Comparison of the Influence of a Packaged Fruit Juice on the Bacterial Adhesion on a Glass Ionomer Cement and an Esthetic Restorative Material In Vitro

Alok Patel1, Sayali P Belsare2, Shweta S Jajoo3, Smita Patil4, Sanket Kunte5, Shweta Chaudhary6

ABSTRACT

Objective: The aim of this research was to evaluate and compare the effect of a packaged orange juice on the two most commonly used restorative materials in pediatric dentistry.

Methodology: Fifteen samples each of 6 mm diameter and 2 mm thickness of a glass ionomer cement (GIC) and an esthetic restorative material were prepared using silicone rings. These were exposed to a packaged orange fruit juice and then placed in a standard culture of Streptococcus mutans. The bacterial adhesion to these samples was evaluated after exposure to the fruit juice for 1 day and for 7 days.

Results: Results from the study show that there is a decrease in the colony forming unit (CFU) after exposure to the packaged fruit juice as opposed to the studies using carbonated acidic drinks, which have shown a consistent rise in the CFU due to a change in the surface morphology.

Conclusion: Within the limitations of this study, it was seen that the consumption of fruit juice may not cause a deteriorating effect on the restorative materials considered. However, the results were not statistically significant and further research is necessary to come to a conclusion regarding the reduction in the bacterial count after exposure to the fruit juice.

Clinical implications: With further research, such studies can help in improving the diet counseling practices.

Keywords: Composite, Fruit juice, Glass ionomer cement, In vitro.

International Journal of Clinical Pediatric Dentistry (2022): 10.5005/jp-journals-10005-2394

INTRODUCTION

The practice of modern dentistry is based on the prevention, early detection, and treatment of dental caries. Various restorative materials have been developed over the past years which are being used routinely in the dental practice. GIC and composites are two of the most frequently used materials in pediatric dentistry. These are heterogeneous materials which may over time, on degradation enable plaque adhesion and promote secondary caries by increasing the bacterial adhesion on the teeth.

The formation of oral plaque is influenced by bacterial conditions of the oral cavity, salivary conditions, eating habits, and the roughness of the surface where it is formed. Secondary caries due to acid production from bacteria including S. mutans is one of the reasons for replacing dental restorations. The adhesion of these bacteria is increased when the surface roughness of the tooth or the restorative material is more.

Fruits are considered to be healthy and are a part of the routine diet of almost all children. A change in the lifestyle has resulted in a change in dietary practices and fruit juices and acidic beverages are now routinely consumed. These varied food habits can affect the teeth as well as the restorations. The longevity and prognosis of any restoration may be dependent on the diet of the child along with other factors. Various foods and beverages have been shown to cause an increase in surface roughness and a consequent increase in the microbial adhesion. Previous studies have shown more losses of surface roughness due to orange and apple juices as compared to carbonated drinks.

Patel et al. in their study concluded that acidic soft drinks caused a surface layer degradation of the restorative material which resulted in an increase of bacterial adhesion. However, no study has evaluated the effect of other beverages like fruit juices on the bacterial adhesion on a restorative material.

Citrus peel extracts have been known to have an antibacterial effect on the caries causing organisms in the previous studies. Even though there is literature showing the effect of citrus fruit juices on the surface hardness and roughness of various restorative materials, their effect on bacterial adhesion has not been evaluated.

Hence, this study evaluated the effect of a packaged fruit juice on the bacterial adhesion of the common caries causing bacteria S. mutans to the restorative materials that are commonly used in the clinical practice.
Influence of a Packaged Fruit Juice on Restorative Materials

Methodology

Material (Company)
- Type 2 Glass Ionomer Cement (GC India Dental)
- Filtek Z350 XT Universal Restorative (3M India)
- Real Fruit Power Preserved Orange Juice (Dabur India)

The Dabur Real Fruit Juice which was used in the study mainly contains the fruit juice concentrate and permitted acidity regulators. The acidity regulator helps in maintaining the pH of the Juice.

Sample Size
The sample size was estimated according to the previous studies. Fifteen samples were prepared for each group which were further divided into three subgroups.

Experimental Groups
The specimens of restorative materials were divided into three groups.
- Group I—control group included five samples.
- Group II—immersed in packaged fruit juice (50 mL) for 1 day which included five samples.
- Group 3—immersed in fruit juice (50 mL) for 7 days which included five samples.

Preparation of the Specimens
To obtain identical specimens, the materials were polymerized using silicon rings which had an external diameter of 9 mm, internal diameter of 6 mm, and thickness of 2 mm. The rings were slightly overfilled and after covering with Mylar Matrix Strip they were pressed between two glass plates for the GIC. For the composite material, polymerization was carried out for 40 seconds on each side using a curing unit using one polymerization mode. Manufacturer’s instructions were followed for the curing. Minimum 20 seconds of curing was done for every 2 mm increment. Polishing was done with fine and superfine polishing discs.

Artificial saliva at room temperature was used to store the specimens. Testing was done 4 weeks after the preparation of the specimens.

Treatment with the Juice
Equal quantity of the juice was taken in test tubes. The prepared samples were placed in these test tubes changing the juice everyday in case of the 7 days experimental group. The sample was removed from the juice using sterile tweezers and the microbial testing was carried out.

Microbial Testing
The culture of *S. mutans* at a density of 1×10^{10} cells/mL was used. It was obtained by incubation for 16 hours at 37°C.

Each material was washed and 100 μL growth culture was seeded onto each sample test and incubated for 4 hours at 37°C in static conditions. The sample tests were gently washed with phosphate buffered saline (PBS) to remove the loosely adherent bacteria. For the total viable count, samples for each group were used. One milliliter of the sample was dispersed in 1 mL sterile Ringer’s solution using a vortex for 3 minutes. 0.1 mL of each serial dilution was deposited into mitis salivarius (MS) agar plates. The plates were incubated at 37°C for 24–48 hours and the number of colonies were counted.

Statistical Analysis
All the statistical analysis was performed using SPSS Version 19 software. Descriptive statistics such as mean and standard deviation were estimated. One-way analysis of variance (ANOVA) test was used to compare the bacterial count at different time intervals within each group followed by *post hoc* test for pairwise comparison. Intergroup comparison was done using independent *t*-test for time each interval. Level of significance was kept at $p \leq 0.05$ (Tables 1 and 2).

Results
The results showed that there was a decrease in the CFU count after the restorative materials were exposed to the packaged fruit juice. There was a sharp decrease in the group exposed to the orange juice for 1 day which increased in the group exposed to the juice for 7 days in the GIC group as well as the composite groups as can be observed from Tables 3 and 4. Table 5 shows the comparison of the change in

Sl. no.	Sample marked as	Parameter	Result	Unit	
1	GIC (control)	A1	$S. mutans$	2.45×10^5	CFU per mL
		A2		2.73×10^5	CFU per mL
		A3		1.36×10^5	CFU per mL
		A4		3.77×10^5	CFU per mL
		A5		4.03×10^5	CFU per mL
2	GIC (1 day juice incubation)	B1		2.12×10^3	CFU per mL
		B2		4.5×10^3	CFU per mL
		B3		5.60×10^2	CFU per mL
		B4		2.04×10^3	CFU per mL
		B5		1.73×10^3	CFU per mL
3	GIC (7 days juice incubation)	C1		1.43×10^4	CFU per mL
		C2		3.0×10^4	CFU per mL
		C3		2.145×10^4	CFU per mL
		C4		4.0×10^4	CFU per mL
		C5		1.170×10^4	CFU per mL
Table 2: Results for composite group

Sl. no.	Sample marked as	Parameter	Result	Unit	
1	Composite (control)	A1	S. mutans	2.47×10^5	CFU per mL
		A2		7.15×10^5	CFU per mL
		A3		4.5×10^5	CFU per mL
		A4		2.21×10^5	CFU per mL
		A5		1.365×10^5	CFU per mL
2	Composite (1 day juice incubation)	B1		3.44×10^2	CFU per mL
		B2		3.40×10^2	CFU per mL
		B3		3.84×10^2	CFU per mL
		B4		3.0×10^3	CFU per mL
		B5		2.04×10^3	CFU per mL
3	Composite (7 days juice incubation)	C1		3.5×10^3	CFU per mL
		C2		2.5×10^3	CFU per mL
		C3		2.73×10^4	CFU per mL
		C4		7.2×10^4	CFU per mL
		C5		8.45×10^4	CFU per mL

Table 3: Comparison of CFU within GIC group

Interval	Mean CFU	Median CFU	p-value	C vs 1 day p-value	C vs 7 days p-value	1 vs 7 days p-value
Control	2.428×10^5	2.73×10^5	0.053	Diff: 2189.2	Diff: 1465	Diff: –724.2
1 day	2.388×10^5	2.04×10^5	0.134	$p = 0.134$	$p = 0.669$	$p = 0.313$
7 days	9.63×10^4	1.17×10^4				

Repeated measure ANOVA test; post hoc Bonferroni test

Table 4: Comparison of CFU within composite group

Interval	Mean CFU	Median CFU	p-value	C vs 1 day p-value	C vs 7 days p-value	1 vs 7 days p-value
Control	1.361×10^5	1.365×10^5	0.304	Diff: 1100.6	Diff: 619.6	Diff: –481
1 day	2.604×10^3	3.40×10^3	0.265	$p = 0.265$	$p = 1.000$	$p = 1.000$
7 days	7.414×10^4	7.2×10^4				

Repeated measure ANOVA test; post hoc Bonferroni test

Table 5: Comparison CFU among both the groups

Interval	Groups	N	Mean	Std. deviation	p-value
Control	GIC	5	2428.0000	1608.88393	0.245
	Composite	5	1361.0000	1012.40679	
1 day	GIC	5	238.8000	191.69429	0.846
	Composite	5	260.4000	145.65988	
7 days	GIC	5	963.0000	919.30408	0.747
	Composite	5	741.4000	1164.64471	

Independent t-test
Influence of a Packaged Fruit Juice on Restorative Materials

It can be observed that the mean CFU was higher in the GIC in the control group as well as on the seventh day. It was slightly lower in the GIC on the first day. However, the intergroup as well as the intragroup differences were not statistically significant as shown by Figs 1 and 2.

Discussion

Bacterial plaque is a biofilm wrapped in an extracellular matrix. Within a few minutes of brushing, salivary mucoproteins create a film that covers the teeth which is then colonized by the microbes in the oral cavity.

The oral cavity offers various different surfaces for plaque accumulation. Quirynen and Bollen have stated the following statements regarding the effect of surface roughness on the plaque accumulation supragingivally: (1) Rough surfaces cause more accumulation and retention of plaque; (2) Plaque on rough surfaces which is undisturbed may give rise to inflammation as it is more mature.

The current practice of dentistry is based more on early detection or prevention of dental diseases. Various restorative materials have been developed which are routinely used in the clinical practice. However, these materials are susceptible to the detection or prevention of dental diseases. Various restorative materials have been developed which are routinely used in the clinical practice, parallel to the GICs. Numerous studies that evaluated effects of beverages on the restorative material’s surface roughness showed a statistically significant correlation between the prevalence of erosion and the consumption of these beverages. The acidic ingredients of these beverages have been shown to be erosive. Most of the fruit drinks contain citric acid as their main component typically in the concentration of 15–45 mmol. The most damaging storage medium for GICs was found to be citric acid, whereas pure composite resin in all the acid solutions remained relatively unaffected. Due to the carboxylic acid in the fruit juices, water-soluble complexes may be formed by producing chelation ions. Carbonated soft drinks, due to its phosphoric acid content cannot combine ions causing less harm.

However, the plaque accumulation is not only dependent on the erosion of restorative material. The effect of the other contents in the beverages, especially in the case of fruit juices will also play a role in the plaque accumulation on the restorative surfaces along with the intrinsic antibacterial activity of the restorative materials. The extract of Citrus sinesis peel has been shown to have antimicrobial activity against dental caries in vitro. Glass ionomer cement is biocompatible to dental pulp, has a property of chemical bonding and fluoride release, which can inhibit the bacterial growth and caries progression. This antibacterial property of the GIC could be the reason for lower S. mutans counts on the GIC samples as compared to the composite samples in the group tested on day 1. This finding was not consistent as the bacterial adhesion on the seventh day was less in the composite group as compared to the GIC group. The reason for this finding could be related to the surface degradation which needs to be evaluated on the first and the seventh day.

In this study, although not statistically significant, there was a decrease in the bacterial adhesion after an exposure to the orange juice. Preservatives in the juice buffering action of the artificial saliva.

In this study, the samples during experimentation were stored in artificial saliva which could have resulted in a buffering action as well as inhibitory effect on the S. mutans.

Limitations

This study evaluated only one bacteria that is S. mutans. However, a number of bacterial species have been implicated in the progression and causation of dental caries.

Only one brand of packaged fruit juice was considered. The composition of these juices varies according to the brands and hence can cause a difference in the results.

The tooth surface and restorative material interface was not taken into consideration.
CONCLUSION

Within the limitations of this study, observations are that the consumption of fruit juice even though it has a deteriorating effect on the restorative materials does not affect the bacterial adhesion.

However, the results are not statistically significant and further research is necessary to come to a conclusion regarding the reduction in the bacterial count after exposure to the fruit juice.

REFERENCES

1. Busscher HJ, Bos R, van der Mei HC. Initial microbial adhesion is a determinant for the strength of biofilm adhesion. FEMS Microbiol Lett 1995;128:229–234. DOI: 10.1111/j.1574-6968.1995.tb07529.x

2. Poggio C, Arciola CR, Rosti F, et al. Adhesion of Streptococcus mutans to different restorative materials. Int J Artif Organs 2009;32(9):671–677. DOI: 10.1177/03913988093200917

3. Bourbia M, Ma D, Cvitkovitch DG, et al. Cariogenic bacteria degrade dental resin composites and adhesives. J Dent Res 2013;92(11):989–994. DOI: 10.1177/0022034513504436

4. Carién A, Nikdel K, Wennerberg A, et al. Surface characteristics and in vitro biofilm formation on glass ionomer and composite resin. Biomaterials 2001;22(5):481–487. DOI: 10.1016/s0142-9612(00)00204-0

5. Altun C, Maden EA, Uçar BD, et al. The erosive effects of honey, molasses and orange juice on the primary teeth of children. Pediatr Dent J 2015;25(2):30–33. DOI: 10.1016/j.pdj.2015.04.002

6. Poggio C, Vialba L, Marchioni R, et al. Esthetic restorative materials and glass ionomer cements: influence of acidic drink exposure on bacterial adhesion. Eur J Dent 2018;12(2):204–209. DOI: 10.4103/ejd.ej_d._219_17

7. Shetty SB, Mahin-Syd-Ismael P, Varghese S, et al. Antimicrobial effects of Citrus sinensis peel extracts against dental caries bacteria: an in vitro study. J Clin Exp Dent 2016;8(1):e71–e77. DOI: 10.4317/jced.52493

8. Rolland SL, McCabe JF, Robinson C, et al. In vitro biofilm formation on the surface of resin-based dentine adhesives. Eur J Oral Sci 2006;114(3):243–249. DOI: 10.1111/j.1600-0722.2006.00359.x

9. Quirynen M, Bollen CM. The influence of surface roughness and surface-free energy on supra- and subgingival plaque formation in man. A review of literature. J Clin Periodontol 1995;22(1):1–14. DOI: 10.1111/j.1600-051x.1995.tb01765.x

10. Beyth N, Domb AJ, Weiss EI. An in vitro quantitative antibacterial analysis of amalgam and composite resins. J Dent 2007;35(3):201–206. DOI: 10.1016/j.jdent.2006.07.009

11. de Alencar E Silva Leite ML, da Cunha Medeiros E Silva FD, Meireles SS, et al. The effect of drinks on color stability and surface roughness of nanocomposites. Eur J Dent 2014;8(3):330–336. DOI: 10.4103/1305-7456.137640

12. Erdemir U, Yıldız E, Eren MM, et al. Surface hardness evaluation of different composite resin materials: influence of sports and energy drinks immersion after a short-term period. J Appl Oral Sci 2013;21(2):124–131. DOI: 10.1590/1678-7757201302185

13. Berg JH. Glass ionomer cements. Pediatr Dent 2002;24(5):430–438. PMID: 12412957.

14. Thomas AE. Further observations on the influence of citrus fruit juices on human teeth. N Y State Dent J 1957;23:424–430.

15. Hamouda IM. Effects of various beverages on hardness, roughness, and solubility of esthetic restorative materials. J Esthet Restor Dent 2011;23(5):315–322. DOI: 10.1111/j.1708-8240.2011.00453.x

16. Barbour ME, Parker DM, Allen GC, et al. Human enamel dissolution in citric acid as a function of pH in the range 2.30 ≤ pH ≤ 6.30—a nanoindentation study. Eur J Oral Sci 2003;111(3):258–262. DOI: 10.1034/j.1600-0722.2003.00039.x

17. Nicholson JW, Gjorgievsk AE, Bajraktarova B, et al. Changes in properties of polyacid-modified composite resins (compomers) following storage in acidic solutions. J Oral Rehabil 2003;30(6):601–607. DOI: 10.1046/j.1365-2842.2003.01041.x

18. Aliping-Mckenzie M, Linden RWA, Nicholson JW. The effect of Coca-Cola and fruit juices on the surface hardness of glass-ionomers and ‘compomers’. J Oral Rehabil 2004;31(11):1046–1052. DOI: 10.1111/j.1365-2842.2004.01348.x

19. Herrera M, Carrión P, Baca P, et al. In vitro antibacterial activity of glass-ionomer cements. Microbiol 2001;104(409):141–148. PMID: 11327108.

20. Fischman S, Tinanoff N. The effect of acid and fluoride release on the antimicrobial properties of four glass ionomer cements. Pediatr Dent 1994;16(5):368–370. PMID: 7831144.

21. Chadwick B, Roy J, Knox J, et al. The effect of topical fluorides on decafcification in patients with fixed orthodontic appliances: a systematic review. Am J Orthod Dentofacial Orthop 2005;128(5):601–606. DOI: 10.1016/j.ajodo.2004.07.049