The *Drosophila melanogaster* Genome: Translation Factors and RNA Binding Proteins

Paul Lasko

Department of Biology, McGill University, Montréal, Québec, Canada H3A 1B1

The *Drosophila melanogaster* genome includes ~300 genes encoding translation factors or proteins with well-characterized RNA binding motifs. Essentially all of the canonical eukaryotic translation factors were found among their predicted products. The four most numerous classes of RNA binding proteins are RNA recognition motif (RRM)\(^1\) proteins, DEAD/DEAD-box helicases, KH domain proteins, and double-stranded RNA binding domain (DSRBD) proteins. Many of these correspond readily to yeast or mammalian orthologs, and can therefore be predicted to have specific functions in pre-mRNA and pre-rRNA processing, translation initiation, and nuclear export of RNA. The genes encoding cytosolic translation factors, and those encoding each class of RNA binding protein, are discussed in turn below.

Translation Factors

Most genes encoding general translation factors that have been characterized in other species are present in the *Drosophila melanogaster* genome, and their products are similar to their mammalian counterparts (Table I). One possible exception is elf4B, as the closest *Drosophila* homologue (CG10837) exhibits only modest BLAST similarity to the mammalian and yeast translation factor (1e-13 and 5e-03, respectively). Genes encoding several translation factors are present in two similar copies; these are elf3-S4, elf3-S5, elf3-S7, elf4A, elf4H, elf1\(_x\), and elf2. Mutant alleles of a single elf4A gene (CG9075) or of a single elf1\(_x\) gene (CG8280) are recessive lethal, indicating that, at least in these two cases, the related genes are not functionally redundant.

The *Drosophila* genome contains six genes encoding proteins highly similar to the mRNA cap-binding protein, elf4E (Table I; Fig. 1). One of these, CG10716, is the probable ortholog of mammalian 4EHP (Rom et al., 1998). cDNAs have been identified for three of the genes encoding elf4E-related proteins (CG8023, CG10124, and CG10716), indicating that at least these genes are expressed. I examined the five genes encoding proteins most closely related to elf4E to determine the extent of conservation of eight residues critical in murine elf4EI for binding the 7-methylguanosine cap (Marcotrigiano et al., 1997). All eight of these are invariant in the two alternative splicing products of the *Drosophila* elf4E gene and in the five cognates (CG1442, CG8023, CG8277, CG10124, and CG11392), but not in mammalian 4EHP or CG10716. I also investigated whether the elf4E cognates contained seven amino acids essential for elf4G or 4EBP binding, and whether they possessed a serine residue that can be phosphorylated (Ser-251 in *Drosophila* elf4EI), and a lysine residue (Lys-201 in *Drosophila* elf4EI) with which P-Ser-251 is predicted to form a salt bridge (Marcotrigiano et al., 1999; Pyronnet et al., 1999). A nother translation initiation factor, elf4G, competes with an inhibitor protein, 4EBP, for the same binding site on elf4E. Of the residues required for elf4G or 4EBP binding, only CG1442 possesses all seven. CG8277, CG10124, and CG11392 all have a single conservative substitution among these seven residues, whereas CG1442 diverges at two residues. This analysis suggests that the elf4E cognates all can bind 7-methylguanosine caps, but may interact with elf4G and the inhibitor protein 4EBP in different ways, perhaps adding complexity to the regulation of cap-dependent translation. Ser-251 and Lys-201 are retained in CG8277, CG10124, and CG11392, but not in the other two, again suggesting differential regulation.

In the *Caenorhabditis elegans* genome, there are three elf4E cognates in addition to a 4EHP ortholog (Keiper et al., 2000). Like the fly cognates, the nematode cognates are all invariant in the eight residues essential for 7-methylguanosine cap binding, but are somewhat variable in the elf4G-interacting and phosphorylation residues. Whereas the *C. elegans* cognates have been implicated in binding the unusual trimethylated cap structure found in SL1 trans-spliced mRNAs, our results indicate that a diversity of elf4E-like proteins exists in an organism which does not produce mRNAs with trimethylguanosine caps. In contrast to elf4E, and unlike mammals (which have at least three), the *Drosophila* genome contains only a single gene encoding a recognizable ortholog of 4EBP.

RNA Binding Proteins

I analyzed >200 genes encoding proteins of the RRM, DEAD/DEAD-box, KH domain, and DSRBD classes. These structural motifs are not absolutely predictive for an...
RNA binding function, particularly as for several DEG-box helicases experimental evidence indicates a function in DNA, rather than, or in addition to, RNA binding. Overlap between DNA and RNA binding functions is also evident from recent work on the Drosophila homeo-domain-containing protein, Bicoid, which was found to bind and regulate translation of caudal mRNA. Bicoid, like other homeo-domain-containing proteins, has a well-established function in DNA binding and transcriptional regulation. The RNA binding function of Bicoid is not mediated by its homeodomain but, surprisingly by a PEST motif (Niessing et al., 1999), which is usually associated with protein degradation. It is possible that further experimental work will prove that dual functionality of proteins, and unexpected functions for conserved motifs, are relatively common. Conversely, the Drosophila genome contains an unknown number of other RNA binding proteins, not listed here, that lack the canonical domains that allow such a function to be predicted. Apontic (Lie and Macdonald, 1999) is an example of such a protein, for which experimental evidence of an RNA binding function has been obtained despite the absence of known RNA binding domains (RBDs). Similarly, no zinc finger proteins are included here, although some C_2H_2 zinc finger proteins bind RNA. It is not possible using presently available algorithms to predict an RNA binding function rather than a DNA binding function for a zinc finger protein based on sequence comparison.

RNA Recognition Motif Proteins

The Drosophila genome encodes 117 different RRM...
Many RNP-1 containing proteins, but only two RBD proteins (CG6997 and CG8919) were excluded from Fig. 2 by this process.

Of the RRM proteins encoded by the Drosophila genome, 74 have not been described previously. Particularly interesting among these are CG6049, which encodes a protein highly similar (BLASTP < 1e-80) to human Tat stimulatory factor-1 (Tat-SF1; Zhou and Sharp, 1996). Tat increases HIV-1 transcription at the level of elongation by binding to TAR, which forms a stem-loop structure at the 5' end of the nascent viral transcript. Tat-SF1 is a cofactor for Tat, and has more recently been identified as a general transcription elongation factor (Li and Green, 1998). CG5251 encodes a probable ortholog (BLASTP < e-102) of human NOT4, a likely negative regulator of transcription (Albert et al., 2000). CG4887 is very similar (BLASTP < 7e-72) to LUC4515, a putative tumor suppressor gene in humans (Drabkin et al., 1999). CG7487 is very similar (BLASTP < 2e-40) to human TIA-1, an RNA binding protein that acts downstream of eIF2α phosphorylation in the assembly of mammalian stress granules, in which untranslated mRNAs accumulate during translation arrest consequent to environmental stress (Kedersha et al., 1999). Other RRM proteins involved in RNA processing are discussed in an accompanying review (Mount and Salz, 2000, this issue).

DEAD/DExH-box Putative Helicases

63 putative nucleic acid helicases of the DEAD, DEAH, and DExH families have been grouped into a phylogenetic tree (Fig. 3). Many of these proteins are extremely similar to yeast and mammalian counterparts. Numerous yeast helicases have been implicated in processing of prerNA or pre-rRNA, in RNA export, or in the cases of TIF1/2 (eIF4A) and DED1, in translation initiation. A subset of DExH-box proteins function as DNA helicases, having roles in DNA replication and repair. The striking degree of conservation between individual yeast and Drosophila helicases often allowed a one-to-one correspondence to be drawn (see also Mount and Salz, 2000, this issue); in these cases, the name of the yeast ortholog has been added in parentheses to Fig. 2. This led to the assignment of probable functions to many of the Drosophila helicase proteins. CG9748 as a DED1 ortholog is likely to be involved in translation initiation, and is close phylogenetically to Vasa, which has been implicated experimentally in the same process (Carrera et al., 2000). The Xenopus ortholog of CG9748, A n3, encodes an mRNA that is asymmetrically localized to the animal pole of the oocyte (Gururajan et al., 1991). Both A n3 and DED1 have been implicated in export of RNPs from the nucleus. A n3 protein binds to and is exported from the nucleus by the CRM1 nuclear export receptor (Askjaer et al., 2000), and in yeast DED1 genetically interacts with SRM1, which encodes the Ran-associated guanine nucleotide exchange factor, which in turn binds CRM1 (Hayashi et al., 1996; Taura et al., 1998). These data suggest a similar role in Drosophila for CG9748.

Comparison of the yeast and Drosophila helicase-encoding genes allowed many of the latter to be assigned functions in preribosomal RNA processing based on yeast
orthologs. These are: CG2173 (DRS1; Ripmaster et al., 1992); CG5589 (ROK1; Venema et al., 1997); CG5800 (DBP4; Liang et al., 1996); CG7843 (FAL1; Kressler et al., 1997); CG8611 (DBP7; Daugeron and Linder, 1998); CG9253 (RRP3; O’Day et al., 1996); and CG9630 (SPB4; de la Cruz et al., 1998). Similarly, CG4152 is implicated in mRNA export based on its yeast ortholog (DOB1; Liang et al., 1996). Several other Drosophila helicases can be assigned functions in pre-mRNA processing using similar reasoning (Mount and Salz, 2000; Fig. 3). Finally, CG11403 encodes an ortholog of yeast CHL1, a DNA helicase involved in chromosome transmission and progression through the G2/M cell cycle transition (Gerring et al., 1990).

KH Domain Proteins

The held-out wings (how) gene encodes a 382-amino acid protein with a single KH domain at its COOH terminus. How is essential for tendon cell differentiation, and a nuclear isoform of the How protein has been shown to bind a specific mRNA (stripe) and prevent its export (Nabel-Rosen et al., 1999). How is related to the murine quaking gene, which is required for Schwann cells to mature into myelin-forming cells in the peripheral nervous system (Ebersole et al., 1996). The Drosophila genome encodes a total of ten proteins highly related to quaking. Four of these (qkr58E-1, qkr58E-2, qkr58E-3, and CG10384; Di Fruscio et al., 1998; Fyrberg et al., 1998) are tightly linked in a gene cluster in cytological region 58E, and two others are nearby in 58F (CG3875) and 58A (CG4021). The final four members of this gene family (how, Sam50, CG9337, and CG18078) are unlinked.

A phylogenetic tree illustrating relationships among the 27 KH domain proteins predicted from the Drosophila genome is presented in Fig. 4. 18 of the 27 proteins possess only a single KH domain, but the others have multiple copies, as many as 13 (Dp1). One of the single KH-domain proteins (CG7978) also has a DEAD-box helicase domain. CG1691 encodes a product very similar (BLASTP, 8e-88) to zipcode binding protein (ZBP-1), a protein with...
four KH domains that binds to a specific site on β-actin mRNA and mediates its localization to the leading edge of chick embryo fibroblasts (Ross et al., 1997). A similar protein in Xenopus, V era, is involved in localization of V g1 mRNA to the vegetal pole of the oocyte (Deshler et al., 1998; Havin et al., 1998). This is of interest because, whereas asymmetric localization of specific mRNA has been extensively studied in Drosophila oocytes, no ZBP-1 counterpart had previously been identified in flies. In addition to the four KH domains, ZBP-1 and V era contain a single RR M; this is apparently absent from CG 1691.

DSRBD Proteins

A phylogenetic tree illustrating relationships among the 12 DSRBD proteins predicted from the Drosophila genome is presented in Fig. 5. Two new genes for which possible functions can be assigned are CG 6866, which encodes a protein highly similar (BLASTP e-36) to the human TAR RNA binding protein, and CG 12598, which encodes a putative deaminase involved in RNA editing (BLASTP e-53 to human homologue). Mice bearing a targeted disruption of the CG6866 homologue (Tarbp2) are male-sterile, and the protein product of this gene, Prbp, has been proposed to have a role in the assembly of translationally regulated RNP s (Zhong et al., 1999).

Homologues of RNA Binding Proteins Implicated in Human Disease

A mong the genes encoding KH-domain proteins, CG 6203 encodes an excellent homologue (BLASTP < 6e-81) of the human fragile-X associated protein (FM R P; A shley et al., 1993). Fragile X syndrome is the most common inherited mental retardation disorder in humans (A shley and W arren, 1995). FM R P is believed to shuttle between the nucleus and the cytoplasm, and is associated with large mRNP complexes and ribosomes (Feng et al., 1997; C eman et al., 1999). CG 8144 encodes a KH-domain protein highly similar (BLASTP < 6e-63) to the human paraneoplastic antigen Nova-2, an RNA binding protein implicated in paraneoplastic opsonolus-myoclonus ataxia (POMA), a neurologic disorder with associated dementia (Y ang et al., 1998). The structure of a KH domain from Nova-2 has recently been determined by X-ray crystallographic methods, and the domain has also been shown to be a sequence-specific RNA binding protein (Lewis et al., 2000).

Three DNA helices included in Fig. 2 are homologues of genes implicated in human disorders: bloom (Bloom’s syndrome; K usano et al., 1999); haywire (xeroderma pigmentosum-B; M ounkes et al., 1992); and X p (xeroderma pigmentosum-D; R eynaud et al., 1999).

Concluding Remarks

The importance of posttranscriptional mechanisms of gene regulation, particularly at the level of translational control, is becoming increasingly apparent. Research in Drosophila has already provided many key insights into this field. Now that dozens of novel RNA binding proteins have been identified in the Drosophila genome, it is likely that our level of understanding of translational control will increase dramatically in the months and years to come.

I am grateful to Oona J ohnstone and an anonymous reviewer for helpful comments on the manuscript.

I am grateful to the Medical Research Council of Canada for a genomics operating grant (to P. Lasko and B. Suter).

Submitted: 22 M ay 2000
R evised: 13 J une 2000
A ccepted: 17 J une 2000

References

A ibert, T. K., M. Lemaire, N. L. van Berkum, R. G entz, M. A. Collart, and H. T. Timmers. 2000. Isolation and characterization of human orthologs of yeast C CR 4-N OT complex subunits. Nucl. Acids Res. 28:809–817.
A shley, C. T., and S. T. W arren. 1995. Trinucleotide repeat expansion and human disease. Annu. Rev. Genet. 29:703–728.
A shley, C. T., J. R., J. S. Sultcliffe, C. B. Kunst, H. A. L. Leiner, E. E. Eichler, D. L. N elson, and S. T. W arren. 1993. Human and murine FM R-1: alternative splicing and translational initiation downstream of the CGG-repeat. Nat. Genet. 4:244–251.
A skjaer, P., R. Rosendahl, and J. K jems. 2000. Nuclear export of the DEAD box A n3 protein by CRM 1 is coupled to A n3 helicase activity. J. B iol. Chem. 275:11561–11568.
B irney, E., S. K umar, and A. R. K rainer. 1993. A nalysis of the RNA-recognition motif and R S and R G G domains: conservation in metazoan pre-mRNA splicing factors. Nucl. Acids Res. 21:5803–5816.
C arrera, F. O., J. J ohnstone, A. N akamura, J. C asanova, H. J äckle, and P. Lasko. 2000. VASA mediates translation through interaction with a Drosophila yf2 homolog. M ol. Cell. 5:181–187.
C eman, S., V. B rown, and S. T. W arren. 1999. Isolation of an FM R P-associated messenger ribonucleoprotein particle and identification of nucleolin and the fragile X-related proteins as components of the complex. M ol. C ell. B iol. 19: 7925–7932.
D augeron, M. C., and P. Linder. 1998. D b p7p, a putative ATP-dependent RNA helicase from Saccharomyces cerevisiae, is required for 60S ribosomal subunit assembly. N at. Genet. 4:566–561.
D e la Cruz, J., D. K ressler, M. R ojo, D. Tollervey, and P. Linder. 1998. Spb4p, an essential putative RNA helicase activity. J. B iol. Chem. 273:12912–12919.
D e S hler, J. O., M. J. H ighett, T. A. B ramson, and B. J. Schnapp. 1998. A highly conserved RNA-binding protein for cytoplasmic mR N A localization in ver tebrates. Curr. B iol. 8:489–496.
D e S hler, J. O., M. J. H ighett, T. A. B ramson, and B. J. Schnapp. 1998. A highly conserved RNA-binding protein for cytoplasmic mRNA localization in vertebrates. Curr. Biol. 8:489–496.
D e S hler, J. O., M. J. H ighett, T. A. B ramson, and B. J. Schnapp. 1998. A highly conserved RNA-binding protein for cytoplasmic mRNA localization in vertebrates. Curr. Biol. 8:489–496.
D rabk in, H. A., J. D. W est, M. H ott felder, Y. M. H eng, P. E rickson, R. C alvo, J. D almau, R. M. G emmill, and F. S ablitzky. 1999. D EF-3(s16/N-Y-LU-12), an RNA binding protein from the Sp2pl3 homoygous deletion region in SCLC. O ncogene. 18:2589–2597.
E bersole, T. A., G. C hen, M. J. J ustice, and K. A rtzt. 1996. The quaking gene product necessary in embryogenesis and myelination combines features of RNA binding and signal transduction proteins. N at. Genet. 12:260–265.
Felsenstein, J. 1989. P HYLIP: phylogeny inference package (V ersion 3.2). Cla-
Lavoie, C.A., P.E.D. Lachance, N. Sonenberg, and P. Lasko. 1996. Alterna-

Marcotrigiano, J., A.-C. Gingras, N. Sonenberg, and S.K. Burley. 1999. Cap-

Lie, Y.S., and P.M. Macdonald. 1999. Apontic binds the translational repressor

The Journal of Cell Biology, Volume 150, 2000 F56

Fyrberg, C., J. Becker, P. Barthmeier, J. Mahaffey, and E. Fyrberg. 1998. A

Feng, Y., D. Asher, D.E. Berhart, V. Brown, H. Malter, and S.T. Warren. 1997. FM R P associates with polyribosomes as an mr NP, and the I304N muta-

tion of severe fragile X syndrome abolishes this association. Mol. Cell. 1:109–118.

Fyrberg, C., J. Becker, P. Barthmeier, J. Mahaffey, and E. Fyrberg. 1998. A family of Drosophila genes encoding guaking-related maxi-KH domains.

Bioch. Genet. 36:51–64.

Gerritz, S.L., F. Spencer, and P. Hietor. 1990. The CHL1 (CTF1) gene product of Saccharomyces cerevisiae is important for chromosome transmission and normal cell cycle progression in G2/M. EMBO (Eur. Mol. Biol. Organ.) J. 13:4347–4358.

Gururajan, R., H. Perry-O’Keeffe, D.A. Melton, and D.L. Weeks. 1991. The

ergylipid gene in Xenopus laevis. Development 112:1139–1350.

Havin, L., A. Git, Z. Elisha, F. Oberman, K. Yaniv, S.P. Schwartz, N. Standart, and J.K. Yisraeli. 1998. RNA-binding protein conserved in both microtu-

bule- and microfilament-based RNA localization. Genes Dev. 12:1393–1398.

Hayashi, N., H. Seino, K. Irie, M. Watanabe, K.L. Clark, K. Matsumoto, and T. Nishimoto. 1996. G enetic interaction of D ED1 encoding a putative ATP-de-

pendent RNA helicase with SM1 encoding a mammalian RCC1 homol-

ogy in Saccharomyces cerevisiae. Mol. Gen. Genet. 252:149–156.

Kedersha, N.L., M. Gupta, W. Li, I. Miller, and P. A. ndersson. 1999. RNA-bind-

ing proteins TIA-1 and TI A R link the phosphorylation of elf-2a to the as-

sembly of mammalian stress granules. J. Cell Biol. 147:1341–1441.

Keiper, B.D., B.J. Lamphear, A.M. Deshpande, M. Jankowska-Anyszka, E.J.

Venema, J., C. Bousquet-Antonnelli, J.P. Gelugne, M. Caizergues-Ferrer, and J.P. Gelugne. 1997. Characterization of a beta-actin mRNA zipcode-binding protein. Mol. Cell. Biol. 17:2138–2145.

Taura, T., H. Krebber, and P.A. Silver. 1998. A member of the Ran-binding protein family, Yrb2p, is involved in nuclear protein export.

Genetics. 151:1027–1039.

Lavoie, C.A., P.E.D. Lachance, N. Sonenberg, and P. Lasko. 1996. A terna-

tively spliced transcript from the Drosophila elf-4E geneproduce two differ-

cent cap-binding proteins. J. Biol. Chem. 271:16393–16398.

Lewis, H.A., K. Musunuru, K.B. Jensen, C. Edo, H. Chen, R.B. Darnell, and S.K. Burley. 2000. Sequence-specific RNA binding by a Nova KH domain: implications for paraneoplastic disease and the fragile X syndrome. Cell. 100:323–332.

Li, X.Y., and M.R. Green. 1998. The HIV-1 Tat cellular activator Tat-SF1 is a general transcription elongation factor. Genes Dev. 12:2992–2996.

Liang, S., M. Hitomi, Y.H. Hu, Y. Liu, and A.M. Tartakoff. 1996. A DEAD-

box/family protein is required for nucleosyttoplasmic transport of yeast mrNA. Mol. Cell. Biol. 16:5139–5146.

Lie, Y.S., and P.M. Macdonald. 1999. A pontic binds the translational repressor Bruno and is implicated in regulation of oskar mrNA translation. Develop-

ment. 126:1139–1148.

Marcotrigiano, J., A.-C. Gingras, N. Sonenberg, and S.K. Burley. 1997. Cocrystal structure of the messenger RNA 5’ cap-binding protein (elf 4E) bound to 7-methyl-GDP. Cell. 89:951–961.

Marcotrigiano, J., A.-C. Gingras, N. Sonenberg, and S.K. Burley. 1999. Cap-
dependent translation initiation in eukaryotes is regulated by a molecular mimic of elf4G. Mol. Cell. 3:707–716.

Mount, S., and H. Salz. 2000. Pre-messenger RNA processing factors in the Drosophila melanogaster genome. J. Cell Biol. 150:F37–F43.

Nabel-Rosen, H., N. Dorevitch, A. Reuveny, and T. Volk. 1999. The balance between two isoforms of the Drosophila RNA-binding protein How controls tendon cell differentiation. Mol. Cell. 4:573–584.

Niessing, D., N. Dostatni, H. Jäckle, and R. Rivera-Pomar. 1999. Sequence in-

terval within the PE ST motif of Bicoid is important for translational regres-

sion of caudal mrNA in the anterior region of the Drosophila embryo. EMBO (Eur. Mol. Biol. Organ.) J. 18:1966–1973.

O’Day, C.L., F. Chavaniakamannil, and J. Aelson. 1997. 18s rRNA processing

requires the RNA helicase-like protein R pr3. Nucleic Acids Res. 24:3201–

3207.

Pyronnet, S., H. Imataka, A.-C. Gingras, R. Fukunaga, T. Hunter, and N.

Sonenberg. 1999. Human eukaryotic translation initiation factor 4G (elf4G) recruits mnk1 to phosphorylate elf4E. EMBO (Eur. Mol. Biol. Organ.) J. 18:270–279.

Reynaud, E., H. Lomelli, M. Vaquez, and M. Zurita. 1999. The Drosophila melanogaster homolog of the Xeroderma pigmentosum D gene product is located in euchromatic regions and has a dynamic response to UV light-induced lesions in polytene chromosomes. Mol. Biol. Cell. 10:1101–1203.

Ripmaster, T.L., G.P. Vaughan, and J.L. Woolford, Jr. 1992. A putative A TP-de-

pendent RNA helicase involved in Saccharomyces cerevisiae ribosome as-

sembly. Proc. Natl. Acad. Sci. USA. 89:11311–11315.

Rom, E., H.C. Kim, A.-C. Gingras, J. Marcotrigiano, D. Favre, H. Olsen, S.K.

Burley, and N. Sonenberg. 1998. Cloning and characterization of 4EHP, a novel mammalian elf4E-related cap-binding protein. J. Biol. Chem. 273: 13104–13109.

Ross, A.F., Y. Olyenikov, E.H. Kidauskis, K.L. Taneja, and R.H. Singer. 1997. Characterization of a beta-actin mrNA zipcode-binding protein. Mol. Cell. Biol. 17:2138–2145.

Taura, T., H. Krebber, and P.A. Silver. 1998. A member of the Ran-binding protein family, Y rb2p, is involved in nuclear protein export. Proc. Natl. Acad. Sci. USA. 95:7427–7432.

Thompson, J.D., D.G. Higgins, and T.J. Gibson. 1994. CLUSTAL W: improv-

ing the sensitivity of progressive multiple sequence alignment through se-

quence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673–4680.

Venema, J., C. Bousquet-Antonelli, J.P. Gelugne, M. Caizergues-Ferrer, and D. Tollervey. 1997. Rok1p is a putative RNA helicase required for rRNA processing Mol. Cell. Biol. 17:3988–3987.

Yang, Y.Y., G.L. Yin, and R.B. Darnell. 1998. The neuronal RNA-binding pro-

tein Nova-1 is implicated as the autoantigen targeted in POMA patients with
dementia. Proc. Natl. Acad. Sci. USA. 95:13254–13259.

Zhong, J., A.H. Peters, K. Lee, and R.E. Braun. 1999. A double-stranded RNA binding protein required for activation of repressed messages in mammalian germ cells. Nat. Genet. 22:171–174.

Zhou, Q., and P.A. Sharp. 1996. Tat-SF1: cofactor for stimulation of transcrip-
tional elongation by HIV-1 tat. Science. 274:605–610.