Research Article

Existence of Solutions for a Schrödinger–Poisson System with Critical Nonlocal Term and General Nonlinearity

Jiafeng Zhang, Wei Guo, Changmu Chu, and Hongmin Suo

School of Data Science and Information Engineering, Guizhou Minzu University, Guiyang 550025, China

Correspondence should be addressed to Jiafeng Zhang; jiafengzhang@163.com

Received 2 May 2020; Accepted 27 July 2020; Published 28 August 2020

Academic Editor: Gennaro Infante

Copyright © 2020 Jiafeng Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We study the existence and multiplicity of nontrivial solutions for a Schrödinger–Poisson system involving critical nonlocal term and general nonlinearity. Based on the variational method and analysis technique, we obtain the existence of two nontrivial solutions for this system.

1. Introduction and Main Result

The Schrödinger–Poisson system is usually used to describe solitary waves for the nonlinear stationary Schrödinger equations interacting with an electromagnetic field. Since the introduction of the Schrödinger–Poisson system by Benci and Fortunato [1], it has been extensively studied. For more detailed information, we refer the interested readers to [2, 3] and the references therein.

In recent years, some researchers extensively studied the Schrödinger–Poisson system with critical growth in an unbounded domain and obtained interesting results under various suitable assumptions (see, e.g., [4–10]).

But there are currently only a few results for the following Schrödinger–Poisson systems with critical nonlocal terms in a bounded domain [11–13]:

\[
\begin{aligned}
-\Delta u &= q\eta|u|^{2^*-1}u + g(x,u), \text{ in } \Omega, \\
-\Delta \phi &= q|u|^{2^*-1}, \text{ in } \Omega, \\
\phi &= u = 0, \text{ on } \partial\Omega,
\end{aligned}
\]

(1)

where \(\Omega \subset \mathbb{R}^n; N \geq 3, q, \eta \) are real numbers; and \(g\) is a continuous function satisfying some suitable assumptions. In [11], assuming that \(\eta = 1\) and \(N = 3, g(x,u) = \lambda u\), the author proved that system (1) has a positive ground state solution for any \(q > 0\) and \(\lambda \in ((3/10)\lambda_1, \lambda_1)\), where \(\lambda\) is a real number and \(\lambda_1\) is the first eigenvalue of \(-\Delta\). Later, when \(q = 1, \eta = 1\), \(g(x,u) = \lambda u\), where \(\lambda\) is a real number, the authors in [12] studied system (1); they proved existence and nonexistence results of positive solutions when \(N = 3\) and existence of solutions in both the resonance and the nonresonance case for higher dimensions. For the case \(q = 1, g(x,u) = \lambda f(x), \lambda > 0\) is a real number, \(f \geq 0\), and \(f \in L^{2^*/(2^*-1)}(\mathbb{R}^N)\), in [13]; when \(\eta = 1\), authors proved that system (1) has at least two positive solutions if \(0 < \lambda < \lambda^*\) for some \(\lambda^* > 0\) small enough, and when \(\eta = -1\), system (1) has at least one positive solution for any \(\lambda > 0\).

On the basis of the above literature, this paper continues to study system (1), and intends to deal with the following Schrödinger–Poisson system with critical nonlocal term and general nonlinearity that without (AR) condition:

\[
\begin{aligned}
-\Delta u &= u|u|^{2^*-1} + g(x,u), \text{ in } \Omega, \\
-\Delta \phi &= |u|^{2^*-1}, \text{ in } \Omega, \\
\phi &= u = 0, \text{ on } \partial\Omega,
\end{aligned}
\]

(2)

where \(\Omega \subset \mathbb{R}^N (N \geq 3)\) is an open bounded domain with smooth boundary \(\partial\Omega\), \(2^* = 2N/(N-2)\) is the critical Sobolev exponent, and \(g \in C(\Omega \times \mathbb{R}, \mathbb{R}), G(x,t) = \int_0^t g(x,s)ds\).
Throughout this paper, we make the following assumptions:

\((g_1) \) \(g \in C(\bar{\Omega} \times \mathbb{R} \times \mathbb{R}) \), and there exist constants \(c_1, c_2 > 0 \) with \(c_1 \) which is small enough and \(p \in (2, 2^*) \) such that

\[
|g(x, t)| \leq c_1 |t| + c_2 |t|^{p-1}, \forall (x, t) \in \Omega \times \mathbb{R}.
\]

\((g_2) \) There exists a constant \(K > 0 \) big enough such that

\[
G(x, t) \geq K^2 t^2 \quad \text{for any} \ x \in \Omega \text{and} |t| > 0 \text{ large enough}.
\]

\((g_3) \) There are constants \(\rho > 2 \) and \(\nu > 0 \) such that

\[
\rho G(x, t) \leq g(x, t) t + \nu t^2, \forall (x, t) \in \Omega \times \mathbb{R}.
\]

The main difficulties in the present paper are to estimate the critical value and prove the boundedness of (PS) sequence due to the lack of compactness. In order to overcome the above difficulties, by analytic techniques, we shall give the estimate of critical value of associated functional so that system (2) has at least two nontrivial solutions.

Throughout this paper, we use the following notations:

(i) The space \(H^1_0(\Omega) \) has the inner product \((u, v) = \int_\Omega \nabla u \cdot \nabla v dx \) and the norm \(\|u\| = \sqrt{\int_\Omega |\nabla u|^2 dx} \), and the norm in \(L^p(\Omega) \) is denoted by \(|u|_p = \left(\int_\Omega |u|^p dx \right)^{1/p} \).

(ii) \(B_r \) (respectively, \(\partial B_r \)) denotes the closed ball (respectively, the sphere) of center zero and radius \(r \), i.e., \(B_r = \{ u \in H^1_0(\Omega) : \|u\| \leq r \} \), \(\partial B_r = \{ u \in H^1_0(\Omega) : \|u\| = r \} \).

(iii) \(G \), \(C, C_0, C_1, C_2, \ldots \) denote various positive constants, which may vary from line to line.

(iv) Define the best constant \(S = \inf \{ \|u\|^2 : u \in H^1_0(\Omega), \int_{\Omega} u^2 dx = 1 \} \), which is attained by the functions \(u_\varepsilon(x) = C_\varepsilon / (\varepsilon + |x|^2)^{(N-2)/2} \) for all \(\varepsilon > 0 \), where \(C_\varepsilon = \left[\Pi(N - 2)/\varepsilon \right]^{(N-2)/4} \).

Theorem 1. Assume that \(N \geq 3 \), \(g \) satisfies \((g_1), (g_2), \) and \((g_3) \). Then, system (2) possesses at least two distinct nontrivial function pair solutions.

Remark 2. Relative to [11, 12], the nonlinearity \(g \) is of a pure power form in [11, 12], and in the present paper, it is a nonlinear generalization. Hence, we make a substantial improvement on the works of the former.

2. Proof of Main Result

Before proving our Theorem 1, we need the following lemmas.

Lemma 3 ([12, 13]). For every fixed \(u \in H^1_0(\Omega) \), there exists a unique \(\phi_u \in H^1_0(\Omega) \) that solves the second equation of (2), and

(i) \(\phi_u \geq 0 \ a.e \ in \ \Omega \)

(ii) For all \(t > 0 \), \(\phi_{tu} = t^{2^*-1} \phi_u \)

(iii) \(\|\phi_u\| \leq S^{2^*/2^*} \|u\|^{2^*-1} \)

(iv) \(\int_{\Omega} |u|^{2^*} dx = \int_{\Omega} \nabla \phi_u \nabla |u| dx \leq (1/2) \|\phi_u\|_2^2 + (1/2) \|u\|_2^2 \)

Hence, according to the standard arguments as those in [1], system (2) can be converted into the following boundary value problem:

\[
\begin{cases}
-\Delta u = \phi_u |u|^{2^*-2} u + g(x, u), \text{in} \ \Omega, \\
u_0 = 0, \text{on} \ \partial \Omega.
\end{cases}
\]

In order to study the existence of nontrivial solutions to problem (3), we shall firstly consider the existence of nontrivial solutions of the following problem:

\[
\begin{cases}
-\Delta u = \phi_u + (u^* + g^*(x, u), \text{in} \ \Omega, \\
u_0 = 0, \text{on} \ \partial \Omega,
\end{cases}
\]

where

\[
u^* = \max \{u, 0\}, \quad g^*(x, t) = \begin{cases} g(x, t), & t \geq 0, \\ 0, & t < 0.\end{cases}
\]

The energy functional corresponding to (4) is

\[
J(u) = \frac{1}{2} \|u\|^2 - \frac{1}{2(2^*-1)} \int_\Omega \phi_u + (u^*)^{2^*-1} dx - \int_\Omega G^*(x, u) dx, \quad u \in H^1_0(\Omega),
\]

where

\[
G^*(x, t) = \int_0^t g^*(x, s) ds.
\]

\(J \) is well defined with \(J \in C^1(H^1_0(\Omega), \mathbb{R}) \) and

\[
\left \langle J'(u), v \right \rangle = (u, v) - \int_\Omega \phi_u + (u^*)^{2^*-2} v dx - \int_\Omega g^*(x, u) v dx, \quad u, v \in H^1_0(\Omega).
\]

The critical points of the functional \(J \) are just weak solutions of problem (4). Let \(U_\varepsilon(x) = \varepsilon u_\varepsilon(x)/C_\varepsilon \) define a cutoff function \(\varphi \in C^\infty_0(\Omega) \) such that

\[
\varphi(x) = \begin{cases} 1, & |x| \leq R, \\ 0, & |x| \geq 2R.\end{cases}
\]

where \(B_{2R}(0) \subseteq \Omega, 0 \leq \varphi(x) \leq 1 \) for \(R < |x| < 2R \).

Put \(u_\varepsilon(x) = \varphi(x) U_\varepsilon(x), v_\varepsilon(x) = u_\varepsilon(x)/(\int_\Omega |u_\varepsilon(x)|^{2^*) dx})^{1/2^*} \); hence, \(\int_\Omega \lambda^2 dx = 1 \).

Lemma 4 ([14, 15]). \(v_\varepsilon(x) \) satisfies the following estimates:

\[
\|v_\varepsilon\|^2 = S + O \left(\varepsilon^{(N-2)/2} \right).
\]
\[
\int_{\Omega} |v_{e}|^q dx = \begin{cases}
O\left(e^{(N-2q)/4}\right), & 1 \leq q < \frac{N}{N-2}, \\
O\left(e^{N/4|\ln e|}\right), & q = \frac{N}{N-2}, \\
O\left(e^{(2N-(N-2q))/4}\right), & \frac{N}{N-2} < q < 2^*.
\end{cases}
\]
(11)

Lemma 5. Assume \((g_1)\) and \((g_2)\) hold; let \(\{u_n\} \subset H_0^1(\Omega)\) be a sequence such that \(J(u_n) \to c, J'(u_n) \to 0\), where \(c \in (0, 2/(N+2)S^{N/2})\). Then, there exists \(u \in H_0^1(\Omega)\) such that \(u_n \rightharpoonup u\), up to a subsequence. \(J'(u) = 0\) and \(u\) is a nontrivial solution of problem (4).

Proof. First, we prove that \(\{u_n\}\) is bounded in \(H_0^1(\Omega)\). To prove the boundedness of \(\{u_n\}\), argue by contradiction, suppose that \(\|u_n\| \to \infty\). Set \(v_n = u_n/\|u_n\|\). Then, \(\|v_n\| = 1\) and \(\|v_n\|_q \leq C\) for \(1 \leq q \leq 2^*\). By \((g_3)\), we have
\[
c + o(1)\|u_n\| \geq J(u_n) - \frac{1}{\theta} \left(J'(u_n), u_n\right) = \left(\frac{1}{2} - \frac{1}{\theta}\right) \|u_n\|^2 \\
+ \frac{1}{\theta} \left[1 - \frac{1}{2(2^* - 1)}\right] \int_{\Omega} \phi_{u_n}(u_n^{2^*-1}) dx \\
- \int_{\Omega} G'(x, u_n) dx \geq \left(\frac{\theta - 2}{2\theta}\right) \|u_n\|^2 \\
- \frac{\nu}{\theta} \|u_n\|_q^2 \leq \|u_n\| \left(\frac{\theta - 2}{2\theta} - \frac{\nu}{\theta} \|u_n\|_q^2\right),
\]
(12)
where \(\theta = \min\{2^*, \rho\}\), which implies
\[
1 \leq \frac{2\nu}{\theta - 2} \liminf_{n \to \infty} \|v_n\|_q^2.
\]
(13)
Passing to a subsequence, we may assume that \(v_n \rightharpoonup v\) in \(H_0^1(\Omega)\), then \(v_n \to v\) in \(L^q(\Omega)\), \(1 \leq q < 2^*\), and \(v_n \rightharpoonup v\) a.e. in \(\Omega\). Hence, it follows from (13) that \(v \neq 0\) and
\[
0 = \lim_{n \to \infty} c + o(1) \|u_n\|^2 = \lim_{n \to \infty} \frac{J(u_n)}{\|u_n\|^2} = \lim_{n \to \infty} \left[\frac{1}{2} - \frac{1}{2(2^* - 1)}\right] \|u_n\|^2 \\
\leq \frac{1}{2} \int_{\Omega} \phi_{u_n}(u_n^{2^*-1}) dx \\
- \int_{\Omega} G'(x, u_n) dx \\
\leq \frac{1}{2} \int_{\{x \in \Omega : |v(x)| \geq \sigma\}} v_{e}^2 dx = \frac{1}{2} \int_{\Omega} \varphi_{e}^2 dx < 0,
\]
(14)
where \(\sigma > 0\) is chosen such that \(\{x \in \Omega : |v(x)| \geq \sigma\} > 0\) and \(K\) is sufficiently big constant, which is a contradiction. Thus, \(\{u_n\}\) is bounded in \(H_0^1(\Omega)\) and there exists \(u \in H_0^1(\Omega)\) such that \(u_n \rightharpoonup u\), up to a subsequence. Furthermore, \(J'(u) = 0\) by the weak continuity of \(J'\). If \(u = 0\) in \(\Omega\), since the term \(g(x, u)\) is subcritical, then \(J'(u_n), u_n = o(1)\) implies
\[
\|u_n\|^2 = \int_{\Omega} \phi_{u_n}(u_n^{2^*-1}) dx = o(1).
\]
(15)
By Lemma 3-(iii), one has
\[
\|\phi_{u_n}^\prime\| \leq \frac{S^{2^*}}{2^*} \|\phi_{u_n}^\prime\|^{2^* - 1}.
\]
(16)
It follows from (15) and (16) that
\[
o(1) \geq \|u_n\|^2 \left[1 - \frac{S^{2^*}}{2^*} \|u_n\|^{2^* - 2}\right].
\]
(17)
If \(\|u_n\| \to 0\), it contradicts \(c > 0\). Therefore,
\[
\|u_n\|^2 \geq S^{N/2} + o(1).
\]
(18)
By (15) and (18), we get
\[
J(u_n) = \frac{1}{2} \|u_n\|^2 - \frac{1}{2(2^* - 1)} \int_{\Omega} \phi_{u_n}(u_n^{2^*-1}) dx + o(1)
\]
\[
= \frac{2}{N + 2} \|u_n\|^2 + o(1) \geq \frac{2}{N + 2} S^{N/2} + o(1),
\]
which contradicts \(c < 2/(N+2)\). Thus, \(u \neq 0\) and it is a nontrivial solution of problem (4).

Lemma 6. Assume that \(g\) satisfies \((g_1)\) and \((g_2)\). Then, for \(\varepsilon > 0\) small enough, \(\sup_{t \geq 0} J(tv) < 2/(N+2)S^{N/2}\).

Proof. For \(t \geq 0\), we consider the functions
\[
h(t) = J(tv) = \frac{t^2}{2} \|v\|_e^2 - \frac{t^{2^*+1}}{2(2^* - 1)} \int_{\Omega} \phi_{v_e} v_e^{2^*-1} dx \\
- \int_{\Omega} G'(x, tv) dx \leq \frac{Nt^2}{N + 2} \|v\| - \frac{t^{2^*+1}}{2(2^* - 1)} \int_{\Omega} G'(x, tv) dx,
\]
(20)
where the above inequality comes from Lemma 3-(iv).

Notice that \(\lim_{t \to +\infty} h(t) = -\infty, h(0) = 0\), and \(h(t) > 0\) as \(t\) is sufficiently small. Therefore, \(\sup_{t \geq 0} h(t) > 0\) is attained for some \(t_0 > 0\). Since
\[
0 = h'(t_0) = \frac{2Nt}{N + 2} \|v(t)\|_e^2 - \frac{2^* t^{2^*+1}}{2(2^* - 1)} \int_{\Omega} G'(x, tv) v dx,
\]
(21)
we have
\[\|v_t\|^2 = t^{2^{*}-2} + \frac{N+2}{2Nt_0} \int_{\Omega} g'(x, tv_t)v_t\,dx \geq t^{2^{*}-2}, \] (22)
where the nonnegativity of \(\int_{\Omega} g'(x, tv_t)v_t\,dx \) comes from \((g_2), (g_3)\), and the definition of \(g^* \). Hence,
\[t_\varepsilon \leq \|v_t\|^{2/(2^{*}-2)} \leq t_0, \] (23)
It follows from \((g_1)\) that
\[|g^*(x, t)| \leq c_1|t| + c_2|t|^{p-1}. \] (24)
Hence, we have
\[\|v_t\|^2 \leq t^{2^{*}-2} + \frac{c_1}{2} \int_{\Omega} |v_t|^2\,dx + \frac{c_2}{p} |t|^{p-2} \int_{\Omega} |v_t|^2\,dx. \] (25)
By (10), (11), and (25), when \(\varepsilon \) is sufficiently small, we have \(t^{2^{*}-2} \geq \beta S \) with \(\beta \in (0, 1) \).
On the other hand, the function \(h^*(t) \) attains its maximum at \(t_0^2 = \|v_t\|^{2/(2^{*}-2)} \) and it is increasing in the interval \([0, t_0^2] \). By (10), (25), and \(G^*(x, t) \geq Kt^2 \) for \(t \geq 0 \), we deduce that
\[h(t_\varepsilon) \leq h(t_0^2) - \int_{\Omega} G^*(x, t_\varepsilon v_t)\,dx \leq \frac{2}{N+2} \|v_t\|^N - K \int_{\Omega} t_\varepsilon^2 |v_t|^2\,dx \leq \frac{2}{N+2} S^{N/2} + O\left(\varepsilon^{(N-2)/2} \right) - K S^{2/(2^{*}-2)} \int_{\Omega} |v_t|^2\,dx. \] (26)
From (11) and the fact that \(K \) is sufficiently large, by choosing sufficiently small \(\varepsilon \), we can obtain
\[\sup_{t \geq \varepsilon} J(t_\varepsilon) = h(t_\varepsilon) < \frac{2}{N+2} S^{N/2}. \] (27)
Proof of Theorem 1. It follows from \((g_1)\) that
\[|g^*(x, t)| \leq c_1|t| + c_2|t|^{p-1}, \] (28)
\[|G^*(x, t)| \leq \frac{1}{2} c_1|t|^2 + \frac{1}{p} c_2|t|^p, \] (29)
for all \(t \in \mathbb{R} \) and \(x \in \Omega \). By the Sobolev inequality, (28) and (29), for \(c_1 \) small enough, one has
\[J(u) \geq \frac{1}{2} \|u\|^2 - \frac{1}{2(2^{*}-1)} \int_{\Omega} \phi(u^*_{\varepsilon}|u|^{2\varepsilon-1})dx - \int_{\Omega} G^*(x, u)\,dx \]
\[\geq \frac{1}{2} \|u\|^2 - \frac{1}{2(2^{*}-1)} S^{-2\varepsilon} \|u\|^{2\varepsilon-1} - \frac{C}{2} \|u\|^{\frac{2}{p}} - \frac{C}{p} \|u\|^p \]
\[\geq \frac{1}{2} - C \|u\|^2 - \frac{1}{2(2^{*}-1)} S^{-2\varepsilon} \|u\|^{2\varepsilon-1} - \frac{C}{p} \|u\|^p. \] (30)
So, when \(r > 0 \) is sufficiently small, there is \(\alpha > 0 \) such that \(J(u) \geq \alpha > 0 \) for \(u \in \partial B_r(0) \). Moreover, by the nonnegativity of \(G^*(x, u) \), for \(u_0 \in H^1_0(\Omega) \setminus \{0\} \), it holds that
\[J(tu_0) = \frac{t^2}{2} \|u_0\|^2 - \frac{t^{2(2^{*}-1)}}{2(2^{*}-1)} \int_{\Omega} |\phi_{u_0}|^{\frac{2\varepsilon-1}{\varepsilon}}\,dx - \int_{\Omega} G^*(x, tu_0) \]
\[\leq \frac{t^2}{2} \|u_0\|^2 - \frac{t^{2(2^{*}-1)}}{2(2^{*}-1)} \int_{\Omega} |\phi_{u_0}|^{\frac{2\varepsilon-1}{\varepsilon}}\,dx, \]
\[\lim_{t \to \infty} J(tu_0) = -\infty, \quad \text{as } t \to \infty. \] (31)
Hence, we can choose \(t_0 > 0 \) such that \(\|tu_0\| > r \) and \(J(tu_0) \leq 0 \). Using the Mountain Pass Lemma, there is a sequence \(\{u_\varepsilon\} \subset H^1_0(\Omega) \) satisfying
\[J(u_\varepsilon) \to c \geq a, \]
\[J'(u_\varepsilon) \to 0, \] (32)
where
\[c = \inf_{y \in \Gamma} \max_{t \in [0, 1]} J(y(t)), \]
\[\Gamma = \{ y(t) \in C([0, 1], H^1_0(\Omega)) | y(0) = 0, J(y(1)) < 0 \}. \] (33)
According to Lemma 5 and Lemma 6, we can get a \((PS)\) sequence \(\{u_\varepsilon\} \subset H^1_0(\Omega) \), and \(u \in H^1_0(\Omega) \) such that \(J'(u) = 0 \). Thus, \(u \) is a solution of problem (4). And then, \(J'(u), u^{-} = 0, \) where \(u^{-} = \min \{u, 0\} \). Hence, \(u^{-} = 0, \) that is, \(u \geq 0 \). We conclude from the strong maximum principle that \(u \) is a positive solution of problem (3).
Next, we give the proof of two nontrivial solutions to system (2).
From the above discussion, problem (3) has a positive solution \(u_1 \). Put \(k(x, t) = -g(x, -t) \) for \(t \in \mathbb{R} \). Note that if \(u_1 \) is a solution of (3), then, \(-u_1 \) is a solution of (3) replacing \(g \) with \(k \). Hence, the equation
\[\begin{cases}
-\Delta u = \phi_{u_1}|u|^{2\varepsilon-3} + k(x, u), & \text{in } \Omega, \\
u = 0, & \text{on } \partial \Omega
\end{cases} \] (34)
has at least a positive solution \(v \). Let \(u_2 = v; \) then, \(u_2 \) is a solution of (3).

Obviously \(u_1 \geq 0, u_2 \leq 0 \). So, problem (3) has at least two distinct nontrivial solutions \(u_1 \) and \(u_2 \); therefore, similar to \([4, 5]\), system (2) has at least two distinct nontrivial function pair solutions \((u_1, \phi_{u_1}) \) and \((u_2, \phi_{u_2}) \).

Data Availability

The findings in this research do not make use of data.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This paper is supported by the National Natural Science Foundation of China (Nos. 11661021 and 11861021); the Science and Technology Foundation of Guizhou Province (No. QKH[2017]1084); the Young Science and Technology Scholars of Guizhou Provincial Department of Education (No. QKH[2017]1084); the Young Science and Technology Foundation of Guizhou Province (Nos. 11661021 and 11861021); the Key Laboratory of Advanced Manufacturing Technology, Ministry of Education, Guizhou University (No. KY[2018]479).

References

[1] V. Benci and D. Fortunato, “An eigenvalue problem for the Schrödinger-Maxwell equations,” Topological Methods in Nonlinear Analysis, vol. 11, no. 2, pp. 283–293, 1998.
[2] A. Ambrosetti, “On Schrödinger-Poisson systems,” Milan Journal of Mathematics, vol. 76, no. 1, pp. 257–274, 2008.
[3] Z. Liu, Z.-Q. Wang, and J. Zhang, “Infinitely many sign-changing solutions for the nonlinear Schrödinger-Poisson system,” Annali di Matematica Pura ed Applicata, vol. 195, no. 3, pp. 775–794, 2016.
[4] F. Li, Y. Li, and J. Shi, “Existence of positive solutions to Schrödinger-Poisson type systems with critical exponent,” Communications in Contemporary Mathematics, vol. 16, no. 6, article 1450036, 2014.
[5] Y. Li, F. Li, and J. Shi, “Existence and multiplicity of positive solutions to Schrödinger-Poisson type systems with critical nonlocal term,” Calculus of Variations and Partial Differential Equations, vol. 56, no. 5, p. 134, 2017.
[6] H. Liu, “Positive solutions of an asymptotically periodic Schrödinger-Poisson system with critical exponent,” Nonlinear Analysis: Real World Applications, vol. 32, pp. 198–212, 2016.
[7] L. Zhao and F. Zhao, “Positive solutions for Schrödinger-Poisson equations with a critical exponent,” Nonlinear Analysis, vol. 70, no. 6, pp. 2150–2164, 2009.
[8] J. Zhang, “On the Schrödinger-Poisson equations with a general nonlinearity in the critical growth,” Nonlinear Analysis, vol. 75, no. 18, pp. 6391–6401, 2012.
[9] S. Chen, A. Fiscella, P. Pucci, and X. Tang, “Semiclassical ground state solutions for critical Schrödinger-Poisson systems with lower perturbations,” Journal of Differential Equations, vol. 268, no. 6, pp. 2672–2716, 2020.
[10] M. M. Li and C. L. Tang, “Multiple positive solutions for Schrödinger-Poisson system in \(\mathbb{R}^2 \) involving concave-convex nonlinearities with critical exponent,” Communications on Pure & Applied Analysis, vol. 16, no. 5, pp. 1587–1602, 2017.
[11] A. Azzollini and P. d’Avenia, “On a system involving a critically growing nonlinearity,” Journal of Mathematical Analysis and Applications, vol. 387, no. 1, pp. 433–438, 2012.
[12] A. Azzollini, P. d’Avenia, and G. Vaira, “Generalized Schrödinger-Newton system in dimension \(N > 3 \): Critical case,” Journal of Mathematical Analysis and Applications, vol. 449, no. 1, pp. 531–552, 2017.
[13] J. F. Zhang, C. Y. Lei, and L. T. Guo, “Positive solutions for a nonlocal Schrödinger-Newton system involving critical nonlinearity,” Computers & Mathematics with Applications, vol. 76, no. 8, pp. 1966–1974, 2018.
[14] H. Brezis and L. Nirenberg, “Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents,” Communications on Pure and Applied Mathematics, vol. 36, no. 4, pp. 437–477, 1983.
[15] L. Ding and C. L. Tang, “Existence and multiplicity of solutions for semilinear elliptic equations with Hardy terms and Hardy–Sobolev critical exponents,” Applied Mathematics Letters, vol. 20, no. 12, pp. 1175–1183, 2007.