Calcineurin in fungal virulence and drug resistance: Prospects for harnessing targeted inhibition of calcineurin for an antifungal therapeutic approach

Praveen R. Juvvada, Soo Chan Lee, Joseph Heitman, and William J. Steinbach

Department of Pediatrics, Division of Pediatric Infectious Diseases, Duke University School of Medicine, Durham, NC, USA; Department of Molecular Genetics & Microbiology, Duke University School of Medicine, Durham, NC, USA; Department of Medicine, Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA

ABSTRACT

Increases in the incidence and mortality due to the major invasive fungal infections such as aspergillosis, candidiasis and cryptococcosis caused by the species of Aspergillus, Candida, and Cryptococcus, are a growing threat to the immunosuppressed patient population. In addition to the limited armamentarium of the current classes of antifungal agents available (pyrimidine analogs, polyenes, azoles, and echinocandins), their toxicity, efficacy and the emergence of resistance are major bottlenecks limiting successful patient outcomes. Although these drugs target distinct fungal pathways, there is an urgent need to develop new antifungals that are more efficacious, fungal-specific, with reduced or no toxicity and simultaneously do not induce resistance. Here we review several lines of evidence which indicate that the calcineurin signaling pathway, a target of the immunosuppressive drugs FK506 and cyclosporine A, orchestrates growth, virulence and drug resistance in a variety of fungal pathogens and can be exploited for novel antifungal drug development.

KEYWORDS

antifungals; azoles; calcineurin; cyclosporine A; drug resistance; echinocandins; FK506; FKBP12; Hsp90; virulence

Introduction

With the ever increasing immunosuppressed patient population, infections due to opportunistic fungi are becoming more common and the most frequently isolated fungal pathogens include species of Candida, Cryptococcus and Aspergillus. Adding to this complexity are the insufficient therapeutic options available for these invasive fungal infections due to the limited number of antifungal drugs, their toxicity and the emergence of drug resistance. There is a critical need for new antifungal agents with broad spectrum antifungal activity, little or no drug resistance, and reduced adverse effects compared to currently available drugs. Therefore, approaches toward identifying novel fungal-specific targets and designing customized inhibitors are required.

In recent years, signal transduction mechanisms involving the key secondary messenger calcium have gained significance due to its requirement for adaptation and survival of multiple fungi and in varied environments. Calcineurin has been identified as one of the important regulators of intracellular calcium homeostasis in several fungi. Furthermore, antifungal resistance has also been linked to calcium and calcineurin signaling cascade. For example, combinations of calcium and calcineurin inhibitors with known antifungal compounds have been shown to inhibit the growth of drug resistant fungal strains. Therefore, inhibition of calcineurin signaling is a novel antifungal strategy that both attenuates fungal virulence and increases the efficacy of the existing antifungals with concomitant suppression of antifungal resistance.

Calcineurin is a conserved Ca2+-calmodulin (CaM) activated protein phosphatase 2B belonging to the phospho-protein phosphatase family of enzymes and is involved in calcium-dependent signaling and regulation of several important cellular processes in both yeasts and filamentous fungi (Fig. 1). It is a heterodimer comprised of a catalytic subunit (calcineurin A; CnA) and a regulatory subunit (calcineurin B; CnB). The catalytic subunit contains an N-terminal phosphatase domain, the regulatory subunit binding helix (CnBBH) along with the CaM-binding domain (CaMBD). An autoinhibitory domain (AID) that blocks the catalytic activity is also present at the C-terminal end of the protein.
Association of CaM causes a conformational change that removes the AID and activates the phosphatase complex. Ca$^{2+}$ signals are then transmitted via the active trimeric complex (CnA-CnB-CaM) to elicit downstream responses by regulating its key transcription factor, Crz1, a fungal homolog of mammalian NFAT, through dephosphorylation and its nuclear translocation (Fig. 1). This results in the induction of several calcineurin-dependent target genes which function in a wide array of cellular functions.

Following the discovery of calcineurin as a CaM-binding protein of the nervous system, it has since been characterized in several organisms ranging from the prokaryotes to the higher eukaryotes. Calcineurin has links to neuronal metabolism, T-lymphocyte proliferation, immune suppression, regulation of intracellular Ca$^{2+}$ homeostasis, and various human diseases that have been well recognized.

In fungi, a requirement of calcineurin for regulating stress responses and growth was demonstrated, revealing its diverse and multifunctional roles across various species. Calcineurin biology has gained significance over the years due to its target role of the immunosuppressive drugs, cyclosporine A (CsA) and FK506 (tacrolimus), which inhibit the cellular activity of calcineurin via their interaction with the respective immunophilins, cyclophilin A and FKBP12.

Efforts to understand the mechanism of inhibition of calcineurin by these compounds have led to a detailed characterization of the residues involved in drug-protein interactions. Owing to the seminal importance of calcineurin for growth and pathogenesis in plant and human fungal pathogens, recent studies are focused on capitalizing upon calcineurin as a potential antifungal target. While the currently available anti-calcineurin drugs are immunosuppressive in nature, it would be greatly beneficial to design fungal-specific and alternative strategies.
Calcineurin is required for virulence and drug resistance in a diverse group of fungi

The first evidence for the requirement of calcineurin for virulence came from work on *Cryptococcus neoformans*. It followed by other human fungal pathogens, including *Candida albicans*, along with other species of *Candida*, *Cryptococcus* and the filamentous fungal pathogen *Aspergillus fumigatus*. Furthermore, a role for calcineurin in the pathogenesis of prominent plant fungal pathogens such as *Sclerotinia sclerotiorum*, *Botrytis cinerea*, *Magnaporthe oryzae*, *Ustilago maydis* and *U. hordei* has also been described. Interestingly, despite the spectrum of host niches and varied modes of infection of these diverse and morphologically distinct pathogens, calcineurin maintains a conserved role in virulence or pathogenic traits. In a majority of these fungi, calcineurin is required for growth, transition between morphological states, cation homeostasis and stress responses. These characteristics are expected to be the most plausible attributes for the observed defects in virulence of these pathogens in different host settings in the absence of calcineurin function. The established role for calcineurin in the cell wall integrity pathway of different fungi is another important feature contributing to survival in the host environment and for virulence. The fungal cell wall, consisting largely of glucan and chitin moieties, is thought to be a unique feature that imparts protection against environmental stressors and also host immunity. While azole antifungals inhibit the ergosterol biosynthesis pathway and lead to membrane stress by compromising the integrity of the cell membrane, the echinocandins target cell wall β-glucan synthesis. Therefore, antifungal agents targeting the cell membrane and cell wall are being used for antifungal therapy. The calcineurin mediated signal transduction pathway has been shown to impact both the cell membrane and cell wall integrity through the regulation of other downstream effectors that influence the biosynthesis of ergosterol, chitin and β-glucan.

Candida, Cryptococcus and emerging molds

In *C. albicans*, calcineurin is required for morphogenesis, azole tolerance, membrane stress, survival in serum and virulence. *C. albicans* is the major causative agent of invasive candidiasis in immunocompromised patients, yet several other species of *Candida* (*C. dubliniensis*, *C. glabrata*, *C. krusei*, *C. lusitaniae*, *C. parapsilosis*, and *C. tropicalis*) are also associated with disease. While the requirement of calcineurin for hyphal growth in *C. albicans* remains controversial, it varies according to the developmental stage (hyphal or pseudohyphal) in other *Candida* species. In *C. dubliniensis* and *C. tropicalis*, calcineurin is required for hyphal growth, but in *C. lusitaniae* it is only necessary for regulating pseudohyphal growth. In addition, temperature sensitivity was noted only in the *C. glabrata* calcineurin mutants but not the other *Candida* species examined.

Calcineurin also regulates antifungal susceptibility. Characterization of calcineurin and crz1 mutants across different *Candida* species indicated a divergence in their functions with respect to antifungal activity. For instance, fungicidal action of azoles was noted in combination with calcineurin inhibitors against *C. albicans*, *C. glabrata* and *C. krusei*. Both *C. albicans* and *C. dubliniensis* calcineurin and crz1 mutants exhibited reduced tolerance to azole and echinocandin antifungal drugs. On the contrary, only calcineurin mutants showed reduced tolerance to azoles in *C. lusitaniae*, while crz1 mutants actually showed increased drug tolerance, indicative of calcineurin-independent functions for Crz1 in *C. lusitaniae*. Although isolates of *C. dubliniensis* are susceptible to azole antifungal agents, emergence of resistance during therapy has been observed. Similarly, in *C. lusitaniae* a unique resistance to amphotericin B and dimorphic switching between the yeast and filamentous forms was noted, but calcineurin or Crz1 did not seem to have any role in amphotericin B tolerance.

Calcineurin inhibition along with fluconazole treatment also has been shown to have a synergistic effect against azole-resistant *C. albicans*. FK506 also had a synergistic effect with caspofungin on echinocandin resistant strains of *C. dubliniensis* and *C. lusitaniae* revealing their potential use in combination therapy for these emerging drug-resistant isolates. CsA also showed a synergistic effect with other antifungals against *C. parapsilosis* and related species. Furthermore, non-azole drugs such as terbinaine and fenpropimorph that target other enzymes in the ergosterol biosynthetic pathway also exhibit synergism with FK506 and CsA against *C. albicans*. Overall these variations observed across different *Candida* species and the unexplored drug resistance mechanisms prompt the need for an in depth understanding of the calcineurin network for effective targeting.

Cryptococcosis caused by *C. neoformans* and *C. gattii* is one of the major opportunistic infections in immunocompromised patients worldwide and initial induction treatment includes amphotericin B combined with flucytosine, followed by azole therapy for maintenance therapy. *C. gattii* also infects immunocompetent healthy individuals and causes both pulmonary...
infections and life-threatening meningoencephalitis.

The ability of *C. neoformans* and *C. gattii* to grow at host body temperature (37°C) is one of the virulence attributes that is controlled by the calcineurin signaling pathway. In addition, calcineurin is also required for growth at alkaline pH, hyphal elongation during mating and monokaryotic fruiting. During thermal stress, *C. neoformans* calcineurin was shown to localize as endoplasmic reticulum (ER)-associated puncta co-localizing with P-bodies and stress granules, possibly reflective of a role in post-transcriptional control under temperature stress. Although Cryptococcal species are susceptible to amphotericin B, fluconazole and triazoles (fluconazole, itraconazole, posaconazole and voriconazole), they are resistant to echinocandins (anidulafungin, caspofungin and micafungin) and also develop resistance to fluconazole. Surprisingly, it was shown that in contrast to *C. neoformans* in *C. gattii* calcineurin is required for fluconazole tolerance, revealing its divergent role in this closely related species. While the requirement of calcineurin for azole resistance in the majority of *Candida* species is known, the same is not yet clear in *C. neoformans* or *C. gattii*. Although FK506 exhibits a synergistic antifungal effect with fluconazole against *C. neoformans*, this phenomenon seems to be FKBP12 and calcineurin-independent, indicating the possibility for additional targets of FK506 in *C. neoformans*. For instance, synergistic activity of FK506 with bafilomycin A1, an inhibitor of H(+) ATPase, has been demonstrated in *C. neoformans* strains lacking calcineurin.

The development and use of well-designed non-immunosuppressive FK506 and CsA analogs that specifically target fungal calcineurin without host cross-reactivity certainly seems promising. One such FK506 analog is L-685,818 (12-ethyl-FK506), which has been previously tested on the growth of *C. neoformans* and other fluconazole-resistant clinical isolates and found to exhibit susceptibilities similar to that of FK506. Two other non-immunosuppressive CsA derivatives have also been shown to inhibit *C. neoformans* calcineurin. Therefore, further studies on designing and testing of non-immunosuppressive analogs are warranted to exploit this approach.

Recent work on the emerging pathogenic molds belonging to Mucorales, including *Rhizopus* and *Mucor* species that cause invasive mucormycosis, have also revealed that the use of calcineurin inhibitors in combination with other antifungals has beneficial outcomes. The genome of *M. circinelloides* revealed an unusually high number of genes encoding for calmodulin (9 genes) and calcineurin catalytic subunits (3 genes), but with a single calcineurin regulatory subunit. Pharmacologic and genetic studies showed that calcineurin is required for the dimorphic transition (yeast to hyphal form) and the calcineurin regulatory subunit is required for virulence.

Aspergillus fumigatus

A. fumigatus is a filamentous fungal pathogen known to cause allergic, chronic and invasive aspergillosis. Invasive aspergillosis is a leading cause of death in leukemic patients and haematopoietic stem cell or solid-organ transplant recipients. Although *A. fumigatus* infections can be treated with polyene, triazole, or echinocandin antifungals, their efficacy is limited, azole resistance is increasing, and mortality due to invasive aspergillosis remains high.

Calcineurin is involved in regulating hyphal growth, septation and virulence of this opportunistic pathogen. While the deletion of *A. fumigatus crzA* (*crz1* homolog) also conferred defects in growth, conidiation and virulence, it was suggested to play a minor role in the regulation of β-1,3-glucan biosynthesis. Also, deletion of another closely related gene encoding the calcineurin binding protein (*cbpA*), belonging to the calcipressin family, resulted in only a minor hyphal growth defect and limited attenuation of virulence.

Calcineurin inhibitors are active in vitro against *A. fumigatus* as monotherapy and potentiate the effect of the echinocandin, caspofungin. However, following treatment with high concentrations of caspofungin, the “paradoxical growth effect,” or reversal of growth inhibition, is observed. While deletion of calcineurin abolishes the paradoxical growth response, it also causes reduction in β-1,3-glucan content, leading to a compensatory increase in chitin. It appears that the glucan-chitin interaction is controlled by calcineurin signaling through the transcriptional regulation of chitin synthases. This apparent cell wall stress response is ideal for potential future combination therapy in which calcineurin, β-1,3-glucan, and chitin targets can all be blocked by drugs, supporting a multi-faceted attack on cell wall targets and hyphal growth in *A. fumigatus*. The antifungal activity of calcineurin inhibitors was also demonstrated against various azole- and echinocandin-resistant *A. fumigatus* clinical isolates.

The formation and extension of *Aspergillus* hyphae confers the ability to actively penetrate host tissue and spread disease. Recent studies have indicated that the calcineurin complex (the catalytic and regulatory subunits) localizes at the actively growing hyphal tips and septa to direct hyphal elongation and proper septation. Although mutations in functional domains of
calcineurin have revealed important residues required for localization and function of calcineurin at the septum, the exact mechanism of how calcineurin regulates septation is still unclear. A filamentous fungal-specific serine-proline rich (SPRR) linker domain between the CnBBH and CaMBD was also identified in the *A. fumigatus* calcineurin catalytic subunit. This SPRR was phosphorylated at all 4 clustered serine residues and mutations in this region caused hyphal growth and virulence defects, implicating the importance of calcineurin phosphorylation for its function. Identification of key regions for calcineurin function that are unique to fungi and absent in humans is a promising step toward the development of novel antifungal therapies.

Plant fungal pathogens

In the filamentous plant pathogenic fungi, calcineurin is important for sclerotal development in *S. sclerotiorum* and formation of the infectious structure appressorium in *M. oryzae*. In the necrotrophic fungus *B. cinerea*, deletion of *crz1* caused defects in cell wall and membrane integrity and defects in hyphal penetration into the plant tissue. In the plant pathogenic basidiomycete *U. maydis* deletion of the calcineurin catalytic subunit resulted in multiple budding and reduced mating, and in a related species *U. hordet* calcineurin is required for adaptation to a variety of environmental stresses, cell-wall integrity, mating and virulence. The costs of treating fungal diseases in agriculture are equally high as for human health and exploiting conserved signaling pathways could lead to beneficial outcomes in both sectors. One such example is a recent effort to identify novel targets in the MAP kinase signaling pathway by the ARIDANE consortium focusing on plant pathogenic fungi (http://cordis.europa.eu/result/rcn/161258_en.html) that yielded important results and may have potential impact on treatment of fungal infections. Along similar lines, an explicit understanding of the calcineurin signaling pathway and its substrates in various fungal pathogens will prove useful in the identification of new targets for novel antifungal therapies.

Primary targets of the calcineurin signaling pathway

With the plethora of cellular functions that calcineurin regulates, several studies have focused on determining its key downstream effectors and substrates through genetic and biochemical approaches. To date, one of the well-characterized substrates of calcineurin is the mammalian NFAT ortholog, Crz1, which mediates transcriptional response triggered by calcineurin activation in response to stress conditions in *Candida species*, *C. neoformans* and *A. fumigatus*. As mentioned earlier, another important binding partner of calcineurin is the calcineurin binding protein, Cbp1, an element involved in fine tuning of calcineurin signaling that was also characterized from *C. neoformans* and *A. fumigatus*. The respective mutant strains exhibited only moderate growth defects under stress conditions, indicating yet unexplored downstream substrates of calcineurin.

Calcineurin exerts its influence on other key pathways regulating cell wall integrity and response to antifungal drugs and this is evident from study of *C. neoformans* MAP kinase regulation. Loss of calcineurin function results in transcriptional activation of the *FKSI* gene encoding the β-1,3-glucan synthase that is essential for the synthesis of β-glucan and dependent on MAP kinase. Recently, whole proteomic analyses to identify calcineurin interacting proteins in the model budding yeast *Saccharomyces cerevisiae* identified 18 calcineurin interactors from among 70 candidate calcineurin substrates. These were involved in polarized growth, glucose sensing, membrane structure, cell wall integrity and other important processes, indicative of diverse roles for calcineurin in cellular processes. Another study also analyzed the calcineurin associated proteome in *C. neoformans*, and identified 139 potential interactors. Multiple proteins involved in membrane trafficking, protein folding, sphingolipid biosynthesis, trehalose synthesis and stress were identified. Importantly, an association of calcineurin with COPI (Sec28) and COPII (Sec13) complexes was demonstrated implicating calcineurin’s role in membrane trafficking and stress response mechanisms.

Heat shock protein 90 and calcineurin inhibitors: Another promising combination

The heat shock protein 90 (Hsp90) is an essential, abundant and highly conserved molecular chaperone that facilitates proper folding, assembly and maturation of proteins in eukaryotes. Studies on Hsp90 in *C. albicans* have clearly demonstrated its role in biofilm formation and the evolution of drug resistance. Although Hsp90 inhibitors have potent synergistic antifungal activity in combination with azoles and echinocandins, we are faced with the challenge of overcoming toxic effects of current Hsp90 inhibitors in use. Hsp90 is known to regulateazole resistance through its key downstream effectors, calcineurin and the Mkc1 kinase in *C. albicans*. Hsp90 stabilizes calcineurin by direct interactions so the inhibition of Hsp90 is expected to result in depletion or inactivity of the client protein calcineurin.
Recent work in *A. fumigatus* has shown that Hsp90 is required for the caspofungin mediated paradoxical growth response, and that disrupting Hsp90 circuitry potentiates the antifungal activity of caspofungin. Furthermore, targeting the Hsp90–calcineurin pathway through the combination of respective inhibitors not only resulted in fungicidal activity againstazole-resistant *A. fumigatus* strains but also showed distinct patterns of susceptibility among different fungal species revealing this to be a promising alternative strategy.17,91

Calcineurin: An attractive antifungal target

Due to limited drug efficacy and emerging resistance to drugs, current antifungal classes would benefit from adjunctive agents focused on separate cellular pathways that can be used in combination therapy. Research on calcineurin biology in various fungal pathogens clearly demonstrates its potential for such exploitation. Although currently available calcineurin inhibitors are unlikely to gain approval for clinical application as antifungal agents, new and more potent fungal-specific calcineurin inhibitors are required that do not cross-react with human calcineurin and do not induce immune suppression.

Advances in drug development have enabled the design and synthesis of non-immunosuppressive calcineurin inhibitors that hold promise in the treatment of human diseases. For example, SDZ PSC-833, a non-immunosuppressive analog of CsA, known to reverse the resistance to chemotherapy of cancer cells, was shown to increase survival time and to some extent cure leukemic mice. Other non-immunosuppressive analogs of CsA, alisporivir (Debio-025) and SCY-635, have been shown to be beneficial for treatment of chronic hepatitis. In addition, the non-immunosuppressive FK506 analog, L-685,818, enhanced the function and morphological recovery of crushed sciatic nerves in rats, showing promise for use in the treatment of neurodegenerative diseases. As mentioned earlier, L-685,818, was also effective on the growth of *C. neoformans* and other fluconazole-resistant isolates with similar susceptibilities as that of FK506.4

The inhibitory activity of FK506 and CsA on calcineurin is mediated by binding of the immunosuppressants to their respective immunophilins, FKBP12 prolyl isomerase and cyclophilin. Characterization of FKBP12 homologs in *C. neoformans* and *A. fumigatus* revealed that the immunophilin is not required for growth and virulence but mediates the interaction between FK506 and calcineurin. The FKBP12 deletion strains were resistant to FK506 and rapamycin, the inhibitor of the TOR signaling pathway. Because of the role of FKBP12 in the inhibition of calcineurin, and with the homology between fungal FKBP12s and human FKBP12 between 40–50%, it is an attractive target for novel antifungal drug development. Recent structural elucidation of FKBP12 proteins from *A. fumigatus*, *C. albicans* and *C. glabrata* provided novel insights into the self-catalyzing function of *A. fumigatus* and *C. albicans* FKBP12s indicating that they may function as their own substrates. This self-dimerization occurs at the 80s loop region where a proline residue is present, and previous studies have shown that the 80s loop serves as a key region for FKBP12 interactions with other proteins.

These unique findings lend support to the idea of exploiting the differences between fungal FKBP12s and human FKBP12 for generation of fungal-specific FK506 analogs. Certainly the development of novel non-immunosuppressive analogs of the calcineurin inhibitors CsA and FK506 that would retain antifungal activity hold promise as better antifungal drugs. On the other hand, identification of fungal-specific domains in calcineurin and an in-depth understanding of the calcineurin pathway and its specific interactors in each of these pathogenic fungi will also help in effective designing of better drugs and also identifying new targets for combating fungal diseases. Elucidation of the complete crystal structure of the calcineurin complexes in these different fungal pathogens would also be very useful in future development of novel drugs that can specifically target the pathogen.

Disclosure of potential conflicts of interest

No potential conflicts of interest were disclosed.

Funding

WJ and JH are funded by grants from the NIH/NIAID (R01 AI112595-02; P01-A1104533-01). There is a lot of literature on the roles of calcineurin in the yeast stress response pathways and in other fungal systems with regard to growth, stress response and pathogenesis, but unfortunately due to space limitation we could not accommodate several citations in this review.

References

[1] Polvi EJ, Li X, O’Meara TR, Leach MD, Cowen LE. Opportunistic yeast pathogens: reservoirs, virulence mechanisms, and therapeutic strategies. Cell Mol Life Sci 2015; 72:2261-87; PMID:25700837; http://dx.doi.org/10.1007/s00018-015-1860-2

[2] Denning DW, Bromley MJ. How to bolster the antifungal pipeline. Science 2015; 347:1414-6; PMID:25814567; http://dx.doi.org/10.1126/science.aaa6097
[3] Perlin DS. Mechanisms of echinocandin antifungal drug resistance. Ann N Y Acad Sci 2015; 1354:1-11; PMID:26190298; http://dx.doi.org/10.1111/nyas.12831

[4] Gonçalves SS, Souza ACR, Chowdhary A, Meis JF, Colombo AL. Epidemiology and molecular mechanisms of antifungal resistance in Candida and Aspergillus. Mycoses 2016; 59:198-219; http://dx.doi.org/10.1111/myc.12469

[5] Sanguinetti M, Posteraro B, Lass-Florl C. Antifungal drug resistance among Candida species: mechanisms and clinical impact. Mycoses 2015; 58:2-13; PMID:26033251; http://dx.doi.org/10.1111/myc.12330

[6] Sanglard D. Emerging threats in antifungal-resistant fungal pathogens. Front Med 2016; 3:11; PMID:27014694; http://dx.doi.org/10.3389/fmed.2016.00011

[7] Coelho C, Casadevall A. Cryptococcal therapies and drug targets: the old, the new and the promising. Cell Microbiol 2016; 18:792-9; PMID:26990050; http://dx.doi.org/10.1111/cmi.12590

[8] Xie JL, Polvi EJ, Shekhar-Guturja T, Cowen LE. Elucidating drug resistance in human fungal pathogens. Future Microbiol 2014; 9:532-43; PMID:24810351; http://dx.doi.org/10.2217/fmb.14.18

[9] Gullo FP, Rossi SA, Sardi dJCO, Teodoro VLI, Mendes-Giannini MJS, Fusco-Almeida AM. Cryptococcosis: epidemiology, fungal resistance, and new alternatives for treatment. Eur J Clin Microbiol Infect Dis 2013; 32:1377-91; PMID:24141976; http://dx.doi.org/10.1007/s10096-013-1915-8

[10] Liu S, Hou Y, Liu W, Lu C, Wang W, Sun S. Components of the calcium-calcineurin signaling pathway in fungal cells and their potential as antifungal targets. Eukaryotic Cell 2015; 14:324-34; PMID:25636321; http://dx.doi.org/10.1089/EC.00271-14

[11] Juvvadi PR, Lamoth F, Steinbach WJ. Calcineurin as a multifunctional regulator: unraveling novel functions as multifunctional regulators in fungal stress responses, hyphal growth, drug resistance, and pathogenesis. Fungal Biol Rev 2014; 28:56-69; PMID:25383089; http://dx.doi.org/10.1016/j.jfbr.2014.02.004

[12] Liu S, Hou Y, Chen X, Gao Y, Li H, Sun S. Combination of floconazole with non-antifungal agents: a promising approach to cope with resistant Candida albicans infections and insight into new antifungal agent discovery. Int J Antimicrob Agents 2014; 43:395-402; PMID:24503221; http://dx.doi.org/10.1016/j.ijantimicag.2013.12.009

[13] Liu S, Yue L, Gu W, Li X, Zhang L, Sun S. Synergistic effect of floconazole and calcium channel blockers against resistant Candida albicans. PLoS ONE 2016; 11: e0150859; PMID:26986478; http://dx.doi.org/10.1371/journal.pone.0150859

[14] Zhang J, Silao FGS, Bigol UG, Bungay AAC, Nicolas MG, Heitman J, Chen YL. Calcineurin is required for pseudohyphal growth, virulence, and drug resistance in Candida lusitaniae. PLoS ONE 2012; 7:e44192; PMID:22952924; http://dx.doi.org/10.1371/journal.pone.0044192

[15] Chen Y-L, Brand A, Morrison EL, Silao FGS, Bigol UG, Malbas FF, Nett JE, Andes DR, Solis NV, Filler SG, et al. Calcineurin controls drug tolerance, hyphal growth, and virulence in Candida dubliniensis. Eukaryotic Cell 2011; 10:803-19; PMID:21531874; http://dx.doi.org/10.1128/EC.00310-10

[16] Kojima K, Bahn Y-S, Heitman J. Calcineurin, Mpk1 and Hog1 MAPK pathways independently control fluodoxonil antifungal sensitivity in Cryptococcus neoformans. Microbiology 2006; 152:591-604; PMID:16514140; http://dx.doi.org/10.1099/mic.0.28571-0

[17] Lamoth F, Alexander BD, Juvvadi PR, Steinbach WJ. Antifungal activity of compounds targeting the Hsp90-calcineurin pathway against various mould species. J Antimicrob Chemother 2015; 70:1408-11; PMID:25558076; http://dx.doi.org/10.1093/jac/dku549

[18] Steinbach WJ, Schell WA, Blankenship JR, Onyewu C, Heitman J, Perfect JR. In vitro interactions between antifungals and immunosuppressants against Aspergillus fumigatus. Antimicrob Agents Chemother 2004; 48:1664-9; PMID:15105118; http://dx.doi.org/10.1128/ AAC.48.5.1664-1669.2004

[19] Narreddy S, Manavathu E, Chandrasekar PH, Alangaden GJ, Revankar SG. In vitro interaction of posaconazole with calcineurin inhibitors and sirolimus against zygomycetes. J Antimicrob Chemother 2010; 65:701-3; PMID:20130026; http://dx.doi.org/10.1093/jac/dkq020

[20] Steinbach WJ, Reedy JL, Cramer RA, Perfect JR, Heitman J. Harnessing calcineurin as a novel anti-infective agent against invasive fungal infections. Nat Rev Micro 2007; 5:418-30; http://dx.doi.org/10.1038/nrmicro1680

[21] Steinbach WJ, Juvvadi PR, Fortwendel JR, Rogg LE. Newer combination antifungal therapies for invasive aspergillosis. Med Mycol 2011; 49:577-81; PMID:20608784; http://dx.doi.org/10.1093/medmycol/49.6.577

[22] Hemenway C, Heitman J. Calcineurin. Cell Biochem Biophys 1999; 30:115-51; PMID:10099825; http://dx.doi.org/10.1007/BF02737887

[23] Rusnak F, Mertz P. Calcineurin: form and function. Physiol Rev 2000; 80:1483-521; PMID:11015619

[24] Stathopoulos-Gerontides A, Guo JJ, Cyert MS. Yeast calcineurin: a multifunctional calcium- and calmodulin-binding protein of the nervous system. J Mol Cell Cardiol 2012; 52:62-73; PMID:22064325; http://dx.doi.org/10.1101/gad.13.7.798

[25] Theewes S. Calcineurin-Crz1 signaling in lower eukaryotes. Eukaryotic Cell 2014; 13:694-705; PMID:24681686; http://dx.doi.org/10.1128/EC.00038-14

[26] Plattner H, Verkhratsky A. The ancient roots of calcineurin as a multifunctional regulator of the nervous system. Proc Natl Acad Sci 1979; 76:6270-3; http://dx.doi.org/10.1073/pnas.76.12.6270

[27] Klee CB, Crouch TH, Krinks MH. Calcineurin: a calcium- and calmodulin-binding protein of the nervous system. Proc Natl Acad Sci 1979; 76:6270-3; PMID:20608784; http://dx.doi.org/10.1128/EC.00310-10

[28] Heitman J. Harnessing calcineurin as a novel anti-infective agent against invasive fungal infections. Nat Rev Micro 2007; 5:418-30; http://dx.doi.org/10.1038/nrmicro1680

[29] Lamsam A, Leung FS, Lamoth F, Steinbach WJ. Antifungal activity of compounds targeting the Hsp90-calcineurin pathway against various mould species. J Antimicrob Chemother 2015; 70:1408-11; PMID:25558076; http://dx.doi.org/10.1093/jac/dku549

[30] Steinbach WJ, Schell WA, Blankenship JR, Onyewu C, Heitman J, Perfect JR. In vitro interactions between antifungals and immunosuppressants against Aspergillus fumigatus. Antimicrob Agents Chemother 2004; 48:1664-9; PMID:15105118; http://dx.doi.org/10.1128/AAC.48.5.1664-1669.2004
[30] Musson REA, Cobbaert CM, Smit NPM. Molecular diagnostics of calcineurin-related pathologies. Clinical Chemistry 2012; 58:511-22; PMID:22015374; http://dx.doi.org/10.1373/clinchem.2011.167296

[31] Williams CR, Huai QL. Calcineurin inhibitors and immunosuppression – a tale of two isoforms. Exp Rev Mol Med 2012; 14:nom-nul; http://dx.doi.org/10.1017/emr.2012.8

[32] Reese LC, Taglialetela G. A role for calcineurin in Alzheimer's disease. Curr Neuropharmacol 2011; 9:685-92; PMID:22654726; http://dx.doi.org/10.2174/15701911179836316

[33] Harris CD, Ermak G, Davies KJA. Multiple roles of the DSCR1 (Adapt78 or RCAN1) gene and its protein product calcipressin 1 (or RCAN1) in disease. Cell Mol Life Sci 2005; 62:2477-86; PMID:16231093; http://dx.doi.org/10.1007/s00018-005-5085-4

[34] Heit JJ. Calcineurin/NFAT signaling in the β-cell: from diabetes to new therapeutics. BioEssays 2007; 29:1011-21; PMID:17876792; http://dx.doi.org/10.1002/bies.20644

[35] Reynolds NJ, Al-Daraji WI. Calcineurin inhibitors and sirolimus: mechanisms of action and applications in dermatology. Clin Exp Dermatol 2002; 27:555-61; PMID:12464150; http://dx.doi.org/10.1046/j.1365-2230.2002.01148.x

[36] Ho S, Clipstone N, Timmermann L, Northrop J, Graef I, Heit JJ. Calcineurin is essential for viability in Ustilago maydis. Mol Plant-Microbe Interact 2008; 21:584-601; PMID:18263765; http://dx.doi.org/10.1128/EC.00426-07

[37] Futer O, DeCenzo MT, Aldape RA, Livingston DJ. FK506 binding protein mutational analysis: defining the surface residue contributions to stability of the calcineurin co-complex. J Biol Chem 1995; 270:18935-40; PMID:7642551; http://dx.doi.org/10.1074/jbc.270.32.18935

[38] Huai Q, Kim H-Y, Liu Y, Zhao Y, Mondragon A, Futer O, DeCenzo MT, Nourse J, Crabtree GR. The mechanism of action of cyclosporin A and FK506. Clin Immunol 2009; 134:109-19; PMID:192026699

[39] Ke H, Huai Q. Structures of calcineurin and its complexes with immunophilins–immunosuppressants. Biochem Biophys Res Commun 2003; 311:1095-102; PMID:14623295; http://dx.doi.org/10.1016/S0006-291X(03)01537-7

[40] Odom A, Muir S, Lim E, Toffaletti DL, Perfect J, Heitman J. Calcineurin is required for virulence of Cryptococcus neoformans. EMBO J 1997; 16:2576-89; PMID:9184205; http://dx.doi.org/10.1093/emboj/16.10.2576

[41] Blankenship JR, Wormley FL, Boyce MK, Schell WA, Fillter O, DeCenzo MT, Nourse J, Crabtree GR. Calcineurin is essential for virulence in Candida albicans. Infect Immun 2003; 71:5344-54; PMID:12933882; http://dx.doi.org/10.1128/IAI.71.9.5344-5354.2003

[42] Bader T, Bodendorfer B, Schröppel K, Morschhäuser J. Calcineurin Is Essential for Virulence in Candida albicans. Infect Immun 2003; 71:5344-54; PMID:12933882; http://dx.doi.org/10.1128/IAI.71.9.5344-5354.2003

[43] Chen Y-L, Lehman VN, Lewit Y, Ayette AF, Heitman J. Calcineurin governs thermotolerance and virulence of Cryptococcus gattii. G3: Genes|Genomes|Genetics 2013; 3:527-39; http://dx.doi.org/full_text

[44] Steinbach WJ, Cramer RA, Perfect BJ, Asfaw YG, Sauer TC, Najvar LK, Kirkpatrick WR, Patterson TF, Benjamin DK Jr, Heitman J, et al. Calcineurin controls growth, morphology, and pathogenicity in Aspergillus fumigatus. Eukaryotic Cell 2006; 5:1091-103; PMID:16835453; http://dx.doi.org/10.1128/EC.00139-06

[45] Ferreira MEdS, Heinekamp T, Härzl A, Brakhage AA, Semighini CP, Harris SD, Savoldi M, de Gouvea PF, de Souza Goldman MH, Goldman GH. Functional characterization of the Aspergillus fumigatus calcineurin target calcipressin 1 (or RCAN1) in disease. Cell Mol Life Sci 2005; 62:2477-86; PMID:16231093; http://dx.doi.org/10.1007/s00018-005-5085-4

[46] Harel A, Bercovich S, Yarden O. Calcineurin is required for sclerotial development and pathogenicity of Sclerotinia sclerotiorum in an oxalic acid-Independent manner. Mol Plant-Microbe Interact 2006; 19:682-93; PMID:16776301; http://dx.doi.org/10.1094/MPMI-19-0682

[47] Schumacher J, de Larrinoa IF, Tudzynski B. Calcineurin-responsive zinc finger transcription factor CRZ1 of Botrytis cinerea is required for growth, development, and full virulence on bean plants. Eukaryotic Cell 2008; 7:584-601; PMID:18263765; http://dx.doi.org/10.1128/EC.00426-07

[48] Choi JH, Yang Seon Kim, Yong-Hwan Lee. Functional analysis of MCNA, a gene encoding a catalytic subunit of calcineurin, in the rice blast fungus Magnaporthe oryzae. J Microbiol Biotechnol 2009; 19:11-6; PMID:19190403

[49] Egan JD, García-Pedrajas MD, Andrews DL, Gold SE. Calcineurin is an antagonist to PKA protein phosphorylation required for postmatting filamentation and virulence, while PP2A is required for viability in Ustilago maydis. Mol Plant-Microbe Interact 2009; 22:1293-301; PMID:19737102; http://dx.doi.org/10.1094/MPMI-22-10-1293

[50] Cervantes-Chávez JA, Ali S, Bakkeren G. Response to environmental stresses, cell-wall integrity, and virulence are orchestrated through the calcineurin pathway in Ustilago hordei. Mol Plant-Microbe Interact 2010; 24:219-32; http://dx.doi.org/10.1094/MPMI-09-10-0202

[51] Ene IV, Walker LK, Schiavone M, Lee KK, Martin-Yken H, Dague E, Gow NA, Munro CA, Brown AJ. Cell wall remodeling enzymes modulate fungal cell wall elasticity and osmotic stress resistance. mBio 2015; 6:e00986.

[52] Prasad R, Shah AH, Rawal MK. Antifungals: mechanism of action and drug resistance. In: Yeast Membrane Transport; Ramos J, Sychrova H, Kschisch M, eds.; Advances in Experimental Medicine and Biology. Springer International Publishing, 2016; 892:327-49.

[53] Cruz MC, Goldstein AL, Blankenship JR, Del Poeta M, Davis D, Cardenas ME, Perfect JR, McCusker JH, Heitman J. Calcineurin is essential for survival during membrane stress in Candida albicans. EMBO J 2002; 21:546-59; PMID:11847103; http://dx.doi.org/10.1093/emboj/21.4.546

[54] Wang L, Jia Y, Tang R-J, Xu Z, Cao Y-B, Jia X-M, Jiang YY. Proteomic analysis of Rta2p-dependent raft-
association of detergent-resistant membranes in Candida albicans. PLoS ONE 2012; 7:e37768; PMID:22662216; http://dx.doi.org/10.1371/journal.pone.0037768

[55] Jia XM, Wang Y, Jia Y, Gao PH, Xu YG, Wang L, Cao YY, Cao YB, Zhang LX, Jiang YY. RTA2 is involved in calcineurin-mediated azole resistance and sphingoid long-chain base release in Candida albicans. Cell Mol Life Sci 2008; 66:122-34; http://dx.doi.org/10.1007/s00018-008-8409-3

[56] Ueno K, Namiki Y, Mitani H, Yamaguchi M, Chibana H. Differential cell wall remodeling of two chitin synthase deletants Δchs3A and Δchs3B in the pathogenic yeast Candida glabrata. FEMS Yeast Res 2011; 11:398-407; PMID:21453325; http://dx.doi.org/10.10111/j.1567-1364.2011.00728.x

[57] Fortwendel JR, Juvvadi PR, Perfect BJ, Rogg LE, Perfect JR, Steinwandel WJ. Transcriptional regulation of chitin synthases by calcineurin controls paradoxical growth of Aspergillus fumigatus in response to caspofungin. Antimicrob Agents Chemother 2010; 54:1555-63; PMID:20124000; http://dx.doi.org/10.1128/AAC.00854-09

[58] Katiyar SK, Alamirz-Izquierdo A, Healey KR, Johnson ME, Perlin DS, Edlind TD. Fks1 and Fks2 are functionally redundant but differentially regulated in Candida albicans. Mol Microbiol 2006; 59:1429-51; PMID:16468987; http://dx.doi.org/10.1111/j.1365-2958.2005.05037.x

[59] Onyewu C, Blankenship JR, Del Poeta M, Heitman J. Ergosterol biosynthesis inhibitors become fungicidal when combined with calcineurin inhibitors against Candida albicans, Candida glabrata, and Candida krusei. Antimicrob Agents Chemother 2003; 47:956-64; PMID:12604527; http://dx.doi.org/10.1128/AAC.47.3.956-964.2003

[60] Yu S-J, Chang Y-L, Chen Y-L. Calcineurin signaling: lessons from Candida species. FEMS Yeast Res 2015; 15:fov016; http://dx.doi.org/10.1093/femsyr/fov016

[61] Onyewu C, Wormley FL, Perfect JR, Heitman J. The calcineurin target, Crz1, functions in azole tolerance but is not required for virulence of Candida albicans. Infect Immun 2004; 72:7330-3; PMID:15557662; http://dx.doi.org/10.1128/IAI.72.12.7330-7333.2004

[62] Zhang J, Heitman J, Chen Y-L. Comparative analysis of calcineurin signaling between Candida dubliniensis and Candida albicans. Commun Integr Biol 2012; 5:122-6; PMID:22880313; http://dx.doi.org/10.4161/cib.18833

[63] Maesaki S, Mariscal P, Hossain MA, Sanglard D, Vanden Bossche H, Kohno S. Synergic effects of tacrolimus and azole antifungal agents against azole-resistant Candida albican strains. J Antimicrob Chemother 1998; 42:747-53; PMID:10052898; http://dx.doi.org/10.1093/jac/42.6.747

[64] Cordeiro RdA, Macedo RdB, Teixeira CEC, Marques FjdF, Bandeira TdJP, Moreira JLB, Brilhante RS, Rocha MF, Sidrim JJ. The calcineurin inhibitor cyclosporin A exhibits synergism with antifungals against Candida parapsilosis species complex. J Med Microbiol 2014; 63:936-44; PMID:24722799; http://dx.doi.org/10.1099/jmm.0.073478-0

[65] Perfect JR, Bicanic T. Cryptococcus diagnosis and treatment: What do we know now. Fungal Genet Biol 2015; 78:49-54; PMID:25312862; http://dx.doi.org/10.1016/j.fgb.2014.10.003

[66] Byrnes Iii EJ, Bartlett KH, Perfect JR, Heitman J. Cryptococcus gattii: an emerging fungal pathogen infecting humans and animals. Microbes Infect 2011; 13:895-907; PMID:21684347; http://dx.doi.org/10.1016/j.micinf.2011.05.009

[67] Cruz MC, Fox DS, Heitman J. Calcineurin is required for hyphal elongation during mating and haploid fruiting in Cryptococcus neoformans. EMBO J 2001; 20:1020-32; PMID:11230126; http://dx.doi.org/10.1093/emboj/20.5.1020

[68] Kozubowski L, Aboobakar EF, Cardenas ME, Heitman J. Calcineurin colocalizes with P-bodies and stress granules during thermal stress in Cryptococcus neoformans. Eukaryotic Cell 2011; 10:1396-402; PMID:21724937; http://dx.doi.org/10.1128/EC.05087-11

[69] Del Poeta M, Cruz MC, Cardenas ME, Perfect JR, Heitman J. Synergistic antifungal activities of bafilomycin A1, fluconazole, and the pneumocandin MK-0991/caspofungin acetate (L-743,873) with calcineurin inhibitors FK506 and L-685,818 against Cryptococcus neoformans. Antimicrob Agents Chemother 2000; 44:739-46; PMID:10681348; http://dx.doi.org/10.1128/AAC.44.3.739-746.2000

[70] Odom A, Del Poeta M, Perfect J, Heitman J. The immunosuppressant FK506 and its nonimmunosuppressive analog L-685,818 are toxic to Cryptococcus neoformans by inhibition of a common target protein. Antimicrob Agents Chemother 1997; 41:156-61; PMID:8980772

[71] Cruz MC, Del Poeta M, Wang P, Wenger R, Zenke G, Quezniaux VFJ, Movva NR, Perfect JR, Cardenas ME, Heitman J. Immunosuppressive and nonimmunosuppressive cyclosporine analogs are toxic to the opportunistic fungal pathogen Cryptococcus neoformans via cyclophilin-dependent inhibition of calcineurin. Antimicrob Agents Chemother 2000; 44:143-9; PMID:10602736; http://dx.doi.org/10.1128/AAC.44.1.143-149.2000
[76] Thakur M, Revankar SG. In vitro interaction of caspofungin and immunosuppressives against agents of mucormycosis. J Antimicrob Chemother 2011; 66:2312-4; PMID:21795260; http://dx.doi.org/10.1093/jac/dkr297

[77] Lewis RE, Ben-Ami R, Best L, Albert N, Walsh TJ, Kontoyiannis DP. Tacrolimus enhances the potency of posaconazole against Rhizopus oryzae in vitro and in an experimental model of mucormycosis. J Infect Dis 2013; 207:834-41; PMID:23242544; http://dx.doi.org/10.1093/infdis/jis767

[78] Dannaoui E, Schwarz P, Lortholary O. In vitro interactions between antifungals and immunosuppressive drugs against zygomycetes. Antimicrob Agents Chemother 2009; 53:3549-51; PMID:19451295; http://dx.doi.org/10.1128/AAC.00184-09

[79] Sun H-Y, Singh N. Emerging importance of infections due to zygomycetes in organ transplant recipients. Int J Antimicrob Agents 2008; 32(Supplement 2):S115-S8; PMID:19013334; http://dx.doi.org/10.1016/S0924-8579(08)70011-6

[80] Lee SC, Li A, Calo S, Heitman J. Calcineurin plays key roles in the dimorphic transition and virulence of the human pathogenic zygomycete Mucor circinelloides. PLoS Pathog 2013; 9:e1003625; PMID:24039585; http://dx.doi.org/10.1371/journal.ppat.1003625

[81] Kosmidis C, Denning DW. The clinical spectrum of pulmonary aspergillosis. Thorax 2015; 70:270-7; PMID:25354514; http://dx.doi.org/10.1136/thoraxjnl-2014-206291

[82] Kontoyiannis DP, Marr KA, Park BJ, Alexander BD, Anaissie EJ, Walsh TJ, Ito J, Andes DR, Baddley JW, Brown JM, et al. Prospective surveillance for invasive fungal infections in hematopoietic stem cell transplant recipients, 2001–2006: overview of the transplant-associated infection surveillance network (TRANSNET) database. Clin Infect Dis 2010; 50:1091-100; PMID:20218877; http://dx.doi.org/10.1086/651263

[83] Pappas PG, Alexander BD, Andes DR, Hadley S, Kauffman CA, Freifeld A, Anaissie EJ, Brumble LM, Herwaldt L, Ito J, et al. Invasive fungal infections among organ transplant recipients: results of the transplant-associated infection surveillance network (TRANSNET). Clin Infect Dis 2010; 50:1101-11; PMID:20218876; http://dx.doi.org/10.1086/651262

[84] Verweij PE, Chowdhary A, Melchers WJG, Meis JF. Azole resistance in Aspergillus fumigatus: can we retain the clinical use of mold-active antifungal azoles? Clin Infect Dis 2016; 62:362-8; PMID:26486705; http://dx.doi.org/10.1093/cid/civ885

[85] Juuvadi PR, Fortwendel JR, Rogg LE, Burns KA, Randell SH, Steinbach WJ. Localization and activity of the calcineurin catalytic and regulatory subunit complex at the septum is essential for hyphal elongation and proper septation in Aspergillus fumigatus. Mol Microbiol 2011; 82:1235-59; PMID:22066998; http://dx.doi.org/10.1111/j.1365-2958.2011.07886.x

[86] Cramer RA, Jr., Perfect BZ, Pinchai N, Park S, Perlin DS, Asfaw YG, Heitman J, Perfect JR, Steinbach WJ. Calcineurin target CrzA regulates conidial germination, hyphal growth, and pathogenesis of Aspergillus fumigatus. Eukaryot Cell 2008; 7:1085-97; PMID:18456861; http://dx.doi.org/10.1128/EC.00086-08

[87] Pinchai N, Perfect BZ, Juuvadi PR, Fortwendel JR, Cramer RA, Asfaw YG, Heitman J, Perfect JR, Steinbach WJ. Aspergillus fumigatus calcipressin CbpA is involved in hyphal growth and calcium homeostasis. Eukaryotic Cell 2009; 8:511-9; PMID:19252123; http://dx.doi.org/10.1128/EC.00336-08

[88] Steinbach WJ, Cramer RA, Jr., Perfect BZ, Henn C, Nielsen K, Heitman J, Perfect JR. Calcineurin inhibition or mutation enhances cell wall inhibitors against Aspergillus fumigatus. Antimicrob Agents Chemother 2007; 51:2979-81; PMID:17502415; http://dx.doi.org/10.1128/AAC.01394-06

[89] Stevens DA, White TC, Perlin DS, Selitrennikoff CP. Studies of the paradoxical effect of caspofungin at high drug concentrations. Diagn Microbiol Infect Dis 2005; 51:173-8; PMID:15766602; http://dx.doi.org/10.1016/j.diagmicrobio.2004.10.006

[90] Fortwendel JR, Juuvadi PR, Perfect BZ, Rogg LE, Perfect JR, Steinbach WJ. Transcriptional regulation of chitin synthases by calcineurin controls paradoxical growth of Aspergillus fumigatus in response to caspofungin. Antimicrob Agents Chemother 2010; 54:1555-63; PMID:20124000; http://dx.doi.org/10.1128/AAC.00854-09

[91] Lamoth F, Juuvadi PR, Gehrke C, Steinbach WJ. In vitro activity of calcineurin and heat shock protein 90 inhibitors against Aspergillus fumigatus azole- and echinocandin-resistant strains. Antimicrob Agents Chemother 2013; 57:1035-9; PMID:23165466; http://dx.doi.org/10.1128/AAC.01857-12

[92] Juuvadi PR, Fortwendel JR, Pinchai N, Perfect BZ, Heitman J, Steinbach WJ. Calcineurin localizes to the hyphal septum in Aspergillus fumigatus: implications for septum formation and conidiophore development. Eukaryotic Cell 2008; 7:1606-10; PMID:18606829; http://dx.doi.org/10.1128/EC.00200-08

[93] Juuvadi PR, Gehrke C, Fortwendel JR, Lamoth F, Soderblom EJ, Cook EC, et al. Phosphorylation of calcineurin at a novel serine-proline rich region orchestrates hyphal growth and virulence in Aspergillus fumigatus. PLoS Pathog 2013; 9:e1003564; PMID:23990785; http://dx.doi.org/10.1371/journal.ppat.1003564

[94] Juuvadi PR, Pembel CW, Ma Y, Steinbach WJ. Novel motif in calcineurin catalytic subunit is required for septal localization of calcineurin in Aspergillus fumigatus. FEBS Lett 2016; 590:501-8; PMID:26864964; http://dx.doi.org/10.1002/1873-3468.12075

[95] Görlich J, Fox DS, Cutler NS, Cox GM, Perfect JR, Heitman J. Identification and characterization of a highly conserved calcineurin binding protein, CBP1/calcipressin, in Cryptococcus neoformans. EMBO J 2000; 19:3618-29; PMID:10899116; http://dx.doi.org/10.1093/emboj/19.14.3618

[96] Adler A, Park Y-D, Larsen P, Nagarajan V, Wollenberg K, Qiu J, Myers TG, Williamson PR. A novel specificity protein 1 (SP1)-like gene regulating protein kinase C-1 (Pck1)-dependent cell wall integrity and virulence factors in Cryptococcus neoformans. J Biol Chem 2011; 286:20977-90; PMID:21487010; http://dx.doi.org/10.1074/jbc.M111.230268

[97] Lev S, Desmarini D, Chayakulkeeree M, Sorrell TC, Djordjevic JT. The Crz1/Sp1 transcription factor of
Cryptococcus neoformans is activated by calcineurin and regulates cell wall integrity. PLoS ONE 2012; 7: e51403; PMID:23251520; http://dx.doi.org/10.1371/journal.pone.0051403

Soriani FM, Malavazi I, Da Silva Ferreira ME, Savoldi M, Von Zeska Kress MR, De Souza Goldman MH, Loss O, Bignell E, Goldman GH. Functional characterization of the Aspergillus fumigatus CRZ1 homologue, CrzA. Mol Microbiol 2008; 67:1274-91; PMID:18298443; http://dx.doi.org/10.1111/j.1365-2958.2008.06122.x

Cramer RA, Perfect BZ, Pinchai N, Park S, Perlin DS, Soriani FM, Malavazi I, Da Silva Ferreira ME, Savoldi MA, Heitman J. Association of calcineurin with the COPII protein Sec13 increases vinblastine sensitivity in drug-sensitive and drug-resistant cancer cells. Cancer Res 1999; 59:880-5; PMID:10029079

Goldman A, Roy J, Bodenmiller B, Wanka S, Landry Christian R, Aebersold R, Gyert MS. The calcineurin signaling network evolves via conserved kinase-phosphatase modules that transcend substrate identity. Mol Cell 2014; 55:422-35; PMID:24930733; http://dx.doi.org/10.1016/j.molcel.2014.05.012

Kozubowski L, Thompson JW, Cardenas ME, Moseley MA, Heitman J. Association of calcineurin with the COPI protein Sec28 and the COPII protein Sec13 revealed by quantitative proteomics. PLoS ONE 2011; 6: e25280; PMID:21984910; http://dx.doi.org/10.1371/journal.pone.0025280

Crous B, Bollinger P, Hiestand PC. SDZ PSC 833, A non-immunosuppressive cyclosporine: Its potency in overcoming P-glycoprotein-mediated multidrug resistance of drug-resistant cancer cells. Cancer Res 1999; 59:880-5; PMID:10029079

Sweeney ZK, Fu J, Wiedmann B. From Chemical Tools to Clinical Medicines: Nonimmunosuppressive Cyclophilin Inhibitors Derived from the Cyclosporin and Sanglifehrin Scaffolds. J Med Chem 2014; 57:7145-59; PMID:24831536; http://dx.doi.org/10.1021/jm500223x

Cabot MC, Giuliano AE, Han T-Y, Liu Y-Y. SDZ PSC 833, the Cyclosporine A analogue and multidrug resistance modulator, activates ceramide synthesis and increases vinblastine sensitivity in drug-sensitive and drug-resistant cancer cells. Cancer Res 1999; 59:880-5; PMID:10029079

Keller RP, Altermatt HJ, Nooter K, Poschmann G, Laissue P, Gallay PA, Lin K. Prophage QfiA prevents hepatitis C virus RNA Replication In Vitro. Antimicrob Agents Chemother 2010; 54:660-72; PMID:19933795; http://dx.doi.org/10.1128/AAC.00660-09
immunosuppressive drugs FK506, rapamycin and cyclosporin A. Nat Med 1997; 3:421-8; PMID:9095176; http://dx.doi.org/10.1038/nm0497-421

[121] Cruz MC, Cavallo LM, Görlich JM, Cox G, Perfect JR, Cardenas ME, Heitman J. Rapamycin antifungal action is mediated via conserved complexes with FKBP12 and TOR kinase homologs in Cryptococcus neoformans. Mol Cell Biol 1999; 19:4101-12; PMID:10330150; http://dx.doi.org/10.1128/MCB.19.6.4101

[122] Falloon K, Juvvadi PR, Richards AD, Vargas-Muñiz JM, Renshaw H, Steinbach WJ. Characterization of the FKBP12-encoding genes in Aspergillus fumigatus. PLoS ONE 2015; 10:e0137869; PMID:26366742; http://dx.doi.org/10.1371/journal.pone.0137869

[123] Tonthat NK, Juvvadi PR, Zhang H, Lee SC, Venters R, Spicer L, Steinbach WJ, Heitman J, Schumacher MA. Structures of pathogenic fungal FKBP12s reveal possible self-catalysis function. mBio 2016; 7:pii: e00492-16; PMID:27118592; http://dx.doi.org/10.1128/mBio.00492-16

[124] Schreiber S, Crabtree G. Immunophilins, ligands and the control of signal transduction. Harvey Lect 1995; 91:99-114; PMID:9127988