Ethnobotanical Uses of Non-cultivated Edible Fruit Species in the Department of Oussouye (South Senegal)

Yves Djihounouck¹, Doudou Diop², César Bassène³, Seyni Sane¹ & Kandiora Noba¹

¹ Botany and Biodiversity Laboratory, Department of Plant Biology, Cheikh Anta Diop University of Dakar, BP 5005, Senegal
² Botany Laboratory, Institut fondamentale d’Afrique Noire (IFAN), Cheikh Anta Diop University of Dakar, BP 206, Senegal
³ Section of Plant Production and Agronomy, Faculty of Agronomic Sciences, Aquaculture and Food Technologies, Gaston Berger University of Saint Louis, BP 234, Senegal

Correspondence: Yves Djihounouck, Botany and Biodiversity Laboratory, Department of Plant Biology, Cheikh Anta Diop University of Dakar, BP 5005, Senegal. Tel: 221-772-096-605. E-mail: djihounouck01@yahoo.fr

Received: April 30, 2021 Accepted: June 23, 2021 Online Published: July 17, 2021

doi:10.5539/jfr.v10n4p16 URL: https://doi.org/10.5539/jfr.v10n4p16

Abstract

Forests are an immense reservoir of biological resources and provide the local population with subsistence needs, especially for edible fruits. This study contributes to a better knowledge of the use modes of non-cultivated edible plant species in the area of Kasa, traditional name for the department of Oussouye. Ethnobotanical surveys, based on an interview guide, oral discussions and direct observations were conducted among 178 people from the department of Oussouye, stronghold of the Diola ethnic group. A factorial correspondence analysis highlighted the relationship between species and categories of use. The frequency of citation, informant consensus factor and use value showed the socio-cultural importance of the species. The data collected identified 62 edible species divided into 31 families and 54 genera. The fruit species inventoried are used for different purposes. They are a food source with 62% of citations, energetic 19%, technological 14%, medicinal 13%, cultural 6% and agronomic 2% for the populations. Two species stand out for their high use value factor (UVf). These were Elaeis guineensis (12.24) and Borassus aethiopum (7.56). In addition to their use value, species such as Mangifera indica, Neocarya macrophylla, Parkia biglobosa, Anacardium occidentale, Ceiba pentandra, Parinari excelsa, stood out for their categories and organs used. These results inform us about the level of use of fruit species for different needs and open up avenues for research in sustainable management of this resource with the aim of reducing poverty.

Keywords: plant species, Diola, added value, potential uses, Kasa

1. Introduction

Tropical forests constitute an immense reservoir of biological resources for pharmacopoeia, food, construction, timber industry and handicrafts among local populations. Thus, they provide local populations with subsistence needs. In rural areas, people's lives depend on non-timber and timber forest products (Bikoué & Essomba, 2007).

For a long time, the place occupied by non-timber forest products (NTFPs) and timber products in development policies has been minimal and often limited to indigenous uses. However, the contribution of these products to food security and primary health care has been amply demonstrated, as nearly 80% of the population in developing countries use them for health care or food (Allabi et al., 2011). In this sense, traditional medicine relieves more than 70% of the populations of the Third World (Malaisse, 1992) and 80% of the African peoples (Jiofack et al., 2009). Thus, traditional medicine has become part of the culture of African populations although it still remains informal (Sofowara, 1982). In Senegal, 550 plants are considered medicinal and toxic in the pharmacopoeia (Kerharo & Adam, 1974). However, the use of plants requires a wider and deeper knowledge in order to be able to integrate them into the socio-economic development processes of the populations.

In Africa, non-cultivate plants are used daily by the great majority of peasant peoples (Grivetti et al., 1987). These plants essentially contribute to the food and survival of rural people by providing scarce nutrients in their diet (Ayessou et al., 2011). In Senegal, the species most used by the populations have been determined by
ethnobotanical methods based on inventories and uses of species in domains such as food and medicine (Diop, 2011; Dieng, 2017; Djihounouck et al., 2018). However, this assessment does not cover the department of Oussouye even though fragmentary data on the uses of a limited number of species in this locality happened to be collected. Data collection on the uses of plant species is an important step in supporting decentralized programs for the conservation and development of forest resources (Ayessou et al., 2009; 2011; Diop et al., 2010), hence the need to conduct this study among the populations in the department of Oussouye in order to contribute to better management of these natural resources. This study contributes to the knowledge of the uses of edible fruit species in the Kasa area. To this end, the specific objectives of the study are to:

- identify the different categories of uses of the inventoried wild edible species;
- describe their uses to optimize the contribution of forest genetic resources to sustainable socio-economic development;

2. Methodology

The department of Oussouye is located in southwestern Senegal and covers 891 km² i.e. 12.14% of the area of the Ziguinchor region. It is bordered to the east by the Kamobeul marigot, the north by the Casamance River, the west by the Atlantic Ocean and Cape Roxo, and the south by Guinea Bissau. It includes five communes that total seventy-five (75) villages, with a population of 48,331 inhabitants in 2013 (ANSD, 2015). (Figure 1)

Figure 1. Map of the administrative division, hydrographic network and forest areas of the Oussouye department (Source: ANAT, 2008. WGS84 UTM Zone 28N. Production: N. Sagna Ifan Ch. A. Diop Feb. 2018).

The study population is made up of the Diola who are the majority ethnic group in the department of Oussouye. The language spoken by this ethnic group bears the same name (Diola) and is made up of several dialects. When the dialect is not mastered during the ethnobotanical survey, we call in an interpreter to ensure good communication. A first interview was conducted with randomly selected people in villages. This contact visit allowed us to get an idea of how the species studied contribute to the life of the population and select the areas of activity. The choice of the villages where the surveys should be conducted was made taking into account the local forest resources that allow harvesting activities. The newly created villages called batogat were not chosen because they do not have cultural originality due to the loss of ancestral values. Villages affected by the
Casamance conflict were excluded from the survey. Based on those criteria, 34 villages were selected for data collection. These villages are located in five (5) traditional communities (An Alufay, Esulalu, Ejamat, Dyìwat and Her or Haer). Each community is distinguished from the others in its dialect, organization and social practices. The choice of interviewees was non-probabilistic and their identification was done for convenience. Their selection by study area and village depended on their availability. They were chosen with the help of the village Chiefs, targeting individuals whose activity, experience or status was related to the topic. They were herders, gatherers, traditional family caterers, and farmers. The interviews were carried out between 2012 and 2014 mainly with indigenous adults, with a preference for men who have a better knowledge of non-cultivate species and who have experience in their mode of use. The choice of these people was made in order to reduce the risk of uncertain or vague answers. Data were collected through semi-structured interviews and casual conversations.

Semi-structured interviews were conducted using an interview guide which included the following headings: interviewee identification, form of use, socio-cultural importance of the species, and description of use modes. Casual conversations were used to estimate responses and gather new information (Martin, 1995).

The local name of each plant studied was transcribed into local language based on specialized documents (Adam, 1970; Berhaut, 1967) or by using the Diola alphabet codified with reference to the local language of the An Alufaye community.

The identification of fruit plants was done either on site or in the botany laboratory of IFAN and the botany and biodiversity laboratory of the Department of Plant Biology (BV) using the various flora of Senegal by Berhaut (1979; 1976; 1975a; 1975b; 1974; 1971; 1967) and Van Der Berghen (1988), and the works of Hawthorne and Jongkind (2006), Arbonnier, (2002) and Hutchinson and Dalziel (1954), Wieschus (2000) and the herbarium collections of Dakar and IFAN. The nomenclature adopted is that of the database of the Conservatoire et Jardin Botanique (C.J.B) of the city of Geneva, which is regularly updated (Lebrun & Stork, 1997; 1995; 1992; 1991).

Qualitative data were processed using the content analysis method (Faucault, 1966; Négura, 2006). This process consists of a systematic and methodical examination of textual and / or visual documents. Applied to qualitative data, it captures the contextual dimension of these documents and highlight the categorical determinants.

Quantitative data were processed according to descriptive statistics using response rate (Van den Eyden et al., 1994; Cotton, 1996).

The data obtained were analyzed with Epi Info software and the results were processed by Excel spreadsheet which allowed us to establish cross-tabulations [species /organs], [species/use], [species/method of collection], [species/stage of development] and the R software (Core Team, 2017) with the factoextra package (Version: 1.0.5), for Factorial Correspondence Analysis (FCA) allowing to study the relationships between different species and categories of use. A test of independence of Chi² with a threshold of significance of 5% was previously carried out in order to verify the independence between the different species and the categories of use. The information collected was analyzed on the basis of ethnobotanical indicators.

- **Frequency of Citation (FC)** is used to determine the level of use of different species in a category and ranges from 0 to 100. The value 0 indicates that the species is not used in this category and 100 when the species is used in this category by all interviewees. It is expressed by the following formula:

\[
FC = \frac{(S/N) \times 100\%}{N} \text{ where:}
\]

- \(S \) : number of citations of a species in a category;
- \(N \) : total number of informants.

- **Informant Consensus Factor (ICF)** measures the variability of species use forms (Trotter & Logan, 1986). Always between 0 and 1, the value of this ICF is high when only one or a small number of species are cited by a large proportion of informants for a specific use category. Conversely, the greater the diversity of species cited for the same use, the closer the value will be to 0. The ICF is calculated from the following formula:

\[
ICF = \frac{Nur - Nt}{(Nur - 1)} \text{ where,}
\]

- \(Nur \) (user-reports number) is the number of uses indicated in a given category;
- \(Nt \) (number of taxa) the number of species involved in this same use category.

- **Use Value (UV)** is a way of expressing the importance of each family or species for the population intervieweed. It significantly identifies the species with a high use value in a given environment (Dossou et al.,
2012). It was calculated according to the method used by Philips & Gentry (1993) and Camou-Guerrero and his team (2008) using the following formula:

\[UV_k = \frac{\sum_{i} s_i}{n} \]

where,

- \(UV_k \) is the ethnobotanical use value of species \(k \) within a given use category,
- \(s_i \) is the number of uses assigned by respondent \(i \) within this category,
- \(n \) is the number of respondents for a given category of use.

The total use value (\(UV_t \)) of species \(k \) is then calculated by summing the use values of that species within the different use categories by the formula:

\[UV_t = \sum_{p} UV \]

where,

- \(UV_t \) represents the total use value of the species,
- \(UV \) is the use value of the species for a given use category, \(p \) is the number of use categories.

3. Results

Thirty-four (34) villages were visited as part of this survey. The number of interviewees varied from 38 to 4 per area and 2 to 6 in each village. In total, eighty-two (82) informants were interviewed individually or in groups. This amounts to identifying one hundred and seventy-eight (178) interviewees in the five traditional areas.

3.1 Use Values

Data collected made it possible to inventory 62 non-cultivate edible fruit plant species distributed in 31 families. Apocynaceae and Annonaceae are the most represented with 6 species each. They are followed by Anacardiaceae (5 species) and Chrysobalanaceae, Arecaceae and Rubiaceae (4 species each). The other families are made up of Sapindaceae, Caesalpinaceae, Moraceae, Celastraceae (3 species each), Bombacaceae and Zingiberaceae (2 species). The remaining 19 families are each represented by 1 species. (Table 1)

Generic diversity is also important with 54 genera in total. The family Anacardiaceae is the most diverse with 5 genera, followed by Annonaceae, Arecaceae and Rubiaceae with 4 genera each, Apocynaceae, Chrysobalanaceae, Sapindaceae, Celastraceae, Caesalpinaceae with 3 genera and Moraceae, Bombacaceae with 2 genera each. The remaining families are represented by only one genus each. (Table 1)

These species are grouped in 6 use categories which are food, medicinal, technological, agronomic, energetic and cultural. The organs used are 7 in total, namely fruit, wood, leaf, root, bark, exudate and flower. (Table 1)

The analysis of the results shows:

- 6 use categories concerning 3 species: Elaeis guineensis, Neocarya macrophylla and Parinari excelsa;
- 5 use categories represented by 8 species;
- 4 use categories for 17 species;
- 3 use categories for 9 species;
- 2 use categories for 15 species;
- and 1 use category for 10 species.

Regarding the organs harvested, the results indicate:

- 6 organs used in Elaeis guineensis, Mangifera indica and Cola cordifolia;
- 5 organs exploited in 15 species;
- 4 organs in 15 species;
- 3 organs in 6 species;
- 2 organs in 13 species;
- and 1 organ in 10 species.

The use values are:

- high in two palm trees: Elaeis guineensis with 12.24 and Borassus aethiopum with 7.56;
- medium [3.87-2.35] in Neocarya macrophylla, Mangifera indica, Parkia biglobosa, anacardium occidentale, Ceiba pentandra, Parinari excelsa, Dialium guineense and Adansonia digitata.

- low to very low for the rest of the species.

These species are useful to the population in several fields: food, medicine, technology, agronomy, energy and culture. The organs used are fruits, wood, leaves, bark, roots, flowers and exudate.

The food use of the species is the most frequent, followed by the medicinal use. Our results show that there is not a close proportionality between the use value of the species and its organs used. A species can be highly prized for one organ in a given environment, while another species with multiple uses is poorly known (Table 1). For example, Borassus aethiopum (UVt = 7.56) with five use categories and four organs used, is highly used while Parinari excelsa (UVt = 2.59) with six use categories and five organs exploited, is very little sought after.

Table 1. Categories, organs used and use value of species

Families	Scientific name	Local Name	Use categories	Organs used	Use value (UVt)								
Arecaceae	Elaeis guineensis Jacq.	ka bekel, ka hiit	Fo, Med, Tech, Ag, En, Cul	Fr, Wo, Le, Ro, Ex, Fl	12.24								
Arecaceae	Borassus aethiopum (L.) Mart.	ka lahaay	Al, Med, Tech, En, Cul	Fr, Wo, Le, Ro, Fl	7.56								
Chrysobalanaceae	Neocarya macrophylla (Sabine) Prance	bu bita, bu ɲafay, beel	Fo, Med, Tech, Ag, En, Cul	Fr, Wo, Le, Ba, Ro	3.87								
Anacardiaceae	Mangifera indica L. "Perse"	bu mangali bu ḷóoluay, bu mangu bu ḷóoluay	Fo, Med, Tech, Ag, En	Fr, Wo, Le, Ba, Ro, Fl	3.76								
Mimosaceae	Parkia biglobosa (Jaq.) Benth.	bu nayal, bu niók	Fo, Med, Tech, Ag, En	Fr, Wo, Le, Ba, Ro	3.7								
Anacardiaceae	Anacardium occidentale L.	bu talakasa, bu bisa	Fo, Med, Tech, Ag, En	Fr, Wo, Le, Ba, Ro, Fl	3.5								
Bombacaceae	Ceiba pentandra (L.) Gaertn	bu sana	Fo, Med, Tech, Ag, En	Fr, Wo, Le, Ba, Ro	3.23								
Chrysobalanaceae	Parinari excelsa Sabine	bu wel, bu fujay, e liik	Fo, Med, Tech, Ag, En, Cul	Fr, Wo, Le, Ba, Ro	2.59								
Caesalpinaceae	Dialium guineense Willd.	bu fulan, bu foyitay	Fo, Med, Tech, En	Fr, Wo, Le, Ba	2.43								
Bombacaceae	Adansonia digitata L.	bu koŋa, bu baak	Fo, Med, Tech, Cul	Fr, Le, Ba	2.35								
Nymphaeceae	Nymphaea spp	bu kikif, e bahál	Fo, Tech	Fr, Le, Ro	1.99								
Apocynaceae	Landolphia dulcis (Sabine) Pichon	bu bot, bu ɲohol, bu ɲohon	Fo, Med, Tech	Fr, Wo, Le, Ba, Ro	1.98								
Annonaceae	Xylopia aethiopica (Dunal) A. Rich.	bu ḷew ba fĩjoe	Fo, Med, Tech, En	Fr, Wo, Le	1.85								
Annonaceae	Uvaria chamae P. Beauv.	bu ḷew	Fo, Med, Tech, En	Fr, Wo, Le	1.74								
Sapindaceae	Aphania senegalensis (Juss. Ex Poir.) Radlk.	bu ḷul	Fo, Med, Tech, En	Fr, Wo, Le, Ba	1.74								
Sapindaceae	Allophyllus africanus P. Beauv.	bu singilit, bu hul a mata, bu fankahen	Fo, Med, Tech, En	Fr, Wo, Le	1.66								
Apocynaceae	Saba senegalensis (A. DC.) Pichon	bu híndik, bundok	Fo, Med, Tech, En	Fr, Wo, Le	1.63								
Arecaceae	Phoenix reclinata Jacq.	bu faba faba, bu sanjab, bu juka, bu jak bundufáy,	Al, Med, Tech, Ass	Fr, Wo, Le, Ro	1.62								
Rubiaceae	Sarcocephalus latifolius (Sm.)		Al, Med, Tech, Fr, Wo, Le		1.6								
Family	Species	Common Names	Codes	Latin	Codes								
-----------------	---	---	-------	------------------------	-------								
Anacardiaceae	Spondias mombin L.	bu tundufay, bu kundufay	En	Ro									
Rubiaceae	Gardenia erubescens Stapf. & Hutch.	bu leju, bu lilu	Fo, Med, Tech	En									
Apocynaceae	Landolphia heudelotii A. DC.	bu hemb	Fo, Med, Tech	En									
Verbenaceae	Vitex doniana Sw.	bu jink, bu kuf	Fo, Med, Tech	En									
Anacardiaceae	Sorindeia juglandifolia (A. Rich.) Planch.	bu totol, bu totol e kaw, bu lalalen, bu foot, bu singilit	Fo, Med, Tech	En									
Rubiaceae	Gardenia erubescens Stapf. & Hutch.	bu leju, bu lilu	Fo, Med, Tech	En									
Sterculiaceae	Cola cordifolia (Cav.) R. Br.	bu g'itin, bu g'inkin	Fo, Med, Tech	Ag, En									
Apocynaceae	Voacanga africana Stapf.	bu hefukal, bu hef ni jaamen, bu hi/an hif, buntiñ, bungół	Fo, Med, Tech	Cul									
Rubiaceae	Gardenia erubescens Stapf. & Hutch.	bu leju, bu lilu	Fo, Med, Tech	En									
Apocynaceae	Voacanga africana Stapf.	bu hefukal, bu hef ni jaamen, bu hi/an hif, buntiñ, bungół	Fo, Med, Tech	Cul									
Moraceae	Ficus lutea Vahl	bu fok (bu kunful), bu kun/un, bu fok (bu ganful)	Fo, Med, Tech	Ag, En									
Polygalaceae	Atroxima afzeliana (Oliv.) Stapf.	bu miiton	Fo, Med	Fr, Le									
Passifloraceae	Passiflora foetida L.	mu têñay, bu kuma kuma, bu /obek, bu ting, bu sikfn, bu niwakin	Fo, Med	Fr, Wo, Fe									
Meliaceae	Azadirachta Indica A. Juss.	bu naanaa a mata, bu lulumay a mata, bu sal a mata, e toj e heeji	Fo, Med	Fr, Med	Fr, Wo, Le								
Capparidaceae	Ritchiea capparoides (Andr.) Britt.	bu naanaa a mata, bu lulumay a mata, bu sal a mata, e toj e heeji	Fo, Med	Fr, Med	Fr, Wo, Le								
Moraceae	Treculia africana Decne.	buitók	Fo, Med, Tech	Fr, Wo, Ex	0.71								
Family	Genus and Species	Use Categories	Fo	Med	Tech	Fr	Wo	Cu	Ex	En	Ro	Fl	Fl
--------------------	--	----------------	----	-----	------	----	----	----	-----	----	----	----	----
Chrysobalanaceae	Chrysobalanus ellipticus Sol. ex Sabine	bu ṇọ, bu sima, bu uj e jakal	Fo, Med, Tech, Fr, Wo	0.61									
Cucurbitaceae	Cucumis metuliferus E. Mey. ex Naudin	bu konkombra e firika, bu konkombura, e gîl e jaamen	Fo, Med, Fr, Le	0.61									
Ebenaceae	Diospyros ferrea (Willd.) Bakh.	bu wing a ligen, lalalen	Fo, Med, En, Fr, Wo	0.35									
Clusiaceae	Mammea africana Sabine	bu gawuj, bu bunkut ba teñey	Fo, Med, Fr, Le	0.33									
Caesalpinaceae	Detarium senegalense J.F. Gmel.	buntañ, bu luñay	Fo, Med, En, Fr, Le, Wo	0.28									
Sapindaceae	Pancovia bijuga Willd.	bu dahar	Fo, Med, Fr, Le	0.22									
Caesalpinaceae	Tamarindus indica L.	bu tiyok, bu tik	Fo, Med, Fr, Ro	0.17									
Apocynaceae	Landolphia owariensis P. Beauv.	bu humay e kobol, bu hefay e kobol	Fo, Fr	0.13									
Zingiberaceae	Aframomum ellitii (Bak.) K. Schum.	bu huuta, bunkol	Fo, Fr	0.12									
Euphorbiaceae	Drypetes floribunda (Müll. Arg.) Hutch.	ka hihá, ka liyá	Fo, Tech, Fr, Wo	0.12									
Arecaceae	Calamus deerratus G. Mann & H. Wendl.	bu ḷew ba yine	Fo, Fr	0.11									
Annonaceae	Monanthotaxis barteri (Baill.) Verdc.	bundukul	Fo, Fr	0.09									
Sapotaceae	Synsepalum brevipes (Baker) T. D. Penn.	sidem	Fo, Fr	0.09									
Rhamnaceae	Ziziphus mauritiana Lam.	bu ḷew bu jal	Fo, Med, Fr, Ro	0.09									
Annonaceae	Uvaria thomasii Sprag. Et Hutch.	bu lala	Fo, Med, Fr, Ro	0.07									
Annonaceae	Annona glauca Schumach. & Thonn.	bu wintol	Fo, Fr	0.06									
Ulmaceae	Celtis toka (Forssk.) Hepper & J.R.I. Wood	bu fok	Fo, Fr	0.06									
Moraceae	Ficus capensis Thunb.	nu loña	Fo, Fr	0.05									
Chrysobalanaceae	Chrysobalanus orbicularis Schumach.	bu ḷew	Fo, Fr	0.02									
Zygophyllaceae	Balanites aegyptiaca (L.) Del.	bu nunu Rich. Engl.	Fo, Fr	0.02									

Fo: food; **Med**: medicinal; **Tech**: technological; **Ag**: agronomic; **En**: energetic; **Cu**: cultural.

Fr: fruit; **Le**: leaf; **Ba**: bark; **Wo**: wood; **Ro**: root; **Ex**: exudate; **Fl**: flower.

3.2 Use Categories

Non-cultivate fruit species can be useful in several ways. The results on their use modes show 6 categories of use (Table 2). These are:

- food where all species are mentioned;
- medicinal with 52 useful species;
- technological with 39 species;
- energetic with 27 species;
- agronomic with 10 species;
cultural with 9 species.

The most used species in these different categories are: *Elaeis guineensis* with 378 citations, *Borassus aethiopum* with 343 citations, *Mangifera indica* with 266 citations, *Parkia biglobosa* with 227 citations, *Ceiba pentandra* with 226 citations, *Neocarya macrophylla* with 212 citations, and *Parinari excelsa* with 210 citations (Table 2).

The frequency of citation (Table 2) is greater than 50% in:
- 38 species in the food sector;
- 9 species in the energy sector;
- 6 species in the technological sector;
- 4 species in the cultural sector;
- 1 species in the medicinal sector and less than 50% in agronomy.

This frequency of citation of species by populations can be high, medium or low depending on the category of use. For example, *Borassus aethiopum* and *Phoenix reclinata* are highly used in cultural field whereas they are not in medicine. A low use value may be due to a lack of knowledge about the plant or the disappearance of certain species due to forest erosion.

Table 2. Frequency of citation of the different use categories of non-cultivate edible fruit species

Scientific name	Number of citation	Frequency of Citation (FC) in %				
	Fo	Med.	Tech	Ag	En	Cul
Mangifera indica	266	100	57	28	43	96
Elaeis guineensis	378	100	49	100	65%	99
Landolphia dulcis	127	100	49	6	100	96
Parkia biglobosa	227	100	44	24	18	90
Nauclea latifolia	126	100	39	4	55%	96
Adansonia digitata	163	100	38	57	3	100
Neocarya macrophylla	221	100	38	5	96	4
Anacardium occidentale	197	100	34	1	7	98
Aphania senegalensis	141	100	34	1	37	96
Uvaria chamae	134	100	28	24	1	55
Saba senegalensis	112	100	26	22	1	96
Salacia senegalensis	101	100	23	1	54	100
Borassus aethiopum plant	143	100	21	100	98	100
Ceiba pentandra	126	100	21	80	60	9
Landolphia heudeletii	114	100	21	18	4	96
Annona senegalensis	97	100	15	4	96	1
Parinari excelsa	210	100	60	32	1	78
Vitex doniana Sw	115	100	10	60	18	96
Aframomum cereum	90	100	9	1	96	1
Dialium guineense	189	100	7	34	89	1
Nymphaeae spp	84	100	1	1	96	1
Allophylus africanus	137	98	6	5	59	1
Phoenix reclinata	134	96	1	5	59	1
Xylopia aethiopica	133	94	44	21	4	96
Macrophysra longistyla	80	93	5	1	96	1
Sorindeia juglandifolia	113	91	7	2	37	1
Atroaxima afzeliana	74	89	1	1	96	1
Mombin spondias	121	88	4	52	4	96
Iacacina oliviformis var. oliviformis	93	87	23	4	96	1
Cola cordifolia	104	82	22	16	1	96
Passiflora foetida	70	80	5	1	96	1
Gardenia erubescens	115	78	29	33	1	96
Avicennia germinans	108	73	4	7	48	1
Landolphia hirsuta	91	73	1	37	1	96
Treculia africana	58	63	6	1	96	1
Cucumis metuliferus	51	61	1	1	96	1

Page 23
Table 3 shows the fidelity index of the 62 species used in the six use categories. Thus, the fidelity index is greater than 50% for 47 species in the food sector and for only 1 species, namely *Calamus deerratus*, in the technological field. The rest of the species have fidelity indices below 50%.

The results of the Factorial Correspondence Analysis (FCA) between the use categories and the 62 harvested species are presented in Figure 2. The prior Chi² independence test showed a statistically significant relationship between the use categories and the 62 species (X-squared = 4975.9, df = 305, *p*-value < 2.2e-16). These results show that the frequency of use of these categories varies according to the species exploited. Table 3 presents the inertia of each of the factorial axes obtained after transformation of the original variables by the FCA. The percentage of inertia of each of the first 2 dimensions (axes) is higher than the average threshold (1/5)*100 = 20%. The first two dimensions account for 69% of the total inertia of the original variables. Thus, all the analyses will be done in the factorial plane composed by these first two dimensions.

Table 3. Distribution of the inertia according to the dimensions (Dim)

Axes	Dim1	Dim 2	Dim 3	Dim 4	Dim 5
Proper value	0.27	0.21	0.10	0.07	0.07
Inertia	39.12	29.89	14.65	52.5%	5.83
Cumulative percentage of inertia	39.12	69	83.66	94.16	100

Figure 2 of the FCA allows us to isolate three groups (G1, G2, G3). Dimension 1, which accounts for 39.12%, opposes group 3 in the negative abscissa to groups 1 and 2 in the positive abscissa. Dimension 2 (29.89%) also opposes group 2 in the negative ordinates to group 1 in the positive ordinates.

Group 1 characterizes the species used in the technological and cultural categories. The species *Elaeis guineensis* (3.3), *Borassus aethiopum* (5.5), *Ceiba pentandra* (8.1), which have a contribution above the threshold (average of the absolute contributions = 1.6), represent this group; group 2 includes species for agronomic and energy use characterized by *Parkia biglobosa* (7.2), *Zanthoxylum zanthoxyloides* (3.9) and group 3 of species for food and medicinal use characterized by *Salacia senegalensis* (3.1), *Sarcocephalus latifolius* (1.8). This study shows that the species:
Parinari excelsa, Elaeis guineensis, Borassus aethiopum, Calamus deerratus, Ceiba pentandra, Voacanga africana, Psychotria peduncularis, Phoenix reclinata (8 species) are more related to technological and cultural uses;

Azadirachta indica, Zanthoxylum zanthoxyloides, Diospyros ferrea, Mangifera indica, Anacardium occidentale, Parkia biglobosa, Neocarya macrophylla, Dialium guineense, Avicennia germinans, Allophyllus africanus (9 species) are related to agronomic and energy uses;

Atroxima afzeliana, Aframomum cereum, Adansonia digitata, Aframomum eliotii, Annona glauca, Annona senegalensis, Aphania senegalensis, Balanites aegyptiaca, Cola cordifolia, Chrysobalanus ellipticus, Cucumis metuliferus, Chrysobalanus orbicularis, Dryicus topetibicularis, Feticus topetibicularisunda, Deticus topetibicularisea, Feticus topetibiculararis, Fevericus senegalensi, Gardenia erubescens, Icacinia oliviformis, Landolphia dulcis, Landolphia heudelotii, Landolphia hirsuta, Landolphia owariensis, Mammea africana, Monanthotaxis barteri, Macrosphyra longistyila, Nymphaea -spp, Pancovia bijuga, Passiflora foetida, Pseudospondias microcarpa, Ritchiea capparoides, Synsepalum bревipes, Sorindeia juglandifolia, Sarcocephalus latifolius, Spondias mombin, Saba senegalensis, Salacia senegalensis, Treculia africana, Tamarindus indica, Uvaria chamae, Uvaria thomasi, Vitex doniana, Xylopia aethiopica, Ziziphus mauritiana (45 species) are correlated with food and medicine.

Use categories with an above-average absolute contribution (16.6) have helped build dimensions 1 and 2. Thus:

- The food use category (31.9) has contributed significantly to building dimension 1;
- The energy use category (24.1) has contributed negatively to dimension 1.

Dimension 1 opposes food and medicinal categories to energy and agronomic categories and therefore distinguishes the species used in these different categories.

- The cultural use category (37) has contributed positively to building dimension 2.

Analysis of the results (Figure 2) shows that food and medicinal species in group 3 outnumber the species in groups 1 and 2. These results also show that the nature of the subsistence needs of the Kasa populations is mainly food and medicinal. These results also reveal categories that are highly correlated with each other and with the species.
Figure 2. Factoral Correspondence Analysis (FCA) of the matrix of 62 species X 6 use categories

The consensus factors are very high for the six defined use categories. They are between 0.9 and 0.8 (Table 4). This shows that the plant species used and their use modes in the different Diola communities vary very little. Species use is most harmonious in food, cultural, and energy categories, where the consensus factor is 0.98-0.97. The agronomic category, which is strongly marked by female activity, has the lowest consensus factor at 0.89.

Table 4. Use and their category consensus factor (ICF)

Use category	Number of citation	Number of Species	ICF
Food	3128	62	0.98
Energy	943	28	0.97
Technological	716	40	0.94
medicinal	678	53	0.92
Cultural	325	8	0.98
Agronomic	85	10	0.89

In total, with regard to species use in the context of use value, use categories, organs used, our results show that the local population harvests different organs for multiple uses. *Elaeis guineensis*, *Borassus aethiopum*, *Mangifera indica*, *Neocarya macrophylla*, *Parkia biglobosa*, *Anacardium occidentale*, *Ceiba pentandra*, *Parinari excelsa*, are the most used species for the daily needs of the local population.

4. Discussion

Our results indicate 62 edible fruit species distributed in 31 families and 54 genera. They present a good generic and specific diversity compared to that of the 75 fruit species belonging to 35 families in the Séguela region (Ambé, 2001). The results show a dominance of *Apocynaceae* and *Annonaceae*, and confirm those obtained by...
Among the species studied, *Elaeis guineensis* (12.24) and *Borassus aethiopium* (7.56) have the highest use values with a relatively high number of use categories and organs used. *Elaeis guineensis* has 6 categories and 6 organs, *Borassus aethiopium* 5 categories and 5 organs. These two species are therefore highly sought after by the populations due to their high socio-economic and cultural values. They are used in the cultural field as well as in profane and sacred rites. Moreover, these species are an essential link in technology (construction of houses, production of means, etc.) and their products are abundantly consumed throughout the sector.

The Anacardiaceae which come in second position, when referring to use value, are essentially represented by *Mangifera indica* (3.74) with 5 categories and 6 organs and *Anacardium occidentale* (3.5) with 5 categories and 5 organs. These two species are of great economic importance, in particular *Anacardium occidentale*, the seeds of which have a high value in national and international markets as well as its alcoholic juice which is highly prized during public ceremonies and events (Djhounouck, 2018). This alcoholic juice is a substitute for palm wine in winter periods when it is scarce.

The results do not show a close proportionality between use categories, organs used and use value. The use of a species depends on its socio-economic importance, availability and accessibility. Therefore, the use value of a family is not proportional to its specific diversity as pointed out by Guèye (2012), Djihounouck et al. (2019). In addition, the species *Elaeis guineensis*, *Borassus aethiopium*, *Neocarya macrophylla*, *Parkia biglobosa*, *Anacardium occidentale*, *Ceiba pentandra* have significant use values between 12.24 and 3.23. The level of exploitation of these species by the local population has been highlighted by Dossou (2010), Lougbegnon et al. (2011), Diatta (2016) who have shown that the importance given to a species depends on its capacity to meet the needs of the populations in the different use categories. *Borassus aethiopium* has a high use value and paradoxically, it is not abundant in our study area. When a species is not abundant and has a high use value, this means that it is under strong pressure as pointed out by Camou-Guerrero et al. (2008), Dossou (2010).

Our results show a certain homogeneity of uses of plant species in the Kasa area with a high consensus factor (ICF) for all use categories. They show six categories of use among the Diola populations in the Kasa area. These are: food, medicinal, technological, agronomic, energetic and cultural.

Food, energy, technological and medicinal categories are the most important in terms of citation with 3128; 943; 716 and 678 respectively. These results are comparable to those obtained by Galeano (2000) among the forest communities in Colombia, where he noted a high citation index for the “food” and “medicinal” categories. These results show that subsistence needs are the primary concern of the populations that exploit plant species. The medicinal category complete the medical centers and districts, which can explain its position.

The agronomic category has the lowest ICF (0.89) as information in this area is mainly held by women, who are not the priority target of the survey. Furthermore, the ICF for the medicinal category is the second lowest (0.92) since only traditional healers and a few initiated people have knowledge of the use of plants.

These results confirm the high value of the ICF for the different use categories of plant species in arid and semi-arid zones of Africa (Gning et al. 2013; Ayantunde et al. 2009; Cheikhyoussif et al. 2011). The ICF provides information on the good knowledge of species exploited by local populations on the one hand, and on natural resources important for the survival and well-being of rural populations on the other hand (Guèye, 2012). The rural population retains a fairly homogeneous knowledge of the uses of plant species transmitted from generation to generation through oral tradition. This knowledge could be a basis for local development policy.

The food category covers the activities of gathering and consumption of plants. All of the species inventoried are food, but their importance varies according to their frequency of citation by informants. Of the 574 citations for the 7 organs used in this category, *Elaeis guineensis* and *Nymphaea* spp. are the most frequently cited with 29% and 27% respectively, followed by *Borassus aethiopium* 21%, *Landolphia dulcis* 20% and *Adansonia digitata* 17%.

The energy studied is that which comes from firewood of woody species, in general, or from charcoal. It covers 42% of the species inventoried. This high frequency of citation reveals a significant energy demand by the populations and the diversity of species mobilized to meet this need. This category includes the priority activities of rural women, most of whom are housewives. Carrière et al. (2005) showed that among the Betsileo of Madagascar, firewood is the main category of useful plants for domestic use harvested in post-agricultural recruits and ranks first ahead of other uses such as pharmaceuticals, craft and construction.

The technological category concerns the making of means and includes 63% of species. The species *Elaeis guineensis* and *Borassus aethiopium* have the highest citation frequencies with 49% and 40% respectively and are
Therefore, the most used in the technological field. Their leaves are used for construction (house roof, thatch, fence, etc.) and for crafting service products (brooms, baskets, mats, fish traps, basketwork, furniture, fibers, ropes, benches, belts to climb palm trees, ...) ; their trunks or stipes are used to construct bridges, beehives, dikes and habitats (pillar, frame, ceiling, roof, hut). These results confirm those of Sambou et al. (1992) and Blinch (2002). In addition, palm leaves and stipes give these species a high market value (Johnson, 2010).

The medicinal category represents 82% of the species inventoried. This study has enabled us to identify 96 pathologies among the kasa populations. The species frequently cited by the populations for the treatment of pathologies are: Mangifera indica, Elaeis guineensis, Landolphia dalcis, Parkia biglobosa and Xylopia aethiopica. The frequency of use of a species for disease treatment is an index of reliability of its effectiveness. Some authors even argue that plant species used repeatedly by the population in the medical field are generally effective and interesting in the search for bioactive molecules (Trotter & Logan, 1986; King et al., 1996; Guéye, 2012). The fruit species used in the kasa have multiple medicinal uses except Drypetes floribunda, Mammea africana, Atroxima afzeliana, Nymphaea spp., Cucumis metuliferus, Tamarindus indica, Annona glauca, Diospyros ferrera which are only used to treat a single pathology.

The cultural category represents 12% of the species. It covers sacred or profane rites. The leaves of Elaeis guineensis and Phoenix reclinata are used in dancing initiation ceremonies. Elaeis guineensis provides brooms that certain fetish leaders always hold as a sign of identification at the sacred throne and its traditional wine commonly called “bunuk” is used for worshipping the fetishes traditionally called bokin in order to enter into communion or set a contract with the ancestors and the gods (Loubelo, 2012). Borassus aethiopum is used as a symbol of prohibition to non-initiated people in a festivity or of recognition to a heritage or in a traditional dance or to create coffins. Psychotria peduncularis is used for blessings. Ceiba pentandra is used to create coffins often with the stem of Carapa Aubl. spp. also reported by Djihounouck (2010).

The agronomic category concerns 15% of the species. The leaves of Mangifera indica and Ceiba pentandra, and the fruits of Parkia biglobosa are often used as fertilizers for cultivated land. Evaluation of the impact of fertilization by the néré (Parkia biglobosa) and shea (Vitellaria paradoxa) on sorghum seed yields has shown an increase of 50 - 70% in Burkina Faso (Kessler, 1992).

5. Conclusion
This study identified the needs of the populations in relation to the 62 fruit species exploited in the Kasa area and highlighted the relationship between these species and the needs of the populations. The various products derived from these species have different uses grouped into six categories. These uses have made it possible to understand the importance of these resources for the local population in all areas of life. The uses of fruit species are relatively homogeneous for the different categories; however, they are more marked for food needs, followed by those of energy, technology, medicine, agronomy and culture. The use values, categories and organs used obtained allowed the identification of the most important species for the populations. In the kasa area, these are Elaeis guineensis, Borassus aethiopum, Mangifera indica, Neocarya macrophylia, Parkia biglobosa, Anacardium occidentale, Ceiba pentandra, Parinari excelsa. Thus, the estimation of the threat to these species by the use value assessed through harvesting has defined these species with the exception of Elaeis guineensis. This species has been little affected by human activities because of its strong predominance in the forest. The study reveals 7 parts of the plants exploited (fruit, wood, leaf, bark, root, flower and exudate) with a preference for fruits with food use. For a sustainable management of these non-cultivate edible and multiple-use fruit species, it is necessary to observe the population dynamics of the exploited species and involve local users in the resource, especially in the search for income.

Acknowledgments
We are grateful to the village chiefs, guides and above all to the villagers for their full collaboration in the collection of data.

References
Adam, J. G. (1970). Noms vernaculaires des plantes du Sénégal. Journal d’Agriculture tropicale et de botanique appliquée, 17(7-8-9), 112. https://doi.org/10.3406/jatba.1970.3070
Allabi, A. C., Busia, K., Ekamiana, V., & Bakiono, F. (2011). The use of medicinal plants in self-care in the Agonlin region of Benin. Journal of Ethnopharmacology, 133(1), 234-243. https://doi.org/10.1016/j.jep.2010.09.028
Ambé G. A. (2001). Les fruits sauvages comestibles des savanes guinéennes de Côte d’Ivoire: état de la connaissance par une population locale, les Malinkés. Biotecnol. Agron. Soc. Environ., 5(1), 43-58.
Ayantunde, A. A., Hiernaux, P., Brieger, M., Udo, H. M. J., & Tabo, R. (2009). Uses of local plant species by agropastoralists in South-western Niger. *Ethnobotany Research & Applications*, 7, 53-66. https://doi.org/10.17348/era.7.0.53-66

Ayessou N. C., Guèye M., Dihoe E., Konteye M., Cissé M. & Dornier M. (2009). Composition nutritive et apport énergétique du fruit de Maerua pseudopetala (Gil et Gil-Ben) DeWolf (Capparidaceae), aliment de soudure au Sénégal. *Fruits*, 64(3), 147-156. https://doi.org/10.1051/fruits/2009010

Ayessou, N. C., Ndiaye, C., Cissé, M., Guèye, M., & Sakh, M. (2011). Nutritional contribution of some Senegalese forest fruits running across Soudano-Sahelian zone. *Food and Nutrition Sciences*, 2(6), 606-612. https://doi.org/10.4236/fns.2011.26085

Berhaut, J. (1967). *Flore du Sénégal plus complète avec les forêts humides de la Casamance*. Ed. Claire Afrique, Dakar. p. 485.

Berhaut, J. (1979). *Flore illustrée du Sénégal. Dicotylédones. Tome 6 Linaceae à Nyphéesae*. Gouvernement du Sénégal-Ministère du développement Rural et de l’Hydraulique, Direction des Eaux et Forêts, Dakar. p. 636.

Bikoué, M. A. C., & Essomba, H. (2007). *Gestion des ressources naturelles fournissant les PFNL alimentaires en Afrique centrale*. Produit Forestier Non ligneux. Document de Travail N°5. Organisation des Nations Unies pour l’Alimentation et l’Agriculture. p. 104.

Blench, R. (2002). *Arbres fruitiers sauvages et protégés en préfecture Logone Oriental, S. Tchad*. Overseas Development Institute à Londres. p. 23.

Camou-Guerrero, A., Reyes-García, V., Martínez-Ramos, M., & Casas, A. (2008). Knowledge and use value of plant species in a Rarámuri community: a gender perspective for conservation. *Human Ecology*, 36(2) 259-272. https://doi.org/10.1007/s10745-007-9152-3

Carriere, S. M., Andrianotahiananahary, H., Ranaivoarivelos, N., & Randriamalala, J. (2005). Savoir et usages des recrus post-culturales du pays Betsileo: valorisation d’une biodiversité oubliée à Madagascar. *Vertigo-la revue électronique en sciences de l’environnement*, 6(1). https://doi.org/10.4000/vertigo.3047

Cheikhhoussaf, A., Ashekele, H., Shapi, M., & Matengu, K. (2011). Ethnobotanical study of indigenous knowledge on medicinal plant use by traditional healers in Oshikoto region, Namibia. *Journal of Ethnobiology and Ethnomedicine*, 7-10. https://doi.org/10.1186/1746-4269-7-10

Core, T. R. (2017). *R: A language and environment for statistical computing*. R Foundation for Statistical Computing, Vienna, Austria. Retrieved from https://www.R-project.org

Cotton, C. M. (1996). *Ethnobotany. Principles and Applications*. John Wiley &Sons. p. 424.

Diatta, C. D. (2016). *Les plantes utilisées par Les Baïnounk de Djibonker, Région de Ziguinchor (Sénégal) : Diversité et savoirs traditionnels*. Thèse doctorat d’Etat, FST, UCAD. p. 127.

Dieng, S. D. (2017). *Evaluation des services écosystémiques fournis par Cordyla pinnata (Lepr. Ex A. Rich.) Milne-Redh., Detarium microcarpum Guill. Et Perr. et Detarium senegalense (J.F. Gmel.) : cas de la Forêt Classée de Patakao et de ses environs (Centre-Ouest du Sénégal)*. Thèse de doctorat en Sciences de l’Environnement, Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar. p. 184.

Diop, M. (2011). *L’arbre et la Forêt. Usages, préférences, représentations et croyances chez les populations riveraines de la Forêt Classée de Patakao (région de Fatick, Sénégal)*. Thèse Environnement, UCAD. p. 201.

Diop, N., Ndiaye, A., Cisse, M., Dieme, O., Dornier, M., & Sock, O. (2010). Le ditax (*Detarium senegalense* J. F. Gmel.): principales caractéristiques et utilisations au Sénégal. *Fruits*, 65, 293-306. https://doi.org/10.1051/fruits/2010025

Djihounouck, Y. (2010). *Ethnobotanique de Carapa Aubl. spp. Chez le Diola du Kasa du Département d’Oussouye (Sénégal)*. Mémoire de Master, FST, UCAD. p. 38.

Djihounouck, Y., Diop, D., Dieng, S. D., Sané, S., Bassène, C., Mbaye, M. S., & Noba, K. (2018). Diversité et importance socio-économique des espèces fruitières sauvages Comestibles En Zone Kasa (Sud-Ouest Du Sénégal). *European Scientific Journal, ESJ*, 14(36), 352-376. https://doi.org/10.19044/esj.2018.v14n36p352

Djihounouck, Y., Diop, D., Bassène, C., Mbaye, M. S., & Noba, K. (2019). Espèces fruitières spontanées comestibles à usage médical dans le *Kasa* (sénégal). *Bulletin de l’IFAN Ch. A. Diop. T. LIV sér. A*, 1, 87-112.
Dossou, M. E. (2010). *Etude floristique, ethnomédicale et proposition d’aménagement de la forêt marécageuse d’Agonvè et zones connexes (Commune de Zagnanado).* Mémoire de maîtrise en géographie. FLASH/UAC, Ab-Calavi, Bénin. p. 81.

Dossou, M. E., Houessou, G. L., Loughbignon, O. T., Tenté, A. H. B., & Codjia, J. T. C. (2012). Étude ethnomédicale des ressources forestières ligneuses de la forêt marécageuse d’Agonvè et terroirs connexes au Bénin. *Tropicultura, 30(1)*, 41-48.

Faucault, M. (1966). *Les mots et les choses.* Paris, Gallimard. p. 400.

Friedman, J., Yaniv, Z., Dafni, A., & Palewitch, D. (1986). A preliminary classification of the healing potential of medicinal plants, based on a rational analysis of an ethnopharmacological field survey among Bedouins in the Negev Desert, Israel. *Journal of ethnopharmacology, 16(2-3),* 275-287. https://doi.org/10.1016/0378-8741(86)90094-2

Galeano, G. (2000). Forest use at the Pacific coast of Chocó, Colombia: A quantitative approach. *Economic Botany, 54(3),* 358-376. https://doi.org/10.1007/BF02864787

Gning, O. N., Sarr, O., Guèye, M., Akpo, L. E., & Ndiaye, P. M. (2013). Valeur économique de l’arbre en milieu malinké, Sénégal. *Journal of Applied Biosciences, 70,* 5617-5631. https://doi.org/10.4314/jab.v70i1.98765

Grivetti, L. E., Frentzel, C. J., Ginsberg, K. E., Howell, K. L., & Ogle, B. M. (1987). Bush foods and edible weeds of agriculture: perspectives of dietary use of wild plants in Africa, their role in maintaining human nutritional status and implication for agricultural development, In R. Akhtar (Ed.), *Health and diseases in Tropical Africa* (51-81). London: Harwood.

Guèye, M. (2012). Contribution à l’étude ethnomédicale chez les Malinké de la communauté rurale de Tomboronkoto (région de Kédougou) et valorisation des collections historiques de l’Herbier de l’Institut fondamental d’Afrique noire Cheikh Anta Diop (IFAN Ch. A. Diop) / UCAD. *Thèse doctorat d’Etat, FST, UCAD, 18,* 142.

Jiofack, T., Ayissi, I., Fokunang, C., Guedje, N., & Kemeuze, V. (2009). Ethnomedicine and phytomedicine of the upper Nyong Valley forest in Cameroon. *African Journal of Pharmacy and Pharmacology, 3(4),* 144-150.

Jiofack, T., Fokunang, C., Guedje, N., Kemeuze, V., Fongnanzossie, E., Nkongmeneck, B. A., Mapongnetsem, P. M., & Tsabang, N. (2010). Ethnomedical uses of medicinal plants of two ethnoecological regions Cameroon. *International Journal of Medicine and Medical Sciences, 2(3),* 60-79. http://www.academicjournals.org/ijmms

Kerharo, J., & Adam, J. G. (1974). *La pharmacopée Sénégalaise Traditionnelle: plantes médicinales et toxiques.* Ed. Vigot Frères, Paris. p. 1011.

Kessler, J. J. (1992). The influence of karité (Vitellaria paradoxa) and nééré (Parkia globosa) trees on sorghum production in Burkina Faso. *Agroforestry Systems, 17,* 97-118. https://doi.org/10.1007/BF00053116

King, S. R., Carlson, T. J., & Moran, K. (1996). Biological diversity, indigenous knowledge, drug discovery and intellectual property rights: creating relationships, *Journal of Ethnopharmacology, 51,* 45-57. https://doi.org/10.1016/0378-8741(95)01349-9

Lebrun, J. P., & Stork, A. L. (1991, 1992, 1995, 1997). *Enumération des plantes à fleurs d’Afrique tropicale, Genève: Conservatoire et Jardin botanique de Genève.* p. 1-4.

Loubele, E. (2012). *Impact des produits forestiers non ligneux (PFNL) sur l'économie des ménages et la sécurité alimentaire : cas de la République du Congo.* Thèse de doctorat, Economies et Finances. Université Rennes 2. Français. NNT : 2012REN20008. AE 2241. p. 231.

Loughbignon, T. O., Tente, B. A. H., Amontcha, M., & Codjia, J. T. C. (2011). Importance culturelle et valeur d’usage des ressources végétales de la réserve forestière marécageuse de la vallée de Sitatunga et zones connexes. *Bulletin de la Recherche Agronomique du Bénin, 70,* 35-46.

Malaisse, F. (1992). La gestion des produits sauvages comestibles. *Défis- Sud,* 7, 18-19.

Martin, G. J. (1995). *Ethnomedicine, A method manual.* London: Chapman & Hall. p. 268. https://doi.org/10.1007/978-1-4615-2496-0

Negura, L. (2006). *L'analyse de contenu dans l'étude des représentations sociales.* Sociologies. https://doi.org/10.4000/sociologies.993

Ouattara, N. D., Gaille, E., Stauffer, F. W., & Bakayoko, A. (2016). Diversité floristique et ethnomédicale des
plantes sauvages comestibles dans le Département de Bondoukou (Nord- Est de la Côte d’Ivoire). *Journal of Applied Biosciences*, 98, 9284-9300. https://doi.org/10.4314/jab.v98i1.5

Philps, O., & Gentry, A. H. (1993). The useful plants of Tambopata, Peru. II Statistical hypothesis tests with a new quantitative technique. *Economic Botany*, 47(1), 33-43. https://doi.org/10.1007/BF02862204

Sambou, B., Lawesson, J. E., & Barford, A. S. (1992). *Borassus aethiopum*, a threatened multiple purpose palm in Senegal. *Principes*, 36(3), 148-155.

Sofowora, A. (1982). *Medicinal plants and traditional Medicine in West Africa*. John Wiley and Sons, New York. p. 256.

Trotter, R. T., & Logan, M. H. (1986). *Informant Consensus: a New Approach for Identifying Potentially Effective Médicinal Plants*. Bedfore Hills: New York. p. 91-112. https://doi.org/10.4324/97813150560385-6

Van den Eynden, V., Van Damme, P., & De Wolf, J. (1994). *Inventaire et modelage de la gestion du couvert végétal péréren dans une zone forestière du sud du Sénégal*. Rapport final. Partie C Etude ethnobotanique. Université de Gand, Belgique. p. 33-99.

Van Der Berghen, C. (1988). *Flore illustrée du Sénégal. Monocotylédones et Ptéridophytes*. Tome 10. Gouvernement du Sénégal-Ministère du développement Rural et de l’Hydraulique, Direction des Eaux et Forêts, Dakar. p. 523.

Annex: List of plant species used (abbreviated) for AFC

Allophyllus africanus (A-afr)	Drypetes floribunda (D-flori)	Passiflora foetida (P-foeti)	Allophyllus africanus (A-afr)	Drypetes floribunda (D-flori)	Passiflora foetida (P-foeti)
Atroxisma azeliana (A-afze)	Dialium guineense (D-guine)	Pseudospondias microcarpa (P-micro)	Atroxisma azeliana (A-afze)	Dialium guineense (D-guine)	Pseudospondias microcarpa (P-micro)
Aframomum cereum (A-cer)	Detarium senegalense (D-sene)	Psychotria peduncularis (P-pedun)	Aframomum cereum (A-cer)	Detarium senegalense (D-sene)	Psychotria peduncularis (P-pedun)
Adansonia digitata (A-digi)	Elaeis guineensis (E-guine)	Phoenix reclinata (E-recli)	Adansonia digitata (A-digi)	Elaeis guineensis (E-guine)	Phoenix reclinata (E-recli)
Aframomum elliottii (A-ellio)	Ficus capensis (F-cap)	Ritchiea capparoides (R-cappa)	Aframomum elliottii (A-ellio)	Ficus capensis (F-cap)	Ritchiea capparoides (R-cappa)
Avicennia germinans (A-ger)	Ficus lutea (F-lutea)	Synepalum brevipes (S-brevi)	Avicennia germinans (A-ger)	Ficus lutea (F-lutea)	Synepalum brevipes (S-brevi)
Annona glauca (A-glu)	Gardenia erubescens (G-eru)	Sorindeia juglandifolia (S-juglan)	Annona glauca (A-glu)	Gardenia erubescens (G-eru)	Sorindeia juglandifolia (S-juglan)
Azadirachta indica (A-Indi)	Icacina oliviformis (I-olivi)	Sarcocephalus latifolius (S-lat)	Azadirachta indica (A-Indi)	Icacina oliviformis (I-olivi)	Sarcocephalus latifolius (S-lat)
Anacardium occidentale (A-occ)	Landolphia dulcis (L-dul)	Spondias mombin (S-mom)	Western anacardium (A-occ)	Landolphia dulcis (L-dul)	Mombin spondias (S-mom)
Annona senegalensis (An-sene)	Landolphia headelotti (L-heude)	Saba senegalensis (Sab-sene)	Annona senegalensis (An-sene)	Landolphia headelotti (L-heude)	Saba senegalensis (Sab-sene)
Aphania senegalensis (Ap-sene)	Landolphia hirsuta (L-hirsu)	Salacia senegalensis (Sal-sene)	Aphania senegalensis (Ap-sene)	Landolphia hirsuta (L-hirsu)	Salacia senegalensis (Sal-sene)
Balanites aegyptiaca (B-aegyp)	Landolphia owariensis (L-owa)	Treculia africana (T-afr)	Balanites aegyptiaca (B-aegyp)	Landolphia owariensis (L-owa)	Treculia africana (T-afr)
Borassus aethiopum (B-aethio)	Mammea africana (M-afr)	Tamarindus indica (T-indi)			
-----------------------------	--------------------------	--------------------------			
Cola cordifolia (C-cordi)	Monanthotaxis barteri (M-bar)	Uvaria thomasi (U-thoma)			
Calamus deerratus (C-deer)	Indica (M-indi)	Tamarindus indica (T-indi)			
Chrysobalanus ellipticus (C-ellip)	Macrophyra longistyla (M-longis)	Voacanga africana (V-afr)			
Cucumis metuliferus (C-metu)	Neocarya macrophylla (N-macro)	Vitex doniana (V-donia)			
Chrysobalanus orbicularis (C-orbi)	Nymphaea-spp	Xylopia aethiopica (X-aethio)			
Ceiba pentandra (C-pentan)	Parkia biglobosa (P-biglo)	Ziziphus mauritiana (Z-mauri)			
Celtis toka (C-toka)	Pancovia bijuga (P-bijuga)	Zanthoxylum zanthoxyloides (Z-zantho)			
Diospyros ferrea (D-fer)	Parinari excelsa (P-excel)	Diospyros ferrea (D-fer)			

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal. This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).