Simulation of Denitrification of Vehicle Exhaust over Cu-CHA Bazite Catalyst for a Monolith Reactor

Yanxia Li *, Yuwen Zhu, Ning Zhang and Zhongliang Liu

MOE Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Beijing Key Laboratory of Heat Transfer and Energy Conversion, College of Environmental and Energy Engineering, University of Technology, Ping Le Yuan 100, Beijing 100124, China; zhuyw@emails.bjut.edu.cn (Y.Z.); ZhangN@emails.bjut.edu.cn (N.Z.); liuzhl@bjut.edu.cn (Z.L.)

* Correspondence: liyanxia@bjut.edu.cn; Tel.: +86-13671359425

Abstract: A CFD model with chemical reaction kinetic and heat and mass transfer for a monolith reactor is established by COMSOL Multiphysics to investigate the influence of different operating conditions and water on denitrification efficiency for Cu-CHA. At the low temperature range, water has little effect on the denitrification efficiency over the Cu-CHA catalyst while NO conversion is increased by about 30% at the medium temperature. The concentration of \(O_2 \) (\(C_{O2} \)) has no significant effect on the performance of Cu-CHA catalyst. The best ratio of NO\(_2\) to NO\(_x\) in feed gases may be 1/2, which improves the denitrification efficiency and the yield of N\(_2\) but it produces relatively little N\(_2\)O. The optimal ammonia-nitrogen ratio is 1.1, where Cu-CHA catalyst has fairly great denitrification efficiency and low NH\(_3\) leakage. Increasing inlet flow velocity and cross area of channels have negative effect on NO conversion, while longer channels and thicker substrate have the opposite effect.

Keywords: denitrification; Cu-CHA; SCR; water resistant; numerical study

1. Introduction

Due to the high energy consumption, the environmental pollution caused by the use of non-renewable energy needs to be solved urgently. Diesel vehicle exhaust contains a large amount of nitrogen oxide, which poses threats to human health and the environment. As one of the most mature and widest used technology for denitrification, selective catalytic reduction with ammonia (NH\(_3\)-SCR) has been studied in various aspects. According to the different reaction rate, NH\(_3\)-SCR can be divided into three types: standard SCR (Equation (1)), fast SCR (Equation (2)) and NO\(_2\)-SCR (Equation (3)).

\[
\begin{align*}
4NH_3 + 4NO + O_2 & \rightarrow 4N_2 + 6H_2O \\
2NH_3 + NO + NO_2 & \rightarrow 2N_2 + 3H_2O \\
8NH_3 + 6NO_2 & \rightarrow 7N_2 + 12H_2O
\end{align*}
\]

(1) \hspace{1cm} (2) \hspace{1cm} (3)

The reason why the fast SCR has a faster reaction rate than the standard SCR is that the oxidation ability of NO\(_2\) is stronger than that of O\(_2\). However, the share of NO\(_2\) in diesel exhaust is about 5%, so NO\(_2\)-SCR becomes known as slow SCR. Therefore, the ratio of NO\(_3\) in the feed gases is very important. Also, some researches on the influence of NO\(_2\) on Cu-SSZ-13 [1], Cu-SSZ-39 [2], Cu-T3 [3] etc. indicate that NO\(_2\) can result in the promotion of NO\(_x\) conversion.

Many kinds of catalysts have been found to be used in NH\(_3\)-SCR because of the active sites on their surface that can adsorb NO\(_x\) in vehicle exhaust. As so far, catalysts applied to NH\(_3\)-SCR are generally used at medium and high temperature, and have poor water and sulfur resistance, such as commercial V\(_2\)O\(_5\)-TiO\(_2\). Hence, it is necessary...
to explore replaceable catalysts. Generally speaking, Cu-zeolite catalyst has better low-temperature performance and higher NH$_3$-storage capacity [4]. Although a large number of experimental studies aimed to Cu-zeolite catalysts, most of them focused on cations doping, selection of molecular sieve carriers or the comparison of topological structures [5–7]. As to the simulation researches, the kinetic models for NH$_3$-SCR over vanadium-based catalysts only involved standard SCR and ammonia oxidation [8,9]. To zeolite catalyst, however, most researches were concerned about powdered catalysts or reaction in single channel model [10–12], which is not in line with the actual situation. Only a few of researches investigated the NH$_3$-SCR in a monolithic reactor using Cu-zeolite as catalysts [13,14].

Among the zeolites, the chabazite (CHA) has a large surface area and high porosity as a result of microporous topological structure, which makes them one of the most popular NH$_3$-SCR candidates for the catalyst carrier. Thus, Cu-CHA catalysts are more attractive. Many experimental studies have proved that water has a positive influence on the denitrification efficiency of Cu-CHA [15–17] and drawn a common conclusion that Cu-CHA has an excellent hydrothermal stability. Contrary to other metals or their oxide catalysts, water can increase the NO conversion on Cu-CHA, which makes Cu-CHA a quite suitable catalyst for NH$_3$-SCR. However, few studies have been done on water effect, especially in simulation studies using a global kinetic mechanism. Fahami, et al. [18] explored the effects of gas hourly space velocity (GHSV), NO, O$_2$, NO$_2$ and H$_2$O concentration on NO conversion with a detailed kinetic mechanism for NO oxidation on Cu-CHA at low and medium temperature (150–350 $^\circ$C). In their studies, the experimental data and simulation results fit well and the parameters of the mathematical model in each chemical reaction step were illustrated. They also found that increasing GHSV and the concentration of H$_2$O and NO$_2$ could inhibit NO oxidation, while O$_2$ could promote it. Active sites may perform diversely at different reaction temperatures. Olsson, et al. [11] established a multi-sites kinetic model containing NH$_3$ storage, release and oxidation, standard SCR and N$_2$O formation in 100–600 $^\circ$C with 5% H$_2$O in feed gases, but fast SCR and NO$_2$ SCR were not included. The results showed that different NH$_3$ adsorption temperatures corresponded to different sites. They also suggested that standard SCR mainly took place on site 1 and NH$_3$ oxidation was major on site 2. Besides, Gao, et al. [19] built a comprehensive model with two adsorption sites and global kinetic reactions, which was a rare model including low temperature H$_2$O storage on site 2.

In summary, most of the research focused on catalysts themselves. However, the structural design of a NH$_3$-SCR monolith catalyst reactor is lack of the theoretical support. Thus, a global kinetic mechanism is used to simulate the chemical reactions of NO$_x$ over Cu-based monolith catalyst and study the influence of different operating conditions, such as inlet velocity of reactants, the length of channels etc., providing reference for engineering design and evaluating the performance of Cu-CHA monolith catalyst. When the reactant gases flow through the porous monolith catalyst, the selective catalytic reactions occur on the support surface accompanied by heat and mass transfer. Hence, a mathematical model for predicting heterogeneous reactions, flow, mass and heat transfer characteristics of NO$_x$/NH$_3$/H$_2$O/N$_2$ mixture flowing in a honeycomb cordierite ceramic monolith with Cu-CHA washcoating is established by commercial software COMSOL Multiphysics. And the chemical kinetic model includes ammonia oxidation, nitrogen oxidation, standard, fast and slow SCR reactions, NH$_4$NO$_3$ and N$_2$O formation and decomposition. Also the presence of H$_2$O in feed gases impacts on the denitrification efficiency of Cu-CHA is studied.

2. Results and Discussion

2.1. Effect of the Presence of H$_2$O in Reactant Mixture

Figures 1 and 2 compare the NO and NH$_3$ conversion between simulated and experimental values under various operating conditions. As can be seen from Figures 1 and 2, it reveals that water evidently improves the ability of Cu-CHA to convert NO at medium temperature, with an increase of 30.468% (experiment) and 27.947% (simulation). And
it increases NH$_3$ conversion by 10.341% (experiment) and 29.597% (simulation) at low temperature. Under both operating conditions, NO conversion climbs at low temperature, peaks to maximum at 250 °C, then decline at medium temperature. And Figure 2 shows rapidly rise of NH$_3$ conversion, followed by a muted growth after 250 °C, and then it reaches approximate 100% eventually. H$_2$O also decreases the temperature for Cu-CHA reaching maximum NH$_3$ conversion. The finding is different from the well-known result that H$_2$O would inhibit the NH$_3$-SCR reactions over other metals and their oxide catalysts, due to the active sites competition among H$_2$O and reactants (NH$_3$ and NO) or forming nitrate accumulating on the surface of the catalysts [20–22]. The special feature of Cu-CHA makes it a very suitable catalyst for NH$_3$-SCR, because H$_2$O is abundant in diesel vehicle exhaust and it is produced by NH$_3$-SCR reaction as well. Actually, this phenomenon is probably due to H$_2$O inhibits ammonia oxidation, which occurs at the temperature higher than 300 °C. And at low temperature, this effect may attribute to the enhancement of Cu reducibility and the increase of Bronsted acidity, resulting in more NH$_3$ to be absorbed [16]. The enhancement of NH$_3$ conversion means a reduction of the possibility of NH$_3$ leakage.

Figure 1. NO conversion comparison of experimental and simulated values in 150–375 °C [23].

Figure 2. NH$_3$ conversion comparison of experimental and simulated results in 150–375 °C [23].
2.2. Effects of Reactant Gas Composition

2.2.1. Effect of Concentration of O$_2$

Oxygen participates in most reactions in the global kinetic model of NH$_3$-SCR, for instance, NH$_3$ oxidation, NO oxidation, N$_2$O decomposition. And it plays an important role in determining the dominant reaction among standard SCR, fast SCR and NO$_2$-SCR. So, it is necessary to study the effect of CO$_2$ on denitrification efficiency. Figure 3 shows the simulated results of NO conversion with 0.1%, 2% and 6% O$_2$ in feed gas. From Figure 3, it can be seen that with the increase of CO$_2$, NO conversion has little improvement. The more O$_2$ could stimulate standard SCR (Equation (1)) and promote NO oxidizing to more NO$_2$, which is help to fast SCR (Equation (2)). However, because NO and NO$_2$ have higher oxidation ability than O$_2$ and the concentration of reactants is low in this model, the difference is not obvious.

![Figure 3](image_url)

Figure 3. Effect of CO$_2$ on NO conversion (Reaction temperature $T = 150–375$ °C, Concentration $C_{NH_3} = C_NO = 750$ ppm, without H$_2$O).

2.2.2. Effect of Concentration of NO$_2$

In fact, NO accounts for 90–95% of NO$_x$ in diesel exhaust due to a high burning temperature inside the internal combustion engine. NO would be partially converted into NO$_2$, the reaction equation is given by:

$$2NO + O_2 \leftrightarrow 2NO_2$$

(4)

This equilibrium is reversible, and Shin, et al. [24] believe that the reaction is thermodynamically controlled above 270 °C and kinetically controlled below 270 °C. The percentage of NO$_2$ in reactant gases plays an important role in reduction of NO$_x$. Defining x_0 as the ratio of NO$_2$ to NO$_x$, x_0 varies from 0 to 1. $x_0 = \frac{C_{NO_2}}{C_{NO_x}} = \frac{C_{NO_2}}{C_{NO} + C_{NO_2}}$. Here, C_i is the concentration of reactant i.

In this study, five operating conditions were selected to simulate outlet concentration of NO, N$_2$ and N$_2$O. As shown in Table 1, it includes inlet concentrations of components corresponding to different x_0. Figures 4 and 5 illustrate the outlet concentrations of NO and N$_2$, as a function of the reaction temperature and x_0 respectively.
Table 1. x_0 and the corresponding inlet concentrations of components used for simulation.

x_0	C_{NH_3} (ppm)	C_{NO} (ppm)	C_{NO_2} (ppm)	C_{O_2} (%)	C_{H_2O} (%)
0	750	750	0	6	5
0.25	750	562.5	187.5	6	5
0.5	750	375	375	6	5
0.75	750	187.5	562.5	6	5
1	750	0	750	6	5

As shown in Figure 4, the outlet C_{NO} reduces to a minimum at 250 °C and then gradually rises under each x_0. And at the same reaction temperature, with the increase of value of x_0, the outlet C_{NO} significantly decreases, indicating the presence of NO$_2$ in feed gas has a positive influence on NO conversion. When x_0 is larger than 0.5, the outlet C_{NO} is close to zero within the range of 200–300 °C, which means that the inlet NO has almost been converted to NO$_2$ or N$_2$. As can be seen from Figure 5, reaction temperature and the value of x_0 greatly influences the yield of N$_2$. The outlet C_{N_2} peaks to maximum at 250 °C when $x_0 \leq 0.25$ and at 300 °C when $x_0 \geq 0.25$, then it decline sharply. Furthermore, as the value of x_0 growing, the yield of N$_2$ increases and then decreases under the same temperature. Actually, different values of x_0 mean different C_{NO_2} in feed gases.
and can result in a different selective catalytic reaction. Generally speaking, $x_0 = 0$ to 0.5 is the transition period from standard SCR to fast SCR and $x_0 = 0.5$ to 0.75 is fast SCR to NO$_2$-SCR. The result demonstrates that standard SCR prevails most at 250 °C while fast SCR at 300 °C. Due to the oxidation ability of NO$_2$ being better than that of O$_2$, NO$_2$ reacts more easily with NH$_3$ than O$_2$ at low temperature. Therefore, larger C_{NO_2} can contribute to a higher NO conversion by fast SCR. But, overmuch x_0 make NO$_2$-SCR gradually prevail which need more NH$_3$ to react, and it slows down the fast SCR reaction, resulting in a decrease in yield of N$_2$.

Although increasing the value of x_0 can improve NH$_3$-SCR, the C_{N_2O} in outlet mixture might increase if NO$_2$-SCR dominants. N$_2$O is formed from ammonium nitrate by thermal decomposition through NO$_2$-SCR at low temperature:

$$\text{NH}_3 + 2\text{NO}_2 \leftrightarrow \text{NH}_4\text{NO}_3 + \text{N}_2 + \text{H}_2\text{O} \quad (5)$$

$$\text{NH}_4\text{NO}_3 \rightarrow \text{N}_2\text{O} + 2\text{H}_2\text{O} \quad (6)$$

These two chemical reactions have negative impacts on NO$_x$ conversion. On the one hand, the nitrification may cover active sites and cause the devaluation of catalyst activity. On the other hand, N$_2$O is one of greenhouse gases and its GWP (global warming potential) is about 298 times than that of CO$_2$. Figure 6 shows the outlet C_{N_2O} as a function of the reaction temperature and the value of x_0.

![Figure 6. Outlet C_{N_2O} as different x_0 values and reaction temperatures.](image)

As shown in Figure 6, the rise of x_0 causes an overall increase of outlet C_{N_2O}, especially in 150–300 °C. It also shows that the outlet C_{N_2O} firstly increases and then decreases with the growth of reaction temperature when $x_0 > 0.5$, however, the concentration slowly falls when $x_0 \leq 0.5$. It indicates that N$_2$O production being from the decomposition of ammonium nitrate happens at low temperature for Cu-CHA when NO$_2$ is more, and higher temperature inhibits it.

Based on Figures 4–6, it comes to the conclusion that the balanced point is $x_0 = 0.5$. Under this operating condition, Cu-CHA catalyst has a high yield of N$_2$ and quite low outlet concentrations of NO and N$_2$O, giving a large NO conversion and better performance.

2.2.3. Effect of Ammonia to NO$_x$ Ratio (ANR)

ANR is regarded as the ratio of NH$_3$ to NO$_x$ and can be defined as the following formula: $\text{ANR} = \frac{C_{\text{NH}_3}}{C_{\text{NO}_x}}$. According to Equations (1)–(3), standard SCR and fast SCR prevail as ANR = 1. When ANR > 1.0, NH$_3$ is overmuch and NO$_2$-SCR prevails, resulting in weak catalytic ability. However, to ensure high denitrification efficiencies, excessive
NH$_3$ is supplied to SCR equipment to prohibit NH$_3$ oxidation and inadequate reaction, etc., which has a risk of NH$_3$ leakage and environment pollution. Thus, four operating conditions are designed to investigate the best ANR value. Table 2 lists four ANR values and corresponding inlet concentrations of mixture gases used for simulation. And Figures 7 and 8 show the outlet concentrations of NO and NH$_3$ with different values of ANR and reaction temperatures.

Table 2. ANR and the corresponding inlet concentrations of NH$_3$, NO, O$_2$ and H$_2$O.

ANR	C_{NH_3} (ppm)	C_{NO} (ppm)	C_{O_2} (%)	$C_{\text{H}_2\text{O}}$ (%)
0.8	750	937.5	6	5
1	750	750	6	5
1.2	750	625	6	5
1.5	750	500	6	5

Figure 7. Outlet C_{NO} with different values of ANR and reaction temperatures.

Figure 8. Outlet C_{NH_3} with different values of ANR and reaction temperatures.

It can be seen from Figure 7 that the outlet C_{NO} all declines with the increase of ANR and it falls more obviously at the low and high temperature range, which indicates that the performance of Cu-CHA catalyst is improved with the increasing value of ANR. But the
decreasing trend of C_{NO} with ANR rising becomes flat, demonstrating that the influence of NH_3 increase is gradually limited. Especially when ANR ≥ 1.1, the decreasing rate is not greater than 20%, and the temperature influence it more rather than ANR. In addition, at 250 $^\circ$C and 300 $^\circ$C, outlet C_{NO} is lowest regardless of ANR value, owing to that reaction temperature is the other major factor to performance of Cu-CHA.

Subsequently, the relationship between ANR and outlet C_{NH_3} at different reaction temperatures is displayed in Figure 8. The change trend of the C_{NH_3} at 150 $^\circ$C and 200 $^\circ$C are different from that at the other temperature, which is higher than that at 250–375 $^\circ$C when ANR ≤ 1.0. This is due to that oxidation of NH_3 and standard SCR mainly occurred at the medium to high temperature range. Besides, the C_{NH_3} is near zero between ANR is 0.8–1.0 when $T > 250$ $^\circ$C and it follows by sharply rise as ANR increasing. Therefore, supplying overmuch NH_3 would lead to leakage and is uneconomical.

Combining Figure 7 with Figure 8, it can be concluded that ANR approximately close to 1 is appropriate for Cu-CHA catalyst in NH$_3$-SCR. But, considering uncertainties of running status of vehicles, ANR = 1.1 would be more optimal. Under this operating condition, Cu-CHA performs relative lower outlet concentrations of NO and NH_3, showing higher NO conversion rate and less NH_3 leakage or waste.

2.3. Effect of Inlet Velocity

Currently, the common exhaust after-treatment equipment includes DOC (Diesel Oxidation Catalyst), DPF (Diesel Particulate Filter) and SCR. The monolith catalytic reactor used for NH$_3$-SCR is usually installed downstream of the exhaust treatment system. Thus, the speed of mixture entering into NH$_3$-SCR system has been much retarded. In this study, Reynolds number of mainstream flowing in the channels is 34.8, which can be treated as laminar flow. The change of NO conversion with various inlet flow velocity is shown in Figure 9.

![Figure 9](image)

Figure 9. Effect of inlet flow velocity on NO conversion (Reaction temperature $T = 150$ $^\circ$C, Concentration $C_{NH_3} = C_{NO} = 750$ ppm, $CO_2 = 6\%$, without H$_2$O).

Five inlet flow velocities were studied in this study, from 0.1 m/s to 0.9 m/s, gradually increasing by 0.2 m/s. As the inlet velocity increasing, NO conversion decreases significantly from 44.717% to 19.255% from 0.1 m/s to 0.3 m/s, with a reduction of 56.94%. Subsequently, the trend become flatter after 0.3 m/s, indicating that the effect of inlet velocity on the denitrification of Cu-CHA gradually decrease. Due to the length of model is only 20 mm, the negative influence of increasing velocity on NO conversion is limited. Obviously, when other conditions remain unchanged, it can be considered that the contact time between the reactant gases and the catalyst is relatively short as velocity rising, resulting in insufficient reaction and deterioration of denitrification.
2.4. Effects of Structural Parameters

2.4.1. Length of Channels

The internal space of diesel vehicles limits the size of after-treatment equipment and leads to a restriction on the channel length of the monolith catalytic reactor, which will effect on NO conversion, as shown in Figure 10. This section aims to investigate the influence of the length of channels on NO conversion with control variates method.

![Figure 10](image_url)

Figure 10. Influence of reactor length on NO conversion (Reaction temperature $T = 150$ °C, Concentration $C_{\text{NH}_3} = C_{\text{NO}} = 750$ ppm, $C_{\text{O}_2} = 6\%$, without H_2O).

It can be clearly seen from the Figure 10 that NO conversion rises linearly with the increase of the length. When the length is increased by 20 mm, the denitrification efficiency is enhanced by about 10%. The longer channels provide more contact areas to reactant gases and the catalytic substrate. So, it could be predicted that NO conversion could reach a quite high value following this trend, probably 100%. However, it is unrealistic because the space of diesel vehicle and cost of reactor limit it. Hence, it needs more consideration in the practical application.

2.4.2. Cross Area of Channels

Besides, the cross areas of channels also affects NO conversion. Assuming other operating conditions remain constant, Figure 11 described the relationship between NO conversion and the cross area of channels.

In this part, only the side length of square channels varies, from 0.5 mm, 1 mm, 2 mm to 4 mm. And corresponding cross areas of square channels ‘A’ are 0.25 mm2, 1 mm2, 4 mm2 and 16 mm2 respectively. According to that, the area-volume ratios of single channel are 8, 4, 2 and 1. As shown in Figure 11, from 0.25 mm2 to 1 mm2, NO conversion decreases by 51.849%. After that, the reduction of the denitrification efficiency trends to be flat with the increase of cross area of channels, which means that the influence of cross areas is weaken. From the result described above, larger cross area (amount to smaller surface area) leads to smaller area-volume ratio at the same inlet velocity. The small contact area for reactant and catalyst surface results to the decline of NO conversion. Besides, by $Q_m = Av$ (here Q_m is inlet mass flow rate), the larger A is equal to the higher Q_m. WHSV (weight hourly space velocity) is a ration to measure the reactant mass that can be treated by unit mass of catalyst in unit time, which is defined as: WHSV = inlet mass of exhaust gases/mass of Cu-CHA catalyst. Higher Q_m leads to larger WHSV, which also shrinks the reaction time and reduces denitrification efficiency.
2.4.3. Wall Thickness of Channels

In general, the monolithic catalysts are prepared by loading the active components on the walls of substrate. The reactants diffuse to surface of Cu-CHA catalyst and a part of them are adsorbed on the active sites. Figure 12 shows the influence of wall thickness of channels on NO conversion with control variates method.

In this section, the wall thickness of channels ‘a’ is set as 50 µm, 100 µm, 150 µm and 200 µm. As can be seen from the Figure 12, it has the maximum average growth rate of NO conversion from 50 to 100 µm. And then, the increasing trend slows down, especially when a varies from 150 to 200 µm, indicating that the influence of wall thickness is limited. On the one hand, from three-dimensional model in Figure 13, the thicker the substrate, the less number of channels and the more mass of Cu-CHA catalyst in per unit area (as setting the total mass of Cu-CHA is constant). On the other hand, due to fixed \(v \) and \(A \), \(Q_m \) of mixture gases is also maintained. So, based on the above two points, the thicker wall leads to more contact between reactants and Cu-CHA catalyst but lower WHSV. In other words, lower WHSV signifies longer residence time of mixture gases which results in more complete
NH₃-SCR reaction and higher NO conversion. However, the effect of WHSV is finite when a varies from 150 to 200 µm, which may because the total mass of Cu-CHA catalyst is fixed.

Figure 13. Cu-CHA monolithic catalytic reactor.

3. Simulation Methods

The geometric model of honeycomb monolith is established, as shown in Figure 13. In order to reduce running memory and save simulation time, only 1/8 of the reactor is used as the computational domain. And structural physical parameters of Cu-CHA honeycomb cordierite ceramic monolith catalyst is displayed in Table 3. The substrate is a porous media with the porosity of 0.4. The powder Cu-CHA catalyst is washcoated on the walls of small channels.

Table 3. Structural physical parameters of Cu-CHA honeycomb cordierite ceramic catalyst.

Parameter	Value/Unit
Cross sectional area of channel	1 mm²
Wall thickness of substrate	150 µm
Length	20 mm
Radius	20 mm
Volume	6.28 cm³
Porosity	0.4
Washcoat weight	1.08 g
Cu content (related to washcoat)	3.9%

A three-dimension model was used to study the performance of Cu-CHA catalysts in NH₃-SCR. The model involved fluid flow in honeycomb pores, diffusion of gases, chemical reaction and heat transfer. In general, the standard SCR reaction occurring above 200 °C conforms to Eley-Rideal mechanism. Thus, Eley-Rideal mechanism model is utilized to simulate the SCR reactions of NO over Cu-CHA. Some assumptions are made in order to simplify the calculation and model.

- The inlet velocity and concentration of mixture, as well as inlet temperature, etc. uniformly distribute;
- The reactions in each channel of the Cu-CHA monolithic catalytic reactor are exactly the same;
- The mass transfer conforms to Fick’s law.
Catalysts 2021, 11, 930

The feed gases flowing in every small channel of the monolith catalyst can be divided into two parts, mainstream flow in central areas and seepage in porous areas near wall. The Naiver-Stokes (N-S) equation is used to describe the mainstream flow and the Brinkman equation is used in porous areas in the meantime:

\[\rho(u \cdot \nabla)u = \nabla \cdot (-pI + \mu(\nabla u + (\nabla u)^T)) \]

\[\frac{1}{\varepsilon_p} \rho(u \cdot \nabla)u = \nabla \cdot (-pI + \mu(\nabla u + (\nabla u)^T)) - \frac{2}{3} \mu \varepsilon_p (\nabla \cdot u) I - \mu \kappa^{-1} u \]

Here, \(\rho \) is fluid density, kg/m\(^3\), \(u \) is velocity of fluid, m/s, \(p \) is pressure, Pa, \(\mu \) is dynamic viscosity, N\cdots/m\(^2\), \(\varepsilon_p \) is porosity of porous area near wall, \(I \) is unit tensor and \(\kappa \) is permeability.

Then, mass transfer equation is written as:

\[\nabla \cdot (-D_{Fj} \nabla C_i) + u \cdot \nabla C_i = R_i \]

\[D_{Fj} = f(\Omega_D, \sigma, \epsilon/k_p) \]

\[\Omega_D = f(\mu_D, \sigma, k_p, T) \]

In the equation above, \(D_{Fj} \) is the diffusion coefficient of the reaction gases, m\(^2\)/s, \(C_i \) is the concentration of reactant \(i \), mol/m\(^3\). \(R_i \) is the rate of chemical reaction. \(D_{Fj} \) is a value related to the collision integral \(\Omega_D \). the characteristic length of the potential \(\sigma \) (m), the minimum potential energy \(\epsilon/k_p \) (K) and dipole moment \(\mu_D \) (D). These parameters can be got directly in the CHEMKIN.

Heat transfer, chemical reactions and thermal boundary conditions can change the internal temperature of the catalyst. So, the energy equation is given by:

\[\rho c_{p,L} u \cdot \nabla T = \nabla \cdot (k \nabla T) + Q \]

In this equation, \(c_{p,L} \) is heat capacity of gases, J/(kg\cdotK), \(k \) is thermal conductivity, W/(m\cdotK), \(Q \) is heat source, W/m\(^3\).

Some boundary conditions are set as follow. The temperature for inlet feed mixture is in the range of 150–375 ºC and ambient temperature is 50 ºC. The mixture gases get into the reactor at a flow rate of 3000 mL/min with \(C_{NH_3} = C_{NO} = 750 \) ppm, \(C_{O_2} = 6\% \), \(C_{H_2O} = 5\% \) and \(C_{NO_2} = C_{N_2} = 0 \) ppm. The outlet pressure is 1 atm. Also, convective heat transfer around the side and the outlet walls in the model are considered and the convective heat transfer coefficients \(h \) are 25 W/(m\(^2\)K) and 10 W/(m\(^2\)K) respectively.

It is well known that water can affect the catalytic efficiency of catalysts. As mentioned above, some experimental researches have proved that H\(_2\)O has an advantage in NO conversion of NH\(_3\)-SCR on Cu-CHA catalyst. In order to investigate the influence of H\(_2\)O on the NO conversion, two kinds of global kinetic models are built. The model without H\(_2\)O in feed gases comes from De-La-Torre, et al. [25], and the model with H\(_2\)O originates from Metkar, et al. [26]. Both models use one single site and apply Arrhenius to define the rate equations. Tables 4 and 5 show the reactions with related parameters of two models respectively.

Here, in Tables 4 and 5, \(A_{iff} \) is the forward pre-exponential factor and \(A_{ibb} \) is the backward pre-exponential factor, \(E_{if} \) is the forward activation energy and \(E_{ib} \) is the backward activation energy. In Table 4, \(A_{2b} = A_{2f}/(8.61 \times 10^{-4} \text{ m}^{1.5} \text{ mol}^{-0.5}) \), \(E_{2b} = 57.28 \text{ kJ/mol} \). \(C_i \) means the concentration of reactant \(i \). Besides, \(K_{NH_3} \) is equilibrium constant of NH\(_3\) adsorption and desorption while \(\theta_{NH_3} \) is the adsorption rate of NH\(_3\). In Table 5, \(K^* \) is the suppressing co-efficiency of NH\(_3\) adsorption, which is equal to zero in Cu-CHA catalyst.
Table 4. Kinetic model without H₂O in feed gases [25].

Reactions	Rate Equations	\(A_{if} \)	\(E_{if} \)
4NH₃ + 3O₂ → 2N₂ + 6H₂O	\(R_1 = A_1f(e^{(-E_{if}/(RT))}C_{NH₃}C_{O₂}/(1 + C_{NH₃}K_{NH₃})) \)	1.59 × 10¹² m⁶/(g·h·mol)	108.11 kJ/mol
2NO + O₂ ↔ 2NO₂	\(R_2 = A_2f(e^{(-E_{if}/(RT))}C_{NO}C_{O}/(1 + C_{NO}K_{NO})) \)	6.81 × 10⁵ mol/(m³·s)	12.39 kJ/mol
4NH₃ + 4NO + O₂ → 4N₂ + 6H₂O	\(R_3 = A_3f(e^{(-E_{if}/(RT))}C_{NH₃}C_{NO}C_{O}/(1 + C_{NH₃}K_{NH₃})) \)	1.09 × 10¹² m⁸/(g·h·mol²)	91.45 kJ/mol
6NO + 6NH₃ → 7N₂ + 12H₂O	\(R_4 = A_4f(e^{(-E_{if}/(RT))}C_{NO}C_{NH₃}C_{O}/(1 + C_{NO}K_{NO})) \)	9.40 × 10⁹ m⁹/(g·h·mol³)	41.98 kJ/mol
6NH₃ + 8NO₂ → 7N₂O + 9H₂O	\(R_5 = A_5f(e^{(-E_{if}/(RT))}C_{NH₃}C_{NO}C_{O}/(1 + C_{NH₃}K_{NH₃})) \)	3.07 × 10¹² m⁶/(g·h·mol)	118.10 kJ/mol
2NH₃ + NO + NO₂ → 2N₂ + 3H₂O	\(R_6 = A_6f(e^{(-E_{if}/(RT))}C_{NH₃}C_{NO}C_{O}/(1 + C_{NH₃}K_{NH₃})) \)	4.48 × 10¹⁰ m⁶/(g·h·mol)	152.34 kJ/mol
2N₂O → 2N₂ + O₂	\(R_7 = A_7f(e^{(-E_{if}/(RT))}C_{NO}C_{O}/(1 + C_{NO}K_{NO})) \)	2.45 × 10²⁸ m⁶/(g·h·mol)	257.92 kJ/mol

Table 5. Kinetic model with H₂O in feed gases [26].

Reactions	Rate Equations	\(A_{if} \)	\(E_{if} \)
4NH₃ + 3O₂ → 2N₂ + 6H₂O	\(R_1 = A_1f(e^{(-E_{if}/(RT))}C_{O₂}/(1 + C_{O₂}K_{O₂})) \)	5.56 × 10¹⁶ mol/(m³·s)	178.8 kJ/mol
2NO + O₂ ↔ 2NO₂	\(R_2 = A_2f(e^{(-E_{if}/(RT))}C_{NO}C_{O}/(1 + C_{NO}K_{NO})) \)	5.10 × 10²⁷ mol/(m³·s)	56.0 kJ/mol
4NH₃ + 4NO + O₂ → 4N₂ + 6H₂O	\(R_3 = A_3f(e^{(-E_{if}/(RT))}C_{NO}C_{O}/(1 + C_{NO}K_{NO})) \)	7.08 × 10¹³ mol/(m³·s)	89.1 kJ/mol
2NH₃ + NO + NO₂ → 2N₂ + 3H₂O	\(R_4 = A_4f(e^{(-E_{if}/(RT))}C_{NO}C_{O}/(1 + C_{NO}K_{NO})) \)	1.00 × 10¹⁸ mol/(m³·s)	77.1 kJ/mol
8NH₃ + 6NO₂ → 7N₂ + 12H₂O	\(R_5 = A_5f(e^{(-E_{if}/(RT))}C_{NO}C_{O}/(1 + C_{NO}K_{NO})) \)	1.96 × 10¹⁷ mol/(m³·s)	136.3 kJ/mol
2NH₃ + 2NO₂ → N₂ + NH₄NO₃ + H₂O	\(R_6 = A_6f(e^{(-E_{if}/(RT))}C_{NO}C_{O}/(1 + C_{NO}K_{NO})) \)	2.28 × 10⁸ mol/(m³·s)	43.0 kJ/mol
NH₄NO₃ → N₂O + 2H₂O	\(R_7 = A_7f(e^{(-E_{if}/(RT))}C_{NO}C_{O}/(1 + C_{NO}K_{NO})) \)	1.25 × 10⁴ mol/(m³·s)	41.5 kJ/mol
4. Grid Independence and Validation Test of Method

4.1. Grid Independence Verification

Generally speaking, the denser the mesh is, the smaller the error generated in the calculation. However, the mesh cannot be infinitely refined due to the finite computational ability. To ensure the accuracy of the calculation results, it is necessary to find a suitable grid, which can reduce the calculation error and speed up the calculation. In our study, several different grids with number of 5346, 11,040, 22,260, 24,225, 29,070, 32,300, 44,980 are used to verify the independence of grid density, with the inlet temperature $T = 150^\circ$C and being without H$_2$O in feed gases. Table 6 shows the results of grid independence test, which presents the variation of C_{NO} and C_{NH_3} at outlet and NO conversion, respectively.

Table 6. The variation results of calculation with grid number.

Grid Number	Outlet C_{NO}	Relative Variation	NO Conversion	Relative Variation	Outlet C_{NH_3}	Relative Variation
5346	5.860×10^{-4}	/	0.21867	/	6.958×10^{-4}	/
11,040	6.151×10^{-4}	4.7340%	0.17984	17.7561%	7.053×10^{-4}	1.3413%
22,260	6.217×10^{-4}	1.0600%	0.17105	4.8858%	7.074×10^{-4}	0.3025%
29,070	6.291×10^{-4}	0.0318%	0.16119	0.1654%	7.099×10^{-4}	0.0099%
32,300	6.290×10^{-4}	0.0127%	0.16129	0.0661%	7.099×10^{-4}	0.0028%
44,980	6.289×10^{-4}	0.0014%	0.16141	0.0743%	7.098×10^{-4}	0.0183%

It can be seen from the Table 6, with the increase of grid number, the relative variations of C_{NO}, C_{NH_3} and NO conversion become smaller. Actually, if comparing the variation between the Grid 5 (32,300) and 6 (44,980), it can be found that although the number of grid is increased by nearly 40%, the relative variations of outlet C_{NO}, C_{NH_3} and NO conversion is small, being 0.001%, 0.018% and 0.074% respectively. Therefore, Grid 5 (32,300) is used in this investigation to ensure balances between the accuracy and the grid density.

4.2. Validation against Experimental Results

In order to demonstrate the accuracy of the present developed model, two sets of experimental data are selected as the verification benchmarks. These experimental data are acquired from De-La-Torre’s work [23], because the boundary conditions, the structure and physicochemical properties of catalyst they used for SCR and other operating conditions are the most similar to ours. More details of the reactor’s dimension and operating condition refer to the reference [23].

Tables 7 and 8 list relative errors of NO and NH$_3$ conversion between experimental and simulated results under different operating conditions to show the validation of the numerical model.

Table 7. The results with relative errors of NO conversion between experiment and simulation under two operating conditions.

Temperature ($^\circ$C)	NO Conversion (Without H$_2$O)	NO Conversion (With 5% H$_2$O)				
	Experiment	Simulation	Relative Error	Experiment	Simulation	Relative Error
150	15.000%	16.092%	7.280%	16.500%	18.055%	9.424%
200	66.200%	72.744%	9.885%	66.700%	72.813%	9.165%
250	98.000%	99.057%	1.079%	99.300%	98.580%	0.725%
300	90.100%	84.164%	6.588%	91.700%	95.101%	3.709%
350	45.060%	50.912%	12.897%	68.920%	77.745%	12.805%
375	21.200%	26.717%	26.024%	38.000%	54.664%	30.484%
average	/	10.641%	/	/	11.052%	/
Table 8. The results with relative errors of NH$_3$ conversion between experiment and simulation under two operating conditions.

Temperature (°C)	Without H$_2$O	With 5% H$_2$O	Relative Error			
	Experiment	Simulation	Relative Error	Experiment	Simulation	Relative Error
150	13.200%	15.336%	16.182%	16.830%	17.852%	6.072%
200	44.340%	42.516%	4.114%	55.460%	72.113%	30.027%
250	78.030%	74.300%	4.780%	80.820%	98.289%	21.615%
300	98.210%	96.317%	1.928%	98.600%	100.000%	1.420%
350	100.000%	99.999%	0.001%	100.000%	100.000%	0.000%
375	100.000%	100.000%	0.000%	100.000%	100.000%	0.000%
average	/	4.501%	/	9.856%		

From these tables, it is apparent that a very good agreement has been obtained, the average errors of NO conversion are only 10.641% (without H$_2$O) and 11.052% (with H$_2$O) between the experimental data and simulated outcomes. Simultaneously, the average errors of NH$_3$ conversion are 4.501% (without H$_2$O) and 9.856% (with H$_2$O) respectively. The average errors with 5% H$_2$O are a little higher than that without H$_2$O. The maximum deviations is 30.484% (at $T = 375$ °C with 5% H$_2$O, in NO conversion), while the minimum is close to 0% (at $T = 350$ °C and 375 °C for with and without H$_2$O, in NH$_3$ conversion). The results obtained, thus far, have clearly indicated that the catalytic reactor model presented in this study predicts well the catalyst’s global performance, and it can readily be employed for further simulation studies.

5. Conclusions
A three dimensionally numerical model including global kinetic chemical reactions, fluid dynamics, heat and mass transfer was built for a Cu-CHA catalyst reactor by COMSOL Multiphysics with 32,300 grid numbers. And several structural and operating conditions of NH$_3$-SCR system were researched respectively to investigate the influence on the performance of Cu-CHA catalyst.

The presence of H$_2$O in feed gases can increase the denitrification efficiency of Cu-CHA catalyst at medium temperature range (250–375 °C) and improves the NH$_3$ conversion especially at low temperature range (150–250 °C). It inhibits NH$_3$ oxidation, increases Cu reducibility and Bronsted acidity, causing higher NO conversion for Cu-CHA than that without water.

The CO$_2$ has almost no influence on catalytic performance of Cu-CHA catalyst, possibly because the existence of NO and NO$_2$ in reactant have higher oxidation ability than O$_2$ and concentration of reactants is low. By ascending the ratio of NO$_2$ to NO$_x$, the outlet C$_{NO}$ declines, C$_{N2}$ firstly increases and then decreases and C$_{N2O}$ continues to rise. The balanced point is $x_0 = 0.5$, where fast SCR prevails and Cu-CHA catalyst performs high NO conversion and yield of N$_2$O, extremely low output of N$_2$O as well. With the ratio of NH$_3$ to NO$_x$ (ANR) increase, outlet C$_{NO}$ gradually declines while C$_{NH3}$ rapidly grows when ANR > 1. The appropriate value of ANR is approximately 1.1, where Cu-CHA catalyst has great denitrification efficiency and low NH$_3$ escape.

Increasing inlet flow velocity leads to worse denitrification performance of Cu-CHA catalyst, which may be due to insufficient react time between feed gases and catalyst. As the length of channels increases by 20 mm, the denitrification efficiency is enhanced by about 10% evenly, owing to providing more contact areas. In addition, the change of cross area of channels and wall thickness have great influence on NO conversion by affecting WHSV in reaction system. Bigger cross area causes larger WHSV, resulting in lower NO abatement efficiency. In contrast, thicker wall of channels brings lower WHSV, leading to longer residence time of exhaust gases and higher NO conversion of the reactor. However, the effect of WHSV is finite which may because the total mass of Cu-CHA catalyst is fixed.
Author Contributions: Validation, writing—review & editing, Y.L.; Conceptualization, methodology, software, formal analysis, investigation, resources, data curation, visualization, writing—original draft, Y.Z. and N.Z.; Project administration, funding acquisition Y.L. and Z.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Beijing Natural Science Foundation (3192008) and the National Key R&D Program of China (No. 2017YFB0504000).

Data Availability Statement: The data presented in Table 4 are available in http://dx.doi.org/10.1016/j.cattod.2017.04.011 (accessed on 26 June 2021). The data presented in Table 5 are available in http://dx.doi.org/10.1016/j.jces.2012.09.008 (accessed on 26 June 2021). The data presented in Figure 1 (experiment) and Figure 2 (experiment) are available in http://dx.doi.org/10.1016/j.apcatb.2016.01.020 (accessed on 26 June 2021).

Acknowledgments: We acknowledge editors and reviewers’ generous help and guidance.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shan, Y.; Shi, X.; He, G.; Liu, K.; Yan, Z.; Yu, Y.; He, H. Effects of NO₂ Addition on the NH₃-SCR over Small-Pore Cu–SSZ-13 Zeolites with Varying Cu Loadings. J. Phys. Chem. C 2018, 122, 25948–25953. [CrossRef]
2. Zhu, N.; Shan, Y.; Shan, W.; Sun, Y.; Liu, K.; Zhang, Y.; He, H. Distinct NO₂ Effects on Cu-SSZ-13 and Cu-SSZ-39 in the Selective Catalytic Reduction of NOₓ with NH₃. Environ. Sci. Technol. 2020, 54, 15499–15506. [CrossRef]
3. Sierralta, A.; Añez, R.; Brussin, M.-R. Theoretical Study of the Interaction of NO₂ Molecule with a Metal–Zeolite Model (Metal = Cu, Ag, Au). J. Phys. Chem. A 2002, 106, 6851–6856. [CrossRef]
4. Kamasamudram, K.; Currier, N.W.; Chen, X.; Yezerets, A. Overview of the practically important behaviors of zeolite-based urea-SCR catalysts, using compact experimental protocol. Catal. Today 2015, 151, 212–222. [CrossRef]
5. Deng, D.; Deng, S.; He, D.; Wang, Z.; Chen, Z.; Ji, Y.; Yan, G.; Hou, G.; Liu, L.; He, H. A comparative study of the hydrothermal aging effect on cerium and lanthanum doped Cu/SSZ-13 catalysts for NH₃-SCR. J. Rare Earths 2020, 39, 969–978. [CrossRef]
6. Zhang, J.; Shan, Y.; Zhang, L.; Du, J.; He, H.; Han, S.; Lei, C.; Wang, S.; Fan, W.; Feng, Z.; et al. Importance of controllable Al sites in CHA framework by crystallization pathways for NH₃-SCR reaction. Appl. Catal. B Environ. 2020, 277, 119193. [CrossRef]
7. Leistner, K.; Mihai, O.; Wijayanti, K.; Kumar, A.; Kamasamudram, K.; Currier, N.W.; Yezerets, A.; Olsson, L. Comparison of Cu/BEA, Cu/SSZ-13 and Cu/SAPO-34 for ammonia-SCR reactions. Catal. Today 2015, 258, 49–55. [CrossRef]
8. Nova, I.; Tronconi, E. Kinetic study of the NO/NO₂-NH₃ SCR reactions over a V₂O₅-WO₃/TiO₂ commercial catalyst for the after treatment of Diesel engines exhausts. IFAC Proc. Vol. 2009, 42, 183–190. [CrossRef]
9. Usberti, N.; Jablonska, M.; Blasi, M.D.; Forzatti, P.; Lietti, L.; Beretta, A. Design of a “high-efficiency” NH₃-SCR reactor for stationary applications. A kinetic study of NH₃ oxidation and NH₃-SCR over V-based catalysts. Appl. Catal. B Environ. 2015, 179, 185–195. [CrossRef]
10. Gao, F.; Wang, Y.; Kollár, M.; Washston, N.M.; Szanyi, J.; Peden, C.H.F. A comparative kinetics study between Cu/SSZ-13 and Fe/SSZ-13 SCR catalysts. Catal. Today 2015, 258, 347–358. [CrossRef]
11. Olsson, L.; Wijayanti, K.; Leistner, K.; Kumar, A.; Joshi, S.Y.; Kamasamudram, K.; Currier, N.W.; Yezerets, A. A multi-site kinetic model for NH₃-SCR over Cu/SSZ-13. Appl. Catal. B Environ. 2015, 174–175, 212–224. [CrossRef]
12. Usberti, N.; Gramigni, F.; Nasello, N.D.; Iacobone, U.; Selleri, T.; Hu, W.; Liu, S.; Gao, X.; Nova, I.; Tronconi, E. An experimental and modelling study of the reactivity of adsorbed NH₃ in the low temperature NH₃-SCR reduction half-cycle over a Cu-CHA catalyst. Appl. Catal. B Environ. 2020, 279, 119397. [CrossRef]
13. Eijima, W.; Shibata, G.; Shabayama, N.; Kobashi, Y.; Ogawa, H.; Shimizu, K.-I. Kinetic modeling of steady-state NH₃-SCR over a monolithic Cu-CHA catalyst. Catal. Today 2020, 352, 237–242. [CrossRef]
14. Joshi, S.Y.; Kumar, A.; Luo, J.; Kamasamudram, K.; Currier, N.W.; Yezerets, A. Combined experimental and kinetic modeling study of the bi-modal NO conversion profile on commercial Cu-SAPO-34 catalyst under standard SCR conditions. Appl. Catal. B Environ. 2015, 165, 27–35. [CrossRef]
15. Wang, D.; Jangjou, Y.; Liu, Y.; Sharma, M.K.; Luo, J.; Li, J.; Kamasamudram, K.; Epling, W.S. A comparison of hydrothermal aging effects on NH₃-SCR of NOx over Cu-SSZ-13 and Cu-SAPO-34 catalysts. Appl. Catal. B Environ. 2015, 165, 438–445. [CrossRef]
16. Yu, T.; Wang, J.; Shen, M.; Wang, J.; Li, W. The influence of CO₂ and H₂O on selective catalytic reduction of NO by NH₃ over Cu/SAPO-34 catalyst. Chem. Eng. J. 2015, 264, 845–855. [CrossRef]
17. Wang, L.; Gaudet, J.R.; Li, W.; Weng, D. Migration of Cu species in Cu/SAPO-34 during hydrothermal aging. J. Catal. 2013, 306, 68–77. [CrossRef]
18. Fahami, A.R.; Nova, I.; Tronconi, E. A kinetic modeling study of NO oxidation over a commercial Cu-CHA SCR catalyst for diesel exhaust aftertreatment. Catal. Today 2017, 297, 10–16. [CrossRef]
19. Gao, Z.; Pihl, J.; LaClair, T.; Fricke, B. Global kinetic modeling of NH₃-SCR with two sites of NH₃ storage on Cu-SSZ-13. Chem. Eng. J. 2021, 406, 127120. [CrossRef]
20. Guo, K.; Ji, J.; Osuga, R.; Zhu, Y.; Sun, J.; Tang, C.; Kondo, J.N.; Dong, L. Construction of Fe$_2$O$_3$ loaded and mesopore confined thin-layer titania catalyst for efficient NH$_3$-SCR of NO$_x$ with enhanced H$_2$O/SO$_2$ tolerance. *Appl. Catal. B Environ.* **2021**, *287*, 119982. [CrossRef]

21. Lei, Z.; Han, B.; Yang, K.; Chen, B. Influence of H$_2$O on the low-temperature NH$_3$-SCR of NO over V$_2$O$_5$/AC catalyst: An experimental and modeling study. *Chem. Eng. J.* **2013**, *215–216*, 651–657. [CrossRef]

22. Zhang, N.; He, H.; Wang, D.; Li, Y. Challenges and opportunities for manganese oxides in low-temperature selective catalytic reduction of NO$_x$ with NH$_3$: H$_2$O resistance ability. *J. Solid State Chem.* **2020**, *289*, 121464. [CrossRef]

23. De-La-Torre, U.; Pereda-Ayo, B.; Moliner, M.; González-Velasco, J.R.; Corma, A. Cu-zeolite catalysts for NOx removal by selective catalytic reduction with NH$_3$ and coupled to NO storage/reduction monolith in diesel engine exhaust aftertreatment systems. *Appl. Catal. B Environ.* **2016**, *187*, 419–427. [CrossRef]

24. Shin, Y.; Jung, Y.; Cho, C.P.; Pyo, Y.D.; Jang, J.; Kim, G.; Kim, T.M. NOx abatement and N$_2$O formation over urea-SCR systems with zeolite supported Fe and Cu catalysts in a nonroad diesel engine. *Chem. Eng. J.* **2020**, *381*. [CrossRef]

25. De-La-Torre, U.; Pereda-Ayo, B.; Gutiérrez-Ortiz, M.A.; González-Marcos, J.A.; González-Velasco, J.R. Steady-state NH$_3$-SCR global model and kinetic parameter estimation for NO$_x$ removal in diesel engine exhaust aftertreatment with Cu/chabazite. *Catal. Today* **2017**, *296*, 95–104. [CrossRef]

26. Metkar, P.S.; Harold, M.P.; Balakotaiah, V. Experimental and kinetic modeling study of NH$_3$-SCR of NO$_x$ on Fe-ZSM-5, Cu-chabazite and combined Fe- and Cu-zeolite monolithic catalysts. *Chem. Eng. Sci.* **2013**, *87*, 51–66. [CrossRef]