INTRODUCTION

As a common and severe mental disease, schizophrenia affects approximately 1% of the worldwide population and continues to be one of the least understood psychiatric disorders.\(^1\) Family, twin, and adoption studies have strongly indicated schizophrenia with a high heritability estimate of approximately 80%. Recent genome-wide association studies suggested that schizophrenia has a substantial polygenic component involving numerous common alleles of very small effects.\(^2\) During the last decades, the idea of schizophrenia as a neurodevelopmental disorder has been an attractive and most popular hypothesis.\(^3\) Patients with schizophrenia display various neurodevelopmental abnormalities. Numerous identified schizophrenia susceptibility genes are indispensable in the regulation of neurodevelopment.\(^4\) It has been well documented that cytoarchitectural anomalies are present in the brains of schizophrenia patients which may reflect synaptic organization perturbations during neurodevelopment.\(^5\) Synaptic pathology of schizophrenia suggests that alterations of synaptic transmission and neuronal connectivity may be one of the core features of...
schizophrenia. It has been reported that numerous proteins affecting synaptic functions change in schizophrenia. One of these proteins is the neuronal growth-associated protein GAP43, a membrane phosphoprotein with high expression level in the developing brains, and acts fundamentally in the alteration of the brain structure and function. GAP43 is involved in the initial establishment and reorganization of synaptic connections. Even though GAP43 expression sharply decreases after the maturation of synaptic connections in most neurons, synapses located in the limbic system and the neocortex remain in high GAP43 level throughout life. The enrichment of GAP43 in higher integrative regions, such as association cortices and hippocampus, indicates that GAP43 functions fundamentally in specialized functions in these areas, for example, acquisition, processing, and storing of new information. With dysfunctional learning and memory, animals characterized with cognitive impairment, following contextual fear conditioning or exposed to alcohol, displayed abnormal GAP43 expression and phosphorylation in the hippocampus. Due to the alteration of these crucial processes in schizophrenia and expression difference of GAP43 between schizophrenia patients and normal controls, GAP43 has been related to schizophrenia since two decades ago.

Genetic studies have demonstrated that schizophrenia is a complex disorder with a considerable high degree of genetic contribution to its etiology with conservative estimates of heritability of ~80%. The human GAP43 gene is mapped to chromosome 3q13.1–2, a potential susceptibility region for schizophrenia. In the current study, an independent case–control study was applied to investigate the genetic association of the human GAP43 gene with schizophrenia in a Northeast Chinese Han population with 741 schizophrenia patients and 1330 healthy controls.

METHODS

Subjects
Participants were all recruited in the Northeast China from the Department of Psychiatry, Dalian Seventh People’s Hospital, P. R. China and unrelated Chinese Han nationality born. The sample set included 741 schizophrenia patients (347 males and 394 females; mean age: 31.7 ± 7.9 years) and 1330 healthy controls (649 males and 681 females; mean age: 30.2 ± 13.4 years). The consensus diagnoses were made by at least two experienced psychiatrists according to the Diagnostic and Statistical Manual of Mental Disorders, fourth edition criteria (American Psychiatric Association, 2000) on the basis of clinical observation, medical records, and family information. All healthy controls in this study were without any Diagnostic and Statistical Manual of Mental Disorders, fourth edition axis I disorder and matched for age, sex, education, and ethnicity to the patients. The objectives and procedures of the study were explained to all participants, and written informed consent was obtained. The study was approved by the Ethics Committee of the Dalian Seventh People’s Hospital, P. R. China.

Genotyping
Eleven single-nucleotide polymorphisms (SNPs) in the human GAP43 gene region were selected. Genomic DNA was extracted from venous blood using a commercially QiAamp DNA Blood Mini Kit (QIAGEN, German). All the SNPs were genotyped by either polymerase chain reaction (PCR)-restriction fragment length polymorphism analysis or direct DNA sequencing. All pairs of PCR primers were designed by software Primer Premier 5.0 (Premier, Canada). PCR products were either completely digested with 4U of restriction enzyme overnight and then separated by agarose gel electrophoresis (2%–3% gel) stained with ethidium bromide or sequenced on an ABI PRISM 377–96 DNA Sequencer (Applied Biosystems, Foster City, California, USA) after purifying them using a BigDye terminator cycle sequencing ready reaction kit. All the results were read by two experienced technicians independently.

Statistics
The deviation of the genotypes from Hardy–Weinberg equilibrium was tested using a χ² goodness-of-fit test. Statistical differences in allelic distribution between patients and controls were evaluated by Pearson’s Chi-square test. Pairwise linkage disequilibrium (LD) between any two alleles was evaluated using the D’ value. Odds ratios (ORs) and their 95% confidence intervals (95%) were calculated to evaluate the effect of different alleles. The Bonferroni correction was applied for multiple tests analyzing the independent variables to control inflation of the Type I error rate according to an effective number of independent marker loci. The statistic power of our sample size was calculated by the genetic power calculator (http://pngu.mgh.harvard.edu/~purcell/gpc/cc2.html). The sample had approximately 80% power to detect allele frequency differences assuming an OR of 1.5 with a minor allele frequency of 0.1. These analyses were performed using SHEsis software (http://analysis.bio-x.cn/SHEsisMain.htm). Results were considered statistically significant at two-tailed P < 0.05.

RESULTS
Eleven SNPs of the human GAP43 were genotyped in a Northeast Chinese Han population. Genotype distributions of the 11 SNPs in case and control groups showed no significant deviations from Hardy–Weinberg equilibrium. There were no significant differences in age, sex, or education distributions between the case and control groups. The genetic association results are shown in Table 1. Of the 11 SNPs, three showed significant differences in allele and genotype frequencies between cases and controls (rs2028248, allelic P = 0.0413, genotypic P = 0.466; rs6790048, allelic P = 0.0276, genotypic P = 0.0330;
Table 1: Genotype and allele frequencies of 11 single-nucleotide polymorphisms in the GAP43 gene between schizophrenia patients and controls

Marker	Participants	Genotype and frequency*	χ^2	Allele and frequency*	χ^2	OR (95% CI)
rs13059137	Cases	GG (304 (0.411)) GT (350 (0.473)) TT (86 (0.116))	2.2357	G (958 (0.647)) T (522 (0.353))	1.4240	1.0840 (0.9495-1.2376)
	Controls	AA (527 (0.397)) AG (617 (0.464)) GG (185 (0.139))	0.3270	A (1671 (0.629)) G (987 (0.371))	0.2237	
rs1837206	Cases	GG (191 (0.258)) GT (359 (0.484)) TT (191 (0.258))	1.3594	G (741 (0.500)) T (741 (0.500))	0.4224	0.9587 (0.8443-1.0887)
	Controls	AA (342 (0.257)) AG (673 (0.506)) GG (314 (0.236))	0.5068	A (1357 (0.511)) G (1301 (0.489))	0.5157	
rs2028248	Cases	GG (151 (0.204)) GT (375 (0.506)) TT (215 (0.290))	6.1310	G (677 (0.457)) T (805 (0.543))	4.1625	0.8758 (0.7711-0.9948)
	Controls	AA (335 (0.252)) AG (633 (0.476)) GG (362 (0.272))	0.0466	A (1303 (0.490)) G (1357 (0.510))	0.0413	
rs10934301	Cases	GG (62 (0.084)) GT (314 (0.424)) TT (365 (0.493))	1.8805	G (438 (0.296)) T (1044 (0.704))	0.0095	0.9931 (0.8641-1.1414)
	Controls	AA (130 (0.098)) AG (530 (0.398)) GG (670 (0.504))	0.3905	A (790 (0.297)) G (1870 (0.703))	0.9222	
rs6790048	Cases	GG (291 (0.393)) GT (350 (0.472)) TT (100 (0.135))	6.8275	G (932 (0.629)) T (550 (0.371))	4.8558	1.1583 (1.0163-1.3201)
	Controls	AA (488 (0.367)) AG (604 (0.454)) GG (238 (0.179))	0.0330	A (1580 (0.594)) G (1080 (0.406))	0.0276	
rs2164930	Cases	GG (582 (0.785)) GT (151 (0.204)) TT (8 (0.011))	11.0442	G (1315 (0.887)) T (167 (0.113))	9.8064	1.3610 (1.1216-1.6514)
	Controls	AA (977 (0.735)) AG (314 (0.236)) GG (39 (0.029))	0.0400	A (2268 (0.853)) G (392 (0.147))	0.0017	0.9996 (0.9185-1.0861)
rs11926976	Cases	GG (77 (0.104)) GT (331 (0.447)) TT (333 (0.449))	3.7272	G (485 (0.327)) T (997 (0.673))	3.6608	0.8771 (0.7668-1.0032)
	Controls	AA (168 (0.126)) AG (613 (0.461)) GG (549 (0.413))	0.1551	A (949 (0.357)) G (1711 (0.643))	0.0557	
rs16823991	Cases	GG (79 (0.107)) GT (322 (0.435)) TT (340 (0.459))	0.5392	G (480 (0.324)) T (1002 (0.676))	0.5423	1.0525 (0.9185-1.2061)
	Controls	AA (132 (0.099)) AG (568 (0.427)) GG (630 (0.474))	0.7637	A (832 (0.313)) G (1828 (0.687))	0.4615	
rs13065936	Cases	GG (440 (0.594)) GT (269 (0.363)) TT (32 (0.043))	3.3918	G (1149 (0.775)) T (333 (0.225))	2.5160	1.1295 (0.9717-1.3129)
	Controls	AA (755 (0.568)) AG (494 (0.371)) GG (81 (0.061))	0.1834	A (2004 (0.753)) G (656 (0.247))	0.1128	
rs3772934	Cases	GG (434 (0.586)) GT (252 (0.340)) TT (55 (0.074))	2.8491	G (1120 (0.756)) T (362 (0.244))	1.5739	0.9089 (0.7829-1.0552)
	Controls	AA (800 (0.602)) AG (456 (0.343)) GG (74 (0.056))	0.2406	A (2056 (0.773)) G (604 (0.247))	1.2096	

Significant $P (<0.05)$ are in boldface. *Frequencies are shown in parenthesis; *P value after the strict Bonferroni correction. OR – Odds ratio; CI – Confidence interval

rs2164930, allelic $P = 0.001747$, genotypic $P = 0.0040$.

After the Bonferroni correction, some differences in the allele frequencies remained significant which are also shown in Table 1. To further analyze the haplotype structure, we computed pairwise D’ for the 11 SNPs of GAP43 in our sample set using standardized measure D’. D’ ranging between 0.8 and 1.0 indicated strong LD between each other. There was a strong LD between three SNPs (rs2164930, rs11926976, and rs16823991); thus, the haplotype analyses were carried out. Eight different allele combinations of the three SNPs were found in the case and control groups. However, there were only four predominant allele combinations (distribution frequencies >0.01). Haplotype consisting of the three SNPs showed a significant association with schizophrenia regarding the global χ^2 value or individual haplotypic χ^2 values (global: $\chi^2 = 8.6915, P = 0.0037$; G-C-G: $\chi^2 = 8.638, P = 0.0033$).

DISCUSSION

In the present study, 11 SNPs of human GAP43 gene were investigated to establish their roles in susceptibility to schizophrenia in a Northeast Chinese Han population. Our data showed that three SNPs (rs2028248, rs6790048, and rs2164930) were significantly associated with schizophrenia. Haplotype analysis indicated a significant difference in strong LD block (rs2164930-rs11926976-rs16823991) between case and control groups. Combining our results, it is suggested that the GAP43 gene might be involved in susceptibility to schizophrenia.

The synaptic hypothesis of schizophrenia has been proposed for decades, indicating that abnormal synaptic sprouting and reorganization with subsequent misconnecting might be a core feature of schizophrenia.[11] The human GAP43 gene
encodes a protein mainly present in the synaptic plasma membranes playing a crucial role in axons specifically associated with growth cones and immature synaptic terminals.[10] GAP43 exclusively locates in particulate fractions of the brain tissue with high level in neocortical association areas and limbic system rich in synaptic contacts. GAP43 is involved in regenerated synaptic sprouting after injury. Upregulated levels of GAP43 have been found in association cortices in schizophrenia, indicating a role of GAP43 in preparing the synaptic connection perturbations in associative brain areas of schizophrenia. The comparison of the GAP43 protein level in postmortem samples between schizophrenia patients and healthy controls revealed that GAP43 expression increased in specific associative regions in schizophrenic brains. GAP43 expression levels altered in the frontal cortex, hippocampus, dorsolateral prefrontal cortex, primary visual cortex, and anterior cingulate gyrus in schizophrenia.[14-17,23] GAP43 has also been related to various other neural and mental diseases, such as multiple sclerosis, Alzheimer’s disease, and Parkinson’s disease.[24-27]

A previous genetic and functional study focusing on GAP43 gene and schizophrenia found no association between selected GAP43 polymorphisms and schizophrenia in a Southern Chinese Han population from Taiwan.[18] However, some rare variants of the GAP43 gene have been indicated with possible damaging effects may be involved in their sample. In this previous study, Shen et al. mainly focused on the functional exonic regions of GAP43 without considering conserved intronic regions which may include regulatory elements, and the sample size of their sample set was relatively limited. Moreover, even though the population in their study was also Chinese Han descents, the genetic difference between populations from Northern and Southern parts of China has been scientifically verified and declared. Usually, genotype and genotype frequencies showed a remarkable difference between different ethnic groups, and the genetic polymorphisms appear on different positions along the same gene location. In consequence, a specific SNP may be associated with schizophrenia in one population, whereas showed no difference in another ethnic population or even with no polymorphism exists on the allele. Nevertheless, there are various genes associated with schizophrenia in different ethnic populations, even though significant differences revealed at alternative alleles along the gene location. A number of studies showed genes associated with schizophrenia in both Chinese and Indian populations, such as NRG1, DISC1, PDLIM5, GRM3, and DRD2; however, different positive alleles were reported in these studies for one same gene. Therefore, the genetic involvement of the GAP43 gene requires further intensive studies in other ethnic groups or some subtypes of schizophrenia.

Limitations

Association analysis of more markers in the GAP43 gene in other independent samples and family-based association studies in more ethnic populations will be required to further strengthen that the GAP43 gene exerts in genetic susceptibility to schizophrenia. In addition, biological and functional analyses are needed to investigate the impact of the risk variants on the pathogenesis of schizophrenia.

CONCLUSION

Our study indicated an association of the human GAP43 gene with schizophrenia in a Northeast Chinese Han population, which may provide genetic clues and promote further biophysical studies for the function of GAP43 protein in schizophrenia and other mental diseases.

Financial support and sponsorship

This work was supported by grants from the National Natural Science Foundation of China (81601174), and Natural Science Foundation of Liaoning Province, China (2019-ZD-0938).

Conflict of interest

There are no conflicts of interest.

REFERENCES

1. Freedman R, Schizophrenia. N Engl J Med 2003;349:1738-49.
2. International Schizophrenia C, Purcell SM, Wray NR, Stone JL, Visscher PM, O’Donovan MC, et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nat 2009;460:748-52.
3. Fcontem SH, Folsom TD. The neurodevelopmental hypothesis of schizophrenia, revisited. Schizophren Bull 2009;35:526-48.
4. Lewis DA, Levitt P. Schizophrenia as a disorder of neurodevelopment. Annu Rev Neurosci 2002;25:409-32.
5. Frankle WG, Lerma J, Laruelle M. The synaptic hypothesis of schizophrenia. Neuron 2003;39:205-16.
6. Zwers H, Schotman P, Gispen WH. Purification and some characteristics of an ACTH-sensitive protein kinase and its substrate protein in rat brain membranes. J Neurochem 1980;34:1889-99.
7. Skene JH, Jacobson RD, Snipes GJ, McGuire CB, Norden JJ, Freeman JA. A protein induced during nerve growth (GAP-43) is a major component of growth-cone membranes. Sci 1986;233:783-6.
8. Benowitz LJ, Rountenberg A. GAP-43: An intrinsic determinant of neuronal development and plasticity. Trends Neurosci 1997;20:84-91.
9. Jacobson RD, Virag I, Skene JH. A protein associated with axon growth, GAP-43, is widely distributed and developmentally regulated in rat CNS. J Neurosci 1986;6:1843-55.
10. Benowitz LJ, Perrone-Bizzozero NJ, Finkenstein SP, Bird ED. Localization of the growth-associated phosphoprotein GAP-43 (B-50, F1) in the human cerebral cortex. J Neurosci 1989;9:990-5.
11. Benes FM. Neurobiological investigations in cingulate cortex of schizophrenic brain. Schizophr Bull 1993;19:537-49.
12. Tanner DC, Githinji AW, Young EA, Meiri K, Savage DD, Perrone-Bizzozero NJ. Fetal alcohol exposure alters GAP-43 phosphorylation and protein kinase C responses to contextual fear conditioning in the hippocampus of adult rat offspring. Alcohol Clin Exp Res 2004;28:113-22.
13. Young EA, Owen EH, Meiri KF, Wehner JM. Alterations in hippocampal GAP-43 phosphorylation and protein level following contextual fear conditioning. Brain Res 2000;860:95-103.
14. Perrone-Bizzozero NJ, Sower AC, Bird ED, Benowitz LJ, Iivins KJ, Neve RL. Levels of the growth-associated protein GAP-43 are selectively increased in association cortices in schizophrenia. Proc Natl Acad Sci 1996;93:14182-7.
15. Webster MJ, Shannon Weickert C, Herman MM, Hyde TM, Kleinman JE. Synaptophysin and GAP-43 mRNA levels in the hippocampus of subjects with schizophrenia. Schizophr Res 2001;49:89-98.
16. Chambers JS, Thomas D, Saland L, Neve RL, Perrone-Bizzozero NJ. Growth-associated protein 43 (GAP-43) and synaptophysin alterations in the dentate gyrus of patients with schizophrenia. Prog
17. Weickert CS, Webster MJ, Hyde TM, Herman MM, Bachus SE, Bali G, et al. Reduced GAP-43 mRNA in dorsolateral prefrontal cortex of patients with schizophrenia. Cereb Cortex 2001;11:136-47.
18. Gejman PV, Sanders AR, Kendler KS. Genetics of schizophrenia: New findings and challenges. Annu Rev Genomics Hum Genet 2011;12:121-44.
19. Kaneko N, Muratake T, Kuwabara H, Kurosaki T, Takei M, Ohtsuki T, et al. Autosomal linkage analysis of a Japanese single multiplex schizophrenia pedigree reveals two candidate loci on chromosomes 4q and 3q. Am J Med Genet B Neuropsychiatr Genet 2007;144B: 735-42.
20. Ng MY, Levinson DF, Faraone SV, Suarez BK, Deliaye L, Arinami T, et al. Meta-analysis of 32 genome-wide linkage studies of schizophrenia. Mol Psychiatry 2009;14:774-85.
21. Shi YY, He L. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res 2005;15:97-8.
22. Li Z, Zhang Z, He Z, Tang W, Li T, Zeng Z, et al. A partition-ligation-combination-subdivision EM algorithm for haplotype inference with multi-allelic markers: Update of the SHEsis (http://analysis.bio-x.cn). Cell Res 2009;19:519-23.
23. Blennow K, Bogdanovic N, Gottfries CG, Davidsson P. The growth-associated protein GAP-43 is increased in the hippocampus and in the gyrus cinguli in schizophrenia. J Mol Neurosci 1999;13:101-9.
24. Rot U, Sandelius A, Emsric A, Zetterberg H, Blennow K. Cerebrospinal fluid GAP-43 in early multiple sclerosis. Mult Scler J Exp Transl Clin 2018;4:2055217318792931.
25. de la Monte SM, Ng SC, Hsu DW. Aberrant GAP-43 gene expression in Alzheimer’s disease. Am J Pathol 1995;147:934-46.
26. Sandelius A, Portelius E, Kallen A, Zetterberg H, Rot U, Olsson B, et al. Elevated CSF GAP-43 is Alzheimer’s disease specific and associated with tau and amyloid pathology. Alzheimers Dement 2019;15:55-64.
27. Saal KA, Galter D, Roeb S, Bahr M, Tonges L, Lingor P. Altered expression of growth associated protein-43 and rho kinase in human patients with Parkinson’s disease. Brain Pathol 2017;27:13-25.
28. Shen YC, Tsai HM, Cheng MC, Hsu SH, Chen SF, Chen CH. Genetic and functional analysis of the gene encoding GAP-43 in schizophrenia. Schizophr Res 2012;134:239-45.

Author Help: Reference checking facility

The manuscript system (www.journalonweb.com) allows the authors to check and verify the accuracy and style of references. The tool checks the references with PubMed as per a predefined style. Authors are encouraged to use this facility, before submitting articles to the journal.

- The style as well as bibliographic elements should be 100% accurate, to help get the references verified from the system. Even a single spelling error or addition of issue number/month of publication will lead to an error when verifying the reference.
- Example of a correct style
 Sheahan P, O’leary G, Lee G, Fitzgibbon J. Cystic cervical metastases: Incidence and diagnosis using fine needle aspiration biopsy. Otolaryngol Head Neck Surg 2002;127:294-8.
- Only the references from journals indexed in PubMed will be checked.
- Enter each reference in new line, without a serial number.
- Add up to a maximum of 15 references at a time.
- If the reference is correct for its bibliographic elements and punctuations, it will be shown as CORRECT and a link to the correct article in PubMed will be given.
- If any of the bibliographic elements are missing, incorrect or extra (such as issue number), it will be shown as INCORRECT and link to possible articles in PubMed will be given.