Mathematical Modeling for Radial Overcut on Electrical Discharge Machining of Incoloy 800 by Response Surface Methodology

V. Muthukumara\(^a\)*, N. Rajesh\(^b\), R. Venkatasamy\(^a\), A. Sureshbabu\(^b\), N. Senthilkumar\(^c\)

\(^a\)Department of Mechanical Engineering, Saveetha Engineering College, Chennai-602105, India.
\(^b\)Department of Manufacturing Engineering, CEG, Anna University, Chennai- 600025, India.
\(^c\)Department of Mechanical Engineering, Adhiparasakthi Engineering College, Melmaruvathur- 603319, India.

Abstract

In the present study, Response surface methodology is applied for prediction of radial overcut in die sinking electrical discharge machining (EDM) process for Incoloy 800 superalloy with copper electrode. The current, pulse-on-time, pulse-off time and voltage are considered as input process parameters to study the ROC. The experiments were planned as per central composite design (CCD) method. After conducting 30 experiments, a mathematical model was developed to correlate the influences of these machining parameters and ROC. The significant coefficients were obtained by performing ANOVA at 5% level of significance. From the obtained results, it was found that current and voltage have significant effect on the radial overcut. The predicted results based on developed models are found to be in good agreement with the experimental results reasonably well with the coefficient of determination 0.9699 for ROC.

1 Introduction

Nickel base super alloys are widely used in high temperature and high pressure applications such as gas turbines, electric power generation equipment, nuclear reactors and high temperature chemical vessels (Hewidy et al. (2005)). Inconel 800 is a high strength, temperature resistant (HSTR) nickel-based super alloy, mainly used in aerospace.

* Corresponding author. Tel.: profmuthukumarmech@gmail.com

© 2014 Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

Selection and peer review under responsibility of the Gokaraju Rangaraju Institute of Engineering and Technology (GRIET)

Keywords: Electrical discharge machining; Radial overcut; Incoloy 800 superalloy; central composite design; Response surface methodology;
Nomenclature

A Current
B Pulse-on-time
C Pulse-off-time
D Voltage
v Volts
RSM Response surface methodology
CCD Central composite Design
ROC Radial overcut
EDM Electrical discharge machining
ANOVA Analysis of variance
μs Microsecond
S/N ratio Signal-to-noise ratio
DOF Degree of freedom
SS Sum of squares
MS Mean square
F Variance ratio
P Contribution ratio
% P Percentage of contribution

applications, such as gas turbines, rocket motors, and spacecraft as well as in nuclear reactors, pumps and tooling. The properties of these super alloys, such as temperature strength, high hardness; low thermal diffusivity; presence of highly abrasive carbide particles and high tendency to welding to the tool and to forming built-up edge, make them extremely difficult-to-machine (Narutaki et al. (1993)). So, Traditional machining of nickel-based super alloy becomes a most challenging than those of conventional materials. To overcome these consequences, non-traditional machining methods like Electrical Discharge Machining, Electro chemical Machining, Laser beam machining and Abrasive water jet machining offers an attractive alternative.

Electrical discharge machining (EDM) is a well-established machining option for manufacturing geometrically complex or hard material parts that are extremely difficult-to-machine by conventional machining processes. Its unique feature of using thermal energy to machine electrically conductive parts regardless of hardness has been its distinctive advantage in the manufacture of mould, die, automotive, aerospace and surgical components (Ho and Newman, (2003)). However, EDM is a very demanding process and the mechanism of the process is complex and not entirely understood yet. Therefore, it is difficult to establish an analytical model and its optimal setting that can exactly predict the performance and optimal response by correlating the process parameters (Pradhan, (2013)).

Some researchers worked on EDM of difficult-to-cut materials. Kuppan et al. (2008)] reported on an experimental investigation of small deep hole drilling of Inconel 718 using the EDM process by considering peak current, pulse on-time, duty factor and electrode speed as input machining parameters. Mathematical models were developed for the MRR and depth averaged surface roughness (DASR) responses using response surface methodology.

An attempt was made to determine the important machining parameters for performance measures like MRR, SF, and SG during WEDM of Inconel 825 material by using Taguchi grey relational analysis ((Rajyalakshmi and Venkata Ramaiah, (2013)). Muthukumar et al. (2010) have demonstrated optimization of WEDM process parameters of Incoloy800 super alloy with multiple performance characteristics such as MRR, surface roughness and Kerf based on the Grey–Taguchi Method. Mao-yong LIN et al. (2013) carried out the optimization of micro milling EDM parameters with multiple performance characteristics such as low electrode wear, high material removal rate and small working gap for the machining of Inconel 718 work material. Another attempt was made to optimize the WEDM parameters for output responses of MRR, SR and Ker width during machining of Titanium alloy (MuthuKumar et al. (2010)).
Response surface methodology (RSM) is an effective tool for developing, improving, and optimizing the processes by combining several input variables and assess how their complex interactions affect the performance of the response variables (Natarajan et al. (2011), Lin et al. (2012)). RSM uses statistical design of experiment techniques, such as the central composite design (CCD) for developing the model and the performance of the proposed model is then established by ANOVA tests. 3D Response graphs can be used to study the effect of input variables on responses. Quite a lot of researchers have used RSM technique to evaluate the performance of manufacturing processes (Djoudi et al. (2007), Asla (2008), Sohani et al. (2009), Tsao (2008), Gopalakannan and Senthilvelan (2013)).

From the literature study, it was understood that no research work has been reported in Electric Discharge Machining of INCOLOY 800 material. So, In this study, response surface methodology is used for the development of a mathematical of ROC with peak current, pulse on time, pulse off time and voltage as input parameters. The adequacy of the developed model has been evaluated by ANOVA test and the effect of machining parameters on ROC has been investigated through 3D response graphs.

2 Experimental details

The experiments were carried out on Roboform-40 die-sinking EDM machine manufactured by Charmilles technologies, Switzerland. The commercial grade EDM oil was used as a dielectric fluid and impulse jet flushing system was employed to flush away the eroded material from the sparking area. The workpiece material used for the experiments was Incoloy 800. Table 1 depicts the chemical composition of Incoloy 800. The copper electrode with a diameter of 9.4 mm is selected for the purpose of this study.

Element	C	Cr	Mn	Al	Ni	Fe	Ti	Si
Wt %	0.081	22.463	0.300	0.228	34.462	41.004	0.308	0.488

The diameter of holes produced in the work material has been measured by using Video Measuring System(VMS 2010F) as shown in Figure 1. The Radial overcut is defined as half the difference of diameter of the hole produced to the diameter of tool (Veenaraja et al. (2013)), that is,

\[\text{ROC} = \frac{d_t - d_{\mu}}{2} \]

Here \(d_t \) is the diameter of the tool and \(d_{\mu} \) is the diameter of the hole produced by the tool on the work piece.

3 Experimental design and parameter selection

Response surface methodology (RSM) is an effective tool for developing, improving, and optimizing the processes by combining several input variables and assess how their complex interactions affect the performance of the response variables. In general case, the response surface is described by an equation of the form (Sameh, S.Habib (2009)):

\[Y = \beta_0 + \sum_{i=1}^{k} \beta_i x_i + \sum_{i=1}^{k} \beta_i^2 x_i^2 + \sum_{i<j} \beta_{ij} x_i x_j + \varepsilon \]

(2)
Table 2 selected machining parameters and its levels

Factors	Notation	Unit	Levels
Current	A		-1 8
Pulse-on-time	B	μs	0.2 0.9
Pulse off time	C	μs	0.2 0.9
Gap voltage	D	v	30 115 200

RSM uses statistical design of experiment techniques, such as the central composite design (CCD) for developing the model and the performance of the proposed model is then established by ANOVA tests. Experiments were designed on the basis of the experimental design technique called a CCD approach. The coefficients of regression model can be found out from the experimental results by using the Design Expert 8.0 statistical software. Based on literatures on EDM research and the working characteristics of the selected machine, the machining parameters chosen for this work are discharge current, pulse on-time, pulse-off time and voltage. The selected machining parameters and its levels are presented in Table 2.

Table 3 CCD Design layout and experimental results

Exp. Run	A	B	C	D	ROC
	Current	Pulse-on time	Pulse-off time	Voltage	Radial over cut
1	16	0.9	0.9	30	0.235
2	16	0.9	0.9	115	0.2611
3	24	1.6	1.6	200	0.2154
4	8	1.6	0.2	30	0.277
5	24	0.2	1.6	200	0.1846
6	24	1.6	0.2	200	0.195
7	24	0.2	0.2	30	0.1385
8	24	0.2	0.2	200	0.1722
9	16	0.9	0.2	115	0.185
10	8	0.2	1.6	200	0.188
11	8	1.6	1.6	30	0.1863
12	16	0.9	0.9	115	0.1895
13	16	0.9	0.9	115	0.1935
14	16	1.6	0.9	115	0.2498
15	16	0.2	0.9	115	0.2375
16	16	0.9	0.9	115	0.1936
17	8	1.6	0.2	200	0.1972
18	24	0.9	0.9	115	0.2198
19	24	0.2	1.6	30	0.1286
20	8	0.9	0.9	115	0.1767
21	8	1.6	1.6	200	0.1214
22	16	0.9	0.9	200	0.1885
23	8	0.2	1.6	30	0.2295
24	16	0.9	0.9	115	0.1824
25	8	0.2	0.2	30	0.1982
26	16	0.9	1.6	115	0.2218
27	24	1.6	1.6	30	0.255
28	16	0.9	0.9	115	0.261
29	8	0.2	0.2	200	0.2154
30	24	1.6	0.2	30	0.277
4 Experimental results and discussion

A total number of 30 experimental runs for the CCD were conducted as per input data in Table 3. Fig.1 illustrates the measurement of diameter of EDMachined holes on work material by using Video Measurement System. Then output response, ROC is calculated by using the Eqn. (1) for each run and is tabulated in Table 3.

Fig.1 Measuring diameter of EDMachined holes on work material by Video Measurement System

4.1 Development of Mathematical model for ROC and Analysis of variance

The mathematical model has been developed to correlate the effects of the machining parameters on the magnitude of ROC by using Design Expert software and utilizing the relevant experimental data from Table 3. The checking of goodness of fit of the model is very much essential for data analysis. The model adequacy checking comprises the test for significance of the regression model, test for significance on model coefficients, and test for lack of fit. For this purpose, analysis of variance (ANOVA) is performed. The fit summary recommended that the quadratic model is statistically significant for analysis of ROC. The results of quadratic model for ROC are given in ANOVA Table 4.

The Model F-value of 34.51 implies the model is significant. There is only a 0.01% chance that a "Model F-Value" this large could occur due to noise. The values of "Prob > F" in Table 3 for the term of models less than 0.05 (95% confidence) indicate model terms are significant. In this case A, D, AD, A² are significant model terms. Values greater than 0.1000 indicate the model terms are not significant. If there are many insignificant model terms (not counting those required to support hierarchy), model reduction may improve your model.

The "Lack of Fit F-value" of 2.24 implies the Lack of Fit is not significant relative to the pure error. There is a 19.33% chance that a "Lack of Fit F-value" this large could occur due to noise.
It also shows the R-Squared and adjusted R-Squared values for the model. When the R\(^2\) approaches unity, the better the response model fits the experimental data. Here, obtained value of 0.9699 R-Squared infers that the model explains approximately 96.99% of the variability in ROC. The "Pred R-Squared" of 0.8816 is in reasonable agreement with the "Adj R-Squared" of 0.9418. Further, the value of "Adeq Precision" in this model is greater than 4 and is desirable and this value of 21.246 indicates an adequate signal. This model can be used to navigate the design space.

Table 4 Analysis of variance for ROC model

Source	Sum of Squares	DOF	Mean Square	F value	P value
Model	0.048	14	3.430E-003	34.51	< 0.0001
A-Current	0.030	1	0.030	298.83	< 0.0001
B-Pulse-on time	5.689E-007	1	5.689E-007	5.725E-003	0.9407
C-Pulse-off time	1.217E-004	1	1.217E-004	1.22	0.2859
D-Gap voltage	0.013	1	0.013	133.74	< 0.0001
AB	4.516E-006	1	4.516E-006	0.043	0.8341
AC	8.266E-006	1	8.266E-006	0.083	0.7770
AD	8.776E-004	1	8.776E-004	8.83	0.0095
BC	7.526E-005	1	7.526E-005	0.76	0.3979
BD	6.631E-006	1	6.631E-006	0.067	0.7997
CD	3.071E-004	1	3.071E-004	3.09	0.0991
A\(^2\)	2.236E-003	1	2.236E-003	22.50	0.0003
B\(^2\)	6.928E-005	1	6.928E-005	0.70	0.4168
C\(^2\)	8.629E-005	1	8.629E-005	0.87	0.3662
D\(^2\)	1.615E-008	1	1.615E-008	1.623E-004	0.9900
Residual	1.491E-003	15	9.937E-005		
Lack of Fit	1.219E-003	10	1.219E-004	2.24	0.1933
Pure error	2.720E-004	5	5.441E-005		
Corr. Total	0.050	29			

R\(^2\) = 0.9699 \quad \text{Adeq. Precision} = 21.246 \quad \text{Pred.R}^2 = 0.8816

In order to adjust the fitted quadratic model for ROC the non-significant terms are eliminated by backward elimination process. The final quadratic model of ROC is determined as follows:

\[
\text{ROC} = 0.19 + 0.041A + 0.027D - 7.406 \times 10^{-3} AD - 4.381 \times 10^{-3} CD + 0.029A^2 + 7.895 \times 10^{-3} D^2
\]
Then test of the normality assumptions of the data is conducted and it can be seen in Fig. 2 that all the points on the normal plot come close to forming a straight line. This indicates that the data are fairly normal and there is no deviation from the normality. Further, each experimental data is compared with the predicted data calculated from the model and is represented in the Fig. 3. It is clear that predicted values match the experimental values reasonably well for ROC of Incoloy 800 material in EDM.

4.2 Effect of EDM parameters on the ROC

Radial overcut is the inherent parameter to the EDM process which is unavoidable though suitable compensations are provided at the tool design. In order to achieve the greater accuracy in EDM process overcut should be minimum. Therefore, parameters affecting the overcut are essential to recognize.
can be seen that minimum overcut occurs for a minimum level pulse-off time and near to minimum level of current, but the influence of current is larger than that of pulse-off time.

Fig. 6 Response surface plot for ROC Vs pulse-on time and pulse-off time

Fig. 7 Response graph for ROC Vs voltage and current

Fig. 6 shows the effect of pulse-on time and pulse off-time on ROC. It is clear that lower ROC occurs for a lower pulse off-time and lower value of pulse-on time and also note that the middle level of both factors are not a good condition for lower overcut but the extreme levels are good. Fig. 7 shows the influence of both voltage and current on ROC. It can be seen that minimum ROC occurs for a minimum level of voltage and current and also it is cleared that ROC depends more on current than on voltage.

Fig. 8 Response surface plot for ROC Vs voltage and pulse-on time

Fig. 9 Response graph for ROC Vs voltage and pulse-off time

Fig. 8 shows the influence of voltage and pulse-on time on ROC. A minor ROC occurs for the lower values of voltage and pulse-on time. It is cleared that ROC depends more on voltage than pulse-on time. Fig. 9 shows the effect of voltage and pulse-off time on ROC. A minimum ROC occurs for minimum levels of voltage and pulse-off time. It can be seen that the influence of voltage is larger than that of pulse-off time.

5. Conclusions

In this study, an attempt was made to apply response surface methodology for prediction of ROC in electrical discharge machining of Incoloy 800 with copper electrode. Thirty experiments were conducted successfully for four input parameters at three levels as per central composite design (CCD) method. The mathematical model for ROC has been developed on the basis of RSM by utilizing the experimental results. ANOVA results show that current and voltage are highly significant parameters, while pulse-on time and pulse-off time are non-significant parameters by considering ROC response. The predicted values match the experimental results reasonably well with the coefficient of determination of 0.9699 for ROC. From the response surface plots, it is cleared that lower level of current and voltage minimizes the ROC considerably. This study demonstrates that response surface methodology can be successfully used to model input machining parameters of
EDM process for Incoloy 800 super alloy. In future the study can be extended for developing models for other responses like MRR, TWR and SR.

Acknowledgements

Authors are very grateful to the Department of Manufacturing Engineering (DOME), College of Engineering, Anna University, Chennai 600025 and Central Institute of Plastics Engineering & Technology, Chennai-600032, for providing machining and testing facilities to carry out the experiments and all their valuable support to carry out this research work.

References

Aslan, N., 2008. Application of response surface methodology and central composite rotatable design for modeling and optimization of a multi-gravity separator for chrome concentration. Powder Technol 185, 80–86.

Hewidy, M.S., El-Taweel, T.A., El-Safty, M.F., 2005. Modelling the machining parameters of wire electrical discharge machining of Inconel 601 using RSM. Journal of Materials Processing Technology 169, 328–336.

Djoudi, W., Aissani-Benissad, F., Bourouina-Bacha, S., 2007. Optimization of copper cementation process by iron using central composite design experiments. Chem Eng J 133, 1–6.

Gopalakannan, S., Senthivelan, T., 2013. EDM of cast Al/SiC metal matrix nanocomposites by applying response surface method. Int J Adv Manuf Technol 67, 485–493.

Ho, K.H., Newman, S.T., 2003. State of the art electrical discharge machining (EDM). International Journal of Machine Tools & Manufacture 43, 1287–1300.

Kuppan, P., Rajadurai, A., Narayanan, S., 2008. Influence of EDM process parameters in deep hole drilling of Inconel 718, Int J Adv Manuf Technol 38, 71–84.

Lin, M.Y., Tsao, C.C., Hsu, C.Y., Chiou, A.H., Huang, P.C., Lin, Y.C., 2013. Optimization of micro milling electrical discharge machining of Inconel 718 by Grey-Taguchi method. Trans. Nonferrous Met. Soc. China 23, 661–666.

Lin, Y.C., Tsao, C.C., Hsu, C.Y., Hung, S.K., Wen, D.C., 2012. Evaluation of the characteristics of the micro electrical discharge machining process using response surface methodology based on the central composite design. Int J Adv Manuf Technol 62, 1013–1023.

MuthuKumar, V., SureshBabu, A., Venkatasamy, R., Raajenthiren, M., 2010. Optimization of the WEDM parameters on machining Incoloy800 Super alloy with multiple quality characteristics, International Journal of Engineering Science and Manufacture 2, 1538-1547.

MuthuKumar, V., SureshBabu, A., Venkatasamy, R., Raajenthiren, M., 2010. Multi response optimization of machining parameters of Wire-EDM using grey relational analysis in the Taguchi Method. International Journal of Applied Engineering Research 5, 2325–2338.

Narutaki, N., Yamane, Y., Hayashi, K., Kitagawa, T., Uehara, K., 1993. High speed machining of Inconel 718 with ceramic tools. Ann. CIRP 42, 103–106.

Natarajan, U., Periyanan, P.R., Yang, S.H., 2011. Multiple-response optimization for micro-end milling process using response surface methodology. Int J Adv Manuf Technol 56, 177–185.

Pradhan, M.K., 2013. Estimating the effect of process parameters on surface integrity of EDMed AISI D2 tool steel by response surface methodology coupled with grey relational analysis. Int J Adv Manuf Technol 67, 2051–2062.

Rajyalakshmi, G., Venkata Ramaiah, P., 2013. Multiple process parameter optimization of wire electrical discharge machining on Inconel 825 using Taguchi grey relational analysis. Int J Adv Manuf Technol 69, 1249–1262.

Sameh, S.Habib., 2009. Study of the parameters in electrical discharge machining through response surface methodology approach. Applied Mathematical Modelling 33, 4397–4407.

Sohani, M.S., Gaitonde, V.N., Siddeswararapp, B., Deshpande, A.S., 2009. Investigations into the effect of tool shapes with size factor consideration in sink electrical discharge machining (EDM) process. Int J Adv Manuf Technol 45, 1131–1145.

Tsao, C.C., 2008. Comparison between response surface methodology and radial basis function network for core-center drill in drilling composite materials. Int J Adv Manuf Technol 37, 1061–1068.

Veenaraja, D., Muthukumar, V., Venkatasamy, R., Dharmendhirakumar, M., Sureshbabu, A., Senthilkumar, N., 2013. “Impact of Machining Parameters on the EDM Process Responses: A Taguchi Approach for Al-SiC MMC,” 4th Nirma University International Conference on Engineering. Ahmedabad, India, paper#2251.