Abstract

The medicinal plants contain various chemical constituents which play an important role in the treatment of various diseases. The current review explained the scattered information on medicinal plants used in the treatment of tuberculosis. The review contains four medicinal plants (Allium sativum (L), Aloe vera (L), Acalypha indica (L) and Allium cepa (L)) having anti-tuberculosis effects. Moreover, six medicinal plants (Acorus calamus (L), Curcuma longa (L), Ephedra gerardiana, Glycyrrhiza glabra (L), Hygrophila auriculata, Papaver somniferum (L)) have been checked for their toxicological impacts in the treatment of tuberculosis.

Introduction

Mycobacterium Tuberculosis (MBT) is a pathogenic bacteria which causes tuberculosis. Primarily it affects the respiratory system but it may affects the other systems like urogenital system (painless hematuria (it would be painful if the clots occurred), hematospermia, Gastrointestinal system (abdominal pain and intestinal obstruction [1-6]). The signs and symptoms of tuberculosis are cough, fever, night sweating, haemoptysis, dyspnoea, tachycardia, anaemia, chest pain and weight loss [4]. In the developing countries, tuberculosis is a dreadful infection. Annually It infects almost 9 million people, more than 2 million deaths occur annually due to this infection [7,8]. The deaths may be increase in the future because of increase spread of multidrug-resistant bacterial strains [9]. Furthermore human immunodeficiency virus is another risk factor which has significantly increased the new cases of tuberculosis [10-12]. Finding of the new compound is one of the tough tasks but research efforts at the National Institute of Allergy and Infectious Diseases has recognize a screening program, to find out the new compounds that are actively used against M. tuberculosis [13]. The purpose of this review is to gather the literature as well as to know the phytochemical and pharmacological effects of medicinal plants which may be helpful in the treatment of tuberculosis.

Methodology

The current review contains the published data of medicinal plants having antibacterial (antituberculosis) activity. Information of medicinal plants were collected by using various search engines (Google scholar, PubMed and scopus).

Discussion

Medicinal plants are used from the ancient times in the treatment of various diseases. These plants are wild or cultivated which contain various therapeutic agents having various pharmacological activities [16]. Table 1 consist of......
botanical name, family, parts used, plant extracts, pathogens, minimum inhibitory concentration (MIC) (mg/ml), zone of inhibition (mm), traditional uses and the methods used for determination of antibacterial activity. These study explained medicinal plants used for treating tuberculosis. While Table 2 comprises the vernacular name, family, concentration, parts used, extracts and toxic effects on the tested animals.

The antibacterial activity (antituberculosis) of these plants are due to their metabolites such as phenol, glycosides, alkaloids, steroids, tannins, terpenes, trepenoids, saponins and flavonoids.

Medicinal plants are used in the different dosage form like decoction, concoction, tablets, capsule and syrup. Decoction and extract of the plants are the common technique used due to easy intake [17].

Antibacterial effects of some medicinal plants used in the treatment of tuberculosis

Incidence of tuberculosis increases due to multiple drug resistance and HIV infected patients [18]. Traditionally, many plants has been used for the treatment of tuberculosis. These plants contain active biomolecules having antmycobacterial activity. Furthermore, these plants decreased the adverse effects as well as multi-drug resistance [19].

There are four plants such as Allium sativum L. and Aloe vera (L.) Burm.f., Acalypha indica L., and Allium cepa L., leaves and bulbs have antibacterial activity against M. tuberculosis. The extracts of the plants were taken in concentration from 0.02–0.04 mg/ml. The zone of inhibition against the MBT were between 2.5 and 17.3 mm. A. indica showed strong inhibiting activity (17.3mm) against H37Rv strain of M. tuberculosis by using L–J proportion method [20].

Traditionally P. granatum (L.), Artemisia afra Jacq. Ex Willd, Abutilon indicum (L.), Carica papaya (L.), Bombax ceiba (L.), Linum usitatissimum L., Aegle marmelos (L.), and Bauhinia variegate (L.) are used against tuberculosis. However, few medicinal plants have been investigated properly for their therapeutic effects against tuberculosis.

Table 1: In-vitro activity of some medicinal plants having antituberculosis effects.

Plant name	Reference	Part used	Extract	Pathogenic agent	Concentration (mg/ml)	Inhibition (mm)	MIC (mg/ml)	Traditional uses	Method
Allium sativum (L)	Amaryllidaceae	Bulb	Water, Crude extract	Mycobacterium tuberculosis (H37Rv strain)	0.02 0.04	10.92 16.0	N/A	Tuberculosis	Lowenstein Jensen proportion method.
Aloe vera (L)	Asphodelaceae	Leaf, Leave gel	Pure gel, Ethanol acetone	Mycobacterium tuberculosis (H37Rv strain)	0.02 0.04	2.54 10.41	N/A	Tuberculosis	L–J proportion method
Acalypha indica (L)	Euphorbiaceae	Leaves	Water extract,	Mycobacterium tuberculosis (H37Rv strain)	0.020 0.040	12.7 17.3	N/A	TB	L–J proportion method
Allium cepa (L)	Liliaceae	Bulb	Aqueous	Mycobacterium tuberculosis	0.02 0.04	9.9 8.9	N/A	Tuberculosis	L–J proportion method

Table 2: Toxicity of medicinal plants used traditionally for the treatment of tuberculosis.

S.No	Plant Name/ Rf.no	Family	Concentration	Part used	Extract	Toxic effect	Test Animal
1	Acorus calamus (L) [30]	Acoraceae	100	Rhizome	Acetone	Haemolysis	Sheep
2	Curcuma longa (L) [27,28]	Zingiberaceae	1000 0.1	Rhizome Root	Hydro alcohol Root extract	Mild depression, reduced respiration, dullness Apoptosis, To stop the development of embryo at the morula stage.	Rat
3	Ephedra gerardiana [29]	Ephedraceae	Excess amount Herb	Alkaloid	High blood pressure, heart problem and liver damage	Human	
4	Glycyrrhiza glabra (L) [26]	Fabaceae	Excess amount 760-2,280	Root Dried root	Glycyrrhizinic Acid Glycyrrhizinic Acid	Blood pressure, kidney, edema and hypertension, Hypokalemia, edema.	Human
5	Hygrophiila auriculata [32-33]	Acanthaceae	80 0.22 2000	Seed Leaves	Gentamicin Methanol Aqueous Methanolic extract	Cytotoxicity Dehydration	Human cancer cell lines (Breast, Colon) Albino rat
6	Papaver somniferum (L) [31]	Papaveraceae	150	Stem Root	Ethyl acetate	Necrotic effect	African green monkey kidney, human colorectal adenocarcinoma, rat brain tumour cells and human cervix carcinoma.
Toxicity of some medicinal plants used in the treatment of tuberculosis

Medicinal plants contain primary and secondary metabolite called bioactive natural products. These metabolites have various pharmacological activities and used for the treatment of different diseases. However toxic effects may be observed in the use of various plants [21-24].

It is believed that herbal medicines are safe, but this review reported seven medicinal plants having toxic effects in human beings and animals [25].

It has been reported that G. glabra contain glycyrrhin and glycyrrhizinic acid. These chemical constituents stimulate the excretion of adrenal cortex hormones (Mineralocorticoid). The increase level of mineralocorticoid decreases renin and aldosterone, sodium retention, hypokalemia, hypervolemia, edema and hypertension. Furthermore, it has been observed that glycyrrhiza glabra is harmful for the people having high blood pressure, heart and kidney diseases [26].

1000 mg/kg of hydroalcoholic extract of C. longa induces depression and decreased respiration. Furthermore, root pressure, heart and kidney diseases [26].

George P conducted a study in 2011, which explained that excessive amount of Ephedra gerardiana causes liver damage, heart problem, high blood pressure [29].

Ahmad et al., explained a study that acetone extract of Acorus calamus causes hemolysis [30]. Papaver somniferum is a good source of different bioactive molecules and used for many diseases but it has necrotic effects at concentration of 150 μg/ml [31]. Seeds and leaves extract of Hygrophila auriculata in various solvents exhibit cytotoxicity and dehydration effects in albino rat [32,33] Table 2.

Conclusions

Medicinal plants contain most of the bioactive natural compounds that exhibit various pharmacological activities. The current study explained that some of medicinal plants are traditionally used in the treatment of TB. Leaves and bulbs are the common parts used in the form of extract and decoction. While some of the plants have potential effects against tuberculosis but they produce toxic effects in the body.

References

1. Jones RN (2010) Microbial etiologies of hospital-acquired bacterial pneumonia and ventilator-associated bacterial pneumonia. Clin Infect Dis 51: 81–87. Link: https://bit.ly/2WBE3e
2. Cilloniz C, Martin-Loeches I, García-Vidal C, San Jose A, Torres A, et al. (2016) Microbial etiology of pneumonia, epidemiology, diagnosis and resistance patterns. Int J Mol Sci 17: 2120. Link: https://bit.ly/3kSBbGP
3. WHO (2008) Global tuberculosis control: Surveillance, planning and financing, WHO report. Geneva, Switzerland: WHO. Link: https://bit.ly/3uuJijR
4. Wejse C, Gustafson P, Nielsen J, Gomes VF, Aaby P, et al. (2008) TBscore: Signs and symptoms from tuberculosis patients in a low-resource setting have predictive value and may be used to assess clinical course. Scand J Infect Dis 2008: 111-120. Link: https://bit.ly/39SskPm
5. Wechsler H, Westfall M, Lattimer JK (1960) The earliest signs and symptoms in 127 male patients with genitourinary tuberculosis. J Urol 83: 801-803. Link: https://bit.ly/39PPAUL
6. Rai S, Thomas WM (2003) Diagnosis of abdominal tuberculosis: the importance of laparoscopy. J R Soc Med 96: 586-588. Link: https://bit.ly/2WxShSL
7. Marais BJ, Pai M (2007) Recent advances in the diagnosis of childhood tuberculosis-s. Arch Dis Child 92: 446-452. Link: https://bit.ly/3zPYyQV
8. Singh IP, Bhalare SB, Bhutani KK (2005) Anti-HIV natural products. Curr Sci 89: 269-290. Link: https://bit.ly/3uq2YL
9. Amber R, Adnan M, Tarig A, Musarat S (2016) A review on antiviral activity of the Himalayan medicinal plants traditionally used to treat bronchitis and related symptoms. J Pharm Pharmacol 69: 1-14. Link: https://bit.ly/3AV3xG
10. Chaisson RE, Slutkin G (1989) Tuberculosis and human immunodeficiency virus infection. Journal of infectious diseases 159: 96-100.
11. Harries AD (1990) Tuberculosis and human immunodeficiency virus infection in developing countries. Lancet 335: 387-390. Link: https://bit.ly/3mba7D
12. Telzak EE (1997) Tuberculosis and human immunodeficiency virus infection. Medical Clinics of North America 81: 345-360.
13. De Cock KM, Chaisson RE (1999) Will DOTs do it? A reappraisal of tuberculosis control in countries with high rates of HIV infection. Int J Tuberc Lung Dis 3: 457-465. Link: https://bit.ly/39QUREN
14. Program TDS (2001) Search for new drugs for treatment of tuberculosis. Antimicrob Agents Chemother 45: 1943-1946. Link: https://bit.ly/3AVqDFH
15. Sheng-Ji P (2001) Ethnobotanical approaches of traditional medicine studies, some experiences from Asia. Pharm Biol 39: 74-79. Link: https://bit.ly/3zUZyY
16. Prakash R (2015) Medicinal plants used by tribal communities: a study of Uttarakhand himalayan region. Int J Humantit Soc Sci Invent 4: 55–61. Link: https://bit.ly/3ikH4Zf
17. Shah AS, Rahim S, Bhatti KH, Khan A, Din N, et al. (2015) Ethnobotanical study and conservation status of trees in the district Sargodha, Punjab, Pakistan. Int J Exp Bot 84: 34-44. Link: https://bit.ly/3KSXE5
18. Hingley-Wilson SM, Sambandamurthy VK, Jacobs WR (2003) Survival perspectives from the world’s most successful pathogen, Mycobacterium tuberculosis. Nat Immunol 4: 949. Link: https://go.nature.com/3uu35wi
19. Sharifi-Radj J, Salehi B, Stojanović-Radlić ZZ, Fokou PVT, Sharifi-Radj M, et al. (2020) Medicinal plants used in the treatment of tuberculosis-Ethnobotanical and ethnopharmacological approaches. Biotechnol Adv 107629. Link: https://bit.ly/3A05Lm9
20. Gupta R, Thakur B, Singh P, Singh HB, Sharma VD, et al. (2010) Anti-tuberculosis activity of selected medicinal plants against multi-drug resistant Mycobacterium tuberculosis isolates. Indian J Med Res 131: 809-813. Link: https://bit.ly/3kUMy5s
21. Al-Qura’n S (2005) Ethnobotanical survey of folk toxic plants in southern part of Jordan. Toxicon 46: 119-129. Link: https://bit.ly/3zVb5aw
22. Maiga A, Diálo D, Fane S, Sanogo R, Paulsen BS, et al. (2005) A survey of toxic plants on the market in the district of Bamako, Mali: traditional knowledge compared with a literature search of modern pharmacology and toxicology. J Ethnopharmacol 96: 183-193. Link: https://bit.ly/3omXOFE
23. Schultes RE, Raffauf RF (1990) The healing forest: medicinal and toxic plants of the Northwest Amazonia. Dioscorides press.
Citation: Hussain A, Ali AA, Ayaz S, Wahidullah, Mehar P, et al. (2021) Anti-tuberculosis effects of different medicinal plants: A narrative review. Open J Plant Sci 6(1): 099-102. DOI: https://dx.doi.org/10.17352/ojps.000041