Sweet potato (*Ipomoea batatas L.*) leaves suppressed oxidation of low density lipoprotein (LDL) *in vitro* and in human subjects

Miu Nagai,1 Mariko Tani,1 Yoshimi Kishimoto,1 Maki Iizuka,1 Emi Saita,1 Miku Toyozaki,1 Tomoyasu Kamiya,2 Motoya Ikeguchi2 and Kazuo Kondo*1

1Institute of Environmental Science for Human Life, Ochanomizu University, 2-1-1 Otuka, Bunkyo-ku, Tokyo 112-8610, Japan
2Research and Development Division, Toyo Shinyaku Co., Ltd.

(Received 12 July, 2010; Accepted 9 August, 2010; Published online 13 April, 2011)

Sweet potato (*Ipomoea batatas L.*) leaves are consumed as vegetables around the world, especially in Southeast Asia. The aim of this study was to investigate the inhibitory effect of sweet potato leaves on low-density lipoprotein oxidation *in vitro* and in human subjects. We compared the antioxidant activity of 8 kinds of sweet potato leaves. Every sweet potato leaf had high radical scavenging activity and prolonged a lag time for starting low-density lipoprotein oxidation *in vitro*. We found that sweet potato leaves contained abundant polyphenol compounds and the radical scavenging activity and prolongation rate of lag time were highly correlated with total polyphenol content. We also confirmed that thiobarbituric acid reactive substances production was increased in endothelial cell-mediated low-density lipoprotein oxidation, which was decreased by treatment with sweet potato leaves. We further measured the low-density lipoprotein oxidizability in 13 healthy volunteers after their intake of 18 g of “Suioh”, raw sweet potato leaves. “Suioh” prolonged a lag time for starting low-density lipoprotein oxidation and decreased low-density lipoprotein mobility. These results suggest that sweet potato leaves have antioxidant activity leading to the suppression of low-density lipoprotein oxidation.

Key Words: sweet potato leaves, polyphenol, antioxidant activity, low-density lipoprotein, atherosclerosis

The high consumption of vegetables and fruits has been linked epidemiologically to a reduced risk of cardiovascular disease (CVD).1–3 Polyphenols are the major photochemical with antioxidant properties in vegetables and fruits, which partly contribute to their beneficial effect on the prevention of CVD. The oxidative modification of low-density lipoprotein (LDL) is related to foam cell formation, and can result in the initiation and progression of atherosclerosis leading to CVD.4–6 Several studies have shown that polyphenolics from various foods such as red wine, green tea, and chocolate could play a positive role in preventing LDL oxidation.5–7

Many cultivars of sweet potatoes are consumed around the world. In Japan, the roots of sweet potatoes such as “Naruto Kintoki”, “Beni Azuma”, “Purple Sweet Road”, “Quick Sweet”, “Kogane Sengan”, and “Simon No. 1”. All sweet potato leaves were achieved as seedlings from Miyazaki in Japan. The leaves freeze-dried and powdered by blender were extracted with 70% methanol with mixing at room temperature for 1 h. The extracted solution was filtered and stored at −20°C for using in the following studies *in vitro*.

Free radical-scavenging activity. The free radical-scavenging activity of sweet potato leaves extracts was determined using 1,1-diphenyl-2-picyrylhydrazyl (DPPH) (Wako Pure Chemical Industries, Ltd., Osaka, Japan) as described previously.11,12 An aliquot of the sweet potato leaves extracts was mixed with 2 ml of 0.1 mM DPPH in ethanol. Following incubation for 20 min at 37°C, the absorbance was measured at 516 nm with a Beckman Model DU 800 spectrophotometer. We used 1 mM ascorbic acid as a positive control and expressed the DPPH radical scavenging activity of sweet potato leaves as ascorbic acid equivalent.

Total polyphenol content. Total polyphenol content of sweet potato leaves extracts was measured by Folin-Ciocalteu assay using 1 mM chlorogenic acid as the standard according to the previous report.13 In brief, Folin-Ciocalteu phenol reagent (Nakaraitesuku Co., Kyoto, Japan) was added to the sample and incubated in 1.5% NaCO₃ solution for 2 h at 20°C, and the absorbance was measured at 750 nm. Results were expressed as chlorogenic acid equivalent.

Isolation of LDL. Blood samples were collected in sodium EDTA-containing tubes from fasting normolipidemic volunteers after obtaining their informed consent. Plasma samples were immediately prepared by centrifugation at 3,000 rpm for 15 min at 4°C. The LDL was separated by single-spin density gradient ultracentrifugation (100,000 rpm, 40 min, 4°C) using a TLA-100.4 fixed angle-rotor (Beckman Instruments, Fullerton, CA).14 The LDL protein concentration was determined using a Micro

Several reports have indicated that sweet potato leaves inhibited HIV replication, mutagenicity, diabetes, and the proliferation of cancer cells,6,9,10 although the effect of these leaves in inhibiting LDL oxidation has not been sufficiently demonstrated. The aim of this study was to compare the antioxidant effect on LDL oxidation of several cultivars of sweet potato leaves.

Materials and Methods

Preparation of sweet potato leaves extracts. We used 8 kinds of sweet potato leaves; “Naruto Kintoki”, “Suioh”, “Elegant Summer”, “Beni Azuma”, “Purple Sweet Road”, “Quick Sweet”, “Kogane Sengan”, and “Simon No. 1”. All sweet potato leaves were achieved as seedlings from Miyazaki in Japan. The leaves freeze-dried and powdered by blender were extracted with 70% methanol with mixing at room temperature for 1 h. The extracted solution was filtered and stored at −20°C for using in the following studies *in vitro*.

Total polyphenol content. Total polyphenol content of sweet potato leaves extracts was determined using 1,1-diphenyl-2-picyrylhydrazyl (DPPH) (Wako Pure Chemical Industries, Ltd., Osaka, Japan) as described previously. In brief, Folin–Ciocalteu phenol reagent (Nakaraitesuku Co., Kyoto, Japan) was added to the sample and incubated in 1.5% NaCO₃ solution for 2 h at 20°C, and the absorbance was measured at 750 nm. Results were expressed as chlorogenic acid equivalent.

Isolation of LDL. Blood samples were collected in sodium EDTA-containing tubes from fasting normolipidemic volunteers after obtaining their informed consent. Plasma samples were immediately prepared by centrifugation at 3,000 rpm for 15 min at 4°C. The LDL was separated by single-spin density gradient ultracentrifugation (100,000 rpm, 40 min, 4°C) using a TLA-100.4 fixed angle-rotor (Beckman Instruments, Fullerton, CA). The LDL protein concentration was determined using a Micro

1To whom correspondence should be addressed.

E-mail: kondo.kazuo@ocha.ac.jp
were determined as described above.

Results

The significance level was set at a 0.05 value for all analysis. All experiments were performed at least three times.

Screening of antioxidant activity of various sweet potato leaves.

As shown in Fig. 1A, 8 sweet potato leaf extracts had high free radical scavenging activity (“Naruto Kintoki”, 4.5-fold vs 1 mM ascorbic acid; “Suio”, 6.7-fold; “Elegant Summer”, 6.6-fold; “Bari Azuma”, 7.1-fold; “Purple Sweet Road”, 7.3-fold; “Quick Sweet”, 7.8-fold; “Kogane Sengan”, 8.2-fold; “Simon No. 1”, 8.3-fold).

To confirm that sweet potato leaves contribute to free radical scavenging activity, we measured the total polyphenol content in these leaves. As shown in Fig. 1B, all of the sweet potato leaves had a rich total polyphenol content (“Naruto Kintoki”, 1.1 mg/ml; “Suio”, 1.5 mg/ml; “Elegant Summer”, 1.5 mg/ml; “Bari Azuma”, 1.7 mg/ml; “Purple Sweet Road”, 1.7 mg/ml; “Quick Sweet”, 2.0 mg/ml; “Kogane Sengan”, 2.1 mg/ml; “Simon No. 1”, 2.3 mg/ml). The free radical scavenging activity of sweet potato leaves was highly correlated with their total polyphenol content (Fig. 1C).

Effect of sweet potato leaves on prolongation of lag time in vitro.

To evaluate the antioxidant effects of sweet potato leaves on LDL oxidation, we carried out an LDL lag time assay. As shown in Fig. 2A, all types of sweet potato leaves significantly prolonged a lag time for starting LDL oxidation compared with the control (“Naruto Kintoki”, 2.9-fold; “Suio”, 3.3-fold; “Elegant Summer”, 3.5-fold; “Bari Azuma”, 4.0-fold; “Purple Sweet Road”, 3.5-fold; “Quick Sweet”, 4.3-fold; “Kogane Sengan”, 3.9-fold; “Simon No. 1”, 4.6-fold). The prolongation of lag time induced by each type of sweet potato leaf was associated with its total polyphenol content (Fig. 2B).

Effect of sweet potato leaves on HUVECs-mediated LDL oxidation.

We next examined the inhibitory effect of sweet potato leaves on endothelial cell-mediated LDL oxidation. “Kogane Sengan” and “Simon No. 1” caused significant declines in TBARS products (Table 1). We evaluated the oxidative modification of LDL by monitoring the surface charge of LDL using agarose gel electrophoresis. “Kogane Sengan” and “Simon No. 1” markedly inhibited LDL mobility. As measured by MTT assay, none of the 8 types of sweet potato leaves affected cell viability under our conditions (data not shown).

Discussion

Oxidation of LDL may play an important role in the generation of foam cells and result in the initiation and development of atherosclerosis. In the present study, we compared the antioxidant activity of various sweet potato leaves in terms of the DPPH radical scavenging activity and LDL oxidation in vitro and in human subjects.

There are many cultivars of sweet potatoes around the world, but the antioxidant effects of sweet potato leaves have not yet been sufficiently investigated. First, we compared the antioxidant activity of 8 kinds of sweet potato leaves that are generally consumed in Japan. Each kind of sweet potato leaf had high DPPH radical scavenging activity and contained abundant polyphenol compounds. In addition, the DPPH radical scavenging activity of sweet potato leaves was highly correlated to their total polyphenol content.

Sweet potato leaves are known to contain several polyphenols, mainly caffeoylquinic acid (CQA) derivatives. These polyphenol amounts are higher than those of sweet potato tubers including the peel, whole root and flesh tissues. The total polyphenol content varies in cultivars of sweet potato leaves, which are categorized as high (>9 g/100 g dry weight) or medium (5–9 g/100 g dry weight).
polyphenol accumulators. In this study, we observed that the total polyphenol content ranged from 6.3–13.5 g/100 g dry weight in the 8 kinds of sweet potato leaves, indicating that sweet potato leaves could be a strongly antioxidative leafy vegetable with high amount of polyphenol. On the other hand, sweet potato leaves have been known to contain various antioxidants such as vitamin E, \(\beta \)-carotene and lutein which might be contributed to their radical scavenging effects as well as polyphenols.

We next demonstrated the protective effect of sweet potato leaves on LDL oxidation against pro-oxidant-initiated oxidative modification or endothelial cell-mediated oxidation in vitro. Sweet potato leaves significantly prolonged a lag time for starting LDL oxidation, indicating that they could prevent free radical-induced lipid peroxidation in LDL. The prolongation rate of lag time showed a significant positive correlation with their total polyphenol content. We also used Ham’s F10 medium containing metal ions to induce the oxidation of LDL in HUVECs. Interaction between LDL and HUVECs remarkably increased TBARS production, which was decreased by treatment with sweet potato leaves. Sweet potato leaves also inhibited the increase of negative charge in LDL particles, indicating that the leaves may play a role in the prevention of apolipoprotein B100 modification in LDL.

Fig. 1. Relationship between DPPH radical scavenging activity and total polyphenol content of 8 kinds of sweet potato leaves. DPPH radical scavenging activity was expressed as ascorbic acid equivalent (A). Total polyphenol content was determined by Folin-Ciocalteu assay and expressed as chlorogenic acid equivalent (B). Values are means ± SD (n = 3). Different letters indicate statistically significance (p<0.05) among different groups by Fisher’s PLSD test after ANOVA. There was a significant positive correlation between total polyphenol content and DPPH radical scavenging activity (C).
Although TBARS production and LDL mobility in HUVECs-mediated LDL oxidation did not show the significant correlation with total polyphenol content (data not shown), "Kogane Sengan" and "Simon No. 1", which had the highest polyphenol contents showed strong inhibitory effects.

In view of the numerous studies concerning their biofunctional activities, polyphenols have been demonstrated as effective free radical scavengers and metal ion chelators. Thus we speculated that sweet potato leaves might inhibit endothelial cell-mediated LDL oxidation, mostly due to their direct chelating action for transition metal ions and/or their interaction with oxidants in the reaction medium. In addition, 12/15-lipoxygenase from endothelial cells have been proposed to be another endogenous pro-oxidant factor involved in LDL oxidation. Some polyphenols such as quercetin and epicatechin have been reported to inhibit 15-lipoxigenase activity, suggesting that sweet potato leaves might have the possibility to inhibit lipoxigenase-induced LDL oxidation in endothelial cells.

To identify the contribution made by sweet potato leaves to protection against LDL oxidation, we conducted additional experiments in human subjects. Recently, several sweet potatoes such as “Elegant summer” and “Suioh” were developed in Japan for eating those leaves mainly. In the present study, the consumption of raw “Suioh” leaves containing 1,000 mg total polyphenol significantly extended the lag phase of LDL oxidation and reduced TBARS production and LDL mobility. We previously reported that the consumption of grapes containing 1,000 mg total poly-

Table 1. Effect of sweet potato leaves extracts on TBARS production and electrophoretic LDL mobility in HUVECs-mediated LDL oxidation

	TBARS products	LDL mobility
control	100.0	100.0
Naruto Kintoki	84.3	91.4
Elegant Summer	81.1†	88.2
Suioh	80.7†	85.0†
Beni Azuma	82.5†	91.4
Purple Sweet Road	82.8†	86.2
Quick Sweet	82.2†	88.4
Kogane Sengan	80.5*	82.7*
Simon No.1	67.3**	74.4**

Values are means ± SD (n = 3). †p<0.1, *p<0.05, **p<0.01 compared with control, by Fisher’s PLSD test after ANOVA.
phenol prolonged the lag time of LDL oxidation, and that this prolongation was related to an increase in the plasma polyphenol levels.\(^\text{(22)}\) A similar result has been obtained for green tea.\(^\text{(23)}\)

Plasma lipoproteins have been suggested to be potential carriers of polyphenols.\(^\text{(24)}\) In the previous study, plasma concentration of polyphenol-rich was reached a peak at 30–60 min after intake of polyphenol-rich beverages such as red wine\(^\text{(25)}\) and coffee.\(^\text{(26)}\) Although our study could not examine, we speculated that plasma concentration of polyphenols might increase around 30 min after intake and affect on LDL oxidazability. A recent \textit{in vivo} study also showed that CQA and diCQA were identified in plasma around 1 \text{μmol/l} at 1.75–2.33 h.\(^\text{(27)}\) These data suggest that polyphenols may be absorbed into the bloodstream and incorporated into LDL after “Suioh” consumption. Moreover, it must be taken into account that “Suioh” has various antioxidants, not only polyphenols but also vitamin E and carotenoids. Previous study suggested that some hydrophilic antioxidants, such as polyphenols, bind to phospholipids or proteins on the LDL surface, whereas hydrophobic antioxidants, such as \(β\)-carotene, bind closer to the LDL core.\(^\text{(28)}\) “Suioh” would be suitable for use as a vegetable which can help prevent LDL oxidation due to the combination of hydrophilic and hydrophobic antioxidants.

Fig. 3. Effect of “Suioh” intake on LDL oxidation in healthy subjects. After overnight fasting, 13 healthy volunteers consumed 18 g of raw “Suioh” leaves. Blood was sampled before and 0.5, 1, 2, and 4 h after intake. We measured LDL oxidizability in the presence of AMVN-CH\(_3\)O (final concentration 200 \text{μM}) by lag time assay (A), TBARS assay (B) and agarose gel electrophoresis (C). Data are mean ± SEM (\(n=13\)). †\(p<0.1\), *\(p<0.05\), **\(p<0.01\) compared with before consumption of “Suioh” by Fisher’s PLSD test after ANOVA.

M. Nagai et al.

J. Clin. Biochem. Nutr. | May 2011 | vol. 48 | no. 3 | 207
©2011 JCBN
In conclusion, this study provided the novel findings that sweet potato leaves had antioxidant ability and inhibited the oxidation of LDL.

Acknowledgments

This study was supported in part by Grant-in-Aid (20300244 to K. K.) from the Japan Society for the Promotion of Science and the Program of fostering frontier industries for demand creation. Y.K. is supported by research fellowships of the Japan Society for the Promotion of Science for young scientists. We thank the volunteers of clinical study and all members of the Kondo Laboratory for critical discussion.

References

1. Ness AR, Powles JW. Fruit and vegetables, and cardiovascular disease: a review. Int J Epidemiol 1997; 26: 1–13.
2. Nagura J, Iso H, Watanabe Y, and et al. Fruit, vegetable and bean intake and mortality from cardiovascular disease among Japanese men and women: the JACC Study. Br J Nutr 2009; 102: 285–292.
3. Otaki N, Kimira M, Katsumata S, Uehara M, Watanabe S, Suzuki K. Distribution and major sources of flavonoid intakes in the middle-aged Japanese women. J Clin Biochem Nutr 2009; 44: 231–238.
4. Steinberg D. The LDL modification hypothesis of atherogenesis: an update. J Lipid Res 2009; 50 Suppl: S376–S381.
5. Kalkan Yildirim H, Delen Akçay Y, Güvenç U, Yildirim Sözmen E. Protection capacity against low-density lipoprotein oxidation and antioxidant potential of some organic and non-organic wines. Int J Food Sci Nutr 2004; 55: 351–362.
6. Yoshida H, Ishikawa T, Hosoai H, and et al. Inhibitory effect of tea flavonoids on the ability of cells to oxidize low density lipoprotein. Biochem Pharmacol 1999; 58: 1695–1703.
7. Kondo K, Hirano R, Matsumoto A, Igarashi O, Itakura H. Inhibition of LDL oxidation by cocoa. Lancet 1996; 348: 1514.
8. Villareal RL, Tsou SC, Lo HF, Chiu SC. Sweetpotato tips as vegetables. Sweet Potato: Proceedings of the First International Symposium. In: Villareal RL, Griggs TD, eds. A VRDC: Shanhua, Taiwan 1982; 313–320.
9. Mahmood N, Moore PS, De Tommasi N, and et al. Inhibition of HIV infection by caffeoylquinic acid derivatives. Antiviral Chem Chemother 1993; 4: 235–240.
10. Yoshimoto M, Yahara S, Okuno S, Islam MS, Ishiguro K, Yamakawa O. Antimitagenticity of mono-, di-, and tricaffeoylquinic acid derivatives isolated from sweetpotato (Ipomoea batatas L.) leaf. Biosci Biotechnol Biochem 2002; 66: 2336–2341.
11. Blois MS. Antioxidant determinations by the use of a stable free radical. Nature 1958; 181: 1199–1200.
12. Aviram M, Rosenblat M, Bisaiger CL, Newton RS. Atorvastatin and gemfibrozil metabolites, but not the parent drugs, are potent antioxidants against lipoprotein oxidation. Atherosclerosis 1998; 133: 271–280.
13. Ainsworth EA, Gillespie KM. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat Protoc 2007; 2: 875–877.
14. Chung BH, Segrest JP, Ray MJ, and et al. Single vertical spin density gradient ultracentrifugation. Methods Enzymol 1986; 128: 181–209.
15. Hirano R, Kondo K, Iwamoto T, Igarashi O, Itakura H. Effects of antioxidants on the oxidative susceptibility of low-density lipoprotein. J Nutr Sci Vitaminol (Tokyo) 1997; 43: 435–444.
16. Buege JA, Aust SD. Microsomal lipid peroxidation. Methods Enzymol 1978; 52: 302–310.
17. Islam MS, Yoshimoto M, Yahara S, Okuno S, Ishiguro K, Yamakawa O. Identification and characterization of foliar polyphenolic composition in sweetpotato (Ipomoea batatas L.) genotypes. J Agric Food Chem 2002; 50: 3718–3722.
18. Truong VD, McFeeters RF, Thompson RT, Dean LL, Shofran B. Phenolic acid content and composition in leaves and roots of common commercial sweetpotato (Ipomoea batatas L.) cultivars in the United States. J Food Sci 2007; 72: C343–C349.
19. Chandrika UG, Basnayake BM, Athukorala I, Colombagama PW, Goonetilleke A. Carotenoid content and in vitro bioaccessibility of lutein in some leafy vegetables popular in Sri Lanka. J Nutr Sci Vitaminol (Tokyo) 2010; 56: 203–207.
20. Schewe T, Sadić C, Klotz LO, Yoshimoto T, Kuhn H, Sies H. Polyphenols of cocoa: inhibition of mammalian 15- lipoxigenase. Biol Chem 2001; 382: 1687–1696.
21. da Silva EL, Abdalla DS, Terao J. Inhibitory effect of flavonoids on low-density lipoprotein peroxidation catalyzed by mammalian 15-lipoxigenase. IUBMB Life 2008; 49: 289–295.
22. Kaniyama M, Kishimoto Y, Tani M, Andoh K, Utsunomiya K, Kondo K. Inhibition of low-density lipoprotein oxidation by Nagano purple grape (Vitis vinifera xVitis labrusca). J Nutr Sci Vitaminol (Tokyo) 2009; 55: 471–478.
23. Omori R, Iwamoto T, Tago M, and et al. Antioxidant activity of various teas against free radicals and LDL oxidation. Lipids 2005; 40: 849–853.
24. Carbonneau MA, Léger CL, Monnier L, and et al. Supplementation with wine phenolic compounds increases the antioxidant capacity of plasma and vitamin E of low-density lipoprotein without changing the lipoprotein Cu(2+)-oxidizability: possible explanation by phenolic location. Eur J Clin Nutr 1997; 51: 682–690.
25. Bell JR, Donovan JL, Wong R, and et al. (+)-Catechin in human plasma after ingestion of a single serving of reconstituted red wine. Am J Clin Nutr 2000; 71: 103–108.
26. Nardini M, Cirillo E, Natella F, Scaccini C. Absorption of phenolic acids in humans after coffee consumption. J Agric Food Chem 2002; 50: 5735–5741.
27. Monteiro M, Farah A, Perrone D, Trugo LC, Donangelo C. Chlorogenic acid compounds from coffee are differentially absorbed and metabolized in humans. J Nutr 2007; 137: 2196–2201.
28. Milde J, Elstner EF, Grassmann J. Synergistic effects of phenolics and carotenoids on human low-density lipoprotein oxidation. Mol Nutr Food Res 2007; 51: 956–961.