RAINFALL SETS IN THE INTERSECTION OF TWO MATROIDS

RON AHARONI
Department of Mathematics, Technion, Haifa 32000, Israel

DANIEL KOTLAR
Computer Science Department, Tel-Hai College, Upper Galilee 12210, Israel

RAN ZIV
Computer Science Department, Tel-Hai College, Upper Galilee 12210, Israel

Abstract. Given sets F_1, \ldots, F_n, a partial rainbow function is a partial choice function of the sets F_i. A partial rainbow set is the range of a partial rainbow function. Aharoni and Berger [2] conjectured that if M and N are matroids on the same ground set, and F_1, \ldots, F_n are pairwise disjoint sets of size n belonging to $M \cap N$, then there exists a rainbow set of size $n - 1$ belonging to $M \cap N$. Following an idea of Woolbright and Brower-de Vries-Wieringa, we prove that there exists such a rainbow set of size at least $n - \sqrt{n}$.

1. Introduction

As in the abstract, a partial rainbow function of a family of sets $\mathcal{F} = (F_1, \ldots, F_n)$ is a partial choice function. A partial rainbow set is the range of a rainbow function, so it is a set consisting of at most one element from each F_i, where repeated elements are considered distinct (so, in this terminology a rainbow set is in fact a multiset). A full rainbow set, in which elements are chosen from all F_i, is called plainly a rainbow set. Strengthening a conjecture of Brualdi and Stein [4,16], Aharoni and Berger [2] made the following conjecture:

Conjecture 1.1. n matchings of size $n + 1$ in a bipartite graph have a rainbow matching (namely, a rainbow set that is a matching).

This conjecture easily implies:

E-mail addresses: ra@tx.technion.ac.il, dannykot@telhai.ac.il, ranziv@telhai.ac.il.
Conjecture 1.2. \(n \) matchings of size \(n \) in a bipartite graph have a partial rainbow matching of size \(n - 1 \).

The Brualdi-Stein conjecture is that every Latin square of order \(n \) possesses a partial transversal of size \(n - 1 \), namely \(n - 1 \) entries lying in different rows and columns, and containing different symbols. (This is a natural variation on a conjecture of Ryser [14], that an odd Latin square has a full transversal). Each of the \(n \) rows of a Latin square can be considered in a natural way as a matching of size \(n \) between columns and symbols, and applying Conjecture 1.2 to these matchings yields the Brualdi-Stein conjecture.

Lower bounds of order \(n - o(n) \) were proved in both problems. Hatami and Shor [8] proved that in a Latin square of order \(n \) there exists a partial transversal of size at least \(n - 11.053 \log^2 n \). Woolbright [21] and independently Brouwer, de Vries and Wieringa [3] proved (in effect) that \(n \) matchings in a bipartite graph have a partial rainbow matching of size at least \(n - \sqrt{n} \).

Aharoni and Berger [2] extended Conjecture 1.2 to matroids, as follows:

Conjecture 1.3. Let \(M \) and \(N \) be two matroids on the same vertex set. Any \(n \) pairwise disjoint sets of size \(n \), belonging to \(M \cap N \), have a partial rainbow set of size \(n - 1 \) belonging to \(M \cap N \).

Conjecture 1.2 is the special case where both \(M \) and \(N \) are partition matroids. (Here the term partition matroid refers to a direct sum of uniform matroids, each of rank 1.) The aim of this paper is to prove the parallel of the Woolbright-Brower-de Vries-Wieringa result for Conjecture 1.2. We shall prove:

Theorem 1.4. Any \(n \) pairwise disjoint sets of size \(n \) belonging to \(M \cap N \) have a partial rainbow set of size at least \(n - \sqrt{n} \) belonging to \(M \cap N \).

2. Matroid preliminaries

Throughout the paper we shall use the notation \(A + x \) for \(A \cup \{x\} \) and \(A - x \) for \(A \setminus \{x\} \).

Recall that a collection \(M \) of subsets of a set \(S \) is a matroid if it is hereditary and it satisfies an augmentation property: If \(A, B \in M \) and \(|B| > |A| \), then there exists \(x \in B \setminus A \) such that \(A + x \in M \). Sets in \(M \) are called independent and sets not belonging to \(M \) are called dependent. A maximal independent set is called a basis. An element \(x \in S \) is spanned by \(A \) if either \(x \in A \) or \(I + x \notin M \) for some independent set \(I \subseteq A \). The set of elements that are spanned by \(A \) is denoted by \(\text{sp}(A) \), or \(\text{sp}_M(A) \) if the identity of the matroid \(M \) is not clear from the context. A circuit is a minimal dependent set. We shall use some basic facts on matroids, that can be found, for example, in the books of Oxley [13] and Welsh [20].

Fact 2.1. If \(I \) is independent and \(I + x \) is dependent, then there exists a unique minimal subset \(C_M(I, x) \) of \(I \) that spans \(x \).

We shall call \(C_M(I, x) \) the \(M \)-support of \(x \) in \(I \).

Fact 2.2. Let \(A \in M \), \(x \in \text{sp}(A) \), and \(a \in C_M(A, x) \). Then \(A + x - a \in M \) and \(\text{sp}(A + x - a) = \text{sp}(A) \).
Lemma 3.1. If C_1 and C_2 are circuits with $e \in C_1 \cap C_2$ and $f \in C_1 \setminus C_2$ then there exists a circuit C_3 such that $f \in C_3 \subseteq (C_1 \cup C_2) - e$.

The following is an immediate corollary of the augmentation property:

Fact 2.4. Let I, J be independent sets in \mathcal{M}. If $|I| < |J|$, then there exists $J_1 \subseteq J \setminus I$ such that $I \cup J_1 \in \mathcal{M}$ and $|I \cup J_1| = |J|$.

Definition 2.5. Let \mathcal{M} and \mathcal{N} be two matroids on the same ground set S. We call a set $F \subseteq S$ an independent matching if $F \in \mathcal{M} \cap \mathcal{N}$. A rainbow set for a family $\mathcal{F} = \{F_1, F_2, \ldots, F_n\}$ of independent matchings is called a rainbow independent matching if it belongs to $\mathcal{M} \cap \mathcal{N}$.

3. Proof of Theorem 1.4

Let $\mathcal{F} = (F_1, \ldots, F_n)$ be a family of disjoint sets belonging to $\mathcal{M} \cap \mathcal{N}$. Let R be a partial rainbow matching for \mathcal{F} of maximal size. Let $t = |R|$ and $\delta = n - t$. Without loss of generality we may assume that $|R \cap F_i| = 1$ for $i = 1, \ldots, t$.

We shall construct a sequence of sets (A_1, \ldots, A_δ) such that for all $i = 1, \ldots, \delta$ the following holds:

\begin{align*}
(3.1) & \quad A_i \subseteq F_{t+i}, \\
(3.2) & \quad A_i \subseteq \text{sp}_M(R), \\
(3.3) & \quad |A_i| \geq i\delta.
\end{align*}

Suppose that we succeed in constructing such a sequence. By (3.1) $A_\delta \in \mathcal{M}$ and by (3.2) $A_\delta \subseteq \text{sp}_M(R)$. By (3.3), applied to $i = \delta$, we therefore have $t = |R| \geq |A_\delta| \geq \delta^2$. Clearly, we may assume that $t < n$. Since $\delta = n - t$, it follows that $t > n - \sqrt{n}$, as stated in the theorem.

Construction of the sets A_i. We construct the sets A_i inductively, associating with them sets R_i, so that R_1, \ldots, R_δ are disjoint, $R_i \subseteq R$ and $|R_i| \geq \delta$ for all $i = 1, \ldots, \delta$. Since $|F_{t+i}| = n$ and $|R| = t$, there exists, by Fact 2.4, a set $A_1 \subseteq F_{t+i} \setminus R$ such that $|A_1| = \delta$ and $R \cup A_1 \in \mathcal{N}$. By the maximality property of R we have $A_1 \subseteq \text{sp}_M(R)$. Since $|A_1| = \delta$ and $|R| = t$, there exists, again by Fact 2.4, a subset $R' \subseteq R$ of size $t - \delta$ such that $A_1 \cup R' \in \mathcal{M}$ and $|A_1 \cup R'| = t$. Let $R_1 = R \setminus R'$. We have $R \setminus R_1 \cup A_1 \in \mathcal{M}$ and $|R_1| = \delta$.

For the inductive step, assume that R_1, R_2, \ldots, R_j are pairwise disjoint subsets of R, each of size at least δ, and A_1, A_2, \ldots, A_j satisfy the conditions (3.1), (3.2) and (3.3), for $i = 1, \ldots, j$. Denote $R^k = R \setminus \cup_{i=1}^{k-1} R_i$ for $k = 2, \ldots$. Notice that $|R^{i+1}| \leq t - j\delta$. Since $F_{t+j+i} \in \mathcal{N}$ and $|F_{t+j+i}| = n$ it follows from Fact 2.4 that there exists $A_{j+1} \subseteq F_{t+j+i} \setminus R$ such that $R^{i+1} \cup A_{j+1} \in \mathcal{N}$ and $|R^{i+1} \cup A_{j+1}| = n$. We have $|A_{j+1}| = n - |R^{i+1}| \geq n - (t - j\delta) = (j+1)\delta$. We see that A_{j+1} satisfies (3.1) and (3.3). The following lemma implies that (3.2) also holds for A_{j+1}.

Lemma 3.1. If $j < \delta$ then $A_{j+1} \subseteq \text{sp}_M(R)$.
Before proving Lemma 3.1 let us indicate how it is used to complete the inductive construction of R_{j+1}. We use the following observation:

Observation 3.2. Let I be an independent set of size t in a matroid \mathcal{M} and suppose $J \subseteq \text{sp}(I)$ has size $n > t$. If $K \subseteq J$ satisfies $J \setminus K \in \mathcal{M}$, then $|K| \geq n - t$.

Assuming Lemma 3.1 we have (*a*) $A_{j+1} \subseteq \text{sp}_\mathcal{M}(R)$. We also have $|R^{j+1} \cup A_{j+1}| = n = |R| + \delta$. Hence $|R^{j+1}| \geq \delta$ (If $|R^{j+1}| < \delta$ then $|A_{j+1}| > |R|$, contradicting (*a*). Let $R_{j+1} \subseteq R^{j+1}$ be of minimal size such that $R^{j+1} \setminus R_{j+1} \cup A_{j+1} \in \mathcal{M}$. By Observation 3.2 we have $|R_{j+1}| \geq \delta$, as required.

The proof of Lemma 3.1 is done by an alternating path argument.

Definition 3.3. A **colorful alternating path** (CAP) of length k, relative to R, consists of

(i) A set $\{b_0, b_1, \ldots, b_k\}$ of distinct elements of the ground set S, where each b_i belongs to some $A_j \in \mathcal{A}$ and distinct b_i’s belong to distinct A_j’s.

(ii) A set of distinct elements $\{r_1, \ldots, r_k\} \subseteq R$ such that

$$\text{sp}_\mathcal{M}(R - r_1 + b_1 - r_2 + b_2 - \cdots - r_k + b_k) = \text{sp}_\mathcal{M}(R).$$

$$\text{sp}_{\mathcal{N}}(R + b_0 - r_1 + b_1 - r_2 - \cdots - r_k + b_k) = \text{sp}_{\mathcal{N}}(R).$$

If, in addition, $R + b_0 - r_1 + b_1 - r_2 + b_2 - \cdots - r_k + b_k \in \mathcal{M} \cap \mathcal{N}$ then the CAP is called augmenting.

Since the b_i’s belong to distinct F_{i+1}’s we have:

Observation 3.4. If R is of maximal size then no augmenting CAP relative to R exists.

In order to extend our alternating path we shall need the following lemma:

Lemma 3.5. Let \mathcal{M} be a matroid. Let $I \in \mathcal{M}$ and $X = \{x_1, \ldots, x_k\} \subseteq I$ and $Y = \{y_1, \ldots, y_k\} \subseteq \text{sp}_\mathcal{M}(I) \setminus I$ be such that $\text{sp}_\mathcal{M}((I \setminus X) \cup Y) = \text{sp}_\mathcal{M}(I)$. Suppose $y_{k+1} \in \text{sp}_\mathcal{M}(I) \setminus I$ and x_{k+1} are such that $x_{k+1} \in C(I, y_{k+1}) \setminus X$ and $x_{k+1} \notin C(I, y_i)$ for all $i = 1, \ldots, k$. Then $x_{k+1} \in C(I \setminus X) \cup Y, y_{k+1})$.

Proof of Lemma 3.5. Suppose, for contradiction, that $x_{k+1} \notin C(I \setminus X) \cup Y, y_{k+1})$. Let $C' = C(M, y_{k+1}) + y_{k+1}$ and $C'' = C(I, y_{k+1}) + y_{k+1}$. Then, by Fact 2.3 there exits a circuit $C \subseteq C' \cup C''$, such that $x_{k+1} \in C$ and $y_{k+1} \notin C$. Choose such a circuit C with $|C \cap Y|$ minimal. Since I is independent C must contain at least one element $y_j \in Y \cap C''$. Using Fact 2.3 again, since $x_{k+1} \notin C(M, y_j)$, there exists a circuit $\tilde{C} \subseteq C \cup (C(M, y_j) + y_j)$ such that $x_{k+1} \in \tilde{C}$ and $y_j \notin C$. We have $|\tilde{C} \cap Y| < |C \cap Y|$, contradicting the minimality property of C. □

Proof of Lemma 3.7. We shall show how the existence of some i, $1 \leq i \leq \delta$, such that $A_i \not\subseteq \text{sp}_\mathcal{M}(R)$ yields an augmenting CAP relative to R. This will contradict the maximality of R, by Observation 3.4.

Let $\{A_i\}, \{R_i\}$ and $\{R^i\}$ be defined as above. Recall that for all $i = 1, \ldots, \delta$,

$$R^i = R \setminus \bigcup_{j=1}^{i-1} R_j.$$

(3.5) \(A_i \subseteq F_{i+1} \) satisfies \(R^i \cup A_i \in \mathcal{N} \) and \(|R^i \cup A_i| = n \) and

(3.6) \(R_i \subseteq R^i \) is of minimal size such that \(R^i \setminus R_i \cup A_i \in \mathcal{M} \).

Assume, for contradiction, that \(m, 1 \leq m \leq \delta \), is the minimal index such that \(A_m \not\subseteq \text{sp}_\mathcal{M}(R) \) and let \(a \in A_m \) be such that \(R + a \in \mathcal{M} \). We shall construct a CAP, relative to \(R \), starting from \(a \). Let \(b_0 = a \). We have

(3.7) \(R + b_0 \in \mathcal{M} \)

and, since no augmenting CAP relative to \(R \) exists, we must have \(b_0 \in \text{sp}_\mathcal{N}(R) \). Let \(j \) be the maximal index such that \(b_0 \in \text{sp}_\mathcal{N}(R'^j) \). Since \(b_0 \in A_m \) and, by (3.5), \(R^m \cup A_m \in \mathcal{N} \), we obtain \(b_0 \notin \text{sp}_\mathcal{N}(R^m) \). Thus, \(j < m \). Since \(R_j = R^j \setminus R^{j+1} \), it follows from the maximality of \(j \) that \(C_\mathcal{N}(R^j, b_0) \cap R_j \neq \emptyset \). By Fact 2.2 there exists \(r_1 \in R_j \) such that \(R + b_0 - r_1 \in \mathcal{N} \) and

(3.8) \(\text{sp}_\mathcal{N}(R + b_0 - r_1) = \text{sp}_\mathcal{N}(R) \).

Since \(j < m \), we have, by the minimality of \(m \), that \(A_j \subseteq \text{sp}_\mathcal{M}(R) \). By the minimality of \(R_1 \) (see (3.6)) there exists \(x \in A_j \) such that \(r_1 \in C_\mathcal{M}(R, x) \) (otherwise \(A_j \cup R^{j+1} + r_1 \in \mathcal{M} \)). Let \(l \leq j \) be minimal such that \(A_l \) contains an element \(b_1 \) satisfying \(r_1 \in C_\mathcal{M}(R, b_1) \). By Fact 2.2 we have \(R - r_1 + b_1 \in \mathcal{M} \) and \(\text{sp}_\mathcal{M}(R - r_1 + b_1) = \text{sp}_\mathcal{M}(R) \). This, combined with (3.7), implies that \(R + b_0 - r_1 + b_1 \in \mathcal{M} \). Thus, a CAP of length 1 was created.

Now, suppose that we managed to construct a CAP of length \(k \). We shall show that if the CAP is not augmenting, then it can be extended. Denote \(R_\mathcal{M}(k) = R - r_1 + b_1 - r_2 + b_2 - \cdots - r_k + b_k \) and \(R_\mathcal{N}(k) = R + b_0 - r_1 + b_1 - r_2 + \cdots + b_{k-1} - r_k \).

Note that

(3.9) \(R_\mathcal{M}(k) + b_0 = R_\mathcal{N}(k) + b_k \).

Claim 1. \(b_k \in \text{sp}_\mathcal{N}(R) \).

Proof of Claim 1. By (P.\(R_\mathcal{M} \)), we have \(\text{sp}_\mathcal{M}(R_\mathcal{M}(k)) = \text{sp}_\mathcal{M}(R) \). Hence, from (3.7) we have \(R_\mathcal{M}(k) + b_0 \in \mathcal{M} \). Also, by (P.\(\mathcal{N} \)), we have \(\text{sp}_\mathcal{N}(R_\mathcal{N}(k)) = \text{sp}_\mathcal{N}(R) \). Assume, for contradiction, that \(R + b_k \in \mathcal{N} \). Then, \(R_\mathcal{N}(k) + b_k \in \mathcal{N} \), and by (3.9) we obtain an augmenting CAP, contradicting the maximality property of \(R \).

Assuming Claim 1, let \(p \) be the maximal index such that \(b_k \in \text{sp}_\mathcal{N}(R^p) \). By (3.4), \(p \) is the minimal index such that \(C_\mathcal{N}(R, b_k) \cap R_p \neq \emptyset \). Let \(r_{k+1} \in C_\mathcal{N}(R, b_k) \cap R_p \). By Fact 2.2 \(R + b_k - r_{k+1} \in \mathcal{N} \) and \(\text{sp}_\mathcal{N}(R + b_k - r_{k+1}) = \text{sp}_\mathcal{N}(R) \).

Claim 2. Let \(q \) be the index such that \(b_k \in A_q \). Then, \(p < q \).

Proof of Claim 2. By (3.5), \(R^q \cup A_q \in \mathcal{N} \) and thus, \(b_k \notin \text{sp}_\mathcal{N}(R^q) \). Since \(b_k \in \text{sp}_\mathcal{N}(R^p) \) we conclude that \(R^q \subseteq R^p \), which implies that \(p < q \).

Claim 3. There exists \(x \in A_p \) such that \(r_{k+1} \in C_\mathcal{M}(R, x) \).

Proof of Claim 3. Assume the opposite. Then \(A_p \cup R^{p+1} + r_{k+1} \in \mathcal{M} \). This contradicts the maximality property of \(R_p \) (see (3.6)).
Let l be minimal such that A_l contains an element b_{k+1} satisfying $r_{k+1} \in C_M(R, b_{k+1})$. By Claim 3, $l \leq p$. This, together with Claim 2, yields

\begin{equation}
(3.10) \quad \text{if } b_i \in A_u \text{ and } b_j \in A_v \text{ with } i < j, \text{ then } v < u,
\end{equation}

and

\begin{equation}
(3.11) \quad \text{if } r_i \in R_u \text{ and } r_j \in R_v \text{ with } i < j, \text{ then } v < u.
\end{equation}

Claim 4. $r_{k+1} \notin C_N(R, b_i)$ for all $i = 0, \ldots, k - 1$.

Proof of Claim 4. Let $j \in \{1, \ldots, k\}$. In the construction described above, the element r_j was chosen from R_u, where u is minimal such that $C_N(R, b_{j-1}) \cap R_u \neq \emptyset$. Recall that $r_{k+1} \in R_p$. Thus, by (3.11), we have $p < u$, and hence $C_N(R, b_{j-1}) \cap R_p = \emptyset$, which implies the claim.

By applying Lemma 3.3 to the sequences $\{r_1, \ldots, r_k, r_{k+1}\}$ and $\{b_0, \ldots, b_{k-1}, b_k\}$, it follows that $r_{k+1} \in C_N(R_N(k), b_k)$. By Fact 2.2, it follows that

\begin{equation}
(3.12) \quad R_N(k) + b_k - r_{k+1} \in N, \text{ and }
sp_N(R_N(k) + b_k - r_{k+1}) = sp_N(R_N(k)) = sp_N(R).
\end{equation}

Claim 5. $r_{k+1} \in C_M(R_M(k), b_{k+1})$.

Proof of Claim 5. Let $i \in \{1, \ldots, k\}$. In the construction described above, the element b_i was chosen from R_u, where u is minimal such that A_u contains an element b_i such that $r_i \in C_M(R, b_i)$. Recall that b_{k+1} was chosen from A_i, and by (3.10), $l < u$. Thus, $r_i \notin C_M(R, b_{k+1})$. Since this is true for any $i \in \{1, \ldots, k\}$, we have $C_M(R, b_{k+1}) \cap \{r_1, \ldots, r_k\} = \emptyset$, and hence, $C_M(R_M(k), b_{k+1}) = C_M(R, b_{k+1})$. Since b_{k+1} was chosen so that $r_{k+1} \in C_M(R, b_{k+1})$, the claim follows.

Assuming Claim 5, by Fact 2.2 we have

\begin{equation}
(3.13) \quad R_M(k) + b_{k+1} - r_{k+1} \in M, \text{ and }
sp_M(R_M(k) + b_{k+1} - r_{k+1}) = sp_M(R_M(k)) = sp_M(R).
\end{equation}

By $\text{(P}_M\text{)}, (\text{P}_N\text{)}, (3.12)$ and (3.13), the CAP was extended to the length of $k + 1$.

By (3.10) and (3.11), the process must end, yielding an augmenting CAP. This completes the proof of Lemma 3.1 and hence of Theorem 1.4.

4. **Independent partial transversals in Matroidal Latin Squares**

Let \mathcal{M} be matroid of rank n defined on a ground set S. A *Matroidal Latin Square (MLS)* of degree n over \mathcal{M} was defined in [10] as an $n \times n$ matrix whose entries are from S, such that each row and column is a basis of \mathcal{M}. (After publication, the authors found out that a similar object had been introduced earlier by Chappell [5].) Note that the notion of MLS generalizes the notion of Latin square, as a Latin square is an MLS over a partition matroid (that is, a direct sum of uniform matroids, each of rank 1). Analogously to Norton’s definition for row Latin square
in [12], we define a row MLS, as an $n \times n$ matrix whose entries are from S, such that each row is a basis of M. Thus, every MLS is a row MLS.

An independent partial transversal in an MLS, or in a row MLS, A, is an independent subset of entries of A where no two of them lie in the same row or column of A. It was conjectured in [10] that every MLS of degree n has an independent partial transversal of size $n - 1$. It was shown there that, in general, we cannot expect to find a partial independent transversal of size n. The lower bound set in [10] for the size of a partial independent transversal in an MLS was $\lceil 2n/3 \rceil$. Theorem 1.4 yields a significant improvement for that bound:

Corollary 4.1. Every row MLS of degree n has an independent partial transversal of size at least $n - \sqrt{n}$.

Proof. Let A be a row MLS of degree n over a matroid M. The result follows from Theorem 1.4 by taking N as the partition matroid defined by the columns of A. □

Acknowledgments

The authors thank two anonymous referees for their insightful comments and for their substantial contribution to the clarity of the manuscript.

References

1. R. Aharani and D. Howard, *Size conditions for the existence of rainbow matchings*, in preparation.
2. R. Aharoni and E. Berger, *Rainbow matchings in r-partite r-graphs*, Electron. J. Combin 16 (2009), no. 1, R119.
3. A.E. Brouwer, A.J. de Vries, and R.M.A. Wieringa, *A lower bound for the length of partial transversals in a Latin square*, Nieuw Arch. Wiskd. 24 (1978), no. 3, 330–332.
4. R.A. Brualdi and H.J. Ryser, *Combinatorial matrix theory*, Cambridge University Press, 1991.
5. G. G. Chappell, *A matroid generalization of a result on row-latin rectangles*, Journal of Combinatorial Theory, Series A 88 (1999), no. 2, 235–245.
6. S. Fujita, A. Kaneko, I. Schiermeyer, and K. Suzuki, *A rainbow k-matching in the complete graph with r colors*, Elec. J. Combin 16 (2009), no. 1, R51.
7. A. Gyárfás and G. N. Sárközy, *Rainbow matchings and partial transversals of latin squares*, Arxiv preprint arXiv:1208.5670 (2012).
8. P. Hatami and P. W. Shor, *A lower bound for the length of a partial transversal in a Latin square*, J. Combin. Theory A 115 (2008), 1103–1113.
9. A. Kostochka and M. Yancey, *Large rainbow matchings in edge-colored graphs*, Combinatorics, Probability and Computing 21 (2012), no. 1-2, 255–263.
10. D. Kotlar and R. Ziv, *On the length of a partial independent transversal in a matroidal Latin square*, Electron. J. Combin 19 (2012), no. 3, P12.
11. T.D. LeSaulnier, C. Stocker, P.S. Wenger, and D.B. West, *Rainbow matching in edge-colored graphs*, Electron. J. Combin 17 (2010), N26.
12. D. A. Norton, *Groups of orthogonal row-latin squares*, Pacific Journal of Mathematics 2 (1952), no. 3, 335–341.
13. J. Oxley, *Matroid theory*, 2 ed., Oxford University Press, 2011.
14. H.J. Ryser, *Neuere probleme der kombinatorik*, Vorträge über Kombinatorik, Oberwolfach, Mathematisches Forschungsinstitute (Oberwolfach, Germany), July 1967, pp. 69–91.
15. P. W. Shor, *A lower bound for the length of a partial transversal in a Latin square*, Journal of Combinatorial Theory, Series A 33 (1982), no. 1, 1–8.
16. S.K. Stein, *Transversals of Latin squares and their generalizations*, Pacific Journal of Mathematics 59 (1975), no. 2, 567–575.
17. G. Wang, *Rainbow matchings in properly edge colored graphs*, Electron. J. Combin 18 (2011), no. 1, P162.

18. G. Wang and H. Li, *Heterochromatic matchings in edge-colored graphs*, Electron. J. Combin 15 (2008), R138.

19. I. M. Wanless, *Transversals in latin squares: A survey*, Surveys in Combinatorics (2011), 403–437.

20. D. Welsh, *Matroid theory*, Academic Press, London, 1976.

21. D.E. Woolbright, *An $n \times n$ Latin square has a transversal with at least $n - \sqrt{n}$ distinct elements*, J. Combin. Theory A 24 (1978), 235–237.