This data article describes the original data, the sample selection process and the variables used in Andreoli and Fusco (Andreoli and Fusco, 2019) to estimate gap curves for a sample of European countries. Raw data are from 2011 roster of EU-SILC, cross-sectional sample of module “intergenerational transmission of disadvantage”. This article reports descriptive statistics of the using sample. It also discusses the algorithm adopted to estimate the main effects and details the content of additional Stata files stored on the online repository. These additional files contain raw estimates from bootstrapped samples, which form the basis for estimating gap curves and their variance-covariance matrices. The data article also reports representations of gap curves for all 16 selected countries.

© 2019 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Data

The raw data are from the European Union - Statistics on Income and Living Conditions (EU-SILC) 2011 module on intergenerational transmission of disadvantage, where measures of parental background for a sufficiently large number of respondents are available. This module provides repeated cross-
sectional information on the socioeconomic background of origin of the individuals interviewed in EU-SILC, along with standard relevant measures of labour market outcomes. In particular, the 2011 module contains retrospective information about the parental background experienced by the respondents when aged between 12 and 16 (see Atkinson et al. [3] for pros and cons of retrospective data). This unique base provides (to a large extent) comparable data allowing similar definitions for variables measuring outcome and circumstances across countries and time.

Base on raw EU-SILC 2011 module data (cross-section) data, this article extrapolates information for a subset of 16 countries: Austria (AT), Belgium (BE), Germany (DE), Estonia (EE), Finland (FI), Hungary (HU), Ireland (IE), Iceland (IS), Lithuania (LT), Luxembourg (LU), the Netherlands (NL), Norway (NO), Poland (PL), Sweden (SE), Slovakia (SK) and the United Kingdom (UK).

Sample selection process is based on males, aged between 30 and 50 who worked full time as an employee for at least 7 months in the income reference period. In addition, individuals who declared that they were living in another private household, foster home, collective household or institution
were excluded. Following Raitano and Vona [4], intergenerational module weights are applied. The running sample that is used to produce Table 1 and Fig. 1 in [1] is made of 41,533 male respondents for which we observe circumstances, earnings and demographics (age in years and a categorical variable for being married). Descriptive statistics of the distribution of those variables are reported in Table 1 below. The data files are collected in the example_econletters.dta file in Stata format (optimized for Stata 13) available on the online repository.

Table 1
Summary statistics of running sample.

Country	N	Types	Earnings	Age	Married
			All	High	Medium
			Low	Medium	Low
AT	2887	0.10	0.43	0.48	37,320
			49,367	39,829	32,604
			40.4	0.69	
BE	2446	0.19	0.23	0.57	38,788
			54,702	37,742	33,792
			40.1	0.65	
DE	5345	0.30	0.58	0.11	41,444
			44,228	40,642	38,108
			41.4	0.75	
EE	1777	0.18	0.43	0.40	12,966
			17,494	13,398	10,508
			40.4	0.64	
FI	1949	0.21	0.22	0.56	31,245
			41,842	30,229	27,627
			40.4	0.61	
HU	3825	0.10	0.36	0.54	11,548
			19,096	12,506	9,476
			39.8	0.69	
IE	1122	0.14	0.22	0.65	40,408
			52,155	48,067	35,358
			40.2	0.74	
IS	835	0.14	0.50	0.35	35,873
			40,840	37,189	31,950
			40.1	0.59	
LT	1716	0.11	0.29	0.60	9,546
			13,485	10,424	8,426
			41.4	0.87	
LU	2883	0.13	0.31	0.56	48,562
			67,307	57,617	39,039
			39.7	0.69	
NL	2310	0.21	0.27	0.52	44,900
			52,415	48,198	40,212
			40.1	0.64	
NO	1622	0.28	0.43	0.29	40,774
			47,395	39,119	36,872
			40.2	0.57	
PL	5805	0.06	0.49	0.45	13,641
			19,894	14,599	11,726
			39.9	0.86	
SE	1349	0.16	0.24	0.60	30,673
			39,868	32,158	27,583
			39.7	0.48	
SK	2977	0.10	0.60	0.31	10,809
			15,002	10,699	9,702
			40.3	0.80	
UK	2685	0.17	0.25	0.58	43,383
			57,191	46,342	38,034
			40.4	0.66	
Total	41533	0.16	0.40	0.44	29,447
			41,888	29,187	25,230
			40.3	0.71	

![Fig. 1. Gap curves for Austria.](image-url)
Figs. 1–16 in this article (see also [1]) are obtained from circumstances and earnings variables created from the raw data.

Circumstances. The 2011 EU-SILC module contain retrospective information about parents’ educational attainment, occupational status, labour market activity status, family composition as well as presence of financial difficulties during respondents’ teenage years. We focus on the educational attainment of the father as the relevant circumstance. To construct circumstances, individuals are first partitioned in three types (or groups) according to their father's education. The *high education* type consists of individuals who lived in a household where the father attained the first (e.g. bachelor, master or equivalent) or second (e.g. PhD or equivalent) stage of tertiary education; the *medium education* type consists of individuals who lived in a household where the father attained upper secondary education and post-secondary, non-tertiary education. Finally, the *low education* type consists of individuals who lived in a household where the father at most completed lower secondary education. Table 2 summarizes the circumstances assignment rule adopted.

Earnings. Earnings correspond to annual gross employee cash or near cash income data. This income measure is defined as the monetary component of the compensation in cash payable by an employer to an employee, and it includes the value of any social contributions and income taxes payable by an employee or by the employer on behalf of the employee to social insurance schemes or tax authorities. This variable reflects the relation between the labour income and individual circumstances before state intervention. The observed earnings were converted in purchasing power standard (PPS) using the conversion rates provided on the CIRCABC user group. For references, see: https://circabc.europa.eu/w/browse/3c60eeec-aca4-4db7-a035-0a6d892e6069.

Data reproduced in Table 1 and Fig. 1 in [1] are estimates of econometric models that are run on data from the selected running sample. Econometric models allow to filter out residual uncertainty and produce estimates of opportunity profiles at country level, and compare these estimates across countries.

![Gap curves -- Country: BE -- Year 2011](image_url)

Fig. 2. Gap curves for Belgium.
Fig. 3. Gap curves for Germany.

Fig. 4. Gap curves for Estonia.
Fig. 5. Gap curves for Finland.

Fig. 6. Gap curves for Hungary.
Fig. 7. Gap curves for Ireland.

Fig. 8. Gap curves for Iceland.
Fig. 9. Gap curves for Lithuania.

Fig. 10. Gap curves for Luxembourg.
Fig. 11. Gap curves for the Netherland.

Fig. 12. Gap curves for Norway.
Fig. 13. Gap curves for Poland.

Fig. 14. Gap curves for Sweden.
Fig. 15. Gap curves for Slovakia.

Fig. 16. Gap curves for the UK.
2. Experimental design, materials, and methods

Andreoli and Fusco [1] use earnings as a metric for opportunities (see also Andreoli and Fusco [2]). Two caveats apply. First, this variable is defined at the level of the individual, implying that labour supply decisions are assumed to be made at individual level, thus neglecting household bargaining issues. Second, wages represent yearly evaluations of performances, since we focus on individuals who spent more than six months in the income reference period as full-time workers.

Opportunity profiles are estimated via Recentered Influence Function methods (Firpo, Fortin and Lemieux [5]) to recover effects of circumstances on earnings quantiles, while controlling for age and marital status. We estimate standard errors and variance-covariance matrices via bootstrapped resampling procedures on baseline data, where stratification by country, year and region of residence (“psu” variable in example_econletters.dta) is accounted for (see Goedemé [6]).

The estimation algorithm proceeds as follows:

1) draw a bootstrapped sample from the using sample;
2) estimate RIF regression parameters, income levels and pdf at given preselected deciles for each bootstrapped sample;
3) calculate gap curves for each country, differences in gap curves across countries for each pair of types and aggregated inequality of opportunity indices for each country and their variations across countries;
4) reiterate the bootstrap procedure 250 times;
5) compute averages and standard error of gap curves, differences in gap curves, IOp indices and store estimates;
6) produce graphs of gap curves and of their 95% confidence interval based on bootstrapped standard errors at specific earnings deciles identified in point 2);
7) estimate variance-covariance matrices from bootstrapped data and use them to test relevant hypothesis, then test these hypothesis and count cases (passed on pairwise comparisons of types) for which an hypothesis is accepted or rejected.
8) Report estimates in the form of tables.

The estimation procedure generates additional data, essentially estimates from the baseline specification of the econometric model, that are then elaborated to produce tables of results. Additional data are stored in the folder ‘\output’ of the data folder available in the repository. Notably, this folder contains the following datasets, all created from the resampling procedure:

- bs_frale.dta: reports estimates of regression coefficients estimates for RIF regressions, by country (country), income decile (percentile) and bootstrapped replica (rep).
- bs2_frale.dta: reports estimates of income deciles (pdf_pcty_X) and the corresponding type-specific pdf level (pdf_pcty_X) for each circumstance type X = 1,2,3 by country (country), income decile (percentile) and bootstrapped replica (rep).
- meanGap0.dta, reports average estimates of gap curves based on the whole running sample.
- meanGap.dta, reports average estimates of gap curves based on bootstrapped samples.
- Chi2_data.dta, collects data about gap curves estimates by deciles and country.
- eop.dta, reports values of test statistics for $H^E_{0,Op}$ by country, see Andreoli and Fusco [1].
- `gapcountry.dta`, reshaped database, reports gap curves estimates by country (columns).
- `dataiop.dta`, reports the differences in gap curves of type X versus type Y across row country and column country Z, giving G_{X,Y,cZ} by country (country), income decile (percentile) and bootstrapped replica (rep).
- `iop.dta`, for each pair of countries (country country2), produce t-tests for differences in average gaps across types X and Y (test_G_{X,Y,c}) alongside the number of cases where equality in average gaps is accepted or rejected. Moreover, the file reports test statistics for equality in gap curves (Chi2G_{X,Y}), ascertain if H_{IOp}^0 is rejected or not for each comparison (accept_X) and then reports number of cases where H_{IOp}^0 is rejected or accepted.
- `GO_bs.dta`, reports estimates of GO index by country and of differences in GO index across countries. SE (bootstrapped) reported for levels and differences in GO index.

Table 1 in Andreoli and Fusco [1] is based on these estimates. Tests for H_{Eop}^0 and H_{IOp}^0 against unrestricted alternatives require to impose equality constraints on vectors of parameter estimates that are jointly normally distributed (by assumption). Tests putting failure of gap curves dominance at the null against strong dominance at the alternative (a test adopted in [1] to verify gap curve dominance in those cross-countries comparisons where H_{IOp}^0 is rejected) can be estimated from t-tests for differences in gap curves at specific quantiles (see Andreoli [7,8] for a discussion and application of these tests).

Fig. 1 in Andreoli and Fusco [1] is obtained by stacking graphs of gap curves of selected countries. All gap curves (and their 95% confidence intervals) estimated from the running sample are reported below. The figures are obtained from data in `gapcountry.dta` are collected in the folder `\output\graphs` in the repository.

Acknowledgments

Financial support from Eurostat, the French Agence Nationale de la Recherche (Ordineq grant ANR-16-CE41-0005-01) and the Luxembourg Fonds National de la Recherche (IMCHiLD grant INTER/NORFACE/16/1133934, PREFERME CORE grant C17/SC/11715898 and IMeRSe CORE grant C15/SC/ 10266168) is gratefully acknowledged. Fusco also thanks the World Bank Development Research Group for its hospitality.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.dib.2019.104301.

References

[1] F. Andreoli, A. Fusco, Robust cross-country analysis of inequality of opportunity, Econ. Lett. 182 (2019) 86–89.
[2] F. Andreoli, A. Fusco, The evolution of inequality of opportunity across Europe: EU-SILC evidence. Ch. 24, in: A.B. Atkinson, A.C. Guio, E. Marlier (Eds.), Monitoring Social Inclusion in Europe, Eurostat, 2017, pp. 435–448.
[3] T. Atkinson, A.K. Maynard, C. Trinder, Conjunction with, in: J. Corlyon, S.P. Jenkins, H. Sutherland (Eds.), Parents and Children. Incomes in Two Generations, Studies in Deprivation and Disadvantage, Heinemann educational Books, London, 1983.
[4] M. Raitano, F. Vona, Measuring the link between intergenerational occupational mobility and earnings: evidence from eight European countries, J. Econ. InequaL 13 (1) (2015) 83–102.
[5] S. Firpo, N. Fortin, T. Lemieux, Unconditional quantile regressions, Econometrica 77 (3) (2009) 953–973.
[6] T. Goedeme, How much confidence can we have in EU-SILC7 complex sample designs and the standard error of the European 2020 poverty indicators, Soc. Indic. Res. 110 (1) (2013) 89–110.
[7] F. Andreoli, Robust inference for inverse stochastic dominance, J. Bus. Econ. Stat. 36 (1) (2018) 146–159.
[8] F. Andreoli, T. Havnes, A. Lefranc, Robust inequality of opportunity comparisons: theory and Application to early childhood policy evaluation, The Review of Economics and Statistics 101 (2) (2019) 355–369.