ANTIFUNGAL EFFECTS OF TAPINANTHUS GLOBIFERUS GROWING ON VITEXDONIANA AGAINST SOME FUNGAL ISOLATES
Abubakar H1, Musa AM2, Abdullahi MI3, Yusuf AJ4
1Department of Chemistry, Sokoto State University, Sokoto, Nigeria.
2Department of Pharmaceutical and Medicinal Chemistry, Ahmadu Bello University Zaria, Nigeria.
3Department of Pharmaceutical and Medicinal Chemistry, Usman Danfodiyo University, Sokoto, Nigeria.

ABSTRACT
Objective: Fungal infections are the major cause of many skin diseases, especially in developing countries. Natural products of medicinal value represent a potential source of chemotherapeutic agents. Tapinanthus globiferus has been used extensively in ethnomedicine for the treatment of hypertension, ulcer, cancer, diabetes and fungal infections without a scientific basis. This work was aimed at screening the phytochemical constituents and evaluating the antifungal properties of methanol leaf extract its ethyl acetate and n-butanol fractions of T. globiferus against some clinical fungal isolates including Candida albicans, Trychophyton mentagrophytes, Trychophyton rubrum and Aspergillus niger using agar well diffusion and broth micro-dilution techniques.
Methods: Preliminary screening of phytochemical constituents of extract and fractions of T. globiferus indicated the presence of carbohydrates, alkaloids, glycosides, tannins, flavonoids, saponins, steroids and triterpenes.
Results: The methanol extract and its fractions demonstrated significant (P<0.05) antifungal effect against all the test organisms with mean zone of inhibition ranging from 27.83±0.16-14.46±0.29mm which was higher compared to that of the standard drug, Fluconazole (26.1±0.44 –18.49±0.16 mm). The minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of the extract ranged between 6.25–25.0 mg/ml; ethyl acetate fraction had 3.13 – 25.0 mg/ml while n-butanol fraction had the least MIC ranging from 0.39-12.5 mg/ml against the test organisms.
Conclusion: Study concluded that T. globiferus have good antifungal activity validating the ethnomedicinal claim for the use of the plant in the treating fungal diseases.
Keywords: Antifungal, phytochemical screening, Tapinanthus globiferus.
screening on *T. globiferus* growing on host plants revealed the presence of alkaloid, tannins, saponins, flavonoids, carbohydrate, glycosides, terpenes and steroids. Some pharmacological studies carried out on *T. globiferus* growing on other host species revealed that the plant exhibited, anti-inflammatory, nephro-protective, anti-oxidant activities, Antitrypanosomal activity and anticonvulsant activity.

Despite its widespread usage, literature search revealed the paucity of research conducted on the plant, hence the need to evaluate the phytochemical constituents and antifungal effect of *T. globiferus* growing on *Vitexdoniana* in order to validate the ethnomedicinal claim of its use in the treatment of fungal infections.

MATERIALS AND METHODS

The solvents/reagents used were of analytical grade and were distilled before use, they include methanol, n-butanol, ethyl acetate, chloroform, n-hexane and dimethyl sulfoxide (DMSO; Lobal Chemie Pvt Ltd, India). Sabouraud dextrose agar and broth (HiMedia Laboratories Pvt Ltd, India). UV spectrophotometer (Aberra BARCELONA Spain). Ohaus digital weighing balance (Champ 11 CH15R, Ohaus Corporation, Pinebrook NJ, USA), Metler balance (Model P162 supplied by Gallenhang), 96 well Micro-titre plate, single and multi-channel micropipette (HUAWEI LAB), Vertical automatic electro thermal pressure steam sterilizer (LX-C35L, HEFEI HUATAI Medical Equipment Co. LTD), Microplate Reader (2100-C, Optic Iyvm System) and standard powder of fluconazole (Sigma AldrichNo. F8929, U.S.A.)

Plant sample

Plant sample of *T. globiferus* growing on *Vitexdoniana* was collected from Dange Shuni Local Government Area of Sokoto State, Nigeria in December 2016. The plant was identified at the Herbarium Section by Namadi Sanusi of Botany Department, Ahmadu Bello University Zaria, a voucher was deposited (No.900107). The plant material was shed-dried, crushed to powder and kept in a polythene bag for further use.

Preparation of plant material

The powdered leaf of *T. globiferus* (2.0 kg) was exhaustively extracted with 3 L of 90% methanol for 6 days. The content was filtered using filter paper and the solvent was removed using vacuum rotary evaporator at 40°C to afford crude methanol leaf extract (140 g). Some part of the extract (120 g) was partitioned using different solvents into n-butanol, ethyl acetate, chloroform and n-hexane fractions.

Preliminary Phytochemical Screening

The preliminary screening of phytochemical was performed on the methanol leaf extract *T. globiferus* and its ethyl acetate and n-butanol fractions in accordance with the procedures to identify the presence of some secondary metabolites.

Antifungal studies

Test organisms

Four clinical fungal isolates obtained from the Clinical Microbiology Department of Usman Danfodiyo University Teaching Hospital, Sokoto, includes *Candida albicans*, *Aspergillus niger*, *Trychophyton rubrum* and *Trychophyton mentagrophyte*.

Preparation of test organisms

Test organisms were sub-cultured and grown on 10 ml SDA slants, it was eventually stored in the refrigerator at 2-8°C.

Preparation of reference antifungal agent

About 50 mg of fluconazole powder was dissolved in 10 ml dimethyl sulfoxide to prepare a stock concentration of 5 mg/ml, from which 0.05 mg/ml (50 μg/ml) working concentration was also prepared.

Preparation of plant extract/fractions

A 100 mg/ml Stock concentration was prepared when 0.5g of methanol extract and its fractions (ethyl acetate and n-butanol) was dissolved in 5 ml of 10% DMSO and eventually two-fold serial dilution was carried out to obtain three more concentrations of 50, 25 and 12.5 mg/ml.

Preparation of culture media

The sabouraud dextrose agar (SDA) and broth as growth media were weighed and prepared with distilled water according to the manufacturer’s specifications. SDA was gently heated to aid its dissolution, it was transferred into an already sterilized Petri dishes, it was allowed to cool and solidify. These were kept aseptically until ready for use.

Determination of the antifungal activity of *T. globiferus*

Standardization and Culturing of the fungal isolates

A suspension of solid culture of *Candida albicans* (18 h) in Sabo broth was prepared. The standardization was performed according to method by Clinical Laboratory Standard Institute guidelines by inoculating in normal saline and adjusting its turbidity to match that of 0.5 McFarland standard which is equal to 1.0×10^6 CFU/ml. *Aspergillus niger* and *Trychophyton* spp were sub-cultured from (6 days old) SDA slant, the suspension was adjusted to 1.0×10^6 CFU/ml at 530nm of a spectrophotometer.

Antifungal screening of *T. globiferus*

The antifungal activity of the plant ant its ethyl acetate and n-butanol fractions were carried out according to the method. Sabouraud dextrose agar (SDA) as the media for organism growth was prepared according to instructions by the Manufacturer and was autoclaved at 121°C for 15 min, the media was transferred into sterile dishes and allowed to cool and solidify. A cork borer of 8 mm in diameter was used to punch wells on the plates. 0.1ml of the inoculum was seeded on the media and cotton swab was used to spray the inoculum on the surface of the media.

About 200 μl of the graded concentration of extract and its fractions was transferred into each well of the micro plate. 0.05 mg/ml Fluconazole which served as positive control, 10% DMSO was also used as negative control, plate was incubated at 27°C for 48-72 h, zone of inhibition was measured using transparent ruler. Each experiment was performed in triplicates.

Determination of minimum inhibitory concentration (MIC)

The minimum inhibitory concentration (MIC) was determined using a 96 wells micro plate as previously described. Liquid media of 100μl was transferred into
each micro well of the micro plate. Extract of 100μl and its fractions was transferred into well-1 making up 200μl total volume. Mixture (extract/fractions) and media of 100μl was taken from well-1 to well-2 and serially diluted (2-fold) up to well-10 where 100 μl finally discarded from the last well, well 11 (extract blank) served as negative control and well-12 (media and inoculum) which served as a positive control. About 100 μl of the fungal inoculum approximately (10⁵CFU/ml⁻¹) was transferred into each well except for well-11 of the microplate. The microplate was covered with aluminum foil and allowed to stand for 30 min before incubating at 27°C for 72h. The experiment was performed in triplicate. The MIC of the extract/fraction is the lowest concentration that caused growth inhibition of more than 90% after 48 h of incubation²².

Table 1: Phytochemical screening of the methanol leaf extract, ethyl acetate and n-butanol fractions of *T. globiferus*

Constituents	Test	ME	EAF	BTF
Carbohydrates	Molisch	+	+	+
Anthraquinones	Bontrager	-	-	-
Steroid/Triterpenes	Liebermann-Burchard	+	-	-
Glycoside	Keller-Killian	+	+	+
Saponins	Frothing	+	+	+
Tannins	Ferric chloride	+	+	+
Flavonoids	Shinoda	+	+	+
Alkaloids	Dragendoff	+	-	-

Key: - = absent; + = present; ME=methanol extract, EAF=ethyl acetate fraction, BTF=n-butanol fraction.

Table 2: Susceptibility test of ME, EAF and BTF of *T. globiferus* against selected fungal species

Test organisms	ME (24.16±0.16 mm)	EAF (19.33±0.33 mm)	BTF (26.16±0.44 mm)
C. candida	15.83±0.33	12.26±0.16	11.50±0.28
T. mentagrophyte	23.66±0.33	20.16±0.57	18.83±0.44
T. rubrum	25.16±0.33	22.16±0.72	17.33±0.88
A. niger	18.83±0.57	15.00±0.28	11.50±0.28

Statistical Analysis

The results obtained were expressed as mean±standard error of mean and it was analyzed for significant using analysis of variance (ANOVA); values were considered significant at *P*<0.05.

RESULTS AND DISCUSSION

Preliminary phytochemical screening of the methanol leaf extract and fractions of *T. globiferus* growing on *Vitexdoniana* revealed the presence of saponins, tannins, alkaloids, cardiac glycosides, carbohydrates, steroids/triterpenes and flavonoids which varies from the fractions (Table 1). This is in agreement with what was reported¹⁵,¹⁶,²⁴,²⁵ on *T. globiferus* growing on other host plants. These phytochemical constituents were reported to be responsible for different pharmacological and physiological activities of plants²⁶. The results of antifungal screening indicated that the fungal isolates were significantly inhibited by the methanol extract and its fractions (ethyl acetate and n-butanol) and that the activity increases with the increase in the concentration of the extract and fractions (i.e. the activity is dependent on the test organisms; Key: ME=methanol extract, EAF=ethyl acetate fraction, BTF=n-butanol fraction concentration), ethyl acetate fraction exhibited the highest mean zone of inhibition range of 27.83±0.16–27.00±0.57 mm against all the test organisms except *A. niger* (17.33±0.88 mm); this activity was higher than that of drug (26.1±0.44–18.49±0.16 mm) against the same organism, while methanol leaf extract recorded the least mean zone of inhibition (Table 2). The MIC and MFC of the extract and fractions ranged between...
0.39-25 mg/ml (Table 3); n-butanol fraction had the lowest MIC at 0.39 mg/ml against C. albicans, hence the effect was fungistatic while the ethyl acetate fraction had a MIC and MFC value of 3.13 mg/ml against T. rubrum. The lower MIC and MFC values suggest that the fractions have good antifungal activity.

Organisms	MIC (mg/ml)	MFC (mg/ml)	EAF (mg/ml)	BTF (mg/ml)
C. albicans	6.25	12.5*	12.5	12.5*
T. mentagrophyte	12.5	12.5*	25.0	25.0*
T. rubrum	6.25	6.25*	3.13	3.13*
A. niger	25.0	25.0*	12.5	12.5*

Key: * = fungicidal effect, = fungistatic effect; ME= methanol extract, EAF = ethyl acetate fraction, BTF = n-butanol fraction

The highest activity observed by the ethyl acetate fraction might be due to the concentration of moderately polar compounds such as flavonoids and their derivatives that have been reported to possess antifungal activity[27]. Of all the fungal isolates used C. albicans, T. mentagrophyte, and T. rubrum were the most susceptible to ethyl acetate fraction. C. albicans, T. mentagrophyte and T. rubrum are implicated in diseases such as candidiasis, Tinea capitis, Tinea pedis, Tinea corporis, Tinea barbae and Tinea cruris[28,29]. Interestingly, the n-butanol fraction with zone of inhibition (24.50 mm) when compared to ethyl acetate fraction (27.16 mm), recorded the lowest MIC against C. albicans suggesting that the n-butanol fraction might have better antifungal activity at a lower concentration.

Fungal species involving C. albican and A. niger are the major causative agents of infections such as oral candidiasis, oesophageal candidiasis, vaginal thrush, lung diseases, and otomycosis[30,31,32]. The fungicidal effect of extract may be as a result of the inhibition of protein synthesis or nucleic acids metabolism of the organisms[33]. Fungalicidal effect of the plant extract could also be as a result of the damage it caused to the cell membrane of the organism[34].

CONCLUSION

The use of Tapinanthus globiferus as antifungal agent is promising as the methanol leaf extract and its fractions showed excellent antifungal activity against some selected fungal species with n-butanol fraction being the most active. This study indicated that T. globiferus has demonstrated good antifungal activity validating the ethno medicinal claim for the use of the plant in the treatment of fungal infections.

CONFLICT OF INTERESTS

The authors declare that they have no financial or personal relationships which may have inappropriately influenced them in writing this article.

AUTHOR’S CONTRIBUTION

All authors have worked equally for this work.

REFERENCES

1. Brown GD, Denning DW, Gow NR, et al. Hidden killers: human fungal infections. Sci Trans Med 2012; 4:165-13. https://doi.org/10.1126/scitransmed.3004404
2. WHO. (2005). World malaria report. Geneva, WHO.http://www.who.int/whr.
3. Mahé A, Cissé IA, Faye O, N'Diaye HT, Niamba P. Skin diseases in Bamako (Mali). Int J Dermato 1998; 37: 673-676. https://doi.org/10.1046/j.1365-4632.1998.00454.x
4. DOE PT, Asiedu A, Acheampong JW, Rowland Payne CM. Skin diseases in Ghana and the UK. Int J Dermat 2001; 40: 323-326. https://doi.org/10.1046/j.1365-4632.2001.01229.x
5. Adebola O (2004). Prevalence of skin diseases in Ibadan, Nigeria. Int J Dermat 2004; 43: 3136. https://doi.org/10.1111/j.1365-4632.2004.01967.x
6. Farnsworth NR, Soejarto DD, Akerele O, Heywood V, Syne H. Global importance of medicinal plants. conservation of medicinal plants. Cambridge University Press, Cambridge, UK, 1993; 25-51.
7. Haile Y, Delenaa Y. Traditional medicinal plant knowledge and use by local healers in Sekoru District, Jimma Zone, Southwestern Ethiopia. J Ethn Ethnomed 2007; 3:24. https://doi.org/10.1186/1746-4269-3-24
8. Burkhill HM. Useful Plants of West Tropical Africa. Royal Botanic Gardens, Kew England. 2000;5(2): 545-560.
9. Waterberg F, Craven P, Marais L. (1989). Common world flowers of the Okavango Delta. Gamsberg Publishers, Shellfield guide series II, 1989
10. Polhill R, Wiens D. Mistletoe of Africa. The Royal Botanic Garden, Kew, U. K. 1998; 370.
11. Bassey ME. Phytochemical investigation of Tapinanthus globiferus from two hosts and the taxonomic implication. Int J Chem Env Pharm Res 2012; 2(2):43-71.
12. Sher H, Alyemeni M.N. Pharmacologically important plants used in traditional system of Arab medicine for the treatment of livestock ailments in the kingdom of Saudi Arabia. African J Biotech 2011; 10: 9153-9159. https://doi.org/10.5897/AJB10.1570
13. Halihu ME, Hassan LG, Babagana A, Uwagb-Oguejiofor CI, Audu Y. Comparative studies on phytochemical and antioxidant activities of Tapinanthus globiferus (A. Rich) and its host plant Pilostigma thonningii (Schum, Advance). Pharmaceutical J 2017; 2(5):179-184.
14. Adekunle AS, Oyewo BE, Afolabi OK. Therapeutic efficacy of Tapinanthus globiferus on acetaminophen induced nephrotoxicity, inflammatory reactions and oxidative stress in albino rats. Int Res J Biochem Bioin 2012; 2(2):41-45.
15. Abedo JA, Jonah OA, Abdullahi, et al. Evaluation of trypanosomal activity of Tapinanthus globiferus and Gongronema latifolium on Trypanosoma congoense. Bioscience Research 2013; 10:2-8.
16. Abubakar K, Adebisi IM, Uwagb-Oguejiofor IC, Phytochemical screening and antiviral activity of the residual aqueous fraction of tapinanthus globiferus growing on ficus glums. Herbal Medicine 2016; 2:2. https://doi.org/10.21767/2472-0151.100013
17. Trease K., and Evans WC. Text Book of Pharmacognosy, 14th edition. Balliere, Tindall, London 1996; 251 – 293.
18. Edeoga HO, Okwu DE, Mbahie BO. Phytochemical constituents of some Nigerian medicinal plants. African J Biotech 2005; 4 (7): 685-688. https://doi.org/10.5897/AJB2005.000-3127
19. Clinical and Laboratory Standards Institute (CLSI). (2002). Reference method for broth dilution antifungal susceptibility testing of yeasts: Approved standard M27-A2. Wayne (PA).
20. Olowosuola AK, Ibrahim YKE, Bhatta PG. Studies on the antimicrobial properties of formulated creams and ointments
containing Baphia nitida heartwood extract. J Pharm Biore 2005; 2(2):124-130. https://doi.org/10.4314/jpb.v2i2.32075
21. Khatoon R, Noor J, Ahmad S, Shahzad A. In vitro evaluation of antifungal activity of aerial parts of medicinal plants Balanites aegyptiaca Del. and Spilanthes acmella Murr. J Appl Pharm Sci 2014; 4(01):123-127.
https://doi.org/10.7324/JAPS.2014.40121
22. Paola DD, Andrea C, Diego A, et al. Antifungal activity of medicinal plant extracts against phytopathogenic fungus Alternaria Spp. Chilean J Agri Res 2011; 71(2): 234.
https://doi.org/10.4067/S0718-58392011000200008
23. Espinel-Ingroff A, Fothergill A, Peter J, Rinaldi MG, Walsh TJ. Testing conditions for determination of minimum fungicidal concentrations of new and established antifungal agents for Aspergillus spp.: NCCLS Collaborative Study. J Clin Microbiol 2002; 40:3204-3208.
https://doi.org/10.1128/jcm.40.9.3204-3208.2002
24. Malani MS, Mainasara MM, Aliero AA, Aliero BL, Maishanu HM. Phytochemical screening of African mistletoes Tapinanthus globiferus (A. Rich) Tieghem (loranthaceae) on some host species in Birnin-Kebbi, Nigeria. Elixir Biosciences 2017; 107 47019-47023.
25. Emaikwu V, Ndukwe IG, Iyun Ora, Anyam JV. Preliminary phytochemical and antimicrobial activity screening of crude extracts of bird lime (Tapinanthus Globiferus). J App Sci Env Man 2019; 23 (2): 305-308.
https://doi.org/10.4314/jasem.v23i2.16
26. Cragg GM, Newman DJ. Biodiversity: A continuing source of novel drug leads. Pure and Applied Chemistry 2005; 77: 7-24. https://doi.org/10.1351/pac200577010007
27. Harborne JB, Greenham J, Williams CA, Eagles J, Markham KR. Ten isoprenylated and C-methylated flavonoids from the leaves of three Vellozia species. Phytochemistry 1993; 34:219. https://doi.org/10.1016/S0031-9422(00)90808-2
28. Macura AB. Dermatophyte infections. Int J Dermatol 1993; 32: 313-323.
https://doi.org/10.1111/j.1365-4362.1993.tb01464.x
29. Moran GP, Sullivan DJ, Hennan MC, et al. Antifungal drug susceptibilities of oral Candida dubliniensis isolates from human immunodeficiency virus (HIV)-infected and non-HIV-infected subjects and generation of stable fluconazole-resistant derivatives in vitro. Antimicrobial Agents Chemotherapy 1997; 41: 617–623. PMCID163761
30. Abarca M, Bragulat M, Castella G, Cabane SF. Ochratoxin A production by strains of Aspergillus niger var. niger. App Env Microbiol 1994; 60(7): 2650–2652. PMCID201698
31. Schuster E, Dunn-Coleman N, Frisvad JC, Van Dijck PW. On the safety of Aspergillus Niger-a review. Applied Micro Biotech 2002; 59(4-5): 426–435.
32. Oladele RO, Denning DW. Burden of serious fungal infection in Nigeria. West African J Med 2014; (2):107-114. PMID:25236826
33. Pandima DK, Arif NS, Sakhthive R, Karutha PS. Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. J Ethnopharm 2010; 130: 107-115.
https://doi.org/10.1016/j.jep.2010.04.025
34. Himratul-Aznita WH, Mohd-Al-Faisal N, Fatihalah AR. Determination of the percentage inhibition of diameter growth (PIDG) of Piper betle crude aqueous extract against oral Candida species. J Med Plan Res 2011; 5(6):878-884.