On the asymptotics of higher dimensional partitions

Srivatsan Balakrishnan, Suresh Govindarajan and Naveen S Prabhakar

Department of Physics, Indian Institute of Technology Madras, Chennai 600 036, India
E-mail: suresh@physics.iitm.ac.in

Received 6 June 2011, in final form 21 November 2011
Published 12 January 2012
Online at stacks.iop.org/JPhysA/45/055001

Abstract
We conjecture that the asymptotic behavior of the numbers of solid (three-dimensional) partitions is identical to the asymptotics of the three-dimensional MacMahon numbers. Evidence is provided by an exact enumeration of solid partitions of all integers \( \leq 68 \) whose numbers are reproduced with surprising accuracy using the asymptotic formula (with one free parameter) and better accuracy on increasing the number of free parameters. We also conjecture that similar behavior holds for higher dimensional partitions and provides some preliminary evidence for four- and five-dimensional partitions.

PACS numbers: 05.50.+q, 05.10.-a, 02.10.Ox

(Some figures may appear in colour only in the online journal)

1. Introduction

Partitions of integers appear in a large number of areas such as number theory, combinatorics, statistical physics and string theory. Several properties of partitions, in particular, their asymptotics (the Hardy–Ramanujan–Rademacher formula) can be derived due to its connection with the Dedekind eta function which is a modular form [1, 2]. In 1916, MacMahon introduced higher dimensional partitions as a natural generalization of the usual partitions of integers [3]. He also conjectured generating functions for these partitions and was able to prove that his generating function for plane (two-dimensional) partitions was the correct one. However, it turned out that his generating function for dimensions greater than 2 turned out to be incorrect. Even for plane partitions, one no longer has nice modular properties for the generating function. Nevertheless, the existence of a generating function enables one to derive asymptotic formulae for the numbers of plane partitions [4]. The inability to do the same with higher dimensional partitions (for dimensions > 2) has meant that these objects have not been studied extensively. The last detailed study, to the best of our knowledge, is due to Atkin et al [5].

Higher dimensional partitions do appear in several areas of physics (as well as mathematics), and thus it is indeed of interest to understand them better. It is known that the
infinite state Potts model in $(d+1)$ dimensions is related to $d$-dimensional partitions [6, 7]. They also appear in the study of directed compact lattice animals [8]; in the counting of BPS states in string theory and supersymmetric field theory [9, 10]. For instance, it is known that the numbers of mesonic and baryonic gauge invariant operators in some $\mathcal{N} = 1$ supersymmetric field theories get mapped to higher dimensional partitions [9]. The Gopakumar–Vafa (Donaldson–Thomas) invariants (in particular, the zero-brane contributions) are also related to deformed versions of higher dimensional partitions (usually plane partitions) [11, 12] (see also [13]).

In this paper, we address the issue of asymptotics of higher dimensional partitions as well as explicit enumeration of higher dimensional partitions. Our work is based on the seminal work of Mustonen and Rajesh on the asymptotics of solid partitions [14]. The lack of a simple formula for the generating functions of these partitions has been a significant hurdle in the study of higher dimensional partitions. The conjectures on the asymptotics of higher dimensional partitions given in this paper, even if partly true, would constitute progress in the study of higher dimensional partitions. The conjecture on the asymptotics was arrived upon serendipitously by us when we found that a one-parameter formula for solid partitions derived using MacMahon’s generating function worked a lot better than it should. To be precise, a formula that was meant to obtain an order of magnitude estimate (for solid partitions of integers in the range [50, 62]) was not only getting the right order of magnitude but was also correct to 0.1%–0.5% (around 3–4 digits). The main conjecture discussed in section 3 is a natural outgrowth of this observation. The exact enumeration of solid partitions was possible due to an observation that leads to a gain of the order of $10^4$–$10^5$ enabling us to exactly generate numbers of the order of $10^{16}$–$10^{17}$ in reasonable time.

The paper is organized as follows. Following the introductory section, section 2 provides the background to the problem of interest as well as fixes the notation. Section 3 deals with the asymptotics of higher dimensional partitions. This is done by means of two conjectures. We provide some evidence toward these conjectures with a fairly detailed study of solid partitions using a combination of exact enumeration as well as fits to the data. Section 4 provides the theoretical background to the method used for the exact enumeration of higher dimensional partitions. We conclude in section 5 with some remarks on extensions of this work. In appendix A, we work out the asymptotics of MacMahon numbers. Appendix B provides an ‘exact’ asymptotic formula for three-dimensional MacMahon numbers. In appendix C, we tabulate our results from exact enumerations for partitions in 3, 4 and 5 dimensions.

2. Background

A partition of an integer $n$ is a weakly decreasing sequence $(a_0, a_1, a_2, \ldots)$ such that

- $\sum_i a_i = n$ and
- $a_{i+1} \leq a_i$ $\forall i$.

For instance, $(2, 1, 1)$ is a partition of 4. Define $p_1(n)$ to be the number of partitions of $n$. For instance,$$4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1 \quad \Rightarrow \quad p_1(4) = 5. \quad (2.1)$$

A slightly more formal way to define a partition is as a map from $\mathbb{Z}_{\geq 0}$ to $\mathbb{Z}_{\geq 0}$ satisfying the two conditions mentioned above. This definition enables one to generalize to higher dimensional partitions. A $d$-dimensional partition of $n$ is defined to be a map from $\mathbb{Z}_{\geq 0}^d$ to $\mathbb{Z}_{\geq 0}$ such that it is weakly decreasing along all directions and the sum of all its entries add to $n$. Let us denote the partition by $(a_{i_1, i_2, \ldots, i_d})$. The weakly decreasing condition along the $r$th direction implies that$$a_{i_1, i_2, \ldots, i_{r-1}, i_{r}+1, i_{r+1}, \ldots, i_d} \leq a_{i_1, i_2, \ldots, i_{r-1}, i_{r}, \ldots, i_d} \quad \forall (i_1, i_2, \ldots, i_d). \quad (2.2)$$
Two-dimensional partitions are called plane partitions, while three-dimensional partitions are called solid partitions. Plane partitions can thus be written out as a two-dimensional array of numbers, $a_{ij}$. For instance, the two-dimensional partitions of 4 are

\[
\begin{array}{cccccccc}
4 & 3 & 1 & 2 & 2 & 1 & 1 & 1 \\
1 & 2 & 2 & 2 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\end{array}
\]

Thus, we see that there are 13 two-dimensional partitions of 4. Let us denote by $p_d(n)$ the number of $d$-dimensional partitions of $n$. It is useful to define the generating function of these partitions by ($p_d(0) \equiv 1$):

\[
P_d(q) \equiv \sum_{n=0}^{\infty} p_d(n) q^n.
\]

The generating functions of one- and two-dimensional partitions have very nice product representations. One has the Euler formula for the generating function of partitions

\[
P_1(q) = \prod_{n=1}^{\infty} (1 - q^n),
\]

and the MacMahon formula for the generating function of plane partitions

\[
P_2(q) = \prod_{n=1}^{\infty} (1 - q^n)^n.
\]

MacMahon also guessed a product formula for the generating functions for $d > 2$ that turned out to be wrong [5]. His guess is of the form

\[
M_d(q) = \prod_{n=1}^{\infty} (1 - q^n)^{(d-1)d/2} := \sum_{n=0}^{\infty} m_d(n) q^n.
\]

We will refer to the numbers $m_d(n)$ as the $d$-dimensional MacMahon numbers. It is easy to see that $M_1(q) = P_1(q)$ and $M_2(q) = P_2(q)$. However, $M_d(q) \neq P_d(q)$ for $d > 2$. An explicit formula (given by Atkin et al [5] or the book by Andrews [15]) for the number of $d$-dimensional partitions of 6 is

\[
\begin{align*}
p_d(6) &= 1 + 10d + 27 \binom{d}{2} + 28 \binom{d}{3} + 11 \binom{d}{4} + \binom{d}{5}.
\end{align*}
\]

Then, one can show that

\[
m_d(6) - p_d(6) = \binom{d}{3} + \binom{d}{4},
\]

which is non-vanishing for $d \geq 3$. Thus, the MacMahon generating function fails to generate numbers of partitions when $d \geq 3$.

2.1. Presentations of higher dimensional partitions

There are several ways to depict higher dimensional partitions. Recall that there is a one-to-one correspondence between (one-dimensional) partitions of $n$ and Ferrers (or Young) diagrams. The partition of 4 corresponding to $3 + 1$ corresponds to the Ferrers diagram

\[
\begin{array}{ccc}
\text{ } & \text{ } & \text{ } \\
\text{ } & \text{ } & \text{ } \\
\text{ } & \text{ } & \text{ } \\
\text{ } & \text{ } & \text{ } \\
\end{array}
\]

1 We caution the reader that there is another definition of dimensionality of a partition that differs from ours. For instance, plane partitions would be three-dimensional partitions in the nomenclature used in Atkin et al [5], while we refer to them as two-dimensional partitions.
Similarly, the plane partition $3 \times 1$ can be represented by a Young tableau (i.e. a Ferrers diagram with numbers in the boxes) or as a ‘pile of cubes’ stacked in three dimensions (one of the corners of the cubes being located at $(0, 0, 0)$, $(0, 0, 1)$, $(0, 0, 2)$ and $(1, 0, 0)$ in a suitably chosen coordinate system)

$\begin{array}{ccc}
3 \\
1
\end{array}$

Similarly, $d$-dimensional partitions can be represented as a ‘pile of hypercubes’ in $(d + 1)$ dimensions.

We refer the reader to the work by Stanley (and references therein) for an introduction to plane partitions [16, 17]. The book by Andrews [15] provides a nice introduction to higher dimensional partitions. Furthermore, the lectures by Wilf on integer partitions [18] and the notes by Finch on partitions [19] are also good starting points to the existing literature on the subject.

### 3. Asymptotics of higher dimensional partitions

In this section, we will discuss the asymptotics of higher dimensional partitions. The absence of an explicit formula for the generating function for $d > 2$ implies that there is no simple way to obtain the asymptotics of such partitions. In this regard, an important result due to Bhatia et al states that [8]

$$\lim_{n \to \infty} n^{-d/(d+1)} \log p_d(n) = d\text{-dependent constant.} \quad (3.1)$$

**Conjecture 3.1.** The constant in the above formula is identical to the one for the corresponding MacMahon numbers:

$$\lim_{n \to \infty} n^{-d/(d+1)} \log m_d(n) = \frac{d+1}{d} \left[ \zeta(d+1) \right]^{1/(d+1)} =: \beta_d. \quad (3.2)$$

For three-dimensional partitions, this becomes a conjecture of Mustonen and Rajesh. Mustonen and Rajesh used Monte Carlo simulations to compute the constant and showed that it is $1.79 \pm 0.01$ [14]. This is compatible with the conjecture since $\beta_3 \approx 1.78982$.

It is important to know the subleading behavior of the asymptotics of higher dimensional partitions in order to have quantitative estimate of errors. This is something we will provide in the following subsection. Before discussing the asymptotic behavior of the higher dimensional partitions, it is useful to know the asymptotic behavior of the MacMahon numbers. A calculation shown in appendix A gives their subleading behavior. One obtains

$$\log m_d(n) \sim \sum_{r=1}^{d} \beta_d n^{\frac{d-r}{d+1}} + \gamma_d n + \delta_d. \quad (3.3)$$

The constants $\beta_d$ and $\gamma_d$ have been computed for $d = 3, 4, 5$ in appendix A.

### 3.1. Toward a stronger conjecture

The number of $d$-dimensional partitions of $n$ can be obtained from the generating function $P_d(q)$ by inverting equation (2.4):

$$p_d(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} P_d(e^{iy}) e^{-iny} \, dy. \quad (3.4)$$
Suppose we know all the singularities of the function $P_d(q)$. The integral can then be evaluated (at large $n$), for instance, by the saddle-point method and adding up the contribution of all singularities thus obtaining an asymptotic formula for $p_d(n)$. The singularities are usually obtained by looking at the product formulae of the form

$$P_d(q) = \prod_{n=1}^{\infty} (1 - q^n)^{-a(d)(n)}.$$  

The exponents $a(d)(n)$ can be determined for those values of $n$ for which $p_d(n)$ has been determined. If all the $a(d)(n)$ are positive, then it is easy to see that $P_d(q)$ is singular at all roots of unity—this leads naturally to the circle method of Hardy and Ramanujan [1]. However, for $d > 2$, this turns out to be false. For instance, $a(3)(15) = -186$ is the first exponent that becomes negative for $d = 3$ [20, see table 1]. We will assume that the singularities of $P_d(q)$ continue to occur at roots of unity. In particular, we will see that the Bhatia et al result implies that for a large enough $n$, one has

$$a(d)(n) = O(n^{d-1}),$$  

with $a(d)(n) > 0$. Let us assume that the dominant term in a saddle-point computation of the integral in equation (3.4) occurs near $q = 1$.

**Proposition 3.2.** The Laurent expansion of $\log P_d(e^{-t})$ in the neighborhood of $t = 0$ is of the form

$$-\log P_d(e^{-t}) = \frac{\hat{C}_d}{d} + \frac{\hat{C}_{d-1}}{(d-1)} t^{d-1} + \cdots + \frac{\hat{C}_1}{t} + \text{non-singular as } t \to 0,$$  

where $\hat{C}_1, \ldots, \hat{C}_d$ are some constants.

**Remark.** This is precisely the form of the Laurent expansion for $\log M_d(e^{-t})$ near $t = 0$ (see appendix A).

A saddle-point computation of the integral (3.4) is carried out by extremizing the function

$$\log P_d(e^{-t}) + nt.$$  

The extremum, $t_\ast$, which is close to $t = 0$ for large $n$, obtained using proposition 3.2 is given by

$$t_\ast = \left(\frac{\hat{C}_d}{n}\right)^{1/(d+1)} + \cdots.$$  

Plugging in the saddle-point value, we see that

$$\log p_d(n) \sim \frac{\hat{C}_d}{d} n^{1/(d+1)} + \frac{\hat{C}_{d-1}}{(d-1)} n^{d-1} + \cdots + \frac{\hat{C}_1}{t_\ast} + nt_\ast + \cdots$$  

$$\sim \frac{d}{d + 1} (\hat{C}_d)^{1/(d+1)} n^{d/(d+1)} + \text{subleading terms.}$$  

We thus recover the bound obtained by Bhatia et al [8]. Thus, we see that the Bhatia et al result combined with the assumption that $P_d(e^{-t})$ is a meromorphic function in the neighborhood of $t = 0$ with a pole of order $d$ implies proposition 3.2.

A more precise saddle-point computation enables us to determine subleading terms as well and then we obtain

$$\log p_d(n) \sim \sum_{r=1}^{d} r^{(d)} n^{\frac{r-1}{r+1}} + \gamma^{(d)}(n) log n + \tilde{a}^{(d)} + \cdots.$$  

(3.11)
where the constants $\hat{\beta}(d), \hat{\gamma}(d)$ and $\hat{\delta}(d)$ are determined by the constants $\hat{C}_r$ that appear in proposition 3.2.

Conjecture 3.1 implies that $\hat{C}_d = d \zeta(d + 1)$—this is the leading coefficient in the Laurent expansion of $\log M_d(e^{-t})$ near $t = 0$. This is equivalent to

$$a^{(d)}(n) = \frac{n^{d-1}}{(d-1)!} + \cdots,$$

(3.12)

where the ellipsis indicates subleading terms in the large $n$ limit. We now propose a stronger form of conjecture 3.1.

**Conjecture 3.3.** The asymptotics of the $d$-dimensional partitions are identical to the asymptotics of the MacMahon numbers:

$$\log p_d(n) \sim \sum_{r=1}^{d} \hat{\beta}^{(d)}_r \frac{n^{d-r+1}}{r!} + \gamma^{(d)} \log n + \cdots,$$

(3.13)

where $\hat{\beta}^{(d)}_r$ and $\gamma^{(d)}$ are the same as in equation (3.3).

It is easy to see that one can have conjectures that are stronger than conjecture 3.1 but weaker than conjecture 3.3 by requiring fewer coefficients to match with equation (3.3). Conjecture 3.3 implies that the coefficients $\hat{C}_r$ $(r = 1, \ldots, d)$ in the Laurent expansion in proposition 3.2 are identical to those of $\log M_d(e^{-t})$. Equivalently,

$$p_d(e^{-t}) - M_d(e^{-t}) = O(1),$$

(3.14)

near $t = 0$. It also implies that at large $n$, $a^{(d)}(n)$ behaves exactly like the exponent that appears in the product formula for $d$-dimensional MacMahon numbers in equation (2.7), i.e.

$$a^{(d)}(n) \sim \left( \frac{n + d - 2}{d - 1} \right) + \cdots,$$

(3.15)

where the ellipsis indicates the terms that vanish as $n \to \infty$.

### 3.2. Evidence for the conjecture

We will provide evidence by explicitly enumerating numbers for the higher dimensional partitions. In particular, we compute all solid partitions for $n \leq 68$ and use the formula provided by equation (3.13) as a one-parameter function to fit the known numbers. The advantage of this procedure is that one does not need to go to enormously larger values of $n$. In figures 1, 2 and 3, we compare this formula implied by conjecture 3.3 for $d = 3, 4$ and 5, respectively. Since the values of $n$ that we consider are not too large, these fits provide weak evidence that three of the conjectured numbers i.e. $\hat{\beta}^{(d)}_1, \hat{\beta}^{(d)}_2$ and $\gamma^{(d)}$ are probably correct.

### 3.3. Solid partitions: a detailed study

The asymptotic expansion of the logarithm of three-dimensional MacMahon numbers is (with $\xi \equiv n + \frac{(\xi - 3)}{4}$)

$$\log m_3(n) \sim \frac{4}{3} \frac{(3 \xi (4))^{1/4} \xi^{3/4} + \frac{\xi (3)}{2[3 \xi (4)]^{1/2}} \xi^{1/2} = \frac{\xi (3)^2}{8[3 \xi (4)]^{5/4}} \xi^{1/4} = \frac{61}{96} \log \xi + \cdots}{3} \frac{\xi (3)^2}{8[3 \xi (4)]^{5/4}} \xi^{1/4} = \frac{61}{96} \log \xi + \cdots}$$

(3.16)
Using the above formula as a guide, we fit the solid partitions to the following three formulae involving up to three parameters \((a, b, c)\): \((\xi := n + b)\):

\[
q_3(n) = \frac{4}{3} \left[ 3\zeta(4) \right]^{1/4} n^{3/4} + \frac{\zeta(3)}{2 \left[ 3\zeta(4) \right]^{1/2}} n^{1/2} - \frac{\zeta(3)^2}{8 \left[ 3\zeta(4) \right]^{5/4}} n^{1/4} - \frac{61}{96} \log n + a
\]

\[
r_3(n) = \frac{4}{3} \left[ 3\zeta(4) \right]^{1/4} \xi^{3/4} + \frac{\zeta(3)}{2 \left[ 3\zeta(4) \right]^{1/2}} \xi^{1/2} - \frac{\zeta(3)^2}{8 \left[ 3\zeta(4) \right]^{5/4}} \xi^{1/4} - \frac{61}{96} \log \xi + a
\]

\[
s_3(n) = \frac{4}{3} \left[ 3\zeta(4) \right]^{1/4} \xi^{3/4} + \frac{\zeta(3)}{2 \left[ 3\zeta(4) \right]^{1/2}} \xi^{1/2} - c \xi^{1/4} - \frac{61}{96} \log \xi + a.
\]

Note that the number of free parameters increases from 1 for the function \(q_3\) to 2 for \(r_3\) and to 3 for \(s_3\). In table 1, we use the one-parameter formula to estimate and compare with exact data for solid partitions. We also fit these three functions to exact data in the range \([58, 62]\) in order to estimate these free parameters. We obtain \(a = -1.544\), \((a, b) = (-1.530, -0.028)\) and
Figure 3. A plot of \(n^{-5/6} \log p_3(n)\) for \(n \in [5, 30]\) (red dots). The solid blue curve is the asymptotic formula normalized to give the correct answer for \(n = 25\) and the horizontal line is the conjectured value for \(n \to \infty\).

Table 1. Estimates using the asymptotic formula \(q_3(N)\). The constant in the asymptotic formula is fixed by requiring it to give the exact answer for \(N = 62\)—the largest known number of solid partitions at the time of the fit.

| \(N\) | \(q_3(N)\) | \(p_3(N)\) |
|-------|-----------|-----------|
| 58    | 3972318521718539 | 3971409682633930 |
| 59    | 6522014363273781 | 6520649543912193 |
| 60    | 10686367929548727 | 10684614225715559 |
| 61    | 17474590403967699 | 17472947006257293 |
| 62 used to fit constant | 285186910938854 |
| 63    | 46453074905306481 | 46458506464748807 |
| 64    | 75522726337662733 | 75542021868032878 |
| 65    | 122556018966297693 | 122606799866017598 |
| 66    | 198518226269824763 | 198635761249922839 |
| 67    | 320988410810838956 | 321241075686259326 |
| 68    | 518102330350099210 | 518619444932991189 |

\((a, b, c) = (-3.211, 1.689, 0.257)\) from the three fits. We use the same functions to estimate the values of three-dimensional MacMahon numbers for the same range of values using a similar fit. We see that the function \(s_3\) has almost worked as well as it did for the corresponding MacMahon numbers. In particular, the fit gives \(c = 0.25713\) which is different from the one given by MacMahon numbers for \(\beta_3^{(3)} = -0.04143\). For the MacMahon numbers, the fitted value of \(c = -0.057621\), which is close to the actual number. This suggests that the coefficient of \(n^{1/4}\) may be different from the one given by the MacMahon numbers. For the values of \(n\) that we have considered, the dominant contributions are due to the first two terms as well as the log term. Hence, we consider this as possible evidence for \(\beta_r^{(3)} = \beta_r^{(3)}\) for \(r = 1, 2\). For completeness, we provide the numbers obtained by carrying out a five-parameter fit using the numbers in the range \([60, 68]\). The fit gives

\[
\log p_3(n) \sim 1.73 n^{3/4} + 0.83 n^{1/2} - 0.90 n^{1/4} - 1.00 \log n - 0.22. \tag{3.17}
\]

We also observe that if we used a larger range of numbers, say, \(n \in [50, 68]\), we obtain large numbers (of order 10 or greater) for some of the coefficients. This reflects the lack of data for a large number more than anything else.
In an attempt at understanding the accuracy of our numbers better, we carried out a systematic study of an exact asymptotic formula (in the sense of Hardy–Ramanujan–Rademacher for partitions) for three-dimensional MacMahon numbers using a method due to Almkvist [21, 22]. These are discussed in appendix B. One writes

\[ m_3(n) \sim \sum_{k=1}^{\infty} \phi_k(n), \]

where \( \phi_k(n) \) are the contributions from various saddle points with \( k = 1 \) being the dominant one. For \( n = 60 \), we see that \( \phi_1(60) \) gets the first nine digits right, while the sum of the first two terms gets 11 digits right. We further break up the contribution of \( \phi_1(n) \) into several terms. The term that we write as \( \phi_1^{(0)}(n) \) is the contribution from the singular part of \( \log M_3(e^{-t}) \) at the dominant saddle point located near \( t = 0 \). We see that \( \phi_1^{(0)}(60) \) gets the first five digits right—somewhat closer to what we have obtained in our estimates for the numbers of solid partitions.

### 3.4. An unbiased estimate for the leading coefficient

In order to provide an unbiased estimate for the leading coefficient of the asymptotic formula using the exact numbers of solid partitions\(^2\), we use the method of Neville tables (albeit with a slight and obvious modification) [23]. Let

\[
e_r \equiv n^{-3/4} \log p_3(n)
\]

\[
\sim \sum_{x=1}^{3} b_x^{(3)} n^{(1-x)/4} + \hat{\gamma}^{(3)} n^{-3/4} \log n + \hat{\delta}^{(3)} n^{-3/4},
\]

where we have written the asymptotic formula in the second line using the parameters defined in equation (3.11). Furthermore, for \( r \geq 1 \), recursively define

\[
e_r' := n^{1/4} e_{r-1} - (n - r)^{1/4} e_{r-1}^{-1} n^{1/4} - (n - r)^{1/4}. \tag{3.19}
\]

Using the conjectured asymptotic formula for \( p_3(n) \), we can derive asymptotic formulae for \( e_r' \). The \( e_r' \) have been constructed so that

1. \( \lim_{n \to \infty} e_r' \) tends to a constant that equals \( \hat{\beta}_1^{(3)} \) for all \( r \). The first subleading term is proportional to \( n^{-(r+1)/4} \). Thus, a plot of \( e_r' \) versus \( n^{-(r+1)/4} \) should be a straight line in the asymptotic limit.

2. As we increase \( r \), the number of parameters that appear in the asymptotic formula for \( e_r' \) decreases. For instance, one sees that \( \hat{\beta}_2^{(3)} \) drops out for \( r = 1 \):

\[
e_1' \sim \hat{\beta}_1^{(3)} n^{-1/2} - 2 \hat{\gamma}^{(3)} n^{-3/4} \log n + (4 \hat{\gamma}^{(3)} - 2 \hat{\delta}^{(3)}) n^{-3/4}, \tag{3.20}
\]

and \( \hat{\beta}_2^{(3)} \) drop out for \( r = 2 \):

\[
e_2' \sim \hat{\beta}_1^{(3)} + \gamma n^{-3/4} \log n + (-6 \hat{\gamma}^{(3)} + \hat{\delta}^{(3)}) n^{-3/4}. \tag{3.21}
\]

An estimate for \( \hat{\beta}_1^{(3)} \) has been obtained by carrying out two- and three-parameter fits to the asymptotic formula given in equation (3.20). We obtain

\[
e_1' = \begin{cases} 1.793 + 2.099 n^{-1/2} & \text{two-parameter fit} \\ 1.781 + 0.83 n^{-1/2} + 0.924 \log n & \text{three-parameter fit}. \end{cases} \tag{3.22}
\]

\(^2\) We thank the anonymous referee for suggesting that we provide an unbiased estimate of the leading coefficient and for asking us to look at the methods discussed in [23].
A four-parameter fit leads to coefficients that are not of order 1. We discard this fit as we make the natural assumption that all coefficients are of order 1 or smaller. Using the two different fits, we can estimate that $\hat{\beta}_1^{(3)}$ is around 1.78–1.79. The wide variation that we observe in $\hat{\beta}_1^{(3)}$ suggests that we cannot estimate it with the available exact numbers. In figure 4, we have plotted $e_n^1$ versus $n^{-1/2}$ along with the three-parameter fit. We also observe that $e_n^2$ (see figure 5) is oscillating between [1.77, 1.81] and hence we cannot estimate any further parameters using the data. For completeness, we have carried out a similar analysis for the MacMahon numbers, $m_3(n)$ in the range $n \in [20, 68]$ and obtain $\hat{\beta}_1^{(3)}$ in the range [1.77–1.78].

We also observe that $e_n^2$ does not oscillate as it does for solid partitions. We conclude that an unbiased estimate for $\hat{\beta}_1^{(3)}$ is consistent with conjecture 3.1. However, given the relatively small values of $n$ that we have used, this only constitutes weak evidence at best. There is another result due to Widom $et al$ who studied the asymptotics of (restricted) solid partitions with Ferrers diagrams that fit in a four-dimensional box of size $10^3 \times p$ [24].
as a function of $p$. They observe that the entropy in the thermodynamic limit deviates from a formula derived from a MacMahon formula for restricted solid partitions. Should we expect a similar behavior for unrestricted solid partitions? The deviation observed by Widom et al is small. If a similar behavior occurs for unrestricted partitions, then conjecture 3.1 would be false. We believe that the exact numbers that we have used are not large enough to definitively test conjecture 3.1. However, in any case, it is important to note that the functional form of the asymptotics continues to hold.

4. Explicit enumeration

In this section, we discuss the explicit enumeration of higher dimensional partitions. The first program to explicitly enumerate higher dimensional partitions is due to Bratley and McKay [25]. However, we do not use their algorithm but another one due to Knuth [20]. We start with a few mathematical preliminaries in order to understand the Knuth algorithm as well as our parallelization of the algorithm.

4.1. Almost topological sequences

Let $P$ be a set with a partial ordering (given by a relation denoted by $\preceq$) and a well ordering (given by a relation denoted by $<$). Furthermore, let the partial ordering be embedded in the well ordering, i.e. $x \prec y$ implies $x < y$.

**Definition 4.1.** A sequence $X = (x_1, x_2, \ldots, x_m)$ containing elements of $P$ is called a topological sequence if

1. for $1 \leq j \leq m$ and $x \in P$, $x \prec x_j$ implies $x = x_i$ for some $i < j$;
2. for $m > 0$, there exists $x \in P$ such that $x < x_m$ and $x \neq x_i$, for $1 < i \leq m$.

Let us call the $j$th position in a topological sequence, $X$, interestingly if $x_j > x_{j+1}$. By definition, the last position of a sequence is considered interesting. The index of a topological sequence is defined to be the sum of all $j$ for all interesting positions, i.e.

$$\text{index}(X) = \sum_j \{j | j \text{ is interesting} \}.$$ (4.1)

**Definition 4.2.** An almost topological sequence is a sequence that satisfies condition 1 but not necessarily condition 2.

Thus, all topological sequences are also almost topological sequences. This definition is motivated by the observation that almost topological sequences do occur as sub-sequences of topological sequences.

4.1.1. An example due to Knuth. Let $P$ denote the set of three-dimensional lattice points, i.e.

$$P = \{(i, j, k) | i, j, k = 0, 1, 2, 3, \ldots \} \equiv \mathbb{N}^3$$ (4.2)

with the partial ordering $(i, j, k) \preceq (i', j', k')$ if $i \leq i'$, and $j \leq j'$ and $k \leq k'$. Let us choose the well ordering to be given by the lexicographic ordering, i.e.

$$(i, j, k) < (i', j', k')$$ (4.3)

3 The entropy for fixed boundary conditions was found to be 0.145 instead of the conjectured value of 0.139. See equation (14) in [24].

11
if and only if
\[ i < i' \quad \text{or} \quad (i = i' \text{ and } j < j') \quad \text{or} \quad (i = i', j = j' \text{ and } k < k'). \]

The depth of a topological sequence is the number of elements in the sequence. Consider the topological sequence (of depth 6)
\[ X = \{(0, 0, 0), (0, 0, 1), (0, 0, 2), (1, 0, 0), (0, 1, 0), (0, 0, 3)\}, \]
where we have indicated the interesting positions in boldface. This sequence has index 15 = 4 + 5 + 6.

4.2. Topological sequences and solid partitions

Let \( d_m(n) \) denote the number of topological sequences of the set \( P = \mathbb{N}^m \) with index \( n \). Furthermore, define \( d_m(0) = 1 \). As before, let \( p_m(n) \) denote the number of \( m \)-dimensional partitions of \( n \). A theorem of Knuth relates these two sets of numbers as follows.

**Theorem 4.3** (Knuth [23]),
\[ p_m(n) = \sum_{k=0}^{n} d_m(k) \, p_1(n-k). \] (4.4)

Equivalently, the generating function of \( m \)-dimensional partitions decomposes into a product of the generating function of the numbers of topological sequences and the generating function of one-dimensional partitions:
\[ P_m(q) = D_m(q) \, P_1(q), \] (4.5)
where
\[ D_m(q) := \sum_{n=0}^{\infty} d_m(n) \, q^n. \]

Since topological sequences are much easier to enumerate, Knuth went ahead and wrote a program to generate all topological sequences of index \( \leq N \) (for some fixed \( N \)). This is the program that was the starting point of our exact enumeration.

We list below the topological sequences of indexes 2 and 3 when \( P = \mathbb{N}^3 \) (we have dropped the comma between numbers to reduce the length of the expression)

**Index 2**: \( \{(000)(010)\} \quad \text{and} \quad \{(000)(100)\} \Rightarrow d_3(2) = 2 \).

**Index 3**: \( \{(000)(001)(010)\}; \quad \{(000)(001)(100)\}; \quad \{(000)(010)(001)\}; \quad \{(001)(001)(100)\}; \quad \{(000)(010)(100)\}; \quad \{(000)(100)(200)\} \Rightarrow d_3(3) = 5 \).

Thus, we see that \( D_3(q) = 1 + 2q^2 + 5q^3 + \cdots \). We also have \( P_1(q) = 1 + q + 2q^2 + 3q^3 + \cdots \). Thus, we obtain
\[ P_3(q) = D_3(q) \, g_1(q) = 1 + q + 4q^2 + 10q^3 + \cdots. \]
4.3. Equivalence classes of almost topological sequences

We say that two sequences $X = (x_1, x_2, \ldots, x_m) \sim Y = (y_1, y_2, \ldots, y_m)$ are related if the elements of $Y$ are a permutation of the elements of $X$. Of course, not all permutations of an almost topological sequence lead to another almost topological sequence as some of them violate condition 1 in the definition of a topological sequence. However, even after imposing the restriction to permutations that lead to other topological sequences, the relation remains an equivalence relation. As an example consider the following three sequences in $\mathbb{N}^3$:

\[
\begin{align*}
\{&(0, 0, 0), (0, 0, 1), (0, 0, 2), (1, 0, 0)\}, \\
\{&(0, 0, 0), (0, 0, 1), (1, 0, 0), (0, 0, 2)\}, \\
\{&(0, 0, 0), (1, 0, 0), (0, 0, 1), (0, 0, 2)\}.
\end{align*}
\]

It is easy to see that these three sequences form a single equivalence class. However, the last two are not topological sequences as they violate condition 2 in the definition of a topological sequence and hence are almost topological sequences. We thus choose to work with equivalence classes of almost topological sequences.

**Proposition 4.4.** The equivalence classes of almost topological sequences of $\mathbb{N}^d$ of depth $k$ are in one-to-one correspondence with $(d - 1)$-dimensional partitions of $k$. We shall refer to the $(d - 1)$-dimensional partition as the shape of the equivalence class.

The $(d - 1)$-dimensional partition is obtained by placing $d$-dimensional hypercubes (of size one) at the points appearing the almost topological sequence. This is nothing but the ‘piles of cubes’ representation of a $(d - 1)$-dimensional partition. In this representation, the precise ordering of the points in the almost topological sequence is lost and one obtains the same $(d - 1)$-dimensional partition for any element in the same equivalence class. Given a $(d - 1)$-dimensional partition, the coordinates of the hypercubes in the ‘piles of cubes’ representation give the elements of the almost topological sequence. For instance, the equivalence class in equation (4.6) has as its shape the following two-dimensional partition of 4:

![Two-dimensional partition](image)

When $P = \mathbb{N}^2$, the almost topological sequences of $P$ are standard Young tableaux. Given an almost topological sequence of $\mathbb{N}^2$ with shape $\lambda$ with $n$ boxes, the standard Young tableau is obtained by entering the position of the box in the almost topological sequence. It is easy to see that this map is a bijection. It is an interesting and open problem to enumerate the number of almost topological sequences given a shape for higher dimensions. We did this by generating all topological partitions of a given index and sorting them out by shape. However, this is an overkill if one is interested in enumerating topological sequences associated with a particular shape.

4.4. Programming aspects

The explicit enumeration of topological sequences to generate partitions was first carried out by Knuth who enumerated solid partitions of integers $\leq 28$ [20]. This was extended to all integers $\leq 50$ by Mustonen and Rajesh (using other methods) [14]. We first ported Knuth’s
Table 2. Number of equivalence classes at various depths (equal to the number of plane partitions) for counting topological partitions of $N!$.

| Depth | Nodes    | Shapes  |
|-------|----------|---------|
| 12    | 28 680 717 | 1479    |
| 14    | 15 673 449  | 4167    |
| 15    | 12 345 147 705 | 6879    |
| 17    | 856 212 871 761 | 18 334  |

Algol program to C++ and quickly found that it was prohibitively hard to generate additional numbers given by the fact that $p_3(50)$ is of the order of $10^{13}$. So, we decided to parallelize Knuth’s program in the following way.

(1) Generate almost all topological sequences up to a depth $k$.
(2) Next, separately run each sequence (to generate the rest of tree) from depth $(k + 1)$ until all sequences of index $N$ that contain the initial sequence as its first $k$ terms are generated. Here, it is important to note that while we are counting the numbers of topological sequences, we need to include almost all topological sequences since they necessarily appear as sub-sequences of topological sequences.
(3) An important observation is that it suffices to run one sequence for every given shape since they have an identical tree structure after the $(k + 1)$th node. However, it is crucial to note that each topological sequence in a given equivalence class does not have the same index. This entails a bit of book keeping where one keeps track of the different indices of all topological sequences of identical shape. The power of this approach is best illustrated by looking at table 2 where we list the numbers of actual sequences (nodes) as well as the number of shapes. A naive estimate (based on the reduction of the number of runs) shows that run times should go down by an order of $10^5$–$10^6$.

This approach has enabled us to extend the Knuth–Mustonen–Rajesh results to all integers $N \leq 68$. The numbers were generated in several steps: $N = 52, 55, 62, 68$. We obtained the results for $N \leq 52$ without parallelization. The results for $N \leq 55$ were obtained using parallelization to depth 7 but without using equivalence classes and required about 1500 h of CPU time. The results for $N \leq 62$ were done using parallelization to depth 14 (4167 shapes) and took around 30 000 h of CPU time (about a month of runtime). The last set of results for $N \leq 68$ took around 360 $K$ h of runtime (spread over five months).

We also extended the numbers for four-dimensional partitions of $N \leq 35$ and five-dimensional partitions of $N \leq 30$. This was done without any parallelization. The complete results are given in appendix C.

5. Conclusion

We believe that our results show that it is indeed possible to understand the asymptotics of higher dimensional partitions. The preliminary nature of our results shows that a lot more can and should be done. Our results provide a functional form to which results from Monte Carlo simulations, of the kind carried out by Mustonen and Rajesh [14], can be fitted to. However, the errors should be better than one part in $10^5$ or $10^4$ to be able to fix the subleading coefficients. We are indeed making preliminary studies to see whether one can achieve this.

Another avenue is to see if there are sub-classes of partitions that can be counted, i.e. we can provide simple expressions for their generating functions. For instance, the analog of conjugation in usual partitions is the permutation group, $S_{d+1}$, for $d$-dimensional partitions. Following Stanley [26], we can organize $d$-dimensional partitions based on the subgroups of $S_{d+1}$ under which they are invariant (see also [27]). Some of these partitions might have simple generating functions.
One of the proofs of the MacMahon formula for the generating function of plane partitions is due to Bender and Knuth [28] (see also [29]). It is done by considering a bijection between plane partitions and matrices with non-negative entries. There is a natural generalization of such matrices into hypermatrices—these hypermatrices are counted by MacMahon numbers. It would be interesting to construct a Bender–Knuth-type map between solid partitions and hypermatrices and study how it fails to be a bijection. This might explain why the asymptotics of MacMahon numbers works so well for higher dimensional partitions.

Acknowledgments

We would like to thank Arun Chaganty, Prakash Mohan and S Sivaramakrishnan as well as the other undergraduate students of IIT Madras’ Boltzmann group who provided a lot of inputs to the project on the exact enumeration of solid partitions (http://boltzmann.wikidot.com/solid-partitions). We thank the High Performance Computing Environment (http://hpce.iitm.ac.in) at IIT Madras for providing us with a stable platform (the Leo and Vega superclusters) that made the explicit enumeration of higher dimensional partitions possible. We thank Nicolas Destainville for drawing our attention to [24].

Appendix A. Asymptotics of the MacMahon numbers

In this appendix, we work out the asymptotics of the MacMahon numbers using a method due to Meinardus [30]. A nice introduction to this method is found in the paper by Lucietti and Rangamani [10].

We have seen that the generating function for \(d\)-dimensional MacMahon numbers is given by

\[
M_d(q) = 1 + \sum_{n=1}^{\infty} m_d(n) q^n = \prod_{n=1}^{\infty} \frac{1}{(1 - q^n)^{n+d-2}}.
\]  

(A.1)

Inverting this, we obtain

\[
m_d(n) = \oint_{\Gamma} \frac{d q}{2 \pi i} \frac{M_d(q)}{q^{n+d-1}},
\]  

(A.2)

where \(q\) is a complex variable and \(\Gamma\) is a circle \(|q| = \varepsilon < 1\) traversed in the counterclockwise direction. We shall evaluate the contour integral in (A.2) by writing \(q = e^{-t}\) and then taking the limit \(t \to 0\). This corresponds to the contribution to (A.2) due to the pole at \(q = 1\), which is the dominant contribution. The poles of \(M_d(q)\) occur precisely at all roots of unity, with the sub-dominant contributions coming from other roots of unity.

We have

\[
\log M_d(e^{-t}) = -\sum_{n=1}^{\infty} a_n \log(1 - e^{-tn}), \quad a_n = \binom{n+d-2}{d-1}.
\]  

(A.3)

We expand the logarithm inside the sum using its Taylor series and using the Mellin representation of \(e^{-s}\), i.e.

\[
e^{-s} = \frac{1}{2 \pi i} \int_{\gamma - i \infty}^{\gamma + i \infty} ds \ x^{-s} \Gamma(s), \quad \gamma > 0.
\]  

(A.4)

We obtain

\[
\log M_d(e^{-t}) = \frac{1}{2 \pi i} \int_{\gamma - i \infty}^{\gamma + i \infty} ds \ \Gamma(s) \ \zeta(s+1) \ D_d(s) \ t^{-s},
\]  

(A.5)
where the Dirichlet series $D_d(s)$ defined as

$$D_d(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s}.$$  

The real constant $\gamma$ is chosen to lie to the right of all poles of $D_d(s)$ in the $s$-plane. For $d = 3$, $a_n = n(n+1)/2$ and hence the Dirichlet series is

$$D_3(s) = \sum_{n=1}^{\infty} \frac{n(n+1)}{2n^s} = \frac{1}{2} \left[ \zeta(s-2) + \zeta(s-1) \right].$$

Hence, $D_3(s)$ has simple poles at $s = 2, 3$ with residue $1/2$ at both poles. For general $d$, $D_d(s)$ has poles at $s = k$, $k = 2, 3, \ldots, d$. Let us denote the residue at $s = k$ by $A_k$.

Now, we shift the contour in (A.5) from $\text{Re}(s) = \gamma$ to $\text{Re}(s) = -\alpha$, for $0 < \alpha < 1$. In the process, $\log M_d(q)$ receives contributions from the poles of the integrand that lie between $\text{Re}(s) = \gamma$ and $\text{Re}(s) = -\alpha$. Hence, we obtain

$$\log M_d(e^{-t}) = \sum_{k=2}^{d} A_k \Gamma(k) \zeta(k+1) n^{-k} + D_d'(0) - D_d(0) \log t$$

$$+ \frac{1}{2\pi i} \int_{-\alpha+i\varepsilon}^{-\alpha-i\varepsilon} ds \Gamma(s) \zeta(s+1) D_d(s) t^{-s}. \quad (A.6)$$

The integral can be shown to go as $O(|t|^\alpha)$. Hence, we obtain

$$M_d(e^{-t}) = \exp \left( \sum_{k=2}^{d} A_k \Gamma(k) \zeta(k+1) n^{-k} + D_d'(0) - D_d(0) \log t \right) \left( 1 + O(|t|^\alpha) \right). \quad (A.7)$$

Hence, near $q = 1$, we have

$$m_d(n) = \frac{1}{2\pi i} \int_{(0)}^{t_0+i\pi} dt \ e^{G_d(t) \gamma}, \quad (A.8)$$

where $(t_0$ is taken to close to $0^+)$

$$G_d(t) = \sum_{k=2}^{d} \frac{C_k}{kt^k} + nt, \quad C_k := A_k \Gamma(k+1) \zeta(k+1).$$

We carry out the integral (A.8) using the saddle-point method. For this, we have to first evaluate $t = t_*$ such that $G_d'(t_*) = 0$. That is,

$$\sum_{k=2}^{d} \frac{C_k}{t_*^{k+1}} - n = 0. \quad (A.9)$$

We next let the integration contour pass through the saddle point for which the value of $G_d(t_*)$ is largest. This happens when $t_*$ is the largest root of (A.9). This means $t_*^{-(d+1)} \sim n$ or equivalently, $t_* \sim n^{1/(d+1)}$ and hence, $t_* \to 0$ as $n \to \infty$. Hence, the saddle-point method indeed gives the value of $m_d(n)$ for $n \to \infty$.

Now, we solve for $t_*$ from (A.9) which is a polynomial equation of degree $d + 1$. For $d > 3$, we do not have a general formula for the roots of the equation. But in this case, we indeed have a formula for the largest positive root of (A.9), due to Lagrange:

$$t_* (n) = \sum_{\ell > 0} b_{\ell n} n^{-\ell/(d+1)}, \quad (A.10)$$

16
where
\[ b_n = \frac{1}{\ell^4} \left[ \frac{d^{d-1}}{dy^{d-1}} \phi(y) \right]_{y=0} \quad \text{with} \quad \phi(y) \equiv \left( \sum_{k=1}^{d} C_k y^{d-k} \right)^{\frac{1}{d-1}}. \]

Using the above formula, we can compute \( t_0 \) to any required order in \( n \) and then carry out the saddle-point integration (A.9). We finally obtain
\[ m_d(n) = \left( \frac{1}{2\pi G_d(t_*)} \right) e^{-D_0^d(0)} \exp(G_d(t_*) + D_0'(0)) (1 + O(t_*^n)). \] (A.11)

Recall that the dependence on \( n \) occurs implicitly, on the right-hand side of the above equation, through the saddle-point value \( t_*(n) \).

**A.1. Three-dimensional MacMahon numbers**

The asymptotic formula is
\[ m_3(n) \sim \text{const} \ n^{-61/96} \exp(\hat{G}_3(n)), \] (A.12)
where
\[ \hat{G}_3(n) := \frac{4}{3} C_3^{1/4} n^{3/4} + \frac{C_2}{2C_3^{4/3}} n^{2/4} + \frac{8C_1C_1 - C_2^2}{8C_3^{5/4}} n^{1/4} \]
with \( C_1 = 0, C_2 = \xi(3) \) and \( C_3 = 3\xi(4) \). Numerically evaluating, we obtain
\[ \hat{G}_3(n) \simeq 1.78982 n^{3/4} + 0.333546 \sqrt{n} - 0.0414393 n^{1/4}. \] (A.13)

**A.2. Four-dimensional MacMahon numbers**

The asymptotic formula is
\[ m_4(n) \sim \text{const} \ n^{-2179/3600} \exp(\hat{G}_4(n)), \] (A.14)
where
\[ \hat{G}_4(n) := \frac{5}{4} C_4^{1/5} n^{4/5} + \frac{C_3 n^{3/5}}{3C_4^{4/5}} + \frac{5C_2 C_4 - C_1^2}{10C_4^{2/5}} n^{2/5} + \frac{C_1^2 - 5C_2 C_2 C_3 + 25C_1 C_3^2}{25C_4^{1/5}} n^{1/5} \]
with \( C_1 = 0, C_2 = 2\xi(3)/3, C_3 = 3\xi(4) \) and \( C_4 = 4\xi(5) \). Numerically evaluating, we obtain
\[ \hat{G}_4(n) \simeq 1.66139 n^{4/5} + 0.460969 n^{2/5} + 0.0829315 n^{1/5} - 0.0345152 n^{1/5}. \] (A.15)

**A.3. Five-dimensional MacMahon numbers**

The asymptotic formula is
\[ m_5(n) \sim \text{const} \ n^{-563/960} \exp(\hat{G}_5(n)), \] (A.16)
where
\[ \hat{G}_5(n) := \frac{6}{5} C_5^{1/6} n^{5/6} + \frac{C_4}{4C_5^{5/6}} n^{4/6} + \frac{4C_4 C_3 - C_1^2}{12C_5^{1/6}} n^{3/6} + \frac{2C_4^2 - 9C_2 C_3 C_4 + 27C_2 C_3^2}{54C_5^{2/3}} n^{2/6} + \frac{(9C_1^2 + 504C_3 C_3 C_4 - 864C_4 C_4 C_4 + 432C_2 (12C_1 C_5 - C_1^2))}{5184C_5^{1/6}} n^{1/6}, \]

5 We add a term corresponding to \( k = 1 \) with coefficient \( C_1 \) in equation (A.9) so that the saddle-point computation can be carried over for higher dimensional partitions for which that might be the case.
with $C_1 = 0$, $C_2 = \frac{1}{3}(3)^{1/3}$, $C_3 = \frac{11}{12}(3)^{1/3}$, $C_4 = 6\zeta(5)$ and $C_5 = 5\zeta(6)$. Numerically evaluating, we obtain

\[ G_3(n) = 1.5737 n^{5/6} + 0.525874 n^{7/3} + 0.15873 \sqrt{n} + 0.0223817 n^{1/3} - 0.0263759 n^{1/6}. \]  

(A.17)

**Appendix B. A rather exact formula for $m_3(n)$**

We will work out the asymptotics of the three-dimensional MacMahon numbers using methods due to Almkvist [21, 22]. The generating function of three-dimensional MacMahon numbers is

\[ M_3(x) = \prod_{n=1}^{\infty} (1 - x^n)^{-n(n+1)/2} = \sum_{n=0}^{\infty} m_3(n) x^n. \]  

(B.1)

The integrals are evaluated using the circle method due to Hardy and Ramanujan [1]. The coefficients $m_3(n)$ are determined from the generating function by the formula

\[ m_3(n) = \frac{1}{2\pi} \int_{\gamma_0} M_3(e^{i\psi}) e^{-in\psi} \, d\psi. \]  

(B.2)

Since $M_3(x)$ has poles whenever $x$ is a root of unity, the dominant contributions occur in the neighborhood of this point. Setting $x = \exp(2\pi i h/k)$ with $(h, k) = 1$ the contribution can be evaluated by summing over contributions from such terms. One writes

\[ m_3(n) \sim \sum_{k=1}^{\infty} \sum_{l=1}^{k-1} \frac{1}{2\pi} \int_{\gamma_{h,k}} M_3(e^{i(2\pi h/k+\psi)}) e^{-in(2\pi h/k+\psi)} \, d\psi, \]  

(B.3)

\[ \sim \sum_{k=1}^{\infty} \phi_k(n), \]  

(B.4)

where $\gamma_{h,k}$ is an arc passing through $\psi = 0$. We do not give a detailed discussion on the choice of the arc, but refer the interested reader to [31]. In the second line, we have implicitly assumed that the integrals and the sum over $h$ have been carried out.

In order to carry out the integral for a particular $(h, k)$, we need to compute the Laurent expansion of $M_3(x)$ about the point $x = \exp(2\pi i h/k)$ and then compute the integral using methods such as the saddle point. For usual partitions, this is typically done using the modular properties of the Dedekind eta function. However, there is no such modular property in this case. The dominant contribution occurs for $k = 1$ (or $x = 1$), and we will first consider this contribution. Let

\[ g_{3d}(t) := \log M_3(e^{i t}) = -\frac{1}{2} \sum_{v=1}^{\infty} v(v+1) \log(1 - e^{-v t}) \equiv \sum_{v=1}^{\infty} h_{3d}(v), \]  

(B.5)

where $h_{3d}(x) := -\frac{x(x+1)}{2} \log(1 - e^{-xt})$. The Abel–Plana formula enables us to replace the discrete sum over $v$ by the integral:

\[ g_{3d}(t) = \int_0^{\infty} h(x) \, dx - i \int_0^{\infty} \frac{h(iy) - h(-iy)}{e^{2\pi y} - 1} \, dy. \]  

(B.6)
For \( h_t(x) := -x' \log(1 - e^{-x}) \), by expanding out the logs and resuming, Almkvist has shown that \([22]\)

\[
g_r(t) = \left[ \frac{r! \zeta(r+2)}{t^{r+1}} + \zeta'(r) - \zeta(r) \log t + \frac{t}{2} \zeta(-r-1) \right] + \sum_{v=2}^{\infty} \frac{\zeta(1-v) \zeta(-r-v)}{v!} t^v, \tag{B.7}
\]

where in the second line \( g_r^{\text{sum}}(t) \) refers to the terms appearing as the sum in the first line and \( \hat{g}_r(t) \) the remaining terms (within square brackets) up to order \( t \). This separation is useful in computing the saddle point where we will drop the terms appearing in \( g_r^{\text{sum}}(t) \) in computing the location of the saddle point. Then, it follows that

\[
g_{3d}(t) = \frac{1}{2} (g_1(t) + g_2(t)) \Rightarrow M_3(e^{-t}) \sim \exp \left[ \frac{g_1(t) + g_2(t)}{2} \right]. \tag{B.8}
\]

Note that the infinite sum for \( g_2(t) \) vanishes since \( \zeta(-2n) = 0 \) for \( n = 1, 2, 3, \ldots \), while for \( g_1(t) \) only terms with even \( v \) contribute. In computing the integral in equation (B.3), we have

\[
\frac{1}{2\pi} \int_{\gamma_1} M_3(e^{iv}) \, dv = \frac{e^{\frac{i}{2}[\zeta'(-1)+\zeta'(-2)]}}{2\pi} \int_{-\infty}^{\infty} (-iv)^{-\hat{y}} e^{\frac{a_1}{iv^{\alpha+1}} + \frac{a_2}{iv^{\alpha+2}} - \frac{2\hat{y}}{iv}} \, dv, \tag{B.9}
\]

where \( a_1 = \zeta(3), a_2 = 2\zeta(4), \hat{y} = \zeta(-1)/2 = -1/24 \) and \( \xi = n + \frac{\zeta(3)}{4} \). Using the expansion

\[
\exp \left( \frac{a_1}{2(-iv)^2} + \frac{2a_2}{2(-iv)^3} \right) = \sum_{n_1, n_2 \in \mathbb{N}} \frac{a_1^{n_1} a_2^{n_2}}{n_1! n_2!} \frac{\xi^{2n_1+3n_2+1}}{\Gamma(2n_1+3n_2+1)} \tag{B.10}
\]

and the integral

\[
\frac{1}{2\pi} \int_{-\infty}^{\infty} (-iv)^{-\alpha} e^{-\xi v} \, dv = \begin{cases} \frac{\xi^{\alpha-1}}{\Gamma(\alpha)} & \text{if } \alpha \geq 1 \\ \frac{\delta(\xi)}{\Gamma(\alpha)} & \text{if } \alpha = 0 \end{cases}, \tag{B.11}
\]

we find that the contribution ignoring the terms in \( g_{3d}^{\text{sum}}(t) \) is given by

\[
\phi_1^{(0)}(n) \sim \exp \left( \frac{1}{2} [\zeta'(-1) + \zeta'(-2)] \right) \sum_{n_1, n_2 \in \mathbb{N}} \frac{a_1^{n_1} a_2^{n_2}}{n_1! n_2!} \frac{\xi^{2n_1+3n_2+1+\hat{y}}}{\Gamma(2n_1+3n_2+1+\hat{y})} \cdot \tag{B.12}
\]

where we have implicitly defined the function \( L(\xi, \hat{y}) \) in the second line. In order to include the contribution of \( g_{3d}^{\text{sum}}(t) \), we consider the Taylor expansion (note that \( c_0 = 1 \)):

\[
\exp \left( g_{3d}^{\text{sum}}(t) \right) = \sum_{j=0}^{\infty} c_j t^j, \tag{B.13}
\]

and carry out the integrations to obtain

\[
\phi_1(n) = \sum_{j=0}^{\infty} \phi_1^{(j)}(n) \]

\[
:= \exp \left( \frac{1}{2} [\zeta'(-1) + \zeta'(-2)] \right) \sum_{j=0}^{\infty} c_j L \left[ \frac{\xi}{4}, \hat{y} - j \right]. \tag{B.14}
\]
B.1. Other poles

Let us evaluate $M_3(e^{i\psi})$ in the neighborhood of such a point. Setting $y = 2\pi h/k + \varphi$ and using a method due to Almkvist (see theorem 5.1 in [22]), we obtain

\[ M_3(e^{i\psi}) \sim \exp \left( \frac{1}{2} \left[ \frac{a_1}{k^3} (-i\psi)^{-2} + \frac{a_2}{k^4} (-i\psi)^{-3} \right] + \frac{1}{2} [k\zeta'(-1) + k^2\zeta'(-2)] \right) \]

\[ + \frac{\pi i}{2} [s(1, h, k) + s(2, h, k)] - \frac{k}{2} \zeta(-1) \log(-ik\varphi) - \frac{1}{4} \zeta(-3) i\varphi + \cdots \]  

(B.15)

where the generalized Dedekind sums are

\[ s(1, h, k) = k \sum_{j=1}^{k-1} B_2(j/k) \log |2\sin(jh\pi/k)| + \frac{ik^2t}{8} \sum_{j=1}^{k-1} B_3(j/k) \cot(jh\pi/k) \]

\[ s(2, h, k) = k \sum_{j=1}^{k-1} B_3(j/k)(jh/k) = -\frac{1}{16k} \sum_{j=1}^{k-1} \cot^{(\nu)}(jh\pi/k) \cot(j\pi/k), \]  

(B.16)

where $B_n(x)$ are the Bernoulli polynomials and

\[ ((x)) = \begin{cases} 
  x - [x] - \frac{1}{2} & \text{if } x \notin \mathbb{Z} \\
  0 & \text{if } x \in \mathbb{Z}. 
\end{cases} \]  

We illustrate the computation of $\phi_1(n)$ for $n = 60$. Below we quote the result after rounding off to the nearest integer and underline the number of correct digits:

\[ \phi_1^{(0)}(60) = 11031748252850258 \]

\[ \phi_1^{(0)}(60) + \phi_1^{(1)}(60) = 11031287052778130 \]

\[ \phi_1(60) = 11031286633959406 \]

\[ \phi_1(60) + \phi_2(60) = 11031286641929870 \]

\[ m_3(60) = 11031286641714044. \]

We observe that $\phi_1^{(0)}(60)$ gets the first five digits right, while $\phi_1(60)$ makes the estimate correct to nine digits while adding $\phi_2(60)$ gets 11 digits right. We need to include the contributions of other zeros, i.e. $\phi_k(n)$ for $k > 2$ to further improve the estimate. We anticipate that the addition of other terms should eventually lead to an exact answer though we have not explicitly verified that it is so.

Appendix C. Exact enumeration of higher dimensional partitions

In this appendix, we provide the results obtained from our exact enumeration of three-, four- and five-dimensional partitions. In all cases, we have gone significantly beyond what is known and we have contributed our results to the Online Encyclopedia of Integer Sequences (OEIS)—the precise sequence is listed in tables C1–C3. We believe that it will be significantly harder to add to the numbers of solid partitions as the generation of the last set of numbers took around five months. In this case, adding a single number roughly doubles the runtime. There is, however, some scope for improvement for the four- and five-dimensional partitions as the numbers were generated without parallelization.

20
Table C1. Numbers of solid partitions. This is sequence A000293 in the OEIS [32].

| n | \( p_3(n) \) | n | \( p_3(n) \) | n | \( p_3(n) \) |
|---|---|---|---|---|---|
| 0 | 1 | 23 | 19295226 | 46 | 8683676638832 |
| 1 | 1 | 24 | 35713454 | 47 | 1466233966068 |
| 2 | 4 | 25 | 65715094 | 48 | 24700752691832 |
| 3 | 10 | 26 | 120256653 | 49 | 41495176877972 |
| 4 | 26 | 27 | 218893580 | 50 | 69531305679518 |
| 5 | 59 | 28 | 396418699 | 51 | 116221415325837 |
| 6 | 140 | 29 | 714399381 | 52 | 193794746658112 |
| 7 | 307 | 30 | 1281403841 | 53 | 322382365507746 |
| 8 | 684 | 31 | 2287986987 | 54 | 535056771014674 |
| 9 | 1464 | 32 | 4067428375 | 55 | 886033384475166 |
| 10 | 3122 | 33 | 720210523 | 56 | 1464009339299229 |
| 11 | 6500 | 34 | 1269389083 | 57 | 2413804282801444 |
| 12 | 13426 | 35 | 22290727268 | 58 | 3971409682633930 |
| 13 | 27248 | 36 | 38993410516 | 59 | 6520649543912193 |
| 14 | 54804 | 37 | 67959010130 | 60 | 10684614225715559 |
| 15 | 108802 | 38 | 118016656268 | 61 | 17472947006257293 |
| 16 | 214071 | 39 | 204233654229 | 62 | 2851869109338854 |
| 17 | 416849 | 40 | 35224571866 | 63 | 464585064674807 |
| 18 | 805124 | 41 | 605538866862 | 64 | 75542021868032878 |
| 19 | 1541637 | 42 | 1037668522922 | 65 | 122606799866017598 |
| 20 | 2930329 | 43 | 1772700955975 | 66 | 198635761249922839 |
| 21 | 5525733 | 44 | 3019333854177 | 67 | 32124107568259326 |
| 22 | 10362312 | 45 | 512769484375 | 68 | 518619444932991189 |

Table C2. Numbers of four-dimensional partitions. This is sequence A000334 in the OEIS [32].

| n | \( p_4(n) \) | n | \( p_4(n) \) | n | \( p_4(n) \) |
|---|---|---|---|---|---|
| 0 | 1 | 13 | 181975 | 25 | 2569270050 |
| 1 | 1 | 14 | 425490 | 26 | 5427963902 |
| 2 | 6 | 15 | 982615 | 27 | 11404408525 |
| 3 | 21 | 16 | 2345444 | 28 | 23836421895 |
| 4 | 71 | 17 | 5077090 | 29 | 49573316740 |
| 5 | 120 | 18 | 11371250 | 30 | 102610460240 |
| 6 | 326 | 19 | 25235790 | 31 | 211425606778 |
| 7 | 835 | 20 | 55536870 | 32 | 43373434316 |
| 8 | 2145 | 21 | 121250185 | 33 | 886051842960 |
| 9 | 5345 | 22 | 262769080 | 34 | 1802710594415 |
| 10 | 13220 | 23 | 565502405 | 35 | 3653256942840 |
| 11 | 32068 | 24 | 1209096875 | 36 | 6498445690829 |
| 12 | 76965 | 25 | 2569270050 | 37 | 1134431685982 |

Table C3. Numbers of five-dimensional partitions. This is sequence A000390 in the OEIS [32].

| n | \( p_5(n) \) | n | \( p_5(n) \) | n | \( p_5(n) \) |
|---|---|---|---|---|---|
| 0 | 1 | 11 | 119140 | 22 | 3923114261 |
| 1 | 1 | 12 | 323946 | 23 | 9554122089 |
| 2 | 6 | 13 | 869476 | 24 | 2309084695 |
| 3 | 21 | 14 | 2308071 | 25 | 55458417125 |
| 4 | 71 | 15 | 6056581 | 26 | 132293945737 |
| 5 | 216 | 16 | 15724170 | 27 | 313657570114 |
| 6 | 657 | 17 | 40393693 | 28 | 739380201561 |
| 7 | 1907 | 18 | 102736274 | 29 | 1733472733344 |
| 8 | 5507 | 19 | 258790040 | 30 | 404328324470 |
| 9 | 15522 | 20 | 645968054 | 31 | 1159460229 |
| 10 | 43352 | 21 | 1598460229 | 32 | 23789402479 |
References

[1] Hardy G H and Ramanujan S 1917 Asymptotic formulae in combinatory analysis Proc. London Math. Soc. S2 17–75

Ramanujan S 2000 Collected Papers of Srinivasa Ramanujan (Providence, RI: American Mathematical Society) pp 244

[2] Rademacher H 1937 On the partition function p(n) Proc. London Math. Soc. 43 241–54

[3] MacMahon P A 2004 Combinatory Analysis (Dover Phoenix Editions vol 1 and 2) (New York: Dover)

Reprint of An Introduction to Combinatory Analysis (1920) and Combinatory Analysis vol 1 (1915) and 2 (1916)

[4] Wright E M 1931 Asymptotic partition formulae: I. Plane partitions J. Math. 2 177–89

[5] Atkin A O L, Bratley P, Macdonald I G and McKay J K S 1967 Some computations for m-dimensional partitions

Proc. Camb. Phil. Soc. 63 1097–100

[6] Wu F Y 1997 The infinite-state Potts model and restricted multidimensional partitions of an integer Math. Comput. Model. 26 269–74

[7] Huang H Y and Wu F Y 1997 The infinite-state Potts model and solid partitions of an integer Proc. of the

Conf. on Exactly Solvable Models in Statistical Mechanics: Historical Perspectives and Current Status vol 11

(Boston, MA, 1996) pp 121–6

[8] Bhatia D P, Prasad M A and Arora D 1997 Asymptotic results for the number of multidimensional partitions of

an integer and directed compact lattice animals J. Phys. A: Math. Gen. 30 2281–5

[9] Feng B, Hanany A and He Y-H 2007 Counting gauge invariants: the Plethystic program J. High Energy

Phys. JHEP03(2007)090 (arXiv:hep-th/0701063)

[10] Lucetti J and Rangamani M 2008 Asymptotic counting of BPS operators in superconformal field theories

J. Math. Phys. 49 082301 (arXiv:0802.3015 [hep-th])

[11] Gopakumar R and Vafa C 1998 M theory and topological strings: 1 arXiv:hep-th/9809187

[12] Gopakumar R and Vafa C 1998 M theory and topological strings: 2 arXiv:hep-th/981217

[13] Behrend K, Bryan J and Szendroi B 2009 Motivic degree zero Donaldson–Thomas invariants arXiv:0909.5088

[math-ag]

[14] Mustonen V and Rajesh R 2003 Numerical estimation of the asymptotic behaviour of solid partitions of an

integer J. Phys. A: Math. Gen. 36 6651–9

[15] Andrews G E 1998 The theory of partitions Cambridge Mathematical Library (Cambridge: Cambridge

University Press) (Reprint)

[16] Stanley R P 1971 Theory and application of plane partitions: I Stud. Appl. Math. 50 167–88

[17] Stanley R P 1971 Theory and applications of plane partitions: II Stud. Appl. Math. 50 259–79

[18] Stanley R P 1989 Plane partitions: past, present and future Combinatorial Mathematics: Proc. Third Int. Conf.

(Ann. New York Acad. Sci vol 555) (New York: Academic) pp 397–401

[19] Wilf H S 2000 Lectures on Integer Partitions Technical Report (University of Pennsylvania)

Wilf H S 2000 Lectures at the University of Victoria (http://cis.upenn.edu/~wilf)

[20] Finch S 2004 Integer Partitions Technical Report (http://algo.inria.fr/csolve/prt.pdf)

[21] Almkvist G 1998 Asymptotic formulæ and generalized Dedekind sums Exp. Math. 7 343–59

[22] Gaunt D S and Guttmann A J 1997 Asymptotic analysis of coefficients Phase Transitions and Critical

Phenomena Vol 3 ed C Domb and M S Green (New York: Academic) chapter 4, pp 181–243

[23] Widom M, Mosseri R, Destainville N and Bailly F 2002 Arctic octahedron in three-dimensional rhombus tilings

and related integer solid partitions J. Stat. Phys. 109 945–65

[24] Bratley P and McKay J K S 1967 Algorithm 313: Multi-dimensional partition generator Commun. ACM

10 666

[25] Stanley R P 1986 Symmetries of plane partitions J. Comb. Theory Ser. A 43 103–13

Stanley R P 1987 J. Comb. Theory Ser. A 44 310 (erratum)

[26] Krattenthaler C 1990 Generating functions for plane partitions of a given shape Manuscr. Math. 69 173–201

[27] Bender E A and Knuth D E 1972 Enumeration of plane partitions J. Comb. Theory Ser. A 13 40–54

[28] Nijenhuis A and Wilf H S 1978 Combinatorial Algorithms 2nd edn (New York: Academic)

[29] Meinardus G 1954 Asymptotische aussagen über partitionen Math. Z. 59 388–98

[30] Rademacher H 1943 On the expansion of the partition function in a series Ann. Math. 44 416–22

[31] ‘The On-line Encyclopedia of Integer Sequences’ 2011 (published electronically at http://oeis.org)