Search for ultra-high energy photons and neutrinos using Telescope Array surface detector

G I Rubtsov1, M Fukushima2, D Ivanov3, B T Stokes3,
G B Thomson3, S V Troitsky1 for the Telescope Array Collaboration

1 Institute for Nuclear Research of the RAS, Moscow, Russia
2 Institute for Cosmic Ray Research of University of Tokyo, Japan
3 University of Utah, Salt Lake City, Utah, USA

E-mail: * grisha@ms2.inr.ac.ru

Abstract. We search for ultra-high energy photons by analyzing geometrical properties of shower fronts of events registered by the Telescope Array surface detector. By making use of an event-by-event statistical method, we derive upper limits on the absolute flux of primary photons with energies above 10^{19} eV, $10^{19.5}$ eV and above 10^{20} eV based on the three years data from Telescope Array surface detector (May 2008 – May 2011). We report the results of down-going neutrino search based on the analysis of very inclined events.

1. Introduction
Telescope Array (TA) experiment is a hybrid detector operating in Utah, USA. TA consists of a surface detector array of 507 plastic scintillators with 1.2 km spacing covering 700 km2 area \cite{1} and three fluorescence detectors \cite{2}. The purpose of this Talk is to present photon and neutrino search capabilities of Telescope Array surface detector and to place the upper limits on the integral photon fluxes in energy region above 10^{19} eV.

Several limits on the UHE photon flux have been set by independent experiments, including Haverah Park \cite{3}, AGASA \cite{4}, Yakutsk \cite{5, 6} (see also reanalyses of the AGASA \cite{7} and AGASA+Yakutsk \cite{8} data at the highest energies) and the Pierre Auger Observatory \cite{9, 10, 11}, but no evidence for primary photons found at present.

Ultra-high energy neutrinos may be generated by the decay of charged pions produced as a secondaries in GZK process \cite{12, 13}, by beta-decay of unstable ultra-high energy nuclei or by some mechanism related to the new physics. Neutrino flux is constrained by several experiments, see \cite{14} and references therein.

2. Photon search
The Telescope Array surface detector stations contain plastic scintillators of 3 m2 area which detect both muon and electromagnetic components of the extensive air shower and therefore are sensitive to showers induced by primary photons (see e.g. Ref. \cite{15} for discussion). We use the shower front curvature as a composition-sensitive parameter (C-parameter) and we use a modification of event-by-event statistical method \cite{16} to constrain the photon integral flux above the given energy. For the energy-sensitive parameter (E-parameter), we use the scintillator signal density at 800 m core distance $S \equiv S_{800}$.
2.1. Simulations
Event-by-event method requires us to have a set of simulated photon-induced showers for the analysis of each real shower. We simulate the library of these showers with different primary energies and arrival directions. For the highest energy candidates (events which may be induced by photon with primary energy above $10^{19.5} \text{ eV}$) we simulate individual sets of showers with fixed zenith and azimuthal angles.

We use CORSIKA [17] with EGS4 [18] model for electromagnetic interactions, PRESHOWER code [19] for geomagnetic interactions, QGSJET II [20] and FLUKA [21] for high and low energy hadronic interactions. There is no significant dependence of the hadronic model because only photon-induced simulated showers are used in calculations. The showers are simulated with thinning and the dethinning procedure is used [22].

Detector response is accounted for by using look-up tables simulated with GEANT4 [23]. Real-time array configuration and detector calibration information are used for each simulated event. Monte-Carlo (MC) events are produced in the same format as real events and analysis procedures are applied in the same way to both. Photon-induced MC set contains $2 \cdot 10^6$ triggered events based on 3380 independent CORSIKA showers.

2.2. Dataset
We use Telescope Array surface detector dataset covering dates from 2008-05-11 to 2011-05-01. Surface detector has been collecting data for more than 95% of time during that period [1].

We reconstruct each event with a joint fit of the geometry and lateral distribution function (LDF) and determine Linsley curvature parameter “a” along with the arrival direction, core location and signal density at 800 meters $S \equiv S_{800}$. The same reconstruction procedure is applied to both data and Monte-Carlo events.

For each real event “i” we estimate the energy of hypothetical photon primary $E_{i\gamma} = E_{i\gamma}(S_{i}, \theta_{i}, \phi_{i})$, i.e. the average energy of the primary photon, inducing the shower with the same arrival direction and S. The look-up table for $E_{i\gamma}(S, \theta, \phi)$ is built using photon MC set; the dependence on azimuthal angle ϕ is relevant for events with $E_{i\gamma} > 10^{19.5} \text{ eV}$ where geomagnetic preshowering is substantial.

The following cuts are applied to both data and MC events:

(i) Zenith angle cut: $45^\circ < \theta < 60^\circ$;
(ii) The number of detectors triggered is 7 or more;
(iii) Shower core is inside the array boundary with the distance to the boundary larger than 1200 meters;
(iv) Joint fit quality cut, χ^2/d.o.f.< 5;
(v) $E_{i\gamma}(S_{800}, \theta_{i}, \phi_{i}) > 10^{19} \text{ eV}$.

The cuts determine photon registration efficiency which is higher that 50% for showers induced by primary photons with energy above 10^{19} eV. Dataset contains 877 events with $E_{i\gamma} > 10^{19} \text{ eV}$ and $45^\circ < \theta < 60^\circ$.

2.3. Method
To estimate the flux limit we use event-by-event method. Linsley curvature parameter “a” is used as a C-observable and $S \equiv S_{800}$ is used as E-observable. For each real event “i” we estimate the pair of parameters $(S_{i\text{obs}}, \sigma_{i\text{obs}})$ and the arrival direction (θ_{i}, ϕ_{i}) from the fit of shower front geometry and LDF. We select a simulated gamma-induced showers compatible with the observed θ_{i}, ϕ_{i} and $S_{i\text{obs}}$ and calculate the curvature distribution of the simulated...
showers \(f'_{\gamma}(a) \) as discussed in Ref. [16]. For each event, we determine the quantity

\[C_i = \int_{-\infty}^{a_{obs}} f'_{\gamma}(a) da \]

which is the value of the integral probability distribution function for the observed curvature.

Though the distributions \(f'_{\gamma}(a) \) vary with energy and arrival direction, \(C_i \) for gamma-ray primaries would be distributed between 0 and 1 uniformly by definition.

Since the simulations of hadron-induced showers depend strongly on the hadronic interaction model, we do not use the hadronic showers simulations in calculation of the limit.

Suppose that the integral flux of primary photons over a given energy range is \(F'_{\gamma} \). Then we expect to detect \(\bar{n}(F'_{\gamma}) = F'_{\gamma} A_{geom} (1 - \lambda) \) photon events in average, where \(A_{geom} \) is the geometrical exposure of the experiment for a given dataset and \(\lambda \) is fraction of “lost” photon (i.e. photons with primary energies within the interesting region which failed to enter the dataset due to cuts).

Let \(P(n) \) be a probability to have \(n \) photons in a dataset which is defined as a maximum over all subsets of \(n \) real events:

\[P(n) = \max_{i_1 < i_2 < \ldots < i_n} P(\{i_1, \ldots, i_n\}) \]

where \(P(\{i_1, \ldots, i_n\}) \) is a statistical probability of the subset \(\{i_1, \ldots, i_n\} \) to be compatible with uniform distribution (i.e. may include 100\% photon events). At this point any non-parametric statistical test may be used to compare the distribution with uniform. We use Smirnov-Cramer-von Mises “omega-square” test because it allows simple and quick numerical procedure to maximize the probability over all subsets of eventset. To constrain the flux \(F'_{\gamma} \) at the confidence level of \(\xi \) one requires

\[\sum_n P(n) W(n, \bar{n}(F'_{\gamma})) < 1 - \xi, \]

where \(W(n, \bar{n}) \) is the Poisson distribution with average \(\bar{n} \).

2.4. Results
Geometrical exposure for considered SD observation period with \(45^\circ < \theta < 60^\circ \) and boundary cut is \(A_{geom} = 1286 \text{ km}^2 \text{ sr yr} \). The fraction of the lost photons is calculated using photon MC set assuming \(E^{-2} \) photon spectrum. Using the statistical method we arrive to the following results (figure 1):

\[
\begin{align*}
F'_{\gamma} &< 1.9 \times 10^{-2} \text{ km}^{-2} \text{sr}^{-1} \text{yr}^{-1} \text{ (95\% CL)}, \quad E'_{\gamma} > 10^{19} \text{ eV}, \\
F'_{\gamma} &< 0.97 \times 10^{-2} \text{ km}^{-2} \text{sr}^{-1} \text{yr}^{-1} \text{ (95\% CL)}, \quad E'_{\gamma} > 10^{19.5} \text{ eV}, \\
F'_{\gamma} &< 0.71 \times 10^{-2} \text{ km}^{-2} \text{sr}^{-1} \text{yr}^{-1} \text{ (95\% CL)}, \quad E'_{\gamma} > 10^{20} \text{ eV}.
\end{align*}
\]

3. Neutrino search
As opposed to hadron and photon-induced showers, neutrino-induced shower may be originated in any part of the atmosphere. Therefore very inclined young showers may be considered as a neutrino candidates. To separate young showers we count the number of peaks in the waveforms. To suppress accidental peaks as a result of FADC noise we define a peak as a time bin with signal above 0.2 VEM and higher than a signal of 3 preceeding and 3 consequent time bins. For
Figure 1. **PRELIMINARY**/ Photon flux limits of the present work (TA) compared to the limits by AGASA (A) [4], Yakutsk (Y) [6] and Pierre Auger Observatory (PA) [10, 11].

Figure 2. **PRELIMINARY**/ Number of peaks per detector layer vs Zenith angle for real events. Circle denotes the area of expected neutrino candidates – very inclined young showers.

Each event we count the total number of peaks over upper and lower layers of all detectors hit. Very inclined hadronic showers are old and contain mostly muons, which propagate rectilinearly producing mostly single-peaked waveforms. On the contrary, young showers produce long, indented waveforms. Neutrino is expected to produce young showers for all zenith angles.

For neutrino search we use Telescope Array surface detector data from 2008-05-11 to 2011-05-01 with cuts 2, 3 and 4 from Section 2.2. In our dataset, no young showers have zenith angle above 70°, see Fig. 2. Therefore no neutrino candidate events are observed. The calculation of exposure and the neutrino flux limit is in progress.

References

[1] Abu-Zayyad T et al. 2012 *Nucl. Instrum. Meth. A* 689 87
[2] Tokuno H et al. 2012 *Nucl. Instrum. Meth. A* 676, 54
[3] Ave M, Hinton J A, Vazquez R A, Watson A A and Zas E 2000 *Phys. Rev. Lett.* 85, 2244
[4] Shinozaki K et al. 2002 *Astrophys. J.* 571, L117
[5] Glushkov A V et al. 2007 *JETP Lett.* 85, 131
[6] Glushkov A V et al. 2010 *Phys. Rev.* D82, 041101
[7] Risse M et al. 2005 *Phys. Rev. Lett.* 95, 171102
[8] Rubtsov G I et al. 2006 *Phys. Rev. D* 73, 063009
[9] Abraham J [Pierre Auger Collaboration] 2007 *Astropart. Phys.* 27, 155
[10] Abraham J [Pierre Auger Collaboration] 2008 *Astropart. Phys.* 29, 243
[11] Settimo M [The Pierre Auger Collaboration] 2011 *Proceedings of 32nd ICRC, Beijing* arXiv:1107.4805
[12] Berezinsky V S and Zatsepin G T 1969 *Phys. Lett. B* 28, 423
[13] Kalashev O E, Kuzmin V A, Semikoz D V et al. 2002 *Phys. Rev. D* 66, 063004
[14] Risse M et al. 2012 *Proceedings of International Symposium on Future Directions in UHECR Physics*
[15] Kalashev O E, Rubtsov G I, Troitsky S V 2009 *Phys. Rev.* D80, 103006
[16] Gorbunov D S, Rubtsov G I and Troitsky S V 2007 *Astropart. Phys.* 28, 28
[17] Heck D et al. 1998 *Report FZKA-6019, Forschungszentrum Karlsruhe*
[18] Nelson W R, Hirayama H, Rogers D W O, *SLAC-0265*
[19] Homola P et al. 2005 *Comp. Phys. Comm.* 173, 71
[20] Ostapchenko S 2006 *Nucl. Phys. Proc. Suppl.* 151, 143
[21] Ferrari A et al. 2003 *CERN-2005-010; Fasso A, Ferrari A, Ranft J et al. 2003 eConf C0303241, MGMT005*
[22] Stokes B T, Cady R, Ivanov D, Matthews J M and Thomason G B 2012 *Astropart. Phys.* 35, 759
[23] Agostinelli S [GEANT4 Collaboration] 2003 *Nucl. Instrum. Meth. A* 506, 250