Regulation of flow computers for the measurement of biofuels

R O Almeida¹, E A Aguiar Júnior¹, R P B Costa-Felix¹

¹ National Institute of Metrology, Quality and Technology (Inmetro), Av. Nossa Sra. das Graças 50, Duque de Caxias, RJ, Brazil, ZIP 25250-020

E-mail: roalmeida@inmetro.gov.br

Abstract. This article aims to discuss the need to develop a standard or regulation applicable to flow computers in the measurement of biofuels. International standards and recommendations are presented which are possibly adequate to fill this gap and at the end of the article a way is proposed to obtain a single document on the subject.

1. Introduction

With the publication of the Inmetro’s Regulation nº 499 of 2015, this Institute established a metrological technical regulation (RTM) of flow computers and conversion devices, whose scope includes fiscal measurement, appropriation, custody transfer, among others of liquid hydrocarbons and natural gas. This new proposal presents several improvements to the legal metrological control of these instruments in Brazil, while also expanding the scope when compared to the previous regulation.

However, these devices also possess the functionality, and are in fact used, to mathematically and continuously convert volumes of biofuels (ethanol and biodiesel) (1), which will not be covered by this new regulation. It is important to note that, in 2014 alone, Brazil produced 3.42 billion liters of biodiesel and 28.8 billion liters of anhydrous and hydrated ethanol (2), a demand for measurement which, due to this lack of legal coverage, is not covered by the services of legal metrology.

What we have here is a real need to regulate the measurement of biofuels with the use of conversion devices. Not only due to the large volume of transported product, as mentioned previously, but also due to the publication of the "Strategic Guidelines for Brazilian Metrology 2013-2017" (3), by the National Council of Metrology, Standardization and Industrial Quality (CONMETRO). This resolution, which guides the actions of the several Brazilian metrology institutions, as well as the application of governmental resources for the effective development of metrology in the country, stipulates that it is up to the legal metrology services to expand their performance in order to incorporate the demand for measurement of, among others, the biofuels market. Considering that legal metrology can cover only measuring instruments that are subject to metrological technical regulations issued by Inmetro (4) and that such regulations are usually based in national and international standards and recommendations, a problem arises.

There are currently no standards or recommendations with technical and metrological requirements applicable to these conversion devices in the measurement of biofuels. There are standards applicable to the measurement of biofuels. We have, for example, OIML R22 (5) and ABNT NBR 5992 (6) dealing with the volume conversion of ethanol and its mixtures with water and ABNT NBR 15512 (7) dealing with the same subject for biodiesel, but none of them mention flow computers. There are also other standards that provide requirements for flow computers, such as OIML R117 (8), WELMEC
10.4 (9), ABNT NBR 16020 (10) and API MPMS 21.2 (11), but most of them are applicable only to measurement systems. Some comments should be made on each of these standards in addition to the regulation currently in vogue for these devices.

2. OIML R22
OIML R22 places great emphasis on the use of tables for the conversion of ethanol volumes, but it is the knowledge of the formula that generated these tables that should be available for use in flow computers. This is due to the fact that the formula will be programmed into the flow computer as a mathematical model for ethanol conversion. Thus, this OIML recommendation could be used, within the context of a metrological technical regulation, as a mathematical model. In contrast to the physical standard, the mathematical model exists only as an equation, but allows the comparison between the value of a measurement obtained by the instrument and the expected value according to the equation.

3. OIML R117
OIML R117 presents technical and metrological requirements applicable to fluid measurement systems, but throughout its contents there are also requirements applicable to flow computers. Maximum permissible errors, test approaches, requirements for physical and electronic sealing, requirements for associated measuring devices, and requirements for the installation of the flow computer are mentioned.

The latter type of requirement is the reason why this recommendation cannot be fully validated as a set of requirements for the measurement of biofuels in flow computers. As you wish to develop the requirements applicable only to conversion devices, its installation requirements in the system cannot be observed. In a deeper analysis, only the physical and electronic sealing requirements, test approaches and maximum permissible errors can be validated in a hypothetical regulation for biofuels measurement in flow computers.

4. WELMEC 10.4
The WELMEC 10.4 guide is presented as an add-on to R117. Initially developed by WELMEC in order to address concerns that arose in the recommendation application. This document acts as a guide for R117’s application on conversion devices. In addition to the test approaches presented by the recommendation, it suggests a new approach, which allows for a more flexible application of this guide according to the assembly of the conversion device and its associated measuring devices, as stipulated by the manufacturer.

In addition to this new approach the guide also presents what may be considered a omission in R117 for flow computer essays: a complete detailing of tests for this device with numbers of points to be checked in each test, specific tests to be performed according the device approach and reference values for calculating the maximum permissible errors.

With the presentation of these reference values WELMEC 10.4 can be considered a complete test guide for the deployment of R117 in flow computers. However it addresses use only in complete measuring systems. It is also important to note that the guide does not present any technical requirements, may it be constructive or related to the audit trail.

5. ABNT NBR 16020: 2011
Focusing on ABNT NBR 16020: 2011 requirements, exclusively applicable to flow computers, it can be observed that this standard provides much more robust information than, for instance, WELMEC 10.4. This is due to the fact that the 16020 recommends specific standards for calculating the volume conversion of fluids. Item is absent from WELMEC 10.4, which is complementary to R117.

Also noteworthy is the presence of specific sections on calculation algorithms for the measurement of biofuels. Although R117 and WELMEC 10.4 already recommend a document for conversion of volumes of ethanol (OIML R22), ABNT 16020 goes further and recommends, in addition to a
standard for the conversion of ethanol (ABNT NBR 5992), a standard for the measurement of biodiesel (ABNT NBR 15512).

The 16020 also features a table with maximum admissible errors for temperature, pressure, specific mass, volume conversion factor and pulse indication. This point was addressed by R117 and later expanded by WELMEC 10.4. Specific test procedures for each type of approach (first, second and third) have not been mentioned, nor are they presented by the standard. Instead a single procedure for any type of assembly of the flow computer is presented.

6. ABNT NBR 5992: 2008
Like the OIML R22 recommendation, ABNT NBR 5992: 2008 presents a mathematical model for ethanol and its mixtures with water volume calculation. In this case the standard stipulates the whole procedure and laboratory equipment for the tests to determine the specific mass and the alcohol content of the ethanol and water mixture. Part of this process involves using the values determined experimentally in the "Programs of Alcoholic Tables" software, supplied in full with the standard.

In addition to the calculation of the alcoholic concentration and the volume conversion factor, the software is also capable of producing tables where specific mass or alcohol content is related to temperature to provide the conversion factor at 20 °C. Effectively this program eliminates the need for printed tables (such as those presented by OIML R22) for the temperature conversion of volumes of ethanol.

Thus, the standard can be considered more appropriate to the use in flow computers than the OIML recommendation, since, not only presents all the subsidies for the accomplishment of the tests to obtain the specific mass, but also has an updated mathematical model for insertion into the programming of the conversion device.

7. ABNT NBR 15512: 2014
Although it is indicated by ABNT NBR 16020 as a reference for the biodiesel conversion of its specific mass due to the effect of temperature, ABNT NBR 15512 only mention it briefly. The standard only directs the reader to consult the conversion table used for petroleum in Brazil, in this case the Resolution of the National Petroleum Council No. 6 of June 25, 1970.

Although the scope of this resolution is the conversion of volumes of crude oil, it is also used, as recommended by 15512, for conversion of biodiesel. No further mention of volume conversions is made throughout the document.

8. MPMS API 21.2
API 21.2 focuses on requirements applicable to liquid measurement systems. Although, in this standard, these systems are used for measurement of liquid hydrocarbons, some unique requirements for flow computers can be extracted. Among them we have: Audit trail requirements (especially configuration report, events and alarms);

• Requirements to be observed before the acquisition of the conversion device;
• Requirements for its verification.

The form and content of the audit trail are discussed in detail, including the security measures that the flow computer has in order to protect this record. Despite the technological advancement of flow computers since the publication of the last addition of this standard (2002), this chapter continues to be up to date.

The verification process presented by API 21.2 is not described in detail, is only limited to recommending the calibration of the analog and frequency inputs of the tertiary devices. In addition it points out the need for testing in at least three points along the operational measurement range.

This standard does not clarify maximum permissible errors, types of tests nor even details of the minimum number of points to be collected or provides mathematical models for the measurement of biofuels. However, it provides specifications of measurement standards that should be used to test all components of a liquid metering system, including the its flow computer.
9. Inmetro’s Regulation No. 499, of October 02, 2015

Inmetro’s Regulation No. 499, of October 2nd, 2015, presents the technical metrological regulation applicable to the measurement of oil and gas in flow computers. Of particular interest to the subject of this article is its analysis because:

- Specifically regulate flow computers and their measurement of liquid (although not biofuel);
- Unlike other standards and regulations, it focuses on the conversion device and not on the measurement system;
- It is already structured in the form of a Brazilian regulation.

Additionally, it presents maximum permissible errors, technical sealing requirements and instructions for carrying out checks. However, it does not introduce any details of the tests to be performed (nature of the tests, minimum number of points to be collected and requirements for repeatability) or which mathematical model should be followed for the modeling of fuel fluids. This regulation also possesses electromagnetic, climate and software requirements.

Thus this regulation presents necessary but not sufficient elements for a full regulation for a metrological technical regulation of flow computers for the measurement of liquid biofuels. As an advantage, this regulation was widely discussed with segments of society linked to the fuel sector, which gives them a high degree of robustness.

Finally, the transition rules introduced by this ordinance are highlighted, as they provide clarity to the market of this equipment on how the regulatory body (Inmetro) will treat the equipment in the field. The key point for evaluation of the instruments currently in use is the maximum permissible errors. By evaluating these errors the calculating devices in the field may have their use continued or prohibited after the publication of this regulation.

10. Conclusion

Each of the analyzed documents presents necessary but not sufficient elements to the composition of a full proposal regulation of flow computers for the measurement of biofuels. One possibility for solving this absence of a single text would be to write an amalgam of each of the elements presented by these standards.

The WELMEC’s maximum permissible errors and tests, Inmetro’s regulation No. 499/2015 technical requirements, API’s field verification instructions and specification of working standards may be used, for instance.

A better analysis of the content of these standards compared to Inmetro’s regulation shows that this amalgam can be useful not only for the regulation of conversion devices in the measurement of biofuels, but also in the measurement of any other type of fluid. This fluid limitation whose flow computer regulation currently covers (only oil and natural gas) can be considered one of its greatest weaknesses and should be revised in order to comply with the provisions of the "Strategic Guidelines for Brazilian Metrology 2013-2017".

References

[1] Computers, Dynamic Flow, Dynamic Flow Computers | Flow Meters | Flow Indicators | Prover Metering | Custody Metering | Proving Metering. Dynamic Flow Computers. [Online] Dynamic Flow Computers. [Citado em: 15 de Março de 2016.] http://dynamicflowcomputers.com/wpsite/wp-content/uploads/2012/02/E-Plus-P2DAAA-Data-Sheet.pdf.
[2] ANP - Agência Nacional do Petróleo, Gás Natural e Biocombustíveis. ANUÁRIO ESTATÍSTICO 2015. ANP - Agência Nacional do Petróleo, Gás Natural e Biocombustíveis. [Online] ANP - Agência Nacional do Petróleo, Gás Natural e Biocombustíveis, 23 de julho de 2015. [Citado em: 23 de julho de 2015.] http://www.anp.gov.br/?pg=76798.
[3] Brasil. Resolução Conmetro nº 01. Aprova o documento “Diretrizes Estratégicas para a Metrologia Brasileira 2013-2017”. 10 de abril de 2013.
[4] Portaria Inmetro nº 585. Cientifica que somente serão passíveis de controle legal os instrumentos de medição que forem objeto de regulamentação técnica metrológica expedida pelo Inmetro. 1 de novembro de 2012.

[5] Organização Internacional de Metrologia Legal. R 22 en: International alcoholometric tables. Internacional Organization of Legal Metrology - English. [Online] [Citado em: 23 de Maio de 2016.] https://www.oiml.org/en/files/pdf_r/r022-e75.pdf.

[6] ABNT - Associação Brasileira de Normas Técnicas. ABNT NBR 5992 - Álcool etílico e suas misturas com água - Determinação da massa eséfica e do teor alcoólico - Método do densímetro de vidro. 2008.

[7] ABNT NBR 15512 - Biodiesel - Armazenamento, transporte, armazenamento e controle de qualidade de biodiesel e/ou óleo BX. 2014.

[8] Organização Internacional de Metrologia Legal. R 117 en: Dynamic measuring systems for liquids other than water. International Organization of Legal Metrology — English. [Online] [Citado em: 14 de julho de 2015.] https://www.oiml.org/en/files/pdf_r/r117-p-e07.pdf.

[9] WELMEC. WELMEC 10.4. Guide for Testing of Electronic Calculators with Conversion Function and Conversion Devices (Measuring Systems for Liquids other than Water). 2006. primeira edição.

[10] ABNT - Associação Brasileira de Normas Técnicas. ABNT NBR 16020 - Medição eletrônica de líquidos — Computadores de vazão. 2011.

[11] American Petroleum Institute. API MPMS Chapter 21.2 - Flow Measurement Using Electronic Metering Systems. 2011.