Bounding The Hochschild Cohomological Dimension Of Commutative k-algebras With Finite Flat-dimension Over k

Anastasis Kratsios

September 30, 2016
Sommaire

Ce mémoire a deux objectifs principaux. Premièrement de développer et interpréter les groupes de cohomologie de Hochschild de basse dimension et deuxièmement de borner la dimension cohomologique des k-algèbres par dessous; montrant que presque aucune k-algèbre commutative est quasi-libre.

Mots-Clés: Algèbre Homologique Relative, Théorie De La Dimension, Algèbre Non-Commutative, Cohomologie de Hochschild, Géométrie Non-Commulative
Summary

The aim of this master’s thesis is two-fold. Firstly to develop and interpret the low dimensional Hochschild cohomology of a k-algebra and secondly to establish a lower bound for the Hochschild cohomological dimension of a k-algebra; showing that nearly no commutative k-algebra is quasi-free.

Keywords: Relative Homological Algebra, Dimension Theory, Noncommutative Algebra, Hochschild Cohomology, Noncommutative Geometry
1 Introduction

Motivation

Noncommutative algebraic geometry is a rapidly developing area of contemporary mathematical research. Amongst the many topics studied therein, the proposed notions of a “noncommutative smoothness” such as Michel Van den Bergh’s concept [PH] and Joachim Cuntz and Daniel Quillen’s concept [AE] seemed particularly interesting to me.

This master’s thesis found its beginnings in an attempt to understand the notion of noncommutative smoothness proposed by Joachim Cuntz and Daniel Quillen, called quasi-freeness. Defined similarly to the commutative notion of formal smoothness, quasi-freeness is defined as the lifting of all the square-zero extensions of a k-algebra. My driving question became “is this notion an analogue or a generalization of a classical notion of smoothness?”

In the case where k is an algebraically closed field, Joachim Cuntz and Daniel Quillen found that a k-algebra cannot be quasi-free if its Krull dimension is greater than 1 [AE]. Therefore it is possible for a k-algebra to be smooth and to not be quasi-free (for example $\mathbb{C}[x,y]$ is such a \mathbb{C}-algebra); whence over a field quasi-freeness is a noncommutative analogue of smoothness and not a generalization thereof.

Charles Weibel formulated an extension of the concept of a quasi-free k-algebra which no longer required k to be an algebraically closed field but only to be a commutative ring. This master’s thesis’s primary inspiration is to attempt to understand that notion of quasi-freeness and to relate it to commutative k-algebras. The summary of my findings is the content of theorem 9.

Organization Of This Master’s Thesis

This master’s thesis is organized around its two objectives. Firstly to prove that the smallness of a certain numerical invariant, the Hochschild cohomological dimension of a k-algebra A denoted $HCdim(A/k)$, has certain implications on A’s properties:

1. **Result 1:** $HCdim(A/k) = 0$ if and only if all derivations of A in an (A,A)-bimodule M are inner derivations if and only if $\Omega^0(A/k)$ is a \mathcal{E}_k^k-projective A^e-module.

2. **Result 2:** $HCdim(A/k) \leq 1$ if and only if all square-zero extensions of A lift if and only if $\Omega^1(A/k)$ is a \mathcal{E}_k^k-projective A^e-module.
1 Introduction

(The notation and concepts mentioned above will be clarified in this master’s thesis).

In the case that \(k \) is a field results 1 and 2 were proven by Cuntz and Quillen in \([AE]\) and was the starting point for the development of many of their outstanding results on quasi-free \(k \)-algebras.

The first central result in this master’s thesis generalises their work to the case where \(k \) is an arbitrary commutative base ring and to attempt to characterise \(k \)-algebras for which \(HCdim(A/k) \leq n \). That more general result is then interpreted for the cases where \(n = 0, 1 \) and is presented here but is already known by \([HI]\). Moreover we extend the result to \(n \geq 2 \).

The second objective of this master’s thesis is to understand what commutative \(k \)-algebras fail to be quasi-free, when \(k \) is no longer assumed to be field. This understanding comes from an original result describing a lower bound on the Hochschild cohomological dimension of a commutative \(k \)-algebra which we build in \(\S 3 \) and then apply it to some concrete examples in \(\S 4 \).

Notation and conventions Unless otherwise stated:

1. \(\mathbb{N} \) is the set of non-negative integers.
2. All \(k \)-algebras are assumed to be unital and associative.
3. A noncommutative \(k \)-algebra is a unital \(k \)-algebra that may or may not be commutative.
4. The term module will always be short for left-module.
5. \(k \) and \(R \) are assumed to be non-zero commutative unital associative rings.
6. \(A \) denotes a \(k \)-algebra.
7. For any natural number \(n \), \(A \otimes^n \) will denote the \(n \)-fold tensor – \(\otimes_k \) – power of \(A \) over \(k \), \(A \otimes^1 \) is defined to be \(A \) and \(A \otimes^0 \) is defined to be \(k \).
2 Hochschild Theory

2.1 \((A,A)\)-Bimodules and enveloping \(k\)-algebras

The Hochschild cohomology of a \(k\)-algebra \(A\) is a cohomology theory of \((A,A)\)-bimodules instead of \(A\)-modules. In order to capture the relationship of the \(k\)-algebra \(A\) to its "modules" it seems appropriate to consider their left and right structures in a simultaneous and compatible way.

General Definitions

Definition 1. \((A,B)\)-bimodule

If \(A\) and \(B\) are \(k\)-algebras an \((A,B)\)-bimodule is an \(k\)-module \(M\) which is both a left \(A\)-module and a right \(B\)-module and satisfies the following compatibility axiom:

\[
(\forall c \in k)(\forall m \in M)(\forall a \in A)(\forall b \in B)c \cdot ((a \cdot m) \cdot b) = (ca) \cdot (m \cdot b) = a \cdot (m \cdot cb) = a \cdot (c \cdot m) \cdot b
\]

where \(a \cdot m\) denotes the left action of \(A\) on \(M\) and \(m \cdot b\) denotes the right action of \(B\) on \(M\).

Definition 2. Homomorphism of \((A,B)\)-bimodules

If \(A\) and \(B\) are \(k\)-algebras and \(M\) and \(N\) are \((A,B)\)-bimodules then a homomorphism of \(k\)-modules \(\phi : M \rightarrow N\) is said to be a homomorphism of \((A,B)\)-bimodules if and only if it is both a left \(A\)-module homomorphism and a right \(B\)-module homomorphism.

2.1.1 \(A^e\)-modules and \((A,A)\)-bimodules

There is an occasionally more convenient way to view \((A,A)\)-bimodules, by replacing \(A\) by a certain related \(k\)-algebra.

Definition 3. Opposite \(k\)-Algebra

If \(A\) is a \(k\)-algebra then the opposite \(k\)-Algebra of \(A\) denoted \(A^{op}\), is defined as having the same underlying \(k\)-module structure as \(A\) but with its multiplication map \(\mu_{A^{op}}\) being the \(k\)-module homomorphism \(\mu_{A^{op}} : A^{op} \otimes_k A^{op} \rightarrow A^{op}\) defined as:

\[
(\forall a, b \in A^{op}) \mu_{A^{op}}(a, b) := \mu_A(b, a) \tag{2.1}
\]

where \(\mu_A : A \otimes_k A \rightarrow A\) is the multiplication map on \(A\).

\(^1\)The category of \((A,B)\)-bimodules and \((A,B)\)-bimodule homomorphism is usually denoted by \(A_{Mod_B}\).
2 Hochschild Theory

Definition 4. Enveloping \(k \)-Algebra

If \(A \) is a \(k \)-algebra then the **enveloping \(k \)-Algebra** of \(A \) is defined as the \(k \)-algebra \(A \otimes_k A^{op} \) and is denoted \(A^e \).

For a \(k \)-algebra \(A \) its categories of \((A, A)\)-bimodules and left \(A^e \)-modules are equivalent in the following way:

Proposition 1. If \(A \) is a \(k \)-algebra then every \(A^e \)-module is an \((A, A)\)-bimodule and visa-versa. Likewise every \(A^e \)-module morphism is an \((A, A)\)-bimodule morphism and visa-versa.

Proof. If \(M \) is a left \(A^e \)-module then for all \(a, b, b' \in A \) and for all \(m \in M \) define the left action of \(a \) on \(m \) as \(a \cdot m := (a \otimes_k 1) m \) and the right action of \(b \) on \(m \) as \(m \cdot b := (1 \otimes_k b) m \). This does indeed define an \((A, A)\)-bimodule structure on \(M \), since:

\[
(a \cdot m) \cdot b \cdot b' = ((a \otimes_k 1) m) \cdot b \cdot b' = (1 \otimes_k b)(a \otimes_k 1)m \cdot b' = (1 \otimes_k b')(1 \otimes_k b)(a \otimes_k 1)m = (a \otimes_k bb')m = (a \otimes_k 1)(1 \otimes_k bb')m = (a \otimes_k 1)(m \cdot bb') = a \cdot (m \cdot bb').
\]

\(M \) is a right \(A \)-module and the right and left \(A \)-module structures of \(M \) are compatible.

Moreover if \(c \in k \) and \(m \in M \) then:

\[
c \cdot m = c \otimes_k 1 \cdot m = 1 \otimes_k c \cdot m = m \cdot c. \tag{2.2}
\]

Therefore the action of \(A^e \) on \(M \) is \(k \)-linear whence \(M \) is a \(k \)-module with left and right \(A \)-module actions satisfying (1); whence \(M \) is an \((A, A)\)-bimodule.

Conversely, if \(M \) is an \((A, A)\)-bimodule then \(M \) may be made into a left \(A^e \)-module with left action defined (on elementary tensors) as: \((\forall a, b \in A)(\forall m \in M)(a \otimes_k b) \cdot m \triangleq (am)b \). This action is associative if \(a \otimes_k b, a' \otimes_k b' \in A^e \) and \(m \in M \) then denoting by \(\circ \) the multiplication in \(A^{op} \) and by \(\bullet \) the multiplication in \(A^e \):

\[
(a \otimes_k b) \cdot ((a' \otimes_k b') \cdot m) = (a \otimes_k b) \cdot (a'mb') = ((a'a)m)(b'b) = (aa' \otimes_k b'b) \cdot m = (aa' \otimes_k b \circ b') \cdot m = ((a \otimes_k b) \bullet (a' \otimes_k b')) \cdot m.
\]

Moreover \(1 \otimes_k 1 \cdot m = (1m)1 = m \). Therefore \(M \) is an \(A^e \)-module.
2 Hochschild Theory

Likewise for any \((A,A)\)-bimodule homomorphism and any \(A^e\)-module homomorphisms.

\[(\forall a,b \in A)(\forall m \in M)\cdot \tau (a \otimes_k b) \triangleq (b \otimes_k a) \cdot m \]

(2.3)

where \(\cdot_\tau\) denoted the right action of \(A^e\) on \(M\), indeed this action is associative and respects the unit.

In view of proposition \(\mathbb{I}\) \((A,A)\)-bimodules and \(A^e\)-modules will be viewed interchangeably, as is convenient based on the context.

Example 1. If \(A\) is a \(k\)-algebra and \(n \in \mathbb{N}\) then \(A \otimes_k^{n+2}\) may be given the structure of an \(A^e\)-module with action on elementary tensors \(a_0 \otimes_k^{n+1} a_{n+1}\) in \(A \otimes_k^{n+2}\):

\[(\forall a,b \in A)(a \otimes_k b) \cdot (a_0 \otimes_k^{n+1} a_{n+1}) \triangleq aa_0 \otimes_k^{n+1} b. \]

(2.4)

Proof. If \(a,b,a',b' \in A\) and \((a_0 \otimes_k^{n+1} a_{n+1})\) is an elementary tensor in \(A \otimes_k^{n+2}\) then:

\[= (a' \otimes_k b') \cdot (a \otimes_k b) \cdot (a_0 \otimes_k^{n+1} a_{n+1}) \]
\[= (a' \otimes_k b') \cdot (aa_0 \otimes_k^{n+1} a_{n+1} b) \]
\[= (a' a a_0 \otimes_k^{n+1} a_{n+1} b b') \]
\[= (a' a a_0 \otimes_k^{n+1} a_{n+1}) \]

Therefore the action is associative; moreover it respects the unit since:

\[(1 \otimes_k 1) \cdot (a_0 \otimes_k^{n+1} a_{n+1}) = (1a_0 \otimes_k^{n+1} a_{n+1}) \]
\[= (a_0 \otimes_k^{n+1} a_{n+1}) \]

\[\square \]

Example 2. If \(N\) and \(M\) are \(A\)-modules then \(\text{Hom}_k(N,M)\) has the structure of a \((A,A)\)-bimodule via the action:

\[(\forall n \in N) (a,a') \cdot f(n) \mapsto af(a' \cdot n) \]

(2.5)

where \(a,a' \in A\) and \(f : N \to M\) is a \(k\)-module homomorphism.

Proof. Since \((af(n))a' = (af)(a' \cdot n) = af(a' \cdot n) = a(fa' \cdot n)\) the left and right \(A\)-module structures of \(\text{Hom}_k(N,M)\) are compatible. Therefore \(\text{Hom}_k(N,M)\) is indeed an \((A,A)\)-bimodule.

\[\square \]

A Note On The Tensor Product of \(A^e\)-modules

If \(M\) and \(N\) are \(A^e\)-modules then by remark \(\mathbb{I}\) \(M\) may be viewed as a right \(A^e\)-module, which we denote \(M_r\) whence the tensor product \(M \otimes_{A^e} N\) may be defined as:

\[\]
2 Hochschild Theory

Definition 5. Tensor Product of A^e-modules

If M and N are A^e-modules then the tensor product of M and N over A^e is defined to be the k-module $M_\ast \otimes_{A^e} N$ and is denoted by $M \otimes_{A^e} N$.

However we make use of a different tensor product of bimodules defined as usual as follows:

Definition 6. Tensor Product of bimodules

Let A, B, C be rings, M be a (B, A)-bimodule and N be an (A, C)-bimodule.

The abelian group with basis the symbols $m \otimes_A n$, where $m \in M$ and $n \in N$ modulo its subgroup generated by all the elements of the set:

\[
\{- (m + m') \otimes_A n + n' \otimes_A m + m \otimes_A n, \quad -m \otimes_A (n + n') + m \otimes_A n + m \otimes_A n', \quad m \otimes (a \cdot n) - (m \cdot a) \otimes_A n | m, m \in M \text{ and } n, n' \in N \text{ and } a \in A\}
\]

is called the tensor product of M and N over A and is denoted by $M \otimes_A N$.

For any $m \in M$ and $n \in N$ the coset of the symbol $m \otimes_A n$ is called an elementary tensor and is simply denoted by $m \otimes_A n$.

2.1.2 Hochschild Cohomology

The entire theory reviewed and developed in this master’s thesis revolves around a particular exact sequence related to the A^e-module A called the Bar resolution of A.

Example 3. The Bar Resolution of A

If A is a k-algebra then there is an acyclic chain complex of A^e-modules denoted $CB_n(A)$, defined as:

\[(\forall n \in \mathbb{N}) CB_n(A) \triangleq A^\otimes n+2\]

(2.9)

With the A^e-module structure on $CB_n(A)$ taken to be the one described in example[1] With boundary operator:

\[(\forall n \in \mathbb{N}) b'_n(a_0 \otimes \ldots \otimes a_{n+1}) \triangleq \sum_{i=0}^{n} (-1)^i a_0 \otimes \ldots \otimes a_i a_{i+1} \otimes \ldots \otimes a_{n+1}\]

(2.10)

(By convention: b'_0 is the augmentation map $A \otimes_k A \rightarrow A$ and b'_{-1} is the zero map from A to 0).

The augmented Bar resolution of A will be denoted $\hat{CB}_*(A)$.

Proof.

First for every $n \in \mathbb{N}$ we define a k-linear map, which we denote s_n and then we use those maps to show that CB_* is an acyclic chain complex.

² The word "Bar" in the phrase "Bar resolution of A" arises from an notational convention that has generally fallen out of practice. Traditionally elementary tensors in $A^\otimes n$ were denoted by $a_1|\ldots|a_n$ as can be seen on page 114 of [MH]. Furthermore the choice of the phrase "resolution of A" will be explored in later sections of this master’s thesis.
For $n \in \mathbb{N}$ define the k-linear maps $s_n : \hat{CB}^n(A) \to \hat{CB}^n(A)$ on elementary tensors as
\[
a_0 \otimes_k \cdots \otimes_k a_{n+1} \mapsto 1 \otimes_k a_0 \otimes_k \cdots \otimes_k a_{n+1}
\]
(2.11)

If $a_0 \otimes_k \cdots \otimes_k a_{n+1} \in \hat{CB}^n(A)$ then:
\[
b'_{n+1}(s_n(a_0 \otimes_k \cdots \otimes_k a_{n+1})) + s_{n-1}(b'_{n}(a_0 \otimes_k \cdots \otimes_k a_{n+1}))
\]
\[
= b'_{n+1}(1 \otimes_k a_0 \otimes_k \cdots \otimes_k a_{n+1})) + s_{n-1}(\sum_{i=0}^{n}(-1)^i a_0 \otimes_k \cdots \otimes_k a_i a_{i+1} \otimes_k \cdots \otimes_k a_{n+1})
\]
(2.12)
\[
= \sum_{i=-1}^{n} (-1)^{i+1} a_0 \otimes_k \cdots \otimes_k a_i a_{i+1} \otimes_k \cdots \otimes_k a_{n+1}
\]
(2.13)
\[
\quad + \sum_{i=0}^{n} (-1)^i a_0 \otimes_k \cdots \otimes_k a_i a_{i+1} \otimes_k \cdots \otimes_k a_{n+1}
\]
(2.14)
\[
= 1a_0 \otimes_k \cdots \otimes_k a_{n+1} + \sum_{i=0}^{n}(-1)^i a_0 \otimes_k \cdots \otimes_k a_i a_{i+1} \otimes_k \cdots \otimes_k a_{n+1}
\]
(2.15)
\[
\quad + \sum_{i=0}^{n}(-1)^i a_0 \otimes_k \cdots \otimes_k a_i a_{i+1} \otimes_k \cdots \otimes_k a_{n+1}
\]
(2.16)
\[
= a_0 \otimes_k \cdots \otimes_k a_{n+1}
\]
(2.17)

Therefore for every $n \in \mathbb{N}$:
\[
b'_{n+1} \circ s_n + s_{n+1} \circ b'_{n} = 1_{\hat{CB}^n(A)}
\]
(2.18)

Making use of (2.18) we first show that \hat{CB}^\ast is a chain complex and we show that the identity map $\hat{CB}^\ast(A)$ is chain homotopic to the 0-map on $\hat{CB}^\ast(A)$, therefore the homology of $\hat{CB}^\ast(A)$ is trivial.

1. We prove by induction on \ast that \hat{CB}^\ast is a chain complex. If $n = 1$ then:
\[
(\forall a_0, a_1, a_2 \in A)b'_0 \circ b'_1(a_0 \otimes_k a_1 \otimes_k a_2) = b'_1(a_0 a_1 \otimes_k a_2 - a_0 \otimes_k a_1 a_2)
\]
\[
= a_0 a_1 a_2 - a_0 a_1 a_2 = 0.
\]
2 Hochschild Theory

Suppose for some \(n > 1 \) \(b'_n \circ b'_{n-1} = 0 \), then (2.18) implies:

\[
\begin{align*}
& b'_{n+1} \circ b'_n \circ s_n = b'_n \circ (1 - s_{n-1} \circ b'_n) \\
& = b'_n - b'_n \circ s_{n-1} \circ b'_n \\
& = b'_n - (1 - s_{n-2} \circ b'_{n-1} \circ b'_n) \\
& = 0 + s_{n-2} \circ b'_{n-1} \circ b'_n \\
& = 0 \text{ by the induction hypothesis. (2.23)}
\end{align*}
\]

Therefore \(b'_{n+1} \circ b'_n = 0 \) which completes the induction, showing that \(CB_* \) is indeed a chain complex.

2. Furthermore (2.18) says that the identity map \(CB_* (A) \) is chain homotopic to the 0-map on \(CB_* (A) \), therefore \(CB_* (A) \) is chain homotopic to an acyclic complex.

\[\square \]

Definition 7. Hochschild Cohomology

The Hochschild cohomology of a \(k \)-algebra \(A \) with coefficients in an \((A,A) \)-bimodule \(M \), denoted \(HH^*(A,M) \) is defined as:

\[
HH^*(A,M) \triangleq H^*(Hom_{A^e}(CB_*(A),M),Hom_{A^e}(b_*^e,M))
\] (2.24)

The coboundary map \(Hom_{A^e}(b_*^e,M) \) is denoted by \(b^* \).

Proposition 2. The Hochschild cohomology of a \(k \)-algebra \(A \) with coefficients in an \(A^e \)-module \(M \) may be computed as the cohomology of the following complex:

\[
0 \to M \overset{b^0}{\to} Hom_k(A,M) \overset{b^1}{\to} Hom_k(A \otimes A, M) \overset{b^2}{\to} \ldots
\] (2.25)

Where the coboundary map \(b^n \) is defined on \(f \in Hom_k(A \otimes^n M) \) and \(a_0 \otimes_k \ldots \otimes_k a_n \in A \otimes^n \) as:

\[
b^n(f(a_0 \otimes_k \ldots \otimes_k a_n)) = a_0 f(a_1 \otimes_k \ldots \otimes_k a_n) + \sum_{i=0}^{n-1} (-1)^i f(a_0 \otimes_k \ldots \otimes_k a_i a_{i+1} \otimes_k \ldots \otimes_k a_n) + (-1)^n f(a_0 \otimes_k \ldots \otimes_k a_{n-1} a_n)
\] (2.26)

Proof. We show that the complexes \(Hom_{A^e}(CB_*(A),M) \) and (2.25) are naturally isomorphic (whence their cohomology modules must be isomorphic).

1. Viewing \(M \) as an \((A,A) \)-bimodule as in proposition 1, if \(f : A \otimes^n \to M \) is a \(k \)-module homomorphism then define the \(A^e \)-module map \(\hat{f} : A \otimes^{n+2} \to M \) on elementary tensors as:

\[
\hat{f}(a_0 \otimes_k \ldots \otimes_k a_{n+1}) \triangleq a_0 f(a_1 \otimes_k \ldots \otimes_k a_n)a_{n+1}.
\] (2.27)

We verify that \(f \mapsto \hat{f} \) is indeed a \(k \)-isomorphism.
2 Hochschild Theory

The k-linear map \hat{f} is indeed an A^e-module map, since if $(a \otimes_k b)$ is an elementary tensor in A^e then:

$$ (a \otimes_k b) \cdot \hat{f}(a_0 \otimes_k \ldots \otimes_k a_{n+1}) = (a \otimes_k b) \cdot a_0f(a_1 \otimes_k \ldots \otimes_k a_n)a_{n+1} $$

(2.28)

$$ = aa_0f(a_1 \otimes_k \ldots \otimes_k a_n)a_{n+1}b $$

(2.29)

$$ = (aa_0)f(a_1 \otimes_k \ldots \otimes_k a_n)(a_{n+1}b) $$

(2.30)

$$ = \hat{f}((aa_0) \otimes_k a_1 \otimes_k \ldots \otimes_k a_n \otimes_k (a_{n+1}b)) $$

(2.31)

$$ = \hat{f}((a \otimes_k b) \cdot (a_0 \otimes_k a_1 \otimes_k \ldots \otimes_k a_n \otimes_k a_{n+1})) $$

(2.32)

Since any A^e-module homomorphism $g : A^{\otimes n+2} \to M$ is k-linear, the map $\tilde{g} : A^{\otimes n} \to M$ defined on elementary tensors $a_0 \otimes_k \ldots \otimes_k a_n \in A^{\otimes n}$ as:

$$ \tilde{g}(a_0 \otimes_k \ldots \otimes_k a_n) \mapsto g(1 \otimes_k a_0 \otimes_k \ldots \otimes_k a_n \otimes_k 1). $$

(2.33)

is a k-module homomorphism whose two-sided inverse is the map $f \mapsto \hat{f}$.

Denote this A^e-module isomorphism by $\Psi : Hom_{A^e}(A^{\otimes n+2}, M) \to Hom_k(A^{\otimes n}, M)$.

By definition $Hom_{A^e}(b'_n, M)$ is the pre-composition of any $f \in Hom_{A^e}(A^{\otimes n+2}, M)$ by b'_n. By further pre-composing $f \circ b'_n$ by the A^e-module isomorphism Ψ the coboundary map:

$$ f \circ b'_n \circ \Psi(a_0 \otimes_k \ldots \otimes_k a_n) = f \circ b'_n(1 \otimes_k a_0 \otimes_k \ldots \otimes_k a_n \otimes_k 1) $$

$$ = f(a_0a_1 \otimes_k \ldots \otimes_k a_n + \sum_{i=0}^{n-1} (-1)^i a_0 \otimes_k \ldots \otimes_k a_i a_{i+1} \otimes_k \ldots \otimes_k a_n + (-1)^{n+1} a_0 \otimes_k \ldots \otimes_k a_{n-1} a_n) $$

$$ = a_0f(a_1 \otimes_k \ldots \otimes_k a_n) + \sum_{i=0}^{n-1} (-1)^i f(a_0 \otimes_k \ldots \otimes_k a_i a_{i+1} \otimes_k \ldots \otimes_k a_n) + (-1)^{n+1} f(a_0 \otimes_k \ldots \otimes_k a_{n-1} a_n) $$

$$ = b^n(f)(a_0 \otimes_k \ldots \otimes_k a_n) $$

(2.34)

is obtained.

Definition 8. Hochschild Cocomplex

For any k-algebra A and any A^e-module M the cocomplex in proposition is called the Hochschild cocomplex of A with respect to M and is denoted by $CH^*(A, M)$.

2.1.3 Computing the first few Hochschild Cohomology Groups

To better interpret the Hochschild cohomology groups the first few are computed.

3 For example $HH^0(A, M)$ is reminiscent of the 0^{th} group cohomology module of a G-module for a group G or the 0^{th} lie-algebra cohomology module of a g-module for some lie algebra g.

13

2 Hochschild Theory

HH^0

Definition 9. Center of an A-bimodule

If M is an (A, A)-bimodule the collection of elements of M commuting with all the elements of A is called the A-centre of M and is denoted $Z_A(M)$. That is:

$$Z_A(M) \triangleq \{m \in M | (\forall a \in A)a \cdot m = m \cdot a\}$$ \hspace{1cm} (2.35)

Proposition 3. For any (A, A)-bimodule M, $Z_A(M)$ is an (A,A)-sub-bimodule of M.

Proof. Let $a, b \in A$ and $n, m \in Z_A(M)$. Then:

1. a)

$$a \cdot (n + m) = a \cdot n + a \cdot m = n \cdot a + m \cdot a = (n + m) \cdot a.$$ \hspace{1cm} (2.36)

therefore $Z_A(M)$ is closed under $+$.

b) Suppose there is some $a \in A$ and $n \in N$ such that $-n \notin Z_A(M)$ then: $a \cdot (-n) \neq -n \cdot a$ then by (2.36):

$$0 = a \cdot (-n + n) = a \cdot (-n) + a \cdot n \neq -n \cdot a + a \cdot n = -n \cdot a + n \cdot a = (n + n) \cdot a = 0$$ \hspace{1cm} (2.37)

a contradiction, therefore $Z_A(M)$ is closed under $-$ inversion.

Hence $Z_A(M)$ is an abelian subgroup of M.

2. Let $a, b \in A^e$ then:

$$(ab) \cdot n = a \cdot (b \cdot n) = a \cdot (n \cdot b) = (a \cdot n) \cdot b = (n \cdot a) \cdot b = n \cdot (ab).$$ \hspace{1cm} (2.38)

Therefore $Z_A(M)$ is a A^e-submodule of M.

The 0th Hochschild cohomology group may be understood as describing $Z_A(M)$.

Proposition 4. Interpretation of HH^0

For a k-algebra A and any (A, A)-bimodule M there is an isomorphism of k-modules:

$$HH^0(A, M) \cong Z_A(M).$$ \hspace{1cm} (2.39)

\[\text{In particular if } M \text{ is the } (A,A)\text{-bimodule } A \text{ then } Z_A(A) \text{ is precisely the definition of the centre of } A, \text{ hence it inherits a ring structure.}\]
2 Hochschild Theory

Proof. By proposition2 $HH^0(A,M) \cong \text{Ker}(b^0)/\text{Im}(0)$. Therefore:

$$HH^0(A,M) \cong \text{Ker}(b^0) = \{m \in M | \forall a \in A b^0(m)(a) = 0\} = \{m \in M | \forall a \in A ma - am = 0\} = \{m \in M | \forall a \in A \text{ } ma = am\} = Z_A(M). \quad (2.40)$$

HH^1

Definition 10. (\textbf{\textit{A.A.-Bimodule k-Derivation}}5)

A k-linear map D from A to an (A,A)-bimodule M is called a \textbf{(A,A)-bimodule k-derivation} if and only if

$$\forall a,a' \in A) D(aa') = aD(a') + D(a)a'. \quad (2.41)$$

The k-module of all (A,A)-bimodule k-derivations of A into M is denoted $\text{Der}_k(A,M)$.

Definition 11. \textbf{Inner \textit{(A,A)-bimodule k-Derivation}}6

An (A,A)-bimodule k-Derivation $D : A \to M$ is said to be inner if and only if there exists some $m \in M$ such that:

$$\forall a \in A) D(a) = a \cdot m - m \cdot a. \quad (2.42)$$

The collection of all inner (A,A)-bimodule k-Derivations of A into M is denoted $\text{Inn}_k(A,M)$.

Note 1. For legibility, when the context is clear (A,A)-bimodule k-derivations of A into M will simply be called k-derivations of A into M or more plainly derivations.

$HH^1(A,M)$ may be understood as classifying derivations of k-algebra A into an (A,A)-bimodule M.

Proposition 5. For every k-algebra A and every (A,A)-bimodule M there is an isomorphism of k-modules:

$$HH^1(A,M) \cong \text{Der}_k(A,M)/\text{Inn}_k(A,M) \quad (2.43)$$

Proof. By proposition2 $HH^1(A,M) \cong \text{Ker}(b^1)/\text{Im}(b^0)$. Therefore:

1. $\text{Ker}(b^1) = \{f \in \text{Hom}_k(A,M) | (\forall\sum_{i=0}^n a_i \otimes_k b_i \in A^{\otimes 2}) b^1(f)(\sum_{i=0}^n a_i \otimes_k b_i) = 0\}$

$$= \{f \in \text{Hom}_k(A,M) | (\forall a,a' \in A) b^1(f)(a \otimes_k a') = 0\} \quad (2.44)$$

5These are similar to \textit{crossed homomorphisms} of groups.
6These are reminiscent of \textit{principal crossed homomorphisms} between groups.
2 Hochschild Theory

\[\{ f \in \text{Hom}_k(A,M) \mid (\forall a,a' \in A) \ a f(a') - f(aa') + f(a)a' = 0 \} \quad (2.46) \]

\[\{ f \in \text{Hom}_k(A,M) \mid (\forall a,a' \in A) \ f(aa') = a f(a') + f(a)a' \} = \text{Der}_k(A,M) \quad (2.47) \]

2. Similarly:

\[\text{Im}(b^0) = \{ f \in \text{Hom}_k(A,M) \mid (\exists m \in M) (\forall a \in A) \ f(a) = ma - am \} \quad (2.49) \]

\[= \text{Inn}_k(A,M). \quad (2.50) \]

Therefore \(HH^1(A,M) \cong \text{Der}_k(A,M)/\text{Inn}_k(A,M) \) (as \(k \)-modules).

\(HH^2 \)

Definition 12. \(k \)-split Exact Sequence

Let \(k \) be a ring. A short exact sequence of \(k \)-modules:

\[
0 \longrightarrow M' \overset{i}{\longrightarrow} M \overset{\pi}{\longrightarrow} M'' \longrightarrow 0
\]

(2.51)

is said to be \(k \)-split (or \(k \)-split-exact) if and only if there exists a \(k \)-module homomorphism \(s : M'' \to M \) such that \(\pi \circ s = 1_{M''} \); the \(k \)-module homomorphism \(s \) is called a section of \(\pi \).

Definition 13. \(k \)-Hochschild extension

A \(k \)-split-exact sequence \(E_\pi \) of \(k \)-modules where \(\pi \) is a \(k \)-algebra homomorphism:

\[
E_\pi : 0 \longrightarrow M \overset{i}{\longrightarrow} B \overset{\pi}{\longrightarrow} A \longrightarrow 0
\]

(2.52)

is called a \(k \)-**Hochschild extension** of \(A \) by \(M \) if both \(B \) and \(A \) are \(k \)-algebras and \(M \) is a two-sided ideal in \(B \). In such a setting \(M \) is said to extend \(A \) (alternatively \(A \) is said be extended by \(M \)).

If \(M^2 \cong 0 \) then \(E_\pi \) is said to be square-zero.

Lemma 1. If \(E_\pi \) is a \(k \)-Hochschild extension of \(A \) by \(M \) then: \(E_\pi \) is square-zero if and only if \(M \) is an \((A,A)\)-bimodule with action described as:

for all \(a \in A \) and for all \(m \in M \) the left action \(a \cdot m \) (resp. right action \(m \cdot a \)) is defined as the multiplication \(\pi m \) (resp. \(m \pi \)) in \(B \), where \(\pi \) is any element in the \(\pi \)-fibre above \(a \).

Proof.

1. Let \(a \in A \) and \(m \in M \).

2. For any \(m \in M \) and \(a \in A \) the action \(a \cdot m \) is well defined if and only if for any other elements \(\psi ' \) and \(\psi \) in the \(\pi \)-fibre above \(a \): \(\psi m = \psi ' m \). In other words the action is only well defined if
and only if \((\nu - \nu')m = 0m = 0\). Therefore for every \(m\) in \(M\) there is some \(m' \triangleq (\nu - \nu')\) in \(M\) such that \(mm' = 0\). Hence in this way \(M\) is given a well defined left \(A\)-module structure if and only if \(M\) is a square zero-ideal in \(B\).

3. Mutatis mutandis, \(A\) may be given a right \(A\)-module with action \(m \cdot a\) defined as the multiplication \(ms\) in \(B\), where \(\nu\) is any element in the \(\pi\)-fibre above \(a\) if and only if \(M\) is a square zero-ideal in \(B\).

4. Let \(a, a' \in A\) and \(m \in M\) and choose some \(b \in \pi^{-1}[a]\) and \(b' \in \pi^{-1}[a']\) (by the above remarks this calculation will be independent of this choice). Then the associativity law of the \(k\)-algebra \(B\) implies:

\[
a \cdot (m \cdot a') = b(mb') = (bm)b' = (a \cdot m) \cdot a'.
\]

Therefore the above left and right \(A\)-module structures are compatible. Hence \(M\) is an \((A,A)\)-bimodule if and only if \(E\) is square-zero.

Maintaining the notation of (2.52), since \(\pi\) splits \(B \cong s(A) \oplus M\) as \(k\)-modules, where \(s : A \to B\) is a section of \(\pi\) (that is \(s\) is a \(k\)-module homomorphism satisfying: \(\pi \circ s = 1_A\)). Moreover \(s(A) \oplus M\)’s multiplicative structure is dependent on the choice of the section \(s\) of \(\pi\) and may be understood as follows:

Proposition 6. Maintaining the notation of (2.52): if \(E\) is a \(k\)-Hochschild extension of \(A\) by an \((A,A)\)-bimodule \(M\) then for every section \(s\) of \(\pi\), \(s(A) \oplus M\)’s multiplicative structure must be of the form:

\[(\forall a, a' \in A)((\forall m, m' \in M)(a,m)(a',m') = (aa', am' + ma' + \mathcal{B}_s(a,a')))\]

where \(\mathcal{B}_s\) is in \(CH^2(A,M)\) and depends only on the choice of the section \(s\).

Moreover \(\mathcal{B}_s\) must be a 2-cocycle.

Conversely, if \(M\) is an \((A,A)\)-bimodule and \(\mathcal{B} : A \otimes_k A \to M\) is a 2-cocycle then:

\[
E : 0 \longrightarrow M \longrightarrow M \oplus A \longrightarrow A \longrightarrow 0
\]

Determines a Hochschild extension with \(A \oplus M\)’s multiplicative structure defined as:

\[(\forall a, a' \in A)((\forall m, m' \in M)(a,m)(a',m') = (aa', am' + ma' + \mathcal{B}(a,a')))\]

Proof.

1. If \(a, a', b, b' \in A\), \(m, m' \in M\), \(c, c' \in A\) and \(s : A \to B\) is \(k\)-section of \(\pi\). Then \(s\) determines a map \(\mathcal{B}_s : A \otimes_k A \to B\) by \(\mathcal{B}_s(a \otimes_k a') = s(a)s(a') - s(aa')\). Since \(\pi\) is a morphism of \(k\)-algebras then:

\[\pi \circ \mathcal{B}_s(a \otimes_k a') = \pi(s(a)s(a') - s(aa'))\]

17
2 Hochschild Theory

\[\pi \circ s(a) \pi \circ s(a') - \pi \circ s(ad') = \pi \circ s(a) \pi \circ s(ad') \]
\[= 1_A(a)1_A(a') - 1_A(ad') \]
\[= aa' - ad' = 0. \]

Therefore \(\mathcal{B}_s : A \otimes^2 \rightarrow M. \)

Moreover \(\mathcal{B}_s \) is \(k \)-linear, since:

\[\mathcal{B}_s(a + cb \otimes_k a + c'b') = s(a + cb)s(a + c'b') - s((a + cb)(a' + c'b')) \]
\[= (s(a) + cs(b))(s(a) + c's(b')) - s(aa' + cb'a' + c'b') \]
\[= s(a)s(a') + s(cb)s(a') + s(c'b')s(b') - s(aa' + cb'a' + c'b') \]
\[= (s(a)s(a') + cs(b))s(a') + c's(b)s(b') - s(aa') - cs(ba') - ccs(b'b') \]
\[= (s(a)s(a') + cs(b))s(a') - cs(ba') - ccs(b'b') \]
\[= \mathcal{B}_s(a \otimes_k a') + c\mathcal{B}_s(b \otimes_k a') + c'\mathcal{B}_s(a \otimes_k b') + cc'\mathcal{B}_s(b \otimes_k b'). \]

Therefore \(\mathcal{B}_s : A \otimes^2 \rightarrow M \) is associative, if and only if \(\forall a, a' \in A \forall m, m' \in M \)
\[(a, m)(a', m') = (a, m) + m(a') + \mathcal{B}_s(a, a') \]

Since \(s(A) \otimes M \)’s product structure is entirely determined by the map \(\mathcal{B}_s \) which is entirely determined by the choice of \(\pi \)’s section \(s : A \rightarrow M \) then the choice of multiplicative structure on \(B \) may be emphasised to depend on \(s \) via the notation \(A \times_{\mathcal{B}_s} M. \)

3. It was assumed that all \(k \)-algebras were to be associative. It will now be verified that defines an associative multiplicative structure on \(A \times_{\mathcal{B}_s} M, \) that is it must be verified when it defines a \(k \)-algebra; in fact this condition will be that \(\mathcal{B}_s \) is a 2-cocycle.

For \(\mathcal{B}_s \) induce an associative product on \(B \) the following must hold for \((a, m), (a', m'), (a'', m'') \in A \times_{\mathcal{B}_s} M: \)

\[(a, m)(a', m') = (a, m) + m(a') + \mathcal{B}_s(a, a') \]
\[((a, m)(a', m')) = (a, m')(a', m'')(a, m') + (a, m'')(a', m') + \mathcal{B}_s(a, a')(a'') \]
\[+ \mathcal{B}_s(a, a')(a', m') + \mathcal{B}_s(a, a')(a', m'') + \mathcal{B}_s(a, a')(a', m'') \]
\[+ \mathcal{B}_s(a, a')(a', m'') + \mathcal{B}_s(a, a')(a', m'') \]
\[+ \mathcal{B}_s(a, a')(a', m'') \]

Therefore \(A \times_{\mathcal{B}_s} M \) is associative if and only if \(2.69 \) equalities with \(2.70 \) if and only if:

\[a\mathcal{B}_s(a', a'') + \mathcal{B}_s(a, a'a'') = \mathcal{B}_s(a, a'a'') + \mathcal{B}_s(a, a'a'') \]

That is \(A \) is associative if and only if

\[0 = a\mathcal{B}_s(a', a'') - \mathcal{B}_s(a, a'a'') + \mathcal{B}_s(a, a'a'') - b^2\mathcal{B}_s(a, a'a'') \]
2 Hochschild Theory

Therefore \((2.72)\) implies that \(A \rtimes_{\mathcal{B}} M\) is an associative \(k\)-algebra if and only if \(A \rtimes_{\mathcal{B}} M \in \text{Ker}(b^2)\), where \(b^2\) denotes the 2nd coboundary map of the Hochschild cocomplex.

Conversely, for every \((A,A)\)-bimodule \(M\) the following is by definition a \(k\)-split exact sequence:

\[
\mathcal{E} : 0 \longrightarrow M \longrightarrow M \oplus A \longrightarrow A \longrightarrow 0.
\] \hfill (2.73)

Moreover if \(\mathcal{B}\) is a 2-cocycle, a verifications similar to \((2.69)-(2.72)\), shows that:

\[
(\forall a,a' \in A)(\forall m,m' \in M)(a,m)(a',m') = (aa', am' + ma' + \mathcal{B}(a,a'))
\] \hfill (2.74)

describes a well-defined (associative) product structure on \(M \oplus A\), making it into a \(k\)-algebra. Finally, since \(M\) was assumed to be an \((A,A)\)-bimodule then lemma 1 implies \((2.73)\) is square-zero; whence \(\mathcal{E}\) is a (square-zero) Hochschild extension.

Example 4. Trivial Extension

If \(M\) is an \(A^e\)-module then the 0 map \(0 : A \otimes_k A \rightarrow M\) defines a square-zero extension of \(A\) by \(M\):

\[
0 \longrightarrow M \longrightarrow A \rtimes_0 M \overset{\pi}{\longrightarrow} A \longrightarrow 0.
\] \hfill (2.75)

The \(k\)-Hochschild extension \((2.75)\) is called the **Trivial Extension** of \(A\) by \(M\).

Proof. By proposition 6 \(A \rtimes_0 M\) is a \(k\)-algebra with multiplication given by:

\[
(\forall a,a' \in A)(\forall m,m' \in M)(a,m)(a',m') = (aa', am' + ma').
\] \hfill (2.76)

Remark 2. Example 4 may seem a priori non-interesting, however it is of essential importance in the proof of theorem 2. In part because it demonstrates that a square-zero extension of \(A\) by \(M\) must always exist.

Definition 14. \(\mathcal{B}\)-Crossed Product

If \(A\) is a \(k\)-algebra, \(M\) is an \((A,A)\)-bimodule and \(\mathcal{B} : A \otimes_k A \rightarrow M\) is a 2-cocycle then the \(k\)-algebra with underlying \(k\)-module structure \(A \oplus M\) is called the **\(\mathcal{B}\)-Crossed Product** of \(A\) by \(M\) and is denoted by \(A \rtimes_{\mathcal{B}} M\). If \(\mathcal{B}\) arises from a section \(s : A \rightarrow M\) of \(\pi\) splitting the short-exact sequence of \(k\)-modules:

\[
0 \rightarrow M \rightarrow A \oplus M \overset{\pi}{\rightarrow} A \rightarrow 0.
\] \hfill (2.78)
then \mathcal{B}_s will denote the 2-cocycle $\mathcal{B}_s(a \otimes_k a') \triangleq s(a)s(a') - s(aa')$, in which case $A \rtimes_{\mathcal{B}_s} M$ will denote the \mathcal{B}_s-crossed product of A by M.

Proposition 7. Maintaining the notation of proposition 6 if s and s' are sections of π and \mathcal{B}_s and $\mathcal{B}_{s'}$ are their associative 2-cocycles then $\mathcal{B}_s - \mathcal{B}_{s'}$ is a 2-coboundary.

Therefore any k-Hochschild extension $E_{\mathcal{B}_s}$ determines a unique cohomology class independently of the chosen section s splitting π.

Proof.

\[
(\forall a, a' \in A)\mathcal{B}_s(a \otimes_k a') - \mathcal{B}_{s'}(a \otimes_k a') = s(a)s(a') - s(ad') - s'(a)s'(a') + s(aa')
\]

\[
= s(a)s(a') - s(a)s'(a') + s(a)s'(a') - s'(a)s'(a') + s(aa')
\]

\[
= s(a)(s(a') - s'(a')) + (s(a) - s'(a))s'(a') + s(aa') - s(ad')
\]

\[
= b^1(s - s')(a \otimes_k a'). \tag{2.79}
\]

Maintaining the notation of proposition 7 two Hochschild extensions

\[
\mathcal{E}_{\mathcal{B}_s} : 0 \longrightarrow M \hookrightarrow B \stackrel{\pi}{\longrightarrow} A \longrightarrow 0 \quad \text{and}
\]

\[
\mathcal{E}_{\mathcal{B}_{s'}} : 0 \longrightarrow M \hookrightarrow B' \stackrel{\pi'}{\longrightarrow} A \longrightarrow 0 \tag{2.80}
\]

are said to be equivalent if and only if there is a k-algebra isomorphism: $\phi : B \to B'$ making the following diagram of A^e-modules commute:

\[
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
0 \longrightarrow M \longrightarrow B \longrightarrow \pi \longrightarrow A \longrightarrow 0
\end{array}
\end{array}
\end{array}
\]

\[
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\phi \quad 1_A
\end{array}
\end{array}
\end{array}
\]

\[
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
0 \longrightarrow M \longrightarrow B' \longrightarrow \pi' \longrightarrow A \longrightarrow 0
\end{array}
\end{array}
\end{array}
\]

\[
\tag{2.81}
\]

Definition 15. Hochschild Classes

The equivalence classes of extensions of A by the (A,A)-bimodule M under the Hochschild equivalence relation are called M,A-Hochschild classes.

Lemma 2. Maintain the notation of (2.80). Two k-Hochschild extensions $\mathcal{E}_{\mathcal{B}_s}$ and $\mathcal{E}_{\mathcal{B}_{s'}}$ of A by M are equivalent if and only if $\mathcal{B} - \mathcal{B}'$ is a 2-coboundary.

Proof.
2 Hochschild Theory

1. If \(\mathcal{B} \rightarrow \mathcal{B}' \) is a 2-coboundary then there exists a \(k \)-module homomorphism \(\zeta : A \rightarrow M \) satisfying \(b^1(\zeta) = \mathcal{B} \rightarrow \mathcal{B}' \) (where \(b^1 \) is the Hochschild cocomplex’s first coboundary map). Choose some sections \(s \) of \(\pi \) and \(s' \) of \(\pi' \) (by proposition\[7\] this choice does not affect \(\mathcal{B} \rightarrow \mathcal{B}' \)’s cohomology class) and define a \(k \)-module homomorphism \(\Phi : A \otimes_{\mathcal{B}} M \rightarrow A \otimes_{\mathcal{B}} M \) as:

\[
(\forall a \in A)(\forall m \in M) \Phi(a, m) \triangleq (a, m + \zeta(a)). \tag{2.82}
\]

\(\Phi \) has a two-sided inverse, the \(k \)-module homomorphism taking an element \((a, m) \in A \otimes_{\mathcal{B}} M \) to the element \((a, m - \zeta(a)) \) in \(A \otimes_{\mathcal{B}} M \).

Moreover \(\Psi \) is a \(k \)-algebra homomorphism since:

\[
(\forall a, a' \in A)(\forall m, m' \in M) \Phi((a, m)(a', m')) = (aa', a \cdot m' + m \cdot a' + \mathcal{B}_s(a, a') + \zeta(aa')) = (aa', a \cdot m' + m \cdot a' + \zeta(a') + \zeta(a) \cdot a' + \mathcal{B}_s'(a, a')) = (a, m + \zeta(a))(a', m' + \zeta(a')) = \Phi(a, m)\Phi(a', m').
\]

Furthermore since:

\[
(\forall a \in A)(\forall m \in M) \pi' \circ \Phi(a, m) = \pi'(a, m + \zeta(a)) = a = \pi(a, m)
\]

\(\Phi \) describes an equivalence of the \(k \)-Hochschild extensions \(\mathcal{E}_B \) and \(\mathcal{E}_{B'} \).

2. Conversely, if \(\mathcal{E}_B \) and \(\mathcal{E}_{B'} \) are isomorphic \(k \)-Hochschild extensions then an analogous computation to \((2.79)\) shows \(\mathcal{B} \rightarrow \mathcal{B}' \) is a 2-coboundary \([\Pi] \).

\[\square\]

Theorem 1. The Hochschild Class Correspondence Theorem (Hochschild ~ 1944)

If \(A \) is a \(k \)-algebra and \(M \) is an \((A, A) \)-bimodule then \(HH^2(A, M) \) is in \(1-1 \) correspondence with the set of \(M, A \)-Hochschild Classes.

Proof. By lemma\[2\] two extensions \(\mathcal{E}_B \) and \(\mathcal{E}_{B'} \) of \(A \) by \(M \) are non-isomorphic if and only if \([\mathcal{B}] \) and \([\mathcal{B}'] \) are distinct cohomology classes in \(H^2(Hom_A(CB_s(A), M), Hom_A(b'_n, M)) \). \[\square\]

2.2 The \((A, A) \)-bimodules: \(\Omega^n(A/k) \)

If \(A \) is a \(k \)-algebra then its multiplication map \(\mu_A : A \otimes_k A \rightarrow A \) is an \((A, A) \)-bimodule homomorphism, therefore \(\mu_A \) is an \(A^e \)-module homomorphism hence its kernel is an \(A^e \)-module. This \(A^e \)-module is denoted \(\Omega^1(A/k) \) and has the following description:
Proposition 8. If A is a k-algebra then the A^e-module $\Omega^1(A/k)$ is generated as an A^e-module by the tensors in $A \otimes_k A$ of the form $1 \otimes_k a - a \otimes_k 1$, where $a \in A$.

Moreover there is k-linear map $d : A \to \Omega^1(A/k)$ defined as $d(a) \mapsto 1 \otimes_k a - a \otimes_k 1$ satisfying the following properties:

1. $d(aa') = ad(a') + d(a)a'$
2. $d(a + a') = d(a) + d(a')$
3. $d(k) = 0$

Therefore d is a derivation of A into $\Omega^1(A/k)$.

Proof. If $a_0, ..., a_n, b_0, ..., b_n \in A$ and $\sum_{i=0}^n a_i \otimes_k b_i \in \Omega^1(A/k)$ then:

$$0 = \mu_A(\sum_{i=0}^n a_i \otimes_k b_i) = \sum_{i=0}^n a_i b_i.$$ \hfill (2.83)

Therefore:

$$0 = 0 - 0 = \sum_{i=0}^n a_i b_i - \sum_{i=0}^n a_i b_i = \sum_{i=0}^n a_i b_i - a_i b_i$$

$$\quad = \sum_{i=0}^n a_i(b_i - b_i 1)$$ \hfill (2.85)

$$\quad = \sum_{i=0}^n a_i(1 \otimes_k b_i - b_i \otimes_k 1)$$ \hfill (2.86)

$$\quad = \sum_{i=0}^n a_i \mu_A(1 \otimes_k b_i - b_i \otimes_k 1)$$

$$\quad = \sum_{i=0}^n a_i \mu_A(1 \otimes_k b_i - b_i \otimes_k 1) = \sum_{i=0}^n a_i d(b_i).$$ \hfill (2.87)

Thus $\Omega^1(A/k)$ is generated as an A^e-module by elements of the form $1 \otimes_k a - a \otimes_k 1$ where $a \in A$. Moreover the association $a \mapsto 1 \otimes_k a - a \otimes_k 1$ describes a map $d : A \to \Omega^1(A/k)$. The k-linearity as well as the properties of d may be deduced as follows:

1. $d(aa') = 1 \otimes_k a a' - a a' \otimes_k 1 = 1 \otimes_k a a' - a \otimes_k a' + a \otimes_k a' - a a' \otimes_k 1$ \hfill (2.88)

$$\quad = (1 \otimes_k a a' - a \otimes_k a') + (a \otimes_k a' - a a' \otimes_k 1)$$ \hfill (2.89)

$$\quad = (1 \otimes_k a - a \otimes_k 1)a' + a(1 \otimes_k a' - a' \otimes_k 1)$$ \hfill (2.90)

$$\quad = d(a)a' + ad(a').$$ \hfill (2.91)
2 Hochschild Theory

2. \[d(a+b) = 1 \otimes_k (a+b) - (a+b) \otimes_k 1 = 1 \otimes_k a + 1 \otimes_k b - a \otimes_k 1 - b \otimes_k 1 \] (2.93)
\[= 1 \otimes_k a - a \otimes_k 1 + 1 \otimes_k b - b \otimes_k 1 = d(a) + d(b) \] (2.94)

3. \[d(k) = 1 \otimes_k k - k \otimes_k 1 = k \otimes_k 1 - k \otimes_k 1 = 0 \] (2.95)

In particular the map \(d \) in proposition \(\text{8} \) is a \(k \)-derivation of \(A \) into \(\Omega^1(A/k) \).

![Diagram](Figure 2.1: The universal property of \(\Omega^1(A/k) \))

Moreover the subsequent result says that for every \(k \)-derivation \(D \) of \(A \) into an \((A,A)\)-bimodule \(M \) there exists a unique \((A,A)\)-bimodule map \(f: \Omega^1(A/k) \rightarrow M \) such that \(f \circ d = D \). Implying:

Proposition 9. Universal property of \(\Omega^1(A/k) \)

If \(A \) is a \(k \)-algebra and \(M \) is an \((A,A)\)-bimodule then there is an isomorphism of \(A \)-modules:

\[\text{Hom}_{A\text{-Mod}}(\Omega^1(A/k), M) \rightarrow \text{Der}_k(A,M) \] (2.96)

Proof. Let \(D:A \rightarrow M \) be a \(k \)-derivation then define the \((A,A)\)-bimodule homomorphism \(f: \Omega^1(A/k) \rightarrow M \) on \(\sum_{i=0}^{n} a_i \otimes_k b_i \in \Omega^1(A/k) \) as:

\[f(\sum_{i=0}^{n} a_i \otimes_k b_i) \triangleq \sum_{i=0}^{n} a_i D(b_i). \] (2.97)

Therefore for any \(a \in A \):

\[f(d(a)) = f(1 \otimes_k a - a \otimes_k 1) = -D(1)a + D(a)1 = 0 + D(a) = D(a). \] (2.98)

Since \(d(A) \) generates the \((A,A)\)-bimodule \(\Omega^1(A/k) \), the fact that \(f \) is an \((A,A)\)-bimodule homo-

7The universal property of \(\Omega^1(A/k) \) is analogous to the universal property of the \(A \)-module of Kähler differentials in the case where \(A \) was a commutative \(k \)-algebra.

8In other words the functor \(\text{Der}_k(A,-):A\text{-Mod}_A \rightarrow A\text{-Mod} \) is corepresentable by the \((A,A)\)-bimodule \(\Omega^1(A/k) \).
morphism may be verified on the images of d as follows: suppose $a, b, c, e \in A$ then:

$$f(d(a) + bd(c)e) = f(1 \otimes_k a - a \otimes_k 1 + b \otimes_k ce - bc \otimes_k e)$$

$$= -(D(1)a - D(a)1 + D(b)ce - D(bc)e)$$

$$= -(D(a) + D(b)ce - bD(c)e - D(b)ce)$$

$$= D(a) + bD(c)e$$

Since $(\forall \sum_{i=0}^{n} a_i \otimes_k b_i \in \Omega^1(A/k)) \sum_{i=0}^{n} a_i b_i = \mu_k(\sum_{i=0}^{n} a_i \otimes_k b_i) = 0$ then:

$$0 = D(0) = D(\sum_{i=0}^{n} a_i b_i) = \sum_{i=0}^{n} D(a_i) b_i + \sum_{i=0}^{n} a_i D(b_i).$$

Therefore (2.103) implies:

$$\sum_{i=0}^{n} D(a_i) b_i = -\sum_{i=0}^{n} a_i D(b_i).$$

Together (2.104) and (2.102) imply:

$$f(d(a) + bd(c)e) = -D(a) - bD(c)e = (-D(a) - 0) + b(-0 - D(c))e$$

$$= -(D(a)1 - 1D(a)) + b(-D(c)1 - cD(1))e$$

$$= f(a) + b f(c)e$$

Therefore f is indeed an (A,A)-bimodule homomorphism.

Definition 16. $\Omega^0(A/k)$

Let A be a k-algebra and $n \in \mathbb{N}$, then define:

$$\Omega^n(A/k) \triangleq \text{Ker}(b'_{n-1})$$

where b'_{n-1} is the $(n-1)^{th}$ differential in the augmented bar resolution of A.

Example 5.

1. $\text{Ker}(b'_{-1} : A \to 0) = A = \Omega^0(A/k)$

2. $\text{Ker}(b'_0 : A \otimes^2 \to A) = \Omega^1(A/k)$

Proof.

1. $\text{Ker}(b'_{-1}) = A$.

2. $b'_0 = \mu_A$.

24
2 Hochschild Theory

2.3 Some Relative Homological Algebra

One last ingredient is needed to formulate the first two related results alluded to on page 6 of this master's thesis. This ingredient is a short discussion on the relative homological algebraic framework first introduced in 1967 by Jonathan Mock Beck in his doctoral thesis entitled: "Triples, Algebras and Cohomology" [TC].

\mathcal{E}_A^k-Projective Modules

Definition 17. Projective module

If A is a k-algebra and P is an A-module, then P is said to be projective if and only if for every short exact sequence of A-modules:

$$ 0 \longrightarrow M \overset{\eta}{\longrightarrow} N \overset{\varepsilon}{\longrightarrow} N' \longrightarrow 0 $$

(2.109)

the sequence of k-modules:

$$ 0 \longrightarrow \text{Hom}_A(P,M) \overset{\eta^*}{\longrightarrow} \text{Hom}_A(P,N) \overset{\varepsilon^*}{\longrightarrow} \text{Hom}_A(P,N') \longrightarrow 0 $$

(2.110)

is exact.

If only certain A-epimorphisms are considered when verifying the universal property of a projective A-module, then there would exist more A-modules which behave like projective A-modules. Moreover the acknowledged A-epimorphisms could be fewer thus only the epimorphisms exhibiting some special property could be considered, for example:

Definition 18. \mathcal{E}_A^k-Epimorphism

For any k-algebra A, an epimorphism ε in $A\text{Mod}$ is an \mathcal{E}_A^k-epimorphism if and only if ε's underlying morphism of k-modules is a k-split epimorphism in $k\text{Mod}$.

The class of these epimorphisms is denoted \mathcal{E}_A^k.

Remark 3. Straightaway from this definition it follows that the class of all epimorphisms in $A\text{Mod}$ always contains \mathcal{E}_A^k as a subclass (though the containment is not necessarily proper).

Definition 19. \mathcal{E}_A^k-Exact sequence

An exact sequence of A-modules:

$$ \ldots \overset{\phi_{i-1}}{\longrightarrow} M_i \overset{\phi_i}{\longrightarrow} M_{i+1} \overset{\phi_{i+1}}{\longrightarrow} M_{i+2} \overset{\phi_{i+2}}{\longrightarrow} \ldots $$

(2.111)

9The word *triple* has fallen out of practice and now is usually referred to as a *monad*.
2 Hochschild Theory

is said to be \mathcal{E}_A^k-exact if and only if:

for every integer i there exists a morphism of k-modules $\psi_i : M_{i+1} \rightarrow M_i$ such that:

$$\phi_i = \phi_i \circ \psi_i \circ \phi_i$$

(2.112)

In particular as short exact sequence of A-modules which is \mathcal{E}_A^k-exact is called an \mathcal{E}_A^k-short exact sequence.

Example 6. The augmented bar complex $\hat{C}B^*(A)$ of a k-algebra A is \mathcal{E}_A^k-exact.

Proof. For every $n \in \mathbb{N}$ let $s_n : C_B(A) \rightarrow C_B(A+1)$ be as in (2.111). s_n is k-linear since:

Let $a_0 \otimes_k \cdots \otimes_k a_{n+1}, d_0 \otimes_k \cdots \otimes_k d_{n+1} \in C_B(A)$, $c \in k$

(2.113)

$$s_n(a_0 \otimes_k \cdots \otimes_k a_{n+1} + c d_0 \otimes_k \cdots \otimes_k d_{n+1}) = s_n(a_0 \otimes_k \cdots \otimes_k a_{n+1}) + cs_n(d_0 \otimes_k \cdots \otimes_k d_{n+1}).$$

(2.114)

The s_n show that each b_n' satisfies property (2.112) since:

$$b_n' \circ s_{n-1} = b_n'$$

(2.117)

$$= b_n' \circ (1 + b_n' \circ s_n)$$

(2.118)

$$= b_n' = b_n' \circ b_{n+1}' \circ s_n$$

(2.119)

Since b_n' is a boundary map $b_n \circ b_{n+1} = 0$; hence (2.119) equates to:

$$= b_n' + 0 = b_n'.$$

(2.120)

Definition 20. \mathcal{E}_A^k-Projective module

If A is a k-algebra and P is an A-module, then P is said to be \mathcal{E}_A^k-projective if and only if for every \mathcal{E}_A^k-short exact sequence:

$$0 \rightarrow M \xrightarrow{\eta} N \xrightarrow{\epsilon} N' \rightarrow 0$$

(2.121)

Property (2.112) is called \mathcal{E}_A^k-admissibility [SA] (alternatively it is called \mathcal{E}_A^k-allowable [MH]).

This definition is equivalent to requiring that P verify the universal property of projective modules only on \mathcal{E}_A^k-epimorphisms [MH].
the sequence of k-modules:

$$
0 \longrightarrow \text{Hom}_A(P, M) \xrightarrow{\eta^*} \text{Hom}_A(P, N) \xrightarrow{\epsilon^*} \text{Hom}_A(P, N') \longrightarrow 0
$$

(2.122)

is exact.

An example: $A^\otimes n + 2$ is \mathcal{E}_n^A-projective for all $n \in \mathbb{N}$.

Out of convenience it will be proven in a more general form once and for all:

Lemma 3. If A is a k-algebra and $T : k \text{Mod} \to A \text{Mod}$ is a (contravariant) additive functor then T takes k-split exact sequences to A-split exact sequences.

Proof. Suppose:

$$
0 \longrightarrow M \xrightarrow{\eta} N \xrightarrow{\epsilon} N' \longrightarrow 0
$$

(2.123)

is a split-exact sequence in $k \text{Mod}^{op}$. Moreover, since (2.123) is split exact then by definition there are morphisms $s_1 : N \to M$ and $s_2 : N' \to N$ in $k \text{Mod}$ satisfying $s_1 \circ \eta = 1_M$ and $s_2 \circ \epsilon = 1_{N'}$.

1.

$$
T(s_1) \circ T(\eta) = T(s_1 \circ \eta) = T(1_M) = 1_{T(M)}
$$

(2.124)

Therefore $T(\eta)$ is split-monic in $A \text{Mod}$.

2.

$$
T(\epsilon) \circ T(s_2) = T(\epsilon \circ s_2) = T(1_{N'}) = 1_{T(N')}
$$

(2.125)

Therefore $T(\epsilon)$ is split-epic in $A \text{Mod}$.

3. If there exists some $x \in T(N)$ such that $\epsilon(x) = 0$ then:

$$
s_2 \circ \epsilon(x) = s_2 \circ 0(x) = 0(x) = 0
$$

(2.126)

Therefore $1_N(x) = (\eta \circ s_1)(x) + (s_2 \circ \epsilon)(x) = \eta(s_1(x))$; whence $x \in \text{Im}(\eta)$. Therefore $\text{Ker}(\epsilon) \subseteq \text{Im}(\eta)$.

4.

$$
0 = T(0) = T(\epsilon \circ \eta) = T(\epsilon) \circ T(\eta)
$$

(2.127)

Therefore $\text{Im}(\eta) \subseteq \text{Ker}(\epsilon)$.

12 The dual category of an abelian category is abelian by the *duality principle* [MC] (though $k \text{Mod}$ need not be a category of Modules).
Therefore:
\[
\begin{align*}
0 & \longrightarrow T(M) \xrightarrow{\eta} T(N) \xrightarrow{\varepsilon} T(N') \longrightarrow 0 \\
(2.128)
\end{align*}
\]
is a split-exact sequence of \(A\)-modules.

The contravariant case follows mutatis mutandis (since \(k\text{Mod}^{op}\) is also an abelian category).

Proposition 10. \(A^\otimes n + 2\) is \(\mathcal{E}_A^k\)-projective for all \(n \in \mathbb{N}\).

Proof. Suppose \((2.129)\) is an \(\mathcal{E}_A^k\)-exact sequence:
\[
\begin{align*}
0 & \longrightarrow M \xrightarrow{\eta} N \xrightarrow{\varepsilon} N' \longrightarrow 0 \\
(2.129)
\end{align*}
\]
Then viewing \((2.129)\) as a split-exact sequence of \(k\)-modules, lemma \ref{lemma} implies that the additive functors \(\text{Hom}_k(A^\otimes n, -)\) take \((2.129)\) to an exact sequences of \(A^e\)-modules which is \(A^e\)-split:
\[
\begin{align*}
0 & \longrightarrow \text{Hom}_k(A^\otimes n, N') \xrightarrow{\eta^*} \text{Hom}_k(A^\otimes n, N) \xrightarrow{\varepsilon^*} \text{Hom}_k(A^\otimes n, M) \longrightarrow 0 \\
(2.130)
\end{align*}
\]
\((2.130)\) implies the top row of the following diagram of \(A^e\)-modules is exact. Furthermore the \(A^e\)-module isomorphisms in \((2.27)\) imply that \(\text{Hom}_k(A^\otimes n, X) \cong \text{Hom}_A^e(A^\otimes n + 2, X)\), giving the commutativity of the diagram:
\[
\begin{align*}
0 & \longrightarrow \text{Hom}_k(A^\otimes n, N') \xhookleftarrow{} \text{Hom}_k(A^\otimes n, N) \xhookrightarrow{} \text{Hom}_k(A^\otimes n, M) \longrightarrow 0 \\
& \quad \downarrow \cong \quad \downarrow \cong \quad \downarrow \cong \\
0 & \longrightarrow \text{Hom}_A^e(A^\otimes n + 2, N') \xhookleftarrow{} \text{Hom}_A^e(A^\otimes n + 2, N) \xhookrightarrow{} \text{Hom}_A^e(A^\otimes n + 2, M) \longrightarrow 0 \\
(2.131)
\end{align*}
\]
Whence the bottom row must also be exact \(\text{IH}\). Therefore \(\text{Hom}_A^e(A^\otimes n + 2, -)\) takes split exact sequences in \(A^e\text{-Mod}\) to exact sequences in \(k\text{Mod}\), hence \(A^\otimes n + 2\) is \(\mathcal{E}_A^k\)-projective.

\(\mathcal{E}_A^k\)-projective \(A\)-modules have analogous properties to projective \(A\)-modules. For example they admit the following characterization.

Proposition 11. For any \(A\)-module \(P\) the following are equivalent:

\textbf{\(\mathcal{E}_A^k\)-Short exact sequence preservation property} \(P\) is \(\mathcal{E}_A^k\)-projective.

\textbf{\(\mathcal{E}_A^k\)-lifting property} For every \(\mathcal{E}_A^k\)-epimorphism \(f : N \rightarrow M\) if there exists an \(A\)-module morphism \(g : P \rightarrow M\) then there exists an \(A\)-module map \(\tilde{f} : P \rightarrow N\) such that \(f \circ \tilde{f} = g\).
\(\mathcal{E}^k_A \)-splitting property Every short \(\mathcal{E}^k_A \)-exact sequence of the form:

\[
\varepsilon_\pi : 0 \longrightarrow M \longrightarrow N \longrightarrow P \longrightarrow 0
\]

is \(A \)-split-exact.

\(\mathcal{E}^k_A \)-free direct summand property There exists a \(k \)-module \(F \), an \(A \)-module \(Q \) and an isomorphism of \(A \)-modules \(\phi : P \oplus Q \xrightarrow{\cong} A \otimes_k F \).

Proof. See [MH] pages 261 for the equivalence of 1, 2 and 3 and page 277 for the equivalence of 1 and 4.

\(\mathcal{E}^k_A \)-homological algebra

Proposition 12. Enough \(\mathcal{E}^k_A \)-projectives

If \(A \) is a \(k \)-algebra and \(M \) is an \(A \)-module then there exists an \(\mathcal{E}^k_A \)-epimorphism \(\varepsilon : P \rightarrow M \) where \(P \) is an \(\mathcal{E}^k_A \)-projective.

Proof. By proposition 11 \(A \otimes_k M \) is \(\mathcal{E}^k_A \)-projective. Moreover the \(A \)-map \(\zeta : A \otimes_k M \rightarrow M \) described on elementary tensors as \((\forall a \otimes_k m \in A \otimes_k M) \zeta(a \otimes_k m) \triangleq a \cdot m \) is epic and is \(k \)-split by the section \(m \mapsto 1 \otimes_k m \).

Definition 21. \(\mathcal{E}^k_A \)-projective resolution

If \(M \) is an \(A^e \)-module then a resolution \(P^\bullet \) of \(M \) is called an \(\mathcal{E}^k_A \)-projective resolution of \(M \) if and only if each \(P_i \) is an \(\mathcal{E}^k_A \)-projective module and \(P^\bullet \) is an \(\mathcal{E}^k_A \)-exact sequence.

Example 7. The augmented bar complex \(\hat{CB}^*_e(A) \) of \(A \) is an \(\mathcal{E}^k_A \)-projective resolution of \(A \).

Proof. In example 2 \(\hat{CB}^*_e(A) \) was seen to be an acyclic resolution of \(A \). In proposition 10 it was seen that for each \(n \in \mathbb{N} \) : \(\hat{CB}^*_e(A) \) was a \(\mathcal{E}^k_{A^e} \)-projective \(A^e \)-module. Finally example 6 implies \(\hat{CB}^*_e(A) \) is \(\mathcal{E}^k_{A^e} \)-exact.

Therefore \(\hat{CB}^*_e(A) \) is an \(\mathcal{E}^k_{A^e} \)-projective resolution of \(A \).

Remark 4. A nearly completely analogous argument to example 7 shows that for any \((A,A) \)-bimodule \(M \), \(M \otimes_A \hat{CB}^*_e(A) \) is an \(\mathcal{E}^k_{A^e} \)-projective resolution of \(M \) [HI].

\[\text{If } F \text{ is a free } k \text{-module, some authors call } A \otimes_k F \text{ an } \mathcal{E}^k_A \text{-free module. In fact this gives an alternative proof that } A^e \otimes_k A^\otimes \cong A^{\otimes n+2} \text{ is } \mathcal{E}^k_{A^e} \text{-free for every } n \in \mathbb{N}. \]
2.3.1 Relative Homological Algebra

Nearly all the usual homological algebraic machinery transfers over seamlessly to the relativised framework by making the necessary tweaks (in fact most arguments are identical with \(E_k^{\text{A}} \) in place of the usual class of all the epimorphisms of the category \(\text{AMod} \)).

Definition 22. \(E_k^{\text{A}} \)-relative Tor

If \(N \) is a right \(\text{A} \)-module, \(M \) is an \(\text{A} \)-module and \(P_* \) is an \(E_k^{\text{A}} \)-projective resolution of \(N \) then the \(k \)-modules \(H_* (P_* \otimes_A M) \) are called the \(E_k^{\text{A}} \)-relative Tor \(k \)-modules of \(N \) with coefficients in the \(\text{A} \)-module \(M \) and are denoted by \(\text{Tor}_{E_k^{\text{A}}}^n (N, M) \).

Remark 5. The \(E_k^{\text{A}} \)-relative Tor functors may differ from the usual (or "absolute") Tor functors. For example consider all the \(\mathbb{Z} \)-algebra \(\mathbb{Z} \), any \(\mathbb{Z} \)-modules \(N \) and \(M \) are \(E_k^{\mathbb{Z}} \)-projective. In particular, this is true for the \(\mathbb{Z} \)-modules \(\mathbb{Z} \) and \(\mathbb{Z}/2\mathbb{Z} \). Therefore \(\text{Tor}_{E_k^{\mathbb{Z}}}^n (\mathbb{Z}, \mathbb{Z}/2\mathbb{Z}) \) vanish for every positive \(n \), however \(\text{Tor}_{E_k^{\mathbb{Z}}}^1 (\mathbb{Z}, \mathbb{Z}/2\mathbb{Z}) \) does not. For example, \(\text{Tor}_{E_k^{\mathbb{Z}}}^1 (\mathbb{Z}, \mathbb{Z}/2\mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z} \).

Similarly there are \(E_k^{\text{A}} \)-relative Ext functors:

Definition 23. \(E_k^{\text{A}} \)-relative Ext

If \(N \) and \(M \) are \(\text{A} \)-modules and \(P_* \) is an \(E_k^{\text{A}} \)-projective resolution of \(N \) then the \(k \)-modules \(H_* (\text{Hom}_{E_k^{\text{A}}}(P_* , M)) \) are called the \(E_k^{\text{A}} \)-relative Ext \(k \)-modules of \(N \) with coefficients in the \(\text{A} \)-module \(M \) and are denoted by \(\text{Ext}_{E_k^{\text{A}}}^n (N, M) \).

Remark 6. The same modules as in remark 5 together with an analogous computation show that a \(E_k^{\text{A}} \)-relative Ext functor may differ from an (absolute) Ext functor. Likewise when \(k \) is a field they equate.

Both the definitions of \(E_k^{\text{A}} \)-relative Ext and \(E_k^{\text{A}} \)-relative Tor are independent of the choice of \(E_k^{\text{A}} \)-projective resolution:

Theorem 2. \(E_k^{\text{A}} \)-Comparison theorem

If \(P_* \) and \(P'_* \) are \(E_k^{\text{A}} \)-projective resolutions of an \(\text{A} \)-module \(N \) then for any \(\text{A} \)-module \(M \) there are natural isomorphisms:

\[
H^* (\text{Hom}_E^{\text{A}}(P_* , N)) \cong H^* (\text{Hom}_E^{\text{A}}(P'_* , N))
\]

and if \(P_* \) and \(P'_* \) are \(E_k^{\text{A}} \)-projective resolutions of a right \(\text{A} \)-module \(N \) then:

\[
H_* (P_* \otimes_A N) \cong H_* (P'_* \otimes_A N)
\]

Proof. Nearly identical to the usual comparison theorem, see [MH].

For any \(\text{A} \)-module \(M \) \(\text{Ext}^{\text{A}}_{E_k^{\text{A}}}(M, -) \) may behave analogously to the \(\text{Ext}_{\text{A}}(M, -) \), for example:

\[14\] Contrastingly, the two bifunctors \(\text{Tor}_{E_k^{\text{A}}}(\cdot, \cdot) \) and \(\text{Tor}_{E_k^{\text{A}}}(\cdot, \cdot) \) may be identical in some cases (for example when the basering is a field) [HI].
Proposition 13. If X is an A-module and $0 \to N' \to N \to N'' \to 0$ is an \mathcal{E}_k^A-short exact sequence then there exists a long exact sequences of k-modules:

$$\ldots \to \text{Ext}_{\mathcal{E}_k^A}^{n+1}(X,N') \xrightarrow{\partial_n} \text{Ext}_{\mathcal{E}_k^A}^n(X,N') \to \text{Ext}_{\mathcal{E}_k^A}^n(X,N) \to \text{Ext}_{\mathcal{E}_k^A}^{n-1}(X,N') \to \ldots$$

and

$$\ldots \to \text{Ext}_{\mathcal{E}_k^A}^{n+1}(N',X) \xrightarrow{\partial_n} \text{Ext}_{\mathcal{E}_k^A}^n(N'',X) \to \text{Ext}_{\mathcal{E}_k^A}^n(N,X) \to \text{Ext}_{\mathcal{E}_k^A}^{n-1}(N',X) \to \ldots$$

Proof. See [RH] page 253.

Instead of providing a proof of proposition [13], which is analogous to the classical case of Ext_A, it will now instead be shown that proposition [13] need not hold for short exact sequences (which aren’t \mathcal{E}_k^A-exact). That is $\text{Ext}_{\mathcal{E}_k^A}(X,-)$ (resp. $\text{Ext}_{\mathcal{E}_k^A}(-,X)$) need not take a short exact sequence to a long exact sequence in general. An issue here is that there exist short exact sequences which do not extend to a short exact sequence of \mathcal{E}_k^A-projective resolutions (that is a short exact sequences of complexes, such that each complex is an \mathcal{E}_k^A-projective resolution).

Example 8. $\mathbb{Z}/2\mathbb{Z}$ is an $\mathcal{E}_\mathbb{Z}^\mathbb{Z}$-projective module and

$$0 \to \mathbb{Z} \to \mathbb{Z} \to \mathbb{Z}/2\mathbb{Z} \to 0 \quad (2.135)$$

is a short exact sequence of \mathbb{Z}-modules which is not $\mathcal{E}_\mathbb{Z}^\mathbb{Z}$-short-exact. Furthermore the exact sequence of \mathbb{Z}-modules:

$$0 \to 0 \to \mathbb{Z}/2\mathbb{Z} \to \mathbb{Z}/2\mathbb{Z} \to 0 \quad (2.136)$$

is an $\mathcal{E}_\mathbb{Z}^\mathbb{Z}$-short exact sequence.

Proof. Since $\mathbb{Z}/2\mathbb{Z} \cong \mathbb{Z} \otimes \mathbb{Z} \mathbb{Z}/2\mathbb{Z}$, proposition [11] implies $\mathbb{Z}/2\mathbb{Z}$ is an $\mathcal{E}_\mathbb{Z}^\mathbb{Z}$-projective module.

Moreover (2.135) cannot be \mathbb{Z}-split or else $\mathbb{Z}/2\mathbb{Z}$ would be a torsion \mathbb{Z}-submodule of the torsion free \mathbb{Z}-module \mathbb{Z}. □

The $\text{Ext}_\mathbb{Z}$ and $\mathcal{E}_\mathbb{Z}^\mathbb{Z}$-relative Ext may differ:

Example 9. $\text{Ext}_\mathbb{Z}^1(\mathbb{Z},\mathbb{Z}/2\mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z}$ and $\text{Ext}_{\mathcal{E}_\mathbb{Z}^\mathbb{Z}}^1(\mathbb{Z},\mathbb{Z}/2\mathbb{Z}) \cong 0$

Proof. Since (2.136) is a $\mathcal{E}_\mathbb{Z}^\mathbb{Z}$-projective resolution of the \mathbb{Z}-module $\mathbb{Z}/2\mathbb{Z}$, there are natural isomorphisms of \mathbb{Z}-modules:

$$\text{Ext}_{\mathcal{E}_\mathbb{Z}^\mathbb{Z}}^1(\mathbb{Z},\mathbb{Z}/2\mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z}. \quad (2.137)$$

In contrast, since (2.136) is a $\mathcal{E}_\mathbb{Z}^\mathbb{Z}$-projective resolution of the \mathbb{Z}-module $\mathbb{Z}/2\mathbb{Z}$ then theorem [2] implies:

$$\text{Ext}_\mathbb{Z}^1(\mathbb{Z},\mathbb{Z}/2\mathbb{Z}) \cong 0/0 \cong 0. \quad (2.138)$$
Proposition 14. Dimension Shifting

If

\[\cdots \xrightarrow{d_{n+1}} P_n \xrightarrow{d_n} \cdots \xrightarrow{d_2} P_1 \xrightarrow{d_1} P_0 \rightarrow 0 \]

(2.139)

is a deleted \mathcal{E}_A^k-projective resolution of an A-module M then for every A-module N and for every positive integer n there are isomorphisms natural in N:

\[\text{Ext}^1_{\mathcal{E}_A^k}(\text{Ker}(d_n), N) \cong \text{Ext}_{\mathcal{E}_A^k}^{n+1}(A, N) \]

(2.140)

Proof. By definition the truncated sequence is exact:

\[\cdots \xrightarrow{d_{n+j}} P_{n+j} \xrightarrow{d_{n+j-1}} \cdots \xrightarrow{d_{n+1}} P_{n+1} \xrightarrow{\eta} \text{Ker}(d_n) \rightarrow 0, \]

(2.141)

where η is the canonical map satisfying $d_n = \ker(d_n) \circ \eta$ (arising from the universal property of $\ker(d_n)$). Moreover since \(\text{(2.139)} \) is \mathcal{E}_A^k-exact, d_n is k-split; whence η must be k-split. Moreover for every $j \geq n+1$, d_j was by assumption k-split therefore \(\text{(2.141)} \) is \mathcal{E}_A^k-exact and since for every natural number $m > n$ \(P_m \) is by hypothesis \mathcal{E}_A^k-projective then \(\text{(2.141)} \) is an augmented \mathcal{E}_A^k-projective resolution of the A-module $\text{Ker}(d_n)$.

For every natural number m, relabel:

\[Q_m \equiv P_{m+n} \text{ and } p_m \equiv d_{n+m}. \]

(2.142)

By theorem 2

\[(\forall N \in A \text{ Mod})(\forall m \in \mathbb{N}) \text{ Ext}^m_{\mathcal{E}_A^k}(\text{Ker}(d_n), N) \cong H^m(\text{Hom}_A(Q_*, N)) \]

(2.143)

\[= \ker(\text{Hom}_A(p_m,N))/\text{Im}(\text{Hom}_A(p_{n+1},N)) \]

(2.144)

\[= \ker(\text{Hom}_A(d_{n+m},N))/\text{Im}(\text{Hom}_A(d_{n+m+1},N)) \]

(2.145)

\[= H^{m+n}(\text{Hom}_A(P_*,N)) \]

(2.146)

\[\cong \text{Ext}_{\mathcal{E}_A^k}^m(A, N). \]

(2.147)

Analogous to the fact that for any A-module P, P is projective if and only if \(\text{Ext}_{\mathcal{E}_A^k}^1(P,N) \equiv 0 \) for every A-module N there is the following result:

Proposition 15. \(P \) is an \mathcal{E}_A^k-projective module if and only if for every A-module N:

\[\text{Ext}_{\mathcal{E}_A^k}^1(P,N) \equiv 0 \]

(2.148)
2 Hochschild Theory

Proof.

1. Suppose for every A-module $\text{Ext}_{\mathcal{E}_A^k}^1(P,N) \cong 0$ and let

$$0 \to N' \to N \to N'' \to 0 \quad (2.149)$$

be an \mathcal{E}_A^k-short exact sequence of A-modules. Proposition 13 implies there is an exact sequence:

$$\text{Ext}_{\mathcal{E}_A^k}^1(A,N'') \xrightarrow{\partial_1} \text{Hom}_A^0(P,N') \to \text{Hom}_A^0(P,N) \to \text{Hom}_A^0(P,N'') \to 0$$

Since it was assumed that $\text{Ext}_{\mathcal{E}_A^k}^1(P,N) \cong 0$ then:

$$0 \to \text{Hom}_A^0(P,N') \to \text{Hom}_A^0(P,N) \to \text{Hom}_A^0(P,N'') \to 0$$

is exact whence $\text{Hom}_A(P,\cdot)$ takes \mathcal{E}_A^k-short exact sequences to short exact sequences, therefore P is \mathcal{E}_A^k-projective.

2. Conversely, since P is an \mathcal{E}_A^k-projective module:

$$\ldots \to 0 \to \ldots \to 0 \to P \xrightarrow{1_k} P \to 0 \quad (2.150)$$

is an \mathcal{E}_A^k-projective resolution of P of length 0. We denote its corresponding deleted \mathcal{E}_A^k-projective resolution by \mathcal{P}_\ast. Whence by theorem \mathcal{E}_A^k:

$$(\forall X \in A \text{Mod}) \text{Ext}_{\mathcal{E}_A^k}^1(P,X) \cong H^1(\text{Hom}_A(\mathcal{P}_\ast,X)) \cong 0. \quad (2.151)$$

\[\square\]

2.3.2 The Hochschild Cohomology as the $\text{Ext}_{\mathcal{E}_A^k}^1(A,\cdot)$ functors

Since $CB(A)$ is an \mathcal{E}_A^k-projective resolution of A then theorem and the definition of the $\text{Ext}_{\mathcal{E}_A^k}^* (A,\cdot)$ functors imply that:

Proposition 16. For every A^c module N there are k-module isomorphisms, natural in N:

$$HH^*(A,N) \cong \text{Ext}_{\mathcal{E}_A^k}^* (A,N) \quad (2.152)$$

Taking short \mathcal{E}_A^k-exact sequences to isomorphic long exact sequences.
2 Hochschild Theory

Definition 24. Hochschild Homology
The Hochschild homology $HH_\ast(A,N)$ of a k-algebra A with coefficient in the (A,A)-bimodule N is defined as:

$$HH_\ast(A,N) \triangleq H_\ast(P_\ast \otimes_A N)$$

where P_\ast is an \mathcal{E}_A^k-projective resolution of A.

2.3.3 Two Cohomological Dimensions

The Hochschild cohomological dimension is the numerical invariant of prime focus in this master’s thesis. All the results presented herein revolve around it.

Definition 25. Hochschild cohomological dimension
The Hochschild cohomological dimension of a k-algebra A is defined as:

$$HCdim(A/k) \triangleq \sup_{M \in \mathcal{A}eMod} \left(\sup \{ n \in \mathbb{N}^\# | HH^n(A,M) \neq 0 \} \right).$$

Where $\mathbb{N}^\#$ is the ordered set of extended natural numbers.

The Hochschild cohomological dimension may be related to the following cohomological dimension and to $\Omega^n(A/k)$ as will be shown in theorem 3 below.

Definition 26. \mathcal{E}_A^k-projective dimension
If n is an natural number and M is an A-module then M is said to be of \mathcal{E}_A^k-projective dimension at most n if and only if there exists a deleted \mathcal{E}_A^k-projective resolution of M of length n.

If no such \mathcal{E}_A^k-projective resolution of M exists then M is said to be of \mathcal{E}_A^k-projective dimension ∞.

The \mathcal{E}_A^k-projective dimension of M is denoted $pd_{\mathcal{E}_A^k}(M)$.

The following is a translation of a classical homological algebraic result into the setting of \mathcal{E}_A^k-projective dimension, $\Omega^n(A/k)$ and Hochschild cohomology:

Theorem 3. For every natural number n, the following are equivalent:

1. $HCdim(A/k) \leq n$
2. A is of \mathcal{E}_A^k-projective dimension at most n
3. $\Omega^n(A/k)$ is an \mathcal{E}_A^k-projective module.

15 If A is a commutative k-algebra of essentially-finite type and k is Noetherian then $HH_\ast(A,A) \cong \Omega^n_{A/k}$, where $\Omega^n_{A/k}$ are the Kähler n-forms [HI], therefore the Hochschild homology provides yet another noncommutative analogue of $\Omega^n(A/k)$.

16 There is a duality relationship between the Hochschild cohomology and the Hochschild Homology modules of a C-algebra explored in [RG]. In the case where A is the coordinate ring of a smooth affine algebraic C-variety this relationship becomes even clearer [PH].
4. $HH^{n+1}(A, M)$ vanishes for every (A, A)-bimodule M.

5. $\text{Ext}_{\mathcal{A}_e}^{n+1}(A, M)$ vanishes for every A^e-module M.

Proof.

1 \Rightarrow 4 By definition of the Hochschild cohomological dimension.

4 \iff 5 By proposition 16.

3 \Rightarrow 2 Since $\Omega^n(A/k)$ is \mathcal{E}_A^k-projective:

$$0 \to \Omega^n(A/k) \to CB_{n-1}(A) \overset{b_{n-1}}{\to} \ldots \overset{b_0}{\to} A \to 0$$ \hspace{1cm} (2.155)

is a \mathcal{E}_A^k-projective resolution of A of length n. Therefore $pd_{\mathcal{E}_A^k}(A) \leq n$.

3 \iff 4 By proposition 14 there are isomorphisms natural in M:

$$(\forall M \in A^e \text{Mod}) HH^{1+n}(A, M) \cong \text{Ext}_{\mathcal{A}_e}^1(A, M)$$ \hspace{1cm} (2.156)

$$\cong \text{Ext}_{\mathcal{E}_A^k}^1(\Omega^n(A/k), M).$$ \hspace{1cm} (2.157)

Therefore for every A^e-module M:

$$\text{Ext}_{\mathcal{E}_A^k}^1(\Omega^n(A/k), M) \cong 0 \text{ if and only if } HH^{1+n}(A, M) \cong 0.$$ \hspace{1cm} (2.158)

By proposition 15 $\Omega^n(A/k)$ is \mathcal{E}_A^k-projective if and only if

$$\text{Ext}_{\mathcal{E}_A^k}^1(\Omega^n(A/k), M) \cong 0.$$ \hspace{1cm} (2.159)

2 \Rightarrow 1 If A admits an \mathcal{E}_A^k-projective resolution P_\ast of length n then theorem 2 implies there are natural isomorphisms of A^e-modules:

$$(\forall j \in \mathbb{N})(\forall M \in A^e \text{Mod}) \text{Ext}_{\mathcal{E}_A^k}^j(A, M) \cong H^j(\text{Hom}_{A^e}(P_\ast, M)).$$ \hspace{1cm} (2.160)

Since P_\ast is of length n all the maps $p_j: P_{j+1} \to P_j$ are the zero maps therefore so are the maps $p_j^*: \text{Hom}_{A^e}(P_j) \to \text{Hom}_{A^e}(P_{j+1})$. Whence (2.160) entails that for all $j > n + 1$ $\text{Ext}_{\mathcal{E}_A^k}^j(A, M)$ vanishes. By proposition 16 this is equivalent to $HH^{j}(A, M)$ vanishing for all $j > n + 1$ for all $M \in A^e \text{Mod}$. Hence A is of Hochschild cohomological dimension at most n.

Note 2. If A is a k-algebra then a minor modification of the above argument (using an \mathcal{E}_A^k-projective resolution of an A-module N in place of the bar resolution of the A^e-module A), it can be verified...
2 Hochschild Theory

that for any extended natural number n and any A-module N, N is of E_k^A-projective dimension at most n if and only if $\text{Ext}^m_{E_k^A}(N, M) \cong 0$ for all $M \in A\text{Mod}$ and for all $m \geq n$.

2.4 Analysing properties of k-algebras via their Hochschild Cohomological dimension

The use of the Hochschild cohomology is that it may be used to characterise quasi-free k-algebras (to be defined below in definition 28). Originally theorem 3 was shown over a field by Cuntz and Quillen for $n = 0, 1$; however here we extend it further to any commutative base ring k and to any n.

2.4.1 $HCdim(A/k) = 0$ and Inner Derivations

Corollary 1 generalises a result of Cuntz and Quillen’s beyond the case where k is a field:

Corollary 1.\(^{17}\) The following are equivalent:

1. $HCdim(A/k) = 0$
2. A is a projective E_k^A-module.
3. All derivations of A into an A^e-module M are inner.

Proof. By theorem 3 1 and 2 are equivalent with $HH^1(A, M) \cong 0$ for every A^e-module M; lemma 5 then rephrases this as saying $\text{Inn}_k(A, M) = \text{Der}_k(A, M)$ for every A^e-module M.

Example 10.\(^{18}\) Z is a E_Z^Z-projective Z-algebra.

Proof. $Z \otimes_Z Z \cong Z$ therefore Z is a direct summand of $Z \otimes_Z Z$. Whence the Z-algebra Z is E_Z^Z-projective by proposition 11.

Example 11. All the Z-derivations of $Z[x_i]_{i \in \mathbb{N}}$ into a $Z[x_i]_{e \in \mathbb{N}}$-module are inner.

Proof. $Z[x_i]_{e \in \mathbb{N}} \cong Z[x_i]_{e \in \mathbb{N} \times \mathbb{N}} \cong Z[x_i]_{e \in \mathbb{N}}$ therefore $Z[x_i]_{e \in \mathbb{N}}$ is $Z[x_i]_{e \in \mathbb{N}}$-free; whence corollary 1 applies.

\(^{17}\)Over a field k-algebras satisfying any of these properties were called separable by Cuntz and Quillen in [AE].

\(^{18}\)The only examples of k-algebras A which satisfy $HCdim(A/k) = 0$ appearing in the literature are k-algebra over a field k those which are Morita equivalent to A. This example is over a ring which isn’t a field but it is still (trivially) Morita equivalent to the base ring Z.

36
2 Hochschild Theory

2.4.2 $HC\text{dim}(A/k) \leq 1$ and Square-Zero Extensions

In the case where k is a field the following corollary yields a result of Cuntz and Quillen’s [AQ].

Definition 27. Lifting of a square-zero k-Hochschild extension

Let M be an (A,A)-bimodule and:

$$\mathcal{E}: 0 \longrightarrow M \longrightarrow B \xrightarrow{\pi} A \longrightarrow 0 \ (2.161)$$

be a k-Hochschild extension. Then (2.161) is said to lift if there is a section s of π which is a k-algebra homomorphism.

Example 12. Let A be a k-algebra and M be an (A,A)-bimodule.

The trivial k-Hochschild extension of A by M lifts.

Proof.

1. The zero k-map $0 : A \rightarrow A \oplus M$ always exists since $A\text{-Mod}$.

2. The zero map: $A \rightarrow A \rtimes_0 M$ is a noncommutative k-algebra homomorphism since:

$$(\forall c \in k) (\forall a, a', a'' \in A) 0(aa' + ka'') = 0 = 0(a)0(a') + c0(a''). \quad (2.162)$$

\[\square\]

Lemma 4. Let A be a k-algebra, M be an (A,A)-bimodule and

$$0 \rightarrow M \rightarrow B \xrightarrow{\pi} A \rightarrow 0 \quad (2.163)$$

be a k-Hochschild extension of A by M.

Then (2.163) lifts if and only if (2.163) is equivalent to the trivial extension.

In particular there is always precisely one M,A-Hochschild class of k-Hochschild extensions that contains a k-Hochschild extension that lifts.

Proof. (2.163) lifts if and only if there exists a section $s : A \rightarrow B$ of π satisfying:

$$(\forall a, a' \in A) s(aa') = s(a)s(a') \quad (2.164)$$

if and only if:

$$(\forall a, a' \in A) s(aa') - s(a)s(a') = 0 \quad (2.165)$$

if and only if:

$$(\forall a, a' \in A) \mathfrak{B}_s(a \otimes_k a') = 0. \quad (2.166)$$
2 Hochschild Theory

Since the M, A-Hochschild class of $\mathbf{2.163}$ is independent of the choice of section of π then $\mathbf{2.163}$ lifts if and only if there exists a section s of π such that $B_s = 0$; that is $\mathbf{2.163}$ lifts if and only if $\mathbf{2.163}$ is equivalent to the trivial Hochschild extension of A by M.

Furthermore since the trivial k-Hochschild extension always exists there is always precisely one M, A-Hochschild class of k-Hochschild extensions equivalent to a k-Hochschild extension that lifts.

Corollary 2. \[\text{For a } k\text{-algebra } A, \text{ the following are equivalent:} \]

1. A is $\text{HCdim}(A/k) \leq 1$.
2. $\Omega^1(A/k)$ is a \mathcal{E}^k_k-projective A^e-module.
3. All k-Hochschild extensions of A by an (A, A)-bimodule lift.

Proof. Theorem 3 implies 1 and 2 are equivalent to $HH^2(A, M) \cong 0$ for all A^e-modules M. Lemma 4 implies all extensions of A into an (A, A)-bimodule M lift if and only if there is only one M, A-Hochschild class for all (A, A)-bimodules M. Since $HH^2(A, M)$ is naturally in bijection with the set of M, A-Hochschild classes, all extensions of A into an (A, A)-bimodule M lift if and only if $HH^2(A, M)$ has only one element for all (A, A)-bimodules M if and only if $HH^2(A, M) \cong 0$ for all (A, A)-bimodules M. \[\square \]

Definition 28. **Quasi-free k-algebra**\[19 \]

Any k-algebra satisfying any of the equivalent conditions in corollary 2 is called a quasi-free k-algebra.

An Example

Definition 29. **Tensor Algebra on M over B**

If B is a k-algebra and M is a (B, B)-bimodule then the **Tensor Algebra on M over B**, denoted $T_B(M)$ is the B-algebra defined as:

$$ T_B(M) \triangleq B \oplus \bigoplus_{n \in \mathbb{Z}^+} \bigotimes_{B} M $$ \[2.167 \]

with multiplication defined on elementary tensors as:

$$ (e_1 \otimes \ldots \otimes_k e_j) \times (\tilde{e}_1 \otimes \ldots \otimes_k \tilde{e}_k) \mapsto e_1 \otimes \ldots \otimes_k e_j \otimes \tilde{e}_1 \otimes \ldots \otimes_k \tilde{e}_k. $$ \[2.168 \]

A direct verification shows:

\[19 \]Cuntz and Quillen prove many other results related to quasi-free k-algebras in their article [AE].

\[20 \]First introduced by Cuntz and Quillen in [AE], due to their lifting property the quasi-free k-algebras are considered a noncommutative analogue to smooth k-algebras; that is k-algebras for which $\Omega_{A/k}$ is a projective A-module.
Proposition 17. The tensor algebra is a (unital associative) \(B\)-algebra.

Proof. See the third chapter of [BA].

Proposition 18. Universal Property of the tensor algebra

Let \(A\) be a \(k\)-algebra, \(M\) be an \((A,A)\)-bimodule and define the \((A,A)\)-bimodule homomorphism \(f : M \to T_A(M)\) as:

\[
\forall m \in M \quad f(m) = (0,m,0,\ldots,0,\ldots).
\]

(2.169)

For every homomorphism of \(k\)-algebras \(h : A \to B\) (giving \(B\) the structure of an \((A,A)\)-bimodule) and for every \((A,A)\)-bimodule homomorphism \(g : M \to B\) there exists a unique \(A\)-algebra homomorphism \(\phi : T_A(M) \to B\) whose underlying \(A\)-module homomorphism satisfies \(\phi \circ f = g\).

Proof. Let \(B\) be a \(k\)-algebra whose \(A\)-algebra structure is given by the \(k\)-algebra homomorphism \(h : A \to B\) and let \(g : M \to A\) be an \((A,A)\)-bimodule homomorphism. We construct the \(k\)-algebra homomorphism \(\phi\) extending \(h\) whose underlying \(A\)-module homomorphism satisfies \(\phi \circ f = g\).

For every positive integer \(n\), the map:

\[
g'_n : \bigotimes^n_A M \to A
\]

(2.170)

defined as: \(\forall m_1, \ldots, m_n \in M\) \(g'_n(m_1 \times \ldots \times m_n) \mapsto g(m_1) \ldots g(m_n)\)

(2.171)

is \(n\)-fold \(A\)-linear (on the right and on the left). By the universal property of the \(n\)-fold tensor product there exists a unique \(A\)-linear (on the right and on the left) map:

\[
\phi_n : \bigotimes^n_A M \to A
\]

(2.172)

satisfying: \(\forall m_1, \ldots, m_n \in M\) \(\phi_n(m_1 \otimes_A \ldots \otimes_A m_n) \mapsto g(m_1) \ldots g(m_n)\).

(2.173)

Relabel the \(k\)-algebra homomorphism \(h\) as \(\phi_0\). Define the \(k\)-module homomorphism:

\[
\phi \triangleq \bigoplus_{n \in \mathbb{N}} \phi_n : T_A(M) \to A.
\]

(2.174)

In fact \(\phi\) is a \(k\)-algebra homomorphism since for every \((m_1 \otimes_A \ldots \otimes_A m_k), (m_1 \otimes_A \ldots \otimes_A m_j) \in T_k(M)\):

\[
\phi((m_1 \otimes_A \ldots \otimes_A m_k)(m_1 \otimes_A \ldots \otimes_A m_j)) = \phi(m_1) \otimes_A \ldots \otimes_A \phi(m_k) \phi(m_1) \otimes_A \ldots \otimes_A \phi(m_j) = \phi((m_1 \otimes_A \ldots \otimes_A m_k)) \phi((m_1 \otimes_A \ldots \otimes_A m_j)).
\]

(2.175)

Finally, by construction:

\[
(\forall m \in M) \quad \phi \circ f(m) = \phi_1(m) = g(m).
\]

(2.178)
Lemma 5. \footnote{Cuntz and Quillen proved lemma \ref{lem:quasi-free-bimodule} in the case where k was a field.}

If A is a quasi-free k-algebra and P is an \mathcal{E}_A^k-projective (A,A)-bimodule then $T_A(P)$ is a quasi-free A-algebra.

\textbf{Proof.} Let
\begin{equation}
0 \to M \to B \xrightarrow{\pi} T_A(P) \to 0 \tag{2.179}
\end{equation}
be a k-Hochschild extension of $T_A(P)$ by M. We use the universal property of $T_A(P)$ to show that there must exist a lift l of \eqref{2.179}.

Let $p : T_A(P) \to A$ be the projection k-algebra homomorphism of $T_A(P)$ onto A. p is k-split since the k-module inclusion $i : A \to T_A(P)$ is a section of p; therefore p is an \mathcal{E}_A^k-epimorphism and
\begin{equation}
0 \to Ker(p \circ \pi) \to B \to A \to 0 \tag{2.180}
\end{equation}
is a k-Hochschild extension of A by the (A,A)-bimodule $Ker(p \circ \pi)$. Since A is a quasi-free k-algebra there exists a k-algebra homomorphism $l_1 : A \to B$ lifting $p \circ \pi$. Hence B inherits the structure of an (A,A)-bimodule and π may be viewed as an (A,A)-bimodule homomorphism. Moreover l_1 induces an A-algebra structure on B.

Let $f : P \to T_A(P)$ be the (A,A)-bimodule homomorphism satisfying the universal property of the tensor algebra on the (A,A)-bimodule P. Since $\pi : B \to A$ is an \mathcal{E}_A^k-epimorphism and since P is an \mathcal{E}_A^k-projective (A,A)-bimodule, proposition \ref{prop:universal-property-of-tensor-algebra} implies that there exists an (A,A)-bimodule homomorphism $l_2 : P \to B$ satisfying $\pi \circ l_2 = f$.

Since $l_2 : P \to B$ is an (A,A)-bimodule homomorphism to a A-algebra the universal property of the tensor algebra $T_A(P)$ on the (A,A)-bimodule P (proposition \ref{prop:universal-property-of-tensor-algebra}) implies there is an A-algebra homomorphism $l : T_A(P) \to B$ whose underlying function satisfies: $l \circ f = l_2$.

Therefore $l \circ \pi \circ l_2 = l_2$; whence $l \circ \pi = 1_{T_A(P)}$; that is l is a A-algebra homomorphism which is a section of π, that is l lifts π. \hfill \square

\textbf{Example 13.} Let $n \in \mathbb{N}$. The \mathbb{Z}-algebra $T_{\mathbb{Z}}(\bigoplus_{i=0}^n \mathbb{Z})$ \footnote{The \mathbb{Z}-algebra $T_{\mathbb{Z}}(\bigoplus_{i=0}^n \mathbb{Z})$ is called a \textit{free associative} \mathbb{Z}-algebra on $n+1$ letters.} is quasi-free.

\textbf{Proof.} Since all free \mathbb{Z}-modules are projective \mathbb{Z}-modules and all projective \mathbb{Z}-modules are $\mathcal{E}_{\mathbb{Z}}^\mathbb{Z}$-projective modules, the free \mathbb{Z}-module $\bigoplus_{i=0}^n \mathbb{Z}$ is $\mathcal{E}_{\mathbb{Z}}^\mathbb{Z}$-projective. Whence lemma \ref{lem:quasi-free-bimodule} implies $T_{\mathbb{Z}}(\bigoplus_{i=0}^n \mathbb{Z})$ is a quasi-free \mathbb{Z}-algebra. \hfill \square

\textbf{Example 14.} If A is a quasi-free k-algebra then $T_A(\Omega^1(A/k))$ is a quasi-free A-algebra.

\textbf{Proof.} By corollary \ref{cor:quasi-free-bimodule} if A is quasi-free $\Omega^1(A/k)$ must be an \mathcal{E}_{A^k}-projective (A,A)-bimodule; whence lemma \ref{lem:quasi-free-bimodule} applies. \hfill \square
2.5 Cuntz-Quillen n-Forms

In their paper [AE] Cuntz and Quillen define noncommutative n-forms in a different manner than in this master’s thesis. This portion of this master’s thesis now closes with a short side-note describing the similarities between these two notions. Explicitly it is shown that $\Omega^n(A/k)$ is δ^n_{Ae}-projective if and only if the Ae-module of Cuntz-Quillen n-forms is δ^n_{Ae}-projective. Theorem 3 is then reformulated in terms of the Cuntz-Quillen n-forms.

Denote by \tilde{A} the k-module A/k. The Ae-modules $\Omega^n_k(A)$ have the following homological description (reminiscent of $\Omega^n(A/k)$).

Proposition 19. Normalized Bar Resolution

If A is a k-algebra then there is an \mathcal{E}^k_{Ae}-projective resolution of A denoted by $\bar{CB}_n(A)$ called the normalized bar Resolution of A defined as:

$$\bar{CB}_n(A) := A \otimes_k \tilde{A} \otimes_k A$$

(2.181)

Whose boundary operators are defined as:

$$\bar{B}'_n(a_0 \otimes \ldots \otimes a_{n+1}) := \sum_{i=0}^{n} (-1)^i a_0 \otimes \ldots \otimes \bar{a}_i a_{i+1} \otimes \ldots \otimes a_{n+1}$$

(2.182)

(By convention: b'_0 is the augmentation map $A \otimes_k A \to A$ and b'_{-1} is the zero map from A to 0).

Proof. The proof is analogous to example 7 and can be found on page 281 of [MH].

Definition 30. Cuntz-Quillen n-Forms

For any natural number n and any k-algebra A the module of n-Cuntz-Quillen forms on A is defined as:

$$\Omega^n_k(A) := \text{Ker}(\bar{B}'_{n-1} : \bar{CB}_n \to \bar{CB}_{n-1})$$

(2.183)
By "coincidence" there are the following examples:

Example 15.

1. \(\Omega^{1}(A/k) = \Omega^{1}_{k}(A) \)
2. \(\Omega^{0}(A/k) = \Omega^{0}_{k}(A) \)

Proof. By definition \(b_{0}' = 0 = \bar{b}'_{0} \) and \(b_{1}' = \mu_{k} = \bar{b}'_{1} \). Therefore proposition 30 together with the definition of \(\Omega^{1}(A/k) \) and \(\Omega^{0}(A/k) \) imply the conclusion.

The "coincidence" of example 15 in fact runs deeper:

Proposition 20. If \(A \) is a \(k \) algebra and \(n \) is a natural number then the following are equivalent:

1. \(\Omega^{n}(A/k) \) is \(\mathcal{E}_{Ak}^{k} \)-projective.
2. \(\Omega^{n}_{k}(A) \) is \(\mathcal{E}_{Ak}^{k} \)-projective.

Proof. Example 7 implied that \(\mathcal{C}B_{\ast}(A) \) is an \(\mathcal{E}_{Ak}^{k} \)-projective resolution of \(A \); likewise proposition 19 implies that \(\bar{C}B_{\ast}(A) \) is also an \(\mathcal{E}_{Ak}^{k} \) projective resolution of \(A \).

Whence theorem 2 entails that for every \(A^{e} \)-module \(M \) there are natural isomorphisms:

\[
(\forall n \in \mathbb{N}) H^{n}(\text{Hom}_{A^{e}}(\mathcal{C}B_{\ast}(A), M)) \xrightarrow{\cong} \text{Ext}_{\mathcal{E}_{Ak}^{k}}^{n}(A, M) \xrightarrow{\cong} H^{n}(\text{Hom}_{A^{e}}(\bar{C}B_{\ast}(A), M)). \tag{2.184}
\]

By definition \(\Omega^{n}(A/k) \) is the \(n^{th} \) syzygy \(^{23} \) of \(\mathcal{C}B_{\ast}(A) \), likewise proposition 30 implies \(\Omega^{n}_{k}(A) \) is the \(n^{th} \) syzygy of \(\bar{C}B_{\ast}(A) \) therefore for every \(A^{e} \)-module \(M \) there are natural isomorphisms:

\[
(\forall i, n \in \mathbb{N}) \text{ with } i > 0: \text{Ext}_{\mathcal{E}_{Ak}^{k}}^{i}(\Omega^{n}(A/k), M) \xrightarrow{\cong} \text{Ext}_{\mathcal{E}_{Ak}^{k}}^{i+n}(A, M) \xrightarrow{\cong} \text{Ext}_{\mathcal{E}_{Ak}^{k}}^{i}(\Omega^{n}_{k}(A), M) \tag{2.185}.
\]

Therefore (2.185) implies: \(\Omega^{n}(A/k) \) is \(\mathcal{E}_{Ak}^{k} \)-projective \(^{[MH]} \) if and only if for every positive integer \(i \): \(\text{Ext}_{\mathcal{E}_{Ak}^{k}}^{i}(\Omega^{n}(A/k), M) \) vanishes for all \(A^{e} \)-modules \(M \) if and only if \(\text{Ext}_{\mathcal{E}_{Ak}^{k}}^{i}(\Omega^{n}_{k}(A), M) \) vanishes for every \(A^{e} \)-module \(M \) if and only if \(\Omega^{n}_{k}(A) \) is \(\mathcal{E}_{Ak}^{k} \)-projective \(^{[MH]} \).

\(^{23} \) The \(n^{th} \) syzygy \(^{23} \) of a chain complex \(\langle C_{\ast}, \partial_{\ast} \rangle \) is the kernel of \(n^{th} \) boundary map \(\partial_{n} \).
2.5.1 Reformulating Theorem

Theorem 3 may now be expressed in terms of the Cuntz-Quillen n-forms.

Theorem 4. For every natural number n, the following are equivalent:

1. $HCdim(A/k) \leq n$
2. A is of \mathcal{E}^k_A-projective dimension at most n
3. $\Omega^n(A/k)$ is an \mathcal{E}^k_A-projective module.
4. $\Omega^k(A)$ is an \mathcal{E}^k_A-projective module.
5. $HH^{n+1}(A,M)$ vanishes for every (A,A)-bimodule M.
6. $Ext^{n+1}_{\mathcal{E}^k_{Ae}}(A,M)$ vanishes for every Ae-module M.

Proof.
The equivalence of 1, 2, 3, 5 and 6 follow from theorem 3. The equivalence of 3 and 4 are entailed by proposition 20.

2.6 $HCdim(A/k) \leq 2$

As an application of theorem 4, the following original result will both be explained and proven in this section:

A characterization of Crossed-Bimodules
The following are equivalent:

1. $HCdim(A/k) \leq 2$.
2. $\Omega^2(A/k)$ is \mathcal{E}^k_A-projective.
3. $\Omega^2_k(A)$ is \mathcal{E}^k_A-projective.
4. Every (A,A)-bimodule M only admits a crossed-(A,A)-bimodule structures equivalent to the trivial crossed-(A,A)-bimodule structure on M.

2.6.1 HH^3

On (A,A)-Crossed-Bimodules
2 Hochschild Theory

Definition 31. (A,A)-Crossed-bimodule

An (A,A)-crossed bimodule \mathcal{CB}_∂ is an $\mathcal{E}^k_{B'}$-exact sequence:

$$\mathcal{CB}_\partial : 0 \longrightarrow M \longrightarrow C \xrightarrow{\partial} B \xrightarrow{\epsilon} A \longrightarrow 0$$

(2.186)

Such that:

1. A and B are k-algebras.
2. $(\forall c \in C)(\forall b, b' \in B) \partial (b \cdot c \cdot b') = b \partial (c) b'$
3. $(\forall c, c' \in C) \partial (c) \cdot c' = cc' = c \partial (c').$

Alternatively, \mathcal{CB}_∂ is called an (A,A)-crossed-bimodule structure on M.

Similarly to lemma 1.

Lemma 6. Maintaining the notation of and viewing M as an sub-(B,B)-bimodule of C:

If \mathcal{CB}_∂ is an (A,A)-crossed-bimodule then $CM = CM = 0$ and M is an (A,A)-bimodule. In particular, if \mathcal{CB}_∂ is an (A,A)-crossed-bimodule then $M^2 = 0$.

Proof. See [LC] page 43.

Every (A,A)-bimodule M induces an (A)-Crossed-bimodule.

Example 16. If A is a k-algebra and M is an (A,A)-bimodule then there is an (A,A)-crossed-bimodule:

$$\mathcal{CB}_0 : 0 \longrightarrow M \xrightarrow{1_M} M \xrightarrow{0} A \xrightarrow{1_A} A \longrightarrow 0$$

(2.187)

Proof. The exactness is straightforward, the maps 1_M and 1_A are split by the maps 1_M and 1_A respectively and the map $0 : M \to A$ satisfies $0 = 0 \circ 0_M \circ 0$, where $0_M : A \to M$ is the zero map, therefore (2.187) is $\mathcal{E}^k_{B'}$-exact. Moreover the map $0 : M \to A$ trivially satisfies conditions 2 and 3 in definition 31. Lastly, A is by assumption a k-algebra; whence 1 in definition 31 is satisfied. Therefore (2.187) is indeed an (A,A)-crossed-bimodule.

Definition 32. Trivial (A,A)-Crossed-bimodule structure

For any k-algebra A and any (A,A)-bimodule M the (A,A)-crossed-bimodule structure on M in example 16 is called the trivial (A,A)-crossed-bimodule structure on M.

Definition 33. Morphism of (A,A)-Crossed-bimodules

If $\mathcal{CB}_\partial : 0 \longrightarrow M \longrightarrow C \xrightarrow{\partial} B \xrightarrow{\epsilon} A \longrightarrow 0$ and

$$\mathcal{CB}_{\partial'} : 0 \longrightarrow M' \longrightarrow C' \xrightarrow{\partial'} B' \xrightarrow{\epsilon} A \longrightarrow 0$$

(2.188)
2 Hochschild Theory

are \((A,A)\)-Crossed-bimodules, then a map of \((A,A)\)-crossed-bimodules \(\Sigma : \mathcal{CB}_\partial \to \mathcal{CB}_{\partial'}\) is a pair \(<\mathcal{B},\Gamma>\) such that:

1. \(\mathcal{B} : B \to B'\) is a k-module homomorphism.
2. \(\Gamma : C \to C'\) is a k-algebra homomorphism.
3. \(\Gamma \circ \partial = \partial \circ \mathcal{B}\)
4. \((\forall c \in C)(\forall b \in B)\ \mathcal{B}(xb) = \Gamma(x)\mathcal{B}(b)\) and \(\mathcal{B}(bx) = \mathcal{B}(b)\Gamma(x)\).
5. There is a commutative diagram of k-modules:

\[
\begin{array}{ccccccccc}
0 & \to & M & \to & C & \to & B & \to & A & \to & 0 \\
& & \downarrow{\gamma} & & \downarrow{\mathcal{B}} & & \downarrow{\Gamma} & & \downarrow{1_A} & \\
0 & \to & M' & \to & C' & \to & B' & \to & A & \to & 0 \\
\end{array}
\]

Moreover if \(M = M'\) and \(\gamma = 1_M\) then \(\Sigma\) is called a morphism of \((A,A)\)-crossed-bimodule structures on \(M\).

Definition 34. \(\chi\text{Mod}(A,M)\)

Let \(A\) be a k-algebra, \(M\) an \((A,A)\)-bimodule and let \(\text{Cross}(A,M)\) be the set of all \((A,A)\)-crossed-bimodule structures on an \((A,A)\)-bimodule \(M\). \(\text{Cross}(A,M)\) modulo the equivalence relation generated by the existence of a morphism of \((A,A)\)-crossed-bimodule structures on \(M\) between any two \((A,A)\)-crossed-bimodule structures on \(M\) is denoted by \(\chi\text{Mod}(A,M)\).

Proposition 21. If \(A\) is a k-algebra and \(M\) is an \((A,A)\)-bimodule then there is a 1-1 correspondence:

\[\chi\text{Mod}(A,M) \leftrightarrow HH^3(A,M)\]

Proof. See page 39 of [LC].
2 Hochschild Theory

2.6.2 \textit{HCdim}(A/k) \leq 2 \text{ and } (A,A)\text{-crossed-bimodules}

In view of proposition 2.1 there is the following characterization of k-algebras with Hochschild cohomological dimension at most 2.

Corollary 3. A characterization of (A,A)-Crossed-Bimodules

The following are equivalent:

1. $\text{HCdim}(A/k) \leq 2$.
2. $\Omega^2(A/k)$ is E^k_{A}-projective.
3. $\Omega^2_k(A)$ is E^k_{A}-projective.
4. Every (A,A)-bimodule M only admits a crossed-(A,A)-bimodule structures equivalent to the trivial crossed-(A,A)-bimodule structure on M.

Proof. The equivalence of 1, 2, 3 and the statement:

"$\text{HH}^3(A,M) \cong 0$, for every (A,A)-bimodule M" (2.191)

follow from theorem 4.4.

In proposition 2.1 it was asserted that $\chi \text{Mod}(A,M)$ is in 1-1 correspondence with the elements of $\text{HH}^3(A,M)$. Therefore, there is only one element in $\chi \text{Mod}(A,M)$ if and only if $H^3(A,M)$ is the trivial group.

Since the trivial crossed bimodule structure on M always exists (by example 16), then there is only one element in $\text{HH}^3(A,M)$ \textit{if and only if} all crossed-(A,A)-bimodule structures on M are equivalent to the trivial crossed-(A,A)-bimodule structure on M. \hfill \Box
2 Hochschild Theory

Corollary 4. If A is a quasi-free k-algebra then every (A,A)-bimodule M only admits a crossed-(A,A)-bimodule structure equivalent to the trivial crossed-(A,A)-bimodule structure on M.

Proof. By definition A is quasi-free if and only if $HCdim(A/k) \leq 1 < 2$. Therefore the result follows from corollary 3.

Example 17. Every $\mathbb{Z} < x_1, \ldots, x_n >$-bimodule M only admits a crossed-(A,A)-bimodule structure equivalent to the trivial crossed-(A,A)-bimodule structure on M.

Proof. By corollary ?? is quasi-free, therefore the conclusion may be drawn from corollary 4.
2 Hochschild Theory

2.7 Characterizing the Higher Hochschild Cohomology groups

For completeness, corollary is generalized.

Crossed \(n \)-fold Extensions

Definition 35. Crossed \(n \)-fold Extension

If \(A \) is a \(k \)-algebra and \(M \) is an \((A,A)\)-bimodule then for every integer \(n \geq 2 \) an \(\mathcal{E}^k_B \)-exact sequence of \(B^e \)-modules:

\[
0 \to M \overset{d}{\to} M_{n-1} \overset{\partial_{n-1}}{\to} \cdots \overset{\partial_2}{\to} M_1 \overset{\partial_1}{\to} B \to A \to 0
\]

(2.192)

such that:

1. \(0 \to \ker(\partial_1) \overset{\ker(\partial_1)}{\to} M_1 \overset{\partial_1}{\to} B \to A \to 0 \) is an \((A,A)\)-crossed-bimodule.

2. For every integer \(m \) such that \(1 < m \leq n - 1 \): \(\partial_i \) are \((A,A)\)-bimodule morphisms.

3. \(d \) is an \((A,A)\)-bimodule morphism.

4. For every integer \(m \) such that \(1 < m \leq n - 1 \): \(M_i \) are \((A,A)\)-bimodules.

is called a crossed \(n \)-fold Extension of \(A \) by \(M \).

Example 18. Trivial Crossed \(n \)-fold extension

If \(A \) is a \(k \)-algebra, \(M \) is an \((A,A)\)-bimodule and \(n \) is an integer greater than 2 then then crossed \(n \)-fold extension of \(A \) by \(M \):

\[
\mathcal{CB}_0 : 0 \to M \overset{1_M}{\to} M \to \cdots \to 0 \overset{1_A}{\to} A \to A \to 0
\]

(2.193)

is called the trivial crossed \(n \)-fold extension of \(A \) by \(M \).

If \(n = 2 \) then in view of example [19] call the trivial \((A,A)\)-crossed-bimodule structure on \(M \) the Crossed 2-fold extension of \(A \) by \(M \).

Proof. If \(n > 2 \) then the trivial crossed \(n \)-fold extension of \(A \) by \(M \) was verified to asserted be a crossed \(n \)-fold extension of \(A \) by \(M \) on pages 71 – 72 of [CE].

The case where \(n = 2 \) was shown in example [16].

Definition 36. Morphism of Crossed \(n \)-fold Extensions
2 Hochschild Theory

If \(n \) is an integer greater than 1 and \(A \) is a \(k \)-algebra and \(M \) is an \((A,A)\)-bimodule and:

\[
E_1 0 \longrightarrow M \xrightarrow{d} M_{n-1} \longrightarrow \ldots \longrightarrow M_1 \xrightarrow{d_1} B \longrightarrow A \longrightarrow 0
\]

\[
E_2 0 \longrightarrow M \xrightarrow{d'} M'_{n-1} \longrightarrow \ldots \longrightarrow M'_1 \xrightarrow{d'_1} B' \longrightarrow A \longrightarrow 0
\]

(2.194)

are crossed \(n \)-fold extensions of \(A \) by \(M \).

Then a morphism \(\Psi : E_1 \rightarrow E_n \) of crossed \(n \)-fold extensions is an \(n+1 \)-tuple \(< \alpha, \alpha_{n-1}, \ldots, \alpha_1, \beta > \) such that:

1. For every integer \(m \geq 2 \), \(\alpha_m : M_m \rightarrow M'_m \) is an \((A,A)\)-bimodule morphism.
2. \(\alpha : M \rightarrow M' \) is an \((A,A)\)-bimodule morphism.
3. \(< \alpha_1, \beta > \) is a map of \((A,A)\)-crossed-bimodules.
4. The following diagram commutes:

\[
0 \longrightarrow M \xrightarrow{d} M_{n-1} \xrightarrow{\partial_{n-1}} \ldots \xrightarrow{\partial_2} M_1 \xrightarrow{\partial_1} B \longrightarrow A \longrightarrow 0
\]

\[
0 \longrightarrow M \xrightarrow{d'} M'_{n-1} \xrightarrow{\partial'_{n-1}} \ldots \xrightarrow{\partial'_2} M'_1 \xrightarrow{\partial'_1} B' \longrightarrow A \longrightarrow 0
\]

(2.195)
Definition 37. \(\text{Opext}^n(A, M) \)

Let \(A \) be a \(k \)-algebra, \(M \) an \((A,A)\)-bimodule and \(n \) be an integer greater than 1 and let \(\text{onext}(A, M) \) be the set of all crossed \(n \)-fold extensions of \(A \) by \(M \). \(\text{onext}(A, M) \) modulo the equivalence relation generated by the existence of a morphism of crossed \(n \)-fold extensions between any two crossed \(n \)-fold extensions is denoted by \(\text{Opext}^n(A, M) \).

Example 19. If \(A \) is a \(k \)-algebra and \(M \) is an \((A,A)\)-bimodule then by definition \(\text{Opext}^2(A, M) = \chi \text{Mod}(A, M) \).

Proposition 22. (Baues, Minian ~ 2002)

If \(A \) is a \(k \)-algebra, \(M \) is an \((A,A)\)-bimodule and \(n \) is an integer greater than 1 then there is a 1–1 correspondence:

\[
\text{Opext}^n(A, M) \leftrightarrow \text{HH}^{n+1}(A, M).
\] (2.196)

Proof. See page 71 of [CE].

\(\square \)

\(^{24}\) In [CE] a stronger result is formulated over a field, however the argument does not use any property of \(k \) being a field and therefore the bijection is still valid for any commutative basering \(k \).
Theorem 5. A Characterization of Crossed n-fold Extensions

If A is a k-algebra, M is an (A,A)-bimodule and n is an integer greater than 1 then the following are equivalent:

1. $HCdim(A/k) \leq n + 1$.

2. $\Omega^{n+1}(A/k)$ is \mathcal{E}_A^k-projective.

3. $\Omega^{n+1}_k(A)$ is \mathcal{E}_A^k-projective.

4. Every (A,A)-bimodule M only admits a crossed n-fold extension of A by M equivalent to the trivial crossed-n-fold extension of A by M.

Proof. The equivalence of 1, 2, 3 and the statement:

"$HH^{n+1}(A,M) \cong 0$, for every (A,A)-bimodule M" (2.197)

follow from theorem 4.

In proposition 22 it was asserted that $Opext^n(A,M)$ is in $1-1$ correspondence with the elements of $HH^{n+1}(A,M)$. Therefore, there is only one element in $Opext^n(A,M)$ if and only if $H^{n+1}(A,M)$ is the trivial group.

Since the trivial crossed bimodule structure on M always exists (by example 18), then there is only one element in $HH^{n+1}(A,M)$ if and only if every (A,A)-bimodule M only admits a crossed n-fold extension of A by M equivalent to the trivial crossed-n-fold extension of A by M.

\[\square\]
3 A lower bound for the Hochschild cohomological dimension

3.1 A few Homological Dimensions

Assumption 1. Unless otherwise specified, for the remainder of this text any k-algebra will always be commutative.

In commutative setting we now provide a method of obtaining examples of k-algebras which are not quasi-free. More generally the purpose of this section is to provide a lower-bound for the Hochschild Cohomological dimension of certain commutative k-algebras.

The argument revolves around bounding the Hochschild dimension of a regular commutative k-algebra (to be defined below in definition 46) below via a series of intermediary numerical invariants associated to the algebra A.

52
3.1.1 Regular Sequences And Flat Dimension

Definition 38. Regular element
Let A be a commutative ring and M be an A-module. A non-zero element x in a commutative ring A is said to be M-regular (or an M-regular element), if and only if the A-module map $\lambda_x : M \to M$ defined on elements m of M as $m \mapsto x \cdot m$ is an injection and not a surjection.

If M is the A-module A then x is simply said to be regular (or a regular element) on A.

Example 20. If k is a commutative integral domain then the element x in $k[[x]]$ is regular on $k[[x]]$.

Proof. k is an integral domain then $k[x]$ is an integral domain [AA]. Thus multiplication by any element on the left (x in particular) is injective. Moreover x is by definition not a unit in $k[x]$. \hfill \square

Definition 39. M-Regular sequence
Let A be a commutative ring and M be an A-module. A sequence of elements x_1, \ldots, x_n in A is called an M-regular sequence if x_1 is M-regular on M and for each $i \in \{2, \ldots, n\}$ x_i is regular in $M/(x_1, \ldots, x_{i-1})M$.

If there is an ideal I in A such that $\{x_1, \ldots, x_n\} \subseteq I$ then the regular sequence x_1, \ldots, x_n is said to be a M-regular sequence in I.

Moreover if $M = A$ then x_1, \ldots, x_n is called a regular sequence.

Example 21. If k is a commutative integral domain, then x_1, \ldots, x_n is a regular sequence in $k[x_1, \ldots, x_n]$.

Proof. For $0 < i < n$ set $k_i := k[x_1, \ldots, x_{i-1}] \cong k[x_1, \ldots, x_n]/(x_n, \ldots, x_i)$ and set $k_n := k$. Then x_i is a regular sequence in $k_i[x_i]$ by example 20 and the result follows by iteration of example 20. \hfill \square

Flat Dimension And Regular Sequences
The first bound between the Krull dimension and the Hochschild Cohomological dimension is a ring theoretical dimension, the flat dimension.

Definition 40. A-Flat Dimension
If A is a commutative ring then the A-flat dimension $fd_A(M)$ of an A-module M is the extended natural number n, defined as the shortest length of a resolution of M by A-flat A-modules. If no such finite n exists n is taken to be ∞.

Example 22. If A is a commutative ring and M is a flat A-module then $fd_A(M) = 0$.

Proof. $0 \to M \xrightarrow{1_M} M \to 0$ is an A-flat resolution of M of length 0. \hfill \square

Lemma 7. If A is a commutative ring then for any A-module M the following are equivalent:

1. The A-flat dimension of M is at most n.

2. For every left A-module N, $\text{Tor}_A^{n+1}(M,N)$ is the trivial A-module.

Proof. Similar to the proof of theorem 3 see page 461 of [H] for details. \hfill \square
The Koszul Complex

Definition 41. Exterior Power of a Module

If A is a commutative ring, n is a positive integer, M is an A-module and σ is a permutation in the permutation group S^n with signature $\text{sgn}(\sigma)$ then the n^{th}-**exterior power of M over k** is defined as the A-module:

$$\bigwedge^n_A(M) := M^\otimes n / \{ a_1 \otimes_A \ldots \otimes_A a_n - \text{sgn}(\sigma) a_{\sigma(1)} \otimes_A \ldots \otimes_A a_{\sigma(n)} | a_1, \ldots, a_n \in A, \ \sigma \in S^n \} M.$$

(3.1)

An element of the equivalence class of a_1, \ldots, a_n in $\bigwedge^n_A(M)$ is denoted by $a_1 \wedge \ldots \wedge a_n$.

Lemma 8. If A is a commutative ring and d is a positive integer then for every positive integer n there is an isomorphism of A-modules:

$$\Xi_n : \bigwedge^n_A (A^d) \rightarrow A^{(d)}.$$

(3.2)

Where Ξ_n maps the set $\{ e_{i_1} \wedge \ldots \wedge e_{i_n} | 1 \leq i_1 < \ldots < i_n \leq d \}$ in $\bigwedge^n_A (A^d)$ to a basis of $A^{(d)}$.

Proof. See [BA] page 517. \hfill \Box

A regular sequence of a ring is related to its flat dimension as follows:

Lemma 9. Koszul Complex

If A is a commutative ring, x_1, \ldots, x_d is a regular sequence in A then and $\pi : A \rightarrow A/(x_1, \ldots, x_d)$ is the canonical projection of A onto $A/(x_1, \ldots, x_d)$ then there is an A-free resolution of $A/(x_1, \ldots, x_d)$ of length d described as:

$$\cdots \rightarrow \bigwedge^{n+1}_A (A^d) \rightarrow \bigwedge^n_A (A^d) \rightarrow \cdots \rightarrow \bigwedge^2_A (A^d) \rightarrow \bigwedge^1_A (A^d) \rightarrow \bigwedge^0_A (A^d) \rightarrow A \rightarrow A/(x_1, \ldots, x_d) \rightarrow 0$$

where for every $(n \in \mathbb{N})$ d_n is defined on a basis element $e_{i_1} \wedge \ldots \wedge e_{i_n}$ in $\bigwedge^{n+1}_A (A^d)$ as:

$$d_n(e_{i_1} \wedge \ldots \wedge e_{i_n}) = \sum_{j=1}^{n} (-1)^{i_j+1} x_{i_j} \cdot e_{i_1} \wedge \ldots \wedge \hat{e}_{i_j} \wedge \ldots \wedge e_{i_n}.$$

(3.3)

(where \hat{e}_{i_j} denotes the omission of the term e_{i_j} in the expression $e_{i_1} \wedge \ldots \wedge e_{i_n}$). This resolution is denoted by $K_*(A; x_1, \ldots, x_d)$.

Proof. The A-freeness of $K_*(A; x_1, \ldots, x_d)$ follows from lemma [8]. Moreover, $K_*(A; x_1, \ldots, x_n)$’s exactness is verified on page 152 of [HA]. Finally, for $n > d > 0$ since $\binom{n}{d} = 0$, the isomorphisms Ξ_n of lemma [8] implies $\bigwedge^n_A (A^d) \cong 0$; whence $K_*(A; x_1, \ldots, x_d)$ is of length d. \hfill \Box
3 A lower bound for the Hochschild cohomological dimension

Proposition 23. If \(n \) is a positive integer and if there exists a regular sequence \(x_1, \ldots, x_n \) in \(A \) of length \(n \) then:

\[
 n = f_{d_A}(A/\langle x_1, \ldots, x_n \rangle). \quad (3.4)
\]

Proof. Denote \(A/\langle x_1, \ldots, x_n \rangle \) by \(\bar{A} \).

1. Since \(K_*(A; x_1, \ldots, x_n) \) is a free deleted resolution of \(\bar{A} \) of length \(n \) and free \(A \)-modules are flat \(A \)-modules \(\text{IH} \) implies:

\[
 f_{d_A}(\bar{A}) \leq n. \quad (3.5)
\]

2. Since \(K_*(A; x_1, \ldots, x_n) \) is an \(A \)-flat resolution of \(\bar{A} \) then there are natural isomorphisms:

\[
 \text{Tor}_n^{\bar{A}}(\bar{A}, \bar{A}) \cong H_n(K_*(A; x_1, \ldots, x_n) \otimes_A \bar{A}, d_* \otimes_A 1_{\bar{A}}) \text{ IH}. \quad (3.6)
\]

However \(\langle x_1, \ldots, x_n \rangle \) is an ideal in \(A \), therefore for all \(y \) in \(A \) and for every \(i \in \{1, \ldots, n\} \), \(yx_i \) is in \(\langle x_1, \ldots, x_n \rangle \), whence \(\bar{y}x_i = 0 \). Therefore:

\[
 d_n \otimes_A 1_{\bar{A}}(x_{p_1} \wedge \ldots \wedge x_{p_n} \otimes_A \bar{y})
 = \sum_{j=1}^{n} (-1)^{i+1} (x_{p_1} \wedge \ldots \wedge x_{p_j} \wedge \ldots \wedge x_{p_n} \otimes_A yx_{p_j})
 = \sum_{j=1}^{n} (x_{p_1} \wedge \ldots \wedge x_{p_j} \wedge \ldots \wedge x_{p_n} \otimes_A \bar{0} = 0. \quad (3.7)
\]

Hence:

\[
 \text{Tor}_n^{\bar{A}}(\bar{A}, \bar{A}) = \text{Ker}(d_n \otimes_A 1_{\bar{A}})/\text{Im}(d_{n+1})
 = (\bigwedge_{A}^{d} \otimes_A \bar{A})/0 \cong (A^{(n)} \otimes_A \bar{A})/0
 = \bar{A}. \quad (3.8)
\]

Therefore by lemma \(\text{IH} \)

\[
 f_{d_A}(\bar{A}) \geq n. \quad (3.9)
\]

Hence:

\[
 f_{d_A}(\bar{A}) = n. \quad (3.10)
\]

Example 23. The \(\mathbb{Z}[x] \)-flat dimension of \(\mathbb{Z} \) as a \(\mathbb{Z}[x] \)-module is precisely \(1 \).

Proof. By example 20 \(x \) is a regular sequence on \(\mathbb{Z} \), moreover \(\mathbb{Z}[x]/\langle x \rangle \cong \mathbb{Z} \). Therefore proposition 23 therefore implies:

\[
 f_{d_{\mathbb{Z}[x]}(\mathbb{Z})} = 1. \quad (3.11)
\]

55
3 A lower bound for the Hochschild cohomological dimension

Example 24. The $\mathbb{Z}[x_1, \ldots, x_n]$-module $\mathbb{Z}[x_1, \ldots, x_n]$-flat dimension is precisely n.

Proof. x_1, \ldots, x_n is a regular sequence in $\mathbb{Z}[x_1, \ldots, x_n]$ by example 21 whence proposition 23 and $\mathbb{Z}[x_1, \ldots, x_n]/(x_1, \ldots, x_n) \cong \mathbb{Z}$ therefore implies:

$$fd_{\mathbb{Z}[x_1, \ldots, x_n]}(\mathbb{Z}) = n.$$ \hspace{1cm} (3.16)

Corollary 5. If A is a local ring with maximal ideal m and x_1, \ldots, x_n is a regular sequence in m then:

$$fd_{A}(A/(x_1, \ldots, x_n)) = n.$$ \hspace{1cm} (3.17)

Proof. Proposition 23 with the assumption that A is local.
Example 25. The $\mathbb{Z}[x_1, \ldots, x_n]$-module \mathbb{Z}'s $\mathbb{Z}[x_1, \ldots, x_n]$-flat dimension is precisely n.

Proof. A direct consequence of example 23 and lemma 5.

As in example 25, regular sequences provide a direct and precise way of computing flat dimension of a ring.

One more ingredient related to the flat dimension will soon be needed.

Proposition 24. If A is a commutative ring and m is a maximal ideal of A then for any A-module M $fd_{A_m}(M_m)$ is a lower-bound for $fd_A(M)$.

Proof. Case 1: $fd_A(M)$ is finite

1. Let d be the A-flat dimension of M. By definition, there is a deleted A-flat resolution F_* of M of length d. Since localization is exact, $A_m \otimes_A F_*$ is an exact sequence augmentable to $A_m \otimes_A M \cong M_m$.

2. Again since localization is exact, A_m is a flat A-module. Since the tensor product of flat modules is again flat, each $A_m \otimes_A F_i$ in $A_m \otimes_A F_*$ is flat as an A_m-module.

3. Therefore, $A_m \otimes_A F_i$ is an A_m-flat resolution of M_m of length d. Whence, by definition the A-flat dimension of M_m can therefore be at most d.

Case 2: $fd_A(M)$ is infinite

By definition of $fd_{A_m}(M_m)$:

$$fd_{A_m}(M_m) \leq \infty = fd_A(M).$$

Example 26. For any prime integer p the $\mathbb{Z}[x_1, \ldots, x_n]$-module $\mathbb{Z}(p)$'s $\mathbb{Z}[x_1, \ldots, x_n](x_1, \ldots, x_n, p)$-flat dimension is at most n.

Proof. For any prime integer p the ideal (x_1, \ldots, x_n, p) is a maximal ideal in $\mathbb{Z}[x_1, \ldots, x_n]$ [AA]. Therefore proposition 24 and example 25 imply $\mathbb{Z}(p)$'s $\mathbb{Z}[x_1, \ldots, x_n](x_1, \ldots, x_n, p)$-flat dimension is at most $fd_{\mathbb{Z}[x_1, \ldots, x_n]}(\mathbb{Z}) = n$.

3.1.2 Projective Dimension

Definition 42. A-Projective Dimension

If A is a commutative ring and M is an A-module then the A-projective dimension $pd_A(M)$ of M is the extended natural number n, defined as the shortest length of a deleted A-projective resolution of M. If no such finite n exists n is taken to be ∞.

Lemma 10.

If A is a commutative ring and M is an A-module then $fd_A(M) \leq pd_A(M)$.
3 A lower bound for the Hochschild cohomological dimension

Proof. Since all A-projective A-modules are A-flat then any A-projective resolution is an A-flat resolution.

Lemma 11.
If A is a commutative ring then for any A-module M the following are equivalent:

1. The A-projective dimension of M is at most n.
2. For every A-module N, the A-module $\text{Ext}^n_{A+1}(M, N)$ is trivial.
3. For every A-module N and every integer $m \geq n + 1$: $\text{Ext}^m_A(M, N) \cong 0$.

Proof. Nearly identical to the proof of theorem 3, see page 456 of [IH] for details.
Cohen-Macaulay At A Maximal Ideal

Definition 43. Cohen-Macaulay at a maximal ideal

A commutative ring A is said to be **Cohen-Macaulay at a maximal ideal** m if and only if either:

1. $Krull(A_m)$ is finite and there is an A_m-regular sequence x_1, \ldots, x_d in A_m of maximal length $d = Krull(A_m)$ such that $\{x_1, \ldots, x_d\} \subseteq m$.

2. $Krull(A_m)$ is infinite and for every positive integer d there is an A_m-regular sequence x_1, \ldots, x_d in m on A of length d.

Example 27. $\mathbb{Z}[x_1, \ldots, x_n]$ is Cohen-Macaulay at the maximal ideal (x_1, \ldots, x_n, p).

Proof. For legibility the ideal (x_1, \ldots, x_n, p) will be denoted I.

I is a maximal ideal in $\mathbb{Z}[x_1, \ldots, x_n]$ [AA]. The ring $\mathbb{Z}[x_1, \ldots, x_n]/I$ is of Krull dimension $Krull(\mathbb{Z}[x_1, \ldots, x_n]) = n + Krull(\mathbb{Z}) = n + 1$. Since \mathbb{Z} is an integral domain then p is a regular sequence on $\mathbb{Z} \cong \mathbb{Z}[x_1, \ldots, x_n]/(x_1, \ldots, x_n)$. Since x_1, \ldots, x_n was a regular sequence in $\mathbb{Z}[x_1, \ldots, x_n]$ (by example 20), p, x_1, \ldots, x_n must be a regular sequence on $\mathbb{Z}[x_1, \ldots, x_n]$ [SP]. Moreover $\frac{p}{1}, \frac{x_1}{1}, \ldots, \frac{x_n}{1}$ is a regular sequence in $\mathbb{Z}[x_1, \ldots, x_n]/I$ [SP]. Therefore there is a regular sequence in $\mathbb{Z}[x_1, \ldots, x_n]$ of length equal to $\mathbb{Z}[x_1, \ldots, x_n]$'s Krull dimension, whence that sequence must be maximal [SP]. Finally since p, x_1, \ldots, x_n is contained in the maximal ideal I (in fact it generates it [SP]) the localized sequence $\frac{p}{1}, \frac{x_1}{1}, \ldots, \frac{x_n}{1}$ is contained in the maximal ideal I in $\mathbb{Z}[x_1, \ldots, x_n]/I$ [SP]. Thus $\mathbb{Z}[x_1, \ldots, x_n]$ is Cohen-Macaulay at I.

Note 3. In particular if A is a commutative Cohen-Macaulay ring at the maximal ideal m such that A_m is of finite Krull dimension and x_1, \ldots, x_n is a maximal regular sequence in A_m then the A-module $A_m/(x_1, \ldots, x_n)$ will play an important role in the rest of this argument.

Proposition 25. If A is a commutative ring which is Cohen Macaulay at the maximal ideal m and $Krull(A_m)$ is finite then:

$$Krull(A_m) = fd_{A_m}(A_m/(x_1, \ldots, x_n)) \leq pd_{A_m}(A_m/(x_1, \ldots, x_n)) \tag{3.19}$$

Proof. Since A is Cohen-Macaulay at the maximal ideal m, there is a regular sequence x_1, \ldots, x_n in m of length $n = Krull(A_m)$. Denote $A_m/(x_1, \ldots, x_n)$ by ξ_m. By corollary 5

$$Krull(A_m) = fd_{A_m}(\xi_m). \tag{3.20}$$

Proposition 24 applied to (3.20) entails:

$$Krull(A_m) = fd_{A_m}(\xi_m) \leq fd_A(\xi_m) \tag{3.21}$$

Lastly lemma 10 bounds (3.21) above as follows:

$$Krull(A_m) = fd_{A_m}(\xi_m) \leq fd_A(\xi_m) \leq pd_A(\xi_m). \tag{3.22}$$

1 Usually it is also required that a Cohen-Macaulay ring also be Noetherian.
3.1.3 Global Dimension

Definition 44. Global Dimension

The global dimension \(D(A) \) of a ring \(A \), is defined as the supremum of all the \(A \)-projective dimensions of its \(A \)-modules. That is:

\[
D(A) := \sup_{M \in A_{\text{Mod}}} \text{pd}_A(M).
\]

(3.23)

Two classical results on Global dimension are now presented. They do not play a direct role in this paper but are presented only to showcase a more familiar interpretation of the global dimension of a ring.

Theorem 6. Auslander–Buchsbaum-Serre Theorem

If \(k \) is a commutative Noetherian local ring then:

\[
D(k) = \text{Krull}(k) \text{ if and only if } k \text{ is regular}
\]

(3.24)

Proof. See [IH].

Proposition 26. If \(k \) is a commutative Noetherian ring then \(D(k) \) equals to the supremum of \(D(k_m) \) taken over every maximal ideal \(m \) of \(k \).

Proof. See [IH].

Example 28. The global dimension of \(\mathbb{Z} \) is equal to 1.

Proof. Since \(\mathbb{Z} \) is a PID [AA] every maximal ideal in \(\mathbb{Z} \) is of the form \((p)\) for some prime integer \(p \) [AA]. Since the localization of a commutative Noetherian ring is again Noetherian [CA] each \(\mathbb{Z}_{(p)} \) is a Noetherian ring. Since \((p)\) is a maximal ideal in \(\mathbb{Z}_{(p)} \) then \(1 \leq \text{Krull}(\mathbb{Z}_{(p)}) \leq \text{Krull}(\mathbb{Z}) = 1 \). Whence theorem [6] implies \(D(\mathbb{Z}) = 1 \); therefore proposition [26] entails:

\[
\text{Krull}(\mathbb{Z}) = 1 = D(\mathbb{Z}).
\]

(3.25)
3.1.4 Relative Dimension Theory

The homological dimension theory presented thus far has been purely ring theoretic, entirely overlooking the k’s role in any k-algebra A.

The E^k_A-projective dimension and the A-projective dimension of a k-algebra A may be related as follows: The first step was taken by Hochschild circa 5 years ago in the following theorem:

Theorem 7. Hochschild (~1958)

If k is of finite global dimension, A is a k-algebra which is flat as a k-module and M is an A-module then:

$$pd_A(M) - D(k) \leq pd_{E^k_A}(M)$$ (3.26)

Proof. See [RG].

The rather strong assumption that A is k-flat may be weakened to only assuming A is of finite flat dimension over k. Thus theorem 7 may be generalized as follows:

Theorem 8.

If k is of finite global dimension and A is a k-algebra which is of finite flat dimension as a k-module, then for every A-module M:

$$pd_A(M) - D(k) - fd_k(A) \leq pd_{E^k_A}(M)$$ (3.27)

The proof of theorem 8 relies on the following lemma:

Lemma 12. If A is a k-algebra such that $fd_k(A) < \infty$ then:

$$(\forall M \in_k \text{Mod}) \; pd_A(A \otimes_k M) - fd_k(A) \leq pd_k(M)$$ (3.28)

Proof. For every k-module M and every A-module N there is a convergent third quadrant spectral sequence:

$$Ext^p_A(Tor^k(A,M),N) \Rightarrow Ext^{p+q}_A(M,\text{Hom}_A(A,N))$$ (3.29)

Moreover the adjunction $- \otimes_k A \dashv \text{Hom}_A(A,-)$ extends to a natural isomorphism:

$$(\forall p,q \in \mathbb{N}) Ext^{p+q}_A(M,\text{Hom}_A(A,N)) \cong Ext^p_A(M \otimes_k A,N)$$ (3.30)

Therefore there is a convergent third-quadrant spectral sequence:

$$Ext^p_A(Tor^k_A(A,M),N) \Rightarrow Ext^{p+q}_A(M \otimes_k A,N).$$ (3.31)

If $pd_A(N) < \infty$, then the result is immediate. Therefore assume that: $pd_A(N) < \infty$. If $p + q > fd_k(A) + pd_A(N)$ then either $p > pd_A(N)$ or $q > fd_k(A)$. In the case of the

$$0 \cong E^{p,q}_2 \cong E^{p,q}_\infty \cong Ext^{p+q}_A(M \otimes_k A,N)$$
3 A lower bound for the Hochschild cohomological dimension

and in the latter case

\[0 \cong E_{2}^{p,q} \cong E_{\infty}^{p,q} \cong \text{Ext}^{p+q}_{A}(M \otimes_{k} A, N) \]

also. Therefore

\[(\forall N \in \text{A Mod}) \ 0 \cong \text{Ext}^{n}_{A}(M \otimes_{k} A, N) \text{ if } n > fd_{k}(A) + pd_{A}(N);\]

hence: \(pd_{A}(M \otimes_{k} A) \leq fd_{k}(A) + pd_{A}(M) \).

Finally, the result follows since \(fd_{k}(A) \) is finite and therefore can be subtracted unambiguously.

Lemma 13. If \(A \) is a \(k \)-algebra then for any \(k \)-module \(M \) there is an \(\mathcal{E}^{k}_{A} \)-exact sequence:

\[
\begin{array}{ccccccccc}
0 & \longrightarrow & \text{Ker}(a) & \longrightarrow & A \otimes_{k} M & \longrightarrow & M & \longrightarrow & 0 \\
& & \alpha & & & & & & \\
\end{array}
\] (3.32)

Where \(\alpha \) be the map defined on elementary tensors \((a \otimes_{k} m) \) in \(A \otimes_{k} M \) as \(a \otimes_{k} m \mapsto a \cdot m \).

Proof. \(\alpha \) is \(k \)-split by the map \(\beta : M \rightarrow A \otimes_{k} M \) defined on elements \(m \in M \) as \(m \mapsto 1 \otimes_{k} m \). Indeed if \(m \in M \) then:

\[\alpha \circ \beta(m) = \alpha(1 \otimes_{k} m) = 1 \cdot m = m. \] (3.33)

Lemma 14. If \(M \) and \(N \) are \(A \)-modules then:

\[pd_{A}(M) \leq pd_{A}(M \oplus N). \] (3.34)

Proof.

\[(\forall n \in \mathbb{N})(\forall X \in \text{A Mod}) \ \text{Ext}^{n}_{A}(M, X) \oplus \text{Ext}^{n}_{A}(N, X) \cong \text{Ext}^{n}_{A}(M \oplus N, X). \] (3.35)

Therefore \(\text{Ext}^{n}_{A}(M \oplus N, X) \) vanishes only if both \(\text{Ext}^{n}_{A}(M, X) \) and \(\text{Ext}^{n}_{A}(N, X) \) vanish. Lemma 11 then implies: \(pd_{A}(M) \leq pd(M \oplus N) \).

Proof of Theorem 8

Proof.

Case 1: \(pd_{\mathcal{E}^{k}_{A}}(M) = \infty \)

By definition \(pd_{A}(M) \leq \infty \) therefore trivially if \(pd_{\mathcal{E}^{k}_{A}}(M) = \infty \) then:

\[pd_{A}(M) \leq pd_{\mathcal{E}^{k}_{A}}(M) + D(k). \] (3.36)
Since k’s global dimension is finite hence (3.36) implies:

$$pd_A(M) - D(k) \leq \infty = pd_{\mathcal{E}_A^k}(M).$$ \hspace{1cm} (3.37)

Case 2: $pd_{\mathcal{E}_A^k}(M) < \infty$

Let $d := pd_{\mathcal{E}_A^k}(M) + D(k) + fd_k(A)$. The proof will proceed by induction on d.

Base: $d = 0$

Suppose $pd_{\mathcal{E}_A^k}(M) = 0$.

By theorem 3, M is \mathcal{E}_A^k-projective. Lemma 13 implies there is an \mathcal{E}_A^k-exact sequence:

$$0 \rightarrow \text{Ker}(\alpha) \rightarrow A \otimes_k M \rightarrow M \rightarrow 0.$$ \hspace{1cm} (3.38)

Proposition 11 implies that (3.38) is A-split therefore M is a direct summand of the A-module $A \otimes_k M$. Hence lemma 13 implies:

$$pd_A(M) \leq pd_A(M \otimes_k A).$$ \hspace{1cm} (3.39)

Lemma 12 together with (3.39) imply:

$$pd_A(M) \leq pd_A(M \otimes_k A) \leq pd_k(M).$$ \hspace{1cm} (3.40)

Definition 45 and (3.40) together with the assumption that $pd_{\mathcal{E}_A^k}(M) = 0$ imply:

$$pd_A(M) \leq pd_k(M) \leq D(k) = D(k) + 0 + 0 = D(k) + pd_{\mathcal{E}_A^k}(M) + fd_k(A).$$ \hspace{1cm} (3.41)

Since k’s global dimension and $fd_k(A)$ are finite then (3.41) implies:

$$pd_A(M) - D(k) - fd_k(A) \leq pd_{\mathcal{E}_A^k}(M).$$ \hspace{1cm} (3.42)

Inductive Step: $d > 0$

Suppose the result holds for all A-modules K such that $pd_{\mathcal{E}_A^k}(K) + D(k) + fd_k(A) = d$ for some integer $d > 0$. Again appealing to lemma 13 there is an \mathcal{E}_A^k-exact sequence:

$$0 \rightarrow \text{Ker}(\alpha) \rightarrow A \otimes_k M \rightarrow M \rightarrow 0.$$ \hspace{1cm} (3.43)

Proposition 11 implies $A \otimes_k M$ is \mathcal{E}_A^k-projective; whence (3.43) implies:

$$pd_{\mathcal{E}_A^k}(\text{Ker}(\alpha)) + 1 = pd_{\mathcal{E}_A^k}(M).$$ \hspace{1cm} (3.44)
3 A lower bound for the Hochschild cohomological dimension

Since $Ker(\alpha)$ is an A-module of strictly smaller E_k^k-projective dimension than M the induction hypothesis applies to $Ker(\alpha)$ whence:

$$pd_A(Ker(\alpha)) + 1 \leq pd_{E_k^k}(Ker(\alpha)) + 1 + D(k) + fd_k(A) \leq pd_{E_k^k}(M) + D(k) + fd_k(A).$$

(3.45)

The proof will be completed by demonstrating that: $pd_A(M) \leq pd_A(Ker(\alpha)) + 1$.

For any $N \in_A Mod Ext^*_A(-,N)$ applied to (3.43) gives way to the long exact sequence in homology, particularly the following of its segments are exact:

$$Ext^{n-1}_A(A \otimes_k M, N) \xrightarrow{\partial^n} Ext^n_A(Ker(a), N) \xrightarrow{\partial^n} Ext^n_A(M, N) \xrightarrow{\partial^n} Ext^n_A(A \otimes_k M, N)$$

(3.46)

Since $A \otimes_k M$ is E_k^k-projective $pd_{E_k^k}(A \otimes_k M) = 0$, therefore by the base case of the induction hypothesis $pd_A(A \otimes_k M) \leq pd_{E_k^k} + D(k) + fd_k(A) = D(k) + fd_k(A)$; thus for every positive integer $n \geq D(k)$ (in particular d is at least n):

$$(\forall N \in_A Mod) Ext^{n-1}_A(A \otimes_k M, N) \cong 0 \cong Ext^n_A(A \otimes_k M, N);$$

(3.47)

whence ∂^n must be an isomorphism. Therefore lemma [11] implies $pd_A(M)$ is at most equal to $pd_A(Ker(\alpha)) + 1$.

Therefore:

$$pd_A(M) \leq pd_A(Ker(\alpha)) + 1$$

(3.48)

$$\leq pd_{E_k^k}(Ker(\alpha)) + 1 + D(k) + fd_k(A)$$

(3.49)

$$\leq pd_{E_k^k}(M) + D(k) + fd_k(A).$$

(3.50)

Finally since k is of finite global dimension and A is of finite k-flat dimension then (3.50) implies:

$$pd_A(M) - D(k) - fd_k(A) \leq pd_{E_k^k}(M);$$

(3.51)

thus concluding the induction.
3 A lower bound for the Hochschild cohomological dimension

3.1.5 \mathcal{E}^k-Global Dimension

The final numerical invariant used herein will now be presented before the last central result of this masters’ thesis is presented.

Definition 45. \mathcal{E}^k-Global Dimension

The \mathcal{E}^k-global Dimension $D_{\mathcal{E}^k}(A)$ of a k-algebra A is defined as the supremum of all the \mathcal{E}^k-projective dimensions of its A-modules. That is:

$$D_{\mathcal{E}^k}(A) := \sup_{M \in A\text{Mod}} \text{pd}_{\mathcal{E}^k_A}(M).$$ \hspace{1cm} (3.52)

Remark 7. The classical global dimension ignores the influence of k on a k-algebra A; however the relative theory takes it into account.

Example 29. $D_{\mathcal{E}^k_{\mathbb{Z}(p)}}(\mathbb{Z}(p)[x_1, \ldots, x_n]) = n$

Proof. See theorem 2 in [RG] with $R := \mathbb{Z}(p)$.

3.2 A Lower Bound On The Hochschild Cohomological Dimension

This original result is the second central result of this master’s thesis and it is now presented. One of its central purposes is to generalize the claim made by Cuntz and Quillen at the beginning of [AE] stating that commutative k-algebras over a field are not quasi-free is they are of Krull dimension above 1.

Note 4. Let A be a k-algebra, $i : k \to A$ the morphism defining the k-algebra A and \mathfrak{m} a maximal ideal in A. For legibility the $\mathcal{E}^k_{A_{\mathfrak{m}^{-1}[\mathfrak{m}]}}$-projective dimension of an $A_{\mathfrak{m}}$-module N will be abbreviated by $\text{pd}_{\mathcal{E}^k_{\mathfrak{m}}}(N)$ (instead of writing $\text{pd}_{\mathcal{E}^k_{A_{\mathfrak{m}^{-1}[\mathfrak{m}]}}}(N)$).
3 A lower bound for the Hochschild cohomological dimension

Lemma 15. If \(A \) is a commutative \(k \)-algebra and \(m \) is a non-zero prime ideal in \(A \) then for every \(A \)-module \(M \):

\[
\text{pd}_k^{e_k}(M_p) \leq \text{pd}_A^{e_A}(M),
\]

where \(i : k \to A \) is the inclusion of \(k \) into \(A \).

Proof. Since \(p \) is a prime ideal in \(A \), \(i^{-1}[p] \) is a prime ideal in \(k_{i^{-1}[p]} \), whence the localized ring \(k_{i^{-1}[p]} \) is a well-defined sub-ring of \(A_p \). Let

\[
\cdots \xrightarrow{d_{n+1}} P_n \xrightarrow{d_n} \cdots \xrightarrow{d_2} P_1 \xrightarrow{d_1} P_0 \xrightarrow{d_0} M \xrightarrow{0}
\]

be an \(e_A^k \)-projective resolution of an \(A \)-module \(M \). The exactness of localization \([CA] \) implies:

\[
\cdots \xrightarrow{d_{n+1}} P_n \otimes_A A_p \xrightarrow{d_n \otimes_A A_p} \cdots \xrightarrow{d_2 \otimes_A A_p} P_1 \otimes_A A_p \xrightarrow{d_1 \otimes_A A_p} P_0 \otimes_A A_p \xrightarrow{d_0 \otimes_A A_p} M \otimes_A A_p \xrightarrow{0}
\]

is exact. It will now be verified that \((3.55)\) is a \(e_{p,k}^A \)-projective resolution of the \(A_m \)-module \(M_p \).

The \(d_n \otimes_A A_m \) are \(k_{i^{-1}[p]} \)-split

Since \((3.54)\) was \(k \)-split then for every \(i \in \mathbb{N} \) there existed a \(k \)-module homomorphism \(s_i : P_{n-i} \to P_n \) (where for convenience write \(P := M \)) satisfying \(d_i = d_i \circ s_i \circ d_i \). Since \(A_p \) is a \(k_{i^{-1}[p]} \)-algebra \(A_p \) may be viewed as a \(k_{i^{-1}[p]} \)-module therefore the maps: \(s_i \otimes_A 1_{A_p} \) are \(k_{i^{-1}[p]} \)-module homomorphisms; moreover they must satisfy:

\[
d_i \otimes_A 1_{A_p} = d_i \otimes_A 1_{A_p} \circ s_i \otimes_A 1_{A_p} \circ d_i \otimes_A 1_{A_p}.
\]

Therefore \((3.55)\) is \(k_{i^{-1}[p]} \)-split-exact.

The \(P_i \otimes_A A_p \) are \(e_{p,k}^A \)-projective

For each \(i \in \mathbb{N} \) if \(P_i \) is \(e_A^k \)-projective therefore proposition \([11] \) implies there exists some \(A \)-module \(Q \) and some \(k \)-module \(X \) satisfying:

\[
P_i \oplus Q \cong A \otimes_k X.
\]

Therefore:

\[
(P_i \otimes_A A_p) \oplus (Q \otimes_A A_p) \cong (P_i \otimes_A Q) \otimes_A A_p \cong (A \otimes_k X) \otimes_A A_p
\]

\[
\cong (A \otimes_k X) \otimes_A (A_p \otimes_{k_{i^{-1}[p]}} k_{i^{-1}[p]})
\]

Since \(A, k \) and \(k_{i^{-1}[p]} \) are commutative rings the tensor products \(- \otimes_A -\), \(- \otimes_k -\) and \(- \otimes_{k_{i^{-1}[p]}} -\) are symmetric \([IH] \), hence \((3.58)\) implies:

\[
(P_i \otimes_A A_p) \oplus (Q \otimes_A A_p) \cong (A \otimes_k X) \otimes_A (A_p \otimes_{k_{i^{-1}[p]}} k_{i^{-1}[p]})
\]

\[
\cong (A_p \otimes_A A) \otimes_{k_{i^{-1}[p]}} (k_{i^{-1}[p]} \otimes_k X)
\]

66
3 A lower bound for the Hochschild cohomological dimension

Since A is a subring of A_p then (3.59) implies:

$$\left(P_i \otimes_{A_p} A \right) \oplus (Q \otimes_{A_p} A) \cong A_p \otimes_{k^{-1}[p]} (k^{-1}[p] \otimes_k X).$$ (3.60)

$(k^{-1}[p] \otimes_k X)$ may be viewed as a $k^{-1}[p]$-module with action \cdot defined as:

$$(\forall c \in k)(\forall (e' \otimes_k x) \in k^{-1}[p] \otimes_k X) c' (e' \otimes_k x) := c \cdot e' \otimes x.$$ (3.61)

Since $(k^{-1}[p] \otimes_k X)$ is a $k^{-1}[p]$-module then for each $i \in \mathbb{N}$ $(P_i \otimes_{A_p} A)$ is a direct summand of an A_m-module of the form $A_p \otimes_{k^{-1}[p]} X$ where X' is a $k^{-1}[p]$-module, thus proposition 11 implies that $P_i \otimes_{A_p} A$ is A_p-projective.

Hence (3.55) is an $\mathcal{E}_{p,k}$-projective resolution of $M \otimes_{A_p} A_p \cong M_p$; whence:

$$pd_{\mathcal{E}_{p,k}}(M_p) \leq pd_{\mathcal{E}_{p,k}}(M).$$ (3.62)

All the homological dimensions discussed to date are related as follows:

Proposition 27. If A is a commutative k-algebra and p be a non-zero prime ideal in A such that A_p is has finite flat dimension as a $k^{-1}[p]$-module and $D(k^{-1}[p])$ is finite then there is a string of inequalities:

$$fd_{A_p}(M_p) - D(k^{-1}[p]) \leq pd_{A_p}(M_p) - D(k^{-1}[p]) \leq pd_{\mathcal{E}_{p,k}}(M_p) \leq pd_{\mathcal{E}_{p,k}}(M) \leq D_{\mathcal{E}_{p,k}}(A)$$ (3.63)

Proof:

1. By definition: $pd_{\mathcal{E}_{p,k}}(M) \leq D_{\mathcal{E}_{p,k}}(A)$.

2. By lemma 15 $pd_{\mathcal{E}_{p,k}}(M_p) \leq pd_{\mathcal{E}_{p,k}}(M)$

3. Since A_p is flat as a $k^{-1}[p]$-module and $D(k^{-1}[p])$ is finite theorem 8 entails:

$$pd_{A_p}(M_p) - D(k^{-1}[p]) - fd_{k^{-1}[p]}(A_p) \leq pd_{\mathcal{E}_{p,k}}(M_p)$$

4. Lemma 10 implies:

$$fd_{A_p}(M_p) \leq pd_{A_p}(M_p).$$ (3.64)

Since the global dimension of $k^{-1}[p]$ was assumed to be finite (3.64) implies:

$$fd_{A_p}(M_p) - D(k^{-1}[p]) - fd_{k^{-1}[p]}(A_p) \leq pd_{A_p}(M_p) - D(k^{-1}[p]) - fd_{k^{-1}[p]}(A_p).$$ (3.65)

\square
3 A lower bound for the Hochschild cohomological dimension

Lemma 16. If A is a commutative k-algebra and M and N be A-modules, then there are natural isomorphisms:

\[\text{Ext}_A^n(M,N) \cong \text{HH}^n(A,\text{Hom}_k(M,N)) \cong \text{Ext}_{\text{Mod}_k}^n(A,\text{Hom}_k(M,N)). \]

(3.66)

Proof.

1. For any (A,A)-bimodule $X, X \otimes_A M$ is an (A,A)-bimodule [HH][Cor. 2.53].

2. Moreover there are natural isomorphisms:

\[\text{Hom}_{\text{Mod}}(X \otimes_A M, N) \xrightarrow{\cong} \text{Hom}_{\text{Mod}_k}(X, \text{Hom}_{\text{Mod}}(M,N)) \]

(3.67)

In particular (3.67) implies that for every n in \mathbb{N} there is an isomorphism which is natural in the first input:

\[\text{Hom}_{\text{Mod}}(A^{\otimes n} \otimes_A M, N) \xrightarrow{\psi_n} \text{Hom}_{\text{Mod}_k}(A^{\otimes n}, \text{Hom}_{\text{Mod}}(M,N)). \]

(3.68)

Whence if $b_{n+1} : A^{\otimes n+3} \to A^{\otimes n+2}$ is the nth map in the Bar complex (recall example [7]) and for legibility denote $\text{Hom}_{\text{Mod}_k}(b_{n+1}, \text{Hom}_k(M,N))$ by β_n. The naturality of the maps ψ_n imply the following diagram of k-modules commutes:

\[\begin{array}{ccc}
\text{Hom}_{\text{Mod}}(A^{\otimes n+2} \otimes_A M, N) & \xrightarrow{\psi_n} & \text{Hom}_{\text{Mod}_k}(A^{\otimes n+2}, \text{Hom}_{\text{Mod}}(M,N)) \\
\psi_{n+1} \circ \beta_n & & \beta_n \\
\text{Hom}_{\text{Mod}}(A^{\otimes n+3} \otimes_A M, N) & \xrightarrow{\psi_{n+1}} & \text{Hom}_{\text{Mod}_k}(A^{\otimes n+3}, \text{Hom}_{\text{Mod}}(M,N))
\end{array} \]

(3.69)

3. Therefore for every n in \mathbb{N}:

\[(\psi_{n+2}^{-1} \circ \beta_{n+1} \circ \psi_{n+1}) \circ (\psi_{n+1}^{-1} \circ \beta_n \circ \psi_n) = \beta_{n+1} \circ \beta_n = 0. \]

(3.70)

Whence $< \text{Hom}_{\text{Mod}}(A^{\otimes n + 2} \otimes_A M, N), (\psi_{n+1}^{-1} \circ \beta_n \circ \psi_n) >$ is a chain complex. Moreover the commutativity of (3.69) implies:

\[(\forall n \in \mathbb{N}) \ H^n(\text{Hom}_{\text{Mod}}(A^{\otimes n + 2} \otimes_A M, N)) = \text{Ker}(\psi_{n+1}^{-1} \circ \beta_n \circ \psi_n) / \text{Im}(\psi_{n+1}^{-1} \circ \beta_{n+1} \circ \psi_{n+1}) \]

\[\cong \text{Ker}(\beta_n) / \text{Im}(\beta_{n+1}) = H^n(\text{Hom}_{\text{Mod}_k}(A^{\otimes n + 2}, \text{Hom}_{\text{Mod}}(M,N))). \]

\[= \text{HH}^n(A, \text{Hom}_k(M,N)) \]

(3.71)
3 A lower bound for the Hochschild cohomological dimension

Furthermore proposition 16 implies there are natural isomorphisms:

\[HH^n(A, \text{Hom}_k(M, N)) \cong \text{Ext}^n_{\simeq}^k(A, \text{Hom}_k(M, N)); \]

(3.72)

Whence for all \(n \) in \(\mathbb{N} \) there are natural isomorphisms:

\[H^n(\text{Hom}, \text{Mod}((A \otimes A^+ M, N)) \cong HH^n(A, \text{Hom}_k(M, N)) \cong \text{Ext}^n_{\simeq}^k(A, \text{Hom}_k(M, N)). \]

(3.73)

4. Finally if \(M \) is an \(A \)-module then \(< \text{Hom}, \text{Mod}((A \otimes A^+ M, N), (\psi^{-1} \circ \beta \circ \psi) >\) calculates the \(\delta_A^k \)-relative Ext groups of \(M \) with coefficients in \(N \); therefore there are natural isomorphisms:

\[H^n(\text{Hom}, \text{Mod}((A \otimes A^+ M, N)) \cong \text{Ext}^n_{\simeq}^k(M, N) \]

(3.74)

5. Putting it all together, for every \(n \) in \(\mathbb{N} \) there are natural isomorphisms:

\[\text{Ext}^n_{\simeq}^k(A, \text{Hom}_k(M, N)) \cong HH^n(A, \text{Hom}_k(M, N)) \cong \text{Ext}^n_{\simeq}^k(A, \text{Hom}_k(M, N)). \]

(3.75)

\[\square \]

Theorem 9.

Let \(A \) be a commutative \(k \)-algebra and \(\mathfrak{p} \) be a non-zero prime ideal in \(A \) such that \(A_{\mathfrak{p}} \) is of finite flat dimension as a \(k_{\mathfrak{p}^{-1}} \)-module and \(D(k_{\mathfrak{p}^{-1}}) \) is finite.

1. For every \(A \)-module \(M \) there is a string of inequalities:

\[fd_A(M) - D(k_{\mathfrak{p}^{-1}}) - fd_{k_{\mathfrak{p}^{-1}}} (A_{\mathfrak{p}}) \leq pd_{A_{\mathfrak{p}}} (M_{\mathfrak{p}}) - D(k_{\mathfrak{p}^{-1}}) - fd_{k_{\mathfrak{p}^{-1}}} (A_{\mathfrak{p}}) \]

\[\leq pd_{A_{\mathfrak{p}}} (M_{\mathfrak{p}}) \leq pd_{A_{\mathfrak{p}}} (M) \leq D_{\mathfrak{p}}(A) \]

\[\leq H\text{Cdim}(A/k) \]

(3.76)

(3.77)

2. If \(A \) is Cohen-Macaulay at some prime ideal \(\mathfrak{p} \)

Then \(\text{Krull}(A_{\mathfrak{p}}) - D(k_{\mathfrak{p}^{-1}}) - fd_{k_{\mathfrak{p}^{-1}}} (A_{\mathfrak{p}}) \leq H\text{Cdim}(A/k). \)

In this scenario: if \(A_{\mathfrak{p}} \) is of Krull dimension at least \(2 + D(k_{\mathfrak{p}^{-1}}) + fd_{k_{\mathfrak{p}^{-1}}} (A_{\mathfrak{p}}) \) then \(A \) is not Quasi-free.

Proof.

1. For any \(A \)-modules \(M \) and \(N \) lemma 16 implied:

\[\text{Ext}^*_{\delta_A}(N, M) \cong HH^*(A, \text{Hom}_k(N, M)). \]

(3.78)
Therefore taking supremums over all the A-modules M, N, of the integers n for which (3.78) is non-trivial implies:

$$D_{\phi k}(A) = \sup_{M,N \in A\text{Mod}} \left(\sup \{n \in \mathbb{N}^n | \text{Ext}^n(M,N) \neq 0 \} \right)$$

(3.79)

$$= \sup_{M,N \in A\text{Mod}} \left(\sup \{n \in \mathbb{N}^n | \text{HH}^n(A, Hom_k(N,M)) \neq 0 \} \right).$$

(3.80)

$Hom_k(N,M)$ is only a particular case of an A^e-module; therefore taking supremums over all A-modules bounds (3.80) above as follows:

$$D_{\phi k}(A) \leq \sup_{M \in A^e\text{Mod}} \left(\sup \{n \in \mathbb{N}^n | \text{HH}^n(A, \tilde{M}) \neq 0 \} \right).$$

(3.81)

Moreover the characterization of quasi-freeness given in corollary 2 implies that A cannot be quasi-free if:

$$2 + D(k_i-1[p]) + fd_{k_i-1[p]}(A_p) \leq \text{Krull}(A_p).$$

(3.86)

Case 2: $\text{Krull}(A_p)$ is infinite

For every positive integer d there exists an A_p-regular sequence x_1^d, \ldots, x_d^d in p of length $d := \text{Krull}(A_p)$ in A_p. Therefore proposition 23 implies:

$$\text{Krull}(A_p) = fd_{A_p}(A_p/(x_1, \ldots, x_n)).$$

(3.84)

Part 1 of theorem 9 applied to (3.84) implies:

$$\text{Krull}(A_p) - D(k_i-1[p]) - fd_{k_i-1[p]}(A_p) = fd_{A_p}(A_p) - D(k_i-1[p]) - fd_{k_i-1[p]}(A_p) \leq HCDim(A/k).$$

(3.85)

Moreover the characterization of quasi-freeness given in corollary 2 implies that A cannot be quasi-free if:

$$2 + D(k_i-1[p]) + fd_{k_i-1[p]}(A_p) \leq \text{Krull}(A_p).$$

(3.86)
3 A lower bound for the Hochschild cohomological dimension

Therefore part 1 of theorem[9] implies:

\[(\forall d \in \mathbb{Z}^+) \quad d - D(k_{i-1}[p]) - f d_{k_{i-1}[p]}(A_p) = f d_{k_i}(A_p/(x_1^d, \ldots, x_d^d)) - D(k_{i-1}[p]) - f d_{k_{i-1}[p]}(A_p) \leq \text{HCdim}(A/k). \]

(3.88)

Since \(D(k)\) is finite:

\[\infty - D(k_{i-1}[p]) - f d_{k_{i-1}[p]}(A_p) = \infty \leq \text{HCdim}(A/k). \]

(3.89)

Since \(\text{Krull}(A_p)\) is infinite (3.89) implies:

\[\text{Krull}(A_p) - D(k_{i-1}[p]) - f d_{k_{i-1}[p]}(A_p) = \infty = \text{HCdim}(A/k). \]

(3.90)

In this case corollary[8] implies that \(A\) is not quasi-free.

\[\square\]
4 Conclusion: Negative Examples

Example 30. Arithmetic Polynomial-Algebras
The \(\mathbb{Z}[x_1, \ldots, x_n] \) fails to be quasi-free for values of \(n > 1 \).

Proof. In example 27 it was observed that \(\mathbb{Z}[x_1, \ldots, x_n] \) is Cohen-Macaulay at the maximal ideal \((x_1, \ldots, x_n, p) \) and is of Krull dimension \(n + 1 = \text{Krull}(\mathbb{Z}[x_1, \ldots, x_n]) \). In example 28 it was observed that \(D(\mathbb{Z}) = 1 \); whence by 2 of theorem 9 \(\mathbb{Z}[x_1, \ldots, x_n] \) fails to be Quasi-free if \(2 \leq \text{Krull}(\mathbb{Z}[x_1, \ldots, x_n]) - D(\mathbb{Z}) = (n + 1) - 1 = n \). \(\square \)

Cuntz’s and Quillen’s Formulation over a field

Cuntz’s and Quillen’s classical claim [AE] may be recovered as a special case of theorem 9.

Definition 46. Regular \(\mathbb{C} \)-algebra
A commutative \(\mathbb{C} \)-algebra \(A \) is called regular if and only if for each maximal ideal \(\mathfrak{m} \) in \(A \): \(\text{Krull}(A_{\mathfrak{m}}) \) is finite and there is a regular sequence \(x_1, \ldots, x_d \) in \(\mathfrak{m} \) of length \(d = \text{Krull}(A) = \text{Krull}(A_{\mathfrak{m}}) \) such that the set \(\{x_1, \ldots, x_d\} \) generates the maximal ideal \(\mathfrak{m} \).

By definition:

Proposition 28. If \(A \) is a commutative regular \(\mathbb{C} \)-algebra then \(A \) is Cohen-Macaulay at all of its maximal ideals.

Corollary 6. If \(A \) is a regular commutative \(\mathbb{C} \)-algebra then \(A \) is not quasi-free if its Krull dimension exceeds 1.

Proof. The condition for 2 in theorem 9 will be verified to hold.

1. Since \(\mathbb{C} \) is a field then all \(\mathbb{C} \)-modules are free [IH], therefore every \(\mathbb{C} \)-module is projective \(M \) [IH]. By definition of the \(\mathbb{C} \)-projective dimension of a \(k \)-module \(M \):

\[
(\forall M \in \mathbb{C} \text{Mod}) pd_{\mathbb{C}}(M) = 0.
\]

(4.1)

Whence \(D(\mathbb{C}) = 0 \).

2. Since \(\mathbb{C} \) is a field, the \(\mathbb{C} \)-module \(A \) is free [IH] therefore it is \(\mathbb{C} \)-projective [IH] and so it is \(\mathbb{C} \)-flat [IH].

72
3. Since every \(C \)-algebra has a maximal ideal and \(A \) was assumed to be regular as a \(C \)-algebra. Then there exists some maximal ideal \(m \) in \(A \) for which \(A \) is Cohen-Macaulay at \(m \).

Fix a maximal ideal \(m \) in \(A \), since \(Krull(A) \) was assumed to equal \(Krull(A_m) \) then 1, 2 and 3 verify that if: \(Krull(A) = Krull(A_m) > 1 \) then theorem \(\text{[9]} \)’s 2 is applicable; whence \(A \) fails to be quasi-free.

\[\square \]

An application to affine algebraic \(C \)-Varieties

Algebraic \(C \)-varieties By viewing polynomials in \(C[x_1, \ldots, x_n] \) as functions on \(C^n \), to \(C^n \) there may be associated a topological space whose underlying pointset is itself and who’s topology is generated by the sets \(D(f) := \{ z \in C^n \mid f(z) \neq 0 \} \) where \(f \in C[x_1, \ldots, x_n] \) (these are called principal open sets). This topological space is called affine \(n \)-space and is denoted by \(A^n_C \).

An **affine \(C \)-algebra** \(A \) is a \(C \)-algebra which contains no nilpotent elements and can be written as the quotient \(C[x_1, \ldots, x_n]/I \) of a polynomial \(C \)-algebra \(C[x_1, \ldots, x_n] \) in \(n \) variables by one of its ideals \(I \) (where \(n \) is some natural number). To any such \(C \)-algebra \(A \) there may be attributed a topological space \(V(A) \) called the **affine algebraic \(C \)-variety** associated to \(A \). \(V(A) \)'s pointset is defined as \(\{ z \in C^n : (\forall f \in A) f(z) = 0 \} \) and \(V(A) \)'s topology is defined as the topology induced by the inclusion function \(\{ z \in C^n : (\forall f \in A) f(z) = 0 \} \subseteq C^n \).

If \(U \) is an open subset of \(V(A) \) then the collection of all \(C \)-valued functions \(f \) on \(U \), such that for each point \(x \) of \(U \) there exists an open neighbourhood \(U_x \) of \(x \) contained in \(U \) and \(g, h \in A \) satisfying: for all \(v \in U_x \) \(g(v) \neq 0 \) and \(f(v) = \frac{h(v)}{g(v)} \), is denoted by \(\mathcal{O}_{V(A)}(U) \). \(\mathcal{O}_{V(A)}(U) \) may be given the structure of a \(C \)-algebra. The elements of \(\mathcal{O}_{V(A)}(U) \) are called **regular functions on** \(U \). Moreover \(\mathcal{O}_{V(A)}(V(A)) \cong A \) (as \(C \)-algebras) and \(V(\mathcal{O}_{V(A)}(V(A))) = V(A) \).

If \(A \) and \(B \) are affine \(C \)-algebras then a continuous function \(\phi : V(A) \to V(B) \) is said to be a **morphism (of affine \(C \)-varieties)** if and only if for every open subset \(U \) of \(V(B) \) and for every regular function \(f \) on \(U \) \(f \circ \phi^{-1} [U] \) is a regular function on \(\phi^{-1} [U] \). For example, if \(V(A) \) and \(V(B) \) are affine \(C \)-varieties such that \(V(A) \) is a topological subspace of \(V(B) \), then the inclusion map \(i : V(A) \to V(B) \) is a morphism and \(V(A) \) is called an affine **sub-variety** of \(V(B) \).

Definition 47. Linear algebraic \(C \)-group

A linear algebraic \(C \)-group is a triple \(G_A :=< V(A), m, i > \) of an affine algebraic variety \(V(A) \) which is a group, and two morphisms of affine \(C \)-varieties \(m : V(A) \times V(A) \to V(A) \) and \(i : V(A) \to V(A) \) satisfying:

1. \((\forall g, g' \in V(A)) m(g, g') = gg' \), where \(gg' \) is the multiplication of the elements \(g \) and \(g' \) of the group \(V(A) \).

2. \((\forall g \in V(A)) i(g) = g^{-1} \), where \(g^{-1} \) is the multiplicative inverse of the element \(g \) of the group \(V(A) \).

1. \(\phi^{-1} [U] \) is open by the continuity of \(\phi \).
4 Conclusion: Negative Examples

A is called the coordinate ring of \(G_A \).

Proposition 29. If \(A \) is the coordinate ring of a linear algebraic \(\mathbb{C} \)-group is a regular \(\mathbb{C} \)-algebra.

Proof. See [SP]. □

GL\(_2\)(\(\mathbb{C} \))

The set of all \(2 \times 2 \) matrices with coefficients in \(\mathbb{C} \) may be viewed as the affine-algebraic \(\mathbb{C} \)-variety \(V(\mathbb{C}[x_{1,1},x_{1,2},x_{2,1},x_{2,2}]) \) [LA]. Since the sub-collections of all these matrices consisting of the invertible \(2 \times 2 \) matrices (that is the collection of all \(2 \times 2 \) matrices with entries in \(\mathbb{C} \) whose determinant does not vanish) forms a group [AA], the sub-variety of \(V(\mathbb{C}[x_{1,1},x_{1,2},x_{2,1},x_{2,2}]) \) consisting of all invertible \(2 \times 2 \) can then viewed as a linear algebraic \(\mathbb{C} \)-group. Explicitly:

Proposition 30. The determinant \(\text{det} : \mathbb{A}^4_\mathbb{C} \to \mathbb{C} \) is a polynomial function, in particular \(\text{det} \) is an ideal in \(\mathbb{C}[x_{1,1},x_{1,2},x_{2,1},x_{2,2}] \).

Proof. See [LA]. □

The collection consisting of all the invertible \(2 \times 2 \) matrices with entries in \(\mathbb{C} \) may be viewed as the sub-variety of \(V(\mathbb{C}[x_{1,1},x_{1,2},x_{2,1},x_{2,2}]) \) on which the determinant function does not vanish, that is:

Definition 48. General Linear \(\mathbb{C} \)-group

The General Linear \(\mathbb{C} \)-group denoted \(\text{GL}_2(\mathbb{C}) \), is defined as the triple:

\[
\langle V(\mathbb{C}[x_{1,1},x_{1,2},x_{2,1},x_{2,2}]_{\text{det}}), m_{\text{GL}_2(\mathbb{C})}, i_{\text{GL}_2(\mathbb{C})} \rangle
\]

where \(m_{\text{GL}_2(\mathbb{C})} \) takes a pair of matrices \(X,Y \in V(\mathbb{C}[x_{1,1},x_{1,2},x_{2,1},x_{2,2}]_{\text{det}}) \) to their matrix multiplication \(XY \) and \(i_{\text{GL}_2(\mathbb{C})} \) takes a matrix \(Y \in V(\mathbb{C}[x_{1,1},x_{1,2},x_{2,1},x_{2,2}]_{\text{det}}) \) to its inverse matrix \(Y^{-1} \).

Note 5. It is confirmed in [LA] that \(\text{det} \), \(m_{\text{GL}_2(\mathbb{C})} \) and \(i_{\text{GL}_2(\mathbb{C})} \) are indeed morphisms of affine \(\mathbb{C} \)-varieties.

Example 31. The \(\mathbb{C} \)-algebra \(\mathbb{C}[x_{1,1},x_{1,2},x_{2,1},x_{2,2}]_{\text{det}} \) is regular.

Proof. Since \(\mathbb{C}[x_{1,1},x_{1,2},x_{2,1},x_{2,2}]_{\text{det}} \) is the coordinate ring of a linear algebraic \(\mathbb{C} \)-group proposition 29 implies it is a regular \(\mathbb{C} \)-algebra. □

T\(_2\)(\(\mathbb{C} \))

Definition 49. Upper-Triangular Subgroup of \(\text{GL}_2(\mathbb{C}) \)

A upper-triangular subgroup of \(\text{GL}_2(\mathbb{C}) \) denoted \(T_2(\mathbb{C}) \) is the subgroup of \(\text{GL}_2(\mathbb{C}) \) isomorphic to the group of all (invertible) upper triangular matrices with coefficients in \(\mathbb{C} \).

Lemma 17. \(T_2(\mathbb{C}) \) is an affine algebraic \(\mathbb{C} \)-group and its coordinate ring is isomorphic to the \(\mathbb{C} \)-algebra \(\mathbb{C}[x_{1,1},x_{1,2},x_{2,1},x_{2,2}]_{\text{det}}/(x_{2,1}) \).
4 Conclusion: Negative Examples

Proof. See [BG].

Example 32. The \mathbb{C}-algebra $\mathbb{C}[x_{1,1}, x_{1,2}, x_{2,1}, x_{2,2}]_{(det)}/(x_{1,2})$ is regular \mathbb{C}-algebra.

Proof. Since $T_2(\mathbb{C})$ is an affine algebraic \mathbb{C}-group proposition \[29\] implies $\mathbb{C}[x_{1,1}, x_{1,2}, x_{2,1}, x_{2,2}]_{(det)}/(x_{1,2})$ is a regular \mathbb{C}-algebra.

An application to affine algebraic varieties

Let be an affine algebraic \mathbb{C}-variety $V(A)$. For any point x in $V(A)$ the ideal generated by the collection of regular functions on $V(A)$ vanishing at the point x is denoted by $\mathfrak{I}(x)$; in fact $\mathfrak{I}(x)$ is a maximal ideal in A \[SP\]. Moreover for any affine-algebraic variety $V(A)$ there exists a point x such that $A_{\mathfrak{I}(x)}$ is regular. Since every regular local \mathbb{C}-algebra is Cohen Macaulay at its maximal ideal, then A is Cohen-Macaulay at $\mathfrak{I}(x)$. Since \mathbb{C} is a field it is a regular local ring of krull dimension 0 theorem \[6\] implies $D(k) = \text{Krull}(k) = 0$, moreover $A_{\mathfrak{I}(x)}$ is a \mathbb{C}-vector space whence it is a \mathbb{C}-free and so is a \mathbb{C}-flat module. Therefore theorem \[9\] applies if $\text{Krull}(A) \geq 2$. In summary:

Corollary 7. \[7\]

If $V(A)$ is an affine \mathbb{C}-variety and A’s Krull dimension is greater than 1 then the \mathbb{C}-algebra A is not quasi-free.

Example 33. The \mathbb{C}-algebra $\mathbb{C}[x_{1,1}, x_{1,2}, x_{2,1}, x_{2,2}]_{(det)}$ is not quasi-free.

Proof. $\mathbb{C}[x_{1,1}, x_{1,2}, x_{2,1}, x_{2,2}]_{(det)}$ is of Krull dimension $4 > 1$ \[LA\] therefore theorem \[9\] applies.

\[2\] Corollary \[7\] implies that any affine algebraic \mathbb{C}-variety which is not a disjoint union of curves or points has a coordinate ring which fails to be quasi-free over \mathbb{C}.

Bibliography

[CE] Baues, H.-J.; Minian, E. G. Crossed extensions of algebras and Hochschild cohomology. The Roos Festschrift volume, 1. *Homology Homotopy Appl.* 4, No. 2, part 1, 63–82, (2002).

[TC] Beck, J. M. Triples, algebras and cohomology. *Repr. Theory Appl. Categ. No.* 2, (2003), 1–59.

[BA] Bourbaki, N. *Commutative algebra. Chapters 1–7*, Elements of Mathematics. Springer-Verlag, (1989), xxiv+625 pp.

[HA] Cartan, H.; Eilenberg, S. *Homological algebra*, Princeton University Press, New-Jersey, (1956). xv+390 pp.

[NG] Connes, A. *Noncommutative geometry*, Academic Press, Inc., California, (1994), xiv+661 pp.

[CC] Cuntz, J.; Quillen, D. *Homology and nonsingularity*, J. Amer. Math. Soc. 8, No. 2, (1995), 373–442.

[AE] Cuntz, J.; Quillen, D. *Algebra extensions and nonsingularity*, J. Amer. Math. Soc. 8, No. 2, (1995), 251–289.

[AA] Dummit, D. S.; Foote, R. M. *Abstract algebra. Third edition*, John Wiley & Sons, Inc., New-Jersey, (2004), xii+932 pp.

[CA] Eisenbud, D. *Commutative algebra. With a view toward algebraic geometry. Graduate Texts in Mathematics, 150*, Springer-Verlag, New-York, (1995), xvi+785 pp.

[LN] Ginzburg, V. *Lectures on noncommutative geometry*, arXiv preprint math/0506603, (2005).

[AG] Hartshorne, R. *Algebraic geometry*, Graduate Texts in Mathematics, No. 52. Springer-Verlag, New York-Heidelberg, (1977), xvi+496 pp.

[SA] Hilton, P. J.; Stammbach, U. *A course in homological algebra*, Graduate Texts in Mathematics, Vol. 4. Springer-Verlag, New York-Berlin, (1971), ix+338 pp.

[RG] Hochschild G. *Note on relative homological dimension*, Nagoya Math. J. No. 13, (1958), 89-94.
Bibliography

[CA] Hochschild G. *On the cohomology groups of an associative algebra*. Ann. of Math. **46**, (1944), 58–67.

[RH] Hochschild G. *Relative homological algebra*, Trans. Amer. Math. Soc. **82**, (1956), 246–269.

[PH] Krähmer, U. *Poincaré duality in Hochschild (co)homology*, New Techniques in Hopf Algebras and Graded Ring Theory, Brussels, (2009), 19-23 pp.

[FN] Lam, T.Y. *A first course in noncommutative rings*, Graduate Texts in Mathematics, **131**. Springer-Verlag, New York, (1991), xvi+397 pp.

[LH] Loday, J.-L. *Cyclic homology*, Grundlehren der Mathematischen Wissenschaften, **301**. Springer-Verlag, Berlin, (1998), xx+513 pp.

[MHC] MacLane, S. *Categories for the working mathematician*, Graduate Texts in Mathematics, Vol. **5**. Springer-Verlag, New York-Berlin, (1971), ix+262 pp.

[MH] MacLane, S. *Homology*, Classics in Mathematics. Springer-Verlag, New York-Berlin, (1995), x+422 pp.

[BG] Milne, J. *Basic Theory of Affine Group Schemes*, online: http://www.jmilne.org/math/CourseNotes/AGS.pdf, (2012).

[IH] Rotman, J. J. *An introduction to homological algebra*, Pure and Applied Mathematics, **85**. Academic Press, Inc., New-York-London, (1979), xi+376 pp.

[TE] Sekiyama, H. *Trivial extension of a ring with balanced condition*, Proc. Amer. Math. Soc. **77**, No. 1, (1979), 1-6.

[LA] Springer, T.A. *Linear algebraic groups. Second edition*, Birkhäuser Boston, Inc., Massachusetts, (1998), xiv+334 pp.

[SP] Various. *The Stacks Project*, online: http://stacks.math.columbia.edu, (2014).

[HW] Súarez Alvarez, Mariano. *Algebra structure on the Hochschild cohomology of the ring of invariants of a Weyl algebra under a finite group*, J. Algebra **248**, No. **1**, (2002), 291–306 pp.

[RG] Van den Bergh, M. *A relation between Hochschild homology and cohomology for Gorenstein rings*, Proc. Amer. Math. Soc. **126**, No. **5**, (1998), 1345–1348.

[HI] Weibel, Charles A. *An introduction to homological algebra*, Cambridge Studies in Advanced Mathematics, **38**, Cambridge, (1994), xiv+450.