The FY-3D Global Active Fire product: Principle, Methodology and Validation

Jie Chen, Wei Zheng, Cheng Liu
2022/11/17
National Satellite Meteorological Center
China Meteorological Administration

E-mail: chenjie@cma.gov.cn
Major Contents

1. Introduction of satellite fire monitoring
2. Theory and method for wild fire detection
3. Validation of FY-3D fire product
4. Application examples of fire monitoring
Major Contents

1. Introduction of satellite fire monitoring
2. Theory and method for wild fire detection
3. Validation of FY-3D fire product
4. Application examples of fire monitoring
Table. Parameters of FY-3D/MERSI compared with MODIS/Aqua in fire monitoring

Satellite	Series	Observation frequency	Resolution (m)	Sensitivity (m²)
FY-3C	Polar orbit	2	1000	70
FY-3D	Polar orbit	2	1000	70
FY-3E	Polar orbit	2	1000	70
NPP	Polar orbit	2	375/750	15/45
NOAA-20	Polar orbit	2	375/750	15/45
TERRA	Geostationary	2	1000	60
AQUA	Geostationary	2	1000	60
FY-4A	Geostationary	>200	2000	250
FY-4B	Geostationary	96	2000	200
Himawari-8	Geostationary	144	2000	200

Channel	Wavelength/μm	Waveband	Resolution/km				
MERSI	MODIS	MERSI	MODIS	MODIS	MODIS	MODIS	MODIS
1	3	0.470	0.469	Visible light	0.25	0.50	
2	4	0.550	0.555	Visible light	0.25	0.50	
3	1	0.650	0.645	Visible light	0.25	0.25	
4	2	0.865	0.859	Near infrared	0.25	0.25	
20	20	3.800	3.750	Medium infrared	1.00	1.00	
21	23	4.050	4.050	Medium infrared	1.00	1.00	
24	31	10.800	11.030	Far infrared	0.25	1.00	
25	32	12.000	12.020	Far infrared	0.25	1.00	
The fires mainly occurred in Northeast, South, Southwest and North China, such as JiLin, GuangXi, YunNan and other provinces.
Major Contents

1. Introduction of satellite fire monitoring
2. Theory and method for wild fire detection
3. Validation of FY-3D fire product
4. Application examples of fire monitoring
The Sensitivity of satellite infrared channel.

According to Wine's law of radiation:

$$\lambda_m \cdot T = 2897.8 \text{ (}}\mu\text{m} \cdot \text{K})$$

when temperature of blackbody goes up, the wavelength of peak radiation moves to shorter waves of the spectrum.

The temperature of forest fire and grass land fire is around 600K to 1200K, and their wavelength of peak radiation is around 2.5 to $4.5\mu_m$. The temperature of ground surface is about 300K, the wavelength of peak radiation is about $10\mu_m$.
2. Theory and method for wild fire detection

Figure. Planck radiances function curve for temperatures from 300K to 1000K. For a given increase in temperature, the increase in area under the channel 3 segments of the curves is much greater than under the channel 4 segments.
2. Theory and method for wild fire detection

(1) Cloud mask

number	conditions
1	$T_{\text{Mir}} - T_{\text{far1}} < 4K$
2	$T_{\text{Mir}} - T_{\text{far1}} > 20K$ \& $T_{\text{Mir}} < 285K$ \& $T_{\text{far1}} < 280K$
3	$R_{\text{Vis}} > 0.28$
4	$T_{\text{far1}} < 265K$
5	$T_{\text{Mir}} < 270K$ \& $T_{\text{far1}} - T_{\text{far2}} < 4K$
6	$T_{\text{far1}} < 270K$ \& $T_{\text{far1}} - T_{\text{far2}} > 60K$
7	$T_{\text{Mir}} < 320K$ \& $T_{\text{Mir}} < T_{\text{Mir,TH}}$
8	$R_{\text{Vis}} > 0.28$ \& $T_{\text{Mir}} < 320K$

(2) Fire pixels identification

1) $T_{3.9} > T_{3.9bg} + n_1 \times \delta T_{3.9bg}$

2) $\Delta T_{3.9_{11}} > \Delta T_{3.9bg_{11bg}} + n_2 \times \delta T_{3.9bg_{11bg}}$

(3) Sub-pixel fire spot area estimate

$$N_{imix} = P \times N_{hi} + (1 - P) \times N_{bg}$$

$$= P \times \frac{C_1 V_i^3}{C_2 V_i \cdot e^{T_{hi} - 1}} + (1 - P) \times \frac{C_1 V_i^3}{C_2 V_i \cdot e^{T_{bg} - 1}}$$

(4) Calculation fire radiation power

$$FRP = P \times S_{\lambda, \varphi} \times \sigma T^4$$
2. Theory and method for wild fire detection

Density map of global fire spots based on FY-3D (2019-06)

General flow chart for generating FY-3D fire spot products
Major Contents

1. Introduction of satellite fire monitoring
2. Theory and method for wild fire detection
3. Validation of FY-3D fire product
4. Application examples of fire monitoring
3. Validation of FY-3D fire product

Verification methods

\[\sqrt{(lat1 - lat2)^2 + (long1 - long2)^2} \leq 0.02^\circ \]

(1) Assessment of FY-3D fire products based on visual interpretation

Region	GFR-based fire spots	Not match	Accuracy (%)
South-central Africa	1429	77	94.6
East-central South America	204	12	94.1
Siberia	32	3	90.6
Australia	85	7	91.8
Indo-China Peninsula	438	32	92.7
Overall	2188	131	94.0

Observation positions from FY-3D MERSI-II

Clean sky
3. Validation of FY-3D fire product

(2) Cross-validation between FY-3D and MODIS global fire products

1) Validation in different months

Time	Match	Mismatch	Total	Consistence (%)
201901	70799	14188	84987	83
201902	66849	14717	81566	82
201903	105176	22576	127752	82
201904	94474	39250	133724	71
201905	75703	17135	92838	82
201906	174587	33862	208449	84
201907	362108	39683	401791	90
201908	315182	51627	366809	86
201909	226363	47607	273970	83
201910	115975	33956	149931	77
201911	102240	27732	129972	79
201912	157464	28461	185925	85
Total	1866920	370794	2237714	83.4
2) Validation on different underlying surfaces

ID	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
11	50	76	86	81	68	66	54	77	80	85	73	56
14	64	57	73	81	71	64	56	79	85	73	73	57
20	72	67	78	83	78	68	64	81	87	73	77	79
30	65	63	77	84	82	84	84	77	83	83	79	75
40	94	88	75	84	85	74	72	76	83	80	82	
50	61	72	82	88	(87)	86	85	71	81	79	80	66
60	90	85	75	87	86	89	89	82	82	79	86	89
70	56	79	80	87	82	90	73	86	82	77	49	66
90	35	57	62	56	97	98	91	85	64	72	82	56
100	49	59	71	59	82	93	87	92	70	75	70	66
110	84	84	73	67	80	92	84	88	84	86	86	81
120	83	81	77	65	86	93	86	85	51	84	88	87
130	87	85	85	87	84	86	85	76	85	87	82	84
140	76	66	78	80	76	85	78	80	26	82	87	87
150	77	71	77	60	81	87	58	71	24	75	88	92
3. Validation of FY-3D fire product

The global monitoring area is divided into Africa, America, Asia, Europe, and Oceania. The verification demonstrates the results with the highest consistence (over 80%) are found in Africa and Asia, and those in America, Europe, and Oceania show the consistence over 70%.

China’s regional consistency of results in China is lower than other continents, only 65%.
Major Contents

1. Introduction of satellite fire monitoring
2. Theory and method for wild fire detection
3. Validation of FY-3D fire product
4. Application examples of fire monitoring
4. Application examples of fire monitoring

FY-3D Monitor wildfires in California

New South Wales, Australia

FY-3D fire monitoring in South America
4. Application examples of fire monitoring

FY-3D fire monitoring in The Mediterranean Sea compare 2021 to 2020

FY-3 fire monitoring in Arctic Circle compare 2018 to 2017
4. Application examples of fire monitoring

Multi-source satellites in fire monitoring

FY-4A monitoring the evolution of fire in Mongolia from April 19 morning to afternoon

FY-4B monitoring the fire 2022/4/19 15:45

FY-3D monitoring the fire area 2022/4/19 13:00

GF-4 monitoring the fire area 2022/4/22

FY-3E monitoring the fire 2022/4/19 17:25
The Fengyun-3D (FY-3D) global active fire product: principle, methodology and validation

Jie Chen1,2, *, Qi Yao1, *, Ziyue Chen1, Manchiun Li1, Zhaozhao Hao1, Cheng Liu1,2, Wei Zheng1,2, Miaoqie Xu1, Xiao Chen1, Jing Yang1, Qiancheng Li1, and Bingfu Gao5

Viewed (geographical distribution)

FY-3D fire product download address:
http://data.nsmc.org.cn/PortalSite/Data/Satellite.aspx?currentculture=en-US

The End
Thanks for your attention!