RIGIDITY OF THE SHARP BEZOUT ESTIMATE ON NONNEGATIVELY CURVED RIEMANN SURFACES

CHENGJIE YU1 AND CHUANGYUAN ZHANG

Abstract. In this short note, by using a general three circle theorem, we show the rigidity of the sharp Bezout estimate first found by Gang Liu on nonnegatively curved Riemann surfaces.

1. Introduction

On a complete noncompact Kähler manifold \((M, g)\), the space of holomorphic functions on \(M\) is denoted as \(\mathcal{O}(M)\). A function \(f\) on \(M\) is said to be of polynomial growth if there are some positive constants \(C\) and \(d\) such that
\[
|f(x)| \leq C(1 + r^d(x)) \quad \forall x \in M,
\]
where \(r(x)\) the distance function to some fixed point. The space of holomorphic functions of polynomial growth is denoted as \(\mathcal{P}(M)\), and the space of holomorphic functions on \(M\) satisfying (1.1) for some \(C > 0\) is denoted as \(\mathcal{O}_d(M)\). For any nonzero \(f \in \mathcal{P}(M)\), the degree of \(f\) is defined as
\[
\deg(f) = \inf\{d > 0 \mid f \in \mathcal{O}_d(M)\}.
\]
For \(x \in M\) and \(f \in \mathcal{O}(M)\), \(\text{ord}_x(f)\) means the vanishing order of \(f\) at \(x\).

The purpose of this short note is to give a proof of the following result.

Theorem 1.1. Let \((M, g)\) be a noncompact Riemann surface equipped with a complete conformal metric \(g\) such that the Guassian curvature of \(g\) is nonnegative. Then, for any nonzero holomorphic function \(f\) of polynomial growth on \(M\),
\[
\sum_{x \in M} \text{ord}_x(f) \leq \deg(f).
\]
Moreover, the equality of (1.3) holds for some nonconstant holomorphic function \(f\) of polynomial growth if and only if \((M, g)\) is biholomorphically isometric to \(\mathbb{C}\) equipped with the standard metric.

1Research partially supported by GDNSF with contract no. 2021A1515010264 and NNSF of China with contract no. 11571215.
The estimate (1.3) was first obtained in the unpublished preprint [3] by Liu. It is clear that the estimate (1.3) is sharp because the equality of the estimate holds for any nonzero polynomial on \(\mathbb{C} \). In this short note, we give an alternative proof of (1.3) using the following general three circle theorem on Riemann surfaces, in a similar spirit of [4] and characterize the rigidity of the estimate (1.3).

Theorem 1.2. Let \(M \) be a Riemann surface and \(\Omega \) be an open subset of \(M \). Let \(u \) and \(v \) be two continuous functions on \(\Omega \) that are subharmonic and supharmonic respectively. Suppose that \(v : \Omega \to (\inf \Omega v, \sup \Omega v) \) is proper and \(M_v(u, t) = \max_{x \in S_v(t)} u(x) \) is an increasing function for \(t \in (\inf \Omega v, \sup \Omega v) \) where \(S_v(t) = \{x \in \Omega \mid v(x) = t\} \). Then, \(M_v(u, t) \) is a convex function of \(t \in (\inf \Omega v, \sup \Omega v) \).

It seems that the original proof in [3] can not characterize the rigidity of the estimate (1.3). In higher dimension, there is an estimate in similar spirit which is not sharp in [1, Proposition 7.2].

In algebraic geometry, the Bezout theorem relates the number of roots and the degrees of polynomials. So, an estimate such as (1.3) is called a Bezout estimate (See [5, P. 244]). The Bezout estimate (1.3) is stronger than the sharp vanishing order estimate:

\[(1.4) \quad \text{ord}_x(f) \leq \deg(f)\]

for any nonzero \(f \in \mathcal{P}(M) \) and any \(x \in M \). Vanishing order estimate that is not sharp was first obtained by Mok [5] on complete noncompact Kähler manifolds with certain geometric conditions. In [4], Ni obtained the sharp estimate (1.4) under the assumptions of nonnegative holomorphic bisectional curvature and maximal volume growth. The second assumption of Ni’s result was later removed by Chen-Fu-Yin-Zhu [2] and finally the first assumption of Ni’ result was relaxed to nonnegative holomorphic sectional curvature by Liu [4]. According to all these works, it seems that there must be a higher dimensional analogue of the sharp Bezout estimate (1.3).

2. **Proof of the theorem**

Although the proof of the general three circle theorem (Theorem 1.2) is almost the same as that of the classical Hadamard’s three circle theorem on \(\mathbb{C} \), we give a proof to it for completeness.

Proof of Theorem 1.2. For any \(\inf \Omega v < t_1 < t_2 < t_3 < \sup \Omega v \), let

\[(2.1) \quad \tilde{v} = \frac{M_v(u, t_3) - M_v(u, t_1)}{t_3 - t_1} v + \frac{t_3 M_v(u, t_1) - t_1 M_v(u, t_3)}{t_3 - t_1} t_1.

Because \(M_v(u, t_3) - M_v(u, t_1) \geq 0 \), \(\tilde{v} \) is supharmonic. Moreover, it is clear that

\[\tilde{v} \geq u\]
on $S_v(t_1) \cup S_v(t_3)$. Hence, by maximum principle,
\[\tilde{v} \geq u \]
in $A_v(t_1, t_3) := \{ x \in \Omega \mid t_1 < v(x) < t_3 \}$. Thus, for any $x \in S_v(t_2)$,
\[u(x) \leq \tilde{v}(x) \leq \frac{M_v(u, t_3) - M_v(u, t_1)}{t_3 - t_1} t_2 + \frac{t_3 M_v(u, t_1) - t_1 M_v(u, t_3)}{t_3 - t_1} t_2 + \frac{t_2 - t_1}{t_3 - t_1} M_v(u, t_3) + \frac{t_3 - t_2}{t_3 - t_1} M_v(u, t_1). \]

Hence
\[M_v(u, t_2) \leq \frac{t_2 - t_1}{t_3 - t_1} M_v(u, t_3) + \frac{t_3 - t_2}{t_3 - t_1} M_v(u, t_1). \]

This completes the proof of the theorem. \qed

Before the proof of Theorem 1.1 we need the following two lemmas.

Lemma 2.1. Let (M, g) be a noncompact Riemann surface equipped a conformal metric g and f be a nonzero holomorphic function on M. Let p_1, p_2, \ldots, p_n be n distinct roots of f, $m_i = \text{ord}_{p_i}(f)$ and $\rho = \prod_{i=1}^{n} r_{p_i}^{m_i}$. Then,
\[\lim_{r \to 0^+} \frac{\log M_{\rho}(|f|, r)}{\log r} = 1. \]

Proof. Let $r_0 = \frac{1}{4} \min\{r(p_i, p_j) \mid 1 \leq i < j \leq n\}$ and $\delta_0 \in (0, r_0]$ be such that for any $i = 1, 2, \ldots, n$ and $x \in B_{p_i}(\delta_0)$,
\[c_1 r_{p_i}^{m_i}(x) \leq |f(x)| \leq C_2 r_{p_i}^{m_i}(x) \]
for some positive constants c_1 and C_2. Let $\rho_0 = \delta_0^N$ where $N = \sum_{i=1}^{n} m_i$. Then, for any $x \in M$ such that $\rho(x) = r < \rho_0$, $x \in B_{p_i}(\delta_0)$ for some $i = 1, 2, \ldots, n$. Then, for any $j \neq i$, by the triangle inequality,
\[\delta_0 < r(p_i, p_j) - r_{p_i}(x) \leq r_{p_j}(x) \leq r(p_i, p_j) + r_{p_i}(x) \leq R_0 + \delta_0 \]
where $R_0 = \max\{r(p_i, p_j) \mid 1 \leq i < j \leq n\}$. Thus,
\[\frac{r}{(R_0 + \delta_0)^{N-m_i}} \leq r_{p_i}^{m_i}(x) = \frac{\rho(x)}{r_{p_i}^{m_i}(x) \cdots r_{p_i}^{m_i}(x) \cdots r_{p_i}^{m_i}(x)} \leq \frac{\rho}{\delta_0^{N-m_i}}. \]

Combining this with (2.5), we know that
\[\frac{c_1 r}{(R_0 + \delta_0)^{N-m_i}} \leq |f(x)| \leq \frac{C_2 r}{\delta_0^{N-m_i}}. \]

So, for any $x \in M$ with $\rho(x) = r < \rho_0$, we have
\[c_3 r \leq |f(x)| \leq C_4 r \]
where
\[c_3 = \min \left\{ \frac{c_i}{(R_0 + \delta_0)^{N - m_i}} \mid i = 1, 2, \ldots, n \right\} \]
and
\[C_4 = \max \left\{ \frac{C_2}{\delta_0^{N - m_i}} \mid i = 1, 2, \ldots, n \right\}. \]

Hence
\[\frac{C_4}{\log r} + 1 \leq \frac{\log M_\rho(|f|, r)}{\log r} \leq 1 + \frac{c_3}{\log r} \]
for any \(r > 0 \) small enough. Then, by the squeezing rule, we complete the proof of the lemma. \(\square \)

Lemma 2.2. Let \((M, g)\) be a noncompact Riemann surface equipped with a complete conformal metric \(g\). Let \(p_1, p_2, \ldots, p_n\) be \(n\) distinct points on \(M\), \(m_1, m_2, \ldots, m_n \in \mathbb{N}\) and \(\rho = r_1^{m_1}r_2^{m_2} \cdots r_n^{m_n}\). Let \(o\) be a fixed point on \(M\), \(R_0 = \max\{r(o, p_i) \mid 1 \leq i \leq n\}\).

Then, for any holomorphic function \(f\) on \(M\) and any \(r > (2R_0)^N\),
\[M_o(|f|, r + f - R_0) \leq M_\rho(|f|, r) \leq M_o(|f|, r + R_0) \]
where \(N = \sum_{i=1}^{n} m_i\) and \(M_o(|f|, r) = \max_{x \in S_o(r)} |f(x)|\) with \(S_o(r) = \partial B_o(r)\).

Proof. By the triangle inequality
\[r_o(x) - R_0 \leq r_{p_i}(x) \leq r_o(x) + R_0, \quad \forall x \in M, \]
for \(i = 1, 2, \ldots, n\). Then, for any \(x\) with \(\rho(x) = r > (2R_0)^N\), we have
\[(r_o(x) + R_0)^N \geq \rho(x) = r > (2R_0)^N \]
which implies that
\[r_o(x) > R_0. \]

Then, by the left hand side of (2.12),
\[(r_o(x) - R_0)^N \leq \rho(x) = r. \]

Thus
\[r_o(x) \leq r_o + R_0 \]
which means that \(S_\rho(r) \subset B_o(r_o + R_0)\) for any \(r > (2R_0)^N\). Therefore, by the principle of maximal modulus for holomorphic functions,
\[M_\rho(|f|, r) \leq M_o(|f|, r_o + R_0). \]

On the other hand, for any \(x \in S_o(r)\), by the right hand side of (2.12),
\[\rho(x) \leq (r + R_0)^N. \]
So, \(S_o(r) \subset B_o((r + R_0)^N) := \{ x \in M \mid \rho(x) \leq (r + R_0)^N \} \) and hence
\[
M_o(|f|, r) \leq M_o(|f|, (r + R_0)^N) \tag{2.19}
\]
by the principle of maximal modulus for holomorphic functions again. Thus
\[
M_o(|f|, r) \leq M_o(|f|, r^{\frac{1}{N}} - R_0) \tag{2.20}
\]
for any \(r > R_0^N \). This completes the proof of the theorem. \(\square \)

We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4. Let \(p_1, p_2, \ldots, p_n \) be \(n \) distinct roots of \(f \) with \(m_i = \text{ord}_{p_i}(f) \) for \(i = 1, 2, \ldots, n \). Let \(\rho = r_{p_1}^{m_1} r_{p_2}^{m_2} \cdots r_{p_n}^{m_n} \). Then, by the Laplacian comparison, we know that
\[
\Delta r_{p_i} \leq \frac{1}{r_{p_i}} \tag{2.21}
\]
for \(i = 1, 2, \ldots, n \) in the sense of distribution. So,
\[
\Delta \log r_{p_i} \leq 0 \tag{2.22}
\]
on \(M \setminus \{ p_i \} \) in the sense of distribution which means that \(\log r_{p_i} \) is a supharmonic function on \(M \setminus \{ p_i \} \) for \(i = 1, 2, \ldots, n \). So \(\log \rho = \sum_{i=1}^{n} m_i \log r_{p_i} \) is a supharmonic function on \(\Omega = M \setminus \{ p_1, p_2, \ldots, p_n \} \). Moreover, it is clear that \(\log(|f|^2 + \epsilon) \) is a subharmonic function on \(M \). Then, by Theorem 1.2 \(\log M_o(|f|^2 + \epsilon, r) \) is a convex function of \(\log r \). Letting \(\epsilon \to 0^+ \), we know that \(\log M_o(|f|, r) \) is a convex function of \(\log r \). Then, \(\log M_o(|f|, r) - \log r \) is also a convex function of \(\log r \). Therefore, for any \(0 < r_1 < r_2 < r_3 \),
\[
\log M_o(|f|, r_2) - \log r_2 \leq \log M_o(|f|, r_3) - \log r_3 \tag{2.23}
\]
Letting \(r_1 \to 0^+ \) in the last inequality, and using Lemma 2.1, we get
\[
\log M_o(|f|, r_2) - \log r_2 \leq \log M_o(|f|, r_3) - \log r_3 \tag{2.24}
\]
for any \(0 < r_2 < r_3 \). Thus, letting \(r_2 = 1 \) in (2.24), we have
\[
M_o(|f|, r) \geq M_o(|f|, 1)r \tag{2.25}
\]
for any \(r > 1 \). Let \(a \in M \) be a fixed point and \(R_0 = \max\{ r(a, p_i) \mid 1 \leq i \leq n \} \). Then, by Lemma 2.2 and (2.25), for any \(r \) large enough,
\[
M_o(|f|, r^{1/N} + R_0) \geq M_o(|f|, r) \geq M_o(|f|, 1)r. \tag{2.26}
\]
Hence, for any \(r \) large enough,
\[
M_o(|f|, r) \geq M_o(|f|, 1)(r - R_0)^N. \tag{2.27}
\]
So

\[(2.28) \quad \deg(f) \geq N = \sum_{i=1}^{n} \text{ord}_{p_i}(f). \]

This completes the proof of the Bezout estimate \((1.3)\).

We next come to prove the rigidity of \((1.3)\). Let \(f\) be a nonconstant holomorphic function of polynomial growth such that equality of \((1.3)\) holds. Let \(d = \deg(f)\). It is then clear from Cheng’s Liouville theorem for harmonic functions that \(d \geq 1\). Let \(p_1, p_2, \cdots, p_n\) be all the distinct roots of \(f\), and \(m_i = \text{ord}_{p_i}(f)\) for \(i = 1, 2, \cdots, n\). Then \(d = \sum_{i=1}^{n} m_i\). By Lemma 2.2, we know that

\[(2.29) \quad \frac{\log M_\rho(|f|, r_{\frac{d}{2}} - R_0)}{\log r} \leq \frac{\log M_\rho(|f|, r)}{\log r} \leq \frac{\log M_\rho(|f|, r_{\frac{d}{2}} + R_0)}{\log r}\]

when \(r\) is large enough. Moreover, note that

\[(2.30) \quad \lim_{r \to +\infty} \frac{\log M_\rho(|f|, r_{\frac{d}{2}} + R_0)}{\log r} = \lim_{t \to +\infty} \frac{\log M_\rho(|f|, t)}{d \log(t + R_0)} = 1\]

and

\[(2.31) \quad \lim_{r \to +\infty} \frac{\log M_\rho(|f|, r_{\frac{d}{2}} - R_0)}{\log r} = \lim_{t \to +\infty} \frac{\log M_\rho(|f|, t)}{d \log(t - R_0)} = 1\]

where we have used the following conclusion proved in [4]:

\[(2.32) \quad \deg(f) = \lim_{r \to +\infty} \frac{\log M_\rho(|f|, r)}{\log r}\]

for any nonzero \(f \in \mathcal{P}(M)\). Thus, by the squeezing rule,

\[(2.33) \quad \lim_{r \to +\infty} \frac{\log M_\rho(|f|, r)}{\log r} = 1.\]

Then, by letting \(r_3 \to +\infty\) in \((2.23)\), we get

\[(2.34) \quad \log M_\rho(|f|, r_2) - \log r_2 \leq \log M_\rho(|f|, r_1) - \log r_1\]

for any \(0 < r_1 < r_2\). Combining this with \((2.24)\), we know that

\[\log M_\rho(|f|, r) - \log r = C\]

for some constant \(C\). For each \(r > 0\), let \(z_x \in S_\rho(r)\) achieve the maximal modulus of \(f\) on \(S_\rho(r)\) and

\[(2.35) \quad F(x) = \log |f(x)| - \log \rho(x) - C.\]
Then $F \leq 0$ and $F(z_r) = 0$. So, F as a subharmonic function on Ω achieves its maximum value on z_r. By strong maximum principle for subharmonic functions, we know that $F \equiv 0$ and hence

\begin{equation}
\log \rho(x) = \log |f(x)| - C
\end{equation}

is harmonic Ω since $\Delta \log |f| = 0$ on Ω. So

\begin{equation}
\Delta \log r_{p_1} = \Delta \log r_{p_2} = \cdots = \Delta \log r_{p_n} = 0
\end{equation}

and the equality of the Laplacian comparison \eqref{2.21} holds. Thus (M, g) is flat and hence is biholomorphically isometric to \mathbb{C} or a cylinder. Note that a cylinder admits no nonconstant holomorphic function of polynomial growth. So, (M, g) is biholomorphically isometric to \mathbb{C}. \hfill \square

\textbf{References}

[1] Chen Bing-Long, Tang Siu-Hung, Zhu Xi-Ping, \textit{A uniformization theorem for complete non-compact Kähler surfaces with positive bisectional curvature}. J. Differential Geom. 67 (2004), no. 3, 519–570.

[2] Chen Bing-Long, Fu Xiao-Yong, Yin Le, Zhu Xi-Ping, \textit{Sharp dimension estimates of holomorphic functions and rigidity}. Trans. Amer. Math. Soc. 358 (2006), no. 4, 1435–1454.

[3] Liu Gang, \textit{On finite generation of holomorphic functions on Riemann surfaces}. \texttt{arXiv:1308.0711}.

[4] Liu Gang, \textit{Three-circle theorem and dimension estimate for holomorphic functions on Kähler manifolds}. Duke Math. J. 165 (2016), no. 15, 2899–2919.

[5] Mok Ngaiming, \textit{An embedding theorem of complete Kähler manifolds of positive bisectional curvature onto affine algebraic varieties}. Bull. Soc. Math. France 112 (1984), no. 2, 197–250.

[6] Ni Lei, \textit{A monotonicity formula on complete Kähler manifolds with nonnegative bisectional curvature}. J. Amer. Math. Soc. 17 (2004), no. 4, 909–946.

\textbf{Department of Mathematics, Shantou University, Shantou, Guangdong, 515063, China}

\textit{Email address:} cjyu@stu.edu.cn

\textbf{Department of Mathematics, Shantou University, Shantou, Guangdong, 515063, China}

\textit{Email address:} 12cyzhang@stu.edu.cn