Association between Conventional Oxygen Therapy and Characteristics and Outcomes of Adult Patients in a Surgical Intensive Care Unit

Lubov Stroh
Heidelberg University Hospital

Dennis Nurjadi
Heidelberg University Hospital

Florian Uhle
Heidelberg University Hospital

Thomas Bruckner
Heidelberg University Hospital

Markus A. Weigand
Heidelberg University Hospital

Mascha O. Fiedler (Mascha.Fiedler@med.uni-heidelberg.de)
Heidelberg University Hospital

Research Article

Keywords: hyperoxia, supraphysiological oxygenation, mortality, infections, new organ dysfunctions

Posted Date: August 27th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-722835/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Oxygen therapy is often used in emergency departments and intensive care units. The prevention of hypoxia with associated complications remains the main target, but a high-concentrated usual oxygen therapy seems not to be the best strategy. We hypothesize that physiological pressure of arterial oxygen (paO_2) reduces mortality, onset of new infections and organ dysfunctions in critically ill patients compared with supraphysiological paO_2.

Methods: In this retrospective exploratory cohort study we included 112 critically ill adult patients treated in a surgical critical care unit. All patients were assigned to two groups defined a priori based on paO_2 mean values measured in the first 24 hours of mechanical ventilation: first group paO_2 75-100 mmHg (n=43), second group patients with $paO_2 > 100$mmHg (n=69). Primary outcome was the cumulative survival, defined from the day of admission in the intensive care unit (ICU) until death or end of the hospital stay. Secondary outcome was the incidence of infections and new organ dysfunctions in both groups.

Results: The baseline characteristics like age, body mass index (BMI), lactate and severity of disease scores were similar in both groups. A total of 27 of 69 patients (39,1%) in the group $paO_2 > 100$mmHg and 12 of 43 patients (27,9%) in the group paO_2 75-100mmHg died during their ICU stay or further hospital stay ($p=0.54$). There were no statistically significant differences in the incidence of new infections and new organ dysfunctions between the two groups. Positive end expiratory pressure (PEEP) and fraction of inspired oxygen (FiO_2) were in the group of patients with $paO_2 > 100$mmHg significantly lower 8,4 mbar vs. 9,5 mbar ($p=0.03$).

Conclusions: There was no significant increase in overall mortality or new onset of infections and organ dysfunctions in critically ill adult ICU patients requiring oxygen therapy with supraphysiological paO_2 (>100 mmHg) compared to patients with physiological paO_2 (75-100 mmHg). Further studies are needed to define the optimal paO_2 parameter.

Background

Oxygen therapy is one of the primary supportive care for patients with or at risk of developing hypoxic respiratory failure admitted to the emergency department and intensive care units. Severe illness and underlying conditions can lead to low oxygen saturation in the blood, posing a risk for low tissue oxygen levels (hypoxia), ultimately leading to organ dysfunction and failure. To prevent or treat hypoxia, critically ill patients are given oxygen via oxygen masks or during mechanical ventilation in intubated patients. Although prolonged liberal oxygen therapy was often performed to protect patients from possible organ damage caused by hypoxia, the opinion regarding oxygen therapy in the last two decades has fundamentally changed3,5. Numerous studies demonstrated that hyperoxia (too much oxygen) can also be harmful and is associated with unfavourable outcomes.
The prevention of hypoxia and its associated complications like hypoxic brain damage further remains the main focus, but a high-concentrated liberal oxygen therapy may not be the best strategy. The minimum value for partial pressure of oxygen before organ functions are jeopardized, thus harmful for the patient, is not clearly defined. Several studies showed that supraphysiological oxygenation with arterial pressure of oxygen (\(\text{paO}_2\)) of more than 75-100 mmHg is associated with negative effects on the central nervous system (headache, dizziness, neuropathy), on the cardiovascular system (lower cardiac output, coronary blood flow\(^{10}\)), and may lead to hyperoxic vasoconstriction\(^{11}\) on pulmonary system with atelectasis. Furthermore, the use of high inspiratory oxygen fraction causes increased oxidative stress due to radical oxygen species (ROS)\(^{2}\). The lungs are the most affected organ by oxygen toxicity. In an older study from 1985 lung damage in an intubated mouse was observed after oxygen therapy with 100% oxygen concentration after 24 hours\(^{15}\). Some studies report increased risk of mortality in critically ill patients associated with hyperoxia\(^{5-7}\).

In the presented retrospective, exploratory, monocentric study we analysed clinical outcome of intubated and mechanically ventilated adults admitted to a surgical intensive care unit. The aim of our study was to investigate supraphysiologic oxygenation, defined as arterial partial pressure of oxygen (\(\text{paO}_2\)) more than 100 mmHg per 24 hours, increases mortality. Further, the incidence of organ dysfunction or failures and infections was investigated.

Methods

Study design

This retrospective exploratory cohort study was approved by the Medical Ethics Commission of the Medical Faculty of Heidelberg University, Heidelberg, Germany (S-357/2020) and conducted in accordance to ethical standards of the latest version of the Helsinki Declaration (2013)\(^{17}\).

Participants

All mechanically ventilated adult patients (\(\geq 18\) years) with \(\geq 24\) hours hospital stay was screened for inclusion into the study. We excluded non-intubated patients, patients with acute respiratory distress syndrome (ARDS, according to Berlin definition\(^{16}\)) and/or extracorporeal membrane oxygenation (ECMO), patients with severe chronic obstructive pulmonary disease (COPD GOLD IV), brain death, neutropenia and pregnant women. To avoid potential bias, re-admissions to ICU within the same hospitalization were excluded.

Overall, we enrolled 112 patients undergoing elective or emergency surgery, liver transplantation and patients with sepsis or septic shock, post-surgical complications, and haemorrhage that required an admission to the ICU. The patients in the cohort were assigned to two groups according to the \(\text{paO}_2\) mean values: group 1 with \(\text{paO}_2 \leq 100\) mmHg, group 2 with \(\text{paO}_2 > 100\) mmHg. We analysed and calculated
mean values of all paO_2 values from the ABGs (arterial blood gases) measured in the first 24 hours of mechanical ventilation for each patient. Depending on respiratory insufficiency or other causes between 9 and 21 ABG- tests were performed in 24 hours for each patient (figure 1).

Variables

In this study we used data of patients from I-SH/ i.s.h.med (hospital electronic patient record, SAP) admitted to the surgical ICU of Heidelberg University Hospital between 1st January and 31st December 2018 (12 months). We searched systematically for all relevant DRGs (German Diagnosis Related Groups) that were recorded throughout the patient’s stay in the ICU and that may be influenced by hyperoxia. Further, we compared the values of common ICU scoring systems, reflecting the severity of disease: sequential organ failure assessment (SOFA), Acute Physiology and Chronic Health Evaluation II (APACHE) and Simplified Acute Physiology Score - II (SAPS II) at admission and maximal value during the ICU stay. The inspired oxygen fraction (FiO_2), paO_2 from ABGs, positive end-expiratory pressure (PEEP), lactate averages were defined as the mean value of all measurements within the first 24 hours after admission. Moreover, patients’ data included age, body mass index (BMI) and length of stay (LOS) in the ICU. No patient received nitrous oxide.

Primary endpoint of this study was the cumulative survival, defined from the day of admission in the ICU till death or end of the hospital stay. Secondary outcomes were the incidence of infections and new organ dysfunctions in both groups.

Statistical methods

A comprehensive descriptive statistical analysis was conducted with mean, standard deviation, minimum, median, maximum of all continuous data and scores at admission and maximal during the stay. Binary data we reported with absolute and relative frequencies. Baseline demographics, prognostic variables, scores and ventilation modalities were compared between the groups using chi-square and Wilcoxon tests, as appropriate. Cumulative probabilities of survival were plotted using the Kaplan-Meier method and compared using log-rank test. Statistical significance was indicated by p-value (Pearson Chi-Square test and two-sided Wilcoxon Test) below 0.05 for baseline characteristics of patients and the secondary outcomes. SPSS-Software (IBM ® SPSS ® Statistics Version 23) and Microsoft Excel were used for the statistical data analysis.

Results

We enrolled adult patients treated on the surgical ICU of Heidelberg University Hospital from January 2018 to December 2018. 189 patients were identified as potential study participants. A total of 112 met our inclusion criteria and were eligible for the analysis (figure 1). All patients were assigned to two groups: the first group consists of patients with paO_2 75-100 mmHg (n=43), and the second group
patients with $\text{paO}_2 > 100\text{mmHg}$ (n=69). The maximum value for paO_2 was 168 mmHg in two patients of group 2.

Cumulative survival

A total of 27 of 69 patients (39, 1%) in the group $\text{paO}_2 > 100\text{mmHg}$ and 12 of 43 patients (27, 9%) in the group $\text{paO}_2 75-100\text{mmHg}$ died during their ICU stay or further hospital stay. Higher paO_2 was not associated with increased overall mortality. In the Kaplan-Meier survival analysis provided in figure 2 no statistically significant differences between groups were observed in survival estimates ($p = 0.5428$).

Secondary outcomes

There were no statistically significant between-group differences for the incidence of new infections and new organ dysfunctions (DRG Codes) occurred during the ICU stay as shown in table 1. In patients with hemorrhage ($p=0.53$) and polytrauma ($p=0.15$) as a cause for the admission to the ICU more patients received oxygen therapy resulting in $\text{paO}_2 > 100 \text{mmHg}$.

Both study groups had similar age, BMI, lactate, and severity of disease scores at admission and during their ICU stay, shown in baseline characteristics in table 2. Of note, PEEP and FiO$_2$ were in the group of patients with $\text{paO}_2 > 100\text{mmHg}$ significantly lower ($p=0.03$ and $p=0.01$). The patient’s group with $\text{paO}_2 > 100\text{mmHg}$ spent an average 1.1 day longer in the ICU ($p=0.59$).

Table 1

Table 1
DRG – Codes and causes of admission to ICU.
DRG-Code

Atelectasis, n (%)
Pleural effusion, n (%)
Bacterial pneumonia, n (%)
Aspergillosis, n (%)
Acute respiratory failure with hypoxia, n (%)
Sepsis/Septic shock, n (%)
Pneumonia due to sepsis, n (%)
Pyothorax, n (%)
Aspiration pneumonitis, n (%)
Non-healing surgical wound, n (%)
Anastomotic insufficiency, n (%)
Herpes simplex virus pneumonia, n (%)
Acute kidney failure, n (%)
Acute liver failure, n (%)
Delirium, n (%)
Prolonged weaning, n (%)
STEMI/NSTEMI, n (%)
Arrhythmia, n (%)
CIP/CIM, n (%)
MODS, n (%)
Cause of admission to ICU
Emergency procedure, n (%)
Elective surgery, n (%)
Polytrauma, n (%)
Liver transplant, n (%)
Complications after surgery, n (%)
Hemorrhage, n (%)

Sepsis at admission, n (%)

ICU= intensive care unit. DRG = German Diagnosis Related Groups. paO2= partial pressure of oxygen. STEMI/ NSTEMI = ST- segment elevation myocardial infarction/ Non-ST segment elevation myocardial infarction. CIP/CIM=Critical-Illness Polyneuropathy/ Critical-Illness Myopathy. MODS= Multi Organ Dysfunction Syndrome. * Pearson Chi-Square test, Pr >= ChiSq (Exact).

Table 2

Baseline characteristics and clinical parameters of study patients.
Variable	\(\text{paO}_2 \leq 100 \text{mmHg}, n=43 \)	\(\text{paO}_2 > 100 \text{mmHg}, n=69 \)	P-value, Wilcoxon Test (Two-sided)				
	Mean (SD)	Median	Range (min-max)	Mean (SD)	Median	Range (min-max)	
Age	68.1(12.2)	67	31-89	62.8(13.6)	66	23-83	0.09085
BMI	29.5(7.0)	27	20-54	27.5(6.9)	27	17-55.6	0.15102
\(\text{FiO}_2 \)	45.9(10.3)	46	30-78	40.6(10.4)	38	28-82	0.00292
\(\text{PaO}_2 \)	93.3(5.7)	96	79-100	118.3(16.4)	113	101-168	-
AdmSAPSII	64.9(20.3)	69	17-106	65.4(19.1)	71	19-94	0.60567
MaxSAPSII	76.4(15.0)	75	45-110	78.3(14.3)	79.5	38-105	0.22591
SOFA	10.6(3.7)	10	4-18	10.8(3.3)	11	2-17	0.56322
MaxSOFA	12.3(3.2)	12	6-19	12.7(2.9)	13	5-18	0.38261
APACHE	29.4(7.9)	29	8-48	30.0(6.7)	31	12-43	0.61746
MaxAPACHE	34.3(6.6)	35	22-48	35.1(5.3)	36	12-44	0.50221
Lactate	28.3(31.8)	14.4	7.7-171.6	21.6(17.6)	14.9	6.8-93.4	0.53771
PEEP	9.5(2.5)	9	5-16	8.4(2.4)	8	5-14	0.02737
LOS	7.9(10.1)	4	1-54	9.1(12.3)	5	1-60	0.59737

SOFA = Sequential organ failure assessment. APACHE= Acute Physiology and Chronic Health Evaluation. SAPS-II = Simplified Acute Physiology Score-II. BMI= Body mass index. PEEP= Positive end expiratory pressure. LOS = Length of stay. \(\text{FiO}_2 \)= Fraction of inspired oxygen. \(\text{PaO}_2 \)= Partial pressure of oxygen. Positive end expiratory pressure. LOS = Length of stay. \(\text{FiO}_2 \)= Fraction of inspired oxygen. \(\text{PaO}_2 \)= Partial pressure of oxygen.

Discussion

In this retrospective exploratory cohort study, we compared patients with physiological partial pressure of oxygen (\(\text{paO}_2 \) 75–100 mmHg) and patients with supraphysiological oxygenation with \(\text{paO}_2 \) over 100mmHg. Interestingly, the highest value in the second group was 168 mmHg in two patients, which is comparably lower than \(\text{paO}_2 \) values in previous studies, in which hyperoxia was defined as \(\text{paO}_2 \) of 300 mmHg or greater and was associated either with higher mortality\(^9\) or with worse neurological outcome\(^12\). This means that in our patient cohort, no excessive oxygenation occurred. Our results are consistent with
the current systematic review with meta-analysis and trial sequential analysis that found neither beneficial nor harmful effects of higher versus lower oxygenation strategies. Similarly, the investigators found no evidence that higher oxygenation versus lower oxygenation had a profound effect on the all-cause mortality¹.

To date, there is no consensus or definitions for cut-off values, as well as the lower and upper limit for partial pressure of oxygen, which differentiate beneficial and harmful effects for the patient. In our patient cohort with relatively small differences in paO₂ values (79–168 mmHg), it was not possible to define this cut-off for paO₂. Our results differ from those in a previous single-center randomized clinical trial (RCT) by Girardis et al.⁵ In that trial, lower mortality was observed in patients receiving conservative oxygen therapy compared to patients with usual oxygen therapy. The results of this trial could be influenced by initial baseline imbalances between the study groups, such as age, severity of illness, and organ failures. Further, the study was stopped prematurely after increased mortality in one of the study groups in the interim analysis was observed, which may have resulted in an effect overestimation ⁴.

Patients with haemorrhage and polytrauma as admission cause were over-represented in the paO₂ > 100 mmHg group (28% vs 35% p = 0.53 and 2% vs 10% p = 0.15, respectively). These patients often receive oxygen therapy, since clinicians tend to perform oxygen therapy more aggressively in such critical, dynamical situations with potential increased hypoxia risk aggravated by blood loss. Thus, providing a potential explanation for this discrepancy.

Our evaluation certainly presents some limitations. First, this is a single-center study and the patient cohort with 112 enrolled patients is relatively small. In order to define a cut-off for partial pressure of oxygen and to provide more precise and robust estimates of treatment effects, more patients needs to be enrolled to achieve an adequate power of analysis. However, the two study groups were well-balanced regarding the baseline characteristics and a detailed analysis was performed in respect to the interaction between all in the intensive care medicine relevant DRG-Codes like sepsis, septic shock, organ transplantation, delirium, prolonged weaning etc. Second, in our study, we investigated the mortality during the hospital stay without follow-up like in other studies, so that mortality in both groups may be underestimated ¹³,⁸.

Nevertheless, our data implied that paO₂ levels of up to 168 mmHg were not associated with a worse clinical outcome and that supraphysiological paO₂ levels can be tolerated without significant negative effects on the patients, which warrants further scrutiny.

Conclusions

In this study we did not observe any significant differences in mortality nor in new onset of infections and organ dysfunctions between both groups. These results suggest that paO₂ levels between 70 and 170 mmHg could be a reference point in the management of oxygen therapy to avoid excessive supraphysiological potentially toxic paO₂ values and dangerous hypoxia at the same time. Further
studies with larger sample size are needed to clarify the risk-benefit ratio of pursuing a more conservative oxygen treatment strategy in critically ill patients.

Abbreviations

- \(\text{PaO}_2 \) partial pressure of oxygen
- \(\text{FiO}_2 \) fraction of inspired oxygen
- **PEEP** Positive End Expiratory Pressure
- **ABG** Arterial Blood Gas test
- **SOFA** Sequential Organ Failure Assessment
- **APACHE** Acute Physiology and Chronic Health Evaluation
- **SAPS-II** Simplified Acute Physiologiy Score II
- **ARDS** Acute Respiratory Distress Syndrome
- **ECMO** Extracorporeal Membrane Oxygenation
- **COPD** Chronic Obstructive Pulmonary Disease
- **LOS** Length of Stay
- **ICU** Intensive Care Unit
- **BMI** Body Mass Index
- **DRG** German Diagnosis Related Groups
- **STEMI** ST-segment Elevation Myocardial Infarction
- **NSTEMI** Non-ST-segment Elevation Myocardial Infarction

Declarations

Ethics approval and consent to participate

This retrospective exploratory cohort study was approved by Medical Ethics Commission of the Medical Faculty of Heidelberg University, Heidelberg, Germany (Votum S-357/2020) and conducted in accordance with ethical standards of the latest version of the Helsinki Declaration (2013)\(^{17}\).
Consent for publication

Requirement for written informed consent and consent for publication was waived by the Ethics Commission.

Availability of data and materials

All data are stored for at least 10 years. The datasets analysed during the current study are available from the corresponding author on reasonable request.

Competing interests

The authors declare that they have no competing interests.

Funding

The participating institutions obtained no public or private funding for this work.

Authors' contributions

LS helped design the work, analysed and interpreted the data, was a major contributor in writing the manuscript, and critically reviewed and revised the final manuscript. DN and FU helped design the work and critically reviewed and revised the final manuscript. TB helped design the work, analysed the data, critically reviewed and revised the final manuscript. MW helped design the work, critically reviewed and revised the final manuscript. MOF helped design the work, analysed and interpreted the data, drafted the manuscript, and critically reviewed and revised the final manuscript.

Acknowledgements

We thank Sabine Haag for her excellent technical support.

References

1. Barbateskovic, Marija, Olav L. Schjørring, Sara Russo Krauss, Christian S. Meyhoff, Janus C. Jakobsen, Bodil S. Rasmussen, Anders Perner, and Jørn Wetterslev. "Higher vs Lower Oxygenation Strategies in Acutely Ill Adults."Chest 159 no. 1 (2021): 154–173. doi: 10.1016/j.chest.2020.07.015
2. Brueckl C, Kaestle S, Kerem A. et al. Hyperoxia-induced reactive oxygen species formation in pulmonary capillary endothelial cells in situ. Am J Respir Cell Mol Biol. 2006; 34(4): 453–463.
3. Chu DK et al. Mortality and morbidity in acutely ill adults treated with liberal versus conservative oxygen therapy (IOTA): a systematic review and meta-analysis. Lancet. 2018 Apr 28;391(10131):1693–1705. doi: 10.1016/S0140-6736(18)30479-3.

4. Ferguson ND. Oxygen in the ICU: Too Much of a Good Thing? JAMA. 2016;316(15):1553–1554. doi:10.1001/jama.2016.13800

5. Girardis M et al. Effect of Conservative vs Conventional Oxygen Therapy on Mortality Among Patients in an Intensive Care Unit: The Oxygen-ICU Randomized Clinical Trial. JAMA. 2016 Oct 18;316(15):1583–1589.

6. Helmerhorst HJ et al. Metrics of Arterial Hyperoxia and Associated Outcomes in Critical Care. Crit Care Med. 2017 Feb;45(2):187–195.

7. Helmerhorst, H J. F. et al. Association Between Arterial Hyperoxia and Outcome in Subsets of Critical Illness, Critical Care Medicine: July 2015 - Volume 43 - Issue 7 - p 1508–1519 doi: 10.1097/CCM.0000000000000998

8. ICU-ROX Investigators and the Australian and New Zealand Intensive Care Society Clinical Trials Group, Mackle D et al. Conservative Oxygen Therapy during Mechanical Ventilation in the ICU. N Engl J Med. 2020 Mar 12;382(11):989–998. doi: 10.1056/NEJMoa1903297.

9. Kilgannon JH, Jones AE, Shapiro NI, Angelos MG, Milcarek B, Hunter K, Parrillo JE, Trzeciak S; Emergency Medicine Shock Research Network (EMShockNet) Investigators. Association between arterial hyperoxia following resuscitation from cardiac arrest and in-hospital mortality. JAMA. 2010 Jun 2;303(21):2165-71. doi: 10.1001/jama.2010.707. PMID: 20516417.

10. McNulty PH et al. Effect of hyperoxia and vitamin C on coronary blood flow in patients with ischemic heart disease. J Appl Physiol (1985). 2007 May;102(5):2040-5.

11. Meyhoff CS Perioperative hyperoxia: why guidelines, research and clinical practice collide. Br J Anaesth. 2019 Mar;122(3):289–291

12. Roberts BW et al. Association Between Early Hyperoxia Exposure After Resuscitation from Cardiac Arrest and Neurological Disability: Prospective Multicenter Protocol-Directed Cohort Study. Circulation. 2018 May 15;137(20):2114–2124. doi: 10.1161/CIRCULATIONAHA.117.032054.

13. Schjørring OL et al. Lower or Higher Oxygenation Targets for Acute Hypoxemic Respiratory Failure. N Engl J Med. 2021 Jan 20. doi: 10.1056/NEJMoa2032510.

14. Siemieniuk RAC et al. Oxygen therapy for acutely ill medical patients: a clinical practice guideline. BMJ. 2018 Oct 24;363: k4169.

15. Smith LJ. Hyperoxic lung injury: biochemical, cellular, and morphologic characterization in the mouse. J Lab Clin Med. 1985 Sep; 106(3):269 – 78.

16. The ARDS Definition Task Force*. Acute Respiratory Distress Syndrome: The Berlin Definition. JAMA.2012;307(23): 2526–2533.doi:10.1001/jama.2012.5669

17. The World Medical Association (WMA) (2013) Declaration of Helsinki- Ethical Principles for Medical Research Involving Human Subjects. https: //www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-medical-research-involving-human-subjects/. Accessed 01 May 2020.
Patients enrolment in this analysis. ARDS = acute respiratory distress syndrome; ECMO = extracorporeal membrane oxygenation; paO2 = arterial partial pressure of oxygen. NIV = non-invasive ventilation.
Figure 2

Kaplan-Meier analysis of cumulative survival from group 1 PaO2 75-100 mmHg compared with patients from group 2 PaO2 >100 mmHg.