Abstract

We consider loop-erased random walk (LERW) running between two boundary points of a square grid approximation of a planar simply connected domain. The LERW Green’s function is simply the probability that the LERW passes through a given edge in the domain. We prove that this probability, renormalized by a power of the mesh size, converges in the lattice size scaling limit to an explicit conformally covariant quantity which coincides with the SLE$_2$ Green’s function.

The proof is based on a combinatorial identity which reduces the problem to obtaining sharp asymptotics for two quantities: the loop measure of random walk loops of odd winding number about a branch point near the marked edge and a “spinor” observable for random walk started from one of the vertices of the marked edge.

Contents

1 Introduction and outline of proof ... 2
 1.1 Introduction ... 2
 1.2 Acknowledgments .. 4
 1.3 Notation and set-up ... 4
 1.4 Outline of proof and a key idea .. 7

2 Preliminaries ... 10
 2.1 Discrete quantities .. 10
 2.1.1 Random walk Green’s functions 10
 2.1.2 Loops and loop measures .. 11
 2.1.3 Loop-erased walk ... 13
 2.2 Brownian loop measure .. 13
 2.3 Poisson kernels and Green’s functions 15
 2.4 KMT coupling .. 16

*cbenes@brooklyn.cuny.edu
†viklund@math.uu.se
‡lawler@math.chicago.edu
1 Introduction and outline of proof

1.1 Introduction

In this paper we consider loop-erased random walk, LERW, on a square grid. This measure on self-avoiding paths is obtained by running a simple random walk and successively erasing loops as they form. We will work with a chordal version in a small mesh lattice approximation of a simply connected domain: given two boundary vertices, we erase the loops of a random walk started at one of the vertices conditioned to take its first step into the domain (along a prescribed edge) and then exit at the other vertex (along a prescribed edge). By linear interpolation this gives a random continuous curve – the LERW path. It is known that the LERW path has a conformally invariant scaling limit in the sense that it converges in law as a curve up to reparameterization to the chordal SLE\(_2\) path as the mesh size goes to zero. For details, see [20]. We will not use any results about SLE in this paper.

The main theorem of this paper is a different conformal invariance result which does not follow from the convergence of LERW to SLE. We are interested in the probability that the LERW passes through a given edge of an approximation of a simply connected domain and we call this probability the LERW (edge) Green’s function in \(D\). We show that for edges away from the boundary, this probability, when normalized by a suitable power of the mesh size, converges as the mesh size gets smaller to an explicit (up to an unknown lattice-dependent constant) conformally covariant function which coincides with the SLE\(_2\) Green’s function \(G_D(z; a, b)\). This latter function is defined as the limit as \(\epsilon \to 0\) of the normalized probability that the chordal SLE\(_2\) path in \(D\) between \(a \in \partial D\) and \(b \in \partial D\) visits the ball of radius \(\epsilon\) around \(z\). As is shown in [23], a formula for \(G_D\) can be written using a covariance rule and the fact that \(G_D(0, e^{2i\theta_a}, e^{2i\theta_b}) = |\sin^3(\theta_a - \theta_b)|\) up to a constant.

In a sense our theorem is more in the spirit of the scaling limit predictions commonly taken as starting point for the application of conformal field theory to lattice models than an SLE convergence result: we consider a discrete “field”, renormalize it by a power of the mesh size, and prove it has an explicit conformally covariant scaling limit. See [8] for a somewhat similar result for the one-point energy density in the Ising model.

Let us be more precise. Let \(D\) be a simply connected bounded Jordan domain containing 0. Write \(r_D\) for the conformal radius of \(D\) seen from 0. Let \(D_n \subset D\) be an approximating simply connected domain obtained by taking a largest union of squares of side-length \(1/n\) centered at vertices of \(n^{-1}\mathbb{Z}^2\) (see Section 1.3 for details.) Given suitable boundary points \(a_n, b_n \in \partial D_n\) tending to \(a, b\) as \(n\) tends to \(\infty\), we let \(\gamma_n\) be LERW in \(D_n\) from \(a_n\) to \(b_n\) (these points are chosen so
that there is a unique edge of $n^{-1}Z^2$ which contains them) and write $e = e_n$ for the edge $[0, 1/n]$. Our main result may then be stated as follows:

Theorem 1.1. There exists $0 < c_0 < \infty$ such that for all D, a, b, as above there exists a sequence of approximating domains $D_n \uparrow D$ with boundary points $a_n \to a, b_n \to b$ such that

$$
\lim_{n \to \infty} c_0 n^{3/4} P(e \subset \gamma_n) = r_D^{-3/4} \sin^3 (\pi \text{hm}_D (0, (ab))),
$$

where r_D is the conformal radius of D from 0, hm denotes harmonic measure, and $(ab) \subset \partial D$ is either of the subarcs from a to b.

The convergence of the domains $D_n \subset D$ is in the Carathéodory sense. We do not determine the value of the lattice dependent constant c_0. We do give bounds on the rate of convergence, but it will be easier to describe them in terms of the discrete result Theorem 1.2. There are two sources of error. For the discrete approximation D_n there is an error in the LERW probability; we give a uniform bound on this error. There is also an error in the approximation of D by D_n; this error depends on the domain D. If ∂D is nice, say piecewise analytic (analytic close to a, b), the first error term is larger.

Several authors have studied the LERW Green’s function (or “intensity” as it is sometimes called) and the closely related growth exponent, that is, the polynomial growth rate of the expected number of steps of a LERW of diameter N. Lawler computed these exponents in dimensions $d \geq 4$ in [15], where they turn out to be the same as for simple random walk with a logarithmic correction in $d = 4$, while Kenyon proved the exponent equals $5/4$ in the planar case and also estimated the asymptotics of the Green’s function for a whole-plane LERW from 0 to ∞ on Z^2 (see [9]). (We will only discuss the planar case in the rest of the paper.) Masson gave a different proof of Kenyon’s result using the convergence to SLE and known results on SLE exponents [19] and obtained second moment estimates in collaboration with Barlow [25, 1]. Kenyon and Wilson computed several exact numeric values for the Green’s function of the whole-plane LERW on Z^2 in the vicinity of the starting point, see [10]. Lawler recently estimated up to constants the decay rate of the Green’s function of a chordal LERW in a square domain and the main result of this paper is obtained by refining the arguments of [16]. The papers of Kenyon and Kenyon and Wilson provided key inspiration for the particular observable used in the proofs of [16] and this paper. Some of the quantities we consider are related to ones appearing in the analysis of the Ising model, see in particular [4], but we will not need discrete complex analysis techniques here.

The LERW path is known to converge to the SLE$_2$ path when parameterized by capacity, a parameterization which is natural from the point of view of conformal geometry. An important question is whether the LERW path also converges when parameterized in the natural Euclidean sense so that, roughly speaking, it takes the same number of steps in each unit of time. The conjecture is that one then has convergence in law of LERW to SLE$_2$ with a particular parameterization, the **Natural Parameterization**, which can be given as a multiple of the $5/4$-dimensional Minkowski content of the SLE$_2$ curve. (The Hausdorff dimension of the SLE$_2$ curve is $5/4$.) See [18] and the references therein. One motivation for studying the problem of this paper is that we believe it to be an important step in the proof of this conjecture. See also [7] for some results for the corresponding question in the case of percolation interfaces converging to SLE$_6$.

The starting point of our proof is a combinatorial identity that factorizes the LERW Green’s function, just as in [16]. We give here a new proof using Fomin’s identity [6] which makes more explicit the connection with determinantal formulae. We actually prove a generalization which...
considers a LERW path containing as a subset a prescribed self-avoiding walk (SAW) away from the boundary. (A given edge is clearly a special case of such a SAW.) From this it follows that there are two factors whose asymptotics need to be understood. The first is the squared exponential of the random walk loop measure of loops of odd winding number about a dual vertex next to the marked edge. We obtain asymptotics by comparing this quantity with the corresponding conformally invariant Brownian loop measure quantity which can be computed explicitly. The second factor can be written in terms of a “signed” random walk hitting probability or alternatively as an expectation for a random walk on a branched double cover of the domain (the branch point is the dual vertex mentioned above). After some preliminary reductions the required estimates are proved using coupling techniques that include the KMT strong approximation (see [11]) and results from [13, 3]. Some results in this paper may be of independent interest. For instance, we compare various discrete boundary Poisson kernels and Green’s functions (near the boundary) with their continuous counterparts in slit square domains and we obtain sharp asymptotics for Beurling-type escape probabilities for random walk started near the slit.

1.2 Acknowledgments

Beneš was supported by the Brooklyn College Foundation. Lawler was supported by National Science Foundation Grant DMS-0907143. Viklund was supported by the Simons Foundation, National Science Foundation Grant DMS-1308476, the Swedish Research Council (VR).

1.3 Notation and set-up

The proof of Theorem 1.1 has three principal building blocks. Although we formulated the theorem for a fixed domain being approximated with a grid of small mesh size we prefer to work with discrete domains in \mathbb{Z}^2 and let the inner radius from 0 tend to infinity. Let us set some notation.

- We write the planar integer lattice \mathbb{Z}^2 as $\mathbb{Z} \times i\mathbb{Z}$. Throughout this paper we fix $w_0 = \frac{1}{2} - \frac{i}{2}$, and note that the dual lattice to \mathbb{Z}^2 is $\mathbb{Z}^2 + w_0$.

- A subset of $A \subset \mathbb{Z}^2$ is called simply connected if both A and $\mathbb{Z}^2 \setminus A$ are connected subgraphs of \mathbb{Z}^2. Let \mathcal{A} denote the set of simply connected, finite subsets A of \mathbb{Z}^2 that contain the origin.

- Let $\tilde{E} = \{(z, w) : z, w \in \mathcal{V}\}$ be the directed edge set of the graph $\mathbb{Z}^2 = \mathbb{Z} + i\mathbb{Z}$.

- Let $\partial_e A$ denote the edge boundary of A, that is, the set of ordered pairs $[a_-, a_+]$ of lattice points with $a_- \in A, a_+ \in \mathbb{Z}^2 \setminus A, |a_- - a_+| = 1$. We will use the symbol a both for the point $(a_- + a_+)/2 \in \partial D_A$ and for the edge $[a_-, a_+]$. It will be clear from context which of the two is meant.

- For each $z \in \mathbb{Z}^2$, let S_z denote the closed square region of side length one centered at z,

$$S_z = \left\{ z + (x + iy) \in \mathbb{C} : 0 \leq |x|, |y| \leq \frac{1}{2} \right\}.$$

Note that the corners of S_z are on the dual lattice $\mathbb{Z}^2 + w_0$.

4
• If \(A \in \mathcal{A} \), let \(D_{A} \subset \mathbb{C} \) be the simply connected domain

\[
D_{A} = \text{int} \left[\bigcup_{z \in A} S_{A} \right].
\]

This is a Jordan domain such that \(A \subset D_{A} \) and \(\partial D_{A} \) is a subset of the edge set of the dual lattice \(\mathbb{Z}^{2} + w_{0} \). Note that (the midpoint of) each such dual edge determines an edge of \(\partial eA \); indeed, the midpoint of the dual edge is also the midpoint of a unique edge in \(\partial eA \).

• If \(z \in D_{A} \), let \(f = f_{A} \) denote the unique conformal map \(f : D_{A} \to \mathbb{D} \) with

\[
f(w_{0}) = 0, \quad f'(w_{0}) > 0.
\]

• For \(a \in \partial D_{A} \), we define \(\theta_{a} \in [0, \pi) \) by

\[
f_{A}(a) = e^{i2\theta_{a}},
\]

which can be defined by extension by continuity, since \(D_{A} \) is a Jordan domain. Note the factor of 2 in the definition, which is included in order to make later formulae cleaner.

• Let \(r_{A} = r_{A}(w_{0}) = f'(w_{0})^{-1} \) be the conformal radius of \(D_{A} \) with respect to \(w_{0} \). If \(r_{A}(0) \) denotes the conformal radius from 0, then one can use Koebe’s 1/4 theorem and the distortion theorem (see [14]) to verify that \(r_{A}(0) = r_{A} \left[1 + O(r_{A}^{-1}) \right] \).

• We write \(\omega = [\omega_{0}, \ldots, \omega_{\tau}] \) for nearest neighbor walks in \(\mathbb{Z}^{2} \) and call them simply walks or sometimes paths. We write \(|\omega| = \tau \) for the length of the path and \(p(\omega) = 4^{-|\omega|} \) for the simple random walk probability of \(\omega \).

• We write \(\oplus \) for concatenation of paths. That is to say if \(\omega^{1} = [\omega_{0}^{1}, \ldots, \omega_{k}^{1}], \omega^{2} = [\omega_{0}^{2}, \ldots, \omega_{j}^{2}] \), the concatenation \(\omega^{1} \oplus \omega^{2} \) is defined if \(\omega_{k}^{1} = \omega_{0}^{2} \), in which case

\[
\omega^{1} \oplus \omega^{2} = [\omega_{0}^{1}, \ldots, \omega_{k}^{1}, \omega_{1}^{2}, \ldots, \omega_{j}^{2}].
\]

• If \(a, b \) are distinct elements of \(\partial eA \), we let

\[
\mathcal{W} = \mathcal{W}(A; a, b)
\]

be the set of walks

\[
\omega = [\omega_{0}, \ldots, \omega_{\tau}],
\]

with \([\omega_{0}, \omega_{1}] = [a_{+}, a_{-}], [\omega_{\tau-1}, \omega_{\tau}] = [b_{-}, b_{+}] \), and \(\omega_{1}, \ldots, \omega_{\tau-1} \in A \).

• For \(a, b \in \partial eA \), we write

\[
H_{\partial A}(a, b) = \sum_{\omega \in \mathcal{W}} p(\omega)
\]

for the the corresponding (boundary) Poisson kernel. If \(x \in \mathbb{Z}^{2} \setminus A \) and \(\text{dist}(x, A) = 1 \), then we will similarly write \(H_{\partial A}(x, b) = \sum_{a:a_{+} = x} H_{\partial A}(a, b) \).
• If \(\omega \in W(A; a, b) \) with \(|\omega| = \tau \), we will also write \(\omega(t), \frac{1}{2} \leq t \leq \tau - \frac{1}{2} \), for the continuous path of time duration \(\tau - 1 \) that starts at \(a \) and goes along the edges of \(\omega \) at speed one to \(b \). Note that \(\omega(t) \in D_A \) for \(\frac{1}{2} < t < \tau - \frac{1}{2} \).

• Let \(W_{SAW} = W_{SAW}(A; a, b) \) denote the set of walks \(\eta \in W \) that are self-avoiding walks, that is, such that \(\eta(s) \neq \eta(t) \) for \(s < t \). Note that a path \(\omega \) is self-avoiding if and only if \(f \circ \omega \) is a simple curve.

• For each \(\omega \in W \) there exists a unique \(\eta = L(\omega) \in W_{SAW} \) obtained by chronological loop-erasing. See Section 2.

• Let \(W^+_{SAW} \) (resp., \(W^-_{SAW} \)) denote the set of \(\eta \in W_{SAW} \) that include the ordered edge \([0, 1] \) (resp., \([1, 0] \)) and \(W^*_{SAW} = W^+_{SAW} \cup W^-_{SAW} \). Let \(W^* \) be the set of \(\omega \in W \) such that \(L(\omega) \in W^*_{SAW} \). Set

\[
H^*_A(a, b) := \sum_{\omega \in W^*} p(\omega).
\]

If \(e \) is the unordered edge \([0, 1] \) and \(\eta \) is a LERW from \(a \) to \(b \) in \(A \), then we can write

\[
P(a, b; A) := P(e \subset \eta) = \frac{H^*_{\partial A}(a, b)}{H_{\partial A}(a, b)};
\]

this is the LERW Green’s function at the edge \(e \).

Our main theorem is a consequence of the following:

Theorem 1.2. There exist \(u > 0, 0 < c_0 < \infty \) such that the following holds. Suppose \(A \in \mathcal{A} \) and suppose \(a, b \in \partial_e A \) with \(|\sin(\theta_a - \theta_b)| \geq r_A^{-u} \). Then,

\[
P(a, b; A) = c_0 r_A^{-3/4} |\sin^3(\theta_a - \theta_b)| \left[1 + O \left(r_A^{-u} |\sin(\theta_a - \theta_b)|^{-1} \right) \right].
\]

Let us explain how to derive Theorem 1.1 from Theorem 1.2. Along the way we will comment on convergence rate bounds. Suppose \(D \) is a Jordan domain containing the origin with \(\text{dist}(0, \partial D) = 1 \). For each \(n \), let \(A_n \) be the largest simply connected subset of \(\mathbb{Z}^2 \) containing the origin such that \(\overline{D_{A_n}} \subset nD \). Let \(D_n = n^{-1} D_{A_n}, n_w = n^{-1} w_0 = n^{-1}(1/2 - i/2) \). Let \(f_{A_n} \) be the corresponding map as above and \(f_n(z) = f_{A_n}(nz) \). Then \(F_n : D_n \to \mathbb{D} \) with \(F_n(w_n) = 0, F'_n(w_n) > 0 \). Let \(F : D \to \mathbb{D} \) be the conformal transformation with \(F(0) = 0, F'(0) > 0 \). Since \(D \) is a Jordan domain, \(F \) extends to a homeomorphism, \(F : \overline{D} \to \overline{\mathbb{D}} \). Note that for each \(n \) we can write

\[
F_n(z) = M_n \circ \psi_n \circ F(z), \quad z \in \overline{D_n},
\]

where \(\psi_n : F(D_n) \to \mathbb{D} \) with \(\psi_n(0) = 0, \psi'_n(0) > 0 \) and \(M_n(z) = k_n(z - u_n)/(1 - \overline{u_n}z) \) is the Möbius transformation of \(\mathbb{D} \) taking \(u_n = \psi_n \circ F(w_n) = O(1/n) \) to \(0 \) with \(k_n \in \partial \mathbb{D} \) chosen so that \(|M_n \circ \psi_n \circ F'(w_n)| > 0 \). We have \(|\psi_n \circ F'(w_n)| = \psi'_n(0) F'(0)(1 + O(1/n)) \) and consequently \(|k_n - 1| = O(1/n) \). It follows that if \(|z| > c \) for some constant \(c \), then \(M_n(z) = z(1 + O(1/n)) \).

If \(z \in \partial D_n \), let \(w \) be a point in \(\partial D \) that minimizes \(|z - w| \). Since \(z \) is contained in a closed square of side length \(n^{-1} \) that intersects \(\partial D \), we have \(|z - w| \leq \sqrt{2}/n \). By the Beurling estimate (see, e.g., [14]), we can see that there is a universal constant \(c \) such that \(|F(z) - F(w)| \leq c n^{-1/2} \). In other words, there exists \(c_1 \) such that

\[
F(\partial D_n) \subset \{ z \in \mathbb{D} : |z| \geq 1 - c_1 n^{-1/2} \}.
\]
Also, by the Beurling estimate, if \(e \) is an edge on the boundary of \(A_n \) (and \(\text{diam} \ e = 1 \)), then \(\text{diam} \ F(n^{-1}e) = O(n^{-1/2}) \). Let \(a \in \partial D \) be arbitrary. We will choose a particular point \(a_n \in \partial D_n \) so that \(|F(a) - F_n(a_n)| \) is small. Let \(v_n \in \mathbb{D} \) be a point on \(F(\partial D_n) \) with the same argument as \(F(a) \) and with minimal radius. Then as we showed above \(|v_n| \geq 1 - c_1 n^{-1/2} \) and there exists an edge \(e \subset \partial D_{A_n} \) (this is an edge of the dual to \(\mathbb{Z}^2 \)) such that \(v_n \in F(n^{-1}e) \). We take \(a_n \in \partial D_n \) to be the midpoint of \(n^{-1}e \). Note that \(na_n \) then determines an element of \(\partial_c A_n \) by virtue of being its midpoint. We have \(|F(a_n) - F(a)| = O(n^{-1/2}) \). It is not hard to show that if \(c_1 \) is as in (2) then for \(z \) with \(|z| \leq 1 - 2c_1 n^{-1/2} \),

\[
|\psi_n(z) - z| \leq c_2 n^{-1/2} \log n,
\]

where \(c_2 \) is universal. See, e.g., Section 3.5 of [14]. Using this and the Beurling estimate we see that \(|\psi_n \circ F(a_n) - F(a)| = O(n^{-1/3}) \). (We are not attempting to optimize exponents here). Using the estimate on \(M_n \) it follows that

\[
|F_n(a_n) - F(a)| = O(n^{-1/5}).
\]

Also, \(r_D = n^{-1} r_{A_n} [1 + O(n^{-1/2})] \). Hence, given \(a, b \in \partial D \), we want to choose \(a_n, b_n \in \partial D_n \) to approximate \(a, b \), and then apply Theorem 1.2 to \(A_n \) with boundary edges determined by \(na_n, nb_n \), to get a uniform error term in Theorem 1.1.

We still need to verify that \(a_n, b_n \) actually approximate \(a, b \) and to have a uniform error in the formulae applied to \(D_n \) and \(D \) we need to have \(a_n, b_n \) approximate \(a, b \) uniformly. Unfortunately, although there is a uniform bound on \(|F(a) - F(a_n)| \), there is no uniform bound on \(|a - a_n| \) without additional assumptions on the regularity of \(\partial D \). However, since \(|F(a) - F(a_n)| \leq c_2 n^{-1/2} \), we certainly have

\[
|a - a_n| \leq \delta_n := \sup \left\{ |F^{-1}(z) - F^{-1}(w)| : |z - w| \leq c_2 n^{-1/2} \right\}.
\]

Since \(D \) is a Jordan domain \(F^{-1} \) is uniformly continuous and hence \(\delta_n \to 0 \) as \(n \to \infty \) and so \(a_n \to a \) and \(b_n \to b \) and this is all we need for Theorem 1.1.

If \(\partial D \) is, e.g., locally analytic at \(a \) and \(b \), or more generally, if the map \(F \) is bi-Lipschitz in neighborhoods of \(a \) and \(b \), then one can improve these estimates giving \(|a - a_n| = O(n^{-1}), |F(a) - F(a_n)| = O(n^{-1}) \). Analogous estimates under weaker conditions on \(\partial D \) can also be given. The conclusion is that for sufficiently “nice” domains the biggest error term in our result comes from the discrete result, Theorem 1.2.

1.4 Outline of proof and a key idea

The first step of the proof of Theorem 1.2 rewrites (1) as a product of three factors which will then be estimated in the remainder of the paper. Before stating the main estimates we will introduce a key idea which is further discussed in Section 5.1.

Suppose \(\omega(t), t \in [0, T] \), is a curve in \(D_A \) that avoids \(w_0 \). Let \(t \mapsto \Theta_t = \arg [f(\omega(t))] \) be a continuous version of the argument. Define

\[
J_t = \left\lfloor \frac{\Theta_t}{2\pi} \right\rfloor - \left\lfloor \frac{\Theta_0}{2\pi} \right\rfloor ;
\]

\[
Q_t = Q(\omega[0, t]) = (-1)^{J_t}.
\]
Although the argument is only defined up to an integer multiple of 2π, the value of J_t, and hence the value of Q_t are independent of the choice of Θ_0. If ω has time duration τ, we write $Q(\omega) = Q_\tau$. Note that if $\omega = \omega_1 \oplus \omega_2$, then

$$J(\omega) = J(\omega_1) + J(\omega_2), \quad Q(\omega) = Q(\omega_1)Q(\omega_2).$$

In particular, if $\omega = [\omega_0, \ldots, \omega_\tau]$ is a path lying in A, then

$$Q(\omega) = \prod_{j=1}^{\tau} Q(e_j), \quad e_j = [\omega_{j-1}, \omega_j].$$

Roughly speaking $Q(e) = -1$ if and only if the edge e crosses $\beta := f_A^{-1}([0,1])$. To be more precise, we note that if r_A is sufficiently large, then the angle of $f(z)$ (modulo 2π) cannot change by as much as π along an edge e of \mathbb{Z}^2. Let $\text{Arg} f(z)$ denote the value of the argument that lies in $[0,2\pi)$. Then for $e = [z,z']$, $Q(e) = -1$ if and only if $|\text{Arg} f(z) - \text{Arg} f(z')| > \pi$. We note the following:

- $Q(e)$ is a function of the undirected edge e.
- If $e = [0,1]$, then $Q(e) = 1$.
- if ℓ is a loop in A, then $Q(\ell) = -1$ if and only if the winding number of ℓ about w_0 is odd.

We define (signed) weights by

$$q(e) = p(e)Q(e) = \frac{1}{4}Q(e), \quad (e \text{ edge}),$$

and if ω is a walk as above,

$$q(\omega) = p(\omega)Q(\omega) = \prod_{j=1}^{\tau} q(e_j).$$

Let S_j be simple random walk starting in A, and let $\tau = \tau_A = \inf\{k \geq 0 : S(k) \notin A\}$ be the first time that the walk leaves A. As a slight abuse of notation, we write $S_{\tau} = a$ to mean that the walk exits A through the ordered edge $[a_-, a_+]$. If $S_{\tau} = a$, we associate to the random walk path the continuous path in $\overline{D_A}$ of time duration $\tau - \frac{1}{2}$ ending at $a \in \partial D_A$.

Let

$$I_\alpha = 1\{S[1,\tau] \cap \{0,1\} = \emptyset; S_{\tau} = a\} \quad (3)$$

be the indicator of the event that S leaves A at the boundary edge a and never visits the points 0,1 before leaving A. Let

$$R_A(z,a) = \mathbf{E}^z \left[(-1)^J(S[0,\tau - \frac{1}{2}]) I_\alpha \right] = \mathbf{E}^z \left[Q(S[0,\tau - \frac{1}{2}]) I_\alpha \right] ,$$

$$\Phi_A(a,b) = \frac{|R_A(0,a)R_A(1,b) - R_A(0,b)R_A(1,a)|}{H_{\partial A}(a,b)} .$$

Let $G_A^\alpha(z,w)$ denote the random walk Green’s function in A using the signed weight Q,

$$G_A^\alpha(z,w) = \sum_{\omega \subset A: z \to w} q(\omega) .$$
Here the sum is over all walks in \(A \) from \(z \) to \(w \). From the definition, we can write

\[
G_A^q(0,0) = \sum_{j=0}^{\infty} \mathbb{E}^0 [Q(S[j]) ; S_j = 0; j < \tau_A],
\]

\[
G_A^q(1,1) = \sum_{j=0}^{\infty} \mathbb{E}^1 [Q(S[j]) ; S_j = 1; j < \tau_{A\setminus\{0\}}],
\]

We define

\[
\bar{q}_A = \frac{1}{4} G_A^q(0,0) G_A^q(1,1).
\]

We can also interpret \(4 \bar{q}_A \) as the random walk loop measure using the weight \(q \) of loops in \(A \) that intersect \(\{0,1\} \).

We write \(\mathcal{J}_A \) for the set of unrooted random walk loops \(\ell \subset A \) with \(Q(\ell) = -1 \). (See Section 2 for precise definitions.) The following is the combinatorial identity central to our proof:

Theorem 1.3. Let \(A \in \mathcal{A} \) and \(a, b \in \partial_e A \). Then,

\[
P(a,b; A) = \bar{q}_A \exp \{ 2m(\mathcal{J}_A) \} \Phi_A(a,b),
\]

where \(m \) is the random walk loop measure and \(\mathcal{J}_A \) is the set of unrooted random walk loops \(\ell \subset A \) with \(Q(\ell) = -1 \).

Proof. See Section 3.

It is not hard (see [16, Section 2]) to see that there exists \(\bar{q} \in (0,\infty) \) and \(u > 0 \) such that

\[
\bar{q}_A = \bar{q} + O(r_A^{-u}).
\]

The remaining work is to estimate the other two factors on the right-hand side of (4). In Section 4 we compare the random walk loop measure with the Brownian loop measure to prove the following. Our proof does not yield the value of the lattice-dependent constant \(c_1 \).

Theorem 1.4. There exist \(0 < u, c_1 < \infty \) such that if \(A \in \mathcal{A} \),

\[
\exp \{ 2m(\mathcal{J}_A) \} = c_1 r_A^{1/4} \left[1 + O \left(r_A^{-u} \right) \right].
\]

Proof. See Section 4.

The last factor in (4) is estimated using the following result, the proof of which is the main technical hurdle of the paper. For \(z \in A \) and \(b \in \partial_e A \), let

\[
H_A(a,b) = \mathbb{P}(S_{\tau-1} = b_-, S_{\tau} = b_+)
\]

be the discrete Poisson kernel and

\[
\Lambda_A(z,a) = \frac{R_A(z,a)}{H_A(z,a)}.
\]
Theorem 1.5. There exists \(u > 0, 0 < c_2 < \infty \) such that as \(r_A \to \infty \)
\[
\Lambda_A(0, a) = c_2 r_A^{-1/2} \left[\sin \theta_a + O \left(r_A^{-u} \right) \right];
\]
\[
\Lambda_A(1, a) = c_2 r_A^{-1/2} \left[\cos \theta_a + O \left(r_A^{-u} \right) \right].
\]

Proof. See Section 5.

Proof of Theorem 1.2 assuming Theorems 1.3, 1.4, and 1.5. By Theorem 1.5,
\[
|\Lambda_A(0, a)\Lambda_A(1, b) - \Lambda_A(1, a)\Lambda_A(0, b)|
\]
\[
= c_3 r_A^{-1} |\sin(\theta_a)\cos(\theta_b) - \cos(\theta_a)\sin(\theta_b)| + O \left(r_A^{-1-u} \right)
\]
\[
= c_3 r_A^{-1} |\sin (\theta_a - \theta_b)| \left[1 + O \left(|\sin (\theta_a - \theta_b)|^{-1} r_A^{-u} \right) \right].
\]

We can then use Theorem 1.1 of [13], which implies that if \(|\sin(\theta_a - \theta_b)| \geq r_A^{-1/20}\), then
\[
H_A(0, a) H_A(0, b) = \frac{2}{\pi} \sin^2(\theta_a - \theta_b) H_{\partial A}(a, b) \left[1 + O(r_A^{-u}) \right].
\]
But a difference estimate for discrete harmonic functions (see for instance Theorem 1.7.1 in [15]) shows that
\[
\Phi_A(a, b) = |\Lambda_A(0, a)\Lambda_A(1, b) - \Lambda_A(1, a)\Lambda_A(0, b)| \frac{H_A(0, a) H_A(0, b)}{H_{\partial A}(a, b)} \left[1 + O(r_A^{-1}) \right]
\]
\[
= c_4 r_A^{-1} |\sin^3 (\theta_a - \theta_b)| \left[1 + O \left(|\sin (\theta_a - \theta_b)|^{-1} r_A^{-u} \right) \right],
\]
and consequently Theorem 1.2 follows from Theorem 1.3 combined with [5], Theorem 1.4 and the last equation.

2 Preliminaries

This section sets more notation and collects some background material primarily on loop measures and loop-erased walks.

2.1 Discrete quantities

2.1.1 Random walk Green’s functions

Let \(A \subseteq \mathbb{Z}^2 \) be connected. Recall the definition for \(w, z \in \bar{A} \) of the random walk Green’s function:
\[
G_A(z, w) = \sum_{\substack{\omega: \omega_0 = z, \omega_f = w, \omega \subset A}} p(\omega), \quad (z, w) \in A \times A,
\]
and \(G_A(z, w) = 0 \) if \(z \in \partial A \) or \(w \in \partial A \), as well as the random walk \(q \)-Green’s function of \(A \) by
\[
G_A^q(z, w) = \sum_{\substack{\omega: \omega_0 = z, \omega_f = w, \omega \subset A}} q(\omega), \quad (z, w) \in A \times A,
\]
and \(G_A^q(z, w) = 0 \) if \(z \in \partial A \) or \(w \in \partial A \), where the sums are over walks starting at \(z \) and ending at \(w \) and staying in \(A \).
2.1.2 Loops and loop measures

We will consider oriented rooted loops on \mathbb{Z}^2, that is, walks starting and ending at the same vertex:

$$\ell = [\ell_0, \ell_1, \ldots, \ell_\tau], \quad \ell_0 = \ell_\tau.$$

(Unless otherwise stated, we will simply say “loop”.) The length of a loop, $|\ell| = \tau$, is clearly an even integer. The vertex ℓ_0 is the root of ℓ. The edge representation of a rooted loop is the sequence of directed edges

$$e(\ell) = [\vec{e}_1, \ldots, \vec{e}_\tau], \quad \vec{e}_j = [\ell_{j-1}, \ell_j].$$

Note that each vertex in ℓ occurs in an even number of edges in $e(\ell)$.

Let $\mathcal{L}_r(A)$ be the set of discrete (rooted) loops contained in A and write $\mathcal{L}_r = \mathcal{L}_r(\mathbb{Z}^2)$. The rooted loop measures, m_r, m^q_r, associated with p,q, respectively are the measures on rooted loops and are defined by $m_r(\ell) = m^q_r(\ell) = 0$ if $|\ell| = 0$, and otherwise

$$m_r(\ell) = \frac{p(\ell)}{|\ell|}, \quad \ell \in \mathcal{L}_r.$$

$$m^q_r(\ell) = \frac{q(\ell)}{|\ell|} = \frac{p(\ell) Q(\ell)}{|\ell|}, \quad \ell \in \mathcal{L}_r.$$

An unrooted loop $[\ell]$ is an equivalence class of rooted loops where two rooted loops are equivalent if and only if the edge representation of one can be obtained from that of the other by a cyclic permutation of indices. Clearly the lengths of two equivalent loops are the same, so we can write $|[\ell]|$ for this number. We write $\#[\ell]$ for the number of equivalent rooted loops in $[\ell]$; this is always an integer dividing $|[\ell]|$. Moreover, the weights of all equivalent loops in a given class are the same so we may write $p([\ell])$ and $q([\ell])$.

We write $\mathcal{L}(A)$ for the set of unrooted loops whose representatives are in $\mathcal{L}_r(A)$ and $\mathcal{L} = \mathcal{L}(\mathbb{Z}^2)$. The loop measures, m, m^q, are the measure on unrooted loops induced by m_r, m^q_r:

$$m([\ell]) = \sum_{\ell \in [\ell]} m_r(\ell) = \frac{\#[\ell]}{|\ell|} p(\ell), \quad [\ell] \in \mathcal{L},$$

$$m^q([\ell]) = \sum_{\ell \in [\ell]} m^q_r(\ell) = \frac{\#[\ell]}{|\ell|} q(\ell), \quad [\ell] \in \mathcal{L},$$

and where the sums are over the representatives of $[\ell]$. If ℓ is a rooted loop, we write $m(\ell), m^q(\ell)$ for $m([\ell]), m^q([\ell])$.

Suppose that $V \subset A \subset \mathbb{Z}^2$, where A is finite. Consider the set of loops contained in A that meet V:

$$\mathcal{L}(V; A) = \{[\ell] \in \mathcal{L}(A) : \ell \cap V \neq \emptyset\},$$

and define $\mathcal{L}_r(V; A)$ similarly using rooted loops. Let

$$F(V; A) = \exp \{m[\mathcal{L}(V; A)]\} = \exp \{m_r[\mathcal{L}_r(V; A)]\},$$

$$F^q(V; A) = \exp \{m^q[\mathcal{L}(V; A)]\} = \exp \{m^q_r[\mathcal{L}_r(V; A)]\}.$$
It follows from the second equality that if \(V = \bigcup_{i=1}^{k} V_i \), with the \(V_i \) disjoint and \(A_j = A \setminus (\bigcup_{i=1}^{j} V_i) \), then
\[
F^q(V; A) = F^q(V_1; A) F^q(V_2; A_1) \cdots F^q(V_k; A_{k-1}),
\]
and similarly for \(F(V; A) \). In particular, the right-hand side of (9) is independent of the order of the \(V_i \) partitioning \(V \).

If \(V = \{ z \} \) is a singleton set, we write just \(L(z; A), L_*(z; A), F^q(z; A) \).

Lemma 2.1. Suppose that \(z \in A \subseteq \mathbb{Z}^2 \). Then,
\[
G_A(z, z) = \sum_{\ell \in L_*(A) : \ell_0 = z} p(\ell) = e^{m[L(z; A)]} = F(z; A),
\]
\[
G_A^q(z, z) = \sum_{\ell \in L_*(A) : \ell_0 = z} q(\ell) = e^{m^q[L(z; A)]} = F^q(z; A).
\]

Proof. See [17, Lemma 9.3.2]. Although that book only studies positive measures, the proof is entirely algebraic and holds when using the weight \(q \) as well. Let us generalize the proof here.

Suppose \(L \) is a set of nontrivial loops rooted at a point \(z \) with the property that if \(\ell_1, \ell_2 \in L \), then \(\ell_1 \oplus \ell_2 \in L \). Let \(L_1 \) be the set of elementary loops, that is, the set of loops in \(\ell \in L \) that cannot be written as \(\ell_1 \oplus \ell_2 \) with \(\ell_1, \ell_2 \in L \). Let \(L_k \) denote the set of loops of the form
\[
\ell = \ell_1 \oplus \cdots \oplus \ell_k, \quad \ell_j \in L_1.
\]
Then \(L = \bigcup_{k=1}^{\infty} L_k \). Consider the measure \(\lambda \) on loops in \(L \) that assigns measure \(k^{-1} q(\ell) \) of \(\ell \in L_k \). Then the measure \(\lambda \) viewed as a measure on unrooted loops is the same as the loop measure of unrooted loops \([\ell] \) that have at least one representative in \(V \). Let \(L' \) denote the set of unrooted loops what have at least one representative in \(L \). Then the measure \(\lambda \) viewed as a measure on unrooted loops is the same as the loop measure of unrooted loops \([\ell] \) restricted to \(L' \). Indeed, this measure assigns measure \((j/k) q([\ell]) \) to \([\ell] \) where \(j \) is the number of distinct loops among
\[
\ell_1 \oplus \ell_2 \oplus \cdots \oplus \ell_k, \quad \ell_2 \oplus \ell_3 \oplus \cdots \oplus \ell_k \oplus \ell_1, \quad \cdots, \quad \ell_k \oplus \ell_1 \oplus \cdots \oplus \ell_{k-1}.
\]
If \(|q(L_1)| < 1 \), then
\[
m^q[L'] = \sum_{k=1}^{\infty} \frac{1}{k} q(L_k) = \sum_{k=1}^{\infty} \frac{1}{k} q(L_1)^k = - \log [1 - q(L_1)] .
\]

In our particular case, if \(L_1 \) is the set of nontrivial loops \(l \) starting and ending at \(z \), staying in \(A \) and otherwise not visiting \(z \), then it is not hard to see that
\[
G^q(z, z; A) = \frac{1}{1 - q(L_1)}.
\]
\[\square\]
2.1.3 Loop-erased walk

Let \(\omega = [\omega_0, \ldots, \omega_x] \) be a walk with \(\tau < \infty \). We say that \(\omega \) is self-avoiding if \(i \neq j \) implies that \(\omega_i \neq \omega_j \). The \textit{loop-erasure} of \(\omega \), \(\text{LE}[\omega] \), is a self-avoiding walk defined as follows:

- If \(\omega \) is self-avoiding, set \(\text{LE}[\omega] = \omega \).
- Otherwise, set \(s_0 = \max\{j : \omega_j = \omega_0\} \) and let \(\text{LE}[\omega]_0 = \omega_{s_0} \).
- For \(i \geq 0 \), if \(s_i < \tau \), set \(s_{i+1} = \max\{j : \omega_j = \omega_{s_i}\} \) and let \(\text{LE}[\omega]_{i+1} = \omega_{s_{i+1}} \).

We can now define the “loop-erased \(q \)-measure” of walks \(\eta \) staying in \(A \):

\[
\hat{q}(\eta; A) := \sum_{\omega \subset A : \text{LE}[\omega] = \eta} q(\omega) = q(\eta)F_q(\eta; A),
\]

and we define \(\hat{p} \) in the same manner, replacing \(q \) by \(p \). (We will often omit writing out \(A \) explicitly so that \(\hat{q}(\eta) = \hat{q}(\eta; A) \) where no confusion is possible.) Note that this quantity is zero if \(\eta \) is not self-avoiding. The second identity in (10) is proved in [17, Proposition 9.5.1] by observing that one can write any walk \(\omega \) as a concatenation of the loops erased by the loop-erasing algorithm and the self-avoiding segments of \(\text{LE}[\omega] \) “between” the loops, and then using (9) and Lemma 2.1. Again, although [17] deals with positive weights, the proof is equally valid when using the weight \(q \).

2.2 Brownian loop measure

The random walk loop measure \(m \) defined in the previous section has a conformally invariant scaling limit, the Brownian loop measure \(\mu \). It is a sigma-finite measure on equivalence classes of continuous loops \(\omega : [0, t\omega] \rightarrow \mathbb{C}, \omega(0) = \omega(t\omega) \), with the equivalence relation given by \(\omega_1 \sim \omega_2 \) if there is \(s \) such that \(\omega_1(t) = \omega_2(t + s) \) (with addition modulo \(t\omega \)); see [22]. One can construct \(\mu \) via the Brownian bubble measure \(\mu_{\text{bub}}^D \): a bubble in a domain \(D \), rooted at \(a \in \partial D \), is a continuous function \(\omega : [0, t\omega] \rightarrow \mathbb{C} \) with \(\omega(0) = \omega(t\omega) = a \in \partial D \) and \(\omega(0, t\omega) \subset D \). The bubble measure is conformally covariant so it is enough to specify the scaling rule and give the definition in one reference domain, say \(\mathbb{D} \). Let

\[
h_D(z, a) = \frac{1}{2\pi} \frac{1 - |z|^2}{|z - a|^2}
\]

be the Poisson kernel of \(\mathbb{D} \). Note that the Poisson kernel is conformally covariant (which is easily checked, but see Section 2.3 of [13] for a proof). Let \(P^z,a \) be the law of an \(h \)-process derived from Brownian motion and the harmonic function \(h_D(z, a) \) (see below); informally, this \(h \)-process is a Brownian motion from \(z \) conditioned to exit \(\mathbb{D} \) at \(a \). We define

\[
\mu^D_{\text{bub}}(1)[A] = \pi \lim_{\epsilon \to 0} \epsilon^{-1}h_D(1 - \epsilon, 1)P^{1-\epsilon,1}(A),
\]

(The \(\pi \) factor is present to match the notion of [22] and is chosen so that the measure of bubbles in \(\mathbb{H} \) rooted at 0 that intersect the unit circle equals 1. See also Chapter 5 of [11] for a discussion of the suitable metric spaces on which these measures are defined.) Suppose \(\varphi : \mathbb{D} \rightarrow D \) is a conformal map and that \(\partial D \) is locally analytic at \(\varphi(1) \). Then if we write

\[
\varphi \circ \mu^D_{\text{bub}}(1)[A] := \mu^D_{\text{bub}}(1)[\{\omega : \varphi \circ \omega \in A\}],
\]

13
we see that (12) and the covariance rule for the Poisson kernel h_D imply

$$\varphi \circ \mu_{D}^{bub}(1) = |\varphi'(1)|^2 \mu_{D}^{bub}(\varphi(1)).$$ (13)

We can now define the Brownian loop measure restricted to loops in D as the measure on unrooted loops induced by

$$\mu = \frac{1}{\pi} \int_0^{2\pi} \int_0^1 \mu_{rD}^{bub}(re^{i\theta})rdrd\theta.$$ (14)

The Brownian loop measure in other domains can then be defined by conformal invariance.

The next lemma makes precise that the random walk and Brownian loop measures are close on large enough scales.

Lemma 2.2. There exist constants $\theta > 0$ and $c_1 < \infty$ and for all n sufficiently large a coupling of the random walk and Brownian loop measures, μ and μ, respectively, in which the following holds. There is a set E whose complement has measure at most $e^{-\theta n}$ and on E we have that all pairs of loops (γ, ω) (γ random walk loop and ω Brownian loop) with $\text{diam} \gamma \geq e^{n(1-2\theta)}$ or $\text{diam} \omega \geq e^{n(1-2\theta)}$ satisfy

$$||\gamma - \omega|| \leq c_1 n,$$

where $||\gamma - \omega|| = \inf_{\alpha} ||\gamma \circ \alpha - \omega||_{\infty}$ with the infimum taken over increasing reparameterizations.

This result can be derived from the main theorem of [21]. However, let us sketch the argument. Another way to construct the Brownian loop measure is by the following rooted measure. Suppose $\gamma : [0, t_\gamma] \to \mathbb{C}$ is a loop, that is, a continuous function with $\gamma(0) = t_\gamma$. We can describe any loop γ as a triple $(z, t_\gamma, \tilde{\gamma})$ where $z \in \mathbb{C}$, $t_\gamma > 0$ and $\tilde{\gamma}[0, t_\gamma] \to \mathbb{C}$ is a loop with $\tilde{\gamma}(0) = \tilde{\gamma}(t_\gamma) = 0$. The loop γ is obtained from $(z, t_\gamma, \tilde{\gamma})$ by translation. We consider the measure on $(z, t_\gamma, \tilde{\gamma})$ given by

$$\text{area} \times (2\pi)^{-2} dt \times \text{(bridge)}$$ (15)

where bridge$_t$ means the probability measure associated to two-dimensional Brownian motions $B_s, 0 \leq s \leq t$ conditioned so that $B_0 = B_t = 0$. The factor $(2\pi)^{-2}$ can be considered as $t^{-1} p_t(0, 0)$, where p_t is the transition kernel for a two-dimensional Brownian motion. This measure, considered as a measure on unrooted loops, is the same as the measure

$$\mu = \frac{1}{\pi} \int_0^{2\pi} \int_0^\infty \mu_{rD}^{bub}(re^{i\theta})rdrd\theta.$$ (14)

The expression for μ associates to each unrooted loop the rooted loop obtained by choosing the point farthest from the origin. The expression (15) chooses the root using the uniform distribution on $[0, t_\gamma]$.

Similarly, a rooted random walk loop can be written as $(z, 2n, l)$ where l is a loop with $l(0) = 0$ and $|l| = 2n$. We choose the point by

$$(\text{counting measure}) \times (2n)^{-1} \mathbf{P}\{S_{2n} = 0\} \times \text{(bridge)}_n.$$

Here S_n is a simple random walk starting at the origin, and bridge$_n$ denotes the probability measure on $[S_0, S_1, \ldots, S_{2n}]$ conditioned that $S_{2n} = 0$. Using the relation $\mathbf{P}\{S_{2n} = 0\} = (\pi n)^{-1} + O(n^{-2})$, 14
we can now see our coupling of the two components. For the first component, the root, we couple Brownian loops rooted at \(S_x \) with random walk loops rooted at \(z \). We couple Brownian loops with time duration \(n - \frac{1}{2} \leq t \gamma < n + \frac{1}{2} \) with random walk loops of time duration \(2n \). Then we use a version of the KMT coupling (see Theorem 2.4) of the random walk and Brownian loops to couple the paths. One can then check that this coupling has the desired properties.

2.3 Poisson kernels and Green’s functions

We collect here some basic definitions and facts on continuous Brownian Poisson kernels and discrete random walk Poisson kernels, that is, hitting probabilities corresponding to the weight \(p \) as well as the closely related Green’s functions.

For a domain \(D \subset \mathbb{C} \) if \(w \in D \), \(z \in \partial D \), and \(\partial D \) is locally analytic at \(z \), the Poisson kernel \(h_D(w, z) \) is the density of harmonic measure with respect to Lebesgue measure. In particular, for any piecewise locally analytic arc \(F \subset \partial D \),

\[
P^w(B(T) \in F) = \int_F h_D(w, z) \, |z|.
\]

If \(w, z \in \partial D \) and \(\partial D \) is locally analytic at both \(w \) and \(z \), then it is useful to define the excursion Poisson kernel

\[
h_{\partial D}(w, z) = \lim_{\epsilon \to 0^+} \epsilon^{-1} h_D(w + \epsilon n_w, z),
\]

where \(n_w \) is the unit vector normal to \(\partial D \) at \(w \), pointing into \(D \). Note that \(h_{\partial D} \) can be directly defined as a constant times the repeated normal derivatives in both variables of the usual Green’s function, and we see that it is symmetric and conformally covariant.

One can define the excursion Poisson kernel at points where \(\partial D \) is not locally analytic, such as at the tip of the slit of (smoothly) slit domains. The slit we consider in this paper is the positive real half-line and so the tip is the origin. Applying a conformal map to the unit disk, say, we can see that at such points, the derivative grows exactly like the inverse of the square root of the distance to the tip. So for such slit domains we define

\[
h_{\partial D}(0, z) = \lim_{\epsilon \to 0^+} \epsilon^{-1/2} h_D(-\epsilon, z).
\]

Similar definitions hold in the discrete setting:

Let \(A \in \mathcal{A} \) be given. Another way to define the Green’s function is to let \(S_j \) be a simple random walk in \(A \), \(\tau = \tau_A = \min\{j \geq 0 : S_j \notin A\} \), and

\[
G_A(z, w) = \mathbb{E}^z \left[\sum_{j=0}^{\tau-1} 1\{S_j = w\} \right], \quad z, w \in A.
\]

Using a last-exit decomposition, one can see that the Green’s function is related to the Poisson kernel defined in [6] as follows:

\[
H_A(z, a) = \frac{1}{4} G_A(z, a_-).
\]

It is known [13, Theorem 1.2] that there exists a lattice dependent constant \(C_0 \) and \(c < \infty \) such that

\[
\left| G_A(0, 0) - \frac{2}{\pi} \log r_A - C_0 \right| \leq c \frac{\log r_A}{r_A^{1/3}}.
\]
For our purposes, it will suffice to use
\[G_A(0, 0) = \frac{2}{\pi} \log r_A + O(1), \]
where, as before, \(r_A \) is the conformal radius of \(D_A \).

We will need the following result which follows from [13] (40)–(41). An explicit \(u \) can be deduced from these estimates, but it is small and not optimal so we will not write it.

Theorem 2.3. There exists \(u > 0 \) such that if \(z \in A \) with \(|f(z)| \leq 1 - r_A^{-u} \), then
\[H_A(z, a) = H_A(0, a) \frac{1 - |f(z)|^2}{|f(z) - e^{i2\theta_a}|^2} \left[1 + O \left(r_A^{-u} \right) \right]. \]
and hence,
\[h_A(z, a) = \frac{H_A(z, a)}{H_A(z, 0)} \left[1 + O \left(r_A^{-u} \right) \right]. \]
Moreover, if \(|\theta_a - \theta_b| \geq r_A^{-1/20} \),
\[H_{\partial A}(a, b) = \frac{\pi}{2} \frac{H_A(0, a) H_A(0, b)}{\sin^2(\theta_a - \theta_b)} \left[1 + O \left(r_A^{-u} \right) \right]. \]

2.4 KMT coupling

We will use in a number of places the Komlós, Major, and Tusnády (KMT) coupling of random walk and Brownian motion. For a proof of the one-dimensional case, see [12] or [17] and the two-dimensional case follows using a standard trick [17, Theorem 7.6.1].

Theorem 2.4. There exists a coupling of planar Brownian motion \(B \) and two-dimensional simple random walk \(S \) with \(B_0 = S_0 \), and a constant \(c > 0 \) such that for every \(\lambda > 0 \), every \(n \in \mathbb{R}_+ \),
\[P \left(\sup_{0 \leq t \leq n \wedge T_n \wedge \tau_n} |S_{2t} - B_t| > c(\lambda + 1) \log n \right) \leq cn^{-\lambda}. \]
where \(T_n = \min \{ t : |S_{2n}| \geq n \} \), \(\tau_n = \min \{ t : |B_t| \geq n \} \).

3 The combinatorial identity: proof of Theorem [1.3]

This section states and proves Theorem 3.1 which is a more general version of Theorem 1.3. For the statement of the theorem some more notation is needed.

Fix a discrete domain \(A \in \mathcal{A} \).

Recall the definition of \(J, Q \) and \(q \) from Section 1.4 and that \(\beta = f_A^{-1}([0, 1]) \) runs from \(w_0 \) to \(\partial D_A \) in \(D_A \). We will assume that \(r_A \) is sufficiently large so that \([0, 1] \cap \beta = \emptyset \). This is possible, since \(f_A'(w_0) > 0 \).

Let
\[\lambda = [x_0, \ldots, x_k] \subset A \]
be a self-avoiding walk (SAW) containing the ordered edge \([0, 1]\) with \(\text{dist}(0, \partial D) \geq 2 \text{diam } \lambda \). Given \(\lambda \) write
\[\lambda^R = [x_k, \ldots, x_0] \]
We will sometimes suppress the dependence on the time-reversal. Note that \(\lambda \) where \(W \)
we will assume that \(Q \) are labelled in such a way that
\[K \rightarrow 0 \] (see [16] for a detailed argument), every self-avoiding path \(K \) connecting \(x \) to \(b \) traversing the ordered edge \([1, 0]\) yields the same value of \(Q(\eta) \). Moreover, if \(\eta' \) is another SAW from \(a \) to \(b \) traversing \([1, 0] \) then \(Q(\eta') = -Q(\eta) \). (The reader is advised to draw a picture here.) Without loss of generality, we will assume that \(a, b \) are labelled in such a way that
\[\eta \in W_{SAW}^+ \Rightarrow Q(\eta) = 1; \quad \eta \in W_{SAW}^- \Rightarrow Q(\eta) = -1. \]
Recall that \(J_A \) is the set of unrooted random walk loops in \(A \) with odd winding number about \(w_0 \).
Set \(K = A \setminus \lambda \) and let
\[
\begin{align*}
\Delta_K (x_0 \rightarrow a, x_k \rightarrow b) &= H_{\partial K}(x_0, a)H_{\partial K}(x_k, b) - H_{\partial K}(x_0, b)H_{\partial K}(x_k, a) \\
\Delta^q_K (x_0 \rightarrow a, x_k \rightarrow b) &= H^q_{\partial K}(x_0, a)H^q_{\partial K}(x_k, b) - H^q_{\partial K}(x_0, b)H^q_{\partial K}(x_k, a),
\end{align*}
\]
where
\[
H_{\partial K}(x, a) = \sum_{\omega \in K} p(\omega), \quad H^q_{\partial K}(x, a) = \sum_{\omega : x \rightarrow a} q(\omega),
\]
are the boundary Poisson kernels with the sums taken over walks started from the vertex \(x \), taking the first step into \(K \) and then exiting \(K \) using the edge \(a \in \partial_e A \).

Theorem 3.1. Under the assumptions above,
\[
\sum_{\eta \in W_{SAW}} \hat{p}(\eta) = p(\lambda)e^{2m|J_A|}F^q(\lambda; A)\left| \Delta^q_K (x_0 \rightarrow a, x_k \rightarrow b) \right|,
\]
where \(W_{SAW} = W_{SAW}(\lambda) \). In fact,
\[
\sum_{\eta \in W_{SAW}^+} \hat{p}(\eta) = \frac{p(\lambda)}{2} \left[e^{2m|J_A|}F^q(\lambda; A)\Delta^q_K (x_0 \rightarrow a, x_k \rightarrow b) \right] + F(\lambda; A)\Delta_K (x_0 \rightarrow a, x_k \rightarrow b)
\]
and
\[
\sum_{\eta \in W_{SAW}^-} \hat{p}(\eta) = \frac{p(\lambda)}{2} \left[e^{2m|J_A|}F^q(\lambda; A)\Delta^q_K (x_0 \rightarrow a, x_k \rightarrow b) \right] - F(\lambda; A)\Delta_K (x_0 \rightarrow a, x_k \rightarrow b),
\]
where \(W_{SAW}^+ = W_{SAW}^+(\lambda) \) and \(W_{SAW}^- = W_{SAW}^-(\lambda) \).
We will use this theorem only in the special case when $\lambda = [0, 1]$ where the theorem gives

$$\sum_{\eta \in W_{\text{SAW}}} \hat{p}(\eta) = \frac{1}{4} F^q([0, 1]; A) e^{2m[J_A]} |R_A(0, a)R_A(1, b) - R_A(0, b)R_A(1, a)|.$$ \[18\]

If we divide both sides of this equation by $H_{\partial A}(a, b)$ we get \[4\] as stated in the introduction.

Before proving Theorem 3.1 we need a lemma.

Lemma 3.2. Let $\eta : a \to b$, $a, b \in \partial A$, be a SAW in A containing the (unordered) edge $[0, 1]$. Then

$$F^q(\eta; A) = F(\eta; A) \exp \{-2m[J_A]\},$$

where J_A is the set of unrooted loops in A with odd winding number about w_0.

Proof. Let ℓ be a random walk loop. Let $\text{wind}(\ell)$ denote the winding number of ℓ about w_0. Then the definition of q implies that

$$m^q(\{\ell \subset A : \ell \cap \eta \neq \emptyset\}) = m(\{\ell \subset A : \ell \cap \eta \neq \emptyset, \text{wind}(\ell) \text{ even}\}) - m(\{\ell \subset A : \ell \cap \eta \neq \emptyset, \text{wind}(\ell) \text{ odd}\}) = m(\{\ell \subset A : \ell \cap \eta \neq \emptyset\}) - 2m(\{\ell \subset A : \ell \cap \eta \neq \emptyset, \text{wind}(\ell) \text{ odd}\}).$$

But any loop with odd winding number must separate w_0 from ∂A, and so intersect every SAW $\eta : a \to b$ containing $[0, 1]$. This implies that

$$m^q(\{\ell \subset A : \ell \cap \eta \neq \emptyset\}) = m(\{\ell \subset A : \ell \cap \eta \neq \emptyset\}) - 2m(\{\ell \subset A : \text{wind}(\ell) \text{ odd}\}).$$

By exponentiating both sides we get the lemma. \[\Box\]

Proof of Theorem 3.1. Fix λ as in the statement for the rest of the proof. We write W, W^\pm for $W_{\text{SAW}}(\lambda), W_{\text{SAW}}^\pm(\lambda)$. The idea is to write the sums $\sum_{\eta \in W^+} \hat{p}(\eta)$ and $\sum_{\eta \in W^-} \hat{p}(\eta)$ in terms of both random walk and q-random walk quantities via the formulae (see \[10\] and Lemma 3.2)

$$\hat{p}(\eta) = p(\eta) F(\eta; A), \quad F(\eta; A) = e^{2m(J_A)} F^q(\eta; A),$$

and the facts that $p(\eta) = \pm q(\eta), \eta \in W^\pm$. After resummation, when we add and subtract the resulting expressions, a determinant identity due to Fomin (see Section 6 of [6] or [17], Proposition 9.6.2) can be used to write the expressions in terms of random walk determinants $\Delta_{A \setminus \lambda}^q$ and $\Delta_{A \setminus \lambda}^q$ that do not involve loop-erased walk quantities.

Now we turn to the details. Write $K = A \setminus \lambda, \Delta = \Delta_K, \Delta^q = \Delta^q_K$. First observe that any $\eta \in W^+$ can be written as

$$\eta = (\eta^1)^R \oplus \lambda \oplus \eta^2,$$

where η^1, η^2 are nonintersecting SAWs in K connecting x_0 with a and x_k with b, respectively. Note that any loop intersecting η either intersects $\lambda \subset \eta$ or it does not. Consequently, by \[9\] and \[10\], we can write

$$\hat{p}(\eta) = p(\eta) F(\eta; A) = p(\eta) F(\lambda; A) F(\eta; K).$$
Using this and the above decomposition, we see that

$$\sum_{\eta \in \mathcal{W}^+} \hat{p}(\eta) = \sum_{\eta \in \mathcal{W}^+} p(\eta) F(\eta; A)$$

$$= p(\lambda) F(\lambda; A) \sum_{\eta^1:x_0 \to a} p(\eta^1) p(\eta^2) F(\eta^1 \cup \eta^2; K),$$

(18)

where the sum is over all pairs of nonintersecting SAWs $\eta^1 : x_0 \to a$ and $\eta^2 : x_k \to b$ in K. Similarly, any $\eta \in \mathcal{W}^-$ can be decomposed

$$\eta = (\eta^2)^R \oplus (\lambda)^R \oplus \eta^1,$$

where $\eta^2 : x_k \to a$ and $\eta^1 : x_0 \to b$ are nonintersecting SAWs in K. We see that

$$\sum_{\eta \in \mathcal{W}^-} \hat{p}(\eta) = p(\lambda) F(\lambda; A) \sum_{\eta^1:x_0 \to b} p(\eta^1) p(\eta^2) F(\eta^1 \cup \eta^2; K).$$

(19)

Let us now consider the sum on the right-hand side of (18). Then using (9) we have

$$\sum_{\eta^1:x_0 \to a} p(\eta^1) p(\eta^2) F(\eta^1 \cup \eta^2; K) = \sum_{\eta^1:x_0 \to a} p(\eta^1) F(\eta_1; K) p(\eta^2) F(\eta_2; K \setminus \eta_1)$$

$$= \sum_{\omega^1:x_0 \to a} \sum_{\omega^2:x_k \to b} p(\omega^1) p(\omega^2),$$

where $\omega^1 : x_0 \to a$ and $\omega^2 : x_k \to b$ are SAWs in K. An identical argument proves the corresponding identity (interchanging x_0 and x_k) starting from the sum in the right-hand side of (19). Fomin’s identity now implies that we can express the difference of the results using a determinant:

$$\sum_{\omega^1:x_0 \to a} \sum_{\omega^2:x_k \to b} p(\omega^1) p(\omega^2) - \sum_{\omega^1:x_k \to a} \sum_{\omega^2:x_0 \to b} p(\omega^1) p(\omega^2)$$

$$= \sum_{\omega^1:x_0 \to a} p(\omega^1) p(\omega^2) - \sum_{\omega^1:x_k \to a} p(\omega^1) p(\omega^2)$$

$$= H_{\partial K}(x_0, a) H_{\partial K}(x_k, b) - H_{\partial K}(x_k, a) H_{\partial K}(x_0, b)$$

$$= \Delta (x_0 \to a, x_k \to b).$$

So subtracting (19) from (18) gives

$$\sum_{\eta \in \mathcal{W}^+} \hat{p}(\eta) - \sum_{\eta \in \mathcal{W}^-} \hat{p}(\eta) = p(\lambda) F(\lambda; A) \Delta (x_0 \to a, x_k \to b).$$

(20)

We will now express $\sum_{\eta \in \mathcal{W}^+} \hat{p}(\eta) + \sum_{\eta \in \mathcal{W}^-} \hat{p}(\eta)$ in terms of \hat{q}.
We first claim that
\[
\sum_{\eta \in W^+} \hat{p}(\eta) = \Gamma_A \sum_{\eta \in W^+} \hat{q}(\eta), \quad \text{where } \Gamma_A = \exp\{2m[J_A]\}. \tag{21}
\]
To see this, recall that \(\hat{q}(\eta) = q(\eta)F^q(\eta; A)\). We already noted that \(q(\eta) = p(\eta)\) for \(\eta \in W^+\), so Lemma 3.2 gives (21). Using that \(p(\eta) = -q(\eta)\) for \(\eta \in W^-\), a similar argument shows that
\[
\sum_{\eta \in W^-} \hat{p}(\eta) = -\Gamma_A \sum_{\eta \in W^-} \hat{q}(\eta). \tag{22}
\]
Hence, adding (21) and (22) gives
\[
\sum_{\eta \in W^+} \hat{p}(\eta) + \sum_{\eta \in W^-} \hat{p}(\eta) = \Gamma_A \left(\sum_{\eta \in W^+} \hat{q}(\eta) - \sum_{\eta \in W^-} \hat{q}(\eta) \right).
\]
We can now argue exactly as in the proof of (20) replacing \(p\) by \(q\); it makes no difference, and in this way we get
\[
\sum_{\eta \in W^+} \hat{p}(\eta) + \sum_{\eta \in W^-} \hat{p}(\eta) = q(\lambda)\Gamma_A F^q(\lambda; A) \Delta^q(x_0 \to a, x_k \to b) \tag{23}
\]
where the last step uses that the left-hand side of (23) is positive and that \(|q(\lambda)| = p(\lambda)|\). The theorem follows by adding and subtracting (20) and (23).

4 Comparison of loop measures: proof of Theorem 1.4

In this section we prove the main estimate on the random walk loop measure by comparing it with the corresponding quantity for the Brownian loop measure.

We recall some notation. Given \(A \in \mathcal{A}\), \(J_A\) is the set of unrooted random walk loops in \(A\) with odd winding number about \(w_0\). Given a simply connected domain \(D \ni 0\) we write \(\tilde{J}_D\) for the set of unrooted Brownian loops with odd winding number about 0. Let \(\psi_D : \mathbb{D} \to D\) be the conformal map with \(\psi_D(0) = 0, \psi'_D(0) > 0\) and \(\psi'(0)\) is the conformal radius of \(D\) from 0. Given a lattice domain \(A \subset \mathcal{A}\) with corresponding \(D = D_A\) we define \(r_A = r_{DA}\). For \(R > 0\), set
\[
B(R) = \{z \in \mathbb{C} : |z| < R\}, \quad B(R) = \{z \in \mathbb{Z}^2 : |z| < R\}.
\]

Theorem 4.1. There exist \(0 < u, c_0, c < \infty\) such that the following holds. Let \(A \in \mathcal{A}\) and let \(D_A\) be the associated simply connected domain. Then
\[
\left| \frac{m(J_A)}{8} \log r_A - c_0 \right| \leq cr_A^{-u}.
\]
Our proof does not determine the value of \(c_0\). Before giving the proof we need a few lemmas.
Lemma 4.2. There exists $c < \infty$ such that if D is a simply connected domain containing the origin with conformal radius $r \geq 5$, then

$$\left| \mu \left(\tilde{J}_D \setminus \tilde{J}_D \right) - \frac{\log r}{8} \right| \leq cr^{-1}.$$

Proof. Let $\phi(t) = \mu \left(\tilde{J}_D \setminus \tilde{J}_D \right)$. Note that if $1 < t < s$, then conformal invariance of μ implies that $\phi(s) = \phi(t) + \phi(s/t)$, that is, $\phi(t) = \alpha \log t$ for some α. The constant α can be computed, see Proposition 4.1 of [16].

$$\mu \left(\tilde{J}_D \setminus \tilde{J}_D \right) = \frac{1}{8} \log t.$$ \hfill (24)

Distortion estimates imply that there is a universal c such that

$$\psi_D \left(B \left(r^{-1} - cr^{-2} \right) \right) \subset D \subset \psi_D \left(B \left(r^{-1} + cr^{-2} \right) \right).$$

Hence, by conformal invariance and (24),

$$\mu \left(\tilde{J}_D \setminus \tilde{J}_D \right) = \frac{1}{8} \log [r \pm c] = \frac{1}{8} \log r + O(r^{-1}).$$

Given Lemma 4.2 and the fact that the conformal radius of D_A with respect to 0 and w_0 are the same up to a multiplicative error of $1 + O(r_A^{-1})$, we see that to prove Theorem 4.1, it suffices to prove that there exists c_0 such that

$$m(J_A) = \mu \left(\tilde{J}_D \setminus \tilde{J}_D \right) + c_0 + O(r_A^{-u}).$$

If we let k be the largest integer such that $e^{k+1}D \subset D$, then we can write

$$m(J_A) - \mu \left(\tilde{J}_D \setminus \tilde{J}_D \right) =$$

$$[m(J_A \setminus J_{B^k}) - \mu(\tilde{J}_A \setminus \tilde{J}_{B^k})] + \sum_{j=1}^{k} [m(J_{B^j} \setminus J_{B^{j-1}}) - \mu(J_{B^j} \setminus J_{B^{j-1}})],$$

where $B^j = B(e^j), B^j = B(e^j)$. The Koebe-1/4 theorem implies that that $(C \setminus D) \cap \{ |z| = r_D \}$ is nonempty. Note that this implies that any loop in D (either random walk or Brownian motion) with odd winding number must intersect rD.

The theorem then follows from the following estimate. The phrasing of the lemma is rather technical but the basic idea is that the measures of the set of random walk loops and Brownian loops with odd winding number that are in D, intersect rD, and are not contained in a smaller disk δrD are almost the same.

We use the coupling of random walk and Brownian loops and note that the pairs of coupled loops will have these properties unless one of the following possibilities occur, each of which will be proven to have small measure.

- The Brownian loop and the random walk loop are not very close. The loops are coupled in such a way that this happens with small measure.
• One of the loops (in a coupled pair) is contained in D but the other is not. If the loops are close this would require the loop that is inside D to be close to the boundary without intersecting it. The measure of such loops can ultimately be controlled using Beurling-type estimates.

• Similarly, one loop can intersect rD or be contained in δrD while the other is not. Again, this requires one of the loops to be near a circle without intersecting the circle.

• The final “bad” possibility is that the loops are close but they are so close to the origin that the winding numbers can differ. The probability that the walks are close to the origin is sufficiently large that we cannot just ignore this term. However, if a loop (random walk or Brownian motion) gets close to the origin it is almost equally likely to have an odd number as an even winding number. This allows us to show that the random walk and Brownian loop measures of such loops are nearly the same.

\textbf{Lemma 4.3.} There exist $u > 0, c < \infty$ such that the following holds for all $\delta \geq 1/10$. Suppose D is a simply connected domain containing the origin and let $r = r_D$. Let μ denote the Brownian loop measure and m the random walk loop measure.

- Let $I(\ell)$ (resp., $\tilde{I}(\omega)$) be the indicator function of the event that a random walk loop ℓ (resp., a Brownian loop ω) is a subset of D, intersects rD, is not a subset of δrD.

- Let $U(\ell)$ (resp., $\tilde{U}(\omega)$) denote the indicator function that the winding number of ℓ (resp., ω) about w_0 (resp., 0) is odd.

Then,

$$\left| \mu[\tilde{I}(\omega) \tilde{U}(\omega)] - m[I(\ell) U(\ell)] \right| \leq c r^{-u}.$$

Here we are writing $\mu[\cdot]$ for the integral with respect to μ and similarly for $m[\cdot]$ and $\nu[\cdot]$ in the proof below.

\textit{Proof.} We will be doing detailed estimates mostly for the random walk loop measure; the Brownian loop measure estimates are done similarly. We will, however, prove one estimate for the Brownian loop measure in order to explicitly illustrate this point.

It will be useful to fix an enumeration $\{z_0, z_1, \ldots\}$ of \mathbb{Z}^2 such that $|z_j|$ is nondecreasing and we let $V_j = \{z_0, \ldots, z_j\}$. In particular, $z_0 = 0$. We will first consider loops that do not lie in $r^{1+u}D$. As already noted, any loop in D with odd winding number must intersect rD.

- **Claim 1:** The random walk and Brownian loop measures of loops that intersect both rD and the circle of radius r^{1+u} is $O(r^{-u})$.

We will prove this for the random walk measure; the Brownian loop estimate is done similarly. Let L denote the set of random walk loops in D that intersect both rD and the circle of radius r^{1+u}. Then

$$L = \bigcup_{|z_j|<r} L_j^*,$$

where L_j^* denotes the set of such loops $[\ell]$ such that $z_j \in \ell$ and $\ell \cap V_{j-1} = \emptyset$. For any $[\ell] \in L_j^*$ we call a rooted representative

$$\ell = [\ell_0, \ell_1, \ldots, \ell_{2n}]$$
good if \(\ell_0 = z_j \) and if we define \(k \) to be the first index with \(|\ell_k| \geq r^{1+u} \), then \(\ell_s \neq z_j, 1 \leq s \leq k \). Let \(L_j^i \) denote the set of unrooted loops that have \(i \) good representatives. Then \(L_j^1 \) is a set of elementary loops as in the proof of Lemma 2.1. In particular,

\[
m(L_j^*) = -\log \left[1 - p(L_j^1) \right]
\]

For \(j = 0 \), a good loop must start by reaching the disk of radius \(r \) without returning to the origin. This has probability \(O(1/\log r) \). Given this, the Beurling estimate implies that the probability of reaching the disk of radius \(r^{1+u} \) without leaving \(D \) is \(O(r^{-u/2}) \). Given this, the probability to return to the disk of radius \(r \) without leaving \(D \) is \(O(r^{-u/2}) \). Given this, the expected number of returns to the origin before leaving \(D \) is \(O(1) \). Combining this all, we see that \(p(L_j^1) \sim O(r^{-u}/\log r) \) and hence \(m(L_j^0) \sim O(r^{-u}/\log r) \).

Let us now consider elementary loops for \(j > 0 \). Let \(x = |z_j| \). Using the gambler’s ruin estimate, the probability that the random walk reaches the circle of radius \(2x \) without hitting \(V_{j-1} \) is \(O(1/x) \). Given this, the probability that the walk reaches the circle of radius \(r \) without hitting \(V_{j-1} \) is \(O(1/\log(r/x))^{-1} \). Given this, as above, the probability to reach the circle of radius \(r^{1+u} \) and return to the circle of radius \(r \) without leaving \(D \) is \(O(r^{-u}) \). Given this, the probability to reach within distance \(2x \) of \(z_j \) is \(O(1/\log(r/x))^{-1} \). Given this, the probability that the next visit to \(V_j \) is at \(z_j \) is \(O(x^{-1}) \). Given this, the expected number of visits to \(z_j \) before leaving \(D \setminus V_{j-1} \) is \(O(1) \). Combining all of these estimates, we see that

\[
m(L_j^*) = p(L_j^1) \left[1 + O(p(L_j^1)) \right] \leq \frac{c}{|z_j|^2 ru} \left[1 \wedge \frac{1}{\log^2(r/|z_j|)} \right]. \tag{25}
\]

By summing over \(|z_j| \leq r \), we get \(m(L) \sim O(r^{-u}) \) which establishes Claim 1.
We will use the coupling as described in Lemma 2.2. Let us write (ω, ℓ) for a Brownian motion/random walk loop pair. This coupling defines (ω, ℓ) on the same measure space (M, ν) such that

- The marginal measure on ω restricted to nontrivial loops is μ.
- The marginal measure on ℓ restricted to nontrivial loops is m.
- Let E denote the set of (ω, ℓ) such that at least one of the paths has diameter greater than r^{1-u} and is contained in the disk of radius r^{1+u} and such that $\|\omega - \ell\|_\infty \geq c_0 \log r$. (Here by $\| \cdot \|_\infty$ we mean the infimum of the supremum norm over all parametrizations.) Then $\nu(E) \leq O(r^{-u})$.

Given Claim 1, we see that it suffices to show that $|\nu(\hat{\iota} \hat{\U} - IU)| = O(r^{-u})$. We will write E for 1_E. Let $K(\ell)$ (resp., $\hat{K}(\omega)$) denote the indicator function that $\text{dist}(0, \ell) \leq r^{1/2}$ (resp., $\text{dist}(0, \omega) \leq r^{1/2}$). Note that

$$UI - \hat{U}I = UIK - \hat{U} \hat{I} \hat{K} + \hat{U} \hat{I}(\hat{K} - K) + (UI - \hat{U} \hat{I})(1 - K).$$

Note that if $K = 0$ and $\|\omega - \ell\|_\infty \leq c_0 \log r$, then (for r sufficiently large) $U = \hat{U}$. Therefore,

$$|\nu(\hat{\iota} \hat{\U} - IU)| \leq |\nu(\hat{\iota} \hat{\U} \hat{K}) - \nu(IU \hat{K})| + |\nu(\hat{\iota} \hat{\U} |K - K|| + |\nu|\hat{\iota} - I|(\hat{U} + U)| + \nu(E).$$

Therefore it suffices to establish

- **Claim 2:**

 $$\nu(|\hat{\iota} + I| \hat{K} - K|| + |\nu|\hat{\iota} - I|| \leq O(r^{-u}),$$

 and

- **Claim 3:**

 $$|\nu(\hat{\iota} \hat{\U} \hat{K}) - \nu(IU \hat{K})| \leq O(r^{-u}).$$

To prove Claim 2, we first note that if the loops are coupled, and $IU(\ell) \neq 0$, then $\text{diam}(\ell) \geq \delta r$ and similarly for the Brownian motion loops. Also, if (ω, ℓ) are in the disk of radius r^{1+u} with $E(\omega, \ell) = 0$ and $I \neq \hat{I}$, then either the random walk loop or the Brownian loop does one of the following:

- gets within distance $c_0 \log r$ of ∂D without leaving D
- gets within distance $c_0 \log r$ of the the circle of radius r without hitting the circle
- gets within distance $c_0 \log r$ of the circle of radius δr without hitting the circle.

We can estimate the measure of loops that satisfy this as well as $\text{diam} \geq \delta r$, by using the rooted loop measure. We will do the random walk case for the first bullet; the Brownian motion case and the other two bullets are done similarly. Let ϵ be any positive number. Note that the root must be in the disk of radius r^{1+u} and hence there are $O(r^{2(1+u)})$ choices for the root. Using standard large deviations estimates, except for a set of loops of measure $o(r^{-5})$, these loops must have time duration at least $r^{2-\epsilon}$. We consider the probability that a random walk returns to the origin at time $2n$ after getting within distance $O(\log r)$ of ∂D but not leaving D. We claim that this is $O(\log r/n^{5/4})$. To see this, first note that by considering the reversal of the walk, we can see this is
We consider loops that get close to 0, that is, enter $r^{1/2}\mathbb{D}$ and that are not contained in $\delta r \partial \mathbb{D}$. Starting from inside $r^{1/2}\mathbb{D}$, the first part of such a loop (which is the only part shown in the diagram) can be written as an h-process aiming at $\zeta \in \delta r \partial \mathbb{D}$. In each dyadic annulus the probability to change parity of the winding number is uniformly bounded from below. Hence the exit distributions (at the annulus boundary component of larger radius) of conditioned random walks/Brownian h-processes of odd and even winding number are uniformly comparable. This implies that the paths of odd/even winding number can be coupled with positive probability in each annulus.

bounded above by the probability that the random walk gets within distance $O(\log r)$ in the first n steps, stays in ∂D, and then returns to the original point at time $2n$. Given that the walk is within distance $O(\log r)$ of ∂D, the Beurling estimate implies that the probability of not leaving D in the next $n/2$ steps is $O(\log r/n^{1/4})$. Given this, the probability of being at the origin at time $2n$ is $O(n^{-1})$. The rooted loop measure puts an extra factor of $(2n)^{-1}$ in. Therefore the rooted loop measure of loops rooted at z of time duration $2n \geq r^{2-\epsilon}$ that have diameter at least δr, and get within distance $c_0 \log r$ of ∂D but stay in D is $O(\log r/n^{9/4})$. By summing over $2n \geq r^{2-\epsilon}$, we see that the rooted loop measure of loops rooted at z that have diameter at least δr, get within distance $c_0 \log r$ of ∂D but stay in D is $O(r^{-(2-2\epsilon)5/4})$. If we sum over $|z| \leq r^{1+u}$, we get that the loop measure (rooted or unrooted) of such loops is $O(r^{2u + \frac{27}{2} - \frac{5}{2}}) \leq O(r^{-1/4})$ for u sufficiently small. This gives the upper bound on $\nu[|I - I|]$. Similarly, if $E(\omega, \ell) = 0$, $K(\ell) \neq \bar{K}(\omega)$, and $I(\ell) + \bar{I}(\omega) \geq 1$, then

$$r^{1/2} - c_0 \log r \leq \text{dist}(0, \ell) \leq r^{1/2} + c_0 \log r.$$

and for r sufficiently large,

$$\text{diam}(\ell) \geq \frac{\delta r}{3}.$$

Therefore $\nu[(I + \bar{I})|K - \bar{K}|(1 - E)]$ is bounded above by twice the m measure of the set of loops ℓ that satisfy these conditions. This can be estimated as in the previous paragraph (or using an unrooted loop measure estimate as in the beginning of this proof); we omit the details since we have already written out analogous estimates. This finishes the proof of Claim 2.
For the final claim, first note that

$$|\nu(\hat{I}K) - \nu(IK)| \leq \nu[(\hat{I} + I) | K] + \nu[| I - I|],$$

and hence by Claim 2,

$$|\nu(\hat{I}K) - \nu(IK)| = O(r^{-u}).$$

Therefore to prove Claim 3 it suffices to show that

$$|\nu(\hat{I}\hat{U}K) - \nu(IUK)| = \frac{1}{2} |\nu(\hat{I}K) - \nu(IK)| + O(r^{-u}).$$

We will prove that the Brownian loop measure of loops of odd and even winding numbers, respectively, that intersect $r^{1/2}\mathbb{D}$ and $\delta r\mathbb{T}$ (we write $\mathbb{T} = \partial\mathbb{D}$), are the same up to a small error. (This estimate for Brownian loops can be done by explicit computation, but we give an argument that also works for random walk.) Recalling (14) and (12) we see that it will be enough to prove this estimate for Brownian loops can be done by explicit computation, but we give an argument that also works for random walk. Recalling (14) and (12) we see that it will be enough to prove this estimate for Brownian motion and for the excursion by comparing Poisson kernels.) This means the excursion has positive probability (independent of r, k) to change winding number parity when crossing each annulus A_k and that the hitting distributions of the outer boundary of A_k for excursions of odd and even winding number (up to that hitting time) are uniformly comparable. We may therefore couple two excursions from $r^{1/2}$ in such a way that with probability $1 - O(r^{-u})$ they have different winding number parity when arriving at ζ, e.g., as follows: first couple the two sequences of annulus hitting points (in decreasing k order). This can be done so that the sequences eventually agree with large probability. (See [24 Section 1.5].) Then given the hitting points, sample the subpaths connecting these hitting points. The paths couple (and run together) after the point at which the hitting points agree and the winding number parities (at the hitting time) are different. Since constants are independent of r, k, the excursions couple with probability $c > 0$ (independent of r, k) in each of the annuli, and so the paths couple with probability $1 - O((1 - c)\log r^{1/2}) = 1 - O(r^{-u})$ for $u = u(c) > 0$. This shows that the probability of the loop attached at $r^{1/2}$ having odd winding number equals the probability of the loop having even winding number up to an error of $O(r^{-u})$. The analogous argument works for the random walk loops and so we have established Claim 3.

\[\square\]

5 Asymptotics of Λ: proof of Theorem 1.5

In this section we study the asymptotics of $\Lambda_A(z, a) = R_A(z, a)/H_A(z, a)$, as $r_A \to \infty$. We recall that $R_A(z, a) = \mathbb{E}^z[Q(S[0, \tau])I_a]$ where $S = S^z$ is simple random walk from z, I_a is as defined in
Figure 3: The construction of the continuum observable \(\lambda(z; a) \) in \(\mathbb{D} \). Left: We consider a Brownian \(h \)-process \(W \) in \(\mathbb{D} \) from \(z \) conditioned to exit \(\mathbb{D} \) at \(a \). Right: \(W \) is lifted path by path to a continuous process \(\hat{W} \) in \(\mathbb{H} \) by the multivalued function \(F(w) = -i \log w \) starting from \(\hat{z} \), the point in \(F(z) \) with real part in \([0, 2\pi)\). The random variable \(Q \) equals 1 if \(\hat{W} \) exits \(\mathbb{H} \) in \(\{\hat{a} + 4k\pi, k \in \mathbb{Z}\} \) and \(-1\) otherwise and \(\lambda \) is the expected value of \(Q \) with respect to the law of \(W \). By symmetry \(\lambda(z; \hat{a}) = 0 \) for \(z \in \alpha \), the antipodal line relative to \(a \). For paths avoiding \(\alpha \), the value of \(Q \) depends only on whether \(\alpha \cup \beta \) separates \(z \) from \(a \) in \(\mathbb{D} \).

\[\Lambda_A(z, a) = \frac{R_A(z, a)}{H_A(z, a)} = E^{z,a}[Q(S[0,\tau])I], \quad z \in A, \quad (26) \]

where \(I = 1 \{S[1,\tau] \cap \{0,1\} = \emptyset\} \) and \(E^{z,a} \) denotes expectation with respect to the measure under which \(S \) is a simple random walk from \(z \) conditioned to exit \(A \) at \(a \).

5.1 Continuum functions

Given \((26)\) and the fact that simple random walk converges to Brownian motion, we would expect any scaling limit of \(\Lambda_A(0, a) \) to be the corresponding quantity with random walk replaced by an \(h \)-transformed Brownian motion conditioned to exit \(D \) at \(a \in \partial D \). Here we describe the quantity in the continuum.

We will do the construction in the unit disk \(\mathbb{D} \); we can use conformal invariance to define the functions in other simply connected domains. Let \(\beta \) denote the line segment \([0,1) \subset \mathbb{D} \). Let \(a = e^{2i\theta_a}, 0 < \theta < \pi \), and let \(\alpha = \alpha(a) = \{w : w = re^{i(2\theta_a + \pi)}, r \in (0,1)\} \) be the antipodal radius relative to \(a \). Let \(P^{z,a} \) be a probability measure under which the process \(W_t, t \in [0, T] \), is a Brownian \(h \)-process in \(\mathbb{D} \) started from \(z \) conditioned to exit \(\mathbb{D} \) at \(a \). Here \(T \) is the hitting time of \(\partial \mathbb{D} \). For each realization of \(W_t \), we let \(Q \) equal \(\pm 1 \) depending on whether the path \(W[0,T] \) intersects \(\beta \) an even or an odd number of times. This is a bit imprecise since there are an infinite number of intersections. One way to make it precise by lifting by multi-valued logarithm \(F(z) = -i \log z \). The image of \(\beta \), \(F(\beta) \), is the union of the \(2\pi \) translates of the positive imaginary axis. If we choose
a particular image of z, say \hat{z}, then there is a corresponding image \hat{a} of a such that \hat{a} is on the boundary of the connected component of $\mathbb{H} \setminus F(\beta)$ that contains \hat{z}. Once \hat{z} is given, the h-process is mapped to an h-process W_t in \mathbb{H} conditioned to leave \mathbb{H} at $F(a) = \{\hat{a} + 2\pi k : k \in \mathbb{Z}\}$. Then $Q = 1$ if and only if W exits \mathbb{H} at $\{\hat{a} + 4\pi k : k \in \mathbb{Z}\}$. For $z \in \mathbb{D}, a \in \partial \mathbb{D}$, let

$$\lambda(z; a) = \lambda_{\mathbb{D}}(z; a) = E^{z,a}[Q].$$

For the simply connected domain D_A, we define for $z \in D_A$ and $a \in \partial D_A$

$$\lambda_A(z; a) = \lambda(f_A(z); f_A(a)), \quad (27)$$

where we recall $f_A : D_A \to \mathbb{D}$ with $f_A(w_0) = 0, f'_A(w_0) > 0$.

Remark. We can also consider an “observable” $\hat{\lambda}$ living on the Riemann surface given by the branched two-cover of \mathbb{D} with branch cut β. We lift the h-process in \mathbb{D} so that it starts on the two-cover and the observable is the expectation of the random variable giving $+1$ if the h-process reaches the boundary on the top sheet and -1 if it reaches it on the bottom sheet. Then $\hat{\lambda}$ only changes sign when evaluated at the two different points in the fiber of $z \in \mathbb{D}$ and so could in physics language be called a “spinor”. See [5] for a similar construction in a related context.

Note that symmetry implies that $\lambda(z; a) = 0$ for $z \in \alpha$. Let $\tau = \inf\{t : W_t \in \alpha\}$. If $\tau > T$, then the value of Q is determined: it is $+1$ if z and a are in the same component of $\mathbb{D} \setminus (\alpha \cup \beta)$ and -1 if they are in different components. Therefore,

$$|\lambda(z; a)| = |E^{z,a}[Q; \tau > T]| = P^{z,a}(W[0, T] \cap \alpha = \emptyset) = \frac{h_{\mathbb{D} \setminus \alpha}(z, a)}{h_{\mathbb{D}}(z, a)}. \quad (28)$$

Lemma 5.1. If $0 \leq \theta < \pi$, then as $\epsilon \downarrow 0$,

$$\lambda(-\epsilon; a) = 2 \epsilon^{1/2} \sin \theta a + O(\epsilon).$$

Proof. The map

$$\phi(z) = \frac{2\sqrt{z}}{z + 1}, \quad \phi'(z) = \frac{1 - z}{\sqrt{z}(z + 1)^2}$$

is a conformal transformation of $\mathbb{D} \setminus [0, 1)$ onto the upper half plane \mathbb{H} with

$$\phi(e^{2i\theta}) = \frac{1}{\cos \theta}, \quad |\phi'(e^{2i\theta})| = \frac{\sin \theta}{2 \cos^2 \theta}, \quad \phi(\epsilon e^{2i\mu}) = 2 \epsilon^{1/2} e^{i\mu} [1 + O(\epsilon)].$$

The scaling rule for the Poisson kernel implies that

$$\pi h_{\mathbb{D} \setminus [0, 1]}(z, e^{i2\theta}) = \pi |\phi'(e^{i2\theta})| h_{\mathbb{H}}(\phi(z), \phi(e^{i2\theta})) = \frac{|\phi'(e^{i2\theta})|}{[\phi(e^{i2\theta}) - \text{Re} \phi(z)]^2 + [\text{Im} \phi(z)]^2} \cdot \frac{\text{Im} \phi(z)}{[\phi(e^{i2\theta}) - \text{Re} \phi(z)]^2 + [\text{Im} \phi(z)]^2}.$$

In particular,

$$2\pi h_{\mathbb{D} \setminus [0, 1]}(e^{i2\mu}, e^{i2\theta}) = 2 \epsilon^{1/2} \sin \mu \sin \theta + O(\epsilon).$$

Therefore, by rotational symmetry, with $a = e^{2i\theta}a$,

$$2\pi h_{\mathbb{D} \setminus \alpha}(-\epsilon, a) = 2\pi h_{\mathbb{D} \setminus [0, 1]}(e^{i2\theta}a, -1) = 2 \epsilon^{1/2} \sin \theta a + O(\epsilon).$$

Using in (28) the fact that for any $a \in \partial \mathbb{D}, \lambda(-\epsilon, a) > 0$ and that $2\pi h_{\mathbb{D}}(-\epsilon, e^{i2\theta}a) = 1 + O(\epsilon)$ now concludes the proof. \[\square\]
5.2 Asymptotics of $\Lambda_A(0, a)$

Our construction will be somewhat neater if we start with the observation in the next lemma.

Lemma 5.2. There exists $\epsilon > 0$ such that the following holds. Suppose D is a simply connected domain containing the origin and $f : \mathbb{D} \to D$ is a conformal transformation with $f(0) = 0$. Let $S = \{x + iy : |x|, |y| < \frac{1}{f'(0)\epsilon}\}$ be a square centered at the origin and for $0 \leq t < 1$, let $\gamma(t) = f(t)$. Let $\sigma = \inf\{t : \gamma(t) \in \partial S\}$. Then $\gamma[\sigma, 1) \cap S = \emptyset$.

Proof. This can be proved using standard distortion estimates for conformal maps. \qed

We now set some notation.

- Let $U_n = \{(x,y) \in \mathbb{Z}^2 : |x| < n, |y| < n\}$ denote the discrete square centered at 0 of side length $2n$ and $U_n^- = U_n \setminus \{0, \ldots, n\}$ be the slit discrete square.

- Let $V = V_n, V^- = V_n^-$ be the corresponding continuum domains

 $$V_n = \{x + iy : |x|, |y| < n\}, \quad V_n^- = V \setminus \{0, n\}.$$

- Let ϵ be a fixed positive number as in Lemma 5.2. For every A, let $n_A = \lfloor \epsilon r_A \rfloor = \epsilon r_A + O(1)$ and let U_A, U_n^-, V_A, V_n^- denote $U_{n_A}, U_n^-, V_{n_A}, V_n^-$, respectively.

- Let $\beta^* = (0, w_0) \cup f_A^{-1}(\beta)$. The curve β^* goes from 0 to $f_A^{-1}(1) \in \partial D_A$. By Lemma 5.2 we can see that after the curve β^* hits ∂V_A it does not return to V_A. We will also write β^* for the arc $\beta^* \cap V_A$.

- For $z, w \in V_n^- \setminus \beta^*$ we define $Q_{z,w} = -1$ if β^* separates z from w in V_n^- and +1 otherwise.

- We use S_j and B_t, respectively, to denote random walk and Brownian motion, as well as the h-processes defined from them. The probability measure will always make it clear whether we are dealing with the unconditioned or the conditioned process. We use $P_{z,a}^{x,a}, E_{z,a}^{x,a}$ to denote probabilities and expectations with respect to an h-process conditioned to leave the domain at a. We will use this notation for both S_j and B_t. This should not cause confusion. All h-processes in this paper will be those given by boundary points, that is, where the harmonic function is the Poisson kernel. We recall that

 $$P_{z,a}^{x,a}\{(S_0, \ldots S_k) = (\omega_0, \ldots, \omega_k)\} = \frac{H_A(\omega_k, a)}{H_A(z, a)} P_{z}^{x,a}\{(S_0, \ldots S_k) = (\omega_0, \ldots, \omega_k)\},$$

 with a similar formula for the Brownian h-process.

Lemma 5.3. We have

$$\Lambda_A(0, a) = \sum_{w \in \partial U_A} H_{\partial U_A}(0, w) \frac{H_A(w, a)}{H_A(0, a)} Q_{z,w} \Lambda_A(w, a).$$
Proof. We write U, U^- for U_A, U^-_A. Let $\sigma = \min \{ k \geq 1 : S_k \in \mathbb{N} \cup \{0\} \}$. Since $S_{\tau \wedge \sigma} \in \{0,1\}$ implies that $I = 0$, using (26) and the strong Markov property applied at the stopping time $\rho = \inf \{ k \geq 0 : S_k \in \partial U^- \}$ gives

$$
\Lambda_A(0,a) = \mathbb{E}^{0,a}[Q(S[0,\rho]) I \Lambda_A(S_\rho,a)]
= \mathbb{E}^{0,a}[Q(S[0,\rho]) \Lambda_A(S_\rho,a); S_\rho \in \{2,\ldots,n\}]
+ \mathbb{E}^{0,a}[Q(S[0,\rho]) \Lambda_A(S_\rho,a); S_\rho \in \partial U].
$$

(30)

Suppose ω is a nearest-neighbor path from 0 to $w \in \{2,\ldots,n\}$, and otherwise staying in U^-. Then if $\bar{\omega}$ is the reflection of ω about the real axis we have $Q(\omega) = -Q(\bar{\omega})$. Indeed, $\omega \oplus \bar{\omega}$ is a loop rooted at 0 intersecting \mathbb{N} exactly once and it is symmetric about the real axis and so has winding number 1 about w_0. Moreover, by (29) ω and $\bar{\omega}$ have the same distribution. This implies that $Q(\omega) = -Q(\bar{\omega})$. Since the (reflected) paths can be coupled after the first visit to $\{2,\ldots,n\}$ we conclude that the first expectation in (30) vanishes.

If there exists a nearest neighbor path in \bar{U} from 0 to $w \in \partial U$ that does not intersect $\beta^* \cup \{0,\ldots,n\}$ except at its starting and endpoint, then any path from 0 to w that avoids $\{0,\ldots,n\}$ will intersect β^* an even number of times, yielding a value of $Q^{0,w} = 1$. Similarly, for all other
$w \in \partial U$, $Q^{0,w} = -1$. We then see that,

$$
\Lambda_A(0,a) = E^{0,a}[Q(S[0,\rho]) \Lambda_A(S_\rho,a); S_\rho \in \partial U]
= \sum_{w \in \partial U} P^{0,a}(S_\rho = w) Q^{0,w} \Lambda_A(w,a)
= \sum_{w \in \partial U} H_{\partial U^-}(0,w) \frac{H_A(w,a)}{H_A(0,a)} Q^{0,w} \Lambda_A(w,a).
$$

\[\square \]

Lemma 5.4. If $z = z_n = -n^{1/2}$, then

$$
\lambda_A(z,a) = O(n^{-3/4}) + \int_{\partial V_A} h_{V_A^-}(z,w) \frac{h_A(w,a)}{h_A(z,a)} Q^{z,w} \lambda_A(w;a) |dw|
= O(n^{-3/4}) + \sum_{w \in \partial U_A} h_{V_A^-}(z,w) \frac{h_A(w,a)}{h_A(z,a)} Q^{z,w} \lambda_A(w;a).
$$

Proof. The proof of the first expression is similar to that of the last lemma. Note, however, since the winding is measured around w_0 it is possible that when we concatenate a path from z to the positive real axis with its reflection about the real axis we could get a loop whose winding number about w_0 is even. By topology we can see this can only happen if the path hits $\eta := [0,w_0] \cup [0,\overline{w_0}]$ before hitting $[0,\infty)$. By the Beurling estimate, the probability of hitting η before hitting the positive real axis is $O(|z|^{-1/2})$. Also the value of λ on η is $O(n^{-1/2})$. Therefore, this term produces an error of size $O(n^{-3/4})$, which yields the first equality of the lemma.

For the second estimate we first note that the Beurling estimate and the covariance rule for the Poisson kernel show that

$$
|h_{V^-}(z,w) \frac{h_A(w,a)}{h_A(z,a)} Q^{z,w} \lambda_A(w;a)| \leq c |h_{V^-}(z,w)| \leq c' |z|^{1/2} n^{-3/2}, \quad \forall w \in \partial V.
$$

Let E be the set obtained by removing from ∂V its intersection with the six balls of radius $n^{1/2}$ centered at the four corners of V, the point at which the slit meets ∂V, and the point at which β^* meets ∂V. Then by the last estimate

$$
\int_{\partial V} h_{V^-}(z,w) \frac{h_A(w,a)}{h_A(z,a)} Q^{z,w} \lambda_A(w;a) |dw|
= \int_E h_{V^-}(z,w) \frac{h_A(w,a)}{h_A(z,a)} Q^{z,w} \lambda_A(w;a) |dw| + O(|z|^{1/2} n^{-1}).
$$

Notice that $Q^{z,w}$ is constant on each component of E. Derivative estimates for positive harmonic functions show that if u,v are in the same component of E and $|u - v| \leq 1$ then

$$
\frac{h_A(u,a)}{h_A(z,a)} = \frac{h_A(v,a)}{h_A(z,a)} (1 + O(n^{-1})).
$$

Finally, since each point on E is distance at least $n^{1/2}$ from a corner one can map to the unit disk and compare the Poisson kernels there (using, e.g., Schwarz reflection and the distortion theorem to compare the derivatives) to see that

$$
h_{V^-}(z,u) = h_{V^-}(z,v)(1 + O(n^{-1/2})).
$$

These estimates imply the lemma. \[\square \]
We proceed to show that each of the factors in the expression for $\Lambda_A(0,a)$ in Lemma 5.3 is close to its continuum counterpart in the decomposition of Lemma 5.4 and then appeal to Lemma 5.4 to go back to the continuum function. The estimates naturally split into two parts. The first deals with fine asymptotics close to the tip of the slit in the slit square and the second with what happens between the boundary of the slit square and the boundary of A. We state the results here, but postpone the proofs to the two subsequent subsections. We then combine them to prove Theorem 1.5.

We define
\[
\bar{H}(0,b) = \sum_{z \in \partial U} H \frac{\partial U_n^{-}(0,z)}{\partial U^{-}(0,b)}, \quad b \in \partial U_n,
\]
This is the conditional probability that an excursion starting at 0 in U_n^- exits ∂U_n^- at b given that it exits at a point in ∂U_n. We also define the analogous quantity for Brownian motion,
\[
\bar{h}(-1,b) = \frac{h_{V_n}(-1,b)}{\int_{\partial V_n} h_{V_n}(-1,w) |dw|}, \quad b \in \partial V_n.
\]

Theorem 5.5. If $b \in \partial U_n$,
\[
\bar{H} = \bar{h}(-1,b) \left[1 + O(n^{-1/20}) \right].
\]

Proof. See Section 5.3.

We do not believe that this error term is optimal, but this suffices for our needs and is all that we will prove. We will also need the following corollary, which in particular implies the sharpness of the Beurling estimate.

Corollary 5.6. There exist $c, u > 0$ such that
\[
\sum_{b \in \partial U_n} H_{\partial U_n^{'}} (0, b) = cn^{-1/2} \left[1 + O(n^{-u}) \right].
\]

Proof. Let
\[
K(n) = \sum_{b \in \partial U_n} H_{\partial U_n^{-}} (0, b),
\]
and note that for $r \geq 1$ (we write $U_{rn} = U_{\lfloor rn \rfloor}$)
\[
K(rn) = K(n) \sum_{b \in \partial U_n} \bar{H}(0,b) \bar{H}_{U_{rn}}(b, \partial U_{rn}),
\]
Using the previous theorem and strong approximation, we can see that for $1 \leq r \leq 2$,
\[
\frac{K(rn)}{K(n)} = \frac{\bar{K}(rn)}{\bar{K}(n)} + O(n^{-u}).
\]
By direct calculation using conformal mapping,
\[
\frac{\tilde{K}(rn)}{K(n)} = r^{-1/2} + O(n^{-u}).
\]
Therefore, allowing a different \(u \),
\[
\frac{K(rn)}{K(n)} = r^{-1/2} + O(n^{-u}),
\]
and the result easily follows from this.

Given the corollary we can restate Theorem 5.5 as: there exists \(c > 0, u > 0 \) such that
\[
H_{\partial U_n^-}(0, b) = c h_{V_n^-}(-1, b) \left[1 + O(n^{-u}) \right].
\] (31)
We will also need that
\[
\frac{H_A(w, a)}{H_A(0, a)} = \frac{h_A(w, a)}{h_A(0, a)} + O(n^{-u}), \quad w \in \partial U_n^- \quad a \in \partial A
\] (32)
which is a direct consequence of Theorem 2.3. This handles the first part of the argument of Theorem 1.5. The second part is handled in the next proposition. Note that for \(w \in \partial U_A \) the quantities \(\Lambda_A(w, a) \) and \(\lambda_A(w; a) \) are “macroscopic” quantities for which one would expect Brownian motion and random walk to give almost the same value.

Proposition 5.7. There exist \(u > 0, c < \infty \) such that if \(A \in \mathcal{A}, a \in \partial A, \) and \(w \in \partial U_A, \)
\[
|\Lambda_A(w, a) - \lambda_A(w; a)| \leq c r_A^{-u}.
\] (33)

Proof. See Section 5.4.

Proof of Theorem 1.5 assuming Theorem 5.5 and Proposition 5.7. We will first show (7), that is, there is a constant \(0 < c_2 < \infty \) such that
\[
\Lambda_A(0, a) = c_2 r_A^{-1/2} \left[\sin \theta_a + O \left(r_A^{-u} \right) \right].
\]
We write \(U, U^-, V, V^-, \tilde{H}, \tilde{h} \) for \(U_A, U_A^-, V_A, V_A^-, \tilde{H}_A, \tilde{h}_A \). Using Lemma 5.3, (31), (32), and (33) we see that there is a constant \(0 < c_0 < \infty \) such that
\[
\Lambda_A(0, a) = \sum_{w \in \partial U} H_{\partial U^-}(0, w) \frac{H_A(w, a)}{H_A(0, a)} Q_{z, w} \Lambda_A(w, a)
\]
\[
= c_0 \sum_{w \in \partial U} h_{V^-}(-1, w) \frac{h_A(w, a)}{h_A(0, a)} Q_{z, w} \lambda_A(w; a) \left[1 + O(r_A^{-u}) \right].
\]
We note that if \(f_A : D_A \to \mathbb{D} \) with \(f_A(w_0) = 0, f'_A(w_0) > 0 \), then for \(z \) with \(|z| \leq n_A^{1/2} \),
\[
f_A(z) = r_A^{-1} z + O(r_A^{-1}),
\]
and hence, by [27] and Lemma [5.1],
\[
\lambda_A(-n_A^{1/2}; a) = 2 r_A^{-1/2} n_A^{1/4} \sin \theta_a + O(r_A^{-1/2})
\] (34)
and there exists some \(c > 0\) such that for all \(z\) with \(|z| \leq n_A^{1/2}\),
\[
\lambda_A(z; a) \leq c r_A^{-1/2} |z|^{1/2}.
\] (35)

A simple argument, using conformal mapping say, shows that
\[
h_{V^-}(-n_A^{1/2}, w) = n_A^{1/4} h_{V^-}(-1, w) [1 + O(n^{-1/4})].
\]

We now use Lemma 5.4 and (34) to conclude that
\[
n_A^{1/4} c_0^{-1} \Lambda(0, a) = O(r_A^{-3/4}) + \lambda_A(-n_A^{1/2}; a) [1 + O(n^{-u})]
\]
\[
= 2 r_A^{-1/2} n_A^{1/4} [\sin \theta_a + O(n^{-u})].
\]

Since \(n_A = \epsilon r_A + O(1)\), we get (7). We will give a symmetry argument here to deduce (8) from (7). Suppose we replace \(J_t\) with
\[
\tilde{J}_t = \left[\frac{\Omega_t + \pi}{2\pi} \right] - \left[\frac{\Omega_0 + \pi}{2\pi} \right].
\]
In other words, we place the discontinuity of the argument at \(f_A^{-1}((-1, 0])\) rather than at \(f_A^{-1}([0, 1])\).

Then we can see that if \(S_r = a\), then \(Q(\omega[0, \tau]) = \pm Q(\omega[0, \tau])\) with the minus sign appearing if and only if \(\pi/2 \leq \theta_a < \pi\).

Now given \(A\), consider its reflection along the line \(\{\Re(z) = 1/2\}\), that is, let \(\rho(z) = 1 - \overline{z}\), \(A' = \rho(A)\). Let \(a' = \rho(a)\) and define \(\theta'\) by \(f_{A'}(a') = e^{i2\theta'}\). Note that \(\rho(D_{A'}) = D_A\), \(f_{A'}(z) = \overline{f_A(\rho(z))}\), \(f_A^{-1}([0, 1]) = \rho \left[f_{A'}^{-1}((-1, 0]) \right] \), and
\[
f_A(a) = -\overline{f_{A'}(a')} = -\overline{e^{i2\theta'}} = \exp \left\{ 2i \left(\frac{\pi}{2} - \theta' \right) \right\}.
\]
In other words, \(\theta_a = \frac{\pi}{2} - \theta'\) (mod \(\pi\)). If \(\theta_a, \theta' \in [0, \pi]\), then \(\theta_a = \frac{\pi}{2} - \theta'\) if \(0 \leq \theta' \leq \frac{\pi}{2}\) and \(\theta_a = \frac{3\pi}{2} - \theta'\) if \(\frac{\pi}{2} < \theta' < \pi\), and hence
\[
\cos \theta_a = \begin{cases} \sin \theta' & 0 \leq \theta' \leq \pi/2 \\ -\sin \theta' & \pi/2 < \theta' < \pi. \end{cases}
\]
From the previous paragraph and (7), we see that
\[
\Lambda(1, a) = \Lambda_{A'}(0, a') = c_2 r_A^{-1/2} \left[\sin \theta' + O(r_A^{-u}) \right], \quad 0 \leq \theta' \leq \frac{\pi}{2},
\]
\[
\Lambda(1, a) = -\Lambda_{A'}(0, a') = c_2 r_A^{-1/2} \left[-\sin \theta' + O(r_A^{-u}) \right], \quad \frac{\pi}{2} < \theta < \pi.
\]
5.3 Poisson kernel convergence in the slit square: Proof of Theorem 5.5

The rate of convergence of the discrete Poisson kernel to the continuous kernel is very fast in the case of rectangles aligned with the coordinate axes.

Lemma 5.8. There exists $c < \infty$ such that if $n/10 \leq m \leq 10n$, and

$$A = A(n, m) = \{j + ik : 1 \leq j \leq n - 1, 1 \leq k \leq m - 1\},$$

$$R = R(n, m) = \{x + iy : 0 < x < n, 0 < y < m\},$$

then

$$|4 h_{\partial R}(ik, n + ik') - H_{\partial A}(ik, n + ik')| \leq c \frac{\min\{k, m - k\} \min\{k', m - k'\}}{n^5}.$$

In particular,

$$H_{\partial A}(ik, n + ik') = 4 h_{\partial R}(ik, n + ik')(1 + O(n^{-2})).$$

Proof. We write $v = ik, w = n + ik'$, and $d = \min\{k, m - k\}, d' = \min\{k', m - k'\}$. Using separation of variables (see Section 6 of [2] or [17, Chapter 8] for more details), one can find $h_R(1 + ik, w)$ exactly as an infinite series

$$h_R(1 + ik, w) = \frac{2}{m} \sum_{l=1}^{\infty} \frac{\sinh(l\pi/m)}{\sinh(l\pi n/m)} \sin \left(\frac{lk\pi}{m}\right) \sin \left(\frac{lk'\pi}{m}\right).$$

Similarly one can find the discrete Poisson kernel by separation of variable as a finite Fourier series; more specifically,

$$H_A(1 + ik, w) = \frac{2}{m} \sum_{l=1}^{m-1} \frac{\sinh(\alpha_l \pi / n)}{\sinh(\alpha_l \pi)} \sin \left(\frac{lk\pi}{m}\right) \sin \left(\frac{lk'\pi}{m}\right),$$

where α_l is the solution to

$$\cosh \left(\frac{\alpha_l \pi}{n}\right) + \cos \left(\frac{l\pi}{m}\right) = 2.$$

Note that Lemma 6.1 in [2] implies that

$$\alpha_l = \frac{ln}{m} \left[1 + O(l^2/n^2)\right]. \quad (36)$$

One can find $c_1 > 0$ and $c_2 > 0$ such that for all m, n in the statement of the lemma,

$$\frac{\sinh(l\pi/m)}{\sinh(l\pi n/m)} \leq c_1 e^{-c_2 l} \quad \text{and} \quad \frac{\sinh(\alpha_l \pi / n)}{\sinh(\alpha_l \pi)} \leq c_1 e^{-c_2 l}.$$

Using this and the inequality $|\sin x| \leq |x|$, we can see that there exists $c < \infty$ such that

$$|h_R(1 + ik, w) - H_A(1 + ik, w)| \leq c \left[\frac{1}{n^6} + \frac{dd'}{n^5} \sum_{l \leq c \log n} l^2 \left|\frac{\sinh(l\pi/m)}{\sinh(l\pi n/m)} - \frac{\sinh(\alpha_l \pi / n)}{\sinh(\alpha_l \pi)}\right|\right].$$

35
Note that the 6 is arbitrary and can be made arbitrarily large by increasing \(c \). Using (36) we can see that for \(l \leq c \log n \),

\[
\frac{\sinh(\alpha l \pi / n)}{\sinh(\alpha l \pi)} = \frac{\sinh(l \pi / m)}{\sinh(l \pi n / m)} \left[1 + O(l^3 / n^2) \right],
\]

and hence the sum is \(O(n^{-3}) \) giving

\[
|h_R(1 + ik, w) - H_A(1 + ik, w)| \leq \frac{cdd'}{n^6}.
\]

This implies that

\[
H_{\partial A}(ik, w) = \frac{1}{4} H_A(1 + ik, w) = \frac{1}{4} h_R(1 + ik, w) + O(dd'n^{-6}).
\]

We now assume that \(k \leq m/2 \). We can extend the function \(h(z) = h_R(z, w) \) to \(\{x + iy : -n < x < n, -m < y < m\} \) by Schwarz reflection. (If \(k > m/2 \), we instead extend the function to \(\{x + iy : -n < x < n, 0 < y < 2m\} \).) Note that on \(\{z : |z - ik| \leq \min\{m, n\}/4\} \),

\[
|h(z)| \leq cdd'/n^3.
\]

Since \(\min\{m, n\} \asymp n \), estimates for derivatives of harmonic functions (see, for instance, Section 2.3 in [14]) then imply that

\[
|\partial^k_x h(z)| \leq cdd'/n^{3+k} \tag{37}
\]

Using the definition of the boundary Poisson kernel (see Section 2.3) and (37) in a Taylor expansion of \(h \) at \(ik \), we see that

\[
h_R(ik + 1, w) = h_{\partial R}(ik, w) + O(dd'/n^5).
\]

Let us abuse notation slightly and write

\[
G_{U_n^-}(0, \zeta) = \frac{1}{4} \sum_{|e| = 1} G_{U_n^-}(e, \zeta).
\]

Lemma 5.9. For every \(n \), there exists \(c_n \) such that for all \(|\zeta| \geq n/2 \),

\[
G_{U_n^-}(0, \zeta) = c_n g_{V_n^-}(-1, \zeta) \left[1 + O(n^{-1/20}) \right].
\]

Moreover, the constant \(c_n \) is uniformly bounded away from 0 and \(\infty \).

Proof. Let \(z_0 = -[n/8] \) and \(F_n : V_n^- \to \mathbb{D} \) be the conformal transformation with \(F_n(z_0) = 0, F_n(0) = 1 \). Note that for all \(z \in V_n^- \), \(F_n(z) = F(z/n) \) where \(F = F_1 \). It is easy to see that \(|F_n(\zeta) - 1| = |F(\zeta/n) - 1| \) is uniformly bounded away from 0 for \(|\zeta| \geq n/2 \).

Let \(H_n \) be the restriction to \(V_n^- \) of the Schwarz-Christoffel transformation from \(V_n \) to \(n\mathbb{D} \), that sends the origin to the origin and \((n, 0) \) to \((n, 0) \). Then the image of \(H_n \) is \(n\mathbb{D} \setminus [0, n] \). We can see, e.g., from the explicit form of \(H_n \) that \(H_n(z_0) = -cn(1 + O(1/n)) \) for some \(0 < c < 1 \). Moreover, \(H_n(-1) = -H'_n(0)(1 + O(1/n)) \) and \(H'_n(-1) = c'(1 + O(1/n)) \) for some \(c' > 0 \).
We can then write $F_n = G_n \circ H_n$, where $G_n(z) = (1 - z_0)(\sqrt{z/n + \sqrt{n/z}}) + (1 + z_0)i/(1 - z_0)(\sqrt{z/n + \sqrt{n/z}}) - (1 + z_0)i$ (z_0 is some real in $[0, 1]$ that depends on $H_n(z_0)$ and can be computed explicitly) maps $n\mathbb{D} \setminus [0, n]$ to \mathbb{D}, $H_n(z_0)$ to 0 and 0 to 1. Then $G'_n(H_n(-1)) = c'' n^{-1/2} [1 + O(n^{-1/2})]$ for some c'', so that the chain rule implies that $F'_n(-1) = c_0 n^{-1/2} [1 + O(n^{-1/2})]$ for some constant c_0.

Using the explicit form of the Green’s function and Poisson kernel in the disk, we can see that

$$g_{V^-}(-1, \zeta) = g_{\mathbb{D}}(F_n(-1), F_n(\zeta)) = g_{\mathbb{D}}(1 - c_0 n^{-1/2}(1 + O(n^{-1/2})), F(\zeta/n)) = 2\pi c_0 n^{-1/2} h_{\mathbb{D}}(F(\zeta/n), 1) [1 + O(n^{-1/2})] = \frac{2\pi c_0 [1 - |F(\zeta/n)|^2]}{n^{1/2} |F(\zeta/n) - 1|^2} [1 + O(n^{-1/2})].$$

By equation (40) of [13], we can see that

$$G_{U^-}(0, \zeta) = G_{U^-}(0, z') \frac{1 - |F(\zeta/n)|^2}{|F(\zeta/n) - 1|^2} [1 + O(n^{-1/20})].$$

Here we are using the uniform bound on $|F(\zeta/n) - 1|$. All one needs now is that $G_{U^-}(0, z_0) \asymp n^{-1/2}$, which follows from Proposition 1.5.9 and (2.40) in [13].

Proof of Theorem 5.3 Let us first consider the case $b = n + ik'$ with $0 < k' < n$, Let $m = \lfloor 3n/4 \rfloor$ and let $R = R_n$ be the rectangle

$$R = \{x + iy : m < x < n, 0 < y < n\}.$$

As an abuse of notation we will also write R for $R \cap \mathbb{Z}^2$. A last-exit decomposition shows that

$$H_{\partial U^-}(0, b) = \sum_{j=1}^{n-1} G_{U^-}(0, m + ji) H_{\partial R}(m + ji, b).$$

A similar decomposition shows that

$$h_{V^-}(-1, b) = \frac{1}{2\pi} \int_{0}^{n} g_{V^-}(-1, m + i\zeta) h_{\partial R}(m + i\zeta, b) |d\zeta|.$$

This latter equality is perhaps better seen by writing

$$h_{V^-}(-1, b) = \lim_{\epsilon \downarrow 0} \frac{1}{2\pi \epsilon} g_{V^-}(-1, b - \epsilon) = \lim_{\epsilon \downarrow 0} \frac{1}{2\pi \epsilon} g_{V^-}(b - \epsilon, -1),$$

and using the strong Markov property. Lemma 5.8 shows that

$$H_{\partial R}(m + ji, b) = \frac{h_{\partial R}(m + ji, b)}{4} + O(d/n^4),$$

(38)

where $d = \min\{k, n - k\}$. For $A \in \mathbb{Z}^2$, we let $\tau_A = \inf\{n \geq 1 : S(n) \in A\}$ and write τ_x when x is just a point. Then, using again Proposition 1.5.9 and (2.40) in [13], for $1 \leq j \leq n - 1$,

$$G_{U^-}(0, m + ij) \leq P^0(\tau_{m+ij} < \tau_{\partial U^-}) G_{U^-}(m + ij, m + ij) \leq cn^{-1/2} G_{U^-}(m + 1 + ij, m + ij) \leq cn^{-1/2},$$

37
so
\[\sum_{j=1}^{n-1} G_{U^-}(0, m + ji) \leq cn^{1/2}. \]

Therefore, using (38),
\[
H_{\partial U^-}(0, b) = \sum_{j=1}^{n-1} G_{U^-}(0, m + ji) \left[H_{\partial R}(m + ji, b) - \frac{1}{4} h_{\partial R}(m + ji, b) \right] + \frac{1}{4} \sum_{j=1}^{n-1} G_{U^-}(0, m + ji) h_{\partial R}(m + ji, b)
\]
\[
= O(d/n^{7/2}) + \frac{1}{4} \sum_{j=1}^{n-1} G_{U^-}(0, m + ji) h_{\partial R}(m + ji, b).
\]

By Lemma 5.9, we can write
\[
H_{\partial U^-}(0, b) = O(d/n^{7/2}) + [1 + O(n^{-1/20})] \sum_{j=1}^{n-1} c_n g_{V^-}(-1, m + ji) h_{\partial R}(m + ji, b),
\]
where this \(c(n)\) is 1/4 times the value in that lemma. The sum above is greater than a constant times \(d/n^{3/2}\). Hence we can write this as
\[
H_{\partial U^-}(0, b) = [1 + O(n^{-1/20})] \sum_{j=1}^{n-1} c_n g_{V^-}(-1, m + ji) h_{\partial R}(m + ji, b).
\]

Routine estimates allow us to approximate the sum by an integral,
\[
H_{\partial U^-}(0, b) = [1 + O(n^{-1/20})] \int_0^n c_n g_{V^-}(-1, \zeta) h_{\partial R}(\zeta, b) |d\zeta| = 2\pi c_n h_{V^-}(-1, b) [1 + O(n^{-1/20})].
\]

We assumed that \(b = n + ik'\) with \(k' > 0\). There are four other cases. For example, if \(b = k + ni\) with \(k > 0\) we replace the rectangle \(R\) with the rectangle
\[
\{x + iy : -n < x < n, m < y < n\}.
\]

We do the other three cases similarly. In all cases we choose \(z_0 = -\lfloor n/8 \rfloor\). The same argument gives us
\[
H_{\partial U^-}(0, b) = 2\pi c_n h_{V^-}(-1, b) [1 + O(n^{-1/20})],
\]
with the same value of \(c_n\). From this we conclude that
\[
\frac{H_{\partial U^-}(0, b)}{\sum_{y \in \partial U^-} H_{\partial U}(0, y)} = \frac{h_{V^-}(-1, b)}{\int_{\partial V^-} h_{V^-}(-1, y) |dy|} \left[1 + O(n^{-1/20}) \right].
\]

\[\square\]
5.4 From the Slit Square to ∂A: Proof of Proposition 5.10

To prove Proposition 5.10, we need a version of Theorem 2.4 for the h-processes. We will however use slightly different stopping times. We will write f for f_A and for $u > 0$ consider Brownian and random walk paths B and S with measure either P^z or $P^{z,a}$ (for the unconditioned and conditioned paths, respectively). We let

$$\tau_u = \inf \{ t \geq 0 : d(f(S_{2t}), \partial D) \leq n^{-u} \}, \quad T_u = \inf \{ t \geq 0 : d(f(B_t), \partial D) \leq n^{-u} \},$$

$$\sigma_u = \tau_u \land T_u.$$

Let τ, T be the times that the paths reach ∂D (of course, under the measure $P^{z,a}$, this is the time at which they reach a).

Intuitively, knowing that S and B will exit at the same point a should only make it easier under the measure $P^{z,a}$ than under P^z to find a coupling that ensures that B and S are close with high probability. Indeed, this is the case. We will prove the following result which does not give the optimal bounds.

Theorem 5.10. There exist $u, u' > 0, c < \infty$ such that if $n \leq \text{dist}(z, \partial A) \leq n + 1, a \in \partial A$, and $z \in A$ with $|z| \leq 3n/4$ then one can construct a probability space containing two processes B and S such that

$$P^{z,a} \left(\sup_{0 \leq t \leq \sigma_u} |S_{2t} - B_t| \geq c \log n, \text{diam} (f \circ S[\sigma_u, \tau]) + \text{diam} (f \circ B[\sigma_u, T]) \geq c n^{-u} \right) \leq c n^{-u'},$$

(39)

where B and S have the distribution of a Brownian, respectively random walk h-process started at z and conditioned to leave D_A at a.

Proof of Theorem 5.10. We use the KMT coupling of Theorem 2.4 to put the unconditioned paths B and S on a probability space in such a way that if $\mathcal{K} = \{ \sup_{0 \leq t \leq \sigma_u} |S_{2t} - B_t| \leq c \log n \}$, we have

$$P^z(\mathcal{K}^c) \leq cn^{-2}.$$

To obtain the corresponding result for the h-processes, we note that the fact that there is a point v with $|v| = 1 - n^{-u}$ and $d(v, f(B(\sigma_u))) \leq c \log n$, together with the distortion theorem, implies that there exists a constant c such that $d(f(B(\sigma_u)), \partial D) \in [c^{-1}n^{-u}, cn^{-u}]$, which, using the explicit form of the Poisson kernel in the unit disk in [11], implies that $h(B(\sigma_u), a) \in [c^{-1}n^{-u}, cn^u]$. Similarly, using Theorem 4.1 in [3] and (40) in [13], we see that, with a possibly different constant $c, H(S(\sigma_u), a) \in [c^{-1}n^{-u}, cn^u]$. Moreover, by Harnack estimates $h(z, a) \asymp 1$ and $H(z, a)/H(0, a) \asymp 1$ for z with $|z| \leq 3n/4$. The fact that the measure for the Brownian h-process is obtained by weighing the Brownian paths by a factor of $h(B(\sigma_u), a)/h(z, a)$ and that the measure for the random walk h-process is obtained by weighing the random walk paths by a factor of $H(S(\sigma_u), a)/H(z, a)$ now implies that

$$P^{z,a}(\mathcal{K}^c) \leq cn^{-2+u}.$$

It remains to show that there is $u' > 0$ such that

$$P^{z,a}(\text{diam} (f \circ S[\sigma_u, \tau]) + \text{diam} (f \circ B[\sigma_u, T]) \geq c n^{-u'}) \leq cn^{-u'}.$$

In order to split this into separate estimates for S and B, we have to deal with the technical issue that the joint process (S, B) doesn’t satisfy the strong Markov property in the coupling. To get
around this, one can use a standard tool (see, for instance, the proof of Theorem 3.1 in [3]) which consists in introducing stopping times \(\tau_u \) for \(S \) and \(T_u \) for \(B \) such that

\[
\max\{\tau_u, T_u\} \leq \sigma_u
\]

and

\[
f(S(\tau_u)) \in A_{c,u}, \tag{40}
\]

where \(A_{c,u} = \{ z \in \mathbb{D} : |z| \leq |1 - c^{-1}n^{-u}, 1 - cn^{-u}| \} \) and, similarly, \(|f(B(T_u))| \in A_{c,u} \), and applying the strong Markov property at those times. Let us just consider the \(h \)-process \(S \), as conformal invariance makes the estimate for the \(h \)-process \(B \) considerably simpler. Write \(r = n^{-u} \). For simplicity we assume without loss of generality that \(f_A(a) = 1 \).

Using the expression for the Poisson kernel in the disk in (11) we see that for \(R_1 \geq 1, h((1 - r)e^{iR_1r}, 1) = O\left(R_1^{-1}\right) \). We can use this and (17) to see that if \(w \) is a lattice point within one unit of \(f^{-1}((1 - c')r)e^{iR_1r} \) with \(c' \in [c^{-1}, c] \) and \(c \) as in (40), and if \(|z| \leq 3n/4, \)

\[
H(w, a) / H(z, a) = O\left(R_1^{-1}\right).
\]

Therefore,

\[
P(F) := P^{a,a}(\arg(f(S(\tau_u))) \geq R_1) = O\left(R_1^{-1}\right) \cdot P^{a}(\arg(f(S(\tau_u))) \geq R_1) = O\left(R_1^{-1}\right).
\]

Now let \(R_1 = r^{-1/4} \) and \(R_2 = r^{-3/4} \) and note that \(r^{-1} \geq R_2 \geq R_1 \geq 1 \).

\[
P^{a,a}(\text{diam}(f \circ S[\tau_u, \tau]) \geq R_2r) \leq \sup_{u,w} \frac{H(u, a)}{H(w, a)} \cdot P^{c}(\text{diam}(f \circ S[\tau_u, \tau]) \geq R_2r) + O\left(R_1^{-1}\right)
\]

\[
\leq C \frac{R_1}{R_2 R_2} + O\left(R_1^{-1}\right) = O\left(R_1^{-1}\right),
\]

where the sup is over \(w \in f^{-1}(A_{c,u} \cap D(1, R_1r)) \) and \(v \notin f^{-1}(D(1, R_2r)) \) and we used in the first inequality (40) and (41) of [13] and in the second inequality Proposition 3.1 in [3], letting a point in \(A_{c,u} \) play the role of the origin in that Proposition. Noting that we can let \(u' = u^{1/4} \) concludes the more difficult part of the proof.

Proof of Proposition \([5.7]\). We choose constants \(c, u, u' \) so that the conclusion of Theorem \([6.10]\) holds: We couple the \(h \)-processes \(B^a \) and \(S^a \), started at a point \(z \in \partial U_A \) using the coupling of that theorem and let

\[
K = \{ \sup_{0 \leq t \leq \sigma_u} |S_{2t}^u - B_t^a| \leq c \log n, \text{diam}(\psi \circ S^a[\sigma_u, \tau]) + \text{diam}(\psi \circ B^a[\sigma_u, T]) \leq cn^{-u'} \},
\]

so that

\[
P(K^c) \leq cn^{-u'}.
\tag{41}
\]

We define

\[
\xi_b = \inf\{ t : |B_t| \leq n^{1/2} + bc \log n \}, \quad \zeta_b = \inf\{ t : |S_{2t}| \leq n^{1/2} + bc \log n \},
\]

40
where c is the same constant as in K and write ξ for ξ_0 and ζ for ζ_0. Let $Q^B = Q[B^a[0,T]], Q^S = Q[S^a[0,\tau]]$. Note that $Q^B = Q^S I_a$ provided that $\xi > T, \zeta > \tau$, and K holds. Therefore, if $z \in \partial U$, the fact that $|Q^B - Q^S I_a| \leq 2$ implies that

$$|E^{z,a}[Q^B - Q^S I_a]| \leq |E^{z,a}[Q^B; \xi < T]| + |E^{z,a}[Q^S I_a; \zeta < \tau]|$$

$$+ 2[P^{z,a}(\xi < T; \tau < \zeta; K) + P^{z,a}(\zeta < T; T < \xi; K) + P(K^c)].$$

Since we know from (35) that $|\lambda_A(z; a)| \leq cn^{-1/4}$ for $|z| \leq n^{-1/2}$, we can use the strong Markov property to see that

$$|E^{z,a}[Q^B; \xi < T]| \leq |E^{z,a}[Q^B | \xi < T]| \leq cn^{-1/4},$$

and similarly,

$$|E^{z,a}[Q^S I_a; \zeta < \tau]| \leq cn^{-1/4}. \quad (42)$$

If we let $\sigma = \inf\{t \geq \zeta_1 : |S_{2t}| \geq 2n^{1/2}\}$, we see that

$$P^{z,a}(\xi < T; \zeta > \tau; K) \leq P^{z,a}(\zeta_1 < \tau < \zeta) \leq c \log n/n^{1/2}, \quad (44)$$

by the strong Markov property and the planar gambler’s ruin estimate (the gambler’s ruin estimate is for simple random walk, but this close to the origin the h-process is mutually absolutely continuous with respect to the simple walk.) We can show in the same way that

$$P^{z,a}(\zeta < \tau; T < \xi; K) \leq c \log n/n^{1/2} \quad (45)$$

Combining (41)-(45) completes the proof. \qed

References

[1] M. Barlow and R. Masson. Exponential tail bounds for loop-erased random walk in two dimensions. *Ann. Probab.*, 38(6):2379–2417, 2010.

[2] C. Beneš. Some estimates for planar random walk and Brownian motion. arXiv:math/0611127v1, 2006.

[3] C. Beneš, F. Johansson Viklund, and M. Kozdron. On the rate of convergence of loop-erased random walk to SLE(2). *Comm. Math. Phys.*, 318(2):307–354, 2013.

[4] D. Chelkak, C. Hongler, and K. Izyurov, 2012. Conformal Invariance of Spin Correlations in the Planar Ising Model.

[5] D. Chelkak and K. Izyurov. Holomorphic spinor observables in the critical ising model. *Comm. Math. Phys.*, 322:303–332, 2013.

[6] S. Fomin. Loop-erased walks and total positivity. *Trans. Am. Math. Soc.*, 353(9):3563–3583, 2001.

[7] C. Garban, G. Pete, and O. Schramm. Pivotal, cluster and interface measures for critical planar percolation. *J. Amer. Math. Soc.*, 26:939–1024, 2013.
[8] C. Hongler and S. Smirnov. The energy density in the planar Ising model. To appear on Acta Math., 2014.

[9] R. Kenyon. The asymptotic determinant of the discrete Laplacian. Acta Math., 2000.

[10] R. Kenyon and D. Wilson. Spanning trees of graphs on surfaces and the intensity of loop-erased random walk on \mathbb{Z}^2. Preprint, 2011.

[11] J. Komlós, P. Major, and G. Tusnády. An approximation of partial sums of independent RV’s, and the sample DF. I. Z. Wahrscheinlichkeitstheorie verw. Gebiete, 32:111–131, 1975.

[12] J. Komlós, P. Major, and G. Tusnády. An approximation of partial sums of independent RV’s, and the sample DF. II. Z. Wahrscheinlichkeitstheorie verw. Gebiete, 34:33–58, 1976.

[13] M. J. Kozdron and G. F. Lawler. Estimates of random walk exit probabilities and application to loop-erased random walk. Electron. J. Probab., 10:1396–1421, 2005.

[14] G. F. Lawler. Conformally invariant processes in the plane. American Mathematical Society, Providence, R.I., 2005.

[15] G. F. Lawler. Intersections of random walks. Reprint of the 1996 ed. New York, NY: Birkhäuser, reprint of the 1996 ed. edition, 2013.

[16] G. F. Lawler. The probability that loop-erased random walk uses a given edge. 2013.

[17] G. F. Lawler and V. Limic. Random walk: A modern introduction. Cambridge: Cambridge University Press, 2010.

[18] G. F. Lawler and M Rezaei. Minkowski content and natural parametrization for the Schramm-Loewner evolution. 2013.

[19] G. F. Lawler, O. Schramm, and W. Werner. Values of brownian intersection exponents ii: Plane exponents. Acta Math., pages 275–308, 2000.

[20] G. F. Lawler, O. Schramm, and W. Werner. Conformal invariance of planar loop-erased random walks and uniform spanning trees. Ann. Probab., 32:939–995, 2004.

[21] G. F. Lawler and J. Trujillo Ferreras. Random walk loop soup. Trans. AMS., pages 767–787, 2007.

[22] G. F. Lawler and W Werner. The Brownian loop soup. Probab. Theory Relat. Fields, 128(4):565–588, 2004.

[23] G. F. Lawler and B. M. Werness. Multi-point Green’s functions for SLE and an estimate of Beffara. Ann. Probab., 41(3A):1513–1555, 2013.

[24] T. Lindvall. Lectures on the coupling method. Dover Publications, Mineola, N.Y., [repr. and corrected of the original ed, 1992] edition, 2002.

[25] R. Masson. The growth exponent for planar loop-erased random walk. Electronic Journal of Probability, 14:1012–1073, 2009.