A Systematic and Mechanistic Review on the Phytopharmacological Properties of Alhagi Species

Abstract

Alhagi species are well known in Iran (locally known as Khar Shotor) and other parts of Asia as a popular folk medicine. Recent research has shown extensive pharmacological effects of these species. This paper is a comprehensive review of the phytopharmacological effects and traditional uses of Alhagi species and their active constituents with special attention to the responsible mechanisms, effective dosages and routes of administration. The Alhagi species studied in this paper include: A. maurorum, A. camelorum, A. persarum, A. pseudoalhagi, and A. kirgisorum. In order to include all the up to date data, the authors went through several databases including the Web of Science, Embase, etc. The findings were critically reviewed and sorted on the basis of relevance to the topic. Tables have been used to clearly present the ideas and discrepancies were settled through discussion. Alhagi species have significant biomedical properties which can be exploited in clinical use. Proanthocyanidin isolated from A. pseudoalhagi has significant biochemical effects on blood factors. Among Alhagi species, A. camelorum and A. maurorum possess the highest anti-microbial activity. Most of the effects observed with A. maurorum are dose-dependent. This paper indicates with emphasis that Alhagi species are safe and rich sources of biologically active compounds with low toxicity. Since DNA damage has been observed following the ingestion of specific concentrations of A. pseudalhagi, care should be taken during administration of the plant for therapeutic use. Further studies are required to confirm the safety and quality of these plants to be used by clinicians as therapeutic agents.

Keywords: A. camelorum, A. persarum, Alhagi maurorum, folk medicine, mechanistic review

Introduction

The genus Alhagi includes a number of species, the most important of which are A. maurorum, A. camelorum, and A. persarum. To the best of our knowledge, this is the first and the most inclusive review paper prepared so far, regarding the traditional usages and pharmacological effects of Alhagi species [Tables 1 and 2] with special emphasis on the mechanisms involved [Table 3]. We have compiled the most effective dosages responsible for each effect based on previous pharmacological studies. This is to provide a reliable source for other researchers. The findings were critically reviewed and sorted on the basis of relevance to the topic. Tables were used to clearly present the ideas and discrepancies were settled through discussion.

Approach to Systematic Review

An online literature search was performed on Web of science, Embase, PubMed, and Google Scholar databases for the key words of Alhagi, pharmacol, etc., with a time limit of papers published from 2004 up to November 2015 in accordance to PRISMA guidelines. The search strategy is illustrated in a flow diagram [Figure 1].

Gastrointestinal Effects

Local inhabitants of India use A. maurorum to cure stomach and intestinal complaints including diarrhea, dyspepsia, constipation, bloating, diminished appetite and also for the treatment of liver inflammation. Major chemical compounds found in A. maurorum are β-sitosterol, cinnamic acid, coumaric acid, hydroxybenzoic acid,[14] In Arabian traditional medicine A. maurorum is used for the prevention and treatment of liver ailments (such as jaundice), lack of appetite, nausea, vomiting and other stomach disorders. A study on the ethno-veterinary usage of A. camelorum of Greater Cholistan desert of Pakistan

Address for correspondence:
Dr. Milad Moloudizargarī, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 2Department of Pharmacology, Faculty of Medicine, Urmia University of Medical Sciences, 3Department of Pharmacy, Faculty of Veterinary Medicine, Urmia University, Urmia, 4Department of Public Health, Kermanshah University of Medical Sciences, Kermanshah, Iran.

For reprints contact: reprints@medknow.com

How to cite this article: Asghari MH, Fallah M, Moloudizargarī, Mehdkhānī F, Sepehrnīa P, Moradī B. A systematic and mechanistic review on the phytopharmacological properties of Alhagi species. Ancient Sci Life 2016;36:65-71.

Received: March, 2016. Accepted: February, 2017.
indicated that *A. camelorum* has aperient properties in animals.\[14\] Investigations on the hepato-protective effect of *A. maurorum* showed that Ethanolic Extract of this plant at the doses of 250 and 500 mg/kg failed to inhibit the raised biomarkers (SGOT, SGPT, ALP and bilirubin levels).\[15\]

Anti-inflammatory Effects

One study showed that the aqueous extract of *A. maurorum* may be useful in protection against inflammatory diseases, especially if free radicals are a part of its pathophysiology. The extract significantly reduced the thickness of paw edema induced by formalin in a dose-dependent manner.\[17\] It has been shown that *A. maurorum* Medic is a more potent anti-inflammatory agent in comparison to diclofenac sodium (30 mg/kg), a conventional anti-inflammatory drug.\[21\]

Antioxidant Effects

The aqueous extract of *A. maurorum* exerts antioxidant effects by reducing malondialdehyde levels.\[17\] The alcoholic extract of *A. maurorum* Medic has also shown antioxidant activity by scavenging free radicals at different concentrations (2, 4, 6, 8 and 10 mg/ml).\[21\] The leaf extract has higher antioxidant potential than the flower extract due to its higher phenolic contents.\[22\] Three important antioxidant flavonoids have been isolated from

Table 1: Traditional uses of *Alhagi* species

System	Species	Effect	Preparation	References
Systemic	*A. maurorum*	Anti-toxic against mercury toxicity	Juice	[1]
	A. maurorum	Anti-rheumatism	Oil from leaves	[1-3]
	A. camelorum	Diaphoretic		
	A. maurorum	Against warts	NM	[2]
	A. graecorum	Antipyretic, antiviral, antimicrobial,	Decoction, soak	[4,5]
	A. maurorum	demulcent, and adaptogen		
	A. camelorum	Antipyretic	NM	[3]
	A. graecorum	Thirst	Soak	[4]
Blood	*A. maurorum*	Purifies blood	NM	[1]
	A. maurorum	Against bleeding piles	Decoction	[1,2]
	A. graecorum	Jaundice	sox	[4]
Urinary system	*A. maurorum*	Diuretic	Decoction, soak	[1,2,4]
	A. camelorum	Diuretic	Infusion of leaves	[3,6]
	A. persarum	Controls pH of urine (veterinary use)		[2]
	A. maurorum	Bladder infection	Boiled and brewed, infusion of leaves	[6,7]
	A. persarum			
	A. camelorum	Exertion of kidney stones	Infusion, decoction	[6,8,9]
	A. persarum			
Gastrointestinal	*A. maurorum*	Purgative	Exudation (leaves and branches)	[1,2,4,10]
	A. graecorum	Purgative	Soak	[4]
	A. maurorum	To treat gastric ulcer, heartburn and gastric efflux	Aqueous extract	[2]
	A. graecorum	Intestinal infection	Boiled and brewed	[7]
	A. maurorum	Appetite suppressant	Decoction, soak	[4]
	A. persarum	Pregnancy constipation	NM	[11]
	A. persarum			
Skin	*A. maurorum*	Against skin eruption	Decoction	[1]
	A. graecorum	Aphthous ulcers	sox	[4]
	A. persarum	Skin wounds, skin irritations, allergic rashes, and dermatitis	Galenical	[12]
CNS	*A. maurorum*	Against migraine	NM	[2]
	A. maurorum	Cold headache (nasal administration)	Leaves (nasal drops)	[13]

NM: Not mentioned, *A. maurorum*: *Alhagi maurorum*, *A. kirgisorum*: *Alhagi kirgisorum*, *A. camelorum*: *Alhagi camelorum*, CNS: Central nervous system
Table 2: Pharmacological effects of Alhagi species

System	Species	Effect	Preparation	References
Gastrointestinal	*A. maurorum*	Curing stomach and intestinal complaints and liver ailments	Ethanolic extract	[14,15]
	A. camelorum	Aperient properties	Extract	[16]
	A. maurorum	Anti-inflammatory (reduces the thickness of paw edema)	Aqueous extract	[17]
	A. maurorum	Antidiarrheal (increases contractile force of duodenal smooth muscles)	Methanolic extract	[18]
	A. maurorum	Antidiarrheal (in low concentration: Increases the contractile force in high concentration: possesses rapid sedative effect)	Methanolic extract	[9]
	A. camelorum	Anti-ulcerogenic (decreases acid output)	Ethanolic extract	[20]
Systemic	*A. maurorum*	Anti-oxidant (reduces malondialdehyde levels)	Aqueous extract	[17]
	A. maurorum	Anti-oxidant (scavenging free radicals)	Alcoholic extract	[21]
	A. maurorum	Anti-oxidant (scavenging free radicals)	Methanolic extract	[22]
	A. pseudoalhagi	Anti-tumor (increases immune activity)	Extract	[23]
Urinary tract	*A. persarum*	Diuretic, antilithiatic	Extract	[6]
	A. camelorum	Treatment of kidney pain	Extract	[19]
	A. maurorum	Getting rid of renal stones and relieve of the accompanying pain	Ethanolic extract	[24]
	A. pseudoalhagi	Diuretic, reduction of the urine PH and crystalluria	Extract	[25]
Antimicrobial	*A. camelorum*	Anti-bacterial (against *S. aureus*)	Methanolic extract	[26]
	A. maurorum	Anti-bacterial (against *E. coli*)	Methanolic extract	[27]
	A. maurorum	Anti-bacterial (against Helicobacter)	Methanolic extract	[28]
	A. maurorum	Anti-fungal (against *A. alternata, F. oxysporum, P. destructiva, R. solani, and S. rolfsii*)	Ethanolic extract	[29]
Blood	*A. pseudoalhagi*	Decreases bilirubin levels	Extract	[30]
	A. pseudoalhagi	Decreases serum creatinine phosphate level and lipid peroxidation	Extract	[31]
	A. kirgisorum S	Inhibits protein synthesis in reticulocytes	Phenolic compound	[32]
CNS	*A. maurorum*	Anti-noceptive (central analgesic activity)	Extract	[33]
	A. maurorum	Anti-noceptive (protection against writhing)	Ethanolic extract	[21]
	A. maurorum	Anti-noceptive (in accordance with its traditional use)	Methanolic extract	[9]
Genome	*A. pseudoalhagi*	Genotoxicity (causes DNA damage at a concentration of 5 µg/ml)	Extract	[34]

* A. pseudoalhagi: *Alhagi pseudoalhagi*, *A. maurorum*: *Alhagi maurorum*, *A. kirgisorum*: *Alhagi kirgisorum*, *A. camelorum*: *Alhagi camelorum*, *A. alternate*: *Alternaria alternate*, *F. oxysporum*: *Fusarium oxysporum*, *P. destructiva*: *Phoma destructiva*, *R. solani*: *Rhizoctonia solani*, *S. rolfsii*: *Sclerotium rolfsii*, *E. coli*: *Escherichia coli*, *S. aureus*: *Staphylococcus aureus*, CNS: Central nervous system

A. maurorum which include isorhamnetin-3-O- [- alpha-l-rhamnopyranosyl- (1-3)- beta- D-gluco pyranoside, 3’-O-methylorobol and Quercetin 3-O-beta-d-gluco pyranoside. [37]

Urinary Tract Effects

In Iranian traditional medicine, a glass of *A. persarum* is taken before meals to treat urinary tract infections. It is also used as an effective diuretic and anti-lithiastic agent. [6] An ethno-pharmacological survey in the north of Iran showed that the concentrated decoction of *A. camelorum* was used among Iranians for the treatment of kidney pain. [19] It was shown in a study that the ethanolic extract of the roots of *A. maurorum* possesses spasmylytic and ureter relaxing activity. It is also effective in relieving the pain resulting from renal stones (contraction of the ureter). [24] The same anti-lithiastic effect has been elicited from 2% aqueous acetic acid extract of *A. maurorum* powdered roots. [38] In addition to its diuretic effect, *A. pseudoalhagi* can reliably reduce the urine pH for a long time. This species of *Alhagi* also has the potential to reduce crystalluria. [23]

Anti-microbial Effects

A. camelorum has been long used by native Iranians in the treatment of infectious diseases. [27] A study indicates that the methanolic extract of *A. camelorum* has antibacterial activity against *Staphylococcus aureus*, supporting its traditional use by Iranians. Methanolic extract of *A. maurorum* used in folklore Iranian medicine has antibacterial activity against two strain of *Escherichia coli* at a concentration of 20 mgmL⁻¹. [26]

In an *in vitro* study on the anti-helicobacter activity of some Egyptian plants, the extracts of *A. maurorum* exhibited the strongest activity. This effect of the plant was assessed after determination of its MIC by agar diffusion method. [28]
Table 3: Detailed presentation of some previously proven phyto-pharmacological properties of *Alhagi* species

Species	Model	Activity	Preparation	Exposure duration	Type of administration	Doses	Outcomes	References
A. maurorum	*In vivo*/*rabbit*	Hepatoprotective	Aqueous-ethanol extract	7 days	P.O.	250 mg/kg, 500 mg/kg	↓ALP, ↓SGOT, ↓SGPT, ↓TB, ↓Fatty degeneration in hepatocytes	[35]
A. maurorum	*In vivo*/*mice*	Anti-inflammatory, analgesic, antioxidant and antibacterial	Aqueous Extract	1 day	P.O.	125 µg/animal, 250 µg/animal, 500 µg/animal	A dose-dependent reduction in the growth of edema, decrease in frequency of licking of the formalin-injected paw, no antibacterial activity	[17]
							A dose-dependent reduction in the growth of edema, decrease in frequency of licking of the formalin-injected paw, ↑total antioxidant capacity, no antibacterial activity	
A. maurorum	*In vitro*/*HL-60*	Antimicrobial and cytotoxic	Methanol extract	Up to 72 h	-	100, 200, 400 µg/ml, 10, 50, 100 µg/ml	↑antimicrobial activity, Antioxidant activity: ↑Free radical scavenging activity and ↓LPO at dose of 100; A dose-dependent inhibition of xanthine oxidase	[36]
							Cytotoxic activity: ↑cytotoxic activities in HL-60 cell line, ↓antiproliferative activity on HL-60 cell	
A. maurorum	*In vivo*/*rat*	Anti-inflammatory and anti-ulcer activity	Ethanol extract	2 times through the 10 days	Orally	100 mg/kg	↓MDA level, ↑GSH level, ↓cholesterol-LDL	[20]

ALP: Alkaline phosphatase, SGOT: Serum glutamic oxalacetic transaminase, SGPT: Serum glutamic pyruvic transaminase, TB: Total bilirubin, MDA: Malondialdehyde, HL-60: Human leukemia cell line, LPO: Lipid peroxidation, GSH: Glutathione
Another in vitro study in Saudi Arabia on the anti-fungal activity of *A. maurorum* showed that the ethanolic extract of this plant is effective against *Alternaria alternata*, *Fusarium oxysporum*, *Phoma destructiva*, *Rhizoctonia solani*, and *Sclerotium rolfsii* at a concentration of 9%.[29]

Biochemical Effects

An in vitro study revealed that *A. pseudalhagi* extract may decrease bilirubin levels by cathartic effect or activation of liver enzymes.[30] Another study showed that intravenous administration of proantocyanidin isolated from *A. pseudalhagi* diminishes serum creatinine phosphate levels and lipid peroxidation both in the myocardium and serum in animals with experimental myocardial infarction.[31] A survey in 1990 indicated that a phenolic compound from *A. kirgisorum* S. (Polyproanthocyanidin) impressively inhibited protein synthesis in rabbit reticulocyte.[32] *A. camelorum* also has therapeutic potential in the treatment of diabetes and other chronic diseases. The suggested mechanism of action is α-Glucosidase inhibition.[33]

Anti-diarrhoecal Effects

A. maurorum and a concentrated decoction of *A. camelorum* have been used in traditional medicine of Egypt and Iran for the treatment of diarrhea.[9,19] In an in vitro study, methanol extract of the aerial parts of *A. maurorum* at a dose of 200 mg/kg (IP) exhibited a significant anti-diarrheal effect against castor oil-induced diarrhea, and also increased the contractile force of duodenal smooth muscles in rabbits.[18] In another study it was shown that the oral administration of the extract can exert anti-diarrheal effects as well. The suggested mechanism of action in low concentrations (0.4 mg/ml) is increasing the contractile force. Higher concentrations (3.2 mg/ml) caused a rapid sedative effect. The sedative effect induced by *A. maurorum* (at higher doses) appeared to be due to calcium channel blocking effect.[19]

Anti-ulcerogenic Effects

In one study, six main flavonoid glycosides were isolated from the ethanol extract of *A. maurorum*. The flavonoids were identified as kaempferol, chrysoeriol, isorhamnetin, chrysoeriol-7-O-xyllosoid, kaempferol-3-galactorhamnoside and isorhamnetin3-O-b-D-apio-furanosyl (1-2) b-D-galactopyranoside. The total extract (300 and 400 mg/kg) and two of the isolated compounds (chrysoeriol 7-O-xyllosoid and kaempferol-3-galactorhamnoside, 100 mg/kg each) showed a very promising anti-ulcerogenic activity with curative ratios of 66.31%, 69.57%, 75.49%, and 77.93%, respectively.[19] It was also shown that the ethanolic extract of *A. maurorum* in combination with ranitidine can be used in rats to protect them against the side effects of aspirin administered two times through 10 days. Decreased acid output as a result of the plant extract and ranitidine administration was suggested as the mechanism responsible for this effect.[20]

Anti-tumoral Effects

Abnormal Savda Munziq (ASMq), a traditional Uyghur medicinal herbal preparation from the Xinjiang region of China, has long been used in Traditional Uyghur Medicine for the treatment of complex diseases such as tumors. ASMq is composed of ten medicinal herbs one of which is *A. pseudalhagi*. The anti-tumour activity of this compound has been pharmacologically proven with a suggested mechanism of increasing immune activity.[40]

Anti-nociceptive Effects

A. maurorum has been traditionally used by Egyptians to relieve pain.[9] The plant has been shown to possess central analgesic effect at the dose of 500 mg/kg. This activity is mediated through opioidergic receptors.[33] In one study, ethanol extracts of *A. maurorum* Medic was shown to exert significant protection against writhing.[21]

Genotoxicity

A. pseudalhagi which has been long used by traditional Iranians has been shown to cause DNA damage at a concentration of 5 µg/ml, and a concentration less than 5 µg/ml is proven to be safe.[31]
Implications in Traditional Medicine

A multitude of preparations made from *Alhagi* species have been acknowledged in [Iranian] traditional medicine. These preparations have been beneficial in treating a number of disorders involving different systems. *A. maurorum* has been used in the treatment of gastric ulcers,[19] intestinal tract infections,[19] as an expectorant,[2] appetite suppressant[14] and as a purgative.[14,20] *A. camelorum* and *A. persarum* also have been used in ameliorating pregnancy constipation.[11] In dermatologic conditions, *A. maurorum*, *A. graceum* and *A. persarum* have been applied on skin eruptions,[14] aphthous ulcers[14] and skin wounds and inflammations[12] respectively. Interestingly, *A. maurorum* has antimigraine properties[2] and has been further administered nasally to soothe headache due to colds.[13] In the urinary system, *A. maurorum*, *A. camelorum* and *A. persarum* can cause diuresis[1,4,6] and aid in passing renal stones.[6,8,9] In addition, boiled infusions of *A. maurorum* and *A. persarum* act as a urinary disinfectant.[6,7] Moreover, *A. maurorum* is proven to be protective in various other conditions such as, mercury poisoning and rheumatism[1,13] and is active against microbial and viral organisms.[2,4,5] These enormous therapeutic effects of *Alhagi* species indicate their great potential as traditional remedies and should inspire researchers to further investigate this marvelous genus.

Conclusion

Our aim of conducting this study was to present a compilation of evidence-based comprehensive information regarding the traditional usage of *Alhagi* species with special attention to their previously proven pharmacological effects and mechanisms. Since there are a vast number of studies in the literature conducted on *Alhagi* species, this paper can provide almost all the required information as a comprehensive reference for further studies that might be performed by other researchers in the future. As it is evident from this study, *Alhagi* species possess a wide range of pharmacological effects, the most important of which include: gastrointestinal, antioxidant, anti-inflammatory, and antimicrobial effects among many others. These species have been traditionally used for renal stones, stomach complaints, to relieve pain, and to reduce paw edema in veterinary medicine, etc, Proantocyanidin isolated from *A. pseudalhagi* has significant biochemical effects on blood factors. Among *Alhagi* species, *A. camelorum* and *A. maurorum* possess the highest anti-microbial activity. Most of the effects observed with *A. maurorum* have had a dose-dependent behaviour. The doses at which the best effects have been recorded in different systems following the administration of *A. maurorum*, ranged between 100 to 500 mg/kg for in vivo studies. Since DNA damage has been observed following the ingestion of specific concentrations of *A. pseudalhagi*, care should be taken during administration of the plant for therapeutic use. A vast number of pharmacological and medicinal properties of *Alhagi* species make these plants a desirable source for development of new drugs; however, more studies are required to be conducted to specify the precise quality and safety of the plants to be further used by clinicians and other healthcare professionals for therapeutic purposes.

Financial support and sponsorship

This study is related to the project NO. 1395/76874 From Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran. We also appreciate the “Student Research Committee” and “Research and Technology Chancellor” in Shahid Beheshti University of Medical Sciences for their financial support of this study.

Conflicts of interest

There are no conflicts of interest.

References

1. Iqbal H, Sher Z, Khan ZU. Medicinal plants from salt range Pind Dadan Khan, district Jhelum, Punjab, Pakistan. J Med Plants Res 2011;5:2157-68.
2. Ahmad N, Bibi Y, Saboon, Raza I, Zahara K, Idrees S, et al. Traditional uses and pharmacological properties of *Alhagi maurorum*: A review. Asian Pac J Trop Dis 2015;5:856-61.
3. Behzad S, Pirani A, Mosaddegh M. Cytotoxic activity of some medicinal plants from hamedan district of Iran. Iran J Pharm Res 2014;13 Suppl:199-205.
4. Amiri MS, Joharchi MR, Taghavizadeh yazdi ME. Ethno-medicinal plants used to cure jaundice by traditional healers of Mashhad, Iran. Iran J Pharm Res 2014;13:157-62.
5. Hamedi A, Farjadian S, Karami MR. Immunomodulatory properties of Taranjabin (camel’s thorn) manna and its isolated carbohydrate macromolecules. J Evid Based Complementary Altern Med 2015;20:269-74.
6. Mikaili P, Shayeji J, Asghari MH. Review on the indigenous use and ethnopharmacology of hot and cold natures of phyto medicines in the Iranian traditional medicine. Asian Pac J Trop Biomed 2012;2:2 Suppl: S1189-93.
7. Bahmani M, Saki K, Shahsavari S, Rafieian-Kopaei M, Sepahvand R, Adineh A. Identification of medicinal plants effective in infectious diseases in Urmia, Northwest of Iran. Asian Pac J Trop Biomed 2015;5:858-64.
8. Bahmani M, Zargaran A. Ethno-botanical medicines used for urinary stones in the Urmia, Northwest Iran. Eur J Integr Med 2015;7:657-62.
9. Hudaib M, Mohammad M, Bustanji Y, Tayyem R, YOUSEF M, Abuirjeie M, et al. Ethnopharmacological survey of medicinal plants in Jordan, Mujib nature reserve and surrounding area. J Ethnopharmacol 2008;120:63-71.
10. Atta AH, Abo EL-Soud K. The antiinociceptive effect of some Egyptian medicinal plant extracts. J Ethnopharmacol 2004;95:235-8.
11. Hashem Dabaghan F, Taghavi Shirazi M, Amini Bebahani F, Shojaee A. Interventions of Iranian traditional medicine for constipation during pregnancy. J Med Plants 2015;14:58-68.
12. Mamedov N, Gardner Z, Craker LE. Medicinal plants used in Russia and Central Asia for the treatment of selected skin conditions. J Herbs Spices Med Plants 2004;11:191-222.
13. Ghorbanifar Z, Delavar Kasmaei H, Mineai B, Rezaeizadeh H,
Asghari, et al.: A review on Alhagi species

Zayeri F. Types of nasal delivery drugs and medications in Iranian traditional medicine to treatment of headache. Iran Red Crescent Med J 2014;16:e15935.

14. Hamed M, Ashraf M, Al-Quriany F, Nawaz T, Ahmad MS, Younis A, et al. Medicinal flora of the Cholistan desert: A review. Pak J Bot 2011;43:39-50.

15. Alqasumi SI. Isolation and chemical structure elucidation of hepatoprotective constituents from plants used in traditional medicine in Saudi Arabia. King Saudi University. 2007. p. 119.

16. Khan FM. Ethno-veterinary medicinal usage of flora of Greater Cholistan desert (Pakistan). Pak Vet J 2009;29:75-80.

7. Neamah NF. A pharmacological evaluation of aqueous extract of *Alhagi maurorum*. Glob J Pharmacol 2012;6:41-6.

18. Gutiérrez SP, Sánchez MA, González CP, García LA. Antidiarrhoeal activity of different plants used in traditional medicine. Afr J Biotechnol 2007;6:2988-94.

19. Mirdeliami SZ, Barani H, Mazandarami M, Heshmati GA. Ethnopharmacological survey of medicinal plants in Maraveh Tappe region, North of Iran. Iran J Plant Physiol 2011;2:327-38.

20. Shaker E, Malmoud H, Mnaa S. Anti-inflammatory and anti-ulcer activity of the extract from *Alhagi maurorum* (camelthorn). Food Chem Toxicol 2010;48:2785-90.

21. Awaad AS, El-Meligy R, Qenawy S, Atta A, Soliman GA. Anti-inflammatory, antinoceptive and antipyretic effects of some desert plants. J Saudi Chem Soc 2011;15:367-73.

22. Laghari AH, Ali Memon A, Memon S, NEOFAR A, Khan KM, Yasmin A. Determination of free phenolic acids and antioxidant capacity of methanolic extracts obtained from leaves and flowers of camel thorn (*Alhagi maurorum*). Nat Prod Res 2012;26:173-6.

23. Pandeya KB, Tripathi RP, Mishra MK, Dwivedi N, Pardhi Y, Kamal A, et al. A critical review on traditional herbal drugs: An emerging alternative drug for diabetes. Int J Org Chem 2013;3:1-22. Doi: 10.4236/ijoc.2013.31001.

24. Marashdah M, Al-Hazimi H. Pharmacological activity of ethanolic extract of *Alhagi maurorum* roots. Arabian J Chem 2010;3:39-42.

25. Gaybullaev A, Kariev S. Phytotherapy of calcium urolithiasis with extracts of medicinal plants: Changes of diuresis, urine pH and crystalluria. Appl Technol Innov 2012;7:59-66.

26. Bonjar GS. Screening for antibacterial properties of some Iranian plants against two strains of *Escherichia coli*. Asian J Plant Sci 2004;3:310-4.

27. Bonjar GS. Inhibition of three isolates of *Staphylococcus aureus* mediated by plants used by Iranian native people. J Med Sci 2004;4:136-41.

28. Ramadan MA, Safwat N. Antihelicobacter activity of a flavonoid compound isolated from *Desmostachya bipinnata*. Aust J Basic Appl Sci 2009;3:2270-7.

29. Al-Askar AA. *In vitro* antifungal activity of three Saudi plant extracts against some phytopathogenic fungi. J Plant Prot Res 2012;52:458-62.

30. Nabavizadeh S, Nabavi M. The effect of herbal drugs on neonatal jaundice. Iran J Pharm Res 2010;3:39-40.

31. Khushbaktova Z, Syrov Y, Kuliev Z, Bashirova N, Shadieva Z, Gorodeyskaia E, et al. The effect of proanthocyanidins from *Alhagi pseudalhagi* (MB) Desv on the course of experimental myocardial infarct. Eksp Klin Farmakol 1991;55:19-21.

32. Smailov SK, Mukhamedzhanov BG, Lee AV, Iskakov BK, Denisenko ON. An inhibitor of protein synthesis initiation from *Alhagi kirgisorum* S. FEBS Lett 1990;275:99-101.

33. Almeida R, Navarro D, Barbosa-Filho J. Plants with central analgesic activity. Phytomed 2001;8:310-22.

34. Etebari M, Ghanadi A, Jafari-Dehkordi A, Ahmadi F. Genotoxicity evaluation of aqueous extracts of Cotoneaster discolor and *Alhagi pseudalhagi* by comet assay. J Res Med Sci 2012;17 Suppl 2:S237-41.

35. Rehman JU, Aktar N, Khan MY, Ahmad K, Ahmad M, Sultana S, et al. Phytochemical screening and hepatoprotective effect of *Alhagi maurorum* boiss (*Leguminosae*) against paracetamol-induced hepatotoxicity in rabbits. Trop J Pharm Res 2015;14:1029-34.

36. Sulaiman GM. Antimicrobial and cytotoxic activities of methanol extract of *Alhagi maurorum*. Afr J Microbiol Res 2013;7:1548-57.

37. Ahmad S, Riaz N, Saleem M, Jabbar A, Nisar-Ur-Rehman M, Ashraf M. Antioxidant flavonoids from *Alhagi maurorum*. J Asian Nat Prod Res 2010;12:138-43.

38. Marashdah M, Farraj A. Pharmacological activity of 2% aqueous acetic acid extract of *Alhagi maurorum* roots. J Saudi Chem Soc 2010;14:247-50.

39. Awaad Amani A, Maintland D, Soliman G. Antitumocogenic activity of *Alhagi maurorum*. Pharm Biol 2006;44:299-6.

40. Alkemu A, Umar A, Yusuf A, Upur H, Berké B, Bégoud B, et al. Immunomodulatory and antitumour effects of abnormal Sanda Munziq on S180 tumour-bearing mice. BMC Complement Altern Med 2012;12:157.