The ability of garlic extract and Kaempferia galangal inhibit Aspergillus sp. isolated from Sardine fish Pedetan

N M A S Singapurwa*, I P Candra and I N Rudianta
Department of Food Science and Technology, Faculty of Agriculture, Warmadewa University, Terompong Street No. 24 Tanjung Bungkak, Denpasar, Bali, Indonesia

*a.suardani@gmail.com

Abstract. Pedetan is one of the food products of the traditional Balinese fish Sardine which is processed by the community in the Jembrana Regency of Bali Province. This study aims to determine the antimicrobial activity of garlic and kaempferia galangal in inhibiting the growth of Aspergillus sp. which can contaminate the sardine fish Pedetan. The study was conducted by isolating Aspergillus sp. from Pedetan and testing the inhibitory power of garlic and Kaempferia galangal. The results showed that the extract of garlic and Kaempferia galangal can inhibit the growth of Aspergillus sp. From the results of SEM observations, it was found that garlic and galangal were able to damage the Mycelia Aspergillus sp. compared to control treatment. Garlic extract and kaempferia galangal can inhibit the growth of Aspergillus sp. because it contains bioactive compounds that are antimicrobial.

1. Introduction
Dry fish can be damaged during storage and during distribution in marketing. Damage to dry fish can occur due to microorganisms, such as bacteria and fungi, and damage due to enzymes, both enzymes derived from fish and from bacteria. Spices used in the process of making pedetan sardine fish can be used as one of the inhibitors of damage to dried fish products [1]. Garlic and Kaempferia galangal spices are used in the process of making pedetan.

Garlic contains Allicin active compounds that have anti-microbial activity [2]. As an antimicrobial, garlic can inhibit the growth of Salmonella enteritidis and Staphylococcus aureus [3]. Allicin and organosulphur compounds can inhibit the growth of gram-positive bacteria and gram-negative bacteria such as Staphylococcus, Salmonella, Vibrio, Mycobacterium, Proteus sp, Helicobacter pylori and also as anti-parasite, antifungal, and antiviral [4,5]. The content of active substances in the form of flavonoids, tannins, cineol and saponins in the galangal rhizome (Kaempferia galanga L.) has antifungal properties that can inhibit the growth of fungi Candida albicans [6].

The diverse processing of pedetan in each village is a different characteristic of pedetan producing villages. This also affects the quality and safety of these foods. Therefore the products produced are not uniformly quantitative or qualitative [7], making it difficult to standardize [8]. Therefore it is necessary to develop traditional food processing with several improvements in processing. The application of seasoning utilization will be able to improve the quality and security of traditional pedetan food. Quality management and safety aspects of raw materials and products need to be studied for business development, and product marketing development.
This study aims to analyse the ability of garlic and galangal in suppressing the growth of contaminants in sardine fish ponds in an effort to ensure quality and food safety for consumers. This research is expected to be able to provide food safety information for sardine fish for consumers. This research will be very useful for producers engaged in traditional food processing, especially the sardine fish maker in an effort to provide a sense of comfort and safety for consumers.

2. Materials and methods
This research was conducted at the Faculty of Agriculture Laboratory, Warmadewa University, Biopesticide Laboratory, Faculty of Agriculture, Udayana University, and at the Integrated Research and Testing Laboratory of Gajah Mada University Yogyakarta to see fungal hypha structures which are inhibited by a combination of garlic extract and galangal under the electron microscope.

Observation of the structure of hyphae of Aspergillus sp. with Scanning Electron Microscope. Testing the effect of garlic extract and galangal on Aspergillus sp. mold structure was done by adding 200 µl extract of 10% concentration into Petri dishes and adding liquid PDA media (temperature 45°C), then Petri dishes were shaken horizontally so the extracts and PDA media were mixed equally. Mushroom colony pieces taken with a 5 mm cork diameter were placed in the middle of the PDA media on a Petri dish and repeated three times. Petri dishes were incubated at 25°C for 3 days. Mushroom colonies on the edge of the colony were cut to size 3 mm and 1 mm, the next step was the sample preparation process for SEM (Scanning Electron Microscope) analysis.

Mushroom colonies of 3 mm in size were then fixed with a solution of 2% glutaraldehyde in 0.1 M sodium cacodylate buffer (pH 7.2) at 4°C for 4 hours and after that, they were allowed to stand at room temperature (25°C) for 1 hour. The fixed sample was washed with sodium cacodylate buffer (pH 7.2) and continued fixation with 1% osmium tetroxide in 0.1 M cacodylate buffer and left at room temperature for 5 hours. After that the sample was washed using distilled water and then dehydrated using serial ethyl alcohol (40%, 60%, 80%, 99.5%, and 100%). After the dehydration process, the sample is cut using the freeze cutting device (TF-2, Eiko Japan). The sample was then given a solution of t-butyl alcohol and placed in a vacuum freezer drying device (ID-2, Eiko, Japan). The dried samples are placed in a special place and coated with osmium tetroxide (OPC 60A, Filgen, Japan) and Platinum (JUC-5000, JEOL, Japan). The coated sample was observed for SEM using JSM-6701F, JEOL, Japan with an acceleration voltage of 5 kV [9].

3. Results and discussion
The observation results of a hypha of mold Aspergillus sp. using Scanning Electron Microscope (SEM) with a magnification of 3,000 and a bar of 5 µm showed that hypha of mold Aspergillus sp. seen lysis after being given garlic and galangal extract with a concentration of 0.1% (Figure 2,3,4). Hifa molds treated with spice extracts were lysed after being given a 0.1% spice extract, which
appeared to shrink, shrink and hyphae damage, whereas in hyphae control the mold remained intact and perfect.

The making of sardine fish sprouts using garlic spices can inhibit the growth of fungi with an inhibition zone of 21.15 mm and kaemfiera can inhibit the inhibition zone by 25.45 mm. Garlic and kaemfiera can inhibit fungal growth because they contain bioactive compounds that can be antimicrobial [10].

Garlic and galangal can affect the permeability of mold and bacterial cell membranes. If the permeability of the cell membrane is disrupted it will cause cytoplasmic leakage which results in lysis of the cells so that the cell dies [11]. Bioactive compounds can affect the growth of mold colonies, hyphae will shrink because of damage to cells and lysis, cytoplasm reduction and cell wall damage. The mechanism of anticancer activity from an essential oil is by damaging the cell wall and lysis of the cytoplasm which causes the death of mycelium and affects the growth of mold [12]. The lipophilic nature of essential oils will penetrate the plasma membrane which causes cell membrane damage [13].

Figure 2. Hifa mold of *Aspergillus* sp. on the treatment of 0.1% garlic extract.

Figure 3. Hifa mold *Aspergillus* sp. on the treatment of 0.1% galangal extract.
4. Conclusion
From the results of observations of SEM (Scanning Electron Microscope) with a magnification of 3,000 and a bar of 5 µm, it was found that garlic and galangal were able to damage the mycelia of Aspergillus sp. compared to control treatment.

Acknowledgments
The author conveyed his gratitude to the Warmadewa University Community Research Institute for funding the 2018 Institutional Grant Research.

References
[1] Singapurwa N M A S, Suprapta D N, Gunam I B W, Wirya I G N A S and Khalimi K 2018 Identification of Contamination Fungi on Pedetan, an dry fish product of Lemuru Journal of Biology, Agriculture and Healthcare 8 (6) 75-82
[2] Syifa N, Bintari S H and Mustikaningtyas D 2013 Uji Efektivitas Ekstrak Bawang Putih (Allium sativum Linn.) sebagai Antibakteri Pada Ikan Bandeng (Chanos chanos Forsk) Segar Unnes J. Life Sci 2 (2) 71-77
[3] Vlajic S, Kuruca L, Simin S, Jelestic Z, Mihajlovic-Ukropina M, Takac A and Lalosevic V 2014 Antimicrobial Activity of Garlic (A. sativum L.) Against Salmonella enteritidis and Staphylococcus aureus Contemporary Agriculture / Savremena Poljoprivreda 63 (3) 224-231
[4] Biradar S M, Mote G D and Sutar G V 2014 Extraction of Garlic and Enhancing Antibiotic Activity of Allicin International Journal of Phytotherapy Research 4 (2) 16-22
[5] Gupta S, Kapur S, Padnavathi D V and Verma A 2015 Garlic. An Effective Functional Food to Combat the Growing Antimicrobial Resistance Pertanika J. Trop. Agric. Sci 38 (2) 271-278
[6] Rahmi A, Roebiakto E and Lutpiatina L 2016 Potensi Ekstrak Rimpang Kencur 9Kaemfiera galangal L.) Menghambat Pertumbuhan Candida albicans Medical Laboratory Technology Journal 2 (2) 70-76
[7] Singapurwa N M A S, Darmadi N M and Semariyani A A M 2014 Characteristics of Traditional Food Pedetan in Jembrana Regency International Journal of Advanced Science Engineering Information Technology 4 (2) 68-74
[8] Singapurwa N M A S, Semariyani A A M and Candra I P 2017 Identification of the Implementation of GMP and SSOP on the Processing of the Balinese Traditional Food
Sardine Pedetan International Research Journal of Engineering, IT and Scientific Research 3 (3) 17-26

[9] Egerton R F 2005 Physical principles of Electron Microscopy: An Introduction to TEM, SEM, and AEM (Springer, 202)

[10] Singapurwa N M A S and Candra I P 2019 Utilization of Garlic and Kaemfiera on the Strength of Fungi Growth in Sardine Fish ‘Pedetan’ (Sardinella lemuru) Proceeding of the 1st Warmadewa Research and Development Seminar (WARDS)

[11] Jatomea M P, Viniegra G, Olaya R, Ortega M M C and Shirai K 2003 Effect of Chitosan and Temperature on Spore Germination of Aspergillus niger Macromol. Biosci 3 582-586

[12] Sharma N and Tripathi A 2008 Effects of Citrus sinensis (L.) Osbeck epicarp essential oil on growth and morphogenesis of Aspergillus niger (L.) Van Tieghe Microbiological Research 163 337-344

[13] Ferreira F D, Mossini S A G, Ferreira F M D, Arroteia C C, da Costa C L, Nakamura C V and junior M M 2013 The inhibitory effects of Curcuma longa L. essential oil and curcumin an Aspergillus flavus Link Growth and morphology The Scientific World Journal 343804 1-6