Adipose expression of CREB3L3 modulates body weight during obesity
Maximilian A. McCann^1, Yanliang Li^1,2, Marcos Muñoz^1, Victoria Gil^1, Guifen Qiang^1,3, Jose Cordoba-Chacon^4, Matthias Blüher^5, Stephen Duncan^6, Chong Wee Liew*^1

^1Department of Physiology & Biophysics, University of Illinois at Chicago, Chicago, IL, USA
^2Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, China
^3State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (Current affiliation)
^4Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
^5Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
^6Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, SC, USA

Corresponding author:
Chong Wee Liew PhD
Department of Physiology & Biophysics
College of Medicine
University of Illinois at Chicago
835 S Wolcott Ave, M/C 901, MSB, E-202, Chicago, IL 60612
Telephone: 1-312-413-1086; Fax: 1-312-996-1414
E-mail: cwliew@uic.edu
Figure S1. Adipose ablation of CREB3L3 enhances fat mass, but not body weight in mice fed a chow diet.

(a) Quantitative PCR for the expression of CREB3L3 message in mature adipocytes isolated from digested epididymal (eWAT) and inguinal (iWAT) white adipose tissue (n= 4-5 mice per group). CREB3L3 expression was normalized to TBP housekeeping gene.

(b-c) Body weight and body composition NMR measurements of chow-fed control and fKO mice at 22 wks of age (n=7-9 mice per group).

(d) Representative image of control and fKO mice following high-fat feeding.

Data presented as mean +/- SEM. The difference in means was analyzed using Student’s t-test where *P<0.05.
Figure S2. CREB3L3 fKO does not induce hepatic steatosis

(a) Quantitative PCR for insulin-like growth factor binding protein 1 (Igfbp1) in control and fKO livers following high-fat feeding (n=5 mice per group). Igfbp1 expression was normalized to B-actin housekeeping gene.
(b) Representative images of H&E-stained liver sections following high-fat feeding.
(c) Quantification of non-esterified fatty acids (NEFA), triglycerides (TG), and cholesterol from liver extracts following high-fat feeding using colorimetric assays (n=7-8 mice per group).
(d) Quantification of fasted plasma 3-hydroxybutyrate (3-HB) following high-fat feeding using colorimetric assay (n=7-8 mice per group). Data presented as mean +/- SEM. The difference in means was analyzed using Student’s t-test where *P<0.05.
Figure S3. CREB3L3 ablation promotes insulin resistance, crown-like structure formation, and lipogenesis in obese inguinal fat

(a-b) Western blot measuring abundance of Akt and Akt phosphorylated at the S473 site in high fat-fed control and fKO iWAT following injection with PBS or insulin and (b) quantification of Western blot results, with abundance of S473 phosphorylation normalized to abundance of total Akt in iWAT (n=2 mice per PBS group; n=3-4 ins-stimulated mice per group).

(c) Representative images of H&E-stained iWAT sections following high-fat feeding and quantification of the number of crown-like structures per field of view. Arrows demarcate the presence of crown-like structures (3 images were taken per mouse. n=4-8 mice per group).

(d-e) Quantitative PCR for markers of (d) adipogenesis or (e) lipogenesis in control and fKO iWAT following high-fat feeding (n=5-6 mice per group). Expression was normalized to TBP housekeeping gene and presented as fold change over controls. Data presented as mean +/- SEM with sample sizes listed above. The difference in means was analyzed using Student’s t-test where *P<0.05 and **P<0.01.
Figure S4. CREB3L3 ablation does not reduce expression of thermogenic markers in obese brown, epididymal, or inguinal fat, nor in cold-exposed inguinal fat

(a) Quantitative PCR for markers of thermogenesis and adipocyte browning in brown adipose tissue from control and fKO mice following high-fat feeding (n=5 mice per group). Target gene expression was normalized to TBP and presented as fold change over controls.

(b) Quantification of plasma FGF-21 concentration following high-fat feeding using ELISA (n=9 mice per group).

(c) Quantitative PCR for markers of thermogenesis and adipocyte browning in inguinal adipose tissue in lean control and fKO mice housed at 6 degrees for 7 days (n=3-4 mice per group).

(d-e) Quantitative PCR for markers of thermogenesis and adipocyte browning in (d) iWAT or (e) eWAT from control and fKO mice following high-fat feeding (n=5-6 mice per group).

(f-g) Quantitative PCR for markers of fatty acid oxidation in (f) eWAT or (g) iWAT from control and fKO mice following high-fat feeding (n=5-6 mice per group).

(h) Western blot measuring abundance of UCP1 in iWAT from control and fKO mice following high-fat feeding. Data presented as mean +/- SEM with sample sizes listed above. The difference in means was analyzed using Student’s t-test where *P<0.05 and **P<0.01.
Figure S5. Ablation of CREB3L3 reduces expression of lipolytic markers in obese epididymal, but not inguinal fat

(a-b) Quantitative PCR for markers of lipolysis in (a) eWAT or (b) iWAT from control and fKO mice following high-fat feeding (n=5 mice per group). Target gene expression was normalized to TBP and presented as fold change over control.

(c) Quantification of non-esterified fatty acids (NEFA) from the plasma of high-fat fed control and fKO mice 1h after injection with CL316,243 to induce adipocyte lipolysis (n=5-8 mice per group). Data presented as mean +/- SEM with sample sizes listed above. The difference in means was analyzed using Student’s t-test where *P<0.05 and **P<0.01.
Figure S6. Overexpression of CREB3L3 in inguinal fat increases expression of inflammatory cytokines, but not adipogenic markers or UCP1 protein abundance.

(a) Quantitative PCR for the expression of CREB3L3 message in iWAT from ctrl and sOE mice following high-fat diet (n=6-8 mice per group). Target gene expression was normalized to TBP and presented as fold change over WT.

(b-c) Quantitative PCR for the expression of adipogenic or inflammatory markers in iWAT from ctrl and sOE mice following high-fat diet (n=6-8 mice per group).

(d) Western blot measuring abundance of UCP1 in iWAT from ctrl and sOE mice following high-fat feeding. Data presented as mean +/- SEM with sample sizes listed above. The difference in means was analyzed using Student’s t-test where *P<0.05.
Figure S7. Full length blots for all protein abundance figures
Table S1. Sequence of primers used for qPCR

Gene name	Forward Sequence	Reverse Sequence
CREB3L3	GTGACGCTAGACAGAAGACAGTAG	ACCTCCCAAAGATGCAGCTTCA
CREB3L3 ORF	GAGAAGAAGCTGCTGGCTTTAA	CCGAGATCTTCTTGGGATTT
Igfbp1	GCAGAGCTAGCTGGCTTTAGAGA	CTTGTTGAGAGCTGGGAGAATA
Pparg1	CTGGCTCATTCATGCTGAATAAG	AGGCTCATTAAAGACACCAAAG
Pparg2	TGCCCTGTGACCTGGCTATTAG	GAGAGGCTCAGAGCAGCTGATT
Srebp1c	CTTCTGATCTCATGGCTCATACC	CTAGGGAAGCTGGGAGTTTCTCT
Fasn	GCTGCGGAATCTCAGAGGTAAGA	AGAGACCTGTCATTGCAATTT
Fabp4	GATGCTTTGCTGAGGCTAGTAC	CTGTCGTCTCTTGAGGATTTTC
PGC1a	GACAATCCGAGAGACACATAC	AGAGACCTGTCATTGCAATTT
PGC1B	GGTGTTGCTGAGATTGAGAGA	CTGAAACAGCGAGGTGAGTAA
Cox8b	GACACATGAGCAGCTGCAAGCT	GCAAGTTCAGCTGGTACCTCC
Cpt1b	TGAGACCAGTCTTGGCTTTAC	GCGCATTTGCTCAGAGATAT
Acc1	TGATACAAGGCTGTGCTGGGCT	CCAATCGGCTGCTTGGAGAG
Acc2	GAGGCGGCAAAGACACAGGAA	CACATCTCTACATTGACCCAT
Ppara	AAGACTCTACTGCTACGGAAATG	AACATTTGGGCGCAGTTAAG
Ucp1	CTGGCAGACAGTACCACAAAG	TCAGACTGTGAAAGACACAC
Elovl3	TCCGGTCAGCTGTCATTGCTT	GGCATCTGATGCAACCTTATAG
Cidea	ATACAAACTGCTGCTTACGAC	TACTACCCGGCTGCTATTTC
Cyc1	GTTACCATGAGCTTCTGCTCAT	GATCATCTATTAGGGCCATCC
Tfam	GTCCATAGGAGCCACATGTCG	CCAATGCTGAGAAACACTCCG
Adrb3	GCTCTGATCTGTTGATTGTTT	GTCAAGATGTTGCTTTGAGAG
Prdm16	CAGCAGCTGAGACCCACCTTC	GCGTGCATCCGGCTGTGG
F4/80	TTTTCTCGCCTGCTTCTTCTTC	CCCCCGTCTTCTGATATTCC
Ccl2/MCP1	CCACCTACCTGCTGCTACTCAT	TGGTGATCTCTTGTAGCTTCTTC
IL-1b	TGGAGAGTGTTGAGATCCCAAAGCAAT	TGTCATCCGACTGTTTCTCACA
TNF-a	GCTCTTCTTCATCTGCTGTCCTT	GGCCATTTGGAGAATCTTCTCAT
CD74	CCCAGAGAATCTGAGACTTCTTA	CAGGAGCTTCTTGTCTCATCTC
Mif	CCAGAGACGCGCATACATCAAG	GCCAGCGCTTCTGCTGATAA
Resistin	TCAACAAAGAAGAGCTGTTGGGACA	ATGGGTTCTCATGCTGAGGACAGAT
Rbp4	ACCTTTCTTATGGTGAGCTAAAAC	CATCTTTGAGGACCTTCTGAA
Leptin	CCTCTACAGACCTGCTGACCC	TCTCCAGGCTATTGCTTCTG
Adiponectin	TGTTGCAAGCTCCTGTCTTCTCT	CATCCCAACCTGCAAGATTCCTCTCT
Cxcl2/MIP-2	AGTTTGGGCTTATACCTGATAA	TCAGTTTACCTGCTTGCTG
Dio2	AAGGCTCGGAAATGTCACCGAAATG	TGCGTTTCTGACCTACCTGTTGGAAA
Fgf21	GCTCTTCTATGGCAGCTCACC	GGTACACATTGTAACGCCTCCTC
aP2	CTGCTACCTTACAGAGATTTTA	TCCACAGAAGTTGTAAGTCTT
C/EBPα	CTCCCCAGAGAGACATGAAATG	TTAGGCGAGGACAGGTG
C/EBPβ	CCAAGAAGACGGAGTGGCAGACG	CAAGTTCGCGAGGTGCTGA
Plin1	ACTGAAAGGCGCACATCTCTA	GAGGAGACTTCAAACCTCCTC
Plin2	GAGAGAAGCACGTCCTATTCTC	GTGAGAGGAGAGACTTGGTCT
Lpl	CCCACAAGTGATGTCGTCATT	AGGGACATACCTGAGCATAC
Scd1	CCCTGCGGATCTCTTCTTATC	TGTTTCTGAGAATCTTGTG
Scd2	CAGTCCACTCTGACGATAATG	ACAGCTGGGCTCCAGTAAAG