Review

A Silkworm Infection Model to Evaluate Antifungal Drugs for Cryptococcosis

Yasuhiko Matsumoto¹, Masaki Ishii¹, Kiminori Shimizu¹, Susumu Kawamoto¹ and Kazuhisa Sekimizu¹,²

¹ Teikyo University Institute of Medical Mycology
² Genome Pharmaceuticals Institute Co. Ltd.
³ Department of Biological Science and Technology, Tokyo University of Science
⁴ Medical Mycology Research Center, Chiba University

ABSTRACT

The development of effective drugs against fungal diseases involves performing infection experiments in animals to evaluate candidate therapeutic compounds. Cryptococcus neoformans is a pathogenic fungus that causes deep mycosis, resulting in respiratory illness and meningitis. Here we describe a silkworm system established to evaluate the safety and efficacy of therapeutic drugs against infection by Cryptococcus neoformans and the advantages of this system over other animal models. The silkworm assay system has two major advantages: 1) silkworms are less expensive to rear and their use is less problematic than that of mammals in terms of animal welfare, and 2) in vivo screenings for identifying candidate drugs can be easily performed using a large number of silkworms. The pharmacokinetics of compounds are consistent between silkworms and mammals. Moreover, the ED₅₀ values of antibiotics are concordant between mammalian and silkworm infection models. Furthermore, the body size of silkworms makes them easy to handle in experimental procedures compared with other invertebrate infectious experimental systems, and accurate amounts of pathogens and chemicals can be injected fairly easily. These advantages of silkworms as a host animal make them useful for screening candidate drugs for cryptococcosis.

Key words: antifungal drugs, Cryptococcus neoformans, invertebrate animals, silkworm

Introduction

Cryptococcus neoformans is a major human fungal pathogen worldwide¹−³. The organism is frequently isolated in immunocompromised patients and is one of the most common causes of death in AIDS patients, especially in sub-Saharan Africa⁴. Basic research using animal models is essential to elucidate the pathology of C. neoformans infection and to establish treatment and prevention methods against this infection. Various mammalian C. neoformans infection models have been proposed⁵−⁸. The use of mammalian animals to screen for therapeutic drugs, however, is problematic not only in terms of the large numbers of animals required and the cost of rearing, but also due to ethical considerations. To overcome these problems, infection models for C. neoformans using invertebrates such as Drosophila melanogaster, Caenorhabditis elegans, Galleria mellonella, and Bombyx mori have been proposed⁹−ⁱ⁰. The use of invertebrate animals for drug screening experiments is highly advantageous compared with mammals for the following reasons: (1) lower associated costs; (2) smaller space requirements; (3) fewer ethical problems associated with their death; and (4) smaller amounts of the sample can be used because of the small size of the animals (Table 1). In this
Table 1. Comparison of *in vivo* infection models of *Cryptococcus neoformans*

Model animals	Cost for rearing	Space for rearing	Application to the ethics committee	Escape ability to require biosafety	Time required to die after injection	Temperature after infection	Quantitative injection of samples by a syringe	Reported route of administration	Individual weight	References
Silkworm	Low	Small	Not necessary	Low	2-3 days	37°C	Easy	Intra-hemolymph, intra-gut injections	1-2 g	10)
Fruit fly	Low	Small	Not necessary	High	3-4 days	25°C	Difficult	Intra-hemolymph injection, oral administration	0.5-2 mg	8)
Nematode	Low	Small	Not necessary	Low	2-25 days	25°C	Difficult	Oral administration	1 µg	7)
Larvae	Low	Small	Not necessary	Low	4-20 days	30°C, 37°C	Easy	Intra-hemolymph injection	250 mg	9)
Mice	High	Large	Necessary	High	6-40 days	37°C (body temperature)	Easy	Intratracheal, intravenous, intraperitoneal injection	15-40 g	6, 30, 43

Table was taken with permission from Ishii *et al.* and partly modified.
paper, we describe the usefulness of invertebrate infection models for *C. neoformans*, especially focusing on silkworms.

Establishment of a silkworm *C. neoformans* infection model

Silkworms are domesticated animals with well-established rearing methods due to the long history of sericulture. The silkworm body has a moderate size that is easy to handle in experimental procedures, such as for injecting an accurate amount of bacterial sample or drug solution (Fig. 1). We have proposed silkworm models for studying various diseases, such as infectious diseases, diabetes, and chemical-induced tissue injury. We have demonstrated that silkworm disease models are useful for screening candidate therapeutic drugs. In particular, various silkworm infection models are effective for searching for virulence factors of pathogens and therapeutic agents against infectious diseases. Establishing a silkworm infection model for *C. neoformans* will contribute to the development of therapeutically effective antifungal drugs for cryptococcosis in humans. Silkworms can survive for at least 3 days at 37°C, the typical mammalian body temperature. Silkworms died when the *C. neoformans* H99 strain was injected into the hemolymph followed by incubation at 37°C (Fig. 2). On the other hand, injecting silkworms with the heat-killed *C. neoformans* H99 strain did not kill them (Fig. 2). These findings suggest that cells of the *C. neoformans* H99 strain must be viable to kill the silkworms. Pathogenicity is evaluated quantitatively by determining the LD₅₀ value, which is the amount of a pathogen necessary to kill 50% of the silkworm population. A low LD₅₀ value indicates high pathogenicity of the pathogen. The LD₅₀ values of serotype A strains (H99, KN99α, and KN99α), which have high pathogenicity in mammals, were lower in silkworms than those of serotype D strains (KN3501α, KN3501α, and B4500; Table 2). Therefore, one can distinguish less pathogenic strains of *C. neoformans* from highly pathogenic strains based on their effects in silkworms. Furthermore, strains deficient in the *gpa1*, *pka1*, and *cna1* genes, which are reported to be necessary for the pathogenicity of *C. neoformans* against mammals, also exhibited higher LD₅₀ values in the silkworm model than the parent strain. Silkworm infection models of other fungi such as *Candida albicans*, *Candida glabrata*, and *Candida tropicalis* have also been established. The virulence genes of the fungi were identified
using silkworm fungal infection models15, 20. Together, these findings indicate that silkworm infection models are useful for clarifying the pathogenicity of fungi in mammals.

Quantitative evaluation of antifungal drugs using silkworms

The ED\textsubscript{50} values of antibiotics against bacterial infection in silkworm infection models were consistent with those in mammals21. In addition, the LD\textsubscript{50} values of toxic substances were similar between mammals and silkworms22. Therefore, the therapeutic efficacy and toxicity of various compounds can be quantitatively evaluated using silkworms. The value obtained by dividing the ED\textsubscript{50} value by the minimum inhibitory concentration (ED\textsubscript{50} / MIC) is an indicator of the in vivo pharmacodynamics23. The ED\textsubscript{50} / MIC values of antibiotics that are clinically effective in human patients were lower than 1023. Therefore, the ED\textsubscript{50} / MIC values obtained from silkworm infection models appear to be useful indexes for evaluating the pharmacodynamics of antibiotics.

Amphotericin B, flucytosine, fluconazole, and ketoconazole exhibited therapeutic effects upon injection into the silkworm hemolymph (intra-hemolymph injection) in a silkworm infection model for \textit{C. neoformans} (Table 3). The ED\textsubscript{50} / MIC values of amphotericin B, flucytosine, and fluconazole were less than 10. On the other hand, the ED\textsubscript{50} / MIC value of ketoconazole, an external medicine used in humans, was 190 in the silkworm system (Table 3). These results suggest that the silkworm infection model for \textit{C. neoformans} is useful for evaluating the pharmacokinetics of antifungal drugs. Moreover, the difference between ED\textsubscript{50} and LD\textsubscript{50} values determined using silkworms allows us to predict the effective safe dose of antifungal drugs.

Intra-midgut injection, which corresponds to oral administration in humans, can be performed in silkworms. Amphotericin B, which is not absorbed from the intestinal tract in mammals and has no therapeutic effect by oral administration, showed no therapeutic effects following intra-midgut injection into silkworms (Table 4). This result indicates that amphotericin B is not absorbed from the intestinal tract in silkworms, and suggests that the efficacies of orally adminis-

Table 2. LD\textsubscript{50} of \textit{Cryptococcus neoformans} strains for silkworm

Strains	LD\textsubscript{50} (× 106 CFU per larva)	P-value
H99	6 ± 3	
KN99a	7 ± 1	
KN99α	8 ± 1	
KN3501a	> 56	< 0.0001(vs H99)
KN3501α	> 57	< 0.0001(vs H99)
B4500	> 72	< 0.0001(vs H99)

Table was taken with permission from Matsumoto et al.10.

Table 3. ED\textsubscript{50}, MIC, ED\textsubscript{50} per MIC, LD\textsubscript{50} and ED\textsubscript{50} per LD\textsubscript{50} of antifungal drugs in silkworm infection model for \textit{Cryptococcus neoformans}

Antifungal agents	ED\textsubscript{50} (μg g-1 of larva)	MIC (μg ml-1)	ED\textsubscript{50} per MIC ratio	LD\textsubscript{50} (mg g-1 of larva)	ED\textsubscript{50} per LD\textsubscript{50} ratio
Amphotericin B	14 ± 10	4 ± 2	3.5	> 250	< 0.056
Flucytosine	6 ± 1	21 ± 7	0.3	145	0.041
Fluconazole	2 ± 1	7 ± 6	0.3	> 250	< 0.008
Ketoconazole	19 ± 2	0.1 ± 0.1	190	> 250	< 0.076
Micafungin	> 125	> 100	> 125		

Table was taken with permission from Matsumoto et al.10.
tered antifungal drugs can be predicted using the silkworm infection model for \textit{C. neoformans}.

Other invertebrate models of \textit{C. neoformans} infection

\textit{G. mellonella} is a large moth that belongs to Lepidoptera like silkworms. \textit{G. mellonella} has been proposed as an infection model of fungi, including \textit{C. neoformans}24−27. \textit{G. mellonella} can be used to perform infection experiments at 37°C, and therapeutic effects of antifungal drugs were evaluated using the \textit{G. mellonella} infection model for \textit{C. neoformans}9, 28. Because of its large body size, \textit{G. mellonella} can be easily injected with a large volume of sample solution into its hemolymph, similar to silkworms29. Moreover, novel virulence factors of \textit{C. neoformans} have been screened using the \textit{G. mellonella} model30.

\textit{D. melanogaster}, a fruit fly, is widely used as an experimental animal31. An advantage of \textit{D. melanogaster} is that it can be manipulated using various genetic approaches32. The host immune system related to \textit{C. neoformans} infection has been elucidated using mutant libraries of \textit{D. melanogaster}. For example, mutants of Imd and Toll pathways, which act on signal pathways for innate immunity, were analyzed in the \textit{C. neoformans} infection model8. A Toll pathway mutant was susceptible to \textit{C. neoformans} infection, whereas an Imd pathway mutant was not, indicating that the Toll pathway plays a role in innate immunity against \textit{C. neoformans}8. On the other hand, there are some disadvantages to using \textit{D. melanogaster} for evaluation of drug efficacy. The body size of adult flies, which are generally used in infection experiments, is too small (2 - 3 mm) to determine accurate LD\textsubscript{50} and ED\textsubscript{50} values in injection experiments. \textit{C. elegans} is also used as an invertebrate animal model to perform genetic studies of infectious diseases33. Genes related to immune responses against \textit{C. neoformans} infection were identified using \textit{C. elegans} mutants34−36. The capsule, which is necessary for the pathogenicity of \textit{C. neoformans} against mammals, is also needed for the pathogenicity in \textit{C. elegans}37. \textit{C. elegans} has been used to identify virulence factors of \textit{C. neoformans}39−36. Moreover, a \textit{C. neoformans} infection model for \textit{C. elegans} was used to evaluate the therapeutic effects of antifungal reagents37, 38. Like \textit{D. melanogaster}, the body size of \textit{C. elegans} is too small to inject accurate volumes of solutions of pathogens and reagents.

Silkworms have several advantages as animal infection models over \textit{D. melanogaster} and \textit{C. elegans}: (1) silkworms have a larger body size and move more slowly, making it easier to inject accurate volumes of pathogen suspensions and drug solutions; (2) infection experiments at 37°C, the human body temperature, are possible; and (3) samples can be injected through two routes: hemolymph and intestinal tract (Table 1). On the other hand, the availability of genetic tools for manipulation is a major advantage for \textit{D. melanogaster} and \textit{C. elegans} over silkworms. Recently, genetic manipulation techniques, such as the establishment of transgenic animals, have been developed for silkworms39−41. Utilizing these genetic techniques in silkworms will help shed light on host immunity against \textit{C. neoformans} infection.

Table 4. Intra-midgut administration of amphotericin B does not have therapeutic effects in a silkworm model

Antifungal agents	i.h. (μg of antifungal agent g-1 of larva) of drug administrated by the following route
Amphotericin B	14 ± 10 > 250
Flucytosine	6 ± 1 9 ± 7
Fluconazole	2 ± 1 9 ± 3
Ketoconazole	19 ± 2 14 ± 10
Micafungin	> 125

Table was taken with permission from Matsumoto \textit{et al.}10.

Conclusion

A silkworm infection model for *C. neoformans* is useful for evaluating the therapeutic effects of antifungal drugs. Using silkworms for these experiments partially addresses the high cost and animal welfare issues associated with the use of mammals, such as mice and rats. These advantages of silkworms permit *in vivo* screening for identifying candidate antifungal drugs against cryptococcosis.

Conflict of interest

None.

References

1) Srikantha D, Santiago-Tirado FH, Doering TL: *Cryptococcus neoformans*: historical curiosity to modern pathogen. Yeast 31: 47–60, 2014.
2) Kwon-Chung KJ, Fraser JA, Doering TL, Wang Z, Janbon G, Ingrum A, Bahn YS: *Cryptococcus neoformans* and *Cryptococcus gattii*, the etiologic agents of cryptococcosis. Cold Spring Harb Perspect Med 4: a019760, 2014.
3) Park BJ, Wannemuehler KA, Marston BJ, Goven- dør N, Pappas PG, Chiller TM. Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS 23: 525-530, 2009.
4) Perfect JR, Lang SD, Durack DT: Chronic cryptococcal meningitis: a new experimental model in rabbits. Am J Pathol 101: 177–194, 1980.
5) Goldman D, Lee SC, Casadevall A: Pathogenesis of pulmonary *Cryptococcus neoformans* infection in the rat. Infect Immun 62: 4755–4761, 1994.
6) Zaragoza O, Alvarez M, Telzak A, Rivera J, Casadevall A: The relative susceptibility of mouse strains to pulmonary *Cryptococcus neoformans* infection is associated with pleiotropic differences in the immune response. Infect Immun 75: 2729–2739, 2007.
7) Mylonakis E, Ausubel FM, Perfect JR, Heitman J, Calderwood SB: Killing of *Caenorhabditis elegans* by *Cryptococcus neoformans* as a model of yeast pathogenesis. Proc Natl Acad Sci U S A 99: 15675–15680, 2002.
8) Apidianakis Y, Rahme LG, Heitman J, Ausubel FM, Calderwood SB, Mylonakis E: Challenge of *Drosophila melanogaster* with *Cryptococcus neoformans* and role of the innate immune response. Eukaryot Cell 3: 413–419, 2004.
9) Mylonakis E, Moreno R, El Khoury JB, Ingrum A, Heitman J, Calderwood SB, Ausubel FM, Diener A: *Galleria mellonella* as a model system to study *Cryptococcus neoformans* pathogenesis. Infect Immun 73: 3842–3850, 2005.
10) Matsumoto Y, Miyazaki S, Fukunaga DH, Shimizu K, Kawamoto S, Sekimizu K: Quantitative evaluation of cryptococcal pathogenesis and antifungal drugs using a silkworm infection model with *Cryptococcus neoformans*. J App Microbiol 112: 138–146, 2012.
11) Matsumoto Y, Ishii M, Hayashi Y, Miyazaki S, Sugita T, Sumiya E, Sekimizu K: Diabetic silkworms for evaluation of therapeutically effective drugs against type II diabetes. Sci Rep 3: 10722, 2015.
12) Matsumoto Y, Sumiya E, Sugita T, Sekimizu K: An invertebrate hyperglycemic model for the identifi- cation of anti-diabetic drugs. PLoS One 6: e18292, 2011.
13) Inagaki Y, Matsumoto Y, Kataoka K, Matsuhashi N, Sekimizu K: Evaluation of drug-induced tissue injury by measuring alanine aminotransferase (ALT) activity in silkworm hemolymph. BMC Pharmacol Toxicol 13: 13, 2012.
14) Kaito C, Akimitsu N, Watanabe H, Sekimizu K: Silkworm larvae as an animal model of bacterial infection pathogenic to humans. Microb Pathog 32: 183–190, 2002.
15) Kaito C, Kurokawa K, Matsumoto Y, Terao Y, Kawabata S, Hamada S, Sekimizu K: Silkworm pathogenic bacteria infection model for identification of novel virulence genes. Mol Microbiol 56: 934–944, 2005.
16) Hamamoto H, Urai M, Ishii K, et al. Lysocin E is a new antibiotic that targets menaquinone in the bacterial membrane. Nat Chem Biol 11: 127–133, 2015.
17) Kaito C, Usui K, Kyuma T, Sekimizu K: Isolation of mammalian pathogenic bacteria using silkworms. Drug Discov Ther 5: 66–70, 2011.
18) Ishii M, Matsumoto Y, Sekimizu K: Usefulness of silkworm as a model animal for understanding the molecular mechanisms of fungal pathogenicity. Drug Discov Ther 9: 234–237, 2015.
19) Hanaoka N, Takano Y, Shibuya K, Fugo H, Uehara Y, Niimi M: Identification of the putative protein phosphatase gene PTC1 as a virulence-related gene using a silkworm model of *Candida albicans* infection. Eukaryot Cell 7: 1640–1648, 2008.
20) Ueno K, Matsumoto Y, Uno J, Sasamoto K, Sekimizu K, Kinjo Y, Chibana H: Intestinal resident yeast *Candida glabrata* requires *Cyb2p*-mediated lactate assimilation to adapt in mouse intestine. PLoS One 6: e24759, 2011.
21) Hamamoto H, Toonoike A, Narushima K, Horie R, Sekimizu K: Silkworm as a model animal to evaluate drug candidate toxicity and metabolism. Comp Biochem Physiol C Toxicol Pharmacol 149: 334–339, 2009.
22) Usui K, Nishida S, Sugita T, Ueki T, Matsumoto Y, Okumura H, Sekimizu K: Acute oral toxicity test of chemical compounds in silkworms. Drug Discov
23) Hamamoto H, Kurokawa K, Kaito C, Kamura K, Manitra Razanajatovo I, Kusuhara H, Santa T, Sekimizu K: Quantitative evaluation of the therapeutic effects of antibiotics using silkworms infected with human pathogenic microorganisms. Antimicrob Agents Chemother 48: 774–779, 2004.

24) Kozubowski L, Heitman J: Septins enforce morphogenetic events during sexual reproduction and contribute to virulence of Cryptococcus neoformans. Mol Microbiol 73: 658–675, 2010.

25) Lev S, Crossett B, Cha SY, Desmarini K, DiDone JL, Lodge JK, Krysan DJ: Inhibition of heat-shock protein 90 reduces the virulence of Cryptococcus neoformans/C. gattii. MBio 5:e01649–e14, 2014.

26) Chabrier-Roselló Y, Gerik KJ, Koselny K, DiDone L, Lodge JK, Krysan DJ: Cryptococcus neoformans phosphoinositide-dependent kinase 1 (PDK1) ortholog is required for stress tolerance and survival in murine phagocytes. Eukaryot Cell 12: 12–22, 2013.

27) Binder U, Maurer E, Lass-Flörl C: Galleria mellonella: An invertebrate model to study pathogenicity in correctly defined fungal species. Fungal Biology 120: 288–295, 2016.

28) Vu K, Gelli A: Astemizole and an analogue promote fungicidal activity of fluconazole against Cryptococcus neoformans var. grubii and Cryptococcus gattii. Med Mycol 48: 255–262, 2010.

29) Garcia-Rodas R, Casadevall A, Rodriguez-Tudela JL, Cuenca-Estrella M, Zaragoza O: Cryptococcus neoformans capsular enlargement and cellular gigantism during Galleria mellonella infection. PLoS One 6: e24485, 2011.

30) Desalermos A, Tan X, Rajamuthiah R, Arvanitis M, Wang Y, Li D, Kourkoumpetis TK, Fuchs BB, Mylonakis E: A multi-host approach for the systematic analysis of virulence factors in Cryptococcus neoformans. J Infect Dis 211: 298–305, 2015.

31) Matthews KA, Kaufman TC, Gelbart WM: Research resources for Drosophila: the expanding universe. Nat Rev Genet 6: 179–193, 2005.

32) Venken KJ, Bellen HJ: Emerging technologies for gene manipulation in Drosophila melanogaster. Nature Reviews Genetics 6: 167–178, 2005.

33) Kaletta T, Hengartner MO: Finding function in novel targets: C. elegans as a model organism. Nat Rev Drug Discov 5: 387–398, 2006.

34) Kerry S, TeKippe M, Gaddis NC, Aballay A: GATA transcription factor required for immunity to bacterial and fungal pathogens. PLoS One 1: e77, 2006.

35) TeKippe M, Aballay A: C. elegans germline-deficient mutants respond to pathogen infection using shared and distinct mechanisms. PLoS One 5: e11777, 2010.

36) Means TK, Mylonakis E, Tampakakis E, Colvin RA, Seung E, Puckett L, Tai MF, Stewart CR, Pukkila-Worley R, Hickman SE, Moore KJ, Calderwood SB, Hacohen N, Luster AD, El Khoury J: Evolutionarily conserved recognition and innate immunity to fungal pathogens by the scavenger receptors SCARF1 and CD36. J Exp Med 206: 637–653, 2009.

37) Morrow CA, Valkov E, Stamp A, Chow EW, Lee IR, Wronska A, Williams SJ, Hill JM, Djordjevic JT, Kappler U, Kobe B, Fraser JA: De novo GTP biosynthesis is critical for virulence of the fungal pathogen Cryptococcus neoformans. PLoS Pathog 8:e1002957, 2012.

38) Cordeiro Rde A, Evangelista AJ, Serpa R, Marques FJ, de Melo CV, de Oliveira JS, Franco Jda S, de Alencar LP, Bandeira Tde J, Brielhante RS, Sidrém JJ, Rocha MF: Inhibition of heat-shock protein 90 enhances the susceptibility to antifungals and reduces the virulence of Cryptococcus neoformans/C. gattii species complex. Microbiology 162: 309–317, 2016.

39) Matsumoto Y, Ishii M, Ishii K, Miyaguchi W, Horiie R, Inagaki Y, Hamamoto H, Tatematsu K, Uchino K, Tamura T, Sezutsu H, Sekimizu K: Transgenic silkworms expressing human insulin receptors for evaluation of therapeutically active insulin receptor agonists. Biochem Biophys Res Commun 453: 159–164, 2014.

40) Inagaki Y, Matsumoto Y, Ishii M, Uchino K, Sezutsu H, Sekimizu K: Fluorescence imaging for a noninvasive in vivo toxicity-test using a transgenic silkworm expressing green fluorescent protein. Sci Rep 5: 11180, 2015.

41) Imamura M, Nakai J, Inoue S, Quan GX, Kanda T, Tamura T: Targeted gene expression using the GAL4/UAS system in the silkworm Bombyx mori. Genetics 163: 1329–1340, 2003.

42) Ishii M, Matsumoto Y, Nakamura I, Sekimizu K: Silkworm fungal infection model for identification of virulence genes in pathogenic fungus and screening of novel antifungal drugs. Drug Discov Ther 11: 1–5, 2017.

43) McClelland EE, Hobbs LM, Rivera J, Casadevall A, Potts WK, Smith JM, Ory JJ: The role of host gender in the pathogenesis of Cryptococcus neoformans infections. PLoS One 8:e63632, 2013.

44) Ishii M, Matsumoto Y, Sekimizu K: Usefulness of silkworm as a host animal for understanding pathogenicity of Cryptococcus neoformans. Drug Discov Ther 16: 9–13, 2016.