Culex pipiens and **Culex restuans** mosquitoes harbor distinct microbiota dominated by few bacterial taxa

Ephantus J. Muturi1*, Chang-Hyun Kim1, Jeffrey Bara2, Elizabeth M. Bach1 and Madhura H. Siddappaji1

Abstract

Background: Mosquitoes host diverse microbial communities that influence many aspects of their biology including reproduction, digestion, and ability to transmit pathogens. Unraveling the composition, structure, and function of these microbiota can provide new opportunities for exploiting microbial function for mosquito-borne disease control.

Methods: MiSeq® sequencing of 16S rRNA gene amplicons was used to characterize the microbiota of adult females of *Culex pipiens* L. and *Cx. restuans* Theobald collected from nine study sites in central Illinois.

Results: Out of 195 bacterial OTUs that were identified, 86 were shared between the two mosquito species while 16 and 93 OTUs were unique to *Cx. pipiens* and *Cx. restuans*, respectively. The composition and structure of microbial communities differed significantly between the two mosquito species with *Cx. restuans* hosting a more diverse bacterial community compared to *Cx. pipiens*. Wolbachia (OTU836919) was the dominant bacterial species in *Cx. pipiens* accounting for 91% of total microbiota while *Sphingomonas* (OTU817982) was the dominant bacterial species in *Cx. restuans* accounting for 31% of total microbiota. Only 3 and 6 OTUs occurred in over 60% of individuals in *Cx. pipiens* and *Cx. restuans*, respectively. There was little effect of study site on bacterial community structure of either mosquito species.

Conclusion: These results suggest that the two mosquito species support distinct microbial communities that are sparsely distributed between individuals. These findings will allow investigations of the role of identified microbiota on the spatial and temporal heterogeneity in WNV transmission and their potential application in disease control.

Keywords: *Culex pipiens*, *Culex restuans*, Microbiota

Background

The urgent need to develop novel tools for controlling mosquito-borne diseases such as malaria, dengue, Chikungunya, and West Nile Virus (WNV) has stimulated research interest in understanding the structure and function of mosquito microbiota. These studies have ranged from field surveys on the composition and diversity of mosquito microbiota [1–5] to investigations of their impact on host fitness and response to parasitic and viral infections [6–9]. Results from these studies have revealed that adult mosquitoes host a community of natural microbiota [1–3] that contributes to host survival, reproduction, nutrition, and immunity [7, 8, 10–13]. Some endogenous microbes have also been shown to reduce vector lifespan [14, 15] and susceptibility to parasitic and viral agents [7, 16–18]. In addition, certain mosquito microbial symbionts can be genetically modified to express molecules that inhibit pathogen transmission [19–21]. These findings have provided the impetus for controlling mosquito-borne diseases through manipulation of mosquito-associated microbiota [22]. However, our limited understanding of the composition, diversity, and function of mosquito microbiota continues to be a critical barrier to practical application of microbes for the control of mosquito-borne diseases. Specifically, while the natural microbiota of malaria vectors (*Anopheles* spp.) and dengue and Chikungunya (*Aedes* spp.) vectors [1, 3, 6, 12, 23, 24] are well characterized, little is known about the natural microbiota of mosquitoes from other genera such as *Culex* and...
Mansonia [2, 4, 25, 26], despite their role as vectors of human and animal diseases such as WNV and lymphatic filariasis.

In this study we employ high throughput MiSeq® sequencing of 16S rRNA to investigate the diversity and structure of bacterial communities of adult females of Culex pipiens and Culex restuans mosquitoes collected in central Illinois from three of the dominant land-use categories across the Midwestern USA: urban woodlots, rural woodlots, and agricultural land [27]. Despite the role of the two mosquito species as the primary vectors of WNV in northern United States, little is known about the composition and structure of their microbiota. Understanding the microbiota of these two vector species will allow investigations of their influence on WNV transmission and provide new insights into how these microbiota may be exploited for disease control.

Methods

Study sites

The studies were conducted in Champaign County, Illinois where WNV is well established [27]. Nine study sites representing three urban woodlots (Weaver Park, Busey Woods, South Farms), three rural woodlots (Collins Woods, Trelease Woods, Brownfield) and three agricultural sites (sites 1-3) were selected for this study (Fig. 1). These sites were chosen to reflect the dominant land-use categories common to the Midwestern United States. GPS coordinates for these sites are presented in Additional file 1: Table S1. Agricultural sites are row crop farms rotated with corn and soybeans. At the time of sampling, these sites were occupied by rows of corn plantations. Weaver Park is a 24.28-ha land located approximately 4.35 km NE of University of Illinois at Urbana-Champaign (UIUC) campus. The park contains an in-progress 2.02-ha woodland/savanna restoration, 14.16-ha planted with prairie and native grasses and a watershed management wetland. Busey Woods is a 23.88-ha bottomland Oak-Hickory forest located at the north end of Crystal Lake Park approximately 1.6 km NE of UIUC campus. South Farms is a 8.15-ha forest located approximately 2.41 km SE of UIUC campus. The site is characterized by high canopy trees composed of maple, sycamore, pine, oak, and a dense understory of grasses and invasive Amur honeysuckle (Lonicera maackii).

Collins Woods is a 5.3-ha second growth deciduous forest with a livestock grazing history. The site is located about 19.31 km NE of the UIUC campus. The eastern half is a mix of older “wolf” trees and woody successional species. The western half is a more mature oak/hickory/ash/osage orange woods with a small area of old river oxbow bottom land. Bush honeysuckle (Lonicera spp.) dominates the understory in many areas.

Trelease Woods is a 28.8-ha old growth deciduous forest located approximately 9.66 km northeast of the UIUC campus. The site is characterized by a high closed canopy with a moderately dense understory and primarily composed of mature oak, ash, hackberry, and maple species. A detailed description of this study site is provided elsewhere [28].

Brownfield Woods is a 26.1-ha "virgin" deciduous upland forest located in Urbana, Illinois, approximately 6.44 km NE of the UIUC campus. It is primarily a mature oak/ash/maple forest with a high, closed canopy and fairly open understory. Sugar maple has rapidly become the dominant tree species. The woods are a remnant of a much larger prairie grove that was present at settlement times. A small creek that is fed by runoff and field tiles, runs diagonally through the woods. Agricultural land borders the west side and across the road on part of the east side.

Mosquito collection

Adult females of Cx. pipiens and Cx. restuans were collected from the nine study sites once every two weeks between June 19, 2014 and September 10, 2014. The collections were made using Centers for Disease Control (CDC) gravid traps (John W. Hock Co., Gainesville, FL) baited with 5-day old grass infusion. Attempts were made to distinguish Cx. pipiens and Cx. restuans mosquitoes based on the presence of two pale spots that are present on the scutum of Cx. restuans but are absent in Cx. pipiens [29]. However, this effort was abandoned because most samples had lost their scales and therefore mosquito samples identified as Cx. pipiens/Cx. restuans were classified as Culex spp. (see Additional file 1: Table S1) and stored at -80 °C until further processing.

DNA extraction and 16 s rRNA library preparation

One hundred and forty seven (147) randomly selected non-blood fed mosquito samples representing all the nine study sites were retrieved from -80 °C freezer, rinsed three times in sterile water and surface disinfected in 70 % ethanol for 10 min. The ethanol was then removed by rinsing the mosquitoes five times in sterile water and once in dilute (0.8 %) saline solution [3]. DNA from mosquito samples was extracted using MoBio PowerSoil isolation kit (MO BIO, Carlsbad, CA). Briefly, individual mosquitoes were ground in 500 μL of solution from PowerBead tubes of MoBio PowerSoil kit and the entire homogenate was used for DNA extraction as per manufacturer’s recommendation. DNA was quantified using NanoDrop 1000 (Thermo Scientific, Pittsburg, PA) and its quality assessed using Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA). A portion of DNA samples was used for mosquito species identification using real-time polymerase chain reaction [30].
These yielded 54 and 93 *Cx. pipiens* and *Cx. restuans* samples respectively. For bacterial characterization, we targeted the V3-V5 hypervariable region of the 16S rRNA gene (694 base pairs) using the following primer set: forward 5’-CCTACGGGAGGCAGCAG-3’ and reverse 5’-CCGTCAATTCMTTTRAGT-3’ [31].

Library preparation and sequencing were conducted at the W. M. Keck Center for Comparative and Functional Genomics at the University of Illinois at Urbana-Champaign (Additional file 2: Appendix S1). Briefly, DNA of each mosquito sample was amplified using the above primer set on the Fluidigm® microfluidics quantitative PCR platform with appropriate linkers and sample barcodes. The final Fluidigm® libraries were pooled in equimolar ratio for sequencing. The final denatured library pool was spiked with 10 % non-indexed PhiX control library (Illumina®) and sequenced by 2 x 300 nt paired-end sequencing on the Illumina® MiSeq® V3 Bulk system. The PhiX control library provides a balanced genome for calculation of matrix, phasing and pre-phasing, which are essential for accurate base-calling. The libraries were sequenced from both ends of the
molecules to a total read length of 300 nt from each end. Cluster density was 964 k/mm² with 85.9 % of clusters passing filter.

We present the results for the forward reads only because reverse reads, which are not independent from the forward reads, showed the same patterns among samples (see Additional file 3: Figure S1, Additional file 4: Figure S2 and Additional file 5: Table S2). This is expected because single-end reads are known to be sufficient to observe the same relationships among samples that are revealed with paired-end reads [32].

Illumina OTU analysis and statistics

The QIIME version 1.9.0 pipeline [33] was used to demultiplex and quality filter the forward and reverse reads using defaults [34]. Barcodes and primer sequences were removed using Fastx toolkit operated in QIIME. The operational taxonomic units (OTUs) were picked and identified at 97 % similarity using GreenGenes reference [35] sequence database (http://greengenes.lbl.gov/cgi-bin/nph-index.cgi) downloaded on May 2015. Due to variations in the number of sequences between samples (range 5-210,445 sequences), read depth was rarefied to 2000 reads per sample to retain adequate samples for statistical analysis and to standardize the sampling effort [36]. OTUs accounting for <0.005 % of the total sequences were discarded to reduce the problem of spurious OTUs which may result from random sequencing errors and are likely to overestimate the overall diversity [6, 34]. Alpha diversity metrics including Shannon diversity index, observed species, chao1, and evenness were generated in QIIME and analysis of variance (ANOVA) with Tukey adjustments was used to test the effect of site and mosquito species on these indices using SPSS statistical package (IBM Inc.). A subset of the data containing equal numbers of Cx. pipiens and Cx. restuans was also analyzed, and overall results were similar to those of data containing all samples indicating that sample size disparities did not contribute to observed differences in microbial diversity and richness between the two mosquito species. Bacterial communities were visualized using non-metric multi-dimensional scaling (NMDS) plots generated using vegan package [37] in R [38]. Non-parametric multivariate community analysis including indicator species analysis and Multi-Response Permutation Procedures (MRPP) were conducted using PC-ORD version 6.08 [39]. MRPP was used to test for differences in microbial communities between mosquito species and study sites while indicator species analysis was used to identify bacterial species that are strongly associated with each of the two mosquito species. Indicator values range from 0 to 1 with a value of 1 indicating that the species occurs in all samples of a treatment and are specific to those samples [40].

Results

Bacterial species composition differs between Cx. pipiens and Cx. restuans

We analyzed the V3-V5 hyper-variable region of 16S rRNA gene to estimate the composition and structure of bacterial communities of field-collected adult females of Cx. pipiens and Cx. restuans. A total of 50 and 84 Cx. pipiens and Cx. restuans females, respectively had at least 2000 16S rRNA sequences and were retained for further analyses. After rarefaction and quality filtering, 268,000 16S rRNA sequences were retained and classified into Operational Taxonomic Units (OTUs). In total, there were 195 bacterial OTUs belonging to 9 phyla (including one unclassified phyla) (Table 1) and 54 families. Of the 195 OTUs, 188 (96.4 %) were classified to the family level while only 135 (69.2 %) OTUs were assigned to the genera rank. Only 3 OTUs were assigned to the phylum Sphingomonas, OTU817982-Sphingomonas and OTU6118-Wolbachia and 6 OTUs (OTU836919-Wolbachia, OTU817982-Sphingomonas, OTU4323871-Methylobacterium komagatae, OTU573035-Alicyclobacillus, OTU4363508-Sphingomonadaceae and OTU17329-Sphingomonadaceae) occurred in over 60 % of individuals in Cx. pipiens and Cx. restuans respectively. Overall, OTU836919-Wolbachia and OTU817982-Sphingomonas occurred in 98 % and 90 % of all samples. The phylum Proteobacteria was the most dominant in both mosquito species accounting for 99 % of total microbiota in Cx. pipiens and 81 % of total microbiota in Cx. restuans (Table 1). Alphaproteobacteria and Gammaproteobacteria were the most dominant subdivisions of phylum Proteobacteria accounting for 94 % and 4 % of total microbiota respectively in Cx. pipiens and 56 % and 21 % of total microbiota respectively in Cx. restuans (Table 1). Firmicutes was the second most common phylum in both mosquito species accounting for 0.57 % of total bacteria in Cx. pipiens and 13 % of total bacteria in Cx. restuans (Table 1).

At the family level, Rickettsiaceae accounted for 91 % of total microbiota in Cx. pipiens followed by Enterobacteriaceae (4 %) and Sphingomonadaceae (3 %). In Cx. restuans, the three most abundant families were Sphingomonadaceae (34 %), Enterobacteriaceae (19 %), and Methylobacteriaceae (14 %). The top 20 bacterial families across study sites represented 97–100 % of total microbiota in Cx. pipiens and 84–99 % of total microbiota in Cx. restuans (Fig. 2). The relative abundance of the 20 families varied markedly by mosquito species and study site (Fig. 2). Overall, only 9 families had a relative abundance equal to or greater than 1 % (Fig. 2).

Eighty six bacterial OTUs were shared between the two mosquito species but none were present in all samples. These shared bacterial OTUs were from four phyla: Proteobacteria (67 OTUs), Firmicutes (14 OTUs), Bacteroidetes (3 OTUs), and Actinobacteria (2 OTUs) (Additional file 6: Table S3). Sixteen bacterial OTUs
Table 1 Phylum-level classification of bacterial communities from *Cx. pipiens* and *Culex restuans*

Phylum	Class	*Cx. pipiens*	Relative abundance (%)	#OTUs	*Cx. restuans*	Relative abundance (%)	#OTUs
Acidobacteria	Solibacteres	0	0.00		2	0.02	
Actinobacteria	Actinobacteria	3	0.24	9	2	2.90	
	Thermoleophilia	1	0.01	0	0	0.00	
Bacteroidetes	Bacteroidia	0	0.00	2	0.21		
	Cytophagia	1	0.01	2	0.03		
	Flavobacteria	3	0.19	2	1.48		
	Sphingobacteria	0	0.00	2	0.61		
Chloroflexi	Ellin6529	1	0.01	0	0.00		
Cyanobacteria	Chloroplast	0	0.00	2	0.54		
	Oscillatoriophycideae	0	0.00	1	0.20		
Firmicutes	Bacilli	11	0.53	15	11.23		
	Clostridia	5	0.04	13	1.56		
Proteobacteria	Alphaproteobacteria	32	94.37	45	55.70		
	Betaproteobacteria	16	0.17	31	3.81		
	Deltaproteobacteria	1	0.30	0	0.00		
	Gammaproteobacteria	28	4.14	51	21.13		
Spirochaetes	Spirochaetes	0	0.00	1	0.45		
WPS-2	Unclassified	0	0.00	1	0.14		
Total		**102**	**100.00**	**179**	**100.00**		

Fig. 2 Relative abundance of the top 20 bacterial families in *Cx. pipiens* and *Culex restuans* samples from different study sites. (CP = *Cx. pipiens*, CR = *Culex restuans*, Agric = Agriculture, BW = Busey Wood, WP = Weaver Park, SF = South Farms, CW = Collins Woods, TW = Trelease Woods, and BF = Brownfield Woods)
were unique to *Cx. p. pipiens* and 93 bacterial OTUs were unique to *Cx. restuans* (Additional file 6: Table S3).

Bacterial species diversity and richness is higher in Cx. restuans than in Cx. p. pipiens

To determine the expected richness in each of the two mosquito species, we calculated Chao1 estimator based on OTUs abundance (Table 2). Overall, we were able to detect 80% (range 62–100%) and 69% (54–79%) of expected number of OTUs in *Cx. p. pipiens* and *Cx. restuans*, respectively indicating an underestimation of gut microbial diversity. On average, we estimated that *Cx. p. pipiens* contains 11 bacterial OTUs (range 5–15) while *Cx. restuans* contains 22 bacterial OTUs (range 18–29). In addition to the total number of OTUs and the Chao1 richness estimator to compare sample microbial diversity, we calculated the Shannon index to measure OTU richness and homogeneity in mosquito samples. These estimates indicated that bacterial OTUs were significantly more diverse and equitably distributed in *Cx. restuans* compared to *Cx. p. pipiens* in all study sites (Table 2). The top 20 bacterial OTUs were heterogeneously distributed across study sites accounting for 93–99.5% of total microbiota in *Cx. p. pipiens* and 69–87% of total microbiota in *Cx. restuans* (Fig. 3). Lower OTU diversity and evenness in *Cx. p. pipiens* was driven by the dominance of *Wolbachia* spp. (OTU836919), which accounted for between 76% and 98% of total bacteria in this mosquito species (Fig. 3). Overall, each of the remaining OTUs accounted for less than 0.75% of total bacteria in *Cx. p. pipiens* with exception of OTU817982 (*Sphingomonas* spp.) and OTU3101394 (*Enterobacteriaceae*), which accounted for 2.8% (range 1.1–7.3%) and 2.3% (0–12%) of total bacteria respectively. In contrast, the most dominant OTU in *Cx. restuans* was OTU817982-*Sphingomonas* spp. (31%) and was more abundant in two study sites, Weaver (61%) and agriculture site 3 (51%), and less common in agriculture site 2 (10%, Fig. 3). The second and third most abundant OTUs in *Cx. restuans* were OTU4323871 (*Methylobacterium* spp.) and OTU573035 (*Alicyclobacillus* spp.), which accounted for 10% (range 0.4–29%) and 9% (range 0.1–23%) of total bacteria, respectively (Fig. 3). Overall, only 12 OTUs had an overall relative abundance equal to, or greater than, 1% (Fig. 3).

The two mosquito species have different bacterial community structure

To determine if bacterial communities differed between the two mosquito species and across study sites, non-parametric multivariate community analyses were conducted. MRPP results indicated that midgut bacterial communities of the two mosquito species across all study sites were significantly different with those of *Cx. p. pipiens* being more homogeneous compared to those of *Cx. restuans* (Table 3, Fig. 4). Indicator Species Analysis

Mosquito species	Study site	Shannon	Equitability	Observed species	Chao1
Cx. p. pipiens	Agriculture1	0.65 ± 0.14	0.23 ± 0.05	7.36 ± 0.62	9.45 ± 0.88
	Agriculture2	0.24 ± 0.11	0.09 ± 0.04	6.33 ± 1.20	8.00 ± 2.65
	Agriculture3	0.36 ± 0.26	0.11 ± 0.07	6.20 ± 1.98	8.20 ± 2.82
	Busey Woods	0.32 ± 0.26	0.11 ± 0.08	6.50 ± 2.50	8.00 ± 4.00
	Weaver Park	0.29 ± 0.09	0.10 ± 0.03	7.20 ± 0.85	11.55 ± 2.23
	South Farms	0.75 ± 0.16	0.21 ± 0.04	10.41 ± 1.14	14.78 ± 2.33
	Collins Woods	0.19 ± 0.00	0.06 ± 0.00	9.00 ± 0.00	9.60 ± 0.00
	Trelease Woods	0.33 ± 0.00	0.14 ± 0.00	5.00 ± 0.00	5.00 ± 0.00
	Total	0.53 ± 0.07	0.17 ± 0.02	8.14 ± 0.54	11.33 ± 1.04
Cx. restuans	Agriculture1	2.23 ± 0.17	0.55 ± 0.01	17.33 ± 4.10	23.58 ± 8.25
	Agriculture2	1.32 ± 0.26	0.36 ± 0.07	12.57 ± 1.57	18.05 ± 2.20
	Agriculture3	1.66 ± 0.42	0.39 ± 0.10	18.80 ± 1.07	28.37 ± 3.17
	Busey Woods	1.46 ± 0.16	0.38 ± 0.04	14.60 ± 1.17	18.37 ± 1.61
	Weaver Park	1.16 ± 0.09	0.29 ± 0.02	17.20 ± 1.46	25.27 ± 2.82
	South Farms	1.66 ± 0.15	0.42 ± 0.03	16.17 ± 1.54	20.45 ± 2.33
	Collins Woods	1.20 ± 0.20	0.31 ± 0.06	15.67 ± 1.52	28.92 ± 5.01
	Trelease Woods	1.72 ± 0.19	0.46 ± 0.05	14.64 ± 1.17	20.26 ± 2.96
	Brownfield	1.63 ± 0.18	0.41 ± 0.03	15.82 ± 1.68	25.64 ± 4.31
	Total	1.56 ± 0.07	0.40 ± 0.02	15.49 ± 0.55	22.37 ± 1.24
was used to characterize the bacterial OTUs that were strongly associated with one mosquito species over the other. One and 8 indicator species were identified for *Cx. pipiens* and *Cx. restuans* respectively (Table 4).

Wolbachia (OTU836919), the only indicator species identified for *Cx. pipiens* had an indicator value close to 1. Only three of 8 indicator species identified for *Cx. restuans* had an indicator value greater than 0.6 (Table 4). These included OTU817982 (*Sphingomonas* spp.), OTU573035 (*Alicyclobacillus* spp.), and OTU4323871 (*Methylobacterium komagatae*), Table 4).

MRPP analyses revealed that bacterial communities did not differ significantly between *Cx. pipiens* from different study sites (data not shown). In addition, only 4 of 36 (11%) study site combinations had significantly different bacterial communities for *Cx. restuans* indicating weak effects of study site on bacterial community structure (Table 5).

![Fig. 3](image)

Fig. 3 Relative abundance of the top 20 bacterial OTUs in *Cx. pipiens* and *Cx. restuans* samples from different study sites. (CP = *Cx. pipiens*, CR = *Cx. restuans*, Agric = Agriculture, BW = Busey Wood, WP = Weaver Park, SF = South Farms, CW = Collins Woods, TW = Trelease Woods, and BF = Brownfield Woods)

![Fig. 4](image)

Fig. 4 Nonmetric Multidimensional Scaling (NMDS) ordination displaying microbiome communities of *Cx. pipiens* and *Cx. restuans*. Microbiomes were distinct between the two mosquito species in each study site.

(ISA) Table 3 MRPP results showing differences in bacterial communities between *Cx. pipiens* and *Cx. restuans* from each study site. Only 5 of 9 study sites are presented because the remaining sites had either few or no *Cx. pipiens* samples to facilitate meaningful comparisons.

Location	N(Cp vs Cr)	Ad (Cp vs Cr)	t	A^3	P
Agriculture 1	11 vs. 3	0.31 vs. 0.95	-5.47	0.22	0.001
Agriculture 2	3 vs. 7	0.61 vs. 0.97	-5.78	0.24	0.001
Agriculture 3	5 vs. 5	0.13 vs. 0.69	-5.62	0.44	0.002
Busey woods	2 vs. 15	0.09 vs. 0.78	-5.25	0.44	0.003
South farms	17 vs. 12	0.38 vs. 0.74	-13.55	0.26	0.000002
Weaver Park	10 vs. 5	0.07 vs. 0.53	-8.90	0.57	0.00007

N number of *Cx. pipiens* (Cp) and *Cx. restuans* (Cr) samples
Ad average within group distances for the mosquito species
T test statistic describing separation between groups
A chance-corrected within group agreement as log_{10}
Species/Other

Table 4 Bacterial OTUs that characterize *Cx. pipiens* and *Cx. restuans* mosquitoes

OTU ID	Phylum*	Classb	Species/Otherc	Indicator valuea	P	
Cx. pipiens	836919	P	A	*Wolbachia* spp	99.6	0.0002
Cx. restuans	817982	P	A	*Sphingomonas* spp	82.5	0.0002
573035	F	B	*Alicyclobacillus* spp.	60.6	0.0002	
4323871	P	A	*Methylobacterium komagatae*	66.8	0.0002	
4363508	P	A	*Sphingomonadaceae*	54.0	0.0002	
17329	P	A	*Sphingomonadaceae*	54.2	0.0002	
4344371	P	A	*Sphingomonas* spp.	46.2	0.0002	
4378646	P	A	*Sphingomonadaceae*	45.0	0.0002	
4396025	P	A	*Sphingomonas* spp.	40.4	0.0002	

a Phyla abbreviations: P Proteobacteria, F Firmicutes
b Class abbreviations: A Alphaproteobacteria, B Bacilli, G Gammaproteobacteria
c The lowest classification based on greengenes database
d Indicator value computed by Indicator Species Analysis

Discussion

This study provides the first comprehensive analysis of the microbial consortia of field-collected populations of *Cx. pipiens* and *Cx. restuans*, the primary vectors of WNV in northeastern and Midwestern United States [41]. Although both mosquito species were dominated by members of phylum Proteobacteria as reported for other mosquito species [2, 4, 6, 25], their bacterial composition and community structure differed significantly with *Cx. restuans* hosting more diverse and evenly distributed microbial communities compared to *Cx. pipiens*. In particular, we found *Wolbachia* (OTU836919) and *Sphingomonas* (OTU817982) to be the most abundant and the best indicator species for *Cx. pipiens* and *Cx. restuans*, respectively.

Wolbachia (OTU836919) was present in 98% of all mosquito samples and accounted for 76–98% of total microbiota in *Cx. pipiens* and 0.2–0.4% total microbiota in *Cx. restuans*. *Wolbachia* are maternally inherited bacterial endosymbionts that infect numerous invertebrates [42–45] and are known to cause reproductive alterations in their hosts including feminization, parthenogenesis, male killing, and cytoplasmic incompatibility [46]. In *Cx. pipiens*, *Wolbachia* causes partial or complete cytoplasmic incompatibility (CI) between infected males and uninfected females or females infected by incompatible strains of *Wolbachia* [47, 48]. This manipulation confers relative fitness advantage to infected females allowing *Wolbachia* to rapidly invade host populations [49]. These properties combined with recent reports that certain strains of *Wolbachia* can shorten the mosquito lifespan [50], reduce their blood feeding success [51], and inhibit their ability to transmit a range of pathogens including dengue, Chikungunya, and malaria [52–56] has generated interest in utilizing *Wolbachia* for the control of mosquito-borne diseases. However, the utility of this endosymbiont for the control of *Culex*-borne viruses such as WNV requires further investigations because certain *Wolbachia* strains may enhance or inhibit replication of WNV in some mosquito species [57, 58]. Therefore, it is likely that *Wolbachia* infection contributes to the spatial and temporal heterogeneity in WNV transmission that is common in endemic areas.

Wolbachia occurs in most populations of *Cx. pipiens* [44, 59, 60] and were recently detected in three *Cx. restuans* individuals [61]. Thus our results suggest that *Wolbachia* is more widespread in *Cx. restuans* than previously reported, and is a widespread and dominant bacterial species in *Cx. pipiens*. It is unclear why the relative abundance of this endosymbiont was low in *Cx. restuans*. Potential explanations include differences in the physiology of the two mosquito species where environmental conditions in *Cx. restuans* limit proliferation of *Wolbachia* or competition with the diverse bacterial communities that were identified in this mosquito species. The latter has been demonstrated in *Anopheles gambiae* Giles and *An. stephensi* Liston where native microbiota impeded replication and maternal transmission of *Wolbachia* [62].

Unlike *Cx. pipiens*, the most abundant bacterial species in *Cx. restuans* was *Sphingomonas* spp.
Sphingomonas spp. are also common in insects and have been isolated in mosquito species from the genera Anopheles, Culex, Aedes and Mansonia [2, 64, 65]. Future studies should investigate their role in mosquito biology.

The majority of bacterial OTUs were sparsely distributed among individuals of the two mosquito species likely due to genetic factors and/or inter-individual variations in diet [1, 2, 66]. This variation may partly account for population and species level variation in vector competence that is commonly observed in nature because certain bacterial species are known to increase [58, 67] or reduce [7, 16–18] vector susceptibility to pathogens. Further studies are needed to investigate the role of identified microbiota on the biology of the two mosquito species including susceptibility to pathogens such as WNV.

The two mosquito species had distinct bacterial profiles although they were collected from the same study sites, are known to utilize the same aquatic habitats for larval development, and tend to blood feed primarily on avian hosts [68–70]. The mechanisms underlying these variations are unclear but we can offer some hypotheses. First, differences in larval foraging and adult sugar feeding may lead to differential exposure of the two mosquito species to microbial communities. Although the larval feeding behavior of Cx. pipiens and Cx. restuans is not well understood, variation in larval feeding behavior of Culex mosquitoes has been reported before [71]. Moreover, all mosquitoes feed on plant sugars and each mosquito species may show preference for specific plants [72, 73]. Previous studies have documented a marked difference in bacterial composition between plant species [74, 75]. Therefore, if the two mosquito species differ in their preferred sugar-meal sources, they may be exposed to different bacterial communities. Second, the two mosquito species may possess different physiologies and thereby inherent differences in the ability to support proliferation and survival of different bacterial species. Third, Cx. pipiens and Cx. restuans show temporal variation in their distribution with Cx. restuans populations peaking earlier (June–July) than those of Cx. pipiens [76]. Temporal variations in the collection of the two mosquito species may partly account for differences in microbial communities given that the relative abundance of bacterial species may vary seasonally [77].

Lastly, although gravid traps are specifically designed to collect gravid females seeking suitable oviposition sites, they also collect a small proportion of host-seeking females [78]. These may consist of newly emerged females as well as older females that may have previously acquired a sugar meal and/or a blood meal. Previous research suggests that newly emerged adults have a more diverse microbial community relative to sugar fed or blood fed mosquitoes [1]. Although we used mosquito samples that were not visibly blood-engorged, we did not record their physiological status. We also did not have prior knowledge of whether the small fraction of host-seeking females that may have been collected in our study had acquired a blood meal or a sugar meal before they were captured. Nevertheless, there is no documented evidence that gravid traps are more effective at collecting gravid females of Cx. pipiens compared to those of Cx. restuans and vice versa. Thus we cannot attribute the differences in microbiota between the two mosquito species to trap bias in the collection of gravid versus host-seeking individuals of the two species.

Conclusions
Our study is the first to provide a comprehensive description of microbial communities associated with two of the most important vectors of WNV in the United States. We found that the two mosquito species harbor distinct microbial communities that are heterogeneously distributed between individuals. Wolbachia was the dominant bacterial species in Cx. pipiens while more diverse and variable microbial communities were observed in Cx. restuans. The results expand the range of mosquito species whose microbial communities have been characterized and will allow further studies to characterize the function of different bacterial species on the biology of the two vector species and their contribution to vectorial capacity. This knowledge will inform identification of microbial communities that can be used to block transmission of Culex-borne pathogens such as WNV.

Data availability
All relevant data are either within the paper and its Additional files or held in a public repository at NCBI under project number SUB1053826. The accession numbers for 16S amplicons from whole Culex pipiens and Culex restuans mosquitoes are SAMN03968624-SAMN03968758.
GPS coordinates for the nine study sites induces Aedes aegypti mosquitoes deprived of Aedes aegypti microbiota (± standard error). Taxonomy of bacterial OTUs that were shared between Cx. pipiens and Cx. restuans or were unique to either species. (XLSX 17 kb)

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
EJM and JB designed the study. EJM, CHK, ENB, and MHS processed and analyzed the data. EJM wrote the manuscript. All authors read and approved the final version of the manuscript.

Acknowledgements
We thank Andrew Donelson, Khamisha Wilson, and Michael Kozak for their assistance in mosquito collection and identification. This study was supported by the Used Tire Fund and the Emergency Public Health Fund from the State of Illinois.

Author details
1Illinois Natural History Survey, University of Illinois, 1816 S. Oak St., Champaign, IL 61820, USA. 2Department of Biology, University of Louisville, Louisville, KY 40292, USA.

Received: 20 August 2015 Accepted: 7 January 2016
Published online: 13 January 2016

References
1. Wang Y, Gilbreath 3rd TM, Kukurta P, Yan G, Xu J. Dynamic gut microbiome across life history of the malaria mosquito Anopheles gambiae in Kenya. PLoS One. 2011;6:e24767.
2. Osei-Poku J, Mbogo CM, Palmer WJ, Jiggins FM. Deep sequencing reveals extensive variation in the gut microbiota of wild mosquitoes from Kenya. Mol Ecol. 2011;20:138–50.
3. Zouache K, Rahartimala PN, Raquin V, Tran-Van V, Raveloson LH, Ravelonandro P, et al. Bacterial diversity of field-caught mosquitoes, Aedes albopictus and Aedes aegypti, from different geographic regions of Madagascar. FEMS Microbiol Ecol. 2011;75:377–89.
4. Duguma D, Rugman-Jones P, Kaufman MG, Hall MW, Neufeld JD, Southamer R, et al. Bacterial communities associated with Culex mosquito larvae and two emergent aquatic plants of bioremediation importance. PLoS One. 2013;8:e52522.
5. Gusnado DS, Santos AV, Marini DC, Bacci Jr M, Berbert-Molina MA, Lemos FJ. Culture-dependent and culture-independent characterization of microorganisms associated with Aedes aegypti (Diptera: Culicidae) (L.) and dynamics of bacterial colonization in the midgut. Acta Trop. 2010;115:275–81.
6. Boissiere A, Chiloff MT, Bachar D, Abate L, Marie A, Nsango SE, et al. Midgut microbiota of the malaria mosquito vector Anopheles gambiae and interactions with Plasmodium falciparum infection. PLoS Pathog. 2012;8:e1002742.
7. Ramirez JL, Souza-Neto J, Torres Cosme R, Rovira J, Ortúz A, Pascale JM, et al. Reciprocal tripartite interactions between the Aedes aegypti midgut microbiota, innate immune system and dengue virus influences vector competence. PLoS Negl Trop Dis. 2012;6:e1561.
8. Dong Y, Manfredini F, Dimopoulos G. Implication of the mosquito midgut microbiota in the defense against malaria parasites. PLoS Pathog. 2009;5:e1000423.
9. Zoaché K, Michelland RJ, Failloux AB, Grundmann GL, Mavingui P. Chikungunya virus impacts the diversity of symbiotic bacteria in mosquito vector. Mol Ecol. 2012;21:2907–309.
10. Chouaia B, Ross P, Epis S, Mosca M, Ricci L, Damiani C, et al. Delayed larval development in Anopheles mosquitoes deprived of Asaia bacterial symbionts. BMC Microbiol. 2012;1:252.
11. Gaio Ade O, Gussmao DS, Santos AV, Berbert-Molina MA, Pimenta PF, Lemos FJ. Contribution of midgut bacteria to blood digestion and egg production in Aedes aegypti. (Diptera: Culicidae) (L). Parasit Vectors. 2011;4:105.
12. Deon KL, Vogel KJ, Brown MR, Strand MR. Mosquitoes rely on their gut microbiota for development. Mol Ecol. 2014;23:727–39.
13. Minard M, Mavingui P, Moro CV. Diversity and function of bacterial microbiota in the mosquito holobiont. Parasit Vectors. 2013;6:146.
14. Suh E, Mercer, DR, Fu Y, Dobson SL. Pathogenicity of life-shortening Wolbachia in Aedes albopictus after transfer from Drosophila melanogaster. Appl Environ Microbiol. 2009;75:7783–7788.
15. Itubre-Ormaeza J, Walker T, ON SL. Wolbachia and the biological control of mosquito-borne disease. EMBO Rep. 2011;12:508–18.
16. Ramirez JL, Short SM, Bahia AC, Saravia RG, Dong Y, Kang S, et al. Chromobacterium Csp_P reduces malaria and dengue infection in vector mosquitoes and has entomopathogenic and in vitro anti-pathogen activities. PLoS Pathog. 2014;10:e1004398.
17. Pan X, Zhou G, Wu J, Bian G, Lu P, Rakheil AS, et al. Wolbachia induces reactive oxygen species (ROS)-dependent activation of the Toll pathway to control dengue virus in the mosquito Aedes aegypti. Proc Natl Acad Sci U S A. 2012;109:E23–31.
18. Cimoritch CM, Dong Y, Clayton AM, Sandford SL, Souza-Neto JA, Mulenga M, et al. Natural microbe-mediated refractoriness to Plasmodium infection in Anopheles gambiae. Science. 2011;332:855–8.
19. Wang S, Ghosh AK, Bongio N, Stebbing KA, Lampe DJ, Jacobs-Lorena M. Fighting malaria with engineered symbiotic bacteria from vector mosquitoes. Proc Natl Acad Sci U S A. 2012;109:12734–9.
20. Riehle MA, Moreira CK, Lampe D, Lauzon C, Jacobs-Lorena M. Using bacteria to express and display anti-Plasmodium molecules in the mosquito midgut. Int J Parasitol. 2007;37:595–603.
21. Yoshida S, Ioka D, Matsumoto H, Endo H, Ishii A. Bacteria expressing single-chain immunotoxin inhibit malaria parasite development in mosquitoes. Mol Biochem Parasitol. 2001;113:89–96.
22. Ricci I, Valzano M, Ulissi E, Epis S, Cappelli A, Favia G. Symbiotic control of mosquito-borne disease. Pathog Glob Hlth. 2012;106:380–5.
23. Ngo CT, Augulet F, Veas F, Jumars-Blak M, Eunang S. Bacterial diversity associated with wild caught Anopheles mosquitoes from Dak-Nong Province, Vietnam using culture and DNA fingerprint. PLoS One. 2015;10:e0118634.
24. Chavshin AR, Oshaghi MA, Vatanenoo H, Poumard MR, Raesi E, Enayati AA, et al. Identification of bacterial microflora in the midgut of the larvae and adult of wild caught Anopheles stephensi: a step toward finding suitable parasitogenic candidates. Acta Trop. 2012;121:129–34.
25. Chandel K, Mendki MJ, Parikh RY, Kulkarni G, Tikar SN, Sukumaran D, et al. Midgut microbial community of Culex quinquefasciatus mosquito populations from India. PLoS One. 2013;8:e60453.
26. Chander JA, Liu RM, Bennett SN. RNA shotgun metagenomic sequencing of northern California (USA) mosquitoes uncovers viruses, bacteria, and fungi. Frontiers Microbiol. 2015;6:185.
27. Gardner AM, Lampman RL, Muturi EI. Land use patterns and the risk of West Nile Virus transmission in central Illinois. Vector-Borne Zoonotic Dis. 2014;14:338–45.
28. Muturi EI, Allan BF, Ricci L. Influence of leaf detritus type on production and longevity of container-breeding mosquitoes. Environ Entomol. 2012;41:1062–7.
29. Harrington LC, Poulsen RL. Considerations for accurate identification of adult Culex/restuans (Diptera: Culicidae) in field studies. J Med Entomol. 2008;45:1–8.
30. Sanogo YO, Kim CH, Lampman R, Novak RJ. A real-time TaqMan polymerase chain reaction for the identification of Culex vectors of West Nile and Saint Louis Encephalitis virus.
Louis encephalitis viruses in North America. Am J Trop Med Hyg. 2007;77:58–66.

32. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12:R60.

33. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci U S A. 2011;108:4516–22.

34. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.

35. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006;72:5069–72.

36. Gihring TM, Green SJ, Schadt CW. Massively parallel rRNA gene sequencing exacerbates the potential for biased community diversity comparisons due to variable library sizes. Environ Microbiol. 2012;14:285–90.

37. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O'Hara RB, Vega. Community ecology package. 2013.

38. R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2015.

39. McCune B, Mefford MJ. PC-ORD: Multivariate Analysis of Ecological Data, version 6.08. MJM Software Design. OR: Gleneden Beach; 2011.

40. Dufrene M, Legendre P. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr. 1997;67:345–66.

41. Turrell MJ, Dohm DJ, Sardelis MR, Oquin ML, Andreadis TG, Blow JA. An update on the potential of north American mosquitoes (Diptera: Culicidae) to transmit West Nile Virus. J Med Entomol. 2005;42:57–62.

42. Taylor MJ, Bandi C, Hoerauf A. Wolbachia bacterial endosymbioses of filarial nematodes. Advances Parasitol. 2005;60:245–84.

43. Tjisse-Klaasn E, Braks M, Scholte EL, Sprong H. Parasites of vectors—lepidophagus hookeri and its Wolbachia symbionts in ticks in The Netherlands. Wolbachia infection into the mosquito Wolbachia for their application with a novel strain Wolbachia and its Wolbachia pipientis Culex pipiens mosquito strains. J Med Entomol. 2002;39:777–82.

44. Sanogo YO, Dobson SL, Rollo JD, Misson AJ, Arnesen T, Aukland K, et al. Disruption of the Wolbachia surface protein gene wsp by a transposable element in mosquitoes of the Culex pipiens complex (Diptera: Culicidae). Insect Mol Biol. 2007;16:143–54.

45. Cordua R, Pichon S, Hatis RB, Doubet V, Greve P, Marcade L, et al. Widespread Wolbachia infection in terrestrial isopods and other crustaceans. Zooskles. 2012;1:76123-131.

46. Southinger MA, Breeuwer JA, Hurst GD. Wolbachia piipientis: Microbial manipulator of arthropod reproduction. Ann Rev Microbiol. 1999;53:1–102.

47. Slinkhorn SP, Walter T, Andreadis TG, Godfrey HCJ, et al. Wolbachia variability and host effects on crossing type in Culex mosquitoes. Nature. 2005;436:257–60.

48. Walker T, Klassen L, Sebahiha M, Sanders MJ, Thomson NR, Parkhill J, et al. Ankyrin repeat domain-encoding genes in the wPip strain of Wolbachia invade caged Anopheles stephensi (Diptera : Culicidae). Proc Natl Acad Sci U S A. 2012;109:255–60.

49. Hussain M, Lu GJ, Torres S, Edmonds JH, Kay BH, Khromykh AA, et al. Effect of Wolbachia on replication of West Nile Virus in a mosquito cell line and adult mosquitoes. J Virol. 2013;87:851–8.

50. Dodson BL, Hughes GL, Paul O, Matachacic LC, Kramer LD, Rason JL. Wolbachia enhances West Nile Virus (WNV) infection in the mosquito Culex tarsalis. PLoS Negl Trop Dis. 2014;8:e2965.

51. Cornel AJ, McAbee RD, Rason J, Stanch MA, Scott TW, Coetsee M. Differences in extent of genetic introgression between sympatric Culex pipiens and Culex quinquefasciatus (Diptera : Culicidae) in California and South Africa. J Med Entomol. 2003;40:536–51.

52. Rason JL, Scott TW. An initial survey for Wolbachia (Rickettsiales: Rickettsiaceae) infections in selected california mosquitoes (Diptera: Culicidae). J Med Entomol. 2004;41:255–7.

53. Keng Y, Dempsey B. Investigating the presence of Wolbachia piipientis in various mosquito species. J Exp Sci. 2011;1:1–4.

54. Hughes GL, Dodson BL, Johnson RM, Murdock CC, Tsujimoto H, Suzuki Y, et al. Native microbiome impedes vertical transmission of Wolbachia in Anopheles mosquitoes. Proc Natl Acad Sci U S A. 2014;111:12498–503.

55. White DC, Sutton SO, Ringelberg DB. The genus Sphingomonas: physiology and ecology. Curr Opin Biotechnol. 1996;9:301–6.

56. Terenius O, Lindh JM, Eriksson-Gonzales K, Bussielle L, Laugten AH, Bergquist H, et al. Midgut bacterial dynamics in Aedes aegypti. FEMS Microbiol Ecol. 2012;80:556–65.

57. Djadid ND, Jazayeri H, Raz A, Favia G, Ricci L, Zaken S. Identification of the midgut microbiota of An. stephensi and An. maculipennis for their application as a paratransgenic tool against malaria. PLoS One. 2011;6:e28484.

58. Perez-Cobas AE, Maiques E, Angelova A, Carrasco P, Moya A, Latore A. Diet shapes the gut microbiota of the omnivorous cockroach Blattella germanica. FEMS Microbiol Ecol. 2015;91:79x002.

59. Apte-Deshpande A, Pajankang M, Gokhale MD, Deobagkar DN. Senaria odorifera: a midgut inhabitant of Aedes aegypti mosquito enhances its susceptibility to Dengue-2 virus. PLoS One. 2012;7:e40401.

60. Molaei G, Andreadis TG, Armstrong PM, Anderson JF, Vossbrinck CR. Host feeding patterns of Culex mosquitoes and West Nile virus transmission, northeastern United States. Emerg Infect Dis. 2006;12:668–74.

61. Patrican LA, Hackett LE, Briggs JE, McGowan JW, Unnasch TR, Lee JH. Host-feeding patterns of Culex mosquitoes in relation to trap habitat. Emerg Infect Dis. 2007;13:1921–3.

62. Apperson CS, Harrison BA, Unnasch TR, Hassan HK, Iby WS, Savage HM, et al. Host-feeding habits of Culex and other mosquitoes (Diptera: Culicidae) in the Borough of Queens in New York City, with characters and techniques for identification of Culex mosquitoes. J Med Entomol. 2002;39:777–85.

63. Workman PD, Walton WE. Larval behavior of four Culex (Diptera: Culicidae) associated with treatment wetlands in the southwestern United States. J Vector Ecol. 2003;28:213–28.

64. Foster WA. Mosquito sugar feeding and reproductive energetics. Annu Rev Entomol. 1995;40:443–74.

65. Manda H, Gouagna LC, Kabiru EW, Foster WA, Beier JC, Hassanali A, et al. Discriminative feeding behavior of Anopheles gambiise s.s. on different plant species and effects on its survival, fecundity, and vector competence in a malaria endemic area of western Kenya. Am J Trop Med Hyg. 2007;77:293–4.

66. Yang CH, Crowley DE, Borneman J, Keen NT. Microbial phyllosphere dynamics and West Nile virus transmission in east-central Illinois. J Am Mosq Control Assoc. 2006;22:390–400.

67. Remold SK, Purdy-Gibson ME, France MT, Hundley TC. Wolbachia diversity and West Nile virus transmission in North America. Am J Trop Med Hyg. 2007;77:293–4.

68. Redford AJ, Bowers RM, Knight R, Linhart Y, Fierer N. The ecology of the phyllosphere: geographic and phylogenetic variability in the distribution of bacteria on tree leaves. Environ Microbiol. 2010;12:2885–93.

69. Llampman RL, Slamecka M, Krasavin N, Kunkel KE, Novak R. Culex population dynamics and West Nile virus transmission in east-central Illinois. J Am Mosq Control Assoc. 2006;22:390–400.

70. Remold SK, Purdy-Gibson ME, France MT, Hundley TC. Unrelated species group recovery from human homes varies seasonally and by environment. PLoS One. 2015;10:e0127704.

71. McCalder P, Webbe R, Norden B, Aldrich J. Evaluation of five trapping systems for the surveillance of gravid mosquitoes in Prince Georges County, Maryland. J Am Mosq Control Assoc. 2004;20:254–60.