Morphological and molecular phylogenetic analyses reveal three species of Colletotrichum in Shandong province, China

Taichang Mu¹, Zhaoxue Zhang¹, Rongyu Liu¹, Shubin Liu¹, Zhuang Li¹, Xiuguo Zhang¹, Jiwen Xia¹

¹ Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, China

Corresponding author: Jiwen Xia (zhenjunxue@126.com)

Academic editor: Ajay Kumar Gautam | Received 29 September 2021 | Accepted 20 November 2021 | Published 8 December 2021

Citation: Mu T, Zhang Z, Liu R, Liu S, Li Z, Zhang X, Xia J (2021) Morphological and molecular phylogenetic analyses reveal three species of Colletotrichum in Shandong province, China. MycoKeys 85: 57–71. https://doi.org/10.3897/mycokeys.85.75944

Abstract
Colletotrichum has numerous host range and distribution. Its species are important plant pathogens, endophytes and saprobes. Colletotrichum can cause regular or irregular depressions and necrotic lesions in the epidermal tissues of plants. During this research Colletotrichum specimens were collected from Mengyin County, Shandong Province, China. A multi-locus phylogenetic analysis of ITS, GAPDH, CHS-1, ACT, TUB2, CAL and GS sequence data combined with morphology, revealed a new species and two known species, viz. C. mengyinense sp. nov., C. gloeosporioides and C. pandanicola, belonging to the C. gloeosporioides species complex. The new species is described and illustrated in this paper and compared with taxa in the C. gloeosporioides species complex.

Keywords
Colletotrichum, Glomerellaceae, multi-gene phylogeny, new species, taxonomy

Introduction

Colletotrichum species (Glomerellaceae, Glomerellales) is one of the ten economically most important fungal plant pathogens worldwide (Dean et al. 2012). It was first observed by Tode (1790), who divided it into Vermicularia. Corda (1831) established Colletotrichum based on the characteristic of the conidiomata with setae in Vermicularia.
Colletotrichum is based on the type species Colletotrichum lineola which was associated with a member of the Apiaceae (Jayawardena et al. 2017). The sexual morph belongs to Glomerella. The asexual morph is characterized by acervuli born in the skin of the host, often producing brown sharp setae, colorless or brown conidiophores with separate, conidia colorless, pseudomonas, cylindrical or crescent-shaped (Damm et al. 2009).

Currently, more than 900 epithets of Colletotrichum are listed in Index Fungorum (http://www.indexfungorum.org/; accessed 22 November 2021). Colletotrichum has been studied for more than 200 years and the classification of Colletotrichum has undergone major changes (Jayawardena et al. 2016). In order to clarify its complex nature, the species are classified into 14 species complexes (Bhunjun et al. 2021). Specifically, C. gloeosporioides has been considered as a complex species for a long time.

The name C. gloeosporioides was first proposed by Penzig based on Vermicularia gloeosporioides which was collected from Citrus in Italy (Weir et al. 2012). Early in the study of C. gloeosporioides species complex, taxonomic concepts used were based on apparent features such as morphological characters, host species, size and shape of conidia and appressoria, presence or absence of setae, aspect, color and growth rate in culture, whether or not the teleomorph develops, etc (Weir et al. 2012). Nonetheless, Sutton commented that “no progress in the systematics and identification of isolates belonging to this complex is likely to be made based on morphology alone”. Fortunately, with the development of molecular systematics, gene method is applied to taxonomy of Colletotrichum complexes. Multi-gene phylogeny analysis is of great significance to the study of the classification of C. gloeosporioides species complex and related concepts of species (Cannon et al. 2012; Damm et al. 2012; Weir et al. 2012).

The aim of this study was to explore the diversity of Colletotrichum species from symptomatic leaves and diseased fruit of plants in Shandong Province, China. We present a new species and two known species, C. mengyinense sp. nov., C. gloeosporioides and C. pandanicola based on phylogenetic data and morphology.

Materials and methods

Isolation and morphological studies

The samples were collected from Mengyin County, Shandong Province, China. The strains of Colletotrichum were isolated from symptomatic leaves of Rosa chinensis and diseased fruit of Juglans regia using single spore and tissue isolation methods (Chomnunti et al. 2014). The spore suspension was obtained and spread onto PDA plate and incubated for one day under the biochemical incubator. After germination, the spores were transferred to a new PDA plate to obtain pure culture. Additionally, the surface sterilized plant tissue isolation was used to obtain sterile isolates from the host plant. About 25 mm² tissue fragments were taken from the margin of tissue lesions and
surface sterilized by consecutively immersing in 75% ethanol solution for 60 s, 5% sodium hypochlorite solution for 30 s, and then rinsed in sterile distilled water for 60 s (Gao et al. 2013; Liu et al. 2015). The surface sterilized plant tissue was dried with sterilized paper and moved on the PDA plate (Cai et al. 2009). All the PDA plates were incubated at biochemical incubator at 25 °C for 3–4 days, then hyphae were picked out of the periphery of the colonies and inoculated on to new PDA plates.

Following 5–14 days of incubation, morphological characters were recorded (Cai et al. 2009). Photographs of the colonies were taken at 7 days and 14 days using a digital camera (Canon G7X). Micromorphological characters of colonies were observed using stereomicroscope (Olympus SZX10) and microscope (Olympus BX53), both fitted with high definition color digital cameras to photo document conidia and so on of fungal structures. All *Colletotrichum* strains were stored in 10% sterilized glycerin and sterile water at 4 °C for deep studies in the future. Every specimen was deposited in the Herbarium of the Department of Plant Pathology, Shandong Agricultural University (HSAUP). Living cultures were deposited in the Shandong Agricultural University Culture Collection (SAUCC). Taxonomic information of the new taxa was submitted to MycoBank (http://www.mycobank.org).

DNA extraction and amplification

Genomic DNA was extracted from *Colletotrichum* fungal mycelia grown on PDA after 5–7 days, using a modified cetyltrimethylammonium bromide (CTAB) buffer, and then it was incubated at 65 °C for 30 min with occasional gentle inverting (Guo et al. 2000). Gene sequences were obtained from seven genes loci including the internal transcribed spacer regions with intervening 5.8S nrRNA gene (ITS), partial glyceraldehyde-3-phosphate dehydrogenase gene (GAPDH), partial chitin synthase 1 gene (CHS-1), partial actin gene (ACT), partial beta-tubulin gene (TUB2), partial calmodulin gene (CAL) and partial glutamine synthetase gene (GS) were amplified and sequenced using primers pairs (Table 1).

PCR was performed using an Eppendorf Master Thermocycler (Hamburg, Germany). Amplification reactions were performed in a 25 μL reaction volume which contained 12.5 μL 2× Taq Plus Master Mix II (Vazyme, Nanjing, China), 1 μL of each forward and reverse primer (10 μM) (Tsingke, Qingdao, China), and 1 μL template genomic DNA in amplifier, and were adjusted with distilled deionized water to a total volume of 25 μL. PCR parameters were as follows: 94 °C for 5 min, followed by 35 cycles of denaturation at 94 °C for 30 s, annealing at a suitable temperature for 30 s, extension at 72 °C for 1 min and a final elongation step at 72 °C for 10 min. The annealing temperature for each gene was 52 °C for ITS and GS, 59 °C for CAL, 60 °C for GAPDH, 58 °C for ACT and CHS-1, 55 °C for TUB2. The PCR products were visualized on 1% agarose electrophoresis gel. Sequencing was conducted by the Tsingke Company Limited (Qingdao, China) bi-directionally. Consensus sequences were obtained using MEGA 7.0 (Kumar et al. 2016). All sequences generated in this study were deposited in GenBank (Table 2).
Phylogenetic analyses

Novel sequences were generated from the nine strains in this study, and all reference available sequences of *Colletotrichum* species were downloaded from GenBank. Multiple sequence alignments for ITS, GAPDH, CHS-1, ACT, TUB2, CAL and GS were constructed and carried out using the MAFFT v.7.11 online programme (http://mafft.cbrc.jp/alignment/server/, Katoh et al. 2019) with the default settings, and manually corrected where necessary. To establish the identity of the isolates at species level, phylogenetic analyses were conducted individually for each locus and then as combined analyses of seven loci (ITS, GAPDH, CHS-1, ACT, TUB2, CAL and GS). Phylogenetic analyses were based on maximum likelihood (ML) and Bayesian.

Inference (BI) for the multi-locus analyses. For BI, the best evolutionary model for each partition was determined using MrModeltest v. 2.3 (Nylander 2004) and incorporated into the analyses. ML and BI were run on the CIPRES Science Gateway portal (https://www.phylo.org/) using RaxML-HPC2 on XSEDE (8.2.12) (Miller et al. 2012; Stamatakis 2014) and MrBayes on XSEDE (3.2.7a), respectively (Huelsenbeck and Ronquist 2001; Ronquist and Huelsenbeck 2003; Ronquist et al. 2012). For ML analyses the default parameters were used and BI was carried out using the rapid bootstrapping algorithm with the automatic halt option. Bayesian analyses included seven parallel runs of 5,000,000 generations, with the stop rule option and a sampling frequency of 1000 generations. The burn-in fraction was set to 0.25 and posterior probabilities (PP) were determined from the remaining trees. The resulting trees were plotted using FigTree v. 1.4.4 (http://tree.bio.ed.ac.uk/software/figtree) and edited with Adobe Illustrator CS6.0. New sequences generated in this study were deposited at GenBank (https://www.ncbi.nlm.nih.gov; Table 2).

Table 1. Gene regions and respective primer pairs used in the study.

Locus	Gene	Primer	Direction	Sequence (5’-3’)					
The internal transcribed spacer regions with intervening 5.8S rRNA gene	ITS	ITS5	Forward	GGA AGT AAA AGT CGT AAC AAG G					
		ITS4	Reverse	TCC TCC GGT TAT TGA TAT GC					
Partial glyceraldehyde-3-phosphate dehydrogenase gene	GAPDH	GDF1	Forward	GCC GTC AAC GAC CCC TTC ATT GA					
		GDR1	Reverse	GGG TGG AGT CGT ACT TGA GCA TGT					
Partial chitin synthase 1 gene	CHS-1	CHS-79F	Forward	TGG GGC AAG GAT GCT TGG AAG AAG					
		CHS-354R	Reverse	TGG AAG AAC CAT CTG TGA GAG TGG					
Partial actin gene	ACT	ACT-512F	Forward	ATG TGC AAG GCC GGTT TTC GC					
		ACT-783R	Reverse	TAC GAG TCC TTC TGG CCC AT					
Partial beta-tubulin gene	TUB2	Br-2a	Forward	GGT AAC CA ATC GGT GCT GCT TTC					
		Br-2b	Reverse	ACC CTC AGT GTA GTG ACC CTT GGC					
Partial calmodulin gene	CAL	CL1	Forward	GAR TWC AAG GAG GCC TTC TC					
		CL2A	Reverse	TTT TGG CAT CAT GAG TTG GAC					
		CL1C	Forward	GAA TTC AAG GAG GCC TTC TC					
		CL2C	Reverse	CTT CTG CAT CAT GAG CTG GAC					
Partial glutamine synthetase gene	GS	GSLF3	Forward	GAT ACG CCT CCT CCA GCG TT					
		GSLR1	Reverse	AGR CGC ACA TGG TCA GTA TCG					
Species	Strain/Isolate	Host/Substrate	GenBank accession number						
-------------------------	----------------------	------------------------	-------------------------						
Colletotrichum asigna	ICMP 18608*	Persia americana	JX010244						
C. arecolinum	ICMP 17673* ATCC 201874	Arecolinum virginicum	JX010176						
C. alatae	CBS 304.67* ICMP 17919	Dinoseira alata	JX010190						
C. alienum	ICMP 12071*	Malus domestica	JX010251						
C. aotearoa	ICMP 18735	Hedychium gardnerianum	JX010221						
C. arecicola	hb8	Areca catechu	MW557482						
C. aesculina	ICMP 1861167*	Aesculus hirsuteoideus	MN415991						
C. asiaticum	ICMP 15808* CBS 130418	Coffea arabica	JX010265						
C. australum	BRIP 16695	Capisicum annuum	KU923677						
C. boninense	CBS 123755*	Grindina asiaticum var. sinicum	JQ005153						
C. camelliae	ICMP 10643	Camellia × williamsii	JX010224						
C. chonggongensis	MFLUCC 15-0022*	Prangrea × ananassia	KP83152						
C. chongnsisense	MFLUCC 18-0945	Magnolia grandiflora	MW346499						
C. chrysophilum	MCM 4268*	Musa sp.	KO094252						
C. coccifera	ICMP 19212	Vaccumium sp.	JX010228						
C. clidemiae	ICMP 18658*	Clidemia hirta	JX010265						
C. coclibonense	BRIP 166219	Condylina stricta × Condylina australis	MH080716						
C. cosmetics	CAUG17*	Capisicum annuum	KP890168						
C. conyliniola	MFLUCC0955* ICMP 18579	Conyliniola fruticosa	JX010226						
C. dncan.geniculum	MFLUCC 19-0430*	Dracaena fragrans	MN921255						
C. endolphiota	CAUG8	Capisicum annuum	KP145441						
C. fci-septicae	MFLU 19-27708*	Ficus septica	MW114367						
C. fructicola	MFLU 09022*	Coffea arabica	FJ792603						
C. fructivorum	CBS 13-3125*	Vaccinium macrocarpon	JX141545						
C. gloeosporoidei	IMI156878* ICMP 17821	Citrus sinensis	JX01052						
C. gloeosporioides	ICMP 19212	Citrus limon	JX01018						
SAUCCL 200952	Juglans regia	Juglans regia	MW786743						
SAUCCL 200954	Juglans regia	Juglans regia	MW786745						
SAUCCL 201001	Juglans regia	Juglans regia	MW786747						
C. grevilleae	CBS 132879*	Grevillea sp.	KC297078						
C. granicum	CAUG7*	Capisicum sp.	KP890165						
C. hebriseae	MFLUCC 30-726*	Vaius vivifera	FK15683						
C. heidelbergia	MFLU 15-0689	Hedera helix	MG33184						
C. helenii	CBS 142148*	Poncirus trifliflata	KY856446						
C. hematoxylon	LF238*	Camellia sinensis	KJ955109						
Species	Strain/Isolate	Host/Substrate	GenBank accession number						
------------------	----------------	----------------	--						
			ITS	GAPDH	CH3-1	ACT	TUB2	CAL	GS
C. horii	ICMP 10492	Diospyros kaki	GQ329690	GQ329681	JX009197	JX00938	JX010450	JX010640	JX010137
C. hybricus	CPC 28153*	Citrus hybridis	KY856450	KY856274	KY856190	KY856023	KY856552	-	-
C. japonica	LF687*	Camellia sinensis	KJ955201	KJ954902	KJ954747	KJ955348	KJ954752	KJ955051	
C. kahawae	IMI 319418*	Coffea arabica	JX010231	JX010012	JX009813	JX009452	JX010444	-	JX010130
C. ledongense	CGMCC3.18888*	Quercus palustris	MG242080	MG242016	MG242018	MG242014	MG242010	-	-
C. malasseae	CBS 143664a*	Capricium annuum	MH28812	MH288220	MH805850	MH781480	MH846563	-	-
C. menginense	SAUCC200702*	Rosa chinensis	MW876474	MW8646240	MW883686	MW883695	MW8885970	MW922538	MW888961
	SAUCC200912	Juglans regia	MW876649	MW876472	MW883687	MW883696	MW8885972	MW922539	MW888962
	SAUCC200913	Juglans regia	MW876690	MW876473	MW883688	MW883697	MW8885972	MW922540	MW888963
	SAUCC200983	Juglans regia	MW876682	MW876475	MW883691	MW883699	MW8885975	MW922543	MW888966
C. musae	CBS 116870*	Musa sp.	JX010146	JX010050	JX009896	JX009433	-	-	-
C. nupharicola	CBS 17096*	Nuphar lutea subsp. polypetala	JX010187	JX009972	JX009835	JX009437	JX010398	JX010663	JX010088
C. pandanisola	MFLU 18-0003*	Pandanus sp.	MG646967	MG646934	MG646931	MG646926	-	-	-
	SAUCC200204	Juglans regia	MW876646	MW876478	MW883693	MW883702	MW8885977	MW922545	MW888960
C. persea	GA100*	Persea americana	KX620308	KX620242	KX620145	KX620341	KX620206	KX620275	
C. pontosus	CBS 132882*	Pinnaceae sp.	KC297079	KC297009	KC296986	KC296940	KC297101	KC296960	-
C. pseudobromeliana	MFLUCC 18-1602	Prunus avium	MH813785	MH853675	MH853678	MH853681	-	-	-
C. pseudobromeliana	MFLUCC 18-1602	Prunus avium	MH813785	MH853675	MH853678	MH853681	-	-	-
C. pseudobromeliana	MFLUCC 18-1602	Prunus avium	MH813785	MH853675	MH853678	MH853681	-	-	-
C. pseudobromeliana	MFLUCC 18-1602	Prunus avium	MH813785	MH853675	MH853678	MH853681	-	-	-
C. pseudobromeliana	MFLUCC 18-1602	Prunus avium	MH813785	MH853675	MH853678	MH853681	-	-	-
C. queenslandicum	ICMP 17878*	Carica papaya	JX00238	JX009987	JX009349	JX00947	JX010443	JX010037	-
C. rhoeae	CBS 133134*	Rheca virgincia	JX145128	JX145128	JX145128	JX145128	-	-	-
C. salolae	ICMP 1005*	Salola tragaia	JX010424	JX009916	JX009863	JX010430	-	-	-
C. siamense	ICMP 18578*	Coffea arabica	JX10071	JX009924	JX009865	JX010430	JX970423	JX970424	JX970425
C. theobromicola	ICMP 19118	Jasminum sambac	HM133151	HM133149	HM805850	HM133107	HM104151	JX100105	-
C. theobromicola	ICMP 19118	Jasminum sambac	HM133151	HM133149	HM805850	HM133107	HM104151	JX100105	-
C. tropica	CBS 124949*	Theobroma cacao	JX010294	JX010006	JX009869	JX009444	JX100447	JX009590	JX010139
C. uvarum	ICMP 18649	Theobroma cacao	JX010264	JX010002	JX009807	JX009489	JX100407	JX009719	JX010097
C. xanthorrhoeae	BRIP 45094*	Xanthorrhoea preissii	JX010261	JX009927	JX009823	JX009478	JX100448	JX009653	JX010138
C. yulongense	CFCC 30818*	Vaccinium dunalianum	MH751307	MK108986	MH793605	MH773394	MK108987	MH793604	MK108988
Calletotrichum sp.	BRIP 58074a	Citrus aurantifolia	MK469999	MK470017	MK470035	MK470053	-	-	-

Strains marked with "*" are ex-type or ex-epitype.
Results

Phylogenetic analyses

Nine strains of *Colletotrichum* isolated from leaves of *Rosa chinensis* and fruit of *Juglans regia* in Mengyin County, Shandong Province, China, were grown in culture. Among the nine *Colletotrichum* isolates were identified a new species and two known species based on an analysis of combined ITS, GAPDH, CHS-1, ACT, TUB2, CAL and GS gene sequences composed of 69 isolates of *C. gloeosporioides* species complex and *C. boninense* (CBS 123755) as the outgroup taxon.

A total of 3953 characters including gaps were obtained in the phylogenetic analysis, viz. ITS: 1–619, GAPDH: 620–929, CHS-1: 930–1229, ACT: 1230–1542, TUB2: 1543–2288, CAL: 2289–3028, GS: 3029–3953. Of these characters, 2667 were constant, 674 were variable and parsimony-uninformative, and 612 were parsimony-informative.

The Bayesian analysis lasted 4,685,000 generations, resulting in 4686 total trees, of which 3515 trees were used to calculate the posterior probabilities. The BI posterior probabilities were plotted on the ML tree. For the BI and ML analyses, HKY+G for GAPDH and ACT, SYM+I+G for ITS, K80+I+G for CHS-1, GTR+G for GS and CAL, HKY+I for TUB2 were selected and incorporated into the analyses. The ML tree topology confirmed the tree topologies obtained from the BI analyses, and therefore, the ML tree is presented (Fig. 1).

ML bootstrap support values (≥ 50%) and Bayesian posterior probability (≥ 0.90) are shown as first and second position above nodes, respectively. The 70 strains were assigned to 60 species clades based on the seven gene loci phylogeny (Fig. 1). The nine strains studied here represented a novel species and two known species. The new species of *C. mengyinense* showed a close relationship to *C. fructicola* (MFLU 090228) with full support (ML-BS: 100% and BYPP: 1). The strains SAUCC200952, SAUCC200954 and SAUCC201001 belong to *C. gloeosporioides* (IMI356878) with full support (ML-BS: 100% and BYPP: 1) by the multi-locus phylogeny. The strains SAUCC200204 and SAUCC201152 belong to *C. pandanicola* (MFLU 18-0003) with good support (ML-BS: 94% and BYPP: 0.99) by the multi-locus phylogeny.

Taxonomy

Colletotrichum gloeosporioides (Penz.) Penz. & Sacc., Atti Reale Ist. Veneto Sci. Lett. Arti., ser. 6, 2: 670. 1884

Figure 2

Vermicudaria gloeosporioides Penz., Michelia 2: 450, 1882. Basionym.

Description. Lesion fruit, round or irregular, dark brown slightly sunken center, brown at margin. Asexual morph developed on PDA. A mass of orange conidia grows in the white my-
Figure 1. Phylogram of Colletotrichum gloeosporioides complex based on combined ITS, GAPDH, CHS-1, ACT, TUB2, CAL and GS genes. The ML and BI bootstrap support values above 50% and 0.90 BYPP are shown at the first and second position, respectively. Strains marked with “*” are ex-type or ex-epitype. Strains from this study are shown in red. Two branches were shortened to fit the page size—these are indicated by the symbol (//) with an indication number showing how many times they are shortened.
Colletotrichum in Shandong province, China

Celium of PDA after 14 days in light at 25 °C. Conidia, hyaline, smooth-walled, subcylindrical, both ends round, 1–3-guttulate, contents granular. Conidia on PDA (10.6–16.5 × 4.3–5.3 μm, mean ± SD = 14.9 ± 1.5 × 4.9 ± 0.3 μm, L/W ratio = 3.0, n = 40). Sexual morph not observed. Conidiogenous cells subcylindrical, straight to curved, 4.7–12.7 × 3.1–4.0 μm, opening 1.5–2.0 μm diam. Conidiophores hyaline, smooth walled, septate, branched.

Culture characteristics. Colonies on PDA flat with entire margin, aerial mycelium white, floccose cottony; surface and reverse grayish in the center and white margin. PDA attaining max 81 mm in diameter after 7 days, at 25 °C, growth rate 8.7–11.5 mm/day. Colonies on SNA sparse hyphae, slow growth.

Specimens examined. China, Shandong Province: Mengyin County, Mengshan, on diseased fruit of Juglans regia, 25 July 2020, T.C. Mu, paratype HSAUP200952, ex-paratype living culture SAUCC200952. China, Shandong Province: Mengyin

Figure 2. Colletotrichum gloeosporioides (SAUCC201001) a lesion fruit of host plant b, c surface (b) and reverse (c) sides of colony after incubation for 7 days on PDA d conidiomata e conidiophores, conidiogenous cells and conidia f–h conidia. Scale bars: 10 μm (e–h).
Notes. *Colletotrichum gloeosporioides* was originally described as *Vermicularia gloeosporioides* on fruit of *Citrus sinensis* in Italy and this species placed in *Colletotrichum* by Corda (Weir et al. 2012; Cannon et al. 2008). In the present study, three strains (SAUCC200952, SAUCC200954 and SAUCC201001) are clustered to *C. gloeosporioides* clade in the combined phylogenetic tree (Fig. 1). Morphologically, our strains were similar to *C. gloeosporioides* by conidia (10.6–16.5 × 4.3–5.3 μm vs. 12.0–17.0 (–23.5) × 4.5–6.0 μm, mean: 14.9 × 4.9 vs. 14.4 × 5.6 μm). We therefore consider the isolated strain as *C. gloeosporioides*.

Colletotrichum mengyinense T.C. Mu, J.W. Xia, X.G. Zhang & Z. Li, sp. nov.

MycoBank No: 841265

Figure 3

Etymology. Named after Mengyin County where the fungus was collected.

Diagnosis. *Colletotrichum mengyinense* can be distinguished from the phylogenetically most closely related species *C. fructicola* (MFLU 090228) by its large conidia (12.5–15.7 × 4.8–6.1 vs. 9.7–14.0 × 3.0–4.3 μm), and five loci (2/509 in the ITS region, 1/139 GAPDH, 9/237 ACT, 8/410 TUB2 and 20/727 GS).

Type. China, Shandong Province: Mengyin County, on diseased leaves of *Rosa chinensis*, 25 July 2020, T.C. Mu, holotype HSAUP200702, ex-type living culture SAUCC200702.

Description. Leaf spots discoid to irregular, brown or tanned. Asexual morph developed on SNA. A yellowish or orange mass appearing just as accumulations of conidia on the surface of the medium of SNA after 14 days in light at 25 °C. Conidia one-celled, hyaline, smooth-walled, subcylindrical, both ends round, contents granular. Conidia on SNA (12.5–15.7 × 4.8–6.1 μm, mean ± SD = 14.3 ± 1.1 × 5.3 ± 0.4 μm, L/W ratio = 2.7, n = 40). Sexual morph not observed. Conidiogenous cells subcylindrical, hyaline, 5.3–15.5 × 2.9–4.9 μm, opening 1.7–2.5 μm diam. Conidiophores hyaline, smooth walled, septate, branched.

Culture characteristics. Colonies on PDA flat with entire margin, aerial mycelium white or gray, floccose cottony; surface and reverse gray in the center and grayish margin. PDA attaining 69.3–75.6 mm in diameter after 7 days, at 25 °C, growth rate 9.9–10.8 mm/day. Colonies on SNA sparse hyphae, slow growth.

Additional specimen examined. China, Shandong Province: Mengyin County, on diseased fruit of *Juglans regia*, 25 July 2020, T.C. Mu, paratype HSAUP200912, ex-paratype living culture SAUCC200912. China, Shandong Province: Mengyin County, on diseased fruit of *Juglans regia*, 25 July 2020, T.C. Mu, paratype HSAUP200913, ex-paratype living culture SAUCC200913. China, Shandong Province: Mengyin County, on diseased fruit of *Juglans regia*, 25 July 2020, T.C. Mu, paratype HSAUP200983, ex-paratype living culture SAUCC200983.
Phylogenetic analysis of a combined seven gene showed that *Colletotrichum mengyinense* formed an independent clade (Fig. 1) and is phylogenetically distinct from *C. fructicola* (Prihastuti et al. 2009). This species can be distinguished from *C. fructicola* by 40 different nucleotides (2/509 in the ITS region, 1/139 in the GAPDH region, 9/237 ACT, 8/410 TUB2 and 20/727 GS). What's more, *C. mengyinense* differs from *C. fructicola* in having large conidia (12.5–15.7 × 4.8–6.1 vs. 9.7–14.0 × 3.0–4.3 μm, mean: 14.3 × 5.3 vs. 11.53× 3.55 μm). Therefore, we establish this fungus as a novel species.

Colletotrichum pandanicola Tibpromma & K.D. Hyde, MycoKeys 33:47. (2018)
Figure 4

Description. Lesion fruit, round or irregular, dark brown slightly sunken center, brown at margin. Asexual morph developed on SNA. A mass of yellowish or orange

Figure 3. *Colletotrichum mengyinense* (SAUCC200702) a branch with leaves of host plant b, c surface (b) and reverse (c) sides of colony after incubation for 7 days on PDA d conidiomata e-g conidiophores, conidiogenous cells and conidia h–j conidia. Scale bars: 10 μm (e–j).
creamy conidial droplets at the inoculum point on SNA after 14 days in light at 25 °C. Born in conidiomata, conidia first take an ovoid shape, then become subcylindrical with rounded ends, contents granular. Conidia on SNA (14.2–17.9 × 4.6–6.0 μm, mean ± SD = 16.1 ± 0.9 × 5.4 ± 0.3 μm, L/W ratio = 2.9, n = 40). Sexual morph not observed. Conidiogenous cells subcylindrical, hyaline, 5.5–23.9 × 2.6–6.3 μm, opening 1.1–1.5 μm diam. Conidiophores branched, hyaline, smooth walled, septate, some septa disappeared at the end, contents granular.

Culture characteristics. Colonies on PDA flat with entire margin, aerial mycelium white, floccose cottony; light gray in the center and pale white margin, reverse white to pale brownish. PDA attaining 58.1–82.6 mm in diameter after 7 days, at 25 °C, growth rate 8.3–11.8 mm/day. Colonies on SNA sparse hyphae, slow growth.
Specimens examined. China, Shandong Province: Mengyin County, Mengshan, on diseased fruit of *Juglans regia*. 25 July 2020, T.C. Mu, paratype HSAUP200204, ex-paratype living culture SAUCC200204. China, Shandong Province: Mengyin County, Mengshan, on diseased fruit of *Juglans regia*. 25 July 2020, T.C. Mu, paratype HSAUP201152, ex-paratype living culture SAUCC201152.

Notes. *Colletotrichum pandanicola* was originally described from the healthy leaves of *Pandanus* sp. (MFLU 18-0003, Pandanaceae) in Thailand (Tibpromma et al. 2018). In the present study, two strains (SAUCC200204 and SAUCC201152) are clustered to the *C. pandanicola* clade in the combined phylogenetic tree (Fig. 1). Morphologically, our strains were similar to *C. pandanicola* by conidia (14.2–17.9 × 4.6–6.0 vs. 9.0–18.0 × 4.0–8.0 μm, mean: 16.1 × 5.4 vs. 13.39 × 5.35 μm). We therefore consider the isolated strains as *C. pandanicola*.

Discussion

In this study, the *Colletotrichum* specimens of diseased leaves and fruits were collected in Mengyin, Shandong Province, China. A temperate monsoon climate and an abundance of fruit trees provide the proper conditions for anthracnose propagation. As a result, 70 reference sequences (including an outgroup taxon: *C. boninense* CBS 123755) were selected based on BLAST searches of NCBI’s GenBank nucleotide database and were included in the phylogenetic analyses (Table 2).

Phylogenetic analyses based on seven combined loci (ITS, GAPDH, CHS-1, ACT, TUB2, CAL and GS), as well as morphological characters of the asexual morph obtained in culture, were contributed to knowledge of the diversity of *Colletotrichum* species in Shandong Province. Based on a large set of freshly collected specimens from Shandong province, China, nine strains of *Colletotrichum* species were isolated from two host genera (Table 2). A new species is proposed: *C. mengyinense*. In a previous report, *C. gloeosporioides* has been isolated from *Juglans regia* (Zhu et al. 2014). *Colletotrichum pandanicola* was described from *Pandanus* sp. (Pandanaceae) in Thailand (Tibpromma et al. 2018) and *C. pandanicola* is first reported from *Juglans regia* in China. In this study, we described and illustrated *C. gloeosporioides* and *C. pandanicola* again.

Previously, species identification of *Colletotrichum* was largely referred to the host-specificity and pure culture characteristics, leading to the chaos of names (Weir et al. 2012). On the other hand, based on a polyphasic approach and known morphology, more than one species of *Colletotrichum* can colonize a single host, while one species can be associated with different hosts (Damm et al. 2012). It revealed diversity of *Colletotrichum* species from different hosts. Our study supported this result. For example, *C. pandanicola* (SAUCC200204 and SAUCC201152) and *C. gloeosporioides* (SAUCC200952, SAUCC200954 and SAUCC201001) were collected from *Juglans regia*. In addition, isolates of *C. mengyinense* were obtained from two hosts (*Juglans regia* and *Rosa chinensis*). The morphological descriptions and molecular data for species of *Colletotrichum* represent an important resource and basis for plant pathologists and fungus taxonomists.
Acknowledgements

This work was supported by the National Natural Science Foundation of China (no. 31900014, 31750001 and 31770016).

References

Bhunjun CS, Phukhamsakda C, Jayawardena RS, Jeewon R, Promputtha I, Hyde KD (2021) Investigating species boundaries in Colletotrichum. Fungal Diversity 107: 107–127. https://doi.org/10.1007/s13225-021-00471-z

Cai L, Hyde KD, Taylor PWJ, Weir BS, Waller JM, Abang MM, Zhang ZJ, Yang YL, Phoulivong S, Liu ZY, Prihastuti H, Shivas RG, McKenzie EHC, Johnston PR (2009) A polyphasic approach for studying Colletotrichum. Fungal Diversity 39: 183–204.

Cannon PF, Buddie AG, Bridge PD (2008) The typification of Colletotrichum gloeosporioides. Mycotaxon 104: 189–204.

Cannon PF, Damm U, Johnston PR, Weir BS (2012) Colletotrichum - current status and future directions. Studies in Mycology 73: 181–213. https://doi.org/10.3114/SIM0014

Chomnunti P, Hongsanan S, Aguirre-Hudson B, Tian Q, Peršoh D, Dhami MK, Alias AS, Xu J, Liu X, Stadler M, Hyde KD (2014) The sooty moulds. Fungal Diversity 66: 1–36. https://doi.org/10.1007/S13225-014-0278-5

Corda ACI (1831) Die Pilze Deutschlands. In: Sturm J (Ed.) Deutschlands Flora in Abbildungen nach der Natur mit Beschreibungen. Sturm, Nürnberg 3(12): 33–64.

Damm U, Cannon PF, Woudenberg JH, Johnston PR, Weir BS, Tan YP, Shivas RG, Crous PW (2012) The Colletotrichum boninense species complex. Studies in Mycology 73: 1–36. https://doi.org/10.3114/sim0002

Damm U, Woudenberg JHC, Cannon PF, Crous PW (2009) Colletotrichum species with curved conidia from herbaceous hosts. Fungal Diversity 39: 45–87.

Dean R, Van Kan JA, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, Foster GD (2012) The Top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology 13: 414–430. https://doi.org/10.1111/j.1364-3703.2011.00783.x

Gao YH, Sun W, Su YY, Cai L (2013) Three new species of Phomopsis in Gutianshan Nature Reserve in China. Mycological Progress 13: 111–121. https://doi.org/10.1007/S11557-013-0898-2

Guo LD, Hyde KD, Liew ECY (2000) Identification of endophytic fungi from Livistona chinensis based on morphology and rDNA sequences. New Phytologist 147: 617–630. https://doi.org/10.1046/j.1469-8137.2000.00716.x

Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17(17): 754–755. https://doi.org/10.1093/bioinformatics/17.8.754

Jayawardena RS, Hyde KD, Jeewon R, Li XH, Liu M, Yan JY (2016) Mycosphere Essay 6: Why is it important to correctly name Colletotrichum species? Mycosphere 7: 1076–1092. https://doi.org/10.5943/mycosphere/si/2c/1
Colletotrichum in Shandong province, China

Jayawardena RS, Camporesi E, Elgorban AM, Bahkali AH, Yan J, Hyde KD (2017) A new species of Colletotrichum from Sonchus sp. in Italy. Phytotaxa 314(1): 55–63. https://doi.org/10.11646/phytotaxa.314.1.3

Katoh K, Rozewicki J, Yamada KD (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20: 1160–1166. https://doi.org/10.1093/bib/bbx108

Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for bigger datasets. Molecular Biology and Evolution 33(7): 1870–1874. https://doi.org/10.1093/molbev/msw054

Liu F, Weir BS, Damm U, Crous PW, Wang Y, Liu B, Wang M, Zhang M, Cai L (2015) Unravelling Colletotrichum species associated with Camellia: employing ApMat and GS loci to resolve species in the C. gloeosporioides complex. Persoonia 35: 63–86. https://doi.org/10.3767/003158515X687597

Miller MA, Pfeiffer W, Schwartz T (2012) The CIPRES science gateway: enabling high-impact science for phylogenetics researchers with limited resources. Proceedings of the 1st Conference of the Extreme Science and Engineering Discovery Environment. Bridging from the extreme to the campus and beyond. Association for Computing Machinery 39: 1–8. https://doi.org/10.1145/2335755.2335836

Nylander JAA (2004) MrModeltest v. 2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University.

Prihastuti H, Cai L, Chen H, Mckenzie EHC, Hyde KD (2009) Characterization of Colletotrichum species associated with coffee berries in northern Thailand. Fungal Diversity 39: 89–109.

Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574. https://doi.org/10.1093/BIOINFORMATICS/BTG180

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542. https://doi.org/10.1093/sysbio/sys029

Stamatakis A (2014) RAxML Version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9): 1312–1313. https://doi.org/10.1093/bioinformatics/btu033

Tibpromma S, Hyde KD, Bhat JD, Mortimer PE, Xu J, Promputtha I, Doilom M, Yang JB, Tang AMC, Karunarathna SC (2018) Identification of endophytic fungi from leaves of Pandanaceae based on their morphotypes and DNA sequence data from southern Thailand. MycoKeys: 25–67. https://doi.org/10.3897/mycokerkeys.33.23670

Tode HJ (1790) Fungi Mecklenburgenses Selecti. Fasc. 1. Nova Fungorum Genera Complectens. https://doi.org/10.5962/bhl.title.148599

Weir BS, Johnston PR, Damm U (2012) The Colletotrichum gloeosporioides species complex. Studies in Mycology 73: 115–180. https://doi.org/10.3114/sim0011

Zhu YF, Yin YF, Qu WW, Yang KQ (2014) Occurrence and Spread of the Pathogens on Walnut (juglans regia) in Shandong Province, China. Acta Horticulturae 1050: 347–351. https://doi.org/10.17660/ACTAHORTIC.2014.1050.47