Diphoton excess at 750 GeV: gluon–gluon fusion or quark–antiquark annihilation?

Jun Gao1,a, Hao Zhang2,b, Hua Xing Zhu3,c

1 High Energy Physics Division, Argonne National Laboratory, Argonne, IL 60439, USA
2 Department of Physics, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
3 Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Abstract Recently, ATLAS and CMS collaborations reported an excess in the measurement of diphoton events, which can be explained by a new resonance with a mass around 750 GeV. In this work, we explored the possibility of identifying if the hypothetical new resonance is produced through gluon–gluon fusion or quark–antiquark annihilation, or tagging the beam. Three different observables for beam tagging, namely the rapidity and transverse-momentum distribution of the diphoton, and one tagged bottom-jet cross section, are proposed. Combining the information gained from these observables, a clear distinction of the production mechanism for the diphoton resonance is promising.

1 Introduction

Very recently, both ATLAS and CMS collaborations presented new results from LHC Run 2. Although most of the measurements can still be fit in the Standard Model (SM) framework nicely, some intriguing excesses are reported. Of particular interest is the diphoton excess around 750 GeV seen by both collaborations. The ATLAS collaboration reported an excess above the standard model (SM) diphoton background with a local (global) significance of 3.9 (2.3) \(\sigma \) \cite{atlas}. The CMS collaboration, with a little less integrated luminosity, also reported an excess at 760 GeV with a local (global) significance of 2.6 (a little less than 1.2) \(\sigma \) \cite{cms}.

Though further data is required to establish the existence of a new resonance or other beyond the SM (BSM) mechanism responsible for the diphoton excess, significant theoretical efforts have been made to explain the possible diphoton excess in various BSM scenarios \cite{bsm1,bsm2,bsm3,bsm4}.

While the models proposed vary significantly, there are some common features shared by most of them. Due to the quantum number of photon pair, most of the proposals suggest that the excess is either due to gluon–gluon fusion or quark–antiquark annihilation. Different production mechanisms can lead to very different UV models. Knowing the actual production mechanism responsible for the potential excess is of great importance for understanding the underlying theory. Unfortunately, very little can be said from the current data, except some considerations based on the consistency of experimental data from the LHC Run 1 and Run 2.

In this work, we shall study the following problem: if the diphoton excess persists in future data, and the existence of a new resonance is established, is it possible to distinguish different production mechanisms with enough amount of data? One can compare this question with the more frequently asked question, namely, how to tell whether an energetic hadronic jet in the final state is due to a quark or a gluon produced from hard scattering. This is also known as the quark and gluon jet tagging problem; see e.g. Refs. \cite{tagging1,tagging2,tagging3}.

One can view the question of differentiating the \(gg \) fusion and \(q \bar{q} \) annihilation mechanism as a final-state-to-initial-state crossing of the quark and gluon jet tagging problem. For this reason we will call it the quark and gluon beam tagging problem in this work, or beam tagging for short. While our current work in the beam tagging problem was motivated by the diphoton excess, we believe that our results will be useful even if the excess disappear after more data is accumulated, because a bump might eventually show up at a different place and/or in a different channel.

a e-mail: jgao@anl.gov
b e-mail: zhanghao@physics.ucsb.edu
c e-mail: zhuhx@mit.edu

\footnote{A somewhat related discussion has also been made in the literature of the color content of BSM resonance production \cite{color1,color2}, and the tagging of initial-state radiation \cite{initial}}.
An important feature of the beam tagging problem is that most of the QCD radiations from the initial-state partons are in the forward direction, and therefore are hard to make use of. This is contrasted with final-state jet tagging, in which the information of QCD radiations in the jet play crucial role in identifying the partonic origin of the jet. This feature makes the beam tagging problem difficult. Based on the consideration of general properties of initial-state QCD radiations, we explore different observables which are useful for the beam tagging problem. First of all, we consider the rapidity distribution of the diphoton system. It is well known from Drell–Yan production that for the $q\bar{q}$ initial state, contribution from valence quark and sea quark can have different shape in rapidity distribution. Using this information, we find that it is possible to distinguish the valence-quark scattering from sea-quark or gluon scattering. Second, we consider the transverse momentum (Q_T) distribution of the diphoton system. It is well known that the Q_T distribution of a color neutral system exhibits a Sudakov peak at low Q_T due to initial-state QCD radiation. Interestingly, the strength of initial-state radiation differs for quark or gluon induced hard scattering and leads to substantial difference in the position of the Sudakov peak. Using this information, it is possible to distinguish light-quark scattering from bottom-quark or gluon scattering. Lastly, to further differentiate bottom-quark induced or gluon induced scattering, we consider tagging a b-quark jet in the final state.

The paper is organized as follows: In Sect. 2.1 we study the rapidity distribution of the diphoton system, and propose using centrality ratio, defined as ratio of cross section in central rapidity region and the total cross section, to discriminate production mechanism due to valence-quark scattering from sea-quark or gluon scattering. In Sect. 2.2 we study the transverse-momentum distribution of the diphoton system, and propose the ratio of cumulative cross section in two different transverse-momentum bins to discriminate light-quark scattering from bottom-quark or gluon scattering. In Sect. 2.3, we study b-tagged cross section to further discriminate bottom-quark scattering from gluon scattering. We conclude in Sect. 3.

2 Three methods for the beam tagging problem

We consider the following effective operators with an additional singlet scalar S:

$$
\mathcal{L}_{\text{eff}} = -\frac{1}{4\pi\Lambda_g} S G^a_{\mu\nu} G^{a,\mu\nu} + \sum_{f=u,s,d,c,b} \left(\frac{v}{\Lambda_f} S \bar{q}_f q_f + \text{h.c.} \right). \tag{1}
$$

There could also be effective operators with a pseudo scalar. But their long distance behavior is in-distinguishable from the scalar case. Also the scalar has to couple to photon in order to be able to decay to diphoton. But that is irrelevant to most of our discussion.

Thanks to QCD factorization, the hadronic production cross section for S can be written as

$$
\hat{\sigma}_0^{(i)} = \tau \int_x^1 \frac{dx}{x} \left(f_{i/N_1}(\tau/x)f_{i/N_2}(x) + (i \leftrightarrow \bar{i}) \right) \hat{\sigma}_0^{(i)},
$$

where $\tau = M_S^2/E_{CM}^2$. The operator in Eq. (1) leads to the following partonic cross section to the scalar production:

$$
\hat{\sigma}_0^{(u)} = \frac{\pi}{16(N_c^2 - 1)} \left(\frac{\alpha_s}{3\pi \Lambda_S} \right)^2,
\hat{\sigma}_0^{(d)} = \frac{\pi}{2N_c} \left(\frac{v}{\Lambda_q M_S} \right)^2. \tag{3}
$$

2.1 Rapidity distribution

It is well known that for W and Z boson production in the SM, contributions from different partonic channels have different shapes in rapidity distribution of the boson. Valence-quark contributions have a double shoulder structure while the sea-quark contributions peak in the central region due to different slopes of the parton distribution functions (PDFs) with respect to Bjorken x. The results are similar for a resonance of 750 GeV produced at 13 TeV LHC. One way to quantify the shape of rapidity distribution is to use the centrality ratio, which is defined as ratio of cross sections in central rapidity region $|y| < y_{\text{cut}}$ and the total cross sections. In Fig. 1, we show the centrality ratio as a function of y_{cut} for a 750 GeV resonance produced through different parton combinations at leading order (LO). The hatched bands show the corresponding 68% confidence level (C.L.) PDF uncertainties as calculated according to the PDF4LHC recommendation [39], which are small especially for the valence-quark contributions. The ratios approach one when y_{cut} approaches the endpoint of the rapidity distribution ~ 2.8. As expected the valence-quark contributions have smaller values for the ratio than the ones from gluon or bottom quarks. The ratios are very close for gluon and bottom-quark or other sea-quark contributions, since the sea-quark PDFs are mostly driven by the gluon through DGLAP evolution. Taken y_{cut} to be 1, the centrality ratios are 0.74, 0.77, ~0.63 and 0.50, for gg, bb, dd, and uu channels, respectively. Assuming most of the experimental systematics will cancel in the ratio and with high statistics, it will be possible to discriminate underlying theory with production initiated by valence quarks and by gluon or sea quarks. Higher-order perturbative corrections may change above numbers which depend on the full theory.
We next consider the transverse momentum Q_T of the diphoton system. In the SM, transverse-momentum resummation for diphoton has been considered at Next-to-Next-to-Leading Logarithm (NNLL) level [58]. Fully differential distribution is also known at fixed next-to-next-to-leading order (NNLO) [46]. Here we consider the case where the diphoton originates from the decay of a new resonance at 750 GeV. At LO in QCD, Q_T is exactly zero due to momentum conservation in the transverse plane. However, as is well known from the study of Drell–Yan lepton pair transverse-momentum distribution, Q_T is not peaked at zero but rather at finite transverse momentum. The shift from $Q_T = 0$ to non-zero value is mostly due to initial-state QCD radiation. For example, if the diphoton is produced from gg fusion, the initial-state gluon in one proton can split into two gluons before colliding with the gluon from the other proton. The diphoton system is pushed to non-zero Q_T as a result of the splitting process. For large Q_T, the strong coupling is small and perturbative expansion works well. However, when Q_T is much smaller than M_S, large logarithms of the ratio between M_S and Q_T could arise, which spoils the convergence of the perturbative series. As an example, at NLO, the partonic cross section for the Q_T distribution of the diphoton system at leading power in Q_T^2/M_S^2 can be written as

$$\frac{d\sigma^{(g)}}{dQ_T^2} \Big|_{Q_T^2 > 0} = \left(\frac{\alpha_s}{4\pi}\right)^2 \tau^2_0 \sum_{a,b} \int_0^1 dx_1 \int_0^1 dx_2 \delta(x_1 x_2 - \tau) \times \int_{x_1}^1 \frac{d\xi_1}{\xi_1} f_a/N_1(x_1/\xi_1) \int_{x_2}^1 \frac{d\xi_2}{\xi_2} f_b/N_2(x_2/\xi_2) \cdot \delta_{ag} \delta_{bg} \delta(1 - \xi_1) \delta(1 - \xi_2)$$

where $P_{ij}(z)$ are the LO QCD splitting functions:

$$P_{qq}(z) = C_F \left[\frac{1 + z^2}{1 - z} \right]$$

$$P_{qg}(z) = \frac{1}{2} \left[(1 - z)^2 + z^2 \right]$$

$$P_{gg}(z) = 2C_A \left[\frac{1 - z + z^2}{z} \right] \left[\frac{1}{1 - z} \right] + \left(\frac{11}{6} C_A - \frac{1}{3} N_f \right) \delta(1 - z)$$

It is clear from Eq. (4) that when Q_T is very small, the logarithm $\ln^{(0,1)}(M_S^2/Q_T^2)/Q_T^2$ can become very large and perturbative expansion in α_s is no longer valid. The origin of these large logarithms is due to long distance QCD effects: soft and/or collinear radiation from initial-state partons. Thanks to QCD factorization, the dynamics of soft and/or collinear radiation can be well separated from the dynamics of UV physics. This is particular useful for us, because we would like to perform a beam tagging study in a way that does not rely too much on the underlying BSM models, e.g., tree-level induced or loop-induced S production. From Eq. (4), one can
also see that the leading logarithmic term differs between gg-fusion cross section and $q\bar{q}$ annihilation cross section, which is mainly due to the difference in the associated color factor, $C_A = 3$ versus $C_F = 4/3$. It is then expected that the difference can lead to different shape in the Q_T spectrum. Since the perturbative expansion of the Q_T spectrum does not converge at low Q_T, resummation of the large Q_T logarithms is required before one can assess the significance of the change in shape for the Q_T spectrum when switch between gg fusion and $q\bar{q}$ annihilation. Fortunately, resumming the large logarithms due to small transverse momentum has been studied since the early days of QCD [47,60–62,81,129]. The formalism developed in this pioneer work can be used in our 750 GeV diphoton study with little change, thanks to the universality of QCD at long distance. According to the celebrated Collins–Soper–Sterman (CSS) formula [62], the Q_T distribution of the diphoton system can be written as an inverse Fourier transformation:

\[
\frac{d\sigma^{(i)}}{dQ_T^2} = \tau \delta_0^{(i)} \int_0^\infty \frac{db}{2} J_0(bQ_T) \sum_{\alpha,\beta} \int_{\xi_1}^{\xi_2} d\xi_1 C^{(i)}_{\alpha\beta}(\xi_1; \mu = \frac{b_0}{b}) \times \frac{f_{a/N_1}(x_1; \mu = \frac{b_0}{b})}{\xi_1} \int_{\xi_2}^{\xi_1} d\xi_2 C^{(i)}_{\beta\bar{\gamma}}(\xi_2; \mu = \frac{b_0}{b}) \times \exp \left\{ - \int_{b_0^2/b^2}^{M^2_{\mu}} \frac{d\mu^2}{\mu^2} \right\} \times \left[\ln \frac{M^2_{\mu}}{\mu^2} A^{(i)}[\alpha_s(\mu)] + B^{(i)}[\alpha_s(\mu)] \right] + (i \leftrightarrow \bar{i}) + Y(Q^2_T, M^2_S, E^2_{CM}),
\]

where $J_0(x)$ is the zeroth order Bessel function of the first kind, $b_0 = 2e^{-\gamma_E}$, $\gamma_E = 0.577216 \ldots$ is Euler’s constant. The summation of a and b are over different parton species, u, d, \ldots, g. $A[\alpha_s(\mu)]$ and $B[\alpha_s(\mu)]$ are universal anomalous dimensions whose perturbative expansions can be written as

\[
A^{(i)}[\alpha_s(\mu)] = \sum_{n=1}^{\infty} \left(\frac{\alpha_s(\mu)}{4\pi} \right)^n A_n^{(i)},
B^{(i)}[\alpha_s(\mu)] = \sum_{n=1}^{\infty} \left(\frac{\alpha_s(\mu)}{4\pi} \right)^n B_n^{(i)}.
\]

In this work, we restrict ourselves to resummation of Q_T logarithms at Next-to-Leading Logarithmic (NLL) accuracy only, for which only $A_1^{(i)}$, $A_2^{(i)}$, and $B_1^{(i)}$ are needed. They are given by [70,110,111]

\[
A_1^{(i)} = 4C^{(i)},
A_2^{(i)} = 4C^{(i)} \left(\frac{67}{9} - \frac{\pi^2}{3} \right) C_A - \frac{10N_f}{9},
B_1^{(i)} = -\frac{22}{3} C_A + \frac{4}{3} N_f,
B_1^{(i)} = -6C_F.
\]

where $C^{(g)} = C_A$, $C^{(q)} = C_F$. The function $C^{(i)}_{ij}(\tau; \mu)$ is the hard collinear factor. For NLL resummation, we only need their LO expression:

\[
C^{(i)}_{ij}(\tau; \mu) = \delta_{ij}(1 - x).
\]

$Y(Q^2_T, \tau)$ denotes those terms which are not enhanced by $\ln(M^2_{\mu}/Q^2_T)$. They can be computed using a naive expansion in α_s. Sometimes they could have large impact at large Q_T. But in the region we are interested in, they can be safely neglected. Note that in Eq. (7), when b is very large, the integral for $\tilde{\mu}$ in the exponent would hit a Landau pole, where $\alpha_s(\tilde{\mu})$ diverges. The existence of the Landau pole at small $\tilde{\mu}$ indicates the onset of non-perturbative physics in that region, and an appropriate prescription to deal with the Landau pole is needed; see, e.g., Refs. [36,62,113,134]. We emphasize that the CSS formula is quite general and does not depend too much on the UV dynamics of the underlying process. Remarkably, at NLL level, all the process dependent information have been encoded in the tree partonic cross section $\sigma_0^{(i)}$, and in the label (i) for various dimension and collinear factor. Thus, we expect that the statement we make from the Q_T spectrum is rather model independent.

To quantify the discussion above, we calculate the Q_T spectrum of the 750 GeV diphoton system numerically for 13 TeV LHC. Thanks to the previous QCD studies, several public computer codes are available which implement the resummation of transverse-momentum logarithms for Drell–Yan and Higgs production, both in the QCD framework and in the Soft-Collinear Effective theory framework [20–23]. Resummation of Q_T for 750 GeV diphoton resonance can be easily accomplished by modifying those existing codes. Specifically, we modify HQT, which is based on the work of Refs. [35–37,74], and CuTe, which is based on the work of Refs. [24,25], to calculate the transverse-momentum spectrum of the hypothetical 750 GeV resonance. In HQT, a Landau pole is avoided by deforming the b-space integral off the real axis slightly, while in CuTe, the Landau pole is avoided by imposing a cutoff for the $\tilde{\mu}$ integral at very small value. In both calculations, we use the five-flavor scheme, namely the bottom quark is treated as a massless parton in the PDFs.

We calculate the Q_T spectrum by turning on the coupling of the diphoton resonance with each individual parton flavor at one time. The differential distribution is plotted in Fig. 2 for results from the two codes mentioned above at
PDFs lies around much lower values than the bottom-quark one. It thus indicates that the Sudakov peak for bottom-quark contribution has to show up at larger value of Q_T in order to accommodate the fact that its threshold is higher. For the gluon contribution, the shape of the Q_T spectrum is further broadened, and has the largest value for the peak position. This is mainly due to the difference in color factor. In the gluon case, the Sudakov exponent has a stronger suppression effects because $C_A \sim 2.25 C_F$. We have checked that if we naively change the color factor from C_A to C_F for the gluon contribution, its peak position move to a much lower value. From Fig. 2, we can see that the results from the two codes used for the calculation are similar, although they have a different framework for resummation and a different treatment of the Landau pole. The major difference comes from the bottom-quark contribution, where the peak position differ by about 5 GeV. This is mainly due to different ways in the two codes to avoid Landau pole. Because of the large mass of the resonance, non-perturbative effects are less pronounced as comparing with the W, Z boson production in the SM, as we checked by varying the non-perturbative parameter available in HqT and CuTe. Also, for the same reason, the subleading terms in Q_T are small in the region we plot.

Ideally, a detailed comparison of the normalized Q_T distribution predicted by QCD factorization and the LHC data for the hypothetical resonance would provide most information as regards the beam tagging problem from Q_T spectrum. In reality, this is very difficult due to the limited statistics and experimental uncertainties in measuring the photon transverse momentum. To simplify the analysis, we introduce a ratio R, which is defined as the cross section in Q_T bin of $[\Delta T, 2\Delta T]$ to the one in Q_T bin of $[0, \Delta T]$. The optimal choice for ΔT differs for different center of mass energy and different resonance mass. In our current case, we choose $\Delta T = 20$ GeV. The results for the ratio are listed in Table 1 based on curves shown in Fig. 2 for the two codes and various parton flavors. We can see a clear distinction for production initiated by light quarks, which favor a value of R lower than 1, and production initiated by gluon, which favors a value of R larger than 1. As noted above, prediction for bottom-quark initiated production are quite different, indicating a larger theoretical uncertainty in the resummation treatment of heavy-quark induced diphoton production. This uncertainty prevents us from distinguishing it from gluon.

Table 1 Ratio R for a 750 GeV resonance produced at 13 TeV LHC, initiated by different parton flavors as predicted by two resummation codes, HqT and CuTe.

R, NLL	$\bar{b}\bar{b}$	$c\bar{c}$	$s\bar{s}$	$u\bar{u}$	$d\bar{d}$	$g\bar{g}$
HqT	0.95	0.68	0.58	0.55	0.53	1.32
CuTe	1.32	0.82	0.70	0.66	0.65	1.52

Fig. 2 Q_T distribution at small transverse momentum at NLL accuracy for the resonance production initiated by different parton flavors. The two plots show results obtained from two public codes, HqT and CuTe.
produced via the gluon fusion process. In the second scenario, we focus on the remaining two production scenarios. In the first scenario (gg), the new scalar resonance is produced via the gluon fusion process. In the second scenario (bb), the scalar resonance is produced via the $b\bar{b}$ initial state. We will show that a 99.7% C.L. distinguish can be reached with a few percent level and can be neglected safely.

2.3 Diphoton with additional b-jet

In the previous two sections, we have shown that by measuring the rapidity and transverse-momentum distribution of the diphoton system, it is possible to distinguish the valence-quark induced diphoton production from sea-quark/gluon induced diphoton production, and light-quark induced diphoton production from gluon induced diphoton production. In this section, we focus on the remaining two production scenarios. In the first scenario (gg), the new scalar resonance is produced via the gluon fusion process. In the second scenario (bb), the scalar resonance is produced via the $b\bar{b}$ initial state. We will show that a 99.7% C.L. distinguish can be reached with less than 10 fb$^{-1}$ integrated luminosity at 13 TeV LHC. This means if the 750 GeV excess is indeed a new resonance, we do not need to wait for long to know its production mechanism.

In the gg scenario, the dominant production mode of the new resonance is gluon fusion process. With the initial-state radiation (ISR) effect, there are additional jets in the final state. The Feynman diagrams for jet production at LO in QCD are shown in Fig. 3. Since in the small-x region the gluon PDF is much larger than other partons, it is easy to see that most of the ISR jets are gluon and light (especially u and d) quarks. The b-jet fraction in the ISR jets is highly suppressed by the smallness of bottom-quark PDF. Thus we expect that the number of hard b-jet in the ISR jets is small.

In the bb scenario, we show the Feynman diagrams for jet production at LO in QCD in Fig. 4. The large gluon PDF induces a lot of b-jets from the $gb(\bar{b})$ initial-state processes. The b-jet fraction in the ISR jets then should be significant and can be tagged at the LHC Run 2.

For a simple estimation, we generate parton level signal events with MadGraph5 [10] and CT14llo PDF (five-flavor scheme) [82]. The signal events are showered using Pythia6.4 [137] with Tune Z2 parameter [88]. The detector effect is simulated using DELPHES 3 [40,73]. The b-tagging efficiency is tuned to be consistent with the distribution shown in Ref. [1]. For the signal strength, we scale the inclusive signal events (with MLM matching scheme) to fit the current data [2,3] (in this work, we only fit the data from the ATLAS collaboration). We require the photon to satisfy

$$|\eta| < 1.37, \quad \text{or} \quad 1.52 < |\eta| < 2.37.$$ \hspace{1cm} (11)

The transverse energy of the leading (subleading) photon should be larger than 40 (30) GeV. The leading and subleading photon candidates are then required to satisfy the conditions

$$\frac{E^{\gamma_1}_T}{m_{\gamma\gamma}} > 0.4, \quad \frac{E^{\gamma_2}_T}{m_{\gamma\gamma}} > 0.3.$$ \hspace{1cm} (12)

The inclusive diphoton spectrum is estimated with

$$0.026 \left[1 - \left(\frac{m_{\gamma\gamma}}{13 \text{ TeV}} \right)^{3.38} \right] \left(\frac{m_{\gamma\gamma}}{13 \text{ TeV}} \right)^{-3.49} \text{fb/GeV}.$$ \hspace{1cm} (13)

We solve the best-fit signal strength μ by maximizing [64, 135]

$$\sqrt{-2 \ln \left[\frac{L ((b)[|n]\rangle)}{L (\mu\{s\} + [b][|n]\rangle)} \right]},$$ \hspace{1cm} (14)

where the likelihood function is defined by

$$L ((x)[|n]\rangle) \equiv \prod_i x_i^{n_i} \exp (-x_i) \Gamma (n_i + 1).$$ \hspace{1cm} (15)

Both the gg and the bb scenario give 3σ discovery significance.

After normalizing the inclusive cross section to the best-fit value, we select events with at least one hard jet in the final
state. Jets in the final state are reconstructed using anti-k_T jet algorithm with $R = 0.4$. We demand the leading jet to have $|\eta| < 2.5$, and $p_T > 40$ GeV.

To suppress the SM background, we further require the diphoton invariant mass to satisfy $|m_{\gamma\gamma} - 750$ GeV$| < 150$ GeV. Transverse momentum distributions of the leading jet are shown in Fig. 5 for different production mechanisms with and without requiring the leading jet is b-tagged.

At 13 TeV LHC, in gg scenario the inclusive one-jet events contain a fraction of 0.08 fb b-jet events out of a total cross section of 3.12 fb. Alternatively, the fraction is 1.21 fb out of 2.72 fb in bb scenario.

To give an estimation of the possibility of distinguishing the two production scenarios, we also need to simulate the SM backgrounds. There are lots of theoretical uncertainties. Only a data driven estimation of the backgrounds is reliable at present. In this work, we make a simple estimation by rescaling the current background with luminosity. Thus we at present. In this work, we make a simple estimation by

\[
\text{Table 2} \quad \text{The fraction of the background events with at least one additional hard jet. The fraction of the events with the leading jet is tagged as a b-jet in these events. In the last line, we show the N_{bb} event number with the assumption that all background events are from the corresponding process}
\]

Background	$\gamma\gamma$	γj	jj
N_{+j}/N_{incl}	47.1%	66.3%	64.5%
N_{bb}/N_{incl}	1.85%	2.63%	5.03%
N_{bb}/N_{incl}	0.87%	1.74%	3.24%
N_{bb} (fb)	0.133	0.267	0.497

\[
\text{CL}_b \equiv -2 \log \left(\frac{L(s_b + n_b | s_b + n_b)}{L(s_g + n_b | s_b + n_b)} \right),
\]

\[
\text{CL}_{bb} \equiv -2 \log \left(\frac{L(s_b + n_b | s_b + n_b)}{L(s_b + n_b | s_b + n_b)} \right),
\]

respectively, where s_b, s_g, and n_b are the event numbers with the leading additional jet tagged as a b-jet in the scenario bb, scenario gg and the SM background. In Fig. 6, we show the discriminating abilities versus the integrated luminosity of the LHC in the 13 TeV run. It is shown clearly in this figure that, even with the most conservative assumption (all background events are from the jj process), one can distinguish the gg scenario from the bb scenario with 8.8 fb$^{-1}$ integrated luminosity, and distinguish the bb scenario from the gg scenario with 6.2 fb$^{-1}$ integrated luminosity at 13 TeV LHC. If the SM background are (a MC simulation will support this assumption) $\gamma\gamma$ process dominant, one can distinguish the gg scenario from the bb scenario with 6.0 fb$^{-1}$ integrated luminosity, and distinguish the bb scenario from the gg scenario with 3.3 fb$^{-1}$ integrated luminosity at 13 TeV LHC.

3 Summary and conclusion

Recently, an intriguing excess in the diphoton events has been reported both by the ATLAS and CMS collaboration. The local significance is 3.9σ from ATLAS and 2.6σ from CMS. After taking into account the look-elsewhere effect, the significance reduces to 2.3σ from ATLAS and 1.2σ from CMS. Although the current experimental status is far from conclusive, a large number of BSM scenarios have been explored to explain the diphoton excess. A significant number of these BSM models contain a scalar resonance produced from hadron-hadron collision and subsequently decay to diphoton system, whose mass is around 750 GeV. In this work, we investigated whether the hadronic production mechanism for the hypothetical new scalar resonance can be identified.
Fig. 6 The ability of distinguishing the gg (bb) scenario from the bb (gg) scenario. The solid lines are with the assumption that all of the background events are from the irreducible $\gamma\gamma$ background. The dashed lines are with the assumption that all of the background events are from the reducible jj background with two jets are faked as photon events in proton-proton collisions at $\sqrt{s} = 13$ TeV. Technical Report CMS-PAS-EXO-15-004, CERN, Geneva (2015)

References

1. ATLAS Collaboration, Expected performance of the ATLAS b-tagging algorithms in Run-2. Technical Report ATL-PHYS-PUB-2015-022, CERN, Geneva, Jul 2015
2. CMS Collaboration, Search for new physics in high mass diphoton events in proton-proton collisions at $\sqrt{s} = 13$ TeV. Technical Report CMS-PAS-EXO-15-004, CERN, Geneva (2015)
3. ATLAS Collaboration, Search for resonances decaying to photon pairs in 3.2 fb^{-1} at 13 TeV with the ATLAS detector. Technical Report ATLAS-CONF-2015-081, CERN, Geneva (2015)
4. P. Agrawal, J. Fan, B. Heidenreich, M. Reece, M. Strassler, Experimenting algorithms motivated by the diphoton excess at the LHC (2015)
5. A. Ahmed, B.M. Dillon, B. Grzadkowski, J.F. Gunion, Y. Jiang, Higgs-radion interpretation of 750 GeV di-photon excess at the LHC (2015)
6. B.C. Allanach, P.S. Bhupal Dev, S.A. Renner, K. Sakurai, Di-photon excess explained by a resonant sneutrino in R-parity violating supersymmetry (2015)
7. D. Aloni, K. Blum, A. Dery, A. Efrati, Y. Nir, On a possible large width 750 GeV diphoton resonance at ATLAS and CMS (2015)
8. W. Altmannshofer, J. Galloway, S. Gori, A.L. Kagan, A. Martin, J. Zupan, On the 750 GeV di-photon excess (2015)

Acknowledgments We thank Yotam Soreq and Wei Xue for helpful conversations. The work of H.Z. is supported by the U.S. DOE under Contract No. DE-SC0011702. The work of H.X.Z. is supported by the U.S. Department of Energy under grant Contract Number DE-SC0011090. Work at ANL is supported in part by the U.S. Department of Energy under Contract No. DE-AC02-06CH11357. H.Z. is pleased to recognize the hospitality of the service offered by the Amtrak California Zephyr train.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Funded by SCOAP3.
23. C.W. Bauer, D. Pirjol, I.W. Stewart, Soft collinear factorization in q_2.
24. T. Becher, M. Neubert, Drell–Yan production at small p_t.
21. C.W. Bauer, S. Fleming, D. Pirjol, I.Z. Rothstein, I.W. Stewart,
20. C.W. Bauer, S. Fleming, M.E. Luke, Summing Sudakov logarithms in B → X(s gamma) in effective field theory. Phys. Rev. D 63, 014006 (2000).
19. D. Barducci, A. Chakraborty, U. Maitra, S. Raychaudhuri, T. Samui, Radion candidate for the LHC diphoton resonance (2015).
18. D. Bardhan, D. Bhatia, A. Chakraborty, U. Maitra, S. Raychaudhuri, T. Samui, Radion candidate for the LHC diphoton resonance (2015).
17. Y. Bai, J. Berger, R. Lu, A 750 GeV dark pion: cousin of a dark quark (2015).
16. M. Badziak, Interpreting the 750 GeV diphoton excess in minimal extensions of Two-Higgs-Doublet models (2015).
15. Y. Bai, J. Berger, R. Lu, A 750 GeV dark pion: cousin of a dark quark (2015).
14. S. Ask, J.H. Collins, J.R. Forshaw, K. Joshi, A.D. Pilkington, Higgs boson production at hadron colliders: a fully-differential QCD calculation at NNLO. Phys. Rev. Lett. 108, 072001 (2012).
13. S. Ask, J.H. Collins, J.R. Forshaw, K. Joshi, A.D. Pilkington, Higgs boson production at hadron colliders: a fully-differential QCD calculation at NNLO. Phys. Rev. Lett. 108, 072001 (2012).
12. O. Antin, M. Mojaee, F. Sannino, A natural Coleman-Weinberg effective field theory. Phys. Rev. D 65, 114020 (2001).
11. A. Angelescu, A. Djouadi, G. Moreau, Scenarios for interpretations of the 750 GeV diphoton excess: two Higgs doublets and vector-like quarks and leptons (2015).
10. J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. JHEP 1407, 079 (2014).
9. A. Alves, A.G. Dias, K. Sinha, The 750 GeV S-phion: where else should we look for it? (2015).
8. S. Ask, J.H. Collins, J.R. Forshaw, K. Joshi, A.D. Pilkington, Higgs boson production at hadron colliders: a fully-differential QCD calculation at NNLO. Phys. Rev. Lett. 108, 072001 (2012).
7. B. Bellazzini, R. Franceschini, F. Sala, J. Serra, Goldstones in extensions of Two-Higgs-Doublet models (2015).
6. D. Becirevic, E. Bertuzzo, O. Sumensari, R.Z. Funchal, Can the new resonance at LHC be a CP-Odd Higgs boson? (2015).
5. D. Barducci, A. Goudelis, S. Kulkarni, D. Sengupta, One jet to rule them all: monojet constraints and invisible decays of a 750 GeV diphoton resonance (2015).
4. S. Ask, J.H. Collins, J.R. Forshaw, K. Joshi, A.D. Pilkington, Higgs boson production at hadron colliders: a fully-differential QCD calculation at NNLO. Phys. Rev. Lett. 108, 072001 (2012).
3. L. Bian, N. Chen, D. Liu, J. Shu, A hidden confining world on the 750 GeV diphoton excess (2015).
2. S. Ask, J.H. Collins, J.R. Forshaw, K. Joshi, A.D. Pilkington, Higgs boson production at hadron colliders: a fully-differential QCD calculation at NNLO. Phys. Rev. Lett. 108, 072001 (2012).
1. A. Angelescu, A. Djouadi, G. Moreau, Scenarios for interpretations of the 750 GeV diphoton excess: two Higgs doublets and vector-like quarks and leptons (2015).
81. Y. L. Dokshitzer, D. Diakonov, S. I. Troian, On the transverse momentum distribution in Drell–Yan pair and W and Z boson production. Nucl. Phys. B 244, 377 (1984).

82. J. de Blas, J. Santiago, R. Vega-Morales, New vector bosons and the diphoton excess at 750 GeV. Eur. Phys. J. C 71, 064 (2011).

83. R. Ding, L. Huang, T. Li, B. Zhu, Interpreting 750 GeV diphoton excess at the LHC (2015).

84. D. de Florian, G. Ferrera, M. Grazzini, D. Tommasini, Transverse-momentum resummation: Higgs boson production at the Tevatron and the LHC. JHEP 11, 064 (2011).

85. S. V. Demidov, D. S. Gorbunov, On goldstino interpretation of the diphoton excess (2015).

86. P.S. Bhupal Dev, D. Teresi, Asymmetric dark matter in the sun and the diphoton excess at the LHC (2015).

87. U. K. Dey, S. Mohanty, G. Tomar, 750 GeV resonance in the Dark Left-Right Model (2015).

88. M. Dhuria, G. Goswami, Perturbativity, vacuum stability and the diphoton excess (2015).

89. N. Craig, P. Draper, C. Kilic, S. Thomas, How the $\gamma \gamma$ resonance stole christmas (2015).

90. J. de Blas, J. Santiago, R. Vega-Morales, New vector bosons and the diphoton excess at 750 GeV. Eur. Phys. J. C 71, 064 (2011).

91. J. Kodaira, L. Trentadue, Single logarithm effects in electron-positron annihilation. Phys. Lett. B 112, 66 (1982).

92. D. Goncalves, F. Krauss, A. Draghici, C. Spethmann, A gamma mediator of dark matter (2015).

93. L. J. Hall, K. Harigaya, Y. Nomura, 750 GeV diphotons: implications for supersymmetric unification (2015).

94. X.-F. Han, L. Wang, Implication of the 750 GeV diphoton resonance on two-Higgs-doublet model and its extensions with Higgs field (2015).

95. R. Franceschini, G. F. Giudice, J. F. Kamenik, M. McCullough, A. Pomarol, R. Rattazzi, M. Redi, F. Riva, A. Strumia, R. Torre, What is the gamma gamma resonance at 750 GeV? (2015).

96. E. Gabrielli, K. Kannike, B. Mele, M. Raidal, C. Spethmann, H. VeermSe, A SUSY inspired simplified model for the 750 GeV diphoton excess (2015).

97. C. C. Tsai, Running after diphoton (2015).

98. X.-F. Han, L. Wang, Implication of the 750 GeV diphoton resonance on two-Higgs-doublet model and its extensions with Higgs field (2015).

99. J. Jaeckel, M. Jankowiak, M. Spannowsky, LHC probes the hidden sector. Phys. Dark Univ. 2, 111–117 (2013).

100. J. S. Kim, J. Reuter, K. Rolbiecki, R. Ruiz de Austri, A resonance without resonance: scrutinizing the diphoton excess at 750 GeV (2015).

101. J. S. Kim, K. Rolbiecki, R. R. de Austri, Model-independent combination of diphoton constraints at 750 GeV (2015).

102. A. E. García, D. Varela, LHC diphoton 750 GeV resonance as an indication of $SU(3)_c \times SU(3)_L \times U(1)_X$ gauge symmetry (2015).

103. G. Cowan, K. Cranmer, E. Gross, O. Vitells, Asymptotic formulae for likelihood-based tests of new physics. Eur. Phys. J. C 1554 (2014).

104. W. Liao, H. Zheng, Scalar resonance at 750 GeV as composite of diquark and glueballs. JHEP 11, 057 (2014).

105. J. J. Hall, K. Harigaya, Y. Nomura, 750 GeV diphotons: implications for supersymmetric unification (2015).

106. C. Han, H. M. Lee, M. Park, V. Sanz, The diphoton resonance as a gravity mediator of dark matter (2015).

107. H. Han, S. Wang, S. Zheng, Scalar explanation of diphoton excess at LHC (2015).

108. J. Liu, X.-P. Wang, W. Xue, LHC diphoton excess from colorful symmetry model (2015).

109. W.-C. Huang, Y.-L. Sming Tsai, T.-C. Yuan, Gauged two Higgs doublet model confronts the LHC 750 GeV diphoton anomaly (2015).

110. J. J. Heckman, 750 GeV diphotons from a D3-brane (2015).

111. J. S. Kim, J. Reuter, K. Rolbiecki, R. Ruiz de Austri, A resonance without resonance: scrutinizing the diphoton excess at 750 GeV (2015).

112. J. S. Kim, K. Rolbiecki, R. R. de Austri, Model-independent combination of diphoton constraints at 750 GeV (2015).

113. A. Ladinsky, C. P. Yuan, The nonperturbative regime in QCD (2015).

114. A. J. Larkoski, J. Thaler, W. J. Waalewijn, Gaining (mutual) information about quark/gluon discrimination. JHEP 11, 064 (2011).

115. G. A. Ladinsky, C. P. Yuan, The nonperturbative regime in QCD (2015).

116. A. E. Cárcamo Hernández, I. Nisandzic, LHC diphoton 750 GeV resonance on two-Higgs-doublet model and its extensions with Higgs field (2015).

117. R. S. Gupta, S. Jager, Y. Kats, G. Perez, E. Stamou, Interpreting a 750 GeV diphoton resonance (2015).

118. J. J. Hall, K. Harigaya, Y. Nomura, 750 GeV diphotons: implications for supersymmetric unification (2015).

119. J. Liu, X.-P. Wang, W. Xue, LHC diphoton excess from colorful symmetry model (2015).

120. J. Pumplin, C. Schmidt, D. Stump, C. P. Yuan, The CT14 global parton distribution in Drell–Yan cross-section at small transverse momentum. Nucl. Phys. B 244, 377 (1984).

121. J. Kodaira, L. Trentadue, Single logarithm effects in electron-positron annihilation. Phys. Lett. B 112, 66 (1982).

122. D. Kroll, L. Randall, L.-T. Wang, On the feasibility and utility of ISR tagging (2011).

123. G. A. Ladinsky, C. P. Yuan, The nonperturbative regime in QCD (2015).

124. W. Liao, H. Zheng, Scalar resonance at 750 GeV as composite of diquark and glueballs. JHEP 11, 057 (2014).

125. J. J. Hall, K. Harigaya, Y. Nomura, 750 GeV diphotons: implications for supersymmetric unification (2015).

126. C. Han, H. M. Lee, M. Park, V. Sanz, The diphoton resonance as a gravity mediator of dark matter (2015).

127. H. Han, S. Wang, S. Zheng, Scalar explanation of diphoton excess at LHC (2015).

128. X.-F. Han, L. Wang, Implication of the 750 GeV diphoton resonance on two-Higgs-doublet model and its extensions with Higgs field (2015).

129. K. Harigaya, Y. Nomura, Composite models for the 750 GeV diphoton excess (2015).

130. J. S. Kim, J. Reuter, K. Rolbiecki, R. Ruiz de Austri, A resonance without resonance: scrutinizing the diphoton excess at 750 GeV (2015).

131. J. S. Kim, K. Rolbiecki, R. R. de Austri, Model-independent combination of diphoton constraints at 750 GeV (2015).

132. S. Knapp, J. Pumplin, M. Papucci, K. Zurek, Rays of light from the LHC (2015).

133. A. Kohakhidze, F. Wang, L. Wu, J. M. Yang, M. Zhang, LHC 750 GeV diphoton resonance explained as a heavy scalar in top-seesaw model (2015).

134. J. Kodaira, L. Trentadue, Summing soft emission in QCD. Phys. Lett. B 112, 66 (1982).

135. J. Kodaira, L. Trentadue, Single logarithm effects in electron-positron annihilation. Phys. Lett. B 123, 335 (1983).

136. D. Krohn, L. Randall, L.-T. Wang, On the feasibility and utility of ISR tagging (2011).

137. G. A. Ladinsky, C. P. Yuan, The nonperturbative regime in QCD (2015).

138. W. Liao, H. Zheng, Scalar resonance at 750 GeV as composite of heavy vector-like fermions (2015).

139. J. Liu, X.-P. Wang, W. Xue, LHC diphoton excess from colorful resonances (2015).

140. M. Low, A. Tesi, L.-T. Wang, A pseudoscalar decaying to photon pairs in the early LHC run 2 data (2015).
118. M. Luo, K. Wang, T. Xu, L. Zhang, G. Zhu, Squarkonium/diquarkonium and the di-photon excess (2015)
119. Y. Mambrini, G. Arcadi, A. Djouadi, The LHC diphoton resonance and dark matter (2015)
120. R. Martinez, F. Ochoa, C.F. Sierra, Diphoton decay for a 750 model (2015)
121. S. Matsuzaki, K. Yamawaki, 750 GeV diphoton signal from one-family walking technipion (2015)
122. S.D. McDermott, P. Meade, H. Ramani, Singlet scalar resonances and the diphoton excess (2015)
123. E. Megias, O. Pujolas, M. Quiros, On dilatons and the LHC diphoton excess (2015)
124. E. Molinaro, F. Sannino, N. Vignaroli, Minimal composite dynamics versus axion origin of the diphoton excess (2015)
125. S. Moretti, K. Yagyu, The 750 GeV diphoton excess and its explanation in 2-Higgs doublet models with a real inert scalar multiplet (2015)
126. C.W. Murphy, Vector Leptoquarks and the 750 GeV diphoton resonance at the LHC (2015)
127. Y. Nakai, R. Sato, K. Tobioka, Footprints of new strong dynamics via anomaly (2015)
128. J.M. No, V. Sanz, J. Setford, See-saw composite Higgses at the LHC: linking naturalness to the 750 GeV di-photon resonance (2015)
129. G. Parisi, R. Petronzio, Small transverse momentum distributions in hard processes. Nucl. Phys. B 154, 427 (1979)
130. K.M. Patel, P. Sharma, Interpreting 750 GeV diphoton excess in SU(5) grand unified theory (2015)
131. G.M. Pelaggi, A. Strumia, E. Vigiani, Trinification can explain the di-photon and di-boson LHC anomalies (2015)
132. C. Petersson, R. Torre, The 750 GeV diphoton excess from the goldstino superpartner (2015)
133. A. Pilaftsis, Diphoton signatures from heavy axion decays at LHC (2015)
134. J. Qiu, X. Zhang, Role of the nonperturbative input in QCD resummed Drell–Yan Q_T distributions. Phys. Rev. D 63, 114011 (2001)
135. A.L. Read, Presentation of search results: the CL(s) technique. J. Phys. G 28, 2693–2704 (2002)
136. A. Salvio, A. Mazumdar, Higgs stability and the 750 GeV diphoton excess. Phys. Lett. B 755, 469–474 (2016)
137. T. Sjostrand, S. Mrenna, P.Z. Skands, PYTHIA 6.4 physics and manual. JHEP 0605, 026 (2006)
138. I. Sung, Probing the gauge content of heavy resonances with soft radiation. Phys. Rev. D 80, 094020 (2009)
139. F. Wang, L. Wu, J.M. Yang, M. Zhang, 750 GeV diphoton resonance, 125 GeV Higgs and muon $g-2$ anomaly in deflected anomaly mediation SUSY breaking scenario (2015)
140. N. Yamatsu, Gauge coupling unification in gauge-Higgs grand unification (2015)
141. J. Zhang, S. Zhou, Electroweak vacuum stability and diphoton excess at 750 GeV (2015)