LOWEST OPEN CHANNELS, BOUND STATES, AND NARROW RESONANCES OF DIPOSITRONIUM

C.G. Bao1,2 and T.Y. Shi2

1Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator, Lanzhou 730000, China
2Department of Physics, Zhongshan University, Guangzhou, 510275, China

ABSTRACT: The constraints imposed by symmetry on the open channels of dipositronium has been studied, and the symmetry-adapted lowest open channel of each quantum state has been identified. Based on this study, the existence of two more 0^+ bound states has been theoretically confirmed, and a 0^+ narrow resonance has been predicted. A variational calculation has been performed to evaluate the critical strength of the repulsive interaction. Two $0^−$ states are found to have their critical strengths very close to 1, they are considered as candidates of new narrow resonances or loosely bound states.

1. INTRODUCTION

Since positrons can be easily created in the processes of high energy collisions, the molecules formed by electrons and positrons are believed to exist in nature. Half a century ago the existence of the positronium molecule, namely the dipositronium Ps_2^+ has already been predicted1 and has been firstly calculated via a variational procedure2. Since the lifetime of the ground state of Ps_2^+ is very short (it is only 0.906 ns3) due to the $e^−-e^+$ annihilation, it has not yet been observed experimentally. In recent years this problem has attracted increasing attention following the ability to create cold positron beams tunable over a wide energy range4, and the increasing ability to carry out accurate theoretical calculations3,5–10. In addition to the ground state, an angular momentum $L=1$ and parity $\Pi = −1$ bound excited state has also been predicted10. The other excited states are believed to be resonances.

Of course any resonance would collapse via at least one open channels. However, whether a state is allowed to enter into an open channel is not only determined by energy but also by symmetry. In fact, as we shall see, the states with a specific set of quantum numbers are allowed by symmetry to get access to only a few specific open channels. Thus, for a given state, it is important to make sure which open channel is the lowest one allowed by symmetry, this is called a symmetry-adapted lowest open channel (SLOC). If a state has its energy lower than the SLOC, it would be definitely bound.
because it has no channel to collapse. If a state has its energy a little higher than the SLOC and if there is a barrier to hinder the wave function from leaking into the channel, it would appear as a narrow resonance. The barrier may have different origin, what is concerned here is the centrifugal barrier as discussed later. If the barrier does not exist or if the energy is much higher than the SLOC, the state would be a broad resonance. When a resonance has a very broad width, it is very difficult to be detected, and thus the existence of this resonance is meaningless. In other words, only the resonances with narrower widths are interesting.

The main aim of this paper is the identification of the SLOC, this is the base for the further study of the dipositronium. Additionally, based on the SLOC and on other existing data, the existence of a few more bound states and resonances has been confirmed. Furthermore, a few candidates of bound states or resonances has been suggested based on an evaluation. The emphasis is placed on the qualitative aspect.

2, SYMMETRY-ADAPTED LOWEST OPEN CHANNELS

Let the particles 1 and 2 be electrons and 3 and 4 be positrons, let $r_a = r_2 - r_1$, $r_b = r_4 - r_3$, $r_c = \frac{1}{2}(r_4 + r_3 - r_2 - r_1)$, and $r_{ji} = |r_j - r_i|$. The internal Hamiltonian of the dipositronium is (in a.u.)

$$H = -(\nabla_a^2 + \nabla_b^2 + \frac{1}{2}\nabla_c^2) + \left(\frac{1}{r_{12}} + \frac{1}{r_{13}} - \frac{1}{r_{14}} - \frac{1}{r_{23}} - \frac{1}{r_{24}}\right)$$ \hspace{1cm} (1)

which is invariant with respect to the O$_3$ group and to the point group D$_{2d}$. The latter is a subgroup of S$_4$ containing eight elements, namely, 1, p_{12}, p_{34}, $p_{12}p_{34}$, $p_{13}p_{24}$, $p_{14}p_{23}$, $p_c(1324)$, and $p_c(1423)$ (where p_{ij} denotes an interchange and $p_c(ijkl)$ denotes a cyclic permutation). Hence the eigenstates can be classified according to the irreducible representations of the O$_3$ and D$_{2d}$, and thereby can be denoted as $L^\Pi(\mu)$, where μ denotes a representation of the D$_{2d}$ group, $\mu = A_1, A_2, B_1, B_2$ or E. Let the wave function of a $L^\Pi(\mu)$ state be denoted as $\Psi_{L^\Pi \mu}$. From the knowledge of the D$_{2d}$ group, we have

$$p_{12}p_{34} \Psi_{L^\Pi \mu} = \Psi_{L^\Pi \mu} \text{ (if } \mu \neq E), \text{ or } = - \Psi_{L^\Pi \mu} \text{ (if } \mu = E)$$ \hspace{1cm} (2)

and

$$p_{13}p_{24} \Psi_{L^\Pi \mu} = \Psi_{L^\Pi \mu} \text{ (if } \mu = A_1 \text{ or } B_1), \text{ or } = - \Psi_{L^\Pi \mu} \text{ (if } \mu = A_2 \text{ or } B_2)$$ \hspace{1cm} (3)

Let the spins of the two electrons 1 and 2 be coupled to S_1, those of 3 and 4 be coupled to S_2. Obviously, eq.(2) implies that the states with $\mu \neq E$ have $S_1 = S_2$.

On the other hand, let Φ_{nl} denotes an eigenstate of the positronium
Ps (the ground state has \((nl) = (10)\)). For the \(Ps_2 \rightarrow Ps + Ps\) dissociation channel (where the Ps may be excited), the channel wave function \(\Psi_{ch}\) can be written as

\[
\Psi_{ch} = (1+(-1)^{S_1} p_{12})(1+(-1)^{S_2} p_{34})\{(\Phi_{nl}(r_{13})\Phi_{n'l}(r_{24}))_{l_o,f_{lr}}(r_{13,24})\}_L
\]

(4)

where \(f_{lr}\) is the wave function of relative motion and \(l_R\) is the relative angular momentum. \(l\) and \(l'\) are coupled to \(l_o\), together with \(l_R\) they are coupled to \(L\). From (4) we have

\[
p_{13} p_{24} \Psi_{ch} = (-1)^{l+l'} (1+(-1)^{S_2} p_{12})(1+(-1)^{S_1} p_{34})\{(\Phi_{nl}(r_{13})\Phi_{n'l'}(r_{24}))_{l_o,f_{lr}}(r_{13,24})\}_L
\]

(5)

Furthermore, in the special case of \((nl) = (n'l')\), eq.(4) can be rewritten as

\[
\Psi_{ch} = (1 + (-1)^{S_1+S_2+l_o+l_R})\{(\Phi_{nl}(r_{13})\Phi_{n'l}(r_{24}))_{l_o,f_{lr}}(r_{13,24})\}_L
\]

\[
+ (-1)^{S_1}[(\Phi_{nl}(r_{23})\Phi_{n'l}(r_{14}))_{l_o,f_{lr}}(r_{23,14})]_L \tag{6}
\]

Evidently, if a \(L^{\Pi}(\mu)\) state is allowed to enter into a specific Ps + Ps channel, the associated \(\Psi_{ch}\) must have the same \((L, \Pi, \mu)\) symmetry.

As examples, let us first study the \(0^-(A_1)\) and \(0^-(B_1)\) states. From eq.(3) we have

\[
p_{13} p_{24} \Psi_{ch} = \Psi_{ch} \tag{7.1}
\]

Since the \(\mu = A_1\) or \(B_1\) states have \(S_1 = S_2\), eq.(5) can be rewritten as

\[
p_{13} p_{24} \Psi_{ch} = (-1)^{l+l'} \Psi_{ch} \tag{7.2}
\]

Comparing eq.(7.1) with (7.2), we have

\[
(-1)^{l+l'} = 1 \tag{8.1}
\]

Furthermore, since we have meanwhile \(S_1 = S_2\), the factor \((1+(-1)^{S_1+S_2+l_o+l_R})\) in eq.(6) is nonzero only if \(l_R + l_o\) is even. Thus we have

\[
(-1)^{l+l_R} = 1, \text{ if } (nl) = (n'l') \tag{8.2}
\]

Besides, it can be proved that none of the partial waves of a \(0^-\) state can be zero. The proof is as follows. Let the angular momenta corresponding to the three Jacobian vectors \(r_a, r_b, \text{ and } r_c\) be denoted as \(l_1, l_2, \text{ and } l_3\). For \(0^-\) states, any relative partial wave, say \(l_1\), can not be zero. If \(l_1\) were zero, \(l_2\) must be equal to \(l_3\) to assure \(L=0\). However, if \(l_2 = l_3\), the parity must be even. Therefore \(l_1\) (or any relative angular momentum) is not allowed to be zero in \(0^-\) states. Evidently, the proof is valid for any set of Jacobian coordinates. Thus we have

\[
l \neq 0, l' \neq 0, \text{ and } l_R \neq 0 \tag{8.3}
\]

Definitely, a \(Ps+Ps\) channel is accessible to the \(0^- (A_1)\) or \(0^- (B_1)\) states only if (8.1) to (8.3) are satisfied. Due to these constraints, the lowest Ps + Ps channel is the one having \((nl) = (n'l') = (21)\), and \(l_R = 1\). This
channel is labeled as \((21)Z(21)\), where \(p\) denotes the relative \(p\)-wave of the two excited positronium, the associated threshold energy is -0.1250 (a.u. are used in this paper).

For the \(0^- (A_2)\) and \(0^- (B_2)\) states, the constraint eq.(8.1) should be changed to \((-1)^{l+l'} = -1\) (thus \(l_R\) is even), while the constraints (8.2) and (8.3) remain unchanged. Accordingly the lowest \(Ps+Ps\) channel is the \((21)\bar{d}(32)\) channel at -0.090278. From a similar deduction, we know that the lowest \(Ps+Ps\) channels for the \(0^- (E)\) states are the \((21)\bar{d}(32)\) channel and the \((21)\bar{z}(31)\) channel both at -0.090278.

Let us inspect another 2-body channel, the \(Ps^- + e^+ + e^-\) (or \(Ps^- + e^-\)) channel. It is recalled that the \(Ps^-\) has only one bound state with angular momentum zero. Thus, if a \(0^- (\mu)\) state entered into this channel, \(l_R\) must be zero to assure \(L=0\). However, \(l_R = 0\) is prohibited due to eq.(8.3). Therefore the \(Ps^- + e^+\) channel is not accessible to the \(0^- (\mu)\) states.

Let us inspect the \(Ps + e^+ + e^-\) 3-body channel. Let \(l\) be the angular momentum of the \(Ps\). Since \(l = 0\) is not allowed due to eq.(8.3), The positronium in the 3-body channel of \(0^-\) states must be excited, therefore the lowest \(Ps + e^+ + e^-\) 3-body channel is at -0.0625 (in which the \(Ps\) has \((nl) = (21)\)).

The above analysis is straightforward to be generalized and thereby all the SLOC can be identified as listed in Table 1 (the states having sufficient data from existing theoretical calculations are listed in this table) and Table 2, (otherwise).

Table 1, The SLOC and the corresponding threshold energies (in a.u.) of the \(L_{II}(\mu)\) states \((L \leq 2)\) together with the eigenenergies from theoretical calculations (\(a\) is from ref.3, \(b\) is from ref.10, and \(c\) is from our evaluation). The partial wave given in the third column is the lowest wave.

\(L_{II}\)	\(\mu\)	SLOC	threshold energy	eigenenergy
\(0^+\)	\(A_1\)	(10)\(\bar{z}\)(10)	-0.50000	-0.516003778, -0.509
\(0^+\)	\(B_1\)	(10)\(\bar{z}\)(10)	-0.50000	-0.4994428, -0.485
\(0^+\)	\(A_2\)	(10)\(\bar{z}\)(21)	-0.31250	-0.3120805, -0.301
\(0^+\)	\(B_2\)	(10)\(\bar{z}\)(21)	-0.31250	-0.3144689, -0.307
\(0^+\)	\(E\)	(10)\(\bar{z}\)(20), (10)\(\bar{z}\)(21)	-0.31250	-0.3300469, -0.322
\(1^-\)	\(B_2\)	(10)\(\bar{z}\)(21)	-0.31250	-0.334408, -0.326

Table 2, The SLOC, the threshold energies, and the critical strength \(\lambda_0\). The \(\lambda_0\) that smaller than 0.9 is not listed.
3. DISCUSSION OF THE SPECTRUM

(A) Confirmation of new bound states and resonance

Among the states of Table 1, the $0^+(A_1)$ and $1^-(B_2)$ have already been pointed out that they are bound.3,10 For the $0^+(B_2)$ and $0^+(E)$ states, they are tentatively classified as resonant singlet and triplet spin state in the first paper of ref. 7, and are believed to be metastable or resonance states in ref.3. Now, it is clear that these two states have their energies lower than their thresholds, thus they are definitely bound.

For the $0^+(A_2)$ state, its energy is only a little higher than the threshold. Furthermore, the lowest partial wave for the relative motion of the two

LH	μ	SLOC	threshold energy	λ_o
0^-	A_1	(21)2(21)	-0.12500	0.93
0^-	B_1	(21)2(21)	-0.12500	0.98
0^-	A_2	(21)4(32)	-0.090278	0.94
0^-	B_2	(21)4(32)	-0.090278	
0^-	E	(21)4(31), (21)4(32)	-0.090278	0.99

LH	μ	SLOC	threshold energy	λ_o
1^+	A_1	(10)2(32)	-0.27778	
1^+	B_1	(10)2(32)	-0.27778	
1^+	A_2	(10)4(21)	-0.31250	
1^+	B_2	(10)4(21)	-0.31250	
1^+	E	(10)4(21)	-0.31250	0.93
1^-	A_1	(10)2(20)	-0.31250	
1^-	B_1	(10)2(20)	-0.31250	
1^-	A_2	(10)4(21)	-0.31250	
1^-	E	(10)4(10)	-0.50000	0.90

LH	μ	SLOC	threshold energy	λ_o
2^+	A_1	(10)2(10)	-0.50000	
2^+	B_1	(10)2(10)	-0.50000	
2^+	A_2	(10)4(21)	-0.31250	
2^+	B_2	(10)4(21)	-0.31250	0.94
2^+	E	(10)4(20), (10)4(21)	-0.31250	0.93
2^-	A_1	(10)2(32)	-0.27778	
2^-	B_1	(10)2(32)	-0.27778	
2^-	A_2	(10)4(21)	-0.31250	
2^-	B_2	(10)4(21)	-0.31250	
2^-	E	(10)4(21)	-0.31250	
dissociating positroniums is \(p \)-wave as shown in Table 1. Thus a centrifugal barrier exists to hinder the wave function from leaking out. It is recalled that the height of the centrifugal barrier of the \(\text{Ps} + \text{Ps} \) channel is \(l_R(l_R+1)/(2r_{ch}^2) \), where \(r_{ch} \) is roughly the sum of the radii of the two projectiles (a positronium in the ground state and the other one in the \((21) \) excited state), and therefore would be in the order of 10. Accordingly the height of the barrier would be in the order of 0.01 for \(p \)-wave. On the other hand, the energy of the \(0^+(A_2) \) is only higher than the threshold by 0.0004.\(^3\) Thus the barrier is sufficiently high to hinder the wave function, and therefore we believe that the width of the \(0^+(A_2) \) resonance is very narrow. For the \(0^+(B_1) \) state, its energy is also only a little higher than the threshold. However, the lowest partial wave for the dissociation is \(s \)-wave, thus centrifugal barrier does not exist, and therefore the \(0^+(B_1) \) is a broad resonance difficult to detect.

(B) Candidates of new bound states and resonances

In order to evaluate the eigenenergies of the states in Table 2, a set of basis functions is introduced for the diagonalization of the Hamiltonian. It is well known that the harmonic oscillator (h.o.) states are in general not appropriate for Coulomb systems, the main shortcoming is their inappropriate asymptotic behavior. However, if several set of h.o. states with different widths are used together, this shortcoming can be remarkably cured\(^1\). For example, let \(\varphi_{nl}^{\omega} \) be the eigenstate of a single-particle pure harmonic oscillation with the width \(\omega_K \), eigenenergy \((2n + l + 3/2)\hbar \omega_K \) and angular momentum \(\hbar \ell \). When five sets of \(\varphi_{nl}^{\omega} \) are used together (i.e., \(\omega_K \) has five choices), and \(n \leq 3 \) is assumed for diagonalizing the Hamiltonian of a hydrogen atom, the resultant lowest energies for \(l = 0, 1, \text{and} 2 \) states are -0.499987, -0.124998, and -0.055554, respectively, to be compared with the exact values -0.5, -0.125, and -0.055556. Therefore, we believed that, if only bound states are taken into account, and if only the qualitative aspect is concerned, several sets of h.o. states together can be used for our limited purpose.

In the follows, the following seven sets of basis functions

\[
\Phi_k^{\omega_K} = \left[\varphi_{n_1l_1}^{\omega_K}(r_a) \right] \varphi_{n_2l_2}^{\omega_K}(r_b) \varphi_{n_3l_3}^{\omega_K}(r_c) L_\ell \right] \quad (9)
\]

are used together, where \(\omega_K = \omega_1 \rightarrow \omega_7 \), \(\omega_i/\omega_{i-1} = 2.5 \), and \((-1)^{l_1+l_2+l_3} = \Pi \). Based on \(\Phi_k^{\omega_K} \), the basis functions of a specific representation \(\mu \) can be induced by the following idempotents of the \(D_2d \) group\(^3\).

\[
e^{A_1} = \frac{1}{8}(1+p_{13}p_{24})(1+p_{12})(1+p_{34}) \quad (10.1)
\]
Besides, a subsidiary procedure is needed to extract a new set \{\Psi_i\} from the old sets, so that the \Psi_i are orthonormalized. The total number of \Psi_i used for the diagonalization is determined by \(N_{\text{max}}\) which is the maximum of the sum \(2(n_1 + n_2 + n_3) + l_1 + l_2 + l_3\). As examples, when \(N_{\text{max}}=23\), the number of \Psi_i for the 0\(^-\)(\(A_1\)) and 0\(^-\)(\(B_1\)) states are 6655 and 7824 respectively.

Evidently, the above basis functions are designed for bound states but not for resonances. However, most states in Table 2 are resonances (as we shall see). In order to avoid such an awkward situation, we introduce an adjustable parameter \(\lambda\) in the repulsive interactions as \(\lambda \left(\frac{1}{r_{12}} + \frac{1}{r_{34}} \right)\), while the attractive interactions remain unchanged. Such an adjustment does not change the threshold energies of the Ps+Ps channels. It is emphasized that the introduction of \(\lambda\) does not at all alter the symmetry of the Hamiltonian, it remains to be invariant with respect to \(O_3\) and \(D_{2d}\). Therefore the nature of the problem is not altered. Of course, what we really concern is the case with \(\lambda\) close to 1.

Let the lowest eigenenergy of a given \((L\Pi\mu)\) symmetry be denoted as \(E(\lambda)\). Then, our procedure is firstly to choose a \(\lambda\) smaller than one so that \(E(\lambda)\) is lower than the threshold of the SLOC. For an example, for the 0\(^-\)(\(B_1\)) state, when \(\lambda = 0.95\), we have \(E(\lambda) = -0.1282\) which is lower than the SLOC at -0.1250. Secondly, \(\lambda\) is increased step by step (in each step \(\lambda\) is increased by 0.01). When \(\lambda\) is equal to a value \(\lambda_o\) so that \(E(\lambda_o)\) is lower than while \(E(\lambda_o + 0.01)\) is higher than the threshold, then the procedure stops and \(\lambda_o\) is call a critical strength. In this way mainly bound states are concerned in the calculation. Evidently, if a state has a \(\lambda_o\) much larger than one, it is deeply bound. If \(\lambda_o\) is a little larger than one, it is just bound and a little lower than the dissociation threshold. If \(\lambda_o\) is a little smaller than one, it is a resonance a little higher than the threshold. If \(\lambda_o\) is remarkably smaller than one, the state is a high-lying resonance with a broad width, and we will neglect it.

To show the convergency of our calculation, the eigenenergies of selected states are listed at the last column of Table 1 (with \(\lambda = 1\)). Besides,
two series of eigenenergies are given in Table 3 in accord with N_{max}. Owing to the difficulty in calculation, the basis functions with $N_{\text{max}} \geq 23$ are not adopted. The above results exhibit that the speed of convergency is not good, thus the calculated energies would not be useful if we want to know the exact locations of the levels (this is an effort beyond the aim and scope of this paper). However, if we just want to know which levels are relatively closer to their SLOC, then our results are useful.

Table 3, The calculated energies $E(\lambda)$ (in a.u.) of the lowest $0^-(A_1)$ state with $\lambda = 1$ and the lowest $0^-(B_1)$ state with $\lambda = 0.95$ when N_{max} is given.

N_{max}	15	17	19	21	23
$0^-(A_1)$	-0.1088	-0.1110	-0.1128	-0.1142	-0.1153
$0^-(B_1)$	-0.1258	-0.1267	-0.1274	-0.1279	-0.1283

The numerical results of λ_o are summarized in Table 2. In this table most λ_o are remarkably smaller than one, the associated states are broad resonances and will not be further discussed. However, there are two and only two states, namely the $0^-(E)$ and $0^-(B_1)$, have their λ_o very close to one. They are distinguished from the others. Since, as mentioned before, all the calculated energies are a little higher than the actual values, the actual critical strength λ_{actual} will be a little larger than the λ_o listed in the table. Thus, the λ_{actual} of the $0^-(E)$ and $0^-(B_1)$ will be in fact very close to one or even larger. Furthermore, the open channels of these two states have l_R to be p-wave or higher, thus a centrifugal barrier exists. Therefore, among all the other states, these two states are candidates, they are either narrow resonances or bound states. If they are resonances, the $0^-(E)$ would emerge when two excited positroniums collide with each other (via the $(21)^2(31)$ or $(21)^4(32)$ channel). Similarly, the $0^-(B_1)$ would emerge in the collision via the $(21)^4(21)$ channel. Once they are created, they are free from direct annihilation.\(^{12}\) They would collapse either via their channel of formation, or would be transformed to a lower broad resonance via an E1 transition (the $0^-(E)$ would then become a $1^+(E)$, and the $0^-(B_1)$ become a $1^+(A_2)$), and then collapse via the $(10)^2(21)$ channel. Anyway, during the decay of these resonances, low-energy photons (from the above E1 transition and from the transition of an excited positronium to its ground state) can be detected. These low-energy photons would help the identification of these states.

4, FINAL REMARKS

In conclusion, the main outcome of this paper is the identification of the SLOC of dipositronium. The identification is proved to be very useful to
the analysis of the existing data. Specifically, in addition to the two bound states that have been found previously, two more 0^+ bound states have been identified, and a 0^+ narrow resonances has been predicted. Furthermore, two 0^- states are found to have their energies very close to their SLOC (while the others are remarkably higher). Besides, their SLOC contain centrifugal barrier. Thus they are either narrow resonances or loosely bound states. Since our calculation is not accurate enough, what they really are remains to be identified. Undoubtedly, the final identification of these two states is an attractive theoretical topic. In the experimental aspect, the search of the $0^+(A_2)$ resonance via the collision taking place in the $(10)Z(21)$ channel is firstly recommended, because its width is very narrow.

As a summary, a primary spectrum of dipositronium is proposed as shown in Table 4, where at least four bound states have been identified.

Table 4, Bound states (b) and narrow resonances (r) of dipositronium together with their energies (in a.u.). The state lying upper is higher in energy. Δ is a small quantity (positive or negative) in the order of 0.001. The values of the energies of the 0^+ and 1^- states come from the literatures cited in Table 1.

$L^\Pi(\mu)$	energy	r or b
$0^-(E)$	-0.090278+Δ	r or b
$0^-(B_1)$	-0.1250+Δ	r or b
$0^+(A_2)$	-0.3120805	r
$0^+(B_2)$	-0.3144689	b
$0^+(E)$	-0.3300469	b
$1^-(B_2)$	-0.334408	b
$0^+(A_1)$	-0.516003778	b

The above procedure is mainly based on symmetry consideration, the way of analysis can be generalized to study other molecules with symmetries other than O_3 and D_{2d}. In particular, the identification of the SLOC is important to the study of resonances of various molecules.

Acknowledgment: This work is supported by the NSFC of China under the grants No.90103028 and No.10174098.

REFERENCES
1, A. Wheeler, Ann. N.Y. Acad. Sci. 48, 219 (1946)
2, E.A. Hylleraas and A. Ore, Phys. Rev. 71, 493 (1947)
3, D.B. Kinghorn and R.D. Poshusta, Phys. Rev. A, 47, 3671 (1993)
4, S.J. Gilbert, C. Kurz, R.G. Greves, and C.M. Surko, Appl. Phys.
When only the two-photon process is assumed, the probability of annihilation is proportional to the probability of overlap of an electron with a positron $\langle \delta(\mathbf{r}_e^+ - \mathbf{r}_e^-) \rangle$. If this quantity is zero, the associated state is free from direct annihilation. On the other hand, it has been stated in the text that s-partial wave is not allowed in 0^- states. However, wave function of any partial wave must be zero at $r=0$, except the s-wave. Thus, the prohibition of the s-partial wave leads to $\langle \delta(\mathbf{r}_e^+ - \mathbf{r}_e^-) \rangle = 0$ and therefore the 0^- states are free from direct annihilation.