The Art and Practice of Data Science Pipelines
A Comprehensive Study of Data Science Pipelines In Theory, In-The-Small, and In-The-Large

Sumon Biswas
Iowa State University
Ames, IA, USA
sumon@iastate.edu

Mohammad Wardat
Iowa State University
Ames, IA, USA
wardat@iastate.edu

Hridesh Rajan
Iowa State University
Ames, IA, USA
hridesh@iastate.edu

ABSTRACT
Increasingly larger number of software systems today are including data science components for descriptive, predictive, and prescriptive analytics. The collection of data science stages from acquisition, to cleaning/curation, to modeling, and so on are referred to as data science pipelines. To facilitate research and practice on data science pipelines, it is essential to understand their nature. What are the typical stages of a data science pipeline? How are they connected? Do the pipelines differ in the theoretical representations and that in the practice? Today we do not fully understand these architectural characteristics of data science pipelines. In this work, we present a three-pronged comprehensive study to answer this for the state-of-the-art, data science in-the-small, and data science in-the-large. Our study analyzes three datasets: a collection of 71 proposals for data science pipelines and related concepts in theory, a collection of over 105 implementations of curated data science pipelines from Kaggle to understand data science in-the-small, and a collection of 21 mature data science projects from GitHub to understand data science in-the-large. Our study has led to three representations of data science pipelines that capture the essence of our subjects in theory, in-the-small, and in-the-large.

CCS CONCEPTS
- Software and its engineering → Software creation and management; - Computing methodologies → Machine learning.

KEYWORDS
data science pipelines, data science processes, descriptive, predictive

ACM Reference Format:
Sumon Biswas, Mohammad Wardat, and Hridesh Rajan. 2022. The Art and Practice of Data Science Pipelines: A Comprehensive Study of Data Science Pipelines In Theory, In-The-Small, and In-The-Large. In 44th International Conference on Software Engineering (ICSE ’22). May 21–29, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3510003.3510057

1 INTRODUCTION
Data science processes, also called data science stages as in stages of a pipeline, for descriptive, predictive, and prescriptive analytics are becoming integral components of many software systems today.

The data science stages are organized into a data science pipeline, where data might flow from one stage in the pipeline to the next. These data science stages generally perform different tasks such as data acquisition, data preparation, storage, feature engineering, modeling, training, evaluation of the machine learning model, etc. In order to design and build software systems with data science stages effectively, we must understand the structure of the data science pipelines. Previous work has shown that understanding the structure and patterns used in existing systems and literature can help build better systems [23, 78]. In this work, we have taken the first step to understand the structure and patterns of DS pipelines.

Fortunately, we have a number of instances in both the state-of-the-art and practice to draw observations. In the literature, there have been a number of proposals to organize data science pipelines. We call such proposals DS Pipelines in theory. Another source of information is Kaggle, a widely known platform for data scientists to host and participate in DS competitions, share datasets, machine learning models, and code. Kaggle contains a large number of data science pipelines, but these pipelines are typically developed by a single data scientist as small standalone programs. We call such instances DS Pipelines in-the-small. The third source of DS pipelines are mature data science projects on GitHub developed by teams, suitable for reuse. We call such instances DS Pipelines in-the-large.

This work presents a study of DS pipelines in theory, in-the-small, and in-the-large. We studied 71 different proposals for DS pipelines and related concepts from the literature. We also studied 105 instances of DS pipelines from Kaggle. Finally, we studied 21 matured open-source data science projects from GitHub. For both Kaggle and GitHub, we selected projects that make use of Python to ease comparative analysis. In each setting, we answer the following overarching questions.

(1) Representative pipeline: What are the stages in DS pipeline and how frequently they appear?
(2) Organization: How are the pipeline stages organized?
(3) Characteristics: What are the characteristics of the pipelines in a setting and how does that compare with the others?

This work attempts to inform the terminology and practice for designing DS pipeline. We found that DS pipelines differ significantly in terms of detailed structures and patterns among theory, in-the-small, and in-the-large. Specifically, a number of stages are absent in-the-small, and the pipelines have a more linear structure with an emphasis on data exploration. Out of the eleven stages seen in theory, only six stages are present in pipeline in-the-small, namely data collection, data preparation, modeling, training, evaluation, and prediction. In addition, pipelines in-the-small do not have clear separation between stages which makes the maintenance harder. On the other hand, the DS pipelines in-the-large have a
more complex structure with feedback loops and sub-pipelines. We identified different pipeline patterns followed in specific phase (development/post-development) of the large DS projects. The abstraction of stages are stricter in-the-large having both loosely- and tightly-coupled structure.

Our investigation also suggest that DS pipeline is a well used software architecture but often built in ad hoc manner. We demonstrated the importance of standardization and analysis framework for DS pipeline following the traditional software engineering research on software architecture and design patterns [48, 61, 78]. We contributed three representations of DS pipelines that capture the essence of our subjects in theory, in-the-small, and in-the-large that would facilitate building new DS systems. We anticipate our results to inform design decisions made by the pipeline architects, practitioners, and software engineering teams. Our results will also help the DS researchers and developers to identify whether the pipeline is missing any important stage or feedback loops (e.g., storage and evaluation are missed in many pipelines).

The rest of this paper is organized as follows: in section §2, we present our study of DS pipelines in theory. Section §3 describes our study of DS pipelines in-the-small. In section §4, we describe our study of DS pipelines in-the-large. Section §5 discusses the implications, section §6 describes the threats to the validity, section §7 describes related work, and section §8 concludes.

2 DS PIPELINE IN THEORY

Data Science. Data Science (DS) is a broad area that brings together computational understanding, inferential thinking, and the knowledge of the application area. Wing [91] argues that DS studies how to extract value out of data. However, the value of data and extraction process depends on the application and context. DS includes a broad set of traditional disciplines such as data management, data infrastructure building, data-intensive algorithm development, AI (machine learning and deep learning), etc., that covers both the fundamental and practical perspectives from computer science, mathematics, statistics, and domain-specific knowledge [9, 81]. DS also incorporates the business, organization, policy and privacy issues of data and data-related processes. Any DS project involves three main stages: data collection and preparation, analysis and modeling, and finally deployment [90]. DS is also more than statistics or data mining since it incorporates understanding of data and its pattern, developing important questions and answering them, and communicating results [81].

Data Science Pipeline. The term pipeline was introduced by Garlan with box-and-line diagrams and explanatory prose that assist software developers to design and describe complex systems so that the software becomes intelligible [26]. Shaw and Garlan have provided the pipes-and-filter design pattern that involves stages with processing units (filters) and ordered connections (pipes) [78]. They also argued that pipeline gives proper semantics and vocabulary which helps to describe the concerns, constraints, relationship between the sub-systems, and overall computational paradigm [26, 78]. By data science pipeline (DS pipeline), we are referring to a series of processing stages that interact with data, usually acquisition, management, analysis, and reasoning [54, 56]. The sequential DS stages from acquisition, to cleaning/curation, to modeling, and so on are referred to as data science pipeline. A DS pipeline may consist of several stages and connections between them. The stages are defined to perform particular tasks and connected to other stage(s) with input-output relations [4]. However, the definitions of the stages are not consistent across studies in the literature. The terminology vary depending on the application context and focus.

Different study in the literature presented DS pipeline based on their context and desiderata. No study has been conducted to unify the notions DS pipeline and collect the concepts [76]. While designing a new DS pipeline [92], dividing roles in DS teams [46], defining software process in data-intensive setting [86], identifying best practices in AI and modularizing DS components [4], it is important to understand the current state of the DS pipeline, its variations and different stages. To understand the DS pipelines and compare them, we collected the available pipelines from the literature and conducted an empirical study to unify the stages with their subtasks. Then we created a representative DS pipeline with the definitions of the stages. Next, we present the methodology and results of our analysis of DS pipelines in theory.

2.1 Methodology

2.1.1 Collecting Data Science Pipelines. We searched for the studies published in the literature and popular press that describes DS pipelines. We considered the studies that described both end-to-end DS pipeline or a partial DS pipeline specific to a context. First, we searched for peer-reviewed papers published in the last decade i.e., from 2010 to 2020. We searched the terms “data science pipeline”, “machine learning pipeline”, “big data lifecycle”, “deep learning workflow”, and the permutation of these keywords in IEEE Xplore, ACM Digital Library and Google Scholar. From a large pool, we selected 1,566 papers that fall broadly in the area of computer science, software engineering and data science. Then we analyzed each article in this pool to select the ones that propose or describe a DS pipeline. We found many papers in this collection use the terms (e.g., ML lifecycle), but do not contain a DS pipeline. We selected the ones that contain DS pipeline and extracted the pipelines (screenshot/description) as evidence from the article. The extracted raw pipelines are available in the artifact accompanied by this paper [5]. Thus, we found 46 DS pipelines that were published in the last decade.

Besides peer-reviewed papers, by searching the keywords on web, we collected the DS pipelines from US patent, industry blogs (e.g., Microsoft, GoogleCloud, IBM blogs), and popular press published between 2010 and 2020. After manual inspection, we found 25 DS pipelines from this grey literature. Thus, we collected 71 subjects (46 from peer reviewed articles and 25 from grey literature) that contain DS pipeline. We used an open-coding method to analyze these DS pipelines in theory [5].

2.1.2 Labeling Data Science Pipelines. In the collected references, DS pipeline is defined with a set of stages (data acquisition, data preparation, modeling, etc.) and connections among them. Each stage in the pipeline is defined for performing a specific task and connected to other stages. However, not all the studies depict DS pipelines with the same set of stages and connections. The studies use different terminologies for defining the stages depending on the context. To be able to compare the pipelines, we had to understand the definitions and transform them into a canonical form. For a
Independent Labeling

9
Substantial agreement

Iteration #

Fair agreement

κ

0.67

0.84

κ

0.90

0.74

Moderate agreement

Slight agreement

wecalculatedtheCohen’sKappacoeficient[84],identifiedthemis-

given DS pipeline, identifying their stages and mapping them to a
canonical form is often challenging. The sub-tasks, overall goal of
the project, utilities affect the understanding of the pipeline stages.
To counter these challenges, we used an open-coding method to
label the stages of the pipelines.

Two authors labeled the collected DS pipelines into different
criteria. Each author read the article, understood the pipeline, iden-
tified the stages, and labeled them. In each iteration, the raters
labeled 10% of the subjects (7-8 pipelines). The first 8 subjects were
used for training and forming the initial labels. After each iteration,
we calculated the Cohen’s Kappa coefficient [84], identified the mis-
matches, and resolved them in the presence of a moderator, who
is another author. Thus, we found the representative DS pipeline af-
ter rigorous discussions among the raters and the moderator. The
methodology of this open-coding procedure is shown in Figure 1.

Training: The two raters were trained on the goal of this project
and their roles. We randomly selected eight subjects for training.
First, the raters and the moderator had discussions on three sub-
jects and identified the stages in their DS pipeline. Thus, we formed
the commonly occurred stages and their definitions, which were
updated through the entire labeling and reconciliation process later.
After the initial discussion and training, the raters were given the
already created definitions of the stages and one pipeline from the
remaining five for training. The raters labeled this pipeline indepen-
dently. After labeling the pipeline, we calculated the agreement and
computed a discussion session among the raters and the moderator.
In this session, we reconciled the disagreements and updated the
labels with the definitions. We continued the training session until
we got perfect agreement independently. The inter-rater agreement
was calculated using Cohen’s Kappa coefficient [84]. A higher κ ([0,
1]) indicates a better agreement. The interpretation of of κ is shown
in Figure 2a. In the discussion meetings, the raters discussed each
label (both agreed and disagreed ones) with the other rater and
moderator, argued for the disagreed ones and reconciled them. In
this way, we came up with most of the stages and a representative
terminology for each stage including the sub-tasks.

Independent labeling: After completing the training session,
the rest of the subjects were labeled independently by the raters.
The raters labeled the remaining 63 labels: 7 subjects (10%) in each
of the 9 iterations. The distribution of κ after each independent
labeled iteration is shown in Figure 2b. In each iteration, first, the
raters had the labeling session, and then the raters and moderator
had the reconciliation session.

Labeling. The raters labeled separately so that their labels were
private, and they did not discuss while labeling. The raters identi-
fied the stages and connections between them, and finally labeled
whether the DS pipeline involves processes related to cyber, physi-
cal or human component in it. In independent labeling, we found
almost perfect agreement (κ = 0.83) on average. Even after high
agreement, there were very few disagreements in the labels, which
were reconciled after each iteration.

Reconciling. Reconciliation happened for each label for the sub-
ject studies in the training session, and the disagreed labels for the
studies in independent labeling session. In training session, the
reconciliation was done in discussion meetings among the raters
and the moderator, whereas for the independent labels, reconcilia-
tion was done by the moderator after separate meetings with the
two raters. For reconciliation, the raters described their arguments
for the mislabeled stages. For a few cases, we had straightforward
solution to go for one label. For others, both the raters had good
arguments for their labels, and we had to decide on that label by
updating the stages in the definition of the pipeline. All the labeled
pipelines from the subjects are shared in our paper artifact [5].

Furthermore, after finishing labeling the pipelines stages, we
also classified the subject references into four classes based on the
overall purpose of the article. First, after a few discussions, the
raters and moderator came up with the classes. Then, the raters
classified each pipeline into one class. We found disagreements in 6
out of 71 references, which the moderator reconciled with separate
meetings with the two raters. Based on our labeling, the literature
that we collected are divided into four classes: describe or propose
DS pipeline, survey or review, DS optimization, and introduce new
method or application. Next, we are going to discuss the result of
analyzing the DS pipelines in theory.

2.2 Representative Pipeline in Theory

The labeled pipelines1 with their stages are visually illustrated in
the artifact [5]. We found that pipelines in theory can be both
software architecture and team processes unlike pipelines in-the-
small and in-the-large. Through the labeling process, we separated
those team processes (25 out of 71), which are discussed in §2.4.

RQ1a: What is a representative definition of the DS pipe-
line in theory? From the empirical study, we created a represen-
tative rendition of DS pipeline with 3 layers, 11 stages and possible
connections between stages as shown in Figure 3. Each shaded box
represents a DS stage that performs certain sub-tasks (listed under
the box). In the preprocessing layer, the stages are data acquisition,
preparation, and storage. The preprocessing stage study design only

![Figure 1: Labeling method for DS pipelines in theory](image)

![Figure 2: Labeling agreement calculation](image)

Range (κ)	Agreement level	Iteration #	κ	Iteration #	κ
< 0.20	Slight agreement	1	0.67	2	0.74
0.21 - 0.40	Fair agreement	3	0.82	4	0.84
0.41 - 0.60	Moderate agreement	5	0.87	6	0.94
0.61 - 0.80	Substantial agreement	7	0.90	8	0.94
0.81 - 1.00	Perfect agreement	9	0.94	10	0.91

1https://github.com/sumonbis/DS-Pipeline/blob/main/pipelines.pdf
Figure 3: Concepts in a data science pipeline. The sub-tasks are listed below each stage. The stages are connected with feedback loops denoted with arrows. Solid arrows are always present in the lifecycle, while the dashed arrows are optional. Distant feedback loops (e.g., from deployment to data acquisition) are also possible through intermediate stage(s).

Table 1: Description of the stages in DS pipeline

Pre-processing Layer	Model Building Layer	Post-processing Layer
Data acquisition	**Feature engineering**	**Interpretation**
Load Collect	Feature select	Transform Visualize
Obtain	- construct	Render Translate
Clean	Data store	Explain
Survey	- analyze	Publish
Filter	- label	Install
Organize	- annotate	Exploit
Data preparation	**Modeling**	**Communication**
Preserve	Model	Share
Archive	- classify	Distribute
Warehouse	- cluster	Publish
Filter	- mine	**Deployment**
Label	- analyze	Serve
Recycle	- process	Monitor
Storage	**Training**	**Deployment**
Feature engineering	**Evaluation**	**Deployment**
Modeling	**Prediction**	**Deployment**
Training	**Discover**	**Deployment**
Evaluation	**Derive**	**Deployment**
Prediction	**Test**	**Deployment**
Interpretation	**Verify**	**Deployment**
Communication	**Determine**	**Deployment**

focus of the pipeline or its importance in certain context (ML, big-data management). Among 46 DS pipelines (which are not team processes), Figure 4 shows the number of times each stage appears. A few pipelines present stages with broad terminology that fit multiple stage-definitions. In those cases, the pipelines were labeled with the fitted stages and counted multiple times. Modeling, data preparation, and feature engineering appear most frequently in the literature. While modeling is present in 93% of the pipelines, other model related stages (feature engineering, training, evaluation, prediction) are not used consistently. Often training is not considered as a separate stage and included inside the modeling stage. Similarly, we found that evaluation and prediction are often not depicted as separate stages. However, by separating the stages and modularizing the tasks, the DS process can be maintained better [4, 76]. The pipeline created with the most number of stages (11) is provided by Ashmore et al. [7]. On the other hand, about 15% of the pipelines from the literature are created with a minimal number (3) of stages. Among them, 80% are ML processes and falls in the category of DS optimizations. We found that these pipelines are very specific to particular applications, which include context-specific stages like data sampling, querying, visualization, etc., but do not cover most of the representative stages. A pipeline in theory may not require all representative stages, since it can have novelty in certain stages and exclude the others. However, the representative pipeline provides common terminology and facilitate comparative analysis.

Finding 1: Post-processing layers are included infrequently (52%) compared to pre-processing (96%) and model building (96%) layers in theory.
also showed that significant amount of cost and effort is spent in the post-development phases in traditional software lifecycle [48, 66]. In data-intensive software, the maintenance cost can go even higher with the high-interest technical debt in the pipeline [75]. Therefore, post-processing stages should be incorporated for a better understanding of the impact of the proposed approach on maintenance of the DS pipeline.

2.3 Organization of Pipeline Stages in Theory

RQ2: How are pipeline stages connected to each other? In Figure 3, for simplicity, we depicted the DS pipeline as a mostly linear chain. However, our subject DS pipelines often have non-linear behavior. In any stage, the system might have to return to the previous stage for refinement and upgrade, e.g., if a system faces a real-world challenge in modeling, it has to update the algorithm which might affect the data pre-processing and feature engineering as well. Furthermore, the stages do not have strict boundaries in the DS lifecycle. In Figure 3, two backward arrows, from feature engineering and evaluation, indicate feedback to any of the previous stages. Although in traditional software engineering processes (e.g., waterfall model, agile development, etc.), feedback loop is not uncommon, in DS lifecycle, there are multiple stakeholders and models in a distributed environment which makes the feedback loops more frequent and complex. Sculley et al. pointed that DS tasks such as sampling, learning, hyperparameter choice, etc. are entangled together so that Changing Anything Changes Everything (CACER principle) [76], which in turn creates implicit feedback loops that are not depicted in the pipelines [15, 24, 67, 83]. The feedback loops inside any specific layer are more frequent than the feedback loops from one layer to another. Also, a feedback loop to a distant previous stage is expensive. For example, if we do data preparation after evaluation then the intermediate stages also require updates.

2.4 Characteristics of the Pipelines in Theory

RQ3: What are the different types of pipelines available in theory? The context and requirements of the project can influence pipeline design and architecture [25]. Here, we present the types of pipelines with different characteristics that are available in theory. We classified each subject in our study into four classes based on the overall goal of the article. The most of the pipelines in theory (39%) are describing or proposing new pipelines to solve a new or existing problem. About 31% of the pipelines are on reviewing or comparing the existing pipelines. The third group of DS pipelines (14%) are intended to optimize a certain part of the pipeline. For example, Van Der Weide et al. proposes a pipeline for managing multiple versions of pipelines and optimize performance [83]. Most of the pipelines in this category are application specific and include very few stages that are necessary for the optimization. Fourth, some research introduce new application or method and present within the pipeline. We observed that there is no standard methodology to develop comparable and inter-operable DS pipelines. Using the labeling methodology shown in Figure 1, we labeled each pipeline and found three types of DS pipelines in the literature: 1) ML process, 2) big data management process, and 3) team process.

Finding 2: Most of the pipelines in-theory involve cyber and physical components, only a few with human processes in the loop.

We identified whether the pipelines involve cyber, physical or human process, using our labeling process described in section §2.1.2. Cyber processes refer to activities that involve automated systems and machinery computations. Since modern DS systems involves large amount of data and requires extensive computation, all of the pipelines include cyber component in it. Physical processes include the activities which require real-world connections with the system. For example, collecting data using mobile sensors or cameras is a physical process. Although 23% of the big data pipelines include physical processes, only 9% of the ML pipelines include that in the pipeline. In many DS systems, developers or researchers participate in the pipelines actively to make decisions that need human interventions [81, 83]. For example, in many DS systems, analytical model validation, troubleshooting, data interpretation is necessary which requires human involvement. However, only 13% of the pipelines acknowledged human involvement in the pipeline.

3 DS PIPELINE IN-THE-SMALL

Similar to the DS pipelines in large systems and frameworks, for a very specific data science task (e.g., object recognition, weather forecasting, etc.), programmers build pipeline. Different stages of the program perform a specific sub-task and connect with the other stages using data-flow or control-flow relations. In this section, we described such DS pipelines in-the-small.

3.1 Methodology

We collected 105 DS programs from Kaggle competition notebooks [35]. Kaggle is one of the most popular crowd-sourced platforms for DS competitions, owned by Google. Besides participating in
we understand the context of the program and API usage. Second, for creating the dictionary, we taken a two-fold approach. First, the dictionary. For example, during the mapping, we excluded the generic APIs from the DS programs follow a linear structure with less than 4% AST programs. Then the functionality of an API is used to identify the stage of the pipeline. We extracted the temporal order of API calls while building a production-scale large DS system and often not containing any public solution. We found 138 such competitions. For a sequence of APIs with the same stage, we abstracted them into a single stage. As an example, Figure 5 shows a DS pipeline created from a Kaggle solution [36]. Each stage in the pipeline (e.g., ACQ, PRP) represents one or more API usages. The arrows in the pipeline denote the temporal sequence of stages. Note that, one stage can appear multiple times in a pipeline. The API dictionary, Kaggle programs, and tool to generate the pipelines is shared in the paper artifact [5].

3.2 Representative Pipeline in-the-Small

RQ4: What are the stages of DS pipeline in-the-small? Among the 11 pipeline stages described in Figure 3, we found only 6 stages in the DS programs that are depicted in Figure 6. Other stages (e.g., storage, feature engineering, interpretation, communication, deployment) are not found in these programs because these stages occur while building a production-scale large DS system and often not present in the DS notebooks. Therefore, the pipeline in DS programs consists of the subset of pipeline stages in theory.

We summarized the frequency of each stage of the DS programs in Figure 7. Among 105 programs, data acquisition and data preparation are present in almost all of them. Surprisingly, modeling is present in only 70% of the programs. We found that, in many programs, no modeling APIs had been used because developers did not use any built-in ML algorithm from libraries, e.g., LogisticRegression, LSTM, etc. In these cases, the developers use data-processing APIs on the training data to build custom model, e.g., this notebook [37] uses data preparation APIs to produce results. To enable more abstraction of the stages in these pipelines, further modularization is necessary, which has been investigated in RQ8.

Finding 3: Evaluation stage is infrequent, appearing only in 36% of the pipelines in-the-small.

Evaluation is a tricky stage of the DS pipeline. Developers have to choose the appropriate metric and methodology to evaluate their model. Based on the evaluation result, the model is updated over multiple iterations. We found that, besides using metrics, in many
Figure 8: Stages occurring before and after each stage cases, evaluation requires human understanding and comparison of the result produced by the model. The reason for having less number of evaluation stage in the pipeline is that often the developers evaluate the performance by plotting and visualizing the result. Since the visualization APIs are not considered as evaluation stage, we found this stage less frequently in pipelines. Also, many programs directly go to the prediction stage without going to evaluation stage at all. Furthermore, notebooks are often used for experimentation purposes so that many computations are performed during development but eliminated when the notebooks are shared [44]. For example, one developer might try a number of classifiers and evaluate their accuracy. After finding the best performing classifier, it can be the only one shared in the notebook. Therefore, we experienced many missing stages in the pipeline in-the-small. The complex DS tasks require several computations which might not be used in producing the final prediction, but definitely should be considered as part of the pipeline.

3.3 Pipeline Organization in the Small

RQ5: How are the stages connected with each other in pipeline in-the-small? To answer RQ5, we considered each occurrence of the stages in a DS program and looked at its previous and next stage. In Figure 8, we showed which stages are followed or preceded by each stage. We found that data preparation can occur before or after all other stages. Apart from that, data acquisition is followed by data preparation most of the time, which in turn is followed by modeling. Modeling is followed mostly by training, which in turn is followed by prediction. Evaluation is mostly surrounded by prediction and data preparation. From Figure 8, we can also find some most occurring feedback loop: evaluation to preparation, evaluation to modeling and prediction to modeling.

Data preparation tasks (e.g., formatting, reshaping, sorting) are not limited to just before the modeling stage, rather it is done on a whenever-needed basis. For example, in the following code snippet from a Kaggle competition [38], while creating model-layers, data preprocessing API has been called in line 2.

```python
x = Conv2D(filters, (4, 1), activation='relu', padding='valid')(x)
```

The modeling stage is always surrounded by other stages of the pipeline. However, there is often a loop around modeling, training, evaluation, and prediction. Modeling often repeats many times to improve the model over multiple iterations. For example, in the following Kaggle code snippet [39], the model is created and trained multiple times to find the best one.

```python
random_forest = RandomForestClassifier(n_estimators=100,
    random_state=50, verbose=1, n_jobs=-1) # Modeling
random_forest.fit(train_x, train_y) # Training
pred = random_forest.predict_proba(X_test)[:,1]
```

Finding 4: Stages of pipelines in-the-small are often tangled with each other.

All of the DS programs fail to maintain a good separation of concerns [19] between stages. Strong abstraction boundaries help to make the program modular and easy-to-maintain [58, 59, 61]. In addition, a good DS solution should not only compute better prediction result, but also facilitate software engineering activities e.g., debugging, testing, monitoring [28]. However, we found that stages are often tangled with other stages [14, 45, 64] across the pipelines. The code for one stage is interspersed with the code for other stages. For example, while building the deep learning network (modeling), the developers often switch to different data preparation tasks, e.g., reshaping, resizing [32, 33], which tangles data preparation concern with the modeling concern. We observed some early attempts to adopt modular design practices. For instance, this notebook [40] separated code into different high-level stages, namely, preparation, feature extraction, exploratory data analysis (EDA), topic model, etc. These high-level pipelines can improve the abstraction, which further enable the maintainability, and reusability [71]. In some scenarios, reuse or maintenance might not be desired for pipelines in-the-small. However, to enhance readability [44] and repeatability [28] and ease of testing, debugging or repairing [88, 89], more attention on modular design practices is needed for DS pipelines.

Finding 5: Data preparation stage is occurring significant number of times between any two stages of pipelines in-the-small, which is causing pipeline jungles.

We found that new data sources are added, new features are identified, and new values are calculated incrementally in the pipeline which evolves organically. This results in a large number of data preprocessing tasks like sampling, joining, resizing along with random file input-output. This is called pipeline jungles [76], which causes technical debt for DS systems in the long run. Pipeline jungles are hard to test and any small change in the pipeline will take a lot of effort to integrate. The situation gets worse in case of larger DS pipelines, where several data management activities (e.g., clean, serve, validate) are necessary through the pipeline in different stages [62, 63]. The recommended way is to think about the pipeline holistically and scrape the pipeline jungle by redesigning it, which in turn takes further engineering effort [76]. We found that the large DS projects, which are discussed in §4, isolate the data preparation tasks into separate files and modules [13, 73, 82, 94], which alleviates the pipeline jungles problem. So, DS pipeline in-the-small needs further IDE (e.g., Jupyter Notebook, etc.) support and methodologies for code isolation and modularization.
3.4 Characteristics of Pipelines in-the-Small

RQ6: What are the patterns in pipeline in-the-small and how it compares to pipeline in theory? We have not found many stages from Figure 3, e.g., feature engineering, interpretation, communication, in pipeline in-the-small. One reason is that the low-level pipeline extracted from the API usages cannot capture some stages. For example, even if a developer is conducting feature engineering, the used APIs might be from the data preparation stage. Fortunately, we found many Kaggle notebooks that are organized by the pipeline stages. We visited all the 105 Kaggle notebooks in our collection and extracted these high-level pipelines manually. Unlike the low-level pipelines (extracted using API usages), a high-level pipeline consists of the stages abstracted by the developers.

The Kaggle notebooks follow literate programming paradigm [71, 85], which allows the developers to describe the code using rich text and separate them into sections. We found that 34 out of 105 notebooks divided the code into stages. We collected those stages from the Kaggle notebooks. Furthermore, we labeled these notebooks into the 11 stages from DS pipeline in theory by two raters, and extracted the stages that are not present in theory. The extracted high-level pipelines and labels are available in the paper artifact [5].

We observed that no notebooks specify these stages: storage, interpretation, communication, and deployment. These DS programs are not production-scale projects. Therefore, they do not include the post-processing stages in the pipeline. The most common stages are modeling (79%), data preparation (62%), data acquisition (53%), and feature engineering (35%), which is aligned with the finding of DS pipeline in theory. In addition, we found these stages which are not present in theory: library loading, exploratory data analysis (EDA), visualization. Among them EDA has been used most of the times (43%) and covered the most part of those pipeline. Before going to the modeling and successive stages, a lot of effort is given on understanding the data, compute feature importance, and visualize the patterns, which help to build models quickly in later stages [7].

Furthermore, some notebooks present library loading as separate stage. We observed that choosing appropriate library/framework and setting up the environment is an important step while developing pipeline in-the-small. We also found that data visualization is an recurring stage mentioned by the developers. Visualization can be done for EDA or feature engineering (before modeling), or for evaluation (after modeling). Based on these observations we updated the representative pipeline in-the-small in Figure 9. The high-level pipeline provides an overall representation of the system, which can be leveraged to design software process. It would be beneficial for the developers to close the gap between the low-level and the high-level pipeline by identifying the tangled stages.

4 DS PIPELINE IN-THE-LARGE

The DS solutions described in the previous section are specific to a given dataset and a well-defined problem. However, there are many DS projects which are large, not limited to a single source file, and contains multiple modules. These solutions are intended to solve more general problems which might not be specific to a dataset. For example, the objective of the Face Classification project in GitHub [6] is to detect face from images or videos and classify them based on gender and emotion. This project is not specific to a particular dataset and the scope is broader compared to the Kaggle solutions. We collected such top-rated DS projects from GitHub to analyze DS pipeline in-the-large.

Table 2: GitHub projects for analyzing pipeline in-the-large

Project Name	Purpose	Project Size	LOC
Autopilot [3]	Pilot a car using computer vision	36	11135
CNN-Text-Classification [13]	Sentence classification	69	47797
Darkflow [42]	Real-time object detection classification	1025	65570
Deep ANPR [42]	Automatic number plate recognition	64	70464
Deep Text Corrector [57]	Correct input errors in short text	47	50770
Face Classification [6]	Real-time face and emotion/gender detection	292	117961
FaceNet [73]	Face recognition	1152	1895929
KittiSeg [80]	Road segmentation	276	107143
LSTM-Neural-Network [8]	Predict time series steps and sequences	24	11434
Mask R-CNN [2]	Object detection and instance segmentation	256	1567786
MobileDetect SSD [61]	Object detection network	28	21272
MTNN [16]	Joint face detection and alignment	153	121138
Object-Detector-App [18]	Real-time object recognition	215	318534
Password-Analysis [72]	Analyze a large corpus of text passwords	148	67870
Person Blocker [91]	Block people in images	12	44517
QANet [94]	Machine reading comprehension	83	107669
Speech-to-Text-WaveNet [78]	Sentence level english speech recognition	32	13626
Tacotron [60]	Text-to-speech synthesis	114	58845
Test-Detections-CTPN [70]	Text detection	640	257083
TF-Reccomend [79]	Recommendation systems	17	7789
XLLN [95]	Language understanding	36	143172

For example, the project QANet [94] is intended to do machine reading comprehension. Here, Python has been used as the primary language.
The Art and Practice of Data Science Pipelines

4.2 Representative Pipeline in-the-Large

Compared to the Kaggle programs, we found a significant difference in the pipeline of large DS projects. Because of the larger size of the projects, the pipeline architecture is different. All the projects contain multiple source files for handling different tasks (e.g., modeling, training) and about 50% of the projects organize the source files into modules (e.g., utils, preprocessing, model, etc.).

RQ7: What is the representative DS pipeline in-the-large?

Each of the projects contains six stages described in Figure 6: acquisition, preparation, modeling, training, evaluation, and prediction. However, since the projects are not coupled to a specific dataset and they solve a more general problem, the projects are not limited to one single pipeline. We found that the pipeline of each project is divided into two phases: 1) development phase and 2) post-development phase, which is depicted in Figure 11.

In development phase, the main goal is to build a model that solves the problem in general. A base dataset is used to build the model that would be used for other future datasets. After completing a modeling, training, evaluation loop, the final model is created and saved as an artifact. Afterwards, the projects also create model interfaces, which lets the user modify and exploit the model in the post-development phase. Finally, the model artifact is saved as a source file or some model archiving formats. For example, the project Person-Blocker [93] and Speech-to-Text-WaveNet [47] saved the model in the source file (model1.py) and lets the users train the model in the next phase. On the other hand, the project KittiSeg [80] and Autopilot [3] saved the built model artifact in JSON format (.json) and checkpoint format (.ckpt) respectively. We observed that the evaluation and prediction is often not the main goal in this phase; rather, building an appropriate model and making it available for further usage is the central activity.

In post-development phase, the users access the pre-built model and use that for prediction. After acquiring data, a few preprocessing steps are needed to feed the model. In all of the projects under this study, we found that the development phase is similar. However, we identified three different patterns in the post-development phase which are shown in Figure 11. First, the users can modify the model by setting its hyperparameters and use that to make prediction on a new dataset. Second, the users can use the model as-is and train the model on the new dataset to make prediction. Third, the users can also download the pre-trained model and directly leverage that for prediction. Finally, at the end of this phase, the prediction result is obtained.

The post-development phase in the pipeline enabled software reusability of the models. All of these projects have instructions in their README or documentation explaining the usage and customization. For example, the project Deep ANPR [22] provides instructions for obtaining large training data, retraining the models, and build it for prediction. However, not all the projects enable reusability in the development pipelines. Only a few of them provide access to the modules by importing in new development scenario. For instance, Darkflow [82] let users access the darkflow.net.build module and use it in new application development. To increase the reusability of DS programs, it would be desired to consider similar access to the development pipeline of these large projects.

4.3 Organization of DS Pipeline in-the-Large

RQ8: How are the stages connected in pipeline in-the-large?

The abstraction in DS programs is stricter than the DS programs described in §3. The projects are built in a modular fashion, i.e., one source file for a broad task (e.g., train.py, model1.py). However, inside one specific file, there are many other possible stages, especially data preprocessing appears inside all the source files. In addition, the module connectivity is not linear. All of the modules use external libraries for performing different tasks. As a result,
there are a lot of interdependencies (both internal and external) in the DS pipeline. One immediate difference of these pipelines with traditional software is DS pipelines are heavily dependent on the data. For example, the project Speech-to-Text-WaveNet [47] requires a certain format of data. When we want to use that in a new situation, the data properties might be different. So, the usage pipelines would have a few additional stages. In some cases, the original pipeline is modified. Here, there are many sub-pipelines work together to build a large pipeline. However, we have not found any framework or common methodology these software are using. The different patterns of DS pipelines seek more advanced methodology or framework to build DS pipeline and release for production.

4.4 Characteristics of Pipelines in-the-Large

RQ9: What are the patterns found in the pipelines? The pipelines found in this setting can be categorized into 1) loosely coupled and 2) tightly coupled, based on their modularity. A high number of contributors in the project resulted in loosely coupled pipelines. We found the loosely coupled ones are designed in a modular fashion and one module (e.g., data cleaning, modeling) is designed to be used by other modules. Usually, there are multiple entry-points in a loosely coupled pipeline and user has more flexibility. On the other hand, in a tightly coupled pipeline, the modules are stricter and integrated tightly with other modules. There is only one or two entry-points to the pipeline, which automatically calls the other modules. We found that the projects with 6 or more contributors (~75%) followed a loosely coupled architecture and projects with 1 to 5 contributors followed a tightly coupled architecture.

Finding 6: There is need for integration and deployment tools for pipelines in-the-large but no common framework is used in practice.

Although all the project under this study are written using Python, no project is using any common tool that integrates the DS modules and provides interface to the pipeline. Today, continuous integration and deployment (CI/CD) tools are widely used in traditional software lifecycle to automate compilation, building, and testing [29, 41]. Additionally, from our subject studies of pipelines in theory, we found some CI/CD tools designed for ML pipelines available [30, 51, 53]. Surprisingly, here we found no projects in pipeline in-the-large are using any CI/CD tools. However, the projects demonstrate the need of CI/CD in the repositories. In most of the projects, the environment setup and access to functionalities are configured through command lines scripts [3, 70]. Some projects used docker container [6, 47, 73, 93] to set up the environment and run the pipeline. A few others used Python notebooks that call different modules to integrate the pipeline stages [2, 18, 57]. 7 out of 21 projects used shell script for integration (e.g., sending HTTP request to download data, model reuse, etc.) [65, 94]. Although CI/CD frameworks e.g., TravisCI, GitHub Actions, Microsoft Azure DevOps are well established for traditional software such as web applications, several challenges remain for DS pipelines. Karlaš et al. outlined the probabilistic nature of ML testing as a major CI/CD challenge and pointed out the gap between recent theoretical development of CI/CD in DS and their usage in practice [41]. Hence, further research is needed to investigate the practical challenges of using CI/CD in data science projects.

5 DISCUSSION

Through our survey, empirical study, and analysis, we presented the state of data science pipeline that describes its semantics, design concerns, and the overall computational paradigm. Furthermore, the findings show the importance of studying the pipeline structure reminiscing the traditional software engineering works on design patterns and architecture.

In Theory: We presented all the representative stages and sub-tasks that inform the terminology of DS pipelines to be used in future works. By comparing with the available pipeline categories e.g., ML process, big data, and team processes, similarities and divergences can be directly identified. The presence of implicit feedback loops and lack of post-processing stages suggest ad hoc pipeline construction at the present time. This paper takes the first step towards comparable and reusable pipeline construction.

In-The-Small: The novel API-based analysis can be utilized for mining, extracting, and statically analyzing pipelines. We also elicited the notion of high-level and low-level pipelines, where the high-level abstraction has more similarity with that in theory. However, low-level pipelines exhibit many differences such as missing some stages, sparse data preparation, lack of modularization. The gap between low-level pipeline and its presentation in high-level can be reduced by making pipeline specific features available in development environment e.g., pipeline template in Jupyter Notebook. Additionally, the low-level pipelines often had an important stage exploratory data analysis missing which incurs much time and effort. Pipeline versioning techniques that consider data, model, and source code will facilitate storing such intermediate stages.

In-The-Large: Different pipeline patterns emerged in development and post-development phase of the large projects, which suggest creating separate developer-centric and user-centric pipeline structure. In tightly-coupled projects, the abstraction of stages are contingent upon the project-specific requirements and internal/external dependencies, whereas, in loosely-coupled projects, opportunities remain to build reusable sub-pipelines that span over project boundaries. Finally, there is a need for building automated CI/CD tools for data science specific testing, deployment, and maintenance.

To researchers and tool builders. (1) Modularization of DS pipeline into stages is challenging over all three representations. Further works are needed for standardization of pipeline architecture e.g., defining the interfaces of stages, enumerating externally visible properties, identifying domain-specific constraints, to develop reusable and interoperable DS pipelines. (2) We showed potentials for automatic pipeline analysis framework based on static analysis and API specifications. A few future directions would be mining (sub-)pipelines patterns, build AutoML pipelines [55], and analyzing evolution. (3) We confirmed several antipatterns of pipelines that call for actions e.g., CACE principle, pipeline jungles, scarce post-processing, implicit feedback loop, CI/CD challenges. (4) Pipeline specific tool support is needed such as version control for data and models, storing intermediate results between stages.

To data scientists and engineers. (1) Pipelines are often built for a prototype in-the-small, which might not scale to a production level system. A well-designed pipeline in the early stage will help to identify key components, estimate cost, optimize, and manage risks better in the lifecycle. (2) The representative views of pipelines
will serve as a checklist of stages and their connections. (3) Data and algorithms being the focus of DS pipeline, preprocessing and modeling activities are well understood and practiced by data scientists. However, they should emphasize more on including rigorous evaluation beyond accuracy such as robustness and fairness [11, 12]. (4) Many people with diverse backgrounds are involved in a DS pipeline. A pipeline with human-in-the-loop approach will benefit identifying collaboration points, decomposing tasks, and manage transdisciplinary teams. For example, a pipeline can encourage data scientists to choose a modeling technique that is maintainable. (5) Future work is necessary to identify the interactions of DS pipeline with the real world i.e., which stages receive inputs, when a checkpoint is saved, how results are disseminated, etc.

6 THREAT TO VALIDITY

For building the pipelines from DS programs, we relied on the APIs. One threat might be, what happens if the developer does not use any API for completing a stage in the program. We examined this possibility and found that DS programs are heavily dependent on libraries and external APIs and ML tasks are always performed using library APIs. Additionally, we validated the API-to-stage dictionary with the API documentation and manual verification.

Another possible threat is that the Kaggle solutions might not be representative. We adopted a two-fold strategy to mitigate that threat. First, we selected the solutions with the most number of votes and at least 10 votes. Second, we manually verified each program whether it is an end-to-end DS solution. Since some most voted solutions are only for introduction and exploratory analysis of the dataset, by manual verification, we excluded those programs. The GitHub projects are also taken from a previously published dataset containing DS repositories. We further filtered them based on the number of stars and whether they perform a DS task.

Moreover, since the chosen DS programs from Kaggle and GitHub are using Python as the primary language, another question might be on the generalization of them as DS programs. According to GitHub and Stack Overflow, Python has become the most growing language in recent times [31, 68]. In data science, Python is the most used language because of the availability of numerous ML, DL and data analysis packages such as Pandas, NumPy, TensorFlow, Keras, Caffe, Theano, Scikit-Learn and many more.

7 RELATED WORK

Many studies presented ML pipeline in their own context, which can not be generalized for all DS systems. Garcia et al. focused on building an iterative process with three main phases: development, training and inference. They described the interpretation of data and code while integrating the whole lifecycle [25]. Polyzotis et al. presented the challenges of data management in building production-level ML pipeline in Google around three broad themes: data understanding, data validation and cleaning, and data preparation [62, 63]. They also provided an overview of an end-to-end large-scale ML pipeline with a data point of view. Carlton E. Sapp defined ML concepts, business challenges, stages in the lifecycle, roles of DS teams with comprehensive end-to-end ML architecture [74]. This gives us a holistic understanding of the business processes (e.g., acquire, organize, analyze, deliver) of a DS project.

A few other studies try to capture the DS process by surveying and interviewing developers. Roh et al. surveyed the data collection techniques in the field of big data. They presented the workflow of data collection answering how to improve data or models in an ML system [69]. Another study identified the software engineering practices and challenges in building AI applications inside Microsoft development teams [4]. They found some key differences in AI software process compared to other domains. They considered a 9-stage workflow for DS software development. Hill et al. interviewed experienced AI developers and identified problems they face in each stage [28]. They also tried to compare the traditional software process and the AI process. Zhou presented her own view to build a better ML pipeline [96]. They presented three challenges in building ML pipelines: data quality, reliability and accessibility.

Some articles described ML applications and frameworks which present DS pipelines from industry. For example, Databricks provides high-level APIs for programming languages [30]. Team Data Science Process (TDSP) is an agile and iterative process to build intelligent applications inside Microsoft corporation [77]. In a US patent, the authors compared two data analytic lifecycles [81], and presented the difference in the set of parameters with respect to time and cost. CRoss Industry Standard Process for Data Mining (CRISP-DM) is a 6-stage comprehensive process model for data mining projects across any industry [92]. Google Cloud Blog described the workflow of an AI platform [27]. They explained tasks completed in each stage with respect to Google Cloud and TensorFlow[1]. Although there are many papers in the literature presenting DS pipeline, there is no comprehensive study that tries to understand and compare DS pipelines in theory and practice.

8 CONCLUSION

Many software systems today are incorporating a data science pipeline as their integral part. In this work, we argued that to facilitate research and practice on data science pipelines, it is essential to understand their nature. To that end, we presented a three-pronged comprehensive study of data science pipelines in theory, data science pipelines in-the-small, and data science pipelines in-the-large. Our study analyzed three datasets: a collection of 71 proposals for data science pipelines and related concepts in theory, a collection of 105 implementations of data science pipelines from Kaggle competitions to understand data science in-the-small, and a collection of 21 mature data science projects from GitHub to understand data science in-the-large. We have found that DS pipelines differ significantly between these settings. Specifically, a number of stages are absent in-the-small, and the DS pipelines have a more linear structure. The DS pipelines in-the-large have a more complex structure and feedback loops compared to the theoretical representations. We also contribute three representations of DS pipelines that capture the essence of our subjects in theory, in-the-small, and in-the-large.

ACKNOWLEDGMENTS

This work was supported in part by US NSF grants CNS-21-20448 and CCF-19-34884. We also thank the reviewers for their insightful comments. All opinions are of the authors and do not reflect the view of sponsors.
[55] Giang Nguyen, J ohir Islam, Rangeet Pan, and H ridesh Rajan. 2022. M anaging Software Repositories to Assist AutoML. In ICSE ’22: The 44th International Conference on Software Engineering (Pittsburgh, PA, USA).

[56] Randal S Olson, Nathan Bartley, Ryan J Urbanowicz, and Jason H Moore. 2016. Evaluation of a tree-based pipeline optimization tool for automating data science. In Proceedings of the Genetic and Evolutionary Computation Conference 2016. ACM.

[57] Alex Paino. 2017. Deep learning models trained to correct input errors in short, message-like text. https://github.com/atpaino/deep-text-corrector.

[58] Rangeet Pan and Hridesh Rajan. 2020. Decomposing a Deep Neural Network into Modules. In ESEC/FSE 2020. The 28th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering (Sacramento, California, United States).

[59] Rangeet Pan and Hridesh Rajan. 2022. Decomposing Convolutional Neural Networks into Reusable and Replaceable Modules. In ICSE’22: The 44th International Conference on Software Engineering (Pittsburgh, PA, USA).

[60] Neoklis Polyzotis, Sudip Roy, Steven Euijong Whang, and Martin Zinkevich. 2017. A TensorFlow Implementation of Tacotron: A Fully End-To-End Text-To-Speech Synthesis Model. https://github.com/Kyubyong/tacotron.

[61] David Lorge Parnas, Paul C Clements, and David M Weiss. 1985. The modular structure of complex systems. IEEE Transactions on Software Engineering 3 (1985), 259–266.

[62] Neoklis Polyzotis, Sudip Roy, Steven Euijong Whang, and Martin Zinkevich. 2017. Data management challenges in production machine learning. In Proceedings of the 2017 ACM International Conference on Management of Data. ACM, 1723–1726.

[63] Neoklis Polyzotis, Sudip Roy, Steven Euijong Whang, and Martin Zinkevich. 2018. Data Lifecycle Challenges in Production Machine Learning: A Survey. ACM SIGMOD Record 47, 2 (2018), 17–28.

[64] Christian Prehofer. 1997. Feature-oriented programming: A fresh look at objects. In ECOOP’97 — Object-Oriented Programming. Mehmet Aksit and Satoshi Matsouka (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 419–443.

[65] Chuan Qi. 2019. Caffe implementation of Google MobileNet SSD detection network. https://github.com/chuanqi305/MobileNet-SSD.

[66] Václav Rajlich. 2014. Software evolution and maintenance. In Future of Software Engineering Proceedings. 133–144.

[67] Muhammad Habib Behman, Victor Chang, Aisha Batool, and Teh Ying Wah. 2018. Big data reduction framework for value creation in sustainable enterprises. International Journal of Information Management 36, 6 (2016), 917–928.

[68] David Robinson. 2017. The Incredible Growth of Python. https://stackoverflow.com/questions/25922899/incredible-growth-python.

[69] Yuji Roh, Geon Heo, and Steven Euijong Whang. 2019. A Survey on Data Collection for Machine Learning: A Big Data-All Integration Perspective. IEEE Transactions on Knowledge and Data Engineering.

[70] Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui Zhao, Kai Chen, Mohammad Norouzi, and Quoc V Le. 2018. A tensorflow implementation of QANet for a pretrained neural network. https://github.com/minimaxir/person-blocker.

[71] Charlie Bickerton Zhilin Yang, Zihang Dai. 2019. XLNet: Generalized Autoregressive Pretraining for Language Understanding. https://github.com/zihangdai/xlnet.

[72] David Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar Ebner, Vinay Chaudhary, and Michael Young. 2014. Machine learning: The high interest credit card of technical debt. (2014).

[73] David Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar Ebner, Vinay Chaudhary, Michael Young, Jean-François Crespo, and Dan Dennison. 2015. Hidden technical debt in machine learning systems. In Advances in neural information processing systems. 2503–2511.

[74] Roald Bradley Severyton. 2017. What is the Team Data Science Process? https://docs.microsoft.com/en-us/anre/machine-learning/team-data-science-process/overview.

[75] Mary Shaw and David Garlan. 1996. Software Architecture: Perspectives on an Emerging Discipline. Prentice-Hall, Inc., USA.

[76] Stephen Todd and David Dietrich. 2017. Computing resource re-provisioning during data analytic lifecycle. US Patent 9,619,550.

[77] Muhammad Habib Rehman, Victor Chang, Aisha Batool, and Teh Ying Wah. 2017. Big data reduction framework for value creation in sustainable enterprises. In Proceedings of the 1st Workshop on Data Management for End-to-End Machine Learning. ACM, 2.

[78] Andrew Bagshaw Tries. 2018. Real-time object detection and classification. https://github.com/thtrieu/darkflow.

[79] David Lorge Parnas, Paul C Clements, and David M Weiss. 1985. The modular structure of complex systems. IEEE Transactions on Software Engineering 3 (1985), 259–266.

[80] Marvin Teichmann. 2018. A Kitti Road Segmentation Model Implemented in TensorFlow. https://github.com/MarvinTeichmann/KittiSeg.

[81] Mohammad Wardat, Breno Dantas Cruz, Wei Le, and Hridesh Rajan. 2022. DeepDiagnosis: Automatically Diagnosing Faults and Recommending Actionable Fixes in Deep Learning Programs. In ICSE’22: The 44th International Conference on Software Engineering (Pittsburgh, PA, USA).

[82] Mohammad Wardat, Wei Le, and Hridesh Rajan. 2021. DeepLocalize: Fault Localization for Deep Neural Networks. In ICSE’21: The 43rd International Conference on Software Engineering (Pittsburgh, PA, USA).

[83] Linda Zhou. 2019. How to Build a Better Machine Learning Pipeline. https://www.datanami.com/2018/09/05/how-to-build-a-better-machine-learning-pipeline.