Prevalence and burden of HBV co-infection among people living with HIV: A global systematic review and meta-analysis

Lucy Platt1 | Clare E. French2 | Catherine R. McGowan1,3 | Keith Sabin4 | Erin Gower5 | Adam Trickey2 | Bethan McDonald6,7,8 | Jason Ong8 | Jack Stone2 | Philippa Easterbrook9 | Peter Vickerman2

1Faculty of Public Health & Policy, London School of Hygiene & Tropical Medicine, London, UK
2NIHR Health Protection Research Unit in Evaluation of Interventions, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
3Humanitarian Public Health Technical Unit, Save the Children UK, London, UK
4UNAIDS, Geneva, Switzerland
5Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, UK
6WHO and National Institute for Health Research Health Protection Research Unit in Evaluation of Interventions

Abstract
Globally, in 2017 35 million people were living with HIV (PLHIV) and 257 million had chronic HBV infection (HBsAg positive). The extent of HIV-HBsAg co-infection is unknown. We undertook a systematic review to estimate the global burden of HBsAg co-infection in PLHIV. We searched MEDLINE, Embase and other databases for published studies (2002-2018) measuring prevalence of HBsAg among PLHIV. The review was registered with PROSPERO (#CRD42019123388). Populations were categorized by HIV-exposure category. The global burden of co-infection was estimated by applying regional co-infection prevalence estimates to UNAIDS estimates of PLHIV. We conducted a meta-analysis to estimate the odds of HBsAg among PLHIV compared to HIV-negative individuals. We identified 506 estimates (475 studies) of HIV-HBsAg co-infection prevalence from 80/195 (41.0%) countries. Globally, the prevalence of HIV-HBsAg co-infection is 7.6% (IQR 5.6%-12.1%) in PLHIV, or 2.7 million HIV-HBsAg co-infections (IQR 2.0-4.2). The greatest burden (69% of cases; 1.9 million) is in sub-Saharan Africa. Globally, there was little difference in prevalence of HIV-HBsAg co-infection by population group (approximately 6%-7%), but it was slightly higher among people who inject drugs (11.8% IQR 6.0%-16.9%). Odds of HBsAg infection were 1.4 times higher among PLHIV compared to HIV-negative individuals. There is therefore, a high global burden of HIV-HBsAg co-infection, especially in sub-Saharan Africa. Key prevention strategies include infant HBV vaccination, including a timely birth-dose. Findings also highlight the importance of targeting PLHIV, especially high-risk groups for testing, catch-up HBV vaccination and other preventative interventions. The global scale-up of antiretroviral therapy (ART) for PLHIV using a tenofovir-based ART regimen provides an opportunity to simultaneously treat those with HBV co-infection, and in pregnant women to also reduce mother-to-child transmission of HBV alongside HIV.
1 | INTRODUCTION

Chronic hepatitis B (CHB) infection, defined as persistence of hepatitis B surface antigen (HBsAg), is a major public health problem resulting in an estimated 900,000 deaths in 2015.1-4 Although HBV can be prevented with vaccination, in 2015, there were an estimated 257 million persons chronically infected.5 Between 20 and 30% of those with chronic infection develop complications, mainly cirrhosis and hepatocellular carcinoma (HCC).5 CHB accounts for 43% of cases of HCC and 40% of cirrhosis, with much higher proportions in lower middle-income countries,6 and 5%-10% of liver transplants in high-income countries.6 Age is a key determinant of the risk of chronic infection: chronicity is common following acute infection in neonates (around 90%) and young children under the age of 5 years (20–60%), but occurs rarely (<5%) when infection is acquired in adulthood.7,8 Worldwide, most persons with CHB were infected at birth or in early childhood.9 The highest prevalence of HBsAg (>5%) is in sub-Saharan Africa, East Asia, parts of Balkans, the Pacific Islands and the Amazon Basin.10 Regional variation exists in the epidemiology of HBV: perinatal or horizontal transmission predominates in sub-Saharan Africa and Asia, whereas in high-income countries transmission is predominantly via injection drug use and high-risk sexual behaviours.9,11

As PLHIV live longer due to increased access to antiretroviral therapies, liver disease has emerged as a leading cause of death in PLHIV co-infected with HBV or HCV.12,13 Among people with HBsAg, co-infection with HIV results in higher rates of chronicity and occult HBV (HBV-DNA positivity in the absence of HBsAg), accelerated liver disease progression, higher liver-related mortality and decreased treatment response.14-17 Co-infection with CHB also increases risk of hepatotoxicity from antiretroviral therapy (ART) three- to five-fold,18-20 and cross-resistance between HIV and HBV drugs is common.20,21 Fortunately, tenofovir, a drug commonly included in ART regimens, is also the most effective drug for long-term treatment of HBV, leading to long-term HBV viral suppression, reversal of cirrhosis and fibrosis, and reduction in HBV-related mortality.22

There is a need to establish the global burden of HBsAg co-infection among PLHIV, to characterize the most affected populations and geographical regions, and to inform national and regional screening programmes and clinical management. However, to date, no review has estimated the global burden of HBV co-infection among PLHIV. Existing estimates suggest approximately 10% of PLHIV have chronic hepatitis B or 2-4 million people, but were based on small numbers of studies with unclear methodology.17,23,24 Other reviews have focussed on specific regions25 or people who inject drugs (PWID).11,26 We therefore undertook a global systematic review of the prevalence and burden of HBsAg in PLHIV.

2 | METHODS

2.1 | Search strategy and selection criteria

The systematic review was conducted alongside a companion review examining prevalence and burden of HIV-HCV antibody co-infection (consistent with current or past infection) which contains detailed description of the search and synthesis methods.27 The review was registered with the PROSPERO prospective register of systematic reviews (CRD42019123388).

In brief, we searched eight databases for material that reported prevalence of HBV and HIV, published between 1 January 2002 and 8 April 2018 following PRISMA guidelines.28 The searches were carried out in MEDLINE, EMBASE, CINAHL+, POPLINE, Africa-wide Information, Global Health, Web of Science, and the Cochrane Library, Index Medicus of the Eastern Mediterranean Region, Index Medicus of the South-East Asian Region, LILACS and Western Pacific Region Index Medicus. All English and non-English language sources were included. The search terms used were as follows: ‘HIV OR Human immunodeficiency virus’ and ‘hepatitis-B OR hepatitis C OR HBV OR HCV’ and ‘prevalen* OR inciden* OR seroprevalen* OR screening OR surveil*lance OR population* OR survey* OR epidem* OR data collection OR population sample* OR community survey* OR cohort OR cross-sectional* OR longitud* OR follow-up’. Searches were tailored to the search functionality of each database. The reference lists of articles identified as reviews were screened for additional relevant sources.

We included papers with country-level estimates of HBsAg co-infection among an HIV population sample greater than 50, recruited based on their HIV-positive status or other behavioural characteristics, such as injecting drug use. We excluded editorials or reviews containing no primary data, samples recruited based on their HBsAg status or HIV-HBsAg-positive status; studies based on self-reported HIV or HBsAg status, hospital-based studies, or in healthcare workers, organ or tissue donors, or from populations with other co-morbidities such as persons with TB or mental illness, or undergoing interventions that put them at greater risk of co-infection, including those receiving haemodialysis, those with haemophilia, cancer, cardiovascular disease, other co-infections, kidney, liver or neurological diseases.

2.2 | Screening and data extraction

Six reviewers (CF, CM, BM, AT, JS and JO) screened each record with a seventh reviewer (LP) consulted when there was no consensus. Data extracted included the following: study methods; field-work dates; population; recruitment site; sample size; diagnostic assays
used; and prevalence of co-infection. For approximately 10% of included studies, data were double extracted by a second author (EG) to check the accuracy of data extraction.

2.3 | Quality assessment

To address concerns of variable quality of studies in previous reviews, we assessed and rated the quality of included studies based on study design and assay quality (Supporting information S1). Studies with larger sample sizes, recruited from multiple sites, recording age and sex or HIV risk factors were scored higher (A); studies with >200 cases from >1 site, with some HIV risk factors recorded but not designed to measure prevalence was scored lower (B); and studies with <200 case from a single site with no risk factors recorded were scored lowest (C). HBsAg assay methods were rated from 0 where no assay type was specified, to up to 3 where a second confirmatory HBsAg assay was done, with or without a neutralisation step. Best estimates were selected for each population group per country based on the highest assay and study design score. Where multiple estimates were available, we applied decision rules to select the best estimate (Supporting information S1).

2.4 | Classification of countries according to Global Burden of Disease region

Countries were initially grouped according to the 21 Global Burden of Disease regions, and these were then combined into ten regions to be consistent with previous published reviews on HIV, HBsAg and HCV burden.11,27,29

2.5 | Definition of Population groups

We extracted data on risk behaviours associated with HIV and HBV transmission and populations were categorized according to their main HIV-exposure categories. A general population sample was considered to be low-risk and included samples of blood donors (unpaid), ante-natal clinic attendees or general population and household surveys not recruited based on HIV-positive status. Samples of PLHIV reporting heterosexual transmission as the main risk factor and HIV-positive pregnant women were grouped together. We categorized study populations as PWID when >75% of the sample had current or past experience of injecting, and as men who have sex with men (MSM) when >50% reported main HIV exposure to be sex with men. The PWID and MSM population categories included studies of both known PLHIV as well as populations recruited based on their risk behaviour but where HIV testing was also done. Two other population groups included the following: high-risk populations (PLHIV reporting any injecting drug use or sex between men (but ≤75% of the sample for PWID and ≤50% for MSM), sex workers; prison inmates, non-injecting drug users, STI clinic attendees or a mixed population engaging in sexual and/or injecting risk behaviours but with ≤75% of the sample injecting); and children and young people (aged between two months and 17 years).

![FIGURE 1](n = 24 320)

Records excluded
(n = 21 677)

Records identified through database searching
(n = 44 547)

Additional records identified through other sources
(n = 8)

Records after duplicates removed
(n = 24 320)

Records screened
(n = 24 320)

Full-text articles assessed for eligibility
(n = 2643)

Studies included in quantitative synthesis
(n = 475)

No of HIV-HBsAg estimates
(n = 506)

Full-text articles excluded, with reasons
(n = 2168)

No HBsAg data (n = 202)

Only contained HCV data (n = 880)

Duplicate data (n = 97)

No country specific data (n = 30)

No risk group could be assigned
(n = 371)

Veteran (n = 6)

Sample of HIV-HBsAg individuals
(n = 100)

No co-infection (n = 143)

Review article (n = 59)

Population confounding characteristics (n = 150)

HIV-positive sample n = <50 (130)

FIGURE 1 Flow chart of included studies
We report HIV-HBsAg co-infection prevalence among six population groups (general population, heterosexual and pregnant women, PWID, MSM, children and young people, and other high-risk populations) by country and region, reporting the best estimate and range for each country from all studies. Global and regional estimates of prevalence were derived from the median of the ‘best’ estimates for that region and presented alongside the interquartile range (IQR) of the best estimates. Data were entered into R (R Foundation for Statistical Computing, Vienna, Austria) to generate maps presenting country-level HIV-HBV co-infection prevalence estimates.

Across these six populations, we also synthesized estimates of HBsAg prevalence in PLHIV and HIV-negative populations where samples were recruited based on population characteristic rather than known HIV status and undertook a meta-analysis of the odds of being HBsAg positive among HIV-positive populations compared to HIV-negative populations stratified by population group. A standard correction of 0.5 was added to all zero prevalence estimates using STATA 14.1 (Stata Corp). Odds ratios were calculated through a Mantel-Haenszel method with a random-effect model. Meta-analyses of sub-groups are presented as forest plots including the odds ratio and 95% confidence interval (CI).

Finally, we report global and regional estimates of burden of HBsAg co-infection among PLHIV in 2017. Using number of persons with HBsAg...
TABLE 1 Summary of global HIV-HBsAg co-infection prevalence estimate in general population sample, heterosexual and pregnant PLHIV, PWID and MSM

Country	Total studies	Best estimate	Year										
General Population	n	Range	%	S	n	Year							
Burkina Faso	2	0.5-17.0	17.0	B3	761	2010							
Cameroon	2	4.2-17.3	17.3	B3	301	2013							
Côte d’Ivoire	2	9.0-12.7	12.7	C2	495	2006							
Congo	1	7.7	7.7	B2	209	2008							
Equatorial Guinea	1	15.7	15.7	B3	230	2013							
Gambia	1	12.2	12.2	C0	572	2009							
Ghana	4	2.4-18.7	6.0	C2	168	2007							
Guinea-Bissau	1	16	16.0	B1	576	2011							
Mali	1	22	22.0	B2	242	2004							
Nigeria	12	2.0-11.9	4.2	B2	2391	2011							
Senegal	1	16.8	16.8	C2	363	2002							
South Africa	18	6.0-17.3	16.4	B0	28	12.0							
Botswana	2	0.0-3.4	0.0	B2	1995	2006							
Lesotho	1	5.5	5.5	B2	205	2007							
South Africa	1	7.7	7.4	B3	215	2009							
Zimbabwe	1	14.3	4.4	C2	74	2005							
Total	13	6.0-13.8	8.8	B0	17	4.9-8.4	6.1						
East Africa													
Comoros	1	9.7	9.7	C3	175	2000							
Djibouti	1	9.7	9.7	C3	175	2000							
Ethiopia	4	0.7-6.1	7.9	B2	101	2013							
Kenya	1	20.9	6.8	B1	267	2007							
Malawi	3	5.0-16.9	8.7	C3	309	2009							
Mozambique	2	10.1-13.8	13.8	C0	58	2009							
Rwanda	1	5.7	5.7	C2	384	2001							
Tanzania	1	6.2	6.2	C0	17 359	2011							
Uganda	4	4.6-8.3	6.0	B2	72	1999							
Zambia	1	9.9	9.9	C2	323	2008							
Total	13	6.0-13.8	8.8	B0	17	4.9-8.4	6.1						
N Africa & Middle East													
Egypt	1	3.4	3.4	C2	59	2015							
Iran (Islamic Republic of)	5	2.1-44.2	2.1	B3	888	2007							
Lebanon													
Libya	1	5.1	5.1	B2	294	2010							
Morocco	1	2.4	2.4	C2	1120	2015							
Saudi Arabia	1	3.4	3.4	C1	234	2010							
Sudan	2	11.7-14.5	11.7	B3	358	2012							
Total	1	3.4	3.4	B0	4	2.4-11.7	3.4						
PWID	Total studies	Best estimate	MSM	Total studies	Best estimate								
------	---------------	---------------	-----	---------------	---------------								
	n	Range^b	%	S	n	Year		N	Range^b	%	S	n	Year
	1	13.9	13.9	C2	72	2010							
	1	9.2	9.2	B0	65	2007							
	1	13.9	13.9		1	9.2	9.2						
	5	2.1-44.2	2.1	B3	888	2007							
	1	5.1	5.1	B0	294	2010							
	6	2.1-5.1	3.6										

(Continues)
Country	General Population	Heterosexual and pregnant women										
	Total studies	Best estimate	Total studies	Best estimate								
	n	Range^b	%	S	n	Year	n	Range^b	%	S	n	Year
Belgium^{164,165}												
Bulgaria¹⁶⁶												
Denmark												
France¹⁶⁷⁻¹⁷¹	2^c	6.0-6.9	6.9	B0	6548	2013						
Georgia												
Georgia, province of Taiwan²⁰⁰⁻²¹⁷	1	12.8	12.8	B2	105	2005						
Germany^{169,172-174}												
Greece^{175,176}												
Ireland												
Italy^{177,178}												
Moldova												
Netherlands¹⁷⁹⁻¹⁸²	1^c	4.9	4.9	B0	1546	2008						
Poland												
Portugal¹⁸³												
Romania												
Spain¹⁸⁴⁻¹⁸⁸	1	2.3	2.3	B0	741	2006						
Serbia												
Slovenia												
Switzerland												
Turkey¹⁸⁹⁻¹⁹¹	2	7.1-11.4	11.4	C3	70	2007						
United Kingdom^{192,193}												
Ukraine												
Total^a	6	4.9-7.1	5.9									

East Asia

Country	General Population	Heterosexual and pregnant women										
	Total studies	Best estimate	Total studies	Best estimate								
	n	Range^b	%	S	n	Year	n	Range^b	%	S	n	Year
China^{34,194-199}	1	0.4	0.4	C0	275	2017						
China, province of Taiwan²⁰⁰⁻²¹⁷	1	12.8	12.8	B2	105	2005						
Total^a	1	0.4	0.4		1	12.8	12.8					

South and South-East Asia

Country	General Population	Heterosexual and pregnant women										
	Total studies	Best estimate	Total studies	Best estimate								
	n	Range^b	%	S	n	Year	n	Range^b	%	S	n	Year
Cambodia												
India²¹⁸⁻²³⁵	6	0-8.3	8.3	B2	121	2017						
Indonesia^{236,237}												
Malaysia												
Myanmar^{34,238,239}	2	8-9	8.0	C1	122	2009						
Pakistan^{240,241}												
Thailand²⁴²⁻²⁴⁴	2	9-11.9	9.0	B2	416	2008						
Vietnam^{33,245,246}												
Total^a	6	8.3	8.3	12	3.6-9.2	5.9						

Asia Pacific & Australasia

Country	General Population	Heterosexual and pregnant women										
	Total studies	Best estimate	Total studies	Best estimate								
	n	Range^b	%	S	n	Year	n	Range^b	%	S	n	Year
Australia²⁴⁷⁻²⁵⁰												
Japan²⁵¹⁻²⁵⁶	1	5.4	5.4	B2	166	2002						
South Korea²⁵⁷												
Total^a	1	5.4	5.4									

Latin America (Central, South America & Caribbean)
Country	Total studies	Best estimate	Total studies	Best estimate	
n	Range^b	% S n Year	n	Range^b	% S n Year
Belgium	164,165	3.0-6.1 359 2011	148,149	4.0-4.0 55 2009	
Bulgaria	166	1.0-16.9 173 2006	118	7.0-17.9 55 2009	
Denmark	162-171	5.0-6.9 1087 2011	160-162	4.1-14.2 55 2010	
France	167-171	4.9-6.6 2351 2002	169-171	11.0-11.4 121 2007	
Georgia	113	1.1-11.0 113 2009	113	1.1-11.0 113 2009	
Greece	175,176	2.0-3.5 821 2015	175,176	2.0-3.5 821 2015	
Ireland	177,178	4.0-7.0 2002 2012	177,178	4.0-7.0 2002 2012	
Italy	177,178	4.0-7.0 2002 2012	177,178	4.0-7.0 2002 2012	
Moldova	113	1.1-11.0 113 2009	113	1.1-11.0 113 2009	
Netherlands	179-182	1.0-4.9 2002 2012	179-182	1.0-4.9 2002 2012	
Poland	183	1.0-4.1 343 2005	183	1.0-4.1 343 2005	
Portugal	183	1.0-4.1 343 2005	183	1.0-4.1 343 2005	
Romania	184-188	2.0-2.3 741 2006	184-188	2.0-2.3 741 2006	
Spain	184-188	2.0-2.3 741 2006	184-188	2.0-2.3 741 2006	
Serbia	55	1.0-4.0 55 2009	55	1.0-4.0 55 2009	
Serbia	55	1.0-4.0 55 2009	55	1.0-4.0 55 2009	
Slovenia	171	1.0-4.0 171 2009	171	1.0-4.0 171 2009	
Switzerland	171	1.0-4.0 171 2009	171	1.0-4.0 171 2009	
Turkey	189-191	2.0-7.1 70 2007	189-191	2.0-7.1 70 2007	
Ukraine	21	1.0-4.1 21 2012 2014	21	1.0-4.1 21 2012 2014	
USA	25	1.0-4.1 25 2012 2014	25	1.0-4.1 25 2012 2014	
United Kingdom	25	1.0-4.1 25 2012 2014	25	1.0-4.1 25 2012 2014	
Ukraine	21	1.0-4.1 21 2012 2014	21	1.0-4.1 21 2012 2014	
United Kingdom	25	1.0-4.1 25 2012 2014	25	1.0-4.1 25 2012 2014	
United Kingdom	25	1.0-4.1 25 2012 2014	25	1.0-4.1 25 2012 2014	
Ukraine	21	1.0-4.1 21 2012 2014	21	1.0-4.1 21 2012 2014	
United Kingdom	25	1.0-4.1 25 2012 2014	25	1.0-4.1 25 2012 2014	
Ukraine	21	1.0-4.1 21 2012 2014	21	1.0-4.1 21 2012 2014	
United Kingdom	25	1.0-4.1 25 2012 2014	25	1.0-4.1 25 2012 2014	
Ukraine	21	1.0-4.1 21 2012 2014	21	1.0-4.1 21 2012 2014	
United Kingdom	25	1.0-4.1 25 2012 2014	25	1.0-4.1 25 2012 2014	
Ukraine	21	1.0-4.1 21 2012 2014	21	1.0-4.1 21 2012 2014	
United Kingdom	25	1.0-4.1 25 2012 2014	25	1.0-4.1 25 2012 2014	
Ukraine	21	1.0-4.1 21 2012 2014	21	1.0-4.1 21 2012 2014	
United Kingdom	25	1.0-4.1 25 2012 2014	25	1.0-4.1 25 2012 2014	
Ukraine	21	1.0-4.1 21 2012 2014	21	1.0-4.1 21 2012 2014	
United Kingdom	25	1.0-4.1 25 2012 2014	25	1.0-4.1 25 2012 2014	
Ukraine	21	1.0-4.1 21 2012 2014	21	1.0-4.1 21 2012 2014	
United Kingdom	25	1.0-4.1 25 2012 2014	25	1.0-4.1 25 2012 2014	
Ukraine	21	1.0-4.1 21 2012 2014	21	1.0-4.1 21 2012 2014	
United Kingdom	25	1.0-4.1 25 2012 2014	25	1.0-4.1 25 2012 2014	
HIV infection by country and region estimated through the Spectrum model and reported by the Joint United Nations Programmes on HIV/AIDS (UNAIDS), we applied median best estimates of HBsAg co-infection prevalence among PLHIV not exposed via injecting drug use from all surveys included from the literature search for MSM, general population and HIV-positive samples of pregnant women or those heterosexually exposed by regions, and overall. Median best estimates of HBsAg co-infection prevalence among HIV-positive PWID were applied to the distribution of PLHIV exposed via injecting drug use, as estimated by UNODC, across regions and overall.

2.7 Role of the funding source

The WHO commissioned this review for the purpose of informing the update of the WHO guidelines on testing for viral hepatitis. The funder contributed to the data collection, analysis, interpretation and writing of the review. All authors had full access to the study data and share final responsibility for the findings submitted for publication. The full dataset and statistical source code used to generate estimates and select best estimates is available from the corresponding author on request.

3 RESULTS

Figure 1 summarizes the flow chart for the identification and selection of studies. From an overall 44 547 publication references, 475 papers/studies met the inclusion criteria resulting in 506 estimates of the prevalence of HIV-HBsAg co-infection across six population groups (general populations, PLHIV heterosexual and pregnant women, PWID, MSM, other high-risk populations and children).

3.1 Availability of studies and estimates by region and population group

Overall, 80 (41.0%) of 195 countries had estimates. One-third (n = 28) of these countries were from sub-Saharan Africa and 26.3% (n = 21) from Western/Central/Eastern Europe, with these regions having the highest proportion of countries with data (28/45 62.2% and 21/54 38.9%, respectively). The number and proportion of countries with estimates from other regions were as follows: North Africa and Middle East (7/21 33.3%); Latin America (9/36 25.0%); East Asia (2/2 100%); South and South-East Asia (8/18 44.4%); Asia Pacific and Australasia (3/17 17.6%); and North America (2/2 100%).

Table 1 (Continued)

Country	General Population	Heterosexual and pregnant women											
	Total studies	Best estimate	Total studies	Best estimate									
	n	Range b	%	S	n	Year	n	Range b	%	S	n	Year	
Argentina	3	0.5-1.0	0.5	B2	186	2012	6c	0.5-3.3	2.3	C3	130	2008	
Brazil	258-271	1	1.2	1.2	C3	247	2009	2	2.9-3.3	3.3	B2	275	2010
Chile	272	1	1.2	1.2	C3	247	2009	1c	2.4	2.4	B3	123	2012
Colombia	273-275	1	1.2	1.2	C3	247	2009	1c	2.4	2.4	B3	123	2012
Ecuador	276	1	1.2	1.2	C3	247	2009	1c	2.4	2.4	B3	123	2012
Haiti	277	1	1.2	1.2	C3	247	2009	1c	2.4	2.4	B3	123	2012
Peru	278	1	1.2	1.2	C3	247	2009	1c	2.4	2.4	B3	123	2012
Venezuela	279,280	1	1.2	1.2	C3	247	2009	1c	2.4	2.4	B3	123	2012
Total	4	0.5-1.1	0.9					11	2.4-3.2	2.8			
North America		1c	2.4					1c	2.4				
Canada	154,281	1	1.2	1.2	C3	247	2009	1c	2.4				
USA	282-291	1	1.2	1.2	C3	247	2009	1c	2.4				
Total	2	2.4-3.2	2.8					11	2.4-3.2	2.8			
Global total	45	1.4-15.7	7.4	90	3.4-11.0	6.1							

Abbreviation: S, Study quality score.

*Denotes prevalence (total) derived from samples of PLHIV pregnant women among the population group PLHIV (heterosexual and pregnant women) including: Cameroon (2) 9.3%, Cote D’Ivoire (1) 9.0%, Nigeria (1) 4.2%, South Africa (3) 6.2%, Malawi (1) 8.7%; Rwanda (1) 2.4%, Tanzania (1) 6.2%, Uganda (1) 4.9%, Brazil (5) 1.9%, the Netherlands (1) 4.9%, USA (1) 2.9%, Canada (1) 5.6%, Haiti (1) 2.4%, France (2) 6.0%, South Africa (3) 6.2%, the Netherlands (1) 4.9%, and Morocco (1).
Of the 506 co-infection prevalence estimates, 45 were from general population samples (8.9% of estimates), 90 from PLHIV populations who were either pregnant women or where heterosexual transmission was the primary exposure (17.8% of estimates), 36 among PWID (7.1%), 70 among MSM (13.8%), 22 among children and young people, and 243 (48.0%) from high-risk populations (202 from mixed PWID and MSM populations, five among sex workers, seven among prisoners and 29 from other high-risk populations).

3.2 | Rating of study quality and assay method

Very few estimates were rated ‘A’ in study design quality (15/506), based on large multisite surveys. 63.8% (323/506) of studies were rated ‘B’ in study design quality, based on data from more than one site with a sample size >200, and 33.2% as ‘C’ (168/506). Two-fifths (n = 207) of estimates provided no information on type of HBsAg assay (rated 0), 23 estimates were based on a rapid test (rated 1), 218 used an HBsAg assay (any generation) with no confirmatory HBsAg assay (rated 2), and the remaining 58 used an HBsAg assay (any generation) with a confirmatory HBsAg assay (rated 3). Taking both assay and study design together, the highest rated study was among PWID in Vietnam (9.5%) (rated A3), with five studies (1.0%) having the next highest rating (A2). Most estimates were categorized as B0 (28.1%), B2 (27.3%), followed by C2 (14.8%) and C0 (11.1%). This information is summarized in Table S2.

3.3 | Prevalence of HIV-HBsAg co-infection by population group

3.3.1 | General population samples

The mid-point prevalence of HBsAg co-infection among 45 general population samples testing positive for HIV was 7.4% (IQR 1.4%-15.7%) with country-level prevalence estimates shown in Figure 2A. The highest prevalence was from West and Central Africa at 16.4% compared to 4.4% and 8.8% from South and East Africa, respectively. Very low prevalence was reported from East Asia (0.4%, one study) and Latin America (0.9%). There were no general population studies from Europe, North America or Asia Pacific/Australasia. All estimates are summarized in Table 1 with global prevalence maps shown in Figure 2.
3.3.2 | Heterosexual and pregnant women

The mid-point prevalence of HBsAg co-infection among 90 studies in PLHIV heterosexual or pregnant women was 6.1% (IQR 3.4%-11.0%) with country-level prevalence estimates shown in Figure 2B. Prevalence was higher in East Asia (12.8%, one study), West and Central Africa (12.0%), and lowest in Latin America (2.8%), North Africa and the Middle East (3.4%) and North America (4.2%). Among this population, there were 23 estimates for pregnant women from 15 countries (see footnote to Table 1 for country-specific estimates). The mid-point prevalence of HBsAg co-infection among 67 studies in heterosexual PLHIV was 8.0% (IQR 5.0%-11.8%) compared to 4.6% (2.4%-5.9%) among PLHIV pregnant women (data not shown).

3.3.3 | People who inject drugs

The mid-point prevalence among PWID based on 36 studies was 11.8% (IQR 6.0%-16.9%) with country-level prevalence estimates shown in Figure 2C. The highest prevalence was observed in Latin America (27.3%, one study), South and South-East Asia (16.3%), East Asia (15.4%), and the lowest in North Africa and the Middle East (3.6%). Some single studies reported very high prevalence, including China (59.6%), Iran (44.2%) and Myanmar (41.9%). There was only one study from sub-Saharan Africa (Kenya) which reported a prevalence of 13.9%.

3.3.4 | Men who have sex with men

The mid-point prevalence among MSM was 6.1% (IQR 5.0%-9.2%) based on 70 studies with country-level prevalence estimates shown in Figure 2D. Prevalence was highest in South and South-East Asia (10.6%), West and Central Africa (9.2%, one study), followed by East Asia (8.8%) and Latin America (7.2%). Lower prevalences of around 4%-6% were reported from Asia Pacific/Australasia, Europe and North America. There were no studies from East Africa, South Africa or North Africa and the Middle East.

3.3.5 | Other high-risk groups

In addition to the main HIV-exposure categories, there were 243 estimates from samples of PLHIV engaging in mixed sexual and/or injecting risk behaviours (Table S3) with country-level prevalence estimates shown in Figure 2E. The point prevalence was 6.4% (IQR 4.3%-9.6%) and was similar across the regions, except for East Asia (15.6%), and West and Central Africa (10.6%).

3.3.6 | Children and young people

There were 22 estimates of HIV-HBsAg co-infection among children and young people from 13 countries (Table S3). The mid-point prevalence was 6.8% (IQR 2.5-10.0). Prevalence ranged from 2% to 20% across six estimates from Nigeria and between 0% and 20.5% in South Africa. Extremely high prevalence (43%-46%) was observed in Romania in two studies where HIV infection was acquired nosocomially prior to 1995. A high prevalence (32.6%) was also found in Thailand among young people perinatally infected with HIV (mean age 14 years). Prevalence was lower (~2%) among samples in India, Malawi, Poland, Spain and the United States among HIV-positive paediatric patients. Prevalence was higher in Benin (9.6%), Rwanda (6.8%), Tanzania (7%) and Zambia.
(10.4%) among children <16 years recruited through HIV clinics.48,55-57 HIV-exposure categories were not consistently reported.

3.3.7 | Odds of HBsAg positivity among PLHIV compared to HIV-negative persons

Overall, when we compared HBsAg estimates from 25 598 HIV-positive with 286 121 HIV-negative individuals, we found increased odds for HBsAg positivity among all HIV-positive population groups compared to HIV-negative populations (OR = 1.42; 95% CI = 1.10-1.83) although there was a high degree of heterogeneity (I² = 95.3%, P < .001). Odds of HBsAg were highest among HIV-positive children (OR = 4.61; 95% CI = 1.80-11.84), and there was a borderline statistically significant increase among MSM (2.69; 95% CI 0.71-10.25), but not with other population groups. This is summarized in Figure 3 and Table S4.

3.3.8 | Global burden of HBV co-infection among PLHIV

Based on 2017 UNAIDS estimates of the number of PLHIV and PWID infected with HIV by region, we estimate that there are 2 653 300 (IQR = 1 970 300-4 238 300) cases of HBsAg co-infection among PLHIV globally. Only 3% of cases (n = 142 000; IQR = 124 400-154 700) are among HIV-positive PWID. This equates to a global prevalence of HBsAg co-infection among PLHIV of 7.6% (IQR 5.6%-12.1%). Sub-Saharan Africa has the largest burden of HIV-HBsAg co-infection representing 69% of the total number of cases, followed by South-East Asia (12%) and Latin America (6%). All other regions account for <5% each (Table 2).

4 | DISCUSSION

This is the first systematic review to provide global, regional and country estimates of prevalence and burden of HBsAg positivity among PLHIV across six population sub-groups; complementing a companion review on HIV-HCV antibody co-infection.27 We estimate a global prevalence of 7.6% (IQR 5.6%-12.1%) or 2.7 million (IQR 2.0-4.2 million) cases of HIV-HBsAg co-infection. The greatest burden (69% of all cases; 1.9 million) is in sub-Saharan Africa where there is the largest number of PLHIV. This is followed by 12% (355 600) in South and South-East Asia and 6% (68 800) in Latin America.

HBsAg prevalence was broadly similar across different HIV-positive population groups, with a prevalence of 6%-7% reported among general population samples, heterosexually exposed or pregnant women, children, MSM and high-risk populations. Only among PWID was prevalence higher at 11.8%. PWID accounted for only 3% of the global co-infected population, but a much higher proportion in Eastern Europe (45% of cases). We were limited in our ability to make regional comparisons across sub-populations because only two regions (sub-Saharan Africa and South and South-East Asia) had general population data, and there were little data among high-risk populations in sub-Saharan Africa. The most comprehensive data from different regions was among heterosexual or pregnant PLHIV. The prevalence was highest in West and Central Africa (12.0%), and East Asia (12.8%) and lowest in Latin America (2.8%) and North America (4.2%).

Our global estimate of burden of HIV-HBsAg co-infection is broadly consistent with previous estimates of 2-4 million.24,25,58,59 A review of HIV-HBsAg co-infection in sub-Saharan Africa found a mean prevalence of 12.5% among HIV-positive cohorts, slightly higher than we found, although that study did not disaggregate by HIV-exposure category making comparisons challenging.25 Our findings broadly reflect existing data on the main routes of transmission of HBV infection. In sub-Saharan Africa, HBV infection is predominately acquired perinatally or in early childhood, leading to high rates of chronic infection.460 The contribution of adult acquisition is low, as the majority are already chronically infected or immune. As a result, most people have already been HBV-infected for many years by the time they are exposed to HIV in adulthood, which may explain why the prevalence is similar across different sub-populations.9 In contrast, in other regions a higher prevalence occurs among PWID and MSM compared to the general population. This was particularly marked in Latin America, with co-infection prevalence of 9.5% and 27% among PWID and MSM, respectively, compared to 0.9% in the general population. This is consistent with co-transmission of HBV and HIV in adulthood in these settings, with much lower transmission of HBV in childhood.22 A significant proportion of cases in high risk populations may also represent acute infection, which will not lead to chronic infection.

This HIV-HBsAg review and a companion review of HIV-HCV antibody co-infection (consistent with past or current infection)27 highlights important differences between the epidemiology of these co-infections. Although the global prevalence and burden are similar (7.6% for HIV-HBsAg compared to 6.2% for HIV-HCV) antibody, almost three-quarters of the global burden of HIV-HBsAg co-infection in 2017 is in sub-Saharan Africa (1.91 million), 4-5 times as many as HIV-HCV co-infections (429 600). In contrast, the greatest burden of HIV-HCV co-infection is in the concentrated epidemic settings of Central Asia and Eastern Europe among PWID, accounting for 27% of the HIV-HCV burden (607 700). There is a much lower prevalence of HBsAg than HCV antibody among HIV-positive PWID (11.8% vs 82%), accounting for 3% (142 000) of HIV-HBsAg co-infections but 59% (1.36 million) of HIV-HCV co-infections. Overall, we found less variability in HIV-HBsAg prevalence between sub-populations, and HIV infection was a less important risk factor for HBsAg positivity than for HCV antibody positivity.

Key strengths of our systematic review were the comprehensive search of published literature in English, French, Russian, Chinese, Portuguese, Arabic and Spanish; the stratification of co-infection estimates for different population sub-groups; and the large number of studies among heterosexually exposed and pregnant women living with HIV—the main source for regional estimates of HIV-HBsAg...
Region	PLHIV (excluding PWID)		PLHIV PWID		Total PLHIV*		
	PLHIV	HbsAg Co-infection	PLHIV	HbsAg Co-infection	PLHIV		
	Median Prevalence (IQR)	Estimates (IQR)	Median Prevalence (IQR)	Estimates (IQR)	n Estimates (range)	Region	
Africa (South, West, East, Central)	23 965 000	8.0 (5.9-13.3)	1 905 200 (1 405 400-3 177 800)	41 700	0.2% 13.9* 5800*	24 006 700 1 911 000 (1 411 200-3 183 600)	69%
North Africa and Middle East	182 040	3.4 (2.9-7.6)	6200 (5200-13 800)	37 100	17% 3.6 (2.1-5.1) 1300 (800-1900)	219 140 7500 (6000-15 700)	1%
Europe (West, Central)	839 730	6.0 (4.9-8.8)	50 400 (41 300-73 900)	32 000	4% 5.5 (4.0-12.0) 1800 (1300-3800)	871 730 52 200 (42 600-77 700)	2%
Eastern Europe/ CAR	979 140	6.1 (4.0-9.9)*	59 700 (39 200-96 900)	451 000	32% 11.0* 49 600*	1 430 140 109 300 (88 800-146 500)	4%
East Asia	769 500	8.1 (1.9-13.5)	62 400 (14 700-103 700)	162 300	17% 15.4 (11.8-18.9) 25 000 (19 200-30 700)	931 800 87 400 (33 900-134 400)	3%
South and South-East Asia	3 729 800	8.1 (6.7-11.1)	303 300 (251 400-414 000)	322 000	8% 16.3 (12.9-17.6) 52 300 (41 500-56 600)	4 051 800 355 600 (292 900-470 600)	12%
Western Pacific (Asia Pacific, Australasia)	118 500	5.2 (4.9-6.3)	6200 (5900-7500)	1200	1% 11.8 (6.0-16.9)* 100 (100-200)	119 700 6300 (6000-7700)	0%
Latin America (South, Central America, Caribbean)	2 108 900	3.2 (2.3-6.1)	67 200 (48 500-128 600)	5000	0.2% 27.3* 1400*	2 113 900 68 600 (49 900-130 000)	6%
North America	1 209 700	4.2 (2.8-5.6)	50 700 (34 300-67 400)	66 300	5% 7.0* 4700*	1 276 000 55 400 (39 000-72 100)	4%
Total	33 902 310	6.1 (4.0-9.9)	2 511 300 (1 845 900-4 083 600)	1 118 600	3% 11.8 (6.0-16.9)	35 020 910 2 653 300 (1 970 300-4 238 300)	100%

*Estimates of persons living with HIV in each country were measured through Spectrum and published by UNAIDS and UNODC.

bMedian prevalence and IQRs are calculated across the best estimates for all population groups (except PWID estimates) and countries in each region (for regional estimates) or globally (for ‘Total’ estimates).

Proportion of HIV cases among PWID.

Only one country estimate available, so global median used as a proxy.

Only one country estimate available, therefore no IQR presented.

Median prevalence and IQRs are calculated across the best PWID estimates for each country in each region (for regional estimates) or globally (for ‘Total’ estimates).
co-infection. Despite this, estimates were available for only 41% of countries, half being in sub-Saharan Africa. Five regional prevalence estimates for different sub-populations were based on data from a single country, possibly unrepresentative of the true regional profile. Few countries had data for all sub-populations making regional comparisons difficult. We excluded studies that only presented regional-level data, not disaggregated by country, to enable us to observe how prevalence varied by country and risk group within a region and to take account of the differing epidemiology of HIV at a country level. However, this resulted in the exclusion of large cohorts that aggregate across country and region. One major cohort that reports data across Europe, Israel and Argentina found a comparable prevalence of HIV-HBsAg co-infection (7.1%-8.7%) with similar high prevalence observed in Argentina among PLHIV (exposure group not specified) to the range of prevalence we found among MSM.51,62

The quality of studies was also variable. Few studies were based on large multisite surveys, with 40% of sero-surveys being based on data from one city and fewer than 200 persons. In addition, over half of studies provided no details of the assay type and testing protocol; with much of the remainder using a recent HBsAg assay but without confirmatory HBsAg testing, possibly overestimating the infected population. In general, WHO does not recommend the use of a second confirmatory HBsAg assay for diagnosis of CHB infection (23). We also did not exclude populations based on receiving ART, with few studies reporting the prevalence of ART making it difficult to adjust for the effects of treatment. The use of tenofovir-based ART regimens may have reduced detection of HBsAg among some samples.61 Finally, we have not taken into account increases in both ART coverage and the use of tenofovir-based ART regimens that may result in lower levels of co-infection in later years.

Our findings have important programmatic implications. First, universal infant and perinatal HBV vaccination remains the key strategy for preventing mother-to-child transmission and controlling the HBV epidemic. Although high uptake of infant vaccination has been achieved, leading to substantial decreases in incidence in recent years, HBV birth-dose vaccination is being implemented by less than half of countries, and only 9/48 of countries in Africa.6 Rates of adult vaccination also remain low, with <3% of countries routinely vaccinating high-risk populations (PWID, MSM, sex workers and prisoners).62 Our findings highlight the importance of targeting PLHIV, especially high-risk groups and children for testing, catch-up HBV vaccination and other preventative interventions.64 Second, the global scale-up of HIV treatment for PLHIV using a tenofovir-based ART regimen represents a major opportunity for achieving global targets towards hepatitis B elimination in PLHIV, by simultaneously treating those who have chronic and HIV co-infection so reducing mother-to-child transmission of HBV alongside HIV.65 ART coverage is now approximately 50% in most countries and encouragingly coverage in eastern and southern Africa is higher than the global average,66 with 60% of persons on ART receiving a tenofovir-based regimen.67 Our findings clearly show the need to scale-up tenofovir-based ART to address HIV-HBsAg co-infection, particularly focusing on sub-Saharan Africa.

ACKNOWLEDGEMENTS
The authors wish to thank Jane Falconer (Information Services Librarian at the LSHTM) for her assistance with the search strategy and Yvan Hutin for inputs on the manuscript.

CONFLICTS OF INTEREST
No conflicts of interest to declare.

AUTHOR CONTRIBUTORS
PE conceived the study proposal. LP, PV and PE developed the overall methods for use in the report. LP developed the methodology and oversaw the search and data extraction for the report. CM developed and conducted the literature search. LP, CF, AT, JO, JS, BM and EG extracted data. LP, PE, HR and EG developed the quality assessment tool. LP and PV developed the analysis technique. LP and CF generated regional and global prevalence estimates, which were reviewed by PE, PV, HR and KS. KS generated the global burden of disease estimates. LP and PE led the writing of the manuscript; LP, PV and CF commented and contributed text. AT generated the maps.

DISCLAIMER
The authors alone are responsible for the views expressed in this article and they do not necessarily represent the views, decisions or policies of the institutions with which they are affiliated, including UNAIDS and the WHO.

ORCID
Lucy Platt https://orcid.org/0000-0002-0943-0045
Clare E. French https://orcid.org/0000-0002-6943-7353
Keith Sabin https://orcid.org/0000-0002-2290-8621
Adam Trickey https://orcid.org/0000-0003-3462-2898
Philippa Easterbrook https://orcid.org/0000-0002-2603-5418
Peter Vickerman https://orcid.org/0000-0002-8291-5890

REFERENCES
1. Ganem D, Prince AM. Hepatitis B virus infection—natural history and clinical consequences. N Engl J Med. 2004;350(11):1118-1129.
2. Lok AS, McMahon BJ. Chronic hepatitis B. Hepatology. 2007;45(2):507-539.
3. World Health Organisation. Progress report on HIV, viral hepatitis and sexually transmitted infections. 2019. Geneva, Switzerland: World Health Organisation 2019.
4. World Health Organisation. Global Hepatitis report 2017. Geneva, Switzerland: World Health Organisation 2017.
5. Fattovich G. Natural history and prognosis of hepatitis B. Semin Liver Dis. 2003;23(1):47-58.
6. Terrault N, Roche B, Samuel D. Management of the hepatitis B virus in the liver transplantation setting: an European and an American perspective. Liver Transplant. 2005;11(7):716-732.
7. Edmunds WJ, Medley GF, Nokes DJ, Hall AJ, Whittle HC. The influence of age on the development of the hepatitis B carrier state. Proc Biol Sci. 1993;253(1337):197-201.
8. Ott JJ, Stevens GA, Wiersma ST. The risk of perinatal hepatitis B virus transmission: hepatitis B e antigen (HBeAg) prevalence estimates for all world regions. *BMC Infect Dis*. 2012;12:131.

9. Edmonds WJ, Medley GF, Nokes DJ, O’Callaghan CJ, Whittle HC, Hall AJ. Epidemiological patterns of hepatitis B virus (HBV) in highly endemic areas. *Epidemiol Infect*. 2009;137(2):313-325.

10. Schweitzer A, Horn J, Mikolajczyk RT, Krause G, Ott JJ. Estimations of worldwide prevalence of chronic hepatitis B virus infection: a systematic review of data published between 1965 and 2013. *Lancet*. 2015;386(10003):1546-1555.

11. Nelson PK, Mathers BM, Cowie B, et al. Global epidemiology of hepatitis B and hepatitis C in people who inject drugs: results of systematic reviews. *Lancet*. 2011;378(9791):571-583.

12. Easterbrook P, Sands A, Harmanc H. Challenges and priorities in the management of HIV/HBV and HIV/HCV coinfection in resource-limited settings. *Semin Liver Dis*. 2012;32(2):147-57.

13. Weber R, Sabin CA, Friis-Moller N, et al. Liver-related deaths in persons infected with the human immunodeficiency virus: the DAD study. *Arch Intern Med*. 2006;166(15):1632-1641.

14. Bodsworth N, Donovan B, Nightingale BN. The effect of current human immunodeficiency virus infection on chronic hepatitis B: a study of 150 homosexual men. *J Infect Dis*. 1989;160(4):577-582.

15. Colin JF, Cazals-Hatem D, Loriot MA, et al. Influence of human immunodeficiency virus infection on chronic hepatitis B in homosexual men. *Hepatology*. 1999;29(4):1306-1310.

16. Gilson RJ, Hawkins AE, Beecham MR, et al. Interactions between HIV and hepatitis B virus in homosexual men: effects on the natural history of infection. *Aids*. 1997;11(5):597-606.

17. Thiou CL, Seaberg EC, Skolasky R Jr, et al. HIV-1, hepatitis B virus, and risk of liver-related mortality in the Multicenter Cohort Study (MACS). *Lancet*. 2002;360(9349):1921-1926.

18. Puoti M, Spinetti A, Ghezzi A, et al. Mortality for liver disease in patients with HIV infection: a cohort study. *J Acquir Immune Defic Syndr*. 2000;24(3):211-217.

19. Sulkowski MS. Viral hepatitis and HIV coinfection. *J Hepatol*. 2008;49(2):353-367.

20. Benhamou Y, Bochet M, Thibault V, et al. Long-term incidence of hepatitis B virus resistance to lamivudine in human immunodeficiency virus-infected patients. *Hepatology*. 1999;30(5):1302-1306.

21. Zöllner B, Petersen J, Puchhammer-Stöckl E, et al. Viral features of hepatitis B and C virus transmission: hepatitis B e antigen (HBeAg) prevalence cited in published literature. *J Viral Hepat*. 2016;23(7):545-559.

22. Barth RE, Hujigen Q, Taljaard J, Hoepelman AI. Hepatitis B/C and HIV in sub-Saharan Africa: an association between highly prevalent infectious diseases. A systematic review and meta-analysis. *Int J Infect Dis*. 2010;14(12):e1024-e1031.

23. Mathers BM, Degenhardt L, Phillips B, et al. Global epidemiology of injecting drug use and HIV among people who inject drugs: a systematic review. *Lancet*. 2008;372(9651):1733-1745.

24. Platt L, Easterbrook P, Gower E, et al. Prevalence and burden of HCV co-infection in people living with HIV: a global systematic review and meta-analysis. *Lancet Infect Dis*. 2016;16(7):797-808.

25. Ohler D, Liberati A, Tetzlaff J, Altman DG, The PG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *PLoS Med*. 2009;6(7):e1000097.
84. Amidu N, Owiredu W, Addai-Mensah O, Alhassan A, Quaye L, Batong B. Seroprevalence and Risk Factors for Human Immunodeficiency Virus, Hepatitis B and C Vi-ruses Infections among Blood Donors at the Bolgatanga Regional Hospital in Bolgatanga, Ghana. Ghana Sci Assoc J. 2010;12(1):77-88.
85. Cho Y, Bonsu G, Akoto-Ampaw A, et al. The prevalence and risk factors for hepatitis B surface Ag positivity in pregnant women in eastern region of Ghana. Gut Liv. 2012;6(2):235-240.
86. Lokpo SY, Dakorah MP, Norgbe GK, et al. The burden and trend of Hepatitis B and C infections in Volta region of Ghana. J Trop Med. 2017;2017:3452513.
87. Jolly PE, Shuaib FM, Jiang Y, et al. Association of high viral load and abnormal liver function with high aflatoxin B1-albumin ad- duct levels in HIV-positive Ghanaians: preliminary observations. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2011;28(9):1224-1234.
88. Obuseh FA, Jolly PE, Kulczycki A, et al. Aflatoxin levels, plasma vi- tamins A and E concentrations, and their association with HIV and hepatitis B virus infections in Ghanaians: a cross-sectional study. J Int AIDS Soc. 2011;14:53.
89. Walana W, Ahiaba S, Hokey P, et al. Sero-prevalence of HIV, HBV and HCV among blood donors in the Kintampo municipal hospital, Ghana. Br Microbiol Res J. 2014;4(12):1491-1499.
90. Langhoff Honge B, Jespersen S, Medina C, et al. Hepatitis B and Delta virus are prevalent but often subclinical co-infections among HIV infected patients in Guinea-Bissau, West Africa: A cross-sectional study. PloS ONE. 2014;9(6):e99971.
91. Dao S, Ba A, Doumbia S, Bougoudogo F. Co-infection hepatitis B and C seroprevalence and delta viruses in HIV-1 Senegalese pa- tients. J Med Virol. 2008;80(8):1332-1336.
92. Adebayo TO. Seroprevalence of hepatitis B and C and of human immu- nodfiency virus (HIV) in Benue State, Nigeria. Afr Med Prac. 2012;2(6):841-844.
93. Lesi OA, Kehinde MO, Oguh DN, Amira CO. Hepatitis B and C virus infection in Nigerian patients with HIV/AIDS. Niger Postgrad Med J. 2007;14(2):129-133.
94. Salami TAT, Babatope IO, Adewuyi GM, Samuel SO, Echekwube PO. Hepatitis B and HIV co-infection-experience in a rural/suburban health center in Nigeria. J Microbiol Biotechnol Res. 2012(2):641-646.
95. Opara MI, Ogbebor VO, Fasasi MA, et al. Incidences of hepatitis B and syphilis co-infection with HIV in antiretroviral treatment-nave adult patients attending APIN clinic at a University Teaching hos- pital in Lagos, Nigeria. J AIDS Clin Res. 2013;4(1):1-4.
96. Ehrabor O, Opurum H, Ejele OA, Nwauche CA, Akani CI. HIV se- ro-discordance among Nigerian couples: challenges and contro- versies. Niger Med Pract. 2005;48(3):62-66.
97. Ezechi OC. Kajejaie OO, Gab-Okafor CV, et al. Sero and factors associated with Hepatitis B and C co-infection in pregnant Nigerian women living with HIV Infection. Pan Afr Med J. 2014;17(1):197.
98. Otegbayo JA, Taiwo BO, Akingbola TS, et al. Prevalence of hep- atitis B and C seropositivity in a Nigerian cohort of HIV-infected patients. Ann Hepatol. 2008;7(2):152-156.
99. Tremaeu-Bravard A, Ogbugakuc I, Tico C, Abubakar J. Seroprevalence of hepatitis B and C infection among the HIV-positive population in Abuja, Nigeria. Afr Health Sci. 2012;12(3):312-317.
100. Isso EM, Obieche JC, Nwogoh B, Iponnwen OD, Nwanndi AI. Hepatitis B Virus [HBV], Hepatitis C Virus [HCV] and Syphilis Co-Infections among HIV Infected Patients at the University of Benin Teaching Hospital, Benin City. Ann Biomed Sci. 2012;11(1):65-71.
101. Ejiemele AA, Nwauche CA, Ejele OA. Pattern of abnormal liver enzymes in HIV patients presenting at a Nigerian Tertiary Hospital. Niger Postgrad Med J. 2007;14(4):306-309.
102. Eze EU, Onunu AN, Kubeyinjie EP. Seroprevalence of hepatitis B virus among human immunodeficiency virus patients attending tertiary and secondary health facilities in Benin City Nigeria. J Med Biomed Res. 2007;6(1):19-25.
103. Mbaawuaga EM. Studies on prevalence, co-infection and asso- ciated risk factors of hepatitis B virus [HBV] and human immu- nodfiency virus (HIV) in Benue State, Nigeria. Sex Transm Dis. 2014;41:S143.
104. Diwe CK, Okwara EC, Enwere OO, Azike JE, Nwaimo NC. Ser- prevalence of hepatitis B virus and hepatitis C virus among HIV patients in a suburban University Teaching Hospital in South-East Nigeria. Pan Afr Med J. 2013;16:7.
105. Diop-Ndiaye H, Touré-Kane C, Etard JF, et al. Seroprevalence of Hepatitis B and C viruses among adult patients attending APIN clinic at a University Teaching hos- pital in South-South Nigeria. Afr Med J. 2011;52(4):227-229.
106. Okonkwo UC, Okpara H, Otu A, et al. Prevalence of hepatitis B, hepatitis C and human immunodeficiency viruses, and evaluation of risk factors for transmission: report of a population screening in Nigeria. S Afr Med J. 2017;107(4):346-351.
107. Onosaye FE, Onosaye JI. Prevalence of HIV-positives and hepatitis B surface antigen-positives among donors in the University of Benin Teaching Hospital, Nigeria. Trop Doct. 2004;34(3):159-160.
108. Oronsaye FE, Oronsaye JI. Prevalence of HIV-positives and hepatitis B surface antigen-positives among donors in the University of Benin Teaching Hospital, Kano, Nigeria, 1996–2001. Hamdard Medicus. 2004;47(2):54-57.
109. Takalma WU, Emokpae MA, Abubakar AG, Kwarah AH. Prevalence of Hepatitis B Surface Antigen and human immuno- deficiency virus antibodies among blood donors in Aminu Kano Teaching Hospital, Kano, Nigeria, 1996–2001. Hamdard Medicus. 2004;47(2):54-57.
110. Jombo GTA, Egah DZ, Banwat EB. Hepatitis B virus and human im- munodeficiency virus co-infection in Zawan community of Plateau State. J Med Trop. 2005;7(1):21-26.
hepatitis B virus infection in HIV-infected and HIV-uninfected pregnant women in the western cape, South Africa. J Hepatol. 2012;56:S33.

119. Thymbiran NV, Moodley D, Parboosing R, Moodley P. Hepatitis B and HIV co-infection in pregnant women: indication for routine antenatal hepatitis B virus screening in a high HIV prevalence setting. S Afr Med J. 2014;104(4):307-309.

120. Burnett RJ, Ngobeni JM, Francois G, et al. Increased exposure to hepatitis B virus infection in HIV-positive South African antenatal women. Int J STD AIDS. 2007;18(3):152-156.

121. Boyles TH, Cohen K. The prevalence of hepatitis B infection in a rural South African HIV clinic. S Afr Med J. 2011;101(7):470-471.

122. Hoffmann CJ, Mashabela F, Cohn S, et al. Hepatitis B and C virus infections and associated risk factors among HIV co-infected adults. J Infect Dis. 2012;56:S33.

123. Mavneyengwa RT, Moyor SO, Nordbo SA. Streptococcus agalactiae colonization and correlation with HIV-1 and HBV seroprevalence in pregnant women from Zimbabwe. Eur J Obstet Gynecol Reprod Biol. 2010;150(1):34-38.

124. Receveur MC, Coulaud X, Ali R, Gasnier O, Benoît-Cattin T, Pettinelli ME. HIV in Mayotte, Indian ocean. Bull Soc Pathol Exot. 2003;96(3):238-240.

125. Dray X, Dray-Spira R, Bronstein JA, Mattera D, Hoffmann CJ, Mashabela F, Cohn S, et al. Prevalence of hepatitis B virus infection in HIV-positive South African antenatal women. Int J STD AIDS. 2007;18(3):152-156.

126. Boyles TH, Cohen K. The prevalence of hepatitis B infection in a rural South African HIV clinic. S Afr Med J. 2011;101(7):470-471.

127. Hoffmann CJ, Mashabela F, Cohn S, et al. Maternal hepatitis B and C virus infection among pregnant women living with HIV in South Africa. J Int AIDS Soc. 2014;17:18871.

128. Mavin E, Bunting T, Bojar F, Shiferaw E, Woldu B, Melku M. Transfusion-transmitted viral infections among blood donors in Ethiopia. Int J Infect Dis. 2011;15(1):186-192.

129. Bidavo Z, Shiferaw E, Woldu B, Alene KA, Melku M. Transfusion-transmissible viral infections among blood donors at the North Gondar district blood bank, northwest Ethiopia: A three year retrospective study. PLoS ONE. 2017;12(7):e0180416 (no:pagination).

130. Tiruneh M. Seroprevalence of multiple sexually transmitted infections and their association with human immunodeficiency virus: a cross-sectional study among blood donors in Ethiopia. Ethiop J Health Sci. 2011;21:67-75.

131. Yami A, Alemseged F, Hassen A. Hepatitis B and C virus infections and associated risk factors among antenatal clinic attendees in Gondar Health Center, Northwest Ethiopia. Virol J. 2013;10:8.

132. Biadgo B, Shiferaw E, Woldu B, Alene KA, Melku M. Transfusion-transmissible viral infections among blood donors in the Republic of Djibouti. Med Trop (Mars). 2005;65(1):39-42.

133. Wondimeneh Y, Alem M, Asfaw F, Belyahun Y. HBV and HCV seroprevalence and their correlation with CD4 cells and liver enzymes among HIV positive individuals at University of Gondar Teaching Hospital, Northwest Ethiopia. Virol J. 2013;10:8.

134. Dray X, Dray-Spira R, Bronstein JA, Mattera D. Prevalence of hepatitis B virus infection in HIV-infected and HIV-uninfected pregnant women in the western cape, South Africa. J Hepatol. 2012;56:S33.

135. Ondondo R. A cross-sectional survey of hepatitis B virus infections and natural immunity against hepatitis B virus infections among HIV discordant heterosexual couples in Kisumu, Kenya. Sex Transm Infect. 2011;87:A310-A311.

136. Harania RS, Karuru J, Nelson M, Stebbing J. HIV, hepatitis B and hepatitis C coinfection in Kenya. AIDS. 2008;22(10):1221-1222.

137. Cunha L, Plouzeau C, Ingrand P, et al. Use of replacement blood donors to study the epidemiology of major blood-borne viruses in the general population of Maputo, Mozambique. J Med Virol. 2007;79(12):1832-1840.

138. Ladner J, Leroy V, Simonon A, Karita E, Van de Perre P, Dabis F. Hepatitis B and HIV type 1 co-infection in pregnant African women. Médecine et Maladies Infectieuses. 2002;32(7):396-397.

139. Pirillo MF, Bassani L, Germinario EA, et al. Seroprevalence of hepatitis B and C virus infections among HIV-infected pregnant women in Uganda and Rwanda. J Med Virol. 2007;79(12):1797-1801.

140. Dahoma M, Johnston LG, Holman A, et al. HIV and related risk behavior among men who have sex with men in Zanzibar, Tanzania: results of a behavioral surveillance survey. AIDS Behav. 2011;15(1):186-192.

141. Hawkins C, Christian B, Ye J, et al. Prevalence of hepatitis B co-infection and response to antiretroviral therapy among HIV-infected patients in Tanzania. AIDS. 2013;27(6):919-927.

142. Bwogi J, Braka F, Kabimbi I, et al. Hepatitis B infection is highly endemic in Uganda: findings from a national serosurvey. Afr Health Sci. 2009;9(2):98-108.

143. Stabinski L, Reynolds SJ, Ocama P, et al. High prevalence of liver fibrosis associated with HIV infection: a study in rural Rakai, Uganda. Antivir Ther. 2011;16(3):405-411.

144. Stabinski L, Reynolds SJ, Ocama P, et al. Hepatitis B virus and sexual behavior in Rakai, Uganda. J Med Virol. 2011;83(5):796-800.

145. Stabinski L, Reynolds SJ, Ocama P, et al. Hepatitis B virus and sexual behavior in Rakai, Uganda. J Med Virol. 2011;83(5):796-800.

146. Hladik W, Dollard SC, Downing RG, et al. Kaposi's sarcoma among pregnant women in Malawi. J Acquir Immune Defic Syndr. 2002;31(1):90-97.

147. Khawaja FS, Rizvi S, Saeed S, et al. Natural immunity against hepatitis B virus infections among HIV-infected pregnant women in Malawi. J Acquir Immune Defic Syndr. 2002;31(1):90-97.

148. Chasela CS, Kourtis AP, Wall P, et al. Hepatitis B virus infection among HIV-infected pregnant women in Malawi and transmission to infants. J Hepatol. 2014;60(3):508-514.

149. Rischkowsky B, Hwang H, De Groot R, et al. The use of replacement blood donors to study the epidemiology of major blood-borne viruses in the general population of Maputo, Mozambique. J Med Virol. 2007;79(12):1832-1840.

150. Ladner J, Leroy V, Simonon A, Karita E, Van de Perre P, Dabis F. Hepatitis B and HIV type 1 co-infection in pregnant African women. Médecine et Maladies Infectieuses. 2002;32(7):396-397.

151. Pirillo MF, Bassani L, Germinario EA, et al. Seroprevalence of hepatitis B and C virus infections among HIV-infected pregnant women in Uganda and Rwanda. J Med Virol. 2007;79(12):1797-1801.

152. Dahoma M, Johnston LG, Holman A, et al. HIV and related risk behavior among men who have sex with men in Zanzibar, Tanzania: results of a behavioral surveillance survey. AIDS Behav. 2011;15(1):186-192.

153. Hawkins C, Christian B, Ye J, et al. Prevalence of hepatitis B co-infection and response to antiretroviral therapy among HIV-infected patients in Tanzania. AIDS. 2013;27(6):919-927.

154. Bwogi J, Braka F, Kabimbi I, et al. Hepatitis B infection is highly endemic in Uganda: findings from a national serosurvey. Afr Health Sci. 2009;9(2):98-108.
155. Mir-Nasserri MM, Mohammadkhani A, Tavakoli H, Ansari E, Poustchi H. Incarceration is a major risk factor for blood-borne infection among intravenous drug users. *Hepatitis Mon*. 2011;11(1):19-22.

156. Ataei B, Tayeri K, Kassaian N, Farajzadegan Z, Babak A. Hepatitis B and C among patients infected with human immunodeficiency virus in Isfahan, Iran: Seroprevalence and associated factors. *Hepat Mon*. 2010;10(3):188-192.

157. Vaziri S, Mansouri F, Sayad B, Afsharian M, Janbakhsh A, Karami M. Prevalence of asymptomatic hepatitis B virus infection among HIV-HBV co-infected patients in Kermanshah, West of Iran. *Hepat Mon*. 2008;8(4):252-257.

158. Javad Zahedi M, Darvish Moghaddam S, Hayatbaksh Abasi M, Parnian M, Shokoohi M. Hepatitis B virus coinfection and behavioral risks in HIV-positive patients in southern Iran. *J Pak Med Assoc*. 2014;64(2):134-137.

159. Mirzoyan L, Berendes S, Jeffery C, et al. New evidence on the HIV epidemic in Libya: why countries must implement prevention programs among people who inject drugs. *J Acquir Immune Defic Syndr*. 2013;62(5):577-583.

160. Sbiti M, Khalki H, Benbella I, Louzi L. Seroprevalence of HBsAg among pregnant women in central Morocco. [French]. *Pan Afr Med J*. 2016;24:187. (no pagination).

161. Alhuraiji A, Alaraj A, Alghamdi S, Alrbiaan A, Alrajhi AA. Viral hepatitis B and C in HIV-infected individuals: a cohort study and meta-analysis. *Clin Infect Dis*. 2009;48(12):1763-1771.

162. Mudawi H, Hussein W, Mukhtar M, et al. Overt and occult hepatitis B virus infection in adult Sudanese HIV patients. *J Infect Dev Ctries*. 2014;29:e65-e70.

163. Dirar H, Yassin MEM, Enan KA, Nafi M, Elaidia WF, Elkhidir IM. Sero-prevalence of hepatitis B virus (HBsAg) and hepatitis C virus (anti-HCV) among HIV-infected in Sudan. *J Biomed Res*. 2013;2(6):78-81.

164. Verbrugge R, Van Beckhoven D, Sasse A. STI-surveillance within AIDS reference centres in Belgium - High consistent STI incidence among HIV-positive men having sex with men, 2008-2009. *Sex Transm Infect*. 2011;87:A137.

165. Dauby N, De Wit S, Delforge M, Naessens V. Characteristics of non-AIDS-defining malignancies in the HAART era: a clinic-epidemiological study. *J Int AIDS Soc*. 2011;14:16.

166. Alexiev I, Shankar A, Dimitrova R, et al. Origin and spread of HIV-1 in persons who inject drugs in Bulgaria. *Infect Genet Evol*. 2016;46:269-278.

167. D’Oliveira A Jr, Voinir N, Allard R, et al. Prevalence and sexual risk of hepatitis C virus infection when human immunodeficiency virus was acquired through sexual intercourse among patients of the Lyon University Hospitals, France, 1992-2002. *J Viral Hepat*. 2005;12(3):330-332.

168. Benhennou V, Tubiana R, Matheron S, et al. HBV and HCV infections in HIV-infected pregnant women: Obstetrical outcomes. *Topics Antiviral Med*. 2016; Conference: 23rd Conference on Retroviruses and Opportunistic Infections, CROI 2016. United States. 24(E-1):338.

169. Spinner CD, Boesecke C, Jordan C, et al. Prevalence of asymptomatic sexually transmitted infections in HIV-positive men who have sex with men in Germany: results of a multicentre cross-sectional study. *Infection*. 2018;46(3):341-347.

170. Le MP, Charpentier C, Soulie C, et al. Safety, Efficacy, and PK of Atazanavir/Ritonavir (300/100 mg QD) in HIV+ Pregnant Women Cohort. *Topics Antiviral Med*. 2014;22(e-1):465.

171. Le Moing V, Chene G, Spire B, Raffi F, Leport C. [Outcome of HIV-infected patients after 5 years of antiretroviral therapy including a protease inhibitor: the Aproco/Copilote Cohort]. *Presse Med*. 2005;34[10 Suppl]:1s31-7.

172. Bruck S, Witte S, Brust J, et al. Hepatotoxicity in patients prescribed efavirenz or nevirapine. *Eur J Med Res*. 2008;13(7):343-348.

173. Jansen K, Thamm M, Bock C-T, et al. High prevalence and high incidence of co-infection with hepatitis B, hepatitis C, and syphilis and low rate of effective vaccination against hepatitis B in HIV-positive men who have sex with men with known date of HIV serumconversion in Germany. *PLoS ONE* [Electronic Resource]. 2015;10(11):e0142515.

174. Jansen K, Scheufele R, Bock C, et al. High prevalence of hepatitis B (HBV) co-infections, and low rate of effective HBV-vaccination in msm with known date of HIV-1 seroconversion in Germany. *Sex Transm Infect*. 2013;89:A209-88.

175. Nikolopoulos GK, Paraskevis D, Hatzitheodorou E, et al. Impact of hepatitis B virus infection on the progression of AIDS and mortality in HIV-infected individuals: a cohort study and meta-analysis. *Clin Infect Dis*. 2009;48(12):1763-1771.

176. Nikolopoulos GK, Paraskevis D, Hatzitheodorou E, et al. HIV/ HBV co-infection and rate of antiretroviral treatment change after highly active antiretroviral treatment initiation in a cohort of HIV-infected patients in Greece. *Int J STD AIDS*. 2010;21(10):702-707.

177. Pontall E, Ferrari F. Prevalence of hepatitis B virus and/or hepatitis C virus co-infections in prisoners infected with the Human Immunodeficiency Virus. *Int J Prison Health*. 2008;4(2):77-82.

178. De Socio GV, Bonfanti P, Ricci E, et al. Cholesterol levels in HIV-HCV infected patients treated with lopinavir/ritonavir: results from the SCOLTA project. *Biomed Pharmacother*. 2008;62(1):16-20.

179. Guriev V, Spinu C. Evaluation of epidemiological particularities of HIV-infection associated with viral hepatitis B and C in the Republic of Moldova. *HIV AIDS Rev*. 2010;9(4):97-100.

180. Snijdewind DJ, Smit C, Godfried MH, et al. Hcv coinfection, an important risk factor for hepatotoxicity in pregnant women starting antiretroviral therapy. *J Infect*. 2012;64(4):409-416.

181. Kooij KW, Wit FWMN, van Zoest RA, et al. Liver fibrosis in HIV-infected patients on long-term antiretroviral therapy: associated with immune activation, immunodeficiency and prior use of didanosine. *Aids*. 2016;30(11):1771-1780.

182. Zhang S, Av S, Kesselring A, et al. Risk of non-AIDS-defining events among HIV-infected patients not yet on antiretroviral therapy. *HIV Med*. 2015;16(5):265-272.

183. Tovo CV, Santos DED, Mattos ÂZD, Almeida PRLd, Mattos AAD, Santos BR. Prevalência ambulatorial em um hospital geral de mar- cadores para hepatites B e C em pacientes com infecção pelo vírus da imunodeficiência humana. *Arq Gastroenterol*. 2006;43(2):73-76.

184. Collazos J, Valle-Baray E, Carton JA, et al. Factors associated with long-term CD4 cell recovery in HIV-infected patients on successful antiretroviral therapy. *HIV Med*. 2016;17(7):532-541.

185. Tuma P, Pineda JA, Labarga P, et al. HBV primary drug resistance in newly diagnosed HIV-HBV-coinfected patients in Spain. *Antivir Ther*. 2011;16(4):585-589.

186. Campo J, Cano J, del Romero J, Hernandez V, Rodriguez C, Bascones A. Oral complication risks after invasive and non-invasive dental procedures in HIV-positive patients. *Oral Dis*. 2007;13(1):110-116.

187. Palacios R, Mata R, Aguilar I, et al. High seroprevalence but low incidence of HCV infection in a cohort of patients with sexually transmitted HIV in Andalusia, Spain. *J Int Assoc Physicians AIDS Care (Chic Ill)*. 2009;8(2):100-105.

188. Quezada M, Martin-Carbonero L, Soriano V, et al. Prevalence and riskfactors associated with pulmonary hypertension in HIV-infected patients on regular follow-up. *AIDS*. 2012;26(11):1387-1392.

189. Sahin A, Sahin ST, Namiduru M, Karaoglan I, Bosnak V. Seroprevalence of hepatitis B and hepatitis C virus in HIV/AIDS patients at Gaziantep University. *Mediterranean J Infect Microb Antimicrob*. 2016;5:1-5.

190. Ural S, Kaptan F, Turkner N, Ormen B, El S, Coskun NA. Seroprevalence of hepatitis B virus and hepatitis C virus infections in human immunodeficiency virus-infected patients. *Hepatol Int*. 2013;7:S275-S276.
191. Alp E, Bozkurt I, Doganay M. Epidemiological and clinical characteristics of HIV/AIDS patients followed-up in Cappadocia region: 18 years experience. *Microbiol Bul.* 2011;45(1):125-136.

192. Manavi K. Hepatitis B exposure, immunity and infection in newly diagnosed HIV infected men who have sex with men: A 10-year analysis. *HIV Med.* 2017; Conference: 23rd Annual Conference of the British HIV Association, BHIVA 2017. United Kingdom. 18(Supplement 1):38.

193. Thornton AC, Jose S, Bhagani S, et al. Hepatitis B, hepatitis C, and mortality among HIV-positive individuals. *AIDS.* 2017;31(18):2525-2532.

194. Zhu L, Wang Y, Sun M, Hu W, HBV, HCV, and syphilis co-infections among HIV positive blood donors in blood center of zhejiang province, china: A retrospective analysis. *Vox Sang.* 2017; Conference: 28th Regional Congress of the International Society of Blood Transfusion. China. 112(Supplement 2):113.

195. Dong Y, Qiu C, Xia X, et al. Hepatitis B virus and hepatitis C virus infection among HIV-1-infected injection drug users in Dali, China: prevalence and infection status in a cross-sectional study. *Arch Virol.* 2015;160(4):929-936.

196. Li JR, Gong RY, Tian KL, Wang J, Wang YX, Huang HJ. Study on the blood-borne virus co-infection and T lymphocyte subset among intravenous drug users. *World J Gastroenterol.* 2007;13(16):2357-2362.

197. Zhang F, Zhou S, Chen X, et al. Seroprevalence of HBV and HCV among HIV-infected adults in China according to route of HIV infection: High rate of HBV and HCV exposure. *Future Virol.* 2012;7(10):1015-1020.

198. Kou H, Du X, Li Y, et al. Comparison of Nevirapine Plasma rate of HBV and HCV exposure. *J Antimicrob Chemother.* 2012;68(3):315-321.

199. Zhou YH, Yao ZH, Liu FL, et al. Evolution of hepatitis A virus seroprevalence among HIV-positive adults in Taiwan. *PLoS ONE* [Electronic Resource]. 2017;12(10):e0186338.

200. Lee HC, Ko NY, Lee NY, Chang CM, Ko WC. Seroprevalence of hepatitis B virus infection in men who have sex with men aged 18–40 years in Taiwan. *J Forms Med Assoc.* 2012;111(8):e52950.

201. Sheng WH, Kao JH, Chen PJ, et al. Multicenter study of trimethoprim/sulfamethoxazole-related hepatotoxicity: Incidence and associated factors among HIV-infected patients treated for Pneumocystis jirovecii pneumonia. *PLoS ONE.* 2014;9(9):e106141.

202. Wu P, Cheng C, Liu C, et al. Multicenter study of skin rashes and hepatotoxicity in antiretroviral-naive HIV-positive patients receiving non-nucleoside reverse-transcriptase inhibitor plus nucleoside reverse-transcriptase inhibitors in Taiwan. *PLoS ONE.* 2017;12(2):e0171596.

203. Yang JJ, Huang CH, Liu CE, et al. Multicenter study of trimethoprim/sulfamethoxazole-related hepatotoxicity: Incidence and associated factors among HIV-infected patients treated for Pneumocystis jirovecii pneumonia. *PLoS ONE.* 2014;9(9):e106141.

204. Sun H, Cheng C, Lee N, et al. Seroprevalence of hepatitis B virus among adults at high risk for HIV transmission two decades after implementation of nationwide hepatitis B virus vaccination program in Taiwan. *PLoS ONE.* 2014;9(2):e90194.

205. Hsieh M, Tsai J, Hsieh M, et al. Hepatitis C virus infection among injection drug users with and without human immunodeficiency virus co-infection. *PLoS ONE.* 2014;9(4):e94791.

206. Verma S, Mahajan A, Singh JB, Sharma M. Clinical profile of HIV/AIDS patients in Jammu. *JK Pract.* 2007;14(2):79-83.

207. Sawaihul VK, Ukey PM, Bobhate SK. Seroprevalence of HIV, HBV, HCV and Syphilis in blood donors of Central India. *Biomed Res.* 2006;17(2):139-143.

208. Saini PA, Chakraborti PR, Varma AV, Gambhir S, Tignath G, Gupta P. Hepatitis C virus: Unnoticed and on the rise in blood donor screening? A 5 years cross-sectional study on seroprevalence in voluntary blood donors from central India. *J Clin Diagn Res.* 2015;9(2):226-234.

209. Saini PA, Chakraborti PR, Varma AV, Gambhir S, Tignath G, Gupta P. Hepatitis C virus: Unnoticed and on the rise in blood donor screening? A 5 years cross-sectional study on seroprevalence in voluntary blood donors from central India. *J Clin Diagn Res.* 2015;9(2):226-234.

210. Chang SY, Chen MY, Lee CN, et al. Trends of antiretroviral drug resistance in treatment-naïve patients with human immunodeficiency virus type 1 infection in Taiwan. *J Antimicrob Chemother.* 2008;61(3):689-693.

211. Lee Y-L, Lin KY, Cheng C-Y, et al. Evolution of hepatitis A virus seroprevalence among HIV-positive adults in Taiwan. *Vox Sang.* 2017;Conference: 28th Regional Congress of the International Society of Blood Transfusion. China. 112(Supplement 2):93-94.

212. Anamika V, Ramavtar S, Pooja G. Prevalence of hepatitis B virus infection among persons born in the era of nationwide HBV Vaccination: Implication for booster vaccination for persons at risk for HIV transmission. *Clin Microbiol Infect.* 2012;18:87.
225. Raizada A, Dwivedi S, Bhattacharya S, Hepatitis B, hepatitis C and HIV co-infection at an antiretroviral centre in Delhi. *Trop Doct*. 2011;41(3):154-156.

226. Solomon SS, Hawcroft CS, Narasimhan P, et al. Comorbidities among HIV-infected injection drug users in Chennai, India. *Indian J Med Res*. 2008;127(5):447-452.

227. Dikshit B, Wanchu A, Sachdeva RK, Sharma A, Das R. Profile of hematological abnormalities of Indian HIV infected individuals. *BMCMedicalDisease*. 2009;9:5.

228. Singh SK, Singh S, Nath G, Srivastava MK. Co-infection of hepatitis B virus and hepatitis C virus with human immunodeficiency virus infection: A cross-sectional study. *Indian J SexTransmDis*. 2016;37(1):95-96.

229. Ray Saraswati L, Sarna A, Sebastian MP, et al. HIV, Hepatitis B and C among people who inject drugs: high prevalence of HIV and Hepatitis C RNA positive infections observed in Delhi, India. *BMCPublicHealth*. 2015;15(1):726.

230. Kheti J, Charoo H, Shalini M. Study of Hepatitis B virus and hepatitis D virus infection in HIV infected patients and its correlation with CD4 counts in a tertiary care hospital. *Int J CurrMicrobiolApplSci*. 2014;3(8):445-452.

231. Parande MV, Mantur BG, Parande AM, et al. Seroprevalence of human immunodeficiency virus & Hepatitis B virus co-infection in Belgaum, southern India. *Indian J MedRes*. 2013;138(3):364-365.

232. Bisht TV, Kanetkar SR, Kumbhar SS, Chavan S. Seroprevalence of infectious markers among blood donors from blood bank of a tertiary care hospital. *Indian J HematolBloodTransf*. 2013;29(5):391-392.

233. Sharma DC, Rai S, Bharat S, et al. Transfusion TransmissibleInfections among Blood Donors at the Blood Bank of Medical College of Gwalior: A 5 Year Study. *IntBloodResRev*. 2014;2:235-246.

234. Prelamatha E, Sharavanan TKV, Jayalakshmi G. Seroprevalence of hepatitis-B and hepatitis-C infection among HIV positive and HIV negative individuals in a Tertiary Care Hospital. *ScholarsJApplMedSci*. 2014;2(5B):1596-1600.

235. Mathai J, Sulochana PV, Satyabhama S, Nair PKR, Sivakumar S. Profile of transfusion transmissible infections and associated risk factors among blood donors of Kerala. *Indian JPatholMicrobiol*. 2002;45(3):319-322.

236. Wisaksana R, Indrati AK, Fibriani A, et al. Response to first-line antiretroviral treatment among human immunodeficiency virus-infected patients with and without a history of injecting drug use in Indonesia. *Addiction*. 2010;105(6):1055-1061.

237. Utsumi T, Yano Y, Lusida MI, et al. Detection of highly prevalent hepatitis B virus co-infection with HIV in Indonesia. *HepatolRes*. 2013;43(10):1032-1039.

238. Sai Ko Ko Z, Tun ST, Thida A, et al. Prevalence of hepatitis C and B virus among patients infected with HIV: a cross-sectional analysis of a large HIV care programme in Myanmar. *Trop Doct.* 2013;43(3):113-115.

239. Min Min W, Win A. Seroprevalence of HBsAg and anti-HBs among people living with HIV/AIDS (PLWHA). *MyanmarHealthSciResJ*. 2010;22(2):129-130.

240. Sana M, Muhammad I, Shah AMH, et al. Hepatitis B and C virus infections among human immunodeficiency virus-infected people who inject drugs in Lahore, Pakistan. *ViralImmunol*. 2017;30(5):366-370.

241. Mansha S, Imran M, Shah AMU, et al. Hepatitis B and C virus infections among human immunodeficiency virus-infected people who inject drugs in Lahore, Pakistan. *ViralImmunol*. 2017;30(5):366-370.

242. Lam CR, Holtz TH, Leelawiwat W, et al. Subtypes and risk behaviors among incident HIV cases in the Bangkok men who have sex with men cohort study, Thailand, 2006–2014. *AIDSResHumRetroviruses*. 2017;33(10):1004-1012.

243. Kiirtiburanakul S, Chotiprasitsakul D, Atamasirikul K, Sungkanuparph S. Late and low compliance with hepatitis B serology screening among HIV-infected patients in a resource-limited setting: an issue to improve HIV care. *CurrHIVRes*. 2011;9(1):54-60.

244. Tsuchiya N, Pathipimunch P, Rojanawiwat A, et al. Chronic hepatitis B and C co-infection increased all-cause mortality in HAART-naïve HIV patients in Northern Thailand. *EpidemiolInfect*. 2013;141(9):1840-1848.

245. Rangarajan S, Colby DJ, Truong GL, et al. Factors associated with HIV RNA viral loads in ART-naïve patients: implications for treatment as prevention in concentrated epidemics. *JViralErad*. 2016;2(1):36-42.

246. Ishizaki A, Tran VT, Nguyen CH, et al. Discrepancies in prevalence trends for HIV, hepatitis B virus, and hepatitis C virus in Haiphong, Vietnam from 2007 to 2012. *PLoSONE*. 2017;12(6):e0179616.

247. Falster K, Ward H, Donovan B, et al. Hospitalizations in a cohort of HIV patients in Australia, 1999–2007. *AIDS*. 2010;24(9):1329-1339.

248. Jin F, Prestage GP, Zablotska I, et al. High rates of sexually transmitted infections in HIV positive homosexual men: data from two community based cohorts. *SexTransmInfect*. 2007;83(5):397-399.

249. Lincoln D, Petoumenos K, Dore GJ, Australian HIVOD. HIV/HBV and HIV/HCV coinfection, and outcomes following highly active antiretroviral therapy. *HIVMed*. 2003;4(3):241-249.

250. Cooley L, Ayres A, Bartholomewes A, et al. Prevalence and characterization of lamivudine-resistant hepatitis B virus mutations in HIV-HBV co-infected individuals. *AIDS*. 2003;17(11):1649-1657.

251. Kojima Y, Kawahata T, Mori H, et al. Identification of novel recombinant forms of hepatitis B virus generated from genotypes Ae and G in HIV-1-positive Japanese men who have sex with men. *AIDSResHumRetroviruses*. 2015;31(7):760-767.

252. Koike K, Kikuchi Y, Kato M, et al. Prevalence of hepatitis B virus infection in Japanese patients with HIV. *HepatolRes*. 2008;38(3):310-314.

253. Gatanana H, Ibe S, Matsuda M, et al. Drug-resistant HIV-1 prevalence in patients newly diagnosed with HIV/AIDS in Japan. *AntivirRes*. 2007;75(1):75-82.

254. Shibayama T, Masuda G, Ajsawa A, et al. Characterization of seven genotypes (A to E, G and H) of hepatitis B virus recovered from Japanese patients infected with human immunodeficiency virus type 1. *JMedVirol*. 2005;76(1):24-32.

255. Kojima Y, Kawahata T, Mori H, et al. Prevalence and epidemiological traits of HIV infections in populations with high-risk behaviours as revealed by genetic analysis of HBV. *EpidemiolInfect*. 2013;141(11):2410-2417.

256. Gatanana H, Hayashida T, Tanuma J, Oka S. Prophylactic effect of antiretroviral therapy on hepatitis B virus infection. *ClinInfectDis*. 2013;56(12):1812-1819.

257. Kim YC, Ahn JY, Kim JM, et al. Human immunodeficiency virus (HIV) and hepatitis virus coinfection among HIV-infected Korean patients: The Korea HIV/AIDS cohort study. *InfectChemother*. 2017;49(4):268-274.

258. Santos EA, Yoshida CF, Rolla VC, et al. Frequent occult hepatitis B virus infection in patients infected with human immunodeficiency virus type 1. *EurJClinMicrobiolInfectDis*. 2003;22(2):92-98.

259. Sumtoller F, Penna TL, de Souza CT, Lambert J. Oswaldo Cruz Foundation STDHIVPG. Human immunodeficiency virus incidence and risk behavior in the 'Projeto Rio': results of the first 5 years of the Rio de Janeiro open cohort of homosexual and bisexual men, 1994–98. *IntJInfectDis*. 2002;6(4):259-265.

260. Tomatore M, Goncalves CV, Bianchi MS, et al. Co-infections associated with human immunodeficiency virus type 1 in pregnant women from southern brazil: high rate of intraepithelial cervical lesions. *MemInstOswaldoCruz*. 2012;107(2):205-210.

261. Kretschmann R, Fuchs SC, Suffert T, Preussler G. Perinatal HIV-1 transmission among low income women participants in the HIV/AIDS Control Program in Southern Brazil: a cohort study. *BJOG*. 2004;111(6):579-584.
Author/s:
Platt, L; French, CE; McGowan, CR; Sabin, K; Gower, E; Trickey, A; McDonald, B; Ong, J; Stone, J; Easterbrook, P; Vickerman, P

Title:
Prevalence and burden of HBV co-infection among people living with HIV: A global systematic review and meta-analysis.

Date:
2020-03

Citation:
Platt, L., French, C. E., McGowan, C. R., Sabin, K., Gower, E., Trickey, A., McDonald, B., Ong, J., Stone, J., Easterbrook, P. & Vickerman, P. (2020). Prevalence and burden of HBV co-infection among people living with HIV: A global systematic review and meta-analysis. J Viral Hepat, 27 (3), pp.294-315. https://doi.org/10.1111/jvh.13217.

Persistent Link:
http://hdl.handle.net/11343/246630

File Description:
published version

License:
CC BY