Abstract: According to the World Health Organization, cardiovascular diseases are the main cause of death worldwide. They may be caused by various factors or combinations of factors. Frequently, endothelial dysfunction is involved in either development of the disorder or results from it. On the other hand, the endothelium may be disordered for other reasons, e.g., due to infection, such as COVID-19. The understanding of the role and significance of the endothelium in the body has changed significantly over time—from a simple physical barrier to a complex system encompassing local and systemic regulation of numerous processes in the body. Endothelium disorders may arise from impairment of one or more signaling pathways affecting dilator or constrictor activity, including nitric oxide–cyclic guanosine monophosphate activation, prostacyclin–cyclic adenosine monophosphate activation, phosphodiesterase inhibition, and potassium channel activation or intracellular calcium level inhibition. In this review, plants are summarized as sources of biologically active substances affecting the endothelium. This paper compares individual substances and mechanisms that are known to affect the endothelium, and which subsequently may cause the development of cardiovascular disorders.

Keywords: endothelium; vasoactive substances; vasodilation; vasoconstriction; nitric oxide

1. Introduction

According to the World Health Organization (WHO), almost 18 million people died worldwide in 2017 due to cardiovascular disorders. Numerous experimental and clinical studies are, therefore, focused on the cardiovascular system under both physiological and pathological conditions.

The cardiovascular system consists of the heart and vessels of various types. Three layers form a typical vessel: the tunica intima, tunica media, and tunica adventitia. The thickness ratio of a vessel wall depends on the functional requirements of that particular part of circulation system. Nevertheless, endothelial cells are a standard part of the tunica intima in any vessel.

2. The Endothelium: From a Simple Barrier to a Specialized Organ

2.1. Morphology of the Endothelium

A single layer of flat endothelial cells covers the inner surface of a vessel, which is in direct contact with the blood. Thus, this inner lining provides an anticoagulant barrier between the vessel wall and blood. All endothelial cells form a large organ consisting of approximately $1-6 \times 10^{13}$ of cells, a mass of almost one kilogram [1].

The endothelium originates from the splanchnopleuric mesoderm [1]. Vascular endothelial growth factor (VEGF) and its high-affinity flk-1 and flt-1 receptor tyrosine kinases represent a paracrine signaling system that is critical for endothelial cell differentiation and vascular system development [2,3]. It has been proven that VEGF is the only specific mitogen for endothelial cells. It stimulates their growth, inhibits apoptosis, increases vascular
permeability in various tissues, and promotes vasculogenesis and angiogenesis. Angiogenesis plays a protective role in coronary artery disease and myocardial infarction [4].

Endothelial cells consist of four basic compartments: the glycocalyx, cell cortex, cytoplasm, and nucleus (Figure 1). The structure and mechanical properties of these compartments directly affect physiological processes [1]. The endothelial glycocalyx is a thick, carbohydrate-rich layer that surrounds the endothelial lumen surface; it is composed of proteoglycans and glycoproteins. On the inner side of a cell membrane, the cell cortex is found, containing actin organized in a dynamic net. Actin fibers represent a support network for the plasma membrane and membrane proteins. The cell is also penetrated by actin microtubules and intermediate filaments. All components of the cell cytoskeleton are associated with the nucleus. Mechanical stimuli perceived by actin fibers, microtubules, or intermediate filaments are integrated in the nucleus [5]. Endothelial cells contain so-called Weibel–Palade bodies, measuring 0.1 µm wide and 0.3 µm long. These membrane-bound structures are a kind of storage organelle for von Willebrand’s factor (vWF) (Figure 1) [1].

Figure 1. Endothelial cell structure.

2.2. Physiological Roles of Endothelium

For a long time, the role of the simple barrier was attributed to the endothelium. Since then, its concept has changed significantly and new functions of endothelial cells have been reported. It is now considered a specialized organ with numerous physiological functions [1].

First of all, the barrier function of the endothelium is viewed in a less static way than in the original concept, where the endothelium was believed to simply separate blood from the surrounding tissues. Nowadays, it is considered a dynamic barrier, the integrity of which is essential for maintaining physiological blood flow. On the other hand, endothelial cells communicate among themselves on one side and with circulating blood elements on the other side; the latter involves thrombocytes and leukocytes. Communication with other cells, even distant ones, via various paracrine and endocrine substances has also been described. All of these cells, cooperatively with the blood flow, affect the behavior of the endothelium [6].

Based on the above, it can be presumed that both endothelial cell injury and its dysfunction may lead to a number of pathological situations. Endothelial dysfunction results in various seemingly unrelated pathological processes, such as loss of semipermeable membrane function, hyperlipoproteinemia (often accompanied by atherogenesis), diabetes mellitus, vascular spasms, and arterial hypertension. Together with certain risk factors (e.g., smoking), these processes progress to uniform vascular changes. Subsequent organ hypoperfusion leads to failure in the target structure, for example heart failure [1].

The basic humoral and metabolic functions of the endothelium are summarized in Figure 2. Various types of autocrine, paracrine, and endocrine communication systems are presented.
Figure 2. The basic humoral and metabolic functions of the endothelium. ACE: angiotensin converting enzyme; CSF: colony-stimulating factor; ECM: extracellular matrix; EDH: endothelium-derived hyperpolarization; IGF: insulin-like growth factor; LDL receptor: low-density lipoprotein receptor; MHC II: major histocompatibility complex type 2; PAF: platelet-activating factor; PAI: plasminogen activator inhibitor; ROS: reactive oxygen species; TGF: transforming growth factor; vWF: von Willebrand’s factor. Purple arrow: paracrine communication, red arrow: endocrine communication.

2.2.1. Vascular Tone Regulation

The endothelium is a site of production or modification of numerous vasodilatory and vasoconstrictory substances, which regulate the vascular tone via several pathways, namely nitric oxide–cyclic guanosine monophosphate (NO–cGMP) activation, prostacyclin–cyclic adenosine monophosphate (PGI$_2$–cAMP) activation, inhibition of phosphodiesterase (PDE), and activation of K$^+$ channels or inhibition of intracellular Ca$^{2+}$ levels (Figure 3).

Figure 3. Endothelial regulation of vascular tone via several pathways.

The endothelial cell reacts to physical and chemical stimuli from the circulation. Physical (hemodynamic) factors increase the sensory tension of endothelial cells, which depends on the blood flow velocity in the vessels. Chemical stimuli are represented by vasoactive substances (e.g., adenosine monophosphate, bradykinin, histamine), neurotransmitters (e.g., acetylcholine), hormones (e.g., antidiuretic hormone, angiotensin), coagulation factors, and substances produced by platelets (e.g., thrombin) [1].

In cases of locally increased blood flow, the local regulatory system is activated, which results in endothelium-mediated vasodilation. Nitric oxide (NO), prostacyclin (PGI$_2$), or endothelium-derived hyperpolarization (EDH) is secreted from the endothelium due to the increased shear stress. This may be a form of endothelium protection, resulting from
increased blood flow. In the case of a turbulent flow, the risk of damage to the endothelium and consequent thrombus formation increases. NO mainly regulates the tonus of relatively large conduit vessels. On the contrary, EDH mediates vasodilation, especially in small resistance vessels in the microcirculation. Prostacyclins play a small but constant role, independent of vessel size. Furthermore, metabolic regulation can occur when substances (e.g., O$_2$) that are necessary to ensure metabolism or emerging catabolites (CO$_2$, lactic acid, adenosine, and others) act on vascular smooth muscle and affect its tone, either directly or more often through endothelial receptors [7–9].

Angiotensin-Converting Enzyme

A detailed view of the intracellular mediation of the effects of vasoactive substances brings about a thought-provoking idea: a key player in this game is angiotensin-converting enzyme (ACE), also known as kininase II. It is produced by the vascular endothelium and plays a central role in the renin–angiotensin–aldosterone system (RAAS). ACE converts angiotensin I (AT I) to octapeptide angiotensin II (AT II), which is a very potent vasoconstrictor (Figure 4) [10]. AT II increases the production of reactive oxygen species (ROS) via increasing NADPH oxidase activity. Increased levels of endothelial ROS lead to rapid inactivation or degradation of NO, and at the same time to endothelial nitric oxide synthase (eNOS) and prostacyclin synthase (PGIS) inhibition [10–14]. It is important to mention that NADPH oxidase activation is one of the pathways involved in production of endothelium-derived H$_2$O$_2$ (E-D H$_2$O$_2$) hyperpolarizing factor, a substance with high vasodilating potency [7].

![Figure 4. Regulation of vascular tone via ACE pathway. AT I: angiotensin I; AT II: angiotensin II; ACE: angiotensin-converting enzyme; AT$_1$R: angiotensin type-1 receptor; BK: bradykinin; EC: endothelial cell; eNOS: endothelial NO synthase; i-eNOS: endothelial NO synthase inhibition; i-PGIS: prostacyclin synthase inhibition; NO: nitric oxide; N: nucleus; ROS: reactive oxygen species; SMC: smooth muscle cell; vIF: various inactive fragments; vRF: various reactive fragments.](image-url)

AT II itself increases blood pressure, not only through vasoconstriction, but also through stimulation of the sympathetic system via the synthesis of aldosterone. AT II also acts as an inducer of growth, cell migration, and cell mitosis in vascular smooth muscle. It also increases the synthesis of type I and III collagen in fibroblasts, resulting in thickening of the blood vessel wall and myocardium and fibrosis. These effects are mediated by receptor type I for angiotensin II (AT$_1$R) and can be blocked by AT$_1$R blockers known as the “sartan” family [15,16]. Receptor type II for AT II mediates the opposite effect, e.g., inhibition of cell...
proliferation in coronary endothelial cells [17]. AT II may trigger endothelial cell apoptosis, mediated either by generation of ROS or by inhibiting the function of the antiapoptotic protein B-cell lymphoma 2 [11]. The regulation of its effect is an essential part of the clinical practice of treating hypertension [10].

Moreover, ACE degrades kinins. Bradykinin stimulates NO and PGI$_2$ release [10–12,14] and increases vascular permeability [18]. The effect of bradykinin on NO release is mediated by B$_2$ receptor [10–12,14]. Angiotensin-converting enzyme inhibitors (iACEs) potentiate the actions of bradykinin by reducing its degradation [11], which leads to higher bradykinin levels. On the contrary, blocking the effect of AT II through AT$_1$R does not affect the level of bradykinin [19].

At this point, we would like to emphasize that iACEs affect the delicate physiological balance between NO and EDH [7].

Nitric Oxide–Cyclic Guanosine Monophosphate Activation Pathway

Endothelium-derived relaxing factor (NO) is produced from the amino acid arginine, which is transferred into the amino acid citrulline. This reaction is catalyzed by the enzyme nitric oxide synthase (NOS).

Nitric oxide is one of the three gasotransmitters, along with carbon monoxide (CO) and hydrogen sulphide (H$_2$S), which are critical for cardiovascular homeostasis [20]. NO acts as a mediator, having a local vasodilatory effect on vascular smooth muscle. NOS exists in three isoforms: endothelial (eNOS), neural (nNOS), and inducible (iNOS). Vascular tone regulation is primarily dependent on NO produced in the reaction catalyzed by eNOS [21,22]. Its production is regulated either at the level of its activity (increased by agonists such as CO, bradykinin, acetylcholine, substance P, thrombin, insulin, and shear stress) or gene expression [6,21–25]. NO stimulates the soluble receptor with guanylate cyclase activity (sGC) in a neighboring cell. This leads to an increase in the cyclic guanosine monophosphate (cGMP) concentration, and consequently to vasodilation (Figure 5). Another possible way to affect the NO–cGMP pathway is to modulate the activity or gene expression of sGC. Some substances activate the sGC [21,22].

![Figure 5](image_url)
Inhibitors of both eNOS and sGC are used in studies focusing on the NO–cGMP pathway. In the case of eNOS, NG-nitro-L-arginine methyl esters or NG-monomethyl-L-arginine are most often used; in the case of sGC, methylene blue or 1H-[1,2,4]oxadiazole[4,3-a]quinoxalin-1-one can be employed [21,22]. Another possible approach is the use of NO scavengers, e.g., hydroxocobalamin [26]. The plants are summarized in Table 1, the vasodilation effects of which are mediated via the NO–cGMP pathway. As examples, *Cynara scolymus* L. [27], *Panax ginseng* C. A. Meyer [28], and *Theobroma cacao* L. [29] can be mentioned.

Prostacyclin–Cyclic Adenosine Monophosphate Activation Pathway

Prostacyclin is an endogenous eicosanoid that relaxes vascular smooth muscle by stimulating the G-protein-coupled receptor. It is a vasodilator and platelet aggregation inhibitor, which activates adenylyl cyclase (AC), thereby increasing cyclic adenosine monophosphate (cAMP) levels. It also counterbalances the vasoconstrictor effect of thromboxane A$_2$ (TXA$_2$). Arachidonic acid (ARA) is metabolized by cyclooxygenase (COX) to form unstable prostaglandin H$_2$ (PGH$_2$). PGI$_2$ release is further catalyzed by PGIS (Figure 6) [30–32]. Production of PGI$_2$ is activated by endogenous substances, such as histamine, serotonin, bradykinin, and acetylcholine [32,33]. PGIS is activated by thrombin, cytokines, growth factors, and shear stress [31]. On the contrary, increased concentration of ROS inhibits PGIS activity, resulting in decreased PGI$_2$ synthesis [30–32].

Numerous natural substances have been studied for their vasodilation effects mediated via the PGI2–cAMP pathway. Both AC inhibitor SQ22536 and protein kinase A inhibitor KT5720 can be employed to study this pathway. Another possibility is the use of analogues and antagonists of cyclic nucleotides or COX inhibitor indomethacin [26,32,33]. The plants’ vasodilation effects, which are mediated via the PGI2–cAMP pathway, are summarized in Table 2. A frequently mentioned representative of this group is *Piper truncatum* Vell [34,35].

![Figure 6. Regulation of vascular tone via prostacyclin–cyclic adenosine monophosphate pathway.](image)

Figure 6. Regulation of vascular tone via prostacyclin–cyclic adenosine monophosphate pathway. AC: adenylyl cyclase; ARA: arachidonic acid; ATP: adenosine triphosphate; cAMP: cyclic adenosine monophosphate; COX: cyclooxygenase; EC: endothelial cell; K$_{Ca}$: Ca$^{2+}$-activated K$^+$ channels; MH: membrane hyperpolarization; N: nucleus; PDE: phosphodiesterase; PGH$_2$: prostaglandin H$_2$; PGI$_2$: prostacyclin; PGIS: prostacyclin synthase; SMC: smooth muscle cell; SS: shear stress; TxA$_2$: thromboxane synthase.

Inhibition of Phosphodiesterase

Cyclic nucleotide phosphodiesterases (PDEs) are enzymes regulating cellular cAMP and cGMP levels by regulation of their degradation rate. Inhibition of the PDE enzyme leads to an increase of cyclic nucleotide levels and induces vasodilation (Figure 7). The change in PDE activity, as measured by radioenzymatic assays, can elucidate the role of
PDEs in the vasodilation effects of compounds in this pathway [33]. The plant metabolites that cause vasodilation via inhibition of PDE are summarized in Table 3. A model representative of such plants is *Epimedium* L. [36,37].

![Figure 7](image.png)

Figure 7. Regulation of vascular tone via inhibition of phosphodiesterase. AC: adenylyl cyclase; ARA: arachidonic acid; ATP: adenosine triphosphate; cAMP: cyclic adenosine monophosphate; COX: cyclooxygenase; EC: endothelial cell; N: nucleus; PDE: phosphodiesterase; PGH$_2$: prostaglandin H$_2$; PGI$_2$: prostacyclin; PGIS: prostacyclin synthase; SMC: smooth muscle cell; SS: shear stress.

Activation of K$^+$ Channels or Inhibition of Intracellular Ca$^{2+}$ Levels

Vascular smooth muscle cell (VSMC) relaxation can be directly regulated by specific ionic channels. An important role is played by K$^+$ channels. In VSMC, four different types of K$^+$ channels were characterized: voltage-dependent, Ca$^{2+}$-activated, ATP-dependent, and inward rectifier [33,38].

K$^+$ channels control the membrane potential in VSMC, thereby determining the activity of voltage-dependent Ca$^{2+}$ channels (VDCC). A K$^+$ channel opening leads to membrane hyperpolarization (Figure 8), resulting in closing of VDCC and preventing Ca$^{2+}$ influx. The concentration of cytosolic Ca$^{2+}$ is reduced, which leads to VSMC relaxation and consequent vasodilation [39]. A significant number of natural vasodilators at least partially utilize the mechanism of Ca$^{2+}$-activated K$^+$ channel activation [33,38].

Decreasing of the intracellular Ca$^{2+}$ concentration is another possibility to induce vasodilation. Ca$^{2+}$ enters cells through a receptor-operated Ca$^{2+}$ channel (ROCC) or VDCC. Obstructing these channels or inhibition of Ca$^{2+}$ release from intracellular stores lead to vasodilation [33].

Endothelium-derived hyperpolarization (EDH) represents a vasodilation system that is particularly important in small arteries, which are mostly dependent on Ca$^{2+}$ influx during contraction. EDH is used to describe the endothelium-dependent relaxation that is non-NO and non-prostanoid in nature. This results in VSMC hyperpolarization via opening of K$^+$-channels or activation of Na$^+$–K$^+$-ATPase [38,40].
Figure 8. Regulation of vascular tone via activation of K⁺ channels or inhibition of intracellular Ca²⁺ levels. ARA: arachidonic acid; ATP: adenosine triphosphate; cAMP: cyclic adenosine monophosphate; COX: cyclooxygenase; EC: endothelial cell; K_{Ca}: Ca²⁺-activated K⁺ channels; MH: membrane hyperpolarization; N: nucleus; PGH₂: prostaglandin H₂; PGI₂: prostacyclin; PGIS: prostacyclin synthase; SMC: smooth muscle cell; SS: shear stress; TPR: thromboxane A₂–prostanoid receptor; TxAS: thromboxane synthase.

Since 1988, several candidates have been identified as the driver of EDH, including H₂O₂ [7], H₂S [20,41,42], epoxyeicosatrienoic acids, metabolites of ARA, K⁺ ions, electrical communication through gap junctions, and P450 epoxygenase pathway. Nowadays, E-D H₂O₂ is one of the major EDH in human vessels. It is generated by the dismutation of superoxide anions derived from various sources in the endothelium, including NADPH oxidase and eNOS [7]. Despite the fact that EDH evokes hyperpolarization and subsequent vasodilation (especially of small resistance vessels), higher concentrations of E-D H₂O₂ induce vasoconstriction by releasing COX-derived TXA₂ [7,43].

As mentioned above, although a lot of attention is paid to NO-targeted therapy and ROS elimination (including iACEs), the evidence indicates the importance of maintaining the delicate balance between NO and EDH. Moreover, despite the fact that ROS have been considered primarily harmful for cells and tissues, physiological levels of ROS can serve as crucial signaling molecules [7].

The vasodilation is caused by either K⁺ channel activation or based on decreasing intracellular Ca²⁺ levels, which can be studied by using selective activators or blockers of specific ionic channels. Voltage–clamp or patch–clamp techniques help to elucidate the roles of particular channels and their activation or blocking in vasodilation processes. Another possibility is to study the vasodilation or vasoconstriction effect of a particular substance on isolated vessels or isolated aortic rings. Most of the present knowledge of the roles of ionic channels in vasodilation was gained in experiments using non-selective K⁺ channel blockers chloride tetraethylammonium and BaCl₂, ATP-dependent K⁺ channel blocker glibenclamide, and voltage-dependent K⁺ channel blocker 4-aminopyridine. Various compounds affecting either Ca²⁺ influx across the plasmatic membrane via Ca²⁺ channels (such as cobalt or verapamil) or its release or re-uptake from or to the sarcoplasmic reticulum (SR Ca²⁺ channel opener ryanodine or SR Ca²⁺–ATPase blockers cyclopiazonic acid and thapsigargin) can be used in studies focusing on the changes of cytosolic Ca²⁺ availability and its impact on vascular tone [33]. The plants and their primary or secondary metabolites that lead to vasodilation via this pathway are summarized in Table 4.

All of the abovementioned substances are vasodilatory ones. Contrary to this, ET-1 and TXA₂ are endothelium-produced vasoconstrictors. Next to them, AT II-mediated vasoconstriction is worth mentioning [32].
2.2.2. Other Endothelial Functions

In addition to the previously described functions, other endothelial functions should be mentioned, such as its role in hemostasis and coagulation. Endothelial and smooth muscle cells express a variety of proteins that act both pro- and antithrombotically (intact non-wettable endothelium is an important factor in preventing intravascular hemocoagulation). Endothelial cells also participate in the regulation of inflammation [6,44]. Another endothelium function is the transport of numerous substances dissolved in blood to the subendothelial space to meet the metabolic needs of the surrounding tissues [6].

Finally, the endothelium participates in lipid metabolism on one side, while circulating lipids (fatty acids, lipoproteins) alter endothelial function on the other side. This leads to certain endothelial changes that exacerbate inflammatory processes and may promote certain diseases, such as atherogenesis [45].

3. Substances Affecting Vascular Tone

3.1. Substances with Vasoconstriction Activity

Most research is focused on substances with vasodilatory potential, since these are of high clinical relevance. Although there are also some substances with vasoconstriction activity, research studies focus on them quite rarely. In folk medicine, some plants are used for their vasoconstriction activity, e.g., Cissus sicyoides L. (Vitaceae Juss.) [46], Nicotiana tabacum L. (Solanaceae Juss.) [47,48], Potentilla erecta (L.) Räusch. (Rosaceae L.) [49], Paspalidium flavidum (Retz.) A. Camus (Poaceae Barnhart) [50], and Haloxylon recurvum Bunge ex Boiss. (Amaranthaceae Juss.) [51,52].

3.1.1. Thromboxane A2

Thromboxane A2 (as well as PG12) is a metabolite of ARA. For a long time, TXA2 was known to be released from platelets. Nowadays, it is known to be released by a variety of cells, including the endothelial ones. It stimulates platelet activation, aggregation, and proliferation, as well as vasoconstriction [53,54]. It counterbalances the effects of PGI2, especially in pathological situations, such as tissue injury and inflammation [54]. ARA is metabolised by COX to form unstable PGH2. PGH2 is further converted into TXA2 by thromboxane synthase (TXAS) [53]. TXA2 binds to TXA2–prostanoid receptor (TPR), resulting in an influx of Ca2+ ions and VSMC contraction [53,54]. Production of TXA2 can be evoked by acetylcholine, among others. TXA2 level reduction and TPR antagonism may be promising therapeutic targets to prevent cardiovascular disease [53,55].

As mentioned above, the production of synergic TXA2 and PGI2 is catalyzed by COX enzymes. The two COX isoforms, cyclooxygenase 1 (COX-1) and cyclooxygenase 2 (COX-2), metabolise ARA to PGH2, the common substrate for TXA2 and PGI2 synthesis. TXA2 is the predominant COX-1-derived product, in contrast to PGI2, which is synthesized as a result of COX-2 activation [32,56].

3.1.2. Endothelin

The common name endothelin (ET) is used for three peptides, namely endothelin-1, -2, and -3 (ET-1, ET-2, and ET-3). ET-1 is the most examined endothelin and is considered the most potent vasoconstrictive substance to date. Its expression is stimulated by shear stress, thrombin, insulin, adrenaline, AT II, cortisol, and also by hypoxia; it is inhibited by NO and natriuretic peptides. ET-1 is produced by endothelial cells, smooth muscle cells, macrophages, fibroblasts, cardiomyocytes, neurons, and endocrine pancreas cells. ET-2 is formed in the ovaries and intestinal epithelial cells. ET-3 is expressed in endothelial cells, placenta, brain neurons, melanocytes, and renal tubular epithelial cells [57–61].

Formation of the final, biologically active ET-1 is catalyzed by endothelin-converting enzymes 1–3 (ECE 1–3), each occurring in several isoforms. ECE-1 is the major enzyme, which catalyzes all endothelin isoform formation.
Endothelin receptors ET_A, ET_B^1, ET_B^2, and ET_C are G-protein-coupled receptors, differing in their affinity for individual ETs. ET-1 via ET_A mediates vasoconstriction (ET_A is expressed mainly in smooth muscle cells). Moreover, bronchoconstriction and secretion of aldosterone are mediated via ET_A. ET_B^1 and ET_B^2 occur in both endothelial and smooth muscle cells. ET_B^1 agonist causes vasodilation by stimulating NO, PGI$_2$, and EDH. On the contrary, ET_B^2 mediates vasoconstriction [57–61].

3.1.3. Platelet-Activating Factor

Platelet-activating factor (PAF) is a phospholipid mediator, synthesis and degradation of which are catalyzed enzymatically. PAF plays a role in numerous pathophysiological reactions—it potentiates aggregation and chemotaxis, as well as formation of neutrophils, eosinophils, and monocytes. In other words, by increasing vascular permeability, it induces local inflammatory processes and edema [62].

4. Exogenous Substances with Vasodilation Activity

Endogenous substances with vasodilatory potential were overviewed in previous chapters. This chapter is focused on plants with a potential vasodilating effect. Table 1 to Table 4 summarize plants and their primary or secondary metabolites, in which certain effects dominate a particular signaling pathway—in Table 1 it is the NO–cGMP activation pathway, in Table 2 it is the PGI$_2$–cAMP activation pathway, in Table 3 it is inhibition of PDE, and in Table 4 it is activation of K^+ channels or inhibition of intracellular Ca$^{2+}$ levels.

Numerous plants exhibiting vasodilatory effects are reported to use more than one signaling pathway. In Table 5, plant metabolites with combined mechanisms and without a dominant mechanism are summarized. Table 6 presents the plant metabolites, the effects of which have not yet been fully elucidated. Most metabolites with vasodilatory activity belong to alkaloids, flavonoids, or terpenes; additionally, stilbenes, lignans, xanthones, and coumarins are reported to have vasoactive effects. Numerous studies suggest that the most common mechanisms are interactions with the NO–cGMP pathway [33].

Table 1. Nitric oxide–cyclic guanosine monophosphate activation pathway.

Plant(s)	Primary/Secondary Metabolite(s)	Plant Part(s) Used	Citation(s)
Allium sativum L. (Amaryllidaceae Jaume St.-Hil.)	alliiin, allicin	aged garlic extract	[63–66]
Alpinia purpurata (Vieill.) K. Schum. (Zingiberaceae Lindl.)	rutin, quercetin, kaempferol-3-O-β-D-glucuronide	leaves	[67]
Alpinia zerumbet (Pers.) Burtt & R.M. Sm. (Zingiberaceae Lindl.)	catechin, epicatechin, rutin, quercetin, kaempferol 3-O-rutinoside, kaempferol 3-O-glucuronide, dihydro-5,6-dehydrokawain, 5,6-dehydrokawain	leaves	[67,68]
Arbutus unedo L. (Ericaceae)	tannins, azfeline, juglamine, avicularine, quercitrine, hyperoside	leaves, roots	[69]
Caesalpinia sappan L. (Fabaceae Lindl.)	brazilin and hematoxylin	heartwood	[70,71]
Calicotome villosa (Poir.) Link. (Fabaceae Lindl.)	chrysin	flowers, leaves	[72–74]
Canavalia DC. (Fabaceae Lindl.)	lectins	seeds	[75,76]
Casimiroa Llave & Lex (Casimiroa edulis Llave & Lex and Casimiroa pubescens Ramirez) (Rutaceae Juss.)	hernianin, imperatorin, geranyloxyspsoralen, 5,6,2′,3′,4′-pentamethoxyflavon	seeds, leaves	[77,78]
Table 1. Cont.

Plant(s)	Primary/Secondary Metabolite(s)	Plant Part(s) Used	Citation(s)
Centaurium cachanalhuac (Mol.) Robinson (Gentianaceae Juss.)	xanthones	stems, flowers, leaves	[79]
Cistus ladaniferus L. (Cistaceae Juss.)	quercetin, kaempferol, myricetin	leaves	[80]
Coptosapelta flavescens Korth (Rubiaceae Juss.)	saponin, polyphenols	stems	[81]
Crithmum maritimun L. (Apiaceae Lindl.)	limonene, terpinen-4-ol, carvacrol, thymol, chlorogenic acid	flowers, stems, leaves	[82]
Croton schiedeanus Schlcht (Euphorbiaceae Juss.)	quercetin 3,7-dimethyl ether, diterpenoid and fenylbutanoid compounds	aerial parts	[83–85]
Cynara scolymus L. (Asteraceae Martinov)	cymaroside, luteolin, cyanarin, chlorogenic acid	leaves	[27]
Derris (Lonchoecarpus) urucu Killip & A. C. Smith (Fabaceae Lindl.)	isotirumalin	leaves	[86,87]
Euterpe oleracea C. Martius (Arecaceae Bercht & J. Presl)	cyanidin 3-O-arabinoside, cyanidin 3-O-glucoside, cyanidin 3-O-rutinoside, epicatechine, catechine homorientin, orientin, isovitexin, taxifolin deoxyhexose	fruits	[88]
Geum japonicum Thunberg (Rosaceae L.)	penta-O-galloyl-β-glucoside, casuariin, and 5-desgalloylstachyurin	whole plants	[89]
Ginkgo biloba L. (Ginkgoaceae)	bilobalide	leaves	[90,91]
Inula viscosa L. (Asteraceae Martinov)	cynarin, chlorogenic acid	leaves	[92]
Magnolia grandiflora L. (Magnoliaceae Juss.)	vulgarenol	flower petals	[93]
Microdesmis keayana J. Léonard (Pandanaceae)	keayanidin B, keayanin	roots	[94]
Ocimum gratissimum L. (Lamiaceae Lindl.)	eugenol	leaves	[95,96]
Paeonia sect. Moutan DC. (Paeoniaceae)	paeoniflorin, paeonidanin, methylpaeoniflorin, tetragalloylglucose, pentagalloylglucose	rootbark	[97]
Panax ginseng C. A. Meyer (Araliaceae Juss.)	ginsenosides-Rg1, ginsenoside-Rb1	roots	[28,98,99]
Prunella vulgaris L. (Lamiaceae Lindl.)	cynaroside, luteolin, ursolic acid, betulinic acid, quercetin	flowering spike	[100,101]
Raphanus sativus L. (Brassicaceae Burnett)	sinapine thiocyanate, glucosinolates, brassinosteroids, flavonoids	seeds, leaves	[102,103]
Rheum undulatum L. (Polygonaceae Juss.)	piceatannol, tetrahydroxystilbene, resveratrol, anthraquinone derivates	rhizomes	[104–106]
Saururus chinensis (SC) Baill. (Saururaceae)	saucerneol, saucerneol D, machilin D	roots	[107]
Table 1. Cont.

Plant(s)	Primary/Secondary Metabolite(s)	Plant Part(s) Used	Citation(s)
Selaginella tamariscina (Beauv.) Spring.	amentoflavone	whole plants	[108,109]
(Selaginellaceae)			
Solanum crispum Ruiz & Pav	alkaloids, flavonoids, resins, saponins, tannins	stems, leaves	[110]
(Solanaceae Juss.)			
Tabernaemontana dichotoma Roxb. ex Wall.	10-methoxyaffinisine, cathafoline, alstonisine	bark	[111]
(Apocynaceae Juss.)			
Tapirira guianensis Aubl.	triterpenoids, quercetin, myricetin glycoside, hyperoside, penta-O-galloyl-β-glucoside	leaves	[112]
(Anacardiaceae Lindl.)			
Theobroma cacao L. (Malvaceae Juss.)	epicatechin, oligomeric procyanidins	seeds	[29,113–116]
Vitis labrusca L. (Vitaceae Juss.)	vitisin C, phenolic acids, anthocyanins, flavonoids	grape skin, stems	[117–119]
Vitis vinifera L. (Vitaceae Juss.)	vitisin C, phenolic acids, anthocyanins, flavonoids	grape skin, stems	[117,119–122]
Ziziphus jujuba (L.) Mill.	betulinic acid	seeds	[123]
(Rhamnaceae Juss.)			

Table 2. Prostacyclin–cyclic adenosine monophosphate activation pathway.

Plant(s)	Primary/Secondary Metabolite(s)	Plant Part(s) Used	Citation(s)
Kaempferia galanga L. (Zingiberaeae Lindl.)	ethyl cinnamate	rhizomes	[124]
Piper truncatum Vell. (Piperaceae C. A. Agardh)	eudesmin	leaves, stems	[34,35]
Xylopia langdorffiana A.St.-Hil. & Tul.	labdane-302	stems	[125,126]
(Annonaceae Juss.)			

Table 3. Inhibition of phosphodiesterase.

Plant(s)	Primary/Secondary Metabolite(s)	Plant Part(s) Used	Citation(s)
Coffea arabica L. (Rubiaceae Juss.)	caffeine, theobromine, theophylline, chlorogenic acid, quercetin, ferulic acid, kaempferol, rutin	seeds	[127–129]
Epimedium L. (Berberidaceae Juss.)	icariin	young stems	[36,37,130–132]

Table 4. Activation of K⁺ channels or inhibition of intracellular Ca²⁺ levels.

Plant(s)	Primary/Secondary Metabolite(s)	Plant Part(s) Used	Citation(s)
Alchemilla vulgaris L. (Rosaceae L.)	quercetin	aerial parts	[133,134]
Annu visnaga (L.) Lam. (Apiaceae Lindl.)	visnagin	fruits	[135]
Calea glomerata Klatt. (Asteraceae Martinov)	flavonoids, terpenoids	aerial parts	[83,136]
Cistus populifolius L. (Cistaceae Juss.)	diterpenoids, luteolin	leaves	[137,138]
Cymbopogon martini (Roxb.) W.Watson (Poaceae Barnhart)	geraniol	leaves	[139]
Table 4. Cont.

Plant(s)	Primary/Secondary Metabolite(s)	Plant Part(s) Used	Citation(s)
Garcinia kola (Heckel)	kolaviron	seeds	[140]
Gentiana kochiana J.O.E. Perrier & Songeon (Gentianaceae Juss.)	gentiacaulein, gentiakochianin	roots	[141]
Halenia elliptica D. Don (Gentianaceae Juss.)	1-hydroxy-2,3,5-trimethoxy-xanthone (HM-1)	whole plants	[142]
Hibiscus sabdariffa L. (Malvaceae Juss.)	hibiscus acid, garcina acid	calyces	[143]
Iostephane heterophylla (Cav.) Benth. (Asteraceae Martinov)	xanthorrhizol	whole plants	[144]
Ligusticum jehelse Nakai et Kitagawa (Apiaceae Lindl.)	linoleic acid, ferulic acid, ligustilide	roots, rhizomes	[145]
Marrubium vulgare L. (Lamiaceae Lindl.)	marrubiin, marrubenol	aerial parts	[146,147]
Maxillaria densa Lindl. (Orchidaceae Juss.)	gymnopusin, fimbril A, erianthridin	whole plants	[148]
Morinda citrifolia L. (Rubiacae Juss.)	alkaloid xeronine, phenolic compounds, steroids, flavonoids, tannins, coumarins, anthraquinones	roots	[149,150]
Nauclea officinalis (Pierre ex Pit.) Merr. & Chun (Rubiacae Juss.)	naucleine, angustine, nauclefine, nauletine	bark	[151,152]
Peganum harmala L. (Zygophyllaceae)	harmaline, harmine, harmalol	seeds	[153–155]
Polygala caudata Rehder & E.H.Wilson (Polygalaecae Juss.)	euxanthone	roots	[156,157]
Prunus yedoensis Matsum (Rosaceae L.)	prunetin	bark	[158,159]
Sarcococca saligna (D. Don) Muell.-Arg. (Buxaceae Dumort.)	flavonoids	whole plants	[160]
Trachyspermum ammi (L.) Sprague (Apiaceae Lindl.)	thymol, gamma-terpinene, p-cymene	seeds	[161]
Uncaria rhynchophylla (Miquel) Jack (Rubiacae Juss.)	rhynchophylline, isorhynchophylline, hirsutine	hooks	[162,163]

Table 5. Combination of mechanisms without a dominant one.

Plant(s)	Primary/Secondary Metabolite(s)	Plant Part(s) Used	Citation(s)
Agastache Mexicana (Kunth.) Link. & Eppling (Lamiaceae Lindl.)	tiliatin, acecatin	aerial parts	[164,165]
Alpinia henryi K. Schum. (Zingiberaceae Lindl.)	cardamonin, alpinetin	leaves	[166,167]
Alstonia scholaris (L.) R. Br. (Apocynaceae Juss.)	picrine, schloaricine, alstonamine, rhazimanine, botulin, ursolic acid, β-sitosterol	bark, leaves	[168,169]
Alstonia macrophyilla Wall. ex G. Don (Apocynaceae Juss.)	vincamedine	leaves	[170]
Plant(s)	Primary/Secondary Metabolite(s)	Plant Part(s) Used	Citation(s)
----------------------------------	---	--------------------	-------------
Andrographis paniculata (burm. F.) Nees (Acanthaceae Juss.)	14-deoxyandrographolide, 14-deoxy-11,12-di-hydroandrographolide	leaves	[171–174]
Angelica dahurica Bentham et Hooker (Apiaceae Lindl.)	pyranocoumarin, biscoumarin, isomeraperitin, imperatoritin, phellopterin, isodemethylfuropinarine, demethylfuropinarine, decursinol	roots, rhizomes	[175–178]
Angelica gigas Nakai (Apiaceae Lindl.)	ferulic acid	roots	[179]
Angelica keiskei Koidz. (Apiaceae Lindl.)	xanthoangelol, 4-hydroxyderricin, xanthoangelol B, xanthoangelol E, xanthoangelol F	roots	[180]
Apium graveolens L. var. dulce DC (Apiaceae Lindl.)	apigenin	leaves, roots	[181–183]
Bacopa monnieri (L.) Pennel (Plantaginaceae Juss.)	bacoside A, bacopaside I, luteolin, apigenin	whole plants	[184–187]
Berberis vulgaris L. (Berberidaceae Juss.)	berberine	fruits, stems bark, roots	[188,189]
Camellia sinensis (L.) Kunzite (Theaceae D. Don)	epigallocatechin-3-gallate, epicatechin, epigallocatechin, epicatechin-3-gallate	green tea (leaves)	[190–194]
Chenopodium ambrosioides L. (Amaranthaceae Juss.)	kaempferol, quercetin, isorhamnetin, catechins, delphinidin	leaves	[195]
Chrysanthemum morifolium Ramat (Asteraceae Martinov)	luteolin-7-O-β-D-glucoside, apigenin-7-O-β-D-glucoside, acacetin-7-O-β-D-glucoside	flowers	[196]
Coptis chinensis Franch. (Ranunculaceae Arnott)	berberine, coptisine	rhizomes	[197–200]
Curcuma longa L. (Zingiberaceae Lindl.)	curcumane C, curcumane D, 4,5-seco-cadinane sesquiterpenoid	rhizomes	[201]
Dalbergia odorifera T. Chen (Fabaceae Lindl.)	butein, isoliquiritigenin, biochanin A	roots, leaves	[202–208]
Dioecia grandiflora Mart. ex Benth (Fabaceae Lindl.)	dioecia, floranol	roots	[209–213]
Echinodorus grandiflorus (Cham. & Schltdl.) Michelii (Alismataceae Vent.)	flavonoids, diterpenes, triterpenes	leaves	[214–216]
Elsholtzia splendens Nakai (Lamiaceae Lindl.)	apigenin, luteolin	aerial parts	[217,218]
Hancornia speciosa B. A. Gomes (Apocynaceae Juss.)	rutin	leaves	[219]
Liqusticum wallichii Franchat (Apiaceae Lindl.)	butylidenephthalide, ligustilide, senkyunolide A, tetramethylpyrazine	rhizomes	[220–223]
Mentha X villosa Hudson (Lamiaceae Lindl.)	rotundifolone	leaves	[224–227]
Mitragyna ciliata Aubrev. & Pellegr. (Rubiaceae Juss.)	mitragynine, mitraphylline, rhyophylline, flavonoids	stem bark	[228]
Phaeanthus crassipetalus Becc. (Annonaceae Juss.)	limacine, pecrassipine A, backebergine	bark, leaves	[229]
Table 5. Cont.

Plant(s)	Primary/Secondary Metabolite(s)	Plant Part(s) Used	Citation(s)
Picrorhiza kurroa L. *(Plantaginaceae Juss.)*	apocynin	roots	[230,231]
Prunus serotina Ehrh. *(Rosaceae L.)*	ursolic acid, uvaol	fruits	[232]
Schisandra chinensis (Turcz.) Baill. *(Schisandraceae Bl.)*	schizandrin, γ-schizandrin, gomisin A	fruits (seeds)	[233–235]
Scutellaria baicalensis Georgi *(Lamiaceae Lindl.)*	baicalin	roots	[236,237]
Senecio nutans Sch. Bip. *(Asteraceae Martinov)*	4-hydroxy-3-(3-methyl-2-butenyl)acetophenone, 5-acetyl-6-hydroxy-2-isopropenyl-2,3-dihydrobenzofuran	aerial parts	[238]
Thymus linearis Benth. *(Lamiaceae Lindl.)*	thymol, carvacrol	aerial parts	[239]

Table 6. Not fully elucidated/not specified.

Plant	Primary/Secondary Metabolite	Plant Part Used	Citation
Calpurnia aurea (Ait.) Benth. *(Fabaceae Lindl.)*		seeds	[240]
Vitex negundo L. *(Lamiaceae Lindl.)*		aerial parts	[241]
Ficus saussureana DC *(Moraceae Dumort.)*		root bark	[242]
Prunus persica (L.) *(Rosaceae L.)*		branches	[243]
Satureja obovata Lag. *(Lamiaceae Lindl.)*	eriodictyol		[244,245]
Vernonia amygdalina Del. *(Asteraceae Martinov)*	alkaloids, flavonoids, saponins	leaves	[246]

5. Conclusions

The clinical relevance of endothelial dysfunction in patients with (not only) cardiovascular disorders remains subject to investigation. Although a number of vascular and non-vascular markers of endothelial dysfunction have been proposed, inexpensive, clinically accessible, optimal, and reproducible indicators still have not been found [247]. Nevertheless, it should always be considered that numerous plants and their metabolites may impact on the endothelium and affect its physiological functions. This may become even more important if the endothelium is disordered, as can be observed in numerous diseases. Therefore, patients should be actively informed about possible interactions between the prescribed medication and various dietary supplements or folk medicines containing substances with the potential to affect endothelial functions.

Further basic science and clinical studies are needed to better inform us about the therapeutic potential of and drug interferences from plant metabolites.

Author Contributions: A.B. was responsible for the literature search and writing the article. M.N. participated in the review and editing of the text. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Masaryk University as part of project numbers MUNI/A/1307/2019 and MUNI/A/1246/2020, with the support of the Specific University Research Grant, as pro-
vided by the Ministry of Education, Youth, and Sports of the Czech Republic in the years 2020 and 2021. This research was supported by project number LQ1605 from the National Program of Sustainability II (MEYS CR).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is not applicable to this article.

Acknowledgments: The authors wish to thank Petr Babula for creating a supportive atmosphere and for fruitful discussions over the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

Acronym	Definition
AC	adenylyl cyclase
ACE	angiotensin-converting enzyme
ARA	arachidonic acid
AT I	angiotensin I
AT II	angiotensin II
AT1R	angiotensin II receptor type-1
ATP	adenosine triphosphate
BK	bradykinin
C	calmodulin
cAMP	cyclic adenosine monophosphate
cGMP	cyclic guanosine monophosphate
CNP	natriuretic peptide C
CO	carbon monoxide
COX	cyclooxygenase
COX-1	cyclooxygenase 1
COX-2	cyclooxygenase 2
CSF	colony-stimulating factor
EC	endothelial cell
ECE-1	endothelin-converting enzyme 1
ECE-2	endothelin-converting enzyme 2
ECE-3	endothelin-converting enzyme 3
ECM	extracellular matrix
EDH	endothelium-derived hyperpolarization
E-D H₂O₂	endothelium-derived H₂O₂
eNOS	endothelial nitric oxide synthase
ER	endoplasmic reticulum
ET	endothelin
ET-1	endothelin-1
ET-2	endothelin-2
ET-3	endothelin-3
ETₐ	receptor A for endothelin
ET₁R	receptor B1 for endothelin
ET₂R	receptor B2 for endothelin
ET₃C	receptor C for endothelin
GTP	guanosine triphosphate
H₂S	hydrogen sulphide
iACEs	angiotensin-converting enzyme inhibitors
i-eNOS	endothelial nitric oxide synthase inhibition
i-PGIS	prostacyclin synthase inhibition
IGF insulin-like growth factor
iNOS inducible nitric oxide synthase
K_{Ca} Ca²⁺ activated K⁺ channels
L-arg L-arginine
LDL-receptor low-density lipoprotein receptor
MH membrane hyperpolarization
MHC II major histocompatibility complex type 2
N nucleus
nNOS neural nitric oxide synthase
NO nitric oxide
NO–cGMP nitric oxide–cyclic guanosine monophosphate
NOS nitric oxide synthase
PAF platelet-activating factor
PAI plasminogen activator inhibitor
PDE phosphodiesterase
PGH₂ prostaglandin H₂
PGI₂ prostacyclin
PGI2–cAMP prostacyclin–cyclic adenosine monophosphate
PGIS prostacyclin synthase
R receptor
RAAS renin–angiotensin–aldosterone system
ROCC receptor-operated Ca²⁺ channels
ROS reactive oxygen species
sGC soluble receptor with guanylate cyclase activity
SMC smooth muscle cell
SO Ca²⁺ store-operated Ca²⁺ channels
SR sarcoplasmic reticulum
SS shear stress
TGF transforming growth factor
TPR thromboxane A₂–prostanoid receptor
TXA₂ thromboxane A₂
TXAS thromboxane synthase
VDCC voltage-dependent Ca²⁺ channels
VEGF vascular endothelial growth factor
vIF various inactive fragments
vRF various reactive fragments
VSMC vascular smooth muscle cell
vWf von Willebrand’s factor

References
1. Sumpio, B.E.; Riley, J.T.; Dardik, A. Cells in focus: Endothelial cell. Int. J. Biochem. Cell Biol. 2002, 34, 1508–1512. [CrossRef]
2. Roberts, D.M.; Kearney, J.B.; Johnson, J.H.; Rosenberg, M.P.; Kumar, R.; Bautch, V.L. The vascular endothelial growth factor (VEGF) receptor Flt-1 (VEGFR-1) modulates Flk-1 (VEGFR-2) signaling during blood vessel formation. Am. J. Pathol. 2004, 164, 1531–1535. [CrossRef]
3. Patan, S. Vasculogenesis and angiogenesis. Cancer Treat. Res. 2004, 117, 3–32. [CrossRef] [PubMed]
4. Kajdaniuk, D.; Marek, B.; Borgiel-Marek, H.; Kos-Kudla, B. Vascular endothelial growth factor (VEGF)—Part 1: In physiology and pathophysiology. Endokrynol. Pol. 2011, 62, 444–455. [CrossRef]
5. Fels, J.; Jeggle, P.; Liashkovich, I.; Peters, W.; Oberleithner, H. Nanomechanics of vascular endothelium. Cell Tissue Res. 2014, 355, 727–737. [CrossRef]
6. Galley, H.F.; Webster, N.R. Physiology of the endothelium. Br. J. Anaesth. 2004, 93, 105–113. [CrossRef]
7. Shimokawa, H.; Godo, S. Nitric oxide and endothelium-dependent hyperpolarization mediated by hydrogen peroxide in health and disease. Basic Clin. Pharmacol. Toxicol. 2020, 127, 92–101. [CrossRef] [PubMed]
8. Laroia, S.T.; Ganti, A.K.; Laroia, A.T.; Tendulkar, K.K. Endothelium and the lipid metabolism: The current understanding. Int J. Cardiol. 2003, 88, 1–9. [CrossRef]
9. Ballermann, B.J.; Dardik, A.; Eng, E.; Liu, A. Shear stress and the endothelium. Kidney Int. Suppl. 1998, 67, S100–S108. [CrossRef]
10. Landmesser, U.; Drexler, H. Effect of angiotensin II type 1 receptor antagonism on endothelial function: Role of bradykinin and nitric oxide. J. Hypertens. Suppl. 2006, 24, S39–S43. [CrossRef]

11. Watanabe, T.; Barker, T.A.; Berk, B.C. Angiotensin II and the endothelium: Diverse signals and effects. Hypertension 2005, 45, 163–169. [CrossRef]

12. Parsaei, H.; McEwan, J.R.; MacDermot, J. Bradykinin-induced release of PGI2 from aortic endothelial cell lines: Responses mediated selectively by Ca2+ ions or a staurosporine-sensitive kinase. Br. J. Pharmacol. 1993, 110, 411–415. [CrossRef] [PubMed]

13. Kumar, K.V.; Das, U.N. Are free radicals involved in the pathobiology of human essential hypertension? Free Radic. Res. Commun. 1993, 19, 59–66. [CrossRef]

14. Barbosa-Filho, J.M.; Martins, V.K.M.; Rabelo, L.A.; Moura, M.D.; Silva, M.S.; Cunha, E.V.L.; Souza, M.F.V.; Almeida, R.N.; Medeiros, I.A. Natural products inhibitors of the angiotensin converting enzyme (ACE): A review between 1980–2000. Rev. Bras. Farmacogn. 2006, 16, 421–446. [CrossRef]

15. Fyhrquist, F.; Metsärinne, K.; Tikkkanen, I. Role of angiotensin II in blood pressure regulation and in the pathophysiology of cardiovascular disorders. J. Hum. Hypertens. 1995, 9 (Suppl. 5), S19–S24.

16. Ferrario, C.M. Role of angiotensin II in cardiovascular disease therapeutic implications of more than a century of research. J. Renin. Angiotensin. Aldosterone Syst. 2006, 7, 3–14. [CrossRef] [PubMed]

17. Stoll, M.; Steckelings, U.M.; Paul, M.; Bottari, S.P.; Metzger, R.; Unger, T. The angiotensin AT2-receptor mediates inhibition of cell proliferation in coronary endothelial cells. J. Clin. Invest. 1995, 95, 651–657. [CrossRef] [PubMed]

18. Wong, M.K.S. Bradykinin. In Handbook of Hormones: Comparative Endocrinology for Basic and Clinical Research; Takei, Y., Ando, H., Tsuttsui, K., Eds.; Academic Press Ltd-Elsevier Science Ltd.: London, UK, 2016; p. 274. [CrossRef]

19. Tomiyama, H.; Kushiro, T.; Abeta, H.; Ishii, T.; Takahashi, A.; Furukawa, L.; Asagami, T.; Hino, T.; Saito, F.; Otsuka, Y. Kinins contribute to the improvement of insulin sensitivity during treatment with angiotensin converting enzyme inhibitor. Hypertension 1994, 23, 450–455. [CrossRef]

20. Greaney, J.L.; Kutz, J.L.; Shank, S.W.; Jandu, S.; Santhanam, L.; Alexander, L.M. Impaired Hydrogen Sulfide-Mediated Vasodilation Contributes to Microvascular Endothelial Dysfunction in Hypertensive Adults. Hypertension 2017, 69, 902–909. [CrossRef] [PubMed]

21. Vallance, P.; Hingorani, A. Endothelial nitric oxide in humans in health and disease. Int. J. Exp. Pathol. 1999, 80, 291–303. [CrossRef]

22. Ghalayini, I.F. Nitric oxide-cyclic GMP pathway with some emphasis on cavernosal contractility. Int. J. Impot. Res. 2004, 16, 459–469. [CrossRef] [PubMed]

23. Ahmad, A.; Khan, R.M.; Alkharfy, K.M. Effects of selected bioactive natural products on the vascular endothelium. J. Cardiovasc. Pharmacol. 2013, 62, 111–121. [CrossRef]

24. Ozkor, M.A.; Quyyumi, A.A. Endothelium-derived hyperpolarizing factor and vascular function. Cardiol. Res. Pract. 2011, 2011, 156146. [CrossRef]

25. Yang, P.M.; Huang, Y.T.; Zhang, Y.Q.; Hsieh, C.W.; Wung, B.S. Carbon monoxide releasing molecule induces endothelial nitric oxide synthase activation through a calcium and phosphatidylinositol 3-kinase/Akt mechanism. Vascul. Pharmacol. 2016, 87, 209–218. [CrossRef] [PubMed]

26. Jankovic, G.; Marinko, M.; Milojевич, P.; Stojanovic, I.; Nenezic, D.; Kanjuh, V.; He, G.W.; Novakovic, A. Mechanisms of endothelium-dependent vasorelaxation induced by procyanidin B2 in venous bypass graft. J. Pharmacol. Sci. 2020, 142, 101–108. [CrossRef]

27. Li, H.; Xia, N.; Brausch, I.; Yao, Y.; Förstermann, U. Flavonoids from artichoke (Cynara scolymus L.) up-regulate endothelial-type nitric-oxide synthase gene expression in human endothelial cells. J. Pharmacol. Exp. Ther. 2004, 310, 926–932. [CrossRef] [PubMed]

28. Yu, J.; Eto, M.; Akishita, M.; Kaneko, A.; Ouchi, Y.; Okabe, T. Signaling pathway of nitric oxide production induced by ginsenoside Rb1 in human aortic endothelial cells: A possible involvement of androgen receptor. Biochem Biophys Res. Commun. 2007, 353, 764–769. [CrossRef]

29. Fisher, N.D.; Hughes, M.; Gerhard-Herman, M.; Hollenberg, N.K. Flavanol-rich cocoa induces nitric-oxide-dependent vasodilation in healthy humans. J. Hypertens. 2003, 21, 2281–2286. [CrossRef] [PubMed]

30. Moncada, S.; Vane, J.R. Interrelationships between prostacyclin and thromboxane A2. Ciba Found. Symp. 1980, 78, 165–183. [CrossRef] [PubMed]

31. Majeed, A.H; Khalil, R.A. Molecular mechanisms regulating the vascular prostanycin pathways and their adaptation during pregnancy and in the newborn. Pharmacol. Rev. 2012, 64, 540–582. [CrossRef] [PubMed]

32. Sandoo, A.; van Zanten, J.J.; Metosis, G.S.; Carroll, D.; Kitas, G.D. The endothelium and its role in regulating vascular tone. Open Cardiovasc. Med. J. 2010, 4, 302–312. [CrossRef] [PubMed]

33. Luna-Vázquez, F.J.; Ibarra-Alvarado, C.; Rojas-Molina, A.; Rojas-Molina, I.; Zavala-Sánchez, M.A. Vasodilator compounds derived from plants and their mechanisms of action. Molecules 2013, 18, 5814–5857. [CrossRef] [PubMed]

34. Raimundo, J.M.; Trindade, A.P.; Velozo, L.S.; Kaplan, M.A.; Sudo, R.T.; Zapata-Sudo, G. The lignan eudesmin extracted from Piper truncatum induced vascular relaxation via activation of endothelial histamine H1 receptors. Eur. J. Pharmacol. 2009, 606, 150–154. [CrossRef] [PubMed]

35. Raimundo, J.M.; de Almeida, R.R.; Velozo, L.S.; Kaplan, M.A.; Gattass, C.R.; Zapata-Sudo, G. In-vitro vasodilatory activity of the hexanic extract of leaves and stems from Piper truncatum Vell. in rats. J. Pharm. Pharmacol. 2004, 56, 1457–1462. [CrossRef]
38. Garland, C.J.; Hiley, C.R.; Dora, K.A. EDHF: Spreading the influence of the endothelium. *Br. J. Pharmacol.* 2011, 164, 839–852. [CrossRef]

39. Knox, M.; Vinet, R.; Fuentes, L.; Morales, B.; Martínez, J.L. A Review of Endothelium-Dependent and -Independent Vasodilation Induced by Phytochemicals in Isolated Rat Aorta. *Animals* 2019, 9, 623. [CrossRef]

40. Lumsden, A.P.; Hyndman, K.A.; Dhaun, N.; Southan, C.; Kohan, D.E.; Pollock, J.S.; Pollock, D.M.; Webb, D.J.; Maguire, J.J. Immunopharmacology 1996, 33, 46–50. [CrossRef]

41. Mustafa, A.K.; Sikka, G.; Gazi, S.K.; Stepann, J.; Jung, S.M.; Bhunia, A.K.; Barodka, V.M.; Gazi, F.K.; Barrow, R.K.; Wang, R.; et al. Hydrogen sulfide as endothelium-derived hyperpolarizing factor sulphhydrates potassium channels. *Circ. Res.* 2011, 109, 1259–1268. [CrossRef]

42. Bhatia, M. Hydrogen sulfide as a vasodilator. *IUBMB Life* 2005, 57, 603–606. [CrossRef]

43. Mombouli, J.; Bissiriou, I.; Agboton, V.; Vanhoutte, P.M. Endothelium-derived hyperpolarizing factor: A key mediator of the vasodilator action of bradykinin. *Immunopharmacology* 2013, 174, 87–96. [CrossRef]

44. Van Hinsbergh, V.W. Endothelium—Role in regulation of coagulation and inflammation. *Semin. Immunopathol.* 2012, 34, 93–106. [CrossRef] [PubMed]

45. Goldberg, I.J.; Bornfeldt, K.E. Lipids and the endothelium: Bidirectional interactions. *Curr. Atheroscler. Rep.* 2013, 15, 365. [CrossRef]

46. Garcia, X.; Cartas-Heredia, L.; Lorenzana-Jimenez, M.; Gijon, E. Vasoconstrictor effect of Cissus sicyoides on guinea-pig aortic rings. *Gen. Pharmacol.* 1997, 29, 457–462. [CrossRef]

47. Bull, H.A.; Pittilo, R.M.; Blow, D.J.; Blow, C.M.; Rowles, P.M.; Woolf, N.; Machin, S.J. The effects of nicotine on PGI2 production by rat aortic endothelium. *Thromb. Haemost.* 1985, 54, 472–474. [CrossRef] [PubMed]

48. Oakes, J.M.; Xu, J.; Morris, T.M.; Fried, N.D.; Pearson, C.S.; Lobell, T.D.; Gilpin, N.W.; Lazartigues, E.; Gardner, J.D.; Yue, X. Effects of Chronic Nicotine Inhalation on Systemic and Pulmonary Blood Pressure and Right Ventricular Remodeling in Mice. *Hypertension* 2020, 75, 1305–1314. [CrossRef]

49. Wolff, U.; Hoffmann, J.; Haarhaus, B.; Rao Mittapalli, V.; Schempp, C.M. Anti-inflammatory and vasoconstrictive properties of Potentilla erecta—A traditional medicinal plant from the northern hemisphere. *J. Ethnopharmacol.* 2017, 204, 86–94. [CrossRef] [PubMed]

50. Hayat-Malik, M.N.; Bashir, S.; Khan, I.U.; Karim, S.; Mushfaq, M.N.; Khan, H.U.; Rashid, M.; Samreen, S. Cardiotonic and vasoconstriction effects of aqueous methanolic extract of *Paspalidium flavidum* and vasoconstriction effects of aqueous methanolic extract of *Haloxylon recurvum*. *Toxicol.* 2016 (Suppl. 3), 86–95. [CrossRef]

51. Gilani, A.U.H.; Shaheen, F. Vasoconstrictor and cardiotoxic actions of Haloxylon-recurvum extract. *Phytother. Res.* 1994, 8, 115–117. [CrossRef]

52. Wahab, A.; Ahmed, E.; Nawaz, S.A.; Sharif, A.; ul Haq, R.; Malik, A.; Choudhary, M.I.; Raza, M. A pharmacological and toxicological evaluation of *Haloxylon recurvum*. *Phytother. Res.* 1994, 8, 115–117. [CrossRef]

53. Chen, H. Role of thromboxane A. *Prog. Lipid Res.* 2018, 134, 32–37. [CrossRef]

54. Rucker, D.; Dhamoon, A.S. Physiology, Thromboxane A2. In *Physiology, Thromboxane A2*. [CrossRef]

55. Caughey, G.E.; Cleland, L.G.; Penglis, P.S.; Gamble, J.R.; James, M.J. Roles of cyclooxygenase (COX)-1 and COX-2 in prostanooid production by human endothelial cells: Selective up-regulation of prostacyclin synthesis by COX-2. *J. Immunol.* 2001, 167, 2831–2838. [CrossRef] [PubMed]

56. Davenport, A.P.; Hyndman, K.A.; Dhaun, N.; Southan, C.; Kohan, D.E.; Pollock, J.S.; Pollock, D.M.; Webb, D.J.; Maguire, J.J. Endothelin. *Pharmacol. Rev.* 2016, 68, 357–418. [CrossRef]

57. Drawnel, F.M.; Archer, C.R.; Roderick, H.L. The role of the paracrine/autoocrine mediator endothelin-1 in regulation of cardiac contractility and growth. *Br. J. Pharmacol.* 2013, 168, 296–317. [CrossRef] [PubMed]

58. Barton, M.; Yanagisawa, M. Endothelin: 30 Years From Discovery to Therapy. *Hypertension* 2019, 74, 1232–1265. [CrossRef] [PubMed]

59. Stow, L.R.; Jacobs, M.E.; Wingo, C.S.; Cain, B.D. Endothelin-1 gene regulation. *FASEB J.* 2011, 25, 16–28. [CrossRef] [PubMed]

60. Unic, A.; Derez, L.; Hodak, N.; Marjanecvic, D.; Ceprnja, M.; Serdar, T.; Krhac, M.; Romic, Z. Endothelins—Clinical perspectives. *Biochem. Med.* 2011, 21, 231–242. [CrossRef]

61. Camussi, G.; Tetta, C.; Baglioni, C. The role of platelet-activating factor in inflammation. *Clin. Immunol. Immunopathol.* 1990, 57, 331–338. [CrossRef]

62. Majewska, M. Allium sativum: Facts and myths regarding human health. *Rocz. Panstw. Zakl. Hig.* 2014, 65, 1–8.
88. Rocha, A.P.; Carvalho, L.C.; Sousa, M.A.; Madeira, S.V.; Sousa, P.J.; Tano, T.; Schini-Kerth, V.B.; Resende, A.C.; Soares de Moura, R. Endothelium-dependent vasodilatation effect of Euterpe oleracea Mart. (Açai) extracts in mesenteric vascular bed of the rat. Vasc. Pharmacol. 2007, 46, 97–104. [CrossRef] [PubMed]

89. Xie, Y.W.; Xu, H.X.; Dong, H.; Fiscus, R.R.; But, P.P. Role of nitric oxide in the vasorelaxant and hypotensive effects of extracts and purified tannins from Geum japonicum. J. Ethnopharmacol. 2007, 109, 128–133. [CrossRef]

90. Chen, X.; Salwinski, S.; Lee, T.J.F. Extracts of Ginkgo biloba and ginsenosides exert cerebral vasorelaxation via a nitric oxide pathway. Clin. Exp. Pharmacol. Physiol. 1997, 24, 985–989. [CrossRef]

91. Nishida, S.; Satoh, H. Mechanisms for the vasodilations induced by Ginkgo biloba extract and its main constituent, bilobalide, in rat aorta. Life Sci. 2003, 72, 2659–2667. [CrossRef]

92. Hakkkou, Z.; Maciuk, A.; Leblais, V.; Bouanani, N.E.; Mekhfi, H.; Bnouham, M.; Aziz, M.; Ziyyat, A.; Rauf, A.; Hadda, T.B.; et al. Antihypertensive and vasodilator effects of methanolic extract of Inula viscosa: Biological studies and POM analysis of cyanar, chlorogenic acid as potential hypertensive. Biomed. Pharmacother. 2017, 93, 62–69. [CrossRef]

93. Del Valle-Mondragon, L.; Tenorio-López, E.A.; Zarco-Olvera, G.; Pastelin-Hernández, G. Vulgarenol, a sesquiterpene isolated from Magnolia grandiflora, induces nitric oxide synthases II and III overexpression in guinea pig hearts. Z. Naturforsch. C. J. Biosci. 2007, 62, 725–730. [CrossRef]

94. Zamblé, A.; Martin-Nizard, F.; Sahpaz, S.; Reynaert, M.L.; Staels, B.; Bordet, R.; Duriez, P.; Gressier, B.; Bailleul, F. Effects of Microdesmus keayana alkaloids on vascular parameters of erectile dysfunction. Phytother. Res. 2009, 23, 892–895. [CrossRef]

95. Interaminense, L.F.; Leal-Cardoso, J.H.; Magalhães, P.J.; Duarte, G.P.; Lahlou, S. Enhanced hypotensive effects of the essential oil of Ocimum gratissimum leaves in rats, and its main constituent, eugenol, in DOCA-salt hypertensive conscious rats. Planta Med. 2005, 71, 376–378. [CrossRef]

96. Pires, A.F.; Madeira, S.V.; Soares, P.M.; Montenegro, C.M.; Souza, E.P.; Resende, A.C.; Soares de Moura, R.; Assreuy, A.M.; Criddle, D.N. The role of endothelin in the vasorelaxant effects of the essential oil of Ocimum gratissimum in aorta and mesenteric vascular bed of rats. Can. J. Physiol. Pharmacol. 2012, 90, 1380–1385. [CrossRef]

97. Yoo, M.Y.; Lee, B.H.; Choi, Y.H.; Lee, J.W.; Seo, J.H.; Oh, K.S.; Koo, H.N.; Seo, H.W.; Yon, G.H.; Kwon, D.Y.; et al. Vasorelaxant effect of the root bark extract of Paonia moutan on isolated rat thoracic aorta. Planta Med. 2006, 72, 1338–1341. [CrossRef]

98. Kim, Y.M.; Namkoong, S.; Yun, Y.G.; Hong, H.D.; Lee, Y.C.; Ha, K.S.; Lee, H.; Kwon, H.J.; et al. Antihypertensive effects of methanolic extract of Inula viscosa: Biological studies and POM analysis of cyanar, chlorogenic acid as potential hypertensive. Biomed. Pharmacother. 2017, 93, 62–69. [CrossRef]

99. Gu, X.; Li, Y.; Mu, J.; Zhang, Y. Chemical constituents of Prunella vulgaris. J. Environ. Sci. 2013, 25 (Suppl. 1), S161–S163. [CrossRef]

100. Sham, T.T.; Yuen, A.C.; Ng, Y.F.; Chan, C.O.; Mok, D.K.; Chan, S.W. A review of the phytochemistry and pharmacological activities of raphani semen. Evid. Based Complement. Alternat. Med. 2013, 2013, 636194. [CrossRef] [PubMed]

101. Chung, D.H.; Kim, S.H.; Myung, N.; Cho, K.J.; Chang, M.J. The antihypertensive effect of ethyl acetate extract of radish leaves in spontaneously hypertensive rats. Nutr. Res. Pract. 2012, 6, 308–314. [CrossRef] [PubMed]

102. Moon, M.K.; Kang, D.G.; Lee, J.K.; Kim, J.S.; Lee, H.S. Vasodilatory and anti-inflammatory effects of the aqueous extract of rhubarb via a NO-cGMP pathway. Life Sci. 2006, 78, 1550–1557. [CrossRef] [PubMed]

103. Oh, K.S.; Ryu, S.Y.; Kim, Y.S.; Lee, B.H. Large conductance Ca2+-activated K+ (BKCa) channels are involved in the vascular relaxations elicited by piceatannol isolated from Rheum undulatum rhizome. Planta Med. 2007, 73, 1441–1446. [CrossRef]

104. Yoo, M.Y.; Oh, K.S.; Lee, J.W.; Seo, H.W.; Yon, G.H.; Kwon, D.Y.; Kim, Y.S.; Ryu, S.Y.; Lee, B.H. Vasorelaxant effect of stilbenes from rhizome extract of rhubarb (Rheum undulatum) on the contractility of rat aorta. Phytother. Res. 2007, 21, 186–189. [CrossRef] [PubMed]

105. Oh, K.S.; Choi, Y.H.; Ryu, S.Y.; Oh, B.K.; Seo, H.W.; Yon, G.H.; Kim, Y.S.; Lee, B.H. Cardiovascular effects of lignans isolated from Saussurus chinensis. Planta Med. 2008, 74, 233–1674. [CrossRef]

106. Kang, D.G.; Yin, M.H.; Oh, H.; Lee, D.H.; Lee, H.S. Vasorelaxation by amentoflavone isolated from Selaginella tamariscina. Planta Med. 2004, 70, 718–722. [CrossRef]

107. Yu, S.; Yan, H.; Zhang, L.; Shan, M.; Chen, P.; Ding, A.; Li, S.F. A Review on the Phytochemistry, Pharmacology, and Pharmacokinetis of Amentoflavone, a Naturally-Occurring Biflavonoid. Molecules 2017, 22, 299. [CrossRef]

108. Vinet, R.; Alvarez, R.; Knox, M.; Guzman, L.; Martinez, J.L.; Flores, E. Vasodilatory properties of Solanum crispum Ruiz & Pav. a South American native plant. Bol. Latinoam. Caribe Plantas Med. Aromat. 2016, 15, 94–98.

109. Zaima, K.; Koga, I.; Iwasawa, N.; Hosoya, T.; Hirase, Y.; Kaneda, T.; Ismail, I.S.; Lajis, N.H.; Morita, H. Vasorelaxant activity of indole alkaloids from Tabernaemontana dichotoma. J. Nat. Med. 2013, 67, 9–16. [CrossRef]

110. Rodrigues, A.M.; Guimarães, D.O.; Konno, T.U.; Tinoco, L.W.; Barth, T.; Aguiar, F.A.; Lopes, N.P.; Leal, I.C.; Raimundo, J.M.; Muzitano, M.F. Phytochemical Study of Tapirira guianensis Leaves Guided by Vasodilatory and Antioxidant Activities. Molecules 2017, 22, 304. [CrossRef] [PubMed]
113. Schroeter, H.; Heiss, C.; Balzer, J.; Kleinbongard, P.; Keen, C.L.; Hollenberg, N.K.; Sies, H.; Kwik-Uribe, C.; Schmitz, H.H.; Kelm, M. (+)-Epicatechin mediates beneficial effects of flavanol-rich cocoa on vascular function in humans. Proc. Natl. Acad. Sci. USA 2006, 103, 1024–1029. [CrossRef]

114. Grassi, D.; Necoziione, S.; Lippi, C.; Croce, G.; Valeri, L.; Pasqualetti, P.; Desideri, G.; Blumberg, J.B.; Ferri, C. Cocoa reduces blood pressure and insulin resistance and improves endothelium-dependent vasodilation in hypertensives. Hypertension 2005, 46, 398–405. [CrossRef] [PubMed]

115. Faridi, Z.; Njike, V.Y.; Dutta, S.; Ali, A.; Katz, D.L. Acute dark chocolate and cocoa ingestion and endothelial function: A randomized controlled crossover trial. Am. J. Clin. Nutr. 2008, 88, 58–63. [CrossRef]

116. Faridi, Z.; Njike, V.Y.; Dutta, S.; Ali, A.; Katz, D.L. Acute dark chocolate and cocoa ingestion and endothelial function: A randomized controlled crossover trial. Am. J. Clin. Nutr. 2008, 88, 58–63. [CrossRef]

117. Karim, M.; McCormick, K.; Kappagoda, C.T. Effects of cocoa extracts on endothelium-dependent relaxation. J. Nutr. 2000, 130, 2105S–2108S. [CrossRef]

118. Soares De Moura, R.; Costa Viana, F.S.; Souza, M.A.; Kovary, K.; Guedes, D.C.; Oliveira, E.P.; Rubenich, L.M.; Carvalho, L.C.; Oliveira, R.M.; Tano, T.; et al. Antihypertensive, vasodilator and antioxidant effects of a vinifera grape skin extract. J. Pharm. Pharmacol. 2002, 54, 1515–1520. [CrossRef] [PubMed]

119. Leifert, W.R.; Abeywardena, M.Y. Cardioprotective actions of grape polyphenols. Nutr. Res. 2008, 28, 729–737. [CrossRef] [PubMed]

120. Ito, J.; Niwa, M. Absolute structures of new hydroxystilbenoids, vitisin C and viniferal, from Vitis vinifera ‘Kyohou’ Tetrahedron 1996, 52, 9991–9998. [CrossRef]

121. Da Costa, G.F.; Ognibene, D.T.; da Costa, C.A.; Teixeira, M.T.; Cordeiro, V.D.S.C.; de Bern, G.F.; Moura, A.S.; Resende, A.C.; de Moura, R.S.L. Grape Skin Extract Prevents Development of Hypertension and Altered Lipid Profile in Spontaneously Hypertensive Rats: Role of Oxidative Stress. Proc. Nutr. Food Sci. 2020, 25, 25–31. [CrossRef]

122. Andriambeloson, E.; Stoclet, J.C.; Andriantsitohaina, R. Mechanism of endothelial nitric oxide-dependent vasorelaxation induced by wine polyphenols in rat thoracic aorta. J. Cardiovasc. Pharmacol. 1999, 33, 248–254. [CrossRef] [PubMed]

123. Schroeter, H.; Heiss, C.; Balzer, J.; Kleinbongard, P.; Keen, C.L.; Hollenberg, N.K.; Sies, H.; Kwik-Uribe, C.; Schmitz, H.H.; Kelm, M. (+)-Epicatechin mediates beneficial effects of flavanol-rich cocoa on vascular function in humans. Proc. Natl. Acad. Sci. USA 2006, 103, 1024–1029. [CrossRef]

124. De Oliveira, A.P.; Furtado, F.F.; da Silva, M.S.; Tavares, J.F.; Mafra, R.A.; Araújo, D.A.; Cruz, J.; de Medeiros, I.A. Calcium channel blockade as a target for the cardiovascular effects induced by the 8(17), 12E, 14-labdatrien-18-oic acid (labdane-302). Vascul. Pharmacol. 2006, 44, 338–344. [CrossRef]

125. De Oliveira, A.P.; Furtado, F.F.; da Silva, M.S.; Tavares, J.F.; Mafra, R.A.; Araújo, D.A.; Cruz, J.S.; de Medeiros, I.A. Calcium channel blockade as a target for the cardiovascular effects induced by the 8(17), 12E, 14-labdatrien-18-oic acid (labdane-302). Vascul. Pharmacol. 2006, 44, 338–344. [CrossRef]

126. Ribeiro, L.A.A.; Tavares, J.F.; Andrade, N.C.d.; Silva, M.S.d.; Silva, B.A.d. The (8)17,12E,14-labdatrien-18-oic acid (labdane-type diterpene isolated from Xylopia langsdorffiana St. Hil. & Tul. (Annonaceae) relaxes the guinea-pig trachea. Planta Med. 2002, 68, 655–657. [CrossRef]

127. Shindel, A.W.; Xin, Z.C.; Lin, G.; Fandel, T.M.; Huang, Y.C.; Banie, L.; Breyer, B.N.; Garcia, M.M.; Lin, C.S.; Lue, T.F. Erecotogenic and neurotrophic effects of icariin, a purified extract of horny goat weed (Epimedium spp.) in vitro and in vivo. J. Sex. Med. 2010, 7, 1518–1528. [CrossRef] [PubMed]

128. Patay, É.; Bencsis, T.; Papp, N. Phytochemical overview and medicinal importance of Coffea species from the past until now. Asian Pac. J. Trop. Med. 2016, 9, 1127–1135. [CrossRef]

129. Xu, H.B.; Huang, Z.Q. Icariin enhances endothelial nitric-oxide synthase expression on human endothelial cells in vitro. Vascul. Pharmacol. 2007, 47, 18–24. [CrossRef] [PubMed]

130. Takur, S.; Segzi, B.; Süzgeç-Selçuk, S.; Eroğlu-Özkan, E.; Beukelman, K.J.; Mat, A.; Uyduş-Döğan, B.S. Endothelium-dependent vasorelaxant effect of Alchemilla vulgaris methanol extract: A comparison with the aqueous extract in rat aorta. Nat. Prod. Res. 2014, 28, 2182–2185. [CrossRef]

131. Takur, S.; Altun, I.H.; Segzi, B.; Süzgeç-Selçuk, S.; Mat, A.; Uyduş-Döğan, B.S. Vasorelaxant and blood pressure lowering effects of alchemilla vulgaris: A comparative study of methanol and aqueous extracts. Phytomedizin. Mag. 2015, 11, 163–169. [CrossRef]

132. Xu, H.B.; Huang, Z.Q. Vasorelaxant effects of icariin on isolated canine coronary artery. J. Cardiovasc. Pharmacol. 2007, 49, 207–213. [CrossRef] [PubMed]

133. Duarte, J.; Pérez-Vizcaíno, F.; Torres, A.I.; Zarzuelo, A.; Jiménez, J.; Tamargo, J. Vasodilator effects of visnagin in isolated rat vascular smooth muscle. Eur. J. Pharmacol. 1995, 286, 115–122. [CrossRef]

134. Lima, T.C.; de Jesus Souza, R.; da Silva, F.A.; Biavatti, M.W. The genus Calea L.: A review on traditional uses, phytochemistry, and biological activities. Phytother. Res. 2018, 32, 769–795. [CrossRef] [PubMed]
137. Somoza, B.; de Rojas, V.R.S.; Ortega, T.; Villar, A.M. Vasodilator effects of the extract of the leaves of Cistus populifolius on rat thoracic aorta. *Phytother. Res.* 1996, 10, 304–308. [CrossRef]

138. Jiang, H.; Xia, Q.; Wang, X.; Song, J.; Bruce, I.C. Luteolin induces vasorelaxation in rat thoracic aorta via calcium and potassium channels. *Pharmazie* 2005, 60, 444–447. [PubMed]

139. Janbaz, K.H.; Qayyum, A.; Saqib, F.; Imran, I.; Zia-Ul-Haq, M.; de Feo, V. Bronchodilator, vasodilator and spasmyolytic activities of Cymbopogon martini. *J. Physiol. Pharmacol.* 2014, 65, 859–866.

140. Adaramoye, O.A.; Medeiros, I.A. Endothelium-independent vasodilation induced by kolaviron, a biflavonoid complex from Garcinia kola seeds, in rat superior mesenteric arteries. *J. Smooth Muscle Res.* 2009, 45, 39–53. [CrossRef]

141. Chericoni, S.; Testai, L.; Calderone, V.; Flamini, G.; Nieri, P.; Morelli, I.; Martinotti, E. The xanthones gentiakochianin and gentiakochianin are responsible for the vasodilator action of the roots of Gentianella kochiana. *Planta Med.* 2003, 69, 770–772. [CrossRef][PubMed]

142. Wang, Y.; Shi, J.G.; Wang, M.Z.; Che, C.T.; Yeung, J.H. Vasodilatory actions of xanthones isolated from a Tibetan herb, Haliaena elliptica. *Phytochemistry* 2009, 69, 1144–1150. [CrossRef]

143. Zheoat, A.M.; Gray, A.I.; Igoli, J.O.; Ferro, V.A.; Drummond, R.M. Hibiscus acid from Hibiscus sabdariffa (Malvaceae) has a vasorelaxant effect on the rat aorta. *Altern. Med.* 2017, 2241–2245. [CrossRef] [PubMed]

144. Campos, M.G.; Oropeza, M.V.; Villanueva, T.; Aguilar, M.I.; Delgado, G.; Ponce, H.A. Xanthorrhizol induces endothelium-independent relaxation of rat thoracic aorta. *Life Sci.* 2000, 67, 327–333. [CrossRef]

145. Kim, B.; Lee, K.; Chinannai, K.S.; Ham, I.; Bu, Y.; Kim, H.; Choi, H.Y. Endothelium-Independent Vasorelaxant Effect of Ligusticum elliptica. *Theriogenology* 2015, 20, 10721–10733. [CrossRef]

146. El-Bardai, S.; Morel, N.; Wibo, M.; Fabre, N.; Llabres, G.; Lyoussi, B.; Quetin-Leclercq, J. The vasorelaxant activity of marrubenol extracted from Marrubium vulgare, as an L-type calcium channel blocker. *Br. J. Pharmacol.* 2003, 140, 1211–1216. [CrossRef]

147. El-Bardai, S.; Wibo, M.; Hamaide, M.C.; Lyoussi, B.; Quetin-Leclercq, J.; Morel, N. Characterisation of marrubenol, a diterpene extracted from Marrubium vulgare, as an L-type calcium channel blocker. *Br. J. Pharmacol.* 2003, 140, 1211–1216. [CrossRef]

148. El-Bardai, S.; Wibo, M.; Hamaide, M.C.; Lyoussi, B.; Quetin-Leclercq, J.; Morel, N. Characterisation of marrubenol, a diterpene extracted from Marrubium vulgare, as an L-type calcium channel blocker. *Br. J. Pharmacol.* 2003, 140, 1211–1216. [CrossRef]

149. El-Bardai, S.; Morel, N.; Llabres, G.; Lyoussi, B.; Quetin-Leclercq, J.; Wibo, M. Endothelium-Independent Vasorelaxant Effect of Ligusticum elliptica. *Vasc. Pharmacol.* 2001, 37, 96–101. [CrossRef]

150. El-Bardai, S.; Morel, N.; Llabres, G.; Lyoussi, B.; Quetin-Leclercq, J.; Wibo, M. Endothelium-Independent Vasorelaxant Effect of Ligusticum elliptica. *Vasc. Pharmacol.* 2001, 37, 96–101. [CrossRef]

151. Berrougui, H.; Herrera-Gonzalez, M.D.; Marhuenda, E.; Ettaib, A.; Hmamouchi, M. Relaxant activity of methanol extract from Marrubium vulgare, as an L-type calcium channel blocker. *Br. J. Pharmacol.* 2003, 140, 1211–1216. [CrossRef]

152. Berrougui, H.; Herrera-Gonzalez, M.D.; Marhuenda, E.; Ettaib, A.; Hmamouchi, M. Relaxant activity of methanol extract from Marrubium vulgare, as an L-type calcium channel blocker. *Br. J. Pharmacol.* 2003, 140, 1211–1216. [CrossRef]

153. Berrougui, H.; Herrera-Gonzalez, M.D.; Marhuenda, E.; Ettaib, A.; Hmamouchi, M. Relaxant activity of methanol extract from Marrubium vulgare, as an L-type calcium channel blocker. *Br. J. Pharmacol.* 2003, 140, 1211–1216. [CrossRef]

154. Berrougui, H.; Herrera-Gonzalez, M.D.; Marhuenda, E.; Ettaib, A.; Hmamouchi, M. Relaxant activity of methanol extract from Marrubium vulgare, as an L-type calcium channel blocker. *Br. J. Pharmacol.* 2003, 140, 1211–1216. [CrossRef]

155. Berrougui, H.; Herrera-Gonzalez, M.D.; Marhuenda, E.; Ettaib, A.; Hmamouchi, M. Relaxant activity of methanol extract from Marrubium vulgare, as an L-type calcium channel blocker. *Br. J. Pharmacol.* 2003, 140, 1211–1216. [CrossRef]

156. Lin, L.L.; Huang, F.; Chen, S.B.; Yang, D.J.; Chen, S.L.; Yang, J.S.; Xiao, P.G. Xanthones from the roots of Polygala caudata and their antioxidation and vasodilatation activities in vitro. *Pharmacol. Res.* 2001, 49, 299–305. [CrossRef]

157. Fang, L.H.; Mu, Y.M.; Lin, L.L.; Xiao, P.G.; Du, G.H. Vasorelaxant effect of euxanthone in the rat thoracic aorta. *Phytomedicine* 2005, 60, 444–447. [PubMed]

158. Lee, K.; Ham, I.; Yang, G.; Lee, M.; Bu, Y.; Kim, H.; Choi, H.Y. Vasorelaxant effect of Prunus yedoensis bark. *BMC Complement. Altern. Med.* 2013, 13, 31. [CrossRef][PubMed]

159. Kim, B.; Jo, C.; Choi, H.Y.; Lee, K. Prunetin Relaxed Isolated Rat Aortic Rings by Blocking Calcium Channels. *Molecules* 2018, 23, 2372. [CrossRef][PubMed]

160. Ghayour, M.N.; Gilani, A.H. Studies on cardio-suppressant, vasodilator and tracheal relaxant effects of Sarcococca saligna. *Arch. Pharm. Res.* 2006, 29, 990–997. [CrossRef]

161. Sargazi Zadeh, G.; Panahi, N. Endothelium-independent vasorelaxant activity of Trachyspermum ammi essential oil on rat aorta. *Clin. Exp. Hypertens.* 2017, 39, 133–138. [CrossRef][PubMed]

162. Zhang, W.B.; Chen, C.X.; Sim, S.M.; Kwan, C.Y. In vitro vasodilator mechanisms of the indole alkaloids rynchophylline and isorhynchophylline, isolated from the hook of Uncaria rhynchophylla (Miquel). *Naunyn Schmiedebergs Arch. Pharmacol.* 2004, 369, 232–238. [CrossRef][PubMed]

163. Horie, S.; Yano, S.; Aimi, N.; Sakai, S.; Watanabe, K. Effects of hisrutine, an antihypertensive indole alkaloid from Uncaria rhynchophylla, on intracellular calcium in rat thoracic aorta. *Life Sci.* 1992, 50, 491–498. [CrossRef]
164. Hernández-Abreu, O.; Castillo-Españo, P.; León-Rivera, I.; Ibarra-Barajas, M.; Villalobos-Molina, R.; González-Christen, J.; Vergara-Galicia, J.; Estrada-Soto, S. Antihypertensive and vasorelaxant effects of tilianin isolated from Agastache mexicana are mediated by NO/cGMP pathway and potassium channel opening. *Biochem. Pharmacol.* 2009, 78, 54–61. [CrossRef]

165. Flores-Flores, A.; Hernández-Abreu, O.; Rios, M.Y.; León-Rivera, I.; Aguilar-Guadarrama, B.; Castillo-Españo, P.; Perea-Aragón, I.; Estrada-Soto, S. Vasorelaxant mode of action of dichloromethane-soluble extract from Agastache mexicana and its main bioactive compounds. *Pharm. Biol.* 2016, 54, 2807–2813. [CrossRef] [PubMed]

166. Wang, Z.T.; Lau, C.W.; Chan, F.L.; Yao, X.; Chen, Z.Y.; He, Z.D.; Huang, Y. Vasorelaxant effects of cardamonin and alpinetin from Alpinia henryi K. Schum. *J. Cardiovasc. Pharmacol.* 2001, 37, 596–606. [CrossRef] [PubMed]

167. Fusi, F.; Cavalli, M.; Mulholland, D.; Crouch, N.; Coombes, P.; Dawson, G.; Bova, S.; Sgaragli, G.; Saponara, S. Cardamonin is a bifunctional vasodilator that inhibits Ca(v)1.2 current and stimulates K(Ca)1.1 current in rat tail artery myocytes. *J. Pharmacol. Exp. Ther.* 2010, 332, 531–540. [CrossRef]

168. Ko, W.H.; Yao, X.Q.; Lau, C.W.; Law, W.L.; Chen, Z.Y.; Kwok, W.; Ho, K.; Huang, Y. Vasorelaxant and antiproliferative effects of berberine. *Eur. J. Pharmacol.* 2000, 399, 187–196. [CrossRef]
201. Neag, M.A.; Mocan, A.; Echeverría, J.; Pop, R.M.; Boescu, C.I.; Crişan, G.; Buzoianu, A.D. Berberine: Botanical Occurrence, Traditional Uses, Extraction Methods, and Relevance in Cardiovascular, Metabolic, Hepatic, and Renal Disorders. *Front. Pharmacol.* **2018**, *9*, 557. [CrossRef] [PubMed]

202. Moore, R.J.; Jackson, K.G.; Minihane, A.M. Green tea (*Camellia sinensis*) catechins and vascular function. *Br. J. Nutr.* **2009**, *102*, 1790–1802. [CrossRef] [PubMed]

203. Ghayur, M.N.; Khan, H.; Gilani, A.H. Antispasmodic, bronchodilator and vasodilator activities of (+)-catechin, a naturally occurring flavonoid. *Arch. Pharm. Res.* **2007**, *30*, 970–975. [CrossRef]

204. Wang, H.P.; Mei, R.H.; Li, X.Y.; Zhao, M.H.; Lu, Y.; Xia, Q.; Bruce, I. Endothelium-independent Vasorelaxant Effect of the flavonoid dioclein, a new ocuring flavonoid. *Arch. Pharm. Res.* **2007**, *30*, 970–975. [CrossRef]

205. Yu, S.M.; Kuo, S.C. Vasorelaxant effect of isoliquiritigenin, a novel soluble guanylate cyclase activator, in rat aorta. *J. Ethnopharmacol.* **2005**, *102*, 221–226. [CrossRef] [PubMed]

206. Alvarez, E.; Campos-Toimil, M.; Justiniano-Basaran, H.; Lugnier, C.; Orallo, F. Study of the mechanisms involved in the vasorelaxation induced by (-)-epigallocatechin-3-gallate in rat aorta. *Br. J. Pharmacol.* **2006**, *147*, 269–280. [CrossRef] [PubMed]

207. Romano, M.R.; Lograno, M.D. Epigallocatechin-3-gallate relaxes the isolated bovine ophthalmic artery: Involvement of phosphoinositide 3-kinase-Akt-nitric oxide/cGMP signalling pathway. *Eur. J. Pharmacol.* **2009**, *608*, 48–53. [CrossRef]

208. Assaidi, A.; Bibi, T.; Titis, M.; Angenot, L.; Bellahcen, S.; Bouanani, N.; Leggsyer, A.; Aziz, M.; Mekhfi, H.; Bnouham, M.; et al. Chemonopodium amboidei induces an endothelium-dependent relaxation of rat isolated aorta. *J. Integr. Med.* **2019**, *17*, 115–124. [CrossRef]

209. Jiang, H.D.; Cai, J.; Xu, J.H.; Zhou, X.M.; Xia, Q. Endothelium-dependent and direct relaxation induced by ethyl acetate extract from Flos Chrysantheni in rat thoracic aorta. *J. Ethnopharmacol.* **2005**, *101*, 221–226. [CrossRef] [PubMed]

210. Affuso, F.; Mercurio, V.; Fazio, V.; Fazio, S. Cardiovascular and metabolic effects of Berberine. *World J. Cardiol.* **2010**, *2*, 71–77. [CrossRef]

211. Wang, Y.; Huang, Y.; Lam, K.S.; Li, Y.; Wong, W.T.; Ye, H.; Lau, C.W.; Vanhoutte, P.M.; Xu, A. Berberine prevents hyperglycemia-induced endothelial injury and enhances vasodilatation via adenosine monophosphate-activated protein kinase and endothelial nitric oxide synthase. *Cardiovasc. Res.* **2009**, *82*, 484–492. [CrossRef] [PubMed]

212. Gong, L.L.; Fang, L.H.; Qin, H.L.; Lu, Y.; Yu, G.H. Analysis of the mechanisms underlying the vasorelaxant action of ciptisine in rat aortic rings. *Am. J. Chin. Med.* **2012**, *40*, 309–320. [CrossRef]

213. Tan, H.L.; Chan, K.G.; Pusparajah, P.; Duangjai, A.; Saokaew, S.; Mehmood Khan, T.; Lee, L.H.; Goh, B.H. Rhizoma Coptidis: A Potential Cardiovascular Protective Agent. *Front. Pharmacol.* **2016**, *7*, 362. [CrossRef]

214. Qiao, M.M.; Liu, F.; Liu, Y.; Guo, L.; Zhou, Q.M.; Peng, C.; Xiong, L. Curcumin C and (±)-curcumin D, an unusual seco-cadinane sesquiterpenoid and a pair of unusual nor-bisabolone enantiomers with significant vasorelaxant activity from Curcuma longa. *Bioorg. Chem.* **2019**, *92*, 103275. [CrossRef]

215. Yu, S.M.; Cheng, Z.J.; Kuo, S.C. Endothelium-dependent relaxation of rat aorta by butein, a novel cyclic AMP-specific phosphodiesterase inhibitor. *Eur. J. Pharmacol.* **1995**, *280*, 69–77. [CrossRef]

216. Yu, S.M.; Kuo, S.C. Vasorelaxant effect of isoquiritigenin, a novel soluble guanylate cyclase activator, in rat aorta. *Br. J. Pharmacol.* **1995**, *114*, 1587–1594. [CrossRef] [PubMed]

217. Ma, F.Y.; Luo, M.; Zhao, C.J.; Li, C.Y.; Wang, W.; Gu, C.B.; Wei, Z.F.; Zu, Y.G.; Fu, Y.J. Simple and efficient preparation of biochanin A and genistein from Dalbergia odorifera T. Chen leaves using macroporous resin followed by flash chromatography. *Sep. Purif. Technol.* **2013**, *120*, 310–318. [CrossRef]

218. Kumar, T.; Sharma, M.; Rana, A.; Lingaraju, M.C.; Parida, S.; Kumar, D.; Singh, T.U. Biochanin-A elicits relaxation in coronary artery of goat through different mechanisms. *Res. Vet. Sci.* **2020**, *133*, 206–214. [CrossRef]

219. Wang, H.P.; Mei, R.H.; Li, X.Y.; Zhao, M.H.; Lu, Y.; Xia, Q.; Bruce, I. Endothelium-independent Vasorelaxant Effect of the Phyto-oestrogen Biochanin A on Rat Thoracic Aorta. In *Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference*, Shanghai, China, 17–21 January 2006; Volume 2005, pp. 2244–2247. [CrossRef]

220. Choi, S.; Jung, W.S.; Cho, N.S.; Ryu, K.H.; Jun, J.Y.; Shin, B.C.; Chung, J.H.; Yeum, C.H. Mechanisms of phytoestrogen biochanin A-induced vasorelaxation in renovascular hypertensive rats. *Kidney Res. Clin. Pract.* **2014**, *33*, 181–186. [CrossRef]

221. Mígkos, T.; Pourová, J.; Vopřalsová, M.; Auger, C.; Schini-Kerth, V.; Mladěnka, P. Biochanin A, the Most Potent of 16 Isoflavones, Induces Relaxation of the Coronary Artery Through the Calcium Channel and cGMP-dependent Pathway. *Planta Med.* **2020**, *86*, 708–716. [CrossRef]

222. Sá, R.E.C.; Almeida, R.N.; Bhattacharyya, J. Pharmaceutical properties and toxicology of Dioecia grandiflora. *Pharm. Biol.* **2013**, *51*, 659–667. [CrossRef]

223. Trigueiro, F.; Cortes, S.F.; Almeida, R.N.; Lemos, V.S. Endothelium-independent vasorelaxant effect of dioclein, a new flavonoid isolated from Dioecia grandiflora, in the rat aorta. *J. Pharm. Pharmacol.* **2000**, *52*, 1431–1434. [CrossRef]

224. Cortes, S.F.; Rezende, B.A.; Corriu, C.; Medeiros, I.A.; Teixeira, M.M.; de Lopes, M.J.; Lemos, V.S. Pharmacological evidence for the activation of potassium channels as the mechanism involved in the hypotensive and vasorelaxant effect of dioclein in rat small resistance arteries. *Br. J. Pharmacol.* **2001**, *133*, 849–858. [CrossRef] [PubMed]

225. Gonçalves, R.L.; Lugnier, C.; Keravis, T.; Lopes, M.J.; Fantini, F.A.; Schmitt, M.; Cortes, S.F.; Lemos, V.S. The flavonoid dioclein is a selective inhibitor of cyclic nucleotide phosphodiesterase type 1 (PDE1) and a cGMP-dependent protein kinase (PKG) vasorelaxant in human vascular tissue. *Eur. J. Pharmacol.* **2009**, *620*, 78–83. [CrossRef] [PubMed]
213. Lemos, V.S.; Côrtes, S.F.; dos Santos, M.H.; Ellena, J.; Moreira, M.E.; Dorigueto, A.C. Structure and vasorelaxant activity of floranol, a flavonoid isolated from the roots of Dioclea grandiflora. *Chem. Biodivers.* 2006, 3, 635–645. [CrossRef]

214. Marques, A.M.; Provance, D.W.; Kaplan, M.A.C.; Figueiredo, M.R. Echinodorus grandiflorus: Ethnobotanical, phytochemical and pharmacological overview of a medicinal plant used in Brazil. *Food Chem. Toxicol.* 2017, 109, 1032–1047. [CrossRef]

215. Tibiriçá, E.; Almeida, A.; Caillieux, S.; Pimenta, D.; Kaplan, M.A.; Lessa, M.A.; Figueiredo, M.R. Pharmacological mechanisms involved in the vasodilator effects of extracts from Echinodorus grandiflorus. *J. Ethnopharmacol.* 2007, 111, 50–55. [CrossRef] [PubMed]

216. Prando, T.B.; Barbosa, L.N.; Araújo, V.e.O.; Gasparotto, F.M.; de Souza, L.M.; Lourenço, E.L.; Gasparotto Junior, A. Involvement of bradykinin B2 and masucrinic receptors in the prolonged diuretic and antihypertensive properties of Echinodorus grandiflorus (Cham. & Schltdl.) Micheli. *Phytotherapy* 2016, 23, 1249–1258. [CrossRef]

217. Peng, H.; Xing, Y.; Gao, L.; Zhang, L.; Zhang, G. Simultaneous separation of apigenin, luteolin and rosmarinic acid from the aerial parts of the copper-tolerant plant Elsholtzia splendens. *Environ. Sci. Pollut. Res. Int.* 2014, 21, 8124–8132. [CrossRef] [PubMed]

218. Wang, H.P.; Xing, Y.L.; Dai, Z.K.; Lin, R.J.; Chu, K.S.; Chen, I.J.; Wu, J.R.; Wu, B.N. Baicalin, a flavonoid from Scutellaria baicalensis Georgi, activates large-conductance Ca2+-activated K+ channels via cyclic nucleotide-dependent protein kinases in mesenteric artery. *Phytomedicine* 2010, 17, 760–770. [CrossRef] [PubMed]
238. Paredes, A.; Palacios, J.; Quispe, C.; Nwokocha, C.R.; Morales, G.; Kuzmicic, J.; Cifuentes, F. Hydroalcoholic extract and pure compounds from Senecio nutans Sch. Bip (Compositae) induce vasodilation in rat aorta through endothelium-dependent and independent mechanisms. *J. Ethnopharmacol.* 2016, 192, 99–107. [CrossRef]

239. Auger, C.; Chabert, P.; Lugnier, C.; Mushtaq, M.N.; Schini-Kerth, V.B. Mechanisms underlying vasorelaxation induced in the porcine coronary arteries by Thymus linearis, Bent. *J. Ethnopharmacol.* 2018, 225, 211–219. [CrossRef]

240. Getiye, Y.; Tolessa, T.; Engidawork, E. Antihypertensive activity of 80% methanol seed extract of Calpurnia aurea (Ait.) Bent. subsp. *aurea* (Fabaceae) is mediated through calcium antagonism induced vasodilation. *J. Ethnopharmacol.*** 2016, 189, 99–106. [CrossRef]

241. Khan, M.; Gilani, A.H. Studies on Blood Pressure Lowering, Vasodilator and Cardiac Suppressant Activities of Vitex negundo: Involvement of K+ Channel Activation and Ca++ Channel Blockade. *Int. J. Pharmacol.* 2015, 11, 137–142. [CrossRef]

242. Dongmo, A.B.; Ndom, J.C.; Massoma, L.D.; Dzikouk, D.G.; Fomani, M.; Bissoue, N.; Kamanyi, A.; Vierling, W. Vasodilating effect of the root bark extract of Ficus saussureana on guinea pig aorta. *Pharmaceutical. Biol.* 2003, 41, 371–374.

243. Kim, B.; Kim, K.W.; Lee, S.; Jo, C.; Lee, K.; Ham, I.; Choi, H.Y. Endothelium-dependent vasorelaxant effect of Prunus persica branch on isolated rat thoracic aorta. *Nutrients* 2019, 11, 1816. [CrossRef]

244. Ramón Sánchez de Rojas, V.; Somoza, B.; Ortega, T.; Villar, A.M.; Tejerina, T. Vasodilatatory effect in rat aorta of eriodictyol obtained from Satureja obovata. *Planta Med.* 1999, 65, 234–238. [CrossRef]

245. Derojas, V.R.S.; Ortega, T.; Villar, A. Pharmacological activity of the extracts of 2 Satureja obovata varieties on isolated smooth-muscle preparations. *Phytother. Res.* 1994, 8, 212–217. [CrossRef]

246. Ch’ng, Y.S.; Loh, Y.C.; Tan, C.S.; Ahmad, M.; Asmawi, M.Z.; Wan Omar, W.M.; Yam, M.F. Vasorelaxant properties of Vernonia amygdalina ethanol extract and its possible mechanism. *Pharm. Biol.* 2017, 55, 2083–2094. [CrossRef] [PubMed]

247. Gkaliakgousi, E.; Gavriilaki, E.; Triantafyllou, A.; Douma, S. Clinical Significance of Endothelial Dysfunction in Essential Hypertension. *Curr. Hypertens. Rep.* 2015, 17, 85. [CrossRef] [PubMed]