Automorphism Ensemble Decoding of Quasi-Cyclic LDPC Codes by Breaking Graph Symmetries

Marvin Geiselhart, Graduate Student Member, IEEE, Moustafa Ebada, Ahmed Elkelesh, Jannis Clausius, and Stephan ten Brink

Abstract—We consider automorphism ensemble decoding (AED) of quasi-cyclic (QC) low-density parity-check (LDPC) codes. Belief propagation (BP) decoding on the conventional factor graph is equivariant to the quasi-cyclic automorphisms and therefore prevents gains by AED. However, by applying small modifications to the parity-check matrix at the receiver side, we can break the symmetry without changing the code at the transmitter. This way, we can leverage a gain in error-correcting performance using an ensemble of identical BP decoders, without increasing the worst-case decoding latency. The proposed method is demonstrated using LDPC codes from the CCSDS, 802.11n and 5G standards and produces gains of 0.2 to 0.3 dB over conventional BP decoding. Compared to the similarly performing saturated BP (SBP), the proposed algorithm reduces the average decoding latency by more than eight times.

Index Terms—Low-density parity-check (LDPC) codes, belief propagation (BP), automorphism ensemble decoding (AED), layered decoding, quasi-cyclic (QC) LDPC codes, 5G LDPC codes.

I. INTRODUCTION

Quasi-cyclic (QC) low-density parity-check (LDPC) codes are the error-correction workhorse of modern communication systems (e.g., CCSDS, Wi-Fi 802.11n and 5G [1] standards), motivated by the presence of a well-understood, low-complexity belief propagation (BP) decoder. Long low-density parity-check (LDPC) codes constructed using classical information theoretic design tools can closely approach the Shannon limit under BP decoding [2]. However, in the short block-length regime (block-lengths of few hundreds of bits) LDPC codes perform poorly when compared to other structured algebraic coding (e.g., Bose-Chaudhuri-Hocquenghem (BCH), Reed–Muller (RM) and cyclic redundancy check (CRC)-aided polar codes), see [3] for an exhaustive comparison. The degraded error-rate performance can be attributed to the non-optimal BP decoding algorithm (when compared to the maximum likelihood (ML) decoder) and the sub-optimality of the short length LDPC code design. The problem of designing short length LDPC codes is out of the scope of this letter.

In this letter, we are interested in enhancing the decoding algorithm itself without changing the code structure. We show ways of enhancing the error-rate performance under iterative decoding with reduced latency while relaxing the complexity constraint. Remember that in the decoding problem we know the optimal solution (i.e., ML or maximum a posteriori (MAP) decoders), however, due to the infeasible complexity for practical codes, we have to rely on sub-optimal decoders with a practical decoding cost (e.g., sum-product algorithm (SPA) BP decoder in the LDPC decoding context). To highlight the sub-optimality of the LDPC BP decoder in the short-length regime we refer to [4, Fig. 4] and [5, Fig. 10]. For short-length LDPC codes, a huge performance gap (in E_b/N_0) exists between BP decoding and the ML bound which can be estimated via an ML-approaching ordered statistic decoding (OSD). Closing this performance gap is the main motive behind this work.1 Ensemble decoding is a method to improve decoding performance by employing L parallel independent BP decoders each proposing a codeword estimate and then selecting the most likely candidate as the decoder output. Two instances of ensemble decoding are augmented BP [6] and saturated BP (SBP) [7] decoding, where all possible combinations of saturated log-likelihood ratio (LLR) values in the S least reliable positions of the received sequence are used as inputs to the constituent decoders. Another variant of ensemble decoding is multiple-bases belief propagation (MBBP) decoding [8] (or belief propagation list (BPL) decoding in the context of polar codes [9]), where each BP decoder uses a different decoding graph rather than a different input. When the automorphism group of the code is known, identical constituent decoders decoding permuted versions of the channel output may be used, yielding so-called automorphism ensemble decoding (AED). This has been successfully applied to high-density cyclic codes [10], RM codes [11] and polar codes [12]. Moreover, a sequential (rather than parallel) variant of automorphism-based decoding has been proposed in [13].

For quasi-cyclic (QC) LDPC codes, however, the decoder equivariance phenomenon [14] previously prevented successful application of AED. We show that a small variation in the decoding Tanner graph is enough to exploit AED with permutation vectors from the automorphism group of the considered QC LDPC code, i.e., quasi-cyclic shifts of the code symbols. Thus, our proposed decoding algorithm can be directly applied to standardized state-of-the-art QC LDPC codes without any special code design constraint (i.e., no changes on the encoder side, when compared to the enhanced decoding algorithm itself (not to be confused with gains due to better code design)).

1Note that all of the presented error-rate performance gains are attributed to the enhanced decoding algorithm itself (not to be confused with gains due to better code design).
to [14], [15]). Standardized codes are usually flexible in codelength by specifying different protograph lifting factors and, thus, many receiver architectures already provide parallel hardware resources used only for large block-lengths. AED may exploit these additional resources as independent parallel decoders and, thus, promises gains with minimal hardware overhead and low latency.

II. PRELIMINARIES

A. Structure of LDPC Codes

LDPC codes were originally introduced by Gallager [16] as codes that could be conventionally represented by its corresponding \((M \times N)\) parity-check matrix \(\mathbf{H} = [h_{ij}]_{M \times N}\), where \(N\) is the number of variable nodes (VNs) (i.e., also the code block-length) and \(M\) represents the number of check nodes (CNs). Therefore, the information bit block-length is \(K = N - \text{rank}(\mathbf{H})\). Accordingly, the actual code rate \(^2\) is designated by \(R_c = K/N\). Additionally, there exists a corresponding graphical representation, namely the Tanner graph, where the bipartite sets of nodes, namely, VNs and CNs, are connected according to \(\mathbf{H}\) (i.e., a VN \(v_i\) is connected to a CN \(c_j\) if \(h_{ij} = 1\), with \(i \in \{0, \ldots, N - 1\}\) and \(j \in \{0, \ldots, M - 1\}\)).

B. BP Decoding

Alongside LDPC codes, Gallager introduced a suitable iterative decoding scheme [16] whose modified version is today known as the BP algorithm (also known as SPA). The algorithm passes messages, in form of extrinsic LLRs, along the edges of the Tanner graph. The result is an iterative update algorithm passes messages, in form of extrinsic LLRs, along the edges of the Tanner graph. The result is an iterative update scheme whose modified version is today known as the BP algorithm (also known as SPA). The algorithm passes messages, in form of extrinsic LLRs, along the edges of the Tanner graph. The result is an iterative update process at the VNs and CNs. Each VN can be interpreted as the set of codeword symbol permutations that map every codeword onto another (not necessarily different) codeword:

\[
\text{Aut}(\mathcal{C}) = \{ \pi \in \mathcal{S}_N : \pi(c) \in \mathcal{C} \forall c \in \mathcal{C} \},
\]

where \(\mathcal{S}_N\) denotes the symmetric group of \(N\) elements.

A. Code Symmetry

The permutation symmetries of a code \(\mathcal{C}\) with length \(N\) are given by its automorphism group \(\text{Aut}(\mathcal{C})\). It is defined as the set of codeword symbol permutations that map every codeword onto another (not necessarily different) codeword:

\[
\text{Aut}(\mathcal{C}) = \{ \pi \in \mathcal{S}_N : \pi(c) \in \mathcal{C} \forall c \in \mathcal{C} \},
\]

where \(\mathcal{S}_N\) denotes the symmetric group of \(N\) elements.

B. Automorphism Ensemble Decoding

Let \(\text{Dec}(\cdot) : \mathcal{Y}^N \rightarrow \mathcal{C}\) denote the decoding function, where \(\mathcal{Y}\) is the set of possible channel outputs. For instance \(\mathcal{Y}\) is the set of real numbers \(\mathbb{R}\) in case of the binary-input additive white Gaussian noise (BI-AWGN) channel. AED attempts to decode multiple, differently permuted versions of the noisy codeword \(y\), using a subset \(\mathcal{P} \subseteq \text{Aut}(\mathcal{C})\) of \(L\) permutations [11]. Each permutation \(\pi_j \in \mathcal{P}\) contributes one codeword candidate

\[
\hat{c}_j = \pi_j^{-1}(\text{Dec}(\pi_j(y))),(4)
\]

from which the final AED codeword estimate is chosen using the ML criterion

\[
\hat{c}_{\text{AED}} = \arg\max_{\hat{c}_j, j \in \{1, 2, \ldots, L\}} P(\hat{c}_j | y). (5)
\]

Fig. 1 shows the block diagram of AED with constituent BP decoders and a selection criterion based on Euclidean distance, which is the ML criterion for the BI-AWGN channel. It is easy to see that permuted decoding with permutation \(\pi\) and parity-check matrix \(\mathbf{H}\) is identical to decoding on the column-permuted parity-check matrix

\[
\mathbf{H}' = \pi^{-1}(\mathbf{H}).
\]

Therefore, AED with BP decoders is a special case of MBBP [8], where the used \(\mathbf{H}\)-matrices only differ by column permutations out of the automorphism group of the code. In this work, we use the notation AED-\(L\) to denote an AED with ensemble size \(L\).

C. Decoder Symmetry

Not all permutations are useful for AED, as they result in the same codeword candidates. To analyze this, we say a decoder is equivariant to a permutation \(\pi\), if permuting its input \(y\)

\[
\hat{c}_j = \pi_j^{-1}(\text{Dec}(\pi_j(y))),(4)
\]

from which the final AED codeword estimate is chosen using the ML criterion

\[
\hat{c}_{\text{AED}} = \arg\max_{\hat{c}_j, j \in \{1, 2, \ldots, L\}} P(\hat{c}_j | y). (5)
\]

Fig. 1 shows the block diagram of AED with constituent BP decoders and a selection criterion based on Euclidean distance, which is the ML criterion for the BI-AWGN channel. It is easy to see that permuted decoding with permutation \(\pi\) and parity-check matrix \(\mathbf{H}\) is identical to decoding on the column-permuted parity-check matrix

\[
\mathbf{H}' = \pi^{-1}(\mathbf{H}).
\]

Therefore, AED with BP decoders is a special case of MBBP [8], where the used \(\mathbf{H}\)-matrices only differ by column permutations out of the automorphism group of the code. In this work, we use the notation AED-\(L\) to denote an AED with ensemble size \(L\).

C. Decoder Symmetry

Not all permutations are useful for AED, as they result in the same codeword candidates. To analyze this, we say a decoder is equivariant to a permutation \(\pi\), if permuting its input \(y\)
is the same as permuting its output \(c \). In other words, the permutation operation commutes with the decoding operation:

\[
\text{Dec}(\pi(y)) = \pi(\text{Dec}(y)) \quad \forall y \in \mathcal{Y}^N.
\]

We say that \(\pi \) is absorbed by \(\text{Dec}() \) [11]. Each absorbed permutation \(\pi \) induces sets \(\{ \pi \circ \sigma | \sigma \in \text{Aut}(\mathcal{C}) \} \) of equivalent automorphisms. Let \(\pi, \sigma_1 \in \text{Aut}(\mathcal{C}) \) and \(\pi \) be absorbed by \(\text{Dec}() \). Then the codeword estimate from \(\sigma_2 = \pi \circ \sigma_1 \) is

\[
\sigma_2^{-1}(\text{Dec}(\sigma_2(y))) = \sigma_1^{-1}(\pi^{-1}(\text{Dec}(\pi(\sigma_1(y)))))
\]

\[
= \sigma_1^{-1}(\text{Dec}(\sigma_1(y))),
\]

i.e., equivalent permutations \(\sigma_1 \sim \sigma_2 \) always result in the same codeword candidate under permuted decoding. It can be shown that equivalent permutations form equivalence classes which are themselves subgroups of \(\text{Aut}(\mathcal{C}) \) [19]. Therefore, decoder symmetries reduce the number of usable automorphisms and, thus, also reduce the number of usable automorphisms for an ensemble decoder.

D. Quasi-Cyclic Codes and Decoders

A code \(\mathcal{C} \) of length \(N = nZ \) is called quasi-cyclic, if all permutations of the form

\[
\pi_{d,Z}(i) = \begin{cases}
 i + d - Z & \text{if } i \mod Z + d \geq Z \\
 i + d & \text{else}
\end{cases}
\]

with \(0 \leq d < Z \) are automorphisms of \(\mathcal{C} \). Therefore, \(\text{Aut}(\mathcal{C}) \) is at least the quasi-cyclic group of size \(Z \)

\[
\mathcal{D}_Z = \{ \pi_{d,Z} : d = 0, 1, \ldots, Z - 1 \}.
\]

Prominent representatives of the class of QC codes are QC LDPC codes [20]. However, in this case, the QC property mainly serves the ease of construction and implementation. A QC LDPC code is characterised by its parity-check matrix being expanded from a so-called protograph by a lifting factor \(Z \). In the lifting process, the elements of the protograph matrix are replaced by circulant submatrices of size \(Z \times Z \). Their encoding can be thus realised by a set of shift registers, with the linear complexity with respect to the total code length [21]. Moreover, various code lengths can be easily realized from a single protograph using different lifting factors \(Z \).

The \((Zm \times Zn) \) QC LDPC code \(H \)-matrix can be written as

\[
H = \begin{bmatrix}
H_{0,0} & H_{0,1} & \cdots & H_{0,n-1} \\
H_{1,0} & H_{1,1} & \cdots & H_{1,n-1} \\
\vdots & \vdots & \ddots & \vdots \\
H_{m-1,0} & H_{m-1,1} & \cdots & H_{m-1,n-1}
\end{bmatrix},
\]

where submatrices \(H_{i,j} \) of size \((Z \times Z) \) are circulant.

It can be seen that both the rows and columns of the parity-check matrix fulfill the quasi-cyclic property. While quasi-cyclicity of the columns creates the automorphism group, quasi-cyclic rows result in decoder equivariance to these permutations. As shown in [14], permuted BP decoding (with the permutation \(\pi_{d,Z} \)) is equivalent to BP decoding on the column-permuted parity-check matrix

\[
H' = \pi_{d,Z}^{-1}(H) = \pi_{Z-d,Z}(H),
\]

which is just a row-permuted version of \(H \) (as visualized in Fig. 2). For that reason, the column-permuted parity-check matrix shows exactly the same decoding behaviour in a flooding decoder as the original parity-check matrix. The same applies to layered decoding with a regular schedule, as the permutation only affects sets of independent checks. Therefore, AED using the standard \(H \)-matrices and QC permutations does not result in any performance gain for QC LDPC codes.

IV. BREAKING DECODER SYMMETRY

To successfully apply AED to QC LDPC codes, one can either design codes whose automorphism group is larger than \(\mathcal{D}_Z \) (such as the codes proposed in [14]), or break the symmetry group of the constituent decoders to be smaller than \(\mathcal{D}_Z \). We propose the latter method, as it does not require a specific code design and hence is compatible with standardized QC LDPC codes. We still apply the conventional BP decoding algorithm as introduced in Sec. II-B, however, on a different Tanner graph (\(H \)) which is not quasi-cyclic. As the original Tanner graph is designed to optimize the performance under BP decoding, it serves as a natural starting point. We propose three methods to break the symmetry by modifying the original Tanner graph (i.e., three methods of finding the \(H \)-matrix):

1) **Row operations**: Elementary row operations on the parity-check matrix do not change the code but result in different Tanner graphs. In the case of binary codes,
the only interesting row operation is adding a row onto another.

2) Adding Auxiliary Checks (“overcomplete”): One can add a single or multiple auxiliary checks to the parity-check matrix. The added checks should be linear combinations of the original checks, such that the resulting matrix is still a valid, overcomplete, parity-check matrix \(\tilde{H} \).

3) Removing Checks (“undercomplete”): We propose to remove some checks, resulting in an undercomplete parity-check matrix \(\tilde{H} \), which strictly-speaking means changing the considered code. This matrix belongs to a code that contains, besides the codewords of the original code, further invalid codewords. AED must detect when a constituent decoder converged to such an invalid codeword. Therefore, the original \(H \)-matrix is used to check “code membership” and only valid candidates are included in the ML-in-the-list selection, as shown in Fig. 1.

Note that all proposed methods operate on the full, lifted parity-check matrix rather than the protograph.

V. RESULTS

A. Error Rate Performance

We evaluate the performance of the proposed methods on various QC LDPC codes from communications standards. Table I lists the used code parameters. All BP decoders are implemented as floating point SPA with flooding schedule and are simulated using an BI-AWGN channel with binary phase shift keying (BPSK) modulation. If available, we also plot the ML performance of the corresponding code [22] or, if computationally feasible, an approximation using OSD [23], where OSD- \(t \) denotes OSD with order \(t \).

We first compare the three proposed methods in their error-rate performance using the \((132,66)\) 5G LDPC code. While there exist infinite ways to combine and extend the alteration methods, we only change, add or remove a single check to demonstrate the capability of the method. The first modification adds check 0 onto check 1, i.e., changing the check 1. For the overcomplete case, we appended an additional check which is the mod-2-sum of checks 51, 53, 58 and 71 (counting from 0). This combination was chosen randomly, however, with the constraint that the number of involved variable nodes is relatively low. In this case, the degree of the auxiliary check is 11. Lastly, we use an undercomplete \(H \)-matrix where the zeroth check has been deleted. Fig. 3 shows the block error rate (BLER) performance of the proposed methods. To fully exploit the capability of AED, we use all \(Z = 11 \) available quasi-cyclic permutations, i.e., \(L = Z \).

It can be seen that while all modifications slightly degrade the performance compared to the original parity-check matrix, in all cases, the ensemble of \(L = Z \) decoders outperforms this baseline decoder by a significant margin. To our surprise, all methods show virtually identical gains. Therefore, in the following, we focus on the undercomplete \(H \) variant, as its implementation is the easiest. In fact, a conventional decoder may be used with a single check being deactivated.

In Fig. 4 we show results for the \((648,540)\) Wi-Fi code. The AED uses an undercomplete \(H \)-matrix with the zeroth check removed. Even though the code is of moderate length and, thus, the gap to its ML performance is already less than 1 dB at a BLER of \(10^{-4} \), the proposed ensemble decoder (AED) produces gains of approximately 0.2 dB. We also show results for a check-node layered decoding with 16 iterations, where even larger gains are achieved by AED.

In Fig. 5 we show results for different rate-half 5G LDPC codes. Again, the AED uses an ensemble of \(L = Z \) BP decoders using an undercomplete parity-check matrix \(\tilde{H} \)-matrix) with the zeroth check removed. For both block lengths, at a BLER of \(10^{-3} \), we see gains of 0.3 dB and 0.2 dB, respectively.

In Fig. 6, we plot results for rate-half CCSDS codes and the same AED parameters. For both block lengths, AED achieves a gain of approximately 0.2 dB at a BLER of \(10^{-4} \) when compared to conventional BP decoding (i.e., gain due to the enhanced decoding algorithm). Moreover, we compare to SBP with the same number of constituent decoders, i.e., \(S = 4 \) for \(Z = 16 \) and \(S = 5 \) for \(Z = 32 \). We see that the performance of AED is very similar to that of SBP, while in the higher

Table I

Code	\(N \)	\(K \)	\(R_c \)	\(Z \)
802.11n	\(648 \)	\(540 \)	\(5/6 \)	\(27 \)
5G, BG 2	\(132 \)	\(66 \)	\(1/2 \)	\(11 \)
5G, BG 2	\(264 \)	\(132 \)	\(1/2 \)	\(22 \)
CCSDS	\(256 \)	\(128 \)	\(1/2 \)	\(32 \)

Fig. 3. Comparison of the proposed parity-check matrix modifications for the \((N = 132, K = 66)\) 5G LDPC code. All iterative decoders use 32 iterations.

Fig. 4. Results of the Wi-Fi 802.11n code. The flooding BP decoders use 32 iterations, while the check-node layered decoders use 16 iterations. An undercomplete parity-check matrix \(\tilde{H} \) is used in the AED simulations.
when further optimizations are applied. Additionally, many more ways of breaking the decoder symmetry remain to be explored, such as non-standard schedules, which has been already successfully applied to polar codes in [24].

REFERENCES

[1] New SID Proposal: Study on New Radio Access Technology, Standard 3GPP TSG RAN Meeting, no. 71, RP-160671, NTT DOCOMO Inc., Göteborg, Sweden, Mar. 2016.

[2] Y. Chung, G. D. Forney, Jr., T. J. Richardson, and R. Urbanke, “On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit,” IEEE Commun. Lett., vol. 5, no. 2, pp. 58–60, Feb. 2001.

[3] M. C. Coşkun et al., “Efficient error-correcting codes in the short blocklength regime,” Phys. Commun., vol. 34, pp. 66–79, Jun. 2019.

[4] J. Van Wonterghem, A. Alloum, J. J. Boutros, and M. Moeneclaey, “Performance comparison of short-length error-correcting codes,” in Proc. Symp. Commun. Veh. Technol. (SCVT), Nov. 2016, pp. 1–6.

[5] A. Buchberger, C. Häger, H. D. Pfister, L. Schmalen, and A. G. i Amat, “Pruning and quantizing neural belief propagation decoders,” IEEE J. Sel. Areas Commun., vol. 39, no. 7, pp. 1957–1966, Jul. 2021.

[6] N. Varnica, M. P. C. Fossorier, and A. Kavcic, “Augmented belief propagation decoding of low-density parity check codes,” IEEE Trans. Commun., vol. 55, no. 7, pp. 1308–1317, Jul. 2007.

[7] P. Schlafer, S. Scholl, E. Leonard, and N. Wehn, “A new LDPC decoder hardware implementation with improved error rates,” in Proc. IEEE Jordan Conf. Appl. Electr. Eng. Comput. Technol. (AJEECT), Nov. 2015, pp. 1–6.

[8] T. Hehn, J. B. Huber, S. Laendner, and O. Milenkovic, “Multiple-bases belief-propagation for decoding of short block codes,” in Proc. IEEE Int. Symp. Inf. Theory, Nice, France, Jun. 2007, pp. 311–315.

[9] A. Elkelesh, M. Ebada, S. Cammerer, and S. ten Brink, “Belief propagation list decoding of polar codes,” IEEE Commun. Lett., vol. 22, no. 8, pp. 1536–1539, Aug. 2018.

[10] T. Hehn, J. Huber, O. Milenkovic, and S. Laendner, “Multiple-bases belief-propagation decoding of high-density cyclic codes,” IEEE Trans. Commun., vol. 58, no. 1, pp. 1–8, Jan. 2010.

[11] M. Geiselhart, A. Elkelesh, M. Ebada, S. Cammerer, and S. ten Brink, “Automorphism ensemble decoding of Reed–Muller codes,” IEEE Trans. Commun., vol. 69, no. 10, pp. 6424–6438, Oct. 2021.

[12] M. Geiselhart, A. Elkelesh, M. Ebada, S. Cammerer, and S. ten Brink, “On the automorphism group of polar codes,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jul. 2021, pp. 1230–1235.

[13] I. Dimnik and Y. Be’ery, “Improved random redundant iterative HDPC decoding,” IEEE Trans. Commun., vol. 57, no. 7, pp. 1982–1985, Jul. 2009.

[14] C. Chen, B. Bai, X. Yang, L. Li, and Y. Yang, “Enhancing iterative decoding of cyclic LDPC codes using their automorphism groups,” IEEE Trans. Commun., vol. 61, no. 6, pp. 2128–2137, Jun. 2013.

[15] Z. Zhang, L. Zhou, and Z. H. Zhou, “Design of a parallel decoding method for LDPC code generated via primitive polynomial,” Electronics, vol. 10, no. 4, pp. 425, Feb. 2021.

[16] R. G. Gallager, “Low-density parity-check codes,” IRE Trans. Inf. Theory, vol. 8, no. 1, pp. 21–28, Jan. 1962.

[17] T. Richardson and R. Urbanke, Modern Coding Theory, Cambridge, U.K.: Cambridge Univ. Press, Oct. 2007.

[18] F. J. MacWilliams and N. J. A. Sloane, The Theory Error-Correcting Codes (North-Holland Mathematical Library), no. 16. Amsterdam, The Netherlands: North-Holland, 1977.

[19] T. Pilket, V. Bioglio, and I. Ei., “Classification of automorphisms for the decoding of polar codes,” in Proc. IEEE Int. Conf. Commun. (ICC), Seoul, South Korea, May 2022.

[20] M. P. C. Fossorier, “Quasicyclic low-density parity-check codes from circulant permutation matrices,” IEEE Trans. Inf. Theory, vol. 50, no. 8, pp. 1788–1793, Aug. 2004.

[21] Z. Li, L. Chen, L. Zeng, S. Lin, and W. Fong, “Efficient encoding of quasi-cyclic low-density parity-check codes,” IEEE Trans. Commun., vol. 53, no. 11, p. 1973, Nov. 2005.

[22] M. Helmling et al. (2019). Database of Channel Codes and ML Simulation Results. [Online]. Available: www.uni-kl.de/channel-codes

[23] M. P. C. Fossorier and S. Lin, “Soft-decision decoding of linear block codes based on ordered statistics,” IEEE Trans. Inf. Theory, vol. 41, no. 5, pp. 1379–1396, Sep. 1995.

[24] M. Geiselhart, A. Elkelesh, M. Ebada, S. Cammerer, and S. ten Brink, “CRC-aided belief propagation list decoding of polar codes,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2020, pp. 395–400.