Bang-Bang Operations from a Geometric Perspective

Mark S. Byrd and Daniel A. Lidar
Chemical Physics Theory Group, University of Toronto,
80 St. George Street, Toronto, Ontario M5S 3H6, Canada

(Dated: October 24, 2018)

Strong, fast pulses, called “bang-bang” controls can be used to eliminate the effects of system-environment interactions. This method for preventing errors in quantum information processors is treated here in a geometric setting which leads to an intuitive perspective. Using this geometric description, we clarify the notion of group symmetrization as an averaging technique, and provide a geometric picture for evaluating errors due to imperfect bang-bang controls. This will provide additional support for the usefulness of such controls as a means for providing more reliable quantum information processing.

PACS numbers: 03.67.Lx,03.65.-w,03.65.Yz

I. INTRODUCTION

Recently, controlling the evolution of a system by using strong, short pulses has been introduced as a new means for quantum error correction/prevention [1, 2, 3, 4]. These operations have been termed “bang-bang” (BB) pulses [1] (a name derived from classical control theory [5]), “parity kicks” [2, 3] (for the special case of a sign changing operation), decoupling operations [2, 8] (since they can serve to decouple the system from environmental degrees of freedom), and symmetrization procedures [8] (which are associated with a group symmetrization/averaging). The advantage they have over the active and passive error correction procedures associated with quantum error correcting codes (QECCs) (see [9, 10, 11] and references therein) and decoherence free subspaces (DFSs) (or noiseless subsystems; see [12, 13, 14] and references therein) is the use of external pulses rather than requiring several physical qubits to encode one logical qubit. Since today’s experiments use < 10 qubits, this may, for the time being, make BB controls a method of choice for small-scale quantum computer implementations. However, it is clear that the time constraints imposed by bang-bang operations on the system are great [6] and may not be practical for eliminating noise altogether. Even if this technique cannot completely eliminate the noise, it can still be used to reduce noise [1, 2, 3]. This is important for possibly reducing error rates and thus extending computing time and/or the utility of QECCs and/or DFSs.

In order to take full advantage of the BB technique, the symmetrization operations and their effects must be made clear so that the benefit from the implementation can be readily determined. The work put forth here will aid in the analysis of the results of BB operations by providing an explicit geometric representation for the group-algebraic elements describing such interactions. This geometric picture also has the advantage of clarifying the error between a desired and a modified evolution. In addition, for two-state systems (qubits), we recover a familiar Bloch sphere representation and this provides us with an intuitive understanding of BB/symmetrization operations.

II. DECOUPLING BY SYMMETRIZATION

The process of decoupling by symmetrization, counteracts decoherence by applying sequences of frequent pulses [1, 2, 3]. The time scales are crucial: roughly speaking, one needs to perform a complete cycle of symmetrization operations in a time shorter than the bath correlation time. An elegant group theoretical treatment shows that if the applied pulses are unitary transformations forming a finite-dimensional group, then the application of that series of pulses amounts to an average (symmetrization) over this group [3, 7, 8, 14, 15]. We briefly review this theory.

The general evolution of a system and a bath coupled to it can be written in the form

\[ H = H_S \otimes 1_B + 1_S \otimes H_B + \sum_\gamma S_\gamma \otimes B_\gamma, \]

where \( H_S \) acts on the system alone, \( H_B \) acts on the bath alone, and \( H_I \equiv \sum_\gamma S_\gamma \otimes B_\gamma \) is the interaction part of the Hamiltonian composed of traceless operators \( S_\gamma \) (\( B_\gamma \)) which act on the system (bath). The objective of the BB procedure is to modify this evolution.

A set of symmetrization or BB operations can be chosen such that they form a discrete (finite order) subgroup of the full unitary group of operations on the Hilbert space of the system. Denote this subgroup \( \mathcal{G} \) and its elements \( g_k, k = 0, 1, ..., |\mathcal{G}| - 1 \), where \( |\mathcal{G}| \) is the order of the group. The cycle time is \( T_c = |\mathcal{G}| \Delta t \), where \( |\mathcal{G}| \) is now also the number of symmetrization operations, and \( \Delta t \) is the time that the system evolves freely between operations under \( U_0 = \exp(-iHt) \). The symmetrized evolution is...
given by
\[ U(T_\epsilon) = \prod_{k=0}^{\lfloor |\mathcal{G}|/2 \rfloor} g_k U_0(\Delta t) g_k^\dagger \equiv e^{iH_{\text{eff}} T_\epsilon}. \] (2)

\( H_{\text{eff}} \) denotes the resulting effective Hamiltonian. Since the approximation requires very strong, short pulses to be implemented in a sequence, they have been termed bang-bang (BB) operations (we will use symmetrization and BB operations interchangeably). In this (BB) limit
\[ H \mapsto H_{\text{eff}} = \frac{1}{|\mathcal{G}|} \sum_{k=0}^{\lfloor |\mathcal{G}|/2 \rfloor} \sum_{\lambda_1, \lambda_2} g_k H g_k = \Pi_{\mathcal{G}}(H), \] (3)
where \( H_{\text{eff}} \) is the desired Hamiltonian (without noise). The map \( \Pi_{\mathcal{G}} \) is the projector into the centralizer, \( Z(\mathcal{G}) \), defined as
\[ Z(\mathcal{G}) = \{ X | [X, g_k] = 0, \forall g_k \in \mathcal{G} \}. \] (4)
It is clear that \( \Pi_{\mathcal{G}} \) commutes with all \( g_k \) so that, if our group is generated by \( \{ 1, H_S, S_\gamma \} \), the system is effectively decoupled from its environment. The control algebra is the algebra generated by the set \( \{ g_k \} \). Even if the symmetrization is performed under less than ideal conditions, it can still reduce the noise in the system.

III. GEOMETRIC INTERPRETATION OF THE EFFECT OF BB OPERATIONS

Now consider a set of unitary operators \( \{ U_k \} \), \( U_0 \equiv 1_S \), as an explicit realization of the subgroup \( \mathcal{G} \) and choice of our set of BB operations. Then the following condition must be satisfied for an evolution generated by the effective Hamiltonian:
\[ H_{\text{eff}} = \frac{1}{|\mathcal{G}|} \sum_{k=0}^{\lfloor |\mathcal{G}|/2 \rfloor} U_k^\dagger H U_k. \] (5)
Note that \( H_{\text{eff}} = 0 \) is the case of storage. Considering Eq. (5), we can always include the terms \( H_S \otimes 1_B \) and \( 1_S \otimes H_B \) in \( H_I \). We do not include the identity component \( 1_S \otimes 1_B \) since it only gives rise to an overall phase. Thus \( H \) and \( H_{\text{eff}} \) are traceless. Let us now introduce \( N \equiv n^2 - 1 \) traceless, Hermitian generators \( \{ \lambda_i \}_{i=1}^N \) of \( SU(n) \). These generators are closed under commutation and span the space of traceless Hermitian matrices. For \( SU(2) \), the Pauli matrices are commonly used; for \( SU(3) \), the Gell-Mann matrices, and for higher dimensions, one may use a direct generalization of the Gell-Mann matrices. For dimensions that are a power of two it is often convenient to use the Pauli group (tensor products of Pauli matrices). The \( \{ \lambda_i \} \) satisfy trace-orthogonality,
\[ \text{Tr}(\lambda_i \lambda_j) = M \delta_{ij}, \] (6)
where \( M \) is a normalization constant (often taken to be 2 for Lie algebras or \( n \) for \( n \times n \) matrices). Expanding the system operators in terms of the \( \{ \lambda_i \} \) yields:
\[ S_\gamma = \sum_i a_{i\gamma} \lambda_i \] (7)
where the expansion coefficients are
\[ a_{i\gamma} = \frac{1}{M} \text{Tr}(\lambda_i S_\gamma). \] (8)
Using this, \( H \) can be written as as follows:
\[ H = \sum_\gamma S_\gamma \otimes B_\gamma = \sum_\gamma \sum_i a_{i\gamma} \lambda_i \otimes B_\gamma = \sum_\gamma (\vec{a}_\gamma \cdot \vec{X}) \otimes B_\gamma. \] (9)
Here \( \vec{a}_\gamma \) and \( \vec{X} \) are vectors of length \( N \). In this representation, used extensively in [16], an \( n \times n \) Hamiltonian, \( H \), is a vector with coordinates \( \vec{a}_\gamma \), for each error \( \gamma \) in an \( N \)-dimensional vector space spanned by the \( \{ \lambda_i \} \) as basis vectors, with ordinary vector addition and scalar multiplication.
As is well-known, there is a homomorphic mapping between the Lie groups \( SU(2) \) and \( SO(3) \). This mapping is generalized as follows for \( SU(n) \) and a subgroup of the rotation group \( SO(N) \):
\[ \sum_{j=1}^N R_{ij} \lambda_j, \] (10)
where the matrix \( R^{(k)} \in SO(N) \), the adjoint representation of \( SU(n) \).

The BB operation [Eq. (8)] may now be viewed as a weighted sum of rotations of the (adjoint) vectors \( \vec{a}_\gamma \). To see this, first let
\[ \vec{a}_{\gamma}^{(k)} = R^{(k)} \vec{a}_\gamma. \] (11)
This represents the rotation by \( R^{(k)} \) of the coordinate vector \( \vec{a}_\gamma \). Next average over all rotations:
\[ \vec{a}_\gamma = \frac{1}{|\mathcal{G}|} \sum_{k=0}^{\lfloor |\mathcal{G}|/2 \rfloor} \vec{a}_{\gamma}^{(k)}. \] (12)
Finally, note that the effective Hamiltonian, after the BB operations, can be rewritten as:
\[ H_{\text{eff}} = \frac{1}{|\mathcal{G}|} \sum_{k=0}^{\lfloor |\mathcal{G}|/2 \rfloor} U_k^\dagger H U_k = \sum_\gamma (\vec{a}_\gamma \cdot \vec{X}) \otimes B_\gamma. \] (13)
Eq. (13) [compare to Eq. (8)] is our desired geometric representation of BB operations. Their effect is to simply transform, for each error \( \gamma \), the coordinates \( \vec{a}_\gamma \) to \( \vec{a}_\gamma \). It is simplest to interpret this in the case of storage, where we seek BB operations such that \( H_{\text{eff}} = 0 \). Since the errors
can be decomposed in the linearly independent basis set indexed by \( \gamma \), each term \( \vec{a}_\gamma \cdot \vec{\lambda} \) must vanish separately. Furthermore, since the \( \lambda_i \) are independent this can only be satisfied if \( \vec{a}_\gamma = 0 \) for each \( \gamma \). This means that

\[
\vec{a}_\gamma' = \left( \frac{1}{|G|} \sum_k R^{(k)} \right) \vec{a}_\gamma = 0,
\]

i.e., the sum of all rotations applied to the original coordinate vector \( \vec{a}_\gamma \) must vanish.

Similarly, to obtain a modified evolution corresponding to a target Hamiltonian \( H_{eff} = \sum_\gamma (\vec{a}_\gamma' \cdot \vec{\lambda}) \otimes B_\gamma \), we require the weighted sum of rotations applied to the original coordinate vector to be equal to the corresponding target coordinate vector \( \vec{a}_\gamma' \). I.e., for \( H_{eff} \neq 0 \), the following condition should be satisfied to obtain the desired evolution:

\[
\vec{a}_\gamma' = \vec{a}_\gamma
\]

This may require a combination of switching strategies for the BB pulses \( \vec{a}_\gamma \).

It should be noted that our geometrical picture is an explicit representation of a subset of the group algebra \( \mathbb{C}G \) using the set of traceless Hermitian matrices and the identity as the basis. When the coefficients of the adjoint vector are real, the resulting matrix \( H_{eff} \) is Hermitian. When they are complex, the resulting matrix is not Hermitian and the evolution is not unitary but may still be treated empirically \([18]\).

**IV. ERRORS**

The picture developed above also gives an intuitive way in which to evaluate the error that remains in the system evolution after the application of the BB pulses. Let \( \vec{a}_\gamma \) be the coordinates vector corresponding to the desired Hamiltonian evolution and \( \vec{a}_\gamma' \) the actual vector after BB operations. Then \( \vec{a}_\gamma' \) corresponds to the effective Hamiltonian, Eq. (13) (and may be determined using quantum process tomography, see \([18]\) and references therein). The error vector \( \vec{e} \) is given by their difference in the \( n^2 \)-dimensional vector space where our geometric picture holds:

\[
\vec{e} = \vec{a}_\gamma' - \vec{a}_\gamma
\]

The vector \( \vec{e} \) gives us the magnitude and direction of the error (i.e., the basis elements \( \lambda_i \) give the type of error, e.g., bit-flip and/or phase-flip). Now consider the magnitude of this error,

\[
d(\vec{a}_\gamma', \vec{a}_\gamma) = (\vec{e}^* \cdot \vec{e})^{1/2}
\]

(17)

(in the case of Hamiltonian evolution there is no need for complex conjugation). This is the Euclidean distance between the two vectors in the adjoint representation space. For two two-state density matrices, it is proportional to the Euclidean distance between the two Bloch vectors, as is the trace distance. In general, computing \( d(\vec{a}_\gamma', \vec{a}_\gamma) \) is more manageable than other measures of distance (e.g., fidelity \([19]\)), since it does not require diagonalization.

In the case of imperfect BB operations, the goal is to minimize the distance \( d \). For the purposes of optimization, note that

\[
d(\vec{a}_\gamma', \vec{a}_\gamma) = (\vec{e}^* \cdot \vec{e})^{1/2} = ((a_{\gamma}^*)^2 + (a_{\gamma}^*)^2 - 2M \vec{a}_\gamma \cdot \vec{a}_\gamma')^{1/2},
\]

(18)

whereas the ordinary trace distance (Hilbert-Schmidt norm) between \( (\vec{a}_\gamma', \vec{a}_\gamma) \) gives [using Eq. (13)]

\[
\text{Tr}[(\vec{a}_\gamma' \cdot \vec{\lambda})(\vec{a}_\gamma \cdot \vec{\lambda})] = M \vec{a}_\gamma \cdot \vec{a}_\gamma'.
\]

(19)

So minimizing \( d \) is equivalent to maximizing \( (\vec{a}_\gamma' \cdot \vec{a}_\gamma) \). The advantage of using \( d \) is an intuitive one since the error vector simply describes a Euclidean vector (in the adjoint representation space).

For obtaining a desired unitary evolution, note that trace-norm distance for matrices, \( U \) and \( V \) is defined by

\[
d_u(U, V) = \sqrt{1 - (1/n) \text{Re}[\text{Tr}(U^\dagger V)]},
\]

(20)

where \( U \) and \( V \) are \( n \times n \) matrices. For BB controls a short-time approximation is relevant. For the case of unitary evolution, the two measures, Euclidean distance and trace-norm for matrices, are equivalent. Approximating \( U \) (desired evolution) and \( V \) (actual evolution) by \( \mathbb{1} - iHt = \mathbb{1} - it \sum \alpha_{i\gamma} \lambda_i \) and \( \mathbb{1} - iH't = \mathbb{1} - it \sum \alpha_{i\gamma} \lambda_i \) respectively,

\[
d(U, V) \approx \sqrt{1 - (1/n) \text{Re}[\text{Tr}(\mathbb{1} + HH'^{1/2})]}
\]

(21)

is an \( O(t) \) approximation to the unitary evolution. This is equivalent to Eq. (17).

**V. EXAMPLES**

We now discuss the example of storing a single qubit. In this case our geometrical picture can be cast in the familiar Bloch sphere representation.

Consider the noisy evolution of a stored qubit. Suppose the evolution of the qubit is governed by the Hamiltonian

\[
H = \sum_\gamma \sum_{i=1}^3 a_{i\gamma} \sigma_i \otimes B_\gamma,
\]

(22)

where the \( a_{i\gamma} \) are real coefficients, \( B_\gamma \) are bath operators, and the \( \sigma_i \) are the Pauli matrices with the usual identification \( \sigma_1 = \sigma_x, \sigma_2 = \sigma_y, \sigma_3 = \sigma_z \). (As above, the identity component is neglected.) For faithful storage, a set of BB operations \( \{U_k\} \) should serve to eliminate
this Hamiltonian. Under such controls, the evolution is described by
\[ H_{eff} = \frac{1}{|G|} \sum_{ik\gamma} U_k^\dagger (\tilde{a}_\gamma \cdot \vec{\sigma}) \otimes B_\gamma U_k = \sum_{\gamma} (\tilde{a}_\gamma' \cdot \vec{\sigma}) \otimes B_\gamma, \] (23)
where \( U_k \in SU(2) \) and \( R^{(k)} \in SO(3) \), and
\[ \tilde{a}_\gamma' = \frac{1}{|G|} \sum_{k=0}^{|G|-1} R^{(k)} \tilde{a}_\gamma. \] (24)

Explicitly, the rotation matrix is given by
\[ R = \begin{bmatrix}
\cos(\alpha) \cos(\beta) \cos(\gamma) & -\sin(\alpha) \cos(\beta) \cos(\gamma) & \sin(\beta) \cos(\gamma) \\
-\sin(\alpha) \sin(\gamma) & \cos(\alpha) \sin(\gamma) & 0 \\
-\cos(\alpha) \sin(\beta) & \sin(\alpha) \sin(\beta) & \cos(\beta)
\end{bmatrix}. \] (26)
Alternatively, one may use
\[ \exp(i(\theta/2)\hat{n} \cdot \vec{\sigma})\tilde{\vec{x}} \cdot \vec{\sigma} \exp(-i(\theta/2)\hat{n} \cdot \vec{\sigma}) = \tilde{\vec{x}}' \cdot \vec{\sigma}, \] (27)
where
\[ \tilde{\vec{x}}' = (\hat{n} \cdot \tilde{\vec{x}})\hat{n} + [(\hat{n} \times \tilde{\vec{x}}) \times \hat{n}] \cos(\theta) + [\hat{n} \times \tilde{\vec{x}}] \sin(\theta). \] (28)
The correspondence between the unitary and orthogonal groups is made by
\[ \sum_i x'_i \sigma_j = \sum_{ij} x_i [R_\alpha(\theta)]_{ij} \sigma_j = U(\hat{n}, \theta/2) \left( \sum_i x_i \sigma_i \right) U^\dagger(\hat{n}, \theta/2), \] (29)
where \( R_\alpha(\theta) \) is a rotation by \( \theta \) about the axis \( \hat{n} \). Although this notation is more compact, the Euler angle parameterization of \( SU(3) \) and \( SU(4) \) have been given \[20, 21, 22].

A. Storing One Qubit

To be specific, consider an unwanted pure dephasing interaction described by the Hamiltonian
\[ H = g\sigma_3 \otimes B. \] (30)
Using Eq. (26) we find that the coordinate (adjoint) representation of this Hamiltonian is
\[ a_i = \frac{g}{2} \text{Tr}(\sigma_i \sigma_3) = g\delta_{i3}, \] (31)
In the subsections below we consider different choices of the subgroup \( G \). These equations then describe a sum of vectors on the Bloch sphere. The mapping from the unitary matrices \( U_k \) to the rotation matrices \( R^{(k)} \) is given by
\[ U^\dagger \sigma_1 U = e^{i\sigma_3 \alpha/2} e^{i\sigma_2 \beta/2} e^{i\sigma_1 \gamma/2} e^{-i\sigma_3 \gamma/2} e^{-i\sigma_2 \beta/2} e^{-i\sigma_1 \alpha/2} = R_{ij} \sigma_j. \] (32)

For the geometric picture, using \( \beta = \pi, \alpha = \gamma = 0 \) in Eq. (26):
\[ R^{(1)} = \begin{pmatrix}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{pmatrix}, \] (33)
which inverts the adjoint vector \( \tilde{a} \). This is shown schematically in Fig. 1. It is simple to check that, as required, \( H_{eff} = 0 \). This example uses the lowest dimensional finite order group \( C_2 \).
and the corresponding unitary transformations are matrices that accomplish this are responding to BB operations.

FIG. 2: Addition of adjoint vectors on the Bloch sphere corresponding to BB operations.

\[ (R^{(1)})^2 \vec{a} \]

\[ (R^{(1)})^3 \vec{a} \]

FIG. 3: The application of the cyclic group of order 4. Here \( R^{(1)} = R_4(\pi/4) \).

Now, let us use our geometric picture to derive another class of BB operations for pure dephasing on a single qubit. Clearly, the point is to find a set of rotations of \( \vec{a} \) which when added sum up to zero. The next example is the group \( C_{3} \), which consists of rotating \( \vec{a} \) by \( 2\pi/3 \) and \( -2\pi/3 \) about a fixed axis, i.e., uses two non-trivial BB operations. This is depicted in Fig. 2 where we have chosen \( \sigma_1 \) as the fixed axis. The set of rotation matrices that accomplish this are \( R^{(1)} = R_3(2\pi/3) \) and \( R^{(2)} = R_3(-2\pi/3) = (R^{(1)})^2 \), where

\[
R_3(\theta) = \begin{pmatrix}
1 & 0 & 0 \\
0 & \cos(\theta) & \sin(\theta) \\
0 & -\sin(\theta) & \cos(\theta)
\end{pmatrix}
\]

and the corresponding unitary transformations are \( U_k = \exp(-i\sigma_1(\pm\pi/3)) \), \( k = 1, 2 \).

A large number of BB operations is undesirable due to time constraints so that large sets become successively more difficult to implement effectively. However, depending on the symmetries of the Hamiltonian and the experimentally available BB operations, using a larger number may be advantageous.

Let us consider the next higher order set of BB operations. This will be a set with 4 elements. The subgroup condition requires a set forming either the cyclic group of order 4 or the so-called Vierergruppe since these are the only two groups of order 4 \([13]\). An example of the cyclic group of order 4 would be the four-fold rotations about a single axis, \( \sigma_1 \), \( \pi/2 \) around the \( \sigma_1 \) axis, as in Fig. 3. An example of the other fourth order group is the set of rotations by \( \pi \) about three orthogonal symmetry axes.

Note that the set of vectors pointing to the vertices of a tetrahedron also will sum to zero and thus form a set of adjoint vectors, representing BB modified Hamiltonians, that will produce the desired decoupling effect, the elimination of the interaction Hamiltonian Eq. (30). This set is determined by

\[
\sum_{k=1}^{4} \vec{a}^{(k)} = 0, \quad \text{and} \quad \vec{a}^{(k)} \cdot \vec{a}^{(k')} = \text{const} = \cos(\theta). \quad (35)
\]

This implies \( \theta = \cos^{-1}(-1/3) \) so that for Eq. (30) the set of rotations can be \( \mathbb{1}, R_3(\theta), R_3(2\pi/3), R_3(-2\pi/3) \) acting on the initial vector \( \vec{a}_1 = (0, 0, g) \), and \( \vec{a}_2 \) is the direction of \( \vec{a}_2 = R_3(\theta)\vec{a}_1 \). These rotations will take \( \vec{a} \) to different positions which correspond to the vertices of a tetrahedron (see Fig. 4). The corresponding \( U_k \) are found using Eq. (29).

\[
\vec{a}_2
\]

FIG. 4: Rotations of the Hamiltonian to vertices of the Tetrahedron. The rotated vectors are \( \vec{a}_2 = R_3(\theta), \vec{a}_3 = R_3(2\pi/3), \vec{a}_4 = R_3(-2\pi/3) \).

Note that this last example uses a set of rotations that does not satisfy the subgroup condition. This shows that the subgroup condition is sufficient, but not necessary. Though it is not a necessary condition, it is important due to its convenience. The conditions both necessary and sufficient for first order decoupling are that the sum of the modified Hamiltonians, defined by the modified adjoint vectors, sum to the desired effective Hamiltonian.

### B. Two Qubits
Now let us suppose a computation is to be performed on two-qubits using the Heisenberg exchange coupling in the presence of a collective dephasing mechanism. From the study of computation on decoherence free subspaces (DFS), we know that this is possible since the Heisenberg interaction commutes with the group elements that form the stabilizer of the DFS. Our goal here will be to interpret this condition geometrically.

Let a basis for the Lie algebra be given by

$$\lambda_j \equiv \{\sigma_i \otimes \sigma_j \}_{i,j=0}^{15}$$

and labels correspond to

$$\lambda_j, \quad j = 0, 1, 2, 3 \quad \leftrightarrow \quad \sigma_i \otimes \mathbb{1}, \quad i = 0, 1, 2, 3,$$

$$\lambda_j, \quad j = 4, 5, 6 \quad \leftrightarrow \quad \mathbb{1} \otimes \sigma_i, \quad i = 1, 2, 3,$$

$$\lambda_j, \quad j = 7, 8, 9 \quad \leftrightarrow \quad \sigma_1 \otimes \sigma_i, \quad i = 1, 2, 3,$$

$$\lambda_j, \quad j = 10, 11, 12 \quad \leftrightarrow \quad \sigma_2 \otimes \sigma_i, \quad i = 1, 2, 3,$$

$$\lambda_j, \quad j = 13, 14, 15 \quad \leftrightarrow \quad \sigma_3 \otimes \sigma_i, \quad i = 1, 2, 3.$$  

This forms an orthogonal basis with respect to the trace and has normalization given by

$$\text{Tr}(\lambda_i \lambda_j) = 4 \delta_{ij}.$$  

The Heisenberg interaction can be written as:

$$H_{\text{ex}} = J \bar{\sigma}_1 \cdot \bar{\sigma}_2 \equiv \bar{v}_1 \cdot \bar{\lambda},$$  

where \(\bar{v}_1 = (0, 0, 0, 0, 0, 0, J, 0, 0, 0, 0, J, 0, 0, 0, J)\), so that

$$H_{\text{ex}} = J(\lambda_7 + \lambda_{11} + \lambda_{15})$$

The collective dephasing is given by:

$$H_I = g(\sigma_3 \otimes \mathbb{1} + \mathbb{1} \otimes \sigma_3) \otimes B \equiv \bar{v}_2 \cdot \bar{\lambda} \otimes B,$$

where \(\bar{v}_2 = (0, 0, g, 0, 0, g, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)\). So

$$H_I = g(\lambda_3 + \lambda_6) \otimes B.$$  

Note that \(\text{Tr}(H_{\text{ex}} H_I) = 4\bar{v}_1 \cdot \bar{v}_2 = 0\) so \(\bar{v}_1 \perp \bar{v}_2\). A method for achieving the effective decoupling without the loss of the desired Heisenberg interaction is to consider the little group of \(\bar{v}_1\). (The set of rotations that leaves this vector fixed.) From that set of rotations, a subset of rotations exists which will rotate the interaction Hamiltonian since the two vectors lie in orthogonal subspaces. These rotations clearly must be about the axis defined by \(\bar{v}_1\). Thus we may express this as \(R_{\bar{v}_1}(\theta)\). To limit the number of pulses in the sequence of BB operations, a parity-kick operation is desired. This further limits our choices to those operations that rotate \(\bar{v}_2\) by an angle \(\pi\). More specifically, we seek a rotation that inverts the components in the directions \(\lambda_3\) and \(\lambda_6\), since \(\bar{v}_2 = g(\lambda_3 + \lambda_6)\). The directions \(\lambda_3\) and \(\lambda_6\) define a plane perpendicular to \(\bar{v}_1\), so that the desired rotation matrix is effectively an \(SO(3)\) rotation matrix with a non-trivial component in this plane, i.e., \(R_{\bar{v}_1}(\pi)\). It is then simple to check that the corresponding unitary operation satisfying the parity kick condition \(U \dagger H_I U = R_{\bar{v}_1}(\pi) H_I = -H_I\), is (see Fig. 4)

$$U \equiv U_1 U_2 = \exp(-i(\sigma_1^{(1)} + \sigma_2^{(2)}) \pi/2) = -\sigma_1^{(1)} \sigma_2^{(2)},$$

where the superscript indicates the qubit on which the operator acts. This interaction leaves \(H_{\text{ex}}\) unaffected and provides decoupling equivalent to Eq. (23). Note that this is a useful means for achieving the desired decoupling, because exchange interactions can be turned on during a gate operation in a solid state device and the decoupling can be achieved during the process without interruption of the desired interaction. The geometric picture shows that the above \(U\) is by no means unique; any discrete \(SO(3)\) subgroup acting in the \((\lambda_3, \lambda_6)\) plane, and whose elements add up to zero, will do.

VI. CONCLUSION

A geometric treatment of bang-bang (BB) operations has been provided. This perspective provides an intuitive picture for BB operations and their imperfections. The group averaging is made explicit through the corresponding average over a set of coordinate vectors representing rotations of the Hamiltonian; the resultant vector is the sum over all the BB modified Hamiltonians. These quantities are useful for computations, complementing the somewhat more abstract approaches of previous treatments. Since after the application of an imperfect set of decoupling operations, one is concerned with remaining error(s), such tools are useful for visualization. The often promoted Bloch sphere representation used in some of the examples treated here provides a means for extending intuition beyond the the low dimensional cases.

The usual group-theoretic symmetrization description of BB operations assumes that the set of pulses forms a discrete subgroup. We showed here that this is not a necessary condition, through the example of symmetrizing by the vertices of a tetrahedron. This fact
has been well appreciated in the context of recoupling schemes in NMR (see for example [23]). Here we wish to emphasize it in the context of quantum information processing.

The two-qubit example in Section IV provides a way in which this geometric analysis aids in the problem of finding decoupling interactions. The similarity between this example and recoupling techniques in NMR and other systems is no coincidence. The BB operations were, after all, related to NMR techniques in the earliest papers describing such interactions for quantum error correction [1]. The geometric viewpoint is quite general and provides an instructive way in which to decompose such problems. They may be particularly useful for the types of recoupling techniques one requires for reducing constraints on quantum computer proposals [24].

In the subgroup framework, our geometric picture uses a homomorphic mapping between the fundamental representation and the corresponding adjoint representation. The problem of inverting this map from the adjoint to presentation and the corresponding adjoint representation. However, for universal quantum computation, one and two qubit gates are sufficient and fortunately the discrete subgroups of unitary groups have been classified up to $SU(4)$. (See [25, 26, 27] and references therein. The determination of the appropriate subgroup could consist of searching a discrete solution space. This appears feasible since the lower order subgroups are more relevant given the strict time constraints of the BB assumptions.

Given the scarcity of qubits in current quantum computing systems, we believe that the BB method is an important tool. We hope that the work presented here will be helpful in constructing sequences of BB pulses and analyzing their imperfections.

Acknowledgments

DAL acknowledges support from PREA, PRO, the Connaught Fund, and AFOSR (F49620-01-1-0468). MSB acknowledges S. Schneider and K. Khodjasteh for help creating the graphics. We would also like to thank Lorenza Viola for several useful comments.

[1] L. Viola and S. Lloyd, Phys. Rev. A 58, 2733 (1998).
[2] D. Vitali and P. Tombesi, Phys. Rev. A 59, 4178 (1999), eprint quant-ph/9802063.
[3] P. Zanardi, Phys. Lett. A 258, 77 (1999), eprint quant-ph/9809004.
[4] L.-M. Duan and G. Guo, Phys. Lett. A 261, 139 (1999), eprint quant-ph/9807072.
[5] Velimir Jurdjevic, Geometric Control Theory (Cambridge University Press, 1997).
[6] D. Vitali and P. Tombesi, Heating and decoherence suppression using decoupling techniques (2001), eprint quant-ph/0108007.
[7] L. Viola, S. Lloyd and E. Knill, Phys. Rev. Lett. 83, 4888 (1999), eprint quant-ph/9906094.
[8] L. Viola, E. Knill, and S. Lloyd, Phys. Rev. Lett. 85, 3520 (2000), eprint quant-ph/0002072.
[9] P.W. Shor, Phys. Rev. A 52, 2493 (1995).
[10] A.M. Steane, in Introduction to Quantum Computation and Information, edited by H.K. Lo, S. Popescu and T.P. Spiller (World Scientific, Singapore, 1999), p. 184.
[11] D. Gottesman, Phys. Rev. A 57, 127 (1997), eprint quant-ph/9702026.
[12] J. Kempe, D. Bacon, D.A. Lidar, and K.B. Whaley, Phys. Rev. A 63, 042307 (2001), eprint quant-ph/0004064.
[13] E. Knill, R. Laflamme and L. Viola, Phys. Rev. Lett. 84, 2525 (2000), eprint quant-ph/9908060.
[14] P. Zanardi, Phys. Rev. A 63, 012301 (2001), eprint quant-ph/9910014.
[15] L. Viola, E. Knill and S. Lloyd, Phys. Rev. Lett. 82, 2417 (1999).
[16] G. Mahler and V.A. Weberruss, Quantum Networks: Dynamics of Open Nanostructures (Springer Verlag, Berlin, 1998), 2nd ed.
[17] Michael Tinkham, Group Theory and Quantum Mechanics (McGraw-Hill Book Company, 1964).
[18] M.S. Byrd and D.A. Lidar, in To appear in the Proceedings of the 1st International Conference on Quantum Information, ICQI01 (Rochester, NY, 2001).
[19] M.A. Nielsen and I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, UK, 2000).
[20] M. S. Byrd, J. Math. Phys. 39(11), 6125 (1998).
[21] M. S. Byrd, J. Math. Phys. 41, 1026 (2000).
[22] Todd Tilma, et al., To be published.
[23] R.R. Ernst, G. Bodenhausen and A. Wokaun, Principles of nuclear magnetic resonance in one and two dimensions (Clarendon Press, Oxford, 1987).
[24] D.A. Lidar and L.-A. Wu, Reducing Constraints on Quantum Computer Design by Encoded Selective Recoupling, (2001), eprint quant-ph/0109021.
[25] Amihay Hanany and Yang-Hui He, JHEP 0102, 27 (2001).
[26] W.M. Fairbanks, T. Fulton and W.H. Klink, J. Math. Phys. 5, 1038 (1964).
[27] D. Anselmi, M. Bill, P. Fr, L. Girardello and A. Zaffaroni, Int. J. Mod. Phys. A9, 3007 (1994).