An outbreak of \textit{bla}\textsubscript{OXA-51-like}- and \textit{bla}\textsubscript{OXA-66}-positive \textit{Acinetobacter baumannii} ST208 in the emergency intensive care unit

Satomi Asai,1,2 Kazuo Umezawa,3 Hideo Iwashita,1 Toshio Ohshima,2 Maya Ohashi,2 Mika Sasaki,2 Hideki Hayashi,4 Mari Matsui,5 Keigo Shibayama,5 Sadaki Inokuchi3 and Hayato Miyachi1,2

1Department of Laboratory Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan
2Infection Control Division, Tokai University Hospital, 143 Shimokasuya, Isehara 259-1193, Japan
3Department of Critical Care and Emergency Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan
4Support Center for Medical Research and Education, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan
5Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan

A series of clinical isolates of drug-resistant (DR) \textit{Acinetobacter baumannii} with diverse drug susceptibility was detected from eight patients in the emergency intensive care unit of Tokai University Hospital. The initial isolate was obtained in March 2010 (\textit{A. baumannii} Tokai strain 1); subsequently, seven isolates were obtained from patients (\textit{A. baumannii} Tokai strains 2–8) and one isolate was obtained from an air-fluidized bed used by five of the patients during the 3 months from August to November 2011. The isolates were classified into three types of antimicrobial drug resistance patterns (RRR, SRR and SSR) according to their susceptibility (S) or resistance (R) to imipenem, amikacin and ciprofloxacin, respectively. Genotyping of these isolates by multilocus sequence typing revealed one sequence type, ST208, whilst that by a DiversiLab analysis revealed two subtypes. All the isolates were positive for \textit{bla}\textsubscript{OXA-51-like} and \textit{bla}\textsubscript{OXA-66}, as assessed by PCR and DNA sequencing. \textit{A. baumannii} Tokai strains 1–8 and 10 (RRR, SRR and SSR) had quinolone resistance-associated mutations in \textit{gyrA}/\textit{parC}, as revealed by DNA sequencing. The IS\textsubscript{Aba1} upstream of \textit{bla}\textsubscript{OXA-51-like} and aminoglycoside resistance-associated gene, \textit{armA}, were detected in \textit{A. baumannii} Tokai strains 1–7 and 10 (RRR and SRR) as assessed by DNA sequencing. The genes encoding resistance–nodulation–division family pumps (\textit{adeB}, \textit{adeG} and \textit{adeJ}) and outer-membrane porins (\textit{oprD} and \textit{carO}), overexpression of \textit{adeB} and \textit{adeJ} and suppression of \textit{oprD} and \textit{carO} were seen in isolates of \textit{A. baumannii} Tokai strain 2 (RRR), as assessed by real-time PCR. Thus, the molecular characterization of a series of isolates of DR \textit{A. baumannii} revealed the outbreak of ST208 and diverse antimicrobial drug susceptibilities, which almost correlated with differential gene alterations responsible for each type of drug resistance.

INTRODUCTION

\textit{Acinetobacter baumannii} is emerging as a nosocomial pathogen, particularly in intensive care units, including burn care units (Bayram \textit{et al.}, 2013; Guzek \textit{et al.}, 2013; Ohashi \textit{et al.}, 2013). Hospitalized patients at a greater risk of \textit{Acinetobacter} infections are those particularly ill on a ventilator, those with a prolonged hospital stay, those who have open wounds and those with invasive devices, such as urinary catheters (Wendt \textit{et al.}, 1997; Wisplinghoff \textit{et al.}, 2013).
cefepime (CFPM) was from Bristol-Myers Squibb, CPFX was from Eizai, ceftazidime (CAZ) was from Glaxo SmithKline, AMK and IPM were from Banyu Pharmaceutical, aztreonam (AZT) was from Taisho Toyama Pharmaceutical and tobramycin (TOB) was from Towa Pharmaceutical.

Molecular typing. DNA templates were extracted using a ZR-Duet DNA/RNA MiniPrep kit (Zymo Research). Multilocus sequence typing (MLST) was performed as described previously (Bartual et al., 2005; Fu et al., 2010). MLST sequences were uploaded into the A. baumannii MLST Type Database (http://pubmlst.org/abauumannii/) to determine the alleles and sequence types. A. baumannii isolates were screened for gene homology by a repetitive-element-based PCR (rep-PCR) DiversiLab Microbial Typing System (Sysmex bioMérieux), which amplified the regions between the non-coding repetitive sequences in bacterial genomes, as described previously (Carretto et al., 2006; Higgins et al., 2012). The annealing temperature of the PCR amplification used in this study was 55 °C for gltA, gyrB, recA and cpxR60, and 50 °C for dghB, gpi and rpoD. The amplification products were purified with a DNA purification kit (Qiagen). The DNA sequencing was performed using an ABI3500xL Genetic Analyzer (Applied Biosystems).

Evaluation of the mechanisms of resistance
Screening for metallo-β-lactamase (MBL). A. baumannii isolates were screened for the production of MBL by a double-disc synergy test with discs containing sodium mercaptoacetic acid as described previously (Arakawa et al., 2000).

PCR assay for β-lactamase and armA. The following resistance genes were examined by PCR: *bla*_{IMP-1}, *bla*_{TEM}, *bla*_{OXA-23-like} and *bla*_{OXA-24-like}, *bla*_{OXA-51-like}, *bla*_{OXA-58-like} and * ISAAb1*, as described previously (Turton et al., 2006; Woodford et al., 2006). The *armA* gene, which encodes 16S rRNA methylases and confers high resistance to aminoglycosides, was screened by PCR using primers that were described previously (Yamane et al., 2005).

Sequencing of OXA-type β-lactamase, and *gyrA* and *parC*. Sequencing of OXA-type β-lactamase was performed as described previously (Endo et al., 2012). The quinolone resistance-determining regions of *gyrA* and *parC* were amplified and analysed as described previously (Liu et al., 2012). DNA sequencing of the amplified DNA products was performed using an ABI3500xL Genetic Analyzer (Applied Biosystems).

Quantitative real-time (qRT)-PCR. RNA templates were extracted by a ZR-Duet DNA/RNA MiniPrep kit (Zymo Research). The expression levels of three different genes encoding resistance-nodulation–division (RND) family pumps (*adeB*, *adeG* and *adeD*) and two different genes encoding outer-membrane porins (*oprD* and *carO*) were analysed by qRT-PCR using a StepOnePlus Real-Time PCR System (Applied Biosystems) (Peleg et al., 2008; Fernando & Kumar, 2012; Zander et al., 2013). The primers used for the analysis are listed in Table 1. The housekeeping gene 16S rRNA was used as a control (Coyne et al., 2010; Srinivasan et al., 2011; Hou et al., 2012). Reactions (20 µl) were set up using 400 nM primers and 2 µl CDNA template (diluted 1 : 10) with SYBR Premix Ex Taq II (Tli RNaseH Plus) and ROX plus (Takara Bio). The data analysis was carried out using StepOne software. The expression of each target gene was normalized based on the level of the 16S rRNA mRNA gene and was expressed as a relative rate compared with that in the susceptible isolate of each pair (the expression of A. baumannii Tokai strain 9 was taken as 1.0). Experiments were conducted at least three times independently and all reactions were carried out in triplicate.
RESULTS

Bacterial strains and antibiotic susceptibility

The characteristics of the A. baumannii Tokai strains are shown in Table 2. In March 2010, a DR A. baumannii Tokai strain 1 was detected initially from the wound of a patient with a severe burn injury. After 1.5 years, during a period of 3 months from August to November 2011, another seven clinical isolates of DR A. baumannii strains from patients (A. baumannii Tokai strains 2–8) were obtained. The DR A. baumannii Tokai strains were classified into three types according to their susceptibility to three drugs (IPM, AMK and CPFX) as RRR, SRR or SSR (R, resistant; S, susceptible; Tables 2 and 3). They were obtained from sputum, wounds and bile drains.

As the interval between the first patient and the others was long (>18 months), the environment of the ward was suspected to be a possible reservoir of the pathogen. Based on the results of the bacteriological surveillance of environmental surfaces, A. baumannii Tokai strain 10 was isolated from the cracks of a rubber frame and a lump of beads in an air-fluidized bed that was used by five patients during their hospitalization (A. baumannii Tokai strains 1, 2 and 4–6).

Molecular typing

The molecular genotyping of isolates by a MLST analysis revealed a sequence type of ST208 for A. baumannii Tokai strains 1–8 and 10 (ST profile, gltA-gyrB-gdhB-recA-cpn60-gpi-rpoD: 1-3-3-2-2-97-3) and another type for A. baumannii Tokai strain 9 (ST profile, gltA-gyrB-gdhB-recA-cpn60-gpi-rpoD: 15-48-58-42-36-54-41). The molecular genotyping of isolates by rep-PCR showed the same pattern (>97% similarity) as one type for eight of the isolates (A. baumannii Tokai strains 1–7 and 10) (Fig. 1), and the other isolates (A. baumannii Tokai strains 8 and 9) had different patterns (85 and <70% similarity, respectively).

Expression of resistance-related genes

The MBL assay of the clinically isolated A. baumannii Tokai strains revealed no apparent MBL production and all isolates showed expression of OXA-51-like carrying OXA-66 β-lactamase (Table 4). The expression of IMP-1, VIM, OXA-23-like, OXA-24-like and OXA-58-like was negative. Expression of ISAb1 and armA was found in A. baumannii Tokai strains 1–7 and 10. The DNA sequencing of gyrA and parC revealed that Ser83 (TCA) was changed to TTA (Leu) and that Ser80 (TCG) was changed to TTT (Phe) or TTG (Leu) in A. baumannii Tokai strains 1–8 and 10.

Our analysis of genes encoding RND pumps included an analysis of the expression of three previously characterized genes, adeB, adeG and adeJ, which encode the RND pump in the adeABC, adeFGH and adeIJK operons, respectively. The result of A. baumannii Tokai strains 1, 2, 8 and 9 as representative strains from each group with the same susceptibility pattern is shown in Table 5. Overexpression of adeB and adeJ was seen in A. baumannii Tokai strain 2. The expression of oprD was decreased in A. baumannii Tokai strains 2 and 8. Underexpression of carO was seen in isolates with A. baumannii Tokai strains 1, 2 and 8.

DISCUSSION

We investigated a series of clinical isolates of DR A. baumannii ST208 in the EICU of Tokai University Hospital. In order to elucidate the diversity of the drug resistance patterns in the same sequence type in these isolates, we studied the molecular characteristics of these isolates and their relationship with the resistance pattern.

A. baumannii Tokai strains 1–7 and 10 were positive for OXA-51-like and OXA-66 β-lactamase and ISAb1. A. baumannii strains with resistance to AMK (A. baumannii Tokai strains 1–7 and 10) were positive for armA. These results are consistent with the idea that ISAb1 regulates the expression of OXA-51-like carrying OXA-66 β-lactamase and that armA is related to aminoglycoside
Table 2. Cases and *A. baumannii* Tokai strains

One hundred and fifty nurses and five nurse-aids worked in the EICU and Burn centre, and they were not fixed as a team. ER, Critical care and emergency medicine; NR, neurosurgery; OP, orthopaedics; R, resistant; S, susceptible.

Strain/disease	Ward	Day detected after hospitalization	Source	Susceptibility pattern of IPM, AMK and CPFX*	Doctor team	Use of air-fluidized bed
1. 74% total body surface area burn	Burn centre	31 (3 March 2010)	Sputum	IPM-S, AMK-R, CPFX-R (SRR)	ER-a	Yes
2. 85% total body surface area burn	Burn centre	9 (29 August 2011)	Wound	IPM-R, AMK-R, CPFX-R (RRR)	ER-b	Yes
(Ohashi et al., 2013)						
3. 40% total body surface area burn	Burn centre	33 (19 September 2011)	Wound	IPM-R, AMK-R, CPFX-R (RRR)	ER-c	No
(Ohashi et al., 2013)						
4. 70.5% total body surface area burn	Burn centre	7 (19 September 2011)	Wound	IPM-R, AMK-R, CPFX-R (RRR)	ER-c	Yes
(Ohashi et al., 2013)						
5. Traffic injury	EICU	44 (23 September 2011)	Bile drain	IPM-S, AMK-R, CPFX-R (SRR)	ER-d	Yes
6. Traffic injury	EICU	13 (26 October 2011)	Wound	IPM-R, AMK-R, CPFX-R (RRR)	ER-d	Yes
7. Iliopsoas muscle abscess	EICU	45 (15 November 2011)	Sputum	IPM-S, AMK-R, CPFX-R (SRR)	OP	No
8. Subcortical haemorrhage	EICU	240 (15 November 2011)	Sputum	IPM-S, AMK-S, CPFX-R (SSR)	ER-d	No
9. Subarachnoid haemorrhage	EICU	50 (17 November 2011)	Sputum	IPM-S, AMK-S, CPFX-S (SSS)	NS	No
10. Air-fluidized bed	EICU	(20 November 2011)	Beads	IPM-S, AMK-R, CPFX-R (SRR)	ER-a, ER-b, ER-c, ER-d	

Table 3. Susceptibility patterns of *A. baumannii* Tokai strains

Strain	MIC (µg ml⁻¹)															
	β-Lactams	Aminoglycosides	Fluoroquinolones	Other agents												
	IPM	PIPC	CAZ	CFPM	S/C	AZT	MEPM	CZOP	GM	TOB	AMK	LVFX	CPFX	MINO	FOM	S/T
1, 5, 7, 10	2	>64	>16	16	<16	>8	16	>8	>8	>32	4	>2	4	>16	>2	
2, 3, 4, 6	>8	>64	>16	16	<16	>8	16	>8	>8	>32	>4	>2	≤2	>16	>2	
8	≤1	≤8	≤2	<4	<16	8	≤1	4	≤1	≤1	≤4	>4	>2	≤2	>16	≤2
9	≤1	≤8	4	16	<16	8	≤1	8	8	2	8	≤0.5	1	≤2	>16	≤2

S/C, sulbactam/cefoperazone; S/T, sulfamethoxazole/trimethoprim.
resistance. The five isolates (*A. baumannii* Tokai strains 1, 2 and 4–6) could have been derived from the same source and/or transmitted horizontally, because the same air-fluidized bed had been used by those patients. Among them, *A. baumannii* Tokai strains 2, 4 and 6 showed multidrug resistance (RRR). These patients were treated with carbapenem (MEPM or DRPM) prior to sampling for at least 1 week, which may have played a role in the overexpression of *adeB* and *adeJ* in *A. baumannii*Tokai strain 2. *A. baumannii* Tokai strain 10 was detected from the cracks of the rubber frame and a lump of beads in an air-fluidized bed, even though the bed had been cleaned and disinfected every time after use. Although a few nosocomial outbreaks of *A. baumannii* ST2 have been reported (Suzuki et al., 2013; Yamada & Suwabe, 2013), an outbreak of *A. baumannii* ST208 has not been reported previously in Japan.

As the pattern of the rep-PCR and sequence type of MLST in the eight isolates was the same as that in the initial case, it was suggested that the strain survived for 1.5 years in the environmental reservoir. As infection control procedures, careful attention to environmental cleaning and disinfection in order to reduce the risk of transmission is suggested. *A. baumannii* Tokai strain 8 (SSR) was also ST208, but had a different pattern as shown by rep-PCR. During the transmission from the same original organism, the presence of a transposon or the insertion of a different plasmid might have led to the different pattern. During the period of an outbreak, *A. baumannii* with different drug susceptibility patterns appeared depending on the various resistance mechanisms.

Nine isolates (*A. baumannii* Tokai strains 1–8 and 10) had resistance to CPFX, which can be explained by the mutations of *gyrA* and *parC*. Another major factor contributing to the resistance of this organism was the overexpression of the RND pumps (Fernando & Kumar, 2012; Amin et al., 2013; Zander et al., 2013). Our analysis of genes encoding RND pumps included the expression of three previously characterized genes, *adeB*, *adeG* and *adeJ*, which encode the RND pumps in the *adeABC*, *adeFGH* and *adeIJK* operons, respectively. Efflux pumps such as AdeABC have been reported to be involved in multidrug resistance (Vila et al., 2007; Hou et al., 2012). In our study, *A. baumannii* Tokai strain 2 (RRR) showed overexpression of *adeB* and *adeJ*. *A. baumannii* Tokai strain 8 showed better sensitivity to some *β*-lactams (CAZ, CFPM and CZOP) than that of *A. baumannii* Tokai strain 9 (SSS). This phenomenon might be associated with underexpression of *adeB*. Two pumps,

Table 4. Expression of resistance-related genes as assessed by PCR and qRT-PCR in *A. baumannii* Tokai strains
Strain(s)

1, 5, 7, 10
2, 3, 4, 6
8
9

http://jmm.sgmjournals.org 1521
such as adeB and adeJ, have been related to the acquisition of multidrug resistance. As for porins, the overexpression of genes encoding RND pumps and the downregulation of genes encoding porins is known to be common in clinical isolates of Acinetobacter spp. (Fernando et al., 2013). Our findings also suggest that the underexpression of carO in combination with or without oprD does not result in resistance to carbapenem in A. baumannii Tokai strains 1 and 8 (SRR and SSR). This observation is consistent with previous findings showing that a decrease in porins among Acinetobacter strains is not associated with resistance to carbapenems in the presence of β-lactamases (Rumbo et al., 2013; Singh et al., 2013).

In conclusion, we demonstrated that drug resistance is associated with the expression of ISAba1 and armA, and mutations in gyrA and parC, and that the overexpression of adeB and adeJ plays a role in the multidrug resistance of A. baumannii Tokai strain ST208.

ACKNOWLEDGEMENTS

This work was supported by the Japan Society for the Promotion of Science, the Ministry of Education, Culture, Sports, Science and Technology [Grant-in-Aid (23590691) for Scientific Research (C)].

REFERENCES

Amin, I. M., Richmond, G. E., Sen, P., Koh, T. H., Piddock, L. J. & Chua, K. L. (2013). A method for generating marker-less gene deletions in multidrug-resistant Acinetobacter baumannii. BMC Microbiol 13, 158.

Arakawa, Y., Shibata, N., Shibayama, K., Kurokawa, H., Yagi, T., Fujiwara, H. & Goto, M. (2000). Convenient test for screening metallo-β-lactamase-producing Gram-negative bacteria by using thiol compounds. J Clin Microbiol 38, 40–43.

Asai, S., Ohshima, T., Yoshihara, E., Jin, G., Umezawa, K., Inokuchi, S. & Miyachi, H. (2011). Differential co-expression of Mex efflux pumps in a clinical strain of metallo-β-lactamase-producing Pseudomonas aeruginosa during the stepwise evolution of resistance to aminoglycosides. Infect Dis Clin Pract 19, 38–42.

Bartual, S. G., Seifert, H., Hippler, C., Luzon, M. A., Wisplinghoff, H. & Rodriguez-Valera, F. (2005). Development of a multilocus sequence typing scheme for characterization of clinical isolates of Acinetobacter baumannii. J Clin Microbiol 43, 4382–4390.

Bayram, Y., Parlak, M., Aypak, C. & Bayram, I. (2013). Three-year review of bacteriological profile and antibiogram of burn wound isolates in Van, Turkey. Int J Med Sci 10, 19–23.

Carretto, E., Barbarini, D., Farina, C., Grosini, A., Nicoletti, P., Manso, E. & APSI "Acinetobacter Study Group," Italy (2008). Use of the DiversiLab® semiautomated repetitive-sequence-based polymerase chain reaction for epidemiologic analysis on Acinetobacter baumannii isolates in different Italian hospitals. Diagn Microbiol Infect Dis 60, 1–7.

CLSI (2009). Performance Standards for Antimicrobial Susceptibility Testing; 19th Informational Supplement M100-S19. Wayne, PA: Clinical and Laboratory Standards Institute.

Coyne, S., Rosenfeld, N., Lambert, T., Courvalin, P. & Perichon, B. (2010). Overexpression of resistance-nodulation-cell division pump AdeFGH confers multidrug resistance in Acinetobacter baumannii. Antimicrob Agents Chemother 54, 4389–4393.

Endo, S., Yano, H., Hirakata, Y., Arai, K., Kanamori, H., Ogawa, M., Shimojima, M., Ishibashi, N., Aoyagi, T. & other authors (2012). Molecular epidemiology of carbapenem-non-susceptible Acinetobacter baumannii in Japan. J Antimicrob Chemother 67, 1623–1626.

Fernando, D. & Kumar, A. (2012). Growth phase-dependent expression of RND efflux pump- and outer membrane porin-encoding genes in Acinetobacter baumannii ATCC 19606. J Antimicrob Chemother 67, 569–572.

Fernando, D., Zhanel, G. & Kumar, A. (2013). Antibiotic resistance and expression of resistance-nodulation-division pump- and outer membrane porin-encoding genes in Acinetobacter species isolated from Canadian hospitals. Can J Infect Dis Med Microbiol 24, 17–21.

Fu, Y., Zhou, J., Zhou, H., Yang, Q., Wei, Z., Yu, Y. & Li, L. (2010). Wide dissemination of OXA-23-producing carbapenem-resistant Acinetobacter baumannii clonal complex 22 in multiple cities of China. J Antimicrob Chemother 65, 644–650.

Guzek, A., Korzeniewski, K., Nitsch-Osuch, A., Rybicki, Z. & Prokop, E. (2013). In vitro sensitivity of Acinetobacter baumannii and Pseudomonas aeruginosa to carbapenems among intensive care unit patients. Adv Exp Med Biol 788, 109–116.

Higgins, P. G., Schneider, T., Hamprecht, A. & Seifert, H. (2010). In vivo selection of a missense mutation in adeR and conversion of the novel blaOXA-164 gene into blaOXA-58 in carbapenem-resistant Acinetobacter baumannii isolates from a hospitalized patient. Antimicrob Agents Chemother 54, 5021–5027.

Higgins, P. G., Janssen, K., Fresen, M. M., Wisplinghoff, H. & Seifert, H. (2012). Molecular epidemiology of Acinetobacter baumannii bloodstream isolates obtained in the United States from 1995 to 2004 using rep-PCR and multilocus sequence typing. J Clin Microbiol 50, 3493–3500.

Table 5. Relative expression of efflux pumps and outer-membrane porins in A. baumannii Tokai strains by qRT-PCR

The results for A. baumannii Tokai strains 1, 2, 8 and 9 are shown as a representative strain from each group with the same susceptibility pattern.

Strain	Susceptibility pattern	Relative expression	Efflux pump (ratio)	Outer-membrane porin		
		adeB	adeG	adeJ	oprD	carO
1	SRR	0.91	0.46	0.94	1.23	0.02
2	RRR	2.28	1.02	2.41	0.49	0.01
8	SSR	0.10	0.81	0.84	0.88	0.003
9	SSS	1.00	1.00	1.00	1.00	1.00
Drug resistance of *A. baumannii*

Ho, P. L., Ho, A. Y., Chow, K. H., Lai, E. L., Ching, P. & Seto, W. H. (2010). Epidemiology and clonality of multidrug-resistant *Acinetobacter baumannii* from a healthcare region in Hong Kong. *J Hosp Infect* 74, 358–364.

Hou, P. F., Chen, X. Y., Yan, G. F., Wang, Y. P. & Ying, C. M. (2012). Study of the correlation of imipenem resistance with efflux pumps AdeABC, AdeIJK, AdeDE and AbeM in clinical isolates of *Acinetobacter baumannii*. *Chemotherapy* 58, 152–158.

Howard, A., O’Donoghue, M., Feeney, A. & Sleator, R. D. (2012). *Acinetobacter baumannii*: an emerging opportunistic pathogen. *Virulence* 3, 243–250.

Liu, Y. H., Kuo, S. C., Lee, Y. T., Chang, I. C., Yang, S. P., Chen, T. L. & Fung, C. P. (2012). Amino acid substitutions of quinolone resistance determining regions in GyrA and ParC associated with quinolone resistance in *Acinetobacter baumannii* and *Acinetobacter* genomic species 13TU. *J Microbiol Immunol Infect* 45, 108–112.

Ohashi, M., Asai, S., Umezawa, K., Kenmochi, I., Sasaki, M., Iwashita, H., Hasunuma, Y., Ohshima, T., Inokuchi, S. & Miyachi, H. (2013). [The transmission and its infection control of multidrug-resistant *Acinetobacter baumannii* in patients with severe burn injuries]. *Jpn J Burn Injuries* 39, 69–75 (in Japanese).

Peleg, A. Y., Seifert, H. & Paterson, D. L. (2008). *Acinetobacter baumannii*: emergence of a successful pathogen. *Clin Microbiol Rev* 21, 538–582.

Rumbo, C., Gato, E., López, M., Ruiz de Alegria, C., Fernández-Cuenca, F., Martínez-Martínez, L., Vila, J., Pachón, J., Cisneros, J. M. & other authors (2013). Contribution of efflux pumps, porins, and β-lactamases to multidrug resistance in clinical isolates of *Acinetobacter baumannii*. *Antimicrob Agents Chemother* 57, 5247–5257.

Singh, H., Thangaraj, P. & Chakrabarti, A. (2013). *Acinetobacter baumannii*: a brief account of mechanisms of multidrug resistance and current and future therapeutic management. *J Clin Diag Res* 7, 2602–2605.

Srinivasan, V. B., Rajamohan, G., Pancholi, P., Marcon, M. & Gebreyes, W. A. (2011). Molecular cloning and functional characterization of two novel membrane fusion proteins in conferring antimicrobial resistance in *Acinetobacter baumannii*. *J Antimicrob Chemother* 66, 499–504.

Suzuki, M., Matsui, M., Suzuki, S., Rimbara, E., Asai, S., Miyachi, H., Takata, T., Hiraki, Y., Kawano, F. & Shibayama, K. (2013). Genome sequences of multidrug-resistant *Acinetobacter baumannii* strains from nosocomial outbreaks in Japan. *Genome Announc* 1, e00476–13.

Turton, J. F., Ward, M. E., Woodford, N., Kaufmann, M. E., Pike, R., Livermore, D. M. & Pitt, T. L. (2006). The role of ISAb1 in expression of OXA carbapenemase genes in *Acinetobacter baumannii*. *FEMS Microbiol Lett* 258, 72–77.

Vila, J., Martí, S. & Sánchez-Céspedes, J. (2007). Porins, efflux pumps and multidrug resistance in *Acinetobacter baumannii*. *J Antimicrob Chemother* 59, 1210–1215.

Wendt, C., Dietze, B., Dietz, E. & Rüden, H. (1997). Survival of *Acinetobacter baumannii* on dry surfaces. *J Clin Microbiol* 35, 1394–1397.

Wisplinghoff, H., Edmond, M. B., Pfaffer, M. A., Jones, R. N., Wenzel, R. P. & Seifert, H. (2000). Nosocomial bloodstream infections caused by *Acinetobacter* species in United States hospitals: clinical features, molecular epidemiology, and antimicrobial susceptibility. *Clin Infect Dis* 31, 690–697.

Woodford, N., Ellington, M. J., Coelho, J. M., Turton, J. F., Ward, M. E., Brown, S., Amyes, S. G. & Livermore, D. M. (2006). Multiplex PCR for genes encoding prevalent OXA carbapenemases in *Acinetobacter* spp. *Int J Antimicrob Agents* 27, 351–353.

Yamada, Y. & Suwabe, A. (2013). Diverse carbapenem-resistance mechanisms in 16S rRNA methylase-producing *Acinetobacter baumannii*. *J Med Microbiol* 62, 618–622.

Yamane, K., Wachino, J., Doi, Y., Kurokawa, H. & Arakawa, Y. (2005). Global spread of multiple aminoglycoside resistance genes. *Emerg Infect Dis* 11, 951–953.

Zander, E., Chmielarczyk, A., Heczko, P., Seifert, H. & Higgins, P. G. (2013). Conversion of OXA-66 into OXA-82 in clinical isolates of *Acinetobacter baumannii*. *J Antimicrob Chemother* 68, 308–311.

Zheng, W., Yuan, S. & Li, L. (2013). Analysis of hospital departmental distribution and antibiotic susceptibility of *Acinetobacter* isolated from sputum samples. *Am J Infect Control* 41, e73–e76.