COVID-19 and vaccination during pregnancy: a systematic analysis using Korea National Health Insurance claims data

Ki Hoon Ahn, MD, PhD,1 Hae-In Kim, BS1,2,3 Kwang-Sig Lee, PhD3, Ju Sun Heo, MD, PhD4, Ho-Yeon Kim, MD, PhD1, Geum-Joon Cho, MD, PhD1, Soon-Cheol Hong, MD, PhD1, Min-Jeong Oh, MD, PhD1, Hae-Joong Kim, MD, PhD1

1Department of Obstetrics and Gynecology, Korea University College of Medicine, 2School of Industrial Management Engineering, Korea University, 3AI Center, Korea University Anam Hospital, 4Department of Pediatrics, Korea University College of Medicine, Seoul, Korea

Objective
This study systematically analyzed coronavirus disease 2019 (COVID-19) and vaccination details during pregnancy by using the national health insurance claims data.

Methods
Population-based retrospective cohort data of 12,399,065 women aged 15-49 years were obtained from the Korea National Health Insurance Service claims database between 2019 and 2021. Univariate analysis was performed to compare the obstetric outcomes of pregnant women (ICD-10 O00-O94) and their newborns (ICD-10 P00-P96) with and without COVID-19. Univariate analysis was also performed to compare the age and obstetric outcomes of pregnant women receiving different types of vaccines.

Results
The percentage of pregnant women with COVID-19 during pregnancy was 0.11%. Some obstetric outcomes of pregnant women with COVID-19, including the rates of preterm birth or cesarean delivery, were significantly better than those of pregnant women without COVID-19. The rate of miscarriage was higher in pregnant women with COVID-19 than without COVID-19. However, the outcomes of newborns of women with and without COVID-19 were not significantly different. Regarding vaccination type, obstetric outcomes of pregnant women appeared to be worse with the viral vector vaccine than with the mRNA vaccine.

Conclusion
To the best of our knowledge, this is the first study to systematically analyze COVID-19 and vaccination details during pregnancy using the national health insurance claims data in Korea. The obstetric outcomes in pregnant women with and without COVID-19 and their newborns were similar.

Keywords: COVID-19; Vaccination; Pregnancy; Infant, newborn; Pregnancy outcome
Introduction

Coronavirus disease 2019 (COVID-19) is a respiratory disease that originated in Wuhan, China in 2019 [1]. COVID-19 is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with common symptoms including fever, fatigue, dry cough, anorexia, myalgia, dyspnea, and sputum production [2,3]. Pneumonia is one of the most common outcomes in pregnant women with COVID-19 and is associated with increased morbidity and mortality [4]. During pregnancy, it can cause severe maternal complications, including respiratory failure, and is associated with an increased risk of low birth weight and preterm birth of newborns born to women with COVID-19 [5]. Pregnancy-induced physiological changes, such as hormonal changes and elevation of the diaphragm from the pregnant uterus, affect pulmonary function, resulting in poor ability to cope with respiratory diseases during pregnancy [5].

Based on the most recent systematic review and meta-analysis on neonatal outcomes, COVID-19 in pregnant women can have adverse effects on newborns, such as preterm birth, shortness of breath, and neonatal death [6]. Several studies have described the prognosis of pregnant women with COVID-19 and their newborns; however, it is unclear whether COVID-19 increases the rate of adverse obstetric outcomes in pregnant women and their newborns, and data since the first case report in 2020 [7].

Medical organizations, including the Center of Disease Control and the American College of Obstetricians and Gynecologists, recommend COVID-19 vaccination for pregnant women [8,9]. In South Korea, the types of COVID-19 vaccines are RNA vaccines, including Moderna and Pfizer, and viral vector vaccines, including Janssen and AstraZeneca. According to the Korea Disease Control and Prevention Agency, the Pfizer vaccine is recommended for all Koreans from age 5, including pregnant women. The Moderna vaccine is recommended for all Koreans from age 30, the AstraZeneca vaccine from age 50, and the Janssen vaccine from age 18, which is contraindicated in mRNA vaccines. Concerns regarding COVID-19 vaccination are increasing, as limited data are available on its efficacy and safety; these concerns are particularly salient for pregnant women. In this study, we analyzed the vaccination status of pregnant women in South Korea and compared the prognoses of pregnant women after vaccination based on different types of COVID-19 vaccines. This study aimed to provide important information for the clinical management of pregnant women and their newborns.

Materials and methods

1. Participants

The data in this study were calculated based on the cohort data of 12,399,065 women of childbearing age (aged 15-49 years in 2019-2021) estimated by the Korean National Health Insurance Service. These data include information on the disease and prognosis of pregnant women and newborns based on COVID-19 and pregnancy. They also include reports on the vaccination status of women under the Korean National Health Insurance Service care (mostly Koreans), which started in 2021, as well as their obstetric prognosis after vaccination. The details include the following: (1) prognosis of women, diseases corresponding to codes O00-O94 defined by ICD-10, including cesarean section, which belongs to the category “Pregnancy, childbirth, and the puerperium,” and severe disease, which corresponds to the V code of the category “External cause of morbidity.” The prognoses of pregnant women with COVID-19 and those without infection have been previously described; (2) the prognosis of newborns, diseases corresponding to codes P00-P96, which belong to the category “certain conditions originating in the perinatal period” and neonatal intensive care unit (NICU) information. The prognosis of newborns born to pregnant women with COVID-19 and those born to pregnant women without COVID-19 are described; (3) number of vaccinations performed, description based on the type of vaccine, pregnancy, and age. For pregnant women who were vaccinated during pregnancy, the types of vaccine used, the number of gestational weeks at the time of vaccination, and obstetric outcomes based on the type of vaccine were analyzed.

2. Study participants

First, non-pregnant (n=1,138,784) and pregnant (n=660,281) women were compared to determine whether COVID-19 has specific effects during pregnancy. Pregnant women were divided into two groups: pregnant women with and without COVID-19. They were compared to determine whether the two groups had different prognoses. In addition, the newborns of these women were compared to determine the effect of COVID-19 on their prognosis. Finally, pregnant
women who were vaccinated during pregnancy were analyzed based on vaccine type, number of gestational weeks at the time of vaccination, and obstetric outcomes after vaccination.

3. Statistical analysis
We performed a chi-squared test to compare the distributions of the two groups. However, Fisher’s exact test was performed for cases in which more than 20% of cells had an expected frequency of <5, since applying the approximation method in these cases was considered inadequate (and the chi-squared test relies on approximation) [10].

Results
Among 12,399,065 women, 59,899 (0.48%) were diagnosed with COVID-19 and 660,281 (5.32%) were pregnant between November 2019 and July 2021 (Fig. 1). Among the women who were pregnant during the study period, 2,576 were diagnosed with COVID-19, corresponding to 0.02% of the total included women and 0.39% of pregnant women. Among them, 705 women were diagnosed with COVID-19 during pregnancy, corresponding to 0.11% of women who were pregnant during the study period. Conversely, 0.89% of the women who experienced pregnancy during the study period were infected in the period before pregnancy. In this study, all women infected during the non-pregnancy period were excluded because we could not confirm the direct relationship between pregnancy and COVID-19. Table 1 shows the percentages of pregnant and non-pregnant women with COVID-19 during the study period. There were 57,323 women (0.49%) with COVID-19 in the non-pregnant group and 705 women (0.11%) in the pregnant group. In a statistically

Table 1. Description of women based on pregnancy and COVID-19 status

Pregnancy, yes	Total women (n=12,397,194^a)
COVID-19, yes	705 (0.11%)
COVID-19, no	657,705 (99.89%)
Total	668,410 (5.31% of total women)

Pregnancy, no	Total women (n=11,738,784^a)
COVID-19, yes	57,323 (0.49%)
COVID-19, no	11,681,461 (99.51%)
Total	11,738,784 (94.68% of total women)

^aAmong the 12,399,065 participants, 1,871 pregnant women were excluded because they were infected during the non-pregnancy period.

Fig. 1. Flowchart of inclusion of women based on pregnancy and COVID-19 status. COVID-19, coronavirus disease 2019.
cal test comparing the rates of COVID-19 in the two groups, the P-value was below 2.2e-16, indicating that the incidence of COVID-19 was lower in pregnant women than in non-pregnant women.

Table 2-1 shows the count, rate, and statistical test results for diseases in pregnant women with and without COVID-19. There was a significant difference between the two groups in the rates of obstetric complications, including diabetes during pregnancy, premature rupture of membranes, suspected cephalopelvic disproportion, postpartum hemorrhage, infection, and venous complications during pregnancy and puerperium (O02, O12, O22, O23, O24, O32, O33, O36, O42, O47, O60, O63, O65, O66, O67, O70, O71, O72, O75, O80, O81, O82, O83, O86, O87, O90, O91, O92, and O94). The rates of these complications were significantly higher in pregnant women without COVID-19 than in those with COVID-19. Table 2-2 shows two prognoses related to childbirth observed in this study among the diseases listed in Table 2-1.

Table 2-1. Description of O00-94 codes based on COVID-19 in pregnant women

Variable	Diagnosis	Pregnant women without COVID-19 (n=657,705)	Pregnant women with COVID-19 (n=705)	P-value
O00	Ectopic pregnancy	4,350 (0.66)	5 (0.07)	>0.9999
O01	Hydatidiform mole	879 (0.13)	0 (0.00)	>0.9999
O02	Other abnormal products of conception	60,754 (9.24)	94 (13.33)	0.0002*
O03	Spontaneous abortion	10,838 (1.65)	17 (2.41)	0.1490
O04	Complications following (induced) termination of pregnancy	754 (0.11)	1 (0.14)	0.5548
O05	Other abortion	1,093 (0.17)	0 (0.00)	0.6365
O06	Unspecified abortion	1,813 (0.28)	3 (0.43)	0.4508
O07	Failed attempted termination of pregnancy	29 (0.00)	0 (0.00)	>0.9999
O08	Complications following ectopic and molar pregnancy	4,902 (0.75)	3 (0.43)	0.5052
O10	Pre-existing hypertension complicating pregnancy, childbirth and the puerperium	2,946 (0.45)	3 (0.43)	>0.9999
O11	Pre-existing hypertensive disorder with superimposed proteinuria	770 (0.12)	1 (0.14)	0.5624
O12	Gestational (pregnancy-induced) edema and proteinuria without hypertension	143,983 (21.89)	91 (12.91)	<0.0001*
O13	Gestational (pregnancy-induced) hypertension without significant proteinuria	17,210 (2.62)	13 (1.84)	0.2433
O14	Gestational (pregnancy-induced) hypertension with significant proteinuria	9,064 (1.38)	8 (1.13)	0.6948
O15	Eclampsia	233 (0.04)	0 (0.00)	>0.9999
O16	Unspecified maternal hypertension	6,881 (1.05)	9 (1.28)	0.6777
O20	Hemorrhage in early pregnancy	184,568 (28.06)	206 (29.22)	0.5211
O21	Excessive vomiting in pregnancy	128,205 (19.49)	144 (20.43)	0.5638
O22	Venous complications in pregnancy	138,062 (20.99)	100 (14.18)	<0.0001*
O23	Infection of genitourinary tract in pregnancy	153,156 (23.29)	114 (16.17)	<0.0001*
O24	Diabetes mellitus in pregnancy	231,823 (35.25)	184 (26.1)	<0.0001*
O25	Malnutrition in pregnancy	442 (0.07)	1 (0.14)	0.3780
O26	Maternal care for other conditions predominantly related to pregnancy	33,796 (5.14)	27 (3.83)	0.1368
O28	Abnormal findings on antenatal screening of mother	17,564 (2.67)	12 (1.70)	0.1396
O29	Complications of anesthesia during pregnancy	92 (0.01)	0 (0.00)	>0.9999
Table 2-1. Description of O00-94 codes based on COVID-19 in pregnant women (Continued)

Variable	Diagnosis	Pregnant women without COVID-19 (n=657,705)	Pregnant women with COVID-19 (n=705)	P-value
O30	Multiple gestation	23,485 (3.57)	31 (4.4)	0.2800
O31	Complications specific to multiple gestation	1,587 (0.24)	1 (0.14)	>0.9999
O32	Maternal care for known or suspected malpresentation of fetus	39,625 (6.02)	29 (4.11)	0.0401
O33	Maternal care for known or suspected disproportion	71,341 (10.85)	28 (3.97)	<0.0001
O34	Maternal care for known or suspected abnormality of pelvic organs	126,536 (19.24)	119 (16.88)	0.1234
O35	Maternal care for known or suspected fetal abnormality and damage	17,257 (2.62)	13 (1.84)	0.2392
O36	Maternal care for other known or suspected fetal problems	41,246 (6.27)	30 (4.26)	0.0332
O40	Polyhydramnios	5,338 (0.81)	4 (0.57)	0.6717
O41	Other disorders of amniotic fluid and membranes	28,652 (4.36)	23 (3.26)	0.1835
O42	Premature rupture of membranes	101,828 (15.48)	67 (9.5)	0.0000
O43	Placental disorders	3,597 (0.55)	1 (0.14)	0.1974
O44	Placenta previa	19,580 (2.98)	20 (2.84)	0.9140
O45	Premature separation of placenta (abruptio placentae)	2,393 (0.36)	3 (0.43)	0.7466
O46	Antepartum hemorrhage, NEC	18,190 (2.77)	12 (1.7)	0.1082
O47	False labor	73,269 (11.14)	45 (6.38)	0.0001
O48	Prolonged pregnancy	3,062 (0.47)	1 (0.14)	0.3936
O60	Preterm delivery	140,953 (21.43)	124 (17.59)	0.0147
O61	Failed induction of labor	18,538 (2.82)	13 (1.84)	0.1473
O62	Abnormalities of forces of labor	11,982 (1.82)	8 (1.13)	0.2215
O63	Long labor	17,483 (2.66)	6 (0.85)	0.0042
O64	Obstructed labor due to malposition and malpresentation of fetus	3,686 (0.56)	1 (0.14)	0.1993
O65	Obstructed labor due to maternal pelvic abnormality	36,981 (5.62)	15 (2.13)	0.0001
O66	Other obstructed labor	12,729 (1.94)	4 (0.57)	0.0038
O67	Labor and delivery complicated by intrapartum hemorrhage, NEC	4,923 (0.75)	0 (0.00)	0.0128
O68	Labor and delivery complicated by fetal stress (distress)	23,397 (3.56)	16 (2.27)	0.0812
Statistical tests showed that the number of preterm births and cesarean sections in pregnant women with COVID-19 was significantly lower than that in pregnant women without COVID-19 ($P=0.0024$ and $<2.2e-16$ in preterm birth and cesarean section, respectively).

Table 2-3 shows the proportion of severe diseases based on Table 2-1. Description of O00-94 codes based on COVID-19 in pregnant women (Continued)

Variable	Diagnosis	Pregnant women without COVID-19 (n=657,705)	Pregnant women with COVID-19 (n=705)	P-value
O69	Labor and delivery complicated by umbilical cord complications	3,336 (0.51)	4 (0.57)	0.7862
O70	Perineal laceration during delivery	42,428 (6.45)	15 (2.13)	$<0.0001^a$
O71	Other obstetric trauma	11,043 (1.68)	3 (0.43)	0.0048a
O72	Postpartum hemorrhage	62,532 (9.51)	23 (3.26)	$<0.0001^a$
O73	Retained placenta and membranes, without hemorrhage	2,076 (0.32)	1 (0.14)	0.7320
O74	Complications of anesthesia during labor and delivery	361 (0.05)	0 (0.00)	>0.9999
O75	Other complications of labor and delivery, NEC	3,852 (0.59)	0 (0.00)	0.0408a
O80	Single spontaneous delivery	146,224 (22.23)	72 (10.21)	$<0.0001^a$
O81	Single delivery by forceps and vacuum extractor	21,636 (3.29)	8 (1.13)	0.0019a
O82	Single delivery by cesarean section	222,780 (33.87)	157 (22.27)	$<0.0001^a$
O83	Other assisted single delivery	32,734 (4.98)	18 (2.55)	0.0041a
O84	Multiple delivery	7,494 (1.14)	4 (0.57)	0.2092
O85	Puerperal sepsis	595 (0.09)	1 (0.14)	0.4721
O86	Other puerperal infections	65,996 (10.03)	19 (2.7)	0.0000a
O87	Venous complications during puerperium	61,483 (9.35)	36 (5.11)	0.0001a
O88	Obstetric embolism	132 (0.02)	0 (0.00)	>0.9999
O89	Complications of anesthesia during the puerperium	559 (0.08)	0 (0.00)	>0.9999
O90	Complications of the puerperium, NEC	29,280 (4.45)	10 (1.42)	0.0001a
O91	Infections of the breast associated with childbirth	17,045 (2.59)	5 (0.71)	0.0025a
O92	Other disorders of the breast and lactation associated with childbirth	8,306 (1.26)	0 (0.00)	0.0003a
O94	Sequelae of complication of pregnancy, childbirth and the puerperium	237,195 (36.06)	218 (30.92)	0.0051a

Values are presented as number (%). COVID-19, coronavirus disease 2019; NEC, necrotizing enterocolitis.

$^aP<0.05$, statistically significant.

Table 2-2. Comparison of preterm birth and cesarean section among pregnant women with and without COVID-19

Variable	Pregnant women without COVID-19 (n=657,705)	Pregnant women with COVID-19 (n=705)	P-value
Preterm birth	98,227 (14.93)	76 (10.78)	0.0024a
Cesarean section	232,849 (35.40)	133 (18.87)	$<0.0001^a$

Values are presented as number (%). COVID-19, coronavirus disease 2019.

$^aP<0.05$, statistically significant.
Among the 705 infected pregnant women, 55 (7.8%) experienced severe disease, and among 57,323 infected non-pregnant women, 5,730 (10.0%) experienced severe disease ($P=0.0615$).

Table 3-1 shows the count, rate, and statistical test results for diseases in newborns born to pregnant women with and without COVID-19. Regarding P00-P96, significantly higher rates of P00 (newborns affected by maternal conditions that may be unrelated to the current pregnancy), P03 (newborns affected by other complications of labor and delivery), and P12 (birth injury to the scalp) were found in the infected pregnant women group ($P<0.0001$, $P<0.0001$, and $P=0.0412$, respectively). In addition, Table 3-2 shows the in-

Table 2-3. Description of women with severe COVID-19

Pregnancy, yes	Severe COVID-19, yes	55 (7.80)
Severe COVID-19, no	650 (92.20)	
Pregnancy, no	Severe COVID-19, yes	5,730 (10.00)
Severe COVID-19, no	51,593 (90.00)	

Values are presented as number (%).

COVID-19, coronavirus disease 2019.

a) Among the 12,399,065 participants, 1,871 pregnant women were excluded because they were infected during the non-pregnancy period.

Table 3-1. Description of P00-96 codes based on COVID-19 in pregnant women

Variable	Diagnosis	Pregnant women without COVID-19 (n=336,114)	Pregnant women with COVID-19 (n=139)	P-value
P00	Fetus and newborn affected by maternal conditions that may be unrelated to present pregnancy	9,852 (2.93)	22 (15.83)	$<0.0001^a$
P01	Fetus and newborn affected by maternal complications of pregnancy	9,859 (2.93)	4 (2.88)	0.9999
P02	Fetus and newborn affected by maternal complications of placenta, cord and membranes	2,549 (0.76)	0 (0.00)	0.6312
P03	Fetus and newborn affected by other complications of labor and delivery	7,296 (2.17)	10 (7.19)	$<0.0001^a$
P04	Fetus and newborn affected by noxious influences transmitted via the placenta or breast milk	1,530 (0.46)	0 (0.00)	>0.9999
P05	Slow fetal growth and fetal malnutrition	3,392 (1.01)	3 (2.16)	0.1666
P07	Disorders related to short gestation and low birth weight, NEC	21,796 (6.48)	14 (10.07)	0.1224
P08	Disorders related to long gestation and high birth weight	4,429 (1.32)	1 (0.72)	>0.9999
P10	Intracranial laceration and hemorrhage due to birth injury	101 (0.03)	0 (0.00)	>0.9999
P11	Other birth injuries to central nervous system	30 (0.01)	0 (0.00)	>0.9999
P12	Birth injury to scalp	3,114 (0.93)	4 (2.88)	0.0412a
P13	Birth injury to skeleton	3,405 (1.01)	1 (0.72)	>0.9999
P14	Birth injury to peripheral nervous system	50 (0.01)	0 (0.00)	>0.9999
P15	Other birth injuries	90 (0.03)	0 (0.00)	>0.9999
P20	Intrauterine hypoxia	980 (0.29)	1 (0.72)	0.3338
P21	Birth asphyxia	653 (0.19)	0 (0.00)	>0.9999
P22	Respiratory distress of newborn	27,571 (8.2)	17 (12.23)	0.1152
P23	Congenital pneumonia	1,193 (0.35)	0 (0.00)	>0.9999
P24	Neonatal aspiration syndromes	12,067 (3.59)	5 (3.6)	>0.9999
P25	Interstitial emphysema and related conditions originating in the perinatal period	715 (0.21)	0 (0.00)	>0.9999
Table 3-1. Description of P00-96 codes based on COVID-19 in pregnant women (Continued)

Variable	Diagnosis	Pregnant women without COVID-19 (n=336,114)	Pregnant women with COVID-19 (n=139)	P-value
P26	Pulmonary hemorrhage originating in the perinatal period	88 (0.03)	0 (0.00)	>0.9999
P27	Chronic respiratory disease originating in the perinatal period	654 (0.19)	0 (0.00)	>0.9999
P28	Other respiratory conditions originating in the perinatal period	8,980 (2.67)	4 (2.88)	0.7899
P29	Cardiovascular disorders originating in the perinatal period	1,992 (0.59)	0 (0.00)	>0.9999
P35	Congenital viral diseases	710 (0.21)	0 (0.00)	>0.9999
P36	Bacterial sepsis of newborn	4,657 (1.39)	2 (1.44)	0.7192
P37	Other congenital infectious and parasitic diseases	235 (0.07)	0 (0.00)	>0.9999
P38	Omphalitis of newborn with or without mild hemorrhage	29,331 (8.73)	16 (11.51)	0.3113
P39	Other infections specific to the perinatal period	25,291 (7.52)	15 (10.79)	0.1940
P50	Fetal blood loss	67 (0.02)	0 (0.00)	>0.9999
P51	Umbilical hemorrhage of newborn	1,475 (0.44)	1 (0.72)	0.4575
P52	Intracranial nontraumatic hemorrhage of fetus and newborn	1,559 (0.46)	1 (0.72)	0.4761
P53	Hemorrhagic disease of fetus and newborn	1,016 (0.30)	0 (0.00)	>0.9999
P54	Other neonatal hemorrhages	1,025 (0.30)	2 (1.44)	0.0680
P55	Hemolytic disease of fetus and newborn	1,132 (0.34)	0 (0.00)	>0.9999
P56	Hydrops fetalis due to hemolytic disease	5 (0.00)	0 (0.00)	>0.9999
P57	Kernicterus	58 (0.02)	0 (0.00)	>0.9999
P58	Neonatal jaundice due to other excessive hemolysis	1,128 (0.34)	2 (1.44)	0.0801
P59	Neonatal jaundice from other and unspecified causes	133,504 (39.72)	57 (41.01)	0.8232
P60	Disseminated intravascular coagulation of fetus and newborn	308 (0.09)	0 (0.00)	>0.9999
P61	Other perinatal hematological disorders	2,425 (0.72)	1 (0.72)	>0.9999
P70	Transitory disorders of carbohydrate metabolism specific to fetus and newborn	25,904 (7.71)	9 (6.47)	0.6999
P71	Transitory neonatal disorders of calcium and magnesium metabolism	3,990 (1.19)	1 (0.72)	>0.9999
P72	Other transitory neonatal endocrine disorders	6,748 (2.01)	6 (4.32)	0.1015
P74	Other transitory neonatal electrolyte and metabolic disturbances	3,552 (1.06)	3 (2.16)	0.1828
P75	Meconium ileus	3 (0.00)	0 (0.00)	>0.9999
P76	Other intestinal obstruction of newborn	256 (0.08)	0 (0.00)	>0.9999
P77	Necrotizing enterocolitis of fetus and newborn	437 (0.13)	0 (0.00)	>0.9999
P78	Other perinatal digestive system disorders	3,891 (1.16)	2 (1.44)	0.6773
P80	Hypothermia of newborn	154 (0.05)	0 (0.00)	>0.9999
P81	Other disturbances of temperature regulation of newborn	1,661 (0.49)	2 (1.44)	0.1512
formation on birth weight and NICU admission of newborns based on the maternal status of COVID-19. Newborns born to mothers with COVID-19 were admitted to the NICU at an increased rate of 10.98%. However, there were no significant differences in the proportions of low birth weight and macrosomia between the two groups.

Based on Tables 4-1, 4-2, 264,927 women (2.14%) of the total number of Korean women of childbearing age were vaccinated. In this group, 13,240 women were vaccinated during pregnancy, accounting for 5% of the vaccinations, and 10,429 pregnant women (78.77%) were vaccinated before 28 weeks of pregnancy. The proportion of pregnant women for each vaccine type was 4.26% for Moderna, 5.59% for Janssen, 7.20% for AstraZeneca, and 4.94% for Pfizer. As shown in Table 5, obstetric complications based on ICD-10 codes of women who received the Moderna or Pfizer vaccine were lower than those of women who received the Janssen or AstraZeneca vaccine. In particular, Janssen had a corresponding rate of 3.19% in O00-O08 (pregnancy with abortive outcome), and AstraZeneca had corresponding

Variable	Description	Pregnant women without COVID-19 (n=336,114)	Pregnant women with COVID-19 (n=139)	P-value
P83	Other conditions of integument specific to fetus and newborn	12,061 (3.59)	3 (2.16)	0.4948
P90	Convulsions of newborn	659 (0.20)	0 (0.00)	>0.9999
P91	Other disturbances of cerebral status of newborn	1,130 (0.34)	0 (0.00)	>0.9999
P92	Feeding problems of newborn	13,302 (3.96)	4 (2.88)	0.6651
P93	Reactions and intoxications due to drugs administered to fetus and newborn	1 (0.00)	0 (0.00)	>0.9999
P94	Disorders of muscle tone of newborn	117 (0.03)	0 (0.00)	>0.9999
P95	Fetal death of unspecified cause	0 (0.00)	0 (0.00)	>0.9999
P96	Other conditions originating in the perinatal period	5,060 (1.51)	2 (1.44)	>0.9999

Values are presented as number (%).
COVID-19, coronavirus disease 2019; NEC, necrotizing enterocolitis.

*P<0.05, statistically significant.

Variable	Pregnant women without COVID-19 (n=336,114)	Pregnant women with COVID-19 (n=139)	P-value	
Low birth weight	1,000-1,249 g	114 (0.03)	0 (0.00)	>0.9999
	1,250-1,499 g	403 (0.12)	0 (0.00)	>0.9999
	1,500-1,749 g	993 (0.30)	0 (0.00)	>0.9999
	1,750-1,999 g	2,173 (0.65)	1 (0.72)	0.5942
	2,000-2,499 g	8,420 (2.51)	6 (4.32)	0.2737
	Etc.	112 (0.03)	0 (0.00)	>0.9999
	Unknown weight	1,513 (0.45)	0 (0.00)	>0.9999
	Total	13,728 (4.08)	7 (5.04)	0.7245
	Macrosomia	4,429 (1.32)	1 (0.72)	>0.9999
	NICU	25,971 (7.73)	26 (18.71)	<0.0001

Values are presented as number (%).
COVID-19, coronavirus disease 2019; NICU, neonatal intensive care unit.

*P<0.05, statistically significant.
rates of 4.93% and 3.08% in O00-O08 and O20-O29 (other maternal disorders predominantly related to pregnancy), respectively. Moderna and Pfizer vaccines were associated with <1% of all diseases. In particular, the AstraZeneca vaccine was associated with a higher rate of obstetric complications; however, this may be due to the higher average age of women who received the AstraZeneca vaccine.

Discussion

1. **Study findings**

 Among the pregnant women, 0.11% were diagnosed with COVID-19 during pregnancy. Remarkably, the rate of various obstetric complications, including preterm birth and requirement for cesarean section, was significantly lower in pregnant women with COVID-19 than in those without COVID-19. Only the miscarriage (O02) rate increased in pregnant women with COVID-19 compared to those without COVID-19.
COVID-19. Pregnant women with and without COVID-19 presented with approximately the same proportion of severe disease. COVID-19 also had no significant effect on fetal prognosis in almost all cases; however, newborns born to women with COVID-19 were significantly more vulnerable to birth injury to the scalp. In addition, newborns born to women with COVID-19 were more likely to be sent to the NICU. Vaccines were frequently administered within 28 weeks of pregnancy, and AstraZeneca and Janssen vaccines were associated with worse obstetric outcomes than mRNA vaccines, such as Pfizer and Moderna.

2. Study contribution

In this study, COVID-19 did not have a fatal effect on pregnant women and fetuses; however, COVID-19 was associated with an increased rate of miscarriage in early pregnancy. Remarkably, the results showed that pregnancy complications decreased in mothers diagnosed with COVID-19 during pregnancy. The lower complication rates and relatively good obstetric outcomes of COVID-19 during pregnancy indicate that acquiring this infection during pregnancy may not result in adverse outcomes, or that both pregnant women infected with COVID-19 and the medical staff were already aware of the potential implications of this infection. The most common SARS-CoV-2 variants in South Korea during the study period were B.1.1.7 (alpha) and B.1.620, which were different from other variants that were prevalent worldwide at that time (https://covariants.org/per-country). Different distributions of viral variants may be associated with good obstetric outcomes. Pregnant women with COVID-19 had a lower rate of preterm births and cesarean sections than those without COVID-19, and the rate of severe disease did not differ significantly between these groups. These results are not consistent with those of the United States Centers for Disease Control and Prevention COVID-19 surveillance system, in which pregnant women with COVID-19 were more likely to experience preterm birth or other adverse birth outcomes than those without COVID-19 [11,12]. Further studies are needed to clarify these conflicting results.

The phenomenon of lower preterm birth and cesarean section in pregnant women with COVID-19 require careful assessment. Several studies have reported a higher rate of preterm birth and cesarean section in pregnant women with COVID-19; however, some results are contradictory [13-20]. In addition, the most frequent causes of early emergency cesarean sections were reported to be fetal distress and worsening respiratory symptoms in pregnant women with COVID-19 [20]. There are several reasons that may contribute to the fact that pregnant women with COVID-19 had a low rate of preterm birth and cesarean section in our study compared to the results of several other studies.

First, this study used extensive and relatively updated data from November 2019 to July 2021. In a previous study, authors hypothesized that the rate of cesarean section decreased as experience in managing pregnant women with COVID-19 increased, since vaginal delivery does not appear to be associated with worse results in pregnant women or their newborns than cesarean section. Therefore, it seems appropriate that in our study, which included recent data, there was a lower rate of preterm birth and cesarean section associated with COVID-19.

Another reason that our results differ from those of some previous reports is that preterm birth or cesarean section may have been underreported among pregnant women with COVID-19, and it may be because many pregnant women with COVID-19 did not present to medical facilities out of fear. Strong support from medical facilities and staff is vital for pregnant women with COVID-19. Another explanation may be the changes in clinical practice due to the pandemic, which may have lowered the incidence of cesarean section or preterm birth among pregnant women with COVID-19 [21]. Although many complex factors must be considered regarding delivery timing and mode, infected women may have reduced in-person appointments with obstetricians and, therefore, may not have undergone some interventions, such as labor induction.

Another explanation for the lower preterm birth rate in pregnant women with COVID-19 is modified behavior, such as wearing masks, washing hands, reduced physical exercise, reduced work-related stress, and earlier conservative treatment followed by quarantine, which results in a lower rate of infection from any source that may lead to preterm birth. This phenomenon was demonstrated in China and the UK before and after the pandemic, in which the preterm birth rate was lower after the pandemic [22,23].

Finally, another explanation is that pregnant women and fetuses receive special protection based on Korea’s COVID-19 response guidelines in circumstances where the infection itself does not seriously affect obstetric outcomes. South Korea used the “Three T Strategy,” which stands for testing,
tracing, and treatment, enabling early detection and treatment of COVID-19 [24]. This strategy has ultimately led to low morbidity and mortality in the general population and maternity care regarding COVID-19, predominantly delta type, before December 2021, when the omicron type was not prevalent. During this period, pregnant women with COVID-19 or symptoms should notify infection specialists, obstetricians, and pediatricians before and during delivery, followed by quarantine to prevent the spread of infection to other people, and at the same time, doctors should immediately prepare appropriate plans based on the clinical conditions of pregnant women with COVID-19. Recently, in South Korea, the predominant type of COVID-19 has changed to omicron, which is a milder type with lower mortality, but spreads more easily. The fourth outbreak started in December 2021 and peaked in March 2022. The pandemic response strategy 3T against delta type has transformed into a new strategy because this milder omicron type causes more flu-like symptoms with lower fatality. To date, the fatality rate is approximately 0.13-0.15% and even lower in pregnant women. With the surge of COVID-19 in March 2022, the rate of infection has decreased and South Korea is about to reach the endemic stage.

The Korean government adopted a universal health coverage model during the COVID-19 pandemic in which all expenses related to COVID-19 are covered by the government, starting from 1st patient with COVID-19 in January 2020, which guided accessibility to medical care [25]. Due to the facilitated accessibility to health services, when pregnant women are diagnosed with COVID-19, they receive medical care before their symptoms worsen and the disease progresses. Indeed, in our study, there was no significant difference between the two groups regarding the proportion of severe diseases, unlike previous studies that described pregnant women with severe COVID-19 and adverse pregnancy outcomes, including intensive care unit admission [26]. In addition, in Korea, newborns born to pregnant women with COVID-19 or pregnant women presenting with COVID-19-related symptoms are quarantined in a negative-pressure bed in the NICU, regardless of whether intensive care is needed. Therefore, the NICU admission rate of newborns born to women with COVID-19 was significantly higher than that of newborns born to women without COVID-19. Therefore, with appropriate management, COVID-19 appears to have little effect on pregnant women and their fetuses. However, the rates of P3 (fetuses and newborns affected by other complications of labor and delivery) and P12 (birth injury to scalp) were significantly higher in fetuses of pregnant women with COVID-19 than in those of pregnant women without the infection. This prognosis is possibly due to the fact that more time is needed to prepare for delivery in pregnant women with COVID-19, and operative delivery is more likely to be adopted to shorten delivery time to avoid the spread of virus. Further studies are required to improve our understanding of these results. There is much evidence in the literature that vaginal delivery can be a risk factor for birth injury to the scalp, while cesarean delivery can be a protective factor [27,28]. Based on the data, we considered whether high birth injury to the scalp (P12 code) in neonates born to pregnant women with COVID-19 is related to the fact that this group had a low cesarean section rate, that is, a high vaginal delivery rate. The delivery mode appears to have a greater impact on perinatal outcomes than COVID-19 status.

Based on the results of the analysis of adverse reactions after vaccination released by the Korea Central Disease Control Headquarters, the rates of adverse reactions associated with the AstraZeneca and Janssen vaccines were 26.3% and 24.5%, respectively, which were higher than those of the Moderna and Pfizer vaccines (10.6% and 13.7%, respectively). The prognosis of pregnant women who received the AstraZeneca and Janssen vaccines was worse than that of pregnant women who received the Moderna and Pfizer vaccines because of the nature of the former two vaccines, which causes many abnormal symptoms, such as muscle ache, fever, fatigue, headache, Guillain Barre syndrome, and thrombocytopenia. In practice, mRNA vaccines such as Moderna and Pfizer have been reported to be safe for pregnant women and their fetuses [29]. A recent clinical study demonstrated no increased risk of preterm birth and no “small for gestational age” status after COVID-19 vaccination during pregnancy [30]. Therefore, at present, pregnant women are recommended to be vaccinated with mRNA products associated with fewer abnormal symptoms; however, further research is needed to clarify these results.

3. Study limitations
This study had several limitations. (1) All patients diagnosed with COVID-19 during the study period, in which infection did not occur during pregnancy, were excluded. Patients were
also excluded if information regarding the timing of COVID-19 onset and pregnancy was unavailable. (2) Since this study was analyzed based on the National Health Insurance Claims database of South Korea, detailed medical information was not available from this database. For instance, if we had been able to examine the diagnostic codes, medications, and treatment data of 26 newborns who were hospitalized in the NICU after being born to mothers with COVID-19, it would have been clear whether these newborns needed intensive care. Due to data limitations, further analysis was difficult. Meanwhile, there was a higher rate of obstetric complications and a lower rate of spontaneous, operative, and other assisted single deliveries in our study population. Nevertheless, because the retrieved data were random, we did not choose certain preferable patients. (3) Owing to the known side effects of vaccines [31] and the country’s vaccination policy, the vaccination age range is not uniform for each vaccine. For example, the Janssen vaccine has only been administered to individuals over 30 years of age. It is already known that childbirth at an older age is highly risky and associated with a poor prognosis compared to childbirth at a younger age, and it includes risks such as preterm birth and Down syndrome. Therefore, age should be considered as an important factor in this study. However, we were provided with limited information regarding age; therefore, we were not able to analyze age. (4) In this study, it was necessary to count each ICD-10 code, that is, 206 for O20 and 144 for O21 in the infected pregnant women group. However, several ICD-10 codes often correspond to the same disease. For example, to determine whether hypertension in pregnancy is applicable, we must also consider O10-16. However, we were provided with a count for each ICD-10 code, except for a few cases. Furthermore, because there may be overlapping targets between codes, we cannot arbitrarily combine them. And (5) in South Korea, all four types of vaccines were permitted between February and May 2021, and it has been recommended since October 8, 2021 that pregnant women should undergo vaccination. Considering the study period (November 2019 to July 2021), vaccination in most pregnant women is likely to have been voluntary without awareness of pregnancy status. The vaccinated subjects may have received only the first dose or both the first and second doses; however, in this study, these two cases could not be distinguished due to data limitations.

To the best of our knowledge, this is the first study to describe a detailed relationship between COVID-19 and obstetric outcomes in pregnant women and neonates based on the population data of Korean women. We found that the rates of preterm birth and cesarean section were significantly lower in women with COVID-19 than in women without infection. In addition, the rates of low birth weight, macrosomia, and NICU admission were comparable between infants born with and without maternal COVID-19 infection. However, since our study had several limitations, additional studies are needed to increase our understanding of the results. It is necessary to continuously monitor pregnant women and newborns who are vulnerable to COVID-19 through the establishment and periodic analysis of cohorts, including maternal factors related to the prognosis of pregnant women and newborns. We also found that an mRNA-based vaccine was less likely to be associated with adverse obstetric outcomes in pregnant women. The data we provide in this study may be useful in guiding the obstetric care of pregnant women during the COVID-19 pandemic.

Conflict of interest

No potential conflict of interest relevant to this article was reported. Ki Hoon Ahn and Geum-Joon Cho have been on the Editorial Board of Obstetrics & Gynecology Science; however, they are not involved in the peer reviewer selection, evaluation, or decision process of this article. Otherwise, no other potential conflicts of interest relevant to this article were reported.

Ethical approval

This retrospective cohort study was approved by the Institutional Review Board (IRB) of the Korea University Anam Hospital on August 19, 2019 (2019AN0354).

Patient consent

The requirement for informed consent was waived by the IRB.
Funding information
This study was supported by a grant from the Korean Society of Obstetrics and Gynecology. The funder had no role in the design of the study; the collection, analysis, and interpretation of the data; or the writing of the manuscript.

Data availability statement
The codes and data presented in this paper are not publicly available. However, the codes and data are available from the corresponding author upon reasonable request and with permission from the Korea National Health Insurance Service.

References
1. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020;323:1061-69.
2. Yuen KS, Ye ZW, Fung SY, Chan CP, Jin DY. SARS-CoV-2 and COVID-19: the most important research questions. Cell Biosci 2020;10:40.
3. Wan S, Xiang Y, Fang W, Zheng Y, Li B, Hu Y, et al. Clinical features and treatment of COVID-19 patients in northeast Chongqing. J Med Virol 2020;92:797-806.
4. Munn MB, Groome LJ, Atterbury JL, Baker SL, Hoff C. Pneumonia as a complication of pregnancy. J Matern Fetal Med 1999;8:151-4.
5. Goodnight WH, Soper DE. Pneumonia in pregnancy. Crit Care Med 2005;33(10 Suppl):S390-7.
6. Amirian A, Pakzad R, Hasanpour V, Mirzadeh N, Abdi F. Neonatal outcome among pregnant women with COVID-19: a systematic review and meta-analysis. J Matern Fetal Neonatal Med 2022;4:1-15.
7. Bae JG, Ha JK, Kwon M, Park HY, Seong WJ, Hong SY. A case of delivery of a pregnant woman with COVID-19 infection in Daegu, Korea. Obstet Gynecol Sci 2020;63:745-9.
8. Centers for Disease Control and Prevention (CDC). COVID-19 vaccines while pregnant or breastfeeding [Internet]. Atlanta (GA): CDC; c2021 [cited 2021 Apr 18]. Available from: https://www.cdc.gov/coronavirus/2019-ncov/vaccines/recommendations/pregnancy.
9. American College of Obstetricians and Gynecologists (ACOG). The American College of Obstetrics and Gynecology [Internet]. Washington, DC: ACOG; c2021 [cited 2021 Apr 18]. Available from: https://www.acog.org/clinical/clinical-guidance/practice-advisory/articles/2020/12/covid-19-vaccination-considerations-for-obs-gynecologic-care.
10. Kim HY. Statistical notes for clinical researchers: chi-squared test and Fisher’s exact test. Restor Dent Endod 2017;42:152-5.
11. Centers for Disease Control and Prevention (CDC). United states centers for disease control and prevention. Investigating the impact of COVID-19 during pregnancy [Internet]. Atlanta (GA): CDC; c2021 [cited 2021Dec 30]. Available from: https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/special-populations/pregnancy-data-on-covid-19/what-cdc-is-doing.html.
12. Jamieson DJ, Rasmussen SA. An update on COVID-19 and pregnancy. Am J Obstet Gynecol 2021;226:177-86.
13. Smith V, Seo D, Warty R, Payne O, Salih M, Chin KL, et al. Maternal and neonatal outcomes associated with COVID-19 infection: a systematic review. PLoS One 2020;15:e0234187.
14. Yan J, Guo J, Fan C, Juan J, Yu X, Li J, et al. Coronavirus disease 2019 in pregnant women: a report based on 116 cases. Am J Obstet Gynecol 2020;223:111.e1-111.e14.
15. Bellos I, Pandita A, Panza R. Maternal and perinatal outcomes in pregnant women infected by SARS-CoV-2: a meta-analysis. Eur J Obstet Gynecol Reprod Biol 2021;256:194-204.
16. Cardona-Pérez JA, Villegas-Mota I, Helguera-Repetto AC, Acevedo-Gallegos S, Rodríguez-Bosch M, Aguinaga-Ríos M, et al. Prevalence, clinical features, and outcomes of SARS-CoV-2 infection in pregnant women with or without mild/moderate symptoms: results from universal screening in a tertiary care center in Mexico City, Mexico. PLoS One 2021;16:e0249584.
17. Akhtar H, Patel C, Abuelgasim E, Harky A. COVID-19 (SARS-CoV-2) infection in pregnancy: a systematic review. Gynecol Obstet Invest 2020;85:295-306.
18. Abedzadeh-Kalahroudi M, Sehat M, Vahedpour Z, Talebian P, Haghhighi A. Clinical and obstetric characteristics of pregnant women with covid-19: a case series study.
on 26 patients. Taiwan J Obstet Gynecol 2021;60:458-462.

19. de Medeiros KS, Sarmento ACA, Costa APF, Macêdo LTA, da Silva LAS, de Freitas CL, et al. Consequences and implications of the coronavirus disease (COVID-19) on pregnancy and newborns: a comprehensive systematic review and meta-analysis. Int J Gynaecol Obstet 2022;156:394-405.

20. Trippella G, Ciarcìà M, Ferrari M, Buzzatti C, Maccora I, Azzari C, et al. COVID-19 in pregnant women and newborns: a systematic review of the literature with quality assessment of the studies. Pathogens 2020;9:485.

21. Selvaratnam RJ, Davey MA, Mol BW, Wallace EM. Increasing obstetric intervention for fetal growth restriction is shifting birthweight centiles: a retrospective cohort study. BJOG 2020;127:1074-80.

22. Philip RK, Purtill H, Reidy E, Daly M, lmcha M, McGrath D, et al. Unprecedented reduction in births of very low birthweight (VLBW) and extremely low birthweight (ELBW) infants during the COVID-19 lockdown in Ireland: a ‘natural experiment’ allowing analysis of data from the prior two decades. BMJ Glob Health 2020;5:e003075.

23. Bian Z, Qu X, Ying H, Liu X. Are COVID-19 mitigation measures reducing preterm birth rate in China? BMJ Glob Health 2021;6:e006359.

24. Korea Disease Control and Prevention Agency (KDCA). COVID-19 breifing [Internet]. Cheongju: KDCA; 2021 [cited 2021 Apr 18]. Available from: http://ncov.mohw.go.kr/supportPolicyBoardList.do.

25. Lee H, Lee JR, Jung H, Lee JY. Power of universal health coverage in the era of COVID-19: a nationwide observational study. Lancet Reg Health West Pac 2021;7:100088.

26. Celewicz A, Celewicz M, Michalczyk M, Woźniakowska-Gondek P, Krejczy K, Msiêk M, et al. Pregnancy as a risk factor of severe COVID-19. J Clin Med 2021;10:5458.

27. Linder N, Linder I, Fridman E, Kouadio F, Lubin D, Merlob P, et al. Birth trauma–risk factors and short-term neonatal outcome. J Matern Fetal Neonatal Med 2013;26:1491-5.

28. Moczygemba CK, Paramsothy P, Meikle S, Kourtis AP, Barfield WD, Kuklina E, et al. Route of delivery and neonatal birth trauma. Am J Obstet Gynecol 2010;202:361.e1-6.

29. Leik NKO, Ahmedy F, Guad RM, Baharuddin DMP. Covid-19 vaccine and its consequences in pregnancy: brief review. Ann Med Surg (Lond) 2021;72:103103.

30. Lipkind HS, Vazquez-Benitez G, DeSilva M, Vesco KK, Ackerman-Banks C, Zhu J, et al. Receipt of COVID-19 vaccine during pregnancy and preterm or small-for-gestational-age at birth - eight Integrated Health Care Organizations, United States, December 15, 2020-July 22, 2021. MMWR Morb Mortal Wkly Rep 2022;71:26-30.

31. Shay DK, Gee J, Su JR, Myers TR, Marquez P, Liu R, et al. Safety monitoring of the Janssen (Johnson & Johnson) COVID-19 vaccine - United States, March-April 2021. MMWR Morb Mortal Wkly Rep 2021;70:680-4.