Coverings and crossed modules of topological groups with operations

Osman Mucuka and Tunçar Şahanb

aDepartment of Mathematics, Erciyes University, Kayseri, TURKEY
bDepartment of Mathematics, Aksaray University, Aksaray, TURKEY

Abstract

It is a well known result in the covering groups that a subgroup G of the fundamental group at the identity of a semi-locally simply connected topological group determines a covering morphism of topological groups with characteristic group G. In this paper we generalize this result to a large class of algebraic objects called topological groups with operations, including topological groups. We also give the cover of crossed modules within topological groups with operations.

Key Words: Covering group, universal cover, crossed module, group with operations, topological group with operations

Classification: 18D35, 22A05, 57M10

1 Introduction

The theory of covering spaces is one of the most interesting theories in algebraic topology. It is well known that if X is a topological group, $p: \tilde{X} \to X$ is a simply connected covering map, $e \in X$ is the identity element and $\tilde{e} \in \tilde{X}$ is such that $p(\tilde{e}) = e$, then \tilde{X} becomes a topological group with identity \tilde{e} such that p is a morphism of topological groups (see for example \cite{8}).

The problem of universal covers of non-connected topological groups was first studied in \cite{23}. He proved that a topological group X determines an obstruction class k_X in

1E-mail : mucuk@erciyes.edu.tr
1E-mail : tuncarsahan@aksaray.edu.tr
$H^3(\pi_0(X), \pi_1(X, e))$, and that the vanishing of k_X is a necessary and sufficient condition for the lifting of the group structure to a universal cover. In [17] an analogous algebraic result was given in terms of crossed modules and group-groupoids, i.e., group objects in the category of groupoids (see also [6] for a revised version, which generalizes these results and shows the relation with the theory of obstructions to extension for groups and [16] for the recently developed notion of monodromy for topological group-groupoids).

In [7, Theorem 1] Brown and Spencer proved that the category of internal categories within the groups, i.e., group-groupoids, is equivalent to the category of crossed modules of groups. Then in [21, Section 3], Porter proved that a similar result holds for certain algebraic categories C, introduced by Orzech [19], which definition was adapted by him and called category of groups with operations. Applying Porter’s result, the study of internal category theory in C was continued in the works of Datuashvili [10] and [11]. Moreover, she developed cohomology theory of internal categories, equivalently, crossed modules, in categories of groups with operations [2,12]. In a similar way, the results of [7] and [21] enabled us to prove that some properties of covering groups can be generalized to topological groups with operations.

If X is a connected topological space which has a universal cover, $x_0 \in X$ and G is a subgroup of the fundamental group $\pi_1(X, x_0)$ of X at the point x_0, then by [22, Theorem 10.42] we know that there is a covering map $p: (\tilde{X}_G, \tilde{x}_0) \to (X, x_0)$ of pointed spaces, with characteristic group G. In particular if G is singleton, then p becomes the universal covering map. Further if X is a topological group, then \tilde{X}_G becomes a topological group such that p is a morphism of topological groups. Recently in [2] this method has been applied to topological R-modules and obtained a more general result (see also [3] and [18] for groupoid setting).

The object of this paper is to prove that this result can be generalized to a wide class of algebraic categories, which include categories of topological groups, topological rings, topological R-modules and alternative topological algebras. This is conveniently handled by working in a category TC. The method we use is based on that used by Rothman in [22, Theorem 10.42]. Further we give the cover of crossed modules within topological groups with operations.

2 Preliminaries on groupoids and covering groups

As it is defined in [4,15] a groupoid G has a set G of morphisms, which we call just elements of G, a set G_0 of objects together with maps $d_0, d_1: G \to G_0$ and $\epsilon: G_0 \to G$ such that $d_0 \epsilon = d_1 \epsilon = 1_{G_0}$. The maps d_0, d_1 are called initial and final point maps respectively and the
map e is called object inclusion. If $a, b \in G$ and $d_1(a) = d_0(b)$, then the composite $a \circ b$ exists such that $d_0(a \circ b) = d_0(a)$ and $d_1(a \circ b) = d_1(b)$. So there exists a partial composition defined by $G_{d_1} \times d_0 G \to G$, $(a, b) \mapsto a \circ b$, where $G_{d_1} \times d_0 G$ is the pullback of d_1 and d_0. Further, this partial composition is associative, for $x \in G_0$ the element $e(x)$ acts as the identity, and each element a has an inverse a^{-1} such that $d_0(a^{-1}) = d_1(a)$, $d_1(a^{-1}) = d_0(a)$, $a \circ a^{-1} = e d_0(a)$ and $a^{-1} \circ a = e d_1(a)$. The map $G \to G, a \mapsto a^{-1}$ is called the inversion.

In a groupoid G for $x, y \in G_0$ we write $G(x, y)$ for the set of all morphisms with initial point x and final point y. According to [4] for $x \in G_0$ the star of x is defined as $\{a \in G \mid d_0(a) = x\}$ and denoted as $\text{St}_G x$.

Let G and H be groupoids. A morphism from H to G is a pair of maps $f : H \to G$ and $f_0 : H_0 \to G_0$ such that $d_0 f = f_0 d_0$, $d_1 f = f_0 d_1$, $f e = e f_0$ and $f(a \circ b) = f(a) \circ f(b)$ for all $(a, b) \in H_{d_1} \times d_0 H$. For such a morphism we simply write $f : H \to G$.

Let $p : \tilde{G} \to G$ be a morphism of groupoids. Then p is called a covering morphism and \tilde{G} a covering groupoid of G if for each $\tilde{x} \in \tilde{G}_0$ the restriction $\text{St}_{\tilde{G}} \tilde{x} \to \text{St}_G p(\tilde{x})$ is bijective.

We assume the usual theory of covering maps. All spaces X are assumed to be locally path connected and semi-locally 1-connected, so that each path component of X admits a simply connected cover. Recall that a covering map $p : \tilde{X} \to X$ of connected spaces is called universal if it covers every covering of X in the sense that if $q : \tilde{Y} \to X$ is another covering of X then there exists a map $r : \tilde{X} \to \tilde{Y}$ such that $p = q r$ (hence r becomes a covering). A covering map $p : \tilde{X} \to X$ is called simply connected if \tilde{X} is simply connected. Note that a simply connected covering is a universal covering.

A subset U of a space X, which has a universal cover, is called liftable if it is open, path connected and lifts to each covering of X, that is, if $p : \tilde{X} \to X$ is a covering map, $i : U \to X$ is the inclusion map and $\tilde{x} \in \tilde{X}$ such that $p(\tilde{x}) = x \in U$, then there exists a map (necessarily unique) $\tilde{i} : U \to \tilde{X}$ such that $\tilde{p} \tilde{i} = i$ and $\tilde{i}(x) = \tilde{x}$. It is an easy application that U is liftable if and only if it is open, path connected and for all $x \in U$, the fundamental group $\pi_1(U, x)$ is mapped to the singleton by the morphism $i_* : \pi_1(U, x) \to \pi_1(X, x)$ induced by the inclusion $i : (U, x) \to (X, x)$.

A space X is called semi-locally simply connected if each point has a liftable neighborhood and locally simply connected if it has a base of simply connected sets. So a locally simply connected space is also semi-locally simply connected.

For a covering map $p : (\tilde{X}, \tilde{x}_0) \to (X, x_0)$ of pointed topological spaces, the subgroup $p_* (\pi_1(\tilde{X}, \tilde{x}_0))$ of $\pi_1(X, x_0)$ is called characteristic group of p, where p_* is the morphism induced by p (see [4], p.379) for the characteristic group of a covering map in terms of covering morphism of groupoids). Two covering maps $p : (\tilde{X}, \tilde{x}_0) \to (X, x_0)$ and $q : (\tilde{Y}, \tilde{y}_0) \to (X, x_0)$ are called equivalent if their characteristic groups are isomorphic, equivalently there is a homeo-
morphism \(f : (\tilde{X}, \tilde{x}_0) \to (\tilde{Y}, \tilde{y}_0) \) such that \(qf = p \).

We recall a construction from [22, p.295] as follows: Let \(X \) be a topological space with a base point \(x_0 \) and \(G \) a subgroup of \(\pi_1(X, x_0) \). Let \(P(X, x_0) \) be the set of all paths of \(\alpha \) in \(X \) with initial point \(x_0 \). Then the relation defined on \(P(X, x_0) \) by \(\alpha \simeq \beta \) if and only if \(\alpha(1) = \beta(1) \) and \([\alpha \circ \beta^{-1}] \in G\), is an equivalence relation. Denote the equivalence relation of \(\alpha \) by \(\langle \alpha \rangle_G \) and define \(\tilde{X}_G \) as the set of all such equivalence classes of the paths in \(X \) with initial point \(x_0 \). Define a function \(p : \tilde{X}_G \to X \) by \(p(\langle \alpha \rangle_G) = \alpha(1) \).

Let \(\alpha_0 \) be the constant path at \(x_0 \) and \(\tilde{x}_0 = \langle \alpha_0 \rangle_G \in \tilde{X}_G \). If \(\alpha \in P(X, x_0) \) and \(U \) is an open neighbourhood of \(\alpha(1) \), then a path of the form \(\alpha \circ \lambda \), where \(\lambda \) is a path in \(U \) with \(\lambda(0) = \alpha(1) \), is called a continuation of \(\alpha \). For an \(\langle \alpha \rangle_G \in \tilde{X}_G \) and an open neighbourhood \(U \) of \(\alpha(1) \), let \((\langle \alpha \rangle_G, U) = \{ \langle \alpha \circ \lambda \rangle_G : \lambda(I) \subseteq U \} \). Then the subsets \((\langle \alpha \rangle_G, U) \) form a basis for a topology on \(\tilde{X}_G \) such that the map \(p : (\tilde{X}_G, \tilde{x}_0) \to (X, x_0) \) is continuous.

In Theorem 3.7 we generalize the following result to topological groups with operations.

Theorem 2.1. [22, Theorem 10.34] Let \((X, x_0) \) be a pointed topological space and \(G \) a subgroup of \(\pi_1(X, x_0) \). If \(X \) is connected, locally path connected and semi-locally simply connected, then \(p : (\tilde{X}_G, \tilde{x}_0) \to (X, x_0) \) is a covering map with characteristic group \(G \).

Remark 2.2. Let \(X \) be a connected, locally path connected and semi locally simply connected topological space and \(q : (\tilde{X}, \tilde{x}_0) \to (X, x_0) \) a covering map. Let \(G \) be the characteristic group of \(q \). Then the covering map \(q \) is equivalent to the covering map \(p : (\tilde{X}_G, \tilde{x}_0) \to (X, x_0) \) corresponding to \(G \).

So from Theorem 2.1 the following result is obtained.

Theorem 2.3. [22, Theorem 10.42] Suppose that \(X \) is a connected, locally path connected and semi-locally simply connected topological group. Let \(e \in X \) be the identity element and \(p : (\tilde{X}, \tilde{e}) \to (X, e) \) a covering map. Then the group structure of \(X \) lifts to \(\tilde{X} \), i.e., \(\tilde{X} \) becomes a topological group such that \(\tilde{e} \) is identity and \(p : (\tilde{X}, \tilde{e}) \to (X, e) \) is a morphism of topological groups.

3 Universal covers of topological groups with operations

In this section we apply the methods of Section 2 to the topological groups with operations and obtain parallel results.

The idea of the definition of categories of groups with operations comes from [14] and [19] (see also [20]) and the definition below is from [21] and [13, p.21], which is adapted from [19].
Definition 3.1. Let C be a category of groups with a set of operations Ω and with a set E of identities such that E includes the group laws, and the following conditions hold for the set Ω_i of i-ary operations in Ω:

(a) $\Omega = \Omega_0 \cup \Omega_1 \cup \Omega_2$;

(b) The group operations written additively 0, $-$ and $+$ are the elements of Ω_0, Ω_1 and Ω_2 respectively. Let $\Omega'_2 = \Omega_2 \setminus \{+\}$, $\Omega'_1 = \Omega_1 \setminus \{-\}$ and assume that if $\star \in \Omega'_2$, then \star° defined by $a \star^\circ b = b \star a$ is also in Ω'_2. Also assume that $\Omega_0 = \{0\}$;

(c) For each $\star \in \Omega'_2$, E includes the identity $a \star (b + c) = a \star b + a \star c$;

(d) For each $\omega \in \Omega'_1$ and $\star \in \Omega'_2$, E includes the identities $\omega(a + b) = \omega(a) + \omega(b)$ and $\omega(a) \star b = \omega(a \star b)$.

The category C satisfying the conditions (a)-(d) is called a category of groups with operations.

In the paper from now on C will denote the category of groups with operations.

A morphism between any two objects of C is a group homomorphism, which preserves the operations of Ω'_1 and Ω'_2.

Remark 3.2. The set Ω_0 contains exactly one element, the group identity; hence for instance the category of associative rings with unit is not a category of groups with operations.

Example 3.3. The categories of groups, rings generally without identity, R-modules, associative, associative commutative, Lie, Leibniz, alternative algebras are examples of categories of groups with operations.

 Remark 3.4. The set Ω_0 contains exactly one element, the group identity; hence for instance associative rings with unit are not groups with operations.

The category of topological groups with operations is defined in [1] as follows:

Definition 3.5. A category TC of topological groups with a set Ω of continuous operations and with a set E of identities such that E includes the group laws such that the conditions (a)-(d) in Definition 3.1 are satisfied, is called a category of topological groups with operations and the object of TC are called topological groups with operations.

In the rest of the paper TC will denote a category of topological groups with operations.

A morphism between any two objects of TC is a continuous group homomorphism, which preserves the operations in Ω'_1 and Ω'_2.

The categories of topological groups, topological rings, topological R-modules and alternative topological algebras are examples of categories of topological groups with operations.

Proposition 3.6. If X is a topological group with operations, then the fundamental group $\pi_1(X, 0)$ becomes a group with operations.
Proof: Let X be an object of TC and $P(X, 0)$ the set of all paths in X with initial point 0 as described in Section 1. There are binary operations on $P(X, 0)$ defined by

$$(\alpha \star \beta)(t) = \alpha(t) \star \beta(t)$$

for $\star \in \Omega_2$ and $t \in I$, unit interval, and unary operations defined by

$$(\omega \alpha)(t) = \omega(\alpha(t))$$

for $\omega \in \Omega_1$. Hence the operations (1) induce binary operations on $\pi_1(X, 0)$ defined by

$$[\alpha] \star [\beta] = [\alpha \star \beta]$$

for $[\alpha], [\beta] \in \pi_1(X, 0)$. Since the binary operations \star in Ω_2 are continuous it follows that the binary operations (3) are well defined. Similarly the operations (2) reduce the unary operations defined by

$$\omega[\alpha] = [\omega \alpha].$$

By the continuity of the unary operations $\omega \in \Omega_1$, the operations (4) are also well defined. The other details can be checked and so $\pi_1(X, x_0)$ becomes a group with operations, i.e., an object of C. \hfill \Box

We now generalize Theorem 2.1 to topological groups with operations. We first make the following preparation:

Let X be a topological group with operations. By the evaluation of the compositions and operations of the paths in X such that $\alpha_1(1) = \beta_1(0)$ and $\alpha_2(1) = \beta_2(0)$ at $t \in I$, we have the following interchange law

$$(\alpha_1 \circ \beta_1) \star (\alpha_2 \circ \beta_2) = (\alpha_1 \star \alpha_2) \circ (\beta_1 \star \beta_2)$$

for $\star \in \Omega_2$, where \circ denotes the composition of paths, and

$$(\alpha \star \beta)^{-1} = \alpha^{-1} \star \beta^{-1}$$

for $\alpha, \beta \in P(X, 0)$ where, say α^{-1} is the inverse path defined by $\alpha^{-1}(t) = \alpha(1 - t)$ for $t \in I$. Further we have that

$$(\omega \alpha)^{-1} = \omega \alpha^{-1}.$$
When \(\alpha(1) = \beta(0) \).

Parallel to Theorem 2.1 in the following theorem we prove a general result for topological groups with operations.

Theorem 3.7. Let \(X \) be a topological group with operations, i.e., an object of \(\mathcal{TC} \) and let \(G \) be the subobject of \(\pi_1(X, 0) \). Suppose that the underlying space of \(X \) is connected, locally path connected and semi-locally simply connected. Let \(p: (\tilde{X}_G, 0) \rightarrow (X, 0) \) be the covering map corresponding to \(G \) as a subgroup of the additive group of \(\pi_1(X, 0) \) by Theorem 2.1. Then the group operations of \(X \) lift to \(\tilde{X}_G \), i.e., \(\tilde{X}_G \) is a topological group with operations and \(p: \tilde{X}_G \rightarrow X \) is a morphism of \(\mathcal{TC} \).

Proof: By the construction of \(\tilde{X}_G \) in Section 1, \(\tilde{X}_G \) is the set of equivalence classes defined via \(G \). The binary operations on \(P(X, 0) \) defined by (1) induce binary operations

\[
\langle \alpha \rangle_G \star \langle \beta \rangle_G = \langle \alpha \star \beta \rangle_G
\]

(9)

and the unary operations on \(P(X, x_0) \) defined by (2) induce unary operations

\[
\omega \langle \alpha \rangle_G = \langle \omega \alpha \rangle_G
\]

(10)

on \(\tilde{X}_G \).

We now prove that these operations (9) and (10) are well defined: For \(\star \in \Omega_2 \) and the paths \(\alpha, \beta, \alpha_1, \beta_1 \in P(X, 0) \) with \(\alpha(1) = \alpha_1(1) \) and \(\beta(1) = \beta_1(1) \), we have that

\[
[\langle \alpha \star \beta \rangle \circ (\alpha_1 \star \beta_1)^{-1}] = [\langle \alpha \star \beta \rangle \circ (\alpha_1^{-1} \star \beta_1^{-1})]
\]

(by 5)

\[
= [\langle \alpha \circ \alpha_1^{-1} \rangle \star (\beta \circ \beta_1^{-1})]
\]

(by 5)

\[
= [\alpha \circ \alpha_1^{-1}] \star [\beta \circ \beta_1^{-1}]
\]

(by 3)

So if \(\alpha_1 \in \langle \alpha \rangle_G \) and \(\beta_1 \in \langle \beta \rangle_G \), then \([\alpha \circ \alpha_1^{-1}] \in G \) and \([\beta \circ \beta_1^{-1}] \in G \). Since \(G \) is a subobject of \(\pi_1(X, 0) \), we have that \([\alpha \circ \alpha_1^{-1}] \star [\beta \circ \beta_1^{-1}] \in G \). Therefore the binary operations (9) are well defined.

Similarly for the paths \(\alpha, \alpha_1 \in P(X, 0) \) with \(\alpha(1) = \alpha_1(1) \) and \(\omega \in \Omega_1 \) we have that

\[
[(\omega \alpha) \circ (\omega \alpha_1^{-1})] = [(\omega \alpha) \circ (\omega \alpha_1^{-1})]
\]

(by 7)

\[
= [(\omega \alpha \circ \alpha_1^{-1})]
\]

(by 8)

\[
= \omega [\alpha \circ \alpha_1^{-1}]
\]

(by 4)
Since G is a subobject of $\pi_1(X,0)$, if $[\alpha \circ \alpha_1^{-1}] \in G$ and $\omega \in \Omega_1$ then $\omega[\alpha \circ \alpha_1^{-1}] \in G$. Hence the unary operations \blacksquare are also well defined.

The axioms (a)-(d) of Definition 3.1 for \tilde{X}_G are satisfied and therefore \tilde{X}_G becomes a group with operations. Further by Theorem 2.1 $p: (\tilde{X}_G, \tilde{0}) \to (X,0)$ is a covering map, \tilde{X}_G is a topological group and p is a morphism of topological groups. In addition to this we need to prove that \tilde{X}_G is an object of TC and p is a morphism of TC. To prove that the operations \blacksquare for $* \in \Omega_2$ are continuous let $\langle \alpha \rangle_G, \langle \beta \rangle_G \in \tilde{X}_G$ and $(W, \langle \alpha * \beta \rangle_G)$ be a basic open neighbourhood of $\langle \alpha * \beta \rangle_G$. Here W is an open neighbourhood of $(\alpha * \beta)(1) = \alpha(1) * \beta(1)$.

Since the operations $*: X \times X \to X$ are continuous there are open neighbourhoods U and V of $\alpha(1)$ and $\beta(1)$ respectively in X such that $U * V \subseteq W$. Therefore $(U, \langle \alpha \rangle_G)$ and $(V, \langle \beta \rangle_G)$ are respectively base open neighbourhoods of $\langle \alpha \rangle_G$ and $\langle \beta \rangle_G$ and

$$(U, \langle \alpha \rangle_G) * (V, \langle \beta \rangle_G) \subseteq (W, \langle \alpha * \beta \rangle_G).$$

Therefore the binary operations \blacksquare are continuous.

We now prove that the unary operations \blacksquare for $\omega \in \Omega_1$ are continuous. For if $(V, \langle \omega \alpha \rangle)$ is a base open neighbourhood of $\langle \omega \alpha \rangle$, then V is an open neighbourhood of $\omega \alpha(1)$ and since the unary operations $\omega: X \to X$ are continuous there is an open neighbourhood U of $\alpha(1)$ such that $\omega(U) \subseteq V$. Therefore $(U, \langle \alpha \rangle)$ is an open neighbourhood of $\langle \alpha \rangle$ and $\omega(U, \langle \alpha \rangle) \subseteq (V, \langle \omega \alpha \rangle)$.

Moreover the map $p: \tilde{X}_G \to X$ defined by $p(\langle \alpha \rangle_G) = \alpha(1)$ preserves the operations of Ω_2 and Ω_1. \hfill \square

From Theorem 3.7 the following result can be restated.

Theorem 3.8. Suppose that X is a topological group with operations whose underlying space is connected, locally path connected and semi-locally simply connected. Let $p: (\tilde{X}, \tilde{0}) \to (X,0)$ be a covering map such that \tilde{X} is path connected and the characteristic group G of p is a subobject of $\pi_1(X,0)$. Then the group operations of X lifts to \tilde{X}.

Proof: By assumption the characteristic group G of the covering map $p: (\tilde{X}, \tilde{0}) \to (X,0)$ is a subobject of $\pi_1(X,0)$. So by Remark 2.2 we can assume that $\tilde{X} = \tilde{X}_G$ and hence by Theorem 3.7 the group operations of X lift to \tilde{X} as required. \hfill \square

In particular, in Theorem 3.7 if the subobject G of $\pi_1(X,0)$ is chosen to be the singleton, then the following corollary is obtained.

Corollary 3.9. Let X be a topological group with operations such that the underlying space of X is connected, locally path connected and semi-locally simply connected. Let $p: (\tilde{X}, \tilde{0}) \to (X,0)$ be a universal covering map. Then the group structures of X lifts to \tilde{X}.

The following proposition is useful for Theorem 3.12.
Proposition 3.10. Let X be a topological group with operations and V a liftable neighbourhood of 0 in X. Then there is a liftable neighbourhood U of 0 in X such that $U \ast U \subseteq V$ for $\ast \in \Omega_2$.

Proof: Since X is a topological group with operations and hence the binary operations $\ast \in \Omega_2$ are continuous, there is an open neighbourhood U of 0 in X such that $U \ast U \subseteq V$. Further if V is liftable, then U can be chosen as liftable. For if V is liftable, then for each $x \in U$, the fundamental group $\pi_1(U, x)$ is mapped to the singleton by the morphism induced by the inclusion map $i: U \rightarrow X$. Here U is not necessarily path connected and hence not necessarily liftable. But since the path component $C_0(U)$ of 0 in U is liftable and satisfies these conditions, U can be replaced by the path component $C_0(U)$ of 0 in U and assumed that U is liftable.

Definition 3.11. Let X and Y be topological groups with operations and U an open neighbourhood of 0 in X. A continuous map $\phi: U \rightarrow S$ is called a local morphism in TC if $\phi(a \ast b) = \phi(a) \ast \phi(b)$ when $a, b \in U$ such that $a \ast b \in U$ for $\ast \in \Omega_2$.

Theorem 3.12. Let X and \tilde{X} be topological groups with operations and $q: \tilde{X} \rightarrow X$ a morphism of TC, which is a covering map. Let U be an open, path connected neighbourhood of 0 in X such that for each $\ast \in \Omega_2$, the set $U \ast U$ is contained in a liftable neighbourhood V of 0 in X. Then the inclusion map $i: U \rightarrow X$ lifts to a local morphism $\hat{i}: U \rightarrow \tilde{X}$ in TC.

Proof: Since V lifts to \tilde{X}, then U lifts to \tilde{X} by $\hat{i}: U \rightarrow \tilde{X}$. We now prove that \hat{i} is a local morphism of topological groups with operations. We know by the lifting theorem that $\hat{i}: U \rightarrow \tilde{X}$ is continuous. Let $a, b \in U$ be such that for each $\ast \in \Omega_2$, $a \ast b \in U$. Let α and β be the paths from 0 to a and b respectively in U. Let $\gamma = \alpha \ast \beta$. So γ is a path from 0 to $a \ast b$. Since $U \ast U \subseteq V$, the paths γ is in V. So the paths α, β and γ lift to \tilde{X}. Suppose that $\tilde{\alpha}, \tilde{\beta}$ and $\tilde{\gamma}$ are the liftings of α, β and γ in \tilde{X} respectively. Then we have

$$q(\tilde{\gamma}) = \gamma = \alpha \ast \beta = q(\tilde{\alpha}) \ast q(\tilde{\beta}).$$

But q is a morphism of topological group with operations and so we have,

$$q(\tilde{\alpha} \ast \tilde{\beta}) = q(\tilde{\alpha}) \ast q(\tilde{\beta})$$

for $\ast \in \Omega_2$. Since the paths $\tilde{\gamma}$ and $\tilde{\alpha} \ast \tilde{\beta}$ have the initial point $\tilde{0} \in \tilde{X}$, by the unique path lifting

$$\tilde{\gamma} = \tilde{\alpha} \ast \tilde{\beta}$$

On evaluating these paths at $1 \in I$ we have

$$\hat{i}(a \ast b) = \hat{i}(a) \ast \hat{i}(b).$$
4 Covers of crossed modules within topological groups with operations

If A and B are objects of C, an extension of A by B is an exact sequence

$$0 \to A \xrightarrow{i} E \xrightarrow{p} B \to 0 \quad (11)$$

in which p is surjective and i is the kernel of p. It is split if there is a morphism $s : B \to E$ such that $ps = id_B$. A split extension of B by A is called a B-structure on A. Given such a B-structure on A we get actions of B on A corresponding to the operations in C. For any $b \in B$, $a \in A$ and $\star \in \Omega'_2$ we have the actions called derived actions by Orzech [19, p.293]

$$b \cdot a = s(b) + a - s(b)$$
$$b \star a = s(b) \star a. \quad (12)$$

In addition to this we note that topologically if an exact sequence (11) in TC is a split extension, then the derived actions (12) are continuous. So we can state Theorem [19, Theorem 2.4] in topological case, which is useful for the proof of Theorem 4.6, as follows.

Theorem 4.1. A set of actions (one for each operation in Ω_2) is a set of continuous derived actions if and only if the semidirect product $B \rtimes A$ with underlying set $B \times A$ and operations

$$(b, a) + (b', a') = (b + b', a + (b \cdot a'))$$
$$(b, a) \star (b', a') = (b \star b', a \star a' + b \star a' + a \star b')$$

is an object in TC.

The internal category in C is defined in [21] as follows. We follow the notations of Section 1 for groupoids.

Definition 4.2. An internal category C in C is a category in which the initial and final point maps $d_0, d_1 : C \to C_0$, the object inclusion map $\epsilon : C_0 \to C$ and the partial composition $\circ : C_{d_1} \times_{d_0} C \to C$, $(a, b) \mapsto a \circ b$ are the morphisms in the category C. □

Note that since ϵ is a morphism in C, $\epsilon(0) = 0$ and that the operation \circ being a morphism
implies that for all $a, b, c, d \in C$ and $\star \in \Omega_2$,

$$(a \star b) \circ (c \star d) = (a \circ c) \star (b \circ d) \quad (13)$$

whenever one side makes sense. This is called the interchange law [21].

We also note from [21] that any internal category in C is an internal groupoid since given $a \in C$, $a^{-1} = ed_1(a) - a + ed_0(a)$ satisfies $a^{-1} \circ a = ed_1(a)$ and $a \circ a^{-1} = ed_0(a)$. So we use the term internal groupoid rather than internal category and write G for an internal groupoid. For the category of internal groupoids in C we use the same notation $\text{Cat}(C)$ as in [21]. Here a morphism $f : H \to G$ in $\text{Cat}(C)$ is morphism of underlying groupoids and a morphism in C.

In particular if C is the category of groups, then an internal groupoid G in C becomes a group-groupoid and in the case where C is the category of rings, an internal groupoid in C is a ring object in the category of groupoids [18].

Definition 4.3. An internal groupoid in the category $T(C)$ of topological groups with operations is called a topological internal groupoid.

So a topological internal groupoid is a topological groupoid G in which the set of morphisms and the set G_0 of objects are objects of $T(C)$ and all structural maps of G, i.e, the source and target maps $s, t : G \to G_0$, the object inclusion map $\epsilon : G_0 \to G$ and the composition map $\circ : G_t \times_s G \to G$, are morphisms of $T(C)$.

If $T(C)$ is the category of topological groups, then an internal topological groupoid becomes a topological group-groupoid.

For the category of internal topological groupoids in $T(C)$ we use the notation $\text{Cat}(T(C))$. Here a morphism $f : H \to G$ in $\text{Cat}(T(C))$ is morphism of underlying groupoids and a morphism in $T(C)$.

Theorem 4.4. Let X be an object of $T(C)$ such that the underlying space is locally path connected and semi-locally simply connected. Then the fundamental groupoid πX is a topological internal groupoid.

Proof: Let X be a topological group with operations as assumed. By [5] Theorem 1, πX has a topology such that it is a topological groupoid. We know by [5] Proposition 3 that when X and Y are endowed with such topologies, for a continuous map $f : X \to Y$, the induced morphism $\pi(f) : \pi X \to \pi Y$ is also continuous. Hence the continuous binary operations $\star : X \times X \to X$ for $\star \in \Omega_2$ and the unary operations $\omega : X \to X$ for $\omega \in \Omega_1$ respectively induce continuous binary operations $\tilde{\star} : \pi X \times \pi X \to \pi X$ and unary operations $\tilde{\omega} : \pi X \to \pi X$. So the set of morphisms becomes a topological group with operations. The groupoid structural maps are morphisms of groups with operations, i.e., preserve the operations. Therefore πX becomes a topological internal groupoid. \[\square\]
As similar to the crossed module in C formulated in [21, Proposition 2], we define a crossed module in TC as follows:

Definition 4.5. A crossed module in TC is a morphism $\alpha: A \to B$ in TC, where B acts topologically on A (i.e. we have a continuous derived action in TC) with the conditions for any $b \in B, a, a' \in A$, and $* \in \Omega_2'$:

1. $CM_1\ \alpha(b \cdot a) = b + \alpha(a) - b$;
2. $CM_2\ \alpha(a) \cdot a' = a + a' - a$;
3. $CM_3\ \alpha(a) \star a' = a \star a'$;
4. $CM_4\ \alpha(b \star a) = b \star \alpha(a) \text{ and } \alpha(a \star b) = \alpha(a) \star b$.

\[\square\]

A morphism from $\alpha: A \to B$ to $\alpha': A' \to B'$ is a pair $f_1: A \to A'$ and $f_2: B \to B'$ of the morphisms in TC such that

1. $f_2\alpha(a) = \alpha'f_1(a)$,
2. $f_1(b \cdot a) = f_2(b) \cdot f_1(a)$,
3. $f_1(b \star a) = f_2(b) \star f_1(a)$

for any $x \in B, a \in A$ and $* \in \Omega_2'$. So we have a category $\text{XMod}(TC)$ of crossed modules in TC.

The algebraic case of the following theorem was proved in C in [21, Theorem 1]. We can state the topological version as follows.

Theorem 4.6. The category $\text{XMod}(TC)$ of crossed modules in TC and the category $\text{Cat}(TC)$ of internal groupoids in TC are equivalent.

Proof: We give a sketch proof based on that of algebraic case. A functor $\delta: \text{Cat}(TC) \to \text{XMod}(TC)$ is defined as follows: For a topological internal groupoid G, let $\delta(G)$ be the topological crossed module (A, B, d_1) in TC, where $A = \text{Ker}d_0, B = G_0$ and $d_1: A \to B$ is the restriction of the target point map. Here A and B inherit the structures of topological group with operations from that of G, and the target point map $d_1: A \to B$ is a morphism in TC.

Further the actions $B \times A \to A$ on the topological group with operations A given by

\[
\begin{align*}
b \cdot a & = \epsilon(b) + a - \epsilon(b) \\
b \star a & = \epsilon(b) \star a
\end{align*}
\]
for $a \in A$, $b \in B$ are continuous by the continuities of ϵ and the operations in Ω_2; and the axioms of Definition 4.5 are satisfied. Thus (A, B, d_1) becomes a crossed module in TC.

Conversely define a functor $\eta: \text{XMod}(\text{TC}) \to \text{Cat}(\text{TC})$ in the following way. For a crossed module (A, B, α) in TC, define a topological internal groupoid $\eta(A, B, \alpha)$ whose set of objects is the topological group with operations B and set of morphisms is the semi-direct product $B \ltimes A$ which is a topological group with operations by Theorem 4.1. The source and target point maps are defined to be $d_0(b, a) = b$ and $d_1(b, a) = \alpha(a) + b$ while the object inclusion map and groupoid composition is given by $\epsilon(b) = (b, 0)$ and

$$(b, a) \circ (b_1, a_1) = (b, a_1 + a)$$

whenever $b_1 = \alpha(a)b$. These structural maps are all continuous and therefore $\eta(A, B, \alpha)$ is a topological internal groupoids.

The other details of the proof is obtained from that of [21, Theorem 1].

By Theorem 4.6 we obtain the cover of a crossed module in TC. If $f: H \to G$ is a covering morphism in $\text{Cat}(\text{TC})$ and (f_1, f_2) is the morphism of crossed modules corresponding to f, then $f_1: A \to A'$ is an isomorphism in TC, where $A = \text{St}_H0$, $A' = \text{St}_G0$ and f_1 is the restriction of f. Therefore we call a morphism (f_1, f_2) of crossed modules form $\alpha: A \to B$ to $\alpha': A' \to B'$ in TC as cover if $f_1: A \to A'$ is an isomorphism in TC.

Let G be a topological internal groupoid, i.e., an object of $\text{Cat}(\text{TC})$. Let $\text{Cov}_{\text{Cat}(\text{TC})}/G$ be the category of covers of G in the category $\text{Cat}(\text{TC})$. So the objects of $\text{Cov}_{\text{Cat}(\text{TC})}/G$ are the covering morphisms $p: \tilde{G} \to G$ over G in $\text{Cat}(\text{TC})$ and a morphism from $p: \tilde{G} \to G$ to $q: \bar{G} \to G$ is a morphism $f: \tilde{G} \to \bar{G}$ in $\text{Cat}(\text{TC})$ such that $qf = p$.

The algebraic case of the following theorem was proved in [1, Theorem 5.3]. We give the topological case of this theorem in TC as follows. The proof is obtained by Theorem 4.6 and Theorem 4.7.

Theorem 4.7. Let G be an object of $\text{Cat}(\text{TC})$ and $\alpha: A \to B$ the crossed module in TC corresponding to G by Theorem 4.6. Let $\text{Cov}_{\text{XMod}(\text{TC})}/(\alpha: A \to B)$ be the category of covers of $A \to B$ in TC. Then the categories $\text{Cov}_{\text{Cat}(\text{TC})}/G$ and $\text{Cov}_{\text{XMod}(\text{TC})}/(\alpha: A \to B)$ are equivalent.

References

[1] H. F. Akız, N. Alemdar, O. Mucuk and T. Şahan, Coverings of internal groupoids and crossed modules in the category of groups with operations, Georgian Math. J., 20 (2013) 223-238.
[2] N. Alemdar, O. Mucuk, Existence of covering topological R-modules, *Filomat*, 27: 6 (2013) 1121-1126

[3] N. Alemdar, O. Mucuk, The liftings of R-modules to covering groupoids, *Hacettepe Journal of Mathematics and Statistics* 41 (6) (2012) 813–822.

[4] R. Brown, *Topology and Groupoids*, BookSurge, LLC, Charleston, SC, 2006.

[5] R. Brown and G. Danesh-Naruie, The fundamental groupoid as a topological groupoid, Proc. Edinburgh Math. Soc. 19 (2), (1975) 237-244.

[6] R. Brown and O. Mucuk, Covering groups of non-connected topological groups revisited, *Math. Proc. Camb. Phill. Soc*. 115 (1994) 97-110.

[7] R. Brown and C. B. Spencer, G-groupoids, crossed modules and the fundamental groupoid of a topological group, Proc. Konn. Ned. Akad. v. Wet. 79 (1976) 296-302.

[8] C. Chevalley, Theory of Lie groups, Princeton University Press, 1946.

[9] T. Datuashvili, Cohomology of internal categories in categories of groups with operations, *Categorical Topology and its Relation to Analysis, algebra and combinatorics*, Ed. J. Adamek and S. Mac Lane (Prague, 1988), World Sci. Publishing, Teaneck, NJ, 1989.

[10] T. Datuashvili, Whitehead homotopy equivalence and internal category equivalence of crossed modules in categories of groups with operations, Proc. A. Razmadze Math.Inst. 113 (1995), 3-30.

[11] T. Datuashvili, Kan extensions of internal functors. Nonconnected case, J. Pure Appl. Algebra 167 (2002), 195-202.

[12] T. Datuashvili, Cohomologically trivial internal categories in categories of groups with operations, Appl. Categ. Structures 3 (1995), 221-237.

[13] T. Datuashvili, Categorical, homological and homotopical properties of algebraic objects. Dissertation, Georgian Academy of Science, Tbilisi, 2006.

[14] P.J. Higgins, Groups with multiple operators, Proc. London Math. Soc. (3) 6 (1956) 366-416.

[15] Mackenzie, K.C.H., *Lie groupoids and Lie algebroids in differential geometry*, London Math. Soc. Lecture Note Series 124, Cambridge University Press, 1987.

[16] O. Mucuk, B. Kılıçarslan, T. Şahan and N. Alemdar, Group-groupoid and monodromy groupoid, Topology and its Applications 158 (2011) 2034-2042.
[17] O. Mucuk, Covering groups of non-connected topological groups and the monodromy groupoid of a topological groupoid, PhD Thesis, University of Wales, 1993.

[18] O. Mucuk, Coverings and ring-groupoids, Georgian Math. J. 5 (1998), no. 5, 475–482.

[19] G. Orzech, Obstruction theory in algebraic categories. I, J. Pure Appl. Algebra 2 (1972), 287–314.

[20] G. Orzech, Obstruction theory in algebraic categories, II, J. Pure Appl. Algebra 2 (1972), 315–340.

[21] T. Porter, Extensions, crossed modules and internal categories in categories of groups with operations, Proc. Edinb. Math. Soc., 30 (1987) 373-381.

[22] J. J. Rotman, An Introduction to Algebraic Topology, Graduate Texts in Mathematics; 119, Springer-Verlag, Newyork, 1988.

[23] R.L. Taylor, Covering groups of non-connected topological groups, Proc. Amer. Math. Soc., 5 (1954) 753-768.