Modulation of DNA Polymerase Noncovalent Kinetic Transitions by Divalent Cations*

Received for publication, November 2, 2015, and in revised form, January 2, 2016 Published, JBC Papers in Press, January 21, 2016, DOI 10.1074/jbc.M115.701797

Joseph M. Dahl1, Kate R. Lieberman2, and Hongyun Wang3,3
From the Departments of 1Biomolecular Engineering and 2,5Applied Mathematics and Statistics, University of California, Santa Cruz, California 95064

Replicative DNA polymerases (DNAPs) require divalent metal cations for phosphodiester bond formation in the polymerase site and for hydrolytic editing in the exonuclease site. Me2+ ions are intimate architectural components of each active site, where they are coordinated by a conserved set of amino acids and functional groups of the reaction substrates. Therefore Me2+ ions can influence the noncovalent transitions that occur during each nucleotide addition cycle. Using a nanopore, transitions in individual Φ29 DNAP complexes are resolved with single-nucleotide spatial precision and sub-millisecond temporal resolution. We studied Mg2+ and Mn2+, which support catalysis, and Ca2+, which supports deoxyxynucleoside triphosphate (dNTP) binding but not catalysis. We examined their effects on translocation, dNTP binding, and primer strand transfer between the polymerase and exonuclease sites. All three metals cause a concentration-dependent shift in the translocation equilibrium, predominantly by decreasing the forward translocation rate. Me2+ also promotes an increase in the backward translocation rate that is dependent upon the primer terminal 3′-OH group. Me2+ modulates the translocation rates but not their response to force, suggesting that Me2+ does not affect the distance to the transition state of translocation. Absent Me2+, the primer strand transfer pathway between the polymerase and exonuclease sites displays additional kinetic states not observed at >1 mM Me2+. Complementary dNTP binding is affected by Me2+ identity, with Ca2+ affording the highest affinity, followed by Mn2+, and then Mg2+. Both Ca2+ and Mn2+ substantially decrease the dNTP dissociation rate relative to Mg2+, while Ca2+ also increases the dNTP association rate.

DNA polymerases (DNAPs)4 are responsible for accurate replication of DNA genomes. Replicative DNAPs achieve this by catalyzing template-directed polymerization of deoxyribonucleoside triphosphates (dNTPs) with extremely high fidelity (with error rates of ~10^-9 to ~10^-10) (1, 2). Phosphodiester bond formation, the chemical transformation during polymerization, is catalyzed in the polymerase active site, in the 5′ to 3′ direction. Many replicative DNAPs also catalyze a second nucleotidyl transfer reaction, the exonucleolytic cleavage of the primer strand in the 3′ to 5′ direction. This editing reaction allows for removal of incorrect nucleotides inserted during polymerization, contributing ~1–2 orders of magnitude to replication fidelity (1). Exonucleolytic editing occurs in a separate active site that is typically ~30–40 Å from the polymerase site (3–9), and it requires that ~3 base pairs of the nascent primer-template duplex be melted to allow the primer strand to be transferred from the polymerase site to the exonuclease site.

An essential role for two divalent metal cations (Me2+ ions) in the mechanism of numerous enzyme-catalyzed nucleotidyl transfer reactions has been characterized (10), in which one Me2+ ion (termed metal A) serves primarily to activate the nucleophile, whereas the other (termed metal B) mitigates the negative charge that builds in the transition state (10, 11). For replicative DNAPs, this two Me2+ ion mechanism applies to both phosphodiester bond formation in the polymerase site, and to hydrolysis of the primer terminal dNMP residue in the exonuclease site (12, 13). In accord with their roles in the chemical transformations, the Me2+ ions are intimate architectural components of each of the active sites. They are coordinated by a highly conserved set of acidic amino acid side chains in each site, as well as by specific functional groups of the reaction substrates. Therefore, in addition to their essential role in the chemical reactions, Me2+ ions may also influence the reversible noncovalent transitions that govern the fate of DNAP-DNA complexes after each covalent nucleotide addition. These transitions include (i) the primer strand transfer between the polymerase and exonuclease sites, (ii) the translocation fluctuations, in which the DNA substrate moves between the pretranslocation and post-translocation states in the DNAP polymerase site, a spatial displacement of the distance of a single nucleotide, and (iii) dNTP binding in the polymerase site. In contrast to the roles of the Me2+ ions in the chemical steps of dNTP polymerization and exonucleolysis, much less is known about the effects of Me2+ ions on these noncovalent transitions in DNAP complexes.

The conserved architecture of the DNAP domain that contains the polymerase active site resembles a partially closed hand, comprising palm, thumb, and fingers subdomains (3, 4, 9, 14, 15). The palm subdomain contains residues that participate in catalysis of phosphodiester bond formation, including the acidic residues involved in Me2+ coordination. The fingers subdomain contains residues essential for binding incoming nucleo-
Metal Modulation of DNA Polymerase Kinetic Transitions

A hypothesis for the structural basis of translocation in the B family of replicative DNAPs has been proposed (3). The B family includes pol ε and pol δ, the enzymes that catalyze leading and lagging strand genomic replication, respectively, in eukaryotes (18, 19). Core structure, catalytic mechanisms, and functional properties are highly conserved in this DNAP family (2, 3, 8, 9, 20, 21). Based upon the comparison of crystal structures of the DNAP from bacteriophage Φ29 in the fingers-open, post-translocation state DNAP-DNA binary complex or in the fingers-closed, post-translocation state DNAP-DNA ternary complex (3), it was proposed that the post-translocation state ternary complex can serve as a model for the structure of a fingers-closed, pre-translocation state complex. In this view, the nascent base pair between the templating base at 3′-OH primer terminus and DNA1-H_H bears a 2′-H, 3′-OH primer terminus and DNA1-H_H bears a 2′-H, 3′-H primer terminus.

When dNTP binds to the polymerase active site in the post-translocation state, elements of the fingers subdomain move relative to their position in complexes lacking dNTP, closing in toward the active site to achieve a tight steric fit for the nascent base pair. In the fingers-closed dNTP-bound complex, the 3′-OH group of the DNA primer strand and a non-bridging oxygen of the α phosphate are ligands for one of the Me2⁺ ions (metal A) and non-bridging oxygens of all three phosphate groups are ligands for the metal B ion (4, 15–17).

A hypothesis for the structural basis of translocation in the B family of replicative DNAPs has been proposed (3). The B family includes pol ε and pol δ, the enzymes that catalyze leading and lagging strand genomic replication, respectively, in eukaryotes (18, 19). Core structure, catalytic mechanisms, and functional properties are highly conserved in this DNAP family (2, 3, 8, 9, 20, 21). Based upon the comparison of crystal structures of the DNAP from bacteriophage Φ29 in the fingers-open, post-translocation state DNAP-DNA binary complex or in the fingers-closed, post-translocation state DNAP-DNA ternary complex (3), it was proposed that the post-translocation state ternary complex can serve as a model for the structure of a fingers-closed, pre-translocation state complex. In this view, the nascent base pair between the templating base at 3′-OH primer terminus and DNA1-H_H bears a 2′-H, 3′-OH primer terminus and DNA1-H_H bears a 2′-H, 3′-H primer terminus.

When dNTP binds to the polymerase active site in the post-translocation state, elements of the fingers subdomain move relative to their position in complexes lacking dNTP, closing in toward the active site to achieve a tight sterical fit for the nascent base pair. In the fingers-closed dNTP-bound complex, the 3′-OH group of the DNA primer strand and a non-bridging oxygen of the α phosphate are ligands for one of the Me2⁺ ions (metal A) and non-bridging oxygens of all three phosphate groups are ligands for the metal B ion (4, 15–17).

A hypothesis for the structural basis of translocation in the B family of replicative DNAPs has been proposed (3). The B family includes pol ε and pol δ, the enzymes that catalyze leading and lagging strand genomic replication, respectively, in eukaryotes (18, 19). Core structure, catalytic mechanisms, and functional properties are highly conserved in this DNAP family (2, 3, 8, 9, 20, 21). Based upon the comparison of crystal structures of the DNAP from bacteriophage Φ29 in the fingers-open, post-translocation state DNAP-DNA binary complex or in the fingers-closed, post-translocation state DNAP-DNA ternary complex (3), it was proposed that the post-translocation state ternary complex can serve as a model for the structure of a fingers-closed, pre-translocation state complex. In this view, the nascent base pair between the templating base at 3′-OH primer terminus and DNA1-H_H bears a 2′-H, 3′-OH primer terminus and DNA1-H_H bears a 2′-H, 3′-H primer terminus.

The binary complex in the fingers-open, post-translocation state indicates that the pre-translocation state in the fingers-open conformation is sterically precluded, and hence fingers opening was proposed to accompany the forward translocation (3). Little is known about whether Me2⁺ ions that interact with complexes in the polymerase active site in the pre-translocation or post-translocation states exert any influence on the translocation fluctuations. For the X-family mammalian repair DNAP, pol β, there is evidence that Me2⁺ can stabilize the pre-translocation state in DNAP-DNA binary complexes (22).

We have developed a single-molecule approach using a nanoscale pore (Fig. 1, A and B) that permits quantification of the rates of translocation fluctuations, rates of the primer strand transfer between the polymerase and exonuclease sites, and rates of dNTP binding in individual DNAP-DNA complexes (23–26). We used the B-family replicative Φ29 DNAP, which serves as an excellent model system for leading strand DNA synthesis catalyzed in more complex B family replisomes. It catalyzes highly processive DNA synthesis while remaining tightly associated with its DNA substrate and promoting downstream strand displacement during replication (3, 27–30), obviating the need for accessory proteins such as sliding clamps or helicases. Primer strand transfer between the Φ29 DNAP polymerase and exonuclease sites is an intramolecular process (31).

When a complex formed between Φ29 DNAP and a primer template DNA substrate (Fig. 1C) is captured atop an α-hemolysin nanopore in an applied electric field (Fig. 1, A and B), it...
Metal Modulation of DNA Polymerase Kinetic Transitions

FIGURE 2. Kinetic transitions resolved in individual Φ29 DNAP complexes captured atop a nanoscale pore. A, ionic current time- traces for complexes captured at 180 mV in the presence 10 mM Mg2+ . Complexes were formed between the D12A/D66A mutant of Φ29 DNAP and (i) DNA1-H_H; or (ii) and (iii) DNA1-H_OH. In (iii) 4 µM dGTP was present in the cis chamber. The two red dashed lines indicate the two amplitude levels between which the measured current fluctuates; at 180 mV, the upper amplitude is centered at —32 pA, and the lower amplitude is centered at —26 pA at 180 mV. B, four-state model for the reversible, noncovalent transitions that govern the fate of replicative DNAP complexes following each covalent nucleotide addition. The model shows the kinetic relationships among the steps of translocation, primer strand transfer between the polymerase and exonuclease active sites, and dNTP binding. Transfer of the primer strand from the polymerase to the exonuclease site precedes the forward translocation (26), and the forward translocation precedes dNTP binding; the translocation is rectified but not driven by dNTP binding, and dNTP has no influence on the rates across the translocation step (25). The kinetic model comprises six transition rates: the rates of translocation (r1, r2), the rates of primer strand transfer between the pre-translocation state polymerase site and the exonuclease site (r3, r4), and the rates of dNTP binding to post-translocation state complexes (kcat[dNTP] and koff). The mathematical framework based on the model allows these rates to be determined from experimental measurements (24–26). Each of the three unshaded ellipses corresponds to a state (pre-translocation state, post-translocation state, or dNTP-bound post-translocation state) in which the primer strand resides in the exonuclease site. Addition of dNTP complementary to the templating base at 24–26. We showed that the periods of rapid fluctuation are due to transitions between the pre-translocation and post-translocation states and that the pauses in the upper amplitude arise when the primer strand is transferred from the polymerase active site to the exonuclease site (26). Thus, the upper amplitude comprises the pre-translocation state in the polymerase site and the state in which the primer strand occupies the exonuclease site; the lower amplitude comprises the post-translocation state in the polymerase site (23–26).

When an individual DNAP-DNA complex is held atop the nanopore, the applied voltage exerts a force on the complex along the direction of the translocation. This applied force shifts the translocation equilibrium toward the upper amplitude, pre-translocation state (23, 24); it impedes the rate of the forward translocation and increases the rate of the reverse translocation (23, 24), but it does not affect the rates of dNTP binding (25) or the rates of primer strand transfer between the polymerase and exonuclease sites (26). Based on translocation fluctuations measured under varying opposing force loads and in the presence of varying nucleotide concentrations, we established the kinetic relationship of the translocation to the step of nucleotide binding and to the step of primer strand transfer between the polymerase and exonuclease sites (Fig. 2B). Specifically, we showed that the forward translocation precedes dNTP binding; the translocation fluctuation is rectified but not driven by dNTP binding, and dNTP has no influence on the rates of the translocation fluctuations (Fig. 2B) (25). Furthermore, we established that transfer of the primer strand from the polymerase to the exonuclease site occurs prior to the forward translocation fluctuation; the pre-translocation state is therefore the branch point between the DNA synthesis and editing pathways (Fig. 2B) (26). We developed mathematical methods to determine the forward (r1) and reverse (r2) rates of translocation fluctuations, the forward (r3) and reverse (r4) rates of primer strand transfer between the polymerase and exonuclease sites, and the rates of dNTP or rNTP association (kcat) and dissociation (koff) in individual DNAP complexes (Fig. 2B) (24–26, 32).

In prior studies (23, 24, 26, 32, 33), we applied these capabilities to examine the kinetic mechanisms by which mutations of highly conserved DNAP residues, alterations in DNA substrate
sequence or structure, or alterations in nucleotide substrate structure exert their influence on DNAP function. The majority of these studies were conducted using complexes captured in the presence of a high concentration of Mg\(^{2+}\) (10 mM). In the current study, we have examined the effects of Me\(^{2+}\), Mn\(^{2+}\), and Ca\(^{2+}\) on the translocation fluctuations, on primer strand transfer between the polymerase and exonuclease sites, and on dNTP binding, in individual Φ29 DNAP-DNA complexes. Mg\(^{2+}\) and Mn\(^{2+}\) are metals that support catalysis in both the polymerase and exonuclease active sites, whereas Ca\(^{2+}\) supports nucleotide binding but not catalysis in either the polymerase or the exonuclease active sites (34).

Experimental Procedures

DNA and Enzymes—DNA substrates were synthesized at Stanford Protein and Nucleic Acid Facility and purified by denaturing PAGE. DNA hairpins were annealed by heating at 90 °C for 4 min followed by snap cooling in ice water. Wild type Φ29 DNAP was obtained from Enzymatics (Beverly, MA). The D12A/D66A mutant was obtained from XPol Biotech (Madrid, Spain).

Nanopore Methods—Nanopore experiments were conducted as described (23, 25, 35–38). A single α-hemolysin nanopore is inserted in a ~25-μm diameter lipid bilayer that separates two chambers (cis and trans) containing buffer solution (10 mM K-Hepes, pH 8.0, 0.3 mM KCl, and 1 mM DTT). DNA and Φ29 DNAP were added to the cis chamber to final concentrations of 1 and 0.75 μM, respectively. MgCl\(_2\), CaCl\(_2\), MnCl\(_2\), or EDTA were added to the cis well as indicated in the text and figure legends. Ionic current was measured with an integrating patch clamp amplifier (Axopatch 200B, Molecular Devices) in voltage clamp mode. Data were sampled using an analog-to-digital converter (Digidata 1440A, Molecular Devices) at 100 kHz in whole cell configuration and filtered at 5 kHz using a low pass Bessel filter.

Detection of the Translocation in Captured DNAP-DNA Complexes—The displacement of the DNA relative to the enzyme that occurs during translocation is detected with single nucleotide spatial precision and sub-millisecond temporal resolution by the use of a reporter group in the template strand of the DNA substrate, and has been described in detail (23–26, 32, 33, 35, 39). Briefly, the reporter comprises five consecutive abasic (1’-2’-H) residues (shown as red Xs in the sequence in Fig. 1C and as solid red circles in the schematic in Fig. 1B). When the reporter resides within the pore lumen, the abasic residues allow more ions to flow through the channel than a strand composed of normal DNA residues alone. The extent to which the abasic reporter augments the amplitude of captured complexes depends upon its position relative to the limiting aperture of the nanopore lumen. Thus, displacement of the abasic reporter group in the nanopore lumen is manifested as a change in measured ionic current (23, 35).

Analysis of Ionic Current Time Traces—The extraction of the dwell time samples of the upper and lower amplitudes from recorded time traces of ionic current, and the calculation of kinetic transition rates, has been described in detail (26, 32).

Estimating Free [dNTP] in Bulk Phase—Due to the high affinity of Φ29 DNAP-DNA complexes for dNTP in Mn\(^{2+}\) and Ca\(^{2+}\), it was necessary to measure complementary dNTP binding by adding very low concentrations of dGTP to the bulk phase in the cis well (Fig. 10). In bulk phase, dGTP may bind onto complexes to form ternary complexes. As a result, not all added dGTP molecules are free in bulk. When the added dGTP concentration is lower than the enzyme concentration, the concentration of free dGTP in bulk may be significantly different from that of added dGTP. Therefore, we need to calculate the free dGTP concentration.

Let $p = \text{probability of lower amplitude (post-translocation state, with or without dNTP bound)}$; [$dGTP]_0 = \text{concentration of added dGTP in bulk}$; [DNAP-DNA]_0 = \text{concentration of added enzyme-DNA complexes in bulk}; [$dGTP]_P = \text{concentration of free dGTP in bulk}$; $K_d^{(bulk)} = \text{apparent binding affinity of dGTP onto enzyme-DNA complexes in bulk}$; and $K_d = \text{binding affinity of dGTP onto an enzyme-DNA complex that is captured atop the pore and is in the post-translocation configuration}$. Note that $K_d^{(bulk)}$ may differ from K_d because in bulk, not all enzyme molecules are necessarily at the primer-template junction, and for complexes with enzyme at the primer-template junction, not all of them are in the post-translocation state (the state competent to bind dNTP) at all times. So, in our model, we allow $K_d^{(bulk)}$ to be different from K_d.

In experiments, [DNAP-DNA]_0 is fixed at 0.75 μM and [$dGTP]_0 is a control variable. As a function of [$dGTP]_0 and $K_d^{(bulk)}$, the concentration of free dGTP in bulk has the following expression.

$$
[dGTP]_P = ([dGTP]_0 - [DNAP-DNA]_0 - K_d^{(bulk)})
$$

(Eq. 1)

Previously (23) we established that the normalized $p/(1 - p)$ is related to the free dGTP concentration by Equation 2.

$$
\text{Normalized } \frac{p}{1 - p} = 1 + \frac{[dGTP]_P}{K_d}
$$

(Eq. 2)

It follows that $\log(\text{normalized } p/(1 - p) - 1)$ is a linear function of $\log([dGTP]_P)$ with slope 1.

$$
\log \left(\text{normalized } \frac{p}{1 - p} - 1 \right) = \log([dGTP]_P) + \log(K_d) - \log(K_d^{(bulk)})
$$

(Eq. 3)

In dGTP titration experiments, values of normalized $p/(1 - p)$ are observed for a sequence of [$dGTP]_0$ values. For a given value of $K_d^{(bulk)}$, a sequence of [$dGTP]_P$ values are calculated from the [$dGTP]_0$ values. Data points of Equation 4 are fitted to a straight line with slope 1. The deviation of data points from the fitting line is used to measure how well data
points follow a straight line with slope 1. The value of $K_d^{(\text{bulk})}$ is determined by minimizing this deviation.

Once the value of $K_d^{(\text{bulk})}$ is calculated, we calculate the free dGTP concentration $[\text{dGTP}]_{\text{free}}$ corresponding to each added dGTP concentration $[\text{dGTP}]_0$.

Results

When Φ29 DNAP complexes are captured atop the nanopore in the absence of added Me$^{2+}$, the measured ionic current fluctuates between the two amplitudes that are characteristic of the fluctuations across the translocation step observed in the presence of Me$^{2+}$ (26). Neither the forward nor reverse translocation displacement requires Me$^{2+}$. However, in the absence of Me$^{2+}$, the probability of occupancy of the lower amplitude, post-translocation state (p) is higher than when complexes are captured in the presence of Me$^{2+}$ (Fig. 3). Addition of Me$^{2+}$ to the bulk phase elicits a decrease in p for complexes formed with both DNA1-H_OH, which bears a natural 2'-H, 3'-OH primer terminus, or DNA1-H_H, which bears a 2'-H, 3'-H primer terminus (Fig. 1C). This is illustrated in amplitude histograms for complexes formed between the D12A/D66A mutant of Φ29 DNAP and DNA1-H_OH (Fig. 3A) or DNA1-H_H (Fig. 3B),

![Amplitude histograms for complexes formed between the D12A/D66A mutant of Φ29 DNAP and DNA1-H_OH or DNA1-H_H, captured in the presence of (i) 0 Me$^{2+}$, (ii) 6 mM Mg$^{2+}$, (iii) 6 mM Ca$^{2+}$, or (iv) 6 mM Mn$^{2+}$.](image-url)
Metal Modulation of DNA Polymerase Kinetic Transitions

MARCH 18, 2016 • VOLUME 291 • NUMBER 12

ASBMB

JOURNAL OF BIOLOGICAL CHEMISTRY 6461

FIGURE 4. Concentration-dependent effects of Me2⁺ on the probability of the post-translocation state. A, concentration-dependent effects on p of Mg²⁺ (blue symbols), Ca²⁺ (red symbols), or Mn²⁺ (yellow symbols) for complexes formed between DNA1-H_OH and the wild type enzyme (circles) or the D12A/D66A enzyme (sideways triangles). B, concentration-dependent effects on p of Mg²⁺ (blue symbols), Ca²⁺ (red symbols), or Mn²⁺ (yellow symbols) for complexes formed between DNA1-H_H and the wild type enzyme (squares) or the D12A/D66A enzyme (triangles). For each plotted data point, dwell time samples at each experimental condition are extracted from 10 to 20 time traces of captured complexes. Each typical time trace comprises a segment of $\sim 10^5$ s, recorded at 100 kHz, and thus consisting of 1 million data points. Because there is no 0 value on the log scale horizontal axis of the plots in A and B, values for p determined in the absence of added Me²⁺ (from each individual titration experiment) are placed on the plots at the position for 0.04 µM Me²⁺, and are indicated by an arrow and label (0 Me²⁺).

The D12A/D66A mutant lacks two of the ligands for the catalytic Me²⁺ ions in the exonuclease active site and thus has negligible exonucleolytic activity (40, 41). This permits experiments to be conducted with DNA1-H_OH in the absence of Mg²⁺ or Mn²⁺, conditions under which the 2'-H, 3'-OH terminated primer strand would be degraded in the bulk phase by the wild type enzyme (26, 35). The extent to which p was decreased for the D12A/D66A complexes varied with the identity of the metal species; for both DNA1-H_OH and DNA1-H_H, Mn²⁺ caused the largest decrease in p, followed by Ca²⁺ and then Mg²⁺ (Fig. 3).

We examined the effects of Me²⁺ concentration on the probability of the post-translocation state in Φ29 DNAP complexes by performing titration experiments spanning five orders of magnitude, from 0.2 to 10,000 µM Me²⁺. For DNA1-H_OH, we used the wild type enzyme in Ca²⁺ or Mn²⁺ titration experiments, and the D12A/D66A enzyme in titration experiments with Mg²⁺, Ca²⁺, and Mn²⁺ (Fig. 4A). Because the 2'-H, 3'-H primer terminus of DNA1-H_OH inhibits the onset of Φ29 DNAP-catalyzed exonucleolytic digestion of the primer strand relative to substrates bearing 2'-H, 3'-OH termini (35), it affords protection for DNA in experiments conducted with the wild type enzyme in the presence of Mg²⁺ or Mn²⁺. This protection permitted us to examine the effects of all three metals (Mg²⁺, Ca²⁺, and Mn²⁺) on complexes formed between DNA1-H_H and the wild type enzyme and those with D12A/D66A enzyme in the titration experiments (Fig. 4B).

For complexes formed with DNA1-H_OH in the absence of Me²⁺, but not those formed with DNA1-H_H in the absence of Me²⁺, the identity of the enzyme causes a difference in p; for wt Φ29 DNAP at 0 Me²⁺, $p \approx 45\%$ (Fig. 4A), whereas for the D12A/D66A mutant at 0 Me²⁺ $p \approx 30\%$ (Figs. 3A, i, and 4B).

For all complexes examined, formed with either the wild type or D12A/D66A enzyme, and either the DNA1-H_OH or DNA1-H_H substrate, Me²⁺ causes a concentration-dependent decrease in p. For most of the complexes, the decrease in p occurs primarily within the concentration range of ~ 10 to 1000 µM Me²⁺ (Fig. 4); the exception is the response of p to Ca²⁺ for the complexes of the wild type enzyme with DNA1-H_OH (Fig. 4A). For this complex, the decrease in p begins at a lower concentration (between 6 and 8 µM) than it does for D12A/D66A complexes formed with DNA1-H_OH (10-100 µM). Furthermore, for the wild type complexes formed with DNA1-H_OH, p drops precipitously in response to Ca²⁺, reaching a lower level than for the D12A/D66A enzyme at concentrations above 60-80 µM. At [Ca²⁺] ≥ 1000 µM, p for the wild type enzyme resolves to $\sim 1 - 2$ and $\sim 5 - 5.5$% for the D12A/D66A enzyme.

Me²⁺ Concentration-dependent Resolution of Kinetic Complexity in the Primer Strand Transfer Pathway—We sought to determine the kinetic mechanisms that contribute to the Me²⁺-dependent decrease in probability of post-translocation state occupancy. Although the net effect of Me²⁺ for each DNAP-DNA complex is a decrease in p, relative to the same complex in the absence of Me²⁺, any subset of the noncovalent transitions that govern the probability of the post-translocation state could be affected by Me²⁺ (Fig. 2B), and the magnitude and Me²⁺-concentration dependence of effects on each transition could vary depending upon the identity of the partners in the DNAP-DNA complex and upon the identity of the metal. We first examined the survival probability versus dwell time of upper amplitude dwell time samples and that of lower amplitude dwell time samples, extracted from ionic current traces for complexes captured in the Me²⁺ titration experiments (Figs. 5 and 6). The survival probability as a function of time is defined as the probability that the dwell time is larger than t. The observed survival probability is calculated as the fraction of dwell time samples larger than t.
FIGURE 5. Survival probability of the upper amplitude at 10,000 μM Me2⁺.
Survival probability versus dwell time plots for dwell time samples extracted
from the upper amplitude of ionic current traces, for complexes formed
between DNA1-H₂OH and (A and C-D) the D12A/D66A enzyme or (B) the wild
type enzyme. Complexes were captured in the presence of 10,000 μM Mg²⁺
(A), 10,000 μM Ca²⁺ (B and C), or 10,000 μM Mn²⁺ (D). Blue circles represent
the data points, and the dashed black line represents maximum likelihood
estimation fitting to a model of two exponential modes.

FIGURE 6. Effects of Me2⁺ on the survival probability of each of the two
amplitude levels. Survival probability versus dwell time plots based on dwell
time samples extracted from (A) the upper amplitude, or (B) the lower amplitude of
ionic current traces, for complexes formed between D12A/D66A αβ29 DNAP and
DNA1-H₂OH. Complexes were captured in the presence of (i) 0 Me²⁺, (ii) 1 μM
Mg²⁺, (iii) 10 μM Mg²⁺, (iv) 100 μM Mg²⁺, (v) 1000 μM Mg²⁺, (vi) 2000 μM Mg²⁺. In
A and B, blue circles represent the data points; the dashed black line represents
MLE (maximum likelihood estimate) fitting to a model of two exponential modes;
in B, the solid red line represents maximum likelihood estimation fitting to a single
exponential.
Metal Modulation of DNA Polymerase Kinetic Transitions

In the presence of 10 mM Mg\(^{2+}\), the upper amplitude survival probability for binary complexes formed between the D12A/D66A enzyme with DNA1-H_OH is well fit by a model of two exponential modes (26) (Fig. 5A). We have shown that these two kinetic states in the upper amplitude correspond to (i) stays of the complex in the pre-translocation state in the polymerase site, and (ii) stays of the complex in the state in which the primer strand occupies the exonuclease site (26). Upper amplitude survival probability for complexes captured in 10 mM Ca\(^{2+}\), formed between DNA1-H_OH and either the wild type enzyme (Fig. 5B) or the D12A/D66A enzyme (Fig. 5C), are also well fit by a model of two exponential modes, as are complexes of the D12A/D66A enzyme with DNA1-H_OH captured in 10 mM Mn\(^{2+}\) (Fig. 5D).

However, in the absence of Me\(^{2+}\) (Fig. 6A, i), and across a wide range of [Me\(^{2+}\)] up to almost 1000 \(\mu\text{M}\) the distribution of upper amplitude dwell time for complexes formed with the DNA1-H_OH substrate deviates from a distribution of two exponential modes. This is illustrated in Fig. 6A, i–iv, for complexes captured in 0, 1, 10, and 100 \(\mu\text{M}\) Mg\(^{2+}\). The upper amplitude survival probability contains more than two exponential modes, suggesting the possibility that at low [Me\(^{2+}\)], residence in the exonuclease site may be described by multiple kinetic states, rather than a single kinetic state. As [Me\(^{2+}\)] is increased into the millimolar range (Figs. 5A and 6A, v and vi), survival probability of the upper amplitude converges to a model of two exponential modes.

Qualitatively similar kinetic complexity (deviation from two exponential modes) at Me\(^{2+}\) concentrations below \(~1000 \mu\text{M}\) was observed for the upper amplitude for all of the complexes examined in the Mg\(^{2+}\), Ca\(^{2+}\), or Mn\(^{2+}\) titration experiments. In addition, as we have previously reported, when complexes formed between either the wild type or D12A/D66A enzyme and the DNA1-H_H substrate are captured in the presence of high [Me\(^{2+}\)], plots of survival probability versus dwell time of the upper amplitude are fit by a single exponential decay function. This decay rate corresponds to the inverse of the forward translocation rate (24, 26). Thus, for the DNA1-H_H complexes at high [Me\(^{2+}\)], a population of dwell time samples that corresponds to stays of the primer strand in the exonuclease site cannot be resolved. This, combined with the kinetic complexity in the upper amplitude observed in the presence of 0 or submillimolar Me\(^{2+}\) for complexes formed with either DNA1-H_OH or DNA1-H_H, precludes our ability to reliably quantify the effects of Me\(^{2+}\) on the rates of primer strand transfer between the polymerase and exonuclease site (Fig. 2B, \(r_3\) and \(r_4\)).

Despite the kinetic complexity in the upper amplitude, the effects of Me\(^{2+}\) ions on the forward and reverse rates of translocation can be reliably determined. First, for each of the complexes examined, in the absence of Me\(^{2+}\), and across the entire range of [Me\(^{2+}\)], survival probability of the lower amplitude is well fit by a single exponential decay function (Fig. 6B) (24, 26); thus the reverse translocation rate (\(r_2\)) can be calculated from the data. Second, despite the complexity of the upper amplitude dwell time distribution observed at 0 Me\(^{2+}\) and at Me\(^{2+}\) concentrations below \(~1000 \mu\text{M}\) (Fig. 6A, i–iv), \(r_1\) can also be determined across the [Me\(^{2+}\)] titration series. This is illustrated using a hypothetical example for the kinetic complexity of the upper amplitude dwell time cluster (Fig. 7), in which the upper amplitude comprises four kinetic states: A, B, C, and D, where state A is the pre-translocation state. The forward translocation rate (\(r_1\)) is the rate of escaping from state A to the lower amplitude, and can be accurately determined from the measured survival probability. Let \(S(t)\) be the upper amplitude survival probability as a function of dwell time \(t\). Mathematically, no matter how kinetically complex the upper amplitude is, it holds for Equation 5.

\[
\frac{dS(t)}{dt} \bigg|_{t=0} = \frac{dS(t)}{dt} \bigg|_{t=0} = r_1
\]

That is, the forward translocation rate \(r_1\) is the initial decay rate of the survival probability.

The Influence of Me\(^{2+}\) on Φ29 DNAP Translocation Rates—

Me\(^{2+}\) ions have notable effects on both forward rate (\(r_1\)) and reverse rate (\(r_2\)) of the translocation fluctuations (Fig. 8). For all complexes examined, formed between either the wild type or D12A/D66A enzymes, with either the DNA1-H_OH or DNA1-H_H substrates, Me\(^{2+}\) causes a concentration-dependent decrease in \(r_1\). The [Me\(^{2+}\)]-dependent decreases in \(r_1\) (Fig. 8, A and C) largely mirror the [Me\(^{2+}\)]-dependent decreases in \(p\) (Fig. 4, A and B); the decrease in the forward translocation rate (\(r_1\)) makes the dominant contribution to the decrease in the probability of the post-translocation state (\(p\)). As with the decrease in \(p\), the effects of Me\(^{2+}\) on \(r_1\) occur primarily within the concentration regime of \(~10\) to \(~1000 \mu\text{M}\) Me\(^{2+}\) (Fig. 8, A and C). Also in accord with the decrease in \(p\), the extent to which \(r_1\) was decreased for the D12A/D66A complexes varied with the identity of the metal species; for both DNA1-H_OH and DNA1-H_H, Mn\(^{2+}\) elicited the greatest decrease in \(r_1\), followed by Ca\(^{2+}\) and then Mg\(^{2+}\) (Fig. 8, A and C). In complexes formed with DNA1-H_OH, the higher value of \(p\) observed in the absence of Me\(^{2+}\) for the wild type enzyme relative to the D12A/D66A enzyme with DNA1-H_OH captured in 10 mM Ca\(^{2+}\) by a model of two exponential modes, as are complexes of the wide range of [Me\(^{2+}\)] states, rather than a single kinetic state. As [Mg\(^{2+}\) in the exonuclease site may be described by multiple kinetic modes, suggesting the possibility that at low [Me\(^{2+}\)], residence in the exonuclease site is increased (Fig. 2A, C, and D), survival probability of the pre-translocation state (\(p\)) decreases in \(r_1\).
Metal Modulation of DNA Polymerase Kinetic Transitions

D66A enzyme (Fig. 4) is also accounted for, at least in part, by a difference in r_1 for the two enzymes in the absence of Me$_2^{+}$ (Fig. 8A). For wild type complexes formed with DNA1-H-OH at 0 Me$_2^{+}$, $r_1 \approx 3400$ /s, whereas for D12A/D66A complexes formed with DNA1-H-OH at 0 Me$_2^{+}$, $r_1 \approx 2700$ /s. With DNA1-H-OH, the effects of Me$_2^{+}$ on complexes formed with both enzymes can only be compared for Ca$_2^{+}$; we note that the Ca$_2^{+}$ concentration at which r_1 begins to decrease differs for the two enzymes, with the decrease in r_1 beginning at ~0.2 mM Ca$_2^{+}$ for the wild type enzyme and at ~1 mM for the D12A/D66A enzyme. At Ca$_2^{+}$ concentrations above ~1 mM, the values of r_1 for the two enzymes converge (Fig. 8A).

For complexes formed with either the wild type or D12A/D66A enzymes, Me$_2^{+}$ causes a concentration-dependent increase in r_2, that is dependent upon the presence of the primer terminal 3’-OH group: the increase is observed for complexes formed with DNA1-H-OH (Fig. 8B) but not for complexes formed with DNA1-H-H (Fig. 8D). The increase in r_2 is much more modest than the decrease in r_1. The Me$_2^{+}$-dependent increase in r_2 becomes detectable at ~100 mM Me$_2^{+}$, an order of magnitude higher than the concentration required to observe the decrease in r_1. In complexes formed with the D12A/D66A enzyme, r_2 continues to increase as a function of either Mg$_2^{+}$ or Mn$_2^{+}$ up to at least 10,000 mM, the highest concentration tested. In contrast, the ability of Ca$_2^{+}$ to cause an increase in r_2, in complexes formed with either the wild type or D12A/D66A enzymes, appeared to saturate above ~2000 mM (Fig. 8B). Like the decrease in r_1, the extent to which r_2 was increased for the D12A/D66A complexes varied with the identity of the metal species, but the rank order of effectiveness among the three metal ions at eliciting the increase in r_2 differs from the effect on r_1; Ca$_2^{+}$ elicited the greatest increase in r_2, followed by Mn$_2^{+}$, and then by Mg$_2^{+}$, which had modest effects (Fig. 8B).

The Relationship Among the Effects of Me$_2^{+}$, the Identity of the Primer Terminus, and the Translocation Energy Landscape—The influence of Me$_2^{+}$ ions on the magnitude of both r_1 and r_2 uncovered in the Me$_2^{+}$ titration experiments (Fig. 8) prompted us to examine the effect of Me$_2^{+}$ ions on the energy landscape across the translocation step (Fig. 9). The Me$_2^{+}$ titration experiments were conducted by capturing pf-29 DNAP complexes at a single applied voltage (180 mV). When complexes are held atop the nanopore, the force applied by the voltage impedes the rate of the forward translocation (r_1) and increases the rate of the reverse translocation (r_2). Plots of log(r_1) versus voltage and log(r_2) versus voltage both fit to straight lines, indicating that the force is applied along the direction of the translocation (24). The Me$_2^{+}$ ions could influence both the rate at a given voltage and the dependence of the rates on voltage. The slope of log(r_1) versus voltage is negative and proportional to the distance between the pre-translocation state and the transition state for the translocation step; the slope of log(r_2) versus voltage is positive and proportional to the distance between the transition state and the post-translocation state (24).

We showed previously that the primer terminal 3’-OH group is a determinant in the energy landscape of the translocation (26). When complexes are captured at 180 mV in the presence of 10 mM Mg$_2^{+}$, r_1 is ~3.8-fold faster in complexes with DNA1-
Metal Modulation of DNA Polymerase Kinetic Transitions

FIGURE 9. Effects of Me\(^{2+}\) on the response of the translocation rates to applied force. Plots of \(\log(r_1)\) (A) versus voltage and \(\log(r_2)\) (B) versus voltage for complexes formed between DNA1-H-OH (filled symbols) or DNA1-H-H (unfilled symbols) and either wild type φ29 DNAP or D12A/D66A φ29 DNAP. Complexes were captured in the presence of either 0 Me\(^{2+}\), 1 mM EDTA (red symbols) or 11 mM Mg\(^{2+}\), 1 mM EDTA (blue symbols). Rates were determined from dwell time samples extracted from ionic current traces and a three-state kinetic model (26) consisting of transitions \(r_1, r_{f1}, r_{f2}\), and \(r_2\) in the model diagram in Fig. 2B. Errors bars indicate the standard error. The fitting lines in A and B were generated by linear least squares fitting. The absolute values of the slopes of the fitting lines for each of the complexes are plotted in C for \(\log(r_1)\) and in D for \(\log(r_2)\).

H-OH than it is in complexes of DNA1-H-H. The 3’-OH group causes a decrease in the slope of \(\log(r_1)\) versus voltage and an increase in the slope of \(\log(r_2)\) versus voltage, indicating that in 10 mM Mg\(^{2+}\), along the coordinate of the translocation displacement, the transition state is closer to the pre-translocation state for complexes formed with DNA1-H-OH than it is for complexes formed with DNA1-H-H (26). Because the increase in \(r_2\) observed at high [Me\(^{2+}\)] in the Me\(^{2+}\) titration experiments is dependent upon the presence of the primer terminal 3’-OH group (Fig. 8, B and D), it was of particular interest to compare the effects of Me\(^{2+}\) ions on the energy landscape between complexes formed with DNA1-H-OH and complexes formed with DNA1-H-H. Is the influence of the 3’-OH group on the energy landscape of the translocation affected by the presence of Me\(^{2+}\)? Does the influence of the 3’-OH group in the translocation depend upon an interaction between the primer terminus and a Me\(^{2+}\) ion (or ions), or is it an inherent property of the interaction of the DNA substrate with the enzyme?

We examined the influence of Me\(^{2+}\) on the response of the translocation rates to applied force by comparing complexes captured at 0 Me\(^{2+}\) to those captured at 10 mM Mg\(^{2+}\), across the range of voltages from 140 to 220 mV (Fig. 9). Experiments were conducted in the absence of Me\(^{2+}\) with both the wild type and the D12A/D66A enzymes, for complexes formed with both DNA1-H-OH and DNA1-H-H in 10 mM Mg\(^{2+}\), with both enzymes for complexes formed with DNA1-H-H in 10 mM Mg\(^{2+}\), with the D12A/D66A enzyme for complexes formed with DNA1-H-OH. The higher values for \(r_1\) in the absence of Me\(^{2+}\) relative to values for \(r_1\) in 10 mM Me\(^{2+}\) that were observed in the Me\(^{2+}\) titration experiments conducted at 180 mV (Fig. 8, A and C) hold across the voltage range examined, for complexes formed with either DNA-H-OH or DNA1-H-H (Fig. 9A). In addition, as previously observed for complexes captured in the presence of 10 mM Mg\(^{2+}\), in the absence of Me\(^{2+}\), \(r_1\) is faster in complexes formed with DNA1-H-OH than it is for complexes formed with DNA1-H-H. For complexes formed with DNA1-H-OH, there is a modest decrease in the slope of \(\log(r_1)\) versus voltage relative to that for complexes formed with DNA1-H-H, in the absence of Me\(^{2+}\), \(r_1\) is faster in complexes formed with DNA1-H-OH than it is for complexes formed with DNA1-H-H, in the absence of Me\(^{2+}\), or in the presence of 10 mM Mg\(^{2+}\) (Fig. 9A). The 3’-OH group exerts an effect on the slope of \(\log(r_2)\) versus voltage that is more substantial in relative magnitude to its effect on the slope of \(\log(r_1)\) versus voltage. In complexes with DNA1-H-OH, the slope of \(\log(r_2)\) versus voltage is increased relative to that for complexes formed with DNA1-H-H, in the presence of 10 mM Mg\(^{2+}\) or the absence of Me\(^{2+}\) (Fig. 9B).

We compared the absolute values of the slopes of the fitting lines in the log(rate) versus voltage plots (Fig. 9, C and D). The slope values for \(\log(r_1)\) versus voltage as well as those for \(\log(r_2)\) versus voltage show two discrete clusters. For \(r_1\), a cluster for complexes formed with DNA1-H-OH is centered at \(\sim 0.019\), and a cluster for complexes formed with DNA1-H-H is centered at \(\sim 0.028\) (Fig. 9C). In the case of \(r_2\), a cluster for complexes formed with DNA1-H-OH is centered at \(\sim 0.02\), and a cluster for complexes formed with DNA1-H-H is centered at \(\sim 0.008\) (Fig. 9D). For both \(\log(r_1)\) versus voltage and \(\log(r_2)\) versus voltage, the dependence of slope on force is a function of...
the primer terminus identity, regardless of the presence or absence of Me\(^{2+}\).

The Influence of Me\(^{2+}\) on Complementary dNTP Binding—
Me\(^{2+}\) ions are essential for both dNTP binding and catalysis in the polymerase active site. The identity of the Me\(^{2+}\) ions bound in the polymerase active site can strongly influence dNTP binding affinity and binding rates (33), as well as the fidelity of dNTP selection and the ability to catalyze phosphodiester bond formation (see Refs. 10, 42, and 43 and references therein). Because the forward translocation fluctuation precedes dNTP binding, dNTP binds to complexes only when they are in the post-translocation state (Fig. 2B) (25). In the nanopore assay the two translocation states are fully resolved and the effects of dNTP on the equilibrium between the two translocation states can be quantified. Furthermore, because dNTP stabilizes the lower amplitude, post-translocation state (Fig. 2A, ii) by extracting and analyzing dwell time samples in a stochastic model, the rates of dNTP binding to and dissociating from the post-translocation state can be quantified (25).

We compared the binding affinity for dGTP (complementary to dCMP at \(n = 0\) of DNA1 in Fig. 1C) and dGTP binding rates, in complexes formed with D12A/D66A enzyme, captured in the presence of 10 mM Mg\(^{2+}\), Mn\(^{2+}\), or Ca\(^{2+}\) (Fig. 10; Table 1).

![Graph](image)

FIGURE 10. Complementary dNTP binding affinity compared as a function of Me\(^{2+}\) species and primer terminus identity. Complexes were formed between the D12A/D66A mutant of \(\Phi 29\) DNAP and DNA1-H-OH in 10 mM Ca\(^{2+}\) (black unfilled sideways triangles), or with DNA1-H in 10 mM Ca\(^{2+}\) (red filled triangles), 10 mM Mg\(^{2+}\) (blue filled triangles), or 10 mM Mn\(^{2+}\) (yellow filled triangles). The binding affinity is examined using the log-log plot of (normalized \(p/(1 - p)\)) versus dGTP concentration. We have shown that the vertical intercept of the log-log plot at \([\text{dGTP}] = 1 \mu M\) is given by \(-\log(K_d)\) (23). The higher the log-log plot is vertically, the smaller the value of \(K_d\) and the stronger the binding affinity. Error bars show the standard errors.

TABLE 1

Complementary dNTP binding rates in complexes with the D12A/D66A mutant of \(\Phi 29\) DNAP
Rates were determined using dwell time samples extracted from ionic current traces (see “Experimental Procedures”) and a three-state kinetic model (consisting of transitions \(r_1, r_2, k_{on}\), and \(k_{off}\) in the model diagram in Fig. 1A). Complexes were captured at 180 mV in the presence of 1 mM EDTA, with 11 mM MgCl\(_2\), or 11 mM CaCl\(_2\), or 11 mM MnCl\(_2\), as indicated; \(K_d, k_{on}, k_{off}\) are independent of the applied voltage (23, 25). All values are reported with the standard error.
DNA

DNA1-H-OH
DNA1-H-H
DNA1-H-H
DNA1-H-H

\(a\) The dNTP association rate constant.

\(b\) The dNTP dissociation rate.

\(K_d\) values for the binding of dGTP to the post-translocation state are determined from the vertical intercepts of the fitting lines to the log-log plot of (normalized \(p/(1 - p)\) — 1) versus [dGTP], where \(p\) is equilibrium probability of the lower amplitude level (see the model diagram in Fig. 28). The plot of (normalized \(p/(1 - p)\) — 1) versus [dGTP] is shown in Fig. 10.

For Ca\(^{2+}\), we conducted dGTP titration experiments with both DNA1-H-OH and DNA1-H-H; for Mg\(^{2+}\) and Mn\(^{2+}\), we used DNA1-H-H in dGTP titration experiments. The affinity for dNTP among different DNAP-DNA complexes can be directly compared by plotting the normalized \(p/(1 - p)\), where \(p\) is the probability of post-translocation state occupancy. The normalized \(p/(1 - p)\) is defined as the value of \(p/(1 - p)\) in the presence of a given concentration of dNTP, divided by the value of \(p/(1 - p)\) for the same complex captured in the absence of dNTP (in the presence of Me\(^{2+}\) of the same identity and concentration). The normalized \(p/(1 - p)\) is independent of the transitions between the two translocation states in the absence of dNTP (23, 32), which vary among the complexes and conditions compared. In addition, we have shown that (normalized \(p/(1 - p)\) — 1) = \([\text{dNTP}] / K_d\), where \([\text{dNTP}]\) is the concentration of dNTP (23). This theoretical expression predicts that the log-log plot of (normalized \(p/(1 - p)\) — 1) versus [dNTP] is a straight line with slope \(= 1\) and vertical intercept \(= -\log(K_d)\) at \([\text{dNTP}] = 1 \mu M\). Thus \(K_d\) is determined from the vertical intercept at [dNTP] = 1 \mu M, obtained in fitting observed data points to the theoretical expression. A higher vertical position in the log-log plot of (normalized \(p/(1 - p)\) — 1) versus [dNTP] corresponds to a smaller value for \(K_d\) and a stronger binding affinity (Fig. 10; Table 1).

For D12A/D66A complexes formed with DNA1-H-H in Mg\(^{2+}\), the dNTP binding affinity is \(K_d \approx 1 \mu M\) (in Mg\(^{2+}\)) (Table 1) (33). Both Mn\(^{2+}\) and Ca\(^{2+}\) cause an enhancement in dNTP binding affinity compared with complexes captured in Mg\(^{2+}\), with Mn\(^{2+}\) yielding a decrease in the value of \(K_d\) by \(-25\)-fold, to \(K_d \approx 0.04 \mu M\) (in Mn\(^{2+}\)), and Ca\(^{2+}\) decreasing the value of \(K_d\) more significantly, by an additional order of magnitude to \(K_d \approx 0.004 \mu M\) (in Ca\(^{2+}\)). The stronger affinity afforded in Mn\(^{2+}\) relative to Mg\(^{2+}\) is primarily due to an \(-18\)-fold decrease in the dNTP dissociation rate, in good accord with an earlier comparison between dNTP binding parameters for the D12A/D66A mutant captured in 10 mM Mg\(^{2+}\) or in 2 mM Mn\(^{2+}\) (33). The more substantial enhancement in dNTP binding affinity for complexes captured in Ca\(^{2+}\) occurs due to a combination of an \(-9\)-fold increase in the dNTP association rate constant and an \(-23\)-fold decrease in the dNTP dissociation rate, relative to the binding rates for complexes captured in Mg\(^{2+}\). Because Ca\(^{2+}\) supports dNTP binding but does not support phosphodiester bond formation, this afforded an opportunity to examine the effect of the primer terminal 3’-OH group, a ligand for metal A (15), on dNTP binding by comparing complexes formed with
DNA1-H_OH or with DNA1-H_H. The presence or absence of the primer terminal 3′-OH group does not significantly affect the ground state dNTP binding parameters (Fig. 10; Table 1); k_{on}, k_{off}, and K_d are each very similar for complexes formed with both DNA substrates.

Discussion

In this study, we hypothesized that because the divalent cations (Me$^{2+}$ ions) that are essential for catalytic function in both the polymerase and exonuclease active sites of replicative DNAPs serve as intimate components of the architecture in each of the sites, they may exert significant influence on the noncovalent transitions that occur in DNAP-DNA complexes during each nucleotide addition cycle. To test this, we applied a nanopore-based, single molecule approach that features single-nucleotide spatial precision and sub-millisecond temporal resolution to determine the effects of Mg$^{2+}$, Ca$^{2+}$, and Mn$^{2+}$ on the kinetic transitions of translocation, dNTP binding, and primer strand transfer between the polymerase and exonuclease active sites (Fig. 2B), in individual complexes formed with Φ29 DNAP, a B-family replicative DNAP.

Me$^{2+}$ Ions Alter the Equilibrium Across the Translocation Step, and the Forward and Reverse Translocation Rates—Fluctuations across the translocation step, during which the DNAP moves with respect to its DNA substrate by the distance of a single nucleotide, occur in the absence of Me$^{2+}$, indicating that the translocation fluctuations are an activity inherent to the DNAP-DNA complex. Nonetheless, Me$^{2+}$ ions have a significant influence on the translocation. For all Φ29 DNAP-DNA complexes examined, formed with either the wild type or D12A/D66A enzyme, and either the DNA1-H_OH or DNA1-H_H substrate, Me$^{2+}$ causes a concentration-dependent decrease in the probability of the post-translocation state (p) (Fig. 4). This shift in equilibrium is promoted by Mg$^{2+}$ and Mn$^{2+}$, which support DNAP catalysis, and Ca$^{2+}$, which supports dNTP binding but not catalysis. It is caused primarily by a [Me$^{2+}$]-dependent decrease in the forward translocation rate (r_f) (Fig. 8, A and C). The Me$^{2+}$-dependent decrease in r_f may be attributable to stabilization of the fingers-closed pre-translocation state, which would be predicted to slow the forward translocation (3). The pre-translocation state that is sampled during the nanopore experiments corresponds to the product of the covalent addition of the primer terminal residue during DNA synthesis, after pyrophosphate has dissociated from the complex (presumably complexed with the metal B ion) (26, 35).

Although we cannot assign whether the Me$^{2+}$-dependent decrease in r_f is caused by binding of Me$^{2+}$ at the metal A or metal B site, the Me$^{2+}$-dependent effects on the escape from the pre-translocation state suggest that while the environment of both metal binding sites necessarily changes significantly after catalysis, at least one of the sites retains affinity for Me$^{2+}$.

Each of the three metals examined also promoted a modest concentration-dependent increase in the backward transition rate from the post-translocation to pre-translocation state (r_b) that is dependent upon the presence of a 3′-OH group at the primer terminus of the DNA substrate (Fig. 8, B and D). The dependence of the increase in r_b on the primer strand 3′-OH implicates this group as a ligand for the metal ion that elicits the increase, suggesting that it is the post-translocation state metal A ion and implying that the metal A ion binds to the Φ29 DNAP-DNA complexes independent of the presence of dNTP. In complexes formed with a DNA substrate bearing a 3′-H primer terminus, where the increase in r_f is not observed (Fig. 8D), we cannot distinguish between the case in which metal A does not bind, or the case in which it binds but does not cause an increase in r_f.

In the nanopore experiments, the applied voltage exerts a force on the captured DNAP-DNA complex along the direction of the translocation. Although Me$^{2+}$ modulates the translocation rates at a given applied force (Fig. 8), it does not alter the dependence of the rates on force, for complexes formed with either DNA1-H_OH or with DNA1-H_H (Fig. 9). The primer terminal 3′-OH group is a determinant in the energy landscape of the translocation (26); its presence alters the slopes of both log(r_f) versus voltage and log(r_b) versus voltage. When complexes captured at 0 Me$^{2+}$ are compared with those captured at 10 mM Mg$^{2+}$, across a range of applied voltages from 140 to 220 mV (Fig. 9, A and B), the dependence of the slopes of both log(r_f) versus voltage and log(r_b) versus voltage are observed to be a function of the primer terminus identity, regardless of the presence or absence of Me$^{2+}$ (Fig. 9, C and D). The smaller slope of log(r_f) versus voltage and larger slope of log(r_b) versus voltage for complexes formed with DNA1-H_OH relative to complexes formed with DNA1-H_H indicates that the transition state for the translocation is closer to the pre-translocation state when the DNA substrate bears a primer terminal 3′-OH group than when the DNA substrate bears a primer terminal 3′-H group, independent of the presence or absence of Me$^{2+}$. Thus, Me$^{2+}$ affects the translocation rates at each given voltage, but not the dependence of the rates on force, indicating that Me$^{2+}$ does not perturb the translocation distances among the pre-translocation state well, the post-translocation state well, and the transition state, which are strongly influenced by the primer terminal 3′-OH group. Like the translocation fluctuations, the influence of the primer terminal 3′-OH on the energy landscape of the translocation is inherent to the DNAP-DNA complex.

Me$^{2+}$ Ion Identity Affects Complementary dNTP Binding Equilibrium and Rates—Complementary dNTP binding in the post-translocation state polymerase active site is strongly affected by Me$^{2+}$ identity, with Ca$^{2+}$ affording the highest affinity, followed by Mn$^{2+}$, and then Mg$^{2+}$ (Fig. 10; Table 1). Both Ca$^{2+}$ and Mn$^{2+}$ substantially decrease the dNTP dissociation rate relative to Mg$^{2+}$; Ca$^{2+}$ also yields an increase in the dNTP association rate constant. In contrast to Mn$^{2+}$ and Mg$^{2+}$, Ca$^{2+}$ does not support phosphodiester bond formation, yielding the opportunity to examine the effect of the primer terminal 3′-OH group, which is a ligand for metal A (15), on dNTP binding. Somewhat surprisingly, the presence or absence of the primer terminal 3′-OH group does not significantly affect the ground state dNTP binding parameters (Fig. 10; Table 1), which are very similar for complexes formed with DNA1-H_OH or DNA1-H_H. This indicates that the presence or absence of the primer terminal 3′-OH group is not a determinant for ground state dNTP binding in Ca$^{2+}$.
Metal Modulation of DNA Polymerase Kinetic Transitions

Because selective stabilization of the transition state over the ground state contributes to catalytic efficiency and specificity (44), it is possible that the enhanced ground state stabilization effected by both Mn\(^{2+}\) and Ca\(^{2+}\) contributes to the effects of these metals on phosphodiester bond formation. Because \(k_{\text{off}}\) reflects the free energy difference between the dNTP-bound post-translocation state and the dNTP-unbound post-translocation state, the smaller values of \(k_{\text{off}}\) for complexes formed in Mn\(^{2+}\) or Ca\(^{2+}\) relative to complexes formed in Mg\(^{2+}\) may obtain, at least in part, from a deeper free energy well for the dNTP-bound ground state. In addition to affecting the free energy difference between the dNTP-bound and unbound states, a deeper free energy well could affect the free energy difference between the dNTP-bound ground state and the transition state for catalysis. Among the three metals we examined, the largest stabilization of ground state dNTP binding is caused by Ca\(^{2+}\), and this metal does not support catalytic function. Ground state stabilization by Mn\(^{2+}\), while an order of magnitude more modest than Ca\(^{2+}\), is almost 20-fold greater than that afforded by Mg\(^{2+}\); while Mn\(^{2+}\) supports catalysis, it is at a cost to fidelity in nucleotide selection.

The relationship among Me\(^{2+}\) ions, dNTP binding, and conformational transitions associated with dNTP binding has been studied for pol \(\beta\) (45), for the Klenow fragment of DNA polymerase I (an A-family repair DNAP) (46), and for the B-family replicative DNAP from bacteriophage RB69 (47, 48). Not surprisingly, details vary among these enzymes, which have different functional roles and are from different DNAP families. Nonetheless, the studies are consistent with a general scenario in which metal B is sufficient to support dNTP binding and the associated fingers-closing conformational change, whereas both metals A and B are required for phosphodiester bond formation.

The effects of Me\(^{2+}\) ions on dNTP binding or on the translocation that we have measured in \(\Phi 29\) DNAP-DNA complexes may be related, at least in part, to Me\(^{2+}\)-dependent effects on the rates of fingers opening and closing. Based on earlier findings that both \(r_1\) and \(k_{\text{off}}\) are slower for complexes captured in 2 mM Mn\(^{2+}\) than for complexes captured in 10 mM Mg\(^{2+}\), we had hypothesized that Mn\(^{2+}\) may exert its effects on both \(r_1\) and \(k_{\text{off}}\) by decreasing the rate of fingers opening from the closed complex (33). This hypothesis is based upon the structural model proposed for translocation (3), which predicts that decreasing the rate of fingers opening in the pre-translocation state would lead to a decrease in the rate of the forward translocation (\(r_1\)). Similarly, because it is reasonable to assume that dNTP dissociation requires fingers opening, a decrease in the rate of fingers opening could yield a decrease in the dissociation rate of dNTP \((k_{\text{off}})\) from the dNTP-bound post-translocation state. The findings in the current study that both \(r_1\) and \(k_{\text{off}}\) are lower in Ca\(^{2+}\) (Fig. 8; Table 1) than they are in Mg\(^{2+}\) provides further evidence supporting the hypothesis.

Complex Effects of Me\(^{2+}\) on the Primer Strand Transfer Pathway between the Polymerase and Exonuclease Active Sites—We previously established the correspondence between a second kinetic state in the upper amplitude and the primer strand transfer between the polymerase and exonuclease sites (26). In the current study, we examined the effects of Me\(^{2+}\) ions on primer strand transfer by applying approaches developed in the prior study, which revealed that the primer strand pathway displays significant Me\(^{2+}\)-concentration dependent kinetic complexity. In the absence of Me\(^{2+}\), or when the [Me\(^{2+}\)] is low, the pathway for primer strand transfer between the polymerase and exonuclease sites displays more than two kinetic states (Fig. 6A). For complexes formed with DNA1-H_H, this complexity resolves to two states (the pre-translocation state in the polymerase site, and the state in which the primer has been transferred to the exonuclease site) when the [Me\(^{2+}\)] is above ~1 mM (Figs. 5 and 6A) (26). For complexes formed with DNA1-H_H captured in the presence of high [Me\(^{2+}\)], dwell time samples that correspond to stays of the primer strand in the exonuclease site cannot be resolved from the dwell time samples that decay at a single exponential rate that corresponds to the inverse of the forward translocation rate (24, 26). Although these observed effects of [Me\(^{2+}\)] are intriguing, we are not yet able to speculate about the mechanisms governing the effects of Me\(^{2+}\) on the kinetics of the primer strand transfer pathway. Detailed dissection of the effects of [Me\(^{2+}\)] on this pathway will require biochemical and mathematical models significantly more complex than the four-state model shown in Fig. 2B, which we will pursue in future studies.

Finally, it is not yet known how generally applicable our findings regarding the effects of Me\(^{2+}\) ions on translocation, dNTP binding, or primer strand transfer with the \(\Phi 29\) DNAP will be to other DNAPs, in large part because most techniques that have been employed to examine DNAPs cannot resolve and quantify the translocation step and the kinetic transitions that it coordinates with both single nucleotide precision and sub-millisecond temporal resolution. However, given the structural and functional conservation of the polymerase and exonuclease active sites in the B-family replicative DNAPs, it is reasonable to expect that these effects will apply to other enzymes in this family. This includes the eukaryotic nuclear leading strand and lagging strand replicative DNAPs, pol \(\varepsilon\) and pol \(\delta\), respectively (18, 19). In light of the finding that Me\(^{2+}\), which stabilizes the pre-translocation state in \(\Phi 29\) DNAP-DNA complexes (Fig. 8, A and C), can also stabilize the pre-translocation state in DNAP-DNA complexes of the X-family mammalian repair DNAP, pol \(\beta\) (22), it is also possible that our findings will extend more broadly to other DNAP families.

Author Contributions—J. M. D., K. R. L., and H. W. designed the study and wrote the paper. J. M. D. performed nanopore experiments. J. M. D., K. R. L., and H. W. analyzed the results and approved the final version of the manuscript.

Acknowledgment—We are grateful to Mark Akeson for helpful discussion and support.

References
1. Kunkel, T. A. (2009) Evolving views of DNA replication (in)fidelity. Cold Spring Harb. Symp. Quant. Biol. 74, 91–101
2. Johansson, E., and Dixon, N. (2013) Replicative DNA polymerases. Cold Spring Harbor Perspect. Biol. 5, a012799
3. Berman, A. J., Kamtekar, S., Goodman, J. L., Lázaro, J. M., de Vega, M., Blanco, L., Salas, M., and Steitz, T. A. (2007) Structures of \(\Phi 29\) DNA polymerase complexed with substrate: the mechanism of translocation in
Metal Modulation of DNA Polymerase Kinetic Transitions

B-family polymerases. EMBO J. 26, 3494–3505

4. Doublié, S., Tabor, S., Long, A. M., Richardson, C. C., and Ellenberger, T. (1998) Crystal structure of a bacteriophage T7 DNA replication complex at 2.2-Å resolution. Nature 391, 251–258

5. Eom, S. H., Wang, J., and Steitz, T. A. (1996) Structure of Taq polymerase with DNA at the polymerase active site. Nature 382, 278–281

6. Kamtekar, S., Berman, A. J., Wang, J., Lázaro, J. M., de Vega, M., Blanco, L., Salas, M., and Steitz, T. A. (2004) Insights into strand displacement and processivity from the crystal structure of the protein–primed DNA polymerase of bacteriophage φ29. Mol. Cell 16, 699–618

7. Wang, J., Sattar, A. K., Wang, C. C., Karam, J. D., Konigsberg, W. H., and Steitz, T. A. (1997) Crystal structure of a pol α family replication DNA polymerase from bacteriophage RB69. Cell 89, 1087–1099

8. Swan, M. K., Johnson, R. E., Prakash, L., Prakash, S., and Aggarwal, A. K. (1993) Structural basis of high-fidelity DNA synthesis by yeast DNA polymerase β. Nature Struct. Mol. Biol. 16, 979–986

9. Hogg, M., Osterman, P., Bylund, G. O., Ganai, R. A., Lundström, E.-B., and Johansson, E. (2014) Structural basis for processive DNA synthesis by yeast DNA polymerase ε. Nat. Struct. Mol. Biol. 21, 49–55

10. Hopp, S., Lee, J. Y., and Nowotny, M. (2006) Making and breaking nucleic acids: two-Mg2+ ion catalysis and substrate specificity. Mol. Cell 22, 5–13

11. Steitz, T. A., and Steitz, J. A. (1993) A general two-metal-ion mechanism for catalytic RNA. Proc. Natl. Acad. Sci. U.S.A. 90, 6498–6502

12. Beece, L. S., and Steitz, T. A. (1991) Structural basis for the 3′-5′ exonuclease activity of Escherichia coli DNA polymerase I: a two metal ion mechanism. EMBO J. 10, 25–33

13. Steitz, T. A. (1997) Crystal structure of a pol ε family DNA polymerase. Biochemistry 36, 657–667

14. Pelletier, H., Sawaya, M. R., Kumar, A., Wilson, S. H., and Kraut, J. (1994) Structures of ternary complexes of rat DNA polymerase β, a DNA template–primer, and dCTP. Science 264, 1891–1903

15. Pussell, Z. F., Isoz, I., Lundström, E.-B., Johansson, E., and Kunkel, T. A. (2007) Yeast DNA polymerase epsilon participates in leading-strand DNA replication. Science 317, 127–130

16. Miyabe, I., Kunkel, T. A., and Carrascosa, J. L., Salas, M., and Ibarra, B. (2012) Active DNA unwinding dynamics during processive DNA replication. Proc. Natl. Acad. Sci. U.S.A. 109, 8115–8120

17. Lieberman, K. R., Dahl, J. M., and Wang, H. (2014) Kinetic mechanism at the branchpoint between the DNA synthesis and editing pathways in individual DNA polymerase complexes. J. Am. Chem. Soc. 136, 7117–7131

18. Morin, J. A., Cao, F. J., Lázaro, J. M., Arias-Gonzalez, J. R., Valpuesta, J. M., Carrascosa, J. L., Salas, M., and Ibarra, B. (2012) Active DNA unwinding dynamics during processive DNA replication. J. Biol. Chem. 268, 8935–8940

19. Blanca, L., and Steitz, T. A. (1996) Metal ion coordination and the spatial relationship between polymerase and exonuclease active sites of bacteriophage φ29 DNA polymerase. J. Biol. Chem. 292, 39–51

20. Dahl, J. M., Wang, H., Lázaro, J. M., Salas, M., and Lieberman, K. R. (2014) Kinetic mechanisms governing stable ribonucleotide incorporation in individual DNA polymerase complexes. Biochemistry 53, 8061–8076

21. Dahl, J. M., Wang, H., Lázaro, J. M., Salas, M., and Lieberman, K. R. (2014) Dynamics of translocation and substrate binding in individual complexes formed with active site mutants of φ29 DNA polymerase. J. Biol. Chem. 289, 6350–6361

22. Esteban, J. A., Dahl, J. M., Salas, M., and Bianco, L. (1992) Metal activation of synthetic and degradative activities of φ29 DNA polymerase, a model enzyme for protein–primed DNA replication. Biochemistry 31, 350–359

23. Lieberman, K. R., Cherf, G. M., Doody, M. J., Olasagasti, F., Kolodji, Y., and Akeson, M. (2010) Processive replication of single DNA molecules in a nanopore catalyzed by φ29 DNA polymerase. J. Am. Chem. Soc. 132, 17961–17972

24. Benner, S., Chen, R. J., Wilson, N. A., Abu-Shumays, R., Hurt, N., Lieberman, K. R., Deamer, D. W., Dunbar, W. B., and Akeson, M. (2007) Sequence-specific detection of individual DNA polymerase complexes in real time using a nanopore. Nat. Nanotechnol. 2, 718–724

25. Akeson, M., Branton, D., Kaisanlovicz, J. J., Brandin, E., and Deamer, D. W. (1999) Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules. Biophys. J. 77, 3227–3233

26. Garalde, D. R., Simon, C. A., Dahl, J. M., Wang, H., Akeson, M., and Lieberman, K. R. (2011) Distinct complexes of DNA polymerase I (Klenow fragment) for base and sugar discrimination during nucleotide substrate selection. J. Biol. Chem. 286, 14480–14492

27. Cherf, G. M., Lieberman, K. R., Rashid, H., Ham, C. E., Karplus, K., and Akeson, M. (2012) Automated forward and reverse ratcheting of DNA in a nanopore at 5-Å precision. Nat. Biotechnol. 30, 344–348

28. Bernad, A., Blanco, L., Lázaro, J. M., Martin, G., Akeson, M., and Salas, M. (1989) A conserved 3′-5′ exonuclease active site in prokaryotic and eukaryotic DNA polymerases. Cell 59, 219–228

29. Garmandia, C., Bernad, A., Esteban, J. A., Blanco, L., and Salas, M. (1992) The bacteriophage φ29 DNA polymerase, a proofreading enzyme. J. Biol. Chem. 267, 2594–2599

30. Esteban, J. A., Salas, M., and Blanco, L. (1993) Fidelity of φ29 DNA polymerase: comparison between protein-primed initiation and DNA polymerization. J. Biol. Chem. 268, 2719–2726

31. Johnson, K. A. (2010) The kinetic and chemical mechanism of high-fidelity DNA polymerases. Biochim. Biophys. Acta 1804, 1041–1048

32. Bersht, A. (1985) Enzyme Structure and Mechanism, Second Ed., W.H. Freeman, New York

33. Bakhtina, M., Lee, S., Wang, Y., Dunlap, C., Lamarche, B., and Tsai, M.-D. (2005) Use of viscosogens, dNTPs, and rhodium(III) as probes in stopped-
flow experiments to obtain new evidence for the mechanism of catalysis by DNA polymerase β. Biochemistry 44, 5177–5187

46. Bermek, O., Grindley, N. D., and Joyce, C. M. (2011) Distinct roles of the active-site Mg$^{2+}$ ligands, Asp882 and Asp705, of DNA polymerase I (Klenow fragment) during the prechemistry conformational transitions. J. Biol. Chem. 286, 3755–3766

47. Wang, M., Lee, H. R., and Konigsberg, W. (2009) Effect of A and B metal ion site occupancy on conformational changes in an RB69 DNA polymerase ternary complex. Biochemistry 48, 2075–2086

48. Lee, H. R., Wang, M., and Konigsberg, W. (2009) The reopening rate of the fingers domain is a determinant of base selectivity for RB69 DNA polymerase. Biochemistry 48, 2087–2098