Does the conventional landmark help to place the tip of REBOA catheter in the optimal position? A non-controlled comparison study

Kento Nakajima¹²*, Hayato Taniguchi²³, Takeru Abe¹², Keishi Yamaguchi¹², Tomoki Doi²⁴, Ichiro Takeuchi¹² and Naoto Morimura⁵

Abstract

Background: Resuscitative endovascular balloon occlusion of the aorta (REBOA) for patients with traumatic torso hemorrhagic shock is available to keep a minimum level of circulatory status as a bridge to definitive therapy. However, the trajectory for placement of REBOA in the aorta has not yet been clearly defined.

Methods: We conducted a retrospective observational cohort study in the two tertiary critical care and emergency center from December 2014 to October 2018. A total of 28 patients who underwent focused assessment with sonography for trauma (FAST) were studied via contrast computed tomography (CT), and 27 were analyzed.

Results: We divided patients into two groups based on our CT findings. The REBOA deflate group included 16 patients, and the inflate group included 11 patients. The median trace value (interquartile range) of the blood vessel center line from the common femoral artery to the tip of REBOA (blood vessel length) and the length of REBOA itself from the common femoral artery to the tip of REBOA (REBOA insertion length) were 56.2 cm (54.5–57.2) and 55.2 cm (54.2–55.6), respectively ($p < 0.0001$) for the deflated group, and 51.4 cm (42.1–56.6) and 50.3 cm (42.3–55.0) ($p = 0.594$), respectively, for the inflated group.

Conclusions: If REBOA was deflated, it was placed 1.0 cm longer than the insertion length of REBOA catheter itself, but that was not the case when inflating REBOA. The individual difference was large to the extent that the balloon inflated and the extent to which the balloon was pushed back toward the caudal depending on the degree of blood pressure. Further studies would be needed to validate the study findings.

Keywords: Torso trauma, Hemorrhagic shock, Resuscitative endovascular balloon occlusion of the aorta

Background

Hemorrhagic shock is a major cause of traumatic death [1–7]. To avoid trauma death, it is important to stop bleeding as soon as possible. Resuscitative endovascular balloon occlusion of the aorta (REBOA) for patients with traumatic torso hemorrhagic shock is available to keep a minimum level of circulatory status as a bridge to definitive therapy [2, 8–12].

Especially for profound shock patients, the prompt placement of REBOA is essentially important. However, in such situations, there are limitations of time and equipment to accurately place REBOA, which is ideally placed under fluoroscopy. To date, using the midsternal as a landmark, and inserting REBOA, the length from the thigh to the mid-sternum is implied in the range of aortic zone I [13]. If the insertion length of REBOA is longer than the length from the thigh to the sternum notch, the tip

* Correspondence: nakajimak.812@gmail.com
1Advanced Critical Care and Emergency Center, Yokohama City University Medical Center, 4-57 Urafunecho, Minami-ku, Yokohama, Kanagawa 232-0024, Japan
2Department of Emergency Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fukaura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
Full list of author information is available at the end of the article

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
is placed in the aortic zone I [14]. In addition, morpho-
metric roadmaps have been identified to keep REBOA in
an exact zone under non-fluoroscopy [15].
However, the trajectory of where to place REBOA in
the aorta has not been clearly defined [16]. For example,
it is expected that the position of the tip is different from
the estimated value on the desk due to inflation or defla-
tion of the balloon, circulation dynamics, and the like.
There is no margin of time to consider during the resus-
citation of patients with severe trauma, and an indicator
to predict how close to the target zone REBOA will
reach under non-fluoroscopy is required. Thus, in this
study, we identified how REBOA traveled through the
aorta and where the tip was located, and how much it
deviated from the estimated value in the reconstructed
computed tomography (CT). Our study hypothesis was that
blindly but safely placed REBOA in the targeted zone can
be inserted at different distances depending on whether
REBOA is inflated or deflated. Our findings can enable
practitioners to obtain a more precise REBOA placement
distance, consequently leading to a safer approach that is
unaffected by institutional or personnel variability.

Methods
Patients and study setting
This was a retrospective observational cohort study. We
targeted trauma patients who underwent focused assess-
ment with sonography for trauma (FAST) and transported
to Yokohama City University Medical Center’s Advanced
Critical Care and Emergency Center, in Yokohama City
(YCU), and Yokosuka Kyosai Hospital Critical Care and
Emergency Center, in Yokosuka City (YKH), Japan, from
December 2014 to October 2018. The study was approved
by the institutional review boards at both institutes.
The population of Yokohama City was 3,740,944 in
2019 [17], and there are nine critical care and emergency
centers in the city. The population covered per emer-
gency medical center would be approximately 415,660.
Yokosuka City has two emergency medical centers, and
those centers would be responsible for critical patients
in Yokosuka City, adjacent Miura City, and Zushi City.
The population of Yokosuka, Zushi, and Miura City was
497,452 from the latest data [18–20]. Thus, the popula-
tion covered per emergency medical center would be ap-
proximately 248,726.
In the study institutions, the availability and immedi-
acy of trauma surgeons and interventional radiology
(IVR) physicians could vary the time until radical
hemostasis. In addition, the length of time until a port-
able X-ray can be utilized and CT imaging can be con-
ducted for each patient might also differ. In cases of
shock due to severe trauma, without critical positive
findings in head or chest trauma and with suspected
bleeding in the abdominal or retroperitoneal cavity,
REBOA can be placed in aortic zone I. In such cases, de-
flated REBOA could be used as a bridge to definitive
hemostasis. In cases of negative FAST and intra-
abdominal hemorrhage, REBOA can be placed in aortic
zone III. However, to rapidly place REBOA under non-
fluoroscopy, it can initially be positioned in the wider
aortic zone I. After CT imaging and diagnosis, the place-
ment position can be changed to aortic zone III depend-
ing on treatment necessity.
The exclusion criteria were patients under 15 years of
age, without FAST enforcement, without REBOA inser-
tion, without CT imaging, or only simple CT imaging.
The patients with REBOA which did not reach aortic
zone III were excluded. Of the 1897 patients in two fa-
cilities, and among the 76 patients in whom REBOA was
inserted, a total of 28 patients had taken a contrast CT.
The inserted length of REBOA itself and the center line
of the blood vessel from the common femoral artery to
the tip of REBOA would be equivalent to the blood ves-
sel length. We excluded one patient whose tip of
REBOA did not reach aortic zone III in three-di-
ensional (3D) medical images, and analyzed 27 pa-
tients (Fig. 1). Measurement was performed using data
processing software (Ziosation 2 PLUS, Ziosoft Corp.,
Tokyo, Japan). We plotted the center point of the
contrasted vascular lumen from the common femoral ar-
tery to the blood vessel cross section at the tip of
REBOA at the horizontal disconnection of CT. Then, we
reconstructed meandering blood vessels approximately
linearly and measured the blood vessel length (Fig. 2).
In this study, systolic blood pressure of 90 mmHg or less
was defined as low blood pressure [2, 21].

Indication and procedure
The aorta is classified into three zones for the purpose
of REBOA insertion. Aortic zone I extends from the ori-
gin of the left subclavian artery to the celiac artery. Aor-
tic zone II extends from the celiac artery to the lowest
renal artery. Aortic zone III exists from the lowest renal
artery to the aortic bifurcation (Fig. 3) [12, 22]. We also
defined a zone which exceeded aortic zone I as aortic
zone 0. REBOA is mainly placed in aortic zone I for
intra-abdominal bleeding control and in aortic zone III
for pelvic fracture and control of lower limb bleeding.
However, in emergency situations, REBOA is often
placed in aortic zone I for the time being [2, 23–25].
In patients requiring REBOA, we first inserted a 4- to
6-Fr short percutaneous sheath from the common fem-
oral artery and exchanged it to a 7-Fr short sheath [26].
The femoral artery is the most common access site [21].
Next, the guide wire was advanced, and REBOA was
placed blindly under non-fluoroscopy by the emergency
physician. We used a small-diameter 7-Fr Rescue
Fig. 1 Flow chart of patient inclusion in this study. Of the 1897 patients in two facilities, and among the 76 patients in whom REBOA was inserted, a total of 28 patients had taken a contrast CT. The inserted length of REBOA itself and the center line of the blood vessel from the common femoral artery to the tip of REBOA would be equivalent to the blood vessel length. We excluded one patient whose tip of REBOA did not reach aortic zone III and analyzed 27 patients.

Fig. 2 How to measure the blood vessel length using ZioStation 2 PLUS. a We plotted the center point of the contrasted vascular lumen from the common femoral artery to the blood vessel cross section at the tip of REBOA at the horizontal disconnection of CT. b We reconstructed meandering blood vessels approximately linearly and measured the blood vessel length.
Balloon™ or Rescue Balloon ER™ (Tokai Medical Products Corp., Kasugai, Aichi, Japan).

Data collection
Patient characteristics (age, sex, height, and racial group), mechanism of injury, patient vital signs, FAST whether positive or negative, injury severity score (ISS) [27], left or right approach to the common femoral artery, the aortic zone in which the REBOA tip was located, whether REBOA was inflated or deflated, and the outcome were collected from the medical records. The ISS was calculated for each patient.

Statistical analysis
We obtained descriptive statistics, such as median and interquartile range for continuous variables, and frequency and proportion for categorical variables, and compared them between the inflate and deflate groups. We used the Mann-Whitney U test for continuous variables, and the Fisher exact test for categorical variables. The clinical characteristics of all included cases were described. The trace value (vascular length) by the blood vessel center line from the common femoral artery to the tip of REBOA and the length of REBOA itself (REBOA insertion length) from the common femoral artery to the tip of REBOA were divided into the inflate group and the deflate group and examined using the related-samples Wilcoxon signed-rank test. A compatibility test was conducted for statistical analysis, and two-sided $p < 0.05$ was regarded as significant. All analyses were performed using IBM SPSS ver. 23 (IBM Corp., Armonk, NY, USA).

Results
The median (interquartile range) age of patients was 43 years (34–59.5), and 23 patients (85.2%) were male. There were 26 blunt traumas (96.3%). The mechanism of the injury consisted of 10 falls (37.0%), 7 traffic injury (25.9%), 5 pedestrian injury (18.5%), 3 train injury (11.1%), 1 compression (3.7%), and 1 gunshot wound (3.7%). The mean ISS was 31.4. Among all patients, 10 patients (37.0%) died in the hospital (Table 1).

Table 2 shows the characteristics of 27 patients. The mean values for systolic blood pressure, heart rate, and respiratory rate were 65.8 mmHg, 101.2 bpm, and 23.7/...
There were 26 patients on REBOA that was placed in aortic zone I, and one had been placed on the head side of the left subclavian artery bifurcation. The insertion site of REBOA was from the right common femoral artery in 12 patients and from the left common femoral artery in 15 patients. The REBOA deflate group included 16 patients; the inflate group included 11 patients.

A total of 16 patients had deflated REBOA during CT imaging, and 13 patients (81.3%) had low blood pressure. Six patients (37.5%) had a head abbreviated injury score (AIS) greater than or equal to 3. The mortality rate was 31.3% (five patients), including two patients (12.5%) who were in cardiopulmonary arrest on arrival. The mean ISS was 31.5. There were 15 patients who had REBOA placed in aortic zone I, and the remaining 1 patient was placed on the head side from the branch of the left subclavian artery. The median trace value (interquartile range) of the blood vessel center line from the common femoral artery to the tip of REBOA (blood vessel length) and the length of REBOA itself from the common femoral artery to the tip of REBOA (REBOA insertion length) were 56.2 cm (54.5–57.2 cm) and 55.2 cm (54.2–55.6 cm), respectively ($p < 0.0001$).

A total of 11 patients had inflated REBOA during CT imaging. Ten patients (90.9%) had low blood pressure. In three patients (27.3%), the head AIS was larger than or equal to 3. The mortality rate was 45.5% (five patients), including two patients (18.2%) who were in cardiopulmonary arrest on arrival. The mean ISS was 31.2.

Table 2 Patients included in this study

No.*	Age	Sex	Height (cm)	Mechanism of injury	ISS	Aortic zone**	Femoral approach	Blood vessel length (cm)	REBOA insertion length (cm)	Inflate or deflate	FAST
1	70	M	170	Fall	29	1	Left	57.0	55.4	Deflate	Positive
2	56	M	–	Compression	26	I	Left	57.2	55.7	Deflate	Positive
3	18	M	171	Traffic	22	I	Left	57.5	55.1	Deflate	Negative
4	45	M	–	Pedestrian	50	I	Left	56.2	55.9	Deflate	Negative
5	34	M	172	Gunshot	22	I	Left	55.8	55.1	Deflate	Positive
6	61	M	182	Traffic	26	I	Left	56.3	55.1	Deflate	Positive
7	32	M	–	Pedestrian	50	I	Right	55.3	52.9	Inflate	Positive
8	42	M	–	Fall	34	I	Left	57.8	57.4	Deflate	Positive
9	69	M	163	Traffic	17	I	Left	56.7	56.1	Inflate	Negative
10	38	M	–	Fall	29	I	Left	56.3	55.0	Deflate	Negative
11	43	M	166	Fall	26	I	Right	56.2	55.5	Deflate	Positive
12	43	M	–	Traffic	41	I	Right	49.9	49.6	Deflate	Positive
13	39	F	–	Fall	41	I	Right	55.7	55.3	Deflate	Positive
14	34	M	–	Traffic	34	I	Right	54.2	54.0	Deflate	Positive
15	58	F	–	Fall	66	I	Left	52.4	50.3	Inflate	Negative
16	61	M	172	Pedestrian	26	I	Right	56.6	55.0	Inflate	Negative
17	43	M	–	Train	26	I	Left	42.1	42.3	Inflate	Negative
18	69	M	173	Traffic	35	I	Right	56.8	55.4	Deflate	Negative
19	27	M	173	Fall	24	I	Left	64.3	63.9	Inflate	Negative
20	61	M	168	Pedestrian	33	I	Right	39.0	39.5	Inflate	Positive
21	49	M	175	Train	10	I	Left	43.4	43.8	Inflate	Negative
22	50	M	171	Fall	35	0	Left	58.8	58.7	Deflate	Negative
23	19	M	–	Traffic	41	I	Left	47.5	47.8	Inflate	Positive
24	88	F	148	Fall	27	I	Right	45.2	43.5	Deflate	Negative
25	20	M	–	Fall	16	I	Right	40.5	41.4	Inflate	Negative
26	42	M	–	Train	34	I	Right	51.4	52.0	Inflate	Negative
27	18	F	–	Traffic	27	I	Left	42.4	42.1	Deflate	Positive

FAST focused assessment with sonography for trauma
*Case 6 was Caucasian, and all of the others were Asian
**This study defined aortic zone 0 as placement on the head side of the left subclavian artery bifurcation, which is a non-standard location. Case 22 was not inflated, and no complications occurred.
REBOA were all placed in aortic zone I. The median trace value (interquartile range) of the blood vessel center line from the common femoral artery to the tip of REBOA (blood vessel length) and the length of REBOA itself from the common femoral artery to the tip of REBOA (REBOA insertion length) were 51.4 cm (42.1–56.6 cm) and 50.3 cm (42.3–55.0 cm) ($p = 0.594$), respectively.

Discussion

In our study, we reconstructed the CT data and confirmed the trajectory of REBOA in the blood vessel. We first found that compared to the center line of the blood vessel, REBOA traveled more linearly, and if the balloon was deflated when REBOA was inserted, it was placed 1.0 cm longer than the insertion length of REBOA. On the other hand, that was not the case when inflating the balloon. This seems to suggest that REBOA travels more linearly in meandering blood vessels. Our findings can enable practitioners to obtain a more precise REBOA placement distance, consequently leading to a safer approach that is unaffected by institutional or personnel variability.

From the results of this study, we found that it is important to always assume the possibility of placement distal to the blood vessel, rather than the assumed insertion length when inserting REBOA under non-fluoroscopy. In this study, no fatal complications accompanying placing REBOA were observed. In addition, one case in which REBOA had been detained beyond aortic zone I was also included.

A previous study established a method of using landmarks of the body surface under non-fluoroscopy when inserting REBOA. If the insertion length was longer than the length from the thigh to the xiphoid process and it is shorter than the length from the thigh to the sternum notch, REBOA was placed in aortic zone I [15]. Another study using cadavers established a method using landmarks on the body surface, in which REBOA is placed in aortic zone I when inserted from the length of the thigh to the mid-sternum [14]. The method of using landmarks on the body surface seems to be a simple and easy-to-use method that does not require special devices and knowledge. There is a possibility that it can be applied in emergency outpatient or prehospital situations in which fluoroscopy or simple X-ray are not available [28]. However, it is difficult to estimate where the actual tip of REBOA is located, because the influence of the hemodynamics and degree of balloon dilation is not taken into consideration [16]. Therefore, to understand the dynamics of REBOA in a blood vessel, this study confirmed the position of its tip in cases in which REBOA had been inserted. In the deflated group of REBOA, the median (interquartile range) of the trace value (blood vessel length) by the blood vessel center line from the common femoral artery to the tip of REBOA and the length of REBOA itself from the common femoral artery to the tip of REBOA of the insertion length were 56.2 cm (54.5–57.2 cm) and 55.2 cm (54.2–55.6 cm) ($p < 0.0001$), respectively, and as a median, the difference was 1.0 cm. This means that the tip is significantly deeper by 1.0 cm as a median than the assumed length, when REBOA is inserted from the common femoral artery. The possible explanation would be that the running of REBOA and the center line of the aorta would not coincide with each other. REBOA would travel in the blood vessel more linearly by entering the metallic stylet inside the catheter. In addition, there was a tendency to travel as if it touched the aorta wall in a shortcut, and as a result, it was placed at a position deeper than the assumed REBOA insertion length. In the inflated group of REBOA, the median (interquartile range) of the trace value (blood vessel length) by the blood vessel center line from the common femoral artery to the tip of REBOA and the length of REBOA itself from the common femoral artery to the tip of REBOA of the insertion length were 51.4 cm (42.1–56.6 cm) and 50.3 cm (42.3–55.0 cm), respectively, and there was no significant association ($p = 0.594$). The possible explanation would be that the individual difference was large to the extent that the balloon inflated and the extent to which the balloon was pushed back toward the caudal depending on the degree of blood pressure.

There are several limitations in this study to mention. First, the length of the aorta and the degree of meandering might vary depending on age, sex, race, and other factors. Second, we did not investigate how far the balloon was inflated in the REBOA inflated group. Third, the current treatment procedure may not be common at other facilities and overseas, which will affect the external validity of this study’s findings. However, in several Japanese tertiary care emergency centers, REBOA was used by emergency physicians without fluoroscopic guidance and placed in a safe location with subsequent confirmation via CT [23]. Fourth, in this procedure, a wire is left at the time of measurement. There is a possibility that REBOA might be pushed distally by the flow, which could not be controlled in the current study design. Thus, further research is necessary to evaluate the flow mechanism. Fifth, since all of the cases but one were Asian, there were limitations to the external validity. Thus, the study findings might not apply to other racial groups. Finally, future international studies with larger sample sizes and more facilities are desirable to improve the representability and the generalizability of the findings.

Conclusions

If REBOA was deflated, it was placed 1.0 cm longer than the insertion length of REBOA itself, but that
was not the case when inflating REBOA. The individual difference was large to the extent that the balloon inflated and the extent to which the balloon was pushed back toward the caudal depending on the degree of blood pressure. Further studies are needed to validate our findings.

Abbreviations
3D: Three-dimensional; AIS: Abbreviated injury score; CT: Computed tomography; FAST: Focused assessment with sonography for trauma; ISS: Injury severity score; iVR: Interventional radiology; REBOA: Resuscitative endovascular balloon occlusion of the aorta; YCU: Yokohama City University; YKH: Yokosuka Kiosai Hospital

Acknowledgements
Not applicable.

Authors' contributions
KN, HT, TA, TD, and NM designed the study. KN and TA analyzed and interpreted the data. KN, TA, and NM drafted the manuscript. KN, HT, TA, KY, TD, JT, and NM contributed to the critical revisions. All authors read and approved the final manuscript.

Funding
Not applicable.

Availability of data and materials
The datasets used during the current study are available from the corresponding author on reasonable request.

Ethics approval and consent to participate
This study was approved by the institutional review boards at both institutes.

Consent for publication
This study was an observational study. Thus, obtaining a consent from a patient was waived by the institutional review board.

Competing interests
The authors declare that they have no competing interests.

Author details
1Advanced Critical Care and Emergency Center, Yokohama City University Medical Center, 4-57 Urafunecho, Minami-ku, Yokohama, Kanagawa 223-0024, Japan. 2Department of Emergency Medicine, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 222-0022, Japan. 3Department of Surgery Intensive Care, Nippon Medical School Hospital, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan. 4Advanced Critical Care and Emergency Center, Yokosuka Kiosai Hospital, Yonegahama Street 1-16, Yokosuka, Kanagawa 238-8558, Japan. 5Department of Acute Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.

Received: 9 May 2019 Accepted: 8 July 2019
Published online: 16 July 2019

References
1. Pezy P, Flaris AN, Prat NJ, et al. Fixed-distance model for balloon placement during fluoroscopy-free resuscitative endovascular balloon occlusion of the aorta in a civilian population. JAMA Surg. 2017;152:351–8.
2. Gambenini E, Coccolini F, Tamagnini B, et al. Resuscitative endovascular balloon occlusion of the aorta in trauma: a systematic review of the literature. World J Emerg Surg. 2017;12:42.
3. Davis JS, Satahoo SS, Butler FK, et al. An analysis of prehospital deaths: who can we save? J Trauma Acute Care Surg. 2014;77:213–8.
4. Morrison JJ, Ross JD, Houston R, Watson JD, Sokol KK, Rasmussen TE. Use of resuscitative endovascular balloon occlusion of the aorta in a highly lethal model of noncompressible torso hemorrhage. Shock (Augusta, Ga). 2014;41: 130–7.
5. Tsurukiri J, Akamine I, Sato T, et al. Resuscitative endovascular balloon occlusion of the aorta for uncontrolled haemorrhagic shock as an adjunct to haemostatic procedures in the acute care setting. Scandinavian journal of trauma, resuscitation and emergency medicine. 2016;24:13.
6. Tien HC, Spencer F, Tremblay LN, Rizoli SB, Brennenman FD. Preventable deaths from hemorrhage at a level I Canadian trauma center. The Journal of trauma. 2007;62:142–6.
7. Bansal V, Fortlage D, Lee JJG, Costantini T, Picozzi B, Coimbra R. Hemorrhage is more prevalent than brain injury in early trauma deaths: the golden six hours. European journal of trauma and emergency surgery: official publication of the European Trauma Society. 2009;35:26–30.
8. Inoue J, Shiraiishi A, Yoshiyuki A, Haruka K, Matsu H, Otomo Y. Resuscitative endovascular balloon occlusion of the aorta might be dangerous in patients with severe torso trauma: a propensity score analysis. J Trauma Acute Care Surg. 2016;80:559–66 discussion 66-7.
9. Moore LJ, Martin CD, Harvin JA, Wade CE, Holcomb JB. Resuscitative endovascular balloon occlusion of the aorta for control of noncompressible truncal hemorrhage in the abdomen and pelvis. American journal of surgery. 2016;212:1222–30.
10. Nori T, Candall C, Terasaka Y. Survival of severe blunt trauma patients treated with resuscitative endovascular balloon occlusion of the aorta compared with propensity score-adjusted untreated patients. J Trauma Acute Care Surg. 2015;78:721–8.
11. Brenner M, Teeter W, Hoehn M, et al. Use of resuscitative endovascular balloon occlusion of the aorta for proximal aortic control in patients with severe hemorrhage and arrest. JAMA Surg. 2018;153:130–5.
12. King DR. Initial care of the severely injured patient. The New England journal of medicine. 2019;380:763–70.
13. Linneberg M, Inaba K, Hämeister T, et al. Emergent non-image-guided resuscitative endovascular balloon occlusion of the aorta (REBOA) catheter placement: a cadaver-based study. J Trauma Acute Care Surg. 2016;81:453–7.
14. Okada Y, Narumiya H, Iishi W, Ilduka R. Anatomical landmarks for safely implementing resuscitative balloon occlusion of the aorta (REBOA) in zone I without fluoroscopy. Scandinavian journal of trauma, resuscitation and emergency medicine. 2017;25:63.
15. MacTaggart JN, Poulsen WE, Akhter M, et al. Morphometric roadmaps to improve accurate device delivery for fluoroscopy-free resuscitative endovascular balloon occlusion of the aorta. J Trauma Acute Care Surg. 2016;80:941–6.
16. Wessels LE, Wallace JD, Bowie J, Butler WJ, Spalding C, Krayzlian M. Radiofrequency identification of the ER-REBOA: confirmation of placement without fluoroscopy. Military medicine. 2018.
17. Yokohama city homepage. http://www.city.yokohama.lg.jp/ex/stat/jinko/news-e.html. Accessed 1 Jan 2019.
18. Yokosuka city homepage. https://www.city.yokosuka.kanagawa.jp/0830/data/toukei/suikei/now.html. Accessed 1 Jan 2019.
19. Zushi city homepage. https://www.city.zushi.kanagawa.jp/syokan/kikaku/news-e.html. Accessed 1 Jan 2019.
20. Miura city homepage. http://www.city.miura.kanagawa.jp/hisho/eng/information.html. Accessed 1 Jan 2019.
21. van der Burg BLS B, van Dongen T, Morrison JJ, et al. A systematic review and meta-analysis of the use of resuscitative endovascular balloon occlusion of the aorta in the management of major exsanguination. European journal of trauma and emergency surgery: official publication of the European Trauma Society. 2018;44:535–50.
22. Stannard A, Elason JL, Rasmussen TE. Resuscitative endovascular balloon occlusion of the aorta (REBOA) as an adjunct for hemorrhagic shock. The Journal of trauma. 2011;71:1869–72.
23. Sato R, Kuniyama A, Takaoa K, et al. Resuscitative endovascular balloon occlusion of the aorta performed by emergency physicians for traumatic hemorrhagic shock: a case series from Japanese emergency rooms. Critical care (London, England). 2018;22:103.
24. Cheema F, Garcia C, Rivera AG, Chao E. CE: The use of resuscitative endovascular balloon occlusion of the aorta in treating hemorrhagic shock: a case series from Japanese emergency rooms. Critical care (London, England). 2018;22:103.
25. Hoehn MR, Hamraj NZ, Pasley AM, et al. Resuscitative endovascular balloon occlusion of the aorta for non-traumatic intra-abdominal hemorrhage. European journal of trauma and emergency surgery: official publication of the European Trauma Society. 2018.
26. Zakaluzny SA, Beldowicz BC, Šalces ED, JJ DB, Moore LJ, Brenner M. Guidelines for a system-wide multi-disciplinary approach to institutional REBOA implementation. J Trauma Acute Care Surg. 2018.
27. Baker SP, O’Neill B, Haddon W Jr, Long WB. The injury severity score: a method for describing patients with multiple injuries and evaluating emergency care. The Journal of trauma. 1974;14:187–96.

28. Richardson R, Adcock L. CADTH Rapid Response Reports. Resuscitative endovascular balloon occlusion of the aorta for control of non-compressible truncal hemorrhage: a review of clinical effectiveness and guidelines. Ottawa: Canadian Agency for Drugs and Technologies in Health. Copyright © 2018 Canadian Agency for Drugs and Technologies in Health; 2018.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.