Peripheral B Cell Deficiency and Predisposition to Viral Infections: The Paradigm of Immune Deficiencies

Alexandros Grammatikos¹*, Matthew Donati², Sarah L. Johnston¹ and Mark M. Gompels¹

¹ Department of Immunology, Southmead Hospital, North Bristol National Health Service (NHS) Trust, Bristol, United Kingdom. ² Severn Infection Sciences and Public Health England National Infection Service South West, Department of Virology, Southmead Hospital, North Bristol NHS Trust, Bristol, United Kingdom

In the era of COVID-19, understanding how our immune system responds to viral infections is more pertinent than ever. Immunodeficiencies with very low or absent B cells offer a valuable model to study the role of humoral immunity against these types of infection. This review looks at the available evidence on viral infections in patients with B cell alymphocytosis, in particular those with X-linked agammaglobulinemia (XLA), Good’s syndrome, post monoclonal-antibody therapy and certain patients with Common Variable Immune Deficiency (CVID). Viral infections are not as infrequent as previously thought in these conditions and individuals with very low circulating B cells seem to be predisposed to an adverse outcome. Particularly in the case of SARS-CoV2 infection, mounting evidence suggests that peripheral B cell alymphocytosis is linked to a poor prognosis.

Keywords: B cells, alymphocytosis, viral infections, immunodeficiency, immune deficiency, humoral immunity, immune responses

INTRODUCTION

Humoral immunity has been regarded as the pillar of immune defenses against bacterial infections, but was thought to be less essential for viral infections. For the latter, cellular immunity was traditionally considered to be more important, e.g. T and Natural Killer (NK) cells. Data from the world of primary immunodeficiency seems to support this view: patients with Common Variable Immune Deficiency (CVID) generally present with recurrent bacterial infections, while those with Severe Combined Immune Deficiency (SCID) are also predisposed to viral infections (1, 2).

This is however only a simplified paradigm and in reality immune defenses against infection depend on more complex and interlinked processes for example, antibodies are known to be important in neutralizing viral particles and preventing them from entering human tissues (3). They also participate in the elimination of virally infected cells, via the process of opsonization and subsequent phagocytosis (3). IgA is known to play a vital role in antiviral defenses at mucosal sites, e.g. respiratory or gastrointestinal (4).

The importance of humoral immunity in the protection from viral infection is most elegantly exemplified by immunization, e.g. to measles, chicken pox and rubella viruses. Protective immunity by these vaccines relies largely on the development of an adequate humoral immune response to the virus and serology levels are often used as a proxy to assess immunity (5). Viral vaccines that depend solely on T cell-mediated immunity on the other hand are yet to be implemented successfully in
clinical practice (6). Another paradigm is the placental transfer of protective IgG antibodies from mother to the fetus, which confers protection from some viral infections during the first months of life (7).

In our attempt to understand the role of the various parts of the immune system in the defense against infections, immunodeficiencies present a valuable model. Immunodeficiencies with absent or very low B cells in particular are very useful to understand the role of these cells in antiviral immunity. The best example is offered by patients with agammaglobulinemia (X-linked or Autosomal Recessive), but patients with Good’s syndrome, those that have undergone B cell-depleting therapy, and certain patients with CVID are also very informative in this respect.

To identify relevant articles in the literature we searched PubMed and Google scholar databases using the following terms: immunodeficiency, immune deficiency, viral disease, viral infection, peripheral B cells, serum B cells, B cell lymphopenia, B cell alymphocytosis, X-linked agammaglobulinemia, XLA, autosomal recessive agammaglobulinemia, Good’s syndrome, common variable immune deficiency, CVID, rituximab, B cell depleting therapy, anti-CD20 monoclonal-antibody therapy, SARS-CoV-2, COVID-19, enteroviruses, JC virus, astrovirus, adenovirus, measles, mumps, rubella, BK virus, West Nile virus, norovirus, HSV, CMV, VZV, HHV7, HHV8, HPV, vaccinia virus, parvovirus B19 and hepatitis virus. Reference lists of retrieved articles were also manually screened for relevant studies.

XLA AND AR AGAMMAGLOBULINEMIA

X-linked agammaglobulinemia (XLA) manifests with markedly reduced peripheral B cells, severe hypogammaglobulinemia and recurrent sinopulmonary infections. The latter are largely bacterial but the role of viruses is recently starting to be recognized (Table 1). Several cases of atypical, unusually severe, recurrent or persistent viral pneumonia have been described in these patients (18, 62, 147, 148). More recently, many cases of persistent SARS-CoV2 pneumonia have been reported, highlighting the importance of B cells in the defense against this virus (132–136).

Enteroviral infections are also well documented in these patients; chronic meningoencephalitis being their most serious complication (8–16, 24). Mostly echoviruses, but also coxsackie and polio viruses have been reported (17, 18). Chronic enteroviral infection can also manifest as a dermato myositis-like syndrome in some patients, with muscle weakness, rash and edema (8, 11). Cases of chronic diarrhea or arthritis from echoviruses have also been reported (11, 18, 61). Enteroviral infections are more common in untreated patients or those that are on suboptimal immunoglobulin replacement, again suggesting an important role for humoral immunity (19, 149).

Before it was recognized that live vaccines pose a significant threat in these patients, several cases of post-vaccine infection were reported, e.g. post-poliomyelitis vaccination (8) or disseminated vaccinia virus infection (11, 17, 124) (). In a recent systematic review, agammaglobulinemic patients exhibited the highest likelihood of developing vaccine-derived poliovirus infection in comparison to other primary immunodeficiency disorders (20). Interestingly, the risk was lowest in patients with SCID, suggesting that cellular immunity is less important for the protection against this virus (20).

Other viruses that have been linked to encephalitis in XLA include astrovirus (59, 60) and JC virus (19). Adenovirus has been linked to the development of a dermatomyositis-like syndrome and arthritis (11, 61). Finally, chronic fecal shedding of norovirus is very common in XLA children, occurring in 40% of cases (150). Interestingly, EVB and herpes-viral infections are only rarely reported in these patients (112, 117, 151).

AR mutations in the genes encoding for IgM heavy chain, Igα (CD79α), x5, BLNK and LRRC8 cause a similar disease phenotype to XLA. These defects are very uncommon, but enteroviral infections have also been reported in these patients, both post-vaccination and naturally acquired (21–23, 25).

GOOD’S SYNDROME

Patients with Good’s syndrome present with thymoma and immunodeficiency. Hypogammaglobulinemia is most commonly described but very low or even absent B cells are also characteristic (90, 152). CD4 T cell lymphopenia is less frequent and seems to be less clinically relevant: T cell counts do not readily predict the risk of acquiring opportunistic infections in these patients, particularly cytomegalovirus (CMV) (90, 153). In the largest case series to date (n=78) the average level of peripheral CD4 T cells in patients with Good’s syndrome was normal, while B cells were virtually absent (152). The cause of B cell deficiency in these patients is unknown but certain evidence suggests that it is a bone marrow defect, with an underlying arrest in B cell development that may be responsible (153, 154). The clinical picture is similar to that of XLA, but opportunistic infections are more common.

Chronic or recurrent viral infections in particular are seen in up to 40% of patients, usually in the context of normal CD4 T cells (Table 1) (87, 90, 91). CMV infection is common, resulting in retinitis, hepatitis, colitis, enteritis, gastritis, pneumonia or encephalitis (87, 90, 91, 99–106). Other infections include chronic human papilloma virus (HPV; warts) (122), HSV (ulcerative dermatitis, recurrent genital infection, esophagitis, epiglottitis, acute hepatitis, keratitis or meningitis) (88–93), human herpesvirus 8 (HHV8; Kaposi’s sarcoma) (119), JC virus (progressive multifocal encephalopathy) (53–56) and VZV (herpes zoster or disseminated infection) (87, 88, 114). A case of severe SARS-CoV2 infection has also been documented in a patient with Good’s syndrome and absent B cells (139). Finally, a significant proportion of patients that developed yellow fever vaccine-associated viscerotropic disease post vaccination had a history of thymus disease, suggesting possible Good’s syndrome (155).
Pathogenesis	Agammaglobulinemia (XL or AR)	CVID	Good’s syndrome	Post anti-CD20 therapy
Circulating B cells	Very low or absent	Low in 10% of cases	Low or absent	Low or absent
Viral infections	Enteroviruses (Echovirus, Coxsackie virus and Poliovirus)	Chronic meningococcalitis, dermomyositis-like syndrome, chronic diarrhea, arthritis, post-vaccination poliomyelitis (8–25)	Chronic meningococcalitis, post-vaccination poliomyelitis, asymptomatic infection (19, 20, 28–31)	Meningoencephalitis*
	JC virus	Progressive multifocal encephalopathy (10)	Progressive multifocal encephalopathy (29, 52)	Progressive multifocal encephalopathy (53–56)
	Astrovirus	Meningoencephalitis*	Chronic meningococcalitis, post-vaccination poliomyelitis, asymptomatic infection (19, 20, 28–31)	Progressive multifocal encephalopathy (57, 58)
	Adenovirus	Chronic lower respiratory tract infection (62), meningococcalitis (27)	Fulminant hepatitis (63)	
	Measles	Vaccine-associated inclusion-body encephalitis (64)	Fatal pneumonitis (65)	
	Mumps	Encephalitis (29)	Nephropathy, viremia (71)	
	Rubella	Cutaneous and visceral granulomas (66–69)	Neuroinvasive disease (73–77)	
	BK virus	Encephalitis (70)	Chronic diarrhea (83)	
	West Nile virus	Meningitis (72)	Encephalitis (84), keratitis (86), trachitis (86)	
	Norovirus	Chronic diarrhea/feecal shedding (24)	Ulcerative dermatitis, recurrent genital, esophagitis, epiglottitis, acute hepatitis, keratitis, meningitis (87–93)	
	HSV	Chronic diarrhea (78–82)	Meningoencephalitis (107, 108), pneumonitis (109, 110), colitis (111)	
	CMV	Chronic diarrhea (97), retinitis (98) and pneumonia (22)	Disseminated or cutaneous infections (87, 88, 114)	
	VZV	Angitis (113)	Disseminated (including post vaccination) or cutaneous infection (33, 34, 71, 115, 116)	
	HHV7	Severe liver disease (117)	Meningoencephalitis (107, 108), pneumonitis (109, 110), colitis (111)	
	HHV8	Severe liver disease (117)	Disseminated or cutaneous infections (87, 88, 114)	
	HPV	Severe warts (22, 120, 121)	Severe warts (122)	
		Severe warts (122)	Severe warts (123)	
	Vaccinia virus	Disseminated infection (11, 17, 124)	Peripheral blood cytopenias (126–131)	
	Parvovirus B19	Arthritis (125)	Persistent/severe pneumonia (140–143)	
	SARS-CoV2	Persistent pneumonia (132–136)	Reactivation (34, 144–146)	
		Severe pneumonia (137–139)	Severe pneumonia (139)	
		Kaposi’s sarcoma (119)	Severe warts (123)	

*authors’ personal experience.
Although hypogammaglobulinemia is generally thought to be the main driver in this disease, B cell counts correlate better with the risk of infection (153, 156). Moreover, cases with normal immunoglobulins but absent B cells and recurrent infections are reported in the literature (157). Thymectomy can cure the autoimmune features of this disease, but not B cell lymphopenia, suggesting that this may be the primary defect in these patients (158).

CVID

Patients with CVID generally have normal levels of circulating B cells, but in up to 10% of cases B cells can be low (159). Of note, it is patients with absent B cells that tend to have the worse prognosis (91).

Although bacterial sinopulmonary infections are typically documented in CVID, various atypical viral infections have been described and these may be more common than previously thought (Table 1). Kainulainen et al. found that latent or chronic lower respiratory tract viral infections are frequently detected in these patients, usually caused by adenovirus (62). Similar findings were noted in a more recent study of 1303 immunocompromised patients; viral infections were identified in 35% of 2666 bronchoalveolar lavage samples, with rhinovirus-enterovirus, parainfluenza and coronavirus being the most common (160). Severe SARS-CoV2 infection has also been documented in 2 CVID patients with very low peripheral B cells (137, 139). In a recent international study of patients with inborn errors of immunity, CVID patients comprised a large proportion of the total number of deaths from SARS-CoV2 (138).

Although less common in comparison to XLA, chronic meningococcal meningoencephalitis by enteroviruses and post-vaccination poliomyelitis have also been described in these patients (19, 26, 27, 29). Asymptomatic infection is also common (30, 31). In a recent systematic review, CVID patients exhibited the lowest probability of clearing vaccine-derived poliovirus infection in comparison to other primary immunodeficiency patients (20). Serum B cell counts are unfortunately not generally cited in these cases, with the exception of a recent report of a patient with monogenic CVID and fatal enteroviral encephalitis (28). Peripheral B cells were absent in this patient and interestingly, her primary and secondary lymphoid tissues also lacked B cells (28). Throughout the initial course of her disease she was on adequate immunoglobulin replacement, suggesting that B cell lymphopenia may have been the primary driver of her poor clinical outcome (28).

Other reported viral causes of meningococcal encephalitis in CVID include BK virus (70), adenovirus (27), mumps (29), West Nile virus (72), and HSV (85, 86). Also JC virus-induced PML has been cited (29, 52). Measles inclusion-body encephalitis caused by the vaccine strain of the virus has been documented in a young boy with features suggestive of CVID (64).

Up to 10% of CVID patients develop an inflammatory bowel disease-like disorder, and viral infections are thought to play a key role in its pathogenesis (97). CMV has been implicated (97) but most commonly chronic norovirus infection is cited (78–82). Interestingly, these patients tend to have very low or absent peripheral B cells (78) and very few plasma cells in their intestine (161). Of note, even non-CVID patients that suffer from chronic norovirus infection tend to have absent B cells, suggesting a vital role for these cells against this virus (78).

Other severe or chronic viral infections that have been documented in CVID include VZV-induced angiitis (113), parvovirus B19-induced arthritis (125), and severe HPV-associated warts (22, 120, 121). Apart from enteritis, CMV infection has also been linked to retinitis (98) and pneumonia (22). Rubella virus vaccine strains are postulated to play a role in the development of the cutaneous and visceral granulomas that are seen in these patients (66–69, 162). Finally, HHV8 is suspected to play a role in the pathogenesis of interstitial lung disease and of lymphoproliferative disorders that are more frequent in these patients (118).

B CELL-DEPLETING THERAPIES

Rituximab, an anti-CD20 monoclonal antibody, depletes peripheral B-cells and causes subsequent hypogammaglobulinemia with impaired specific-antibody production (163, 164). Its effects can last for several months, particularly when given in multiple cycles, and in many cases circulating B cells remain low long-term (165–168).

Rituximab has now been used in clinical practice for more than 20 years and its role as an independent risk-factor for the development of viral infections is well documented (34, 71). Cases of viral reactivation are reported in the literature (Table 1), most commonly by hepatitis B virus (34, 144–146), VZV (disseminated or cutaneous infection) (33, 34, 71, 115) and CMV (meningoencephalitis (107, 108), pneumonitis (109, 110), colitis (111)). JC virus-induced PML (57, 58), BK virus-associated nephropathy/viremia (71), severe warts (123), adenovirus-induced fulminant hepatitis (63), and HSV-induced encephalitis (94), keratitis (95) and trachitis (96) have also been reported. These associations have led professional societies to recommend hepatitis screening before treatment initiation (169, 170) and/or herpes zoster prophylaxis post-treatment (171).

De-novo viral infections are equally common, with the most common examples being parvovirus B19-induced peripheral cytopenias (126–131) and West Nile virus neuroinvasive disease (73–77). More recently, several cases of persistent (140, 141, 143) or fatal (142) SARS-CoV2 infection have been documented in patients that previously had rituximab treatment. Several cases of enteroviral meningoencephalitis are also documented (32–45) suggesting that absent peripheral B cells, irrespective of the cause, is the key driver for this disease. Cases of enterovirus-induced acute liver failure are also cited (46, 47), as well as cases of chronic norovirus diarrhea (83) and fatal measles pneumonitis (65). A case of fatal, disseminated VZV infection following zoster vaccination was recently documented in a patient that previously had rituximab-inclusive chemotherapy (116). Some of the above
studies included patients that were receiving additional immunosuppressive agents, making it difficult to delineate the individual contribution of rituximab to the patients’ immune status; but in several others, the role of rituximab as an independent risk factor was established (168, 172-174).

Not surprisingly, other anti-CD20 monoclonal antibodies have a similar risk-profile. Several cases of post-obinutuzumab enteroviral meningoencephalitis have been reported and these patients also sometimes develop a dermatomyositis-like syndrome (48–50). Finally, a patient with echovirus-induced fulminant hepatitis after ocrelizumab has been reported (51).

DISCUSSION

The COVID-19 pandemic has brought viral infections into the spotlight of global scientific interest and understanding how our immune system protects us from these infections is today more pertinent than ever. The immunodeficiency disorders discussed above offer an insight into the role of humoral immunity in antiviral defenses. Contrary to the common belief that patients with humoral immune defects are predisposed to bacterial infections alone, viral infections are frequently reported in these patients, particularly in those with absent peripheral B cells. Viral infections are of course also common in healthy individuals, who may also present with unusually severe or prolonged viral infections. The cases described above however highlight an atypical and opportunistic pattern of infections in patients with absent circulating B cells.

Chronic enteroviral infection is one of the most characteristic examples and strongly suggests that very low B cells are an important predisposing factor for an adverse outcome, irrespective of the cause. IgG replacement therapy helps prevent severe sequelae in most, but not all patients, suggesting that low circulating B cells may represent an independent risk factor. Persistent Norovirus infection is another example that is seen almost exclusively in individuals with low or absent circulating B cells, irrespective of the cause (XLA, CVID and even in the general population). B cells are also absent in intestinal biopsies from these patients, highlighting an important role for local humoral immunity. Mounting evidence also suggests that B cell alymphocytosis is linked to an adverse outcome from SARS CoV2 infection. In certain situations, cellular immunity seems to be even less relevant than humoral, e.g. XLA patients had a higher likelihood to acquire vaccine-derived poliovirus infection in comparison to patients with combined immune deficiencies.

Viral pathogenesis of course also plays an important role in the outcome of any viral infection. Most viruses spread freely in tissues via lytic cellular infection but some can also spread directly, from cell-to-cell. It is the latter types that are more protected by the effects of humoral immunity and lack of B cells would not be expected to make a significant difference to their survival. Indeed, herpes viruses are known to spread via direct cell-to-cell contact in neuronal networks (175) and this may explain why reports of severe or atypical herpes viral infections in adult XLA patients are lacking in the literature. Another example of a virus that is not reported frequently in patients with absent circulating B cells is Epstein Barr virus (EBV), in agreement with the notion that B lymphocytes likely represent the primary reservoir for this virus (151).

The examples discussed above are unlikely to be the only ones. Severe or persistent viral infections are much more likely to be diagnosed and/or be reported in the literature, but mild viral infections are likely to be frequent and may contribute to the development of other infections as well. In comparison to bacterial infections, viral infections tend to be more difficult to diagnose and widely available diagnostic tests are lacking for most of them. Another complicating factor is that serological methods tend to be unreliable in antibody deficient patients, both due to their dependency on native IgG production and due to the frequent external administration of therapeutic IgG. Furthermore, viral infections tend to be of lower clinical interest than bacterial, e.g. in lower respiratory tract infection, and are less often interrogated by clinicians. The small numbers of patients that suffer with congenital B cell alymphocytosis have made it more difficult for this association to be established in the past, but the more prevalent use of rituximab in recent years has helped bring it into focus. The few studies that have specifically looked into the frequency of viral infections in patients with agammaglobulinemia also lend support to this association.

There are several reasons why B cell alymphocytosis may confer a particular predisposition to viral infections. Peripheral B cells are generally a good marker of the overall content of tissue B cells and when absent this commonly translates into very poor antibody responses to infection. In most other humoral immunodeficiencies, e.g. in CVID patients with normal B cells, antibody responses may be sufficient enough to confer protection from viral infections. Patients with absent circulating B cells are very likely to have absent IgA and IgM antibodies, the latter having important roles in antiviral immunity; e.g. IgA in mucosal tissues and IgM as the first isotype responder to infection (176). Finally, B cells may also play an important role themselves, due to their ability to act as antigen-presenting cells and thus stimulate cellular immunity.

Of course, patients with defective humoral responses are less prone to serious viral infections than those with defective cellular immunity but that does not necessarily reflect a lack of importance of B cells in antiviral immunity. It rather highlights the importance of T helper cells in priming humoral immunity, via the generation of memory B cells and long-lived plasma cells. Humoral immunity is effective in neutralizing viral particles and thus preventing their spread through tissues but once an infection is established, cellular immunity is more important via its role in eliminating virally infected cells. In line with this notion, hyperimmune globulin, immunoglobulin preparations that are high in antibodies against a specific disease, are available for prophylactic use of several types of viral infections and can even prevent progression when used early on in the course of an infection (177–179). However, they tend to be less effective when it comes to treating an established viral infection (180, 181).

Understanding the importance of humoral immunity, and serum B cells in particular, in the defense against viral infections
has important clinical implications. Firstly, circulating B cells may be used as a screening tool to risk-stratify patients that are infected by viruses. This may be particularly important for SARS-CoV2 infection, as is underlined by multitude of the recently published case reports. Secondly, physicians need to be vigilant with the use of B cell depleting therapies, particularly in those patients that have a weakened immune system. The need to monitor B cell counts in these patients has also been recommended in the past. Thirdly, strategies may need to be adapted to protect patients with very low serum B cells, e.g. through the use of infection control measures, antiviral prophylaxis and with prompt investigation and treatment of infectious episodes.

Clinicians caring for patients that harbor humoral immune deficiencies will also need to be vigilant for viral infections and include them in their differential. Live viral vaccines need to be avoided in these patients. Previous cases of post-vaccination poliomyelitis have raised awareness and live OPV is now contraindicated in the above immunodeficiencies. Guidance on the use of other live vaccines is however less clear, e.g. the Green Book, a UK government publication, recommends that live vaccines should not be administered to individuals who are on or have received immunosuppressive biological therapy in the past 12 months (182). However, antibody deficiencies are not considered to be a contraindication (182). The Infectious Diseases Society of America on the other hand proposes that live vaccines should be avoided equally in patients with major antibody deficiencies (e.g. XLA or CVID) and in those on biologic immunosuppressive therapy (183). Similarly, the Immune Deficiency Foundation advises that antibody deficient patients with absent B cells should avoid live viral vaccines (184). The above literature adds support to this view and measuring circulating B cells may even offer an easy way to discriminate between CVID patients that can and those that should not receive these vaccines.

Overall, the evidence summarized above suggests that atypical and opportunistic viral infections are not uncommon in patients with low or absent peripheral B cells and offers us an insight into the importance of humoral immunity in the defense against viral infections. Physicians should be vigilant for these types of infections in patients with low B cells and follow appropriate prophylactic measures.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/supplementary material. Further inquiries can be directed to the corresponding author.

AUTHOR CONTRIBUTIONS

AG: conceptualized, wrote first draft and edited manuscript. MD: edited manuscript. SJ: edited manuscript. MG: edited manuscript. All authors contributed to the article and approved the submitted version.
25. Yel L, Minegishi Y, Coustan-Smith E, Buckley RH, Trübel H, Pachman LM, et al. Enteroviral Infection in a Patient With BLNK Adaptor Protein Deﬁciency. J Clin Immunol (2019) 39, 7:607–14. doi: 10.1007/s10875-018-05489-0

26. Grisariu S, Vaxman I, Gatt M, Elias S, Avni B, Arad A, et al. Enteroviral Meningoencephalitis With Persistent B-Cell Depletion From Rituximab. Eur J Haematol (2012) 89:408–13. doi: 10.1111/j.1368-8304.2012.03307.x

27. Lau YL, Levinsky RJ, Morgan G, Strobel S. Dual Meningoencephalitis With Enterovirus 9 in a Patient on Maintenance Rituximab Therapy for Follicular Lymphoma Undergoing Obinutuzumab Maintenance Therapy. Eur J Haematol (2013) 91:426–30. doi: 10.1111/ejh.12101

28. Slade CA, McLean C, Scerri T, Giang TB, Megaloudis S, Strathmore A, et al. Poliovirus Excretion Among Persons With Primary Immune Deﬁciency: Successful Treatment With Pleconaril. J Infect Dis (2018) 217:1029–35. doi: 10.1093/infdis/jiy438

29. Nguyen JT-U, Green A, Wilson MR, DeRisi JL, Gunning K. Neurologic Complications of Common Variable Immunodeﬁciency. J Clin Immunol (2016) 36:793–800. doi: 10.1007/s10875-016-0336-6

30. Driss N, Ben-Mustapha I, Melloui F, Ben Yahia A, Touzi H, Bejaoui M, et al. High Susceptibility for Enterovirus Infection and Virus Excretion Features in Tunisian Patients With Primary Immunodeﬁciencies. Clin Vaccine Immunol (2012) 19:1684–9. doi: 10.1128/CVI.00293-12

31. Li L, Ivanova O, Driss N, Tiongco-Recto M, da Silva R, Shahnahmoodi S, et al. Poliovirus Excretion Among Persons With Primary Immune Deﬁciency Disorders: Summary Of a Seven-Country Study Series. J Infect Dis (2014) 210(Suppl):S368–72. doi: 10.1093/infdis/jiu065

32. Grisaru S, Vaxman I, Gatt M, Elias S, Avni B, Arad A, et al. Enteroviral Infection in Patients Treated With Rituximab for non-Hodgkin Lymphoma: A Case Series and Review of the Literature. Hematol Oncol (2017) 35:591–8. doi: 10.1002/hon.2365

33. Makatsori M, Kiani-Alikhan S, Manson AL, Verma N, Leandro M, Gurugama NP, et al. Hypogammaglobulinemia After Rituximab Treatment—Incidence and Outcomes. QJM (2014) 107:821–8. doi: 10.1093/qjmed/hct094

34. Askos S, Harputluoglu H, Kilickap S, Dede DS, Dizdar O, Altundag K, et al. Rituximab-Related Viral Infections in Lymphoma Patients. Leuk Lymphoma (2007) 48:1307–12. doi: 10.1080/10428190701141411

35. Schilthuizen C, Berenschot HWA, Levin M-D. Enteroviral Encephalitis in a Patient With a Marginal Zone Lymphomamatched With Rituximab. Neth J Med (2010) 68:221–3.
55. Ueno T, Sato N, Kon T, Haga R, Nunomura J-I, Nakamichi K, et al. Progressive Multifocal Leukoencephalopathy Associated With Thymoma With Immunodeficiency: A Case Report and Literature Review. BMC Neurol (2018) 18:37. doi: 10.1186/s12883-018-1041-4

56. Capobianco M, Pulizzi A, Bertolotto A. Progressive Multifocal Leukoencephalopathy in Good’s Syndrome. Int J Infect Dis (2010) 14 (Suppl 3):e367–8. doi: 10.1016/j.ijid.2010.02.2260

57. Tuccori M, Focosi D, Blandizzi C, Pelosini M, Montagnani S, Maggi F, et al. Inclusion of Rituximab in Treatment Protocols for non-Hodgkin’s Lymphomas and Risk for Progressive Multifocal Leukoencephalopathy. Oncologist (2010) 15:1214–9. doi: 10.1634/theoncologist.2010-0098

58. Carson KR, Evens AM, Richey EA, Habermann TM, Focosi D, Seymour JF, et al. Progressive Multifocal Leukoencephalopathy After Rituximab Therapy in HIV-Negative Patients: A Report of 57 Cases From the Research on Adverse Drug Events and Reports Project. Blood (2009) 113:4834–40. doi: 10.1182/blood-2008-10-169999

59. Quan PL, Wagner TA, Briese T, Torgerson TR, Hornig M, Tashmumhaleda O, et al. Astrovirus Encephalitis in Boy With X-Linked Agammaglobulinemia. Emerg Infect Dis (2010) 16:918–25. doi: 10.3202/eid1606.01536

60. Fremond M-L, Péro P, Muth E, Cros G, Dumarest M, Mahlouqi N, et al. Next-Generation Sequencing for Diagnosis and Tailored Therapy: A Case Report of Astrovirus-Associated Progressive Encephalitis. Pediatr Infect Dis J (2015) 34:787–9. doi: 10.1097/Inf.0000000000000205

61. Machado P, Santos A, Faria E, Silva J, Malcata A, Chieira C. Arthritis and X-Linked Agammaglobulinemia. Acta Reumatol Port (2008) 33:464–7.

62. Kainulainen L, Vuorinen T, Rantakokko-Jalava K, Osterback R, Ruuskanen O. Fatal Encephalitis Due to BK Virus in a Patient With Common Variable Immunodeficiency. J Clin Virol Off Publ Infect Dis Soc Am (2011) 52:659–67. doi: 10.1016/j.jcv.2010.01.019

63. Alonto AM, Aronoff DM, Malani PN. West Nile Virus Neuroinvasive Disease Associated With Rituximab Therapy (P4.9–022). Neurology (2019) 92:P4.9–022. doi: 10.1212/01.wnl.000056854.x

64. Murias S, Argallo E, Taur Y, Sepkowitz K, Hatzoglou V, Nemade A, et al. West Nile Virus Central Nervous System Infection in Patients Treated With Rituximab: Implications for Diagnosis and Prognosis, With a Review of Literature. Open Forum Infect Dis (2015) 2:ofv136–6. doi: 10.1109/ofid.ofv136

65. Honig A, Karussis D. Delayed-Onset Flaccid Paralysis Related to West Nile Virus Reactivation Following Treatment With Rituximab: A Case Report. BMC Res Notes (2014) 7:852. doi: 10.1186/1756-0500-7-852

66. Bodemer C, Sauvage V, Mahlaoui N, Cheval J, Couderc T, Leclerc-Mercier S, et al. Progressive Multifocal Leukoencephalopathy After Rituximab Therapy. J Investig Allergol Clin Immunol (2015) 130:e257. doi: 10.1016/j.jiac.2015.05.007

67. Goates C, Tsuha S, Working S, Carey J, Spivak ES. Seronegative West Nile Virus Infection in a Patient Treated With Rituximab for Rheumatoid Arthritis. Am J Med (2017) 130:e257–8. doi: 10.1016/j.amjmed.2017.01.014

68. Rolfe MC, Siraanoo P, Davila Saldaña BJ, Dvorak CC, Chapdelaine H, Ferdman RM, et al. Chronic Norovirus Infection in Primary Immune Deficiency Disorders: An International Case Series. Diagn Microbiol Infect Dis (2019) 93:69–73. doi: 10.1016/j.diagmicrobio.2018.08.002

69. Heath Jeffery R, Fadka M, Morey A. Chronic Norovirus Infection in Common Variable Immunodeficiency (CVID): A Case Report and Literature Review. Diagn Microbiol Infect Dis (2015) 84:367–72. doi: 10.1016/j.diagmicrobio.2015.09.017

70. Woodward JM, Gkrania-Klotsas E, Cordero-Ng AY, Aravinthan A, Bandoh BN, Liu H, et al. The Role of Chronic Norovirus Infection in the Enteropathy Associated With Common Variable Immunodeficiency. Am J Gastroenterol (2015) 110:320–7. doi: 10.1038/aaj.2014.342

71. Woodward J, Ng A, Aravinthan A, Bandoh B, Liu H, Davies S, et al. PTU-161 Chronic Norovirus Infection as a Cause of Common Variable Immunodeficiency-Associated Enteropathy. Gut (2012) 61:A251–Lp–A251. doi: 10.1136/gutjnl-2012-302514.ac.161

72. Woodward J, Gkrania-Klotsas E, Kumararatne D. Chronic Norovirus Infection and Common Variable Immunodeficiency. Clin Exp Immunol (2017) 183:363–70. doi: 10.1111/cei.12884

73. Owens M, Choe L, Rivera J, Avila D. West Nile Virus Neuroinvasive Disease Associated With Rituximab Therapy. J Vaccinol Immunol (2014) 9:1353–4. doi: 10.3201/eid0910.031095

74. Alonto AM, Aronoff DM, Malani PN. West Nile Virus Meningitis in Patient With Common Variable Immunodeficiency. Emerg Infect Dis (2003) 9:1353–4. doi: 10.3201/eid0910.031095
167. Roberts DM, Jones RB, Smith RM, Alberici F, Kumararatne DS, Burns S, et al. Rituximab-Associated Hypogammaglobulinemia: Incidence, Predictors and Outcomes in a Large Cohort of Patients With Multi-System Autoimmune Disease. J Autoimmun (2015) 57:60–5. doi: 10.1016/j.jaut.2014.11.009

168. Gkrania-Klotsas E, Kumararatne DS. Serious Infectious Complications After Rituximab Therapy in Patients With Autoimmunity: Is This the Final Word? Clin Infect Dis (2021) 72:738–42. doi: 10.1093/cid/ciaa131

169. Buch MH, Smolen JS, Betteridge N, Breedveld FC, Burmester G, Dörner T, et al. Updated Consensus Statement on the Use of Rituximab in Patients With Rheumatoid Arthritis. Ann Rheum Dis (2011) 70:909 LP – 920. doi: 10.1136/ard.2010.144998

170. Mikulska M, Lanini S, Gudiol C, Drgona L, Ippolito G, Fernandez-Ruiz M, et al. ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the Safety of Targeted and Biological Therapies: An Infectious Diseases Perspective (Agents Targeting Lymphoid Cells Surface Antigens [I]: CD19, CD20 and CD52). Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis (2018) 24(Suppl 2):S71–82. doi: 10.1016/j.cmi.2018.02.003

171. Raso S, Napolitano M, Carlisi M, Mancuso S, Santoro M, Siragusa S. Rituximab for Immune Thrombocytopenia: A Retrospective Analysis on the Role of Prophylaxis Against Pneumocystis Jirovecii and Herpes Zoster Virus. Blood (2018) 132:4992. doi: 10.1182/blood-2018-99-118585

172. Kamar N, Milioto O, Puissant-Lubrano B, Esposito L, Pierre MC, Mohamed A, et al. Updated Consensus Statement on the Use of Rituximab in Patients With COVID-19. A Systematic Review and Meta-Analysis. JAMA (2021) 325:1185–95. doi: 10.1001/jama.2021.2747

173. Libster R, Pérez Marc G, Wappner D, Coviello S, Bianchi A, Braem V, et al. Early High-Titer Plasma Therapy to Prevent Severe Covid-19 in Older Adults. N Engl J Med (2021) 384:610–8. doi: 10.1056/NEJMoa2033700

174. Levin MJ, Duchon JM, Swamy GK, Gershon AA. Varicella Zoster Immune Globulin (VARIZIG) Administration Up to 10 Days After Varicella Exposure in Pregnant Women, Immunocompromised Participants, and Infants: Varicella Outcomes and Safety Results From a Large, Open-Label, Expanded-Access Program. PloS One (2019) 14:e0217749. doi: 10.1371/journal.pone.0217749

175. Salazar G, Zhang N, Fu T-M, An Z. Antibody Therapies for the Prevention and Treatment of Viral Infections. NPJ Vaccines (2017) 2:19. doi: 10.1038/s41541-017-0019-3

176. Davey RT Jr, Fernández-Cruz E, Markowitz N, Pett S, Babiker AG, Wentworth D, et al. Anti-Influenza Hyperimmune Intravenous Immunoglobulin for Adults With Influenza A or B Infection (FLU-IVIG): A Double-Blind, Randomised, Placebo-Controlled Trial. Lancet Respir Med (2019) 7:951–63. doi: 10.1016/S2213-2600(19)30253-X

177. Jahia P, Axtors C, Schmitt AM, Gloy V, Ebrahimi F, Hepprich M, et al. Association of Convalescent Plasma Treatment With Clinical Outcomes in Patients With COVID-19: A Systematic Review and Meta-Analysis. JAMA (2021) 325:1185–95. doi: 10.1001/jama.2021.2747

178. Salisbury D, Ramsay M, Noakes K. Immunisation Against Infectious Disease, Chapter 6: In: Contraindications and Special Considerations (Green Book). London: Department of Health (2017).

179. Rubin LG, Levin MJ, Ljungman P, Davies EG, Avery R, Tomblyn M, et al. IDSA Clinical Practice Guideline for Vaccination of the Immunocompromised Host. Clin Infect Dis (2014) 58:e44–100. doi: 10.1093/cid/cit684

180. Ballow M, Heimall J, Perez E, Younger M, Epland K, Leiding J, et al. Patient & Family Handbook For Primary Immunodeficiency Diseases, 6th ed. Baxter (2019).

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Grammatikos, Donati, Johnston and Gompels. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.