σ-Porosity of the set of strict contractions in a space of non-expansive mappings

Christian Bargetz
joint work with Michael Dymond

Relations Between Banach Space Theory
and Geometric Measure Theory
8–12 June 2015
The setting

Let X be a Banach space and $C \subseteq X$ a closed, convex and bounded set. We consider the space

$$M = \{ f : C \to C : \forall x, y \in C : \| f(x) - f(y) \| \leq \| x - y \| \}$$

equipped with the metric

$$d(f, g) = \sup_{x \in C} \| f(x) - g(x) \|$$

of uniform convergence.
M is a complete metric space.
Let X be a Banach space and $C \subseteq X$ a closed, convex and bounded set. We consider the space

$$\mathcal{M} = \{ f : C \to C : \forall x, y \in C : \| f(x) - f(y) \| \leq \| x - y \| \}$$

equipped with the metric

$$d(f, g) = \sup_{x \in C} \| f(x) - g(x) \|$$
of uniform convergence.

\mathcal{M} is a complete metric space.
The setting

Let X be a Banach space and $C \subset X$ a closed, convex and bounded set. We consider the space

$$\mathcal{M} = \{f : C \to C : \forall x, y \in C : \|f(x) - f(y)\| \leq \|x - y\|\}$$

equipped with the metric

$$d(f, g) = \sup_{x \in C} \|f(x) - g(x)\|$$

of uniform convergence.

\mathcal{M} is a complete metric space.
How small is the set of strict contractions?

We consider the set

\[\mathcal{N} = \{ f \in \mathcal{M} : \text{Lip}(f) < 1 \} \]

of strict contractions.

Question

“How small” is the set of strict contractions in \(\mathcal{M} \)?
How small is the set of strict contractions?

We consider the set

$$N = \{ f \in \mathcal{M} : \text{Lip}(f) < 1 \}$$

of strict contractions.

Question

“How small” is the set of strict contractions in \mathcal{M}?
σ-porous sets

A subset $A \subset M$ is said to be porous at $x \in A$ if there are constants $\alpha > 0$ and $\varepsilon_0 > 0$ with the following property: For all $\varepsilon \in (0, \varepsilon_0)$ there is a point $y \in M$ with $\|y - x\| \leq \varepsilon$ and $B(y, \alpha \varepsilon) \cap A = \emptyset$. The set A is called porous if it is porous at all of its points.
A subset $A \subset M$ is said to be *porous at* $x \in A$ if there are constants $\alpha > 0$ and $\varepsilon_0 > 0$ with the following property: For all $\varepsilon \in (0, \varepsilon_0)$ there is a point $y \in M$ with $\|y - x\| \leq \varepsilon$ and $B(y, \alpha \varepsilon) \cap A = \emptyset$. The set A is called *porous* if it is porous at all of its points.
\(\sigma\)-porous sets

A subset \(A \subset M\) is said to be *porous at* \(x \in A\) if there are constants \(\alpha > 0\) and \(\varepsilon_0 > 0\) with the following property: For all \(\varepsilon \in (0, \varepsilon_0)\) there is a point \(y \in M\) with \(\|y - x\| \leq \varepsilon\) and \(B(y, \alpha \varepsilon) \cap A = \emptyset\). The set \(A\) is called *porous* if it is porous at all of its points.
A subset $A \subset M$ is said to be *porous at* $x \in A$ if there are constants $\alpha > 0$ and $\varepsilon_0 > 0$ with the following property: For all $\varepsilon \in (0, \varepsilon_0)$ there is a point $y \in M$ with $\|y - x\| \leq \varepsilon$ and $B(y, \alpha \varepsilon) \cap A = \emptyset$. The set A is called *porous* if it is porous at all of its points.
A subset $A \subset M$ is said to be \textit{porous at} $x \in A$ if there are constants $\alpha > 0$ and $\varepsilon_0 > 0$ with the following property: For all $\varepsilon \in (0, \varepsilon_0)$ there is a point $y \in M$ with $\|y - x\| \leq \varepsilon$ and $B(y, \alpha \varepsilon) \cap A = \emptyset$. The set A is called \textit{porous} if it is porous at all of its points.
A subset $A \subset M$ is said to be *porous at* $x \in A$ if there are constants $\alpha > 0$ and $\varepsilon_0 > 0$ with the following property: For all $\varepsilon \in (0, \varepsilon_0)$ there is a point $y \in M$ with $\|y - x\| \leq \varepsilon$ and $B(y, \alpha \varepsilon) \cap A = \emptyset$. The set A is called *porous* if it is porous at all of its points.
A subset $A \subset M$ is said to be *porous at* $x \in A$ if there are constants $\alpha > 0$ and $\varepsilon_0 > 0$ with the following property: For all $\varepsilon \in (0, \varepsilon_0)$ there is a point $y \in M$ with $\|y - x\| \leq \varepsilon$ and $B(y, \alpha \varepsilon) \cap A = \emptyset$. The set A is called *porous* if it is porous at all of its points.
A subset $A \subset M$ is said to be *porous at* $x \in A$ if there are constants $\alpha > 0$ and $\varepsilon_0 > 0$ with the following property: For all $\varepsilon \in (0, \varepsilon_0)$ there is a point $y \in M$ with $\|y - x\| \leq \varepsilon$ and $B(y, \alpha \varepsilon) \cap A = \emptyset$. The set A is called *porous* if it is porous at all of its points.
A subset $A \subset M$ is said to be *porous at* $x \in A$ if there are constants $\alpha > 0$ and $\varepsilon_0 > 0$ with the following property: For all $\varepsilon \in (0, \varepsilon_0)$ there is a point $y \in M$ with $\|y - x\| \leq \varepsilon$ and $B(y, \alpha \varepsilon) \cap A = \emptyset$. The set A is called *porous* if it is porous at all of its points.
A subset $A \subset M$ is said to be *porous at* $x \in A$ if there are constants $\alpha > 0$ and $\varepsilon_0 > 0$ with the following property: For all $\varepsilon \in (0, \varepsilon_0)$ there is a point $y \in M$ with $\|y - x\| \leq \varepsilon$ and $B(y, \alpha \varepsilon) \cap A = \emptyset$. The set A is called *porous* if it is porous at all of its points.
A subset $A \subset M$ is said to be *porous at* $x \in A$ if there are constants $\alpha > 0$ and $\varepsilon_0 > 0$ with the following property: For all $\varepsilon \in (0, \varepsilon_0)$ there is a point $y \in M$ with $\|y - x\| \leq \varepsilon$ and $B(y, \alpha \varepsilon) \cap A = \emptyset$. The set A is called *porous* if it is porous at all of its points.
\(\sigma\)-porous sets

A subset \(A \subset M\) is said to be **porous at** \(x \in A\) if there are constants \(\alpha > 0\) and \(\varepsilon_0 > 0\) with the following property: For all \(\varepsilon \in (0, \varepsilon_0)\) there is a point \(y \in M\) with \(\|y - x\| \leq \varepsilon\) and \(B(y, \alpha \varepsilon) \cap A = \emptyset\). The set \(A\) is called **porous** if it is porous at all of its points.
A subset $A \subset M$ is said to be *porous at* $x \in A$ if there are constants $\alpha > 0$ and $\varepsilon_0 > 0$ with the following property: For all $\varepsilon \in (0, \varepsilon_0)$ there is a point $y \in M$ with $\|y - x\| \leq \varepsilon$ and $B(y, \alpha \varepsilon) \cap A = \emptyset$. The set A is called *porous* if it is porous at all of its points.
A subset \(A \subset M \) is said to be *porous at* \(x \in A \) if there are constants \(\alpha > 0 \) and \(\varepsilon_0 > 0 \) with the following property: For all \(\varepsilon \in (0, \varepsilon_0) \) there is a point \(y \in M \) with \(\|y - x\| \leq \varepsilon \) and \(B(y, \alpha \varepsilon) \cap A = \emptyset \). The set \(A \) is called *porous* if it is porous at all of its points.
A subset $A \subset M$ is said to be *porous at* $x \in A$ if there are constants $\alpha > 0$ and $\varepsilon_0 > 0$ with the following property: For all $\varepsilon \in (0, \varepsilon_0)$ there is a point $y \in M$ with $\|y - x\| \leq \varepsilon$ and $B(y, \alpha \varepsilon) \cap A = \emptyset$. The set A is called *porous* if it is porous at all of its points.

The set A is called σ-*porous* if it is a countable union of porous sets.
σ-porous sets

A subset $A \subset M$ is said to be *porous at* $x \in A$ if there are constants $\alpha > 0$ and $\varepsilon_0 > 0$ with the following property: For all $\varepsilon \in (0, \varepsilon_0)$ there is a point $y \in M$ with $\|y - x\| \leq \varepsilon$ and $B(y, \alpha \varepsilon) \cap A = \emptyset$. The set A is called *porous* if it is porous at all of its points.

The set A is called *σ-porous* if it is a countable union of porous sets.

Note that σ-porous sets are of first category in the sense of the Baire category theorem.
The Hilbert space case

Theorem (De Blasi and Myjak, 1989)

If X *is a Hilbert space the set* \mathcal{N} *of strict contractions on* C *is a* σ-*porous subset of* \mathcal{M}.

Proof sketch.

Take a sequence $\left(L_k \right)_{k \in \mathbb{N}}$ with $L_n \uparrow 1$ and set

$$\mathcal{N}_k = \{ f \in \mathcal{M} : \text{Lip}(f) \leq L_k \}.$$

Given $f \in \mathcal{N}_k$ and $\varepsilon > 0$ set g to the identity on a small ball around the fixed point x^* of f and to f outside a bigger ball around x^* then use Kirszbraun’s extension theorem to get a close enough midpoint of a ball outside \mathcal{N}_k.

Christian Bargetz (University of Innsbruck)
The Hilbert space case

Theorem (De Blasi and Myjak, 1989)

If X is a Hilbert space the set \mathcal{N} of strict contractions on C is a σ-porous subset of \mathcal{M}.

Proof sketch.

Take a sequence $(L_k)_{k \in \mathbb{N}}$ with $L_n \nearrow 1$ and set

$$\mathcal{N}_k = \{ f \in \mathcal{M} : \text{Lip}(f) \leq L_k \}.$$

Given $f \in \mathcal{N}_k$ and $\varepsilon > 0$ set g to the identity on a small ball around the fixed point x^* of f and to f outside a bigger ball around x^* then use Kirszbraun’s extension theorem to get a close enough midpoint of a ball outside \mathcal{N}_k.

Christian Bargetz (University of Innsbruck)

σ-Porosity of the set of strict contractions

11 June 2015 5 / 12
The Hilbert space case

Theorem (De Blasi and Myjak, 1989)

If X *is a Hilbert space the set* \mathcal{N} *of strict contractions on* C *is a* σ-*porous subset of* \mathcal{M}.

Proof sketch.

Take a sequence $(L_k)_{k \in \mathbb{N}}$ with $L_n \uparrow 1$ and set

$$\mathcal{N}_k = \{ f \in \mathcal{M} : \text{Lip}(f) \leq L_k \}.$$

Given $f \in \mathcal{N}_k$ and $\varepsilon > 0$ set g to the identity on a small ball around the fixed point x^* of f and to f outside a bigger ball around x^* then use Kirszbraun’s extension theorem to get a close enough midpoint of a ball outside \mathcal{N}_k.

Christian Bargetz (University of Innsbruck)
The general case

Theorem (B. and Dymond, 2015)

Let X be a Banach space and $C \subset X$ a closed, convex and bounded set. Then the set \mathcal{N} of all strict contractions is a σ-porous subset of \mathcal{M}.
Sketch of the proof

We define

\[\mathcal{N}^{p}_{a,b} = \left\{ f \in \mathcal{N} : a < \text{Lip}(f, \Gamma) \leq b, \ \text{Lip}(f) \leq 1 - \frac{1}{p} \right\} . \]

Fix \(f \in \mathcal{N}^{p}_{a,b} \). Choose \(x_0 \in \Gamma \) such that

\[\liminf_{t \to 0^+} \frac{\|f(x_0 + te) - f(x_0)\|}{t} \geq a. \]
We define

\[N_{a,b}^p = \left\{ f \in N : a < \text{Lip}(f, \Gamma) \leq b, \ \text{Lip}(f) \leq 1 - \frac{1}{p} \right\}. \]

Fix \(f \in N_{a,b}^p \). Choose \(x_0 \in \Gamma \) such that

\[\liminf_{t \to 0^+} \frac{\| f(x_0 + te) - f(x_0) \|}{t} \geq a. \]
We define

\[\mathcal{N}_{a,b}^p = \left\{ f \in \mathcal{N} : a < \text{Lip}(f, \Gamma) \leq b, \text{Lip}(f) \leq 1 - \frac{1}{p} \right\} \]

Fix \(f \in \mathcal{N}_{a,b}^p \). Choose \(x_0 \in \Gamma \) such that

\[\liminf_{t \to 0^+} \frac{\|f(x_0 + te) - f(x_0)\|}{t} \geq a. \]
We define
\[\mathcal{N}^p_{a,b} = \left\{ f \in \mathcal{N} : a < \mathrm{Lip}(f, \Gamma) \leq b, \ \mathrm{Lip}(f) \leq 1 - \frac{1}{p} \right\}. \]

Fix \(f \in \mathcal{N}^p_{a,b} \). Choose \(x_0 \in \Gamma \) such that
\[\liminf_{t \to 0^+} \frac{\|f(x_0 + te) - f(x_0)\|}{t} \geq a. \]
Sketch of the proof

We define

\[\mathcal{N}_{a,b}^p = \left\{ f \in \mathcal{N} : a < \text{Lip}(f, \Gamma) \leq b, \text{Lip}(f) \leq 1 - \frac{1}{p} \right\} . \]

Fix \(f \in \mathcal{N}_{a,b}^p \). Choose \(x_0 \in \Gamma \) such that

\[\liminf_{t \to 0^+} \frac{\| f(x_0 + te) - f(x_0) \|}{t} \geq a. \]
We define

$$\mathcal{N}_{a,b}^p = \left\{ f \in \mathcal{N} : a < \text{Lip}(f, \Gamma) \leq b, \text{Lip}(f) \leq 1 - \frac{1}{p} \right\}.$$

Fix \(f \in \mathcal{N}_{a,b}^p \). Choose \(x_0 \in \Gamma \) such that

$$\liminf_{t \to 0^+} \frac{\|f(x_0 + te) - f(x_0)\|}{t} \geq a.$$
We define\[\mathcal{N}_{a,b}^p = \left\{ f \in \mathcal{N} : a < \text{Lip}(f, \Gamma) \leq b, \text{Lip}(f) \leq 1 - \frac{1}{p} \right\}. \]

Fix \(f \in \mathcal{N}_{a,b}^p \). Choose \(x_0 \in \Gamma \) such that
\[
\liminf_{t \to 0^+} \frac{\|f(x_0 + te) - f(x_0)\|}{t} \geq a.
\]
Fix $\alpha > 0$, $\varepsilon > 0$. Now set

$$g(x) = f(x + \sigma \phi_{\varepsilon}(e^*(x - x_0))(e - (x - x_0))).$$

where $\sigma \phi_{\varepsilon}(e^*(x - x_0))(e - (x - x_0))$ stretches along Γ to increase the Lipschitz constant.

Setting $R = \text{diam}(C)$, if $b - a$ is small enough, we obtain

- $g \in \mathcal{M}$
- $d(f, g) \leq R\varepsilon$
- $B(g, \alpha R\varepsilon) \cap \mathcal{N}^p_{a, b} = \emptyset$.

Hence $\mathcal{N}^p_{a, b}$ is porous.
Fix $\alpha > 0$, $\varepsilon > 0$. Now set

$$g(x) = f(x + \sigma \phi_\varepsilon(e^*(x - x_0))(e - (x - x_0))).$$

where $\sigma \phi_\varepsilon(e^*(x - x_0))(e - (x - x_0))$ stretches along Γ to increase the Lipschitz constant.

Setting $R = \text{diam}(C)$, if $b - a$ is small enough, we obtain

- $g \in \mathcal{M}$
- $d(f, g) \leq R\varepsilon$
- $B(g, \alpha R\varepsilon) \cap \mathcal{N}^p_{a,b} = \emptyset$.

Hence $\mathcal{N}^p_{a,b}$ is porous.
Sketch of the proof, part II

Fix \(\alpha > 0, \varepsilon > 0 \). Now set

\[
g(x) = f(x + \sigma \phi_\varepsilon(e^*(x - x_0))(e - (x - x_0))).
\]

where \(\sigma \phi_\varepsilon(e^*(x - x_0))(e - (x - x_0)) \) stretches along \(\Gamma \) to increase the Lipschitz constant.

Setting \(R = \text{diam}(C) \), if \(b - a \) is small enough, we obtain

- \(g \in \mathcal{M} \)
- \(d(f, g) \leq R\varepsilon \)
- \(B(g, \alpha R\varepsilon) \cap \mathcal{N}^p_{a,b} = \emptyset \).

Hence \(\mathcal{N}^p_{a,b} \) is porous.
Fix $\alpha > 0$, $\varepsilon > 0$. Now set

$$g(x) = f(x + \sigma \phi_{\varepsilon}(e^*(x - x_0))(e - (x - x_0))).$$

where $\sigma \phi_{\varepsilon}(e^*(x - x_0))(e - (x - x_0))$ stretches along Γ to increase the Lipschitz constant.

Setting $R = \text{diam}(C)$, if $b - a$ is small enough, we obtain

- $g \in \mathcal{M}$
- $d(f, g) \leq R\varepsilon$
- $B(g, \alpha R\varepsilon) \cap \mathcal{N}_{a,b}^p = \emptyset$.

Hence $\mathcal{N}_{a,b}^p$ is porous.
Fix $\alpha > 0$, $\varepsilon > 0$. Now set
\[g(x) = f(x + \sigma \phi_{\varepsilon}(e^*(x - x_0))(e - (x - x_0))). \]

where $\sigma \phi_{\varepsilon}(e^*(x - x_0))(e - (x - x_0))$ stretches along Γ to increase the Lipschitz constant.

Setting $R = \text{diam}(C)$, if $b - a$ is small enough, we obtain

- $g \in \mathcal{M}$
- $d(f, g) \leq R\varepsilon$
- $B(g, \alpha R\varepsilon) \cap \mathcal{N}_{a,b} = \emptyset$.

Hence $\mathcal{N}_{a,b}^p$ is porous.
Additionally to the condition that \(b - a \) has to be small enough, it has to be big enough so that we can cover the whole interval \((0, 1)\). Writing

\[
\mathcal{N} = \left(\bigcup_{k,p} \mathcal{N}^{p}_{a_k,p,b_k,p} \right) \cup \left(\bigcup_{k,p} \mathcal{N}^{p}_{a'_k,p,b'_k,p} \right) \cup \mathcal{N}_0.
\]

for suitable sequences \((a_k,p)_{k,p}\), \((b_k,p)_{k,p}\), \((a'_k,p)_{k,p}\) and \((b'_k,p)_{k,p}\) and

\[
\mathcal{N}_0 = \{ f \in \mathcal{M} : f|_\Gamma = \text{const.} \}
\]

finishes the proof.
Sketch of the proof, part III

Additionally to the condition that $b - a$ has to be small enough, it has to be big enough so that we can cover the whole interval $(0, 1)$. Writing

$$\mathcal{N} = \left(\bigcup_{k,p} \mathcal{N}^p_{a_k,p,b_k,p} \right) \cup \left(\bigcup_{k,p} \mathcal{N}^p_{a'_k,p,b'_k,p} \right) \cup \mathcal{N}_0,$$

for suitable sequences $(a_{k,p})_{k,p}$, $(b_{k,p})_{k,p}$, $(a'_{k,p})_{k,p}$ and $(b'_{k,p})_{k,p}$ and

$$\mathcal{N}_0 = \{ f \in \mathcal{M} : f|_{\Gamma} = \text{const.} \}$$

finishes the proof.
The case of separable Banach spaces

If X is a separable Banach space we get the following stronger result:

Theorem (B. and Dymond, 2015)

Let X be a separable Banach space. Then there exists a σ-porous set $\tilde{N} \subset M$ such that for every $f \in M \setminus \tilde{N}$, the set

$$R(f) = \{ x \in C : \text{Lip}(f, x) = 1 \}$$

is a residual subset of C.

Put differently, this Theorem says that outside of a negligible set, all mappings in the space M have the maximal possible Lipschitz constant 1 at typical points of their domain C.
The case of separable Banach spaces

If X is a separable Banach space we get the following stronger result:

Theorem (B. and Dymond, 2015)

Let X be a separable Banach space. Then there exists a σ-porous set $\tilde{N} \subset M$ such that for every $f \in M \setminus \tilde{N}$, the set

$$R(f) = \{ x \in C : \ Lip(f, x) = 1 \}$$

is a residual subset of C.

Put differently, this Theorem says that outside of a negligible set, all mappings in the space M have the maximal possible Lipschitz constant 1 at typical points of their domain C.
Denote by g_ε the function

$$g_\varepsilon: C \to C, x \mapsto f(x + \sigma \phi_\varepsilon(e^*(x - x_0))(e - (x - x_0))).$$

The curve

$$[0, \varepsilon_0) \to C(X; X), \varepsilon \mapsto g_\varepsilon$$

is Lipschitz.

Question

Can such a curve be chosen differentiable, to get information on the directions from which the midpoints g_ε are approaching f?
Denote by g_ε the function

$$g_\varepsilon: C \to C, x \mapsto f(x + \sigma \phi_\varepsilon(e^*(x - x_0))(e - (x - x_0))).$$

The curve

$$[0, \varepsilon_0) \to C(X; X), \varepsilon \mapsto g_\varepsilon$$

is Lipschitz.

Question

Can such a curve be chosen differentiable, to get information on the directions from which the midpoints g_ε are approaching f?
Outlook

Denote by g_ε the function

\[g_\varepsilon : C \to C, \ x \mapsto f(x + \sigma \phi_\varepsilon(e^*(x - x_0))(e - (x - x_0))). \]

The curve

\[[0, \varepsilon_0) \to C(X; X), \ \varepsilon \mapsto g_\varepsilon \]

is Lipschitz.

Question

Can such a curve be chosen differentiable, to get information on the directions from which the midpoints g_ε are approaching f?
References

F.S. De Blasi and J. Myjak.
Sur la porosité de l’ensemble des contractions sans point fixe.
C. R. Acad. Sci. Paris Sér. I Math., 308(2):51–54, 1989.

C. Bargetz and M. Dymond.
σ-Porosity of the set of strict contractions in a space of non-expansive mappings.
Preprint, 2015. http://arxiv.org/abs/1505.07656.