Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
An evaluation of the impact of COVID-19 lockdowns on electricity demand

Jinran Wu, a,b Noa Levi b, Robyn Araujo b, You-Gan Wang a,*

a The Institute for Learning Sciences and Teacher Education, Australian Catholic University, Brisbane 4000, Australia
b School of Mathematical Sciences, Queensland University of Technology, Brisbane 4001, Australia

ARTICLE INFO

Keywords:
Statistical modelling
Time series
Demand pattern
Victoria

ABSTRACT

The COVID-19 pandemic has given rise to significant changes in electricity demand around the world. Although these changes differ from region to region, countries that have implemented stringent lockdown measures to curtail the spread of the virus have experienced the greatest alterations in demand. Within Australia, the state of Victoria has been subject to the largest number of days in hard lockdown during the COVID-19 pandemic. We conduct an exploratory data analysis to identify predictors of demand, and have built a time series forecasting model to predict the half-hourly electricity demand in Victoria. Our model distinguishes between lockdown periods and non-restrictive periods, and aims to identify a variety of patterns that we show to be influential on electricity demand. The model thereby provides a nuanced prediction of electricity demand that captures the shifting demand profile of intermittent lockdowns.

1. Introduction

The onset of the COVID-19 global pandemic has had far-reaching and lasting effects. In addition to the devastating health toll and loss of life, there has been massive social and economic upheaval, as businesses have been forced to close, and many regular daily activities have come to a standstill. Across the globe, significant reductions in the electricity demand have been observed, which have been attributed to a variety of mitigation strategies designed to contain the spread of the virus, including lockdowns, industrial shutdowns, and travel restrictions [1–5].

Electricity is an essential commodity for the efficient running of all economic sectors, as well as residential households. To ensure that electricity supply can meet the demand, energy providers must use forecasting methods to plan for the future [6]. When an end-use customer requires power, the electricity retailer supplies this power by purchasing the electric load. The electricity retailer will pre-purchase the electricity load they require based on demand forecasts at the wholesale price. In the case of under-predictions, the retailer can purchase additional loads from the National Electricity Market (NEM) at a typically high, volatile spot price. However, overestimating the demand can lead to wasted electricity and the disposal of the unused load [7]. Improved demand predictions lead to a reduction of additional costs for electricity retailers incurred by over and under predicting the demand. On a macroeconomic scale, this could potentially allow electricity costs to fall as the cost to the providers is reduced, and pricing becomes more competitive. Additionally, there is an environmental benefit to improving electricity demand predictions, as the waste from generating excessive electricity is minimized.

Governmental responses to the pandemic have been quite varied across the world, but a correlation has been observed between the stringency of the mitigation strategies (i.e. restrictions such as lockdowns) and the magnitude of the decline in electricity demand [8]. Countries that imposed heavy restrictions have generally experienced greater declines in electricity demand than countries that took a less restrictive approach [8,9]. More specifically, for countries such as Italy and the UK, where strict lockdowns were implemented, the electricity demand on workdays (from Monday to Friday) was comparable to the pre-pandemic weekend demand [9]. Conversely, the demand profile in Sweden, a country that did not lock down its population, exceeded its corresponding pre-pandemic levels on occasion. This indicates that identifying the severity of restriction measures imposed in response to the pandemic is important for analysing variations in the expected electricity demand. Consequently, it is important for the analysis of pandemic-related impacts to be region specific. Studies investigating the COVID-19 impact on demand have been conducted for India [10,11], China [12], France [13], Turkey [14], and United States [15,16].

In Australia, the state of Victoria has experienced the largest proportion of COVID-19 cases to date, and has thus been subjected to the most days under lockdown rules. The effect of COVID-19 on electricity demand in the state has been visualized by Chetty et al. [17], but the effect has...
not been quantified. Here, we use Victorian electricity demand data to build a statistical model for demand forecasting, and show that the inclusion of COVID-19 related predictors is essential for forecasting accuracy.

We first conducted an analysis of the electricity demand in Victoria before the pandemic, using data from 2016 and 2019. This analysis provided us with insights into the pre-existing trends, such as daily and weekly patterns, which informed the types of predictors used in our model. We then compared trends in the raw data during lockdowns, and outside of lockdowns. The differences observed here gave us confidence that the lockdown status of the state of Victoria influences the half-hourly electricity demand, and that including this information in the forecasting model will improve predictions of the future demand. Having amassed an array of predictors, we estimated the optimal forecasting model for the Victorian electricity demand data. Using these results, we estimated the change to the half-hourly demand predictions as a result of our additional predictors. Most importantly, we found that our model makes significantly different forecasts at certain times of the day during lockdown periods.

The remainder of this article is organized as follows. In Section 2 we perform an exploratory data analysis to identify trends in the electricity demand data. In Section 3 we look specifically at the effects of COVID-19 restrictions, including lockdowns, on electricity demand, and compare the daily and weekly demand profiles to see how these have changed from the regular (non-lockdown) profiles. In Section 4 we compile a list of predictors based on our analysis in the previous two sections, and formulate an optimal forecasting model for our dataset and compare this model with some benchmarks. In Section 5 we show the daily and seasonal demand patterns shown in Fig. 1.

Fig. 1. Electricity demand pattern.
began on the 13th of February 2021 and ended on the 17th of February. A fourth lockdown began on the 28th of May and ended on the 10th of June. Most recently, Melbourne entered its fifth lockdown, beginning on the 16th of July and ending on the 27th of July. All the lockdown information was retrieved from ABC news [20]. Using this information, we created a dummy variable, “lockdown”, which takes the value 1 for all data points that fall within the lockdown period, and 0 otherwise.

In Fig. 2 we show the percentage change in demand in 2020 and the first half of 2021, relative to the demand at the corresponding times in 2019. The lockdown periods are highlighted. The total demand in Victoria decreased by 3.0% in 2020 relative to 2019, and in January to July 2021 it was reduced by 1.81% from the 2019 demand during the same period. This figure shows us that describing the effect of COVID-19 and lockdowns as simply lowering the electricity demand is too reductive, and it conceals the nuance behind the daily demand profile. Here, it should be noted that we investigate the data points from 2016 to 2019 to eliminate the fluctuations from a meteorological episode in our work. We can more clearly see the effects of the lockdown measures by comparing the average daily demand profile during lockdown and out of lockdown. This is shown in Fig. 3.

In comparing the daily demand profiles for lockdown and non-lockdown periods, it is that the lockdown demand profile is slightly more ‘stretched’ than the normal profile, in the sense that local demand minima are slightly become much lower 04:00 and 14:00 and local demand maxima 09:30 and 18:30 are the about same for lockdown periods. However, the average of demand is 224.92 MW higher at this time during a lockdown than on a regular day. The mid-day dip in demand is the location of the second largest difference in demand. Moreover, Fig. 3 shows clear differences for both minimum and maximum demand before 5:00am. It is interesting to note that the difference in average demand for this period does not seem to be there. Therefore, we need to quantify the difference while taking account of many other variables including the seasonality and other cyclic patterns.

From Fig. 4, based on the average values for each day, we can see that there is very little difference in demand on the weekends during lockdowns and outside of lockdowns. Monday, Thursday and Friday show that the lockdown demands seem lower than usual. The largest difference of the average is observed on Thursday, where the average half-hourly demand during lockdown is 155.12 MW lower than a non lockdown day. Here, we can infer that the consumption of electricity demand generally increases with time and many complex patterns are interactive; thus, the impact of lockdown is under-evaluated according to the simple analysis.

It should be noticed that observed patterns here based on the data summary in Figs. 3 and 4 are inaccurate because the daily/weekly pattern is not accounting for the other effects (such as the seasons).

4. Data modelling

In this section, we first introduce the predictors built according to the analysis in the former two sections. Next we construct two linear regression models with and without COVID-19 predictors and show the improvement by modelling with COVID-19 predictors. Then
added a dummy variable, 'Workday', which takes the value 1 included half-daily and monthly patterns and, motivated by Fig. 1, we those noted in Section 2: daily, weekly, seasonal, and yearly. We also by Wu et al. [7]. We considered a number of cyclical trends including Using these functions as load forecasting predictors was proposed preliminary analysis, we used certain harmonic functions as predictors. 4.1. The construction of predictors

From an operational perspective, we have access to consumption data at t−30 intervals, which has been noted in our recently published work in Wu et al. [18]. In this work, we divided the investigated dataset of electricity demand into two parts: the training set (61,296 observations) from 01/01/2016 0:30 to 30/06/2021 0:00 and the remaining test set (1,392 observations) from 01/07/2021 0:30 to 30/07/2021 0:00. It should be noted that we have 8,784 data points with COVID-19 impact in our training set while we have 576 data points with COVID-19 impact in our test set.

4.1. The construction of predictors

To build models which capture some of the patterns found in our preliminary analysis, we used certain harmonic functions as predictors. Using these functions as load forecasting predictors was proposed by Wu et al. [7]. We considered a number of cyclical trends including those noted in Section 2: daily, weekly, seasonal, and yearly. We also included half-daily and monthly patterns and, motivated by Fig. 1, we added a dummy variable, ‘Workday’, which takes the value 1 if the day is Monday to Friday, and 0 on the weekends. Most importantly, we included the variable ‘Lockdown’, which was introduced in Section 3. We also included eight interaction variables that are formed by taking the product of the Lockdown variable with the two harmonic functions for the daily, half-daily, weekly, monthly, seasonal, and yearly patterns, as well as the product of Lockdown and Workday variables.

Finally, we add the dummy variable, ‘COVID’, which can assess the general impact of COVID-19 on electricity demand in Victoria. An entry ban was announced by the Prime Minister of Australia to take effect on Friday the 20th March 2020 at 21:00 AEDT, blocking all non-citizens and non-residents from entering the country. For all data points after this event, we set the ‘Covid’ variable to be equal to 1.

Table 1 summarizes the predictor variables used in our model.

4.2. Regression with predictors

In this subsection, we build two linear regression models with and without COVID-19 predictors to demonstrate how considering the effects of COVID-19 can improve the model predictions. The regression coefficient estimates for the predictors are reported in Table 2 and the results of the ANOVA test comparing the two models are given in Table 3.

As illustrated in Table 2, most of the coefficient estimates for the two models are significant. In the work, our focus is not on the hypothesis tests but prediction with lockdown in place. Given that the number of predictors is not large, it is unclear whether the removal of insignificant explanatory variables would lead to better predictions because of potential type I and II errors incurred. On the other hand, all the explanatory variables are selected or created meaningfully. We therefore did not remove the 2 insignificant variables as potential bias can be introduced upon their removal.

Upon further exploration of the differences between the parameter estimates, two interesting observations can be made. Firstly, the estimate for the intercept of the regression model without COVID-19 impacts is 4,766.19, which is much greater than 4,742.25, the intercept of the model with COVID-19 impacts. In other words, the COVID-19 impact significantly decreases the electricity demand baseline. Secondly, the coefficient estimate for Workday in the model without COVID-19 impacts is 486.82 and 496.11 in the model with COVID-19 impacts. This means that more electricity is consumed on workdays impacted by COVID-19 than regular workdays. In addition, the ANOVA test recorded impacts is 486.82 and 496.11 in the model with COVID-19 impacts. The intercept coefficient estimate gives the average half-hourly de-

Table 1 summarizes the predictor variables used in our model.
The ANOVA test results showing the difference between the two regression models.

Table 2
The ANOVA test results showing the difference between the two regression models.

Res.Df	RSS	Df	Sum of Sq	F	Pr(>F)	
Model 1	96.369	3.4658e+10	15	79254.580	150.33	<2.2e-16
Model 2	96.354	3.3866e+10	15	79254.580	150.33	<2.2e-16

Model 1: Regression without COVID-19 impact.
Model 2: Regression with COVID-19 impact.

a. Generally, the estimated daily electricity demand profiles show that there are two peaks in demand, occurring at approximately 09:30 and 18:30. Between these peaks, there is a reduction in demand, and it is at its lowest around 04:00 in the morning.

b. Lockdowns, and to a lesser extent the pandemic in general, have caused a net reduction in the average half-hourly electricity demand. Moreover, we examined the daily demand profile during lockdowns to gain a more nuanced understanding of the effects of lockdowns. During lockdown demands exhibit the peaks and troughs at about the same time points as demands without lockdown (as shown in Fig. 6). However, the values at peaks or troughs appear to vary at two time points. During the midday dip, the lockdown effect becomes the largest, and disappears after 19:30.

c. We have proposed 29 predictors that capture the trends in the demand profile, as well as the effects of the pandemic and lockdowns. According to the ANOVA results in Table 3, we show the predictors considering COVID-19 impacts can significantly improve data modelling.

d. Our model adjusts the predictions of electricity demand according to three possible states; normal (pre-pandemic), lockdown, and no lockdown, as well as the specific time of day and the day of the week.

Remark 1. The observed daily pattern in Fig. 6 is different from the description based on the data summary in Fig. 3 because of the additional seasonal effects inherited in Fig. 3. Our proposed model can incorporate other effects as many as possible, thus the final estimated daily pattern is insensitive to any biased seasonal effects presented in the data. Roughly, Fig. 6 represents the daily pattern after averaging all the seasons (standardized) while Fig. 3 is specific for the dates in the data. The estimated weekly profile shows a decrease in the variation of half-hourly demand from Monday to Friday and more dramatically during the weekend. Thus, demand is higher on weekdays compared to weekends. In terms of annual trends, the winter season is associated with higher electricity demands, with the month of July showing the highest average half-hourly demand.

Remark 2. The observed weekly pattern in Fig. 6 is different from the description based on the data summary in Fig. 4 because the weekly pattern from Fig. 4 is not accounting for the other effects (such as the seasons) and the data do not have balanced seasonal effects for all seasons for locked and unlocked periods. Our proposed model takes account of other effects as many as possible so that the final estimated...
weekly pattern is not affected by any biased seasonal effects presented in the data. Furthermore, we calculate variations of the fitted demands for the same dates as used in Fig. 4 as Monday (105.28 M2), Tuesday (58.38 MW), Wednesday (97.20 MW), Thursday (154.40 MW), Friday (117.93 MW), Saturday (12.06 MW), and Sunday (21.77 MW). We can see the variations of the fitted demands exhibit a same pattern in the description about Fig. 4. The discrepancy in this weekly pattern shown in Fig. 6 is due to the additional seasonal effects inherited in Fig. 4. Roughly, Fig. 6 represents the weekly pattern after averaging over all the seasons (standardized) while Fig. 4 is specific for the dates in the data.

4.3. Temporal correlation modelling

In this subsection, considering the model selection results in Section 4.2, we further explore the residuals estimated by the regression model with COVID-19 impact, specifically considering temporal correlation to improve data modelling.

The ACF and PACF results for the residuals of the regression model with COVID-19 impacts are plotted in Fig. 5. Here we find that the PACF nearly tails off after the second-order lag and the ACF sine-wave decays. This means there exists a complex temporal pattern in our estimated residuals.

To obtain an optimal ARIMA model, we used the function “auto.arima()” in the R package “forecast” [21] to estimate the model coefficients, obtaining \(p = 3 \), \(d = 0 \) and \(q = 1 \) with the minimum AIC value as 1,165,638. These parameters represent the autoregressive order, integrated order and moving average order, respectively. The best model was estimated to be the ARMA(3,1) model, with coefficient estimates given in Table 4.

These estimates allow us to deduce how certain variables affect the electricity demand. From the autoregressive order of the model for instance, we find that the previous three observations are the most important lagged values for predicting future demand. Moreover, of the three autoregressive predictors, \(a1 \) and \(a2 \) have positive effects on the demand, while \(a3 \) has a negative effect on the demand. In details, additional megawatts of the first and second lagged values increase the current demand prediction by 0.66 MW and 0.82 MW, respectively. By
contrast, the ar3 predictor has a negative coefficient estimate, meaning a one megawatt increase in the second lagged demand has the effect of reducing the current demand prediction by 0.55 MW. Moreover, ma1 has the most largest effect on the demand prediction as 0.92.

Finally, our proposed forecasting model for predicting the electricity demand that considers the impact of COVID-19 is given by:

\[y_{t+1} = \frac{4742.25 + 0.000T + 496.11 \text{Workday} - 517.21 \text{DailySin} - 278.00 \text{DailyCos} - 360.76 \text{HalfDailySin} - 146.97 \text{HalfDailyCos} - 88.57 \text{WeeklySin} + 81.71 \text{WeeklyCos} - 21.72 \text{MonthlySin} - 11.01 \text{MonthlyCos} - 34.20 \text{SeasonalSin} - 53.88 \text{SeasonalCos} - 8.19 \text{YearlySin} - 315.78 \text{YearlyCos} - 23.94 \text{COVID}}{\text{RMSE of 98.55 and 136.48 respectively. The main reason behind this is that the temporal correlation can correct predictions by sufficiently considering the lag information.}}

It is noteworthy that using the intercept value of 4742.25 as a basis, the largest difference between the forecast errors is around 0.13% (difference of RMSE during lockdown between the proposed model (136.44) and Model 3 (142.84)). Here, to illustrate the significance of the results reported in Table 5, we further take the difference between final estimated residuals with Model 3 and our proposed model. Then, we conduct the t-test on the difference during the lockdown period and the whole period, respectively, and record their results in Table 6. Here, the null hypothesis is: the average of differences between Model 3 and the proposed model is 0.

According to results from our statistical tests, two points can be concluded as follows. First, we obtain that our proposed model can provide great predictions during the lockdown period compared to the other investigated benchmark models for electricity demand forecasting with COVID-19 impact. This models include: regression without COVID-19 impact (Model 1), regression with COVID-19 impact (Model 2), and temporal regression without COVID-19 impact (Model 3). Moreover, two error indicators, mean absolute error (MAE) and root mean square error (RMSE), are used to measure the forecasting performance as follows:

\[\text{MAE} = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|, \]

\[\text{RMSE} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}, \]

with data size \(n \), \(i \)th observation \(y_i \) and \(i \)th prediction \(\hat{y}_i \).

To illustrate the performance of demand forecasting during a lockdown period, we further distinguish the data points occurring during a lockdown (576 observations) from the test set. The results are reported in Table 5.

They show our proposed forecasting model with MAE = 100.38 and RMSE = 136.44 is more effective than the other three benchmark models for electricity demand forecasting during a lockdown period.

Table 5

Without COVID-19 impact	The whole period	Lockdown period		
	MAE	RMSE	MAE	RMSE
Model 1	685.81	822.72	662.53	809.57
Model 3	98.55	136.48	102.59	142.84
With COVID-19 impact				
Model 2	619.78	763.36	489.02	620.04
Proposed.	98.52	136.22	100.38	136.44

Several other observations can be made from the results in Table 5. Firstly, compared to Model 1 (regression without COVID-19 impact), Model 2 provides better predictions with smaller error indicators, especially for forecasting demand during lockdown periods. This further demonstrates the effectiveness of our model selection in Section 4.2 and that considering the impact of COVID-19 can greatly improve model predictions. Furthermore, we can conclude that including the temporal correlation can significantly improve the forecasting accuracy. For example, in the case of forecasting during the whole period, the MAE and RMSE with our proposed model (considering temporal correlation) are 98.52 and 136.22, respectively, while those with Model 2 (regression with COVID-19 impact) are 619.78 and 763.36, respectively. Finally we shall note that Model 3 (where COVID-19 impact is not considered) provides good predictions for the whole period and has an MAE and RMSE of 98.55 and 136.48 respectively. The main reason behind this is that the temporal correlation can correct predictions by sufficiently considering the lag information.

Table 6

Differences	Mean	t	Df	Sig.(2-tailed)
Panel A: The differences during the whole period	0.01	0.40	97.775	0.69
Panel B: The differences during lockdown period	-3.25	-16.41	9359	<2.2e-16

5. Discussion

To analyse the effects of the pandemic, we have defined three states: (1) normal, where Covid = 0 and Lockdown = 0; (2) lockdown, where Covid = 1, and Lockdown = 1; and (3) no lockdown, where Covid = 1, and Lockdown = 0.
5.1. Modelling the daily and weekly average demand patterns for different states

We have extracted the predictors (and their corresponding coefficient estimates with our selected model from Table 2) that pertain to the daily and half-daily patterns, as well as the pandemic-related predictors to create a model for the change in average daily demand pattern. This demonstrates that the addition of these predictors significantly affects the forecasting estimates. The model for the change to the daily and half-daily patterns, as well as the pandemic-related changes coincide with the global maximum and minimum in the daily demand dip. At this time, the effect of a lockdown is to further reduce the demand by 551.79 MW.

During the morning peak around 11:00, our model increases the demand prediction on average by 457.01 MW and 433.07 MW for the normal and no-lockdown days, respectively. However, it decreases the prediction at 11:30 for lockdown days by 41.29 MW. The reduction in demand is most pronounced during the daytime, and essentially disappears at night around 20:00 to 01:00.

5.1.2. Weekly changes

Our model estimates the general impact of COVID-19 to be consistent throughout the week, however the effect of lockdowns is dependent on the day of the week. The effect of lockdowns over the course of a week is estimated to be greatest during the first half of the week, with the maximum reduction of 411.06 MW to the half-hourly demand occurring around 14:00 on Monday, and the smallest change of 190.74 MW occurring on Saturday around 00:30.

5.2. The change pattern from Monday to Sunday

Combining all our additional predictors, we have created a model for the total change to the half-hourly predictions due to our modifications. This model has the form given below.

\[
\text{TotalChange} = (-517.21\text{DailySin} - 278.00\text{DailyCos})
+ (-360.76\text{HalfDailySin} - 146.97\text{HalfDailyCos})
- 23.94\text{COVID}
- 210.55\text{Lockdown} + (9.36\text{LockdownDailySin})
+ 237.16\text{LockdownDailyCos})
+ (-115.83\text{LockdownHalfDailySin})
- 51.83\text{LockdownHalfDailyCos})
\]

We have used this model to show the predicted changes over each day of the week for the three states. These results are shown in Fig. 7.

For each day of the week, we see a similar pattern for all three states, and the general impact of COVID-19 seems to be consistent throughout the day for each day of the week. The model estimates the evening peak to occur roughly an hour later during lockdowns compared to non-lockdown days. This lockdown peak is 199.29 MW and 161.91 MW higher on Monday and Tuesday, respectively, than the normal peak. The largest demand difference between lockdown

\[
\text{DailyChange} = (-517.21\text{DailySin} - 278.00\text{DailyCos})
+ (-360.76\text{HalfDailySin} - 146.97\text{HalfDailyCos})
- 23.94\text{COVID}
- 210.55\text{Lockdown} + (9.36\text{LockdownDailySin})
+ 237.16\text{LockdownDailyCos})
+ (-115.83\text{LockdownHalfDailySin})
- 51.83\text{LockdownHalfDailyCos})
\]

Similarly, our model for the change in weekly pattern is given by

\[
\text{WeeklyChange} = 496.11\text{Weekday} + (-88.57\text{Weekday})
+ 81.71\text{Weekday} - 23.94\text{COVID}
- 210.55\text{Lockdown} + (9.36\text{LockdownDailySin})
+ 237.16\text{LockdownDailyCos})
+ (-115.83\text{LockdownHalfDailySin})
- 51.83\text{LockdownHalfDailyCos})
\]

We use these models to estimate the pattern of change to the predictions over a day, and over a week, as shown in Fig. 6.
and non-lockdown days occurs during the mid-day dip, which occurs around 13:30 every day, although the magnitude of this difference is larger during the first half of the week compared to the weekends. Interestingly, on Saturday night the predicted demand is 42.57 MW higher than the predicted demand on a normal day.

6. Conclusion

The COVID-19 pandemic has caused unprecedented changes to the regular functioning of society. Although the response has differed around the world, the introduction of strict measures such as lockdowns in order to contain the virus has triggered large reductions in electricity demand in many countries. Our contribution has been to characterize the particular response of the electricity demand profile due to pandemic-related measures in the Australian state of Victoria, and to build a forecasting model for the data. More specifically, in this paper we have proposed a temporal regression model that accounts for the impact of COVID-19 on electricity demand forecasting. In our case studies we have shown that our proposed model can provide more accurate predictions compared to all other considered benchmark forecasting models when predicting demand during lockdown periods from the test set, with an RMSE of 136.44 and MAE of 100.38.

Among other benefits our model offers, its forecasting accuracy will presumably minimize the likelihood of power outages, for instance once restrictions are lifted. While our model is adequate in capturing the detailed lockdown patterns, further enhancement to the prediction accuracy could be made by including more local explanatory variables such as temperature. When applying our model to other regions, more specific conditions or power-related features can be easily included within the regression framework. A reliable predictive model of energy demand is a valuable tool for governments and electricity retailers to be able to manage the varying demands that will inevitably occur during times of economic disruption, such as pandemic-related lockdowns.

It is plausible that our findings may hold in locations other than Victoria, and as such it would be interesting to apply our modelling to other regions and countries. However, when doing this, it will be necessary to incorporate other local factors to the model in order to identify the specific impacts of COVID-19 on the demand profile. Statistical model checking and diagnosis will be needed to ensure validity of the results. Another limitation of our work is that we have not included public holiday information in our model. This would clearly improve predictions, however it should not change the patterns we discovered, due to very significant differences during lockdowns. It is well-known that the demand in households, industries and hospitals will all have different patterns, and therefore the COVID-19 impacts will differ in each of these sectors. More detailed studies for different sectors at higher resolutions would be beneficial in better understanding the impacts of specific COVID-19 lockdown measures. This would ultimately be helpful in supporting the planning of power usage.

CRediT authorship contribution statement

Jinran Wu: Investigation, Methodology, Software, Writing – original draft, R coding. Noa Levi: Validation, Formal analysis, Visualization, Writing – original draft, R coding. Robyn Araujo: Writing – review & editing. You-Gan Wang: Supervision, Conceptualization, Funding acquisition, Project administration, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

Our R code is available at https://github.com/ygwang2018/ElectricityDemandwithLockdownVictoria.git.

Acknowledgements

This work was supported in part by the Australian Research Council Centre of Excellence for Mathematical and Statistical Frontiers (ACEMS), under grant number CE140100049, and the Australian Research Council Discovery Project, under grant number DP160104292.

Appendix. The result to illustrate the proposed method

See Fig. 8.
References

[1] Stephanie Halbrügge, Paul Schott, Martin Weibelzahl, Hans Ulrich Buhl, Gilbert Fridgen, Michael Schöpf, How did the german and other european electricity systems react to the covid-19 pandemic? Appl. Energy 285 (2021) 116370.

[2] Monica Carvalho, Danielle Bandeira de Mello Delgado, Karolylyne Marques de Lima, Mariana de Camargo Cancela, Camila Alves dos Siqueira, Dyego Leandro Bezerra de Souza, Effects of the covid-19 pandemic on the brazilian electricity consumption patterns, Int. J. Energy Res. 45 (2) (2021) 3358–3364.

[3] I. Santiago, A. Moreno-Munoz, P. Quintero-Jiménez, F. Garcia-Torres, M.J. Gonzalez-Redondo, Electricity demand during pandemic times: The case of the covid-19 in spain, Energy Policy 148 (2021) 111964.

[4] Duzgun Agdas, Prabir Barooah, Impact of the covid-19 pandemic on the us electricity demand and supply: An early view from data, IEEE Access 8 (2020) 151523-151534.

[5] Nima Norouzi, Gerardo Zarazua de Rubens, Saeed Choupanpiesheh, Peter Enevoldsen, When pandemics impact economies and climate change: exploring the impacts of covid-19 on oil and electricity demand in china, Energy Res. Social Sci. 68 (2020) 101654.

[6] L. Suganthi, Anand.A. Samuel, Energy models for demand forecasting—a review, Renew. Sustain. Energy Rev. 16 (2) (2012) 1223–1240.

[7] Jinran Wu, You-Gan Wang, Yu-Chu Tian, Kevin Burrage, Taoyun Cao, Support vector regression with asymmetric loss for optimal electric load forecasting, Energy 223 (2021) 119969.

[8] L. Moreno-Munoz, P. Quintero-Jiménez, F. García-Torres, M.J. Gonzalez-Redondo, Electricity demand during pandemic times: The case of the covid-19 in spain, Energy Policy 148 (2021) 111964.

[9] Rajvikram Madurai Elavarasan, G.M. Shafiullah, Kannadanadan Raja, Vijay Mudgal, Mohammad Taufiqul Arif, Taskin Jamal, Senthilkumar Subramanian, VS Srinira Balaguru, K.S. Reddy, Umashankar Subramaniam, Covid-19: Impact analysis and recommendations for power sector operation, Appl. Energy 279 (2020) 115739.

[10] Payal Gulati, Anil Kumar, Raghav Bhardwaj, Impact of covid19 on electricity load in haryana (india), Int. J. Energy Res. 45 (2) (2021) 3397–3409.

[11] Liqiao Huang, Qi Liao, Rui Qiu, Yongtu Liang, Yin Long, Prediction-based analysis on power consumption gap under long-term emergency: A case in china under covid-19, Appl. Energy 283 (2021) 116339.

[12] David Obst, Joseph De Vilmarest, Yannig Goude, Adaptive methods for short-term electricity load forecasting during covid-19 lockdown in france, IEEE Trans. Power Syst. 36 (5) (2021) 4754–4763.

[13] Payal Gulati, Anil Kumar, Raghav Bhardwaj, Impact of covid19 on electricity load in haryana (india), Int. J. Energy Res. 45 (2) (2021) 3397–3409.

[14] Liqiao Huang, Qi Liao, Rui Qiu, Yongtu Liang, Yin Long, Prediction-based analysis on power consumption gap under long-term emergency: A case in china under covid-19, Appl. Energy 283 (2021) 116339.