Exotic baryons from a heavy meson and a nucleon

Yasuhiro Yamaguchi

in collaboration with
S. Ohkoda, S. Yasui, Y. Kikuchi, A. Hosaka

RCNP, KEK

Related talk
S. Yasui, Anti-D and B meson in nuclear medium at zero temperature, 2/18
Recent progress in hadron physics -From hadrons to quark and gluon-
February 18-22, 2013, Yonsei University
Contents

1 Introduction
 - Hadronic molecule
 - π exchange potential in the heavy quark region
2 Results of $\bar{D}N$ and $B\bar{N}$
 — Exotic states ($\bar{Q}qqqq$)
3 Results of DN and $\bar{B}\bar{N}$
 — Ordinary states ($Q\bar{q}qqq$)
4 Results of $\bar{D}NN$ and BNN
5 Summary
Hadronic molecule in the heavy quark region

Introduction

- Hadronic molecule gives us new aspect for Exotic states.
- Candidates in the heavy quark region
 - Quarkonium-like states; $X(3872)$, Z_b, ...
 - Baryon states; No evidence so far... However

Meson-Meson

($X(3872)$, Z_b, ...)

Belle Collaboration PRL91(2003)262001,PRL108(2012)122001

Loosely bound state near the threshold.
Hadronic molecule in the heavy quark region

Introduction

- Hadronic molecule gives us new aspect for Exotic states.
- Candidates in the heavy quark region
 - Quarkonium-like states; $X(3872)$, Z_b, ...
 - Baryon states; No evidence so far... However

Meson-Baryon molecules are expected near the thresholds!
→ New Excited baryons (Λ_c, Σ_c)?, Pentaquark states?

Meson-Meson (X(3872), Z_b, ...)

Meson-Baryon

D^* \to \bar{D}

D \to N

Loosely bound state near the threshold.

Belle Collaboration PRL91(2003)262001,PRL108(2012)122001
In the heavy quark region,
Hadronic molecule in the heavy quark region

Introduction

In the heavy quark region, \(\pi \) exchange potential with the Heavy Quark Symmetry produces a strong attraction.

S. Yasui and K. Sudoh, PRD 80 (2009) 034008
T. D. Cohen, P. M. Hohler and R. F. Lebed, PRD 72 (2005) 074010

It is expected that this attraction plays a crucial role to yield hadronic molecule.
Heavy meson and Heavy Quark Symmetry

Introduction

Heavy Quark Symmetry N.Isgur, M.B.Wise,PRL66,1130

- This symmetry appears in the heavy quark mass limit \((m_Q \to \infty) \).
- Spin-spin interaction \(\to 0 \)

\[P^* \quad P \]

\[
\begin{align*}
\text{Heavy pseudoscalar meson } P(0^-) \text{ and } \\
\text{Heavy vector meson } P^*(1^-) \text{ are degenerate. }
\end{align*}
\]

Indeed, mass splitting between \(P \) and \(P^* \) is small.

\[
\begin{align*}
m_{B^*} - m_B & \sim 45 \text{ MeV} \\
m_{D^*} - m_D & \sim 140 \text{ MeV} \\
m_{K^*} - m_K & \sim 400 \text{ MeV}
\end{align*}
\]

This degeneracy induces \(PP^*\pi \) vertex.

\[
\begin{align*}
PP\pi & \text{ is forbidden due to parity violation. } \\
KK^*\pi & \text{ is suppressed by large } \Delta m_{KK^*}.
\end{align*}
\]
π exchange potential: Analogy with Deuteron

Introduction

- **π exchange** (Tensor force) generates a **strong attraction**.

Deuteron

\[
\begin{align*}
\left(3S_1\right) & \quad \left(3D_1\right) \\
\left(\bar{s}\cdot\bar{q}\right) & \quad \left(\bar{s}\cdot\bar{q}\right) \\
N & \quad N
\end{align*}
\]

- **For** \(\bar{D}N\), **Tensor force mixes** \(\bar{D}N(2S_{1/2})\) **and** \(\bar{D}^*N(4D_{1/2})\).

- **Tensor force yields** \(\bar{D}N\) (\(\bar{D}NN\)) **bound states?**
Searching for exotic baryons formed by Heavy meson-Nucleon with π exchange potential.

We study bound and resonant states by solving the coupled-channel Schrödinger equations for PN and P^*N channels.
Interactions: π, ρ and ω exchanges

Heavy quark effective theory
R. Casalbuoni *et al.* PhysRept. **281**, 145(1997)

- $\mathcal{L}_{\pi HH} = ig_{\pi} \text{Tr} \left[H_b \gamma_\mu \gamma_5 A_{ba}^\mu \bar{H}_a \right]$

- $\mathcal{L}_{\nu HH} = -i \beta \text{Tr} \left[H_b \nu^\mu (\rho_\mu)_{ba} \bar{H}_a \right] + i \chi \text{Tr} \left[H_b \sigma^{\mu\nu} F_{\mu\nu} (\rho)_{ba} \bar{H}_a \right]$

Heavy meson field

$H_a = \frac{1+\varphi}{2} \left[P_{a \mu} \gamma^\mu - P_a \gamma^5 \right]$, \hspace{1cm} $\bar{H}_a = \gamma^0 H_a \gamma^0$

- vector
- pseudoscalar

Bonn model
R. Machleidt *et al.* Phys Rept. **149**, 1(1987)

- $\mathcal{L}_{\pi NN} = ig_{\pi NN} \bar{N}_b \gamma^5 N_a \hat{\pi}_{ba}$

- $\mathcal{L}_{\nu NN} = g_{\nu NN} \bar{N}_b \left(\gamma^\mu (\hat{\rho}_\mu)_{ba} + \frac{\kappa}{2m_N} \sigma_{\mu\nu} \partial^\nu (\hat{\rho}^\mu)_{ba} \right) N_a$
Heavy quark effective theory

- $\mathcal{L}_{\pi HH} = ig_\pi \text{Tr} \left[H_b \gamma_\mu \gamma_5 A^\mu_{ba} \tilde{H}_a \right]$

 From $D^* \to D\pi$ decay

- $\mathcal{L}_{\nu HH} = -i\beta \text{Tr} \left[H_b \nu^\mu (\rho_\mu)_{ba} \tilde{H}_a \right] + i\lambda \text{Tr} \left[H_b \sigma^{\mu\nu} F_{\mu\nu} (\rho)_{ba} \tilde{H}_a \right]$

 From leptonic and radiative decay of B

 Isola et al. PRD68,114001(2003)

Heavy meson field

- $H_a = \frac{1+\gamma'}{2} \left[P^*_a \gamma^\mu - P^a \gamma^5 \right], \quad \tilde{H}_a = \gamma^0 H_a \gamma^0$

 - vector pseudoscalar

Bonn model

- $\mathcal{L}_{\pi NN} = ig_\pi NN \tilde{N}_b \gamma^5 N_a \hat{\pi}_{ba}$

- $\mathcal{L}_{\nu NN} = g_{\nu NN} \tilde{N}_b \left(\gamma^\mu (\hat{\rho}_\mu)_{ba} + \frac{\kappa}{2m_N} \sigma_{\mu\nu} \partial^\nu (\hat{\rho}^\mu)_{ba} \right) N_a$

These coupling constants are fixed!
Form factor and Cut-off parameter Λ

- Form factor at each vertex
 \[
 F_\alpha(\Lambda, \vec{q}) = \frac{\Lambda^2 - m_\alpha^2}{\Lambda^2 + |\vec{q}|^2}
 \]

1. Λ_N is fixed to reproduce the properties of Deuteron. (NN system with Bonn potential)

2. For Λ_P, we assume $\Lambda_P/\Lambda_N = r_N/r_P$. r_N/r_P is obtained from quark model.

\[
\begin{aligned}
\Lambda_D &= 1.35\Lambda_N \\
\Lambda_B &= 1.29\Lambda_N
\end{aligned}
\]

S. Yasui and K. Sudoh PRD80,034008

Potential	Λ_N [MeV]	Λ_D [MeV]	Λ_B [MeV]
π	830	1121	1070
π, ρ, ω	846	1142	1091

Coupling constants and Cut-off are not free parameters!
Results of $\bar{D}N$ and BN states

Truly exotic state

Bound state and Resonance
Various coupled channels for a given J^P (2-body)

We investigate $J^P = 1/2^\pm, \cdots, 7/2^\pm$ states with $I = 0, 1$.

J^P	channels	# of channels
$1/2^-$	$PN(2S_{1/2})$ $P^*N(2S_{1/2}, 4D_{1/2})$	3
$1/2^+$	$PN(2P_{1/2})$ $P^*N(2P_{1/2}, 4P_{1/2})$	3
$3/2^-$	$PN(2D_{3/2})$ $P^*N(4S_{3/2}, 2D_{3/2}, 4D_{3/2})$	4
$3/2^+$	$PN(2P_{3/2})$ $P^*N(2P_{3/2}, 4P_{3/2}, 4F_{3/2})$	4
$5/2^-$	$PN(2D_{5/2})$ $P^*N(2D_{5/2}, 4D_{5/2}, 4G_{5/2})$	4
$5/2^+$	$PN(2F_{5/2})$ $P^*N(4P_{5/2}, 2F_{5/2}, 4F_{5/2})$	4
$7/2^-$	$PN(2G_{7/2})$ $P^*N(4D_{7/2}, 2G_{7/2}, 4G_{7/2})$	4
$7/2^+$	$PN(2F_{7/2})$ $P^*N(2F_{7/2}, 4F_{7/2}, 4H_{7/2})$	4

- Tensor force mixes PN and P^*N.

18-22 February, 2013 Y. Yamaguchi(RCNP) Recent progress in hadron physics @ Yonsei Univ. 10
Various coupled channels for a given J^P (2-body)

We investigate $J^P = 1/2^\pm, \cdots, 7/2^\pm$ states with $I = 0, 1$.

J^P	channels	# of channels
$1/2^-$	$PN(2S_{1/2})$ $P^*N(2S_{1/2}, 4D_{1/2})$	3
$1/2^+$	$PN(2P_{1/2})$ $P^*N(2P_{1/2}, 4P_{1/2})$	3
$3/2^-$	$PN(2D_{3/2})$ $P^*N(4S_{3/2}, 2D_{3/2}, 4D_{3/2})$	4
$3/2^+$	$PN(2P_{3/2})$ $P^*N(2P_{3/2}, 4P_{3/2}, 4F_{3/2})$	4
$5/2^-$	$PN(2D_{5/2})$ $P^*N(2D_{5/2}, 4D_{5/2}, 4G_{5/2})$	4
$5/2^+$	$PN(2F_{5/2})$ $P^*N(4P_{5/2}, 2F_{5/2}, 4F_{5/2})$	4
$7/2^-$	$PN(2G_{7/2})$ $P^*N(4D_{7/2}, 2G_{7/2}, 4G_{7/2})$	4
$7/2^+$	$PN(2F_{7/2})$ $P^*N(2F_{7/2}, 4F_{7/2}, 4H_{7/2})$	4

- Tensor force mixes PN and P^*N.
- Large L channel plays a crucial role to produce attraction.
The bound states of $\bar{D}N$ and BN (Exotic state)

$\bar{D}N$ and BN states

- We find bound states of $\bar{D}N$ and BN with $I(J^P) = 0(1/2^-)$. Y.Y., et al., PRD 84, 014032 (2011)
- We compare results of two potentials:
 1. Only π exchange potential
 2. $\pi\rho\omega$ exchange potential

Table: Binding energies E_B and relative distance $\sqrt{\langle r^2 \rangle}$.

	$\bar{D}N(\pi)$	$\bar{D}N(\pi\rho\omega)$	$BN(\pi)$	$BN(\pi\rho\omega)$
E_B [MeV]	1.60	2.13	19.50	23.04
$\sqrt{\langle r^2 \rangle}$ [fm]	3.5	3.2	1.3	1.2

(π): Only π exchange is used. ($\pi\rho\omega$): $\pi\rho\omega$ exchanges are used.

- Small E_B (near the threshold) and large $\sqrt{\langle r^2 \rangle}$
 \Rightarrow **Loosely bound states**
- The result of (π) is close to that of ($\pi\rho\omega$).
 \Rightarrow **π exchange dominates?**
Expectation values of $I(J^P) = 0(1/2^-)$ states
```
\tilde D N$ and $B N$ states
```

- Expectation values of meson exchange potentials

\tilde D N expectation values (Unit: MeV)	V_π	V_ρ	V_ω		
$\langle \tilde D N(S)	V	\tilde D N(S) \rangle$	0	-2.72	3.56
$\langle \tilde D N(S)	V	\tilde D^* N(S) \rangle$	-2.48	-5.18	0.90
$\langle \tilde D N(S)	V	\tilde D^* N(D) \rangle$	-35.20	3.32	-0.62
$\langle \tilde D^* N(S)	V	\tilde D^* N(S) \rangle$	0.37	0.65	0.13
$\langle \tilde D^* N(S)	V	\tilde D^* N(D) \rangle$	-5.00	0.52	-9.70 × 10^{-2}
$\langle \tilde D^* N(D)	V	\tilde D^* N(D) \rangle$	3.69	-0.94	0.39
total	-38.63	-4.36	4.35		

$\Leftrightarrow \tilde D N(S) - \tilde D^* N(D)$ component with Tensor

Strong attraction!

- Tensor force of π exchange plays a dominant role
 while ρ, ω exchanges are minor due to the cancellation of them.
Expectation values of $I(J^P) = 0(1/2^-)$ states

$\bar{D}N$ and BN states

- Expectation values of meson exchange potentials

$\bar{D}N$ expectation values (Unit: MeV)	BN expectation values (Unit: MeV)										
Component	V_π	V_ρ	V_ω	Component	V_π	V_ρ	V_ω				
-----------------------	---------	----------	------------	-----------------------	---------	----------	------------				
$\langle \bar{D}N(S)	V	\bar{D}N(S)\rangle$	0	-2.72	3.56	$\langle BN(S)	V	BN(S)\rangle$	0	-5.38	7.02
$\langle \bar{D}N(S)	V	\bar{D}^*N(S)\rangle$	-2.48	-5.18	0.90	$\langle BN(S)	V	B^*N(S)\rangle$	-8.18	-16.42	3.12
$\langle \bar{D}N(S)	V	\bar{D}^*N(D)\rangle$	-35.20	3.32	-0.62	$\langle BN(S)	V	B^*N(D)\rangle$	-90.24	8.30	-1.54
$\langle \bar{D}^*N(S)	V	\bar{D}^*N(S)\rangle$	0.37	0.65	0.13	$\langle B^*N(S)	V	B^*N(S)\rangle$	2.03	3.19	0.62
$\langle \bar{D}^*N(S)	V	\bar{D}^*N(D)\rangle$	-5.00	0.52	-9.70 $\times 10^{-2}$	$\langle B^*N(S)	V	B^*N(D)\rangle$	-22.34	2.12	-0.40 $\times 10^{-2}$
$\langle \bar{D}^*N(D)	V	\bar{D}^*N(D)\rangle$	3.69	-0.94	0.39	$\langle B^*N(D)	V	B^*N(D)\rangle$	13.24	-3.24	1.36
total	-38.63	-4.36	4.35	total	-105.49	-11.42	10.17				

- BN is similar to $\bar{D}N$.
- Small Δm_{BB^*} induces strong BB^* mixing and tensor force.
 Therefore, BN state is more bound than $\bar{D}N$.

18-22 February, 2013 Y. Yamaguchi(RCNP) Recent progress in hadron physics @ Yonsei Univ.
Results of $\bar{D}N$ and BN with $I = 0$ (Exotic states)

$\bar{D}N$ and BN states

- $J^P = 1/2^\pm, 3/2^\pm, 5/2^\pm, 7/2^\pm$ with $I = 0$ ($\pi\rho\omega$ potential)

- Resonant states with large L are also found.
- Tensor force provides a strong attraction for resonances.
- The $PN - P*N$ mixing is important.

Y. Y., S. Ohkoda, S. Yasui and A. Hosaka, PRD 84 014032 (2011) and PRD 85 054003 (2012)
Results of $\bar{D}N$ and BN with $I = 1$ (Exotic states)

$\bar{D}N$ and BN states

No Bound state and Resonance with $I = 1$.

$\bar{D}N^* \quad ^{142}$
(2949 MeV)

$\bar{D}N \quad ^0$
(2807 MeV)

$B^*N ^{46}$
(6265 MeV)

$BN ^0$
(6219 MeV)

$P = -$ $P = +$

: Bound state

: Resonance ($E_{re} - i\Gamma/2$) Unit: MeV

Y.Y, S.Ohkoda, S.Yasui and A.Hosaka, PRD 84 014032 (2011) and PRD 85 054003 (2012)

The attraction is weak due to small isospin factor.

$$\vec{r}_P \cdot \vec{r}_N = \begin{cases} -3 & (I = 0) \\ 1 & (I = 1) \end{cases}$$

Strong attraction

Weak attraction
Results of DN and $\bar{B}N$ states

$D^{(*)}$ or $\bar{B}^{(*)}$

$Q\bar{q}$

N

qqq

π

Ordinary state

$\bar{D} \rightarrow D$
Results of DN and $\bar{B}N$ with $I = 0$ (Ordinary states)
DN and $\bar{B}N$ states

- $J^P = 1/2^\pm, 3/2^\pm, 5/2^\pm, 7/2^\pm$ with $I = 0$

Energy	DN	$\bar{B}N$
E		
220.8	$7/2^-$	87.5
-13.7	$3/2^-$	5/2-$^-$
-82.5	$1/2^-$	20.0-$^+$
-145.9	$1/2^-$	-185.0

DN (2807 MeV) and $\bar{B}N$ (6219 MeV) states are more bound.

Tensor force provides a strong attraction.
Both ρ and ω exchanges are attractive in DN ($\bar{B}N$).
\Rightarrow DN ($\bar{B}N$) states are more bound.
Excited Λ_c's and Λ_b's? \Rightarrow But $\pi\Sigma_c$ ($\pi\Sigma_b$) is not considered.

Y.Y, S.Ohkoda, S.Yasui and A.Hosaka, arXiv:1301.4557 [hep-ph]

18-22 February, 2013 Y. Yamaguchi(RCNP) Recent progress in hadron physics @ Yonsei Univ. 16
Results of DN and $\bar{B}N$ with $I = 0$ (Ordinary states)

DN and $\bar{B}N$ states

- $J^P = 1/2^\pm, 3/2^\pm, 5/2^\pm, 7/2^\pm$ with $I = 0$

Deeply bound states: Small radius < 1 fm

- There are couplings not only to $\pi \Sigma_c$ ($\pi \Sigma_b$), but also to Qqq.
- They are difficult to be described as simple PN molecule.

Y.Y, S.Ohkoda, S.Yasui and A.Hosaka, arXiv:1301.4557 [hep-ph]
Results of DN and $\bar{B}N$ with $I = 0$ (Ordinary states)

DN and $\bar{B}N$ states

- $J^P = 1/2^\pm, 3/2^\pm, 5/2^\pm, 7/2^\pm$ with $I = 0$

Near PN and P^*N thresholds

- π exchange potential dominates and the size becomes large.
- Molecular structure is expected.

Y.Y, S. Ohkoda, S. Yasui and A. Hosaka, arXiv:1301.4557 [hep-ph]
Results of DN and $\bar{B}N$ with $I = 1$ (Ordinary states) DN and $\bar{B}N$ states

- Resonance with $J^P = 1/2^-$.

\[147.2 - i105.5 \quad 1/2^-\]
\[50.7 - i75.5 \quad 1/2^-\]

DN (2949 MeV) $\bar{B}N$ (6265 MeV)

DN (2807 MeV) $\bar{B}N$ (6219 MeV)

- The attraction is weak due to small isospin factor.
PN molecule (2-body system)

- Tensor force plays an important role.

\[\Downarrow\]

PNN (3-body system)

Does Tensor force produce \bar{DNN} and BNN bound states?
Three-body system: $\bar{D}^(*)NN$ and $B^(*)NN$ (Exotic states) $\bar{D}NN$ and BNN

- Exotic states (No $q\bar{q}$ annihilation!)
- Bound and resonant states are studied.

Method

- Variational calculation with Complex scaling method.
- Interactions
 - $P^(*)N$ int. : π exchange potential
 - NN int.: AV8' potential

S. Aoyama, et.al., PTP116, 1(2006)
Results of $\bar{D}^{(*)}NN$ and $B^{(*)}NN$ with $I = 1/2$ (Exotic) $\bar{D}NN$ and BNN

- $J^P = 0^-$: Bound states
- $J^P = 1^-$: Resonances

Unit: MeV

Tensor force plays an important role to produce an attraction. (Especially, $PN - P^*N$ components)

When it is switched off, these states disappear.
Results of $\bar{D}^\ast NN$ and $B^\ast NN$ with $I = 1/2$ (Exotic) $\bar{D}NN$ and BNN

- $J^P = 0^-$: Bound states
- $J^P = 1^-$: Resonances

Tensor force plays an important role to produce an attraction. (Especially, $PN - P^*N$ components)
- When it is switched off, these states disappear.
- Binding energy: $\bar{D}NN > \bar{D}N$
Results of $\bar{D}^{(*)}NN$ and $B^{(*)}NN$ with $I = 1/2$ (Exotic)

- $J^P = 0^-$: Bound states
- $J^P = 1^-$: Resonances

Tensor force plays an important role to produce an attraction. (Especially, $PN - P^*N$ components)
- When it is switched off, these states disappear.
- Binding energy: $\bar{D}NN > \bar{D}N$
Results of $\bar{D}^{(*)}NN$ and $B^{(*)}NN$ with $I = 1/2$ (Exotic)

$\bar{D}NN$ and BNN

- $J^P = 0^-$: Bound states
- $J^P = 1^-$: Resonances

\bar{D}^*NN

140 MeV

$\bar{D}NN$

0

111.2 $- i9.3$

46 MeV

B^*NN

6.8 $- i0.2$

BNN

0

$\bar{D}NN$ is more bound than BNN.

We predict $\bar{D}NN$ and BNN bound states (Resonances) with π exchange potential.
Summary

- We have investigated exotic baryons formed by $P(*)N$ and $P(*)NN$ with respecting the Heavy Quark Symmetry.

- Two-body system: $\bar{D}N$, BN and DN, $\bar{B}N$
 We have found many bound states and resonances.

2-body	Exotic	Ordinary
	$\bar{D}N$, BN	DN, $\bar{B}N$
$I = 0$	Some states	Many states
$I = 1$	None	Only one

- Three-body system: $\bar{D}NN$ and BNN

3-body	$\bar{D}NN$, BNN
$J^P = 0^-$	Bound state
$J^P = 1^-$	Resonance

- **Tensor force of π exchange** plays a crucial role to produce a strong attraction in $P(*)N$ and $P(*)NN$.

18-22 February, 2013
Y. Yamaguchi (RCNP)
Recent progress in hadron physics @ Yonsei Univ.