Supplementary Data

Features and quality assessment of Phalaenopsis specialized microarray

To examine genome-wide gene expression profiling of orchids, a customized microarray chip based on sequence information in the *Orchidstra* database [1] (http://orchidstra.abrc.sinica.edu.tw) was designed. The *Orchidstra* database contains 42,661 transcript contigs of *Phalaenopsis aphrodite* generated by *de novo* assembly procedure of reads generated from next generation sequencing (NGS) technologies such as Illumia Solexa and Roche 454 platforms. These transcript contigs were submitted to Agilent e-array (Agilent, CA) for microarray probe selection. Probe design of 39,431 transcript contigs was successful after software screening. Probes for the detection of common orchid viruses, Cymbidium mosaic virus (CymMV) and Odontoglossum ringspot virus (ORSV), were included to array design.

We have performed a series of quality test on the tailor made orchid array. Technical repeats showed reproducibility with correlation coefficients higher than 99.9% (after percentile shift normalization at 75%) between repeats (Supplementary Figure S1A). On average, 64-72% whole probe-sets on the array could be considered as detectable under Agilent scanner criteria or raw intensity more than 50. The detection rate was reasonable for basal expression since we have compared various orchid tissues including leaf, root, flower and germinating seeds under normal culture environment. The array performance between the diploid *Phalaenopsis aphrodite*, a Taiwan native species, and the tetraploid Sogo Yukidian 'V3', a popular commercial hybrid of *Phalaenopsis*, was satisfactory with correlation coefficients higher than 94% when same tissues were compared (Supplementary Figure S1B). The application of this array is therefore not limited to the rather scarce source of native *Phalaenopsis* orchid and can be extended to the more popular commercial hybrid.
Figure S1. Performance check of orchid specialized microarray with scatter plot. (A) Overall comparative profiling between tissue samples of *Phalaenopsis aphrodite*. (B) Overall comparative profiling between *Phalaenopsis aphrodite* and the commercial hybrid Sogo Yukidian ‘V3’.
Differentially expressed gene list

Table S1. Top 20 genes differentially expressed in specific tissue. Expression level was determined after normalization of microarray intensities and SPM value (Specificity Measure) was calculated accordingly. Maximum value of SPM is 1. Top 20 genes with the highest SPM value are listed.

Probe Name	Description	SPM value
Flower		
PATC150065 (PaMYB-4)	Similar to ACB59077, Myb-like transcription factor EOBII [Petunia x hybrida]	1
PATC138068	Similar to XP_002520171, ER glycerol-phosphate acyltransferase [Ricinus communis]	1
PATC144452	Putative protein to AAG494418, MYB9 [Dendrobium sp. XMW-2002-9]	0.999999
PATC134411	Weak similar to XP_002889772, DNA polymerase delta subunit 4 family [Arabidopsis lyrata subsp.lyrata]	0.999999
PATC156712	Similar to CAD87008, MYB8 protein [Gerbera hybrid cv. 'Terr Regima']	0.999997
PATC118359	Weak similar to BAF98468, cytochrome P450 [Coptis japonica var. dissecta]	0.999996
PATC154654	Homologue to ACC59773, flavonoid 3',5'hydroxylase-like protein [Vanda coerulae]	0.999988
PATC138772 (PaAGL6-2)	Homologue to ADI58464, AGL6 [Cymbidium goeringii]	0.999987
PATC136147	Similar to CBH16443, unnamed protein product [Vitis vinifera]	0.999987
PATC112668	Similar to EEC77471, hypothetical protein Osd16293 [Oryza sativa Indica Group]	0.999987
PATC140326	Similar to XP_002512728, "ATP-binding cassette transporter, putative [Ricinus communis]"	0.999986
PATC145620	Similar to XP_002516348, Sorting nexin-4, putative [Ricinus communis]	0.999985
PATC152417	Similar to XP_002463916, hypothetical protein SORBIDRAFT_01g008880 [Sorghum bicolor]	0.999985
PATC009198	Putative protein to CAA71513, putative cytochrome P450 [Glycine max]	0.999984
PATC209271	Weak similar to XP_002518849, 3-oxoacyl-1-[acyl-carrier-protein]	0.999984
PATC124681	Weak similar to BAD16430, putative AP2 domain-containing protein [Oryza sativa Japonica Group]	0.999983
PATC138420	Similar to XP_002521076, Xyloglucan endotransglycosylase/hydrolase protein 2 precursor, putative [Ricinus communis]	0.999981
PATC143361	Similar to EAY88298, hypothetical protein Osd_09755 [Oryza sativa Indica Group]	0.999998
PATC131581	Similar to XP_002885644, hydrodase, alpha/beta fold family protein Arabidopsis lyrata subsp. lyrata	0.999969
ID	Description	Similarity
--------------	--	------------
PATC124610	Putative protein to BAD44483, hypothetical protein [Arabidopsis thaliana]	0.997148
PATC138503	(PaMTN3) Similar to NP_001149087, MTN3, [Zea mays]	1
PATC126569	Similar to ADG34844, putative phenylacetaldehyde synthase [Vanda hybrid cultivar]	0.999911
PATC034663	Putative protein to BAF96951, flavone synthase II [Iris x hollandica]	0.999234
PATC130766	Putative protein to EAZ04731, hypothetical protein OsI_26893 [Oryza sativa Indica Group]	0.998892
PATC138606	Similar to XP_002265207, 3-oxoacyl-[acyl-carrier-protein] synthase[Vitis vinifera]	0.998676
PATC209271	Weak similar to XP_002518849, 3-oxoacyl-[acyl-carrier-protein]	0.998214
PATC190376	Weak similar to CAA58732, PAR-1c [Nicotiana tabacum]	0.997444
PATC201263	Putative protein to ACP27626, beta-carotene hydroxylase [Oncidium Gower Ramsey]	0.996435
PATC147953	Similar to ABF93742, beta-carotene hydroxylase, putative, expressed [Oryza sativa(japonica cultivar-group)]	0.996286
PATC177749	Similar to NP_191000, WR11 (WRINKLED 1); DNA binding / transcription factor [Arabidopsis thaliana]	0.995604
PATC067105	Similar to ABJ90468, beta-ketoacyl-ACP synthase I, [Jatropha curcas]	0.993919
PATC187105	Weak similar to ACG45585, cytochrome P450 CYP734A8 [Zea mays]	0.993342
PATC125229	Similar to BAF02551, putative brassinosteroid hydroxylase [Solanum lycopersicum]	0.993267
PATC132514	Similar to XP_002301652, acyl:coa ligase acetate-coa synthetase-like protein [Populus trichocarpa]	0.993036
PATC199654	Weak Similar to NP_200018, MATE efflux protein-related [Arabidopsis thaliana]	0.992537
PATC154379	(PaAGL6-1) Homologue to AD67237, MADS box transcription factor 1 [Oncidium Gower Ramsey]	0.992168
PATC023454	Similar to XP_002301652, acyl:coa ligase acetate-coa synthetase-like protein [Populus trichocarpa]	0.991833
PATC030120	Weak Similar to NP_194643, MATE efflux protein-related [Arabidopsis thaliana]	0.991163
PATC166947	Weak Similar to XP_002307962, acyl:coa ligase acetate-coa synthetase-like protein [Populus trichocarpa]	0.9903
PATC164233	Similar to ACG32367, AP2/EREBP transcriptional factor WR11 [Zea mays]	0.990028

Pollinia

ID	Description	Similarity
PATC024902	Putative protein to XP_002308395, AP2 domain-containing transcription factor [Populus trichocarpa]	1
PATC138224	Similar to XP_002325139, AP2 domain-containing transcription factor [Populus trichocarpa]	1
PATC056313	Putative protein to XP_003027790, ubiquitin-conjugating enzyme E2 [Schizophyllum commune H4-8]	1
PATC142684	Weak similar to XP_002278602, PREDICTED: hypothetical protein [Vitis vinifera]	1
PATC154622	Similar to ACG56678, tryptophan aminotransferase [Zea mays]	1
PATC138414	Putative protein to ACG33223, pollen-specific protein C13 precursor [Zea mays]	1
PATC125413	Similar to AAY86035, pyruvate kinase [Citrus sinensis]	1
PATC134337	Similar to ACF06586, aluminum-induced protein [Elaeis guineensis]	1
PATC154983	Putative protein to ACG33223, pollen-specific protein C13 precursor [Zea mays]	1
PATC155194	Putative protein to XP_002325139, AP2 domain-containing transcription factor [Populus trichocarpa]	1
PATC055518	Similar to NP_001063510, AP2 domain-containing transcription factor [Populus trichocarpa]	1
PATC059937	Similar to AAW88315, expansin EXP A11, [Triticum aestivum]	1
PATC150528	Weak similar to AAL99224, ubiquitin-conjugating enzyme E2 [Gossypium thurberi]	1
PATC194643	Similar to ABM54492, expansin 2 [Cunninghamia lanceolata]	1
PATC138059	Putative protein to XP_002308395, AP2 domain-containing transcription factor [Populus trichocarpa]	1
PATC138131	Similar to CAQ58629, pyruvate kinase [Vitis vinifera]	1
PATC154132	Putative protein to BAG80542, glycosyltransferase [Lycium barbarum]	1
PATC191966	Putative protein to ABS32237, asymmetric leaves 2 [Carica papaya]	1
PATC133027	Similar to BAI52955, calcium-binding EF-hand protein [Citrus lanatus subsp. vulgaris]	1
PATC118656	Similar to BAC81184, putative glucose transport protein STP1 [Oryza sativa Japonica Group]	1
PATC036239	Putative protein to XP_002519123, F-box and wd40 domain protein, putative [Ricinus communis]	1
PATC138345	Putative protein to XP_002325139, AP2 domain-containing transcription factor [Populus trichocarpa]	1
PATC137385	Similar to ABJ09596, pyruvate decarboxylase [Lycoris aurea]	1

Column

PATC154343	Similar to XP_002529091, Polygalacturonase precursor, putative [Ricinus communis]	0.999999
PATC125905	Homologue to CAA56277, bibenzyl synthase [Phalaenopsis sp. 'pSPORT1']	0.999712
PATC130846	Similar to 1Z3Q, Chain A, Resolution Of The Structure Of The Allergenic AndAntifungal Banana Fruit Thaumatin-Like Protein At 1.7a	0.999641
PATC197430	Putative protein to XP_002265159, PREDICTED: hypothetical protein [Vitis vinifera]	0.998959
PATC138585 (PaAG-2)	Homologue to AAZ95250, AGAMOUS-like transcription factor [Dendrobium crumenatum]	0.998456
PATC038602	Similar to XP_002514682, UDP-glucuronosyltransferase, putative [Ricinus communis]	0.997282
PATC190622	Putative protein to XP_002513511, transferase, transferring glycosyl groups, putative [Ricinus communis]	0.997046
Accession	Description	Similarity Score
PATC165907	Similar to XP_002526116, UDP-glucuronosyltransferase, putative [Ricinus communis]	0.997042
PATC147520	Putative protein to BAD43783, putative bHLH transcription factor [Arabidopsis thaliana]	0.996157
PATC036637	Similar to XP_002526116, UDP-glucuronosyltransferase, putative [Ricinus communis]	0.996157
PATC116847	Putative protein to AAAJ32914, polygalacturonase [Persea americana]	0.9954
PATC119249	Weak similar to AAL76415, MADS-box transcription factor [Phalaenopsis equestris]	0.995019
PATC165547	Similar to XP_002526116, UDP-glucuronosyltransferase, putative [Ricinus communis]	0.994654
PATC002540	Putative protein to BAC57273, putative polygalacturonase PG1 [Oryza sativa Japonica Group]	0.994233
PATC009554	Putative protein to XP_002526107, UDP-glucuronosyltransferase, putative [Ricinus communis]	0.993436
PATC000227	Putative protein to BAC10994, rhamnosyl transferase [Nierembergia sp. NB17]	0.993142
PATC061977	Putative protein to AAY86364, AGAMOUS-like protein [Dendrobium thyrsiflorum]	0.992483
PATC052530	Similar to XP_002520171, ER glycerol-phosphate acyltransferase [Ricinus communis]	0.992352
PATC140136	Similar to NP_001152613, MYB-CC type transfactor [Zea mays]	0.991949
PATC198687	Putative protein to NP_001064591, Osl0tg413400 [Oryza sativa Japonica Group]	0.991353
PATC155109	(PaAG-3) Homologue to AAL76415, MADS-box transcription factor [Phalaenopsis equestris]	0.99129

Pedicel

Accession	Description	Similarity Score
PATC148981	Weak similar to AAQ11882, knotted 1 [Hordeum vulgare]	0.999996
PATC175072	Putative protein to AC123247, COMPOUND INFLORESCENCE [Solanum lycopersicum]	0.99991
PATC022841	Homologue to AD58462, flowering locus T [Cymbidium goeringii]	0.999904
PATC173815	Putative protein to ACL11801, WOX9-like protein [Phaeolus coccineus]	0.999818
PATC145039	Similar to XP_002510423, cytochrome P450, putative, [Ricinus communis]	0.999631
PATC145786	Similar to CAB88029, knotted1-like homeobox protein [Dendrobium greg Madame Thong-In]	0.999388
PATC127065	Similar to ABI74672, class I KNOX-like 1 protein [Elaeis guineensis]	0.999125
PATC150862	Similar to ABU88887, S-adenosyl-L-methionine:salicylic acid carboxyl methyltransferase [Chimonanthus praecox]	0.99827
PATC155095	Similar to CAD70566, carboxyl methyltransferase [Crocus sativus]	0.997303
PATC150515	Putative protein to XP_002272432, PREDICTED: hypothetical protein [Vitis vinifera]	0.997057
PATC166128	Putative protein to BAH83538, DL related protein [Triticum aestivum]	0.996476
PATC144516	Similar to BAJ49293, homedomain leucine zipper protein class 1 [Hordeum vulgare subsp. vulgare]	0.994982
PATC074709	Putative protein to AAW83045, CRABS CLAW [Capparis flexuosa]	0.99446
ID	Description	Identity Score
------------	---	-----------------
PATC147749	Similar to BAF93480, class-I knotted1-like homeobox protein IBKN3 [Ipomoea batatas]	0.992282
PATC163884	Weak similar to XP_002517072, conserved hypothetical protein [Ricinus communis]	0.991868
PATC069479	Similar to ABF70015, zinc finger (Dof type) family protein [Musa acuminate]	0.989296
PATC069726	Putative protein to XP_002284464, PREDICTED: similar to bHLH transcription factor Upa20 [Vitisvinifera]	0.988977
PATC122106	Putative protein to XP_002526340, LOB domain-containing protein, putative [Ricinus communis]	0.987073
PATC148697	Similar to ACN21632, putative basic helix-loop-helix protein BHLH7 [Lotus japonicus]	0.986846
PATC202120 (PaAG-4)	Putative protein to AAZ95251, AGAMOUS-like transcription factor [Dendrobiurn crumenatum]	0.985674
Quantitative PCR for validation of tissue specific expression pattern

Method

All the RNA samples were treated with DNase treatment by TURBO DNA-free kit (Ambion, TX, USA) and quantified by RNA Bioanalyzer (Agilent, CA, USA). cDNA was synthesized from 1 µg of total RNA with M-MLV Reverse transcriptase kit (Invitrogen, CA, USA) and poly T primer. All primers used were designed by Primer Express version 3.0 (Applied Biosystems, CA, USA). A total of 20 µl real-time PCR reaction contained primers, cDNA and 10 µl 2X SYBR Green PCR master mix (Applied Biosystems, CA, USA). Real-time PCR was performed in the ABI Prism 7300 Sequence Detection System (Applied Biosystems, CA, USA) with programs recommended by the manufacturer (2 min at 50 °C, 10 min at 95 °C and 40 cycles of 95 °C for 15 sec and 60 °C for 1 min). Each sample was performed with real-time PCR for three independent biological replicates. The comparative CT method (cycle of threshold) was used to determine the relative level of gene expression, with the expression value of ubiquitin (PATC150470) or actin (PATC135993) used as internal controls. Relative expression level is determined by delta Ct of target gene normalized to the internal control. Genes for the validation are listed in Supplementary Table S2 and their primers were listed in Table S3.
(A) Whole flower specific
(B) Lip specific

1. PATC126569
2. PATC130766
3. PATC138503
4. PATC138606
5. PATC147953
6. PATC190376
7. PATC201263
(C) Pollinia specific

PATC055518

PATC059937

PATC125413

PATC136224

PATC142684

PATC154622

PATC155194

PATC194643
(D) Column specific

- **PATC125905**
 - Relative expression level (x 0.0001)
 - Tissue type:
 - Root
 - Leaf
 - Sepal
 - Petal
 - Lip
 - Pollinia
 - Column
 - Pedicel

- **PATC130864**
 - Relative expression level (x 0.0001)
 - Tissue type:
 - Root
 - Leaf
 - Sepal
 - Petal
 - Lip
 - Pollinia
 - Column
 - Pedicel

- **PATC138585**
 - Relative expression level (x 0.001)
 - Tissue type:
 - Root
 - Leaf
 - Sepal
 - Petal
 - Lip
 - Pollinia
 - Column
 - Pedicel

- **PATC154343**
 - Relative expression level (x 0.0001)
 - Tissue type:
 - Root
 - Leaf
 - Sepal
 - Petal
 - Lip
 - Pollinia
 - Column
 - Pedicel

- **PATC197430**
 - Relative expression level (x 0.0001)
 - Tissue type:
 - Root
 - Leaf
 - Sepal
 - Petal
 - Lip
 - Pollinia
 - Column
 - Pedicel
Figure S2. Quantitative PCR validation of genes differentially expressed in specific tissues. Relative expression level was normalized to a house-keeping gene, Ubiquitin (PATC150470),
with the determination of PCR cycle of threshold. Experiments with triple biological repeats were performed. Standard deviation was shown on figure. (A) Flower specific expression pattern. (B) Lip specific expression pattern. (C) Pollinia specific expression. (D) Column specific pattern. (E) Pedicel specific expression. Primers for the assay were listed in Supplementary Table S3.
Table S2. Genes from the microarray clustering assay that were validated by quantitative PCR. Ubiquitin gene (PATC150470) and actin (PATC135993) were used as internal controls for normalization. Gene-specific primers for validation were listed in Supplementary Table S3.

Gene id	Gene description		
Flower specific (Figure S2A)			
PATC131581	Similar to XP_002885644, hydrolase, alpha/beta fold family protein Arabidopsis lyrata subsp. lyrata		
PATC150065	Similar to ACB59077, Myb-like transcription factor EOBII [Petunia x hybrida]		
PATC154654	Homologue to ACC59773, flavonoid 3',5' hydroxylase-like protein [Vanda coerulea]		
PATC144452	Putative protein to AAO49418, MYB9 [Dendrobium sp. XMW-2002-9]		
PATC138772	Homologue to ADIS8464, AGL6 [Cymbidium goeringii]		
Lip specific (Figure S2B)			
PATC138503	Similar to ref	NP_001149087.1	MTN3 [Zea mays] (Sugar efflux transporter for intercellular exchange)
PATC126569	Similar to ADG34844, putative phenylacetaldehyde synthase [Vanda hybrid cultivar] (PAAS – catalyzes the formation of PHA (floral scent)		
PATC130766	Putative protein to EAZ04731, hypothetical protein OsL_26893 [Oryza sativa Indica Group]		
PATC138606	Similar to XP_002265207, 3-oxoacyl-(acyl-carrier-protein) synthase [Vitis vinifera]		
PATC190376	Weak similar to emb	CAAS5732.1	PAR-1c [Nicotiana tabacum]
PATC201263	Putative protein to ACP27626, beta-carotene hydroxylase [Oncidium Gower Ramsey]		
PATC147953	Similar to >dbj	BAH10591.1	beta-ring hydroxylase [Lilium hybrid division I]
PATC177749	Similar to NP_191000, WR11 (WRINKLED 1), DNA binding / transcription factor [Arabidopsis thaliana]		
Pollinia specific (Figure S2C)			
PATC199170	Similar to ABM54492, expansin 2 [Cunninghamia lanceolata]		
PATC138224	Similar to XP_002325139, AP2 domain-containing transcription factor Populus trichocarpa		
PATC142684	Putative protein to >ref	NP_002522563.1	Heterogeneous nuclear ribonucleoprotein A1, putative [Ricinus communis]
PATC154622	Similar to >gb	ACG56678.1	tryptophan aminotransferase Zea mays
PATC125413	Similar to AAY86035, pyruvate kinase [Citrus sinensis]		
PATC155194	Putative protein to >ref	NP_002325139.1	AP2 domain-containing transcription factor Populus trichocarpa
PATC059937	Weak similar to >gb	AAW88315.1	expansin EXPA11 [Triticum aestivum]
PATC055518	Similar to NP_001063510, Os09g0483500 [Oryza sativa Japonica Group]		
Column specific (Figure S2D)

Accession	Description
PATC154343	Similar to XP_002529091, Polygalacturonase precursor, putative [Ricinus communis]
PATC125905	Homologueto CAA56277, bibenzyl synthase [Phalaenopsis sp. 'pSPORT1']
PATC130846	Similar to 1Z3Q, Chain A, Resolution Of The Structure Of The Allergenic And Antifungal Banana Fruit Thaumatin-Like Protein At 1.7a
PATC197430	Putative protein to XP_002265159, PREDICTED: hypothetical protein [Vitis vinifera]
PATC138585	Homologue to AAQ95250, AGAMOUS-like transcription factor [Dendrobium crumenatum]

Pedicel specific (Figure S2E)

Accession	Description		
PATC148981	Weak similar to AAQ11882, knotted 1 [Hordeum vulgare]		
PATC022841	Homologue to ADI58462, flowering locus T [Cymbidium goeringii]		
PATC173815	Putative protein to >gb	ACL11801.1	WOX9-like protein Phaseolus coccineus
PATC145039	Similar to XP_002510423, cytochrome P450, putative Ricinus communis		
PATC145786	Similar to CAB88029, knotted1-like homeobox protein [Dendrobium grex Madame Thong-In]		
PATC127065	Similar to ABI74672, class I KNOX-like 1 protein [Elaeis guineensis]		
PATC150515	Putative protein to XP_002272432, PREDICTED: hypothetical protein [Vitis vinifera]		

Transcription factors (Figure 5C, 5D)

Accession	Description
PATC135043	(PaHLH-1) Similar to NP_001031255, basic helix-loop-helix (bHLH) family protein [Arabidopsis thaliana]
PATC150065	(PaMYB-4) Similar to ADGS8063, transcription factor [Lycoris longituba]
PATC134262	(PaZIP-2) Similar to NP_172097, "bZIP transcription factor, putative (bZIP69) [Arabidopsis thaliana]"
PATC133172	Similar to ADJ67440, ethylene response factor 11 [Actinidia delicosa]
PATC136849	(PaZIP-3) Weak similar to AAK92213, bZIP transcription factor BZI-2 [Nicotiana tabacum]
PATC140443	(PaHLH-3) Similar to ABR23669, Myc2 bHLH protein [Vitis vinifera]
PATC152106	(PaMYB-2) Similar to XP_002528315, r2r3-myb transcription factor, putative [Ricinus communis]
PATC138345	(PaAP2-7) Putative protein to XP_002325139, AP2 domain-containing transcription factor [Populus trichocarpa]
PATC138298	(PaNAC-3) Similar to ADGS57969, transcription factor [Lycoris longituba]

MADS box genes (Figure 5A, 5B)

Accession	Description
PATC154379	(PaAGL6-1) Homologue to ADJ67237, MADS box transcription factor 1 [Oncidium Gower Ramsey]
PATC138772	(PaAGL6-2) Homologue to ADIS8464, AGL6 [Cymbidium goeringii]
PATC155109	(PaAG-3) Homologue to AAL76415, MADS-box transcription factor [Phalaenopsis equestris]
Accession	Description
-------------	--
PATC138798	Similar to NP_001148603, MADS-box protein AGL66 [Zea mays]
PATC138540	Homologue to ADJ67238, MADS box transcription factor 6 [Oncidium Gower Ramsey]
PATC154853	Homologue to AAR26629, MADS-box transcription factor [Asparagus officinalis]
PATC138350	Homologue to AAR26626, MADS box transcription factor [Phalaenopsis equestris]
PATC152852	Homologue to AAV28175, MADS box PI-like protein 9 [Phalaenopsis hybrid cultivar]

Morphological genes (Figure 6)

Accession	Description
PATC154491	Similar to ACV88635, SUPRESSOR OF OVEREXPRESSION OF CONSTANS1 [Magnolia virginiana]
PATC198032	Weak similar to ADJ67237, MADS box transcription factor 1 [Oncidium Gower Ramsey]
PATC129930	Similar to AAO64176, putative zinc finger protein [Arabidopsis thaliana]
PATC138503	Similar to NP_001149087, MTN3, [Zea mays]

Internal control

Accession	Description
PATC150470	Homologue to NP_001148325, ubiquitin-like protein SMT3 [Zea mays]
PATC135993	Similar to XP_002317939, actin related protein [Populus trichocarpa]
Table S3. List of primers used for quantitative PCR analysis.

Gene id	Forward primer (5’ to 3’)	Reversed primer (5’ to 3’)
Flower specific (Figure S2A)		
PATC131581	TCAAGCATGGGCTGAAGAAATT	GCAAGGGAATGTGGTGGTT
PATC150065 (PaMYB-4)	GCACCTGCACGCTTAAATTG	GAAGAGTCTGGACGACGAAAA
PATC154654	AATAAACCAATCATAAGCGATCAGAA	CCGACGGTTGGAAAACCTTTCA
PATC144452	CATCTTCACGATAGGTGCCATCT	TTGCAAACCTAAAAGCAAAAGCTCAA
PATC138772 (PaAGL6-2)	TTGTTCTCCAGAAAACGTGAAATCC	GCATCCATCCAAAGCATAAAAATATT
Lip specific (Figure S2B)		
PATC138503 (PaMTN3)	TGGTGCGGCTCAAAATTATACTTT	CAAGAGCGATTCAGAAAACCAT
PATC126569	CGCAGTGGGTCGTAGGTTTC	CCAACAATATCGTCTGATGA
PATC130766	CCCATCCGGTATCTCAA	CATCGCCGCTGATCGT
PATC138606	GGCCTCGAGATTCGAAATTT	GCCCTGATCAGATTTTT
PATC190376	CCGTGCGGTCTGTGAGAGAAG	CTTACGCCAGGATCTTCATTTGA
PATC201263	GCTGAGCGAGGTTGTATTTG	GCCGTAATATGAAATCCAGAGCTTT
PATC147953	CCGTTTGGAGTCACGATGT	GGAGAGCAATGGCAGGATA
Pollinia specific (Figure S2C)		
PATC199170	TAGCGCAAGGCTACGGCTTA	CAGCCCAATCGTGAACAGT
PATC138224	TCTCATTTCCTCCGTTCAAAATCC	CATCAAAATTATCTACCTTTTCTAAAGGG
PATC142064	CCAACGCGTACCCCTCAA	TTTGTTCTGTGACATCGA
PATC154622	GGCCTCGGCTAGTGAAGA	CTCGACACATTCACCATTCTTC
PATC125413	CGATCTGTGCTGGTGTGTT	TGACCAGCACGTGATTTCT
PATC155194	GTTCTGTGTTGTTACAAGCAGATG	TCTTGACGTCGCTCCTCCCA
PATC059937	GCGAGGGAATGAGGTCA	CCACATCACAAGCAGATCATGTT
Accession	Sequence 1	Sequence 2
-----------	------------	------------
PATC055518	GCGAAGGAGCTTACGAACATTC	CCGATTGCCGTAATGC
Column specific (Figure S2D)		
PATC154343	CGACAAAGGTGGCAGTGAAA	CGATTCACCTGCACGGATT
PATC125905	AGCGGCTAAGGCTTACATTCA	GGTGGAAGTTTTTGATTTTG
PATC130846	TGTCGGGACGTACACTTTATGCA	GCTGAGAAAAGCATTAAAGACATCCT
PATC197430	CAATGCTTGTGGAAGTGATAG	TGAAGCTTATCCATCCATAATGG
PATC138585 (PaAG-2)	CTGATGGGAGGCACTTAGC	TCTCCAGTCTTTCTCAAGTGTGCT
Pedicel specific (Figure S2E)		
PATC148981	GAACGCTGCTGCTTTATATGG	AGGTCGAATCGATAATTCTCA
PATC022841	TCCGGCAGTGAATAATGTTGCTA	ACAAGCGGTGTATGCCTAGACT
PATC173815	CATGACATCAACACCTCTCTTT	CGGATCTGAAGCATAGGAGTT
PATC145039	ACAGGAACCCAAAGCACAGCAA	TGGGCCAGCCACTCCATAAC
PATC145786	TTTGATTTGTTGAGCTGCTCATA	CAGCGCAATTTTGCTGTGATTCT
PATC127065	CAGTTTAAGTGCCTCGCTCTTTC	TCAAGCTCACCACCCACTTG
PATC150515	TTCAAGACTGCGCCACAAACAT	TCTTTCCCACACTTATGTTG
Transcription factors (Figure 5C, 5D)		
PATC138345 (PaAP2-7)	CCCTCGACAATGTCTGGATTAGA	GCCTCCCTAGGCAAAGTCA
PATC133172 (PaAP2-5)	CCGGGCTACCTACCTCTCTCTTCT	TGCCCTGCGGAATAGTAC
PATC135043 (PabHLH-1)	TGCGCTGCTGCTATGAG	GATAGCGCAATCGGAAGTCCTT
PATC140443 (PabHLH-3)	TTATCGTGAGGAGTTCAGATCA	GAATTGAGCCGGCCTT
PATC134262 (PabZIP-2)	TTAGTTGCCTGGAGGCTGACA	ACATCCCTGATAAAATTGCCCATTA
PATC136849 (PabZIP-3)	CATGTTTTTATAGTTCTGCTGTGAGT	CGGCTTTCGCAACCTATAA
PATC152106 (PaMYB-2)	GCGTGCGGCCTGACT	CAAATCAGCCTCCTACACTT
PATC150065 (PaMYB-4)	GCAACCTGCACCCCTGAAAATTG	GAAGAGTCTGGAAGCCGAAA
PATC138298 (PaNAC-3)	CTATCACTCTTTCCGCAGACCAA	ACTGCGATGTGGCTTCTAAC
MADS box genes (Figure 5A, 5B)		
Accession	Gene	Primer 1
-----------	------	----------
PATC154853 (PaAP3-4)	CCACCGATACCAAGAGTGTATATGA	GCTCGCTCCACAAATTTATGC
PATC152852 (PaPI-1)	AAAGAGCTTATTCGCCATTGGAGGA	TGTTTATCCCCGAAACGCTAGTGA
PATC138540 (PaSEP-1)	CCGATTTTATCGATTGCACCAA	CCAACCAGTGCGATGTAATT
PATC154379 (PaAGL6-1)	GAGGTACAATCAGTATGCTTCTG	TTGTAGGCTTGAGCAGATCGT
PATC138798 (PaMδS-1)	CAGATGCCTTGGCTCGTGA	TTGTAGGCTTGAGCAGATCGT
PATC155109 (PaAG-3)	CCACAAAAACTGCAGTCGCAA	GCATTCACCAGCAATTCC
PATC138772 (PaAGL6-2)	TTGTTCCTCCAGAAAACTGTAATTCC	GCATCCATCCAAGCATAAAATTATT
PATC138350 (PaAP3-3)	CCAGAAAACACACCCGGAACCTAA	CCATAAATGGGTGGTCCTCAA
PATC240636 (PaAP3-1)	GGGAAAACCTTACGCCTCTAATAC	CGTTCACCATTGGAAATCGAATT

Morphological genes (Figure 6)

Accession	Gene	Primer 1	Primer 2
PATC154491 (PaSOC1-3)	AGGAGATGTTCTCCAAATGTG	CGGGCCTCATCACATACAGTTC	
PATC198032	AGACAATCGGCGAGATATACGTCGTGC	CTGGATCCATGGCTGAGGCG	
PATC129930 (PaZf)	TCTTAAAGGATCATGTCAAGGCATTT	CAAAAAATGCAACCCACAAG	
PATC138503 (PaMTN3)	TGGTGCGGTCTCAAATTCTAAAAAT	CAAGAGCCGATTCAGAAACCAC	

Internal Control

Accession	Gene	Primer 1	Primer 2
PATC135993 (Actin)	CTAGCGGAAACCGGCACAGA	CCAAGGGAGGCAAAAATGC	
PATC150470 (Ubiquitin)	GATCGCCAGTCGGTTGATT	GAAGCCTACGGCCATCGA	
Phylogeny analysis of MADS box gene and AP2 transcription factors
Figure S3. Phylogenetic analysis of MADS box gene and AP2 gene family. (A) Phylogenetic analysis of MADS box gene family. 30 Arabidopsis (AT number) and 28 rice (LOC Os number) MADS box genes were collected for phylogeny analysis and used as the mainframe to support the classification. Sequences of all other orchid species were retrieved from GenBank or related references. Initials for gene symbol are indicated as Ce (Cymbidium ensifolium), Dc (Dendrobium crumenatum), DM (Dendrobium moniliforme), DO (Dendrobium grex Madame Thong-IN, hybrid), Dthyr (Dendrobium thyrsiflorum), Phal (Phalaenopsis hybrid cultivar), O (Oncidium Gower Ramsey, hybrid), Pe (Phalaenopsis equestris), PATC (Phalaenopsis aphrodite, from Orchidstra database). (B) Phylogenetic analysis of AP2 gene. 26 Arabidopsis and 33 rice AP2 genes were used for constructing the
structure of phylogenetic analysis. Zm is the initial for Zea mays. PHAP2 is petunia AP2 homologs and LIPLESS is snapdragon AP2 gene. 38 Phalaenopsis AP2 genes were included in the analysis. Numbers in the brackets indicate number of (PATC/overall) genes within each category. A complete gene list of the phylogenetic analysis is in Supplementary Table S4.
Table S4. MADS box genes and AP2 genes in phylogenetic analysis. Altogether, there are 120 MADS box transcription factors and 105 AP2 genes applied to Supplementary Figure S3 analysis. 28 MADS box genes and 38 AP2 genes of Phalaenopsis aphrodite (marked with *) were denoted with PATC initials used in the Orchidstra database. Additional MADS box genes, 16 others, were applied to Figure 2 (panel B and C) for detailed class A and class B functional groups.

MADS box gene family

Gene Name	Accession number	Source	Reference
Arabidopsis (30 genes)			
AT1G01530.1(AGL28)	NM_100035	Arabidopsis thaliana	Plant Cell. 2003 Jul;15(7):1538-51.
AT1G18750.1(AGL65)	NM_101733	Arabidopsis thaliana	Plant Physiol. 2009 Apr;149(4):1713-23.
AT1G24260.2(SEP3)	NM_001198152	Arabidopsis thaliana	Nature. 2000 May 11;405(6783):200-3.
AT1G26310.1(CAL)	NM_102395	Arabidopsis thaliana	Science. 1995 Jan 27;267(5197):522-5.
AT1G29962.1(AGL64)	NM_001084156	Arabidopsis thaliana	Plant Cell. 2003 Jul;15(7):1538-51.
AT1G65300.1(PHE2)	NM_105204	Arabidopsis thaliana	Genes Dev.2003 Jun 15;17(12):1540-53.
AT1G69120.1(AP1)	NM_105581	Arabidopsis thaliana	Science. 1995 Jan 27;267(5197):522-5.
AT1G69540.1(AGL94)	NM_105623	Arabidopsis thaliana	Plant Physiol. 2009 Apr;149(4):1713-23
AT1G77980.1(AGL66)	NM_106447	Arabidopsis thaliana	Plant Physiol. 2009 Apr;149(4):1713-23
AT2G03060.2(AGL30)	NM_001084404	Arabidopsis thaliana	Plant Physiol. 2009 Apr;149(4):1713-23
AT2G03710.1(SEP4)	NM_201682	Arabidopsis thaliana	Curr Biol. 2004 Nov 9;14(21):1935-40.
AT2G14210.1(ANR1)	NM_126990	Arabidopsis thaliana	Plant J. 2008 Jun;54(5):820-8.
AT2G22540.1(SVP)	NM_001161056	Arabidopsis thaliana	Plant J. 2000 Feb;21(4):351-60
AT2G42830.2(SHP2)	ABK59682	Arabidopsis thaliana	Nature.2000 Apr 13;404(6779):766-70.
AT2G45650.1(AGL6)	NM_130127	Arabidopsis thaliana	Plant Cell. 2012 Jun;24(6):2364-79.
AT2G45660.1(SOC1)	NM_130128	Arabidopsis thaliana	Genes Dev. 2000 Sep 15;14(18):2366-76.
Gene ID	Accession	Species	Journal Details
------------------	-----------	------------------	----------------
AT3G02310.1(SEP2)	AEE73791	Arabidopsis thaliana	Curr Biol. 2004 Nov 9;14(21):1935-40.
AT3G04100.1(AGL57)	NM_111281	Arabidopsis thaliana	Plant Cell. 2003 Jul;15(7):1538-51.
AT3G05860.1(AGL46)	NM_111460	Arabidopsis thaliana	Plant Physiol. 2010 Sep;154(1):287-300.
AT3G54340.1(AP3)	AEE79216	Arabidopsis thaliana	Proc Natl Acad Sci U S A. 1996 May 14;93(10):4793-8.
AT3G58780.3(SHP1)	NP_001190130	Arabidopsis thaliana	Nature.2000 Apr 13;404(6779):766-70.
AT4G002235.1(AGL51)	AT4G02235.1	Arabidopsis thaliana	Plant Cell. 2003 Jul;15(7):1538-51
AT4G09960.3(STK)	AEE82818	Arabidopsis thaliana	Plant Cell. 2005 Mar;17(3):722-9. Epub 2005 Feb 18
AT4G18960.1(AG)	AEE84112	Arabidopsis thaliana	Plant Cell Physiol. 1997 Mar;38(3):248-58.
AT5G15800.2(SEP1)	NM_001125758	Arabidopsis thaliana	Curr Biol. 2004 Nov 9;14(21):1935-40.
AT5G20240.1(PI)	AED92817	Arabidopsis thaliana	Plant Cell.1991 Nov;3(11):1221-1237.
AT5G38620.1(AGL73)	NM_123223	Arabidopsis thaliana	J Mol Evol. 2003 May;56(5):573-86.
AT5G41200.1(AGL75)	BT030016	Arabidopsis thaliana	Plant Physiol.2010 Sep;154(1):287-300
AT5G48670.1(AGL80)	DQ056710	Arabidopsis thaliana	Plant Physiol.2010 Sep;154(1):287-300
AT5G60910(FUL)	NM_125484	Arabidopsis thaliana	Development. 1998 Apr;125(8):1509-17.

Rice (28 genes)

Gene ID	Accession	Species	Journal Details
LOC_Os01g10504.1_(OsMADS3)	Q40704	Oryza sativa	Plant Mol. Biol. 29 (1), 1-10 (1995)
LOC_Os01g18440.1_(OsMADS89)	N/A	Oryza sativa	BMC Genomics. 2007 Jul 18;8:242.
LOC_Os01g66303.1_(OsMADS2)	Q40702	Oryza sativa	Plant Sci. 109, 45-56 (1995)
LOC_Os01g66290.1_(OsMADS21)	Q8RU31	Oryza sativa	Plant J. 2007 Nov;52(4):690-9. Epub 2007 Sep 17
LOC_Os02g36924.1_(OsMADS27)	Q6Ep49	Oryza sativa	Plant Cell Physiol (2003) 44 (12): 1403-1411
LOC_Os02g45770.1_(OsMADS6)	Q6EU39	Oryza sativa	Plant J. 2010 Nov;64(4):604-17
LOC_Os02g49840.1_(OsMADS57)	Q6Z6W2	Oryza sativa	BMC Genomics. 2007 Jul 18;8:242.
LOC_Os02g52340.1_(OsMADS22)	Q9XJ66	Oryza sativa	Mol Genet Genomics. 2005 Mar;273(1):1-9
LOC_Os03g08754.1_(OsMADS47)	Q5K4R0	Oryza sativa	J Exp Bot. 2008;59(8):2181-90
LOC_Os03g11614.1_(OsMADS1)	Q10PZ9	Oryza sativa	Plant J. 2005 Sep;43(6):915-28
LOC_Os03g54160.1_(OsMADS14)	Q10CQ1	Oryza sativa	Plant Mol. Biol. 44 (4), 513-527 (2000)
LOC_ Os04g23910.1_(OsMADS25)	Q84NC5	Oryza sativa	Plant Cell Physiol. 44(12): 1403–1411 (2003)
LOC_ Os04g49150.1_(OsMADS17)	Q7XUN2	Oryza sativa	Cell Res. 2010 Mar;20(3):299-313.
LOC_ Os05g34940.1_(OsMADS4)	Q40703	Oryza sativa	Plant Sci. 109, 45-56 (1995)
LOC_ Os06g06750.1_(OsMADS5)	Q0DEB8	Oryza sativa	Mol Cells. 1997 Feb;7(1):45-51.
LOC_ Os06g11330.1_(OsMADS55)	Q69TG5	Oryza sativa	Plant Sci. 2012 Apr;185-186:97-104
LOC_ Os06g11970.1_(OsMADS63)	N/A	Oryza sativa	BMC Genomics. 2007 Jul 18;8:242.
LOC_ Os06g49840.1_(OsMADS16)	Q944S9	Oryza sativa	Plant Mol. Biol. 40 (1), 167-177 (1999)
LOC_ Os07g01820.1_(OsMADS15)	Q6Q912	Oryza sativa	Plant Mol. Biol. 44 (4), 513-527 (2000)
LOC_ Os07g41370.1_(OsMADS18/28)	Q0D4T4	Oryza sativa	Plant Physiol. 120 (4), 1193-1204 (1999)
LOC_ Os08g33488.1_(OsMADS23)	Q6VAM4	Oryza sativa	Plant Cell Physiol (2003) 44 (12): 1403-1411.
LOC_ Os08g38590.1_(OsMADS62)	N/A	Oryza sativa	BMC Genomics. 2007 Jul 18;8:242.
LOC_ Os08g41950.1_(OsMADS7/45)	Q0J466	Oryza sativa	Mol Cells. 1997 Aug 31;7(4):559-66.
LOC_ Os09g32948.1_(OsMADS8/24)	Q9SAR1	Oryza sativa	Plant J. 2010 Mar;61(5):767-81
LOC_ Os10g39130.1_(OsMADS56)	P0C5B2	Oryza sativa	BMC Genomics. 2007 Jul 18;8:242.
LOC_ Os11g43740.1_(OsMADS68)	N/A	Oryza sativa	BMC Genomics. 2007 Jul 18;8:242.
LOC_ Os12g10540.1_(OsMADS13)	Q2QW53	Oryza sativa	Dev. Genet. 25 (3), 237-244 (1999)
LOC_ Os12g31748.1_(OsMADS20)	Q2QQA3	Oryza sativa	Plant Cell Physiol (2003) 44 (12): 1403-1411

Cymbidium orchid (2 genes)

CeMADS1 | GU123626 | Cymbidium ensifolium | Plant Cell Physiol. 2011 Mar;52(3):563-77. |

CeMADS2 | GU123627 | Cymbidium ensifolium | Plant Cell Physiol. 2011 Mar;52(3):563-77. |

Dendrobium orchid (15 genes)

DcOAG1 | DQ119840 | Dendrobium crumenatum | Plant J. 2006 Apr;46(1):54-68. |

DcOAG2 | AAZ95251 | Dendrobium crumenatum | Plant J. 2006 Apr;46(1):54-68. |

DcOAP3A | AAZ95248 | Dendrobium crumenatum | Plant J. 46 (1), 54-68 (2006) |

DcOAP3B | AAZ95249 | Dendrobium crumenatum | Plant J. 46 (1), 54-68 (2006) |

DcOSEP1 | DQ119842 | Dendrobium crumenatum | Plant J. 46 (1), 54-68 (2006) |
Accession	Name	Species	Journal/Reference
DMMADS4	ADD60473	*Dendrobium moniliforme*	Acta Hortic. 836, 259-264 (2009)
DOMADS1	AF198174	*Dendrobium grex Madame Thong-In*	Unpublished
DOMADS2	AF198175	*Dendrobium grex Madame Thong-In*	Unpublished
DOMADS3	AF198176	*Dendrobium grex Madame Thong-In*	Unpublished
Dthyr-PI	AAY86363	*Dendrobium thyrsiflorum*	Unpublished
DthyrAG1	DQ017702	*Dendrobium thyrsiflorum*	Gene. 2006 Feb 1;366(2):266-74.
DthyrAG2	AAY86365	*Dendrobium thyrsiflorum*	Gene. 2006 Feb 1;366(2):266-74.
DthyrFL1	AY927236	*Dendrobium thyrsiflorum*	Plant Sci. 169 (3), 579-586 (2005)
DthyrFL2	AY927237	*Dendrobium thyrsiflorum*	Plant Sci. 169 (3), 579-586 (2005)
DthyrFL3	AY927238	*Dendrobium thyrsiflorum*	Plant Sci. 169 (3), 579-586 (2005)

Oncidium orchid (9 genes)

Accession	Name	Species	Journal/Reference
OMADS1	HM140843	Oncidium Gower Ramsey	Plant Cell Physiol. 44 (8), 783-794 (2003)
OMADS10	HM140846	Oncidium Gower Ramsey	Plant Cell Physiol. 50 (8), 1425-1438 (2009)
OMADS11	HM140847	Oncidium Gower Ramsey	Plant Cell Physiol. 50 (8), 1425-1438 (2009)
OMADS3	AAO45824	Oncidium Gower Ramsey	Plant Cell Physiol. 43 (10), 1198-1209 (2002)
OMADS5	ADJ67234	Oncidium Gower Ramsey	Plant Physiol. 152 (2), 837-853 (2010)
OMADS6	HM140844	Oncidium Gower Ramsey	Plant Cell Physiol. 2009 Aug;50(8):1425-38.
OMADS7	HM140845	Oncidium Gower Ramsey	Plant Cell Physiol. 50 (8), 1425-1438 (2009)
OMADS8	ADJ67236	Oncidium Gower Ramsey	Plant Physiol. 152 (2), 837-853 (2010)
OMADS9	ADJ67235	Oncidium Gower Ramsey	Plant Physiol. 152 (2), 837-853 (2010)

Phalaenopsis orchid (37 genes)

Accession	Name	Species	Journal/Reference	
PeMADS1	AF234617	*Phalaenopsis equestris*	Unpublished	
PeMADS2	AAR26628	*Phalaenopsis equestris*	Plant Cell Physiol. 45 (7), 831-844 (2004)	
PeMADS3	AAR26629	*Phalaenopsis equestris*	Plant Cell Physiol. 45 (7), 831-844 (2004)	
PeMADS4	AAR26626	*Phalaenopsis equestris*	Plant Cell Physiol. 45 (7), 831-844 (2004)	
PeMADS5	AAR26630	*Phalaenopsis equestris*	Plant Cell Physiol. 45 (7), 831-844 (2004)	
Gene	Accession Number	Species	Publication Information	
------------	------------------	--------------------------	--	
PeMADS6	AAV83997	*Phalaenopsis equestris*	Plant Cell Physiol. 46 (7), 1125-1139 (2005)	
PeMADS7	AFI61557	*Phalaenopsis equestris*	Plant Cell Physiol. 53 (6), 1053-1067 (2012)	
PhalAG1	BAE80120	*Phalaenopsis hybrid cultivar*	Dev. Genes Evol. 216 (6), 301-313 (2006)	
PhalAG2	BAE80121	*Phalaenopsis hybrid cultivar*	Dev. Genes Evol. 216 (6), 301-313 (2006)	
PaAG-1	PATC052371*	*Phalaenopsis aphrodite*	*Orchidstra* database	
PaAG-2	PATC138585*	*Phalaenopsis aphrodite*	*Orchidstra* database	
PaAG-3	PATC155109*	*Phalaenopsis aphrodite*	*Orchidstra* database	
PaAG-4	PATC202120*	*Phalaenopsis aphrodite*	*Orchidstra* database	
PaAGL6-1	PATC154379*	*Phalaenopsis aphrodite*	*Orchidstra* database	
PaAGL6-2	PATC138772*	*Phalaenopsis aphrodite*	*Orchidstra* database	
PaANR-1	PATC129763*	*Phalaenopsis aphrodite*	*Orchidstra* database	
PaANR-2	PATC131704*	*Phalaenopsis aphrodite*	*Orchidstra* database	
PaAP1-1	PATC145405*	*Phalaenopsis aphrodite*	*Orchidstra* database	
PaAP1-2	PATC154931*	*Phalaenopsis aphrodite*	*Orchidstra* database	
PaAP3-1	PATC240636*	*Phalaenopsis aphrodite*	*Orchidstra* database	
PaAP3-2	PATC133864*	*Phalaenopsis aphrodite*	*Orchidstra* database	
PaAP3-3	PATC138350*	*Phalaenopsis aphrodite*	*Orchidstra* database	
PaAP3-4	PATC154853*	*Phalaenopsis aphrodite*	*Orchidstra* database	
PaMdeltaP-1	PATC132082*	*Phalaenopsis aphrodite*	*Orchidstra* database	
PaMdeltaS-1	PATC138798*	*Phalaenopsis aphrodite*	*Orchidstra* database	
PaMgamma-1	PATC171265*	*Phalaenopsis aphrodite*	*Orchidstra* database	
PaMgamma-2	PATC240637*	*Phalaenopsis aphrodite*	*Orchidstra* database	
PaMgamma-3	PATC240639*	*Phalaenopsis aphrodite*	*Orchidstra* database	
PaMgamma-4	PATC240638*	*Phalaenopsis aphrodite*	*Orchidstra* database	
PaPI-1	PATC152852*	*Phalaenopsis aphrodite*	*Orchidstra* database	
PaSEP-1	PATC138540*	*Phalaenopsis aphrodite*	*Orchidstra* database	
Gene Name	Accession number	Species	Source	Reference
-----------	------------------	---------	--------	-----------
PaSEP-2	PATC141808*	Phalaenopsis aphrodite	Orchidstra database	
PaSEP-3	PATC152066*	Phalaenopsis aphrodite	Orchidstra database	
PaSOC1-1	PATC136427*	Phalaenopsis aphrodite	Orchidstra database	
PaSOC1-2	PATC150808*	Phalaenopsis aphrodite	Orchidstra database	
PaSOC1-3	PATC154491*	Phalaenopsis aphrodite	Orchidstra database	
PaSVP-1	PATC127095*	Phalaenopsis aphrodite	Orchidstra database	
Others (16 genes)				
LMADS1	AAM27456	Lilium longiflorum	Plant Cell Physiol. 42 (10), 1156-1168 (2001)	
TGEFA	BAC75970	Tulipa gesneriana	Plant Mol. Biol. 52 (4), 831-841 (2003)	
BOBAP3	AAB17139	Brassica oleracea var. botrytis	Planta 201 (2), 179-188 (1997)	
PMADS1	Q07472	Petunia x hybrida	Plant Physiol. 102 (3), 1051-1052 (1993)	
ZMM16	NP_001105136	Zea mays	Science 326 (5956), 1112-1115 (2009)	
ZMM29	NP_001105137	Zea mays	Plant Physiol. 134 (4), 1317-1326 (2004)	
LRGLOA	BAB91551	Lilium regale	Mol. Biol. Evol. 19 (5), 587-596 (2002)	
LRGLOB	BAB91552	Lilium regale	Mol. Biol. Evol. 19 (5), 587-596 (2002)	
ORCPI	BAC22579	Orchis italica	Unpublished	
VvAPI	ACZ26528	Vitis vinifera	Unpublished	
LlAPI	ADT78583	Lilium longiflorum	Plant Cell Physiol. 49 (5), 704-717 (2008)	
ZmAPl	NP_001105333	Zea mays	Plant J. 8 (6), 845-854 (1995)	
MgAGL6	AAY25579	Magnolia grandiflora	Unpublished	
AcAGL6	AFX72880	Aquilegia coerulea	Unpublished	
GmAgl6	XP_003528894	Glycine max	Unpublished	
TaAGL6	ABF57913	Triticum aestivum	Mol. Genet. Genomics 276 (4), 334-350 (2006)	

AP2 gene family

Gene Name	Accession number	Species	Source	Reference

29
Gene Name (Gene ID)	Accession Number	Species	Source
AT1G06160.1(ORAI59)	Arabidopsis thaliana	http://www.arabidopsis.org/	
AT1G13260.1(RAV1)	Arabidopsis thaliana	Nucleic Acids Res. 1999 Jan 15;27(2):470-8	
AT1G15360.1(SHIN1)	Arabidopsis thaliana	http://www.arabidopsis.org/	
AT1G16060.1(ADAP)	Arabidopsis thaliana	http://www.arabidopsis.org/	
AT1G25560.1(TEM1)	Arabidopsis thaliana	http://www.arabidopsis.org/	
AT1G51120.1	Arabidopsis thaliana	http://www.arabidopsis.org/	
AT1G53910.1(RAP2.12)	Arabidopsis thaliana	Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):7076-81	
AT1G73730.1(EIL3)	Arabidopsis thaliana	J Mol Biol. 2005 Apr 29;348(2):253-64	
AT2G28550.3	Arabidopsis thaliana	http://www.arabidopsis.org/	
AT2G41710.3	Arabidopsis thaliana	http://www.arabidopsis.org/	
AT3G14230.1	Arabidopsis thaliana	http://www.arabidopsis.org/	
AT3G16770.1(RAP2.3)	Arabidopsis thaliana	http://www.arabidopsis.org/	
AT3G20840.1(PLT1)	Arabidopsis thaliana	http://www.arabidopsis.org/	
AT3G54320.1(WRI1)	Arabidopsis thaliana	http://www.arabidopsis.org/	
AT4G17490.1(ATERF6)	Arabidopsis thaliana	http://www.arabidopsis.org/	
AT4G34410.1(RRTF1)	Arabidopsis thaliana	http://www.arabidopsis.org/	
AT4G36920.1(AP2)	Arabidopsis thaliana	Plant Cell. 1989 Jan;1(1):37-52	
AT4G37750.1(ANT)	Arabidopsis thaliana	Sex Plant Reprod. 2010 Jun;23(2):115-21	
AT5G05410.1(DREB2A)	Arabidopsis thaliana	Plant Cell. 1998 Aug;10(8):1391-406	
AT5G11590.1(TINY2)	Arabidopsis thaliana	http://www.arabidopsis.org/	
AT5G44210.1(ERF9)	Arabidopsis thaliana	http://www.arabidopsis.org/	
AT5G51190.1	Arabidopsis thaliana	http://www.arabidopsis.org/	
AT5G51990.1(CBF4)	Arabidopsis thaliana	http://www.arabidopsis.org/	
AT5G53290.1(CRF3)	Arabidopsis thaliana	http://www.arabidopsis.org/	
AT5G57390.1(AIL5)	Arabidopsis thaliana	http://www.arabidopsis.org/	
AT5G64750.1 (ABR1)
Arabidopsis thaliana
http://www.arabidopsis.org/

Rice (33 genes)

LOC_Os01g04800.1	*Oryza sativa*	http://rice.plantbiology.msu.edu/
LOC_Os01g07120.1	*Oryza sativa*	http://rice.plantbiology.msu.edu/
LOC_Os01g12440.1	*Oryza sativa*	http://rice.plantbiology.msu.edu/
LOC_Os01g46870.1	*Oryza sativa*	http://rice.plantbiology.msu.edu/
LOC_Os01g67410.1	*Oryza sativa*	http://rice.plantbiology.msu.edu/
LOC_Os02g10760.1	*Oryza sativa*	http://rice.plantbiology.msu.edu/
LOC_Os02g13710.1	*Oryza sativa*	http://rice.plantbiology.msu.edu/
LOC_Os02g40070.1	*Oryza sativa*	http://rice.plantbiology.msu.edu/
LOC_Os02g42585.1	*Oryza sativa*	http://rice.plantbiology.msu.edu/
LOC_Os02g43790.1	*Oryza sativa*	http://rice.plantbiology.msu.edu/
LOC_Os02g43820.1	*Oryza sativa*	http://rice.plantbiology.msu.edu/
LOC_Os02g45450.1	*Oryza sativa*	http://rice.plantbiology.msu.edu/
LOC_Os03g56050.1	*Oryza sativa*	http://rice.plantbiology.msu.edu/
LOC_Os03g64260.1	*Oryza sativa*	http://rice.plantbiology.msu.edu/
LOC_Os04g44670.1	*Oryza sativa*	http://rice.plantbiology.msu.edu/
LOC_Os04g46240.1	*Oryza sativa*	http://rice.plantbiology.msu.edu/
LOC_Os04g46250.1	*Oryza sativa*	http://rice.plantbiology.msu.edu/
LOC_Os04g55560.3	*Oryza sativa*	http://rice.plantbiology.msu.edu/
LOC_Os04g55970.2	*Oryza sativa*	http://rice.plantbiology.msu.edu/
LOC_Os05g03040.1	*Oryza sativa*	http://rice.plantbiology.msu.edu/
LOC_Os05g32270.1	*Oryza sativa*	http://rice.plantbiology.msu.edu/
LOC_Os05g47650.1	*Oryza sativa*	http://rice.plantbiology.msu.edu/
LOC_Os05g49700.1	*Oryza sativa*	http://rice.plantbiology.msu.edu/
LOC_Os06g03670.1	*Oryza sativa*	http://rice.plantbiology.msu.edu/
Accession	Genotype	Location	Description
LOC_Os06g07030.1	*Oryza sativa*	http://rice.plantbiology.msu.edu/	
LOC_Os06g09390.2	*Oryza sativa*	http://rice.plantbiology.msu.edu/	
LOC_Os08g36920.1	*Oryza sativa*	http://rice.plantbiology.msu.edu/	
LOC_Os08g45110.1	*Oryza sativa*	http://rice.plantbiology.msu.edu/	
LOC_Os09g26420.2	*Oryza sativa*	http://rice.plantbiology.msu.edu/	
LOC_Os09g31400.1	*Oryza sativa*	http://rice.plantbiology.msu.edu/	
LOC_Os09g39850.1	*Oryza sativa*	http://rice.plantbiology.msu.edu/	
LOC_Os12g39330.1	*Oryza sativa*	http://rice.plantbiology.msu.edu/	
OsAP2-1	AB247626	*Oryza sativa*	[Sex Plant Reprod (2006)19:197-206](https://doi.org/10.1007/s00470-006-7004-9)

Phalaenopsis orchid (38 genes)

Accession	Genotype	Location	Description	
PaAP2-20(CBF.1)	*Phalaenopsis aphrodite*	[Orchidstra database](http://www.orchidstra.com)		
PaAP2-18(ANT.4)	*Phalaenopsis aphrodite*	[Orchidstra database](http://www.orchidstra.com)		
PaAP2-32(RAP2.1)	*Phalaenopsis aphrodite*	[Orchidstra database](http://www.orchidstra.com)		
PaAP2-33(CRF3.1)	*Phalaenopsis aphrodite*	[Orchidstra database](http://www.orchidstra.com)		
PaAP2-34(CRF3.2)	*Phalaenopsis aphrodite*	[Orchidstra database](http://www.orchidstra.com)		
PaAP2-11(AP2.1)	*Phalaenopsis aphrodite*	[Orchidstra database](http://www.orchidstra.com)		
PaAP2-38(RAV.2)	*Phalaenopsis aphrodite*	[Orchidstra database](http://www.orchidstra.com)		
PaAP2-37(RAV.1)	*Phalaenopsis aphrodite*	[Orchidstra database](http://www.orchidstra.com)		
PaAP2-29(ERF9.2)	*Phalaenopsis aphrodite*	[Orchidstra database](http://www.orchidstra.com)		
PaAP2-15(ANT.1)	*Phalaenopsis aphrodite*	[Orchidstra database](http://www.orchidstra.com)		
PaAP2-2(RAP2.2)	*Phalaenopsis aphrodite*	[Orchidstra database](http://www.orchidstra.com)		
PaAP2-35(CRF3.3)	*Phalaenopsis aphrodite*	[Orchidstra database](http://www.orchidstra.com)		
PaAP2-23	*Phalaenopsis aphrodite*	[Orchidstra database](http://www.orchidstra.com)		
PaAP2-22(TINY2.1)	*Phalaenopsis aphrodite*	[Orchidstra database](http://www.orchidstra.com)		
PaAP2-26(RRTF1.1)	*Phalaenopsis aphrodite*	[Orchidstra database](http://www.orchidstra.com)		
PaAP2-10	*Phalaenopsis aphrodite*	[Orchidstra database](http://www.orchidstra.com)		
Gene	Accession	Species	Database	
--------------	-------------	----------------	--------------------------	
PaAP2-21(CBF.2)	PATC128464*	Phalaenopsis aphrodite	Orchidstra database	
PaAP2-39(ORA59.1)	PATC129684*	Phalaenopsis aphrodite	Orchidstra database	
PaAP2-5(ERF6-2)	PATC133172*	Phalaenopsis aphrodite	Orchidstra database	
PaAP2-14(AP2-4)	PATC133311*	Phalaenopsis aphrodite	Orchidstra database	
PaAP2-9(EIL3.1)	PATC133419*	Phalaenopsis aphrodite	Orchidstra database	
PaAP2-27(ABR1.1)	PATC134172*	Phalaenopsis aphrodite	Orchidstra database	
PaAP2-11(ANT.5)	PATC135200*	Phalaenopsis aphrodite	Orchidstra database	
PaAP2-24(DREB.1)	PATC135602*	Phalaenopsis aphrodite	Orchidstra database	
PaAP2-13(AP2.3)	PATC135984*	Phalaenopsis aphrodite	Orchidstra database	
PaAP2-25(DREB.2)	PATC138022*	Phalaenopsis aphrodite	Orchidstra database	
PaAP2-8(RAV.3)	PATC138224*	Phalaenopsis aphrodite	Orchidstra database	
PaAP2-7(EIL3.2)	PATC138345*	Phalaenopsis aphrodite	Orchidstra database	
PaAP2-3(RAV.4)	PATC138625*	Phalaenopsis aphrodite	Orchidstra database	
PaAP2-31(ERF6.1)	PATC139218*	Phalaenopsis aphrodite	Orchidstra database	
PaAP2-16(ANT.2)	PATC140258*	Phalaenopsis aphrodite	Orchidstra database	
PaAP2-28(ERF9.1)	PATC140664*	Phalaenopsis aphrodite	Orchidstra database	
PaAP2-40(RAP2.4)	PATC141619*	Phalaenopsis aphrodite	Orchidstra database	
PaAP2-17(ANT.3)	PATC141638*	Phalaenopsis aphrodite	Orchidstra database	
PaAP2-30(ERF9.3)	PATC142390*	Phalaenopsis aphrodite	Orchidstra database	
PaAP2-4(RAP2.3)	PATC143144*	Phalaenopsis aphrodite	Orchidstra database	
PaAP2-12(AP2.2)	PATC147704*	Phalaenopsis aphrodite	Orchidstra database	
PaAP2-11(ERF6-3)	PATC152393*	Phalaenopsis aphrodite	Orchidstra database	
Others (8 genes)				
PHAP2A	AAD39439	Petunia x hybrida	Plant Cell. 2001 Feb;13(2):229-44.	
PHAP2B	AAD39440	Petunia x hybrida	Plant Cell. 2001 Feb;13(2):229-45.	
ZmIDS1	NP_001104904	Zea mays	Development 135 (18), 3013-3019 (2008)	
Protein	Accession	Species	Journal/Volume	Page/Year
-----------	-----------	------------------------	----------------	-----------------
ZmSID1	NP_001139539	Zea mays	Development 135 (18),	3013-3019 (2009)
DcOAP2	AAZ95247	*Dendrobium crumenatum*	Plant J. 46 (1),	54-68 (2006)
LIPLESS1	AAO52746	*Antirrhinum majus*	EMBO J. 22 (5),	1058-1066 (2003)
LIPLESS2	AAO52747	*Antirrhinum majus*	EMBO J. 22 (5),	1058-1066 (2004)
NsAP2	BAL04981	Nymphaea hybrid cultivar	Plant Cell Rep. 30 (10),	1909-1918 (2011)
Subcellular localization of *Phalaenopsis aphrodite* MADS box genes

Method

GFP fusion constructs were prepared followed by particle bombardment and confocal microscopy with the same procedures on previous report [2]. Full length cDNA of target genes were PCR amplified and cloned into a smGFP vector (326-GFP) [3]. Nuclei marker construct of mCherry with NLS signal peptide fusion (E3170) was kindly provided by Dr. Gelvin (Purdue University, IN) [4]. The *GFP* construct and nucleus mCherry construct were co-bombarded into the petal of *Phalaenopsis* Sogo Yukidian ‘V3’ (a commercial hybrid) for further observation with confocal microscopy and image taken (Supplementary Figure S3). Free GFP construct was also bombarded to orchid petals and showed diffused cytoplasmic pattern (data not shown) as described before [2]. All transient expression experiments were repeated at least three times of bombardments and more than three images were taken from each bombardment.
Figure S4. Subcellular localization of MADS box genes according to particle bombardment. All GFP fusion patterns exhibit nuclei localization and co-localized with nuclear marker of NLS-mCherry except for PaAP3-4 (PATC154853) and PaSVP-1 (PATC127095), showing both nuclei and cytoplasmic punctured pattern. (Scale bars in the photo of nuclei pattern indicate 5µm; and bars in PaAP3-4 and PaSVP-1 indicate 20µm.)
Morphology of the peloric mutants

Figure S5. Peloric flowers of orchids. Peloric mutants can be found in several orchid cultivars including commercial hybrids. P. Little Mary and P. Nobby’s Amy are commercial hybrids of crossing between *Phalaenopsis* spp. Dtps stands for *Doritaenopsis* and is a commercial hybrid of crossing between *Doritis* and *Phalaenopsis* orchids. Box a and b are *Phalaenopsis* Little Mary; c and d are *Phalaenopsis* Nobby’s Amy; e and f are Dtps I-Hsing Helen; g and h are *Phalaenopsis equestris*. Box a, c, e and g are wild type flowers. Box b, d, f and h are peloric flowers. Box i and j are illustrations of the morphology of wild type and peloric flowers.
Reference

1. Su CL, Chao YT, Yen SH, Chen CY, Chen WC, et al. (2013) Orchidstra: an integrated orchid functional genomics database. Plant Cell Physiol 54: e11.

2. Su CL, Chao YT, Alex Chang YC, Chen WC, Chen CY, et al. (2011) De novo assembly of expressed transcripts and global analysis of the Phalaenopsis aphrodite transcriptome. Plant Cell Physiol 52: 1501-1514.

3. Davis SJ, Vierstra RD (1998) Soluble, highly fluorescent variants of green fluorescent protein (GFP) for use in higher plants. Plant Mol Biol 36: 521-528.

4. Lee LY, Fang MJ, Kuang LY, Gelvin SB (2008) Vectors for multi-color bimolecular fluorescence complementation to investigate protein-protein interactions in living plant cells. Plant Methods 4: 24.