On degree sum conditions for 2-factors with a prescribed number of cycles

Shuya Chiba

Applied Mathematics
Faculty of Advanced Science and Technology
Kumamoto University
2-39-1 Kurokami, Kumamoto 860-8555, Japan

Abstract

For a vertex subset X of a graph G, let $\Delta_t(X)$ be the maximum value of the degree sums of the subsets of X of size t. In this paper, we prove the following result: Let k be a positive integer, and let G be an m-connected graph of order $n \geq 5k - 2$. If $\Delta_2(X) \geq n$ for every independent set X of size $\lceil m/k \rceil + 1$ in G, then G has a 2-factor with exactly k cycles. This is a common generalization of the results obtained by Brandt et al. [Degree conditions for 2-factors, J. Graph Theory 24 (1997) 165–173] and Yamashita [On degree sum conditions for long cycles and cycles through specified vertices, Discrete Math. 308 (2008) 6584–6587], respectively.

Keywords: Hamilton cycles, 2-factors, Vertex-disjoint cycles, Degree sum conditions

AMS Subject Classification: 05C70, 05C45, 05C38

1 Introduction

In this paper, we consider finite simple graphs, which have neither loops nor multiple edges. For terminology and notation not defined in this paper, we refer the readers to [4]. The independence number and the connectivity of a graph G are denoted by $\alpha(G)$ and $\kappa(G)$, respectively. For a vertex x of a graph G, we denote by $d_G(x)$ and $N_G(x)$ the degree and the neighborhood of x in G. Let $\sigma_m(G)$ be the minimum degree sum of an independent set of m vertices in a graph G, i.e., if $\alpha(G) \geq m$, then

$$\sigma_m(G) = \min \left\{ \sum_{x \in X} d_G(x) : X \text{ is an independent set of } G \text{ with } |X| = m \right\};$$

*E-mail address: schiba@kumamoto-u.ac.jp; This work was supported by JSPS KAKENHI Grant Number 17K05347.
otherwise, \(\sigma_m(G) = +\infty \). If the graph \(G \) is clear from the context, we often omit the graph parameter \(G \) in the graph invariant. In this paper, “disjoint” always means “vertex-disjoint”.

A graph having a hamilton cycle, i.e., a cycle containing all the vertices of the graph, is said to be hamiltonian. The hamiltonian problem has long been fundamental in graph theory. But, it is NP-complete, and so no easily verifiable necessary and sufficient condition seems to exist. Therefore, many researchers have focused on “better” sufficient conditions for graphs to be hamiltonian (see a survey [14]). In particular, the following degree sum condition, due to Ore (1960), is classical and well known.

Theorem A (Ore [15]) Let \(G \) be a graph of order \(n \geq 3 \). If \(\sigma_2 \geq n \), then \(G \) is hamiltonian.

Chvátal and Erdős (1972) discovered the relationship between the connectivity, the independence number and the hamiltonicity.

Theorem B (Chvátal, Erdős [8]) Let \(G \) be a graph of order at least 3. If \(\alpha \leq \kappa \), then \(G \) is hamiltonian.

Bondy [2] pointed out that the graph satisfying the Ore condition also satisfies the Chvátal-Erdős condition, that is, Theorem B implies Theorem A.

By Theorem B we should consider the degree condition for the existence of a hamilton cycle in graphs \(G \) with \(\alpha(G) \geq \kappa(G) + 1 \). In fact, Bondy (1980) gave the following degree sum condition by extending Theorem B.

Theorem C (Bondy [3]) Let \(G \) be an \(m \)-connected graph of order \(n \geq 3 \). If \(\sigma_{m+1} > \frac{1}{2}(m+1)(n-1) \), then \(G \) is hamiltonian.

In 2008, Yamashita [17] introduced a new graph invariant and further generalized Theorem C as follows. For a vertex subset \(X \) of a graph \(G \) with \(|X| \geq t \), we define

\[
\Delta_t(X) = \max \left\{ \sum_{x \in Y} d_G(x) : Y \subseteq X, \ |Y| = t \right\},
\]

Let \(m \geq t \), and if \(\alpha(G) \geq m \), then let

\[
\sigma_t^m(G) = \min \left\{ \Delta_t(X) : X \text{ is an independent set of } G \text{ with } |X| = m \right\};
\]

otherwise, \(\sigma_t^m(G) = +\infty \). Note that \(\sigma_t^m(G) \geq \frac{m}{t} \cdot \sigma_m(G) \).

Theorem D (Yamashita [17]) Let \(G \) be an \(m \)-connected graph of order \(n \geq 3 \). If \(\sigma_2^{m+1} \geq n \), then \(G \) is hamiltonian.
This result suggests that the degree sum of non-adjacent “two” vertices is important for hamilton cycles.

On the other hand, it is known that a 2-factor is one of the important generalizations of a hamilton cycle. A 2-factor of a graph is a spanning subgraph in which every component is a cycle, and thus a hamilton cycle is a 2-factor with “exactly 1 cycle”. As one of the studies concerning the difference between hamilton cycles and 2-factors, in this paper, we focus on 2-factors with “exactly k cycles”. Similar to the situation for hamilton cycles, deciding whether a graph has a 2-factor with k (≥ 2) cycles is also NP-complete. Therefore, the sufficient conditions for the existence of such a 2-factor also have been extensively studied in graph theory (see a survey [11]). In particular, the following theorem, due to Brandt, Chen, Faudree, Gould and Lesniak (1997), is interesting. (In the paper [5], the order condition is not “n ≥ 4k − 1” but “n ≥ 4k”. However, by using a theorem of Enomoto [9] and Wang [16] (“every graph G of order at least 3k with σ2(G) ≥ 4k − 1 contains k disjoint cycles”) for the cycles packing problem, we can obtain the following. See the proof in [5, Lemma 1].)

Theorem E (Brandt et al. [5]) Let k be a positive integer, and let G be a graph of order n ≥ 4k − 1. If σ2 ≥ n, then G has a 2-factor with exactly k cycles.

This theorem shows that the Ore condition guarantees the existence of a hamilton cycle but also the existence of a 2-factor with a prescribed number of cycles.

By considering the relation between Theorem A and Theorem E, Chen, Gould, Kawarabayashi, Ota, Saito and Schiermeyer [6] conjectured that the Chvátal-Erdős condition in Theorem E also guarantees the existence of a 2-factor with exactly k cycles (see [6, Conjecture 1]). Chen et al. also proved that if the order of a 2-connected graph G with α(G) = α ≤ κ(G) is sufficiently large compared with k and with the Ramsey number r(α + 4, α + 1), then the graph G has a 2-factor with k cycles. In [12], Kaneko and Yoshimoto “almost” solved the above conjecture for k = 2 (see the comment after Theorem E in Chen et al. [6] for more details). Another related result can be found in [7]. But, the above conjecture is still open in general. In this sense, there is a big gap between hamilton cycles and 2-factors with exactly k (≥ 2) cycles.

In this paper, by combining the techniques of the proof for hamiltonicity and the proof for 2-factors with a prescribed number of cycles, we give the following Yamashita-type condition for 2-factors with k cycles.

Theorem 1 Let k be a positive integer, and let G be an m-connected graph of order n ≥ 5k − 2. If σ2[m/k]+1 ≥ n, then G has a 2-factor with exactly k cycles.

This theorem implies the following:

Remark 2

- Theorem 1 is a generalization of Theorem D.
Theorem 1 leads to the Bondy-type condition: If G is an m-connected graph of order $n \geq 5k - 2$ with $\sigma_{[m/k]+1}(G) > \frac{1}{2}([m/k] + 1)(n - 1)$, then G has a 2-factor with exactly k cycles. Therefore, Theorem 1 is also a generalization of Theorem 2 for sufficiently large graphs. (Recall that $\sigma^m_t(G) \geq \frac{1}{m} \cdot \sigma_m(G)$ and $\sigma_m(G) \geq \frac{m}{2} \cdot \sigma_2(G)$ for $m \geq t \geq 2$.)

Theorem 1 leads to the Chvátal-Erdős-type condition: If G is a graph of order at least $5k - 2$ with $\alpha(G) \leq \lceil \kappa(G)/k \rceil$, then G has a 2-factor with exactly k cycles.

The complete bipartite graph $K_{(n-1)/2,(n+1)/2}$ (n is odd) does not contain a 2-factor, and hence the degree condition in Theorem 1 is best possible in this sense. The order condition in Theorem 1 comes from our proof techniques. Similar to the situation for the proof of Theorem 2, we will use the order condition only for the cycles packing problem (see Lemma 2 and the proof of Theorem 1 in Section 3). The complete bipartite graph $K_{2k-1,2k-1}$ shows that $n \geq 4k - 1$ is necessary. In the last section (Section 4), we note that “$n \geq 5k - 2$” can be replaced with “$n \geq 4k - 1$” for the Bondy-type condition (and the Chvátal-Erdős-type condition) in Remark 2.

Table 1 summarizes the conditions mentioned in the above.

	hamilton cycle	2-factor with k cycles
Ore-type	$\sigma_2 \geq n$	$\sigma_2 \geq n$
Chvátal-Erdős-type	$\alpha \leq \kappa$	$\alpha \leq \lceil \kappa/k \rceil$
Bondy-type	$\sigma_{n+1} > \frac{1}{2}(\kappa + 1)(n - 1)$	$\sigma_{[\kappa/k]+1} > \frac{1}{2}(\lceil \kappa/k \rceil + 1)(n - 1)$
Yamashita-type	$\sigma_{\frac{\kappa}{k}+1} \geq n$	$\sigma_{\frac{\kappa}{k}+1} \geq n$

Table 1: Comparison of the degree conditions

To prove Theorem 1 in the next section, we extend the concept of insertible vertices which was introduced by Ainouche [1], and we prove Theorem 1 in Section 3 by using it.

2 The concept of insertible vertices

In this section, we prepare terminology and notations and give some lemmas.

Let G be a graph. For $v \in V(G)$ and $X \subseteq V(G)$, we let $N_G(v; X) = N_G(v) \cap X$ and $d_G(v; X) = |N_G(v; X)|$. For $V, X \subseteq V(G)$, let $N_G(V; X) = \bigcup_{v \in V} N_G(v; X)$. For
$X \subseteq V(G)$, we denote by $G[X]$ the subgraph of G induced by X. An (x, y)-path in G is a path from a vertex x to a vertex y in G. We write a cycle (or a path) C with a given orientation by \overrightarrow{C}. If there exists no fear of confusion, we abbreviate \overrightarrow{C} by C. Let C be an oriented cycle (or path). We denote by \overleftarrow{C} the cycle C with a reverse orientation. For $x \in V(C)$, we denote the successor and the predecessor of x on \overrightarrow{C} by x^+ and x^-. For $x, y \in V(C)$, we denote by \overrightarrow{xy} the (x, y)-path on \overrightarrow{C}. The reverse sequence of \overrightarrow{xy} is denoted by \overleftarrow{xy}. In the rest of this paper, we consider that every cycle (path) has a fixed orientation, unless stated otherwise, and we often identify a subgraph H of G with its vertex set $V(H)$.

The following lemma is obtained by using the standard crossing argument, and so we omit the proof.

Lemma 1 Let G be a graph of order n, and let P be an (x, y)-path of order at least 3 in G. If $d_G(x) + d_G(y) \geq n$, then G contains a cycle of order at least $|P|$.

In [1], Ainouche introduced the concept of insertible vertices, which has been used for the proofs of the results on hamilton cycles. In this paper, we modify it for 2-factors with k cycles, and it also plays a crucial role in our proof. Let G be a graph, and let $\mathcal{D} = \{D_1, \ldots, D_{r+s}\}$ $(r + s \geq 1)$ be the set of r cycles and s paths in G which are pairwise disjoint. For a vertex x in $G - \bigcup_{1 \leq p \leq r+s} D_p$, the vertex x is **insertible** for \mathcal{D} if there is an edge uv in $E(D_p)$ such that $xu, xv \in E(G)$ for some p with $1 \leq p \leq r+s$. In the following lemma, “partition” of a graph means a partition of the vertex set.

Lemma 2 Let G be a graph, and let $\mathcal{D} = \{D_1, \ldots, D_{r+s}\}$ $(r + s \geq 1)$ be the set of r cycles and s paths in G which are pairwise disjoint, and P be a path in $G - \bigcup_{1 \leq p \leq r+s} D_p$. If every vertex of P is insertible for \mathcal{D}, then $G[\bigcup_{1 \leq p \leq r+s} V(D_p) \cup V(P)]$ can be partitioned into r cycles and s paths.

Proof of Lemma 2. By choosing the following two vertices $u, v \in V(P)$ and the edge $uv^+ \in \bigcup_{1 \leq p \leq r+s} E(D_p)$ inductively, we can get the desired partition of $G[\bigcup_{1 \leq p \leq r+s} V(D_p) \cup V(P)]$. Let u be the first vertex along \overrightarrow{P}, and take an edge $uv^+ \in E(D_i)$ ($\subseteq \bigcup_{1 \leq p \leq r+s} E(D_p)$) such that $uw, uv^+ \in E(G)$ for some i with $1 \leq i \leq r+s$ (since u is insertible for \mathcal{D}, we can take such an edge). We let v be the last vertex along \overrightarrow{P} such that $vw, vw^+ \in E(G)$ (may be $u = v$). Then, we can insert all vertices of $u \overrightarrow{P} v$ into D_i. In fact, by replacing the edge uv^+ by the path $uw \overrightarrow{P} vw^+$, we can obtain a spanning subgraph D'_i of $G[V(D_i \cup u \overrightarrow{P} v)]$ such that D'_i is a cycle if D_i is a cycle; otherwise, D'_i is a path. By the choice of u and v, we have $zw \notin E(G)$ or $zw^+ \notin E(G)$ for each vertex z of $P' := P - u \overrightarrow{P} v$, and hence every vertex of P' is insertible for $\mathcal{D}' = \{D_1, \ldots, D_{i-1}, D'_i, D_{i+1}, \ldots, D_{r+s}\}$. Thus, we can repeat this argument for the path P' and the set \mathcal{D}', and we get then the desired
partition. □

In the rest of this section, we fix the following. Let \(C_1, \ldots, C_k \) be \(k \) disjoint cycles in a graph \(G \), and let \(C^* = \bigcup_{1 \leq p \leq k} C_p \). Choose \(C_1, \ldots, C_k \) so that

\[
|C^*| \left(= \sum_{1 \leq p \leq k} |C_i| \right) \text{ is as large as possible.}
\]

Suppose that \(C^* \) does not form a 2-factor of \(G \). Let \(H = G - C^* \), and let \(H_0 \) be a component of \(H \) and \(x_0 \in V(H_0) \). Let

\[u_1, u_2, \ldots, u_l \] be \(l \) distinct vertices in \(N_G(H_0; C_1) \), where \(l \geq 2 \).

We assume that \(u_1, u_2, \ldots, u_l \) appear in this order on \(C_1 \), and let \(u_{i+1} = u_1 \). Note that by the maximality of \(|C^*| \), \(u_i \neq u_{i+1} \) for \(1 \leq i \leq l \). We denote by \(Q_i \) and \(Q_{i,j} \) a \((u_i, x_0)\)-path in \(G[V(H_0) \cup \{u_i\}] \) and a \((u_i, u_j)\)-path passing through a vertex of \(H_0 \) in \(G[V(H_0) \cup \{u_i, u_j\}] \), respectively.

Lemma 3 For \(1 \leq i \leq l \), \(u_i^+ \overrightarrow{C_1} u_{i+1}^- \) contains a non-insertible vertex for \(\{C_2, \ldots, C_k\} \).

Proof of Lemma 3 Suppose that every vertex of \(u_i^+ \overrightarrow{C_1} u_{i+1}^- \) is insertible for \(\{C_2, \ldots, C_k\} \). Then, by Lemma 2 \(G \left[\bigcup_{2 \leq p \leq k} V(C_p) \cup V(u_i^+ \overrightarrow{C_1} u_{i+1}^-) \right] \) has a 2-factor with exactly \(k - 1 \) cycles. With the cycle \(u_{i+1} \overrightarrow{C_1} u_i Q_{i+1,i} u_{i+1} \), we can get \(k \) disjoint cycles in \(G \) such that the sum of the orders is larger than \(|C^*| \), a contradiction. □

For \(1 \leq i \leq l \), let \(x_i \) be the first non-insertible vertex for \(\{C_2, \ldots, C_k\} \) in \(V(u_i^+ \overrightarrow{C_1} u_{i+1}^-) \) on \(C_1 \), i.e., every vertex of \(u_i^+ \overrightarrow{C_1} x_i^- \) is insertible for \(\{C_2, \ldots, C_k\} \), but \(x_i \) is not insertible (Lemma 3 guarantees the existence of such a vertex \(x_i \)).

Lemma 4 Let \(i, j \) be integers with \(1 \leq i, j \leq l \) and \(i \neq j \). If \(x \in V(u_i^+ \overrightarrow{C_1} x_i) \) and \(x' \in \{x_0, u_j^+\} \), then (i) \(xx' \notin E(G) \), and (ii) \(d_G(x; H \cup C_1) + d_G(x'; H \cup C_1) \leq |H \cup C_1| - 1 \).

Proof of Lemma 4 Consider the path

\[
P = \begin{cases}
 x \overrightarrow{C_1} u_i Q_i x_0 & \text{(if } x' = x_0) \\
 x \overrightarrow{C_1} u_i Q_i j u_i^+ & \text{(if } x' = u_j^+)
\end{cases}
\]

See Figure 1. Then, \(P \) is a path in \(G[V(H \cup x \overrightarrow{C_1} u_i)] \) passing through all vertices of \(x \overrightarrow{C_1} u_i \) and a vertex of \(H_0 \). Recall that every vertex of \(u_i^+ \overrightarrow{C_1} x_i^- \) is insertible for \(\{C_2, \ldots, C_k\} \), and hence \(G \left[\bigcup_{2 \leq p \leq k} V(C_p) \cup V(u_i^+ \overrightarrow{C_1} x_i^-) \right] \) has a 2-factor with exactly \(k - 1 \) cycles (by Lemma 2). Hence, the maximality of \(|C^*| \) and Lemma 1 yield that \(xx' \notin E(G) \) and \(d_G(x; H \cup x \overrightarrow{C_1} u_i) + d_G(x'; H \cup x \overrightarrow{C_1} u_i) \leq |H \cup x \overrightarrow{C_1} u_i| - 1 \).

In particular, (i) holds. Then, by applying (i) for each vertex in \(u_i^+ C_1 x^- \) and the vertex \(x' \), we have \(N_G(x'; u_i^+ C_1 x^-) = \emptyset \). Combining this with the above inequality, we get,

\[
d_G(x; H \cup C_1) + d_G(x'; H \cup C_1)
\]
\[
= d_G(x; H \cup x C_1 u_i) + d_G(x'; H \cup x C_1 u_i) + d_G(x; u_i^+ C_1 x^-)
\]
\[
\leq (|H \cup x C_1 u_i| - 1) + |u_i^+ C_1 x^-| = |H \cup C_1| - 1.
\]

Thus (ii) also holds. \(\square \)

3 Proof of Theorem \(\text{(1)} \)

Before proving Theorem \(\text{(1)} \) we will give the following lemma for the cycles packing problem.

Lemma 5 Let \(k, m, n \) and \(G \) be the same ones as in Theorem \(\text{(1)} \). Under the same degree sum condition as Theorem \(\text{(1)} \), \(G \) contains \(k \) disjoint cycles.

Proof of Lemma 5. If \(k = 1 \), then it is easy to check that \(G \) contains a cycle. If \(\lfloor m/k \rfloor = 1 \) or \(\lfloor m/k \rfloor \geq 3 \), then by a theorem of Enomoto \[9\], \(G \) contains \(k \) disjoint cycles (note that if \(\lfloor m/k \rfloor \geq 3 \), then \(G \) is \((2k+1)\)-connected, that is, the minimum degree \(\delta(G) \) is at least \(2k+1 \)). Thus, we may assume that \(k \geq 2 \) and \(\lfloor m/k \rfloor = 2 \). Then, we have \(\delta(G) \geq m \geq k+1 \) and \(\sigma_3(G) = \sigma_2^{\lfloor m/k \rfloor +1}(G) \geq n \geq 5k-2 \). Note that, by the definition of \(\sigma_3(G) \) and \(\sigma_3(G) \), \(\sigma_3(G) \geq \sigma_2^3(G) + \delta(G) \). Note also that \(n \geq 5k-2 \geq 3k+2 \geq 8 \) because \(k \geq 2 \). Hence, by a theorem of Fujita et al. \[10\] (“every graph \(G \) of order at least \(3k+2 \geq 8 \) with \(\sigma_3(G) \geq 6k-2 \) contains \(k \) disjoint cycles”), we can get the desired conclusion. \(\square \)

Now we are ready to prove Theorem \(\text{(1)} \).
Proof of Theorem \[1\]. Let \(G \) be an \(m \)-connected graph of order \(n \geq 5k - 2 \) such that \(\sigma_2^{[m/k]+1}(G) \geq n \). We show that \(G \) has a 2-factor with exactly \(k \) cycles. By Theorem \[2\] we may assume that \(\lceil m/k \rceil \geq 2 \). By Lemma \[3\] \(G \) contains \(k \) disjoint cycles. Let \(C_i \) for \(1 \leq i \leq k \), \(C^* \), \(H \), \(H_0 \), \(x_0 \) and \(u_i \) for \(1 \leq i \leq l \) be the same graphs and vertices as the ones described in the paragraph preceding Lemma \[3\] in Section \[2\]. In particular, we may assume that \(l = \lceil m/k \rceil \). Because, since \(G \) is \(m \)-connected, it follows that \(|N_G(H_0; C^*)| \geq m \) (note that by the maximality of \(|C^*| \), \(|C^*| > m \)), and hence, without loss of generality, we may assume that \(|N_G(H_0; C_1)| \geq \lceil m/k \rceil (\geq 2) \).

We first consider the set
\[
X = \{x_0\} \cup \{u_i^+: 1 \leq i \leq l\}.
\]

Then, Lemma \[4\] implies the following:

1. \(X \) is an independent set of size \(l + 1 \).
2. \(d_G(x; H \cup C_1) + d_G(x'; H \cup C_1) \leq |H \cup C_1| - 1 \) for \(x, x' \in X \) (\(x \neq x' \)).

On the other hand, by the maximality of \(|C^*| \) and Lemma \[2\] \(x_0 \) is non-insertible for \(\{C_2, \ldots, C_k\} \). This implies the following:

3. \(d_G(x_0; C_p) \leq |C_p|/2 \) for \(2 \leq p \leq k \), and hence \(d_G(x_0; C^* - C_1) \leq |C^* - C_1|/2 \).

Since \(\sigma_2^{[m/k]}(G) \geq n \), it follows from \[1\] that there exist two distinct vertices \(x \) and \(x' \) in \(X \) such that \(d_G(x) + d_G(x') \geq n \). Then, by \[2\], we get
\[
d_G(x; C^* - C_1) + d_G(x'; C^* - C_1) \geq n - (|H \cup C_1| - 1) = |C^* - C_1| + 1.
\]

Combining this with \[3\] and the definition of \(X \), we may assume that

4. \(d_G(u_i^+; C^* - C_1) > |C^* - C_1|/2 \).

Next, let \(x_1 \) be the first non-insertible vertex for \(\{C_2, \ldots, C_k\} \) in the path \(u_1^- \overset{C_1}{\rightarrow} C_1 u_i^+ \) on \(C_1 \) (we can take such a vertex by Lemma \[3\] and the symmetry of \(C_1 \) and \(C_1 \)), and we consider the set
\[
Y = \{x_0, x_1\} \cup \{u_i^-: 2 \leq i \leq l\}.
\]

Then, by the symmetry of \(C_1 \) and \(C_1 \), Lemma \[4\] and since \(x_1 \) is non-insertible for \(\{C_2, \ldots, C_k\} \), we have the following:

5. \(Y \) is an independent set of size \(l + 1 \).

6. \(d_G(y; H \cup C_1) + d_G(y'; H \cup C_1) \leq |H \cup C_1| - 1 \) for \(y, y' \in Y \) (\(y \neq y' \)).

7. \(d_G(x_1; C_p) \leq |C_p|/2 \) for \(2 \leq p \leq k \), and hence \(d_G(x_1; C^* - C_1) \leq |C^* - C_1|/2 \).
Since \(\sigma_{l+1}(G) \geq n \), it follows from (5) that there exist two distinct vertices \(y \) and \(y' \) in \(Y \) such that \(d_G(y) + d_G(y') \geq n \). Then, by (6), we get
\[
d_G(y; C^* - C_1) + d_G(y'; C^* - C_1) \geq n - (|H \cup C_1| - 1) = |C^* - C_1| + 1.
\]
Combining this with (3), (7) and the definition of \(Y \), we have the following:

\[
(8) \quad d_G(u^-; C^* - C_1) + d_G(u^+; C^* - C_1) > |C^* - C_1|/2 \text{ for some } i \text{ with } 2 \leq i \leq l.
\]

By (4) and (8), we have
\[
d_G(u^+ + 1; C^* - C_1) + d_G(u^-; C^* - C_1) > |C^* - C_1| = \sum_{2 \leq p \leq k} |C_p|.
\]

Hence, there exists a cycle \(C_p \) (2 \leq p \leq k), say \(p = 2 \), such that
\[
d_G(u^+_1; C^* - C_1) + d_G(u^-_1; C^* - C_1) = |C^* - C_1| + 1.
\]

This implies that there exists an edge \(uv \) in \(E(C_2) \) such that \(u^+_1, u^-_1, v \in E(G) \). By changing the orientation of \(C_2 \) if necessary, we may assume that \(u^+ = v \). Note that \(i \geq 2 \), and consider two cycles
\[
D_1 = u^-_1 \xrightarrow{\gamma_1} u_i \xrightarrow{Q_1} u_i \text{ and } D_2 = u^+_1 \xrightarrow{\gamma_1} u^-_i \xrightarrow{C_2} uu_1^+ \text{ (see Figure 2)}.
\]

Then, \(D_1, D_2, C_3, \ldots, C_k \) are \(k \) disjoint cycles such that the sum of the orders is

larger than \(|C^*| \), a contradiction.

This completes the proof of Theorem 1. \(\square \)

4 Notes on the order condition

As shown in the argument of the previous section, in the proof of Theorem 1, the order condition \(n \geq 5k - 2 \) is required only to show the existence of \(k \) disjoint cycles in a graph \(G \) (recall that the order condition in Theorem 2 is also). Therefore, the proof of Theorem 1 actually implies the following.
Theorem 3 Let k be a positive integer, and let G be an m-connected graph of order n. Suppose that G contains k disjoint cycles. If $d_2^{\lceil m/k \rceil + 1} \geq n$, then G has a 2-factor with exactly k cycles.

From this theorem, if we can obtain better results on the cycles packing problem, then the order conditions in Theorem 1 and Remark 2 can be improved. In fact, by using the result of Kierstead, Kostochka and Yeager (2017) and modifying the proof of Lemma 5, we can obtain a sharp order condition for the result in Remark 2 (see Corollary 4).

Theorem F (Kierstead et al. [13]) Let k be an integer with $k \geq 2$, and let G be a graph of order $n \geq 3k$ with $\delta(G) \geq 2k - 1$. Then G contains k disjoint cycles if and only if (i) $\alpha(G) \leq n - 2k$, and (ii) if k is odd and $n = 3k$, then $G \not\cong 2K_k \vee \bar{K}_k$ and if $k = 2$, then G is not a wheel.

Lemma 6 Let k be a positive integer, and let G be an m-connected graph of order $n \geq 4k - 1$. If $\sigma_{\lceil m/k \rceil + 1}(G) > \frac{1}{2}\left(\lceil m/k \rceil + 1\right)(n - 1)$, then G contains k disjoint cycles.

Proof of Lemma 6 By a similar argument as in the proof of Lemma 5, we have the following: If $k = 1$, then we can easily find a cycle; If $\lceil m/k \rceil = 1$ or $\lceil m/k \rceil \geq 3$, then by a theorem of Enomoto [9], G contains k disjoint cycles; If $\lceil m/k \rceil = 2$, and $k \geq 3$ or $n \geq 4k$, then by a theorem of Fujita et al. [10], G contains k disjoint cycles. Thus, we may assume that $k = 2$, $\lceil m/k \rceil = 2$ and $n = 4k - 1 = 7$. Then, $\delta(G) \geq m \geq k + 1 = 3 = 2k - 1$ and $\sigma_3(G) > \frac{3}{2}(n - 1) = 6k - 3 = 9$. Since $n = 7$ and $\sigma_3(G) > 9$, it follows that $\alpha(G) \leq 3 = n - 2k$ and G is not a wheel. Hence, by Theorem F, G contains two disjoint cycles. Thus, the lemma follows.

Recall that $\sigma_t^m(G) \geq \frac{t}{m} \cdot \sigma_m(G)$ for $m \geq t \geq 2$, and hence Theorem 3 and Lemma 6 lead to the following.

Corollary 4 Let k be a positive integer, and let G be an m-connected graph of order $n \geq 4k - 1$. If $\sigma_{\lceil m/k \rceil + 1}(G) > \frac{1}{2}\left(\lceil m/k \rceil + 1\right)(n - 1)$, then G has a 2-factor with exactly k cycles.

References

[1] A. Ainouche, An improvement of Fraissé's sufficient condition for hamiltonian graphs, J. Graph Theory 16 (1992) 529–543.

[2] J.A. Bondy, A remark on two sufficient conditions for hamilton cycles, Discrete Math. 22 (1978) 191–193.
[3] J.A. Bondy, *Longest paths and cycles in graphs with high degree*, Research Report CORR 80-16, Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, Canada (1980).

[4] J.A. Bondy, U.S.R. Murty, “GraphTheory,” Springer-Verlag, London, 2008.

[5] S. Brandt, G. Chen, R. Faudree, R.J. Gould, L. Lesniak, *Degree conditions for 2-factors*, J. Graph Theory 24 (1997) 165–173.

[6] G. Chen, R.J. Gould, K. Kawarabayashi, K. Ota, A. Saito, I. Schiermeyer, *The Chvátal-Erdős condition and 2-factors with a specified number of components*, Discuss. Math. Graph Theory 27 (2007) 401–407.

[7] G. Chen, A. Saito, S. Shan, *The existence of a 2-factor in a graph satisfying the local Chvátal-Erdős condition*, SIAM J. Discrete Math. 27 (2013) 1788–1799.

[8] V. Chvátal, P. Erdős, *A note on hamiltonian circuits*, Discrete Math. 2 (1972) 111–113.

[9] H. Enomoto, *On the existence of disjoint cycles in a graph*, Combinatorica 18 (1998) 487–492.

[10] S. Fujita, H. Matsumura, M. Tsugaki, T. Yamashita, *Degree sum conditions and vertex-disjoint cycles in a graph*, Australas. J. Combin 35 (2006) 237–251.

[11] R.J. Gould, *Advances on the hamiltonian problem – a survey*, Graphs and Combin. 19 (2003) 7–52.

[12] A. Kaneko, K. Yoshimoto, *A 2-factor with two components of a graph satisfying the Chvátal-Erdős condition*, J. Graph Theory 43 (2003) 269–279.

[13] H.A. Kierstead, A.V. Kostochka, E.C. Yeager, *On the Corrádi-Hajnal theorem and a question of Dirac*, J. Combin. Theory Ser. B 122 (2017) 121–148.

[14] H. Li, *Generalizations of Dirac’s theorem in hamiltonian graph theory – a survey*, Discrete Math. 313 (2013) 2034–2053.

[15] O. Ore, *Note on hamilton circuits*, Amer. Math. Monthly 67 (1960) 55.

[16] H. Wang, *On the maximum number of independent cycles in a graph*, Discrete Math. 205 (1999) 183–190.

[17] T. Yamashita, *On degree sum conditions for long cycles and cycles through specified vertices*, Discrete Math. 308 (2008) 6584–6587.