Non-invasive and high-throughput interrogation of exon-specific isoform expression

Dong-Jiunn Jeffery Truong1,2, Teeradon Phlairaharn1,2, Bianca Eßwein3, Christoph Gruber3, Deniz Tümen1,4, Enikő Baligács1,2, Niklas Armbrust1,2, Francesco Leandro Vaccaro1,2, Eva-Maria Lederer1,2, Eva Magdalena Beck1,2, Julian Geilenkeuser1,2, Simone Göppert1,2, Luisa Krumwiede1,2, Christian Grätz1,2, Gerald Raffl1,2, Dominic Schwarz1,2, Martin Zirngibl1,2, Milica Živanić1,2, Maren Beyer1,2, Johann Dietmar Körner1,2, Tobias Santl1,2, Valentin Evsyukov5,6,7, Tabea Strauß1,2, Sigrid C. Schwarz5,6, Günter U. Höglinger5,6,7, Peter Heutink8,9, Sebastian Doll10, Marcus Conrad10,11, Florian Giesert3, Wolfgang Wurst3,12 and Gil Gregor Westmeyer1,2

Expression of exon-specific isoforms from alternatively spliced mRNA is a fundamental mechanism that substantially expands the proteome of a cell. However, conventional methods to assess alternative splicing are either consumptive and work-intensive or do not quantify isoform expression longitudinally at the protein level. Here, we therefore developed an exon-specific isoform expression reporter system (EXSISERS), which non-invasively reports the translation of exon-containing isoforms of endogenous genes by scarlessly excising reporter proteins from the nascent polypeptide chain through highly efficient, intein-mediated protein splicing. We applied EXSISERS to quantify the inclusion of the disease-associated exon 10 in microtubule-associated protein tau (MAPT) in patient-derived induced pluripotent stem cells and screened Cas13-based RNA-targeting effectors for isoform specificity. We also coupled cell survival to the inclusion of exon 18b of FOXP1, which is involved in maintaining pluripotency of embryonic stem cells, and confirmed that MBNL1 is a dominant factor for exon 18b exclusion. EXSISERS enables non-disruptive and multimodal monitoring of exon-specific isoform expression with high sensitivity and cellular resolution, and empowers high-throughput screening of exon-specific therapeutic interventions.

Alternative splicing occurs in >90% of genes, and its impairment is associated with diseases such as spinal muscular atrophy and Parkinson’s disease. Established methods for analysing splicing isoforms measure mRNA by end-point labelling (quantitative PCR with reverse transcription (RT-qPCR), single-molecule fluorescence in situ hybridization (smFISH) and RNA sequencing), measure protein using single-timepoint immunochemistry (immunoblot analysis, immunofluorescence staining) or seek to mimic the genetic regulations using minigene analysis.

Current protein-level methods for detecting isoform-specific expression are limited by the availability of exon-specific antibodies. In comparison, analyses at the mRNA level can be misleading because post-transcriptional and co-translational regulation does not necessarily change mRNA levels, for example, in cases of translation arrest, ribosomal-frameshift-regulated or locally translated non-disruptive and multimodal monitoring of exon-specific isoform expression with high sensitivity and cellular resolution, and empowers high-throughput screening of exon-specific therapeutic interventions.

In a classical minigene experiment, fragments of the genomic sequence, particularly exon–intron fragments, are copied into a plasmid driven by a constitutive promoter and expressed in a cell line of interest. The minigene’s splice behaviour is then read out by RT–qPCR or an embedded reporter gene. Although this method can efficiently provide valuable insights into alternative splicing, it may not always reflect the physiological processes because partial intron/exon motifs may be overexpressed at unnatural levels, while essential regulatory sequences may be truncated.

For example, the alternatively spliced gene encoding microtubule-associated protein tau (MAPT) contains several mutations that are involved in the pathogenesis of Parkinsonian disorders located in introns up to 47 kb away from downstream or upstream exonic sequences. Moreover, many vertebrate genes are recursively spliced, which may not be recapitulated by the truncated introns in minigenes. Thus, the length of introns is an important parameter to predict the validity of the splicing behaviour observed in minigenes, in contrast to the exon size, which has had only a small role in experimental settings in vivo. As a consequence, there is a trend towards increasing the size of the constructs by including large genomic fragments with multiple exons and full-length introns to better recapitulate splicing defects. However, these ‘minigenes’ are cumbersome to assemble, usually requiring bacterial artificial chromosomes, and their sizes limit reasonable efficiencies in plasmid transfections.

1Institute for Synthetic Biomedicine, Helmholtz Zentrum München, Oberschleißheim, Germany. 2Department of Chemistry and TUM School of Medicine, Technical University of Munich, Munich, Germany. 3Institute of Developmental Genetics, Helmholtz Zentrum München, Oberschleißheim, Germany. 4Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Germany. 5German Center for Neurodegenerative Diseases (DZNE), Munich, Germany. 6Department of Neurology, Technical University Munich, Munich, Germany. 7Department of Neurology, Hannover Medical School, Hannover, Germany. 8Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany. 9German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany. 10Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Oberschleißheim, Germany. 11Laboratory of Experimental Oncology, National Research Medical University, Moscow, Russia. 12TUM School of Life Sciences, Technical University of Munich, Freising, Germany. E-mail: gil.westmeyer@tum.de
It has also been suspected that, during plasmid-based overexpression of minigenes, splice factors may be competitively bound away, leading to depletion from endogenous sites and thus unphysiological splicing of collateral genes\(^5\). Consequently, it is improbable that the regulatory machinery can be faithfully recapitulated outside of the precise three-dimensional genomic architecture at the endogenous sites.

Thus, we developed EXSISERS, which non-invasively quantifies endogenous exon usage at the protein level through a scarless post-translational excision of an exon-resident effector domain using intein-mediated protein splicing.

Here, we demonstrate how different self-excising reporter and effector proteins can be conveniently integrated into an exon of interest (EOI) using CRISPR–Cas9 (ref. \(^{18}\)) to enable longitudinal quantification and cellular imaging of exon-specific isofrom expression. We also show a high-throughput analysis of exon-specific interventions and enrichment of cells expressing an EOI for rapid identification of splicing regulators.

Results

Scarless excision of exon inclusion reporters. The core concept of EXSISERS is that, after inclusion of an EOI, a reporter or effector of choice is co-translated and rapidly released by an efficient split–intein\(^{\text{19},\text{20}}\) protein splicing event resulting in an unmodified protein isoform and thereby preserving the original isofrom ratios (Fig. 1a,b).

To demonstrate non-invasive monitoring of an EOI within the natural genomic context and without changing the natural gene expression products, we first generated dual-luciferase EXSISERS lines for ratiometric monitoring of MAPT exon 10 (Fig. 1a and Supplementary Figs. 1 and 2).

MAPT is primarily expressed in neurons and mediates microtubule polymerization and stabilization\(^2\). In the adult human central nervous system, tau is expressed in six isoforms produced by alternative splicing of MAPT exons 2, 3 and 10 (Fig. 1a). Depending on the exclusion or inclusion of exon 10, tau isoforms contain three (3R-tau) or four (4R-tau) tandem repeats of a microtubule-binding motif\(^2\). An abundance of 4R-tau isoforms is implicated in a group of neurodegenerative diseases termed 4R-tauopathies\(^2\). Thus, strategies to specifically reduce 4R-tau isoforms are investigated as therapeutic approaches. The development of such interventions could be facilitated using high-throughput screening systems if appropriate read-outs to monitor total tau and 4R-tau expressions were available.

Ratiometric quantification of tau isoform expression. Using CRISPR–Cas9, we inserted NanoLuc luciferase (NLuc)\(^{24}\) homogeneously into MAPT exon 10 of HEK293T cells flanked by the recently discovered ultra-fast splicing split–intein pair gp41-1 (ref. \(^{10}\)) (Supplementary Figs. 1 and 2; details are provided at the Protocol Exchange\(^{25}\)). Importantly, to further accelerate intein splicing, we introduced bioorthogonal anti-parallel coiled-coil (CC) domains, which enhance the co-folding of the split–intein binary complex\(^{26}\) (Extended Data Fig. 1).

To enable ratiometric read-out of exon 10 containing tau isoforms referenced against total tau (pan-tau), we homozymously inserted firefly luciferase (FLuc), flanked by a second bioorthogonal set\(^2\) of fast splicing inteins (NrdJ-1)\(^{18}\), into the non-alternatively spliced exon 11 (Fig. 1a,b). As a consequence, the NLuc signal from the ratiometric EXSISERS\(^{\text{MAPT-IVS10+16-11FLuc}}\) cell line represents the expression of exon-10-specific 4R isoforms, whereas FLuc luminescence from a bioorthogonal substrate indicates the cumulative expression of all tau isoforms (Fig. 1a,b).

To confirm that intein splicing does not affect isoform expression, we cloned the corresponding 0N4R isoform CDN into a plasmid for strong overexpression of the dual-luciferase reporter system. A clear 0N4R band but hardly any unspliced protein was detected in contrast to catalytically inactive inteins (C-gp41-1\(_{SD}\), C-NrdJ-1\(_{SD}\); Extended Data Fig. 2a,b). To assess the relative bioluminescence signal strength of NLuc and FLuc, we transfected cells with increasing amounts of plasmids to express both luciferases in a 1:1 stoichiometry. We found a linear relationship between the relative luminescence units (RLU) over a wide range of values and a ~30-fold brighter signal for NLuc over FLuc (Extended Data Fig. 2c).

In addition to the stable EXSISERS line for wild-type MAPT, we also generated a line for the well-known MAPT IVS10+16 C>T mutation\(^{27}\), which shifts the ratio of 4R/pan-tau towards 4R (EXSISERS\(^{\text{MAPT-IVS10+16-11FLuc}}\) IVS10+16 C>T). When MAPT expression was stimulated in these EXSISERS lines by dCas9 transactivators\(^1\), immunofluorescence showed the typical cytosolic tau staining as in unmodified HEK293T cells (Supplementary Fig. 3a).

Immunofluorescence analysis confirmed that the insertion of the reporter did not change the splicing pattern compared to unmodified HEK293T cells (left lane), indicating scarless post-translational excision of the reporters (Fig. 1c and Supplementary Figs. 3–5). Addition of the disease-associated IVS10+16 C>T hairpin destabilizing mutation led to a visible increase of the 4R isoform (Fig. 1c (right lane) and Supplementary Fig. 3b), which was also validated in independent clones (Supplementary Figs. 4 and 5). The amount of excited NLuc (OLLAS-tagged) was substantially increased in the IVS10+16 C>T reporter line, corresponding to a relative increase in the 4R-tau isoform.

This pattern was reproduced by the dual-luciferase read-out that revealed an approximately fourfold increase in the NLuc/FLuc ratio (\(P=0.0001\) for uninduced and \(P<0.0001\) for induced; two-way analysis of variance (ANOVA) with Bonferroni multiple-comparisons test (MCT)) for the C>T hairpin modification, consistent with the literature, which reports an increase of twofold to sixfold\(^{2,3}\) (Fig. 1d and Supplementary Table 1 (results of the statistical tests)).

Protein splicing enhanced by CCs was very efficient in EXSISERS\(^{\text{MAPT-IVS10+16-11FLuc}}\) lines, and prespliced products could only be detected after heavy overexposure and contrast enhancement enhancement.
(Supplementary Fig. 5). All other clones with the IVS10+16 C>T mutation also showed increased 0N4R expression compared with 0N3R. We also analysed additional unmodified HEK293T sub-clones besides the parental HEK293T and confirmed that 4R tau bands were only faintly visible (Supplementary Fig. 6).

Furthermore, an alternative insertion, 2 amino acids (6 nucleotides) downstream of the original insertion site in exon 10 did not yield any obvious difference in splicing pattern compared to unmodified HEK29T cells, indicating the robustness of the method (Supplementary Fig. 7).

As a further control, we also created a minigene version of EXSISERS (driven by mouse Pgk1 promoter), similar to previous research34,35, in which only the exon-flanking portions between exon 9 and 10 and between exon 10 and 11 were cloned into the tau

Table 1: MAPT mRNA Isoforms

Exon	Name	NLuc	FLuc
4	3R	X	X
5	3R	X	X
9	0N3R	X	+
10	1N3R	X	+
10	2N3R	+	+
10	0N4R	+	+
10	1N4R	+	+
10	2N4R	+	+

Figure 1: Human MAPT Locus

- **Human MAPT locus**: Exons 1 to 4, Exons 9 and 10, Amino acids, Name, NLuc, FLuc.
- **Different MAPT mRNA isoforms**: N1, N2, R1, R2, R3, R4.
- **Exon 10 Intron**: C>T, IVS10 +16 C>T.
- **EXSISERS**: MAPT:10NLuc-11FLuc.

Figure 2: Translation and Intein Association

- **Translation Product**: NLuc, FLuc, De novo translation product.
- **Intein Association**: Translation Intein association + protein splicing.
- **Excised Reporters**: Em = 460 nm, Em = 565 nm.

Figure 3: Western Blot Analysis

- **293T**, WT, IVS10 + 16 C>T.
- **Pan-tau**: MM (kDa) 52, 76.
- **3R-tau**: MM (kDa) 52, 76.
- **OLLAS (NLuc)**: MM (kDa) 38.
- **Flag (FLuc)**: MM (kDa) 102.
- **ACTB**: MM (kDa) 52.
- **MAPT induction**.

Figure 4: MAPT Reporter Activity

- **FLuc**, NLuc, NLuc/FLuc (4R/pan-tau).
- **MAPT induction**.

CDS and expressed transiently (Extended Data Fig. 3a). Consistent with previous reports, we observed greatly increased inclusion of exon 10 (NLuc) for the minigene version compared with unmodified HEK293T cells, which showed only ~3–4% fractional exon 10 inclusion after MAPT induction (Extended Data Fig. 3b–e).

By contrast, EXSISERS:MAPT:10NLuc-11FLuc showed a fractional exon 10 inclusion of ~4% on the basis of immunoblot and bioluminescence analysis, similar to the parental HEK293T cells (Fig. 1c and Supplementary Fig. 3b,c).

Single-cell and longitudinal monitoring of MAPT exon 10 usage. We next assessed EXSISERS for non-invasive imaging and multi-time-point analysis of MAPT exon 10 usage (Fig. 2a). Using bioluminescence microscopy, we resolved individual cells 2 d after the addition of luciferase substrate to plot the distribution of the luminescence signal over cell populations without or with MAPT induction (Fig. 2b,c).

Next, we tested whether the effect of small molecules on exon 10 inclusion can be reliably followed by ratiometric EXSISERS:MAPT:10NLuc-11FLuc. We chose 5-iodotubercidin (ITU), a DYRK1A and GSK3A inhibitor that stimulates exon 10 inclusion through SRSF2 (also known as SC35). After application of ITU, we observed a concentration-dependent increase of the NLuc/FLuc-ratio to up to fourfold (P < 0.0001, one-way ANOVA with Bonferroni MCT; Fig. 2d). Dose-dependent expression of 4R-tau was validated using immunoblot analysis of unmodified HEK293T and EXSISERS:MAPT:10NLuc-11FLuc cells (Extended Data Fig. 4 and Supplementary Fig. 8).

We next examined the effect of ITU over time and observed an increase in the 4R/pan-tau ratio during MAPT induction, followed by a dose-dependent offset of the ratio, reaching a plateau after 1 d. However, the maximum effect of ITU was still only approximately half of that measured for the IVSI0+16 C>T mutation without ITU treatment (Fig. 2e).
EXSISERS lines from hiPSCs for screenings. To assess whether EXSISERS could be used in cells with endogenous tau expression, we knocked-in EXSISERS into MAPT of human induced pluripotent stem cells (hiPSCs). We then differentiated the EXSISERS\textsubscript{MAPT:10NLuc-11FLuc} hiPSCs into cortical neurons while measuring the pan/4R-tau expression through FLuc over a timecourse of 3 months. The NLuc/FLuc ratios are shown normalized to WT at day 0. c, The NLuc/FLuc ratios (4R/pan-tau) are plotted as a function of increasing concentrations of the DYRK1A/GSK3A inhibitor ITU in EXSISERS\textsubscript{MAPT:10NLuc-11FLuc} smNPCs after 24 h, 48 h and 72 h. For b and c, data are mean ± s.d., n = 3 biological replicates. Selected results of Bonferroni MCT after one-way ANOVA analysis are shown; *P < 0.05, **P < 0.01; ***P < 0.001, ****P < 0.0001 (full statistical results are provided in Supplementary Table 1). Source data are available online.

RNA-targeting systems for isoform-specific knockdown of MAPT. With the ratiometric EXSISERS\textsubscript{MAPT:10NLuc-11FLuc} cell lines in hand, we next sought to systematically optimize programmable CRISPR–Cas13 effectors for 4R-tau suppression.
The parameters of interest were Cas13 type, subcellular localization, spacer length and targeting site in direct comparison to the latest generation of short hairpin RNAs (shRNAs). These parameters should influence isoform-specific expression at different time points and sites of action in the cell during the mRNA maturation process (Extended Data Fig. 5).

Fig. 4 | Optimization of Cas13d for isoform-specific perturbation of MAPT. a, Binding sites of Rf∗Cas13d−NLS/NES with a standard (22 nucleotides; 1022) and an extended (30 nucleotides; 10) spacer targeting MAPT exon 10. 30 nucleotides was used as the default length for all of the subsequent experiments such that we omit the subscript in the notation. b, Optimization of spacer length for Rf∗Cas13d measured through the depletion of induced tau, tracked using bioluminescence from NLuc (4R-tau) and FLuc (pan-tau) 72 h after transfection. RLU of the bioluminescence signals are given for FLuc and NLuc separately and as the NLuc/FLuc ratio calculated from each sample. Nuc, nuclear localization by NLS; Cyt, cytoplasmic localization by NES. c, Binding sites of the different Rf∗Cas13d crRNAs on the mature MAPT ON, 3R and 4R mRNAs. d, The normalized FLuc, NLuc and NLuc/FLuc values are shown after transfection of EXSISERS MAPT:10NLuc-11FLuc cells with different MAPT-targeting crRNAs to increase isoform specificity of Rf∗Cas13d–NLS. For b and d, data are mean ± s.d., n = 3 biological replicates. Selected results of Bonferroni MCT after two-way ANOVA (b) and one-way ANOVA (d) analysis are shown; ***P < 0.001, ****P < 0.0001; NS, not significant (full statistical results are provided in Supplementary Table 1). Source data are available online.
Cas13d localization and spacer length. According to recent reports, Ruminococcus flavefaciens XPD3002 Cas13d (RfCas13d) displayed more potent RNA-silencing activity in the nucleus than in the cytosol42 when targeting 4R-tau. We observed a small decrease in the 4R/pan-tau ratio when RfCas13d was equipped with a nuclear export signal (NES) in comparison to a nuclear localization signal (NLS; Fig. 4a,b). However, the overall knockdown (KD) activity remained unexpectedly weak in our experimental conditions, which were optimized for low levels of plasmids for transfection. Thus, we examined whether the length of the spacer could be improved.

Interestingly, we observed that RfCas13d suppresses 4R-tau (NLuc) more efficiently with an extended 30-nucleotide spacer compared with a 22-nucleotide spacer43, although at the expense of exon 10 specificity (P < 0.0001, two-way ANOVA with Bonferroni MCT; Fig. 4b). When combining the extended 30-nucleotide spacer with RfCas13d–NLS, the strongest reduction in 4R/pan-tau ratio was observed compared with the canonical 22-nucleotide CRISPR RNA (crRNA) (P < 0.0001, two-way ANOVA with Bonferroni MCT). As 4R-tau represents ~3–4% of the total tau in HEK293T-derived cells (Supplementary Fig. 3b,c and Supplementary Table 1 (full statistical results)), the 60% reduction in pan-tau (FLuc, P < 0.0001, one-way ANOVA with Bonferroni MCT) suggests that also 3R-tau was affected.

We validated these results using RT–qPCR on unmodified HEK293T cells and observed a significant reduction in the 4R/pan-tau ratio with an extended 30-bp crRNA (P = 0.0397, two-way ANOVA with Bonferroni MCT) but not with a 22-nucleotide crRNA (P = 0.9687, two-way ANOVA with Bonferroni MCT; Extended Data Fig. 6a). To confirm this observation independently from tau, we used RfCas13d–NLS to target a co-transfected plasmid expressing NLuc. We again detected an increased potency with the extended spacer (80% KD versus 30% KD, P < 0.0001; Supplementary Fig. 9).

Targeting exon–exon junctions with nuclear-localized Cas13d.

One strategy to render RfCas13d–NLS more isoform-specific is to target the spliced mRNA, which contains exon–exon junctions (Extended Data Fig. 5b).

When 3R-tau was targeted through the exon 9–11 junction (Fig. 4c), an increase in the NLuc/FLuc-ratio was observed compared with the antisense crRNA-only control, indicating a specific 3R reduction (P < 0.0001, one-way ANOVA with Bonferroni MCT; Fig. 4d, red). As expected, targeting the constitutive exon 9 showed no discrimination between both isoforms (Fig. 4d, blue). Similarly, targeting the 0N isoform (exon 1–4 junction) also yielded no isoform specificity, as exons 2 and 3 are exon 10 independent (Fig. 4d, green).

We next compared crRNA directed against exon 10 with crRNAs targeting either the exon 9–10 junction or the 10–11 junction (Fig. 4d, green). Targeting the exon 9–10 junction symmetrically (9–10; Fig. 4c) did not result in a decrease in the 4R/pan-tau ratio, indicating isoform-specific ablation (P > 0.9999). Moreover, an asymmetric junction-spanning crRNA (9–10; Fig. 4c) increased the 4R/pan-tau ratio (P = 0.0001, one-way ANOVA with Bonferroni MCT across crRNAs targeting exon 10; Supplementary Table 1).

By contrast, targeting the 10–11 junction showed a significantly better isoform specificity compared with targeting exon 10 directly (P = 0.0004, one-way ANOVA with Bonferroni MCT among crRNAs against exon-10-encoding transcripts; Fig. 4d, green).

To confirm that exon-spanning crRNAs lead to better isoform specificity, we independently tested the 3R-specific crRNA (9–11 exon–exon junction) on unmodified HEK293T cells and quantified it using RT–qPCR. As expected, targeting the 9–11 exon junction led to a specific isoform depletion, as seen by the increase in the 4R/pan-ratio (P = 0.0133 and P = 0.0002, two-way ANOVA with Bonferroni MCT) compared with protein or antisense control (Extended Data Fig. 6b). The increase in the ratio can be explained by the decrease in pan-tau (P = 0.0287 and P = 0.0002, two-way ANOVA with Bonferroni MCT compared with the protein control or antisense control, respectively) while 4R remained unchanged (P > 0.9999 for both the protein and antisense control comparison), indicating that the 3R-tau is specifically depleted. However, when exon 10 was directly targeted, both pan-tau and 4R-tau were depleted compared with the antisense control (P < 0.0001 and P = 0.0236, respectively, two-way ANOVA with Bonferroni MCT; Supplementary Table 1), while the 4R/pan-tau ratio remained unchanged (P > 0.9999; Extended Data Fig. 6b), indicating an unspecified depletion of all isoforms.

A possible explanation for why some crRNAs targeting an exon–exon junction are not specific towards the targeted isoform is the asymmetrical positioning of the crRNA on the exon–exon junction (9–10 crRNA, 24 nucleotides on exon 9, 6 nucleotides on exon 10; Fig. 4c and Extended Data Fig. 7) resulting in a greater isoform promiscuity (NLuc/FLuc-ratio of 9–10 crRNA increased compared with 9–10, P < 0.0001, one-way ANOVA with Bonferroni MCT across exon 10-targeting crRNAs; Fig. 4d (green) and Supplementary Table 1). This result was expected as this particular crRNA also matches the 9–11 (3R) junction resulting in a greater isoformspecific reduction (P < 0.0001; Extended Data Fig. 7), which has been reported to be tolerated by Cas13 systems41,42.

Programmable mRNA KD in the cytosol. An alternative strategy to increase isoform specificity is to target mature mRNAs in the cytosol, in which unsliced nuclear mRNAs cannot be affected (Extended Data Fig. 5c). As RfCas13d shows superior performance in the nucleus (Fig. 4a,b), we chose Prevotella sp. P5–125 Cas13b (PspCas13b) instead, which has been shown to work in the cytosol43.

Indeed, targeting the same region of exon 10 (Fig. 5a), PspCas13b–NLS showed a better 4R-specificity than RfCas13d–NLS indicated by a decreased NLuc/FLuc-ratio (P = 0.0008, one-way ANOVA with Bonferroni MCT; Fig. 5b (blue bar versus orange) and Supplementary Table 1). We were next interested in comparing the performance of the Cas13b/d variants with artificial microRNAs (amiRNAs), which mimic the endogenous microRNA biogenesis pathway and preferentially act in the cytosol42,44 (Extended Data Fig. 5c).

Indeed, the highest isoform specificity was achieved using the third-generation amiRNA targeting the 9–10 junction (P < 0.0001 for 9–10 amiRNA versus 10/13dNLS and P < 0.0001 for 9–10 amiRNA versus 10/13bNES, one-way ANOVA with Bonferroni MCT of 10/13dNLS versus 10/13bNES versus 9–10 amiRNA; Fig. 5b, left red bar). By contrast, targeting of the 3’ untranslated region or the 10–11 junction resulted in high isoform promiscuity (P > 0.9999 for both, one-way ANOVA with Bonferroni MCT; Fig. 5b and Supplementary Table 1), similar to the exon 9–10 asymmetrical-targeting RfCas13d–NLS (Fig. 4c,d and Extended Data Fig. 7).

RT–qPCR analysis of unmodified HEK293T cells confirmed a significant exon-10-specific isoform ablation, as observed by a significant reduction in the 4R/pan-tau ratio, using both systems—RfCas13d (P < 0.0001 and P = 0.0001, one-way ANOVA with Bonferroni MCT compared with the protein control or antisense control; Supplementary Table 1) and amiRNA (P < 0.0001, one-way ANOVA with Bonferroni MCT compared with the AAAS1-targeting control; Supplementary Table 1). When comparing only the conditions targeting exon-10-containing transcripts, we found that amiRNAs are more isoform-specific than RfCas13d–NLS (P = 0.0112, two-tailed unpaired t-test; Extended Data Fig. 6c).

dRfCas13d–NLS as an RNA-guided splicing enhancer or suppressor. We also created additional versions of dRfCas13d–NLS for
use as programmable splice enhancers or suppressors42 (Extended Data Fig. 5d). Fusing dRfxCas13d–NLS to the glycine-rich (G-rich) domain of HNRNPA1 (amino acids 187–320 of isoform A1)42,47 yielded an RNA-guided splice suppressor, whereas fusion to the serine–arginine-rich (SR-rich) domain of SC35 (amino acids 90–271)47,48 yielded a splice enhancer (Fig. 5c and Supplementary

table 1). Source data are available online.
Modular reporters and effectors for EXSISERS. In addition to high-sensitivity bioluminescence detection, we also enabled sensitive fluorescence imaging of exon 10 usage by inserting a membrane-presented HaloTag57 (EXSISERS\textsubscript{MAPT:10-Halo}) or single-chain chicken avidin (scAvidin)58 (Extended Data Fig. 8a–i). We also functionalized a transmembrane domain (TMD) with the luciferase NLuc, flanked by furin endoprotein cleavage sites to release the reporter into the extracellular environment enabling convenient longitudinal measurements from the supernatant (Extended Data Fig. 8j,k). Canonical fluorescent proteins can also be used with EXSISERS but require strong expression of the host gene to be reliably detected (compare Extended Data Fig. 8i–n and Supplementary Fig. 11a,b). These EXSISERS modules enable non-invasive live staining, efficient cell enrichment using fluorescence-activated cell sorting (FACS) or magnetic cell separation system (MACS), and convenient sampling from the supernatant for high-throughput screening applications.

Quantifying co-translational ribosomal frameshift regulation. Ribosomal frameshift-mediated regulations cannot be monitored by RT–qPCR or other RNA-based quantification methods. Dysregulation of this process in Oaz1, the key enzyme in polyamine biosynthesis (Extended Data Fig. 9a), results in various diseases, such as Snyder–Robinson Syndrome and cancer41. We inserted EXSISERS\textsubscript{MBNL1-nluc} and EXSISERS\textsubscript{MBNL2-mhcf} into full-length Oaz1 and treated transfected cells with different polyamine concentrations to check whether we can read out frameshift regulation using fluorescence quantification (Extended Data Fig. 9b). FACS analysis revealed that the stop codon readthrough was significantly stimulated by increasing spermidine or spermine concentrations (P=0.0009 for 1.2 mM spermidine, P<0.0001 for 1.2 mM spermine, one-way ANOVA with Bonferroni MCT against vehicle control; Extended Data Fig. 9c), which was also confirmed using immunoblot analysis (Extended Data Fig. 9d).

Identification of regulators of isoform-specific expression. As a further demonstration of the capabilities of EXSISERS, we next generated a variant that enables an unbiased library-based identification of regulators of isoform-specific expression by coupling cell viability to exon inclusion. We inserted blastocidin S deaminase22 (BSD) flanked by CC-enhanced inteins into exon 18b of the forkhead family transcription factor (FOXP1), which encodes the DNA-binding domain of an embryonic stem cell-specific FOXP1 isoform (Fig. 6a).

We next applied a lentiviral CRISPR–Cas9 knockout (KO) library59 to the EXSISERS\textsubscript{FOX1:18bBSD} HEK293T cells and selected blastocidin S-resistant cells indicating exon 18b inclusion (Fig. 6b). Next-generation sequencing (NGS) analysis subsequently revealed a dose-dependent enrichment of sgRNAs targeting MBNL1 (three or four magnitudes of enrichment over the median; Fig. 6c).

We verified the hits independently using a third sgRNA pair targeting MBNL1 and MBNL2 (not significantly enriched in the assay) on an independent EXSISERS\textsubscript{FOX1:18bBSD} clone controlled by a sgRNA targeting the non-essential AAVS1 locus (PPPR12C2).

Titration of blastocidin S resulted in the formation of surviving cell colonies in only the population targeting MBNL1 and MBNL2 (Fig. 6d), indicating a functional coupling of the presence of MBNL splice factors to cell survival dependent on FOXP1 exon 18b inclusion. Blastocidin-S-dependent enrichment of cells with exon 18b inclusion was confirmed by immunoblot detection of OLLAS-tagged BSD after KO of MBNL1/2 (Fig. 6e) and using semi-quantitative RT–PCR (Fig. 6f). The integrity of FOXP1 in the transgenic 18b-tagged reporter line was verified for all conditions by immunoblot analysis, further confirming the traceless excision of BSD from the protein precursors (Fig. 6e).

Detailed analysis by sequence decomposition54 revealed a dose-dependent enrichment of MBNL1 indels. Only 10.2% of residual MBNL1 WT allele was detectable in the most-stringent selection condition (12.5 μg ml-1 blastocidin S) and 57.6% WT allele in the less-stringent condition, whereas MBNL2 indels showed no dose dependence (Extended Data Fig. 10). The correlation between MBNL1 KO and FOXP1 exon 18b inclusion successfully confirmed that MBNL1 is the major suppressor of exon 18b inclusion54.

Besides MBNL1, only MOV10 was substantially enriched in both blastocidin S selection conditions (Fig. 7a). MOV10 encodes an RNA helicase that is required for microRNA-mediated biogenesis and gene silencing24 and the suppression of retroelements58, and is upregulated after differentiation of stem cells25. However, MOV10 was not known to be involved in alternative splicing of stem-cell-associated genes, such as FOXP1.

To confirm that MOV10 was indeed responsible for suppressing exon 18b inclusion, we cloned a different sgRNA, MOV10-targeting sgRNA 2 (MOV10 2), and compared it to MOV10-targeting sgRNA 1 (MOV10 1), which was enriched in the screen, and to an unrelated sgRNA targeting ALDOA. Indeed, only sgRNAs targeting MOV10 caused a substantial growth of colonies two weeks after transient transfection plasmids targeting the corresponding genes (Fig. 7b). RT–PCR analysis of the pooled colonies revealed that indeed FOXP1 exon 18b was included (Fig. 7c), but not as prominent as in the MBNL KO (Fig. 6f), indicating that MOV10 has an auxiliary role in exon 18b repression.

Thus, we demonstrated that EXSISERS combined with a CRISPR library enables unbiased and non-invasive functional perturbation screening for splice modulators.

Discussion

Here we developed a versatile exon-specific isoform expression reporter system (EXSISERS) that translates a specific exon expression event into reporter signals or genetically controlled handles for cell enrichment and selection. These features were made possible by combining fast-splicing inteins with CC domains to ensure the immediate removal of modular effector proteins and scarless translation of the unmodified, endogenous protein product. We applied EXSISERS to optimize RNA-targeting strategies for exon-specific RNA degradation or RNA-splicing modulation, as well as for identifying splicing regulators.

Specifically, we used a selection mechanism to identify splice regulators of FOXP1 and confirmed that MBNL1 is the dominant suppressor of exon 18b inclusion24,39. We also identified that the RNA helicase MOV10 is an auxiliary factor, which may reflect its possible role in improving the accessibility of splicing machinery.

Furthermore, we used EXSISERS to non-invasively quantify tau isoforms and showed that physiological and disease-relevant effects (increased 4R-tau level) could be read out conveniently using high-throughput-compatible ratiometric luciferase assays and longitudinal live monitoring with cellular resolution.

We demonstrated that the effects of a small-molecule inhibitor on the inclusion of exon 10 of MAPT could be longitudinally...
Fig. 6 | Scarless exon-dependent selection marker for the identification of regulators of exon inclusion and exclusion. a, Split-intein–CC-flanked BSD was integrated into FOXP1 exon 18b of HEK293T cells using CRISPR–Cas9. ESCs, embryonic stem cells. b, A coding gene targeting a genome-wide lentiviral CRISPR–Cas9 library was applied and selected with blasticidin S to enrich cells with FOXP1 exon 18b inclusion. NGS analysis was performed on cells with and without selection to identify the CRISPR–Cas9 spacer leading to cell survival. c, The median-weighted reads for all sgRNA targeting after selection with two concentrations of blasticidin S versus before selection. Two MBNL1-targeting sgRNAs highly enriched under both selection conditions are encircled. The assay was performed once with two different blasticidin S concentrations. d, The results of b were confirmed by an independent EXSISERS FOXP1:18bBSD clone, transfected with a new set of MBNL1-targeting sgRNA together with an MBNL2-targeting sgRNA. Representative surviving colonies, selected with increasing blasticidin S concentrations (top to bottom) after co-transfection with MBNL1 and MBNL2 targeting CRISPR–Cas9 components. The safe-harbour AAVS1 locus was targeted (AAVS1-KO control) as a control. Scale bar, 100 μm. Insets show 5× magnification. e, Immunoblot analysis of the cells selected in d. f, RT–PCR analysis of the cells selected in b. For e and f, data represent an independent validation of the results of the screening shown in c. #, 18b EXSISERSisoform; $, 18b isoform. Source data are available online.
µg ml–1 blasticidin S selection was not used in the screen. Representative colonies in a T75 flask are shown 2 weeks after selection with 3 MOV10 (targeting sgRNA 2 (MOV10), which the enrichment of data are replotted from Fig. 6c. b MOV10-targeting sgRNA used in the screen (MOV10 < 10 colonies in T75 flask), or MOV10 > 100 colonies in T75 flask). Scale bar, 1 mm.

Fig. 7 | RNA helicase MOV10 is involved in FOXP1 exon 18b suppression. a. The reads (normalized to preselection reads) from both selection conditions (3µg ml–1 and 5µg ml–1 blasticidin S). The areas highlighted in light blue indicate the most strongly enriched sgRNAs for each selection condition. These data are replotted from Fig. 6c. b. The enrichment of MOV10 in the screen was confirmed by an independent MOV10-targeting sgRNA 2 (MOV10 2), which was not used in the screen. Representative colonies in a T75 flask are shown 2 weeks after selection with 3µg ml–1 blasticidin S and after transfection with an sgRNA against ALDOA (unrelated control gene, <10 colonies in T75 flask), the MOV10-targeting sgRNA used in the screen (MOV10 1, >100 colonies in T75 flask). Scale bar, 1 mm. c. RT-PCR showing the blasticidin-S-concentration-dependent inclusion of FOXP1 exon 18b from the colonies surviving blasticidin S selection shown in b labelled with the respective sgRNAs. The data represent an independent validation of the results shown in a.

monitored in HEK293T cells, smNPCs and neurons generated from hiPSCs, demonstrating that EXSISERS enables high-throughput screening of 3R/4R regulation in relevant cellular models.

The precise ratiometric read-out of EXSISERS reporting the fractional 4R-tau expression (normalized to pan-tau) was instrumental for quantifying programmable RNA-targeting systems regarding their potency and isoform specificity.

A detailed comparison of their performance highlighted, in particular, the importance of optimizing crRNA design by targeting exon–exon junctions to spare pre-mRNA from Cas13d activity in the nucleus. Such a design is especially relevant for genes containing repetitive domains, common in genes encoding structural proteins. We also showed how isoform specificity can be increased by selectively targeting mature mRNA in the cytosol by Cas13b, which was superior to cytosolic Cas13d but still was exceeded in performance by optimized amiRNAs.

Furthermore, we showed that EXSISERS could non-invasively measure co-translational ribosomal frameshift regulation, an important mechanism that is not accessible using RNA-based quantification methods.

As EXSISERS monitors the translation of mature mRNAs, it is robust against changes in mRNA levels that do not translate to differences in isoform expression53. Thus, the reporter system could become uniquely informative to non-invasively assess exon-specific local protein translation as it occurs in neurons5. EXSISERS could also be expanded to build exon-dependent logic circuits in eukaryotic systems using intein-flanked recombinases, CRISPR RNA/DNA effectors, transcription factors or other effector domains without disturbing the host gene. We anticipate that the non-disruptive nature and cellular resolution of EXSISERS will also empower in vivo imaging studies in genetic model organisms to decipher the spatiotemporal patterns of exon-specific expression.

Online content
Any methods, additional references, Nature Research reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41556-021-00678-x.

Received: 6 January 2020; Accepted: 1 April 2021; Published online: 3 June 2021

References
1. Raj, A., van den Bogaard, P., Rifkin, S. A., van Oudenaarden, A. & Tyagi, S. Imaging individual mRNA molecules using multiple singly labeled probes. Nat. Methods 5, 877–879 (2008).
2. Katz, Y., Wang, E. T., Airoldi, E. M. & Burge, C. B. Analysis and design of RNA sequencing experiments for identifying isoform regulation. Nat. Methods 7, 1009–1015 (2010).
3. Zhang, M. L., Lorson, C. L., Androphy, E. J. & Zhou, J. An in vivo reporter system for measuring increased inclusion of exon 7 in SMN2 mRNA: potential therapy of SMA. Gene Ther. 8, 1532–1538 (2001).
4. Deshpande, A., Win, K. M. & Busciglio, J. Tau isoform expression and regulation in human cortical neurons. FASEB J. 22, 2357–2367 (2008).
5. Stoilov, P., Lin, C.-H., Damoiseaux, R., Nikolic, J. & Black, D. L. A high-throughput screening strategy identifies cardiotoxic steroids as alternative splicing modulators. Proc. Natl. Acad. Sci. USA 105, 11218–11223 (2008).
6. O’Brien, J., Hayden, H., Zayed, Y. & Peng, C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front. Endocrinol. 9, 402 (2018).

7. Matsufuji, S. et al. Autoregulatory frameshifting in decoding mammalian ornithine decarboxylase antizyme. Cell 80, 51–60 (1995).

8. Anderson, P. & Kedersha, N. RNA granules. J. Cell Biol. 172, 803–808 (2006).

9. Baser, A. et al. Onset of differentiation is post-transcriptionally controlled in adult neural stem cells. Nature 566, 100–104 (2019).

10. Compta, Y. et al. High cerebrospinal tau levels are associated with the rs242557 tau gene variant and low cerebrospinal β-amyloid in Parkinson disease. Neurosci. Lett. 487, 169–173 (2011).

11. Zhou, F. & Wang, D. The associations between the MAPT polymorphisms and Alzheimer’s disease risk: a meta-analysis. Oncotarget 8, 43506–43520 (2017).

12. Wang, X. et al. A polymorphic antioxidant response element links NRF2/sMaf binding to enhanced MAPT expression and reduced risk of Parkinsonian disorders. Cell Rep. 15, 830–842 (2016).

13. Sibley, C. R. et al. Recursive splicing in long vertebrate genes. Nature 521, 371–375 (2015).

14. Bell, M. V., Cowper, A. E., Lefranc, M. P., Bell, J. I. & Scroten, G. R. Influence of intron length on alternative splicing of CD44. Mol. Cell. Biol. 18, 5930–5941 (1998).

15. Chen, L. T. & Chasin, L. A. Large exon size does not limit splicing in vivo. Mol. Cell. Biol. 14, 2140–2146 (1994).

16. Sangermano, R. et al. ABCA4 midigenes reveal the full splice spectrum of all reported noncanonical splice site variants in Stargardt disease. Genome Res. 28, 100–110 (2018).

17. Hsieh, Y.-C. et al. Tau-mediated disruption of the spliceosome triggers cryptic RNA splicing and neurodegeneration in Alzheimer’s disease. Cell Rep. 29, 301–316 (2019).

18. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

19. Carvajal-Vellos, P., Pallissé, R., Mootz, H. D. & Schmidt, S. R. Unprecedented rates and efficiencies revealed for new natural splicing events from metagenomic sources. J. Biol. Chem. 287, 28686–28696 (2012).

20. Arakawa, A. S., Wlodawer, A. & Iwai, H. Nature’s recipe for splitting inteins. Proteins Eng. Des. Sel. 27, 263–271 (2014).

21. Mietelska-Porowski, A., Wasik, U., Goras, M., Filipek, A. & Niewiadomska, G. Tau protein modifications and interactions: their role in function and dysfunction. Int. J. Mol. Sci. 15, 4671–4713 (2014).

22. Wang, Y. & Mandelkow, E. Tau in physiology and pathology. Nat. Rev. Neurosci. 17, 22–35 (2015).

23. Rössler, T. W. et al. Four-repeat tauopathies. Prog. Neurobiol. 180, 101644 (2019).

24. Hall, M. P. et al. Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate. ACS Chem. Biol. 3, 373–382 (2008).

25. Truong, D.-J. J. et al. Generation of cell lines for the exon-specific isoform expression reporter system (EXSISERS). Protocol Exchange https://doi.org/10.21203/rs.3.rx.1440/V1 (2021).

26. Gradishar, H. et al. Design of a single-chain polypeptide tetrahe dron assembles from coiled-coil segments. Nat. Chem. Biol. 9, 362–366 (2013).

27. Pinto, F., Thornton, E. L. & Wang, B. An expanded library of orthogonal split inteins enables modular multi-peptide assemblies. Nat. Commun. 11, 1529 (2020).

28. Baker, M. et al. Localization of frontotemporal dementia with Parkinsonism in an Australian kindred to chromosome 17q21-22. J. Biol. Chem. 279, 6502–6508 (2003).

29. Penn, R. et al. Expression of the tau antigen in normal human brain tissues and an Alzheimer’s disease brain. J. Biol. Chem. 263, 271–276 (1988).

30. Aranko, A. S., Wlodawer, A. & Iwaï, H. Nature’s recipe for splitting inteins. Biochim. Biophys. Acta 1258, 663–659 (1994).

31. Doench, J. G. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 34, 184–191 (2016).

32. Brinkman, E. K., Chen, T., Amendola, M. & van Steensel, B. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res. 42, e168 (2014).

33. Han, H. et al. MBNL proteins repress ES-cell-specific alternative splicing and reprogramming. Nature 498, 241–245 (2013).

34. Chendrimada, T. P. et al. MicroRNA silencing through RISC recruitment of elf6. Nature 447, 823–828 (2007).

35. Gooden, J. L., Chuang, L. E. & Kozak, H. H. Jr MOV10 RNA helicase is a potent inhibitor of retrotransposition in cells. PLoS Genet. 8, e1002941 (2012).

36. Abogessaisa, I. et al. FANTOM enters 20th year: expansion of transcriptomic maps and functional annotation of non-coding RNAs. Nucleic Acids Res. 49, D892–D898 (2021).

37. Dürre, E. et al. Inhibition of DYRK1A stimulates human β-cell proliferation. Diabetes 65, 1660–1671 (2016).

38. Massillon, D., Stalnans, W., van de Werve, G. & Bollen, M. Identification of the glycosylic component 5-idoothbericin as a general protein kinase inhibitor. Biochem. J. 299, 123–128 (1994).

39. Qian, W. et al. Regulation of the alternative splicing of tau exon 10 by SC35 and Dyrk1A. Nucleic Acids Res. 39, 6161–6171 (2011).

40. Yin, X. et al. Dyrk1A overexpression leads to increase of SR-tau expression and cognitive deficits in Td56Dn Down syndrome mice. Sci. Rep. 7, 619 (2017).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
Methods

Molecular cloning. PCR for molecular cloning. Single-stranded primer deoxyribonucleotides were diluted to 100 µM in nucleic-free water (Integrated DNA Technology (IDT)). PCR reactions with plasmid and genomic DNA template were performed using a Q5 Hot Start High-Fidelity 2x Master Mix with 5x High-Fidelity DNA Polymerase and 5x GC-enhancer (New England Biolabs (NEB)) according to the manufacturer’s protocol. Samples were purified by DNA agarose gel electrophoresis followed by purification using the Monarch DNA Gel Extraction Kit (NEB).

DNA digestion with restriction endonucleases. Samples were digested with NEB restriction enzymes according to the manufacturer’s protocol in a total volume of 40 µl with 2–3 µg of plasmid DNA. Next, fragments were gel-purified using DNA agarose gel electrophoresis and subsequently purified using the Monarch DNA Gel Extraction Kit (NEB).

Molecular cloning using DNA ligases and Gibson assembly. Agarose-gel purified DNA fragment concentrations were determined using a spectrophotometer (NanoDrop 1000, Thermo Fisher Scientific). Ligations were performed using 50–100 ng backbone DNA (DNA fragment containing the origin of replication) in a volume of 20 µl with 1:1–3 backbone insert ratios, using T4 DNA ligase (Quick Ligation Kit, NEB) at room temperature for 5–10 min. Gibson assemblies were performed using 75 ng backbone DNA in a 15 µl reaction volume and a 1:1.5–5 backbone:insert ratios, using the NEBuilder HiFi DNA Assembly Master Mix (2x) (NEB) for 20–60 min at 50°C.

DNA agarose gel electrophoresis. Gels were prepared with 1% agarose (Agarose Standard, Carl Roth) in 1x TAE-buffer and 1:10,000 SYBR Safe stain (Thermo Fisher Scientific), running for 20–40 min at 120 V. For analysis, 1 kb Plus DNA Ladder (NEB) was used. The samples were mixed with gel loading dye (purple, 6x) (NEB).

Bacterial strains (Escherichia coli) for molecular cloning. Chemically and electrocompetent Turbo/Stable cells (NEB) were used for the transformation of circular plasmid DNA. For plasmid amplification, carbencillin (Carl Roth) was used as a selection agent at a final concentration of 100 µg ml⁻¹. All bacterial cells were incubated in lysogeny broth medium (LB) and on LB agar plates, including the respective antibiotics.

Bacterial transformation with plasmid DNA. For electroporation, either 1–5 µl ligation or Gibson reaction was dialyzed against MilliQ water for 10–20 min on an MF-Millipore membrane filter (Merck). Next, 1–5 µl dialyze was mixed with 50 µl of thawed, electrocompetent cells, transferred to a precooled electroporation cuvette (2 mm; Bio-Rad), shocked at 2.5 kV (Gene Pulser Xcell Electroporation Systems, Bio-Rad), and immediately mixed with 950 µl SOC-medium (NEB). The chemical transformation was performed by mixing 1–5 µl of ligation or Gibson reaction with 50 µl thawed, chemically competent cells and incubated on ice for 30 min. Cells were then incubated at 42°C for 30°C, further incubated on ice for 5 min and finally mixed with 950 µl SOC-medium (NEB). Transformed cells were then plated on agar plates containing an appropriate type of antibiotic and concentrations according to the supplier’s information. Plates were incubated overnight at 37°C or 48h at room temperature.

Plasmid DNA purification and Sanger sequencing. Plasmid-DNA-transformed clones were picked and inoculated from agar plates in 2 ml LB medium and on LB agar plates, including the respective antibiotics.

Plasmid DNA digestion with restriction endonucleases. Samples were digested with NEB restriction enzymes according to the manufacturer’s protocol in a total volume of 40 µl with 2–3 µg of plasmid DNA. Next, fragments were gel-purified using DNA agarose gel electrophoresis and subsequently purified using the Monarch DNA Gel Extraction Kit (NEB).

Production of the lentiviral genome-wide KO library. HEK293T cells were seeded in 4x T-225 flasks with 10x 10⁶ cells per flask in 50 ml medium and incubated for 2 days until reaching 80% confluency. For transfection, the medium was replaced with fresh medium containing heat-inactivated FBS (56°C, 30 min). DNA (240 µg in total; 30 µg plasmid library DNA, 20 µg psPA2X and 10 µg, pMD2.G) in 2 ml Opti-MEM I Reduced Serum Medium (Gibco, Thermo Fisher Scientific) was mixed with 720 µl X-tremeGENE HP (Roche) and incubated at room temperature for 20 min. psPA2X and pMD2.G were gifts from D. Trono (Addgene, 12260 and 12259). Next, this transfection mix was distributed dropwise into the four flasks with HEK293T cells at 80% confluency. Next, 24 h after transfection, the supernatant was collected and replaced with fresh medium containing heat-inactivated FBS. This procedure was repeated for the next 2 days, resulting in a total of 600 ml virus-containing supernatant. The supernatant was centrifuged at 5000 r.c.f. for 10 min, and the resulting supernatant was filtered using a syringe filter unit (0.45 µm pore size, polycylinhede difluoride (PVDF), 33 mm, Millex, Merck) to remove potential remaining cells. The flowthrough was concentrated 1:5 with Amicon centrifugal units (Ultra-15, PLHK Ultracel-PL Membrane, 100 kDa cut-off, Merck). The concentrated virus supernatant was then aliquoted into 2 ml tubes and frozen at −80°C. To determine the multiplicity of infection (m.o.i.) per ml supernatant, serial dilutions of the supernatant were performed and combined with four HEK293T cells in a total of 5 ml per well on six-well plates (medium with heat-inactivated FBS). Then, 24 h later, the medium was replaced with fresh medium containing 1 µg ml⁻¹ puromycin (Gibco, Thermo Fisher Scientific). Next, 48 h after transduction, the wells were compared to the control well without virus transduction and without puromycin. The wells with survival rates of 10–80% were chosen to determine the m.o.i. per ml of the viral supernatant.

Lentiviral transduction of HEK293T EXSISERS in pooled with the pooled KO library. Cells (10⁶) in 500 ml medium with heat-inactivated FBS were combined with lentiviral supernatant at an m.o.i. of ~0.3, corresponding to a ~400x coverage of each sgRNA (library contains 76,441 unique sgRNAs) and were plated on 10x T-225 flasks. Next, 24 h after infection, puromycin was added to a final concentration of 1 µg ml⁻¹. Then, 3 d after transduction, infected cells (cells surviving puromycin selection) were detached using 10 ml per flask Accutase solution (Gibco, Thermo Fisher Scientific). Cells were counted, and ~36 10⁶ cells were immediately frozen after pelleting at 500 r.c.f. for 10 min. The remaining cells were replated on 10x T-225 flasks with 10x 10⁶ cells per flask in 50 ml. Four flasks were cultured without antibiotics, whereas four flasks were selected with 3 µg ml⁻¹ blastocidin S and another four flasks were selected using 5 µg ml⁻¹ blastocidin S (Gibco, Thermo Fisher Scientific). After 2 weeks of selection (the condition without selection was collected 5 d after it reached 100% confluency), the surviving population of each condition was detached using Accutase, pooled and pelleted at 500 r.c.f. for 10 min. The cell pellets were kept at −20°C until genomic DNA isolation.

NGS analysis of integrated lentiviral CRISPR library. Genomic DNA was isolated from the library-transduced HEK293T EXSISERS. Cells were incubated in the Wizard SV Genomic DNA Purification System (Promega) according to the manufacturer’s protocol. To amplify the CRISPR-Cas9 spacer sequence of the integrated lentivirus, the following barcoded primers with NGS adapters (underlined) were used, comprising an adapter sequence, the barcode (in uppercase) and the binding region: BC1: ccatctatcgccgctctgctcagcTaAGTAAAGcgtttactttatgtaaagggacg; BC2: ccatctatcgccgcctgcgctcagcTaAGTAGAGGcgtttactttatgtaaagggacg; BC3: ccatctatcgccgcctgcgctcagcTaAAAGAGGcgtttactttatgtaaagggacg; BC4: ccatctatcgccgcctgcgctcagcTaTCCAGATGcgtttactttatgtaaagggacg; and a reverse primer composed of the trP1 adapter sequence (underlined) and the binding region: cctctcttggctcgcgcgctcagcTaAAAGAGGcgtttactttatgtaaagggacg. A pair with BC3 was used to amplify genomic DNA from the transduced cells after puromycin selection but before blasticidin S selection. BC1, BC2 and BC4 were used to amplify the condition selected with 5 µg ml⁻¹ blastocidin S. Next, Ultra II Q5 Master Mix (NEB) was used to PCR amplify the spacer sgRNA sequence from the proviral library according to the manufacturer’s protocol. The PCR products were agarose-gel-purified using the Monarch DNA Gel Extraction Kit (NEB). The barcoded PCR products were pooled equimolarly and submitted to the PrimBio Research Institute for NGS analysis. The FASTQ data were processed according to their barcodes using the software ENCoRe⁶. The reads between different pools were normalized to the corresponding pool median before comparison.

Mammalian cell culture. Cell lines and maintenance. HEK293T cells (ECACC: 12020201, Sigma-Aldrich) were maintained in an H₂O-saturated atmosphere in Gibco Advanced DMEM (Thermo Fisher Scientific) supplemented with 10% FBS (Gibco, Thermo Fisher Scientific), GlutaMax (Gibco, Thermo Fisher Scientific) and penicillin–streptomycin (Gibco, Thermo Fisher Scientific) at 100 µg ml⁻¹ at 37°C.
and 5% CO2. Cells were passaged at 90% confluency by removing the medium, washing with DPBS (Gibco, Thermo Fisher Scientific) and separating the cells with 2.5 ml of Accutase solution (Gibco, Thermo Fisher Scientific). Cells were then incubated for 5–10 min at room temperature (R.T.) and the cells were observed. Accutase was subsequently inactivated by adding 7.5 ml prewarmed DEMEM, including 10% FBS and all of the supplements. Cells were then transferred into a new flask at an appropriate density or counted and plated in 96-well, 48-well or 6-well format for plasmid transfection.

hiPSC maintenance. hiPSCs (HPSI0614i-uilk_2 (ECACC: 77650606) and 100 nM LDN193189 (130-103-925, Miltenyi Biotec), 5% N2 supplement (17502048, Gibco, Thermo Fisher Scientific), 1× insulin, 100 ng/ml brain-derived neurotrophic factor (10389701, Th. Geyer) and 200 nM CHIR99021 were added to the cells for 24 h under transient expression. Subsequently, StemMACS PASSAGING Solution XF (Miltenyi Biotec) was added to the cells at room temperature, and the culture medium was changed. hiPSCs were transferred to a new 1% (v/v) Geltrex-coated six-well suspension cell culture plate with N2B27 medium supplemented with 100 µM THZV (420220, Merck Millipore) and 0.5 µM Purmorphamine (10009634, Cayman Chemicals) and 2 µM tiazovivin (420220, Merck Millipore). The next day, the embryoid bodies were transferred to a new six-well suspension cell culture plate with N2B27 medium, a 1:1 composition of N2 and B27 medium. N2 medium was composed of DEMEM/F12 medium, 1× GlutaMax supplement, 1× N2 supplement (Gibco, Thermo Fisher Scientific), 5 µg/ml insulin, 1× MEM non-essential amino acids, 20% (v/v) KnockOut Serum Replacement (Gibco, Thermo Fisher Scientific), 1× MEM non-essential amino acids, 50 µM β-mercaptoethanol and 0.5× (50 µl ml⁻¹) penicillin-streptomycin (15140122, Gibco, Thermo Fisher Scientific). B27 medium was composed of neurobasal medium (15140122, Gibco, Thermo Fisher Scientific), 1× B27 supplement without vitamin A (12587010, Gibco, Thermo Fisher Scientific), 1× GlutaMax supplement and 0.5× (50 µl ml⁻¹) penicillin-streptomycin. N2B27 medium was supplemented with 1× d-morsolome, 10 µM SB431542, 3 µM CHIR99021, 0.5 µM purnorphamine and 64 µM l-ascorbic acid (A4544, Sigma-Aldrich). Embryoid bodies were transferred to a 1% (v/v) Geltrex-coated plate on day 4. Thereafter, cells were passaged with Accutase (A6964, Sigma-Aldrich) when confluence was reached.

hiPSC-derived neurons. hiPSCs were plated on multiwell plates coated with 1% (v/v) Gelatin (G1193, Gibco, Thermo Fisher Scientific) under transient expression, maintained in Essential 8 medium (A2858501, Gibco, Thermo Fisher Scientific), 20% (v/v) KnockOut Serum Replacement (Gibco, Thermo Fisher Scientific), GlutaMax supplement (5 ml, I9278, Gibco, Thermo Fisher Scientific), 1× MEM non-essential amino acids, 50 µM β-mercaptoethanol and 0.5× (50 µl ml⁻¹) penicillin-streptomycin (15140122, Gibco, Thermo Fisher Scientific). B27 medium was composed of neurobasal medium (15140122, Gibco, Thermo Fisher Scientific), 1× B27 supplement without vitamin A (12587010, Gibco, Thermo Fisher Scientific), 1× GlutaMax supplement and 0.5× (50 µl ml⁻¹) penicillin-streptomycin. N2B27 medium was supplemented with 1× d-morsolome, 10 µM SB431542, 3 µM CHIR99021, 0.5 µM purnorphamine and 64 µM l-ascorbic acid (A4544, Sigma-Aldrich). Embryoid bodies were transferred to a 1% (v/v) Geltrex-coated plate on day 4. Thereafter, cells were passaged with Accutase (A6964, Sigma-Aldrich) when confluence was reached.

Plasmid transfection. Cells were transfected with X-tremeGENE HP (Roche) according to the manufacturer’s protocol. DNA amounts were kept constant in all of the transfections and transient expression was confirmed. Cells were incubated for 24 h with plasmid plus the transfection reagent and fresh medium was added. Cells were reseeded onto new plates coated with 15 µl ml⁻¹ poly-l-ornithine hydrobromide (P3655, Sigma-Aldrich) and 10 µg/ml l-amamin (L2020-1MG, Sigma-Aldrich). Neuronal networks were dissociated into single cells using Accutase. Cells were then washed once with DPBS, and incubated with Accutase for 15 min at 37 °C under invariant 5% CO2 saturation. The Accutase reaction was stopped by transferring the cell solution into a 15 ml Falcon tube, containing 3 ml neuronal induction medium supplemented with 100 µM Y-27632 dihydrochloride. Cells were released from Y-27632 dihydrochloride by a medium change 24 h after releasing.

Mycoplasma test. All of the cell lines were tested for mycoplasma contamination using MycoAlert Mycoplasma Detection Kit (LT07-318, Lonza). Furthermore, all of the cell lines were tested every 3 months for contamination by Hoechst 33344, which visualizes extranuclear speckles in case of contamination. All of the results shown in the manuscript were obtained from cells that tested negative for mycoplasma.

Generation of stable EXSISERS cell lines with CRISPR-Cas9. To generate a stable cell line (HEK293T, N2a), plasmids expressing a mammalian codon-optimized Cas9 from Streptococcus pyogenes (SpCas9) with a tandem C-terminal SV40 nuclear localization signal (SV40 NLS) (CRB hybrid RNA polymerase II promoter-driven) and a single-guide-RNA (sgRNA) are introduced into the downstream extend requirements of inteins. We carefully avoided insertions close to prolines and tried to choose insertion sites resembling the native extein environment to maximize splicing efficiency. Furthermore, we used NetGene2 (v2.4.2) and Human Splice Finder (v.3.11) to verify that our insertion did not destroy a potential regulatory sequence or introduced cryptic splice sites. The efficiency of Cas9-mediated genome editing using ITU (Sigma-Aldrich) was achieved by using Auxin transfection under the U6 RNA-polymerase III promoter-driven) and a single-guide-RNA (sgRNA/gRNA, human U6 RNA-polymerase III promoter-driven) with a 19–21 bp (SpCas9) exon 2 (between Gly81 and Ser82); G+TGGAGCCCGCCGATCCACAGG; MAPT exon 10: G+CCAGCTTCAAGTGGTGCCTAA; MAPT exon 11: GTTGGCTTAATAGGCCCAACT; FOXP1 exon 18: AGGAGATGGTTGTCCTTTC) cloned spacer targeting the E01 were used. The insertion site for EXSISERS was always upstream of serine, cysteine or threonine due to the downstream extend requirements of inteins. We carefully avoided insertion sites close to prolines and tried to choose insertion sites resembling the native extein environment to maximize splicing efficiency. To verify that our insertion did not destroy a potential regulatory sequence or introduced cryptic splice sites. The efficiency of Cas9-mediated genome editing using ITU (Sigma-Aldrich) was achieved by using Auxin transfection under the U6 RNA-polymerase III promoter-driven) with a 19–21 bp (SpCas9) exon 2 (between Gly81 and Ser82); G+TGGAGCCCGCCGATCCACAGG; MAPT exon 10: G+CCAGCTTCAAGTGGTGCCTAA; MAPT exon 11: GTTGGCTTAATAGGCCCAACT; FOXP1 exon 18: AGGAGATGGTTGTCCTTTC) cloned spacer targeting the E01 were used.
donor DNA plasmid contains the intern-flanked moiety, including the selection cassette to select for cells undergoing successful Cas9-mediated homologous recombination; moreover, the donor DNA plasmid contains homology arms of at least 800 nucleotides flanking the intern-reporter construct (48- well or 6-well format), the medium was replaced with medium containing 50 µg/ml puromycin, if not otherwise indicated. Cells were observed daily and were detached with Accutase and replated with puromycin when surviving colonies reached a colony size of about 50 cells. This step was repeated until no significant puromycin mediated cell death could be observed. The cells were plated without puromycin on a 48-well plate and were transfected with a CAG-hybrid promoter-driven nuclear-localized Cre or Flp recombinase with a low amount of a green fluorescent protein (Xpa-hED2Q) at a 10:1 ratio to excise the selection cassette. The green fluorescent protein was co-transfected to enrich cells that were successfully co-transfected with the recombinase-expressing plasmid. Green cells were selected using the BD FACSDiva Software (v.6.1.3, BD Biosciences)) and replated onto a suitable dish/plate. After one week, enriched cells were single-cell–sorted in 96-well plates and grown monoclona1ly until the colony size was large enough to be duplicated onto a second 96-well plate containing 2 µg/ml puromycin. Cells that underwent successful cassette excision should not survive puromycin treatment, indicating that the original clone from which it was duplicated did not anymore contain the puromycin-N-acetyltransferase and was a potential candidate for genotyping by zygosity. Those clones were detached and expanded in 48-well plates until confluency, and half of the cell mass was then used subsequently for isolation of genomic DNA plasmid containing the intein-flanked moiety, including the selection cassette. The hiPSCs (HPSI0514i-vuna_3, HPSI0514i-vuna_4) were left to recover with a medium change every other day. Puromycin selection was performed using primer pairs that bind to theloxP sequence (Promega). Genotyping of the genomic DNA was performed using LongAmp Hot Start Taq 2x Master Mix (NEB) according to the manufacturer's protocol with primer deoxynucleotides pairs (IDT) with at least one primer binding outside of the homology arms. The PCR products from clones, for which genotyping indicated homozygosity, were sent for Sanger sequencing to verify their sequence.

Generation of a stable human iPSC EXISER line. The hiPSCs (HPSI0514i-vuna_3, HPSI0514i-vuna_4) were transfected with the desired sgRNA/gRNA driven by a human U6 RNA-Polymerase III promoter, and a single guide sgRNA/gRNA driven by a human U6 RNA-Polymerase III promoter, generating the homology arm 5′-CATCCACTCCTCTTTC-3′ and 5′-GCTTGAAGTCGTACTCGTTG-3′. An uninduced control was co-transfected with an empty sgRNA cloning plasmid instead. Genotyping of cell populations was performed using immunofluorescence microscopy (ZEISS Axiovert F-150, 250x, 1 µm) and immunocytochemistry images for EXISERS. Imaging was performed using epifluorescence microscopy (ZEISS Axiovert F-150, 250x, 1 µm) and immunocytochemistry images for EXISERS. Imaging was performed using epifluorescence microscopy (ZEISS Axiovert F-150, 250x, 1 µm) and immunocytochemistry images for EXISERS. Imaging was performed using epifluorescence microscopy (ZEISS Axiovert F-150, 250x, 1 µm) and immunocytochemistry images for EXISERS.
NLS + synthetic NLS) or PspCas13b with a C-terminal nuclear export signal from HIV Rev protein were co-transfected with a plasmid encoding the crRNA of the Cas13 system (human U6 RNA polymerase III driven) targeting the RNA of interest indicated in the figures. All constructs were generated using oligodeoxynucleotides (IDT) and gene fragments (gblocks, IDT).

mRNA manipulation with amiRNAs. CAG-driven mammalian codon-optimized IREP720 was intersected with a modified intron derived from rabbit beta-globin. Within the synthetic crRNA, the artificial mature microRNA backbone containing the critical region for efficient microRNA biogenesis and a type-III restriction enzyme cloning site was embedded. Guide and passenger (star) strands were designed using splashingDNA and cloned into the intron-encoded microRNA backbone with type-III restriction enzymes. All constructs were generated using oligodeoxynucleotides (IDT) and gene fragments (gblocks, IDT).

KO of MBNL1/MBNL2 and MOV10 using CRISPR-Cas9. To knockout MBNL1/2 or MOV10 in HEK293T cells, which carry a blastidicin resistance gene flanked by introns within the FOXP1 exon 18b, plasmids expressing a mammalian codon-optimized crRNA targeting MBNL1 (G+TGTGTCGCCCTATTCAACCGCC) and MBNL2 (G+TCACTTTGACAATTTGGTTG) in parallel, or MOV10 (1: G+CCGAGCCGACTTGTGACAGAT; 2: GCCCGTAACAATGTGCCTCA) were co-transfected. Then, 72 h later, cells were replated in a proper format, and media were supplemented with the indicated blastidicin 5 μg/mL. The control sample was transfected under the same conditions, but the sgRNA targeted the locus LASS1 (PPPRIR12C; GGAGACCCATTATATTGGCCA) or ALDOA (G+AAATCTTCTGATGGAAGCA). Genomic DNA was isolated from blastidicin-S-treated surviving colonies using the Wizard Genomic DNA Purification Kit (Promega) according to the manufacturer’s protocol.

Protein biochemical analysis. Immuno blot analysis. Cells were lysed with the appropriate volume of M-PER (Thermo Fisher Scientific), including protease inhibitors (Halt Protease Inhibitor Cocktail, Thermo Fisher Scientific), according to the manufacturer’s protocol. Cleared lysates were then pelleted and the relative protein concentration determined using the NanoDrop 1000 (Thermo Scientific) and normalized to the input level. Protein samples were heated in Laemmli buffer (2×) for 5 min at 95 °C for 1 h. Antigen antibodies were usually diluted 1:1,000 in blocking buffer (150 mM Tris pH 8.0, 1% (m/v) BSA, 0.1% (v/v) Tween-20). The primary antibody was applied for 1 h at room temperature, washed with PBS/0.1% (v/v) Tween-20 and incubated for 1 h at room temperature or overnight at 4 °C. The primary and secondary antibodies were used at 1:2,000 and 1:10,000, respectively, in 1% (m/v) BSA, 0.1% (v/v) Tween-20 (Sigma-Aldrich) at room temperature. All antibodies were diluted in blocking buffer (1×) and washed between incubations and washes. The blot was scanned and quantified using Image Lab (v.6.1.0 build 7, Bio-Rad). All uncropped blots are shown in Supplementary Fig. 15.

DNA analysis. To quantify the genome editing outcome of MBNL1/MBNL2, the intended genomic double-stranded break region was PCR-amplified using the LongAmp Hot Start Taq 2× Master Mix (NEB) according to the manufacturer’s protocol with primer deoxynucleotides pairs (IDT) flanking the expected mutation region. After DNA agarose gel electrophoresis, the PCR fragments were cut out and purified using the Monarch DNA Gel Extraction Kit (NEB). Indel analysis was performed using TIDE.

RNA analysis. Semi-quantitative RT–PCR. Cells were collected for 5 min at 200 g, and the RNA was isolated using the RNeasy Mini Kit (QIAGEN) according to the manufacturer’s protocol. Reverse transcription was performed using the SuperScript IV VILO Master Mix (Invitrogen, Thermo Fisher Scientific) according to the manufacturer’s protocol, followed by a semi-quantitative PCR using synthetic primers and SYBR Green Supermix (Thermo Fisher Scientific). The following exon-spanning primers were used for semi-quantitative quantification of FOXP1 exon 18 or 18b inclusion: RT_FOXP1_Ex16-17_1_fw, TCTTTAATTAGGAGGCCCCATTCTCG; RT_FOXP1_Ex19-20_1_rv, CACTTAGAACGCTGTAGAAGCTGC.

RT–qPCR. The Luna Cell Ready Probe One-Step RT–qPCR Kit (NEB) was used according to the manufacturer’s protocol with slight modifications. Reactions were run in 384-well plates (10 pM per well) in technical duplicates. 20X TaqMan Gene Expression Assays (Thermo Fisher Scientific) for ACTB, pan-tau and 4R-tau were used at half concentration (450 nM final per primer and 125 nM final per probe; ACTB, Hs00100665_g1; pan-tau, Hs00921941_m1; 4R-tau, Hs00920312_m1). The reaction was performed and monitored using the Applied Biosystems QuantStudio 12K Flex Real-Time PCR system (v1.4). The acquired data were processed and exported using QuantStudio 12K Flex Software. For some data points, individual baseline correction was performed. The relative MAPT mRNA levels of pan-tau and 4R-tau were normalized using the endogenous MBNL1 or AA ACTB or ALDOA or AA VS1 or ALDOA or AA ACTB or ALDOA.

Cellular and molecular imaging. Immunocytochemistry. The medium was aspirated from the cells, and the cells were washed with DPBS (Gibco, Thermo Fisher Scientific) and fixed for 10 min in 10% neutral buffered formalin (Sigma-Aldrich) at room temperature. Primary antibodies at the indicated concentration were diluted 1:1,000 in BSA blocking buffer (only anti-pantau antibodies (PC1C6, Merck) were diluted 1:200). Blocking buffer was prepared using DPBS (Gibco, Thermo Fisher Scientific) with 1% BSA (Sigma-Aldrich) containing 0.5% Triton X-100 (Sigma-Aldrich). Cells were washed three times after fixation with DPBS (Gibco, Thermo Fisher Scientific) for 5 min at room temperature, and blocking buffer containing the suitable fluorescent dye coupled secondary antibodies (1:1,000, Thermo Fisher Scientific) was applied for 2 h at room temperature or overnight at 4 °C. The primary and secondary antibodies that we used were as follows: mouse PC1C6 anti-pan-tau (Merck), rabbit D77G9 anti-TUB83 (Cell Signaling Technology), Cy3-conjugated cross-adsorbed goat anti-mouse IgG (H+L) (Thermo Fisher Scientific), Cy5-conjugated cross-adsorbed goat anti-mouse IgG (H+L) (Thermo Fisher Scientific) and Alexa-Fluor 633-conjugated cross-adsorbed goat anti-rabbit IgG (H+L) (Thermo Fisher Scientific).

Epifluorescence microscopy. Epifluorescence microscopy was performed using the EVOS FL Auto Cell Imaging System (Invitrogen, Thermo Fisher Scientific) under identical conditions for all samples across conditions.

Confocal microscopy. Confocal microscopy was conducted on a Leica SP5 system (Leica Microsystems). For the live imaging of cells, warm phenol-red-free DMEM/F12 medium supplemented with HEPES (Gibco, Thermo Fisher Scientific) and 10% FBS was used, and imaging was performed at 37 °C under 5% CO2.

Bioluminescence microscopy. Bioluminescence life-imaging was performed using the LV200 bioluminescence imaging system (Olympus) in 8-well µ-slides (Ibidi). Transfection conditions of cells on 8-well µ-slides (Ibidi) were identical for 48-well plates. As a substrate solution for NLuc, the Nano-Glo Live Cell Assay System (Promega) was used according to the manufacturer’s protocol. Images were analysed using Fiji ImageJ v1.52p.

Bioluminescence quantification. For bioluminescence bulk quantifications, cells were plated and transfected in 96-well format. All bioluminiscence qualifications were performed using the Centro LB 960 (Berthold Technologies) plate reader with the indicated acquisition time using MicroWin 2000 (v.4.34). For bioluminescence detection of secreted/shedded NLuc, the supernatant was sampled (10 µl) at the indicated time points and detected using the Nano-Glo Luciferase Assay System (Promega) with a 0.1 s acquisition time. For dual-luciferase read-out using the Nano-Glo Dual-Luciferase Reporter Assay System (Promega), NLuc and FLuc signals were read out on plate 72 h after transfection with a 0.5 s acquisition time (5 s for nmPCPs) after 10 min addition of reagent 1 (ONE-Glo EX Luciferase) for FLuc and after 20 min addition of reagent 2 (NANO-DLR Stop & Go) for NLuc, which includes a FLuc inhibitor. For each of the paired NLuc and FLuc measurements from each individual sample, the ratio was taken, and the mean and s.d. were calculated across biological replicates. To keep the y-axis range consistent across experiments, the RLU for the reference condition (MAPT induction without further perturbation) was set to 1. For live-cell NLuc and FLuc quantification, the
Nano-Glo Endurization (Promega) Life Cell Substrates (1:200) and 500 mM VivoGlo β-luciferin (Promega) were used for a maximum duration of 65 s diluted in medium. The direct effects of ITU on FLuc or NLuc were excluded by applying ITU to cells after lysis at the same concentrations.

Design considerations of EXSISERS constructs. A detailed step-by-step protocol on generating constructs and cell lines for EXSISERS is available at the Protocol Exchange.

All of the constructs were generated using gene fragments (gBlocks) and oligodeoxynucleotides (IDT) and were codon-optimized for mammalian expression. A list of the relevant nucleotide and amino acid sequences used in this study is provided in Supplementary Table 2. **EXSISERS TMD-HaloTag:** The type-II TMD acts as a start-transfer sequence and translocates the subsequent binding moiety to the luminal/extracellular space, whereas the type-I TMD stops the translocation process; the sequence before and after the type-II and type-I TMD is therefore located in the cytosolic compartment, and the sequence that is between the TMDs is consequently in the extracytosolic compartments (Extended Data Fig. 8b). Two mutations (C61V and C262A) were also introduced into the HaloTag domain to prevent the accidental formation of disulfide bonds in the oxidative extracytosolic compartments and therefore might induce misfolding as previously shown for many fluorescent proteins. We selected the mouse Fcer2 membrane-spanning region as the type II TMD and also adopted the flanking amino acids as the N-terminally positively charged amino acids on the N-terminal (cytoplasmic) site to ensure proper domain topology (positive inside rule) and two TMD-preceding palmitoylatable cysteines might also improve membrane association and topology. We chose the human GYPA as the prototypical type-I TMD owing to its positively charged amino acids C-terminally (cytoplasmic) site adjacent to the TMD. Furthermore, G102L was introduced to disrupt the GxxxG TMD-dimerization motif, and a plasma membrane trafficking signal (PMTS) was also added.

EXSISERS Nanotags: we chose to flank NLuc with P5/AP6 CCs and a gp11-1 split-intein pair whereas the NLSERsω was created by flanking a quintuple thermostable mutant of firefly luciferase (F14R, L35Q, V182K, I232K, F465R) with another set of CCs (P3/3AP4) and an Nrdl-1 split-intein pair. **EXSISERS (BD) BSD was flankned with P5/AP6 CCs and a gp11-1 split-intein pair was used in analogy to the aforementioned constructs.

General design and application considerations for EXSISERS constructs. We suggest avoiding insertion sites close to prolines and insertion sites resembling the native extracellular environment to maximize splicing efficiency. We also recommend using the following inteins: gp41-1, Nrdl-1, IMPDH-1 and HwapoLa/Vo. Moreover, one should check the regularly updated intein database, which contains more than 1,000 inteins with known native intein sequences (maintained by the Iwat laboratory, (InBase v2.0) [https://inteins.biocenter.helsinki.fi/index.php]). The database enables searches for inteins with a desired native environment or interface to maximize the splicing efficiency. Furthermore, one should check with NetGene2 (v.2.4.2) and Human Splice Finder (v.3.1) whether the insertion might destroy a potential regulatory sequence or might cause the introduction of cryptic splice sites. A sufficient CRISPR/Cas9 efficiency for a target site should be confirmed by a T7 endonuclease I assay (NEB) according to the manufacturer’s protocol 48–72 h after transfection of cells with plasmids encoding Cas9 and the targeting sgRNA on a 48-well plate. Finally, an immunoblot analysis with suitable antibodies should be performed to ensure sufficient protein splicing efficiency. For screening applications, potential hits should be cross-checked with respect to whether the effect might result from direct modulation of Fluc or NLuc.

Statistics and reproducibility. Statistics were calculated using PRISM (v.8, GraphPad) as specified in each figure. The RLLs of NLuc and FLuc were normalized to the respective reference condition (for example, MAPT induction without perturbation) to aid graphical analysis. The ratio (NLuc/FLuc) was computed for each of the paired NLuc and FLuc measurements from each individual sample, and the mean and s.d. were calculated across the ratios from biological replicates. No statistical method was used to predetermine sample size. The experiments were not randomized. The investigators were not blinded to allocation during experiments and outcome assessment. However, if possible, the experiments were performed with master mixes and multichannel pipettes to exclude unnecessary biases during sample preparation.

No data were excluded from the analyses except for the experiments with hiPSCs shown in Fig. 3b,c, for which some technical replicates had to be excluded from calculating the mean value due to obvious technical errors (values shown in italics in the Source Data).

Most experimental findings were reproduced in independent experiments and with complementary techniques, as explained in detail in the main text and figure legends. The immunoblot results in Fig. 1c, on an unperturbed tau pattern in the presence of EXSISERS, were reproduced in Extended Data Fig. 4, as well as in Supplementary Figs. 3–5 and 7.

The bioluminescence signals after MAPT induction in Fig. 1d were reproduced in Figs. 2, 4 and 5, and Supplementary Fig. 10. The effects of ITU on Fig. 2d,e were independently shown in HEK293T cells in Extended Data Fig. 4 and further controlled in Supplementary Fig. 8. The effects were also replicated in smNPc in Fig. 3c.

The effects of isoform-specific perturbation of MAPT assessed by dual-luciferase readout of EXSISERS, were validated by RT–qPCR (Extended Data Fig. 6b,c).

The results on Cas13d splicing suppression and enhancement reported in Fig. 5 were replicated with independent clones in Supplementary Fig. 10.

The findings on enhancing RfCas13d activity by extending the spacer length shown in Fig. 4b was validated at the RNA level using RT–qPCR in Extended Data Fig. 6a and at the protein level on another target in Supplementary Fig. 9.

The results of the EXSISERS CRISPR screen (Figs. 6c and 7a) were validated by applying EXSISERS TMD-HaloTag: the type-II TMD acts as a start-transfer sequence and the type-I TMD acts as a stop-transfer sequence to aid graphical analysis. The ratio (NLuc/FLuc) was assessed by PhotoN VivoGlo. 70. Costantini, L. M. et al. A palette of fluorescent proteins optimized for diverse applications, potential hits should be cross-checked with respect to whether the effect might result from direct modulation of Fluc or NLuc.

Data availability

Unprocessed immunoblots are provided in the Source Data for the relevant figures and the Supplementary Information. Results of all of the statistical tests are provided in Supplementary Table 1. Source data are provided with this paper. All other data supporting the findings of this study are available from the corresponding author on request.

Acknowledgements

We thank L. Reichart for reading, discussions about and suggestions to the manuscript. We are grateful for support from the European Research Council under grant agreements ERC-StG: 311552 (to G.G.W. and D.J.T.) and ERC-Cog 685710 (to G.G.W.), the TUM International Graduate School of Science and Engineering (IGSSE, project BIOMAG, to D. J.T. and G.G.W.), the Bayerische Forschungsstiftung (to D. J.T. and G.G.W.), the Bavarian Research Network for Molecular Biosystems (BioSysNet, to G.G.W.), the German Federal Ministry of Education and Research (BMBF) through HIT-Tau (01EK1605C, to W.W.; 01EK1605A, to G.U.H. and P.H.) and EpIPD (01KU1403A, to G.U.H.), the AMPR project ‘‘Aging and Metabolic Programming’’ of the Helmholtz Association (WW.), the NOMIS foundation (to G.H. and P.H.), the Deutsche Forschungsgemeinschaft (DFG) through SFB902/1B1 ‘‘8, to G.U.H. and the Peter-Müller-Stiftung (to G.U.H.). M.C. is supported by the DFG CO 291/7-1, the German Federal Ministry of Education and Research (BMBF) VIP+ program NEUROPROTEKT (03PV04260), the Ministry of Science and Higher Education of the Russian Federation (075-15-2019-1933) and the Else Kröner-Fresenius-Stiftung and has further received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. GA 884754).

No data were excluded from the analyses except for the experiments with hiPSCs shown in Fig. 3b,c, for which some technical replicates had to be excluded from calculating the mean value due to obvious technical errors (values shown in italics in the Source Data).

Reporting Summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.
Author contributions

D.-J.J.T. conceived the reporter mechanism, designed all constructs, co-generated all constructs, co-conducted all cell and biochemical experiments, co-analysed all data and generated all of the figures. D.-J.J.T., C. Gruber and T.P. co-designed and co-generated Cas13 constructs, co-conducted Cas13 experiments and co-analysed Cas13-related data. T.P., B.E., C. Gruber, D.T., E.B., N.A., F.L.V., E.-M.L., E.M.B., J.G., S.G., L.K., C. Grätz, G.R., D.S., M. Zirngibl, M. Živanić, M.B., J.D.K., T. Santl and V.E. co-generated all constructs, co-conducted all cell and biochemical experiments, co-analysed all data and helped with the finalization of the manuscript. B.E. knocked-in the EXSISERS constructs into the hiPSCs and performed the experiments with the hiPSC-derived EXSISERS_{MAPT} smNPCs and in vitro differentiation. T. Strauß, S.C.S., G.U.H. and P.H. pre-differentiated the EXSISERS_{MAPT} hiPSCs into the corresponding smNPCs. S.D. and M.C. advised on the library experiments and helped with the subsequent analysis. F.G. and W.W. co-designed the experiments with MAPT and advised on the manuscript. D.-J.J.T. and G.G.W. designed the experiments and wrote the manuscript. G.G.W. supervised the research.

Competing interests

D.-J.J.T., G.G.W. and W.W. have filed a patent (WO2020161236) disclosing the capabilities of EXSISERS. M.C. is co-founder and shareholder of ROSCUE Therapeutics GmbH. The other authors declare no competing interests.

Additional information

Extended data is available for this paper at https://doi.org/10.1038/s41556-021-00678-x.

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41556-021-00678-x.

Correspondence and requests for materials should be addressed to G.G.W.

Peer review information Nature Cell Biology thanks Zefeng Wang, Gene Yeo, Baojun Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permissions information is available at www.nature.com/reprints.
Extended Data Fig. 1 | Improving internal split-inteins with coiled-coils as heterodimerization domains to support excision of the reporter module.

The schematic on the top left panel depicts the construct containing split-inteins without (left) and with (right) addition of coiled-coils (yellow) flanked by the two halves of split-mNeonGreen (green rectangular shapes) serving as a model for exteins with extremely fast folding rates of less than 10 minutes. The immunoblot analysis of mNeonGreen (FLAG-tag, 24 hours post-transfection) showed a substantial increase of the resulting extein for the construct with the coiled-coils. Strong overexposure reveals a small fraction of side products (C-cleavage product C-mNeonGreen). Data shown represent 2 independent experiments. Unprocessed blots are provided in Source Data Extended Data Fig. 1.
Extended Data Fig. 2 | Characterization of dual-luciferase EXSISERS MAPT 0N4R CDS containing the constitutive intron 11-12 was cloned into a mouse Pgk1 promoter-driven plasmid including the intron between exon 11 and 12. Additionally, mutations that disrupt intein splicing (C-terminal Asn→Ala mutation) were created to show their importance for efficient protein splicing. b. Immunoblots against pan-tau from cells expressing the two constructs described in a with CCs, either with an active or a catalytically inactive intein. Data shown represent 2 independent experiments. c. Increasing amounts of Pgk1 promoter-driven EXSISERS MAPT0N4R CDS, driving the expression of both luciferases at 1:1 stoichiometry, were transfected into HEK293T cells. The resulting NLuc signal (RLU) is plotted against the FLuc signal (RLU) with a linear fit through the data points, revealing that inclusion of both exons results in NLuc signals that are ~30-fold (95% confidence interval (CI) from 28.08 to 30.63) stronger than FLuc. The reference curve was obtained from one experiment. Unprocessed blots are provided in Source Data Extended Data Fig. 2.
Extended Data Fig. 3 | Characterization of minigene variants of MAPT with integrated dual-luciferase EXSiSERS constructs. a, A MAPT 4R-minigene was created by amplifying exon-adjacent intronic sequences between exon 9 and 10, and between 10 and 11. b, Immunoblot analysis (anti-pan-tau) of HEK293T cells, transiently transfected with a Pgk1 promoter-driven plasmid overexpressing MAPT ON3R CDS yield a single ON3R protein species and minor tau degradation products. c, Immunoblot analysis (anti-pan-tau) of HEK293T cells transfected with a minigene described in a) and its corresponding densitometric analysis (dephosphorylated lysate). Please note that it is challenging to obtain sufficiently separated bands for tau isoforms to perform precise densitometric quantification. Data shown in b and c represent 2 independent experiments. d, Overexposed and contrast-enhanced images of c) showed minor amounts of tau breakdown products and unspliced variants of the overexpressed luciferases. e, Fractional inclusion of exon 10 in HEK293T cells transfected with the minigene constructs described in a) By applying the conversion for the relative luminescence brightness of FLuc and NLuc (Extended Data Fig. 2c), the fractional inclusion of exon 10 for the WT-minigene variant is ~19% an 35% for the IVS10+16 C>T minigene. Data shown represent the mean ± s.d (n = 3 biological replicates). **** denotes a p-value smaller than 0.0001 in a two-tailed unpaired t-test (full statistical results are available in Supplementary Table 1). Unprocessed blots and numerical source data are provided in Source Data Extended Data Fig. 3.
Extended Data Fig. 4 | Uncropped immunoblot analysis of 5-iodotubercidin (ITU) effect on tau isoform expression in HEK293T and EXSISERS_{MAPT:10NLuc-11Fluc}. MAPT was induced in the indicated cells, which were subsequently treated with increasing concentrations of ITU. Anti-pan-tau and anti-OLLAS (= 4R reporter) immunoblot analysis showed a concentration-dependent inclusion of exon 10 in both unmodified HEK293T and EXSISERS_{MAPT:10NLuc-11Fluc} cells (dephosphorylated cell lysates). Data shown for unmodified HEK293T cells or EXSISERS lines represent 3 or 4 independent experiments with similar results, respectively. Unprocessed blots are provided in Source Data Extended Data Fig. 4.
Extended Data Fig. 5 | Schematic of the preferred sites of action for the different programmable RNA-targeting systems. Alternative splicing (AS) generates different isoforms of a single pre-mRNA, regulated by splice factors. b, RNA-guided perturbation using RfxCas13d-NLS in the nucleus is expected to be isoform-unspecific but can be made isoform-specific by targeting the exon-exon-junctions. c, In contrast, cytosolic PspCas13b-NES acts in the cytosolic environment and can thereby degrade isoforms without the necessity for targeting the exon-exon-junctions. Endogenously reprogrammed microRNAs can also efficiently act in the cytosol. In comparison to PspCas13b-NES, a few restrictions on the choice of the RNA sequence apply. d, In the case of the inactivated variant dRfxCas13d-NLS, splice enhancers/suppressors can be recruited to an exon of interest to modulate exon in- or exclusion resulting in an isoform shift.
Extended Data Fig. 6 | Validation of key results of isoform-specific knockdown of MAPT with RT-qPCR. a, Optimization of spacer length for RfxCas13d with a nuclear localization sequence (NLS) measured via depletion of induced tau, tracked via mRNA levels of 4R-tau and pan-tau 72 h post-transfection. b, Targeting of exon-exon junctions to increase isoform specificity of RfxCas13d-NLS. c, Comparison of isoform specificity in cytosolic targeting of mature mRNA with different amiRNAs. Data shown in a–c represent the mean values ± s.d. (n = 3 biological replicates). Selected results are shown for a two-way ANOVA with Bonferroni MCT (a, b), or two-tailed unpaired t-test between the two exon-10 targeting effectors (c), where * and *** denote p-values smaller than 0.05 and 0.001 (full statistical results are available in Supplementary Table 1). Numerical source data are provided in Source Data Extended Data Fig. 6.
Extended Data Fig. 7 | Mapping of potential off-target binding sites of RfxCas13d/PspCas13b crRNAs. The number indicated above the binding sites denotes the targeted exonic region of MAPT (for example, 10-11 is the intended targeting of the exon-junction 10-11). ‘x’ indicates mismatches on the isoform off-target sites, and ‘w’ indicates wobble base pairs (G-U pairings). 10-11 targeting amiRNA has 3 terminal mismatches, which have been shown to be well-tolerated in shRNAs, resulting in a depletion of both 4R and 3R tau isoforms. 29-10 crRNA (RfxCas13d-NLS) also matches the 9-11 junction resulting in an unspecific depletion of both 4R and 3R tau.
Extended Data Fig. 8 | See next page for caption.
Extended Data Fig. 8 | EXSISERS can be programmed with different reporters and effectors. **a, b**, HaloTag was flanked by intein-CC domains and type I and type II transmembrane domains (TMDs), resulting in a surface functionalization with a HaloTag inserted into exon 10 of MAPT. **c**, Cells were incubated with chloroalkane-functionalized Alexa Fluor 660 (3.5 µM) for 10 min at 37 °C and washed with HBSS. **d**, Anti-pan-tau immunoblot showed the typical tau pattern indicating scarless excision. Data shown represent one independent experiment. **e**, Epifluorescence microscopy image of anti-pan-tau immunocytochemistry of EXSISERS:MAPTI::Halo cells after MAPT induction showing filamentous tau staining. Data shown represent 2 independent experiments. **f**, Cells were incubated with chloroalkane-functionalized Alexa Fluor 660 (3.5 µM) for 10 min at 37 °C and washed with HBSS. **g**, Anti-pan-tau immunoblot showed the typical tau pattern indicating scarless excision. Data shown represent one independent experiment. **h**, Epifluorescence microscopy image of anti-pan-tau immunocytochemistry of EXSISERS:MAPTI::Halo cells after MAPT induction showing filamentous tau staining. Data shown represent 2 independent experiments. **i**, Surface localization of scAvidin or HaloTag in transfected HEK293T was confirmed by live-staining with biocytin-AF594 and chloroalkane-AF660, while mNeonGreen-NLS (mNG-NLS) was detected in the nucleus. Data shown represent one experiment from 2 cell culture wells. **j**, The binding moiety of the membrane anchors was exchanged for NLuc flanked by furin sites (FS), such that the Golgi-resident furin can cleave off NLuc and releases it into the supernatant. **k**, NLuc activity was measured over time in the supernatant of cells expressing the sheddable NLuc without/with furin sites. Data shown represent the mean values ± s.d. (n = 3 biological replicates). *** denotes p < 0.001 of selected Bonferroni MCT after two-way ANOVA with repeated measures (full statistical results in Supplementary Table 1). **l**, Intein-flanked mNG was inserted into the mouse Tubb3 gene. **m**, Immunoblot confirms successful intein splicing of mNG. Data shown represent 7 independent experiments. **n**, Mouse N2a cell line with insertion of the intein-mNG reporter into Tubb3 shows typical Tubb3 filaments via immunocytochemistry. The fluorescent mNG signal (inset) was observed throughout the cell, indicating successful post-translational splicing. Data shown represent 2 independent experiments. Unprocessed blots and numerical source data are provided in Source Data Extended Data Fig. 8.
Extended Data Fig. 9 | EXSISERS enables non-invasive protein-level quantification of co-translation regulation. a, The antizyme Oaz1 is regulated co-translationally by ribosomal frameshifting, which strongly depends on polyamine levels such as spermidine and spermine. Increasing polyamine levels lead to a +1 frameshift and skipping of the in-frame stop codon providing the full-length Oaz1 antizyme. The usage of the in-frame stop codon otherwise will lead to truncated non-functional Oaz1. Full-length Oaz1 binds and inactivates the enzyme Odc, the rate-limiting enzyme in the polyamine biosynthesis pathway, resulting in a product-mediated closed-loop homeostatic regulation of polyamine levels. b, EXSISERSOaz1-mTagBFP2 and EXSISERSOaz1-mNeonGreen were inserted into a plasmid harboring the full-length Oaz1 gene up- and downstream of the regulatory hairpin with the in-frame stop codon. c, FACS analysis of EXSISERSOaz1 transfected cells treated with different polyamine levels. The first gate (blue) ensured analysis of transfected cells only (Supplementary Information). Transfected cells were analyzed by counting the fraction of cells passing the green gate, which was set to contain the greenest 25% in the untreated condition (0 mM). Data points represent the mean values ± s.d. (n = 3 biological replicates). d, Immunoblot from the lysate of the corresponding samples shown in c. ***, and **** denotes p < 0.001, and p < 0.0001, one-way ANOVA, of Bonferroni MCT against vehicle control (full statistical results are available in Supplementary Table 1). Unprocessed blots and numerical source data are provided in Source Data Extended Data Fig. 9.
Extended Data Fig. 10 | Genomic DNA analysis of cell populations selected with increasing blasticidin S concentration after MBNL1/2-KO. Genomic DNA was isolated from cell populations selected with blasticidin at three different concentrations (top row to bottom row). The frequency of insertions and deletions were estimated for a, the MBNL1 locus or b, the MBNL2 locus from Sanger sequencing chromatograms. Cells resistant to a blasticidin S in a concentration-dependent manner showed an increased frequency in mutated MBNL1 alleles confirming the prominent role of MBNL1 in suppressing FOXP1 exon 18b inclusion. This analysis was conducted once.
Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

- The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
- A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
- The statistical test(s) used AND whether they are one- or two-sided
- A description of all covariates tested
- A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
- A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
- For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
 Give P values as exact values whenever possible.
- For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
- For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
- Estimates of effect sizes (e.g. Cohen’s d, Pearson’s r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection Geneious Prime 2019, FusionCapt Advance SL4 16.09b, MikroWin 2000 4.34, BD FACSDiva 6.1.3, QuantStudio 12K Flex, Axiovision 4.6

Data analysis PRISM 8, Geneious Prime 2019, Fiji ImageJ (1.52p), FACSDiva (6.1.3), Image Lab software {v6.1.0 build 7, Bio-Rad}, QuantStudio 12K Flex (v1.4), ENCoRE (original published version from 2016), Human Splice Finder (v3.1), NetGene2 (v2.42), TIDE (3.2.0.)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

Source data are provided with this paper. All other data supporting the findings of this study are available from the corresponding author on request.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

- Life sciences
- Behavioural & social sciences
- Ecological, evolutionary & environmental sciences
Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size	Preliminary luciferase-based experiments showed that there was only small variation over independent replicates, so we decided for n=3.
Data exclusions	No data points were excluded.
Replication	All experiments were successfully replicated with independent biological samples. Please see the detailed statements in the Statistics@Reproducibility section.
Randomization	This technical report used cell culture as the primary method. Cell culture wells were allocated to the different treatment groups specified by the particular experiment without determining any specific property of the cells in a given well for selecting a specific condition.
Blinding	The experiments were performed, if possible, with master mixes and with multichannel pipettes to exclude unconscious biases during sample preparation. However, the individual human experimenter was not blinded for the conditions as this was not feasible.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems	Methods
n/a	Involved in the study
☐	Antibodies
☑	Eukaryotic cell lines
☑	Palaeontology
☑	Animals and other organisms
☑	Human research participants
☑	Clinical data
☑	Involved in the study
☑	ChiP-seq
☑	Flow cytometry
☑	MRI-based neuroimaging

Antibodies

Antibodies used

Primary antibodies
M2 mouse anti-FLAG (1:1,000, F1804-200UG, Sigma-Aldrich)
L2 rat anti-OLIG2 (1:1,000, MAS-16125, Thermo Fisher Scientific)
PC1C6 mouse anti-pan-tau (1:200, MA93420, Merck Millipore)
8E6/C11 mouse anti 3R tau (1:1,000, 05-803, Merck Millipore)
EPR4141 rat anti-FOX1 (1:1,000, ab134063, abcam)
32F6 mouse anti-mNeonGreen (1:1,000, 32F6-100, ChromoTek)
ab21176 rabbit anti-firefly luciferase (1:1,000, abcam)
D7109 rabbit anti-TUBB3 (1:1,000, 55685, Cell Signaling Technology [CST])
AC-15 mouse anti-beta-Akt (HRP-coupled) [1:100,000, ab6276, abcam]

Secondary antibodies (HRP-coupled)
goat anti-mouse IgG H&L (HRP-coupled) [1:20,000, ab97023, abcam]
goat anti-rat IgG H&L (HRP-coupled) [1:20,000, ab97057, abcam]
goat anti-rabbit IgG H&L (HRP-coupled) [1:20,000, ab6721, abcam]

Secondary antibodies (dye-labeled)
Cy3-conjugated cross-adsorbed goat anti-mouse IgG (H+L) (1:1,000, A10521, Thermo Fisher Scientific)
Cy5-conjugated cross-adsorbed goat anti-mouse IgG (H+L) (1:1,000, A10524, Thermo Fisher Scientific)
Alexa Fluor 633-conjugated cross-adsorbed goat anti-rabbit IgG (H+L) (1:1,000, A21070, Thermo Fisher Scientific)
Alexa Fluor 594-conjugated cross-adsorbed donkey anti-mouse IgG (H+L) (1:1,000, A21203, Thermo Fisher Scientific)
Alexa Fluor 488-conjugated cross-adsorbed goat anti-rabbit IgG (H+L) (1:1,000, A11008, Thermo Fisher Scientific)
Alexa Fluor 488-conjugated cross-adsorbed donkey anti-goat IgG (H+L) (1:1,000, A11055, Thermo Fisher Scientific)

Pluripotency markers
C7081 rabbit anti-SOX2 (1:500, 37285, Cell Signalling Technology)
C30A3 rabbit anti-OCT4A (1:500, 2840, Cell Signalling Technology)
Goat anti-NANOG (1:500, A19977, R&D Systems)
Germ layer-specific markers
Endoderm:
Goat anti-SOX17 (1:1,000, AF1924, R&D Systems)
P87H4B7 mouse anti-FOXA2 (1:1,000, 685802, BioLegend)

Ectoderm:
AD2.38 mouse anti-PAX6 (1:200, ab78545, abcam)
10DC2 mouse anti-Nestin (1:250, MA1-110, Thermo Fisher Scientific)

Mesoderm:
EPR18133 rabbit anti-TBX1 (1:1,000, ab309665, abcam)
Rabbit anti-NCAM1 (1:200, ab204446, abcam)

smNPC identity verification
AD2.38 mouse anti-PAX6 (1:500, ab78545, abcam)
10DC2 mouse anti-Nestin (1:500, MA1-110, Thermo Fisher Scientific)
C7081 rabbit anti-SOX2 (1:500, 37285, Cell Signaling Technology)
SDL:3D10 mouse anti-TUBB3 (1:500, T5076-200UL, Sigma-Aldrich)

Neuronal markers:
SDL:3D10 mouse anti-TUBB3 (1:500, T5076-200UL, Sigma-Aldrich)
Rabbit anti-MAP2 (1:250, A85622, Merck Millipore)

negative markers:
C30A3 rabbit anti-OCT4A (1:500, 2840, Cell Signaling Technology)
EPR4007 rabbit anti-SOX10 (1:250, ab155279, abcam)

Validation
All antibodies were purchased from respected manufacturers that provide detailed validation. If applicable, specificity was validated using controls without the corresponding antigens (e.g., via control transfections).

M2 mouse anti-FLAG [F1804-200UG, Sigma-Aldrich] https://www.sigmaaldrich.com/life-science/proteomics/recombinant-protein-expression/purification-detection/flag-antibodies.html
L2 rat anti-GLAS [MAS-16125, Thermo Fisher Scientific] https://www.thermofisher.com/order/catalog/database/ datasheetPdf?productType=antibody&productSubtype=antibody-primary&productID=MAS-16125&versionId=137
PC16 mouse anti-pan-tau [MA38420, Merck Millipore] https://www.sigmaaldrich.com/catalog/product/mna/mab3420? lang=de®ion=DE
8E6/C11 mouse anti-3R-tau (05-803, Merck Millipore) https://www.sigmaaldrich.com/catalog/product/mna/058037? lang=de®ion=DE
EPR4114 rat anti-FOX1J (ab134063, abcam) https://www.abcam.com/ab134063.pdf?
326 mouse anti-mNeonGreen (326-100, ChromoTek) https://www.chromotekfile.com/content/PDFs/Protocols/ mNeonGreen_326E.pdf
rabbit anti-firefly luciferase (ab21176, abcam) https://www.abcam.com/firefly-luciferase-antibody-ab21176.html
D7109 rabbit anti-TUBB3 (55685, Cell Signaling Technology (CST)) https://www.cellsignal.com/products/primary-antibodies/b3 tubulin-d7109-xp-rabbit-mab/5568
AC-15 mouse anti-beta-Actin [HRP-coupled] (ab6276, abcam) https://www.abcam.com/beta-actin-antibody-ac-15-ab6276.html
goat anti-mouse IgG (HRP-coupled) [ab97023, abcam] https://www.abcam.com/goat-mouse-igg-hrp-ab97023.html
rat anti-rabbit IgG (HRP-coupled) [ab97057, abcam] https://www.abcam.com/goat-rat-igg-hrp-ab97057.html
goat anti-rabbit IgG (HRP-coupled) [ab6721, abcam] https://www.abcam.com/goat-rabbit-igg-hrp-ab6721.html
Cy3-conjugated cross-adsorbed goat anti-mouse IgG (H+L) [A10521, Thermo Fisher Scientific] https://www.thermofisher.com/ order/catalog/database/datasheetPdf?
productType=antibody&productSubtype=antibody-secondary&productID=A10521&versionId=137
Cy5-conjugated cross-adsorbed goat anti-mouse IgG (H+L) [A10524, Thermo Fisher Scientific] https://www.thermofisher.com/ order/catalog/database/datasheetPdf?
productType=antibody&productSubtype=antibody-secondary&productID=A10524&versionId=137
Alexa Fluor 633-conjugated cross-adsorbed goat anti-rabbit IgG (H+L) [A21070, Thermo Fisher Scientific] https://www.thermofisher.com/order/catalog/database/datasheetPdf?
productType=antibody&productSubtype=antibody-secondary&productID=A21070&versionId=137
Alexa Fluor 594-conjugated cross-absorbed donkey anti-mouse IgG (H+L) [A21203, Thermo Fisher Scientific] https:// www.thermofisher.com/order/catalog/database/datasheetPdf?
productType=antibody&productSubtype=antibody-secondary&productID=A21203&versionId=137
Alexa Fluor 488-conjugated cross-adsorbed goat anti-rabbit IgG (H+L) [A31008, Thermo Fisher Scientific] https:// www.thermofisher.com/order/catalog/database/datasheetPdf?
productType=antibody&productSubtype=antibody-secondary&productID=A31008&versionId=137
Alexa Fluor 488-conjugated cross-adsorbed donkey anti-goat IgG (H+L) [A10055, Thermo Fisher Scientific] https:// www.thermofisher.com/order/catalog/database/datasheetPdf?
productType=antibody&productSubtype=antibody-secondary&productID=A10055&versionId=137
C7081 rabbit anti-SOX2 (37285, Cell Signaling Technology) https://www.cellsignal.com/products/primary-antibodies/sox2-c7081 rabbit-mab-icr-preferred/3728
C30A3 rabbit anti-OCT4A (2840, Cell Signaling Technology) https://www.cellsignal.com/products/primary-antibodies/oct4a c30a3-rabbit-mab/2840
Goat anti-NANOG [AF1997, R&D Systems] https://www.rndsystems.com/products/human-nanog-antibody_af1997#product-
Eukaryotic cell lines

Policy information about cell lines

Cell line source(s)

| HEK293T (human), Neuro2a/N2a (mouse) from ATCC, hiPSCs HPSi0514i-vuna_3 (77650602, ECACC) and hiPSCs HPSi0614i-ulik_2 (ECACC: 77650606) from the European Collection of Authenticated Cell Cultures. |

Authentication

HEK293T and Neuro-2a were bought from ATCC and were not additionally authenticated. hiPSCs and smNPCs were authenticated using typical pluripotency or NPC markers [see methods section: Verification of cellular identities (iPSCs and smNPCs) using immunofluorescence detection]. Chromosomal aberration was excluded by G-Banding [see methods section: Verification of cellular identities (iPSCs and smNPCs) using immunofluorescence detection].

Mycoplasma contamination

All cell lines were tested for mycoplasma contamination using MycoAlertTM Mycoplasma Detection Kit (LT07-318, Lonza). In addition, all cell lines were tested every 3 months for contamination by Hoechst 33342, which visualizes extranuclear speckles in case of contamination. All results shown in the manuscript were from cells tested negative for mycoplasma.

Commonly misidentified lines

(See [ICLC register](#))

No commonly misidentified cell lines were used in this study.

Flow Cytometry

Plots

- The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).
- The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
- All plots are contour plots with outliers or pseudocolor plots.
- A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation

Adherent cells were dissociated with Accutase and centrifuged at 200 rcf for 5 min at RT, and cell pellets were resuspended in ice-cold PBS with 2% FBS. The resuspended cells were transferred into conical 5 ml polystyrene round-bottom tubes, including a cell-strainer cap, and were kept on ice.

Instrument

BD FACSaria II (BD Biosciences)

Software

BD FACSDiva Software [Version 6.1.3, BD Biosciences]

Cell population abundance

For FACS analysis, at least 50,000 events were recorded per condition. The smallest fraction of analyzed cells was >5% of total events.

Gating strategy

The main population of cells was gated according to their forward scatter and sideward scatter. Afterward, single cells were chosen according to their FSC-A and FSC-W. Subsequently, the transfected cells were gated according to their blue fluorescence (450 nm). These fluorescence gates were determined using blue- and green-negative cells by control-transfection with IRFP720 (infrared fluorescence). The 530 nm quartile gates were set in the DMSO control condition such that 25% of cells were passing the gate. These gates were not changed for all subsequent experimental conditions.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.