In *Arabidopsis thaliana* Heterosis Level Varies among Individuals in an F1 Hybrid Population

Hasan Mehraj 1,†, Takahiro Kawanabe 2,*,†, Motoki Shimizu 3, Naomi Miyaji 1, Ayasha Akter 1,4, Elizabeth S. Dennis 5, and Ryo Fujimoto 1,*

1 Graduate School of Agricultural Science, Kobe University, Rokkodai, Nada-ku, Kobe 657-8501, Japan; hmehraj34@stu.kobe-u.ac.jp (H. M); 162a318a@stu.kobe-u.ac.jp (N. M); 154a371a@stu.kobe-u.ac.jp (A. A)
2 School of Agriculture, Tokai University, Toroku, Higashi-ku, Kumamoto 862-8562, Japan
3 Iwate Biotechnology Research Center, Narita, Kitakami, Iwate 024-0003, Japan; m-shimizu@ibrc.or.jp
4 Department of Horticulture, Bangladesh Agricultural University, Mymensingh-2202
5 CSIRO Agriculture and Food, Canberra, ACT 2601, Australia; Liz.Dennis@csiro.au
6 University of Technology, Sydney, PO Box 123, Broadway, NSW 2007, Australia
* Correspondence: 314752@cc.u-tokai.ac.jp (T.K); leo@people.kobe-u.ac.jp (R.F)
† Authors contributed equal

Abstract: Heterosis or hybrid vigour is a phenomenon in which hybrid progeny exhibit superior yield and biomass to parental lines and has been used to breed F1 hybrid cultivars in many crops. A similar level of heterosis in all F1 individuals is expected as they are genetically identical. However, we found variation of rosette size in individual F1 plants from a cross between C24 and Columbia-0 accessions of *Arabidopsis thaliana*. Big sized F1 plants had 26.1% larger leaf area in the 1st and 2nd leaves than medium sized F1 plants at 14 days after sowing in spite of the identical genetic background. We identified differentially expressed genes between big and medium sized F1 plants by microarray; genes involved in the category of stress response were overrepresented. We made transgenic plants overexpressing 21 genes, which were differentially expressed between the two size classes, some lines had increased plant size at 14 or 21 days after sowing but not at all time points. Change of expression levels in stress responsive genes among individual F1 plants, implying epigenetic changes, could generate the variation in plant size of individual F1 plants in *A. thaliana*.

Keywords: Heterosis; Hybrid vigor; Transcriptome

1. Introduction

Heterosis or hybrid vigour is the superior performance of F1 (heterozygous) plants relative to their inbred (homozygous) parental lines. In the process of plant breeding, the phenomenon of heterosis has been exploited in various crops and vegetables because of its effect on yield or stress tolerance [1]. Hybrid breeding has been remarkably successful starting with maize [2,3], but the molecular mechanism of heterosis remains unknown. Several genetic models have been hypothesized for the explanation of heterosis [1,4-6]. The dominance model explains that heterosis is due to the complementation of deleterious recessive alleles by favorable dominant alleles at multiple loci. The overdominance model argues that the heterozygous state leads to superior performance of hybrids to either homozygous condition. The epistasis model is that interaction of favorable alleles at different loci results in heterosis. Epigenetic modifications are also considered to contribute to heterosis; interactions between parental epigenetic states in the two sets of chromosome in hybrids play a role in heterosis [5,7,8].

The concept that the superior performance of hybrid is caused by establishment of more favorable gene expression levels relative to the parental lines has been considered [9]. The transcriptome profile has been compared between hybrids and parental lines in a number of
heterotic hybrids of maize, rice, and Arabidopsis thaliana [10-18]. Though the majority of genes show an additive gene expression pattern, differentially expressed genes between hybrids and the mid-parent value (MPV), termed non-additively expressed genes, are detected [1]. In some studies, non-additively expressed genes involved in specific functional categories have been suggested to play a role in the heterosis phenotype, while there are reports showing that the majority of non-additively expressed genes are not associated with any specific categories [10-19].

In addition to crops and vegetables, A. thaliana also shows substantial heterosis in vegetative biomass in particular parental combinations [20-25], and several approaches such as quantitative trait locus (QTL) analysis, transcriptome, metabolome, small RNAome, and epigenome analysis have been used to identify genes and mechanisms that may be important for heterosis [1,8]. In the hybrid between C24 and Columbia-0 (Col) accessions of A. thaliana, heterosis is obvious at early developmental stages in increased cotyledon area at a few days after sowing. Larger cotyledon size generates an increase in photosynthetic capacity, suggesting that this increased photosynthetic capacity in hybrids may cause the maintenance and/or magnification of heterosis at later developmental stages [14]. A similar phenotype at early developmental stages has been observed in other parental combinations of A. thaliana [26].

In this study, we found variation in plant size among individual hybrids between C24 and Col accessions. To identify the genes regulating the altered plant size in individuals with the same genetic background, we compared the transcriptome profile between big and medium sized F₁ plants using microarrays. A number of genes showed a higher expression level in the big sized F₁ plants than in the medium sized F₁ plants; we examined their effect on plant size by overexpression, focusing on genes categorized into “transcription factor”. A number of transgenic plants were larger at 14 or 21 days after sowing, suggesting that these genes play a part in the control of plant size.

2. Results

2.1. There is variation in shoot size in the F₁ between C24 and Col

The F₁ between C24 and Col had a heterosis phenotype in shoots [14,15]. Among 80 F₁ plants, shoot size evaluated by rosette diameter at 14 days after sowing (DAS) varies, and the biggest rosette diameter is 2.7 times larger than smallest (Figure 1A). The size of dry seed evaluated by seed area also showed variation within the seventy-two F₁ seeds, and the seed area of the biggest seed is 1.5 times larger than the smallest (Figure 1B).

To examine whether the larger shoot size in F₁ plants is due to larger seed size, we examined the relationship between shoot and seed sizes. There is no difference in rosette diameter at 14 DAS of nine F₁ plants derived from small, medium, and big seed fractions (Figure 1C), indicating that the difference of seed size is independent from shoot size in the F₁ population.

Using twenty-two plants of each of the big (14.1% larger) and medium size fractions in rosette diameter at 10 DAS from 103 F₁ plants (Figure 2A), the rosette diameter, leaf area, and the size of first layer of palisade mesophyll cell in the 1st and 2nd leaves were examined at 14 DAS. At 14 DAS, F₁ plants that have been big at 10 DAS retained the larger rosette diameter (15.2%) relative to the medium sized F₁ plants (Figure 2B), and the big sized F₁ plants had 26.1% larger leaf area in the 1st and 2nd leaves relative to the medium sized F₁ plants (Figure 2C). The big sized F₁ plants had a 21.6% reduction in the number of the first layer of palisade mesophyll cells per unit area relative to the medium sized F₁ plants at 14 DAS (Figure 2D), indicating that the larger leaf area of the big sized F₁ plant is due to the increased cell size.
Figure 1. Variation of rosette diameter and seed size among individual F1 plants between C24 and Col. (A) Distribution of rosette diameter among individual F1 plants (n=80) at 14 DAS. Dark and light green bars represent plant materials used for microarray analysis and quantitative RT-PCR (qPCR), respectively. Blue and red dotted lines represent the plant size used for microarray and qPCR, respectively. (B) Distribution of seed area in F1 (n=72). (C) The seed area (left panel) and rosette diameter at 14 DAS (right panel) derived from small, medium, and big seed fractions. The ratio of the rosette diameter compared with plants derived from big seed fractions are shown. Data presented are the average and standard error (s.e.) (n=9). Letters above the bars indicate significant differences at p < 0.05 (Tukey-Kramer test).

Figure 2. Comparison of the rosette diameter and true leaf area and its cell number per unit area between medium and big sized F1 plants. (A) Distribution of ratio of rosette diameter compared with average of rosette diameter in F1 plants (n=103) at 10 DAS. Three replicates were performed.
represented as 1st, 2nd, and 3rd sets. (B) Ratio of rosette diameter compared with medium sized F1 plants in big sized F1 plants at 10 and 14 DAS. (C) Ratio of leaf area of 1st and 2nd leaves compared with medium sized F1 plants in big sized F1 plants at 14 DAS. (D) Ratio of cell number per unit area in the first layer of palisade mesophyll cell compared with medium sized F1 plants in big sized F1 plants at 14 DAS. Data presented are the average and standard error (s.e.) (each, n=22). ***p<0.001 (Student’s t-test)

2.2. The transcriptome divergence between big and medium sized F1 plants

We examined the whole genome transcriptome of big and medium sized F1 plants at 14 DAS, using the Affymetrix, Arabidopsis ATH1 Genome Array using total RNAs from shoots of the biggest (B1, two 1.9 cm rosette diameter plants), the second biggest (B2, two 1.8 cm rosette diameter plants), and two medium size fractions (M1 and M2, two 1.4 cm rosette diameter plants) of plants (Figure 1A). We did not use small sized F1 plants, as there is a risk that decrease in plant size is due to disease or failure to thrive. The 441 probe-sets showed 1.5-fold difference with 5% false discovery rate (FDR) in expression between B1&B2 and M1&M2 (Table S1). Among differentially expressed genes, 361 (81.9%) probe-sets were expressed at a higher level in B1&B2 than M1&M2 (B1&B2 > M1&M2 expression), and 80 probe-sets showed B1&B2 < M1&M2 expression (Table S1).

We compared the lists of non-additively expressed genes in aerial tissues between three F1 hybrids (C24/Col, C24/Landsberg erecta (Ler), Col/Ler) and their mid parent values (MPV) at 15 DAS [17], with our lists of differentially expressed genes (Table 1). About 30% of genes showing B1&B2 > M1&M2 expression overlapped with upregulated genes in C24/Col or C24/Ler hybrids (Table 1), and 61 genes (16.9%) overlapped with upregulated genes in both C24/Col and C24/Ler hybrids (Table S2). While 5.8% of genes overlapped with upregulated genes in Col/Ler hybrids (Table 1). Of genes showing B1&B2 < M1&M2 expression, more genes overlapped with downregulated genes in C24/Col hybrids (31.3%) followed by C24/Ler (22.5%) and Col/Ler (13.8%) hybrids (Table 1).

Table 1 Number of genes overlapping with previous transcriptome data
C24/Col DEG
F1 > MPV (863)
F1 < MPV (1,234)
C24/Ler DEG
F1 > MPV (669)
F1 < MPV (1,050)
Col/Ler DEG
F1 > MPV (464)
F1 < MPV (907)
C24xCol vs. ddm1C24xddm1Col
WT > ddm1 (73)
WT < ddm1 (1,128)
ColxC24 vs. ddm1Colxddm1C24
WT > ddm1 (69)
WT < ddm1 (1,208)

We also compared our data with lists of differentially expressed genes between C24xCol and ddm1C24xddm1Col hybrids or between ColxC24 and ddm1Colxddm1C24 hybrids (Table 1), which showed different plant size with the same genetic background [27]. Twenty-five genes showing B1&B2 > M1&M2 expression overlapped with downregulated genes in C24xCol hybrids compared with ddm1C24xddm1Col hybrids (Table 1), including ethylene responsive element binding factor 5 (ERF5), ERF6, ERF105, WRKY40, DRE BINDING PROTEIN 1B (DREB1B), salt-inducible zinc finger 1 (SZF1), and SZF2 (Figure S1).

2.3. Confirmation of differential gene expression by quantitative RT-PCR

We confirmed the expression patterns of 24 differentially expressed genes (13 genes, B1&B2 > M1&M2 expression; 11 genes, B1&B2 < M1&M2 expression) using quantitative RT-PCR analysis (qPCR) using another set of big (B1, two 1.9 cm rosette diameter plants; B2, two 1.8 cm rosette
diameter plants) and medium sized (M1 and M2, two 1.4 cm rosette diameter plants) F1 plants (Figure 1A). The relative expression levels between B1&B2 and M1&M2 seen in microarray data were highly correlated with those in qPCR ($r = 0.94$, $p < 1.00 \times 10^{-10}$) (Figure 3, Table S3).

Figure 3. Verification of microarray data by qPCR. Relationship of relative expression levels between qPCR and microarray in 24 differentially expressed genes between big and medium sized F1 plants.

The expression levels of the 24 genes were analyzed by qPCR in differently sized F1 plants; B3, two 1.7 cm rosette diameter plants; B4, two 1.6 cm rosette diameter plants; B5, two 1.5 cm rosette diameter plants, and M3, two 1.4 cm rosette diameter plants together with B1, B2, M1, and M2 samples (Figure 1A). We categorized gene expression pattern into eight classes, (I) Expression levels of B1 and B2 were higher than mean expression level of M1, M2, and M3 (B1&B2 > M1-3 expression) (4 genes); (II) B1-3 > M1-3 expression (7 genes); (III) B1-4 > M1-3 expression (1 gene); (IV) B1-5 > M1-3 expression (1 gene); (V) B1&B2 < M1-3 expression (1 gene); (VI) B1-3 < M1-3 expression (4 genes); (VII) B1-4 < M1-3 expression (2 genes); (VIII) B1-5 < M1-3 expression (4 genes) (Figure 4, Table S4). Of 13 genes with B1&B2 > M1&M2 expression (class I to IV), 11 genes (84.6%) were categorized into group (I) and (II), suggesting that the border line of differential gene expression level between big and medium sized F1 plants was between B3 and B4 (Figure 4A, Table S4). By contrast, there was no clear demarcation in genes with B1&B2 < M1&M2 expression (Figure 4B, Table S4).

Figure 4. Pattern of gene expression levels in four fractions of big sized F1 plants and four factions of medium sized F1 plants. B1 to B5 shows top five fractions from biggest sized F1 plants. Expression pattern was categorized into eight classes described in text.
2.4. Comparison of gene expression between big and medium sized F₂ plants

Rosette diameter at 14 DAS varied in F₂ plants derived from the hybrid between C24 and Col (Figure 5A). We examined whether the same genes showed differential gene expression between big (BF₂, two 1.5 cm and one 1.4 cm rosette diameter plants) and medium (MF₂, three 1.1 cm rosette diameter plants) fractions of F₂ plants as in F₁ (Figure 5A). The 14 and 11 genes showing B1&B2 > M1&M2 and B1&B2 < M1&M2 expression, respectively, were used. In the first F₂ big fraction, 6/14 and 4/11 genes showed BF₂ > MF₂ and BF₂ < MF₂ expression, respectively (Figure 5B, Table S5). In the second F₂ fraction, 9/14 and 4/11 genes showed BF₂ > MF₂ and BF₂ < MF₂ expression, respectively, (Figure 5B, Table S5). 5/14 and 2/11 genes showed BF₂ > MF₂ and BF₂ < MF₂ expression, respectively, in both sets (Figure 5B, Table S5), indicating that the same genes (more than 35%) as in the F₁ tended to have a higher expression level in the big sized F₂ plants than in the medium sized F₂ plants.

Figure 5. Comparison of the gene expression level between big and medium sized F₂ plants. (A) Distribution of rosette diameter at 14 DAS of F₂ plants. Blue and red dotted lines represent the plant size used for qPCR. (B) qPCR using genes that showed B1&B2 > M1&M2 (left panel) and B1&B2 < M1&M2 expression (right panel). The ratio of the expression levels compared with medium sized F₂ plants in big sized F₂ plants is shown. Data presented are the average and standard error (s.e.) from three biological and experimental replicates. *p<0.05, **p<0.01 (Student’s t-test).

2.5. Classification of the differentially expressed genes between big and medium sized F₂ plants

We categorized the differentially expressed genes between B1&B2 and M1&M2 into GO cellular component, GO molecular function, and GO biological process (Table S6, S7). The categories of ‘Response to abscisic acid stimulus’, ‘Defense response’, and ‘Response to jasmonic acid stimulus’ in GO biological process were overrepresented in genes showing B1&B2 > M1&M2 and B1&B2 < M1&M2 expression (Figure 6, 7, Table S6, S7). In the genes showing B1&B2 > M1&M2 expression, genes categorized into ‘Response to chitin’, ‘Response to ethylene stimulus’, ‘Response to ethylene stimulus’, ‘Response to wounding’, and ‘Response to salicylic acid stimulus’ in GO biological process were overrepresented (Figure 6, 7, Table S6). In the genes showing B1&B2 < M1&M2 expression, genes categorized into ‘Leaf senescence’, ‘Response to salt stress’, ‘Response to abiotic stimulus’, and ‘Response to cold’ in GO biological process were overrepresented (Figure 6, 7, Table S7). In the 61 genes, which showed
B1&B2 > M1&M2 expression and upregulated genes in both C24xCol and C24xLer hybrids (Table S2), similar categories to B1&B2 > M1&M2 expressed genes were overrepresented (Figure 6, Table S8).

Figure 6. GO classification in B1&B2 > M1&M2 and B1&B2 < M1&M2 expressed genes. * represents overrepresented GO categories in B1&B2 > M1&M2 expressed genes and differentially expressed genes in C24/Col and C24/Ler hybrids compared with MPV.

Figure 7. Expression pattern of genes showing B1&B2 > M1&M2 expression. GO terms related to plant hormone response are shown. Expression levels in Col, C24, C24xCol, ddm1Col, ddm1C24, ddm1C24xddm1Col are derived from [27]. Different red/ green colors indicate the fold change (up/down) from the MPV. ABA, abscisic acid; JA, jasmonic acid; SA, salicylic acid.
2.6. Overexpression resulted in plant size difference

We focused on the B1&B2 > M1&M2 expressed genes, especially transcription factors as they control many biological processes by regulating gene expression. cDNAs from the first methionine to the stop codon of 21 genes were placed under the control of a 35S promoter, and binary vectors were transformed into the wild type Col accession of A. thaliana (Table 2). We obtained more than three independent T1 transgenic plants for each gene. Bulked T2 seeds were sown on MS medium, and we compared the rosette diameter at 14 and 21 DAS of T2 plants with and without transgenes. Twelve of 21 lines showed no difference between transgenic plants and non-transgenic controls at either 14 or 21 DAS (Figure 8, Table 2). In two lines, #18 and #20, the rosette diameter of transgenic plants was larger than non-transgenic plants at 14 DAS (Figure 8, Table 2). Three lines, #1, #6, and #14, had larger rosette diameter than non-transgenic plants at 14 DAS, but the rosette diameter was smaller at 21 DAS (Figure 8, Table 2). In three lines, #4, #5, and #13, the rosette diameter in transgenic plants was larger than non-transgenic only at 21 DAS (Figure 8, Table 2). A transgenic line, #9, showed a smaller rosette diameter than non-transgenic plants at both 14 and 21 DAS, and plants had pleiotropic seedling size (Figure S2). Although there was no rosette size difference in #19 compared with non-transgenic controls, all plants with transgenes showed narrow and light green leaves (Figure S2). We confirmed the overexpression in some genes compared with control plants (Figure S3).

Table 2. List of genes for producing overexpressed transgenic plants

Number	Gene model	Name	Description	14 DAS*	21 DAS**
#1	At1g05575	Unknown protein	1.00**	0.88**	
#2	At1g19210	ERF17	Encodes a member of the DREB subfamily A-5 of ERF/AP2 transcription factor family	1.00	0.95
#3	At1g22810	ERF19	Encodes a member of the DREB subfamily A-5 of ERF/AP2 transcription factor family	1.07	1.06
#4	At1g33760	ERF22	Encodes a member of the DREB subfamily A-5 of ERF/AP2 transcription factor family	1.08	1.04*
#5	At2g26020	PDF1.2b	Predicted to encode a PR (pathogenesis-related) protein	1.04	1.14*
#6	At2g35290	SAUR79	SMALL AUXIN UPREGULATED RNA 79	1.19**	0.88**
#7	At2g44840	ERF13	ETHYLENE-RESPONSIVE ELEMENT BINDING FACTOR 13	0.95	0.93
#8	At4g17490	ERF6	ETHYLENE RESPONSIVE ELEMENT BINDING FACTOR 6	1.06	1.02
#9	At4g30290	XTH19	XYLOGLUCAN ENDOTRANSGLYCOSYLASE/HYDROLASE 19	0.92**	0.65**
#10	At4g38840	SAUR14	SMALL AUXIN UPREGULATED RNA 14	1.01	0.99
#11	At5g07100	WRX26	Encode WRKY DNA-binding protein 26	0.99	0.90
#12	At5g09570	Coxl-1-like CHIC family protein	1.02	1.08	
#13	At5g27420	CN11	CARBON/NITROGEN INSSENSITIVE 1	0.95	1.06**
#14	At5g23860	CML37	Calmodulin like 37	1.16**	0.85**
#15	At5g47230	ERF5	ETHYLENE RESPONSIVE ELEMENT BINDING FACTOR 5	1.03	1.03
#16	At5g51190	ERF105	Encodes a member of the ERF subfamily B-3 of ERF/AP2 transcription factor family	1.02	0.93
#17	At3g12040	GDPD1	GLYCEROPHOSPHODIESTER PHOSPHOMONODESTRASE 1	0.94	1.00
#18	At3g32520	MYB15	MYB DOMAIN PROTEIN 15	1.22**	0.91
#19	At4g34410	RRF1/ERF109	REDOX RESPONSIVE TRANSCRIPTION FACTOR 1	1.03	0.92
#20	At2g20750	EXP81	EXPANSIN B1	1.24**	1.06
#21	At4g28250	EXP83	EXPANSIN B3	0.98	0.98

*, ratio of rosette diameter in transgenic plants compared with non-transgenic plants. *, p < 0.05; **, p < 0.01 (Student's t-test)
3. Discussion

One of the advantages of F1 hybrid cultivars in crops and vegetables is their uniform phenotype, which makes management of cultivation easier [28]. This uniformity of F1 hybrid cultivars is considered to be due to the high rate of homozygosity of the parental lines. As A. thaliana has a high rate of inbreeding [29], the genetic background in the C24 x Col hybrid should be identical in individual plants and C24 x Col hybrids show a similar level of heterosis in each. However, our results showed variation of plant size among individual F1 plants; the biggest rosette diameter is more than two times larger than the smallest. This increased leaf area in big sized F1 plants is due to increased cell size. These results suggest the possibility that heterosis level and/or plant size are affected by epigenetic changes because of their identical genetic background. One possibility is that there is epigenetic variation within individual F1 plants. Non-additive DNA methylation occurs in the F1 by the allelic interaction of different DNA methylation states in parental lines [30,31], and the DNA methylation state might not be uniform in individual F1 plants. The epigenetic inbred (epiRIL) lines, which have a difference of DNA methylation level with the same genetic background, show higher divergence of flowering time and plant height compared to wild type Col [32]. This phenomenon could explain plant size variation in individual F1 plants. The other possibility is that epigenetic variation was generated by environmental effects. One candidate is differences of light intensity as in this hybrid, there is increased heterosis under increased light intensity [21]. In our experiments, plants were grown under well-controlled conditions and differences of light intensity between plants were small (150–180 μmol photons·m−2·s−1), but this small difference might result in plant size of F1 plants varying.

We identified differentially expressed genes between big and medium sized F1 plants, and approximately 30% of genes showing B1&B2 > M1&M2 expression overlapped with genes upregulated in heterotic F1 plants (C24/Col and C24/Ler) compared with MPV. These genes were categorized into response to wounding, defense response, and response to plant hormones such as ethylene (ET), abscisic acid (ABA), salicylic acid (SA), and jasmonic acid (JA). Transcriptome analysis comparing heterotic F1 and MPV suggested several possibilities to explain the heterosis. (1) Decreased in expression levels of defense responsive genes may play an important role in heterosis by reducing energy cost for defense and releasing resource allocation to plant growth [17,24,33]. (2) A reduction in SA concentration with lower expression levels of SA responsive genes is associated with increased biomass [17]. (3) Negative effects of ET on heterosis have been suggested [34]. (4) Delayed senescence could be involved in heterosis at later developmental stages [35]. In our transcriptome data, similar categories were overrepresented in differentially expressed genes.
between big and medium sized F₁ plants. However, sometimes, the direction of change of expression levels does not match between big vs. medium sized F₁ plants and the heterotic F₁ vs. MPV, i.e., in big sized F₁ plants, more defense responsive genes were upregulated, and higher expression levels in genes involved in response to ET or SA stimulus was found. These results suggest that these genes are involved in determining the plant size, and any further increase in plant size of heterotic F₁ plants may result from a different expression pattern to non-additive expression.

Loss of DDM1 function showed a decreased in heterosis level compared with wild type F₁ [27, 36]. The 25 genes showing B1&B2 > M1&M2 expression overlapped with downregulated genes in wild type F₁ compared with ddm1 F₁, i.e., an opposite expression pattern. The relationship between increase / decrease in expression level and plant size does not necessarily match in the big size F₁ plants and the decreased plant size in ddm1 F₁ and changing expression levels of these genes might be involved in the change of plant size.

Heterosis has been suggested to affect ET biosynthesis or signal transduction, and overexpression of the ET biosynthesis gene, 1-aminoacyclopropane-1-carboxyate synthase 6 (ACS6), eliminated heterosis [34]. In this study, we made transgenic plants overexpressing eight genes encoding ET response factors but overexpressing these genes did not lead to any change of plant size, except for plants overexpressing ETHYLENE RESPONSIVE ELEMENT BINDING FACTOR22 (ERF22), which showed an increased plant size at 21 DAS. Expansin (EXP) and Xyloglucan endotransglucosylases/hydrolase (XTH) are known to be involved in loosening cell wall architecture and cell enlargement [37]. Upregulation of XTH genes has been observed in heterotic hybrids and hybrid mimic lines [17, 38]. In this study, overexpression of β-expansin 1 (EXPB1) induced increased plant size at 14 DAS, while overexpression of EXPB3 did not change the plant size. Overexpressing XTH19 showed variation of plant size, and the average plant size was decreased. XTH19 showed tissue specific expression, specifically in roots [39]. Constitutive XTH19 expression in vegetative tissues may be negative for vegetative development. A growth-defense tradeoffs model has been proposed for heterosis or hybrid necrosis phenomena [1,40,41]. Overexpressing CARBON/NITROGEN INSSENSITIVE 1 (CNI1) or Plant defensin 1.2b (PDF1.2b) led to increased plant size at 21 DAS. CNI1 is important for the carbon/nitrogen response during the early post-germinative growth, and overexpression of CNI1 causes less sensitivity to change in C/N conditions [42]. CNI1 expression was induced by Pseudomonas syringae pv. tomato DC3000 (Pst. DC3000) infection and overexpression of CNI1 increased resistance to Pst. DC3000 [43]. In addition, overexpression of CNI1 suppressed the senescence phenotype [44]. PDF1.2b encodes plant defensin and is involved in non-host pre-invasive defense response [45]. Most transcriptome analyses comparing heterotic inter- or intra-hybrids and their parents have shown the downregulation of defense responsive genes in F₁ plants [14,17,33,46,47]. However, upregulation of some defense response genes occurred in non-additively expressed genes, suggesting that upregulation of these genes might have a positive effect on plant growth. Overexpression of some genes, which were upregulated in big sized F₁ plants, showed an increased plant size at 14 or 21 DAS and a large variation of plant size within the lines. However, increased plant size was not observed at all time points. As plant size or heterosis is regulated by tissue- and stage-dependent transcriptional networks, a possible reason is that overexpression of a single gene is not enough to generate the phenotype and overexpression of multiple genes may be required. Alternatively, changes in gene expression at particular time points may be important for increased plant size.

4. Materials and Methods

4.1. Plant materials and growth condition

F₁ between C24 and Col accessions and its F₁ population were used for analysis of plant size, microarray, and qPCR. Plants were grown in a controlled environment (22 °C) under fluorescent lights (150–180 μmol photons·m⁻²·s⁻¹) and a 16-h/8-h (day/night) photoperiod. Plants were grown in plastic dishes containing Murashige and Skoog (MS) agar medium supplemented with 1.0% sucrose (pH 5.7), and were transferred to soil at 14 DAS.
4.2. Measuring seed size, rosette diameter, leaf area, and cell size

Dry mature seed was photographed under a stereoscopic microscope, and sizes were determined with Image-J software (http://rsb.info.nih.gov/ij/). Rosette diameter was measured for evaluation of plant size and equals the maximum diameter of the rosette as measured between the two largest leaves. Rosette diameter depends on leaf blade and petiole length. The 1st and 2nd leaves at 14 DAS were fixed in a formalin/acetic acid/alcohol solution (ethanol: acetic acid: formalin = 16:1:1). The leaf was photographed under a stereoscopic microscope, and sizes were determined with Image-J software. After examination of leaf area, they were cleared in a chloral hydrate/glycerol/water solution (chloral hydrate: H2O: glycerol = 8:2:1), and the samples were photographed under Nomarski optics. The palisade cell number per fixed unit area in the subepidermal layer of the center of the leaf blade between the midvein and the leaf margin was counted. Three independent experiments were performed for examination of seed size, leaf area, and cell size. Statistical comparisons of seed size, leaf area, and cell size were performed using Student’s t-test (p < 0.05).

4.3. Expression analysis

Total RNA was isolated from aerial tissues at 14 DAS in F1 or F2 plants using the SV Total RNA Isolation System (Promega). From 500 ng total RNA, first-strand cDNA was synthesized using random primers by SuperScript III Reverse Transcriptase (Invitrogen). Prior to qPCR, the specificity of the primer set for each gene was first tested by electrophoresis of PCR amplified products using EmeraldAmp MAX PCR Master Mix (Takara bio) on 2.0% agarose gel in which single products were observed. Absence of genomic DNA contamination was confirmed by the PCR of no RT control. RT-PCR conditions were 95 °C for 3 min followed by 30 cycles of 95 °C for 30 s, 55 °C for 30 s, and 72 °C for 30 s. qPCR was performed using a Rotor-Gene 3000 Real-Time Cycler (Qiagen). The cDNA was amplified using Platinum Taq DNA polymerase (Invitrogen). PCR conditions were 95 °C for 2 min followed by 40 cycles of 95 °C for 30 s, 55 °C for 30 s, and 72 °C for 30 s. Expression levels of genes were calculated relative to Isopentenyl pyrophosphate-dimethylallyl pyrophosphate isomerase 2 (IPP2) genes using the comparative quantification analysis method with Rotor-Gene 6 (Qiagen). Data presented are the average and standard error (s.e.) from two or three biological and three experimental replications. Primer sequences are shown in Table S9.

4.4. Microarray analysis

Arabidopsis ATH1 Genome Array (Affymetrix) was used for transcriptome analysis. Total RNA (100 ng) from aerial tissues at 14 DAS from big and medium sized F1 plants was used for probe synthesis. Biotinylated cRNAs were synthesized using the IVT Labeling Kit (Affymetrix). Hybridization and scanning were performed according to the manufacturer’s instructions. Two independent biological replicates were performed. Data were analyzed following [14].

4.5. Gene ontology analysis

Analysis for enrichment of gene functional ontology terms was completed using the gene ontology (GO) tool agriGO [48]. The background reference for microarray analysis was the list of genes that displayed expression above-background in either the parental or F1 samples from each platform [14]. Statistical tests for enrichment of functional terms used the hypergeometric test and false discovery rate (FDR) correction for multiple testing to a level of 5% FDR.

4.6. Constructs and plant transformation

The complete CDS were amplified by RT-PCR using gene-specific primers designed to add Xba I and Sac I or Bam HI and Sac I restriction sites to the 5’- and 3’-ends, and PCR products were cloned into pGEM T-easy vector (Promega). The DNA fragment was then inserted into Xba I and Sac I or
Bam HI and **Sac** I restriction sites of the plant expression vector pBI121 under the control of CaMV35S promoter. The constructs were transformed into *Agrobacterium tumefaciens* strain EHA105 and transformation of Col accession was carried out by the floral dip procedure [49]. Positive transformants were selected in kanamycin (30μg/ml) plates and confirmed by PCR. Primers used for constructing the vector are listed in Table S9.

T: plants were grown in plastic dishes containing MS agar medium supplemented with 1.0% sucrose (pH 5.7). At 14 DAS, they were transferred to soil and grown under long day conditions (16 h light) at 22 °C. The presence or absence of transgene was examined by PCR using neomycin phosphotransferase II (NPTII) primer set (Table S9).

5. Conclusions

We found a variation in size in F1 plants of *A. thaliana* and identified genes that were differentially expressed between big and medium sized F1 plants. These differentially expressed genes tended to overlap with non-additively expressed genes in heterotic F1, however, increases and decreases in expression levels in big sized plants/heterotic F1 did not always match. Non-additively expressed genes showed tissue and stage specificity [1], e.g., upregulation of chloroplast-targeted genes was limited to a few days [14,18,19]. We suggest that changes in the expression of these genes, not the constitutively increased or decreased expression levels, may be important for increased plant size. Having variability in plant size in the F1 generation is not a suitable phenotype for F1 hybrid cultivars of crops, but this phenomenon may allow exploration of the factors necessary for maximizing the potential plant size or for stability of heterosis regardless of environmental effects.

Supplementary Materials: The following are available online, Figure S1: Expression pattern of genes upregulated in big sized F1 plants compared with medium sized F1 plants and downregulated in ddmi F1 compared with wild type F1, Figure S2: Plant phenotypes of transgenic plant lines of *n*9 and *n*19 at 21 DAS, Figure S3: Confirmation of transgene expression levels by RT-PCR, Table S1: Differentially expressed genes between big and medium sized F1 plants, Table S2: Genes showing differential expression between big and medium sized F1 plants and upregulation in C24/Col and C24/Ler hybrids, Table S3: Validation of microarray expression data by quantitative RT-PCR, Table S4: Classification of gene expression pattern in big and medium sized F1 plants, Table S5: Comparison of gene expression levels between big and medium sized F1 plants, Table S6: GO function term overrepresented in genes showing B1&B2 > M1&M2 expression, Table S7: GO function term overrepresented in genes showing B1&B2 < M1&M2 expression, Table S8: GO function term overrepresented in genes showing B1&B2 > M1&M2 expression and upregulation in both C24/Col and C24/Ler hybrids, Table S9: Sequences of primers used in this study.

Author Contributions: Conceptualization, T.K., R.F. and E.S.D.; methodology, validation, and formal analysis, H.M., T.K., M.S., N.M., A.A., R.F.; writing—original draft preparation, H.M., T.K., E.S.D. and R.F.; writing—review and editing, H.M., T.K., E.S.D. and R.F.; funding acquisition, R.F. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Grant-in-Aid Young Scientists (A) (15H05614), Fund for the Promotion of Joint Research (16KK0171), and Grant-in-Aid for Scientific Research (B) (19H02947) by Japan Society for the Promotion of Science (JSPS).

Acknowledgments: We thank Ms. Chika Ide for her technical assistance. We also thank Dr. Kenji Osabe and Dr. Daniel J. Shea for their helpful comments and manuscript editing.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Fujimoto, R.; Uezono, K.; Ishikura, S.; Osabe, K.; Peacock, W.J.; Dennis, E.S. Recent research on the mechanism of heterosis is important for crop and vegetable breeding systems. *Breed. Sci.* **2018**, *68*, 145-158.
2. Crow, J.F. 90 years ago: The beginning of hybrid maize. *Genetics* **1998**, *148*, 923-928.
3. Lippman, Z.B.; Zamir, D. Heterosis: revisiting the magic. *Trends Genet.* **2007**, *23*, 60-66.
4. Birchler, J.A.; Yao, H.; Chudalayandi, S.; Vaiman, D.; Veitia, R.A. Heterosis. *Plant Cell* **2010**, *22*, 2105-2112.
5. Chen, Z.J. Genomic and epigenetic insights into the molecular bases of heterosis. *Nat. Rev. Genet.* **2013**, *14*, 471-482.

6. Schnable, P.S.; Springer, N.M. Progress toward understanding heterosis in crop plants. *Annu. Rev. Plant Biol.* **2013**, *64*, 71-88.

7. Groszmann, M.; Greaves, I.K.; Fujimoto, R.; Peacock, W.J.; Dennis, E.S. The role of epigenetics in hybrid vigour. *Trends Genet.* **2013**, *29*, 684-690.

8. Miyaji, N.; Fujimoto, R. Hybrid vigor: importance of epigenetic processes and consequences for breeding. *Adv. Bot. Res.* **2018**, *88*, 247-275.

9. Birchler, J.A.; Auger, D.L.; Riddle, N.C. In Search of the molecular basis of heterosis. *Plant Cell* **2003**, *15*, 2236-2239.

10. Swanson-Wagner R.A.; Jia, Y.; DeCook, R.; Borsuk, L.A.; Nettleton, D.; Schnable, P.S. All possible modes of gene action are observed in a global comparison of gene expression in a maize F1 hybrid and its inbred parents. *Proc. Natl. Acad. Sci. U.S.A.* **2006**, *103*, 6805-6810.

11. Wei, G.; Tao, Y.; Liu, G.; Chen, C.; Luo, R.; Xia, H.; Gan, Q.; Zeng, H.; Lu, Z.; Han, Y.; Song, G.; Zhai, H.; Peng, Y.; Li, D.; Xu, H.; Wei, X.; Cao, M.; Deng, H.; Xin, Y.; Fu, X.; Yuan, L.; Yu, J.; Zhu, Z.; Zhu, L. A transcriptomic analysis of superhybrid rice LYP9 and its parents. *Proc. Natl. Acad. Sci. U.S.A.* **2009**, *106*, 7695-7701.

12. He, G.; Zhu, X.; Elling, A.A.; Chen, L.; Wang, X.; Guo, L.; Liang, M.; He, H.; Zhang, H.; Chen, F.; Qi, Y.; Chen, R.; Deng, X.W. Global epigenetic and transcriptional trends among two rice subspecies and their reciprocal hybrids. *Plant Cell* **2010**, *22*, 17-33.

13. Song, G.S.; Zhai, H.L.; Peng, Y.G.; Zhang, L.; Wei, G.; Chen, X.Y.; Xiao, Y.G.; Wang, L.; Chen, Y.J.; Wu, B.; Chen, B.; Zhang, Y.; Chen, H.; Peng, X.J.; Gong, W.K.; Liu, Y.; Yin, Z.J.; Wang, F.; Liu, G.Z.; Xu, H.L.; Wei, X.L.; Zhao, X.L.; Ouwerkerk, P.B.; Hankemeier, T.; Reijmers, T.; van der Heijden, R.; Lu, C.M.; Wang, M.; van der Gref, J.; Zhu, Z. Comparative transcriptional profiling and preliminary study on heterosis mechanism of super-hybrid rice. *Mol. Plant* **2010**, *3*, 1012-1025.

14. Fujimoto, R.; Taylor, J.M.; Shirasawa, S.; Peacock, W.J.; Dennis, E.S. Heterosis of *Arabidopsis* hybrids between C24 and Col is associated with increased photosynthesis capacity. *Proc. Natl. Acad. Sci. U.S.A.* **2012**, *109*, 7109-7114.

15. Meyer, R.C.; Witucka-Wall, H.; Becher, M.; Blacha, A.; Boudichevskaia, A.; Dörmann, P.; Fiehn, O.; Friedel, S.; von Korff, M.; Lisec, J.; Melzer, M.; Repsilber, D.; Schmidt, R.; Scholz, M.; Selbig, J.; Willmitzer, L.; Altmann, T. Heterosis manifestation during early *Arabidopsis* seedling development is characterized by intermediate gene expression and enhanced metabolic activity in the hybrids. *Plant J.* **2012**, *71*, 669-683.

16. Shen, H.; He, H.; Li, J.; Chen, W.; Wang, X.; Guo, L.; Peng, Z.; He, G.; Zhong, S.; Qi, Y.; Terzaghi, W.; Deng, X.W. Genome-wide analysis of DNA methylation and gene expression changes in two *Arabidopsis* ecotypes and their reciprocal hybrids. *Plant Cell* **2012**, *24*, 875-892.

17. Groszmann, M.; Gonzalez-Bayon, R.; Lyons, R.L.; Greaves, I.K.; Kazan, K.; Peacock, W.J.; Dennis, E.S. Hormone-regulated defense and stress response networks contribute to heterosis in *Arabidopsis F1* hybrids. *Proc. Natl. Acad. Sci. U.S.A.* **2015**, *112*, E6397-E6406.

18. Zhu, A.; Greaves, I.K.; Liu, P.C.; Wu, L.; Dennis, E.S.; Peacock, W.J. Early changes of gene activity in developing seedlings of *Arabidopsis* hybrids relative to parents may contribute to hybrid vigour. *Plant J.* **2016**, *88*, 597-607.

19. Saeki, N.; Kawanabe, T.; Ying, H.; Shimizu, M.; Kojima, M.; Abe, H.; Okazaki, K.; Kaji, M.; Taylor, J.M.; Sakakibara, H.; Peacock, W.J.; Dennis, E.S.; Fujimoto, R. Molecular and cellular characteristics of hybrid vigour in a commercial hybrid of Chinese cabbage. *BMC Plant Biol.* **2016**, *16*, 45.

20. Barth, S.; Busimi, A.K.; Friedrich, Utz.H.; Melchinger, A.E. Heterosis for biomass yield and related traits in five hybrids of *Arabidopsis thaliana* L. Heynh. *Heredity* **2003**, *91*, 36-42.

21. Meyer, R.C.; Törjék, O.; Becher, M.; Altmann, T. Heterosis of biomass production in *Arabidopsis* establishment during early development. *Plant Physiol.* **2004**, *134*, 1813-1823.

22. Moore, S.; Lukens, L. An evaluation of *Arabidopsis thaliana* hybrid traits and their genetic control. *G3* **2011**, *1*, 571-579.

23. Seymour, D.K.; Chae, E.; Grimm, D.G.; Pizarro, C.M.; Habring-Müller, A.; Vasseur, F.; Rakitsch, B.; Borgwardt, K.M.; Koenig, D.; Weigel, D. Genetic architecture of nonadditive inheritance in *Arabidopsis thaliana* hybrids. *Proc. Natl. Acad. Sci. U.S.A.* **2016**, *113*, E7317-E7326.
24. Yang, M.; Wang, X.; Ren, D.; Huang, H.; Xu, M.; He, G.; Deng, X.W. Genomic architecture of biomass heterosis in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 8101-8106.

25. Vasseur, F.; Fouqueau, L.; de Vienne, D.; Nidelet, T.; Violle, C.; Weigel, D. Nonlinear phenotypic variation uncovers the emergence of heterosis in Arabidopsis thaliana. PLoS Biol. 2019, 17, e3000214.

26. Groszmann, M.; Gonzalez-Bayon, R.; Greaves, I.K.; Wang, L.; Huen, A.K.; Peacock, W.J.; Dennis, E.S. Intraspecific Arabidopsis hybrids show different patterns of heterosis despite the close relatedness of the parental genomes. Plant Physiol. 2014, 166, 265-280.

27. Zhang, Q.; Li, Y.; Xu, T.; Srivastava, A.K.; Wang, D.; Zeng, L.; Yang, L.; He, L.; Zhang, H.; Zheng, Z.; Yang, D.L.; Zhao, C.; Dong, J.; Gong, Z.; Liu, R.; Zhu, J.K. The chromatin remodeler DDM1 promotes hybrid vigor by regulating salicylic acid metabolism. Cell Discov. 2016, 2, 16027.

28. Berlan, J.P. Hybrid corn and the unsettled question of heterosis. J. Genet. 2018, 97, 1075-1082.

29. Bombley, K.; Yant, L.; Laitinen, R.A.; Hollister, J.D.; Warthmann, N.; Fitz, J.; Weigel, D. Local-scale patterns of genetic variability, outcrossing, and spatial structure in natural stands of Arabidopsis thaliana. PLoS Genet. 2010, 6, e1000890.

30. Greaves, I.K.; Groszmann, M.; Ying, H.; Taylor, J.M.; Peacock, W.J.; Dennis, E.S. Trans chromosomal methylation in Arabidopsis hybrids. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 3570-3575.

31. Greaves, I.K.; Groszmann, M.; Dennis, E.S.; Peacock, W.J. Trans-chromosomal methylation. Epigenetics 2012, 7, 800-805.

32. Hu, Y.; Morota, G.; Rosa, G.J.M.; Gianola, D. Prediction of plant height in Arabidopsis thaliana using DNA methylation data. Genetics 2015, 201, 779-793.

33. Miller, M.; Song, Q.; Shi, X.; Juenger, E.T.; Chen, Z.J. Natural variation in timing of stress-responsive gene expression predicts heterosis in intraspecific hybrids of Arabidopsis. Nat. Commun. 2015, 6, 7453.

34. Song, Q.; Ando, A.; Xu, D.; Fang, L.; Zhang, T.; Huq, E.; Qiao, H.; Deng, X.W.; Chen Z.J. Diurnal down-regulation of ethylene biosynthesis mediates biomass heterosis. Proc. Nat. Acad. Sci. U.S.A. 2018, 115, 5606-5611.

35. Gonzalez-Bayon, R.; Shen, Y.; Groszmann, M.; Zhu, A.; Wang, A.; Allu, A.D.; Dennis, E.S.; Peacock, W.J.; Greaves, I.K. Senescence and defense pathways contribute to heterosis. Plant Physiol. 2019, 180, 240-252.

36. Kawanabe, T.; Ishikura, S.; Miyaji, N.; Sasaki, T.; Wu, L.M.; Itabashi, E.; Takada, S.; Shimizu, M.; Takasaki-Yasuda, T.; Osabe, K.; Peacock, W.J.; Dennis, E.S.; Fujimoto, R. Role of DNA methylation in hybrid vigor in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 2016, 113, E6704-E6711.

37. Majda, M.; Robert, S. The role of auxin in cell wall expansion. Int. J. Mol. Sci. 2018, 19, 951.

38. Wang, L.; Wu, L.M.; Greaves, I.K.; Dennis, E.S.; William James Peacock W.J. In Arabidopsis hybrids and Hybrid Mimics, up-regulation of cell wall biogenesis is associated with the increased plant size. Plant Direct 2019, 3, 1-15.

39. Pitaksaringkarn, W.; Matsuoka, K.; Asahina, M.; Miura, K.; Sage-Ono, K.; Ono, M.; Yokoyama, R.; Nishitani, K.; Ishii, T.; Iwai, H.; Satoh, S. XTH20 and XTH19 regulated by ANAC071 under auxin flow are involved in cell proliferation in incised Arabidopsis inflorescence stems. Plant J. 2014, 80, 604-614.

40. Huot, B.; Yao, J.; Montgomery, B.L.; He, S.Y. Growth-defense tradeoffs in plants: A balancing act to optimize fitness. Mol. Plant 2014, 7, 1267-1287.

41. Tonosaki, K.; Osabe, K.; Kawanabe, T.; Fujimoto, R. The importance of reproductive barriers and the effect of allopolyploidization on crop breeding. Breed. Sci. 2016, 66, 333-349.

42. Sato, T.; Maekawa, S.; Yasuda, S.; Sonoda, Y.; Katoh, E.; Ichikawa, T.; Nakazawa, M.; Seki, M.; Shinozaki, K.; Matsui, M.; Goto, D.B.; Ikedo, A.; Yamaguchi, J. CNII/ATL31, a RING-type ubiquitin ligase that functions in the carbon/nitrogen response for growth phase transition in Arabidopsis seedlings. Plant J. 2009, 60, 852-864.

43. Maekawa, S.; Sato, T.; Asada, Y.; Yasuda, S.; Yoshida, M.; Chiba, Y.; Yamaguchi, J. The Arabidopsis ubiquitin ligatin ATL31 and ATL6 control the defense response as well as the carbon/nitrogen response. Plant Mol. Biol. 2012, 79, 217-227.

44. Aoyama, S.; Reye, T.H.; Guggielminetti, L.; Lu, Y.; Morita, Y.; Sato, T.; Yamaguchi, J. Ubiquitin ligase ATL31 functions in leaf senescence in response to the balance between atmospheric CO₂ and nitrogen availability in Arabidopsis. Plant Cell Physiol. 2014, 55, 293-305.

45. Hiruma, K.; Nishiuichi, T.; Kato, T.; Bednarek, P.; Okuno, T.; Schulze-Lefert, S.; Takano, Y. Arabidopsis ENHANCED DISEASE RESISTANCE 1 is required for pathogen-induced expression of plant defensins in...
nonhost resistance, and acts through interference of MYC2-mediated repressor function. *Plant J.* **2011**, *67*, 980-992.

46. Wang, J.; Tian, L.; Lee, H.S.; Wei, N.E.; Jiang, H.; Watson, B.; Madlung, A.; Osborn, T.C.; Doerge, R.W.; Comai, L.; Chen Z.J. Genomewide nonadditive gene regulation in Arabidopsis allotetraploids. *Genetics* **2006**, *172*, 507-517.

47. Fujimoto, R.; Taylor, J.M.; Sasaki, T.; Kawanabe, T.; Dennis, E.S. Genome wide gene expression in artificially synthesized amphidiploids of *Arabidopsis*. *Plant Mol. Biol.* **2011**, *77*, 419-431.

48. Du, Z.; Zhou, X.; Ling, Y.; Zhang, Z.; Su, Z. agriGO: A GO analysis toolkit for the agricultural community. *Nucleic Acids Res.* **2010**, *38*, W64-W70.

49. Clough, S.J.; Bent, A.F. Floral dip: a simplified method for *Agrobacterium*-mediated transformation of *Arabidopsis thaliana*. *Plant J.* **1998**, *16*, 735-743.