The matrix product representation for the q-VBS state of one-dimensional higher integer spin model

Kohei Motegi*

Okayama Institute for Quantum Physics,
Kyoyama 1-9-1, Okayama 700-0015, Japan

April 20, 2010

Abstract

The generalized q-deformed valence-bond-solid groundstate of one-dimensional higher integer spin model is studied. The Schwinger boson representation and the matrix product representation of the exact groundstate is determined, which recovers the former results for the spin-1 case or the isotropic limit. As an application, several correlation functions are evaluated from the matrix product representation.

1 Introduction

In one-dimensional quantum systems, a completely different behavior for the integer spin chains from the half-integer spin chains was predicted the Haldane [1, 2]. The antiferromagnetic isotropic spin-1 model introduced by Affleck, Kennedy, Lieb and Tasaki (AKLT model) [3], whose groundstate can be exactly calculated, has been a useful toy model for the deep understanding of Haldane’s prediction of the massive behavior for integer spin chains, such as the discovery of the special type of long-range order [4, 5].

The AKLT model has been generalized to higher spin models, anisotropic models, etc [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. The hamiltonians are essentially linear combinations of projection operators with nonnegative coefficients.

In this paper we consider the anisotropic integer spin-S Hamiltonian

$$H = \sum_{k=1}^{L} H(k, k + 1),$$ \hspace{1cm} (1)

$$H(k, k + 1) = \sum_{J=S+1}^{2S} C_J(k, k + 1) \pi_J(k, k + 1),$$ \hspace{1cm} (2)

where $C_J(k, k + 1) \geq 0$, and $\pi_J(k, k + 1)$, which acts on the k-th and $(k + 1)$-th site, is the $U_q(su(2))$ projection operator for $V_S \otimes V_S$ to V_J where V_J is the $(2J+1)$-dimensional representation of the quantum group $U_q(su(2))$ [19, 20]. We determine the matrix product representation for the groundstate, which is useful for calculations of correlation functions. For $S = 1$ or $q = 1$ limit, it recovers the known results for the isotropic spin-S model or anisotropic spin-1 model [8, 9, 11, 27]. Several correlation functions are evaluated from the matrix product representation.

This paper is organized as follows. In the next section, we briefly review the quantum group $U_q(su(2))$. By use of the Weyl representation of $U_q(su(2))$, we construct a boson representation for

*E-mail: motegi@gokutan.c.u-tokyo.ac.jp
the valence-bond-solid (VBS) groundstate. The matrix product representation for the VBS state is constructed in section 3, from which several correlation functions are evaluated for $S = 2$ and $S = 3$. Section 4 is devoted to conclusion.

2 Schwinger boson representation of the groundstate

The quantum group $U_q(su(2))$ is defined by generators X^+, X^-, H with relations

$$[X^+, X^-] = \frac{q^{H} - q^{-H}}{q - q^{-1}}, \quad [H, X^\pm] = \pm 2X^\pm.$$ \hfill (3)

The comultiplication is given by

$$\Delta(X^+) = X^+ \otimes q^{H/2} + q^{-H/2} \otimes X^+, \quad \Delta(X^-) = X^- \otimes q^{H/2} + q^{-H/2} \otimes X^-, \quad \Delta(H) = H \otimes 1 + 1 \otimes H.$$ \hfill (4-6)

For convenience, let us define q-integer, q-factorial and q-binomial coefficients as

$$[n]_q = \frac{q^n - q^{-n}}{q - q^{-1}}, \quad [n]_q! = \prod_{k=1}^{n} [k]_q, \quad \left[\begin{array}{c} n \\ k \end{array} \right]_q = \frac{[n]_q!}{[k]_q! \cdot [n-k]_q!}.$$ \hfill (7)

$U_q(su(2))$ has the Schwinger boson representation [21 22 23]. Introducing two q-bosons a and b satisfying

$$aa^\dagger - qa^\dagger a = q^{-N_a}, \quad bb^\dagger - qb^\dagger b = q^{-N_b}, \quad \text{[2]}$$\hfill (8)

$$[N_a, a] = -a, \quad [N_a, a^\dagger] = a^\dagger, \quad [N_b, b] = -b, \quad [N_b, b^\dagger] = b^\dagger,$$ \hfill (9)

$U_q(su(2))$ can be realized through the relations

$$X^+ = a^\dagger b, \quad X^- = b^\dagger a, \quad H = N_a - N_b.$$ \hfill (10)

The basis of $(2j + 1)$-dimensional representation V_j is given by

$$\vert j, m \rangle = \frac{(a^\dagger)^j (b^\dagger)^{-m}(b)^{-m} \vert \text{vac} \rangle}{([j + m]_q! [j - m]_q!)^{1/2}}, \quad (m = -j, \ldots, j).$$ \hfill (11)

We construct the VBS groundstate in terms of Schwinger bosons, following the arguments of [24]. Let us denote the q-bosons a and b acting on the l-th site as a_l and b_l. We utilize the Weyl representation of $U_q(su(2))$ [25 26] for convenience. a_l^\dagger and b_l^\dagger is represented as multiplication by variables x_l and y_l on the space of polynomials $\mathbb{C}[x_l, y_l]$, respectively. a_l and b_l are represented as difference operators

$$a_l = \frac{1}{(q - q^{-1}) x_l} (D^{x_l}_{q} - D^{x_l}_{q^{-1}}), \quad b_l = \frac{1}{(q - q^{-1}) y_l} (D^{y_l}_{q} - D^{y_l}_{q^{-1}}),$$ \hfill (12)

where

$$D^{x_l}_{p} f(x_l, y_l) = f(px_l, y_l), \quad D^{y_l}_{p} f(x_l, y_l) = f(x_l, py_l).$$ \hfill (13)

Then, at the l-th site, one has

$$X^+_l = \frac{x_l}{(q - q^{-1}) y_l} (D^{y_l}_{q} - D^{y_l}_{q^{-1}}), \quad X^-_l = \frac{y_l}{(q - q^{-1}) x_l} (D^{x_l}_{q} - D^{x_l}_{q^{-1}}), \quad q^{H_l} = D^{x_l}_{q} D^{y_l}_{q^{-1}}.$$ \hfill (14)
The highest weight vector \(v \) has the following Clebsch-Gordan decomposition:

The tensor product of two irreducible representations has the following decomposition:

\[V_{S_k} \otimes V_{S_l} = \bigoplus_{J=|S_k - S_l|}^{S_k + S_l} V_J. \]

The highest weight vector \(v_J \in V_J \) has the following form:

\[
v_J = \sum_{m_k + m_l = J} C_{m_k, m_l} x_k^{S_k + m_k} y_l^{-m_l}, \]

Since

\[
X_k^+ v_J = \Delta(X_k^+) \sum_{m_k + m_l = J} C_{m_k, m_l} x_k^{S_k + m_k} y_l^{-m_l} = \sum_{m_k=0}^{J-1} (|S_k - m_k|) q^{J-m_k} C_{m_k, J-m_k} + |S_l - J + m_k + 1| q^{-m_k-1} C_{m_k+1, J-m_k-1}
\]

one has

\[
C_{m_k, J-m_k} = \frac{(-1)^{S_k-m_k}}{(-1)^{S_k}} \begin{bmatrix} S_k + S_l - J \\ S_k - m_k \end{bmatrix} q^{m_k(J+1)} C_{0, J}. \]

Utilizing (19) and

\[
\prod_{j=1}^{m} (1 - z q^{2j-2}) = \sum_{k=0}^{m} (-z)^k q^{k(m-1)} \begin{bmatrix} m \\ k \end{bmatrix},
\]

one gets

\[
v_J = \frac{q^{S_k(J+1)} C_{0, J}}{(-1)^{S_k}} \begin{bmatrix} S_k + S_l - J \\ S_k \end{bmatrix} q \prod_{m=1}^{S} (x_k y_l - q^{2m-2-S_k-S_l} x_k y_l). \]

We are now considering the homogeneous chain, i.e., \(S_k = S \) for all \(k \). The highest weight vector \(v_S \in V_S \subset V_S \otimes V_S \) is divisible by \(\prod_{m=1}^{S} (q^m x_k y_l - q^{-m} y_k x_l) \). Moreover, we conjecture the following:

Conjecture

All vectors in \(V_j \subset V_S \subset V_S, \ j = 0, 1, \ldots, S \) are divisible by \(\prod_{m=1}^{S} (q^m x_k y_l - q^{-m} y_k x_l) \).

We have checked this conjecture for several values of \(S \). The vectors for the case \(S = 2 \) are listed in the Appendix. Based on this conjecture and the property of projection operators \(\pi_J w_K = \delta_{JK} w_K, w_K \in V_K \), we have the \(q \)-deformed lemma of Lemma 1 in \[24\].

Lemma

All solutions of

\[
\pi_J(k, k+1) |\psi\rangle = 0, \ S + 1 \leq J \leq 2S,
\]

[22]
for fixed k can be represented in the following form

$$|\psi\rangle = f(a_k^\dagger, b_k^\dagger, a_{k+1}^\dagger, b_{k+1}^\dagger) \prod_{m=1}^{S} (q^m a_k^\dagger b_{k+1}^\dagger - q^{-m} b_k^\dagger a_{k+1}^\dagger)|\text{vac}\rangle,$$

(23)

where $f(a_k^\dagger, b_k^\dagger, a_{k+1}^\dagger, b_{k+1}^\dagger)$ is some polynomial in $a_k^\dagger, b_k^\dagger, a_{k+1}^\dagger$ and b_{k+1}^\dagger.

From this Lemma, we find the q-deformed VBS groundstate is

$$|\Psi\rangle_{PBC} = \prod_{k=1}^{L} \prod_{m=1}^{S} (q^m a_k^\dagger b_{k+1}^\dagger - q^{-m} b_k^\dagger a_{k+1}^\dagger)|\text{vac}\rangle,$$

(24)

where $a_{L+1} = a_1, b_{L+1} = b_1$ for the periodic chain, and

$$|\Psi\rangle_{p_1, p_2} = Q_{\text{left}}(a_1^\dagger, b_1^\dagger; p_1) \prod_{k=1}^{L-1} \prod_{m=1}^{S} (q^m a_k^\dagger b_{k+1}^\dagger - q^{-m} b_k^\dagger a_{k+1}^\dagger) Q_{\text{right}}(a_L^\dagger, b_L^\dagger; p_2)|\text{vac}\rangle,$$

(25)

where

$$Q_{\text{left}}(a_1^\dagger, b_1^\dagger; p_1) = \left[\begin{array}{c} S \\ p_1 - 1 \end{array} q \right]^{1/2} (a_1^\dagger)^{S-p_1+1} b_{p_1-1}^\dagger, \quad (p_1 = 1, \ldots S + 1),$$

(26)

$$Q_{\text{right}}(a_L^\dagger, b_L^\dagger; p_2) = \left[\begin{array}{c} S \\ p_2 - 1 \end{array} q \right]^{1/2} (a_L^\dagger)^{p_2-1} b_{p_2+1}^\dagger, \quad (p_2 = 1, \ldots S + 1),$$

(27)

for the open chain, generalizing the results of [6].

3 Matrix product representation

In the last section, we constructed the q-VBS states in terms of Schwinger bosons. One can transform them in the matrix product representation as in [11, 27], which are

$$|\Psi\rangle_{PBC} = \text{Tr}[g_1 \otimes g_2 \otimes \cdots \otimes g_{L-1} \otimes g_L],$$

(28)

$$|\Psi\rangle_{p_1, p_2} = [g^\text{start} \otimes g_2 \otimes \cdots \otimes g_{L-1} \otimes g_L]_{p_1, p_2},$$

(29)

where g_k and g^start are $(S + 1) \times (S + 1)$ matrices whose matrix elements are given by

$$g_k(i, j) = (-1)^{S-i+j} q^{(2i-2-S)(S+1)/2} \times \left(\begin{array}{c} S \\ i-1 \end{array} q \right)^{1/2} (a_k^\dagger)^{S-i+j} (b_k^\dagger)^{S+i-j} |\text{vac}\rangle_k,$$

$$= (-1)^{S-i+j} q^{(2i-2-S)(S+1)/2} \times \left(\begin{array}{c} S \\ i-1 \end{array} q \right)^{1/2} [S-i+j]_q! [S+i-j]_q! |\text{vac}\rangle_k,$$

(30)

$$g^\text{start}(i, j) = \left(\begin{array}{c} S \\ i-1 \end{array} q \right)^{1/2} [S-i+j]_q! [S+i-j]_q! |\text{vac}\rangle_k.$$

(31)

For $q \rightarrow 1$ limit, one recovers the results of [27]. We can also construct the matrix product representation in the following form

$$|\Psi\rangle_{PBC} = \text{Tr}[f_1 \otimes f_2 \otimes \cdots \otimes f_{L-1} \otimes f_L],$$

(32)
where

\[f_k(i,j) = (-1)^{S-i+1}q^{i+j-2-S}(S+1)/2 \]

\[\times \left(\begin{bmatrix} S \\ i \end{bmatrix}_q \begin{bmatrix} S \\ j-1 \end{bmatrix}_q \right) \frac{[S-i+j]_q![S+i-j]_q!}{[S+j]_q![S+i]_q!} |S;j-i\rangle_k, \] (33)

which reproduces the result for \(S = 1 \). \[8, 9\].

From the matrix product representation, one can formulate correlation functions. Let \(f_j^f \) be a matrix replacing the ket vectors of the matrix \(f \) by the bra vectors. We define \((S+1)^2 \times (S+1)^2\) matrices \(G \) and \(G^A \) as

\[G_{(m_j-1,n_j-1;m_j,n_j)} = f_j^f(m_j-1,m_j)f_j(n_j-1,n_j), \] (34)

\[G^A_{(m_j-1,n_j-1;m_j,n_j)} = f_j^f(m_j-1,m_j)A_jf_j(n_j-1,n_j). \] (35)

Explicitly we have

\[G_{(a,b,c,d)} = \delta_{a-b,c-d}(-1)^{a+b}q^{(a+b+c+d-2S-4)(S+1)/2} \]

\[\times \left(\begin{bmatrix} S \\ a \end{bmatrix}_q \begin{bmatrix} S \\ b \end{bmatrix}_q \begin{bmatrix} S \\ c \end{bmatrix}_q \begin{bmatrix} S \\ d \end{bmatrix}_q \right)^{1/2} \]

\[\times ([S-a+c]_q![S+a-c]_q![S-b+d]_q![S+b-d]_q])^{1/2}. \] (36)

The eigenvalues of \(G \) for \(S = 2 \) are

\[\lambda_1 = [5]_q[4]_q[2]_q, \] (37)

\[\lambda_2 = \lambda_3 = \lambda_4 = -[5]_q[2]_q, \] (38)

\[\lambda_5 = \lambda_6 = \lambda_7 = \lambda_8 = \lambda_9 = [2]_q. \] (39)

Moreover, we conjecture that the eigenvalues of \(G \) for general \(S \) is given by

\[\lambda(l) = (-1)^l \frac{[2S+1]_q!}{[S+1]_q} \left(\begin{bmatrix} S \\ l \end{bmatrix}_q \right), \quad (l = 0, 1, \ldots, S), \] (40)

where the degeneracy of \(\lambda(l) \) is \(2l + 1 \).

For \(A = S^z \), one has

\[G^A_{(a,b,c,d)} = \delta_{a-b,c-d}(d-b)(-1)^{a+b}q^{a+b+c+d-2S-4}(S+1)/2 \]

\[\times \left(\begin{bmatrix} S \\ a \end{bmatrix}_q \begin{bmatrix} S \\ b \end{bmatrix}_q \begin{bmatrix} S \\ c \end{bmatrix}_q \begin{bmatrix} S \\ d \end{bmatrix}_q \right)^{1/2} \]

\[\times ([S-a+c]_q![S+a-c]_q![S-b+d]_q![S+b-d]_q])^{1/2}. \] (41)

One point function \(\langle A \rangle \) and two point function \(\langle A_1B_r \rangle \) of the periodic chain can be represented as

\[\langle A \rangle = (\text{Tr } G^L)^{-1} \text{Tr } G^A G^{L-1}, \] (42)

\[\langle A_1B_r \rangle = (\text{Tr } G^b)^{-1} \text{Tr } G^A G^{r-2} G^B G^{L-r}. \] (43)
Denoting the eigenvalues and the normalized eigenvectors of L as $|\lambda_1| > |\lambda_2| \geq \cdots \geq |\lambda_{(S+1)^2}|$ and $|e_1, e_2, \ldots, e_{(S+1)^2}|$, (12) and (13) reduces to
\[
\langle A \rangle = \lambda_1^{-1} \langle e_1 | G^A | e_1 \rangle,
\]
\[
\langle A_1 B_r \rangle = \sum_{n=1}^{(S+1)^2} \lambda_n^{-2} \left(\frac{\alpha_n}{\lambda_1} \right)^r \langle e_1 | G^A | e_n \rangle \langle e_n | G^B | e_1 \rangle.
\]
in the thermodynamic limit $L \to \infty$.

Let us calculate several correlation functions. For $S = 2$, the probability of finding $S^z = m$ value $\langle P(S^z = m) \rangle$ is
\[
\langle P(S^z = 2) \rangle = \langle P(S^z = -2) \rangle = \frac{1}{[5]_q},
\]
\[
\langle P(S^z = 1) \rangle = \langle P(S^z = -1) \rangle = \frac{[2]_q [8]_q}{[5]_q [4]_q^2},
\]
\[
\langle P(S^z = 0) \rangle = \frac{[2]_q}{[5]_q [4]_q} \left(1 + \frac{[12]_q}{[3]_q [4]_q} \right).
\]
In the $q = 1$ limit, $\langle P(S^z = m) \rangle = 1/5$ for all m. As we move away from $q = 1$, $P(S^z = 0)$ increases, i.e., the spins prefer the transverse x-y plane. The spin-spin correlation function $\langle S^z_i S^z_r \rangle$ is
\[
\langle S^z_i S^z_r \rangle = \frac{[2]_q [3]_q}{[4]_q} \left(\frac{[2]_q}{[5]_q [4]_q} \right)^r \left\{ (q-q^{-1})(q^2 - q^{-2}) \frac{[6]_q^2}{[3]_q [2]_q^2} + [2]_q^2 (-[5]_q)^r \right\},
\]
which reduces to $-6(-2)^{-r}$ for $q = 1$. $\langle S^z_i S^z_r \rangle$ exhibits exponential decay for large distances, which is a typical behavior of gapful systems.

For $S = 3$, one has
\[
\langle S^z_i S^z_r \rangle = -\frac{[2]_q}{[6]_q [5]_q [3]_q} \left(\frac{[3]_q}{[7]_q [6]_q [5]_q} \right)^r \left\{ (q-q^{-1})^2(q^2 - q^{-2})^2([9]_q - (q^3 - q^{-3})^2)^2 \frac{[4]_q^2}{[2]_q^2} (-[2]_q)^r \right\} + (q^3 - q^{-3})^2 \frac{[8]_q^2 [5]_q [4]_q}{[4]_q} \left([7]_q [2]_q \right)^r + \frac{[2]_q^4 - 2[3]_q [2]_q [6]_q [2]_q}{[3]_q} \frac{[6]_q [2]_q}{[3]_q} (-[7]_q [6]_q)^r \right\},
\]
which reduces to $-80(-3)^{r-2}(-5)^{r}$ in the $q = 1$ limit.

4 Conclusion
In this paper, we considered one-dimensional spin-S q-deformed AKLT models. We derived the Schwinger boson representation and the matrix product representation for the valence-bond-solid groundstate. The matrix product representation is practical for calculating correlation functions. The spin-spin correlation functions exhibit exponential decay for large distances.

An interesting problem is to calculate the entanglement entropy of this model, which is a typical quantification of the entanglement of quantum systems. It is interesting to see how the entanglement entropy changes as we move away from the isotropic point $\{28, 29, 30\}$ (see also $\{31, 32\}$ for other VBS states).

Acknowledgement
This work was partially supported by Global COE Program (Global Center of Excellence for Physical Sciences Frontier) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

6
Appendix

We list all the vectors in \(v_j \in V_j \subset V_S \otimes V_S, j = 1, 2, \ldots, S \).

\[S = 2 \]

\[v_2 \propto x_k^2 x_l^2 (q x_k y_l - q^{-1} x_l y_k)(q^2 x_k y_l - q^{-2} x_l y_k), \]

\[(X_{kl}^{+}) v_2 \propto x_k x_l (q^{-2} x_k y_l + q^2 x_l y_k)(q x_k y_l - q^{-1} x_l y_k)(q^2 x_k y_l - q^{-2} x_l y_k), \]

\[(X_{kl}^{+})^2 v_2 \propto (q - 1)^2 x_k x_l y_k y_l + q^4 x_k^2 y_l^2 (q x_k y_l - q^{-1} x_l y_k)(q^2 x_k y_l - q^{-2} x_l y_k), \]

\[(X_{kl}^{+})^3 v_2 \propto y_k y_l (q^{-2} x_k y_l + q^2 x_l y_k)(q x_k y_l - q^{-1} x_l y_k)(q^2 x_k y_l - q^{-2} x_l y_k), \]

\[(X_{kl}^{+})^4 v_2 \propto y_k^2 y_l^2 (q x_k y_l - q^{-1} x_l y_k)(q^2 x_k y_l - q^{-2} x_l y_k), \]

\[v_1 \propto x_k x_l (x_k y_l - x_l y_k)(q x_k y_l - q^{-1} x_l y_k)(q^2 x_k y_l - q^{-2} x_l y_k), \]

\[(X_{kl}^{+}) v_1 \propto (q^{-2} x_k y_l + q^2 x_l y_k)(x_k x_l - x_l x_k)(q x_k y_l - q^{-1} x_l y_k)(q^2 x_k y_l - q^{-2} x_l y_k) \]

\[(X_{kl}^{+})^2 v_1 \propto y_k y_l (x_k y_l - x_l y_k)(q x_k y_l - q^{-1} x_l y_k)(q^2 x_k y_l - q^{-2} x_l y_k), \]

\[v_0 \propto (q^{-1} x_k y_l - q x_l y_k)(x_k y_l - x_l y_k)(q x_k y_l - q^{-1} x_l y_k)(q^2 x_k y_l - q^{-2} x_l y_k). \]

References

[1] F.D.M. Haldane, Phys. Lett. A 93 (1983) 464.
[2] F.D.M. Haldane, Phys. Rev. Lett. 50 (1983) 1153.
[3] I. Affleck, T. Kennedy, E.H. Lieb and H. Tasaki, Comm. Math. Phys. 115 (1988) 477.
[4] M. de Nijis and K. Rommelse, Phys. Rev. B 40 (1989) 4709.
[5] H. Totsuka, Phys. Rev. Lett. 66 (1991) 798.
[6] D. P. Arovas, A. Auerbach and F.D.M. Haldane, Phys. Rev. Lett. 60 (1988) 531.
[7] A. Klümper, A. Schadschneider and J. Zittartz, J. Phys. A 24 (1991) L955.
[8] A. Klümper, A. Schadschneider and J. Zittartz, Z. Phys. B 87 (1992) 443.
[9] A. Klümper, A. Schadschneider and J. Zittartz, Europhys. Lett. 24 (1993) 293.
[10] M. Oshikawa, J. Phys. Cond. Matt. 4 (1992) 7469.
[11] K. Totsuka and M. Suzuki, J. Phys. A 27 (1994) 6443.
[12] M.T. Batchelor and C.M. Yung, Int. J. Mod. Phys. B 8 (1994) 3645.
[13] M. Greiter and S. Rachel, Phys. Rev. B 75 (2007) 184441.
[14] D. Schuricht and S. Rachel, Phys. Rev. B 78 (2008) 014430.
[15] H-H. Tu, G-M. Zhang and T. Xiang, Phys. Rev. B 78 (2008) 094404.
[16] H-H. Tu, G-M. Zhang, T. Xiang, Z-X. Liu and T-K. Ng, Phys. Rev. B 80 (2009) 014401.
[17] V. Karimipour and L. Memarzadeh, Phys. Rev. B 77 (2008) 094416.
[18] D. P. Arovas, K. Hasebe, X-L. Qi and S-C. Zhang, Phys. Rev. B 79 (2009) 224404.
[19] V. Drinfeld, Sov. Math.-Dokl. 32 (1985) 254.
[20] M. Jimbo, Lett. Math. Phys. 10 (1985) 63.
[21] L.C. Biedenharn, J. Phys. A 22 (1989) L873.
[22] A.J. MacFarlane, J. Phys. A 22 (1989) 4581.
[23] T. Hayashi, Comm. Math. Phys. 127 (1990) 129.
[24] V.E. Korepin and Y. Xu, arXiv:0908.2345
[25] M. Jimbo, Quantum groups and Yang-Baxter equation (Springer-Verlag Tokyo, 1990).
[26] S. Cadransky, Int. J. Th. Phys. 31 (1992) 907.
[27] K. Totsuka and M. Suzuki, J. Phys. Condense. Matter 7 (1995) 1639.
[28] H. Fang, V.E.Korepin and V. Roychowdhury, Phys. Rev. Lett. 93 (2004) 227203.
[29] H. Katsura, T. Hirano and Y. Hatsugai, Phys. Rev. B 76 (2007) 012401.
[30] Y. Xu, H. Katsura, T. Hirano and V.E. Korepin, J. Stat. Phys. 133 (2008) 347.
[31] H. Katsura, T. Hirano and V.E. Korepin, J. Phys. A 41 (2008) 135304.
[32] H. Katsura, N. Kawashima, A. Kirillov, V.E. Korepin and S. Tanaka, arXiv:1003.2007.