The Secreted Protease PrtA Controls Cell Growth, Biofilm Formation and Pathogenicity in Xylella fastidiosa

Hossein Gouran1*, Hyrum Gillespie1*, Rafael Nascimento1,2, Sandeep Chakraborty1, Paulo A. Zaini3, Aaron Jacobson3, Brett S. Phinney3, David Dolan4, Blythe P. Durbin-Johnson4, Elena S. Antonova5, Steven E. Lindow5, Matthew S. Mellema6, Luiz R. Goulart6-7 & Abhaya M. Dandekar1

Pierce's disease (PD) is a deadly disease of grapevines caused by the Gram-negative bacterium Xylella fastidiosa. Though disease symptoms were formerly attributed to bacteria blocking the plant xylem, this hypothesis is at best overly simplistic. Recently, we used a proteomic approach to characterize the secretome of X. fastidiosa, both in vitro and in planta, and identified LesA as one of the pathogenicity factors of X. fastidiosa in grapevines that leads to leaf scorching and chlorosis. Herein, we characterize another such factor encoded by PD0956, designated as an antivirulence secreted protease "PrtA" that displays a central role in controlling in vitro cell proliferation, length, motility, biofilm formation, and in planta virulence. The mutant in X. fastidiosa exhibited reduced cell length, hypermotility (and subsequent lack of biofilm formation) and hypervirulence in grapevines. These findings are supported by transcriptomic and proteomic analyses with corresponding plant infection data. Of particular interest, is the hypervirulent response in grapevines observed when X. fastidiosa is disrupted for production of PrtA, and that PD-model tobacco plants transformed to express PrtA exhibited decreased symptoms after infection by X. fastidiosa.

The bacterium Xylella fastidiosa is a versatile, xylem-limited, insect-transmitted, Gram-negative member of the Xanthomonadaceae that causes disease in many economically important crops around the world. Grape growing regions of California are endemic for strains of X. fastidiosa that cause Pierce's disease (PD)1 and harbor many species of xylem sap-feeding sharpshooter insects that vector the pathogen from plant to plant, including the glassy-winged sharpshooter (GWSS)2. To avoid epidemics like those seen in the late 90’s, the wine, raisin and table grape-producing regions of the state have adopted very labor- and cost-intensive integrated management practices. Recent research has focused on understanding the pathobiology of X. fastidiosa in grapevine, in hope that this understanding will allow a less costly, long-term defense against PD.

Subsequent studies on X. fastidiosa identified several virulence factors, some of which are secreted into the extracellular microenvironment3-4. Broadly, bacterial secreted factors play an important role in plant-pathogen interactions, potentially triggering pathogenicity5-10. Indeed, pathogenicity-related proteins secreted into the environment can facilitate the processes of infection and invasion8,9,11. Remarkably, expression of many such secreted proteins depends on the aggregation state of the microorganism, which exists either in a planktonic, motile condition or associated with other cells and an extracellular matrix within a biofilm1,12–14. While in planktonic form, X. fastidiosa expresses an array of proteins involved in cell wall and pit membrane degradation and uses Type IV pili (required for long-distance twitching movement) to colonize more vessels11,15. X. fastidiosa is considered more virulent when in a planktonic state, as mutant strains which form less biofilm induce early disease symptoms upon inoculation into grapevines16. However, this idea conflicts with prevailing thought about the overall mechanism of disease induction and progression in X. fastidiosa: it has been posited to occlude xylem

1Plant Sciences Department, University of California, Davis, CA, USA. 2Institute of Genetics and Biochemistry, Federal University of Uberlândia, Brazil. 3Proteomics Core, Genome Center, University of California, Davis, USA. 4Public Health Sciences, University of California, Davis, USA. 5Plant and Microbial Biology Department, University of Berkeley, Berkeley, CA, USA. 6Surgical and Radiological Sciences, Vet Med, University of California, Davis, CA, USA. 7Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA. *These authors contributed equally to this work. Correspondence and requests for materials should be addressed to A.M.D. (email: amdandekar@ucdavis.edu)
sap pathways either by forming aggregates within exopolysaccharide-rich biofilms17,18 or by inducing callose and tylose formation19, thereby inducing water stress in plants and eventual vine death. Contrary to this hypothesis, disease symptoms are not completely replicated by inducing water stress and bacterial cells are often not found near areas of PD symptoms20, indicating that further research is necessary to fully understand this plant-pathogen interaction.

Our previous work showed that LesA (PD1703) may serve as a key secreted virulence protein capable of inducing scorching symptoms in grapevines4. Additional work has identified other secreted virulence factors including biofilm-promoting proteins, exoenzymes, and outer membrane vesicles21–24. As such, the water stress hypothesis provides at least an oversimplified view of disease induction, one that fails to describe the role and importance of X. fastidiosa’s secreted products. Here we describe the role of one of these, a secreted serine protease encoded by PD0956.

Results

PD0956 is a secreted serine protease. A previous analysis of the X. fastidiosa secretome identified a putative uncharacterized protein (locus tag PD0956)4. Sequence analysis of this protein reveals a conserved trypsin-like peptidase domain, the presence of an N-terminal secretion signal peptide, and similarity to other putative extracellular serine proteases such as emb|CAN00053.1| (Fig. 1a). Furthermore, there is close superimposition of the three-dimensional structure from the Xylella protein onto an alkaline serine protease from Clavibacter michiganensis (Fig. 1b), particularly the catalytic triad within the active site. The protein immuno-localizes to the extracellular vicinity of isolated X. fastidiosa cells (Fig. 1c), confirming it to be a secreted product.

The recombinant protein produced and secreted by Escherichia coli possesses serine protease activity, but not when the catalytic site is mutated (Fig. 1d). Finally, a X. fastidiosa insertion mutant fails to produce a detectable product using anti-PrtA in secreted extracts (Fig. 2a) drastically reducing serine protease activity in secreted extracts (Fig. 2b). As such, the Xylella protein PD0956 has been annotated “PrtA”, a secreted serine protease with confirmed functional activity and site of action.

PrtA promotes large-scale changes of X. fastidiosa transcriptome and proteome. PD0956 encodes a previously uncharacterized protein of ~37 kDa detected in the secretome of X. fastidiosa culture supernatant4. Part of a bacteriophage remnant sequence (spanning PD0951 to PD0943, Supplementary Information Fig. S1), orthologs are present and highly conserved in about half of the Xylella spp. genomes sequenced to date (not shown). To understand its functional role, we disrupted its coding sequence (Supplementary Information Fig. S2) and analyzed the resulting phenotype, including transcriptome and secretome changes (Table 1 and Supplementary Information Tables S1 and S2). Disruption of PD0956 significantly changed expression of 684 protein-coding transcripts (32.3% of 2118 detected) and 92 secreted proteins (31.5% of 292 detected) in many diverse functional categories as detailed in the gene ontology (GO) analysis (Supplementary Table S3). In general terms, the GO analysis of the differentially expressed transcripts highlighted lipid A biosynthesis (GO:0009245), amino acid transport (GO:0006865), SOS response (GO:0009432), pathogenesis (GO:0009405), and protein turnover (GO:0030163, GO:0006412), suggesting an adaptation to intense cell proliferation and attenuation of...
microbial stress defenses. Specific genes/pathways are discussed in following sections according to their cellular and biochemical context within the mutant phenotype characterization. We considered a polar effect on downstream genes from the insertional mutation as PD0954 encodes an Xre-family transcriptional regulator, but both PD0955 and PD0954 remained transcriptionally active in the RNA-seq data of the prtA mutant. Moreover, PD0956 and the downstream coding sequences belong to independent transcriptional units according to the Prokaryotic Operon DB25 and DOOR 2.0 server26.

PrtA affects biofilm formation, motility, and cell length. Cultivation of the X. fastidiosa prtA mutant on agar plates provided an initial indication of altered cell aggregation and microcolony formation. Mutant cells formed a uniform streak of biomass instead of small aggregates and microcolonies as commonly seen using wild type Temecula1 (Fig. 3a). We hypothesized that an aggregation-deficient mutant would also exhibit hypermotility27, confirmed by a broader fringe zone at the colony periphery in the mutant (Fig. 3b) which indicates greater twitching-motility4. Increased motility was further implicated by inability to form biofilm in rotated culture broth (Fig. 3c,d). The prtA mutant strain grows predominantly in the planktonic bioform, with a distinct lack of...

![Figure 2. PD0956 is a serine protease expressed in Xylella fastidiosa.](image)

(a) Immunoblot detection of secreted PrtA. A cropped blot is shown in this figure and the whole blot image is shown in the Supplementary Information file. (b) Fluorescent protease activity assay (FTC-Casein) showing reduced activity in secreted extracts of X. fastidiosa prtA mutant vs wild type Temecula1. Average values and standard deviations of three independent experiments are plotted (*p-value < 0.05, two-tailed T-test).

Analyte	Up-regulated	Down-regulated	Detected
CDS\(^a\) with functional annotation	276	222	1120
CDS without functional annotation	112	74	951
Total CDS	388	296	2071/2076
tRNA	43	0	47/49
Secreted proteins with known function	22	58	252
Secreted proteins without known function	2	10	40
Total proteins	24	68	292

Table 1. Summary of differentially expressed transcripts and secreted proteins in the Xylella fastidiosa PD0956 mutant. *Relative to total counts in the Temecula1 genome. \(^a\)Protein coding sequences.
biofilm formation compared to its parental strain. Transcriptome analysis of the mutant and wild type correlate with this data, as genes important for cell aggregation, adhesion and biofilm development were down-regulated in *X. fastidiosa* *prtA*−. These include *fimC* (PD0061) and *mrkD* (PD0058) involved in chaperone-usher pilus formation, the trimeric autotransporter adhesin *xadA3* (PD0824), fastidian gum synthesis *gumM* (PD1387), the carbamoyl-phosphate synthase operon *carAB* (PD0398 and PD0399), and neighboring genes (part of the same operon) *greA* (PD0400) and *rpfE* (PD0401). Interestingly, one *pspA* hemagglutinin-like paralog (PD0986) was down-regulated while two (PD2116 and PD2110) were up-regulated in the *prtA* mutant. *X. fastidiosa* hemagglutinins act as antivirulence factors, facilitating self-aggregation and attenuating pathogenicity by limiting host colonization capacity28.

The transcriptome and proteome data provide further insight into the increased motility of *X. fastidiosa* *prtA*−, with up-regulation of *pilA* (PD1924), *pilE* (PD0024), two homologs of *pilY1* (PD0023 and PD1611), *pilP* (PD1692), *pilS* (PD1929), and *fimT* (PD1735) when compared to wild type. *pilY1* is abundant in the biofilm matrix and its expression is required for twitching motility in *X. fastidiosa*30,59. These exhibit increased twitching motility on the colony periphery of *prtA* mutant cells. SEM also revealed a striking reduction in cell length compared to the parental wild type, with an attenuation of the rod-like shape. Again, wild type and *prtA* mutant transcriptome comparisons show significant differential regulation of the rod-shape determining genes *mreB* (PD0557), *mrdB* (PD0561), and *pbp* (PD1157, a beta lactamase-like gene essential for cell elongation).
Misregulation of these genes can influence cell morphology in other rod-shaped bacteria. Further, reduced cell length indicates rapidly dividing cells, which is supported by the increased transcription of cell division regulator *fc* (PD1006), septum formation and cell division genes *fshH* (PD0070), *fshF* (PD0071), *nlpD* (PD1820), *fshZ* (PD1861), peptidoglycan recycling *mltB* (PD1235) and *mltD* (PD1439), and a glycine cleavage system component *gcvH* (PD0146), important for glycine turnover to prevent inhibition of cell growth effect on peptidoglycan synthesis. Finally, the biosynthesis of many cellular components was up-regulated, serving as another indicator of rapid cell division. These include cell wall synthesis *ppgB* (PD1955), *lpxK* (PD0362), *lpxA* (PD0323 and PD1769), *cdsA* (PD0329, down-regulated in elongated *Bacillus subtilis* cells), *htrB* (PD0592), *ampE* (PD0825), *wbpL* (PD1452), isoprenoids *ispG* (PD1956), nucleotides *pyrE* (PD0122), *purA* (PD1627), *purE* (PD2036), amino acids *argH* (PD0295), *proB* (PD0296), *proA* (PD0297), *pheA* (PD0426), *aroK* (PD0582), *asd* (PD0608), *as1* (PD0777), *trpDE* (PD0876 and PD0877), *serC* (PD1358), *levB* (PD1397), cofactor recycling *cysG* (PD1840), *folP* (PD0068), *ptr1* (PD0677), *nada* (PD0869), *gvr* (PD1409), *ribF* (PD1438), *folB* (PD1642), terpenoid *dcr* (PD0328), phosphate uptake *oprO* (PD0270), ammonium uptake *amtB* (PD1024), sugar ABC transporter *malG* (PD1464-6), and energy metabolism *gpmA* (PD0898), also up-regulated in planktonic *Salmonella enterica*. As SEM preparations may destroy three-dimensional structures during sample preparation, it is of particular interest that the planktonic lifestyle of a given strain of *X. fastidiosa* could be associated and identifiable through an analysis of bacterial length, as demonstrated here for both the *prtA* and *rpfF* mutants (Fig. 4j). We also have unpublished observations that the citrus-infected *X. fastidiosa* strain Fb7 also displays these characteristics of shorter cell length, hypermotility and lack of biofilm formation (in preparation). This correlation should be further investigated with other *X. fastidiosa* strains and mutants, as it could potentially become a valuable parameter for virulence assessment of different isolates.

Secreted PrtA limits bacterial proliferation and the quantity of extracellular DNA. Extracellular DNA (eDNA) is a required macromolecule for biofilm formation. Bacteria provide the required eDNA using different mechanisms including autolysis, which involves extracellular enzymes. As *PrtA* showed to be important for biofilm formation, we hypothesized that it would be involved in eDNA formation and therefore that *X. fastidiosa* *prtA* mutant cultures would contain less eDNA than biofilm made by the wild type, as verified in equivalent biomass (Fig. 5a). Moreover, despite similar overall turbidity of the culture broth (Fig. 5b), the *prtA* mutant strain has more living cells in culture than its parent strain (Fig. 5c). Interestingly, this difference was identified by counting plated colony forming units (CFU), but not detectable by comparing direct absorbance (medium turbidity) values (Fig. 5b).

Transcriptomic and proteomic data comparing the mutant and wild type supports *PrtA* role in eDNA formation and control of cell proliferation. Cell lysis transcripts *secE* (PD2007), *secG* (PD0246), *tutB* (PD1579), and the colicin V-like *cvaC* (PD0215-6) and secretion partner *cvaA* (PD0496) are all significantly down-regulated in this mutant. Colicins are known agents of cell lysis and eDNA formation, reviewed in ref. 39. On the other hand, up-regulation of cell division and biosynthesis transcripts, plus increased concentrations of ribosome subunits (nine out of 10), transfer RNAs (43 out of 49), tRNA maturation *queA* (PD0562), elongation factor *efP* (PD1253), endoribunuclease *pevC* (PD1781), and chaperone *dnlA* (PD1279) to assist in protein folding, are all indicative of the increased cell division rate in *X. fastidiosa* *prtA*.

Despite increased cell proliferation, DSF production and outer membrane vesicle secretion are unaffected by PrtA inactivation. Recent work performed by the Lindow laboratory showed an interesting connection between diffusible signal factor (DSF) and vesicle production by way of the RpfE/RpfC quorum sensing system. The *X. fastidiosa* *rpfF* mutant is deficient in DSF production, produces extreme numbers of outer membrane vesicles (OMVs), lives predominantly in the planktonic bioform, and is hypervirulent. Since the *prtA* mutant resembled the *rpfF* mutant in terms of shortened cell length, hypermotility, and lack of biofilm formation, we considered a connection with DSF signaling. As the *prtA* mutant is highly planktonic, we investigated whether DSF concentrations were reduced as reported in the *rpfF* mutant using a *X. fastidiosa*-based DSF-biosensor harboring a *hxfA*:*phoA* reporter gene fusion. Different from *rpfF*—though the *prtA* mutant had comparable DSF concentrations to the WT (Fig. 6a). This confirms previous work that DSF concentrations are determined by the number of bacteria present or “quorum sensing”, but it also indicates a separation between the planktonic hypervirulent lifestyle and decreased DSF production as observed in the *rpfF* mutant. As such, a decrease in DSF is correlated with increased pathogenicity, but the converse is not true; increased pathogenicity is not necessarily related to decreased DSF production. Another interesting contrast to *rpfF* concerns membrane vesicle production. Nanoparticle tracking analysis showed equivalent secretion of outer membrane vesicles (OMVs) by *X. fastidiosa* *prtA* and wild type *Temecula1* (Fig. 6b), while the *rpfF* mutant was confirmed to produce copious amounts of OMVs. This reinforces the hypothesis that RpfE and therefore DSF and quorum sensing are strongly involved in regulating vesicle formation, but also indicates that PrtA suppresses pathogenicity in *X. fastidiosa* via a separate regulatory pathway.

PrtA is an antivirulence factor in Pierce’s disease. As reduced biofilm formation and increased twitching motility are associated with hypervirulence in *rpfF*, these *in vitro* phenotypes of *prtA* mutant prompted us to verify its virulence to grapevines. Conventionally for this pathosystem it was believed that disease symptoms are a direct result of *X. fastidiosa* biofilm blocking the xylem. By this simplistic explanation, biofilm-deficient *X. fastidiosa* *prtA*—would be less virulent, or at least display delayed onset of symptoms. However, like the planktonic *rpfF* mutant, the planktonic *prtA* mutant was also hypervirulent in grapevines, and the *prtA* mutant shows early onset of disease. Thompson Seedless grapevines infected with the *prtA* mutant strain showed severe PD symptoms significantly earlier than plants infected with the WT strain. The onset of PD scorching symptoms began six to eight weeks post-infection in *X. fastidiosa* *prtA*, but eight to ten weeks post-infection in the WT controls. This is seen in
other CDS involved with cell division were down-regulated in required for secretion of extracellular enzymes such as lipases, proteases, cell wall-degrading enzymes and another component of the T2SS. These secretion systems are pivotal for virulence of many plant pathogens and associated with PD45, characterized by a reduction in regrowth of new buds after pruning of stress tolerance in that serve in microbial clearing, host cell wall strengthening and plant signaling. On the other hand, bacteria main plant defenses against wounding and invading pathogens is generation of reactive oxygen species (ROS) wards that possibly limit pathogen persistence and allows for normal biomass formation in new buds. One of the expression coupled to the absence of biofilm formation exposes reduce the bacterial resistance to plant’s defenses activated upon wounding from pruning. This altered gene viness (Fig. 7e). The transcriptome data helps us interpret this: down-regulation of stress tolerance genes would increase sensitivity of the SOS response; a response which delays cell division and disease symptoms when compared to control plants.

The quicker disease onset detected for the rpfF and prtA mutant not only correlated with the planktonic lifestyle and increased cell proliferation as shown previously, but also to changes in transcript levels associated with virulence mechanisms such as: (1) Increased expression of xpsE and xpsF (PD0732-3). These are orthologs of gspE and gspF in Pectobacterium carotovorum, and code for components of a Type II Secretion System (T2SS) cytoplasmic ATPase (GspE) and inner-membrane platform protein (GspF)42. (2) Increased pefK (PD0738), encoding another component of the T2SS. These secretion systems are pivotal for virulence of many plant pathogens and required for secretion of extracellular enzymes such as lipases, proteases, cell wall-degrading enzymes and factors responsible for host-pathogen interaction. (3) Up-regulation of cbsA (PD0529), a cell wall-degrading enzyme. (4) Up-regulation of the PD1341-3 cluster encoding the virulence-associated protein VapI and the toxin/anti-toxin pair HicAB.

To further confirm the antivirulence activity of PrtA, the coding sequence was expressed in SR1 tobacco plants. A plant prtA transgene was created by removing the 28-amino acid bacterial signal sequence (Fig. S2c) and replacing it with a plant-derived signal peptide sequence (Ramy3D) previously used to secrete proteins to the plant apoplast. A binary vector, pDG14.01, was constructed to express the signal peptide-fused PrtA protein-coding region using CaMV35S and replacing it with a plant-derived signal peptide sequence (Ramy3D) previously used to secrete proteins to the plant apoplast. A binary vector, pDG14.01, was constructed to express the signal peptide-fused PrtA protein-coding region using CaMV35S and 3′ regulatory sequences and used to transform SR1 tobacco. Two transgenic SR1 tobacco lines expressing PrtA were challenged with X. fastidiosa and displayed increased protection against X. fastidiosa as quantified by leaf scorching area (Fig. 7d,e). These data further support an antivirulence role for PrtA.

Loss of PrtA function decreased stunting symptoms in grapevines infected with X. fastidiosa.

At 18 weeks post-infection, grapevines were cut and allowed to regrow for one month after which the new tissue was removed and weighed. Interestingly, vines infected with X. fastidiosa prtA− lack the stunting phenotype associated with PD45, characterized by a reduction in regrowth of new buds after pruning of X. fastidiosa-infected vines (Fig. 7e). The transcriptome data helps us interpret this: down-regulation of stress tolerance genes would reduce the bacterial resistance to plant’s defenses activated upon wounding from pruning. This altered gene expression coupled to the absence of biofilm formation exposes prtA mutant cells to more environmental hazards that possibly limit pathogen persistence and allows for normal biomass formation in new buds. One of the main plant defenses against wounding and invading pathogens is generation of reactive oxygen species (ROS) that serve in microbial clearing, host cell wall strengthening and plant signaling. On the other hand, bacteria can handle stressors such as ROS through the use of the SOS response; a response which delays cell division and repairs damaged DNA among other traits. Genes within this circuitry are usually kept silent by the LexA repressor (PD0902 in X. fastidiosa) and de-repressed after autolysis of LexA during stress. Organisms have developed adaptations in the SOS response, which can include biofilm formation such as in Listeria monocytogenes. This LexA repressor is up-regulated in prtA+. Further, prtA (PD2047), encoding a DNA replication protein which induces SOS response when inactivated, was up-regulated in our data. Silencing of the SOS response is further suggested by down-regulation of regulon members dinD (also known as pcsA, PD1061), recF (PD0402), and recF (PD0003) in the prtA mutant. Prevention of cell division by inactivation of FtsZ has also been documented as part of the SOS regulon that can lead to cell elongation while stress persists. As mentioned previously, ftsZ and other CDS involved with cell division were down-regulated in prtA−. Taken together these data argue in favor of SOS response silencing in the mutant, possibly reducing its resistance to environmental stress. The suggested increased sensitivity of the prtA mutant to environmental stress is further supported by the down-regulation of algU (PD1284), for which inactivation also impairs biofilm formation in Burkholderia pseudomallei and reduces stress tolerance in X. fastidiosa.
acquisition and transmission1,57. Thus despite being hypervirulent in terms of disease progression, the reduction
only protect cells from environmental hazards but also constitute a necessary “sticky” bioform for efficient vector
tracking analysis isolated from wild type

*Remarkably, disruption of prtA greatly increased cell division, and thus a faster generation time may be
responsible for the decreased average bacterial length seen for this and also for the planktonic and hypervirulent
rpfF mutants. Care must be taken when working with multiple strains or lineages of X. fastidiosa since absorbance
at 600 nm as a measure of cell density may not distinguish among strains of varying viability or length, nor distin-
guish between cells and other secreted biomaterials such as EPS and OMVs that also contribute to turbidity. Our
data shows that normalizing bacterial suspensions of wild type versus

Discussion
Bacterial pathogenesis has been commonly enhanced by secretion and action of virulence factors. More recently,
a new class of “antivirulence” genes has been identified in different pathogens, and disruption of antivirulence
factors results in hypervirulent phenotypes53. We describe here the functional characterization of the secreted
protease PrtA, which functions as an antivirulence factor in X. fastidiosa. Disruption of prtA (PD0956) in X. fasti-
dosa increased virulence in inoculated grapevines, as predicted from its in vitro phenotype of faster proliferation
and increased motility. The observed phenotype could also be anticipated from the transcriptomic and proteomic
data, which indicated up-regulation of genes involved in cell division, biosynthesis of amino acids and proteins,
nucleotides, cell wall components, many secondary metabolites, and type IV pilus which is responsible for twitch-
ing motility (the only form of motility performed by Xylella spp.). The omics data indicates down-regulation of
fastidain gum production and adhesion molecules important for biofilm development. These data corroborate the
in vitro phenotypes displayed by the prtA mutant, but there were some incongruities between transcriptome and
proteome data. For example, the most up-regulated protein in the prtA mutant secretome was the argininosucci-
nate synthase encoded by \(\text{argG} \) (PD0291), yet no significant changes in its transcription were detected. This pro-
tein is involved in biosynthesis of arginine and was previously characterized as a virulence factor in Xanthomonas
oryzae pv. oryzae \(\text{PD0956} \), but would not have been selected based solely on transcriptome data. This highlights both the
usefulness and associated challenges of integrating multiple omics data. In general terms, the transcriptome data
correlated better with the observed phenotypes in vitro and in planta, perhaps due to its true “whole genome”
screening characteristic and higher sensitivity of less-abundant transcripts.

Figure 6. DSF and OMV production are not affected by PrtA. (a) Xylella fastidiosa biosensor strain showing
significant increases (rpfC \(^{-}\) control) and decreases (rpfF \(^{-}\) control) in DSF relative to wild type Temecula1, but
no significant changes in the prtA mutant. Response to DSF is measured via alkaline phosphatase activity of
the hfxA::phoA reporter gene fusion. All independent measurements were plotted (\(n = 7 \)) and averages plus
standard deviations are indicated. Groups significantly different to the wild type are indicated (*\(p \)-value < 0.05,
**\(p \)-value < 0.01, ANOVA). (b) Quantification of number and size of outer membrane vesicles by nanoparticle
tracking analysis isolated from wild type X. fastidiosa and mutant \(\text{prtA}, \text{rpfC}, \text{and rpfF} \) strains after five days
growth in PD3 broth cultures. Plotted values are averages of 5 replicates after combining 5 independent cultures
for each strain. This was repeated three times independently.

Remarkably, disruption of \(\text{prtA} \) greatly increased cell division, and thus a faster generation time may be

Reduced biofilm formation is a striking phenotype of the \(\text{prtA} \) mutant that can have direct implication
in its survival against host defenses. Bacterial biofilms are structured sessile communities held together by a
self-producing matrix composed of macromolecules like exopolysaccharide, proteins and extracellular DNA55. Forma-
tion of these immobile communities and their inherent resistance to antibiotics and the host immune
system are key elements of their ability to persist and establish chronic infection46. In Xylella spp., biofilms not
only protect cells from environmental hazards but also constitute a necessary “sticky” bioform for efficient vector
acquisition and transmission13,57. Thus despite being hypervirulent in terms of disease progression, the reduction
of biofilm formation as seen in vitro possibly may cause decreased vector acquisition and transmission of this
bacterium between plants, such as seen previously in the hypervirulent yet planktonic \(\text{rpfF} \) mutant57. Increased
acquisition and transmission would serve as a strong selective pressure favoring a phenotype with “reduced viru-
ulence but increased survival and transmission efficiency” as seen for the wild type harboring PrtA function. Social
Figure 7. PrtA is an antivirulence factor in Pierce’s disease. (a) Plants infected with wild type Temecula1 and prtA mutant strain at eight weeks post-inoculation and (b) detached leaves harvested eight nodes above point of inoculation. (c) Quantification of symptoms averaged from 25 plants/strain infected with X. fastidiosa prtA or wild type Tem1 control. Data is shown as the difference from uninfected control. Plotted values are averages and standard deviations from all plants tested (*p-value < 0.05, two-tailed T-test). (d) Comparison of leaf scorching symptoms in X. fastidiosa-infected wild type SR1 tobacco and SR1 expressing recombinant PrtA, after 11 weeks infection. (e) Quantification of leaf scorching area in wild type and PrtA-expressing SR1 tobacco. Plotted values are averages and standard deviations from all symptomatic leaves (n = 10 for WT SR1 tobacco and n = 10 for PrtA-expressing tobacco plants) from six plants of each genotype tested (*p-value < 0.05, two-tailed T-test). (f) Accumulated biomass of new vine buds grown for four weeks and then pruned. Plotted values are averages and standard deviations from total new biomass from a random subset (n = 12) of plants (*p-value < 0.05, ANOVA).

Behaviors which depend on cell-cell signaling have been extensively studied in Xanthomonas and Xylella spp., revealing that local cyclic di-GMP pools can regulate specific protein—protein interactions and virulence functions independently, such as motility, expression of extracellular enzymes and biofilm formation. Interestingly, extracellular protease expression is among the traits controlled by the DSF quorum sensing mechanism in these organisms. Indeed the prtA mutant resembles the rpfF mutant (DSF synthase) not only in cell behavior and morphology (shorter rods) but also in modulation of transcriptome towards motility and inhibition of biofilm formation. As we show DSF accumulation does not differ greatly from wild type levels, it may be that local cyclic di-GMP homeostasis is being disrupted indirectly by the degradation of other enzymes involved in its turnover. This, in turn, could account for the persistence of the prtA mutant in the exploratory bioform as opposed to entering the aggregative biofilm-forming phase.

Extracellular DNA (eDNA) is an abundant component of the bacterial biofilm matrix and is provided by various bacterial mechanisms. These include secreted factors, such as autolysins and proteases, to facilitate the lysis of bacterial cells and yield eDNA for biofilm structure. Interestingly, prtA mutants produce substantially less eDNA in vitro, possibly as a result of faster cell proliferation and/or reduction of cell lysis when compared to the wild type. Moreover, down-regulation of biofilm components and up-regulation of motility factors may prevent the prtA mutant cells from reaching a biofilm development point requiring significant amounts of structuring eDNA. This may also contribute to the lack of grapevine stunting upon pruning, as bacteria within biofilms are expected to be more resistant to environmental pressures, such as additional changes in the host defense response after pruning. Increased sensitivity to environmental pressures may also exist as a result of the marked down-regulation of stress-related genes such as the SOS response. Cell proliferation and enrichment for stress-induced genes (and accompanying behaviors such as energy production) are generally considered antagonistic behaviors and reflect cell resource management and strategy. Aiming to separate these two processes, a study with S. cerevisiae found that stress-induced genes were regulated by their environment and not dependent on growth rate. If true in X. fastidiosa, and with PrtA acting as a secreted protease facilitating autolysis, this suggests that the down-regulation of stress-induced genes in X. fastidiosa prtA is not a consequence of accelerated growth. Instead, down-regulation would result from the removal of a stressor in the environment, thus permitting increased growth. Regardless, these findings have interesting potential application for X. fastidiosa control, as pruning strategies combined with strategies to increase the planktonic bioform might lessen X. fastidiosa bacterial titer in planta, hopefully below a transmission-effective threshold. So even though the infected plant would still be condemned, disease transmission could possibly be reduced.

Mutant prtA is both hypervirulent and planktonic, but in vitro produces similar concentrations of DSF to wild type Temecula1. Although DSF is important in regulating the planktonic to biofilm switch, there are mechanisms contributing to the planktonic bioform that supersede those that control DSF production and thus the two are not
integrally connected. Further, though hypervirulent, the *X. fastidiosa* *prtA* mutant in vitro does not experience a corresponding extreme increase in vesicle production like the hypervirulent and planktonic quorum sensing mutant *X. fastidiosa* rpfF. This suggests that if vesicles are involved in the disease process, the quantity of OMVs in *X. fastidiosa* *prtA* is likely not as important to virulence as other vesicle characteristics, such as the cargo they contain. Analysis of OMVs cargo may shed further light on the complex mechanism of PD induction. This further implies that vesicle up-regulation may not be a required virulence mechanism in *X. fastidiosa* and that RpfF and thus DSF plays a more direct role in vesicle regulation.

In conclusion, PrtA is a secreted protease in *X. fastidiosa* that influences many traits both in vitro and in planta. Based on in vitro experiments, disruption of *prtA* ultimately leads cells to confinement in an exploratory single-celled bioform capable of rapid cell division. Though hypervirulent in controlled inoculations in terms of disease onset and progression, the mutant showed decreased symptoms of bud regrowth stunning upon infection and subsequent pruning. The *X. fastidiosa* *prtA* mutant suppresses the SOS response, appearing to confer higher sensitivity to environmental stresses as shown by plant regrowth after pruning. Whether SOS suppression is a consequence of faster cell division or part of a specific regulatory mechanism remains unknown. Curiously, this antivirulence gene confers a balance between reduced virulence and increased tolerance to host defenses. As such, the identification of the precise targets of PrtA may provide useful insight on its role in this process(es). The *X. fastidiosa* Temecula1 genome has two other protein coding sequences with low similarity to PD0956 that also encode putative extracellular serine proteases, PD0955 and PD0657 (e-values 8e-11 and 7e-10, respectively). The first is within the same phage remnant as PD0956, while the latter is not within or near phage sequences. Given the broad effects of PD0956 inactivation on cell morphology and behaviour, and the widespread of phage sequences in available genomes of *Xylella* strains, the relationship of these other putative proteases to bacterial survival and plant disease is worth investigating.

Materials and Methods

In silico protein analysis. A BLAST search of PrtA (Accession id: WP 011097867.1) revealed a putative serine protease (Accession id: WP 011931294) from *Clavibacter michiganensis* as the match with greatest identity to PrtA. Thereafter, BLAST filtered only by PDB structures was performed; this revealed a secreted alkaline serine protease (PDB:3CP7), from a halophilic microbe in the *Nesterenkonia abyssinica* group as the structure with greatest similarity to PrtA. Next, the structure of PrtA was modeled using PDB:3CP7 as a template for SWISS-MODEL (PrtA.pdb in Dataset). Finally, PrtA's catalytic triad was identified by querying the modeled structure using PDB:3CP7 as a motif for CLASP. These proteins were superimposed using MUSTANG with PrtA's signal peptide predicted using SignalP 4.1 and removed (Fig. 1).

Cloning PrtA in an E. coli expression vector. The sequence of PrtA (PD0956) and PrtA-S280A was codon-optimized for expression in *E. coli*, chemically synthesized, and then cloned into the pExpress-401 expression vector (DNA2.0; Menlo Park, CA). For pJX-prtA-S280A, serine residue S280, which is part of the catalytic triad, was substituted with alanine to create a functional mutation.

Isolation of the prtA mutant strain. Complete method and demonstration of disruption of PD0956 (**PrtA**) is available as Supplementary Information.

Protease activity assay. PrtA activity was measured using a Pierce Fluorescent Protease Assay Kit (Thermo) using fluorescein-labeled casein that fluoresces in the presence of protease activity. *X. fastidiosa* wild type Temecula1 and *prtA*− protease activities were quantified using 25 µg total secreted protein pooled from three 10 mL broth cultures as suggested by the manufacturer. The fluorescent intensity was measured (485/538 nm excitation/emission maxima) for three replicas of each genotype after incubation for one hour at room temperature using the fluorometer SpectraMax M2 (Molecular Devices). Significantly different results (p < 0.05 two-tailed T-test) are indicated with an asterisk.

Western-blot analysis. Synthetic peptides corresponding to structural epitopes of PrtA from *X. fastidiosa* were used to generate the polyclonal antibody (GenScript, NJ). Complete method of Western blot procedure is described in the Supplementary Information file. Whole image of blot is shown in Supplementary Fig. S3.

Immunogold electron microscopy. Immunogold Electron Microscopy (IEM) was performed using fresh cultures of *X. fastidiosa* cells and the filamentous network secreted in the culture supernatant. These were fixed with 4% paraformaldehyde in 1 M Sorensen's phosphate buffer (pH 7.4) and then embedded in LR White resin as described. Ultra-thin sections were cut and placed onto coated grids (200 mesh; treated with glow-discharge), followed by blocking with 1% fish gelatin for 30 min. Grids were blotted with anti-PrtA (1:50) antibody for 1 h at RT and then washed with PBS. The primary antibody was detected using anti-rabbit (1:50) antibody coupled to 10 nm gold particles. Unbound conjugate was removed by a step-wise sequence of washing with PBS. The preparation was negatively stained with 1% ammonium molybdate, air-dried, and visualized using a Philips CM120 (FEI/Philips Inc.) electron microscope at 80 KV.

Bacterial viability and growth. Eighty microlitres OD600 = 0.11 of wild type Temecula1 and *prtA* mutant *X. fastidiosa* strains were inoculated into 10 mL aliquots of PD3 broth in 50 mL conical tubes and grown with shaking at 150 rpm in a 28 °C incubator. Cultures were allowed to grow for eight days with periodic plating of strains on five PD3 agar plates per strain per time point. Plates were incubated at 28 °C for ~ two weeks before counting the colony forming units. This experiment was repeated independently at individual time points with
similar results. OD$_{600\text{nm}}$ was measured every day and growth curves show the average of three independent cultures with standard deviation.

eDNA extraction and quantification. Extracellular DNA was extracted as previously described\(^6\) using six independent 50 mL cultures of *X. fastidiosa*. Cells were grown in PD3 liquid media at 28°C in a rotary shaker for six days. Extracted eDNA was quantified using Qubit 2.0 (Thermo Fisher Scientific, NY).

Crystal violet biofilm quantification assay. Individual wells in 12-well plates containing three millilitres fresh PD3 per well were inoculated with 24 μL blank PD3 or OD$_{600\text{nm}}$ = 0.1 *X. fastidiosa* wild type Temecula1 or prtA\(^-\) suspensions, incubated at 28°C, and grown at 95 rpm for seven days. The biofilm of each culture (n = 8) was quantified using crystal violet staining as previously described\(^6\).

Twitching motility assay. *X. fastidiosa* wild type Temecula1 and prtA\(^-\) were assayed for twitching motility using an existing protocol substituting PD3 for modified PW with BSA\(^2\). Briefly, five microlitres bacterial suspensions in liquid medium at OD$_{600\text{nm}}$ = 0.1 were spotted onto 0.6% PD3 agar plates, allowed to dry five min in a laminar flow cabinet, and incubated at 28°C for eight days. Colonies were transferred onto PW 0.6% agar plates with a sterile toothpick and incubated at 28°C for three days; after incubation, colony morphology was examined using a dissecting microscope to visualize the twitching motility zone at the fringes of the colonies.

SEM preparations and bacterial length measurements. Eighty microlitres of a OD$_{600\text{nm}}$ = 0.1 *X. fastidiosa* wild type Temecula1 and mutant strains prtA\(^-\) and rpfF\(^-\) were inoculated into 10 mL aliquots of PD3 broth in 50 mL conical tubes and grown with shaking at 150 rpm in a 28°C incubator. Bacteria were sampled six days after inoculation without centrifugation, incubated in modified Karnovsky’s fixative for one hour at room temperature and subsequently stored at 4°C. Karnovsky’s fixative consists of 2.0% paraformaldehyde and 2.5% glutaraldehyde in 0.1 M Sorensen’s phosphate buffer at pH 7.3. Samples were prepared with the help of Patricia Kysar from the Electron Microscopy Lab at the University of California Davis. Samples were viewed on an FEI XL-30 TMP Scanning Electron Microscope (FEI Company, OR) and images acquired by Hyrum Gillespie. Finally, the lengths of ~500 bacteria/strain were measured using SEM pictures taken at 6500 × magnification and ImageJ. Data was graphed as the percent total bacteria at each length. Previous independent SEM preparations of *X. fastidiosa* strains displayed similar phenotypic differences in clumping and length.

DSF quantification. *X. fastidiosa* strains were grown on ~550 mL 1.5% agar PD3 plates (22 plates). Each plate was spotted 25 times with 5 μL *X. fastidiosa* OD$_{600\text{nm}}$ = 0.1 and grown for two weeks without antibiotic. Eleven plates of each strain were cut into five mm3 cubes and incubated with an equal volume of ethyl acetate for two hours with shaking every 30 min. Ethyl acetate and agar were separated using cheesecloth and concentrated by evaporation (in-vacuo) using a Rotavapor R evaporator (Buchi, Switzerland). DSF-containing residues were resuspended in three mL methanol and quantified. DSF was quantified with help from Dr. Elena Antonova from the laboratory of Dr. Steven Lindow in Berkeley CA according to a previously published protocol using a rpfF\(^*\) -XHA-biosensor developed at their lab\(^6\). All extracts were stored at −20°C. Note: DSF was also extracted from strains grown in liquid cultures with similar results.

Outer membrane vesicle isolation and quantification. Outer membrane vesicles (OMV) were isolated using a previously reported protocol\(^5\). Quantification of vesicles was performed with the help of Dr. Matt Mellema, UC Davis using a Nanosight LM10HS in which a true medium blank and FM 1–43 dye from Molecular Probes were used to distinguish OMV from background particles. FM dyes are lipophilic steryl compounds used in previous studies of vesicles and plasma membranes. Note: We suggest rinsing all ultracentrifuge and storage tubes with 0.1 μm filtered ddH$_2$O to reduce the particle background.

Grapevine growth, infection, and quantification. Grapevines (*Vitis vinifera* L. cv. ‘Thompson Seedless’) were propagated clonally, greenhouse-grown in pots, and pruned to maintain one leaf per node and heights of one metre. Ten-week-old grapevines were infected at 8–12 cm above soil level using a pin with 10 μL PD3 medium at 2 × 108 cells/mL of either *X. fastidiosa* prtA mutant, wild type Temecula1, or PD3 medium (mock inoculation) as described\(^6\). This process was repeated the following day with independently grown cultures to ensure infection. Plants were placed in the greenhouse in a randomized block design and maintained for 10 weeks, at which time PD-like symptoms were quantified. Leaves with any scorching were defined as “symptomatic.” Data was taken from 76 plants with a minimum of 25 plants for each treatment and presented as the percentage of symptomatic leaves above the inoculation point. Missing leaves were excluded from this analysis, but a separate analysis counting missing leaves as “symptomatic” caused no significant changes in symptomatic percentages.

Grapevine Regrowth. At 18 weeks post-infection, grapevines infected with *X. fastidiosa* prtA\(^-\) and Temecula1 were completely scorched. Subsets of 12 vines of each inoculation type, including healthy mock-infected controls, were subsequently cut off below the infection point down to two inches (to the wood cutting of initial propagation) and then allowed to regrow for four weeks, at which time all new tissue was removed and weighed.

Expression of recombinant PrtA in SR1 tobacco. Following the addition of the rice alpha amylase (RAmy 3D, GenBank:MS9351) secretion signal peptide at the N-terminal and Flag detection and purification tag (Sigma) at the C-terminal, the coding sequence for PrtA was synthesized after codon optimization for plant expression (GenScript, NJ). Using epicenter Infusion Recombination cloning (Madison, WI), the PrtA sequence
was cloned into our binary vector pDU92.3103 such that the coding region was downstream of the cauliflower mosaic virus (CaMV) promoter and upstream of the CaMV terminator. This resulted in binary vector pDG14.01 (Supplementary Information Fig. S2). The constructed binary vector was provided to the Ralph M. Parsons Plant Transformation facility at the University of California, Davis. Ten independent transgenic SR1 tobacco lines for pDG14.01 were obtained and confirmed by PCR analysis of their transgenic DNA.

SR1 tobacco infection and symptom quantification. Tobacco plants were grown in the greenhouse and infected as described68. Briefly, for each of two transgenic lines and wild type control, 12 plants were obtained and six were infected with X. fastidiosa culture while six were mock-infected with PD3 medium. For each plant, three leaves were infected through petioles with 2.14 × 10⁶ X. fastidiosa cells. At 11 weeks post-infection, infected leaves (n = 10 for WT SR1 tobacco and n = 10 for PrTa-expressing tobacco plants) were scored for percentage area scorched and pictures were taken.

Protein extraction and proteomic data analysis. Complete method is available as Supplementary Information. Briefly six culture replicates of 50 mL were grown in PD3 media for seven days (120 rpm at 28 °C) and cells were separated by centrifugation and total protein from supernatant isolated and tryptic digested for mass spectra collection with an Orbitrap Q Exactive Plus mass spectrometre (Thermo Fisher Scientific, CA). Scaffold Q+ (version Scaffold 4.4.0, Proteome Software Inc., Portland, OR) was used to analyze peptide and protein identifications. P-values for the strain effect were FDR-adjusted. Analyses were conducted using the R, version 3.1.0 (http://www.R-project.org/).

RNA extraction, library preparation and transcriptomic data analysis. Complete method is available as Supplementary Information. Briefly RNA from six bacterial cultures was purified and depleted for ribosomal RNA. Strand-specific RNA-seq libraries were generated and sequenced on one lane of an Illumina HighSeq 2500 (Illumina, CA). Enrichment of gene ontology terms of differentially expressed transcripts was performed with BayG085 using 500 simulations and a P-value cutoff of 0.05.

References

1. Chatterjee, S., Almeida, R. P. & Lindow, S. Living in two worlds: the plant and insect lifestyles of Xylella fastidiosa. Annual review of phytopathology 46, 243–271, doi: 10.1146/annurev.phyto.45.062806.094342 (2008).

2. Redak, R. A. et al. The biology of xylem fluid-feeding insect vectors of Xylella fastidiosa and their relation to disease epidemiology. Annual review of entomology 49, 243–270, doi: 10.1146/annurev.ento.49.061802.123403 (2004).

3. Chatterjee, S., Wistrom, C. & Lindow, S. E. A cell-cell signaling sensor is required for virulence and insect transmission of Xylella fastidiosa. Proceedings of the National Academy of Sciences of the United States of America 105, 2670–2675, doi: 10.1073/pnas.071236105 (2008).

4. Nascimento, R. et al. The Type II Secreted Lipase/Esterase LexA is a Key Virulence Factor Required for Xylella fastidiosa Pathogenesis in Grapevines. Sci Rep 16, 18598, doi: 10.1038/srep18598 (2016).

5. Perez-Donoso, A. G. et al. Cell wall-degrading enzymes enlarge the pore size of intercellular pit membranes in healthy and Xylella fastidiosa-infected grapevines. Plant physiology 152, 1748–1759, doi: 10.1104/pp.109.148791 (2010).

6. Lu, Y. T., Cheng, K. T., Jiang, Y. S. & Yang, J. Y. Post-translational cleavage and self-interaction of the phytosplasma effector SAP11. Plant Signal Behav 9 (2014).

7. Choi, M. S., Kim, W., Lee, C. & Oh, C. S. Harpins, multifunctional proteins secreted by gram-negative plant-pathogenic bacteria. Mol Plant Microbe Interact 26, 1113–1122, doi: 10.1094/MPMI-02-13-0050-CR (2013).

8. Coulthurst, S. J. et al. DsbA plays a critical and multifaceted role in the production of secreted virulence factors by the phytopathogen Erwinia carotovora subsp. atroseptica. J Biol Chem 283, 23739–23753, doi: 10.1074/jbc.M801829200 (2008).

9. Yang, S. et al. Dynamic regulation of GacA in type III secretion, pectinase gene expression, pellicle formation, and pathogenicity of Dickeya dadantii (Erwinia chrysanthemi 3937). Mol Plant Microbe Interact 21, 133–142, doi: 10.1094/MPMI-21-1-0133 (2008).

10. Buttner, D. & Bonas, U. Regulation and secretion of Xanthomonas virulence factors. FEMS Microbiol Rev 34, 107–133, doi: FMR192 [pii] 10.1111/j.1574-6976.2009.00192.x (2010).

11. Kang, Y., Liu, H., Genin, S., Schell, M. A. & Denny, T. P. Ralstonia solanacearum requires type 4 pili to adhere to multiple surfaces and mediate natural transformation and virulence. Mol Microbiol 46, 427–437 (2002).

12. He, Y. W. & Zhang, L. H. Quorum sensing and virulence regulation in Xanthomonas campestris. Annual review of entomology 45, 33–45, doi: 10.1146/annurev.ento.45.061802.123403 (2003).

13. He, Y. W. & Zhang, L. H. Quorum sensing and virulence regulation in Xanthomonas campestris. Mol Plant Pathology 4, 33–45, doi: 10.1002/mbo3.6 (2012).

14. Pique, N., Minana-Galbis, D., Merino, S. & Tomas, J. M. Virulence Factors of Erwinia amylovora: A Review. Int J Mol Sci 16, 12836–12854, doi: 10.3390/ijms160612836 (2015).

15. Roper, M. C., Greve, L. C., Warren, J. G., Labavitch, J. M. & Kirkpatrick, B. C. Xylella fastidiosa requires polygalacturonase for colonization and pathogenicity in Vitis vinifera grapevines. Molecular plant-microbe interactions: PMPI 20, 411–419, doi: 10.1094/MPMI-20-4-0411 (2007).

16. Newman, K. L., Almeida, R. P., Purcell, A. H. & Lindow, S. E. Cell-cell signaling controls Xylella fastidiosa interactions with both insects and plants. Proceedings of the National Academy of Sciences of the United States of America 101, 1737–1742, doi: 10.1073/pnas.0308399100 (2004).

17. Roper, M. C., Greve, L. C., Labavitch, J. M. & Kirkpatrick, B. C. Detection and visualization of an exopolysaccharide produced by Xylella fastidiosa in vitro and in planta. Appl Environ Microbiol 73, 7252–7258, doi: 10.1128/AEM.00895-07 (2007).

18. Erwinia carotovora subsp. atroseptica. Appl Environ Microbiol 75, 7319–7327 (2009).

19. Sun, Q., Sun, V. Y., Walker, M. A. & Labavitch, J. M. Vascular Oclusions in Grapevines with Pierce’s Disease Make Disease Symptom Development Worse. Plant physiology 161, 1529–1541, doi: 10.1104/pp.112.208157 (2013).

20. Gambetta, G. A., Fei, J., Rost, T. L. & Matthews, M. A. Leaf scarch symptoms are not correlated with bacterial populations during Pierce’s disease. Journal of experimental botany 58, 4037–4046, doi: erm260 [pii] 10.1093/jxb/erm260 (2007).

21. Zhang, S. et al. Three New Pierce’s Disease Pathogenicity Effectors Identified Using Xylella fastidiosa Biocontrol Strain EB92-1. PLoS One 10, e0133796, doi: 10.1371/journal.pone.0133796 (2015).

22. Matsumoto, A., Huston, S. L., Killyn, N. & Igo, M. M. Xata, an AT-1 autotransporter important for the virulence of Xylella fastidiosa Temecula1. MicrobiologyOpen 1, 33–45, doi: 10.1002/mbo3.6 (2012).
61. Lopez-Maury, L., Marguerat, S. & Bahler, J. Tuning gene expression to changing environments: from rapid responses to evolutionary adaptation. *Nature reviews. Genetics* 9, 583–593, doi: 10.1038/nrg2398 (2008).

62. Chakraborty, S., Minda, R., Salaye, L., Bhattacharjee, S. K. & Rao, B. J. Active site detection by spatial conformity and electrostatic analysis—unravelling a proteolytic function in shrimp alkaline phosphatase. *PLoS One* 6, e28470, doi: 10.1371/journal.pone.0028470 (2011).

63. Erickson, P. A., Anderson, D. H. & Fisher, S. K. Use of Uranyl Acetate En-Bloc to Improve Tissue Preservation and Labeling for Postembedding Immunoelectron Microscopy. *J Electron Micro Tech* 5, 303–314, doi: 10.1002/jemt.1060050403 (1987).

64. Wu, J. & Xi, C. Enzymatic method for extracting extracellular DNA in biofilm matrix. *Cold Spring Harb Protoc* 2010, pdb prot5456, doi: 10.1101/pdb.prot5456 (2010).

65. O’Toole, G. A. Microtiter dish biofilm formation assay. *J Vis Exp* doi: 10.3791/2437 (2011).

66. Almeida, R. P., Mann, R. & Purcell, A. H. Xylella fastidiosa cultivation on a minimal solid defined medium. *Current microbiology* 48, 368–372, doi: 10.1007/s00284-003-4219-x (2004).

67. Ionescu, M. et al. Diffusible signal factor (DSF) synthase RpfF of Xylella fastidiosa is a multifunction protein also required for response to DSF. *Journal of bacteriology* 195, 5273–5284, doi: 10.1128/JB.00713-13 (2013).

68. Dandekar, A. M. et al. An engineered innate immune defense protects grapevines from Pierce disease. *Proceedings of the National Academy of Sciences of the United States of America* 109, 3721–3725, doi: 10.1073/pnas.1116027109 (2012).

69. Vencio, R. Z., Koide, T., Gomes, S. L. & Pereira, C. A. BayGO: Bayesian analysis of ontology term enrichment in microarray data. *BMC Bioinformatics* 7, 86, doi: 10.1186/1471-2105-7-86 (2006).

Acknowledgements

AMD acknowledges the California Department of Food and Agriculture Pierce’s Disease Board for their support of this research, RN and PAZ are grateful to the Brazilian agency CAPES for scholarship support. We thank Monica Britton (UC Davis Bioinformatics Core Facility) for her contributions to RNAseq data analysis, the UC Davis DNA Technology Core for their help with library preparation and sequencing. We express our gratitude to Patricia Kysar (Electron Microscopy Laboratory, School of Medicine, University of California at Davis) for technical support and to Mary Lou Mendum for her editorial assistance with this manuscript. We would also like to give special thanks the interns in our lab, Austin Chua, Claudia Dastmalchi, Abhishek Hegde, Andrew Hill, Elahe Jahani, Carol Le, Lander Santos Oliveira, Edward Sung, Zara Tebay who have helped us to prepare assays and collect data during these experiments.

Author Contributions

Design of the research: H. Gouran, H. Gillespie, R.N. and A.M.D. Performance of the research H. Gouran, H.Gillespie, R.N., S.C., P.A.Z., A.J., B.S.P., D.D., B.P.D.-J. and E.S.A. Data analysis, collection, or interpretation: H. Gouran, H. Gillespie, R.N., S.C., P.A.Z., A.J., B.S.P., D.D., B.P.D.-J., E.S.A., S.E.L., M.S.M., L.R.G. and A.M.D. Writing the manuscript: H. Gouran, H. Gillespie, P.A.Z., B.S.P., L.R.G. and A.M.D.

Additional Information

Supplementary information accompanies this paper at http://www.nature.com/srep

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Gouran, H. et al. A Secreted Protease PrtA Controls Cell Growth, Biofilm Formation and Pathogenicity in *Xylella fastidiosa*. *Sci. Rep.* 6, 31098; doi: 10.1038/srep31098 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

© The Author(s) 2016