ENUMERATION OF SYMMETRIC CENTERED RHOMBUS TILINGS OF A HEXAGON

ANISSE KASRAOUI AND CHRISTIAN KRATTENTHALER

Abstract. A rhombus tiling of a hexagon is said to be centered if it contains the central lozenge. We compute the number of vertically symmetric rhombus tilings of a hexagon with side lengths \(a, b, a, a, b, a\) which are centered. When \(a\) is odd and \(b\) is even, this shows that the probability that a random vertically symmetric rhombus tiling of \(a, b, a, a, b, a\) hexagon is centered is exactly the same as the probability that a random rhombus tiling of \(a, b, a, a, b, a\) hexagon is centered. This also leads to a factorization theorem for the number of all rhombus tilings of a hexagon which are centered.

1. Introduction

The enumeration of plane partitions, equivalently of rhombus tilings of a hexagon, was initiated by MacMahon in the early twentieth century. Let \(a\), \(b\) and \(c\) be positive integers. By an \((a,b,c)\) hexagon we mean an equi-angular hexagon with side-lengths \(a, b, c, a, b, c\). We always draw such a hexagon with the sides of lengths \(a, b, c, a, b, c\) in clockwise order starting from the southwestern side, so that the sides of length \(b\) are vertical. From a classical result of MacMahon [23, Sect. 429, \(q \to 1\)], we know that the number of tilings of an \((a,b,c)\) hexagon by rhombi whose sides have length 1 and whose angles measure 60 and 120 degrees (equivalently, of plane partitions contained in an \(a \times b \times c\) box) is given by the product

\[
T(a,b,c) = \prod_{i=1}^{a} \prod_{j=1}^{b} \prod_{k=1}^{c} \frac{i+j+k-1}{i+j+k-2}.
\]

(1.1)

We call such tilings rhombus tilings. The picture on the left in Figure 1 shows a rhombus tiling of a \((3,5,4)\) hexagon. MacMahon also conjectured that the number of vertically symmetric rhombus tilings of an \((a,b,a)\) hexagon (i.e, that are invariant under reflection across the vertical symmetry axis of the hexagon; e.g., see the picture on the right in Figure 3) is given by the product

\[
ST(a,b,a) = \prod_{i=1}^{a} \frac{2i+b-1}{2i-1} \prod_{1 \leq i < j \leq a} \frac{i+j+b-1}{i+j-1}.
\]

(1.2)

This was first proved by Andrews [1]. Other proofs, and refinements, were later found by e.g. Gordon [15], Macdonald [24] pp. 83–85], Proctor [27, Prop. 7.3], Fischer [11], and the second author of the present paper [19, Theorem 13].
During the last two decades, there has been an increasing interest in enumerating rhombus tilings of planar regions with holes. One of the first results in this direction was the counting of rhombus tilings of an \((a, b, a)\) hexagon that contain the central rhombus (these tilings can be seen as the rhombus tilings of the region obtained from an \((a, b, a)\) hexagon by removing its central rhombus). We call such tilings \textit{centered}. Note that an \((a, b, a)\) hexagon has a central rhombus only if \(a\) and \(b\) have opposite parity. The picture on the right in Figure 1 shows a centered tiling of a \((4, 5, 4)\) hexagon. The corresponding enumeration result (see Theorem 1.1 below) is independently due to Ciucu and the second author [5, Theorems 1 and 2 and Corollaries 3 and 4] and to Gessel and Helfgott [17, Theorems 15 and 17]. For nonnegative integers \(n\) and \(x\), define

\[
Q(n, x) = \frac{1}{2} \frac{(2n)!^2(2x)!}{(n)!^2(x+2n-2)!} \left(\sum_{i=0}^{n-1} \frac{(-1)^{n-i-1} (x+n-i)_{2i}}{2n-2i-1} \right),
\]

where \((a)_k\) is for the Pochhammer symbol, defined by \((a)_k := a(a+1)\cdots(a+k-1)\) for \(k \geq 1\), and \((a)_0 := 1\).

\textbf{Theorem 1.1.} Let \(n\) and \(x\) be two nonnegative integers.

(i) For \(x \geq 1\), the number of centered rhombus tilings of a \((2n+1, 2x, 2n+1)\) hexagon is \(Q(n+1, x) \cdot T(2n+1, 2x, 2n+1)\), where \(Q\) and \(T\) are defined by (1.3) and (1.1). Similarly, for \(n \geq 1\), the number of centered rhombus tilings of a \((2n, 2x+1, 2n)\) hexagon is \(Q(n, x+1) \cdot T(2n, 2x+1, 2n)\).

(ii) For \(n \geq 1\), exactly one third of the rhombus tilings of a \((2n+1, 2n, 2n+1)\) hexagon are centered. The same is true for a \((2n, 2n+1, 2n)\) hexagon.

(iii) Let \(a\) be a nonnegative real number. For \(x \sim an\), the probability that a random rhombus tiling of a \((2n+1, 2x, 2n+1)\) hexagon is centered is \(\sim (2/\pi) \arcsin(1/(a+1))\) as \(n\) tends to infinity. The same is true for a \((2n, 2x+1, 2n)\) hexagon.

Generalizations of the preceding result were later obtained by Fulmek and the second author [12, 13], and Fisher [10]. For other results on the enumeration of rhombus tilings of hexagons of which central triangles are removed, see e.g. [3, 4, 8, 9, 22]. Another result which is particularly relevant to our paper is the one by Ciucu and the second author in [7] where for the first time the number of rhombus tilings of a half \((a, b, a)\) hexagon with a triangular hole of size two and a free boundary was computed. By a \textit{half} \((a, b, a)\) hexagon
with a *free boundary* we mean the region, denoted in the rest of the paper by \(F_{a,b,a} \), obtained from the left half of an \((a, b, a)\) hexagon by regarding its boundary along \(\ell \), the vertical symmetry axis of the hexagon, as free; i.e., rhombi in a tiling of \(F_{a,b,a} \) are allowed to protrude outward across \(\ell \) to its right. In Figure 2, the picture on the left shows a rhombus tiling of the half hexagon \(F_{7,6,7} \), the other two show tilings of \(F_{7,6,7} \) with triangular gaps of size one and two.

![Figure 2: Left: a rhombus tiling of the half hexagon \(F_{7,6,7} \). Middle: a tiling of \(F_{7,6,7} \) with a triangular hole of size two. Right: a tiling of \(F_{7,6,7} \) with a triangular hole of size one.](image)

The present paper was motivated by an attempt to find similar results to those obtained in [7] for a triangular gap of size one. While we didn’t succeed for a general position of the hole, we have been able to obtain a counting formula for the number of rhombus tilings of the region \(F^*_{a,b,a} \) obtained from the half hexagon \(F_{a,b,a} \) by removing a triangular hole of size one pointing to the left such that the center of its right-side coincides with the center of the free boundary (this region is defined only if \(a \) and \(b \) have opposite parity). The picture on the left in Figure 3 shows a tiling of \(F^*_{7,6,7} \). As illustrated in Figure 3, by reflecting the tilings of \(F^*_{a,b,a} \) across the free boundary, it is easily seen that these are equinumerous with the centered vertically symmetric rhombus tilings of an \((a, b, a)\) hexagon. The next two theorems, which can be seen as a “symmetrization” of Theorem 1.1(i), are our main results.

Theorem 1.2. Let \(n \) and \(x \) be nonnegative integers. For \(x \geq 1 \), the number of centered vertically symmetric rhombus tilings of a \((2n + 1, 2x, 2n + 1)\) hexagon is \(Q(n + 1, x) \cdot ST(2n + 1, 2x, 2n + 1) \), where \(Q \) and \(ST \) are defined by (1.3) and (1.2).
The correspondence between tilings of $F_{2n+1,2x,2n+1}^*$ and centered vertically symmetric tilings of a $(2n+1,2x,2n+1)$ hexagon.

For positive integer n and nonnegative integer x, define

$$U_n(x) = \sum_{i=1}^{n} \left((2n-1)!! + (-1)^{i+1}(2n)!!\right) \frac{\left(\frac{3}{2} - i\right)_{2n-1}}{(i-1)!(2n-i)!} \times \left((x+1)_{i-1}(x+i+1)_{2n-i} - (x+1)_{2n-i}(x+2n+2-i)_{i-1}\right),$$

(1.4)

and

$$R(n,x) = 2^{3n-2} \frac{(2x+2)!(x+2n)!}{(n)!(x+1)!(2x+4n)!} U_n(x).$$

(1.5)

Here, as usual, $a!!$ stands for the double factorial.

Theorem 1.3. Let n and x be nonnegative integers. For $n \geq 1$, the number of centered vertically symmetric rhombus tilings of a $(2n,2x+1,2n+1)$ hexagon is $R(n,x) \cdot ST(2n,2x+1,2n)$, where R and ST are defined by (1.5) and (1.2).

The next result, which is rather striking and deserves further investigation, is immediate from Theorems 1.2 and 1.1.

Corollary 1.4. Let n and x be nonnegative integers. The probability that a random vertically symmetric rhombus tiling of a $(2n+1,2x,2n+1)$ hexagon is centered is exactly the same as the probability that a random rhombus tiling of a $(2n+1,2x,2n+1)$ hexagon is centered.

We should note here that the preceding result leads to an interesting (and intriguing) factorization for the number of all centered tilings of a hexagon. Given a planar region R symmetric with respect to a vertical axis and to a horizontal axis, let $T(R)$ be the set of all rhombus tilings of R. We also let $T^{(1)}(R)$ (resp., $T^{(-)}(R)$) be the set of the tilings...
in $\mathcal{T}(R)$ that are vertically symmetric (resp., horizontally symmetric). Let $H_{a,2b,a}$ be an $(a,2b,a)$ hexagon. Ciucu and the second author [6] observed the factorization

$$\#T(H_{a,2b,a}) = \#T^{(l)}(H_{a,2b,a}) \cdot \#T^{(-)}(H_{a,2b,a}).$$

(1.6)

This can be proved by combining (1.1) and (1.2) with a formula of Proctor [28] for $\#T^{(-)}(H_{a,2b,a})$ (equivalently, the number of transpose complementary plane partitions in a $2b \times a \times a$ box); see also [6] where the above relation was put in a more general context.

Now, suppose that a is odd and let $H^*_{a,2b,a}$ denote the region obtained by removing the central rhombus in $H_{a,2b,a}$. Recall that a centered tiling of $H_{a,2b,a}$ is obviously equivalent to a tiling of $H^*_{a,2b,a}$. Then, combining Corollary 1.4 with (1.6) (and noting that any horizontally symmetric tiling of $H_{a,2b,a}$ is centered), we arrive at the following factorization for the number of centered tilings.

Corollary 1.5. For any nonnegative integers n and x, we have

$$\#T(H^*_{2n+1,2x,2n+1}) = \#T^{(l)}(H^*_{2n+1,2x,2n+1}) \cdot \#T^{(-)}(H^*_{2n+1,2x,2n+1}).$$

(1.7)

Note that the above factorization is very similar to the one in (1.6). Another result which is immediate from Corollary 1.4 and Theorem 1.1 is the following.

Corollary 1.6. (i) For $n \geq 1$, the probability that a random vertically symmetric rhombus tiling of a $(2n+1,2n,2n+1)$ hexagon is centered is $1/3$.

(ii) Let a be a nonnegative real number. For $x \sim an$, the probability that a random vertically symmetric rhombus tiling of a $(2n+1,2x,2n+1)$ hexagon is centered is $\sim (2/\pi) \arcsin(1/(a+1))$, as n tends to infinity.

As one can expect, the second part of the preceding proposition is still valid for a $(2n,2x+1,2n)$ hexagon.

Corollary 1.7. Let a be a nonnegative real number. Then, for $x \sim an$, the probability that a random vertically symmetric rhombus tiling of a $(2n,2x+1,2n)$ hexagon is centered is $\sim (2/\pi) \arcsin(1/(a+1))$, as n tends to infinity.

The rest of this paper is devoted to the proof of the above corollary and Theorems 1.2 and 1.3. As in many previous papers, our approach to proving Theorems 1.2 and 1.3 is to first translate the centered vertically symmetric rhombus tilings into families of non-intersecting lattice paths. Then, to enumerate these non-intersecting lattice paths, we use a slight extension of a theorem of Stembridge [29] to obtain Pfaffians for the numbers we are interested in. This is the subject of Section 2. The evaluation of these Pfaffians are presented in Section 3 and 4 with some auxiliary results proved in Section 5. It is based on the “exhaustion/identification of factors” method (e.g., see [21, Sect. 2.4]) and turns out to be particularly demanding. In particular, we need a Pfaffian factorization due to Ciucu and the second author, an evaluation of a perturbed Mehta-Wang Pfaffian, and evaluations of very intricate combinatorial sums. In the final section, Section 6, we perform the asymptotic calculation needed to derive Corollary 1.7 from Theorem 1.3.
2.1. Centered vertically symmetric tilings and nonintersecting lattice paths.

As explained in the introduction (see Figure 3), centered vertically symmetric tilings of an \((a, b, a)\) hexagon can be seen as tilings of the region \(F_{a,b,a}^*\). Throughout this section, the term lattice path will always refer to a path in the lattice \(\mathbb{Z}^2\) consisting of unit horizontal and vertical steps in the positive direction. There is a well known bijection between rhombus tilings of lattice regions and families of non-intersecting lattice paths. An illustration in our situation is given in Figure 4. By this bijection, tilings of \(F_{2n+1,2x,2n+1}^*\) are seen to be equinumerous with families \((P_1, P_2, \ldots, P_{2n+1})\) of non-intersecting lattice paths, where for \(i = 1, 2, \ldots, 2n + 1\), \(P_i\) runs from \((-i, i)\) to some point from the set \(I = \{(−1, j) : 1 \leq j \leq 2x + 2n + 1\}\) with the additional condition that \((-1, x + n + 1)\) must be an ending point of some path (we should note that empty path, i.e., with no steps, can occur as in Figure 4 where the bottommost path is the empty path from \((-1, 1)\) to \((-1, 1)\)). Similarly, tilings of \(F_{2n,2x+1,2n}^*\) are equinumerous with families \((P_1, P_2, \ldots, P_{2n})\) of non-intersecting lattice paths, where \(P_i\) runs from \((-i, i)\) to some point from the set \(I\) with the same additional condition. To enumerate these non-intersecting lattice paths, we shall use a slight extension of a theorem of Stembridge [29, Theorem 3.2].
2.2. Nonintersecting lattice paths and Pfaffians. We first set up some terminology. The Pfaffian of a skew-symmetric matrix \(A \) will be denoted \(\text{Pf} A \). It is well-known (see e.g. [29, Proposition 2.2]) that

\[
(\text{Pf} A)^2 = \det A. \tag{2.1}
\]

The signature of a permutation \(\pi \in \mathfrak{S}_n \), where \(\mathfrak{S}_n \) is the symmetric group of degree \(n \), will be denoted \(\text{sgn} \pi \). Recall that

\[
\text{sgn} \pi = (-1)^{\text{inv} \pi}, \tag{2.2}
\]

where \(\text{inv} \pi \) is the number of inversions of \(\pi \); i.e., the number of pairs \(1 \leq i < j \leq n \) such that \(\pi(i) > \pi(j) \).

Given a weight-function \(w \) that assigns values in the field of complex numbers \(\mathbb{C} \) to each edge of the integer lattice \(\mathbb{Z}^2 \), we extend \(w \) multiplicatively to multisets of edges, so that \(w(M) = \prod_{e \in M} w(e) \) for any such multiset \(M \). The weight of a lattice path or \(r \)-tuple of lattice paths is defined as the weight of the underlying multiset of edges. Given any family \(\mathcal{F} \) of edge multisets, we will write \(GF[\mathcal{F}] \) for the generating function according to the weight \(w \); i.e., \(GF[\mathcal{F}] = \sum_{M \in \mathcal{F}} w(M) \). In particular, let us define

\[
h(A, B) = GF[\mathcal{P}(A \rightarrow B)] = \sum_{P \in \mathcal{P}(A \rightarrow B)} w(P), \tag{2.3}
\]

where \(\mathcal{P}(A \rightarrow B) \) stands for the set of lattice paths from \(A \) to \(B \).

Theorem 2.1. Let \(A = (A_1, A_2, \ldots, A_p) \), \(S = (S_1, S_2, \ldots, S_q) \) and \(I = (I_1, I_2, \ldots) \) be finite lists of points in the lattice \(\mathbb{Z}^2 \), with \(p+q \) even. For \(\pi \in \mathfrak{S}_p \), let \(\mathcal{P}^{\text{nonint}}(A_\pi \rightarrow (S, I)) \) denote the set of families \((P_1, P_2, \ldots, P_p) \) of non-intersecting lattice paths with \(P_k \) running from \(A_{\pi(k)} \) to \(S_k \), for \(k = 1, 2, \ldots, q \), and to \(I_{j_k} \), for \(k = q+1, q+2, \ldots, p \), the indices being required to satisfy \(j_{q+1} < j_{q+2} < \ldots < j_p \). Then

\[
\text{Pf} \begin{pmatrix} Q & H^t \\ -H & 0 \end{pmatrix} = (-1)^{\frac{p(q+1)}{2}} \sum_{\pi \in \mathfrak{S}_p} (\text{sgn} \pi) GF[\mathcal{P}^{\text{nonint}}(A_\pi \rightarrow (S, I))], \tag{2.4}
\]

where the matrix \(Q = (Q_{i,j})_{1 \leq i, j \leq p} \) is defined by

\[
Q_{i,j} = \sum_{1 \leq s < t} h(A_i, I_s) h(A_j, I_t) - h(A_j, I_s) h(A_i, I_t), \tag{2.5}
\]

and the matrix \(H = (H_{i,j})_{1 \leq i \leq p, 1 \leq j \leq q} \) by

\[
H_{i,j} = h(A_i, S_j), \tag{2.6}
\]

with \(h(A, B) \) defined by [23].

The preceding theorem is a slight extension of a result of Stembridge [29, Theorem 3.2] and is just a weighted version of Theorem 5 in [7]. Since the proof of Stembridge’s Theorem (alternatively, we can use the minor summation formula of Ishikawa and Wakayama [18, Theorem 2]) is easily adapted with only a little extra effort to the preceding result, the proof details are omitted.
2.3. Centered vertically symmetric tilings and Pfaffians. Combining the non-intersecting lattice paths interpretation of centered vertically symmetric rhombus tilings with Theorem 2.1, we obtain the following counting Pfaffian formulas.

Lemma 2.2. Let \(n \) be a fixed nonnegative integer. Then, for any positive integer \(x \), the number of centered vertically symmetric rhombus tilings of a \((2n+1, 2x, 2n+1)\) hexagon is equal to the Pfaffian of the skew-symmetric matrix \(M(x) = (M_{i,j}(x))_{1 \leq i,j \leq 2n+2} \) defined by

\[
M_{i,j}(x) = R_{i,j}(x) + T_{i,j}(x) - T_{j,i}(x), \quad 1 \leq i, j \leq 2n+1,
\]

\[
M_{i,2n+2}(x) = \left(\begin{array}{c} x+n \\ i-1 \end{array} \right), \quad 1 \leq i \leq 2n+1,
\]

where \(R_{i,j}(x) \) and \(T_{i,j}(x) \) are defined by

\[
R_{i,j}(x) := \sum_{t=1}^{2x+2n+1} \frac{j-i}{t} \binom{t}{i} \binom{t}{j} = \sum_{t=1}^{2x+2n+1} \left(\binom{t}{i} \binom{t}{j-1} - \binom{t}{i-1} \binom{t}{j} \right), \quad (2.9)
\]

\[
T_{i,j}(x) := \left(2x + 2n + 1 \right) \left(\binom{x+n}{i} + \binom{x+n+1}{j} \right). \quad (2.10)
\]

Lemma 2.3. Let \(n \) be a fixed positive integer. Then, for any nonnegative integer \(x \), the number of centered vertically symmetric rhombus tilings of a \((2n, 2x+1, 2n)\) hexagon is equal to the Pfaffian of the skew-symmetric matrix \(N(x) = (N_{i,j}(x))_{1 \leq i,j \leq 2n+2} \) defined by

\[
N_{i,j}(x) = M_{i,j}(x) = R_{i,j}(x) + T_{i,j}(x) - T_{j,i}(x), \quad 1 \leq i, j \leq 2n+1,
\]

\[
N_{i,2n+1}(x) = \left(\begin{array}{c} 2n+2x+1 \\ i \end{array} \right) - \left(\begin{array}{c} n+x \\ i \end{array} \right) - \left(\begin{array}{c} n+x+1 \\ i \end{array} \right), \quad 1 \leq i \leq 2n,
\]

\[
N_{i,2n+2}(x) = M_{i,2n+2}(x) = \left(\begin{array}{c} x+n \\ i-1 \end{array} \right), \quad 1 \leq i \leq 2n, \quad N_{2n+1,2n+2}(x) = 0, \quad (2.13)
\]

where \(M_{i,j}(x), R_{i,j}(x) \) and \(T_{i,j}(x) \) are defined as in Lemma 2.2.

Remark 2.1. The matrices \(M(x) \) and \(N(x) \) differ only in the \((2n+1)\)-th row and \((2n+1)\)-th column.

Before we turn to the proof of these two lemmas, we provide an alternative expression for \(R_{i,j}(x) \) which has the advantage to be polynomial in \(x \):

\[
R_{i,j}(x) = \sum_{\ell=0}^{i-1} \frac{j-i}{i} \binom{j-1}{i-1-\ell} \binom{\ell+j}{\ell} \binom{2x+2n+2}{\ell+j+1}. \quad (2.14)
\]

The proof that the above relation is equivalent to (2.9) (for \(x \geq 0 \)) amounts to a routine computation (see e.g. the proof of Equation (4.13) in [7]). We should also notice that the equivalence of these two relations also hold for \(x < 0 \) once we interpret sums by

\[
\sum_{k=m}^{n-1} \text{Expr}(k) = \begin{cases}
\sum_{k=m}^{n-1} \text{Expr}(k), & \text{if } n > m, \\
0, & \text{if } n = m, \\
-\sum_{k=m}^{n-1} \text{Expr}(k), & \text{if } n < m,
\end{cases} \quad (2.15)
\]
assign to each edge of the lattice Z^2 a weight-function P, such that the weight of a path π is given by the expression (2.9) for $R_{ij}(x)$ and satisfies (2.20). Note that the construction of such a weight-function is straightforward. With what we have said, the expression (2.9) for $R_{ij}(x)$ makes sense for negative integers x also and is equal to the expression in (2.14). We will make use of this fact later in this paper.

Proof of Lemma 2.2. Let $T(F_{2n+1,2x,2n+1}^n)$ denote the number of rhombus tilings of the region $F_{2n+1,2x,2n+1}$. Let \mathcal{A}, \mathcal{S} and \mathcal{I} be the list of points in Z^2 defined by

$$\mathcal{A} = (A_1, A_2, \ldots, A_{2n+1}) \quad \text{with} \quad A_i = (-i, i),$$

$$\mathcal{S} = (I_{n+x+1}) \quad \text{and} \quad \mathcal{I} = (I_1, I_2, \ldots, I_{2x+2n+1}) \setminus (I_{n+x+1}) \quad \text{with} \quad I_j = (-1, j).$$

It follows from what we have said in Section 2.1 that

$$T(F_{2n+1,2x,2n+1}^n) = \sum_{\pi \in \mathcal{G}_{2n+1}} \#\mathcal{P}^{\text{nonint}}(\mathcal{A}_\pi \to (\mathcal{S}, \mathcal{I})), \tag{2.17}$$

where $\mathcal{P}^{\text{nonint}}(\mathcal{A}_\pi \to (\mathcal{S}, \mathcal{I}))$ is defined as in Theorem 2.1. Therefore, by (2.4), in order to express $T(H_{2n+1,2x})$ in term of a Pfaffian, it suffices to find a weight-function w that assigns $\text{sgn} \pi$ to each family of paths in $\mathcal{P}^{\text{nonint}}(\mathcal{A}_\pi \to (\mathcal{S}, \mathcal{I}))$ for $\pi \in \mathcal{G}_{2n+1}$. To this end, it shall be convenient to slightly modify the list \mathcal{A} (because of the possible occurrence of empty paths, as in Figure 4), which always have weight 1). Let $\tilde{\mathcal{A}}$ be defined by

$$\tilde{\mathcal{A}} = (\tilde{A}_1, \tilde{A}_2, \ldots, \tilde{A}_{2n+1}) \quad \text{with} \quad \tilde{A}_i = (-1, 0) \quad \text{and} \quad \tilde{A}_i = (-i, i) \quad \text{for} \quad i \geq 2. \tag{2.18}$$

It is easily checked that $\#\mathcal{P}^{\text{nonint}}(\mathcal{A}_\pi \to (\mathcal{S}, \mathcal{I})) = \#\mathcal{P}^{\text{nonint}}(\tilde{\mathcal{A}}_\pi \to (\mathcal{S}, \mathcal{I}))$ for any π in \mathcal{G}_{2n+1}. So, by (2.17), we have

$$T(F_{2n+1,2x,2n+1}^n) = \sum_{\pi \in \mathcal{G}_{2n+1}} \#\mathcal{P}^{\text{nonint}}(\tilde{\mathcal{A}}_\pi \to (\mathcal{S}, \mathcal{I})). \tag{2.19}$$

Let $\pi = \pi_1 \pi_2 \cdots \pi_{2n+1}$ be a permutation in \mathcal{G}_{2n+1}, written in one-line notation, such that $\mathcal{P}^{\text{nonint}}(\tilde{\mathcal{A}}_\pi \to (\mathcal{S}, \mathcal{I}))$ is non-empty. From the definition of the \tilde{A}_i’s and I_j’s, it is not difficult to see that the sequence $\pi_2 \pi_3 \cdots \pi_{2n+1}$ must be increasing, and thus the number of inversions of π, $\text{inv} \pi$, is equal to $\pi_1 - 1$. This implies that, for any family $(P_1, P_2, \ldots, P_{2n+1})$ in $\mathcal{P}^{\text{nonint}}(\tilde{\mathcal{A}}_\pi \to (\mathcal{S}, \mathcal{I}))$, $\text{inv} \pi$ is the number of paths P_i that ends at a point I_j with $j < n + x + 1$. So, if w is a weight-function on the edges of the lattice Z^2 such that the weight of a path P from \tilde{A}_i to I_j satisfies

$$w(P) = \begin{cases} +1, & j \geq n + x + 1, \\ -1, & j < n + x + 1, \end{cases} \tag{2.20}$$

we would obtain from (2.19), (2.2) and what we have said that

$$T(F_{2n+1,2x,2n+1}^n) = \sum_{\pi \in \mathcal{G}_{2n+1}} (\text{sgn} \pi) \text{GF}[\mathcal{P}^{\text{nonint}}(\tilde{\mathcal{A}}_\pi \to (\mathcal{S}, \mathcal{I})], \tag{2.21}$$

where GF is the generating function according to the weight w, as defined in Section 2.2. Note that the construction of such a weight-function w is easy: for instance, we can assign to each edge of the lattice Z^2 the value 1 except for the edges $\{-1,0\}, \{-1,1\}, \{(-2,j), (-1,j)\}$ for $2 \leq j < n + x + 1$, and $\{(-1,n+x), (-1, n+x+1)\}$, to which we assign the value -1. So, we can assume that (2.21) is true for some weight-function w satisfying (2.20).
Let \(h(\tilde{A}_i, I_j) \) be defined as in (2.23) and \(P(\tilde{A}_i, I_j) \) denote the number of lattice paths from \(\tilde{A}_i \) to \(I_j \). Then, by (2.20), we have \(h(\tilde{A}_i, I_j) = \epsilon P(\tilde{A}_i, I_j) \) where \(\epsilon = -1 \) if \(j < n+x+1 \) and \(\epsilon = 1 \) otherwise. This, combined with the well known counting of lattice paths, implies that

\[
h(\tilde{A}_i, I_j) = (-1)^{x(j<n+x+1)}\binom{j-1}{i-1}, \tag{2.22}
\]

where, as usual, for a claim \(F \), \(\chi(F) \) is 1 if \(F \) is true and 0 otherwise. Combining (2.21) with Theorem 2.1, we see that

\[
T(F_{2n+1,2x,2n+1}^n) = \text{Pf} \left(\begin{array}{cc}
Q & H \\
-H^t & 0
\end{array} \right), \tag{2.23}
\]

where \(Q = (Q_{i,j})_{1 \leq i, j \leq 2n+1} \) is the matrix defined by

\[
Q_{i,j} = \sum_{1 \leq s < t \leq 2x+1, s,t \neq n+x+1} h(\tilde{A}_i, I_s) h(\tilde{A}_j, I_t) - h(\tilde{A}_j, I_s) h(\tilde{A}_i, I_t), \tag{2.24}
\]

and \(H = (H_{i,1})_{1 \leq i \leq 2n+1} \) is the column vector defined by

\[
H_{i,1} = h(\tilde{A}_i, I_{x+n+1}) = \binom{x+n}{i-1}, \tag{2.25}
\]

where the last equality follows from (2.22). So, to complete the proof of the lemma, it suffices to show that the matrix entry \(Q_{i,j} \) in (2.24) is equal to the right-hand side of (2.7).

Let us define

\[
P_{i,j}(s, t) = \binom{s-1}{i-1} \binom{t-1}{j-1} - \binom{s-1}{j-1} \binom{t-1}{i-1}. \tag{2.26}
\]

Then, combining (2.24) with (2.22), we obtain

\[
Q_{i,j} = \sum_{1 \leq s < t \leq x+n} P_{i,j}(s, t) + \sum_{x+n+2 \leq s < t \leq 2n+1} P_{i,j}(s, t) - \sum_{s=1}^{n+x} \sum_{t=n+x+2}^{2n+2x+1} P_{i,j}(s, t). \tag{2.27}
\]

By (2.20), the last sum in the preceding relation can be evaluated as follows:

\[
\sum_{s=1}^{n+x} \sum_{t=n+x+2}^{2n+2x+1} P_{i,j}(s, t) = \sum_{s=1}^{n+x} \binom{s-1}{i-1} \sum_{t=n+x+2}^{2n+2x+1} \binom{t-1}{j-1} - \sum_{s=1}^{n+x} \binom{s-1}{j-1} \sum_{t=n+x+2}^{2n+2x+1} \binom{t-1}{i-1} = \binom{n+x}{i} \binom{2n+2x+1}{j} - \binom{n+x+1}{j} \tag{2.28}
\]

\[
\begin{align*}
&= \binom{n+x}{i} \binom{2n+2x+1}{j} - \binom{n+x+1}{j} \\
&= \binom{n+x}{i} \binom{2n+2x+1}{j} - \binom{n+x}{j} \binom{2n+2x+1}{i} \\
&= \binom{n+x}{i} \binom{2n+2x+1}{j} - \binom{n+x}{j} \binom{2n+2x+1}{i} + \frac{i-j}{n+x+1} \binom{n+x+1}{i} \binom{n+x+1}{j}. \tag{2.29}
\end{align*}
\]
where we used the well-known identity

$$\sum_{\ell=m}^{n} \binom{\ell}{i} = \binom{n+1}{i+1} - \binom{m}{i+1}$$ \hspace{1cm} (2.30)$$

to obtain (2.28). Similarly, using (2.30), we can prove (for details, see e.g. [7, Equation (4.10)] where the case $M = 1$ is treated) that

$$\sum_{M \leq s < t \leq N} \mathbb{P}_{s,t}(s,t) = \sum_{M \leq s < t \leq N} \left(\binom{s-1}{i-1} \binom{t-1}{j-1} - \binom{s-1}{j-1} \binom{t-1}{i-1} \right)$$

$$= \sum_{t=M}^{N} \frac{j-i}{t} \binom{t}{i} \binom{N}{j} \left(\frac{M-1}{j} \binom{M-1}{i} \right).$$ \hspace{1cm} (2.31)$$

Finally, after plugging (2.29) and (2.31) into (2.27), it is easily checked that the matrix entry $Q_{i,j}$ is equal to the right-hand side of the relation (2.7). This ends the proof. \hfill \square

Proof of Lemma 2.3. Using the correspondence illustrated in Figure 4 and the same reasoning as in the proof of (2.19), we see that $T(F_{2n,2x+1,2n}^*)$, the number of tilings of the region $F_{2n,2x+1,2n}^*$, is equal to the number of families (P_1, P_2, \ldots, P_n) of non-intersecting lattice paths, where for $i = 1, 2, \ldots, 2n$, P_i runs from A_i to some I_j, with the additional condition that I_{n+x+1} must be an ending point of some path. Here, the A_i's and I_j's have the same meaning as in (2.18) and (2.16). To be able to use Theorem 2.1, we shall need to introduce a phantom vertex (see the remark after Theorem 3.1 in [29]) to fulfill the parity condition on $p + q$ in Theorem 2.1.

Let $A' = (A_1', A_2', \ldots, A_{2n+1}')$, $S' = (I_{n+x+1}')$ and $T' = (I_1', I_2', \ldots, I_{2x+2n+2}') \setminus (I_{n+x+1}')$ be the list of points in \mathbb{Z}^2 defined by

$$A_1' = \tilde{A}_1' = (-1, 0), \quad A_i' = \tilde{A}_i = (-i, i) \quad \text{for } 1 \leq i \leq 2n, \quad A_{2n+1}' = (0, -1),$$

$$I_j' = I_j = (-1, j) \quad \text{for } 1 \leq j \leq 2x + 2n + 1, \quad I_{2x+2n+2}' = A_{2n+1}' = (0, -1).$$ \hspace{1cm} (2.32)$$

Then, from what we have said in the preceding paragraph it is not hard to show that

$$T(F_{2n,2x+1,2n}^*) = \sum_{\pi \in \mathbb{S}_{2n+1}} \# \mathcal{P}^{\text{nonint}}(A_\pi' \to (S', T')).$$ \hspace{1cm} (2.33)$$

Let $\pi = \pi_1 \pi_2 \ldots \pi_{2n+1}$ be a permutation in \mathbb{S}_{2n+1} such that $\mathcal{P}^{\text{nonint}}(A_\pi' \to (S', T'))$ is non-empty. Then, from the definition of the A_i's and I_j's, it is not difficult to see that the sequence $\pi_2 \pi_3 \ldots \pi_{2n+1}$ must be increasing and $\pi_{2n+1} = 2n + 1$ (for, if $(P_1, \ldots, P_{2n+1}) \in \mathcal{P}^{\text{nonint}}(A_\pi' \to (S', T'))$, then P_{2n+1} must be the empty path from A_{2n+1}' to $I_{2x+2n+2}')$.

Consequently, $\text{inv} \pi$ is equal to $\pi_1 - 1$, and thus is also, for any family $(P_1, P_2, \ldots, P_{2n+1})$ in $\mathcal{P}^{\text{nonint}}(A_\pi' \to (S', T'))$, the number of paths P_i such that P_i ends at a point I_j' with $1 \leq j < n + x + 1$. As it is done in the proof of Lemma 2.2, it is easy to find a weight-function w' on the edges of \mathbb{Z}^2 such that the weight of a path P from A_i' to I_j' satisfies

$$w'(P) = \begin{cases} +1, & \text{if } j \geq n + x + 1, \\ -1, & \text{if } 1 \leq j < n + x + 1. \end{cases}$$ \hspace{1cm} (2.34)$$
We omit the details. It follows from (2.33), (2.2) and what we have said that

\[
T(F_{2n,2x+1,2n}^*) = \sum_{\pi \in \Theta_{2n+1}} (\text{sgn } \pi) \text{GF}[\mathcal{P}^{\text{nonint}}(A'_\pi \to (S', I'))].
\]

(2.35)

Let \(P(A'_i, I'_j) \) denote the number of lattice paths from \(A'_i \) to \(I'_j \). Similarly to (2.22), we have \(h(A'_i, I'_j) = \epsilon P(A'_i, I'_j) \) where \(\epsilon = -1 \) if \(j < n + x + 1 \) and \(\epsilon = 1 \) otherwise, whence

\[
h(A'_i, I'_j) = \begin{cases}
(-1)^{x(i<n+x+1)} \binom{j-1}{i-1}, & \text{if } i \neq 2n + 1 \text{ and } j \neq 2x + 2n + 2, \\
1, & \text{if } (i, j) = (2n + 1, 2x + 2n + 2), \\
0, & \text{otherwise}.
\end{cases}
\]

(2.36)

Combining (2.35) with Theorem 2.1 and (2.36), we obtain that

\[
T(F_{2n,2x+1,2n}^*) = \text{Pf} \begin{pmatrix} Q & H \\ -H^t & 0 \end{pmatrix},
\]

(2.37)

where \(Q = (Q_{i,j})_{1 \leq i, j \leq 2n+1} \) is the matrix defined by

\[
Q_{i,j} = \sum_{1 \leq s \leq t \leq 2x+2n+2 \atop x, t \neq i+j+1} h(A'_i, I'_s) h(A'_j, I'_t) - h(A'_i, I'_s) h(A'_j, I'_t),
\]

(2.38)

and \(H = (H_{i,1})_{1 \leq i \leq 2n+1} \) is the column vector defined by

\[
H_{i,1} = h(A'_i, I'_{x+n+1}) = \chi(i \neq 2n+1) \binom{x+n}{i-1},
\]

(2.39)

where the last equality follows from (2.36).

Comparing (2.36) with (2.22), it is not hard to see that, for \(1 \leq i, j \leq 2n \), the right-hand member of (2.38) is equal to the right-hand member of (2.24) (which was shown to be the right-hand member of (2.7)). Note that this can also be directly proved from the combinatorial interpretation of (2.24) and (2.38) (see e.g. Equation (3.1) in [29]). On the other hand, when \(1 \leq i \leq 2n \) and \(j = 2n + 1 \), from (2.38) and (2.39) we have

\[
Q_{i,2n+1} = \sum_{t=1}^{2x+2n+1} h(A'_i, I'_t) = -\sum_{t=1}^{n+x} \binom{t-1}{i-1} + \sum_{t=n+x+2}^{2n+2x+1} \binom{t-1}{i-1},
\]

(2.40)

which, by (2.30), simplifies to the right-hand member of (2.12). Summarizing, we have proved that the matrix in (2.37) is equal to the matrix \(N(x) \) described in the lemma. This ends the proof. \(\square \)

3. Proof of Theorem 1.2

Throughout this section, we assume that \(n \) is a (fixed) nonnegative integer. From (1.2), it is easily checked that \(ST(2n+1, 2x, 2n+1) \) can be written in the form

\[
ST(2n+1, 2x, 2n+1) = \frac{(x+\frac{1}{2})^{2n+1}}{(\frac{1}{2})^{2n+1}} \prod_{s=1}^{n} \frac{(2x+2s)_{4n-4s+3}}{(2s)_{4n-4s+3}}.
\]
This, combined with Lemma 2.2, implies that Theorem 1.2 is equivalent to the equation

$$\text{Pf } M(x) = \frac{1}{4} \frac{(2n + 2)!^2 (2n)!}{(n + 1)!^2 (4n + 1)!} \prod_{s=1}^{n} \frac{(2x + 2s)_{4n-4s+3}}{(2s)_{4n-4s+3}} \left(\sum_{i=0}^{n} \frac{(-1)^{n-i} (x + n + 1 - i)_{2i}}{(i!)^2 (2n + 1 - 2i)} \right),$$

(3.1)

where $M(x)$ is the matrix defined in Lemma 2.2. We shall prove the latter formula.

In Sections 3.1 and 3.2, we prove that $\text{Pf } M(x)$ is a polynomial in x of degree at most $2n^2 + 3n$ and that

$$\text{Pf } M(x) = (-1)^n \text{Pf } M(-2n - 1 - x).$$

(3.2)

In Sections 3.3 and 3.4, we show that $\prod_{s=1}^{n} (x + s)^s$ and $\prod_{s=1}^{n} (x + s + \frac{1}{2})^s$ divide $\text{Pf } M(x)$ as a polynomial in x. By (3.2), this implies that

$$\left(x + n + \frac{1}{2} \right)^n \prod_{s=1}^{n-1} \left(x + s + \frac{1}{2} \right)^s \left(x + 2n + 1 - s - \frac{1}{2} \right)^n \prod_{s=1}^{n} (x + s)^s (x + 2n + 1 - s)^s,$$

which simplifies to

$$2^{-2n^2-n} \prod_{s=1}^{n} (2x + 2s)_{4n-4s+3}$$

(3.3)

and is a polynomial of degree $2n^2 + n$, divides $\text{Pf } M(x)$ as a polynomial in x. Altogether, this implies that

$$\text{Pf } M(x) = P(x) \prod_{s=1}^{n} (2x + 2s)_{4n-4s+3}$$

(3.4)

for some polynomial $P(x)$ in x of degree at most $2n$. Therefore, in order to prove (3.1), it remains to show that $P(x)$ is equal to the polynomial $K(x)$ defined by

$$K(x) = \frac{1}{4} \frac{(2n + 2)!^2 (2n)!}{(n + 1)!^2 (4n + 1)!} \prod_{s=1}^{n} \frac{1}{(2s)_{4n-4s+3}} \left(\sum_{i=0}^{n} \frac{(-1)^{n-i} (x + n + 1 - i)_{2i}}{2n + 1 - 2i} \right).$$

(3.5)

Since $P(x)$ and $K(x)$ are polynomials in x of degree at most $2n$, it suffices to show that $P(x) = K(x)$ for $2n + 1$ distinct values of x. In Section 3.5, we determine the values of $P(x)$ and $K(x)$ at $x = 0, -1, \ldots, -n$ and consequently show that $P(x) = K(x)$ at $x = 0, -1, \ldots, -n$. Since, by (3.4) and (3.2), $P(x) = P(-2n - 1 - x)$ and, by (3.5), $K(x) = K(-2n - 1 - x)$ for any x, this shows at the same time that $P(x) = K(x)$ at $x = -2n - 1, -2n, \ldots, -n - 1$. In total, there holds that $P(x) = K(x)$ at $2n + 2$ values of x. This would complete the proof of (3.1).

3.1. Pf $M(x)$ is a polynomial in x of degree at most $2n^2 + 3n$. By Lemma 2.2 and (2.14), the (i,j)-entry of $M(x)$ is a polynomial in x of degree $i + j$ if $1 \leq i, j \leq 2n + 1$ and $i \neq j$, of degree $i - 1$ if $1 \leq i \leq 2n + 1$ and $j = 2n + 2$. Moreover, $M_{i,j}(x) = 0$ if $i = j$. By the formal definition of a Pfaffian (see e.g. [29 Section 2]), this immediately shows
that Pf $M(x)$ is a polynomial in x. This also implies that in the defining expansion of
the determinant $\det M(x)$ each nonzero term is a polynomial of degree
\[
\left(\sum_{i=1}^{2n+1} i \right) - 1 + \left(\sum_{j=1}^{2n+1} j \right) - 1 = 4n^2 + 6n.
\]
Consequently, $\det M(x)$ is a polynomial of degree at most $4n^2 + 6n$. The claim then follows from (2.1).

3.2. Pf $M(x) = (-1)^n$ Pf $M(-2n - 1 - x)$. We shall transform, up to sign, $M(x)$ into
$M(-2n - 1 - x)$ by a sequence of elementary row and column operations. More precisely,
let $B = (B_{i,j})_{1 \leq i,j \leq 2n + 2}$ be the lower triangular matrix of size $2n + 2$ defined by
\[
B = \begin{pmatrix}
(B_{i,j}) & \vdots \\
0 & \ddots & \ddots \\
0 & \ddots & 0 & -1
\end{pmatrix}, \quad \text{with } B_{i,j} = \binom{i - 1}{j - 1} \text{ for } 1 \leq i, j \leq 2n + 1, (3.6)
\]
and let $M^{(1)} = \left(M^{(1)}_{i,j} \right)_{1 \leq i,j \leq 2n + 2}$ be the skew-symmetric matrix (of size $2n + 2$) defined
by $M^{(1)} = BM(x)B^t$. We claim that the (i, j)-entry in $M^{(1)}$ is, up to the sign $(-1)^{i+j}$,
the (i, j)-entry in $M(-2n - 1 - x)$. Since $\det B = -1$, this would yield
\[
\det M(x) = \det M^{(1)} = \det M(-2n - 1 - x),
\]
which, combined with (2.1) and the degree of Pf $M(x)$, would lead to (3.2), as desired.

We now turn to the proof of the claim that $M^{(1)}_{i,j} = (-1)^{i+j}M_{i,j}(-2n - 1 - x)$. By
definition of the matrices $M^{(1)}$ and B, we have
\[
M^{(1)}_{i,j} = \sum_{a=1}^{i} \sum_{b=1}^{j} \binom{i - 1}{a - 1} \binom{j - 1}{b - 1} M_{a,b}(x), \quad 1 \leq i, j \leq 2n + 1, (3.7)
\]
\[
M^{(1)}_{i,2n+2} = - \sum_{a=1}^{i} \binom{i - 1}{a - 1} M_{a,2n+2}(x), \quad 1 \leq i \leq 2n + 1. (3.8)
\]

Recall that, for $1 \leq a, b \leq 2n + 1$, $M_{a,b}(x) = R_{a,b}(x) + T_{a,b}(x) - T_{b,a}(x)$, where the
$R_{i,j}(x)$’s and $T_{i,j}(x)$’s are given by (2.9) and (2.10). It was already shown in [7] Section 5,
Step 1, Equations (5.5)–(5.10)] that
\[
\sum_{a=1}^{i} \sum_{b=1}^{j} \binom{i - 1}{a - 1} \binom{j - 1}{b - 1} R_{a,b}(x) = (-1)^{i+j} R_{i,j}(-2n - 1 - x). (3.9)
\]
On the other hand, using the expression (2.10), after a routine calculation, we obtain
\[
\sum_{a=1}^{i} \sum_{b=1}^{j} \binom{i - 1}{a - 1} \binom{j - 1}{b - 1} T_{a,b}(x)
\]
of the matrix A

Lemma 3.1. A sufficient condition for the divisibility of $\text{Pf} \ A$ linearly independent and vanish at $x = b$

where, to obtain (3.10), we used the relation

$$\sum_{k \geq 0} \binom{L}{k-\epsilon} \binom{M}{k} = \binom{L+M}{L+\epsilon} = (-1)^{L+\epsilon} \binom{-M-1+\epsilon}{L+\epsilon} \quad (3.12)$$

which follows from the Chu–Vandermonde summation. After plugging (2.7) into (3.7), it is immediate from (3.9) and (3.11) that $M_{i,j}^{(1)} = (-1)^{i+j} M_{i,j} (-2n-1-x)$ for $1 \leq i, j \leq 2n+1$. Similarly, plugging (2.8) into (3.8), we obtain for $1 \leq i \leq 2n+1$

$$M_{i,2n+2}^{(1)} = -\sum_{a=1}^{i} \binom{i-1}{a-1} \binom{x+n}{a-1} = (-1)^i \binom{-x-n-1}{i-1} = (-1)^i M_{i,2n+2} (-2n-1-x), \quad (3.11)$$

where the second equality again follows from (3.12) (specialized to $\epsilon = 0$).

Summarizing, we have shown that $M^{(1)} = ((-1)^{i+j} M_{i,j} (-2n-1-x))_{1 \leq i, j \leq 2n+2}$, as desired. This ends the proof.

3.3. $\prod_{s=1}^{n}(x+s) \text{ divides } \text{Pf} \ M(x)$. Let s be an integer with $1 \leq s \leq n$. It is easily checked that

For $2n - 2s + 2 \leq a \leq 2n + 1$, the a-th row of the matrix $M(-s)$ is null. \quad (3.13)

Indeed, by Lemma 2.2 the entries of the a-th row of $M(-s)$ are, for $1 \leq j \leq 2n+1$,

$$M_{a,j}(-s) = \sum_{t=1}^{2n-2s+1} \frac{j-a}{t} \binom{t}{a} \binom{t}{j} + \binom{2n-2s+1}{a} \left(\binom{n-s}{j} + \binom{n-s+1}{j} \right) - \binom{2n-2s+1}{j} \left(\binom{n-s}{a} + \binom{n-s+1}{a} \right),$$

and $M_{a,2n+2}(-s) = \binom{n-s+1}{a-1}$. These entries are clearly null if $a > 2n - 2s + 1$ since the binomial coefficients $\binom{n-s}{a-1}$ and $\binom{t}{a}$, for $t = 1, \ldots, 2n - 2s + 1$, vanish.

By (3.13), we have $2s$ linear combinations of the rows of the matrix $M(x)$ that are linearly independent and vanish at $x = -s$. This, combined with the next lemma, yields the divisibility of $\text{Pf} \ M(x)$ by $(x+s)^s$, as desired.

Lemma 3.1. \cite{20} Section 2] Let $A(x)$ be a skew-symmetric matrix with polynomial entries. A sufficient condition for $(x-b)^m$ to divide $\text{Pf} \ A(x)$ is that the dimension of the kernel of the matrix $A(b)$ is at least $2m$.\pagebreak
3.4. $\prod_{s=1}^{n}(x+s+1/2)^s$ divides $\text{Pf } M(x)$. We first notice that some coefficients of the matrix $M(x)$ when specialized to $x = -s - 1/2$, $1 \leq s \leq n$, have a relative simple form. Namely, for $2n - 2s + 1 \leq i \leq 2n + 1$ and $j \leq 2n + 1$, we have

$$M_{i,j}(-s - 1/2) = -M_{j,i}(-s - 1/2) = -\binom{2n - 2s}{j} \left(\binom{n - s - 1/2}{i} + \binom{n - s + 1/2}{i} \right),$$

and thus,

$$M_{i,j}(-s - 1/2) = 0 \quad \text{for } 1 \leq s \leq n \text{ and } 2n - 2s + 1 \leq i, j \leq 2n + 1. \quad (3.15)$$

Indeed, by (2.7), we have

$$M_{i,j}(-s - 1/2) = \sum_{t=1}^{2n-2s} \frac{j - i}{t} \binom{t}{i} \binom{t}{j} + \binom{2n - 2s}{j} \left(\binom{n - s - 1/2}{i} + \binom{n - s + 1/2}{i} \right) - \binom{2n - 2s}{j} \left(\binom{n - s - 1/2}{i} + \binom{n - s + 1/2}{i} \right)$$

and the binomial coefficients $\binom{t}{i}$ vanish for $t = 1, \ldots, 2n - 2s$ and $i \geq 2n - 2s + 1$.

3.4.1. The case $1 \leq s \leq n - 1$. Suppose $1 \leq s \leq n - 1$. We shall show that

$$(-1)^a \binom{n + s - 1/2}{a + 1} \cdot (\text{row } (2n - a) \text{ of } M(-s - 1/2))$$

$$- \binom{n + s - 1/2}{a} \cdot (\text{row } 2n \text{ of } M(-s - 1/2))$$

$$- a \binom{2n + 1}{a + 1} \cdot (\text{row } 2n + 1 \text{ of } M(-s - 1/2)) = 0 \quad (3.16)$$

for $a = 1, \ldots, 2s - 1$, and that

$$\sum_{i=1}^{2n-2s} (-2)^{i-1} \cdot (\text{row } i \text{ of } M(-s - 1/2))$$

$$- 4^{n-s} \frac{(2n - 2s + 2)_{2s}}{(n - s + 1/2)_{2s-1}} \cdot (\text{row } 2n \text{ of } M(-s - 1/2))$$

$$- 2n \cdot 4^{n-s} \frac{(2n - 2s + 2)_{2s}}{(n - s + 1/2)_{2s}} \cdot (\text{row } 2n + 1 \text{ of } M(-s - 1/2)) = 0. \quad (3.17)$$

As these are $2s$ linear combinations of the rows of the matrix $M(x)$ that are linearly independent and vanish at $x = -s - 1/2$, this would lead, by Lemma 3.1, to the divisibility of $\text{Pf } M(x)$ by $(x + s + 1/2)^s$.

16
Proof of (3.16). Suppose $1 \leq a \leq 2s - 1$. We have to show that, for $1 \leq j \leq 2n + 2$, we have

\begin{align*}
(-1)^a \left(\frac{n + s - \frac{1}{2}}{a + 1} \right) M_{2n-a,j}(-s - 1/2) &- \left(\frac{n + s - \frac{1}{2}}{2n - a} \right) \left(\frac{2n}{a} \right) M_{2n,j}(-s - 1/2) \\
- a \left(\frac{2n + 1}{a + 1} \right) M_{2n+1,j}(-s - 1/2) &= 0.
\end{align*}

(3.18)

(a) When $2n - 2s + 1 \leq j \leq 2n + 1$, all the matrix entries in (3.18) are null by (3.15). So, the identity is clearly true.

(b) Suppose $1 \leq j \leq 2n - 2s$. By plugging (3.14) into (3.18), we obtain the relation

\begin{align*}
(-1)^a \left(\frac{n + s - \frac{1}{2}}{a + 1} \right) &\left(\frac{n - s - \frac{1}{2}}{2n - a} + \left(\frac{n - s + \frac{1}{2}}{2n - a} \right) \right) \\
- \left(\frac{n + s - \frac{1}{2}}{2n - a} \right) \left(\frac{2n}{a} \right) &\left(\frac{n - s - \frac{1}{2}}{2n} + \left(\frac{n - s + \frac{1}{2}}{2n} \right) \right) \\
- a \left(\frac{2n + 1}{a + 1} \right) &\left(\frac{n - s - \frac{1}{2}}{2n + 1} + \left(\frac{n - s + \frac{1}{2}}{2n + 1} \right) \right) = 0,
\end{align*}

(3.19)

which amounts to a routine verification.

(c) Suppose $j = 2n + 2$. By (2.8), (3.18) reduces to the relation

\begin{align*}
(-1)^a \left(\frac{n + s - \frac{1}{2}}{a + 1} \right) &\left(\frac{n - s - \frac{1}{2}}{2n - a - 1} \right) - \left(\frac{n + s - \frac{1}{2}}{2n} \right) \left(\frac{2n}{a} \right) \left(\frac{n - s - \frac{1}{2}}{2n - 1} \right) \\
- a \left(\frac{2n + 1}{a + 1} \right) &\left(\frac{n - s - \frac{1}{2}}{2n} \right) = 0,
\end{align*}

(3.20)

which again amounts to a routine verification. This ends the proof of (3.16).

□

Proof of (3.17). We have to show that, for $1 \leq j \leq 2n + 2$, we have

\begin{align*}
\sum_{i=1}^{2n-2s} (-2)^{i-1} M_{i,j}(-s - 1/2) &= 4^{n-s} \frac{2n - 2s + 2}{(n - s + \frac{1}{2})^{2s-1}} M_{2n,j}(-s - 1/2) \\
&+ 2n \cdot 4^{n-s} \frac{(2n - 2s + 2)}{(n - s + \frac{1}{2})^{2s}} M_{2n+1,j}(-s - 1/2).
\end{align*}

(3.21)

(a) Suppose $j = 2n + 2$. Then, using the expression (2.8), it is easily checked that the right-hand side of (3.21) is zero (when specialized to $j = 2n + 2$), and thus (3.21) reduces to the relation

\begin{align*}
\sum_{i=0}^{2n-2s-1} (-2)^{i} \binom{n - s - \frac{1}{2}}{i} &= 0.
\end{align*}

(3.22)
Reversing the order of summation over \(i \) (that is we replace \(i \) by \(2n - 2s - 1 - i \)), the left-hand side of (3.22) can be written using standard hypergeometric notation

\[
pFq \left[a_1, \ldots, a_p ; b_1, \ldots, b_q ; z \right] = \sum_{n \geq 0} \frac{(a_1)_n \cdots (a_p)_n \, z^n}{(b_1)_n \cdots (b_q)_n \, n!}
\]
as

\[
(-2)^{2n-2s-1} \binom{n-s-\frac{1}{2}}{2n-2s-1} \, _2F_1 \left[1, -2n + 2s + 1 ; \frac{1}{2} ; -n + s + \frac{3}{2} \right]
\]
which is indeed null (recall that \(1 \leq s \leq n-1 \)) by means of Gauss’ second \(_2F_1 \)-summation

\[
_2F_1 \left[a, -N ; \frac{1}{2} + \frac{a}{2} - \frac{N}{2} ; \frac{1}{2} \right] = \begin{cases}
0, & \text{if } N \text{ is an odd nonnegative integer,} \\
\frac{(1/2)_{N/2}}{(a+1/2)_{N/2}}, & \text{if } N \text{ is an even nonnegative integer.}
\end{cases}
\]

(b) Suppose \(2n - 2s + 1 \leq j \leq 2n + 1 \). Then, using the expressions (3.14) and (3.15) for the matrix entries in the sum in (3.21), it is easily checked that the right-hand side of (3.21) vanishes so that (3.21) reduces to the identity

\[
\sum_{i=1}^{2n-2s} (-2)^{i-1} \binom{n-s-\frac{1}{2}}{j} + \binom{n-s+\frac{1}{2}}{j} \binom{2n-2s}{i} = 0,
\]
which is an immediate consequence of the binomial theorem.

(c) Suppose \(1 \leq j \leq 2n - 2s \). Then, by (2.7), the left-hand side of (3.21) is

\[
\sum_{i=1}^{2n-2s} (-2)^{i-1} M_{i,j} (-s - 1/2) = \sum_{i=1}^{2n-2s} (-2)^{i-1} \sum_{t=1}^{2n-2s} \frac{t-i}{t} \binom{t}{i} \binom{t}{j} \sum_{i=1}^{2n-2s} \binom{2n-2s}{i} (-2)^{i-1} \binom{2n-2s}{i} \binom{n-s-\frac{1}{2}}{j} + \binom{n-s+\frac{1}{2}}{j} \binom{2n-2s}{i}.
\]
The first sum in (3.23) is equal to \(\binom{2n-2s}{j} \). This can be deduced from the formula

\[
\sum_{i=1}^{N} (-2)^{i-1} \sum_{t=1}^{N} \frac{j-i}{t} \binom{t}{i} \binom{t}{j} = \frac{1 + (-1)^{N}}{2} \binom{N}{2},
\]
which is valid for any nonnegative integers \(N \) and \(j \). For \(N \) even, (3.24) was proved in [7] proof of equation 5.21]. The proof for \(N \) odd is similar as the case \(N \) even and involves only elementary manipulations. It is thus left to the reader.

By the binomial theorem the second sum in (3.23) vanishes. Moreover, the last sum in (3.23) simplifies to

\[
\sum_{i=1}^{2n-2s} (-2)^{i-1} \binom{n-s-\frac{1}{2}}{i} + \binom{n-s+\frac{1}{2}}{i} = 1 - 4^{n-s} \binom{n-s-\frac{1}{2}}{2n-2s}.
\]
This immediately follows from the telescoping equation

\[(-2)^{i-1} \left(\binom{n-s-\frac{1}{2}}{i} + \binom{n-s+\frac{1}{2}}{i} \right) = G(i+1) - G(i) \]

with \(G(i) = (-2)^{i-1}(n-s+\frac{1}{2}) \). Finally, replacing the sums in (3.23) by their evaluation, we arrive at

\[\sum_{i=1}^{2n-2s} (-2)^{-i} M_{i,2n-1} = 4^{n-s} \left(\begin{array}{c} 2n-2s \\ j \end{array} \right) \left(\begin{array}{c} n-s-\frac{1}{2} \\ 2n-2s \end{array} \right). \]

(3.26)

On the other hand, by (3.14), the right-hand side of (3.21) is equal to

\[-4^{n-s} \binom{2n-2s+2}{2s} \left(\begin{array}{c} 2n-2s \\ j \end{array} \right) \left(\begin{array}{c} n-s-\frac{1}{2} \\ 2n \end{array} \right) \left(\begin{array}{c} n-s+\frac{1}{2} \\ 2n \end{array} \right) - 2n4^{n-s} \binom{2n-2s+2}{2s} \left(\begin{array}{c} 2n-2s \\ j \end{array} \right) \left(\begin{array}{c} n-s-\frac{1}{2} \\ 2n+1 \end{array} \right) + \left(\begin{array}{c} n-s+\frac{1}{2} \\ 2n+1 \end{array} \right) \right). \]

Therefore, to prove that (3.21) holds for \(1 \leq j \leq 2n-2s \), it suffices to show that the above expression is equal to the right-hand side of (3.26). This amounts to a routine verification. This concludes the proof of (3.17). \(\square \)

3.4.2. The case \(s = n \). From (3.15) we see that all the coefficients of the \(i \)-th row, \(1 \leq i \leq 2n+1 \), of the matrix \(M(-n-1/2) \) are null except its last coefficient \(M_{i,2n+2}(-n-1/2) \) (which is, by (2.8), equal to \(\binom{-1/2}{i-1} \)). It is then immediate to find \(2n \) linear combinations of the rows of the matrix \(M(-n-1/2) \) that are linearly independent and vanish. For instance, for \(a = 1, \ldots, 2n \), we have

\[(\text{row } a \text{ of } M(-n-1/2)) - \frac{M_{a,2n+2}(-n-1/2)}{M_{a+1,2n+2}(-n-3/2)} \cdot (\text{row } (a+1) \text{ of } M(-n-1/2)) = 0. \]

This implies divisibility of \(\text{Pf } M(x) \) by \((x+n+\frac{1}{2})^n\).

3.5. \(P(x) = K(x) \) at \(x = 0, -1, \ldots, -n \). Let \(\sigma \) be a given integer with \(0 \leq \sigma \leq n \). It is not too hard to evaluate the polynomial \(K(x) \), defined by (3.3), at \(x = -\sigma \). Indeed, using the Pfaff-Saalschutz summation, it is easily checked (see [5, Equation (5.26)]) that

\[\sum_{i=0}^{n} \frac{(-1)^{n-i}}{2n+1-2i} \frac{(n-\sigma+1-i)}{(i)!^2} = (-1)^{n+1} \frac{(n+\frac{3}{2})_{n-\sigma}}{2(-n-\frac{1}{2})_{n+1-\sigma}}, \quad 0 \leq \sigma \leq n. \]

(3.27)

By inserting in (3.25) the latter identity, after some simplification, we arrive at

\[K(-\sigma) = (-1)^\sigma \frac{(4n-2\sigma+1)! (2\sigma)! (2n)!}{(2n-\sigma)! \sigma! (4n+1)!} \prod_{s=1}^{n} \frac{(2s-1)!}{(4n+2-2s)!}, \quad 0 \leq \sigma \leq n. \]

(3.28)

The evaluation of \(P(x) \) at \(x = -\sigma \) is much more delicate. The polynomial \(P(x) \) is defined by means of (3.4). Since the product on the right-hand side of (3.4) is zero for
\[x = -\sigma, \ 1 \leq \sigma \leq n, \ \text{we should write (3.4) in the form} \]
\[
P(x) = \frac{2^{-\sigma}}{(x + \sigma)^{\sigma}} \text{Pf } M(x) \prod_{s=1}^{n} (2x + 2s)^{-s} \prod_{s=1}^{n} (2x + 4n + 2 - 2s)^{-s} \]
\[
\times \prod_{s=1}^{n} (2x + 2s + 1)^{-s} \prod_{s=1}^{n-1} (2x + 4n + 1 - 2s)^{-s} \]
and subsequently specialize \(x = -\sigma \). After some manipulation, this gives
\[
P(-\sigma) = \left. \frac{2^{-\sigma}}{\prod_{s=1}^{n-\sigma} (2s - 1)!} \prod_{s=n-\sigma+1}^{n} (2s)! \right| \frac{1}{(x + \sigma)^{\sigma}} \text{Pf } M(x) \right|_{x=-\sigma}. \quad (3.29)\]
To evaluate \((x + \sigma)^{-\sigma} \text{Pf } M(x)\) at \(x = -\sigma \), we shall use the following lemma due to Ciucu and the second author and used in a similar context.

Lemma 3.2. \([7, \text{Lemma 11}]\) Let \(N, a, b \) be positive integers with \(a < b \leq N \), where \(N \) and \(b - a \) are even. Let \(A = (A_{i,j})_{1 \leq i,j \leq N} \) be a skew-symmetric matrix with the following properties:

1. The entries of \(A \) are polynomials in \(x \).
2. The entries in rows \(a + 1, a + 2, \ldots, b \) (and, hence, also in the corresponding columns) are divisible by \(x + s \).

Then
\[
\left. \left(\frac{1}{(x + s)^{(b-a)/2}} \text{Pf } A \right) \right|_{x=-s} = \text{Pf } \tilde{A} \cdot \text{Pf } S, \]
where \(\tilde{A} \) is the matrix which arises from \(A \) by deleting rows and columns \(a + 1, a + 2, \ldots, b \) and subsequently specializing \(x = -s \), and
\[
S = \left. \left(\frac{1}{x + s} A_{i,j} \right) \right|_{x=-s} \right|_{a+1 \leq i,j \leq b}. \]

Let \(\sigma \) be a given integer with \(1 \leq \sigma \leq n \). It follows from \((3.13) \) that the coefficients of the \(i \)-th row, \(2n - 2\sigma + 2 \leq i \leq 2n + 1 \), of the matrix \(M(x) \) are divisible by \((x + \sigma) \). Applying Lemma 3.2, we obtain
\[
\left. \frac{1}{(x + \sigma)^{\sigma}} \text{Pf } M(x) \right|_{x=-\sigma} = \text{Pf } \tilde{M} \cdot \text{Pf } S, \quad (3.30)\]
where \(\tilde{M} = (\tilde{M}_{i,j})_{1 \leq i,j \leq 2n-2\sigma+2} \) is the skew-symmetric matrix of size \(2n - 2\sigma + 2 \) defined by
\[
\tilde{M}_{i,j} = M_{i,j}(-\sigma), \quad 1 \leq i, j \leq 2n - 2\sigma + 1, \quad (3.31)\]
\[
\tilde{M}_{i,2n-2\sigma+2} = M_{i,2n+2}(-\sigma), \quad 1 \leq i \leq 2n - 2\sigma + 1, \quad (3.31)\]
and \(S = (S_{i,j})_{1 \leq i,j \leq 2\sigma} \) is the skew-symmetric matrix of size \(2\sigma \) defined by
\[
S = \left. \left(\frac{1}{x + \sigma} M_{i,j}(x) \right) \right|_{x=-\sigma} \right|_{2n-2\sigma+2 \leq i,j \leq 2n+1}. \quad (3.32)\]

20
We point out that (3.30) also holds for \(\sigma = 0 \) once we interpret the Pfaffian of an empty matrix (i.e., the Pfaffian of \(S \)) as 1. In particular, under that convention, the arguments below can be used for \(0 \leq \sigma \leq n \), that is, including \(\sigma = 0 \).

We shall prove that \(\text{Pf } \tilde{M} = 1 \) and

\[
\text{Pf } \tilde{S} = (-1)^{\sigma}2^\sigma \left(\prod_{i=1}^{2\sigma} (2n - 2\sigma + i)! \right) \left(\prod_{s=1}^{\sigma} \frac{(2i - 1)!}{(4n - 2\sigma + 2i + 1)!} \right).
\]

(3.33)

If we substitute in (3.30) these values for \(\text{Pf } \tilde{M} \) and \(\text{Pf } \tilde{S} \), and then insert the resulted equation in (3.29), after some simplification, we would arrive at

\[
P(-\sigma) = (-1)^{\sigma} \prod_{s=2n-2\sigma+1}^{2\sigma} s! \prod_{s=1}^{\sigma} (2s - 1)! \prod_{s=0}^{n-\sigma} (2s - 1)! \prod_{s=n+1}^{2n-\sigma} (2s)! \prod_{s=n+1}^{2\sigma} (4n + 1 - 2s)!,
\]

(0 \leq \sigma \leq n).

(3.34)

Then, a routine comparison of (3.34) with (3.28) would show that \(P(x) = K(x) \) at \(x = 0, -1, \ldots, -n \) as desired. So, to complete our proof, it remains to establish the evaluations of \(\text{Pf } \tilde{M} \) and \(\text{Pf } \tilde{S} \).

Evaluation of \(\text{Pf } \tilde{M} \). If we compare the matrix \(\tilde{M} \) defined by (3.31) with the matrix \(M(x) \) in Lemma 2.2, then we see that \(\tilde{M} \) is equal to the matrix \(M(x) \) in Lemma 2.2 with \(n \) replaced by \(n - \sigma \) and with \(x = 0 \). By Lemma 2.2, this implies that \(\text{Pf } \tilde{M} \) is equal to the number of centered vertically symmetric tilings of a \((2(n - \sigma)+1, 0, 2(n - \sigma)+1) \) hexagon. In a tiling of such a hexagon, all rhombi are forced, and trivially the unique tiling of such a hexagon is centered and symmetric. Consequently, we have \(\text{Pf } \tilde{M} = 1 \).

Evaluation of \(\text{Pf } \tilde{S} \). By (3.32) and (2.7), the \((i, j)\)-entry of the matrix \(\tilde{S} \) satisfies

\[
S_{i,j} = \left. \frac{R_{2N+1+i,2N+1+j}(x)}{x + \sigma} + \frac{T_{2N+1+i,2N+1+j}(x)}{x + \sigma} - \frac{T_{2N+1+j,2N+1+i}(x)}{x + \sigma} \right|_{x = -\sigma},
\]

where we have set \(N = n - \sigma \). Using expression (2.14) for the \(R_{i,j} \)'s and (2.10) for the \(T_{i,j} \)'s, after a routine calculation, we arrive at

\[
S_{i,j} = 2 \cdot \sum_{\ell=0}^{i+2n-2\sigma} (-1)^{\ell+j+1} \frac{j - i}{i + 2n - 2\sigma + 1} \frac{j + 2n - 2\sigma}{i + 2n - 2\sigma + \ell} \frac{\ell + j + 2n - 2\sigma + 1}{\ell + j + 2n - 2\sigma + 2)! \cdot \frac{(2n - 2\sigma + \ell)! (\ell + j - 1)!}{(\ell + j + 2n - 2\sigma + 2)!}.
\]

(3.35)

To derive the above equation, we just used the following relations whose proof is left to the reader: for \(r, t \) with \(r \geq 1, t \geq 0, \) and \(\epsilon = 1, 2 \) we have

\[
\lim_{x \to -\sigma} \frac{1}{x + \sigma} \left(\frac{2x + 2n + t}{r + 2n - 2\sigma + t} \right) = (-1)^{r-1} \frac{(2n - 2\sigma + t)! (r - 1)!}{(r + 2n - 2\sigma + t)!},
\]

\[
\lim_{x \to -\sigma} \left(\frac{x + n + \epsilon}{r + 2n - 2\sigma + 1} \right) = 0.
\]

(3.36)
Lemma 3.3.

\[
\sum_{\ell=0}^{i+a} (-1)^{\ell+j+1} \frac{j-i}{i+a+1} \binom{j+a}{i+a-\ell} \binom{\ell+j+a+1}{\ell} \frac{(a+2)! (\ell+j-1)!}{(\ell+j+a+2)!} = (-1)^{i+j} \frac{(j-i) (a+i)! (a+j)!}{(2a+i+j+2)!}.
\]

The above result was proved in the particular case \(a = 2n - 2\sigma - 1\) in [7, page 277]. Since the arguments in [7, page 277] can be used in the same way to prove Lemma 3.3, we omit the proof details. Combining the preceding lemma with (3.35), we arrive at

\[
S_{i,j} = (-1)^{i+j} \frac{2 (j-i) (2n-2\sigma+i)! (2n-2\sigma+j)!}{(4n-4\sigma+i+j+2)!}.
\]

Consequently, we have

\[
Pf_{1\leq i,j\leq 2\sigma} (S_{i,j}) = (-1)^{\sigma} 2^\sigma \left(\prod_{i=1}^{2\sigma} (2n-2\sigma+i)! \right) Pf_{1\leq i,j\leq 2\sigma} \left(\frac{j-i}{(4n-4\sigma+i+j+2)!} \right),
\]

which simplifies to (3.33), as desired, by the Pfaffian evaluation

\[
Pf_{0\leq i,j\leq 2k-1} \left(\frac{(j-i)}{(b+i+j)!} \right) = \prod_{i=0}^{k-1} \frac{(2i+1)!}{(b+2k+2i-1)!}, \quad k \geq 1.
\]

Note that the above equation is a slight variation of a Pfaffian evaluation due to Mehta and Wang (see [7, Corollary 10]). This completes the proof of (3.33). □

4. Proof of Theorem 1.3

Throughout this section, we assume that \(n\) is a (fixed) positive integer. From (1.2), it is easily checked that \(ST(2n, 2x+1, 2n)\) can be written in the form

\[
ST(2n, 2x+1, 2n) = \frac{(x+1)^{2n}}{(\frac{x}{2})^{2n}} \prod_{s=1}^{n} \frac{(2x+1+2s)_{4n-4s+1}}{(2s)_{4n-4s+1}}.
\]

This, combined with Lemma 2.3, leads to the following reformulation of Theorem 1.3

\[
Pf N(x) = \frac{2^{5n-1}}{n!(4n)!} \frac{(x+1)^{2n}}{\left(\frac{x}{2}\right)^{2n}} \prod_{s=2}^{n} \frac{(2x+2s)_{4n-4s+3}}{(2s)_{4n-4s+3}} U_n(x),
\]

where \(N(x)\) is the matrix defined in Lemma 2.3 and \(U_n(x)\) is defined by (1.4). Our proof of (4.1) is, in spirit, quite similar to the proof of (3.1).

First, with exactly the same kind of reasoning used in Section 3.1, it is easily seen that Pf \(N(x)\) is a polynomial in \(x\) of degree at most \(2n^2 + n - 1\). We omit the details. In Section 4.1, we prove that

\[
Pf N(x) = (-1)^{n+1} Pf N(-2n-1-x).
\]
In Sections 4.2 and 4.3, we show that $\prod_{s=1}^{n}(x+s)^s$ and $\prod_{s=1}^{n-1}(x+s+\frac{3}{2})^s$ divide Pf $N(x)$ as a polynomial in x. This, combined with (1.2), implies that

$$\left(x + n + \frac{1}{2}\right)^{n-1} \prod_{s=1}^{n-2} \left(x + s + \frac{3}{2}\right)^s \left(x + 2n + 1 - s - \frac{3}{2}\right)^s \prod_{s=1}^{n}(x+s)^s(x+2n+1-s)^s,$$

which is equal to

$$2^{-2n^2+3n-1} (x + 1)_{2n} \prod_{s=2}^{n} (2x + 2s)_{4n-4s+3}$$ \hfill (4.3)

and is a polynomial of degree $2n^2-n+1$, divides Pf $N(x)$ as a polynomial in x. Altogether, this implies that

$$\text{Pf } N(x) = T(x) (x + 1)_{2n} \prod_{s=2}^{n} (2x + 2s)_{4n-4s+3},$$ \hfill (4.4)

for some polynomial $T(x)$ in x of degree at most $2n-2$. Therefore, in order to prove (4.1), it remains to show that $T(x)$ is equal to the polynomial $L(x)$ defined by

$$L(x) = \frac{2^{5n-1}}{n!(4n)!} \prod_{s=2}^{n} \frac{1}{(2s)_{4n-4s+3}} U_n(x),$$ \hfill (4.5)

with $U_n(x)$ given by (1.4). Since $T(x)$ and $L(x)$ are polynomials in x of degree at most $2n-2$, it suffices to show that $T(x) = L(x)$ holds for $2n-1$ distinct values of x. In Section 4.4, we determine the values of $T(x)$ and $L(x)$ at $x = -1, \ldots, -n$ and consequently show that $T(x) = L(x)$ at $x = -2n, -2n + 1, \ldots, -n - 1$. In total, there holds that $T(x) = L(x)$ at $2n$ values of x. This would complete the proof of (4.1).

4.1. Pf $N(x) = (-1)^{n+1} \text{Pf } N(-2n - 1 - x)$. The proof is quite similar to the proof of (3.2) and requires only slight changes. Let \tilde{B} be the lower triangular matrix of size $2n+2$ defined by

$$\tilde{B} = \begin{pmatrix} (B_{i,j})_{1 \leq i \leq 2n} & 0 & 0 \\ 0 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}, \quad \text{with } B_{i,j} = \binom{i - 1}{j - 1} \text{ for } 1 \leq i, j \leq 2n, \quad (4.6)$$

and let $N^{(1)}$ be the skew-symmetric matrix (of size $2n+2$) defined by $N^{(1)} = \tilde{B} N(x) \tilde{B}^t$.

We shall prove that the (i, j)-entry in $N^{(1)}$ is, up to the sign $(-1)^{i+j}$, the (i, j)-entry in $N(-2n - 1 - x)$. First, from Remark 2.1, the definition of $N^{(1)}$ and what we have proved in Section 3.2, we have

$$N_{i,j}^{(1)} = M_{i,j}^{(1)} = (-1)^{i+j} M_{i,j}(-2n - 1 - x) = (-1)^{i+j} N_{i,j}(-2n - 1 - x) \quad \text{if } i, j \neq 2n + 1,$$
4.2. \(\prod_{s=1}^{n} (x+s)^{s} \) divides Pf \(N(x) \). Let \(s \) be an integer with \(1 \leq s \leq n \). We claim that

\[
\text{For } 2n - 2s + 2 \leq a \leq 2n, \text{ the } a\text{-th row of the matrix } N(-s) \text{ is null,} \quad (4.7)
\]

and that

\[
\sum_{i=1}^{2n-2s+1} (-1)^{i-1} \left(2^{i-1} - \binom{i-1}{n-s} \right) \cdot (\text{row } i \text{ of } N(-s)) - (\text{row } (2n+1) \text{ of } N(-s)) = 0. \quad (4.8)
\]

As these are 2s linear combinations of the rows of the matrix \(N(x) \) that are linearly independent and vanish at \(x = -s \), this implies divisibility of Pf \(N(x) \) by \((x+s)^s \).

Proof of (4.7). Suppose \(2n - 2s + 2 \leq a \leq 2n \). It follows from Remark 2.1 and (3.13) that \(N_{a,j}(-s) = 0 \) if \(1 \leq j \leq 2n+2 \) and \(j \neq 2n+1 \). Moreover, by (2.12), we have

\[
N_{a,2n+1}(-s) = \binom{2n-2s+1}{a} - \binom{n-s}{a} - \binom{n-s+1}{a},
\]

which is clearly zero since \(a > 2n - 2s + 1 \geq n - s + 1 \). \(\square \)

Proof of (4.8). We have to show that, for \(1 \leq j \leq 2n+2 \), there holds

\[
\sum_{i=1}^{2n-2s+1} (-2)^{i-1} N_{i,j}(-s) - \sum_{i=1}^{2n-2s+1} (-1)^{i-1} \left(\binom{i-1}{n-s} \right) N_{i,j}(-s) - N_{2n+1,j}(-s) = 0. \quad (4.9)
\]

(a) Suppose \(j = 2n+2 \). By (2.13), we have \(N_{i,2n+2}(-s) = (-1)^{n-s} \binom{n-s}{i-1} \) if \(i \leq n - s + 1 \) and 0 otherwise. Therefore, when \(j = 2n+2 \), the left-hand side of (4.9) simplifies to

\[
\sum_{i=1}^{n-s+1} (-2)^{i-1} \binom{n-s}{i-1} - \sum_{i=1}^{n-s+1} (-1)^{i-1} \binom{i-1}{n-s} \binom{n-s}{i-1} = (-1)^{n-s} - (-1)^{n-s} = 0,
\]

as desired. That the first (resp., second) sum in the above relation is equal to \((-1)^{n-s}\) is immediate from the binomial theorem (resp., from the fact that the term with index \(i = n - s + 1\) is the only one term which is nonzero).

(b) Suppose \(j = 2n + 1\). Using the expression (2.12) for the matrix entry \(N_{i,2n+1}(-s)\) and noticing that \(N_{2n+1,2n+1}(-s) = 0\), we see that (4.9) reduces to

\[
\sum_{i=1}^{2n-2s+1} (-1)^{i-1} \left(2^{i-1} - \binom{i-1}{n-s} \left(\binom{2n-2s+1}{i} - \binom{n-s}{i} - \binom{n-s+1}{i} \right) \right) = 0,
\]

which is immediate from the sum evaluations

\[
\sum_{i=1}^{2n-2s+1} (-2)^{i-1} \left(\binom{2n-2s+1}{i} \right) = \sum_{i=1}^{2n-2s+1} (-2)^{i-1} \left(\binom{n-s}{i} + \binom{n-s+1}{i} \right) = 1, \tag{4.10}
\]

\[
\sum_{i=1}^{2n-2s+1} (-1)^{i-1} \left(\binom{i-1}{n-s} \left(\binom{n-s}{i} + \binom{n-s+1}{i} \right) \right) = (-1)^{n-s}, \tag{4.11}
\]

\[
\sum_{i=1}^{2n-2s+1} (-1)^{i-1} \left(\binom{i-1}{n-s} \left(2n-2s+1 \right) \right) = (-1)^{n-s}. \tag{4.12}
\]

The two sums in (4.10) can be easily evaluated by the binomial theorem. The sum in (4.11) has only one term which is nonzero, the term with index \(i = n - s + 1\) which is equal to \((-1)^{n-s}\), whence (4.11). In the sum in (4.12), the terms with index \(i\) between 1 and \(n-s\) vanish. By shifting the order of summation over \(i\) by \(n-s+1\) (that is we replace \(i\) by \(i + n-s+1\)) and then using the relation \((-1)^{i(i+n-s)} = \binom{n-s+1}{i}\), this sum becomes

\[
(-1)^{n-s} \sum_{i=0}^{n-s} \left(\binom{n-s+1}{i} \right) \binom{2n-2s+1}{n-s-i},
\]

which is equal, by Chu–Vandermonde summation, to \((-1)^{n-s}\binom{n-s+1}{n-s} = (-1)^{n-s}\).

c) Suppose \(2n - 2s + 2 \leq j \leq 2n\). From (4.7) and the skew-symmetry of \(N(-s)\) the \(j\)-th column of \(N(-s)\) is null, and thus the relation (4.9) is clearly true.

d) Suppose \(1 \leq j \leq 2n - 2s + 1\). Using the expressions (2.11) and (2.12) for the corresponding matrix entries, we see that (4.9) reduces to

\[
\sum_{i=1}^{2n-2s+1} (-1)^{i-1} \left(2^{i-1} - \binom{i-1}{n-s} \right) (R_{i,j}(-s) + T_{i,j}(-s) - T_j(-s)) + \left(\binom{2n-2s+1}{j} \right) - \binom{n-s}{j} - \binom{n-s+1}{j} = 0, \tag{4.13}
\]

where \(R_{i,j}(x)\) and \(T_{i,j}(x)\) are defined as in (2.9) and (2.10).
From the expression \((2.10)\) for \(T_{i,j}(x)\) and \((4.10)-(4.12)\) we have

\[
\sum_{i=1}^{2n-2s+1} (-1)^{i-1} \left(2^{i-1} - \binom{i-1}{n-s} \right) (T_{i,j}(-s) - T_{j,i}(-s)) = (1 - (-1)^{n-s}) \left(\binom{n-s}{j} + \binom{n-s+1}{j} - \binom{2n-2s+1}{j} \right).
\]

(4.14)

From \((3.24)\) we have

\[
\sum_{i=1}^{2n-2s+1} (-2)^{i-1} R_{i,j}(-s) = \sum_{i=1}^{2n-2s+1} (-2)^{i-1} \sum_{t=1}^{2n-2s+1} \frac{j-i}{t} \binom{t}{i} = 0.
\]

(4.15)

From the expression \((2.9)\) for \(R_{i,j}(x)\), we have

\[
\sum_{i=1}^{2n-2s+1} (-1)^{i-1} \binom{i-1}{n-s} R_{i,j}(-s) = \sum_{i=1}^{2n-2s+1} (-1)^{i-1} \binom{i-1}{n-s} \sum_{t=1}^{2n-2s+1} \binom{t-1}{j-1} \binom{t}{i} - \binom{t}{i-1}
\]

\[
= \sum_{t=1}^{2n-2s+1} \binom{t-1}{j-1} \sum_{i=1}^{t} (-1)^{i-1} \binom{t}{i} \binom{i-1}{n-s} - \sum_{i=1}^{2n-2s+1} \binom{t}{j} \sum_{i=1}^{t} (-1)^{i-1} \binom{t-1}{i-1} \binom{i-1}{n-s},
\]

where the last equality follows by interchanging the sum over \(i\) with the sum over \(t\). In the latter expression, the first inner sum is zero if \(t \leq n-s\) (because of the binomial coefficient \(\binom{i-1}{n-s}\)) and is equal to \((-1)^{n-s}\) if \(t > n-s\) (see \((4.12)\) and its proof). The second inner sum is \((-1)^{n-s}\) if \(t = n-s+1\) and 0 otherwise, as it can be checked by using the relation \(\binom{i-1}{j-1} \binom{i-1}{n-s} = \binom{t-1}{n-s} \binom{n-1-i}{n-s}\) and the binomial theorem. Altogether, this implies that

\[
\sum_{i=1}^{2n-2s+1} (-1)^{i-1} \binom{i-1}{n-s} R_{i,j}(-s) = (-1)^{n-s} \sum_{t=n-s+1}^{2n-2s+1} \binom{t-1}{j-1} - (-1)^{n-s} \binom{n-s+1}{j}
\]

\[
= (-1)^{n-s} \left(\binom{2n-2s+1}{j} - \binom{n-s}{j} - \binom{n-s+1}{j} \right),
\]

where the last equality follows from \((2.30)\). This, combined with \((4.14)\) and \((4.15)\), leads to \((4.13)\). This completes the proof of \((4.9)\).

\(\square\)

4.3. \(\prod_{s=1}^{n-1}(x + s + 3/2)^a\) divides \(\text{Pf} N(x)\). Let \(s\) be an integer with \(1 \leq s \leq n - 1\). We claim that for \(a = 1, 2, \ldots, 2s\), we have

\[
(-1)^a \binom{n+s-\frac{1}{2}}{a+1} \cdot \text{row} \ (2n-a) \ \text{of} \ N(-s-3/2)
\]

\[
- \binom{n+s-\frac{1}{2}}{a} \cdot \text{row} \ 2n-\text{of} \ N(-s-3/2)
\]

\[
a \binom{2n}{a+1} \cdot \text{row} \ (2n) \ \text{of} \ N(-s-3/2) = 0.
\]

(4.16)
As these are $2s$ linear combinations of the rows of the matrix $N(x)$ that are linearly independent and vanish at $x = -s - 3/2$, this implies divisibility of $\text{Pf} N(x)$ by $(x + s + 3/2)^s$.

Proof of (4.10). Suppose $1 \leq a \leq 2s$. We have to show that, for $1 \leq j \leq 2n + 2$,

\[
(-1)^a \left(\begin{array}{c} n + s - \frac{1}{2} \\ a + 1 \end{array} \right) N_{2n-1-a,j}(-s - 3/2) \\
- \left(\begin{array}{c} n + s - \frac{1}{2} \\ a \end{array} \right) \left(2n - 1 \right) N_{2n-1,j}(-s - 3/2) - a \left(\begin{array}{c} 2n \\ a + 1 \end{array} \right) N_{2n,j}(-s - 3/2) = 0. \tag{4.17}
\]

(a) Suppose $2n + 1 \leq j \leq 2n + 2$. It follows from (2.12) that

\[
N_{i,2n+1}(-s - 3/2) = - \left(\begin{array}{c} n - s - 3/2 \\ i \end{array} \right) - \left(\begin{array}{c} n - s - 1/2 \\ i \end{array} \right) \quad \text{if} \quad 2n - 2s - 1 \leq i \leq 2n.
\]

Furthermore, by (2.13), we have $N_{i,2n+2}(-s - 3/2) = (n-s-3/2)$. Therefore, (4.17) when specialized to $j = 2n + 1$ and $j = 2n + 2$ reduces to, respectively, the identities

\[
(-1)^a \left(\begin{array}{c} n + s - \frac{1}{2} \\ a + 1 \end{array} \right) \left(\begin{array}{c} n - s - 3/2 \\ 2n - 1 - a \end{array} \right) + \left(\begin{array}{c} n - s - 1/2 \\ 2n - 1 - a \end{array} \right) \\
+ \left(\begin{array}{c} n + s - \frac{1}{2} \\ a \end{array} \right) \left(\begin{array}{c} 2n - 1 \\ n - s - 3/2 \end{array} \right) + \left(\begin{array}{c} n - s - 1/2 \\ 2n - 1 \end{array} \right) \\
+ a \left(\begin{array}{c} 2n \\ a + 1 \end{array} \right) \left(\begin{array}{c} n - s - 3/2 \\ 2n \end{array} \right) + \left(\begin{array}{c} n - s - 1/2 \\ 2n \end{array} \right) = 0. \tag{4.18}
\]

\[
(-1)^a \left(\begin{array}{c} n + s - \frac{1}{2} \\ a + 1 \end{array} \right) \left(\begin{array}{c} n - s - 3/2 \\ 2n - a - 2 \end{array} \right) \\
- \left(\begin{array}{c} n + s - \frac{1}{2} \\ a \end{array} \right) \left(\begin{array}{c} 2n - 1 \\ 2n - 2 \end{array} \right) - a \left(\begin{array}{c} 2n \\ a + 1 \end{array} \right) \left(\begin{array}{c} n - s - 3/2 \\ 2n - 1 \end{array} \right) = 0. \tag{4.19}
\]

The proof of these relations amounts to a routine verification and so is left to the reader.

(b) Suppose $2n - 2s - 1 \leq j \leq 2n$. Combining Remark 2.1 with (3.15) and the skew-symmetry of $N(-s - 3/2)$, we see that the j-th column of $N(-s - 3/2)$ is null, and thus (4.17) is clearly true.

(c) Suppose $1 \leq j \leq 2n - 2s - 2$. It follows from Remark 2.1 and (3.14) that

\[
N_{i,j}(-s - 3/2) = - \left(\begin{array}{c} 2n - 2s - 2 \\ j \end{array} \right) \left(\begin{array}{c} n - s - \frac{3}{2} \\ i \end{array} \right) + \left(\begin{array}{c} n - s - \frac{1}{2} \\ i \end{array} \right)
\]

for $2n - 2s - 1 \leq i \leq 2n$. Inserting this in (4.17) and then dividing both sides of the resulted equality by $\left(\begin{array}{c} 2n - 2s - 2 \\ j \end{array} \right)$ gives the relation (4.18), which amounts to a routine verification. This completes the proof of (4.17). \qed
4.4. \(T(x) = L(x) \) at \(x = -1, \ldots, -n \). Let \(\sigma \) be a given integer with \(1 \leq \sigma \leq n \). It is easy to evaluate \(L(x) \) at \(x = -\sigma \). After a routine calculation, we obtain

\[
L(-\sigma) = \frac{2^{5n-1}}{n!(4n)!} \prod_{s=2}^{n} \frac{1}{(2s)_{4n-4s+3}} \left(\frac{3}{2} - \sigma \right)_{2n-1} (-1)^{\sigma-1}(2n-1)!! + (2n)!!.
\]

(4.20)

The evaluation of \(T(x) \) at \(x = -\sigma \) is much more delicate. For the same reason invoked in Section 3.5, we should write (4.4) in the form

\[
T(x) = 2^{2n-\sigma} \frac{1}{(x+\sigma)^\sigma} Pf(N(x)) \prod_{s=1}^{n} (2x+2s)^{-s} \prod_{s=1}^{n} (2x+4n+2-2s)^{-s}
\]

and subsequently specialize \(x = -\sigma \). After some manipulation, this leads to

\[
T(-\sigma) = \left(\frac{1}{(x+\sigma)^\sigma} Pf(N(x)) \right)_{x=-\sigma} (-1)^{\sigma-1} g_{3-\sigma} \left(\frac{2\sigma-3}{\sigma-2} \right)! (4n-2\sigma-1)!
\]

\[
\times \prod_{s=1}^{n-\sigma} (2s-1)! \prod_{s=1}^{\sigma-1} (2s)! \prod_{s=n-\sigma+1}^{2n-\sigma+1} (2s)!.
\]

(4.21)

Let \(B(x) = (B_{i,j}(x))_{1 \leq i, j \leq 2n+2} \) denote the matrix obtained from \(N(x) \) by first adding

\[
\sum_{i=1}^{2n-2\sigma+1} (-1)^i \left(2^{i-1} - \binom{i-1}{n-\sigma} \right) \cdot (\text{row } i \text{ of } N(x))
\]

to row \(2n+1 \), and then, adding

\[
\sum_{i=1}^{2n-2\sigma+1} (-1)^i \left(2^{i-1} - \binom{i-1}{n-\sigma} \right) \cdot (\text{column } i \text{ of } N(x))
\]

to column \(2n+1 \). Of course, we have \(Pf(B(x)) = Pf(N(x)) \), and it follows from (4.17) and (4.18) that the \(i \)-th row, \(2n-2\sigma+2 \leq i \leq 2n+1 \), of \(B(-\sigma) \) is null, or equivalently, \((x+\sigma) \) is a factor of each entry in the \(i \)-th row in matrix \(B(x) \). Applying Lemma 3.2 to the matrix \(B(x) \), we obtain

\[
\left(\frac{1}{(x+\sigma)^\sigma} Pf(N(x)) \right)_{x=-\sigma} = \left(\frac{1}{(x+\sigma)^\sigma} Pf(B(x)) \right)_{x=-\sigma} = Pf(D, \cdot Pf D,
\]

(4.22)

where \(\tilde{B} \) is the matrix which arises from \(B(x) \) by deleting rows and columns \(2n-2\sigma+2, 2n-2\sigma+3, \ldots, 2n+1 \) and subsequently specializing \(x = -\sigma \), and

\[
D = \left(\left(\frac{1}{(x+\sigma)} B_{i,j}(x) \right)_{x=-\sigma} \right)_{2n-2\sigma+2 \leq i, j \leq 2n+1}.
\]

(4.23)

By Remark 2.1 and the definition of the matrix \(B(x) \), we have \(\tilde{B} = \tilde{M} \) where \(\tilde{M} \) is defined by (3.31). We have shown in Section 3.5 that \(Pf(M) = 1 \), and thus \(Pf(\tilde{B}) = 1 \). The
evaluation of Pf D is much more complicated and so is postponed to the next section to simplify the readability of the paper.

Lemma 4.1.

\[
Pf D = (-1)^{\sigma-1}2^{5n-2}(n-\sigma)! \frac{(2n)!}{n!^2} \left(\frac{(2n)!}{(2n-1)!} + (-1)^{\sigma+1}(2n-1)!!\right) \times \left(\frac{3}{2} - \sigma\right)_{2n-1} \prod_{s=1}^{\sigma} (2s)! \left(\prod_{s=n-\sigma+1}^{n} (2s)!\right)^2 \prod_{s=2n-\sigma}^{2n} (2s)!
\]

If we substitute in (4.22) the values obtained for Pf \tilde{B} and Pf D, and then insert the obtained result in (4.21), it is easy to check that $T(-\sigma)$ is equal to the right-hand member of (4.20). Consequently, we have $T(-\sigma) = L(-\sigma)$, as desired.

5. Evaluation of Pf D: Proof of Lemma 4.1

This section is dedicated to the evaluation of the Pfaffian of the matrix D defined by (4.23). We begin by describing more explicitly the entries of the matrix D. The next section provides an efficient way to compute the Pfaffian of a skew-symmetric matrix which differs from a Mehta-Wang matrix of even size only in its last row and column. A more precise statement is given in Proposition 5.2. This allows us to write Pf D in the form of a multisum, which is evaluated in the last subsection.

Throughout this section, σ and n are positive integers with $1 \leq \sigma \leq n$. For the sake of simplicity, we also set $N = n - \sigma$.

5.1. The entries of the matrix D.

Lemma 5.1. The matrix $D = (D_{i,j})_{1 \leq i,j \leq 2\sigma}$ defined by (4.23) is a skew-symmetric matrix of size 2σ. For $1 \leq i,j \leq 2\sigma - 1$, we have

\[
D_{i,j} = (-1)^{i+j} \frac{2(j - i)(2N + i)(2N + j)!}{(4N + i + j + 2)!}.
\]

For $1 \leq j \leq 2\sigma - 1$, we have

\[
D_{2\sigma,j} = \frac{(-1)^{\sigma}2}{(2N+j+1)} \sum_{i=0}^{2N} (-1)^i \left(\frac{i}{N}\right) \frac{2N+j-i}{i+1} \sum_{\ell=0}^{i} (-1)^\ell \left(\frac{2N+j}{i-\ell}\right) \left(\frac{\ell+j-1}{\ell}\right) \frac{1}{2N+\ell+j+2} + \frac{(-1)^{N+j}}{(N+1)} \frac{N!(N+j-1)!}{(2N+j+1)!}.
\]

Proof. Combining the definitions of the matrices D and $B(x)$ (see (4.23) and above it) with Remark 2.1, we see that the (i,j)-entry of D is for $1 \leq i,j \leq 2\sigma - 1$ equal to the (i,j)-entry of the matrix S defined in (3.32). Equation (5.1) then follows from (3.37).
Recall that $N = n - \sigma$ and suppose $1 \leq j \leq 2\sigma - 1$. Then, by (4.23) and the definition of the matrix $B(x)$, we have

$$D_{2\sigma,j} = \left(\frac{N_{2n+1,2N+1+j}(x)}{x+\sigma} \right) + \sum_{i=1}^{2N+2} (-1)^i \left(\frac{2^i - \left(\begin{array}{c} i-1 \\hline N \end{array} \right)}{x+\sigma} \right) \left(\frac{N_{i,2N+1+j}(x)}{x+\sigma} \right) \bigg|_{x=-\sigma}. \quad (5.3)$$

It is a routine matter to derive from (2.12) that

$$\frac{N_{2n+1,2N+1+j}(x)}{x+\sigma} \bigg|_{x=-\sigma} = \frac{(2x+2N+2\sigma+1)}{(2N+1+j)} \left(\frac{x+N+\sigma}{2N+1+j} \right) + \frac{(x+N+\sigma+1)}{(2N+1+j)} \bigg|_{x=-\sigma}
\quad = (-1)^j \frac{2(N+1)!}{(2N+j+1)!} + (-1)^{N+j} \frac{(N+j)!N!}{(2N+j+1)!}
\quad + (-1)^{N+j-1} \frac{(N+1)!(N+j-1)!}{(2N+j+1)!}.
\quad (5.4)$$

Similarly, combining (2.11) with (2.10) and (2.14), after a straightforward calculation, we obtain for $1 \leq i \leq 2N + 1$

$$\frac{N_{i,2N+1+j}(x)}{x+\sigma} \bigg|_{x=-\sigma} = \sum_{\ell=0}^{i-1} \frac{2N+1+j-i}{i} \left(\frac{2N+j}{i-1-\ell} \right) \left(\frac{\ell+2N+1+j}{\ell} \right) \left(-1 \right)^{\ell+j-1} \frac{2N+2)!}{(2N+j+2+\ell)!}
\quad + \frac{2N+1}{i} \left((N+1)! \right) \left(\frac{N+j}{2N+j+1}! \right) + (-1)^{N+j-1} \frac{(N+1)!(N+j-1)!}{(2N+j+1)!} - (-1)^{j-1} \frac{2(N+1)!}{(2N+j+1)!} \left(\left(\begin{array}{c} N \\hline i \end{array} \right) + \left(\begin{array}{c} N+1 \\hline i \end{array} \right) \right).
\quad (5.5)$$

Plugging the last two equalities into (5.3) and then using (4.11)–(4.12), we obtain after some simplification (5.2).

5.2. The Pfaffian of a perturbed Mehta-Wang matrix.

Proposition 5.2. Let s, R be positive integers and $A = (a_{i,j})_{1\leq i,j\leq 2s}$ be a skew-symmetric matrix such that, for $1 \leq i, j \leq 2s - 1$,

$$a_{i,j} = \frac{(j-i)}{(R+i+j)!}.$$

Then, the Pfaffian of A satisfies the relation

$$\text{Pf} A = -2^{s-1}(s-1)! \left(\sum_{j=1}^{2s-1} a_{2s,j} \cdot \lambda_j \right) \prod_{i=0}^{s-2} \frac{(2i+1)!}{(R+2s+1+2i)!}, \quad (5.4)$$

where λ_j is defined, for $1 \leq j \leq 2s - 1$, by

$$\lambda_j = (-1)^{j+1} \sum_{k=0}^{s-1} \frac{2-k}{k!} \left(\begin{array}{c} 2k \\hline j+k-s \end{array} \right) (R+2s)_{j+k-s}. \quad (5.5)$$
Proof. Let \(B = (B_{i,j}) \) be the upper triangular matrix of size \(2s \) defined by

\[
B = \begin{pmatrix}
\lambda_1 & \lambda_2 \cdots \lambda_{2s-1} & 0 \\
0 & \cdots & 0 \\
0 & \cdots & I_{2s-1}
\end{pmatrix},
\]

where \(I_{2s-1} \) is for the identity matrix of size \(2s - 1 \), and set \(\tilde{A} = B^tAB \). Clearly, \(\tilde{A} \) is a skew-matrix of size \(2s \) which differs from \(A \) only in its first column and its first row, and we have the relation

\[
\tilde{a}_{i,1} = \sum_{j=1}^{2s-1} a_{i,j} \cdot \lambda_j. \tag{5.6}
\]

We claim that \(\tilde{a}_{i,1} = 0 \) for \(1 \leq i \leq 2s - 1 \), so that

\[
\tilde{A} = \begin{pmatrix}
0 & 0 & \cdots & 0 & -\tilde{a}_{2s,1} \\
0 & a_{2,2} & \cdots & a_{2,2s-1} & a_{2,2s} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & a_{2s-1,2} & \cdots & a_{2s-1,2s-1} & a_{2s-1,2s} \\
\tilde{a}_{2s,1} & a_{2s,2} & \cdots & a_{2s,2s-1} & a_{2s,2s}
\end{pmatrix}.
\]

This, combined with the relation \(\tilde{A} = B^tAB \), would imply that

\[
Pf \tilde{A} = -\tilde{a}_{2s,1} \text{ Pf}_{2 \leq i,j \leq 2s-1} (a_{i,j}) \quad \text{and} \quad Pf A = Pf \tilde{A}/ \det B = 2^{s-1}(s-1)! Pf \tilde{A}.
\]

Consequently, we would have

\[
Pf A = -2^{s-1}(s-1)! \tilde{a}_{2s,1} \text{ Pf}_{2 \leq i,j \leq 2s-1} \left(\frac{j-i}{(R+i+j)!} \right). \tag{5.7}
\]

Proposition 5.2 then would immediately follow from (5.6) and the Pfaffian evaluation (3.38).

So, to complete the proof, it remains to check our claim that \(\tilde{a}_{i,1} = 0 \) for \(1 \leq i \leq 2s - 1 \). By (5.6) and (5.4)–(5.5), we have, for \(1 \leq i \leq 2s - 1 \),

\[
\tilde{a}_{i,1} = \sum_{j=1}^{2s-1} (j-i) \sum_{k=0}^{s-1} \frac{2^{-k}}{k!} \frac{2^{k}}{(R+i+j+s-k)!} (R+2s)_{j+k-s} \tag{5.7}
\]

\[
= \sum_{k=0}^{s-1} \sum_{j=0}^{2k-1} \frac{2^{-k}}{k!} (-1)^{j+k+s} (j+s-k-i) \frac{2^{k}}{(R+i+j+s-k)!} (R+2s)_j, \tag{5.8}
\]

where (5.8) follows from (5.7) by first interchanging the sums over \(j \) and \(k \) and then shifting the (now) inner sum over \(j \) by \(s-k \). The inner sum in (5.8) can be rewritten, by splitting the term \((j+s-k-i) \), as a sum of two \(_2F_1 \) series. After some manipulation, we obtain

\[
\tilde{a}_{i,1} = \sum_{k=0}^{s-1} \frac{2^{-k}}{k!} \frac{(-1)^{s-k+1}(2k)(R+2s)}{(R+i+s-k+1)!} _2F_1 \left[\begin{array}{c} R+2s+1, -2k+1 \\ R+i+s-k+2 \end{array} ; 1 \right] + \sum_{k=0}^{s-1} \frac{2^{-k}}{k!} \frac{(-1)^{s-k}(s-k-i)}{(R+i+s-k)!} _2F_1 \left[\begin{array}{c} R+2s, -2k \\ R+i+s-k+1 \end{array} ; 1 \right]
\]

31
where the last equality follows from Chu-Vandermonde summation formula. It is easily checked that each summand in the two above sums vanishes when \(i = s \), whence \(\tilde{a}_{s,1} = 0 \). Suppose \(i \neq s \). Splitting the term \((s - k - i) \) in the second sum in the above expression, and rewriting the (now) three sums in hypergeometric notation, we arrive at

\[
\tilde{a}_{i,1} = \frac{(-1)^s(R + 2s)(i - s)}{(R + i + s + 1)!} \binom{2F_1}{1 + i - s, 1 + s - i}{2F_1}{R + i + s + 2}{2} + \frac{(-1)^s2^{-1}(i - s)}{(R + i + s + 1)!} \binom{2F_1}{2 + i - s, 1 + s - i}{2F_1}{R + i + s + 2}{2} + \frac{(-1)^s(i - s)}{(R + i + s + 1)!} \binom{2F_1}{1 + i - s, s - i}{2F_1}{R + i + s + 1}{2}.
\]

To see that the above expression vanishes, it suffices (after multiplying the above expression by \((-1)^s(i - s)^{-1}(R + i + s + 1)!\)) to prove that

\[
(c - a) \binom{2F_1}{a, b + 1}{c + 1}{x} + (1 - x)a \binom{2F_1}{a + 1, b + 1}{c + 1}{x} - c \binom{2F_1}{a, b}{c}{x} = 0,
\]

where \(a = 1 + i - s, b = s - i, c = R + i + s + 1 \) and \(x = 1/2 \). This identity can be easily derived from Gauss contiguous relations for the \(2F_1 \) series, or more directly, by extracting the coefficient of \(x^n \) in each side. In our case, we have to check that

\[
(c - a)(a)_n(b + 1)_n + a \left(\frac{(a + 1)_n(b + 1)_n}{(c + 1)_n(1)_n} - \frac{(a + 1)_{n-1}(b + 1)_{n-1}}{(c + 1)_{n-1}(1)_{n-1}} \right) - c \frac{(a)_n(b)_n}{(c)_n(1)_n} = 0,
\]

which amounts to a routine computation. To summarize, we have proved that \(\tilde{a}_{i,1} = 0 \) for \(1 \leq i \leq 2s - 1 \). This completes the proof of Proposition 5.2.

5.3. Proof of Lemma 4.1. It follows from [5,1] that we can apply Proposition 5.2 to the matrix

\[
\text{Pf} D = (-1)^{\sigma}2^{\sigma} \left(\prod_{i=1}^{2\sigma}(2N + i)! \right) \text{Pf} \left(\frac{(-1)^{i+j}D_{i,j}}{2(2N + i)!(2N + j)!} \right)_{1 \leq i,j \leq 2\sigma}.
\]

After some simplification, we obtain

\[
Pf D = (-1)^{\sigma}2^{2\sigma - 2(\sigma - 1)!} \left(\prod_{i=1}^{2\sigma-1}(2N + i)! \right) \left(\prod_{i=0}^{\sigma-2}(2N + 4i)! \right) \left(\prod_{i=0}^{\sigma-2}(2N + 4\sigma + 3 + 2i)! \right) V(N, \sigma),
\]

32
Proposition 5.3. Let $V(N, \sigma)$ be defined by (5.9). Then,

$$V(N, \sigma) = \frac{2^{N+2}(2N + \sigma + 1)!}{(N + \sigma)!(4N + 2\sigma + 2)!}((-1)^{\sigma}(2N + 2\sigma)! - (2N + 2\sigma - 1)!).$$

The first step towards a proof of the preceding result is to simplify expression (5.2) for $D_{2\sigma,j}$. We shall prove at the end of this section that

$$V(N, \sigma) = (2N + 1)\left(\frac{2(2N + 1)!}{N!(N + 1)!} - 2^{2N+2}\right)\sum_{j=1}^{2\sigma-1} \frac{(-1)^{j+1}(j - 1)}{(4N + j + 3)!}\lambda_j(N, \sigma)$$

$$- (2N + 2)\left(\frac{4(2N + 1)!}{N!(N + 1)!} + 2^{2N+3}\right)\sum_{j=1}^{2\sigma-1} \frac{(-1)^{j+1}}{(4N + j + 3)!}\lambda_j(N, \sigma)$$

$$- N!\sum_{j=1}^{2\sigma-1} \frac{(-1)^{j+1}(j - 1)(N + j - 1)!}{(2N + j)!(2N + j + 1)!}\lambda_j(N, \sigma)$$

$$+ \frac{2(2N + 2)!}{(N + 1)!} \sum_{j=1}^{2\sigma-1} \frac{(-1)^{j+1}(j - 1)}{(2N + j + 1)!}\sum_{h=N}^{2N+1} \frac{(h + j - 1)!(h + 1)!}{(h - N)!(2N + j + h + 2)!}\lambda_j(N, \sigma),$$

where we have set

$$\lambda_j(N, \sigma) = \sum_{k=0}^{\sigma-1} \frac{2^{-k}}{k!}\left(\begin{array}{c} 2k \\ j + k - \sigma \end{array}\right)(4N + 2 + 2\sigma)_{j+k-\sigma}. \quad (5.12)$$

All the sums in (5.11) can be evaluated in closed-form expressions.

Lemma 5.4. For all positive integers N and σ we have

$$\sum_{j=1}^{2\sigma-1} \frac{(-1)^{j+1}(j - 1)}{(4N + j + 3)!}\lambda_j(N, \sigma) = 0, \quad (5.13)$$

33
\[\sum_{j=1}^{2^\sigma-1} \frac{(-1)^{j+1}}{(4N+j+3)!} \lambda_j(N,\sigma) = (-2)^{\sigma-1} \frac{(2N+\sigma+1)!}{(2N+2)!(4N+2\sigma+2)!}, \quad (5.14) \]

\[\sum_{j=1}^{2^\sigma-1} \frac{(-1)^{j+1}(j-1)(N+j-1)!}{(2N+j)!(2N+j+1)!} \lambda_j(N,\sigma) = 0, \quad (5.15) \]

\[\sum_{j=1}^{2^\sigma-1} \sum_{h=N}^{2N+1} \frac{(-1)^{j+1}(j-1)(h+j-1)!(h+1)!}{(h-N)!(2N+j+h+1)!(2N+j+1)!} \lambda_j(N,\sigma) = \frac{(2N+\sigma+1)!}{(N+1)!(4N+2\sigma+2)!} \left((-2)^{\sigma-1} - \frac{(N+1)!^2(2N+2\sigma)!}{2^{\sigma-1}(N+\sigma)!^2(2N+2)!} \right). \quad (5.16) \]

At this point, we should notice that, after plugging these sum evaluations into (5.11), it becomes a routine matter to verify Proposition 5.3. So, to complete the proof of Lemma 4.1, it remains to prove the preceding lemma and (5.10).

Proof of Lemma 5.4.

(1) The double sum on the left-hand side of (5.13) is the \(i = 1, \ s = \sigma \) and \(R = 4N+2 \) specialization to (5.7), which was shown to be zero in the proof of Proposition 5.2, whence (5.13).

(2) Let \(S_1(N,\sigma) \) denote the double sum on the left-hand side of (5.14). Interchanging the sums over \(j \) and \(k \) in \(S_1(N,\sigma) \), we see that the (now) inner sum over \(j \) can be written as a \(_2F_1 \) series which is summable by Chu-Vandermonde formula. To be precise, we obtain

\[S_1(N,\sigma) = \frac{2^{\sigma-1}}{(4N+\sigma+3)!} \sum_{j=0}^{\sigma-1} \sum_{k=0}^{2^{-j}} \frac{(-1)^{\sigma-k+1}}{k!(4N+\sigma-k+3)!} \left[\frac{2N+2\sigma+2,-2k}{4N+4+\sigma-k} ; 1 \right] \]

Writing the above sum in hypergeometric notation, we arrive at

\[S_1(N,\sigma) = \frac{(-1)^{\sigma+1}}{(4N+\sigma+3)!} _2F_1 \left[\frac{\sigma-1,2-\sigma-\frac{1}{2}}{4N+4+\sigma} ; 1 \right] = (-1)^{\sigma+1} 2^{\sigma-1} \frac{(2N+\sigma+1)!}{(2N+2)!(4N+2\sigma+2)!}, \]

where the last equality follows from Bailey’s \(_2F_1 \) summation formula. This ends the proof of (5.14).

(3) Let \(S_2(N,\sigma) \) denote the double sum on the left-hand side of (5.15). We shall establish the recurrence

\[S_2(N,\sigma) + (4N+2\sigma+3)S_2(N,\sigma+1) = 0, \quad \sigma \geq 1. \quad (5.17) \]

Since it is easy to verify directly that \(S_2(N,1) = 0 \), this would immediately imply the claim.
In order to prove (5.17), we use the Gosper–Zeilberger algorithm (cf. [16] and [26 § II.5] — the particular implementation that we used is the Mathematica implementation by Paule and Schorn [25]) to find that

\[F_2(N, \sigma, j, k) + (4N + 2\sigma + 3)F_2(N, \sigma + 1, j, k) = G_2(N, \sigma, j, k + 1) - G_2(N, \sigma, j, k), \]

(5.18) where \(F_2(N, \sigma, j, k) \) is the summand of the sum on the left-hand side of (5.15), that is,

\[F_2(N, \sigma, j, k) = (-1)^{j+1} \frac{(j-1)(N+j-1)!}{(2N+j)!(2N+j+1)!} \frac{1}{2^k k!} \left(\begin{array}{c} 2k \\ j+k-\sigma \end{array} \right) (4N + 2\sigma + 2)^{j+k-\sigma}, \]

and

\[G_2(n, \sigma, j, k) = \frac{j+k-\sigma}{4N + 2\sigma + 2} F_2(N, \sigma, j, k). \]

We now sum both sides of (5.18) over \(k \) between 0 and \(\sigma - 1 \) and subsequently over \(j \) between 1 and 2\(\sigma - 1 \). Taking into account the telescoping effect on the right-hand side when we perform summation over \(k \), we arrive at

\[S_2(N, \sigma) + (4N + 2\sigma + 3)S_2(N, \sigma + 1) - (4N + 2\sigma + 3) \sum_{j=1}^{2\sigma-1} F_2(N, \sigma + 1, j, \sigma) \]

\[- (4N + 2\sigma + 3)(F_2(N, \sigma + 1, 2\sigma, \sigma) + F_2(N, \sigma + 1, 2\sigma + 1, \sigma) + F_2(N, \sigma + 1, 2\sigma + 1, \sigma)) \]

\[= \sum_{j=1}^{2\sigma-1} (G_2(N, \sigma, j, \sigma) - G_2(N, \sigma, j, 0)). \]

After some simplification, this becomes

\[S_2(N, \sigma) + (4N + 2\sigma + 3)S_2(N, \sigma + 1) \]

\[= (4N + 4\sigma + 3) \sum_{j=1}^{2\sigma-1} \frac{(-1)^j (j-1)(N+j-1)!}{2^\sigma (j-1)! (2N+j)! (2N+j+1)!} (2\sigma)! (4N + 2\sigma + 3)^{j-1} \]

\[+ \frac{2^{1-\sigma}}{(\sigma - 2)! (2N + 2\sigma)!^2} (N + \sigma + 1)! (\sigma - 2)! (2N + 2\sigma)!^2 \]

\[= (4N + 4\sigma + 3) \sum_{j=1}^{2\sigma+1} \frac{(-1)^j (j-1)(N+j-1)!}{2^\sigma (j-1)! (2N+j)! (2N+j+1)!} (2\sigma)! (4N + 2\sigma + 3)^{j-1}. \]

It remains to show that the right-hand side of this equation vanishes. In order to see this, we write the sum over \(j \) in hypergeometric notation. Thereby we obtain

\[S_2(N, \sigma) + (4N + 2\sigma + 3)S_2(N, \sigma + 1) \]

\[= \frac{2\sigma}{2^\sigma! (2N + 2)! (2N + 3)!} \binom{-2\sigma + 1, 4N + 2\sigma + 4, N + 2}{2N + 3, 2N + 4}. \]

This \(\binom{a, b, c}{d} \)-series can be evaluated by means of Watson’s \(\binom{a, b, c}{d} \)-summation (see [30] (2.3.3.13); Appendix (III.23))

\[\binom{a, b, c}{1 + a + b, 2c} = \frac{\Gamma \left(\frac{1}{2} \right) \Gamma \left(\frac{1}{2} + c \right) \Gamma \left(\frac{1}{2} + a + b \right) \Gamma \left(\frac{1}{2} - \frac{a}{2} - \frac{b}{2} + c \right) \Gamma \left(\frac{1}{2} - \frac{a}{2} + \frac{b}{2} \right) \Gamma \left(\frac{1}{2} - \frac{a}{2} - \frac{b}{2} + c \right) \Gamma \left(\frac{1}{2} - \frac{a}{2} + \frac{b}{2} \right)}{\Gamma \left(\frac{1}{2} + a \right) \Gamma \left(\frac{1}{2} + b \right) \Gamma \left(\frac{1}{2} + c \right) \Gamma \left(\frac{1}{2} - \frac{a}{2} + \frac{b}{2} \right) \Gamma \left(\frac{1}{2} - \frac{a}{2} + \frac{b}{2} \right) \Gamma \left(\frac{1}{2} - \frac{a}{2} - \frac{b}{2} + c \right) \Gamma \left(\frac{1}{2} - \frac{a}{2} + \frac{b}{2} \right) \Gamma \left(\frac{1}{2} - \frac{a}{2} - \frac{b}{2} + c \right) \Gamma \left(\frac{1}{2} - \frac{a}{2} + \frac{b}{2} \right) \Gamma \left(\frac{1}{2} - \frac{a}{2} - \frac{b}{2} + c \right)}. \]
In fact, because of the term $\Gamma(\frac{1}{2} + \frac{a}{2})$ in the denominator on the right-hand side, the series vanishes whenever a is an odd negative integer. The recurrence (5.17) follows immediately. This completes the proof of (5.15).

(4) Again, we prove the claim by induction on σ. To start the induction, we have to show that (5.16) holds for $\sigma = 1$. This is trivially the case, since in this case the sum over j reduces to just one term, the term for $j = 1$, so that both sides of (5.16) vanish.

Let $S_3(N, \sigma)$ denote the triple sum on the left-hand side of (5.16). We now claim that

$$S_3(N, \sigma) + (4N + 2\sigma + 3)S_3(N, \sigma + 1) = -\frac{(4N + 4\sigma + 3)(N + 1)! (2N + \sigma + 1)! (2N + 2\sigma)!}{2^\sigma (2N + 2)! (N + \sigma)! (N + \sigma + 1)! (4N + 2\sigma + 2)!}, \quad \sigma \geq 1. \quad (5.19)$$

Since the right-hand side of (5.16) satisfies the above recurrence — as is not difficult to check — this would prove the lemma.

In order to prove (5.19), we multiply both sides of (5.17) by

$$\frac{(h + j - 1)! (h + 1)!}{(h - N)! (2N + j + h + 2)!} \left(\frac{(N + j - 1)!}{(2N + j)!}\right)$$

to find that

$$F_3(N, \sigma, j, h, k) + (4N + 2\sigma + 3)F_3(N, \sigma + 1, j, h, k) = G_3(N, \sigma, j, h, k + 1) - G_3(N, \sigma, j, h, k),$$

where $F_3(N, \sigma, j, h, k)$ is the summand of the sum on the left-hand side of (5.16), that is,

$$F_3(N, \sigma, j, h, k) = (-1)^{j+1} \frac{(j - 1)(h + j - 1)! (h + 1)!}{(h - N)! (2N + j + h + 2)! (2N + j + 1)!} \times \frac{1}{2^k k!} \binom{2k}{j+k-\sigma} (4N + 2\sigma + 2)^{j+k-\sigma},$$

and

$$G_3(n, \sigma, j, h, k) = \frac{j + k - \sigma}{4N + 2\sigma + 2} F_3(N, \sigma, j, h, k).$$

We now sum both sides of (5.20) over k between 0 and $\sigma - 1$, and subsequently over j between 1 and $2\sigma - 1$, and over h between N and $2N + 1$. Taking into account the telescoping effect on the right-hand side when we perform summation over k, we arrive at

$$S_3(N, \sigma) + (4N + 2\sigma + 3)S_3(N, \sigma + 1) - (4N + 2\sigma + 3) \sum_{j=1}^{2\sigma-1} \sum_{h=N}^{2N+1} F_3(N, \sigma + 1, j, h, \sigma)$$

$$- (4N + 2\sigma + 3) \sum_{h=N}^{2N+1} \left(F_3(N, \sigma + 1, 2\sigma, h, \sigma)
+ F_3(N, \sigma + 1, 2\sigma + 1, \sigma - 1) + F_3(N, \sigma + 1, 2\sigma + 1, h, \sigma) \right)$$

$$= \sum_{j=1}^{2\sigma-1} \sum_{h=N}^{2N+1} \left(G_3(N, \sigma, j, h, \sigma) - G_3(N, \sigma, j, h, 0) \right).$$
After some simplification, this becomes

\[
S_3(N, \sigma) + (4N + 2\sigma + 3)S_3(N, \sigma + 1) \\
= - \sum_{h=N}^{2N+1} \sum_{j=2}^{2\sigma-1} \frac{(-1)^j (4N + 4\sigma + 3) (h + j - 1)! (h + 1)! (2\sigma)! (4N + 2\sigma + 3)_{j-1}}{2^\sigma (j - 2)! (h - N)! (2N + j + h + 2)! (2N + j + 1)! \sigma! (2\sigma - j + 1)!} \\
+ \sum_{h=N}^{2N+1} 4 (4N + 4\sigma + 3) (3 + 2h + 5N + 3hN + 2N^2 + \sigma + h\sigma - 2N\sigma) \\
- 2hN\sigma - 4N^2\sigma - 4\sigma^2 - 2h\sigma^2 - 8N\sigma^2 - 4\sigma^3) \\
\cdot \frac{1}{2^\sigma (h - N)! (\sigma - 1)! (2N + 2\sigma + 2)! (2N + 2\sigma + h + 3)!} \\
= - \sum_{h=N}^{2N+1} \sum_{j=2}^{2\sigma-1} \frac{(-1)^j (4N + 4\sigma + 3) (h + j - 1)! (h + 1)! (2\sigma)! (4N + 2\sigma + 3)_{j-1}}{2^\sigma (j - 2)! (h - N)! (2N + j + h + 2)! (2N + j + 1)! \sigma! (2\sigma - j + 1)!}.
\]

By writing the sum over \(j\) in hypergeometric notation, this turns into

\[
S_3(N, \sigma) + (4N + 2\sigma + 3)S_3(N, \sigma + 1) \\
= - \sum_{h=N}^{2N+1} \frac{(4N + 2\sigma + 3) (4N + 4\sigma + 3) (h + 1)!^2}{2^{\sigma-1} (h - N)! (2N + 3)! (2N + h + 4)! (\sigma - 1)!} \\
\cdot \, _3F_2 \left[\begin{array}{c} h + 2, 4N + 2\sigma + 4, -2\sigma + 1 \\ 2N + 4, 2N + h + 5 \end{array} ; 1 \right] .
\]

Next we apply the contiguous relation

\[
_3F_2 \left[\begin{array}{c} a, b, c \\ d, e \end{array} ; z \right] = \frac{b}{b - a} \, _3F_2 \left[\begin{array}{c} a + 1, b + 1, c + 1 \\ d, e \end{array} ; z \right] + \frac{a}{a - b} \, _3F_2 \left[\begin{array}{c} a + 1, b, c \\ d, e \end{array} ; z \right].
\]

We obtain

\[
S_3(N, \sigma) + (4N + 2\sigma + 3)S_3(N, \sigma + 1) \\
= - \sum_{h=N}^{2N+1} \frac{(4N + 2\sigma + 3) (4N + 2\sigma + 4) (4N + 4\sigma + 3) (h + 1)!^2}{2^{\sigma-1} (4N + 2\sigma - h + 2) (h - N)! (2N + 3)! (2N + h + 4)! (\sigma - 1)!} \\
\cdot \, _3F_2 \left[\begin{array}{c} h + 2, 4N + 2\sigma + 5, -2\sigma + 1 \\ 2N + 4, 2N + h + 5 \end{array} ; 1 \right] \\
+ \sum_{h=N}^{2N+1} \frac{(4N + 2\sigma + 3) (4N + 4\sigma + 3) (h + 1)! (h + 2)!}{2^{\sigma-1} (4N + 2\sigma - h + 2) (h - N)! (2N + 3)! (2N + h + 4)! (\sigma - 1)!} \\
\cdot \, _3F_2 \left[\begin{array}{c} h + 3, 4N + 2\sigma + 4, 1 - 2\sigma \\ 2N + 4, 2N + h + 5 \end{array} ; 1 \right].
\]
Both $3F_2$-series can be evaluated by means of the Pfaff–Saalschütz summation (cf. [30 (2.3.1.3); Appendix (III.2)])

$$
\begin{align*}
3F_2 \left[\begin{array}{c}
a, b, -n \\
c, 1 + a + b - c - n
\end{array} \right] = \frac{(c - a)_n (c - b)_n}{(c)_n (c - a - b)_n},
\end{align*}
$$

where n is a non-negative integer. If we apply the formula, then, after some simplification, the above recurrence reduces to

$$
S_3(N, \sigma) + (4N + 2\sigma + 3)S_3(N, \sigma + 1)
$$

$$
= 4 (4N + 2\sigma + 3) (4N + 4\sigma + 3) \sum_{h=N}^{2N+1} (1 + h - N + hN - 2N^2 - 3\sigma - 4N\sigma - 2\sigma^2)
$$

$$
\times \frac{(h + 1)!^2 (2N + 3)_{2\sigma-2} (2 - h + 2N)_{2\sigma-2}}{2^\sigma (h - N)! (\sigma - 1)! (2N + 2\sigma + 2)! (2N + 2\sigma + h + 3)!}.
$$

Let $S_4(N, \sigma)$ denote the right-hand sum. The Gosper–Zeilberger algorithm then yields the recurrence

$$
(2N + 2\sigma + 1)(4N + 4\sigma + 7)S_4(N, \sigma)
$$

$$
- 4(2N + 3)(N + \sigma + 2)(4N + 2\sigma + 3)(4N + 2\sigma + 5)(4N + 4\sigma + 3)S_4(N + 1, \sigma) = 0,
$$

(5.21)

with a half-page certificate, which we omit here for the sake of brevity. Since it is straightforward to check that $S_4(1, \sigma)$ is equal to the right-hand side of (5.19) with $N = 1$, and that the right-hand side of (5.19) satisfies the recurrence in (5.21), the claimed recurrence (5.19) follows.

This completes the proof of (5.16), and thus of the lemma.

We now turn our attention to the proof of (5.10).

Proof of (5.10). By (5.2), we have

$$
D_{2\sigma, j} = \frac{(-1)^j 2^{-N+j}(N+j+1)}{(2N+j+1)} \cdot S + \frac{(-1)^{N+j}}{(N+1)(2N+j+1)} \sum_{h=N}^{2N+1} \left(\frac{h - N + hN - 2N^2 - 3\sigma - 4N\sigma - 2\sigma^2}{h - N} \right) \frac{(h + 1)!^2 (2N + 3)_{2\sigma-2} (2 - h + 2N)_{2\sigma-2}}{2^\sigma (h - N)! (\sigma - 1)! (2N + 2\sigma + 2)! (2N + 2\sigma + h + 3)!},
$$

(5.22)

where S stands for the double sum in (5.2), that is

$$
S = \sum_{i=0}^{2N} (-1)^i \left(\begin{array}{c}
i \\
N
\end{array} \right) \frac{2N + j - i}{i + 1} \sum_{\ell=0}^{i} (-1)^\ell \left(\begin{array}{c}
2N + j \\
i - \ell
\end{array} \right) \left(\begin{array}{c}
\ell + j - 1 \\
\ell
\end{array} \right) \frac{1}{2N + \ell + j + 2}.
$$

By extending the sum over i, we rewrite S as

$$
\sum_{i=0}^{2N+1} (-1)^i \left(\begin{array}{c}
i \\
N
\end{array} \right) \frac{2N + j - i}{i + 1} \sum_{\ell=0}^{i} (-1)^\ell \left(\begin{array}{c}
2N + j \\
i - \ell
\end{array} \right) \left(\begin{array}{c}
\ell + j - 1 \\
\ell
\end{array} \right) \frac{1}{2N + \ell + j + 2}.
$$
where

\[
S = \sum_{\ell=0}^{2N+1} (-1)^\ell \binom{2N+j}{2N+1-\ell} \binom{\ell+j-1}{\ell} \frac{1}{2N+\ell+j+2}.
\]

We concentrate now on the evaluation of the second sum over \(\ell\). It can be written as a \(2\)\(_{1}\)\(_F\)\(_{1}\)-series which is summable by means of the Chu–Vandermonde summation formula, so that we obtain

\[
\begin{align*}
\left(2^{2N+1} - \binom{2N+1}{N}\right) \frac{j-1}{2N+2} \sum_{\ell=0}^{2N+1} (-1)^\ell \binom{2N+j}{2N+1-\ell} \binom{\ell+j-1}{\ell} \frac{1}{2N+\ell+j+2} \\
= \left(2^{2N+1} - \binom{2N+1}{N}\right) \frac{j-1}{2N+2} \binom{2N+j}{2N+1} \frac{1}{2N+\ell+j+2} {}_2F_1\left[\begin{array}{ll}2N+j+2, -2N-1; 1 \\
2N+j+3\end{array}\right] \\
= \left(2^{2N+1} - \binom{2N+1}{N}\right) \frac{j-1}{2N+2} \binom{2N+j}{2N+1} \frac{1}{2N+\ell+j+2} (-1)_{2N+1} \\
= \frac{(j-1) (2N+j)! (2N+j+1)!}{(2N+2) (j-1)! (4N+j+3)!} \left(2^{2N+1} - \binom{2N+1}{N}\right).
\end{align*}
\]

Consequently, our sum \(S\) is equal to

\[
\sum_{i=0}^{2N+1} (-1)^i \binom{2i}{i+1} \frac{2N+j-i}{i+1} \sum_{\ell=0}^{i} (-1)^\ell \binom{2N+j}{i-\ell} \binom{\ell+j-1}{\ell} \frac{1}{2N+\ell+j+2} \\
+ \frac{(j-1) (2N+j)! (2N+j+1)!}{(2N+2) (j-1)! (4N+j+3)!} \left(2^{2N+1} - \binom{2N+1}{N}\right).
\]

Next we apply the partial fraction expansion

\[
\frac{1}{(i+1)(2N+\ell+j+2)} = \frac{1}{2N+\ell+j+i+1} \left(\frac{1}{i+1} - \frac{1}{2N+\ell+j+2}\right).
\]

Thus, we have

\[
S = S_1 - S_2 + \frac{(j-1) (2N+j)! (2N+j+1)!}{(2N+2) (j-1)! (4N+j+3)!} \left(2^{2N+1} - \binom{2N+1}{N}\right),
\]

where

\[
S_1 = \frac{1}{(2N+j+1)} \sum_{i=0}^{2N+1} (-1)^i \binom{2i}{i+1} \frac{2N+j-i}{i+1} \\
\cdot \sum_{\ell=0}^{i} (-1)^\ell \binom{2N+j+1}{i-\ell} \binom{\ell+j-1}{\ell}
\]

and

\[
S_2 = \frac{1}{(2N+j+1)} \sum_{i=0}^{2N+1} (-1)^i \binom{2i}{i+1} (2N+j-i).
\]
\[
\sum_{\ell=0}^{i} (-1)^{\ell} \binom{2N + j + 1}{i - \ell} \binom{\ell + j - 1}{\ell} \frac{1}{2N + \ell + j + 2}.
\]

We start with the evaluation of \(S_1 \). We have
\[
\sum_{\ell=0}^{i} (-1)^{\ell} \binom{2N + j + 1}{i - \ell} \binom{\ell + j - 1}{\ell} = \binom{2N + j + 1}{i} \binom{2N - i + 2}{i} = \binom{2N + 1}{i},
\]
and therefore
\[
S_1 = \frac{1}{(2N + j + 1)} \sum_{i=0}^{2N+1} (-1)^{i} \left(2^i - \binom{i}{N} \right) \frac{2N + j - i}{2N + i + 1}.
\]

Next we consider the evaluation of \(S_2 \). We have
\[
S_2 = \frac{1}{(2N + j + 1)} \sum_{i=0}^{2N+1} (-1)^{i} \left(2^i - \binom{i}{N} \right) (2N + j - i)
\cdot \sum_{\ell=0}^{i} (-1)^{\ell} \binom{\ell + j - 1}{\ell} \frac{1}{2\pi \sqrt{-1}} \left(\int_{C} \frac{(1 + z)^{2N + j - 1}}{z^{i - \ell + 1}} dz \right) \left(\int_{0}^{1} x^{2N + \ell + j + 1} dx \right),
\]
where \(C \) is a small contour in the complex plane encircling the origin in positive orientation. The sum over \(\ell \) can be extended to a sum from 0 to \(\infty \) since the terms corresponding to \(\ell \)'s which are larger than \(i \) vanish. Hence, by evaluating the (geometric) sum over \(\ell \),
we may rewrite this as
\[
S_2 = \frac{1}{(2N + j + 1)2\pi\sqrt{-1}} \int_C \int_0^{1} \sum_{i=0}^{2N+1} (-1)^i \left(2^i - \binom{i}{N} \right) dz \left(\frac{1 + z}{z^{2N+j}} \right) x^{2N+j+1} \frac{d}{dz} \left(\frac{z^{2N+j-i}}{(1 + xz)^j} \right) dx dz
\]

Consequently,
\[
S_2 = \frac{1}{(2N + j + 1)} (-S_3 + S_4), \tag{5.24}
\]

where
\[
S_3 = \frac{1}{2\pi\sqrt{-1}} \int_C \int_0^{1} \sum_{i=0}^{2N+1} (-1)^i 2^{2N+1-i} \frac{d}{dz} \left(\frac{z^{i-j-1}}{z^{2N+j}} \right) x^{2N+j+1} \frac{d}{dz} \left(\frac{(1 + z)^{2N+j+1}}{(1 + xz)^j} \right) dx dz
\]

and
\[
S_4 = \frac{1}{2\pi\sqrt{-1}} \int_C \int_0^{1} \sum_{i=0}^{2N+1} (-1)^i \left(\frac{2(N + 1 - i)}{N} \right) dx dz \left(\frac{1 + z}{z^{2N+j}} \right) x^{2N+j+1} \frac{d}{dz} \left(\frac{(1 + z)^{2N+j+1}}{(1 + xz)^j} \right) dx dz
\]

Now we evaluate \(S_3\). Similarly to before, we may extend the sum over \(i\) to a sum from 0 to \(\infty\). The resulting sum is again a geometric series, so that we obtain
\[
S_3 = \frac{1}{2\pi\sqrt{-1}} \int_C \int_0^{1} 2^{2N+1} \frac{d}{dz} \left(\frac{z^{j-1}}{1 + \frac{j}{2}} \right) x^{2N+j+1} \frac{d}{dz} \left(\frac{(1 + z)^{2N+j+1}}{(1 + xz)^j} \right) dx dz
\]
\[
= \frac{2^{2N+1}}{2\pi\sqrt{-1}} \int_C \int_0^{1} \left(\frac{1 + (j-2)z}{(1 + \frac{j}{2})^2} \right) x^{2N+j+1} \frac{d}{dz} \left(\frac{(1 + z)^{2N+j+1}}{(1 + xz)^j} \right) dx dz
\]

Now we do the substitution \(z \to z/(1 - z)\). Thereby, we obtain
\[
S_3 = \frac{2^{2N+1}}{2\pi\sqrt{-1}} \int_C \int_0^{1} \left(\frac{j - (j - 1)\frac{z}{2}}{(1 - \frac{z}{2})^2} \right) x^{2N+j+1} \frac{d}{dz} \left(\frac{(1 + z)^{2N+j+1}}{(1 - z(1 - x))^j} \right) dx dz
\]
\[
= \frac{2^{2N+1}}{2\pi\sqrt{-1}} \int_C \int_0^{1} \left(\frac{j - (j - 1)\frac{z}{2}}{(1 - \frac{z}{2})^2} \right) x^{2N+j+1} \frac{d}{dz} \left(\frac{(1 + z)^{2N+j+1}}{(1 + xz)^j} \right) dx dz
\]
\[
= \frac{2^{2N+1}}{2\pi\sqrt{-1}} \int_C \left(\frac{j - (j - 1)\frac{z}{2}}{(1 - \frac{z}{2})^2} \right) \sum_{h=0}^{2N+1} \binom{h + j - 1}{h} x^{2N+j+1} \frac{d}{dz} \left(\frac{(1 + z)^{2N+j+1}}{(1 + xz)^j} \right) dx dz
\]
\[
= \frac{2^{2N+1}}{2\pi\sqrt{-1}} \int_C \left(\frac{j - (j - 1)\frac{z}{2}}{(1 - \frac{z}{2})^2} \right) \sum_{h=0}^{2N+1} \binom{h + j - 1}{h} \frac{d}{dz} \left(\frac{(1 + z)^{2N+j+1}}{(1 + xz)^j} \right) dx dz
\]
where \(\tilde{r} \)tion, we then obtain
\[
\mathcal{S} = \sum_{h=0}^{2N+1} \binom{h+j-1}{h} \frac{(2N+j+1)!h!}{(2N+j+h+2)!} \cdot ((j-1)(2N+2-h) - j(2N+1-h)) 2^{-2N-1+h}
\]
\[
= \sum_{h=0}^{2N+1} \binom{h+j-1}{h} \frac{(2N+j+1)!h!}{(2N+j+h+2)!} (-2N-2+h+j) 2^h
\]
\[
= \sum_{h=0}^{2N+1} \left(\binom{h+j}{h+1} \frac{(2N+j+1)!(h+1)!}{(2N+j+h+2)!} 2^{h+1} - \binom{h+j-1}{h} \frac{(2N+j+1)!h!}{(2N+j+h+2)!} 2^h \right)
\]
\[
= \left(\frac{2N+j+1}{2N+2} \right) \frac{(2N+j+1)(2N+2)!}{(4N+j+3)!} 2^{2N+2} - 1
\]
\[
= 2^{2N+2} \frac{(2N+j+1)^2}{(4N+j+3)! (j-1)!} - 1.
\]

Finally, we compute \(\mathcal{S}_4 \). In the earlier definition of \(\mathcal{S}_4 \), we may again extend the sum over \(i \) to a sum from 0 to \(\infty \). Using
\[
\binom{2N+1-i}{N} = \frac{1}{2\pi \sqrt{-1}} \int_{\tilde{C}} \frac{(1+u)^{2N+1-i}}{u^{N+1}} du,
\]
where \(\tilde{C} \) is a small contour in the complex plane encircling the origin in positive orientation, we then obtain
\[
\mathcal{S}_4 = \frac{1}{(2\pi \sqrt{-1})^2} \int_{\tilde{C}} \int_{\tilde{C}} \int_{0}^{1} \sum_{i=0}^{\infty} (-1)^i \frac{d}{dz}(z^{i+j-1}) \frac{(1+u)^{2N+1-i}}{u^{N+1}}
\]
\[
\cdot (1+z)^{2N+j+1} x^{2N+j+1} \frac{z^{2N+j}}{(1+xz)^j} du dz dx
\]
\[
= \frac{1}{(2\pi \sqrt{-1})^2} \int_{\tilde{C}} \int_{\tilde{C}} \int_{0}^{1} \frac{d}{dz} \left(\frac{z^{j-1}}{1+\frac{z}{1+u}} \right) \frac{(1+u)^{2N+1}}{u^{N+1}}
\]
\[
\cdot (1+z)^{2N+j+1} x^{2N+j+1} \frac{z^{2N+j}}{(1+xz)^j} du dz dx
\]
\[
= \frac{1}{(2\pi \sqrt{-1})^2} \int_{\tilde{C}} \int_{\tilde{C}} \int_{0}^{1} \frac{(j-1)+(j-2)\frac{z}{1+u}(1+u)^{2N+1}}{(1+\frac{z}{1+u})^2} \frac{u^{N+1}}{z^{2N+2}} \frac{x^{2N+j+1}}{(1+xz)^j} du dz dx.
\]

Again we do the substitution \(z \to z/(1-z) \). Thereby, we obtain
\[
\mathcal{S}_4 = \frac{1}{(2\pi \sqrt{-1})^2} \int_{\tilde{C}} \int_{\tilde{C}} \int_{0}^{1} \frac{(j-1)(1+u) - z(1+(j-1)u)}{(1-\frac{u+z}{1+u})^2} \frac{(1+u)^{2N}}{u^{N+1}} \frac{x^{2N+j+1}}{z^{2N+2}(1-z(1-x))^j} du dz dx
\]
\[
\begin{align*}
S &= \frac{1}{(2^n \sqrt{-1})^2} \int_C \int_C \int_0^1 \frac{(j-1)(1+u) - z(1+(j-1)u)}{(1-\frac{uz}{1+u})^2} \\
&\quad \cdot \left(1 + u\right)^{2N} \cdot \frac{z^{2N+1}}{\sum_{h=0}^{2N+1} \left(\frac{h+j+1}{h}\right)^{2N+1} x^{2N+j+1} \sum_{h=0}^{2N+1} \left(\frac{h+j-1}{h}\right)^{2N+1} z^h (1-x)^h \ du \ dz \ dx
\end{align*}
\]

\[
S = \frac{1}{(2^n \sqrt{-1})^2} \int_C \int_C \int_0^1 (j-1)(1+u) - z(1+(j-1)u) \sum_{s=0}^{\infty} (s+1) \left(\frac{uz}{1+u}\right)^s \left(\frac{1+u}{u^{N+1}}\right)
\]

\[
\quad \cdot \sum_{h=0}^{2N+1} \left(\frac{h+j-1}{h}\right) (2N+j+1)! h! \frac{1}{(2N+j+h+2)! z^{2N+1}} du \ dz
\]

\[
\begin{align*}
S &= \sum_{h=0}^{2N+1} \left(\frac{h+j-1}{h}\right) (2N+j+1)! h! \frac{h!}{(2N+j+h+2)! (h-N)! (N+1)!} \\
&\quad \cdot \left((j-1)(h-N) - (2N+1-h)(N+1)\right)
\end{align*}
\]

\[
\begin{align*}
S &= \sum_{h=0}^{2N+1} \left(\frac{(h+j-1)! h! (2N+j+1)!}{(j-1)! (h-N-1)! (N+1)! (2N+j+h+1)!} \\
&\quad - \frac{(h+j)! (h+1)! (2N+j+1)!}{(j-1)! (h-N)! (N+1)! (2N+j+h+2)!} \right)
\end{align*}
\]

\[
+ (j-1) \sum_{h=0}^{2N+1} \left(\frac{(h+j-1)! (h+1)! (2N+j+1)!}{(j-1)! (h-N)! (N+1)! (2N+j+h+2)!} \right)
\]

\[
= -\frac{(2N+1+j)!^2 (2N+2)!}{(j-1)! (N+1)!^2 (4N+j+3)!} \\
+ (j-1) \sum_{h=0}^{2N+1} \left(\frac{(h+j-1)! (h+1)! (2N+j+1)!}{(j-1)! (h-N)! (N+1)! (2N+j+h+2)!} \right)
\]

In total, if we substitute our findings in (5.23) and (5.24), then we have shown that

\[
S = S_1 - S_2 + \frac{(j-1) (2N+j)! (2N+j+1)!}{(2N+2)! (j-1)! (4N+j+3)!} \left(2^{2N+1} - \left(\frac{2N+1}{N}\right)\right)
\]

\[
= S_1 + \frac{S_3 - S_4}{2N+j+1} + \frac{(j-1) (2N+j)! (2N+j+1)!}{(2N+2)! (j-1)! (4N+j+3)!} \left(2^{2N+1} - \left(\frac{2N+1}{N}\right)\right)
\]

\[
= \frac{1}{2N+j+1} - \frac{(-1)^N}{2N+2} + \frac{(j-1) (2N+j)! (2N+j+1)!}{(2N+2)! (j-1)! (4N+j+3)!} \left(2^{2N+1} - \left(\frac{2N+1}{N}\right)\right)
\]
\[
+ \frac{1}{2N + j + 1} \left(\frac{(2N + j + 1)!^2}{(4N + j + 3)! (j - 1)!} - 1 + \frac{(2N + 1 + j)!^2}{(j - 1)! (N + 1)! (4N + j + 3)!} \right) - (j - 1) \sum_{h=0}^{2N+1} \frac{(h + j - 1)! (h + 1)! (2N + j + 1)!}{(j - 1)! (h - N)! (N + 1)! (2N + j + h + 2)!}.
\]

A combination of the latter identity with (5.22) leads, after some trivial simplification, to (5.10). This ends the proof.

6. Proof of Corollary 1.7

Throughout this section, all asymptotics are taken as \(n \to \infty \) and \(x \sim an \). By Theorem 1.3, the probability that a random vertically symmetric rhombus tiling of a \((2n, 2x + 1, 2n)\) hexagon is centered is equal to \(R(n, x) \). Using expressions (1.5) and (1.4), we see that \(R(n, x) \) can be written in hypergeometric notation (after reversing the order of summation in (1.4) and dividing the sum in four parts) as

\[
R(n, x) = 2^{n-2} \frac{(2x + 2)! (x + 2n)!}{n! (x + 1)!(2x + 4n)!} \times \left(\frac{(2n - 1)!!((\frac{3}{2} - n)_{2n-1}(x + 1)_{n-1}(x + n + 1)_n}{(n - 1)! n!} \right) _4 F_3 \left[\begin{array}{c}
1, n + \frac{1}{2}, 1 - n, -n - x \\
n + 1, \frac{3}{2} - n, 1 - n - x
\end{array} ; -1 \right] - (2n - 1)!!((\frac{3}{2} - n)_{2n-1}(x + 1)_{n-1}(x + n + 2)_{n-1}}{(n - 1)! n!} \right) _4 F_3 \left[\begin{array}{c}
1, x + n + 1, n + \frac{1}{2}, 1 - n \\
n + 1, \frac{3}{2} - n, x + n + 2
\end{array} ; -1 \right] + (1 + 1)!!((\frac{3}{2} - n)_{2n-1}(x + 1)_{n-1}(x + n + 2)_{n-1}}{(n - 1)! n!} \right) _4 F_3 \left[\begin{array}{c}
1, x + n + 1, n + \frac{1}{2}, 1 - n \\
n + 1, \frac{3}{2} - n, x + n + 2
\end{array} ; 1 \right],
\]

which simplifies to

\[
R(n, x) = (-1)^{n+1} 2^{n-2} \frac{(x + 2n)!}{n (n + x + 1)!^2} \frac{\Gamma(2x + 2) \Gamma(x + 2n)^2 \Gamma(n + \frac{1}{2})}{\Gamma(x + 1)^2 \Gamma(2x + 4n) \Gamma(\frac{3}{2} - n) \Gamma(n + \frac{1}{2})} \times 4^n \left(-1 \right) \left(\frac{(2n)!}{4^n n!} \right) _4 F_3 \left[\begin{array}{c}
1, n + \frac{1}{2}, 1 - n, -n - x \\
n + 1, \frac{3}{2} - n, 1 - n - x
\end{array} ; -1 \right] - (-1)^{n+1} (2n)! \frac{x + n}{4^n n!} _4 F_3 \left[\begin{array}{c}
1, x + n + 1, n + \frac{1}{2}, 1 - n \\
n + 1, \frac{3}{2} - n, x + n + 2
\end{array} ; -1 \right] + _4 F_3 \left[\begin{array}{c}
1, n + \frac{1}{2}, 1 - n, -n - x \\
n + 1, \frac{3}{2} - n, 1 - n - x
\end{array} ; 1 \right] - \frac{x + n}{x + n + 1} _4 F_3 \left[\begin{array}{c}
1, x + n + 1, n + \frac{1}{2}, 1 - n \\
n + 1, \frac{3}{2} - n, x + n + 2
\end{array} ; 1 \right].
\]
Using Stirling’s formula, it is a routine matter to determine the asymptotic behavior of the term in the first row in (6.1):

\[
(-1)^{n+1}2^{2n-2} \frac{\Gamma(2x+2)\Gamma(x+2n)^2\Gamma(n+\frac{1}{2})}{n^{x+n}} \sim \frac{\sqrt{a(a+2)}}{\pi(a+1)} \frac{1}{n}. \tag{6.3}
\]

To deal with the \(\, _4F_3 \)-series in (6.1), we shall use the next lemma.

Lemma 6.1. Let \(b \) be a real number with \(|b| > 1\). Then, for any nonnegative integer \(r \) and any sequence \((b_n)_{n \geq 1} \) with \(b_n \to b \) as \(n \to \infty \), we have

\[
\lim_{n \to \infty} \frac{1}{n} \, _4F_3 \left[\begin{array}{c} 1, n + \frac{1}{2}, 1 - n, b_n n + r \\ n + 1, 3 \cdot 2 - n, b_n n + r + 1 \end{array} ; 1 \right] = \frac{2b}{b+1} \sqrt{\frac{b+1}{b-1}} \arctan \left(\sqrt{\frac{b-1}{b+1}} \right). \tag{6.4}
\]

Before we prove this result, we show how it leads to Corollary 1.7. First, Lemma (6.4) gives the asymptotic behavior of the last two \(\, _4F_3 \)-series in (6.1). Moreover, it is easily checked that the absolute value of the first (resp., second) \(\, _4F_3 \)-series is less than the third \(\, _4F_3 \)-series (resp., fourth) \(\, _4F_3 \)-series in (6.1) which is \(O(n) \) by Lemma 6.1. This, combined with the fact that \(\frac{(2n)!}{n^{2n+1}} \sim (\pi n)^{-1/2} \), shows that the contribution of the first two \(\, _4F_3 \)-series in (6.1) is negligible in the limit. Altogether, with (6.3) and Lemma 6.1 we see that \(R(n, x) \) is asymptotically equivalent to

\[
\frac{\sqrt{a(a+2)}}{\pi(a+1)} \left(\frac{2(a+1)}{a} \sqrt{\frac{a}{a+2}} \arctan \left(\sqrt{\frac{a+2}{a}} \right) - \frac{2(a+1)}{a+2} \sqrt{\frac{a+2}{a}} \arctan \left(\sqrt{\frac{a}{a+2}} \right) \right)
\]

\[
= \frac{2}{\pi} \arctan \left(\frac{1}{\sqrt{a(a+2)}} \right) = \frac{2}{\pi} \arcsin \left(\frac{1}{a+1} \right),
\]

as desired. To conclude the proof of Corollary 1.7, it remains to prove Lemma 6.1.

Proof of Lemma 6.1. If we write the \(\, _4F_3 \)-series in (6.4) explicitly as a sum over \(k \), after some simplification, we obtain

\[
\, _4F_3 \left[\begin{array}{c} 1, n + \frac{1}{2}, 1 - n, b_n n + r, \\ n + 1, 3 \cdot 2 - n, b_n n + r + 1 \end{array} ; 1 \right] = \sum_{k=0}^{n-1} \frac{(n + \frac{1}{2})_k (1 - n)_k (b_n n + r)_k}{(n + 1)_k (\frac{3}{2} - n)_k (b_n n + r + 1)_k}
\]

\[
= \sum_{k=0}^{n-1} \frac{(b_n n + r)n(n - \frac{1}{2}) \Gamma(n)^2 \Gamma(n + k + \frac{1}{2}) \Gamma(n - k - \frac{1}{2})}{(b_n n + r + k) \Gamma(n + \frac{1}{2}) \Gamma(n + k + 1) \Gamma(n - k)}. \tag{6.5}
\]

Let us denote the summand in the latter sum by \(F(n, k) \). It is easy to check that \(F(n, k) > 0 \) for \(0 \leq k \leq n - 1 \) and that

\[
F(n, 0) = 1 \quad \text{and} \quad F(n, n - 1) \sim \frac{b}{b+1} \sqrt{\frac{\pi}{2}} n^{1/2} \quad \text{as } n \to \infty. \tag{6.6}
\]
Moreover, a routine computation shows that \(\left(\frac{\partial^2}{\partial k^2} F(n, k) \right) / F(n, k) \) is equal to
\[
\left(\psi(n + k + 1/2) - \psi(n - k - 1/2) - \psi(n + k + 1) + \psi(n - k) - \frac{1}{b_n + k + r} \right)^2 \\
+ \left(\psi_1(n + k + 1/2) + \psi_1(n - k - 1/2) - \psi_1(n + k + 1) - \psi_1(n - k) + \frac{1}{(b_n + k + r)^2} \right),
\]
where \(\psi \) and \(\psi_1 \) are the digamma and trigamma functions defined by \(\psi(x) = \frac{d}{dx} \ln(\Gamma(x)) \) and \(\psi_1(x) = \frac{d^2}{dx^2} \ln(\Gamma(x)) = \frac{d}{dx} \psi(x) \). Since the trigamma function \(\psi_1 \) is decreasing, the above expression is positive. Consequently, for fixed \(n \geq 1 \), the summand \(F(n, k) \) is convex as a function of \(k \). Combined with \((6.6) \), this implies that the sum in \((6.5) \) may be approximated by an integral and
\[
\sum_{k=0}^{n-1} F(n, k) = \int_0^{n-1} F(n, k) \, dk + O(n^{1/2}) = \int_{n^{1/3}}^{n^{1/3}} F(n, k) \, dk + O(n^{1/2+1/3}).
\]
Using the expression \((6.5) \) for \(F(n, k) \) and the asymptotic approximation
\[
\Gamma(z + \frac{1}{2}) = z^{-1/2} \Gamma(z + 1) \left(1 + O \left(z^{-1} \right) \right), \quad z \to \infty,
\]
we see after some manipulation that
\[
F(n, k) = \frac{b_n n}{(b_n n + k) \sqrt{1 - \frac{k^2}{n^2}}} \left(1 + O(n^{-1/3}) \right), \quad \text{for } n^{1/3} \leq k \leq n - n^{1/3}.
\]
Combined with \((6.7) \), this leads to
\[
\sum_{k=0}^{n-1} F(n, k) = \left(\int_{n^{1/3}}^{n^{-1/3}} \frac{b_n n}{(b_n n + k) \sqrt{1 - \frac{k^2}{n^2}}} \, dk \right) \left(1 + O(n^{-1/3}) \right) + O(n^{5/6}),
\]
which gives after the substitution \(y = k/n \)
\[
\sum_{k=0}^{n-1} F(n, k) = n \left(\int_{n^{-2/3}}^{n^{-1-2/3}} \frac{b_n}{(b_n + y) \sqrt{1 - y^2}} \, dy \right) \left(1 + O(n^{-1/3}) \right) + O(n^{5/6}).
\]
Dividing both parts by \(n \) and taking the limit, we obtain
\[
\lim_{n \to \infty} \frac{1}{n} {}_4 F_3 \left[\begin{array}{c} 1, n + \frac{1}{2}, 1 - n, b_n n + r, \\
1 - n + 1, \frac{3}{2} - n, b_n n + r + 1, 1 \end{array} ; 1 \right] = \int_0^1 \frac{b}{b + y} \frac{1}{\sqrt{1 - y^2}} \, dy.
\]
To finish the proof of the lemma, it remains to check that the above integral is equal to the right-hand side of \((6.4) \), which amounts to a routine computation. \(\Box \)

References

[1] G. E. Andrews. Plane partitions I: The MacMahon conjecture. Studies in foundations and combinatorics, G.-C. Rota ed., Adv. in Math. Suppl. Studies, Vol. 1, 1978, pp. 131–150.
[2] W. N. Bailey. Generalized Hypergeometric Series, Cambridge University Press, Cambridge, 1935.
[3] M. Ciucu. Enumeration of lozenge tilings of punctured hexagons. J. Combin. Theory Ser. A 83 (1998), 268–272.
[4] M. Ciucu, T. Eisenkölbl, C. Krattenthaler and D. Zare. Enumeration of lozenge tilings of hexagons with a central triangular hole. J. Combin. Theory Ser. A 95 (2001), 251–334.
[5] M. Ciucu and C. Krattenthaler. The number of centered lozenge tilings of a symmetric hexagon. J. Combin. Theory Ser. A 86 (1999), no. 1, 103–126.
[6] M. Ciucu and C. Krattenthaler. A factorization theorem for classical group characters, with applications to plane partitions and rhombus tilings. In: Advances in Combinatorial Mathematics: Proceedings of the Waterloo Workshop in Computer Algebra 2008, I. Kotsireas, E. Zima (eds.), Springer-Verlag, 2010, pp. 39–60.
[7] M. Ciucu and C. Krattenthaler. The interaction of a gap with a free boundary in a two dimensional dimer system. Comm. Math. Phys. 302 (2011), no. 1, 253–289.
[8] M. Ciucu and C. Krattenthaler. A dual of MacMahon’s theorem on plane partitions. Proc. Natl. Acad. Sci. USA 110 (2013), 4518–4523.
[9] T. Eisenkölbl. Rhombus tilings of a hexagon with two triangles missing on the symmetry axis. Electron. J. Combinat. 6 (1) (1999), # R30, 19pp.
[10] I. Fischer. Enumeration of rhombus tilings of a hexagon which contain a fixed rhombus in the centre. J. Combin. Theory Ser. A 96 (2001), no. 1, 31 – 88.
[11] I. Fischer. Another refinement of the Bender-Knuth (ex-)conjecture. European J. Combin. 27 (2006), 290–321.
[12] M. Fulmek and C. Krattenthaler. The number of rhombus tilings of a symmetric hexagon which contain a fixed rhombus on the symmetry axis I. Ann. Comb. 2 (1998), no. 1, 19–41.
[13] M. Fulmek and C. Krattenthaler. The number of rhombus tilings of a symmetric hexagon which contain a fixed rhombus on the symmetry axis II. European J. Combin. 21 (2000), no. 5, 601–640.
[14] G. Gasper and M. Rahman. Basic hypergeometric series, Encyclopedia of Mathematics And Its Applications 35, Cambridge University Press, Cambridge, 1990.
[15] B. Gordon. A proof of the Bender-Knuth conjecture. Pacific J. Math. 108 (1983), 99–113.
[16] R. W. Gosper. Decision procedure for indefinite hypergeometric summation. Proc. Natl. Acad. Sci. USA 75 (1978), 40–42.
[17] I. Gessel and H. Helfgott. Enumeration of tilings of diamonds and hexagons with defects. Electron. J. Combin. 6 (1999), # RP 16, 26 pp.
[18] M. Ishikawa and M. Wakayama, Minor summation formula of Pfaffians. Linear and Multilinear Algebra 39 (1995), no. 3, 285–305.
[19] C. Krattenthaler, The major counting of nonintersecting lattice paths and generating functions for tableaux. Mem. Amer. Math. Soc. 115, no. 552, Providence, R. I., 1995.
[20] C. Krattenthaler. An alternative evaluation of the Andrews-Burge determinant. In: "Mathematical Essays in Honor of Gian-Carlo Rota", B. E. Sagan, R. P. Stanley, eds., Progress in Math., vol. 161, Birkhäuser, Boston, 1998, pp. 263–270.
[21] C. Krattenthaler. Advanced determinant calculus. Séminaire Lotharingien Combin. 42 “The Andrews Festschrift” (1999), Article B42q, 67 pp.
[22] C. Krattenthaler and S. Okada. The number of rhombus tilings of a “puncture” hexagon and the minor summation formula. Adv. Appl. Math. 21 (1998), 381-404.
[23] P. A. MacMahon. Combinatory Analysis, volume 2, Cambridge University Press, 1916; (reprinted Chelsea, New York, 1960.)
[24] I. G. Macdonald. Symmetric Functions and Hall Polynomials, second edition, Oxford University Press, New York/London, 1995.
[25] P. Paule and M. Schorn. A Mathematica version of Zeilberger’s algorithm for proving binomial coefficient identities. J. Symbol. Comp. 20 (1995), 673–698.
[26] M. Petkovšek, H. Wilf and D. Zeilberger. A=B, A.K. Peters, Wellesley, 1996.
[27] R. A. Proctor. Bruhat lattices, plane partitions generating functions, and minuscule representations. Europ. J. Combin. 5 (1984), 331–350.
[28] R. A. Proctor. Odd symplectic groups. Inventiones mathematicae 92 (1988), 307-332.
[29] J. R. Stembridge. Nonintersecting paths, Pfaffians, and plane partitions. Adv. Math. 83 (1990), no. 1, 96–131.
[30] L. J. Slater. *Generalized hypergeometric functions*, Cambridge University Press, Cambridge, 1966.

Fakultät für Mathematik, Universität Wien, Nordbergstrasse 15, A-1090 Vienna, Austria

E-mail address: anisse.kasraoui@univie.ac.at, christian.krattenthaler@univie.ac.at