Cytogenomic characteristics of murine breast cancer cell line JC

Shaymaa Azawi, Martina Rincic and Thomas Liehr

Abstract

Background: Breast cancer (BC), one of the most frequent human tumors, is genetically and histologically heterogeneous. Treatment options can be adapted according to BC subtype. Still, research is necessary to characterize BC biology better and to study potential new treatment options. Murine BC-cell lines can be used as model systems in this respect.

Results: Here for the first time murine BC-cell line JC was cytogenomically characterized as being complex rearranged and near-tetraploid. Multicolor banding and array comparative genomic hybridization were applied and the result was in silico translated to the human genome.

Conclusions: Even though being commercially available, cell line JC was yet not much included in BC-research, most likely due to a lack of cytogenomic data. Thus, here comprehensive data is provided on chromosomal aberrations, genomic imbalances and involved breakpoints of JC cell line. Also JC could be characterized as a model for BC of luminal B type, basal-like tumor rather than for luminal A type.

Keywords: Breast cancer, Murine cell line, JC, Murine multicolor banding (mcb), Array comparative genomic hybridization (aCGH)

Introduction

Breast cancer (BC) is considered to be one of the most aggressive human cancer forms and is leading among cancer-related deaths, especially in females. Survival rates vary across countries depending on diagnostic regimens, awareness of and possibilities to treat this disease [1, 2]. Factors like advanced age, low estrogen-levels, family history of cancer, and certain adverse gene mutations, as well as lifestyle influence incidence of this cancer type [2, 3]. BCs are a heterogenic group of tumors, and thus divided into subtypes, according to their molecular profiles, morphology, and expression of specific biomarkers [4]. Therefore, each subtype has a different prognosis, a specific response to treatment and a defined clinical outcome [4, 5]. All these go together with repeatedly observed aggressive clinical courses and limitations in breast cancer treatment [6]. BC biomarkers include onco-genes and tumor suppressor genes (TCGs), as well as their and related gene-products. Immunohistochemical markers for tumor cell surface or plasma, as well as for growth in this context are estrogen receptor, progesterone receptor, human epidermal growth factor receptor-2 (ERBB2/ HER-2) and epidermal growth factor receptor, cytokeratin 5 and/or nuclear protein Ki67 expression [1, 7]. Based on such expression profiles BC can be classified in (1) luminal A-like, (2) luminal B-like (HER2-positive or HER2-negative), (3) HER2-overexpressing, and (4) triple-negative subtypes [4, 7].

According to subtype, treatment regimens for BC are adapted [7, 8]. After initial surgery, being commonly applied for most BC subtypes chemo- and radio-therapeutic care follow, most of which have severe side effects.
Thus, new types of medication being targeted only towards BC cells are still a pressing necessity [9]. The latter can be e.g. approached by including animal, especially murine models, in research to study biological pathways of BC and BC progression [10–12]. Even though murine cell lines are applied in ample research, still most of them are not characterized in detail genetically [1]. This is also valid for the here studied BC cell line JC, which was established in 1978 from a murine BC, developing spontaneously in a 1.5 years old female BALB/c mouse [13]. JC-cells show papillary adenocarcinoma morphology, and cytogenetics done in 1989 revealed only 26–100 chromosomes per cell, and 40 per cell being found in 28 of the 99 evaluated metaphases [14].

Molecular cytogenetics is considered the most practicable technique to characterize genetic alteration in cancer [15]. Thus, here for the first time, the murine BC cell line JC was studied in detail by multicolor-fluorescence in situ hybridization (FISH) using all murine whole chromosome painting (wcp) probes and FISH-based murine multicolor banding (mcb) approach together with array-comparative genomic hybridization (aCGH). The in silico translation performed on the data to determine the corresponding homologous genetic alterations in human BC was done as previously described [16].

Materials and methods

Cell lines

The cell line JC was obtained from American Type Culture Collection (ATCC CR L-2116™, Wesel, Germany). After being adherently grown in RPMI-1640 medium containing 10% fetal calf serum with recommended antibiotics, cells were cytogenetically prepared [17], and in parallel whole genomic DNA was extracted from the same passage of cells [16]. Molecular cytogenetic / FISH analyses (see below) on the cell line-derived chromosomes, and aCGH analyses on the extracted DNA (see below) were done. According to the ethical committee (medical faculty) and the Animal Experimentation Commission of the Friedrich Schiller University, there are no ethical agreements necessary for studies involving murine tumor cell lines like JC.

Molecular cytogenetics

FISH was performed as previously described [16] using whole chromosome paints (“SkyPaintTM DNA Kit M-10 for Mouse Chromosomes”, Applied Spectral Imaging, Edingen-Neckarhausen, Germany) for multicolor-FISH (mFISH), and murine chromosome-specific multicolor banding (mcb) probe mixes for FISH-banding [18]. At least 30 metaphases were documented and analyzed for each probe set (Zeiss Axioplan microscopy, equipped with ISIS software (MetaSystems, Altlussheim, Germany). Array-based comparative genomic hybridization (aCGH) was done according to standard procedures by “SurePrint G3 Mouse CGH Microarray, 4 × 180 K” (Agilent Technologies) [16].

Data analysis

Imbalances and breakpoints being observed in JC were determined according to aCGH and mcb data, and aligned to human homologous regions using Ensembl and the UCSC Genome Browser, as previously described [19]. The obtained data were compared to genetic changes known from human BCs according to literature [7, 20–32].

Results

After wcp-based mFISH analyses, JC presented as relatively stable, hypo-tetraploid cell line with 64-66 chromosomes (result not shown). Overall there were 3 clones, which differed only in few alterations.

Clone 1 was considered as ancestor clone and present in ~17% of the analyzed cells; karyotype: 64-66<4n>,XXX,-X,del(1)(E2),dic(2;9)(A1;A1),-3,-4,del(5)(B),der(6):(14B→14A1::6A1→6B3::6B3→6B1+::6B1→6B3::6B3→6B1::6B3::16C1→16qter),-7,i(dic(8)(A1;A1),dic(9;13):(13A5−>13A5::9A1→9qter),-10,−12,+13,−14,−16,−17,−18,−19.

Clone 2 (53.3%) was present in ~53% had the same karyotype shown in Fig. 1 as 64-66<4n>,idem,XX,X,-X,idem,t(3;14)(H4;D1),+6,+15,dup(17)(A2D1).

Clone 3 (~30% of the cells) had the karyotype: 64-66<4n>,idem,XX,der(X)(X,?),pterm→A6,:,:),-X,t(3;14)(H4;D1),+6,der(?)(?;11)(pterm→A1::E1→qter),del(13)(A5),dup(17)(A2D1),+15.

Overall, FISH-data was in agreement with the aCGH results and copy number alterations and breakpoints are summarized in Fig. 2a. An in-silico-translation of those results to the human genome (only imbalances larger than 3.5 megabase pairs were included) identified the corresponding homologous region in the human genome (Fig. 2b). Genomic details are given in Additional file 1: Table S1.

The corresponding homologous regions for the cell line were compared with common imbalances in human BC, and this revealed copy number variations in regions known to harbor oncogenes and tumor suppressor genes (TSG) with an overlap of 40% (Table 1). The breakpoints of the cell line compared with the chromosomal breaks of human BC overlap to 56% (Table 2). Genetic alterations in cell line JC correlated best with the subtype for human BC acc. to Horlings et al. [32] with basal-like (50%) and luminal B type tumors (67%); no correlation was found with human luminal A type BCs (Table 3).
Discussion

BC is one of most frequent tumors in females, genetically heterogeneous and with an often very aggressive course. Therefore, still basic research is necessary to understand better its biology and to find more efficient treatment strategies. Accordingly, especially murine tumor cell lines are favorite model systems to perform basic research studies, as well as such towards testing of new medications [8, 33]. Our group characterized already several murine tumor cell lines by the same test strategy as applied here, and thus delivered previously not available but urgently necessary genetic basic data, including chromosome numbers, observable breakpoints and copy number changes [1, 16, 17, 19, 34, 35]. Here a commercially available murine BC-cell line was characterized for the first time, cell line JC, which was yet rarely used in research. It may be speculated that this was in major parts due to the fact that there was no genetic information available, yet. This gap was closed by the present study now.

JC cell line presents a near-tetraploidy karyotype, which is typically observable, especially in human [36], however, only present in about 50% of murine tumor cell lines [1, 16, 17, 19, 34, 35]. Polyploidy promotes malignant transformation of mammary cells and increases cell resistance to drugs [36]; still, it is also a known adaptation of cells to cell culture conditions. In case of JC cell line the only available previous cytogenetic characterization dates back to 1989; at that stage the cell line was extremely chromosomally instable with chromosome numbers reported between 28 and 99. As ~ 30% of the cells had modal chromosome numbers of 40 [14] it must be suggested that since that time a stabilization of the karyotype by tetraploidization took place. However, structurally rearranged chromosomes were not duplicated, as observed in other tetraploid BC cell lines [1]. For observed copy number alterations gain of copy numbers was observed for MYC and loss of heterozygosity for tumor suppressor genes MSH2, PTEN and BRCA2 were determined here.

Overall, murine cell line JC can has here been genetically characterized and it could be shown to be suited
Fig. 2 aCGH-results and copy number variations detected in cell line JC are summarized here with respect to a diploid-basic karyotype. Gains are shown as green bars and losses are red, and breaks are registered as arrows. a Imbalances found in the cell line depicted along a murine chromosome set. b Results translated and projected along the human chromosome set.
Table 1 Oncogenes and tumor suppressor genes (TSG), related to human BC [20, 21] and their involvement in gains or loss of copy numbers in JC cell line

Oncogenes and TSGs	Gene loci in human	JC
NRAS	1p13~22	no CNV
MSH2	2p22	loss
RAF1	3p25	no CNV
RARβ2	3p24	no CNV
MLH1	3p21	no CNV
APC	5q21	no CNV
MYB	6q22-q23	loss
IGFII-R	6q26	no CNV
MYC	8q24	gain
CDKN2A (p16/INK4)	9p21	no CNV
PTEN	10q23	loss
HRAS	11p15.5	loss
FGFR3	11q13	loss
CCND1	11q13	loss
ATM	11q22	no CNV
CDKN1B (p27kip1)	12p13	no CNV
KRAS2	12p12.1	no CNV
BRCA2	13q12	loss
Rb1	13q14	no CNV
CDH1 (E-cadherin)	16q22	no CNV
TP53 (p53)	17p13	no CNV
BRCA1	17q21	no CNV
ERBB2	17q21	no CNV
SERPINB5 (maspin)	18q21	loss
STK11 (LKB1)	19p13	loss
SUM of concordance in CNVs of potentially affected regions	10/25	

CNV copy number variant

Table 2 Breakpoints in JC compared to the observed acquired breaks in human BCs according to the literature [7, 20–32]: Concordances with human breakpoints are highlighted in bold

Breakpoint acc. to human genome	Human BC	JC
1p33	+	–
1q25.3	+	–
2p23.3	–	–
3p12.3	+	–
4p12	–	–
4q26	+	–
4q31.23	+	–
4q32.2	–	–
5p14.2	+	+
5q13.2	+	+
5q14.3	+	+
6q25.2	–	–
7p14.1	–	+
7q31.1	–	–
7q36.2	–	–
8q23.3	+	+
8q24.22	+	+
9p24.2	+	–
9p21	+	–
10p11.21	+	–
10q25.1	–	–
11p15.5	+	–
12q12.1	+	+
12q24.31	+	–
13q21.2	+	–
14q32	+	–
16p12.3	–	–
17q21	+	–
Xp22.2	–	–
Xq23.2	–	–
SUM of concordance	17/30	
as a model for BC of luminal B type, basal-like tumor. It seems to be not suited as luminal A type BC model.

Supplementary information
The online version contains supplementary material available https://doi.org/10.1186/s13039-020-00524-z.

Table 3 Copy number alterations associated with molecular subtypes of human BC, according to [32], with the copy number variants (CNVs) in cell lines JC

DNA changes	In BC subtypes	Human BC	JC
HER2+/ERBB2	HER2+/ERBB2		
17q11.1→12	gain	no CNV	
17q21.3→23.2	gain	gain but ERBB2 is not included	
SUM of concordance	0/2		
Basal-like tumors			
4p15.31	loss	loss	
5q13.2→13.2	loss	gain	
5q33.1	loss	loss	
6p12.3	gain	no CNV	
6p21.1→23	gain		
8q24.21→24.22	gain	gain	
10p12.33→14	gain	loss	
10q23.33	loss	loss	
12q13.13	loss	gain	
12q13.3	loss	loss	
15q15.1	loss	no CNV	
15q21.1	loss	no CNV	
SUM of concordance	6/12		

Luminal A

DNA changes	In BC subtypes	Human BC	JC
1q21.3	gain	no CNV	
1q44	loss		
16p13.13	gain	no CNV	
16p13.12	gain	loss	
16q11.2→13	loss	no CNV	
16q22.1→24.1	loss	no CNV	
SUM of concordance	0/6		

Luminal B

DNA changes	In BC subtypes	Human BC	JC
1p31.1	loss	loss	
8p21.2	loss	loss	
17q23.2	gain		
SUM of concordance	2/3		

Concordances with human CNVs are highlighted in bold

CNV copy number variant

as a model for BC of luminal B type, basal-like tumor. It seems to be not suited as luminal A type BC model.

References
1. Azawi S, Liehr T, Rincic M, Manferrari M. Molecular cytogenomic characterization of the murine breast cancer cell lines C-127I, EMT6/P and TA3 Hauschka. Int J Mol Sci. 2020;21(13):4716. https://doi.org/10.3390/ijms21134716.
2. Shah R, Rosso K, Nathanson SD. Pathogenesis, prevention, diagnosis and treatment of breast cancer. World J Clin Oncol. 2014;5(3):283–98. https://doi.org/10.5306/wjco.v5.i3.283.
3. Sun YS, Zhao Z, Yang ZN, Xu F, Lu HJ, Zhu ZY, Shi W, Jiang J, Yao PP, Zhu HP. Risk factors and prevention of breast cancer. Int J Biol Sci. 2017;13(11):1387–97. https://doi.org/10.7150/ijbs.21635.
4. Januškevičienė I, Petrikaitė V. Heterogeneity of breast cancer: the importance of interaction between different tumor cell populations. Life Sci. 2019;239:117009. https://doi.org/10.1016/j.lfs.2019.117009.
5. Rouzier R, Perou CM, Symmans WF, Ibrahim N, Cristofanilli M, Anderson K, Hess KR, Stem J, Ayers M, Wagner P, Morandi P, Fan C, Rabiu I, Ross JS, Hortobagyi GN, Pusztai L. Breast cancer molecular subtypes respond differentially to preoperative chemotherapy. Clin Cancer Res. 2005;11(16):5678–85. https://doi.org/10.1158/1078-0432.CCR-04-2421.
6. Feng Y, Spezia M, Huang S, Yuan C, Ceng Z, Zhang L, Ji J, Liu W, Huang B, Luo W, Liu B, Lei Y, Du S, Vuppulapati A, Luu HH, Haydon RC, He TC, Ren G. Breast cancer development and progression: risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis. 2018;5(2):77→106. https://doi.org/10.1016/j.gendis.2018.05.001.
7. Kikuchi-Koike R, Nagasaki K, Tsuda H, Ishii Y, Sakamoto M, Kikuchi Y, Fukui S, Miyagawa Y, Hiraike H, Kobayashi T, Kinoshita T, Kanai Y, Shibata T, Imoto I, Inazawa J, Matsubara O, Ayabe T. Array comparative genomic hybridization analysis discloses chromosome copy number alterations as indicators of patient outcome in lymph node negative breast cancer. BMC Cancer. 2019;19(1):521. https://doi.org/10.1186/s12885-019-5737-7.

8. Yersal O, Barutca S. Biological subtypes of breast cancer: prognostic and therapeutic implications. World J Oncol. 2014;5(3):412–24. https://doi.org/10.5306/wjco.v5.i3.412.

9. Raihan J, Arnal J, Yang YK, Esah Z, Othman F, Ideris A. Regression of solid breast tumours in mice by Newcastle disease virus is associated with production of apoptosis related-cytokines. BMC Cancer. 2019;19(1):315. https://doi.org/10.1186/s12885-019-5516-5.

10. Jones RA, Moorehead RA. Integrative analysis of copy number and gene expression data identifies potential oncogenic drivers that promote mammary tumor recurrence. Genes Chromosom Cancer. 2019;58(6):381–91. https://doi.org/10.1002/gcc.22729.

11. Osborne C, Wilson P, Tripathy D. Oncogenes and tumor suppressor genes in breast cancer: potential diagnostic and therapeutic applications. Oncologist. 2004;9(4):361–77. https://doi.org/10.1634/theoncol.9-4-361.

12. Wronski A, Arendt LM, Kuperwasser C. Humanization of the mouse mammary gland model. Methods Mol Biol. 2015;1293:173–86. https://doi.org/10.1007/978-1-4939-2519-3_10.

13. Capone PM, Kadohama N, Chiu TM. Immunotherapy in a spontaneously developed murine mammary carcinoma with syngeneic monoclonal antibody. Cancer Immunol Immunother. 1987;25(2):93–9. https://doi.org/10.1007/BF00199947.

14. Hall JM, Zuppan PJ, Anderson LA, Huey B, Carter C, King MC. Oncogenes and therapy of solid breast tumours in mice by Newcastle disease virus is associated with production of apoptosis related-cytokines. BMC Cancer. 2019;19(1):521. https://doi.org/10.1186/s12885-019-5737-7.

15. Leibiger C, Kosyakova N, Mkrtchyan H, Glei M, Trifonov V, Liehr T. First molecular cytogenetic characterization of murine malignant mesothelioma cell line AE17 and in silico translation to the human genome. Curr Bioinform. 2017;12(1):11–8.

16. Rhode H, Liehr T, Kosyakova N, Rincic M, Azawi SS. Molecular cytogenetic characterization of two murine colorectal cancer cell lines. OBIM Genet. 2018;7(23):1803037. https://doi.org/10.21926/obim.genet.1803037.

17. Liehr T, Starke H, Heller A, Kosyakova N, Mraek S, Gross K, Mas C, Steinhaeuer U, Hunstig F, Fickelscher J, Kuechler A, Trifonov V, Romanenko SA, Weese A. Multicolor fluorescence in situ hybridization (FISH) applied to FISH-band cytogenome. Res. 2006;114(4–3):240–4. https://doi.org/10.1016/S0890-9022(06)80094-2.

18. Leibiger C, Kosyakova N, Mkrtchyan H, Glei M, Trifonov V, Liehr T. First molecular cytogenetic high resolution characterization of the NIH 3T3 cell line by multicolor banding. J Histochim Cytochom. 2013;61(4):306–12. https://doi.org/10.1369/00212551341376868.

19. Hall JM, Zuppan PJ, Anderson LA, Huey B, Carter C, King MC. Oncogenes and human breast cancer. Am J Hum Genet. 1989;44(4):577–84.

20. Oliveira AM, Ross JS, Fletcher JA. Tumor suppressor genes in breast cancer: the gatekeepers and the caretakers. Am J Clin Pathol. 2005;124:516–28. https://doi.org/10.1309/5X9W3L8LUI445WQGQR.

21. Lebok P, Roming M, Kluth K, Coopzen D, Taskin B, Hussey K, Lebeau A, Witzel I, Wolber L, Geist S, Paluchowski P, Wilke C, Heilkenkötter U, Müller V, Schämmel B, Simon R, Sauter G, Terracciano L, Krech RH, von der Assen A, Burandt E. P16 overexpression and p92 deletion are linked to unfavorable tumor phenotypes in breast cancer. Oncotarget. 2016;7(49):81322–31. https://doi.org/10.18632/oncotarget.13227.

22. Lawrenson K, Kar S, McCue C, Kuenkenbaeker K, Michalidou K, Tyer J, Beesley J, Rasmus SS, Li Q, Delgado MK, Lee J, Attwood M, Andrusli K, Andrusli L, Anton-Culver H, Arndt V, Kuchenbaecker KB, Soucy P, Beesley J, Chen X, Wang X, Kirchhoff T, McCugoff L, Barrowdale D, Lee A, Healey S, Sinilnikova OM, Andrusli L, OCGR, Ozcelik H, Mulligan AM, Thomassen M, Gerdes AM, Jensen A, John EM, Hamon A, Rendocas S, Marring S, Sawyer EJ, Schildkraut JM, Schmidt MK, Schmutzler RK, Sellers EM, Pylkas K, Radice P, Rantala J,礦 R, Rennert G, Rhein K, Risch HA, Rodriguez G, Rossing MA, Rudolph A, Salvesen HS, Sangrajrang S, Sawyer EJ, Schildkraut JM, Schmidt MK, Schmutzler RK, Sellers EM, Seynaeve C, Shah M, Shen CY, Shuo XQ, Singh W, Singer CE, Sinilnikova OM, Slager S, Song H, Soucy P, Southey MC, Stemnak-Armstal M, Stoppa-Lyonett D, Sutter C, Swedlow A, Tachtasou C, Teixeira MR, Teo SH, Terry K, Terry MB, Thomsen M, Bittigelli MG, Thimorova L, Tognazzo S, Toland AE, Tomlinson I, Torres D, Truong T, Tseng C, Tung N, Tworoger SS, Vachon C, van den Ouweland AM, van Doorn HC, van Rensburg EJ, Van't Veer LJ, Vanderschueren A, Verghote I, Vidal J, Wang Q, Wang-Gohike S, Wetzel JN, Wintzen N, Whittemore AS, Wilders H, Winquist R, Wu AH, Yannoukakos D, Young Y, Zheng C, Zheng Y, Khanna K, Simard J, Monteiro AN, French JD, Couch FJ, Freedman ML, Easton DF, Dunning AM, Pharoah PD, Edwards SL, Chenex-Trench G, Antoniucci AC, Gayther SA. Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus. Nat Commun. 2016;7:12657. https://doi.org/10.1038/ncomms12675.

23. Cheng TH, Thompson DJ, O'Mara TA, Painter JN, Glubb DM, Flach S, Lewis A, French JD, Freeman-Mills L, Church D, Gorman M, Martin L. National Study of Endometrial Cancer Genetics Group (NSECIG). Hodgson S, Webb PM, Australian National Endometrial Cancer Study Group (ANECG). Anna J, Holliday EG, McEvoy M, Scott RJ, Henders AK, Martin NG, Montgomery GK, Nyholt DR, Ahmed S, Healey S, Shah M, Denny L, Fischbach PA, Beckmann MW, Hein A, Eckl AB, Hall P, Czene K, Darabi H, Li J, Dort K, Durst M, Hillermans P, Runnebaum I, Amant F, Schrauwse S, Zhao H, Lambrerts D, Debreue M, Dowdy SC, Godle WS, Friley BL, Winham SJ, Njalstad TS, Salvesen HB, Trovik J, Werner HM, Ashton K, Otton G, Proietto J, Yu T, Mints M, Tham E, RENDOCAS, Jun Li M, Yip SH, Wang J, Bolla MK, Michalidou K, Wang Q, Tyer J, Munlop D, Houlston R, Palles C, Hoppler JL, ACGIS Group, Peto J, Swedlow A, Burwinkel B, Brenner H, Heiden S, Brauch H, Lindblom A, Chang-Chuang E, Couch FJ, Giles GG, Kristensen VN, Cox A, Cunningham JM, Pharoah PD, Dunning AM, Edwards SL, Easton DF, Tomlinson I, Spurdel AB. Five endometrial cancer risk loci identified through genome-wide association analysis. Nat Genet. 2016;48(6):667–74. https://doi.org/10.1038/ng.3486.

24. Couch FJ, Gaudet MM, Antoniou AC, Ramus SJ, Kuchenbaecker KB, Soucy P, Beesley J, Chen X, Wang X, Kirchhoff T, McCugoff L, Barrowdale D, Lee A, Healey S, Sinilnikova OM, Andrusli L, OCGR, Ozcelik H, Mulligan AM, Thomassen M, Gerdes AM, Jensen A, John EM, From Wilenfeldt A, Barbary-Bustina G, Loman N, Soller M, Ercenon H, Karlsson P, SW-BRCA, Nathanson KL, Rebeck TB, Domchek SM, Jakubowska A, Lubinski J, Nsuscany G, Kuzda K, Zitek SK, Healey S, Huike S, Tyer J, Brolden M, Cicigliani A, Bokser O, Azawi S, Curran D, Teja M, Benitez J, Hamann U, Uhergitzer FB, HEBON, van Os TA, van Leeuw EF, Hejmen-Heiboer HE, Wijnen J, Blok M, Kets M, Hoogendo, Oldenburg
