Clinicopathological and prognostic features of surgically resected pathological stage I lung adenocarcinoma harboring epidermal growth factor receptor and K-ras mutation

Kaoru Kaseda1, Keisuke Asakura1, Akio Kazama2 & Yukihiko Ozawa3

1 Department of Thoracic Surgery, Sagamihara Kyodo Hospital, Sagamihara, Japan
2 Department of Pathology, Sagamihara Kyodo Hospital, Sagamihara, Japan
3 Yuai Clinic, Yokohama, Japan

Keywords
Adenocarcinoma; epidermal growth factor receptor; K-ras.

Correspondence
Kaoru Kaseda, Department of Thoracic Surgery, Sagamihara Kyodo Hospital, 2-8-18 Hashimoto, Midori-ku, Sagamihara, Kanagawa 252-5188, Japan.
Tel: +81 42 772 4291
Fax: +81 42 771 6709
Email: kaseda@wb4.so-net.ne.jp

Received: 18 January 2017; Accepted: 7 February 2017.
doi: 10.1111/1759-7714.12428
Thoracic Cancer 8 (2017) 229–237

Abstract
Background: This study aimed to evaluate mutations of the epidermal growth factor receptor (EGFR) and K-ras genes and their clinicopathological and prognostic features in patients with resected pathological stage I adenocarcinoma.

Methods: We examined 224 patients with surgically resected lung adenocarcinoma and analyzed the prognostic and predictive value of these mutations in 162 patients with pathological stage I adenocarcinoma.

Results: Mutations of the EGFR and K-ras genes were detected in 100 (44.6%) and 19 (8.5%) of all tumors, and in 81 (50.0%) and 17 (10.5%) of the pathological stage I tumors, respectively. EGFR mutations were significantly associated with female gender, smoking habit (never smoker), and low grade. By contrast, K-ras mutations were significantly associated with male gender, smoking habit (ever smoker), and the presence of mucinous components. No significant differences were observed in recurrence-free or overall survival between the EGFR-mutant, K-ras-mutant, and wild-type groups (five-year recurrence-free survival 77.8% vs. 87.8% vs. 79.5%; five-year overall survival 82.8% vs. 82.4% vs. 79.2%, respectively). Multivariate analysis showed that neither EGFR nor K-ras mutation was an independent prognostic factor.

Conclusions: The present study demonstrated that pathological stage I adenocarcinoma harboring EGFR and K-ras gene mutations have distinct clinicopathological features. The presence of these mutations alone were not prognostic factors in patients with resected pathological stage I adenocarcinoma.

Introduction
Lung cancer remains the leading cause of death among all cancers, and a relationship between tumor node metastasis (TNM) stage and survival has been reported. Over the past decade, the overall survival (OS) of lung cancer patients has greatly improved. This progress is largely a result of the introduction of new drugs and individualized therapy based on different histological subtypes and driver mutations that determine the biology of lung cancers and can be used to predict drug efficacy. The epidermal growth factor receptor (EGFR) gene is currently the most promising and “druggable” oncogene in non-small cell lung cancer (NSCLC). The targeting of EGFRs, especially by using EGFR-tyrosine kinase inhibitors (TKIs), has played a central role in advancing NSCLC research, treatment, and outcome prediction. Recently, EGFR-TKIs have also been shown to improve OS in certain EGFR mutations. Some specific EGFR mutations are associated with sensitivity to EGFR-TKIs. Small exon 19 deletion (del 19) and exon 21-point mutation (L858R) are the two most common mutations associated with improved outcomes after EGFR-TKI therapy. K-ras is another oncogene, in
which mutations occur more frequently in smokers. Compared with an approximate 50% mutation rate of the gene encoding \(\text{EGFR} \) in Asian patients, the mutation rate of \(\text{EGFR} \) is only 10–15% in white populations. K-\(\text{ras} \) is the most commonly mutated oncogene in lung cancers in Western countries, with activating point mutations in 15–20% of all NSCLCs and 25–35% of all adenocarcinomas. Many studies have suggested that mutated K-\(\text{ras} \) is associated with poorer OS in patients with NSCLC.

Anti-\(\text{EGFR} \) therapies are ineffective for K-\(\text{ras} \) mutant tumors, which are associated with a lack of sensitivity and poorer clinical outcomes when treated with \(\text{EGFR} \)-TKIs or chemotherapy. It is worth noting that \(\text{EGFR} \) and K-\(\text{ras} \) mutations are rarely found in the same tumor, suggesting that they may drive functionally different carcinogenetic processes. Direct targeting of K-\(\text{ras} \) has recently raised some concern, as this represents a key transduction pathway in both normal and tumor tissues. Moreover, several parallel escape mechanisms have been identified. Moving from these considerations, alternative targeting of K-\(\text{ras} \) is currently under evaluation.

The aims of the present study were to evaluate mutations of the \(\text{EGFR} \) and K-\(\text{ras} \) genes at the time of surgery and to analyze the clinical significance of these mutations in terms of their prognostic and predictive value in pathological stage I adenocarcinoma patients.

Methods

Patient eligibility

Between April 2007 and December 2013, 332 consecutive patients underwent pulmonary resection for lung cancer at the Sagamihara Kyodo Hospital, Kanagawa, Japan. We reviewed the data of 162 of these patients who were diagnosed with pathological stage I adenocarcinoma according to the seventh edition of the TNM Staging Classification for Lung Cancer. Patients who underwent incomplete resection or neoadjuvant chemotherapy/radiotherapy were excluded.

We reviewed the medical records of each patient for the following clinicopathological information: age, gender, smoking habit, serum carcinoembryonic antigen (CEA), extent of pulmonary resection, tumor location, maximum standardized uptake value (\(\text{SUV}_{\text{max}} \)) of the primary tumor, tumor size (cm), grade, pleural invasion, mucinous components, \(\text{EGFR} \) mutation status, K-\(\text{ras} \) mutation status, and pathological stage. All clinical, intraoperative, radiological, and pathological findings from two hospitals in Kanagawa, Japan (Sagamihara Kyodo Hospital and Yuai Clinic) were reviewed. The patients’ characteristics and preoperative and postoperative tumor evaluations are shown in Table 1. Histological classification of NSCLC was based on the World Health Organization classification. Preoperative and postoperative staging were based on the TNM staging system. Data collection and analyses were approved, and the need to obtain written informed consent from each patient was waived by the first author’s institutional review board.

Computed tomography

Diagnostic quality contrast-enhanced computed tomography (CT) of the chest with a slice thickness of 5 mm was performed for all patients. A tumor was deemed central if
its center was located in the inner one-third of the lung parenchyma (adjacent to the mediastinum) on transverse CT. Peripherally located tumors were identified as those centered in the outer two-thirds of the lung parenchyma on transverse CT. The maximal diameter of the lung nodules was measured on contrast-enhanced chest CT. All imaging was performed within four weeks of surgery.

Integrated ¹⁸F-fluorodeoxyglucose positron emission tomography imaging

Each patient underwent integrated ¹⁸F-fluorodeoxyglucose positron emission tomography/CT (FDG-PET/CT) imaging before surgical resection. All integrated FDG-PET/CT imaging was performed within four weeks of surgery. After fasting for six hours, FDG (3.5 MBq/kg body weight) was intravenously injected if the patient’s blood sugar level was lower than 200 mg/dL. Image acquisition commenced 60 minutes after the injection using a single PET/CT combined scanner (Eminence-SOPHIA; Shimadzu, Kyoto, Japan).²² Image emission data from the eyes to the mid-thigh area were continuously acquired over a period of approximately 20 minutes. After attenuation corrections were made for the resultimg image data, reconstruction was performed using a dynamic row-action expectation maximization algorithm.²² The reconstructed sectional images were then evaluated both visually and quantitatively using the SUVₘₐₓ inside a volume of interest (VOI) placed on the lesions. The SUVₘₐₓ was calculated as follows: ([maximum activity in VOI] / [volume of VOI]) / ([injected FDG dose] / [patient weight]). The quality of radiation measurements of the PET/CT scanner was assured by calibration in accordance with National Electrical Manufacturers Association NU-2 2001 standards.²³

Nodal uptake with an SUVₘₐₓ > 2.5 was considered positive. To determine the SUV, a cylindrical region of interest (ROI) was placed over the tumor site manually on the transaxial slice. The activity concentration within the (ROI) was placed over the tumor site manually on the hot spot transaxial slice. The activity concentration within the ROI was determined and expressed as the SUV, where SUV is the ratio of the activity in the tissue to the decay-corrected activity injected into the patient. All SUV measurements were normalized for patient body weight. SUVₘₐₓ within an ROI was used as the reference measurement.²⁴

Three experienced radiologists individually analyzed the integrated FDG-PET/CT images. Final assessment was made by consensus if the initial assessments differed.

Surgical resection

All patients underwent anatomical lung resection and radical lymphadenectomy or sublobar resection in our hospital. Thoracic surgeons at Sagamihara Kyodo Hospital performed all surgical resections and all techniques were standardized. Systematic lymph node dissection was performed in all patients according to American Thoracic Society criteria, removing at least three hilar and three mediastinal stations.

Pathological examination

Experienced pulmonary pathologists examined all resected tumor specimens. Histological classification of NSCLC was based on the World Health Organization classification. Dissected lymph nodes were histologically examined following hematoxylin and eosin staining.

Epidermal growth factor receptor (EGFR) and K-ras mutation analysis

Genomic DNA was extracted and purified from tumors embedded in paraffin blocks using the Takara DEXPAT kit (Takara Bio Inc., Kusatsu, Shiga, Japan) from materials macro-dissected from the paraffin-embedded sections. Quantification of the extracted nucleic acids and measurement of the A260/A280 ratio were performed using an ultraviolet spectrophotometer (Beckman Coulter DU800, Koto-ku, Tokyo, Japan). A common fragment analysis was used for screening to detect the deletion in exon 19 of the *EGFR* gene. Sample DNA was amplified with a FAM-labeled primer set: 5’-TGGCACCATCTCACAATTCG-3’ (forward) and 5’-AGGATGGAGATGACAGG-3’ (reverse). PCR products were separated by electrophoresis using an ABI PRISM 310 (Thermo Fisher Scientific, Yokohama, Kanagawa, Japan). When a deletion mutation was present, PCR was used to amplify the shorter DNA segment, thereby creating a new peak in the electropherogram. The deletion in exon 19 was confirmed using primers constructed to make a 147 bp product when the allele was wild type. The primer sequences were 5’-TGGCACCATCTCACAATTCG-3’ (forward) and 5’-GAAAAGGTGGC CCTGAGGTTC-3’ (reverse). A PCR-based restriction fragment length polymorphism analysis was performed to detect the K-ras mutations in codons 12 and 13. All direct sequencing was performed to detect K-ras (codons 12 and 13) mutations according to the manufacturer’s protocol for the BigDye v1.1 kit (Applied
Biosystems, Foster City, CA, USA). Sequencing was performed using the 310 Genetic Analyzer (Applied Biosystems).

Statistical analysis

Statistical analysis was performed using SPSS version 23.0 (IBM Corporation, Armonk, NY, USA). Survival curves were constructed using the Kaplan–Meier method. Recurrence-free survival (RFS) probabilities and OS rates were compared using the log-rank test. The Cox proportional hazard model was used to estimate hazard ratios (HRs) with 95% confidence intervals (CIs) for the univariate and multivariate analyses. All tests were two-sided, and P values <0.05 were considered statistically significant. Factors found to be significant in univariate analysis (P < 0.05) were included in multivariate analysis.

Results

Patient characteristics

The clinicopathological features of the 162 patients (79 women, 83 men; mean age, 68.9 years; age range 40–86 years) are listed in Table 1. Eighty-two of the patients were never smokers. The median tumor size was 2.7 cm, and the median SUV_{max} of the primary tumor was 2.3. EGFR and K-ras mutations were detected in 81 (50.0%) and 17 (10.5%) of 162 tumors, respectively. Forty-one patients with EGFR gene mutations showed an exon 19 deletion, and 40 showed an exon 21-point mutation. Seventeen patients with K-ras gene mutations showed a codon 12-point mutation, while no patients showed a codon 13-point mutation. The EGFR and K-ras gene mutations were mutually exclusive.

Correlations between the mutations and clinicopathological features were analyzed (Table 2). EGFR mutations were significantly associated with female gender, smoking habit (never smoker), and low grade. By contrast, K-ras mutations were significantly associated with male gender, smoking habit (ever smoker), and the presence of mucinous components.

Survival analysis of patients with pathological stage I adenocarcinoma after surgical resection

Among the 162 patients, five-year RFS and OS were 79.6% and 81.3%, respectively. In the survival analyses, the five-year RFS rates were 77.8% vs. 87.8% vs. 79.2% for patients with an EGFR mutation, K-ras mutation, and wild-type status, respectively (Fig 1a). The five-year OS rates were 82.8 vs. 82.4 vs. 79.2 for patients with an EGFR mutation, K-ras mutation, and wild-type status, respectively (Fig 1b). Significant differences were observed in both RFS and OS between patients with an EGFR mutation and those with wild-type genes (RFS P = 0.903, OS P = 0.883), and between patients with an EGFR mutation and those with a K-ras mutation (RFS P = 0.317, OS P = 0.952).

Univariate analysis showed that serum CEA, SUV_{max} of the tumor, pleural invasion, and pathological stage were significant unfavorable prognostic factors for RFS (P < 0.05), and that age at operation, serum CEA, and SUV_{max} of the tumor were significant unfavorable prognostic factors for OS (P < 0.3). In multivariate analysis

Variables	EGFR (n = 81)	K-ras (n = 17)	Wild (n = 64)	P
Age at operation (year)				
<70	39 (48.1%)	8 (47.0%)	30 (46.9%)	0.988
≥70	42 (51.9%)	9 (53.0%)	34 (53.1%)	
Gender				
Female	56 (69.1%)	5 (29.4%)	22 (34.3%)	<0.001
Male	25 (30.9%)	12 (70.6%)	42 (65.7%)	
Smoking habit				
Never smoking	54 (66.7%)	5 (29.4%)	21 (32.8%)	<0.001
Ever smoking	27 (33.3%)	12 (70.6%)	43 (67.2%)	
Serum CEA (ng/mL)				
≤5	69 (85.2%)	15 (82.4%)	44 (68.8%)	0.033
>5	12 (14.8%)	2 (11.8%)	20 (31.2%)	
Extent of pulmonary resection				
Sublobar resection	26 (32.1%)	4 (23.5%)	21 (32.8%)	0.754
Lobectomy or more	55 (67.9%)	13 (76.5%)	43 (67.2%)	
Tumor location				
Central	4 (4.9%)	0 (0.0%)	4 (6.2%)	0.572
Non-central	77 (95.1%)	17 (100.0%)	60 (93.8%)	
SUV_{max} of primary tumor				
≤2.3	46 (56.8%)	12 (70.6%)	40 (62.5%)	0.015
>2.3	35 (43.2%)	5 (29.4%)	40 (62.5%)	
Tumor size (cm)				
≤3	59 (72.8%)	14 (82.4%)	42 (65.7%)	0.351
>3	22 (27.2%)	3 (17.6%)	22 (34.3%)	
Grade				
1	72 (88.9%)	12 (70.6%)	37 (57.8%)	<0.001
2–4	9 (11.1%)	5 (29.4%)	27 (42.2%)	
Pleural invasion				
Absent	74 (91.4%)	17 (100.0%)	54 (84.4%)	0.130
Present	7 (8.6%)	0 (0.0%)	10 (15.6%)	
Mucinous components				
Absent	74 (91.4%)	5 (29.4%)	59 (92.2%)	<0.001
Present	7 (8.6%)	12 (70.6%)	7 (7.8%)	
Pathological stage				
Stage I A	55 (67.9%)	14 (82.4%)	34 (53.1%)	0.044
Stage IB	26 (32.1%)	3 (17.6%)	30 (46.9%)	

CEA, carcinoembryonic antigen; EGFR, epidermal growth factor receptor; SUV_{max}, maximum standardized uptake value.

K-ras mutation, and wild-type status, respectively. In multivariate analysis
pathological stage I patients with EGFR
Western populations, pathological stage I adenocarcinoma. Compared with
we retrospectively evaluated the outcomes of patients with
Discussion
Figure 1
Figure 1 (a) Recurrence-free survival curves of pathological stage I patients after pulmonary resection. Data are shown for patients with epidermal growth factor receptor (EGFR) and K-ras mutations and for those who were wild type for both genes. (b) Overall survival curves of pathological stage I patients with EGFR and K-ras mutations or both wild-type genes after pulmonary resection. adjusted for the significant univariate factors, SUVmax of the tumor remained an independent prognostic factor for RFS (P = 0.001), and age at operation and SUVmax of the tumor remained independent prognostic factors for OS (P = 0.029, 0.008; Table 4). EGFR and K-ras mutations did not affect the prognosis of patients with pathological stage I adenocarcinoma.

Discussion
We retrospectively evaluated the outcomes of patients with pathological stage I adenocarcinoma. Compared with Western populations, EGFR mutations are detected more frequently in the lung adenocarcinomas of Japanese patients, ranging from 40% to 60%. On the other hand, compared with Western populations, K-ras mutations are detected less frequently in the lung adenocarcinomas of Japanese patients. The frequency of K-ras mutation ranges from about from 7% to 16% in worldwide populations.5,30,33,34 Similarly, the frequency of K-ras mutations was 10.5% in the current study.

The presence of an EGFR mutation is closely associated with several clinicopathological features, such as gender and smoking habit. This is consistent with previous studies, which reported that EGFR gene mutations are common in lung cancers in never smokers and in women with adenocarcinoma.6,7 Several reports have described the relationship between K-ras mutation status and clinicopathological features such as gender, smoking habit, and pathological type.28,30,33,34 Similar to results reported in previous studies, the current series showed a relationship between K-ras mutation status and gender. Mucinous bronchioloalveolar carcinoma (BAC)/adenocarcinoma with bronchioloalveolar features is found in 48–76% of adenocarcinomas with K-ras mutations, and K-ras mutations are found in 28–86% of adenocarcinomas with mucinous BAC.30,36,40 In the present study, 12 (70.6%) of the 17 cases with K-ras mutations were mucinous BAC/adenocarcinoma with bronchioloalveolar features.

In lung adenocarcinoma simultaneously harboring multiple heterogeneous clones of EGFR and K-ras mutations, the effect of EGFR-TKIs may be limited to the parts carrying EGFR mutations only.51,41 Because both EGFR and K-ras mutations are thought to be early events in lung adenocarcinoma,32 the reported coexistence of EGFR and K-ras mutations only accounts for about 5% of patients with EGFR mutations.43 Takamochi et al. reported coexisting EGFR and K-ras mutations in two (2%) of 82 patients with lung adenocarcinomas.41 A previous study reported that all tumors that had responded to gefitinib had wild type K-ras,44 thereby suggesting that K-ras and EGFR mutations are mutually exclusive.45 None of the patients in our series had concomitant EGFR and K-ras mutations; this result is similar to previous reports, further suggesting that K-ras and EGFR mutations are mutually exclusive. Accordingly, combined EGFR and K-ras mutation analyses may be helpful in selecting treatment strategies for patients with lung adenocarcinomas.

We also investigated the effects of EGFR and K-ras mutation status on survival. Neither EGFR nor K-ras mutations affected the prognosis of patients with pathological stage I adenocarcinoma. The prognostic role of EGFR mutations in patients with resectable NSCLC has not been established. In their study, Mansuet-Lupo et al. did not find a significant effect on OS for patients with EGFR mutations compared with those with wild-type EGFR in
their cohort or in a subset with stage I disease.46 Hu et al. found no impact on OS in multivariate analysis when the presence or absence of an \textit{EGFR} mutation was included.47 On the other hand, in a smaller study, Russell et al. conducted molecular analysis and assessed survival outcomes in 59 patients who had undergone surgical resection of lung adenocarcinoma with N2 nodal involvement.48 Patients with acinar-predominant adenocarcinoma had significantly better survival than those with micropapillary or solid predominant adenocarcinoma. This trend suggests that patients with resected micropapillary tumors harboring an activating \textit{EGFR} mutation have similar survival outcomes to patients with acinar predominant tumors, whereas patients with micropapillary predominant tumors with wild-type \textit{EGFR} have poorer outcomes.

\textit{Yoshizawa} et al. did note a statistically and clinically significant improvement in five-year OS rates in patients with \textit{EGFR} mutations, but found no difference in five-year

Variables	RFS HR (95% CI)	\(P \)	OS HR (95% CI)	\(P \)
Age at operation (year)				
<70	1		2.33 (1.06–5.09)	0.034
\(\geq 70 \)	1.11 (0.57–2.15)	0.767		
Gender				
Female	1		1.03 (0.72–1.48)	0.871
Male	1.16 (0.59–2.25)	0.666		
Smoking habit				
Never smoker	1		1.25 (0.87–1.81)	0.224
Ever smoker	1.20 (0.86–1.68)	0.278		
Serum CEA (ng/mL)				
\(\leq 5 \)	1		2.61 (1.24–5.48)	0.012
\(> 5 \)	2.04 (1.01–4.17)	0.049		
Extent of pulmonary resection				
Sublobar resection	1			
Lobectomy or more	0.78 (0.53–1.16)	0.227	0.79 (0.52–1.21)	0.289
Tumor location				
Central	1			
Non-central	0.93 (0.45–1.89)	0.833	0.57 (0.78–4.21)	0.584
\(\text{SUV}_{\text{max}} \) of primary tumor \(\leq 2.3 \)	1			
\(\text{SUV}_{\text{max}} \) of primary tumor > 2.3	6.08 (3.52–14.65)	3.85 (1.65–8.98)	0.002	
Tumor size (cm)				
\(\leq 3 \)	1			
\(> 3 \)	1.61 (0.81–3.19)	<0.001	1.58 (0.75–3.33)	0.225
Grade				
1	1	0.175		
2–4	1.31 (0.62–2.71)	0.482	1.18 (0.53–2.66)	0.687
Pleural invasion				
Absent	1			
Present	2.42 (1.06–5.54)	0.037	1.92 (0.73–5.03)	0.182
Mucinous components				
Absent	1			
Present	1.21 (0.71–2.03)	0.487	1.06 (0.62–1.81)	0.817
EGFR mutation				
Absent	1			
Present	1.18 (0.61–2.29)	0.632	1.02 (0.71–1.46)	0.911
K-ras mutation				
Absent	1			
Present	2.06 (0.49–8.59)	0.321	1.02 (0.56–1.86)	0.959
Pathological stage				
Stage IA	1			
Stage IB	2.31 (1.19–4.51)	0.014	1.69 (0.82–3.46)	0.153

CEA, carcinoembryonic antigen; CI, confidence interval; EGFR, epidermal growth factor receptor; HR, hazard ratio; OS, overall survival; RFS, recurrence-free survival; SUV\(_{\text{max}}\), maximum standardized uptake value.
In conclusion, the present study demonstrated that surgically resected pathological stage I adenocarcinoma harboring EGFR and K-ras gene mutations has distinct clinicopathological features. The presence of an EGFR or a K-ras mutation alone was not a prognostic factor in patients with surgically resected pathological stage I adenocarcinoma.

Acknowledgments

We acknowledge the assistance of Mr. Tomoyuki Kanno, Yuai Clinic, in the acquisition of the study data.

Disclosure

No authors report any conflict of interest.

References

1 Sheel AR, McShane J, Poullis MP. Survival of patients with or without symptoms undergoing potentially curative resections for primary lung cancer. Ann Thorac Surg 2013; 95: 276–84.

2 Sandler A, Gray R, Perry MC et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. (Published erratum appears in N Engl J Med 2007; 356: 318.) N Engl J Med 2006; 355: 2542–50.

3 Reck M, Heigener DF, Mok T, Soria JC, Rabe KF. Management of non-small-cell lung cancer: Recent developments. Lancet 2013; 382: 709–19.

4 Yang JC, Wu YL, Schuler M et al. Afatinib versus cisplatin-based chemotherapy for EGFR mutation-positive lung adenocarcinoma (LUX-Lung 3 and LUX-Lung 6): Analysis of overall survival data from two randomised, phase 3 trials. Lancet Oncol 2015; 16: 141–51.

5 Lynch TJ, Bell DW, Sordella R et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 2004; 350: 2129–39.

6 Paes JG, Jänecke PA, Lee JC et al. EGFR mutations in lung cancer: Correlation with clinical response to gefitinib therapy. Science 2004; 304: 1497–500.

7 Pao W, Miller V, Zakowski M et al. EGFR receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci USA 2004; 101: 13306–11.

8 Genova C, Rijavec E, Barletta G et al. Afatinib for the treatment of advanced non-small-cell lung cancer. Expert Opin Pharmacother 2014; 15: 889–903.

9 Tartarone A, Lazzari C, Lerose R et al. Mechanisms of resistance to EGFR tyrosine kinase inhibitors gefitinib/
erlotinib and to ALK inhibitor crizotinib. Lung Cancer 2013; 81: 328–36.

10 Mascaux C, Iannino N, Martin B et al. The role of RAS oncogene in survival of patients with lung cancer: A systematic review of the literature with meta-analysis. Br J Cancer 2005; 92: 131–9.

11 Shepherd FA, Domerg C, Hainaut P et al. Pooled analysis of the prognostic and predictive effects of KRAS mutation status and KRAS mutation subtype in early-stage resected non-small-cell lung cancer in four trials of adjuvant chemotherapy. J Clin Oncol 2013; 31: 2173–81.

12 Dogan S, Shen R, Ang DC et al. Molecular epidemiology of EGFR and KRAS mutations in 3,026 lung adenocarcinomas: Higher susceptibility of women to smoking-related KRAS-mutant cancers. Clin Cancer Res 2012; 18: 6169–77.

13 Iminiinski M, Berger AH, Hammerman PS et al. Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell 2012; 150: 1107–20.

14 Meng D, Yuan M, Li X et al. Prognostic value of K-RAS mutations in patients with non-small cell lung cancer: A systematic review with meta-analysis. Lung Cancer 2013; 81: 1–10.

15 Pao W, Wang TY, Riely GJ et al. KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. PLoS Med 2005; 2: e17.

16 De Roock W, Claes B, Bernasconi D et al. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: A retrospective consortium analysis. Lancet Oncol 2010; 11: 753–62.

17 Eberhard DA, Johnson BE, Amler LC et al. Mutations in the epidermal growth factor receptor and in KRAS are parallel prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. J Clin Oncol 2005; 23: 5900–9.

18 Vasan N, Boyer JL, Herbst RS. A RAS renaissance: Emerging targeted therapies for KRAS-mutated non-small cell lung cancer. Clin Cancer Res 2014; 20: 3921–30.

19 Travis WD, Golby TV, Corrin Y, Shimosato Y, Brambilla E. Histological Typing of Lung and Pleural Tumours, 3rd edn. Springer, Berlin 1999.

20 Goldstraw P, Crowley J, Chansky K et al. The IASLC Lung Cancer Staging Project: Proposals for the revision of the TNM stage groupings in the forthcoming (seventh) edition of the TNM classification of malignant tumors. (Published erratum appears in J Thorac Oncol 2007; 2: 985.) J Thorac Oncol 2007; 2: 706–14.

21 Matsumoto K, Kitamura K, Mizuta T et al. Performance characteristics of a new 3-dimensional continuous-emission and spiral-transmission high-sensitivity and high-resolution PET camera evaluated with the NEMA NU 2-2001 standard. J Nucl Med 2006; 47: 83–90.

22 Kitamura K, Ishikawa A, Mizuta T et al. 3D continuous emission and spiral transmission scanning for high-throughput whole-body PET. Nuclear Science Symposium Conference Record, 2004; IEEE 2004, Rome, Italy; Vol. 5: 2801–5.

23 The Association of Electrical Equipment and Medical Imaging Manufacturers. Performance Measurements of Positron Emission Tomographs. NEMA Standards Publication NU 2–2001. NEMA, Rosslyn, VA 2001.

24 Nabi HA, Zubeldia JM. Clinical applications of 18F-FDG in oncology. J Nucl Med Technol 2002; 30: 3–9.

25 Mitsudomi T, Yatabe Y. Mutations of the epidermal growth factor receptor gene and related genes as determinants of epidermal growth factor receptor tyrosine kinase inhibitors sensitivity in lung cancer. Cancer Sci 2007; 98: 1817–24.

26 Kosaka T, Yatabe Y, Onozato R, Kuwano H, Mitsudomi T. Prognostic implication of EGFR, KRAS, and TP53 gene mutations in a large cohort of Japanese patients with surgically treated lung adenocarcinoma. J Thorac Oncol 2009; 4: 22–9.

27 Hiramatsu M, Ninomiya H, Inamura K et al. Activation status of receptor tyrosine kinase downstream pathways in primary lung adenocarcinoma with reference of KRAS and EGFR mutations. Lung Cancer 2010; 70: 94–102.

28 Tomizawa K, Suda K, Onozato R et al. Prognostic and predictive implications of HER2/ERBB2/neu gene mutations in lung cancers. Lung Cancer 2011; 74: 139–44.

29 Sasaki H, Shimizu S, Endo K et al. EGFR and erbB2 mutation status in Japanese lung cancer patients. Int J Cancer 2006; 118: 180–4.

30 Kakegawa S, Shimizu K, Sugano M et al. Clinicopathological features of lung adenocarcinoma with KRAS mutations. Cancer 2011; 117: 4257–66.

31 Takano T, Fukui T, Ohe Y et al. EGFR mutations predict survival benefit from gefitinib in patients with advanced lung adenocarcinoma: A historical comparison of patients treated before and after gefitinib approval in Japan. J Clin Oncol 2008; 26: 5589–95.

32 Shigematsu H, Lin L, Takahashi T et al. Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. J Natl Cancer Inst 2005; 97: 339–46.

33 Sugio K, Ishida T, Yokoyama H, Inoue T, Sugimachi K, Sasazuki T. Ras gene mutations as a prognostic marker in adenocarcinoma of the human lung without lymph node metastasis. Cancer Res 1992; 52: 2903–6.

34 Yatabe Y, Koga T, Mitsudomi T, Takahashi T. CK20 expression, CDX2 expression, K-ras mutation, and goblet cell morphology in a subset of lung adenocarcinomas. J Pathol 2004; 203: 645–52.

35 Tam IY, Chung LP, Suen WS et al. Distinct epidermal growth factor receptor and KRAS mutation patterns in non-small cell lung cancer patients with different tobacco exposure and clinicopathologic features. Clin Cancer Res 2006; 12: 1647–53.

36 Sakuma Y, Matsukuma S, Yoshihara M et al. Distinctive evaluation of nonmucinous and mucinous subtypes of...
bronchioloalveolar carcinomas in EGFR and K-ras gene-mutation analyses for Japanese lung adenocarcinomas: Confirmation of the correlations with histologic subtypes and gene mutations. *Am J Clin Pathol* 2007; **128**: 100–8.

37 Finberg KE, Sequist LV, Joshi VA et al. Mucinous differentiation correlates with absence of EGFR mutation and presence of KRAS mutation in lung adenocarcinomas with bronchioloalveolar features. *J Mol Diagn* 2007; **9**: 320–6.

38 Wislez M, Antoine M, Baudrin L et al. Non-mucinous and mucinous subtypes of adenocarcinoma with bronchioloalveolar carcinoma features differ by biomarker expression and in the response to gefitinib. *Lung Cancer* 2010; **68**: 185–91.

39 Marchetti A, Butitta F, Pellegrini S et al. Bronchioloalveolar lung carcinomas: K-ras mutations are constant events in the mucinous subtype. *J Pathol* 1996; **179**: 254–9.

40 Casali C, Rossi G, Marchioni A et al. A single institution-based retrospective study of surgically treated bronchioloalveolar adenocarcinoma of the lung: Clinicopathologic analysis, molecular features, and possible pitfalls in routine practice. *J Thorac Oncol* 2010; **5**: 830–6.

41 Takamochi K, Oh S, Matsuoka J, Suzuki K. Clonality status of multifocal lung adenocarcinomas based on the mutation patterns of EGFR and K-ras. *Lung Cancer* 2012; **75**: 313–20.

42 Massarelli E, Varella-Garcia M, Tang X et al. KRAS mutation is an important predictor of resistance to therapy with epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer. *Clin Cancer Res* 2007; **13**: 2890–6.

43 Takeda M, Okamoto I, Fujita Y et al. De novo resistance to epidermal growth factor receptor-tyrosine kinase inhibitors in EGFR mutation-positive patients with non-small cell lung cancer. *J Thorac Oncol* 2010; **5**: 399–400.

44 Kosaka T, Yatabe Y, Endoh H et al. Analysis of epidermal growth factor receptor gene mutation in patients with non-small cell lung cancer and acquired resistance to gefitinib. *Clin Cancer Res* 2006; **12**: 5764–9.

45 Onitsuka T, Uramoto H, Nose N et al. Acquired resistance to gefitinib: The contribution of mechanisms other than the T790M, MET, and HGF status. *Lung Cancer* 2010; **68**: 198–203.

46 Mansuet-Lupo A, Bobbio A, Blons H et al. The new histologic classification of lung primary adenocarcinoma subtypes is a reliable prognostic marker and identifies tumors with different mutation status: The experience of a French cohort. *Chest* 2014; **146**: 633–43.

47 Hu H, Pan Y, Li Y et al. Oncogenic mutations are associated with histological subtypes but do not have an independent prognostic value in lung adenocarcinoma. *Onco Targets Ther* 2014; **7**: 1423–37.

48 Russell PA, Barnett SA, Walkiewicz M et al. Correlation of mutation status and survival with predominant histologic subtype according to the new IASLC/ATS/ERS lung adenocarcinoma classification in stage III (N2) patients. *J Thorac Oncol* 2013; **8**: 461–8.

49 Yoshizawa A, Sumiyoshi S, Sonobe M et al. Validation of the IASLC/ATS/ERS lung adenocarcinoma classification for prognosis and association with EGFR and KRAS gene mutations: Analysis of 440 Japanese patients. *J Thorac Oncol* 2013; **8**: 52–61.

50 Marks JL, Broderick S, Zhou Q et al. Prognostic and therapeutic implications of EGFR and KRAS mutations in resected lung adenocarcinoma. *J Thorac Oncol* 2008; **3**: 111–6.