An Overview of Phytochemical and Biological Activities: Ficus deltoidea Jack and Other Ficus spp.

Kamran Ashraf1, Mohd Rafiul Haque2, Mohd Amir3, Niyaz Ahmad4, Wasim Ahmad6, Sadia Sultan1, Syed Adnan Ali Shah1, Ahmed Mahmoud Alafeefy1, Mohd Mujeeb6, Muhammad Fikriey Bin Shafie6

Ficus deltoidea Jack (Moraceae) is a well-known medicinal plant used in customary medication among the Malay people to reduce and mend sicknesses such as ulcers, psoriasis, cytotoxicity, cardioprotective, inflammation, jaundice, vitiligo, hemorrhage, diabetes, convulsion, hepatitis, dysentery injuries, wounds, and stiffness. Ficus deltoidea contains a wide variety of bioactive compounds from different phytochemical groups such as alkaloids, phenols, flavonoids, saponins, sterols, terpenes, carbohydrates, and proteins. The genus Ficus has several hundreds of species, which shows excellent therapeutic effects and a wide variety of helpful properties for human welfare. Searching information was collected by using electronic databases including Web of Science, Science Direct, Springer, SciFinder, PubMed, Scopus, Medline, Embase, and Google Scholar. This review is, therefore, an effort to give a detailed survey of the literature on its pharmacognosy, phytochemistry, phytochemical, and pharmacological properties of Ficus and its important species. This summary could be beneficial for future research aiming to exploit the therapeutic potential of Ficus and its useful medicinal species.

Keywords: Ficus deltoidea, mas cotek, medicinal uses, pharmacological study, phytochemical study

Submitted : 16-Oct-2019
Revised : 29-Jan-2020
Accepted : 12-Feb-2020
Published : 25-Dec-2020

Introduction

Human interest has moved, in the past few years, to focus more on the natural plant product rather than synthetic medication in multiple preventive...
Ficus deltoidea, commonly referred as Mas Cotek, is one of the most popular plant used for medicinal purposes for various diseases. Ficus deltoidea is cultivated as an ornamental shrub or housing plant in different regions of the world. It belongs to family Moraceae (synonymously also known as F. diversifolia Blume and mistletoe fig, mistletoe rubber plant). The genus Ficus has over hundreds of species that occur all over the pantropics. Because of its habit of regularly growing on large tree, it is called as mistletoe fig, although scientifically known as deltoidea. Leaves of male and female Ficus show identification characteristic features such as morphology dimension that helps in identification of male and female plants. The male and female flowers have small and thick massive leaves, respectively. Spot coloration of F. deltoidea leaves also helps in differentiating two flowers as purple spot indicates for male and black spot for female flowers.

Approximately 1000 species of Ficus are found in subtropical and pantropical origins. Ficus deltoidea is an evergreen shrub or tiny tree that usually starts as an epiphyte in the form of a bush with aerial roots. It generally grows up to 22 feet, roughly 15–22 feet high and 3–10 feet wide in fashion of zigzagging branches. The bark and trunk is usually gray and slender, respectively. The leaves are extensively spoon-formed, which are 1.5–3 inches (4–8 cm) long and intense. The leaves are dark, leathery, and succulent. The plant generated spherical to round figs that are roughly 1.5 cm in length, whereby during maturation, the coloring of figs turns from dull yellow to orange and purple that can be manufactured freely in pairs. In Malaysia, people use this plant for many medicinal purposes such as antidiabetic, anti-inflammatory, anticancer anti-melanogenic, and antioxidant.

A study showed the presence of polyphenols and flavonoids such as genistin, alkaloids, and tannins. A recent published report by Kumari and Dhanalekshmi also confirmed the presence of phenols, flavonoids, tannins, and saponins in F. deltoidea leaf, stem, and fruit extract. Harun and Musapha reported the tannins, phlobatannins, flavonoids, saponins, steroids, terpenoids, cardiac glycosides, alkaloids, anthraquinones, and polyphenol in F. deltoidea var. kunstleri (King) leaves. Farsi et al. reported the presence of proteins, polysaccharides, glycosapponins, phenolics, flavonoids, and tannins in the leaf extracts of F. deltoidea. Solvent plays a very important role in extracting out the chemical constituents. Different solvents could extract different chemical constituents of the plant; each solvent gives different results. Choo et al. identified two bioactive components vitexin and isovitexin (flavonoids) in the leaves of F. deltoidea and also reported that these constituents are responsible for inhibition of α-glucosidase. Thus it can be used as antidiabetic.

In this review, the literature search was performed through specific databases (Web of Science, Science Direct, Springer, SciFinder, PubMed, Scopus, Medline, Embase, and Google Scholar) using different keywords: Ficus deltoidea, phytochemical, phytochemistry, pharmacological activity, pharmacological evaluation of extracts, fractions, or isolated compounds from F. deltoidea and species. Study selection was based on articles published in English only. All selected manuscripts were analyzed for year of publication, reported plant species, part of the plant, isolated chemical compounds, and evaluated biological activities.

PHYTOCHEMICAL ANALYSIS OF Ficus deltoidea

Ficus deltoidea is herbaceous plant that contains a large amount of chemical constituents. It contains various ranges of phytochemicals, including terpenoids, polyphenols, alkaloids, organic acids, saponins, and their derivatives. Literature showed that different plant parts of F. deltoidea contain different types of phytochemical constituents. Leaves are one of the main part used in various purposes and contain mainly polyphenols, triterpenoids, saponins, and tannins but it contains very less amount of alkaloids. Flavonoids, saponins, and alkaloids are found mainly in stem part, whereas fruits predominantly contain triterpenoids, alkaloids, and flavonoids.

A study showed the presence of polyphenols and flavonoids such as genistin, alkaloids, and tannins. A recent published report by Kumari and Dhanalekshmi also confirmed the presence of phenols, flavonoids, tannins, and saponins in F. deltoidea leaf, stem, and fruit extract. Harun and Musapha reported the tannins, phlobatannins, flavonoids, saponins, steroids, terpenoids, cardiac glycosides, alkaloids, anthraquinones, and polyphenol in F. deltoidea var. kunstleri (King) leaves. Farsi et al. reported the presence of proteins, polysaccharides, glycosapponins, phenolics, flavonoids, and tannins in the leaf extracts of F. deltoidea. Solvent plays a very important role in extracting out the chemical constituents. Different solvents could extract different chemical constituents of the plant; each solvent gives different results. Choo et al. identified two bioactive components vitexin and isovitexin (flavonoids) in the leaves of F. deltoidea and also reported that these constituents are responsible for inhibition of α-glucosidase. Thus it can be used as antidiabetic. Grison-Pig’e et al. have isolated many sesquiterpenes compounds from F. deltoidea. Omar et al. reported 25 flavonoids and also detected luteolin and apigenin derivative flavones in the leaves of F. deltoidea. They analyzed an aqueous extract of F. deltoidea leaves by HPLC with photodiode array absorbance (PDA), fluorescence, and MS detection. They detected proanthocyanidins and flavones as primary compounds. Some of the important chemical components of F. deltoidea are shown in Figure 1.
Phytoconstituents reported in other *Ficus* species are also shown in Table 1.

Chua\cite{15} reported isovitexin (apigenin) at 17.5 min retention time using negative ion mass spectrometry mode. Nontargeted mass screening shows the presence of isoflavones (genistein), flavonol (kaempferol), flavanol (catechin), flavanone (naringenin), and several phenolic organic and acidic acids in *F. deltoidea*. LC-PDA-MS/MS profiling identifies the natural acids, alkaloids, terpenoids, polyphenols, and their derivatives. Abdullah *et al.*\cite{16} have carried out LCMS/MS experiment and reported the vitexin biosynthesis in *F. deltoidea*. Mohd *et al.*\cite{17} examined the compositional differences among aqueous and methanol extract of *F. deltoidea* leaves var. *bilobata*, var. *angustifolia*, var. *kunstleri*, var. *mottleiana*, and var. *trengganuensis*. Two marker compounds, vitexin and isovitexin, were used. During experiment, all the samples show a dark band of glycoside flavones at 254 nm due to the quenching of double bonds within the compound. Azemin *et al.*\cite{18} studied the high-performance thin-layer chromatography (HPTLC) profiling of methanolic and aqueous extract of *F. deltoidea* of six different samples using vitexin and isovitexin as a marker. Result showed that methanol extract gave good results than water extract. Similarly, high-performance liquid chromatography (HPLC) is also used for the evaluation of non volatile compounds such as phenolics, terpenoids, alkaloids, lipids, and sugars, which are soluble in natural solvents.\cite{19} It may also be used for fingerprinting of biologically energetic extracts, or tracking chemical reactions of some metabolites in natural synthesis of strong compounds. Approximately 96% aqueous ethanol extract of *F. deltoidea* was found to contain methyl 10-epi-pheophorbide.\cite{20} 10-epi-pheophorbide was also tested on breast cancer cell line cell after purification using HPLC. Farsi *et al.*\cite{6} used HPLC method and analyzed *F. deltoidea*
Table 1: Phytochemicals of different species of *Ficus* and their uses

S. no.	*Ficus* species	Part used	Chemical constituents	References
1	*carica*	Leaves	Rutin, chlorogenic acid, psoralen	[72]
2	*carica*	Leaves	Proteolytic enzymes	[73]
3	*carica*	Leaves	Triterpenoids: calotropenyl acetate, methyl maslinate, lupeol acetate	[74]
4	*carica*	Leaves	Bergapten, psoralen	[75]
5	*carica*	Leaves	Proteins	[76]
6	*carica*	Latex	Ficins C and D	[77]
7	*carica*	Latex	Mixture of 6-O-acyl-β-d glucosyl-β sitosterols	[78]
8	*carica*	Latex	Proteolytic components	[79]
9	*carica*	Latex	Ficin	[80]
10	*carica* var. *horaishi*	Latex	Ficins A, B, C, and D	[81]
11	*carica*	Root	α-amyrin, β-sitosterol, coumarins: psoralen, bergapten	[82]
12	*microcarpa*	Leaves	Triterpenes: 29(20→19) abelupane-3,20-dione and 19,20-secoursane-3,19, 20-trione; (3β)-3-hydroxy-29(20→19) abelupan-20-one, α-amyrone and lupenone	[83]
13	*microcarpa*	Root	3β-acetoxy-12,19-dioxo-13(18)-oleanene, 3β-acetoxy-19(29)-taraxasten-20α-ol, 3β-acetoxy-21α,22α-epoxytaraxastan-20α-ol, 3,22-dioxo-20-taraxastene	[84]
14	*microcarpa*	Root	α-amyrin acetyl, β-sitosterol, β daucosterol, hexacosanoic acid, heneicosanoic acid	[85]
15	*semicorda*	Leaves	Flavonoids: quercetin, quercitrin, catechin	[86]
16	*platyphylla*	Leaves	α and β-amyrin, ceryl alcohol, β-sitosterol	[87]
17	*platyphylla* del	Bark	β-amyrin, ceryl alc., β-sitosterol, ursolic acid	[88]
18	*platyphylla*	Bark	Saponins	[89]
19	*septica*	Leaves	Tyllophorine, α-amyrin acetate and β-amyrin acetate; β-sitosterol, stigmasterol, palmitic acid, myristic acid 4-hydroxy-3-methoxyacetophenone and 3,4,5 trimethoxyacetophenone	[90]
20	*thunbergii*	Leaves	β-amyrin acetate, α-amyrin acetate, lupenyl acetate, lupeol, β-amyrin, α-amyrin, taraxerol, glutinol, ursolic acid, and betulinic acid	[91]
21	*infectoria*	Leaves	Scutellarein 6-O-α-l-rhamnopyranosyl (1→2)-β d-galactopyranoside	[92]
22	*infectoria*	Leaves	Flavone glycoside: infectorin	[93]
23	*infectoria* roxb	Bark	Methyl-ricinolate, β-sitosterol, lanosterol, caffeic acid, bergenin	[94]
24	*yrata*	Leaves	5-hydroxy-7,3,3′,4′ tetramethoxyflavone, 5,4′-dihydroxy-6,7,8- trimethoxyflavone, 5,4′-dihydroxy-7,8- dimethoxyflavone, 4-methoxychalcone	[95]
25	*benghalensis*	Latex	Rubber (17%)	[96]
26	*benghalensis*	Latex	12% Rubber; steroids; α-amyrin acetate; traces of wax containing stearic acid	[97]
27	*benjamina*	Leaves	Coumarins: α-amyrin, bergapten	[98]
28	*benghalensis*	Bark	β-sitosterol-α-d-glucose, meso-inositol	[99]
29	*benghalensis*	Bark	Delphinidin-3-O-α-l-rhamnoside, pelargonidin-3-O-α-l-rhamnoside	[100]
30	*benghalensis*	Bark	5,3′-dimethyl ether of leucocyanidin 3-O-α-d-galactosyl celllobioside	[101]
31	*benghalensis*	Bark	Leucopelargonidin quercetin	[102]
32	*benghalensis*	Bark	Leucopelargonidin glycoside	[103]
33	*benghalensis*	Bark	Bengalenoside	[104]
34	*benghalensis*	Bark	β-sitosterol-α-d-glucose, meso-inositol	[105]
35	*alba*	Latex	β-amyрин, steaеic acid, lupeol	[106]
36	*elastica*	Latex	Coumarins: α-amyрин; bergapten	[107]
37	*elastica*	Latex	α-amyрине: β-amyрине; lupeol	[108]
38	*elastica*	Latex	Ficin E (α serine centered protease)	[109]
39	*glabrata*	Latex	Ficin : nine proteolytic components	[110]
40	*glabrata*	Latex	Five sulfhydril endopeptidases	[111]
41	*glabrata*	Latex	N-acetyl-β-dhexosaminidase	[112]
42	*glabrata*	Latex	Ficin; nine proteolytic components	[113]
43	*glabrata*	Latex	7-hydroxycoumarin, bergapten, psoralen, (+)-catechin, apigenin, sucrose, vanillic acid, daucosterol, stigmasterol	[114]
methanolic leaf extracts and found enrichment with C-glycosylflavones especially, vitexin and isovitexin. Choo et al.\cite{12} also separated and quantified vitexin and isovitexin by HPLC method. This study confirmed that the content material of vitexin is pretty better than isovitexin. Suryati et al.\cite{21} used the proton nuclear magnetic resonance (\(1^H\) NMR) to describe the phenolic compounds that characterize the targeted species by elucidating crude methanol and aqueous methanol sub extracts of eight Ficus species. The effects indicated that the methanol sub extracts had significant peaks in all the species. The results showed that out of six species of Ficus, F. sansibarica is chemically specific primarily owning fragrant compounds with glycosidic bonds.

Table 1: Continued

S. no.	Ficus species	Part used	Chemical constituents	References
46	hirta	Root	5-hydroxy-4', 6, 7, 8-tetramethoxy flavone, 4', 5, 6, 7, 8-pentamethoxy flavone, 4', 5, 7-trihydroxy-flavone, 3-β-acetoxy-β-amyrin, 3-β-acetoxy-α-amyrin, hesperidin	[111]
47	hirta	Root	Psoralex, umbelliferon, 5,3',4'-trihydroxy-3,7- dimethoxyflavone, kaempferol, astragalin, acacetin	[112]
48	hispida	Bark	β-amyrin acetate, gluconol acetate	[113]
49	glomerata	Bark	Lupeol, β-sitosterol, stigmasterol	[114]
50	racemosa	Bark	β-sitosterol	[115]
51	racemosa	Bark	Leucoyanidin 3-O-β- d-glucopyranoside, Leucopelargonidin 3-O-α-rhamnopyranoside	[116]
52	racemosa	Bark	Gluconol acetate, β-sitosterol	[117]
53	religiosa	Bark	β-sitosterol, stigmasterol, lupon-3-one	[118]
54	fulva	Latex	Wax containing stearic acid	[119]
55	sur	Latex	Two pentacyclic triterpenoids of oleanane and ursine structures	[120]
56	sycomorus	Latex	Sycomorus coumarins: α-amyrin, bergapten; imperatorin	[87]
57	anthelmintica	Latex	Ficin: tryptophan	[121]
58	domestica	Latex	Anticoagulant substance	[122]

Pharmacological Properties of Ficus deltoidea

Anticancer effect

Ficus deltoidea showed mild-to-good antiproliferative effect as reported in previous studies. A study showed the inhibition of cytotoxicity on prostate cancerous cell line.\cite{24} However, aqueous leaf extract of F. deltoidea has shown less cytotoxicity effect. Khan et al.\cite{9} also investigated cytotoxicity effect of water extract of F. deltoidea leaves on prostate cancer cells and found poor activity. Soib\cite{23} reported the antiproliferative activity at different concentrations of extract of F. deltoidea after 48h against prostate cancer cell line (DU145). Isovitexin and vitexin present in F. deltoidea could show this effect. Akhir et al.\cite{24} reported that 1 mg/mL of F. deltoidea extract can cause apoptosis of human ovarian cell carcinoma cellular. Cell detachment is performed by aqueous extract, whereas ethanolic extract strained just to avoid proliferation of cells. In another study, Ficus deltoidea leaf extract showed less toxicity to other human cancer cell lines, such as HL-60 (leukemia), DU145 (prostate cancer), HCT116 (colorectal carcinoma), and MDA-MB-231 (hormone-resistant breast cancer).\cite{23,25} However, report also showed the nonpoisonous nature of F. deltoidea leaf extract to ordinary cell lines, primarily human endothelial vein (HUVEC), and neuroblastoma (SH-SY5Y) cells.\cite{25} Ficus deltoidea is also found to show antiangiogenic effect as it prevents the development of the latest blood vessels. Strangely, the extract shows vigorous cytotoxicity toward hormone-resistant breast most cancers (MDA-MB-231) and colon most cancers cells (HCT 116).\cite{24,25}

Antibacterial activity

Literature showed that presence of flavonoid in the extract of F. deltoidea can cause the antimicrobial effect.\cite{26} Abdullah et al.\cite{10} reported antimicrobial effect of F. deltoidea extract in a membrane ultrafiltration method. They compared their results of protein hydrolysates with unhydrolyzed protein, and found that the protein hydrosyalted has greater radical scavenging activity. They also reported that the lower protein hydrolysate has the maximum inhibitory activity. Tkachenko et al.\cite{27} reported the antibacterial effects of ethanolic extract of F. deltoidea. Lee et al.\cite{28} showed the prospective of F. deltoidea leaf extract to make up to 30% of all bacterial isolates. It confirmed that methanol extract of F. deltoidea covertly inhibited the growth of S. aureus at lowest minimum inhibitory concentration (MIC) value (3.125 mg/mL), whereas the other extracts act as good antibacterial and antifungal against fungi, gram-positive and gram-negative bacteria strains. Another antimicrobial disk-diffusion study unveiled the inhibitory activity of chloroform, methanol, and
aqueous extracts of *F. deltoidea* on the fungus, gram-positive, gram-negative bacteria strains. But, it does not show the effect for the chloroform and aqueous extracts on *Bacillus subtilis*, *E. coli*, and *P. aeruginosa*.\[29\]

Ficus deltoidea was also assessed for their antibacterial activity against invasive oral pathogens, namely *Enterococcus faecalis*, *Streptococcus mutans*, *S. mitis*, *S. salivarius*, *Aggregatibacter actinomycetemcomitans*, *Porphyromonas gingivalis*, and *Fusobacterium nucleatum*, using the broth microdilution method (minimal inhibitory concentration [MIC] and minimal bactericidal concentration [MBC]). Results showed mild-to-powerful inhibition with MIC and MBC values ranging from 0.63 to 2.5 mg/mL, although none on monospecies biofilms displayed any inhibition.\[29,30\] Suryati *et al.*\[31\] recorded an antibacterial compound lupeol from *F. deltoidea* leaves that check the growth of *E. coli*, *B. subtilis*, and *S. aureus* at minimum inhibition concentration.

Anti-inflammatory and antinociceptive properties

Inflammation is a process in which white blood releases a chemical (basophilic, dendritic cell, macrophage, and natural killer cell) into the impacted region of the blood to safeguard our body, followed by release of inflammatory material into the joint, resulting in irritation, inflammation of the joint lining, and ultimately cartilage destruction. This involves additives, leukotrienes, prostaglandin, and kinin. Inflammation’s cardinal sign involves pain, heat, redness, swelling, and function loss. The other signs of inflammation are fever, leukocytosis, fibrinogen, serum amyloid-A protein, sepsis, and presence of acute-phase protein. *In vitro* experiment of three assays, lipoygenase, hyaluronidase, and 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced edema of leaf extract of *F. deltoidea*, also confirms the anti-inflammatory effect.\[31\] Che Ahmad Tantowi *et al.*\[32\] have reported the anti-inflammatory activity of *F. deltoidea* leaf extract and downregulation of the raised interleukin-1β, prostaglandin E, and C-telopeptide type II collagen level similar to diclofenac. The constituents, vitexin and isovitexin, present in *F. deltoidea* showed greater influence on lessening postmenstrual osteoarthritis joint demolition. Zakaria *et al.*\[33\] have reported the anti-inflammatory activity of *F. deltoidea* extracts in both acute and chronic inflammation models. The acute and choric inflammation models were measured by the Carrageenan-induced paw edema test and cotton pellet-induced granuloma test, respectively. Formalin test is generally used for antinociceptive activity and interestingly *F. deltoidea* extracts showed antinociceptive activity inflammatory-mediated pain.

A study showed the anti-inflammatory effects of aqueous leaf extract of *F. deltoidea* at doses 1, 50, and 100 mg/kg in three kinds of nociception acetic acid-induced abdominal writhing, formalin, and hot plate testing. In formalin and hot plate test antagonist naloxone, the nonselective opioid receptor antagonist naloxone could be used to reverse the antinociceptive effect of the extract. Endogenous opioid system, therefore, plays a role in the mechanism of action for analgesics.\[34\]

Antiulcerogenic effect

Peptic ulcer is one of the most prevalent gastrointestinal disorders nowadays. A study showed the reduction in ulcer region after treatment with aqueous extract of *F. deltoidea* on gastric walls of rats. The impact of ethanol-induced ulcer at a dose of 500 mg/kg was considerably reduced by *F. deltoidea* extract, as the same impact was noted in omeprazole.\[34,35\]

The antiulcerogenic effect of *F. deltoidea* extract was also supported by other researcher.\[36\] *Ficus deltoidea* extract had significantly reduced ulcer area against absolute ethanol lesion induction. This mechanism may be due to stimulus of gastric mucous secretion and reticence of edema and leucocytes intrusion in submucosal gastric tissue.\[37\]

Wound-healing activity

Ficus deltoidea leaf extract’s wound-healing activity is well proven. This could be due to pretty wound enclosure and fibroblast proliferation, which essentially contributed to angiogenesis.\[38\] A study showed good wound-healing activity that may be caused by the regulation of collagen 1, and an increase in tensile strength of the wound.\[39,40\] Due to presence of flavonoid, it protects the tissues from oxidative damage and thus helps in healing.\[41\] Mustaffa *et al.*\[42\] examined *F. deltoidea* leaf extract for wound-healing activity on skin cell. Cell proliferative and migration assays on the human skin fibroblast cell (HSF 1184) at different concentrations of *F. deltoidea* leaf extract showed significance proliferative and wound cessation effect and it could be effective in wound-healing potential and may be useful for the development of effective wound-healing drug.

Antioxidant properties

Antioxidant is a component of our complex system of protection that protects our body from the oxidative damage of free radicals. Phenolic compounds and their derivatives are closely linked to their antioxidant activity.\[43,44\] This statement was parallel to Hakiman and Maziah’s\[45\] research. Another research showed that *F. deltoidea* fruit extract var. *angustifolia* is a useful
antioxidant source. They reported good antioxidant activity of hexane extract even better than vitamin E. Apart from hexane, other solvents tested were chloroform and methanol.\(^{47,48}\) Hakiman and Maziiah\(^{46}\) compared the polyphenol, phenolic acid, flavonoid, and compounds as nonenzymatic antioxidant, whereas ascorbate oxidase, peroxidase, catalase, and ascorbate peroxidase with enzymatic in \(F. \) deltoidea leaf extract. Maizatul et al.\(^{49}\) have reported that 85% of the aqueous \(F. \) deltoidea showed good antioxidant activity due to presence of flavan-3-ol monomers, proanthocyanidins, and C-linked flavone glycosides. Adam et al.\(^{50}\) reported water-soluble insulin-secreting constituents in aqueous extract of \(F. \) deltoidea, which gave better effects than glibenclamide.

A study showed the directly proportional relationship between 2, 2-diphenyl-1-picyrylhydrazyl radical activity and concentration of samples. Different solvent extracts showed different phenolic and flavonoid contents.\(^{51}\) Another study showed that quantity of flavonoid content varied in leaves and stem extract and leaf extract showed strong antioxidant activity as compared to stem extract. Interestingly, female leaves of \(F. \) deltoidea species gave higher antioxidant activity, higher flavonoid, and phenolic content as compared to male leaves.\(^{48,52}\) Misbah et al.\(^{53}\) examined free radical scavenging power in \(F. \) deltoidea fruits by DPPH method and reported good antioxidant results. Hakiman and Maziiah\(^{46}\) used male and female leaves of \(F. \) deltoidea using DPPH free radical scavenging and found female leaves of \(F. \) deltoidea have the highest antioxidant activity (1.30 mg/g) as compared to male leaf extract (0.49 mg/g).

The morphology of the leaves of plant also plays a significant role in the yield of phenolic content. The surface area of the leaves may produce important differences in the quantity of extracted phenolic compounds. A research showed that the difference in leaf size (tiny [FDS], medium [FDM], and large-type leaf [FDB]) of \(F. \) deltoidea contributed significant difference in amount of phenolic compounds being extracted. The outcome showed that the crude extract from FDM had the largest phenolic content, followed by FDB and FDS contents.\(^{53}\) Moreover, a recent study showed that the phenolic content of the male and female leaves was considerably different. The female plant showed significantly more phenolic compounds than male \(F. \) deltoidea.\(^{54}\) In addition, a previous study showed that the leaves of two accessions of \(F. \) deltoidea showed variations in total phenolic and flavonoid content.\(^{55}\)

A study stated that 80% ethanolic extracts had the highest total phenolic compounds compared to 80% methanolic and aqueous extracts.\(^{56}\) Furthermore, the yield of vitexin and isovitexin decreased with increasing the sample to water ratio.\(^{57}\) In addition, the total phenolic content (TPC) rises with the increasing of ethanol concentration, which 70% ethanol concentration showed to be the maximal TPC from 0.1 g of the extracts.\(^{58}\) The reported yield was found to be highest in methanol extract followed by chloroform extract and lastly hexane with low phenolic concentration.\(^{56}\)

Temperature during plant extraction of phenolic and flavonoid compounds plays a major role in optimizing phenolic and flavonoid yield.\(^{59}\) The latest research recorded the impact of temperatures on the output of vitexin and isovitexin. Increase in the temperature causes increase in the yield until it reaches the best temperature at 70°C and then decreases.\(^{57}\)

The other study also stated that the extraction temperature at 75°C could show the good phenolic yield.\(^{60}\) A recent study showed that the ripe fruits of \(F. \) deltoidea have highest flavonoid content as compared to unripe fruits, senescent leaves (SL), fresh leaves (FL), and stem (ST) extracts.\(^{55}\) Moreover, the aqueous leaf and fig extracts of four varieties of \(F. \) deltoidea, namely var. angustifolia (Fdva), var. deltoidea (Fdvd), var. intermedia (Fdvi), and var. kunstleri (Fdvk), showed that the fig extracts of each variety have higher total flavonoid content compared to the leaf extract.\(^{61}\) In a recent experiment of \(F. \) deltoidea, methanol extract showed the highest scavenging activity as compared to ethyl acetate, butanol, and chloroform extracts. Butanol extract showed poor scavenging activity.\(^{62}\)

Antidiabetic activity

In recent days, diabetes has become a major public concern. Nowadays, many institutions and researchers are trying hard to find a solution to develop a new antidiabetic agent so that it can be helpful in reducing the incident of diabetic.\(^{63,64}\) Recently, Nurdiana et al.\(^{65}\) showed the increment on the insulin secretion when rats treated with extract of \(F. \) deltoidea. Choo et al.\(^{12}\) also showed that the isovitexin and vitexin form \(F. \) deltoidea extract has the ability to reduce postprandial blood glucose. Abu Bakar et al.\(^{66}\) reported its inhibiting activity against α-amylase enzyme. The vitexin of \(F. \) deltoidea extract works well against α-amylase enzyme. Another study also confirmed the antidiabetic property of \(F. \) deltoidea fruits.\(^{67}\) Kalman et al.\(^{67}\) also found out the reducing ability of lipid and glucose level in human adults.
Table 2: Pharmacological actions of constituents of different species of *Ficus*

S. no.	*Ficus* species	Part used	Pharmacological actions	References
1	*carica*	Leaves	Bergaptene and psoralen of aqueous extract showed strong antitumor activity	[123]
2	*carica*	Leaves	Aqueous extract showed good anti-HSV-1 effect	[124]
3	*carica*	Leaves	Controls postprandial glycaemia in insulin-dependent diabetes mellitus (IDDM). Decoction leaves lowered the glucose level	[125]
4	*carica*	Leaves	Antidiabetic; aqueous decocted leaves decline the levels of total cholesterol level in streptozotocin-induced diabetes rat	[126]
5	*carica*	Leaves	Hypotriglyceridemia	[127]
6	*carica*	Latex	Milk coagulating; the milk-clotting enzyme from latex of *F. carica* can be replaced for animal rennet to produce Cheddar and achieved cheese	[128]
7	*carica*	Latex	Hemostatic; It activates human coagulation factor X proteases; curbs the activated partial thromboplastin time and the prothrombin time of normal plasmas and plasmas deficient in coagulation factors	[129]
8	*carica*	Latex	Anticancer; a mixture of 6-O-acyl-β-d-glucosyl-β-sitosterols, the acyl moiety act as a potent cytotoxic agent. It showed in vitro inhibitory properties on proliferation of many cancer cell lines	[130]
9	*carica*	Latex	Antiangiogenic; confirmed by using human umbilical vein endothelial cell (HUVEC) tubule formation assay and MTT assay	[131]
10	*carica*	Latex	Antimetastatic; antitumor	[132,133]
11	*carica*	Latex	Prevents the growth of subcutaneously transplanted benzopyrene sarcomas B, 616, and 2192; produces regression of some intraperitoneal and subcutaneous sarcoma transplants; necrotic action on the skin	[134]
12	*carica*	Latex	Proteinase	[135,136]
13	*carica*	Latex	Proteolytic activity; latex from leaves and tender shoots of *F. carica* was measured the amount of tyrosine released from a casein substrate	[137,139]
14	*carica*	Latex	Antimetastatic; antitumor	[132,133]
15	*carica*	Latex	Antitumor	[140]
16	*carica*	Latex	Proteolytic enzyme	[141]
17	*carica*	Latex	Fibrinolytic	[142]
18	*carica*	Latex	Hemostatic proteases; Ficin of *F. carica* shortened the activated partial thromboplastin time and the prothrombin time of normal plasmas and plasmas deficient in coagulation factors	[144-145]
19	*carica*	Latex	Anticancer; polyphenolic compounds present in *carica* can serve as a source of antioxidants thus resulted in decrease in proliferation, colony formation	[144]
20	*carica*	Latex	Anthelmintic	[145]
21	*carica*	Latex	Latex helps in hydrolysis of tributyrin and monobutyrin I	[146]
22	*carica*	Latex	It helps in casein digestion, milk clotting	[147]
23	*carica*	Latex	Bacteriolytic against *Micrococcus lysiselkticus*	[148]
24	*carica*	Latex	Antifungal	[149]
25	*carica*	Latex	It acts like inhibitory peptides of angiotensin I-converting enzyme (ACE)	[150]
26	*carica*	Latex	Proteolytic activity	[151]
27	*erecta*	Leaves	Proteasteoporotic; *F. erecta* leaves extract decreases the IL-6 and COX-2 mRNA expression level and also reduce the protein levels production of COX-2 and PGE2 as well	[152]
28	*benjamina*	Leaves	Anti-inflammatory, antinoceceptive, and antipyretic activities	[153]
29	*benjamina*	Latex	Allergen case of perennial rhino conjunctivitis caused by allergic reaction	[154]
30	*benjamina*	Latex	Allergen non occupational, indoor-related rhino conjunctivitis	[155]
31	*benjamina*	Latex	Allergen; latex-allergic patients are at higher risk of becoming sensitized to *Ficus*	[156]
Table 2: Continued

S. no.	Ficus species	Part used	Pharmacological actions	References
32	*benjamina*	Latex	Allergen	
33	*exasperata*	Leaves	Hypotensive; *F. exasperata* causes dose-dependent reduction in mean arterial blood pressure due to activation of muscarinic receptor in the heart	[137,138]
34	*exasperata*	Leaves	Antiulcerogenic; *F. exasperata* leaf extract causes substantial antiulcerogenic effects in a dose-dependent. It acts by protecting rats from aspirin-induced ulcerogenesis, adjourning intestinal transit, increasing pH, and reducing equally the volume and acidity of gastric secretion	[139]
35	*fistulosa*	Leaves	Inhibits the growth of *Plasmodium falciparum*: Macrocyclic trichothecene sesquiterpenoid inhibit the growth of *Plasmodium falciparum*	[140]
36	*hispidia*	Leaves	Antidiarrheal agent. It inhibits the activity against castor oil-induced diarrhea	[141]
37	*hispidia*	Latex	Proteolytic	[142]
38	*pumila*	Leave	Leaves extract showed antimicrobial activity against *Pseudomonas aeruginosa*, *Escherichia coli*, *Candida albicans* and *Bacillus subtilis*	[143]
39	*pumila*	Latex	Caseinolytic	[144]
40	*racemosa*	Leaves	Crude ethyl acetate, hexane, petroleum ether, acetone, and methanol leaves extract of *F. racemose* showed mild larvicidal effects against *Culex quinquefasciatus*	[145]
41	*racemosa*	Leaves	Anti-inflammatory; confirmed by carrageenin, serotonin-, histamine, and dextran induced rat hind paw edema models	[146]
42	*racemosa*	Leaves	Antibacterial; the petroleum ether leaves extract of *racemosa* showed substantial antibacterial potential against *E. coli* ATCC 10536, *B. pumilus* ATCC 14884, *B. subtilis* ATCC 6633, *P. aeruginosa* ATCC 25619, and *Staphylococcus aureus* ATCC 29737	[147]
43	*religiosa*	Leaves	Shelving of neurodegeneration in human brain diseases; anti-inflammatory; inhibition of microglial activation; therapeutic potential for various neurodegenerative diseases	[148]
44	*anthelminthica*	Latex	Proteolytic	[121,170]
45	*glabrata*	Latex	Anticoagulating; proteolytic action on fibrinogen and fibrin	[171]
46	*glabrata*	Latex	It acts and inhibits the coagulation of blood	[172,173]
47	*glabrata*	Latex	Proteolytic	[151,174]
48	*glabrata*	Latex	Peroxidases	[175]
49	*glomerata*	Latex	Protease activity	[176]
50	*glomerata*	Latex	Inhibits glucose-6- phosphatase from rat liver	[177]
51	*glomerata* (syn. *racemosa*)	Root	Acts as antioxidant and protection against CCl₄-induced hepatic damage	[178]
52	*laurifolia*	Latex	Proteolytic effect	[174]
53	*microcarpa*	Latex	Antifungal	[179]
54	*microcarpa*	Root	Cytotoxic	[84,180]
55	*platyphylla*	Latex	It acts as an anthelmintic activity against *Ascardia galli* in chickens.	[87,181]
56	*stenocarpa*	Latex	Proteolytic	[151]
57	*virgata*	Latex	High toxicity and growth inhibition against lepidopteran larvae; cysteine protease activity	[182]
58	*ficus spp.*	Latex	Allergen	[183]
59	*ficus spp.*	Latex	Anthelmintic	[184,185]
60	*benghalensis*	Root	Improved diabetic condition in streptozotocin-induced diabetic rats	[186,187]
61	*benghalensis*	Root	Hypoglycemic effect. Decrease sugar level up to 40%–45% in normal rats and approximately 50%–55% in mildly diabetic rats	[188,189]
Uterotonic agent

A uterotonic agent induces contraction of the uterus. Amiera et al. [69] have studied two main varieties of Ficus var. deltoidea and var. angustifolia and reported contraction in rats. In another research, F. deltoidea aqueous extracts cause uterine effects via muscarinic, oxytocin, and PGF2α receptors. Other Ficus species such as asperifolia also showed this effect. [70,71] Table 2 shows the different biological activities of other Ficus species.

CONCLUSION

The global use of natural product for the management of diseases has rapidly expanded over the past decade. Medicinal flowers have historically been a wealthy source for powerful pills, and still represent an important pool for the identification of new pharmacological leads nowadays. Ficus deltoidea is one of the medicinal plant that has been used as remedy for severe ailments. A range of species of Ficus has been cultivated in various parts of the world as a decorative shrub or residence plant. Ficus deltoidea is known to integrate several chemical components, which is likely for its many pharmacological activities. These activities are highlighting the chemical nature of F. deltoidea, its outcomes on numerous parameters, and mechanisms of the located biological moves. However, this record is not always sufficient to offer evidence for safety and efficacy of a natural product and requires similarly investigation.

Acknowledgement

This study was supported by Universiti Teknologi MARA under the reference number 600-IRMI/MyRA 5/3/LESTARI (079/2017). The authors would also like to acknowledge the Ministry of Higher Education (MOHE) Malaysia for financial support under the Fundamental Research Grant Scheme (FRGS) with sponsorship reference number FRGS/1/2019/STG05/UITM/02/9. The author would also like to acknowledge Universiti Teknologi MARA for the financial support under the reference number 600-IRMI/FRGS 5/3 (424/2019).

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

1. Bunawan H, Amin NM, Bunawan SN, Baharum SN, Mohd Noor N. Ficus deltoidea Jack: a review on its phytochemical and pharmacological importance. Evi-Based Comp Alter Med 2014;2:1-8.
2. Hong L, Leong S, Lee A, Ting C, Kit K, Ng S, et al. Intraspecific classification of Ficus deltoidea jack subsp. deltoidea (Moraceae) in peninsular Malaysia based on morphological and molecular variations. Biochem Sys Ec 2016;142:776-81.
3. Forest S, Kim S, Lloyd L. Ficus Microcarpa. 2003.
4. Sin MH, Soh A, Aslam S. Total phenolic content and antioxidant potential of Ficus deltoidea using green and non-green solvents. J Pharm Neg Results 2017;8:15-9.
5. Wagner WL, Herbst DR, Sohmer SH. Manual of the flowering plants of Hawai‘i. 2 vols (Bishop Museum Special Publication 83). Honolulu, HI: University of Hawai‘i and Bishop Museum Press; 1999.
6. Farsi E, Ahmad M, Hor SY, Ahamed MBK, Yam MF. Standardized extract of Ficus deltoidea stimulates insulin secretion and blocks hepatic glucose production by regulating the expression of glucose-metabolic genes in streptozitocin-induced diabetic rats. Internal Soci Comp Med Res 2014;14:1-13.
7. Brickell C, Zuk JD. The American Horticultural Society A-Z encyclopedia of garden plants. New York, NY: DK Publishing; 1997.
8. Jamal NA. Chemical constituents from Ficus deltoidea var. kunstleri corner and its antidiabetic property. Master Thesis, Malaysia: Universiti Pendidikan Sultan Idris; 2017.
9. Khan AA, Omer KA, Talib A, Ahmad H, Javed MA, Sarmidi MR. Green tropical phytoextracts promising anticanther alternative. Brazil Arch Bio Tech 2016;59.
10. Kumari U, Dhanalekshmi RA. Evaluation of phytochemicals and antioxidant properties of leaves, fruits and stems of Ficus deltoidea plant extract. Scholars Res Lib 2017;8:11-8.
11. Harun H, Musapha Z. Phytochemical constituents in leaves and callus of Ficus deltoidea jack var. Kunstleri (King) Corner 2015;12:431-9.
12. Choo CY, Sulong NY, Man F, Wong TW. Vitexin and isovitexin from the leaves of Ficus deltoidea with in vitro α-glucosidase inhibition. J Ethnopharmacol 2012;142:776-81.
13. Grison-Pig’e L, Hossaert-McKey M, Greef JM, Bess’ere JM. Fig volatile compounds a first comparative study. Phytochem 2002;61:61-71.
14. Omar MH, Mullen W, Crozier A. Identification of proanthocyanidin dimers and trimers, flavone C-glycosides, and antioxidants in Ficus deltoidea, a Malaysian herbal tea. J Agric Food Chem 2011;59:1363-9.

15. Chua LS. Hyphenated technique of LC-PDA/MS/MS for phytochemical profiling of Ficus deltoidea. In: Crystalizing ideas—the role of chemistry. New York: NY: Springer; 2016. p. 57-70.

16. Abdullah FJ, Chua LS, Rahmat Z. Prediction of C-glycosylated apigenin (vitexin) biosynthesis in Ficus deltoidea based on plant proteins identified by LC-MS/MS. Front Biol 2017;12:448.

17. Mohd KS, Azemin A, Hamil MSR, Bakar ARA, Dharmaraj S, Hamdan MR, et al. Application of high performance thin layer chromatography and Fourier transform infrared profiling coupled with chemometrics for the differentiation of the varieties of Ficus deltoidea jack. Asian J Pharm Clin Res 2014;7:110-6.

18. Azemin A, Dharmaraj S, Hamdan MR, Mat N, Ismail Z, Mohd KS. Discriminating Ficus deltoidea var. bornensis from different localities by HPTLC and FTIR fingerprinting. J App Pharm Sci 2014;4:69-75.

19. Kalili KM, de Villiers A. Recent developments in the Hple separation of phenolic compounds. J Sep Sci 2011;34:854-76.

20. Murni A, Hanif N, Kita M, Darusman LK. Methyl 10-epi-pheophorbide a from MCF-7 cells active layer of the Indonesian Ficus deltoidea jack leaves. Int J Pharm Pharm Sci 2017;9:183-6.

21. Suryati S, Nurdin H, Dachriyanus D, Lajis MH. Structure elucidation of antibacterial compound from Ficus deltoidea jack leaves. Indo J Chem 2011;11:67-70.

22. Hanafi MMM, Afzan HA, Yaakob H, Aziz R, Sarmidi MR, Woflender JL, et al. In vitro pro-apoptotic and anti-migratory effects of Ficus deltoidea L. plant extracts on the human prostate cancer cell lines PC3. Front Pharmacol 2017;8:1-20.

23. Soib HH. Prostate cancer cell inhibition by ethanolic fraction of Ficus deltoidea var. kunstleri. Doctoral Thesis, Malaysia: Universiti Teknologi Malaysia; 2015.

24. Akhir NAM, Chua, LS, Majid FAA, Sarmidi MR. Cytotoxicity of aqueous and ethanol extracts of Ficus deltoidea on human ovarian carcinoma cell line. British J Med Res 2011:1:397-409.

25. Safaei-Ghomti J, Ebrahimabadi AH, Djafari-Bigidoli Z, Batooli H. GC/MS analysis and in vitro antioxidant activity of essential oil and methanol extracts of thymus caramanicos Jalis and its main constituent carvacrol. J Food Chem 2009;115:1524-8.

26. Xiao ZP, Peng ZY, Peng MJ. Ouyang YZ, Zhu HL. Flavonoids health benefits and their molecular mechanism. Mini Rev Med Chem 2011;11:169-77.

27. Tkachenko H, Buyun L, Terech-Majewska E, Osadowski Z. In vitro antimicrobial activity of ethanolic extracts obtained from Ficus spp. Leaves against the fish pathogen Aeromonas hydrophila. Arch Polish Fish 2016;24:219-30.

28. Lee KW, Kim YJ. Lee HJ, Lee CY. Cocoa has more phenolic phytochemicals and a higher antioxidant capacity than teas and red wine. J Agric Food Chem 2003;51:7292-5.

29. Abdussamah O, Zaidi NT. Antimicrobial activity of Ficus deltoidea jack (Mas Cotek). Pak J Pharm Sci 2012;25:675-8.

30. Azizan N, Mohd Said S, Zainal Abidin Z, Jantan I. Composition and antibacterial activity of the essential oils of Orthosiphon stamineus Benth and Ficus deltoidea jack against pathogenic oral bacteria. Molecules 2017;22:pii: E2135.

31. Zunoliza A, Khalid H, Zhari I, Rasadah MA. Anti-inflammatory activity of standardised extracts of leaves of three varieties of Ficus deltoidea. Int J Pharma Clin Res 2009;1:100-5.

32. Che Ahmad Tantowi NA, Hussin P, Lau SF, Mohamed S. Mistletoe fig (Ficus deltoidea jack) leaf extract prevented postmenopausal osteoarthritis by attenuating inflammation and cartilage degradation in rat model. Menopause 2017;24:1071-80.

33. Zakaria ZA, Hussain MK, Mohamad AS, Abdullah FC. Sulaiman MR. Anti-inflammatory activity of the aqueous extract of Ficus deltoidea. Bio Res Nurs 2012;14:90-7.

34. Sulaiman MR, Hussain MK, Zakaria ZA, Somchit MN, Moin S, Mohamad AS, et al. Evaluation of the antiinflammatory activity of Ficus deltoidea aqueous extract. Fitoterapia 2008;79:557-61.

35. Zahra MASF, Mahmood AA, Hapipah MA, Suzita MN, Salmah I. Anti-ulcerogenic activity of aqueous extract of Ficus deltoidea against ethanol-induced gastric mucosal injury in rats. Res J Med Sci 2009;3:42-6.

36. Gregory M, Vithalrao KP, Franklin G, Kalaiichelvan V. Anti-ulcer (ulcer-preventive) activity of Ficus arnottiana Miq. (Moraceae) leaf methanol extract. Am J Pharmacol Toxicol 2009;4:89-93.

37. Vela SM, Souccar C, Lima-Landman MT, Lapa AJ. Inhibition of gastric acid secretion by the aqueous extract and purified extract of Stachyurapher cayennensis. Plant Med 1997;63:36-9.

38. Abdulla MA, Ahmed KAA, Abu-Luhoom FM, Muhanid M. Role of Ficus deltoidea extract in the enhancement of wound healing in experimental rats. Biomed Res 2010;21:241-5.

39. Bonte F, Dumas M, Chaudagne C, Meybeck A. Influence of asiatic acid, madecassic acid and asiaticoside on human collagen I synthesis. Plant Med 1994;60:133-5.

40. Suguna L, Sivakumar P, Chandrakasan G. Effects of Centella asiatica extract on dermal wound healing in rats. Indian J Exp Biol 1996;34:1208-11.

41. Suarez J, Herrera MD, Marhuenda E. Hesperidin and neohesperidin dihydrochalcone on different experimental models of induced gastric ulcer. Phytother Res 1996;10:616-8.

42. Mustaffa W, Aqilla NA, Rosnani H, Roji SM. An in vitro study of wound healing activity of Ficus deltoidea leaf extract. J Teknol 2015;77:67-72.

43. Maisuthisakul P, Suttajit M, Pongsawatmanit R. Assessment of phenolic content and free radical-scavenging capacity of some Thai indigenous plants. Food Chem 2007;100:1409-18.

44. Ashraf K, Sultan S, Shah SAL. Phytochemistry, phytomedical, and molecular study of Zingiber officinale Roscoe: a review. Int J Pharm Pharm Sci 2017;9:8-16.

45. Ashraf K, Sultan SA. Comprehensive review on Curcuma longa Linn.: phytochemical, pharmacological, and molecular study. Int J Pharm Pharm Sci 2017;11:1-15.

46. Hakiman M, Maziah M. Non enzymatic and enzymatic antioxidant activities in aqueous extract of different Ficus deltoidea accessions. J Med Plant Res 2009;3:120-31.

47. Zino S, Skeaff M, Williams S, Mann J. Randomised controlled trial of effect of fruit and vegetable consumption on plasma concentrations of lipids and antioxidants. BMJ 1997;314:1787-91.

48. Aris SRS, Mustafa S, Ahmat N, Jaafar FM, Ahmad R. effects of Zingiber officinale Roscoe; an anti-ulcerogenic activity of Zingiber officinale Roscoe; a review. Int J Pharm Pharm Sci 2017;9:8-16.

49. Omran MH, Mullen W, Crozier A. Identification of proanthocyanidin dimers and trimers, flavone C-glycosides, and antioxidants in Ficus deltoidea, a Malaysian herbal tea. J Agric Food Chem 2011;59:1363-9.
Ashraf, et al.: Therapeutic potential of Ficus deltoidea Jack and Ficus spp.

50. Adam ZA, Ismail S, Khamis MHM, Mokhtar M, Hamid M. Antihyperglycemic activity of F. deltoidea ethanolic extract in normal rats. Sains Malasiana 2011;40:489-95.
51. Nizam I, Mushiq M. Antioxidant activity of five different solvent extracts of the edible fruits of Ficus racemosa. Orient Pharm Exp Med 2012;12:189-95.
52. Manurung H, Kustiawan W, Kusuma IW, Marjenah. Total flavonoid content and antioxidant activity in leaves and stems extract of cultivated and wild tabat barito (Ficus deltoidea Jack). AIP Conf Proc 2017;1813:020007.
53. Misbah H, Aziz AA, Aminudin N. Antidiabetic and antioxidant properties of Ficus deltoidea fruit extracts and fractions. BMC Complement Altern Med 2013;13:118.
54. Ahmed RK, Ahmad MS, Awang S. A comparison of antioxidant potential, the total phenolic and flavonoid content of male and female (Ficus deltoidea). 2016;12:120-4.
55. Norra I. Free radical scavenging activity and phenolic content of Ficus deltoidea accessions MFD4 and MFD6 leaves. J Trop Agric Food Sci 2011;39:1-8.
56. Pushpanathan K, Nithyanandam R. Antioxidant potential of Malaysian medicinal plant. J Eng Sci Tech EURECA 2014.
57. Nazarni Che Isa M, Ajit A, Naila A, Sulaiman AZ. Effect of microwave assisted hydrodistillation extraction on extracts of Ficus deltoidea. Mater Today Proc 2018;5:21772-9.
58. Ong S, Ling A, Poospooragi R, Moosa S. Production of flavonoid compounds in cell cultures of Ficus deltoidea as influenced by medium composition. Int J Med Arom Plants 2011;1:2249-4340.
59. Vergara-Salinas JR, Pérez-Jiménez J, Torres JL, Agosín E, Pérez-Correa JR. Effects of temperature and time on polyphenolic content and antioxidant activity in the pressurized hot water extraction of deodorized thyme (Thymus vulgaris). J Agric Food Chem 2012;60:10920-9.
60. Wahid S, Mahmud TMM, Maziah M, Yahya MARA. Total phenolics content and antioxidant activity of hot water extracts from dried Ficus deltoidea leaves. J Trop Agric Food Sci 2010;38:115-22.
61. Dzolin S, Ahmad R, Zain MM, Ismail MI. Flavonoid distribution in four varieties of Ficus deltoidea Jack. J Adv Chem 2016;11:3314-23.
62. Ashraf K, Halim H, Lim SM, Ramasamy K, Sultan S. In vitro antioxidant, antimicrobial and antiproliferative studies of four different extracts of Orthosiphon stamineus, Gymnura procumbens and Ficus deltoidea. Saudi J Biol Sci 2020;27:417-32.
63. Chen YG, Li P, Li P, Yan R, Zhang XQ, Wang Y, et al. A-glucosidase inhibitory effect and simultaneous quantification of three major flavonoid glycosides in Microcrotis folium. Molecules 2013;18:4221-32.
64. Danaei G, Finucane MM, Lin JK, Singh GM, Paciorek CJ, Cowan MJ, et al.; Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating Group (Blood Pressure). National, regional, and global trends in systolic blood pressure since 1980: systematic analysis of health examination surveys and epidemiological studies with 786 country-years and 5·4 million participants. Lancet 2011;377:568-77.
65. Nurdiana S, Goh YM, Hafandi A, Dom SM, Nur Syamil’ain A, Noor Syailimaz NM, et al. Improvement of spatial learning and memory, cortical gyration patterns and brain oxidative stress markers in diabetic rats treated with Ficus deltoidea leaf extract and vitexin. J Tradit Complement Med 2018;8:190-202.
66. Abu Bakar AR, Mananahar T, Merican AF, Mohamad SB. Experimental and computational approaches to reveal the potential of Ficus deltoidea leaves extract as α-amylase inhibitor. Nat Prod Res 2018;32:473-6.
67. Kalman DS, Schwartz HJ, Feldman S, Krieger DR. Efficacy and safety of Elaeis guineensis and Ficus deltoidea leaf extracts for adults with pre-diabetes. Nutr J 2013;12:36.
68. Amiera ZU, Nihayah M, Wahida IF, Rajah N. Phytochemical characteristic and utoerotonic effect of aqueous extract of Ficus deltoidea leaves in rats uterus. Pak J Biol Sci 2014;17:1046-51.
69. Salleh N, Ahmad VN. In-vitro effect of Ficus deltoidea on the contraction of isolated rat’s uteri is mediated via multiple receptors binding and is dependent on extracellular calcium. BMC Complement Altern Med 2013;13:359.
70. Watcho P, Ndagui E, Alango Nkeng-Efouet P, Benoît Nguelfack T, Kamany A. Evaluation of in vitro utoerotonic activities of fruit extracts of Ficus asperifolia in rats. Evid Based Compl Alter Med 2011;2011:1-7.
71. Rosnah J, Khandaker MM, Boyce AN. Ficus deltoidea: review on background and recent pharmacological potential. J Agro 2015;14:310-8.
72. Teixeira DM, Patão RF, Coelho AV, da Costa CT. Comparison between sample disruption methods and solid-liquid extraction (Sle) to extract phenolic compounds from Ficus carica leaves. J Chromatogr A 2006;1103:22-8.
73. Gonavashi SG, Gonavashi MS. Proteolytic enzymes of some Georgian plants. Rastit’ne resursy 1968;4:356-65.
74. Saeed MA, Sabir AW. Irritant potential of triterpenoids from Ficus carica leaves. Fitoterapia 2002;73:417-20.
75. Meng ZY, Wang JJ, Zhong W. Studies of chemical constituents of Ficus carica L. Zhongguo Yaoke Daxue Xuebao 1996;27:202-4.
76. Deleanu NT. The peptolytic enzyme of Ficus carica. Bull Sect Sci Acad Roum 1916;4:345-54.
77. Rubnov S, Kashman Y, Rabinowitz R, Schlesinger M, Mechoulam R. Suppressors of cancer cell proliferation from fig (Ficus carica) resin: isolation and structure elucidation. J Nat Prod 2001;64:993-6.
78. Sgarbieri VC, Gupte SM, Kramer DE, Whitaker JR. Ficus enzymes. I. Separation of the proteolytic enzymes of Ficus carica and Ficus glabra latices. J Biol Chem 1964;239:2170-7.
79. Richter G, Schwarz HP, Dorner F, Turecek PL. Activation and inactivation of human factor X by proteases derived from Ficus carica. Br J Haematol 2002;119:1042-51.
80. Jiang R, Jain S, Jain SC. Secondary metabolites from Ficus carica. Phytochemistry 2008;79:878-81.
81. Sugiura M, Sasaki M. Studies on proteinases from Ficus asperifolia var. Hearti. II. Physicochemical properties of ficin A, B, C, and D. Yakugaku Zasshi 1997;93:63-7.
82. Sugiura M, Sasaki M. Studies on proteins from Ficus carica var. Horatiai. II. Physicochemical properties of ficin A, B, C, and D. Yakugaku Zasshi 1997;93:63-7.
83. Sugiura M, Sasaki M. Studies on proteins from Ficus carica var. Horatiai. V. Purification and properties of a sugar-containing proteinase (Ficin S). Biochim Biophysics Acta 1974;350:38-47.
84. Jain R, Jain S, Jain SC. Secondary metabolites from Ficus carica roots. Proc Natl Acad Sci India Sect A Phys Sci 2007;77:99-100.
85. Kuo YH, Lin HY. Two novel triterpenes from the leaves of Ficus microcarpa. Helvet Chim Acta 2004;87:1071-6.
86. Jiang YM, Chang JY, Kuo CC, Chang CY, Kuo YH. Cyotoxic triterpenes from the aerial roots of Ficus microcarpa. Phytochemistry 2005;66:495-501.
87. Wang X, Liu K, Xu H. Studies on chemical constituents of aerial roots of Ficus microcarpa. Zhongguo Zhong Yao Za Zhi 2009;34:169-71.
88. Nguyen VT, Tran VS, Nguyen MC, Nguyen BT, Nguyen TH. Study on the chemical constituents of Ficus semicordata. Tap Chi Hoa Hoc 2002;40:69-71.
Sgarbieri VC, Gupte SM, Kramer DE, Whitaker JR. Ficus enzymes. I. Separation of the proteolytic enzymes of Ficus carica and Ficus glabrata latices. J Biol Chem 1964;239:2170-7.

Oraiechi A, Maffei C, Emiliani C, Reinoso JA. On the active site of β-hexosaminidase from latex of Ficus glabrata. Phytochem 1985;24:659-62.

Zhang QX, Jiang WW, Wang Y, Li YL, Ye WC. A new phenyl propanoid acid derivatives from the roots of Ficus stenophylla. Yao Xue Xue Bao 2008;43:281-3.

Jiang WW, Zhang QX, Li Q, Ye WC, Yao YS. Chemical constituents of root of Ficus stenophylla. Tianran Chanwu Yanjiu Yu Kaifa 2007;19:588-90.

Li C, Bu PB, Yue DK, Sun YF. Chemical constituents from roots of Ficus hirta. Zhongguo Zhong Yao Za Zhi 2006;31:131-3.

Yu J, Zhang QX, Wang Y, Li YL, Ye WC. Studies on flavonoids and coumarins in the roots of Ficus hirta Vahl. Linchuan Huaxue Yu Gongshe 2008;28:49-52.

Acharya BM, Kumar KA. Chemical examination of the bark of Ficus hispida. Linn. Curr Sci 1984;53:1034-5.

Singhal RK, Saharia HS. Chemical examination of Ficus glomerata Roxb. Herba Hung 1980;19:17-20.

Bhatt K, Agrawal YK. Chemical investigation of the trunk-bark from Ficus racemosa. J Indian Chem Soc 1973;50:611.

Agrawal S, Misra K. Leucoanthocyanins from Ficus racemosa bark. Chem Scr 1977;12:37-9.

Joshi KC, Prakash L, Shah RK. Chemical constituents of Clerodendron infortunatum Linn. and Ficus racemosa Linn. J Indian Chem Soc 1977;54:1104.

Swami KD, Malik GS, Bish NPS. Chemical investigation of stem bark of Ficus religiosa and Prospis spicigera. J Indian Chem Soc 1989b;66:288-9.

Ultai AJ. Stearic acid in the latex of Ficus fulva, Reinw. Bull Jard Bot Buitenzorg Ser 1922a;35:105-6.

Felleke S, Brehanee A. Triterpene compounds from the latex of Ficus sur. Bull Chem Soc Ethiop 2005;19:307-10.

Bettolo GBM, Angeletti PU, Salvi ML, Tentori L, Vivaldi G. In vitro anticoagulant action on blood of the latex of Ficus domestica. Sem Med 1954;104:351-2.

Meng ZY, Wang JJ, Zhong W. Studies of chemical constituents of Ficus carica L. Zhongguo Yaoke Daxue Xuebao 1996;27:202-4.

Wang G, Wang H, Song Y, Jia C, Wang Z, Xu H. Studies on anti-Hsv effect of Ficus carica leaves. Zhong Yao Cai 2004;27:754-6.

Serraclara A, Hawkins F, Pérez C, Domínguez E, Campillo JE, Torres MD. Hypoglycemic action of an oral fig-leaf decoction in type-I diabetic patients. Diabetes Res Clin Pract 1998;39:19-22.

Canal JR, Torres MD, Romero A, Pérez C. A chloroform extract obtained from a decoction of Ficus carica leaves improves the cholesterolaemic status of rats with streptozotocin-induced diabetes. Acta Physiol Hung 2000;87:71-6.

Pérez C, Canal JR, Campillo JE, Romero A, Torres MD. Hypotriglyceridaemic activity of Ficus carica leaves in experimental hyperglycemia in diabetic rats. Phytother Res 1989;3:185-91.

Krishnaswamy MA, Johar DS, Subrahmanyan V. Vegetable rennet for Cheddar and processed cheese. Res Ind. (New Delhi) 1961;6:43-4.

Richter G, Schwarz HP, Dornier F, Turecek PL. Activation and inactivation of human factor X by proteases derived from Ficus carica. Br J Haematol 2002;119:1042-51.

Rubnov S, Kashman Y, Rabinowitz R, Schlesinger M, Mechoylam R.Suppressors of cancer cell proliferation from fig
130. Paullus AD, Cartwright CA, Vijeswarapu M, Liu Z, Woltering E, Newman RA. Antiangiogenic activity from the fruit latex of *Ficus carica* (Fig). In: Abstracts of the 7th Joint Meeting of the Association Francophone pour l’Enseignement de la Recherche en Pharmacognosie (AFERP), American Society of Pharmacognosy (ASP), Society for Medicinal Plant Research (GA), Phytochemical Society of Europe (PSE), and Societa Italiana di Fitochimica (SIF), August 3–8, 2008, Athens, Greece, published in Planta Med 2008;74:72.

131. Ullman SB. The inhibitory and necrosis-inducing effects of the latex of *Ficus carica*. On transplanted and spontaneous tumours. Exp Med Surg 1952;10:26-49.

132. Ullman SB, Clark GM, Roan KM. The effects of the fraction R3 of the latex of *Ficus carica*. On the issues of mice bearing spontaneous mammary tumors. Exp Med Surg 1952;10:287-305.

133. Ullman SB, Halberstadt, L, Leibowitz J. Some pharmacological and biological effects of the latex of *Ficus carica*. Exp Med Surg 1945;3:11-23.

134. Sugira M, Sasaki M. Studies on proteinases from *Ficus carica* var. Horaishi. I. Physicochemical properties of ficin A,B,C and D. Yakugaku Zasshi 1973;93:63-7.

135. Sugira M, Sasaki M. Studies on proteinases from *Ficus carica* var. Horaishi. V. Purification and properties of a sugar-containing proteinase (ficin S). Biochim Biophys Acta 1974;350:38-47.

136. Pant R, Srivastava SC. Proteolytic activity of some plant latex: effect of time variation. Curr Sci 1966;35:42-3.

137. Eristavi KD, Gachechiladze MG, Gonashvili SG, Machabeli MS. The fibrinolytic action of ficin. Soobshch Akad Nauk Gruz Ssr 1963;30:667-70.

138. Kramer DE, Whitaker JR. *Ficus* enzymes. II. Properties of the proteolytic enzymes from the latex of *Ficus carica* variety Kadota. J Biol Chem 1964;239:2178-83.

139. Amara AA, El-Masry MH, Bogdady HH. Plant crude extracts could be the solution: extracts showing in vivo antimutagenic activity. Pak J Pharm Sci 2008;21:139-71.

140. Gonashvili SG, Gonashvili MS. Proteolytic enzymes of some Georgian plants. Rastitel'nye Resursy 1968;4:356-65.

141. Eristavi KD, Gachechiladze MG, Gonashvili SG, Machabeli MS. The fibrinolytic action of ficin. Soobshch Akad Nauk Gruz Ssr 1963;30:667-70.

142. Richter G, Schwarz HP, Dorner F, Turecek PL. Activation and inactivation of human factor X by proteases derived from *Ficus carica*. Br J Haematol 2002;119:1042-51.

143. Wang J, Wang X, Jiang S, Lin P, Zhang J, Lu Y, et al. Cytotoxicity of fig fruit latex against human cancer cells. Food Chem Toxicol 2008;46:1025-33.

144. Nagayu HF, Rifaat MA, Morsy TA. Trials of the effect on dog ascaris in vivo produced by the latex of *Ficus carica* and papaya carica growing in Cairo gardens. Ann Trop Med Parasitol 1959;53:215-9.

145. Visco S. Enzymes present in the latex of *Ficus carica*. I. Esterase. Arch Farmacol Sper Sci Afin 1924;38:243-50.

146. Whitaker JR. The ficin content of the latex from different varieties of *Ficus carica* and a comparison of several micro methods of protein determination. J Food Sci 1958;23:364-70.

147. Shukla OP, Krishna Murti CR. Bacteriolytic activity of plant latexes. J Sci Ind Res 1961;20C:225-6.

148. Mavlonov GT, Ubaidullaeva KA, Rakhmanov MI, Abdurakhmonov IY, Abdukarimov A. Chitin-binding antifungal protein from *Ficus carica* latex. Chem Nat Compd 2008;44:216-9.

149. Maruyama S, Miyoshi S, Tanaka H. Angiotensin I-converting enzyme inhibitors derived from *Ficus carica*. Agric Biol Chem 1989;53:2763-7.

150. Williams DC, Sgarbieri VC, Whitaker JR. Proteolytic activity in the genus *Ficus*. Plant Physiol 1968;43:1083-8.

151. Yoon WJ, Lee HJ, Kang GJ, Kang HK, Yoo ES. Inhibitory effects of *Ficus erecta* leaves on osteoporotic factors in vitro. Arch Pharm Res 2007;30:43-9.

152. Farag SF. Phytochemical and pharmacological studies of *Ficus benjamina* L. leaves. Mansoura J Pharm Sci 2005;21:19-36.

153. Werfel S, Ruéff F, Przybilla B. Anaphylactic reaction to *Ficus benjamina* (weeping fig). Hautarzt 2001;52:935-7.

154. Pradalier A, Leriche E, Trinh C, Molitor JL. The return of the prodigal child or allergy to *Ficus*. Eur Allergy Clin Immunol 2004;36:326-9.

155. Chen Z, Düsser M, Flaggé A, Maryska S, Sander I, Raufl-Heimsloth M, et al. Identification and characterization of cross-reactive natural rubber latex and *Ficus benjamina* allergens. Int Arch Allergy Immunol 2000;123:291-8.

156. Schenkelberger V, Freitag M, Altmeyer P. *Ficus benjamina*—the hidden allergens in the house. Hautarzt 1998;49:2-5.

157. Axelsson IG, Johansson SG, Larsson PH, Zetterström O. Characterization of allergenic components in sap extract from the weeping fig (*Ficus benjamina*). Int Arch Allergy Appl Immunol 1990;91:130-5.

158. Ayinde BA, Omogbai EK, Amaechina FC. Pharmacognosy and hypotensive evaluation of *Ficus exasperata* vahl (Moraceae) leaf. Acta Pol Pharm 2007;64:543-6.

159. Akah PA, Oriakwe OE, Gamaniel KS, Shittu A. Evaluation of Nigeran traditional medicines: Ii. Effects of some Nigerian folk remedies on peptic ulcer. J Ethnopharmacol 1998;62:123-7.

160. Zhang HJ, Tamez PA, Aydogmus Z, Tan GT, Saikawa Y, Akah PA, Orisakwe OE, Gamaniel KS, Shittu A. Evaluation of Nigeran traditional medicines: Ii. Effects of some Nigerian folk remedies on peptic ulcer. J Ethnopharmacol 1998;62:123-7.

161. Perello M, Arribere MC, Caffini NO, Priolo NS. Proteolytic enzymes from the latex of *Ficus pumila* L. (Moraceae). Acta Farm Bonaer 2000;19:257-62.

162. Mandal SC, Ashok Kumar CK. Studies on anti-diarrhoeal activity of *Ficus hispida*. Leaf extract in rats. Fitosfera 2002;73:663-7.

163. Chetia D, Nath LK, Dutta SK. Extraction, purification and physico-chemical properties of a proteolytic enzyme from the latex of *Ficus hispida* Linn. Indian J Pharm Sci 1999;61:29-33.

164. Ragasa CY, Juan E, Rideout JA. A triterpene from *Ficus pumila*. J Asian Nat Prod Res 1999;1:269-75.

165. Perello M, Arribere MC, Caffini NO, Priolo NS. Proteolytic enzymes from the latex of *Ficus pumila* L. (Moraceae). Acta Farm Bonaer 2000;19:257-62.

166. Rahuman AA, Venkatesan P, Geetha K, Gopalakrishnan G, Bagavan A, Kumaraj C. Mosquito larvicidal activity of guanolan acetate, a tetracyclic triterpenes derived from *Ficus racemosa* Linn. Arch Pharm Res 2008;31:333-9.

167. Mandal SC, Saha BP, Pal M. Studies on antibacterial activity of *Ficus racemosa* Linn. Leaf extract. Phytother Res 2000;14:278-80.

168. Mandal SC, Saha BP, Pal M. Anti-inflamatory evaluation of *Ficus racemosa* Linn. Leaf extract. J Ethnopharmacol 2000;72:87-92.

169. Jung HW, Son HY, Minh CV, Kim YH, Park YK. Methanol extract of *Ficus leaf* inhibits the production of nitric oxide and proinflammatory cytokines in Lps-stimulated microglia via the Mapk pathway. Phytother Res 2008;22:1064-9.
Ashraf, et al.: Therapeutic potential of *Ficus deltoidea* Jack and *Ficus* spp.

184. Stepek G, Buttle DJ, Duce IR, Lowe A, Behnke JM. Assessment of the anthelmintic effect of natural plant cysteine proteinases against the gastrointestinal nematode, *Heligmosomoides polygyrus*, *in vitro*. Parasitology 2005;130:203-11.

185. Stepek G, Curtis RH, Kerry BR, Shewry PR, Clark SJ, Lowe AE, et al. Nematicidal effects of cysteine proteinases against sedentary plant parasitic nematodes. Parasitology 2007;134:1831-8.

186. Stepek G, Lowe AE, Buttle DJ, Duce IR, Behnke JM. Anthelmintic action of plant cysteine proteinases against the rodent stomach nematode, *Protospirura muricola*, *in vitro* and *in vivo*. Parasitology 2007;134:103-12.

187. Stepek G, Lowe AE, Buttle DJ, Duce IR, Behnke JM. *In vitro* and *in vivo* anthelmintic efficacy of plant cysteine proteinases against the rodent gastrointestinal nematode, *Trichuris muris*. Parasitology 2006;132:681-9.

188. Singh AB, Yadav DK, Maurya R, Srivastava AK. Antihyperglycaemic activity of alpha-amyrin acetate in rats and db/db mice. Nat Prod Res 2009;23:876-82.

189. Singh RK, Mehta S, Jaiswal D, Rai PK, Watal G. Antidiabetic effect of *Ficus bengalensis* aerial roots in experimental animals. J Ethnopharmacol 2009;123:110-4.

190. Sackeyfio AC, Lugeleka OM. The anti-inflammatory effect of a crude aqueous extract of the root bark of "*Ficus elastica*" in the rat. Arch Int Pharmacodyn Ther 1986;281:169-76.

191. Cai QY, Chen HB, Cai SQ, Zhao ZZ, Ruan M, Jia FL, et al. Effect of roots of *Ficus hirta* on cocaine-induced hepatotoxicity and active components. Zhongguo Zhong Yao Za Zhi 2007;32:1190-3.

192. Damu AG, Kuo PC, Shi LS, Li CY, Su CR, Wu TS. Cytotoxic phenanthroindolizidine alkaloids from the roots of *Ficus septica*. Planta Med 2009;75:1152-8.

193. Muregi FW, Chhabra SC, Njagi EN, Lang’at-Thoruwa CC, Njue WM, Orago AS, et al. *In vitro* antiplasmodial activity of some plants used in Kisii, Kenya against malaria and their chloroquine potentiation effects. J Ethnopharmacol 2003;84:235-9.

194. Muregi FW, Ishii A, Miyase T, Suzuki T, Kino H, Amano T, et al. Antimalarial activity of methanolic extracts from plants used in Kenyan ethnomedicine and their interactions with chloroquine (Cq) against a Cq-tolerant rodent parasite, in mice. J Ethnopharmacol 2007;111:190-5.