Screening of okra, *Abelmoschus esculentus* L. (Moench) germplasm collections against two spotted spider mite, *Tetranychus urticae* (Koch) based on damage grading index

T. D. Jayabal¹, C. Chinniah² and M. Kalyasundaram³

Department of Agricultural Entomology, Agricultural College and Research Institute, Madurai – 625104, Tamil Nadu, India.
*E-Mail: tdjayabal24@gmail.com

Abstract

The investigation on screening forty one germplasm collections of okra for their reaction against two spotted spider mite *Tetranychus urticae* (Koch) by damage grading index and mean mite population/cm² expressed a diverse reaction among the tested entries. The results revealed that the entry viz., IC 117238 which recorded mean mite population of 35.6 /cm² leaf area was found to be highly susceptible to TSSM with the damage rating of four (0-4 Scale). The seven highly resistant okra germplasm collections (IC 128092, IC 128095, EC 305743, EC 306737, IC 031850, IC 105742 and IC 117235) which recorded the minimum mite population ranging between 13 and 15.67/cm² leaf area were categorized under the grade zero and could be exploited in developing a resistant source against two spotted spider mite *Tetranychus urticae*.

Keywords

Screening; Okra germplasm; Damage Grading Index; *Tetranychus urticae*

INTRODUCTION

Okra (*Abelmoschus esculentus* L. (Moench)) is an important vegetable crop grown in tropical Asia and sub-Saharan Africa. The production of okra is estimated to be 8.06 million tons annually in the world. India is the world’s leading okra producer (72 % of total production) (FAO, 2011). The estimated loss in the yield of okra fruits due to *T. urticae* damage ranged from 7 - 48 per cent. *T. urticae* caused 17 - 46 per cent yield loss in okra during 1991-92 (Hussey and Parr, 1963). The injury and the resultant yield loss due to mite is related to many variables like the intensity of attack, weather conditions, the species of mite, the crop species and even the variety etc. (Van de Vrie et al., 1972). Plant resistance to the pest attack can be caused by antixenosis, antibiosis, tolerance, or sum combinations of these mechanisms (Painter 1951; Kogan and Ortmann 1978). Host plants have main effects on development, mortality and fecundity rates of mites. Therefore, Knowledge of cultivar susceptibility or resistance might be a fundamental component of an integrated pest management program (IPM) for any crop (Narayanan, and Muthiah, 2017). Such information can be used in developing an insect resistant cultivar (Jyoti et al., 2001) or designing and good assays for breeding new varieties (Stoner and Shelton, 1988).

The intention of this study was to screen certain germplasm collections of okra and local popular varieties for their reaction against two spotted spider mite *Tetranychus urticae* (Koch) in screen house condition.

MATERIALS AND METHODS

Okra germplasms including local popular varieties, landraces, hybrids and cultivars were collected from farmers, seed venders, National Bureau of Plant Genetic Resources (NBPRG) and Tamil Nadu Agricultural University (TNAU). The 41 okra germplasm obtained from various sources were utilized for screening studies. Preliminary screening of all okra germplasm collections
was carried out for reaction against the infestation by two spotted spider mites. The seedlings were raised in pots and were thinned later (ten days after sowing) in order to maintain uniform population in all the pots. Mite cultures were introduced (Active forms) @ 30 mites per pot which were allowed for 10 days for proper establishment. The damage to host plants by mite feeding activity was judged on the basis of leaf spotting and loss of chlorophyll.

A rating method as developed by Palanisamy et al (1984) was adopted to estimate the relative resistance / susceptibility of the screening materials. The test entries were evaluated / graded visually based on the injury levels exhibited on the leaves as suggested by (Palanisamy et al, 1984). The grading was done on 55, 75 and 95 days after sowing both in pot culture and field experiments.

Injury level	Category	Grade
Plants with no feeding injury (immune)	Highly resistant	0
Plants with slight injury – a few chlorotic spots on the leaves and a few mites on some leaves	Resistant	1
Plants showing moderately high degree of injury, mites abundant on many leaves and leaves silvered by feeding and leaf size reduced	Moderately resistance	2
Plants showing very high injury, curling of leaves and stunting of plants	Susceptible	3
Plants showing severe damage and defoliation and/or death of plants	Highly susceptible	4

In the screening experiment two spotted spider mite Tetanychus urticae population was assessed 10 days after the inoculation and recorded at 10 days interval starting from 40 DAS to 90 DAS. Mite populations were assessed in one cm² area on top, middle and bottom leaves of each plant from each test entries, covering sufficient replications (Table 3).

The mean population data were subjected to square root transformation. The data thus obtained were subjected to Analysis of Variance (ANOVA) using the software AGRES. The significance of differences was tested by F-tests, while the significance of difference between the treatment mean values was compared by LSD at 5 per cent probability.

RESULTS AND DISCUSSION
The screening of 41 okra germplasm collections against two spotted spider mite T. urticae revealed that the highest mean mite population (Table 1) was recorded on IC 117238 (35.67 no’s/cm² leaf area) which significantly differed from other entries screened. This germplasm was also found to be highly susceptible to two spotted spider mite T. urticae infestation with damage rating of four (Plate 1). Of the 41 germplasm entries tested, the damage score of four was recorded with reference to the following five entries IC 014600, IC 022232, IC 034190C, IC 117238 and Indus 161 (popular hybrid) which were found to be highly susceptible (Table 2). The results were in agreement with the findings of Gulati (2004), who reported that among six cultivars of okra tested, Pusa Sawani and Varsha Uphar harboured the highest numbers of T. cinnabarinus population, whereas Sanjam was found to be the least susceptible to mite attack.

Table 2. Categorization of okra germplasm collections (by damage grading index)

Grade	Reaction	No. of germplasm	Accession/variety/ hybrid
0	Highly resistant	7	IC 128092, IC 128095, EC 305743, EC 306737, IC 031850, IC 105742, IC 117235.
1	Resistant	15	IC 043748, IC 282278, , IC 140927, EC 329421, EC 305771, IC 003307, IC 003573, IC 018532, IC 018537, IC 018540, IC 022285, IC 033854C, IC 099746, IC 117228, IC 117260.
2	Moderately resistant	7	IC 128122, IC 015435, IC 045132, IC 469666 , IC 205147, Sakthi, Red bhendi.
3	Susceptible	7	IC 034190A, IC 111514, IC 112476, IC 117308, Arka anamika, Mahyco 10, Bhendi hybrid CO 4.
4	Highly susceptible	5	IC 014600, IC 022232, IC 034190C, IC 117238, Indus 161.
Table 1. Screening of okra germplasm collections (Damage grading index by Palanisamy et al., 1984)

S.NO	Okra entries	Mean damage grading index**	Overall mean damage index	Reaction*		
		55 DAS	75 DAS	90 DAS		
1	IC 043748	0.33	0.33	0.33	1.00	R
2	IC 282278	0.33	1.00	0.00	1.33	R
3	IC 140927	0.33	0.67	0.33	1.33	R
4	IC 128092	0.00	0.33	0.33	0.67	HR
5	IC 128095	0.00	0.00	0.33	0.33	HR
6	IC 128122	0.67	0.67	1.33	2.67	MR
7	EC 329421	0.33	0.67	0.67	1.67	R
8	EC 305743	0.33	0.00	0.00	0.33	HR
9	EC 305771	0.67	0.33	0.33	1.33	R
10	EC 306737	0.33	0.00	0.33	0.67	HR
11	IC 003307	0.33	0.33	0.67	1.33	R
12	IC 003573	0.33	1.00	0.00	1.33	R
13	IC 014600	1.33	1.33	1.33	4.00	HS
14	IC 015435	0.67	0.67	1.33	2.67	MR
15	IC 018532	0.33	0.67	0.33	1.33	R
16	IC 018537	0.33	0.33	1.00	1.67	R
17	IC 018540	0.33	0.00	1.33	1.67	R
18	IC 022232	1.33	1.33	1.33	4.00	HS
19	IC 022285	0.33	0.33	0.33	1.00	R
20	IC 031850	0.00	0.00	0.33	0.33	HR
21	IC 033854C	0.67	0.33	0.33	1.33	R
22	IC 034190A	0.67	1.00	1.33	3.00	S
23	IC 034190C	1.33	1.33	1.33	4.00	HS
24	IC 045132	0.67	1.00	0.67	2.33	MR
25	IC 099746	0.33	0.33	1.00	1.67	R
26	IC 105742	0.33	0.00	0.33	0.67	HR
27	IC 111514	1.00	1.00	1.33	3.33	S
28	IC 112476	0.67	1.00	1.33	3.00	S
29	IC 117228	0.33	0.33	0.33	1.00	R
30	IC 117235	0.33	0.00	0.00	0.33	HR
31	IC 117238	1.33	1.33	1.33	4.00	HS
32	IC 117260	0.33	0.67	0.67	1.67	R
33	IC 117308	0.67	1.33	1.33	3.33	S
34	IC 205147	1.00	1.00	0.67	2.67	MR
35	IC 469666	0.67	0.67	1.33	2.67	MR
36	Arka anamika	1.00	1.33	1.33	3.67	S
37	Indus 161	1.33	1.33	1.33	4.00	HS
38	Red bhendi	0.67	0.67	0.67	2.00	MR
39	Mahyo 10	0.67	1.33	1.33	3.33	S
40	Sakthi	0.67	1.00	0.67	2.33	MR
41	Bhendi hybrid CO 4	1.00	1.00	1.00	3.00	S

**Each value is the mean of three replications.
* 0 (0-0.9) – Highly resistant (HR) , * 1 (1-1.9) –Resistant (R)
* 2(2-2.9) – Moderately resistance (MR), * 3 (3-3.9) – Susceptible (S), * 4(4) – Highly susceptible (HS)

The minimum mite population of 13 /cm² leaf area which was categorized under grade zero (Table 2). Similar screening of okra varietal collections against two spotted spider mite T. urticae by damage grading index had also been reported by Sheeba et al. (2011), seven varieties of bhendi were screened for their tolerance to the spider mite, T. cinnabarinus by Ghosh et al. (1995) who reported that the variety GOH-3 was tolerant. Manual et al. (2007) also reported the reaction of seven okra lines against T. neocaledonicus in Pusa and revealed that the lines viz., Arka Anamika, Arka Abhay, D-1-87-5, D-1-87-16 and HRB-55 had a lower infestation while the cultivar, Pusa Sawani
showed a comparatively low infestation. Jaydeb et al. (1995) had also reported similar findings that the bhendi variety GOH-3 was tolerant to *T. cinnabarinus* infestation at Kalyani, West Bengal in screen house condition.

Table 3. Population of two spotted spider mite *T. urticae* Koch on okra germplasm collections

S.NO	Okra entries	50 DAS	70 DAS	90 DAS	Overall Mean
		50 DAS	70 DAS	90 DAS	
1	IC 043748	6.00	16.00	30.00	17.33
2	IC 282278	8.00	19.00	34.00	20.33
3	IC 140927	6.00	17.00	31.00	18.00
4	IC 128092	2.00	11.00	26.00	13.00
5	IC 128095	3.00	13.00	28.00	14.67
6	IC 128122	10.00	21.00	35.00	22.00
7	EC 329421	8.00	19.00	35.00	20.67
8	EC 305743	1.00	12.00	27.00	13.33
9	EC 305771	9.00	18.00	34.00	20.33
10	EC 306737	4.00	14.00	29.00	15.67
11	IC 003307	7.00	18.00	33.00	19.33
12	IC 003573	6.00	17.00	30.00	17.67
13	IC 014600	20.00	32.00	45.00	32.33
14	IC 015435	11.00	23.00	37.00	23.67
15	IC 018532	9.00	19.00	35.00	21.00
16	IC 018537	8.00	17.00	32.00	19.00
17	IC 018540	6.00	16.00	31.00	17.67
18	IC 022232	21.00	33.00	42.00	32.00
19	IC 022285	7.00	18.00	32.00	19.00
20	IC 031850	4.00	13.00	29.00	15.33
21	IC 033854C	6.00	17.00	32.00	18.33
22	IC 034190A	15.00	26.00	40.00	27.00
23	IC 034190C	23.00	34.00	44.00	33.67
24	IC 045132	12.00	24.00	38.00	24.67
25	IC 099746	7.00	15.00	33.00	18.33
26	IC 105742	2.00	12.00	27.00	13.67
27	IC 111514	16.00	27.00	42.00	28.33
28	IC 112476	18.00	28.00	43.00	29.67
29	IC 117228	8.00	20.00	34.00	20.67
30	IC 117235	1.00	11.00	28.00	13.33
31	IC 117238	22.00	35.00	50.00	35.67
32	IC 117260	9.00	17.00	35.00	20.33
33	IC 117308	17.00	28.00	44.00	29.67
34	IC 205147	13.00	24.00	39.00	25.33
35	IC 469666	14.00	25.00	38.00	25.67
36	Arka anamika	18.00	29.00	42.00	29.67
37	Indus 161	27.00	32.00	44.00	34.33
38	Red bhendi	11.00	23.00	39.00	24.33
39	Mayco 10	17.00	24.00	44.00	28.33
40	Sakthi	15.00	24.00	40.00	26.33
41	Co 4 Bhendi	19.00	30.00	45.00	31.33

*CD (p=0.05) 0.06 0.08 0.13 0.09 0.03 0.04 0.06 0.05

*Each value is the mean of three replications.

Figures in parentheses are square root transformed values.

In a column, means sharing similar letter(s) is /are not significantly different by LSD at P=0.05%.
The seven entries viz., IC 128122, IC 015435, IC 045132, IC 469666, IC 205147, Sakthi and Red bhendi which recorded damage score below 3 (2 to 2.26) were categorized as moderately resistant (Table 2) and the mean mite population ranged from 22 to 26.33 /cm² leaf area (Fig. 1) (Table 3). In agreement with the reports of Sahayaraj et al. (2003), whereas EC 28427, IC 141065, IC 90049 were rated as resistant and EC 329364, IC 140977, TC 90074 were rated as moderately resistant. Nain et al. (2017) also evaluated 25 genotypes of okra for field resistance against Tetranychus cinnabarinus (Boisduval) and reported the two for each least susceptible category (HB-02-14-1-1 and HB-02-17-1) and moderately susceptible category (HTB-1-17-5; HRB-107-4-1), and highly susceptible category (HTB-6-15-3-7;BB1).

From the preliminary screening of okra germplasm collections against T. urticae, the resistant (IC 128092, IC 128095, EC 305743, EC 306737, IC 031850, IC 105742, IC 117235) and susceptible (IC 014600, IC 022232, IC 034190, IC 117238, Indus 161) okra germplasm collections identified would be tested in the field condition and incorporated in developing a resistant variety especially against T. urticae.

ACKNOWLEDGMENT
We gladly acknowledge NBPGR, New Delhi for sharing the precious germplasm materials for screening study.

REFERENCES

Hussey, N. W. and W. J. Parr. 1963. The effect of glasshouse red spider mite (Tetranychus urticae Koch) on the yield of cucumbers. J. Hort. Sci. 38: 255- 263. [Cross Ref]

Jaydeb, G., A. B. Mukherjee and P. K. Sarkar. 1995. Physical and chemical basis of resistance in bhendi genotypes against red spider mite. Ann. Entomol. 13(1): 63-66.

Jyoti, J. L., A. M. Shelton, and E. D. Earle. 2001. Identifying sources and mechanisms of resistance in crucifers for control of cabbage maggot (Diptera: Anthomyiidae). J. Econ. Entomol. 94(4): 942-949. [Cross Ref]

Kogan M. Ortman EF. 1978. Antixenosis—a new term proposed to replace painter’s ‘non-preference’ modality of resistance. Bull Entomol Soc Am. 24:175–176. [Cross Ref]

Manual, S. K., S. B. Sah and S. C. Gupta. 2007. Field screening of some okra cultivars against red spider mite, Tetranychus neocaledonicus Andre. Journal of Applied Zoological Researches. 18(1):59-61.

Nain, J. and Rathee, M. 2017. Effect of leaf morphology and phytochemistry of okra on development and survival of two spotted spider mite, Tetranychus urticae Koch. Indian J Entomol. 79(1): 32-36. [Cross Ref]

Narayanan, U. S. and Muthiah, C. 2017. In vivo screening of okra (Abelmoschus esculentus L.) germplasm collections against sucking pests. Electronic Journal of Plant Breeding, 8(1), 187-192. [Cross Ref]

Painter RH .1951. Insect resistance in crop plants. Macmillan Press, New York.pp172-186. [Cross Ref]

Palanisamy, S. 1984. Ecology and host resistance of carmine spider mite, Tetranychus cinnabarinus (Boisduval) in brinjal. Unpublished Ph.D. dissertation, Tamil Nadu Agricultural University, Coimbatore. 148. p.

Gulati, R. 2004. Incidence of Tetranychus cinnabarinus (Boisd.) infestation in different varieties of Abelmoschus esculentus (L.). Ann. Pl. Prot. Sci. 12: 45-47.

Sahayaraj, K., J.N. Prabhu, and P. Martin. 2003. Screening of mite resistant okra varieties based on morphology and phytochemistry. Shashpa, 10(2): 147-150.

Sheeba, S., J. Roseleen and K. Ramaraju. 2011. Effect of okra entries on biology of two spotted spider mite Tetranychus urticae (Koch), Ann. Pl. Protec. Sci. 19(1): 67-70.

Stoner, Kimberly A. and A. M. Shelton. 1988. Role of nonpreference in the resistance of cabbage varieties to the onion thrips (Thysanoptera: Thripidae). J. Econ. Entomol. 81(4): 1062-1067. [Cross Ref]

Van De Vrie, M., J. A. McMurtry and C. B. Huffaker. 1972. Ecology of Tetranychid mites and their natural enemies: A review. Ill. Biology, ecology and pest status and host-plant relations of tetranychids. Hilgardia, 41: 343-432. [Cross Ref]