Inactivation of UCP1 and the glycerol phosphate cycle synergistically increase energy expenditure to resist diet-induced obesity

Rea Anunciado-Koza, Jozef Ukropeca, Robert A. Koza and Leslie P. Kozakb

Pennington Biomedical Research Center
6400 Perkins Road
Baton Rouge, LA 70808 USA

Running title: Increasing metabolic inefficiency reduces obesity

aPresent address: Institute of Experimental Endocrinology, Slovak Academy of Sciences
Vlarska 3, 833 06, Bratislava, Slovak Republic
bCorresponding author: E-mail: kozaklp@pbrc.edu, Telephone: 225-763-2771, Fax: 225-763-0273

Our current paradigm for obesity assumes that reduced thermogenic capacity increases susceptibility to obesity, while enhanced thermogenic capacity protects against obesity. Here we report that elimination of two major thermogenic pathways encoded by the mitochondrial uncoupling protein (Ucp1) and mitochondrial glycerol 3-phosphate dehydrogenase (Gdm) result in mice with increased resistance to diet-induced obesity when housed at 28°C, provided prior adaptation occurred at 20°C. Obesity resistant Gdm-/-Ucp1-/- mice maintained at 28°C have increased energy expenditure, in part through conversion of white to brown adipocytes in inguinal fat. Increased oxygen consumption in inguinal fat cell suspensions and the up-regulation of genes of mitochondrial function and fat metabolism indicated increased thermogenic activity, despite the absence of UCP1, whereas liver and skeletal muscle showed no changes in gene expression. Additionally, comparisons of energy expenditure in UCP1 deficient and wild type mice fed an obesogenic diet indicates that UCP1-based brown fat based thermogenesis plays no role in so-called diet-induced thermogenesis. Accordingly, a new paradigm for obesity emerges in which the inactivation of major thermogenic pathways force the induction of alternative pathways that increase metabolic inefficiency.

Obesity is a disorder of energy homeostasis that results when energy intake exceeds energy expenditure. This simplistic relationship belies the complexity of the behavioral and physiological mechanisms underlying phenotypic variability among humans in both energy intake and energy expenditure (1-3). A homeostatic model has developed based on neuroendocrine polypeptides, secreted by peripheral tissues, that act on centers in the hypothalamus to reciprocally regulate feeding behavior and energy expenditure. While it has been proposed that these neuropeptides act simultaneously to regulate energy intake and expenditure, the thermogenic targets in peripheral tissues are largely unknown (4-6) Indeed, little attention has been given to centrally controlled thermogenic mechanisms that are independent of mitochondrial uncoupling proteins (UCPs), either UCP1 for which there is strong evidence for a role in rodent models of obesity (7) or that continue to be proposed for UCP homologues with little supporting evidence (8,9). Given the paucity of evidence for UCP1 activity in adult tissues, there is a pressing need to identify novel mechanisms for activating thermogenesis that can be applied to the obesity problem.

The uncoupling of mitochondrial substrate oxidation from ATP synthesis by UCP1 in brown adipose tissue (BAT) is widely recognized for its role in maintaining a normal body temperature during exposure to cold (10-13). There is also strong evidence that inducing UCP1-based thermogenesis through pharmacological or genetic manipulation reduces excessive adiposity (14). However, these experimentally induced phenotypes may not be indicative of a normal physiological mechanism for the homeostatic maintenance of energy balance. Indeed, the response of UCP1-deficient mice and wild type mice to a high fat diet is strongly affected by ambient temperature. Mutant and wild type mice maintained near thermoneutrality have the same level of adiposity when fed a high fat diet (15). However, as the ambient temperature declines the...
resistance of UCP1-deficient mice to diet-induced obesity (DIO), suggests that alternative thermogenic mechanisms are activated/induced to generate sufficient heat to maintain body temperature. Unlike brown fat thermogenesis, these alternative biochemical and physiological mechanisms appear to be less efficient for the production and distribution of heat, requiring expenditure of more calories to maintain body temperature and thereby indirectly reducing adiposity.

Inguinal fat depots of UCP1-deficient mice, acclimated to cold, acquire the morphology of brown adipocytes, with gene expression data indicating an enhanced capacity for beta-oxidation of fatty acids in mitochondria and altered patterns of protein expression for phospholambans, regulators of the SERCA activity, suggested that a thermogenic mechanisms based upon Ca2+ cycling may have been induced (16). To enhance our ability to detect and evaluate alternative thermogenic mechanisms, we have achieved a further reduction in the endogenous thermogenic capacity of \textit{Ucp1} mutant mice by the targeted inactivation of the mitochondrial glycerol 3-phosphate dehydrogenase gene (\textit{Gdm}) (17). The glycerol-3-phosphate shuttle has been proposed as a source of metabolic inefficiency, owing to the generation of only 2, instead of 3 ATPs per mole of NADH generated by glycolysis (18). The protein levels of GDM and the cytoplasmic glycerol 3-phosphate dehydrogenase are much higher in interscapular brown adipose tissue than any other tissue (19,20), suggesting that heat production from the glycerol phosphate shuttle is a parallel thermogenic pathway that could independently supplement UCP1 thermogenesis.

Here we report that \textit{Gdm}-/-.\textit{Ucp1}-/- mice fed a high fat diet are more resistant to DIO and have increased insulin sensitivity.

EXPERIMENTAL PROCEDURES

Animals and Study Design. \textit{Gdm}-/-.\textit{Ucp1}-/- mice on a C57BL/6J (B6) genetic background were generated as follows: \textit{Gdm}-/-.\textit{Ucp1}+/- mice were crossed with \textit{Gdm}+/-.\textit{Ucp1}-/- to generate the F1 offspring (\textit{Gdm}+/-.\textit{Ucp1}+/-), that were intercrossed to generate the F2 mice. The double knockout (\textit{Gdm}.\textit{Ucp1}-/-) mice were fully fertile and maintained by full-sib mating. Only male mice were studied. In the studies conducted, 10 to 12-week old mice were single-housed, fed rodent chow (PicoLab Rodent Diet 20, LabDiet, Richmond, IN) \textit{ad libitum} and reared at 28°C ambient temperature. All animal experiments were approved by the Pennington Biomedical Research Center Institutional Animal Care and Use Committee in accordance with National Institutes of Health guidelines for care and use of laboratory animals.

Acute cold exposure experiment. Mice, previously maintained at 28°C, were exposed to an ambient temperature of 4°C and body temperature was measured every 60 minutes for 3 hours with a rectal probe (TH-8, Physitemp Instruments Inc., Clifton, NJ).

Cold adaptation experiment. Mice maintained at 28°C for at least one week, following a test for acute sensitivity to cold, were then subjected to a slow reduction (2°C daily) of ambient temperature until the temperature reached 4°C. Mice were kept at 4°C for 24-48 hrs prior to sacrifice.

High fat diet experiments. Three studies were conducted in which the mice were fed a high fat diet (D12230, Research Diets Inc., New Brunswick, NJ). In experiment 1, mice fed a high fat diet were reared at 20°C ambient temperature for 10 weeks and then at 28°C for another 10 weeks. In experiment 2, mice fed a high fat diet were reared at 28°C ambient temperature for 8 weeks. In experiment 3, mice fed a high fat diet were reared at 28°C ambient temperature for 8 weeks. In experiment 3, mice fed a high fat diet were reared at 20°C ambient temperature for 4 weeks and then at 28°C for another 4 weeks.

Phenotypes of Energy Balance. Body composition was analyzed by NMR (Bruker, TX). Oxygen consumption, carbon dioxide production and physical activity of individual mice were measured in 16-chamber Oxymax lab animal monitoring system, CLAMS (Columbus...
Instruments, Columbus, OH), housed in a temperature-controlled incubator.

Quantitative RT-PCR. Total RNA was prepared from tissues homogenized in TRI reagent (Molecular Research Center Inc., Cincinnati, OH). Genomic DNA was removed from total RNA by treating with RNase-free DNase (Qiagen, Valencia, CA) and protected from RNase degradation by treatment with SUPERase-In (Ambion, Austin, TX). The quality and quantity of the isolated RNA were assessed using a NanoDrop spectrometer (NanoDrop Technologies, Wilmington, DE). Quantitative RT-PCR was performed using total RNA with specific primers and probes designed using Primer-Express™ version 2.0.0 (Applied Biosystems, Foster City, CA). TaqMan probes were used for quantification of some target genes using the TaqMan one-step reverse transcriptase PCR mastermix (Applied Biosystems, Foster City, CA). Other target genes were quantified using SYBR® Green PCR mastermix (Applied Biosystems, Foster City, CA). All gene expression data were normalized to the level of cyclophilin b. Primer and probe sequences are available upon request.

Metabolite and Hormone Determinations. Glucose tolerance test (GTT) and insulin tolerance test (ITT) were performed after overnight fasting using an intraperitoneal injection of 20% glucose solution (2 g/kg body weight) or insulin (0.5 IU/kg body weight; Humulin R, Eli Lilly and Company, Indianapolis, IN). Blood glucose levels were determined using a OneTouch Profile blood glucose meter (LifeScan Inc., Milpitas, CA). Blood triglyceride and ketone levels were measured using a Cardiocheck PA Professional meter (HealthCheck Systems, Brooklyn, NY). Serum lactic acid levels were measured using a lactate assay kit (Trinity BioTech, Berkeley Heights, NJ). Tissue triglycerides were measured in chloroform/methanol extracts using the L-type TG H kit (Wako Chemicals, Richmond, VA). Total serum triiodothyronine (T3) and thyroxine (T4) levels were measured by enzyme immunoassay (Alpco Diagnostics, Salem, NH).

Histology of Inguinal Fat. Inguinal fat pads were fixed in Bouin’s solution (Sigma-Aldrich, St. Louis, MO) and paraffin-embedded sections were stained with hematoxylin-eosin and examined using a Zeiss Axioskop 40 microscope (Carl Zeiss MicroImaging, Inc., Thornwood, NY).

Tissue Oxygen Consumption. Oxygen consumption in inguinal adipose tissue was measured with a Clark-type polarographic oxygen sensor (Oxygraph, Hansatech Instruments, Norfolk, UK). Freshly dissected inguinal adipose tissue was finely minced in a freshly oxygenated (95% O₂, 5% CO₂) Krebs Ringer phosphate buffer (pH 7.4) with 1% fatty acid-free BSA. All measurements were performed with minced tissue in BSA-free Krebs Ringer bicarbonate buffer (pH 7.4). Basal respiration was monitored for 1-2 minutes after which succinate (5 mM) was added and respiration was measured for 5-7 minutes. Tissue oxygen consumption was normalized to DNA content which was quantified using the fluorescent dye bisBenzimid (Hoechst 33258; Sigma, St. Louis, MO)(21).

Statistical Analysis. Data are expressed as mean ± SEM. Unpaired t-Test was used to compare differences between groups (Statview, version 5.0.1; SAS Institute Inc., Cary, NC). Analysis of variance with Bonferroni post hoc test was used when more than two groups were compared.

RESULTS

Gdm⁻⁻ Ucp1⁻⁻ mice increase energy expenditure during cold adaptation

In order to determine whether _Gdm⁻⁻ Ucp1⁻⁻_ mice are able to survive acute cold exposure, wild-type and _Gdm⁻⁻ Ucp1⁻⁻_ mice maintained at 28°C, were placed at 4°C. Wild-type mice were fully able to defend their body temperature, whereas 100% of the _Gdm⁻⁻ Ucp1⁻⁻_ mice were hypothermic with their body temperature dropping to less than 30°C within 1-3 hrs of cold exposure (Table S1, Supplementary data). Cold-sensitive mutant mice were immediately returned to a 28°C ambient temperature and allowed to recover. However, when the ambient temperature of these recovered _Gdm⁻⁻ Ucp1⁻⁻_ mice was gradually reduced at a rate of 2°C per day, 80-90% of the mice were able to tolerate an ambient temperature of 4°C (Table S1, Supplementary data). This ability to adapt to cold ambient temperatures resembles our previous findings with the _Ucp1⁻⁻_ mice. _Gdm⁻⁻_ mice are cold tolerant (17), unless they are made hypothyroid (22) and the _Gdm⁻⁻ Ucp1⁻⁻_ mice do not appear to have...
increased cold intolerance compared to Ucp^{1^-} mice.

To determine the mechanism by which $Gdm^{\text{--}}.Ucp^{1^-}$ mice are able to survive cold adaptation, we measured energy expenditure using indirect calorimetry. At 28°C, wild-type mice had slightly higher oxygen consumption compared to $Gdm^{\text{--}}.Ucp^{1^-}$ mice (Fig. 1A); however during acclimation to the cold environment $Gdm^{\text{--}}.Ucp^{1^-}$ had higher VO$_2$ than wild-type mice (Fig. 1B). Since similar increases in VO$_2$ consumption during cold adaptation were observed in our previous studies of cold-adapted Ucp^{1^-} mice and T3 or leptin-treated $Lep^{\text{ob/ob}}.Ucp^{1^-}$ mice, an enhanced capacity to stimulate oxygen consumption over that normally found for wild type mice appears to be an essential requirement for adaptation to the cold. Gene expression analyses of tissues from wild type and $Gdm^{\text{--}}.Ucp^{1^-}$ mice showed that, similar to the adaptive response of Ucp^{1^-} mice (16), adaptation of $Gdm^{\text{--}}.Ucp^{1^-}$ mice to the cold (4°C) was accompanied by induction of genes associated with fat oxidation, mitochondrial biogenesis, mitochondria transporters and transcription factors known to regulate these genes. This induction in gene expression was found in inguinal fat and red and white gastrocnemius skeletal muscle, but not in liver (Table 1 and Tables S2-5, Supplementary Data).

$Gdm^{--}.Ucp^{1^-}$ mice are protected from diet-induced obesity

A central tenet of thermogenesis and obesity has been that UCPI is the major thermogenic mechanism underlying diet-induced thermogenesis (4,23). Accordingly, energy expenditure was expected to be lower in UCPI-deficient mice than in wild type mice fed a high-fat-high sucrose diet. In addition, fat oxidation may also be suppressed in the UCPI-deficient mice. We tested this hypothesis and found, first, that there was no difference in oxygen consumption between wild type and UCPI-deficient mice when they were fed either a low fat chow diet or an obesogenic diet (Fig. 2A and D). Upon switching to the obesogenic diet oxygen consumption increased equally in both Ucp^{1^-} and wild type mice (Fig. 2A and D). Furthermore, the RER showed the expected drop from ~0.92 to 0.78 when the fat composition of the diet was increased and similar to the oxygen consumption data, the value is indistinguishable between Ucp^{1^-} and wild type mice (Fig.2B and D). Accordingly, the experiment showed highly significant effects of diet on both energy expenditure and substrate utilization, but no significant genotype effects (Fig. 2B, C and D). Consistent with this energy expenditure data, Ucp^{1} mRNA levels in the interscapular brown fat of wild-type mice fed chow or obesogenic diets at both 28°C and 4°C were not significantly different from each other, if anything the HF diet suppressed Ucp^{1} mRNA induction when mice were exposed to an ambient temperature of 4°C for 1 week (Fig. 2E). This evidence does not support the idea that UCPI is part of a mechanism for diet-induced thermogenesis in mice fed an obesogenic/cafeteria diet; rather the increase in oxygen consumption when animals switch from a diet high in carbohydrates to one rich in lipids is likely a consequence in the reduction in P/O ratio when fat is metabolized compared to carbohydrate (24).

If it is calorically more costly to maintain body temperature by UCPI-independent thermogenesis, then an additional deletion of a thermogenic pathway should further reduce the development of adiposity. Accordingly, we evaluated the progressive loss of thermogenic mechanisms, on the effects of ambient temperature on the development of DIO in wild-type, Ucp^{1^-}, Gdm^{--} and the $Gdm^{--}.Ucp^{1^-}$ mice, rationalizing that the deletion of a second thermogenic mechanism would further increase the demand for alternative thermogenesis and increase resistance to DIO. Ten-week old mutant and wild type mice were fed a high fat diet at an ambient temperature of 20°C for 10 weeks and then the ambient temperature was raised to 28°C for another 10 weeks (Fig. 3). The rate of body weight gain at 20°C was slower for all genotypes than at 28°C, and more attenuated for the Ucp^{1^-}, Gdm^{--} and $Gdm^{--}.Ucp^{1^-}$ than wild type mice (Fig. 3A). The effects of ambient temperature were clearly evident from the variation in the deposition of fat mass (Fig.3B and D). The most striking effects of ambient temperature were observed on the severely attenuated body weight and fat mass gain in the $Gdm^{--}.Ucp^{1^-}$ mice when the ambient temperature was raised to 28°C. Estimates of the rate of increase in fat mass of the 4 genotypes fed a high fat diet at an ambient temperature of 20°C
and 28°C show that at 20°C wild type mice have the largest rate of increase, while Ucp1+/−, Gdm−/− and Gdm−/−Ucp1−/− mice were not significantly different from each other (Figure 3D). However, when the ambient temperature is increased to 28°C, the rate of fat mass accumulation in wild-type mice and Ucp1−/− mice increased at a similar rate, Gdm−/− was slightly lower, whereas the Gdm−/−Ucp1−/− mice showed only a modest increase in rate from that observed at 20°C (Fig. 3D). Two-way ANOVA on the fat mass gain from week 11 to 17 at 28°C showed that both effects of genotype (P<0.0001) and time (P<0.0001) were significant, the interaction between genotype and time was likewise significant (P=0.0135). When the ambient temperature is increased to 28°C, the difference in fat mass accumulation from week 11 to week 17 in wild-type mice (8.4 ± 0.49) and Ucp1−/− mice (8.7± 0.46) is similar, Gdm−/− (6.5 ± 0.44) was slightly decreased, whereas the Gdm−/−Ucp1−/− mice (1.9 ± 0.49) showed a significant decrease in fat mass. Inspection of the data suggests that the UCPI and GDM phenotypes are synergistic and they function as parallel thermogenic systems. Elimination of both Gdm and Ucp1 genes resulted in much lower fat mass accumulation than what would be predicted by the additive effect of the single mutants. These data indicate that there is a synergistic effect of the single gene deletions in causing reduced fat mass accumulation in the Gdm−/−Ucp1−/− mice. Fat-free mass is significantly reduced in GDM-deficient mice and must be considered in calculations of energy expenditure (Fig. 3C). The variation in food intake on the adiposity phenotypes was minor (Fig 3E); possibly accounting for some of the difference in adiposity between wild-type and Ucp1−/− mice, but not for the much greater reduction in fat mass of Gdm−/− and Gdm−/−Ucp1−/− mice.

Higher energy expenditure in Gdm−/−Ucp1−/− mice

The striking resistance of Gdm−/−Ucp1−/− mice to DIO at 28°C suggested that a difference in energy expenditure might be present even at an ambient temperature near thermoneutrality. Energy expenditure, monitored by indirect calorimetry at temperature transition points during the study (week 11 to week 12) when ambient temperature was increased from 20°C to 28°C; and, week 20 to week 21 when ambient temperature was again reduced from 28°C to 20°C, showed that the Gdm−/−Ucp1−/− mice had higher VO2 than wild type mice during both light and dark periods at both ambient temperatures (Fig. 1C and 1D, Table 2). By comparing Fig. 1A to 1B one can deduce that at 28°C energy expenditure in wild type and Gdm−/−Ucp1−/− mice is similar, but as the ambient temperature is reduced during the gradual cold adaptation, energy expenditure in Gdm−/−Ucp1−/− becomes higher (Fig. 1B). Accordingly, when mice were fed a high fat diet and maintained at 20°C during the first 10 weeks, a higher energy expenditure in Gdm−/−Ucp1−/− mice was expected (Fig.1C, Table 2). The higher level of energy expenditure of Gdm−/−Ucp1−/− mice persisted even after the ambient temperature was elevated to 28°C when assayed during the 11th week (Figure 1C, Table 2). Unexpectedly, this elevated energy expenditure in Gdm−/−Ucp1−/− continued to the 21st week when the mice were again placed in the metabolic chamber, indicating that significantly higher energy expenditure was sustained in Gdm−/−Ucp1−/− mice during a period of 10 weeks at 28°C while they were fed a high fat diet (Fig 1D, Table 2). This elevated energy expenditure coincided with the severe suppression of DIO in the Gdm−/−Ucp1−/− mice at 28°C (Fig. 3A). To assess the continued response of the mice to changes in ambient temperature, the ambient temperature was again reduced to 20°C during the 21st week and the expected ambient temperature dependent increase in energy expenditure was observed both in the wild type and mutant mice (Fig.1D). This enhanced capacity for energy expenditure was dependent on prior conditioning at 20°C, since Gdm−/−Ucp1−/− mice fed a high fat diet at 28°C, and not exposed to 20°C, had comparable levels of obesity as wild type mice (adiposity indexes of 0.45±0.04 vs 0.42±0.07, also see Fig. 4D) and indistinguishable rates of oxygen consumption (12-hr light: 2.6±0.05 vs 2.5±0.17 ml O2/g FFM/hr, P=0.290; 12-hr dark: 3.2±0.10 vs 3.0±0.25 ml O2/gm FFM/hr; P=0.273).

Despite feeding a high fat diet, significant differences in RER were evident during the dark hours at 20°C and light hours at 28°C (Table 2, 11th week). Gdm−/−Ucp1−/− mice had higher RER during the dark hours at 20°C and lower RER during the light hours at 28°C (Table 2). Whether
this 3.5% difference in RER is biologically significant is questionable. However, differences in RER between genotypes were not evident during the 21st week (Table 2). Ambulatory physical activity did not differ between genotypes during the 11th or 21st weeks (Table 2) and was much greater during the dark than light hours at both temperatures. Moreover, the mice were more active at 20°C than at 28°C at all measurement periods, but differences between genotypes were not observed.

Thermogenesis in inguinal fat protects Gdm−/−.Ucp1−/− mice from diet-induced obesity

Resistance to DIO in Gdm-Ucp1−/− mice depends upon a prior induction in the capacity for energy expenditure at a reduced temperature. This capacity is sustained for at least ten weeks following a return to an ambient temperature of 28°C. To identify the source of this capacity for energy expenditure we have analyzed the morphology of white fat depots (Fig 4A-D) and analyzed gene expression in inguinal fat, skeletal muscle and liver (Table 1). There was a dramatic induction of brown adipocyte-like cells in the inguinal fat in Gdm−/−.Ucp1−/− mice fed a high fat diet and housed at 20°C, that was sustained even after the mice were transferred from an ambient temperature of 20°C to 28°C for either 4 or 10 weeks (Fig. 4B and C). The induction of brown adipocytes in inguinal fat of Gdm−/−.Ucp1−/− mice is even more robust than that found in mice adapted to an ambient temperature of 4°C (Fig. 4A). No induction occurs in the inguinal fat of either wild-type or Gdm−/−.Ucp1−/− mice fed a high fat diet and maintained at 28°C for 8 weeks (Fig. 3D), indicating that ambient temperature and genotype, but not a high fat-high sucrose diet, are required to cause transformation of the white adipose tissue (WAT) morphology. In Gdm−/− mice exposed to 20°C for 10 weeks and then 28°C for 10 weeks and fed a high fat diet, very little induction of brown adipocytes could be detected (Supplement Fig.1).

This morphological evidence for brown adipocyte induction in WAT is supported by data showing almost a 10-fold induction in the level of mitochondrial DNA in inguinal fat of mice conditioned at 20°C and then transferred to 28°C while fed a high fat diet (Fig. 4E). Although not as extensive, brown adipocytes were also induced in retroperitoneal and epididymal fat depots (data not shown) in mice conditioned at 20°C then transferred to 28°C. To assess whether this brown adipocyte morphology in inguinal fat, accompanied by a high mitochondrial content, but without either UCP1 or GDM, was capable of enhancing a thermogenic response that could suppress DIO, oxygen consumption was measured in cell suspensions of inguinal fat with a Clarke electrode. Measurements of basal oxygen consumption in inguinal fat of double mutant mice showed a 2-fold increase compared with wild-type mice (278±51 vs 582±9 nmol O2/mg DNA/min, P<0.05) (Fig. 4F). Under the conditions in which mice were fed a high-fat diet and maintained at an ambient temperature of 20°C for 4 weeks and then at 28°C for another 4 weeks, the inguinal adipose tissue of the Gdm−/−.Ucp1−/− mice showed a striking increase (64%) in succinate-responsive oxygen consumption as compared with wild-type mice (Fig. 4F).

Selective induction of gene expression in thermogenic inguinal fat

The remarkable changes in morphology and oxygen consumption were accompanied by changes in the gene expression profile in inguinal fat from Gdm−/−.Ucp1−/− mice pre-exposed to low ambient temperature, but no changes in gene expression were observed in skeletal muscle or liver (Table 1 and Table S6-S9, Supplemental Data). Prominent increases in the expression of genes of lipid oxidation, including Acox, and Cpt1 were observed. Acsl, linked to activation of fatty acids essential for channeling acyl CoA towards oxidation was also up-regulated, as was hormone-sensitive lipase (Hsl), which catalyzes triglyceride hydrolysis in adipocytes. The elevated expression of the 3 PPAR isoforms, Pgc1α and Srebp1a and 1c, genes involved in the transcriptional regulation of lipid metabolism and mitochondrial biogenesis further support enhanced activity in the inguinal fat. There was also induction of genes involved in lipid anabolism as evidenced by up-regulation of PPARγ, involved in transcriptional regulation of lipid storage and lipogenesis and Scd1 (stearoyl CoA desaturase 1), one of the key lipogenic enzymes. In addition to PPARγ, Srebplα and Srebplc were also up-regulated further providing evidence for enhanced lipid biosynthesis.

The PPARα, PPARδ, PPARγ are all subject to transcriptional co-activation by Pgc1α
therefore, the 14-fold induction of Pgc1α in Gdm−/−.Ucp1−/− mice, compared to wild type mice, suggests a significant up-regulation of overall lipid metabolism, in addition to the pivotal role played by Pgc1α in mitochondrial biogenesis that is occurring in the inguinal fat (Fig. 4E). Another important factor which potentially contributes to thermogenesis in the inguinal fat is Dio2. Although there was no systemic increase in T3 and T4 levels in Gdm−/−.Ucp1−/− mice (Supplementary Table S10), it is possible that the 30-fold induction in Dio2 mRNA levels contributes to a local increase in T3 to support increased metabolism in the inguinal fat, possibly through induction of SERCA activity.

While enhanced lipid oxidation is necessary for heat production, in itself it is not sufficient. Previous comprehensive microarray gene expression analysis of skeletal muscle from cold adapted Ucp1−/− mice highlighted increased expression in mitochondrial carriers and genes of Ca2+ cycling. These two solute carriers, Slc25a25 and Slc20a2, and the Ca2+-cycling component Serca2a was also induced in the inguinal fat of Gdm−/−.Ucp1−/− mice compared to wild type provide a potential thermogenic mechanism. It is important to reiterate that neither red or white gastrocnemius skeletal muscle nor liver showed any significant changes in gene expression (Table 1; Supplementary Tables S6-S9).

Insulin sensitivity in Gdm−/−.Ucp1−/− mice

To assess whether the major reduction in adiposity in Gdm. Ucp1−/− mice may be associated with a form of lipodystrophy, glucose and insulin tolerance tests were performed with wild-type and mutant mice fed an obesogenic diet for 20 weeks. Following an intraperitoneal glucose tolerance test, the double knockout animals displayed a much more efficient clearance of systemic glucose levels than wild type (Fig. 4G). In addition, Gdm−/−.Ucp1−/− mice were more sensitive to exogenous insulin during the insulin tolerance test compared to wild type mice (Fig 4H). Hepatic and skeletal muscle triglyceride content in Gdm−/−.Ucp1−/− mice was 1.3-fold lower than in wild type mice (Supplementary Table S10). The Gdm−/−.Ucp1−/− mice were more insulin sensitive and had lower levels of non-adipose lipid accumulation than wild-type mice, traits consistent with the increased energy expenditure that reduces overall adiposity in these mice and not with a form of lipodystrophy.

DISCUSSION

In this study we show that Gdm−/−.Ucp1−/− mice fed a high fat diet and initially exposed to an ambient temperature (20°C), an environment that requires the activation of thermogenesis to maintain body temperature, will continue to express the induced thermogenic mechanisms in inguinal fat, but not skeletal muscle or liver, even after the mouse has been transferred to and maintained for 10 weeks at an ambient of 28°C. This inducible thermogenic mechanism in adipose tissue, although not required for the maintenance of body temperature, strongly suppresses the development of obesity and suggests the existence of novel thermogenic mechanisms, independent of muscle shivering, UCP1 or the glycerol phosphate cycle, that is able to reduce a positive energy balance.

In previous studies, changes in morphology and gene expression have been found in both skeletal muscle and adipose tissue of UCP1-deficient mice that could account for their ability to tolerate the cold. However, these experiments have not been able to resolve the contribution of muscle shivering to either body temperature or body weight phenotypes, a thermogenic mechanism proposed to be the only alternative available to UCP1-deficient mice (26). Shivering certainly occurs when a UCP1-deficient mouse is placed in the cold (4°C), as is obvious from the shaking of the mouse when it is exposed acutely, but the inability of this shivering to actually protect the mouse is equally obvious, since the body temperature will drop to below 30°C in about 3 hr. Accordingly, one can equally conclude that shivering is largely ineffective in contributing sufficiently to thermogenesis in the UCP1-deficient mouse to make a difference. To tolerate the cold a UCP1-deficient mouse must be gradually adapted by slowly reducing the ambient temperature (16). The changes occurring in the skeletal muscle affect the capacity for lipid oxidation, Ca2+ cycling and mitochondrial content. These molecular changes could also be associated with a shivering-based mechanism, except that those changes occurring in adipose tissue must be independent of shivering.
Alternative thermogenic mechanisms based upon mitochondrial solute carriers, especially up-regulated in inguinal fat, are candidates that need to be evaluated. Of particular note is the ATP/Mg-Pi carrier, SLC25A25, which is induced in skeletal muscle from Lep^{ob/ob}.Ucp1^{−/−} mice following leptin treatment when the ambient temperature went below 20°C. This carrier was induced in both skeletal muscle and inguinal fat of Gdm^{−/−}.Ucp1^{−/−} mice adapted to 4°C; however, no changes in its expression were detected in inguinal fat or skeletal muscle of cold adapted Ucp1^{−/−} mice (data not shown). The ATP/Mg-Pi carrier has been proposed to function in the regulation of matrix adenine nucleotide content (27,28). Likewise, in our previous study in Ucp1^{−/−} mice, adenine nucleotide transporter was up-regulated after cold adaptation (16). Finally, considering the evidence for enhanced expression of genes associated with both lipid synthesis and oxidation, a thermogenic mechanism based on lipid turnover needs to be kept in mind (29).

In addition to the above mentioned mitochondrial carriers, Serca, previously reported to be up-regulated in inguinal fat Ucp1^{−/−} mice, was likewise induced in the inguinal fat of Gdm^{−/−}.Ucp1^{−/−} mice. We have previously shown the potential involvement of Ca²⁺-ATPase-based thermogenesis for cold adaptation in inguinal fat of Ucp1^{−/−} mice (16) and in skeletal muscle of Lep^{ob/ob}.Ucp1^{−/−} mice (30). Calcium cycling has been proposed as a heat generating mechanism in fish thermogenic organs (31), mammalian malignant hyperthermia (32), avian nonshivering thermogenesis (33) and recently, as an additional source of heat production contributing to BAT thermogenesis (34). The importance of this mechanism in thermogenesis in the inguinal fat of Ucp1^{−/−} mice was shown by the significant changes in the phosphorylation of phospholamban, a Ca²⁺ cycling regulatory component of SERCA (16).

Inguinal fat is unique in the facile conversion of its white adipocyte population to brown adipocytes(35). Whereas, the visceral fat depots in C57Bl/6J mice show very little conversion to brown adipocytes when stimulated adrenergically, the conversion is equally robust in the inguinal fat of B6 mice and other strains that are considered high inducers of the brown adipocyte phenotype(35). Consistent with this special sensitivity of the inguinal fat, we previously showed conversion to brown adipocytes in the inguinal fat of Ucp1^{−/−} mice exposed to a 20°C environment, but not in the visceral fat depot (15). Now we show that in the Gdm^{−/−}.Ucp1^{−/−} mice, the brown adipocyte trait is preserved even after 10 weeks at 28°C. Since mice fed a high fat diet at 28°C do not show the brown adipocyte phenotype and have similar levels of adiposity as wild-type mice (Fig. 4D), the results suggest that once induced by a lower ambient temperature (20°C) the initial demand for fat oxidation and the generation of heat by the inguinal fat is preserved by the obesogenic diet, even after the temperature is increased to near thermoneutrality. The stimulus for the appearance of brown adipocytes in the inguinal fat of Gdm^{−/−}.Ucp1^{−/−} mice is highly dependent on adrenergic stimulation as double mutant mice reared at 28°C during high fat feeding had scarcely any brown adipocytes. Although the enhanced ability of the inguinal fat depot to induce the brown adipocyte phenotype is unknown, it is likely to be found in the transient appearance of brown adipocytes found in white fat depots during post-natal development (36). Many studies have established that downstream of the adrenergic receptors, enhanced cAMP action on protein kinase A is essential and can be achieved by several pathways (37-40). The PKA pathway subsequently sets in motion an activation of transcription pathways involving CREB (41), p38MAP kinase (42), ATF2 (43), PGC-1α (44), PPARα (45) and type 2 deiodinase (45). These factors synergistically interact to achieve highly variable expression of Ucp1 and brown fat induction in the different white fat depots, but none is absolutely essential (45).

In summary, the prevailing paradigm for the relationship between thermogenesis and obesity assumes that genetic and pharmacological interventions that reduce the thermogenic capacity of the animal will increase susceptibility to obesity, while those that increase thermogenic capacity will reduce obesity (4,46). The DIO phenotypes in Ucp1^{−/−} mouse have significantly changed this paradigm. An artifactual increase in thermogenesis, as found following drug treatment or the expression of transgenes (see Fig. 5), stimulates proton leaks in the mitochondrial membrane to reduce obesity in an obesogenic environment. However, as we show here, the
progressive loss of essential thermogenic mechanisms to maintain body temperature does not increase susceptibility to obesity. On the contrary, it reduces the development of obesity because alternative thermogenic mechanisms must be induced if the animal is to survive. For many reasons, some just as simple as the mechanics of distributing heat from tissues, brown fat has an extraordinary level of vascularization (47), these alternative mechanisms are calorically more expensive and reduce obesity. These phenotypes of thermogenesis and the regulation of body weight in the Gdm−/− Ucp1−/− mice have tested further the model for obesity and thermogenesis originally proposed by our laboratory (15). The enhancement of metabolic inefficiency, by pathways that are unknown, remains a key concept to reduce obesity; however, the metabolic inefficiency comes from inactivation of major thermogenic processes, rather than their activation. Accordingly, inhibiting a thermogenic pathway and letting the organism adapt to its absence may be very effective in generating metabolic inefficiency.

REFERENCES
1. Blundell, J., and Stubbs, J. (2004) Diet composition and the control of food intake in humans. In: Bray, G., and Bouchard, C. (eds). Handbook of Obesity, 2nd Ed., Marcel Dekker, Inc., New York, NY
2. Schutz, Y., and Jequier, E. (2004) Resting energy expenditure, thermic effect of food, and total energy expenditure. In: Bray, G., and Bouchard, C. (eds). Handbook of Obesity, 2nd Ed., Marcel Dekker, Inc., New York, NY
3. Hill, J., Saris, W., and Levine, J. (2004) Energy expenditure in physical activity. In: Bray, G., and Bouchard, C. (eds). Handbook of Obesity, 2nd Ed., Marcel Dekker, Inc., New York, NY
4. Lowell, B. B., and Spiegelman, B. M. (2000) Nature 404(6778), 652-660
5. Schwartz, M. W., Woods, S. C., Seeley, R. J., Barsh, G. S., Baskin, D. G., and Leibel, R. L. (2003) Diabetes 52(2), 232-238
6. Levin, B. E. (2007) Am J Physiol Regul Integr Comp Physiol 293(3), R988-991
7. Kozak, L. P., and Harper, M. E. (2000) Annu Rev Nutr 20, 339-363
8. Krauss, S., Zhang, C. Y., and Lowell, B. B. (2005) Nat Rev Mol Cell Biol 6(3), 248-261
9. Brand, M. D., and Esteses, T. C. (2005) Cell Metab 2(2), 85-93
10. Ricquier, D., and Kader, J. C. (1976) Biochem Biophys Res Commun 73(3), 577-583
11. Foster, D. O., and Frydman, M. L. (1979) Can. J. Physiol. Pharmacol. 57, 257-270
12. Nicholls, D. G., and Locke, R. M. (1984) Physiol. Rev. 64, 1-64
13. Enerback, S., Jacobsson, A., Simpson, E. M., Guerra, C., Yamashita, H., Harper, M. E., and Kozak, L. P. (1997) Nature 387(6628), 90-94
14. Gambert, S., and Ricquier, D. (2007) Curr Opin Clin Nutr Metab Care 10(6), 664-670
15. Liu, X., Rossmeisl, M., McClaine, J., Riachi, M., Harper, M. E., and Kozak, L. P. (2003) J Clin Invest 111(3), 399-407
16. Ukropec, J., Anunciado, R. P., Ravussin, Y., Hulver, M. W., and Kozak, L. P. (2006) J Biol Chem 281(42), 31894-31908
17. Brown, L. J., Kozak, R. A., Everett, C., Reitman, M. L., Marshall, L., Fahien, L. A., Kozak, L. P., and MacDonald, M. J. (2002) J Biol Chem 277(36), 32892-32898
18. Lardy, H., and Shrags, E. (1990) Annu. Rev. Biochem. 59, 689-710
19. Ratner, P. L., Fisher, M., Burkart, D., Cook, J. R., and Kozak, L. P. (1981) J Biol Chem 256(7), 3576-3579
20. Kozak, R. A., Kozak, U. C., Brown, L. J., Leiter, E. H., MacDonald, M. J., and Kozak, L. P. (1996) Arch Biochem Biophys 336(1), 97-104
21. Labarca, C., and Paigen, K. (1980) *Anal Biochem* **102**(2), 344-352.
22. Dos Santos, R. A., Alfadda, A., Eto, K., Kadowaki, T., and Silva, J. E. (2003) *Endocrinology* **144**(12), 5469-5479.
23. Rothwell, N. J., and Stock, M. J. (1979) *Nature* **281**, 31-35.
24. Brand, M. D., Chien, L. F., Ainscow, E. K., Rolfe, D. F., and Porter, R. K. (1994) *Biochim Biophys Acta* **1187**(2), 132-139.
25. Liang, H., and Ward, W. F. (2006) *Adv Physiol Educ* **30**(4), 145-151.
26. Golozoubova, V., Hohtola, E., Matthias, A., Jacobsson, A., Cannon, B., and Nedergaard, J. (2001) *FASEB J* **15**(11), 2048-2050.
27. Satrustegui, J., Pardo, B., and Del Arco, A. (2007) *Physiol Rev* **87**(1), 29-67.
28. Fiermonte, G., De Leonardis, F., Todisco, S., Palmieri, L., Lasorsa, F. M., and Palmieri, F. (2004) *J Biol Chem* **279**(29), 30722-30730.
29. Dulloo, A. G., Gubler, M., Montani, J. P., Seydoux, J., and Solinas, G. (2004) *Int J Obes Relat Metab Disord* **28 Suppl 4**, S29-37.
30. Uktropec, J., Anunciado, R. V., Raveus, Y., and Kozak, L. P. (2006) *Endocrinology* **147**(5), 2468-2480.
31. Block, B. A. (1994) *Ann. Rev. Physiol.* **56**, 535-577.
32. MacLennan, D. H., and Phillips, M. S. (1992) *Science* **256**(5058), 789-794.
33. Dumontel, E., Barre, H., and Meissner, G. (1993) *Am J Physiol* **265**(2 Pt 1), C507-513.
34. de Meis, L., Arruda, A. P., da Costa, R. M., and Benchimol, M. (2006) *J Biol Chem* **281**(1), 2048-2050.
35. Guerra, C., Koza, R. A., Yamashita, H., Walsh, K., and Kozak, L. P. (1998) *J Clin Invest* **102**(2), 412-420.
36. Xue, B., Rim, J. S., Hogan, J. C., Coulter, A. A., Koza, R. A., and Kozak, L. P. (2007) *J Lipid Res* **48**(1), 41-51.
37. Soloveva, V., Graves, R. A., Rasenick, M. M., Spiegelman, B. M., and Ross, S. R. (1997) *Mol Endocrinol* **11**(1), 27-38.
38. Cummings, D. E., Brandon, E. P., Planas, J. V., Motamed, K., Idzerda, R. L., and McKnight, G. S. (1996) *Nature* **382**(6592), 622-626.
39. Cederberg, A., Gronning, L. M., Ahren, B., Tasken, K., Carlsson, P., and Enerback, S. (2001) *Cell* **106**(5), 563-573.
40. Hansen, J. B., Jorgensen, C., Petersen, R. K., Hallenborg, P., De Matteis, R., Boye, H. A., Petrovic, N., Enerback, S., Nedergaard, J., Cinti, S., te Riele, H., and Kristiansen, K. (2004) *Proc Natl Acad Sci U S A* **101**(12), 4112-4117.
41. Kozak, U. C., Kopecky, J., Teisinger, J., Enerback, S., Boyer, B., and Kozak, L. P. (1994) *Mol Cell Biol* **14**(1), 59-67.
42. Robidoux, J., Cao, W., Quan, H., Daniel, K. W., Moukdar, F., Bai, X., Floering, L. M., and Collins, S. (2005) *Mol Cell Biol* **25**(13), 5466-5479.
43. Cao, W., Daniel, K. W., Robidoux, J., Puigserver, P., Medvedev, A. V., Bai, X., Floering, L. M., Spiegelman, B. M., and Collins, S. (2004) *Mol Cell Biol* **24**(7), 3057-3067.
44. Coulter, A. A., Bearden, C. M., Liu, X., Koza, R. A., and Kozak, L. P. (2003) *Physiol Genomics* **14**(2), 139-147.
45. Xue, B., Coulter, A., Rim, J. S., Koza, R. A., and Kozak, L. P. (2005) *Mol Cell Biol* **25**(18), 8311-8322.
46. Hirsch, J. (1997) *Nature* **387**(6628), 27-28.
47. Foster, D. O., and Frydman, M. L. (1978) *Can. J. Physiol. Pharmacol.* **56**, 110-122.
48. Surwit, R. S., Kuhn, C. M., Cochrane, C., McCubbin, J. A., and Feinglos, M. N. (1988) *Diabetes* **37**, 1163-1167

49. Marrif, H., Schifman, A., Stepanyan, Z., Gillis, M. A., Calderone, A., Weiss, R. E., Samarut, J., and Silva, J. E. (2005) *Endocrinology* **146**(7), 2872-2884

50. StefÌ, B., Janovska, A., Hodny, Z., Rossmeisl, M., Horakova, M., Syrovy, I., Bemova, J., Bendlova, B., and Kopecky, J. (1998) *Am J Physiol* **274**(3 Pt 1), E527-533

51. Kopecky, J., Clarke, G., Enerback, S., Spiegelman, B., and Kozak, L. P. (1995) *J Clin Invest* **96**(6), 2914-2923

52. Couplan, E., Gelly, C., Goubern, M., Fleury, C., Quesson, B., Silberberg, M., Thiaudiere, E., Mateo, P., Lonchampt, M., Levens, N., De Montrion, C., Ortmann, S., Klaus, S., Gonzalez-Barroso, M. D., Cassard-Doulcier, A. M., Ricquier, D., Bigard, A. X., Diolez, P., and Bouillaud, F. (2002) *J Biol Chem* **277**(45), 43079-43088

53. Champigny, O., Ricquier, D., Blondel, O., Mayers, R. M., Briscoe, M. G., and Holloway, B. R. (1991) *Proc Natl Acad Sci U S A* **88**(23), 10774-10777

54. Himms-Hagen, J., Cui, J., Danforth, E., Jr., Taatjes, D. J., Lang, S. S., Waters, B. L., and Claus, T. H. (1994) *Am J Physiol* **266**(4 Pt 2), R1371-1382

55. Collins, S., Daniel, K. W., Petro, A. E., and Surwit, R. S. (1997) *Endocrinology* **138**(1), 405-413

FOOTNOTES

This work was supported by National Institutes of Health grant R01-HD08431 and partly through the support of the Genomic Core Facilities and the Bioimaging Core by CNRU (NIH P-30 DK072476) and COBRE NIH P20-RR021945) center grants. We thank Tamra Mendoza and Cody Giardina for excellent technical assistance, Dr. Barbara Gawronska-Kozak for preparing photomicrographs, Dr. William Johnson for help with 2-way ANOVA and Dr. Andrew Butler for a critical reading of the manuscript.

FIGURE LEGENDS

Figure 1. Effect of diet and ambient temperature on oxygen consumption (VO₂) in WT and Gdm⁻/⁻,Ucp1⁻/⁻ mice.
A) Mice were fed chow diet and kept at 28°C.
B) Mice were acclimated to cold until ambient temperature reached 4°C.
C, D) Mice were fed a high fat diet for 20 weeks and reared at 20°C for 10 weeks and at 28°C for 10 weeks. At the 11th week of the experiment, temperature was switched from 20°C to 28°C (C). At the 21st week, temperature was switched from 28°C to 20°C (D).

Figure 2. Analysis of diet-induced thermogenesis in Ucp1⁻/⁻ and wild-type mice.
Effect of chow and high fat diet on (A) oxygen consumption (VO₂), (B) RER and (C) energy expenditure in WT (n=8; body weight=29.7 ± 0.01) and Ucp1⁻/⁻ (n=8; body weight=28.4 ± 0.73) mice at 23°C. Values presented under each graph correspond to mean ± SEM in WT and Ucp1⁻/⁻ respectively. *p<0.05. (D) Statistical analysis (p-values) for the effects of genotype and diet on VO₂, RER and energy expenditure. (E) Effect of ambient temperature (28°C vs 4°C) and diet (chow vs HFD) on Ucp1 gene expression in brown adipose tissue of WT mice (n=9 per group). Mice were fed chow or HFD and kept at 4°C or 28°C ambient temperature for one week. abc Means with different superscript letters are statistically significant at p<0.05.

Figure 3. Phenotypes of energy balance in WT, Ucp1⁻/⁻, Gdm⁻/⁻ and Gdm⁻/⁻,Ucp1⁻/⁻ mice.
Effect of high fat diet on (A) body weight, (B) fat mass, (C) fat-free mass, (D) rate of fat mass gain and (E) food intake in WT(n=7-8), Ucp1⁻/⁻ (n=8), Gdm⁻/⁻ (n=8-9) and Gdm⁻/⁻,Ucp1⁻/⁻ (n=7) mice kept at 20°C.
for 10 weeks and at 28°C for 10 weeks. Data represent mean ± SEM. The following symbols indicate no significant difference between groups: *WT vs Ucp1+/−, Gdm+/− vs Gdm−/−:Ucp1+/−, Gdm−/− vs Ucp1+/−, †WT vs Gdm+/−, ‡Gdm+/−, Ucp1+/− vs Ucp1−/−, †WT vs Gdm−/−:Ucp1−/−. abc Means with different superscript letters are statistically significant at p<0.05 (Figure D and E).

Figure 4. Evidence showing increased energy expenditure from the inguinal fat of Gdm−/−:Ucp1−/− mice and increased insulin sensitivity.

A to D) Histology of the inguinal fat. A representative section is shown for each experimental group. Adiposity index corresponding to the ratio between fat mass and fat-free mass (AI, mean ± SEM) is shown below each panel. Number of mice used for each experiment (A, WT=6 vs Gdm−/−:Ucp1−/−= 5; B, WT=7 vs Gdm+/−:Ucp1+/−=7; C, WT=5 vs Gdm−/−:Ucp1−/−=5; D, WT=5 vs Gdm−/−:Ucp1+/−=5).

E) Inguinal fat mitochondrial DNA content is the ratio between MT-encoded mt-co2 and nucleus-encoded Ucp2. Values represent mean ± SEM, *p<0.05.

F) Mean tissue O2 consumption in inguinal fat measured with a Clark-type electrode in WT (n=4) and Gdm+/−:Ucp1+/− (n=3) mice fed a high fat diet for 4 weeks at 20°C and 4 weeks at 28°C.

G and H) Blood glucose profile during intraperitoneal glucose tolerance test (G) and insulin tolerance test (H) in WT and Gdm−/−:Ucp1−/− mice (n=6-7/group) after 20 weeks on high fat diet. Mice were kept at 20°C for 10 weeks and 28°C for 10 weeks. Values correspond to the mean ± SEM; *p<0.05.

Figure 5. Model describing the relationship between metabolic inefficiency and sensitivity to DIO in male C57BL/6J.

On the one hand metabolic inefficiency can be increased by inactivating major thermogenic pathways, thereby forcing the animal to utilize alternative thermogenic pathways that cost more energetically to maintain body temperature; thus reducing the level of DIO. On the other hand, over-expression and/or ectopic expression of Ucp1 or induction of brown adipocytes in white fat depots enhances the thermogenic capacity, much of which, by being unregulated, increases metabolic inefficiency and reduces diet-induced obesity. References documenting the obesity and thermogenic phenotypes are as follows: wild-type C57BL/6J (48), Gdm+/− (17), Ucp1+/− (15), TReα− (49), Gdm−/−:Ucp1+/−, homozygous Tg aP2-Ucp1 (50), PKA-R1α regulation (38,39), hemizygous aP2-Ucp1 (51), TG MCK-Ucp1 (52), β3-Adr agonists (53-55).
Table 1. Summary of gene expression in WT and Gdm⁻/-Ucp1⁻/- mice during cold adaptation with chow diet and with high fat diet for 20 weeks (20°C for 10 weeks and at 28°C for 10 weeks)

Gene	Glucose metabolism	Lipid metabolism	Mitochondrial function	Ion transport	Transcription	Thyroid metabolism	Calcium cycling	
	Cold adaptation to 4°C with chow diet	High fat diet at 20°C for 10 weeks and at 28°C for 10 weeks						
	Liver	Gas-red	Gas-white	Ing fat	Liver	Gas-red	Gas-white	Ing fat
Glut2	1.0	1.6*	1.4*	2.3*	0.8	1.0	1.1	2.7*
Glut4	0.8	0.7	1.9	1.2	0.7	0.9	1.3	1.7*
Pdk4	0.4	1.1	2.3*	0.7	0.5	1.0	1.1	6.7*
Pepck	1.6*	1.9*	1.2	1.3	1.9	0.6	1.2	2.1*
Acox	0.8	0.7	1.7	1.3	0.8	0.7	0.9	2.1*
Acs12	0.4	0.7	1.1	1.2	0.4	0.7	0.9	2.1*
Hsl	1.4	1.4*	1.7	0.8	0.7	0.7	0.9	2.3*
Scd1	0.7	1.8	3.7*	0.4	0.8	0.7	1.1	2.8*
Srebp1a	0.6	0.8	1.1	1.2	0.4	0.7	0.9	1.5*
Srebp1c	0.8	0.8	1.2	0.6	0.7	0.8	0.9	1.5*
T4-Dio2	1.2	1.4*	1.7	0.8	1.0	1.0	1.2	2.3*
Pgc1-α	0.2	1.0	1.2	1.3	1.0	1.2	1.1	1.4*
PPAR-α	0.4	0.8	1.1	1.2	0.3	1.3	1.9	2.5*
PPAR-δ	0.8	1.4	1.4	0.5	0.7	0.8	0.9	1.5*
PPAR-γ	1.2	1.4	1.4	0.5	1.2	1.1	1.2	2.3*
Srebp1a	0.7	0.7	1.1	1.2	0.6	1.0	1.5	1.7*
Srebp1c	0.8	0.8	1.2	0.6	0.7	0.8	0.9	1.5*
T4-Dio2	0.7	0.7	1.1	1.2	0.4	0.7	0.9	1.5*

Values in bold type with an asterisk are significantly different at p<0.05.
Number of mice used: 5 per genotype in each study.
Table 2. Energy expenditure, RER and physical activity in WT and Gdm^{−/−}.Ucp1^{−/−} mice fed a high fat diet and reared at 20°C for 10 weeks, then at 28°C for 10 weeks.

	WT (n=6)	Gdm^{−/−}.Ucp1^{−/−} (n=7)
VO2 (ml O₂/g FFM/hr)		
11th week		
20°C 12hr-L	2.9±0.09	3.3±0.02*
12hr-D	3.5±0.13	3.9±0.05*
28°C 12hr-L	1.8±0.05	2.1±0.01*
12hr-D	2.4±0.01	2.9±0.04*
28°C 12hr-L	1.5±0.04	1.8±0.05*
12hr-D	1.8±0.04	2.3±0.08*
20°C 12hr-L	2.3±0.05	2.8±0.09*
12hr-D	2.7±0.11	3.3±0.11*
21st week		
28°C 12hr-L	0.87±0.008	0.88±0.002
12hr-D	0.86±0.007	0.89±0.007*
28°C 12hr-L	0.93±0.007	0.89±0.007*
12hr-D	0.91±0.009	0.91±0.009
21st week		
28°C 12hr-L	0.85±0.011	0.86±0.008
12hr-D	0.84±0.015	0.87±0.004
20°C 12hr-L	0.84±0.006	0.84±0.005
12hr-D	0.82±0.001	0.84±0.010
Ambulatory physical activity (total counts)		
11th week		
20°C 12hr-L	3138±1014	2624±105
12hr-D	13129±3478	10512±811
28°C 12hr-L	2626±500	2831±272
12hr-D	10740±2792	11259±2429
21st week		
28°C 12hr-L	1757±580	1859±303
12hr-D	6465±1660	7561±1135
20°C 12hr-L	2357±658	2685±382
12hr-D	9843±2385	11076±1149

All values represent mean±SEM. P-value is the result of statistical analysis using Student’s t-test. *P<0.05.
Figure 1

A

Chow, 28°C

VO2 (ml O2/g FFM/hr)

- WT
- Gdm-/-Ucp1-/-

Chow, cold adaptation

VO2 (ml O2/g FFM/hr)

- Wild type
- Gdm-/-Ucp1-/-

High fat diet (11th week)

VO2 (ml O2/g FFM/hr)

- Wild type
- Gdm-/-Ucp1-/-

High fat diet (21st week)

VO2 (ml O2/g FFM/hr)

- Wild type
- Gdm-/-Ucp1-/-
Figure 2

	VO2 (ml/mouse/hr)	RER	EE (kJ/hr/mouse)				
	12-hr	12-hr	12-hr	12-hr	12-hr	12-hr	
	light	dark	light	dark	light	dark	
Effect of genotype	Chow WT vs Ucp1^{-/-}	0.096	0.036	0.544	0.459	0.154	0.076
	HFD WT vs Ucp1^{-/-}	0.945	0.356	0.824	0.253	0.923	0.385

Effect of diet

	Chow vs HFD						
	WT	0.006	0.037	0.0106	0.0012	0.014	0.007
	Ucp1^{-/-}	0.006	0.023	0.0001	0.0002	0.007	0.024

Effect of temperature

	Chow vs HFD				
	28°C Chow vs 28°C HFD	a	a	c	b
Table 3

	Fat mass gain (g/week)			
	WT	Ucp1^{−/−}	Gdm^{−/−}	Gdm^{−/−}.Ucp1^{−/−}
20°C				
Week 1 to 9	0.56±0.08 (8)^a	0.30±0.04 (8)^b	0.24±0.06 (8)^b	0.14±0.02 (7)^b
28°C				
Week 11 to 17	1.2±0.07 (7)^a	1.24±0.08 (8)^a	0.93±0.05 (9)^b	0.28±0.08 (7)^c
Figure 4

A

Temperature	Diet	Duration	AI ± SE
4°C	Chow	8Wks	0.15 ± 0.01
28°C	HFD	8Wks	0.45 ± 0.04
20°C, 28°C	HFD	4Wks, 4Wks	0.42 ± 0.07

B

Temperature	Diet	Duration	AI ± SE
20°C, 28°C	HFD	4Wks, 4Wks	0.31 ± 0.04

C

Temperature	Diet	Duration	AI ± SE
20°C, 28°C	HFD	4Wks, 4Wks	0.21 ± 0.02

D

Temperature	Diet	Duration	AI ± SE
4°C	Chow	8Wks	0.12 ± 0.01
28°C	HFD	8Wks	0.42 ± 0.04
20°C, 28°C	HFD	4Wks, 4Wks	0.42 ± 0.07

E

- **WT**
- **Gdm⁻/⁻.Ucp⁻/⁻**

Temperature	Mt DNA content
4°C	200
28°C	800
20°C, 28°C	1200

F

- **WT**
- **Gdm⁻/⁻.Ucp⁻/⁻**

G

- **WT**
- **Gdm⁻/⁻.Ucp⁻/⁻**

H

- **WT**
- **Gdm⁻/⁻.Ucp⁻/⁻**

% Decrease in blood glucose

P=0.08

5 mM succinate
Diet-Induced Obesity

Metabolic Inefficiency

Wild type C57BL/6J

Hemizygous Tg aP2-Ucp1

Homozygous Tg aP2-Ucp1 (BAT ablation)

Gdm⁻/⁻ Ucp1⁻/⁻

Gdm⁻/⁻ Ucp1⁻/⁻

PKA-R1α upregulation

Tg MCK-Ucp1

β3- Adr Agonists

Over-expression of Ucp1/brown adipocytes

Alternative thermogenesis

Diet-Induced Obesity

Figure 5
Inactivation of UCP1 and the glycerol phosphate cycle synergistically increase energy expenditure to resist diet-induced obesity
Rea Anunciado-Koza, Jozef U Kropec, Robert A. Koza and Leslie P. Kozak

J. Biol. Chem. published online August 4, 2008

Access the most updated version of this article at doi: 10.1074/jbc.M804268200

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

Supplemental material:
http://www.jbc.org/content/suppl/2008/08/06/M804268200.DC1