INTRODUCTION

Ayurveda, the ancient healing system of India, grow luxuriantly from the Vedic period in India. In history, the classical texts of Ayurveda like Charaka samhita and Sushruta samhita were written around 1000BC. Medicinal plants like turmeric, ashwagandha, ginger, brahmi, manjistha and tulsi are integral part of ayurvedic medicines. All these plants have been used for the treatment of diseases, traditionally and their secondary metabolite constituents are the sources of important modern drugs such as atropine, codeine, digoxin, morphiine, quinine and vincristine. According to one estimate nearly 70 % of the synthetic drugs have been derived from medicinal plants [1].

Casearia is one of the genus of Salicaceae family with huge pharmacological importance. In South American and Asian countries, different Casearia species have been used as folk medicines since ancient times. The pharmacological studies proved that the crude extracts and isolated compounds from this genus showed hypoglycemic, antioxidant, antiucler, anti-inflammatory activities, cytotoxic, antimicrobial as well as anti-snake venom property [2]. Investigations on C. sylvestris revealed its antimicrobial, antioxidant and cytotoxic potential and presence of many phenolic compounds and their biological activities [2-4]. Another species C. gregi and C. multinervosa exhibited the potent antioxidant and antibacterial potency [5]. Furthermore, Clerodane diterpenes isolated from the bark of C. grewiifolia have been showed moderate antimyobacterial effects [6]. Similarly C. esculenta root extracts and its isolated chemical constituents have been reported exclusively for the hypoglycemic effect [7, 8].

The literature survey revealed that Casearia tomentosa is still an under explored species with a diverse range of folk uses [2]. In an effort to provide the accurate scientific information of the plant C. tomentosa, this article presents the results of an extensive investigation of the secondary metabolites, total phenolic content, biological activities like antioxidant, antidiabetic and antibacterial which would assist further researches and potential applications of this plant. There is no report on these pharmacological activities from Casearia tomentosa. The present study gives a clue towards the immense medicinal properties of this plant.

MATERIALS AND METHODS

Plant material

Leaves of plant Casearia tomentosa were collected from Lachhiwala forest Dehradun, Uttarakhand (India) (latitude 30.195000 “and longitude 77.994400 “), identified and authenticated by Botanical Survey of India, (B.SI) Dehradun with accession No.115689. A voucher specimen has been deposited in medicinal plants herbarium in Department of Chemistry, Kanya Gurukula Campus, Gurukula Kangri Vishwavidyalaya, Hardwar, India with registry no. 1/3. The collected fresh leaves were washed with distilled water, dried under shade for 30 d, crushed in a grinder to powder and finally stored in an air tight container for further extraction and various processes.

Chemicals and reagents

Ascorbic acid (Rankem), 1,1-diphenyl-2-picrylhydrazyl (DPPH) (Sigma Aldrich), 2,4,6-tri-(2-pyridyl)-1,3,5-triazine (TPTZ) (Sigma Aldrich), sodium carbonate (EDH), gallic acid (Merck), Folin-ciocalteau phenol reagent (Merck), dimethyl sulphoxide (DMSO) (Merck), α-amylase (SRL Pvt. Ltd.), 5,5-dinitrosalicylic acid (DNSA) (SRL Pvt. Ltd.), tris buffer (Lobal Chemie), p-nitrophenyl-α-D-glucopyranoside (p-NPG) (SRL Pvt. Ltd.), α-glucosidase (SRL Pvt. Ltd.), methanol (Merck), acarbose (Bayer India Limited), Ofloxacin (5
Extracted plant material
Two hundred grams of the dried powdered leaves of C. tomentosa were loaded and extracted in a soxhlet apparatus using 1250 ml each of petroleum ether, chloroform, ethyl acetate and ethanol successively in accordance to the hierarchy of polarity of solvents. Extraction was continued until the solvent coming out of the siphoning tube was colorless [9]. Extracts were concentrated under reduced pressure in rotary vacuum evaporator and refrigerated for further use.

Preliminary phytochemical screening
The phytoconstituents present in different extract were analyzed by using standard qualitative method [10, 11]. All extracts were analyzed for the presence of phytoconstituents like alkaloids, flavonoids, tannins, glycosides, terpenoids, steroids, fat and oil, saponins, protein etc.

Antioxidant activity
Antioxidant activity of extract was determined by DPPH free radical scavenging assay and by ferric reducing antioxidant potential assay.

DPPH free radical scavenging assay
The free radical scavenging assay of different successive extracts of C. tomentosa leaves were evaluated by stable DPPH free radical according to the method of Brand-Williams with some modification [12]. A working solution of 0.004% was freshly prepared by dissolving 4 mg of DPPH in 100 ml of methanol. One milliliter of each extracts dilution of different concentration (1-1000 μg/ml) was added to 3 ml working solution of DPPH. Keep this reaction mixture in dark for 30 min. After 30 min the absorbance of the reaction mixture were taken at 517 nm with UV-VIS spectrophotometer (Systronic, UV-VIS 117) which were compared with the corresponding absorbance of standard ascorbic acid of similar concentrations (1-1000 μg/ml). One milliliter of methanol with 3 ml of working DPPH solution serves as blank. Then the percent radical scavenging activity or % inhibition was evaluated by following equation-

\[\% \text{Inhibition} = \frac{\text{Absorbance of blank} - \text{Absorbance of sample or standard}}{\text{Absorbance of blank}} \times 100 \]

IC_{50} of different extracts and standard ascorbic acid were calculated by graphical method by plotting % inhibition vs. concentration.

Ferric reducing antioxidant potential assay (FRAP)
The FRAP assay was done according to Benzie and Strain with some modification [13]. The stock solution includes 300 mmol acetate buffer pH 3.6, 10 mmol TPTZ (2,4,6-tri-(2-pyridyl)-1,3,5-triazine) solution in 40 mmol HCl, and 20 mmol FeCl₃.6H₂O solution. The working FRAP reagent was freshly prepared by mixing acetate buffer, TPTZ solution and FeCl₃.6H₂O solution in proportion of 10:1:1 (v/v) and then warmed at 37 °C before using it. Antioxidant potential were determined by reacting a mixture 1 ml of each extract (50 μg/ml) and 10 ml of working FRAP reagent. Absorbance (abs) of colored solution (ferrous tripyridyl triazine complex) was then taken at 593 nm after 5 min of incubation at 37 °C. Ascorbic acid standard (std) solutions were tested in a similar way. The standard curve was linear between 10-100 μM ascorbic acid. Working FRAP reagent serves as blank and 1 ml of methanol with 10 ml of working FRAP reagent act as control. Ferric reducing antioxidant power calculations were made by calibration curve. Results were expressed as μM/ml. FRAP value of sample was calculated by following equation-

\[\text{FRAP value (μM)} = \frac{\text{Change in absorbance of sample from 0 to 5 min}}{\text{Change in absorbance of standard from 0 to 5 min}} \times \text{FRAP value of std} \]

Total phenolic content
Total phenolic content of different successive leaves extracts of C. tomentosa were determined by using Folin-ciocealau method [14] with little modification. Extract was diluted with methanol to form a concentration of 1000 μg/ml. Gallic acid dilutions range of 25μg/ml to 300 μg/ml is used for making standard calibration curve. One milliliter of each extracts was added to 10 ml of 10 % folin-ciocealau reagent in 25 ml of volumetric flask, after 8 min 8 ml of 7.5 % sodium carbonate was added. Further, total volume is made up to mark by adding distilled water. The complete reaction mixtures were incubated for about 45 min in the dark and at room temperature of about 25±2 °C. After incubation, the absorbance was measured at 765 nm with UV-VIS spectrophotometer (Systronic, UV-VIS 117). The same procedure was followed with gallic acid standard dilutions and also with blank, where methanol is used in place of extract. Calibration curve of gallic acid was used for calculations. The total phenolic content of extracts was expressed as mg gallic acid equivalents (GAE)/gram of dry mass by following equation-

\[T = \frac{C \times V}{M} \]

Where, T= Total phenolic content mg GAE/gm of plant extract, C= Concentration of Gallic acid from the calibration curve, V= Volume of the extract in ml, M=Weight of the plant extract in gm.

Anti-diabetic activity
In recent diabetic treatments, α-amylase and α-glucosidase inhibitors are most warranted because these enzymes increase post-prandial hyperglycemic conditions. Thus Anti-diabetic activity of different extracts of plant C. tomentosa leaves were assessed by α-amyrase and α-glucosidase inhibitory methods.

Alpha-amylase inhibition activity
The α-amylase inhibitory activity of different extracts performed using 3,5-Dinitrosalicylic acid (DNSA) method with a little modification [15]. Briefly, one milliliter of each extract of different dilutions (10-5000 μg/ml) of extracts or standard acarbose in DMSO was incubated with 1 ml of α-amylase (concentration 0.25 mg/ml in 20 mmol phosphate buffer containing 6.7 mmol NaCl, pH 6.9) for 30 min at 37°C. In another set of tubes 1 ml of α-amylase was pre-incubated with 1 ml of phosphate buffer. After pre-incubation, 1 ml of 1% starch solution in 20 mmole phosphate buffer, pH 6.9, was added to both sets of reaction mixtures to start the reaction. The reaction mixtures were then incubated for 15 min at 37 °C and 1 ml of DNSA color reagent (96 mmol 3,5-dinitrosalicylic acid and 5.315M sodium potassium tartrate in 2M NaOH) was added. The tubes containing reaction mixture were then incubated in a boiling water bath for 5 min and then cooled to room temperature. The absorbance was taken at 540 nm with a UV-VIS spectrophotometer after diluting each tube with 9 ml of distilled water and compared with the corresponding absorbance of standard acarbose at different concentrations (10-5000 μg/ml). The α-amylase inhibitory activity was calculated by equation-

\[\% \text{Inhibition} = \frac{[(Ac\#)-(Ac\#)]-(As-Ab\#)}{(Ac\#)-(Ac\#)} \times 100 \]

Where “Ac#” represents absorbance of pure control having 100% enzyme activity (DMSO and enzyme), “Ac#” is used for absorbance of blank for pure control having 0% enzyme activity (DMSO and buffer), “As” represents absorbance of sample or standard (sample/standard and enzyme) and “Ab#” is used for background absorbance due to sample or standard (sample/standard and buffer).

IC_{50} value (concentration at which sample shows 50% enzyme inhibition) of different extracts and standard acarbose were determined graphically by plotting % inhibition vs. concentration.

Alpha-glucosidase inhibition activity
The α-glucosidase inhibitory activity of successive extracts was determined according to Shukla et al. with little modification [15]. Briefly, 1 ml of each dilution of (10-5000μg/ml) of samples or standard acarbose in DMSO was pre-incubated with 1 ml of α-glucosidase (1U/ml in 100 mmol phosphate buffer pH 6.8) for 30 min at 37 °C. In another set α-glucosidase was pre-incubated with 1 ml of phosphate buffer. After pre-incubation, 1 ml of 5 mmol p-NPG (in 100 mmol phosphate buffer pH 6.8) was added to both sets of reaction.
mixtures to start the reaction. The reaction mixtures were then incubated for 15 min at 37°C and 4 ml 0.5M Tris buffer was added to stop reaction. The absorbance was taken by UV-VIS spectrophotometer (Systronic, UV-VIS 117) at 410 nm and compared with the corresponding absorbance of standard acarbose of similar concentrations (10-5000 μg/ml). The % inhibition and IC50 was calculated in similar way as mentioned in α-amylase activity.

Antibacterial activity

The determination of antibacterial screening of different leaves extracts of *C. tomentosa* were carried out by agar well diffusion technique [16].

Bacterial strains

Five human pathogenic bacterial cultures like *Staphylococcus aureus* (MTCC-737), *Escherichia coli* (ATCC-433), *Pseudomonas aeruginosa* (MTCC-430), *Klebsiella pneumonia* (ATCC-109) and *Salmonella typhi* (ATCC-733) were procured from Microbial Type Culture Collection and Gene Bank (MTCC), Chandigarh, India and used in the present study. The bacteria revived in Muller Hinton broth at 37°C for 18 h and then stocked at 4°C in Muller Hinton agar (MHA). Subcultures were prepared from the stock for bioassay. The bacterial culture was inoculated into sterile Muller Hinton broth and incubated at 37°C for 2 h until the culture attained a turbidity of 0.5 McFarland units so as to obtain the cell suspension between 10⁶ to 10⁷ CFU/ml.

Antibacterial assay

Prepared Muller Hinton agar plates were inoculated with 100μl of the inoculums. After solidification wells of 7 mm diameter were punched with the help of cork borer in agar medium and filled with 40μl of each successive extract (50 mg/ml in DMSO) and antibiotic drug. The plates were incubated for 24 h at 37°C. For each bacterial strain, pure DMSO was used as negative control, whereas ofloxacin was used as positive control. After incubation at 24h the plates were recorded for the zone of inhibition. The antibacterial activity was interpreted from the diameter size of zone of inhibition, measured in millimeters with the help of zone reader or vernier calipers. Different extracts and standard drug assayed in triplicate and the mean value is calculated.

Statistical analysis

Results were expressed as mean±standard deviation of triplicate measurements and analyzed as one-way analysis of variance (ANOVA) using dunnnett multiple-range test at P<0.01.

RESULTS

Extractive yield

The extractive yield (w/w), appearance and consistency of *C. tomentosa* different extracts with petroleum ether, chloroform, ethyl acetate and ethanol respectively was shown in table 1.

Phytochemical screening

The results for preliminary phytochemical investigation of *C. tomentosa* leaves extracts are shown in table 2. The result of phytochemical investigation shows that *C. tomentosa* leaves contain a number of active principles like alkaloids, flavonoids, carbohydrates, glycosides, protein, amino acid, steroids, saponin, terpenoids, fixed oils, fats, tannins and phytosterol. The presence of these phytoconstituents reveals medicinal importance of the leaves of this plant.

Table 1: Extractive yield of *C. tomentosa* leaves extracts

S. No	Extracts	Appearance	Consistency	% yield (w/w)
1.	Petroleum ether	Greenish yellow	Waxy	1.515
2.	Chloroform	Dark Green	Dried Wax	3.223
3.	Ethyl acetate	Green	Dried Wax	2.410
4.	Ethanol	Dark Brown	Crystalline solid	6.118

Table 2: Phytochemicals present in leaves extracts of *C. tomentosa*.

Phytoconstituents and test performed	Extracts	Petroleum ether	Chloroform	Ethyl acetate	Ethanol
Alkaloids	Mayer’s test	-	-	+	+
	Wagner’s test	-	-	+	+
	Hager’s test	-	-	+	+
	Dragendorff’s test	-	-	+	+
Flavonoids	Alkaline test	-	-	+	+
	Lead acetate test	-	-	+	+
	Shinoda test	-	-	+	+
	Sulphuric acid test	-	-	+	+
Tannins	Ferric chloride test	-	-	-	+
Carbohydrate	Molisch’s test	-	-	+	+
	Fehling’s test	-	-	+	+
	Benedect’s test	-	-	+	+
	Barfoed’s test	-	-	+	+
Glycosides	Keller-Killiani test	-	-	+	+
	Legal’s test	-	-	+	+
	Borntrager’s test	-	-	+	+
Terpenoids	Liebermann burchard test	+	+	+	+
	Salowski test	+	+	-	
	Salowski test (Triterpenes)	+	+	-	
Steroids	Liebermann burchard test	+	+	-	
Fat and Oil	Saponification test	+	+	-	
	Filter paper test	+	+	-	
Saponin	Foam test	-	-	+	+
Protein and amino acid	Ninhydrin test	-	-	+	+
	Biuret test	-	-	+	+
Phytoesterol	Salowski test	+	+	+	+
	Liebermann burchard test	+	+	+	+
Gums and Mucilage	-	-	-	-	-

"+= Present; -= Absent"
Antioxidant activity

Antioxidants protect cells against the adverse effects of free radicals which results oxidative stress leading to cellular destruction. Now these days, many researchers have been investigating the antioxidant activity of different plants in search of safe natural antioxidants.

DPPH free radical scavenging assay

DPPH radical scavenging activity is one of the most widely used method for evaluation of antioxidant activity of plant extracts. The principle of DPPH method is based on the reduction of DPPH radical in the presence of a hydrogen donating antioxidant. Antioxidants reduce the color of DPPH due to the power of hydrogen donating capability [17]. C. tomentosa leaves extracts were investigated for their possible DPPH radical scavenging activity. The free radical scavenging activity (DPPH assay) was found maximum for ethanol extract, followed by ethyl acetate, petroleum ether and chloroform. The free radical scavenging activity of ethanol extract is found very close to standard ascorbic acid. Results are expressed in terms of IC50 in table 3.

Table 3: IC50 of C. tomentosa leaves extracts in DPPH assay

S. No.	Extracts/Standard	IC50 values in µg/ml
1.	Ascorbic acid	20.00±0.26
2.	Petroleum ether	280.00±0.01
3.	Chloroform	381.00±0.97
4.	Ethyl acetate	81.25±0.50
5.	Ethanol	31.87±0.65

Results are expressed as mean of three values±standard deviation.

Ferric reducing antioxidant potential assay (FRAP)

The ferric reducing antioxidant potential (FRAP) assay is a protocol that tells about the total antioxidant levels in plants [17]. The results were expressed as µM/ml using the standard curve equation: y=0.0032x-0.0212, R²=0.9982, where y is the absorbance at 593 nm and x is the ferric reducing antioxidant ability in 50 µg/ml of extracts shown in table 4. The ferric reducing antioxidant potential (FRAP) was found maximum for ethanol extract, followed by ethyl acetate, petroleum ether and chloroform. Ethanol extract shows excellent results even better than standard ascorbic acid, while ethyl acetate nearly comparable to ascorbic acid.

The unit µM/ml means the quantity of Fe3+ in µM that can be reduced to Fe2+ by per ml of potential antioxidant. The higher the FRAP value the greater is the antioxidant activity [18].

Table 4: Ferric reducing antioxidant potential (FRAP) Assay of C. tomentosa leaves extracts compared with ascorbic acid

S. No.	Extracts/Standard	Ferric reducing antioxidant power (µM/ml)	FRAP value (µM)
1.	Ascorbic acid	39.45±0.14	2.00
2.	Petroleum ether	24.17±1.18	0.90
3.	Chloroform	183.3±0.38	0.60
4.	Ethyl acetate	29.67±1.42	1.80
5.	Ethanol	43.78±0.65	2.30

Results are expressed as mean of three values±standard deviation.

Total phenolic content (TPC)

The total phenolic content of C. tomentosa leaves extracts were determined by Folin-ciocalteau method. The TPC was expressed as milligram gallic acid equivalent GAE/gm dry weight using the standard curve equation y=0.0042x+0.058, R²=0.9976 where y is the absorbance at 765 nm and x is the total phenolic content in 1000 µg/ml of the extracts. TPC was found highest in ethanol, followed by ethyl acetate, petroleum ether and in chloroform. The total phenolic content of C. tomentosa leaves extracts are shown in table 5.

Table 5: Total phenolic content of C. tomentosa leaves extracts

S. No.	Extracts	Total phenolic content (mg GAE/gm of dry weight)
1.	Petroleum ether	62.17±0.80
2.	Chloroform	50.75±0.87
3.	Ethyl acetate	71.92±1.01
4.	Ethanol	228.17±0.63

Results are expressed as mean of three values±standard deviation, Antioxidant activities of C. tomentosa extracts were corresponding to their total phenolic content. In other word higher phenolic content leads higher antioxidant activity.

Antidiabetic activity

For diabetic patients blood glucose stabilization is important, because it prevents hyperglycemia and the difficulties associated with diabetes. α-amylase and α-glucosidase are such enzymes that catalyzes the breakdown of starch to maltose and then to glucose. The inhibition of these enzymes leads to a decrease in blood glucose level [19].

Alpha-amylase inhibition activity

The in vitro α-amylase inhibition studies suggested that C. tomentosa leaves extracts has significant inhibitory activity which is compared with acarbose (positive control) illustrated in table 6. Results showed that the inhibition activity of the extracts is a dose dependent process. Lower IC50 value indicates greater therapeutic efficacy. Ethyl acetate extract reflects the highest alpha amylase inhibitory activity followed by petroleum ether extract, ethanol and chloroform. The IC50 value of ethyl acetate and petroleum ether extracts are nearly comparable with acarbose and thus can be regarded as alpha amylase inhibitor.

Table 6: IC50 of C. tomentosa leaves extracts in α-amylase assay

S. No.	Extracts/Standard	IC50 values in µg/ml
1.	Ascorbic acid	20.00±0.26
2.	Petroleum ether	280.00±0.01
3.	Chloroform	381.00±0.97
4.	Ethyl acetate	81.25±0.50
5.	Ethanol	31.87±0.65

Results are expressed as mean of three values±standard deviation, Antioxidant activities of C. tomentosa extracts were corresponding to their total phenolic content. In other word higher phenolic content leads higher antioxidant activity.
Antibacterial activity

Results show that all extracts are active against all five pathogenic bacterial strains. The zones of inhibition for bacterial strains were determined and results were shown in Table 8. Results reveal that ethyl acetate extract shows best inhibition against Staphylococcus aureus, Escherichia coli, Klebsiella pneumonia and Pseudomonas aeruginosa except Salmonella typhi. Salmonella typhi was best inhibited by chloroform extract.

In the present study, the growth of all pathogenic bacteria was remarkably inhibited by different extracts of plant Casearia tomentosa.

Table 7: Alpha amylase inhibitory activity of Casearia tomentosa leaves extracts compared with acarbose

S. No.	Standard/Extracts	IC\(_{50}\) value of alpha amylase assay in (µg/ml)
1.	Acarbose	18.7±0.44
2.	Petroleum ether	16.2±1.06
3.	Chloroform	20.2±0.101
4.	Ethyl acetate	21.01±1.31
5.	Ethanol	17.9±0.46

Results are expressed as mean of five values±standard deviation.

Table 8: Antibacterial activity of different extracts from Casearia tomentosa leaves compared with ofloxacin

S. No.	Bacteria (Gram strain)	Zone of inhibition in millimeters (mm)				
	Standard drug extracts	Ofloxacin	Petroleum ether	Chloroform	Ethyl acetate	Ethanol
1.	Staphylococcus aureus (+)	25.9±0.29	11.9±0.49	11.8±1.37	21.01±1.31	17.9±0.46
2.	Escherichia coli (-)	30.9±0.24	12.2±1.06	10.9±1.14	18.4±0.72	11.7±0.50
3.	Klebsiella pneumonia (-)	15.7±0.87	12.9±1.43	11.1±0.99	20.2±0.101	9.8±1.16
4.	Salmonella typhi (-)	18.0±0.91	15.7±1.13	18.7±1.52	16.2±1.06	12.9±1.06
5.	Pseudomonas aeruginosa (-)	19.5±0.95	13.3±1.65	13.8±0.95	18.7±0.44	12.7±0.68

Results are expressed as mean of three values±standard deviation.

DISCUSSION

The search of potent natural drugs from plants cannot be complete without knowing the usefulness of phytochemicals. Present phytochemical analysis reveals that most of phytoconstituents are present in ethyl acetate and ethanol extracts (Table 2). Out of these phytoconstituents flavonoids are one of the largest group of phenolic compounds, numerous reports support their use as primary antioxidant and possess antimicrobial, anti-inflammatory, anti-allergic, anticancer activities etc [20]. Plant derived alkaloids are the biggest class of phytochemical and exhibit many therapeutic effects like antioxidant, analgesics, muscle relaxant, antibiotics, anticancer and also responsible for antiprotozoal, cytotoxic and antimicrobial properties [21]. Tannin are water-soluble phenolic compound, used as healing agents in a number of diseases like leucorrhoea, rhinorrhea, diarrhea and also inhibit the growth of many fungi, yeasts, bacteria, and viruses [22]. The presence of glycosides improves cardiac activity of sample may be due to the availability of phenolic hydroxyl group, ketone groups, free carboxylic groups, flavones hydroxyl, triterpenes and their derivatives [33]. The statement fairly justify the results as most of phytochemicals were present in ethanol and ethyl acetate extracts, due to this FRAP values of these extracts were quite good (table 4).

According to previous studies, it was found that polyphenols and various flavonoids are among the natural active antiadibiotic agents. In general, the enzyme inhibitory activities of the plant extracts not only depend on the polyphenols quantity but also might depend on the quality [34]. That is the reason due to which ethyl acetate extract shows better alpha amylase and alpha glucosidase enzyme activity of sample may be due to the availability of phenolic hydroxyl group, ketone groups, free carboxylic groups, flavones hydroxyl, triterpenes and their derivatives [33]. The statement fairly justify the results as most of phytochemicals were present in ethanol and ethyl acetate extracts, due to this FRAP values of these extracts were quite good (table 4).

In the present study, the growth of all pathogenic bacteria was remarkably inhibited by different extracts of plant Casearia tomentosa.
inhibition than ethanol while ethyl acetate extract having lower total phenolic contents (table 6 and 7).

The literature revealed that the presence of secondary metabolites including alkaloids, terpenoids, flavonoids in plants are responsible for its potential antibacterial activity [31]. On correlating the results an inference can be drawn that presence of majority of phytochemicals and good quality of phenolic compounds in ethyl acetate extract may be responsible for its prominent activity against all the bacterial strain. The present study not only clarified the pharmacological applications of C. tomentosa leaves, but also introduced novel sources for the prevention of non-communicable diseases in India and in other countries.

CONCLUSION

This study suggests that C. tomentosa leaves are an excellent source of active principles that can prevent oxidative stress, development of diabetes mellitus and bacterial infections and their complications. However these active principles need to be isolated, identified and characterized, and the structure need to be elucidated. While these in vitro results are of a preliminary nature, further investigation of C. tomentosa, in particular, in vivo pharmacological testing is warranted. These studies will provide a clearer picture on the potential of this interesting traditional plant.

ACKNOWLEDGEMENT

The authors are thankful to Department of Chemistry, Kanya Gurukula Campus, Gurukula Kangri Veerawasimagalaya, Hardiwar all the necessary facilities for research work.

CONFLICT OF INTEREST

Authors declare no conflict of interest.

REFERENCES

1. Barker SD, Nahar L. Chemistry for pharmacy students general, Organic and natural product chemistry. England: John Wiley and Sons; 2007. p. 283-359.
2. Li Xia, Qiang Guo, Pengfei Tu, Xingyun Chai. The genus Casearia: a phytochemical and pharmacological overview. Phytochem Rev 2015;14:99-135.
3. Silva SL, Charr JS, Damico DCS, Figueiredo PMS, Yano T. Antimicrobial activity of ethanol extract from leaves of Casearia sylvestris. Pharma Biol 2008;46:347-51.
4. Oberlies NH, Burgess JP, Navarro HA, Pinos RE, Fairchild CR, Evans WC. Treaseand Evans' Pharmacognosy. 16th ed. London: Elsevier Health Sciences; 2009.
5. Prakash AN, Sethupathy S, Pugalendi KV. Antihyperglycemic effect of Casearia esculenta root extracts in streptozocin-induced diabetic rats. Pharmazie 2002;57:578-60.
6. Mamdouh MA, Banbury LS, Forster PE, Booth MR, Markham J, Leach D, et al. Screening of some Australian Flacourtia species for in vitro antioxidant, cytotoxic and antimicrobial activity. Phytomedicine 1994;1:416-51.
7. Kanokmedhakul S, Kanokmedhakul K, Kanarsa T, Buayakra M. New bioactive cleidan diterpenoids from the bark of Casearia grewiifolia. J Nat Prod 2005;68:183–3.
8. Prakash AN, Sethupathy S, Pugalendi KV. Antihyperglycemic effect of Casearia esculenta root extracts in streptozocin-induced diabetic rats. Pharmazie 2002;57:578-60.
9. Chandra Mohan Govindasamy, Khalid S Al-Nimara, Mohammed A Alsaif, Kodukkut Pugalendivan Arthanar. Influence of 3-hydroxymethyl xylitol, a novel anti diabetic compound isolated from Casearia esculenta (Roxb.) root, on glycoprotein components in streptozocin-induced diabetic rats. J Asian Nat Prod Res 2011;13:700–6.
10. Shukla A, Vats S, Shukla RK. Phytochemical screening, proximate analysis and antioxidant activity of Dracaena reflexa Lam. leaves. Indian J Pharm Sci 2015;77:640-4.
11. Evans WC. Treaseand Evans' Pharmacognosy. 16th ed. London: Elsevier Health Sciences; 2009.
12. Harborne JB. Phytochemical Methods: A guide to modern techniques of plant analysis. 4th ed. New Delhi: Springer; 1998.
13. Shukla A, Tyagi R, Vats S, Shukla RK. Total phenolic content, antioxidant activity and phytochemical screening of hydroalcoholic extract of Casearia tomentosa leaves. J Chem Pharm Res 2016;8:36-41.
14. Shukla A, Vats S, Shukla RK, Painuly D, Porval A, Tyagi R. Phytochemical evaluation, proximate analysis and biological activity of Reinwardtia indica Dum. Leaves. Int J Pharmaco ng Pharm Rev 2016;8:750-5.
15. Shukla RK, Painuly D, Shukla A, Singh J, Porval A, Vats S. In vitro biological activity and total phenolic content of Morus nigra seeds. J Chem Pharm Rev 2014;6:200-10.
16. Catherine L, Nagarajan NP. Preliminary phytochemical analysis and antibacterial activity of leaf extracts of Vitex leucocaulon L. F. Int J Curr Pharm Res 2011;3:71-3.
17. Shukla A, Vats S, Shukla RK. Proximate composition, nutritive value and evaluation of an antioxidant potential of stem of Dracaena reflexa Lam. Int J Pharm Sci 2014;6:360-4.
18. Shukla A, Vats S, Shukla RK. Preliminary phytochemical screening, antibacterial and nitric oxide radical scavenging activities of Reinwardtia indica leaves extract. Int J PharmTech Res 2013;5:1670-8.
19. Kotowaro MJ, Mahoodaal MF, Gurib-Fakim A, Subratty AH. Screening of traditional anti diabetic medicinal plants of Mauritius for possible alpha-amylase inhibitory effects in vitro. Phytother Res 2006;20:228-31.
20. Kam PC, Liew. Traditional Chinese herbal medicine and anesthetics. Anesthetics 2002;5:1083-9.
21. Chung KT, Wong TY, Wei CI, Huang YW, Lin Y. Tannins and human health: a review. Crit Rev Food Sci Nutr 1998;38:421-64.
22. Malu SP, Obocho GO, Edem CA, Nyong BE. Effect of methods of extraction on phytochemical Constituents and antibacterial properties of Tetracarpidium conophorum seeds. Global J Pure Appl Sci 2009;15:373-6.
23. Rupasinghe HP, Jackson CJ, Poyya V, di Bierado C, Bewley JD, Jenkinson J, Soysapogon A and B Distribution in Glycine max in relation to seed physiology, genetic variability and growing location. J Agric Food Chem 2003;51:5088-94.
24. Shukla RK, Painuly D, Shukla A, Kumar V, Singh J, Porval A, Vats S. Physical evaluation, proximate analysis and antimicrobial activity of Morus nigra seeds. Int J Pharm Sci 2015;7:191-7.
25. Shukla A, Vats S, Shukla RK. Preliminary phytochemical screening, antibacterial and nitric oxide radical scavenging activities of Reinwardtia indica leaves extract. Int J PharmTech Res 2013;5:1670-8.
26. Okwu DE. Evaluation of the chemical composition of indigenous spices and flavouring agents. Global J Pure Appl Sci 2001;7:455-9.
27. Nwokonwco DC. Physicochemical and phytochemical studies of the constituents of the seeds of Cassoniuia bateri (Jansa seeds). Am J Sci Ind Res 2013;4:414-9.
28. Wang T, Hicks RB, Moreau R. Phytosterols, triterpenes, and phospholipids in seed oil from white lupin. J Am Oil Chem Soc 2002;79:1201-5.
29. Muna F Abushama, Yasmin I Hlimai, Haidar M Abd Aldagdir, Eltayeb Fadul, Hassan E Khalid. Lethality and antioxidant activity of some Sudanese medicinal plants' fixed oils. Eur J Med Plants 2014;4:563-70.
30. Shukla RK, Painuly D, Porval A, Shukla A. Proximate analysis, nutritive value, total phenolic content and antioxidant activity of Litchi chinensis sonn. Nat Prod Indian 2012;8:361-9.
31. Rattanata N, Sakda D, Suthep P. Antioxidant and antibacterial properties of selected Thai weed extract. Asian Pac J Curr Pharm Res 2014;4:990-5.
32. Paloi S, Acharya K. Evaluation of antioxidant activity and chemical composition of ethanolic extract from Amanita vaginata (Bull) Lam: an in vitro study. Asian J Pharm Clin Res 2014;7:88-92.
33. Rajananda ST, Ganga RB, Haritha P. Antioxidant activity and hepatoprotective potential of Balanites roxburghii fruits. Asian J Pharm Clin Res 2015;8:270-3.
34. Andrade-Cetto A, Becerra-Jiménez J, Cárdenas-Vázquez R, Alphal-glucosidase inhibiting activity of some Mexican plants used in the treatment of type 2 diabetes. J Ethnopharmacol 2008;116:27-32.

How to cite this article

• Ritu Tyagi, Abha Shukla, Rishi Kumar Shukla. Phytochemical screening and pharmacological evaluation of different extracts of plant Casearia tomentosa leaves. Int J Pharm Pharm Sci 2017;9(4):166-171.