Irregular Assignment of Series Parallel Networks

To cite this article: Nurdin 2018 J. Phys.: Conf. Ser. 979 012070

View the article online for updates and enhancements.
Irregular Assignment of Series Parallel Networks

Nurdin
Department of Mathematics, Faculty of Mathematics and Natural Sciences, Hasanuddin Hasanuddin
E-mail: nurdin1701@unhas.ac.id

Abstract. In this paper, we determined that irregularity strength and the total vertex irregularity strength of the parallel networks, $sp(m, r, 2)$ for the natural number $m, r \geq 3$, is $mr + 1$ for $m \geq 4, r \geq 3$ and $\left\lceil \frac{2mr+2}{3} \right\rceil$, for $m, r \geq 3$, respectively.

1. Introduction
In 1736, a Swiss mathematician, Leonhard Euler was introduced graph theory. Research on graph theory continues to grow along with the development of information technology. One of the most developed is a graphs labelling. The study object of graph labelling are vertex set, edge set, and number (generally positive integers). Graph labelling introduced by Sadlack, then Stewart, [1], Kotzig, and Rosa [2].

Formally, graph labelling is a function that pairing graph elements to a set of numbers (usually integer number). If the domain of this labelling is vertex set, then this labelling called vertex labelling. If the domain of this labelling is edge set, then this labelling called edge labelling. If the domain of this labelling is a joint of vertex and edge sets, then called total labelling [3].

An edge labelling of a graph can be done in many ways. One of them is irregular labelling. The irregular labelling on a graph was introduced by Chartrand. A edge labelling $f: E \rightarrow \{1, 2, \ldots, s\}$ is called a irregular s-labelling of G if every two distinct vertices x and y in V satisfy $wt(x) \neq wt(y)$, where $wt(x) = \sum_{xz \in E(G)} f(xz)$. The minimum s for which a graph G has an irregular s-labelling, denoted by (G), is called the irregularity labelling of G [4].

In 2007, Bača [5] introduced a vertex and edge irregular total labellings. A total labelling $f: V \cup E \rightarrow \{1, 2, \ldots, k\}$ is called a vertex irregular total k-labelling of G if every two distinct vertices x and y in G satisfy $wt(x) \neq wt(y)$, where $wt(x) = f(x) + \sum_{xz \in E(G)} f(xz)$. The minimum k for which a graph G has a vertex irregular total k-labelling, denoted by $tvs(G)$, is called the total vertex irregularity strength of G [5].

Some experts have determined the value of irregularity labelling of some graphs. Ahmad et al, have determined irregular labelling of helm and sun graphs [6]. Besides that, Ahmad et.al have determined the total vertex and the total edge irregularity strength of Halin graph [7]. In 2012, Anolcher and Palmer determined the irregular labelling of circulant graphs [8]. Chartrand et al. [4], has determined irregular labelling of regular-d graph and posed the following.

Theorem 1. Let G is a regular-d graph, then the lower bound for irregularity strength of G, for $d \geq 2$ is $s(G) \geq \left\lceil \frac{n+d-1}{d} \right\rceil$.
The total vertex irregularity strength of a graph has been done by some experts. Rajasingh have determined the total vertex irregularity strength of triangular related graph [9]. Nurdin et al. determined the total vertex irregularity strength of tree graphs and posed the following [10]. In [11], Nurdin et al. have determined the total irregularity strength of network constructed by cycle. Recently, Nurdin have determined the total vertex irregularity strength of butterfly network [12].

Theorem 2. Let G be a connected graph having n_i vertices of degree i ($i = \delta, \delta + 1, \delta + 2, ..., \Delta$) where δ and Δ are minimum and maximum degree of G, respectively. Then

$$tv(G) \geq \max\left\{ \left\lceil \frac{\delta + n_\delta + n_{\delta+1}}{\delta + 1} \right\rceil, \left\lceil \frac{\delta + \sum_{i=\delta}^{\Delta} n_i}{\Delta + 1} \right\rceil \right\}.$$

In 2015, Rajasingh have determined the total edge irregularity strength of series parallel graphs [9]. It has not yet determined the irregular labelling of series parallel graph and the total vertex irregularity strength of series parallel graph. This study aims to determine the greatest lower bound and the smallest upper bound to obtain the irregular labelling of series parallel graphs and the total vertex irregularity strength of series parallel graphs are exact.

2. Series Parallel Graph

Rajasingh [9, 13] gave the definition of series parallel graph as follows.

Definition 1. The series parallel graph of G is a chain graph in which each block is generalized theta graph. The series parallel is denoted by $sp(m, r, l)$ for $m, r \geq 3$ and $l \geq 2$.

![Figure 1. Series Parallel Graph sp(m, r, 2).](image)

Figure 1 show the series parallel graph for $l = 2$. Defined vertex set of series parallel graph $V = \{x_{i,j}, y_{i,j} | j = 1, 2, ..., r\} \cup \{z_1, z_2, z_3\}$ and edge set of is $E = \{z_3, x_{i,j}, z_1, y_{i,j}, z_1, y_{i,j+1}, z_2, y_{i,j}, z_1, y_{i,j+1} | j = 1, 2, ..., r - 1\}$, for $i = 1, 2, ..., m$.

3. Irregular Labelling of Series Parallel Graph

In determining of the irregular labelling of series parallel graph, begin with determining the lower and upper bound of irregularity strength of the graph. The lower bound of irregularity strength of a series parallel graph $sp(m, r, 2)$ for $m = 4, 5, 6$ and $r = 3$ is shown in table 1 which is analyzed by using series parallel properties and based on Theorem 1.
The upper bound is analyzed by edge labelling on the series parallel \(sp(m, r, 2) \) for \(m = 4, 5, 6 \) and \(r = 3 \) by maintaining pattern labelling as follow.

![Figure 2. Irregular Labelling-13 of sp(4,3,2).](image)

![Figure 3. Irregular Labelling-16 of sp(5,3,2).](image)

Based on table 1, figure 2 and figure 3, in general for any \(m \geq 4, r \geq 3 \), irregular labelling of series parallel \((sp(m, r, 2)) \) can be estimated as

| Table 2. Irregular Labelling \(sp(m, r, 2) \). |
|---|---|---|---|---|
| \(m \) | \(r \) | 3 | 4 | 5 | \(\cdots \) | \(r \) |
| 4 | 13 | 17 | 21 | \(\cdots \) | \((4, r) + 1 \) |
| 5 | 16 | 21 | 26 | \(\cdots \) | \((5, r) + 1 \) |
| 6 | 19 | 25 | 31 | \(\cdots \) | \((6, r) + 1 \) |
| \(\vdots \) |
| \(M \) | \((m, 3) + 1 \) | \((m, 4) + 1 \) | \((m, 5) + 1 \) | \(\cdots \) | \(mr + 1 \) |

Table 1. Lower Bound of Irregularity Strength \(sp(m, 3, 2) \).

\(m \)	\(\delta \)	\(n_\delta \)	\(\left\lfloor \frac{n_\delta + \delta - 1}{\delta} \right\rfloor \leq s(sp(m, 3, 2)) \)
4	2	24	13
5	2	30	16
6	2	36	19

Table 1. Lower Bound of Irregularity Strength \(sp(m, 3, 2) \).
Based on table 2 it is assumed that irregular labelling of series parallel graph is \((sp(m, r, 2)) = mr + 1\). These results are written on the theorem as follows.

Theorem 3. For \(m \geq 4\) and \(r \geq 3\), then irregular labelling of series parallel \(sp(m, r, 2)\) is

\[
s(sp(m, r, 2)) = mr + 1.
\]

Proof

To prove that \(s(sp(m, r, 2)) \geq mr + 1\), use Theorem 1. Since the minimum degree of \(sp(m, r, 2)\) is \(\delta = 2\), the number of vertex of degree 2 is \(n_2 = 2mr\). Then based on Theorem 1 obtained

\[
s(sp(m, r, 2)) \geq \left\lfloor \frac{n_2 + \delta - 1}{\delta} \right\rfloor = \left\lfloor \frac{2mr + 2 - 1}{2} \right\rfloor = mr + 1.
\]

Next, we will determine the upper bound of \(s(sp(m, r, 2))\) is \(mr + 1\). To prove it, we will construction an irregular labelling on the series parallel \(sp(m, r, 2)\) as follows. Let \(s = mr + 1\).

Case I. For \(r\) is odd

For \(i = 1, 2, ..., m\), defined \(\lambda\) as follows:

\[
\lambda(z_{3x1}) = s - \left(\frac{m}{2} (r + 1) - i + 1\right)
\]

\[
\lambda(x_{ij}x_{i,j+1}) = \begin{cases}
 s - \left(\frac{m}{2} (r + j)\right), & j = 1, 3, ..., r - 2 \\
 s - \left(\frac{m}{2} (r + j + 1) - i + 1\right), & j = 2, 4, ..., r - 1
\end{cases}
\]

\[
\lambda(z_{x_1r}) = 1
\]

\[
\lambda(z_{1y1}) = s - \left(\frac{m}{2} (r + 1) - i + 1\right)
\]

\[
\lambda(y_{ij}y_{i,j+1}) = \begin{cases}
 s - \left(\frac{m}{2} (r - j)\right), & j = 1, 3, ..., r - 2 \\
 s - \left(\frac{m}{2} (r - j + 1) - i + 1\right), & j = 2, 4, ..., r - 1
\end{cases}
\]

\[
\lambda(z_{2y1}) = s.
\]

Case II. For \(r\) is even

For \(i = 1, 2, ..., m\), defined \(\lambda\) as follows:

\[
\lambda(z_{3x1}) = s - \left(\frac{mr}{2}\right)
\]

\[
\lambda(x_{ij}x_{i,j+1}) = \begin{cases}
 s - \left(\frac{m}{2} (r + j + 1) - i + 1\right), & j = 1, 3, ..., r - 1 \\
 s - \left(\frac{m}{2} (r + j)\right), & j = 2, 4, ..., r - 2
\end{cases}
\]

\[
\lambda(z_{x_1r}) = 1
\]

\[
\lambda(z_{1y1}) = s - \left(\frac{mr}{2}\right)
\]

\[
\lambda(y_{ij}y_{i,j+1}) = \begin{cases}
 s - \left(\frac{m}{2} (r - j + 1) - i + 1\right), & j = 1, 3, ..., r - 1 \\
 s - \left(\frac{m}{2} (r - j)\right), & j = 2, 4, ..., r - 2
\end{cases}
\]

\[
\lambda(z_{2y1}) = s.
\]

Based on the labelling function \(\lambda\), we obtained the weight of all vertices of graph \(sp(m, r, 2)\) for \(i = 1, 2, ..., m\) and \(j = 1, 2, ..., r - 1\) as follows.

Case I. For \(r\) is odd

\[
wt(x_{i,r}) = \lambda(x_{i+1,r}) + \lambda(z_{x_1r}) = s - mr + i.
\]

\[
wt(x_{ij}) = \lambda(x_{i,j+1}) + \lambda(z_{x_1r}) = 2s - 2m(r + j) - \left(\frac{m}{2}\right) + i - 1.
\]

\[
wt(x_{1i}) = \lambda(x_{2x1}) + \lambda(z_{x_1r}) = 2s - mr - m + i - 1.
\]

\[
wt(y_{i,1}) = \lambda(z_{x_1}) + \lambda(y_{1,2}) = 2s - mr + i - 1.
\]
\[wt(y_{ij}) = \lambda(y_{ij-1}y_{ij}) + \lambda(y_{ij}y_{ij+1}) = 2s - m(r - j) - \frac{m}{2} + i - 1. \]
\[wt(y_{1r}) = \lambda(y_{1r-1}y_{1r}) + \lambda(z_2y_{1r}) = 2s - m + i - 1. \]
\[wt(z_3) = \sum_{i=1}^{m} \lambda(z_3x_{i,1}) = \sum_{i=1}^{m} \left(s - \left(\frac{m}{2}(r + 1) - i + 1\right)\right). \]
\[wt(z_1) = \sum_{i=1}^{m} \lambda(z_1x_{1r}) = \sum_{i=1}^{m} \lambda(z_1y_{1i}) = m + \sum_{i=1}^{m} \left(s - \left(\frac{m}{2}(r + 1) - i + 1\right)\right). \]
\[wt(z_2) = \sum_{i=1}^{m} \lambda(z_2y_{1i}) = ms. \]

Case II. For \(r \) is even
\[wt(x_{ij}) = \lambda(x_{ij-1}x_{ij}) + \lambda(z_1x_{ij}) = s - mr + i. \]
\[wt(x_{i,1}) = \lambda(z_2x_{i,1}) + \lambda(x_{i,1}x_{i,2}) = 2s - mr + i - 1. \]
\[wt(y_{i,1}) = \lambda(y_{i,1-1}y_{i,1}) + \lambda(y_{i,1}y_{i,2}) = 2s - mr + i - 1. \]
\[wt(y_{1r}) = \lambda(y_{1r-1}y_{1r}) + \lambda(z_2y_{1r}) = 2s - m + i - 1. \]
\[wt(z_3) = \sum_{i=1}^{m} \lambda(z_3x_{i,1}) = \sum_{i=1}^{m} \left(s - \frac{mr}{2}\right). \]
\[wt(z_1) = \sum_{i=1}^{m} \lambda(z_1x_{1r}) = \sum_{i=1}^{m} \lambda(z_1y_{1i}) = m + \sum_{i=1}^{m} \left(s - \frac{mr}{2}\right). \]
\[wt(z_2) = \sum_{i=1}^{m} \lambda(z_2y_{1i}) = ms. \]

Based on the definition of the weight of the vertices, obtained
\[wt(x_{1,r}) < wt(x_{2,r}) < \cdots < wt(x_{m,r}) < wt(x_{1,r-1}) < \cdots < wt(x_{m,r-1}) \]
\[< wt(x_{1,r-2}) < \cdots < wt(x_{1,1}) < wt(x_{2,1}) < \cdots < wt(x_{m,1}) < wt(y_{1,1}) < wt(y_{2,1}) < \cdots \]
\[< wt(y_{m,1}) < wt(y_{1,2}) < wt(y_{2,2}) < \cdots < wt(y_{m,2}) < wt(y_{1,3}) < \cdots < wt(y_{1,r}) \]
\[< wt(y_{2,r}) < \cdots < wt(y_{m,r}) < wt(z_3) < wt(z_1) < wt(z_2). \]

So it can be concluded that the weight of each vertex on \(sp(m, r, 2) \) is different. Then the \(\lambda \) constructed is an irregular labelling on \(sp(m, r, 2) \). Thus \(\lambda \) is an irregular labelling with \(s = mr + 1 \) for \(m \geq 4, r \geq 3 \). That is \(s(sp(m, r, 2)) \leq mr + 1 \).

4. Total Vertex Irregularity Strength of Series Parallel

In determining the total vertex irregularity strength of series parallel graph, begin from determine the lower and upper bound of the total vertex irregularity strength. The lower bound of series parallel for \(m = 3,4,5 \) and \(r = 3 \) is shown in Table 2 which is analyzed by using series parallel properties and based on Theorem 2.

| Table 3. Lower Bound of Total Labelling \(sp(m, 3, 2) \) |
|---|---|---|---|
| \(m \) | \(\delta \) | \(n_\delta \) | \(\left[\frac{\delta + n_\delta}{\delta + 1}\right] \leq tvs(sp(m, 3, 2)) \) |
| 3 | 2 | 18 | 7 |
| 4 | 2 | 24 | 9 |
| 5 | 2 | 30 | 11 |
The upper bound is analyzed by total labelling on the series parallel \(\text{sp}(m, r, 2) \) for \(m = 3, 4, 5 \) and \(r = 3 \) by maintaining pattern labelling as follows.

Figure 4. Irregular total vertex 7 – labelling \(\text{sp}(3, 3, 2) \).

Figure 5. Irregular Total Vertex 9 – labelling \(\text{sp}(4, 3, 2) \).

Figure 6. Irregular Total Vertex 11 – labelling \(\text{sp}(5, 3, 2) \).

Based on table 3, figure 3 and figure 4, in general for any \(m, r \geq 3 \), the total vertex irregularity strength of series parallel \(\text{sp}(m, r, 2) \) can be estimated like in table 4.

Based on table 3 it is assumed that total vertex irregularity strength of series parallel graph is \(\text{tv}_v\text{sp}(m, r, 2) = \left\lceil \frac{2mr+2}{3} \right\rceil \). These results are written on the theorem as follows.

Theorem 4. For \(m, r \geq 3 \), then total vertex irregularity strength of series parallel \(\text{sp}(m, r, 2) \) is

\[
\text{tv}_v\text{sp}(m, r, 2) = \left\lceil \frac{2mr+2}{3} \right\rceil.
\]

Proof.

To prove that \(tv_v\text{sp}(m, r, 2) \geq \left\lceil \frac{2mr+2}{3} \right\rceil \), use Theorem 2. The minimum degree of \(\text{sp}(m, r, 2) \) is \(\delta = 2 \), the number of vertex of degree 2 is \(n_2 = 2mr \). Then based on Theorem 2 we obtained...
\[
tvs(sp(m, r, 2)) \geq \text{maks} \left\{ \left\lfloor \frac{2mr + 2}{3} \right\rfloor, \left\lfloor \frac{2mr + m + 4}{m} \right\rfloor, \left\lfloor \frac{2mr + 3m + 3}{2m + 1} \right\rfloor \right\} = \left\lfloor \frac{2mr + 2}{3} \right\rfloor.
\]

Table 4. Total Vertex Irregularity Strength \(sp(m, r, 2)\).

\(m\)	\((2.3.m) + 2\)	\((2.4.m) + 2\)	\((2.5.m) + 2\)	\(...\)	\((2.m.r) + 2\)
3	7	9	11	\(...\)	\(\left\lfloor \frac{2mr + 2}{3} \right\rfloor\)
4	9	12	14	\(...\)	\(\left\lfloor \frac{2mr + 2}{3} \right\rfloor\)
5	11	14	18	\(...\)	\(\left\lfloor \frac{2mr + 2}{3} \right\rfloor\)

Next determine the upper bound of \(tvs(sp(m, r, 2)) \leq \left\lfloor \frac{2mr+2}{3} \right\rfloor\). To prove it we will construct a vertex irregular total labelling on the series parallel \(sp(m, r, 2)\). Let \(t = \left\lfloor \frac{2mr+2}{3} \right\rfloor\).

Case I. For \(m = 0 \pmod{3}\)

\[
f(y_{ij}) = t - \left(\frac{m}{3}(r - j + 4) - i - 1\right)
\]

\[
f(y_{ir}) = t - (m - i)
\]

\[
f(z_i) = i, \quad i = 1, 2, 3
\]

\[
f(z_3x_{i1}) = t - (m - 2)
\]

\[
f(x_{i1}x_{i+1}) = t - \left(\frac{m}{3}(r + j + 1)\right)
\]

\[
f(z_1x_{i1}) = 1
\]

\[
f(z_1y_{i1}) = t - (m - i)
\]

\[
f(y_{ij}y_{i,j+1}) = t - \left(\frac{m}{3}(r - j + 1) + 1\right)
\]

\[
f(y_{i1}) = t
\]

\[
f(x_{i1}) = t - \left(\frac{m}{3}(2r - 2) - i + 3\right)
\]

\[
f(x_{ij}) = t - \left(\frac{m}{3}(r + j - 1) - i + 1\right)
\]

\[
f(x_{ir}) = t - \left(\frac{2mr}{3} - i + 1\right)
\]

\[
f(y_{i1}) = t - \left(\frac{m}{3}(2r - 1)\right)
\]
Case II. For $m = 1 \text{ (mod 3)}$

$$f(x_{i,i}) = \begin{cases}
 t - \left(\frac{m}{3} (2r - 2) - \frac{r}{3} - i + \frac{14}{3} \right), & r = 0 \text{ mod 3} \\
 t - \left(\frac{m}{3} (2r - 2) - \frac{r}{3} - i + \frac{16}{3} \right), & r = 1 \text{ mod 3} \\
 t - \left(\frac{m}{3} (2r - 2) - \frac{r}{3} - i + \frac{12}{3} \right), & r = 2 \text{ mod 3}
\end{cases}$$

$$f(x_{i,j}) = \begin{cases}
 t - \left(\frac{m}{3} (r + j - 1) - \frac{2(j-r)}{3} - i + \frac{4}{3} \right), & r = 0 \text{ mod 3} \\
 t - \left(\frac{m}{3} (r + j - 1) - \frac{2(j-r)}{3} - i + \frac{5}{3} \right), & r = 1 \text{ mod 3} \\
 t - \left(\frac{m}{3} (r + j - 1) - \frac{2(j-r)}{3} - i + \frac{3}{3} \right), & r = 2 \text{ mod 3}
\end{cases}$$

$$f(x_{i,r}) = \begin{cases}
 t - \left(\frac{2mr}{3} - i + 1 \right), & r = 0 \text{ mod 3} \\
 t - \left(\frac{2mr}{3} - i + \frac{4}{3} \right), & r = 1 \text{ mod 3} \\
 t - \left(\frac{2mr}{3} - i + \frac{2}{3} \right), & r = 2 \text{ mod 3}
\end{cases}$$

$$f(y_{i,i}) = \begin{cases}
 t - \left(\frac{m}{3} (2r - 1) + \frac{1}{3} \right), & r = 0 \text{ mod 3} \\
 t - \left(\frac{m}{3} (2r - 1) + \frac{2}{3} \right), & r = 1 \text{ mod 3} \\
 t - \left(\frac{m}{3} (2r - 1) + 1 \right), & r = 2 \text{ mod 3}
\end{cases}$$

$$f(y_{i,j}) = \begin{cases}
 t - \left(\frac{m}{3} (r - j + 4) - \frac{2(r-j)}{3} - i + \frac{4}{3} \right), & r = 0 \text{ mod 3} \\
 t - \left(\frac{m}{3} (r - j + 4) - \frac{2(r-j)}{3} - i + \frac{1}{3} \right), & r = 1 \text{ mod 3} \\
 t - \left(\frac{m}{3} (r - j + 4) - \frac{2(r-j)}{3} - i + \frac{1}{3} \right), & r = 2 \text{ mod 3}
\end{cases}$$

$$f(y_{i,r}) = \begin{cases}
 t - (m - i), & r = 0 \text{ mod 3} \\
 t - (m - i + 1), & r = 1 \text{ mod 3} \\
 t - (m - i), & r = 2 \text{ mod 3}
\end{cases}$$

$$f(z_i) = i, \quad i = 1, 2, 3$$

$$f(z_3 x_{i,i}) = t - (m - 3)$$

$$f(x_{i,j} x_{i,j+1}) = \begin{cases}
 t - \left(\frac{m}{3} (r + j + 1) + \frac{r-j-1}{3} \right), & r = 0 \text{ mod 3} \\
 t - \left(\frac{m}{3} (r + j + 1) + \frac{r-j}{3} \right), & r = 1 \text{ mod 3} \\
 t - \left(\frac{m}{3} (r + j + 1) + \frac{r-j-2}{3} \right), & r = 2 \text{ mod 3}
\end{cases}$$

$$f(z_1 x_{i,r}) = 1$$
\[f(z, y_{i, i+1}) = \begin{cases}
- (m + \frac{r - 3}{3} - i), & r = 0 \mod 3 \\
- (m + \frac{r - 1}{3} - i), & r = 1 \mod 3 \\
- (m + \frac{r - 5}{3} - i), & r = 2 \mod 3
\end{cases} \]

\[f(y, y_{i, i+1}) = \begin{cases}
- \left(\frac{m}{3} (r - j - 1) + \frac{j - r + 4}{3} \right), & r = 0 \mod 3 \\
- \left(\frac{m}{3} (r - j - 1) + \frac{j - r + 4}{3} \right), & r = 1 \mod 3 \\
- \left(\frac{m}{3} (r - j - 1) + \frac{j - r + 3}{3} \right), & r = 2 \mod 3
\end{cases} \]

Case III. For \(m = 2 \mod 3 \)

\[f(x, y) = \begin{cases}
- \left(\frac{m}{3} (2r - 2) - \frac{2r}{3} - i + \frac{19}{3} \right), & r = 0 \mod 3 \\
- \left(\frac{m}{3} (2r - 2) - \frac{2r}{3} - i + \frac{17}{3} \right), & r = 1 \mod 3 \\
- \left(\frac{m}{3} (2r - 2) - \frac{2r}{3} - i + \frac{21}{3} \right), & r = 2 \mod 3
\end{cases} \]

\[f(x, y) = \begin{cases}
- \left(\frac{2mr}{3} - i + \frac{1}{3} \right), & r = 0 \mod 3 \\
- \left(\frac{2mr}{3} - i + \frac{2}{3} \right), & r = 1 \mod 3 \\
- \left(\frac{2mr}{3} - i + \frac{4}{3} \right), & r = 2 \mod 3
\end{cases} \]

\[f(x, y) = \begin{cases}
- \left(\frac{m}{3} (2r - 1) + \frac{2}{3} \right), & r = 0 \mod 3 \\
- \left(\frac{m}{3} (2r - 1) + \frac{4}{3} \right), & r = 1 \mod 3 \\
- \left(\frac{m}{3} (2r - 1) + \frac{1}{3} \right), & r = 2 \mod 3
\end{cases} \]

\[f(y, y_{i, i+1}) = \begin{cases}
- \left(\frac{m}{3} (r - j + 4) - \frac{4(r - j)}{3} - i + \frac{5}{3} \right), & r = 0 \mod 3 \\
- \left(\frac{m}{3} (r - j + 4) - \frac{4(r - j)}{3} - i + \frac{2}{3} \right), & r = 1 \mod 3 \\
- \left(\frac{m}{3} (r - j + 4) - \frac{4(r - j)}{3} - i - \frac{2}{3} \right), & r = 2 \mod 3
\end{cases} \]

\[f(y, y_{i, i+1}) = \begin{cases}
- (m - i), & r = 0 \mod 3 \\
- (m - i), & r = 1 \mod 3 \\
- (m - i + 1), & r = 2 \mod 3
\end{cases} \]

\[f(z, i) = i, \quad i = 1, 2, 3 \]
\[f(z_3x_{i,1}) = t - (m - 4) \]

\[f(x_{i,j}x_{i,j+1}) = \begin{cases}
 t - \left(\frac{m}{3} (r + j + 1) + \frac{2(r - j)}{3} - \frac{2}{3}\right), & r = 0 \mod 3 \\
 t - \left(\frac{m}{3} (r + j + 1) + \frac{2(r - j)}{3} - \frac{3}{3}\right), & r = 1 \mod 3 \\
 t - \left(\frac{m}{3} (r + j + 1) + \frac{2(r - j)}{3} - \frac{1}{3}\right), & r = 2 \mod 3
\end{cases} \]

\[f(z_1x_{i,r}) = \begin{cases}
 t - \left(\frac{m + 2(r-3)}{3} - i\right), & r = 0 \mod 3 \\
 t - \left(\frac{m + 2(r-4)}{3} - i\right), & r = 1 \mod 3 \\
 t - \left(\frac{m + 2(r-2)}{3} - i\right), & r = 2 \mod 3
\end{cases} \]

\[f(z_1y_{i,1}) = \begin{cases}
 t - \left(\frac{m}{3} (r - j + 1) + \frac{2(j - r)}{3} + \frac{5}{3}\right), & r = 0 \mod 3 \\
 t - \left(\frac{m}{3} (r - j + 1) + \frac{2(j - r)}{3} + \frac{2}{3}\right), & r = 1 \mod 3 \\
 t - \left(\frac{m}{3} (r - j + 1) + \frac{2(j - r)}{3} + \frac{5}{3}\right), & r = 2 \mod 3
\end{cases} \]

\[f(y_{i,j}y_{i,j+1}) = \begin{cases}
 t - \left(\frac{m}{3} (r - j + 1) + \frac{2(j - r)}{3} + \frac{5}{3}\right), & r = 0 \mod 3 \\
 t - \left(\frac{m}{3} (r - j + 1) + \frac{2(j - r)}{3} + \frac{2}{3}\right), & r = 1 \mod 3 \\
 t - \left(\frac{m}{3} (r - j + 1) + \frac{2(j - r)}{3} + \frac{5}{3}\right), & r = 2 \mod 3
\end{cases} \]

\[f(z_2y_{i,r}) = t \]

Based on the labelling function \(f \), then we obtained that the weight of all vertices of a graph \(sp(m,r,2) \) for \(i = 1,2,\ldots,m \) and \(j = 1,2,\ldots,r - 1 \) as follows.

Case I For \(m = 0 \ (\mod 3) \)

\[wt(x_{i,r}) = f(x_{i,r}) + f(z_1x_{i,r}) + f(x_{i,r-1}x_{i,r}) = 2t - \frac{4mr}{3} + i \]

\[wt(x_{i,j}) = f(x_{i,j}) + f(x_{i,j-1}x_{i,j}) + f(x_{i,j}x_{i,j+1}) = 3t - m(r + j) + i - 1 \]

\[wt(x_{i,1}) = f(x_{i,1}) + f(z_3x_{i,1}) + f(x_{i,1}x_{i,2}) = 3t - mr - m + i - 1 \]

\[wt(y_{i,1}) = f(y_{i,1}) + f(z_1y_{i,1}) + f(y_{i,1}y_{i,2}) = 3t - mr + i - 1 \]

\[wt(y_{i,j}) = f(y_{i,j}) + f(y_{i,j-1}y_{i,j}) + f(y_{i,j}y_{i,j+1}) = 3t - m(r - j + 1) + i - 1 \]

\[wt(y_{i,r}) = f(y_{i,r}) + f(z_2y_{i,r}) + f(y_{i,r-1}y_{i,r}) = 3t - m + i - 1 \]

\[wt(z_3) = \sum_{i=1}^{m} f(z_3x_{i,1}) + f(z_3) = m(t - (m - 2)) + 3 \]

\[wt(z_1) = \sum_{i=1}^{m} f(z_1x_{i,r}) + f(z_1) + \sum_{i=1}^{m} f(z_1y_{i,1}) = m + 1 + \sum_{i=1}^{m} t - (m - i) \]

\[wt(z_2) = \left(\sum_{i=1}^{m} f(z_2y_{i,r})\right) + f(z_2) = mt + 2 \]

Case II For \(m = 1 \ (\mod 3) \). There are three subcases as follows.

Subcase I. For \(r = 0 \ (\mod 3) \)

\[wt(x_{i,r}) = f(x_{i,r}) + f(z_1x_{i,r}) + f(x_{i,r-1}x_{i,r}) = 2t - \frac{4mr}{3} + i \]

\[wt(x_{i,j}) = f(x_{i,j}) + f(x_{i,j-1}x_{i,j}) + f(x_{i,j}x_{i,j+1}) = 3t - m(r + j) + i - 1 \]

\[wt(x_{i,1}) = f(x_{i,1}) + f(z_3x_{i,1}) + f(x_{i,1}x_{i,2}) = 3t - mr - m + i - 1 \]
\[wt(y_{i,1}) = f(y_{i,1}) + f(z_1 y_{i,1}) + f(y_{i,1} y_{i,2}) = 3t - mr + i - 1 \]
\[wt(y_{i,j}) = f(y_{i,j}) + f(y_{i,j-1} y_{i,j}) + f(y_{i,j} y_{i,j+1}) = 3t - m(r - j + 1) + i - 1 \]
\[wt(y_{i,r}) = f(y_{i,r}) + f(z_2 y_{i,r}) + f(y_{i,r-1} y_{i,r}) = 3t - m + i - 1 \]
\[wt(z_3) = \sum_{i=1}^{m} f(z_3 x_{i,1}) + f(z_3) = m(t - (m - 3)) + 3 \]
\[wt(z_1) = \sum_{i=1}^{m} f(z_1 x_{i,r}) + f(z_1) + \sum_{i=1}^{m} f(z_1 y_{i,1}) = m + 1 + \sum_{i=1}^{m} t - (m + \frac{r-3}{3} - i) \]
\[wt(z_2) = (\sum_{i=1}^{m} f(z_2 y_{i,r})) + f(z_2) = mt + 2 \]

Subcase 2. For \(r = 1 \) (mod 3)
\[wt(x_{i,r}) = f(x_{i,r}) + f(z_1 x_{i,r}) + f(x_{i,r-1} x_{i,r}) = 2t - \frac{4mr}{3} + i - \frac{2}{3} \]
\[wt(x_{i,j}) = f(x_{i,j}) + f(x_{i,j-1} x_{i,j}) + f(x_{i,j} x_{i,j+1}) = 3t - m(r + j) + i - 2 \]
\[wt(x_{i,1}) = f(x_{i,1}) + f(z_3 x_{i,1}) + f(x_{i,1} x_{i,2}) = 3t - mr - m + i - 2 \]
\[wt(y_{i,1}) = f(y_{i,1}) + f(z_1 y_{i,1}) + f(y_{i,1} y_{i,2}) = 3t - mr + i - 2 \]
\[wt(y_{i,j}) = f(y_{i,j}) + f(y_{i,j-1} y_{i,j}) + f(y_{i,j} y_{i,j+1}) = 3t - m(r - j + 1) + i - 2 \]
\[wt(y_{i,r}) = f(y_{i,r}) + f(z_2 y_{i,r}) + f(y_{i,r-1} y_{i,r}) = 3t - m + i - 2 \]
\[wt(z_3) = \sum_{i=1}^{m} f(z_3 x_{i,1}) + f(z_3) = m(t - (m - 3)) + 3 \]
\[wt(z_1) = \sum_{i=1}^{m} f(z_1 x_{i,r}) + f(z_1) + \sum_{i=1}^{m} f(z_1 y_{i,1}) = m + 1 + \sum_{i=1}^{m} t - (m + \frac{r-5}{3} - i) \]
\[wt(z_2) = (\sum_{i=1}^{m} f(z_2 y_{i,r})) + f(z_2) = mt + 2 \]

Subcase 3. For \(r = 2 \) (mod 3)
\[wt(x_{i,r}) = f(x_{i,r}) + f(z_1 x_{i,r}) + f(x_{i,r-1} x_{i,r}) = 2t - \frac{4mr}{3} + i + \frac{2}{3} \]
\[wt(x_{i,j}) = f(x_{i,j}) + f(x_{i,j-1} x_{i,j}) + f(x_{i,j} x_{i,j+1}) = 3t - m(r + j) + i \]
\[wt(x_{i,1}) = f(x_{i,1}) + f(z_3 x_{i,1}) + f(x_{i,1} x_{i,2}) = 3t - mr - m + i \]
\[wt(y_{i,1}) = f(y_{i,1}) + f(z_1 y_{i,1}) + f(y_{i,1} y_{i,2}) = 3t - mr + i \]
\[wt(y_{i,j}) = f(y_{i,j}) + f(y_{i,j-1} y_{i,j}) + f(y_{i,j} y_{i,j+1}) = 3t - m(r - j + 1) + i \]
\[wt(y_{i,r}) = f(y_{i,r}) + f(z_2 y_{i,r}) + f(y_{i,r-1} y_{i,r}) = 3t - m + i \]
\[wt(z_3) = \sum_{i=1}^{m} f(z_3 x_{i,1}) + f(z_3) = m(t - (m - 3)) + 3 \]
\[wt(z_1) = \sum_{i=1}^{m} f(z_1 x_{i,r}) + f(z_1) + \sum_{i=1}^{m} f(z_1 y_{i,1}) = m + 1 + \sum_{i=1}^{m} t - (m + \frac{r-5}{3} - i) \]
\[wt(z_2) = (\sum_{i=1}^{m} f(z_2 y_{i,r})) + f(z_2) = mt + 2 \]

Case III For \(m = 2 \) (mod 3). In this case, there are three cases as follows.
Subcase 1. For \(r = 0 \) (mod 3)
\[wt(x_{i,r}) = f(x_{i,r}) + f(z_1 x_{i,r}) + f(x_{i,r-1} x_{i,r}) = 2t - \frac{4mr}{3} + i \]
\[wt(x_{i,j}) = f(x_{i,j}) + f(x_{i,j-1} x_{i,j}) + f(x_{i,j} x_{i,j+1}) = 3t - m(r + j) + i - 1 \]
So it can be concluded that the weight of each vertex on \(\text{sp}(m, r, 2) \) is different. Thus \(f \) is a total irregular \(t \)-labelling with \(t = \left\lceil \frac{2mr + 2}{3} \right\rceil \) for \(m, r \geq 3 \). That is, \(\text{tvs}(\text{sp}(m, r, 2)) \leq \left\lceil \frac{2mr + 2}{3} \right\rceil \).
5. Conclusion
There are two theorems in this paper as conclusions, i.e. the irregularity strength of the parallel networks is $mr + 1$ for the natural numbers $m, r \geq 3$, and the total vertex irregularity strength of the parallel networks is $\left\lfloor \frac{2mr+2}{3} \right\rfloor$, for the natural numbers $m, r \geq 3$, and the total vertex irregularity strength of the parallel networks, $sp(m, r, 2)$ for the natural number $m, r \geq 3$, is $mr + 1$ for $m \geq 4, r \geq 3$, respectively.

Acknowledgement
The research for this article was supported by PPI-WCU Hasanuddin University Grant Number: 14613/UN4.1/TU.21/2017.

References
[1] Stewart B M 1966 Magic graphs Canadian Journal of Mathematics 18 1031-1059
[2] Kotzig A and Rosa A 1970 Magic valuations of finite graphs Canadian Mathematical Bulletin 13 451–323
[3] Wallis W D 2001 Magic graphs (New Work: Birkhäuser Boston)
[4] Chartrand G, Jacobson M S, Lehel J, Oellermann O R, Ruiz S and Saba F 1988 Irregular Networks Congressus Numerantium 64 197-210
[5] Bača M, Jendrol, Miller M and Ryan J 2007 On Irregular total labellings Discrete Mathematics 307 1378-1388
[6] Ahmad A, Arshad M and Izaricova G 2015 Irregularity labellings of helm and sun graphs International Journal of Graphs and Combinatorics 12 161-168
[7] Ahmad A, Nurdin and Baskoro E T 2015 On total irregularity strength of generalized Halin graph 122 319 – 332
[8] Anolcher M and Palmer C 2012 Irregular labellings of circulant graphs Discrete Mathematics 312 3416-3466
[9] Rajasingh I and Arockiamary S T 2015 Total edge irregularity strength of series parallel graphs International Journal of Pure and Applied Mathematics 99 11-21
[10] Nurdin, Baskoro E T, Salman A N M and Gaos N N 2010 On the total vertex irregularity strength of trees Discrete Mathematics 310 3043-3048
[11] Nurdin, Massalesse J and Yulandary B B 2016 The total edge irregular labelling of network constructed by some copies of cycle on three vertices corona a vertex Indian Journal of Science and Technology 9 28 1 – 3
[12] Nurdin 2017 Total irregular labelling of butterfly network on level two AIP Conference Proceedings 020067-1 - 020067-3
[13] Rajasingh I, Rajan B and Annama V 2012 On total vertex irregularity strength of triangle related graphs Annals of Pure and Applied Mathematics 2 108-116