On the free product of ordered groups

A. A. Vinogradov∗

One of the fundamental questions of the theory of ordered groups is what abstract groups are orderable. E. P. Shimbireva [2] showed that a free group on any set of generators can be ordered. This leads to the following problem: under what conditions is it possible to order a free product of arbitrary groups?

Using the matrix presentation method for groups proposed by Malcev [1], in the present work we establish the orderability of a free product of arbitrary ordered groups.

Definition 1. An ordered group is a group endowed with a relation $>$, satisfying the following conditions:
1. For any elements x and y of the group either $x > y$, or $y > x$, or $x = y$.
2. If $x > y$ and $y > z$, then $x > z$.
3. If $x > y$, then $axb > ayb$ for any elements a and b of the group.

Definition 2. An ordered ring (field) is a ring (field) such that:
1. the additive group of the ring (field) is ordered, and
2. for any elements a, x, y of the ring (field),
 $$(a > 0 \text{ and } x > y) \implies (ax > ay \text{ and } xa > ya).$$

Definition 3. The group algebra $\mathbb{k}\mathcal{G}$ of a group \mathcal{G} over a field \mathbb{k} is the algebra whose elements are formal finite linear combinations of elements of \mathcal{G} with coefficients in \mathbb{k}. These sums are multiplied and added in the usual way. A group algebra has the obvious unit $1e$, where e is the identity element of \mathcal{G} and 1 the unit of \mathbb{k}.

Lemma 1. If \mathbb{k} is an ordered field and \mathcal{G} an ordered group, then $\mathbb{k}\mathcal{G}$ is orderable.

∗Published in Mat. Sb. (N.S.), 1949, Volume 25(67), Number 1, 163–168. Translated from Russian by Victoria Lebed and Arnaud Mortier.
Proof. Let A and A' be elements of $k\mathcal{G}$ under the conditions of the lemma. Then they can be written as

$$A = \sum_{i=1}^{n} \alpha_i a_i, \quad A' = \sum_{i=1}^{n} \alpha'_i a_i,$$

where some of the α_i and α'_i might be zero, and $a_1 > \ldots > a_n$. We set $A > A'$ if for some $r \in \{1, \ldots, n\}$,

$$\alpha_1 = \alpha'_1, \quad \ldots, \quad \alpha_{r-1} = \alpha'_{r-1}, \quad \alpha_r > \alpha'_r.$$

It is easy to check that the conditions from Definition 2 hold.

We call a triangular matrix any matrix, finite or infinite, with zeroes under the main diagonal.

Lemma 2. The set of all triangular matrices with entries in an ordered unital ring, and with every element on the main diagonal positive and invertible, is an orderable group.

Proof. Triangular matrices of the form described in the statement clearly form a group. Let X and Y be such matrices. We will call preceding entries to a given entry x_{ik}, those x_{nm} located to the right of or on the main diagonal, for which

$$n - m \leq k - i \quad \text{when} \quad m < i, \quad \text{and} \quad n - m < k - i \quad \text{when} \quad m \geq i.$$

Say that $X > Y$ if either of the following conditions holds:

- $x_{ii} = y_{ii}$ for $i = 1, \ldots, k - 1$, and $x_{kk} > y_{kk}$ for some k,
- $x_{ik} > y_{ik}$ for some $k > i$, and their preceding entries coincide.

One easily checks that the conditions of Definition 2 are satisfied.

Lemma 3. The direct product of two ordered groups is orderable.

Proof. Let \mathfrak{A} and \mathfrak{B} be ordered groups. Say that $(a, b) > (a', b')$ in $\mathfrak{A} \times \mathfrak{B}$ if either $a > a'$, or $a = a'$ and $b > b'$. It is easy to check that the conditions from Definition 1 hold.

We denote by \mathfrak{M} the direct product of two ordered groups \mathfrak{A} and \mathfrak{B}. A pair of the form (a, e_1) where e_1 is the identity of \mathfrak{B} will be denoted simply by a, and a pair of the form (e, b) where e is the identity of \mathfrak{A} will be denoted by b.

1 Translators’ note: we believe that there is a mistake here, x_{nm} should probably be replaced with x_{mn}.
Consider now the following transcendental triangular matrix:

\[
X = \begin{pmatrix}
1 & x_{12} & x_{13} & x_{14} & \cdots & \cdot & \cdot & \cdot \\
& 1 & x_{23} & x_{24} & \cdots & \cdot & \cdot & \cdot \\
& & 1 & x_{34} & \cdots & \cdot & \cdot & \cdot \\
& & & 1 & \cdots & \cdot & \cdot & \cdot \\
& & & & \ddots & \cdots & \cdots & \cdot \\
& & & & & \ddots & \cdots & \cdot \\
& & & & & & \ddots & \cdots \\
& & & & & & & \ddots \\
\end{pmatrix}
\]

We denote by \(\mathfrak{G} \) the free abelian group generated by the entries \(x_{ij} \) of \(X \). This group is orderable (see [2] and references therein). By Lemma 1, the group algebra \(\mathbb{K} = \mathbb{Q} \mathfrak{G} \) is orderable, and thus has no zero divisors. The field of fractions \(\text{Frac}(\mathbb{K}) \) of this algebra is also orderable [3]. Consider the group algebra \(\mathcal{L} = \text{Frac}(\mathbb{K}) \mathcal{M} \), where \(\mathcal{M} = \mathfrak{A} \times \mathfrak{B} \) as above. According to Lemmas 1 and 3, the algebra \(\mathcal{L} \) is orderable.

Lemma 4. Consider the diagonal matrix

\[
A = \begin{pmatrix}
1 & & & & \\
& a & & & \\
& & 1 & & \\
& & & a & \\
& & & & \ddots & \\
& & & & & \ddots & \\
& & & & & & \ddots & \\
& & & & & & & \ddots \\
\end{pmatrix}
\]

where 1 is the unit of \(\mathcal{L} \) and \(a \in \mathcal{L} \) is neither 0 nor 1. Then every entry of the matrix \(B = X^{-1}AX \) located to the right of or on the main diagonal is non-zero.

Proof. Put \(X^{-1} = (y_{ik}) \) and \(B = (b_{ik}) \). Clearly

\[
y_{in} = -x_{in} + \sum_{i < \alpha_1 < n} x_{i\alpha_1} x_{\alpha_1 n} - \sum_{i < \alpha_1 < \alpha_2 < n} x_{i\alpha_1} x_{\alpha_1 \alpha_2} x_{\alpha_2 n} + \cdots + \left(-1 \right)^{n-i} x_{i, i+1} x_{i+1, i+2} \cdots x_{n-1, n}
\]

\(^{2} \) Translators’ note: we corrected the last term of the formula given for \(y_{in} \). Note also that this formula holds only for \(i \neq n \), as \(y_{ii} = 1 \). As a result, the very last formula of this proof is slightly incorrect when \(i \) is odd, but the main point—that the coefficient of \(b_{ik} \) is not 0—seems to hold true after all.
and
\[b_{ik} = 1(y_{i1}x_{1k} + y_{i3}x_{3k} + \cdots + y_{i,2l+1}x_{2l+1,k}) + \]
\[a(y_{i2}x_{2k} + y_{i4}x_{4k} + \cdots + y_{i,2r}x_{2r,k}). \]

From this follows:
\[y_{i1}x_{1k} + y_{i3}x_{3k} + \cdots + y_{i,2l+1}x_{2l+1,k} = \]
\[-\sum x_{in}x_{nk} + \sum_{i<\alpha_1<n} x_{i\alpha_1}x_{\alpha_1n}x_{nk} - \sum_{i<\alpha_1<\alpha_2<n} x_{i\alpha_1}x_{\alpha_1\alpha_2}x_{\alpha_2n}x_{nk} + \cdots, \]
where the external sums are over all odd integers \(n \) between \(i \) and \(k \). This equality shows that the coefficient of 1 in \(b_{ik} \) is non-zero, and so \(b_{ik} \neq 0. \]

Theorem. The free product of two ordered groups can be endowed with a group order whose restriction to each factor is the original order.

Proof. Consider, together with the triangular matrix \(X \) introduced before, the following transcendental triangular matrices:

\[Y = \begin{pmatrix} 1 & y_{12} & y_{13} & y_{14} & \cdots \\ & 1 & y_{23} & y_{24} & \cdots \\ & & 1 & y_{34} & \cdots \\ & & & \ddots & \vdots \\ & & & & 1 & \cdots \\ & & & & & \cdots \end{pmatrix}, \]

\[U = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_3 \end{pmatrix}, \quad V = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_3 \end{pmatrix}. \]

Let \(\mathfrak{A} \) and \(\mathfrak{B} \) be ordered groups. As before, we construct an algebra \(\mathcal{L} = \text{Frac}(\mathbb{Q}\mathfrak{G})\mathfrak{M} \) with \(\mathfrak{M} = \mathfrak{A} \times \mathfrak{B} \), where now the free abelian group \(\mathfrak{G} \) is generated by the set of all formal entries not only of \(X \), but also of \(Y, U, \)
and V. To every $a = (a, e_1) \in \mathcal{M}$ we associate the diagonal matrix
\[\overline{A}_a = \begin{pmatrix} 1 & \ & \ & \ \\ & a & \ & \\ & & 1 & \ \\ & & & a \end{pmatrix}, \]
and to every $b = (e, b) \in \mathcal{M}$ the diagonal matrix
\[\overline{B}_b = \begin{pmatrix} 1 & \ & \ & \ \\ & b & \ & \\ & & 1 & \ \\ & & & b \end{pmatrix}. \]
Clearly the two sets of matrices $\overline{A} = \{ \overline{A}_a \mid a \in \mathcal{A} \}$ and $\overline{B} = \{ \overline{B}_b \mid b \in \mathcal{B} \}$ form groups naturally isomorphic to \mathcal{A} and \mathcal{B} respectively.

Put $\overline{A} = U^{-1}X^{-1}A\overline{X}U$ and $\overline{B} = V^{-1}Y^{-1}\overline{B}\overline{Y}V$. We are going to show that the representations of \mathcal{A} and \mathcal{B} given by $a \mapsto \overline{A}_a$ and $b \mapsto \overline{B}_b$ induce a faithful representation of the free product $\mathcal{A} * \mathcal{B}$, that is, given elements of $\mathcal{A} * \mathcal{B}$ of type
\[r_1 = \prod_{i=1}^n a_i b_i, \quad r_2 = \left(\prod_{i=1}^n a_i b_i \right) a_k, \quad r_3 = b_k \prod_{i=1}^n a_i b_i, \quad r_4 = \prod_{i=1}^n b_i a_i, \]
the corresponding matrices
\[R_1 = \prod_{i=1}^n \overline{A}_i \overline{B}_i, \quad R_2 = \left(\prod_{i=1}^n \overline{A}_i \overline{B}_i \right) \overline{A}_k, \quad R_3 = \overline{B}_k \prod_{i=1}^n \overline{A}_i \overline{B}_i, \quad R_4 = \prod_{i=1}^n \overline{B}_i \overline{A}_i \]
are not the identity matrix. We will write down the proof for R_1 only, as the three remaining cases are similar.

Every entry \overline{a}_{kl}^i of the matrix \overline{A}_i is equal to $u_k^{-1}a_{kl}^{i'}u_l$, where $a_{kl}^{i'}$ is an entry of $A'_i = X^{-1}A_iX$, and u_k^{-1} and u_l are diagonal entries of the matrices U^{-1} and U. Similarly, $\overline{b}_{kl}^i = v_k^{-1}b_{kl}^{i'}v_l$, where $b_{kl}^{i'}$ is an entry of $B'_i = X^{-1}B_iX$, and v_k^{-1} and v_l are diagonal entries of the matrices V^{-1} and V.

By Lemma 4, every matrix in the groups $\mathcal{A}' = X^{-1}A\overline{X}$ and $\mathcal{B}' = Y^{-1}\overline{B}\overline{Y}$ different from the identity matrix has only non-zero entries to the right of or
on the main diagonal. The entries of the matrix R_1 are given by

$$ r_{ik} = \sum_{i \leq i_2 \leq i_3 \leq \ldots \leq i_{2n} \leq k} a_{i_2}^{(1)} b_{i_2}^{(1)} a_{i_3}^{(2)} b_{i_3}^{(2)} \ldots a_{i_{2n-1}}^{(n)} b_{i_{2n-1}}^{(n)} b_{i_{2n,k}}^{(n)} $$

Here $i \leq k$. This sum can be regarded as a polynomial in the diagonal entries of U, V and of their inverses. The coefficients of this polynomial are products of entries of the matrices $A'_1, B'_1, A'_2, B'_2, \ldots$. Observe that no monomial occurs twice in the sum as it is given. Moreover, every coefficient is non-zero, since it is a product of non-zero elements of the algebra L, which has no zero divisors.

Therefore, we have a faithful representation of the free product $\mathfrak{A} \ast \mathfrak{B}$, given by

$$ r_i \mapsto R_i. $$

Every diagonal entry of R_i is either the unit of L or a positive invertible element of L distinct from the unit. It follows then from Lemma 2 that all matrices of all four types R_i together form an orderable group. Therefore, the free product $\mathfrak{A} \ast \mathfrak{B}$ is orderable.

The proof presented here for two factors obviously works for any number of factors.

References

[1] A. Malcev. On isomorphic matrix representations of infinite groups. Rec. Math. [Mat. Sbornik] N.S., 8 (50):405–422, 1940.

[2] H. Shimbireva. On the theory of partially ordered groups. Rec. Math. [Mat. Sbornik] N.S., 20(62):145–178, 1947.

[3] B. L. van der Waerden. Modern Algebra. Vol. I. M.–L., 1934.