Prevalence of antibiotic use and household water-sanitation risk factors of acute watery diarrhea among children <5 years: retrospective analysis of multicounty health survey data, 2006-2018

Md. Shakil Ahmed (✉ shakil.statru@gmail.com)
University of Rajshahi

Research Article

Keywords: AWD, Health Survey (DHS), Multiple Indicator Cluster Survey (MICS), Improved as reference category

DOI: https://doi.org/10.21203/rs.3.rs-401478/v1

License: ☑️ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

A total 12,69,944 under five year Childs were included in this study among them 1,80,067 Childs were acute watery diarrhea (AWD) and 19,502 Childs were bloody diarrhea respectively. Among them 47,755 Childs were taken antibiotic treatment for AWD. The overall prevalence of acute watery diarrhea ~ 14% (prevalence = 0.142; 95% CI = 0.141, 0.142). On the other hand the prevalence of bloody diarrhea ~ 2% (prevalence = 0.015; 95% CI = 0.015, 0.016). The prevalence of antibiotic treatment for AWD was ~ 27% (prevalence = 0.27, 95% CI = 0.26, 0.27) among the under five years old children in DH survey regions in the world. The prevalence of acute watery diarrhea was higher ~ 17% (prevalence = 0.17, 95% CI = 0.16, 0.17) in the Latin America DHS survey region. The minimum prevalence of AWD was almost equal between South East Asia and Central Asia DHS survey regions ~ 12% (prevalence = 0.12, 95% CI = 0.11, 0.12) and ~ 12% (prevalence = 0.12, 95% CI = 0.10, 0.13) respectively. On the other hand the prevalence of AWD between Europe and West North and Central Africa DHS survey regions ~ 16% (prevalence = 0.16, 95% CI = 0.15, 0.16) and ~ 15% (prevalence = 0.15, 95% CI = 0.14, 0.15) correspondingly. In the central Asia of 15,089 under five Childs were included in the survey. Among them 1,748 Childs were AWD and 967 Childs had taken antibiotic treatment for AWD. The highest prevalence of antibiotic use for AWD in Central Asia ~ 55% (prevalence=(967/1748) = 0.55, 95% CI = 0.52, 0.59) and Europe DH survey region ~ 44% (prevalence=(5483/12502) = 0.44, 95% CI = 0.43, 0.45). The lowest prevalence of antibiotic use for under five child AWD was ~ 23% (prevalence=(11918/51328) = 0.23, 95% CI = 0.22, 0.24) in the DH survey region South East Asia. On the other hand the DH survey region Latin America and West North and Central Africa region the prevalence of antibiotic use for AWD were ~ 30% (prevalence=(7887/26396) = 0.30, 95% CI = 0.29, 0.31) and ~ 24% (prevalence=(21500/88093) = 0.24, 95% CI = 0.23, 0.24). The South East Asia DH survey region countries DHS 2007 (Bangladesh), DHS 2014 and 2010 (Cambodia), DHS 2017 and 2012 (Indonesia), DHS 2009 (Maldives), DHS 2015–2016 (Myanmar), DHS 2012–2013 (Pakistan), DHS 2017 and 2013 (Philippines), and DHS 2009–2010 (Timor-Leste) were higher risk of AWD for drinking unimproved water sources. The prevalence of antibiotic use for u5c AWD was shown highest prevalence in DHS 2007 (~ 44%), DHS 2012 (~ 49%), DHS 2016 (~ 40%), and DHS 2017 (~ 65%) from DH survey 2006 to 2018 in South East & Central Asia. The linear trend analysis showed that upward trend for using antibiotic of AWD in the South East & Central Asia DH survey region.

Introduction

Diarrhea is the state of loose, liquid, or watery bowel engagements three times or more a day. [1] If it will be continue for a few days for a result creates severe dehydration. Among the low- and middle-income countries diarrhea is one of the foremost causes of antibiotic use for children. On the other hand vaccine may prevent diarrhea infections but they often consumed antibiotic treatment. [2] Of 13% prevalence for purchasing antibiotics without a prescription, ~ 2% were preferred by the regulars and ~ 11% were suggested by the pharmacists. [3] Cotrimoxazole was the most commonly prescribed drug (51%), followed by colistin sulfate (15.3%), norfloxacin (11%), and nalidixic acid (0.5%). The average number of antimicrobials per case of inpatients was higher than outpatients (1.15 vs 0.84, p < 0.001). There was a
trend toward prescribing noroxacin in childhood diarrhea. [4] The last 20 years shown that the prevalence of antibiotic resistance has increasing remarkably. [5] It is a serious hazard for health among the global people. [6] The low income and middle income countries are higher threatened than high income countries for depletion of antibiotic, prevalence, and confrontation of antibiotic against the childhood diarrhea or diseases by the record. [7] Aggregate the numbers of peoples for gaining access of antimicrobial resistance not only the formal health care but also increasing the antibiotic treatments by the both formal and informal health care providers. [8, 9] Moderately a 3rd of patients admitted to hospital are specified by the antibiotic treatment according to the report by the worldwide Point Prevalence Survey. [10] Around 21% antibiotic were used by oral pills or syrups and 3% by injections in the Demographic Health Survey (DHS) and Multiple Indicator Cluster Survey (MICS) data. The proportion of antibiotic treatments 3–78% for childhood diarrhea episodes among 38 included studies. [11] The main objective of this paper to estimate the prevalence of antibiotic use for acute watery diarrhea of under five children (u5c), and retrospectives analysis of household water sanitation risk factors of DHS multi country survey from 2006–2018.

Methods

Data sources

In this paper we used 112 Demographic Health Survey (DHS) data. On period of household surveys mothers were asked detailed questions about management of diarrhea episodes. And those under-5children were included whose 2-weeks diarrhea episodes earlier the survey date. Of 112 countries 12,69,944 under five Children (u5c) datasets were collected from Demographic and Health Survey (DHS) programmed surveys from 2006 to 2018 (https://dhsprogram.com/Data/). The cross sectional study design used for the DHS survey data collection. The details sampling strategy and methodology discuss in the DHS website and published reports.

Statistical Analysis Method

The dataset was collected from Demographic and Health Survey (DHS) programmed from 2006 to 2018 survey year. There were 12,69,944 under five Children suffering from acute watery diarrhea (had diarrhea last 24 hours or last two weeks) were analyzed as a study variable or dependent variable. Also analyzed the prevalence of antibiotic use for under five child acute watery diarrhea. The logistic regression was used to estimate crude odds ratio (COR) of household drinking water (Improved as reference category) sources and sanitation (Improved as reference category) risk factors with 95% confidence interval. The p-value was estimated for prediction of significant risk factors of under-five childhood watery diarrhea. The multiple logistic regression was used to estimate the adjusted odds ratio (AOR) the age in months and sex of the children with 95% confidence interval. All the statistical analysis implemented using the open sources software R statistical programming language (https://www.r-project.org/). The classification of household sanitation and water risk factors are as follows:

Improved Sanitation Facility Group:
i. flush - to piped sewer system
ii. flush - to septic tank
iii. flush - to pit latrine
iv. flush - don't know where
v. pit latrine - ventilated improved pit (VIP)
vi. pit latrine - with slab
vii. composting toilet

Unimproved Sanitation Facility Group:

i. flush - to somewhere else
ii. pit latrine - without slab / open pit
iii. bucket toilet
iv. hanging toilet/latrine
v. other

Improved Drinking Water Sources Group:

i. piped into dwelling piped to yard/plot
ii. public tap/standpipe
iii. piped to neighbor
iv. tube well or borehole
v. protected well
vi. protected spring
vii. rainwater
viii. tanker truck, cart with small tank
ix. bottled water

Unimproved Drinking Water Sources Group:

i. unprotected well
ii. unprotected spring
iii. surface water (river/dam/lake/pond/stream/canal/irrigation channel)
iv. other

Results

Overall Characteristics: A total 12,69,944 under five year Childs were included in this study among them 1,80,067 Childs were acute watery diarrhea (AWD) and 19,502 Childs were bloody diarrhea respectively.
Among them 47,755 Childs were taken antibiotic treatment for AWD. The overall prevalence of acute watery diarrhea ~14% (prevalence=0.142; 95% CI=0.141, 0.142). On the other hand the prevalence of bloody diarrhea ~2% (prevalence=0.015; 95% CI=0.015, 0.016). The prevalence of antibiotic treatment for AWD was ~27% (prevalence=0.27, 95% CI=0.26, 0.27) among the under five years old children in DH survey regions in the world.

Socio-economic and Demographic characteristics: The wealth index is a significant measurement of socio-economic status. The median (robust measures of central tendency with 50% outliers tolerate) prevalence of antibiotic use for acute watery diarrhea (AWD) were almost equal among the poorest (~22%) and poorer (~22%) group Childs respectively. But among the richest people prevalence of antibiotic use was ~14% for AWD. Therefore, from the box plot (Figure-1(A)) showed that the prevalence of antibiotic use trend was decreasing from poorest to richest (Supplementary Table-1).

The mother education plays significant roles for under five childhood acute watery diarrhea. The prevalence of AWD among the primary and secondary education child mother were higher ~31% (median) and ~28% (median) respectively. Comparatively lower prevalence of AWD among the no education child mother group ~20% (median) than the primary and secondary education child mother. However, prevalence of AWD remarkably lowers ~2% among the higher education mother (Figure-1(B) and Supplementary Table-2).

The prevalence of AWD was higher among the age group 6-12 months and 12-18 months ~19% (median) and ~18% (median) respectively. The very low prevalence of AWD among the age group 42-48 months and 48-54 months were ~5% (median) and ~5% (median) respectively (Supplementary Table-3). From the box plot (Figure-1(C)) showed that the prevalence of AWD was decreasing trend from age group 6-12 months to 48-54 months.

Prevalence of acute watery diarrhea (AWD):

The prevalence of acute watery diarrhea was higher ~17% (prevalence=0.17, 95% CI=0.16, 0.17) in the Latin America DHS survey region. The minimum prevalence of AWD was almost equal between South East Asia and Central Asia DHS survey regions ~12% (prevalence=0.12, 95% CI=0.11, 0.12) and ~12% (prevalence=0.12, 95% CI=0.10, 0.13) respectively. On the other hand the prevalence of AWD between Europe and West North and Central Africa DHS survey regions ~16% (prevalence=0.16, 95% CI=0.15, 0.16) and ~15% (prevalence=0.15, 95% CI=0.14, 0.15) correspondingly (Table-1).

South East Asia: In Afghanistan 2015 demographic health survey (DHS) 30,951 Childs were included in this survey. Among them 7990 Childs were AWD. It is the highest prevalence ~26% (prevalence=0.26, 95% CI=0.25, 0.26) in the DH survey region South East Asia. The DH survey 2012-2013 and 2017-2018 in Pakistan were higher prevalence of AWD ~21% (prevalence=0.21, 95% CI=0.20, 0.22) and ~18% (prevalence=0.18, 95% CI=0.17, 0.18). But the Maldives 2009 and 2016-2017 DH survey showed that the lowest prevalence of AWD ~5% (prevalence=0.05, 95% CI=0.04, 0.06) and ~4% (prevalence=0.04, 95%
CI=0.03, 0.05) respectively (Table-1). The details prevalence of AWD in South Asia was shown in the global mapping Figure-2(A).

Central Asia: The highest prevalence of AWD was ~15% (prevalence=0.15, 95% CI=0.14, 0.16) in Tajikistan DH survey 2012. On the other hand the lowest prevalence of AWD was ~5% (prevalence=0.05, 95% CI=0.05, 0.06) in Kyrgyz Republic DH survey 2012 (Table-1 and Figure 2(B)) in the DH survey region Central Asia.

Europe: In the DH survey 2015-2016 and 2017-2018 in Albania was lowest prevalence of AWD ~4% (prevalence=0.04, 95% CI=0.03, 0.15) and ~5% (prevalence=0.05, 95% CI=0.05, 0.06). The highest prevalence of AWD ~31% (prevalence=0.31, 95% CI=0.30, 0.32) in Yemen 2013 DH survey (Table-1 and Figure-2(C)) in the DH survey region Europe.

Latin America: The demographic and health survey 2008 in Bolivia and 2005-2006 in Haiti were highest prevalence of AWD ~25% (prevalence=0.25, 95% CI=0.24, 0.26) and ~22% (prevalence=0.22, 95% CI=0.21, 0.23) respectively. The lowest prevalence of AWD was ~10% (prevalence=0.10, 95% CI=0.09, 0.11) in Guyana 2009 DH survey in the Latin America region (Tabel-1 and Figure-2(D)).

West North and Central Africa: The lowest prevalence of AWD was ~6% (prevalence=0.06, 95% CI=0.06, 0.07) in Benin 2011-2012 DH survey. The demographic health survey 2006 and 2011 in Uganda and Burundi 2010 DH survey were highest prevalence of AWD ~26% (prevalence=0.26, 95% CI=0.25, 0.27), ~23% (prevalence=0.23, 95% CI=0.22, 0.24), and ~25% (prevalence=0.25, 95% CI=0.24, 0.26) respectively (Table-1 and Figure-2(E)) in the West North and Central Africa.

Prevalence of Antibiotic use for AWD:

In the central Asia of 15,089 under five Childs were included in the survey. Among them 1,748 Childs were AWD and 967 Childs had taken antibiotic treatment for AWD. The highest prevalence of antibiotic use for AWD in Central Asia ~55% (prevalence=(967/1748)=0.55, 95% CI=0.52, 0.59) and Europe DH survey region ~44% (prevalence=(5483/12502)=0.44, 95% CI=0.43, 0.45). The lowest prevalence of antibiotic use for under five Child AWD was ~23% (prevalence=(11918/51328)=0.23, 95% CI=0.22, 0.24) in the DH survey region South East Asia. On the other hand the DH survey region Latin America and West North and Central Africa region the prevalence of antibiotic use for AWD were ~30% (prevalence=(7887/26396)=0.30, 95% CI=0.29, 0.31) and ~24% (prevalence=(21500/88093)=0.24, 95% CI=0.23, 0.24) (Table-1).

South East Asia: The demographic health survey 2017-2018 in Pakistan and 2007 in Indonesia were highest prevalence of antibiotic use for AWD in the South East Asia. The estimated prevalence were ~47% (prevalence=0.47, 95% CI=0.44, 0.50) and ~44% (prevalence=0.44, 95% CI=0.41, 0.46) respectively. The lowest prevalence of antibiotic use for AWD in the Maldives DH survey 2016-2017 was ~5% (prevalence=0.05, 95% CI=0.18, 0.27) and Timor-Leste DH survey 2009-2010 was ~5% (prevalence=0.05,
95% CI=0.0, 0.11) respectively (Table-1) and the details prevalence shown in the global mapping Figure-3(A).

Central Asia: In the Central Asia DH survey region more than ~40% prevalence of antibiotic use for AWD. The DH survey 2017 in Tajikistan highest prevalence ~65% (prevalence=0.65, 95% CI=0.61, 0.69) of antibiotic use for Child AWD in the Central Asia region (Table-1 and Figure-3(B)).

Europe: In the DH survey 2012 in Jordan and 2006 in Azerbaijan were highest prevalence of antibiotic use for AWD ~54% (prevalence=0.54, 95% CI=0.50, 0.57) and ~49% (prevalence=0.49, 95% CI=0.40, 0.58). On the other hand the lowest prevalence of antibiotic use for AWD ~15% (prevalence=0.15, 95% CI=-0.01, 0.30) in the Europe DH survey region (Table-1 and Figure-3(C)).

Latin America: The DH survey region Latin America the highest prevalence of antibiotic use for AWD in Guatemala 2014-2015 survey ~42% (prevalence=0.42, 95% CI=0.39, 0.45). Also in the Bolivia DHS 2008, Peru DHS 2009, Peru DHS 2011, Peru DHS 2012 were high prevalence of antibiotic use for AWD. The estimated prevalence for those DHS countries were ~40% (prevalence=0.40, 95% CI=0.37, 0.43), ~40% (prevalence=0.40, 95% CI=0.36, 0.44), ~39% (prevalence=0.39, 95% CI=0.35, 0.44), and ~38% (prevalence=0.38, 95% CI=0.34, 0.43) respectively. The lowest prevalence of antibiotic use for AWD was ~10% (prevalence=0.10, 95% CI=0.05, 0.15) in Haiti 2012 DHS in the DH survey region Latin America (Table-1 and Figure-3(D)).

West North and Central Africa: The lowest prevalence of antibiotic use for AWD in the DH survey region West North and Central Africa in Burundi DHS 2016-2017 and Zimbabwe DHS 2005-2006 were ~6% (prevalence=0.06, 95% CI=0.02, 0.09) and ~6% (prevalence=0.06, 95% CI=-0.02, 0.14) respectively. The higher prevalence of antibiotic use for AWD in Congo DHS 2011-2012 and Liberia DHS 2013 were ~59% (prevalence=0.59, 95% CI=0.56, 0.63) and ~59% (prevalence=0.59, 95% CI=0.56, 0.62) respectively. On the other hand, Sierra Leone DHS 2013 and 2008, DHS 2010 in Tanzania were also higher prevalence of antibiotic use for AWD of under five children. The estimated prevalence were ~48% (prevalence=0.48, 95% CI=0.44, 0.52), ~44% (prevalence=0.44, 95% CI=0.38, 0.50), and ~47% (prevalence=0.47, 95% CI=0.43, 0.52) correspondingly (Table-1 and Figure-3(E)).

Household water and sanitation risk factors analysis of under five children AWD:

The multiple logistic regression was used to estimate the odds ratio for measuring water sanitation risk factors of under five children AWD.

Drinking water sources and sanitation toilet risk factor:

South East Asia: The South East Asia DH survey region countries DHS 2007 (Bangladesh), DHS 2014 and 2010 (Cambodia), DHS 2017 and 2012 (Indonesia), DHS 2009 (Maldives), DHS 2015-2016 (Myanmar), DHS 2012-2013 (Pakistan), DHS 2017 and 2013 (Philippines), and DHS 2009-2010 (Timor-Leste) were higher risk of AWD for drinking unimproved water sources.
The DH survey 2007 in Bangladesh was ~1.10 times (aOR=1.1, 95% CI=1.09, 1.11) higher risk of u5c AWD for using unimproved drinking water sources. The DHS 2014 ~1.4 times (aOR=1.40, 95% CI=1.39, 1.42) and 2010 ~1.11 times (aOR=1.11, 95% CI=1.10, 1.12) more risk of u5c AWD in Cambodia for using unimproved drinking water sources. Similarly, ~1.26 times in DHS 2017 and ~1.18 times in 2012 (Indonesia), ~1.65 times in DHS 2009 (Maldives), ~1.21 times in DHS 2015-2016 (Myanmar), ~1.11 times in DHS 2012-2013 (Pakistan), ~1.24 times in DHS 2017 and ~1.18 times in 2013 (Philippines), and ~1.18 times in DHS 2009-2010 (Timor-Leste) higher risk of u5c AWD due to use unimproved drinking water sources respectively (Table-2 and Supplementary Figure-1 (a)).

Most of the countries in the South East Asia region were higher risk of u5c AWD for using unimproved sanitation toilet. On the other hand, DHS 2015 in Afghanistan, DHS 2015-2016 in Myanmar, and DHS 2016 in Timor-Leste were lower risk of AWD (Table-2 and Supplementary Figure-3(a)).

Central Asia: The DH survey 2012 in the Tajikistan was ~1.4 times (aOR=1.14, 95% CI=1.13, 1.15) higher risk of u5c AWD for drinking unimproved water sources (Table-2 and Supplementary Figure-1(b)). On the other hand, the DHS 2012 in Tajikistan was ~4% (aOR=1.04, 95% CI=1.03, 1.04) more risk of AWD using unimproved sanitation toilet (Table-2 and Supplementary Figure-3(b)).

Europe: The DHS 2010 in Armenia, DHS 2016 in Azerbaijan, and DHS 2008 in Egypt were ~2 times (aOR=1.90, 95% CI=1.85, 1.95), ~5 times (aOR=4.54, 95% CI=4.35, 4.73), and ~1.31 times (aOR=1.31, 95% CI=1.28, 1.33) were higher risk of AWD for drinking unimproved water sources (Table-2 and Supplementary Figure-1(c)).

The risk of AWD for using unproved sanitation toilet was higher among Armenia (DHS-2010), Azerbaijan (DHS-2006), and Jordan (DHS-2012). The estimated adjusted odds ratio (aOR) was aOR=2.54 (95% CI=2.47, 2.61), aOR=1.42 (95% CI=1.39, 1.46), and aOR=1.47 (95% CI=1.45, 1.48) respectively (Table-2 and Supplementary Figure-3(c)).

Latin America: The DHS 2008 in Bolivia (aOR=1.69; 95% CI=1.67, 1.71), DHS 2010 in Colombia (aOR=1.23; 95% CI=1.22, 1.24), DHS 2014-2015 in Guatemala (aOR=1.31; 95% CI=1.29, 1.33), DHS 2016-2017 (aOR=1.16; 95% CI=1.29, 1.33) and DHS 2012 (aOR=1.76; 1.71, 1.80) in Haiti, DHS 2012 (aOR=1.49; 95% CI=1.45, 1.48), DHS 2009 (aOR=1.59; 95% CI=1.57, 1.61), DHS 2007-2008 (aOR=1.55; 95% CI=1.53, 1.57), and DHS 2004-2006 (aOR=1.40; 95% CI=1.38, 1.41) in Peru were highest risk of u5c AWD for drinking unimproved water sources (Table-2 and Supplementary Figure-1(d)).

All the DH survey in the DH survey region in Latin America was higher risk of AWD for using unimproved sanitation toilet. But the DHS 2016-2017 in Haiti was lower risk of AWD (aOR=0.99; 95% CI=0.99, 0.99) for using unimproved sanitation toilet (Table-2 and Supplementary Figure-3(d)).

West North and Central Africa: Most of DH survey countries were higher risk of AWD of u5c for using unimproved drinking water sources and unimproved sanitation toilet in the West North and Central Africa.
DH survey regions. The details results were shown in the Table-2 (drinking water sources & sanitation toilet), Supplementary Figure-2 (drinking water sources) and Supplementary Figure-4 (sanitation toilet).

Trend of Antibiotic use for AWD

South East & Central Asia: The prevalence of antibiotic use for u5c AWD was shown highest prevalence in DHS 2007 (~44%), DHS 2012 (~49%), DHS 2016 (~40%), and DHS 2017 (~65%) from DH survey 2006 to 2018 in South East & Central Asia. The linear trend analysis showed that upward trend for using antibiotic of AWD in the South East & Central Asia DH survey region (Figure-4 (A)).

Europe: The prevalence of antibiotic use for u5c AWD was shown highest prevalence in DHS 2007 (~50%), DHS 2012 (~54%), DHS 2014 (~47%), and DHS 2018 (~32%) from DH survey 2006 to 2018 in Europe DH survey region. The linear trend analysis showed that downward trend for using antibiotic of AWD in the Europe DH survey region (Figure-4 (B)).

Latin America: The prevalence of antibiotic use for u5c AWD was shown highest prevalence in DHS 2006 (~37%), DHS 2008 (~40%), DHS 2009 (~40%), and DHS 2015 (~32%) from DH survey 2006 to 2018 in Latin America DH survey region. The linear trend analysis showed that downward (decreasing pattern) trend for using antibiotic of AWD in the Latin America DH survey region (Figure-4 (C)).

West North and Central Africa: The prevalence of antibiotic use for u5c AWD was shown highest prevalence in DHS 2008 (~44%), DHS 2010 (~47%), DHS 2012 (~59%), DHS 2013 (~48%), and DHS 2018 (~8%) from DH survey 2006 to 2018 in West North and Central Africa DH survey region. The linear trend analysis showed that downward (decreasing pattern) trend for using antibiotic of AWD in the West North and Central Africa DH survey region (Figure-4 (D)).

Discussion And Conclusions

Antibiotic use for acute watery diarrhea among the under five children are common phenomenon in the low and middle income countries. The overall prevalence of diarrhea among the South East Asia and Central Asia are equally distributed among the under child watery diarrhea. The highest prevalence of antibiotic use of under five children diarrhea among the Central Asia on the other hand the lowest prevalence of antibiotic use among the West North and Central Africa DH survey region. According to the trend analysis shown that the prevalence of antibiotic use for under five children diarrhea was the increasing trend among the South East and Central Asia DH survey regions. However all the other DH survey regions (Europe, Latin America, and West North and Central Africa) were decreasing trend of antibiotic use for under five children diarrhea.

Declarations

Acknowledgement
The author is cordially grateful to the DHS for making the data access available for analysis and publications. This work was done by author won interest, there no funding for this study. The authors had full access to all the data in the study and had final responsibility for the decision to submit for publication.

Author contributions

All the statistical analysis and write & revised the manuscript and provided important intellectual content. The author approved the final version of the manuscript.

Competing interests

The author(s) declare no competing interests.

Data Availability

The study data are available upon request from the Demographic and Health Surveys program (https://dhsprogram.com/).

References

1. "Diarrhoeal disease Factsheet". World Health Organization. 2 May 2017. Retrieved 29 October2020.
2. Lewnard JA, Rogawski McQuade ET, Platts-Mills JA, Kotloff KL, Laxminarayan R. Incidence and etiology of clinically-attended, antibiotic-treated diarrhea among children under five years of age in low- and middle-income countries: Evidence from the Global Enteric Multicenter Study. PLoS Negl Trop Dis. 2020 Aug 10;14(8):e0008520. doi: 10.1371/journal.pntd.0008520. PMID: 32776938; PMCID: PMC7444547.
3. Ecker L, Ruiz J, Vargas M, Del Valle LJ, Ochoa TJ. Prevalencia de compra sin receta y recomendación de antibióticos para niños menores de 5 años en farmacias privadas de zonas periurbanas en Lima, Perú, Prevalence of purchase of antibiotics without prescription and antibiotic recommendation practices for children under five years of age in private pharmacies in peri-urban areas of Lima, Peru. Rev Peru Med Exp Salud Publica. 2016 Jun;33(2):215-23. Spanish. PMID: 27656919.
4. Howteerakul N, Higginbotham N, Dibley MJ. Antimicrobial use in children under five years with diarrhea in a central region province, Thailand. Southeast Asian J Trop Med Public Health. 2004 Mar;35(1):181-7. PMID: 15272767.
5. Kumarasamy KK, Toleman MA, Walsh TR, et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. *Lancet Infect Dis* 2010; 10: 597–602.
6. Klein EY, Van Boeckel TP, Martinez EM, et al. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. *Proc Natl Acad Sci USA* 2018; 115: e3463–70.
7. Klein EY, Tseng KK, Pant S, Laxminarayan R. Tracking global trends in the effectiveness of antibiotic therapy using the Drug Resistance Index. *BMJ Glob Health* 2019; 4:

8. Olesen SW, Barnett ML, MacFadden DR, Lipsitch M, Grad YH. Trends in outpatient antibiotic use and prescribing practice among US older adults, 2011–15: observational study. *BMJ* 2018; 362:

9. Nolte O. Antimicrobial resistance in the 21st century: a multifaceted challenge. *Protein Pept Lett* 2014; 21: 330–35.

10. Versporten A, Zarb P, Caniaux I, et al. Antimicrobial consumption and resistance in adult hospital inpatients in 53 countries: results of an internet-based global point prevalence survey. *Lancet Glob Health* 2018; 6: e619–29.

11. Sreeramareddy, C., and P. Mittal. "Antibiotic use for childhood diarrhea in low-and-middle-income countries: Re-analyses of survey data and systematic review of literature." *International Journal of Infectious Diseases*, 101 (2020): 105.

Tables

Table-1: Prevalence of diarrhea of under-five child (u5c) among 112 DHS national survey 2006-2018
DHS Survey Countries	Total No. of u5c	No. of u5c diarrhea	Diarrhea of u5c Prevalence (95% CI)	No. of u5c antibiotic use for AWD	Antibiotic use for AWD Prevalence (95% CI)		
South East Asia							
Afghanistan (2015)	30951	7990	0.26 (0.25, 0.26)	1522	0.19 (0.17, 0.21)		
Bangladesh (2007)	5789	560	0.1 (0.09, 0.1)	56	0.1 (0.02, 0.18)		
Cambodia (2014)	6970	855	0.12 (0.11, 0.13)	45	0.05 (-0.01, 0.12)		
Cambodia (2010)	7820	1135	0.15 (0.14, 0.15)	83	0.07 (0.02, 0.13)		
India (2015-2016)	247743	22500	0.09 (0.09, 0.09)	5464	0.24 (0.23, 0.25)		
Indonesia (2017)	17263	2440	0.14 (0.14, 0.15)	306	0.13 (0.09, 0.16)		
Indonesia (2012)	17323	2505	0.14 (0.14, 0.15)	321	0.13 (0.09, 0.16)		
Indonesia (2007)	17891	2536	0.14 (0.14, 0.15)	1104	0.44 (0.41, 0.46)		
Maldives (2016-2017)	3055	126	0.04 (0.03, 0.05)	6	0.05 (-0.18, 0.27)		
Maldives (2009)	3759	188	0.05 (0.04, 0.06)	20	0.11 (-0.04, 0.25)		
Myanmar (2015-2016)	4596	550	0.12 (0.11, 0.13)	219	0.4 (0.33, 0.46)		
Nepal (2016)	4861	336	0.07 (0.06, 0.08)	102	0.3 (0.21, 0.39)		
Nepal (2011)	5054	679	0.13 (0.12, 0.14)	93	0.14 (0.07, 0.21)		
Nepal (2006)	5457	659	0.12 (0.11, 0.13)	61	0.09 (0.02, 0.17)		
Pakistan (2017-2018)	11985	2107	0.18 (0.17, 0.18)	985	0.47 (0.44, 0.5)		
Pakistan (2012-2013)	10935	2298	0.21 (0.2, 0.22)	829	0.36 (0.33, 0.39)		
Philippines (2017)	10297	652	0.06 (0.06, 0.07)	171	0.26 (0.2, 0.33)		
Country	2013	2016	2008	2012			
--------------------------------	---------------	---------------	---------------	---------------			
Philippines (2013)	7012	6950	6382	9294			
Philippines (2008)	551	700	571	1390			
Timor-Leste (2016)	194	124	139	74			
Timor-Leste (2009-2010)	0.08 (0.07, 0.08)	0.1 (0.09, 0.11)	0.09 (0.08, 0.1)	0.15 (0.14, 0.16)			
Total	441387	51328	4834	15089			
Central Asia							
Kyrgyz Republic (2012)	4236	4834	4236	1748			
Tajikistan (2017)	223	802	6019	519			
Tajikistan (2012)	95	519	4934	353			
Total	15089	1748	15089	967			
Europe							
Albania (2017-2018)	22	149	2755	312			
Armenia (2015-2016)	68	128	1709	4934			
Armenia (2010)	22	41	1450	353			
Azerbaijan (2006)	231	113	2196	967			
Egypt (2014)	2010	15465	2196	10475			
Egypt (2008)	979	949	10595	312			
Jordan (2017-2018)	968	390	10475	0.09 (0.09, 0.1)			
Jordan (2012)	1540	830	10128	0.15 (0.15, 0.16)			
Jordan (2007)	1659	836	10237	0.16 (0.15, 0.17)			
Yemen (2013)	4770	1968	15326	0.31 (0.3, 0.39)			
Country	Year	Value 1	Value 2	Value 3	Value 4		
--------------------------	-----------	----------	----------	----------	----------		
Bolivia (2008)		8193	2055	0.25	825	0.4	
Colombia (2010)		17443	2495	0.14	549	0.22	
Dominican Republic (2013)		3605	637	0.18	125	0.2	
Dominican Republic (2007)		10796	1773	0.16	294	0.17	
Guatemala (2014-2015)		12068	2239	0.19	946	0.42	
Guyana (2009)		2105	213	0.1	36	0.17	
Haiti (2016-2017)		6120	1235	0.2	202	0.16	
Haiti (2012)		6744	1415	0.21	141	0.15	
Haiti (2005-2006)		5596	1217	0.22	182	0.15	
Honduras (2011-2012)		10592	1919	0.18	684	0.36	
Honduras (2005-2006)		10506	1797	0.17	360	0.2	
Peru (2012)		9445	1254	0.13	479	0.38	
Peru (2011)		8950	1312	0.15	518	0.39	
Peru (2009)		10041	1475	0.15	586	0.4	
Peru (2007-2008)		16730	2680	0.16	980	0.37	
Peru (2004-2006)		16730	2680	0.16	980	0.37	
Total		155664	26396	0.17	7887	0.30	
Country	Code	Year(s)	Total Cases	Deaths	Death Rate	Total Deaths	Death Rate
------------------------------	----------	-------------	-------------	--------	------------	--------------	------------
Angola (2015-2016)	282	2015-2016	13619	1891	0.14	406	0.21
Benin (2017-2018)	282	2017-2018	12651	1342	0.11	101	0.08
Benin (2011-2012)	282	2011-2012	12679	816	0.06	163	0.2
Burkina Faso (2010)	282	2010	13716	2031	0.15	576	0.28
Burundi (2016-2017)	282	2016-2017	12472	2664	0.21	151	0.06
Burundi (2010)	282	2010	7231	1787	0.25	384	0.21
Cameroon (2011)	282	2011	10713	2078	0.19	372	0.18
Chad (2014-2015)	282	2014-2015	16837	3292	0.2	474	0.14
Comoros (2012)	282	2012	3022	480	0.16	91	0.19
Congo (2011-2012)	282	2011-2012	8857	1531	0.17	908	0.59
Congo (2005)	282	2005	4435	627	0.14	203	0.32
Congo Democratic Republic (2013-2014)	282	2013-2014	17188	2818	0.16	939	0.33
Congo Democratic Republic (2007)	282	2007	7987	1287	0.16	336	0.26
Cote d'Ivoire (2011-2012)	282	2011-2012	7052	1276	0.18	163	0.13
Eswatini (2006-2007)	282	2006-2007	2537	347	0.14	75	0.22
Ethiopia (2016)	282	2016	10006	1090	0.11	150	0.14
Ethiopia (2011)	282	2011	10808	1620	0.15	251	0.15
Gabon (2012)	282	2012	5747	981	0.17	299	0.3
Gambia (2013)	282	2013	7788	1340	0.17	325	0.24
Country (Year)	Population	Deaths	Death Rate	Deaths Per 100k	Death Rate Per 100k		
------------------------	------------	--------	------------	-----------------	--------------------		
Ghana (2014)	5593	671	0.12 (0.11, 0.13)	243	0.36 (0.3, 0.42)		
Ghana (2008)	2794	553	0.2 (0.18, 0.21)	201	0.36 (0.3, 0.43)		
Guinea (2012)	6396	1071	0.17 (0.16, 0.18)	226	0.21 (0.16, 0.26)		
Kenya (2014)	20069	2953	0.15 (0.14, 0.15)	505	0.17 (0.14, 0.2)		
Kenya (2008-2009)	5706	946	0.17 (0.16, 0.18)	217	0.23 (0.17, 0.29)		
Lesotho (2014)	2915	328	0.11 (0.1, 0.12)	52	0.16 (0.06, 0.26)		
Liberia (2013)	7058	1675	0.24 (0.23, 0.25)	989	0.59 (0.56, 0.62)		
Liberia (2007)	5305	1072	0.2 (0.19, 0.21)	148	0.14 (0.08, 0.19)		
Madagascar (2008-2009)	11750	1006	0.09 (0.08, 0.09)	260	0.26 (0.2, 0.31)		
Malawi (2015-2016)	16462	3402	0.21 (0.2, 0.21)	979	0.29 (0.26, 0.32)		
Malawi (2010)	18360	3105	0.17 (0.16, 0.17)	717	0.23 (0.2, 0.26)		
Mali (2012-2013)	9582	844	0.09 (0.08, 0.09)	140	0.17 (0.1, 0.23)		
Mali (2006)	12388	1450	0.12 (0.11, 0.12)	335	0.23 (0.19, 0.28)		
Mozambique (2011)	10291	1071	0.1 (0.1, 0.11)	313	0.29 (0.24, 0.34)		
Namibia (2013)	4805	810	0.17 (0.16, 0.18)	156	0.19 (0.13, 0.25)		
Namibia (2006-2007)	4841	576	0.12 (0.11, 0.13)	112	0.19 (0.12, 0.27)		
Niger (2012)	11602	1591	0.14 (0.13, 0.14)	199	0.13 (0.08, 0.17)		
Niger (2006)	8209	1669	0.2 (0.19, 0.21)	590	0.35 (0.31, 0.39)		
Nigeria (2013)	28596	2968	0.1 (0.1, 0.11)	1121	0.38 (0.35, 0.41)		
Nigeria (2008)	25273	2645	0.1 (0.1, 0.11)	849	0.32 (0.29, 0.35)		
Country (Year)	Total Revenue	Total Expenses	Total Net Income	Revenue Growth	Expense Growth		
------------------------------------	---------------	----------------	------------------	---------------	---------------		
Rwanda (2014-2015)	7556	905	0.12 (0.11, 0.13)	106	0.12 (0.06, 0.18)		
Rwanda (2010)	8484	1109	0.13 (0.12, 0.14)	116	0.1 (0.05, 0.16)		
Sao Tome and Principe (2008-2009)	1851	230	0.12 (0.11, 0.14)	61	0.27 (0.15, 0.38)		
Senegal (2017)	11605	2212	0.19 (0.18, 0.2)	336	0.15 (0.11, 0.19)		
Senegal (2016)	6417	1062	0.17 (0.16, 0.17)	164	0.15 (0.1, 0.21)		
Senegal (2015)	6602	1359	0.21 (0.2, 0.22)	195	0.14 (0.09, 0.19)		
Senegal (2014)	6526	1272	0.19 (0.19, 0.2)	186	0.15 (0.1, 0.2)		
Senegal (2012-2013)	6540	972	0.15 (0.14, 0.16)	201	0.21 (0.15, 0.26)		
Senegal (2010-2011)	11633	2196	0.19 (0.18, 0.2)	494	0.22 (0.19, 0.26)		
Sierra Leone (2013)	10618	1214	0.11 (0.11, 0.12)	581	0.48 (0.44, 0.52)		
Sierra Leone (2008)	5043	590	0.12 (0.11, 0.13)	258	0.44 (0.38, 0.5)		
South Africa (2016)	3413	350	0.1 (0.09, 0.11)	37	0.11 (0, 0.21)		
Tanzania (2015-2016)	9707	1125	0.12 (0.11, 0.12)	369	0.33 (0.28, 0.38)		
Tanzania (2010)	7526	1015	0.13 (0.13, 0.14)	478	0.47 (0.43, 0.52)		
Togo (2013-2014)	6530	1042	0.16 (0.15, 0.17)	251	0.24 (0.19, 0.29)		
Uganda (2016)	14710	2923	0.2 (0.19, 0.21)	666	0.23 (0.2, 0.26)		
Uganda (2011)	7355	1684	0.23 (0.22, 0.24)	589	0.35 (0.31, 0.39)		
Uganda (2006)	7593	1956	0.26 (0.25, 0.27)	579	0.3 (0.26, 0.33)		
Zambia (2013-2014)	12698	2045	0.16 (0.15, 0.17)	670	0.33 (0.29, 0.36)		
Zambia (2007)	5844	909	0.16 (0.15, 0.17)	221	0.24 (0.19, 0.25)		
Country	Sample Size	Total	Risk Factor	Confidence Interval	Risk Factor	Confidence Interval	
---------------------	-------------	-------	-------------	---------------------	-------------	---------------------	
Zimbabwe (2015)	5807	72	0.16 (0.15, 0.17)	0.08 (0.01, 0.14)			
Zimbabwe (2010-2011)	5203	116	0.13 (0.12, 0.14)	0.17 (0.1, 0.24)			
Zimbabwe (2005-2006)	4867	35	0.13 (0.12, 0.14)	0.06 (-0.02, 0.14)			
Total	577468	21500	0.15 (0.14, 0.15)	0.24 (0.23, 0.24)			
Grand Total	1269944	47755	0.142 (0.141, 0.142)	0.27 (0.26, 0.27)			

Table-2: Analysis of household water and sanitation risk factors using multiple logistic regression model ofu5c among 112 DHS national surveys 2006-2018 (Improved as reference category)
DHS Survey Countries	Drinking water sources	Sanitation Toilet			
	cOR (95% CI)	aOR (95% CI)	cOR (95% CI)	aOR (95% CI)	
South East Asia					
Afghanistan (2015)	0.97 (0.97, 0.97)	0.97 (0.97, 0.97)	0.9 (0.9, 0.9)	0.9 (0.9, 0.9)	
Bangladesh (2007)	1.09 (1.08, 1.1)	1.1 (1.09, 1.11)	1.12 (1.11, 1.13)	1.12 (1.12, 1.13)	
Cambodia (2014)	1.39 (1.38, 1.41)	1.4 (1.39, 1.42)	1.41 (1.4, 1.43)	1.42 (1.4, 1.43)	
Cambodia (2010)	1.11 (1.11, 1.12)	1.11 (1.1, 1.12)	1.47 (1.45, 1.49)	1.47 (1.45, 1.49)	
India (2015-2016)	0.81 (0.81, 0.81)	0.81 (0.81, 0.81)	1.12 (1.11, 1.12)	1.12 (1.11, 1.12)	
Indonesia (2017)	1.26 (1.25, 1.26)	1.26 (1.25, 1.26)	1.41 (1.4, 1.42)	1.41 (1.4, 1.42)	
Indonesia (2012)	1.17 (1.17, 1.18)	1.18 (1.17, 1.19)	1.18 (1.17, 1.19)	1.17 (1.17, 1.18)	
Indonesia (2007)	0.7 (0.7, 0.71)	0.7 (0.69, 0.71)	1.17 (1.17, 1.18)	1.17 (1.17, 1.18)	
Maldives (2009)	1.65 (1.62, 1.68)	1.65 (1.61, 1.68)	1.98 (1.93, 2.02)	1.97 (1.93, 2.02)	
Myanmar (2015-2016)	1.21 (1.19, 1.22)	1.21 (1.19, 1.22)	0.99 (0.99, 1)	0.99 (0.99, 1)	
Nepal (2016)	1.03 (1.02, 1.03)	1.03 (1.02, 1.03)	1.24 (1.23, 1.26)	1.24 (1.23, 1.26)	
Nepal (2011)	0.97 (0.96, 0.97)	0.97 (0.96, 0.97)	1.1 (1.09, 1.11)	1.1 (1.09, 1.11)	
Nepal (2006)	1.09 (1.09, 1.1)	1.09 (1.09, 1.1)	1.32 (1.3, 1.34)	1.32 (1.3, 1.34)	
Pakistan (2017-2018)	1.06 (1.06, 1.07)	1.06 (1.06, 1.07)	1.04 (1.04, 1.05)	1.04 (1.04, 1.05)	
Pakistan (2012-2013)	1.1 (1.1, 1.11)	1.11 (1.1, 1.11)	1.13 (1.12, 1.13)	1.13 (1.12, 1.13)	
Philippines (2017)	1.24 (1.23, 1.25)	1.24 (1.23, 1.25)	1.22 (1.21, 1.23)	1.22 (1.21, 1.23)	
Philippines (2013)	1.19 (1.18, 1.2)	1.18 (1.17, 1.19)	1.04 (1.04, 1.05)	1.04 (1.03, 1.04)	
Philippines (2008)	0.98 (0.98, 0.98)	1.41 (1.39, 1.41)	1.41 (1.39, 1.41)		
Region	Country	Value 1	Value 2	Value 3	Value 4
-------------------------------	------------------------	------------------	------------------	------------------	------------------
Asia	Timor-Leste (2016)	0.97 (0.97, 0.97)	0.97 (0.97, 0.97)	0.9 (0.9, 0.9)	0.9 (0.9, 0.9)
	Timor-Leste (2009-2010)	1.09 (1.08, 1.1)	1.1 (1.09, 1.11)	1.12 (1.11, 1.13)	1.12 (1.12, 1.13)
Central Asia	Kyrgyz Republic (2012)	0.74 (0.73, 0.75)	0.74 (0.73, 0.75)	0.76 (0.75, 0.77)	0.75 (0.74, 0.76)
	Tajikistan (2017)	0.83 (0.82, 0.83)	0.82 (0.82, 0.83)	0.79 (0.78, 0.8)	0.79 (0.78, 0.8)
	Tajikistan (2012)	1.14 (1.13, 1.15)	1.14 (1.13, 1.15)	1.04 (1.03, 1.04)	1.04 (1.03, 1.04)
Europe	Albania (2017-2018)	0.93 (0.92, 0.94)	0.94 (0.93, 0.94)	0.31 (0.3, 0.32)	0.31 (0.3, 0.32)
	Armenia (2015-2016)	0.93 (0.92, 0.93)	0.93 (0.92, 0.94)	0.93 (0.92, 0.93)	0.93 (0.92, 0.94)
	Armenia (2010)	1.88 (1.83, 1.93)	1.9 (1.85, 1.95)	2.57 (2.5, 2.65)	2.54 (2.47, 2.61)
	Azerbaijan (2006)	4.46 (4.27, 4.65)	4.54 (4.35, 4.73)	1.43 (1.39, 1.46)	1.42 (1.39, 1.46)
	Egypt (2014)	0.93 (0.92, 0.95)	0.93 (0.92, 0.95)	0.68 (0.66, 0.71)	0.69 (0.66, 0.71)
	Egypt (2008)	1.31 (1.28, 1.33)	1.31 (1.28, 1.33)	0.53 (0.51, 0.55)	0.53 (0.51, 0.55)
	Jordan (2017-2018)	0.75 (0.75, 0.76)	0.76 (0.75, 0.76)	0.81 (0.8, 0.81)	0.8 (0.79, 0.8)
	Jordan (2012)	0.71 (0.7, 0.72)	0.71 (0.71, 0.72)	1.47 (1.46, 1.49)	1.47 (1.45, 1.48)
Latin America	Bolivia (2008)	1.69 (1.67, 1.71)	1.69 (1.67, 1.71)	1.31 (1.3, 1.33)	1.31 (1.3, 1.33)
	Colombia (2010)	1.23 (1.22, 1.23)	1.23 (1.22, 1.24)	1.31 (1.3, 1.33)	1.31 (1.3, 1.33)
	Dominican Republic (2013)	1 (1, 1)	1 (1, 1)	1.23 (1.22, 1.24)	1.23 (1.22, 1.24)
	Dominican Republic (2007)	0.97 (0.97, 0.97)	0.97 (0.97, 0.97)	1.46 (1.44, 1.47)	1.45 (1.44, 1.47)
Country (Year)	2014-2015	2014-2015	2015-2016	2015-2016	
---------------	-----------	-----------	-----------	-----------	
Guatemala	1.31 (1.29, 1.33)	1.31 (1.29, 1.33)	1.2 (1.19, 1.22)	1.2 (1.19, 1.22)	
Guyana (2009)	0.9 (0.9, 0.91)	0.9 (0.9, 0.91)	1.28 (1.27, 1.29)	1.28 (1.27, 1.29)	
Haiti (2016-2017)	1.16 (1.15, 1.16)	1.16 (1.15, 1.16)	0.99 (0.99, 0.99)	0.99 (0.99, 0.99)	
Haiti (2012)	1.76 (1.71, 1.8)	1.76 (1.71, 1.8)	1.31 (1.29, 1.34)	1.31 (1.29, 1.34)	
Haiti (2005-2006)	1.03 (1.03, 1.03)	1.03 (1.02, 1.03)	1.25 (1.23, 1.26)	1.25 (1.23, 1.26)	
Honduras (2011-2012)	0.98 (0.97, 0.98)	0.98 (0.97, 0.98)	1.07 (1.06, 1.07)	1.07 (1.06, 1.07)	
Honduras (2005-2006)	1.08 (1.07, 1.09)	1.08 (1.07, 1.09)	1.07 (1.06, 1.08)	1.07 (1.06, 1.08)	
Peru (2012)	1.46 (1.44, 1.47)	1.46 (1.45, 1.48)	1.21 (1.2, 1.22)	1.21 (1.2, 1.22)	
Peru (2011)	0.92 (0.91, 0.92)	0.92 (0.91, 0.92)	1.26 (1.25, 1.27)	1.26 (1.25, 1.27)	
Peru (2009)	1.59 (1.57, 1.61)	1.59 (1.57, 1.61)	1.34 (1.32, 1.35)	1.33 (1.32, 1.35)	
Peru (2007-2008)	1.56 (1.54, 1.57)	1.55 (1.53, 1.57)	1.16 (1.16, 1.17)	1.17 (1.16, 1.18)	
Peru (2004-2006)	1.4 (1.38, 1.41)	1.4 (1.38, 1.41)	1.38 (1.37, 1.4)	1.39 (1.37, 1.4)	

West North and Central Africa

Country (Year)	2015-2016	2015-2016	2016-2017	2016-2017
Angola (2015-2016)	1.49 (1.48, 1.5)	1.49 (1.48, 1.5)	1.36 (1.35, 1.37)	1.36 (1.35, 1.37)
Benin (2017-2018)	1.49 (1.48, 1.5)	1.49 (1.48, 1.5)	1.36 (1.35, 1.37)	1.36 (1.35, 1.37)
Benin (2011-2012)	0.91 (0.9, 0.91)	0.9 (0.9, 0.91)	1.15 (1.14, 1.15)	1.15 (1.14, 1.15)
Burkina Faso (2010)	1.27 (1.26, 1.28)	1.27 (1.26, 1.28)	1.7 (1.68, 1.71)	1.69 (1.68, 1.71)
Burundi (2016-2017)	1.23 (1.22, 1.24)	1.23 (1.22, 1.24)	1.02 (1.01, 1.02)	1.02 (1.01, 1.02)
Burundi (2010)	1 (1, 1)	1 (1, 1)	0.93 (0.93, 0.93)	0.93 (0.93, 0.93)
Cameroon (2011)	1.02 (1.02, 1.02)	1.02 (1.02, 1.02)	1.25 (1.24, 1.26)	1.25 (1.24, 1.26)
Country (Year)	2014-2015	2011-2012	2013-2014	2005
------------------------------------	------------	------------	------------	------------
Chad	1.11 (1.1, 1.12)	1.11 (1.1, 1.12)	1.31 (1.3, 1.33)	1.31 (1.3, 1.33)
Comoros (2012)	1.28 (1.27, 1.29)	1.28 (1.27, 1.29)	1.41 (1.4, 1.43)	1.41 (1.4, 1.43)
Congo (2011-2012)	0.97 (0.97, 0.98)	0.98 (0.97, 0.98)	0.97 (0.96, 0.97)	0.97 (0.96, 0.97)
Congo (2005)	0.89 (0.88, 0.9)	0.89 (0.88, 0.9)	0.81 (0.8, 0.82)	0.81 (0.8, 0.82)
Congo Democratic Republic (2013-2014)	0.88 (0.87, 0.88)	0.87 (0.87, 0.88)	1.06 (1.05, 1.06)	1.06 (1.05, 1.06)
Congo Democratic Republic (2007)	1.19 (1.18, 1.2)	1.19 (1.18, 1.21)	1.35 (1.33, 1.36)	1.34 (1.32, 1.36)
Cote d'Ivoire (2011-2012)	0.97 (0.97, 0.97)	0.97 (0.97, 0.97)	1.2 (1.19, 1.21)	1.2 (1.19, 1.21)
Eswatini (2006-2007)	1.2 (1.19, 1.21)	1.2 (1.19, 1.21)	1.09 (1.08, 1.1)	1.09 (1.08, 1.09)
Ethiopia (2016)	0.98 (0.98, 0.99)	0.99 (0.98, 0.99)	1.06 (1.05, 1.07)	1.07 (1.06, 1.07)
Ethiopia (2011)	1.65 (1.61, 1.69)	1.62 (1.59, 1.66)	1.73 (1.69, 1.77)	1.7 (1.66, 1.75)
Gabon (2012)	0.99 (0.99, 0.99)	0.99 (0.99, 0.99)	1.2 (1.19, 1.21)	1.2 (1.19, 1.21)
Gambia (2013)	1.12 (1.11, 1.12)	1.12 (1.11, 1.12)	1.33 (1.32, 1.34)	1.33 (1.32, 1.34)
Ghana (2014)	1.25 (1.23, 1.26)	1.25 (1.23, 1.26)	1.14 (1.13, 1.15)	1.14 (1.13, 1.15)
Ghana (2008)	0.97 (0.97, 0.98)	0.98 (0.97, 0.98)	0.77 (0.76, 0.78)	0.77 (0.76, 0.77)
Guinea (2012)	0.8 (0.79, 0.81)	0.8 (0.79, 0.81)	1.17 (1.16, 1.19)	1.17 (1.16, 1.19)
Kenya (2014)	1.27 (1.25, 1.29)	1.27 (1.25, 1.29)	1.29 (1.27, 1.31)	1.29 (1.27, 1.31)
Kenya (2008-2009)	1.35 (1.33, 1.36)	1.34 (1.33, 1.36)	1.24 (1.23, 1.25)	1.24 (1.23, 1.25)
Lesotho (2014)	1.11 (1.11, 1.12)	1.11 (1.11, 1.12)	1.16 (1.15, 1.16)	1.16 (1.15, 1.16)
Liberia (2013)	1.29 (1.27, 1.3)	1.29 (1.27, 1.31)	1.26 (1.25, 1.28)	1.26 (1.25, 1.28)
Liberia (2007)	1.17 (1.16, 1.19)	1.17 (1.16, 1.19)	1.22 (1.2, 1.24)	1.22 (1.2, 1.24)
Country	Year 1	Year 2	Year 3	Year 4
--------------------------	--------	--------	--------	--------
Madagascar	1.29	1.29	1.14	1.14
Malawi	1	1	1.04	1.04
Malawi	0.92	0.92	0.87	0.87
Mali	1.03	1.06	1.06	1.06
Mali	1.07	1.13	1.13	1.13
Mozambique	0.71	0.72	0.88	0.88
Namibia	1.21	1.04	1.04	1.04
Namibia	1.01	0.99	1	1
Niger	1.37	1.37	1.58	1.59
Niger	1.26	1.16	1.16	1.16
Nigeria	0.94	0.91	0.91	0.91
Nigeria	1.15	1.34	1.34	1.34
Rwanda	1.3	1.06	1.06	1.06
Rwanda	1.38	1.04	1.04	1.04
Sao Tome and Principe	1.05	1.06	1.43	1.43
Senegal	1.19	1.18	1.17	1.17
Senegal	0.85	0.84	1.16	1.16
Senegal	1.05	1.08	1.08	1.08
Senegal	1.22	1.02	1.02	1.02
Senegal	1.23	1.26	1.26	1.26
Country (Year)	2005-2006	2006-2007	2007-2008	2008-2009
------------------------	-----------	-----------	-----------	-----------
Zimbabwe (2010-2011)	0.9 (0.9, 0.91)	0.9 (0.9, 0.91)	0.97 (0.97, 0.98)	0.97 (0.97, 0.98)
Zimbabwe (2005-2006)	1.17 (1.16, 1.18)	1.17 (1.16, 1.18)	1.07 (1.07, 1.08)	1.07 (1.06, 1.08)
Zambia (2007)	1.08 (1.07, 1.08)	1.09 (1.08, 1.09)	1.06 (1.05, 1.07)	1.06 (1.06, 1.07)
Zambia (2013-2014)	1.22 (1.21, 1.23)	1.22 (1.2, 1.23)	1.08 (1.08, 1.09)	1.08 (1.08, 1.09)
Uganda (2006)	1 (1, 1)	1 (1, 1)	1.09 (1.09, 1.1)	1.09 (1.09, 1.1)
Uganda (2011)	1.17 (1.16, 1.18)	1.17 (1.16, 1.18)	1.84 (1.81, 1.87)	1.84 (1.81, 1.87)
Togo (2013-2014)	0.95 (0.95, 0.95)	0.95 (0.95, 0.95)	0.87 (0.87, 0.88)	0.87 (0.87, 0.88)
Tanzania (2010)	1.24 (1.22, 1.26)	1.24 (1.23, 1.25)	1.22 (1.2, 1.23)	1.22 (1.2, 1.23)
Tanzania (2015-2016)	1.11 (1.1, 1.12)	1.11 (1.11, 1.12)	1.21 (1.19, 1.22)	1.21 (1.12, 1.22)
South Africa (2016)	1.24 (1.23, 1.25)	1.24 (1.23, 1.25)	1.02 (1.02, 1.02)	1.02 (1.02, 1.02)
Sierra Leone (2008)	0.96 (0.96, 0.97)	0.96 (0.96, 0.97)	0.91 (0.9, 0.91)	0.91 (0.9, 0.91)
Sierra Leone (2013)	1.43 (1.41, 1.45)	1.43 (1.41, 1.45)	1.41 (1.39, 1.43)	1.41 (1.39, 1.42)
Senegal (2010-2011)	1.03 (1.03, 1.03)	1.03 (1.03, 1.04)	0.91 (0.91, 0.92)	0.92 (0.91, 0.92)

Figures
Figure 1

Box plot for (A) prevalence of antibiotic use by wealth index, (B) prevalence of diarrhea by mother education, (C) prevalence of diarrhea at different age groups of several DHS survey regions.
Figure 2

Global mapping of acute watery diarrhea prevalence in different DHS survey regions (A) South East Asia, (B) Central Asia, (C) Europe, (D) Latin America, and (E) North and Central Asia
Figure 3

Global mapping of antibiotic treatment prevalence for acute watery diarrhea in different DHS survey regions (A) South East Asia, (B) Central Asia, (C) Europe, (D) Latin America, and (E) North and Central Asia
Figure 4

Linear trend analysis of antibiotic use for AWD among (A) South East and Central Asia, (B) Europe, (C) Latin America, and (D) West North and Central Africa

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.
• SuplementaryMaterials.docx