Percolation and high energy cosmic rays above 10^{17} eV

J. Alvarez-Muñiza P. Brogueirab R. Conceiçãoc J. Dias de Deusd,b M.C. Espírito Santoc,b M. Pimentac,b

aIGFAE and Dep. Fisica Particulas, Univ. Santiago de Compostela, 15782 Santiago de Compostela, Spain
bDepartamento de Física, IST, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
cLIP, Av. Elias Garcia, 14-1, 1000-149 Lisboa, Portugal
dCENTRA, Av. Rovisco Pais, 1049-001 Lisboa, Portugal

Abstract

In this work we argue that, in the interpretation of the energy dependence of the depth of the shower maximum and of the muon content in high energy cosmic ray showers ($E > 10^{17}$ eV), other variables besides the composition may play an important role, in particular those characterising the first (high energy) hadronic collisions. The role of the inelasticity, of the nature of the leading particle, and of the particle multiplicity are discussed. A consistent interpretation of existing data within a string percolation model implemented in a hybrid, one dimensional simulation method is given.

\textbf{Key words:} Percolation, high energy cosmic rays, extensive air showers, muons, elongation rate
\textbf{PACS:} 13.85.Tp, 12.40.Nn, 96.40.De, 96.40.Pq, 96.40.Tv

1 Introduction

The composition of cosmic rays at high energies is a matter of controversy. Direct measurements are possible only up to $E \sim 10^{15}$ eV \cite{1}. Above these energies, attempts to infer the effective mass number A of the primary particle are based on the measured shower variables and are rather indirect \cite{2}. Furthermore, data are relatively scarce at such high energies.

In fluorescence experiments, the longitudinal shower profile is measured and the atmospheric depth of the shower maximum X_{max} is usually interpreted as
an indication of the nature of the primary particle [3]: heavy nuclei initiated showers are expected to develop earlier, due to the larger interaction cross-section.

In ground array experiments, the muon component is widely studied as a possible handle on composition [3]. The muon content, or more specifically the muon density at a given distance from the shower core, ρ_μ, is expected to increase by roughly 50% from proton to Fe initiated showers, for the same primary energy [4]. Incidentally, the muon component of the shower is a powerful tool for the validation of hadronic interaction models at such high energies.

In this work we argue that, in the interpretation of the energy dependence of X_{max} and ρ_μ, other variables besides A may play an important role, in particular those characterising the first (high energy) hadronic collisions. The role of the inelasticity K, one minus the fraction of momentum carried by the fastest (leading) particle, of the nature of the leading particle, and of the charged particle multiplicity are discussed. A consistent interpretation of data, within a string percolation model implemented in a hybrid one dimensional simulation method, is given.

This paper is organised as follows. In section 2 the experimental status is briefly reviewed. In section 3, the possible role of the main variables characterising the first hadronic collisions is analysed and the models and tools relevant for the discussion are presented. In section 4, results on the energy dependence of X_{max} and ρ_μ are derived in the light of string percolation. In section 5 some conclusions are drawn.

2 Experimental status

Experimental data on the energy dependence of the depth of the shower maximum X_{max} and of the muon density 600 m away from the shower core $\rho_\mu(600)$ above 10^{17} eV, and their comparison with simulations, are summarised in this section.

Fly’s Eye/HiRes results in this energy range show an increase in the X_{max} vs. E slope, which has been interpreted as a change in composition, going from more Fe-like to more proton-like showers [5]. It has been argued [6, 7] that other models predicting a development of the shower deeper in the atmosphere (an increase in X_{max}) could also explain this effect.

Concerning the muon component of the shower, experimental data are relatively scarce at high energies. Extensive air showers are largely electromagnetic dominated, and the separate detection of muons in ground array experiments
requires the installation of specific shielded detector units. This has been done in KASCADE [8] in the energy range from 10^{14} eV to almost 10^{17} eV and in AGASA above 10^{17} eV [9]. Hybrid data from HiRes-MIA has also been presented [10].

At AGASA, the lateral distribution function of muons above 0.5 GeV was measured and combined with the Akeno 1 Km2 array data (threshold 1 GeV) [9]. The evolution of $\rho_\mu(600)$ with the particle density $S_0(600)$ (essentially proportional to the primary energy) was studied and compared with CORSIKA [11] simulations using different hadronic models in [4]. It was observed that the slope of $\rho_\mu(600)$ vs. E in data is flatter than in simulation with any hadronic model and primary composition. Taking $\rho_\mu \propto E^\beta$, data gives $\beta = 0.84 \pm 0.02$ [4,9], while from simulation $\beta \sim 0.9$ ($\beta = 0.92$ (0.89) for protons with QGSJET (SIBYLL), while for Fe $\beta = 0.88$ (0.87) [4]). It has been argued [12] that these results can be interpreted as a change in composition from heavy (at around $10^{17.5}$ eV) to light (at around 10^{19} eV), agreeing with the Fly’s Eye indication. It has been pointed out in [4] that this interpretation should be studied in a wider energy range, as it seems to lead to a composition heavier than Fe at lower energies. The HiRes-Mia experiment consisted of the prototype high resolution Fly’s Eye detector and the muon array MIA. Results are presented in [10]. The muon data, yielding $\beta = 0.73$, seem to indicate a composition heavier than Fe at 10^{17} eV.

3 Construction of a simple model

3.1 The composition interpretation

In order to make the argument simple, we shall use the original Heitler idea [13]: the location of the shower maximum is, on the average, related to $\log E$, $\bar{X}_{\text{max}} \sim \log E$, and the number of charged pions or muons is proportional to some power of E, $N_{\pi^+\pi^-} \sim N_\mu \sim E^\beta$, $0 < \beta \leq 1$. In the case of a nucleus with A nucleons colliding in a hadronic collision we shall write,

$$\bar{X}_{\text{max}} \simeq \bar{X}_1 + \bar{X}_0 \log(E/A), \quad \text{(1)}$$

where \bar{X}_1 is the average depth of the first collision and \bar{X}_0 is the radiation length, and

$$\bar{N}_\mu \simeq A(E/A)^\beta, \quad \text{(2)}$$
or

\[\log N_\mu \simeq (1 - \beta) \log A + \beta \log E.\] (3)

We further have, for the elongation rate,

\[\frac{d\bar{X}_{\max}}{d\log E} = \bar{X}_0 \left[1 - \frac{d\log A}{d\log E}\right],\] (4)

and for the \(\log N_\mu\) dependence on \(E\),

\[\frac{d\log N_\mu}{d\log E} = (1 - \beta)\frac{d\log A}{d\log E} + \beta.\] (5)

As experimentally \[14,5,10\], above \(10^{17}\) eV \(d\bar{X}_{\max}/d\log E\) is larger and \(d\log N_\mu/d\log E\) is slightly smaller, in comparison with lower energies, the conclusion is:

\[\frac{d\log A}{d\log E} < 0,\] (6)

i.e., for \(E \gtrsim 10^{17}\) eV the average mass number \(A\) should, in this interpretation, decrease with energy.

3.2 The first hadronic collisions interpretation

In this interpretation a key role is given to the main variables characterising the first hadronic collisions, which are schematically represented in Fig. 1. The inelasticity \(K\) is the fraction of energy distributed among the produced particles (mainly pions). A fraction of this energy is expected to go into neutral pions, which promptly decay to photons. \(< n >\) is the average (non-leading) multiplicity at the collision energy. The quantity \((1 - K)\) represents the fraction of energy concentrated in the leading particle, in general assumed to be a proton. \(P_0\) is the probability of having a leading \(\pi^0\).

As pointed out in \[6,15\], the effect of changing \(A\) is equivalent to the effect of changing the average inelasticity \(K\). In this spirit, the fastest particle, carrying an energy \((1 - K)E\), will originate the shower branches that go deeper in the atmosphere, and we write

\[\bar{X}_{\max} \simeq \bar{X}_1 + \bar{X}_0 \log[(1 - K)\frac{E}{E_0}],\] (7)
instead of (1), where X_1 is the average depth of the first collision, X_0 is the radiation length and E_0 a low energy threshold.

Fig. 1. Schematic representation of the first hadronic collisions. A large fraction of the energy $(1 - K)$ is taken by the leading particle. Most particles (essentially pions, $\langle n \rangle$ on average) come from the remaining energy, K. The probability P_0 characterises the type of leading particle.

Regarding the muon content of the shower, a possible assumption is to say that while the energy flows in the $(1 - K)$ direction (see Fig. 1) the number of particles (of muons) flows in the K direction. We thus have

$$N_\mu \sim N_{\pi}^\pm \propto KE .$$

instead of (2). The validity of this assumption will be discussed later. We further have,

$$\frac{dX_{max}}{d \log E} = \bar{X}_0 \left[\frac{d \log (1 - K)}{d \log E} + 1 \right] ,$$

instead of (4), and

$$\frac{d \log N_\mu}{d \log E} = \frac{d \log K}{d \log E} + 1 ,$$

instead of (5). The condition (6) becomes now

$$\frac{d \log K}{d \log E} < 0 ,$$

i.e., the inelasticity K has to decrease with the energy. This scenario has been explored in [7], where a string percolation model predicting the required behaviour of the inelasticity at high energies was discussed. As it will be seen below, string percolation affects the energy dependence of K, P_0 and $\langle n \rangle$.

5
3.3 Matthews-Heitler toy model

In [16] a very interesting semi-empirical model for the development of the hadronic component of air showers in analogy with Heitler’s splitting approximation of electromagnetic cascades [13] was presented. Not considering the elasticity, the model gives constant and reasonable values for $dX_{\text{max}}/d\log E$ and $d\log N_\mu/d\log E$. Taking into account that in hadronic interactions a significant fraction of the total energy may be carried away by a single “leading” particle (i.e., $1 - K > 0$), the model predicts for N_μ a slope decreasing with K - exactly the opposite of (8). It is interesting to discuss this discrepancy.

In [16] the essential point is that the production of π^0’s, which decay into photons before participating in the cascade, strongly decreases the muon production - about $1/3$ of the energy KE is lost for muon production, as it goes into the electromagnetic component of the shower. On the other hand, the leading particle, assumed in general to be a proton, goes on producing particles, thus increasing the number of muons. However, if π^0’s are themselves leading particles - $P_0 > 0$, as it happens in percolation models - the argument is no longer valid. In fact, when estimating muon production both the inelasticity K and the probability P_0 of having a π^0 as a leading particle are relevant. This will be seen next.

3.4 Generalised Matthews-Heitler model

The model of [16] was implemented and generalised. This is not a substitute for a detailed simulation, but useful to illustrate the physics involved. Following [16], hadrons interact after traversing one layer of fixed thickness (related to the interaction length, $\lambda_I \sim 120$ g cm2 [16,17]) producing N_{ch} charged pions and $N_{ch}/2$ neutral pions. A π^0 immediately decays into photons, meaning that $1/3$ of the energy is lost to the electromagnetic shower component. Charged pions continue through another layer and interact, until a critical energy is reached. They are then assumed to decay, yielding muons, and thus $N_\mu = N_{\pi^\pm}$. The version of the model which takes into account the inelasticity was implemented. In each branching, the energy was equally shared amongst all (non-leading) particles. $N_{ch} = 10$ was used.

We modified this model in two ways. Firstly, a decay probability for charged pions in each interaction step was explicitly included, replacing the large value of the critical energy (20 GeV) used in the original version. This gives a smoother and more realistic transition from charged pions to muons. A critical energy of 1 GeV was then used. Further, the model was generalised to include the probability P_0 of having a leading π^0 in a given collision, with an energy (1-K)E.
lost into the electromagnetic branch in that collision. The obtained number of muons as a function of the inelasticity K (for $E = 10^{18} \text{ eV}$) is shown in Fig. 2, for different values of P_0.

As observed, in this toy model the N_μ slope depends critically on the nature of the leading particle: changing the probability P_0 of a leading neutral pion from 0 to 1/3 inverts this slope. If the inelasticity is relatively low, even a moderate fraction of leading neutral pions may cause a decrease of the number of produced muons. Thus, one easily moves from the behaviour predicted in the Matthews-Heitler model (section 3.3) to the first hadronic collisions model (section 3.2, equation (8)). It should however be noted that in this simplified approach we do not take into account the fact that the energy spectrum of the leading particle will depend on its nature: leading neutral pions may be softer than leading protons. More detailed simulations will be presented below.

![Graph showing N_μ as a function of K for different values of P_0.]

Fig. 2. The toy model prediction for the the number of muons as a function of the inelasticity is shown, for different values of the probability P_0 of having a leading π^0 and $E = 10^{17} \text{ eV}$. The lines are only to guide the eye.

3.5 Hybrid shower simulations

In order to validate the argument and derive predictions for the behaviour of X_{max} and ρ_μ as a function of the energy, we need a shower simulation tool which is detailed enough to produce reliable results, and fast and flexible enough to allow the \textit{ad hoc} introduction of the predictions of the percolation model that will be used.
The hybrid, one dimensional simulation method described in [18] was used. It is a fast, one dimensional calculation, which provides predictions for the total number of charged particles and muons above several energy thresholds along the shower axis, as well as for the fluctuations of the electromagnetic and hadronic components of the shower. The method is based on precalculated showers (sub-threshold particles are treated with a library of profiles based on pre-simulated pion-initiated showers) and a bootstrap procedure to extend the shower library to high energy. The SIBYLL hadron interactions model was used.

In Fig. 3, the number of muons \((E > 1 \text{ GeV})\) as a function of \(K\) is shown, for \(E = 10^{18} \text{ eV}\), and for different values of the fraction of leading \(\pi^0\)'s, \(P_0\). This confirms the indication obtained above with the toy model: The slope of \(N_\mu\) vs. \(K\) depends strongly on \(P_0\).

![Fig. 3](image)

Fig. 3. The hybrid simulation prediction for the the number of muons \((E > 1 \text{ GeV})\) as a function of the inelasticity is shown, for different values of the probability \(P_0\) of having a leading \(\pi^0\) and \(E = 10^{18} \text{ eV}\). The lines are only to guide the eye.

Studies performed with both QGSJET and SIBYLL show that the prediction of CORSIKA for \(N_\mu\) vs. \(K\) is essentially flat. In QGSJET, the fraction of leading \(\pi^0\)'s in the first hadronic collision goes roughly from 10% to 15% as the primary energy goes from \(10^{15} \text{ eV}\) to \(10^{20} \text{ eV}\), but their spectrum is
relatively soft. The variation of \(P_0 \) in SIBYLL is very small (of the order of 1\% for the same energy range).

The combined effect of \(K \) and \(P_0 \) has thus an effect on muon production, and this is particularly true if the inelasticity has relatively low values. We now need a consistent model with predictions for the values of these variables.

3.6 String percolation model

Essentially, all existing high energy strong interaction models based on QCD, and QCD evolution, predict an increase with energy – not a decrease – of the inelasticity \(K \) [19]. The same is true for the hadronic generators SIBYLL [20] and QGSJET [21], used in cosmic ray cascade analysis. This happens because evolution in the energy implies transfer of energy from valence partons or strings, or from bare Pomeron diagrams, to sea partons or strings, or to multi-Pomeron contributions.

However, in models with percolation of partons or strings, one expects the inelasticity \(K \) to decrease with energy above the percolation threshold [7]. In the framework of the Dual String Model [22] – but we believe the argument is more general – what happens at low energy is the transfer of energy from the valence strings to sea strings (and \(K \) increases), while at higher energy the strings start to overlap and a cumulative effect occurs: the length in rapidity of fused (percolated) strings is larger [23]. At some stage, close to percolation threshold, the percolating strings take over the valence strings, and from then on \(K \) decreases with the energy. Percolation is, in fact, a mechanism for generating fast leading particles.

In Fig. 4 we show the energy dependence of \(K \) in the case of our string percolation model [7], in comparison with \(K \) determined from QCD inspired models, without percolation (see for instance [24]). As discussed in [7], this model was tuned taking into account multiplicity data from accelerator energies and places the percolation threshold at \(E \simeq 10^{17} \) eV. In the reference, predictions for the inelasticity and multiplicity behaviour were made and their effect on \(X_{\text{max}} \) data was discussed. Above the percolation threshold the inverted slope of \(K \) vs. \(E \) is clearly visible. In the relevant energy range, \(K \) varies roughly from 0.8 to 0.55. Percolation will also affect the particle multiplicity, and we follow the treatment in [7], where we see that this effect can be introduced through the colour summation reduction factor \(F(\eta) \), where \(\eta \) is the transverse density.

Let us now turn to the evolution with energy of the probability \(P_0 \) of having a non-baryonic primary. As energy increases, the number of sea strings increases. These are, however, low energy strings, and, without percolation, the initial
proton remains dominant. When sea strings percolate, larger “sea clusters” are formed, and other particles can be produced. It is a prediction of our percolation model that above the percolation threshold, because sea strings are of the type quark-antiquark, the probability of having a leading π^0 will tend to 1/3.

4 Results

We now have a string percolation model which predicts modifications on the variables K, P_0 and $<n>$ characterising hadronic collisions above a percolation threshold. Inserting these predictions into the hybrid shower simulation tool described in section 3.5, results for the behaviour of N_μ and X_{max} as a function of the energy can now be derived and compared with the available data (see section 2).

The percolation prediction for the inelasticity K was introduced in the hybrid simulations for hadronic collisions above 10^{16} eV. Above the percolation
threshold \((E \sim 10^{17} \text{ eV})\), the probability of having a leading \(\pi^0\) of \(P_0\) was set to \(1/3\) and the percolation multiplicity reduction factor \(F(\eta)\) was introduced.

In Fig. 5 our results for \(N_\mu\) vs. \(E\) are shown and compared with Akeno/AGASA data \([9,25]\). A value of \(\beta = 0.83\) is obtained from simulation, in very good agreement with the measured value of \(\beta = 0.84 \pm 0.02\). In this study a primary proton was considered. The result is however more general, as it has been shown in \([4]\) that, for fixed composition, the value of \(\beta\) is essentially the same for proton and for Fe. The curve shown in the figure corresponds to shifting our proton result, using equation (2), to an intermediate and constant composition \(A \sim 20\). The result of \(\beta = 0.73\) quoted by HiRes-Mia can hardly be accommodated in this model, as it would imply values of \(P_0\) going well beyond the expectations.

It is interesting to note that at very high energies \((E \gtrsim 10^{19} \text{ eV})\) the \(\pi^0\)'s starting to participate in the shower (i.e. to interact) and hence contribute to the production of muons. This causes an increase in the slope. A slight effect is already seen in our simulations. Finally, as muon data is often presented as muon density \(\rho_\mu(600)\) vs. \(E\), it is worth noting that CORSIKA \([11]\) was used to check that \(\rho_\mu(600)\) behaves much like \(N_\mu\) as a function of the energy (with \(N_\mu\) slightly steeper, but differences of the order of 0.02).

In Fig. 6 the results obtained for \(X_{\text{max}}\) vs. \(E\) are shown and compared with existing data. A composition very similar to the one above was used. We see that the obtained curve is reasonably consistent with data and with the result presented in \([7]\) using a simple model similar to the one described in section 3.2.

We thus conclude that a percolation model with predictions for the evolution with energy of the inelasticity \(K\), the multiplicity \(<n>\) and the fraction \(P_0\) of leading neutral pions, in high energy hadronic collisions, can contribute to explain consistently the behaviour observed in data, both for \(N_\mu\) vs. \(E\) and \(X_{\text{max}}\) vs. \(E\).

5 Summary and conclusions

In this paper we have shown that, in the interpretation of the energy dependence of the depth of the shower maximum and of the muon content in high energy cosmic ray showers \((E \gtrsim 10^{17} \text{ eV})\), other variables besides the composition may play an important role, in particular those characterising the first (high energy) hadronic collisions. The inelasticity \(K\), the nature of the leading particle \(P_0\), and the particle multiplicity \(<n>\) were discussed.

We developed a model which includes a hybrid one-dimensional Monte Carlo
Fig. 5. The number of muons as a function of the primary energy. The results of our model (full line) are shown and compared with Akeno/AGASA data (symbols).

It should be noted however that the model (in particular the behaviour of the number of strings as a function of the energy [7]) is tuned for high energy, the region where the percolation threshold arises ($E > 10^{17}$ eV). The next step will be to create a full Monte Carlo simulation including percolation, adapted to the low and high energy regions. This is particularly important for the case of N_{μ}, due to the influence of P_0. A detailed Monte Carlo calculation is thus required for a better understanding of data at all energies. This will allow to further test the predictions of percolation, namely the relative decrease of multiplicity, the non monotonical behaviour of the inelasticity and the fast growth of P_0 with energy, around 10^{17} eV.

Finally, and concerning the leading π^0's, it is important to realise that above 10^{19} eV they become active in the cascade, thus generating more hadrons. The β parameter is expected to increase, and this is already seen in our simulations.
Fig. 6. The depth of the shower maximum as a function of the primary energy. The results of our model (full line) are shown and compared with HiRes data (symbols).

However, a proper treatment of this problem requires, once again, a detailed Monte Carlo on percolation. More data at extremely high energies are also needed.

Acknowledgements

We thank C. Pajares and S. Andringa for useful discussions. J. A.-M. is supported by the “Ramón y Cajal” program and thanks LIP for the hospitality.

References

[1] T. Shanta, Nucl. Phys. B 75A (1999) 27; K. Asakamori et al., Ap. J. 502 (1998) 278; M.L. Cherry et al, Proc. 26th Int. Cosmic Ray Conference, Salt Lake City, 3 (1999) 163.
A.A. Watson, astro-ph/0410514, 2004, based on a talk at XIII ISVHECRI: Pylos, Greece, 2004.

M. Nagano and A.A. Watson, Rev. Mod. Phys. 72 (2000) 689.

M. Nagano, D. Heck, K. Shinozaki, N. Inoue, J. Knapp, Astrop.Phys.13 (2000) 277.

R. Abbassi et al., Ap. J. 622 (2005) 910.

L.W. Jones, Nucl. Phys. B75A (1999) 54; A. S. Chou, astro-ph/0606742

J. Dias de Deus, M.C. Espirito Santo, M. Pimenta and C. Pajares, Phys.Rev.Lett.96 (2006) 162001.

T. Antoni et al., Astrop. Phys. 14 (2001) 245; W.D. Apel et al., Astrop. Phys. 24 (2006) 467.

N. Chiba et al., Nucl. Instrum. and Methods A311 (1992) 338; N. Hayashida et al., J. Phys. G 21 (1995) 1101; N. Hayashida et al., Proc. 25th ICRC (Durban) 4 (1997) 145.

T. Abu-Zayyad et al. [HIRES-MIA Collaboration], arXiv:astro-ph/9911144
T. Abu-Zayyad et al. [HIRES-MIA Collaboration], Astrophys.J.557 (2001) 686.

J. Knapp et al, Nucl. Phys. B (Proc. Suppl.) 52B (1997) 136; O. Heck et al., Nucl. Phys. B (Proc. Suppl.) 52B 139.

B.R. Dawson, R. Meyhandan, K. M. Simpson, Astrop.Phys.9 (1998) 331.

M. Heitler, “Quantum Theory of Radiation”, Oxford University Press (1944).

L. Anchordoqui, M. T. Dova, A. Mariazzi, T. McCauley, T. Paul, S. Reucroft, J. Swain, Annals Phys.314 (2004) 145.

T.K. Gaisser, R.J. Protheroe, K.E. Turver, T.J.L. Mccomb, Rev.Mod.Phys.50 (1978) 859.

J. Matthews, Astrop.Phys.22 (2005) 387.

T. K. Gaisser, “Cosmic rays and particle physics”, Cambridge University Press, Cambridge (1990).

J. Alvarez-Muñiz, R. Engel, T.K. Gaisser, J. A. Ortiz, T. Stanev Phys. Rev. D 66 (2002) 033011.

B.Z. Kopeliovich, N.N. Nikolaev and I.K. Potashnikova, Phys. Rev. D39 (1989) 769; A. Capella, U. Sukhatme, C.I. Tan and J. Tran Thanh Van, Phys. Reports 236 (1994) 225; J. Ranft, Phys. Rev. D51 (1995) 64; L. Durand and H. Pi, Phys. Rev. Lett. 58 (1987) 303; H.J. Drescher, A. Dumitru and M. Strikman, hep-ph/0408073 S. Ostapchenko, hep-ph/0501093; I.N. Mishustin and J.L. Kapusta, Phys. Rev. Lett. 88 (2002) 112501.

R.S. Flecher, T.K. Gaisser, P. Lipari and T. Stanev, Phys. Rev. D63 (2001) 054030.
[21] N.N. Kalmykov, S.S. Ostapchenko and A.I. Pavlov, Nucl. Phys. Proc. Suppl. 52B (1997) 17.

[22] N.S. Amelin, M.A. Braun and C. Pajares, Phys. Lett. B306 (1993) 312; N.S. Amelin, M.A. Braun and C. Pajares, Z. Phys. C63 (1994) 507; M.A. Braun and C. Pajares, Eur. Phys. J. C16 (2000) 349; M.A. Braun and C. Pajares, Phys. Rev. Lett. 85 (2000) 4864; C. Pajares, D. Sousa and R.A. Vásquez, Phys. Rev. Lett. 86 (2001) 1674.

[23] M.A. Braun, E.G. Ferreiro, F. del Moral and C. Pajares, Eur. Phys. J. C25 (2000) 249.

[24] H.J. Drescher, astro-ph/0411143

[25] M. Takeda et al, Astrop. Phys. 19 (2003) 447.