Efficacy of leflunomide combined with prednisone in the treatment of refractory nephrotic syndrome

Yuping Liu, Xiaolong Qu, Weidong Chen, Yan Zhang and Lei Liu

Department of Nephrology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China; Department of Cardiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China

ABSTRACT

Objective: To assess the safety and clinical efficacy of leflunomide (LEF) and prednisone on refractory nephrotic syndrome (RNS).

Methods: A total of 52 patients with RNS were treated for 24 weeks between 2010 and 2014 in our hospital. In the treated group, 26 patients were treated with LEF and prednisone, and, in the control group, 26 patients were treated with cyclophosphamide (CTX) and prednisone. During the treatment, 24 h urinary protein excretion and the serum levels of albumin and cholesterol, and kidney function were assayed before and after the therapy. Adverse reactions during treatment were recorded.

Results: In the LEF group, the medication was markedly effective in eight cases and effective in nine cases; the total efficacy rate was 65.30%. In the CTX group, the treatment was markedly effective in six cases and effective in nine cases; the total efficacy rate was 57%. There were no significant differences between the results of the total efficacy rate (p > 0.05). The 24 h urinary protein excretion and the serum levels of albumin and cholesterol, and kidney function were assayed before and after the therapy. Adverse reactions during treatment were recorded.

Conclusion: LEF combined with prednisone has a certain efficacy on the RNS and displays few adverse reactions. A large-sample, randomized double-blind controlled study and long-term follow-up are needed to verify the efficacy of LEF combined with prednisone.

Introduction

Nephrotic syndrome is usually diagnosed when patients’ laboratory tests present with severe proteinuria (>3.5 g/day), edema, hypoalbuminemia (<30 g/L), and hyperlipidemia. For differing reasons, many patients have normal or impaired renal function at the time of diagnosis. Until now, there has been no unified definition of refractory nephrotic syndrome (RNS). However, RNS is generally characterized as a steroid-dependent, steroid-resistant, and subject to frequent relapse. Steroid-dependence is defined as the occurrence of relapse during treatment with alternate-day steroids or no more than 14 days after gradually cessation of the use steroids. Steroid-resistant refers to persistent proteinuria after an 8–12 week course of oral prednisolone 1 mg/kg/d. Frequently relapsing nephrotic syndrome refers to at least two relapses during treatment within six months or more than three relapses within 12 months of the initial presentation. It is a common nephropathic disease. It has different pathological types. These can present with different clinical features, and prognosis can vary. The main pathological types of RNS can be classified into membranous nephropathy, focal segmental lesions, membranous proliferative glomerulonephritis, mesangial proliferative glomerulonephritis (MPGN), and some minor glomerular abnormalities, in which the focal segmental glomerulosclerosis, and membranous proliferative glomerulonephritis types cause the most serious impairments of renal function. They can even cause renal failure. There is no unified, international opinion regarding treatment of RNS. Recent research has focused on the use of immunosuppressant agents containing alkylating agents, on calcineurin inhibitors including mycophenolate mofetil, tacrolimus, cyclophosphamide (CTX), cyclosporine, and adrenocorticotropic hormone, and on some targeted medicines.
However, the treatment outcomes and the medical prognosis are poor. Leflunomide (LEF) is an inhibitor of dihydroorotate dehydrogenase (DHODH) and has been used to treat patients with rheumatoid arthritis, membranous nephropathy, psoriatic arthritis, and ankylosing spondylitis.\(^4\) To do this, the efficacy of combined effect of prednisone and LEF was assessed, and prednisone combined with CTX was administered as the control.

Materials and methods

From July 2010 to September 2014, a total of 52 patients (20 male and 32 female; age range 14–62 years; average age 26.79 ± 13.32 years). All the cases were diagnosed as refractory NS in the First Affiliated Hospital of Bengbu Medical College. Renal histopathological findings included membranous nephropathy in 20 patients, membranoproliferative nephritis in three patients, IgA nephropathy in 12 patients, mesangial proliferative nephritis in five patients, lupus nephritis in five patients, focal segmental lesions in four patients, minor glomerular abnormalities in three patients. This study was approved by Institutional Review Board of the First Affiliated Hospital of Bengbu Medical College and all participants provided informed consent. The patients were selected and divided randomly into an LEF treatment group and CTX control group. The exclusion criteria included abnormal liver function or severe infection, poor compliance, leucopenia disease, patients who had HIV, hepatitis B or C, or malignancy, and LEF allergies.

Methods

The patients in the LEF treatment group were orally administered prednisone combined with LEF. The initial prednisone dose was 1 mg/kg/d; the dose of prednisone was slowly reduced eight weeks later (10% of the total dose was reduced once every two weeks when the urinary protein excretion dropped. The LEF dose for the first three days was 40 mg/d and for 20 mg/d for subsequent days. The patients in the CTX control group were given prednisone administered orally and intravenous CTX administered CTX intravenously. The CTX dose was 8–12 mg/kg/per administration, given once every four weeks. The dose of prednisone was the same as that administered to the LEF treatment group. No other cytotoxic drugs or immunosuppressants were used during the treatment period; 24 h urinary protein excretion (24 h-UP) and the serum levels of albumin and cholesterol and kidney function were tested before and after the six-month mark.

Evaluation of therapeutic effects

(ii) Complete remission, which was here defined as the absence of symptoms, 24 h urine protein <0.3 g and serum albumin ≥35 g/L; (ii) partial remission, which was defined as proteinuria of 0.3 g/24 h or more and less than 3.5 g/24 h, or more than 50% reduction of the initial proteinuria level with stable renal function; (iii) no remission. Inefficacy was defined as no improvements in laboratory results or symptoms.

Statistical analysis

Data were recorded as the mean ± SD and analyzed using t-tests. All data were recorded as mean [95% confidence interval (CI)]. All the measurement data were analyzed using the t-tests. \(p < .05\) was considered statistically significant. Results were analyzed using SPSS for Windows version 12.0 software (Bengbu, Anhui, China).

Results

Basic data

The before-treatment data of the two groups were analyzed using \(t\)-tests. There were no significant differences with respect to age, 24 h-UP levels, serum albumin, serum cholesterol, or renal function (\(p > .05\)) (Table 1).

Efficacy analysis and laboratory examination

In the LEF treatment group, the medication was effective in 17 cases, and the total efficacy rate was 65.3%; it was not effective in nine cases. In the CTX control group, the medication was effective in 15 cases and not effective in 11 cases, and the total efficacy rate was 57.0% (Table 2).

The patients in the CTX treatment group (26 cases), Renal histopathological findings included membranous
nephropathy in 12 patients (which effective cases are 6), membranoproliferative nephritis in two patients (which effective cases are 1), IgA nephropathy in eight patients (which effective cases are 6), mesangial proliferative nephritis in one patient (which effective case is 1), lupus nephritis in two patients (which effective cases is 1), focal segmental lesions in one patients (which effective case is 0). The patients in the LEF treatment group (26 cases), Renal histopathological findings included membranous nephropathy in eight patients (which effective cases are 4), membranoproliferative nephritis in one patients (which effective case is 0), IgA nephropathy in four patients (which effective cases are 4), mesangial proliferative nephritis in four patients (which effective cases are 3), lupus nephritis in three patients (which effective cases are 2), focal segmental lesions in three patients (which effective case is 1), minor glomerular abnormalities in three patients (which effective cases are 3). According to the results of observation, after six months treatment, both two groups, the various pathological types all have some degrees of ease, minor glomerular abnormalities, MPGN and IgA nephropathy (IgAN) total effective rate was higher than that of membranous glomerulonephritis (MGN) and focal segmental glomerular sclerosis (FSGS) (Table 3).

During the first six months, the 24 h urinary-protein excretion levels in both groups decreased significantly

Table 3. Patients pathological types of NS in each group.

Group	CTX Effective cases	LEF Effective cases
Membranous nephropathy	12	8
Membranoproliferative nephritis	2	1
IgA nephropathy	8	6
Mesangial proliferative nephritis	1	1
Lupus nephritis	2	1
Focal segmental lesions	1	0
Minor glomerular abnormalities	3	3

Table 4. Datas before and after intervention for two groups.
after medication, and the serum ALB levels in both groups increased significantly after medication ($p < .05$). In the LEF treatment group, proteinuria decreased from 4.9 g/24 h at baseline to 0.92 g/24 h, serum cholesterol levels decreased from 9.4 mmol/L to 6.25 mmol/L, and serum albumin levels increased from 23.3 g/L to 37.4 g/L. In the CTX control group, proteinuria decreased from 4.9 g/24 h at baseline to 1.02 g/24 h, serum cholesterol levels decreased from 8.8 mmol/L to 6.32 mmol/L, and serum albumin levels increased from 22.2 g/L to 37.08 g/L. All of these data were statistically significant different from pretherapy figures ($p < .05$). However, there were no significant differences between the serum creatinine of the two groups compared with data from before intervention (Tables 3 and 4). The mean eGFR of the cases, as assessed using the MDRD equation, in the LEF treatment group, before the therapy was 96.6 ± 3.8 mL/min/1.73 m2, and after therapy was 97.2 ± 4.2 mL/min/1.73 m2. In the CTX treatment group, the mean eGFR was 97.8 ± 2.4 mL/min/1.73 m2, and after therapy was 97.6 ± 3.2 mL/min/1.73 m2, respectively. There were no significant differences.

Adverse reactions

In the LEF treatment group, the alanine aminotransferase (ALT) levels increased slightly in one patient, while another two patients showed fatigue and mild poor appetite. In the control group, the ALT level increased slightly in two patients, leukocytopenia was observed in two patients, and hair loss and irregular menstruation were observed in three patients. After supportive treatment, these patients all returned to normal. No impaired renal function, no remarkable hematological abnormalities, and no other serious adverse reactions were observed over the course of treatment. No patient in either group ended drug treatment early.

Discussion

At present, several therapies, including glucocorticoid and immunosuppressive agents have been shown to be effective and safe in the treatment of RNS. CTX is a classical drug that has been used to treat RNS in clinical settings since the 1970s. The therapeutic effects of CTX in the treatment of refractory NS have been unanimously accepted. However, recent U.S. guidelines, published in 2009, no longer strongly recommend using CTX for refractory nephritic syndrome because of its relatively low efficacy, gonadal toxicity, myelosuppression, and carcinogenicity. Currently, CTX is defined as the third-line drug for steroid-dependent nephritic syndrome in U.S. guidelines. Among the newly therapeutic targeted agents, rituximab can effectively anti-inflammatory and protect kidney function from decline and can decrease protein excretion retard relapse. However, most patients cannot afford targeted therapeutic agents because of their high cost. Although the efficacy of LEF for the treatment of refractory NS has only rarely been reported, the present survey showed LEF to be a suitable immunomodulatory medicine that has been safely and effectively used in the therapy of rheumatoid arthritis in psoriatic arthritis, ankylosing spondylitis, secondary Sjögren’s syndrome polyoma BK virus nephropathy, and systemic lupus erythematosus (SLE). LEF is also as a rescue treatment in ganciclovir-resistant infection in kidney transplant recipients, and it is effective in the treatment of adult Henoch–Schönlein nephritis with nephrotic protein-urea. Many clinical trials have shown that some immunosuppressants combined with glucocorticoid have a good efficacy on membranous nephropathy (IMN) patients. LEF plus oral prednisone decreased proteinuria significantly. It may be a suitable alternative treatment option for Chinese patients with nephrotic IMN or with steroid-resistant or steroid-dependent MCD. It is also associated with a lower amount of prednisone required to maintain remission and with a lower rate of relapse than with CTX therapy. LEF is excreted in the urine via the kidney (43%) and in the feces via bile (48%). The chemical name of LEF is 5-methyl-N-[4-trifluoro-methylphenyl]-5-methyl-isoxazole-4-carboxamide. After oral administration, it was converted to an active metabolite (A77 1726) and to many minor metabolites. The active metabolite A77 1726 is responsible for all the in vivo activity of LEF. This metabolite is a potent non-cytotoxic inhibitor of the enzyme DHODH, a key enzyme in the de novo synthesis of uridine monophosphate (UMP), which is essential to provide precursors for new RNA and DNA synthesis. In vitro studies have indicated that cytochromes P450 (CYPs), including CYP1A2, CYP2C19, and CYP3A4, are taking part in LEF metabolite activation. LEF plays a role in immunoregulation via A77 1726. LEF is a selective inhibitor of de novo pyrimidine synthesis. It acts by inhibiting T-cell proliferation and by inhibiting tyrosine protein kinase activity and the formation of autoantibodies. It not only has antiproliferative action but also anti-inflammatory actions. These prevent activation and gene expression of nuclear factor (NF) kB, increase the production of immunosuppressive TGF-β protein, and inhibit the production of proinflammatory TNF and interleukin 1β. However, its use has also been associated with some adverse reactions involving diarrhea, liver toxicity, nephrotoxicity, myelosuppression, toxic
In this report, 52 patients who had been diagnosed with refractory NS were given different drugs. The patients in the LEF treatment group (26 cases) received therapy with glucocorticoid and LEF, while another 26 patients in the CTX control group received therapy with hormone treatment and CTX. Both therapies showed obvious ameliorative effects. Both groups can stop patients with RNS from undergoing glomerulosclerosis by protecting the kidneys. The current study shows the total effective rate of LEF combined with prednisone on the treatment of RNS was found to be 65.3%, which was higher than that of CTX combined with prednisone. The results were consistent with those of previous studies. The total efficacy rates of two groups showed no significant differences (p > .05). However, after treatment, the levels of 24 h urine protein and the levels of serum cholesterol decreased and the levels of serum albumin increased markedly in both groups, relative to pretreatment data. The values were statistically significant (p < .05). In the current study, none of the 26 patients in the LEF group ended drug treatment early. LEF may be both safe and more effective than CTX. It also showed a lower incidence of leukocytopenia and gonad-inhibition. This makes it a good choice for patients with fertility requirements. LEF was here administered orally, making it more convenient and conducive to patient compliance than other drugs that are responsible for the statistical analyses, and Dr. Yan Zhang, Lei Liu and Xiaolong Qu for assisting in the writing of the manuscript.

Disclosure statement

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

References

1. Iijima K, Sako M, Nozu K. Rituximab treatment for nephrotic syndrome in children. *Curr Pediatr Rep*. 2015;3:71–77.
2. Kurasawa T, Nagasawa H, Nishi E. Successful treatment of class IV + V lupus nephritis with combination therapy of high-dose corticosteroids, tacrolimus and intravenous cyclophosphamide. *Intern Med*. 2013;52:1125–1130.
3. Hirano D, Fujinaga S, Nishizaki N. The uncertainty of rituximab and steroid dosing in refractory steroid-resistant nephrotic syndrome. *Clin Nephrol*. 2012;77:510–512.
4. Lai WL, Yeh TH, Chen PM. Membranous nephropathy: a review on the pathogenesis, diagnosis, and treatment. *J Formos Med Assoc*. 2015;114:102–111.
5. Troyanov S, Wall CA, Miller JA, Scholey JW, Cattrnan DC. Toronto Glomerulonephritis Registry Group. Focal and segmental glomerulosclerosis: definition and relevance of a partial remission. *J Am Soc Nephrol*. 2005;16:1061–1068.
6. Ehrich JH, Geerlings C, Zivicnakj M, Franke D, Geerlings H, Gellermann J. Steroid-resistant idiopathic childhood nephrosis: overdiagnosed and undertreated. *Nephrol Dial Transplant*. 2007;22:2183–2193.
7. Nakamura T, Tsuruga K, Watanabe S. Persistent immature glomeruli in a girl with refractory nephrotic syndrome. *Nephrology (Carlton)*. 2013;18:77–78.
8. Ito S, Kamei K, Ogura M. Survey of rituximab treatment for childhood-onset refractory nephrotic syndrome. *Pediatr Nephrol*. 2013;28:257–264.
9. Azib S, Macher MA, Kwon T, et al. Cyclophosphamide in steroid-dependent nephrotic syndrome. *Pediatr Nephrol*. 2011;26:927–932.
10. Zagury A, de Oliveira AL, deMoraes CA, et al. Long-term follow-up after cyclophosphamide therapy in steroid-dependent nephrotic syndrome. *Pediatr Nephrol*. 2011;26:915–920.
11. Iijima K, Sako M, Nozu K. Rituximab for childhood-onset, complicated, frequently relapsing nephrotic syndrome or steroid-dependent nephrotic syndrome: a multicentre, double-blind, randomized, placebo-controlled trial. *Lancet*. 2014;384:1273-1281.
12. Kim J, Patnaik N, Chorny N, Frank R, Infante L, Sethna C. Second-line immunosuppressive treatment of childhood nephrotic syndrome: a single-center experience. *Nephron Extra*. 2014;4:8–17.
13. Gipson DS, Massengill SF, Yao L, et al. Management of childhood onset nephritic syndrome. *Pediatrics*. 2009;124:747–757.
14. Sun L, Xu H, Shen Q, et al. Efficacy of rituximab therapy in children with refractory nephrotic syndrome: a
prospective observational study in Shanghai. *World J Pediatr.* 2014;10:59–63.

15. Branten AJ, du Buf-Vereijken PW, Vervloet M, Wetzels JF. Mycophenolate mofetil in idiopathic membranous nephropathy: a clinical trial with comparison to a historic control group treated with cyclophosphamide. *Am J Kidney Dis.* 2007;50:248–256.

16. Chan TM, Lin AW, Tang SC, et al. Prospective controlled study on mycophenolate mofetil and prednisolone in the treatment of membranous nephropathy with nephrotic syndrome. *Nephrology (Carlton).* 2007;12:576–581.

17. Dussol B, Morange S, Burtey S, et al. Mycophenolate mofetil monotherapy in membranous nephropathy: a 1-year randomized controlled trial. *Am J Kidney Dis.* 2008;52:699–705.

18. Hladunewich MA, Cattran D, Beck LH, et al. A pilot study to determine the dose and effectiveness of adrenocorticotrophic hormone (H.P. Acthar® Gel) in nephrotic syndrome due to idiopathic membranous nephropathy. *Nephrol Dial Transplant.* 2014;29:1570–1577.

19. Narváez J, Díaz-Torné C, Magallares B. Comparative effectiveness of tocilizumab with either methotrexate or leflunomide in the treatment of rheumatoid arthritis. *PLoS One.* 2015;10:e0123392.

20. Takeuchi T, Kaneko Y, Atsumi T, et al. Clinical and radiographic effects after 52-week of adding tocilizumab or switching to tocilizumab in rheumatoid arthritis patients with inadequate response to methotrexate: results from a prospective randomized controlled study (SURPRISE study) [abstract]. *Ann Rheum Dis.* 2014;73:686.

21. Pham T, Fautrel B. Recommendations of the French Society for rheumatology regarding TNF alpha antagonist therapy in patients with ankylosing spondylitis or psoriatic arthritis: 2007 update. *Joint Bone Spine.* 2007;74:638–646.

22. Vu D, Shah T, Ansari J, Naraghi R, Min D. Efficacy of intravenous immunoglobulin in the treatment of persistent BK viremia and BK virus nephropathy in renal transplant recipients. *Transplant Proc.* 2015;47:394–398.

23. Soukup T, Dosedel M, Nekvindova J, Toms J, Vlcek J, Pavek P. Genetic polymorphisms in metabolic pathways of leflunomide in the treatment of rheumatoid arthritis. *Clin Exp Rheumatol.* 2015;33:426–432.

24. Ciszek M, Mucha K, Foroncewicz B. Leflunomide as a rescue treatment in ganciclovir-resistant cytomegalovirus infection in a seronegative renal transplant recipient—a case report. *Ann Transplant.* 2014;19:60–63.

25. Shahin AA, El-Agha S, El-Azkalany GS. The effect of leflunomide on the eye dryness in secondary Sjögren’s syndrome associated with rheumatoid arthritis and in rheumatoid arthritis patients. *Clin Rheumatol.* 2014;33:925–930.

26. Zhang Y, Gao Y, Zhang Z. Leflunomide in addition to steroids improves proteinuria and renal function in adult Henoch-Schoenlein nephritis with nephrotic proteinuria. *Nephrology (Carlton).* 2014;19:94–100.

27. Yang S, Xie L, Xue W. Leflunomide plus oral prednisone in treatment of idiopathic membranous nephropathy: a retrospective clinical study of efficacy and safety. *Nephrology (Carlton).* 2013;18:615–622.

28. Zhou J, Zhang Y, Liu G, Li J, Xu R, Huang J. Efficacy and safety of leflunomide in treatment of steroid-dependent and steroid-resistant adult onset minimal change disease. *Clin Nephrol.* 2013;80:121–129.

29. Breedveld FC, Dayer JM. Leflunomide: Mode of action in the treatment of rheumatoid arthritis. *Ann Rheum Dis.* 2000;59:841–849.

30. Smith KJ, Germain M. Leflunomide: an immune modulating drug that may have a role in controlling secondary infections with review of its mechanisms of action. *J Drugs Dermatol.* 2015;14:230–234.

31. Li EK, Tam LS, Tomlinson B. Leflunomide in the treatment of rheumatoid arthritis. *Clin Ther.* 2004;26:447–459.

32. Manna K, Agarwal BB. Immunosuppressive leflunomide metabolite (A77 1726) blocks TNF-dependant nuclear factorkappa B factor activation and gene expression. *J Immunol.* 1999;162:2095–2102.

33. Riancho-Zarrabeitia L, Delgado-Alvarado M, Riancho J. Anti-TNF-α therapy in the management of severe neurosarcoidosis: a report of five cases from a single centre and literature review. *Clin Exp Rheumatol.* 2014;32:275–284.

34. Wc GC, Xu XD, Huang Q, Wu H. Leflunomide: friend or foe for systemic lupus erythematosus? *RheumatolInt.* 2013;33:273–276.