Relaxation of Spin Polarized 3He in Mixtures of 3He and 4He at \sim330 mK

Q. Ye, H. Gao, W. Zheng
Triangle Universities Nuclear Laboratory and
Department of Physics, Duke University, Durham, NC 27708, USA
D. Dutta
Department of Physics & Astronomy, Mississippi State University, Mississippi State, MS 39762, USA
F. Dubose, R. Golub, P. Huffman, C. Swank
Department of Physics, North Carolina State University, Raleigh, NC 27695, USA
E. Korobkina
Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695, USA

We report the measurements of depolarization probabilities of polarized 3He in a rectangular acrylic cell with a deuterated tetraphenyl butadiene-doped deuterated polystyrene coating filled with superfluid 4He at \sim330 mK with a magnetic holding field of \sim7.3 G. We achieve a wall depolarization probability of $\sim 1.0 \times 10^{-7}$. Such a surface will find application in a new experiment searching for the neutron electric dipole moment and other applications.

PACS numbers: 33.25.+k,34.35.+a,67.30.ep,07.20.Mc

I. INTRODUCTION

Relaxation of spin polarized 3He has been studied extensively on different surfaces (mostly in glass containers) at different temperatures [1,2,3,4,5,6,7,8,9] in the past several decades. Models have been developed and efforts have been carried out [4,5,6,10,11,12,13,14,15] to understand and suppress the sources of depolarization for different applications [10,17,18,19,20,21,22]. Among these applications, the search for violations of fundamental symmetries [20,21,22] will have a deep impact on our understanding of the universe. For example, in a new search for the neutron Electric Dipole Moment (nEDM) [22], polarized 3He dissolved in superfluid 4He will be exposed to unique experimental conditions, which have never been studied before and the success of the experiment requires a 3He longitudinal relaxation time in excess of tens of times the neutron life time. The search for the neutron EDM is a direct search of the time reversal symmetry (T) violation. It provides a unique way of searching for charge conjugation and parity symmetry (CP) violation due to the CPT invariance.

The overall experimental strategy for the new nEDM experiment is to form a three-component fluid of polarized ultra-cold neutrons (UCN) and polarized 3He atoms dissolved in a bath of superfluid 4He below 500 mK with a 3He to 4He ratio $\sim 1:10^{10}$ [22]. The nEDM manifests itself as a difference in the neutron precession frequencies when a strong electric field parallel to an external magnetic field is reversed. Because the magnitude of the precession frequency shift due to the interaction of the nEDM and the electric field is extremely small, the new experiment proposed will measure the UCN precession frequency relative to that of the 3He nucleus [22] using the spin-dependent nuclear absorption process:

$$\bar{n} + ^3\!\!^\text{He} \rightarrow p + t + 764 \text{ keV}$$ \hspace{1cm} (1)

When placed in an external magnetic field, both the neutron and 3He magnetic dipoles will precess in the plane perpendicular to the B_0 field. The 3He nucleus’ EDM is highly suppressed due to “Schiff Shielding” [23]. The neutron absorption rate can be measured by monitoring the Extreme Ultra-Violet (EUV) scintillation light generated in superfluid 4He from the reaction products in (1). The polarized 3He nucleus also acts as a co-magnetometer and its signal is monitored using Superconducting QUantum Interference Devices (SQUIDs). The knowledge of the B_0 field environment of the trapped neutrons is important in the analysis of the systematic uncertainties of the experiment.

The neutron storage cell will be made of acrylic with deuterated TetraPhenyl Butadiene-doped deuterated Polystyrene (dTPB-dPS) coating on the inner wall. The dTPB-dPS coating is chosen to minimize the UCN absorption on the wall, which also acts as a wavelength shifting material for the EUV light. Therefore, understanding the relaxation mechanism of polarized 3He in the measurement cell under the unique nEDM experimental conditions and suppressing the depolarization effect is crucial to the experiment.

In our previous depolarization study of polarized 3He in superfluid 4He at 1.9 K [24], we reported a depolarization probability $\sim 1.6 \times 10^{-7}$ from a dTPB-dPS coated and cylindrical-shaped acrylic cell. This number may change at lower temperatures. The nEDM experimental cell is of rectangular shape and the experimental temperature is below 500 mK. In this paper we report new results on relaxation times of polarized 3He at a temperature down to \sim330 mK in a rectangular dTPB-dPS coated acrylic cell filled with superfluid 4He.
II. EXPERIMENTAL APPARATUS

The schematic of the entire apparatus is shown in Figure 1. Polarized 3He atoms are introduced into the bottom cell from a 2 in. diameter detachable pyrex glass cell sitting on top of the dilution refrigerator (DR). The cell is usually filled with \sim1-1.5 atmospheres of 3He and \sim100 torrs of N$_2$ gas at room temperature. The spin-exchange optical pumping (SEOP) technique is used to polarize the 3He on the polarizing station located in another building. The detachable cell is then transferred over to the top of the DR using a battery powered portable magnetic field system. The bottom acrylic cell is of a rectangular ($1''\times1''\times1.5''$) shape with many grooves cut on the outside to house the cooling wires from the mixing chamber of the DR. The cell’s inner surface is coated with the dTPB-dPS material and the coating procedure is described in the appendix of [25]. The two cells are connected via a \sim86 in. long glass capillary and separated by a glass valve. A 1/8 in. OD and 1 in. long glass-to-copper seal is used to connect the glass capillary and the acrylic cell to serve as the transition between the two materials with different coefficients of thermal expansion. Epoxy Emerson & Cuming Stycast 1266 is applied to make the vacuum seal between copper and acrylic. A 7.5-liter aluminum volume with a baratron is mounted onto the gas handling system to calibrate the amount of 4He condensed into superfluid in the acrylic cell.

A model “Minikelvin 126-TOF” dilution refrigerator made by Leiden Cryogenics is used to achieve the desired temperature. The DR and its outside dewars are located inside an eight-coil system (33 in. diameter, 16.5 in. separation) providing a uniform magnetic field in the vertical direction. In order to compensate for the edge effect, the current in the outer two coils is larger than that flowing in the middle six coils and the configuration produces \sim7.3 G magnetic field at the acrylic cell position. The DR dewar is composed of four layers: the outer vacuum chamber, the liquid N$_2$ layer, the liquid 4He main bath and the inner vacuum chamber. The working principle and the operating procedures of the DR can be found in [26]. A 20 cc, gold plated copper buffer volume is attached to the bottom of the mixing chamber, the coldest part of the DR at normal operating conditions. The pre-cooled 3He liquid used to fill up the acrylic cell goes into the buffer volume first, then drips into the acrylic cell slowly through a stainless steel capillary. Attached to the bottom of the buffer volume is an oxygen free copper cap with twenty gold plated 99.999% pure copper wires brazed in. The wires are extended onto the outside of the acrylic cell, where wire housing grooves are made and vacuum grease is used to increase the thermal contact between the copper wires and the acrylic. The temperature of the acrylic cell is monitored by calibrated ruthenium oxide sensors placed on the acrylic cell and the glass-to-copper seal. During normal operation of the DR, the acrylic cell filled completely with superfluid 4He can be cooled down to as low as \sim330 mK.

Two sets of nuclear magnetic resonance systems, adiabatic fast passage (AFP) and free induction decay (FID), have been used to measure the polarization of 3He. The AFP system consists of a pair of 9” Helmholtz RF coils, mounted below the copper buffer volume to avoid the eddy current heating, and a pick up coil, which is glued onto the side of the acrylic cell. An Apollo LF-1 MRI system from Tecmag is used to carry out the FID measurements at the frequency of 23.6 kHz. The AFP and FID principles can be found in [27].

III. EXPERIMENTAL PROCEDURES

The acrylic cell pieces are made and coated with the dTPB-dPS material. A series of strict leak tests are carried out after the system is assembled. It then takes about one week to cool down the DR to the operating temperature. Once the acrylic cell has reached \sim330 mK, gaseous 4He is condensed into superfluid 4He and fills up the acrylic cell slowly through the calibrated volume and the DR. At the same time, the top detachable cell filled with 3He is being polarized in the laser lab overnight. After the polarized detachable cell is brought over onto the top of the DR using the portable magnetic field and the intermediate region is pumped to vacuum, the valve
is opened to allow the polarized 3He atoms to diffuse to the bottom acrylic cell at low temperatures through the glass capillary. After the system reaches equilibrium in \sim6 minutes, which is comparable to the spin diffusion time in our cell geometry [28], a series of NMR AFP or FID measurements are carried out to measure the 3He longitudinal relaxation time (T_1).

The 3He detachable cells have a T_1 of \sim40 hours with a holding magnetic field of 7.3 G and the depolarization during the 10-minute transport process can be neglected. A short RF pulse at the Larmor frequency is generated by the FID coil and the 3He free precession signal is monitored using the same coil after the pulse. The systematic error of the relaxation time is dominated by the uncertainty in the determination of the FID inefficiency, which is derived by fitting n consecutive FID measurements to $A_0(1 - \text{loss})^n$, where loss is the FID inefficiency parameter. The relaxation times are obtained from the exponential decay of the FID signal strength as a function of time corrected by the FID inefficiency. The NMR-AFP system uses an RF amplifier to power the RF coils for the spin flip during the measurement [24]. The RF amplifier is left off during the time intervals between AFP measurements to prevent the polarized 3He atoms from depolarizing due to the wide band amplified RF noise. The AFP inefficiency and the corresponding relaxation time are determined in similar ways as those of FID measurements. The measured relaxation times using AFP and FID are consistent with each other within experimental uncertainties.

IV. RESULTS & DISCUSSION

In Figure 2, 3He longitudinal relaxation times are plotted as a function of temperature at 7.3 G. The inset of the figure shows the measured 3He T_1 versus the 3He molar concentrations in superfluid 4He, which indicates that 3He T_1 does not change much in the χ ranging from 0.42% to 1.5% at \sim330 mK. The 3He dipole-dipole relaxation time is determined to be higher than 4×10^4 seconds [12] with the 3He concentration in our measurements. The magnetic field gradient is measured to be ~15 mG/cm.
which corresponds to a ^3He longitudinal relaxation time of $\sim 2 \times 10^6$ seconds [13]. These numbers are much larger than the measured relaxation times and therefore the wall effect is the dominant contribution to the ^3He relaxation time. A depolarization probability (DP) can be derived analytically to characterize how “friendly” or “unfriendly” a surface is to polarized ^3He.

Consider a sample of 100% polarized ^3He atoms in a container of volume V and surface area S. The average number of ^3He atoms colliding with the wall per unit time per unit area is $\frac{1}{3} n \cdot \bar{v}$, where n is the ^3He number density, $\bar{v} = \frac{8k_BT}{\pi m_3^2}$ is the mean speed of ^3He quasiparticles and $m_3^2 = 2.4m_3$ is the effective mass of ^3He dissolved in superfluid ^4He. A polarized ^3He atom will have a probability DP to depolarize after each collision with the cell surface covered with bulk liquid ^4He and DP is given by

$$DP = \frac{4}{\bar{v} \cdot T_1 \cdot (S/V)}$$

where S/V is the surface to volume ratio of a particular cell.

Figure 3 shows the corresponding wall depolarization probabilities derived from equation (2) at different temperatures from our measurements with the dipole-dipole depolarization effect discussed earlier taken into consideration. Since our cell is full of superfluid ^4He during the measurement, the surface to volume ratio, $S/V = 2.1$, is a constant at different temperatures. Figure 3 (a) also includes the data at 1.9 K [23]. The other DPs in the figure are extracted from the data in [4,5,6] by using the ^3He mean speeds at the corresponding temperatures, the relaxation times and the surface to volume ratios in the open cell geometries and sealed cells. The polarized ^3He in our cell is in the bulk liquid ^4He with layers of superfluid ^4He film on the wall surfaces, while in [4,5,6], ^3He atoms are mostly in vapor phase. Our data show that the DPs from the dTPB-dPS coated acrylic cell surface covered by superfluid ^4He remain around 1.0×10^{-7} in the temperature range between 0.33 K and 0.65 K, which is close to the value at 1.9 K [23]. Our experiments probe the DPs down to the lowest temperature of 330 mK and the dTPB-dPS coated acrylic surface outperform the surfaces in open geometry systems (Figure 3 (a)), including bare pyrex glass surfaces (Fig. 3 in [5]), glass surfaces with solid molecular hydrogen wall coating (Fig. 4 in [5]), and solid H$_2$-coated pyrex surfaces covered by superfluid ^4He film (Fig. 1 in [5]). In Figure 3 (b), DPs from a sealed cell (black circles) reach below 10^{-7} from 0.6 K to 1.2 K with a magnetic field of ~ 0.24 T. However, the DPs extracted from the same sealed cell become much larger under a magnetic holding field of ~ 13.9 G (blue stars), which are outperformed by our results with similar magnetic holding fields from an open cell geometry. No magnetic field dependence in the DP is observed in our measurements though our magnetic field range is rather limited. The effect due to the background magnetic field gradient in [6] may have played a more significant role which resulted in different ^3He DPs at different holding fields of 0.24 T and 13.9 G.

V. SUMMARY

We have measured the relaxation time of polarized ^3He in a dTPB-dPS coated acrylic cell filled with superfluid ^4He at 330 mK with a magnetic holding field of 7.3 G. The corresponding wall depolarization probability is on the order of 1.0×10^{-7} for polarized ^3He. The nEDM experimental cell will have a S/V ratio of $\sim 0.5 \text{ cm}^{-1}$ [22], so the extrapolated relaxation time of polarized ^3He in the nEDM cell geometry is $\sim 2.5 \times 10^4 \text{ s}$ at 330 mK. This long relaxation time has met the stringent requirement of the experiment [22], and also makes dTPB-dPS coated acrylic surface potentially important for other applications.

ACKNOWLEDGMENT

We thank C. Arnold, V. Cianciolo, T. Clegg, D. Haase and M. Hayden for helpful discussions, M. Cooper for support, R. Lu, X. Zhu, X. Zong for help with the experiment, J. Rishel for making the glassware and J. Addison, B. Carlin, J. Dunham, R. O’Quinn, P. Mulkey and C. Westerfeld for the technical support. We also thank Hahn Meitner Institute of Berlin for the loan of the DR. This work is supported by the School of Arts and Science of the Duke University, the U.S. Department of Energy under contract number DE-FG02-03ER41231 and the Los Alamos National Laboratory.

[1] J. Schmiedeskamp, W. Heil, E. W. Otten, R. K. Kremer, A. Simon, J. Zimmer, Eur. Phys. J. D, 38, 427, (2006).
[2] A. Deninger, W. Heil, E. W. Otten, M. Wolf, R. K. Kremer, A. Simon, Eur. Phys. J. D, 38, 439, (2006).
[3] Nathalie Piegay and Genevi`e Tastevin, J. of Low Temp. Phys., 126, 157 (2002).
[4] M. Himbert and J. Dupont-Roc, J. of Low Temp. Phys., 126, 435 (1989).
[5] C. P. Lusher, M. F. Secca, M. G. Richards, J. of Low Temp. Phys. 72, 25 (1988).
[6] C. P. Lusher, M. F. Secca, M. G. Richards, J. of Low Temp. Phys. 72, 71 (1988).
[7] M. Lowe, P. C. Hammel, R. E. Ecke, K. Bedell, M. Takiyama, Phys. Rev. B 37, 2281(R) (1988).
[8] R. Chapman, Phys. Rev. A, 12, 2333 (1975).
[9] R. Chapman, M. G. Richards, Phys. Rev. Lett., 33, 18 (1974).
[10] E. Babcock, B. Chann, T. G. Walker, W. C. Chen, T. R. Gentile, Phys. Rev. Lett., 96, 083003 (2006).
[11] A. S. van Steenbergen, S. A. J. Wiegors, P. E. Wolf, J. A. J. Perenboom, J. C. Maan, Phys. Rev. B, 58, 925 (1998).
[12] N. R. Newbury, A. S. Barton, G. D. Cates, W. Happer, H. Middleton, Phys. Rev. A, 48, 4411 (1993).
[13] Douglas D. McGregor, Phys. Rev. A, 41, 2631 (1990).
[14] G. D. Cates, S. R. Schaefer, W. Happer, Phys. Rev. A, 37, 2877 (1988).
[15] Valérie Lefèvre-Seguin and Jean Brossel, J. of Low Temp. Phys., 72, 165 (1988).
[16] T. R. Gentile, W. C. Chen, G. L. Jones, E. Babcock and T. G. Walker, J. Res. Natl. Inst. Stand. Technol., 110, 299 (2005).
[17] R. E. Stoner, M. A. Rosenberry, J. T. Wright, T. E. Chupp, E. R. Oteiza, R. L. Walsworth, Phys. Rev. Lett., 77, 3971 (1996).
[18] G. L. Greene, A. K. Thompson, M. S. Dewey, Nucl. Instrum. Meth. Phys. Res. A, 356, 177 (1995).
[19] W. G. Stirling, R. Scherm, P. A. Hilton, R. A. Cowley, J. Phys. C: Solid State Phys., 9, 1643 (1976).
[20] J. Bowman et al., Measurement of the Parity-Violating Gamma Asymmetry \(\Delta \gamma \) in \(\bar{n} + p \rightarrow d + \gamma \), funding proposal by the NPDGamma collaboration, http://sns.phys.utk.edu/npdg/.
[21] D. Bear, R. E. Stoner, R. L. Walsworth, V. A. Kostelecký, Charles D. Lane, Phys. Rev. Lett., 85, 5038 (2000).
[22] R. Golub and S. Lamoreaux, Phys. Rep. 237, 1 (1994); A New Search for the Neutron Electric Dipole Moment, funding pre-proposal by the EDM collaboration, http://p25ext.lanl.gov/edm/pdf.unprotected/EDM.proposal.pdf.
[23] L. I. Schiff, Phys. Rev., 132, 2194 (1963).
[24] Q. Ye, D. Dutta, H. Gao, K. Kramer, X. Qian, and X. Zong, L. Hannelius, R. D. McKeown, B. Heyburn, and S. Singer, R. Golub, E. Korobkina, Phys. Rev. A, 77, 053408 (2008).
[25] Q. Ye, Ph.D. thesis, Duke University, August, 2008.
[26] Frank Pobell, Matter and Methods at Low Temperatures, Springer, 2007.
[27] A. Abragam, Principles of Nuclear Magnetism. Oxford University Press, 1961.
[28] J. E. Opfer, K. Luszczyński, R. E. Norberg, Phys. Rev., 172, 192 (1968).