A Theoretical Analysis on Enthalpy of Vaporization: Temperature-Dependence and Singularity at the Critical State

Dehai Yu and Zheng Chen*

BIC-ESAT, SKLTCS, CAPT, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China

Abstract

Accurate evaluation of enthalpy of vaporization (or latent heat of vaporization) and its variation with temperature is of great interest in practical applications, especially for combustion of liquid fuels. Currently, a theoretically rigorous formulation for latent heat is still not in place; and the existing fitting formulas for various fluids are, in nature, system-dependent. In this paper, the enthalpy of vaporization and its change with temperature are derived rigorously from first principles at the reference and critical states. A composite formula for enthalpy of vaporization is constituted from physical plausibility. The composite formula contains no fitting parameters; and it can accurately predict the enthalpy of vaporization from the reference temperature to the critical temperature.

1. Introduction

In most thermal engineering facilities, liquid fuels are used while chemical reactions in fact occur in gas phase [1, 2]. Therefore, vaporization of liquid fuel is crucial during its combustion [1, 3-5]. At constant temperature and pressure, equilibrium vaporization absorbs a certain amount of energy, which facilitates the liquid molecules escaping from the attractive potential induced by molecular interactions and is accordingly defined as the enthalpy of vaporization [6]. The vaporization rate depends strongly on the latent heat: the lower the latent heat, the higher the vaporization rate [1].

In the literature on multi-phase combustion [1, 5, 7, 8], the enthalpy of vaporization was widely assumed as a constant in theoretical treatment. However, this assumption may not hold rigorously during the combustion process with significant increase in temperature and pressure [1, 8-11]. For
instance, ignition usually occurs when the system is initially at room temperature and atmospheric pressure with proper ignition energy supplied to the combustible reactants [3, 4, 8, 12]. As the combustion approaches the steady state, the ambient temperature increases significantly due to the exothermic reaction; and the pressure could also undergo considerable rise for combustion in a closed chamber [10, 13]. Hence, the assumption of constant latent enthalpy tends to be physically implausible.

Experiments have been extensively conducted to measure the latent heat of various fluids [14-22]. The enthalpy of vaporization was found to undergo increasingly reduction with temperature [19, 23]. Particularly, it vanishes at the critical state, where the phase distinction disappears. More interestingly, the gradient of latent heat with respect to temperature tends to be infinite at the critical state [3, 19, 23, 24]. The latent heat could be fitted from existing experimental data [19, 23]. However, these fitting formulas are system-dependent with many fitting coefficients, and they cannot reveal physical insights and lack generality. Hsieh et al. [4] numerically determined the latent heat by solving the Clausius-Clapeyron equation in terms of fugacity. The calculated latent heat agrees well with experimental data. However, there is no analytical expression derived for latent heat [2, 4].

To enhance physical understandings upon vaporization and to accurately calculate the vaporization rate of various fluids, a theoretical analysis on the latent heat is needed. In this study, we derived an analytical formula for latent heat which is applicable to various fluids. Moreover, this formula correctly interprets the latent heat from the reference temperature (room temperature in the present work), T_r, to the critical temperature, T_c. The choice of T_r is determined by the availability of experimental data of latent heat. The theoretical formulation initiates from the principle of energy conservation at molecular level. The characteristic of vaporization changes noticeably from the reference state to the critical state [2, 4, 24, 25], implying that the formulation should be conducted separately at these two states. At the reference state, the configurational distribution of liquid molecules is characterized by the coordination number, q, i.e. the number of nearest-neighboring molecules surrounding the concerned molecule. Knowing the coordination number, the molecular heat capacity in liquid phase, $c_{v,l}$, can be appropriately evaluated. Subsequently, the latent heat at the reference state, L_R, is derived as a function of temperature T and pressure p (correlating to intermolecular distance, r). Near the critical state, the molar heat capacities, C_v, and density difference, $\rho_l - \rho_g$, are related to $T - T_c$ as power functions with specific exponents, which are called critical exponents. Accordingly, derivation of latent enthalpy near critical state, L_C, involves critical exponents, which ensures both
$L_C = 0$ and $dL_C/dT = \infty$ at $T = T_c$. To interpret the latent heat in the temperature range from T_r to T_c, a composite formula L_t is constituted by properly weighting L_R and L_C in accordance with temperature variation. The composite formula can reduce to L_R and L_C at $T = T_r$ and $T = T_c$, respectively. Furthermore, good agreement with the experimental data is achieved in the concerned temperature range.

2. Formulation

2.1 Latent heat at molecule level

From statistical physics [6], the latent heat is the enthalpy difference between gas and liquid molecules during the phase transition, i.e.

$$l = h_g - h_l$$

(1)

where the subscripts l and g denote the liquid- and gas-phase, respectively. In thermodynamics, the enthalpy is related to the internal energy ε through

$$h = \varepsilon + pv$$

(2)

where v is the volume occupied by each molecule. In general, internal energy includes both individual molecular energy ε_k and intermolecular potential energy ε_p, i.e. $\varepsilon = \varepsilon_k + \varepsilon_p$. The former is determined in terms of molecular heat capacity c_v,

$$\varepsilon_k(T) = \varepsilon_k(T_c) + \int_{T_c}^{T} c_v dT$$

(3)

It should be noted that the distinction between the liquid and gas phases disappears at the critical state, which leads to $\varepsilon_{g,k}(T_c) = \varepsilon_{l,k}(T_c)$.

The intermolecular potential energy pertains to the interacting forces among molecules, which is the mechanism making liquid molecules closely arranged [26-28]. It can be written as

$$\varepsilon_p = \frac{1}{2} q_i \Gamma(r_i), \quad i = l, g$$

(4)

The factor $1/2$ is because every molecule should be treated equally and the interacting potential energy is shared by a pair of molecules. Substituting (2) - (4) into (1) yields

$$l = \int_{T_c}^{T} \left(c_{v,g} - c_{v,l} \right) dT + p v_g - p v_l + \frac{1}{2} q_g \Gamma(r_g) - \frac{1}{2} q_l \Gamma(r_l)$$

(5)

Equation (5) is the general form of molecular latent heat. Evaluation of l requires (a) an appropriate
potential function, (b) the constant-volume heat capacity per molecule, and (c) the molecular volume, for both liquid- and gas-phases. These quantities pertain to fundamental properties of the fluid, which implies the general validity of equation (5).

For simplicity, we assume that the fluid is non-polar. According to molecular thermodynamics, the intermolecular potential could be understood as interaction between induced dipoles [29]. The attractive potential can be rigorously derived as $\Gamma_{\text{att}} \sim -r^{-6}$. The repulsive force characterizes the incompressibility of molecules under normal conditions, which has negligible effect during vaporization due to its exceedingly short range of action [27, 29]. For physical plausibility and mathematical convenience, we adopt the well-known Lennard-Jones potential to interpret the molecular interaction,

$$\Gamma(r) = \epsilon_0 \left[\left(\frac{r_m}{r} \right)^{12} - 2 \left(\frac{r_m}{r} \right)^6 \right]$$

where r_m is the equilibrium separation distance at which the attractive and repulsive forces are in balance [30], and ϵ_0 is the depth of the potential well. Approximately r_m is the intermolecular distance in liquid. However, such estimation is plausible only at moderate temperature since thermal expansion could be considerable at sufficiently high temperatures. For instance, at the critical state, it has $r_{l,c} = r_{g,c} = r_c$ with critical separation r_c considerably larger than r_m. For $r \to \infty$, it yields $\Gamma(r \to \infty) \to 0$. Accordingly, we argue that $r_m/r_g \ll 1$, since the magnitude of interacting potential in gas phase is negligible comparing with $|\epsilon_0|$.

It is straightforward to calculate $c_{v,g}$, which is entirely determined by the excited degrees of freedom of each molecule. For a polyatomic molecule comprising n atoms, the degrees of freedom are distributed as 3 for translational motion, 3 (or 2 for linear molecule) for rigid rotation and the remaining $3n - 6$ (or $3n - 5$ for linear molecule) for internal vibration among atoms. According to the principle of equipartition [6, 27], we have

$$c_{v,g} = 3k + f_{v,g}(3n - 6)k, \quad c'_{v,g} = \frac{5}{2}k + f'_{v,g}(3n - 5)k$$

where the prime indicates that the molecule has linear structure. The parameter f_v represents the percentage of the excited internal vibrational degrees of freedom.

The physical scenario for liquid alters drastically, and it can be regarded as an intermediate state between gas and solid. The high fluidity and low resistance to shearing strain shows its gas-like properties; while the high density of liquid and the resulting multi-body interactions between
molecules classifies its property as solid-like. Formal treatment of multi-body interaction is to introduce the potential of the whole system of N parties, $U(\vec{r}_1, \ldots, \vec{r}_N)$, where \vec{r}_i refers to the coordinate of the ith molecule. Such treatment is impracticable for a macroscopic system [27, 31]. It is recognized that intermolecular forces are short-ranged, and that only nearest neighboring molecules participate the interaction [26, 27, 29, 31]. For simplicity, we can assume that the interaction potential is pair-wise additive [29, 31], i.e. $U(\vec{r}_1, \ldots, \vec{r}_N) = \sum_{i<j} \Gamma_{ij}$, where Γ_{ij} represents interacting potential between molecular i and j. The multi-body interaction can be estimated, by virtue of coordination number, as the sum of binary interactions.

The coordination number in gas phase is unity, $q_g = 1$, since there are only bimolecular interactions. In liquid phase, q_l, can be determined from the radial distribution functions [26, 27, 29], $g(r)$, which involves the configuration partition function, $Z_N = \int \cdots \int e^{-U_N/kT} d\vec{r}_1 \cdots d\vec{r}_N$, and it becomes impractical in macroscopic level. Although $g(r)$ can be approximately determined from the Kirkwood integral equation [27, 29, 32], the mathematical solution becomes exceedingly complicated and an explicit analytical solution cannot be obtained. The rigorous calculation of q is prohibited by the mathematical complexity of intermolecular potential. However, an estimation of q can be performed. The disappearance of cohesion among molecules leads to even distribution of molecules over the whole range of separation. In analogy to the closest packing of neutral, rigid spheres, it suggests that $q_l = q_{HS} = 12$, which is qualitatively consistent with that in the literature [26, 27, 29].

Compared to gas phase, the interacting force among liquid molecules is much stronger. The liquid molecules can be considered as being constrained by q “springs”, in analogy to the bond among solid molecules [26, 27, 33]. Consequently, $c_{v,L}$, consists of two parts. The first part pertains to the degrees of freedom of individual molecule, which is analogous to gas phase. The second one pertains to intermolecular oscillations, which is solid-like. According to the principle of equipartition, we have

$$c_{v,L} = 3k + f_{v,L}(3n - 6)k + \frac{q_l}{2} k, \quad c_{v,L}' = \frac{5}{2} k + f_{v,L}'(3n - 5)k + \frac{q_l}{2} k \quad (8)$$

where the factor $1/2$ is introduced for the same reason as in equation (5). It is noted that the relations (7) and (8) hold at moderate temperatures. For temperature close to the critical state, c_v needs to be reformulated.

2.2 Molecular latent heat at the reference state
At moderate temperature, the molecular volumes for both phases are well separated, i.e. \(v_m / v_g \ll 1 \), and thereby higher order terms could be neglected. Moreover, we assume that the internal vibration is decoupled from intermolecular oscillation, suggesting \(f_{v,g} \approx f_{v,l} \). Substituting (6) – (8) into (5), the molecular latent heat becomes

\[
L_R = \frac{1}{2} q_t \varepsilon_0 - \int_{T_c}^{T} \frac{q_l}{2} k dT + kT \beta_p v_m
\]

where \(f_p = 1 + \varepsilon_0 / 2kT \) can be determined from the van der Waals equation of state [29]. The term, \(\varepsilon_0 / 2kT \sim O(1) \) for most encountered gas in combustion [1], interprets the correction of \(v \) due to the attractive force among gas molecules. Straightforward evaluation of \(\varepsilon_0 \) requires the zero-point energy of the molecule [34], and thereby it is beyond the scope of the present study. Alternatively, we introduce \(l_0 \) at the reference state

\[
l_0 = \frac{1}{2} q_t \varepsilon_0 - \int_{T_c}^{T} \frac{q_l}{2} k dT + kT \beta_p v_m
\]

Subtracting (10) from (9) yields

\[
L_R = L_0 - \int_{T_r}^{T} \frac{q_l}{2} R dT + R(T - T_r) + f_p (p_r - p) v_m
\]

where the capital letter refers to quantities in molar scale, e.g. \(L_0 = N_A l_0 \) and \(v_m = N_A v_m \), with \(N_A \) the Avogadro’s number and \(R = kN_A \) the universal gas constant. For various of fluids, \(L_0 \) is available from experimental data [14-22]. Equation (11) indicates that the pressure effect is negligible at the reference state since \(f_p \sim O(1) \) and \(pV_m / RT \sim O(10^{-3}) \).

Figure 1. Comparison of theoretical prediction, \(L_R \), with experimental data from [14-22].
At the reference state, $L_R = L_0$, whose value is specified from experimental data [14-22]. As shown in figure 1, the derivatives dL_R/dT predicted by equation (11) agree well with experimental data. The decay of latent heat with temperature can be understood that with strong interaction, the liquid molecules can storage more energy for temperature increment ΔT due to the discrepancies in heat capacities at moderate temperature. Since the critical characteristic of the fluid has not been considered in L_R, Fig. 1 shows that L_R deviates from experimental data significantly when the temperature increases toward the critical state.

2.3 Molecular latent heat near the critical state.

Correct interpretation to the latent heat near the critical state requires revision to the above formulation from two aspects. First, vanishing of phase distinction suggests equal molecular volumes, $v_{l,c} = v_{g,c}$, and identical molecular distribution, $q_{l,c} = q_{v,c}$. Accordingly, the discrepancy in the intermolecular potential energy disappears. Second, the density difference $\rho_l - \rho_g$ and the heat capacity C_v, can be interpreted as a power function of T,

$$\rho_l - \rho_g = f_c \rho_c \left(\frac{T - T_c}{T_c - T_r} \right)^\beta, \quad C_v \sim f_{c,l} R \left(\frac{T - T_c}{T_c - T_r} \right)^{-\alpha}$$ \hspace{1cm} (12)

where ρ_c (critical density) and R are introduced for dimensional consideration [31, 35]. The parameters α and β are the critical exponents, which are slightly system-dependent. The critical exponents can be approximately solved either from mean field theory [31, 35] or through molecular dynamics adopting the Ising model [25, 31]. More accurate calculation involves the renormalization group theory at the expense of exceedingly involved mathematics and physics [31]. Literature on the critical phenomena [6, 35] suggests that the values of α of β for various fluids are approximately $1/8$ and 0.3, respectively.

For a quantitative calculation of latent heat close to the critical state, L_C, a few parameters should be estimated. At moderate temperature, the factor $f_{c,p}$ deviates from $f_{c,l}$ by a quantity of $q_l R / 2$. We assume that such discrepancy approximately remains up to the critical state, i.e. $f_{c,g} - f_{c,l} \approx -q_l R / 2$. For different fluids, the critical density approximately satisfies $\rho_c / \rho_l \sim O(10^{1})$, and the magnitude of $[(T - T_c) / (T_c - T_r)]^\beta$ lies in the interval $(0, 1)$. Subsequently, the magnitude of f_{c} ranges from $O(10)$ to $O(10^2)$. Physical plausibility requires that $q_g < q_c < q_l$, and we approximately estimate
The quantity ε_0 can be solved from equation (10): $\varepsilon_0 \approx 2l_0/q_t - k(T_c - T_r)$. Finally L_C can be formulated as

$$L_C \approx \frac{q_t R}{2} \int_{T_c}^{T} \left(\frac{T_c - T}{T_c - T_r} \right)^{-\alpha} dT + \left[L_0 - \frac{q_t R}{2} R(T_c - T_r) \right] \left(\frac{T_c - T}{T_c - T_r} \right)^{\beta}$$

(13)

The density factor f_ρ is evaluated from the physical plausibility that $L_C/L_0 \sim O(1)$ when equation (13) is evaluated at the reference state.

At $T = T_c$, equation (13) gives $L_C = 0$. Moreover, the derivative dL_C/dT is

$$\frac{dL_C}{dT} = \frac{q_t R}{2} \left(\frac{T_c - T}{T_c - T_r} \right)^{-\alpha} - \left[L_0 - \frac{q_t R}{2} R(T_c - T_r) \right] \frac{\beta}{T_c - T_r} \left(\frac{T_c - T}{T_c - T_r} \right)^{\beta-1}$$

(14)

which, according to $\alpha \approx 1/8$ and $\beta \approx 0.3$, becomes infinite at $T = T_c$. These behaviors of L_C near the critical point are consistent with physical recognition and experimental data [3, 24, 25, 27, 35] as shown in figure 2. The singularity of dL_C/dT at the critical state can be understood from two aspects. First, the statistical fluctuation among molecules [6, 31] becomes exceedingly significant, resulting in the divergence of heat capacity, i.e. $C_v \to \infty$ as $T \to T_c$. Second, the density difference shrinks at much more rapid rate than that for T approaching to T_c, leading to a similar variation trend for discrepancy of intermolecular potential energy. However, as expected, L_C cannot accurately predict latent heat at the reference state, where the critical expansions, equation (12), are invalid.
2.4 Integrated latent heat over the whole temperature range

It has indicated that \(L_R \) and \(L_C \) are valid only in limited temperature range. For practical interest, a composite formula, \(L_I \), being valid from the reference state to the critical state, is needed. For physical plausibility, \(L_I \) should satisfy the following conditions:

(a) \(||L_I - L_R|| \to 0 \) at the reference state with \(T \to T_r \);
(b) \(||L_I - L_C|| \to 0 \) at the critical state with \(T \to T_c \).

In analogy to expansions of (12) near the critical state, we introduce the normalized temperature \(t = (T - T_r)/(T_c - T_r) \), and rewrite \(L_R \) and \(L_C \) as functions of \(t \). The reference and critical states correspond to \(t = 0 \) and \(t = 1 \), respectively. It provides an approach to constitute the composite formula \(L_I \) in terms of both \(L_R \) and \(L_C \). For mathematical convenience, we adopt the weighted-power-mean

\[
L_I = L_R^{1-t} L_C^t
\]

which satisfies both conditions (a) and (b). As \(t \to 0 \), the weight of \(L_R \) becomes dominant over that of \(L_C \) and thereby \(L_I \to L_R \); and vice versa for \(t \to 1 \). Furthermore, the derivative \(dL_I/dT \) is

\[
\frac{dL_I}{dT} = (1 - t) \frac{dL_R}{dT} L_R^t L_C^t + t \frac{dL_C}{dT} L_R^{1-t} L_C^{t-1}
\]

which reduces to \(dL_R/dT \) for \(t = 0 \) at reference state, and to \(dL_C/dT \) for \(t = 1 \) at the critical state. It is noted that \(L_I \) has no fitting parameter. It is determined by \(L_R \) and \(L_C \), which can be evaluated respectively at the reference and critical states.

![Figure 3. Comparison of the composite latent enthalpy formula (15) with experimental data from [14-22].](image)
Figure 3 shows that the composite latent formula can qualitatively predict the latent heat of vaporization. The accuracy of L_I might be slightly improved by either introducing fitting parameters or complicating its mathematical form. However, a rigorous solution must consider the physical mechanisms that bridge the reference state and the critical state. For instance, we suppose thermal expansion would be one of such bridging mechanisms, which can be interpreted as follows. The temperature increase leads to the increment in molecular separation distance and is accompanied by the elevation of intermolecular potential energy in liquid phase. Subsequently, latent heat tends to undergo accelerating reduction according to equation (5), which merits future study.

3. Concluding remarks

In this study, a theoretical analysis on the enthalpy of vaporization is presented. An explicit formula for latent heat near the reference state, L_R, is rigorously derived at the molecular level in terms of coordination number for liquid molecules. By virtue of critical exponents, the latent heat near the critical state, L_C, is appropriately interpreted as power functions of temperature deviation, $T - T_c$. For plausible interpretation of latent heat from the reference temperature to the critical temperature, a composite formula L_I is constituted in terms of L_R and L_C with temperature dependent weighting exponents. The L_I contains no fitting parameters. It can reduce to L_R and L_C respectively at the reference and critical states; and similar behavior applies to dL_I/dT. Furthermore, in comparison with experimental data, the composite formula accurately predicts the latent heat from the reference state to the critical state.

Acknowledgement

This work was supported by Beijing Innovation Center for Engineering Science and Advanced Technology.

References

[1] Law CK. Combustion Physics: Cambridge University Press; 2010.
[2] Shuen J, Yang V, Hsiao C. Combustion of liquid-fuel droplets in supercritical conditions. Combustion and
Flame. 1992;89:299-319.

[3] Givler SD, Abraham J. Supercritical droplet vaporization and combustion studies. Progress in Energy and Combustion Science. 1996;22:1-28.

[4] Hsieh K, Shuen J, Yang V. Droplet vaporization in high-pressure environments I: Near critical conditions. Combustion Science and Technology. 1991;76:111-32.

[5] Sirignano WA. Fuel droplet vaporization and spray combustion theory. Progress in Energy and Combustion Science. 1983;9:291-322.

[6] Landau LD, Lifshitz EM, Pitaevskii L. Statistical Physics, Part I: pergamon, Oxford; 1980.

[7] Glassman I, Yetter RA, Glumac NG. Combustion: Academic Press; 2014.

[8] Law C. Recent advances in droplet vaporization and combustion. Progress in Energy and Combustion Science. 1982;8:171-201.

[9] Givler SD, Abraham J. Supercritical droplet vaporization and combustion studies. Progress in Energy and Combustion Science, 1996;22:1-28.

[10] Lefebvre AH. Gas turbine combustion: CRC press; 1998.

[11] Williams A. Combustion of Liquid Fuel Sprays: Butterworth-Heinemann; 2013.

[12] Chen Z, Burke MP, Ju Y. On the critical flame radius and minimum ignition energy for spherical flame initiation. Proceedings of the Combustion Institute. 2011;33:1219-26.

[13] Lieuwen TC, Yang V. Combustion instabilities in gas turbine engines: operational experience, fundamental mechanisms, and modeling: American Institute of Aeronautics and Astronautics; 2005.

[14] Chickos JS, Acree Jr WE. Enthalpies of vaporization of organic and organometallic compounds, 1880–2002. Journal of Physical and Chemical Reference Data. 2003;32:519-878.

[15] An X, Hu H. Enthalpies of Vaporization of Some Multichloro-alkanes Acta Physico-Chimica Sinca. 1989;5:565-71.

[16] Dionísio MS, Ramos JJM, Gonçalves RM. The enthalpy and entropy of cavity formation in liquids and corresponding states principle. Canadian Journal of Chemistry. 1990;68:1937-49.

[17] Williamson KD, Harrison RH. Heats of Vaporization of 1, 1, 2-Trichloroethane, 1-Propanol, and 2-Propanol; Vapor Heat Capacity of 1, 1, 2-Trichloroethane. The Journal of Chemical Physics. 1957;26:1409-11.

[18] Saul A, Wagner W. International equations for the saturation properties of ordinary water substance. Journal of Physical and Chemical Reference Data. 1987;16:893-901.

[19] Torquato S, Smith P. The latent heat of vaporization of a widely diverse class of fluids. Journal of Heat
Transfer. 1984.

[20] Kolasinska G, Vera J. On the prediction of heats of vaporization of pure compounds. Chemical Engineering Communications 1986;43:185-94.

[21] Matyushov DV, Schmid R. Properties of liquids at the boiling point: equation of state, internal pressure and vaporization entropy. Berichte der Bunsengesellschaft für physikalische Chemie. 1994;98:1590-5.

[22] Pennington RE, Kobe KA. The thermodynamic properties of acetone. Journal of the American Chemical Society. 1957;79:300-5.

[23] Torquato S, Stell GR. An equation for the latent heat of vaporization. Industrial and Engineering Chemistry Fundamentals. 1982;21:202-5.

[24] Bellan J. Supercritical (and subcritical) fluid behavior and modeling: drops, streams, shear and mixing layers, jets and sprays. Progress in Energy and Combustion Science. 2000;26:329-66.

[25] McCoy BM. Advanced Statistical Mechanics: Oxford University Press; 2010.

[26] Eyring H. Statistical Mechanics and Dynamics: Wiley; 1964.

[27] McQuarrie DA. Statistical Mechanics: University Science Books; 2000.

[28] Smit B. Phase diagrams of Lennard-Jones fluids. The Journal of Chemical Physics. 1992;96:8639-40.

[29] Prausnitz JM, Lichtenthaler RN, de Azevedo EG. Molecular thermodynamics of fluid-phase equilibria: Pearson Education; 1998.

[30] Landau LD, Lifschic E. Course of theoretical physics. vol. 1: Mechanics: Oxford; 1978.

[31] Pathria R, Beale P. Statistical Mechanics: Oxford, UK: Elsevier; 2011.

[32] Kirkwood JG, Lewinson VA, Alder BJ. Radial Distribution Functions and the Equation of State of Fluids Composed of Molecules Interacting According to the Lennard-Jones Potential. The Journal of Chemical Physics. 1952;20:929-38.

[33] Bolmatov D, Brazhkin V, Trachenko K. The phonon theory of liquid thermodynamics. Scientific Reports. 2012;2:421.

[34] Atkins PW, Friedman RS. Molecular quantum mechanics: Oxford University Press; 2011.

[35] Stanley HE. Phase transitions and critical phenomena: Clarendon Press, Oxford; 1971.