A review ABCDE Evaluated the Model for Decision by Dermatologists for Skin Lesions using Bee Colony

Mohanad Aljanabi1, Mahmood H. Enad2, Radhi Muhssin Chyad3, Fadhel A. Jumaa1, Ahmed Daud Mosheer1, Alaa Sami ali Altohafi1

1 Electrical Power Techniques Engineering, AL- Mauaib / Technical College, Al-Furat Al-Awsat Technical University Najaf, Iraq
2 Electrical Techniques Department, Technical Institute of Karbala, Al-Furat Al-Awsat Technical University, Najaf, Iraq
3 Laser and optoelectronics centre, Directorate of Materials Research, Ministry of Science and Technology, Baghdad, Iraq.

*Corresponding author: com.mhn@atu.edu.tr.

Abstract: Systematic self-skin check-ups for patients have been exposed to reduce the deepness of skin lesions at the time of analysis and simplify a lower hazard of stages of skin cancer when joined with normal visits with a doctor of medicine. Images of skin lesions are also taken with a camera or introduced from public databases. Loading investigational outcomes within a robust databases set-up, which is broadly maintained by study tools, affords supplementary-edibility and agrees various examination tools to the admission databases in the same effective style, because of above-mentioned hurdles, the automation of lesion border detection in dermoscopy are required. To solve this problem, this paper developed ABCDE skin lesions boundary technique with a healthy control pointer function, which is based on colony bees’ scheme (ABC method). The estimated performance parameters and calculation times are equivalent or improved than above-mentioned approaches. This all-ABCDE application is planned to be informal navigate for the end user, which is imperious for the final democratization of such medical diagnostic classifications. The resulting segmentations that can be used as an input to test the skin lesions are benign, suspicions and melanoma classification system.

Keywords: Colony Bees, Dermatologists, Skin Lesions, TDS Formulation.

1. Introduction
The ABCDE law, primarily presented in 1985 as the ABCD [1] and then extended in 2004 to the ABCDE statute, [2] involves some clinical structures of skin lesions, equally intraregional dye difference in addition to a color that is various from the patient’s other mole, Thickness ≥ 6mm, and any changing lesion. An another to the ABCDE rule, the “ABCDEF” was future industrialised to report the boundaries of the ABCDE law [3,4,5]. Skin lesions are naturally visually partitioned for benign and melanoma. Graphic algorithms that specialists use as a controller to evaluate skin lesions contain the ABCD [6] measure. Currently, medical diagnostic price is quickly growing, particularly the cost of skin biopsies. Various better behaviours are organised out to categories skin cancer at a premature step, which similarly make available the support of reducing the quantity of skin biopsies [7]. The approaches that estimate skin growth for possible prediction of skin cancer have progressed over the last years. Previously the 1980s, melanomas were normally recognised by naked-eye comment of variations in gross neva structures, such
as large dimensions, blood loss, or ulceration [8]. In the state of suspicious lesions, biopsy of the lesion was completed by eliminating the lesion for further investigation.

During that time, the premature prediction was problematic because of the lack of technical developments in imaging hardware and software apparatuses. As time developed, noninvasive methods gradually became accepted that entailed less expensive apparatus with good precision. A dermoscopy is an optical tool that applies a light source to stop out skin surface reflections [9-12].

Challenges to democratise skin diagnostics have been confirmed that use cheaper replacements to stereo microscopes as an imaging cause. The developed images were transported to teleconsultants via virtual private networks located at isolated locations for study and estimation [13,14].

In this paper, we industrialised of ABCDE application that functions as an image taken and analytic device for challenging of skin lesions. The flow diagram of the flowchart of the stages in the entire procedure contained is demonstrated in Figure 1. A study by Sanjay et al. [15] proposed a computer-supported technique used for the detection of types of skin cancer with image processing apparatuses. The images investigation it to achieve about the existence of skin lesions. The lesion image study devices patterned for the different melanoma constraints of ABCD by surface, dimensions and form analysis for image segmentation and feature steps. The ABCD feature coefficients are applied to categorise the image as normal skin and abnormal lesions skin [15]. Detection of skin lesions using image processing methods by Chandrahasa et. al. [16] recommended a technique to distinguish skin cancer in premature phases using evaluating assets of the cancer ABCDE. These possessions are studied using various image processing methods like greyscale alteration, segmentation and histogram study [16].

The ABCD law is best suitable to discriminate premature, thin cancers from benign, pigmented lesions. Also, the ABCDE, there are other approaches and algorithms to detect initial skin lesions. Outline analysis has been working with epifluorescence and video microscopy to classify the type of lesion segmented built upon its all-purpose entrance, size and boundary [17,18]. From figure (1) shows The ABCDE rules for diagnosis of Healthy and unhealthy nevi.

![Figure 1. The ABCDE rules for diagnosis of Healthy and unhealthy nevi.](image-url)

Design analysis and the ABCD are the oldest and utmost commonly approved approaches for skin lesions detection [19]. The C.A.S.H. algorithm identifies of nevus constructions [20,21]. The Menzies technique images the dyed skin lesions applying an immersion oil and classifies the nevus depend on the symmetry of design and one colour [22-24].

Additional technique ranges the ABCD law to include the evolution of the lesions (E coefficient) by accumulation the patient’s explanation of lesion modification [24-26].
In adding, image achievement approaches have correspondingly been industrialised to differentiate the quantity of light absorbed, transmitted, or backscattered by the numbers of the lesions [21].

2. Method and Materials
The inclusive proposed skin lesions recognition system (SLRs) involves of 6 serial steps: lesion-part segmentation, kind quantification and normalisation, and feature assortment and classification. This scheme is mostly depending on the characteristics of medical ABCD that is comprehensive in the introduction [27]. The real calculation of ABCDE scheme is done for the five mechanisms with the resulting formulation.

\[S_{abcde} = 5X_1 = \sum_{i=1}^{5} w_i p_i = 1 \]

(1)

where \(w_i \) and \(p_i \) are the weight and the rate qualified for each opinion. By Capdehourat et al. [28], on the word of Stolz et al. [29]. Significant that the development of the skin cancer lesions over time is the most unexploited information, then the feature assumed by the element E is used only for graphic assessment by dermatologists when it is obtainable. The estimation of ABCDE statute is achieved following equation (1) with the points to categorise the colouring into three cases, healthy and unhealthy moles and suspicious [2]: - 1f \(S_{abcde} < 4.75 \) (Healthy Moles), \(4.75 \leq S_{abcde} \leq 5.75 \) (Suspicious Moles), \(S_{abcde} > 5.75 \) (Unhealthy Moles).

TABLE 1. The comprehensive report of selected databases of dermoscopy images of classification of healthy and unhealthy moles.

Lesions Type	Number of Lesions	Diameter
Melanoma	60	8.78
Blue Nevus	10	6.1
Clark Nevus	15	5.2
Combined Nevus	10	4.3
Dermal Nevus	10	3.78

Figure (2) characterises a block diagram for skin lesions proof of identity with ABCDE and classification of ranking depend on TDS equations. The resources of images in this work are from the ISIC (2016,2017,2018) and PH2 databases [27]. In part of instructions with Pre-processing, segmentation, the behaviour of extraction, skin tumours detection by ABCDE of TDS Formulation.

Record images may comprise certain uninvited particles for example size of a hair, types of bubbles, lighting and gel properties. So, healthy technique to eliminate noise and undesirable particles has occurred. Around of these particles, identical types of a bubble, convert less mutual after Dermoscopy are advanced. The resulting step of the processing includes de-noising.

Median Filter (MF) is applying to notice the noises existing in the image. This filter recognises and removes the undesirable. MF acquires a higher resolution and accuracy rate and returns the image with improved image superiority compared to other filters. The filtered RGB is transformed to Gray by colony bees Investigation Which effectually conserves colour and texture discrimination.

\[AI = \frac{AI_1 + AI_2}{2} \]

(2)

The \((AI) \) is 0, 1, 2 after the symmetry of the lesion is in both commands. Compactness index (CI), fractal measurement, Abruptness of superiority, mean and variance of colour conversion [8].

The score is range from 0 to 8 and a premature indication of abnormal moles is the enhancement of sore shading variations. It is regularly brilliant around dark dyed, contingent upon the generation of the abnormal
moles colour in the skin at different depths. The standard sore distance across can be determined with the diameter (D) equation:

\[D = \sqrt{A_{Les} / \pi} \]

(Ales) is the area of the lesion, the quantity for a satisfactory sore must be 6 mm. Risky progress in size more than 6 mm. In Stolz method \[30\] existing the ABCD law and applied by dermatologists to estimate the hazard of threat of a pigmented sore in the acknowledgement of skin tumours. Aside its assessment speed, this empowers a progressively objective and re-forming decision of types of skin lesions. The formula TDS (Total Decision Score) is used to determine the unhealthy moles by using the equivalence.

\[TDS = [(A * 1.3 + B * 0.1 + C * 0.5 + D * 0.5)] \]

TDS is expressed to detect unhealthy nevi which is given by equation (4). We supposed that the ABCDE method for calculating another method \[10-12\]. The weighting coefficients of model advanced TDS with variable parameters of ABCDE are recorded in equation (5).

New model of TDS variables = \([(A * 1.3 + B * 0.1 + C1 \text{ Red} * 0.5 + C2 \text{ White} * 0.5 + C3 * 0.5 + C4 \text{ Bule} * 0.5 + C5 \text{ Drak Brown} * 0.5 + C6 \text{ Light Brown} * 0.5 + D * 0.5)]\]

3. Results and Discussions

The space of our work can be protracted in standings of performance and procedure. The performance coefficients (accuracy, sensitivity, selectivity, and processing time) could be enhanced by improved thresholding methods for border detection, challenging extra (form, colour, and texture supplies), and ABC method of images.

To prepare this, the user would take and save nevus images at various time intervals, recording the ABCD coefficients for each image. From these noted parameters, it would be probable to detect any variations in the form, dimensions, or colour of the nevus that may at that time be estimated by a healthcare proficient.

The application’s dependability and reproducibility can be confirmed on peoples with various skin colours, under various background lighting situations, and with various steps of skin lesions. By reason of the challenge of making combined associations with skin clinics, utmost scientists have depended on datasets for their study. This makes shortest comparisons of performance coefficients across various approaches problematic.

The existing search can be extended outside the ABCDE law to recognise the character of each feature in the concluding cataloguing of normal or abnormal lesions \[31\]. In this paper estimated all these varies models using the PHF\[2\], ISIC (2016, 2017, 2018) segmentation challenge dataset \[32\]. The datasets involve of more than 3000 dermoscopy images occupied by a Mole Analyser system with a 20x amplification. The Red Green Blue images are eight-bit with a resolution of 768 multiply 560 pixels.
Figure 2. Block diagram for skin lesions proof of identity with ABCDE, ABC method and classification of ranking depend on a new model of TDS variables equations.

Figure 3. Illustrative results for nevi from nine volunteers are shown here covered with segmentation contours. Scale bar = 4 mm.
The user is offered with the last classified (benign or suspicious or melanoma) along with standards of the ABCDE equations and the values of ranking depend on the classification of ABC method and TDS values as shown in figure 2. Figure 3 shows the original nevus images overlapped with segmentation contours. It can be experimental that the segmentation results are very sensitive to boundaries, where (U.N and H.N is unhealthy nevi and healthy nevi).

To make an optimum classifier, the ABCDE model groups from wholly the images are randomly separated into training and test groups. At that point, ABC technique arrangement prototypical learns to categorise the skin lesions into various modules depend on the proposed method as shown in figure 2. Figure 4 displays the image detected as Healthy or Unhealthy Nevi or Suspicious Moles based on TDS. Table 2. Shows comparison between check-up and outcomes for new model of TDS variables.

Table 2. Comparison between check-up and outcomes for new model of TDS variables.

Image	A	B	Red	Black	White	Blue	Light Brown	Dark Brown	D	New model of TDS	Type of Skin Lesions	Outcomes
M013	0.286	0.399	0.000	0.001	0.000	0.000	0.014	0.014	4.784	5.483	U. N	T
M026	0.348	0.451	0.000	0.000	0.000	0.000	0.000	0.003	0.003	4.929	5.733	U. N
M141	0.315	0.386	0.000	0.000	0.001	0.386	0.011	0.011	6.941	7.657	U. N	T
M278	0.274	0.967	0.000	0.000	0.015	0.000	0.014	0.014	5.517	6.776	U. N	T
M288	0.351	0.763	0.001	0.000	0.042	0.000	0.004	0.042	5.952	7.121	U. N	T
M307	0.545	0.788	0.000	0.000	0.000	0.000	0.034	0.034	4.306	5.684	U. N	T
M513	0.131	0.376	0.000	0.010	0.000	0.000	0.010	0.010	5.644	6.168	U. N	T
M519	0.322	0.301	0.000	0.000	0.000	0.000	0.019	0.000	3.600	4.560	H. N	T
NM16	0.002	0.214	0.000	0.000	0.000	0.000	0.007	0.007	1.345	1.563	H. N	T
NM53	0.151	0.217	0.000	0.000	0.000	0.000	0.010	0.001	2.181	2.553	H. N	T
NM15	0.338	1.54	0.000	0.000	0.000	0.000	0.018	0.018	7.843	9.749	U. N	F
Figure 4. Identified as Healthy or Unhealthy Nevi or Suspicious Moles.

4. Conclusions and Future work
The present model comprises of more than application that takes images of skin lesions, achieve for decision by dermatologists based on the ABCDE law, and classify their benign or suspension or malignancy and it has a processing time of 1 sec per image based on ABC Algorithm. So, in this work recommended an adjustment to the ABCDE law to the association the advantages of this law with the aid “F,” to help the decision of skin lesions.

The assessed performance constraints and calculation times are equivalent or improved than above-mentioned approaches. In this study, the proposed technique is sensitive to noise and image situations (shapes, colour, bubbles, lighting and hair) that can be applied successfully for stimulating skin lesions. Our method is wide to be modified to different medical image segmentations. The estimation of the outcome depends on the total new model of TDS variables and features ranking depends on numbers of classifier types of the segmentation and classification on the examination of Bees colony.

References
[1] Friedman R J, Rigel D S, Kopf A W, 1985 "Early detection of malignant melanoma: the role of physician examination and self-examination of the skin," CA Cancer J Clin. vol. 35, pp. 130-151.

[2] Abbasi N R, Shaw H M, Rigel D S, et al. 2004 "Early diagnosis of cutaneous melanoma: revisiting the ABCD criteria," JAMA. vol. 292, pp. 2771-2776.
[3] Grob J J, Bonerandi J J, 1998 "The ugly duckling sign: identification of the common characteristics of nevi in an individual as a basis for melanoma screening," *Arch Dermatol*. vol.1, pp.103-104.

[4] Titus L J, Clough-Garr K, Mackenzie TA, et al. 2013 "Recent skin self-examination and doctor visits in relation to melanoma risk and tumour depth," *Br J Dermatol*. vol.65, pp.457-480.

[5] American Academy of Dermatology. [August 18, 2014]. http://www.aad.org/spot-skin-cancer SPOT.

[6] Friedman R J, Rigel D S, Kopf A W, 1985 "Early diagnosis of cutaneous melanoma: Revisiting the ABCD criteria," *CA: A Cancer Journal for Clinicians*. vol. 35, no. 3, pp. 130-151.

[7] Korotkov K, Garcia R, 2012 "Computerized analysis of pigmented skin lesions: A review," *Artif. Intell. Med.* vol.56, pp.69-90.

[8] Rigel D S, Russak J, Friedman R, 2010 "The evolution of melanoma diagnosis: 25 years beyond the ABCDs," *CA Cancer J. Clin.* vol. 60, pp.301-316.

[9] Erkol B, Stoecker R J, Hvatum W V, 2005 "Automatic lesion boundary detection in dermoscopy images using gradient vector flow snakes," *Skin Res. Technol.* vol.11, pp.17-26.

[10] Mendonça T, Silveira A R, Marques JS, Rozeira J. 22–26 August 2007 "Comparison of segmentation methods for automatic diagnosis of dermoscopy images," In *Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS)*, Lyon, France, pp. 6572-6575.

[11] Kopf A W, Salopek T G, Marghoob A A, Bart R S, 2015 "Techniques of cutaneous examination for the detection of skin cancer," *Cancer*, vol.75, pp.684-690.

[12] Green A, Martin, O’Rourke.M, Knight. N, 2018 "Computer image analysis in the diagnosis of melanoma" *J. Am. Acad. Dermatol*. vol. 31, pp. 958-964.

[13] Massone C, Gabler G, Ebner C, Peter S H, 2017" Melanoma Screening with Cellular Phones," *PLoS ONE*, 2, e 483.

[14] Kroemer S, Frühauf J, Campbell T M, Massone C, Schweitzer G, Soyer H P, Hofmann-Wellenhof R, 2019 "Mobile teledermatology for skin tumour screening: Diagnostic accuracy of clinical and dermoscopic image tele-evaluation using cellular phones," *Br. J. Dermatol*. vol.164, pp.975-979.

[15] Sanjay J J, Mehra K, and Vaishali G G, 2015 "Skin cancer Detection using Digital Image processing," *International Journal of Scientific Engineering and Research*. vol. 3, no 6, pp. 138-140.

[16] Chandrakasa M M, Varun V, Dixit S S, 2019 "Detection of Skin Cancer Using Image Processing Techniques," *International Journal of Modern Trends in Engineering and Research (IJMTER)*. vol. 3, no 5, pp. 111-114.
[17] Sáez A A, Acha B, Serrano C C, 2014 "Pattern Analysis in Dermoscopic Images. In Computer Vision Techniques for the Diagnosis of Skin Cancer;" Springer: Berlin/Heidelberg, Germany. pp. 23-48. ISBN 9783642396076.

[18] Pehamberger H H, Steiner A, Wolff K K, 1987 "In vivo epiluminescence microscopy of pigmented skin lesions," I. Pattern analysis of pigmented skin lesions. J. Am. Acad. Dermatol. vol.17, pp. 571-583.

[19] Forsea A M, Tschandl P, Arenbergerova M, Azenha A, Blum A. et al. 2017 "The impact of dermoscopy on melanoma detection in the practice of dermatologists in Europe: Results of a pan-European survey," J. Eur. Acad. Dermatol. Venereol. vol. 31, pp. 1148-1156.

[20] Henning J S, Dusza S W, Wang S Q, Marghoob A A, Rabinowitz H S, 2007 "The CASH (color, architecture, symmetry, and homogeneity) algorithm for dermoscopy," J. Am. Acad. Dermatol. vol. 56, pp. 45-52.

[21] Lachman S A, Cassidy P B, Chen S C, Pellacani G, Grichnik J M, Malvehy J A, North Z J, et al. 2016 "Methods of Melanoma Detection. In Melanoma," Springer: Cham, Switzerland. pp. 51-105. ISBN 9783319225395.

[22] Menzies S W, Ingvar S C, Crotty K A, McCarthy W H, 1996 "Frequency and morphologic characteristics of invasive melanomas lacking specific surface microscopic features," Arch. Dermatol. vol.132, pp. 1178–1182.

[23] Tsao H H, Olazagasti J M, Cordoro K M, Tegeler M C, Bhushan R, et al. 2015 "Early detection of melanoma: Reviewing the ABCDEs," J. Am. Acad. Dermatol. vpl. 72, pp. 717-723.

[24] Shaw H M, Rigel D S, Friedman R J, McCarthy W H, Kopf A W, 2004 "Early diagnosis of cutaneous melanoma: Revisiting the ABCD criteria," JAMA. vol.92, pp. 2771-2776.

[25] Harrington E, Clyne B D, Weaseling S N, Sandhu H, Fahey T, 2017 "Diagnosing malignant melanoma in ambulatory care: A systematic review of clinical prediction rules," BMJ Open, vol.7, e 014096.

[26] Robinson J K, Turrisi R, 2006 "Skills training to learn discrimination of ABCDE criteria by those at risk of developing melanoma," Arch. Dermatol. vol.142, pp. 447-452.

[27] Andreassi U, Perotti R, Rubegni P, et al. 1999 " Digital dermoscopy analysis for the differentiation of atypical Nevi and early melanoma," Arch Dermato vol. 135, pp. 1459-1465.

[28] Germán C, André C, Anabella B, Rodrigo A, and Pablo M, 2018 "Toward a combined tool to assist dermatologists in melanoma detection from dermoscopic images of pigmented skin lesions," Pattern Recognition Letters, vol. 32, no. 16, pp. 2187-2196.

[29] Stolz W, Riemann A A, Cognetta B A, Pillet L, and Landthaler M, 1994 "Abcd rule of dermatoscopy- a new practical method for early recognition of malignant-melanom," European Journal of Dermatology. vol.4, no.7, pp. 521-527.
[30] Argenziano G V, Fabbrocini G V, de Giorgi V, Sammarco E, Delfino M, 1998 "Epiluminescence microscopy for the diagnosis of doubtful melanocytic skin lesions. Comparison of the ABCD rule of dermatoscopy and a new 7-point checklist based on pattern analysis," Arch. Dermatol. vol.134, no.12, pp. 1563-1570.

[31] Barata C C, Ruela M B, Francisco M C, Mendonca T, Marques J S, 2014 "Two systems for the detection of melanomas in dermoscopy images using texture and color features," IEEE Syst. J. vol.8, pp.965-979.

[32] Chawla N V, Bowyer K W, Hall L O, Kegel W P, 2002 "Synthetic minority over-sampling technique," J. Artif. Intell. Res. vol.16, pp.321-357.