E₁^k, another quantitative variant at cholinesterase locus 1

HERBERT M. RUBINSTEIN, ALBERT A. DIETZ, AND TINA LUBRANO

From Research and Medical Services, Veterans Administration Hospital, Hines, Illinois 60141; and Departments of Medicine and Biochemistry, Loyola University Stritch School of Medicine, Maywood, Illinois 60153, U.S.A.

SUMMARY Two families segregating for the atypical (E₁^a) allele at cholinesterase locus 1 are described. Unusual results for dibucaine inhibition led to the recognition of a new allele (E₁^k) also segregating in these families. The enzymatic and immunological data are consistent with the hypothesis that E₁^k causes reduction of 'usual' (E₁^u) molecules by about 33%. Whether the reduction of E₁^u caused by E₁^k is caused by retarded synthesis or accelerated degradation of serum cholinesterase remains to be determined.

Several quantitative variants at serum cholinesterase (E.C.3.1.1.8) locus 1 have been described. These result in lowered serum cholinesterase activity and, when interacting with the E₁^a (atypical) allele, give dibucaine inhibitions below those of E₁^uE₁^u heterozygotes. Interaction with E₁^a led to the discovery of the E₁^s (Liddell et al., 1962) and E₁^i (Garry et al., 1976) variants. E₁^s exists in several forms (Rubinstein et al., 1970) and results in 95 to 100% diminution of E₁^u molecules; E₁^i results in about 66% reduction. One family has been described in which several members have greatly increased amounts of apparently normal serum cholinesterase (Neitlich, 1966; Yoshiada and Motulsky, 1969). The gene responsible has been named E Cynthia but it is not yet known if it is active at cholinesterase locus 1 or locus 2.

We present here two families with a quantitative variant at cholinesterase locus 1 which results in about 33% reduction of E₁^u molecules; both of these families were recognised by means of interaction with the E₁^a gene.

Methods

The enzymatic and immunological methods used were the same as given in earlier publications (Garry et al., 1976; Rubinstein et al., 1976; Dietz et al., 1973). (Table II in Garry et al. (1976) gives the cholinesterase activities and inhibitions of the known phenotypes as determined in our laboratory.)

Results

S. FAMILY

The index case (II.1) was discovered by means of prolonged apnoea after administration of succinylcholine. The cholinesterase activities and inhibitions of the sera of the family members are given in the Table. Two individuals (III.2 and III.3) have dibucaine inhibitions in a range not previously found. This family can be explained by assuming segregation for a new allele¹ which must have entered the family through II.2 who is considered to be genotype E₁^uE₁^k.

¹Termed E₁^a in honour of Dr Werner Kalow who clarified the recognition and inheritance of the E₁^a allele by means of dibucaine inhibition.

Family	Pedigree No.	Presumed genotype	Cholinesterase activity	Inhibition, %	Dibucaine	Fluoride
S.	I.1	E₁^uE₁^s	5.62	74-3	81-2	
	II.1	E₁^uE₁^s	1.35	18-5	83-6	
	2	E₁^uE₁^s	6.74	83-4	77-7	
	3	E₁^uE₁^s	4.81	76-8	82-5	
	4	E₁^uE₁^s	1.29	14-8	82-2	
	III.1	E₁^uE₁^s	8.97	84-5	79-3	
	2	E₁^uE₁^s	2.21	60-0	81-9	
	3	E₁^uE₁^s	2.67	65-3	78-2	
	4	E₁^uE₁^s	8.09	84-4	81-3	
	5	E₁^uE₁^s	6.91	75-5	79-4	
IV.1	E₁^uE₁^s	8.72	74-5	79-8		
2	E₁^uE₁^s	9.38	84-6	79-5		
3	E₁^uE₁^s	8.60	83-8	82-1		
	J.	II.1	E₁^uE₁^s	2.97	63-1	79-7
	2	E₁^uE₁^s	2.10	10-5	80-0	
	4	E₁^uE₁^s	5.26	85-5	80-4	
	5	E₁^uE₁^s	6.78	74-2	85-2	
	III.1	E₁^uE₁^s	5.53	75-8	78-0	
	2	E₁^uE₁^s	3.28	66-0	79-0	
	3	E₁^uE₁^s	7.76	82-2	80-3	
	4	E₁^uE₁^s	8.49	82-7	81-5	

Received for publication 30 May 1977
Subjects IV.2 and IV.3 must also be $E_i^aE_i^k$. Subjects III.2 and III.3 are assigned genotype $E_i^aE_i^k$. The pedigree and most likely genotypes are given in Fig. 1. Though I.2 may have been $E_i^aE_i^1$ (in which case II.1 and II.4 would be $E_i^aE_i^1$), the fact that II.1, II.3, II.4, III.2, III.3, and III.5 all have at least one E_i^a gene suggests that I.2 was probably $E_i^aE_i^1$ (or, more remotely, $E_i^aE_i^a$ or $E_i^aE_i^k$).

J. FAMILY

The index case (II.2) was also discovered by prolonged apnoea after succinylcholine. The data on family members are given in the Table. Two individuals, II.1 and III.2, have dibucaine inhibitions unlike those found in known phenotypes but similar to those of III.2 and III.3 in the S. family. Assuming the same explanation as that given for the S. family, II.1 and III.2 are assigned genotype $E_i^aE_i^k$. Either I.1 or I.2 must have been $E_i^aE_i^1$; the other could have been $E_i^aE_i^k$ or $E_i^kE_i^k$. Since the E_i^a gene is more frequent than the E_i^k gene, $E_i^aE_i^k$ is more likely; that is why II.2 is assigned $E_i^aE_i^k$ rather than $E_i^kE_i^k$. (Very remotely, I.1 could have been $E_i^aE_i^a$ and I.2 $E_i^aE_i^k$.) II.4 would then be $E_i^aE_i^k$. Against this is the cholinesterase activity of 5-26 found in II.4 as $E_i^aE_i^k$ would be expected to give a very much lower value.) II.4 is, therefore, classified as $E_i^aE_i^k$. The most probable genotypes are given along with the pedigree in Fig. 2.

Figure 3 clarifies the identification of $E_i^aE_i^k$ with respect to previously known genotypes in terms of dibucaine and fluoride inhibitions. The $E_i^aE_i^k$ area falls just between those for $E_i^aE_i^1$ and $E_i^kE_i^k$. $E_i^aE_i^k$ cannot be distinguished from $E_i^aE_i^a$, $E_i^aE_i^s$, or $E_i^aE_i^1$ by inhibitions.

Following the reasoning used for E_i^1 (Garry et al., 1976), the E_i^k allele can be explained as resulting in reduced numbers of circulating E_i^u molecules whether because of reduced synthesis or accelerated degradation. Fig. 4 (derived from Fig. 4 of Garry et al., 1976) relates dibucaine inhibitions to mixtures of E_i^a and E_i^k molecules in various proportions. The average dibucaine inhibition of the four $E_i^aE_i^k$ subjects from the two families given above indicates that the ratio of E_i^u to E_i^a molecules in their sera is about 40:60. This corresponds to an approximate 33% reduction of E_i^a molecules caused by the E_i^k allele. E_i^k causes less reduction of E_i^u molecules than E_i^1—33% vs 66%.

The average cholinesterase activity of $E_i^aE_i^k$ sera should, therefore, be higher than that of $E_i^aE_i^1$ sera. This is what is observed, 2.78 vs 1.93.

The relative diminution of E_i^u molecules in the serum of the two $E_i^aE_i^k$ subjects (II.1 and III.2) in the J. family was also shown immunologically. Fig. (based on Fig. 4 of Rubinstein et al., 1976) relates the...
choolinesterase activity of sera of various genotypes to immunological reactivity by gel immunodiffusion. The two $E_1^aE_1^k$ sera are found in an area of the plot distinct from $E_1^aE_1^a$, $E_1^aE_1^k$, and $E_1^aE_1^a$ sera and close to that of $E_1^aE_1^1$ sera.

Discussion

The recognition of E_1^k in the two pedigrees given here is based on interaction of E_1^a with the resultant production of dibucaine inhibition unlike any found hitherto—precisely the way in which E_1^j was also found (Garry et al., 1976). Inspection of Fig. 3 and 4 shows that other quantitative variants may well be discovered in the same way. Dibucaine inhibitions falling between 30 to 50%, if segregating appropriately, would indicate quantitative variants intermediate in their effects between E_1^a and E_1^j. Such variants, if they exist, should account for roughly 75 to 90% reduction of E_1^a molecules.

References

Dietz, A. A., Rubinstein, H. M., and Lubrano, T. (1973). Colorimetric determination of serum cholinesterase and its genetic variants by the propionylthiocholinesterase-(nitrobenzoic acid) procedure. Clinical Chemistry, 19, 1309-1313.

Garry, P. J., Dietz, A. A., Lubrano, T., Ford, P. C., James, K., and Rubinstein, H. M. (1976). New allele at cholinesterase locus 1. Journal of Medical Genetics, 13, 38-42.

Liddell, J., Lehmann, H., and Silik, E. (1962). A ‘silent’ pseudo-cholinesterase gene. Nature, 193, 551-552.

Neitlich, H. W. (1966). Increased plasma cholinesterase activity and succinylcholine resistance: a genetic variant. Journal of Clinical Investigation, 45, 380-387.

Rubinstein, H. M., Dietz, A. A., Hodges, L. K., Lubrano, T., and Czebotar, V. (1970). Silent cholinesterase gene: variations in the properties of serum enzyme in apparent homozygotes. Journal of Clinical Investigation, 49, 479-486.

Rubinstein, H. M., Dietz, A. A., Lubrano, T., and Garry, P. J. (1976). E_1^j, a quantitative variant at cholinesterase locus 1: immunological evidence. Journal of Medical Genetics, 13, 43-45.

Yoshida, A., and Motulsky, A. G. (1969). A pseudochoolinesterase variant (E Cynthia) associated with elevated plasma enzyme activity. American Journal of Human Genetics, 21, 486-498.

Requests for reprints to Dr Albert A. Dietz, P.O. Box 54, Veterans Administration Hospital, Hines, Illinois 60141, U.S.A.