JACQUET FUNCTOR AND DE CONCINI-PROCESI
COMPACTIFICATION

NORIYUKI ABE AND YOICHI MIEDA

Abstract. We give a geometric realization of the Jacquet functor using a
deformation of De Concini-Procesi compactification.

1. Introduction

The symmetric variety is used from a long time ago, when representations of a
real reductive group are studied by the analytic way. On the other hand, when
they are studied by the algebraic way, due to the localization theorem of Beilinson-
Bernstein [BB81], the flag variety is often used. However, the geometry of the
symmetric space is richer than that of the flag variety. For example, the symmetric
space has a boundary and one can take a “limit” to this boundary (cf. [KKM+78]).

Fortunately, the localization theorem gives a way to realize representations as
geometric objects on the symmetric variety G/K, where G (resp. K) is the com-
plexification of a real reductive group $G_\mathbb{R}$ (resp. a maximal compact subgroup $K_\mathbb{R}$
of $G_\mathbb{R}$). However, as far as the authors know, little is studied by such a way. In this
paper, we use the symmetric variety and try to take a “limit” of such a geometric
object. The limit should become the Jacquet module [Cas80] since the Jacquet
module describes the asymptotic behavior of matrix coefficients [HS83]. In the
p-adic case, similar results can be found in a work of Schneider-Stuhler [SS97]. They
realize the Jacquet module on the boundary of the Borel-Serre compactification
of the Bruhat-Tits building. The vertices of the Bruhat-Tits building for a p-adic
semisimple group G are in bijection with a union of sets of the form G/K, where
K is a maximal compact subgroup of G. So it can be regarded as an analogue of
the symmetric variety. In this paper, we realize the Jacquet module by taking a
limit on the symmetric space. Notice that, if you use the flag variety instead of
the symmetric space, a realization of the Jacquet module has already been given
by Emerton-Nadler-Vilonen [ENV04].

We state our main results. Assume that $G_\mathbb{R}$ is of adjoint type. Let $G_\mathbb{R} =
K_\mathbb{R}A_\mathbb{R}N_\mathbb{R}$ be an Iwasawa decomposition, and $M_\mathbb{R}$ the centralizer of $A_\mathbb{R}$ in $K_\mathbb{R}$. Then
$P_\mathbb{R} = M_\mathbb{R}A_\mathbb{R}N_\mathbb{R}$ is a Langlands decomposition of a minimal parabolic subgroup.
We use lower-case fraktur letters to denote the corresponding Lie algebras and omit
the subscripts “\mathbb{R}” to denote complexifications. Let X be the De Concini-Procesi
compactification of G/K [DCP83]. The G-orbit of X is parameterized by a subset
of Π, where $\Pi \subset \operatorname{Hom}_\mathbb{R}(\mathfrak{a}_\mathbb{R},\mathbb{R})$ is the set of simple restricted roots. Consider the
closures of the codimension 1 orbits $\{Y_\alpha\}_{\alpha \in \Pi}$. Then one can construct the variety
\mathcal{X} over \mathbb{A}^Π by iterating the deformation to the normal cone (see Section 2). The
subvariety $Y_\alpha \subset X$ defines the subvariety $\mathcal{Y}_\alpha \subset \mathcal{X}$. Put $Z = \mathcal{X} \setminus \bigcup_{\alpha \in \Pi} \mathcal{Y}_\alpha$. This

2010 Mathematics Subject Classification. 22E46, 14F05.
is the variety which we will use. An important property of this variety is given by
the following proposition. For \(\Theta \subset \Pi \), let \(P_{\Theta, \mathbb{R}} = M_{\Theta, \mathbb{R}} A_{\Theta, \mathbb{R}} N_{\Theta, \mathbb{R}} \) be a parabolic
subgroup of \(G_{\mathbb{R}} \) corresponding to \(\Theta \). Put \(K_{\Theta} = M_{\Theta} \cap K \). Let \(f_{Z} : \mathbb{A}^{1} \to \mathbb{A}^{n} \) be the canonical morphism.

Proposition 1.1 (Lemma \[5.4\] 5.5). For \(\Theta \subset \Pi \), we have \(f_{Z}^{-1}((G_{m})^{\Theta} \times \{0\}^{\Pi \setminus \Theta}) \cong G/K_{\Theta} N_{\Theta} \times (G_{m})^{\Theta} \).

Since \(X \) has many orbits, it is natural to consider the “partial” Jacquet modules.
Let \(\mathcal{H}C_{\Theta, \rho} \) be the category of finitely generated \((g, K_{\Theta} N_{\Theta})\)modules with the same infinitesimal characters as that of the trivial representation. For \(\Theta_{2} \subset \Theta_{1} \subset \Pi \) and \(V \in \mathcal{H}C_{\Theta_{1}, \rho} \), put
\[
J_{\Theta_{2}, \Theta_{1}}(V) = \{ v \in \lim_{\to \mathbb{k}} V/(m_{\Theta_{1}} \cap \mathfrak{n}_{\Theta_{2}})^{k} V \mid n_{\Theta_{2}} v = 0 \text{ for some } l \}
\]
where \(\mathfrak{n}_{\Theta_{2}} \) is the nilradical of the parabolic subalgebra opposite to \(p_{\Theta_{2}} \).
Then we can prove that \(J_{\Theta_{2}, \Theta_{1}}(V) \in \mathcal{H}C_{\Theta_{2}, \rho} \) (Proposition \[3.9\]).

Theorem 1.2. We have the following commutative diagram:

\[
\begin{array}{ccc}
\mathcal{H}C_{\Theta_{1}, \rho} & \xrightarrow{J_{\Theta_{2}, \Theta_{1}}} & \mathcal{H}C_{\Theta_{2}, \rho} \\
\downarrow & & \downarrow \\
\text{Perv}_{B}(G/K_{\Theta_{1}} N_{\Theta_{1}}) & \xrightarrow{\text{Kat}_{\nu}} & \text{Perv}_{B}(G/K_{\Theta_{2}} N_{\Theta_{2}}).
\end{array}
\]

We summarize the contents of this paper. In Section 2, we give preliminaries
on the deformation to the normal cone. The definition and the properties of the
partial Jacquet functor \(J_{\Theta_{2}, \Theta_{1}} \) are given in Section 3. We review the theorem of
Emerton-Nadler-Vilonen in Section 4. We will use their result to prove our theorem.
We finish a proof of the main theorem in Section 5.

ACKNOWLEDGMENT

We thank Syu Kato for giving us the construction when \(G_{\mathbb{R}} = \text{PGL}_{2}(\mathbb{R}) \).

2. Deformation to normal cone

Let \(X \) be a scheme of finite type over \(\mathbb{C} \) and \(Y \) its closed subscheme.
Then we can construct a family \(f : \mathcal{A} \to \mathbb{A}^{1} \), called the deformation to the normal cone,
that satisfies the following:
over \mathbb{G}_m, it is a constant family $X \times \mathbb{G}_m \to \mathbb{G}_m$, and

the fiber $f^{-1}(0)$ at 0 is isomorphic to the normal cone $C_Y(X)$.

Recall that, if we write I for the defining ideal of $Y \subset X$, the normal cone $C_Y(X)$ is the scheme $\text{Spec} \bigoplus_{k=0}^{\infty} T^k/I^{k+1}$ over Y. If X and Y are smooth over \mathbb{C}, $C_Y(X)$ is isomorphic to the normal bundle $T_Y(X)$.

Let us recall briefly its construction. For more detail, see [Ful98, Chapter 5]. Let \mathcal{X} be the blow-up of $X \times \mathbb{A}^1$ along $Y \times \{0\}$. Then, by the universal property of the blow-up, we have a natural morphism $X \times \{0\} \to \mathcal{X}$, which is a closed immersion. We define \mathcal{X} as the complement of its image in \mathcal{X}, and $f : \mathcal{X} \to \mathbb{A}^1$ as the composite of $\mathcal{X} \to \mathcal{X} \to X \times \mathbb{A}^1 \to \mathbb{A}^1$. If X is an affine scheme Spec A, we may describe \mathcal{X} more explicitly as follows. Let I be the defining ideal of $Y \subset X$. Then $\mathcal{X} = \text{Spec} \bigoplus_{n \in \mathbb{Z}} I^{-n}T^n$, where T is an indeterminate such that $A^1 = \text{Spec} \mathbb{C}[T]$. Note that we set $I^n = A$ for a negative integer n, and regard $\bigoplus_{n \in \mathbb{Z}} I^{-n}T^n$ as a subring of the Laurent polynomial ring $A[T^\pm 1]$.

To any subscheme Z of X, we can attach a subscheme \mathcal{Z} of \mathcal{X} such that $\mathcal{Z} \to \mathbb{A}^1$ is the deformation to the normal cone with respect to $Y \cap Z \subset Z$. If Z is open in X, then \mathcal{Z} is simply the inverse image of $Z \times \mathbb{A}^1$ under $\mathcal{X} \to X \times \mathbb{A}^1$. On the other hand, if Z is closed in X, then \mathcal{Z} is the strict transform of $Z \times \mathbb{A}^1 \subset X \times \mathbb{A}^1$ in \mathcal{X}; namely, \mathcal{Z} is the closure of $f^{-1}(Z \times \mathbb{A}_m)$ in \mathcal{X}.

For our purpose, iteration of this construction is important. Now let X be a scheme which is smooth of finite type over \mathbb{C}, Y its effective divisor, and $\bigcup_{i=1}^l Y_i$ the irreducible decomposition of Y. Assume that Y is a strict normal crossing divisor. Namely, for each subset $\Theta \subset \{1, \ldots, l\}$, we assume that $Y_\Theta = \bigcap_{i \in \Theta} Y_i$ is smooth over \mathbb{C}. It is equivalent to saying that $Y \subset X$ is étale locally isomorphic to $(T_1 \cdots T_l = 0) \subset \mathbb{A}^n = \text{Spec} \mathbb{C}[T_1, \ldots, T_n]$ and every irreducible component of Y is smooth over \mathbb{C}. Under this setting, let $\mathcal{X}^{(1)} \to \mathbb{A}^1$ be the deformation to the normal cone with respect to $Y_1 \subset X$. For each i, the closed subscheme Y_i of X induces a closed subscheme $\mathcal{Y}_i^{(1)}$ of $\mathcal{X}^{(1)}$. Next, consider the deformation to the normal cone $\mathcal{X}^{(2)} \to \mathbb{A}^1$ with respect to $\mathcal{Y}_2^{(1)}$ of $\mathcal{X}^{(1)}$ and closed subschemes $\mathcal{Y}_2^{(2)}$. Inductively, we can define a family $\mathcal{X}^{(k)} \to \mathbb{A}^1$ and closed subschemes $\mathcal{Y}_i^{(k)}$ of $\mathcal{X}^{(k)}$. Recall that, by construction, $\mathcal{X}^{(k)}$ is equipped with a natural structure morphism $\mathcal{X}^{(k)} \to \mathcal{X}^{(k-1)} \times \mathbb{A}^1$, where $\mathcal{X}^{(k)} \to \mathbb{A}^1$ is the composite of it with the second projection (here we put $\mathcal{X}^{(0)} = X$). Therefore, we get a natural morphism $\pi_k : \mathcal{X}^{(k)} \to X \times \mathbb{A}^k$ and $f_k = pr_2 \circ \pi : \mathcal{X}^{(k)} \to \mathbb{A}^k$. If $k = l$, we simply write \mathcal{X}, \mathcal{Y}_i, π, f for $\mathcal{X}^{(i)}$, $\mathcal{Y}_i^{(i)}$, π_i, f_i, respectively.

First let us consider étale locally. Assume that $X = \mathbb{A}^n = \text{Spec} \mathbb{C}[S_1, \ldots, S_n]$ and Y_i is given by the equation $S_i = 0$ for each i. Then we have

$\mathcal{X}^{(1)} = \text{Spec} \mathbb{C}[S_{T_1}, S_2, \ldots, S_n, T_1], \quad \mathcal{Y}_i^{(1)} : \frac{S_i}{T_i} = 0$ $(i = 1), \quad S_i = 0$ $(i \geq 2),

\mathcal{X}^{(2)} = \text{Spec} \mathbb{C} \left[\frac{S_1}{T_1}, \frac{S_2}{T_2}, S_3, \ldots, S_n, T_1, T_2 \right], \quad \mathcal{Y}_i^{(2)} : \frac{S_i}{T_i} = 0$ $(i \leq 2), \quad S_i = 0$ $(i \geq 3),

\vdots

\mathcal{X}^{(l)} = \text{Spec} \mathbb{C} \left[\frac{S_1}{T_1}, \ldots, \frac{S_l}{T_l}, S_{l+1}, \ldots, S_n, T_1, \ldots, T_l \right], \quad \mathcal{Y}_i^{(l)} : \frac{S_i}{T_i} = 0.

This computation can be generalized to the case where X is affine:
Lemma 2.1. Assume that X is an affine scheme $\text{Spec} \ A$. Let I_i be the defining ideal of Y_i. Then, we have

$$\mathcal{X} = \text{Spec} \bigoplus_{n \in \mathbb{Z}^l} I^{-n} T^\mathbb{Z},$$

where $I^{-n} = I_1^{-n_1} \cdots I_l^{-n_l}$ and $T^\mathbb{Z} = T_1^{n_1} \cdots T_l^{n_l}$ for $n = (n_1, \ldots, n_l) \in \mathbb{Z}^l$.

Proof. As explained above, we have $\mathcal{X}^{(1)} = \text{Spec} B^{(1)}$ for $B^{(1)} = \bigoplus_{n \in \mathbb{Z}^l} I_1^{-n_1} T_1^{n_1}$. The local calculation tells us that the defining ideal of $\mathcal{X}^{(1)}_2$ is $I_2 B^{(1)}$. Thus we have $\mathcal{X}^{(2)} = \text{Spec} B^{(2)}$ for $B^{(2)} = \bigoplus_{n \in \mathbb{Z}^l} I_2^{-n_2} B^{(1)} T_2^{n_2} = \bigoplus_{n \in \mathbb{Z}^l} I_1^{-n_1} I_2^{-n_2} T_1^{n_1} T_2^{n_2}$. We can proceed similarly to obtain the desired formula.

Remark 2.2. By the lemma above, we know that \mathcal{X} is independent of the labeling of Y_1, \ldots, Y_l.

For each subset Θ of $\{1, \ldots, l\}$, set $\mathcal{X}_\Theta = f^{-1}((\mathbb{G}_m)^\Theta \times \emptyset^\emptyset)$, where $\emptyset^\emptyset = \{1, \ldots, l\} \setminus \Theta$. Recall that we put $Y_\Theta = \bigcap_{i \in \Theta} Y_i$.

Lemma 2.3. We have $\mathcal{X}_\Theta \cong C_{Y_{\emptyset \emptyset}}(X) \times (\mathbb{G}_m)^\Theta$.

Proof. We may assume that X is an affine scheme $\text{Spec} \ A$. Let I_i be the defining ideal of Y_i and put $B = \bigoplus_{n \in \mathbb{Z}^l} I^{-n} T^\mathbb{Z}$. By Lemma 2.1, we have

$$\mathcal{X}_\Theta = \text{Spec} B[T_i^{-1} \mid i \in \Theta]/(T_i \mid i \in \Theta^\emptyset),$$

where $(T_i \mid i \in \Theta^\emptyset)$ is the ideal generated by T_i for $i \in \Theta^\emptyset$. Note that $B[T_i^{-1} \mid i \in \Theta]$ is isomorphic to $(\bigoplus_{n \in \mathbb{Z}^l} I^{-n} T^\mathbb{Z}) \otimes \mathbb{C}[T_i^{-1} \mid i \in \Theta]$. Therefore, by replacing $\{Y_1, \ldots, Y_l\}$ with $\{Y_i \mid i \in \Theta^\emptyset\}$, we may assume that $\Theta = \emptyset$.

Put $J = I_1 + \cdots + I_l$. By the definition, we have

$$\mathcal{X}_\emptyset = \text{Spec} B/(T_1, \ldots, T_l) = \text{Spec} \bigoplus_{n \in \mathbb{Z}^l} (I^n J/I^n) T^{-n} = \text{Spec} \bigoplus_{n \in \mathbb{Z}^l} I^n J/I^n.$$

On the other hand, we have $C_{Y_{\emptyset \emptyset}}(X) = \text{Spec} \bigoplus_{k=0}^\infty J^k/J^{k+1}$. Therefore we have a natural morphism $C_{Y_{\emptyset \emptyset}}(X) \to \mathcal{X}_\emptyset$ by sending $I^n J/I^n$ to J^k/J^{k+1} where $k = n_1 + \cdots + n_l$. By étale local calculation, it is easily seen that this morphism is an isomorphism.

Lemma 2.4. Assume that $X = X' \times \mathbb{A}^l$ and $Y_i = \{(x, (c_i)) \in X \mid c_i = 0\}$.

1. We have an isomorphism $\mathcal{X} \cong X' \times \mathbb{A}^l \times \mathbb{A}^l$ under which $\pi : \mathcal{X} \to X \times \mathbb{A}^l = X' \times \mathbb{A}^l \times \mathbb{A}^l$ is given by $(x, (d_i), (t_i)) \mapsto (x, (d_i t_i), (t_i))$.
2. The projection $\mathcal{X}_\emptyset \cong C_{Y_{\emptyset \emptyset}}(X) \times (\mathbb{G}_m)^\emptyset \to C_{Y_{\emptyset \emptyset}}(X)$ is given by $(x, (d_i), (t_i)) \mapsto (x, (d_i t_i))$.
3. Let G be an algebraic group over \mathbb{C}. Assume that we are given an action of G on X' and characters $\chi_i : G \to \mathbb{G}_m$. These induce an action of G on X by $(x, (c_i)) \mapsto (gx, (\chi_i(g) c_i))$ which preserves Y_i. Then, the induced action on $\mathcal{X} \cong X' \times \mathbb{A}^l \times \mathbb{A}^l$ is given by $(x, (d_i), (t_i)) \mapsto (gx, (\chi_i(g) d_i), (t_i))$.

Proof. (1) Since our construction clearly commutes with a smooth base change, we may assume that $X' = \text{Spec} \mathbb{C}$. Then the local calculation above gives us the desired isomorphism (we have only to take $n = l$).

(2) In the same way as in (1), we may assume that $X' = \text{Spec} \mathbb{C}$ and use the local calculation.
(3) Since $\pi : X \to X \times H^i$ is G-equivariant, for $(x, (d_i), (t_i)) \in X$, we have $\pi(g(x, (d_i), (t_i))) = g(x, (d_i), (t_i)) = (g \cdot x, (\chi_i(g)d_i, (t_i))) = \pi(g \cdot x, (\chi_i(g)d_i), (t_i))$. On the other hand, π is an isomorphism over the open subset $X \times (\mathbb{G}_m)^i \subset X \times H^i$. Therefore, on the dense open subset $\pi^{-1}(X \times (\mathbb{G}_m)^i)$ of X, the action of G is given by $(x, (d_i), (t_i)) \mapsto (g \cdot x, (\chi_i(g)d_i), (t_i))$. Hence it is given by the same formula over the whole X. □

3. THE JACQUET FUNCTORS

In this section, we recall some preliminaries on the Jacquet modules, which are well-known. (For example, some of them are proved in [HS83], [Wal88].) However, we give proofs for the sake of completeness.

Let G_R be a connected reductive linear algebraic group over \mathbb{R}, $G_R = K_R A_R N_R$ an Iwasawa decomposition, and M_R the centralizer of A_R in K_R. Then $P_R = M_R A_R N_R$ is a Langlands decomposition of a minimal parabolic subgroup. We use lower-case fraktur letters to denote the corresponding Lie algebras and omit the subscripts "lower-case fraktur letters to denote the corresponding Lie algebras and omit the

...
Lemma 3.2.

(1) It is easy to see that \(\Gamma_{\theta_1}(V) \in HC_{\Theta_1} \) for \(\mu_1 \in a_{\Theta_1} \).

(2) If \(V \in HC_{\Theta_1}^{G_\Theta} \) then \(V/\pi_\Theta \) \(\in HC_{\Theta_1}^{L_\Theta, \pi} \).

(3) If \(V \in HC_{\Theta_1}^{G_\Theta} \) then \(V/\pi_\Theta \) \(\in HC_{\Theta_1}^{L_\Theta, \pi} \).

(4) For \(V \in HC_{\Theta_1} \) and \(\mu_1 \in a_{\Theta_1}^* \), \(\Gamma_{\mu_1}(V/(m_{\Theta_1} \cap \pi_{\Theta_2})^k V) \) is a Harish-Chandra module of \(L_{\Theta_2, \pi} \).

Proof. (1) It is easy to see that \(\Gamma_{\mu_1}(V) \) is a \((g, K_{\Theta_1}(M_{\Theta_1} \cap N_{\Theta})) \)-module. It is sufficient to prove that \(\Gamma_{\mu_1}(V) \) is a finitely generated \(U(I_{\Theta_1}) \)-module and \(Z(I_{\Theta_1}) \)-finite.

Since \(V \in HC_{\Theta_1} \), \(V \) is generated by a finite-dimensional subspace \(W \) of \(V \). By Lemma 5.3 (3), the action of \(a_{\Theta_1} \) on \(V \) is locally finite. By the definition of \(HC_{\Theta_1} \), the action of \(n_{\Theta_1} \) on \(V \) is locally finite. Hence we may assume that \(W \) is \(n_{\Theta_1} \)-finite.

In particular, \(W \) is \(n_{\Theta_1} \)-stable. Therefore, we have \(V = U(m_{\Theta_1})U(n_{\Theta_1})W \).

From this, we get

\[
\Gamma_{\mu_1}(V) = U(m_{\Theta_1}) \left(\sum_{\mu'_1 \in wt_{\lambda_{\Theta_1}}(W)} \Gamma_{\mu_1-\mu'_1}(U(\pi_{\Theta_1}))\Gamma_{\mu'_1}(W) \right).
\]

Since \(W \) is finite-dimensional, \(wt_{\lambda_{\Theta_1}}(W) \) is finite. For each \(\mu'_1 \), \(\Gamma_{\mu_1-\mu'_1}(U(\pi_{\Theta_1})) \) is finite-dimensional. Therefore, \(\sum_{\mu'_1 \in wt_{\lambda_{\Theta_1}}(W)} \Gamma_{\mu_1-\mu'_1}(U(\pi_{\Theta_1}))\Gamma_{\mu'_1}(W) \) is finite-dimensional. Hence \(\Gamma_{\mu_1}(V) \) is a finitely generated \(U(m_{\Theta_1}) \)-module.

Put \(V_k = \{ v \in V \mid n_{\Theta_1}^k v = 0 \} \). Since \(\Gamma_{\mu_1}(V) \) is finitely generated \(U(m_{\Theta_1}) \)-module, we can take \(n_{\Theta_1} \)-stable subspace \(W' \) such that \(\Gamma_{\mu_1}(V) \subseteq U(m_{\Theta_1})W' \). Since \(W' \) is finite-dimensional, \(W' \subseteq V_k \) for some \(k \in \mathbb{Z}_{\geq 0} \). By Lemma 5.3, \(V_k \) is \(Z(I_{\Theta_1}) \)-finite. Hence \(\Gamma_{\mu_1}(V) \) is \(Z(I_{\Theta_1}) \)-finite.

(2) As above, we can take a finite-dimensional \(n_{\Theta_1} \)-stable submodule \(W \) which generates \(V \) as a \(g \)-module. Then we have \(V = U(\pi_{\Theta_1})U(m_{\Theta_1})W \). Hence we
get a surjective homomorphism $U(m_\Theta)W \to V/\pi_\Theta V$. It is sufficient to prove that $U(m_\Theta)W \in \mathcal{HC}_{\Theta}^{L_{\Theta},a}$. Since W is finite-dimensional, $W \subset \bigoplus_{\mu \in \Lambda} \Gamma_{\mu}(V)$ for a finite subset $\Lambda \subset a_\Theta^\circ$. Each $\Gamma_{\mu}(V)$ is m_Θ-stable. Therefore, $U(m_\Theta)W \subset \bigoplus_{\mu \in \Lambda} \Gamma_{\mu}(V)$.

By (1), $\Gamma_{\mu}(V) \in \mathcal{HC}_{\Theta}^{L_{\Theta},a}$. Hence we have $U(m_\Theta)W \in \mathcal{HC}_{\Theta}^{L_{\Theta},a}$.

(3) Recall that an object of $\mathcal{HC}_{\Theta}^{G_\Theta}$ is a Harish-Chandra module of G_Θ. Hence this is [HS83a Proposition 2.24].

(4) By Lemma 3.1 we have $V = \bigoplus_{\mu_1 \in a_\Theta^\circ} \Gamma_{\mu_1}(V)$. Since m_Θ has an a_Θ°-weight 0, the action of m_Θ preserves each $\Gamma_{\mu_1}(V)$. Therefore, we have $\Gamma_{\mu_1}(V/(m_\Theta \cap \pi_{\Theta_2})^k) = \Gamma_{\mu_1}(V)/(m_\Theta \cap \pi_{\Theta_2})^k \Gamma_{\mu_1}(V)$. By (1), $\Gamma_{\mu_1}(V) \in \mathcal{HC}_{\Theta_1}^{L_{\Theta_1},a}$. Hence we may assume that $\Theta_1 = \Pi$. So we have $m_\Theta \cap \pi_{\Theta_2} = \pi_{\Theta_2}$.

By (2), $V' = V/\pi_\Theta V \in \mathcal{HC}_{\Theta_2}^{L_{\Theta_2},a}$. By (3), $V'' = V'/(m_\Theta \cap \pi_{\Theta_2})V' \in \mathcal{HC}_{\Theta_2}^{L_{\Theta_2},a}$. Since $V'' = V/\pi_{\Theta_2} V$, we get the lemma for $k = 1$.

For a general k, we can prove the lemma by induction on k using an exact sequence $\pi_{\Theta_2} \otimes (V/\pi_{\Theta_2} V) \to V/\pi_{\Theta_2}^{k+1} V \to V/\pi_{\Theta_2} V \to 0$. □

We now prove that the length of an object of \mathcal{HC}_{Θ} is finite.

Lemma 3.3. Assume that a (g, N_Θ)-module V satisfies the following conditions:

1. The module V is $Z(g)$-finite.
2. For all $\mu \in a_\Theta$, $\Gamma_{\mu}(V)$ has a finite length as a m_Θ-module.

Then V has a finite length.

Proof. Let $\varphi: Z(g) \to Z(\mathfrak{a}_\Theta)$ be a homomorphism defined in the proof of Lemma 3.1. Set $J = \varphi(\text{Ann}(Z(g)/Z(\mathfrak{a}_\Theta)))$. Then J has a finite codimension. In particular, there exists a finite subset $\Lambda \subset a_\Theta^\circ$ which gives all maximal ideals of $U(\mathfrak{a}_\Theta)/(J \cap U(\mathfrak{a}_\Theta))$. Let V' be a subquotient of V. Then we have $J(V')^{a_\Theta} = 0$, hence $(V')^{a_\Theta} \subset \bigoplus_{\nu \in \Lambda} \Gamma_{\nu}(V')$. Since V' is a (g, N_Θ)-module, the space $(V')^{a_\Theta}$ is non-zero. Hence the length of the g-module V is less than or equal to the sum of the length of m_Θ-modules $\Gamma_{\mu}(V)$ for $\mu \in \Lambda$. It is finite by the assumption. □

Corollary 3.4. Each object in \mathcal{HC}_{Θ} has a finite length.

Proof. The product of (1) in the previous lemma is satisfied by the definition of \mathcal{HC}_{Θ}. For $V \in \mathcal{HC}_{\Theta}$ and $\mu \in a_\Theta^\circ$, $\Gamma_{\mu}(V)$ is a Harish-Chandra module of $L_{\Theta,\mathbb{R}}$ by Lemma 3.2 (4). (Take $\Theta_1 = \Theta_2 = \Theta$.) Hence it has a finite length. By the previous lemma, we get the corollary. □

For a subset $\Lambda \subset a_\Theta^\circ$, put $\Lambda - Z_{\geq 0} \Pi|_{a_\Theta} = \{\mu - \sum_{\alpha \in \Pi} n_\alpha \alpha|_{a_\Theta} \mid \mu \in \Lambda, n_\alpha \in \mathbb{Z}_{\geq 0}\}$.

Lemma 3.5. For $V \in \mathcal{HC}_{\Theta}$, there exists a finite subset A_2 of $a_{\Theta_2}^\circ$ such that $\text{wt}_{a_{\Theta_2}}(J_{\Theta, \Theta_2}(V)) \subset A_2 - Z_{\geq 0} \Pi|_{a_{\Theta_2}}$.

Proof. Put $c = m_\Theta \cap \pi_{\Theta_2}$. As in the proof of Lemma 3.2, we can take a finite-dimensional $m_\Theta \oplus a_\Theta^\circ$-stable subspace W such that $V = U(g)W$. Put $A_1 = \text{wt}_{a_{\Theta_1}}(W)$. Then this is finite and, since $V = U(m_\Theta)U(\pi_\Theta)W$, $\text{wt}_{a_{\Theta_1}}(V) \subset A_1 - Z_{\geq 0} \Pi|_{a_{\Theta_1}}$. Set $A_2 = \bigcup_{\mu \in \Lambda_1} \text{wt}_{a_{\Theta_2}}(\Gamma_{\mu_1}(V/c(V))) = \{\mu_2 \in \text{wt}_{a_{\Theta_2}}(V/c(V)) \mid \mu_2|_{a_{\Theta_1}} \in \Lambda_1\}$. By Lemma 3.2 (4), $\Gamma_{\mu_1}(V/c(V))$ is a Harish-Chandra module of $L_{\Theta_2,\mathbb{R}}$. In particular, it is $Z(\Theta_0)$-finite. Therefore, it is $U(\mathfrak{a}_\Theta)$-finite since \mathfrak{a}_Θ is a subalgebra of the center of g. Hence $\text{wt}_{a_{\Theta_2}}(\Gamma_{\mu_1}(V/c(V)))$ is finite. This implies that A_2 is finite. We also have $\text{wt}_{a_{\Theta_2}}(V/c(V)) \subset A_2 - Z_{\geq 0} \Pi|_{a_{\Theta_2}}$. □
We prove $\text{wt}(V/c^kV) = \Lambda_2 - Z_{\geq 0} \Pi|_{a_{\Theta_2}}$ by induction on k. Then we get the lemma. From an exact sequence $c \otimes (V/c^kV) \to V/c^{k+1}V \to V/c^kV \to 0$, we have $\text{wt}(V/c^{k+1}V) \subset \text{wt}(c \otimes (V/c^kV)) \cup \text{wt}(V/c^kV) \subset \Lambda_2 - Z_{\geq 0} \Pi|_{a_{\Theta_2}}$ by the inductive hypothesis.

Lemma 3.6. For $V \in \mathcal{HC}_{\Theta}$, we have $J_{\Theta_2, \Theta_1}(V) = \bigoplus_{\mu_2 \in a^*_{\Theta_2}} \Gamma_{\mu_2}(J_{\Theta_2, \Theta_1}(V))$. Therefore, $\Gamma_{\mu_2}(J_{\Theta_2, \Theta_1}(V)) = \Gamma_{\mu_2}(J_{\Theta_2, \Theta_1}(V))$.

Proof. By Lemma 3.5, the right hand side is contained in the left hand side. On the other hand, by Lemma 3.1 (3), we have $J_{\Theta_2, \Theta_1}(V) = \bigoplus_{\mu_2 \in a^*_{\Theta_2}} \Gamma_{\mu_2}(J_{\Theta_2, \Theta_1}(V))$. This is a subspace of the right hand side. □

Notice that $V/(m_{\Theta_1} \cap m_{\Theta_2}) k V \simeq \tilde{J}_{\Theta_2, \Theta_1}(V)/(m_{\Theta_1} \cap m_{\Theta_2}) k \tilde{J}_{\Theta_2, \Theta_1}(V)$ by the definition.

Lemma 3.7. For $\mu_2 \in a^*_{\Theta_2}$, there exists $k \in \mathbb{Z}_{\geq 0}$ such that $\Gamma_{\mu_2}(\tilde{J}_{\Theta_2, \Theta_1}(V)) \to \Gamma_{\mu_2}(V/(m_{\Theta_1} \cap m_{\Theta_2}) k V)$ is an isomorphism.

Proof. Put $c = m_{\Theta_1} \cap m_{\Theta_2}$. Take Λ_2 as in Lemma 3.5. Let $k \in \mathbb{Z}_{\geq 0}$ such that for any $\alpha_1, \ldots, \alpha_k \in \Sigma^+$ we have $\mu_2 \notin (\Lambda_2 - Z_{\geq 0} \Pi|_{a_{\Theta_2}})$, we have $\Gamma_{\mu_2}(\tilde{J}_{\Theta_2, \Theta_1}(V)) = 0$. By the exact sequence $0 \to c^k \tilde{J}_{\Theta_2, \Theta_1}(V) \to \tilde{J}_{\Theta_2, \Theta_1}(V) \to V/c^kV \to 0$, we have $0 = \Gamma_{\mu_2}(c^k \tilde{J}_{\Theta_2, \Theta_1}(V)) \to \Gamma_{\mu_2}(J_{\Theta_2, \Theta_1}(V)) \to \Gamma_{\mu_2}(c^k V) \to 0$. Hence we get the lemma. □

Lemma 3.8. For $V \in \mathcal{HC}_{\Theta}$ and $\mu_2 \in a^*_{\Theta_2}$, $\Gamma_{\mu_2}(J_{\Theta_2, \Theta_1}(V))$ is a Harish-Chandra module for $L_{\Theta_2, \Theta}$.

Proof. This follows from Lemma 3.2, Lemma 3.6, and Lemma 3.1. □

If $\Theta = \Theta_1 = \Pi$, the following proposition is [HS83b] (34) Lemma.

Proposition 3.9. If $V \in \mathcal{HC}_{\Theta}$, then $J_{\Theta_2, \Theta_1}(V) \in \mathcal{HC}_{\Theta_2}$.

Proof. It is sufficient to prove that $J_{\Theta_2, \Theta_1}(V)$ has a finite length. This follows from Lemma 3.3 and the previous lemma. □

Hence J_{Θ_2, Θ_1} defines a functor $\mathcal{HC}_{\Theta} \to \mathcal{HC}_{\Theta_2}$.

Proposition 3.10. For $\Theta_3 \subset \Theta_2 \subset \Theta \subset \Theta_1 \subset \Pi$, we have $J_{\Theta_3, \Theta_2} \circ J_{\Theta_2, \Theta_1} \simeq J_{\Theta_3, \Theta_1} : \mathcal{HC}_{\Theta} \to \mathcal{HC}_{\Theta_3}$.

We use the following lemma.

Lemma 3.11. Let c be a finite-dimensional nilpotent Lie algebra, $c_1, c_2 \subset c$ Lie subalgebras such that:

- c_2 is an ideal of c.
- $c = c_1 \oplus c_2$.

Then for all $k_1, k_2 \in \mathbb{Z}_{\geq 0}$ there exists $n \in \mathbb{Z}_{\geq 0}$ such that $c^n \subset c_{1^{k_1}} U(c) + c_{2^{k_2}} U(c)$.

Proof. Set $V = U(c)/(c_{1^{k_1}} U(c) + c_{2^{k_2}} U(c))$, $v_0 = 1 \in V$. Then V is a right $U(c)$-module, $V = v_0 U(c)$ and $v_0 c_{1^{k_1}} = v_0 c_{2^{k_2}} = 0$. We have $V = v_0 U(c_1) U(c_2)$. Since $v_0 c_{1^{k_1}} = 0$, $v_0 U(c_1)$ is finite-dimensional. By the assumption, c_2 is an ideal of c. Therefore, $v_0 U(c_1) c_{2^{k_2}} = v_0 c_{2^{k_2}} U(c) = 0$. Hence V is finite-dimensional. Since
a finite-dimensional irreducible representation of \mathfrak{c} is a character, V is given by an extension of characters. As $v_0\mathfrak{c}^l = v_0\mathfrak{c}^2 = 0$ and \mathfrak{c} is nilpotent, for every $v \in V$ there exist integers l_1, l_2 such that $v_0^{l_1} = v_0^{l_2} = 0$. This implies that each irreducible subquotient of V is the trivial representation. Hence there exists n such that $v_0\mathfrak{c}^n = 0$. This completes the proof. □

Proof of Proposition 3.10. We prove that for each $\mu \in \mathfrak{a}_{\Theta}^\ast$, the generalized μ-weight spaces of both sides are isomorphic. Put $c_1 = \mathfrak{m}_{\Theta_2} \cap \mathfrak{m}_{\Theta_3} \cap \mathfrak{m}_{\Theta_1}$ and $c = c_1 \oplus c_2$. Then c_1, c_2 satisfies the assumption of the previous lemma and $\mathfrak{c} = \mathfrak{m}_{\Theta_1} \cap \mathfrak{m}_{\Theta_2}$. Put $\mu_2 = \mu_3|_{\mathfrak{m}_{\Theta_2}}$. By Lemma 3.6 and Lemma 3.7 for sufficiently large k_1, k_2, we have

$$\begin{align*}
\Gamma_{\mu_3}((J_{\Theta_3, \Theta_2}(J_{\Theta_2, \Theta_1}(V)))) &= \Gamma_{\mu_3}(J_{\Theta_2, \Theta_1}(V)/\mathfrak{c}^k J_{\Theta_2, \Theta_1}(V)) \\
&= \Gamma_{\mu_3}(J_{\Theta_2, \Theta_1}(V)/\mathfrak{c}^k J_{\Theta_2, \Theta_1}(V)) \\
&= \Gamma_{\mu_3}(\Gamma_{\mu_2}(J_{\Theta_2, \Theta_1}(V))/\mathfrak{c}^k \Gamma_{\mu_2}(J_{\Theta_2, \Theta_1}(V))) \\
&= \Gamma_{\mu_3}(\Gamma_{\mu_2}(V/\mathfrak{c}^k V)/\mathfrak{c}^k \Gamma_{\mu_2}(V/\mathfrak{c}^k V)) \\
&= \Gamma_{\mu_3}(\Gamma_{\mu_2}((V/\mathfrak{c}^k V)/\mathfrak{c}^k \Gamma_{\mu_2}(V/\mathfrak{c}^k V))) \\
&= \Gamma_{\mu_3}(\Gamma_{\mu_2}(V/(\mathfrak{c}^k V + \mathfrak{c}^k V))) \\
&= \Gamma_{\mu_3}(V/(\mathfrak{c}^k V + \mathfrak{c}^k V)).
\end{align*}$$

We also have

$$\Gamma_{\mu_3}(J_{\Theta_3, \Theta_1}(V)) \simeq \Gamma_{\mu_3}(V/\mathfrak{c}^k V)$$

for sufficiently large k. Fix k_1, k_2 and take n as in the previous lemma. We may assume $k \leq k_1, k_2 \leq n$. Consider the following homomorphism:

$$\Gamma_{\mu_3}(V/\mathfrak{c}^n V) \rightarrow \Gamma_{\mu_3}(V/(\mathfrak{c}^k V + \mathfrak{c}^k V)) \rightarrow \Gamma_{\mu_3}(V/\mathfrak{c}^k V).$$

Since $V/\mathfrak{c}^k V$ is decomposed into the generalized $\mathfrak{a}_{\Theta}^\ast$-weight spaces (this follows from the fact that $V/\mathfrak{c}^k V$ is a Harish-Chandra module of $L_{\Theta, \mathfrak{R}}$), the first homomorphism is surjective. If k_1, k_2, n, k is sufficiently large, the composition of this homomorphism is isomorphic by Lemma 3.7. Hence the first homomorphism is injective. We get the proposition. □

Proposition 3.12. The functor $J_{\Theta_2, \Theta_1} : \mathcal{H}_{\Theta} \rightarrow \mathcal{H}_{\Theta_2}$ is independent of Θ_1.

Proof. By the previous proposition, $J_{\Theta_2, \Theta_1} = J_{\Theta_2, \Theta_3} \circ J_{\Theta_3, \Theta_1}$. Hence it is sufficient to prove that $J_{\Theta_3, \Theta_1}(V) \simeq V$ for $V \in \mathcal{H}_{\Theta}$. We compare the μ-weight spaces for each $\mu \in \mathfrak{a}_{\Theta_1}^\ast$. Put $\mathfrak{c} = \mathfrak{m}_{\Theta_1} \cap \mathfrak{m}_{\Theta_2} \cap \mathfrak{m}_{\Theta_3}$. Take a finite subset $\Lambda \subset \mathfrak{a}_{\Theta_1}^\ast$ such that $\mathrm{wt}_{\mathfrak{a}_{\Theta_1}}(V) \subseteq \Lambda - \mathbb{Z}_{\geq 0}\Pi_{\mathfrak{a}_{\Theta_1}}$. Then for a sufficiently large k, for any $\alpha_1, \ldots, \alpha_k \in \Pi$ we have $\mu \notin \Lambda - \mathbb{Z}_{\geq 0}\Pi_{\mathfrak{a}_{\Theta_1}} - (\alpha_1 + \cdots + \alpha_k)$. Hence we have $\mu \notin \mathrm{wt}_{\mathfrak{a}_{\Theta_1}}(\mathfrak{c}^k V)$. This implies $\Gamma_{\mu}(V) \simeq \Gamma_{\mu}(V/\mathfrak{c}^k V)$. On the other hand, the right hand side is isomorphic to $\Gamma_{\mu}(J_{\Theta_3, \Theta_1}(V))$ for a sufficiently large k by Lemma 3.7. We get the proposition. □

Lemma 3.13. Each $V \in \mathcal{H}_{\Theta}$ is finitely generated as a $U(\mathfrak{m})$-module.

Proof. Take a finite-dimensional $\mathfrak{m}_{\Theta} \oplus \mathfrak{a}_{\Theta}$-stable subspace W of V which generates V as a \mathfrak{g}-module. Then $U(\mathfrak{m}_{\Theta})W \subseteq \bigoplus_{\mu \in \Lambda} \Gamma_{\mu}(V)$ for some finite subset $\Lambda \subset \mathfrak{a}_{\Theta}^\ast$. Hence $U(\mathfrak{m}_{\Theta})W$ is a Harish-Chandra module of $L_{\Theta, \mathfrak{R}}$. Therefore, by a theorem of Casselman-Osborne [CO78, 2.3 Theorem], $U(\mathfrak{m}_{\Theta})W$ is finitely generated as a
(\mathfrak{m}_\Theta \cap \Pi)\)-module. Since \(V = U(\mathfrak{m}_\Theta)U(\mathfrak{m}_\Theta)W, \) \(V \) is a finitely generated \(U(\mathfrak{m}_\Theta)U(\mathfrak{m}_\Theta \cap \Pi) = U(\mathfrak{m}_\Theta) \)-module.

Proposition 3.14. The functor \(J_{\Theta_2,\Theta_1} : \mathcal{H}\mathcal{C}_{\Theta_1} \to \mathcal{H}\mathcal{C}_{\Theta_2} \) is exact.

Proof. If \(\Theta_2 = \emptyset \) and \(\Theta_1 = \Pi, \) this proposition is well-known [Wal88, 4.1.5, Theorem]. The key point of the proof is the Artin-Rees property and that \(V \in \mathcal{H}\mathcal{C}_\Pi \) is finitely generated as a \(U(\mathfrak{m}_\Theta) \)-module. Hence the usual proof is applicable for our situation using the above lemma. \(\square \)

4. The geometric Jacquet functor

In this section, we recall an argument of Emerton-Nadler-Vilonen [ENV04]. For \(\Theta \subset \Pi, \) let \(\mathcal{H}\mathcal{C}_{\Theta,\rho} \) be the category of \(V \in \mathcal{H}\mathcal{C}_\Theta \) whose infinitesimal character is the same as that of the trivial representation. Fix a Borel subgroup \(B \) of \(G. \)

Then by the Beilinson-Bernstein correspondence and the Riemann-Hilbert correspondence, we have an equivalence of categories \(\Delta : \mathcal{H}\mathcal{C}_{\Theta,\rho} \cong \text{Perv}_{K_\Theta N_\Theta}(G/B) \) where \(\text{Perv}_{K_\Theta N_\Theta}(G/B) \) is the category of \(K_\Theta N_\Theta \)-equivariant perverse sheaves on \(G/B. \)

Fix a cocharacter \(\nu : \mathbb{G}_m \to A \) such that \(\langle \nu, \alpha \rangle \geq 0 \) for all \(\alpha \in \Pi. \) Define \(a_\nu : G/B \times \mathbb{G}_m \to G/B \) by \((gB, t) \mapsto \nu(t)gB. \) Let \(R^\psi \) be the nearby cycle functor with respect to \(G/B \times \mathbb{A}_1 \to \mathbb{A}_1. \) For \(F \in \text{Perv}(G/B), \) put \(\Psi_\nu(F) = R^\psi a_\nu^* F. \)

Then the main theorem of [ENV04] is the following.

Theorem 4.1 (Emerton-Nadler-Vilonen [ENV04, Theorem 1.1]). Assume that \(\nu \) is regular. We have \(\Delta \circ J_{\emptyset,\Pi} \cong \Psi_\nu \circ \Delta : \mathcal{H}\mathcal{C}_{\Pi,\rho} \to \text{Perv}(G/B). \)

Their argument can be applicable for a general \(\nu. \) Namely, we can prove the following theorem.

Theorem 4.2. Set \(\Theta = \{ \alpha \in \Pi \mid \langle \alpha, \nu \rangle = 0 \}. \) Then we have \(\Delta \circ J_{\Theta,\Pi} \cong \Psi_\nu \circ \Delta : \mathcal{H}\mathcal{C}_{\Theta,\rho} \to \text{Perv}(G/B) \) for all \(\Theta' \subset \Pi \) such that \(\Theta \subset \Theta'. \)

We review the proof. Let \(V \in \mathcal{H}\mathcal{C}_{\Theta,\rho}. \) First we construct a filtration on \(V. \) To construct it, we prove the following lemma.

Lemma 4.3. We have the following.

1. We have \(J_{\emptyset,\Pi}(V) / \mathfrak{m}_{\emptyset}^k J_{\emptyset,\Pi}(V) \cong J_{\emptyset,\Pi}(V) / \mathfrak{m}_{\emptyset}^k J_{\emptyset,\Pi}(V). \)
2. We have \(J_{\emptyset,\Pi}(V) \cong J_{\emptyset,\Pi}(J_{\emptyset,\Pi}(V)). \)
3. We have \(\hat{J}_{\emptyset,\Pi}(V) \cong \prod_{\mu \in \mathfrak{a}_\emptyset^*} \Gamma_{\mu}(J_{\emptyset,\Pi}(V)). \)
4. The homomorphism \(V \to \hat{J}_{\emptyset,\Pi}(V) \) is injective.

Proof. (1) Since both sides are decomposed into generalized \(\mathfrak{a}_\emptyset^* \)-weight spaces, it is sufficient to prove that the \(\mu \)-weight spaces of both sides are isomorphic for every \(\mu \in \mathfrak{a}_\emptyset. \) We have

\[
\Gamma_{\mu}(J_{\emptyset,\Pi}(V)) / \mathfrak{m}_{\emptyset}^k J_{\emptyset,\Pi}(V) \cong \Gamma_{\mu}(J_{\emptyset,\Pi}(V)) / \mathfrak{m}_{\emptyset}^k J_{\emptyset,\Pi}(V).
\]

By Lemma 3.6, we have \(\Gamma_{\mu}(J_{\emptyset,\Pi}(V)) = \Gamma_{\mu}(\hat{J}_{\emptyset,\Pi}(V)). \) We also have

\[
\Gamma_{\mu}(\mathfrak{m}_{\emptyset}^k J_{\emptyset,\Pi}(V)) = \sum_{\mu' + \mu'' = \mu} \Gamma_{\mu'}(\mathfrak{m}_{\emptyset}^k) \Gamma_{\mu''}(J_{\emptyset,\Pi}(V)) = \sum_{\mu' + \mu'' = \mu} \Gamma_{\mu'}(\mathfrak{m}_{\emptyset}^k) \Gamma_{\mu''}(\hat{J}_{\emptyset,\Pi}(V)) = \Gamma_{\mu}(\mathfrak{m}_{\emptyset}^k \hat{J}_{\emptyset,\Pi}(V)).
\]
We get (1).
(2) This follows from (1).
(3) By (2), it is sufficient to prove that for \(V \in \mathcal{H}C_\Theta, \tilde{J}_{\Theta, \Pi}(V) \simeq \prod_{\mu \in n_\Theta} \Gamma(\mu(V)). \) We can use the proof of \([GW80\text{ Lemma 2.2}]\).
(4) The kernel of \(V \to \tilde{J}_{\Theta, \Pi}(V) \) satisfies \(\operatorname{Ker}(m_\Theta \cap \bar{m}_\Theta) \operatorname{Ker} = 0. \) Therefore, it is sufficient to prove that for \(V \in \mathcal{H}C_\Theta \) with \(V \neq 0, \ V/(m_\Theta \cap \bar{m}_\Theta)V \neq 0. \) We prove \(V/\bar{m}V \neq 0. \) Put \(V' = V/n_\Theta V. \) Take a maximal \(a_\Theta \)-weight \(\mu' \) of \(V. \) Then \(\Gamma(\mu'(n_\Theta V)) = 0. \) Hence \(\Gamma(\mu'(V')) = \Gamma(\mu'(V)). \) In particular, \(V' \neq 0. \) By \([GW80\text{ Lemma 2.2}]\) \(V' \) is a Harish-Chandra module of \(L_{\Theta, \mathbb{R}}. \) By Casselman's subrepresentation theorem, we have \(V/\bar{m}V = V'/(m_\Theta \cap \bar{m})V' \neq 0. \)

Using (4), we regard \(V \) as a submodule of \(\tilde{J}_{\Theta, \Pi}(V). \) Let \(dv : \mathbb{C} \to \mathfrak{a} \) be the differential of \(\nu \) and put \(H = dv(1). \) This is an integral dominant element of \(\mathfrak{a}_\Theta. \) In general, for an \(\mathfrak{a}\)-module \(V, \) let \(\Gamma_H(V) \) be the generalized \(H \)-eigenspace of \(V \) with an eigenvalue \(a. \) For \(a, a' \in \mathbb{C}, \) we define \(a \geq a' \) by \(a - a' \in \mathbb{Z}_{\geq 0}. \) For \(V \in \mathcal{H}C_{\Theta, \rho} \) and \(a \in \mathbb{C}, \) define \(F_a(\tilde{J}_{\Theta, \Pi}(V)) \subset \tilde{J}_{\Theta, \Pi}(V) \) and \(F_aV \subset V \) by

\[
F_a(\tilde{J}_{\Theta, \Pi}(V)) = \prod_{a' \leq a} \Gamma_{H, a'}(\tilde{J}_{\Theta, \Pi}(V)), \quad F_aV = V \cap F_a(\tilde{J}_{\Theta, \Pi}(V)).
\]

Let \(\mathcal{D} \) be the ring of differential operators on \(G/B. \) Set \(\mathcal{V}' = \mathcal{D} \otimes_{U(\mathfrak{g})} V, \ \tilde{V} = a_\Theta^* \mathcal{V}' \) and \(\tilde{\mathcal{V}} = \Gamma(G/B \times \mathbb{G}_m, \tilde{\mathcal{V}}) = \mathbb{C}[t, t^{-1}] \otimes V. \) As in \([ENV04]\), we define the filtration \(\mathcal{V}^a(\tilde{\mathcal{V}}) \) on \(\tilde{\mathcal{V}} \) by

\[
\mathcal{V}^a(\tilde{\mathcal{V}}) = \bigoplus_{k \in \mathbb{Z}} t^k F_{a+k}(V).
\]

Lemma 4.4. We have

\[
F_{-a}(V)/F_{-a-1}(V) \xrightarrow{\sim} F_{-a}(\tilde{J}_{\Theta, \Pi}(V))/F_{-a-1}(\tilde{J}_{\Theta, \Pi}(V)) \simeq \bigoplus_{\mu(H) = a} \Gamma_\mu(J_{\Theta, \Pi}(V))
\]

Proof. We prove that the first homomorphism is isomorphic. By the definition of \(F_{-a-1}(V), \) the homomorphism is injective. This homomorphism is surjective by \(\text{Lemma 3.7} \) The second homomorphism is obviously an isomorphism.

From this lemma, if we prove that \(\mathcal{V}^a(\tilde{\mathcal{V}}) \) is a \(V \)-filtration, then by the description of the nearby cycle functor in terms of \(\mathcal{D}\)-modules \([Kas83\text{ (see }ENV04\text{ 3)}] \) and \(\text{Lemma 3.6} \) we have \(\Gamma(G/B, R\tilde{\mathcal{V}}) = J_{\Theta, \Pi}(V). \) Hence Theorem 4.2 is proved.

To prove that this gives a \(V \)-filtration, it is sufficient to prove the following lemma. (See \([ENV04\text{ 4]}]\.) Define a filtration \(F_a(U(\bar{m}_\Theta)) \) by

\[
F_a(U(\bar{m}_\Theta)) = \bigoplus_{a' \leq a} \Gamma_{H, a'}(U(\bar{m}_\Theta)).
\]

Lemma 4.5. For \(a \in \mathbb{C} \) and \(k, l \in \mathbb{Z}, \) the following hold.

1. For a sufficiently large \(k, F_{-a+k}(V) \) is stable.
2. The module \(F_{-a-k}(V)/(F_{-k}(U(\bar{m}_\Theta))F_{-a}(V)) \) is a finitely generated \(U(\bar{m}_\Theta) \)-module.
3. For \(l \geq 0, \) we have \(F_{-a-k-l}(V) = F_{-l}(U(\bar{m}_\Theta))F_{-a-k}(V) \) for a sufficiently large \(k. \)
Proof (1) Take a finite subset $\Lambda \subset \alpha_i$ such that $\text{wt}_{\alpha_i}(\tilde{J}_{\Theta, \Pi}(V)) \subset \Lambda - Z_{\geq 0}\Pi|_{\alpha_i}$. Since H is dominant integral, for all $\mu \in \text{wt}_{\alpha_i}(\tilde{J}_{\Theta, \Pi}(V))$ we have $\mu'(H) - \mu(H) \in Z_{\geq 0}$ for some $\mu' \in \Lambda$. Take k such that $-a + k \geq \max\{\mu'(H) \mid \mu' \in \Lambda\}$. For such k, $F_{-a+k}(V)$ is stable.

(2, 3) We can use the same proof as that of [ENV04, Lemma 2.5].

From this, $V^*(\tilde{V})$ is a V-filtration. Hence we get Theorem 4.2.

5. Symmetric space

Assume that G is of adjoint type. Let ω_α be the fundamental coweight for $\alpha \in \Pi$, namely, it is a cocharacter $\omega_\alpha: \mathbb{G}_m \to G$ which satisfies $\langle \omega_\alpha, \alpha \rangle = 1$ and $\langle \omega_\alpha, \beta \rangle = 0$ for $\beta \in \Pi \setminus \{\alpha\}$. Since G is of adjoint type, it exists. Define $\omega: (\mathbb{G}_m)^\Pi \to A$ by $(t_\alpha)_\alpha \mapsto \prod_{\alpha \in \Pi} \omega_\alpha(t_\alpha)$. Then ω gives an isomorphism.

De Concini and Procesi [DCPS83] constructed the wonderful compactification X of G/K. This compactification satisfies the following conditions. Set $x_0 = K \in G/K$.

(C1) The variety X is irreducible and proper smooth over \mathbb{C}.
(C2) A G-orbit of X is parameterized by a subset of Π. We denote the G-orbit corresponding to $\Theta \subset \Pi$ by X_Θ.
(C3) The G-orbit X_Π is the unique open G-orbit and it is isomorphic to G/K.
(C4) The closure of each orbit is smooth.
(C5) We have an \mathbb{N}-equivariant open embedding $\overline{\mathbb{N}} \times A^\Pi \to X$ such that for all $a = (a_\alpha) \in (\mathbb{G}_m)^\Pi$, an element $\omega(a)t_0$ is the image of $(1, (a_\alpha^{-2})) \in \overline{\mathbb{N}} \times A^\Pi$.

Moreover, the intersection of X_Θ and $\overline{\mathbb{N}} \times A^\Pi$ is given by $\overline{\mathbb{N}} \times (\mathbb{G}_m)^\Theta \times \{0\}^\Pi \setminus \Theta$.

(C6) By the above condition, $\overline{\mathbb{N}} \times A^\Pi$ is regarded as an open subvariety of X.

Then the stabilizer of $(1, (1^\Theta, 0^\Pi \setminus \Theta))$ in G is $K_\Theta A_\Theta N_\Theta$.

Remark 5.1. The parameterization of G-orbits in [DCPS83] is different from ours. In [DCPS83], the open orbit corresponds to Θ.

For each $\alpha \in \Pi$, put $Y_\alpha = \overline{X_{\Pi \setminus \{\alpha\}}}$. By the conditions (C4) and (C5), $\bigcup_{\alpha \in \Pi} Y_\alpha$ is a strict normal crossing divisor. Let $f: \mathcal{X} \to A^\Pi$ be the variety constructed in Section 2 with respect to $\bigcup_{\alpha \in \Pi} Y_\alpha$. Each Y_α defines the subvariety $Y_\alpha \subset \mathcal{X}$. Put $X' = \mathbb{N} \times A^\Pi$ and regard it as an open subvariety of X by the condition (C5). Then X' defines an open subvariety \mathcal{X}' of \mathcal{X}. Since $Y_\alpha \cap X'$ is isomorphic to $\{((\pi, (e_\beta)_{\beta \in \Pi}) \mid e_\alpha = 0\}$, X' is isomorphic to $\overline{\mathbb{N}} \times A^\Pi \times A^\Pi$ by Lemma 2.4 (1).

Put $Z = X \setminus \bigcup_{\alpha \in \Pi} Y_\alpha$ and $Z' = X' \cap Z$. Let $f_Z: Z \to A^\Pi$. Then we have $Z' \simeq \overline{\mathbb{N}} \times (\mathbb{G}_m)^\Pi \times A^\Pi$. Define a section $s: A^\Pi \to Z$ of $f_Z: Z \to A^\Pi$ by $s(t) = (1, 1^\Pi, t) \in \overline{\mathbb{N}} \times (\mathbb{G}_m)^\Pi \times A^\Pi \simeq Z' \subset Z$. For $\Theta \subset \Pi$, set $t_{\Theta} = (1^\Theta, 0^\Pi \setminus \Theta)$ and $x_{\Theta} = s(t_{\Theta})$.

Lemma 5.2. For $(a_\alpha)_\alpha \in (\mathbb{G}_m)^\Pi$, the action of $\omega(a_\alpha) \in A$ on $\mathcal{X}' \simeq \overline{\mathbb{N}} \times A^\Pi \times A^\Pi$ is given by $(\pi, d, t) \mapsto (\text{Ad}(\omega(a_\alpha))\pi, (a_\alpha^{-2})d, t)$.

Proof. This follows from (C5) and Lemma 2.4 (3).□

By Lemma 2.3, we have $X' \simeq T_{x_{\Theta}}(X) \times (\mathbb{G}_m)^\Theta$. For each subvariety $W \subset \mathcal{X}$, put $W_{\Theta} = W \cap X_{\Theta}$.

Lemma 5.3. The open subvariety $Z_{\Theta} \subset X_{\Theta}$ is contained in $T_{x_{\Theta}}(X) \times (\mathbb{G}_m)^\Theta$.□
Proof. By Lemma 2.3 we have \(X_\Theta \simeq T_{X_\Theta}(X) \times (\mathbb{G}_m)^\Theta \) and \((Y_\alpha)_\Theta = T_{Y_\alpha}(Y_\alpha) \times (\mathbb{G}_m)^\Theta \). For \(\alpha \in \Theta \), we have an obvious identity \(T_{X_\Theta}(X)|_{Y_\alpha \cap X_\Theta} = T_{Y_\alpha}(Y_\alpha) \). Thus we have \((X' \setminus \bigcup_{\alpha \in \Theta} Y_\alpha)_\Theta \simeq T_{X_\Theta}(X' \setminus \bigcup_{\alpha \in \Theta} Y_\alpha) \times (\mathbb{G}_m)^\Theta = T_{X_\Theta}(X) \times (\mathbb{G}_m)^\Theta \). Hence \(Z_\Theta \subset X_\Theta \times (\mathbb{G}_m)^\Theta \). \(\Box \)

Lemma 5.4. The stabilizer of \(x_\Theta \) in \(G \) is \(K_\Theta N_\Theta \).

Proof. Consider the morphism \(Z_\Theta \to T_{X_\Theta}(X) \times (\mathbb{G}_m)^\Theta \to T_{X_\Theta}(X) \to X_\Theta \). Let \(y_\Theta \) be the image of \(x_\Theta \). Then \(y_\Theta = (1, (1^\Theta, 0^\Theta)) \in X \times K_\Theta \) by Lemma 2.3. Hence \(Stab_G(x_\Theta) \subset Stab_G(y_\Theta) = K_\Theta A_\Theta N_\Theta \) by (C2).

We prove \(K_\Theta N_\Theta \subset Stab_G(x_\Theta) \). By Lemma 2.3 we have \(X_\Theta \simeq X \times (\mathbb{G}_m)^\Theta \). Then \(s(t^2) \) is given by \((\omega(t)^{-1}x_\Theta, t^2) \in X \times (\mathbb{G}_m)^\Theta \) for \(t \in (\mathbb{G}_m)^\Theta \) (cf. Lemma 2.4 (1)). Hence \(Stab_G(s(t^2)) = Ad(\omega(t)^{-1})K_\Theta \). Its Lie algebra is spanned by \(m \) and \(\{ Ad(\omega(t)^{-1})(X + \beta(X)) \mid X \in g_\beta, \beta \in \Sigma^+ \} \). Here, \(g_\beta \) is the root space for \(\beta \). Since \(Ad(\omega(t)^{-1})(X + \beta(X)) = \beta(\omega(t)^{-1})(X + \beta(\omega(t)^{-1})\beta(X)) \), the Lie algebra of \(Stab_G(s(t^2)) \) is spanned by \(m \) and \(\{ X + \beta(\omega(t)^{-1})\beta(X) \mid X \in g_\beta, \beta \in \Sigma^+ \} \). If \(\beta = \sum_{\alpha \in \Pi} n_\alpha \alpha, \) then \(\beta(\omega(t)^{-1}) = \sum_{\alpha \in \Pi} t^{2n_\alpha} \) for \(t = (t_\alpha) \in (\mathbb{G}_m)^\Theta \). Hence the Lie algebra of \(Stab_G(s(t^2)) \) contains Lie \((K_\Theta N_\Theta) \). Therefore, \(Stab_G(x_\Theta) \supset (K_\Theta N_\Theta) \). Since \(K = MK_\Theta N_\Theta \) and \(M \) stabilizes \(t \) for all \(t \in (\mathbb{G}_m)^\Theta \), we have \(Stab_G(x_\Theta) \supset M(K_\Theta N_\Theta) = K_\Theta N_\Theta \).

Finally, we prove that \(Stab_{A_\Theta}(x_\Theta) \subset M \). Since \(M \subset K_\Theta \), this implies the lemma. For \((a_\alpha) \in (\mathbb{G}_m)^\Theta \), we have \(\omega(a_\alpha)x_\Theta = (1, (a_\alpha^2, t_\Theta)) \in X \times K_\Theta \times \mathbb{A}^\Pi \simeq X' \). Hence if \(\omega(a_\alpha) \in Stab_{A_\Theta}(x_\Theta) \), then \(a_\alpha^2 = 1 \) for all \(\alpha \in \Pi \). Therefore, \(\omega(a_\alpha) \in M \).

Lemma 5.5. We have \(Gx_\Theta \) is a subvariety of \(X \) by \(T_{X_\Theta}(X) = T_{X_\Theta}(X) \times \{ 1^\Theta \} \subset T_{X_\Theta}(X) \times (\mathbb{G}_m)^\Theta \). By Lemma 5.3 we have \(f^{-1}(t_\Theta) = T_{X_\Theta}(X) \cap Z \). Let \(p: T_{X_\Theta}(X) \to X_\Theta \) be the projection. Then \(p(x_\Theta) = y_\Theta, \) where \(y_\Theta \) is given in the proof of the previous lemma. Since \(X_\Theta \) is a \(G \)-orbit, we have \(G_{y_\Theta} = X_\Theta \). Hence \(X_\Theta \) is a subvariety of \(X \). By (C6) it is equivalent to proving that \(Stab_G(y_\Theta) \) is a subvariety of \(Z \). By (C6) and Lemma 5.4 it is equivalent to proving that \(A_\Theta \subset M \). Since \(M \subset K_\Theta \), this implies the lemma. Hence the lemma follows from Lemma 5.5.

In general, for an algebraic group \(H \) and an \(H \)-variety \(Y \), let \(\text{Perv}_H(Y) \) be the category of \(H \)-equivariant perverse sheaves. Then \(\mathcal{H}_{\Theta, \rho} \simeq \text{Perv}_{K_\Theta N_\Theta}(G/B) \simeq \text{Perv}_{K_\Theta N_\Theta} \circ \mathcal{H}_{\rho} \simeq \text{Perv}_{M(K_\Theta N_\Theta)} \circ \mathcal{H}_{\rho} \). Write \(\Delta_\Theta \) for this equivalence. Let \(\Theta_1 \subset \Theta_2 \subset \Theta_2 \subset \Theta_1 \subset \Pi \). Take \(n_\alpha \in \mathbb{Z}_{\geq 1} \) for each \(\alpha \in \Theta_1 \setminus \Theta_2 \) and define \(\nu: \mathbb{A}^1 \to \mathbb{A}^1 \) by \(\nu(t) = (t^{n_\alpha})_{\alpha \in \Theta_1 \setminus \Theta_2} \times (1^\Theta) \). Put \(Z_\nu = Z \times \mathbb{A}^1 \) and denote the canonical morphism \(Z_\nu \to \mathbb{A}^1 \). Then, by Lemma 5.4 and Lemma 5.5 we have \(f^{-1}_{\nu}(0) \cong G/K_\Theta N_\Theta \). Since \(f^{-1}_{\nu}(G) \congruent G/K_\Theta N_\Theta \times \mathbb{G}_m \). Let \(p_{\nu}: f^{-1}_{\nu}(G) \congruent G/K_\Theta N_\Theta \times \mathbb{G}_m \to G/K_\Theta N_\Theta \) be the first projection and \(R_\psi \) be the nearby cycle functor with respect to \(f_\nu \). Define \(\text{Kat}_{\nu}: \text{Perv}_B(G/K_\Theta N_\Theta) \to \text{Perv}_B(G/K_\Theta N_\Theta) \) by \(\text{Kat}_{\nu} = R_\psi \circ R_{\nu} \). Now we prove the main theorem of this paper.
Theorem 5.6. As functors $\mathcal{H}C_{\Theta_1, \rho} \to \text{Perv}_B(G/K\Theta_2 N_{\Theta_2})$, we have $\text{Kat}_\nu \circ \Delta'_{\Theta_1} \simeq \Delta'_{\Theta_2} \circ J_{\Theta_2, \Theta_1}$.

Proof. Let $s_\nu : \mathbb{A}^1 \to Z_\nu$ be the section of f_ν obtained by the base change of s under ν. Consider the following diagram:

$$
\begin{array}{ccccccccc}
G/B & \overset{\rho \mapsto (g,t) \mapsto (g, t_\nu)}{\longrightarrow} & G/B \times \mathbb{G}_m & \overset{\nabla \mapsto (g,t) \mapsto (g, t_\nu)}{\longrightarrow} & G/B \times \mathbb{A}^1 & \overset{\nabla \mapsto (g,t) \mapsto (g, t_\nu)}{\longrightarrow} & G/B \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
B\backslash G & \overset{(g,t) \mapsto (\omega_\nu(t))^{-1}(g,t)}{\longrightarrow} & B\backslash G \times \mathbb{G}_m & \overset{(g,t) \mapsto g_{\nu}(t_\nu)}{\longrightarrow} & B\backslash G \times \mathbb{A}^1 & \overset{(g,t) \mapsto g_{\nu}(t_\nu)}{\longrightarrow} & B\backslash G \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
G & \overset{(g,t) \mapsto \nu(t)}{\longrightarrow} & G \times \mathbb{G}_m & \overset{(g,t) \mapsto \nu(t)}{\longrightarrow} & G \times \mathbb{A}^1 & \overset{(g,t) \mapsto \nu(t)}{\longrightarrow} & G \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
G/K\Theta_1 N_{\Theta_1} & \overset{(g,t) \mapsto \nu(t)}{\longrightarrow} & G/K\Theta_1 N_{\Theta_1} \times \mathbb{G}_m & \overset{(g,t) \mapsto \nu(t)}{\longrightarrow} & Z_\nu & \overset{(g,t) \mapsto \nu(t)}{\longrightarrow} & G/K\Theta_2 N_{\Theta_2} \\
\end{array}
$$

Every rectangle in the diagram above is cartesian, and every vertical arrow is smooth. The functor Ψ_ν of Emerton-Nadler-Vilonen is defined as the nearby cycle functor with respect to the top row, and the functor Kat_ν is defined as the nearby cycle functor with respect to the bottom row. Therefore, we get our theorem by Theorem 4.2 and the smooth base change theorem. □

References

[BB81] A. Beĭlinson and J. Bernstein, Localisation de g-modules, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), no. 1, 15–18.

[Cas80] W. Casselman, Jacquet modules for real reductive groups, Proceedings of the International Congress of Mathematicians (Helsinki, 1978) (Helsinki), Acad. Sci. Fennica, 1980, pp. 557–563.

[CO78] W. Casselman and M. S. Osborne, The restriction of admissible representations to n, Math. Ann. 233 (1978), no. 3, 193–198.

[DCP83] C. De Concini and C. Procesi, Complete symmetric varieties, Invariant theory (Montecatini, 1982), Lecture Notes in Math., vol. 996, Springer, Berlin, 1983, pp. 1–44.

[ENV04] M. Emerton, D. Nadler, and K. Vilonen, A geometric Jacquet functor, Duke Math. J. 125 (2004), no. 2, 267–278.

[Ful98] W. Fulton, Intersection theory, second ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 2, Springer-Verlag, Berlin, 1998.

[GW80] R. Goodman and N. R. Wallach, Whittaker vectors and conical vectors, J. Funct. Anal. 39 (1980), no. 2, 199–279.

[HS83a] H. Hecht and W. Schmid, Characters, asymptotics and n-homology of Harish-Chandra modules, Acta Math. 151 (1983), no. 1-2, 49–151.

[HS83b] H. Hecht and W. Schmid, On the asymptotics of Harish-Chandra modules, J. Reine Angew. Math. 343 (1983), 169–183.

[Kas83] M. Kashiwara, Vanishing cycle sheaves and holonomic systems of differential equations, Algebraic geometry (Tokyo/Kyoto, 1982), Lecture Notes in Math., vol. 1016, Springer, Berlin, 1983, pp. 134–142.

[KKM+78] M. Kashiwara, A. Kowata, K. Minemura, K. Okamoto, T. Oshima, and M. Tanaka, Eigenfunctions of invariant differential operators on a symmetric space, Ann. of Math. (2) 107 (1978), no. 1, 1–39.

[SS97] P. Schneider and U. Stuhler, Representation theory and sheaves on the Bruhat-Tits building, Inst. Hautes Études Sci. Publ. Math. (1997), no. 85, 97–191.

[Wai88] N. R. Wallach, Real reductive groups. I, Pure and Applied Mathematics, vol. 132, Academic Press Inc., Boston, MA, 1988.
(Noriyuki Abe) Creative Research Institution, Hokkaido University, N21 W10, Kitaku Sapporo 001-0021, Japan
E-mail address: abenori@math.sci.hokudai.ac.jp

(Yoichi Mieda) Faculty of Mathematics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395 Japan
E-mail address: mieda@math.kyushu-u.ac.jp