LETTER - OPEN ACCESS

Machine learning to analyze the social-ecological impacts of natural resource policy: insights from community forest management in the Indian Himalaya

To cite this article: Pushpendra Rana and Daniel C Miller 2019 Environ. Res. Lett. 14 024008

View the article online for updates and enhancements.

Recent citations
- Explaining long-term outcome trajectories in social–ecological systems
Pushpendra Rana et al.
LETTER

Machine learning to analyze the social-ecological impacts of natural resource policy: insights from community forest management in the Indian Himalaya

Pushpendra Rana1 and Daniel C Miller

Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, IL 61801, United States of America

1 Author to whom any correspondence should be addressed.

E-mail: prana5@illinois.edu and dcmiller@illinois.edu

Keywords: forest policy, community forest management, forest livelihoods, deforestation, machine learning, impact evaluation

Abstract

Machine learning promises to advance analysis of the social and ecological impacts of forest and other natural resource policies around the world. However, realizing this promise requires addressing a number of challenges characteristic of the forest sector. Forests are complex social-ecological systems (SESs) with myriad interactions and feedbacks potentially linked to policy impacts. This complexity makes it hard for machine learning methods to distinguish between significant causal relationships and random fluctuations due to noise. In this context, SES frameworks together with quasi-experimental impact evaluation approaches can facilitate the use of machine learning by providing guidance on the choice of variables while reducing bias in estimated effects. Here we combine an SES framework, optimal matching, and Causal Tree-based algorithms to examine causal impacts of two community forest management policies (forest cooperatives and joint state-community partnerships) on vegetation growth in the Indian Himalaya. We find that neither policy had a major impact on average, but there was important heterogeneity in effects conditional on local contextual conditions. For joint forest management, a set of biophysical and climate factors shaped differential policy impacts across the study region. By contrast, cooperative forest management performed much better in locations where existing grazing-based livelihoods were safeguarded. Stronger local institutions and secure tenure under cooperative management explain the difference in outcomes between the two policies. Despite their potential, machine learning approaches do have limitations, including absence of valid precision estimates for heterogeneity estimates and issues of estimate stability. Therefore, they should be viewed as a complement to impact evaluation approaches that, among other potential uses, can uncover key drivers of heterogeneity and generate new questions and hypotheses to improve knowledge and policy relating to forest and other natural resource governance challenges.

1. Introduction

Community-based forest management relies on the involvement of local communities in resource governance to improve social and ecological outcomes. Governments and other funders have invested millions of dollars to promote community participation in forest management [1, 2]. Initiatives include formation of local community institutions and downward transfer of forest resource tenure to enhance and protect forest resources [3, 4]. Evidence of the success of such community-based interventions is mixed and highly heterogeneous [2, 3, 5–7]. Understanding how forest management policies perform, and which social and ecological contexts are more conducive for success over the long term is critical to enhancing their effectiveness [8]. Recent machine learning (ML) approaches hold particular promise for building
knowledge in this domain and on natural resource policy more generally.

ML approaches rely on data to understand generalizable patterns. Unlike commonly used econometric impact evaluation approaches, ML flexibly adapts algorithms based on data to make predictions that can uncover complex structures in the data that are not specified a priori [9, 10]. The ability of ML to use data to make efficient decisions regarding bias-variance trade-offs and allow high degree of interactivity among variables enables such approaches to predict outcomes in a reliable, repeatable manner [11]. ML approaches perform especially well in finding functional forms that work well out-of-sample [9].

These attributes mean that ML approaches have considerable potential for use in conservation and natural resource policy. For example, ML can enable translation of satellite data to ecological and social outcome measures by extracting and scaling meaningful signals to a broader study area based on a few sample locations [10, 12]. This capacity holds particular value for policy evaluation in areas where reliable socio-economic data are limited [12, 13]. ML methods can also complement theory-driven econometric strategies by illuminating different factors shaping outcomes of interest and generating predictions for further testing [14–16]. Because ML approaches can identify variation in impacts that standard interaction effects fail to detect [17], they may have special relevance to environmental and natural resource policy where complex interaction among social and ecological factors is often a defining feature. ML approaches such as decision trees [18], random forests [15] and ensemble methods [19] have been used to assess such heterogeneity. Finally, given the capacity of ML approaches to uncover complex, sometimes unanticipated patterns in data, they can help suggest theory about causal mechanisms [11] and provide information to improve intervention targeting [17].

ML methods are not a panacea, however. They must be used carefully, with recognition of their limitations and advantages compared to other approaches. For example, the predictive functions used in ML can pose a challenge for causal interpretation [20–22]. Further, estimates derived from ML models do not equate to parameter estimates obtained in regression or other econometric methods and the absence of standard errors limit inference after model selection. Interpreting the estimated parameters from ML methods as indicative of the underlying structure of the data is naive and requires careful attention [9]. For these reasons, ML should be considered a complement to rather than a replacement for theory-based econometric approaches.

To date, ML approaches have seen little application in relation to forest and natural resource policy. Limited data availability, the complexity of many social-ecological contexts, and uncertainty about the potential of ML help explain why such approaches have not found significant uptake in this domain. Forest programs do not usually yield ‘big data’ and lack granular-level data on features and related outcomes, restricting ability to use ML [23]. The social-ecological systems (SESs) where forest programs are implemented are often complex, challenging efforts to capture relevant variables and feedbacks among them linked with policy outcomes [24–26]. Given this complexity, ML algorithms may also struggle to distinguish between significant patterns and random fluctuations due to correlated noise.

Our goal in this paper is to demonstrate that ML approaches can make a valuable contribution to understanding natural resource policy and that it is increasingly possible to use them in this field. We integrate a ML approach with SES theories and econometric methods to analyze the social-ecological impacts of two different community forest management policies, cooperative forest management (CFM) and joint forest management (JFM), in the Indian Himalaya. In particular, we use Causal Tree (CT) and Causal Forest (CF) decision-tree algorithms [18] in combination with an SES framework and optimal matching to estimate the heterogeneous causal impacts of these policies and identify key factors associated with observed ecological outcomes. Our approach has wide potential to be applied in diverse settings around the world to build knowledge on the causal pathways and impacts of forest and other natural resource policies.

2. Data and methods

Data in our study derive from 202 Forest Management Regions (FMRs) in Kangra District, Himachal Pradesh, India (figure 1) over a period of 14 years (2002–2016). The treatment group includes all FMRs that were under CFM and JFM between 2002 and 2006. The CFM treatment group consists of 15 FMRs where CFM was implemented while the JFM treatment group includes the 38 FMRs where JFM was implemented.

Building from institutions put in place under the Kangra Forest Cooperative Societies Scheme starting in the 1940s [27, 28], the state government began to reinvest in CFM in Kangra district from 2002–2005 to support sustainable forest management. This investment included financial and technical support to village-level forest cooperative bodies and organizational support to the formation of a federation of forest cooperatives mobilized by a local NGO. Investment started in 2002 and each participating FMR had received early support by 2005. For this reason, we use data from 2002 to 2005 as a baseline in our impact assessment.

JFM (a Forest Development Agency program funded by the national government) was the flagship community participatory initiative for forests in India.
starting in the 1990s [29–31]. In the early 2000s, JFM interventions were begun in several of the study FMRs to involve communities in forest regeneration and protection. This program supported local participation in afforestation programs to enhance tree cover and boost local livelihoods. Communities were organized into JFM committees to raise and protect plantations on public lands [29, 31]. A key difference between this program and CFM is that it did not allocate forest property rights to communities or the right to derive revenue from forest resources claimed by the state. The baseline for this program is the same as that for CFM.

We expect CFM regimes to improve long-term ecological outcomes at the FMR level through collective action due to the institutional strength and tenure rights of the forest cooperatives. Cooperative members may supply labor, resources, and information to other members and forest officials, and may help engender sustainable forest resource use through mutual monitoring and enforcement of rules [32, 33]. On the other hand, the transient nature of village institutions and absence of secure forest tenure over forests under JFM leads us to hypothesize that this intervention will have less favorable impact on long-term ecological outcomes.

The outcomes of these two policies are measured using a Normalized Difference Vegetation Index (NDVI), a proxy for vegetation growth [34]. We calculated NDVI as an average value of NDVI (mean, annual) for FMRs for the period between 2011 and 2016. We expect a temporal lag of 5–9 years between the start of CFM and JFM (during the 2002–2005 period) and their ecological outcomes (e.g. improved vegetation growth). The reason is that planted seedlings or protected natural regenerated areas typically require at least five years to yield substantial improvement in NDVI values (i.e. increased tree cover). Because FMRs in the study area do not usually have very high NDVI values, NDVI saturation is unlikely to be an issue in our analysis.

2.1. Variable selection
To analyze the effects of these two forestry policies, we first identified a set of 28 relevant SES variables and associated indicators (tables 1 and S1 are available online at stacks.iop.org/ERL/14/024008/mmedia) based on SES and common property research [24–26, 35] and our in-depth knowledge of the study context. Indicator data derive from publicly available secondary social and spatial datasets (see references in table S1). We included this range of variables to allow our ML approach to choose those with the highest importance in predicting the heterogeneous impacts of the two forestry policies. Our approach enabled us to explore potential interaction effects among variables.
Table 1. Social-ecological system variables related to long-term ecological outcomes (Normalized Difference Vegetation Index, mean annual) in forest management regions (FMRs) in Kangra District, Himachal Pradesh, India.

Variable	Indicators	All FMRs (n = 202)	CFM FMRs (n = 15)	JFM FMRs (n = 38)
Sub-system 1: actors				
1. Users	Number of households	1080	1987	764
	Number of villages	13	16	9
	Number of cultivators	317	469	239
	Number of marginal people	1067	2175	765
2. Socioeconomic conditions	Number of literate people	3685	6930	2560
	Number of unemployed people	1011	1537	823
	Economic activity (1–63, values)	5.05	7.15	3.62
	Road density (km/km²)	1.11	1.12	0.95
3. Importance of resource	Number of smallholdings	921	785	1083
Sub-system 2: governance				
4. State afforestation programs	Area planted (ha)	80.48	6.45	5.09
	Broadleaf sp. planted (%)	38.36	42.76	38.14
	Number of nurseries	0.27	0.33	0.37
Sub-systems 3 and 4: resource units and resource system				
5. Mobile animals	Number of grazing animals	4970	5528	5358
6. Size of resource system	Forest beat area (ha)	1756.14	2487.08	1742.02
	Tree cover (ha)	1037.7	1014.58	1100.83
	Crop acreage (ha)	41.44	58.56	34.66
	Grass acreage (ha)	16.47	11.85	17.83
	Bare land acreage (ha)	0.97	0.06	1.9
7. System productivity	Soil depth (cm)	95.1	100	88.16
	Total carbon (kg C m⁻²)	7.58	6.87	7.92
	Total organic carbon (% weight)	1.36	1.16	1.48
	Available soil water capacity (mm)	99.38	123.33	80.92
	Baseline vegetation/NDVI (−1 to 1)	0.5	0.49	0.5
8. Location	Altitude (m)	874.79	658.79	1099.6
Interactions (I)				
9. Conflict among users	Number of forest fires	1.96	0.24	0.1
Outcomes (O)				
10. Ecological performance	NDVI (−1 to 1)	0.5	0.51	0.53
Related ecosystems (ECO)				
11. Climatic factors	Temperature (degree Celsius)	18.26	19.68	16.15
	Precipitation (mm)	77.09	78	76.65
	Land surface temperature (Kelvin)	297.05	298.5	295.6

Note: all values are averages for the full study period (2002–2016); CFM, cooperative forest management; JFM, joint forest management. Further details on these variables and their sources can be found in the supplementary information, table S1.

in order to predict effects for specific FMRs rather than only an average treatment effect for the entire population under study.

2.2. CT estimator

CT is a decision tree–based approach derived from ML methods to recursively partition units under study into smaller groups so as to identify heterogeneous treatment effects [18]. The method builds on CART (Classification and Regression Trees) with the difference that CT focuses on estimating conditional average treatment effects (CATE) rather than predicting outcomes. CT is useful in cases where number of attributes exceeds the number of units studied and in cases where the functional forms of relationships between the attributes and the treatment effects are not known [18].

We used an ‘honest’ approach [18] in which the CT algorithm does not use the same information for selection of the model structure as for estimation given this model structure. To do so, the sample is split into two parts, one part for constructing the tree (including the cross-validation) and a second part for estimating treatment effects within leaves of the tree. This method uses unbiased estimates of the mean squared error as the criterion to evaluate the causal effect of the treatment. The honest approach is used to guarantee
consistency or asymptotic (large sample) normality of predictions [18].

CT assumes random assignment to treatment group. In observational studies like ours, this assumption is hard to fulfill. Thus, we used optimal matching to create treatment and control groups to reduce possible bias from simple comparisons of treated and control units. We then used the matched treated and control groups in a CT algorithm (in R) to calculate the heterogeneous causal effects of CFM and JFM interventions.

The tuning parameter for the CT function is to have a minimum number of treated and control observations per leaf to calculate treatment effect within each leaf. In the splitting function, there is a restriction on the set of potential split points. Later in the splitting process the covariate values within each leaf and each treatment group are rescaled to ensure that the same number of treatment and control observations are moved from the right leaf to the left leaf when moving from one potential split point to the next. The causal function uses a minimum of five cross-validation samples as another tuning parameter to produce the best-fitted predictive model of heterogeneous treatment effects [18].

Our CT specification uses an honest splitting rule with fit as a cross-validation method. We used 5-fold cross-validation with a discrete splitting option. The treatment probability is set as propensity = 0.5 for the CT splitting rule. Table S2 presents complexity parameters and normalized cross-validation error. For tree selection we chose a complexity parameter corresponding to the minimum cross-validation error. Thereafter we used the prune () function to trim the selected tree by removing the branches using features with low importance. Pruning increased the predictive performance of the tree by reducing overfitting [36].

We used CF to estimate standard errors associated with causal effects, particularly the CATE for the whole region and treated FMRs (CATT, CATE on the treated) [15, 37]. This approach provides more stable estimates compared to CT, even as CT algorithm results are comparatively easier to interpret from a policy perspective [15, 37]. We also used the CF algorithm (based on growing of 5000 CTs) to validate predictors of the heterogeneous treatment effects identified as most important by the CT algorithm [15, 37].

2.3. Optimal matching

We used optimal matching [38] to create a matched control group for the treated FMRs in our analysis. This matching-based identification strategy is a quasieperimental methodology to evaluate various programs and policies [38–40]. We chose optimal matching due to its ability to identify the same sets of control units for the overall matched treated units with the smallest average absolute distance across all matched pairs. This approach was also preferable due to the absence of a large number of appropriate controls for our treated units [41].

We matched on a subset of the 28 variables in our SES framework most likely to influence the uptake of studied policies and vegetation outcomes in FMRs (table S3). This selection was based on previous research and our contextual knowledge of the study region [31, 42]. We expect that our chosen set of factors largely capture the background differences between control and treatment groups and effectively serve as proxies for the effects of potential moderators/variables that were not included. We then used the chosen variables for matching treatment and control groups to obtain a counterfactual for the treated FMRs.

Optimal matching created matched control groups for FMRs under CFM and JFM interventions from the available pool of potential control FMRs in Kangra District. For the group of 15 CFM-treated FMRs, optimal matching created a control group of 75 FMRs out of 187 available control FMRs (out of the 202 total FMRs). In the case of JFM, for the treated group of 38 FMRs, optimal matching created a control group of 152 FMRs out of 164 available control FMRs. The covariate balance is given in the supplementary information (<0.25 standardized t diff as threshold; see table S3).

3. Results and discussion

Neither CFM nor JFM appear to have had large overall impacts on long-term vegetation growth (NDVI, 2011–2016) (figure 2, table 2). Results using the CT method show that the magnitude of the average treatment effects of both policies was very low in the region (CFM: −0.000006; JFM: 0.004). These findings are further corroborated by the CF algorithm, which also shows very low and non-significant CATE for both policies (table 2).

These results mask important heterogeneity, however. The next two sections therefore describe the heterogeneous causal effects of CFM and JFM using CT and elicit the contextual conditions that facilitate favorable causal impacts for both policies.

3.1. Heterogeneous causal effects of CFM

CFM results were heterogeneous and varied according to different contextual social and ecological factors (figure 2(a), table 3). Grass acreage was the most important predictor. Variable grass acreage in FMRs initiated the first split of the CT to obtain two subgroups: one with FMRs where CFM led to increases in vegetation growth and the other where CFM had a negative impact on vegetation growth. FMRs with higher values of grass acreage (≥7.7 Hectares) showed a positive impact on vegetation growth (0.02 increase in NDVI; observations 73%) whereas FMRs
with lower grass acreage (<7.7 hectares; observations 27%) showed a sizeable negative impact on vegetation growth (−0.07). The number of marginal people was the second most important predictor, with the causal impact of CFM on vegetation growth about three times more in FMRs with a higher number of marginal people (>1304) compared to the FMRs with less. The CT we selected has a complexity parameter

![Causal Tree](image)

Figure 2. Causal Tree: heterogeneous causal impacts of (a) cooperative forest management (CFM) and (b) joint forest management (JFM).
corresponding to minimum cross-validation error to maximize predictive power without ‘overfitting’ (size of tree = 15; table S2(a), figure S1) [18].

Under CFM, forest cooperatives have durable tenure over their forests. Secure tenure is expected to improve local livelihoods due to improved access to biomass (e.g. for energy needs) and lower cost of sustainable forest management due to higher local participation in the protection and management of forests [43–45]. Moreover, durability of institutional tenure has been shown to be positively related to improved forest condition [46].

Our results confirm these prior findings and show that the impact of secure tenure was conditional on local social and ecological contextual factors (table 3(a)). CFM led to a positive impact on vegetation growth in the medium to long term (5–9 years after intervention), especially when members of the cooperatives had greater access to grazing areas (>7.7 ha, first causal pathway, 18th–100th percentile). These grazing areas provide members of community organizations with a regular source of income through grass auctions and grazing resources to support local livestock-based livelihoods.

We find that CFM led to increases in NDVI even in FMRs with a higher number of marginal people (causal pathways II–IV, 74th–100th percentile). Marginalized populations are expected to have higher forest dependence due to their heavy reliance on local forest resources for subsistence needs such as grazing and collection of fuelwood, fodder, and small timber. However, CFM appears to moderate such forest dependence, leading to positive long-term vegetation growth as found in other studies in the region [27, 28].

Finally, we find that the ecological performance of CFMs was much better in the context of FMRs with larger grass acreage, a marginalized population, and larger overall area (71st–100th percentile) (causal pathway IV). This finding is likely due to better availability of resources as FMR size increases, which may help disperse local user pressure on forests.

Several contextual social and ecological factors were not conducive to CFM success (table 3(b)). Despite the presence of strong forest tenure, low availability of grazing lands in the FMRs (1st–17th percentile) can reverse the positive effects of tenure over long-term social and ecological outcome trajectories. This result indicates that local participation in forest improvement and protection efforts is unlikely in the absence of sufficient grazing lands. This unfavorable impact of CFM on vegetation growth further intensifies with increasing numbers of cultivators (farmers). More cultivators likely means greater reliance on forests for subsistence needs and, in turn, increased pressures on forests resulting in decreased vegetation growth [32, 42].

3.2. Heterogeneous causal effects of JFM

The social and ecological contexts conducive to long-term vegetation growth were different in JFM than CFM. Temperature was the most important variable shaping the heterogeneous impacts of JFM in the study region (figure 2(b), table 4). JFM led to higher and positive impact on vegetation growth in FMRs that experienced 18 °C or more temperature (0.03; observations 50%) compared to FMRs with less than 18 °C (−0.009; observations 50%). However, out of 50% FMR observations with temperature less than 18 °C, the impact of JFM on vegetation growth varied with area of the FMR. FMRs with area less than 2201 hectares experienced positive impact of JFM compared to FMRs with area greater than or equal to 2201 hectares. Further splitting of the data explains additional treatment heterogeneity conditional on important predictors. As for our CFM analysis, we selected CT with a complexity parameter corresponding to minimum cross-validation error (size of tree = 9; table S2(b) and figure S2) [18].

JFM mainly targeted low hill areas and plains in the study region, which have higher average temperatures. The reason for this prioritization was to maximize the likelihood of success for desired forest plantation species such as teak (Tectona grandis), bamboo (Dendrocalamus strictus), khair (Acacia catechu), and shisham (Dalbergia spp.). Different social and ecological contexts were conducive to the higher level of growth found in low temperature areas. For example, JFM implemented in medium-sized FMRs situated at low to moderate elevations with high baseline tree cover were more likely to experience favorable vegetation growth (table 4(a)). This result may be because of good soil depth and more acreage for extending vegetation cover. Regions with higher baseline tree cover indicate more monitoring and supervision from forest agencies that further help vegetation growth in these areas. Previous vegetation cover may also positively influence vegetation growth [42].

Table 2: Conditional average treatment impacts of cooperative forest management (CFM) and joint forest management (JFM) on NDVI.

Forest policy	Conditional average treatment effect for the whole region (CATE)	Conditional average treatment effect on treated FMRs (CATT)
CFM	0.001 (0.004)	0.0004 (0.005)
JFM	0.0009 (0.002)	0.0004 (0.003)

Note: results based on the Causal Forest (CF) algorithm. CF specification: number of trees = 5000; honesty = false; number of fit trees in each ‘mini forest’ in tuning model = 200. Standard errors in brackets.
Table 3. Heterogeneous causal impacts of cooperative forest management (CFM) on NDVI.

Causal pathways	Predictor I	Predictor II	Predictor III	Predictor IV	Conditional average treatment effects
a. Conditions associated with positive impacts					
I	Grass acreage (≥ 7.7 ha)a				0.02
II	Grass acreage (≥ 7.7 ha)	Number of marginal peopleb ≥ 1304			0.03
III	Grass acreage (≥ 7.7 ha)	Number of marginal people ≥ 1304	Grass acreage (≥ 11 ha)		0.07
IV	Grass acreage (≥ 7.7 ha)	Number of marginal people ≥ 1304	Grass acreage (≥ 11 ha)	Forest beat area ≥ 1932 had	0.16
b. Conditions associated with negative impacts					
I	Grass acreage (<7.7 ha)				-0.07
II	Grass acreage (<11 ha)	Number of cultivators $= 610$			-0.08

Note: predictors I, II, III, IV are ranked as per their importance in achieving the best performance predictive CT algorithm (with minimum cross-validation error and optimal level of complexity).

a Value of 7.7 ha is 17th percentile on the total distribution of grass acreage in the study area (202 FMRs).

b Number of marginal people represents individuals belonging to the Scheduled Caste category. This official category is designated by the government as historically disadvantaged and socially and economically marginal for affirmative action.

c Value of 1304 is 74th percentile on the total distribution of marginal population in the study area.

d Value of 1932 ha is 71st percentile on the total distribution of areas of forest beats in the study area.

e Value of 610 is 87th percentile on the total distribution of number of cultivators (farmers) in the study area.
Table 4. Heterogeneous causal impacts of joint forest management (JFM) on NDVI.

Causal pathways	Predictor I	Predictor II	Predictor III	Predictor IV	Conditional average treatment effects (ATT)
a. Conditions associated with positive impacts					
I	Temperature ≥ 18 °C				0.03
II	Temperature < 18 °C	Forest beat area < 2201 ha			0.005
III	Temperature < 18 °C	Forest beat area < 2201 ha	Altitude < 1036 m		0.003
IV	Temperature < 18 °C	Forest beat area < 2201 ha	Altitude < 1036 m	Tree cover $= 735$ ha	0.02
b. Conditions associated with negative impacts					
I	Temperature < 18 °C				−0.009
II	Temperature < 18 °C	Forest beat area $= 2201$ ha			−0.04
III	Temperature < 18 °C	Forest beat area $= 2201$ ha	Crop acreage $= 6.7$ ha		−0.06

Note: predictors I, II, III, IV are ranked as per their importance in achieving the best performance predictive CT algorithm (with minimum cross-validation error and optimal level of complexity).

1 Value of 18 °C is 47th percentile on the total distribution of temperature in the study area (202 FMRs).
2 Value of 2201 is 76th percentile on the total distribution of areas of forest beats in the study area.
3 Value of 1036 m is 80th percentile on the total distribution of elevation values in the study area.
4 Value of 735 ha is 33rd percentile on the total distribution of tree cover acreage in the study area.
5 Value of 6.7 ha is 6th percentile on the total distribution of crop acreage in the study area.
We found two main causal pathways where JFM policies had negative impacts on long-term vegetation growth (table 4(b)). CFM did not perform well in FMRs that experienced low temperatures even when these regions were large. This finding suggests failure of JFM strategies to trigger vegetation growth in colder mountainous areas where local and migratory grazing is common—often resulting in loss of vegetation [47]. Even regions with more area under crops experienced loss of vegetation, which suggests the inability of JFM to manage agriculture-related dependence on the forests.

Results using the CF algorithm identified a similar set of variables having high predictive importance for heterogeneous causal impacts as those for the CT-based results (figure S3). Though there are some small differences (e.g. number of marginal people was a stronger predictor for CFM and temperature was less important for JFM), these results help validate our main findings based on the CT algorithm [37].

4. Conclusion

This study has shown that CT and CF ML approaches can be used to shed new light on the causal impacts of forest and other natural resource policies. They have particular value in identifying key factors conducive to policy success and variability in outcome pathways. CT may help provide an interpretable description of treatment heterogeneity for policies whereas CF can be used to obtain more stable estimates and validate variables identified as highly important in predicting the treatment effects of policies [37]. Our results indicate that both CFM and JFM have had little overall impact on long-term vegetation growth but this effect is heterogeneous and varied in direction and magnitude based on contextual factors.

CFM and JFM followed different pathways to achieve long-term vegetation growth in places where both policies have yielded favorable impact. Due to its more robust institutions coupled with secure forest tenure, CFM appears to follow a socially beneficial path to higher vegetation growth. This ecological change has occurred without harming existing livestock-based livelihoods as causal pathways to such growth include a minimum acreage under grass in the FMRs. The continuation of strong incentives to maintain forests, including sale of grass from protected estuaries, seems to have mobilized local community institutions to protect them. By comparison, in the case of JFM, biophysical attributes comprised the major factor facilitating vegetation growth.

Interpretation of our results and application of the methods we use require care and clear acknowledgment of potential limitations. We note, first, that the splits generated by decision-tree based methods such as CT are sensitive to subsampling [9, 37]. The CF algorithm can help assess the extent to which CT results are stable. In this study, the variables identified as important through CT were largely stable when CF algorithm was used. Second, obtaining valid inference on treatment effect heterogeneity through tree-based methods is difficult. This challenge is mainly due to problems of post-hoc multiple hypotheses testing and post-hoc searching across the set of covariates used in analysis, which may result in spurious significant results [9, 17, 37]. Finally, findings are valid conditional on the assumption that the selected set of covariates used in matching control and treatment groups in optimal matching adequately ensure ‘unconfoundedness’ of the treatment assignment [16]. As explained above, we believe this assumption holds in this study.

Despite these challenges, our study shows that compared to point estimates of ATT resulting from conventional IE approaches, ML enables identification of contexts where both policies perform better in driving long-term vegetation growth. Moreover, our study has been able to identify key drivers from a large set of variables shaping the heterogeneous treatment effects of different forestry policies.

Understanding how contextual differences shape the outcome trajectories of natural resource policies through ML-based approaches can inform the targeting and design of more effective policy interventions. For example, our results suggest that future community-based plantation programs in the Indian Himalaya would do well to provide alternative grazing options to forest communities and facilitate secure rights over forests to foster positive long-term vegetation growth trajectories. Generally, our findings support research showing that forestry policies that support strong local institutions and tenure are more likely to drive positive outcomes [6, 25, 35].

To the best of our knowledge, this study is the first application of ML in the context of natural resource policy and governance. There is much potential to extend such approaches, particularly in identifying the factors underlying a given prediction of policy impact and the pathways generating heterogeneous outcomes. Our experience underscores the need for future applications of ML algorithms in this field to carefully consider the data-generating process, use social and economic theories to guide the choice of variables and regularization or tuning parameters, and take measures to validate the robustness of results to increase credibility of the chosen algorithm. We join other scholars in this field in calling for further developments of ML methods to not only identify key drivers of heterogeneity from a large pool of variables but also to provide valid inferences or confidence intervals for the estimated treatment effect heterogeneity [16, 37]. Until then, by discovering key drivers of heterogeneity, such methods can help generate new questions and hypotheses for testing and validation through causal inference tools to accelerate scientific progress and improve prediction-based policy decisions relating to natural resources.
Acknowledgments

We thank the Himachal Pradesh Forest Department for sharing data for this study. We also thank two anonymous reviewers, and participants at the 2018 World Congress of Environmental and Resource Economists meeting in Gothenburg, Sweden, and the 2018 Bloomberg Data for Good Exchange Conference in New York for helpful comments on earlier versions of this manuscript. This work was supported by the USDA National Institute of Food and Agriculture, Hatch project no. 1009327 and McIntire-Stennis project no. 1012149.

ORCID iDs

Pushpendra Rana @ https://orcid.org/0000-0001-8626-3351
Daniel C. Miller @ https://orcid.org/0000-0001-6812-0314

References

[1] Agrawal A, Cashore B, Hardin R, Shepherd G, Benson C and Miller D 2013 Economic Contributions of Forests Backgr. Pap.1 United Nations Forum on Forests (Istanbul)

[2] Bowler D E, Buyung-Ali L M, Healey J R, Jones J P, Knight T M and Pullin A S 2012 Does community forest management provide global environmental benefits and improve local welfare? Front. Ecol. Environ. 10 29–36

[3] Lund J F, Rutt R L and Ribot J 2018 Trends in research on forestry decentralization policies Curr. Opin. Environ. Sustain. 32 17–22

[4] Ribot J C 2004 Waiting for democracy: the politics of choice in natural resource decentralization (World Resources Institute, Washington, DC) (http://hdl.handle.net/10919/68068)

[5] Ece M, Murombedzi J and Ribot J 2017 Disempowering democracy: local representation in community and carbon forestry in Africa Conserv. Soc. 15 357–70

[6] Ojamen M, Zhou W, Miller D C, Nieto S H, Mshale B and Petrokofsky G 2017 What are the environmental impacts of property rights regimes in forests, fisheries and rangelands? Environ. Evol. 6 12

[7] Galvin K, Reeton T and Luizza M 2018 African community-based conservation: a systematic review of social and ecological outcomes Ecol. Soc. 23 39

[8] Miller D C, Rana P and Wahlin C B 2017 A crystal ball for forests?: analyzing the social-ecological impacts of forest conservation and management over the long term Environ. Evol. 8 40–62

[9] Mullainathan S and Spiess J 2017 Machine learning: an applied econometric approach J. Econ. Perspect. 31 87–106

[10] Blumenstock J E 2016 Fighting poverty with data Science 353 753–4

[11] Kleinberg J, Lakkakarju H, Leskovec J, Ludwig J and Mullainathan S 2017 Human decisions and machine predictions Q. J. Econ. 133 237–93

[12] Jean N, Burke M, Xie M, Davis W M, Lobell D B and Ermon S 2016 Combining satellite imagery and machine learning to predict poverty Science 353 790–4

[13] Blumenstock J, Cadamuro G and On R 2015 Predicting poverty and wealth from mobile phone metadata Science 350 1073–6

[14] Abadie A and Kasy M 2017 The Risk of Machine Learning (arXiv:1705.10955)

[15] Wager S and Athey S 2017 Estimation and inference of heterogeneous treatment effects using random forests J. Am. Stat. Assoc. 113 1228–42

[16] Athey S 2018 The impact of machine learning on economics The Economics of Artificial Intelligence: An Agenda (National Bureau of Economic Research, Cambridge, MA) (in preparation) (Chicago, IL: University of Chicago Press) (https://www.nber.org/chapters/c14009)

[17] Davis J and Heller S R 2017 Using causal forests to predict treatment heterogeneity: an application to summer jobs Am. Econ. Rev. 107 546–50

[18] Athey S and Imbens G 2016 Recursive partitioning for heterogeneous causal effects Proc. Natl Acad. Sci. 113 7535–60

[19] Grimmer J, Messing S and Westwood S J 2017 Estimating heterogeneous treatment effects and the effects of heterogeneous treatments with ensemble methods Polit. Anal. 25 413–34

[20] Ferraro P J and Hanauer M M 2014 Advances in measuring the environmental and social impacts of environmental programs Annu. Rev. Environ. Resour. 39 495–517

[21] Jayachandran S, De Laat J, Lambin E F, Stanton C Y, Audy R and Thomas N F E 2017 Cash for carbon: a randomized trial of payments for ecosystem services to reduce deforestation Science 357 67–73

[22] Ferraro P J, Hanauer M M, Miteva D A, Canavire-Bacarreza G J, Pattanayak S K and Sims K R 2013 More strictly protected areas are not necessarily more protective: evidence from Bolivia, Costa Rica, Indonesia, and Thailand Environ. Res. Lett. 8 025011

[23] Athey S 2017 Beyond prediction: using big data for policy problems Science 355 483–5

[24] Ostrom E 2009 A general framework for analyzing sustainability of social-ecological systems Science 325 419–22

[25] Agrawal A 2001 Common property institutions and sustainable governance of resources World Dev. 29 1649–72

[26] Andries J M, Janssen M A and Ostrom E 2004 A framework to analyze the robustness of social-ecological systems from an institutional perspective Ecol. Soc. 9 18

[27] Ahal R 2002 The Politics of Cooperative Forest Management: The Kangra Experience (Himalach Pradesh: International Centre for Integrated Mountain Development)

[28] Springate-Baginski O 2001 ‘A boat that cannot reach either bank’: lessons from a long-term analysis of the cooperative forest societies of Kangra District, Himachal Pradesh, India Himalaya J. Assoc. Nepal Himal. Stud. 21 9

[29] Sundar B 2017 Joint forest management in India—an assessment Int. For. Rev. 19 495–511

[30] Bhatt A W 2018 Forest conservation and livelihood generation through joint forest management in India Forest 3

[31] Rana P 2014 Elite capture and Forest Governance in India (Champaign, IL: University of Illinois Press)

[32] Chhatre A and Agrawal A 2008 Forest commons and local enforcement Proc. Natl Acad. Sci. 105 13286–91

[33] Persha L, Agrawal A and Chhatre A 2011 Social and ecological synergy: local rulemaking, forest livelihoods, and biodiversity conservation Science 331 1606–8

[34] Pettorelli N, Vík J O, Mysterud A, Gaillard J-M, Tucker C J and Stenness N C 2005 Using the satellite-derived NDVI to assess ecological responses to environmental change Trends Ecol. Evol. 20 503–10

[35] Ostrom E 1990 Governing the Commons: The Evolution of Institutions for Collective Action (Cambridge: Cambridge University Press)

[36] Athey S, Imbens G, Kong Y and Ramachandra V 2017 An introduction to recursive partitioning for heterogeneous causal effects estimation using causal tree package (Accessed: July 2018) (https://github.com/susanatheny/causalTree)

[37] O’Neill E and Weeks M 2018 Causal Tree Estimation of Heterogeneous Household Response to Time-Of-Use Electricity Pricing Schemes (arXiv:1810.09179)

[38] Ho D, Imai K, King G, Stuart E and Whitworth A 2018 Nonparametric Preprocessing for Parametric Causal
Inference, Package ‘MatchIt’; Version 3.0.2 (https://cran.r-project.org/web/packages/MatchIt) (Accessed: July 2018)

[39] Rosenbaum P R 1989 Optimal matching for observational studies J. Am. Stat. Assoc. 84 1024–32
[40] Hansen B B 2004 Full matching in an observational study of coaching for the SAT J. Am. Stat. Assoc. 99 609–18
[41] Gu X S and Rosenbaum P R 1993 Comparison of multivariate matching methods: structures, distances, and algorithms J. Comput. Graph. Stat. 2 405–20
[42] Agrawal A and Chhatre A 2011 Strengthening causal inference through qualitative analysis of regression residuals: explaining forest governance in the Indian Himalaya Environ. Plan. A 43 328–46
[43] Chhatre A, Lakhanpal S, Larson A M, Nelson F, Ojha H and Rao J 2012 Social safeguards and co-benefits in REDD+: a review of the adjacent possible Curr. Opin. Environ. Sustain. 4 654–60
[44] Larson A M 2011 Forest tenure reform in the age of climate change: lessons for REDD+ Glob. Environ. Change 21 540–9
[45] Buntaine M T, Hamilton S E and Millones M 2015 Titling community land to prevent deforestation: an evaluation of a best-case program in Morona-Santiago, Ecuador Glob. Environ. Change 33 32–43
[46] Agrawal A and Chhatre A 2006 Explaining success on the commons: community forest governance in the Indian Himalaya World Dev. 34 149–66
[47] Saberwal V K 1996 Pastoral politics: gaddi grazing, degradation, and biodiversity conservation in Himachal Pradesh, India Conserv. Biol. 10 741–9