Histomorphological Spectra of Gallbladder Specimens after Cholecystectomy in Benign Disease

Research Article

Gaharwar A1, Mishra SR1,2*, Kumar V2

1 Department of Anatomy, Ganesh Shankar Vidyarthi Memorial Medical College, Kanpur, Uttar Pradesh, India.
2 Department of Anatomy, Rural Institute of Medical Science and Research, Saifai, Uttar Pradesh, India.

Abstract

Background: The gallbladder is a surgically important organ, most often subjected to cholecystectomy for treating cholelithiasis. The presence of gallstones may precipitate the development of cholecystitis which may even lead to gallbladder malignancy, if not treated in time.

Aim: The aims were to study the diverse morphological, histopathological and histochemical features of gallbladder specimens obtained at cholecystectomy done for various benign diseases of the GB.

Material and methods: Included are 132 specimens of the gallbladder obtained at cholecystectomy done for benign diseases at Ganesh Shankar Vidyarthi Memorial Medical College, Kanpur, Uttar Pradesh, India. The specimens thus obtained were studied for the morphological and histopathological changes. Each specimen was subjected to Sudan Black B, Methyl Green-Pyronin Y and Periodic acid-Schiff staining to confirm presence of lipid, plasma cells and glycogen, respectively in GB tissue samples.

Results and Conclusion: Cholelithiasis was predominantly a female disease. The size of the GB varied from < 7 cm (shrunken) to > 10 cm (distended). Cholelithiasis was present in 97.73% of the cases studied. Of these, 69.14% had mixed stones and 10.85%, cholesterol stones. Of the cases studied, 8.33% had acute cholecystitis alone. It was associated with mucocoele or empyema of the GB in 3.79% and 5.30% cases, respectively. Histopathological changes consistent with chronic cholecystitis and choledocholithiasis, respectively were seen in 76.52% and 6.06% cases. In the former patients, the presence of theplasma cells in the GB tissues was confirmed using MGPY staining. The presence of lipids in the GB tissue samples of the latter was confirmed using Sudan Black B staining. Cases of chronic cholecystitis with ectopic pancreatic tissue, colonic metaplasia and xanthogranuloma were also seen. Mixed atrophic-hyperplastic mucosa, being the commonest mucosal change was seen in 63.64% cases. Other mucosal changes included atrophic mucosa (in 21.21% cases) and hyperplasia (in 15.15% cases). The GB tissue samples in 7.5% cases showed PAS-positive mucinous metaplasia.

The tissue samples obtained at cholecystectomy performed for various benign gallbladder diseases showed varieties of histomorphological changes, including metaplasia and precursor changes suggesting the high risk for gallbladder malignancy. This underscores the need for routine histopathological examination of appropriate tissue samples of the gallbladder obtained at cholecystectomy.

Keywords: Cholelithiasis; Cholecystitis; Empyema; Gallstone; Mucosa; Mucocoele.

Introduction

Disorders of the gallbladder are a common surgical condition throughout the world. Cholecystectomy is the mainstay of treatment for cholelithiasis and the laparoscopic cholecystectomy is the gold standard management of symptomatic cholelithiasis [1, 2]. Chronic cholecystitis is associated with cholelithiasis in > 90% of cases [3]. Although symptomatic cholelithiasis persists as a benign condition, gallstones are a known risk factor for gallbladder malignancy (GBM) which has a very poor prognosis [2-4]. Cholelithiasis produces diverse histopathological changes in the gallbladder. These include acute or chronic inflammation, xanthogranulomatous cholecystitis, glandular hyperplasia, cholesterosis, and metaplasia (gastric or intestinal), dysplasia and carcinoma [3]. The incidence of the gallbladder cancer varies in different races and geographic regions [3, 5]. The incidence...
is relatively high in North India, Pakistan, East Asia, Eastern Europe, and South America [6, 7]. In India, there is a distinct female (2.3 versus 1.01) dominance in the incidence (per 100,000 population) of GBM [8, 9].

Untreated cholelithiasis is a potentially serious condition as it may lead to life-threatening complications. The study presented herein aimed at identifying various morphological, histopathological and histochemical changes as might be found in tissue samples obtained at cholecystectomy done for various benign diseases of the GB.

Materials and Methods

The study was the product of a collaborative work involving the Department of Anatomy, the Department of General Surgery and the Department of Pathology, Ganesh Shankar Vidyarthi Memorial Medical College, Kanpur, Uttar Pradesh, India. It was a retrospective, observational study examining 132 tissue samples of the GB obtained at cholecystectomy performed at the Department of Surgery. Included were the tissue samples of the GB obtained from those having GB malignancy and histochemical changes as might be found in tissue samples obtained at cholecystectomy performed for various benign diseases of the GB.

The tissue samples of the GB were fixed in 10 per cent formalin. Prior to this, the gross appearance of the GB, presence or absence of any calculus and the color of any calculus, if present was noted. Then specimens were sectioned serially at the fundus, body and neck. Routine processing of tissues sections and staining with haematoxylin and eosin were done and examined. The histopathological examination of mucosa of the GB was done with special care. Special staining with Sudan Black B, Methyl-Green Pyronin Y stain and Periodic acid - Schiff (PAS) stain was also done in all cases for the demonstration of lipids, plasma cells and glycogen, respectively.

Results

Of the total 132 patients underwent cholecystectomy, 121 were females and 11, males. Hundred and four (78.8%) GBs were 7-10 cm, 21 (15.9%), < 7 cm and 7 (5.3%), > 10 cm in size. Calculi were found in 129 of 132 (97.73%) of GBs removed (Figure 1). Concomitant mucocele and empyema of the GB, respectively was found in 5 and 7 cases (Figure 2). No stone was found in 11 (8.33%) cases (Table 2). Five (3.79%) cases of acute cholecystitis had associated mucocele of the GB. Seven (5.30%) had associated empyema of the GB.

When present, the chronic inflammatory infiltrate was characterized by the presence of scattered lymphocytes, plasma cells and macrophages. The marked plasma cell infiltration in the inflammatory infiltrates of chronic cholecystitis was confirmed using MGPY’s staining (Figure 6), which showed (Table 3) high (in 5 cases), moderate (in 120 cases), and mild (in 7 cases) degree of positivity for plasma cell infiltration. Sub-epithelial and sub-serosal fibrosis and Rokitansky-Aschoff sinuses were also prominent (Figure 7). A case of xanthogranulomatous cholecystitis was seen in which abundant lipid-laden macrophages and exuberant tissue fibrosis were present (Figure 8). Colonic metaplasia was seen with PAS staining (Figure 9). A rare case of compressed ectopic pancreatic tissue with chronic cholecystitis was also seen in the study (Figure 10). The histochemical confirmation of cholesterolosis (Table 3, Figure 11) was based on the presence of sub-mucosal deposition of lipids and cholesterol (Sudan Black B staining).

Hyperplastic GB mucosa was found in 20 (15.15%), atrophic mucosa, in 28 (21.21%) cases and mixed atrophic- hyperplastic mucosa, in 84 (63.64%) cases (Table 2, Figures 12, 13). Mucinous metaplasia (PAS-positive) was found in 10 (7.5%) cases; PAS staining was negative in 122 (92.4%) cases (Table 3, Figure 14). Histological features consistent with malignancy were uniformly absent in all specimens examined.

Discussion

Cholelithiasis (gallstone disease) is the most common surgical condition affecting the biliary tract [10]. In the present study, females outnumbered males by a ratio of 11 to 1, a pattern similar to what has been noted by others [3]. This may not be surprising, considering the lithogenic effects of female sex hormones and the presence of estrogen and progesterone receptors in the GB [9-11].

![Figure 1. Cholecystitis with cholelithiasis showing bile stained mucosa & haemorrhagic areas with marked irregular thickening of wall.](image)
Figure 2. Empyema of gall bladder with adhesions on surface.

Figure 3. Showing multiple multifaceted stones both intact and cut section mixed pigment and cholesterol content.

Table 1. Morphological findings of the gallbladder specimens examined (n=132).

Findings	Number (%) of cases
Length of the GB (in cm)	
< 7	21 (15.9)
7-10	104 (78.8)
> 10	7 (5.3)
Status of cholelithiasis	
Calculi	129 (97.73)
No calculus	3 (2.27)
Types of calculi	
Mixed	106 (89.39)
Cholesterol	14 (10.61)
Pigment	0 (0.0)

Figure 4. Calcified Porcelain gall bladder with multiple multifaceted stone.
The GB was found fully relaxed and distended (measuring > 10 cm in length) in 7 (5.3%) cases. It was normal measuring 7-10 cm in length [12-15] and shrunken measuring less than 7 cm in length in 104 (78.8%) and 21 (15.9%) cases, respectively. Thus the functional status of the GB showed a varying range.

Mixed stones and cholesterol type stones were present in 106 (89.14%) and 14 (10.85%) specimens, respectively. Pigment stone was not found in any case. Our findings support those of others [11, 16]. Considering the cases in aggregates, stones were found in the GB in 129 of the 132 (97.7%) specimens examined (Figures 1-2). Associated mucocoele and empyema of the GB was found in 5 (3.79%) and 7 (5.33%) cases, respectively (Figure 3). Only 3 (2.27%) specimens, taken from two males and one female patient, had no stone. We have found a rare case of porcelain GB with the dystrophic calcification of the GB wall. Of note, many

Table 2. Histopathological features of the gallbladder specimens examined (n=132).

Features	Number (%) of cases
Cholecystitis	
Chronic	101 (76.52)
Acute	11 (8.33)
Acute with mucocoele of the GB	5 (3.79)
Acute with empyema of the GB	7 (5.30)
Cholesterolosis	8 (6.06)
Mucosa	
Hyperplastic	20 (15.15)
Atrophic	28 (21.21)
Both	84 (63.64)

Table 3. Results of histochemical studies of the gallbladders obtained at cholecystectomy (n=132).

Stains used	Target	Number (%) of positive cases	Number (%) of negative cases
Sudan Black B	Lipids	8 (6.06)	124 (93.93)
MGPY	Plasma cells		
	Mild (1+)	7 (5.3)	0 (0.0)
	Moderate (2+)	120 (90.9)	0 (0.0)
	High (3+)	5 (3.78)	0 (0.0)
PAS	Glycogen	10 (7.5)	122 (92.4)

Abbreviations: MGPY, Methyl Green -Pyronin Y stain; PAS, Periodic acid-Schiff stain.
Figure 7. Rokitansky - Aschoff sinuses (Hematoxylin and eosin, × 200).

Figure 8. Showing Xanthogranuloma formation in the muscle layer H & E (x 450).

Figure 9. Showing Colonic Metaplasia in chronic cholecystitis – PAS staining (x 450).

Figure 10. Showing compressed ectopic pancreatic tissue in gall bladder in cholecystitis.

Figure 11. Showing Sudan Black B staining showing diffuse faint positivity in cholesterosis with focal areas of intense positivity (x 450).
consider [17] procelain GB a pre-malignant state. The diversities of the gross appearance of the GB found in the current study bear resemblance to the patterns reported by others [17-19]. In those reports, 49.7% of the GB specimens obtained at cholecystectomy were < 7 cm, 36.46%, 7-10 cm and 9.89%, > 10 cm in length.

We found histologically-proven acute cholecystitis in 18 (13.63%) cases; 5 cases (3.79%) had acute cholecystitis associated with mucocele of the GB. In total, 101 (76.52%) specimens showed histological features of chronic cholecystitis (Figure 5); chronic cholecystitis associated with cholesterolosis was found in 8 (6.06%) specimens. In one study [18], the majority (75%) of the post-cholecystectomy GBs examined showed histological evidence of chronic cholecystitis. Relatively fewer cases [18] showed features of empyema (1.04%) and cholesterolosis (12.25%) of the GB.

Acute cholecystitis is a rare variant of cholecystitis and is characterized histologically by the presence of edema, hyperemia, extravasations of red blood cells and prominent fibroblastic proliferation. The process may be initiated by chemical irritations or bacteria-induced inflammation [20] probably triggered by the obstruction in the neck of the GB or the cystic duct by stones or edema of the surrounding tissues [2].

Mucocele of the GB has an incidence of 3 per cent [21]. In this study, 5(3.79%) cases of mucocele of the GB presented with features clinically simulating those of acute cholecystitis. All had an over-distended GB (>10 cm) filled by mucous. Histologic features were remarkable for flattened mucosa of the GB lined by low columnar or cuboidal cells, numerous RASs and inflammatory infiltrates.

In the current study, empyema of the GB was seen in 7(5.33%) cases (Figure 3). The key pathogenic factor is the unresolved cholecystitis induced by gallstones coupled with the bacterial contamination of the bile [22]. The other key factor is the bacterial contamination of the mucous accumulated in the GB [21]. The most frequently isolated bacteria species in such settings include Escherichia coli, Klebsiella pneumoniae, Streptococcus faecalis and anaerobe (e.g., Bacteroides and Clostridia species). The resulting suppurative inflammation packs the GB with purulent debris. The incidence of the surgically-proven (i.e., detected at cholecystectomy) empyema of the GB varies widely from 2.4 to 11% [23, 24]. Empyema of gall bladder is often difficult to distinguish from uncomplicated acute cholecystitis [25].

Repeated bouts of mild to severe acute cholecystitis may result in chronic cholecystitis. In nine out ten cases, it is associated with cholelithiasis [26]. In the current study, none of the GB tissue samples examined showed any microscopic feature that could be considered normal. In one series [27], histologically normal GBs were found in less than one per cent of cases, when cholecystectomy was done for cholelithiasis. These data suggest that as claimed before, cholelithiasis was the commonest...
Cholelithiasis of the GB is the deposition of lipids and cholesterol esters in sub-epithelial cells, which project into lumen as polyps [26]. It affects mostly multiparous females [31]. In the current study, cholelithiasis was seen in 8 (6.06%) cases. All were females. Others found cholesterolosis in 2.7-12.3% of the GBs removed for benign diseases affecting the organ [18, 27].

In the current study, mucinous metaplasia (i.e., PAS-positive colonic metaplasia with intra-cytoplasmic mucin) which many regard suggestive of borderline malignancy of the GB was seen in 10 (7.5%) cases. We, as well as others [33], have found that ectopic pancreatic tissues in the GB associated with chronic cholecystitis due to cholelithiasis a rare occurrence. Metaplasia of the GB mucosa induced by chronic cholecystitis is a pre-malignant condition. Although lacking confirmation, the pathogenesis of the mucosal dysplasia of the GB seen in chronic inflammation may involve loss of the heterozygosity of p53 gene and excessive expression of the gene [35].

Conclusion

Within the constraints of small sample size, we conclude that cholelithiasis was the commonest underlying reason for cholecystectomy in majority of cases of benign diseases of the gallbladder. The morphological appearance of the gallbladder varied from a shrunk, normal or distended organ with focal haemorrhages, sometimes filled with mucus or pus. The histopathological changes were equally diverse, showing features of acute and chronic cholecystitis, cholesterosis, xanthogranuloma, dystrophic calcification, hyperplasia and metaplasia. Irrespective of the gross appearance and seemingly benign nature of the disease affecting the organ, every gallbladder removed by cholecystectomy should be subjected to histopathological examinations.

References

[1]. Jayasundara JASB, de Silva WM (2013) Histological assessment of cholecystectomy specimens performed for symptomatic cholelithiasis: routine or selective Annals R Coll Surg Eng. 95 (5): 317-322. doi: 10.1308/00355884.13X1629690046471.
[2]. Elwood DR (2008) Cholecystitis Surg Clin North Am. 88(6): 1241-1252. doi: 10.1016/j.suc.2008.07.008.
[3]. Kafle SU, Sinha AK, Pandey SR (2013) Histomorphometry spectrum of gall bladder pathology in cholecystectomy specimens with clinical diagnosis of chronic cholecystitis. J Nepal Med Assoc;52(192): 600-607.
[4]. Sanders G, Kingsnorth AN (2007) Gallstones BMJ ; 335(7614):295-299.
[5]. Symmers W St. C Liver, biliary tract and exocrine pancreas; Vol eleven 3rd edition: 1984 chapter 13X13629960046471.
[6]. Taylor HW, Huang JK (2008) Routine pathological examination of gall bladder: a histopathological study. Int J health Sci and Res 6(4): 141-145.
[7]. Shah A, Alsuweih F, Al-Shehri S, Al-Balooshi H, Al-Gahtani S (2011) Prevalence and Morphology of Galls Stones The Iraqi Post graduate medical Journal vol. 10 No.1.
[8]. Shielasherlok (1997) Diseases of liver and Bilary system 10 edition. Wiley-Blackwell,USA.
[9]. Zuhair R, Hani AB, Saleh M, Ansari AL (2011) Prevalence and Morphology and chemical composition of Gall stones The Iraqi Post graduate medical Journal vol. 10 No.1.
[10]. Shielasherlok (1997) Diseases of liver and Bilary system 10 edition. Wiley-Blackwell,USA.
[11]. Chari RS, Shah SK (2008) Sahotion Textbook of Surgery, in Biliary system. 18th ed. secX , ch 54 WB Saunders St. Louis. 54. 1474-14.
[12]. McGregor AL, Decker GAG, Plessis DJ Du (1986) Lee Mc Gregor’s synopsis of surgical anatomy in the Liver and The Biliary System. 12th edn. KM Vergheze and company, Bombay; 78-103: 7.
[13]. Vakil K, Poonfret EA (2008) Biliary anatomy and embryology. Surgical Clin of North America. 88(6): 1159-1174, doi: 10.1016/j.suc.2008.07.001.
[14]. Alwan MH (1984) Incidence of cholecystitis in Kuwait: A review of 894 cases Arab J Med. 3: 17-20.
[15]. Kaur A, Dubey VK, Mehta KS (2012) Gall Bladder mucosal changes associated with chronic cholecystitis, Department of Pathology and Surgery AS-COM Sidhra, Jammu (J&K) India www.JK science vol 14 no 2 April-June.
[16]. Alumuslamani AJ, ALsoude M, Aloamri M, Mznzel T, Khawsana G (2011) Histopathological examination on suspicious gall bladder specimens at Royal medical services hospital BMJ 36(2): 93-96.
[17]. Kumar V, Abbas AK, Nelson F, Robbins and Crotton Pathologic basis of disease 7 edition, ELSEVIER SAUNDERS.
[18]. Rosaì J (2004)Rosaì and Ackerman’s Surgery Pathologic. 9th ed. New York, NY: Mosby:. vol 1: 1039. Published by Elsevier Mosby, St. Louis, MO, USA, 2004.
[19]. Wang CH, Chou HC, Liu KL, Lien WC, Wang HP, Wu YM (2013) Long-Term Outcome of Patients with Acute Cholecystitis Receiving Antibiotic Treatment: A Retrospective Cohort Study. World J Surg. 37(2): 347-54. doi: 10.1007/s00268-013-2311-3.
[20]. Thornton JR, Heaton KW, Eltringhan WK, Eltringhan WK, Ashraj S M Sahoo P (1992) Morphological changes in diseased Gall Bladder a study of 415 cholecystectomy specimens in Aligarh. J Indian medical association 90(7): 178-81.

Gaharwar A, Mishra SR, Kumar V (2016) Histomorphological Spectra of Gallbladder Specimens after Cholecystectomy in Benign Disease. Int J Anot Appl Physiol 2(5), 49-56.
[28]. Memon W, Khanzada TW, Samad A, Kumar B (2011) Histopathology spectrum of gall bladder specimen after cholecystectomy. Pak Journal Med. Sc. 27(3): 533-536.

[29]. Ross M, Pawlina W (2011) Histology: A Text and Atlas (6th ed.). Lippincott Williams & Wilkins. p. 646.

[30]. Terada T (2013) Histological features and frequency of gall bladder lesions in consecutive 540 cholecystectomies, Int J Clin Exp Pathol. 6(1): 91-96.

[31]. Junai R(1981) Surgical pathology Ackerman vol. 2 pg 1881, 7 edition.

[32]. Young, Barbara, et al. (2006) Wheater’s functional histology: a text and colour atlas (5th ed.). [Edinburgh]: Churchill Livingstone/Elsevier. p. 298

[33]. Duarte I, Llanos O, Domke H, Harz C, Valdivieso V (1973) Metaplasia and precursor lesions of gall bladder carcinoma. Frequency,distribution and probability of detection in routine histologic samples. Cancer. 72 (6): 1878-1884.

[34]. Elhence P Bansal R, Agrawal N (2012) Heterotopic pancreas in gall bladder associated with chronic cholecystolithiasis Int J Appl Basic Med Res. 2(2): 142-143.

[35]. Tazuma S, Kajiyama G (2001) Carcinogenesis of malignant lesion of the gall bladder. Lagenbeck's, Arch Surg. 386 (3): 224-229.