Accumulation points of real Schur roots

Charles Paquette

November 22nd, 2014
$k = \bar{k}$ is an algebraically closed field.
Settings

- $k = \overline{k}$ is an algebraically closed field.
- $Q = (Q_0, Q_1)$ is a connected acyclic quiver with $Q_0 = \{1, 2, \ldots, n\}$.
Settings

- $k = \overline{k}$ is an algebraically closed field.
- $Q = (Q_0, Q_1)$ is a connected acyclic quiver with $Q_0 = \{1, 2, \ldots, n\}$.
- We may choose an admissible ordering, that is, $j \to i \in Q_1$ implies $i < j$.
Settings

- $k = \overline{k}$ is an algebraically closed field.
- $Q = (Q_0, Q_1)$ is a connected acyclic quiver with $Q_0 = \{1, 2, \ldots, n\}$.
- We may choose an admissible ordering, that is, $j \rightarrow i \in Q_1$ implies $i < j$.
- $\text{rep}(Q)$ denotes the category of finite dimensional representations of Q over k.
Settings

- $k = \overline{k}$ is an algebraically closed field.
- $Q = (Q_0, Q_1)$ is a connected acyclic quiver with $Q_0 = \{1, 2, \ldots, n\}$.
- We may choose an admissible ordering, that is, $j \rightarrow i \in Q_1$ implies $i < j$.
- $\text{rep}(Q)$ denotes the category of finite dimensional representations of Q over k.
- Given $M \in \text{rep}(Q)$, we denote by $d_M \in \mathbb{Z}^n_{\geq 0}$ its dimension vector.
Settings

- $k = \bar{k}$ is an algebraically closed field.
- $Q = (Q_0, Q_1)$ is a connected acyclic quiver with $Q_0 = \{1, 2, \ldots, n\}$.
- We may choose an admissible ordering, that is, $j \rightarrow i \in Q_1$ implies $i < j$.
- $\text{rep}(Q)$ denotes the category of finite dimensional representations of Q over k.
- Given $M \in \text{rep}(Q)$, we denote by $d_M \in \mathbb{Z}_{\geq 0}^n$ its dimension vector.
- We denote by $\langle - , - \rangle$ the Euler-Ringel form of Q, that is, $\langle d_M , d_N \rangle = \dim_k \text{Hom}(M, N) - \dim_k \text{Ext}^1(M, N)$.
A representation M is **Schur** if $\text{End}(M) = k$.
A representation M is **Schur** if $\text{End}(M) = k$.

If M is a Schur representation, then d_M is a **Schur root**.
A representation M is **Schur** if $\text{End}(M) = k$.

If M is a Schur representation, then d_M is a **Schur root**.

We then call d_M

\[
\begin{cases}
\text{real,} & \text{if } \langle d_M, d_M \rangle = 1; \\
\text{imaginary,} & \text{if } \langle d_M, d_M \rangle \leq 0; \\
\text{isotropic,} & \text{if } \langle d_M, d_M \rangle = 0; \\
\text{strictly imaginary,} & \text{if } \langle d_M, d_M \rangle < 0;
\end{cases}
\]
Schur roots

- Δ_Q denotes the set of all rays in \mathbb{R}^n in the positive orthant.
Schur roots

- Δ_Q denotes the set of all rays in \mathbb{R}^n in the positive orthant.
- We denote by $[d]$ the ray of $d \in \mathbb{Z}_{\geq 0}^n$.
Schur roots

- Δ_Q denotes the set of all rays in \mathbb{R}^n in the positive orthant.
- We denote by $[d]$ the ray of $d \in \mathbb{Z}_{\geq 0}^n$.
- A Schur root that is real or isotropic is uniquely determined by its ray.
Schur roots

- Δ_Q denotes the set of all rays in \mathbb{R}^n in the positive orthant.
- We denote by $[d]$ the ray of $d \in \mathbb{Z}_{\geq 0}^n$.
- A Schur root that is real or isotropic is uniquely determined by its ray.
- If d is strictly imaginary, then all integral vectors in $[d]$ are strictly imaginary.
Accumulation points of real roots

- This has been studied by C. Hohlweg, J. Labbé, V. Ripoll in arXiv:1112.5415.
Accumulation points of real roots

- This has been studied by C. Hohlweg, J. Labbé, V. Ripoll in arXiv:1112.5415.
- Another paper by M. Dyer, C. Hohlweg, V. Ripoll in arXiv:1303.6710.
Accumulation points of real roots

- This has been studied by C. Hohlweg, J. Labbé, V. Ripoll in arXiv:1112.5415.
- Another paper by M. Dyer, C. Hohlweg, V. Ripoll in arXiv:1303.6710.
- A third one by C. Hohlweg, J. Préaux, V. Ripoll in arXiv:1305.0052.
Example 1

Here is an example for Δ_Q for Q of type $\tilde{A}_{2,1}$
Example 1

Here is an example for $\Delta \mathbb{Q}$ for \mathbb{Q} of type $\tilde{\text{A}}_2^1$.

Derksen, Weyman
Example 2

Here is an example for Δ_Q for $Q: 1 \leftarrow 2 \leftrightarrow 3$
Example 2

Derksen, Weyman
The canonical decomposition

Theorem (Kac)

Every dimension vector can be written as a positive linear combination of Schur roots d_1, \ldots, d_r such that

- The coefficient of a strictly imaginary Schur root is one.
The canonical decomposition

Theorem (Kac)

Every dimension vector can be written as a positive linear combination of Schur roots d_1, \ldots, d_r such that

- $\text{ext}^1(d_i, d_j) = 0$ whenever $i \neq j$.

CGMRT 2014, University of Iowa
The canonical decomposition

Theorem (Kac)

Every dimension vector can be written as a positive linear combination of Schur roots d_1, \ldots, d_r such that

- $\text{ext}^1(d_i, d_j) = 0$ whenever $i \neq j$.
- the coefficient of a strictly imaginary Schur root is one.
The canonical decomposition

Theorem (Kac)

Every dimension vector can be written as a positive linear combination of Schur roots d_1, \ldots, d_r such that

- $\text{ext}^1(d_i, d_j) = 0$ whenever $i \neq j$.
- *the coefficient of a strictly imaginary Schur root is one.*

- Derksen and Weyman’s algorithm can be used to find the canonical decomposition of any dimension vector. All is needed is:
The canonical decomposition

Theorem (Kac)

Every dimension vector can be written as a positive linear combination of Schur roots d_1, \ldots, d_r such that

- $\text{ext}^1(d_i, d_j) = 0$ whenever $i \neq j$.
- the coefficient of a strictly imaginary Schur root is one.

Derksen and Weyman's algorithm can be used to find the canonical decomposition of any dimension vector. All is needed is:

- The Euler form $\langle -, - \rangle$ of Q.

CGMRT 2014, University of Iowa
The canonical decomposition

Theorem (Kac)

Every dimension vector can be written as a positive linear combination of Schur roots d_1, \ldots, d_r such that

- $\text{ext}^1(d_i, d_j) = 0$ whenever $i \neq j$.
- The coefficient of a strictly imaginary Schur root is one.

- Derksen and Weyman’s algorithm can be used to find the canonical decomposition of any dimension vector. All is needed is:
 - The Euler form $\langle -, - \rangle$ of Q.
 - Know the canonical decomposition of quivers with two vertices.
The canonical decomposition

Theorem

If the canonical decomposition of $d \in \mathbb{Z}_{\geq 0}^n$ *involves a strictly imaginary Schur root, then there exists a small neighborhood of* d *with the same property.*
Corollary

If d *is a rational accumulation point of real Schur roots, then the canonical decomposition of* d *involves pairwise orthogonal isotropic Schur roots.*
Corollary

If d is a rational accumulation point of real Schur roots, then the canonical decomposition of d involves pairwise orthogonal isotropic Schur roots.

Theorem

If d is an isotropic Schur root, then d is an accumulation point of real Schur roots.
Rational accumulation points

- The quiver Q is of **weakly hyperbolic type** if the symmetrized Euler form has exactly one negative eigenvalue and the others are positive.
Rational accumulation points

- The quiver Q is of **weakly hyperbolic type** if the symmetrized Euler form has exactly one negative eigenvalue and the others are positive.
- The quiver Q is weakly hyperbolic (or Dynkin or Euclidean) when, for instance:
Rational accumulation points

- The quiver Q is of **weakly hyperbolic type** if the symmetrized Euler form has exactly one negative eigenvalue and the others are positive.

- The quiver Q is weakly hyperbolic (or Dynkin or Euclidean) when, for instance:
 - $|Q_0| \leq 3$.
The quiver Q is of \textit{weakly hyperbolic type} if the symmetrized Euler form has exactly one negative eigenvalue and the others are positive.

The quiver Q is weakly hyperbolic (or Dynkin or Euclidean) when, for instance:

- $|Q_0| \leq 3$.
- Q has a full subquiver with $n - 1$ vertices which is a union of Dynkin quivers.
Rational accumulation points

- The quiver Q is of **weakly hyperbolic type** if the symmetrized Euler form has exactly one negative eigenvalue and the others are positive.
- The quiver Q is weakly hyperbolic (or Dynkin or Euclidean) when, for instance:
 - $|Q_0| \leq 3$.
 - Q has a full subquiver with $n - 1$ vertices which is a union of Dynkin quivers.

Proposition

*If Q is weakly hyperbolic, then the rational accumulation points are precisely the isotropic Schur roots of Q.***
Irrational accumulation points

- Assume that Q is weakly hyperbolic.
Irrational accumulation points

- Assume that Q is weakly hyperbolic.
- The (dimension vectors of the) preprojective representations accumulates to y^-.
Irrational accumulation points

- Assume that Q is weakly hyperbolic.
- The (dimension vectors of the) preprojective representations accumulates to y^-.
- The (dimension vectors of the) preinjective representations accumulates to y^+.

(CGMRT 2014, University of Iowa)
Irrational accumulation points

- Assume that Q is weakly hyperbolic.
- The (dimension vectors of the) preprojective representations accumulates to y^-.
- The (dimension vectors of the) preinjective representations accumulates to y^+.
- (Ringel) y^+, y^- are (irrational) eigenvectors of the Coxeter transformation.
Irrational accumulation points

- Assume that Q is weakly hyperbolic.
- The (dimension vectors of the) preprojective representations accumulates to y^-.
- The (dimension vectors of the) preinjective representations accumulates to y^+.
- (Ringel) y^+, y^- are (irrational) eigenvectors of the Coxeter transformation.
- Are there other accumulation points?
Irrational accumulation points

For any (Generalized) Kronecker subcategory $\mathcal{C} = \text{rep}(Q')$ of $\text{rep}(Q)$, denote by $y^-_\mathcal{C}, y^+_\mathcal{C}$ the associated eigenvalues of the Coxeter transformation of Q', where $y^-_\mathcal{C} = y^+_\mathcal{C}$ when Q' is tame.
Irrational accumulation points

- For any (Generalized) Kronecker subcategory $\mathcal{C} = \text{rep}(Q')$ of $\text{rep}(Q)$, denote by y_C^-, y_C^+ the associated eigenvalues of the Coxeter transformation of Q', where $y_C^- = y_C^+$ when Q' is tame.

- Then y_C^-, y_C^+ are accumulation points in Δ_Q, irrational if \mathcal{C} is wild.
Irrational accumulation points

- For any (Generalized) Kronecker subcategory $\mathcal{C} = \text{rep}(Q')$ of $\text{rep}(Q)$, denote by $y_\mathcal{C}^-, y_\mathcal{C}^+$ the associated eigenvalues of the Coxeter transformation of Q', where $y_\mathcal{C}^- = y_\mathcal{C}^+$ when Q' is tame.

- Then $y_\mathcal{C}^-, y_\mathcal{C}^+$ are accumulation points in Δ_Q, irrational if \mathcal{C} is wild.

- Are there any other?
Irrational accumulation points

For any (Generalized) Kronecker subcategory $\mathcal{C} = \text{rep}(Q')$ of $\text{rep}(Q)$, denote by $y^-_{\mathcal{C}}, y^+_{\mathcal{C}}$ the associated eigenvalues of the Coxeter transformation of Q', where $y^-_{\mathcal{C}} = y^+_{\mathcal{C}}$ when Q' is tame.

Then $y^-_{\mathcal{C}}, y^+_{\mathcal{C}}$ are accumulation points in Δ_Q, irrational if \mathcal{C} is wild.

Are there any other?

Yes, y^+, y^-.
Introduction

Accumulation points - Examples
Accumulation points - Canonical decomposition
Accumulation points - Rational ones
Accumulation points - Others

Irrational accumulation points

For any (Generalized) Kronecker subcategory $C = \text{rep}(Q')$ of $\text{rep}(Q)$, denote by y_C^-, y_C^+ the associated eigenvalues of the Coxeter transformation of Q', where $y_C^- = y_C^+$ when Q' is tame.

Then y_C^-, y_C^+ are accumulation points in Δ_Q, irrational if C is wild.

Are there any other?

Yes, y^+, y^-.

Theorem

The set of accumulation points of Δ_Q is the closure of $\{y_C^-, y_C^+ \mid C \text{ Kronecker subcategory}\}$.

CGMRT 2014, University of Iowa
THANK YOU

Questions ?