Unpaired composite fermion, topological exciton, and zero mode

G. J. Sreejith,1 A. Wójc,2 and J. K. Jain1,3
1Department of Physics, 104 Davey Lab, Pennsylvania State University, University Park PA, 16802
2Institute of Physics, Wroclaw University of Technology, 50-370 Wroclaw, Poland and
3School of Physics, Korea Institute for Advanced Study, Seoul 130-722, Korea
(Dated: January 27, 2013)

The paired state of composite fermions is expected to support two kinds of excitations: vortices and unpaired composite fermions. We construct an explicit microscopic description of the unpaired composite fermion, which we demonstrate to be accurate for a 3-body model interaction, and, possibly, adiabatically connected to the Coulomb solution. This understanding reveals that an unpaired composite fermion carries with it a charge-neutral “topological” exciton, which, in turn, helps provide microscopic insight into the origin of zero modes, fusion rules, and energetics.

PACS numbers: 73.43.Cd, 71.10.Pm

Should composite fermions (CFs) form a p-wave paired state, as has been proposed1,2 for the mechanism of the fractional quantum Hall effect (FQHE) at 5/2, the analogy to superconductivity leads one to expect two kinds of excitations: vortices and unpaired CFs (UCFs). We construct in this Letter a microscopic description of the UCFs by considering a state with an odd number \((N)\) of composite fermions, which necessarily contains a composite fermion without a partner. The understanding of its structure reveals that the UCF carries with it what Hansson has termed a “topological”-exciton, and entails a number of remarkable and physically transparent properties for energetics, such as even-odd oscillations and zero modes, as well as fusion rules. Several of these have been found previously in the exact diagonalization studies of Möller, Wójc and Cooper3; Bonderson, Feiguin and Nayak4 and Lu, Das Sarma and Park5, and also in the conformal field theory treatment of the 5/2 state.6,7,8

We consider the following ansatz for the UCF state:

\[
\Psi_{\text{UCF}} = A \phi^{\text{CF}}(\{z_j\}) \chi^{\text{CF}}(\{w_k\}) \prod_{j=1}^{M+1} \prod_{k=1}^{M} (z_j - w_k)
\]

where the \(N = 2M + 1\) composite fermions have been divided into two partitions, \(\{z_1, z_2, \ldots, z_{M+1}\}\) and \(\{w_1, w_2, \ldots, w_M\}\), occupying states \(\phi^{\text{CF}}(\{z_j\})\) and \(\chi^{\text{CF}}(\{w_k\})\), and the last term represents correlations between composite fermions in different partitions. The symbol \(A\) indicates antisymmetrization with respect to exchange of any two particles. Let us define the largest exponent of \(z_j\) in \(\phi\) as \(2Q_\phi\) and the largest exponent of \(w_k\) in \(\chi\) as \(2Q_\chi\), which are analogous to the flux (measured in units of the flux quantum \(\phi_0 = \hbar c/e\)) in the spherical geometry for \(\phi\) and \(\chi\). Because the net flux must be the same for all particles, we have \(2Q = 2Q_\phi + M = 2Q_\chi + M + 1\) including the contribution from the cross factor. At \(2Q = 2N - 3\), the flux value relevant for the 5/2 state, \(\phi\) is the 1/3 state with a quasiparticle and \(\chi\) is the 1/3 state with a quasihole (Fig. 1). The addition of a CF in one partition thus induces, because of the structure of the wave function, a charge-neutral exciton across partitions, referred to as a “topological” exciton.5,6,7

It is to be distinguished from the “ordinary” exciton (Fig. 1b) that contains a quasiparticle-quasihole pair within one partition.8 Different occupations of the quasiparticle and the quasihole generate a basis of states for the UCF. The form of \(\Psi_{\text{UCF}}\) is naturally suggested by the CF theory within the bipartite representations of the paired Pfaffian wave function6,7 and has proved successful for the ordinary exciton.6,7 The conformal field theory construction of topological exciton by Hansson6 is very similar, and may even be identical. Wave functions of similar form were also motivated by Herrmann5,9 and by Milovanović and Jolicœur10 in a conformal field theory approach.

The ansatz \(\Psi_{\text{UCF}}\) signifies definite predictions, with no free parameters, for the quantum numbers of the low energy states, their wave functions, and their energies, through which the theory opens itself to rigorous tests against exact results known for finite systems. We show below that \(\Psi_{\text{UCF}}\) are exceedingly accurate for a model 3-body interaction \(H_3\), and provide evidence that they are adiabatically connected to the solutions of the 2nd Landau level (LL) Coulomb Hamiltonian \(H_C\). This logic is analogous to the one used by Storni, Morf and Das Sarma6 to justify the Pfaffian ground state for even \(N\). The calculations are performed in the spherical geome-
fractional numbers near dots are overlaps with Ψ_{UCF} orbital angular momentum and λ.

FIG. 2. (color online) Exact spectra (dots) for several particle numbers N at total flux $2Q = 2N - 3$ for the 3-body interaction (a–d), for the Coulomb interaction in the 2nd LL (e–h), and for Coulomb interaction in the lowest LL (i–l). L is the orbital angular momentum and λ is the magnetic length. The fractional numbers near dots are overlaps with Ψ_{UCF}^{CF} (which contains no adjustable parameters) in (a–c) and (e–g). The red dashes are the energies of Ψ_{UCF}^{CF}, not shown when they fall outside the frame (as in (g)). In (h) we show overlaps with the 3-body eigenstates; their Coulomb energies all fall outside the frame. The total number of linearly independent states in each L sector is shown in brackets in (a–d), and “dim” indicates the dimension of the $L_z = 1/2$ basis used in exact diagonalization.

try in which the N electrons move on the surface of the sphere under the influence of a radial magnetic field. The total flux through this spherical surface is $2Q\hbar c/e$. The wave functions Ψ_{UCF} can be translated into the spherical geometry using standard methods. For the quasiparticle, Jain’s wave function has been used.12,17 The model 3-body interaction is given by $H_3 = \sum_{i<j<k} P_{ijk}^{(3)} (3Q - 3)$,

where $P_{ijk}^{(3)} (L)$ projects the state of the three particles (i,j,k) into the subspace of total orbital angular momentum L; the interaction penalizes the smallest approach of three particles. We find it convenient to express the UCF wave function in each angular momentum sector as a linear combination of exact eigenstates, ψ_{exact} of either H_3 or H_C in the same sector: $\Psi_{UCF} = \sum_i c_i \psi_{\text{exact}}^i$. By considering sufficiently many N-particle configurations, we obtain a system of linear equations which can be solved to obtain c_i. The energies and overlaps of Ψ_{UCF} are then evaluated straightforwardly.

The angular momentum of the CF-quasiparticle in ϕ_{CF} is $(N + 1)/4$ and the angular momentum of the CF-quasihole in χ_{CF} is $(N - 1)/4$, which gives the allowed angular momenta for their combination as $L = 1/2$, \cdots, $N/2$. It turns out, remarkably, that the state at $L = 1/2$ is exactly annihilated upon antisymmetrization, thus leaving the UCF states at $L = 3/2, 5/2, \cdots, N/2$. The annihilation of the state at the smallest L is analogous to the annihilation of the $L = 1$ CF exciton of the FQHE states at $\nu = n/(2n \pm 1)$, as noted by Dev and Jain.20

The exact 3-body spectra (dots) are shown in the four upper panels (a)–(d) of Fig. 2 for several N. A low energy branch of states (blue dots) is seen to be well separated from the continuum, and with the exception of $L = 3/2$, the angular momenta of these states match nicely with the predicted values. The 3-body energies of Ψ_{UCF} and their overlaps with the corresponding exact eigenstates are also shown. The exquisite agreement establishes the validity of Ψ_{UCF} for H_3, with the exception of $L = 3/2$ where Ψ_{UCF} better describes an excited state.

The exact spectra for the H_C are shown in panels (e)–(h) of Fig. 2. These also contain a band of low-energy states (blue dots) at $L = 3/2, 5/2, \cdots, N/2$, which is less well defined than the band for H_3, but the lowest state is well separated from the “continuum” at each L in this range. Unlike for H_3, the $L = 3/2$ state does not belong in the continuum. The overlaps of the Coulomb eigenstates with Ψ_{UCF} are moderate; this is to be expected because the overlap of the exact 5/2 Coulomb ground state at even N with the Pfaffian wave function are also of similar level, and there is no reason why Ψ_{UCF} should do better than the Pfaffian wave function. We plot in

FIG. 3. (color online) Adiabatic evolution of the energy gap $\Delta(x)$ at each relevant value of L (defined as the separation between the two lowest eigenvalues at that L) as the interaction is varied from 3-body to 2nd LL Coulomb. The evolution Hamiltonian is $H(x) = (1 - x)H_3/\varepsilon_3 + xH_C/\varepsilon_C$ in which the energy scales ε_3 and ε_C are taken as the ordinary exciton energies at large wave vector.

ear combination of exact eigenstates, ψ_{exact}, of either H_3 or H_C in the same sector: $\Psi_{UCF} = \sum_i c_i \psi_{\text{exact}}^i$. By considering sufficiently many N-particle configurations, we obtain a system of linear equations which can be solved to obtain c_i. The energies and overlaps of Ψ_{UCF} are then evaluated straightforwardly.

The angular momentum of the CF-quasiparticle in ϕ_{CF} is $(N + 1)/4$ and the angular momentum of the CF-quasihole in χ_{CF} is $(N - 1)/4$, which gives the allowed angular momenta for their combination as $L = 1/2$, \cdots, $N/2$. It turns out, remarkably, that the state at $L = 1/2$ is exactly annihilated upon antisymmetrization, thus leaving the UCF states at $L = 3/2, 5/2, \cdots, N/2$. The annihilation of the state at the smallest L is analogous to the annihilation of the $L = 1$ CF exciton of the FQHE states at $\nu = n/(2n \pm 1)$, as noted by Dev and Jain.20

The exact 3-body spectra (dots) are shown in the four upper panels (a)–(d) of Fig. 2 for several N. A low energy branch of states (blue dots) is seen to be well separated from the continuum, and with the exception of $L = 3/2$, the angular momenta of these states match nicely with the predicted values. The 3-body energies of Ψ_{UCF} and their overlaps with the corresponding exact eigenstates are also shown. The exquisite agreement establishes the validity of Ψ_{UCF} for H_3, with the exception of $L = 3/2$ where Ψ_{UCF} better describes an excited state.

The exact spectra for the H_C are shown in panels (e)–(h) of Fig. 2. These also contain a band of low-energy states (blue dots) at $L = 3/2, 5/2, \cdots, N/2$, which is less well defined than the band for H_3, but the lowest state is well separated from the “continuum” at each L in this range. Unlike for H_3, the $L = 3/2$ state does not belong in the continuum. The overlaps of the Coulomb eigenstates with Ψ_{UCF} are moderate; this is to be expected because the overlap of the exact 5/2 Coulomb ground state at even N with the Pfaffian wave function are also of similar level, and there is no reason why Ψ_{UCF} should do better than the Pfaffian wave function. We plot in
FIG. 4. (color online) Panel (a): Evolution of the low energy spectrum of $N = 13$ electrons with the Hamiltonian $H(x)$ of Fig. 3. Both constituents H_3 and H_C have been used for the angular momenta of the UCF, and the dot diameters give the overlaps with the corresponding 3-body eigenstate. Except for $L = 3/2$ (level crossing at $x \approx 0.2$), the UCF states at $x = 0$ appear adiabatically connected to the corresponding Coulomb states at $x = 1$. Panels (b–e): Blue open circles show $\langle \Psi_C | H_3 | \Psi_C \rangle$ for each 2nd LL Coulomb eigenstate Ψ_C as a function of its eigenenergy E_C, and the red dots show $\langle \Psi_3 | H_C | \Psi_3 \rangle$ for each 3-body eigenstate Ψ_3 as a function of its eigenenergy E_3. The encircled red and blue dots indicate that the lowest 3-body state has the lowest $\langle H_C \rangle$ and vice versa, supporting adiabatic continuity; the red dots at $L = 3/2$ provide an exception.

Fig. 4 shows the evolution of the gap at each L as we vary the interaction from H_3 to H_C. The gap does not close for $L \geq 5/2$. There is an avoided level crossing at $L = 3/2$, but, interestingly, the Coulomb state is seen to be connected to the 3-body excited state that has largest overlap with the UCF wave function. These results suggest that the Coulomb eigenstates are adiabatically connected to Ψ_{UCF} for all relevant L. Further evidence for adiabatic continuity is presented in Fig. 4. We note that, as for the Pfaffian state, the agreement improves slightly (not shown) upon including finite thickness effects.

In contrast, the spectra for the lowest LL Coulomb state, shown in panels (i)–(l) of Fig. 4, are consistent with a system of weakly interacting composite fermions experiencing an effective flux $2Q^* = 2(Q - N + 1) = 1$. In the topmost partially filled Λ level shell, we have: one CF hole with single particle angular momentum $l^* = 5/2$ for $N = 11$; one CF with $l^* = 7/2$ for $N = 13$; three CFs each with $l^* = 7/2$ for $N = 15$; and three CF holes each with $l^* = 7/2$ for $N = 17$. The allowed L values can be obtained from an elementary calculation, and match precisely those seen in the exact spectra. The similarity of the lowest bands for 15 and 17 particles is striking; there is no symmetry in the electron problem which implies this result, but it is explained rather naturally in the CF theory, where the two states are related by particle hole symmetry in the fourth Λ level. States with excitations across one Λ level can also be identified in these spectra as forming a well defined second band. Clearly, the structure of the low energy states in the lowest LL is qualitatively distinct from that for H_3, implying a lack of adiabatic continuity with H_3.

The above description of the UCF gives natural insight into many properties of the $5/2$ state:

1. **Odd-even parity effect:** The presence of the topological exciton at odd N causes $O(1)$ oscillations in energy as a function of N, as found by Lu, Das Sarma and Park. With the energy difference between odd and even N being equal to the energy of a topological exciton.

2. **Ordinary vs. topological exciton:** A nontrivial consequence is that in the large wave vector limit (namely the large L limit in the spherical geometry), the UCF and ordinary neutral exciton have the same energy because, in this limit, the constituent quasiparticle and quasihole are independent and their energy does not depend on whether they reside in the same or different partitions.

 (The energy must be defined properly relative to the uniform ground state, which for odd N is to be obtained by interpolation.) For H_3 this has already been noted in exact diagonalization studies by Möller, Wójs and Cooper.

FIG. 5. (Color online) Density profiles of (a) the unpaired CF state ψ_{UCF} with $N = 13$, and (b) 3-body eigenstate ($N = 19$) on sphere as a function of the polar angle θ. The density, normalized to the filling factor, is measured relative to $1/2$. The different curves correspond to different L with $L_s = L$; $L = 3/2$ is not shown in (b) because it falls into the continuum. The distance between the constituent quasiparticle and quasihole increases with L; they are both near the North Pole ($\theta = 0$) for $L = 3/2$ but at the opposite Poles for $L = N/2$. Panels (c) and (d) show comparisons of the density profiles of the topological exciton (with $N = 19$) and ordinary excitons ($N = 18$) at the largest $L = L_s = N/2$ for 3-body and 2nd LL Coulomb interactions; panels (e) and (f) show their energies as a function of N. The dimension of the $L_s = 1/2$ configuration space exceeds 107 million for $N = 19$ at $2Q = 35$, the largest so far for which H_3 has been diagonalized.
Similar demonstration for H_C would be crucial; here, while finite size effects are stronger, but Fig. convincingly demonstrates that even for H_C the two excitons at large N converge with increasing N. At short distances (small L), on the other hand, the energies of the ordinary and topological excitons are not equal. Further, the ordinary CF exciton is known to display a complex dispersion, possibly with several “roton” minima, resulting from a complex interplay between the density profiles of the quasihole and the quasiparticle as a function of their separation. Similar behavior can be expected for the topological exciton, the constituents of which also have complicated density profiles (Fig.), and indeed, the dispersions in Fig. or previous studies do exhibit minima. The minimum energy of the UCF will thus be lower than its large L limit, as indicated by numerical studies. The location of the minimum depends on the form of the interaction, and will in general occur at different L for H_3 and H_C. It is noted that light scattering, which does not alter N, will excite the ordinary exciton for states containing either even or odd N, which differ only by a single localized topological exciton.

Fusion rules: Using the standard terminology of the Ising conformal field theory, we identify the UCF by ψ and the vortex excitation (a quasiparticle or a quasihole in one partition) by σ. The relation $\sigma \times \sigma = 1 + \psi$ indicates that a quasihole and a quasiparticle can be combined to produce two kinds of excitations, by placing them in the same or different partitions. The former, labeled “1,” produces an ordinary exciton all of whose quantum numbers are zero, whereas the latter, labeled “ψ,” produces a UCF. The relation $\sigma \times \psi = \sigma$ captures the reaction in which the addition of a quasiparticle or a quasihole to the UCF state annihilates half of the UCF to leave a single quasiparticle or quasihole. Finally, $\psi \times \psi = 1$ encapsulates the fact that two UCFs are equivalent to two ordinary excitons. In all cases above, we have considered the lowest energy outcomes only. The fusion relations in the presence of several quasiparticles or quasiholes can similarly be derived.

Zero modes: Möller, Wójs and Cooper have found that the energy remains unchanged, modulo finite size uncertainties, when a UCF is added to a system that already contains some quasiparticles or quasiholes. To see how this can be understood, take the example of a state with $2n$ quasiholes, n in each partition. Adding a UCF produces an “imbalanced” system with $n+1$ and $n-1$ quasiholes in the two partitions, because the quasiparticle of the topological exciton annihilates one of the quasiholes. Provided the quasiholes are far apart, the energy both before and after is simply $2n$ times the self energy of an isolated quasihole. The addition of a UCF thus costs zero energy.

One may question if these conclusions, which rely on the validity of Ψ_{UCF}, apply to the solutions of the 3-body or Coulomb interaction. In this context, it is important to note that the analysis leading to these conclusions does not depend on the details of the wave functions but only on the structure of the theory for the quasiparticles and quasiholes, and the existence of a topological exciton associated with the UCF. Adiabatic continuity suggests that the above mentioned implications carry over to H_3 and, likely, also to H_C, and should be robust to corrections arising from finite width and Landau level mixing.

We are grateful to Duncan Haldane, Maria Herrmanns, Perla Kacman, Gunnar Möller, and especially Hans Hansson, for insightful discussions. We acknowledge financial support from the DOE under grant no. DE-sc0005042 and the Polish MNiSW Grant No. N202179538, and thank the Penn State High-Performance Computing Cluster for computer time.

1. G. Moore and N. Read, Nucl. Phys. B 360, 362 (1991); N. Read and D. Green, Phys. Rev. B 61, 10267 (2000).
2. M. Greiter, X.G. Wen, and F. Wilczek, Phys. Rev. Lett. 66, 3205 (1991).
3. The unpaired composite fermion has been referred to as a “neutral fermion” in the literature.
4. G. Möller, A. Wójs, N.R. Cooper, arXiv:1009.4956 (2010).
5. P. Bonderson, A. E. Feiguin, C. Nayak, Phys. Rev. Lett. 106, 186802 (2011).
6. T.H. Hansson, APS March meeting talk (2011), http://meetings.aps.org/link/BAPS.2011.MAR.V12.12
7. T.H. Hansson, M. Hermanns and S. Viekers, Phys. Rev. B 80, 165330 (2009); T.H. Hansson, M. Hermanns, N. Regnault, and S. Viekers, Phys. Rev. Lett. 102, 166805 (2009).
8. H. Lu, S. Das Sarma, and K. Park, Phys. Rev. B 82, 201303 (2010).
9. C. Nayak and F. Wilczek, Nucl. Phys. B 479, 529 (1996).
10. C. Nayak et al., Rev. Mod. Phys. 80, 1083 (2008).
11. The terminology notwithstanding, we should remember that, because composite fermions themselves are topological, both excitons are fundamentally topological.
12. J. K. Jain, Phys. Rev. Lett. 63, 199 (1989).
13. G.J. Sreejith et al., unpublished.
14. M. Hermanns, Phys. Rev. Lett. 104, 056803 (2010).
15. M. V. Milovanović and Th. Jolicoeur, Int. J. Mod. Phys. 24, 549 (2010).
16. M. Storni, R.H. Morf, and S. Das Sarma, Phys. Rev. Lett. 104, 076803 (2010).
17. J.K. Jain, Phys. Rev. B 40, 8079 (1989); G.S. Jeon and J.K. Jain, Phys. Rev. B 68, 165346 (2003).
18. For 17 particles, the dimension of the $L_2 = 1/2$ basis, shown on Fig. is too large for this method.
19. We do not have an analytic proof for this, but have found it to be correct to machine accuracy for $N \leq 15$.
20. G. Dev and J.K. Jain, Phys. Rev. Lett. 69, 2843 (1992).
21. S.M. Girvin, A.H. MacDonald, and P.M. Platzman, Phys. Rev. Lett. 54, 581 (1985).
22. V.W. Scarola, K. Park and J.K. Jain, Phys. Rev. B 61, 13064 (2000).
23. A. Pinczuk et al., Phys. Rev. Lett. 70, 3983 (1993); M.
Kang et al., *ibid.* 86, 2637 (2001); T. D. Rhone et al., *ibid.* 106, 196805 (2011).