Mapping of an Internal Protease Cleavage Site in the Ssy5p Component of the Amino Acid Sensor of *Saccharomyces cerevisiae* and Functional Characterization of the Resulting Pro- and Protease Domains by Gain-of-Function Genetics

Peter Poulsen,1 Leila Lo Leggio,2 and Morten C. Kielland-Brandt1*

Carlsberg Laboratory, DK-2500 Copenhagen Valby, Denmark,1 and **Centre for Crystallographic Studies, Biophysical Chemistry Group, Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark**2

Received 28 November 2005/Accepted 11 January 2006

Ssy5p is a 77-kDa protein believed to be a component of the SPS amino acid sensor complex in the plasma membrane of *Saccharomyces cerevisiae*. Ssy5p has been suggested to be a chymotrypsin-like serine protease that activates the transcription factor Stp1p upon exposure of the yeast to extracellular amino acid. Here we overexpressed and partially purified Ssy5p to improve our understanding of its structure and function. Antibodies against Ssy5p expressed in *Escherichia coli* were isolated and used to detect Ssy5p processing in *S. cerevisiae* cells. Partial purification and N-terminal sequencing of processed Ssy5p revealed in vivo cleavage of Ssy5p between amino acids 381 and 382. We also isolated constitutively signaling SSY5 mutants and quantified target promoter activation and Stp1p processing. One mutant contained an amino acid substitution in the prodomain, whereas three others harbored amino acid substitutions in the protease domain. Dose-response analysis indicated that all four mutants exhibited increased basal levels of Stp1p processing. Interestingly, whereas the three constitutive mutants mapping to the protease domain of Ssy5p exhibited the decreased 50% effective concentration (*EC*₅₀) characteristic of constitutive mutations previously found in Ssy1p, Ptr3p, and Ssy5p, the *EC*₅₀ of the mutation that maps to the prodomain of Ssy5p remained essentially unchanged. In a model of Ssy5p derived from its similarities with α-lytic protease from *Lysobacter enzymogenes*, the sites corresponding to the mutations in the protease domain are clustered in a region facing the prodomain, suggesting that this region interacts with the prodomain and participates in the conformational dynamics of sensing.

As part of the regulatory machinery for nutrient uptake (9, 20), the yeast *Saccharomyces cerevisiae* is equipped with an amino acid sensor in the plasma membrane that regulates signal transduction when extracellular amino acids are available. The signaling results in proteolytic processing of downstream transcription factors and stimulation of transcription of various amino acid permease genes. The sensor consists of the Ssy1p integral membrane protein and two membrane-associated proteins, Ptr3p and Ssy5p (7, 13, 21, 23, 25), and has been designated SPS for the complex that its three components are suggested to form (15).

Ssy1p, which has high similarity to amino acid permeases, is believed to initiate the signal transduction by recognizing the inducing amino acids on the outside of the plasma membrane. Whereas little is known about the involvement of Ptr3p in amino acid signaling, the function of Ssy5p is now in the process of being unraveled. It has been determined that the C-terminal part of Ssy5p has similarity to chymotrypsin-like serine proteases, and mutational analysis is consistent with this function (1, 2). This suggests that Ssy5p is responsible for the proteolytic removal of the ~10-kDa N-terminal fragment of each of the transcription factors Stp1p and Stp2p, resulting in their migration from the cytoplasm/plasma membrane to the nucleus (1, 2, 3, 4). Signaling has been measured by the activation of target promoters, such as the *BAP2* promoter (12, 26) or the *AGP1* promoter (21), and by quantifying the proteolytic processing of Stp1p processing (27, 28).

To initiate biochemical studies of the SPS sensor components we have overexpressed and partially purified Ssy5p from *Escherichia coli* and *S. cerevisiae*. We have produced antibodies directed against Ssy5p and have determined the site of an internal proteolytic cleavage of Ssy5p. To extend our knowledge of Ssy5p function, we isolated and characterized several constitutively signaling SSY5 mutants.

MATERIALS AND METHODS

Media. The glucose-based media SD (synthetic minimal), SC (synthetic complete), and YPD (yeast extract-peptone-dextrose complex) were prepared as described (31). However, amino acid concentrations in SC were as specified elsewhere (19). Where indicated, the glucose in the SD and SC media was replaced with filter-sterilized 10% raffinose to give a final concentration of 2%.

Strains. The microbial strains used in this study are listed in Table 1.

Plasmids. Plasmid pSSY5 (23, 28) contains a 3-kb HindIII-SacII fragment with the *SSY5* gene. Plasmid pPEP18 was constructed by insertion of *SSY5*, amplified from plasmid pSSY5 using primers SSY5-1 (5′ GTA CTG GTG TAA ACT CGA TAT ACC G 3′) and SSY5-16 (5′ TTC ATC TAG TGG ATC AAT GTC 3′), into the pYES2.1/V5-His TOPO expression vector by TOPO TA cloning (Invitrogen). This placed the *SSY5* open reading frame (ORF) behind a GAL1 promoter in...
with the His8 tag in the vector, adding 33 amino acid residues to the C terminus of Sy5p. Plasmid pPEP18 was made by insertion of SSY5 amplified by PCR using pSSY5 as the template and primers SSY5-13 (5’-GGT GAT GTC AGA TTT TGT GTT TAA AAC-3’) and SSY5-14 (5’-AAG CTT AGT TAC AGT G-3’) between the SacI and HindIII sites of the pET44b expression vector (Novagen). This allows expression of Sy5p in E. coli as a fusion protein with the 495-amino-acid-residue NusA tag at the N terminus of Sy5p (11).

Site-directed mutagenesis of SSY5. Site-specific mutations were introduced into the SSY5 ORF using pSSY5 as the template and the QuickChange II XL kit (Stratagene) as described by the manufacturer. The primers used for mutagenesis are listed in Table 2.

Production of NusA-Ssy5p inclusion bodies in E. coli. E. coli strain BL21(DE3) Codon Plus RIL Codon Plus RIL/pPEP18 was grown at 37°C in 100 mL LB medium supplemented with 100 µg/mL ampicillin until the optical density at 600 nm (OD600) reached 0.8. Isopropylthiogalactopyranoside (IPTG) was added to a final concentration of 1 mM, and shaking was continued for 3 h. Cells were harvested by centrifugation, suspended in 35 mL buffer A (50 mM NaH2PO4, pH 7.4, 500 mM NaCl) containing 4 M urea and washed by whirlimixing and repeated centrifugation. Inclusion bodies were suspended in 2 mL phosphate-buffered saline and sonicated for 1 min with intervals of 1 s on and 1 s off, using a Vibra-Cell sonicator (Sonic & Materials, Inc.). The sample contained ca. 1.3 mg NusA-Sy5 fusion protein and was used for immunization of rabbits (Pineda, Berlin, Germany).
was added to the supernatant, which was incubated for 1 h on ice to remove DNA.

The extract was then passed through a 45-μm filter and a 20-μm filter (Minisart, Sartorius) and applied to a 5-ml HisTrap column (Amersham Biosciences) equilibrated in buffer A. After washing the column with 50 ml buffer A, proteins were eluted in steps with 35, 75, and 500 mM imidazole. A sample of 25 μl from each of the 5-ml fractions and 2-ml fractions collected during the wash and the elution, respectively, was mixed with 10 μl 4× LDS sample buffer (Invitrogen) and 5 μl 0.5 M dithiothreitol, incubated at 95°C for 5 min, and whirlimixed; 20 μl of each denatured sample was subjected to electrophoresis as described above. Gels were then either stained using GelCode blue stain reagent (Pierce) or blotted onto a polyvinylidene difluoride membrane using an Xcell II blot module and NuPAGE transfer buffer as described (27, 28).

Western analysis. Western blots were prepared for chemiluminescent immunodetection using blocking solution, primary antibody diluent and antibody wash from Invitrogen using the accompanying guidelines. Immunodetection was carried out using ECL Plus detection reagents from Amersham Pharmacia Biotech and a STORM 850 scanner.

Primary antibodies were diluted as follows: anti-Ssy5p antibodies (this study), 1:10,000. Peroxidase-conjugated goat anti-rabbit immunoglobulins (Biosciences), 1:10,000. Peroxidase-conjugated goat anti-rabbit immunoglobulins (DakoCytomation, code no. P 0448) were used as secondary antibodies where indicated in a 1:2,000 dilution.

Stp1p processing assays. Ssy5p mutants were characterized for the dose-response relationships between amino acid exposure and Stp1p processing as described (27, 28).

Amino acid sequencing. Protein was blotted onto a ProBlott membrane (Applied Biosystems) using the Xcell II blot module and NuPAGE transfer buffer as described above. Proteins were visualized by Coomassie blue R-250 (Sigma) staining, and the desired protein was cut out of the membrane for sequencing on a PROCISe apparatus (Applied Biosystems).

DNA sequencing. Custom DNA sequencing of the isolated constitutive mutants and plasmid constructs was carried out by MWG Biotech (Germany).

RESULTS

Ssy5p is expressed in E. coli as inclusion bodies. Ssy5p was expressed abundantly in *E. coli* strain BL21(DE3) Codon Plus RIL, although the majority of the protein was present in insoluble inclusion bodies (not shown). Because expression of *SY5* as a NusA-Ssy5p fusion protein in this strain only slightly improved the solubility of the protein it was decided to use these preparations for raising antibodies in rabbits and to overexpress Ssy5p in yeast.

Ssy5p is overexpressed in *S. cerevisiae* as a proenzyme cleaved into an N-terminal prodomain and a C-terminal protease domain. To overexpress Ssy5p in *S. cerevisiae* the *SY5* ORF was inserted into expression vector pYES2.1/V5-His to allow galactose-inducible expression of Ssy5p carrying a His8 tag at its C-terminus. Western analysis of an induction experiment with this construct is shown in Fig. 1. Using monoclonal antibody against the His tag (Fig. 1A), Ssy5p proteins of ~80 kDa (Ssy5p) and ~45 kDa (Ssy5p-C) were detected after induction with galactose. With polyclonal Ssy5p antibodies (Fig. 1C) Ssy5p species of ~80 kDa (Ssy5p) and ~50 kDa (Ssy5p-N) were observed.

The finding that the anti-Ssy5p polyclonal antibodies did not detect the 45-kDa Ssy5-C protein indicates that these antibodies recognize an epitope(s) in the N-terminal part of Ssy5p. The size of the slow-migrating protein detected in the Western analysis is in agreement with the expected 699-amino-acid full-length Ssy5 protein (*M* ~77,633) (28) fused to the 33-amino-acid V5/His8 C-terminal tag. The apparent sizes of the two fast-migrating Ssy5p species suggest that these fragments originated from a single cleavage of full-length Ssy5p. These results suggest that overexpressed Ssy5p is synthesized as a proenzyme which is proteolytically cleaved into two fragments of nearly equal size: an ~45-kDa C-terminal fragment harboring the protease

![FIG. 1. Overexpression of *SY5* in *S. cerevisiae* results in full-length Ssy5p (~80 kDa), an N-terminal Ssy5p fragment (~50 kDa) and a C-terminal Ssy5p fragment (~45 kDa). (A) M3124/pPEP18 cells were grown exponentially in SD medium containing raffinose as carbon source. At an OD600 of 1.0, galactose was added to 2% to induce expression of Ssy5p C-terminally tagged with His8. At the indicated times, samples were withdrawn for Western analysis with His8 antibodies (panels A and B) and Ssy5p antibodies (panel C). (B) Leucine (0.2 mM) was added at the same time as the galactose. Ssy5p, full-length Ssy5p; Ssy5p-N, ca. 50-kDa N-terminal Ssy5p fragment; Ssy5p-C, ca. 45-kDa C-terminal Ssy5p fragment; M, BenchMark protein molecular size markers.](image-url)
domain of Ssy5p and an \(\sim 50 \)-kDa N-terminal prodomain reported previously (1, 2). The same migration patterns were observed throughout the 17 h of induction, indicating that the three forms of Ssy5p are stable when overexpressed overnight.

To test whether the extraction procedure used in these experiments influences Ssy5p cleavage, a similar induction experiment was carried out in which culture aliquots were added directly to ice-cold NaOH and \(\beta \)-mercaptoethanol and then precipitated with trichloroacetic acid on ice (10). The same migration pattern was observed (data not shown), indicating that the cleavage of Ssy5p takes place within the intact yeast cells and not during extraction.

To determine whether amino acid signaling conditions affect the proposed proteolytic cleavage of Ssy5p, the described experiment (Fig. 1A) was carried out in parallel with an experiment in which 0.2 mM leucine was added simultaneously with the addition of galactose (Fig. 1B). The same migration pattern of Ssy5p was observed, indicating that the presence of leucine did not influence the extent of proteolytic cleavage of Ssy5p.

Purification of the Ssy5p chymotrypsin-like serine protease domain. Overexpressed, C-terminally His-tagged Ssy5p was partially purified from yeast strain M3124/pPEP18 as described in Materials and Methods. Western analysis of the fractions representing the protein peaks collected during the elution from the HisTrap column was carried out using the antibody directed against the His\(_6\) C-terminal tag (Fig. 2A) and the polyclonal Ssy5p antibodies (Fig. 2B), allowing visualization of all three forms of Ssy5p (full-length Ssy5p, Ssy5p-N, and Ssy5p-C) throughout the purification. The three forms of Ssy5p were detected in different relative amounts during the purification: the application step (fractions 2 through 9), the 35 mM imidazole elution step (fractions 16 through 20), the 75 mM imidazole elution step (fractions 29 through 31), and the 500 mM imidazole elution step (fractions 42 through 46). Although a significant amount of Ssy5p was not bound to the column, microgram quantities of Ssy5p-C were eluted from the Ni-Sepharose resin into fractions 43 to 46 (Fig. 2A and Fig. 3).

Remarkably, the Ssy5p-N and Ssy5p-C components coeluted in some of the fractions (e.g., fractions 43 to 46 in Fig. 2A and B). Since only Ssy5p and Ssy5p-C are expected to bind to the Ni-Sepharose, this observation suggests either that Ssy5p-N and Ssy5p-C remain associated during purification or that Ssy5p self-processing takes place on the resin or after elution from the resin.

Ssy5p processing results in a 381-amino-acid prodomain and a 318-amino-acid protease domain. Fractions 42 through 52 from the elution described above were analyzed in more detail by Coomassie staining (Fig. 3) and Western analysis (data not shown). The greatest amount of Ssy5p-C, comprising the catalytically active region of Ssy5p, was found in fraction 44 (Fig. 3), which contains approximately 100 \(\mu \)g Ssy5p-C. Part of
this fraction was therefore subjected to preparative SDS-polyacrylamide gel electrophoresis (PAGE), the proteins were blotted onto a membrane, and the Ssy5p-C band was cut out of the membrane and used for N-terminal sequencing. The analysis yielded the 18-residue sequence ASAVGSIPTSHTAAATIDTI. This sequence is identical to the Ssy5p sequence from residues 382 to 399, showing that the Ssy5p-C fragment analyzed originated from cleavage between residues 381 and 382, producing a 381-amino-acid prodomain and a 318-amino-acid protease domain.

Identification of single-site SSY5 mutations that activate a target promoter in the absence of extracellular amino acids.

To gain further insight into the functional roles of the Ssy5p domains, five constitutive SSY5 mutants (SSY5-1, SSY5-2, SSY5-3, SSY5-10, and SSY5-12) were isolated as described previously (28), using the pAGPI-KAT1 potassium channel reporter system for amino acid sensing (18). The mutant SSY5 alleles were expressed from a centromeric plasmid and were identified by their ability to activate the AGPI promoter in M5361 (ssy5Δ AGP1::PAGP1-lacZ-kanMX) in medium lacking amino acids (Table 3). Tests for dominance were performed by introducing the plasmids expressing mutant SSY5 alleles into strain M5359, which carries the wild-type SSY5 gene at its normal chromosomal location and the AGPI promoter-lacZ construct integrated at the AGPI locus. β-Galactosidase activity in these transformants grown in the absence of leucine was increased over that of control cells expressing a plasmid-borne wild-type SSY5 allele. These results (not shown) are similar to those found for the previously characterized constitutive mutant SSY5-6 (28). Like this mutant, the new mutants were also dependent on the presence of Ssy1p and Ptr3p for constitutive signaling (data not shown).

Because each of the new mutants contained two or more nucleotide substitutions in the SSY5 open reading frame, each of the different single mutants was generated by site-directed mutagenesis of the original plasmid expressing wild-type SSY5 (Table 3). The single-amino-acid substitutions E131K, F575V, and Q576P of SSY5-13, SSY5-14, and SSY5-15, respectively, were found to activate the AGPI promoter in cells growing in SD medium without amino acids (Table 3) and thus confer constitutive signaling. The analysis of SSY5-3, which contained the three amino acid substitutions V412A, K581N, and P632H, revealed that the single substitutions K581N and P632H (SSY5-16 and SSY5-17, respectively) are unable to cause constitutive signaling. However, when the K581N and P632H substitutions were combined, resulting in the allele SSY5-18, a constitutive phenotype was obtained. In this case, two substitutions are required to cause Ssy5p to signal in the absence of extracellular amino acid.

Effect of constitutive SSY5 mutants on basal levels of Stp1p processing and the EC₅₀ for induction by leucine.

An ssy5Δ STP1::ZZ recipient (M5444) was transformed with plasmids expressing wild-type SSY5 or SSY5-13, SSY5-14, SSY5-15, or SSY5-18 constitutive allele to determine their effects on Stp1p processing in response to different concentrations of leucine. The recipient strain expressed the ZZ tag fused to Stp1p, enabling us to perform quantitative Western analysis to estimate Stp1p processing in the absence of extracellular amino acids (basal level) as described (27, 28).

Each of the constitutively signaling mutants exhibited an increased basal level of Stp1p processing (Table 3). Cells expressing SSY5-6, SSY5-14, and SSY5-15 showed an increased processing level in the range of 30%, whereas cells expressing SSY5-13 and SSY5-18 exhibited 9.3 and 15.5% processing, respectively. As previously noted (27, 28), a modest increase in Stp1p processing is sufficient to cause high AGPI promoter activation. In addition, we used the Stp1p-ZZ processing assay to estimate the median effective concentration (EC₅₀, i.e., the concentration of leucine in the medium that results in 50% processing of Stp1p) as reported (27, 28). As shown in Table 3, the EC₅₀ values for the SSY5-6, SSY5-14, SSY5-15, and SSY5-18 mutants, which have amino acid substitutions in the

SSY5 allele	Amino acid substitution(s)	AGPI activation (Miller units)	% Basal Stp1p processing (SEM)	EC₅₀ (μM)
SSY5 wild type	None	0.121	5.5 (2.2)	8.1 (1.9)
SSY5-1	E131K, L286V	1.461	ND	ND
SSY5-2	S430N, F575V, L645M	1.916	ND	ND
SSY5-3	V412A, K581N, P632H	1.297	ND	ND
SSY5-10	K304R, Q576P	2.187	ND	ND
SSY5-12	K268M, G562C, F575V	2.158	ND	ND
SSY5-13	E131K	1.015	15.5 (2.1)	10.3 (2.2)
SSY5-16	K581N	0.810	32.1 (2.7)	0.8 (0.2)
SSY5-17	P632H	0.808	ND	ND
SSY5-18	K581N, P632H	0.730	9.3 (1.2)	2.1 (0.4)
SSY5-6	E512K	1.646	36.9 (3.6)	3.2 (0.6)

*β-Galactosidase activity in M5361 (ssy5Δ AGP1::PAGP1-lacZ-kanMX) cells transformed with the centromere-based vector PRS316 carrying the SSY5 mutant gene and grown in SD medium without amino acids.

*Stp1p processing in M5444 (ssy5Δ STP1::ZZ-kanMX) cells transformed with the centromere vector PRS316 carrying the SSY5 mutant gene and grown in SD medium without amino acids. The averages of at least two individual determinations is shown. ND, not determined.

*EC₅₀ values (apparent Kₑ) were determined as described (27, 28). The averages of at least two individual determinations are shown.

*Data are from reference 28.
protease domain, were 4- to 10-fold lower than that obtained with the wild-type gene. In other words, these mutants require less extracellular leucine to give strong signaling. This behavior is similar to that of the previously characterized constitutive SSY1 and PTR3 mutants (18, 28). Remarkably, however, the SSY5-13 mutation, which maps in the prodomain of Ssy5p, exhibited an EC50 value similar to that of the wild type.

Ssy5p is structurally similar to α-lytic protease from Lyso-bacter enzymogenes. Because of the lack of direct structural data, the Ssy5p sequence was modeled using PHYRE (http://www.sbg.bio.ic.ac.uk/phyre [24]). The highest scoring structure found by PHYRE was that of the trypsin-like serine protease α-lytic protease from Lysobacter enzymogenes (Protein Data Bank code 1SSX) (17). A precision value (PHYRE) of 70% was obtained.

The PHYRE alignment covers residues 544 to 689 of Ssy5p, amounting to most of the prodomain. This region was predicted to have predominantly β-structure, while the N-terminal proregion has a high α-helical content. The sequence identity between Ssy5p and the α-lytic protease over the aligned region was 13% and includes the regions around Ser and Asp of the catalytic triad. We therefore used the similarity with the α-lytic protease as a structural framework to interpret the effects of the constitutive SSY5 mutations.

Three of the constitutive mutations (F575V, Q576P, and K581N + P632H) alter side chains in two loops between secondary-structure elements conserved between Ssy5p and the α-lytic protease. These loops are longer in Ssy5p and are indicated in Fig. 4B by broken red lines. The loops are in the region of the prodomain that in the α-lytic protease interacts with the N-terminal proregion (30). It is notable that the constitutive mutations alter sites that are spatially clustered according to this model, and we interpret this to mean that this part of Ssy5p is subject to conformational changes in relation to signaling, perhaps affecting interactions with the prodomain.

Discussion

Ssy5p, together with the Ssy1p integral membrane protein and Ptr3p, is believed to be part of the SPS amino acid sensor complex (8, 15, 28). It was recently proposed that Ssy5p is the protease that activates the transcription factors Stp1p and Stp2p, which then stimulate transcription of the genes for several amino acid permeases (1, 2). In support of this, InterProScan analysis revealed that the C-terminal 230 amino acids of Ssy5p have weak similarity to chymotrypsin-like serine proteases, and expression analysis showed that Ssy5p is endoproteolytically processed into an N-terminal prodomain and a C-terminal protease domain (Fig. 4A). Mutational alteration of the proposed catalytic triad (H465, D545, and S640) led to complete loss of signaling (1, 2).

To initiate biochemical studies of Ssy5p, we expressed Ssy5p in *E. coli* and overexpressed it in *S. cerevisiae*. Expression of Ssy5p in *E. coli* resulted in inclusion bodies, and these were successfully used to raise polyclonal antibodies that proved valuable in the analysis of Ssy5p processing in yeast. Using these antibodies and a monoclonal antibody that recognizes the His6 tag we found that the overexpression of Ssy5p-His6 in yeast results in the production of full-length Ssy5p-His6 protein and two cleavage products (Fig. 1). All three species of Ssy5p accumulated when overexpressed, whether or not leucine was present in the growth medium (Fig. 1 and 2). These results confirm and extend similar findings by Abdel-Sater et al. (1).

When Forsberg and Ljungdahl (15) examined myc-Ssy5p expressed at presumably normal levels from the SSY5 promoter in a pRS316 low-copy construct, they detected a single ca. 67-kDa protein that disappeared rapidly upon induction with leucine. In contrast, Abdel-Sater et al. (1) found that N-terminally hemagglutinin-tagged Ssy5p expressed from its own promoter resulted in the production of full-length Ssy5p and the Ssy5p prodomain after 30 min of induction. The different tagging techniques and expression levels in the two studies cited may influence not only the molecular behavior of Ssy5p but also the signaling phenotype. Indeed, the N-terminal hemagglutinin tagging gave a constitutive signaling phenotype (2), and it could be that insertion of the c-myc epitope results in fast removal of the N terminus of Ssy5p. Our results show unambiguously that overexpression of Ssy5p results in the stable accumulation of all three Ssy5p forms. In future experiments it will be interesting to analyze native Ssy5p forms in plasma membrane fractions using polyclonal Ssy5p antibodies.

Ni-Sepharose chromatography allowed isolation of the C-terminal fragment of Ssy5p-His6 from yeast cells overexpressing the protein overnight. N-terminal sequencing of this fragment revealed that Ssy5p is cleaved between amino acid residues 381 and 382, resulting in a prodomain of 381 amino acid residues and a protease domain of 318 residues (Fig. 4). This result contradicts the proposal of an endoproteolytic cleavage site in the region around residue 420 (1).

The coelution of the prodomain and the protease domain from Ni-Sepharose is intriguing, since the prodomain had no His tag. Whether this reflects a complex between the two components or Ssy5p self-processing during purification is an important issue that must be addressed in the future.

We also isolated and characterized constitutive gain-of-function SSY5 mutants that map in the prodomain (SSY5F131K) and the protease domain (SSY5P575V, SSY5Q576P, and SSY5K581N (Ref. 28)) (Fig. 4A). The mutations confer amino acid-independent activation of the AGP1 promoter through an increased basal level of processing of the transcription factor Stp1p. We analyzed these mutants by quantifying their dose-response relationships for signaling by extracellular leucine and found that the EC50 values for the three mutants mapping in the protease domain were 4- to 10-fold lower than that of the wild type. In other words, the three protease domain mutants are hyperresponsive, behaving similarly to the previously isolated SSY1 (18), PTR3, and SSY5 (28) constitutive and hyperresponsive mutants.

We interpret the increase of the basal level of Stp1p processing concomitant with the decrease of EC50 in this type of mutant to mean that the amino acid substitution influences the equilibrium between a signaling and a nonsignaling conformation of the whole sensor complex (18, 28). The finding of this type of mutation in SSY1, PTR3, and SSY5 mutants suggests that all three components of the SPS sensor have coordinated dynamics of these conformational shifts. Strikingly, a mutation mapping to the Ssy5p prodomain does not change the apparent
affinity for leucine, indicating a qualitatively different effect of this mutation.

Many intracellular and extracellular proteases of both prokaryotic and eukaryotic origin are synthesized as inactive proenzymes (zymogens), from which a proregion can be cleaved, releasing the catalytically active protease. Proregions have roles in folding of the associated protease domains, intracellular protein transport, and inhibition of the protease activity. In some cases the cleaved proregion has high binding affinity to the protease (5, 6); in other cases this affinity is low, although transient binding can be sufficient for the proregion to function as a folding catalyst for the protease domain (29, 34, 35).

Similarly, the prodomain of Ssy5p may function as a catalyst for the folding of the protease domain and have an inhibitory effect on protease activity. In this view, a signaling conformation of the SPS complex could relieve the inhibitory effect of the prodomain, e.g., by promoting release or breakdown of the prodomain. The Ssy5pE131K prodomain mutation may result in less inhibition of the enzymatic activity of the protease by the prodomain in a way that is independent of the putative conformational shift of the SPS sensor, e.g., by increased release or degradation of the prodomain.

The predicted structure of the Ssy5p protease domain obtained by an analysis using PHYRE suggests that the Ssy5pE131K, Ssy5pQ576P, and Ssy5pK581N, P632H substitutions are...
located in a region close to the prodomain (dashed loops in Fig. 4B). This location is striking, and we find it very significant, since it supports the possibility that the prodomain has an important, presumably negative, role in signaling and that these mutations may decrease effective prodomain-protease interaction.

On the basis of our findings it is likely that the release of an inhibitory effect of the prodomain is a key event in signaling. We suggest the following steps for the amino acid-sensing inhibitory effect of the prodomain is a key event in signaling. We suggest the following steps for the amino acid-sensing inhibitory effect of the prodomain is a key event in signaling.

Recent investigations have revealed many components needed for proper amino acid signaling, including the three SPS sensor components (7, 13, 21, 23, 25), the transcription factors Stp1p and Stp2p (1, 3, 22), the Grp1p component of the SFCGrl ubiquitin ligase (1, 4, 33), the Yck1p and Yck2p casine kinases (1, 33), and the Rst1p regulatory subunit of protein phosphatase 2A (14). In addition, several SPS sensor-independent genes (ASI) that suppress ssy1 and ptr3 null mutants have been isolated (16).

The constitutive mutants described here and in previous publications (18, 28) may help to further unravel the complexity of interactions of the components of the pathway. When detailed structural information on some of these components becomes available, the constitutive mutants may prove particularly informative in elucidating the roles of specific amino acid residues in signaling.

ACKNOWLEDGMENTS

We thank Lisbeth F. Petersen and Annette Kure for excellent technical assistance and Clive Phipps Walter (Danisco Innovation, Copenhagen) for carrying out protein sequencing. We also thank Richard F. Gaber for carefully reading the manuscript and Per O. Ljungdahl for access to unpublished results and inspiring discussions.

The work was partly supported by a grant from the Danish Natural Science Research Council to Leila Lo Leggio.

REFERENCES

1. Abdel-Sater, F., M. El Bakoury, A. Urrestarazu, S. Vissers, and B. André. 2004. Amino acid signaling in yeast: casein kinase I and the Sso6 endoprotease are key determinants of endoproteolytic activation of the membrane-bound Stpl transcription factor. Mol. Cell. Biol. 24:9771–9785.
2. Andréasson, C. 2004. Ph.D. thesis. Karolinska University Press, Stockholm, Sweden.
3. Andréasson, C., and P. O. Ljungdahl. 2002. Receptor-mediated endoproteolytic activation of two transcription factors in yeast. Genes Dev. 16:3158–3172.
4. Andréasson, C., and P. O. Ljungdahl. 2004. The N-terminal regulatory domain of Stplp is modular and, fused to an artificial transcription factor, confers full SPS sensor control. Mol. Cell. Biol. 24:7503–7513.
5. Baker, D., J. L. Silen, and D. A. Agard. 1992. Protease pro region required for folding is a potent inhibitor of the mature enzyme. Proteins 12:339–344.
6. Baker, D., A. K. Shiu, and D. A. Agard. 1993. The role of pro regions in protein folding. Curr. Opin. Cell Biol. 5:966–970.
7. Barnes, D., W. Lai, M. Breslav, F. Naider, and J. M. Becker. 1999. PTR3, a gene encoding a permease for branched-chain amino acids in Saccharomyces cerevisiae. Genetics 153:973–988.
8. Fuhrmann, C. N., B. A. Kelch, N. Ota, and D. A. Agard. 2004. The 0.83 Å resolution crystal structure of α-like tryptic protease reveals the detailed structure of the active site and identifies a source of conformational change. J. Mol. Biol. 338:999–1013.
9. Gaber, R. F., K. Ottow, H. A. Andersen, and M. C. Kielland-Brandt. 2003. Constitutive and hyperresponsive signaling by mutant forms of Saccharomyces cerevisiae amino acid permease genes. Yeast 20:922–929.
10. Grassland, M., T. Didion, M. C. Kielland-Brandt, and H. A. Andersen. 1995. BAP2, a gene encoding a permease for branched-chain amino acids in Saccharomyces cerevisiae. Biochim. Biophys. Acta 1269:273–280.
11. Holsteaks, L. O., Lagaté, A. Van Nuland, S. Van de Velde, and J. M. Thevenin. 2004. The eukaryotic plasma membrane as a nutrient-sensing device. Trends Biochem. Sci. 29:556–563.
12. Iraqui, I., S. Vissers, F. Bernard, J.-O. de Craene, E. Boles, A. Urrestarazu, and B. André. 1999. Amino acid signaling in Saccharomyces cerevisiae: a permissive-like sensor of external amino acids and an F-box protein Grp1p are required for transcriptional induction of the AGP1 gene, which encodes a broad-specificity amino acid permease. Mol. Cell. Biol. 19:989–1001.
13. Jørgensen, M. U., C. Gjermansen, H. A. Andersen, and M. C. Kielland-Brandt. 1997. STP1, a gene involved in pre-tRNA processing in yeast, is important for amino acid uptake and transcription of the permissive gene BAP2. Curr. Genet. 34:211–247.
14. Jørgensen, M. U., M. B. Bruun, T. Didion, and M. C. Kielland-Brandt. 1998. Mutations in five loci affecting GRP3 null mutations define novel amino acid sensor-independent genes in Saccharomyces cerevisiae. Genetics 148:269–277.
15. Klasson, H., G. R. Fink, and P. O. Ljungdahl. 1998. PTR3, a gene involved in pre-tRNA processing in yeast, is important for amino acid uptake and transcription of the permissive gene BAP2. Mol. Gen. Genet. 261–264.
16. Klassen, H., G. R. Fink, and P. O. Ljungdahl. 1999. Ssy1p and Ptr3p are plasma membrane components of a yeast system that senses extracellular amino acids. Mol. Cell. Biol. 19:5410–5416.
17. Nielsen, P. S., B. van den Hazel, T. Didion, M. de Boer, M. Jørgensen, R. J. Planta, M. C. Kielland-Brandt, and H. A. Andersen. 2001. Transcriptional regulation of the Saccharomyces cerevisiae amino acid permease gene BAP2. Mol. Gen. Genet. 264:613–622.
18. Poulsen, P. B., B. Wu, R. F. Gaber, K. Ottow, H. A. Andersen, and M. C. Kielland-Brandt. 2005. Amino acid sensing by Ssy1p. Biochem. Soc. Trans. 33:261–264.
19. Poulsen, P. B., B. Wu, R. F. Gaber, and M. C. Kielland-Brandt. 2005. Constitutive signal transduction by mutant Ssy1p and Ptr3p components of the SPS amino acid sensor system in Saccharomyces cerevisiae. Eukaryot. Cell 4:1116–1124.
20. Sauter, N. K., T. Mann, S. D. Rader, and D. A. Agard. 1998. Structure of alpha-like tryptic protease complexed with its pro region. Nat. Struct. Biol. 5:945–950.
21. Sherman, F. 1991. Getting started with yeast. Methods Enzymol. 194:43–21.
22. Siksinsky, R. S., and P. Hieter. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27.
23. Sipelewsky, N., C. Flick, T. I. Kafalshnikova, J. R. Walker, and C. Wittenberg. 2004. Regulation and recognition of SCF Grr1 targets in the glucose and amino acid signaling pathways. Mol. Cell. Biol. 24:994–1005.
24. van den Hazel, H. B., M. C. Kielland-Brandt, and J. R. Winther. 1993. The propeptide is required for in vivo formation of stable active yeast proteinase A and can function even when not covalently linked to the mature region. J. Biol. Chem. 268:18002–18007.
25. Winther, J. R., P. Sørensen, and M. C. Kielland-Brandt. 1994. Refolding of a carboxypeptidase Y folding intermediate in vitro by low-affinity binding of the proregion. J. Biol. Chem. 269:22007–22013.