ON THE NONORIENTABLE GENUS OF THE GENERALIZED UNIT AND UNITARY CAYLEY GRAPHS OF A COMMUTATIVE RING

MAHDI REZA KHORSANDI∗ AND SEYED REZA MUSAWI

Faculty of Mathematical Sciences, Shahrood University of Technology, P.O. Box 36199-95161, Shahrood, Iran.

Abstract. Let R be a commutative ring and let $U(R)$ be multiplicative group of unit elements of R. In 2012, Khashyarmanesh et al. defined generalized unit and unitary Cayley graph, $\Gamma(R, G, S)$, corresponding to a multiplicative subgroup G of $U(R)$ and a non-empty subset S of G with $S^{-1} = \{s^{-1} | s \in S\} \subseteq S$, as the graph with vertex set R and two distinct vertices x and y are adjacent if and only if there exists $s \in S$ such that $x + sy \in G$. In this paper, we characterize all Artinian rings R whose $\Gamma(R, U(R), S)$ is projective. This leads to determine all Artinian rings whose unit graphs, unitary Cayley graphs and co-maximal graphs are projective. Also, we prove that for an Artinian ring R whose $\Gamma(R, U(R), S)$ has finite nonorientable genus, R must be a finite ring. Finally, it is proved that for a given positive integer k, the number of finite rings R whose $\Gamma(R, U(R), S)$ has nonorientable genus k is finite.

1. Introduction

All rings considered in this paper are commutative rings with non-zero identity. We denote the ring of integers module n by \mathbb{Z}_n and the finite field with q elements by \mathbb{F}_q. Let R be a ring. We use $\mathbb{Z}(R)$, $U(R)$ and $J(R)$ to denote the set of zero-divisors of R, the set of units of R and the Jacobson radical of R, respectively.

The idea of associating a graph to a commutative ring was introduced by Beck in [7]. The relationship between ring theory and graph theory has received significant attention in the literature. After introducing the zero-divisor graph by Beck, the authors assigned the other graphs to a commutative ring. Sharma and Bhatwadekar in [20], defined the co-maximal graph on R as the graph whose vertex set is R and two distinct vertices x and y are adjacent if and only if $Rx + Ry = R$. Afterward, in [3] (resp., in [1]), the authors defined the unit (resp., unitary Cayley) graph, $G(R)$ (resp., Cay$(R, U(R))$), with vertex set R and two distinct vertices x and y are adjacent if and only if $x + y \in U(R)$ (resp., $x - y \in U(R)$). The unit and unitary Cayley graph were generalized in [15] as follows. The generalized unit and unitary Cayley graph, $\Gamma(R, G, S)$, corresponding to a multiplicative subgroup G of $U(R)$...
and a non-empty subset S of G with $S^{-1} = \{s^{-1} \mid s \in S\} \subseteq S$, is the graph with vertex set R and two distinct vertices x and y are adjacent if and only if there exists $s \in S$ such that $x + sy \in G$. If we omit the word “distinct”, the corresponding graph is denoted by $\overline{\Gamma}(R, G, S)$. Note that the graph $\Gamma(R, G, S)$ is a subgraph of the co-maximal graph. For simplicity of notation, we denote $\Gamma(R, U(R), S)$ (resp., $\overline{\Gamma}(R, U(R), S)$) by $\Gamma(R, S)$ (resp., $\overline{\Gamma}(R, S)$).

The genus, $\gamma(\Gamma)$, of a finite simple graph Γ is the minimum non-negative integer g such that Γ can be embedded in the sphere with g handles. The crosscap number (nonorientable genus), $\tilde{\gamma}(\Gamma)$, of a finite simple graph Γ is the minimum non-negative integer k such that Γ can be embedded in the sphere with k crosscaps. The genus (resp., nonorientable genus) of an infinite graph Γ is the supremum of genus (resp., nonorientable genus) of its finite subgraphs (see [18, 29]). The problem of finding the genus of a graph is NP-complete (see [27]). However, the genus of graphs that can be embedded in the projective plane can be computed in polynomial time (see [12]).

A genus 0 graph is called planar graph and a nonorientable genus 1 graph is called a projective graph. In [28], H.-J. Wang characterized all finite rings whose co-maximal graphs have genus at most one. Also, H.-J. Chiang-Hsieh in [9] determined all finite rings with projective zero-divisor graphs. Similar results are established for total graphs in [11,16,17,26]. Planar unit and unitary Cayley graphs were investigated in [1,3,23,24]. Also, Khashyarmanesh et al. in [15] characterized all finite rings R in which $\Gamma(R, S)$ is planar. Recently, Asir et al. in [5,6], determined all finite rings R whose $\Gamma(R, S)$ has genus at most two. Moreover, finite rings with higher genus unit and unitary Cayley graphs were investigated in [11,22] and [25], respectively. In this paper, we characterize all Artinian rings R whose $\Gamma(R, S)$ is projective. This leads to determine all Artinian rings whose unit graphs, unitary Cayley graphs and co-maximal graphs are projective. Also, we prove that for an Artinian ring R with $\tilde{\gamma}(\Gamma(R, S)) < \infty$, R must be a finite ring. Finally, it is proved that for a given positive integer k, the number of finite rings R such that $\tilde{\gamma}(\Gamma(R, S)) = k$ is finite.

2. Preliminaries

For a graph Γ, $V(\Gamma)$ and $E(\Gamma)$ denote the vertex set and edge set of Γ, respectively. The degree of a vertex v in the graph Γ, denoted by $\deg(v)$, is the number of edges of Γ incident with v, with each loop at v counting as two edges. The minimum degree of Γ is the minimum degree among the vertices of Γ and is denoted by $\delta(\Gamma)$. A complete graph Γ is a simple graph such that all vertices of Γ are adjacent. In addition, K_n denotes a complete graph with n vertices. A graph Γ is called bipartite if $V(\Gamma)$ admits a partition into two classes such that the vertices in the same partition class must not be adjacent. A simple bipartite graph in which every two vertices from different partition classes are adjacent is called a complete bipartite graph, denoted by $K_{m,n}$, where m and n are size of the partition classes. Two simple graphs Γ and Δ are said to be isomorphic, and written by $\Gamma \cong \Delta$, if there exists a bijection $\varphi : V(\Gamma) \rightarrow V(\Delta)$ such that $xy \in E(\Gamma)$ if and only if $\varphi(x)\varphi(y) \in E(\Delta)$ for all $x, y \in V(\Gamma)$. A graph Γ is called connected if any two of its vertices are linked by a path in Γ. A maximal connected subgraph of Γ is called a component of Γ.
A subdivision of a graph Γ is a graph that can be obtained from Γ by replacing (some or all) edges by paths. Two graphs are said to be homeomorphic if both can be obtained from the same graph by subdivision. Let Γ_1 and Γ_2 be two graphs without multiple edges. Recall that the tensor product $\Gamma = \Gamma_1 \otimes \Gamma_2$ is a graph with vertex set $V(\Gamma) = V(\Gamma_1) \times V(\Gamma_2)$ and two distinct vertices (u_1, u_2) and (v_1, v_2) of Γ are adjacent if and only if $u_1v_1 \in E(\Gamma_1)$ and $u_2v_2 \in E(\Gamma_2)$. We refer the reader to [5] and [29] for general references on graph theory.

The following results give us some useful information about nonorientable genus of a graph.

Lemma 2.1. ([29] Chapter 11) The following statements hold:

1. Let G be a graph. Then $\gamma(G) \leq 2\gamma(G) + 1$.
2. If H is a subgraph of G, then $\gamma(H) \leq \gamma(G)$.
3. $\gamma(K_n) = \left\lceil \frac{n-3}{4} (n-4) \right\rceil$ if $n \geq 3$ and $n \neq 7$, 3 if $n = 7$.

In particular, $\gamma(K_5) = 1$ if $n = 5, 6$.
4. $\gamma(K_{m,n}) = \left\lceil \frac{m-2}{4} (m-2) \right\rceil$ if $m, n \geq 2$.

In particular, $\gamma(K_{3,3}) = \gamma(K_{3,4}) = 1$ and $\gamma(K_{4,4}) = 2$.

Lemma 2.2. ([21] Theorem 1 and Corollary 3) Let G be a graph with components G_1, G_2, \ldots, G_n. If for all $i = 1, \ldots, n$, $\gamma(G_i) > 2\gamma(G_i)$, then

$$\gamma(G) = 1 - n + \sum_{i=1}^{n} \gamma(G_i),$$

otherwise,

$$\gamma(G) = 2n - \sum_{i=1}^{n} \mu(G_i),$$

where $\mu(G_i) = \max\{2 - 2\gamma(G_i), 2 - \gamma(G_i)\}$.

If we combine Lemma 2.1a) and Lemma 2.2, we can conclude the following corollary:

Corollary 2.3. Let G be a graph with components G_1, G_2, \ldots, G_n. Then

$$1 - n + \sum_{i=1}^{n} \gamma(G_i) \leq \gamma(G) \leq \sum_{i=1}^{n} \gamma(G_i).$$

Lemma 2.4. ([20] Corollaries 11.7 and 11.8) Let G be a connected graph with $p \geq 3$ vertices and q edges. Then $\gamma(G) \geq \frac{q}{3} - p + 2$. In particular, if G has no triangle, then $\gamma(G) \geq \frac{q}{4} - p + 2$.

Now, from Corollary 2.3 together Lemma 2.4 we obtain the following corollary:

Corollary 2.5. Let G be a graph with n components, $p \geq 3$ vertices and q edges. Then $\gamma(G) \geq \frac{q}{3} - p + n + 1$. In particular, if G has no triangles, then $\gamma(G) \geq \frac{q}{4} - p + n + 1$.

The authors in [10], Lemma 2.2], obtained the following lemma (when the graph G is connected), but they used Euler’s formula in their proof which is false in nonorientable case (see [29], p. 144)). Fortunately, the result is true and we prove it in general case. We remark here that the Euler’s formula also used in [9], which is false in nonorientable case and so the results in [9] must be checked again.
Lemma 2.6. Let G be a graph with n components and $p \geq 3$ vertices. Then

$$\delta(G) \leq 6 + \frac{6\gamma(G) - 6(n + 1)}{p}.$$

Proof. Since $\sum_{v \in V(G)} \deg(v) = 2q$, then $p\delta(G) \leq 2q$. Now, by Corollary 2.5, $2q \leq 6(p + \gamma(G) - (n + 1))$. This completes the proof. \qed

3. $\Gamma(R, S)$ with finite nonorientable genus

In this section, first we prove that for an Artinian ring R with $\gamma(\Gamma(R, S)) = k < \infty$, for some non-negative integer k, R must be a finite ring. Then, we prove that for a given positive integer k, the number of finite rings R such that $\gamma(\Gamma(R, S)) = k$ is finite. We begin with some basic general properties of $\Gamma(R, G, S)$.

Lemma 3.1. (15, Remark 2.4) (a) For any vertex x of $\Gamma(R, G, S)$, we have the inequalities

$$|G| - 1 \leq \deg(x) \leq |G||S|.$$

Furthermore, for any vertex x of $\Gamma(R, G, S)$, $\deg(x) \geq |G|$.

(b) Suppose that R_1 and R_2 are rings and, for each i with $i = 1, 2$, G_i is a subgroup of $U(R_i)$. Also, assume that S_i is a non-empty subset of G_i with $S_i^{-1} \subseteq S_i$.

(i) Then $\Gamma(R_1 \times R_2, G_1 \times G_2, S_1 \times S_2) \cong \Gamma(R_1, G_1, S_1) \otimes \Gamma(R_2, G_2, S_2)$.

(ii) Furthermore, whenever $R_1 = R_2$, $G_1 \subseteq G_2$ and $S_1 \subseteq S_2$, then $\Gamma(R_1, G_1, S_1)$ is a subgraph of $\Gamma(R_2, G_2, S_2)$.

Lemma 3.2. (15, Theorem 2.7) The graph $\Gamma(R, G, S)$ is a complete graph if and only if the following statements hold.

(a) R is a field.

(b) $G = U(R)$.

(c) $|S| \geq 2$ or $S = \{-1\}$.

Remark 3.3. (15, Remark 3.1) Suppose that $\{x_i + J(R)\}_{i \in I}$ is a complete set of coset representation of $J(R)$. Note that if $x \in U(R)$ and $j \in J(R)$, then $x + j \in U(R)$. Hence, whenever x_1 and x_2 are adjacent vertices in $\Gamma(R, S)$, then every element of $x_1 + J(R)$ is adjacent to every element of $x_j + J(R)$.

Lemma 3.4. (15, Proposition 3.2 and its proof) Let m be a maximal ideal of R such that $|\frac{R}{m}| = 2$. Then the graph $\Gamma(R, S)$ is bipartite. Furthermore, if R is a local ring, then $\Gamma(R, S)$ is a complete bipartite graph with parts m and $1 + m$.

Theorem 3.5. Let R be an Artinian ring such that $\gamma(\Gamma(R, S)) = k < \infty$, for some non-negative integer k. Then R is a finite ring.

Proof. First suppose that $|J(R)| = 1$. In this case, for some positive integer n, $R \cong F_1 \times \cdots \times F_n$, where F_i’s ($1 \leq i \leq n$) are fields. Suppose on the contrary R is infinite. Hence, without loss of generality we can assume that F_1 is infinite. Let $s = (s_1, \ldots, s_n) \in S$ and $k' = \max\{3, 4k\}$. Since F_1 is infinite we can choose distinct elements $x_1, \ldots, x_{k'}, y_1, \ldots, y_{k'} \in F_1$ such that $-s_1y_1, \ldots, -s_1y_{k'} \notin \{x_1, \ldots, x_{k'}\}$. Now, every element of the form $(x_i, 1, \ldots, 1)$, $i = 1, \ldots, k'$, is adjacent to every element of the form $(y_j, 0, \ldots, 0)$, $j = 1, \ldots, k'$, in $\Gamma(R, S)$. Thus, $K_{k', k'}$ is a subgraph of $\Gamma(R, S)$ and so by parts (b) and (d) of Lemma 2.4, $k' \leq \sqrt{2k} + 2$ which is a contradiction.
Now, suppose that $|J(R)| > 1$. Since 0 is adjacent to 1 in $\Gamma(R, S)$, by Remark 3.3, every element of $0 + J(R)$ is adjacent to every element of $1 + J(R)$. Hence, $K_{|J(R)|, |J(R)|}$ is a subgraph of $\Gamma(R, S)$ and so by parts (b) and (d) of Lemma 2.1, $|J(R)| \leq \sqrt{|K_{|J(R)|, |J(R)|}} + 2$. Now, since R is an Artinian ring, for some positive integer n, we can write $R \cong R_1 \times \cdots \times R_n$, where R_i’s ($1 \leq i \leq n$) are local rings. Thus, $|J(R)| = |J(R_1)| \times \cdots \times |J(R_n)|$ and so for all $i = 1, \ldots, n$, $|J(R_i)| < \infty$. On the other hand, for all $i = 1, \ldots, n$, $Z(R_i) = J(R_i)$ and so by [13, Theorem 1], R_i is a finite ring. Hence, R is a finite ring.

The following corollary is an immediate consequence from Lemma 2.1(a) and Theorem 3.5.

Corollary 3.9. Let R be an Artinian ring such that $\gamma(\Gamma(R, S)) < \infty$. Then R is a finite ring.

Remark 3.7. Let R be an Artinian ring such that $\gamma(\Gamma(R, S)) < \infty$. Then R is a finite ring.

Theorem 3.8. Let R be a finite ring and $\tilde{\gamma}(\Gamma(R, S)) = k > 0$. Then either

$$|R| \leq 6k - 12 \quad \text{or} \quad R \cong (\mathbb{Z}_2)^\ell \times T,$$

where $0 \leq \ell \leq \log_2 k + 1$ and T is a ring with $|T| \leq 16$.

Proof. By Lemma 2.8, $\delta(\Gamma(R, S)) \leq 6 + \frac{6k - 12}{|R|}$. If $|R| > 6k - 12$, then $\delta(\Gamma(R, S)) \leq 6$ and so by Lemma 3.1(a), $|U(R)| \leq 7$. Now, since R is a finite ring, we can write $R \cong (\mathbb{Z}_2)^\ell \times T$, where $\ell \geq 0$ and T is a finite ring. Since $|U(R)| \leq 7$, in view of [11, Theorem 3.8] and its proof, $|T| \leq 16$. It will suffice to prove that if $\ell > 0$, then $\ell \leq \log_2 k + 1$. Since $S = \{1\} \times \cdots \times \{1\} \times S'$, for some $S' \subseteq T$ and $\ell \geq 1$, by Remark 3.7, $\Gamma(\mathbb{Z}_2^\ell \times T, \{1\} \times \cdots \times \{1\} \times S') \cong 2^{\ell - 1} \Gamma(\mathbb{Z}_2^\ell \times T, \{1\} \times S')$. Set $t := \tilde{\gamma}(\Gamma(\mathbb{Z}_2^\ell \times T, \{1\} \times S'))$. If $t = 1$, then by Lemma 2.2, $k = 2^{\ell - 1}$ and so $\ell = \log_2 k + 1$. Now, suppose that $t > 1$. By Corollary 2.3, $k \geq 1 - 2^{\ell - 1} + 2^{\ell - 1}t$. Hence, $k \geq 2^{\ell - 1} + 1$ and so $\ell \leq \log_2 (k - 1) + 1$. This completes the proof.

Corollary 3.9. Let R be a finite ring such that $\tilde{\gamma}(\Gamma(R, S)) = k > 0$. Then $|R| \leq 32k$. In particular, for any positive integer k, the number of finite rings R such that $\tilde{\gamma}(\Gamma(R, S)) = k$ is finite.

Proof. If $|R| > 6k - 12$, then by Theorem 3.8, $R \cong (\mathbb{Z}_2)^\ell \times T$, where $0 \leq \ell \leq \log_2 k + 1$ and T is a ring with $|T| \leq 16$. In this case, $|R| = 2^{\ell} \times |T| \leq 2^{\ell} \times 16 \leq 32k$. Thus, $|R| \leq \max\{6k - 12, 32k\} = 32k$.

The following Corollary is an immediate consequence from Corollary 3.9 and Lemma 2.1(a).

Corollary 3.10. For a given positive integer g, the number of finite rings R such that $\gamma(\Gamma(R, S)) = g$ is finite.
4. \(\Gamma(R, S) \) WITH NONORIENTABLE GENUS ONE

A graph \(G \) is irreducible for a surface \(S \) if \(G \) does not embed in \(S \), but any proper subgraph of \(G \) does embed in \(S \). Kuratowski’s theorem states that any graph which is irreducible for the sphere is homeomorphic to either \(K_5 \) or \(K_{3,3} \). Glover, Huneke, and Wang in [13] have constructed a list of 103 graphs which are irreducible for projective plane. Afterward, Archdeacon [2] showed that their list is complete. Hence a graph embeds in the projective plane if and only if it contains no subgraph homeomorphic to one of the graphs in the list of 103 graphs in [13].

In this section we characterize all finite rings \(R \) whose \(\Gamma(R, S) \) is projective. First, we focus in the case that \(R \) is local.

Lemma 4.1. Let \(R \) be a finite ring such that \(\bar{\gamma}(\Gamma(R, S)) = 1 \). Then \(|U(R)| \leq 6 \) and \(|J(R)| \leq 3 \).

Proof. By Lemma 3.1(a), \(|U(R)| \leq \bar{\delta}(\Gamma(R, S)) \) and by Lemma 2.6, \(\bar{\delta}(\Gamma(R, S)) \leq 6 \). Thus, \(|U(R)| \leq 6 \). Now, it is sufficient to prove that \(|J(R)| \leq 3 \). From the proof of Theorem 3.5 follows that either \(|J(R)| = 1 \) or \(|J(R)| \leq \sqrt{2} + 2 \). This completes the proof.

Corollary 4.2. Let \(R \) be a finite local ring such that \(\bar{\gamma}(\Gamma(R, S)) = 1 \). Then \(|R| \leq 9 \).

Proof. Let \(m \) be the unique maximal ideal of \(R \). By Lemma 4.1, \(|U(R)| \leq 6 \) and \(|m| \leq 3 \). This implies that \(|R| = |U(R)| + |m| \leq 6 + 3 = 9 \). In addition, if \(R \) is a field, then \(|R| = 1 \).

Lemma 4.3. Let \(R \) be a finite local ring which is not a field.

(a) If \(|R| = 8 \), then \(\bar{\gamma}(\Gamma(R, S)) = 2 \).

(b) If \(|R| = 9 \), then \(\bar{\gamma}(\Gamma(R, S)) \geq 2 \).

Proof. Let \(m \) be the unique maximal ideal of \(R \).

(a) Since \(R \) is not a field, in view of [10] p. 687, \(|m| = 4 \). Hence, \(|R/m| = 2 \) and by Lemma 3.4, \(\Gamma(R, S) \) is a complete bipartite graph with parts \(m \) and \(1 + m \). Thus, \(\Gamma(R, S) \cong K_{4,4} \) and so by Lemma 2.1(d), \(\bar{\gamma}(\Gamma(R, S)) = 2 \).

(b) Since \(|R| \) is odd, by [15] Corollary 2.3, \(2 \notin U(R) \). It follows that 0 is adjacent to 2. Now, by Remark 3.3, every element of \(m \) is adjacent to every element of \(1 + m \) and \(2 + m \). On the other hand, since \(R \) is not a field, \(|m| = 3 \). Thus, \(K_{3,6} \) is a subgraph of \(\Gamma(R, S) \) and so by parts (b) and (d) of Lemma 2.1, \(\bar{\gamma}(\Gamma(R, S)) \geq 2 \).

Lemma 4.4. ([15] Theorem 3.7) Let \(R \) be a finite ring. Then \(\Gamma(R, S) \) is planar if and only if one of the following conditions holds.

(a) \(R \cong (\mathbb{Z}_2)^\ell \times T \), where \(\ell \geq 0 \) and \(T \) is isomorphic to one of the following rings:

\[\mathbb{Z}_2, \mathbb{Z}_3, \mathbb{Z}_4 \text{ or } \frac{\mathbb{Z}_2[x]}{(x^2)} \]

(b) \(R \cong \mathbb{F}_4 \).

(c) \(R \cong (\mathbb{Z}_2)^\ell \times \mathbb{F}_4 \), where \(\ell \geq 0 \) with \(S = \{1\} \).

(d) \(R \cong \mathbb{Z}_5 \) with \(S = \{1\} \).
Lemma 4.6. Let \(R \) be a finite local ring. Then \(\Gamma(R, S) \) is projective if and only if \(R \cong \mathbb{Z}_5 \times \mathbb{Z}_5 \) with \(S = \{(1,1), (1,-1), (-1,1)\} \).

Proof. Suppose that \(\gamma(\Gamma(R, S)) = 1 \). By Corollary 4.2 and Lemma 4.3, \(|R| \leq 7\).

If either \(|R| \leq 4\) or \(R \cong \mathbb{Z}_5 \) with \(S = \{1\} \), then by Lemma 4.4, \(\Gamma(R, S) \) is planar which is not projective. On the other hand, since \(R \) is a finite local ring, the order of \(R \) is a power of a prime number. Thus, either \(R \cong \mathbb{Z}_5 \) with \(S \neq \{1\} \) or \(R \cong \mathbb{Z}_7 \). If \(R \cong \mathbb{Z}_5 \) with \(S \neq \{1\} \), then by Lemma 3.2, \(\Gamma(R, S) \cong K_5 \) and so by Lemma 2.1(c), \(\gamma(\Gamma(R, S)) = 1 \). Now, suppose that \(R \cong \mathbb{Z}_7 \). If either \(|S| \geq 2\) or \(S = \{-1\} \), then by Lemma 3.2, \(\Gamma(R, S) \cong K_7 \) and in this case by Lemma 2.1(c), \(\gamma(\Gamma(R, S)) = 3 \).

If \(S = \{1\} \), then \(\Gamma(\mathbb{Z}_7, \{1\}) \), as shown in Figure 1, is isomorphic to the graph \(A_2 \) which is one of the 103 graphs listed in [14]. Thus, \(\Gamma(\mathbb{Z}_7, \{1\}) \) is not projective. □

![Figure 1. The graph \(\Gamma(\mathbb{Z}_7, \{1\}) \).](image)

Now, we determine all finite non-local rings \(R \) whose \(\Gamma(R, S) \) is projective. First, we state some especial cases.

Lemma 4.6. Let \(R \cong \mathbb{Z}_2 \times T \) and \(T \in \{\mathbb{Z}_5, \mathbb{Z}_7, \mathbb{Z}_9, \frac{\mathbb{Z}_9}{(x^2)}\} \). Then \(\gamma(\Gamma(R, S)) \geq 2 \).

Proof. Since \(\Gamma(\mathbb{Z}_2, \{1\}) = \Gamma(\mathbb{Z}_2, \{1\}) \), then \(\Gamma(R, S) = \Gamma(R, S) \) and so by Lemma 3.1(a), for any vertex \(x \) of \(\Gamma(R, S) \), \(\deg(x) \geq |U(R)| \). On the other hand, since \(m = \{0\} \times T \) is a maximal ideal of \(R \) such that \(|R_m| = 2\), then by Lemma 3.4, \(\Gamma(R, S) \) is a bipartite graph. Hence, \(\Gamma(R, S) \) has no triangles. Now, consider the following cases:

Case 1: \(T = \mathbb{Z}_5 \). In this case \(|R| = 10\) and \(|U(R)| = 4\). It follows that \(\Gamma(R, S) \) has at least 20 edges. Thus, by second part of Corollary 2.5, \(\gamma(\Gamma(R, S)) \geq 2 \).

Case 2: \(T = \mathbb{Z}_7 \). In this case \(|R| = 14\) and \(|U(R)| = 6\). Hence, \(\Gamma(R, S) \) has at least 42 edges and so by second part of Corollary 2.5, \(\gamma(\Gamma(R, S)) \geq 9 \).

Case 3: \(T \in \{\mathbb{Z}_9, \frac{\mathbb{Z}_9}{(x^2)}\} \). In this case \(|R| = 18\) and \(|U(R)| = 6\). Thus, \(\Gamma(R, S) \) has at least 54 edges and so by second part of Corollary 2.5, \(\gamma(\Gamma(R, S)) \geq 11 \). □

Lemma 4.7. Let \(R \equiv R_1 \times R_2 \), \(R_1 \in \{\mathbb{Z}_3, \mathbb{Z}_4, \frac{\mathbb{Z}_3}{(x^2)}, \mathbb{Z}_4\} \) and \(R_2 \in \{\mathbb{Z}_4, \frac{\mathbb{Z}_4}{(x^2)}\} \). Then \(\gamma(\Gamma(R, S)) \geq 2 \).

Proof. Since for every \(s \in U(R_2) \), \(1+s \notin U(R_2) \), we have \(\Gamma(R, S) = \Gamma(R, S) \) and so by Lemma 3.1(a), for any vertex \(x \) of \(\Gamma(R, S) \), \(\deg(x) \geq |U(R)| \). On the other hand, by Lemma 3.4, \(\Gamma(R, S) \) is a bipartite graph. Indeed, if \(n \) be the unique maximal
ideal of \(R_2 \), then \(m = R_1 \times n \) is a maximal ideal of \(R \) such that \(|\frac{R_1}{m}| = 2\). Hence, \(\Gamma(R, S) \) has no triangles. Now, consider the following cases:

Case 1: \(R_1 = \mathbb{Z}_3 \). In this case \(|R| = 12\) and \(|U(R)| = 4\). It follows that \(\Gamma(R, S) \) has at least 24 edges. Thus, by second part of Corollary 2.5, \(\gamma(\Gamma(R, S)) \geq 2 \).

Case 2: \(R_1 \in \{ \mathbb{Z}_4, \mathbb{Z}_2[\{x\}] / (x^2) \} \). In this case \(|R| = 16\) and \(|U(R)| = 4\). Hence, \(\Gamma(R, S) \) has at least 32 edges and so by second part of Corollary 2.5, \(\gamma(\Gamma(R, S)) \geq 2 \).

Case 3: \(R_1 = \mathbb{F}_4 \). In this case \(|R| = 16\) and \(|U(R)| = 6\). Thus, \(\Gamma(R, S) \) has at least 48 edges and so by second part of Corollary 2.5, \(\gamma(\Gamma(R, S)) \geq 10 \).

\(\Box \)

Lemma 4.8. Let \(R \cong \mathbb{Z}_3 \times \mathbb{F}_4 \). Then \(\gamma(\Gamma(R, S)) \geq 2 \).

Proof. Since \(S \) is a non-empty subset of \(U(R) \) such that \(S^{-1} \subseteq S \), there exists an element \((s_1, s_2) \in S \) where \(s_1 \in \{1, -1\} \) and \((s_1, s_2)^{-1} \in S \). Set \(S_2 := \{s_2, s_2^{-1}\}, S' := \{s_1\} \times S_2 \) and \(G := \overline{\Gamma}(\mathbb{Z}_3, \{s_1\}) \). Since \(\text{Char}(\mathbb{F}_4) = 2 \), then \(|S_2| = 1\) if and only if \(s_2 = -1 \) and so by Lemma 3.2, \(\Gamma(\mathbb{F}_4, S_2) \cong K_4 \). On the other hand, by Lemma 3.1(b)(i),

\[
\Gamma(R, S') \cong \overline{\Gamma}(\mathbb{Z}_3, \{s_1\}) \odot \overline{\Gamma}(\mathbb{F}_4, S_2).
\]

Hence, \(G \odot K_4 \) is a subgraph of \(\Gamma(R, S') \). Note that by Lemma 3.1(b)(i) and Lemma 3.2,

\[
\Gamma(\mathbb{Z}_3 \times \mathbb{F}_4, \{(s_1, -1)\}) = \overline{\Gamma}(\mathbb{Z}_3 \times \mathbb{F}_4, \{(s_1, 1)\}) \cong G \odot K_4.
\]

Thus, by Lemma 3.1(a), \(G \odot K_4 \) is a 6-regular graph and so by Corollary 2.5, \(\gamma(G \odot K_4) \geq 2 \). Now, by Lemma 2.1(b) and Lemma 3.1(b)(ii), we have the following inequalities:

\[
\gamma(\Gamma(R, S)) \geq \gamma(\Gamma(R, S')) \\
\geq \gamma(G \odot K_4) \\
\geq 2.
\]

\(\Box \)

Lemma 4.9. Let \(R \cong \mathbb{Z}_2 \times R_1 \times R_2 \) where \(R_1 \) and \(R_2 \) are local rings of order 3 or 4. Then \(\gamma(\Gamma(R, S)) \geq 2 \).

Proof. Without loss of generality we can assume that \(|R_1| \leq |R_2|\). Since \(\Gamma(\mathbb{Z}_2, \{1\}) = \overline{\Gamma}(\mathbb{Z}_2, \{1\}) \), then \(\Gamma(R, S) = \overline{\Gamma}(R, S) \) and so by Lemma 3.1(a), for any vertex \(x \) of \(\Gamma(R, S) \), \(\deg(x) \geq |U(R)| \). On the other hand, since \(m = \{0\} \times R_1 \times R_2 \) is a maximal ideal of \(R \) such that \(|\frac{R}{m}| = 2\), then by Lemma 3.1, \(\Gamma(R, S) \) is a bipartite graph. Hence, \(\Gamma(R, S) \) has no triangles. Now, consider the following cases:

Case 1: \(|R_1| = |R_2| = 3\). In this case \(|R| = 18\) and \(|U(R)| = 4\). It follows that \(\Gamma(R, S) \) has at least 36 edges. Thus, by second part of Corollary 2.5, \(\gamma(\Gamma(R, S)) \geq 2 \).

Case 2: \(|R_1| = 3\) and \(|R_2| = 4\). In this case \(|R| = 24\) and \(|U(R)| \geq 4\). Hence, \(\Gamma(R, S) \) has at least 48 edges and so by second part of Corollary 2.5, \(\gamma(\Gamma(R, S)) \geq 2 \).

Case 3: \(|R_1| = |R_2| = 4\). In this case \(|R| = 32\) and \(|U(R)| \geq 4\). Thus, \(\Gamma(R, S) \) has at least 64 edges and so by second part of Corollary 2.5, \(\gamma(\Gamma(R, S)) \geq 2 \).

\(\Box \)

Theorem 4.10. Let \(R \) be a non-local finite ring. Then \(\Gamma(R, S) \) is projective if and only if \(R \cong \mathbb{Z}_3 \times \mathbb{Z}_3 \) with \(S = \{(-1, -1)\}, S = \{(1, -1), (-1, -1)\} \) or \(S = \{(-1, 1), (-1, -1)\} \).
Proof. Suppose that \(\tilde{\gamma}(\Gamma(R, S)) = 1 \). Then by Lemma 4.1, \(|U(R)| \leq 6 \) and \(|J(R)| \leq 3 \). On the other hand, by Theorem 3.8, \(R \cong (\mathbb{Z}_2)^\ell \times T \), where \(0 \leq \ell \leq 1 \) and \(T \) is a ring with \(|T| \leq 16 \). Since \(T \) is a finite ring, it is a finite direct product of finite local rings. Now, by Lemmas 4.4, 4.6, 4.7, 4.8 and 4.9, either \(\Gamma(R, S) \sim \mathbb{Z}_3 \) or \(R \cong \mathbb{Z}_3 \times \mathbb{Z}_3 \) with \(S \neq \{(1,1)\} \) or \(R \cong \mathbb{Z}_3 \times S \) with \(S \neq \{(1,1)\}, S \neq \{(1,-1)\} \) and \(S \neq \{(-1,1)\} \).

Case 1: \(R \cong \mathbb{Z}_2 \times \mathbb{F}_4 \) with \(S \neq \{(1,1)\} \). In this case \(S = \{1\} \times S' \), where \(|S'| \geq 2 \). By Lemma 3.1(b)(i),

\[
\Gamma(R, S) \cong \Gamma(\mathbb{Z}_2, \{1\}) \otimes \Gamma(\mathbb{F}_4, S')
\]

On the other hand, since \(\mathbb{F}_4 \) is a field and \(|S'| \geq 2 \), in view of the proof of Lemma 3.2, all vertices in \(\Gamma(\mathbb{F}_4, S') \) are adjacent with the exception that \(0 \) is not adjacent to \(0 \). Hence, \(\Gamma(R, S) \), as shown in Figure 2, is isomorphic to the graph \(E_{18} \) which is one of the 103 graphs listed in [14]. Thus, in this case \(\Gamma(R, S) \) is not projective.

Figure 2. The graph \(\Gamma(\mathbb{Z}_2 \times \mathbb{F}_4, S) \) with \(S \neq \{(1,1)\} \).

Case 2: \(R \cong \mathbb{Z}_3 \times \mathbb{Z}_3 \) with \(S \neq \{(1,1)\}, S \neq \{(1,-1)\} \) and \(S \neq \{(-1,1)\} \). In this case by Lemma 4.1, \(\Gamma(R, S) \) is not planar and so \(\tilde{\gamma}(\Gamma(R, S)) \geq 1 \). If \(S = \{(-1,1)\} \), then Figure 3 shows that \(\Gamma(R, S) \) can be embedded in the projective plane. Thus, \(\Gamma(\mathbb{Z}_3 \times \mathbb{Z}_3, \{(-1,1)\}) \) is projective.

If either \(S = \{(1,1),(-1,1)\} \) or \(S = \{(1,-1),(-1,1)\} \), then every vertex in \(\{(0,0),(0,1),(0,2),(1,0)\} \) is adjacent to every vertex in \(\{(1,1),(1,2),(2,1),(2,2)\} \). Hence, \(K_{4,4} \) is a subgraph of \(\Gamma(R, S) \) and so by parts (b) and (d) of Lemma 2.1, \(\tilde{\gamma}(\Gamma(R, S)) \geq 2 \). If \(|S| \geq 3 \), then either \(\{(1,1),(-1,1)\} \) or \(\{(1,1),(-1,1)\} \) is a subset of \(S \) and so by Lemma 3.1(b)(ii) and Lemma 2.1(b), \(\tilde{\gamma}(\Gamma(R, S)) \geq 2 \).

If \(S = \{(1,1),(-1,1)\} \), then Figure 4 shows that \(\Gamma(R, S) \) contains a subgraph isomorphic to \(B_3 \) which is one of the 103 graphs listed in [14]. Hence, by Lemma 2.1(b), \(\Gamma(\mathbb{Z}_3 \times \mathbb{Z}_3, \{(1,1),(-1,1)\}) \) is not projective.

If \(S = \{(1,1),(-1,1)\} \), then by Lemma 3.1(b)(i),

\[
\Gamma(R, S) = \Gamma(\mathbb{Z}_3 \times \mathbb{Z}_3, \{(1,1),(-1,1)\})
\]

\[
\cong \Gamma(\mathbb{Z}_3, \{1\}) \otimes \Gamma(\mathbb{Z}_3, \{1\})
\]

\[
\cong \Gamma(\mathbb{Z}_3, \{1\}) \otimes \Gamma(\mathbb{Z}_3, \{-1\})
\]

\[
\cong \Gamma(\mathbb{Z}_3 \times \mathbb{Z}_3, \{1\} \times \{-1\})
\]

\[
= \Gamma(\mathbb{Z}_3 \times \mathbb{Z}_3, \{(1,1),(-1,1)\}).
\]

This implies that \(\tilde{\gamma}(\Gamma(\mathbb{Z}_3 \times \mathbb{Z}_3, \{(1,1),(-1,1)\})) \geq 2 \).
Figure 3. Embedding of $\Gamma(\mathbb{Z}_3 \times \mathbb{Z}_3, \{(−1, −1)\})$ in the projective plane.

Figure 4. A sugraph of $\Gamma(\mathbb{Z}_3 \times \mathbb{Z}_3, \{(1, 1), (1, −1)\})$.

If $S = \{(1, −1), (−1, −1)\}$, then by Figure 3, $\Gamma(R, S)$ can be embedded in the projective plane. Hence, $\Gamma(\mathbb{Z}_3 \times \mathbb{Z}_3, \{(1, −1), (−1, −1)\})$ is projective.

Finally, if $S = \{(−1, 1), (−1, −1)\}$, then similarly by Lemma 3.1(b)(i),

$\Gamma(\mathbb{Z}_3 \times \mathbb{Z}_3, \{(1, −1), (−1, −1)\})$.

It follows that $\Gamma(\mathbb{Z}_3 \times \mathbb{Z}_3, \{(−1, 1), (−1, −1)\})$ is also projective.

Corollary 4.11. Let R be a finite ring. Then $\Gamma(R, S)$ is projective if and only if one of the following conditions holds:

(a) $R \cong \mathbb{Z}_5$ with $S \neq \{1\}$.
(b) $R \cong \mathbb{Z}_3 \times \mathbb{Z}_3$ with $S = \{(−1, −1)\}$, $S = \{(1, −1), (−1, −1)\}$ or $S = \{(−1, 1), (−1, −1)\}$.

Proof. It is an immediate consequence from Theorems 4.5 and 4.10.

Corollary 4.12. There is no finite ring R such that the unit graph $G(R)$ is projective.
Figure 5. Embedding of $\Gamma(\mathbb{Z}_3 \times \mathbb{Z}_3, \{(1, -1), (-1, -1)\})$ in the projective plane.

Proof. It follows from the fact that $G(R) = \Gamma(R, \{1\})$ and Corollary 4.11.

Corollary 4.13. Let R be a finite ring. Then the unitary Cayley graph $\text{Cay}(R, U(R))$ is projective if and only if R is isomorphic to \mathbb{Z}_5 or $\mathbb{Z}_3 \times \mathbb{Z}_3$.

Proof. Since $\text{Cay}(R, U(R)) = \Gamma(R, \{-1\})$, by Corollary 4.11 there is nothing to prove.

Some properties of the special case of the graph $\Gamma(R, S)$ in the case that $S = U(R)$ were studied by Naghipour et al. in [19]. As a consequence of Corollary 4.11 we have the following corollary.

Corollary 4.14. Let R be a finite ring. Then $\Gamma(R, U(R))$ is projective if and only if R is isomorphic to \mathbb{Z}_5.

5. Projective Co-maximal Graphs

Let R be a ring. As in [6], we denote the co-maximal graph of R by $C_T(R)$. For every $S \subseteq U(R)$ with $S^{-1} \subseteq S$, $\Gamma(R, S)$ is a subgraph of $C_T(R)$. The authors in [28] and [6] determined all finite rings whose co-maximal graph has genus at most one and genus two, respectively. The question first posed in [16] was “which rings have projective co-maximal graphs?” In this section, we characterize all Artinian rings R whose co-maximal graphs $C_T(R)$ are projective.

Theorem 5.1. Let R be an Artinian ring such that $\tilde{\gamma}(C_T(R)) < \infty$. Then R is a finite ring.

Proof. Since $\Gamma(R, S)$ is a subgraph of $C_T(R)$, by Lemma 2.1(b), $\tilde{\gamma}(\Gamma(R, S)) \leq \tilde{\gamma}(C_T(R))$. Hence, $\tilde{\gamma}(\Gamma(R, S) < \infty$ and so by Theorem 3.5 R is a finite ring.

The following corollary is an immediate consequence from Lemma 2.1(a) and Theorem 5.1.
Corollary 5.2. Let \(R \) be an Artinian ring such that \(\gamma(C_\Gamma(R)) < \infty \). Then \(R \) is a finite ring.

Remark 5.3. Let \(R \) be a finite ring such that \(\tilde{\gamma}(C_\Gamma(R)) = k > 0 \). Since \(\Gamma(R, S) \) is a subgraph of \(C_\Gamma(R) \), by Lemma 2.1(b) and Corollary 3.9 \(|R| \leq 32k \). In particular, for any positive integer \(k \), the number of finite rings \(R \) such that \(\tilde{\gamma}(\Gamma(R, S)) = k \) is finite. Also, by Lemma 2.1(a), for a given positive integer \(g \), the number of finite rings \(R \) such that \(\gamma(C_\Gamma(R)) = g \) is finite.

Lemma 5.4. ([28 Corollary 5.3]) Let \(R \) be a finite ring. Then \(C_\Gamma(R) \) is planar if and only if \(R \) is isomorphic to one of the following rings:

\[
\mathbb{Z}_2, \quad \mathbb{Z}_3, \quad \mathbb{Z}_4, \quad \mathbb{Z}_2[x]/(x^2), \quad \mathbb{F}_4, \quad \mathbb{Z}_2 \times \mathbb{Z}_2, \quad \mathbb{Z}_2 \times \mathbb{Z}_3 \quad \text{or} \quad \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2.
\]

Theorem 5.5. Let \(R \) be a finite ring. Then \(C_\Gamma(R) \) is projective if and only if \(R \) is isomorphic to one of the following rings:

\[
\mathbb{Z}_2 \times \mathbb{Z}_4, \quad \mathbb{Z}_2 \times \mathbb{Z}_2[x]/(x^2) \quad \text{or} \quad \mathbb{Z}_5.
\]

Proof. Suppose that \(\tilde{\gamma}(C_\Gamma(R)) = 1 \). Since \(\Gamma(R, S) \) is a subgraph of \(C_\Gamma(R) \), by Lemma 2.1(b), \(\tilde{\gamma}(\Gamma(R, S)) \leq 1 \), for every \(S \subseteq U(R) \) with \(S^{-1} \subseteq S \). Thus, by Lemma 4.4 Corollary 4.11 and Lemma 5.4, we have the following candidates for \(R \):

(a) \(\mathbb{Z}_\ell^2 \) where \(\ell \geq 4 \).

(b) \((\mathbb{Z}_2)^\ell \times \mathbb{Z}_3 \) where \(\ell \geq 2 \).

(c) \((\mathbb{Z}_2)^\ell \times T \) where \(\ell \geq 1 \) and \(T \) is isomorphic to \(\mathbb{Z}_4 \) or \(\mathbb{Z}_2[x]/(x^2) \).

(d) \(\mathbb{Z}_5 \).

Case 1: \(R \cong \mathbb{Z}_\ell^2 \) where \(\ell \geq 4 \). If \(\ell = 4 \), then Figure 6 shows that \(C_\Gamma(R) \) contains a subdivision of \(K_{4,4} \) and so by parts (b) and (d) of Lemma 2.1, \(\tilde{\gamma}(C_\Gamma(R)) \geq 2 \). If \(\ell \geq 5 \), then \(C_\Gamma(\mathbb{Z}_\ell^2) \) is a subgraph of \(C_\Gamma(R) \) and so by Lemma 2.1(b), \(\tilde{\gamma}(C_\Gamma(R)) \geq 2 \).

Case 2: \(R \cong (\mathbb{Z}_2)^\ell \times \mathbb{Z}_3 \) where \(\ell \geq 2 \). If \(\ell = 2 \), then it is easy to check that the graph \(C_\Gamma(R) \) has 35 edges (see also [6 Figure 8]) and so by Corollary 2.5 \(\tilde{\gamma}(C_\Gamma(R)) \geq 2 \). If \(\ell \geq 3 \), then \(C_\Gamma(\mathbb{Z}_2^\ell) \) is a subgraph of \(C_\Gamma(R) \) and so by Lemma 2.1(b), \(\tilde{\gamma}(C_\Gamma(R)) \geq 2 \).

![Figure 6](image-url)
Case 3: $R \cong (\mathbb{Z}_2)^\ell \times T$ where $\ell \geq 1$ and T is isomorphic to \mathbb{Z}_4 or $\mathbb{Z}_2[x]/(x^2)$. Note that $C_1((\mathbb{Z}_2)^\ell \times \mathbb{Z}_4) \cong C_1((\mathbb{Z}_2)^\ell \times \mathbb{Z}_2[x]/(x^2))$. Hence, it is enough to consider the case $R \cong (\mathbb{Z}_2)^\ell \times \mathbb{Z}_4$. If $\ell = 1$, then Figure 7 shows that the graph $C_\Gamma(\mathbb{Z}_2 \times \mathbb{Z}_4)$ can be embedded in the projective plane. If $\ell = 2$, then all the vertices $(1,1,0), (1,1,1), (1,1,2)$ and $(1,1,3)$ are adjacent to the vertices $(0,0,1), (0,1,1), (1,0,1)$ and $(1,0,3)$ in $C_\Gamma(R)$. Thus, $K_{4,4}$ is a subgraph of $C_\Gamma(R)$ and so by parts (b) and (d) of Lemma 2.1, $\bar{\gamma}(C_\Gamma(R)) \geq 2$. Finally, if $\ell \geq 3$, then $C_\Gamma(\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_4)$ is a subgraph of $C_\Gamma(R)$ and so by Lemma 2.1(b), $\bar{\gamma}(C_\Gamma(R)) \geq 2$.

Figure 7. Embedding of $C_\Gamma(\mathbb{Z}_2 \times \mathbb{Z}_4)$ in the projective plane.

Case 4: $R \cong \mathbb{Z}_5$. Note that $\Gamma(R, \{-1\})$ is a subgraph of $C_\Gamma(R)$ and by Lemma 3.2, $\Gamma(R, \{-1\}) \cong K_5$. Thus, $C_\Gamma(R) \cong K_5$ and so by Lemma 2.1(c), $C_\Gamma(R)$ is projective. \hfill \square

References

[1] R. Akhtar, M. Boggess, T. Jackson-Henderson, I. Jiménez, R. Karpman, A. Kinzel, and D. Pritikin, *On the unitary Cayley graph of a finite ring*, Electron. J. Combin. 16 (2009), no. 1, R117, 13 pp.

[2] D. Archdeacon, *A Kuratowski theorem for the projective plane*, J. Graph Theory 5 (1981), no. 3, 243–246.

[3] N. Ashrafi, H. R. Maimani, M. R. Pournaki, and S. Yassemi, *Unit graphs associated with rings*, Comm. Algebra 38 (2010), no. 8, 2851–2871.

[4] T. Asir and K. Mano, *Bounds for the genus of generalized total graph of a commutative ring*, Algebra Colloq. 26 (2019), no. 3, 519–528.

[5] T. Asir and T. Tamizh Chelvam, *On the genus of generalized unit and unitary Cayley graphs of a commutative ring*, Acta Math. Hungar. 142 (2014), no. 2, 444–458.

[6] ______, *On the genus two characterizations of unit, unitary Cayley and co-maximal graphs*, Ars Combin. 138 (2018), 77–91.

[7] I. Beck, *Coloring of commutative rings*, J. Algebra 116 (1988), no. 1, 208–226.

[8] J. A. Bondy and U. S. R. Murty, *Graph theory with applications*, American Elsevier Publishing Co., Inc., New York, 1976.

[9] H.-J. Chiang-Hsieh, *Classification of rings with projective zero-divisor graphs*, J. Algebra 319 (2008), no. 7, 2789–2802.
[10] B. Corbas and G. D. Williams, *Rings of order p^5. I. Nonlocal rings*, J. Algebra 231 (2000), no. 2, 677–690.

[11] A. K. Das, H. R. Maimani, M. R. Pournaki, and S. Yassemi, *Nonplanarity of unit graphs and classification of the toroidal ones*, Pacific J. Math. 268 (2014), no. 2, 371–387.

[12] J. R. Fiedler, J. P. Huneke, R. B. Richter, and N. Robertson, *Computing the orientable genus of projective graphs*, J. Graph Theory 20 (1995), no. 3, 297–308.

[13] N. Ganesan, *Properties of rings with a finite number of zero divisors*, Math. Ann. 157 (1964), 215–218.

[14] H. Glover, J. P. Huneke, and C. S. Wang, *103 graphs that are irreducible for the projective plane*, J. Combin. Theory Ser. B 27 (1979), no. 3, 332–379.

[15] K. Hashiyan and M. R. Khorsandi, *A generalization of the unit and unitary Cayley graphs of a commutative ring*, Acta Math. Hungar. 137 (2012), no. 4, 242–253.

[16] B. Mohar, *Embeddings of infinite graphs*, J. Combin. Theory Ser. B 44 (1988), no. 1, 29–43.

[17] A. R. Naghipour and M. Rezagholibeigi, *A refinement of the unit and unitary Cayley graphs of a finite ring*, Bull. Korean Math. Soc. 53 (2016), no. 4, 1197–1211.

[18] H. Su, K. Noguchi, and Y. Zhou, *Finite commutative rings whose unit graphs have positive genus*, J. Algebra 176 (1995), no. 1, 124–127.

[19] H. Su, G. Tang, and Y. Zhou, *Rings whose unit graphs are planar*, Publ. Math. Debrecen 86 (2015), no. 3-4, 363–376.

[20] H. Su and Y. Zhou, *A characterization of rings whose unitary Cayley graphs are planar*, J. Algebra 41 (2013), no. 1, 142–153.

[21] T. Tamizh Chelvam and T. Asir, *On the genus of the total graph of a commutative ring*, Comm. Algebra 41 (2013), no. 1, 142–153.

[22] C. Thomassen, *The graph genus problem is NP-complete*, J. Algorithms 10 (1989), no. 4, 568–576.

[23] H.-J. Wang, *Graphs associated to co-maximal ideals of commutative rings*, J. Algebra 320 (2008), no. 7, 2917–2933.

[24] A. T. White, *Graphs of groups on surfaces*, North-Holland Mathematics Studies, vol. 188, North-Holland Publishing Co., Amsterdam, 2001. Interactions and models.