Review

Gene therapy in animal models of rheumatoid arthritis: are we ready for the patients?

Fons AJ van de Loo, Ruben L Smeets and Wim B van den Berg

Rheumatology Research and Advanced Therapeutics, Department of Rheumatology, University Medical Center Nijmegen, Nijmegen Center for Molecular Life Sciences, Nijmegen, The Netherlands

Corresponding author: FAJ van de Loo, A.vandeloo@reuma.umcn.nl

Received: 7 May 2004 Revisions requested: 17 Jun 2004 Revisions received: 21 Jun 2004 Accepted: 21 Jun 2004 Published: 29 July 2004

Arthritis Res Ther 2004, 6:183-196 (DOI 10.1186/ar1214)

Abstract

Rheumatoid arthritis (RA) is a chronic inflammatory disease of the synovial joints, with progressive destruction of cartilage and bone. Anti-tumour necrosis factor-α therapies (e.g. soluble tumour necrosis factor receptors) ameliorate disease in 60–70% of patients with RA. However, the need for repeated systemic administration of relatively high doses in order to achieve constant therapeutic levels in the joints, and the reported side effects are downsides to this systemic approach. Several gene therapeutic approaches have been developed to ameliorate disease in animal models of arthritis either by restoring the cytokine balance or by genetic synovectomy. In this review we summarize strategies to improve transduction of synovial cells, to achieve stable transgene expression using integrating viruses such as adeno-associated viruses, and to achieve transcriptionally regulated expression so that drug release can meet the variable demands imposed by the intermittent course of RA. Evidence from animal models convincingly supports the application of gene therapy in RA, and the feasibility of gene therapy was recently demonstrated in phase I clinical trials.

Keywords: arthritis, cytokines, gene therapy, genetic synovectomy, transcriptional regulation

Introduction

Rheumatoid arthritis (RA) is an autoimmune disease that is characterized by chronic inflammation in the synovial joints that leads to progressive destruction of cartilage and bone. There is still dispute as to what initiates RA (e.g. autoantigens, bacteria, or viruses). There is, however, a general understanding of the inflammatory process that drives the pathological changes that are observed in arthritis. There is consensus that cytokines in particular represent the fuel of the inflammation, and that in RA cytokines (growth factors) and their inhibitors are imbalanced. A breakthrough came from work in transgenic mice [1,2], which revealed that constitutive expression of tumour necrosis factor (TNF)-α causes inflammatory arthritis in the synovial joints. Also, blocking studies with neutralizing antibodies and later using the natural IL-1 receptor antagonist (IL-1Ra) and soluble type II TNF receptor (p75) identified IL-1 and TNF as the principle inflammatory and catabolic cytokines in experimental arthritis [3–5]. Restoring cytokine balance using biologics has been successful in many experimental models of RA. This work brought the anti-TNF strategy in RA patients to the fore, and the clearly demonstrated clinical effectiveness of this strategy led to an explosion in usage of biologically based medicines (biologics) [6].

This raises the question of whether gene therapy can confer additional advantages or contribute to existing therapies. To answer this we must appreciate that the current anti-TNF treatments still have three major drawbacks. First, these treatments do not cure the
disease, and cessation of treatment results in a relapse of
disease in RA patients. Second, repeated systemic
delivery is necessary to achieve steady and efficacious
levels of the agent in the inflamed joints. The treatment
does not take into account the fact that the clinical course
of RA is characterized by variable disease activity, with
spontaneous remissions and exacerbations of chronic
joint inflammation. Ideally, drug application must parallel
the intermittent course of the disease so that the variable
physiological demands may be met, and so that
unnecessary exposure of the patient to the drug may be
prevented. Third, RA can last for decades if not a lifetime,
and long-term treatment is therefore inevitable. This
prolonged treatment per se carries a certain health risk
because TNF is essential to normal immune response and
tumour suppression. An increased risk for infection
(tuberculosis) and motor neuronal degeneration, causing
multiple sclerosis in RA patients, are downsides of anti-
TNF treatment [7]. In theory, gene therapy can provide
long-term and regulated release of biologics directly into
the arthritic joint, thereby enhancing efficacy and reducing
systemic side effects. Restoring the cytokine balance by
systemic or local gene transfer has been studied for more
than a decade in experimental models of arthritis.

There is compelling evidence that the hypertrophic
synovium contributes to the maintenance of the chronic
arthritic process. Furthermore, the synovium can transform
into an invasive tissue (pannus) that destroys cartilage and
bone. Synovectomy of a joint, performed surgically,
chemically or by radiation therapy, immediately stops the
arthritic process and delays recurrence of disease in that
joint for many years [8]. With gene therapy it may be
possible to target the synovium and deliver cytotoxic
drugs. This new approach, called genetic synovectomy, is
currently under investigation in animal models of arthritis.
This review focuses on the gene therapeutic strategies of
restoring the cytokine balance and genetic synovectomy in
animal models of RA, as summarized in Figs 1 and 2.

Restoring the cytokine balance
In animal models of arthritis it has long been recognized
that proinflammatory cytokines, particularly TNF-α and
IL-1β, play important roles in the pathogenesis. The
relevance in vivo of both cytokines emerged from studies
in which they were either targeted (with antibodies,
antagonists or soluble receptors, or in gene knockout
mice) or overexpressed (using recombinant proteins or
gene transfer, or in transgenic mice) in animals, including
mice, rats and rabbits [9]. There is consensus that TNF is
a potent proinflammatory mediator, whereas IL-1 is a
potent cartilage catabolic mediator, and both cytokines
can be produced independently in animal models of
arthritis. Recent human trials of IL-1Ra revealed moderate
efficacy, probably because of poor pharmacokinetics and
the 100- to 1000-fold excess of this molecule that is
needed to block IL-1 activity. This makes IL-1Ra an
obvious choice for local gene therapy, with the aim of
achieving high and constitutive expression.

Apart from control by overexpression of cytokine inhibitors,
additional control of arthritic and destructive processes by
local overexpression of modulatory cytokines is an
alternative. IL-10 and IL-4 are T-helper (Th)2 cell derived
cytokines that inhibit TNF and IL-1 synthesis in synovial
cells [10]. Moreover, they suppress Th1 driven processes
but promote differentiation of Th2 cells and humoral
immunity. Viral IL-10 lacks immunostimulatory properties
and is predominantly immunosuppressive, making it
suitable for therapeutic application. The Th2 cytokine IL-
13 is not as critical for immune deviation because it
cannot directly act on T cells, but like IL-4 it can inhibit
proinflammatory cytokine release in activated macro-
phages. Suppressor type T- regulatory cells (Tr1/Th3) are
defined by their ability to produce high levels of IL-10 and
transforming growth factor (TGF)-β, and these cytokines
mediate the suppression of antigen-activated T cells to
induce tolerance. These modulating cytokines or their
antagonists can be used to restore cytokine balance, but
they may have an additional advantage in targeting the
autoimmune response in arthritis.

Strategies of cytokine directed gene therapy
The ex vivo method
The first local gene therapeutic approach attempted was
transplantation of genetically modified cells into the
inflamed joint. Autografts of human IL-1Ra-expressing
synoviocytes protect against leucocytosis, synovitis and
cartilage proteoglycan loss, which are induced by intra-
articular IL-1 injection in the rabbit knee [11,12]. The
clinical feasibility of this ‘ex vivo’ gene therapy method
was demonstrated in antigen-induced arthritis (AIA) in the
rabbit, in which it prevents inflammation and preserves
chondrocyte function by the overexpression of IL-1Ra or
soluble TNF receptor (p75)-Ig fusion protein [13,14]. In
murine collagen-induced arthritis (CIA), a clear prophylactic
effect was seen following local transplantation of
histocompatible allogeneic transduced fibroblasts that
expressed either IL-1Ra or the soluble IL-1 receptor
accessory protein [15,16]. The ex vivo method also yields
a therapeutic effect of IL-1Ra in bacterial cell wall-induced
arthritis in rats [17]. However, this ex vivo method of
retroviral transduction requires selection of synovial
fibroblasts and their transplantation into the arthritic joint,
which is laborious and requires autologous cells.

An alternative ex vivo approach in arthritis is adoptive
cellular gene therapy (ACGT). In this approach, primary
spleen cells, T cells (including T-cell hybridomas) and
antigen-presenting cells (dendritic cells [DCs], B cells,
macrophages) are transduced ex vivo, either by
retroviruses or adenoviruses, and transferred into the
arthritic animal. CIA in the DBA1/J mouse and passively transferred CIA in the severe combined immunodeficiency mouse are the models used to evaluate the effectiveness of ACGT. In contrast to synoviocytes, these immune cells do not require local injection because they preferentially home to the sites of inflammation. Adoptive transfer of a collagen-specific T-cell hybridoma transduced to express anti-TNF single chain antibodies or IL-12 p40, or splenocytes from arthritic animals expressing TNF receptor or TGF-α all cause significant immune changes and ameliorate the disease [18–22]. Adoptive transfer of antigen-specific T-cell hybridomas or antigen-pulsed B cells or macrophages transduced to express IL-4 home to the joint and exert a prophylactic effect that relies on the anti-inflammatory property of IL-4 [23,24].

A novel and effective approach to treatment of CIA is eradication of antigen-specific T cells by transfer of antigen-pulsed DCs that overexpress TNF-related apoptosis inducing ligand (TRAIL) or Fas ligand (FasL; see Genetic synovectomy, below) [25,26]. The DCs do not migrate to the joint, and exert their effects in the spleen and lymph nodes. The most sophisticated approach is that from Zhang and coworkers [27]. Those investigators developed a dual adoptive cellular gene strategy in which they transferred collagen type II pulsed antigen-presenting cells, which were adenovirally transduced to express FasL to eradicate antigen specific T-cells and TACI (transmembrane activator and calcium modulator and cyclophilin ligand interactor) to block antigen specific B-cell activation. This dual ACGT completely prevented...
murine CIA but a therapeutic regimen failed to affect arthritis. These studies show that ACGT has potential in the treatment of early RA, but its implementation requires identification of the arthritogenic autoantigen in RA.

The in vivo method

Direct (in vivo) transduction in the synovial tissue would be advantageous in the treatment of RA. The retroviruses used in the ex vivo method can only transduce proliferating cells. Injection of a high-titre recombinant retroviral preparation in arthritic joints yields transgene expression [28], and periarticular administration exhibits therapeutic efficacy [29]. Intra-articular injection of plasmid DNA can transduce synoviocytes but yields only transient transgene expression [28], whereas plasmid injection into muscle results in long-term expression and circulating levels of transgene. Amelioration of experimental arthritis (streptococcal cell wall [SCW]-induced arthritis or CIA) was achieved after intramuscular transfection of plasmids encoding TGF-β₁, IL-1Ra, the soluble p75 TNF receptor–immunoglobulin Fc (sTNFR:Fc; etanercept) fusion protein, or IL-10 [30–34]. For the latter, expression was optimized (level and duration) by electroporation of the muscle.

The above studies indicate that the success of gene therapy depends on the efficiency of gene delivery, and viruses have evolved to become superior for transducing cells under in vivo conditions. The most commonly used viruses in gene therapy are adenoviruses, which are non-integrating DNA viruses that, in contrast to retroviruses, can infect proliferating and quiescent cells. Direct injection of adenoviruses into the joint cavity results in significant transduction in the synovial lining. Injection of first-generation, replication-deficient adenoviruses encoding IL-1Ra, human 55 kDa TNF-α receptor, or IL-10 in the knee joint exerts a prophylactic effect on CIA [35–38]. The anti-inflammatory effect of adenovirus-derived IL-4 in CIA was disappointing [39]. However, IL-4 markedly prevented bone erosion. In murine CIA, IL-4 reduced osteoclasts and ingrowth of granulation tissue from the synovial membrane in bone. A therapeutic effect of local gene therapy with adenoviruses was seen with IL-1Ra and IL-13 in murine CIA and rat adjuvant arthritis, respectively [35,40]. However, it is doubtful that local TGF-β₁ gene transfer will be clinically applied in RA because TGF-β₁ can cause significant pathological changes such as fibrosis, chondrogenesis in synovium and ligaments, and chondro-o osteophyte formation, which can outweigh the beneficial...
effect on inflammation, as was seen with adenoviral overexpression in rabbit AIA [41,42]. The disadvantage of adenoviruses is the episomal nature of the viral genome, which is lost during cell division, resulting in short-term transgene expression. A major limitation is the acquired immune response against adenovirus serotype 5 in most humans, and seven out of 10 samples of RA synovial fluid contained neutralizing antibodies [43].

Viruses such as the herpes simplex virus (HSV), adenovirus-associated viruses (AAVs) and lentiviruses are thought to integrate into host chromosomes, and are therefore potentially could have long-term expression, even in proliferating synovium. Current data suggest that the recombinant AAV remains episomal located in cells as the deleted AAV replication (Rep) proteins normally facilitates genomic integration. Injection of a replication-deficient HSV (T70-), encoding IL-1Ra into rabbit knee joint inhibited leucocytosis as induced by IL-1β derived from retrovirally transduced synovial fibroblast allografts [44]. The nonimmunogenic recombinant AAV vectors exhibited an even more attractive transgene expression profile, namely low basal expression and high expression during inflammation. AAV IL-1Ra transgene expression in naïve rat knees was undetectable, but even 100 days later lipopolysaccharide-induced joint inflammation induced rapid upregulation of IL-1Ra [45]. Goater and coworkers [46] found that the low AAV transduction of the synovium was significantly enhanced in the TNF transgenic mice and correlated with joint damage. This probably relates to the rate-limiting second strand synthesis of the AAV genome in infected cells—a process that could be enhanced by DNA repair processes, as is induced by TNF. Direct injection of the AAV into the arthritic joint resulted in considerably higher expression of the IL-4 transgene than when injected into a naïve joint [47].

In contrast to AAV, lentiviral IL-1Ra transgene expression in the joint was high [48], but interestingly the transgene expression also increased with joint inflammation [49]. Clinical efficacy of local gene therapy with recombinant AAV expressing the soluble TNF receptor transgene was demonstrated in both spontaneous arthritis in TNF transgenic mouse and SCW arthritis in rat [50,51]. However, use of lentivirus in arthritis is still in its infancy, but the observed leakage of IL-1Ra transgene into the circulation and other organs [48] makes lentivirus a less suitable candidate for gene therapy.

Transcriptionally regulated expression
The clinical course of RA is characterized by variable disease activity, with spontaneous remissions and exacerbations of chronic inflammation in the joint. Expression profiles in experimental arthritis models showed that the relative amounts of cytokines present in the joint vary according to disease state. Ideally, the gene therapeutic approach of cytokine modulation must parallel the intermittent course of the disease, so that the variable physiological demands may be met and undesirable exposure to the agent is prevented.

In conventional transfer vectors the transgene is under the control of constitutive viral promoters (e.g. cytomegalovirus [CMV] and long terminal repeat) and they exhibit high, but short-lived, uncontrolled expression of the transgene. High levels of anti-inflammatory proteins might increase the risk for infection, as has been observed in anti-TNF and anti-IL-1 treatment of patients with RA [7]. Furthermore, the homeostatic balance might adapt to unregulated stable concentrations of transgene protein, thus reducing its therapeutic efficacy (tachyphylaxis). A number of vectors with drug-controllable promoters for achieving regulable transgene expression have been developed and used in animal models of arthritis.

Over the past 12 years the tetracycline-inducible system (or tet system) has become the drug-regulable gene expression system of choice for in vitro and in vivo applications (e.g. transgenetics and gene therapy) [52,53]. The tet system comprises three components: the transcriptional modulator, the tetracycline-responsive promoter, and an antibiotic of the tetracycline family. If the drug binds to the original prokaryotic tetracycline repressor (tTA) protein then it uncouples from the tet-responsive promoter (seven copies of the tetR-binding sequence [tetO] upstream from a minimal CMV promoter) and transcription is terminated (tet-off). A mutated version of tetr (rtTA) has the reverse response of activating the promoter in the presence of tetracycline (tet-on). These two tet-systems yield good temporal and spatial expression, but promoter activity leaks, giving rise to relatively high basal levels of transgene. More stringent control is obtained with the repressor variant of tetr (tTs) in combination with the tet-on system. The advantage of the tet system is that the drugs (tetracycline and doxycycline) bind to tetr with high affinity, and these orally bioavailable drugs have well defined pharmacokinetics and dynamics, with negligible side effects.

The tet system has been used in two CIA gene therapy studies conducted to determine whether regulated expression of viral IL-10 could be therapeutically advantageous. Apparail and coworkers [54] used intramuscular coinjection of two AAV vectors—one for the constitutive expression of rtTA, and the other used the tetO promoter for regulated expression of viral IL-10—before mice were immunized. Doxycycline administration starting 23 days after immunization significantly reduced clinical, radiological and histological CIA scores. The study conducted by Perez and coworkers [55] used the tetracycline-dependent transcriptional silencer (tTS) for viral IL-10 regulation. The two plasmids were intramuscularly
injected and electrotransferred before the onset of disease, and doxycycline treatment resulted in a significant inhibitory effect on CIA. Recently, Gould and colleagues [56] used an improved vector system with the rTata (tet-on) expression and transgene expression, both under control of the tetO promoter in a head–tail configuration on one plasmid. The plasmid was electrotransferred intramuscularly in order to yield expression of a dimeric TNF receptor 2, and it was found that prophylactic treatment significantly reduced CIA hindpaw swelling and clinical score in CIA. Similar drug transcriptional regulation systems have been developed for rapamycin and streptogramin, but these have not been tested in experimental arthritis.

Clinical application of the above mentioned drug (tet)-dependent promoter systems will be hampered by the need to monitor disease activity in order to tune transgene expression, which is further complicated by the unpredictable and relapsing clinical course of RA. The major challenge is a disease-regulated expression of a recombinant protein to meet the variable demands imposed by RA, which are high during a relapse and low during remission. The acute-phase response, as seen in RA patients, is generally considered to be a marker of disease activity. The group of Varley and Munford [57] showed that the acute-phase proteins complement factor 3 (C3) and serum amyloid A-3 are particular attractive candidates for transcriptional regulation of cytokine inhibitors. A two-component expression system was made in which the C3 promoter regulates the production of the HIV transactivator of transcription (Tat) protein, which in turn regulates the HIV long terminal repeat promoter to express the transgene of interest [58].

Miagkov and coworkers [59] and we [60] independently demonstrated, in two different experimental arthritis models, that it was feasible to use this two-component system in adenoviral vectors using the inflammation-inducible C3 promoter for autoregulated expression of IL-10 and IL-1Ra. This system was highly responsive toward various inflammatory stimuli, including TNF-α, IL-1β, IL-6 and lipopolysaccharide. The Ad.C3.tat/HIV-hIL-10 was injected intra-articularly into the paws of rats previously injected with SCW fragments, and the transgene was induced by reactivation of arthritis with an intravenous challenge with peptidoglycan–polysaccharide derived from group A streptococci. Furthermore, the endogenously regulated IL-10 established a negative feedback loop and prevented influx of inflammatory cells and swelling of the arthritic joints. We used this system to elicit adenoviral overexpression of human IL-1Ra in knee joints of CIA mice and compared this with the effect of IL-1Ra expression under direct control of the conventional CMV promoter. In a prophylactic regimen, we demonstrated superior effectiveness of this two-component IL-1Ra expression system in murine CIA.

These two in vivo studies [59,60] provided proof of principle and demonstrate the efficacy of a disease-regulable expression system in arthritis. However, this promoter may not be suitable for RA because the Tat is a foreign immunogenic protein and may have undesirable effects by transactivating host genes [61]. For future clinical application, novel disease-regulable promoters must be developed that are based on expression of endogenous genes at the site of injury/innflammation and that express no foreign, possibly hazardous components. We demonstrated that a hybrid promoter consisting of the IL-1 enhancer promoter region in front of the IL-6 promoter fulfills criteria of a disease-inducible promoter, namely low basal activity and high activity during acute joint inflammation and flare-up of SCW arthritis [62]. Experiments are ongoing to demonstrate whether disease/physiologically controlled transcriptional regulation is a feasible gene therapeutic approach for autoregulated protein/drug treatment in experimental arthritis. In the future the disease-inducible system will be combined with a drug-regulable expression system (Fig. 3) to provide auto-regulation but with the added safety measure of being able to intervene if problems occur.

Targeting cytokine signalling by gene therapy
Cytokine modulation has also been achieved by intervening at the receptor signal transduction level in cells. The transcription factor nuclear factor-κB (NF-κB) is a pivotal signalling molecule for various stimuli (stress) and cytokines such as IL-1, IL-18 and Toll-like receptors. Local inhibition of NF-κB activation by adenovirally mediated overexpression of a dominant negative form of IκB kinase-β (IKKβ), IκB-α, or decoy oligodeoxynucleotides all ameliorate disease in three arthritis models in the rat [63–65]. Furthermore, inhibition of NF-κB activation leads to marked apoptosis of synovial fibroblasts in these animal models, and enhanced TNF-α-induced apoptosis in RA synovial fibroblasts [66].

It was recently discovered that the tumour-like growth and insensitivity to apoptosis of RA synovial fibroblast is due to phosphorylation of signal transducer and activator of transcription (STAT)3 in these cells [67]. Periarticular injection into the ankle joints of mice with AIA or CIA of an adenoviral vector encoding the natural inhibitor of STAT3 phosphorylation, suppressor of cytokine signalling (SOCS/CIS)3, drastically reduced severity of arthritis in both models [68]. STAT3 and Ras/extracellular signal-regulated kinase are two signalling pathways of the cytokine receptor gp130, and adenovirally mediated Ras DN gene transfer into rat ankle joints ameliorated adjuvant arthritis [69].

The disadvantage of intracellular targeting is the need to achieve a high infection rate in synovium in order to elicit a full-blown effect. However, increasing the amount of viral
vector does not increase the number of synoviocytes targeted, but instead provokes an inflammatory response. Several groups have attempted to combine gene transfer with protein transduction to enhance the target range to noninfected neighbouring cells. Cargo peptides, such as the 11-amino-acid region of the HIV transactivator protein (tat), can facilitate the transmembrane transport of fusion proteins. However, this cargo protein cannot mediate intercellular transport of tat fusion proteins between the adenovirally transduced and noninfected cells [70]. On the contrary, the tat fusion proteins are directed to the nucleus of the infected cells (unpublished data). This does not support the concept of combining gene transfer and protein transduction to broaden the range of activity of the transgene to non-transduced cells.

Genetic synovectomy by synoviocyte depletion
Another more drastic approach to silencing the inflammatory and destructive process is by killing resident cells in the arthritic joint. This approach is called genetic synovectomy, and it is the latest development in the tradition of synovectomy, as performed surgically, chemically or by radiation therapy. In RA the fibroblast-like type B synoviocyte is a transformed cell that exhibits unrestrained proliferation, lacking contact inhibition in vitro, and elevated expression of the pro-oncogene c-myc.

A gene therapeutic approach is to induce apoptosis of RA transformed synoviocytes using TRAIL (Apo2L) or FasL (CD95L). TRAIL and FasL are type II membrane proteins and activate death receptors for transduction of apoptotic signals. Activated lymphocytes and synoviocytes from RA patients express TRAIL receptors, and adenoviral TRAIL gene transfer induced significant apoptosis in RA synoviocytes [71]. High Fas expression was identified in inflamed synovium, and in infiltrating leucocytes in RA and animal models of arthritis. Okamoto and coworkers [72] showed that FasL is capable of Fas-mediated apoptosis of human RA synoviocytes. Adenoviral gene transfer of TRAIL into rabbit knee joints 4 days after transplantation of IL-1β-expressing synoviocyte allografts resulted in pronounced apoptosis of synoviocytes, and inhibited local IL-1 effects [71]. Also, adenoviral FasL gene transfer induced apoptosis of the synoviocytes and markedly ameliorated CIA in mice [73].

Figure 3
Schematic presentation of potential transcriptionally regulated transgene expression constructs for arthritis. Ideally, the expression of the therapeutic gene should follow the intermittent course of the disease in rheumatoid arthritis, and this can be achieved by using disease-regulating promoters (reg. promoter) for upregulation (promoters from interleukin [IL]-6, complement factor 3 [C3], serum amyloid A [SAA], tumour suppressor gene [TSG]6, heat shock protein [HSP]70) or downregulation (promoters from collagen type II, IL-1 receptor antagonist [IL-1Ra], osteocalcin, tumour necrosis factor receptor [TNFR]) of expression. Disease (cytokine balance) will regulate the expression of rtTA and/or tTS that, only in the presence of doxycycline, can regulate the expression of the therapeutic transgene using the drug-regulable expression system (tet-on/tet-off system). Tissue-specific expression elements either in front or downstream of the promoter must restrict the expression of the site of interest. Furthermore, insulator sequences must prevent cis-acting promoter activities and epigenetic interference on the disease-regulating promoter system. The performance of the transcriptionally regulated expression system will also depend on the vector (integrating/episomal), route of delivery (Fig. 2) and transgene (Fig. 2). Because safety is paramount, it must be possible to delete the transduced cells (e.g. by introducing a thymidine kinase gene in case of a worst scenario; not included in the illustration). I, insulator; Enh, enhancer elements; rtTA, reverse tetracycline-modulated transcription factor; tetO, tetracycline repressor-binding sequence; tTS, tetracycline-modulated transcriptional suppressor.
A more selective approach is to target the tumor suppressor molecule p53. The p53 gene is upregulated in the RA joint, and evidence is accumulating that this gene is mutated and acts as a dominant negative inhibitor of wild-type p53 in the RA synovium [74, 75]. It is postulated that the same oxidative stress that induces DNA damage and apoptosis in cells can also cause p53 mutations that transform cells resulting in aberrant proliferation [76]. Mutated p53 is considered responsible for the transformation of synovial fibroblasts into invasive phenotypes that are destructive to cartilage and bone [77]. The p53 protein is a key regulator of inflammation, because induction of CIA in p53 gene knockout DBA1/J resulted in the development of more severe arthritis [78]. Adenoviral transfer of the p53 gene into rabbit knee joints with IL-1β-expressing synoviocyte allografts resulted in pronounced apoptosis of synoviocytes, and marked reduction in inflammatory exudates [79]. The p53 protein is strictly maintained in its inactive form under normal conditions, and the tight post-translational control also implies for exogenously added p53 [80]. This could suggest that local p53 gene delivery to arthritic joints is a safe strategy.

An alternative approach to induction of p53-mediated cell death is to use conditionally replicative adenoviruses (CRAds) [81]. CRAds can only propagate in the absence of a functional p53 gene, and thus they can selectively kill transformed synovial fibroblasts in a self-limiting process. Furthermore, CRAds can be used for intra-articular viral propagation, and so extend the range of transgene activity and link the duration of expression to the presence of transformed synoviocytes. The somatic p53 mutation has not been described in experimental models of arthritis, and therefore this treatment with CRAds might not be effective in animals. However, inducing cell toxicity by introducing the HSV thymidine kinase (TK) gene is effective in animal models. HSV-TK can phosphorylate the nontoxic prodrug ganciclovir into ganciclovir triphosphate, which causes chain termination and single-strand breaks upon incorporation into DNA [82]. As a consequence, cells go into apoptosis by a process that is largely unknown. An advantage is the so-called ‘bystander effect’, by which HSV-TK can affect even cells in which the gene is not introduced [83].

This suicide gene system was evaluated in experimental arthritis by intra-articular injection ofHSV-TK expression plasmids and adenoviruses in AIA in rabbits and in CIA in rhesus monkeys, respectively [84, 85]. Subsequent treatment with intravenous ganciclovir increased apoptotic cell death in the synovium and cytolyis of the synovial lining layer in both arthritis models. An alternative approach for suicide gene therapy is to inhibit cell proliferation. The cell cycle is controlled by the kinase activity of cyclin/cyclin-dependent kinases and their inhibitors p16 (INK4a) and p21 (Cip1). Forced overexpression of either p16 or p21 by adenoviral vector transduction of the synovium inhibited in vitro growth of RA synovial fibroblasts and inhibited pathology in rat adjuvant arthritis [86,87] and murine CIA [88]. These cyclin-dependent kinase inhibitors not only prevented synovial growth (pannus formation) but also suppressed the expression of the proinflammatory cytokines IL-1β, IL-6 and TNF-α [88] and of degrading proteinases [89]. At least for p21, it has been shown that it also can inactivate NF-κB and activator protein-1, showing that these cyclin-dependent kinase inhibitors may have a much broader therapeutic spectrum.

The therapeutic efficacy of genetic synovectomy can be improved by cell-specific targeting of transformed synoviocytes. Fibre knob modification by introducing a RGD motif changes the tropism of the adenovirus and transduced the synovial fibroblast more efficiently than did the conventional adenovirus in vitro (Table 1) and in rat ankle joint [90]. We previously showed that IL-1Ra gene therapy was more efficacious in the treatment of murine CIA when using RGD modified adenoviral vectors [35]. RGD modification may direct the adenovirus to the transformed synovial fibroblast, and studies are in progress to combine cell targeting with genetic synovectomy in experimental arthritis.

Genetic synovectomy by inhibition of angiogenesis

The normal synovium is highly vascular, and in particular the synovium lining region has a dense microvascular network. Detailed morphometric studies have indicated that chronic rheumatoid synovium may induce changes to the microvascular architecture, consisting of reduced vascular density within 50 µm of the synovial surface with concurrent angiogenesis in the deeper synovium [91].

Angiogenesis is central to the development and perpetuation of rheumatoid synovitis. Vascular endothelial growth factor (VEGF) promotes angiogenesis, and VEGF expression correlates with disease severity in RA patients and in murine CIA. Intravenous injection of adenoviruses expressing human soluble VEGF receptor 1 at the onset of murine CIA significantly reduced paw swelling and disease severity [92]. TNF is a proangiogenic cytokine, and direct injection of a lentivirus expressing endostatin, an antiangiogenic peptide derived from collagen XVIII, into the joints of mice transgenic for human TNF before the onset of arthritis reduced vascularization and overall arthritis index 8 weeks later [93]. Transplantation of retrovirally transduced NIH3T3 cells expressing the angiotatin gene, an internal fragment of plasminogen, into the knee joint of DBA1/J mice before the onset of CIA dramatically reduced pannus formation (invasive tissue of fibroblast-like cells in cartilage and bone) and cartilage erosion as a result of the prevention of angiogenesis [94]. The enzyme plasmin is essential to endothelial cell
migration, and systemic adenosine mediated overexpression of the urokinase plasminogen activator receptor molecule prevents angiogenesis and, as a result, ameliorates CIA [95]. This indicates that inhibition of angiogenesis can suppress synovitis, pannus formation and related connective tissue destruction, but the safety of this gene therapy approach was not evaluated in those studies.

Local gene therapy confers a distal protective effect

RA is a polyarthritic disease and is bilaterally symmetrical in patients. The cause of this symmetry has not been elucidated but it has gained renewed scientific attention because of the observed protective effect of local gene therapy on distal joints. We demonstrated that local IL-1Ra gene transfer (adoptive and viral method) prevented development of murine CIA arthritis in the treated knee, but also in the proximal hind paw and to the same order of magnitude [15,35,60]. A contralateral effect on the knee was seen with a combination of adenoviral overexpression of IL-1 type I receptor–IgG fusion protein and TNF soluble type I receptor protein in AIA in the rabbit [96]. We recently demonstrated that a monoarticular SCW-induced gonarthritis induced NF-κB activation in the contralateral joint without inducing joint inflammation, and blocking IL-1 partially (50%) reduced this response (unpublished data). Local treatment of SCW arthritis with NF-κB decoys also resulted in significant inhibition of arthritis in the contralateral joint [64]. It is therefore not surprising that local gene transfer of cytokine modulators such as IL-10 and IL-4 also conferred protection in the proximal ankle joint [37,39], in the contralateral knee [97–99] and even in the untreated front paws [100]. In our experiments we could not detect IL-10 or IL-1Ra in the blood circulation, and others found no evidence of systemic overflow of locally synthesized transgene proteins (IL-4, soluble IL-1 receptor I, soluble TNF receptor, IL-1Ra) [15,37,39,96]. A likely explanation for the remote protection conferred by local gene therapy is the reduction in local production of proinflammatory cytokines, thereby reducing their circulating levels and abolishing a sensitizing effect on naïve joints.

A conflicting finding was the protection of the ipsilateral hind paw by adenoviral overexpression of IL-10, which was seen in the absence of a local anti-inflammatory response in the knee [37]. There is compelling evidence that this protective remote effect could also be accounted for by immune modulation. Transfer of soluble IL-1 receptor accessory protein-producing NIH-3T3 fibroblasts into knee joint inhibited murine CIA in this joint, but it did not protect the distal paws from developing CIA. Soluble forms of IL-1RacP, in contrast to IL-1Ra, were unable to inhibit the antigen and mitogen-induced T-cell proliferation [16,101]. Circumstantial evidence for T cell involvement in the remote protection was obtained by local adenoviral delivery of a gene encoding soluble cytotoxic lymphocyte antigen (CTLA)4, which effectively delayed the onset of CIA in the knee but also in distal paws [102]. Antigen-presenting cells play a key role in T-cell differentiation and activation, and implantation of genetically modified bone-marrow derived DCs expressing IL-4, FasL, IL-1Ra or CTLA4-Ig in mice with established CIA resulted in almost complete remission of disease via suppression of the Th1 response [26,39,72,103]. Whalen and coworkers [104] demonstrated that genetically modified macrophages or DCs expressing viral IL-10 in the presence of antigen can result in T-cell unresponsiveness, thereby inhibiting a delayed-type hypersensitivity response in mice.

Evidence is emerging that injection of exosomes (liposome particles of 40–100 nm diameter) derived from antigen-loaded DCs that are isolated from cell-culture can suppress a delayed-type hypersensitivity response in a class II MHC, B7 and CD86 dependent manner in animals...
Joint inflammation is a chain of events from cell activation, chemokine and cytokine production, adhesion molecule expression, and influx of inflammatory cells in an escalating process that is precisely regulated. Probably depending on the transgene expressed, the chain can be broken in an antigen-specific or nonspecific manner, resulting in a distal protective effect. The above studies proved the feasibility of local gene therapy, demonstrating a promising protective effect on nearby joints, and if fully understood then this could be of great significance for the implementation of local gene therapy in RA patients.

Conclusion

The first gene therapy trial in RA patients was started in 1996 and is now completed [106]. Nine postmenopausal women with advanced RA received autologous synovial fibroblasts retrovirally transduced to express IL-1Ra in the second to fifth metacarpophalangeal joints. One week later these joints were replaced and synovial tissue exhibited IL-1Ra expression, whereas the joints receiving control cells were IL-1Ra negative. No adverse effects were recorded in these patients. Three other phase I gene therapy trials are in progress using the ‘ex vivo’ method of IL-1Ra transduced synoviocytes in RA, and TGF-β transduced chondrocytes in degenerative arthritis [107]. Furthermore, two phase I gene therapy studies in RA have been approved; the studies involve direct intra-articular delivery of either plasmid encoding the HSV-TK gene or AAV serotype 2 containing the human TNF receptor-Fc immunoglobulin fusion gene (tgAAC94). The latter gene therapy trial is a double-blind, randomized, placebo-controlled, dose escalation study of intra-articular administration of tgAAC94 in four cohorts of eight RA patients, each of whom will be followed for 24 weeks (protocol 13E04; Targeted Genetics Corp.). A concern centres around the fact that the rheumatoid factors in RA patients may form immune complexes with the immunoglobulin domain of the tgAAC94 fusion protein, thereby inactivating the therapeutic protein in the arthritic joint. Moreover, epidemiological studies showed that 80% of the human population has antibodies directed against AAV2, with 30% expressing neutralizing antibodies. It was recently observed (Tak PP and coworkers, unpublished data) that the synovial transduction efficacy of AAV5 is far higher than that of AAV2 vectors, and thus the former is the vector of choice for future gene therapy trials.

The number of gene therapy trials in RA is in sharp contrast to the more than 600 clinical trials of gene therapy in patients with cancer. Although not a life-threatening disease, the balance of risks and benefits of gene therapy is favourable in RA. The advantage in RA is that the (viral) vectors can be injected into the enclosed joint cavity, with minimal risk of leakage to the blood circulation. Because of this, precise targeting is not needed in RA, unlike in the treatment of cancer. Findings reported here show that many targets have already been defined and gene therapy strategies developed that exhibit high success rates in experimental arthritis. Apart from local effects in the injected joint, it is becoming increasingly clear that local treatment also affects arthritis in nearby joints. This is an intriguing and general finding, which may expand the therapeutic applicability of gene transfer in human arthritis. Drug-regulated and/or disease-regulated transgene expression will increase the efficacy and safety of local gene therapy.

Gene therapy in RA is still in its adolescence, and more clinical studies must be initiated if it is to mature. It is, however, imperative that gene therapy studies in animal models of arthritis should be continued, especially involving the application of a new generation of viral vectors (e.g. ‘gutless’), nonviral vectors such as artificial chromosomes, and novel strategies such as RNA interference by siRNA (small interfering RNA) or ribozymes. Most animal studies described in the present review used gene therapy for prophylactic treatment of arthritis. Not only the choice of trangene but also those of promoter, vector and delivery route could be quite different in established disease. In that sense, the transfer of RA synovial tissue explants in severe combined immunodeficiency mice is an elegant model with which to evaluate gene therapy [21,72,108–110]. The data in animal models show that gene therapy is safe, but it is important to obtain data on shedding and safety of the various viral vectors after local application in RA patients. Also, comparative studies should be conducted on synovial tissue biopsies or in vivo to determine the best vector for gene delivery. The obtained clinical data for should provide us with an outline of the strategy (target, vector choice and delivery route) for RA and provide new insights for further preclinical studies to improve gene therapy for RA.

Competing interests

None declared.
Acknowledgement

This work was supported by grants from the Dutch Arthritis Association (304, 403) and the Dutch Organization for Scientific Research (917.46.363).

References

1. Keffer J, Probert L, Cazlaris H, Georgopoulos S, Kaslaris E, Kiousis D, Kollias G: Transgenic mice expressing human tumour necrosis factor: a predictive genetic model of arthritis. EMBO J 1991, 10:4025-4031.
2. Patterson R, Plotnik D, Kontogeorgos G, Kollias G: The type I interleukin-1 receptor acts in series with tumour necrosis factor (TNF) to induce arthritis in TNF-transgenic mice. Eur J Immunol 1995, 25:1794-1797.
3. Joosten LA, Helsen MM, Suene T, van De Loo FA, Heinegard D, van Den Berg WB: IL-1 alpha beta blockade prevents cartilage and bone destruction in murine type II collagen-induced arthritis, whereas TNF-alpha blockade only ameliorates joint inflammation. J Immunol 1999, 163:5049-5055.
4. Joosten LA, Helsen MM, van de Loo FA, van den Berg WB: Anti-cytokine treatment of established type II collagen-induced arthritis in DBA/1 mice. A comparative study using anti-TNF alpha, anti-IL-1 alpha/beta, and IL-1Ra. Arthritis Rheum 1996, 39:797-809.

5. Wooley PH, Dutcher J, Widmer MB, Gillis S: Influence of a recombinant human soluble tumor necrosis factor receptor FC fusion protein on type II collagen-induced arthritis in mice. J Immunol 1993, 151:6602-6607.

6. Lorenz HM, Kalden JR: Perspectives for TNF-alpha-targeting therapies. Arthritis Res 2002, Suppl 3:S17-S24.

7. Weisman MH: What are the risks of biologic therapy in rheumatoid arthritis? An update on safety. J Rheumatol 2002, Suppl 65:33-38.

8. Nakamura H, Tanaka H, Yoshino S: Long-term results of multiple synovectomy for patients with refractory rheumatoid arthritis. Effects on disease activity and radiological progression. Clin Exp Rheumatol 2004, 22:151-157.

9. van den Berg WB: Is there a rationale for combined TNF and IL-1 blocking in arthritis? Clin Exp Rheumatol 2002, 20:521-525.

10. Morita Y, Yamamura M, Kawashima M, Aita T, Harada S, Okamoto H, Inoue H, Makino H: Differential in vitro effects of IL-4, IL-10, and IL-13 on proinflammatory cytokine production and fibroblast proliferation in rheumatoid synovium. Rheumatol Int 2001, 20:49-54.

11. Bandara G, Mueller GL, Galea-Lauri J, Tindal MH, Georgescu HI, Suchanek MK, Hung GL, Glorioso JC, Robbins PD, Evans CH: Intracellular expression of biologically active interleukin-1 receptor antagonist protein by ex vivo gene transfer. Natl Acad Sci USA 1993, 90:10764-10768.

12. Hung GL, Galea-Lauri J, Mueller GM, Georgescu HI, Larkin LA, Suchanek MK, Tindal MH, Robbins PD, Evans CH: Suppression of intra-articular responses to interleukin-1 by transfer of the interleukin-1 receptor antagonist gene to synovium. Gene Ther 1994, 1:64-69.

13. Otani K, Nita I, Macaulay W, Georgescu HI, Robbins PD, Evans CH: Suppression of antigen-induced arthritis in rabbits by ex vivo gene therapy. J Immunol 1999, 165:558-562.

14. Kim SH, Lechman ER, Kim S, Nash J, Oligino TJ, Robbins PD: Ex vivo gene delivery of IL-1Rα and soluble TNF receptor confers a distal synergistic therapeutic effect in antigen-induced arthritis. Mol Ther 2002, 6:591-600.

15. Bakker AC, Joosten LA, Amtz OJ, Helsen MM, Bandele AM, van de Loo FA, van den Berg WB: Prevention of murine collagen-induced arthritis in the knee and ipsilateral paw by local expression of human interleukin-1 receptor antagonist protein in the knee. Arthritis Rheum 1997, 40:893-900.

16. Snowes R, Van de Loo FA, Joosten LA, Amtz OJ, Bennink MB, Loesberg WA, Dmitriev IP, Curiel DT, Martin MU, van den Berg WB: Effectiveness of the soluble form of the interleukin-1 receptor accessory protein as an inhibitor of interleukin-1 in collagen-induced arthritis. Arthritis Rheum 2003, 48:2949-2958.

17. Makarov SS, Olsen JC, Johnston WN, Anderle SK, Brown RR, Baldwin AS Jr, Haskell JS, Schwab JH: Suppression of experimental arthritis by gene transfer of interleukin 1 receptor antagonist cDNA. Proc Natl Acad Sci USA 1996, 93:402-406.

18. Smith R, Tarter IH, Hollenhorst M, Lin C, Levicnik AU, Fatman CG, Nolan GP: Localized expression of an anti-TNF single-chain antibody prevents development of collagen-induced arthritis. Gene Ther 2003, 10:1248-1257.

19. Mageed RA, Adams G, Woodrow D, Podhajcer OL, Chernajovsky Y: Prevention of collagen-induced arthritis by gene delivery of soluble p75 tumour necrosis factor receptor. Gene Ther 1998, 5:1584-1592.

20. Chernajovsky Y, Adams G, Podhajcer OL, Mueller GM, Robbins PD, Feldmann M: Inhibition of transfer of collagen-induced arthritis into SCID mice by ex vivo infection of spleen cells with retroviruses expressing soluble tumour necrosis factor receptor. Gene Ther 1995, 2:731-735.

21. Chernajovsky Y, Adams G, Tindal MH, Mountz JD, Larkin LA, Bennink MB, Kedda MF, Podhajcer OL: Pathogenic lymphoid cells engineered to express TGF beta 1 ameliorate disease in a collagen-induced arthritis model. Gene Ther 1997, 4:553-559.

22. Nakajima A, Serogy CM, Sandora MR, Tamer IH, Costa GL, Tajef-Edwards DR: Prevention of collagen-induced arthritis by electrotransfer of the interleukin-1 receptor antagonist gene to synovium. Arthritis Rheum 2002, 49-54.

23. Nakajima A, Serogy CM, Ermann J, Levicnik AU, Contag CH, Fathman CG: Retroviral gene therapy of collagen-induced arthritis by local delivery of IL-1Ra. J Clin Invest 2002, 108:304-314.

24. Gueny L, Chiocchia G, Batteux F, Boissier MC, Bouvier C: Collagen II-pulsed antigen-presenting cells genetically modified to secrete IL-4 down-regulate collagen-induced arthritis. Gene Ther 2001, 8:1855-1862.

25. Liu Z, Xu X, Hsu HC, Tousson A, Yang PA, Wu Q, Liu C, Yu S, Zhang HG, Mountz JD: CII-DC-AdTRAIL cell gene therapy inhibits infiltration of CII-reactive T cells and CII-induced arthritis. J Clin Invest 2003, 112:1332-1341.

26. Kim SH, Kim S, Oligino TJ, Robbins PD: Effective treatment of established mouse collagen-induced arthritis by systemic administration of dendritic cells genetically modified to express FasL. Mol Ther 2002, 6:584-590.

27. Zhang HG, Yang P, Xie J, Liu Z, Liu D, Xiu L, Zhou T, Wang Y, Hsu HC, Mountz JD: Depletion of collagen II-reactive T cells and blocking of B cell activation prevents collagen II-induced arthritis in DBA/1 mice. J Immunol 2002, 168:4164-4172.

28. Ghivizzani SC, Oligino TJ, Glorioso JC, Robbins PD, Evans CH: Direct gene delivery strategies for the treatment of rheumatoid arthritis. Drug Discov Today 2001, 6:229-237.

29. Mukherjee P, Wu B, Mayton L, Kim SH, Robbins PD, Wooley PH: TNF receptor gene therapy results in suppression of IgG2a anticollagen antibody in collagen induced arthritis. Ann Rheum Dis 2003, 62:707-711.

30. Song YY, Gu M, Jin WW, Klinman DM, Wahl SM: Plasmid DNA encoding transforming growth factor-beta1 suppresses chronic disease in a streptococcal cell wall-induced arthritis model. J Clin Invest 1998, 101:2815-2821.

31. Kim JH, Jeong JG, Ho SH, Hahn W, Park EJ, Kim S, Yu SS, Lee YW, Kim S: Protection against collagen-induced arthritis by intramuscular gene therapy with an expression plasmid for the interleukin-1 receptor antagonist. Gene Ther 2003, 10:1543-1550.

32. Kim JH, Ho SH, Hahn W, Jeong JG, Park EJ, Lee HJ, Yu SS, Lee CH, Lee YW, Kim S: Electro-gene therapy of collagen-induced arthritis by using an expression plasmid for the soluble P75 tumour necrosis factor receptor-Fc fusion protein. Gene Ther 2003, 10:1216-1224.

33. Bloquel C, Bessis N, Boissier MC, Scherman D, Bigey P: Gene therapy of collagen-induced arthritis by electrotransfer of human tumor necrosis factor-alpha soluble receptor Fc variants. Hum Gene Ther 2004, 15:189-201.

34. Saindenberg-Kermanach N, Bessis N, Deleuze V, Bloquel C, Bureau M, Scherman D, Boissier MC: Efficacy of interleukin-10 gene electrotransfer into skeletal muscle in mice with collagen-induced arthritis. J Gene Med 2003, 5:184-171.

35. Bakker AC, Van de Loo FA, Joosten LA, Bennink MB, Amtz OJ, Dmitriev IP, Kehlens EA, Curiel DT, van den Berg WB: A tropism-modified adenoviral vector increased the effectiveness of gene therapy for arthritis. Gene Ther 2001, 8:1785-1793.

36. Le CH, Nicolson AG, Morales A, Sewell KL: Suppression of collagen-induced arthritis through adenovirus-mediated transfer of a modified tumour necrosis factor alpha receptor gene. Arthritis Rheum 1997, 40:1602-1609.
37. Lubberts E, Joosten LA, Van Den Borsellaar L, Hensen MM, Bakker AC, Xing Z, Richards CD, Van Den Berg WB: Intra-articular IL-10 gene transfer regulates the expression of collagen-induced arthritis (CIA) in the knee and ipsilateral paw. Clin Exp Immunol 2000, 120:375-383.

38. Apparaily F, Verwaerde C, Jacquet C, Auriault C, Sany J, Jorgensen C: Adenovirus-mediated transfer of viral IL-10 gene inhibits murine collagen-induced arthritis. J Immunol 1998, 160:931-938.

39. Lubberts E, Joosten LA, Van Den Borsellaar L, Hensen MM, Bakker AC, van Meurs JB, Graham FL, Richards CD, van Den Berg WB: Adenoviral vector-mediated overexpression of IL-4 in the knee joint of mice with collagen-induced arthritis prevents cartilage damage. J Immunol 1999, 163:4546-4556.

40. Woods JM, Amin MA, Katschke KJ Jr, Volin MV, Ruth JH, Connors JD: Interleukin-13 gene therapy reduces inflammation, vascularization, and bony destruction in rat adjuvant-induced arthritis. Hum Gene Ther 2002, 13:381-391.

41. Bakker AC, van de Loo FA, van Beuningen HM, Sime P, van Lent PL, van der Kraan PM, Richards CD, van den Berg WB: Overexpression of active TGF-beta1 in the murine knee: evidence for synovial-layer-dependent chondro-osteocyte interaction. Exp Cell Res 2001, 266:1-13.

42. Mi Z, Ghiavizzani SC, Lechman E, Ghiavizzani DL, Evans CH, Robbins PD: Adverse effects of adenovirus-mediated gene transfer of human transforming growth factor beta 1 into rabbit knees. Arthritis Rheum 2002, 46:R11-R19.

43. Goossens PH, Vogels R, Pieterman E, Havenga MJ, Bout A, Breedveld FC, Valerio D, Huizinga TW: The influence of synovial fluid on adenovirus-mediated gene transfer to the synovial tissue. Arthritis Rheum 2001, 44:48-52.

44. Oligno T, Ghiavizzani S, Wolfe D, Lechman E, Kirsy D, Mi Z, Evans C, Robbins P, Ghiavizzani J: Intra-articular delivery of a herpes simplex virus IL-1Ra gene vector reduces inflammation in a rabbit model of arthritis. Gene Ther 1999, 6:1713-1720.

45. Goater J, Muller R, Kollas G, Firestein GS, Sanz I, O’Keefe RJ, Sisson RS, JR: Empirical advantages of adeno-associated viral vectors in vivo gene therapy for arthritis. J Rheumatol 2000, 27:983-989.

46. Watanabe S, Imagawa T, Boivin GP, Gao G, Wilson JM, Hirsch R: Intra-articular gene therapy of TNFR:Fc suppresses experimental arthritis by inhibiting nuclear factor kappaB activation. J Clin Invest 2001, 109:1223-1229.

47. Watanabe S, Imagawa T, Boivin GP, Gao G, Wilson JM: Latest developments and in vivo use of adenovirus-mediated gene transfer of trail induces apoptosis of arthritic rabbit joints. Mol Ther 2003, 5:1094-1105.

48. Zhang HG, Nakase T, Seki H, Kato K, Kaneda Y, et al: Suppressed severity of collagen-induced arthritis by in vivo transfection of nuclear factor kappaB decoy oligodeoxynucleotides as a gene therapy. Arthritis Rheum 1999, 42:2532-2542.

49. Zhang HG, Nakase T, Seki H, Kato K, Kaneda Y, et al: Induction of the cytokine signal regulator SOCS3/CIS3 as a therapeutic gene therapy that inhibits nuclear translocation of nuclear factor kappaB results in tumor necrosis factor alpha-induced apoptosis of human synovial fibroblasts. Arthritis Rheum 2000, 43:1094-1105.

50. Krause A, Scaletta N, Jr JID, Iavshik LB: Rheumatoid arthritis synovioocyte survival is dependent on Stat3. J Immunol 2002, 169:6010-6016.

51. Shouda T, Yoshida T, Hanada T, Wakioka T, Zhang X, Yang P, Zhou T, Cui Y, Gao G, Wilson JM: Gene therapy that inhibits nuclear translocation of nuclear factor kappaB results in tumor necrosis factor alpha-induced apoptosis of human synovial fibroblasts. Arthritis Rheum 2000, 43:1094-1105.

52. Cashman SM, Morris DJ, Kumar-Singh R: Evidence of protein transduction but not intercellular transport by proteins fused to HIV tat in retinal cell culture and in vivo. Mol Ther 2003, 8:100-102.

53. Corbel SY, Rossi FM: Latest developments and in vivo use of the Tet system: ex vivo and in vivo delivery of tetracycline-regulated genes. Curr Opin Biotechnol 2002, 13:448-452.

54. Tomita T, Takeuchi E, Tomita N, Morishita R, Kaneko M, Tomita T, Takeuchi E, Tomita N, Morishita R, Kaneko M, Amin MA, Katschke KJ Jr, Volin MV, Ruth JH, Connors JD: Interleukin-13 gene therapy reduces inflammation, vascularization, and bony destruction in rat adjuvant-induced arthritis. Hum Gene Ther 2002, 13:1179-1188.

55. Perez N, Pience P, Millet V, Greetet D, Minot C, Noel D, Danos O, Jorgensen C, Apparailly F: Tetracycline transcriptional silencer tightly controls transgene expression after in vivo intramuscular electrotransfer: application to interleukin 10 therapy in experimental arthritis. Hum Gene Ther 2002, 13:2161-2172.

56. Gould DJ, Bright C, Chernajovsky V: Inhibition of established collagen-induced arthritis with a tumour necrosis factor-alpha inhibitor expressed from a self-contained doxycycline regulated plasmid. Arthritis Res Ther 2004, 6:R103-R113.

57. Varley AW, Coulthard MG, Meidell RS, Gerard RD, Munford RS: Intra-articular delivery of recombinant protein expression in vivo using promoters from acute-phase protein genes. Proc Natl Acad Sci USA 1995, 92:5346-5350.

58. Varley AW, Geiszler SM, Gaynor RB, Munford RS: A two-component expression system that responds to inflammatory stimuli to express a human interleukin-1 receptor antagonist gene. J Exp Med 1996, 189:2161-2172.
Wilson JM, Chen Y: Amelioration of collagen-induced arthritis by CD95 (Apo-1/Fas)-ligand gene transfer. J Clin Invest 1997, 100:1951-1957.

74. Muller-Ladner U, Nishioka K: p53 in rheumatoid arthritis: friend or foe? Arthritis Res 2000, 2:175-178.

75. Tak PP, Zvaifler NJ, Firestein GS: Rheumatoid arthri-

76. tis and p53: how oxidative stress might alter the course of inflammatory diseases. Immunol Today 2000, 21:78-82.

77. Tak PP, Klapow MS, Boversen SF, van de Geet DA, Overbeek M, Firestein GS: Apoptosis and p53 expression in rat adjuvant arthritis. Arthritis Res 2000, 2:229-235.

78. Aupperle KR, Boyle DL, Hendrix M, Seftor EA, Zvaifler NJ, Barbosa M, Firestein GS: Regulation of synovocyte proliferation, apoptosis, and invasion by the p53 tumor suppressor gene. Am J Pathol 1998, 152:1091-1098.

79. Yamanishi Y, Boyle DL, Pinkoski MJ, Mahboubi A, Lin T, Han Z, Zvaifler NJ, Green DR, Firestein GS: Regulation of joint destruction and inflammation by p53 in collagen-induced arthritis. Am J Pathol 2000, 156:1923-2008.

80. Yamanishi Y, Boyle DL, Nguyen KH, Zhuang S, Shi Y, McCormack JE, Chada S, Firestein GS: Intra-articular IL-4 gene therapy in arthritis: anti-inflammatory effect and enhanced th2 activity. Gene Ther 2000, 9:611-16.

81. Lechman ER, Keravala A, Nash J, Kim SH, Mi Z, Robbins PD: The contralateral effect conferred by intra-articular adenovirus-mediated gene transfer of viral IL-10 is specific to the immune system. Gene Ther 2000, 7:2039-2045.

82. Yamanishi Y, Boyle DL, Nguyen KH, Zhuang S, Shi Y, McCormack JE, Chada S, Firestein GS: Intra-articular IL-4 gene therapy in arthritis: anti-inflammatory effect and enhanced th2 activity. Gene Ther 2000, 7:2039-2045.

83. Lechman ER, Keravala A, Nash J, Kim SH, Mi Z, Robbins PD: The contralateral effect conferred by intra-articular adenovirus-mediated gene transfer of viral IL-10 is specific to the immune system. Gene Ther 2000, 7:2039-2045.

84. Sant SM, Suarez TM, Moalli MR, Wu BY, Blaivas M, Laing TJ, Robbins PD: Direct adenovirus-mediated gene transfer of interleukin 1 and tumor necrosis factor alpha soluble receptors to rabbit knees with experimental arthritis has local and distal anti-inflammatory effects. Proc Natl Acad Sci USA 1998, 95: 4613-4618.

85. Sant SM, Suarez TM, Moalli MR, Wu BY, Blaivas M, Laing TJ, Robbins PD: Direct adenovirus-mediated gene transfer of interleukin 1 and tumor necrosis factor alpha soluble receptors to rabbit knees with experimental arthritis has local and distal anti-inflammatory effects. Proc Natl Acad Sci USA 1998, 95:4613-4618.

86. Baragi VM: Angiogenesis and arthritis. Arthritis Rheum 1999, 418-425.

87. Baragi VM: Angiogenesis and arthritis. Arthritis Rheum 1999, 418-425.

88. Baragi VM: Angiogenesis and arthritis. Arthritis Rheum 1999, 418-425.

89. Baragi VM: Angiogenesis and arthritis. Arthritis Rheum 1999, 418-425.

90. Baragi VM: Angiogenesis and arthritis. Arthritis Rheum 1999, 418-425.

91. Baragi VM: Angiogenesis and arthritis. Arthritis Rheum 1999, 418-425.

92. Baragi VM: Angiogenesis and arthritis. Arthritis Rheum 1999, 418-425.

93. Baragi VM: Angiogenesis and arthritis. Arthritis Rheum 1999, 418-425.

94. Baragi VM: Angiogenesis and arthritis. Arthritis Rheum 1999, 418-425.

95. Baragi VM: Angiogenesis and arthritis. Arthritis Rheum 1999, 418-425.

96. Baragi VM: Angiogenesis and arthritis. Arthritis Rheum 1999, 418-425.

97. Baragi VM: Angiogenesis and arthritis. Arthritis Rheum 1999, 418-425.

98. Baragi VM: Angiogenesis and arthritis. Arthritis Rheum 1999, 418-425.

99. Baragi VM: Angiogenesis and arthritis. Arthritis Rheum 1999, 418-425.

100. Baragi VM: Angiogenesis and arthritis. Arthritis Rheum 1999, 418-425.
112. Evans CH, Gouze JN, Gouze E, Robbins PD, Ghivizzani SC: Osteoarthritis gene therapy. *Gene Ther* 2004, 11:379-389.

113. Quattrocchi E, Dallman MJ, Feldmann M: Adenovirus-mediated gene transfer of CTLA-4Ig fusion protein in the suppression of experimental autoimmune arthritis. *Arthritis Rheum* 2000, 43:1688-1697.

114. Smeets RL, van de Loo FA, Arntz OJ, Bennink MB, Joosten LA, van den Berg WB: Adenoviral delivery of IL-18 binding protein C ameliorates collagen-induced arthritis in mice. *Gene Ther* 2003, 10:1004-1011.

115. Kim KN, Watanabe S, Ma Y, Thornton S, Giannini EH, Hirsch R: Viral IL-10 and soluble TNF receptor act synergistically to inhibit collagen-induced arthritis following adenovirus-mediated gene transfer. *J Immunol* 2000, 164:1576-1581.

116. Quattrocchi E, Dallman MJ, Dhillon AP, Quaglia A, Bagnato G, Feldmann M: Murine IL-10 gene transfer inhibits established collagen-induced arthritis and reduces adenovirus-mediated inflammatory responses in mouse liver. *J Immunol* 2001, 166:5970-5978.

117. Woods JM, Katschke KJ, Volin MV, Ruth JH, Woodruff DC, Amin MA, Connors MA, Kurata H, et al.: IL-4 adenoviral gene therapy reduces inflammation, proinflammatory cytokines, vascularization, and bony destruction in rat adjuvant-induced arthritis. *J Immunol* 2001, 166:1214-1222.