Evolution and set up the maps for solar radiation of Iraq using Data observation and Angstrom model during monthly July 2017

A f Abed1, E F Khanjer 1 and S A Abdullah1
1 Department of Astronomy, College of Science, University of Baghdad, IRAQ

Abstract.
The development that solar energy will have in the next years needs a reliable estimation of available solar energy resources. Several empirical models have been developed to calculate global solar radiation using various parameters such as extraterrestrial radiation, sunshine hours, albedo, maximum temperature, mean temperature, soil temperature, relative humidity, cloudiness, evaporation, total perceptible water, number of rainy days, and altitude and latitude. In present work i) First part has been calculated solar radiation from the daily values of the hours of sun duration using Angstrom model over the Iraq for at July 2017 . The second part has been mapping the distribution of solar radiation energy to Iraq using interpolation technique in Arc _GIs software Version 10.3.

Keyword: solar radiation, sun duration, Angstrom model, Arc _GIs

1. Introduction
The sun is a nuclear power, which is, generates power in form of radiation at the phenomenally high rate of 3.8x1023 kilowatts. An extremely small fraction of this is intercepted by the earth's surface, but this small fraction amounts to a huge 1.8x1014 kilowatt. On the average about 60% of this amount penetrates the atmosphere to reach the earth's surface (1.1x1014 Kw.). Of course this amount of power is distributed over the entire surface of the earth. To bring this number closer to home, consider that on bright sunny day each square meter of surface facing the sun receives about one kilowatt [1]. Energy form the sun is basis for life on earth, and the solar spectrum a mixture of radiative, visible, ultraviolet
and infrared radiation has to be known to design any solar conversion system. Total daily solar radiation is considered as the most important parameter in the performance prediction of renewable energy system, particularly in sizing photovoltaic (pv) power and solar heating system. [1]. In developing countries, such as Iraq, interest in solar energy applications has been growing in providing electricity and water supply in different areas. Understanding solar radiation data is essential for modeling solar energy systems. Solar radiation is used directly to produce electricity for photovoltaic (PV) systems and solar thermal systems.[2]

2. Solar Radiation

The radiation from the sun is the primary natural energy source of the planet Earth. Other natural energy sources are the cosmic radiation, the natural terrestrial radioactivity and the geothermal heat flux from the interior to the surface of the Earth, but these sources are energetically negligible as compared to solar radiation. When the spoken is of solar radiation, it means the electromagnetic radiation of the Sun. The energy distribution of electromagnetic radiation over different wavelength is called Spectrum. The electromagnetic spectrum is divided into different spectral ranges (Figure 1).

![Figure 1. Spectral ranges of electromagnetic radiation, [3].](image-url)
The quantity of solar radiation reaching the earth's surface varies dramatically as a function of changing atmospheric condition as well as the changing position of the sun through the day, [3].

Article I.

3. Sunshine Duration

Sunshine duration is the length of time that the ground surface is irradiated by direct solar radiation (i.e., sunlight reaching the earth's surface directly from the sun). Sunshine duration is also defined as the period during which direct solar irradiance exceeds a threshold value of 120 watts per square meter \(\text{W/m}^2 \). This value is equivalent to the level of solar irradiance shortly after sunrise or shortly before sunset in cloud-free conditions. It was determined by comparing the sunshine duration recorded using a Campbell-Stokes sunshine recorder with the actual direct solar irradiance [4].

4. Angstrom Model

Angstrom proposed first theoretical model for estimating global solar radiation based on sunshine duration. The fundamental Angstrom model can be considered as a base model. rebuilt this model in order to make it possible to calculate monthly average of the daily global radiation on a horizontal surface from monthly average daily total insolation on an extraterrestrial horizontal surface as per the following relation:[5]

\[
\frac{H}{H_c} = a + b \frac{n}{N} \tag{1}
\]

Where

\(H \) = Monthly average daily global radiation \((\text{Wh/m}^2/\text{day})\).

\(H_c \) = Monthly average clear sky daily global radiation for the location solar radiation in a given day.

\(n \) = Actual sunshine duration in a day respectively \((\text{Hours})\).

\(N \) = Monthly average maximum possible bright sunshine duration in a day. Also known as monthly mean length of the day in hours.

\(a \) and \(b \) = Empirical coefficients. These coefficients are location specific coefficients referred to as fractions of extra terrestrial radiation on overcast days and on average days respect [7].
a = 0.25 …………………….(2)

b = 0.50 ……………………(3)

N = (2/15) \cos^{-1}(-\tan \varphi \tan \delta) ………..(4)

The ratio \(H/H_0\) called clearness index. Values of the monthly average daily extraterrestrial radiation \(H_0\) is calculated from the following equation, [8]:

\[
H_0 = \frac{24 \times 3600 \times I_{sc}}{\pi} \left[1 + 0.033 \cos \left(\frac{360 \times d}{365}\right)\right] \cos \varphi \cos \delta \sin \omega + \frac{\pi \omega}{180} \sin \varphi \sin \delta \] ……. (5)

Where:

\(I_{sc}\) = is the solar constant of a value 1367 Wm\(^{-2}\)

d = day of the year from January 1 to December 31 taking January 1\(^{st}\) as 1.

\(\Phi\) = latitude of location

\(\omega\) = sunset hour angle

\[\omega = \cos^{-1}(-\tan \varphi \tan \delta) \] ……………. (6)

\(\delta\) = declination angle

\[\delta = 23.45 \sin \left[360 \left(\frac{284 + d}{365}\right)\right] \] ……………..(7)

4.1 Interpolation techniques

Spatial interpolation is tool in GIS used to find the values of unknown points. It can be defined as a procedure of estimating the values of properties at unsampled locations based on the set of observed values at known locations. A large number of interpolation methods have been developed for use with point, line, and area data. No matter which interpolation technique is used, the derived values are only estimates of what the real values should be at a particular location. The quality of any analysis that relies on interpolation of observed data is, therefore, subject to a degree of uncertainty. Different interpolation methods can therefore generate different predictions at same locations. Many researchers have evaluated various methods for interpolation of different hydro climatic data. But accuracy of estimated values is varying from each methods based on the topography of the area, concentration and
distribution of the measurement stations. So in this study some of these interpolation methods used in GIS were analysed and checked their accuracy based on the results produced. [9]

There are two main groupings of interpolation techniques: deterministic and geostatistical.

- **Deterministic interpolation techniques** create surfaces from measured points, based on either the extent of similarity (Inverse Distance Weighted) or the degree of smoothing (Spline). [9]

- **Geostatistical interpolation techniques** (kriging) utilize the statistical properties of the measured points[9]

4.2 Methodology

Using the data of the General Organization for Aerial Meteorology and Seismic Monitoring in Baghdad, the daily sun duration values were found. Values were found in the stations (Mosul, Kirkuk, Baghdad, Nasiriya, Khanakin, Amara, Najaf, Hay, Diwaniya, Karbala) listed in below table(1) for the 2017.

Day	Baghdad	Mosul	Nasiriya	Alhay	Kirkuk	Karbla	Khanqien	Dewania	Emara	Najaf
1	12.0	11.8	5.7	10.6	10.6	11.2	10.1	11.6	10.5	10.3
2	11.6	11.5	10.2	11.0	11.7	10.8	9.4	11.9	9.0	11.5
3	11.4	11.6	10.8	11.2	12.0	10.9	9.2	11.3	11.2	10.8
4	10.9	11.2	9.9	11.4	M	10.3	10.2	10.9	11.2	10.6
5	7.4	11.8	10.9	10.4	12.0	8.9	7.2	5.0	11.0	6.3
6	11.4	11.6	9.6	10.7	12.0	11.0	9.0	11.2	9.6	12.0
7	11.8	7.9	8.8	11.0	M	11.6	9.2	10.3	11.5	11.1
8	11.3	9.0	4.8	3.5	11.4	10.7	8.0	7.4	4.8	8.5
9	9.7	11.8	9.7	11.1	M	10.3	8.0	10.0	11.0	9.7
10	9.2	11.6	10.4	11.1	M	10.3	8.4	10.8	11.0	10.4
11	11.2	12.1	10.4	11.2	12.0	11.0	11.5	11.0	11.4	11.0
12	10.5	12.0	5.6	10.8	12.1	10.2	11.4	10.3	11.0	9.6
13	12.1	12.0	9.2	M	12.3	10.9	12.0	9.9	11.0	10.3
14	11.5	11.8	9.1	10.2	M	10.8	11.8	10.1	9.0	11.1
5. Experimental work

In this work we obtain daily solar radiation for July and August in year 2017 from daily values of sun duration using Angstrom Model and then show the results in map using interpolation techniques in ArcMap GIS 10.3 program.

Table 2. Represents estimation values of the solar radiation from sun duration for July

day	Badhdad	mosoul	Nasriya	Alhay	kirkuk	Karbla	Khanqien	Dewania	emara	najaf																				
1	27.94625	27.46217	18.73985	25.94418	25.79419	26.81684	25.12348	27.43508	25.80539	25.50474																				
2	28.05661	27.71435	26.02931	27.20851	28.08642	26.89663	24.71426	28.58799	24.19682	27.96558																				
3	28.56532	28.6722	27.72452	28.31322	29.36334	27.83646	25.12525	28.48912	28.32342	27.69415																				
4	27.98145	28.25083	26.50237	28.82012	28.08999	26.84585	28.0578	28.51769	27.5708																					
5	22.05658	28.55622	27.48405	26.68355	28.93899	24.3773	21.72413	18.41286	27.61308	20.40249																				
6	27.28318	28.27699	24.69708	26.30295	28.04043	26.73743	23.69814	27.06629	24.67746	28.2365																				
7	27.49547	21.68286	23.18618	26.38583	27.25304	23.66441	25.37848	27.12953	26.53492																					
8	27.21291	23.648	17.592	15.64873	27.23493	26.36893	22.28467	21.47265	17.58829	23.10286																				
9	25.61217	28.60097	25.69716	27.81733	26.57612	22.97552	26.1458	27.67495	25.6672																					
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---
10	25.26479	28.77242	27.2305	28.2876	27.02463	23.9797	27.84148	28.14308	27.19548																					
11	28.03844	29.18284	26.90786	28.1062	29.12173	27.7839	28.43953	27.8211	28.42808	27.79994																				
12	26.13427	28.13688	23.72	28.00451	26.16532	28.14308	27.84148	28.14308	27.19548																					
13	27.86228	27.48264	23.72	28.00451	26.16532	27.65371	24.73402	26.33696	25.30183																					
14	27.13748	27.34194	23.72	28.00451	26.16532	27.65371	24.73402	26.33696	25.30183																					
15	28.52364	27.67941	24.39022	28.1687	28.1324	27.70482	25.13532	25.73175	26.62302																					
16	29.23081	28.81727	23.74712	27.13617	29.52795	27.89887	29.31432	26.85096	24.81337	26.51693																				
17	29.03533	27.85793	28.08314	29.12012	29.7894	29.25839	25.42308	29.15179	29.13592	28.34654																				
18	28.71679	27.26118	20.19892	21.08243	27.65383	28.48403	26.09473	27.62999	28.8.3299																					
19	27.87075	27.17157	26.39145	27.07557	28.2827	27.49964	25.61424	27.54844	27.32814	27.5205																				
20	28.1293	26.99244	26.51992	27.1973	27.61808	27.76378	28.10849	26.77438	27.93226																					
21	28.46364	27.59207	23.74712	27.13617	29.52795	27.89887	29.31432	26.85096	24.81337	26.51693																				
22	28.84309	27.34354	28.38575	29.0941	28.92045	27.08527	28.97683	29.421	28.79041																					
23	28.80106	28.35049	28.65322	28.89989	29.19067	27.7953	28.81549	28.93054	28.20944																					
24	29.31034	28.39614	26.72767	26.05718	28.66048	27.56472	26.95657	28.53846	24.54494	28.04657																				
25	27.78424	27.48017	25.42988	27.14661	28.02943	27.71769	26.38331	26.88738	27.46125	27.29904																				
26	28.31136	27.1359	23.67519	27.40238	27.67906	27.38147	26.92724	27.44182	27.56756	26.09806																				
27	27.33112	25.31151	27.92048	27.15853	26.99736	27.70597	27.94398	28.21818	28.05488																					
28	29.83927	27.70108	27.75509	28.74569	28.26965	28.41893	27.63633	28.63746	28.61546	27.68727																				
29	29.01372	27.60668	26.87992	28.35813	28.03276	27.40682	28.45734	28.40209	27.60465	27.58882																				
30	27.20861	28.38082	26.93291	28.54786	29.26494	28.83014	28.33198	28.59388	28.10965	27.93923																				
31	29.03889	27.35941	27.16028	28.27342	28.2187	27.95096	25.69624	27.72373	28.74424	26.93852																				
Figure 2. distribution map of solar radiation in 1-7-2017
Figure 3. Distribution map of solar radiation in 7-7-2017

Figure 4. Distribution map of solar radiation in July
6. Conclusion

Estimation of solar radiation from measured meteorological variables offers an important alternative in absence of measured solar radiation. The existing and developed models are comparatively studied and evaluated using monthly average daily solar radiation and measured meteorological data, monthly average daily sunshine duration. The most important outcomes of the study can be summarized as: the estimation of global solar radiation can be predicted with reasonable accuracy with all developed models considered in this study, due to its simplicity and better model performance evaluation. Therefore, it can be recommended that these models are used reasonably well for estimating the solar radiation in Iraq and possibly in its surroundings sites with similar climatic conditions if empirical coefficients are correctly calibrated.
References

[1] Rabiu A B., 2012. "Solar Radiation Models and Information for Renewable Energy Applications", pp:112-125.

[2] Ahmed A, Hameed Neamah Al-Fatlawy and Ali M. Al-Salihi, 2017 "Estimation Of Hourly Global Solar Radiation Incident On Inclined Surfaces In Iraq At Different Sky Condition", International Journal of Research in Applied Vol. 5.

[3] Spokas and Forcella 2006 "Estimating Hourly Incoming Solar Radiation from Limited Meteorological Data", pp:182-189.

[4] Girma Dejene Nage 2018. "Estimation of Monthly Average Daily Solar Radiation from Meteorological Parameters: Sunshine Hours and Measured Temperature in Tepi, Ethiopia", Vol. 3, No. 1, pp. 19-26, International Journal of Energy and Environmental Science.

[5] Didem VECAN 1940 "Measurement And Comparison Of Solar Radiation Estimation Models For Izmir/Turkey: Izmir Institute Of Technology Case", 2011

[6] Prescott JA, "Evaporation from water surface in relation to solar radiation. Trans R Soc Austr", pp40-114.

[7] Rietveld& R 1978. "A new method for estimating the regression coefficients in the formula relating solar radiation to sunshine. Agric. Meteorol. 19", pp 243–252.

[8] Fthenakis, Vasilis M. 2004 "Life cycle impact analysis of cadmium in CdTe PV production", Renewable and Sustainable Energy Reviews, vol 8, pp 303–334

[9] Garnero G. and Godoneb D. 2013 "Comparisons Between Different Interpolation Techniques", The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, Volume XL-5/W3.