Transient Stability Improvement using Shunt and Series Compensators

R. Suguna1*, S. Jalaja2, M. Pradeep1, R. Senthil Kumar3, S. SrikrishnaKumar1 and K. R. Sugavanam1

1Vel Tech High Tech Dr. Rangarajan and Dr. Sakunthala Engineering College, Avadi, Chennai - 600062, Tamil Nadu, India; r_sugan29@yahoo.com, rskumar.eee@gmail.com, krishnakumar.rvs@gmail.com, sugavanamkr@gmail.com, pradeep7raj@gmail.com

2Vel Tech Engineering College, Avadi, Chennai - 600062, Tamil Nadu, India; jalajasampath@gmail.com

Abstract

Background/Objectives: To study the improvement of transient stability using FACTS devices (TCSC and STATCOM).

Methods/Statistical Analysis: The objectives are met by varying the value of capacitance value of constant capacitor by fluctuating the firing angle of TCR. STATCOM is realized by linking the system with voltage source via transformer.

Findings: In the transmission line of 8 bus system FACTS device is used and both ends power transfer is controlled. Major transient parameter are stimulated individually and analysed.

Applications/Improvements: The single phase and three phase systems are modeled with and without FACTS device and the results are simulated using MATLAB.

Keywords: Injection of Voltage, STATCOM, TCSC, Transient Stability Improvement

1. Introduction

Increase in the utilization of power tends to operate the power system closer to their limits of stability conventional methods give a solution to operate within the limits. Advent of semiconductor based equipment namely the FACTS devices, enables overcome the present operating1.

Extending the capacity of the system with incorporation of FACTS devices is proven to be profitable. Series and/or shunt compensation may be provide based on the type and capacity of the system. the effects of TCSC, STATCOM over the system varies with optimal location and rating of the devices comparison of the compensating devices with respect to reactive power flow is indispensable.

1.1 Power Transfer Limit

One or more of the following network characteristics limits power flow over a transmission system.

- Stability limit
- Thermal limit
- Voltage limit
- Loop flow

When referred in technical aspects, limitation exerted on power transfer is neglected by extending the capacity of generator or transmission line. Addition of new element does not reflect on operating limits due to proper FACTS design.

1.2 Controllability of Power System

Considering the common notation of the power-angle curve, it is certain that the power system performance is dependent on the three main variables, namely Voltage (V), Angle (δ) and Impedance (Z). FACTS devices are implemented mainly for steady state as well as dynamic quantities. The Figure 1 represents the variables to be controlled, but the method of control is left to the user or the
operator. This method can employ conventional control equipment or FACTS devices.

2. Thyristor Controlled Series Compensator

TCSC is a main type of series compensating FACTS device, which is represented below in Figure 2. The relationship between V_c and I_L is exposed in the Figure 2, of which VC zero crossing is fixed as reference.

2.1 TCSC- Operating Principle

To control the ac power over a broad range of values, a controlled capacitive reactance is added in cascade to the transmission line, which is termed as TCSC. The firing angle (α) is varied to increment the fundamental frequency voltage across the fixe capacitor which in turn varies the series reactance value. Figure 2 exposes the TCSC model and dynamic behavior of voltage and current and visualize relationship of firing angle with fundamental frequency.

X_c of the TCSC is specified in terms of the firing angle2.

where,

$$X_c = \beta_1[Xc+ \beta_2] - \beta_4 \beta_5-Xfc$$

$\beta_1 = [2(\pi- \alpha)+\sin2(\pi- \alpha)] / \pi$

$\beta_2 = (XcXp) / (Xc-Xp)$

$\beta_3 = \sqrt{(Xc/Xp)}$

$\beta_4 = \beta_3 \tan(\beta_3(\pi- \alpha)) - \tan(\pi- \alpha)$

$\beta_5 = [4 \beta_22\cos2(\pi- \alpha)] / [\pi Xp]$

2.2 Effect of Compensation with TCSC

At a time among different lines of the system only one TCSC can be employed, for capacitive mode firing angle should be in the range of 140° – 180°. Capacitance fluctuate with different firing angle and positions at 145° system observed to close to resonance and operation is stable at 160°. The TCSC is connected between the lines 3-4, the reactive power of certain buses were improved4. Table 1 exposes the comparison of reactive power in different buses and it clearly visualize improvement in all buses after adding TCSC.

Figure 3 demonstrated the MATLAB simulation model of TCSC in which P4 and P5 are the signal generators providing the gate pulse for SCR which connected anti parallel to each other, by doing the necessary changes in P4 and P5.

3. STATCOM-Modelling

STATCOM is a main type of shunt compensating FACTS device, has the capability of absorbing and/or generating

BUS	(MVAR) without TCSC	(MVAR) with TCSC
7	0.174	0.198
1	0.133	0.148
3	0.836	1.090
4	0.663	0.456
reactive power. STATCOM provides immediate control of power thereby improving the capacity of transmission voltage.

In Figure 4, a STATCOM is designed as a power converter fed from an energy source, which absorbs or generates controllable power. STATCOM model is realized as a voltage source converter which establishes exchange of reactive power alone within the system. STATCOM is modeled to increase the reliability of the system.

3.1 Effect of Compensation with STATCOM

In an 8 bus system 3 phase fault in one of the bus is considered and STATCOM is positioned in the line 4-8.

Figure 3. TCSC Model.

Figure 4. VSC used as STATCOM.
Figure 5. Voltage across external, load-1 and load-2 waveforms.

Figure 6. TCSC lacking system.
In the Figure 11 simulated current and voltage waveforms of bus 3 is presented, it clearly reveals that there is a considerable increment in value of current and voltage after incorporating TCSC.

5. Simulation Output of STATCOM

Figure 12 exposes the Simulink model of eight bus system without STATCOM and it is simulated using MATLAB and their result are discussed.

In the Figure 13, real and reactive power in the load 1 is taken for study, simulated wave form visualize the real time magnitude and time span.

In the Figure 14, simulated voltage waveforms across the load 1 is presented, magnitude of voltage pictured clearly which have to compared with the values of voltage simulated using STATCOM.

Figure 15 exposes the Simulink model of eight bus system with STATCOM and it is simulated using MATLAB and their result are discussed below.
In the Figure 16 real and reactive power cross load 1 is considered, simulated wave form envisage that there is improvement in the real power reactive power compared to the system without STATCOM.

In the Figure 17, voltage waveforms across the load 1 is presented, it clearly reveals that there is a considerable increment in value of voltage after incorporating STATCOM.

Table 2 expose Comparison of reactive power in different buses and it clearly visualize improvement in all buses after adding STATCOM.

6. Conclusion

Standard 8- bus system without any shunt or series compensation is considered as the base system. Separate
analysis for series and shunt compensation was carried out by using TCSC & STATCOM respectively. Based on values of the reactive power in uncompensated system, bus-3 was chosen to be the best among the possible locations. The system performances for the base system and compensated conditions have been observed through simulation. The optimal placement of FACTS device (TCSC & STATCOM) has improved the reactive power at the load buses. Compared to TCSC, STATCOM proves to provide better stability to the system in terms of improvement in the reactive power flow.

7. References

1. Vittal V, Zhou EZ, Hwang C, Fouad A. A derivation of stability limits using analytical sensitivity of the transient energy margin. IEEE Transactions on Power Systems. 1989; 4(4):1363–72.
2. Shubhanga KN, Kulkarni AM. Application of structure preserving energy margin sensitivity to determine the effectiveness of shunt and series FACTS devices. IEEE Transactions on Power Systems. 2002; 17(3):730–38.
3. Laufenberg MJ, Pai MA. A new approach to dynamic security assessment using trajectory sensitivities. 20th
Figure 12. Eight Bus system without STATCOM model.

Figure 13. Real and reactive power across load-1.
Figure 14. Voltage across load-1.

Figure 15. Bus system with STATCOM model.
Figure 16. Real and reactive power across load-1.

Figure 17. Voltage across load-1.

Table 2. Comparison of reactive power in different buses

Bus	(MVAR) Without STATCOM	(MVAR) With STATCOM
7	0.174	0.238
1	0.133	0.163
3	0.836	1.105
4	0.663	0.592

International Conference on Power Industry Computer Applications, Columbus, OH. 1997. p. 272–77.
4. Machowski J, Bialek JW, Bumby JR. Power System Dynamics Stability and Control. 1st edn. John Wiley & Sons Ltd: UK, 2002.
5. Kumarasamy K, Raghavan R. Cost Effective Solution for Optimal Placement and Size of Multiple STATCOM using Particle Swarm Optimization. Journal of Theoretical and Applied Information Technology. 2014; 67(3):701–8.
6. Sundaram MK, Sugavanam KR, Kumar SR. Analysis of pulse width modulation control and digital control
approach for asymmetric DC-AC cascaded H bridge multilevel inverter. ARPN Journal of Engineering and Applied Sciences. SEP’15, 2015; 10(16):6863–69.

7. Sugavanam KR, Senthil Kumar R, Sri Krishna Kumar S, Karthikumar S, Tamilnallai V. Design of FLC for OVR Reduction of Negative Output KY Converter. International Journal of Applied Engineering Research. 2014; 9(24):23689–99.

8. Mohanasundaram K, Sugavanam KR, Senthilkumar R. A PSO Algorithm based PI controller design for soft starting of induction motor. International Journal of Applied Engineering Research. 2014; 9(24):25535–42.

9. Sivakumar P, Vinod B, Sandhya Devi RS, Jayasakti Rajkumar ER. Real-Time Task Scheduling for Distributed Embedded System using MATLAB Toolboxes. Indian Journal of Science and Technology. 2015 Jul; 8(15):1–7.

10. Marlin S, Sundarsingh Jebaseelan SD, Padmanabhan B, Nagarajan G. Power quality improvement for thirty bus system using UPFC and TCSC. Indian Journal of Science and Technology. 2014 Jan; 7(9):1316–20.