Spontaneous rupture of a splenic artery aneurysm with splenic epithelioid hemangioendothelioma: a case report

Ganghong Chen¹, Jing Yang², Guangyu Qian¹, Kexiang Jiang¹, Yanting Lv³, NaiChang Shi⁴ and Tieming Zhu¹

Abstract
Spontaneous rupture of a splenic artery aneurysm with splenic epithelioid hemangioendothelioma is a rare condition. Splenic artery aneurysm can be complicated by rupture resulting in hypovolemic shock, which can be fatal if not treated properly. We report a case of a 50-year-old man who presented with sudden onset of left upper quadrant pain and shock. This patient underwent splenectomy with distal pancreatectomy. His pathological diagnosis showed splenic epithelioid hemangioendothelioma.

Keywords
Splenic artery aneurysm, epithelioid hemangioendothelioma, hypovolemic shock, splenectomy, pancreatectomy, rupture

Date received: 16 August 2018; accepted: 22 November 2018

Introduction
Splenic artery aneurysm (SAA) is a rare clinical diagnosis. SAA is defined as an abnormally dilated splenic artery measuring more than 1 cm in diameter. This aneurysm is four times more common in women compared with men. Most SAAs (80%–97.5%) are usually asymptomatic and are incidentally discovered during imaging studies. However, they can cause complications such as pain, splenic rupture, and hypovolemic shock. The treatment of choice for SAA is surgical excision.
are asymptomatic.\(^1\) Symptomatic patients present with nonspecific manifestations, such as epigastric or left upper quadrant pain, nausea, vomiting, and anorexia. Spontaneous rupture of SAA is the initial symptom in 2% to 10% of patients. They present with sudden-onset sharp abdominal pain, Kehr sign (left shoulder pain), gastrointestinal bleeding, and hemodynamic instability.\(^2\)–\(^4\)

Epithelioid hemangioendothelioma (EHE) is a rare malignant vascular neoplasm with low-to-intermediate grade. RHE is commonly seen in soft tissues, such as the head and neck, trunk, upper extremities, and lower extremities, but it can also be located in other organs, such as the lungs, pleura, spleen, heart, liver, and bone.

We report a case of a spontaneously ruptured SAA with splenic EHE, which was treated with emergent surgery.

Case presentation

A 50-year-old man presented to the Emergency Department with sudden onset of left upper quadrant pain, dizziness, and collapse for 2 hours on June 19, 2016. On arrival to the Emergency Department, the patient was clammy, pale, and agitated. There were no associated symptoms and there was no history of a previous similar episode. His medical history included hypertension for 2 years and spontaneous cerebral hemorrhage for 1 month. The patient had hemodynamic instability. He had hypovolemic shock, and his blood pressure was 80/50 mmHg, pulse rate was 144 beats/minute, peripheral oxygen saturation was 96%, and body temperature was 37.8°C. On a physical examination, his left upper abdomen was tender and slightly spastic, but without rebound tenderness. There was an absence of bowel sounds. Ultrasound of the abdomen showed massive free fluid. Diagnostic abdominal puncture showed active bleeding, which suggested hemoperitoneum. The patient was resuscitated and stabilized, and then shifted to the radiology suite. A computed tomography angiogram showed a large amount of free intraperitoneal fluid (Figure 1), an SAA in the hilum (Figure 2), and several tumor masses in the splenic parenchyma (Figure 3).

The patient was appropriately resuscitated with blood and plasma transfusions, and underwent emergency exploratory laparotomy. A midline laparotomy incision was performed. Upon entering the peritoneal cavity, a lot of blood and clots were encountered. A large hematoma was observed in the lesser sac bulging through the gastro-colic omentum. The gastrocolic

![Figure 1. Intraperitoneal hematoma.](image1)

![Figure 2. Splenic artery aneurysm in the hilum.](image2)
ligament and the transverse mesocolon were incised to approach a 4-cm SAA, which had a 5-mm rupture.

The amount of evacuated blood was 3 L. The splenic artery was ligated proximally, followed by splenectomy with distal pancreatectomy to excise the aneurysm. A pathological examination showed carcinoma cells in the spleen (Figure 4). Immunohistochemical analysis showed CD34(+) and CD31(-), CD68(+), VIM(++), and cytokeratin(-) (Figures 5, 6). The patient had a 2-day stay in the Intensive Care Unit. He had an uneventful postoperative course and was discharged home on the 18th postoperative day. The patient attended a check-up every 3 months. To date, no recurrence has been reported in the 16 months following surgery. The People’s Hospital of Zhuji ethics committee approved the study protocol. Written informed consent was obtained from the patient for publication of this manuscript and accompanying images.

Discussion

SAA was first described more than 200 years previously and accounts for approximately 60% of all splanchnic arterial aneurysms. SAA is the third most common intra-abdominal aneurysm, with aortic and iliac artery aneurysms as the first and second most common, respectively. A true SAA has an overall incidence of
SAA is found in all age groups and often found in the fifth and sixth decades of life. Although the pathogenesis of SAA is still unclear, the cause of SAAs may include hypertension, hyperlipidemia, portal hypertension secondary to liver cirrhosis, atherosclerosis, pregnancy, and liver transplantation.

The majority of SAAs are smaller than 2 cm and remain asymptomatic. SAA can be complicated by rupture resulting in hypovolemic shock, which can be fatal if not treated properly. Most spontaneous ruptures of SAA occur in pregnancy, especially during the third trimester. An initial review of the literature suggested that the maternal–fetal mortality rate from SAA is 75%. There is a notable risk of rupture when the SAA has a diameter of more than 2 cm, in pregnancy, in symptomatic SAA, and with portal hypertension and liver transplantation. Laparoscopic surgery, endovascular embolization, and stent graft application have largely replaced open surgery for SAA. These procedures are less invasive and associated with low peri- and post-procedural morbidity. However, open surgery is still indicated for SAA rupture, especially with hemodynamic instability.

Splenic EHE is an extremely rare vascular tumor. EHE mostly affects the lungs, liver, bone, neck area, blast lymph nodes, mediastinum, brain, spine, and skin. To the best of our knowledge, few cases of EHE have been reported to have arisen from the spleen. Most patients with EHE are asymptomatic, and it is often misdiagnosed and not suitably treated. The confirmed diagnosis of EHE is based on pathological and immunohistochemical results. Electron microscopy shows a typical image of endothelial cells, similar to those in medium-sized vessels or a large vein, arranged in nests or cords. Immunohistochemically, at least one endothelial marker (CD34, factor VIII, CD31) is positive, while cytokeratin and alpha-fetoprotein immunocytochemistry is negative. In the present case, CD34 and factor VIII were positive, and cytokeratin was negative. The mean survival of patients with EHE is 4.6 years, ranging from 6 months to 24 years. In our case, the patient showed no recurrence 16 months after surgery.

Conclusion

We report the clinical diagnosis, treatment, and prognosis of a patient with spontaneous rupture of an SAA with splenic EHE. SAA is a challenging diagnosis that needs to be considered in patients presenting with abdominal pain and signs of hypovolemia. Indications for treatment of SAA are a diameter of more than 2 cm, pregnancy, symptomatic SAA, portal hypertension, and liver transplantation.

Declaration of conflicting interest

The authors declare that there is no conflict of interest.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

ORCID iD

Tieming Zhu http://orcid.org/0000-0002-8764-7098

References

1. Al-Habbal Y, Christophi C and Muralidharan V. Aneurysms of the splenic artery – a review. *Surgeon* 2010; 8: 223–231. https://www.ncbi.nlm.nih.gov/pubmed/20569943/
2. Tessier DJ, Stone WM, Fowl RJ, et al. Clinical features and management of splenic artery aneurysm pseudoaneurysm: case series and cumulative review of literature. *J Vasc...*
Surg 2003; 38: 969–974. http://www.ncbi.nlm.nih.gov/pubmed/14603202
3. Abbas MA, Stone WM, Fowl RJ, et al. Splenic artery aneurysms: two decades experience at mayo clinic. Ann Vasc Surg 2002; 16: 442–449.
4. Uy PPD, Francisco DM, Trivedi A, et al. Vascular diseases of the spleen: a review. J Clin Transl Hepatol 2017; 5: 152–164. http://www.ncbi.nlm.nih.gov/pubmed/28660153
5. Hogendoorn W, Lavida A, Hunink MG, et al. Open repair, endovascular repair, and conservative management of true splenic artery aneurysms. J Vasc Surg 2014; 60: 1667–1676. http://www.ncbi.nlm.nih.gov/pubmed/25264364
6. Angela S, Lilía B, Maria FP, et al. Epithelioid hemangioendothelioma: an overview and update on a rare vascular tumor. Oncol Rev 2014; 8: 259. http://www.ncbi.nlm.nih.gov/pubmed/25992243
7. Budke HL, Breitfeld PP, Neiman RS. Functional hyposplenism due to a primary epithelioid hemangioendothelioma of the spleen. Arch Pathol Lab Med 1995; 119: 755–757. http://www.ncbi.nlm.nih.gov/pubmed/7646334.
8. Mistry AM, Gorden DL, Busler JF, et al. Diagnostic and therapeutic challenges in hepatic epithelioid hemangioendothelioma. J Gastrointest Cancer 2012; 43: 521–525. http://www.ncbi.nlm.nih.gov/pubmed/22544493