Photobiomodulation Improves the Inflammatory Response and Intracellular Signaling Proteins Linked to Vascular Function and Cell Survival in the Brain of Aged Rats

Fabrízio dos Santos Cardoso1,2,3 · Fernanda Cristina Borini Mansur4 · Bruno Henrique Silva Araújo5 · F. Gonzalez-Lima2 · Sérgio Gomes da Silva1,6,7

Received: 4 March 2021 / Accepted: 15 October 2021 / Published online: 27 October 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Photobiomodulation is a non-pharmacological tool widely used to reduce inflammation in many tissues. However, little is known about its effects on the inflammatory response in the aged brain. We conducted the study to examine anti-inflammatory effects of photobiomodulation in aging brains. We used aged rats (20 months old) with control (handled, laser off) or transcranial laser (660 nm wavelength, 100 mW power) treatments for 10 consecutive days and evaluated the level of inflammatory cytokines and chemokines, and the expression and activation of intracellular signaling proteins in the cerebral cortex and the hippocampus. Inflammatory analysis showed that aged rats submitted to transcranial laser treatment had increased levels of IL-1alpha and decreased levels of IL-5 in the cerebral cortex. In the hippocampus, the laser treatment increased the levels of IL-1alpha and decreased levels of IL-5, IL-18, and fractalkine. Regarding the intracellular signaling proteins, a reduction in the ERK and p38 expression and an increase in the STAT3 and ERK activation were observed in the cerebral cortex of aged rats from the laser group. In addition, the laser treatment increased the hippocampal expression of p70S6K, STAT3, and p38 of aged rats. Taken together, our data indicate that transcranial photobiomodulation can improve the inflammatory response and the activation of intracellular signaling proteins linked to vascular function and cell survival in the aged brain.

Keywords Laser · Photobiomodulation · Brain · Aging · Inflammation · Intracellular signaling proteins

Introduction
Photobiomodulation (PBM), also called low-level laser therapy [1], has emerged as a non-pharmacological, non-invasive tool capable of stimulating wound healing, reducing pain and inflammation in several diseases [2]. PBM mechanisms on the aging brain have been recently reviewed [3]. A primary mechanism of action of PBM involves the capacity of red-to-near-infrared photons of light to photo-oxidize mitochondrial cytochrome c oxidase (CCO) and promote a vascular response for oxygenation of the aging brain in vivo [4]. This action may lead to cerebral upregulation of CCO activity [5] and mitochondrial respiration for ATP production [6]. Also, PBM can release nitric oxide bound to CCO [7] and increase CCO-catalyzed nitric oxide synthesis to facilitate vasodilation and blood flow to the brain [8]. These and other well-documented PBM effects on the brain may induce anti-inflammatory and antioxidant properties [9–11].

Many human studies have also used transcranial PBM to improve brain functions in several conditions (e.g., [12–24].
For example, Vargas et al. [23] submitted healthy elderly people to PBMT and observed an improvement in cognitive functions in the psychomotor vigilance task (PVT), the test of sustained attention and the delayed match-to-sample (DMS), a test of visual working memory. Many studies using animal models have also shown interesting results of PBM on the brain (e.g., [11, 25–28]). For instance, Lu et al. [11] injected beta amyloid (Aβ) in the hippocampus of rats that were treated with laser PBM for 5 days. They noted that laser treatment restored spatial memory and object recognition memory. In addition, they observed an increase in the antioxidant capacity of hippocampal CA1 neurons and a decrease of Aβ-induced reactive gliosis and inflammation.

Recently, some authors have shown promising results of PBM in the aged brain [4, 23, 29–32]. However, there is little evidence to explain such effects, other than improved mitochondrial respiration and vascular function. It is known that brain aging is characterized by local inflammation with glial cells releasing increasing amount of pro-inflammatory cytokines such as IL-1beta, IL-6, and TNF-alpha [33, 34]. This process is directly involved with cellular dysfunctions characteristic of aging and Alzheimer’s disease [35, 36], which may result in an increase in the activation of signaling pathways linked to inflammation and cellular death such as c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38) [37].

Based on the well-documented anti-inflammatory effects of PBM in other tissues [38–40]: [41], we evaluated whether a transcranial treatment with a laser diode of 660 nm wavelength and 100 mW power can modulate the inflammatory response and expression and activation of intracellular signaling proteins in the cortex and hippocampus of aged rats.

Methods

Animals

Twenty-month-old male Wistar rats (n = 10) were used in this study. The colony room was maintained at 21 ± 2 °C with a 12 h light/dark schedule (light: 7 am until 7 pm), and food and water were provided ad libitum throughout the experimental period. All experimental protocols were approved by the ethics committee of the Universidade de Mogi das Cruzes (UMC) (#003/2020) and all efforts were made to minimize animal suffering in accordance with the proposals of the International Ethical Guideline for Biomedical Research (CIOMS 1985).

Laser and Control Protocols

Figure 1 shows a photo of the red laser used. The aged rats were randomly distributed into two groups: laser (n = 5) and control (n = 5). The animals of the laser group were manually immobilized and received the treatment with a laser diode of 660 nm wavelength and 100 mW power, with beam area of 0.03 cm², and irradiance at aperture of 3.33 W/cm² for 30 s at each of 5 irradiation points on the head, totalizing 15 J of energy, and scalp fluence of approximately 100.0 J/cm² at scalp surface, for 10 consecutive days. These PBM therapy were chosen based on our previous publications, showing that these parameters had anti-inflammatory effects in other tissues (Table 1) [38–41]. The target coordinates on the scalp were as follows: point 1 = AP + 4.20 mm and ML 0.00 mm; point 2 = AP − 3.00 mm and ML − 6.60 mm; point 3 = AP − 3.00 mm and ML + 6.60 mm; point 4 = AP 0.00 mm and ML 0.00 mm; and point 5 = AP − 5.52 mm and ML 0.00 mm. Therefore, the target brain regions were sensory-motor and limbic areas: secondary motor cortex (M2), anterior cingulate cortex (Cga), primary somatosensory cortex-upper limb (S1ULp), secondary somatosensory cortex (S2), posterior cingulate cortex (Cgp), retrosplenial dysgranular cortex (RSD), and retrosplenial granular cortex (RSCg) [42], as in our previous metabolomics study in the rat [25]. The animals of the control group were handled the same way, except that the laser was not turned on.
Tissue Preparation

One hour after the final laser or control session, aged rats from the laser (n = 5) and control (n = 5) groups were euthanized by decapitation and their cerebral cortex and hippocampus were immediately collected and frozen. The whole cerebral cortex and the hippocampus were homogenized in ice-cold RIPA lysis buffer (50 mM Tris–HCl, pH 7.5, 150 mM NaCl, 0.5% sodium deoxycholate, 1% NP-40, 0.1% SDS) with freshly added protease (Cat# M222–1 ml; Lot# 1295C056; Amresco) and phosphatase (Cat# B15001-A and B; Lot# 510,011; Biotool) inhibitors. Homogenates were centrifuged at 10,000 × g for 10 min at 4 °C and supernatants were collected for cytokine/chemokine quantification.

Methods for the Protein Detection and Analysis

Milliplex® MAP rat cytokine/chemokine magnetic bead panel assay (RECYMAG65K) was used to quantify the levels G-CSF, eotaxin, GM-CSF, IL-1alpha, leptin, MIP-1alpha, IL-4, IL-1beta, IL-2, IL-6, IL-13, IL-10, IL-5, IL-17alpha, IL-18, MCP-1, IP-10, VEGF, fractalkine, MIP-2, TNF-alpha, and RANTES in the brain samples of the studied groups. Milliplex® MAP kits 48-681MAG and 48-680MAG were used to evaluate the expression and brain activation of signaling proteins Akt, p70S6K, STAT3, STAT5, ERK, JNK, NF-kB, and p38. The plates were run on a Luminex™ MagpixTM instrument and results were analyzed with the Milliplex Analyst 5.1 software using a logistic 5P weighted regression formula to calculate sample concentrations from the standard curves.

Statistical Analyses

Statistical procedures were conducted using the Mann–Whitney U test that allows comparison of non-parametric data. All analyses were performed using the Statistical Package for the Social Science (SPSS Inc., IBM, version 221.0, Chicago, IL, USA). A statistical difference was considered significant when the p value was lower than 0.05. All plots were acquired using the GraphPad Prism (6.0).

Results

Cortical and Hippocampal Levels of Cytokines and Chemokines

To evaluate whether the PBM had anti-inflammatory effects on the aged brain, we quantified the cortical and hippocampal levels of several chemokines and cytokines in aged rats submitted to 10 consecutive days of laser treatment or control treatment. The detailed results of Mann–Whitney tests are presented in Supplementary Tables 1 and 2. The laser treatment increased the cortical level of IL-1alpha (p = 0.008) and reduced the IL-5 level (p = 0.046) (Fig. 2).

In the hippocampus, an increase in the IL-1alpha (p = 0.035) level was observed in the laser group. However, the laser treatment was able to reduce the levels of IL5 (p = 0.027), IL-18 (p = 0.049), and fractalkine (p = 0.037) in aged rats (Fig. 3). Taken together, these data showed that PBM changed the levels of neuroinflammatory markers in aged rats.

Cortical and Hippocampal Expression and Activation of Signaling Proteins

We investigated the cortical and hippocampal expression and activation of signaling proteins in aged rats submitted to laser treatment vs. control treatment. The detailed results of Mann–Whitney tests are presented in Supplementary Tables 3 and 4. The laser treatment decreased the cortical expression of ERK (p = 0.028) and p38 (p = 0.009). Interestingly, the laser treatment was able to increase the cortical activation of ERK (p = 0.014) and STAT3 (p = 0.0016) (Fig. 4).

In the hippocampus, the laser treatment increased the expression of p70S6K (p = 0.016) and STAT5 (p = 0.050) and decreased the expression of p38 (p = 0.028) in aged rats (Fig. 5).
Discussion

The aim of our study was to investigate levels of pro- and anti-inflammatory cytokines and chemokines and the expression and activation of signaling proteins in the brain of aged rats submitted to repeated treatment with a laser diode of 660 nm wavelength and 100 mW power. Our results indicate that transcranial PBM was able to modulate the expression and activation of signaling proteins and the inflammatory profile in the brain of aged rats.

Anti-inflammatory Effects of PBM on the Aged Brain

The laser treatment increased the levels of IL-1alpha and decreased the levels of IL-5 in both the cortex and hippocampus of aged rats. Interestingly, IL-1alpha has been shown to promote angiogenesis and to increase proliferation and migration of endothelial cells [43, 44]. The IL-1alpha findings are consistent with improving vascular function and oxygenation of the aged brain [4], which may help explain the facilitation of neurocognitive functions.
shown by transcranial PBM studies in older humans [23]. In contrast, a reduction of IL-5 may be beneficial to the aged brain because IL-5 induces proliferation and activation of microglia, which is characteristic of inflammatory reactions [45].

Moreover, PBM promoted an anti-inflammatory effect by reducing the hippocampal levels of IL-18 and fractalkine. IL-18 is a pro-inflammatory cytokine that inhibits cell differentiation and reduces neurogenesis and induces neuronal death in cultured neural progenitors [46, 47]. Further evidence suggests that IL-18 can activate the p38 signaling pathway [48]. Also, high levels of this cytokine are observed during aging and in neurodegenerative diseases [49, 50]. Fractalkine, in turn, is a chemokine regulated by pro-inflammatory cytokines such as TNFalpha and IL-1beta, which is involved in the communication between neurons and microglia [51]. High levels of fractalkine were observed in the cortex and hippocampus of a rat model of Alzheimer’s disease [52]. In this sense, reducing the levels of both IL-18 and fractalkine by laser treatment may contribute to improving the inflammatory response in the aging brain and in aging-related neurodegenerative diseases.

Effects of PBM on Signaling Proteins in the Aged Brain

PBM reduced the expression of ERK and p38 and increased the activation of STAT3 and ERK in the cortex of aged rats. In the hippocampus, PBM increased the expression of p70S6K and STAT5 and decreased the expression of p38. p38 pathway is stimulated by oxidative stress and pro-inflammatory cytokines which is related to cell proliferation, differentiation, and apoptosis [53, 54]. Also, p38 levels are elevated in the aging brain [37]. However, PBM treatment decreased p38 expression in the cortex and hippocampus of aged rats. Our data corroborate the findings of Salehpour...
et al. [55]. They noted that PBM reduced cortical and hippocampal levels of p38 in a mouse model of restraint stress. It is possible that these changes are linked to the anti-inflammatory and antioxidant properties of PBM in the brain of aged rats.

STAT3 modulates the expression of genes responsible for important physiological functions such as cell regulation and apoptosis control [56, 57]. STAT5 is linked to neuronal survival [58, 59]. Also, STAT5 is necessary for the neuroprotective and neurotrophic effects of growth hormone on hippocampal neurons [60]. However, STAT3 and STAT5 brain levels are decreased during aging [61]. Nevertheless, laser treatment increased STAT3 activation and the expression of STAT5 in the cortex of aged rats. These observed changes in intracellular signaling proteins may be linked to the anti-inflammatory effects of PBM in the cortex and hippocampus of aged rats.

High levels of neuroinflammatory markers are observed during aging [62, 63], indicating a pro- and anti-inflammatory imbalance [64]. In particular, it is possible that PBM of the neuroinflammatory response is related to increases in the activation of intracellular signaling proteins STAT3 and ERK in the cortical region. In this sense, STAT3 is a transcription factor that interacts with polypeptide receptors in the cell membrane, mediating extracellular signals such as growth factors and cytokines [65]. When activated by tyrosine phosphorylation, STAT3 dimerizes and translocates to the nucleus, thus activating the target genes [66]. The activation of STAT3 suppresses the expression of pro-inflammatory mediators, promoting an immune evasion and blocking the production and detection of inflammatory signals by several components of the immune system [67].

ERK can be activated by growth factors, such as the epidermal growth factor (EGF) that is associated with the attenuation of pro-inflammatory mediators (García-Ojalvo et al., 2019), activating rat sarcoma (Ras), which recruits root abundant factor (Raf) for the membrane. Raf activates Mek, which in turn activates ERK. ERK activation triggers cell proliferation, differentiation, and cell migration [53]. It is possible that the neuroinflammatory response in the cortex may trigger the activation of the ERK signaling pathways which in turn activates STAT3 [68]. In this context, it is possible that the increased ERK activation is linked to the anti-inflammatory effect of laser treatment.

Limitations

We did not evaluate functional parameters, such as cognitive functions, since our goal was to investigate whether repeated laser treatment alters the cortical and hippocampal inflammatory and signaling profiles in aged rats. Also, the use of a small number of old rats with one laser dose and the absence of a control group of younger rats are also limitations. We used only one dose due to the difficulty in obtaining aged rats. This dose was used based on our previous studies showing anti-inflammatory effects in other tissues. The inclusion of a young control group would be interesting to analyze the differences in intracellular signaling protein levels and inflammatory response between young and aged rats. More studies are necessary to investigate these issues. Here, we conducted a study to examine anti-inflammatory effects of photobiomodulation in aging brains. Our research interest was based in previous studies showing changes in protein levels and inflammatory response in the aged brain [37, 61, 69–71].

Conclusion

Taken together, our data suggest that transcranial PBM improves the inflammatory response and the activation of intracellular signaling proteins linked to vascular function and cell survival in the brain of aged rats.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s12035-021-02606-4.

Acknowledgements This study was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP; #2017/16443-0). F. Gonzalez-Lima was supported by the Oskar Fischer Project Fund.

Author Contribution Conceived and designed the experiments: FSC, FCBM, and SGS. Performed the experiments: FSC and FCBM. Analyzed the data: FSC and SGS. Contributed reagents/materials/analysis tools: FSC, BHSA, and SGS. Wrote the manuscript: FSC, FGL, and SGS. Approved the final version of the manuscript: FSC, FCBM, BHSA, FGL, and SGS.

Funding Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP; #2017/16443–0).

Availability of Data and Material Not applicable.

Declarations

Ethics Approval All experimental protocols were approved by the ethics committee of the Universidade de Mogi das Cruzes (UMC) (#003/2020).

Consent to Participate Not applicable.

Consent for Publication. Not applicable.

Conflict of Interest The authors declare no competing interests.

References

1. Anders JJ, Lanzafame RJ, Arany PR (2015) Low-level light/laser therapy versus photobiomodulation therapy. Photomed Laser Surg 33:183–184
2. Chung H, Dai T, Sharma SK, Huang YY, Carroll JD, Hamblin MR (2012) The nuts and bolts of low-level laser (light) therapy. Ann Biomed Eng 40(2):516–533
3. Cardoso, F. D. S., Gonzalez-Lima, F., Gomes da Silva, S. (2021a). Photobiomodulation for the aging brain. Ageing Research Reviews, 101415.
4. Saucedo CL, Courtois EC, Wade ZS, Kelley MN, Kheradbin N, Barrett DW, Gonzalez-Lima F (2021) Transcranial laser stimulation: mitochondrial and cerebrovascular effects in younger and older healthy adults. Brain Stimul 14(2):440–449
5. Rojas JC, Bruchey AK, Gonzalez-Lima F (2012) Low-level light therapy improves cortical metabolic capacity and memory retention. J Alzheimers Dis 32(3):741–752
6. De Freitas LF, Hamblin MR (2016) Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J Sel Top Quantum Electron 22(3):348–364
7. Karu TI, Pyatibrat LV, Afanasyeva NI (2005) Cellular effects of low power laser therapy can be mediated by nitric oxide. Lasers in Surgery and Medicine: The Official Journal of the American Society for Laser Medicine and Surgery 36(4):307–314
8. Poyton, R. O., Hendrickson, M. (2016). Molecular basis for photobiomodulation: light-induced nitric oxide synthesis by cytochrome c oxidase in low-level laser therapy. In Handbook of low-level laser therapy (pp. 201–220). Jenny Stanford Publishing.
9. Cardoso, F. D. S., Tavares, C. D. S. O., Araújo, B. H. S., Mansur, F., Lopes-Martins, R. A. B., Gomes da Silva, S. (2021b). Improved spatial memory and neuroinflammatory profile changes in aged rats submitted to photobiomodulation therapy. Cellular and Molecular Neurobiology, 1–12.
10. De Taboada L, Yu J, El-Amouri S, Gattoni-Celii, Sichieri R, McCarthy T, Kindy MS (2011) Transcranial laser therapy attenuates amyloid-β peptide neuropathology in amyloid-β protein precursor transgenic mice. J Alzheimers Dis 23(3):521–535
11. Lu Y, Wang R, Dong Y, Tucker D, Zhao N, Ahmed ME, Zhu L, Liu TCY, Cohen RM, Zhang Q (2017) Low-level laser therapy for beta amyloid toxicity in rat hippocampus. Neurobiol Aging 49:165–182
12. Barrett DW, Gonzalez-Lima F (2013) Transcranial infrared laser stimulation produces beneficial cognitive and emotional effects in humans. Neuroscience 230:13–23
13. Blanco NJ, Maddox WT, Gonzalez-Lima F (2017) Improving executive function using transcranial infrared laser stimulation. J Neuropsychol 11(1):14–25
14. Blanco NJ, Saucedo CL, Gonzalez-Lima F (2017) Transcranial infrared laser stimulation improves rule-based, but not information-integration, category learning in humans. Neurobiol Learn Mem 139:69–75
15. Disner SG, Beevers CG, Gonzalez-Lima F (2016) Transcranial laser stimulation as neuroenhancement for attention bias modification in adults with elevated depression symptoms. Brain Stimul 9(5):780–787
16. Eells, J. T., Gopalakrishnan, S., Valter, K. (2016). Near-infrared photobiomodulation in retinal injury and disease. In Retinal degenerative diseases (pp. 437–441). Springer, Cham.
17. Holmes E, Barrett DW, Saucedo CL, O’Connor P, Liu H, Gonzalez-Lima F (2019) Cognitive enhancement by transcranial photobiomodulation is associated with cerebrovascular oxygenation of the prefrontal cortex. Front Neurosci 13:1129
18. Hwang J, Castelli DM, Gonzalez-Lima F (2016) Cognitive enhancement by transcranial laser stimulation and acute aerobic exercise. Lasers Med Sci 31(6):1151–1160
19. Muili KA, Gopalakrishnan S, Eells JT, Lyons JA (2013) Photobiomodulation induced by 670 nm light ameliorates MOG35–55 induced EAE in female C57BL/6 mice: a role for remediation of nitrosative stress. PLoS one 8(6):e67358
20. Muili KA, Gopalakrishnan S, Meyer SL, Eells JT, Lyons JA (2012) Amelioration of experimental autoimmune encephalomyelitis in C57BL/6 mice by photobiomodulation induced by 670 nm light. PLoS one 7(1):e30655
21. Schiffer F, Johnston AL, Ravichandran C, Polcari A, Teicher MH, Webb RH, Hamblin MR (2009) Psychological benefits 2 and 4 weeks after a single treatment with near infrared light to the forehead: a pilot study of 10 patients with major depression and anxiety. Behav Brain Funct 5(1):1–13
22. Tian F, Hase SN, Gonzalez-Lima F, Liu H (2016) Transcranial laser stimulation improves human cerebral oxygenation. Lasers Surg Med 48(4):343–349
23. Vargas E, Barrett DW, Saucedo CL, Huang LD, Abraham JA, Tanaka H, Haley AP, Gonzalez-Lima F (2017) Beneficial neurocognitive effects of transcranial laser in older adults. Lasers Med Sci 32(5):1153–1162
24. Wang X, Tian F, Reddy DD, Nalawade SS, Barrett DW, Gonzalez-Lima F, Liu H (2017) Up-regulation of cerebral cytochrome-c oxidase and hemodynamics by transcranial infrared laser stimulation: a broadband near-infrared spectroscopy study. J Cereb Blood Flow Metab 37(12):3789–3802
25. Cardoso FDS, Dos Santos JCC, Gonzalez-Lima F, Araújo BHS, Lopes-Martins RAB, Gomes da Silva S (2021) Effects of chronic photobiomodulation with transcranial near-infrared laser on brain metabolomics of young and aged rats. Mol Neurobiol 58(5):2256–2268
26. El Massri N, Lengrubner AP, Rowe J, Moro C, Torres N, Reinhart F, Chabrol C, Benabid AL, Mitrofanis J (2017) Photobiomodulation-induced changes in a monkey model of Parkinson’s disease: changes in tyrosine hydroxylase cells and GDNF expression in the striatum. Exp Brain Res 235(6):1861–1874
27. Rojas JC, Gonzalez-Lima F (2011) Low-level light therapy of the eye and brain. Eye and brain 3:49
28. Rojas JC, Lee J, John JM, Gonzalez-Lima F (2008) Neuroprotective effects of near-infrared light in an in vivo model of mitochondrial optic neuropathy. J Neurosci 28(50):13511–13521
29. O’Donnell, C. M., D. W. Barrett, L. H. Fink, E. C. Garcia-Pittman, Gonzalez-Lima, F. (2021). Transcranial infrared laser stimulation improves cognition in older bipolar patients: proof of concept study. Journal of Geriatric Psychiatry and Neurology, 089198720988906.
30. Salehpour F, Ahmadian N, Rasta SH, Farhoudi M, Karimi P, Sadigh-Etehadt S (2017) Transcranial low-level laser therapy improves brain mitochondrial function and cognitive impairment in D-galactose–induced aging mice. Neurobiol Aging 58:140–150
31. Salehpour F, De Taboada L, Cassano P, Kamari F, Mahmoudi J, Ahmadi-Kandjani S, Rasta SH, Sadigh-Etehadt S (2018) A protocol for transcranial photobiomodulation therapy in mice. JoVE (Journal of Visualized Experiments) 141:e59076
32. Salgado AS, Zângaro RA, Parreira RB, Kerpers IO (2015) The effects of transcranial LED therapy (TCLT) on cerebral blood flow in the elderly women. Lasers Med Sci 30(1):339–346
33. Cribbs DH, Berchtold NC, Perreau V, Coleman PD, Rogers J, Tenner AJ, Cotman CW (2012) Extensive innate immune gene activation accompanies brain aging, increasing vulnerability to cognitive decline and neurodegeneration: a microarray study. J Neuroinflammation 9(1):1–18
34. Norden DM, Godbout JP (2013) Microglia of the aged brain: primed to be activated and resistant to regulation. Neuronphol Appl Neurobiol 39(1):19–34
35. Hong S, Beja-Glasser VF, Nfonoyim BM, Frouin A, Li S, Rama-akrishnan S, Merry KM, Shi Q, Rosenthal A, Barres BA, Lemere CA, Selkoe DJ, Stevens B (2016) Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 352(6286):712–716
36. Stephan AH, Madison DV, Mateos JM, Fraser DA, Lovelett EA, Coutelier L, Kim L, Tsai HH, Huang EJ, Rowitch DH, Berns DS, Tenner AJ, Shamloo M, Barres BA (2013) A dramatic increase of C1q protein in the CNS during normal aging. J Neurosci 33(33):13460–13474

37. O’Donnell E, Vereker E, Lynch MA (2000) Age-related impairment in LTP is accompanied by enhanced activity of stress-activated protein kinases: analysis of underlying mechanisms. Eur J Neurosci 12(1):345–352

38. Almeida P, Lopes-Martins RÁB, Tomazoni SS, Albuquerque-Pontes GM, Santos LA, Vanin AA, Frigo L, Vieira RP, Albertini R, Carvalho PTC, Leal-Junior ECP (2013) Low-level laser therapy and sodium diclofenac in acute inflammatory response induced by skeletal muscle trauma: effects in muscle morphology and in RNA gene expression of inflammatory markers. Photochem Photobiol 89(2):501–507

39. Haslerud S, Lopes-Martins RAB, Frigo L, Bjordal JM, Marcos RL, Naterstad IF, Magnussen RH, Joensen J (2017) Low-level laser therapy and cryotherapy as mono-and adjunctive therapies for Achilles tendinopathy in rats. Photomed Laser Surg 35(1):32–42

40. Tomazoni SS, Leal-Junior ECP, Pallotta RC, Teixeira S, de Almeida P, Lopes-Martins RÁB (2017) Effects of photobiomodulation therapy, pharmacological therapy, and physical exercise as single and/or combined treatment on the inflammatory response induced by experimental osteoarthritis. Lasers Med Sci 32(1):101–108

41. Naterstad IF, Rossi RP, Marcos RL, Parizzoto NA, Frigo L, Joensen I, Lopes-Martins PSL, Bjordal JM, Lopes-Martins RAB (2018) Comparison of photobiomodulation and anti-inflammatory drugs on tissue repair on collagenase-induced Achilles tendon inflammation in rats. Photomed Laser Surg 36(3):137–145

42. Paxinos G, Watson C. The rat brain in stereotaxic coordinates: hard cover edition. Elsevier. 2006.

43. Saini MG, Bix GJ (2012) Oxygen–glucose deprivation (OGD) and interleukin-1 (IL-1) differentially modulate cathepsin B/L mediated generation of neuroprotective perlecan LG3 by neurons. Brain Res 1438:65–74

44. Salmeron K, Aihara T, de Vellis J (2001) IL-1alpha induces angiogenesis in brain endothelial cells in vitro: implications for brain angiogenesis after acute injury. J Neurochem 36(3):573–580

45. Liva SM, de Vellis J (2001) IL-1 induces proliferation and activation of microglia via an unknown receptor. Neurochem Res 26(6):629–637

46. Liu YP, Lin HL, Tseng SF (2005) Tumor necrosis factor-α and interleukin-18 modulate neuronal cell fate in embryonic neural progenitor culture. Brain Res 1054(2):152–158

47. Zhu C, Huang Z, Gao J, Zhang Y, Wang X, Karlsson N, Li Q, Lannerberg B, Bjork-Erikson T, Kuhn HG, Blomgren K (2009) Irradiation to the immature brain attenuates neurogenesis and exacerbates subsequent hypoxic-ischemic brain injury in the adult. J Neurosci 111(6):1447–1456

48. Arend WP, Palmer G, Gabay C (2008) IL-1, IL-18, and IL-33 families of cytokines. Immunol Rev 223(1):20–38

49. Bellaver B, Souza DG, Souza DO, Quincozes-Santos A (2017) Hippocampal astrocyte cultures from adult and aged rats reproduce changes in glial functionality observed in the aging brain. Mol Neurobiol 54(4):2969–2985

50. Bossi P, Ciaranna M, Salani F, Vanni D, Palladino I, Caltagirone C, Scapigliati G (2010) Interleukin-18, from neuroinflammation to Alzheimer’s disease. Curr Pharm Des 16(38):4213–4224

51. Desforges, N. M., Hebron, M. L., Algarzae, N. K., Lonskaya, I., Moussa, C. E. H. (2012). Fractalkine mediates communication between pathogenic proteins and microglia: implications of anti-inflammatory treatments in different stages of neurodegenerative diseases. International Journal of Alzheimer’s Disease, 2012.

52. Hanzel CE, Pichert-Binette A, Pimentel LS, Iulita MF, Allard S, Ducatenzeiler A, Carmo S, Cuello AC (2014) Neuronal driven pre-plaque inflammation in a transgenic rat model of Alzheimer’s disease. Neurobiol Aging 35(10):2249–2262

53. Kim E. K., Choi E. J. (2010). Pathological roles of MAPK signaling pathways in human diseases. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1802(4):396–405.

54. Zhang, J., Wang, X., Vikash, V., Ye, Q., Wu, D., Liu, Y., Dong, W. (2016). ROS and ROS-mediated cellular signaling. Oxidative medicine and cellular longevity, 2016.

55. Salehpour F, Farajdotf K, Cassano P, Sadigh-Eteghad S, Erfani M, Hamblin MR, Mahmoudi J (2019) Near-infrared photobiomodulation combined with coenzyme Q10 for depression in a mouse model of restraint stress: reduction in oxidative stress, neuroinflammation, and apoptosis. Brain Res Bull 144:213–222

56. Desrivieres S, Kunz C, Barash I, Vafaizadeh V, Borghouts C, Groner B (2006) The biological functions of the versatile transcription factors STAT3 and STAT5 and new strategies for their targeted inhibition. J Mammary Gland Biol Neoplasia 11(1):75–87

57. Kim DJ, Tremblay ML, DiGiovanni J (2010) Protein tyrosine phosphatases, TC-PTP, SHP1, and SHP2, cooperate in rapid dephosphorylation of Stat3 in keratinocytes following UVB irradiation. PloS one 5(4):e10290

58. Um M, Lodish HF (2006) Antia apoptotic effects of erythropoietin in differentiated neuroblastoma SH-SY5Y cells require activation of both the STAT5 and AKT signaling pathways. J Biol Chem 281(9):5648–5656

59. Zhang F, Wang S, Cao G, Gao Y, Chen J (2007) Signal transducers and activators of transcription 5 contributes to erythropoietin-mediated neuroprotection against hippocampal neuronal death after transient global cerebral ischemia. Neurobiol Dis 25(1):45–53

60. Byts N, Samoylenko A, Fasshauer T, Ivanisetc M, Hennighausen L, Ehrenreich H, Siern AL (2008) Essential role for Stat5 in the neurotrophic but not in the neuroprotective effect of erythropoietin. Cell Death Differ 15(4):783–792

61. Bazhanova, E. D., Anisimov, V. N. (2016). The role of STAT transcription factors in apoptosis regulation of hypothalamic neurons in aging in HER-2/neu transgenic mice and wild-type FVB/N mice. In Doklady Biochemistry and Biophysics 468(1):217–219. Pleiades Publishing.

62. Godbout JP, Chen J, Abraham J, Richwine AF, Berg BM, Kelsey KW, Johnson RW (2005) Exaggerated neuroinflammation and sickness behavior in aged mice following activation of the peripheral innate immune system. FASEB J 19(10):1329–1331

63. Lee CK, Weinruch R, Prolla TA (2000) Gene-expression profile of the ageing brain in mice. Nat Genet 28(3):294–297

64. Godbout JP, Johnson RW (2009) Age and neuroinflammation: a lifetime of psychoneuroimmune consequences. Immunol Allergy Clin North Am 29(2):321–337

65. Levy DE, Darnell JE (2002) Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol 3(9):651–662

66. You L, Wang Z, Li H, Shou J, Jing Z, Xie J, Sui X, Pan H, Han W (2015) The role of STAT3 in autophagy. Autophagy 11(5):729–739

67. Wang T, Niu G, Kortylewski M, Burdelya L, Shain K, Zhang S, Bhattacharya R, Gabriolovich D, Heller R, Coppola D, Dalton W, Jove R, Pardoll D, Yu H (2004) Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat Med 10(1):48–54

68. David M, Petricoin EIII, Benjamin C, Pine R, Weber MJ, Larner AC (1995) Requirement for MAP kinase (ERK2) activity in...
interferon alpha-and interferon beta-stimulated gene expression through STAT proteins. Science 269(5231):1721–1723

69. English JD, Sweatt JD (1997) A requirement for the mitogen-activated protein kinase cascade in hippocampal long term potentiation. J Biol Chem 272(31):19103–19106

70. Jin Y, Yan EZ, Li XM, Fan Y, Zhao YJ, Liu Z, Liu WZ (2008) Neuroprotective effect of sodium ferulate and signal transduction mechanisms in the aged rat hippocampus I. Acta Pharmacol Sin 29(12):1399–1408

71. Ye SM, Johnson RW (2001) An age-related decline in interleukin-10 may contribute to the increased expression of interleukin-6 in brain of aged mice. NeuroImmunoModulation 9(4):183–192

72. Council for International Organizations of Medical Sciences (1985) International guiding principles for biomedical research involving animals. Altern Lab Anim 12:ii

73. Dong T, Zhang Q, Hamblin MR, Wu MX (2015) Low-level light in combination with metabolic modulators for effective therapy of injured brain. J Cereb Blood Flow Metab 35(9):1435–1444

74. García-Ojalvo A, Berlanga Acosta J, Figueroa-Martínez A, Béquet-Romero M, Mendoza-Mari Y, Fernández-Mayola M, Fabelo-Martínez A, Guillén-Nieto G (2019) Systemic translation of locally infiltrated epidermal growth factor in diabetic lower extremity wounds. Int Wound J 16(6):1294–1303

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.