First spin-resolved electron distributions in crystals from combined polarized neutron and X-ray diffraction experiments

Maxime Deutsch, Béatrice Gillon, Nicolas Claiser, Jean-Michel Gillet, Claude Lecomte and Mohamed Souhassou
The detailed classical treatment of the orbital contribution may be found in [Gillon & Becker, 2012], page 287.

In the independent atom model, the magnetic structure factor of scattering vector \mathbf{Q} is written as a sum over the atoms i in the cell:

$$F_M(\mathbf{Q}) = \sum_{\text{atoms}} m_i f_m^i(\mathbf{Q}) e^{i\mathbf{Q} \cdot \mathbf{R}_i} e^{-W_i}$$

where $f_m^i(\mathbf{Q})$ is the magnetic form factor of atom i which carries a magnetic moment m_i.

In the case of weak spin-orbit coupling, like for a transition metal atom i, the form factor may be written as the sum of a pure spin form factor $f_m^{iS}(\mathbf{Q})$ and a form factor $f_m^{iL}(\mathbf{Q})$ due to the orbital contribution. The magnetic structure factor is then the sum of a pure spin magnetic structure factor $F_M^{iS}(\mathbf{Q})$ and an orbital structure factor $F_M^{iL}(\mathbf{Q})$:

$$F_M(\mathbf{Q}) = F_M^{iS}(\mathbf{Q}) + F_M^{iL}(\mathbf{Q})$$

The term $F_M^{iL}(\mathbf{Q})$ may be treated as a correction and is taken into account in the theoretical expression of the flipping ratio in the program MOLLYNX.

As described in reference [Squires, 1978] the usual dipole approximation consists in writing the above form factor as:

$$f_m^{iL}(\mathbf{Q}) = m_s(I_s - 2) g_i \left(\langle j^1_0 \rangle + \langle j^1_2 \rangle\right)$$

where $m_s(I_s)$ is the magnetic moment of atom i associated with spin, g_i is the Landé splitting factor of atom i and $\langle j^\ell_0 \rangle$ and $\langle j^\ell_2 \rangle$ are the radial integrals for atom i:

$$\langle j^\ell_0 \rangle = \int_0^{\infty} r^2 \left(\mathcal{N}_i^{N_L} e^{-\xi_L r} \right)^2 j^\ell_0(Qr) dr$$

where $\left(\mathcal{N}_i^{N_L} e^{-\xi_L r}\right)$ is a Slater type radial function with exponent ξ_L for the unpaired electron orbital belonging to the atomic shell with quantum numbers N and L and $j^\ell_0(Qr)$ are the spherical Bessel functions of order $\ell = 0, 2$ which are tabulated for the 3d elements in [Brown, 1992].

The orbital magnetic structure factors $F_M^{iL}(\mathbf{Q})$ were calculated using the magnetic form factor $\left(\langle j^1_0 \rangle + \langle j^1_2 \rangle\right)$ for Cu\(^{2+}\) and a coefficient:

$$m_s Cu \left(\frac{g_{Cu} - 2}{g_{Cu}}\right) = 0.07 \mu_B$$
with $m^*_S = 0.7 \mu_B$ and $g_{Cu} = 2.175$ [Aronica, 2007]. This estimation was confirmed by refinement of the valence population associated with the orbital form factor introduced in the PND-only refinement.

- B. Gillon & P. Becker, Chapter 8, «Magnetization densities in material science» in Modern charge density analysis, Eds C. Gatti and P. Macchi, Springer, (2012).
- Squires G. L. in Introduction to the theory of thermal neutron scattering (Cambridge: University Press, 1978), p. 139.
- Brown, P. J., Magnetic form factors, chapter 4.4.5, International tables for crystallography (1992) vol. C (A. J. C. Wilson, ed.), pp. 391-399.
- Aronica, C., Jeanneau, E., El Moll, H., Luneau, D., Gillon, B., Goujon, A., Cousson, A., Carvajal, M. A. & Robert, V. (2007). Chem. Eur. J. 13(13), 3666–3674.