Anti epidermal growth factor receptor therapy in small bowel adenocarcinoma

Case report and literature review

Rosa Falcone, MD*, Michela Roberto, MD, Marco Filetti, MD, Elisabetta Anselmi, MD, Paolo Marchetti, MD

Abstract

Rationale: Small bowel adenocarcinoma (SBA) is an uncommon gastrointestinal cancer, thus limited data about treatment for advanced disease are available. The lack of specific guidelines has justified the use of therapeutic protocols usually applied in advanced colorectal cancer. Few and preliminary data have suggested possible clinical benefit from the use of target therapy such as bevacizumab and cetuximab.

Patient concerns: We present the case of a young woman who was admitted to the emergency department for acute abdominal pain, nausea, and vomiting related to a jejunal stenosis.

Diagnoses: An enteroscopy with jejunal biopsy showed poorly differentiated cancerous cells suggestive for primary intestinal carcinoma. There were no signs of metastatic disease at radiological evaluation. A jejunal resection was subsequently carried out and the diagnosis of mucinous adenocarcinoma of the jejunum was confirmed.

Interventions: The computed tomography scan performed 1 month after surgery showed metastatic disease. Therefore, the patient received combined protocols of chemotherapy and either bevacizumab or the anti-epidermal growth factor receptor (EGFR) panitumumab.

Outcomes: A partial response (PR) was achieved with Folfox plus panitumumab and a maintenance therapy with panitumumab is being conducted with a mild toxicity and a progression free survival of 19 months since the beginning of panitumumab.

Lessons: This is, to the best of our knowledge, the first report in the literature of a patient with SBA who has benefitted from panitumumab with an overall survival of 83 months.

Abbreviations: CRC = colorectal cancer, EGFR = epidermal growth factor receptor, PR = partial response, SBA = small bowel adenocarcinoma, VEGF = vascular endothelial growth factor.

Keywords: jejunum, panitumumab, small bowel adenocarcinoma, target therapy

1. Introduction

Small bowel adenocarcinoma (SBA), which accounts for about one-third of all cancers of the small bowel, is considered a rare tumor. The majority of SBA develops sporadically though some genetic conditions such as Lynch syndrome, familial adenomatous polyposis, and Peutz-Jeghers syndrome cause an increased risk of the disease. There is a slight male predominance and the duodenum is the most common tumor site. Unlike BRAF mutations, which are uncommon in sporadic SBA, the rate of K-ras mutations, as high as 40% to 60%, resembles that of colorectal cancer (CRC).[1] Conversely, the presence of microsatellite instability, which is reported up to 35%, is more frequent than that reported in CRC. Clinical studies regarding systemic treatment of advanced SBA are limited.[2–5] The lack of high-level data has prevented from writing practical guidelines. Based on either retrospective or phase-2 studies, the combination of fluoropyrimidines and oxaliplatin is regarded as the standard regimen for advanced and metastatic disease.[2–3] Because in tissue microarrays of SBA a high percentage of expression of both epidermal growth factor receptor (EGFR) and vascular endothelial growth factor (VEGF) was demonstrated, a possible benefit from therapeutic strategies targeting EGFR and VEGF receptor is expected to be.[6] Nonetheless, the use of target therapy has been rarely investigated, testified by only a few case reports and 3 clinical studies (Table 1). Within the context of anti-EGFR therapy, to the best of our knowledge, only 2 experiences referred to chemotherapy associated with cetuximab.[10,11] Here, the case of a patient, who received a combination of chemotherapy and the monoclonal antibody panitumumab for a jejunal adenocarcinoma, is described.

2. Case report

The case concerns a 47-year-old female patient with a previous diagnosis of celiac disease and a long history of Hashimoto thyroiditis requiring thyroid hormone replacement therapy. On December 2010, the patient was admitted to the emergency
Clinical studies with chemotherapy and target agents in advanced SBA

A jejunal resection was subsequently carried out and the differentiated cancerous cells suggestive for primary intestinal findings. An enteroscopy with jejunal biopsy showed poorly differentiated cancerous cells suggestive for primary intestinal cancer. A jejunal resection was subsequently carried out and the diagnosis of mucinous adenocarcinoma of the jejunum confirmed: pT4 pN1 (1/13) G3 V1 R0, Stadium IIIA sec AJCC 2010. Immunohistochemistry for mismatch repair markers MLH-1 and MSH-2 was normal. A postoperative CT scan, performed 1 month after surgery, revealed peritoneal carcinomatosis and abdominal fluid collection. A CT scan was performed for acute abdominal pain, nausea, and vomiting. The 23 year-old was still alive at publication time.

Table 1
Case series of advanced SBA treated with biologic agents.

Reference	Type study	Cancer site	Mutational status	Treatment	Line	Maximal toxicity	Outcomes
Clinical studies with chemotherapy and target agents in advanced SBA	Phase-2, single arm	SBA, AAC (30)	–	CAPOX + BEV	1st	–	ORR: 48.3%
Gulhati et al[7]	Retrospective (2 groups: A–B)	SBA (28)	–	CHEMO + BEV(A)	1st	Hematologic G3 (A: 25%, B: 6%)	OS (A–B): 8.7–12.9 mo
Aydin et al[8]	Retrospective (2 groups: A–B)	SBA, AAC (33)	K-ras, Her2-neu	CHEMO + BEV(A)	1st, 2nd, 3rd	–	OS (A–B): 21.9–11.4 mo
Santini et al[9]	Case series	Duodenum (2)	WT K-ras (3)	CHEMOCetuximab-chemo	2nd (2)	Neutropenia G3	OS: 35, 19, 7*, 17* mo
Tsang et al[10]	Case report	Jejunum (2)	–	CHEMOCetuximab-chemo	2nd (2)	Diarrhea G3	OS (A–B): 21.9–11.4 mo
De Dosso et al[11]	Case report	Jejunum (2)	–	CHEMOCetuximab-chemo	2nd (2)	Rash G2	OS: 27 mo
Nagaraj et al[12]	Case report	Jejunum (2)	–	CHEMOCetuximab-chemo	2nd (2)	Rash G2	OS: 12* mo

AAC = ampullary adenocarcinoma, BEV = bevacizumab, CET = cetuximab, CHEMO = chemotherapy, GEM = gemcitabine, IRI = irinotecan, mo = months, ORR = overall response rate, OS = overall survival, OXA = oxaliplatin, PFS = progression free survival, SBA = small bowel adenocarcinoma, WT = wild type. *Still alive at publication time.

3. Discussion

Few small prospective phase-2 studies have directly tested chemotherapy in patients affected with advanced SBA[2, 3, 4, 5]. Oxaliplatin in combination with either 5-fluorouracil or capetitabine is commonly used in the frontline setting. Two of these studies[6, 7] have reached with the use of drug triplets in both CRC and pancreatic cancer, the North Central Cancer Treatment Group performed the first pharmacogenetic-based phase-2 study (N0543) in patients with advanced untreated SBA, using a genotype-dosed combination of capetitabine, irinotecan, and oxaliplatin.[8] Although the toxicity profile seemed
to be favorable, conclusions about benefits of the addition of irinotecan to oxaliplatin and fluorouracil could not be achieved. The lack of clinical studies due to the rarity of SBA has implied for the therapeutic decision-making the adoption of clinical guidelines created for large bowel adenocarcinoma. Although combination treatments with bevacizumab have generated encouraging results, no conclusion can be drawn at present. Indeed, the interpretation of data should consider the following remarks: small sample of patients included, heterogeneity of the study population (SBA with or without ampullary adenocarcinoma), nature of the study, different chemotherapy protocols (FOLFOX-FOLFIRI-CAPOX-or without ampullary adenocarcinoma), nature of the study, different chemotherapy protocols (FOLFOX-FOLFIRI-CAPOX-or without ampullary adenocarcinoma), nature of the study, different chemotherapy protocols (FOLFOX-FOLFIRI-CAPOX-or without ampullary adenocarcinoma), nature of the study, different chemotherapy protocols (FOLFOX-FOLFIRI-CAPOX-or without ampullary adenocarcinoma), nature of the study, different chemotherapy protocols (FOLFOX-FOLFIRI-CAPOX-or without ampullary adenocarcinoma), nature of the study, different chemotherapy protocols (FOLFOX-FOLFIRI-CAPOX-or without ampullary adenocarcinoma), nature of the study, different chemotherapy protocols (FOLFOX-FOLFIRI-CAPOX-or without ampullary adenocarcinoma), nature of the study, different chemotherapy protocols (FOLFOX-FOLFIRI-CAPOX-or without ampullary adenocarcinoma), nature of the study, different chemotherapy protocols (FOLFOX-FOLFIRI-CAPOX-or without ampullary adenocarcinoma), nature of the study, different chemotherapy protocols (FOLFOX-FOLFIRI-CAPOX-or without ampullary adenocarcinoma), nature of the study, different chemotherapy protocols (FOLFOX-FOLFIRI-CAPOX-or without ampullary adenocarcinoma), nature of the study, different chemotherapy protocols (FOLFOX-FOLFIRI-CAPOX-or without ampullary adenocarcinoma), nature of the study, different chemotherapy protocols (FOLFOX-FOLFIRI-CAPOX-or without ampullary adenocarcinoma), nature of the study, different chemotherapy protocols (FOLFOX-FOLFIRI-CAPOX-or without ampullary adenocarcinoma), nature of the study, different chemotherapy protocols (FOLFOX-FOLFIRI-CAPOX-or without ampullary adenocarcinoma), nature of the study, different chemotherapy protocols (FOLFOX-FOLFIRI-CAPOX-or without ampullary adenocarcinoma), nature of the study, different chemotherapy protocols (FOLFOX-FOLFIRI-CAPOX-or without ampullary adenocarcinoma), nature of the study, different chemotherapy protocols (FOLFOX-FOLFIRI-CAPOX-or without ampullary adenocarcinoma), nature of the study, different chemotherapy protocols (FOLFOX-FOLFIRI-CAPOX-or without ampullary adenocarcinoma), nature of the study, different chemotherapy protocols (FOLFOX-FOLFIRI-CAPOX-or without ampullary adenocarcinoma), nature of the study, different chemotherapy protocols (FOLFOX-FOLFIRI-CAPOX-or without ampullary adenocarcinoma), nature of the study, different chemotherapy protocols (FOLFOX-FOLFIRI-CAPOX-or without ampullary adenocarcinoma), nature of the study, different chemotherapy protocols (FOLFOX-FOLFIRI-CAPOX-or without ampullary adenocarcinoma), nature of the study, different chemotherapy protocols (FOLFOX-FOLFIRI-CAPOX-or without ampullary adenocarcinoma), nature of the study, different chemotherapy protocols (FOLFOX-FOLFIRI-CAPOX-or without ampullary adenocarcinoma), nature of the study, different chemotherapy protocols (FOLFOX-FOLFIRI-CAPOX-or without ampullary adenocarcinoma), nature of the study, different chemotherapy protocols (FOLFOX-FOLFIRI-CAPOX-or without ampullary adenocarcinoma), nature of the study, different chemotherapy protocols (FOLFOX-FOLFIRI-CAPOX-or without ampullary adenocarcinoma), nature of the study, different chemotherapy protocols (FOLFOX-FOLFIRI-CAPOX-or without ampullary adenocarcinoma), nature of the study, different chemotherapy protocols (FOLFOX-FOLFIRI-CAPOX-or without am

4. Conclusion

The use of chemotherapy in SBA is solely supported by level II evidence. For such reason, anticancer regimens suitable for CRC are usually applied. Furthermore, just anecdotal experiences about the use of anti-EGFR monoclonal antibodies have been reported. Although some clinical trials are ongoing to test target therapies in advanced or metastatic SBA (Table 2), there is the need of further comparative studies aimed at better define therapy of this orphan disease.

Acknowledgments

The authors thank Dr Adriana Romiti who provide language help and writing assistance, the patient and her family for the consensus given to publish the case.

References

[1] Zaaimi Y, Aparicio T, Laurent-Puig P, et al. Advanced small bowel adenocarcinoma: Molecular characterizations and therapeutic perspectives. Clin Res Hepatol Gastroenterol 2016;40:154–60.

[2] Overman MJ, Varadhachary GR, Kopez S, et al. Phase II study of cetuximab and oxaliplatin for advanced adenocarcinoma of the small bowel and ampulla of vater. J Clin Oncol 2009;27:2598–603.

[3] Xiang XJ, Liu YW, Zhang L, et al. A phase II study of modified FOLFOX as first-line chemotherapy in advanced small bowel adenocarcinoma. Anticancer Drugs 2012;23:561–6.

[4] Gibson MK, Holcroft CA, Kox KS, et al. Phase II study of 5-fluorouracil, doxorubicin, and mitomycin C for metastatic small bowel adenocarcinoma. Oncology 2005;10:132–7.

[5] McWilliams RR, Foster NR, Mahoney MR, et al. North Central Cancer Treatment Group N0543 (Alliance): a phase 2 trial of pharmacogenetic-based dosing of irinotecan, oxaliplatin, and cetuximab as first-line therapy for patients with advanced small bowel adenocarcinoma. Cancer 2017;123:3494–501.

[6] Overman MJ, Pozzaides J, Kopez S, et al. Immunophenotype and molecular characterisation of adenocarcinoma of the small intestine. Br J Cancer 2010;102:144–50.

[7] Gulhani P, Raghav K, Shroff RT, et al. Bevacizumab combined with cetuximab and oxaliplatin in patients with advanced adenocarcinoma of the small bowel or ampulla of vater: a single-center, open-label, phase 2 study. Cancer 2017;123:1011–7.

[8] Aydin D, Sendur MA, Kekili U, et al. Evaluation of bevacizumab in advanced small bowel adenocarcinoma. Clin Colorectal Cancer 2017;16:78–83.

[9] Takayoshi K, Kusaba H, Uenomachi M, et al. Suggestion of added value by bevacizumab to chemotherapy in patients with unresectable or recurrent small bowel cancer. Cancer Chemother Pharmacol 2017;80:333–42.

[10] Santini D, Fratto ME, Spoto C, et al. Cetuximab in small bowel adenocarcinoma: a new friend? Br J Cancer 2010;103:1305.

[11] De Dosso S, Molinari F, Martin V, et al. Molecular characterisation and cetuximab-based treatment in a patient with refractory small bowel adenocarcinoma. Gut 2010;59:1587–8.

[12] Tsang H, You T, Khong PL, et al. Bevacizumab-based therapy for advanced small bowel adenocarcinoma. Gut 2008;57:1631–2.

[13] Nagaraj G, Zarbalian Y, Flora K, et al. Complete response and prolonged disease-free survival in a patient with recurrent duodenal adenocarcinoma treated with bevacizumab plus FOLFOX6. J Gastrointest Oncol 2014;5:E1–6.

[14] Marchetti P, Milano A, D’Antonio C, et al. Association between proton pump inhibitors and metronomic capecitabine as salvage treatment for patients with advanced gastrointestinal tumors: a randomized phase II trial. Clin Colorectal Cancer 2016;15:377–80.

[15] Falcone R, Roberto M, Falcone R, et al. Association between proton pump inhibitors and metronomic capecitabine as salvage treatment for patients with advanced gastrointestinal tumors: a randomized phase II trial. Clin Colorectal Cancer 2016;15:377–80.

[16] Zaaimi A, Gauthier M, Malka D, et al. Second-line chemotherapy with 5-fluorouracil, leucovorin, and irinotecan (FOLFIRI regimen) in patients with advanced small bowel adenocarcinoma after failure of first-line platinum-based chemotherapy: a multicenter AGEO study. Cancer 2011;117:1422–8.

[17] García Alfonso P, Benavides M, Sánchez Ruiz A, et al. Phase II study of first-line mFOLFOX plus cetuximab (C) for 8 cycles followed by mFOLFOX plus C or single agent (SA) C as maintenance therapy in patients (P) with metastatic colorectal cancer (mCRC): The MACRO-2 trial (Spanish Cooperative Group for the Treatment of Digestive Tumors [TTD]). Ann Oncol 2014;25(Suppl.3):i68abstr 499O.

Table 2

Trial code	Study design	Setting	Protocol	Status
NCT01202409	II, not R	WT K-ras SBA, AAC	PAN	Ongoing, not recruiting
NCT01208103	II, not R	SBA, AAC	CAP + OXA + BEV	Ongoing, not recruiting
NCT03108131	II, not R	RT	COB + ATE	Recruiting
NCT02634110	II, not R	BRAF V600E mutated RT	DAB + TRA	Recruiting
NCT03095781	I, not R	GIC	PEM + XL888	Not yet open
NCT00987766	I, not R	BPC, DC, AAC	ERL + GEM + OXA	Ongoing, not recruiting
NCT00305842	I, not R	A/M C	TIP + TRAS	Completed
NCT00307384	I, not R	GIC, HNC, NSQLC	CET + ERL	Completed