The immune system appeared early in the evolution of metazoa and is thought to have originated to protect the greater investment of multi-cellularity (1, 2). Currently, two views have been suggested for the origin of the immune system. One view is that the immune system emerged to protect against invasive microbes (3, 4). Recently, an alternative hypothesis proposed that the immune system emerged to manage the microbiota (5–7). In this essay, I suggest a third selection pressure, not exclusionary of the other views that focus on function. I propose a common origin for the digestive and immune systems that traces their ancestry to the quest for more efficient energy acquisition.

IN THE BEGINNING, DIGESTION AND IMMUNITY WERE ONE . . .

Over a century ago, Metchnikoff proposed that phagocytic immune cells evolved first as nutritive cells (5). He noted that, across phylogeny, the universal function of digestion was maintained in the process of phagocytosis, irrespective of whether it occurred in the case of food acquisition (intracellular digestion) or in an immune role. Moreover, for single-celled organisms like amoebae, the process of infection and food acquisition are indistinguishable in the initial stages, with the two being separable only by outcome. The evolution of multi-cellularity permitted specialization, including cells devoted to the acquisition of nutrients and defense. In the event of infection, phagocytic cells ingest, destroy, and digest microbes resulting in an outcome that is indistinguishable from single-celled predation. As proposed by Metchnikoff, these cells retain the primordial mechanism of nutrient acquisition, providing continuity between nutritional and defensive roles.

While Metchnikoff saw the connection between digestion and defense, the immune system is composed of many diverse processes beyond the cellular response of phagocytosis and indeed animals most commonly interact with the microbes in their environment through contact with epithelial surfaces. Analysis of such immune and digestive components across animals reveals several remarkable parallels (Table 1), with many enzymes involved in immune responses also having roles in digestion. Given the gut was a major early step in the evolution of metazoa, this tissue is a logical starting point for an analysis of common function.

THE GUT – CONSERVATION AND DIVERGENCE OF DIGESTIVE AND IMMUNE FUNCTIONS

The gut is ancient in the animal lineage and arose shortly after the emergence of multi-cellularity. The gut is thought to have begun with the formation of a true epithelium, which allowed extracellular digestion, followed by invagination of the epithelium to provide an enclosed space to facilitate the digestive process. The gut later progressed from a one-way digestive tube to the highly organized and specialized organ that is found today in most animals [for more details on the evolution of the gut, see Ref. (9, 10) and references therein]. Multiple evolutionary advances of metazoa are attributed to the development and adaptation of the gut (9), as it permitted extracellular digestion and the capacity to digest larger volumes without losing nutrients to diffusion (11). Consequently, the emergence of the gut is thought to have increased energy availability, which in turn may have driven the development of other organ systems.

The gut evolved in a sea of microbes, which posed new challenges and provided new opportunities for nutrition (7). In its most primitive stages, the gut would have provided a new niche that allowed or even invited colonization by microbes. Hosts had to contend with these microbes, either through indifference, forming beneficial associations, eating them, or controlling them to reduce microbial-mediated damage and/or competition for nutrients. While both invertebrates and vertebrates possess innate immune functions, only the latter have adaptive immunity. For this reason, it is thought that the evolution of the immune system paralleled the evolution of the gut, with immunological complexity emerging to protect an increasingly sophisticated digestive tract. In contrast, this essay proposes the alternative view that innate immune defense and digestion were indistinguishable in the primitive gut.
This hypothesis has a number of implications for our understanding of the evolution of the immune system. What today are presumed to be disparate primordial functions may not be so. For example, one immediate implication is that intersections between immunity and metabolism may be more intricately linked than previously appreciated (12, 13). An immediate parallel is that both pathogen clearance and digestion involve microbial destruction. Hence, enzymes produced for digestion have dual-use function in protection and subsequent evolution of the gut and form potential associations with the host. Alternatively, hosts that evolved gut attributes (physical/physiological) or the ability to selectively digest microbes would be able to maintain a microbiota, which would have been selected for if it provided an advantage. McFall-Ngai (22) has proposed that the evolution of the adaptive immune system may have permitted greater flexibility in the diversity of microbes associated with the gut. Along these lines, the reduced reliance of microbes as direct food sources may have permitted greater diversity of the microbiota and further specialization of epithelial immune responses. In addition, the microbiota is a potential food reserve. Axenic mice are more susceptible to starvation, and starvation of many animals reduces microbiota density, suggesting utilization as food (23–25). Moreover, such phenomenon as termite trophallaxis and digestion of microbiota by nitrogen-deprived herbivores supports the notion that the microbiota can provide a nutritional reserve (26). It is noteworthy that there are 20% more calories in a gram of microbes than a gram of carbohydrate (27). However, the same microbiota that can serve as food also poses a potential danger to the host as a source of infectious disease. Consequently, these interactions between host and microbiota illustrate the continuity between digestion and immunity.

CONCLUSION
This hypothesis proposes a common origin for two fundamental physiological systems that are currently viewed as separate and disparate. While the interplay between metabolic and immune pathways, including genes that function in both systems (28) [i.e., fako (29), Myd88 (30, 31), TGF-β (32), mef2 (33), atf3 (34)] is an area of intense study, these similarities are generally viewed as convergent. In contrast, this hypothesis posits a common origin for these functions, thus providing an explanation for the maintenance of dual functions. I note similar associations in other

Table 1 | Examples of dual-use action in digestion and immunity.

Component	Type	Digestion/metabolism	Immunity
Enzymes	Proteases	Protein break down	IgA cleavage, toll signal processing
	Lysozymes	Cell wall break down	Microbial lysis
	Chitinases	Chitin digestion	Microbial lysis, augment adaptive responses, wound healing
	Phenoloxidases	Lignin degradation (fungi, invertebrates)	Melanin synthesis
	β1,3-glucanases	Sugar break down	Pattern recognition receptor
	Amidases	Cell wall break down	Microbial lysis
	Antimicrobial peptides	Cellular break down	Microbial lysis
Receptors/signaling	TIR domain proteins	Foraging	Toxin sequestration
		Response to nutrients	Immune effectors, pathogen avoidance
		Starvation resistance	Pattern recognition receptor
Cellular processes	Phagocytosis autophagy	Food acquisition	Microbial clearance
		Intracellular digestion of food	Microbial clearance
systems, such as Toll having roles in both immunity and development. Underlying these associations is the fact that the ancient function of proteins might be conserved, but can also be co-opted for new roles.

The hypothesis has some practical applications for the interpretation of experiments involving mutants of either metabolic or immune pathways. For example, phenotypes attributed to genes that are putatively associated with an immune or digestive function and assess the resulting phenotypes of the other system. By considering a common origin for immunity and digestion, it is possible to integrate metabolic, physiological, and immune information and interpret those data in the context of a unified view.

REFERENCES

1. Cooper EL. Evolution of immune systems from self/not self to danger to arti-
 ficial immune systems (AIS). Phys Life Rev (2010) 7:55–78. doi:10.1016/j.phyrev.
 2009.12.001

2. Muraille E. Defining the immune system as a social interface for cooperative pro-
 cesses. Proc Natl Acad Sci U S A (2013) 110:1297–307. doi:10.1073/pnas.1218525110

3. Mller CA, Autenrieth IB, Peschel A. Innate defenses of the intestinal epithelial barrier. Cell Mol Life Sci (2005) 62:1297–307. doi:10.1007/s00018-005-5034-2

4. Lemaitre B, Hoffmann JA. The host defense of Drosophila melanogaster. Annu
 Rev Immunol (2007) 25:697–743. doi:10.1146/annurev.immunol.25.022106.141615

5. Harvill ET. Cultivating our “frienemy”: viewing immunity as microbiome manage-
 ment. MBio (2013) 4:e27–13. doi:10.1128/mBio.00277-13

6. Bosch TC. Cnidarian-microbe interactions and the origin of innate immunity
 and immunology: a new frontier. Cell Mol Life Sci (2013) 70:130–7. doi:10.1007/s00018-012-0290-1

7. McFall-Ngai MJ, Hadfield MG, Bosch TCG, Carey HV, Domazet-Loso T, Dou-
 riez P, et al. Animals in a bacterial world, a new imperative for the life sciences.
 Microbiol Mol Biol Rev (2005) 69:153–153. doi:10.1128/MMBR.01616-04

8. Everard A, Geurts L, Caesar R, Van Hul M, Matamoros S, Duparc T, et al. Intestinal
 epithelial MyD88 is a sensor switching host metabolism towards obe-
 sity according to nutritional status. Nat Commun (2015) 6:5648. doi:10.1038/ncomms6648

9. Ayyaz A, Giammarinaro P, Liégeois S, Lestradet M, Ferrandon D. A negative role
 for MyD88 in the resistance to starvation as revealed in an intestinal infection of
 Drosophila melanogaster with the Gram-positive bacterium Staphylococcus
 xylosus. Immunology (2013) 138:635–44. doi:10.1111/imbi.2012.07.027

10. Chng W-B, Bou Sleiman MS, Schüpfer F, Lemaitre B. Transforming growth
 factor β/activin signaling functions as a sugar-sensing feedback loop to regu-
 late digestive enzyme expression. Cell Rep (2014) 3:936–48. doi:10.1016/j.celrep.
 2014.08.064

11. Clark RJ, Tan SWS, Péan CB, Roostalu U, Vivancos V, Brenda K, et al. MEF2 is
 an in vivo immune-metabolic switch. Cell (2013) 155:435–47. doi:10.1016/j.
 cell.2013.09.007

12. Rynes J, Donohoe CD, Frommolt P, Brodesser S, Jindra M, Uhlrova M. Activat-
 ing transcription factor 3 regulates immune and metabolic homeostasis. Mol
 Cell Biol (2012) 32:5949–62. doi:10.1128/MCB.00429-12

Conflict of Interest Statement: The author declares that the research was conducted
in the absence of any commercial or financial relationships that could be construed as
a potential conflict of interest.

Received: 04 November 2014; accepted: 04 February 2015; published online: 19
February 2015.

Citation Broderick, NA (2015) A common origin for immunity and digestion. Front.
Immunol. 6:72. doi: 10.3389/fimmu.2015.00072

This article was submitted to Microbial Immunology, a section of the journal Frontiers in
Immunology.

Copyright © 2015 Broderick. This is an open-access article distributed under the terms
of the Creative Commons Attribution License (CC BY). The use, distribution or repro-
duction in any medium is permitted, provided the original author(s) or licensor are
credited and that the original publication in this journal is cited, in accordance with
accepted academic practice. No use, distribution or reproduction is permitted which
does not comply with these terms.