On the connections between Pell numbers and Fibonacci p-numbers

Anthony G. Shannon1, Özgür Erdağ2 and Ömür Deveci3

1 Warrane College, University of New South Wales
Kensington, Australia
e-mail: tshannon38@gmail.com

2 Department of Mathematics, Faculty of Science and Letters
Kafkas University 36100, Turkey
e-mail: ozgur_erdag@hotmail.com

3 Department of Mathematics, Faculty of Science and Letters
Kafkas University 36100, Turkey
e-mail: odeveci36@hotmail.com

Received: 24 April 2020 Revised: 4 January 2021 Accepted: 7 January 2021

Abstract: In this paper, we define the Fibonacci–Pell p-sequence and then we discuss the connection of the Fibonacci–Pell p-sequence with the Pell and Fibonacci p-sequences. Also, we provide a new Binet formula and a new combinatorial representation of the Fibonacci–Pell p-numbers by the aid of the n-th power of the generating matrix of the Fibonacci–Pell p-sequence. Furthermore, we derive relationships between the Fibonacci–Pell p-numbers and their permanent, determinant and sums of certain matrices.

Keywords: Pell sequence, Fibonacci p-sequence, Matrix, Representation.

2010 Mathematics Subject Classification: 11K31, 11C20, 15A15.

1 Introduction

The well-known Pell sequence $\{P_n\}$ is defined by the following recurrence relation:

$$P_{n+2} = 2P_{n+1} + P_n \text{ for } n \geq 0 \text{ in which } P_0 = 0 \text{ and } P_1 = 1.$$
There are many important generalizations of the Fibonacci sequence. The Fibonacci p-sequence \([22, 23]\) is one of them:

\[
F_p(n) = F_p(n - 1) + F_p(n - p - 1) \quad \text{for} \quad p = 1, 2, 3, \ldots \quad \text{and} \quad n > p
\]

in which $F_p(0) = 0$, $F_p(1) = \cdots = F_p(p) = 1$. When $p = 1$, the Fibonacci p-sequence \(\{F_p(n)\}\) is reduced to the usual Fibonacci sequence \(\{F_n\}\).

It is easy to see that the characteristic polynomials of the Pell sequence and Fibonacci p-sequence are $f_1(x) = x^2 - 2x - 1$ and $f_2(x) = x^{p+1} - x^p - 1$, respectively. We use these in the next section.

Let the $(n + k)$-th term of a sequence be defined recursively by a linear combination of the preceding k terms:

\[
a_{n+k} = c_0a_n + c_1a_{n+1} + \cdots + c_{k-1}a_{n+k-1},
\]

in which $c_0, c_1, \ldots, c_{k-1}$ are real constants. In [12], Kalman derived a number of closed-form formulas for the generalized sequence by the companion matrix method as follows:

Let the matrix A be defined by

\[
A = [a_{i,j}]_{k \times k} = \begin{bmatrix}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 1 \\
c_0 & c_1 & c_2 & \cdots & c_{k-2} & c_{k-1}
\end{bmatrix},
\]

then

\[
A^n \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_{k-1} \end{bmatrix} = \begin{bmatrix} a_n \\ a_{n+1} \\ \vdots \\ a_{n+k-1} \end{bmatrix}
\]

for $n \geq 0$.

Several authors have used homogeneous linear recurrence relations to deduce miscellaneous properties for a plethora of sequences: see for example, [1,4,8–11,19–21,24]. In [5–7,14–16,22,23,25], the authors defined some linear recurrence sequences and gave their various properties by matrix methods.

In the present paper, we discuss connections between the Pell and Fibonacci p-numbers. Firstly, we define the Fibonacci–Pell p-sequence and then we study recurrence relation among this sequence, Pell and Fibonacci p-sequences. In addition, we obtain their generating matrices, Binet formulas, permanental, determinantal, combinatorial, exponential representations, and we derive a formula for the sums of the Fibonacci–Pell p-numbers.
2 Main results

Now we define the Fibonacci–Pell \(p \)-sequence \(\{ F_{n}^{P,p} \} \) by the following homogeneous linear recurrence relation for any given \(p (3, 4, 5, \ldots) \) and \(n \geq 0 \)

\[
F_{n+p+3}^{P,p} = 3 F_{n+p+2}^{P,p} - F_{n+p+1}^{P,p} - F_{n+p}^{P,p} + 2 F_{n+2}^{P,p} - F_{n+1}^{P,p} - F_{n}^{P,p},
\]

in which \(F_{n}^{P,p} = \cdots = F_{n+2}^{P,p} = 0 \) and \(F_{n+1}^{P,p} = 1 \).

First, we consider the relationship between the Fibonacci–Pell \(p \)-sequence which is defined above, Pell, and Fibonacci \(p \)-sequences.

Theorem 2.1. Let \(P_{n} \), \(F_{3}^{P} \) \((n) \) and \(F_{n}^{P,3} \) be the \(n \)-th Pell number, Fibonacci 3-number, and Fibonacci–Pell 3-numbers, respectively. Then, for \(n \geq 0 \)

\[
P_{n+2} = F_{n+5}^{P,3} + 2 F_{n+3}^{P,3} + F_{3}^{P} (n + 2) + F_{3}^{P} (n).
\]

Proof. The assertion may be proved by induction on \(n \). It is clear that

\[
P_{2} = F_{5}^{P,3} + 2 F_{3}^{P,3} + F_{3}^{P} (2) + F_{3}^{P} (0) = 2.
\]

Suppose that the equation holds for \(n \geq 1 \). Then we must show that the equation holds for \(n + 1 \).

Since the characteristic polynomial of Fibonacci–Pell \(p \)-sequence \(\{ F_{n}^{P,p} \} \), is

\[
g (x) = x^{p+3} - 3x^{p+2} + x^{p+1} + x^{p} - x^2 + 2x + 1
\]

and

\[
g (x) = f_{1} (x) f_{2} (x),
\]

where \(f_{1} (x) \) and \(f_{2} (x) \) are the characteristic polynomials of Pell sequence and Fibonacci \(p \)-sequence, respectively, we obtain the following relations:

\[
P_{n+6} = 3 P_{n+5} - P_{n+4} - P_{n+3} + P_{n+2} - 2 P_{n+1} - P_{n}
\]

and

\[
F_{3}^{P} (n + 6) = 3 F_{3}^{P} (n + 5) - F_{3}^{P} (n + 4) - F_{3}^{P} (n + 3) + F_{3}^{P} (n + 2) - 2 F_{3}^{P} (n + 1) - F_{3}^{P} (n)
\]

for \(n \geq 1 \). Thus, the conclusion is obtained. \(\Box \)

Theorem 2.2. Let \(P_{n} \) and \(F_{n}^{P,p} \) be the \(n \)-th Pell number and Fibonacci–Pell \(p \)-numbers. Then, for \(n \geq 0 \) and \(p \geq 3 \).

i. Let \(p \) be a positive integer, then

\[
P_{n} = F_{n+p+1}^{P,p} - F_{n+p}^{P,p} - F_{n}^{P,p}.
\]

ii. If \(p \) is odd, then

\[
P_{n} + P_{n+1} = F_{n+p+2}^{P,p} - F_{n+p}^{P,p} - F_{n+1}^{P,p} - F_{n}^{P,p}
\]

and

iii. If \(p \) is odd, then

\[
\sum_{i=0}^{n} (F_{i}^{P,p} + P_{i}) = F_{n+p+1}^{P,p}.
\]
Proof. Consider the Case ii. The assertion may be proved by induction on n. Then for $p = 3$, it is clear that $P_0 + P_1 = F_5^{P,3} - F_3^{P,3} - F_1^{P,3} - F_0^{P,3} = 1$. Suppose that the equation holds for $n > 0$. Then we must show that the equation holds for $n + 1$. Since the characteristic polynomial of the Pell sequence $\{P_n\}$, is

$$f_1(x) = x^2 - 2x - 1,$$

we obtain the following relations:

$$P_{n+6} = 3P_{n+5} - P_{n+4} - P_{n+3} + P_{n+2} - 2P_{n+1} - P_n$$

for $n \geq 1$. Now we consider the proof for the case $p > 3$. Suppose that the equation holds for $p = 2\alpha + 1$, $(\alpha \in \mathbb{N})$ and $n \geq 0$, it is clear that

$$P_n + P_{n+1} = F_{n+2\alpha+3}^{P,2\alpha+1} - F_{n+2\alpha+1}^{P,2\alpha+1} - F_{n+1}^{P,2\alpha+1} - F_n^{P,2\alpha+1}.$$

Then we must show that the equation holds for $p = 2\alpha + 3$, $(\alpha \in \mathbb{N})$. For $n = 0$, it is clear that

$$P_0 + P_1 = F_{2\alpha+5}^{P,2\alpha+1} - F_{2\alpha+3}^{P,2\alpha+1} - F_1^{P,2\alpha+1} - F_0^{P,2\alpha+1} = 1.$$

The assertion may be proved again by induction on n. Assume that the equation holds for $n > 0$. Then we must show that the equation holds for $n + 1$. Since the characteristic polynomial of the Pell sequence $\{P_n\}$, is

$$f_1(x) = x^2 - 2x - 1,$$

we obtain the following relations:

$$P_{n+2\alpha+6} = 3P_{n+2\alpha+5} - P_{n+2\alpha+4} - P_{n+2\alpha+3} + P_{n+2} - 2P_{n+1} - P_n$$

for $n \geq 1$. Thus, the conclusion is obtained.

There is a similar proof for Case i and Case iii. \hfill \Box

By the recurrence relation (1), we have

$$[F_{n+p}^{P,p}]
\begin{bmatrix}
3 & -1 & -1 & 0 & \ldots & 0 & 0 & 1 & -2 & -1 \\
1 & 0 & 0 & 0 & \ldots & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & \ldots & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & \ldots & 0 & 0 & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \ldots & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \ldots & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & \ldots & 0 & 0 & 0 & 1 & 0 \\
\end{bmatrix}
\begin{bmatrix}
F_{n+p}^{P,p} \\
F_{n+p+1}^{P,p} \\
F_{n+p+2}^{P,p} \\
F_{n+p+3}^{P,p} \\
\vdots \\
F_{n}^{P,p} \\
F_{n+1}^{P,p} \\
F_{n+2}^{P,p} \\
F_{n+3}^{P,p} \\
\end{bmatrix} =
\begin{bmatrix}
F_{n+p}^{P,p} \\
F_{n+p+1}^{P,p} \\
F_{n+p+2}^{P,p} \\
F_{n+p+3}^{P,p} \\
\vdots \\
F_{n}^{P,p} \\
F_{n+1}^{P,p} \\
F_{n+2}^{P,p} \\
F_{n+3}^{P,p} \\
\end{bmatrix}$$

for the Fibonacci–Pell p-sequence $\{F_n^{P,p}\}$. Letting
the companion matrix $D_p = [d_{ij}]_{(p+3)\times(p+3)}$ is said to be the Fibonacci–Pell p-matrix. For more details on the companion type matrices, see [17,18]. It can be readily established by mathematical induction that for $p \geq 3$ and $n \geq 3p - 1$,

$$D_p^n = \begin{bmatrix}
F_{n+p+2}^{p} & F_p(n-p+1) - F_{n+p+1}^{p} & F_p(n-p+2) - F_{n+p+2}^{p} & F_p(n-p+3) ~ \cdots \\
F_{n+p+1}^{p} & F_p(n-p) - F_{n+p}^{p} & F_p(n-p+1) - F_{n+p+1}^{p} & F_p(n-p+2) ~ \cdots \\
F_{n+p}^{p} & F_p(n-p-1) - F_{n+p-1}^{p} & F_p(n-p) - F_{n+p-1}^{p} & F_p(n-p+1) ~ \cdots \\
F_n^{p} & F_p(n-2p - 1) - F_{n-1}^{p} & F_p(n-2p) - F_{n-1}^{p} & F_p(n-2p+1) ~ \cdots
\end{bmatrix},$$

where

$$D_p^* = \begin{bmatrix}
F_p(n) & F_p(n-p+3) + F_p(n-p) + F_p(n-p-1) + \cdots + F_p(n-2p+3) - F_{n+p+2}^{p} & -F_{n+p+1}^{p} \\
F_p(n-1) & F_p(n-p+2) + F_p(n-p-1) + F_p(n-p-2) + \cdots + F_p(n-2p+2) - F_{n+p}^{p} & -F_{n+p}^{p} \\
F_p(n-2) & F_p(n-p+1) + F_p(n-p-2) + F_p(n-p-3) + \cdots + F_p(n-2p+1) - F_{n+p-1}^{p} & -F_{n+p-1}^{p} \\
\cdots & \cdots & \cdots & \cdots \\
F_p(n-p-1) & F_p(n-2p+2) + F_p(n-2p-1) + F_p(n-2p-2) + \cdots + F_p(n-3p+2) - F_{n+1}^{p} & -F_{n}^{p} \\
F_p(n-p-2) & F_p(n-2p+1) + F_p(n-2p-2) + F_p(n-2p-3) + \cdots + F_p(n-3p+1) - F_{n-1}^{p} & -F_{n-1}^{p}
\end{bmatrix}.$$
Proof. It is clear that $x^{p+3} - 3x^{p+2} + x^{p+1} + x^p - x^2 + 2x + 1 = (x^{p+1} - x^p - 1)(x^2 - 2x - 1)$. In [13], it was shown that the equation $x^{p+1} - x^p - 1 = 0$ does not have multiple roots for $p > 1$. It is easy to see that the roots of the equation $x^2 - 2x - 1 = 0$ are $1 + \sqrt{2}$ and $1 - \sqrt{2}$. Since $(1 + \sqrt{2})^{p+1} - (1 + \sqrt{2})^p - 1 \neq 0$ and $(1 - \sqrt{2})^{p+1} - (1 - \sqrt{2})^p - 1 \neq 0$, the equation $x^{p+3} - 3x^{p+2} + x^{p+1} + x^p - x^2 + 2x + 1 = 0$ does not have multiple roots for $p \geq 3$. \qed

Let $\alpha_1, \alpha_2, \ldots, \alpha_{p+3}$ be the roots of the equation $x^{p+3} - 3x^{p+2} + x^{p+1} + x^p - x^2 + 2x + 1 = 0$ and let V_p be a $(p + 3) \times (p + 3)$ Vandermonde matrix as follows:

$$V_p = \begin{bmatrix}
(\alpha_1)^{p+2} & (\alpha_2)^{p+2} & \cdots & (\alpha_{p+3})^{p+2} \\
(\alpha_1)^{p+1} & (\alpha_2)^{p+1} & \cdots & (\alpha_{p+3})^{p+1} \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_1 & \alpha_2 & \cdots & \alpha_{p+3} \\
1 & 1 & \cdots & 1
\end{bmatrix}.$$

Assume that $V_p(i, j)$ is a $(p + 3) \times (p + 3)$ matrix derived from the Vandermonde matrix V_p by replacing the j-th column of V_p by $W_p(i)$, where, $W_p(i)$ is a $(p + 3) \times 1$ matrix as follows:

$$W_p(i) = \begin{bmatrix}
(\alpha_1)^{n+p+3-i} \\
(\alpha_2)^{n+p+3-i} \\
\vdots \\
(\alpha_{p+3})^{n+p+3-i}
\end{bmatrix}.$$

Theorem 2.4. Let p be a positive integer such that $p \geq 3$ and let $(D_p)^n = d_{i,j}^{(p,n)}$ for $n \geq 1$, then

$$d_{i,j}^{(p,n)} = \frac{\det V_p(i, j)}{\det V_p}.$$

Proof. Since the equation $x^{p+3} - 3x^{p+2} + x^{p+1} + x^p - x^2 + 2x + 1 = 0$ does not have multiple roots for $p \geq 3$, the eigenvalues of the Fibonacci–Pell p-matrix D_p are distinct. Then, it is clear that D_p is diagonalizable. Let $A_p = \text{diag}(\alpha_1, \alpha_2, \ldots, \alpha_{p+3})$, then we may write $D_pV_p = V_pA_p$. Since the matrix V_p is invertible, we obtain the equation $(V_p)^{-1}D_pV_p = A_p$. Therefore, D_p is similar to A_p; hence, $(D_p)^nV_p = V_p(A_p)^n$ for $n \geq 1$. So we have the following linear system of equations:

$$\left\{ \begin{array}{l}
d_{i,1}^{(p,n)}(\alpha_1)^{p+2} + d_{i,2}^{(p,n)}(\alpha_1)^{p+1} + \cdots + d_{i,p+3}^{(p,n)} = (\alpha_1)^{n+p+3-i} \\
d_{i,1}^{(p,n)}(\alpha_2)^{p+2} + d_{i,2}^{(p,n)}(\alpha_2)^{p+1} + \cdots + d_{i,p+3}^{(p,n)} = (\alpha_2)^{n+p+3-i} \\
\vdots \\
d_{i,1}^{(p,n)}(\alpha_{p+3})^{p+2} + d_{i,2}^{(p,n)}(\alpha_{p+3})^{p+1} + \cdots + d_{i,p+3}^{(p,n)} = (\alpha_{p+3})^{n+p+3-i}.
\end{array} \right.$$

Then we conclude that

$$d_{i,j}^{(p,n)} = \frac{\det V_p(i, j)}{\det V_p}$$

for each $i, j = 1, 2, \ldots, p + 3$. \qed
Thus by Theorem 2.4 and the matrix \((D_p)^n\), we have the following useful result for the Fibonacci–Pell \(p\)-numbers.

Corollary 2.1. Let \(p\) be a positive integer such that \(p \geq 3\) and let \(F_n^{F,p}\) be the \(n\)-th element of the Fibonacci–Pell \(p\)-sequence, then

\[
F_n^{F,p} = \frac{\det V_p (p + 3, 1)}{\det V_p}
\]

and

\[
F_n^{F,p} = -\frac{\det V_p (p + 2, p + 3)}{\det V_p}
\]

for \(n \geq 1\).

It is easy to see that the generating function of the Fibonacci–Pell \(p\)-sequence \(\{F_n^{F,p}\}\) is as follows:

\[
g(x) = x^{p+2} \frac{1 - 3x + x^2 + x^3 - x^{p+1} + 2x^{p+2} + x^{p+3}}{1 - 3x + x^2 + x^3 - x^{p+1} + 2x^{p+2} + x^{p+3}},
\]

where \(p \geq 3\).

Then we can give an exponential representation for the Fibonacci–Pell \(p\)-numbers by the aid of the generating function with the following Theorem.

Theorem 2.5. The Fibonacci–Pell \(p\)-numbers \(\{F_n^{F,p}\}\) have the following exponential representation:

\[
g(x) = x^{p+2} \exp \left(\sum_{i=1}^{\infty} \frac{(x)^i}{i} \left(3 - x - x^2 + x^p - 2x^{p+1} - x^{p+2} \right)^i \right),
\]

where \(p \geq 3\).

Proof. Since

\[
\ln g(x) = \ln x^{p+2} - \ln \left(1 - 3x + x^2 + x^3 - x^{p+1} + 2x^{p+2} + x^{p+3}\right)
\]

and

\[
-\ln \left(1 - 3x + x^2 + x^3 - x^{p+1} + 2x^{p+2} + x^{p+3}\right) = -\left[-x \left(3 - x - x^2 + x^p - 2x^{p+1} - x^{p+2}\right) - \frac{1}{2} x^2 \left(3 - x - x^2 + x^p - 2x^{p+1} - x^{p+2}\right)^2 - \ldots \right]
\]

\[
-1 \frac{1}{i} x^i \left(3 - x - x^2 + x^p - 2x^{p+1} - x^{p+2}\right)^i \ldots
\]

it is clear that

\[
g(x) = x^{p+2} \exp \left(\sum_{i=1}^{\infty} \frac{(x)^i}{i} \left(3 - x - x^2 + x^p - 2x^{p+1} - x^{p+2} \right)^i \right)
\]

and by a simple calculation, we obtain the conclusion.
Let $K (k_1, k_2, \ldots, k_v)$ be a $v \times v$ companion matrix as follows:

$$K (k_1, k_2, \ldots, k_v) = \begin{bmatrix} k_1 & k_2 & \cdots & k_v \\ 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 1 & 0 \end{bmatrix}.$$

Theorem 2.6. (Chen and Louck [3]) The (i, j) entry $k_{i,j}^{(n)} (k_1, k_2, \ldots, k_v)$ in the matrix $K^n (k_1, k_2, \ldots, k_v)$ is given by the following formula:

$$k_{i,j}^{(n)} (k_1, k_2, \ldots, k_v) = \sum_{(t_1, t_2, \ldots, t_v)} \frac{t_j + t_{j+1} + \cdots + t_v}{t_1 + t_2 + \cdots + t_v} \times \left(\frac{t_1 + \cdots + t_v}{t_1, t_2, \ldots, t_v} \right) k_{t_1}^{(1)} \cdots k_{t_v}^{(v)} \tag{2}$$

where the summation is over nonnegative integers satisfying $t_1 + 2t_2 + \cdots + vt_v = n - i + j$, $(t_1, t_2, \ldots, t_v) = \frac{(t_1 + \cdots + t_v)!}{t_1! \cdots t_v!}$ is a multinomial coefficient, and the coefficients in (2) are defined to be 1 if $n = i - j$.

Then we can give other combinatorial representations than for the Fibonacci–Pell p-numbers by the following Corollary.

Corollary 2.2. Let $F_n^{P,p}$ be the n-th Fibonacci–Pell p-number for $n \geq 1$. Then

i. \quad $F_n^{P,p} = \sum_{(t_1, t_2, \ldots, t_v)} \left(\frac{t_1 + t_2 + \cdots + t_{p+3}}{t_1, t_2, \cdots, t_{p+3}} \right) 3^{t_1} (-2)^{t_{p+2}} (-1)^{t_2+t_3+t_{p+3}},$

where the summation is over nonnegative integers satisfying

$$t_1 + 2t_2 + \cdots + (p + 3) t_{p+3} = n - p - 2.$$

ii. \quad $F_n^{P,p} = - \sum_{(t_1, t_2, \ldots, t_v)} \frac{t_{p+3}}{t_1 + t_2 + \cdots + t_{p+3}} \times \left(\frac{t_1 + t_2 + \cdots + t_{p+3}}{t_1, t_2, \cdots, t_{p+3}} \right) 3^{t_1} (-2)^{t_{p+2}} (-1)^{t_2+t_3+t_{p+3}},$

where the summation is over nonnegative integers satisfying $t_1 + 2t_2 + \cdots + (p + 3) t_{p+3} = n + 1$.

Proof. If we take $i = p + 3$, $j = 1$ for the Case i. and $i = p + 2$, $j = p + 3$ for the Case ii. in Theorem 2.6, then we can directly see the conclusions from $(D_p)^n$.

Now we consider the relationship between the Fibonacci–Pell p-numbers and the permanent of a certain matrix which is obtained using the Fibonacci–Pell p-matrix $(D_p)^n$.

Definition 2.1. A $u \times v$ real matrix $M = [m_{i,j}]$ is called a contractible matrix in the k-th column (respectively, row) if the k-th column (respectively, row) contains exactly two non-zero entries.

Suppose that x_1, x_2, \ldots, x_u are row vectors of the matrix M. If M is contractible in the k-th column such that $m_{i,k} \neq 0$, $m_{j,k} \neq 0$ and $i \neq j$, then the $(u - 1) \times (v - 1)$ matrix $M_{ij;k}$ obtained
from M by replacing the i-th row with $m_{i,k}x_j + m_{j,k}x_i$ and deleting the j-th row. The k-th column is called the contraction in the k-th column relative to the i-th row and the j-th row.

In [2], Brualdi and Gibson obtained that $\text{per} (M) = \text{per} (N)$ if M is a real matrix of order $\alpha > 1$ and N is a contraction of M.

Now we concentrate on finding relationships among the Fibonacci–Pell p-numbers and the permanents of certain matrices which are obtained by using the generating matrix of the Fibonacci–Pell p-numbers. Let $E_{m,p}^{F,P} = [e_{i,j}]$ be the $m \times m$ super-diagonal matrix, defined by

$$e_{i,j} = \begin{cases} 3 & \text{if } i = \tau \text{ and } j = \tau \text{ for } 1 \leq \tau \leq m, \\ 1 & \text{if } i = \tau \text{ and } j = \tau + p \text{ for } 1 \leq \tau \leq m - p \\ & \text{and } i = \tau + 1 \text{ and } j = \tau \text{ for } 1 \leq \tau \leq m - 1, \\ -1 & \text{if } i = \tau \text{ and } j = \tau + 1 \text{ for } 1 \leq \tau \leq m - 1, \\ -2 & \text{if } i = \tau \text{ and } j = \tau + p + 1 \text{ for } 1 \leq \tau \leq m - p - 1, \\ 0 & \text{otherwise}. \end{cases}$$

for $m \geq p + 3$. Then we have the following Theorem.

Theorem 2.7. For $m \geq p + 3$,

$$\text{per} E_{m,p}^{F,P} = F_{m+p}^{P,p}.$$

Proof. Let us consider matrix $E_{m,p}^{F,P}$ and let the equation hold for $m \geq p + 3$. Then we show that the equation holds for $m + 1$. If we expand the $\text{per} E_{m,p}^{F,P}$ by the Laplace expansion of permanent with respect to the first row, then we obtain

$$\text{per} E_{m+1,p}^{F,P} = 3 \text{ per} E_{m,p}^{F,P} - \text{per} E_{m-1,p}^{F,P} - \text{per} E_{m-2,p}^{F,P} + \text{per} E_{m-p,p}^{F,P} - 2 \text{ per} E_{m-p-1,p}^{F,P} - \text{per} E_{m-p-2,p}^{F,P}.$$

Since

$$\text{per} E_{m,p}^{F,P} = F_{m+p}^{P,p},$$
$$\text{per} E_{m-1,p}^{F,P} = F_{m+p+1}^{P,p},$$
$$\text{per} E_{m-2,p}^{F,P} = F_{m+p}^{P,p},$$
$$\text{per} E_{m-p,p}^{F,P} = F_{m+2}^{P,p},$$
$$\text{per} E_{m-p-1,p}^{F,P} = F_{m+1}^{P,p},$$
$$\text{per} E_{m-p-2,p}^{F,P} = F_{m}^{P,p},$$

we easily obtain that $\text{per} E_{m+1,p}^{F,P} = F_{m+p+3}^{P,p}$. So the proof is complete. \(\square\)
Let $F_{m,p}^{F,P} = [f_{i,j}]$ be the $m \times m$ matrix, defined by

$$f_{i,j} = \begin{cases}
3 & \text{if } i = \tau \text{ and } j = \tau \text{ for } 1 \leq \tau \leq m - p, \\
1 & \text{if } i = \tau \text{ and } j = \tau + p \text{ for } 1 \leq \tau \leq m - p, \\
& \text{and } i = \tau + 1 \text{ and } j = \tau \text{ for } 1 \leq \tau \leq m - p - 1, \\
-1 & \text{if } i = \tau \text{ and } j = \tau + 1 \text{ for } 1 \leq \tau \leq m - p, \\
& \text{and } i = \tau \text{ and } j = \tau + 2 \text{ for } 1 \leq \tau \leq m - p - 2, \\
-2 & \text{if } i = \tau \text{ and } j = \tau + 1 \text{ for } 1 \leq \tau \leq m - p - 1, \\
0 & \text{otherwise}
\end{cases},$$

for $m \geq p + 3$. Then we have the following Theorem.

Theorem 2.8. For $m \geq p + 3$,

$$\text{per } F_{m,p}^{F,P} = F_{m+2,p}^{P}.$$

Proof. Let us consider matrix $F_{m,p}^{F,P}$ and let the equation hold for $m \geq p + 3$. Then we show that the equation holds for $m + 1$. If we expand the per $F_{m,p}^{F,P}$ by the Laplace expansion of permanent with respect to the first row, then we obtain

$$\text{per } F_{m+1,p}^{F,P} = 3 \text{ per } F_{m,p}^{F,P} - \text{ per } F_{m-1,p}^{F,P} + \text{ per } F_{m-2,p}^{F,P} - 2 \text{ per } F_{m-p-1,p}^{F,P} - \text{ per } F_{m-p-2,p}^{F,P}.$$

Since

$$\text{per } F_{m,p}^{F,P} = F_{m+2}^{P},$$

$$\text{per } F_{m-1,p}^{F,P} = F_{m+1}^{P},$$

$$\text{per } F_{m-2,p}^{F,P} = F_{m}^{P},$$

$$\text{per } F_{m-p,p}^{F,P} = F_{m-p+2}^{P},$$

$$\text{per } F_{m-p-1,p}^{F,P} = F_{m-p+1}^{P},$$

$$\text{per } F_{m-p-2,p}^{F,P} = F_{m-p}^{P},$$

we easily obtain that $\text{per } F_{m+1,p}^{F,P} = F_{m+3}^{P}$. So the proof is complete. \(\square \)

Assume that $G_{m,p}^{F,P} = [g_{i,j}]$ be the $m \times m$ matrix, defined by

$$G_{m,p}^{F,P} = \begin{bmatrix}
1 & \cdots & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & \\
0 & \cdots & F_{m-1,p}^{F,P} & \\
0 & \cdots & \cdots & \\
0 & \cdots & \cdots &
\end{bmatrix}, \text{ for } m > p + 3,$$

then we have the following results.
Theorem 2.9. For \(m > p + 3 \),

\[
\text{per } G_{m,p}^F = \sum_{i=0}^{m+1} F_{i,p}^P.
\]

Proof. If we extend \(\text{per } G_{m,p}^F \) with respect to the first row, we write

\[
\text{per } G_{m,p}^F = \text{per } G_{m-1,p}^F + F_{m-1,p}^P.
\]

Thus, by the results and an inductive argument, the proof is easily seen. \(\square \)

A matrix \(M \) is called convertible if there is an \(n \times n \) \((1,-1)\)-matrix \(K \) such that

\[
\text{per } M = \det (M \circ K),
\]

where \(M \circ K \) denotes the Hadamard product of \(M \) and \(K \).

Now we give relationships among the Fibonacci–Pell \(p \)-numbers and the determinants of certain matrices which are obtained by using the matrices \(E_{m,p}^F, F_{m,p}^F \) and \(G_{m,p}^F \). Let \(m > p + 3 \) and let \(R \) be the \(m \times m \) matrix, defined by

\[
R = \begin{bmatrix}
1 & 1 & 1 & \cdots & 1 & 1 \\
-1 & 1 & 1 & \cdots & 1 & 1 \\
1 & -1 & 1 & \cdots & 1 & 1 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\
1 & \cdots & 1 & -1 & 1 & 1 \\
1 & \cdots & 1 & 1 & -1 & 1
\end{bmatrix}.
\]

Corollary 2.3. For \(m > p + 3 \),

\[
\det \left(E_{m,p}^F \circ R \right) = F_{m+p+2,p}^P,
\]

\[
\det \left(F_{m,p}^F \circ R \right) = F_{m+p+2,p}^P,
\]

and

\[
\det \left(G_{m,p}^F \circ R \right) = \sum_{i=0}^{m+1} F_{i,p}^P.
\]

Proof. Since \(\text{per } E_{m,p}^F = \det \left(E_{m,p}^F \circ R \right), \text{ per } F_{m,p}^F = \det \left(F_{m,p}^F \circ R \right) \) and \(\text{ per } G_{m,p}^F = \det \left(G_{m,p}^F \circ R \right) \) for \(m > p + 3 \), by Theorem 2.7, Theorem 2.8 and Theorem 2.9, we have the conclusion. \(\square \)

Now we consider the sums of the Fibonacci–Pell \(p \)-numbers. Let

\[
S_n = \sum_{i=0}^{n} F_{i,p}^P
\]

for \(n \geq 0 \) and let \(U_{F,p} \) and \((U_{F,p})^n \) be the \((p + 4) \times (p + 4)\) matrix such that

\[
U_{F,p} = \begin{bmatrix}
1 & 0 & 0 & \cdots & 0 & 0 \\
1 & 0 & & & & \\
\vdots & & \ddots & & & \\
0 & & & \ddots & D_p & \\
0 & & & & & 0
\end{bmatrix},
\]

158
If we use induction on \(n \), then we obtain

\[
(U_{F,P})^n = \begin{bmatrix}
1 & 0 & 0 & \cdots & 0 & 0 \\
S_{n+p+1} & S_{n+p} & \vdots & & & (D_p)^n \\
S_n & S_{n-1} & & & \\
& & & & \\
& & & & \\
& & & & &
\end{bmatrix}
\]

References

[1] Bradie, B. (2010). Extension and refinements of some properties of sums involving Pell number. *Missouri Journal of Mathematical Sciences*, 22(1), 37–43.

[2] Brualdi, R. A., & Gibson, P. M. (1977). Convex polyhedra of doubly stochastic matrices. I. Applications of permanent function, *Journal of Combinatorial Theory, Series A*, 22(2), 194–230.

[3] Chen, W. Y. C., & Louck, J. D. (1996). The combinatorial power of the companion matrix. *Linear Algebra and its Applications*, 232, 261–278.

[4] Devaney, R. L. (1999). The Mandelbrot set, the Farey tree, and the Fibonacci sequence, *The American Mathematical Monthly*, 106(4), 289–302.

[5] Deveci, O., Adiguzel, Z. & Dogan, T. (2020). On the Generalized Fibonacci-circulant-Hurwitz Numbers, *Notes on Number Theory and Discrete Mathematics*, 26(1), 179–190.

[6] Deveci, O., & Artun, G. (2019). On the Adjacency-Jacobsthal Numbers. *Communications in Algebra*, 47 (11), 4520-4532.

[7] Deveci, O., Karaduman, E., & Campbell, C. M. (2017). The Fibonacci-Circulant Sequences and Their Applications. *Iranian Journal of Science and Technology, Transaction A, Science*, 41(4), 1033–1038.

[8] Frey, D. D., & Sellers, J. A. (2000). Jacobsthal numbers and alternating sign matrices. *Journal of Integer Sequences*, 3, Article 00.2.3.

[9] Gogin, N. D., & Myllari, A. A. (2007). The Fibonacci–Padovan sequence and MacWilliams transform matrices. *Program. Comput. Softw., published in Programmirovanie*, 33(2), 74–79.

[10] Horadam, A. F. (1994). Applications of modified Pell numbers to representations. *Ulam Quarterly Journal*, 3(1), 34–53.

[11] Johnson, R. C. (2009). *Fibonacci numbers and matrices*, Available online: https://maths.dur.ac.uk/~dma0rcj/PED/fib.pdf.
[12] Kalman, D. (1982). Generalized Fibonacci numbers by matrix methods. *The Fibonacci Quarterly*, 20(1), 73–76.

[13] Kilic, E. (2008). The Binet formula, sums and representations of generalized Fibonacci \(p \)-numbers. *European Journal of Combinatorics*, 29(3), 701–711.

[14] Kilic, E., & Tasci, D. (2006). The generalized Binet formula, representation and sums of the generalized order-\(k \) Pell numbers. *Taiwanese Journal of Mathematics*, 10(6), 1661–1670.

[15] Kocer, E. G., & Tuglu, N. (2007). The Binet formulas for the Pell and Pell–Lucas \(p \)-numbers. *Ars Combinatoria*, 85, 3–17.

[16] Koken, F., & Bozkurt, D. (2008). On the Jacobsthal numbers by matrix methods. *International Journal of Contemporary Mathematical Sciences*, 3(13), 605–614.

[17] Lancaster, P. & Tismenetsky, M. (1985). *The Theory of Matrices: with Applications*, Elsevier.

[18] Lidl, R., & Niederreiter, H. (1994). *Introduction to Finite Fields and Their Applications*, Cambridge University Press.

[19] McDaniel, W. L. (1996). Triangular numbers in the Pell sequence. *The Fibonacci Quarterly*, 34(2), 105–107.

[20] Shannon, A. G., Anderson, P. G., & Horadam, A. F. (2006). Properties of Cordonnier, Perrin and Van der Laan numbers. *International Journal of Mathematical Education in Science and Technology*, 37(7), 825–831.

[21] Shannon, A. G., Horadam, A. F., & Anderson, P. G. (2006). The auxiliary equation associated with the plastic number, *Notes on Number Theory and Discrete Mathematics*, 12(1), 1–12.

[22] Stakhov, A. P. (1999). A generalization of the Fibonacci \(Q \)-matrix. *Rep. Natl. Acad. Sci. Ukraine*, 9, 46–49.

[23] Stakhov, A. P., & Rozin, B. (2006). Theory of Binet formulas for Fibonacci and Lucas \(p \)-numbers. *Chaos, Solitions, Fractals*, 27(5), 1162–1177.

[24] Stewart, I. (1996). Tales of a neglected number. *Scientific American*, 274(6), 102–103.

[25] Tasci, D., & Firengiz, M. C. (2010). Incomplete Fibonacci and Lucas \(p \)-numbers. *Mathematical and Computer Modelling*, 52(9–10), 1763–1770.