Response of CH₄ and N₂O Emissions and Wheat Yields to Tillage Method Changes in the North China Plain

Shenzhong Tian¹, Tangyuan Ning¹*, Hongxiang Zhao¹, Bingwen Wang¹, Na Li¹, Huifang Han¹, Zengjia Li¹, Shuyun Chi²*

¹State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong PR, China, ²College of Mechanical and Electronic Engineering, Shandong Agricultural University, Taian, Shandong PR, China

Abstract

The objective of this study was to quantify soil methane (CH₄) and nitrous oxide (N₂O) emissions when converting from minimum and no-tillage systems to subsoiling (tilled soil to a depth of 40 cm to 45 cm) in the North China Plain. The relationships between CH₄ and N₂O flux and soil temperature, moisture, NH₄⁺-N, organic carbon (SOC) and pH were investigated over 18 months using a split-plot design. The soil absorption of CH₄ appeared to increase after conversion from no-tillage (NT) to subsoiling (NTS), from harrow tillage (HT) to subsoiling (HTS) and from rotary tillage (RT) to subsoiling (RTS). N₂O emissions also increased after conversion. Furthermore, after conversion to subsoiling, the combined global warming potential (GWP) of CH₄ and N₂O increased by approximately 0.05 kg CO₂ ha⁻¹ for HTS, 0.02 kg CO₂ ha⁻¹ for RTS and 0.23 kg CO₂ ha⁻¹ for NTS. Soil temperature, moisture, SOC, NH₄⁺-N and pH also changed after conversion to subsoiling. These changes were correlated with CH₄ uptake and N₂O emissions. However, there was no significant correlation between N₂O emissions and soil temperature in this study. The grain yields of wheat improved after conversion to subsoiling. Under HTS, RTS and NTS, the average grain yield was elevated by approximately 42.5%, 27.8% and 60.3% respectively. Our findings indicate that RTS and HTS would be ideal rotation tillage systems to balance GWP decreases and grain yield improvements in the North China Plain region.

Introduction

CH₄ and N₂O play a key role in global climate change [1]. The emission of gas from disturbed soils is an especially important contributory factor to global change [2]. N₂O is emitted from disturbed soil, whereas CH₄ is normally oxidized by aerobic soils, making them sinks for atmospheric CH₄ in dry farmland systems [3]. According to estimates of the IPCC [4], CH₄ and N₂O from agricultural sources account for 50% and 60% of total emissions, respectively. Therefore, it is critical to reduce emissions of greenhouse gases (GHG) from agricultural sources. Many studies have reported that soil tillage has significant effects on CH₄ and N₂O emissions from farmland because the production, consumption and transport of CH₄ and N₂O in soil are strongly influenced by tillage methods [5–8].

The North China Plain is one of the most important grain production regions of China. Harrow tillage (HT), rotary tillage (RT) and no-tillage (NT) are frequently used conservation tillage methods in this region because they not only improve crop yield but also enhance the utilization efficiency of soil moisture and nutrients [8–12]. However, successive years of shallow tillage (10–20 cm) exacerbate the risk of subsoil compaction, which not only leads to the hardening of soil tillage layers and an increase in soil bulk density, but also reduced crop root proliferation, limited water and nutrient availability and reduced crop yield [13]. Subsoiling is an effective method that is used to break up the compacted hardpan layer every 2 or 4 years in HT, RT or NT systems [14,15]. Subsoiling significantly increases soil water content and temperature and decreases soil bulk density as well [16,17]. These rotation tillage systems are currently utilized in the North China Plain. Soil moisture and temperature are two factors controlling CH₄ and N₂O emissions [18–22]. In addition, CH₄ and N₂O emissions are normally associated with N application (as fertilizer) under wet conditions [23]. Collectively, reasonable soil tillage methods may reduce GHG emissions and may be important for developing sustainable agricultural practices [24]. However, it is unclear how conversion to subsoiling would affect CH₄ and N₂O emissions and whether subsoiling increases or reduces GHG emissions and the GWP of these agricultural techniques. In addition, there is little information on the soil factors affecting CH₄ and N₂O emissions after conversion to subsoiling in the North China Plain. The aim of this study was to determine whether conversion to subsoiling can reduce CH₄ and N₂O emissions.
Materials and Methods

Ethics Statement
The research station of this study is a department of Shandong Agricultural University. This study was approved by State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University.

Study Site
The study was conducted at Tai’an (Northern China, 36°09′N, 117°09′E), which is characteristic of the North China Plain. The average annual precipitation is 786.3 mm, and the average annual temperature is 13.6°C, with the minimum (−1.5°C) and maximum (27.5°C) monthly temperatures in January and July, respectively. The annual frost-free period is approximately 170–220 days in duration, and the annual sunlight time is 2462.3 hours. The soil is loam with 40% sand, 44% silt and 16% clay. The characteristics of the surface soil (0–20 cm) were measured as follows: pH 6.2; soil bulk density 1.43 g cm⁻³; soil organic matter 1.36%; soil total nitrogen 0.13%; and soil total phosphorous 0.13%. The meteorological data during the experiment are shown in Figure 1.

Experimental Design
The experiment was designed as HT, RT and NT farming methods that started in 2004. In 2008, each plot was bisected, with one half maintained using the original tillage method as the control and the other half converted to subsoiling, resulting in six treatment plots: HT and HT conversion to subsoiling (HTS); RT and RT conversion to subsoiling (RTS); and NT and NT conversion to subsoiling (NTS) in a split-plot design with three replicates. Each replicate was 35 m long and 4 m wide. After maize was harvested in each plot, straw was returned to the soil by one of the six following tillage operations:
- HT - disking with a disc harrow to a depth of 12 cm to 15 cm,
- RT - rototiller plowing to a depth of 10 cm to 15 cm,
- NT - no tillage,
- HTS, RTS, and NTS - plowed using a vibrating sub-soil shovel to a depth of 40 cm to 45 cm.

The experimental site was cropped with a rotation of winter wheat (Triticum aestivum Linn.) and maize (Zea mays L.). The wheat was sown in mid-October immediately after tilling the soil and was harvested at the beginning of June the following year. The maize was sown directly after the wheat harvest and was harvested in early October. During the wheat growth period, fertilizer was used at a rate of 225 kg N ha⁻¹, 150 kg ha⁻¹ P₂O₅ and 105 kg ha⁻¹ K₂O, and 100 kg N ha⁻¹ was used as topdressing in the jointing stage with 160 mm of irrigation water. During the maize growth period, 120 kg N ha⁻¹, 120 kg ha⁻¹ P₂O₅ and 100 kg ha⁻¹ K₂O were used as a base fertilizer, and 120 kg N ha⁻¹ was used as topdressing in the jointing stage.

CH₄ and N₂O Sampling and Measurements
CH₄ and N₂O content was measured using the static chamber-gas chromatography method [25]. The duration of gas sample collection was based on the diurnal variations in this region: the collection of CH₄ occurred from 9:00 a.m. to 10:00 a.m., and N₂O was collected between 9:00 a.m. and 12:00 p.m. from October 10, 2007, to May 19, 2009 at approximately 1-month intervals [26]. Both CH₄ and N₂O were sampled at 5 minutes, 20 minutes and 35 minutes after chamber closing. Simultaneously, the atmospheric temperature, the temperature in the static chamber, the land

Figure 1. The atmospheric temperature and precipitation at the experiment site. The data were collected by the agricultural meteorological station approximately 500 m from the experiment field.
doi:10.1371/journal.pone.0051206.g001
The samples were measured using a Shimadzu GC-2010 gas chromatograph. CH₄ was measured using a flame ionization detector with a stainless steel chromatography column packed with a 5A molecular sieve (2 m long); the carrier gas was N₂. The temperatures of the column, injector and detector were 80°C, 100°C and 200°C, respectively. The total flow of the carrier gas was 30 ml min⁻¹, the H₂ flow was 40 ml min⁻¹, and the airflow was 400 ml min⁻¹. N₂O was measured using an electron capture detector with a Porapak-Q chromatography column (4 m long); the carrier gas was also N₂. The temperatures of the column, injector and detector were 45°C, 100°C and 300°C, respectively. The total flow of the carrier gas was 40 ml min⁻¹, and the tail-blowing flow was 40 ml min⁻¹. The gas fluctuations were calculated by the gas concentration change in time per unit area.

Emission changes in CH₄ and N₂O were calculated using the following formula \[F = \frac{60HMP}{8.314(273+T)} \frac{dc}{dt} \]

where \(F \) is the change in gas emission or uptake (µg·m⁻²·h⁻¹); 60 is the conversion coefficient of minutes and hours; \(H \) is the height (m); \(M \) is the molar mass of gas (g·mol⁻¹); \(P \) is the atmospheric pressure (Pa); 8.314 is the Ideal Gas Constant (J·mol⁻¹·K⁻¹); \(T \) is the average temperature in the static chamber (°C); and \(dc/dt \) is the line slope of the gas concentration change over time.
GWP of CH4 and N2O

The global warming potentials (GWP) were determined by measuring CH4 and N2O emissions. The GWP of CH4 and N2O are 25 and 298 times higher, respectively, than that of CO2 (the GWP of CO2 is 1) [27] and are calculated as follows:

\[
GWP(CH_4) = \frac{TF(CH_4) \times 25}{100}
\]

\[
GWP(N_2O) = \frac{TF(N_2O) \times 298}{100}
\]

where \(GWP(CH_4)\) is the GWP of CH4 (kg CO2 ha\(^{-1}\) a\(^{-1}\)); \(TF(CH_4)\) is the total uptake of CH4 (kg CO2 ha\(^{-1}\) a\(^{-1}\)); 25 is the GWP coefficient of CH4; 100 is the time scale of climate change (a); \(GWP(N_2O)\) is the GWP of N2O (kg CO2 ha\(^{-1}\) a\(^{-1}\)); \(TF(N_2O)\) is the total emission of N2O (kg CO2 ha\(^{-1}\) a\(^{-1}\)); and 298 is the GWP coefficient of N2O.

Soil Factor Measurements

The meteorological data during the experiment were obtained from an agricultural weather station in the experimental area. To evaluate the relation between soil temperature and soil moisture and CH4 and N2O emissions, we measured soil temperature at a depth of 5 cm and the soil moisture in the 0–20 cm soil layers simultaneously using a soil temperature, moisture and electric conductivity instrument (WET brand, made in the UK) as the temperature and moisture data collection tool. The soil samples were collected using a soil sampler with five replicates in each different tillage treatment and were dried and triturated after mixing. This sample was used to determine the SOC, NH4\(^+\)-N and pH using the Potassium Dichromate Heating Method, the UV Colorimetric Method and the Potentiometry Method, respectively [28].

Grain Yield

The grain yield of winter wheat was sampled from the 1.5 m × 6 m portion in the central area of each plot.

Table 2. Correlation analysis between changes in CH4 and N2O with soil temperature and soil moisture per sampling time.

Sampling time	Soil temperature	Soil moisture		
	CH4	N2O	CH4	N2O
	\(R^2\)	\(n\)	\(R^2\)	\(n\)
2008.10.18	0.6020*	3	0.3832	3
2008.11.08	0.6180*	3	0.0377	3
2008.12.16	0.7314**	3	0.0087	3
2009.01.12	0.6490**	3	0.0723	3
2009.02.27	0.6597**	3	0.3053	3
2009.03.06	0.3824	3	0.1461	3
2009.03.20	0.0287	3	0.0257	3
2009.04.22	0.4476*	3	0.3044	3
2009.05.19	0.8870**	3	0.0503	3

*\(P<0.05\), **\(P<0.01\).

doi:10.1371/journal.pone.0051206.t002
Statistical Analyses

The data were analyzed using analyses of variance and the SPSS 17.0 Statistical Analysis System and were mapped using Sigma Plot 10.0. The mean standard deviation and least significant difference were calculated for comparison of the treatment means.

Results

CH\text{4} and N\text{2O}

Differences in CH\text{4} flux were observed when converting from HT to HTS, from RT to RTS and from NT to NTS (Figs. 2 A to C). The soil absorption of CH\text{4} increased in different periods after conversion to subsoiling compared with the control. The soil absorption of CH\text{4} increased from 13.33 μg m-2 h-1 under HT to 16.72 μg m-2 h-1 under HTS, from 15.59 μg m-2 h-1 under RT to 18.20 μg m-2 h-1 under RTS and from 9.01 μg m-2 h-1 under NT to 11.36 μg m-2 h-1 under NTS, respectively. However, N\text{2O} emission also increased after subsoiling (Fig. 2 D to F), which increased from 49.07 μg m-2 h-1 under HT to 54.05 μg m-2 h-1 under HTS and from 47.49 μg m-2 h-1 under RT to 53.60 μg m-2 h-1 under RTS. Compared with the above two treatments, however, the N\text{2O} emissions from the
therefore, the GWPs of the CH4 and N2O emissions taken increased under HTS, RTS and NTS (Table 1). Overall, (R2 = 0.12, R2 = 0.6490, R2 = 0.5429, R2 = 0.39 kg CO2 ha⁻¹ under HT to 0.37 kg CO2 ha⁻¹ under HTS, from 0.37 kg CO2 ha⁻¹ under RT to 0.39 kg CO2 ha⁻¹ under RTS and from 0.26 kg CO2 ha⁻¹ under NT to 0.49 kg CO2 ha⁻¹ under NTS, respectively.

GWP of CH4 and N2O
CH4 uptake increased under HTS, RTS and NTS; consequently, the GWP of CH4 decreased using these tilling methods compared with HT, RT and NT. However, the GWP of N2O increased under HTS, RTS and NTS (Table 1). Overall, therefore, the GWPs of the CH4 and N2O emissions taken together increased from 0.32 kg CO2 ha⁻¹ under HT to 0.37 kg CO2 ha⁻¹ under HTS, from 0.37 kg CO2 ha⁻¹ under RT to 0.39 kg CO2 ha⁻¹ under RTS and from 0.26 kg CO2 ha⁻¹ under NT to 0.49 kg CO2 ha⁻¹ under NTS, respectively.

Correlation Analysis between CH4 and N2O and Soil Factors
Soil temperature significantly affected the CH4 uptake in soils, especially in lower (i.e., December, R² = 0.7314, P<0.01; January, R² = 0.6490, P<0.01; February, R² = 0.6597, P<0.01) or higher (i.e., May, R² = 0.8870, P<0.01) temperatures (P<0.01; Table 2). At other sampling times, however, temperature did not affect on CH4 uptake, and soil moisture became a main influencing factor on the absorption of CH4 by the soils, especially in wet soil, such as after rain (R² = 0.5154, P<0.05) and irrigation (R² = 0.5154, P<0.05), when CH4 absorption was significantly limited (R² = 0.5429, P<0.05). Higher soil moisture generally promoted the emission of N2O (R² = 0.6735, P<0.01), but there was no obvious correlation between soil temperature and N2O emissions.

In this study, SOC was also correlated with greater CH4 uptake (R² = 0.12, P<0.05) (Fig. 3 A), whereas higher soil pH limited its absorption in the soil (R² = 0.14, P<0.05) (Fig. 3 B).

The emission of N2O was correlated with higher soil NH4⁺-N content (R² = 0.27, P<0.01) (Fig. 4 A), while, similar to CH4, a higher pH in soil strongly limited the emission of N2O (R² = 0.38, P<0.01) (Fig. 4 B).

Variation of Soil Factors
The soil factors under HTS, RTS and NTS changed after subsoiling. The soil temperature at a depth of 5 cm rose under HTS, RTS and NTS compared with the temperatures under HT, RT and NT (Fig. 3 A to C). Soil temperature variations followed atmospheric temperature changes, but the average soil temperature during sampling period increased from 13.5°C under HT to 15.3°C under HTS, from 14.4°C under RT to 16.2°C under RTS and from 13.1°C under NT to 15.1°C under NTS, respectively. However, soil moisture decreased in the soil at 0–20 cm when converting to subsoiling that in the order of RTS>HTS>NTS (Fig. 5 D to F). The most obvious decrease, by 15.74%, occurred under the NTS treatment, while HTS and RTS decreased by 10.34% and 14.85%, respectively. The soil NH4⁺-N content increased with subsoiling that was NTS>HTS>RTS. Moreover, two peaks occurring on October 18, 2008, and April 22, 2009 (Fig. 5 G to I), due to the application of nitrogenous base fertilizer and topdressing fertilizer.

The CH4 uptake and N2O emission were correlated with the content of soil pH and SOC (Table 3). The pH value decreased after conversions, but with the pH under the NTS treatment being higher than that of the HTS and RTS treatments not only at 0–10 cm but also at 10–20 cm. Conversely, SOC content increased under HTS, RTS and NTS, with the highest values was under RTS, followed by NTS and then HTS. SOC was higher in the soil at 0–10 cm than at 10–20 cm.

Grain Yield
The highest wheat yields under RT were 5937.20 kg ha⁻¹ in 2009 and 6164.83 kg ha⁻¹ in 2010, which were only 3.8% greater than those under NT and HT (Table 4). However, the wheat yields under HTS, RTS and NTS improved significantly (P<0.01) or higher than that of the HTS and RTS treatments not only at 0–10 cm but also at 10–20 cm. The average yield of the two years increased by approximately 2416.25 kg ha⁻¹, 1695.38 kg ha⁻¹ and 2004.53 kg ha⁻¹ with subsoiling compared with that under HT, RT and NT, respectively. The increases of average yield were not only related to the number of spikes, which increased by 59×10⁴ ha⁻¹ after conversions as determined by the average of the three conversion treatments, but were also correlated with the grains per ear and 1000-grain weight, which increased by an average of 6.0 grains and 2.8 g, respectively.

Table 3. Soil pH and SOC variations after conversion to subsoiling.

Treatments	pH	SOC	HT	HTS	RTS	RT	NT	NTS						
0–10 cm														
	(i)	7.37	7.33	7.25	7.21	7.72	7.72	7.66	8.62	9.45	9.69	11.47	11.79	10.32
	(ii)	7.25	7.21	7.27	7.25	7.69	7.62	10.77	12.25	9.82	10.21	11.68	11.93	
	(iii)	7.25	7.23	7.38	7.34	7.37	7.31	11.43	12.58	12.07	13.11	10.13	9.75	
10–20 cm														
	(iv)	7.44	7.42	7.45	7.40	7.86	7.82	9.01	9.39	10.83	12.42	10.57	10.49	
	(i)	7.71	7.67	7.52	7.46	7.77	7.75	5.93	6.29	9.16	9.44	8.09	8.34	
	(ii)	7.46	7.43	7.36	7.35	7.85	7.83	9.22	9.97	9.45	10.07	11.35	11.77	
	(iii)	7.44	7.40	7.39	7.37	7.56	7.52	9.76	10.62	10.11	10.40	10.88	11.76	
	(iv)	7.71	7.68	7.43	7.43	7.83	7.81	7.63	9.90	8.26	9.55	8.31	7.84	

Different small letter means P<0.01; (i), (ii), (iv) and (iii) means time of sample collection in 2008.10.18, 2009.03.17, 2009.04.20 and 2009.05.19 respectively.

doi:10.1371/journal.pone.0051206.g003

doi:10.1371/journal.pone.0051206.t003
emission peaks also coincided with higher moisture and NH₄⁺ content in this study (Fig. 2 D to F, Table 2, Fig. 4A), the emissions of N₂O were significantly affected by soil moisture and NH₄⁺ but via affected the action of microbes [49]. On the other hand, the predominant form of nitrogen is NO₃-N or NH₄-N after sufficient mixed between soil and straw through tillage, which may produced little N₂O in soil, particularly near the soil surface, with an important influence on N₂O emissions [12].

Therefore, the CH₄ uptake and N₂O emissions under HTS, RTS and NTS were higher than those under HT, RT and NT, respectively, due to the effect of subsoiling. Moreover, the emission differences of CH₄ and N₂O between HTS, RTS and NTS were largely due to the original tillage systems, because they had different background value of soil environment factors, these soil factors change extent after conversion highly affected on CH₄ and N₂O emissions among treatment in this study. Therefore, the CH₄ uptake and N₂O emissions correlated with subsoiling are mainly due to alterations in soil conditions resulting from subsoiling, including soil temperature, moisture, NH₄⁺-N, SOC and pH.

Discussion

Effect of Conversion to Subsoiling on CH₄ Uptake and N₂O Emissions

Long periods of shallow or no-tillage have resulted in an increase in soil bulk density and compacted hardpan in this region, especially in the subsoil [29,30], while subsoiling changed the soil structure, allowing increased gas diffusion in the soil. In this study, soils under HT conversion to HTS, RT conversion to RTS and NT conversion to NTS increased CH₄ absorption and strengthened the sink capacity of the soils (Fig. 2 A to C); however, these conversions also promoted the emission of N₂O (Fig. 2 D to F). This increase may be due to changes in soil conditions as a result of conversion to tillage (Fig. 3). For example, the increase in CH₄ absorption after conversion was mainly correlated with soil temperature, soil moisture and SOC content according to the correlation analysis (Fig. 3 and Table 2), which is consistent with some previous studies [31–33]. A higher temperature and greater SOC may be advantageous to increasing the amount of CH₄ absorbed by the soil (Table 2, Fig. 3A) [34,35]. However, soil moisture and pH were two limiting factors in our study (Table 2, Fig. 3B) that had negative effects on CH₄ absorption in the soils [36].

At the same time, subsoiling would reduce subsoil compaction, and some have found improved permeability of soil to increased soil methane sinks [37] and higher bulk density to limit gas diffusion from the soil to the atmosphere, prolonging methane transfer pathways and thereby reducing CH₄ and O₂ diffusion between the soil and the atmosphere [38]. Sometimes, although increased soil tillage may slightly decrease CH₄ uptake [39], this effect is small and can be largely ignored [6,40].

The conditions for the aeration of the soil profile were reduced after irrigation [41,42] that increases emissions of the greenhouse gas N₂O through denitrification in farmland [22], the N₂O emission peaks also coincided with higher moisture and NH₄⁺-N content in this study (Fig. 2 D to F, Table 2, Fig. 4A), the emissions of N₂O were significantly affected by soil moisture and NH₄⁺-N content in each treatment. Some studies have indicated that there is a significant linear relationship between N₂O emissions and soil moisture and nitrogenous fertilizer [21,22]. In addition, there was no significant correlation between N₂O emission and soil temperature in this study, and similar results were found by Koponen et al. [43]. In contrast, other studies found that at low temperatures, N₂O emissions may be hindered by soil N and water content [44,45]. However, in different experimental sites, N₂O emission was often related to increased soil temperature [46,47]. These studies demonstrated that when soil moisture and N fertilization were not limiting factors to N₂O emission, the rate of N₂O emission increased as soil temperature increased [22].

Similarly, soil pH also influenced N₂O production in soil (Fig. 4B). N₂O was mainly produced through denitrification when the soil pH was neutral, and the N₂O/N₂ ratio increased when soil pH decreased [48]. In our study, when soil pH values decreased with irrigation, N₂O emissions significantly increased, however, there was no relation to N₂O emission in periods of without irrigation, so soil pH does not directly cause soil GHG emissions [36] but via affected the action of microbes [49]. On the other hand, the predominant form of nitrogen is NO₃-N or NH₄-N after sufficient mixed between soil and straw through tillage, which may produced little N₂O in soil, particularly near the soil surface, with an important influence on N₂O emissions [12].

Table 4. The wheat yield variations of HT, RT and NT after subsoiling from 2008–2010.

Treatments	Number of spikes (10⁴ ha⁻¹)	Grains per ear	1000-grain weight (g)	Grain yield (kg ha⁻¹)	Increased (kg ha⁻¹)
2008–2009					
HT	646.50bc	30.05bc	33.79b	5582.83b	
HTS	683.50a	34.45a	34.31b	6866.55a	+1283.72
RT	655.00b	31.45b	33.94b	5937.20b	
RTS	637.50b	35.00b	36.83b	6985.20b	+1048.00
NT	583.00b	28.60b	32.40b	4595.87b	
NTS	688.50b	34.70b	33.96b	6895.06b	+2299.19
2009–2010					
HT	644.67a	30.93a	33.73e	5716.53a	
HTS	741.00b	38.59a	37.70b	9161.94b	+3548.77
RT	705.00c	31.68c	32.47f	614.93c	
RTS	754.67a	35.78a	36.77c	843.93c	+2342.76
NT	601.67c	28.02c	32.70a	4685.80c	
NTS	682.00c	37.72c	36.13b	7898.86c	+3309.46

Different small letter means P<0.05.

doi:10.1371/journal.pone.0051206.t004
GWPs of CH$_4$ and N$_2$O after Conversion to Subsoiling

Although there was a negative effect on the GWP of N$_2$O after conversion to subsoiling, the increased CH$_4$ absorption by soils partially counteracted this negative effect. The total GWP of CH$_4$ and N$_2$O increased slightly compare with the original tillage systems, especially under HTS and RTS (Table 1). Some previous studies reported that no-tillage is a better tillage system at mitigating GHG emissions [6,50], and the lowest GWP of CH$_4$ and N$_2$O was only measured under NT in this study. However, the GWP of CH$_4$ and N$_2$O would increase if NT was converted to NTS.

Yield Variation after Conversion to Subsoiling

In this study, the fields where the HT, RT and NT methods were previously used showed only slight improvements in wheat grain yields between two years (Table 4), possibly due to the subsoil hardpan. However, under HTS, RTS and NTS, the number of spikes, grains per car and 1000-grain weight significantly increased, which is in agreement with other reports in which subsoiling was found to be an effective method to increase wheat production [51–53].

Conclusions

Significant variations were measured in CH$_4$ and N$_2$O emissions after conversion to subsoiling in the North China Plain. While the uptake of CH$_4$ improved greatly, N$_2$O emissions also increased after subsoiling. As a result, we demonstrated that the GWP would increase if converted from minimum or no-tillage to subsoiling, especially from no-tillage. Soil temperature, moisture, SOC, NH$_4^+$-N and pH also varied and were strongly related to CH$_4$ uptake and N$_2$O emissions. In addition, the original tillage systems had an important effect on soil factors and GWP variations after conversion to subsoiling. Therefore, the results of our study provide evidence that conversion from no-tillage to subsoiling (RTS) or harrow tillage to subsoiling (HTS) had a lower GWP for CH$_4$ and N$_2$O compared with conversion from no-tillage to subsoiling (NTS), while the grain yields under both RTS and HTS increase. Therefore, we suggest that these two rotation tillage systems be developed in this region.

Author Contributions

Conceived and designed the experiments: ST TN ZL HH SC. Performed the experiments: ST HZ BW NL. Analyzed the data: ST TN. Contributed reagents/materials/analysis tools: ST TN. Wrote the paper: ST TN.

References

1. Forster P, Ramaswamy V, Artaxo P, Bernstein T, Betts R, et al. (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, et al., eds. Climate Change 2007: The Physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

2. Bouwman AF (1990) Exchange of greenhouse gases between terrestrial ecosystems and the atmosphere. In: Bouwman AF, eds. The Greenhouse Effect. Wiley, Chichester, pp. 61–127.

3. Goulding KWT, Hutos BW, Webster CP, Willison TW, Powelson DS (1995) The effect of agriculture on methane oxidation in the soil. Philips Transaction Royal Society London A 351: 313–325.

4. IPCC (2001) Climate change 2001. The scientific basis contribution of work group I to the third assessment report of IPCC. Cambridge University Press, Cambridge, Cambridge.

5. Bruce CB, Albert S, John P, Parker (1999) Fields N$_2$O, CO$_2$ and CH$_4$ fluxes in relation to tillage, compaction and soil quality in Scotland. Soil and Tillage Research 53: 29–39.

6. Six J, Oggle SM, Bredek FJ, Comant RT, Mosier AR, et al. (2004) The potential to mitigate global warming with no-tillage management is only realized when practised in the long term. Global Change Biology 10: 155–160.

7. Lee J, Six J, King AP, Van Kessel C, Bolton DE (2006) Tillage and field scale controls on greenhouse gas emissions. Journal of Environment Quality 35: 714–725.

8. Bhata A, Saenal S, Jain N, Pathak H, Kumar R, et al. (2010) Mitigating nitrogen oxide emission from soil under conventional and no-tillage in wheat using nitrification inhibitors. Agriculture Ecosystem & Environment 136: 247–253.

9. Zhang HL, Gao WS, Chen F, Zhu WS (2005) Prospects and present situation of conversion tillage. Journal of China Agriculture University 10: 16–20.

10. Chatskikh D, Olesen JE (2007) Soil tillage enhanced CO$_2$ and N$_2$O emissions from loamy sand soil under spring barley. Soil and Tillage Research 97: 5–18.

11. Elder JW, Lal R (2000) Tillage effects on gaseous emissions from an intensively farmed organic soil in North Central Ohio. Soil and Tillage Research 90: 45–53.

12. Bai XL, Zhang HL, Chen F, Sun GF, Hu Q, et al. (2010) Tillage effects on CH$_4$ and N$_2$O emission from double cropping paddy field. Transactions of the CSAE 26: 202–209.

13. Xu YC, Shen QK, Ran W (2002) Effects of no-tillage and application of manure on soil microbial biomass C, N, and P after sixteen years of cropping. Acta Pedologica Sinica 39: 89–96.

14. Bowen HD (1981) Allleviating mechanical impedance. In: Arkin GF, Taylor HM, eds. Modifying the Root Environment to Reduce Crop Stress. Published by the ASA, CSSA, and SSSA, Madison, WI.

15. Balbuena HR, Aragon A, McDonagh P, Claverie J, Terminiello A (1998) Effect of agriculture on greenhouse gas emissions from double cropping paddy field. Transactions of the CSAE 13: 29–34.

16. Huang M, Li YJ, Wu JZ, Chen MC, Sun JK (2006) Effects of subsoiling and N$_2$O mitigation. Journal of China Agriculture University 27: 74–77.
34. Wang ZP, Han XG, Li LH (2005) Methane emission from small wetlands and implications for semiarid region budgets. Journal of Geophysical Research 110(D13): Art. No. D13304.
35. Bayer CL, Gomes J, Vieira FCB, Zanatta JA, Piccolo MC, et al. (2012) Methane emission from soil under long-term no-till cropping systems. Soil & Tillage Research, 124: 1–7.
36. Ouyang XJ, Zhou GY, Huang ZL, Peng SJ, Liu JX, et al. (2005) The incubation experiment studies on the influence of soil acidification on greenhouse gases emission. China Environment Science 25: 465–470.
37. Dong YH, Ou YZ (2005) Effects of organic manures on CO2 and CH4 fluxes of farmland. Chinese Journal of Applied Ecology 16: 1303–1307.
38. Ball BC, Scott A, Parker JP (1999) Field N2O, CO2 and CH4 fluxes in relation to tillage, compaction and soil quality in Scotland. Soil and Tillage Research 53: 29–39.
39. Hutsch BW (1998) Tillage and land use effects on methane oxidation rates and their vertical profiles in soil. Biology and Fertilizer of Soils 27: 284–292.
40. Robertson GP, Paul EA, Harwood RR (2000) Greenhouse gases in intensive agriculture: Contributions of individual gases to the radiative forcing of the atmosphere. Science 289: 1922–1925.
41. Czyz EA (2004) Effects of traffic on soil aeration, bulk density and growth of spring barley. Soil & Tillage Research. 79, 153–166.
42. Berisso FE, Schjønning P, Keller T, Lamande M, Etana A, et al. (2012) Persistent effects of subsoil compaction on pore size distribution and gas transport in a loamy soil. Soil & Tillage Research 122: 41–45.
43. Koponen HT, Hjoit L, Marrikainen PJ (2004) Nitrous oxide emissions from agricultural soils at low temperatures: a laboratory microcosm study. Soil Biology & Biochemistry 36: 757–766.
44. Conen F, Dobbie KE, Smith KA (2000) Predicting N2O emissions from agricultural land through related soil parameters. Global Change Biology 6: 417–426.
45. Sehy U, Ruser R, Munch J C (2003) Nitrous oxide fluxes from maize fields: relationship to yield, site-specific fertilization, and soil conditions. Agriculture Ecosystem & Environment 99: 97–111.
46. Groffman PM, Hardy JP, Driscoll CT, Fahey TJ (2006) Snow depth, soil freezing, and fluxes of carbon dioxide, nitrous oxide and methane in a northern hardwood forest. Global Change Biology 12: 1746–1760.
47. Rachhpal S, Jassal T, Andrew B, Real R, Gilbert E (2011) Effect of nitrogen fertilization on soil CH4 and N2O fluxes, and soil and bole respiration. Geoderma 162: 182–186.
48. Daum N, Schenck MK (1998) Influence of nutrient solution pH on N2O and N2 emissions from a soilless culture system. Plant and Soil 203: 279–287.
49. Robertson LA, Kuenen JG (1991) Physiology of nitrifying and denitrifying bacteria. In: Rogers JE and Whitman WBC, (eds) Microbial production and consumption of greenhouse gases: Methane, Nitrogen oxides and Halo methane. American Society for microbiology Washington D. C., 189–199.
50. Lal R (2004b) Soil carbon sequestration impacts on global climate change and food security. Science 304: 1623–1627.
51. He J, Li HW, Gao HW (2006) Subsoiling effect and economic benefit under conservation tillage mode in Northern China. Transactions of the CSAE 22: 62–67.
52. Gong XJ, Qian CR, Yu Y, Zhao Y, Jiang YB, et al. (2009) Effects of Subsoiling and No-tillage on Soil Physical Characters and Corn Yield. Journal of Maize Science 17: 134–137.
53. Huang M, Wu JZ, Li YJ, Yao YQ, Zhang CJ, et al. (2009) Effects of different tillage management on production and yield of winter wheat in dryland. Transactions of the CSAE 25: 50–54.