A Very Simple Approach for 3-D to 2-D Mapping

Sandipan Dey,
Anshin Software Pvt. Ltd.,
email: sandipand@anshinsoft.com

Ajith Abraham,
IITA Professorship Program, School of Computer Science,
Yonsei University,
134 Shinchon-dong, Sudaemoon-ku, Seoul 120-749, Republic of Korea
email: ajith.abraham@ieee.org

Sugata Sanyal,
School of Technology & Computer Science
Tata Institute of Fundamental Research
Homi Bhabha Road, Mumbai - 400005, INDIA
email: sanyal@tifr.res.in

March 23, 2010

Abstract

Many times we need to plot 3-D functions e.g., in many scientific experiments. To plot this 3-D functions on 2-D screen it requires some kind of mapping. Though OpenGL, DirectX etc 3-D rendering libraries have made this job very simple, still these libraries come with many complex pre-operations that are simply not intended, also to integrate these libraries with any kind of system is often a tough trial. This article presents a very simple method of mapping from $3-D$ to $2-D$, that is free from any complex pre-operation, also it will work with any graphics system where we have some primitive 2-D graphics function. Also we discuss the inverse transform and how to do basic computer graphics transformations using our coordinate mapping system.

1 Introduction

We have a function $f : \mathbb{R}^2 \to \mathbb{R}$, and our intention is to draw the function in $2-D$ plane. The function $z = f(x,y)$ is a 2-variable function and each tuple $(x, y, f(x,y)) \in \mathbb{R}^3$. Let’s say we want to graphically plot f onto computer screen using a primitive graphics library (like Turbo C graphics), which supports only the basic putPixel (to draw a pixel in $2-D$ screen)-like $2-D$ rendering function, but no $3-D$ rendering; i.e., our graphics library’s putPixel’s domain is \mathbb{R}^2 and it’s not \mathbb{R}^3.

2 Proposed Approach

We have a pictorial representation (figure 1) of our $3-D$ to $2-D$ mapping system:
But, how the function f should look like after the mapping and the plotting? Here we simulate the 3^{rd} coordinate (namely Z) in our $2-D$
We perform the logical to physical coordinate transform and everything by the map function \(h \), which will basically turn out to be a \(3 \times 2 \) matrix. The basic mapping technique is shown in fig. 2, which we are going to explain shortly.

We start with our Origin \(O \) (i.e. \((0,0,0)\)) mapped to \((x_0, y_0)\) screen coordinate, so that we have the following equations,

\[
\begin{align*}
x' &= x_0 + y - x \sin(\theta) \\
y' &= y_0 - z + x \cos(\theta)
\end{align*}
\]

i.e., we have our \(3-D \) to \(2-D \) transformation matrix:

\[
M_{3 \times 2} = \begin{pmatrix} -\sin(\theta) & \cos(\theta) \\ 1 & 0 \\ 0 & -1 \end{pmatrix}
\]

Again we have change of origin (shifting) by the matrix (vector) \(O_{2D} = [x_0 \ y_0] \) so that \(O_{2D} + P_{2D} \times M_{3 \times 2} = P_{2D} \). Here \(\times \) denotes matrix multiplication and + denotes matrix addition, the 3-tuple \(P_{3D} = [x \ y \ z] \), the 2-tuple \(P_{2D} = [x' \ y'] \), i.e.,

\[
[x_0 \ y_0] + [x \ y \ z] \cdot \begin{pmatrix} -\sin(\theta) & \cos(\theta) \\ 1 & 0 \\ 0 & -1 \end{pmatrix} = [x' \ y']
\]

By default we keep the angle between \(X \)-axis and \(Z \)-axis \(\theta = \frac{\pi}{4} \), that one can change if required, but with the following inequality strictly satisfied: \(0 < \theta < \frac{\pi}{2} \).

One can optionally use a compression factor to control the dimension along \(Z \)-axis by a compression factor \(\rho_z \) and slightly modifying the equations

\[
\begin{align*}
x' &= x_0 + y - x \sin(\theta) \\
y' &= y_0 - \rho_z z + x \cos(\theta)
\end{align*}
\]

Obviously, \(0 < \rho_z < 1.0 \). By default we take \(\rho_z = 1.0 \).

3 Sample output surfaces drawn using the above mapping

Following surfaces (Fig. 3 and Fig. 4) are drawn in Turbo C++ version 3.0 (BGI graphics) using the above simple \(3-D \) to \(2-D \) mapping. Also we used the same technique for a 3-D plot in java applet, the outputs are shown in Fig. 5. We used double-buffering technique for smooth drawing.
(copying in an alternate buffer and copying it back to original graphic device context only when plot finishes to avoid flickering) for better performance (since drawing pixel by pixel is a bit time consuming). Also, we used color code mapping to have gradient effect in our plot.

4 Inverse Transformation - Obtaining the original $3 - D$ coordinates from the transformed $2 - D$ coordinates

Here, our transformation function (matrix) is defined by Eqn. (1). As we can see, it is impossible to (uniquely) re-convert and obtain the original set of coordinates, namely (x, y, z), because we have 3 unknowns and 2 equations. So, in order to be able to get the original coordinates back, we at least need to store 3 tuples as result of the transformation, for instance, $(x, y, z) \rightarrow (x', y', z)$, the z-coordinate being stored only to get the inverse transform $(x', y', z) \rightarrow (x, y, z)$ and the (x', y') pair is used to plot the point. Hence, in order to get the inverse transformation, we need to solve the equations for x, y, since we already know z, we have 2 equations and 2 unknown variables:

$$\begin{align*}
y - x \times \sin(\theta) &= x' - x_0 \\
x \times \cos(\theta) &= y' - y_0 + z
\end{align*}$$

(5)

solving the above 2 equations we get,

$$\begin{align*}
x &= (y' - y_0 + z) \times \cos(\theta) \\
y &= x' - x_0 + (y' - y_0 + z) \times \tan(\theta)
\end{align*}$$

(6)

Put it in another way, our transformation matrix is a 3×2 matrix and is performed by Eqn. (2) since a non-square matrix, no question of existence of its inverse. So, in order to be able to get the inverse transform as well, we need a 3×3 invertible square

Figure 3: 1) $\sin(x+y)$ 2) $\sin(x^2+y^2)$ functions drawn in TurboC++ Version 3.0 (BGI Graphics) using the $3 - D$ to $2 - D$ mapping, with proper scaling
Figure 4: 1) $\sin(x+y) 2) \sin(\frac{x-y}{a})\cos(\frac{x+y}{b})$ functions drawn in TurboC++ Version 3.0 (BGI Graphics) using the 3 – D to 2 – D mapping, with proper scaling.

Figure 5: 1) $\sin(x+y)$ 2) $\sin(x^2+y^2)$ functions drawn in java applet 2D graphics using the 3 – D to 2 – D mapping, with proper scaling and color.
matrix, e.g.,

\[
M_{3 \times 3} = \begin{pmatrix}
-sin(\theta) & cos(\theta) & 0 \\
1 & 0 & 0 \\
0 & -1 & 1
\end{pmatrix}
\]

with

\[
Det(M_{3 \times 3}) = det \begin{pmatrix}
-sin(\theta) & cos(\theta) & 0 \\
1 & 0 & 0 \\
0 & -1 & 1
\end{pmatrix}
\]

\[
= \begin{pmatrix}
-sin(\theta) & cos(\theta) \\
1 & 0 \\
0 & -1
\end{pmatrix} = -cos(\theta)
\]

(8)

Now, \(0 < \theta < \frac{\pi}{2}\), hence \(cos(\theta) \neq 0\), hence \(Det(M_{3 \times 3}) \neq 0\), i.e. the matrix is non-singular and the inverse exists.

\[
[x_0 \ y_0 \ 0] + [x \ y \ z] \begin{pmatrix}
-sin(\theta) & cos(\theta) & 0 \\
1 & 0 & 0 \\
0 & -1 & 1
\end{pmatrix} = [x' \ y' \ z]
\]

But, we have,

\[
Inv(M_{3 \times 3}) = M_{3 \times 3}^{-1} = \frac{Adj(M_{3 \times 3})}{Det(M_{3 \times 3})} \quad \text{for} \quad Det(M_{3 \times 3}) \neq 0
\]

and,

\[
Adj(M_{3 \times 3}) = \begin{pmatrix}
0 & -cos(\theta) & 0 \\
-1 & -sin(\theta) & 0 \\
-1 & -sin(\theta) & -cos(\theta)
\end{pmatrix}
\]

(11)

Hence,

\[
Inv(M_{3 \times 3}) = \begin{pmatrix}
0 & 1 & 0 \\
sec(\theta) & tan(\theta) & 0 \\
sec(\theta) & tan(\theta) & 1
\end{pmatrix}
\]

Here, \(cos(\theta) \neq 0\).

Hence, the inverse transform is:

\[
[x \ y \ z], \ \begin{pmatrix}
-sin(\theta) & cos(\theta) & 0 \\
1 & 0 & 0 \\
0 & -1 & 1
\end{pmatrix} = [x' \ y' \ z] - [x_0 \ y_0 \ 0]
\]

\[
\Rightarrow [x \ y \ z] = [x' - x_0 \ y' - y_0 \ z] \begin{pmatrix}
0 & 1 & 0 \\
sec(\theta) & tan(\theta) & 0 \\
sec(\theta) & tan(\theta) & 1
\end{pmatrix}
\]

(14)

This exactly matches with our previous derivation.

5 Rotation and Affine Transformations

A point in \(3 - D\), after being mapped to \(2 - D\) screen following the above mapping procedure, may be required to be transformed using standard computer graphics transformations (translation, rotation about an axis etc). But in order to undergo such a graphics transformation and to show the point back to the screen after the transformation, it needs to go through the following steps in our previously-described coordinate mapping system:

1. First obtain the inverse coordinate transformation to obtain the original \(3 - D\) coordinates from the mapped \(2 - D\) coordinates.

2. Multiply the \(3 - D\) coordinate matrix by proper graphics transformation matrix in order to achieve graphical transformation.

3. Use the same \(3 - D\) to \(2 - D\) map again to plot the point onto the screen.

These steps can be mathematically represented as:

1. \(P_{3D} = P_{2D} \times (M_{3 \times 3})^{-1}\)
2. \(P'_{3D} = P_{3D} \times (T_{3x3}) \)

3. \(P'_{2D} = P'_{3D} \times (M_{3x3}) \)

Or, by a single line expression,

\[P'_{2D} = (((P_{2D} \times (M_{3x3})^{-1}) \times (T_{3x3})) \times (M_{3x3})) \]

Here, as before \(\times \) denotes matrix multiplication, where \(T_{3x3} \) denotes the traditional graphics transformation matrix.

But, since we know the fact that matrix multiplication is associative, we have,

\[P'_{2D} = ((P_{2D} \times (M_{3x3})^{-1}) \times (T_{3x3})) \times (M_{3x3}) \]

\[= P_{2D} \times M_{3x3}^{-1} \times T_{3x3} \times M_{3x3} \]

\[\Rightarrow P'_{2D} = P_{2D} \times M_{3x3} \]

where \(M_{3x3} = M_{3x3}^{-1} \times T_{3x3} \times M_{3x3} \) (16)

Hence, using this simple technique, we can escape the 3 successive matrix multiplications every-time a point on screen needs to transformed: instead we can pre-compute the matrix \(M_{3x3} = M_{3x3}^{-1} \times T_{3x3} \times M_{3x3} \).

This matrix \(M_{3x3} \) is needed to be computed once for a given graphics transformation (e.g., rotation about an axis) and applied to all points on the screen, so that using a single matrix multiplication thereafter any point on the screen can undergo graphics transformation, by, \(P'_{2D} = P_{2D} \times M_{3x3} \), where \(P_{2D} \) represents the point mapped before transformation \(T_{3x3} \) and \(P'_{2D} \) is the point re-mapped after the transformation, as obvious.

Hence, using the above tricks we are able to make the transformation more computationally efficient. Moreover, if a transformation is needed to be applied simultaneously, we can use the property \(M_{3x3}^{-1} \times (T_{3x3})^{n} \times M_{3x3} = (M_{3x3}^{-1} \times T_{3x3} \times M_{3x3})^{n} \), where \((T_{3x3})^{n} \) denotes \(n \) times, \(n \) is a positive integer) simultaneous matrix multiplication of \(T_{3x3} \). Let’s say we have already undergone \(T_{3x3} \) transformation, so that we have already computed \(M_{3x3} = M_{3x3}^{-1} \times T_{3x3} \times M_{3x3} \), and let’s say we also have frequent simultaneous \(T_{3x3}^{n} \) transformation. In order to undergo a \(T_{3x3}^{n} \) transformation, we first need to compute the matrix \(T_{3x3}^{n} \), then we need to compute our new matrix \(M'_{3x3} = M_{3x3}^{-1} \times (T_{3x3})^{n} \times M_{3x3} \), so we need total \(n + 2 \) matrix multiplications, every-time we want a \(T_{3x3}^{n} \) transform, for each \(n \).

But if we have computed \(M_{3x3}^{-1} \times (T_{3x3})^{n} \times M_{3x3} \) initially, here the trick is that we can reuse this it to compute our new matrix in the following manner:

\[M'_{3x3} = M_{3x3}^{-1} \times (T_{3x3})^{n} \times M_{3x3} = (M_{3x3}^{-1} \times T_{3x3} \times M_{3x3})^{n} = (M_{3x3})^{n}. \]

Here we need not compute \(T_{3x3}^{n} \) and \(M'_{3x3} \) everytime, instead we need to compute \((M_{3x3})^{n} \) only (that can be incremental multiplication to increase efficiency).

6 Conclusion

This article presented a very simple method of mapping from \(3-D \) to \(2-D \), that is free from any complex pre-operation. The proposed technique works with any graphics system where we have some primitive \(2-D \) graphics function. We also discussed the inverse transform and how to do basic computer graphics transformations using our coordinate mapping system.

7 References

1. David F. Rogers, J. Alan Adams, Mathematical Elements for Computer Graphics, McGraw-Hill

2. David F. Rogers, Procedural elements for computer Graphics, United States Naval Academy, Annapolis, MD

3. Dave Shreiner, Mason Woo, Jackie Neider, Tom Davis, OpenGL Programming Guide, The Official Guide to Learning OpenGL, Version 1.4, Fourth Edition.

4. Ken Turkowski, The Use of Coordinate Frames in Computer Graphics, Graphics Gems I, Academic Press, 1990, pp. 522-532.
5. Ken Turkowski, Fixed-Point Trigonometry with CORDIC Iterations, Graphics Gems I, Academic Press, 1990, pp. 494-497.

6. C.M. Ng, D.W. Bustard, A New Real Time Geometric Transformation Matrix and its Efficient VLSI Implementation, Computer Graphics Forum, Volume 13 Page 285