Expression of connexins in human preimplantation embryos in vitro
Debra J Bloor, Yvonne Wilson, Mark Kibschull, Otto Traub, Henry J Leese, Elke Winterhager and Susan J Kimber*

Address: 1School of Biological Sciences, University of Manchester, Manchester, M13 9PT, UK, 2Institute of Anatomy, University Hospital Duisburg-Essen, Essen, Germany, 3Institute of Genetics, University of Bonn, Bonn, Germany and 4Department of Biology, University of York, PO Box373, York YO10 SYW, UK

Email: Debra J Bloor - djbloor@btopenworld.com; Yvonne Wilson - yvonne.wilson@stud.man.ac.uk; Mark Kibschull - kibschull@yahoo.de; Otto Traub - o.traub@uni-bonn.de; Henry J Leese - hjl1@york.ac.uk; Elke Winterhager - e.winterhager@uni-essen.de; Susan J Kimber* - sue.kimber@man.ac.uk

* Corresponding author

Abstract

Intercellular communication via gap junctions is required to coordinate developmental processes in the mammalian embryo. We have investigated if the connexin (Cx) isoforms known to form gap junctions in rodent preimplantation embryos are also expressed in human embryos, with the aim of identifying species differences in communication patterns in early development. Using a combination of polyA PCR and immunocytochemistry we have assessed the expression of Cx26, Cx31, Cx32, Cx40, Cx43 and Cx45 which are thought to be important in early rodent embryos. The results demonstrate that Cx31 and Cx43 are the main connexin isoforms expressed in human preimplantation embryos and that these isoforms are co-expressed in the blastocyst. Cx45 protein is expressed in the blastocyst but the protein may be translated from a generally low level of transcripts: which could only be detected in the PN to 4-cell embryos. Interestingly, Cx40, which is expressed by the extravillous trophoblast in the early human placenta, was not found to be expressed in the blastocyst trophectoderm from which this tissue develops. All of the connexin isoforms in human preimplantation embryos are also found in rodents pointing to a common regulation of these connexins in development of rodent and human early embryos and perhaps other species.

Background

An appropriate temporal and spatial pattern of intercellular junctions is needed for successful preimplantation development and implantation in human embryos. Experiments on rodent preimplantation embryos have shown that the onset of E-cadherin expression is essential for compaction [1] and expression of the tight junction protein complex is responsible for maintaining cellular polarity of the trophectoderm through positioning the basolateral Na+/K+-ATPase (for review see [2]). Both human and rodent preimplantation embryos express an array of junctional proteins, including components of tight junctions, desmosomes and other cell adhesion molecules. While comparison of rodent and human preimplantation embryos has shown broad similarities between the two species there are also some notable differences. These include the lack of detectable β3 integrin and later expression of ZO-2 at the transcript level in human embryos, as well as low expression of ZO1α+ transcripts and poor membrane assembly of junctional proteins [3,4]. In addition to these junctional complexes,
human preimplantation embryos, like rodent embryos [5-7] form gap junctions [8]. Gap junctions allow the
direct exchange of ions, small metabolites, second mes-
sengers and nucleotides between the cytoplasm of neigh-
bouring cells. Each gap junction channel is formed by
docking of two hemi channels on adjacent cells and each
hemi channel is composed of six connexin subunits sur-
rounding a water filled pore. Twenty different connexin
isoforms have been identified in the human and 19 in the
mouse (for review see [9]). Variation in isoform composi-
tion of gap junctions allows diversity in the communica-
tion properties between cells of different tissues or even
between cells within the same tissue. Connexin mutations
have been identified in genetically inherited human dis-
eases (for review see [10]) suggesting that these communi-
cation channels have fundamental functions. Targeted
connexin gene deletion experiments have confirmed that
isoform composition influences the specificity of gap
junction function (for review see [9,10]) while evidence
from, targeted insertion experiments has shown that
channels are also able to share functions [11].

In human embryos Cx43 protein was shown to be
expressed throughout preimplantation development
while Cx26 and Cx32 were detected only occasionally in
the trophectoderm of late blastocyst stage embryos. Evi-
dence suggests that aberrant expression and distribution
of the Cx43 channel proteins may affect the survival
potential of human embryos [8]. In mouse and rat, tran-
scription of 8 connexin isoforms was detected during pre-
implantation development (for review see [7,12]), with
transcripts of, Cx43, Cx31, Cx31.1 and Cx45 also detected
at the protein level. Unlike the mouse, Cx26 was found at
both the mRNA and protein level in the rat blastocyst [7].
Of all the connexin isoforms, only Cx43 and Cx31 were
abundantly expressed and both were identified in the tro-
ophectoderm as well as in the inner cell mass and were seen
to co localise in the same gap junctional plaque [13,14].
Despite the expression of multiple connexin isoforms, the
functional significance of heterogeneous connexin com-
position of plaques is still uncertain. Neither Cx43 nor
Cx31 gene deficiency in mice resulted in impaired preim-
plantation development or inhibited implantation. This
could indicate functional compensation for missing con-
nexin isoforms. However, experiments with Cx43 knock-
out preimplantation embryos did not show up-regulation
of other connexin isoforms while complete blocking of
communication properties had no effect on the develop-
ment or physiology of cultured mouse embryos [7]. Cx31,
Cx43 and Cx45 rapidly become segregated to different tis-
sues after implantation in mice: Cx31 is restricted to the
trophectoderm lineage and is present in the spongiotro-
phoblast of the placenta whereas Cx43 and Cx45 are the
connexins of the embryo proper [13,15]. For this reason it
is speculated that the expression of multiple connexins
allows the embryo to undergo rapid diversification into
embryonic and extraembryonic tissues. However in the
human, Cx31 has not been detected even very early in the
first trimester placenta and primary trophoblast cells.
Instead of Cx31, Cx40 is the characteristic connexin of the
proximal cells of the extravillous trophoblast which can
be functionally compared to the rodent's spongiotro-
phoblast [16,17].

In this study, we have extended our understanding of con-
nexin expression in early human embryos by examining
Cx26, Cx31, Cx32, Cx40, Cx43 and Cx45 at both tran-
script and protein level. We sought to provide further evi-
dence for the hypothesis that multiple connexin isoforms
are present in the preimplantation human embryo and
identify similarities and differences from rodent connexin
expression patterns with a view to understanding cell
communication patterns required for blastocyst
formation.

Materials and methods
All reagents were purchased from Sigma (Dorset, UK)
unless otherwise stated.

Embryos
Embryos were donated with fully informed consent by
patients being treated by in vitro fertilisation (IVF) at Leeds
General Infirmary, Leeds, UK, St Mary's Hospital, Man-
chester, UK, and Manchester Fertility Services, Whalley
Range, Manchester, UK. All research was carried out with
the permission of local ethical committees, and in accord-
ance with the licence conditions of the Human Fertilisa-
tion and Embryology Authority (HFEA: project licence
R0026). cDNAs from 3 embryos at each stage of develop-
ment were probed for connexin gene expression (as
described by Bloor et al., [3]). Antibody staining was car-
rried out on 5-6 embryos at the blastocyst stage for each
connexin protein: a total 37 embryos were used including
appropriate controls. Early cleavage stage embryos (pro-
nucleate to 8-cell-stage) were considered to be of the high-
est possible quality since they were cultured from
unselected frozen pronucleate stage embryos donated to
the programme. They were not embryos discarded from
replacement cycles. All the pronucleate, 2-cell and 4-cell-
embryos were from pregnant cycles (i.e. had siblings
which developed to term). One of the 8-cell-embryos was
from a pregnant cycle, while the two other 8-cell-embryos
were siblings from a cycle that did not result in pregnancy.
However, the donating parents were fertile since they later
achieved a spontaneous pregnancy. Embryos lysed at blas-
tocyst stage had been transferred from Leeds General Infir-
mary to the University of York at early cleavage where they
were cultured to blastocyst. These embryos had under-
gone some initial selection in that they had not been cho-
sen for replacement or freezing. However, they were
clinically graded I or sometimes II and, at the time of lysis, all were assessed morphologically to be of high quality with >30 cells and clear evidence of an ICM. Polyspermic or multinucleated embryos were not used in this study.

Embryo thawing
Embryos were thawed using standard clinical protocols [18]. Briefly, they were transferred sequentially through thawing solutions, T1 (1 M, 1,2 propanediol, 0.2 M sucrose in phosphate buffered saline (PBS)), T2 (0.5 M 1,2 propanediol, 0.2 M sucrose in PBS), T3 (0.2 M sucrose in PBS), and T4 (IVF Universal; MediCult, UK) with 5 minutes incubation at each stage. Embryos were judged to be viable if they survived thawing followed by 1 h in culture. The rate of survival was 85%.

Embryo culture
For culture of early cleavage stage embryos (up to 8-cell), immediately post-thaw, embryos were transferred to 200 µl drops of pre-equilibrated medium (IVF Universal; MediCult, UK) under oil and incubated at 37°C in 5% CO2 in air under the standard conditions used for IVF at St Mary's hospital. For blastocyst stages, embryos were cultured to early cleavage stage in 70 µl drops of IVF medium under oil (BDH) at 37°C in 5% CO2 in air under the standard conditions used for IVF at St Mary's hospital. Embryos were then transferred to the University of York where they were cultured individually in 4 µl drops as described previously [3,19]. Embryos were transferred to a fresh, pre-equilibrated 4 µl drop of embryo culture medium every 24 hours.

Lysis, 3' cDNA generation and 2° amplification (polyA PCR)
The technique was as reported in [3] and adapted from [20,21] and has been extensively validated [22-24]. A single embryo was transferred in a minimum volume of culture medium (< 0.5 µl) to 4.5 µl complete lysis buffer as in [3]. Briefly reverse transcription was carried out using 25 units (0.5 µl) of reverse transcriptase (Superscript RNaseH-, Invitrogen, UK) at 37°C for 15 minutes, 65°C for 10 min followed by cooling on ice. Limitation of the reverse transcription step to 15 min resulted in the formation of cDNAs of 300–600 bp, reducing the possibility of size-dependent preferential amplification during subsequent PCR amplifications and this maintains representation [24]. One volume of tailing buffer (0.33 M potassium cacodylate, 6.7 mM CoCl₂, 0.67 mM DTT, 0.16 mM dATP, 0.45 units/µl rTdT (Invitrogen, UK)) was added and the reaction incubated at 37°C for 15 min, 65°C for 10 min. This step polyadenylates the 1st strand cDNA, allowing subsequent global amplification of cDNA using a single Not1dT24 oligonucleotide primer (Invitrogen).

PCR amplification of the polyA-tailed cDNA was carried out as previously described [3,25] by the addition of 2 volumes of primary PCR reaction mix to which were added Not1dT24 oligonucleotide primer and 0.16 units/µl Taq polymerase. The sequence of the Not1dT24 oligonucleotide primer is as follows: 5’CATCTCGAAGCGCGCGCTTTTTTTTTTTTTTTTTTTTTTTT 3’. Amplification was carried out using the following cycling profile: initial denaturation at 94°C for 2 min, 25 cycles of 1 min at 94°C, 2 min at 42°C, 6 min at 72°C, linked to a further 25 cycles of 1 min at 94°C, 1 min at 42°C, 2 min at 72°C.

The 300–600 bp primary amplification products were subject to a further amplification as follows: 1 µl of primary PCR reaction was used as template in a 50 µl final reaction volume containing 10 mM Tris-HCl pH 8.3, 1.5 mM MgCl₂, 50 mM KCl, 0.2 mM dNTPs, 2 µM Not1dT24 oligonucleotide, 0.025 units/µl Taq polymerase. Amplification was carried out using the following cycling profile: initial denaturation at 94°C for 2 min followed by 50 cycles of 30 sec at 94°C, 30 sec at 54°C, 30 sec at 72°C.

Controls at each step included embryos lysed and subject to the amplification protocol without reverse transcriptase (RT negatives), confirming the absence of contaminating genomic DNA and no embryo material. Human RNA from a variety of tissues (Human total RNA master panel II, BD Biosciences, UK) was amplified using the same protocol to produce positive control cDNA. Negative and positive control samples were probed for the presence of target genes in tandem with test samples as below.

Normalisation of amplified cDNA
Serial dilutions of secondary amplification products were prepared and used as templates in a PCR reaction to amplify β actin as in [3] using the following cycling profile: initial denaturation at 94°C for 1 min followed by 23 cycles of 30 sec at 94°C, 30 sec at 62°C, 30 sec at 72°C. 10 µl of the resultant amplification products were visualised following electrophoresis on a 2% agarose gel stained with ethidium bromide. cDNA pools were discarded if no β actin signal was detected. To probe cDNAs for the presence of test genes, the samples were diluted in the ratio indicated from the β-actin serial dilution: normally a 10 fold concentration of the cDNA dilution at which β-actin was just detected being used. If product could not be detected gene-specific PCR was also attempted on undiluted samples but results were identical.

Gene specific PCR
Primers were designed to amplify target genes in the 500 base pairs immediately preceding the poly adenylation signal in the gene sequence. Primers were designed using PRIMER version 0.5 (copyright 1991, Whitehead Institute
for Biomedical research). Primer pair sequences (Invitrogen) used in target gene amplification are shown in table 1. Where PCR products were not amplified from any cDNA sample in the panel, a second set of primers was designed and used to confirm the result. All amplification products were partially sequenced to verify identity using ABI Big dye technology (ABI, UK). For target gene amplification 1 µl of normalised cDNA was used as template in a 25 µl final reaction volume containing 10 mM Tris.HCl pH 8.3, 1.5 mM MgCl2, 50 mM KCl, 0.2 mM dNTPs, 1 µM forward primer, 1 µM reverse primer, 0.025 units/µl Taq polymerase (Roche, Lewes, UK). To remove non-specific amplification of Cx43 product, amplification using Cx40 primers was carried out using HotMaster Taq (Eppendorf, Cambridge, UK) according to the manufacturer’s instructions. Amplification was carried out using the following cycling profile: initial denaturation at 94 °C for 1 min followed by 50 cycles of 30 sec at 94 °C, 30 sec at appropriate annealing temperature (see Table 1), 30 sec at 72 °C. Ten µl of the resultant amplification products were visualised following electrophoresis on a 2% agarose gel stained with ethidium bromide. All primers successfully amplified cDNA fragments of the appropriate size from control human cDNA.

Immunocytochemistry

All embryos were double labelled to maximise the information gained from this scarce resource with a minimum of 5 embryos stained for each Cx isoform. Blastocysts for immunocytochemistry were obtained from the University of York where they were fixed in 1% paraformaldehyde in phosphate buffered saline (PBS) prior to transportation to the University of Manchester (in approx 14–24 h). Embryos were recovered, washed through PBS supplemented with 4 mg/ml IgG free BSA (PBS/BSA, Stratach, UK). The zona pellucida was removed by sequential incubation in pronase (2.5 u/ml in PBS/BSA) for 5 mins then acid Tyrode's for 1–2 mins. After extensive washing, embryos were permeabilised in 0.01% Triton X-100 in PBS/BSA for 3 mins. The embryos were washed then incubated in 25 µl of a second primary antibody from a different species. After washing they were incubated in a mixture of appropriate secondary antibodies previously checked for cross reactivity (Molecular Probes, UK). Nuclei were stained using 0.25 µg/ml Hoechst 33342 in PBS/BSA for 30 min. After final washing, embryos were transferred to a 0.1 mm microslide (Camlab, Cambridge UK), which was sealed then mounted onto a glass slide prior to visualisation of staining by confocal microscopy. Microscopy was performed using a BioRad MRC 600 laser scanning attachment (BioRad Microscience, UK) linked to a 90 MHz Pentium Compaq personal computer running COMOS Version 6 control software and NiZeiss microscope or a BioRad MRC1024 MP confocal head mounted on a Nikon Eclipse TE300 fluorescence microscope (BioRad, UK). Images were processed using Biorad LaserSharp software. Controls were incubated sequentially with normal rabbit

Table 1: Gene specific amplification primers

Target Gene	Primer pair sequences (5’ – 3’)	Accession number	Position in sequence	Fragment Size (bp)	Annealing Temp (°C)
β actin	GACAGCAGTCGGTTGACC	M10277	3163–3179	387	62
	CAGTAAAGCCTGGTCGC		3549–3552		
Cx26 (a)	GTTTAAAGGAGCTGCCAGTT	M6849	874–893	174	62
Cx26 (b)	TGGCATCCTGAGTTCAC		1047–1028	244	64
	AGGCTGCTTCCACACATCTCC		1760–1779		
	AGGGGGAAGACCAAAAAAC		2003–1984		
Cx31	TGGCATGAGAGAGAGGTTCTT	BC012918	1454–1473	184	66
	CAGTTGCTGGGAGGAAATG		1637–1618		
Cx32 (a)	GGTAACAGAGATGGGAGATCG	BC039198	1200–1219	202	64
Cx32 (b)	GCCAGCAAAGCATATCCTTC		1401–1382		
Cx40 (a)	TTGCAACCTTCTTCTTCTTG	BC013313	1273–1292	206	62
	GTGAAGAGCCCGAGGAGAAG		1478–1497		
			2057–2038		
Cx40 (b)	CCGCTGAGGAGAGTCTGT		1929–1948	201	62
	CTGGTCAAGGGGTTCGAGGAAG		2129–2110		
Cx43	CTGCATGACATGCGAACAGAAAGA	BC026329	2802–2782	217	64
	TCTTACGTACGACGAGCAAGAAGA		2586–2605		
Cx45	AGATCAGGATGGCTCAGGAAAGA	U03493	1022–1041	155	64
	GTTTCTCCATCCCCCTGATT		1176–1157		
serum and mouse IgG in place of primary antibodies. All images for test antibodies and controls were collected using identical confocal settings and were manipulated identically after collection.

Results

Transcript expression

All embryos in the panel expressed at least one connexin isoform. Gene expression results are summarised in Table 3 and data are shown in Figure 1. Cx26 was detected in one 8-cell-embryo only and Cx45 was detected in a single pronucleate and a single 4-cell-embryo. Interestingly, no signal for Cx40 could be amplified despite use of two primer sets, both of which gave a positive signal with control cDNA. However, Cx31 transcripts were found in all developmental stages in most of the embryos. Cx31 was detected in 2/3 of the pronucleate embryos, 2/3 of the 2-cell-embryos, 3/3 of the 4-cell-embryos, 2/3 of the 8-cell-embryos and 2/3 of the blastocysts. Cx43 was detected in all pronucleate embryos, 2/3 of the 2-cell-embryos 1/3 of the 4-cell-embryos and all 8-cell and blastocyst stage embryos. No transcripts of Cx32 were found at any stage of preimplantation development.

Immunocytochemistry

Immunocytochemistry was used to investigate protein expression for Cxs26, 31, 40, 45 and 43 in fixed human blastocysts (Table 4) For Cx26, 5/6 embryos were positive for the protein, and in the same embryo cohort, 5/6 of these embryos also showed staining for Cx43. The same embryo was negative for both Cx26 and Cx43. Some correlation was seen between intensity of staining for Cx26 and 43. For Cx31, only 1/5 of the embryos were stained and in the same cohort 3/5 showed staining for Cx43. Again, there was some correlation between Cx31 and 43 staining, with 2/5 embryos negative for both proteins and the single Cx31 positive embryo showing the only bright junctional staining observed with Cx43. When Cx45 was examined, 4/6 embryos showed staining while 5/6 showed staining for Cx43. One of the embryos was negative for both Cx45 and Cx43. The bright punctate staining of both Cx31 and Cx45 showed complete colocalisation with Cx43, and there was also approximately 50% colocalisation between Cx26 and Cx43 protein staining. No staining could be detected above background in 6 embryos stained for Cx40. Representative images of positively stained embryos are shown in Figure 2.

Table 2: Antibodies used in immunocytochemistry

Antigen	Antibody Isotype	Dilution	Secondary Antibody	Dilution
Cx26	Rabbit polyclonal [34]	1:1000	Alexa fluor 546, goat anti rabbit IgG	1:125
Cx31	Rabbit polyclonal [35]	1:300	Alexa fluor 546, goat anti rabbit IgG	1:125
Cx40	Rabbit polyclonal [36]	1:100	Alexa fluor 546, goat anti rabbit IgG	1:125
Cx43	Mouse IgG (Zymed)	1:500	Alexa fluor 488, goat anti mouse IgG	1:125
Cx45	Rabbit polyclonal [35]	1:500	Alexa fluor 546, goat anti rabbit IgG	1:125

Table 3: Transcript expression

Gene	PN 1	PN 2	PN 3	2 cell 1	2 cell 2	2 cell 3	4 cell 1	4 cell 2	4 cell 3	8 cell 1	8 cell 2	8 cell 3	Blastocyst 1	Blastocyst 2	Blastocyst 3
β actin	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Cx26	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cx31	+	+	-	+	+	+	+	+	+	+	+	+	-	+	+
Cx32	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cx40	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cx43	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Cx45	-	+	-	+	-	-	+	-	-	-	-	-	-	-	-

Expression of β actin, connexins 26, 31, 32, 40, 43 and 45 in cDNAs amplified from three individual embryos (1,2,3) at the pronucleate (PN), 2-cell, 4-cell, 8-cell, and blastocyst stages of development. + denotes transcript detected, – denotes transcript not detected.
Discussion
The present study revealed several connexin isoforms in developing preimplantation human embryos identified at the transcript and/or protein level, Cx26, Cx31, Cx32, Cx40, Cx43 and Cx45, whereas Cx32 and Cx40 were not detectable. This study extends the observations of Hardy et al. [8] that diverse connexin proteins are expressed in human preimplantation embryos in a similar pattern to that seen in rodents. In addition, the present study confirms that Cx43 is the predominant transcript as well as the predominantly expressed gap junction protein in human preimplantation embryos. Because of limited availability of human embryos we focused on those connexins identified as playing an important role in early embryonic and placental lineage development in rodents such as Cx43 and Cx45 for the embryo proper [13,15] and Cx31 for placental development [13,14]. Cx45 transcripts were detected in one third of PN and early cleavage stage embryos but not in later embryos, although the protein was expressed by blastocysts. This suggests that transcripts are generally at extremely low abundance and not detected in this study. However, it might also indicate that there is a delay between transcript synthesis and translation and protein assembly as has been found for junctional components in the mouse [27]. In contrast to the observation of Hardy and colleagues on Cx proteins [8], Cx32 transcript was not seen in our investigations. However, we did identify a weak band for Cx26 transcripts at the 8-cell-stage and immunoreactivity in the blastocyst stage. This may suggest that Cx26 transcripts are present at very low levels. It is notable that Cx32 and Cx26 proteins were only observed occasionally in late blastocysts by Hardy et al. [8]. This may suggest that these connexins appear prior to implantation and that the lack of Cx32 staining relates to differences in blastocyst developmental maturity. However these differences may be due to the response of human embryos to the different culture conditions used in the two studies [8]. Cx26 has been found in rat but not in mouse preimplantation embryos. The question arises as to the function of those weakly or inconsistently expressed genes.

In rodents, Cx31 represents a marker gene for the extraembryonic cell lineages but this has not been observed in

Cx	PN 1	2C 1	4C 1	8C 1	Blast 1	N 1	P 1
Cx26	![Image](image_url)						
Cx31	![Image](image_url)						
Cx32	![Image](image_url)						
Cx40	![Image](image_url)						
Cx43	![Image](image_url)						
Cx45	![Image](image_url)						

Figure 1
PCR amplification of Cx26, Cx31, Cx32, Cx40, Cx43 and Cx45 from cDNAs amplified from three individual embryos (1,2,3) at the pronucleate (PN), 2-cell (2C), 4-cell (4C), 8-cell (8C), and blastocyst stages of development. N denotes negative control; P denotes positive control.
humans. In this study, we therefore tried to elucidate the role of Cx40, which plays a major role in development of the human placenta [16,28,29]. Cx40 is found in the early human placenta in the extravillous trophoblast cell population which is functionally analogous to the spongiotrophoblast [16,30]. It appears to be produced instead of Cx31 which is expressed during mouse placental development in the spongiotrophoblast but is absent during human placental development. However, transcripts for Cx40 were not detected at any stage of human early development, nor was the protein observed at the blastocyst stage. This is in contrast to the trophoblast associated transcription factor Hand-1 which is expressed from the 4-cell stage and in blastocyst trophectoderm in human embryos [31]. Hand-1 is essential for differentiation of murine trophoblast giant cells after implantation and these cells have similar behaviour to human extravillous cytotrophoblast [32]. Interestingly, Cx31 expression was observed in human blastocysts. Transcripts were detected in all the 4-cell-stage embryos and 4/6 of the 8-cell embryos and blastocysts. However, except for one embryo, the corresponding protein was only detectable as a weak cytoplasmic fluorescence in the blastocyst suggesting that the protein only rarely forms functional gap junctions in the human embryo. It may be translated to only a limited extent in preimplantation human embryos or assembly may occur late in the blastocyst stage after hatching. This expression pattern differs from that seen in

Table 4: Summary of staining human blastocysts with anti-connexin antibodies

Embryo	Cx43	Cx26	Cx31	Cx45	Cx40
1	+	+			
2	+	+			
3	+	+			
4	+	+			
5	-	-			
6	+	+			
7	+				
8	+	+			
9	-	-			
10	-				
11	+				
12	+				+
13	+				+
14	+				+
15	+				+
16	-				
17	+				
18	+				
19	+				
20	+				
21	-				
22	-				
23	+				

Individual human blastocysts were stained with antibodies to Cx 43, 26, 31, 45 and 40 as indicated in materials and methods. Double staining with Cx43 and one other connexin was carried out in each case. +, specific staining detected; -, no staining detected.

Figure 2
Confocal images of fixed human blastocysts showing protein localisation of Cx26, Cx31, and Cx45 (shown in red) and colocalisation (shown in yellow) with Cx43 (shown in green) (Cx26/43, Cx31/43, Cx45/43). Nuclei are shown in blue. Negative control images of blastocysts incubated with mouse IgG (mlG) and rabbit pre-immune serum (RPI). Scale bars = 25 µm.
rodent preimplantation embryos which express Cx31 and Cx43 in the same spatiotemporal pattern during preimplantation development. It is possible that the failure to detect significant Cx31 protein could reflect a loss of embryo viability as a result of extended culture [8].

Hardy et al. [8] showed that early human embryos express predominantly Cx43 proteins and that protein levels increase during preimplantation development up to the blastocyst stage. This observation is supported by our studies. Cx43 transcripts were detected in nearly all embryos and the protein was present in 74% of the blastocyst stage embryos observed. The Cx43 protein was, in most cases, arranged along the cell borders in the expected typical punctuate pattern. We have previously found that the uniform assembly of junctional components observed for mouse embryos, is often not seen in human embryos which show a more patchy distribution [3]. Double immunolabelling of this dominant protein with other connexin isoforms did not provide evidence for sorting of the connexins between the trophectoderm and inner cell mass compartments. Though staining for Cx26, Cx31 and Cx45 was lower than for Cx43, they exhibited mostly coexpression with Cx43, probably in the same gap junction plaque. These findings are again in accordance with observations in rodent blastocysts where Cx31 and Cx43 colocalize in the same gap junction plaque [13,14] although other data suggests these may not cooperate to form functional channels [33]. Indeed, staining patterns for all the connexin proteins investigated indicated lack of any obvious compartmentalisation between the two blastocyst cell populations. Though all embryos investigated were of good morphology, they exhibited variability in connexin pattern at the protein level. It was obvious from double staining that when Cx43 was missing or poorly expressed in an embryo then the other connexin isoform assessed was missing too. It remains to be seen if this is related to the viability of the embryos or to the effects of processing. Identification of the presence and location of intercellular junctional proteins including gap junction components could help characterize the quality of embryos in culture. For example, Ghassemifar et al. [4] investigated the tight junction complex in human embryos, including JAM and desmocollin and showed that the level of junctional transcript was positively correlated to the morphological grade. Gap junction components such as Cx31 and Cx43 seem to be additional marker molecules for orderly embryonic development in culture.

Conclusion

Cx43, Cx31 and Cx45 appear to be the main connexin isoforms expressed in human preimplantation embryos and these proteins are coexpressed in the blastocyst: a pattern which resembles that of rodent preimplantation embryos. Low or undetectable transcript levels for Cx26 together with weak protein expression in the blastocyst suggest that this protein is less critical to gap junction function while Cx45 protein may be assembled in the blastocyst from protein translated from a generally low level of transcripts. Cx40, the connexin characteristic of extravillous trophoblast in early human placentas, is not present in blastocyst trophectoderm. The similarities in connexin expression in the human blastocyst compared to the rodents suggest that in preimplantation development different species are using common mechanisms of intercellular communication for blastocyst formation.

Acknowledgements

We would like to thank Tony Wade and Robert Fernandez for excellent confocal assistance. This work was funded by a grant RDO/22/23 from the UK Department of Health and Social Care. We thank Francesca Houghton and Judith Hawkhead for embryo culture in York and Helen Picton, Adam Balen, Tony Rutherford, Brian Lieberman and the patients at Leeds General Infirmary, St Mary's Hospital, Manchester, and Manchester Fertility Services for donation of embryos.

References

1. Larue L, Ohsugi M, Hirchenhain J, Kemler R: E-cadherin null mutant embryos fail to form a trophectoderm epithelium. Proc Natl Acad Sci U S A 1994, 91:8263-8267.
2. Fleming TP, Sheeh B, Fesenko I: Cell adhesion in the preimplantation mammalian embryo and its role in trophectoderm differentiation and blastocyst morphogenesis. Front Biosci 2001, 6:D1000-7.
3. Bloor DJ, Metcalfe AD, Rutherford A, Brison DR, Kimber SJ: Expression of cell adhesion molecules during human preimplantation embryo development. Mol Hum Reprod 2002, 8:237-245.
4. Ghassemifar MR, Eckert J, Houghton FD, Picton HM, Leese HJ, Fleming TP: Gene expression regulating epithelial intercellular junction biogenesis during human blastocyst development in vitro. Mol Hum Reprod 2000, 6:245-252.
5. Goodall H, Johnson MH: The nature of intercellular coupling within the preimplantation mouse embryo. J Embryol Exp Morphol 1984, 79:53-76.
6. Lo CW, Gilula NB: Gap junctional communication in the preimplantation mouse embryo. Cell 1979, 18:399-409.
7. Houghton FD, Barr JJ, Walter G, Gabriel HD, Grummer R, Traub O, Leese HJ, Winterhager E, Kidder GM: Functional significance of gap junctional coupling in preimplantation development. Biol Reprod 2002, 66:1403-1412.
8. Hardy K, Warner A, Winston RM, Becker DL: Expression of intercellular junctions during preimplantation development of the human embryo. Mol Hum Reprod 1996, 2:621-632.
9. Willecke K, Eiberger J, Degen J, Eckardt D, Romualdi A, Guldenagel M, Deutsch U, Sohl G: Structural and functional diversity of connexin genes in the mouse and human genome. Biochim Biophys Acta 2003, 1610:8-66.
10. Evans WH, Martin PE: Lighting up gap junction channels in a flash. Bioessays 2002, 24:867-880.
11. Plum A, Hallas G, Magnus T, Dombrowski F, Hagendorff A, Schumacher B, Wolpert C, Kim J, Lamers WH, Evert M, Meda P, Traub O, Willecke K: Unique and shared functions of different connexins in mice. Curr Biol 2000, 10:1083-1091.
12. Kidder GM, Winterhager E: Intercellular communication in preimplantation development: the role of gap junctions. Front Biosci 2001, 6:D731-6.
13. Dahl E, Winterhager E, Reuss B, Traub O, Butterweck A, Willecke K: Expression of the gap junction proteins connexin31 and connexin43 correlates with communication compartments in extraembryonic tissues and in the gastrulating mouse embryo, respectively. J Cell Sci 1996, 109 (Pt 1):191-197.
14. Reuss B, Hellmann P, Traub O, Butterweck A, Winterhager E: Expression of connexin31 and connexin43 genes in early rat embryos. Dev Genet 1997, 21:182-90.

15. Kruger O, Plum A, Kim JS, Winterhager E, Maxeiner S, Hallas G, Kirchhoff S, Traub O, Lamers WH, Willecke K: Defective vascular development in connexin 45-deficient mice. Development 2000, 127:4179-4193.

16. Winterhager E, Von Ostau C, Gerke M, Gruemmer R, Traub O, Kaufmann P: Connexin expression patterns in human trophoblast cells during placental development. Placenta 1999, 20:627-38.

17. Winterhager E, Kaufmann P, Gruemmer R: Cell-cell-communication during placental development and possible implications for trophoblast proliferation and differentiation. Placenta 2000, 21 Suppl A:S51-8.

18. Horne G, Critchlow JD, Newman MC, Edozien L, Matson PL, Lieberman BA: A prospective evaluation of cryopreservation strategies in a two-embryo transfer programme. Hum Reprod 1997, 12:542-547.

19. Houghton FD, Hawkhead JA, Humpherson PG, Hogg JE, Balen AH, Rutherford AJ, Leese HJ: Non-invasive amino acid turnover predicts human embryo developmental capacity. Hum Reprod 2002, 17:999-1005.

20. Brady G, Iscove NN: Construction of cDNA libraries from single cells. Methods Enzymol 1993, 225:611-623.

21. Nunez C, Bashein AM, Brunet CL, Hoyland JA, Freemont AJ, Buckle AM, Murphy C, Cross MA, Lucas G, Bostock VJ, Brady G: Expression of the imprinted tumour-suppressor gene H19 is tightly regulated during normal haematoipoiesis and is reduced in haematoipoietic precursors of patients with the myeloproliferative disease polycythaemia vera. J Pathol 2000, 190:61-68.

22. Brady G, Billia F, Knox J, Hoang T, Kirsch IR, Vousas EB, Hawley RG, Cumming R, Buchwald M, Sminovitch K: Analysis of gene expression in a complex differentiation hierarchy by global amplification of cDNA from single cells. Curr Biol 1995, 5:909-922.

23. Al-Taher A, Bashein A, Nolan T, Hollingsworth M, Brady G: Global cDNA amplification combined with real-time RT-PCR: accurate quantification of multiple human potassium channel genes at the single cell level. Yeast 2000, 17:201-210.

24. Iscove NN, Barbara M, Gu M, Gibson M, Modi C, Winegarden N: Representation is faithfully preserved in global cDNA amplification exponentially from sub-picogram quantities of mRNA. Nat Biotechnol 2002, 20:940-943.

25. Metcalfe AD, Hunter HR, Bloor DJ, Lieberman BA, Picton HM, Leese HJ, Kimmer SJ, Brison DR: Expression of 11 members of the BCL-2 family of apoptosis regulatory molecules during human preimplantation embryo development and fragmentation. Mol Reprod Dev 2004, 68:35-50.

26. Kimmer SJ, Bentley J, Ciemerych M, Moller CJ, Bock E: Expression of N-CAM in fertilized pre- and periimplantation and parthenogenetically activated mouse embryos. Eur J Cell Biol 1994, 63:102-113.

27. Fleming TP, Ghassemifar MR, Sheth B: Junctional complexes in the early mammalian embryo. Semin Reprod Med 2000, 18:185-193.

28. Cronier L, Frenod JL, Defamie N, Pidoux G, Bertin G, Guibourdenche J, Pointis G, Malassine A: Requirement of gap junctional intercellular communication for human villous trophoblast differentiation. Biol Reprod 2003, 69:1472-1480.

29. Dunk C, Petkovic L, Baczyk D, Rossant J, Winterhager E, Lye S: A novel in vitro model of trophoblast-mediated decidual blood vessel remodelling. Lab Invest 2003, 83:1821-1828.

30. Cross JC, Anson-Cartwright L, Scott IC: Transcription factors underlying the development and endocrine functions of the placenta. Recent Prog Horm Res 2002, 57:211-234.

31. Knoller M, Meinhardt G, Bauer S, Loregger T, Yasicke R, Bloor DJ, Kimmer SJ, Husslein P: Human Hand I basic helix-loop-helix (bHLH) protein: extra-embryonic expression pattern, interaction partners and identification of its transcriptional repressor domains. Biochem J 2002, 361:641-651.

32. Rossant J, Cross JC: Placental development: lessons from mouse mutants. Nat Rev Genet 2001, 2:538-548.

33. Elfgang C, Eckert R, Lichtenberg-Frate H, Butterweck A, Traub O, Klein RA, Huiler DF, Willecke K: Specific permeability and selective formation of gap junction channels in connexin-transfected HeLa cells. J Cell Biol 1995, 129:805-817.

34. Traub O, Look J, Dermietzel R, Brummer F, Huiler D, Willecke K: Comparative characterization of the 21-kD and 26-kD gap junction proteins in murine liver and cultured hepatocytes. J Cell Biol 1989, 108:1039-1051.

35. Butterweck A, Elfgang C, Willecke K, Traub O: Differential expression of the gap junction proteins connexin45, -43, -40, -31, and -26 in mouse skin. Eur J Cell Biol 1994, 65:152-163.

36. Traub O, Eckert R, Lichtenberg-Frate H, Elfgang C, Bastide B, Scheidmann KH, Huiler DF, Willecke K: Immunocytochemical and electrophysiological characterization of murine connexin40 and -43 in mouse tissues and transfected human cells. Eur J Cell Biol 1994, 64:101-112.