Rep}(\geq S) \) is an affine space.** Referring to the decomposition of \(K^d \) induced by \(S \) in Definition 3.1 we obtain: \(\Delta \)-\(\text{Rep}(\geq S) \) consists of those points \(f = (f_\alpha)_\alpha \in (\text{End}_\Lambda (K^d))^{Q^1} \) which satisfy the following conditions: For any arrow \(\alpha \) from \(e_i \) to \(e_j \):

- \(f_\alpha (K_{(l,r)}) = 0 \) for all \(r \neq i \), and
• $f_\alpha(K_{(l,i)}) \subseteq \bigoplus_{l+1 \leq m \leq L} K_{(m,j)}$.

In particular, $\Delta\text{-Rep}(\geq S)$ is a full affine space in this situation. Indeed, the image of the closed immersion $\Delta\text{-Rep}(\geq S) \hookrightarrow \text{Rep}_d(\Lambda)$, which we presented in 3.3, consists of all sequences of $d_i \times d_i$ matrices of the described lower triangular format. Consequently, $\text{Filt} S$, being a morphic image of $\text{GL}(d) \times \Delta\text{-Rep}(\geq S)$, is irreducible as well.

This observation, in turn, allows us to derive a full characterization of the modules in $\text{Rep} S$ from Theorem 3.8.

Theorem 4.3. Suppose Λ is a truncated path algebra and S a realizable semisimple sequence. Then

$$\text{Rep}_S = \text{Filt} S.$$

In other words, a module M belongs to Rep_S precisely when M has a filtration governed by S.

Dually, $\text{Corep}^* S = \text{Cofilt}^* S$, where S^* is the generic socle layering of the modules in $\text{Rep} S$. If $\text{Rep} S$ is an irreducible component of $\text{Rep}_d(\Lambda)$, then

$$\text{Corep}^* S = \text{Cofilt}^* S = \text{Filt} S = \text{Rep} S.$$

Proof. Concerning the first equality: In light of Observation 4.2, the variety $\Delta\text{-Rep}(\geq S)$ is irreducible. Therefore the open subset $\Delta\text{-Rep} S$ is dense in $\Delta\text{-Rep}(\geq S)$, meaning that the closure $\Delta\text{-Rep} S$ in $\text{Rep}_d(\Lambda)$ contains $\Delta\text{-Rep}(\geq S)$. Moreover, $\Delta\text{-Rep} S \subseteq \Delta\text{-Rep}(\geq S)$ by construction, whence we obtain $\Delta\text{-Rep}(\geq S) \subseteq \Delta\text{-Rep} S \subseteq \text{Rep} S$. Given that $\text{Rep} S$ is $\text{GL}(d)$-stable, it follows that $\text{Filt} S \subseteq \text{Rep} S$ due to 3.6. The reverse inclusion was established in Theorem 3.8. The second assertion follows by duality (see 3.12 and [16, Corollary 3.4.b]).

In particular, duality guarantees that the varieties $\text{Corep}^* S$ are again irreducible. For arbitrary S, we moreover find $\text{Rep} S \subseteq \text{Corep}^* S$, since the modules in a dense open subset of $\text{Rep} S$ have socle layering S^*. In case $\text{Rep} S$ is an irreducible component of $\text{Rep}_d(\Lambda)$, we thus infer $\text{Rep} S = \text{Corep}^* S$, which completes the argument. □

The following consequence, addressing the relative sizes of the closures $\text{Rep} S$, is now immediate. It was independently obtained by I. Shipman with different methods; he also developed an algorithm for checking the considered inclusion via matrices of dimension vectors [23]. Algorithmic counterparts to the upcoming Corollary 4.4 and Theorem 4.5 will be addressed in 5.B.

Corollary 4.4. Comparing the varieties $\text{Rep} S$. Let Λ be a truncated path algebra. Moreover, suppose that S and S' are realizable semisimple sequences with the same dimension vector. Then $\text{Rep} S \subseteq \text{Rep} S'$ if and only if (generically) the modules in $\text{Rep} S$ have filtrations governed by S'. □

The upper semicontinuous map $\Gamma_* : \text{Rep}_d(\Lambda) \to \mathbb{N}$ of 3.11 detects all irreducible components of $\text{Rep}_d(\Lambda)$. Indeed, S is the generic radical layering of an irreducible component of $\text{Rep}_d(\Lambda)$ if and only if Γ_* attains the value 1 on $\text{Rep} S$. We record this as follows.

Theorem 4.5. Let Λ be a truncated path algebra. If $S^{(1)}, \ldots, S^{(m)}$ are the distinct d-dimensional semisimple sequences S with $1 \in \Gamma_*(\text{Rep} S)$, then

$$\text{Filt}(S^{(1)}) = \bar{\text{Rep}} S^{(1)}, \ldots, \text{Filt}(S^{(m)}) = \bar{\text{Rep}} S^{(m)}.$$
are the distinct irreducible components of $\text{Rep}_d(\Lambda)$.

Proof. Suppose S is a realizable d-dimensional semisimple sequence. If $1 \in \Gamma_*(\text{Rep} S)$, then $\text{Rep} S \not\subseteq \text{Filt}(S') = \overline{\text{Rep} S'}$ for any semisimple sequence $S' \neq S$, whence $\overline{\text{Rep} S}$ is an irreducible component of $\text{Rep}_d(\Lambda)$.

If, on the other hand, $1 \not\in \Gamma_*(\text{Rep} S)$, then every module in $\text{Rep} S$ is contained in some variety $\text{Filt} S'$, where S' is a realizable semisimple sequence different from S. Therefore,

$$\overline{\text{Rep} S} \subseteq \bigcup_{S' \text{ realizable, } S' \neq S} \text{Filt} S' = \bigcup_{S' \text{ realizable, } S' \neq S} \overline{\text{Rep} S'},$$

the final equality being part of 4.3. Irreducibility of $\overline{\text{Rep} S}$ thus implies $\overline{\text{Rep} S} \subseteq \overline{\text{Rep} S'}$ for some $S' \neq S$, which shows that $\overline{\text{Rep} S}$ fails to be maximal irreducible. □

5. Applications of Section 4: Generic modules for the components over truncated path algebras

Barring Example 5.2(b), Λ will, throughout this section, stand for a truncated path algebra of Loewy length $L + 1$. Moreover, d will be a dimension vector of Λ.

If one extends the base field K of Λ to an algebraically closed field of infinite transcendence degree over its prime field K_0, neither the description of the components of $\text{Rep}_d(\Lambda)$, nor the generic properties of their modules will be affected; see [16, Section 2.B]. This means that, in developing a generic representation theory for the irreducible components of $\text{Rep}_d(\Lambda)$, one does not lose generality in assuming that $\text{trdeg}(K : K_0) = \infty$.

5.A. Generic modules.

Assume that K has infinite transcendence degree over K_0, and let S be a realizable d-dimensional semisimple sequence. Given that $\Lambda = \Lambda_{\text{trunc}}$, we will denote the coordinatized projective Λ_{trunc}-projective cover $P_{\text{trunc}} = \bigoplus_{1 \leq r \leq t} \Lambda z_r$ of S_0 (cf. Section 2) more simply by P.

Let σ be any skeleton with layering S. Then the following module $G = G(S)$ is generic for $\overline{\text{Rep} S}$ in the strict sense of [1, Definition 4.2]:

$$G = P/C, \quad \text{where} \quad C = \sum_{\text{q critical}} \Lambda \left(q - \sum_{p \in \sigma q} c_{q,p} p \right)$$

for some family $(c_{q,p})_{q \text{ critical}, p \in \sigma q}$ of scalars which is algebraically independent over K_0. That G is generic means that G has all those generic properties of the modules in $\text{Rep} S$ which are invariant under Morita self-equivalences $\Lambda\text{-mod} \to \Lambda\text{-mod}$ induced by automorphisms of K over K_0. Moreover, G is unique relative to this property, up to such a Morita self-equivalence. We refer to [1, Theorem 5.12], and to [1, Section 4] for a more general statement addressing arbitrary path algebras modulo relations.

Filtrations of generic modules: In particular, the preceding comments ensure that tests for semisimple sequences which generically govern filtrations of the modules in $\text{Rep} S$ may be confined to “the” generic module $G = G(S)$.

Caveat: Suppose G is a generic module for an irreducible component of $\text{Rep}_d(\Lambda)$. While the combination of [3,11] and [15] guarantees that the radical layering $S(G)$ is the only realizable semisimple sequence to govern a filtration of G, there will in general be
further, non-realizable, sequences governing suitable filtrations. For instance, let Q be the quiver $4 \leftarrow 1 \alpha \rightarrow 2 \rightarrow 3$ and Λ any truncated path algebra based on Q. If $d = (0, 1, 1, 1)$, then $\text{Rep}_d(\Lambda)$ is irreducible with generic module $G = \Lambda \alpha \oplus S_d$ for any truncation Λ of KQ. In particular, $S(G) = (S_2 \oplus S_3, S_3)$ is the only realizable semisimple sequence governing all modules with dimension vector d. In case Λ has Loewy length 2, The sequence $(S_2, S_3 \oplus S_1)$ also governs a filtration of G; if the Loewy length of Λ is 3, then (S_2, S_3, S_1) and (S_4, S_2, S_3) are additional (non-realizable) semisimple sequences governing filtrations of G.

5.B. Algorithmic aspect of Corollary 4.4 and Theorem 4.5

5.A tells us that, for any two realizable d-dimensional semisimple sequences S and S', we have

$$\text{Rep} S \subseteq \text{Rep} S' \iff G(S) \in \text{Filt} S'.$$

From Lemma 3.6 we moreover know that $\text{Filt} S'$ is the $\text{GL}(d)$-stable hull of $\Delta_{\text{Rep}}(\geq S')$. Hence, if the point $(G_\alpha)_{\alpha \in Q_1} \in \text{Rep} S$ represents the isomorphism class of $G(S)$, the question of whether $G(S) \in \text{Filt} S'$ boils down to the question of whether the matrices G_α are “simultaneously” similar (i.e., similar by a single element of $\text{GL}(d)$) to matrices having the lower triangular format F_α characterizing the points in $\Delta_{\text{Rep}}(\geq S')$. This format is spelled out in 3.3.

Given that there are only finitely many d-dimensional semisimple sequences to be compared, this means in particular that the decision of whether or not $\text{Rep} S$ is a component of $\text{Rep}_d(\Lambda)$ is algorithmic.

5.C. Interconnections among the components.

The following statement rephrases a result of Crawley-Boevey and Schröer [10, Theorem 1.1] in terms of generic modules: If G is a generic module for an irreducible component C of $\text{Rep}_d(\Lambda)$ and $G = \bigoplus_{1 \leq j \leq s} G_j$ is a decomposition into direct summands, then each G_j is generic for an irreducible component of $\text{Rep}_{\dim G_j}(\Lambda)$. Over a truncated path algebra, this result may be sharpened as follows.

Call a submodule M of N layer-stably embedded in N if $J^lM = M \cap J^lN$ for all $l \leq L$. As a consequence of Theorem 4.5] we obtain:

Theorem 5.1. Suppose that Λ is a truncated path algebra and $\text{Rep} S$ an irreducible component of $\text{Rep}_d(\Lambda)$ with generic module G. If $G' \subseteq G$ is a layer-stably embedded submodule of G with $S(G') = S'$ and $\dim G' = d'$, then $\text{Rep} S'$ is an irreducible component of $\text{Rep}_d(\Lambda)$ with generic module G'.

Proof. Let $H := G'$ be layer-stably embedded in G. From [16, Corollary 3.2] we know that H is generic for $\text{Rep} S' = \text{Rep} S(H)$. Thus only the status of $\text{Rep} S'$ as a potential component of $\text{Rep}_d(\Lambda)$ needs to be addressed.

Assume that $\text{Rep} S'$ fails to be an irreducible component of $\text{Rep}_d(\Lambda)$. In view of Theorem 4.5 this means that H has a filtration governed by some realizable semisimple sequence S'' which is strictly smaller than S', say $H = H_0 \supseteq H_1 \supseteq \cdots \supseteq H_L \supseteq H_{L+1} = 0$; by definition, $S''_j = H_j/H_{j+1}$. We aim at constructing a submodule filtration $G = G_0 \supseteq \cdots \supseteq G_L \supseteq 0$ which, in turn, is governed by a realizable semisimple sequence \hat{S} strictly
Indeed, submodules \(U \subseteq J^i G \) and since
\[\text{dim } H \] entails
\[\dim \mathcal{S}_{m-1} = \dim(G_{m-1}/G_m) < \dim(G_{m-1}/J^m G) = \dim J^{m-1} G/J^m G = \dim \mathcal{S}_{m-1}. \]
This yields \(\hat{\mathcal{S}} \leq \mathcal{S}. \)

It remains to be verified that \(\hat{\mathcal{S}} \) is realizable. To do so, we make repeated use of Criterion
\[\dim J^i G/J^{i+1} G \leq (\dim J^{i-1} G/J^i G) \cdot B \]
for \(1 \leq l \leq L. \) Therefore \(\dim G_l/G_{l+1} \leq (\dim G_{l-1}/G_l) \cdot B \) for \(1 \leq l \leq m - 2. \)
Invoking (5.1), we find that, for \(1 \leq l \leq L, \)
\[G_l/J^{l+1} G = (H_l + J^{l+1} G)/J^{l+1} G \oplus (U_l/J^{l+1} G) \quad \text{and} \]
\[G_{l+1}/J^{l+1} G = (H_{l+1} + J^{l+1} G)/J^{l+1} G, \]
where the sum in the first equation is direct because \(H_l \cap U_l \subseteq H \cap J^l G = J^l H \) implies \(H_l \cap U_l = J^l H \cap U_l \subseteq J^{l+1} G. \) We also have \((H_l + J^{l+1} G)/(H_l + J^{l+1} G) \approx H_l/H_{l+1} \), since layer-stability of \(H \) in \(G \) guarantees that \(H_l \cap J^{l+1} G \subseteq J^{l+1} H \subseteq H_{l+1}. \) Consequently,
\[G_l/G_{l+1} \approx (H_l/H_{l+1}) \oplus (U_l/J^{l+1} G), \quad \text{for } 1 \leq l \leq L. \]
Since \(U_l \subseteq JU_{l-1}, \) we moreover obtain
\[\dim U_l/J^{l+1} G \leq \dim JU_{l-1}/J(J^l G) \leq (\dim U_{l-1}/J^l G) \cdot B, \quad \text{for } 1 \leq l \leq L. \]
Combining (5.3) with (5.3) and (5.4) yields \(\dim G_l/G_{l+1} \leq (\dim G_{l-1}/G_l) \cdot B \) for \(1 \leq l \leq L, \) which shows that \(\hat{\mathcal{S}} \) is realizable as required. \(\square \)
The following examples demonstrate: (a) that the conclusion of 5.1 does not extend to arbitrary top-stably embedded submodules G' of G, i.e., to submodules G' satisfying only $JG' = G' \cap JG$, and (b) that 5.1 has no analogue for nontruncated Λ in general.

Examples 5.2. Demonstrating the sharpness of 5.1. Consider the quivers

$$Q_1: \begin{array}{cccccc}
1 & \rightarrow & 2 & \rightarrow & 3 & \rightarrow & 4 & \rightarrow & 5 \\
\uparrow & \downarrow \\
3 & \downarrow & 4 & \downarrow & 2 & \downarrow & 1
\end{array} \quad Q_2: \begin{array}{cccc}
4 & \delta & \rightarrow & 1 \\
2 & \beta & \rightarrow & 3
\end{array}$$

(a) Let Λ be the truncated path algebra of Loewy length 3 based on the quiver Q_1. For $d = (1, 1, 1, 1, 0)$, the variety $\text{Rep}_d(\Lambda)$ has two irreducible components, with generic radical layerings $S^{(1)} := (S_1 \oplus S_5, S_3 \oplus S_4, S_2)$ and $S^{(2)} := (S_1 \oplus S_5, S_2 \oplus S_4, S_3)$ and generic modules G_1 and G_2 as graphed below:

$$
\begin{array}{ccc}
1 & 5 \\
\downarrow & \downarrow \\
3 & 4 & 2
\end{array} \quad \begin{array}{ccc}
1 & 5 \\
\downarrow & \downarrow \\
2 & 3 & 4
\end{array}
$$

Certainly, the top-stably embedded submodule G' of G_1 generated by any element $z = e_1 z \in G_1$ has dimension vector $d' := (1, 1, 1, 1, 0)$. On the other hand, the sequence $S(G') = (S_1, S_2 \oplus S_3, 0)$ fails to be the generic radical layering of an irreducible component of $\text{Rep}_d(\Lambda)$, the latter variety being irreducible with uniserial generic modules.

(b) Now let $\Lambda = KQ_2/\langle \beta \delta \rangle$ and $d := (1, 1, 1, 1)$. Then, again, $\text{Rep}_d(\Lambda)$ consists of two irreducible components. Their generic modules are graphed below:

$$
\begin{array}{ccc}
1 & 4 \\
\downarrow & \downarrow \\
3 & 2
\end{array} \quad \begin{array}{ccc}
1 & 4 \\
\downarrow & \downarrow \\
2 & \oplus & 3
\end{array}
$$

The submodule G' of G_1 generated by any element $z = e_1 z \in G_1$ has dimension vector $d' := (1, 1, 1, 1, 0)$ and is layer-stably embedded in G_1 this time. Nonetheless, $\text{Rep}_d S(G')$ fails to be an irreducible component of $\text{Rep}_{d'}(\Lambda)$. Indeed, once again, $\text{Rep}_{d'}(\Lambda)$ is irreducible and its generic modules are uniserial. □

6. Examples illustrating the theory. The interplay $\text{Rep}_d(\Lambda) \leftrightarrow \text{Rep}_d(\Lambda_{\text{trunc}})$

6.A. Illustrations of the truncated case.

In this subsection, Λ denotes a truncated path algebra.

In sifting the radical layerings of the components of $\text{Rep}_d(\Lambda)$ out of the set $\text{Seq}(d)$, it is computationally advantageous to supplement Γ_\bullet by the map Θ of equation (1.1) in Section 4 or by the upgraded map Θ^+ to be introduced next.

Example 4.8 in [14] shows that Θ fails to detect all irreducible components in the general truncated case. However, in that instance (as in many others), supplementing
\(\Theta\) by path ranks compensates for the blind spots of \(\Theta\). Here the path rank of a finite dimensional \(\Lambda\)-module \(M\) is the tuple \((\dim pM)_p \in \mathbb{Z}^r\), where \(r\) is the set of paths in \(KQ \setminus I\). Set \(f(M) = (-\dim pM)_p\), and let \(f^*(M)\) be the negative of the path rank of the right \(\Lambda\)-module \(D(M)\). Clearly, the map

\[\Theta^+: \text{Rep}_d(\Lambda) \to \text{Seq}(d) \times \text{Seq}(d) \times \mathbb{Z}^r \times \mathbb{Z}^r, \quad x \mapsto (S(M_x), S^*(M_x), f(M_x), f^*(M_x))\]

is in turn upper semicontinuous. Therefore, it is generically constant on the varieties \(\text{Rep}S\). In particular, those closures \(\text{Rep}\overline{S}\) on which \(\Theta^+\) attains its minimal values (relative to the componentwise partial order on the codomain) are components of \(\text{Rep}_d(\Lambda)\).

Yet, part (c) of the next example attests to the fact that the augmented upper semicontinuous map \(\Theta^+\) still leaves certain components undetected in general. We use \(\Gamma_\bullet\) to fill in what \(\Theta^+\) fails to pick up.

Example 6.1. Let \(\Lambda\) be the truncated path algebra of Loewy length 4 based on the quiver \(Q\) of Example 2.3 and take \(d = (2, 2)\). The semisimple sequences which are in the running as potential generic radical layerings of components of \(\text{Rep}_d(\Lambda)\) are:

\[S^{(1)} = (S_1, S_2, S_1, S_2), \quad S^{(2)} = (S_2, S_1, S_2, S_1), \quad S^{(3)} = (S_1, S_2^2, S_1, 0), \quad S^{(4)} = (S_2, S_1^2, S_2, 0), \]

\[S^{(5)} = (S_1^2, S_2^2, 0, 0), \quad S^{(6)} = (S_2^2, S_1^2, 0, 0), \quad S^{(7)} = (S_1 \oplus S_2, S_1 \oplus S_2, 0, 0), \]

\[S^{(8)} = (S_1 \oplus S_2, S_1, S_2, 0), \quad \text{and} \quad S^{(9)} = (S_1 \oplus S_2, S_2, S_1, 0).\]

The list excludes the sequences which are not realizable for any choice of \(r\) and \(s\), such as \((S_1, S_1 \oplus S_2, S_2, 0)\) and \((S_1, S_2, S_1 \oplus S_2, 0)\), as well as the radical layering \(S^{(0)}\) of the semisimple module, given that \(\text{Rep}S^{(0)}\) is contained in all nonempty varieties \(\text{Rep}\overline{S}\). Except for \(S^{(3)}\) and \(S^{(4)}\), all sequences on the list are realizable for arbitrary positive integers \(r, s\).

Theorem 4.5 allows us to discard \(S^{(j)}\) for \(j = 7, 8, 9\) from the list of possible generic radical layerings of irreducible components: Indeed, the modules in \(\text{Rep}S^{(7)}\) are generically decomposable, which makes it evident that they have filtrations governed by both \(S^{(1)}\) and \(S^{(2)}\). Any generic module \(G_8\) for \(\text{Rep}S^{(8)}\) has hypergraph

\[
\begin{array}{c}
1 \\
\vdots \\
\alpha_r \cdots \alpha_1 \\
\beta_1 \mid \cdots \mid \beta_s \\
2
\end{array}
\]

Clearly, \(G_8\) is generated by elements \(z_1 = e_1z_1\) and \(z_2 = e_2z_2\), and the following submodule chain is governed by \(S^{(1)}\):

\[G_8 \supseteq \Lambda z_2 \supseteq \Lambda \beta_1 z_2 \supseteq \Lambda \alpha_1 \beta_1 z_2 \supseteq 0.\]

Consequently, \(\text{Rep}S^{(8)} \subseteq \text{Filt} S^{(1)}\) by 4.4. An analogous argument shows \(\text{Rep}S^{(9)} \subseteq \text{Filt} S^{(2)}\).

On the other hand, \(\mathcal{C}_j := \text{Rep}S^{(j)}\) for \(j = 1, 2\) are components of \(\text{Rep}_d(\Lambda)\) for all choices of \(r, s \geq 1\) by Theorem 4.5 since \(\Gamma(U) = 1\) for any uniserial module \(U\). Hence
only the sequences $S^{(j)}$ for $3 \leq j \leq 6$ require discussion by cases. We consider only the cases when $r \geq s$, due to the symmetry of the quiver Q.

(a) Let $r = s = 1$. Then $\text{Rep}_d(\Lambda)$ has precisely two irreducible components, namely $\mathcal{C}_j = \text{Rep} S^{(j)}$ for $j = 1, 2$. We rule out the remaining sequences. First, $S^{(3)}$ and $S^{(4)}$ fail to be realizable when $r = s = 1$. Generically, the modules in $\text{Rep} S^{(5)}$ are direct sums of two uniserials with radical layering $(S_1, S_2, 0, 0)$, and such a module has a filtration governed by $S^{(1)}$. Thus, $\text{Rep} S^{(5)} \subseteq \text{Filt} S^{(1)} = \mathcal{C}_1$. Similarly, $\text{Rep} S^{(6)} \subseteq \mathcal{C}_2$.

(b) Let $r = 2$, $s = 1$. Then $\text{Rep}_d(\Lambda)$ again has precisely two irreducible components, \mathcal{C}_1 and \mathcal{C}_2. Concerning $S^{(3)}$: A generic module G_3 for $\text{Rep} S^{(3)}$ has a hypergraph of the form

\[
\begin{array}{ccc}
\alpha_1 & 1 & \alpha_2 \\
2 & & 2 \\
\beta_1 & 1 & \beta_1
\end{array}
\]

In particular, the socle of $G_3 = \Lambda z$ contains a copy of S_2, namely $\Lambda(\alpha_1 - k\alpha_2)z$ for a suitable scalar $k \in K^*$. We deduce that the submodule chain

$G_3 \supseteq JG_3 \supseteq \Lambda(\alpha_1 - k\alpha_2)z + \Lambda\beta_1\alpha_1z \supseteq \Lambda(\alpha_1 - k\alpha_2)z \supseteq 0$

is governed by $S^{(1)}$, showing $\text{Rep} S^{(3)} \subseteq \text{Filt} S^{(1)} = \mathcal{C}_1$. (On the side, we mention that $\text{Rep} S^{(3)}$ is not contained in \mathcal{C}_2 because the sequences $S^{(2)}$ and $S^{(3)}$ are not comparable under the dominance order.)

The sequence $S^{(4)}$ fails to be realizable for $s = 1$. As for $S^{(5)}$: Generically the modules in $\text{Rep} S^{(5)}$ decompose in the form shown at the end of (2.5a), whence $\text{Rep} S^{(5)} \subseteq \mathcal{C}_1$. (Clearly, $\text{Rep} S^{(5)} \not\subseteq \mathcal{C}_2$, because $S^{(5)}$ is not comparable to $S^{(2)}$.) A routine check shows that $\text{Rep} S^{(6)}$ is contained in \mathcal{C}_2, but not in \mathcal{C}_1.

(c) Let $r \geq 3$, $s = 1$. Then the variety $\text{Rep}_d(\Lambda)$ has three irreducible components, namely $\mathcal{C}_j = \text{Rep} S^{(j)}$, for $j = 1, 2, 5$. The status of \mathcal{C}_1, \mathcal{C}_2 being clear, we focus on the variety $\text{Rep} S^{(5)}$ with generic module G_5 as depicted at the end of (2.5b). Again, we prove our claim regarding G_5 via Theorem 4.3. To see that $S^{(5)} = S(G_5)$ is the only realizable semisimple sequence governing a filtration of G_5, we note that the only other realizable sequence not ruled out by Θ (i.e., with a Θ-value $< \Theta(G_5)$) is $S^{(1)}$. To verify, without computational effort, that $S^{(1)}$ does not govern any filtration of G_5, it suffices to observe that, for any module N in $\text{Filt} S^{(1)}$, we have $S_1 \not\subseteq N/\Lambda x$ for some $x \in e_2N$. On the other hand, it is readily checked that $S_1 \not\subseteq G_5/\Lambda x$ for all elements $x \in e_2G_5$, which shows $\Gamma(G_5) = 1$ as required. To link up with the remarks preceding 6.1, finally, we point out that $\Theta^+(G_1) < \Theta^+(G_5)$, whence the Θ^+-test fails to detect the status of $\text{Rep} S^{(5)}$ as an irreducible component of $\text{Rep}_d(\Lambda)$.

To see that $S^{(j)}$ for $j = 3, 4, 6$ do not arise as generic radical layerings of irreducible components of $\text{Rep}_d(\Lambda)$, one may follow the patterns of part (b).

(d) Moving to $r \geq 3$ and $s = 2$ raises the number of irreducible components of $\text{Rep}_d(\Lambda)$ to 5. We first show that $\text{Rep} S^{(3)}$ is now a component. Generically, the modules in
\[\text{Rep S}^{(3)} \] have hypergraph

\[
\begin{array}{c}
\alpha_1 & \alpha_2 & \alpha_3 & \ldots & \alpha_r \\
\alpha_1 & \alpha_2 & \alpha_3 & \ldots & \alpha_r \\
\beta_1 & \beta_2 & \beta_3 & \ldots & \beta_s \\
\beta_1 & \beta_2 & \beta_3 & \ldots & \beta_s \\
\end{array}
\]

Again, the only \(\text{Rep S}^{(j)} \) (for \(j \leq 6 \)) potentially containing \(\text{Rep S}^{(3)} \) is \(\text{Rep S}^{(1)} = \text{Filt S}^{(1)} \). Since the modules in \(\text{Filt S}^{(1)} \) clearly contain a copy of \(S_2 \) in their socle, while \(G_3 \) does not, this possibility is ruled out, and our claim is justified.

The discussion of \(\text{Rep S}^{(4)} \) is analogous, in that the only \(\text{Rep S}^{(j)} \) (for \(j \leq 6 \)) potentially containing \(\text{Rep S}^{(4)} \) is \(\text{Rep S}^{(2)} = \text{Filt S}^{(2)} \), and the modules in \(\text{Filt S}^{(2)} \) contain a copy of \(S_1 \) in their socle, while a generic module for \(\text{Rep S}^{(4)} \) does not.

As in part (c), one shows that \(\text{Rep S}^{(6)} \) is a component of \(\text{Rep d}(\Lambda) \). On the other hand, \(\text{Rep S}^{(6)} \) still fails to be a component; the argument used in part (b) (in that case, to exclude \(\text{Rep S}^{(5)} \) from the list of components for \(r = 2 \)) may now be applied to \(s = 2 \).

(e) Finally, let \(r \geq 3 \) and \(s \geq 3 \). Then all of the varieties \(\text{Rep S}^{(j)} \) for \(j = 1, \ldots, 6 \) are irreducible components of \(\text{Rep d}(\Lambda) \). The argument backing the status of \(S^{(6)} \) follows the reasoning we used to confirm \(\text{Rep S}^{(5)} \) as a component of \(\text{Rep d}(\Lambda) \) in part (c). For \(r = s = 3 \), hypergraphs of generic modules for the components \(\text{Rep S}^{(j)}, j = 1, 3, 5 \), are shown below. Due to symmetry, the generic structure of the modules in the remaining components is obtained by swapping the roles played by the vertices 1 and 2.

Consequences of the “truncated” theory, exemplified by [6.1].

(1) Allocation of modules to the components. Once the irreducible components \(\text{Rep S}^{(j)} \) of \(\text{Rep d}(\Lambda) \) have been pinned down, by way of Theorem 4.5 say, one is in a position to list the components containing any given \(d \)-dimensional \(\Lambda \)-module \(M \). Indeed,
compiling this list amounts to deciding which of the $S^{(j)}$ govern filtrations of M; as was pointed out in Section 5.B, there is an algorithm for carrying out this task.

In Example 6.1 with $r = 3$ and $s \geq 1$, for instance, any module M with hypergraph

```
1 -- α1 \(\alpha_1\) 1
\(\alpha_2\) \(α_2\)
\(\alpha_3\) \(α_3\)
2 \(\alpha_2\)

```

belongs to the components $C_1 = \text{Filt}_S(1)$ and $C_5 = \text{Filt}_S(5)$, but does not have a filtration governed by $S^{(j)}$ for $j \in \{2, 3, 4, 6\}$. Therefore, M belongs to precisely two of the irreducible components of $\text{Rep}_d(\Lambda)$, namely to C_1 and C_5.

(2) Comparing the generic behavior of the finite dimensional Λ-modules to that of the finite dimensional KQ-modules. Examples 6.1(a–e) place a spotlight on the fact that, in the presence of oriented cycles, the generic representation theory of the path algebra KQ may be “disjoint” from that of its truncations in the following sense: For $r, s \geq 1$, we have $J(KQ) = 0$, and for $d = (2, 2)$ the modules in the irreducible variety $\text{Rep}_d(KQ)$ are generically simple. Since generically the latter modules are not annihilated by any path in KQ, we find the variety $\text{Rep}_d(KQ/(\text{the paths of length 4}))$ to be contained in the boundary of a dense open subset of $\text{Rep}_d(KQ)$.

6.B. Information on the components of $\text{Rep}_d(\Lambda)$ from those of $\text{Rep}_d(\Lambda_{\text{trunc}})$.

We conclude with a first installment of observations on how to pull information about the components of $\text{Rep}_d(\Lambda)$ from knowledge of the components of $\text{Rep}_d(\Lambda_{\text{trunc}})$. Suppose that the distinct irreducible components of $\text{Rep}_d(\Lambda_{\text{trunc}})$ are

$$\overline{\text{Rep}}_{\text{Atrunc}} S^{(1)} = \text{Filt}_{\text{Atrunc}} (S^{(1)}), \ldots, \overline{\text{Rep}}_{\text{Atrunc}} S^{(m)} = \text{Filt}_{\text{Atrunc}} (S^{(m)}).$$

Moreover, suppose that C is an irreducible component of some $\text{Rep}_d S$ with generic module G (recall that, for any Λ, these components and their generic modules may be algorithmically accessed from quiver and relations of Λ). To compare with $\text{Rep}_d(\Lambda_{\text{trunc}})$, one first determines which among the $S^{(j)}$ govern a filtration of G. Suppose the pertinent sequences are $S^{(1)}, \ldots, S^{(r)}$, that is, $C \subseteq \text{Filt}_\Lambda S^{(j)}$ precisely when $j \leq r$.

Observation 6.2. The closure \overline{C} is an irreducible component of $\text{Rep}_d(\Lambda)$ if and only if \overline{C} is maximal irreducible in $\text{Filt}_\Lambda S^{(j)}$ for all $j \leq r$.

Proof. The claim is immediate from the fact that every irreducible subvariety D of $\text{Rep}_d(\Lambda)$ which contains \overline{C} is contained in one of the intersections

$$\text{Rep}_d(\Lambda) \cap \text{Filt}_{\text{Atrunc}} S^{(j)} = \text{Filt}_\Lambda S^{(j)}.$$

This leads to a lower bound for the number of irreducible components of $\text{Rep}_d(\Lambda)$. Computing it in specific instances typically requires a non-negligible effort, as it is not simply based on the number of components of $\text{Rep}_d(\Lambda_{\text{trunc}})$. The bound is sharp in general. Indeed, if Δ denotes the algebra of 6.1(e) and $\Lambda = \Delta/\langle \beta_i \alpha_j \beta_k | i, j, k \in \{1, 2, 3\} \rangle$, then $\Delta = \Lambda_{\text{trunc}}$ and the number of irreducible components of $\text{Rep}_d(\Lambda)$ coincides with the lower bound given below.
Corollary 6.3. Again, let d be a dimension vector of a basic K-algebra Λ, and adopt the above notation for the irreducible components of $\text{Rep}_d(\Lambda_{\text{trunc}})$. Moreover, set

$$A_j := \text{Rep}_d(\Lambda_{\text{trunc}}) \setminus \bigcup_{i \leq m, i \neq j} \text{Filt}_{\Lambda_{\text{trunc}}} S^{(i)}$$

for $j \leq m$.

Then the number of irreducible components of $\text{Rep}_d(\Lambda)$ is bounded from below by the number of A_j which have nonempty intersection with $\text{Rep}_d(\Lambda)$.

Proof. Suppose A_1, \ldots, A_s are the A_j which intersect $\text{Rep}_d(\Lambda)$ nontrivially, and let U_j be an irreducible subvariety of $A_j \cap \text{Rep}_d(\Lambda)$ for $j \leq s$. Among the $\text{Filt}_{\Lambda_{\text{trunc}}} S^{(i)}$, the variety $\text{Filt}_S S^{(j)}$ is then the only one to contain U_j. Consequently, any maximal irreducible subset D_j of $\text{Rep}_d(\Lambda)$ containing U_j is an irreducible component of $\text{Rep}_d(\Lambda)$ by the preceding observation. By construction, the resulting D_j are pairwise different. □

References

[1] E. Babson, B. Huisgen-Zimmermann, and R. Thomas, Generic representation theory of quivers with relations, J. Algebra 322 (2009), 1877–1918.
[2] M. Barot and J. Schröer, Module varieties over canonical algebras, J. Algebra 246 (2001), 175–192.
[3] F. Bleher, T. Chinburg and B. Huisgen-Zimmermann, The geometry of algebras with vanishing radical square, J. Algebra 425 (2015), 146–178.
[4] K. Bongartz and B. Huisgen-Zimmermann, Varieties of uniserial representations IV. Kinship to geometric quotients, Trans. Amer. Math. Soc. 353 (2001), 2091–2113.
[5] A. T. Carroll and J. Weyman, Semi-invariants for gentle algebras, Contemp. Math. 592 (2013), 111–136.
[6] W. Crawley-Boevey and J. Schröer, Irreducible components of varieties of modules, J. reine angew. Math. 553 (2002), 201–220.
[7] H. Derksen, B. Huisgen-Zimmermann, and J. Weyman, Top-stable degenerations of finite dimensional representations II, Advances Math. 259 (2014), 730–765.
[8] J. Donald and F. J. Flanigan, The geometry of $\text{Rep}(A,V)$ for a square-zero algebra, Notices Amer. Math. Soc. 24 (1977), A-416.
[9] P. Gabriel, Finite representation type is open, in Representations of Algebras (Ottawa 1974) (V. Dlab and P. Gabriel, Eds.), Lecture Notes in Math. 488, Springer, Berlin (1975), pp. 132–155.
[10] Ch. Geiss and J. Schröer, Varieties of modules over tubular algebras, Colloq. Math. 95 (2003), 163–183.
[11], Extension-orthogonal components of preprojective varieties, Trans. Amer. Math. Soc. 357 (2004), 1953–1962.
[12] B. Huisgen-Zimmermann, Classifying representations by way of Grassmannians, Trans. Amer. Math. Soc. 359 (2007), 2687–2719.
[13], A hierarchy of parametrizing varieties for representations, in Rings, Modules and Representations (N.V. Dung, et al., eds.), Contemp. Math. 480 (2009), 207–239.
[14], Irreducible components of varieties of representations. The local case, J. Algebra 464 (2016), 198–225.
[15] B. Huisgen-Zimmermann and K.R. Goodearl, Irreducible components of module varieties: projective equations and rationality, Contemp. Math. 562 (2012), 141–167.
[16] B. Huisgen-Zimmermann and I. Shipman, Irreducible components of varieties of representations. The acyclic case, Math. Zeitschr. 287 (2017), 1083–1107.
[17] V. Kac, Infinite root systems, representations of graphs and invariant theory, Invent. Math. 56 (1980), 57–92.
[18], Infinite root systems, representations of graphs and invariant theory, II, J. Algebra 78 (1982), 141–162.
[19] K. Morrison, *The scheme of finite-dimensional representations of an algebra*, Pacific J. Math. 91 (1980), 199–218.

[20] C. Riedtmann, M. Rutscho, and S. O. Smalø, *Irreducible components of module varieties: An example*, J. Algebra 331 (2011), 130–144.

[21] A. Schofield, *General representations of quivers*, Proc. London Math. Soc. (3) 65 (1992), 46–64.

[22] J. Schröer, *Varieties of pairs of nilpotent matrices annihilating each other*, Comment. Math. Helv. 79 (2004), 396–426.

[23] I. Shipman, personal communication, 2016.

[24] R. Steinberg, *Conjugacy classes in algebraic groups*, Lecture Notes in Math. 366, Springer, Berlin (1974).

Department of Mathematics, University of California, Santa Barbara, CA 93106, U.S.A.

E-mail address: goodearl@math.ucsb.edu

Department of Mathematics, University of California, Santa Barbara, CA 93106, U.S.A.

E-mail address: birge@math.ucsb.edu