Approaching Waterfilling Capacity of Parallel Channels by Higher Order Modulation and Probabilistic Amplitude Shaping

Fabian Steiner, Patrick Schulte
Institute for Communications Engineering
Technical University of Munich
Email: {fabian.steiner, patrick.schulte}@tum.de

Georg Böcherer
Mathematical and Algorithmic Sciences Lab
Huawei Technologies France
georg.boecherer@ieee.org

Abstract—Parallel, additive white Gaussian noise (AWGN) channels with an average sum power constraint are considered. It is shown how the waterfilling Shannon capacity can be approached by higher order modulation and probabilistic amplitude shaping (PAS). This is achieved by a new distribution matching approach called product distribution matching (PDM). The asymptotic performance of PDM is analyzed by achievable rates. A heuristic for optimizing the input distribution is proposed, which enables signaling at a target spectral efficiency with a fixed-rate forward error correction (FEC) code, while the optimal power allocation is ensured by mercury-waterfilling and a simple bit-loading strategy. Finite blocklength simulation results with 5G low-density parity-check codes show power savings of around 1 dB compared to a conventional scheme with uniform input distributions.

I. INTRODUCTION

Higher-order modulation is indispensable in mobile, satellite, cable, and fiber-optic communication to achieve the high spectral efficiency (SE) required for data applications. Transceivers must be flexible, i.e., they should support different SEs so they can adapt to the link quality at hand and deliver the best possible connectivity. Conventional coded modulation uses uniform distributions on the constellation points. This has two disadvantages. First, uniform distributions suffer a power inefficiency of up to 1.53 dB [1]. Second, flexibility requires sophisticated modulation and coding approaches, e.g., supporting a large number of modcods (combinations of modulation formats and channel codes such as in DVB-S2X), puncturing schemes (e.g., for Turbo codes in LTE [2, Ch. 10]) or rate-compatible low-density parity-check (LDPC) codes in 5G [3].

One approach to circumvent this deficiency is geometric shaping (GS) [4], [5] which uses constellations with non-uniform signal points. While improved power efficiency was observed, the problem of flexibility remains. A second approach is probabilistic shaping (PS) [6, p. 208], [7]–[9] that uses equidistant signal points with a non-uniform distribution. For an overview of PS schemes, see [10, Sec. II] and references therein. Recently, we proposed probabilistic amplitude shaping (PAS) [10], a PS architecture that concatenates a distribution matcher (DM) as a shaping device with forward error correction (FEC) for single carrier transmission, see Fig. 1a. PAS achieves the optimal power efficiency and enables flexible SE adaption with a small number of modcods. The benefits of PAS for fiber-optic communication were recently showcased in a transoceanic transmission [11] and future optical modems will implement PAS [12, Sec. V-A].

In many practical settings, the data link is well modeled by a set of non-interacting parallel channels. Examples include multi-carrier transmission such as orthogonal frequency division multiplexing (OFDM), discrete multitone (DMT), and multi-antenna transceivers when the singular value decomposition (SVD) of the channel matrix is used to orthogonalize the system.

In this work, we propose a novel DM architecture called product distribution matching (PDM), which internally uses a collection of parallel DMs with smaller output alphabets to synthesize the desired distribution as product distribution. A preferable implementation uses binary output alphabets for the component DMs. This approach simplifies the implementation significantly and allows for parallelization to achieve high throughput.

We further show how PDM enables PS for multi-carrier transmission by sharing the component DMs for lower bit-levels among different sub-carriers. We provide a representative example where PDM is about 1 dB more power efficient than uniform signaling and operates close to the waterfilling limit [13, Sec. 5.4.6]. The DM implementation used in our simulation is available to the public as a web service at [14].

This work is structured as follows. Sec. II reviews DM and PAS and states achievable rate expressions for system design. In Sec. III, we introduce the PDM architecture and present simulation results for 64-ASK. Sec. IV shows how PDM enables the operation of PAS close to the waterfilling limit of parallel channels. We conclude in Sec. V.

II. PRELIMINARIES

A. Distribution Matching (DM)

DMs transform a sequence of uniformly distributed input bits into an output sequence of symbols from an alphabet \mathbb{A} with a desired distribution. In the following, we use...
the compact notation $x^n = x_1 x_2 \cdots x_n$ for row vectors (x_1, x_2, \ldots, x_n). A fixed-to-fixed length DM maps k input bits $d^k = d_1 d_2 \ldots d_k$ to n output symbols $a^n = a_1 a_2 \ldots a_n = \text{dm}(d^k)$, where $d_i \in \{0, 1\}$, $i = 1, \ldots, k$ and $a_i \in \mathcal{A}$, $i = 1, \ldots, n$. The mapping dm(\cdot) is invertible, i.e., d^k can be recovered from a^n by applying the inverse mapping dm$^{-1}(\cdot)$. Fixed-to-fixed length DMs can be implemented by the constant composition distribution matching (CCDM) [15], for binary output alphabets see also [16]. A DM is specified by the following parameters.

- The rate is
 \[R_{dm} = \frac{k}{n} \left[\frac{\text{bits}}{\text{output symbol}} \right]. \tag{1} \]

- The output distribution is
 \[P_A(a) = \frac{\sum_{a^n \in \mathcal{A}} P_{dm}(a^n)(a)}{2^k}, \quad a \in \mathcal{A} \tag{2} \]
 where $P_{dm}(a^n) = P_{a^n}$ is the empirical distribution of the sequence a^n, i.e.,
 \[P_{a^n}(a) = \frac{|\{i: a_i = a\}|}{n}, \quad a \in \mathcal{A}. \tag{3} \]

The reference [15, Sec. III.B] shows that R_{dm} approaches the entropy $H(A)$ of P_A, for large n. We take the actual DM rate k/n into account for all finite length numerical results.

B. Channel Model and Achievable Rates

We consider transmission over the time-discrete additive white Gaussian noise (AWGN) channel

\[Y = X + Z \tag{4} \]

where the channel input $X = \Delta \tilde{X}$ and $\Delta > 0$ is a constellation scaling and \tilde{X} comes from a normalized $M = 2^m$-amplitude shift keying (ASK) constellation

\[\mathcal{X} = \{ \pm 1, \pm 3, \ldots, \pm (2^m - 1) \}. \tag{5} \]

The noise Z is zero-mean Gaussian with unit variance, i.e., $Z \sim \mathcal{N}(0, 1)$. The resulting signal-to-noise ratio (SNR) is $E[X^2]/E[Z^2]$. The mutual information maximizing distribution under an average power constraint is a zero mean Gaussian input X with variance SNR, and the capacity is

\[C_{\text{AWGN}}(\text{SNR}) = \frac{1}{2} \log_2(1 + \text{SNR}). \tag{6} \]

C. PAS Transmitter

The PAS architecture implements probabilistically shaped ASK modulation [10, Sec. IV.J]. It leverages the symmetry of the capacity achieving distribution P_X for the AWGN channel. This allows a factorization of the input distribution into an amplitude and sign part as $P_X(x) = P_A(|x|) \cdot P_S(\text{sign}(x))$, where P_A is non-uniform on $\mathcal{A} = \{|x|, x \in \mathcal{X}\}$ and S is uniform on $\{-1, +1\}$. A DM maps k data bits to n amplitudes A^n, which are represented by $n(m-1)$ amplitude bits and associated with bit-levels $b_2 b_3 \cdots b_m$. The amplitude bits and γn additional data bits are multiplied with the parity generating part P of a systematic generator matrix $[I | P]$ to generate $(1-\gamma) n$ parity bits. The parity bits and the additional data bits are mapped to n signs S^n and associated with bit-level b_1. The signs are multiplied symbol-wise with the amplitudes A^n. The FEC code instantiated by P has rate

\[R_c = \frac{n(m-1) + \gamma n}{mn} \geq \frac{m-1+\gamma}{m} \tag{7} \]

and the fraction of signs used for data bits is

\[\gamma = 1 - (1 - R_c) m. \tag{8} \]

PAS requires $0 \leq \gamma \leq 1$. The transmission rate of PAS is the number of data bits per ASK symbol given by

\[R_{tx} = \frac{R_c}{n} + \gamma. \tag{9} \]

D. Achievable Rates for PAS

In [17], it is shown that an achievable rate for PAS is

\[R_a = \left[H(X) - \log_2 \left(\sum_{x \in \mathcal{X}} q(x, Y) \right) \right]^+. \tag{10} \]
where $[,]^+ = \max(0,\cdot)$. The expression $q(x,y)$ is a non-negative memoryless metric on $X \times R$ to determine an estimate \hat{x} of the sent symbol sequence via

$$\hat{x}^n = \arg\max_{x^n \in \mathcal{C}} \prod_{i=1}^{n} q(x_i, y_i)$$

(11)

where \mathcal{C} is the set of codewords. To use binary FEC codes, we introduce a labeling function that maps a constellation point $x \in X$ to an m-bit binary label, i.e., $\chi_{\text{fec}} : X \rightarrow \{0,1\}^m$ and $\chi_{\text{fec}}(x) = b_{\text{fec}}^m \cdots b_{\text{fec}}^2 b_{\text{fec}}^1$. Its inverse is $\chi_{\text{loc}}^{-1} : \{0,1\}^m \rightarrow X$. The BMD metric is

$$q(x,y) = \tilde{q}(\chi_{\text{loc}}(x), y) = \tilde{q}(b_{\text{fec}}, y) = \prod_{i=1}^{m} P_{B_{\text{loc}}^{i}}(b_{\text{loc}}^i | y)$$

(12)

and the achievable rate (10) becomes

$$R_{\text{BMD}}(\text{SNR}; P_X) = \left[H(X) - \sum_{i=1}^{m} H(B_{\text{loc}}^i | Y) \right]^+ \ .$$

(13)

In the following, we use a binary reflected Gray code (BRGC) [18] for $\chi_{\text{loc}}(\cdot)$, see Table I.

III. PRODUCT DISTRIBUTION MATCHING (PDM)

A. Concept of PDM

Suppose for some amplitude label $b_{\text{dm}}^m \cdots b_{\text{dm}}^1$ and the corresponding signal point label $b_{\text{dm}}^m = b_{\text{dm}}^1 b_{\text{dm}}^2 \cdots b_{\text{dm}}^m$ we have

$$P_{B_{\text{dm}}} (b_{\text{dm}}) = \prod_{i=1}^{m} P_{B_{\text{loc}}^i} (b_{\text{loc}}^i | y) = 0.5 \cdot \prod_{i=2}^{m} P_{B_{\text{loc}}^i} (b_{\text{loc}}^i)$$

(14)

where $P_{B_{\text{loc}}^i} (b) = P_{B_{\text{loc}}^i} (b) = 0.5, b \in \{0,1\}$ because of the required symmetry. The bits of the label b_{dm} are statistically independent. We can construct a distribution on the signal points by choosing binary distributions $P_{B_{\text{dm}}}^i, i=2,\ldots,m$ and a bit mapper $\chi_{\text{dm}} : X \rightarrow \{0,1\}^m$. PDM can efficiently generate the product distributions of (14) and the procedure is displayed in Fig. 1b. k binary data bits are demultiplexed into $m-1$ parallel blocks of lengths k_2 to k_m. The $m-1$ parallel binary DMS output $m-1$ shaped binary sequences of length n. A bit mapper recombines the $m-1$ sequences and outputs one shaped amplitude sequence of length n. Hence, PDM provides the same interface as the DM in the original work of [10], which uses one $M/2$-ary DM for a M-ASK constellation. The use of binary output DMS greatly reduces the complexity of the underlying matching algorithm, e.g., of arithmetic coding used for CCDM. The rate R_{dm} for PDM is

$$R_{\text{dm}} = \frac{k_2 + k_3 + \cdots + k_m}{n}$$

(15)

and approaches $\sum_{i=2}^{m} H(B_{\text{loc}}^i)$ for large n. An achievable rate asymptotically in n is

$$R_{\text{PDM}}^\Pi = \left[\sum_{i=1}^{m} H(B_{\text{loc}}^i) - \sum_{i=1}^{m} H(B_{\text{loc}}^i | Y) \right]^+ \ .$$

(16)

Note that the labeling functions $\chi_{\text{dm}}(x)$ and $\chi_{\text{loc}}(x)$ for the DM and FEC may be different for the same signal point. We choose the natural based binary code (NBBC) for χ_{dm} and the BRGC for χ_{loc} (see (11)). We can construct a distribution on the signal points by choosing binary distributions $P_{B_{\text{dm}}}^i, i=2,\ldots,m$ and a bit mapper χ_{loc}. PDM can efficiently generate the product distributions of (14) and the procedure is displayed in Fig. 1b. k binary data bits are demultiplexed into $m-1$ parallel blocks of lengths k_2 to k_m. The $m-1$ parallel binary DMS output $m-1$ shaped binary sequences of length n. A bit mapper recombines the $m-1$ sequences and outputs one shaped amplitude sequence of length n. Hence, PDM provides the same interface as the DM in the original work of [10], which uses one $M/2$-ary DM for a M-ASK constellation. The use of binary output DMS greatly reduces the complexity of the underlying matching algorithm, e.g., of arithmetic coding used for CCDM. The rate R_{dm} for PDM is

$$R_{\text{dm}} = \frac{k_2 + k_3 + \cdots + k_m}{n}$$

(15)

and approaches $\sum_{i=2}^{m} H(B_{\text{loc}}^i)$ for large n. An achievable rate asymptotically in n is

$$R_{\text{PDM}}^\Pi = \left[\sum_{i=1}^{m} H(B_{\text{loc}}^i) - \sum_{i=1}^{m} H(B_{\text{loc}}^i | Y) \right]^+ \ .$$

(16)

Note that the labeling functions $\chi_{\text{dm}}(x)$ and $\chi_{\text{loc}}(x)$ for the DM and FEC may be different for the same signal point. We choose the natural based binary code (NBBC) for χ_{dm} and the BRGC for χ_{loc}. In Table II, we assess the different DM implementations by their asymptotic achievable rates. We use 64-ASK, a DM amplitude distribution with $R_{\text{dm}} = 4.1$ bits and $\gamma = 0.4$, yielding an SE of $R_{\text{dm}} = 4.5$ bpcu. We employ a 32-ary DM as a reference. The performance of this system is compared to a PDM setup with $1 (B_{\text{dm}}^2), 2 (B_{\text{dm}}^3, B_{\text{dm}}^4), 3 (B_{\text{dm}}^5, B_{\text{dm}}^1, B_{\text{dm}}^2, B_{\text{dm}}^3), 4 (B_{\text{dm}}^5, B_{\text{dm}}^6, B_{\text{dm}}^7, B_{\text{dm}}^8) \) and 5 ($B_{\text{dm}}^5, B_{\text{dm}}^6, B_{\text{dm}}^7, B_{\text{dm}}^8, B_{\text{dm}}^9, B_{\text{dm}}^{10}$) individually shaped bit-levels and the corresponding binary DMS. The input distributions for PDM have been chosen such that the DMS meet the specified rate using the heuristic

$$P_{B_{\text{dm}}^i} \min P_{B_{\text{loc}}^i} E[X^2] \ s.t. \sum_{i=2}^{m} H(B_{\text{loc}}^i) = R_{\text{dm}}.$$
We now consider L parallel channels of the same form as in (4)
\begin{equation}
Y_{\ell} = h_{\ell}X_{\ell} + Z_{\ell}, \quad \ell = 1, 2, \ldots, L.
\end{equation}

The noise terms Z_{ℓ} are zero mean Gaussian with unit variance. The coefficients h_{ℓ} model the channel gains and we assume that both the receiver and transmitter have full channel state information, i.e., they both know the channel gains h_{ℓ} and the noise variance.

IV. PDM FOR PARALLEL CHANNELS

We now consider L parallel channels of the same form as in (4)

\begin{equation}
Y_{\ell} = h_{\ell}X_{\ell} + Z_{\ell}, \quad \ell = 1, 2, \ldots, L.
\end{equation}

The noise terms Z_{ℓ} are zero mean Gaussian with unit variance. The coefficients h_{ℓ} model the channel gains and we assume that both the receiver and transmitter have full channel state information, i.e., they both know the channel gains h_{ℓ} and the noise variance.

A. Waterfilling Benchmark

The transmitter has an average power budget P, i.e., the inputs are subject to the sum-power constraint
\begin{equation}
\frac{1}{L} \sum_{\ell=1}^{L} E[X_{\ell}^2] \leq P.
\end{equation}

The average SE
\begin{equation}
\frac{1}{L} \sum_{\ell=1}^{L} \frac{1}{2} \log_2(1 + h_{\ell}^2 P_{\ell})
\end{equation}

is achievable with the channel inputs X_{ℓ} being independent zero mean Gaussian with variance P_{ℓ}. The average SE is maximized by waterfilling, i.e.,
\begin{equation}
P_{\ell}^* = \left[1 - \frac{1}{h_{\ell}^2} \right]^+, \quad \lambda: \frac{1}{L} \sum_{\ell=1}^{L} P_{\ell}^* = P.
\end{equation}

Suppose that P_{ℓ}^* is positive. The SE allocated to channel ℓ is then $C_{\ell} = \frac{1}{2} \log_2(h_{\ell}^2 / \lambda)$ and we have
\begin{equation}
C_{WF}(P) = \frac{1}{L} \sum_{\ell=1}^{L} C_{\ell} = \frac{1}{L} \sum_{\ell=1}^{L} \frac{1}{2} \log_2 \frac{h_{\ell}^2}{\lambda}.
\end{equation}

The function $C_{WF}(P)$ is the maximum achievable SE under the sum power constraint P and it serves in the following as our benchmark. For discrete inputs, the power allocation follows the mercury-waterfilling principle [20]. In the following, we develop a heuristic that uses PDM and operates closely to $C_{WF}(P)$.

B. Bit-Loading Strategy

Since the per-channel SEs can differ by several bits, we need to support several constellations in parallel. This is for instance important for digital subscriber line (DSL) systems, where some good channels may support up to 32,768-QAM [21], whereas the majority needs to be operated with smaller modulation formats. Next, we have to decide which constellation size is used for which channel, an approach known as bit-loading. We employ the following heuristic: We calculate the waterfilling solution for the given channel coefficients and obtain the optimal rate assignment $C_{\ell}, \ell = 1, \ldots, L$ from (22). Then, we use Ungerboeck’s rule-of-thumb [22] to choose a constellation size $M_{\ell} = 2^m$ for channel ℓ such that $m_{\ell} \approx C_{\ell} + 1$. This avoids a reduced SE because of too small constellation sizes. We assume the largest constellation size is 2^m, i.e., $m = \max_{\ell} m_{\ell}$. Further, the smallest constellation size is 2^2-ASK for the ease of exposure. An extension to channels using binary phase-shift keying (BPSK) is straightforward.

C. PAS for Parallel Channels

PAS can be combined with parallel channels as illustrated in Fig. 4a. A DM device transforms data bits into a sequence of amplitudes for each channel, which are then combined with sign bits originating from a common encoding device. In its simplest form, this DM device internally uses individual DMs, each with its output alphabet size matched to the corresponding constellation size.
The function \(\mathbb{1}(\cdot) \) is the indicator function, which evaluates to one if its argument is true and zero otherwise. The corresponding DM input lengths are \(k_2, k_3, \ldots, k_m \). The average SE of the overall system is now

\[
R_\text{th} = \frac{\sum_{i=2}^{m} k_i}{\sum_{i=2}^{m} \nu_i} + \gamma. \tag{25}
\]

and converges to \(\left(\sum_{i=2}^{m} H(B_{\nu_i}) n_i \right) / \left(\sum_{i=2}^{m} \nu_i \right) + \gamma \) for large \(L \). The formulas (7) and (8) generalize to

\[
R_\text{c} = \frac{\sum_{i=2}^{m} (i-1+\gamma) \nu_i}{\sum_{i=2}^{m} \nu_i \cdot i} \tag{26}
\]

\[
\gamma = 1 - (1 - R_\text{c}) \sum_{i=2}^{m} \nu_i \cdot i, \tag{27}
\]

The function \(\mathbb{1}(\cdot) \) is the indicator function, which evaluates to one if its argument is true and zero otherwise. The corresponding DM input lengths are \(k_2, k_3, \ldots, k_m \). The average SE of the overall system is now

\[
R_\text{th} = \frac{\sum_{i=2}^{m} k_i}{\sum_{i=2}^{m} \nu_i} + \gamma. \tag{25}
\]

and converges to \(\left(\sum_{i=2}^{m} H(B_{\nu_i}) n_i \right) / \left(\sum_{i=2}^{m} \nu_i \right) + \gamma \) for large \(L \). The formulas (7) and (8) generalize to

\[
R_\text{c} = \frac{\sum_{i=2}^{m} (i-1+\gamma) \nu_i}{\sum_{i=2}^{m} \nu_i \cdot i} \tag{26}
\]

\[
\gamma = 1 - (1 - R_\text{c}) \sum_{i=2}^{m} \nu_i \cdot i, \tag{27}
\]

The function \(\mathbb{1}(\cdot) \) is the indicator function, which evaluates to one if its argument is true and zero otherwise. The corresponding DM input lengths are \(k_2, k_3, \ldots, k_m \). The average SE of the overall system is now

\[
R_\text{th} = \frac{\sum_{i=2}^{m} k_i}{\sum_{i=2}^{m} \nu_i} + \gamma. \tag{25}
\]

and converges to \(\left(\sum_{i=2}^{m} H(B_{\nu_i}) n_i \right) / \left(\sum_{i=2}^{m} \nu_i \right) + \gamma \) for large \(L \). The formulas (7) and (8) generalize to

\[
R_\text{c} = \frac{\sum_{i=2}^{m} (i-1+\gamma) \nu_i}{\sum_{i=2}^{m} \nu_i \cdot i} \tag{26}
\]

\[
\gamma = 1 - (1 - R_\text{c}) \sum_{i=2}^{m} \nu_i \cdot i, \tag{27}
\]

The function \(\mathbb{1}(\cdot) \) is the indicator function, which evaluates to one if its argument is true and zero otherwise. The corresponding DM input lengths are \(k_2, k_3, \ldots, k_m \). The average SE of the overall system is now

\[
R_\text{th} = \frac{\sum_{i=2}^{m} k_i}{\sum_{i=2}^{m} \nu_i} + \gamma. \tag{25}
\]

and converges to \(\left(\sum_{i=2}^{m} H(B_{\nu_i}) n_i \right) / \left(\sum_{i=2}^{m} \nu_i \right) + \gamma \) for large \(L \). The formulas (7) and (8) generalize to

\[
R_\text{c} = \frac{\sum_{i=2}^{m} (i-1+\gamma) \nu_i}{\sum_{i=2}^{m} \nu_i \cdot i} \tag{26}
\]

\[
\gamma = 1 - (1 - R_\text{c}) \sum_{i=2}^{m} \nu_i \cdot i, \tag{27}
\]

The function \(\mathbb{1}(\cdot) \) is the indicator function, which evaluates to one if its argument is true and zero otherwise. The corresponding DM input lengths are \(k_2, k_3, \ldots, k_m \). The average SE of the overall system is now

\[
R_\text{th} = \frac{\sum_{i=2}^{m} k_i}{\sum_{i=2}^{m} \nu_i} + \gamma. \tag{25}
\]

and converges to \(\left(\sum_{i=2}^{m} H(B_{\nu_i}) n_i \right) / \left(\sum_{i=2}^{m} \nu_i \right) + \gamma \) for large \(L \). The formulas (7) and (8) generalize to

\[
R_\text{c} = \frac{\sum_{i=2}^{m} (i-1+\gamma) \nu_i}{\sum_{i=2}^{m} \nu_i \cdot i} \tag{26}
\]

\[
\gamma = 1 - (1 - R_\text{c}) \sum_{i=2}^{m} \nu_i \cdot i, \tag{27}
\]

The function \(\mathbb{1}(\cdot) \) is the indicator function, which evaluates to one if its argument is true and zero otherwise. The corresponding DM input lengths are \(k_2, k_3, \ldots, k_m \). The average SE of the overall system is now

\[
R_\text{th} = \frac{\sum_{i=2}^{m} k_i}{\sum_{i=2}^{m} \nu_i} + \gamma. \tag{25}
\]

and converges to \(\left(\sum_{i=2}^{m} H(B_{\nu_i}) n_i \right) / \left(\sum_{i=2}^{m} \nu_i \right) + \gamma \) for large \(L \). The formulas (7) and (8) generalize to

\[
R_\text{c} = \frac{\sum_{i=2}^{m} (i-1+\gamma) \nu_i}{\sum_{i=2}^{m} \nu_i \cdot i} \tag{26}
\]

\[
\gamma = 1 - (1 - R_\text{c}) \sum_{i=2}^{m} \nu_i \cdot i, \tag{27}
\]
such that the channel quality varies significantly (over a range of 12 dB) and requires three different modulation formats. The waterfilling solution (22) for a target SE of 3.0 bpcu yields the following rate allocation

\[Y_1 = 2.0 \cdot X_1 + Z_1, \quad C_1 = 4.0\]
\[Y_2 = 1.0 \cdot X_2 + Z_2, \quad C_2 = 3.0\]
\[Y_3 = 0.5 \cdot X_3 + Z_3, \quad C_3 = 2.0\]

which is achieved for an average sum-power of 17.94 dB. We select constellation sizes of \(2^{m_3} = 32, 2^{m_2} = 16\) and \(2^{m_1} = 8\) points according to our bit-loading strategy of Sec. IV-B. The achievable rates are plotted over the average sum-power in Fig. 5. Our proposed heuristic scheme exhibits a gap of 0.2 dB to the waterfilling benchmark of (22) for the target SE of 3.0 bpcu. The uniform reference curve is shown in black and has a gap of 1.22 dB to the waterfilling solution. The employed bit distributions are summarized in Table III and have been chosen as the solution to the following heuristic optimization problem for \(R_{dm}\) as in (28).

\[
\min_{P_{BDM_1}, P_{BDM_2}} \sum_{\ell=1}^{5} \frac{1}{H_\ell} E\left[X_\ell^2\right] \text{s.t. } \frac{1}{L} \sum_{i=2}^{5} H(B_{dm})m_i = R_{dm}.
\]

In Fig. 6, we consider the same scenario with finite length LDPC codes from the 5G standard [3] (basegraph BG1). The uniform reference uses a rate \(R_c = 3/4\), while the shaped case has a rate \(R_c = 5/6\) code (\(\gamma = 1/3\)). In both cases the number of transmitted bits is 3600. The asymptotic gains are also reflected in the coded results. We perform 100 BP iterations.

![Diagram](image)

Fig. 6. Coded performance comparison of PDM and uniform scheme for parallel channels (LDPC code with block length 3600 bits).

Table III

DM_i	\(\nu_i\)	\(n_i\)	\(P_{BDM_i}(0)\)	\(H(B_{dm})\)
2	300	900	0.1995	0.7208
3	300	900	0.3736	0.9534
4	300	600	0.4408	0.9898
5	300	300	0.4709	0.9976

V. CONCLUSION

We proposed product distribution matching (PDM), an architecture that uses binary DMs in parallel. This parallelization enables high-throughput implementations of DMs and the binary component DMs of PDM reduce complexity. We also proposed PDM for parallel PAS, which enables an operation close to the waterfilling limit of multi-carrier transmission schemes such as OFDM and improves over a uniform reference by 1 dB in a representative scenario.

REFERENCES

[1] G. Forney, R. Gallager, G. Lang, F. Longstaff, and S. Qureshi, “Efficient Modulation for Band-Limited Channels,” IEEE J. Sel. Areas Commun., vol. 2, no. 5, pp. 632–647, Sep. 1984.

[2] S. Sesia, M. Baker, and I. Toufik, LTE - The UMTS Long Term Evolution: From Theory to Practice. John Wiley & Sons, 2011.

[3] G. Böcherer, “Channel coding with multilevel/phase signals,” IEEE Trans. Inf. Theory, vol. 28, no. 1, pp. 55–67, Jan. 1982.

[4] M. F. Barsoum, C. Jones, and M. Fitz, “Constellation Design via Capacity Maximization,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Nice (France), Jun. 2007, pp. 1821–1825.

[5] N. S. Logan, J. Zöllner, B. Moubouhuse, D. Anserregui, J. Kim, and S. I. Park, “Non-Uniform Constellations for ATSC 3.0,” IEEE Trans. Broadcast., vol. 62, no. 1, pp. 97–203, Mar. 2016.

[6] R. Gallager, Information Theory and Reliable Communication. John Wiley & Sons, Inc., 1968.

[7] A. K. Khandani and P. Kabal, “Shaping multidimensional signal spaces. I. Optimum shaping, shell mapping,” IEEE Trans. Inf. Theory, vol. 39, no. 6, pp. 1799–1808, 1993.

[8] J. Forney, G. D., “Trellis shaping,” IEEE Trans. Inf. Theory, vol. 38, no. 2, pp. 281–300, 1992.

[9] F. R. Kschischang and S. Pasupathy, “Optimal nonuniform signaling for Gaussian channels,” IEEE Trans. Inf. Theory, vol. 39, no. 3, pp. 913–929, May 1993.

[10] G. Böcherer, F. Steiner, and P. Schulte, “Bandwidth efficient and rate-matched low-density parity-check coded modulation,” IEEE Trans. Commun., vol. 63, no. 12, pp. 4651–4665, 2015.

[11] A. Ghazisaeidi, I. F. D. J. Ruiz, R. Roos-Müller, L. Schmalen, P. Tran, P. Brindel, A. C. Meseguer, Q. Hu, F. Buchali, G. Charlet, and J. Renaudier, “Advanced C+L-Band Transoceanic Transmission Systems Based on Probabilistically Shaped PDM-64QAM,” J. Lightw. Technol., vol. 35, no. 7, pp. 1291–1299, Apr. 2017.

[12] K. Roberts, Q. Zhuo, I. Monga, S. Gareau, and C. Laperle, “Beyond 100 Gb/s: Capacity, Flexibility, and Network Optimization,” Journal of Optical Communications and Networking, vol. 9, no. 4, pp. C12–C24, Apr. 2017.

[13] D. Tse and P. Viswanath, Fundamentals of Wireless Communication. Cambridge University Press, 2005.

[14] P. Schulte, F. Steiner, and G. Böcherer, “shapecomm WebDM: Online constant composition distribution matcher,” http://dm.shapecomm.de, Jul. 2017.

[15] P. Schulte and G. Böcherer, “Constant composition distribution matching,” IEEE Trans. Inf. Theory, vol. 62, no. 1, pp. 430–434, 2016.

[16] T. Ramabadran, “A coding scheme for m-out-of-n codes,” IEEE Trans. Commun., vol. 38, no. 8, pp. 1156–1163, Aug. 1990.

[17] G. Böcherer, “Achievable rates for probabilistic shaping,” arXiv preprint, 2017. [Online]. Available: https://arxiv.org/abs/1707.01134

[18] F. Gray, “Pulse code communication,” U. S. Patent 2632058, 1953.

[19] A. G. i Fabregas and A. Martinez, “Bit-interleaved coded modulation with shaping,” in Proc. IEEE Inf. Theory Workshop (ITW), 2010.

[20] A. Lozano, A. M. Tulino, and S. Verdú, “Mercury/waterfilling: Optimum power allocation with arbitrary input constellations,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Prague, Czech Republic, Tech. Rep 90, Aug. 2017.

[21] W. Coemons, R. B. Moraes, K. Hoogh, A. Daque, J. Galaro, M. Timmers, A. J. van Wingaarden, M. Guenach, and J. Maes, “XG-fast: The 5th generation broadband,” IEEE Commun. Mag., vol. 53, no. 12, pp. 83–88, Dec. 2015.

[22] G. Ungerbäck, “Channel coding with multilevel/phase signals,” IEEE Trans. Inf. Theory, vol. 28, no. 1, pp. 55–67, Jan. 1982.