Orders of Tate-Shafarevich groups for the Neumann-Setzer type elliptic curves

Andrzej Dąbrowski and Lucjan Szymaszkiewicz

Abstract. We present the results of our search for the orders of Tate-Shafarevich groups for the Neumann-Setzer type elliptic curves.

Keywords: elliptic curves, Tate-Shafarevich group, Cohen-Lenstra heuristics, distribution of central L-values

2010 Mathematics Subject Classification: 11G05, 11G40, 11Y50

1 Introduction

Let E be an elliptic curve defined over \mathbb{Q} of conductor N_E, and let $L(E, s)$ denote its L-series. Let $\mathcal{W}(E)$ be the Tate-Shafarevich group of E, $E(\mathbb{Q})$ the group of rational points, and $R(E)$ the regulator, with respect to the Néron-Tate height pairing. Finally, let Ω_E be the least positive real period of the Néron differential on E, and define $C_\infty(E) = \Omega_E$ or $2\Omega_E$ according as $E(\mathbb{R})$ is connected or not, and let $C_{\text{fin}}(E)$ denote the product of the Tamagawa factors of E at the bad primes. The Euler product defining $L(E, s)$ converges for $\Re s > 3/2$. The modularity conjecture, proven by Wiles-Taylor-Diamond-Breuil-Conrad, implies that $L(E, s)$ has an analytic continuation to an entire function. The Birch and Swinnerton-Dyer conjecture relates the arithmetic data of E to the behaviour of $L(E, s)$ at $s = 1$.

Let g_E be the rank of $E(\mathbb{Q})$ and let r_E denote the order of the zero of $L(E, s)$ at $s = 1$.

Conjecture 1 (Birch and Swinnerton-Dyer) (i) We have $r_E = g_E$,

(ii) the group $\mathcal{W}(E)$ is finite, and

$$\lim_{s \to 1} \frac{L(E, s)}{(s - 1)^{r_E}} = \frac{C_\infty(E)C_{\text{fin}}(E) R(E) |\mathcal{W}(E)|}{|E(\mathbb{Q})_{\text{tors}}|^2}.$$

1
If $\mathcal{W}(E)$ is finite, the work of Cassels and Tate shows that its order must be a square.

The first general result in the direction of this conjecture was proven for elliptic curves E with complex multiplication by Coates and Wiles in 1976 [4], who showed that if $L(E, 1) \neq 0$, then the group $E(\mathbb{Q})$ is finite. Gross and Zagier [17] showed that if $L(E, s)$ has a first-order zero at $s = 1$, then E has a rational point of infinite order. Rubin [25] proves that if E has complex multiplication and $L(E, 1) \neq 0$, then $\mathcal{W}(E)$ is finite. Very recently, Bhargava, Skinner and Zhang [1] proved that at least 66.48% of all elliptic curves over \mathbb{Q}, when ordered by height, satisfy the weak form of the Birch and Swinnerton-Dyer conjecture, and have finite Tate-Shafarevich group.

Coates et al. [3] [2], and Gonzalez-Avilés [16] showed that there is a large class of explicit quadratic twists of $X_0(49)$ whose complex L-series does not vanish at $s = 1$, and for which the full Birch and Swinnerton-Dyer conjecture is valid. The deep results by Skinner-Urban [30] allow (in practice, see section 3 for instance) to establish the full version of the Birch and Swinnerton-Dyer conjecture for a large class of elliptic curves without CM.

The numerical studies and conjectures by Conrey-Keating-Rubinstein-Snaith [6], Delaunay [11][12], Watkins [33], Radziwiłł-Soundararajan [24] (see also the papers [9] [7] [8] and references therein) substantially extend the systematic tables given by Cremona.

Given an integer $u \equiv 1(\text{mod} 4)$, such that $u^2 + 64$ is square-free, we define two families of elliptic curves of conductor $u^2 + 64$ (we call them the Neumann-Setzer type elliptic curves):

\[E_1(u) : \quad y^2 + xy = x^3 + \frac{1}{4}(u - 1)x^2 - x, \]

and

\[E_2(u) : \quad y^2 + xy = x^3 + \frac{1}{4}(u - 1)x^2 + 4x + u. \]

In this paper we present the results of our search for the orders of Tate-Shafarevich groups for the Neumann-Setzer type elliptic curves. Our data contains values of $|\mathcal{W}(E_i(u))|$ for 2056445 values of $u \equiv 1(\text{mod} 4)$, $|u| \leq 10^7$ such that $u^2 + 64$ is a product of odd number of different primes, and such that $L(E(u), 1) \neq 0$ (456702 of these values satisfy the condition $u^2 + 64$ is a prime). Additionally, we have considered 10000 values of $u \equiv 1(\text{mod} 4)$, $|u| \geq 10^8$ such that $u^2 + 64$ is a product of odd number of different primes, and in cases $L(E(u), 1) \neq 0$ we computed the orders of $\mathcal{W}(E_i(u))$. Our data extends the calculations given by Stein-Watkins [32] (resp. by Delaunay-Wuthrich [15]), where the authors considered $|u| \leq \sqrt{2} \times 10^6$ (resp. $|u| \leq 10^6$) such that $u^2 + 64$ is a prime.
Our main observations concern the asymptotic formulae in sections 4 (frequency of orders of Ω) and 6 (asymptotics for the sums $\sum \log(\Omega(E_i(u)))$, $R(E_i(u))$ in the rank zero and one cases), and the distributions of $\log L(E_i(u), 1)$ and $\log(|\Omega(E_i(u))/\sqrt{|\Delta|}|)$ in section 7.

We thank Bjorn Poonen and Christophe Delaunay for their remarks and questions. We thank the anonymous referee for his/her remarks and comments which improved the final version of this paper.

Our experimental data were obtained using the PARI/GP software [23]. The computations were carried out in 2015 and 2016 on the HPC clusters HAL9000 and desktop computers Core(TM) 2 Quad Q8300 4GB/8GB. All machines are located at the Department of Mathematics and Physics of Szczecin University.

2 Preliminaries

We have $\Delta_{E_1(u)} = u^2 + 64$, and $\Delta_{E_2(u)} = -(u^2 + 64)^2$. The curves $E_1(u)$ and $E_2(u)$ are 2-isogenous: write $E_1(u)$ and $E_2(u)$ in short Weierstrass forms ($y^2 = x^3 + ux^2 - 16x$ and $y^2 = x^3 - 2ux^2 + (u^2 + 64)x$, respectively), and use ([29], Example 4.5 on p. 70). It is known, due to Neumann and Setzer ([21], [28]), that in the case $u^2 + 64$ is a prime, the curves $E_1(u)$ and $E_2(u)$ are the only (up to isomorphism) elliptic curves with a rational 2-divison point and conductor $u^2 + 64$. In general there are more than two, up to isomorphism, elliptic curves with a rational 2-division point and conductor $u^2 + 64$. Take, for instance, $u = -51$, then the curves $E_1(u)$ and $E_2(u)$ have conductor $2665 = 5 \cdot 13 \cdot 41$. In Cremona’s online tables we find 8 elliptic curves of conductor 2665 with a rational 2-division point.

Lemma 1 We have (i) $E_1(u)(\mathbb{Q})_{\text{tors}} \simeq E_2(u)(\mathbb{Q})_{\text{tors}} \simeq \mathbb{Z}/2\mathbb{Z}$; (ii) $\Omega_{E_1(u)} = \Omega_{E_2(u)}$, $C_{\infty}(E_1(u)) = 2\Omega_{E_1(u)}$, $C_{\infty}(E_2(u)) = \Omega_{E_2(u)}$; (iii) $C_{\text{fin}}(E_1(u)) = 1$, and $C_{\text{fin}}(E_2(u)) = 2^k$, where $u^2 + 64 = p_1 \cdots p_k$.

Proof. (i) Let $E(u) = E_1(u)$ or $E_2(u)$. Then $E(u)$ has good reduction at 2. Using the reduction map modulo 2, we obtain that $|E_i(u)(\mathbb{Q})_{\text{tors}}|$ divides 4. Now, one checks that $E_i(u)(\mathbb{Q})$ have only one point of order two, and no points of order four. (ii) To check that $\Omega_{E_1(u)} = \Omega_{E_2(u)}$, one uses the explicit forms of Weierstrass equations. Now the sign of the discriminant of $E_1(u)$ (resp. of $E_2(u)$) is positive (resp. negative), hence the remaining assertions follow. (iii) We have $C_{\text{fin}}(E_1(u)) = \prod_{p \nmid \Delta_{E_1(u)}} C_p(E(u))$, where $C_p(E(u)) = [E(u)(\mathbb{Q}_p) : E_0(u)(\mathbb{Q}_p)]$, and $E_0(u)(\mathbb{Q}_p)$ denotes the subgroup of
points of $E(u)(\mathbb{Q}_p)$ with non-singular reduction modulo p. Both $E_1(u)$ and $E_2(u)$ have split multiplicative reductions at all primes p dividing $u^2 + 64$. Hence, in this case, $C_p(E(u)) = \text{ord}_p(\Delta(E(u)))$ (see, for instance, [2], Lemma 2.9), and the assertion follows.

Note that $L(E_1(u), s) = L(E_2(u), s) = \sum_{n=1}^{\infty} a_n n^{-s}$, $	ext{Re}(s) > 3/2$. Assuming the truth of the Birch and Swinnerton-Dyer conjecture for $E(u)$ in the rank zero case, we can calculate the order of $\mathfrak{w}(E(u))$ by evaluating (an analytic continuation of) $L(E(u), s)$ at $s = 1$:

$$|\mathfrak{w}(E_1(u))| = \frac{2L(E_1(u), 1)}{\Omega_{E_1(u)}},$$

$$|\mathfrak{w}(E_2(u))| = \frac{L(E_2(u), 1)}{2^{k-1}\Omega_{E_2(u)}},$$

where as above, $u^2 + 64 = p_1 \cdots p_k$ is a product of different primes.

More precisely, we have to calculate the value

$$L(E(u), 1) = 2 \sum_{n=1}^{\infty} \frac{a_n}{n} e^{-\frac{2\pi n}{\sqrt{u^2+64}}}$$

with sufficiently accuracy.

Lemma 2 In order to determine the order of $\mathfrak{w}(E_1(u))$ and $\mathfrak{w}(E_2(u))$, it is enough to take $\frac{1}{8}\sqrt{u^2+64}\log(u^2+64)$ terms of the above series.

Proof. Repeat the proof of Theorem 16 in [15].

Let $\epsilon(E(u))$ denote the root number of $E(u)$.

Lemma 3 Let $u^2 + 64 = p_1 \cdots p_k$ be a product of different primes. Then $\epsilon(E(u)) = (-1)^{k+1}$.

Proof. $\epsilon(E(u)) = -\prod_{i=1}^{k} \epsilon_{p_i}(E(u))$, a product of local root numbers. Now, $E(u)$ has split multiplicative reduction at all p_i dividing $u^2 + 64$. Hence, $\epsilon_{p_i}(E(u)) = -1$, and the assertion follows.

Corollary 1 Assume the parity conjecture holds for the curves $E(u)$. Then $E(u)(\mathbb{Q})$ has even rank if and only if $u^2 + 64 = p_1 \cdots p_k$ is a product of odd number of different primes.
We can use a classical 2-descent method ([29], Chapter X) to obtain a bound on the rank of $E_i(u)$ depending on k. Let $\phi : E_1(u) \to E_2(u)$ be the 2-isogeny, and write $\hat{\phi}$ for its dual. Let $S(\phi)$ and $S(\hat{\phi})$ denote the corresponding Selmer groups. One checks that $S(\phi) \subset \langle p_1, \ldots, p_k \rangle$ and $S(\hat{\phi}) = \langle -1 \rangle$. As a consequence, we obtain $\text{rank}(E_i(u)) \leq \dim F S(\phi) + \dim F S(\hat{\phi}) - 2 \leq k + 1 - 2 = k - 1$. In particular, if $u^2 + 64$ is a prime, then $E_i(u)$ have rank zero, and if $k = 2$, then $\text{rank}(E_i(u)) \leq 1$ (= 1 if we assume the parity conjecture).

Definition 2 We say that an integer $u \equiv 1(\mod 4)$ satisfies condition (*), if $u^2 + 64$ is a prime; we say that an integer $u \equiv 1(\mod 4)$ satisfies condition (**), if $u^2 + 64$ is a product of odd number of different primes.

3 Birch and Swinnerton-Dyer conjecture for Neumann-Setzer type elliptic curves

In this section, we will use the deep results by Skinner-Urban [30] (and other available techniques), to prove the full version of the Birch-Swinnerton-Dyer conjecture for a large class of Neumann-Setzer type elliptic curves.

Let $\rho_{E,p} : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \text{GL}_2(\mathbb{F}_p)$ denote the Galois representation on the p-torsion of E. Assume $p \geq 3$.

Theorem 3 ([30], Theorem 2) Let E be an elliptic curve over \mathbb{Q} with conductor N_E. Suppose: (i) E has good ordinary reduction at p; (ii) $\rho_{E,p}$ is irreducible; (iii) there exists a prime $q \neq p$ such that $q \mid N_E$ and $\rho_{E,p}$ is ramified at q; (iv) $\rho_{E,p}$ is surjective. If moreover $L(E,1) \neq 0$, then the p-part of the Birch and Swinnerton-Dyer conjecture holds true, and we have

$$\text{ord}_p(|\mathfrak{M}(E)|) = \text{ord}_p \left(\frac{|E(\mathbb{Q})_{\text{tor}}|^2 L(E,1)}{C_{\infty}(E)C_{\text{fin}}(E)} \right).$$

Take $E(u) = E_1(u)$ or $E_2(u)$. Then:

a) $E(u)$ is semistable and has a rational 2-division point, hence $\rho_{E(u),p}$ is irreducible for $p \geq 7$ by ([10], Theorem 7). Note moreover (by Wiles [34]) that at least one of $\rho_{E(u),3}$ or $\rho_{E(u),5}$ is irreducible.

b) If E is any semistable elliptic curve and $q \neq p$, then $\rho_{E,p}$ is unramified at q if and only if $p|\text{ord}_q(\Delta_E)$. In our case, $\text{ord}_q(\Delta_E(u))$ equals 1 or 2, hence $\rho_{E(u),p}$ is ramified at any $q \geq 3$.

c) If E is any semistable elliptic curve, then $\rho_{E,p}$ is surjective for $p \geq 11$ by [27]. More precisely, Serre ([27], Prop. 1) shows that in this case $\rho_{E,p}$...
is surjective for all primes p unless E admits an isogeny of degree p defined over \mathbb{Q}. In particular, if such E additionally has a rational 2-division point, then $\overline{\rho}_{E,p}$ is surjective for $p \geq 7$. Note (by [29], Prop. 21, and [27], Prop. 1), that in the case of semistable elliptic curve E, the representation $\overline{\rho}_{E,p}$ is surjective if and only if it is irreducible. Now, Zywina ([35], Prop. 6.1) gives a criterion to determine whether $\overline{\rho}_{E,p}$ is surjective or not for any non-CM elliptic curve and any prime $p \leq 11$. Using such a criterion, one immediately checks surjectivity of $\overline{\rho}_{E,(u),p}$ for $p = 2, 3,$ and 5. As a consequence, we obtain the following general result.

Proposition 1 The representations $\overline{\rho}_{E,(u),p}$ are surjective for all primes p.

Summing up all the above information, we obtain the following nice result.

Corollary 2 Let $E = E_1(u)$ or $E_2(u)$, with $u \equiv 1(\text{mod} 4)$ satisfying (***) and such that $L(E,1) \neq 0$. If E has good ordinary reduction at $p \geq 3$, then the p-part of the Birch and Swinnerton-Dyer conjecture holds for E.

Remark. Let us recall that a prime p is good for an elliptic curve E over \mathbb{Q}, if p does not divide N_E; p is good ordinary for E, if is good and $a_p = p + 1 - N_p(E)$ is not divisible by p (here $N_p(E)$ denotes the number of \mathbb{F}_p-points of the reduction E_p). Here are explicit conditions for small primes p to satisfy the good ordinary condition in case $E = E_i(u)$ (we assume $u \equiv 1(\text{mod} 4)$): (i) $p = 3$, additional condition $u \not\equiv 0(\text{mod} 3)$; (ii) $p = 5$, no additional condition on u; (iii) $p = 7$, additional condition $u \not\equiv 0(\text{mod} 7)$; (iv) $p = 11$, additional condition $u \not\equiv 0, 4, 7(\text{mod} 11)$.

Remark. One can use explicit descent algorithms to compute $\mathcal{W}(E_i(u))[m]$ for $m = 2, 4$ or 8. If $\mathcal{W}(E_i(u))[2]$ is trivial, then $\mathcal{W}(E_i(u))$ has odd order. If $\mathcal{W}(E_i(u))[2] = \mathcal{W}(E_i(u))[4]$, say, then $\operatorname{ord}_2[\mathcal{W}(E_i(u))] = \operatorname{ord}_2[\mathcal{W}(E_i(u))[2]]$. Similarly, one can use explicit descent algorithms to compute $\mathcal{W}(E_i(u))[m]$ for $m = 3$ or 9. Again, if $\mathcal{W}(E_i(u))[3]$ is trivial, then $\mathcal{W}(E_i(u))$ has order not divisible by 3 (here we not require that 3 is good ordinary). If $\mathcal{W}(E_i(u))[3] = \mathcal{W}(E_i(u))[9]$, then $\operatorname{ord}_3[\mathcal{W}(E_i(u))] = \operatorname{ord}_3[\mathcal{W}(E_i(u))[3]]$.

The theses [20] [31] explore both theoretical and computational methods to compute the orders of Tate-Shafarevich groups.

Remark. (i) Among 456702 values of $u \equiv 1(\text{mod} 4)$, $|u| \leq 10^7$ satisfying (*), there are 379898 values of $|u|$ such that $E(u)$ has good ordinary reduction at any prime dividing the analytic order $|\mathcal{W}(E(u))|$. The groups $\mathcal{W}(E_i(u))[2]$ are both trivial (by 2-descent), hence by Corollary 2 the values $|\mathcal{W}(E(u))|$ are the algebraic orders of \mathcal{W}. (ii) Among 2056445 values of $u \equiv 1(\text{mod} 4)$, $|u| \leq 10^7$
satisfying (**) and such that \(L(E(u), 1) \neq 0\), there are 1148683 values of \(|u|\) such that \(|\mathfrak{m}(E_2(u))|\) is odd and \(E(u)\) has good ordinary reduction at any prime dividing the analytic order \(|\mathfrak{m}(E_2(u))|\). Again, by Corollary 2 all these values are the algebraic orders of \(\mathfrak{m}\).

The numerical data are done under the Birch and Swinnerton-Dyer conjecture. In particular, the experimental study in sections 4, 5, 6, and 7 concern the analytic orders of the Tate-Shafarevich groups.

4 Frequency of orders of \(\mathfrak{m}\)

Our calculations strongly suggest that for any positive integer \(k\) there are infinitely many integers \(u \equiv 1(\mod 4)\) satisfying condition (**) such that \(E(u)\) has rank zero and \(|\mathfrak{m}(E(u))| = k^2\). Below (end of this section) we will state a more precise conjecture.

Let \(f(i, X)\) denote the number of integers \(u \equiv 1(\mod 4), |u| \leq X\), satisfying (**) and such that \(L(E(u), 1) \neq 0, |\mathfrak{m}(E_i(u))| = 1\). Let \(g(X)\) denote the number of integers \(u \equiv 1(\mod 4), |u| \leq X\), satisfying (**) and such that \(L(E(u), 1) = 0\). We obtain the following graphs (compare [7] [8], where similar observations are made for the families of quadratic twists of several elliptic curves).

![Figure 1: Graphs of the functions \(f(i, X)/g(X), i = 1, 2\).](image)

Consider the set consisting of 10000 values of integers \(u \equiv 1(\mod 4), |u| \geq 10^5\), satisfying (**). Let \(f(i)\) denote the number of such \(u\)'s satisfying
$L(E_i(u), 1) \neq 0$ and $|\omega(E_i(u))| = 1$, and let g denote the number of such u’s satisfying $L(E_i(u), 1) = 0$. Then $f(1) = 118$, $f(2) = 845$, $g = 482$, hence $f(1)/g \approx 0.2448$, and $f(2)/g \approx 1.7531$.

Delaunay and Watkins expect \cite{14}, Heuristics 1.1):

$$\sharp\{d \leq X : \epsilon(E_d) = 1, \text{rank}(E_d) \geq 2\} \sim c_E X^{3/4}(\log X)^{b_E+\frac{3}{8}}, \quad \text{as} \quad X \to \infty,$$

where $c_E > 0$, and there are four different possibilities for b_E, largely dependent on the rational 2-torsion structure of E. Watkins \cite{33}, and Park-Poonen-Voight-Wood \cite{22} have conjectured that

$$\sharp\{E : \text{ht}(E) \leq X, \epsilon(E) = 1, \text{rank}(E) \geq 2\} \sim c X^{19/24}(\log X)^{3/8},$$

where E runs over all elliptic curves defined over the rationals, and $\text{ht}(E)$ denotes the height of E.

We expect a similar asymptotic formula for the family $E(u)$. Let $H(X) := \frac{X^{19/24}(\log X)^{3/8}}{g(X)}$, and $G_i(X) := \frac{X^{3/4}(\log X)^i}{g(X)}$, $i = 0, 1/2$ or 1. We obtain the following graphs, (partially) confirming our expectation.

![Figure 2: Graph of the function $H(X)$.](image)

Now let $f_k(i, X)$ denote the number of integers $u \equiv 1(\mod 4)$, $|u| \leq X$, satisfying (***) and such that $L(E(u), 1) \neq 0$, $|\omega(E_i(u))| = k^2$. Let $F_k(i, X) := \frac{f_k(i, X)}{f_k(i, X)}$. We obtain the following graphs of the functions $F_k(i, X)$ for $i = 1, 2$ and $k = 2, 3, 4, 5, 6, 7$.

8
The above calculations suggest the following

Conjecture 4 For any positive integer \(k \) there are constants \(c_{k,i} > 0 \), \(\alpha_{k,i} \), and \(\beta_{k,i} \) such that

\[
f_k(i, X) \sim c_{k,i}X^{\alpha_{k,i}}(\log X)^{\beta_{k,i}}, \quad \text{as} \quad X \to \infty.
\]

Conjectures 8 in [7] and 2 in [8] suggest similar asymptotics for the family of quadratic twists of any elliptic curve defined over \(\mathbb{Q} \).
Consider the set consisting of 10000 values of integers \(u \equiv 1 \pmod{4} \), \(|u| \geq 10^8\), satisfying (**). Let \(f_k(i) \) denote the number of such \(u \)'s satisfying \(L(E_i(u), 1) \neq 0 \) and \(|\Omega(E_i(u))| = k^2\). Let \(F_k := \frac{f_k(1)}{f_k(0)} \). We obtain

\[
F_2(1) \approx 0.2256, \quad F_3(1) \approx 0.8251, \quad F_4(1) \approx 0.1779 \\
F_5(1) \approx 1.0825, \quad F_6(1) \approx 0.2494, \quad F_7(1) \approx 1.1919 \\
F_2(2) \approx 1.1901, \quad F_3(2) \approx 1.0682, \quad F_4(2) \approx 1.5590 \\
F_5(2) \approx 1.4955, \quad F_6(2) \approx 1.9031, \quad F_7(2) \approx 1.8449
\]

5 Cohen-Lenstra heuristics for the order of \(\Omega \)

Delaunay [12] has considered Cohen-Lenstra heuristics for the order of Tate-Shafarevich group. He predicts, among others, that in the rank zero case, the probability that \(|\Omega(E)| \) of a given elliptic curve \(E \) over \(\mathbb{Q} \) is divisible by a prime \(p \) should be \(f_0(p) := 1 - \prod_{j=1}^{\infty} (1 - p^{-2j}) = \frac{1}{p} + \frac{1}{p^2} + \ldots \). Hence, \(f_0(2) \approx 0.580577, f_0(3) \approx 0.360995, f_0(5) \approx 0.206660, f_0(7) \approx 0.145408, f_0(11) \approx 0.092 \), and so on.

Let \(F(X) \) (resp. \(G(X) \)) denote the number of integers \(u \equiv 1 \pmod{4} \), \(|u| \leq X\), satisfying (*) (resp. (**)) and such that \(L(E(u), 1) \neq 0 \). Let \(F_p(X) \) (resp. \(G_p(X) \)) if \(p \geq 3 \) denote the number of integers \(u \equiv 1 \pmod{4} \), \(|u| \leq X\), satisfying (*) (resp. (**)), such that \(L(E(u), 1) \neq 0 \) and \(|\Omega(E(u))| \) is divisible by \(p \). Let \(G_2(i, X) \) denote the number of integers \(u \equiv 1 \pmod{4} \), \(|u| \leq X\), satisfying (**), such that \(L(E(u), 1) \neq 0 \) and \(|\Omega(E_i(u))| \) is divisible by 2. Let \(f_p(X) := \frac{F_p(X)}{F(X)}, g_p(X) := \frac{G_p(X)}{G(X)} \), and \(g_2(i, X) := \frac{G_2(i, X)}{G(X)} \). We obtain the following tables, extending the calculations given by Stein-Watkins [32] and Delaunay-Wuthrich [15].

\(X \)	\(f_3(X) \)	\(f_5(X) \)	\(f_7(X) \)	\(f_{11}(X) \)
\(2 \cdot 10^6 \)	0.358355	0.189909	0.123182	0.061527
\(4 \cdot 10^6 \)	0.362001	0.192343	0.126864	0.066945
\(6 \cdot 10^6 \)	0.363294	0.194413	0.129213	0.069780
\(8 \cdot 10^6 \)	0.364051	0.196239	0.130556	0.071144
\(10^7 \)	0.365067	0.197048	0.131812	0.072358

The numerical values of \(f_3(X) \) exceed the expected value \(f_0(3) \). In general, the values \(f_k(X) \) may tend to some constants depending on the various congruential values of \(u \) (compare [32]).

It seems that it would be better to consider \(u \)'s satisfying (**), but here the convergence is very slow. Here are the results.
Note that the value \((g_2(1, 10^7) + g_2(2, 10^7))/2 \approx 0.56012\) is not so far from the expected one.

We have computed the orders of 9518 pairs of Tate-Shafarevich groups \((\mathcal{W}(E_1(u)), \mathcal{W}(E_1(u)))\) for \(|u| \geq 10^8\), \(u \equiv 1(\text{mod} \, 4)\), satisfying (**), and such that \(L(E(u), 1) \neq 0\). We obtained the following table.

\(p\)	\(\mathcal{W}(E_1(u))\)	\(\mathcal{W}(E_2(u))\)
2 \cdot 10^6	0.746231	0.313111
4 \cdot 10^6	0.761104	0.326554
6 \cdot 10^6	0.768805	0.333854
8 \cdot 10^6	0.774040	0.338854
\(10^7\)	0.777917	0.342322

6 Asymptotic formulae

6.1 The rank zero case

Let \(M^*(T) := \frac{1}{T} \sum_{|u| \leq T} |\mathcal{W}(E(u))|\), where the sum is over integers \(u \equiv 1(\text{mod} \, 4)\), \(|u| \leq T\), satisfying (*) and \(L(E(u), 1) \neq 0\), and \(T^*\) denotes the number of terms in the sum. Similarly, let \(N^{**}_i(T) := \frac{1}{T^*_i} \sum_{|u| \leq T} |\mathcal{W}(E_i(u))|\), where \(i = 1, 2\), and the sum is over integers \(u \equiv 1(\text{mod} \, 4)\), \(|u| \leq T\), satisfying (**), \(L(E(u), 1) \neq 0\), and \(T^{**}_i\) denotes the number of terms in the sum. Let \(f(T) := \frac{M^*(T)}{T^*},\) and \(g_i(T) := \frac{N^{**}_i(T)}{T^{**}_i}\). We obtain the following pictures.
Figure 5: Graphs of the functions $f(T)$ and $g_i(T)$, $i = 1, 2$.

Note similarity with the predictions by Delaunay [11] for the case of quadratic twists of a given elliptic curve (and numerical evidence in [7] [8]).

6.2 The rank one case

Let $T(X) := \frac{2}{X^2} \sum \frac{L'(E_1(u), 1)}{\Omega_{E_1}(u)}$, where the sum is over integers $u \equiv 1(\text{mod } 4)$, $|u| \leq X$, such that $u^2 + 64 = p_1 \cdots p_k$ is a product of even number of different primes, and X^* denotes the number of terms in the sum. Let $u(X) := \frac{T(X)}{X^{1/2} \log(X)}$. Then, using PARI/GP for computations of $L'(E_1(u), 1)$, we obtain the following picture
Hence, assuming the exact Birch and Swinnerton-Dyer conjecture for the rank one families $E_i(u)$, $i = 1, 2$, where $u^2 + 64 = p_1 \cdots p_k$ is a product of even number of different primes, we expect the asymptotic formulae

$$\frac{1}{X^*} \sum |\mathfrak{m}(E_i(u))| R(E_i(u)) \sim c_i X^{1/2} \log X, \quad \text{as} \quad X \to \infty,$$

where we sum over $|u| \leq X$, $u \equiv 1 (\text{mod} 4)$, such that $u^2 + 64 = p_1 \cdots p_k$ is a product of even number of different primes (compare [7], section 7.2).

Remark. Delaunay and Roblot [13] investigated regulators of elliptic curves with rank one in some families of quadratic twists of a fixed elliptic curve, and formulated some conjectures on the average size of these regulators. Delaunay asked us to do similar calculations for our family $E_i(u)$. We hope to consider such investigations in some future.

7 Distributions of $L(E(u), 1)$ and $|\mathfrak{m}(E(u))|$

7.1 Distribution of $L(E(u), 1)$

It is a classical result (due to Selberg) that the values of $\log |\zeta(\frac{1}{2} + it)|$ follow a normal distribution.

Let E be any elliptic curve defined over \mathbb{Q}. Let \mathcal{E} denote the set of all fundamental discriminants d with $(d, 2N_E) = 1$ and $\epsilon_E(d) = \epsilon_E \chi_d(-N_E) = 1$, where ϵ_E is the root number of E and $\chi_d = (d/\cdot)$. Keating and Snaith [18]
have conjectured that, for \(d \in \mathcal{E} \), the quantity \(\log L(E_d, 1) \) has a normal distribution with mean \(-\frac{1}{2} \log \log |d| \) and variance \(\log \log |d| \); see [6] [7] [8] for numerical data towards this conjecture.

Below we consider the family of Neumann-Setzer type elliptic curves. Our data suggest that the values \(\log L(E(u), 1) \) also follow an approximate normal distribution. Let \(B = 10^7 \), \(W = \{ |u| \leq B : u \equiv 1 \pmod{4} \) and satisfies (**) \} and \(I_x = [x, x+0.1) \) for \(x \in \{ -10, -9.9, -9.8, \ldots, 10 \} \). We create a histogram with bins \(I_x \) from the data \(\{ (\log L(E(u), 1) + \frac{1}{2} \log \log |u|) / \sqrt{\log \log |u|} : |u| \in W \} \), and our histogram is shown in Figure 7.

\[\text{Figure 7: Histogram of values } \{ (\log L(E(u), 1) + \frac{1}{2} \log \log |u|) / \sqrt{\log \log |u|} : |u| \in W \}. \]

\subsection{Distribution of \(|\mathcal{W}(E(u))|\)\)

It is an interesting question to find results (or at least a conjecture) on distribution of the order of the Tate-Shafarevich group for rank zero Neumann-Setzer type elliptic curves \(E_1(u) \) and \(E_2(u) \). It turns out that the values of \(\log(|\mathcal{W}(E_i(u))|/\sqrt{|u|}) \) are the natural ones to consider (compare Conjecture 1 in [24], and numerical experiments in [7] [8]). Below we create histograms from the data \(\{ (\log(|\mathcal{W}(E_i(u))|/\sqrt{|u|}) - \mu_i \log \log |u|) / \sqrt{\sigma_i^2 \log \log |u|} : |u| \in W \} \), where \(\mu_1 = -\frac{1}{2} \), \(\mu_2 = -\frac{1}{2} - \log 2 \), \(\sigma_1^2 = 1 \), and \(\sigma_2^2 = 1 + (\log 2)^2 \) (here we use Lemma 1(iii) above, and Lemma 4 in [24]). Our data suggest that the values \(\log(|\mathcal{W}(E_i(u))|/\sqrt{|u|}) \) also follow an approximate normal distribution. Below we picture this histogram.
Figure 8: Histogram of values \(\log(|E_1(u)|/\sqrt{|u|}) + \frac{1}{2} \log \log |u| \) for \(|u| \leq B\) : \(u \equiv 1 \pmod{4} \) satisfying (**), and such that \(L(E, 1) \neq 0 \).

Figure 9: Histogram of values \(\log(|E_2(u)|/\sqrt{|u|}) + \left(\frac{1}{2} + \log 2 \right) \log \log |u| \) for \(|u| \leq B\) : \(u \equiv 1 \pmod{4} \) satisfying (**), and such that \(L(E, 1) \neq 0 \).

References

[1] M. Bhargava, Ch. Skinner, W. Zhang, A majority of elliptic curves over \(\mathbb{Q} \) satisfy the Birch and Swinnerton-Dyer conjecture, arxiv.org/abs/1407.1826
[2] J. Coates, *Lectures on the Birch-Swinnerton-Dyer Conjecture*, Notices of the ICCM 1 (2013), 29-46

[3] J. Coates, Y. Li, Y. Tian, S. Zhai, *Quadratic twists of elliptic curves*, Proc. London Math. Soc. 110 (2015), 357-394

[4] J. Coates, A. Wiles, *On the conjecture of Birch and Swinnerton-Dyer*, Invent. Math. 39 (1977), 223-251

[5] J. B. Conrey, D. W. Farmer, J. P. Keating, M. O. Rubinstein and N. C. Snaith, *Integral moments of L-functions*, Proc. London Math. Soc. 91 (2005), 33-104

[6] J. B. Conrey, J. P. Keating, M. O. Rubinstein and N. C. Snaith, *Random matrix theory and the Fourier coefficients of half-integral weight forms*, Experiment. Math. 15 (2006), 67-82

[7] A. Dąbrowski, T. Jędrzejak, L. Szymaszkiewicz, *Behaviour of the order of Tate-Shafarevich groups for the quadratic twists of X_0(49)*, In: Elliptic Curves, Modular Forms and Iwasawa Theory (in honour of John Coates’ 70th birthday), Springer Proceedings in Mathematics and Statistics 188 (2016)

[8] A. Dąbrowski, L. Szymaszkiewicz, *Behaviour of the order of Tate-Shafarevich groups for the quadratic twists of elliptic curves*, arXiv:1611.07840 [math.NT] 23 Nov 2016

[9] A. Dąbrowski, M. Wodzicki, *Elliptic curves with large analytic order of W(E)*, In: Algebra, Arithmetic and Geometry (in honour of Yu.I. Manin, vol. I), Progress in Math. 269 (2009), 407-421

[10] H. Darmon, L. Merel, *Winding quotients and some variants of Fermat’s Last Theorem*, J. reine angew. Math. 490 (1997) 81-100

[11] C. Delaunay, *Moments of the orders of Tate-Shafarevich groups*, Int. J. Number Theory 1 (2005), 243-264

[12] C. Delaunay, *Heuristics on class groups and on Tate-Shafarevich groups: the magic of the Cohen-Lenstra heuristics*, In: Ranks of elliptic curves and random matrix theory, London Math. Soc. Lecture Ser. 341 (2007), 323-340

[13] C. Delaunay, X.-F. Roblot, *Regulators of rank one quadratic twists*, J. Théorie Nombres Bordeaux 20 (2008), 601-624
[14] C. Delaunay, M. Watkins, *The powers of logarithm for quadratic twists*. In: Ranks of elliptic curves and random matrix theory, London Math. Soc. Lecture Ser. **341** (2007), 189-193

[15] C. Delaunay, C. Wuthrich, *Some remarks on self-points on elliptic curves*, Actes de la Conférence "Fonctions L et Arithmétique", 69-84, Publ. Math. Besancon Algèbre Théorie Nr., Lab. Math. Besancon, Besancon, 2010

[16] C. D. Gonzalez-Avilés, *On the conjecture of Birch and Swinnerton-Dyer*, Trans. Amer. Math. Soc. **349** (1997), 4181-4200

[17] B. Gross, D. Zagier, *Heegner points and derivatives of L-series*, Invent. Math. **84** (1986), 225-320

[18] J. P. Keating, N. C. Snaith, *Random matrix theory and ζ(1/2 + it)*, Comm. Math. Phys. **214**(1) (2000), 57-89

[19] V. Kolyvagin, *Finiteness of E(Q) and Ш(E) for a class of Weil curves*, Math. USSR Izv. **32** (1989), 523-541

[20] R. L. Miller, *Empirical evidence for the Birch and Swinnerton-Dyer conjecture*, PhD thesis, University of Washington, 2010

[21] O. Neumann, *Elliptische Kurven mit vorgeschriebenem Reduktionsverhalten. I, II*, Math. Nachr. **49** (1971), 107-123; **56** (1973), 269-280

[22] J. Park, B. Poonen, J. Voight, M. M. Wood, *A heuristic for boundedness of ranks of elliptic curves*, www-math.mit.edu/~poonen/papers/bounded-ranks.pdf

[23] The PARI Group, PARI/GP version 2.7.2, Bordeaux, 2014, http://pari.math.u-bordeaux.fr/

[24] M. Radziwill, K. Soundararajan, *Moments and distribution of central L-values of quadratic twists of elliptic curves*, Invent. Math. **202** (2015), 1029-1068

[25] K. Rubin, *Tate-Shafarevich groups and L-functions of elliptic curves with complex multiplication*, Invent. Math. **89** (1987), 527-560

[26] J.-P. Serre, *Propriétés galoisiennes des points d’ordre fini des courbes elliptiques*, Invent. Math. **15** (1972), 259-331
[27] J.-P. Serre, *Travaux de Wiles (et Taylor,...). I*, Astérisque 237 (1996), 319-332

[28] B. Setzer, *Elliptic curves of prime conductor*, J. London Math. Soc. (2) 10 (1975), 367-378

[29] J. H. Silverman, *The Arithmetic of Elliptic Curves*. Second Edition, Springer 2009

[30] Ch. Skinner, E. Urban, *The Iwasawa main conjectures for GL$_2$*, Invent. Math. 195 (2014), 1-277

[31] C. Soh, *Explicit methods for the Birch and Swinnerton-Dyer conjecture*, MSc Thesis, University of Oxford, 2014

[32] W. Stein, M. Watkins, *Modular parametrizations of Neumann-Setzer elliptic curves*, Int. Math. Res. Not. 27 (2004), 1395-1405

[33] M. Watkins, *Some heuristics about elliptic curves*, Experiment. Math. 17 (2008), 105-125

[34] A. Wiles, *Modular elliptic curves and Fermat’s last theorem*, Ann. Math. 141 (1995), 443-551

[35] D. Zywina, *On the surjectivity of mod l representations associated to elliptic curves*, arXiv:1508.07661v1 [math.NT] 31 Aug 2015

Institute of Mathematics, University of Szczecin, Wielkopolska 15, 70-451 Szczecin, Poland; E-mail addresses: dabrowsk@wmf.univ.szczecin.pl and dabrowskiandrzej7@gmail.com; lucjansz@gmail.com