THE DESIGN, SYNTHESIS AND BIOLOGICAL EVALUATION OF THE PEPTIDE DERIVATIVES CONTAINING GUANIDINE MOIETY WITH 5-CHLORO-THIOPHENE-2-CARBOXYLIC ACID CONJUGATES

Sunil Tivari¹, Siddhant V. Kokate², Uttam B. Shelar² and Yashwantsinh Jadeja¹,✉

¹Department of Chemistry, Marwadi University, Rajkot-360003, (Gujarat) India.
²Department of Chemistry, S. S. C College, Junnar, Pune-410502, (Maharashtra) India.
✉Corresponding Author: yashwantsinh.jadeja@marwadieducation.edu.in

ABSTRACT

A new series of dipeptide derivatives with 5-chloro-thiophene-2-carboxylic acid conjugates have been designed and synthesized using solid-phase peptide synthesis. The synthesized dipeptide derivatives were characterized by using spectroscopic tools, like ¹H and ¹³C NMR, IR, and mass and elemental analysis. Additionally, the obtained target dipeptide derivatives were evaluated for in vitro antimicrobial activity. The antibacterial activity of the target compounds was evaluated against four bacteria (two Gram-positive; Streptococcus pyogenes and Staphylococcus aureus, two Gram-negative; Escherichia coli and Pseudomonas aeruginosa). The screened analogs showed good antibacterial activity. Noteworthily, among them, Thiophene-Tyr-Arg-OH derivative exhibited excellent activity against Escherichia coli (MIC=15 µg/mL) as compared to standard drug ampicillin. The antifungal activity was evaluated against two fungi (Aspergillus niger and Candida albicans). The screened analogs also showed good antifungal activity.

Keywords: Heterocyclic Hybrids, Thiophene Conjugates, Solid Phase Peptide Synthesis, Dipeptides, Antibacterial Activity, Antifungal Activity.

INTRODUCTION

Heterocyclic compounds are ubiquitous in nature having several synthetic applicability and biological activity which encourage researchers to plan the discovery of novel drugs.¹⁻⁶ Among all the available heterocyclic analogs, thiophene, a five-membered heteroaromatic compound containing a Sulphur atom, is of high importance.⁷⁻¹¹ Thiophene derivatives have notable applications in many disciplines. The biological importance of thiophene derivatives can be described in the following different categories which are antioxidant¹², antiviral¹³, antimicrobial¹⁴, analgesic and anti-inflammatory¹⁵, antihypertensive¹⁶, and antitumor¹⁷ activities, along with condrotoxicity¹⁸, ototoxicity¹⁹, and retinopathy.²⁰ Additionally, the thiophene derivatives can be employed as corrosion inhibitors of metals²¹ or in material science for the synthesis of light-emitting diodes.²² Antimicrobial peptides are the indispensable component of the living system found in various organisms like bacteria, fungi, plants and animals.²³ There are many drugs available in the pharmaceutical market with thiophene moieties like Suprofen²⁴, Tenidap²⁵, Tienilic acid²⁶, Ticlopidine²⁷, Tigabine²⁸, etc. (Fig.-1).

In drug discovery, it is highly critical to determine and fine-tune the intricate networks of protein-protein interactions (PPIs) that drive the mechanisms of disease. Peptides are model motifs to determine and fine-tune the PPIs. The resurgence in therapeutic peptide development over the past two decades is due to the number of benefits they offer over the therapeutics of other classes. Peptide therapeutics are adequately endured in the biological systems, easy to insert due to their stereochemistry, thus, offering target selectivity, and can offer high efficacy during interaction with large protein surfaces. Peptides can proficiently bind to often untenable surfaces on proteins that regulate PPIs.²⁹⁻³² Additionally, they offer...
better cell membrane permeability than small molecule drugs, which is a critical criterion for passive absorption in the gastrointestinal tract.

In the light of the above facts, we have designed the synthesis of a new series of dipeptide derivatives with 5-chloro-thiophene-2-carboxylic acid at N terminus and Arginine at the C terminus (Fig.-2) and evaluated their antimicrobial activities. Moreover, we have compared the observed antibacterial and antifungal activities of the synthesized dipeptides with the standard drugs Ampicillin and Nystatin, respectively. We chose the solid phase peptide synthesis (SPPS) route for the synthesis purpose because it is simple, highly efficient, involves easy purification, rapidly generates the linear peptides, the synthesized intermediates do not require isolation and high-speed method as compared to the traditional solution-phase peptide synthesis.33

EXPERIMENTAL

Material and Methods
The resin was procured from Merck. All the amino acids used are L and Fmoc protected and were procured from Sichuan China. Melting points were obtained by an open capillary method and are uncorrected. The coupling and deprotection reactions were monitored by the Kaiser test. Compounds were purified by preparative HPLC or precipitation using ethyl acetate and hexane mixtures. IR spectra were recorded on Nicolet impact 400 FT/IR spectrometer using KBr pressed pellet technique. MASS spectra were recorded on Shimadzu LC-MS (at 70 eV) Mass Spectrometer. ¹H and ¹³C NMR spectra were recorded on Bruker Neo 400 MHz NMR spectrometer using DMSO-d₆ solvent.

General Procedure for the Synthesis of Intermediates 1a-j
The 2-chlorotrityl chloride (2-CTC) resin (substitution 1.0 mmol/g) was added to the peptide synthesizer, washed with 10 volumes of dichloromethane (DCM) and drained. Further, added 10 volumes of DCM and stirred for 1h (swelling) then drained. Dissolved Fmoc-Arg(pbf)-OH (3 eq.) in dry DCM (10 ml/gm) and added diisopropylethylamine (DIPEA) (4 eq.). Agitated the reaction mixture vigorously for 2 h. Filtered and washed the peptidyl resin twice with DCM and then twice with dimethylformamide (DMF). Capped the unreacted functional group of resin by using DCM, methanol and DIPEA (85:10:5). Loading percentage monitored by UV absorption in the range of 300 nm.
The standard SPPS method was applied with Fmoc/tBu/boc protocol. Fmoc-Arg(Pbf)-2-CTC resin (loading 1 mmol/g) was placed into a reaction vessel and allowed to swell in DMF (20 v with respect to the initial weight of resin) for 30 min. After swelling, the peptides were synthesized using CSBio automated peptide synthesizer by repetition of the following steps: (1) Fmoc deprotection performed (wash) with a solution of 20% piperidine in DMF (v/v) two times; 5 minutes and 10 minutes (10 v with respect to the initial weight of resin). The reaction completion was monitored by the Kaiser test (the blue color solution was observed, complies). After completion of the synthesis, the peptidyl resin was filtered and then washed with DMF (×5).
General Procedure for the Synthesis of Intermediate 6a-j
The protected peptidyl resin was treated with a mixture of TFA:TIS:H₂O (90:5:5) (10 mL/gm) at 20 °C for 3 h. The mixture was precipitated with DIPE (50 volume), filtered and washed with 3x10 volume diisopropylether (DIPE). The filter cake was dried under a vacuum at room temperature to obtain the crude.

Compound-6a (5-chlorothiophene-2-carbonyl)-D-serylarginine
79.0% yield; mp 186-192 °C; ¹H NMR (400 MHz, DMSO-d₆, δ, ppm): 12.64 (s, 1H), 8.62 (s, 1H), 8.27 (s, 1H), 8.02, (d, 1H), 7.76 (s, 1H), 6.80 (d, 1H), 6.62 (s, 2H), 4.91 (s, 1H), 4.54 (t, 1H), 4.20 (t, 1H), 3.91 (d, 2H), 3.35 (m, 2H), 1.77 (m, 2H), 1.55 (m, 3H); ¹³C NMR (100 MHz, DMSO-d₆, δ, ppm): 173.8, 170.2, 160.7, 157.2, 139.2, 133.5, 129.2, 128.5, 72.5, 61.9, 56.5, 40.7, 28.6, 25.5; LCMS (ESI): m/z = 406.85 [M⁺ 100%]. Anal. Calcd. for C₁₆H₁₇ClN₃O₅S: C, 44.13; H, 4.97; Cl, 8.73; N, 17.26; O, 19.71; S, 7.90; Found C, 44.10; H, 4.95; Cl, 8.77; N, 17.20; O, 19.76; S, 7.93%.

Compound-6b (5-chlorothiophene-2-carbonyl)-D-tyrosylarginine
16.60; O, 15.17; S, 15.20; Found: C, 39.74; H, 4.68; Cl, 8.39; N, 16.50; O, 14.21; S, 14.26%.

Compound-6c (5-chlorothiophene-2-carbonyl)-D-cysteinylarginine
65.2% yield; mp 202-206 °C; ¹H NMR (400 MHz, DMSO-d₆, δ, ppm): 12.65(s, 1H), 8.76 (s, 1H), 8.31 (s, 1H), 8.07 (d, 1H), 7.85 (s, 1H), 6.85 (d, 1H), 6.64(s, 2H), 4.53 (t, 1H), 4.49 (t, 1H), 3.33 (t, 2H), 2.49 (s, 1H), 2.02-2.60 (m, 4H), 2.05 (s, 3H), 1.75 (t, 2H), 1.50 (m, 2H); ¹³C NMR (100 MHz, DMSO-d₆, δ, ppm): 174.6, 171.0, 161.2, 158.0, 140.6, 138.2, 135.8, 129.7, 56.3, 56.0, 41.5, 31.5, 29.6, 29.2, 24.5, 15.3; LCMS (ESI): m/z = 450.91 [M⁺ 100%]. Anal. Calcd. for C₁₆H₁₇ClN₃O₅S₂: C, 42.71; H, 5.38; Cl, 7.88; N, 15.56; O, 14.22; S, 14.25; Found C, 42.70; H, 5.39; Cl, 7.89; N, 15.55; O, 14.21; S, 14.26%.

Compound-6d (5-chlorothiophene-2-carbonyl)-D-methionylarginine
69.2% yield; mp 201-205 °C; ¹H NMR (400 MHz, DMSO-d₆, δ, ppm): 12.65 (s, 1H), 8.79 (s 1H), 8.41 (s, 1H), 8.08 (d, 1H), 7.82 (s, 1H), 6.80 (d, 1H), 6.66 (s, 2H), 4.64 (t, 1H), 4.51 (t, 1H), 3.15 (t, 2H), 3.15 (d, 2H), 2.49 (s, 1H), 1.71 (m, 2H), 1.51 (m, 2H), 1.42 (s, 1H); ¹³C NMR (100 MHz, DMSO-d₆, δ, ppm): 173.81, 171.74, 160.76, 157.32, 138.92, 133.78, 129.31, 128.62, 56.52, 52.35, 40.77, 31.22, 29.47, 28.47; LCMS (ESI): m/z = 422.90 [M⁺ 100%]. Anal. Calcd. For C₁₆H₁₇ClN₃O₅S₂: C, 39.85; H, 4.78; Cl, 8.40; N, 16.60; O, 15.17; S, 15.20; Found: C, 39.74; H, 4.68; Cl, 8.39; N, 16.50; O, 15.11; S, 15.58%.

Compound-6e (5-chlorothiophene-2-carbonyl)-D-tyrosylarginine
69.2% yield; mp 201-205 °C; ¹H NMR (400 MHz, DMSO-d₆, δ, ppm): 12.65 (s, 1H), 8.90 (s, 1H), 8.82 (s, 1H), 8.59 (s, 1H), 8.12 (d, 1H), 7.85 (s, 1H), 6.92 (d, 1H), 6.72 (s, 2H), 6.30-6.90 (d, 4H), 4.93 (t, 1H), 4.62 (t, 1H), 3.42 (d, 2H), 3.37 (t, 2H), 2.54 (s, 1H), 1.74 (m, 2H), 1.50 (m, 2H); ¹³C NMR (100 MHz, DMSO-d₆, δ, ppm): 174.6, 171.5, 161.3, 158.1, 155.6, 140.0, 138.3, 135.9, 130.2, 129.7, 129.1, 115.7, 56.9, 56.2, 41.5, 37.3, 29.6, 24.6; LCMS (ESI): m/z = 482.95 [M⁺ 100%]. Anal. Calcd. for C₁₂₀H₁₇₅ClN₃O₅S: C, 49.84; H, 5.02; Cl, 7.36; N, 14.53; O, 16.60; S, 6.65; Found: C, 49.82; H, 5.04; Cl, 7.35; N, 14.54; O, 16.61; S, 6.64.

Compound-6f (5-chlorothiophene-2-carbonyl)-lysylarginine
66.7% yield; mp 192-196 °C; ¹H NMR (400 MHz, DMSO-d₆, δ, ppm): 12.11 (s, 1H), 8.67 (s, 1H), 8.32 (s, 1H), 8.81 (d, 2H), 7.81 (s, 1H), 6.80 (d, 1H), 6.62 (s, 2H), 4.55 (t, 1H), 4.21 (s, 1H), 3.43 (t, 2H), 2.49
(s, 1H), 1.87-1.75 (m, 4H), 1.52 (m, 2H), 1.50 (s, 2H), 1.20 (m, 2H); 13C NMR (100 MHz, DMSO-d_6, δ, ppm): 174.5, 171.0, 161.1, 157.0, 140.1, 138.2, 135.2, 129.1, 57.1, 56.5, 42.1, 40.5, 31.3, 29.4, 28.4, 24.5, 22.2; LCMS (ESI): $m/z = 447.9$ [M$^+$ 100%]. Anal. Calcd. for C$_{17}$H$_2$ClN$_5$O$_3$: C, 45.68; H, 6.09; Cl, 7.93; N, 18.80; O, 14.32; S, 7.17; Found: C, 45.58; H, 6.15; Cl, 7.89; N, 18.04; O, 14.42; S, 7.92%.

Compound-6g (5-chlorothiophene-2-carboxamido)-D-alanylarginine

69.4% yield; mp 180-185 °C; 1H NMR (400 MHz, DMSO-d_6, δ, ppm): 12.64 (s, 1H), 8.77 (s, 1H), 8.32 (s, 1H), 8.07 (d, 1H), 7.84 (s, 1H), 6.85 (d, 1H), 6.66 (s, 2H), 4.65 (m, 1H), 4.53 (m, 1H), 3.34 (t, 2H), 2.5 (s, 1H), 1.7 (m, 2H), 1.50 (m, 2H), 1.47 (d, 3H); 13C NMR (100 MHz, DMSO-d_6, δ, ppm): 174.7, 171.7, 161.3, 158.0, 140.7, 138.3, 135.9, 129.8, 56.1, 53.6, 41.6, 29.7, 24.6, 17.9; LCMS (ESI): $m/z = 390.86$ [M$^+$ 100%]. Anal. Calcd. for C$_{16}$H$_2$ClN$_5$O$_3$: C, 43.13; H, 5.17; Cl, 9.09; N, 17.96; O, 16.42; S, 8.22; Found: C, 43.12; H, 5.18; Cl, 9.08; N, 17.97; O, 16.42; S, 8.22%.

Compound-6h (5-chlorothiophene-2-carboxamido)-D-prolylarginine

74.1% yield; mp 182-187 °C; 1H NMR (400 MHz, DMSO-d_6, δ, ppm): 12.55 (s, 1H), 8.38 (s, 1H), 8.08 (d, 1H), 7.75 (s, 1H) 6.70 (d, 1H), 6.60 (s, 2H), 4.50 (t, 1H), 4.39 (t, 1H), 3.55 (t, 2H), 3.32 (t, 2H), 2.49 (s, 1H), 2.11 (m, 2H), 1.82 (m, 2H), 1.77 (m, 2H), 1.55 (m, 2H); 13C NMR (100 MHz, DMSO-d_6, δ, ppm): 173.81, 171.74, 160.76, 157.32, 138.92, 133.78, 129.31, 128.62, 56.54, 52.35, 40.77, 31.22, 29.47, 28.47; LCMS (ESI): $m/z = 416.89$ [M$^+$ 100%]. Anal. Calcd. for C$_{16}$H$_2$ClN$_5$O$_3$: C, 46.21; H, 5.33; Cl, 8.52; N, 16.84; O, 15.39; S, 7.71; Found: C, 46.20; H, 5.34; Cl, 8.52; N, 16.84; O, 15.38; S, 7.72%.

Compound-6i ((2R)-2-(5-chlorothiophene-2-carboxamido)-3-hydroxybutanoyl)arginine

70.4% yield; mp 187-191 °C; 1H NMR (400 MHz, DMSO-d_6, δ, ppm): 12.66 (s, 1H), 8.78 (s, 1H), 8.32 (s, 1H), 8.08 (d, 1H), 7.84 (s, 1H), 6.86 (d, 1H), 6.60 (s, 2H), 5.37 (d, 1H), 4.62 (m, 1H), 4.55 (t, 1H), 4.44 (d, 1H), 3.35(m, 2H), 2.50 (s, 1H), 1.70 (m, 2H), 1.51 (m, 2H), 1.16 (d, 3H); 13C NMR (100 MHz, DMSO-d_6, δ, ppm): 174.7, 172.6, 161.3, 158.0, 140.7, 138.3, 135.9, 129.8, 67.6, 62.4, 56.1, 41.6, 29.7, 24.6, 19.0; LCMS (ESI): $m/z = 420.88$ [M$^+$ 100%]. Anal. Calcd. for C$_{18}$H$_2$ClN$_5$O$_3$: C, 42.91; H, 5.28; Cl, 8.44; N, 16.68; O, 19.05; S, 7.64 Found: C, 42.95; H, 5.32; Cl, 8.45; N, 16.77; O, 19.02; S, 7.63%.

Compound-6j (5-chlorothiophene-2-carboxamido)-D-phenylalanylarginine

66.1% yield; mp 202-207 °C; 1H NMR (400 MHz, DMSO-d_6, δ, ppm): 12.55 (s, 1H), 8.77 (s, 1H) 8.30 (s, 1H), 8.07 (d, 1H), 7.82 (s, 1H), 7.32-6.71 (d, 6H), 6.60 (s, 2H), 4.50 (t, 1H), 4.38 (t, 1H), 3.42 (t, 2H), 3.32 (d, 2H), 2.49 (s, 1H), 1.71 (m, 2H), 1.55 (m, 2H); 13C NMR (100 MHz, DMSO-d_6, δ, ppm): 174.21, 171.59, 160.50, 158.79, 157.34, 139.03, 138.66, 133.56, 129.59, 129.88, 128.55, 60.91, 55.15, 52.65, 37.55, 27.29, 25.74; LCMS (ESI): $m/z = 466.95$ [M$^+$ 100%]. Anal. Calcd. for C$_{20}$H$_2$ClN$_5$O$_3$: C, 51.55; H, 5.19; Cl, 7.61; N, 15.03; O, 13.73; S, 6.88; Found: C, 51.45; H, 5.29; Cl, 7.52; N, 15.17; O, 13.65; S, 6.65%.

Biological Activity

Antibacterial Activity Assay

The strains used were newly procured and stored under appropriate conditions. The compounds were screened for their antibacterial activity in triplicates against the bacteria at different concentrations of 1000, 500, 250, 200 µg/mL. The compounds which were found to be effective in inhibition were further diluted and tested. Muller Hinton Broth dilution method was used for the antibacterial assay. 10 µg/mL suspension of respective bacteria were inoculated on appropriate media and growth was noted after incubation at 37 °C for a period of one or two days. The test mixture should contain 10^8 cells/mL. In this study, ampicillin was used as a standard drug for evaluating the antibacterial activity.

Antifungal Activity Assay

The strains used were newly procured and stored under appropriate conditions. The compounds were screened for their antifungal activity in triplicates against the bacteria at different concentrations of 1000, 500, 250, 200 µg/mL. The compounds which were found to be effective in inhibition were further diluted.
and tested. Muller Hinton Broth dilution method was used for the antifungal assay. In this study, for fungal growth, Sabouraud’s dextrose broth was used at 28 °C in aerobic conditions for 48 hours. Nystatin was used as a standard for comparison purposes.

RESULTS AND DISCUSSION

Chemistry
A new series of dipeptides derivatives with 5-chloro-thiophene-2-carboxylic acid conjugates 6a-j was synthesized using the solid-phase peptide synthesis method. The SPPS route was employed for the synthesis purpose as it is simple, highly efficient, involves easy purification, rapidly generates the linear peptides, the synthesized intermediates do not require isolation and high-speed method as compared to traditional solution-phase peptide synthesis. The first step involves an attachment of Fmoc-Arg(pbf)-OH to the CTC resin using DIPE in DCM (Scheme-1). Loading percentage monitored by UV absorption in the range of 300 nm. The second step involved a Fmoc deprotection using 20% piperidine in DMF. The reaction completion was monitored by the Kaiser test (the blue color solution was observed, complies). The third step was the coupling of the second amino acid using HBTU, HOBt, DIPEA in DMF. The reaction completion was monitored by the Kaiser test (the colorless solution was observed, complies). In the fourth step, a Fmoc deprotection was carried out using 20% piperidine in DMF which was followed by the fifth step which is a coupling of 5-Chloro-thiophene-2-carboxylic acid using HBTU, HOBt and DIPEA in DMF. Further, the final step was global cleavage using a cleavage cocktail to give the final deprotected product. The protected peptidyl resin was treated with a mixture of TFA:TIS:H₂O (90:5:5) (10 mL/gm) at 20 °C for 3 h. DIPE was used for the precipitation purpose to obtain the crude.

The structures of 6a-j were characterized by ¹H NMR, ¹³C NMR, IR and mass spectroscopic techniques. The IR spectra displayed the characteristic absorption bands at 3540-3598, 1610-1690 and 3303-3404 cm⁻¹ for -COOH, -CONH₂, and -N-H stretching, respectively. ¹H NMR spectrum of compounds 6a-j showed the predictable aromatic signals, i.e., two singlets at 1.31-1.60 and 8.65-9.80 ppm for protons of N-H and -COOH, respectively. The complete physical date of the dipeptide derivatives 6a-j is incorporated in Table-1.

Table-1: The Complete Physical Data of Compounds 6a-j

Compound	R	M.F	M.W.	M.P.(°C)	Yield (%)
6a	-CH₂-OH	C₁₄H₂₀Cl₅N₅O₇S	405.85	186-192 °C	70.10
6b	-(CH₂)₂-S-CH₃	C₁₆H₂₂Cl₅N₅O₇S₂	449.91	182-189 °C	77.00
6c	-CH₂-SH	C₁₄H₂₀Cl₅N₅O₇S	421.9	186-192 °C	65.20
6d	-CH₂-C₂H₂-OH	C₂₀H₂₂Cl₅N₅O₇S₂	481.95	201-205 °C	69.20
6e	-(CH₂)₂-COOH	C₁₆H₂₀Cl₅N₅O₇S	447.89	184-190 °C	62.90
6f	-(CH₃)₂-NH₂	C₁₄H₂₀Cl₅N₅O₇S	447.9	192-196 °C	67.70
6g	-CH₃	C₁₄H₂₀Cl₅N₅O₇S	389.86	180-185 °C	69.40
6h	-(CH₂)₂-	C₁₄H₂₀Cl₅N₅O₇S	415.89	182-187 °C	74.10
6i	-CH₂(C=O)-CH₃	C₁₄H₂₀Cl₅N₅O₇S	419.88	187-191 °C	70.40
6j	-CH₂-C₆H₅	C₂₀H₂₂Cl₅N₅O₇S	465.95	202-207 °C	66.10

Biological Evaluation (In vitro Antimicrobial activity)

In *vitro* antimicrobial activities (MIC) of all the newly synthesized dipeptides 6a-j were evaluated by the conventional Broth microdilution method. The antibacterial activity was evaluated against four bacteria (two Gram-positive; *Staphylococcus aureus* (S. a.) MTCC 96 and *Streptococcus pyogenes* (S. p.) MTCC 442, two Gram-negative; *Escherichia coli* MTCC 443 (E. c.) and *Pseudomonas aeruginosa* (P. a.) MTCC 1688) and the results were tabulated in Table-2. Among the screened analogs, dipeptides 6c, 6d, 6f and 6i showed good antibacterial activity compared with the standard drug ampicillin. Additionally, the derivative 6e showed excellent antibacterial activity against *Escherichia coli* (MIC=15 µg/mL) compared with the standard drug ampicillin (MIC=100 µg/mL) (Fig.-3). Additionally, *in vitro* antifungal activity of all the newly synthesized dipeptides 6a-j was evaluated against two fungal strains, *Candida albicans* (C. a.) MTCC 227 and *Aspergillus niger* (A. n.) MTCC 282 and the results were tabulated in Table-2. The dipeptide derivatives 6a and 6e-j showed good antifungal activity compared with the standard Nystatin (Fig.-4).
Table-2: The Results of In-vitro Antibacterial and Antifungal Screenings of Compounds 6a-j

Compounds	MIC (Anti-bacterial Activity) in µg/mL	MIC (Anti-fungicidal Activity) in µg/mL				
	E. c.	P. a.	S. a.	S. p.	C. a.	A. n.
6a	125	150	200	250	150	200
6b	150	200	500	500	200	200
6c	50	150	250	250	250	500
6d	25	100	200	250	200	200
6e	15	25	500	500	150	500
6f	30	50	250	250	150	500
6g	150	175	200	125	150	200
6h	250	150	250	250	150	500
6i	125	100	200	250	125	200
6j	150	200	500	500	250	500
Ampicillin (std-1)	100	100	250	100	-	-
Nystatin (std-2)	-	-	-	-	100	100
CONCLUSION

In this research, we have designed and synthesized a new series of dipeptide derivatives with 5-chlorothiophene-2-carboxylic acid conjugates 6a-j. The characterization of the synthesized derivatives was carried out by spectroscopic techniques (1H & 13C NMR, IR and mass) and elemental analysis. Furthermore, with the anticipation of creating novel therapeutics aiding as effective antimicrobial agents, the obtained dipeptides were evaluated for their in vitro antimicrobial activities. The dipeptide derivatives 6c, 6d, 6f and 6i exhibited good antibacterial activity, while 6e showed an excellent activity compared to the standard drug ampicillin. Additionally, the dipeptide derivatives 6a and 6e-j showed good antifungal activity compared with the standard Nystatin. The research work described in this article lays out a vision for the evolution of novel antimicrobial agents which are efficacious over a diversified span of pathogenic strains. Moreover, this research work sheds a light on the future progress of hybrids of heterocycles and peptides with antimicrobial properties.

ACKNOWLEDGEMENT

The authors are thankful to the University Grants Commission, New Delhi and Marwadi University for technical and academic support.
REFERENCES

1. R. Mishra, C. W. Ghanavatkar, S. N. Mali, H. K. Chaudhari and N. Sekar, Journal of Biomolecular Structure and Dynamics, 13(1), 1(2019), https://doi.org/10.1080/07391102.2019.1621213
2. B. Gadhiya, M. Rajput, A. Bapodra and K. Ladva, Rasayan Journal of Chemistry, 9(3), 355(2016).
3. S. Ningaiah, U. K. Bhadraiah, S. D. Doddaramappa, S. Keshavamurthy and C. Javaranasetty, Bioorganic and Medicinal Chemistry Letters, 24(1), 245(2014), https://doi.org/10.1016/j.bmcl.2013.11.029
4. S. Sathiya, S. Nandhabala, N. Hari, R. Paranathan, A. Sankar, and R. Ravikumar, Rasayan Journal of Chemistry, 12(4), 2260(2019), http://dx.doi.org/10.31788/RJC.2019.1245383
5. M. Idrees, S. Kola and N. J. Siddiqui, Rasayan Journal of Chemistry, 12(4), 1725(2019), http://dx.doi.org/10.31788/RJC.2019.1245467
6. G. Kolavi, V. Hegde, I. Khazi and P. Gadad, Bioorganic & Medicinal Chemistry, 14(9), 3069(2006), https://doi.org/10.1016/j.bmcc.2005.12.020
7. Y. N. Mabkhot, F. Alatibi, N. N. E. El-Sayed, N. A. Kheder and S. S. Al-Showiman, Molecules, 21(8), 1036(2016), https://doi.org/10.3390/molecules21081036
8. S. Sakamaki, E. Kawanishi, Y. Koga, Y. Yamamoto, C. Kuriyama, Y. Matsushita, K. Ueta and S. Nomura, Chemical and Pharmaceutical Bulletin, 61(10), 1037(2013), https://doi.org/10.1248/cpb.c13-00407
9. R. M. Mohareb, A. E. M. MAbdallah and M. A. Abdelaziz, Medicinal Chemistry Research, 23(2), 564(2014), https://doi.org/10.1007/s00044-013-0664-7
10. J. B. Sperry and D. L. Wright, Current Opinion Drug Discovery and Development, 8(6), 723(2005), http://dx.doi.org/10.1016/j.codrd.2006.01.015
11. A. Alsayari, A. Bin Muhsinah, Y. I. Asiri, K. Venkatesan and Y. N. Mabkhot, Polycyclic Aromatic Compounds, 1(2021), https://doi.org/10.1080/14760058.2020.1988998
12. R. Shah and P. K. Verma, Biomolecular Structure and Dynamics, 13(1), 1(2019), https://doi.org/10.1186/s13065-019-0569-8
13. J. E. Boyd and R. G. Sommerville, Archiv für die gesamte Virusforschung, 46(1-2), 78(1974), https://doi.org/10.1007/BF01240207
14. B. Pramodh, K. N. C. Prathap, M. K. Hema, I. Warad and N. K. Lokanath, Journal of Molecular Structure, 1229, 129587(2021), https://doi.org/10.1016/j.molstruc.2020.129587
15. A. D. Pillai, F. P. Xavier, H. Pad, V. Sudarsanam and K. K. Vasu, Journal of Molecular Structure, 13(14), 6685(2005), https://doi.org/10.1186/s13065-018-0511-5
16. R. K. Russell, J. B. Press, R. A. Rampulla, J. J. McNally, R. Falotico, J. A. Keiser, D. A. Bright and A. Tobia, Journal of Medicinal Chemistry, 31(9), 1786(1988), https://doi.org/10.1021/jm00117a019
17. Z. Chen, T. C. Ku and K. L. Seley, Bioorganic & Medicinal Chemistry Letters, 25(19), 4274(2015), https://doi.org/10.1016/j.bmcl.2015.07.086
18. R. Stahlmann, U. Zippel, C. Förster, R. Schwabe, M. Shakibaei, J. Merker and K. Borner, Antimicrobial Agents and Chemotherapy, 42(6), 1470(1998), https://doi.org/10.1128/AAC.42.6.1470
19. E. Selimoglu, Current Pharmaceutical Design, 13(1), 119(2007), https://doi.org/10.2174/138161207779313731
20. V. Wiebe and P. Hamilton, Journal of the American Veterinary Medical Association, 221(11), 1568(2002), https://doi.org/10.2460/javma.2002.221.1568
21. M. Benabdellah, A. Aouniti, A. Dafali, B. Hammouti, M. Benkaddour, A. Yahyi and A. Ettouhami, Applied Surface Science, 252(23), 8341(2006), https://doi.org/10.1016/j.apsusc.2005.11.037
22. C. Kim, K. S. Choi, J. H. Oh, H. J. Hong, S. H. Han and S.Y. Kim, Science of Advanced Materials, 7(11), 2401(2015), https://doi.org/10.1166/sam.2015.2669
23. S. Gold and C. Moellerling, New England Journal of Medicine, 335(19), 1445(1996), https://doi.org/10.1056/NEJM199611073351907
24. K. A. K. Musa and L. A. Eriksson, Journal of Physical Chemistry B, 113, 11306(2009), https://doi.org/10.1021/jp900417p
25. M. Porcs-Makkay and G. Simig, Organic Process Research Development, 4, 10(2000), https://doi.org/10.1021/op990067a
26. Y. M. Koen, D. Sarma, T. D. Williams, N. A. Galeva, R. S. Obach and R. P. Hanzlik, *Chemical Research in Toxicology*, 25, 1145(2012), https://doi.org/10.1021/tx300103j
27. T. Usui, A. Tailor, L. Faulkner, X. Meng, J. Farrell, A. K. Daly, G. J. Dear, B. K. Park and D. J. Naisbitt, *Chemical Research in Toxicology*, 31, 1022(2018), https://doi.org/10.1021/acs.chemrestox.8b00163
28. Z. Zou, X, Liao, L. Yang, Z. Huang, H. Yang, Q. Yan, Y. Zhang, Z. Qing, L. Zhang, F. Feng and R. Yang, *Analytical Chemistry*, 92, 3555(2020), https://doi.org/10.1021/acs.analchem.9b03507
29. S. Rubin and N. Qvit, *Critical Reviews in Eukaryotic Gene Expression*, 26, 2700(2018), https://doi.org/10.1615/critreveukaryotgeneexpr.2016016525
30. A. Henninot, J. C. Collins and J. M. Nuss, *Journal of Medicinal Chemistry*, 61, 1382(2018), https://doi.org/10.1021/acs.jmedchem.7b00318
31. K. R. Lennard, R. M. Gardner, C. Doigneaux, F. Castillo and A. Tavassoli, *ACS Chemical Biology*, 20, 122(2019), https://doi.org/10.1021/acschembio.9b00627
32. P. Wojcik, and Ł. Berlicki, *Bioorganic and Medicinal Chemistry Letters*, 26, 707(2016), https://doi.org/10.1016/j.bmcl.2015.12.084
33. J. M. Palomo, *RSC Advances*, 4(62), 32658(2014), https://doi.org/10.1039/C4RA02458C
34. E. Valeur and M. Bradley, *Chemical Society Reviews*, 38(2), 606(2009), https://doi.org/10.1039/B701677H
35. E. Kaiser, R. L. Colescott, C. D. Bossinger and P. I. Cook, *Analytical Biochemistry*, 34(2), 595(1970), https://doi.org/10.1016/0003-2697(70)90146-6
36. A. G. Bonner, L. M. Udell, W. A. Creasey, S. R. Duly and R. A. Laursen, *Journal of Peptide Research*, 57(1), 48(2001), https://doi.org/10.1034/j.1399-3011.2001.00801.x

[RJC-6907/2021]