Methicillin-Resistant Staphylococcus aureus Susceptibility Testing with the Abbott MS-2 System

JAMES R. CARLSON,* FRANCES E. CONLEY, AND DAVID L. CAHALL

Department of Pathology and Laboratory Medicine, The Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030

Received 10 November 1981/Accepted 25 January 1982

The antimicrobial susceptibilities of 100 methicillin-resistant Staphylococcus aureus strains were concurrently determined by the Abbott MS-2 System and by the standard disk diffusion method. Agreement between the two methods was 94% or greater for all of the antibiotics tested except for methicillin and gentamicin. This study indicates that the Abbott MS-2 cannot be relied upon for detection of methicillin resistance in clinical S. aureus isolates.

The antibiotic susceptibility testing capacity of the Abbott MS-2 System (Abbott Laboratories, Irving, Tex.) has not been previously fully evaluated for methicillin-resistant Staphylococcus aureus strains (1, 5). This report compares the antibiotic susceptibilities of 100 clinical isolates of methicillin-resistant S. aureus measured concurrently with the MS-2 (1, 5) and the standard agar disk diffusion methods (3). Very major (susceptible by MS-2 and resistant by agar disk diffusion) and major (resistant by MS-2 and susceptible by agar disk diffusion) discrepancies were arbitrated by a broth microdilution method (4).

The methicillin-resistant S. aureus strains isolated at our institution exhibited a multidrug resistance pattern by agar disk diffusion testing for the drugs that were tested (Table 1). The majority of strains were susceptible only to chloramphenicol. Our isolates also displayed zones of inhibition that exceeded the susceptible breakpoint for cephalothin; however, these results were interpreted with appropriate caution (3).

Drug	No. resistant by agar disk diffusion	No. in full accord	No. of MS-2 discrepancies by category:	No. of broth dilution MICs supporting*			
			Very major	Major	Minor	MS-2	Agar disk diffusion
Methicillin	100	24	65	0	11	0	65
Gentamicin	85	68	14	3	15	4	13
Cephalothin	4	94	5	1	0	5	1
Erythromycin	100	98	2	0	0	0	2
Chloramphenicol	3	98	2	0	0	1	1
Penicillin	100	99	1	0	0	0	1
Tetracycline	99	99	0	0	1	0	0
Kanamycin	100	99	0	0	1	0	1
Clindamycin	100	100	0	0	0	0	0

* Combined very major and major discrepancies only. MICs, Minimal inhibitory concentrations.
A total of 94 very major and major discrepancies occurred among results obtained with the MS-2 procedure. Of these 94 discrepancies, 83 were supported by the results of broth dilution tests. All results for methicillin, erythromycin, penicillin, and tetracycline by broth dilution were in agreement with the original agar disk diffusion data. Certain MS-2 discrepancies for gentamicin (4/17), cephalothin (5/6), and chloramphenicol (1/2), however, were not supported by broth dilution tests. In other studies, perfect correlation has not been obtained between microdilution and agar disk diffusion results, particularly for methicillin (2). Our results may be due to strain differences; e.g., our endemic strains may have grown more readily in the broth employed for microdilution testing.

This study indicates that the Abbott MS-2 System does not reliably detect methicillin resistance in clinical isolates of *S. aureus*. In addition, the gentamicin susceptibility results as determined by the MS-2 may not be reliable when multidrug-resistant *S. aureus* isolates are tested. Laboratory personnel committed to the MS-2 should be cautioned with respect to using this instrument when testing *S. aureus* isolates from hospital environments where methicillin-resistant strains are prevalent.

We thank Joan Arenius and the staff of the Hermann Hospital Clinical Microbiology Laboratory for excellent technical assistance.

LITERATURE CITED

1. Barnes, W. G., L. R. Green, and R. L. Talley. 1980. Clinical evaluation of automated antibiotic susceptibility testing with the MS-2 System. J. Clin. Microbiol. 12:527-532.
2. Barry, A. L., and R. E. Badal. 1977. Reliability of the microdilution technic for detection of methicillin-resistant strains of *Staphylococcus aureus*. Am. J. Clin. Pathol. 67:489-493.
3. National Committee for Clinical Laboratory Standards. 1979. Approved Standard: ASM-2. Performance standards for antimicrobial disc susceptibility tests (2nd ed.). National Committee for Clinical Laboratory Standards, Villanova, Pa.
4. National Committee for Clinical Laboratory Standards. 1980. Proposed standard. Standard Methods for dilution antimicrobial susceptibility tests for bacteria which grow aerobically. National Committee for Clinical Laboratory Standards, Villanova, Pa.
5. Thornsberry, C., J. P. Anhalt, J. A. Washington II, L. R. McCarthy, F. D. Schoenknecht, J. C. Sherris, and H. J. Spencer. 1980. Clinical laboratory evaluation of the Abbott MS-2 automated antimicrobial susceptibility testing system: report of a collaborative study. J. Clin. Microbiol. 12:375-390.