Simultaneous enhancement of strength and ductility with nano dispersoids in nano and ultrafine grain metals: a brief review

1 Introduction

Grain refinement has been proved to be most efficient method in strengthening metals for a long time. With the development of fabrication facilities and processing technologies, grain size of the metallic materials has been brought down to sub-micro regime (Ultrafine Grain, UFG) or even nano regime (Nano Grain, NG), exhibiting a low strain hardening ability [16–18]. As is known to all, strain hardening ability is key to the stress transfer from the deformed to the undeformed grains, which plays an important role in stress distribution homogenization and early-stage defects prevention. Generally speaking, due to the size effect, dynamic recovery is enhanced in fine grains and the number of movable dislocations is greatly decreased. In most cases, single dislocation can...
Simultaneous enhancement of strength and ductility in nano and ultrafine grain metals

The strain hardening rate $\dot{\varepsilon}$ can be expressed as [19]:

$$\dot{\varepsilon} = \frac{1}{\sigma} \left(\frac{\partial \sigma}{\partial \varepsilon} \right) \varepsilon$$ \hspace{1cm} (1)

Where σ, ε are the true stress and true strain respectively. According to Considère criteria, a critical stress is given when uniform elongation ends [20]:

$$\sigma_c = \left(\frac{\partial \sigma}{\partial \varepsilon} \right) \varepsilon$$ \hspace{1cm} (2)

Thus, a simple conclusion can be made from the equation (1-2) that metallic materials with higher strain hardening rate has larger uniform elongation and consequently better ductility. However, the poor strain hardening of UFG/NG metals always leads to local stress concentration and plastic instability. The early defects at the stress-concentrated regions will cause catastrophic shear fracture right after yielding with little uniform elongation [21].

In a word, the main reason for poor ductility in UFG/NG metals is the lack of strain hardening, which is originated from the insufficient accumulation of dislocations in these fine grains. Some other factors including impurity concentration at GBs and reduced crack blunting effect of GBs in fine grains also deteriorate the ductility of UFG/NG materials [4].

2 Strategies to improve the ductility of UFG/NG material

First of all, due to the difficulty and complexity in producing consolidated UFG/NG metals, elimination of defects is always the primary goal for better overall mechanical performance [3, 5]. Defect-free UFG/NG metals with enhanced ductility have been reported [22, 23].

From the view of plastic deformation behavior, the primary task to improve the ductility of UFG/NG metals is to enhance the strain hardening ability through intragranular dislocation storage and promoted dislocation accumulation. Aimed on this, different strategies have been applied [24] and can be divided in to four categories. Firstly, bimodal [25] (multimodal [26]) and gradient structure [27] utilize the inhomogeneity of grain sizes, in which deformation mechanisms in both UFG/NG and coarse grains are simultaneously operative. Enhanced dislocation accumulation and extra strain hardening are found to be originated from the complex strain paths and triaxial strain components with very large strain gradient [25, 28, 29]. Secondly, nano twins (nano-sized internal interface) in fine grains can act as obstacles to dislocation motion and, thus, inhibit dislocation annihilation at grain boundaries. The complex reactions between dislocations and twin boundaries give rise to the intragranular dislocation storage [30–32]. This strategy have been widely applied in nanostructured copper [30] and steel [33]. Pitifully, metals with high stacking fault energy, e.g. aluminum, are intrinsically incompatible with this novel strategy. Thirdly, transformation induced plasticity (TRIP) [34–36] or twinning induced plasticity (TWIP) [37, 38] can also be effective in UFG/NG metals. The underlying mechanisms remain the same with the traditional metallic material.

Apart from all the approaches mentioned above, the utilization of intragranular nano dispersoids is another effective and widely applied method. Dislocations are expected to be accumulated when confronting the nano dispersoids, which may lead to enhanced strain hardening and higher tensile ductility. What’s more, due to the blocking effect of nano-dispersoids, the needed critical stress for dislocation slip will be raised and the metallic material is simultaneously strengthened. Therefore, introducing nano-dispersoids into UFG/NG metals is an effective strategy to simultaneously increase the ductility and strength. And it is suitable for nearly all kinds of metallic materials. Successful examples have already been reported in Al [39–41], Mo [42] and steel [43–45], Mg [46], Cu [47], CoCrFeNiMn high entropy alloys [48], etc. The key to fully develop this unique strategy relies on the methods to introducing nano-dispersoids. In the following, the processing routes for utilization the intragranular nano dispersoids and the underlying mechanisms will be reviewed.

3 Utilization of intragranular nano dispersoids

To homogeneously introduce the nano particles, both in-situ and ex-situ methods have been tried. To be simple, aluminum alloy or aluminum matrix composites were set as examples to elaborate the details of these methods.

3.1 In-situ methods to introduce nano dispersoids

The in-situ methods include nano-scale precipitation through thermo-mechanical treatment and introduction of nano particles (intermetallics, ceramic) through in-situ
Zhao's group was the early one to use nano-scale precipitation to strengthen NG 7075 aluminum alloy [39]. The material was solution-treated to obtain a coarse-grained (CG) solid solution and was immediately cryogenically rolled to reduce the grain size with the final average of 100 nm (NS sample). The NS sample was then aged at low temperature to introduce very fine second-phase particles (NS+P sample). Due to the high dislocation density introduced during cryo-rolling, the precipitation behavior was prosperous and large amounts of nanodispersoids were formed, as shown in Figure 1(a). As indicated by the stress-strain curves in Figure 1(b), the tensile strength of NS sample is much higher than the CG sample, but its total elongation is very low. While the NS+P sample exhibit both higher strength and ductility compared with the NS sample. Higher-resolution electron microscopy (HREM) on NS+P samples in Figure 1(c-e) verified that the intragranular nano-dispersoids indeed blocked and accumulated dislocations. X-ray analysis on both NS and NS+P samples verified that the dislocation accumulation in NS+P sample were much greater than the NS sample. The experimental results indicated the effectiveness of introducing nano-dispersoids in simultaneously improving the strength and ductility of UFG/NG metals. Similar success has been reported before and after Zhao's research [44, 49]. But his study just used simple control experiments and demonstrated convinced evidence. Further work by Zhao using aged-hardening 2024 alloy showed better enhancement in ductility due to larger amounts of intragranular nano-dispersoids [50]. The incomplete dissolution of primary second-phase particles during solution treatment caused higher dislocation density after cryo-rolling and promoted precipitation during aging.

It should be noted that, the aging treatment needs to be elaborately designed. Both the location and the size of the precipitates should be well controlled to develop their blocking effect on dislocation slip. Intragranular and excessively large precipitates only have weak interaction with the dislocations, leading to low toughening efficiency. To avoid the unwanted precipitation, Sun’s group has taken advantage of a microalloying strategy [51]. With trace Sc addition into the UFG Al-Cu alloys, a predominant intragranular precipitation was achieved, resulting in about 275% increment in ductility and simultaneously about 50% enhancement in yield strength by compared to its Sc-free counterpart where intergranular precipitation occurs even at room temperature. The minor addition of Sc is found to effectively stabilize the microstructure, strongly suppress the θ-Al$_2$Cu phase precipitation at grain boundary and remarkably promote the dispersion of θ'- Al$_2$Cu nanoparticles in the grain interior in artificial aging. A similar microalloying strategy is expected to be equally effective for other UFG heat-treatable alloys such as Mg alloys and steel. This microalloying approach is simple and may be easily adapted to industrial processes.

Similar with the nano-scale precipitations, the in-situ reaction formed nanoparticles also showed great effectiveness. Generally, the in-situ nanoparticles can be formed via exothermic reaction. The related processing routes include reactive hot pressing [52], melt reaction [53–55], etc. Usually, secondary processing technique such as friction stir processing (FSP) is used for achieving a uniform distribution of reinforcing particles in matrix of the composites [56]. In situ (Al$_2$O$_3$+Al$_2$Zr)$_{np}$/Al nanocomposites were successfully prepared by Zhao through magneto-chemical melt reaction from Al-Zr(CO$_3$)$_2$ system [54]. The matrix grain size is about 400 nm. The mean particle size is about 80 nm, and the nanoparticles are well distributed in the Al matrix, as shown in Figure 2(a) [54]. The overall mechanical performance of the (Al$_2$O$_3$+Al$_2$Zr)$_{np}$/Al nanocomposites are markedly higher than that of (Al$_2$O$_3$+Al$_2$Zr)$_{lp}$/Al composites with micron-sized particles. The ultimate tensile strength increases from 80 MPa to 320 MPa and the total elongation rises from ~10% to ~20% with 8 vol% reinforcements. This significant strengthening and toughening effect was attributed to the pinning effect of the intragranular nanoparticles on dislocation motion, which was verified by the TEM image shown in Figure 2(b).

Similarly, Tian’s group fabricated 2024Al matrix composites reinforced by the ZrB$_2$ nano-particles from 2024Al–K$_2$ZrF$_6$–KBF$_4$ system through melt in situ reaction [55]. The nanocomposites exhibited superior strength and ductility than the 2024 alloy matrix.

One thing needs to be mentioned is that the precipitation behavior in alloy and in-situ reaction is closely related to thermal process. So the thermal stability of the UFG/NG metals toughened by in-situ approaches is relatively poor. The already formed nano-dispersoids are relatively unstable and easy to grow into large sizes during the thermo-mechanical process, which may worsen the mechanical performance. Thus, the processing routes of in-situ approaches should be elaborately modified to fully develop their toughening effect. New strategies like microalloying which can stabilize the fine microstructure at room temperature are well needed.

3.2 Ex-situ methods to introduce nano dispersoids

Apart from the in-situ nano-dispersoids formed through precipitation and reaction, nano ceramic or intermetallic
Simultaneous enhancement of strength and ductility in nano and ultrafine grain metals

Figure 1: (a) Prosperous precipitations in NS+P 7075 sample (b) Engineering stress-strain curves of the samples (c-e) 111 matrix planes obtained by inverse Fourier transformations of HRTEM images of an NS+P sample. White dots mark particle/matrix interface [39].

Figure 2: (a) The uniformly distributed Al$_2$O$_3$+Al$_3$Zr nanodispersoids inside the grain (b) the pinned dislocations by the nanoparticles [54].
particles, such as alumina (Al₂O₃) [19, 57], silicon carbide (SiC) [58–60] and boron carbide (B₄C) [61, 62], have also been directly introduced into metal matrix as obstacles to dislocation slip, forming metal matrix nanocomposites (MMNCs). Previous studies indicate that the nanoparticles possess better mechanical performance and lower fracture sensitivity, making them ideal reinforcements [63–66]. What’s more, the introduction of the reinforcing nanoparticles not only enhances the mechanical performance, but also brings in some exceptional functional property [67–69], producing materials with integrated mechanical and functional performance. The main trouble in ex-situ approach is to break the agglomeration of nanoparticles and uniformly disperse them in the metal matrix. To solve this problem, various methods have been tried, like ultrasonication casting [70], squeeze casting [71] and powder metallurgy [72]. Generally speaking, due to the variation of density between metal melt and nanoparticles, it is difficult to uniformly disperse the tangled nanoparticles during liquid metallurgy process. Extra force like ultrasonication or squeeze is always needed to break the particle agglomeration. Compared to liquid processing, solid processing or powder metallurgy is well recognized as a potential method for achieving better dispersion of the nanoparticles in metal matrix. The impaction from milling ball and matrix plastic flow during consolidation process can well disperse the nanoparticles into metal matrix. And due to relatively lower fabrication temperature, the grain size is usually much smaller.

In Hu’s work [19], the mixed aluminum powders with 15 wt% 30 nm alumina were cold compacted into a billet. Then FSP was employed to prepare the billets, which density the compact and homogeneously distribute the nano alumina particles inside the grains, as shown in Figure 3(a). The as-produced Al₂O₃/UFG Al composites (A1-A3) exhibited enhanced mechanical performance and much higher strain hardening rate compared with the UFG pure aluminum reported by Yu (P1-P3), as shown in Figure 3(c-d). The strengthening and toughening mechanisms are exactly the same as the in-situ precipitates, as verified by the TEM images presented in Figure 3(b).

A modified powder metallurgy technique called flake powder metallurgy (Flake PM) was employed to fabricate B₄C/UFG Al(Al₂O₃) hierarchical nanocomposite [73], in which the native alumina on Al flake powder surface was broken and dispersed into UFG grain interior during processing. The microstructure of the nanocomposites is revealed in Figure 4(a-b) and the detailed processing route is shown in Figure 4(c). The as-produced B₄C/UFG Al(Al₂O₃) possessed better mechanical performance (elongation of ~8.9% and strength of 364 MPa) and higher strain hardening rate compared with the similar samples prepared by high energy ball milling (HEBM) and accumulative roll bonding (ARB).

In a related study by Jiang [74], the large specific area of the aluminum nano flakes was believed to be conducive to the uniform dispersion of nano-sized reinforcements, such as carbon nanotubes. Compared with traditional high energy ball milling, Flake PM can achieve better dispersion and do less damage to reinforcements. The flexibility of Flake PM allow more elaborate control of material microstructure [75], which may lead to extra toughening effect. This newly developed technique can be widely applied to MMNCs with various kinds of reinforcements.

Different from the nano precipitates or reaction formed nano particles, the introduced ceramic or intermetallic nano dispersoids by ex-situ approach are relatively thermal stable. The size of the nano dispersoids can be well maintained during material fabrication and mechanical processing. Besides, the potential functional properties brought by the nanoparticles are very attractive in industry and national defense, such as structure stabilization of Al₂O₃ for high temperature alloy, irradiation absorption of B₄C for nuclear application and heat conduction of SiC for thermal management.

Despite of the great advantage of MMNCs, efforts are still needed to fully release the potential of MMNCs. First, more works should be done for the homogeneous dispersion of the nanoparticles, which is the key to achieve good performance. Second, detailed research is needed in figuring out the effect of interfacial property (composition, orientation relationship, strength, etc) and interfacial behavior (interactions between dislocation and interface, evolution during processing) on overall mechanical and functional performance, which can guide the property design of the MMNCs. Jiang’s research on B₄C reinforced nanostructured aluminum sets an good example for the interface study [62]. Third, other than interface property, the effect of other microstructure features like particle size, particle inter-distance on the strain hardening rate and overall performance should be systematically studied. Design criteria should be drawn for the preparation of novel nano dispersoids reinforced MMNCs in the future.

4 Conclusion and vista

The key to improve the ductility of UFG/NG metals is enhancing its strain hardening ability through dislocation accumulation. Different strategies like bimodal/gradient structure, intragranular nano twins and nano dispersoids
Simultaneous enhancement of strength and ductility in nano and ultrafine grain metals

Figure 3: (a) the uniformly distributed alumina particles in aluminum matrix (b) the intensive interaction between alumina nanoparticles and dislocations (c-d) engineering stress-strain curves and normalized hardening rate of the as-produced $\text{Al}_2\text{O}_3/\text{Al}$ composites and the samples in other refs [19].

Figure 4: (a) SEM images of the $\text{B}_4\text{C}/\text{UFG Al(Al}_2\text{O}_3)$ nanocomposite showing the uniformly distributed micron-sized B_4C particles, (b) TEM images of the $\text{B}_4\text{C}/\text{UFG Al(Al}_2\text{O}_3)$ nanocomposite. The white arrows indicate the embedded Al_2O_3 nanoplatelets, (c) detailed processing route of the Flake PM [73].
all showed great effectiveness in toughening UFG/NG metals. Among them, the intragranular nano dispersoids strategy possesses relatively simple processing route and wider application. The main concern is how to homogeneously distribute the nanoparticles into grain interiors, more methods with high efficiency and homogeneity are required to be developed in future. The most attractive part in MMNCs is the outstanding functional properties brought by the nano dispersoids, which makes it possible to prepare UFG/NG metals with integrated mechanical and functional performance. Further studies should focus on exploring design criteria and optimizing the microstructure for these novel toughening strategies.

Acknowledgement: The authors would like to acknowledge the financial support from the National Key Research and Development Program of China (2017YFB1201105), the State Key Laboratory of Air-conditioning Equipment and System Energy Conservation (ACSKL2018KT15), the Natural Science Foundation of China (Nos. 51671130, 51871149), and Shanghai Science & Technology Committee (19ZR1474900).

References

[1] Valiev, R. Nanostructuring of metals by severe plastic deformation for advanced properties. Nature Materials, Vol. 3, No. 8, 2004, pp. 511–516.
[2] Langdon, T. G. Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement. Acta Materialia, Vol. 61, No. 19, 2013, pp. 7035–7059.
[3] Meyers, M. A., A. Mishra, and D. J. Benson. Mechanical properties of nanocrystalline materials. Progress in Materials Science, Vol. 51, No. 4, 2006, pp. 427–556.
[4] Ma, E. Instabilities and ductility of nanocrystalline and ultrafine-grained metals. Scripta Materialia, Vol. 49, No. 7, 2003, pp. 663–668.
[5] Koch, C. Optimization of strength and ductility in nanocrystalline and ultrafine grained metals. Scripta Materialia, Vol. 49, No. 7, 2003, pp. 657–662.
[6] Pande, C., R. Masumura, and R. Armstrong. Pile-up based Hall-Petch relation for nanoscale materials. Nanostructured Materials, Vol. 2, No. 3, 1993, pp. 323–331.
[7] Hasnaoui, A., P. Derlet, and H. Van Swygenhoven. Interaction between dislocations and grain boundaries under an indenter—a molecular dynamics simulation. Acta Materialia, Vol. 52, No. 8, 2004, pp. 2251–2258.
[8] Van Swygenhoven, H., P. Derlet, and A. Fraseth. Nucleation and propagation of dislocations in nanocrystalline fcc metals. Acta Materialia, Vol. 54, No. 7, 2006, pp. 1975–1983.
[9] Benson, D. J., H.-H. Fu, and M. A. Meyers. On the effect of grain size on yield stress: Extension into nanocrystalline domain. Materials Science and Engineering A, Vol. 319, 2001, pp. 854–861.
[10] Fu, H.-H., D. J. Benson, and M. A. Meyers. Analytical and computational description of effect of grain size on yield stress of metals. Acta Materialia, Vol. 49, No. 13, 2001, pp. 2567–2582.
[11] Fu, H.-H., D. J. Benson, and M. A. Meyers. Computational description of nanocrystalline deformation based on crystal plasticity. Acta Materialia, Vol. 52, No. 15, 2004, pp. 4413–4425.
[12] Fleck, N., and J. Hutchinson. A phenomenological theory for strain gradient effects in plasticity. Journal of the Mechanics and Physics of Solids, Vol. 41, No. 12, 1993, pp. 1825–1857.
[13] Fleck, N., G. Muller, M. Ashby, and J. Hutchinson. Strain gradient plasticity: Theory and experiment. Acta Metallurgica et Materialia, Vol. 42, No. 2, 1994, pp. 475–487.
[14] Gao, H., Y. Huang, W. Nix, and J. Hutchinson. Mechanism-based strain gradient plasticity—I. Theory. Journal of the Mechanics and Physics of Solids, Vol. 47, No. 6, 1999, pp. 1239–1263.
[15] Huang, Y., Z. Xue, H. Gao, W. Nix, and Z. Xia. A study of microindentation hardness tests by mechanism-based strain gradient plasticity. Journal of Materials Research, Vol. 15, No. 08, 2000, pp. 1786–1796.
[16] Wang, Y., and E. Ma. Three strategies to achieve uniform tensile deformation in a nanostructured metal. Acta Materialia, Vol. 52, No. 6, 2004, pp. 1699–1709.
[17] Tsuji, N., Y. Ito, Y. Saito, and Y. Minamino. Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing. Scripta Materialia, Vol. 47, No. 12, 2002, pp. 893–899.
[18] Jia, D., Y. Wang, K. Ramesh, E. Ma, Y. Zhu, and R. Valiev. Deformation behavior and plastic instabilities of ultrafine-grained titanium. Applied Physics Letters, Vol. 79, No. 5, 2001, pp. 611–613.
[19] Hu, C. M., C. M. Lai, X. H. Du, N. J. Ho, and J. C. Huang. Enhanced tensile plasticity in ultrafine-grained metallic composite fabricated by friction stir process. Scripta Materialia, Vol. 59, No. 11, 2008, pp. 1163–1166.
[20] Hart, E. W. Theory of the tensile test. Acta Metallurgica, Vol. 15, No. 2, 1967, pp. 351–355.
[21] Jia, D., K. Ramesh, and E. Ma. Effects of nanocrystalline and ultrafine grain sizes on constitutive behavior and shear bands in iron. Acta Materialia, Vol. 51, No. 12, 2003, pp. 3495–3509.
[22] Cheng, S., E. Ma, Y. Wang, L. Keckes, K. Youssef, C. Koch, U. Trocieiwitz, and K. Han. Tensile properties of in situ consolidated nanocrystalline Cu. Acta Materialia, Vol. 53, No. 5, 2005, pp. 1521–1533.
[23] Youssef, K. M., R. O. Scattergood, K. L. Murty, J. A. Horton, and C. C. Koch. Ultrahigh strength and high ductility of bulk nanocrystalline copper. Applied Physics Letters, Vol. 87, No. 9, 2005, p. 091904.
[24] Ma, E. Eight routes to improve the tensile ductility of bulk nanocrystalline metals and alloys. JOM, Vol. 58, No. 4, 2006, pp. 49–53.
[25] Wang, Y., M. Chen, F. Zhou, and E. Ma. High tensile ductility in a nanostructured metal. Nature, Vol. 419, No. 6910, 2002, pp. 912–915.
[26] Zhao, Y., T. Topping, J. F. Bingert, J. J. Thornton, A. M. Dangelewicz, Y. Li, et al. High tensile ductility and strength in bulk nanocrystallized nickel. Advanced Materials, Vol. 20, No. 16, 2008, pp. 3028–3033.
[27] Fang, T. H., W. L. Li, N. R. Tao, and K. Lu. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science, Vol. 331, No. 6024, 2011, pp. 1587–1590.
Simultaneous enhancement of strength and ductility in nano and ultrafine grain metals

[28] Wu, X., P. Jiang, L. Chen, F. Yuan, and Y. T. Zhu. Extraordinary strain hardening by gradient structure. Proceedings of the National Academy of Sciences of the United States of America, Vol. 111, No. 20, 2014, pp. 7197–7201.

[29] Wu, X., P. Jiang, L. Chen, J. Zhang, F. Yuan, and Y. Zhu. Synergetic strengthening by gradient structure. Materials Research Letters, Vol. 2, No. 4, 2014, pp. 185–191.

[30] Lu, L., Y. Shen, X. Chen, L. Qian, and K. Lu. Ultrahigh strength and high electrical conductivity in copper. Science, Vol. 304, No. 5669, 2004, pp. 422–426.

[31] Shen, Y., L. Lu, Q. Lu, Z. Jin, and K. Lu. Tensile properties of copper with nano-scale twins. Scripta Materialia, Vol. 52, No. 10, 2005, pp. 989–994.

[32] Li, X., Y. Wei, L. Lu, K. Lu, and H. Gao. Dislocation nucleation governed softening and maximum strength in nano-twinned metals. Nature, Vol. 464, No. 7290, 2010, pp. 877–880.

[33] Yan, F., G. Liu, N. Tao, and K. Lu. Transformation of 316 austenitic stainless steel strengthened by nano-scale twin bundles. Acta Materialia, Vol. 60, No. 3, 2012, pp. 1059–1071.

[34] Tao, K., H. Choo, H. Li, B. Clausen, J.-E. Jin, and Y.-K. Lee. Transformation-induced plasticity in an ultrafine-grained steel: An in situ neutron diffraction study. Applied Physics Letters, Vol. 90, No. 10, 2007, id. 109119.

[35] Cheng, S., H. Choo, Y. Zhao, X.-L. Wang, Y. Zhu, Y. Wang, et al. High ductility of ultrafine-grained steel via phase transformation. Journal of Materials Research, Vol. 23, No. 06, 2008, pp. 1578–1586.

[36] Ma, Y., J.-E. Jin, and Y.-K. Lee. A repetitive thermomechanical process to produce nano-crystalline in a metastable austenitic steel. Scripta Materialia, Vol. 52, No. 12, 2005, pp. 1311–1315.

[37] Rössner, H., J. Markmann, and J. Weissmüller. Deformation twinning in nanocrystalline Pd. Philosophical Magazine Letters, Vol. 84, No. 5, 2004, pp. 321–334.

[38] Dini, G., A. Najafizadeh, R. Ueji, and S. Monir-Vaghefi. Improved tensile properties of partially recrystallized submicron grain TWIP steel. Materials Letters, Vol. 64, No. 1, 2010, pp. 15–18.

[39] Zhao, Y.-H., X.-Z. Liao, S. Cheng, E. Ma, and Y. T. Zhu. Simultaneously increasing the ductility and strength of nanostructured alloys. Advanced Materials, Vol. 18, No. 17, 2006, pp. 2280–2283.

[40] Zan, Y. N., Y. T. Zhou, Z. Y. Liu, G. N. Ma, D. Wang, Q. Z. Wang et al. Enhancing strength and ductility synergy through heterogeneous structure design in nanoscale Al2O3 particulate reinforced Al composites. Materials & Design, Vol. 166, 2019, p. 166.

[41] Balog, M., T. Hu, P. Krizik, M.V. Castro Riglos, B.D. Saller, H. Yang et al. On the thermal stability of ultrafine-grained Al stabilized by in-situ amorphous Al2O3 network. Materials Science and Engineering A, Vol. 648, 2015, pp. 61-71.

[42] Liu, G., J. J. Zhang, F. Jiang, X. D. Ding, Y. Sun, J. Sun, et al. Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility. Nature Materials, Vol. 12, No. 4, 2013, pp. 344–350.

[43] Lee, Y., J. Jin, and Y. Ma. Transformation-induced extraordinary ductility in an ultrafine-grained alloy with nanosized precipitates. Scripta Materialia, Vol. 57, No. 8, 2007, pp. 707–710.

[44] Tsuji, N., R. Ueji, Y. Minamino, and Y. Saito. A new and simple process to obtain nano-structured bulk low-carbon steel with superior mechanical property. Scripta Materialia, Vol. 46, No. 4, 2002, pp. 305–310.

[45] Lee, T., C. H. Park, D. L. Lee, and C. S. Lee. Enhancing tensile properties of ultrafine-grained medium-carbon steel utilizing fine carbides. Materials Science and Engineering A, Vol. 528, No. 21, 2011, pp. 6558-6564.

[46] Zhu, Z. H., K. B. Nie, K. K. Deng, and J. G. Han. Fabrication of biodegradable magnesium matrix composite with ultrafine grains and high strength by adding TiC nanoparticles to Mg-112Ca-0.84Zn-0.23Mn (at.%) alloy. Materials Science and Engineering C, Vol. 107, 2020, id. 110360–110360.

[47] Li, C., Y. Xie, D. Zhou, W. Zeng, J. Wang, J. Liang, et al. A novel way for fabricating ultrafine grained Cu-4.5 vol% Al2O3 composite with high strength and electrical conductivity. Materials Characterization, Vol. 155, 2020, id. 109775.

[48] Xie, Y., T. Xia, D. Zhou, Y. Luo, W. Zeng, Z. Zhang, et al. A novel nanostructure to achieve ultrahigh strength and good tensile ductility of a CoCrFeNiMn high entropy alloy. NanoScale, Vol. 12, No. 9, 2020, pp. 5347–5352.

[49] Wang, X., B. Huang, L. Wang, and Y. Rong. Microstructure and mechanical properties of microalloyed high-strength transformation-induced plasticity steels. Metallurgical and Materials Transactions, A, Physical Metallurgy and Materials Science, Vol. 39, No. 1, 2008, pp. 1–7.

[50] Cheng, S., Y. Zhao, Y. Zhu, and E. Ma. Optimizing the strength and ductility of fine structured 2024 Al alloy by nano-precipitation. Acta Materialia, Vol. 55, No. 17, 2007, pp. 5822–5832.

[51] Jiang, L., J.-K. Li, P. M. Cheng, G. Liu, R. H. Wang, B. A. Chen, et al. Microalloying ultrafine grained Al alloys with enhanced ductility. Scientific Reports, Vol. 4, No. 1, 2014, id. 3605.

[52] Roy, D., S. Ghosh, A. Basumallick, and B. Basu. Preparation of Fe-Aluminide reinforced in situ metal matrix composites by reactive hot pressing. Materials Science and Engineering A, Vol. 415, No. 1, 2006, pp. 202–206.

[53] Tu, J., N. Wang, Y. Yang, W. Qi, F. Liu, X. Zhang, et al. Preparation and properties of TiB2 nanoparticle reinforced copper matrix composites by in situ processing. Materials Letters, Vol. 52, No. 6, 2002, pp. 448–452.

[54] Zhao, Y.-T., S.-L. Zhang, G. Chen, X.-N. Cheng, and C.-Q. Wang. In situ [Al2O3 + Al3Zr] np/Al nanocomposites synthesized by magneto-chemical melt reaction. Composites Science and Technology, Vol. 68, No. 6, 2008, pp. 1463–1470.

[55] Tian, K., Y. Zhao, L. Jiao, S. Zhang, Z. Zhang, and X. Wu. Effects of in situ generated ZrB2 nano-particles on microstructure and tensile properties of 2024Al matrix composites. Journal of Alloys and Compounds, Vol. 594, 2014, pp. 1–6.

[56] Zhang, Q., B. Xiao, Q. Wang, and Z. Ma. In situ Al3Ti and Al2O3 nanoparticles reinforced Al composites produced by friction stir processing in an Al-TiO2 system. Materials Letters, Vol. 65, No. 13, 2011, pp. 2070–2072.

[57] Mazahery, A., and M. Ostadshabani. Investigation on mechanical properties of nano-Al2O3-reinforced aluminum matrix composites. Journal of Composite Materials, Vol. 45, No. 24, 2011, pp. 2579–2586.

[58] Zhang, X., L. Geng, and G. Wang. Fabrication of Al-based hybrid composites reinforced with SiC whiskers and SiC nanoparticles by squeeze casting. Journal of Materials Processing Technology, Vol. 176, No. 1, 2006, pp. 146–151.

[59] Prasad Reddy, A., P. Vamsi Krishna, R. Narasimha Rao, and N. V. Murthy. Silicon Carbide Reinforced Aluminum Metal Matrix Nano Composites-A Review. Materials Today: Proceedings, Vol. 6, 2020, id. 110360–110360.
Li, A. B., G. S. Wang, X. X. Zhang, Y. Q. Li, X. Gao, H. Sun, et al. Enhanced combination of strength and ductility in ultrafine-grained aluminum composites reinforced with high content intragranular nanoparticles. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing. Vol. 745, 2019, pp. 10-19.

Zhang, Z., T. Topping, Y. Li, R. Vogt, Y. Zhou, C. Haines, J. Paras, D. Kapoor, J. M. Schoenung, and E. J. Lavernia. Mechanical behavior of ultrafine-grained Al composites reinforced with B4C nanoparticles. Scripta Materialia, Vol. 65, No. 8, 2011, pp. 652–655.

Jiang, L., H. Wen, H. Yang, T. Hu, T. Topping, D. Zhang, et al. Influence of length-scales on spatial distribution and interfacial characteristics of B4C in a nanostructured Al matrix. Acta Materialia, Vol. 89, 2015, pp. 327–343.

Chawla, N., and Y.-L. Shen. Mechanical behavior of particle reinforced metal matrix composites. Advanced Engineering Materials, Vol. 3, No. 6, 2001, pp. 357–370.

Qu, S., T. Siegmund, Y. Huang, P. Wu, F. Zhang, and K. Hwang. A study of particle size effect and interface fracture in aluminum alloy composite via an extended conventional theory of mechanism-based strain-gradient plasticity. Composites Science and Technology, Vol. 65, No. 7, 2005, pp. 1244–1253.

Casati, R., and M. Vedani. Metal Matrix Composites Reinforced by Nano-Particles-A Review. Metals, Vol. 4, No. 1, 2014, pp. 65–83.

Geng, R., F. Qiu, and Q.-C. Jiang. Reinforcement in Al Matrix Composites: A Review of Strengthening Behavior of Nano-Sized Particles. Advanced Engineering Materials, Vol. 20, No. 9, 2018, id. 1701089.

Tu, J., W. Rong, S. Y. Guo, and Y. Yang. Dry sliding wear behavior of in situ Cu-TiB$_2$ nanocomposites against medium carbon steel. Wear, Vol. 255, No. 7, 2003, pp. 832–835.

Gül, H., F. Kılıç, S. Aslan, A. Alp, and H. Akbulut. Characteristics of electro-co-deposited Ni–Al$_2$O$_3$ nano-particle reinforced metal matrix composite (MMC) coatings. Wear, Vol. 267, No. 5, 2009, pp. 976–990.

Kireitseu, M., D. Hui, and G. Tomlinson. Advanced shock-resistant and vibration damping of nanoparticle-reinforced composite material. Composites. Part B, Engineering, Vol. 39, No. 1, 2008, pp. 128–138.

Yang, X., J. Lan, and X. Li. Study on bulk aluminum matrix nanocomposite fabricated by ultrasonic dispersion of nano-sized SiC particles in molten aluminum alloy. Materials Science and Engineering A, Vol. 380, No. 1, 2004, pp. 378–383.

Kannan, C., and R. Ramanujam. Comparative study on the mechanical and microstructural characterisation of AA 7075 nano and hybrid nanocomposites produced by stir and squeeze casting. Journal of Advanced Research, Vol. 8, No. 4, 2017, pp. 309–319.

Suryanarayana, C., and N. Al-Aqeeli. Mechanically alloyed nanocomposites. Progress in Materials Science, Vol. 58, No. 4, 2013, pp. 383–502.

Kai, X., Z. Li, G. Fan, Q. Guo, Z. Tan, W. Zhang, et al. Strong and ductile particulate reinforced ultrafine-grained metallic composites fabricated by flake powder metallurgy. Scripta Materialia, Vol. 68, No. 8, 2013, pp. 555–558.

Jiang, L., Z. Li, G. Fan, L. Cao, and D. Zhang. The use of flake powder metallurgy to produce carbon nanotube (CNT)/aluminum composites with a homogenous CNT distribution. Carbon, Vol. 50, No. 5, 2012, pp. 1993–1998.

Xu, R., Z. Tan, G. Fan, G. Ji, D.-B. Xiong, Q. Guo, et al. High-strength CNT/Al-Zn-Mg-Cu composites with improved ductility achieved by flake powder metallurgy via elemental alloying. Composites Part a-Applied Science and Manufacturing, Vol. 111, 2018, pp. 1-11.