Kudla–Rapoport conjecture for Krämer models

Qiao He, Yousheng Shi and Tonghai Yang

Compositio Math. 159 (2023), 1673–1740.

doi:10.1112/S0010437X23007273
Kudla–Rapoport conjecture for Krämer models

Qiao He, Yousheng Shi and Tonghai Yang

Abstract

In this paper, we propose a modified Kudla–Rapoport conjecture for the Krämer model of unitary Rapoport–Zink space at a ramified prime, which is a precise identity relating intersection numbers of special cycles to derivatives of Hermitian local density polynomials. We also introduce the notion of special difference cycles, which has surprisingly simple description. Combining this with induction formulas of Hermitian local density polynomials, we prove the modified Kudla–Rapoport conjecture when \(n = 3 \). Our conjecture, combining with known results at inert and infinite primes, implies the arithmetic Siegel–Weil formula for all non-singular coefficients when the level structure of the corresponding unitary Shimura variety is defined by a self-dual lattice.

Contents

1 Introduction 1674
 1.1 The naive conjecture ... 1675
 1.2 The precise conjecture ... 1676
 1.3 Special difference cycles ... 1677
 1.4 The case \(n = 3 \) ... 1678
 1.5 Global application ... 1679
 1.6 Notation ... 1680
 1.7 The structure of the paper ... 1681

Part 1. The geometric side 1681

2 RZ space and special cycle 1681
 2.1 RZ spaces ... 1681
 2.2 Special cycles ... 1683
 2.3 Bruhat–Tits stratification ... 1684
 2.4 Horizontal and vertical part ... 1685
 2.5 Derived special cycles ... 1685
 2.6 Special difference cycles ... 1686

3 Special cycles and exceptional divisors 1687
 3.1 Intersection numbers involving the exceptional divisors 1689
4 Horizontal components of special cycles

4.1 Quasi-canonical lifting cycles

4.2 Horizontal cycles

4.3 The horizontal part of special difference cycles

Part 2. The analytic side

5 Induction formula and primitive local density

6 The modified Kudla–Rapoport conjecture

7 Local density formula when rank(\(T\)) \(<= 2

7.1 The case \(T = (t)\)

7.2 The case \(T = \text{Diag}(u_1(-\pi_0)^a, u_2(-\pi_0)^b)\)

8 Local density formula when rank(\(T\)) = 3

8.1 \(\partial \text{Den}(T)\) for \(T\) with \(v(T) \leq -1\)

8.2 \(\partial \text{Den}(T)\) for \(T = \text{Diag}(1, T_2)\) with \(T_2\) diagonal

8.3 \(\partial \text{Den}(T)^{(2)}\)

Part 3. Proof of the main theorem

9 Reduced locus of special cycle

9.1 The Bruhat–Tits building for \(n = 3\)

9.2 Rank 1 case

9.3 Rank 2 case

9.4 The Krämer model

10 Intersection of vertical components and special divisors

10.1 Decomposition of \(LZ^{Kra}(L^2)\)

10.2 The intersection number

11 Proof of the modified Kudla–Rapoport conjecture: three-dimensional case

12 Global applications

12.1 Unitary Shimura varieties and special cycles

12.2 Eisenstein series

12.3 An equivalent form of Conjecture 1.1

12.4 (Global) arithmetic Siegel–Weil formula

Acknowledgements

Conflicts of Interest

Appendix A Calculation of primitive local density

A.1 Proof of Proposition 5.9

A.2 Proof of Proposition 5.10

A.3 Calculation of primitive local density

References
Kudla–Rapoport conjecture was proved in [KR11]. The case when \(n = 3 \) was proved in [Ter13]. The general case was proved recently in [LZ22a] by an ingenious induction. The Archimedean analogue of the Kudla–Rapoport conjecture was proved in [Liu11] and [GS19]. The analogue of the Kudla–Rapoport conjecture for GSpin RZ space is formulated and proved in [LZ22b].

Originally the Kudla–Rapoport conjecture was proposed only for good primes, namely inert primes over which the RZ space has hyperspecial level structure. A modified Kudla–Rapoport conjecture for RZ space with minuscule parahoric level structure over inert primes has been proposed in [Cho22]. For ramified primes, there are two kinds of well-understood arithmetic models of RZ spaces. One is the exotic smooth model which has good reduction, the other is the Krämer model proposed in [Kra03] which only has semi-stable reduction. The analogue of the Kudla–Rapoport conjecture for the even-dimensional exotic smooth model was studied in [LL22], in which case the conjecture can be proved by the same strategy as in [LZ22a]. For the Krämer model, however, it was expected that serious modification of the original Kudla–Rapoport conjecture is needed. A precise formulation has not previously been given. One of the main goals of this paper is to formulate a precise conjecture (Conjecture 1.1) based on earlier work of [Shi22] and [HSY23] for the case \(n = 2 \). We then prove Conjecture 1.1 for \(n = 3 \).

In a very recent joint work with Chao Li [HLSY22], we proved the conjecture completely. One of the major innovations of [HLSY22] is a decomposition formula of primitive local density polynomials, which is inspired by the results in the appendix of this work. The geometric side of the ‘horizontal’ part in [HLSY22] essentially follows from the current work. To deal with the vertical part in general, [HLSY22] uses partial Fourier transform inspired by [LZ22b]. The current work uses explicit computation instead. Finally, it was discovered in [HLSY22] that the ‘central’ derivative of the primitive local density polynomials has a surprisingly simple formula.

1.1 The naive conjecture

Let \(p \) be an odd prime and \(F \) be a ramified quadratic field extension of a \(p \)-adic number field \(F_0 \) with residue field \(\mathbb{F}_q \). Fix an algebraic closure \(k \) of \(\mathbb{F}_q \). Fix a uniformizer \(\pi \) of \(F \) such that \(\pi_0 = \pi^2 \) is a uniformizer of \(F_0 \) and let \(v_\pi \) be the valuation on \(F \) such that \(v_\pi(\pi) = 1 \). Let \(\hat{F}_0 \) be the completion of a maximal unramified extension of \(F_0 \) and \(\hat{F} := F \otimes_{F_0} \hat{F}_0 \). Let \(\mathcal{O}_F \) and \(\mathcal{O}_{\hat{F}_0} \) be the rings of integers of \(\hat{F} \) and \(\hat{F}_0 \), respectively. For a Hermitian lattice or space \(M \) of rank \(n \), we define its sign as

\[
\chi(M) = \chi((-1)^{n(n-1)/2} \det(M)) = \pm 1, \tag{1.1}
\]

where \(\chi \) is the quadratic character of \(F_0^\times \) associated to \(F/F_0 \). We call \(M \) split or non-split depending on whether \(\chi(M) = 1 \) or \(-1 \). For a Hermitian matrix \(T \), define \(\chi(T) \) to be the sign of its associated Hermitian lattice.

Let \(\mathcal{V} \) and \(\mathcal{X} \) be pre-fixed framing Hermitian formal \(\mathcal{O}_F \)-modules of signature \((0, 1)\) and \((1, n - 1)\), respectively, over Spec\(k \). Recall that Hermitian formal \(\mathcal{O}_F \)-modules are a particular kind of formal \(p \)-divisible groups with \(\mathcal{O}_F \)-action, see §2.1. The space of special quasi-homomorphisms

\[
\mathcal{V} = \text{Hom}_{\mathcal{O}_F}(\mathcal{V}, \mathcal{X}) \otimes_{\mathbb{Z}} \mathbb{Q} \tag{1.2}
\]

is equipped with a Hermitian form \(h(\cdot, \cdot) \), see (2.2). Let \(\epsilon = \chi(\mathcal{V}) \). The RZ space \(\mathcal{N}^{\text{Kra}}_{n, \epsilon} \) parameterizes certain classes of supersingular Hermitian formal \(\mathcal{O}_F \)-modules of signature \((1, n - 1)\) over \(\text{Spf} \mathcal{O}_F \), see §2.1. It is a formal scheme over \(\text{Spf} \mathcal{O}_F \) with semi-stable reduction and can be viewed as a regular model of the formal completion of the corresponding global unitary Shimura variety along its basic locus over \(p \). When \(n \) is odd, \(\mathcal{N}^{\text{Kra}}_{n, 1} \) is isomorphic to \(\mathcal{N}^{\text{Kra}}_{n, -1} \). We often write \(\mathcal{N}^{\text{Kra}} \) instead of \(\mathcal{N}^{\text{Kra}}_{n, \epsilon} \) for simplicity.
For each subset \(L \subset \mathbb{V} \), define \(\mathcal{Z}^{\text{Kra}}(L) \) to be the formal subscheme of \(\mathcal{N}^{\text{Kra}} \) where \(\alpha \) deforms to a homomorphism for any \(\alpha \in L \). Let \(L \subset \mathbb{V} \) be an \(\mathcal{O}_F \)-lattice of rank \(r \). We say \(L \) is integral if \(h(\cdot)|_L \) is non-degenerate and takes values in \(\mathcal{O}_F \). Let \(x_1, \ldots, x_r \) be a basis of \(L \). We define
\[
\mathcal{L}^L \mathcal{Z}^{\text{Kra}}(L) = \left[\mathcal{O}_{\mathcal{Z}^{\text{Kra}}(x_1)} \otimes \cdots \otimes \mathcal{O}_{\mathcal{Z}^{\text{Kra}}(x_r)} \right] \in K_0(\mathcal{N}^{\text{Kra}}),
\]
where \(\otimes^L \) is the derived tensor product of complex of coherent sheaves on \(\mathcal{N}^{\text{Kra}} \) and \(K_0(\mathcal{N}^{\text{Kra}}) \) is the Grothendieck groups of finite complexes of coherent locally free sheaves on \(\mathcal{N}^{\text{Kra}} \). By [How19, Corollary C], \(\mathcal{L}^L \mathcal{Z}^{\text{Kra}}(L) \) is independent of the choice of basis of \(L \). When \(L \) has rank \(n \), we define the intersection number
\[
\text{Int}(L) = \chi(\mathcal{N}^{\text{Kra}}, \mathcal{L}^L \mathcal{Z}^{\text{Kra}}(L)),
\]
where \(\chi \) is the Euler characteristic. One can show that \(\text{Int}(L) \) is finite, see Lemma 2.14.

Let \(L \) and \(M \) be Hermitian lattices of rank \(n \) and \(m \) respectively. Moreover, we assume \(v(M) := \min\{v_\pi(h(v, v')) \mid v, v' \in M \} \geq -1 \). We use \(\text{Herm}_{L,M} \) to denote the scheme of Hermitian \(\mathcal{O}_F \)-module homomorphisms from \(L \) to \(M \), which is a scheme of finite type over \(\mathcal{O}_{F_0} \). More specifically, for an \(\mathcal{O}_{F_0} \)-algebra \(R \), we define
\[
L_R := L \otimes_{\mathcal{O}_{F_0}} R, \quad (x \otimes a, y \otimes b)_R := \pi(x, y) \otimes_{\mathcal{O}_{F_0}} ab \in \mathcal{O}_F \otimes_{\mathcal{O}_{F_0}} R \text{ where } x, y \in L, a, b \in R.
\]
Then
\[
\text{Herm}_{L,M}(R) = \{ \phi \in \text{Hom}_{\mathcal{O}_F}(L_R, M_R) \mid (\phi(x), \phi(y))_R \equiv (x, y)_R \text{ for all } x, y \in L_R \}.
\]
To simplify the notation, let \(I(M, L, d) \) denote \(\text{Herm}_{L,M}(\mathcal{O}_{F_0}/(\pi^d)) \). Then direct calculation shows that
\[
\alpha(M, L) = q^{-dn(2m-n)}|I(M, L, d)|
\]
becomes constant for sufficiently large integers \(d > 0 \). We call it the local density (of \(M \) representing \(L \)).

Let \(\mathcal{H} \) be the (Hermitian) hyperbolic plane with Gram matrix \(\mathcal{H} = \begin{pmatrix} 0 & \pi^{-1} \\ -\pi^{-1} & 0 \end{pmatrix} \). One can show that there is a (local density) polynomial \(\alpha(M, L, X) \in \mathbb{Q}[X] \) such that
\[
\alpha(M \oplus \mathcal{H}^k, L) = \alpha(M, L, q^{-2k}).
\]
Define its derivative by
\[
\alpha'(M, L) := -\frac{\partial}{\partial X} \alpha(M, L, X)|_{X=1}.
\]
As \(\alpha(M, L, X) \) (respectively, \(\alpha'(M, L) \)) only depends on their Gram matrices \(S \) and \(T \), we will also denote it by \(\alpha(S, T, X) \) (respectively, \(\alpha'(S, T) \)). Let \(M \) be the unique unimodular Hermitian \(\mathcal{O}_F \)-lattice of rank \(n \) with \(\chi(M) = -\chi(L) \). The naive analogue of the local Kudla–Rapoport conjecture is
\[
\text{Int}(L) = 2 \frac{\alpha'(M, L)}{\alpha(M, M)}.
\]
However, this conjectural formula is not even true for \(n = 2 \) according to the main theorem of [HSY23]. The analytic side of the conjecture needs to be modified.

1.2 The precise conjecture

By [Shi18, Theorem 1.2], \(\mathcal{Z}^{\text{Kra}}(L) \) is empty when \(L \) is not integral, so we have
\[
\text{Int}(L) = 0.
\]
On the analytic side, the right-hand side of (1.6) is automatically zero only when \(v(L) \leq -2 \), and is sometimes non-zero when \(v(L) = -1 \). Thus, there should be correction terms involving

\[1676\]
Hermitian lattices M with $v(M) = -1$. By [Jac62], there are $n - 1$ equivalent classes of Hermitian lattices which are direct sum of copies of H and unimodular lattices:

$$\mathcal{H}_{n,i}^\epsilon := \mathcal{H}^\epsilon \oplus I_{n-2i}^\epsilon, \quad \text{for } 1 \leq i \leq \frac{n}{2}, \quad \epsilon = \pm 1,$$

(1.7)

where we use I_{n-2i}^ϵ to denote the unimodular Hermitian lattice of rank $n-2i$ with $\chi(I_{n-2i}^\epsilon) = \chi(H_{n,i}^\epsilon) = \epsilon$. When $n = 2r$ is even, we take $I_0^\epsilon = 0$ and $\mathcal{H}_{n,r}^\epsilon = \mathcal{H}^\epsilon$. Then the local arithmetic Siegel–Weil formula (also known as the Kudla–Rapoport conjecture at a ramified prime) should be of the following form:

$$\text{Int}(L) = 2\frac{\alpha'(I_n^\epsilon, L)}{\alpha(I_n^\epsilon, I_n^\epsilon)} + \sum_i c_{n,i}^\epsilon \frac{\alpha(H_{n,i}^\epsilon, L)}{\alpha(I_n^\epsilon, I_n^\epsilon)},$$

(1.8)

where $\epsilon = \chi(L)$. Since $\text{Int}(\mathcal{H}_{n,j}^\epsilon) = 0$, we should have

$$2\frac{\alpha'(I_n^\epsilon, \mathcal{H}_{n,j}^\epsilon)}{\alpha(I_n^\epsilon, I_n^\epsilon)} + \sum_i c_{n,i}^\epsilon \frac{\alpha(H_{n,i}^\epsilon, \mathcal{H}_{n,j}^\epsilon)}{\alpha(I_n^\epsilon, I_n^\epsilon)} = 0.$$

(1.9)

This system of equations turns out to determine the coefficients $c_{n,i}^\epsilon$ uniquely by Theorem 6.1. We propose the following Kudla–Rapoport conjecture at a ramified prime.

Conjecture 1.1. The identity (1.8) always holds with the coefficients $c_{n,i}^\epsilon$ uniquely determined by (1.9).

For convenience, we set

$$\partial \text{Den}(L) = 2\frac{\alpha'(I_n^\epsilon, L)}{\alpha(I_n^\epsilon, I_n^\epsilon)} + \sum_i c_{n,i}^\epsilon \frac{\alpha(H_{n,i}^\epsilon, L)}{\alpha(I_n^\epsilon, I_n^\epsilon)}.$$

(1.10)

We remark that because $\text{Int}(L)$ is always an integer, Conjecture 1.1 suggests that $\partial \text{Den}(L)$ should be an integer, which is already not obvious.

The conjecture holds for $N_{\mathcal{K}ra}^{Kra}$ by results in [Shi22] and [HSY23]. In this paper, we prove the conjecture for $n = 3$ and provide some partial results in the general case.

Theorem 1.2. Conjecture 1.1 is true when $n = 3$.

1.3 Special difference cycles

One of the novelties of this paper is the concept of special difference cycles. Let L_1 be an \mathcal{O}_F-lattice of V of rank $n_1 \leq n$. Define the special difference cycle $\mathcal{D}(L_1) \in K_0(N_{\mathcal{K}ra})$ by

$$\mathcal{D}(L_1) = \mathcal{L}Z_{\mathcal{K}ra}(L_1) + \sum_{i=1}^{n_1} (-1)^i q^{(i-1)/2} \sum_{\substack{L_1 \subset L' \subset L_1 \cap L_2 \subset \mathfrak{m}_q(L'/L_1) = L_1}} \mathcal{L}Z_{\mathcal{K}ra}(L') \in K_0(N_{\mathcal{K}ra}).$$

(1.11)

Here $\mathcal{D}(L_1)$ can be seen as a higher codimensional analogue of the difference divisor first introduced in [Ter13, Definition 2.10]. By the definition and a q-adic linear-algebraic inclusion–exclusion principle, we have (see Lemma 2.16)

$$\mathcal{L}Z_{\mathcal{K}ra}(L_1) = \sum_{L_1 \subset L' \cap L_1 \subset \mathfrak{m}_q(L'/L_1) = L_1} \mathcal{D}(L').$$

(1.12)

Here $L_F = L \otimes_{\mathcal{O}_F} F$ for an \mathcal{O}_F-lattice L. The above summation is, in fact, finite. Assume that we have a decomposition $L = L_1 \oplus L_2$ of \mathcal{O}_F-lattices such that L_1 has rank n_1 and $n_1 + n_2 = n$.

1677
Define
\[\text{Int}(L)^{(n_1)} = \chi(N^{\text{Kra}}, D(L_1) \cdot Z^{\text{Kra}}(L_2)), \]
(1.13)
where \(\cdot \) is the product on \(K_0(N^{\text{Kra}}) \) induced by tensor product of complexes. Note that this definition, in fact, depends on the decomposition of \(L \).

On analytic side, we define
\[\partial \text{Den}(L)^{(n_1)} := \partial \text{Den}(L) - \sum_{i=1}^{n_1} (-1)^i q^{i(i-1)/2} \sum_{L_1 \subset L'_1 \subset L_1, F} \partial \text{Den}(L'_1 \oplus L_2). \]
(1.14)
This definition again depends on the decomposition of \(L \). What motivates the definition of \(\partial \text{Den}(L)^{(n_1)} \) and \(D(L_1) \) is the fact that \(\partial \text{Den}(L)^{(n_1)} \) is equal to the derivative of certain primitive local density polynomials, see [Kat99, Proposition 2.1] or Theorem 5.2 below. The analogue of (1.12) holds for \(\partial \text{Den}(L)^{(n_1)} \). As a consequence, we have the following theorem (see Theorem 5.6 for a refinement).

Theorem 1.3. Conjecture 1.1 is true if and only if for every lattice \(L = L_1 \oplus L_2 \) such that \(L_i \) has rank \(n_i \), we have
\[\text{Int}(L)^{(n_1)} = \partial \text{Den}(L)^{(n_1)}. \]
(1.15)
We speculate that \(D(L_1) \) is of a simple form when \(n_1 = n - 1 \). One strong piece of evidence for this is that the ‘horizontal’ part of \(D(L_1) \) is either empty or isomorphic to one or two copies of \(\text{Spf} W_\ast \) where \(W_\ast \) is the integer ring of an extension of \(\mathcal{F} \) of degree \(q^s \), see Proposition 4.6. Another evidence is that the intersection of \(D(L_1) \) with an exceptional divisor in \(N^{\text{Kra}} \) is \(\pm 1 \) or 0, see Lemma 3.9. When \(n = 3 \), we show that \(D(L_1) \) has a simple decomposition, see Theorem 1.4.

1.4 The case \(n = 3 \)
The proof of Theorem 1.2 is divided into three cases, see §11. For \(v(L) < 0 \), we show directly \(\partial \text{Den}(L) = \text{Int}(L) = 0 \). The case \(v(L) = 0 \) is reduced to the case \(n = 2 \), which was proved in [Shi22] and [HSY23]. For \(v(L) > 0 \), we prove that \(\text{Int}(L)^{(2)} = \partial \text{Den}(L)^{(2)} \) for a decomposition \(L = L^0 \oplus \text{Span}(x) \), and then apply Theorem 1.3 (more precisely Theorem 5.6).

In order to prove \(\text{Int}(L)^{(2)} = \partial \text{Den}(L)^{(2)} \), we need to understand the decomposition of \(D(L^0) \). We say a lattice \(\Lambda \subset V \) is a vertex lattice if \(\pi \Lambda \subseteq \Lambda^\sharp \subseteq \Lambda \) where \(\Lambda^\sharp \) is dual lattice of \(\Lambda \) with respect to \(h(\cdot , \cdot) \) and we call \(t = \dim_{\mathbb{F}_q} (\Lambda/\Lambda^\sharp) \) the type of \(\Lambda \). This has to be an even integer between 0 and \(n \). We denote the set of vertex lattices of type \(t \) by \(V^t \). When \(n = 3 \), a type 2 lattice \(\Lambda_2 \) corresponds to a line \(\mathcal{N}_{\Lambda_2} \cong \mathbb{P}^1_k \) in \(N^{\text{Kra}}_3 \) and a type 0 lattice \(\Lambda_0 \) corresponds to a divisor \(\text{Exc}_{\Lambda_0} \cong \mathbb{P}^2_k \). Let \(H_{\Lambda_0} \) be the hyperplane class of \(\text{Exc}_{\Lambda_0} \). We have the following theorem.

Theorem 1.4. If \(v(L^0) > 0 \), we have the following decomposition of cycles in \(\text{Gr}^2 K_0(N^{\text{Kra}}_3) \)
\[D(L^0) = \sum_{\Lambda_2 \in V^2} \left(2|O_{\mathcal{N}_{\Lambda_2}}| + \sum_{\Lambda_0 \in V^0, \Lambda_0 \subset \Lambda_2} H_{\Lambda_0} \right), \]
where \(\text{Gr}^* K_0(N^{\text{Kra}}_3) \) is the associated graded ring of \(K_0(N^{\text{Kra}}_3) \) with respect to the codimension filtration.

Theorem 1.4 is proved by intersecting \(D(L^0) \) with special divisors that are isomorphic to \(N^{\text{Kra}}_2 \) and computing the intersection numbers in two different ways. One way relates the intersection numbers to the main result of [Shi22]. The other way uses the decomposition in Theorem 1.4 and detects the multiplicity of each component that shows up on the right-hand side.
1.5 Global application

In the last part of the paper, we apply the local results above to the global intersection problem proposed by [KR14b]. For brevity and clarity of exposition we restrict our attention to the case when F is an imaginary quadratic field. We remark here that our results can be applied to the case when F is a general CM field given correct local assumptions. Let $\mathcal{M}^{\text{Kra}}_{(1,n-1)}$ be the moduli functor over $\text{Spec} \mathcal{O}_F$ which parametrizes principally polarized abelian varieties A with an action $\iota : \mathcal{O}_F \to \text{End}(A)$, a compatible polarization $\lambda : A \to A^\vee$ and a filtration $\mathcal{F}_A \subset \text{Lie } A$ which satisfies the signature $(1, n-1)$ condition (see §12.1). Let V be a Hermitian vector space over F of signature $(n-1,1)$ containing a self-dual lattice L. The lattice L determines an open and closed substack

$$\mathcal{M} \subset \mathcal{M}_{(0,1)} \times \text{Spec } \mathcal{O}_F \mathcal{M}^{\text{Kra}}_{(1,n-1)}$$

which is an integral model of a unitary Shimura variety. For a point in $\mathcal{M}(S)$ (S an \mathcal{O}_F-scheme), i.e. a pair $(E, t_0, \lambda_0) \in \mathcal{M}_{(0,1)}(S)$, $(A, t, \lambda, \mathcal{F}_A) \in \mathcal{M}^{\text{Kra}}_{(1,n-1)}(S)$, define the locally free \mathcal{O}_F-module

$$V'(E, A) = \text{Hom}_{\mathcal{O}_F}(E, A).$$

It is equipped with the Hermitian form $h'(x, y) = t_0^{-1}(\lambda_0^{-1} \circ y \circ \lambda \circ x)$. For a $m \times m$ non-singular Hermitian matrix T with values in \mathcal{O}_F, let $\mathcal{Z}(T)$ be the stack of collections $(E, t_0, \lambda_0, A, t, \lambda, \mathcal{F}_A, x)$ such that $(E, t_0, \lambda_0, A, t, \lambda, \mathcal{F}_A) \in \mathcal{M}(S)$, $x \in V'(E, A)^m$ with $h'(x, x) = T$. Then $\mathcal{Z}(T)$ is representable by a Deligne–Mumford stack which is finite and unramified over \mathcal{M} (see [KR14b, Proposition 2.9]). When $t \in \mathbb{Z}_{>0}$, each component of $\mathcal{Z}(t)$ can be viewed as a divisor by [How15, Proposition 3.2.3]. In general, $\mathcal{Z}(T)$ does not necessarily have the expected codimension which is the rank of T.

Let $\mathcal{C} = \{C_p\}$ be an incoherent collection of local Hermitian spaces of rank n associated to V such that $\mathcal{C}_\ell \cong V_\ell$ for all finite ℓ and C_∞ is positive definite. It is ‘incoherent’ in the sense that it does not come from a global Hermitian space. For a non-singular Hermitian matrix T of rank n with values in \mathcal{O}_F, let V_T be the Hermitian space with Gram matrix T. Define

$$\text{Diff}(T, \mathcal{C}) := \{p \text{ a place of } \mathbb{Q} \mid C_p \text{ is not isomorphic to } (V_T)_p\}. \quad (1.16)$$

Then $\mathcal{Z}(T)$ is empty if $|\text{Diff}(T, \mathcal{C})| > 1$. If $\text{Diff}(T, \mathcal{C}) = \{p\}$ for a finite prime p inert or ramified in F, then the support of $\mathcal{Z}(T)$ is on the supersingular locus of \mathcal{M} over $\text{Spec } \mathbb{F}_p$. Let e be the ramification index of F_p/\mathbb{Q}_p. Define the arithmetic degree

$$\text{deg}_{\mathcal{Z}} = \chi(\mathcal{Z}(T), \mathcal{O}_{\mathcal{Z}(t_1)} \otimes^L \cdots \otimes^L \mathcal{O}_{\mathcal{Z}(t_n)}) \cdot \log p^{2/e}, \quad (1.17)$$

where \otimes^L stands for derived tensor product on the category of coherent sheaves on \mathcal{M}, χ is the Euler characteristic and t_i ($1 \leq i \leq n$) are the diagonal entries of T. When $\text{Diff}(T, \mathcal{C}) = \{\infty\}$, then $\mathcal{Z}(T)$ is, in fact, empty and one can use integration of a green current to define the arithmetic degree $\text{deg}_{\mathcal{Z}}(v)$ with the parameter v being a positive-definite Hermitian matrix v of order n (which will be the imaginary part of τ); see, for example, [LZ22a, §15.3].

On the analytic side, we consider an incoherent Eisenstein series $E(\tau, s, \Phi)$ for a non-standard section Φ in a degenerate principal series representation of $\text{U}(n, n)(A)$, see §12.2. Here τ is in the Hermitian Siegel upper half space

$$\mathbb{H}_n = \{\tau = u + iv \mid u \in \text{Herm}_n, v \in \text{Herm}_{n, >0}\}, \quad (1.18)$$

where Herm_n (respectively, $\text{Herm}_{n, >0}$) is the set of $n \times n$ (positive-definite) Hermitian matrices with values in \mathbb{C} and $s \in \mathbb{C}$. Our local conjecture and result imply the following theorem, which extends [LZ22a, Theorem 1.3.1] to include ramified primes.
Theorem 1.5 (Arithmetic Siegel–Weil formula for non-singular coefficients). Assume that the
fundamental discriminant of F is $d_F \equiv 1 \pmod{8}$ and that Conjecture 1.1 holds for every F_p
with $p | d_F$. For any non-singular Hermitian matrix T with values in \mathcal{O}_F of size n, we have
\[E_T' (\tau, 0, \Phi) = C \cdot \deg_T (v) \cdot q_T, \quad q_T^T = \exp (2 \pi \imath r (T \tau)), \]
where $E_T' (\tau, 0, \Phi)$ is the Tth Fourier coefficient of $E' (\tau, 0, \Phi)$ and C is a constant that only
depends on F and L. In particular, the arithmetic Siegel–Weil formula holds for $n = 2, 3$ for
non-singular T.

In a very recent joint work with Chao Li [HLSY22], we proved Conjecture 1.1, and so this
theorem is now unconditional.

1.6 Notation

For \mathcal{O}_F-lattices (respectively, \mathcal{O}_F^*-lattices) L and L', we write $L \subset L'$ if $L \subset L' \subset (1/\pi) L$ and
$\dim_{\mathcal{O}_F} (L'/L) = t$ (respectively, $\dim_L (L'/L) = t$). We say a vector $v \in L$ is primitive if $(1/\pi) v \notin L$.

Throughout the paper, we always assume a Hermitian lattice is non-degenerate. For Hermitian
lattices L and L', we use $L \oplus L'$ to denote orthogonal direct sum, and $L \oplus L'$ as direct sum
of lattices. Given a Hermitian lattice L with Hermitian form $(,)$, we consider two different dual
lattices of L. We use L^\perp (respectively, L^\vee) to denote the dual lattice of L with respect to $(,)$
(respectively, \tr_{F/F_0}). Recall that v_L is defined to be $\min \{ v_{\pi} (h (v, v')) | v, v' \in L \}$. For each
Hermitian lattice L, there exists a Jordan decomposition $L = \bigoplus_{i \geq s} L_i$ such that $L_i^2 = \pi^{-i} L_i$. We
call L integral if $s \geq 0$. For an integral lattice L, we define
\[t (L) := \sum_{i \geq 1} \text{rank}_{\mathcal{O}_F} (L_i). \]

Following [LL22, Definition 2.11], for a lattice L with Hermitian form $(,)$, we may find a
basis of L whose Gram matrix is
\[(\beta_1 \pi^{2b_1}) \oplus \cdots \oplus (\beta_s \pi^{2b_s}) \oplus \begin{pmatrix} 0 & \pi^{2c_1+1} \\ -\pi^{-2c_1+1} & 0 \end{pmatrix} \oplus \cdots \oplus \begin{pmatrix} 0 & \pi^{2c_t+1} \\ -\pi^{-2c_t+1} & 0 \end{pmatrix} \]
for some $\beta_1, \ldots, \beta_s \in \mathcal{O}_F^*$ and $b_1, \ldots, b_s, c_1, \ldots, c_t \in \mathbb{Z}$. Moreover, we define its (unitary)
fundamental invariants (a_1, \ldots, a_n) to be the unique non-decreasing rearrangement of
$(2b_1, \ldots, 2b_s, 2c_1 + 1, \ldots, 2c_t + 1)$. The partial order of \mathbb{Z}^n induces a partial order on the set
of fundamental invariants.

Let $\mathcal{H}_i = \((-\pi)^v, \pi^v\)$ and $\mathcal{H} = \mathcal{H}_{-1}$. We also use it to denote a Hermitian lattice with Gram
matrix \mathcal{H}_i. Given a Hermitian lattice M, we use $M^{[k]}$ to denote $M \oplus \mathcal{H}^k$. We use I_m^\prime to denote
a unimodular Hermitian lattice of rank m and $\chi (I_m^\prime) = \epsilon$. For a Hermitian matrix T, we define
$v (T) = v (L)$ where L is a lattice whose Gram matrix is T. We use $\text{Herm}_n (F)$ to denote the set of
Hermitian matrices over F of size n. When there is no confusion, we also simply denote it as
Herm_n. For $T, T' \in \text{Herm}_n (F)$, we say T is equivalent to T' if there is a $U \in \GL_n (\mathcal{O}_F)$ such that
$U^* T U = T'$, where $U^* = U$. In this case, we denote it as $T \simeq T'$.

For $t \in \mathcal{O}_F$, let $v (t) := \text{val}_{\pi} (t)$ and write $t = t_0 (-\pi_0)^{v (t)}$. For $x \in \mathbb{V}$, we set $q (x) = (x, x)$ and
$v (x) = v (q (x))$. We use (t) to denote a lattice $\mathcal{O}_F x$ of rank one with $q (x) = t$.

The notation in each section that is not mentioned here will be explained at the very
beginning of the section.
1.7 The structure of the paper

The paper is divided into three parts. In Part 1, we prove some facts about special cycles for arbitrary \(n \). More specifically, in §2 we recall some basic facts about \(\mathcal{N}^{\text{Kra}} \) and define special cycles and special difference cycles on it. In §3, we compute the intersection number between special cycles and the exceptional divisors. In §4, we prove a decomposition theorem for the horizontal component of \(\mathcal{L}^{\text{Kra}}(L^\flat) \) when \(L^\flat \) has rank \(n-1 \).

Part 2 is about Hermitian local densities. In §5, we study induction formulas of local density polynomials and relate the local density polynomials with primitive local densities. In §6, we show that the coefficients \(c_n^i \) in (1.9) are uniquely determined and give an algorithm to compute them. In §§7 and 8, we compute the local density polynomials when \(n \leq 3 \).

In Part 3 we prove Theorem 1.2, i.e. Conjecture 1.1 for \(n = 3 \). In §9, we study the reduced locus of the special cycles for \(n = 3 \). In §10, we decompose \(\mathcal{L}^{\text{Kra}}(L^\flat) \) for \(L^\flat \) of rank 2 and of valuation 0, and compute the intersection number of \(\mathcal{N}_2^\flat \) with \(\mathcal{Z}^{\text{Kra}}(x) \). Finally, we prove Theorem 1.4, finish the proof of Theorem 1.2 in §11, and explain its global applications in §12.

In Appendix A, we compute the primitive local densities that are used in Part 2 of the paper.

2. RZ space and special cycle

We denote \(\bar{a} \) the Galois conjugate of \(a \in F \) over \(F_0 \). Let \(\text{Nilp}\mathcal{O}_{\bar{F}} \) be the category of \(\mathcal{O}_{\bar{F}} \)-schemes \(S \) such that \(\pi \) is locally nilpotent on \(S \). For such an \(S \), denote its special fiber \(S \times_{\text{Spf}\mathcal{O}_{\bar{F}}} \text{Spec} k \) by \(\bar{S} \). Let \(\sigma \) be the Frobenius element of \(\bar{F}_0/F_0 \).

2.1 RZ spaces

Let \(S \in \text{Nilp}\mathcal{O}_{\bar{F}} \). A \(p \)-divisible strict \(\mathcal{O}_{F_0} \)-module over \(S \) is a \(p \)-divisible group over \(S \) with an \(\mathcal{O}_{F_0} \)-action whose induced action on its Lie algebra is via the structural morphism \(\mathcal{O}_{F_0} \to \mathcal{O}_S \).

Definition 2.1. A formal Hermitian \(\mathcal{O}_F \)-module of dimension \(n \) over \(S \) is a triple \((X, \iota, \lambda) \) where \(X \) is a supersingular \(p \)-divisible strict \(\mathcal{O}_{F_0} \)-module over \(S \) of dimension \(n \) and \(F_0 \)-height \(2n \) (supersingular means the relative Dieudonné module of \(X \) at each geometric point of \(S \) has slope \(\frac{1}{2} \)), \(\iota : \mathcal{O}_F \to \text{End}(X) \) is an \(\mathcal{O}_F \)-action and \(\lambda : X \to X^\vee \) is a principal polarization in the category of strict \(\mathcal{O}_{F_0} \)-modules such that the Rosati involution induced by \(\lambda \) is the Galois conjugation of \(F/F_0 \) when restricted on \(\mathcal{O}_F \). We say \((X, \iota, \lambda) \) satisfies the signature condition (1, \(n - 1 \)) if for all \(a \in \mathcal{O}_F \) we have:

(i) \(\text{char}(\iota(a) \mid \text{Lie} X) = (T - s(a)) \cdot (T - s(\bar{a}))^{n-1} \) where \(s : \mathcal{O}_F \to \mathcal{O}_S \) is the structure morphism;

(ii) the wedge condition proposed in [Pap00],

\[
\wedge^n(\iota(a) - s(a) \mid \text{Lie} X) = 0, \quad \wedge^2(\iota(a) - s(\bar{a}) \mid \text{Lie} X) = 0.
\]

Let \((X, \iota_X, \lambda_X) \) be a formal Hermitian \(\mathcal{O}_F \)-module of dimension \(n \) over \(k \), and \(N \) be its rational relative Dieudonné module. Then \(N \) is an \(2n \)-dimensional \(\bar{F}_0 \)-vector space equipped with a \(\sigma \)-linear operator \(\mathbf{F} \) and a \(\sigma^{-1} \)-linear operator \(\mathbf{V} \). The \(\mathcal{O}_F \)-action \(\iota_X : \mathcal{O}_F \to \text{End}(X) \) induces on \(N \) an \(\mathcal{O}_F \)-action commuting with \(\mathbf{F} \) and \(\mathbf{V} \). We still denote this induced action by \(\iota_X \) and denote \(\iota_X(\pi) \) by \(\pi \). Let \(\tau := \pi \mathbf{V}^{-1} \) and \(C := N^\tau \). Then \(C \) is an \(n \)-dimensional \(F \)-vector space equipped with a Hermitian form \(\langle \cdot, \cdot \rangle_X \) defined using the polarization \(\lambda_X \), see [Shi18, Equation (2.7)].

When \(n \) is odd, there is a unique choice of \((X, \iota_X, \lambda_X) \) up to quasi-isogenies that preserves the polarization by a factor in \(\mathcal{O}_{F_0}^X \). When \(n \) is even, there are two such choices according to the
Q. He, Y. Shi and T. Yang

sign $\epsilon = \chi(C)$ (see (1.1)) of C. See [Shi18, Remark 2.16] and [RTW14, Remark 4.2]. Fix a formal Hermitian O_F-module (Y, ι_Y, λ_Y) of signature $(0, 1)$ over $\text{Spec} \, k$. It is unique up to O_F-linear isomorphisms. Define

$$V = \text{Hom}_{O_F}(Y, X) \otimes \mathbb{Q}, \quad (2.1)$$

which is equipped with a Hermitian form

$$h(x, y) = \lambda^{-1}_Y \circ y^\vee \circ \lambda_X \circ x \in \text{End}_F^0(Y) \overset{\sim}{\rightarrow} F, \quad (2.2)$$

where y^\vee is the dual quasi-homomorphism of y and $\text{End}_F^0(Y)$ is the ring of F-linear quasi-endomorphisms of Y. The Hermitian spaces $(V, h(\cdot))$ and $(C, (\cdot)_X)$ are related by the F-linear isomorphism

$$b : V \rightarrow C, \quad x \mapsto x(e), \quad (2.3)$$

where e is a generator of the relative covariant Dieudonné module $M(Y)$ of Y. Let $(\cdot)_Y$ be the analogue of $(\cdot)_X$ for Y, namely the Hermitian form on the rational relative Dieudonné module of Y defined by λ_Y. By [Shi18, Lemma 3.6], we have

$$h(x, x)(e, e)_Y = (b(x), b(x))_X. \quad (2.4)$$

By scaling the Hermitian form $(\cdot)_Y$ we can assume that

$$(e, e)_Y = 1,$$

so V and C are isomorphic as Hermitian spaces. We will sometimes identify V and C.

Definition 2.2. Fix a formal Hermitian O_F-module (X, ι_X, λ_X) of dimension n over k with the sign $\epsilon = \chi(C)$. The moduli space $N_{n, \epsilon}^{\text{Pap}}$ is the functor sending each $S \in \text{Nilp} \, O_F$ to the groupoid of isomorphism classes of quadruples $(X, \iota, \lambda, \rho)$ where (X, ι, λ) is a formal O_F-module over S of signature $(1, n - 1)$ and $\rho : X \times S \rightarrow X \times \text{Spec} \, k \hat{S}$ is a quasi-morphism of formal O_F-modules of height 0. An isomorphism between two such quadruples $(X, \iota, \lambda, \rho)$ and $(X', \iota', \lambda', \rho')$ is given by an O_F-linear isomorphism $\alpha : X \rightarrow X'$ such that $\rho' \circ (\alpha \times S) = \rho$ and $\alpha^*(\lambda')$ is an $O_{F_0}^\times$ multiple of λ. We drop the subscript ϵ in $N_{n, \epsilon}^{\text{Pap}}$ when we do not emphasize on the sign.

By the discussion before (2.1), when n is odd, two different choices of ϵ give us isomorphic moduli spaces. When n is even, two different choices of ϵ give us two sets of non-isomorphic moduli spaces. By [RTW14], $N_{n, \epsilon}^{\text{Pap}}$ is representable by a formal scheme flat and of relative dimension $n - 1$ over $\text{Spf} \, O_F$. We remark here that although [RTW14] works on the category of p-divisible groups (namely when $F_0 = \mathbb{Q}_p$), their arguments and results easily extend to the category of strict formal O_{F_0}-modules using relative Dieudonné theory or more generally the relative display theory developed in [ACZ16]. When $n = 1$, we have $N_{1, \epsilon}^{\text{Pap}} \cong \text{Spf} \, O_F$. The universal Hermitian O_F-module over N_{1}^{Pap} is the canonical lifting $(G, \iota_G, \lambda_G, \rho_G)$ of (Y, ι_Y, λ_Y) to $\text{Spf} \, O_F$ in the sense of [Gro86]. When $n > 1$, $N_{n, \epsilon}^{\text{Pap}}$ is regular outside the set of superspecial points over $\text{Spec} \, k$, which are the points characterized by the condition $\iota(\pi)|_{\text{Lie} \, X} = 0$. The set of superspecial points is in fact the set of type 0 lattices (see §2.3), hence is isolated and we denote it by Sing.

Definition 2.3. Fix $(\overline{X}, \iota_{\overline{X}}, \lambda_{\overline{X}})$ as in Definition 2.2. The moduli space $N_{n, \overline{x}}^{\text{Kra}}$ is the functor sending each $S \in \text{Nilp} \, O_F$ to the groupoid of isomorphism classes of quintuples $(X, \iota, \lambda, \rho, F)$ where $(X, \iota, \lambda, \rho) \in N_{n, \epsilon}^{\text{Pap}}(S)$ and F is a locally free direct summand of $\text{Lie} \, X$ of rank $n - 1$ as an O_S-module such that O_F acts on $\text{Lie} \, X/F$ by the structural morphism and acts on F by the Galois conjugate of the structural morphism. An isomorphism between two such quintuples $(X, \iota, \lambda, \rho, F)$ and $(X', \iota', \lambda', \rho', F')$ is an isomorphism $\alpha : (X, \iota, \lambda, \rho) \rightarrow (X', \iota', \lambda', \rho')$ in $N_{n, \epsilon}^{\text{Pap}}(S)$.
such that $\alpha^*(\mathcal{F}') = \mathcal{F}$. Again we drop the subscript ϵ in $\mathcal{N}_{n,\epsilon}^{\text{Kra}}$ when we do not emphasize on the sign.

By [Krä03] (see also [Shi22, Proposition 2.7]), the natural forgetful functor $\Phi : \mathcal{N}_n^{\text{Kra}} \rightarrow \mathcal{N}_n^{\text{Pap}}$ forgetting \mathcal{F} is the blow up of $\mathcal{N}_n^{\text{Pap}}$ along its singular locus Sing. For each point $\Lambda \in \text{Sing}$, its inverse image $\Phi^{-1}(\Lambda)$ is an exceptional divisor Exc_Λ isomorphic to \mathbb{P}^{n-1}_k.

2.2 Special cycles

Definition 2.4. For an \mathcal{O}_F-lattice L of V, define $Z^{\text{Pap}}(L)$ to be the subfunctor of $\mathcal{N}_n^{\text{Pap}}$ sending each $S \in \text{Nilp} \mathcal{O}_F$ to the isomorphism classes of tuples $(X, \iota, \lambda, \rho) \in \mathcal{N}_n^{\text{Pap}}(S)$ such that for any $x \in L$ the quasi-homomorphism

$$
\rho^{-1} \circ \iota \circ g : \mathcal{G}_S \rightarrow X \times S \tilde{S}
$$

extends to a homomorphism $\mathcal{G}_S \rightarrow X$. For $x \in \mathbb{F}_m$, we let $Z^{\text{Pap}}(x) := Z^{\text{Pap}}(L)$ where $L = \text{Span}\{x\}$. Let

$$
\mathcal{Z}^{\text{Kra}}(x) = \mathcal{Z}^{\text{Kra}}(L) := Z^{\text{Pap}}(L) \times \mathcal{N}_n^{\text{Pap}} \mathcal{N}_n^{\text{Kra}}.
$$

By Grothendieck–Messing theory $Z^{\text{Pap}}(L)$ (hence, $Z^{\text{Kra}}(L)$) is a closed formal subscheme of $\mathcal{N}_n^{\text{Pap}}(\mathcal{N}_n^{\text{Kra}})$. We sometimes add the subscript n,ϵ to $Z^{\text{Pap}}(L),$ $Z^{\text{Pap}}(x),$ $Z^{\text{Kra}}(L)$ and $Z^{\text{Kra}}(x)$ to indicate their ambient moduli spaces.

Definition 2.5. For an \mathcal{O}_F-lattice $L \subset V$, define $\mathcal{Z}(L)$ to be the strict transform (see the definition after [Har13, Chapter II and Corollary 7.15]) of $Z^{\text{Pap}}(L)$ under the blow up $\mathcal{N}_n^{\text{Kra}} \rightarrow \mathcal{N}_n^{\text{Pap}}$.

Proposition 2.6. Suppose $\chi(V) = \epsilon$. Let L be a self-dual lattice of rank m in V with $\eta = \chi(L)$. We have

$$
Z^{\text{Pap}}_{n,\epsilon}(L) \cong \mathcal{N}_n^{\text{Pap}} \text{ and } \mathcal{Z}_{n,\epsilon}(L) \cong \mathcal{N}_n^{\text{Kra}}.
$$

Proof. Let us start with the case $L = \text{Span}\{x_0\}$ where $x_0 \in V$. Assume that $u = h(x_0, x_0)$. Multiplying the Hermitian form $(\cdot, \cdot)_V$ on C by u^{-1} does not affect the various moduli spaces involved. Thus, we can perform this and assume that $h(x_0, x_0) = 1$. Moreover, the sign of its orthogonal complement in V becomes

$$
\epsilon_1 = \epsilon \cdot \chi(u^{-1}) \cdot \chi(u^{-n-1}) \cdot \chi(-1)^{n-1} = \epsilon \chi(u)^n \chi(-1)^{n-1}.
$$

Then for $(X, \iota, \lambda, \rho) \in Z^{\text{Pap}}_{n,\epsilon}(x_0)(S)$, we define

$$
x_0^* := \lambda^{-1}_g \circ x_0^\vee \circ \lambda, \quad e := x_0 \circ x_0^* \in \text{End}(X).
$$

By the fact that $h(x_0, x_0) = 1$ we know that e is an idempotent. It is routine to check that

$$
((1-e)X, (1-e)\iota, (1-e^\vee)\lambda(1-e), \rho(1-e))
$$

is an object in $\mathcal{N}_{n-1,\epsilon_1}^{\text{Pap}}(S)$. Conversely given $(Y, \iota_Y, \lambda_Y, \rho_Y) \in \mathcal{N}_{n-1,\epsilon_1}^{\text{Pap}}(S)$, the object

$$
(Y \times \mathcal{G}_S, \iota_Y \times \iota_S, \lambda_Y \times \lambda_S, g \circ (\rho_Y \times \rho_S))
$$

is in $Z^{\text{Pap}}_{n,\epsilon}(x_0)(S)$ where $g \in U(V)$ such that $g^{-1}x_0$ is the inclusion $0 \times \text{id} : Y \rightarrow X_{n-1} \times Y$ where X_{n-1} is the framing object of $\mathcal{N}_{n-1,\epsilon_1}^{\text{Pap}}$. The above two functors are inverse to each other. This shows that $Z^{\text{Pap}}_{n,\epsilon}(x_0) \cong \mathcal{N}_{n-1,\epsilon_1}^{\text{Pap}}$. For general L of rank m and determinant u, find a basis with Gram matrix $\{1, \ldots, 1, u\}$ and apply the above result repeatedly. Thus, we have $Z^{\text{Pap}}_{n,\epsilon}(L) \cong$
\[N_{n-m, \epsilon \eta}^{\text{Pap}} \text{ where} \]
\[\epsilon_m = \epsilon \chi(u)^{n-m+1} \chi(-1)^{(n-m)(m+1)/2}. \]

Note that by scaling the Hermitian form by \((-1)^m u\) again we have a \(N_{n-m, \epsilon \eta}^{\text{Pap}} = N_{n-m, \epsilon \eta}^{\text{Pap}} \). It then follows from [Har13, Chapter II and Corollary 7.15] that \(\tilde{Z}_{n, \epsilon}(L) \) is the blow up of \(Z_{n, \epsilon}^{\text{Pap}}(L) \) along its superspecial points, which is \(N_{n-m, \epsilon \eta}^{\text{Kra}} \).

Corollary 2.7. Let \(L \) be as in Proposition 2.6 and \(y \in \mathcal{V} \) such that \(y \perp L \). Then

\[Z_{n, \epsilon}^{\text{Kra}}(y) \cap \tilde{Z}_{n, \epsilon}(L) \cong Z_{n-m, \epsilon \eta}^{\text{Kra}}(y). \]

Remark 2.8. It follows directly from the definition that \(\tilde{Z}(L) \) is a closed sub-formal scheme of \(\tilde{Z}(x_1) \cap \cdots \cap \tilde{Z}(x_r) \) if \(\{x_1, \ldots, x_r\} \) is a basis of \(L \). However, in general, these two cannot be identified.

2.3 Bruhat–Tits stratification

For an \(\mathcal{O}_F \)-lattice \(M \) of \(N \), define \(M^\perp \) to be the dual lattice of \(M \) with respect to the form \((,)_X\).

Recall the following results.

Proposition 2.9 [RTW14, Proposition 2.2 and 2.4]. Let \(\mathcal{N}(k) \) be the set of \(\mathcal{O}_F \)-lattices

\[\mathcal{N}(k) = \{ M \subset C \otimes_F \mathcal{F} \mid M^\perp = M, \pi \tau(M) \subset M \subset \pi^{-1} \tau(M), \dim_k(M + \tau(M))/M \leq 1 \}. \]

Then the map

\[N^{\text{Pap}}(k) \to \mathcal{N}(k), \quad x = (X, \iota, \lambda, \rho) \mapsto M(x) = \rho(M(X)) \subset N \]

is a bijection.

We say a lattice \(\Lambda \subset C \) is a vertex lattice if \(\pi \Lambda \subset \Lambda^\perp \subset \Lambda \) where \(\Lambda^\perp \) is dual lattice of \(\Lambda \) with respect to \((,)_X\), and we call \(t = \dim_q(\Lambda/\Lambda^\perp) \) the type of \(\Lambda \). We denote the set of vertex lattices (respectively, of type \(t \) by \(\mathcal{V} \) (respectively, \(\mathcal{V}^t \)). We say two vertex lattices \(\Lambda_1 \) and \(\Lambda_2 \) are neighbours if \(\Lambda_1 \subset \Lambda_2 \) or \(\Lambda_2 \subset \Lambda_1 \). Then we can define a simplicial complex \(\mathcal{L} \) as follows. When \(n \) is odd or when \(n \) is even and \(C \) is non-split, then an \(r \)-simplex is formed by \(\Lambda_0, \ldots, \Lambda_r \) if any two members of this set are neighbours. When \(n \) is even and \(C \) is split, we refer to discussion before [RTW14, 3.4] for the definition of \(\mathcal{L} \). We also use \(\mathcal{L}_{n, \epsilon} \) to denote \(\mathcal{L} \) if \(C \) has dimension \(n \) and \(\chi(C) = \epsilon \). Again when \(n \) is odd, \(\mathcal{L}_{n,1} = \mathcal{L}_{n,-1} \), hence we use \(\mathcal{L}_{n} \) to denote it.

By results in §§ 4 and 6 of [RTW14], to each \(\Lambda \in \mathcal{V}^t \) we can associate Deligne–Lusztig varieties \(\mathcal{N}_\Lambda \) and \(\mathcal{N}_\Lambda^\infty \) of dimension \(t/2 \), such that
\[\mathcal{N}_\Lambda(k) = \{ M \in \mathcal{N}(k) \mid M \subset \Lambda \otimes_F \mathcal{O}_F \}, \]

and
\[\mathcal{N}_\Lambda^\infty(k) = \{ M \in \mathcal{N}(k) \mid \Lambda(M) = \Lambda \}. \]

Here \(\Lambda(M) \) is the minimal vertex lattice such that \(\Lambda(M) \otimes_F \mathcal{O}_F \) contains \(M \) which always exists by [RTW14, Proposition 4.1]. By Theorem 1.1 of [RTW14], we know that
\[\mathcal{N}_\Lambda : = \bigsqcup_{\mathcal{N} \in \mathcal{L}, \Lambda \subset \mathcal{N}} \mathcal{N}_\Lambda^\infty, \]

and
\[\mathcal{N}_\Lambda^{\text{Pap}} = \bigsqcup_{\Lambda \in \mathcal{L}} \mathcal{N}_\Lambda^\infty. \]
where each \mathcal{N}_Λ is a closed subvariety of $\mathcal{N}_\text{red}^{\text{Pap}}$. By [RTW14], we also know that

$$\mathcal{N}_\Lambda \cap \mathcal{N}_{\Lambda'} = \begin{cases} \mathcal{N}_{\Lambda \cap \Lambda'}, & \text{if } \Lambda \cap \Lambda' \in \mathcal{V}, \\ \emptyset, & \text{otherwise.} \end{cases}$$

For a lattice $L \subset \mathcal{V}$, define

$$\mathcal{V}(L) := \{ \Lambda \in \mathcal{V} \mid L \subseteq \Lambda^2 \} \quad \text{and} \quad \mathcal{V}^d(L) := \{ \Lambda \in \mathcal{V}^d \mid L \subseteq \Lambda^2 \}.$$ \hfill (2.5)

When $L = \text{Span}\{x\}$ we also denote $\mathcal{V}(L)$ (respectively, $\mathcal{V}^d(L)$) by $\mathcal{V}(x)$ (respectively, $\mathcal{V}^d(x)$). For any subset S of \mathcal{V}, we define $\mathcal{L}(S)$ to be the subcomplex of \mathcal{L} such that a simplex is in $\mathcal{L}(S)$ if and only if every vertex in it is in S. For a lattice L of \mathcal{V} and $x \in C$, define

$$\mathcal{L}(L) = \mathcal{L}(\mathcal{V}(L)).$$ \hfill (2.6)

When $L = \text{Span}\{x\}$ we also denote $\mathcal{L}(L)$ by $\mathcal{L}(x)$.

2.4 Horizontal and vertical part

A formal scheme X over $\text{Spf} \mathcal{O}_F$ is called horizontal (respectively, vertical) if it is flat over $\text{Spf} \mathcal{O}_F$ (respectively, π is locally nilpotent on \mathcal{O}_X). For a formal scheme X over $\text{Spf} \mathcal{O}_F$, its horizontal part X_h is canonically defined by the ideal sheaf $\mathcal{O}_{X,\text{tor}}$ of torsion sections on \mathcal{O}_X. If X is Noetherian, there exists a $m \in \mathbb{Z}_{>0}$ such that $\pi^m \mathcal{O}_{X,\text{tor}} = 0$. We define the vertical part $X_v \subset X$ to be the closed formal subscheme defined by the ideal sheaf $\pi^m \mathcal{O}_X$. Since $\mathcal{O}_{X,\text{tor}} \cap \pi^m \mathcal{O}_X = \{0\}$, we have the following decomposition by primary decomposition:

$$X = X_h \cup X_v.$$ \hfill (2.7)

as a union of horizontal and vertical formal subschemes. Note that the horizontal part X_h is canonically defined whereas the vertical part X_v depends on the choice of m.

Lemma 2.10. For a lattice $L^b \subset \mathcal{V}$ of rank greater or equal to $n - 1$ with non-degenerate Hermitian form, $\mathcal{Z}^{\text{Kra}}(L^b)$ is Noetherian.

Proof. The lemma can be proved as in [LZ22a, Lemma 2.9.2]. \hfill \Box

Lemma 2.11. For a rank $n - 1$ lattice $L^b \subset \mathcal{V}$ with non-degenerate Hermitian form, $\mathcal{Z}^{\text{Kra}}(L^b)_{\text{red}}$ is supported on the reduced locus $\mathcal{N}^{\text{Kra}}_{\text{red}}$ of \mathcal{N}^{Kra}, i.e. $\mathcal{O}_{\mathcal{Z}^{\text{Kra}}(L^b)}$ is annihilated by a power of the ideal sheaf of $\mathcal{N}^{\text{Kra}}_{\text{red}}$.

Proof. The proof is the same as that of [LZ22a, Lemma 5.1.1]. \hfill \Box

2.5 Derived special cycles

For a locally Noetherian formal scheme X together with a formal subscheme Y, denote by $K_0^Y(X)$ the Grothendieck group of finite complexes of coherent locally free \mathcal{O}_X-modules acyclic outside Y. For such a complex A^\bullet, denote by $[A^\bullet]$ the element in $K_0^Y(X)$ represented by it. We use $K_0(X)$ to denote $K_0^X(X)$. Denote by $F^iK_0^Y(X)$ the codimension i filtration on $K_0^Y(X)$ and $\text{Gr}^iK_0^Y(X)$ its ith graded piece. We have a cup product \cdot on $K_0^Y(X)$ defined by tensor product of complexes:

$$[A_1^\bullet] \cdot [A_2^\bullet] = [A_1^\bullet \otimes A_2^\bullet].$$

When X is a scheme, the cup product satisfies [SABK94, §I.3 and Theorem 1.3]

$$F^iK_0^Y(X)_{\mathbb{Q}} \cdot F^jK_0^Y(X)_{\mathbb{Q}} \subset F^{i+j}K_0^Y(X)_{\mathbb{Q}}.$$ \hfill (2.8)

It is expected that (2.8) is also true when X is a formal scheme. We only need special cases of this fact which can be checked directly; see, for example, Lemmas 3.4 and 10.1.

1685
Let $K'_0(Y)$ be the Grothendieck group of coherent sheaves of \mathcal{O}_Y-modules on Y. When X is regular we have the following isomorphism:

$$K'_0(X) \cong K'_0(Y).$$ \hfill (2.9)

In particular, $K_0(X) \cong K'_0(X)$.

When X is a regular scheme of dimension d, there is an isomorphism of graded rings defined by the Chern character:

$$\text{ch} : K_0(X)_\mathbb{Q} \cong \bigoplus_{i=1}^d \text{CH}^i(X)_\mathbb{Q}. \hfill (2.10)$$

Recall that for $x \in V$, $Z^{\text{Kra}}_n(x)$ is a divisor, see [How19, Proposition 4.3].

Definition 2.12. For $x = (x_1, \ldots, x_r) \in V^r$, define $L^{Z^{\text{Kra}}_n}(x)$ to be

$$[\mathcal{O}_{Z^{\text{Kra}}_n(x_1)} \otimes \mathcal{O}_{Z^{\text{Kra}}_n(x_2)} \otimes \cdots \otimes \mathcal{O}_{Z^{\text{Kra}}_n(x_r)}] \in K'_0(Z^{\text{Kra}}_n(X)_\mathbb{Q}), \hfill (2.11)$$

where \otimes is the derived tensor product of complexes of coherent locally free sheaves on Z^{Kra}_n.

By [How19, Theorem B], $L^{Z^{\text{Kra}}_n}(x)$ only depends on $L := \text{Span}\{x\}$, hence can be denoted as $L^{Z^{\text{Kra}}_n}(L)$.

Definition 2.13. When L has rank n, we define the intersection number

$$\text{Int}(L) = \chi(N^{Z^{\text{Kra}}_n}(L)), \hfill (2.12)$$

where χ is the Euler characteristic.

Lemma 2.14. The subscheme $Z^{\text{Kra}}_n(L)$ is properly supported on $N^{Z^{\text{Kra}}_n}$, In particular, $\text{Int}(L)$ is finite.

Proof. This can be proved exactly the same way as [LZ22a, Lemma 2.10.1]. \hfill \square

2.6 Special difference cycles

Conjecture 1.1 and Theorem 5.2 motivate us to make the following definition.

Definition 2.15. For $L \subset V$ a rank ℓ lattice, define the special difference cycle $D(L) \in K'_0(Z^{\text{Kra}}_n(L)_\mathbb{Q})$ by

$$D(L) = L^{Z^{\text{Kra}}_n}(L) + \sum_{i=1}^{\ell} (-1)^i q^{(i-1)/2} \sum_{L \subset L' \subset L} \text{dim}_{q}(L'/L) = i Z^{\text{Kra}}_n(L'). \hfill (2.13)$$

One interesting observation is the following decomposition of $L^{Z^{\text{Kra}}_n}(L)$.

Lemma 2.16. For $L \subset V$ a lattice of rank ℓ, we have the following identity in $K'_0(Z^{\text{Kra}}_n(L)_\mathbb{Q})$ where the summation is finite:

$$L^{Z^{\text{Kra}}_n}(L) = \sum_{L' \text{ integral}} D(L'). \hfill (2.14)$$

Proof. First, if L is not integral, neither is L' if $L \subset L'$. In this case $L^{Z^{\text{Kra}}_n}(L) = 0$ and the summation index on the right-hand side of the identity in the lemma is empty. This proves the
Lemma 3.1. Assume that Z is a formal subscheme of locally free sheaves on $N_{\Lambda} = \dim m$.

For L' with $L \subseteq L' \subset (1/\pi)L$, we have
\[
\mathbb{L}Z^{K\text{ra}}(L') = \sum_{L \subseteq L' \subseteq L_F} \mathcal{D}(L'')
\]
by the induction hypothesis. Combining this with (2.12), we can write
\[
\mathbb{L}Z^{K\text{ra}}(L) = \sum_{L \subseteq L'' \subseteq L_F} m(L'')\mathcal{D}(L'')
\]
where $m(L'') \in \mathbb{Z}$. Now it suffices to show $m(L'') = 1$ for any L'' such that $L \subseteq L'' \subseteq L_F$.

First, note that $m(L) = 1$. For any L'' such that $L \subseteq L'' \subseteq L_F$, let $M' = (1/\pi)L \cap L''$ and $m = \dim_{\mathcal{E}_q}(M'/L)$. We have
\[
m(L'') = -\sum_{i=1}^{m} (-1)^i q^{i(i-1)/2} \sum_{L \subseteq L' \subseteq M': \dim_{\mathcal{E}_q}(L'/L) = i} = 1
\]
by evaluating the identity in the corollary to [Tam63, Lemma 12] at $t = 1$.

Remark 2.17. When $\ell = 1$ and $L = \text{Span}(x)$, the Cartier divisor
\[
\mathcal{D}(L) = Z(x) - Z\left(\frac{1}{\pi}x\right)
\]
is the difference divisor $\mathcal{D}(x)$ defined in [Ter13, Definition 2.10].

Definition 2.18. Assume $L = L_1 \oplus L_2$, where L_i is of rank n_i and $n_1 + n_2 = n$. We define
\[
\text{Int}(L)^{(n_1)} = \chi(N_{\Lambda} \cap L_1 \cdot \mathbb{L}Z^{K\text{ra}}(L_2)).
\]
Notice that $\text{Int}(L)^{(n_1)}$ depends on the decomposition $L = L_1 \oplus L_2$.

3. Special cycles and exceptional divisors

For a formal subscheme Z of N_{Λ}, we use the notation \otimes_Z (respectively, \otimes_Z^+) instead of $\otimes_{\mathcal{O}_Z}$ (respectively, $\otimes_{\mathcal{O}_Z}^+$). We also simply write \otimes (respectively, \otimes^+) instead of $\otimes_{N_{\Lambda}}$ (respectively, $\otimes_{X_{\Lambda}}$). Let us first recall the following distribution law of derived tensor product. In this section, we identify V with C by the isomorphism b defined in (2.3).

Lemma 3.1. Assume that \mathcal{A}_i ($1 \leq i \leq k$) is in the derived category of bounded coherent sheaves on N_{Λ} and $i : Z \rightarrow N_{\Lambda}$ is a closed embedding of formal subscheme. Then the following identity holds in the derived category of bounded coherent sheaves on Z:
\[
i^*(\mathcal{A}_1 \otimes^L \cdots \otimes^L \mathcal{A}_k \otimes^L \mathcal{O}_Z) = i^*(\mathcal{A}_1 \otimes^L \mathcal{O}_Z) \otimes^L_Z \cdots \otimes^L_Z i^*(\mathcal{A}_k \otimes^L \mathcal{O}_Z).
\]

Proof. We can take locally free representatives of \mathcal{A}_i of \mathcal{A}_i. Then $\mathcal{A}_1 \otimes^L \cdots \otimes^L \mathcal{A}_k$ is again a complex of locally free sheaves on N_{Λ}, hence a locally free representatives of $\mathcal{A}_1 \otimes^L \cdots \otimes^L \mathcal{A}_k$. Hence, $i^*(\mathcal{A}_1 \otimes^L \cdots \otimes^L \mathcal{A}_k \otimes^L \mathcal{O}_Z)$ can be represented by $\mathcal{A}_1 \otimes^L \cdots \otimes^L \mathcal{A}_k \otimes \mathcal{O}_Z$. Meanwhile $\mathcal{A}_1 \otimes \mathcal{O}_Z$ is a representative of $\mathcal{A}_1 \otimes^L \mathcal{O}_Z$ in the derived category of bounded coherent sheaves on N_{Λ} and is also a complex of locally free sheaves on Z. Hence $i^*(\mathcal{A}_1 \otimes^L \mathcal{O}_Z) \otimes^L_Z \cdots \otimes^L_Z i^*(\mathcal{A}_k \otimes^L \mathcal{O}_Z)$ can be represented by $(\mathcal{A}_1 \otimes \mathcal{O}_Z) \otimes Z \cdots \otimes Z (\mathcal{A}_k \otimes \mathcal{O}_Z)$. Now by the distribution law of tensor products.
we have
\[A_1^* \otimes \cdots \otimes A_k^* \otimes \mathcal{O}_Z = (A_1^* \otimes \mathcal{O}_Z) \otimes \cdots \otimes (A_k^* \otimes \mathcal{O}_Z). \]
This finishes the proof of the lemma.

Proposition 3.2. Assume that the dimension of \(V \) is \(n \geq 2 \). Then for each \(\mathbf{x} \in V \), \(\mathcal{Z}^{\text{Kra}}(\mathbf{x}) \) is a divisor. Moreover, we have the following decomposition of Cartier divisors:
\[\mathcal{Z}^{\text{Kra}}(\mathbf{x}) = \hat{\mathcal{Z}}(\mathbf{x}) + \sum_{\Lambda \in \mathcal{P}^0, \mathbf{x} \in \Lambda} (m_\Lambda(\mathbf{x}) + 1) \text{Exc}_\Lambda, \]
where \(m_\Lambda(\mathbf{x}) \) is the largest integer \(m \) such that \(\pi^{-m} \cdot \mathbf{x} \in \Lambda \).

Proof. The fact that \(\mathcal{Z}^{\text{Kra}}(\mathbf{x}) \) is a divisor is due to [How19, Proposition 4.3]. By [Shi18, Proposition 3.7], the superspecial point corresponding to a type 0 lattice \(\Lambda \) is in \(\mathcal{Z}^{\text{Pap}}(\mathbf{x}) \) if and only if \(\mathbf{x} \in \Lambda \). Hence, \(\text{Exc}_\Lambda \subset \mathcal{Z}^{\text{Kra}}(\mathbf{x}) \) if and only if \(\mathbf{x} \in \Lambda \). Since \(N_{n,\epsilon}^{\text{Kra}} \) is regular, we must have a decomposition as in (3.1) and the only job left is to determine the multiplicity of each \(\text{Exc}_\Lambda \).

Fix a type 0 lattice \(\Lambda \) and let \(m := m_\Lambda(\mathbf{x}) \). Then \(\pi^{-m} \cdot \mathbf{x} \) is a primitive vector in \(\Lambda \). By Lemma A.3, there exists a decomposition
\[\Lambda = \Lambda_2 \oplus \Lambda', \]
where \(\Lambda_2 \) and \(\Lambda' \) are unimodular lattices of rank 2 and \(n - 2 \), respectively, and \(\pi^{-m} \cdot \mathbf{x} \in \Lambda_2 \).

Let \(\eta = \chi(\Lambda') \). By applying Proposition 2.6, we see that \(\hat{\mathcal{Z}}_{n,\epsilon}(\Lambda') \cong N_{2,\epsilon\eta}^{\text{Kra}} \). Moreover, we have the following proper intersections
\[\mathcal{Z}^{\text{Kra}}_{n,\epsilon}(\mathbf{x}) \cap \hat{\mathcal{Z}}_{n,\epsilon}(\Lambda') = \mathcal{Z}^{\text{Kra}}_{2,\epsilon\eta}(\mathbf{x}), \quad \hat{\mathcal{Z}}_{n,\epsilon}(\mathbf{x}) \cap \hat{\mathcal{Z}}_{n,\epsilon}(\Lambda') = \hat{\mathcal{Z}}_{2,\epsilon\eta}(\mathbf{x}), \]
and
\[\text{Exc}_\Lambda \cap \hat{\mathcal{Z}}_{n,\epsilon}(\Lambda') = \text{Exc}_{\Lambda_2}, \]
where \(\text{Exc}_{\Lambda_2} \) is the exceptional divisor in \(N_{2,\epsilon\eta}^{\text{Kra}} \) corresponding to the vertex lattice \(\Lambda_2 \). Hence, the multiplicity of \(\text{Exc}_\Lambda \) in \(\mathcal{Z}^{\text{Kra}}_{n,\epsilon}(\mathbf{x}) \) is the same as the multiplicity of \(\text{Exc}_{\Lambda_2} \) in \(\mathcal{Z}^{\text{Kra}}_{2,\epsilon\eta}(\mathbf{x}) \). Now the proposition follows from [Shi22, Theorem 4.6] and [HSY23, Theorem 4.1].

The Chow ring \(\text{CH}^*(\text{Exc}_\Lambda) \cong \text{Gr}^*_{K\text{a}}(\text{Exc}_\Lambda) \) is isomorphic to \(\mathbb{Z}[H_\Lambda]/(H_\Lambda^{n-1} - 1) \) where \(H_\Lambda \) is the hyperplane class of \(\text{Exc}_\Lambda \) represented by any \(\mathbb{P}^{n-2} \) in \(\text{Exc}_\Lambda \).

Proposition 3.3. Assume \(\dim V = n \geq 2 \). Assume \(\mathbf{x} \in V \) such that \(h(\mathbf{x}, \mathbf{x}) \neq 0 \) and \(\Lambda \) is a type 0 vertex lattice containing \(\mathbf{x} \). Let \(m := m_\Lambda(\mathbf{x}) \) as in Proposition 3.2. Then \(\hat{\mathcal{Z}}(\mathbf{x}) \) and \(\text{Exc}_\Lambda \) intersect properly and
\[[\mathcal{O}_{\hat{\mathcal{Z}}(\mathbf{x}) \cap \text{Exc}_\Lambda}] = (2m + 1)H_\Lambda \in \text{CH}^4(\text{Exc}_\Lambda). \]

Proof. First \(\hat{\mathcal{Z}}(\mathbf{x}) \) and \(\text{Exc}_\Lambda \) are Cartier divisors with no common component, so they intersect properly. Let \(m = m_\Lambda(\mathbf{x}) \) and \(\mathbf{x}' := \pi^{-m} \cdot \mathbf{x} \). By assumption \(m \geq 0 \). By Proposition 5.9, we have
\[\{ v \in \Lambda \mid h(\mathbf{x}', v) = 0 \} = \text{Span}\{\mathbf{y}\} \oplus \Lambda', \]
where \(v(\mathbf{y}) = v(\mathbf{x}') \) and \(\Lambda' \) is unimodular. Let \(\eta = \chi(\Lambda') \) and
\[\Lambda_2 := \{ v \in \Lambda \mid v \perp \Lambda' \}. \]

\(\Lambda_2 \) is rank 2 unimodular and contains \(\mathbf{x}' \).

By Proposition 2.6, we have \(\hat{\mathcal{Z}}(\Lambda') \cong N_{2,\epsilon\eta}^{\text{Kra}} \). In particular, \(\hat{\mathcal{Z}}(\Lambda') \) is regular. By Corollary 2.7, we know that \(\hat{\mathcal{Z}}(\Lambda') \cap \hat{\mathcal{Z}}(\mathbf{x}) = \hat{\mathcal{Z}}_{2,\epsilon\eta}(\mathbf{x}) \). In particular, \(\hat{\mathcal{Z}}(\Lambda') \) and \(\hat{\mathcal{Z}}(\mathbf{x}) \) intersect properly as
\(\tilde{Z}_{2, \epsilon \eta}(x) \) is a divisor in \(\mathcal{N}_{2, \epsilon \eta}^{\text{Kra}} \). On the other hand, \(\tilde{Z}(\Lambda') \cap \text{Exc}_A \) is the exceptional divisor \(\text{Exc}_{A_2} \) in \(\mathcal{N}_{2, \epsilon \eta}^{\text{Kra}} \). Since \(\text{Exc}_A \cong \mathbb{P}^{n-1}_k \), it is also regular. Our strategy is to compute the intersection number
\[
\chi \left(\mathcal{N}_{\text{Kra}}^{A}, \mathcal{O}_{\tilde{Z}(x)} \otimes \mathcal{O}_{\text{Exc}_A} \otimes \mathcal{O}_{\tilde{Z}(\Lambda')} \right)
\]
in two different ways. By Lemma 3.1, one way is
\[
\chi \left(\tilde{Z}(\Lambda'), \mathcal{O}_{\tilde{Z}(\Lambda') \cap \tilde{Z}(x)} \otimes \mathcal{O}_{\tilde{Z}(\Lambda') \cap \text{Exc}_A} \right), \tag{3.2}
\]
where we use the fact that the intersections \(\tilde{Z}(\Lambda') \cap \tilde{Z}(x) \) and \(\tilde{Z}(\Lambda') \cap \text{Exc}_A \) are proper (see, for example, [Zha21, Lemma B.2]). The other way is, by Lemma 3.1,
\[
\chi \left(\text{Exc}_A, \mathcal{O}_{\tilde{Z}(x) \cap \text{Exc}_A} \otimes \mathcal{O}_{\tilde{Z}(\Lambda') \cap \text{Exc}_A} \right). \tag{3.3}
\]
When \(\epsilon \eta = -1 \), by Proposition 3.11 and Theorem 4.5 of [Shi22], we know that (3.2) is equal to \(2m + 1 \). When \(\epsilon \eta = 1 \), by Lemma 3.10, Theorem 4.1 and Lemma 5.2 of [HSY23], we know that (3.2) is equal to \(2m + 1 \) as well. Since the intersection number of \(H_A \) with \(\text{Exc}_{A_2} \cong \mathbb{P}^{1}_k \) in \(\text{Exc}_A \) is 1, the proposition follows.

3.1 Intersection numbers involving the exceptional divisors

Lemma 3.4. The class of \(\mathcal{O}_{\text{Exc}_A} \otimes L^{0} \cdots \otimes L^{m} \mathcal{O}_{\text{Exc}_A} \) in \(\text{CH}^{m-1}(\text{Exc}_A) \) is \((-2H_A)^{m-1} \).

Proof. To study this intersection, it suffices to consider the local model \(N^{\text{Kra}} \) constructed in [Krä03]. Let \(N^{\text{Kra}} \) be its special fiber. Recall by [Krä03, (4.11)], we have
\[
N_{s}^{\text{Kra}} = \text{Exc} + Z_2
\]
as Cartier divisors where \(\text{Exc} \) is the exceptional divisor of \(N^{\text{Kra}} \) and \(Z_2 \) is a divisor in \(N^{\text{Kra}} \) which intersect properly with \(\text{Exc} \). Their intersection is \(2H \) where \(H \) is the hyperplane class of \(\text{Exc} \). Since \(\text{Exc} \) is properly supported on \(N^{\text{Kra}} \), we have
\[
[\mathcal{O}_{\text{Exc}} \otimes L^{0} \mathcal{O}_{N^{\text{Kra}}}] = 0.
\]
Hence,
\[
0 = [\mathcal{O}_{\text{Exc}} \otimes L^{0} \mathcal{O}_{N^{\text{Kra}}}]
= [\mathcal{O}_{\text{Exc}} \otimes L^{0} \mathcal{O}_{\text{Exc}}] + [\mathcal{O}_{\text{Exc}} \otimes L^{0} \mathcal{O}_{Z_2}]
= [\mathcal{O}_{\text{Exc}} \otimes L^{0} \mathcal{O}_{\text{Exc}}] + 2H.
\]
This proves the lemma when \(m = 2 \). The general case now follows from Lemma 3.1. \(\square \)

Corollary 3.5. Let \(\Lambda \in \mathcal{V}^0 \) and \(x \in \Lambda \). Then we have the following identity in \(\text{CH}^{1}(\text{Exc}_A) \):
\[
[\mathcal{O}_{\text{Exc}_A} \otimes L^{0} \mathcal{O}_{\text{Kra}(x)}] = -H_A.
\]

Proof. By Propositions 3.2, 3.3 and Lemma 3.4, we have the following identity in \(\text{CH}^{1}(\text{Exc}_A) \):
\[
[\mathcal{O}_{\text{Kra}(x)} \otimes L^{0} \mathcal{O}_{\text{Exc}_A}] = \left[(2m(\Lambda) + 1) - 2(m(\Lambda) + 1) \right] H_A = -H_A.
\]
This finishes the proof of the corollary. \(\square \)

Corollary 3.6. Assume that \(n - m \geq 1 \) and \(\text{Exc}_A \subset \mathcal{Z}^{\text{Kra}}(x_1) \cap \ldots \cap \mathcal{Z}^{\text{Kra}}(x_m) \), then
\[
\chi(A^{\text{Kra}}_n, \mathcal{O}_{\mathcal{Z}^{\text{Kra}}(x_1)} \otimes \ldots \otimes \mathcal{O}_{\mathcal{Z}^{\text{Kra}}(x_m)} \otimes \mathcal{O}_{\text{Exc}_A} \otimes L^{0} \cdots \otimes L^{n-m} \mathcal{O}_{\text{Exc}_A}) = (-1)^{n-1} \cdot 2^{n-m-1}.
\]
Proof. By Corollary 3.5, Lemmas 3.1 and 3.4, we have

\[\chi(N^{\text{kra}}_n, \mathcal{O}_{\text{kra}(x_1)} \otimes L \ldots \otimes \mathcal{O}_{\text{kra}(x_m)} \otimes L^{n-m} \mathcal{O}_{\text{exc}} \otimes L \ldots \otimes L \mathcal{O}_{\text{exc}}) \]

\[= \chi(\text{exc}_\Lambda, (-H_\Lambda) \otimes L^m \mathcal{O}_{\text{exc}} \otimes L^{m-1} \mathcal{O}_{\text{exc}} (-2H_\Lambda)) \]

\[= (-1)^m \cdot (-2)^{n-m-1}. \] \(\blacksquare\)

For \(\Lambda \in \mathcal{V}^0 \), let \(\mathcal{P}_k \) be any \(\mathcal{P}_k \) in \(\text{exc}_\Lambda \), and

\[\text{int}_\Lambda(x) = \chi(N^{\text{kra}}_n, \mathcal{O}_{\text{kra}(x)} \otimes L \mathcal{O}_{\mathcal{P}_1}). \] (3.4)

Corollary 3.7. For \(\Lambda \in \mathcal{V}^0 \), we have

\[\chi(N^{\text{kra}}_n, \mathcal{O}_{\text{exc}} \otimes L \mathcal{O}_{\mathcal{P}_1}) = -2. \] (3.5)

Proof. By Lemma 3.4, we have

\[\chi(N^{\text{kra}}_n, \mathcal{O}_{\text{exc}} \otimes L \mathcal{O}_{\mathcal{P}_1}) \]

\[= \chi(N^{\text{kra}}_n, \mathcal{O}_{\text{exc}} \otimes L (\mathcal{O}_{\text{exc}} \otimes \mathcal{O}_{\mathcal{P}_1})) \]

\[= \chi(\text{exc}_\Lambda, (\mathcal{O}_{\text{exc}} \otimes L \mathcal{O}_{\text{exc}}) \otimes \mathcal{O}_{\mathcal{P}_1}) \]

\[= -2\chi(\text{exc}_\Lambda, H_\Lambda \cdot [\mathcal{O}_{\mathcal{P}_1}]) \]

\[= -2. \] \(\blacksquare\)

Corollary 3.8. For \(\Lambda \in \mathcal{V}^0 \), we have

\[\text{int}_\Lambda(x) = -1_\Lambda(x). \]

Proof. If \(x \notin \Lambda \), then the intersection number is apparently 0. Otherwise, by Corollary 3.5 we have

\[\chi(N^{\text{kra}}_n, \mathcal{O}_{\text{kra}(x)} \otimes L \mathcal{O}_{\mathcal{P}_1}) \]

\[= \chi(\text{exc}_\Lambda, (\mathcal{O}_{\text{kra}(x)} \otimes L \mathcal{O}_{\text{exc}}) \otimes \mathcal{O}_{\mathcal{P}_1}) \]

\[= -\chi(\text{exc}_\Lambda, H_\Lambda \cdot [\mathcal{O}_{\mathcal{P}_1}]) \]

\[= -1. \] \(\blacksquare\)

The above results suggest that the difficulty in computing \(\text{int}(L) \) mainly lies in computing

\[\chi(N^{\text{kra}}_n, \mathcal{O}_{\text{kra}(x_1)} \otimes L \ldots \otimes L \mathcal{O}_{\text{kra}(x_n)}). \]

We end this section by studying the intersection number of difference cycle with exceptional divisors.

Lemma 3.9. If \(L^b \) has rank \(n-1 \), then for any \(\Lambda \in \mathcal{V}^0(L^b) \), we have

\[\chi(N^{\text{kra}}_n, \mathcal{D}(L^b) \cdot [\mathcal{O}_{\text{exc}_\Lambda}]) = \begin{cases} (-1)^{n-1}, & \text{if } L^b = \Lambda \cap L^b_{F}, \\ 0, & \text{otherwise.} \end{cases} \]

Remark 3.10. We have \(L^b = \Lambda \cap L^b_{F} \) if and only if \(L^b \) is of type (see (4.2) and Lemma 4.3) 1 or 0 and \(\Lambda \) is at the boundary of the \(L(L^b) \).
Proof. Define
\[M' := \frac{1}{\pi} L^b \cap \Lambda \quad \text{and} \quad m := \dim_{\overline{F}}(M'/L^b). \]

Then for \(L' \) such that \(L^b \subseteq L' \subseteq (1/\pi)L^b \), we know that \(\mathcal{Z}^{\text{Kra}}(L') \) intersects \(\text{Exc}_\Lambda \) if and only if \(L' \subseteq M' \). For such \(L' \), by Corollary 3.6, we have
\[
\chi(\mathcal{N}^{\text{Kra}}, \mathcal{D}(L^b) \cdot [\mathcal{O}_{\text{Exc}_\Lambda}]) = (-1)^{n-1}. \tag{3.6}
\]

Hence,
\[
\chi(\mathcal{N}^{\text{Kra}}, \mathcal{D}(L^b) \cdot [\mathcal{O}_{\text{Exc}_\Lambda}]) = (-1)^{n-1} \left[1 + \sum_{i=1}^{m} (-1)^i i^{i-1/2} \sum_{L^b \subseteq L' \subseteq M'} 1 \right].
\]

Note that \(m = 0 \) if and only if \(M' = L^b \) which is equivalent to the condition \(L^b = \Lambda \cap L^b \). In this case the summation in (4.8) is over an empty set, hence (4.8) is equal to 1. If \(m > 0 \) we know (4.8) is equal to 0 by (2.13).

4. Horizontal components of special cycles

Given an integral Hermitian lattice \(L \), we can have its Jordan decomposition:
\[
L = \bigoplus_{t \geq 0} L_t, \tag{4.1}
\]

where \(L_t \) is \(\pi^t \)-modular, see [Jac62]. Define the type of \(L \) to be
\[
t(L) = \sum_{t \geq 1} \text{rank}_{\mathcal{O}_F}(L_t). \tag{4.2}
\]

4.1 Quasi-canonical lifting cycles

Assume that \(\dim(V) = 2 \). When \(\chi(V) = -1 \) for \(y \in V \), by [Shi22, Theorem 4.5], we have the following equality of Cartier divisors on \(\mathcal{N}^{\text{Kra}}_{2,-1} \):
\[
\tilde{Z}_{2,-1}(y) = Z_0 + \sum_{s=1}^{v(y)} (Z_s^+ + Z_s^-).
\]

Here \(Z_0 \) (respectively, \(Z_s^\pm \)) is a canonical (respectively, quasi-canonical) lifting cycle of level 0 (respectively, \(s \)), see [Shi22, §3]. Moreover by [Shi22, Proposition 3.12], \(Z_s^+ \) and \(Z_s^- \) do not intersect when \(s \geq 1 \). Let \(\mathcal{O}_s := \mathcal{O}_{F_0} + \mathcal{O}_F \cdot \pi_s^6 \) and \(M_s \) be the finite abelian extension of \(\overline{F} \) corresponding to the subgroup \(\mathcal{O}_s^\times \) under local class field theory. Let \(W_s \) be the integral closure of \(\mathcal{O}_F \) in \(M_s \). Then we have \(Z_0 \cong \text{Spf} \mathcal{O}_F \) and \(Z_s^\pm \cong \text{Spf} W_s \). Define the primitive part of \(\tilde{Z}_{2,-1}(y) \) to be
\[
\tilde{Z}_{2,-1}(y)^\circ := \begin{cases} Z_{v(y)}^+ + Z_{v(y)}^-, & \text{if } v(y) > 0, \\ Z_0, & \text{if } v(y) = 0. \end{cases}
\]

When \(\chi(V) = 1 \), for \(y \in V \) such that \(v(y) \geq 0 \), by [HSY23, Theorem 4.1], we have the following equality of Cartier divisors on \(\mathcal{N}^{\text{Kra}}_{2,1} \):
\[
\tilde{Z}_{2,1}(y) = Z_0 + Z_v(y),
\]

1691
Definition 4.1. Let \mathcal{Z} be a rank n equipped with the Hermitian form (\cdot, \cdot). In particular, $\tilde{\mathcal{Z}}$ is the canonical lifting cycle and $\mathcal{Z}_v(y)$ is a Cartier divisor whose structure sheaf is annihilated by π^N for some $N > 0$. Define the primitive horizontal part of $\tilde{\mathcal{Z}}_{2,1}(y)$ as

$$\tilde{\mathcal{Z}}_{2,1}(y)^0 := \begin{cases} 0, & \text{if } v(y) > 0, \\ \mathcal{Z}, & \text{if } v(y) = 0. \end{cases}$$

4.2 Horizontal cycles

Definition 4.2. Let M^\flat be a rank $n - 1$ integral lattice in V. We say that M^\flat is horizontal if one of the following conditions is satisfied:

1. M^\flat is unimodular;
2. M^\flat is of the form $M^\flat = M \oplus \text{Span}\{y\}$ where M is a unimodular sublattice of rank $n - 2$ such that $(M_F)\perp$ (the perpendicular complement of M_F in V) is non-split.

Note that condition (2) is independent of the choice of M. We denote the set of horizontal lattices by Hor.

For a rank $n - 1$ integral lattice L^\flat, define

$$\text{Hor}(L^\flat) := \{M^\flat \in \text{Hor} | L^\flat \subseteq M^\flat\}. \quad (4.3)$$

Let $M^\flat \subset V$ be a lattice of rank $n - 1$ and type 1 or 0. We can decompose M^\flat as

$$M^\flat = M \oplus \text{Span}\{y\}, \quad (4.4)$$

for some unimodular lattice M of rank $n - 2$. Then Proposition 2.6 and its corollary imply that

$$\tilde{\mathcal{Z}}(M^\flat) \cong \tilde{\mathcal{Z}}_{2,\chi((M_F)\perp)}(y).$$

Under this isomorphism, define $\tilde{\mathcal{Z}}(M^\flat)^0$ to be the formal subscheme of $\tilde{\mathcal{Z}}(M^\flat)$ isomorphic to $\tilde{\mathcal{Z}}_{2,\chi((M_F)\perp)}(y)^0$. By the discussion in §4.1, $\tilde{\mathcal{Z}}(M^\flat)^0$ is nonempty if and only if $M^\flat \in \text{Hor}$, in which case it consists of the union of irreducible components of $\tilde{\mathcal{Z}}(M^\flat)$ isomorphic to $\text{Spf} W_s$. In particular, $\tilde{\mathcal{Z}}(M^\flat)^0$ is independent of the choice of M.

Theorem 4.2. Let L^\flat be a rank $n - 1$ integral lattice in V, then

$$\mathcal{Z}^{\text{Kra}}(L^\flat)_h = \bigcup_{M^\flat \in \text{Hor}(L^\flat)} \tilde{\mathcal{Z}}(M^\flat)^0. \quad (4.5)$$

In particular, $\mathcal{Z}^{\text{Kra}}(L^\flat)_h$ is of pure dimension 1. Moreover, we have the following identity in $\text{Gr}^{n-1} K_0(N^{\text{Kra}})$:

$$[\mathcal{O}_{\mathcal{Z}^{\text{Kra}}(L^\flat)_h}] = \sum_{M^\flat \in \text{Hor}(L^\flat)} [\mathcal{O}_{\tilde{\mathcal{Z}}(M^\flat)^0}].$$

Proof. The proof largely follows [LZ22a, §4.4]. Let K be a finite extension of \bar{F}. Assume that z is an irreducible component of $\mathcal{Z}^{\text{Kra}}(L^\flat)(\mathcal{O}_K) = \mathcal{Z}^{\text{Fap}}(L^\flat)(\mathcal{O}_K)$, and let G be the corresponding formal \mathcal{O}_F-module over \mathcal{O}_K. Define

$$L := \text{Hom}_{\mathcal{O}_F}(T_p \mathcal{G}, T_p G),$$

where \mathcal{G} is the canonical lifting and T_p is the integral p-adic Tate module. Here L is an \mathcal{O}_F-module of rank n equipped with the Hermitian form

$$\{x, y\} = \lambda^\flat \circ y^\flat \circ \lambda_G \circ x,$$

under which it is self-dual. We have two inclusions (preserving Hermitian forms)

$$i_K : \text{Hom}_{\mathcal{O}_F}(\mathcal{G}, G)_F \to L_F,$$

1692
Then the Hodge submodule F of free O_L-modules (the Hodge filtration) is one dimensional. By Lemma 4.4.1 of [LZ22a], we have

$$\text{Hom}_{O_F}(G, G) = i_K^{-1}(L).$$
(4.6)

Let

$$M^\flat := (L^\flat_F) \cap i_K^{-1}(L)) \cong \text{Hom}_{O_F}(G, G).$$

Then $z \subset \mathcal{Z}(M^\flat)(O_K)$. Lemma 4.3 below implies that $t(M^\flat) \leq 1$. Hence, we know that z is one of the irreducible component of $\mathcal{Z}(M^\flat)^c \cong \mathcal{Z}_{2,1((M^\flat)^c)}(R)$ assuming the decomposition of M^\flat as in (4.4). The non-emptiness of $\mathcal{Z}(M^\flat)^c$ implies that $M^\flat \in \text{Hor}$. It remains to prove that z has multiplicity 1 in $\mathcal{Z}^{\text{Kra}}(L^\flat)$. Consider R-points of both sides of (4.5), where $R := O_K[x]/(x^2)$. As in [Krä03] (see [RZ96, Appendix of Chapter 3]) we know

$$\mathbb{D}(G)(R) \cong O_F \otimes_{O_{F_0}} R, \quad \text{and} \quad \mathbb{D}(G)(R) \cong (O_F \otimes_{O_{F_0}} R)^n,$$

where \mathbb{D} is the O_{F_0}-relative Dieudonné crystal. Define

$$\tilde{e}_0 = 1 \otimes 1 \in \mathbb{D}(G)(R), \quad \tilde{f}_0 = \pi \otimes 1 \in \mathbb{D}(G)(R).$$

Then the Hodge submodule \mathcal{F}_0 of $\mathbb{D}(G)(R)$ is spanned by

$$(1 \otimes \pi)\tilde{e}_0 + \tilde{f}_0.$$

Here $\mathbb{D}(G)(R)$ is equipped with an O_F-invariant symplectic form \langle , \rangle and we can assume that $\mathbb{D}(G)(R)$ has a basis $\{\tilde{e}_1, \ldots, \tilde{e}_n, \tilde{f}_1, \ldots, \tilde{f}_n\}$ such that

$$\langle (\pi \otimes 1)\tilde{e}_i + \tilde{f}_j \rangle = \delta_{ij}.$$

Since any element in L^\flat is O_F-linear, we can arrange a change of basis if necessary and assume that

$$L^\flat((1 \otimes \pi)\tilde{e}_0 + \tilde{f}_0) = \text{Span}_R\{(1 \otimes \pi^a_1)((1 \otimes \pi)\tilde{e}_1 + \tilde{f}_1), \ldots, (1 \otimes \pi^{a_{n-1}})((1 \otimes \pi)\tilde{e}_{n-1} + \tilde{f}_{n-1})\}.$$

Now $\mathbb{D}(G)(O_K) = \mathbb{D}(G)(R) \otimes_R O_K$. Let $e_i = \tilde{e}_i \otimes 1$ and $f_i = \tilde{f}_i \otimes 1$ respectively. There is an exact sequence of free $O_F \otimes_{O_{F_0}} O_K$-modules (the Hodge filtration)

$$0 \to \text{Fil} \to \mathbb{D}(G)(O_K) \to \text{Lie} G \to 0,$$

where Fil is isotropic with respect to \langle , \rangle. We must have $L^\flat((1 \otimes \pi)e_0 + f_0) \subset \text{Fil}$. Hence, we have

$$(1 \otimes \pi)e_1 + f_1, \ldots, (1 \otimes \pi)e_{n-1} + f_{n-1} \subset \text{Fil}.$$

Since Fil is isotropic and by the signature condition, we have

$$\text{Fil} = \text{Span}_{O_K}\{(1 \otimes \pi)e_1 + f_1, \ldots, (1 \otimes \pi)e_{n-1} + f_{n-1}, (1 \otimes \pi)e_n - f_n\}.$$

Since $(x) \subset R$ has a nilpotent positive-definite structure, by Grothendieck–Messing theory, a lift \tilde{z} of z to $\mathbb{Z}^{\text{Kra}}(L^\flat)/(R)$ corresponds to a lift of Fil to an isotropic $O_F \otimes_{O_{F_0}} R$-module Fil in $\mathbb{D}(G)(R)$ containing the image of L^\flat. By the same reasoning as above, we must have

$$\tilde{\text{Fil}} = \text{Span}_R\{(1 \otimes \pi)\tilde{e}_1 + \tilde{f}_1, \ldots, (1 \otimes \pi)\tilde{e}_{n-1} + \tilde{f}_{n-1}, (1 \otimes \pi)\tilde{e}_n - \tilde{f}_n\}.$$

Hence, such lift is unique. This implies that the multiplicity of z in $\mathbb{Z}^{\text{Kra}}(L^\flat)$ is one.

Lemma 4.3. Let L be a self-dual Hermitian lattice of rank n and W be a $n-1$ dimensional subspace of L_F. Then $t(M^\flat) \leq 1$ for $M^\flat = L \cap W$.

1693
Proof. This is exactly the same as the proof of [LZ22a, Lemma 4.5.1]. Note that in our case we may need some blocks \(\begin{pmatrix} 0 & \pi^a \\ -\pi & 0 \end{pmatrix} \) in the upper left \((n - 1) \times (n - 1)\) block of \(T \) as in [LZ22a]. Alternatively, see [LL22, Lemma 2.24(2)]. □

We end this subsection with the following lemma.

Lemma 4.4. Assume \(M^b \in \Hor \). Then \(\tilde{Z}(M^b)^o \) intersects the special fiber of \(N_{n,\epsilon}^{\Kra} \) at a unique \(\Exc_\Lambda \) for some \(\Lambda \in \mathcal{V}^0 \). Moreover,

\[
\chi(\mathcal{N}_n^{\Kra}, \mathcal{O}_{\tilde{Z}(M^b)^o} \otimes \mathcal{O}_{\Exc_\Lambda}) = \begin{cases} 1, & \text{if } M^b \text{ is unimodular,} \\ 2, & \text{otherwise.} \end{cases}
\]

Proof. By the definition of \Hor, we can find a decomposition of \(M^b \)

\[M^b = M \oplus \{ \mathbf{x} \} \]

such that \(M \) is self-dual. Let \(\Lambda \) be any vertex lattice containing \(M^b \). If \(M^b \) is unimodular, then \(\Lambda \) has to be of the form \(M^b \oplus L' \) where \(L' \) is the unique unimodular lattice in \((M^b_F)^\perp \). If \(M^b \) is of the form \(M \oplus L' \) such that \(M \) is of rank \(n - 2 \) and \((M^b_F)^\perp \) is non-split, then the proof of [Shi18, Theorem 3.10] implies that there is a unique vertex lattice \(\Lambda' \) in \((M^b_F)^\perp \) which is of unimodular (this fact is the same as the fact that the Bruhat–Tits building of \((M^b_F)^\perp \) has only one point). Then \(\Lambda \) must be of the form \(M \oplus \Lambda' \). In both cases, \(\Lambda \) is unique and is of type 0.

Assume \(\chi(M) = \eta \). By Proposition 2.6, \(\tilde{Z}(M) \equiv \mathcal{N}^{\Kra}_{2,\eta} \). Moreover, \(\tilde{Z}(M) \cap \Exc_\Lambda = \mathbb{P}^1_k \) is an exceptional divisor in \(\mathcal{N}^{\Kra}_{n,\epsilon} \). Hence, by Lemma 3.1, we have

\[
\chi(\mathcal{N}_n^{\Kra}, \mathcal{O}_{\tilde{Z}(M^b)^o} \otimes \mathcal{O}_{\Exc_\Lambda}) = \chi(\mathcal{N}_{2,\epsilon}^{\Kra}, \mathcal{O}_{\tilde{Z}(M^b)^o} \otimes_{\mathcal{O}_{\mathbb{P}^1_k}} \mathcal{O}_{\mathbb{P}^1_k}).
\]

Now the lemma follows from [HSY23, Lemma 5.2] when \(\epsilon \eta = 1 \), and from [Shi22, Proposition 3.11] when \(\epsilon \eta = -1 \). □

4.3 The horizontal part of special difference cycles

Definition 2.15 motivates us to make the following definition.

Definition 4.5. When \(L^b \) is a rank \(n - 1 \) integral lattice, define \(\mathcal{D}(L^b)_h \in \Gr^{n-1}K_0(\mathcal{N}^{\Kra}) \) by

\[
\mathcal{D}(L^b)_h = [\mathcal{O}_{\tilde{Z}(\Kra)(L^b)_h}] + \sum_{i=1}^{n-1} (-1)^i q^{k(i-1)/2} \sum_{L' \subset L^b, \dim_q(L'/L^b) = i} [\mathcal{O}_{\tilde{Z}(\Kra)(L')_h}]. \tag{4.7}
\]

Proposition 4.6. Assume \(L^b \) is a rank \(n - 1 \) integral lattice, then

\[
\mathcal{D}(L^b)_h = \begin{cases} \tilde{Z}(L^b)^o, & \text{if } L^b \in \Hor, \\ 0, & \text{if } L^b \notin \Hor. \end{cases}
\]

Proof. By Theorem 4.2, it suffices to compute the multiplicity of an irreducible component in \(\tilde{Z}(M^b)^o \) in \(\mathcal{D}(L^b)_h \) for all \(M^b \in \Hor(L^b) \) (see (4.3)). For such a \(M^b \), define

\[M' := \frac{1}{\pi} L^b \cap M^b \quad \text{and} \quad m := \dim_q(M'/L^b). \]
Then for a lattice \(L' \) with \(L^\circ \subseteq L' \subseteq (1/\pi)L^\circ \), we know that \(\hat{Z}(M^0) \) is in \(Z^{\text{Kra}}(L'_0) \) if and only if \(L' \subseteq M' \). Hence, the multiplicity of an irreducible components in \(\hat{Z}(M^0) \) in \(D(L)_h \) is

\[
1 + \sum_{i=1}^{m} (-1)^i q^{(i-1)/2} \sum_{L^\circ \subseteq L' \subseteq M'} \frac{1}{\dim_{\mathbb{Q}}(L'/L)} = i.
\]

(4.8)

Note that \(m = 0 \) if and only if \(M' = M^0 = L^\circ \), in this case the summation in (4.8) is over an empty set, hence (4.8) is equal to 1. If \(m > 0 \), (4.8) is equal to 0 by (2.13).

□

5. Induction formula and primitive local density

In this section, we study various induction formulas of local density polynomials. Let \(M \) be a Hermitian \(\mathcal{O}_F \)-lattice of rank \(m \) with \(\nu(M) := \min \{ \nu(h(v, v')) \mid v, v' \in M \} \geq -1 \). and let \(M^{[k]} = \mathcal{H}^k \otimes M \) for an integer \(k \geq 0 \). Let \(L \) be a Hermitian \(\mathcal{O}_F \)-lattice of rank \(n \).

There is a polynomial \(\alpha(M, L, X) \) of \(X \), the local density polynomial, such that

\[
\alpha(M, L, q^{-2k}) = \int_{\text{Herm}_n(F)} \int_{(M^{[k]})^n} \psi(\langle Y, T(x) - T \rangle) \, dx \, dY,
\]

(5.1)

where \(T(x) \) is the moment matrix of \(x \), \(dx \) is the Haar measure on \((M^{[k]})^n \) with total volume 1, \(dY \) is the Haar measures on \(\text{Herm}_n(F) \) such that \(\text{Herm}_n(\mathcal{O}_F) \) has total volume 1 and \(\psi \) is an additive character of \(F_0 \) with conductor \(\mathcal{O}_{F_0} \). Finally, we define \(\langle X, Y \rangle = \text{Tr}(XY) \) on \(\text{Herm}_n \).

We also use the notation \(\alpha(M, L) = \alpha(M, L, 1) \) and

\[
\alpha'(M, L) = -\frac{\partial}{\partial X} \alpha(M, L, X)|_{X=1}.
\]

(5.2)

There is another way to define \(\alpha(M, L, X) \) as follows. We use \(\text{Herm}_{L,M} \) to denote the scheme of Hermitian \(\mathcal{O}_F \)-module homomorphisms from \(L \) to \(M \), which is a scheme of finite type over \(\mathcal{O}_{F_0} \). More specifically, for an \(\mathcal{O}_{F_0} \)-algebra \(R \), we define

\[
L_R := L \otimes_{\mathcal{O}_{F_0}} R, \quad (x \otimes a, y \otimes b)_R := \pi(x, y) \otimes_{\mathcal{O}_{F_0}} ab \in \mathcal{O}_F \otimes_{\mathcal{O}_{F_0}} R, \quad \text{where } x, y \in L, a, b \in R.
\]

Then

\[
\text{Herm}_{L,M}(R) = \{ \phi \in \text{Hom}_{\mathcal{O}_F}(L_R, M_R) \mid \phi(x), \phi(y))_R = (x, y)_R \text{ for all } x, y \in L_R \}.
\]

To simplify the notation, we let

\[
I(M, L, d) := \text{Herm}_{L,M}(\mathcal{O}_{F_0}/(\pi_0^d)).
\]

(5.3)

Then a direct calculation as in [Shi22, Lemma 6.1] shows that

\[
\alpha(M, L) = q^{-dn(2m-n)} |I(M, L, d)|
\]

(5.4)

for sufficiently large integers \(d > 0 \). Since \(\alpha(M, L, X) \) only depends on the Gram matrices of \(M \) and \(L \), we may also denote it by \(\alpha(S, T, X) \) if \(S \) and \(T \) are the Gram matrices of \(M \) and \(L \).

Now we define primitive local density polynomials. For \(1 \leq \ell \leq n \), let

\[
(M^{[k]})^{n,\ell} = \{ x = (x_1, \ldots, x_n) \in (M^{[k]})^n \mid \dim \text{Span} \{ x_1, \ldots, x_\ell \} = \ell \text{ in } M^{[k]} / \pi M^{[k]} \}.
\]

(5.5)
Q. HE, Y. SHI AND T. YANG

For \(L = L_1 \oplus L_2 \), where \(L_1 = \text{Span}\{l_1, \ldots, l_\ell\} \) and \(L_2 = \text{Span}\{l_{\ell+1}, \ldots, l_n\} \), we define the local \(\ell \)-primitive density to be

\[
\beta(M^{[k]} , L_1 \oplus L_2)^{(\ell)} = \int_{\text{Herm}_n(F)} \int_{(M^{[k]})^{n,(\ell)}} \psi((Y, T(x) - T)) \, dx \, dY.
\] (5.6)

When \(\ell \neq n \), the above definition depends on a choice of \(L = L_1 \oplus L_2 \). Hence, we always fix such a decomposition \(L = L_1 \oplus L_2 \) in this case. When \(L = L_1 \oplus L_2 \), and \(L_i \) is represented by \(T_i \), we also denote \(\beta(M, L_1 \oplus L_2)^{(\ell)} \) as \(\beta(S, \text{Diag}(T_1, T_2))^{(\ell)} \). When \(\ell = n \), we simply denote \(\beta(M, L_1 \oplus L_2)^{(\ell)} \) as \(\beta(M, L) \).

Lemma 5.1. Assume \(L = L_1 \oplus L_2 \) where \(\text{rank}(L_1) = n_1 \). Then

\[
\alpha(M, L, X) = \sum_{L \subset L_1, L_2} (q^{n-m} X)^{\ell(L'_1/L_1)} \beta(M, L'_1 \oplus L_2, X)^{(n_1)},
\]

where \(\ell(L'_1/L_1) = \text{length}_{O_F} L'_1/L_1 \).

Proof. This is the analogue of [Kit83, Lemma 3]. Let \(G = \text{GL}_{n_1}(F) \cap M_{n_1}(O_F) \) and \(U = \text{GL}_{n_1}(O_F) \). By choosing a basis \(\{l_1, \ldots, l_{n_1}\} \) of \(L_1 \), we may identify \(U \backslash G \) with \(\{L'_1 \mid L_1 \subset L'_1 \subset L_1, F\} \) by sending \(g \) to \(L_1 \cdot g^{-1} \). Then the identity we want to prove is equivalent to

\[
\alpha(M, L, X) = \sum_{g \in U \backslash G} |\det g|^{2k+m-n} \beta(M, L_1 \cdot g^{-1} \oplus L_2, X)^{(n_1)},
\]

where \(|\pi| = q^{-1} \). By a partition of \(M^n_k \), we have

\[
\alpha(M, L, X) = \int_{\text{Herm}_n(F)} dY \int_{(M^{[k]})^{n}} \psi((Y, T(x) - T)) \, dx
\]

\[
= \sum_{g \in U \backslash G} \int_{\text{Herm}_n(F)} dY \int_{(M^{[k]})^{n,(n_1)-g_1}} \psi((Y, T(x) - T)) \, dx,
\]

where \(g_1 = \text{Diag}(g, I_{n-n_1}) \), and the action of \(g_1 \) is simply matrix multiplication on the \(n \) components of \(M^{n,(n_1)} \). Now

\[
\int_{\text{Herm}_n(F)} dY \int_{(M^{[k]})^{n,(n_1)-g_1}} \psi((Y, T(x) - T)) \, dx
\]

\[
= |\det g_1|^{2k+m} \int_{\text{Herm}_n(F)} dY \int_{(M^{[k]})^{n,(n_1)}} \psi((Y, T(xg_1) - T)) \, dx
\]

\[
= |\det g_1|^{2k+m} \int_{\text{Herm}_n(F)} dY \int_{(M^{[k]})^{n,(n_1)}} \psi((Y, T(x) - T[g_1^{-1}][g_1]) \, dx
\]

\[
= |\det g_1|^{2k+m-n} \int_{\text{Herm}_n(F)} dY \int_{(M^{[k]})^{n,(n_1)}} \psi((Y[g_1^*], T(x) - T[g_1^{-1}])) \, dx
\]

\[
= |\det g_1|^{2k+m-n} \beta(M^{[k]}, L \cdot g_1^{-1})^{(n_1)}.
\]

Here \(T[g] := g^* Tg \). Now the lemma is clear.

\[\square\]
Let Theorem 5.6. shows.

Let Definition 5.3. Let Corollary 5.5. Diag the argument (in a reverse order) in Lemmas 2.16 and 5.1. This is an analogue of [Kat99, Proposition 2.1]. The proof follows from a combination of Proof.

Corollary 5.4. Part (3) follows from parts (1) and (2).

Proof. Part (1) follows from Lemma 2.16 and Corollary 5.5. Part (2) follows from Definitions 2.15 and 5.3. Part (3) follows from parts (1) and (2). □

Motivated by Theorem 5.2, we give the following definition.

Definition 5.3. Let L = L_1 ⊕ L_2 be as in Lemma 5.1. We define

\[\partial \text{Den}(L)^{(n_1)} := \partial \text{Den}(L) - \sum_{i=1}^{n_1} (-1)^{i-1} q^{i(i-1)/2} \sum_{\substack{L_1 \subseteq L_1' \subseteq L_1 \cap L_2 \cap L_1 \cap L_2 \cap L_1, \\ \dim L_1' / L_1 = i}} \partial \text{Den}(L_1' \oplus L_2). \] (5.7)

Corollary 5.4. Let L = L_1 ⊕ L_2 be as in Lemma 5.1, and ε = χ(L). Then

\[\partial \text{Den}(L)^{(n_1)} = \frac{1}{\alpha(I_n^{-\epsilon}, I_n^{-\epsilon})} \left(2\beta'(L_n^{-\epsilon}, L)^{(n_1)} + \sum_i \epsilon_i^{n,i} \beta(H_{n,i}, L)^{(n_1)} \right). \]

As a corollary of Lemma 5.1, we have the following.

Corollary 5.5. Let L = L_1 ⊕ L_2 be as in Lemma 5.1. Then we have the following identity where the summation is finite:

\[\partial \text{Den}(L) = \sum_{L_1 \subseteq L_1' \subseteq L_1 \cap L_2} \partial \text{Den}(L_1' \oplus L_2)^{(n_1)}. \]

We may reduce the identity Int(L) = ∂Den(L) to a primitive version as the following theorem shows.

Theorem 5.6. Let L = L_1 ⊕ L_2 ⊂ \mathbb{V} be as in Lemma 5.1.

1. Conjecture 1.1 is true for L if for every L_1 ⊂ L_1' ⊂ L_1, we have

\[\text{Int}(L_1' \oplus L_2)^{(n_1)} = \partial \text{Den}(L_1' \oplus L_2)^{(n_1)}. \]

2. If Conjecture 1.1 holds for all lattices L' = L_1' ⊕ L_2 of \mathbb{V} of rank n with L_1 ⊂ L_1' ⊂ L_1, then

\[\text{Int}(L_1 \oplus L_2)^{(n_1)} = \partial \text{Den}(L_1 \oplus L_2)^{(n_1)}. \]

3. For 1 ≤ n_1 ≤ n, Conjecture 1.1 is true if and only if for every lattice L = L_1 ⊕ L_2 ⊂ \mathbb{V} with rank(L_1) = n_1, one has

\[\text{Int}(L_1 \oplus L_2)^{(n_1)} = \partial \text{Den}(L_1 \oplus L_2)^{(n_1)}. \]

Proof. Part (1) follows from Lemma 2.16 and Corollary 5.5. Part (2) follows from Definitions 2.15 and 5.3. Part (3) follows from parts (1) and (2). □

For the rest of this section, we assume that M is unimodular of rank m with a Gram matrix Diag(I_{m-1}, \nu). To go further with the calculation of α(M, L, X), we need an induction formula for β(M, L, X)^{(i)} as follows. The proof is essentially the same as that of Corollary 9.11 of [KR11], and is left to the reader.

Proposition 5.7. Let L = L_1 ⊕ L_2, where L_j is of rank n_j. Let C(M^{[k]}, L_1) be the U(M^{[k]})-orbits of sublattices M(i) ⊂ M^{[k]} such that M(i) is isometric to L_1, and write

\[\sum_{L_1 \subseteq L_1' \subseteq L_1 \cap L_2 \cap L_1 \cap L_2 \cap L_1, \dim L_1' / L_1 = i} \partial \text{Den}(L_1' \oplus L_2). \]
Appendix A.

Let the notation be as in Proposition 5.7. Assume

\[\beta(M, L, X)^{(n_1)} = \sum_{i \in J} |M : M(i) \oplus M(i)^\perp |^{-n_2} |M(i)^\vee : M(i)|^{-n_2} \beta_i(M, L_1, X) \alpha(M(i)^\perp, L_2), \]

where

\[\beta_i(M, L_1, X) = \lim_{d \to \infty} q^{-dn_1(2m+4k-n_1)} \{ \phi \in I(M[k], L_1, d)^{(n_1)} | \exists \Phi \in U(M) \text{ with } \phi(L_1) = \Phi(M(i)) \}, \]

and

\[I(M[k], L_1, d)^{(n_1)} := \{ \phi \in I(M[k], L_1, d) | \text{ rank}_q \phi(L_1) \otimes_{O_F} \mathbb{F}_q = n_1 \}. \]

Recall that \(I(M[k], L_1, d) \) is defined in (5.3).

One special case is that \(L = \mathcal{H}^i \oplus L_2 \). Since any sublattice of \(M[k] = M \oplus \mathcal{H}^k \) isometric to \(\mathcal{H}^i \) is always a direct summand of \(M[k] \) and \(\alpha(M, \mathcal{H}^i, X) = \beta(M, \mathcal{H}^i, X)(2i) = \beta(M, \mathcal{H}^i, X) \), the above proposition specializes as follows.

Corollary 5.8. Assume \(L = \mathcal{H}^i \oplus L_2 \), then

\[\alpha(M, L, X) = \beta(M, \mathcal{H}^i, X) \alpha(M, L_2, q^{2i}X) = \alpha(M, \mathcal{H}^i, X) \alpha(M, L_2, q^{2i}X). \quad (5.8) \]

We end this section with two more special cases of Proposition 5.7. Proofs are given in Appendix A.

Proposition 5.9. Let the notation be as in Proposition 5.7. Assume \(n_1 = 1 \) and \(L_1 = \langle t \rangle \) where \(t \in O_{F_0} \).

1. There always exists a primitive vector \(M(1) \in \mathcal{H}^k \) with \(q(M(1)) = t \), and

 \[M(1)^\perp \cong \mathcal{H}^k \oplus I_{m-1}^{\langle M \rangle} \oplus \langle -t \rangle. \]

 Here \(\langle t \rangle \) denotes a lattice \(O_Fv \) of rank one with \((v, v) = t\).

2. If \(v(t) = 0 \), then there exist a primitive vector \(M(0) \in M \) with \(q(M(0)) = t \), and

 \[M(0)^\perp \cong \mathcal{H}^k \oplus I_{m-2}^{\langle \epsilon \rangle} \oplus \langle \epsilon t \rangle. \]

 Here \(\epsilon_{m-2} = \chi((-1)^{(m-2)(m-3)/2}) \).

3. If \(v(t) > 0 \), then there exist a primitive vector \(M(0) \in M \) with \(q(M(0)) = t \) only when \(M \) is isotropic (i.e. \(\exists v \in M \) with \(q(v) = 0 \)). In this case,

 \[M(0)^\perp \cong \mathcal{H}^k \oplus I_{m-2}^{\langle \epsilon \rangle} \oplus \langle -t \rangle. \]

 Assuming the existence of \(M(1) \) and \(M(0) \), we have

 \[|M[k] : M(i) \oplus M(i)^\perp |^{-1}|M(i)^\vee : M(i)| = \begin{cases} 1, & \text{if } i = 1, \\ q, & \text{if } i = 0. \end{cases} \]

4. Under the action of \(U(M[k]) \), \(v \) is either in the same orbit of a fixed vector \(M(1) \in \mathcal{H}^k \) or a fixed vector \(M(0) \in M \).

5. We have the following induction formula:

 \[\beta(M, L, X)^{(1)} = \beta_1(M, L_1, X) \alpha(M(1)^\perp, L_2) + q^{n-1} \beta_0(M, L_1, X) \alpha(M(0)^\perp, L_2). \]

1698
Moreover:
(a) for any L_1,
\[\beta_1(M, L_1, X) = 1 - X; \]
(b) assume $v(t) = 0$, then
\[
\beta_0(M, L_1, X) = \begin{cases}
(1 + \chi(M)\chi(L)q^{-(m-1)/2})X, & \text{if } m \text{ is odd,} \\
(1 - \chi(M)q^{-m/2})X, & \text{if } m \text{ is even;}
\end{cases}
\]
(c) assume $v(t) > 0$, then
\[
\beta_0(M, L_1, X) = \begin{cases}
(1 - q^{1-m})X, & \text{if } m \text{ is odd,} \\
(1 - q^{1-m} + \chi(M)(q-1)q^{-m/2})X, & \text{if } m \text{ is even.}
\end{cases}
\]

Proof. Parts (1)–(4) are proved in § A.1. The induction formula for $\beta(M, L, X)^{(1)}$ follows from Proposition 5.7. For the formula of $\beta_i(M, L_1, X)$, see Corollaries A.10 and A.12. \qed

Proposition 5.10. Let the notation be as in Proposition 5.7. Assume $v(L_1) > 0$ and $n_1 = 2$. Then we have a partition of $C(M^{[k]}, L_1) = \bigsqcup_{i=0}^{2} C_i(M^{[k]}, L_1)$ such that for any $M(i) \in C_i(M^{[k]}, L_1)$, $M(i)\perp$ is isometric to
\[(-L_1) \oplus \mathcal{H}^{k-i} \oplus M(i). \]
Here $M(i)$ is a unimodular O_F-lattice of rank $m - 2(2 - i)$ and has determinant $(-1)^i \det L$. Moreover, we have
\[\beta(M, L, X)^{(2)} = \sum_{i=0}^{2} q^{(2-i)(n-2)}\beta_i(M, L_1, X)\alpha(M(i)\perp, L_2, X), \] (5.9)
where
\[
\beta_2(M, L_1, X) = (1 - X)(1 - q^2X), \\
\beta_1(M, L_1, X) = q(q + 1)((1 - q^{1-m}) + \delta_e(m)\chi(M)(q-1)q^{-m/2})X(1 - X), \\
\beta_0(M, L_1, X) = \begin{cases}
q(1 - q^{1-m})(1 - q^{3-m})X^2, & \text{if } m \text{ is odd,} \\
q((1 - q^{2-m}) + \chi(M)(q^2 - 1)q^{-m/2})(1 - q^{2-m})X^2, & \text{if } m \text{ is even.}
\end{cases}
\]
Here $\delta_e(m) = 1$ or 0 depending on whether m is even or odd.

Proof. Equation (5.9) follows from Proposition 5.7 and Proposition A.5. For the formula of $\beta_i(S, L_1, X)$, see Corollaries A.10 and A.13 and Proposition A.14. \qed

6. The modified Kudla–Rapoport conjecture

Recall that the Hermitian lattices used to define the correction terms are of the following forms:
\[\mathcal{H}_{n,i}^{\epsilon} := \mathcal{H}^{\epsilon} \oplus I_{n-2i}^{\epsilon}, \quad \text{for } 1 \leq i \leq \frac{n}{2}, \quad \epsilon = \pm 1, \] (6.1)
where I_{n-2i}^{ϵ} is the unimodular Hermitian lattice of rank $n - 2i$ with $\chi(I_{n-2i}^{\epsilon}) = \chi(\mathcal{H}_{n,i}^{\epsilon}) = \epsilon$. When $n = 2r$ is even, we take $I_0^{\epsilon} = 0$ and $\mathcal{H}_{n,r}^{1} = \mathcal{H}^{\epsilon}$.

1699
Theorem 6.1. Let $r_\epsilon = (n-1)/2$ when n is odd, and $r_\epsilon = [(n+\epsilon)/2]$ when n is even. In the following, we just write r_ϵ as r:

$$A^\epsilon = (A_{i,j}^\epsilon) = \left(\begin{array}{cccc}
\alpha(H_{n,1}^\epsilon, \mathcal{H}_{n,1}^\epsilon) & \alpha(H_{n,2}^\epsilon, \mathcal{H}_{n,1}^\epsilon) & \cdots & \alpha(H_{n,r}^\epsilon, \mathcal{H}_{n,1}^\epsilon) \\
0 & \alpha(H_{n,2}^\epsilon, \mathcal{H}_{n,2}^\epsilon) & \cdots & \alpha(H_{n,r}^\epsilon, \mathcal{H}_{n,2}^\epsilon) \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0
\end{array}\right),$$

$$B^\epsilon = t'(I_n^\epsilon, \mathcal{H}_{n,1}^\epsilon), \ldots, t'(I_n^{-\epsilon}, \mathcal{H}_{n,r}^\epsilon),$$

and

$$C^\epsilon = t(c_{n,1}^\epsilon, \ldots, c_{n,r}^\epsilon),$$

where $c_{n,i}^\epsilon$ is as in Conjecture 1.1.

Then C^ϵ is the solution of the equation

$$A^\epsilon C^\epsilon = -2B^\epsilon. \quad (6.2)$$

Moreover,

$$A_{j,j}^\epsilon = 2q^{(n-2j)(n-2j-1)/2} \prod_{0<s\leq j} (1-q^{-2s}) \prod_{1<s\leq [(n-2j-1)/2]} (1-q^{-2s})$$

$$\times \begin{cases} 1, & \text{if } n \text{ is odd,} \\ 1,\epsilon q^{-(-2j)/2}, & \text{if } n \text{ is even.} \end{cases} \quad (6.3)$$

Finally, for $i<j$,

$$A_{i,j}^\epsilon = A_{j,j}^\epsilon \cdot \begin{cases} I(n-2i, \frac{n-2i-1}{2}, j-i), & \text{if } n \text{ is odd,} \\ I(n-2i, \frac{n-2i-1+\epsilon}{2}, j-i), & \text{if } n \text{ is even,} \end{cases} \quad (6.4)$$

where

$$I(n,d,k) := \prod_{s=1}^{k} \frac{(q^{d-s+1} - 1)(q^{n-d-s} + 1)}{q^n - 1}.$$
Kudla–Rapoport conjecture for Krämer models

where \(\mathcal{T}_{n-2j}^\epsilon = I_{n-2j}^\epsilon \otimes \mathcal{O}_F \mathcal{O}_F/(\pi) \) is the space over \(\mathbb{F}_q \) with the naturally induced quadratic form. Now (6.3) follows from the well-known formula:

\[
|\mathcal{O}(\mathcal{T}_{n-2j}^\epsilon)(\mathbb{F}_q)| = \begin{cases}
2q^{(n-2j)(n-2j-1)/2} \prod_{s=1}^{(n-2j-1)/2} (1 - q^{-2s}), & \text{if } n \text{ is odd,} \\
2q^{(n-2j)(n-2j-1)/2} (1 - \epsilon q^{-(n-2j)/2}) \prod_{s=1}^{((n-2j)/2)-1} (1 - q^{-2s}), & \text{if } n \text{ is even.}
\end{cases}
\]

To obtain (6.4), note that (Corollary 5.8)

\[
\alpha(\mathcal{H}_{n,j}^\epsilon, \mathcal{H}_{n,i}^\epsilon) = \alpha(\mathcal{H}_{n,j}^\epsilon, \mathcal{H}_i^\epsilon)\alpha(\mathcal{H}_{n-2i,j-i}^\epsilon, I_{n-2i}^\epsilon),
\]

and

\[
\alpha(\mathcal{H}_{n,j}^\epsilon, \mathcal{H}_{n,i}^\epsilon) = \alpha(\mathcal{H}_{n-j}^\epsilon, \mathcal{H}_i^\epsilon)\alpha(\mathcal{H}_{n-2i,j-i}^\epsilon, \mathcal{H}_{n-2i,j-i}^\epsilon).
\]

Hence,

\[
\frac{A_{i,j}^\epsilon}{A_{j,i}^\epsilon} = \frac{\alpha(\mathcal{H}_{n,j}^\epsilon, \mathcal{H}_{n,i}^\epsilon)}{\alpha(\mathcal{H}_{n-i,j}^\epsilon, \mathcal{H}_{n,i}^\epsilon)} = \frac{\alpha(\mathcal{H}_{n-2i,j-i}^\epsilon, I_{n-2i}^\epsilon)}{\alpha(\mathcal{H}_{n-2i,j-i}^\epsilon, \mathcal{H}_{n-2i,j-i}^\epsilon)}.
\]

Fix an \(\mathcal{O}_F \)-lattice \(L \) that is represented by \(I_{n-2i}^\epsilon \). According to Lemma 6.2, to compute \(A_{i,j}^\epsilon / A_{j,i}^\epsilon \), we need to count the number of lattices \(L' \) in \(L \) such that contain \(L \subset L' \) and \(L' \cong \mathcal{H}_{n-2i,j-i}^\epsilon \), which is equivalent to the following condition:

\[
\pi L \subset \pi L' \subset (L')^\epsilon \subset L \subset L'.
\]

Since \(L' \) and \(\pi L' \) determine each other, we just need to count \(\pi L' \) satisfying the above condition. We regard \(\pi L'/\pi L \) as a \((j-i)\)-dimensional subspace of \(L'/\pi L \), where \(L'/\pi L \) is equipped with quadratic form \((x,y)/\pi\).

Claim. The condition

\[
\pi L' \subset (L')^\epsilon
\]

is equivalent to the condition that \(\pi L'/\pi L \) is an isotropic subspace of \(L'/\pi L \).

Indeed, assume \(\pi L'/\pi L \) is an isotropic subspace of \(L'/\pi L \). Then \((\pi x, \pi y) \in \pi \mathcal{O}_F \) for any \(x, y \in L' \), which is equivalent to \((x, y) \in \mathcal{O}_F \) for any \(x, y \in L' \). The latter condition is the same as \(L' \subset (L')^\epsilon \). The other direction is clear.

Therefore, \(A_{i,j}^\epsilon / A_{j,i}^\epsilon \) is the number of \((j-i)\)-dimensional isotropic subspaces of \(L'/\pi L \). According to [LZ22b, Lemma 3.2.2], it equals to

\[
\begin{cases}
I \left(n - 2i, \frac{n - 2i - 1}{2}, j - i \right), & \text{if } n \text{ is odd,} \\
I \left(n - 2i, \frac{n - 2i - 1 + \epsilon}{2}, j - i \right), & \text{if } n \text{ is even.}
\end{cases}
\]

According to Theorem 6.1, in order to solve \(C^\epsilon \), we need to know \(B^\epsilon \) and \(A^\epsilon \). Here, \(B^\epsilon \) can be calculated by applying Corollary 5.8 and Proposition 5.9 inductively. The following lemma can be used to compute \(A^\epsilon \).

Lemma 6.2. Let \(F/F_0 \) be a quadratic \(p \)-adic field extension, and let \(L \) and \(M \) be two \(\mathcal{O}_F \)-Hermitian lattices of rank \(n \). Then \(\alpha(M, L)/\alpha(M, M) \) is equal to the number of lattices \(L' \) in \(L \) containing \(L \) and isometric to \(M \).
Proof. The proof is a generalization of that of Proposition 10.2 of [KR14b] and works for both inert and ramified primes.

Let us assume that there is an isometric embedding from L into M, otherwise both sides of the identity in the lemma are zero. In this case, we have a fixed $L_F \cong M_F$. Let α (respectively, β) be a top degree translation invariant form on L^n_F (respectively, Herm$_n$(F)). Let $\nu_p = \alpha/h^*(\beta)$ where

$$h : L^n_F \to \text{Herm}_n(F), \quad x \mapsto (x, x).$$

Define X to be the set of F-linear isometric embeddings from L into M. By fixing a basis of L_F and regarding $\phi \in X$ as a linear isometry from L_F to itself, we identify X as a subset of L^n_F.

By the argument in §3 of [GY00] (in particular, Lemma 3.4), we know that

$$\alpha(M, L) = \text{vol}(X, d\nu_p)\frac{\text{vol}(\text{Herm}_n(O_F), d\beta)}{\text{vol}(M^n, d\alpha)}.$$ \hfill (6.5)

For any $\phi \in X$ regarded as a linear isometry from L_F to itself, the lattice $L_{\phi} := \phi^{-1}(M)$ is a lattice containing L. Conversely, for any L' containing L and isometric to M, there is a $\phi \in X$ such that $L_{\phi} = L'$. Hence, we have a partition

$$X = \bigcup_{L \subset L'} X_{L'}, \quad X_{L'} := \{\phi \in X \mid L_{\phi} = L'\}.$$

Since each L' is isomorphic to M, all the $X_{L'}$ have the same volume as that of X_M. Specializing (6.5) to $L = M$, we see

$$\alpha(M, M) = \text{vol}(X_M, d\nu_p)\frac{\text{vol}(\text{Herm}_n(O_F), d\beta)}{\text{vol}(M^n, d\alpha)}.$$ \hfill (6.6)

Dividing equation (6.5) by (6.6), we prove the lemma. \qed

Remark 6.3. When F/F_0 is unramified and M is unimodular, the lemma was proved by (3.6.1.1) of [LZ22a].

Now we specialize Theorem 6.1 to the case $n = 3$.

Lemma 6.4. Assume $n = 3$ and $\epsilon = \chi(L)$. Then $c_{3,1}^\epsilon = q^2/(1 + q)$, hence

$$\partial \text{Den}(L) = 2\frac{\alpha'(I_3^{-\epsilon}, L)}{\alpha(I_3^{-\epsilon}, I_3^{-\epsilon})} + \frac{q^2}{1 + q}\frac{\alpha(\mathcal{H}_{3,1}^\epsilon, L)}{\alpha(I_3^{-\epsilon}, I_3^{-\epsilon})}. \hfill (6.7)$$

Proof. First, according to Theorem 6.1,

$$\alpha(\mathcal{H}_{3,1}^\epsilon, \mathcal{H}_{3,1}^\epsilon) = 2(1 - q^{-2}).$$ \hfill (6.7)

By Corollary 5.8, we have

$$\alpha(I_3^{-\epsilon}, \mathcal{H}_{3,1}^\epsilon, X) = \alpha(I_3^{-\epsilon}, \mathcal{H}, X)\alpha(I_3^{-\epsilon}, I_1^\epsilon, q^2 X).$$

According to Lemmas A.8 and A.9,

$$\alpha(I_3^{-\epsilon}, \mathcal{H}, X) = \beta(\mathcal{H}^k, \mathcal{H}) = 1 - X.$$

Lemma 7.1 gives that

$$\alpha(I_3^{-\epsilon}, I_1^\epsilon, q^2 X) = 1 - qX.$$

Hence,

$$\alpha(I_3^{-\epsilon}, \mathcal{H}_{3,1}^\epsilon, X) = (1 - X)(1 - qX),$$
Kudla–Rapoport conjecture for Krämer models

and

\[\alpha'(I_3^c, \mathcal{H}_{3,1}^c) = 1 - q. \]

Combining this with (6.7), we solve (6.2) and obtain

\[c_{3,1}^c = \frac{q^2}{1+q}. \]

Now the lemma follows from (1.10).

7. Local density formula when \(\text{rank}(T) \leq 2 \)

The main purpose of this section is to give an explicit formula for \(\alpha(I, T, X) \) where \(I = \text{Diag}(I_{m-1}, \nu) \) with \(\nu \in \mathcal{O}_F^\times \) and \(\text{rank}(T) \leq 2 \).

7.1 The case \(T = (t) \)

In order to apply induction formulas to calculate \(\alpha(I, T, X) \) for \(T \) with \(\text{rank}(T) = 2 \), we need to consider the case \(T = (t) \) first. Write \(t = t_0(-\pi_0)^v(t) \) for \(t_0 \in \mathcal{O}_F^\times \), and

\[I_{a,b} = \text{Diag}(I, \nu_1(-\pi_0)^a, \nu_2(-\pi_0)^b) = \text{Diag}(s_1, \ldots, s_{m+2}) \] (7.1)

for integers \(0 \leq a \leq b \).

Lemma 7.1. Assume \(0 \leq a \leq b \leq v(t) \).

1. If \(m \) is odd, then

\[\alpha(I_{a,b}, (t), X) = 1 + \chi(I)(q-1)^{a+1} \sum_{s=a+1}^{b} q^{-(m+1)s+a+1} X^s \]

2. If \(m \) is even, then

\[\alpha(I_{a,b}, (t), X) = 1 + \chi(I)(q-1)^a \sum_{s=b+1}^{a} q^{-(m+1)s+m/2} X^s \]

Proof. Direct calculation gives

\[\alpha(I_{a,b}, (t), X) = \int_{F_0} dY \int_{O_{F}^{2k+m+2}} \psi((Y, \text{Diag}(H^k, I_{a,b})(Y) - t)) dX \]

\[= \int_{F_0} \psi(-tY) dY \]

\[\times \int_{O_{F}^{2k} \times O_{F}^{m+2}} \psi \left(Y \sum_{i=1}^{k} \text{tr} \left(\frac{1}{\pi} x_i y_i \right) + Y \sum_{l=1}^{m+2} s_l z_l \right) \prod_{i} dx_i dy_i \prod_{l} dz_l \]

\[= 1 + \sum_{s=1}^{\infty} \int_{\psi(Y) = -s} I_k(Y) I_{a,b}(Y) \psi(-tY) dY. \]
Here, according to [Shi22, Lemma 7.6],

\[I_k(Y) = \int_{O_F^k} \psi \left(\sum_{i=1}^k \text{tr} \left(\frac{1}{\pi} x_i \bar{y}_i \right) \right) \prod dx_i dy_i = q^{-2ks}, \]

and

\[I_{I,a,b}(Y) = \int_{O_F^{m+2}} \psi \left(\sum_{l=1}^{m+2} s_l z_l \bar{z}_l \right) \prod dz_l = \prod_{l=1}^{m+2} J(s_l Y), \]

where

\[J(t) = \int_{O_F} \psi(t z \bar{z}) dz = \begin{cases} 1, & \text{if } v(t) \geq 0, \\ q^{v(t)} \chi(-t_0) g(\chi, \psi_1/\pi_0), & \text{if } v(t) < 0, \end{cases} \quad (7.2) \]

and

\[g(\chi, \psi_1/\pi_0) = \sum_{x \in O_{F_0}/\pi_0} \chi(x) \psi \left(\frac{x}{\pi_0} \right) \]

is the Gauss sum. Write \(\psi' = \psi_1/\pi_0 \). Then

\[
\alpha(I_{a,b}, (t), X) = 1 + \sum_{s=1}^a q^s \int_{O_{F_0}^s} q^{-2ks} \cdot q^{-ms} \chi(\nu(-Y)^m) g(\chi, \psi')^m \psi(-(-\pi)^s Y t) dY
\]

\[
+ \sum_{s=a+1}^b q^{-2ks} \cdot q^{-ms+a} \chi(\nu_1 \nu(-Y)^{m+1}) g(\chi, \psi')^{m+1} \psi(-(-\pi)^{-s} Y t) dY
\]

\[
+ \sum_{s=b+1}^\infty q^{-2ks} \cdot q^{-(m+1)s+a+b} \chi(\nu_1 \nu_2 \nu(-Y)^{m+2}) g(\chi, \psi')^{m+2} \psi(-(-\pi)^{-s} Y t) dY.
\]

Recall the well-known facts that

\[
g(\chi, \psi')^2 = \chi(-1) \cdot q,
\]

\[
\int_{O_{F_0}^s} \psi((-\pi)^{-s} Y t) dY = \text{Char}(\pi_0^s O_{F_0})(t) - q^{-1} \text{Char}(\pi_0^{s-1} O_{F_0})(t), \quad (7.3)
\]

\[
\int_{O_{F_0}^s} \chi(Y) \psi((-\pi_0)^{-s} Y t) dY = \chi(-t_0) q^{-1} g(\chi, \psi') \text{Char}(\pi_0^{s-1} O_{F_0})(t).
\]

When \(m \) is odd, we have

\[
\alpha(I_{a,b}, (t), X) = 1 + \chi((-1)^{(m+1)/2} \nu_1 \nu)(q - 1) \sum_{s=a+1}^b q^{-ms+a+(m-1)/2} X^s
\]

\[
+ \chi((-1)^{(m+1)/2} \nu_1 \nu_2 \nu t_0) q^{-(m+1)(\nu(t)+1)+a+b+(m+1)/2} X^{\nu(t)+1}.
\]

1704
When m is even, we have
\[
\alpha(I_{a,b}, (t), X) = 1 + \chi((-1)^{m/2})q - 1 \sum_{s=1}^{a} q^{-(m-1)s + m/2} X^s + \chi((-1)^{(m+2)/2} \nu_1 \nu_2) \cdot (q - 1) \sum_{s=b+1}^{\nu(t)} q^{-(m+1)s + a + b + m/2} X^s - q^{-(m+1)(\nu(t)+1) + a + b + m/2} X^{\nu(t)+1}.
\]

Finally, note that for I of rank m we have
\[
\chi(I) = \begin{cases}
\chi((-1)^{(m-1)/2} \nu), & \text{if } m \text{ is odd,} \\
\chi((-1)^{m/2} \nu), & \text{if } m \text{ is even.}
\end{cases}
\]

Now the lemma is clear. \hfill \Box

Similarly, we have the following lemma.

Lemma 7.2. Let I be unimodular with odd rank m. Then
\[
\alpha(I \otimes H_t, (t), X) = \begin{cases}
1 + \chi(I) \chi(t_0)q^{-(\nu(t)+1)(m+1)+(m+1)/2+i} X^{\nu(t)+1}, & \text{if } i \leq 2\nu(t), \\
1 + \chi(I) \chi(t_0)q^{-(\nu(t)+1)(m-1)+(m-1)/2} X^{\nu(t)+1}, & \text{if } i > 2\nu(t).
\end{cases}
\]

7.2 The case $T = \text{Diag}(u_1(-\pi_0)^a, u_2(-\pi_0)^b)$

In this subsection, we compute $\alpha(I, T, X)$ for I unimodular of rank $m \geq 2$ and $T = \text{Diag}(u_1(-\pi_0)^a, u_2(-\pi_0)^b)$ with $0 \leq a \leq b$. Notice that $\alpha(I, T, X) = 0$ when $a < 0$.

Proposition 7.3. Assume $T = \text{Diag}(u_1(-\pi_0)^a, u_2(-\pi_0)^b)$ and that I is isotropic of even rank $m \geq 2$, then
\[
\alpha(I, T, X) = (1 - X) \left(\sum_{i=0}^{a} (q^{2-m} X)^i + \gamma_e(I, T, X) \right) + qX(q^{2-m} X)^a (1 - \chi(I)q^{-(m/2)})(1 + \chi(I)\chi(T)q^{(m-2)/2}q^{2-m} X^{b+1}) + (1 - q^{-(m+1)}) + (q - 1)\chi(I)q^{-(m/2)} X \cdot \left(q^{a-1} \sum_{i=0}^{q^{2-m} X)^i + \gamma_e(I, T, X) - \chi(I)\chi(T)q^{m/2}q^{2-m} X^{a+b+1} \right),
\]

where
\[
\gamma_e(I, T, X) = \chi(I)q^{m/2} \left(\sum_{d=1}^{a} (q^d - 1)(q^{2-m} X)^d + \chi(T)q^a(q^{2-m} X)^{b+1} \sum_{i=0}^{a} (q^{1-m} X)^i \right).
\]

Proof. Since I is of even rank, $u_1 \cdot I^{[k]} \approx I^{[k]}$, and we may assume T is of the form $\text{Diag}((-\pi_0)^a, u(-\pi_0)^b)$ without loss of generality.

According to Theorem 5.2 and Proposition 5.9, we have
\[
\alpha(I, T, X) = \beta_1(I, (-\pi_0)^a, X)\alpha(M(1)^+, u(-\pi_0)^b) + q\beta_0(I, (-\pi_0)^a, X)\alpha(M(0)^+, u(-\pi_0)^b) + q^{2-m} X \alpha(I, \text{Diag}((-\pi_0)^{a-1}, u(-\pi_0)^b), X).
\]

1705
where \(M(1)^\perp = \text{Diag}(H^{k-1}, -(\pi_0)^i, I) \) and
\[
M(0)^\perp = \text{Diag}(H^k, -(\pi_0)^i, 1, \ldots, 1, -\nu).
\]

Continuing this process, we obtain
\[
\alpha(I, T, X) = \sum_{i=0}^a (q^{2-m} X)^{a-i} \cdot \left(\beta_1(I, -(\pi_0)^i, X) \alpha(M(1)^\perp, u(-(\pi_0)^b)) + q \beta_0(I, -(\pi_0)^i, X) \alpha(M(0)^\perp, u(-(\pi_0)^b)) \right).
\]

By the formulas in Proposition 5.9 and Lemma 7.1, the above is equal to
\[
\sum_{i=0}^a (q^{2-m} X)^{a-i} (1 - X)
\]
\[
\cdot \left(1 + (q - 1) \chi(I) q^{(m-2)/2} \sum_{s=-i}^{-1} (q^{(m-1)} (q^2 X)^{-1})^s + \chi(I) \chi(T) q^{m/2} (q^{2-m} X)^{b+1} \right)
\]
\[
+ q (q^{2-m} X)^a X (1 - q^{-(m-2)} \chi(I)) \left(1 + \chi(I) \chi(T) q^{-(b+1)(m-2)+(m-2)/2} X^{b+1} \right)
\]
\[
+ q \sum_{i=1}^a (q^{2-m} X)^{a-i} X \left(\left(1 - q^{-(m-1)} \right) + (q - 1) \chi(I) q^{-(m-1)+(m-2)/2} \right)
\]
\[
\cdot \left(1 + (q - 1) \chi(I) q^{(m-4)/2} \sum_{s=-i}^{-1} (q^{(m-3)} X^{-1})^s + \chi(I) \chi(T) q^{i+m/2} (q^{2-m} X)^{b+1} \right).
\]

Now the transformation
\[
\sum_{i=0}^a \sum_{s=1}^i q^s (q^{2-m} X)^{a-i+s} = \sum_{d=1}^a \sum_{s=1}^d q^s (q^{2-m} X)^d
\]
and some calculation gives us the result we want. \(\square \)

The case that \(I \) is anisotropic (i.e., when \(m = 2 \) and \(\chi(I) = -1 \)) can be computed similarly and is simpler. We omit the detail here. In particular, we may recover the following formula.

Proposition 7.4 [Shi22, Theorem 6.2(1)]. Assume \(I = \text{Diag}(1, \nu) \), then
\[
\alpha(I, T, X)
\]
\[
= (1 - X)(1 + \chi(I) + q \chi(I)) \sum_{c=0}^\alpha (q X)^c - \chi(T) q^{\alpha+1} X^{\beta+1} (1 - X) \sum_{e=0}^\alpha (q^{-1} X)^e
\]
\[
- \chi(T)(1 + q)(X^{\alpha+\beta+2} + \chi(I) \chi(T)) + (1 + \chi(I)) q^{\alpha+1} X^{\alpha+1}(1 + \chi(T) X^{\beta-\alpha}).
\]

Moreover, a similar computation yields the following, and we leave the detail to reader.

Proposition 7.5. Assume that \(I \) is unimodular of odd rank \(m \geq 3 \). Then
\[
\alpha(I, T, X)
\]
\[
= (1 - X) \left(\sum_{i=0}^a (q^{2-m} X)^i + \gamma_{o,1}(I, T, X) \right) + (1 - q^{-(m-1)}) X \left(\sum_{i=0}^{a-1} (q^{2-m} X)^i + \gamma_{o,0}(S, T, X) \right)
\]
\[
+ q X (q^{2-m} X)^a (1 + \chi(I) \chi(u_1) q^{-(m-1)/2}) (1 - \chi(I) \chi(u_1) q^{(2-m)b-(m-1)/2} X^{b+1}),
\]
\[
\]
where $\gamma_{o,1}(I,T,X)$ equals
\[
\chi(I)\chi(u_1)q^{(m-1)/2}\left(\sum_{d=a+1}^{a+b} (q^{a+b+1-d} - 1)(q^{2-m}X)^d - \sum_{i=b+1}^{a+b+1} (q^{2-m}X)^i\right),
\]
and $\gamma_{o,0}(I,T,X)$ equals
\[
\chi(I)\chi(u_1)q^{(m-1)/2}\left(\sum_{d=a+1}^{a+b} (q^{a+b+1-d} - q)(q^{2-m}X)^d - \sum_{i=b+1}^{a+b+1} (q^{2-m}X)^i\right).
\]

8. Local density formula when $\text{rank}(T) = 3$

In this section, we always assume $\text{rank}(T) = 3$ and $S = I_3^{-1}x(T)$. The aim of this section is to compute $\partial \text{Den}(T)$ explicitly. We treat the case $v(T) \leq -1$ in the first subsection. In the second subsection, we deal with the case when $T = \text{Diag}(1, T_2)$ for T_2 diagonal. In the last subsection, instead of $\partial \text{Den}(T)$, we compute $\partial \text{Den}(T)^{(2)}$ for T of the form not covered by previous subsections.

8.1 $\partial \text{Den}(T)$ for T with $v(T) \leq -1$

Proposition 8.1. If $v(T) \leq -1$, then $\text{Int}(T) = \partial \text{Den}(T) = 0$.

Proof. If $v(T) < -1$, then $\partial \text{Den}(T) = 0$ since $v(S^{[b]}) \geq -1$. If $v(T) = -1$, then T is of the form $\text{Diag}(H, (u_3(-\pi_0)^c))$ with $\chi(T) = \chi(u_3)$. In this case, according to Corollary 5.8, Lemmas A.8 and A.9, we have
\[
\alpha(S, T, X) = (1-X)\alpha(S, (u_3(-\pi_0)^c), q^2X).
\]

Similarly, we have
\[
\alpha(H^{3,1}_{\chi(T)}), T) = \beta(H^{3,1}_{\chi(T)}, H)\alpha(u_3, (u_3(-\pi_0)^c)) = (1-q^{-2})\alpha(u_3, (u_3(-\pi_0)^c)).
\]

Hence, applying Lemma 7.1 to $I_{0,0} = S$ where I is of rank 1, we have
\[
\partial \text{Den}(T) = 2\alpha(S, (u_3(-\pi_0)^c), q^2) + \frac{q^2}{1+q}(1-q^{-2})\alpha((u_3), (u_3(-\pi_0)^c))
\]
\[
= 2(1 + \chi(S)\chi(u_3)q) + 2(q-1)
\]
\[
= 2(1-q) + 2(q-1)
\]
\[
= 0.
\]

Here we are using the fact $\chi(S)\chi(T) = \chi(S)\chi(u_3) = -1$. \qed

8.2 $\partial \text{Den}(T)$ for $T = \text{Diag}(1, T_2)$ with T_2 diagonal

In this subsection, we assume $T = \text{Diag}(1, T_2)$, where $T_2 = \text{Diag}(u_1(-\pi_0)^a, u_2(-\pi_0)^b)$ with $0 \leq a \leq b$. Let $u = u_1u_2$. In addition, let $S = \text{Diag}(1, 1, \nu)$ and $S_2 = \text{Diag}(1, \nu)$. We compare $\partial \text{Den}(T)$ and $\partial \text{Den}(T_2)$ in this subsection. Recall that
\[
\partial \text{Den}(T) = 2\frac{\alpha'(S, T)}{\alpha(S, S)} + \frac{q^2}{1+q}\frac{\alpha(H^{3,1}_{\chi(T)}, T)}{\alpha(S, S)}.
\]
Moreover, according to [Shi22, Theorem 1.3] and [HSY23, Theorem 1.1], the analytic side in the case $n = 2$ is

$$\partial \text{Den}(T_2) = 2 \frac{\alpha'(S_2, T_2)}{\alpha(S_2, S_2)} - \frac{2q^2}{q^2 - 1} \frac{\alpha(\mathcal{H}, T_2)}{\alpha(S_2, S_2)}.$$

Proposition 8.2.

$$\partial \text{Den}(T) - \partial \text{Den}(T_2) = \begin{cases} 1 + 2 \sum_{i=1}^{a} q^i, & \text{if } \chi(T) = 1, \\ 1, & \text{if } \chi(T) = -1. \end{cases}$$

Proof. Proposition 5.9 implies that $\alpha(S, T, X)$ equals

$$(1 - X)\alpha(\text{Diag}(-1, S), T_2, q^2X) + q^2(1 + q^{-1}\chi(S))X\alpha(S_2, T_2, X).$$

Hence,

$$\alpha'(S, T) = \alpha(\text{Diag}(-1, S), T_2, q^2) + q^2(1 + q^{-1}\chi(S))\alpha'(S_2, T_2). \quad (8.1)$$

According to Lemma A.11, one can check that $\alpha(S, S) = \beta(S, S) = 2q(q^2 - 1)$, and $\alpha(S_2, S_2) = 2(q - \chi(S_2))$. Then

$$\frac{\alpha'(S, T)}{\alpha(S, S)} - \frac{\alpha'(S_2, T_2)}{\alpha(S_2, S_2)} = \frac{\alpha(\text{Diag}(-1, S), T_2, q^2)}{\alpha(S, S)}. \quad (8.2)$$

Hence, we just need to check that

$$2 \frac{\alpha(\text{Diag}(-1, S), T_2, q^2)}{\alpha(S, S)} + \frac{q^2}{1 + q^2} \frac{\alpha(\mathcal{H}_{\chi(T)}^{3,1}, T)}{\alpha(S, S)} + \frac{2q^2}{q^2 - 1} \frac{\alpha(\mathcal{H}, T_2)}{\alpha(S_2, S_2)} = \begin{cases} 1 + 2 \sum_{i=1}^{a} q^i, & \text{if } \chi(T) = 1, \\ 1, & \text{if } \chi(T) = -1. \end{cases}$$

By Proposition 7.3, we may check that

$$2 \alpha(\text{Diag}(-1, S), T_2, q^2) = \begin{cases} 2(2q^{a+2} - (q + 1)^2)(q - 1), & \text{if } \chi(T) = 1, \\ 2(q - 1)(q^2 - 1), & \text{if } \chi(T) = -1. \end{cases} \quad (8.3)$$

To compute $(q^2/(1 + q))\alpha(\mathcal{H}_{\chi(T)}^{3,1}, T)$, we may choose $\mathcal{H}_{\chi(T)}^{3,1} = \text{Diag}(\mathcal{H}, 1)$ when $\chi(T) = 1$. By Corollary 5.8, Proposition 7.4, and a direct calculation, we have

$$\frac{q^2}{1 + q} \frac{\alpha(\mathcal{H}_{\chi(T)}^{3,1}, T)}{\alpha(S, S)} = \frac{1}{2q(q^2 - 1)} \begin{cases} (q - 1)\alpha(\text{Diag}(-1, 1), T_2) + \frac{2q^2}{q - 1}\alpha(\mathcal{H}, T_2), & \text{if } \chi(T) = 1, \\ (q - 1)\alpha(\text{Diag}(-1, -u), T_2), & \text{if } \chi(T) = -1. \end{cases}$$

Combining this with the formulas in [HSY23, Theorem 6.1], we have

$$\frac{q^2}{1 + q} \frac{\alpha(\mathcal{H}_{\chi(T)}^{3,1}, T)}{\alpha(S, S)} + \frac{2q^2}{q^2 - 1} \frac{\alpha(\mathcal{H}, T_2)}{\alpha(S_2, S_2)} = \frac{1}{q(q^2 - 1)} \begin{cases} 4q^{a+2} - q^2 - 2q - 1, & \text{if } \chi(T) = 1, \\ (q^2 - 1), & \text{if } \chi(T) = -1. \end{cases} \quad (8.4)$$

Now a direct computation combined with (8.3) and (8.4) proves the proposition. \hfill \Box

Corollary 8.3. Assume L is a Hermitian lattice with Gram matrix T, then

$$\partial \text{Den}(T) - \partial \text{Den}(T_2) = |\{V^0(L)\}|. \quad (8.5)$$
Proposition 8.4. Let $\partial \beta$. Recall that which is a ball in L_c positive odd integer and L_c. Recall that L_c. In this subsection, we assume $\partial \beta$. According to Lemma 7.1, $\partial \beta$. We can write $\partial \beta$. According to Proposition 5.10, $\partial \beta$. If L_c is split, then $|\{V(L)_c\}| = 1 + 2 \sum_{i=1}^a q^i$ since $\mathcal{L}_3(L)$ can be identified with $\mathcal{L}_{2,1}(L^2)$, which is a ball in $\mathcal{L}_{2,1}$ centered at a vertex lattice of type 0 with radius a (see [HSY23] for more detail). Here $\mathcal{L}_{2,1}$ is the Bruhat–Tits tree associated with $\mathcal{L}_{2,1}^{Kar}$ and $\mathcal{L}_{2,1}(L^2)$ is the subtree of $\mathcal{L}_{2,1}$ associated with L_c. \hfill \square

8.3 $\partial \operatorname{Den}(T)^{(2)}$

In this subsection, we assume $T = \operatorname{Diag}(T_2, u_3(-\pi_0)^c)$ with $v(T_2) > 0$, and compute $\partial \operatorname{Den}(T)^{(2)}$. Recall that $\partial \operatorname{Den}(T)^{(2)} = \partial \operatorname{Den}(L_c \oplus \mathcal{O}_F x)^{(2)}$ where the Gram matrix of $L = L_c \oplus \mathcal{O}_F x$ is T. We consider two cases separately in Propositions 8.4 and 8.5.

Proposition 8.4. Let $T = \operatorname{Diag}(u_1(-\pi_0)^a, u_2(-\pi_0)^b, u_3(-\pi_0)^c)$ where $0 < a \leq b \leq c$. Then

$$\partial \operatorname{Den}(T)^{(2)} = 1 + \chi(-u_2u_3)q^a(q^a - q^b) - q^{a+b}.$$

Proof. Recall that

$$\partial \operatorname{Den}(T)^{(2)} = \frac{1}{2q(q^2 - 1)}(2\beta'(S, T)^{(2)} + \frac{q^2}{1+q}\beta(\mathcal{H}_{\chi(T)}^{3,1}, T)^{(2)}).$$

We compute $\beta'(S, T)^{(2)}$ first. According to Proposition 5.10, $\beta_0(S, T_2, X) = 0$ and

$$\beta(S, T, X)^{(2)} = \beta_2(S, T_2, X)\alpha(\operatorname{Diag}(S, -T_2), u_3(-\pi_0)^c, q^4 X) + q\beta_1(S, T_2, X)\alpha(\operatorname{Diag}(-\nu, -T_2), u_3(-\pi_0)^c, q^2 X) = (1 - X)(1 - q^2 X)\alpha(\operatorname{Diag}(S, -T_2), u_3(-\pi_0)^c, q^4 X) + (q + 1)(q^2 - 1)X(1 - X)\alpha(\operatorname{Diag}(-\nu, -T_2), u_3(-\pi_0)^c, q^2 X).$$

According to Lemma 7.1,

$$\alpha(\operatorname{Diag}(S, -T_2), u_3(-\pi_0)^c, q^4 X) = 1 + \chi(S)\chi(u_1)(q - 1) \times \sum_{s=a+1}^b q^{a+1}(qX)^s + \chi(u_1u_2u_3\nu)q^{a+b+2}X^{c+1},$$

and

$$\alpha(\operatorname{Diag}(-\nu, -T_2), u_3(-\pi_0)^c, q^2 X) = 1 + \chi(S)\chi(u_1)(q - 1)q^a \times \sum_{s=a+1}^b (qX)^s + \chi(u_1u_2u_3\nu)q^{a+b+1}X^{c+1}.$$

The relation $\chi(u_1u_2u_3\nu) = \chi(S)\chi(T) = -1$ and a direct calculation show that

$$\beta'(S, T_2)^{(2)} = 1 + \chi(-u_2u_3)q^a(q^a - q^b) - q^{a+b}.$$

Finally, $\beta(\mathcal{H}_{\chi(T)}^{3,1}, T)^{(2)} = 0$ by Proposition 5.10. The proposition is proved. \hfill \square

Proposition 8.5. Recall that $\mathcal{H}_a = \left(\begin{smallmatrix} 0 & \pi_a^c \\ -\pi_0 & 0 \end{smallmatrix} \right)$. Let $T = \operatorname{Diag}(\mathcal{H}_a, u_3(-\pi_0)^c)$ where a is a positive odd integer and $c \geq 0$. Then

$$\partial \operatorname{Den}(T)^{(2)} = \begin{cases} (1 - q^a), & \text{if } a \leq 2c, \\ (1 - q^{2c+1}), & \text{if } a > 2c. \end{cases}$$
Proof. Recall that
\[
\partial \text{Den}(T)^{(2)} = \frac{1}{2(q^2-1)} \left(2\beta'(S, T)^{(2)} + \frac{q^2}{1+q} \beta(\mathcal{H}^{3,1}_{\chi(T)}, T)^{(2)} \right).
\]
We need to compute \(\beta'(S, T)^{(2)}\) and \(\beta(\mathcal{H}^{3,1}_{\chi(T)}, T)^{(2)}\).

According to Proposition 5.10, \(\beta_0(S, T_2, X) = 0\) and
\[
\beta(S, T, X)^{(2)} = \beta_2(S, \mathcal{H}_a, X)\alpha(\text{Diag}(S, \mathcal{H}_a), u_3(-\pi_0)^c, q^4 X)
+ q\beta_1(S, \mathcal{H}_a, X)\alpha(\text{Diag}(-\nu, \mathcal{H}_a), u_3(-\pi_0)^c, q^2 X)
= (1 - X)((1 - q^2 X)\alpha(\text{Diag}(S, \mathcal{H}_a), u_3(-\pi_0)^c, q^4 X)
+ (q + 1)(q^2 - 1)X\alpha(\text{Diag}(-\nu, \mathcal{H}_a), u_3(-\pi_0)^c, q^2 X)).
\]
According to Lemma 7.2,
\[
\alpha(\text{Diag}(S, \mathcal{H}_a), u_3(-\pi_0)^c, q^4 X) = \begin{cases}
1 + \chi(S)\chi(u_3)q^{2+a}X^{c+1}, & \text{if } a \leq 2c, \\
1 + \chi(S)\chi(u_3)q^{2c+3}X^{c+1}, & \text{if } a > 2c,
\end{cases}
\]
and
\[
\alpha(\text{Diag}(-\nu, \mathcal{H}_a), u_3(-\pi_0)^c, q^2 X) = \begin{cases}
1 + \chi(S)\chi(u_3)q^{1+a}X^{c+1}, & \text{if } a \leq 2c, \\
1 + \chi(S)\chi(u_3)q^{2c+2}X^{c+1}, & \text{if } a > 2c.
\end{cases}
\]
A short computation shows that
\[
\beta'(S, T)^{(2)} = q(q^2 - 1) \cdot \begin{cases}
1 + \chi(S)\chi(u_3)q^a, & \text{if } a \leq 2c, \\
1 + \chi(S)\chi(u_3)q^{2c+1}, & \text{if } a > 2c.
\end{cases}
\]
Note that \(\chi(S)\chi(u_3) = \chi(S)\chi(T) = -1\). Finally, \(\beta(\mathcal{H}^{3,1}_{\chi(T)}, T)^{(2)} = 0\) by Proposition 5.10. The proposition is proved.

\[\square\]

Part 3. Proof of the main theorem

9. Reduced locus of special cycle

As remarked in § 2, results of [RTW14] extend to the category of strict formal \(\mathcal{O}_{F_0}\)-modules using relative Dieudonné theory.

9.1 The Bruhat–Tits building for \(n = 3\)

From now on we assume \(n = 3\) and \(\mathcal{L} = \mathcal{L}_3\) as in § 2.3.

Lemma 9.1.

(1) For every \(\Lambda_2 \in \mathcal{V}^2\), \(\mathcal{N}_{\Lambda_2}\) is isomorphic to the projective line \(\mathbb{P}^1\) over \(k\). Its \(q + 1\) rational points correspond to all \(\Lambda_0 \in \mathcal{V}^0\) contained in \(\Lambda_2\).

(2) Every \(\Lambda_0 \in \mathcal{V}^0\) is contained in \(q + 1\) type 2 lattices. In other words, there are \(q + 1\) projective lines in \((\mathcal{N}_3^{\text{Pap}})_{\text{red}}\) passing through the superspecial point \(\mathcal{N}_{\Lambda_0}(k)\). Moreover,
\[
\bigcap_{\Lambda_2 \in \mathcal{V}^2, \Lambda_0 \subseteq \Lambda_2} \Lambda_2^z = \pi \Lambda_0.
\]

Proof. Suppose \(z \in \mathcal{N}(k)\) and \(M := M(z) \subseteq N\) is defined as in Proposition 2.9. Since \(n = 3\), by [RTW14, Proposition 4.1] we have \(\Lambda(M) \otimes_{\mathcal{O}_F} \mathcal{O}_F = M + \tau(M)\).
Kudla–Rapoport conjecture for Krämer models

Proof of part (1). Suppose \(z \in \mathcal{N}_L(k) \), i.e. \(M \subset \Lambda \).

If \(M = \tau(M) \), then \(M = \Lambda_0 \otimes_{\mathcal{O}_F} \mathcal{O}_F \) for some \(\Lambda_0 \in \mathcal{V}^0 \) contained in \(\Lambda_2 \).

If \(M \neq \tau(M) \), then by taking the dual of \(M \subset \Lambda_2 \otimes_{\mathcal{O}_F} \mathcal{O}_F \) we have the following sequence of inclusions

\[
(\Lambda_2 \otimes_{\mathcal{O}_F} \mathcal{O}_F)^{\perp} \subset M \subset M + \tau(M) = \Lambda_2 \otimes_{\mathcal{O}_F} \mathcal{O}_F.
\] (9.2)

In both cases the class of \(M \) in \(\Lambda_2 \otimes_{\mathcal{O}_F} \mathcal{O}_F \) corresponding to vertex lattices of type 0. Each vertex of \(\mathcal{V}^1 \) is contained in \(\Lambda \).

Proof of part (2). For each \(\Lambda_0 \in \mathcal{V}^0 \) we just need to count the number of lattices \(\Lambda_2 \in \mathcal{V}^2 \) that contains \(\Lambda_0 \). We have the following sequence of inclusions

\[
\pi \Lambda_0 \subset \Lambda_2^x \subset \Lambda_0 \subset \Lambda_2.
\]

With respect to the quadratic form \((\cdot, \cdot)(\mod \pi)\) on \(\Lambda_0/\pi \Lambda_0 \), the dual lattice \(\Lambda_2^x \) corresponds to the 2-dimensional subspaces \(U := \Lambda_2^x/\pi \Lambda_0 \in \Lambda_0/\pi \Lambda_0 \) such that \(U^\perp \subset U \). Thus, we just need to count the number of isotropic lines \(U^\perp \). Assume that \(\{e_1, e_2, e_3\} \) is a basis of \(\Lambda_0/\pi \Lambda_0 \) whose Gram matrix with respect to the quadratic form \((\cdot, \cdot)(\mod \pi)\) is

\[
\begin{pmatrix}
1 & 1 \\
1 & \epsilon
\end{pmatrix}
\]

It is easy to see that the isotropic lines are \(\text{Span}\{e_1\}, \text{Span}\{e_2\} \) and \(\text{Span}\{e_1-(\epsilon a^2/2)e_2 + ae_3\} (a \in \mathbb{F}_p^\times) \). Finally, (9.1) can be checked directly using this basis. \(\square \)

It is well known that \(\mathcal{L} \) is a tree; see, for example, [Bro89, §3 of Chapter VI]. More specifically, the vertices of \(\mathcal{L} \) correspond to vertex lattices of type 2 or 0. There is an edge between \(\Lambda \in \mathcal{V}^2 \) and \(\Lambda_0 \in \mathcal{V}^0 \) if \(\Lambda_0 \subset \Lambda \). We give each edge length \(\frac{1}{2} \). This defines a metric \(d(\cdot, \cdot) \) on \(\mathcal{L} \). Recall that we have defined \(\mathcal{L}(\mathcal{L}) \) in (2.6). Then the boundary of \(\mathcal{L}(\mathcal{L}) \) is the set

\[
\mathcal{B}(L) = \{ \Lambda \in \mathcal{V}(L) \mid \exists \Lambda_2 \in \mathcal{V}^2 \text{ such that } \Lambda \subset \Lambda_2, \Lambda \notin \mathcal{L}(\mathcal{L}) \}.
\] (9.3)

Recall we have the isomorphism \(b : \mathcal{V} \to C \) defined in (2.3). Recall from [KR14a] or [HSY23] that the vertices of \(\mathcal{L}_{2,1} \) correspond to vertex lattices of type 2, and an edge corresponds to a vertex lattice of type 0. Each vertex of \(\mathcal{L}_{2,1} \) is contained in \(q + 1 \) edges and each edge connects exactly two vertices. For \(\mathbf{x} \in \mathcal{V} \) with \(\nu(\mathbf{x}) = 0 \) and \(\text{Span}_{\mathcal{O}_F}\{\mathbf{x}\}^\perp \) split, recall that \(\mathcal{L}_{2,1} \) is the Bruhat–Tits tree of \(\mathcal{Z}^{Pap}(\mathbf{x}) \cong \mathcal{N}_{2,1}^{Pap} \). Then \(\mathbf{x} \) determines an embedding \(\mathcal{L}_{2,1} \to \mathcal{L} \) defined as follows. First we send each vertex of \(\mathcal{L}_{2,1} \) corresponding to a vertex lattice \(\Lambda \subset \text{Span}_{\mathcal{O}_F}\{b(\mathbf{x})\}^\perp \) of type 2 to the vertex of \(\mathcal{L} \) corresponding to the type 2 lattice \(\Lambda \oplus \text{Span}_{\mathcal{O}_F}\{b(\mathbf{x})\} \). An edge of \(\mathcal{L}_{2,1} \) corresponding to a type 0 lattice \(\Lambda_0 \subset \text{Span}_{\mathcal{O}_F}\{b(\mathbf{x})\}^\perp \) is broken into two pieces evenly and sent to the union of the two edges in \(\mathcal{L} \) joining the two vertices corresponding to \(\Lambda \oplus \text{Span}_{\mathcal{O}_F}\{b(\mathbf{x})\} \) and \(\Lambda' \oplus \text{Span}_{\mathcal{O}_F}\{b(\mathbf{x})\} \) where \(\Lambda \) and \(\Lambda' \) are the two type 2 lattices containing \(\Lambda_0 \).

9.2 Rank 1 case

Lemma 9.2. A point \(z \in \mathcal{N}_3^{Pap}(k) \) is in \(\mathcal{Z}^{Pap}(\mathbf{x})(k) \) if and only if \(b(\mathbf{x}) \in M(z) \).

1. Assume \(\Lambda_0 \in \mathcal{V}^0 \), then the superspecial point \(\mathcal{N}_{\Lambda_0}(k) \) is in \(\mathcal{Z}^{Pap}(\mathbf{x})(k) \) if and only if \(b(\mathbf{x}) \in \Lambda_0 \).
(2) Assume $\Lambda_2 \in \mathcal{V}^2$, then
\[
\mathcal{Z}^{Pap}(x)(k) \cap \mathcal{N}_{\Lambda_2}(k) = \begin{cases}
\mathcal{N}_{\Lambda_2}(k), & \text{if } b(x) \in \Lambda_2^2, \\
\text{a superspecial point in } \mathcal{N}_{\Lambda_2}(k), & \text{if } b(x) \in \Lambda_2 \setminus \Lambda_2^2, \\
\emptyset, & \text{if } b(x) \notin \Lambda_2.
\end{cases}
\]

Proof. By Dieudonné theory, $z \in \mathcal{Z}^{Pap}(x)(k)$ if and only if $x(M(\mathcal{V})) \subset M(z)$ if and only if $b(x) \in M(z)$ since e is a generator of $M(\mathcal{V})$. For $z = \mathcal{N}_{\Lambda_0}(k)$ where $\Lambda_0 \in \mathcal{V}^0$, we have $M(z) = \Lambda_0 \otimes_{\mathcal{O}_F} \mathcal{O}_F$. Hence part (1) immediately follows.

Now we proceed to prove part (2). If $b(x) \in \Lambda^2$, then (9.2) tells us that $z \in \mathcal{Z}^{Pap}(x)(k)$ for any $z \in \mathcal{N}_{\Lambda_2}(k)$. The fact that $\Lambda_2^2 \subset \Lambda_0$ for any $\Lambda_0 \in \mathcal{L}^0$ contained in Λ_2 implies that $\mathcal{N}_{\Lambda_0}(k) \in \mathcal{Z}^{Pap}(x)(k)$. Thus, $\mathcal{N}_{\Lambda_2}(k) \subset \mathcal{Z}^{Pap}(x)(k)$.

If $b(x) \in \Lambda_2 \setminus \Lambda_2^2$, then $\Lambda_0 := \Lambda^2 + \text{Span}\{b(x)\}$ is a type 0 lattice contained in Λ_2 and $\mathcal{N}_{\Lambda_0}(k) \in \mathcal{Z}^{Pap}(x)(k)$. On the other hand, since $\tau(\Lambda_0 \otimes_{\mathcal{O}_F} \mathcal{O}_F) = \Lambda_0 \otimes_{\mathcal{O}_F} \mathcal{O}_F$, (9.2) tells us that $\mathcal{Z}^{Pap}(x)$ does not contain any point in $\mathcal{N}_{\Lambda_2}(k)$.

If $b(x) \notin \Lambda_2$, then $b(x) \notin M(z)$ for any $z \in \mathcal{N}_{\Lambda_2}(k)$, hence $\mathcal{Z}^{Pap}(x)(k) \cap \mathcal{N}_{\Lambda_2}(k) = \emptyset$. \hfill \qed

Corollary 9.3. Let $L \subset \mathcal{V}$. Assume $z \in \mathcal{Z}^{Pap}(L)(k)$ and $z \in \mathcal{N}_{\Lambda}(k)$ where $\Lambda \in \mathcal{V}^2$. Then $\mathcal{N}_{\Lambda} \subset \mathcal{Z}^{Pap}(\pi L)$.

Corollary 9.4. Assume $x \in \mathcal{V}$ and $v(x) > 0$. Assume $\mathcal{N}_{\Lambda} \subset \mathcal{Z}^{Pap}(x)_{\text{red}}$ where $\Lambda \in \mathcal{V}^2$, then either $\mathcal{N}_{\Lambda} \subset \mathcal{Z}^{Pap}((1/\pi)x)_{\text{red}}$ or $\mathcal{N}_{\Lambda} \cap \mathcal{Z}^{Pap}((1/\pi)x)_{\text{red}}$ is a unique superspecial point.

Lemma 9.5. For $L \subset \mathcal{V}$ a lattice of arbitrary rank, $\mathcal{Z}^{Pap}(L)_{\text{red}}$ is connected.

Proof. Suppose $\mathcal{Z}^{Pap}(L)_{\text{red}}$ has two different connected components U_1 and U_2. Since $\text{SU}(\mathcal{V})$ acts transitively on \mathcal{L}, we can find a $x \in \mathcal{V}$ such that $\mathcal{Z}^{Pap}(x) \cong \mathcal{N}_{2,1}^{Pap}$ (i.e. $\{x\}^\perp$ is split) and $\mathcal{Z}^{Pap}(x)_{\text{red}} \cap U_i \neq \emptyset$ for $i = 1, 2$. Hence, the reduced locus of $\mathcal{Z}^{Pap}(L \oplus \text{Span}\{x\}) \cong \mathcal{Z}^{Pap}_{2,1}(L')$ is not connected where L' is the orthogonal projection of L onto $\{x\}^\perp$. This contradicts Corollaries 3.13 and 3.15 and Lemma 3.16 of [HSY23]. \hfill \qed

Recall that for a lattice $L \subset \mathcal{V}$ (respectively, $x \in \mathcal{V}$), we have defined $\mathcal{V}(L)$ and $\mathcal{L}(L)$ (respectively, $\mathcal{V}(x)$ and $\mathcal{L}(x)$) in §2.3.

Proposition 9.6. Assume that $x \in \mathcal{V}$ such that $h(x,x) \neq 0$. Then we have
\[
\mathcal{Z}^{Pap}(x)_{\text{red}} = \bigcup_{\Lambda \in \mathcal{V}(x)} \mathcal{N}_{\Lambda},
\]
where $\mathcal{V}(x)$ is given as follows.

(1) When $v(x) = 0$ and $\text{Span}_F\{x\}^\perp$ is non-split, there is a unique vertex lattice $\Lambda_x \in \mathcal{V}^0$ containing $b(x)$. In this case $\mathcal{V}(x) = \{\Lambda_x\}$.

(2) When $v(x) = d$ and $\text{Span}_F\{x\}^\perp$ is non-split, we have
\[
\mathcal{V}(x) = \{\Lambda \in \mathcal{V} \mid d(\Lambda, \Lambda_{x/\pi^d}) \leq d\}
\]
where Λ_{x/π^d} is as in part (1).

(3) When $v(x) = 0$ and $\text{Span}_F\{x\}^\perp$ is split, $\mathcal{L}(x)$ is the tree $\mathcal{L}_{2,1}$.

1712
(4) When \(v(x) = d \) and \(\text{Span}_F\{x\} \perp \) is split, we have
\[
\mathcal{V}(x) = \{ \Lambda \in \mathcal{V} \mid d(\Lambda, \mathcal{L}(x/\pi^d)) \leq d \}
\]
where \(\mathcal{L}(x/\pi^d) \) is as in part (3).

(5) When \(h(x, x) \notin O_{F_0}, \mathcal{V}(x) \) is empty.

Proof. Proof of part (1). This is a direct consequence of Proposition 2.6 and the fact that \(\Lambda_{2,1}^{\text{Pap}} \) has only one reduced point, see [Shi22, §2] or [RSZ18, §8]. Alternatively since \(\text{Span}_F\{b(x)\} \perp \) is non-split of dimension 2, it contains a unique self-dual lattice \(\Lambda' \), then \(\Lambda_x := \text{Span}\{b(x)\} \oplus \Lambda' \) is the unique type 0 lattice containing \(b(x) \).

Proof of part (3). Applying Proposition 2.6, we see that \(\mathcal{Z}^{\text{Pap}}(x) \cong \Lambda_{2,1}^{\text{Pap}} \) is the Drinfeld \(p \)-adic half space, see [KR14a] and [HSY23]. The required properties of \(\mathcal{L}(x) \) and \(\mathcal{V}(x) \) follow.

Proof of part (2). We prove this by induction. The case \(d = 0 \) is just part (1). Now we assume \(d > 0 \) and that the statement holds for \(d - 1 \), i.e.
\[
\mathcal{V}(x/\pi) = \{ \Lambda \in \mathcal{V} \mid d(\Lambda, \Lambda_x/\pi^d) \leq d - 1 \}.
\]
Then applying Corollary 9.3 to the lattice \(L = \text{Span}\{x/\pi\} \), we have
\[
\bigcup_{\Lambda \in \mathcal{V}, d(\Lambda, \Lambda_x/\pi^d) \leq d} \mathcal{N}_\Lambda \subset \mathcal{Z}^{\text{Pap}}(x)_{\text{red}}.
\]

Corollary 9.4 and the induction hypothesis imply that every \(\Lambda_2 \in \mathcal{V}^2(x) \) satisfies \(d(\Lambda, \Lambda_x/\pi^d) \leq d \). By Lemma 9.5 there is no isolated \(\Lambda_0 \in \mathcal{V}^0(x) \), i.e. every \(\Lambda_0 \in \mathcal{V}^0(x) \) is contained in some \(\Lambda_2 \in \mathcal{V}^2(x) \) if \(v(x) > 0 \). This finishes the proof of part (2).

Similarly we can prove part (4) by an induction on \(d \), the case \(d = 0 \) is just part (3).

Part (5) follows directly from Lemma 9.2. \(\square \)

9.3 Rank 2 case

Proposition 9.7. Assume that \(L^b = \text{Span}\{x_1, x_2\} \subset \mathcal{V} \) is integral of rank 2. Then
\[
\mathcal{Z}^{\text{Pap}}(L^b)_{\text{red}} = \bigcup_{\Lambda \in \mathcal{V}(L^b)} \mathcal{N}_\Lambda
\]
is a finite union, where \(\mathcal{V}(L^b) \) is the set of vertices of the tree \(\mathcal{L}(L^b) \) described as follows.

(1) Assume \(L^b \approx H_{2a+1} \) for some \(a \in \mathbb{Z}_{\geq 0} \). Then \(\mathcal{L}(L^b) \) is a ball centered at a vertex lattice of type 2 with radius \((2a + 1)/2 \).

(2) Assume \(L^b = \text{Span}\{\pi^a x_1, \pi^a x_2\} \) where \(v(x_1) = 0, v(x_2) \geq 0 \) and \(\text{Span}_F\{x_1\} \perp \) is non-split. Then \(\mathcal{L}(L^b) \) is a ball centered at a vertex lattice of type 0 with radius \(a \).

(3) Assume \(L^b = \text{Span}\{\pi^a x_1, \pi^{a+r} x_2\} \) where \(x_1 \perp x_2, v(x_1) = v(x_2) = 0, r \geq 0 \) and \(\text{Span}_F\{x_1\} \perp \) is split. Then
\[
\mathcal{L}(L^b) = \{ \Lambda \in \mathcal{V} \mid d(\Lambda, \mathcal{L}(\pi^{-a} L^b)) \leq a \},
\]
where
\[
\mathcal{L}(\pi^{-a} L^b) = \{ \Lambda \in \mathcal{L}(x_1) \mid d(\Lambda, \Lambda_0) \leq r \},
\]
\(\mathcal{L}(x_1) \) is described in part (3) of Proposition 9.6 and \(\Lambda_0 \) is the unique type 0 vertex lattice containing \(\{x_1, x_2\} \).

Proof. As in the proof of Proposition 9.2, for a \(\Lambda \in \mathcal{V}, \mathcal{N}_\Lambda \subset \mathcal{Z}^{\text{Pap}}(L^b)_{\text{red}} \) if and only if \(\Lambda^\sharp \) contains \(b(x_1), b(x_2) \).
We first prove part (1) when $a = 0$. Suppose $\Lambda \in \mathcal{V}^2(L^0)$. Extend $\{b(x_1), b(x_2)\}$ to a basis $\{b(x_1), b(x_2), b_3\}$ of \mathcal{V} with Gram matrix $\mathcal{H}_1 \oplus \{-e\}$. Choose a basis $\{v_1, v_2, v_3\}$ of Λ^2 with the same Gram matrix $\mathcal{H}_1 \oplus \{-e\}$. Then $b(x_i) \in \Lambda^2 \ (i = 1, 2)$ by Lemma 9.2 and

$$b(x_i) = a_{i1}v_1 + a_{i2}v_2 + a_{i3}v_3,$$

where $a_{ij} \in \mathcal{O}_F \ (j = 1, 2, 3)$. The fact that $(b(x_i), b(x_j))_{1 \leq i, j \leq 2} = T$ implies $a_{i3} \in \pi \mathcal{O}_F$ for $i = 1, 2$ and $(a_{ij})_{1 \leq i, j \leq 2}$ is in $\text{GL}_2(\mathcal{O}_F)$. This guarantees that L^0 is a direct summand of Λ^2 by the Gram–Schmidt process. Hence, Λ^2 is, in fact, the lattice $\text{Span}_{\mathcal{O}_F} \{b(x_1), b(x_2), b_3\}$. The fact that all $\Lambda_0 \in \mathcal{V}^0(L^0)$ are in Λ follows from Lemma 9.5.

When $a = 0$, part (2) follows from the fact that $\mathcal{Z}^{\text{Pap}}(x_1) = \Lambda_{2, -1}^\text{Pap}$ (by Proposition 2.6) and $\mathcal{Z}^{\text{Pap}}(L^0)_{\text{red}} = \mathcal{Z}^{\text{Pap}}(x_1)_{\text{red}}$ is a unique superspecial point. Similarly when $a = 0$, (3) follows from the fact that $\mathcal{Z}^{\text{Pap}}(x_1) = \Lambda_{2, 1}^\text{Pap}$ and [HSY23, Corollary 3.13].

Now we prove parts (1), (2) and (3) for general a. First, $\mathcal{L}(L^0) = \mathcal{L}(\pi^a x_1) \cap \mathcal{L}(\pi^a x_2)$ by definition. By Corollary 9.3 we have

$$\{\Lambda \in \mathcal{V} \mid d(\Lambda, \mathcal{L}(\pi^{-a}L^0)) \leq a\} \subset \mathcal{L}(\pi^a x_1) \cap \mathcal{L}(\pi^a x_2).$$

Note that for a sub-tree \mathcal{L}' of a tree \mathcal{L} and a vertex $x \in \mathcal{L} \setminus \mathcal{L}'$, there is a unique geodesic segment joining x with \mathcal{L}'. Given $\Lambda \in \mathcal{L}(L^0) = \mathcal{L}(\pi^a x_1) \cap \mathcal{L}(\pi^a x_2)$, let γ be the unique geodesic segment joining Λ with $\mathcal{L}(\pi^{-a}L^0)$. Assume that γ intersects $\mathcal{L}(\pi^{-a}L^0)$ at $\Lambda(L^0)$. Since $\mathcal{L}(\pi^{-a}L^0) = \mathcal{L}(x_1) \cap \mathcal{L}(x_2)$, γ necessarily intersects both $\mathcal{L}(x_1)$ and $\mathcal{L}(x_2)$. Without loss of generality we assume that γ intersects $\mathcal{L}(x_1)$ at $\Lambda(x_1)$ first. Hence, the intersection of γ with $\mathcal{L}(x_2)$ is $\Lambda(L^0)$ and

$$d(\Lambda, \Lambda(x_1)) = d(\Lambda, \mathcal{L}(x_1)) \leq d(\Lambda, \Lambda(L^0)) = d(\Lambda, \mathcal{L}(x_2)).$$

Now by Proposition 9.6, we have

$$d(\Lambda, \mathcal{L}(x_1)) \leq a, \quad d(\Lambda, \mathcal{L}(x_2)) \leq a.$$

Hence, $d(\Lambda, \mathcal{L}(\pi^{-a}L^0)) \leq a$. This shows that

$$\{\Lambda \in \mathcal{V} \mid d(\Lambda, \mathcal{L}(\pi^{-a}L^0)) \leq a\} = \mathcal{L}(\pi^a x_1) \cap \mathcal{L}(\pi^a x_2).$$

The general case of parts (1), (2) and (3) follows from the above equation and the case $a = 0$.

Note that parts (1), (2) and (3) have covered all possibilities of L^0 due to the classification of Hermitian lattices. Note that in every case $\mathcal{V}(L^0)$ is finite. This finishes the proof of the proposition. \hfill \Box

Definition 9.8. Assume that L^0 is an integral lattice of rank 2 in \mathcal{V}. Define $\mathcal{S}(L^0)$, the skeleton of $\mathcal{L}(L^0)$, as follows. If the fundamental invariant of L^0 is $(2a, b) \ (b \geq 2a)$, define $\mathcal{S}(L^0) := \mathcal{L}(\pi^{-a}L^0)$. If the fundamental invariant of L^0 is $(2a + 1, 2a + 1)$, define $\mathcal{S}(L^0) := \emptyset$.

Remark 9.9. The skeleton $\mathcal{S}(L^0)$ is isomorphic to a ball in the Bruhat–Tits tree of $\Lambda_{2, \pm 1}^\text{Pap}$.

Corollary 9.10. For each $\Lambda_2 \in \mathcal{V}^2(L^0)$ not on the skeleton $\mathcal{S}(L^0)$, one can find $\Lambda_0 \in \mathcal{V}^0(L^0)$ such that Λ_0 has the largest distance to the boundary $\mathcal{B}(L^0)$ of $\mathcal{L}(L^0)$ among all type 2 lattices in $\mathcal{V}^2(L^0)$ containing Λ_0.

Proof. Assume the fundamental invariant of L^0 is $(2a, b)$ or $(2a + 1, 2a + 1)$. Define $M^0 := \pi^{-a}L^0$. Let b be the unique integer such that $\Lambda_2 \in \mathcal{L}(\pi^b M^0) \setminus \mathcal{L}(\pi^{b-1} M^0)$. Choose any $\Lambda_0 \in \mathcal{B}(\pi^b M^0)$ such that $\Lambda_0 \subset \Lambda$. Then by Proposition 9.7, Λ_0 satisfies the assumption of the corollary. \hfill \Box
9.4 The Krammer model

For \(\Lambda \in \text{V}^2 \), let \(\tilde{N}_\Lambda \) be the strict transform of \(N_\Lambda \) under the blow-up \(N^{Kra} \rightarrow N^{Pap} \). Since the strict transform of a regular curve along any of its closed point is an isomorphism, we know \(\tilde{N}_\Lambda \cong \mathbb{P}^1 \).

Lemma 9.11. For \(\Lambda \neq \Lambda' \in \text{V}^2 \), \(\tilde{N}_\Lambda \) and \(\tilde{N}_{\Lambda'} \) do not intersect.

Proof. If \(N_\Lambda \) and \(N_{\Lambda'} \) do not intersect in \(N^{Pap} \), then obviously \(\tilde{N}_\Lambda \) and \(\tilde{N}_{\Lambda'} \) do not intersect. Without loss of generality we can assume \(\Lambda = \text{Span}\{e_1, e_2, e_3\} \) and \(\Lambda' = \text{Span}\{\pi^{-1}e_1, \pi e_2, e_3\} \) where the Gram matrix of \(\{e_1, e_2, e_3\} \) is \(\text{Diag}(H, \epsilon) \). Take \(x_0 = e_3 \). Then by Proposition 9.7, both \(\tilde{N}_\Lambda \) and \(\tilde{N}_{\Lambda'} \) are in \(\tilde{Z}(x_0) \cong N^{Kra}_{2,1} \). Now by [HSY23, Lemma 5.3], \(\tilde{N}_\Lambda \) and \(\tilde{N}_{\Lambda'} \) do not intersect. \(\square \)

Lemma 9.12. Let \(\Lambda \in \text{V}^2 \) and \(\Lambda_0 \in \text{V}^0 \). When \(\Lambda_0 \subset \Lambda \), \(\tilde{N}_\Lambda \) intersects properly with \(\text{Exc}_{\Lambda_0} \) and

\[
\chi(N^{Kra}, O_{\tilde{N}_\Lambda} \otimes O_{\text{Exc}_{\Lambda_0}}) = 1. \tag{9.4}
\]

When \(\Lambda_0 \) is not contained in \(\Lambda \), \(\tilde{N}_\Lambda \) does not intersect with \(\text{Exc}_{\Lambda_0} \).

Proof. First assume \(\Lambda_0 \subset \Lambda \). Since \(\tilde{N}_\Lambda \) is a strict transformation of a curve, it intersects the exceptional divisor properly. Let \(x_0 \) be as in the proof of Lemma 9.11. Then \(\tilde{N}_\Lambda \) is in \(\tilde{Z}(x_0) \cong N^{Kra}_{2,1} \):

\[
\chi(N^{Kra}, O_{\tilde{N}_\Lambda} \otimes O_{\text{Exc}_{\Lambda_0}}) = \chi(N^{Kra}, O_{\tilde{N}_\Lambda} \otimes O_{\tilde{Z}(x_0)} \otimes O_{\text{Exc}_{\Lambda_0}}) = \chi(\tilde{Z}(x_0), O_{\tilde{N}_\Lambda} \otimes O_{\tilde{Z}(x_0)} \otimes O_{\text{Exc}_{\Lambda'}}).
\]

Here \(\text{Exc}' \cong \mathbb{P}^1 \) is the exceptional divisor on \(\tilde{Z}(x_0) \) corresponding to the rank 2 self-dual lattice

\[
\Lambda' = \{ v \in \Lambda_0 \mid v \perp x_0 \}.
\]

By [HSY23, Lemma 5.2(a)], we know \(\chi(\tilde{Z}(x_0), O_{\tilde{N}_\Lambda} \otimes O_{\tilde{Z}(x_0)} \otimes O_{\text{Exc}'}) = 1 \). When \(\Lambda_0 \) is not contained in \(\Lambda \), the superspecial point \(N_{\Lambda_0}(k) \) is not contained in \(N_{\Lambda} \), hence \(\tilde{N}_\Lambda \) does not intersect with \(\text{Exc}_{\Lambda_0} \). \(\square \)

10. Intersection of vertical components and special divisors

In this section we study the intersection of \(\tilde{N}_\Lambda \) and special divisors. The main result is Theorem 10.2. To proceed we first study the decomposition of \(L \) \(Z^{Kra}(L) \) when \(v(L) = 0 \). Since \(n \) is odd, we can without loss of generality assume that \(\chi(\mathbb{V}) = \chi(C) = 1 \). In the rest of the paper, we identify \(\mathbb{V} \) with \(C \) by the isomorphism \(b \) defined in (2.3).

10.1 Decomposition of \(L \) \(Z^{Kra}(L) \)

Let \(L = \text{Span}\{x_1, x_2\} \) where \(x_1, x_2 \in \mathbb{V} \) are linearly independent and the Hermitian form restricted to \(L \) is non-degenerate.

Lemma 10.1. We have that \(L \) \(Z^{Kra}(L) = [O_{Z^{Kra}(x_1)} \otimes L O_{Z^{Kra}(x_2)}] \in K_0(N^{Kra}) \) is, in fact, in \(\mathbb{P}^2 K_0(N^{Kra}) \). Moreover, we have the decomposition in \(\text{Gr}^2 K_0 Z^{Kra}(L) (N^{Kra}) \):

\[
L Z^{Kra}(L) = Z^{Kra}(L) |_{v} + L Z^{Kra}(L) |_{v}, \tag{10.1}
\]

where \(Z^{Kra}(L) |_{v} \) is described in Theorem 4.2 and \(L Z^{Kra}(L) |_{v} \in \text{Gr}^2 K_0 Z^{Kra}(L) (N^{Kra}) \).
By Proposition 2.6, we know the intersection \(\tilde{Z}(x_i) \) (\(i = 1, 2 \)) as in (3.1) and applying Propositions 3.2, 3.3 and Lemma 3.4, \(L \mathcal{Z}^{Kra}(L^\nu) \) equals
\[
[O_{\tilde{Z}(x_1)} \otimes^L O_{\tilde{Z}(x_2)}] + \sum_{\Lambda_0 \in V^0(L^\nu)} (2m_{\Lambda_0}(x_1)m_{\Lambda_0}(x_2) + m_{\Lambda_0}(x_1) + m_{\Lambda_0}(x_2))H_{\Lambda_0}.
\]

\(\mathcal{Z}^{Kra}(L^\nu) \) is contained in \(\tilde{Z}(x_1) \cap \tilde{Z}(x_2) \) and has dimension 1 by Theorem 4.2; \(\tilde{Z}(x_1) \cap \tilde{Z}(x_2) \) also has dimension 1 as it is supported on the reduced locus of \(N^{Kra} \) by Lemma 2.11 and does not contain any exceptional divisor \(\text{Exc}_{\Lambda_0} \). Hence,
\[
[O_{\tilde{Z}(x_1)} \otimes^L O_{\tilde{Z}(x_2)}] = [O_{\tilde{Z}(x_1) \cap \tilde{Z}(x_2)}] \in F^2 K_0(N^{Kra}),
\]
see, for example, [Zha21, Lemma B.2]. Hence, we know that \(L \mathcal{Z}^{Kra}(L^\nu) \in F^2 K_0(N^{Kra}) \). The desired decomposition then follows from Theorem 4.2.

By Lemma 10.1 and (2.9) we know that \(L \mathcal{Z}^{Kra}(L^\nu) = K^0(Y) \) where we can take \(Y \) to be the reduced locus of \(N^{Kra} \). By the Bruhat–Tits stratification of \(N^{Kra} \) and the fact that \(\text{Gr}^1 K_0(\text{Exc}_{\Lambda_0}) = \text{CH}^1(\text{Exc}_{\Lambda_0}) \) is generated by \(H_{\Lambda_0} \), we have the following decomposition in \(\text{Gr}^2 K_0(N^{Kra}) \):
\[
L \mathcal{Z}^{Kra}(L^\nu) = \sum_{\Lambda_2 \in V^2(L^\nu)} m(\Lambda_2, L^\nu)\left[O_{N_{\Lambda_2}}\right] + \sum_{\Lambda_0 \in V^0(L^\nu)} m(\Lambda_0, L^\nu)H_{\Lambda_0}.
\]

We determine the multiplicities \(m(\Lambda_2, L^\nu) \) and \(m(\Lambda_0, L^\nu) \) when \(\nu(L^\nu) = 0 \) in this section and deal with the general case in § 11.

Now assume \(L^\nu = \text{Span}\{x_1, x_2\} \) with Gram matrix \(\text{Diag}(u_1, u_2(-\pi_0)^n) \) with \(u_1, u_2 \in O^X_{F_0} \). Applying Proposition 3.2 to \(\mathcal{Z}^{Kra}(x_1) \), we find
\[
L \mathcal{Z}^{Kra}(L^\nu) = \left[O_{\tilde{Z}(x_1)} \otimes^L O_{\mathcal{Z}^{Kra}(x_2)}\right] + \sum_{\Lambda_0 \in V^0(x_1)} \left[O_{\text{Exc}_{\Lambda_0}} \otimes^L O_{\mathcal{Z}^{Kra}(x_2)}\right].
\]

By Proposition 2.6, we know the intersection \(\tilde{Z}(x_1) \cap \mathcal{Z}^{Kra}(x_2) \) is proper and is isomorphic to \(\mathcal{Z}^{Kra}_{\mathcal{Z}^{Kra}(x_2)} \). Combining this with Corollary 3.5 we obtain
\[
L \mathcal{Z}^{Kra}(L^\nu) = i_*(L \mathcal{Z}^{Kra}_{\mathcal{Z}^{Kra}(x_1)}(x_2)) - \sum_{\Lambda_0 \in V^0(L^\nu)} H_{\Lambda_0},
\]
where \(i_* \) is the map \(\text{Gr}^1 K_0(N^{Kra}_{2, \chi(u_1)}) \to \text{Gr}^2 K_0(N^{Kra}_{3, \chi}) \) induced by the closed immersion \(i : N^{Kra}_{2, \chi(u_1)} \to N^{Kra}_{3, \chi} \). Equation (10.4) reduces the problem of decomposing \(L \mathcal{Z}^{Kra}(L^\nu) \) in this case to [Shi22, Theorem 4.5] and [HSY23, Theorem 4.1]. We do not make the effort to write the complete result down, but instead look at two basic examples.

Let us begin by the case when \(L^\nu \) is unimodular. By (10.4) and either [Shi22, Theorem 4.5] or [HSY23, Theorem 4.1], we have
\[
L \mathcal{Z}^{Kra}(L^\nu) = [O_{\tilde{Z}(L^\nu)^\nu}]
\]
in the notation of Theorem 4.2.

Next consider \(L^\nu = \text{Span}\{x_1, x_2\} \) with Gram matrix \(\text{Diag}(1,-u\pi_0) \) where \(u \in O^X_{F_0} \). Then \(\text{Span}\{x_1\} \) is split and \(\tilde{Z}(x_1) \cong N_{2,1}^{Kra} \). By Proposition 9.7(3), \(V^2(L^\nu) \) consists of two adjacent
lattices Λ and Λ'. Moreover, by [HSY23, Theorem 4.1] and (10.4), we have
\begin{equation}
LZ_{x}^{\text{Kra}}(L)_{v} = \left[\mathcal{O}_{\tilde{\Lambda}} \right] + \left[\mathcal{O}_{\tilde{\Lambda}'} \right] + H_{\Lambda \cap \Lambda'}.
\end{equation}

10.2 The intersection number

Assume $\Lambda \in \mathcal{V}$. For $x \in \mathcal{V}\setminus\{0\}$, define
\begin{equation}
\operatorname{Int}_{\Lambda}(x) := \chi(\mathcal{N}_{\text{Kra}}, \mathcal{O}_{\tilde{\Lambda}} \otimes L \mathcal{O}_{Z_{x}^{\text{Kra}}(x)}).
\end{equation}

In this subsection we prove the following theorem.

Theorem 10.2. Let $\Lambda \in \mathcal{V}$ and $x \in \mathcal{V}\setminus\{0\}$. Then
\[\operatorname{Int}_{\Lambda}(x) = 1_{\Lambda}(x), \]
where 1_{Λ} is the characteristic function of $\Lambda \subset \mathcal{V}$.

Corollary 10.3. Assume that $\Lambda_{0} \in \mathcal{L}_{0}$ and $\Lambda \in \mathcal{L}_{2}$ such that $\Lambda_{0} \subset \Lambda$. Then for any $y_{0} \in \Lambda_{0} \setminus \pi \Lambda_{0}$ such that y_{0}^{1} is non-split, we have
\[\chi(\mathcal{N}_{\text{Kra}}, \mathcal{O}_{\tilde{\Lambda}} \otimes L \mathcal{O}_{Z_{(y_{0})}^{\text{Kra}}}) = 0. \]

Proof. By Proposition 3.2, we know
\[Z_{x}^{\text{Kra}}(y_{0}) = \tilde{Z}(y_{0}) + \operatorname{Exc}_{\Lambda_{0}}. \]
Now the corollary follows immediately from Theorem 10.2 and Lemma 9.12. \hfill \Box

Proof of Theorem 10.2. We consider three different cases. First, if $x \notin \Lambda$ or $v(x) < 0$, then by Lemma 9.2, $Z_{x}^{\text{Kra}}(x) \cap \tilde{\Lambda} = \emptyset$, hence $\operatorname{Int}_{\Lambda}(x) = 0$. From now on we assume $x \in \Lambda$ and $v(x) \geq 0$. Write $x = x_{0} \pi^{n}$ with $x_{0} \in \Lambda \setminus \pi \Lambda$ and $n \geq 0$.

Case 1. First we assume $x_{0} \in \Lambda \setminus \Lambda^{2}$. Choose a basis $\{e_{1}', e_{2}', e_{3}'\}$ of Λ with Gram matrix $\mathcal{H}_{3,1}^{1}$ such that
\[x_{0} = xe_{1}' + ye_{2}' + ze_{3}'. \]
Then one of x and y is in \mathcal{O}_{F}^{\times} as $\Lambda^{\times} = \text{Span}\{\pi e_{1}', \pi e_{2}', e_{3}\}$. Apparently the equation
\[2u - v\bar{v} = h(x_{0}, x_{0}) \]
has a solution $(u, v) \in \mathcal{O}_{F_{0}}^{2}$ with $u \in \mathcal{O}_{F_{0}}^{\times}$. Now according to Lemma A.2, we can find a matrix $g \in U(\mathcal{H}_{3,1}^{1})(\mathcal{O}_{F_{0}})$ such that
\[g \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \pi u \\ 1 \\ v \end{pmatrix}. \]
Now replace the basis $\{e_{1}', e_{2}', e_{3}'\}$ by $\{e_{1}, e_{2}, e_{3}\} = \{e_{1}', e_{2}', e_{3}'\}g^{-1}$, we have
\[x_{0} = \pi ue_{1} + e_{2} + ve_{3}, \]
where $u \in \mathcal{O}_{F_{0}}^{\times}$, $v \in \mathcal{O}_{F}$. Define
\[f_{1} = \frac{1}{\pi} u^{-1} e_{2}, \quad f_{2} = \pi ue_{1}, \quad f_{3} = e_{3}. \]
Then $\{f_{1}, f_{2}, f_{3}\}$ has also Gram matrix $\mathcal{H}_{3,1}^{1}$ and $\Lambda' \coloneqq \text{Span}\{f_{1}, f_{2}, f_{3}\}$ is a type 2 lattice adjacent to Λ with $\Lambda' = \Lambda \cap \Lambda' = \text{Span}\{\pi e_{1}, e_{2}, e_{3}\}$ is a type 0 lattice. Now in terms of the basis $\{f_{1}, f_{2}, f_{3}\}$
we have
\[x = \pi^n(\pi uf_1 + f_2 + v f_3). \]
Define \(\theta \in U(V) \) by taking the basis \(\{e_1, e_2, e_3\} \) to \(\{f_1, f_2, f_3\} \). Then
\[\theta(x) = x, \quad \theta(\Lambda) = \Lambda'. \]
In particular, \(\theta(\mathcal{Z}^{\text{Kra}}(x)) = \mathcal{Z}^{\text{Kra}}(x) \) and
\[\text{Int}_{\Lambda'}(x) = \text{Int}_{\Lambda}(x). \] (10.9)

Now let
\[y_0 = e_3, \quad y_1 = \pi(-\pi u e_1 + e_2), \]
\(L^\flat = \text{Span}\{y_0, y_1\} \), and \(L = \text{Span}\{y_0, y_1, x\} \). Then by (10.6) and Theorem 4.2, we have
\[L \mathcal{Z}^{\text{Kra}}(L^\flat) = [\mathcal{O}_{\mathcal{N}}^\flat] + [\mathcal{O}_{\mathcal{N}'}^\flat] + H_{\Lambda_c} + [\mathcal{O}_{\mathcal{Z}(M^\flat)}], \] (10.10)
where \(\mathcal{Z}(M^\flat) \) is the quasi-canonical lifting cycle of the lattice
\[M^\flat := \text{Span}\{e_3, -\pi u e_1 + e_2\}. \]
Combining with (10.9), we have
\[\text{Int}(L) = 2 \cdot \text{Int}_{\Lambda}(x) + \chi(\mathcal{N}^{\text{Kra}}, L \mathcal{Z}^{\text{Kra}}(x) \cdot H_{\Lambda_c}) + \chi(\mathcal{N}^{\text{Kra}}, L \mathcal{Z}^{\text{Kra}}(x) \cdot [\mathcal{O}_{\mathcal{Z}(M^\flat)}]). \] (10.11)
Let \(x' = \pi^n(\pi u e_1 + e_2) = x - \pi^n v e_3. \) Then we have
\[
\text{Int}(L) = \chi(\mathcal{N}^{\text{Kra}}, L \mathcal{Z}^{\text{Kra}}(y_0), L \mathcal{Z}^{\text{Kra}}(x), L \mathcal{Z}^{\text{Kra}}(y_1)) \\
= \chi(\mathcal{N}^{\text{Kra}}, L \mathcal{Z}^{\text{Kra}}(y_0), L \mathcal{Z}^{\text{Kra}}(x'), L \mathcal{Z}^{\text{Kra}}(y_1)) \\
= \chi(\mathcal{N}^{\text{Kra}}, \mathcal{O}_{\mathcal{Z}(y_0)} \otimes L \mathcal{O}_{\mathcal{Z}^{\text{Kra}}(x')} \otimes L \mathcal{O}_{\mathcal{Z}^{\text{Kra}}(y_1)}) \\
+ \sum_{\Lambda_0 \in \nu^0(L)} \chi(\mathcal{N}^{\text{Kra}}, \mathcal{O}_{\mathcal{Z}^{\text{Kra}}(x')} \otimes L \mathcal{O}_{\mathcal{Z}^{\text{Kra}}(y_1)}),
\]
where we have used linear invariance \([\text{How19, Corollary D}] \) and Proposition 3.2. Note that the Gram matrix of \(\{x', y_1\} \) is \(\text{Diag}(2u(-\pi u)^n, -2u \pi_0) \). By Proposition 2.6 and \([\text{HSY23, Theorem 1.1}], \)
\[\chi(\mathcal{N}^{\text{Kra}}, \mathcal{O}_{\mathcal{Z}(y_0)} \otimes L \mathcal{O}_{\mathcal{Z}^{\text{Kra}}(x')} \otimes L \mathcal{O}_{\mathcal{Z}^{\text{Kra}}(y_1)}) = \begin{cases} 1, & \text{if } n = 0, \\ 1 + n - 2q, & \text{if } n \geq 1. \end{cases} \]
By Corollary 3.6 and \([\text{HSY23, Lemma 3.15}], \) we know that
\[\sum_{\Lambda_0 \in \nu^0(L)} \chi(\mathcal{N}^{\text{Kra}}, \mathcal{O}_{\mathcal{Z}^{\text{Kra}}(x')} \otimes L \mathcal{O}_{\mathcal{Z}^{\text{Kra}}(y_1)}) = |\nu^0(L)| = \begin{cases} 1, & \text{if } n = 0, \\ 2q + 1, & \text{if } n \geq 1. \end{cases} \]
Combining the above two equations we know that
\[\chi(\mathcal{N}^{\text{Kra}}, L \mathcal{Z}^{\text{Kra}}(x) \cdot L \mathcal{Z}^{\text{Kra}}(L^\flat)) = n + 2. \]
On the other hand, by Corollary 3.8,
\[\chi(\mathcal{N}^{\text{Kra}}, H_{\Lambda_0} \cdot L \mathcal{Z}^{\text{Kra}}(x)) = -1. \]
By \([\text{Gro86, Proposition 3.3}] \)
\[\chi(\mathcal{N}^{\text{Kra}}, \mathcal{O}_{\mathcal{Z}(M^\flat)} \otimes L \mathcal{O}_{\mathcal{Z}^{\text{Kra}}(x)}) = n + 1. \]
Hence, we obtain by (10.11)
\[\text{Int}_\Lambda(x) = 1. \] (10.12)

Case 2. Now we assume \(x_0 \in \Lambda^0 \setminus \pi \Lambda \). As in the proof of the previous case, we can find a basis \(\{e_1, e_2, e_3\} \) of \(\Lambda \) with Gram matrix \(H_{3,1} \) by Lemma A.4 such that
\[x = \pi^n (u e_3 + \pi e_1), \]
where \(u \in O^x_{F_0} \). Define
\[\Lambda' = \text{Span} \left\{ \pi e_1, \frac{1}{\pi} e_2, e_3 \right\}, \quad \Lambda_c = \Lambda \cap \Lambda', \]
then \(x_0 \in \Lambda' \setminus \Lambda^0 \). Also define
\[y_0 = e_3, \quad y_1 = \pi (-\pi e_1 + e_2), \]
and \(L^y := \text{Span} \{ y_0, y_1 \} \). Then by Theorem 4.2 and (10.6) we have
\[L^\mathcal{Z}^{\text{Kra}}(L^y) = \left[O_{\mathcal{N}_1} \right] + \left[O_{\mathcal{N}_1} \right] + H_{\Lambda_c} + \left[O_{\mathcal{Z}(M)} \right], \] (10.13)
where \(\mathcal{Z}(M) \) is the quasi-canonical lifting cycle of the lattice \(M^y := \text{Span} \{ e_3, -\pi e_1 + e_2 \} \).

Let \(x' := \pi^{n+1} e_1 = x - \pi^n u e_3 \), then we have
\[\chi(\mathcal{N}^{\text{Kra}}, L^\mathcal{Z}^{\text{Kra}}(x') \cdot L^\mathcal{Z}^{\text{Kra}}(L^y)) = \chi(\mathcal{N}^{\text{Kra}}, O_{\mathcal{Z}(y_0)} \otimes L^\mathcal{Z}^{\text{Kra}}(x') \otimes L^\mathcal{Z}^{\text{Kra}}(y_1)) + \sum_{\Lambda_0 \in \mathcal{V}(L)} \chi(\mathcal{N}^{\text{Kra}}, O_{\mathcal{E}} \otimes L^\mathcal{Z}^{\text{Kra}}(x') \otimes L^\mathcal{Z}^{\text{Kra}}(y_1)). \]

Note that the Gram matrix of \(\{ x', y_1 \} \) is equivalent to \(H_1 \) when \(n = 0 \), and to \(\text{Diag}(u_1 \pi_0^2, u_2 \pi_0) \) for some \(u_1, u_2 \in O^x_{F_0} \) when \(n \geq 1 \). Hence, by Proposition 2.6 and [HSY23, Theorem 1.1], we know that
\[\chi(\mathcal{N}^{\text{Kra}}, O_{\mathcal{Z}(y_0)} \otimes L^\mathcal{Z}^{\text{Kra}}(x') \otimes L^\mathcal{Z}^{\text{Kra}}(y_1)) = \begin{cases} -(q - 1), & \text{if } n = 0, \\ 1 + n - 2q, & \text{if } n \geq 1. \end{cases} \]

By Corollary 3.6 and Lemmas 3.15 and 3.16 of [HSY23], we know that
\[\sum_{\Lambda_0 \in \mathcal{V}(L)} \chi(\mathcal{N}^{\text{Kra}}, O_{\mathcal{E}} \otimes L^\mathcal{Z}^{\text{Kra}}(x') \otimes L^\mathcal{Z}^{\text{Kra}}(y_1)) = |\mathcal{V}(L)| = \begin{cases} q + 1, & \text{if } n = 0, \\ 2q + 1, & \text{if } n \geq 1. \end{cases} \]

Hence, we know that
\[\chi(\mathcal{N}^{\text{Kra}}, L^\mathcal{Z}^{\text{Kra}}(x') \cdot L^\mathcal{Z}^{\text{Kra}}(L^y)) = n + 2. \]

On the other hand, by Corollary 3.8,
\[\chi(\mathcal{N}^{\text{Kra}}, H_{\Lambda_0} \cdot L^\mathcal{Z}^{\text{Kra}}(x)) = -1. \]

By [Gro86, Proposition 3.3]
\[\chi(\mathcal{N}^{\text{Kra}}, O_{\mathcal{Z}(M)} \otimes L^\mathcal{Z}^{\text{Kra}}(x)) = n + 1. \]

Since \(x \in \Lambda' \setminus \Lambda^0 \), by the previous case we also have
\[\text{Int}_{\Lambda'}(x) = 1. \]
Combining all of the above, we have by \((10.13)\)
\[
\text{Int}_L(x) = 1.
\] (10.14)
This finishes the proof of Theorem 10.2.

\section{11. Proof of the modified Kudla–Rapoport conjecture: three-dimensional case}

In this section, we prove Theorem 1.2. We need some preparation.

Proposition 11.1. Assume that \(L \subset \mathbb{V} \) has a Gram matrix \(T = \text{Diag}(u_1, u_2(-\pi_0)^b, u_3(-\pi_0)^c)\) with \(u_i \in O_{F_0}^\times\) and \(0 \leq b \leq c\). Then
\[
\text{Int}(L) = \partial \text{Den}(L).
\]
Moreover, for every decomposition \(L = L_1 \oplus \text{Span}\{x\}\), we have
\[
\text{Int}(L)^{(2)} = \partial \text{Den}(L)^{(2)}.
\]

Proof. Fix a basis \(\{x_1, x_2, x_3\}\) of \(L\) such that the Gram matrix of \(\{x_1, x_2, x_3\}\) is \(T = \text{Diag}(u_1, T_2)\) where \(u_1 \in O_{F_0}^\times\) and \(T_2 \in \text{Herm}_2(O_F)\). Let \(u_1^{-1} \cdot L\) be a lattice represented by \(u_1^{-1} \cdot T\). Since \(\text{Int}(u_1^{-1} \cdot L) = \text{Int}(L)\) and \(\partial \text{Den}(u_1^{-1} \cdot L) = \partial \text{Den}(L)\), we may assume \(u_1 = 1\). Let \(L^2 = \text{Span}\{x_2, x_3\}\). According to Propositions 2.6 and 3.2 and Corollary 3.6, we have
\[
\text{Int}(L) - \text{Int}(L^2) = \chi(\mathcal{N}^{\text{Kra}}, \mathcal{L}^{\text{Kra}}(x_1) \cdot \mathcal{L}^{\text{Kra}}(L^2)) - \chi(\mathcal{N}^{\text{Kra}}, \mathcal{L}^{\text{Kra}}(x_1) \cdot \mathcal{L}^{\text{Kra}}(L^2))
\]
\[
= \sum_{\Lambda_0 \in \mathcal{V}^0(L)} \chi(\mathcal{N}^{\text{Kra}}, [\mathcal{O}_{\text{Exc}, \Lambda_0}] \cdot \mathcal{L}^{\text{Kra}}(L^2))
\]
\[
= |\{\mathcal{V}^0(L)\}|.
\] (11.1)

Now the result we want follows by comparing (11.1) with (8.5), and the identity \(\text{Int}(L^2) = \partial \text{Den}(L^2)\) proved in [Shi22, Theorem 1.3] and [HSY23, Theorem 1.3]. Part (2) follows from part (1) and Theorem 5.6(2).

Proof of Theorem 1.4. Under the assumption \(v(L^2) > 0\), we can decompose \(\mathcal{D}(L^2)\) in \(\text{Gr}^2 K_0(\mathcal{N}^{\text{Kra}})\) as
\[
\mathcal{D}(L^2) = \sum_{\Lambda_2 \in \mathcal{V}(L^2)} m(\mathcal{D}(L^2), \Lambda_2)[\mathcal{O}_{\mathcal{N}^2}] + \sum_{\Lambda_0 \in \mathcal{V}(L^2)} m(\mathcal{D}(L^2), \Lambda_0)H_{\Lambda_0},
\] (11.2)
by (10.3) and Proposition 4.6.

Claim 1. We claim that \(m(\mathcal{D}(L^2), \Lambda_0) = 0\) unless \(L^2 \subset \Lambda_0\). In such a case,
\[
m(\mathcal{D}(L^2), \Lambda_0) = \begin{cases}
q + 1, & \text{if } \Lambda_0 \in \mathcal{V}(L^2) \setminus \mathcal{B}(L^2), \\
1, & \text{if } \Lambda_0 \in \mathcal{B}(L^2).
\end{cases}
\] (11.3)

Indeed, since \(\Lambda_0\) is of type 0, we may choose a \(y_0 \in \mathcal{V} \setminus L^2\) such that \(\text{Span}\{y_0\}^\perp\) is non-split and \(y_0 \in \pi \Lambda_0\). In this case, Proposition 3.2 and Corollaries 3.7 and 3.8 imply that
\[
\chi(\mathcal{N}^{\text{Kra}}, H_{\Lambda_0} \cdot [\mathcal{O}_{\mathcal{Z}(y_0)}]) = 1.
\]
Thus, by (11.2) and Corollaries 10.3 and 2.7, we have
\[
m(\mathcal{D}(L^2), \Lambda_0) = \chi(\mathcal{N}^{\text{Kra}}, \mathcal{D}(L^2) \cdot [\mathcal{O}_{\mathcal{Z}(y_0)}]).
\]
Let \((2a, 2b) \ (b > a)\) be the fundamental invariant of the projection of \(L^\flat\) onto \(\text{Span}\{y_0\}^\perp\). Let \(\varphi\) be the natural quotient map \(\Lambda_0 \to \Lambda_0/\pi\Lambda_0\) and define
\[
m := \dim_{\mathbb{F}_q} \varphi(L^\flat) \leq 2.
\]
Equation (9.1) implies that \(m = 0\) if and only if \(\Lambda_0 \in \mathcal{L}(L^\flat) \setminus \mathcal{B}(L^\flat)\). First assume \(m = 0\), in other words, \(L^\flat \subset \pi\Lambda_0\) so \(b \geq a \geq 1\). By the definition of \(\mathcal{D}(L^\flat)\) and \([\text{Shi}22, \text{Theorem} \ 1.2]\), we have
\[
m(\mathcal{D}(L^\flat), \Lambda_0) = (a, b) - q(a - 1, b) - (a, b - 1) + q(a - 1, b - 1) = q + 1,
\]
as claimed where
\[
\mu(a, b) = \chi(N^{\mathcal{K}ra}, L^{\mathcal{K}ra}(L^\flat) \cdot [O_{\mathcal{Z}(y_0)}]) = \begin{cases} 2 \sum_{s=0}^{a} q^s(a + b + 1 - 2s) - a - b - 2, & \text{if } a \geq 0 \\ 0, & \text{if } a < 0. \end{cases}
\]
(11.4)

Now assume \(m = 1\), then \(\varphi(L^\flat)\) is a line \(\ell\) and \(b \geq 1\). By the assumption that \(y_0 \notin \mathcal{L}^\perp\), we know \(\ell\) is not in \(\text{Span}\{\varphi(y_0)\}\), hence the projection of \(\ell\) onto \(\varphi(y_0)^\perp\) is non-zero. Since \(\varphi(y_0)^\perp\) is non-split, we must have \(a = 0\). Hence, by the definition of \(\mathcal{D}(L^\flat)\) and (11.4), we have
\[
m(\mathcal{D}(L^\flat), \Lambda_0) = (0, b) - q(-1, b) - (0, b - 1) + q(-1, b - 1) = 1
\]
as claimed. Finally, \(m = 2\) is impossible since \(\varphi(L^\flat) > 0\). This finishes the proof of Claim 1.

Claim 2. We claim that \(m(\mathcal{D}(L^\flat), \Lambda_2) = 2\) for any \(\Lambda_2 \in \mathcal{V}^2(L^\flat)\).

Indeed, according to Lemma 3.9, we have \(\chi(N^{\mathcal{K}ra}, \mathcal{D}(L^\flat) \cdot [O_{\mathcal{E}_{\Lambda_0}}]) = 0\). On the other hand, Corollary 3.7 and Lemma 9.12 imply that
\[
\chi(N^{\mathcal{K}ra}, \mathcal{D}(L^\flat) \cdot [O_{\mathcal{E}_{\Lambda_0}}]) = \sum_{\Lambda_0 \subset \Lambda_2} m(\mathcal{D}(L^\flat), \Lambda_2) - 2m(\mathcal{D}(L^\flat), \Lambda_0). \tag{11.5}
\]
Combining the above with Claim 1, we have
\[
0 = \chi(N^{\mathcal{K}ra}, \mathcal{D}(L^\flat) \cdot [O_{\mathcal{E}_{\Lambda_0}}]) = \begin{cases} \sum_{\Lambda_0 \subset \Lambda_2} m(\mathcal{D}(L^\flat), \Lambda_2) - 2(q + 1), & \text{if } \Lambda_0 \in \mathcal{L}(L^\flat) \setminus \mathcal{B}(L^\flat), \\ \sum_{\Lambda_0 \subset \Lambda_2} m(\mathcal{D}(L^\flat), \Lambda_2) - 2, & \text{if } \Lambda_0 \in \mathcal{B}(L^\flat). \end{cases} \tag{11.6}
\]
Recall \(\mathcal{S}(L^\flat)\) in Definition 9.8. First assume \(\Lambda_2 \in \mathcal{L}(L^\flat) \setminus \mathcal{S}(L^\flat)\). If \(d(\Lambda_2, \mathcal{B}(L^\flat))\) is equal to \(\frac{1}{2}\), choose \(\Lambda_0 \in \mathcal{B}(L^\flat)\) such that \(\Lambda_0 \subset \Lambda_2\), then \(\Lambda_2\) is the unique lattice in \(\mathcal{V}^2(L^\flat)\) that contains \(\Lambda_0\), hence (11.6) implies that \(m(\mathcal{D}(L^\flat), \Lambda_2) = 2\) in this case. Now Corollary 9.10 allows us to show \(m(\mathcal{D}(L^\flat), \Lambda_2) = 2\) by induction on the distance \(d(\Lambda_2, \mathcal{B}(L^\flat))\) for any \(\Lambda_2 \in \mathcal{L}(L^\flat) \setminus \mathcal{S}(L^\flat)\).

Similarly for \(\Lambda_2 \in \mathcal{S}(L^\flat)\), we can show \(m(\mathcal{D}(L^\flat), \Lambda_2) = 2\) by induction on its distance to \(\mathcal{S}(L^\flat) \cap \mathcal{B}(L^\flat)\). This finishes the proof of Claim 2.

Note that for \(\Lambda_0 \in \mathcal{V}(L^\flat)\)
\[
\sum_{\Lambda_2 \in \mathcal{V}^2(L^\flat)} \sum_{\Lambda_0 \subset \Lambda_2} 1 = \begin{cases} q + 1, & \text{if } \Lambda_0 \in \mathcal{V}(L^\flat) \setminus \mathcal{B}(L^\flat), \\ 1, & \text{if } \Lambda_0 \in \mathcal{B}(L^\flat). \end{cases}
\]
This finishes the proof of Theorem 1.4. \(\square\)

In the following discussion we freely use Theorem 10.2 and Corollary 3.8 without explicitly referring to them.
Proposition 11.2. Assume \(L = L^b \oplus \text{Span}\{x\} \) with Gram matrix
\[
T = \text{Diag}(\mathcal{H}_a, u_3(-\pi_0)^c),
\]
where \(a \) is a positive odd integer, and \(c \geq 0 \). Then
\[
\text{Int}(L)^{(2)} = \partial \text{Den}(L)^{(2)} = \begin{cases} 1 - q^a, & \text{if } a \leq 2c, \\ 1 - q^{2c+1}, & \text{if } a > 2c. \end{cases} \tag{11.7}
\]

Proof. By Proposition 8.5, it suffices to prove the identity for \(\text{Int}(L)^{(2)} \).

Now we compute \(\text{Int}(L)^{(2)} \). We may take \(L^b = \text{Span}\{\pi^{(a+1)/2}e_1, \pi^{(a+1)/2}e_2\} \), where the Gram matrix of \(\{e_1, e_2\} \) is \(\mathcal{H} \). Let \(e_3 = \pi^{-c}x \). Then \(\mathcal{L}(L^b) \) is centered at \(\text{Span}\{e_1, e_2, e_3\} \) of radius \(a/2 \) by Proposition 9.7.

Assume \(a \leq 2c \) first. In this case, \(\mathcal{L}(L^b) \subset \mathcal{L}(x) \). As a result, we have \(\text{Int}_{\Lambda_2}(x) = 1 \) and \(\text{Int}_{\Lambda_0}(x) = -1 \) for any \(\Lambda_2 \in \mathcal{V}^2(L^b) \) and \(\Lambda_0 \in \mathcal{V}^0(L^b) \). Hence, by Theorem 1.4, we have
\[
\text{Int}(L)^{(2)} = \sum_{\Lambda_2 \in \mathcal{L}(L^b)} \chi(\mathcal{N}_{\text{Kra}}, \left(2[H_{\Lambda_2}] + \sum_{\Lambda_0 \subset \Lambda_2} H_{\Lambda_0} \right) \cdot Z_{\text{Kra}}(x)) \\
= (1 - q)|\{\Lambda_2 \mid \Lambda_2 \in \mathcal{L}(L^b)\}| \\
= (1 - q)(1 + (1 + q)q + (1 + q)q^3 + \cdots + (1 + q)q^{a-2}) \\
= 1 - q^a, \tag{11.8}
\]
as claimed.

Now we assume \(a > 2c \). We consider the case \(c = 0 \) first. Recall that \(\tilde{\mathcal{L}}(e_3) \approx \mathcal{N}^{\text{Kra}}_{2,1} \), hence \(\mathcal{L}(L^b) \cap \mathcal{L}(e_3) \) is a ball of radius \(a/2 \) in the Bruhat–Tits tree \(\mathcal{L}_{2,1}^{\text{Pap}} \) centered at the vertex lattice corresponding to \(\pi^{-(a+1)/2} \cdot L^b \), within which a vertex lattice \(\Lambda_0 \) of type 0 is contained in two vertex lattices of type 2, and a vertex lattice \(\Lambda_2 \) of type 2 contains \(q + 1 \) vertex lattice of type 0. Hence,
\[
|\{\Lambda_0 \mid \Lambda_0 \in (\mathcal{L}(L^b) \setminus \mathcal{B}(L^b)) \cap \mathcal{L}(e_3)\}| = 1 + q + (1 + q)q + \cdots + (1 + q)q^{(a-3)/2},
\]
and
\[
|\{\Lambda_0 \mid \Lambda_0 \in \mathcal{B}(L^b) \cap \mathcal{L}(e_3)\}| = (1 + q)q^{(a-1)/2}.
\]
Moreover, note that if \(e_3 \in \Lambda_0 \), then \(\text{Int}_{\Lambda_2}(e_3) = 1 \) for any \(\Lambda_2 \) such that \(\Lambda_0 \subset \Lambda_2 \). As a result,
\[
\begin{align*}
\chi(\mathcal{N}_{\text{Kra}}, D(L^b) \cdot Z_{\text{Kra}}(e_3)) &= 2(1 + q) \cdot |\{\Lambda_0 \mid \Lambda_0 \in (\mathcal{L}(L^b) \setminus \mathcal{B}(L^b)) \cap \mathcal{L}(e_3)\}| \\
&\quad - (q + 1)|\{\Lambda_0 \mid \Lambda_0 \in (\mathcal{L}(L^b) \setminus \mathcal{B}(L^b)) \cap \mathcal{L}(e_3)\}| \\
&\quad - |\{\Lambda_0 \mid \Lambda_0 \in \mathcal{B}(L^b) \cap \mathcal{L}(e_3)\}| \\
&= 2 + (q - 1)(1 + q + (1 + q)q + \cdots + (1 + q)q^{(a-3)/2}) \\
&\quad - (1 + q)q^{(a-1)/2} = 1 - q,
\end{align*}
\]
which is compatible with (11.7).

Next we show
\[
\chi(\mathcal{N}_{\text{Kra}}, D(L^b) \cdot (Z_{\text{Kra}}(\pi e_3) - Z_{\text{Kra}}(e_3))) = q - q^3.
\]
According to Proposition 9.6, \(\mathcal{V}(\pi e_3) = \{\Lambda \mid d(\Lambda, \mathcal{L}(e_3)) \leq 1\} \). Hence, around each \(\Lambda_0 \in (\mathcal{L}(L^b) \setminus \mathcal{B}(L^b)) \cap \mathcal{L}(e_3) \), there will be \(q(q - 1) \) many new vertex lattices of type 0 in \(\mathcal{L}(L^b) \cap \mathcal{L}(\pi e_3) \).
\[L(L^b) \cap L(e_3) \text{. Hence,} \]
\[
\begin{align*}
\chi(N^\text{Kra}, D(L^b) \cdot (Z^\text{Kra}(\pi e_3) - Z^\text{Kra}(e_3))) \\
&= 2q \cdot q(q - 1)(1 + q + (1 + q)q + (1 + q)q^2 + \cdots + (1 + q)q^{(a - 1)/2 - 2}) \\
&\quad - q(q - 1)(q + 1)(1 + q + (1 + q)q + (1 + q)q^2 + \cdots + (1 + q)q^{(a - 1)/2 - 2}) \\
&\quad - q(q - 1)(1 + q)q^{(a - 1)/2 - 1} \\
&= q - q^3.
\end{align*}
\]
Continuing in this way, we can show
\[
\chi(N^\text{Kra}, D(L^b) \cdot (Z^\text{Kra}(\pi^i e_3) - Z^\text{Kra}(\pi^{i-1} e_3))) = q^{2i - 1} - q^{2i + 1}
\]
for \(2i < a\). Thus,
\[
\text{Int}(L)^{(2)} = D(L^b) \cdot Z^\text{Kra}(\pi^c e_3) = 1 - q^{2c + 1} = \partial \text{Den}^{(2)}(L)
\]
as claimed. \(\square\)

Proposition 11.3. Assume \(L = L^b \oplus \text{Span}\{x\}\) with Gram matrix
\[
T = \text{Diag}(u_1(-\pi_0)^a, u_2(-\pi_0)^b, u_3(-\pi_0)^c)
\]
where \(0 < a \leq b \leq c\), then
\[
\text{Int}(L)^{(2)} = \partial \text{Den}(L)^{(2)} = 1 + \chi(-u_2 u_3)q^a(q^b - q^{a+b}) - q^{a+b}.
\]

Proof. By Proposition 8.4, it suffices to show
\[
\text{Int}(L)^{(2)} = 1 + \chi(-u_2 u_3)q^a(q^b - q^{a+b}) - q^{a+b}.
\] (11.9)

Note that since \(a \leq b \leq c\), we have \(L(L^b) \subset L(x)\) by Propositions 9.6 and 9.7.

First, we assume \(\chi(-u_2 u_3) = -1\), then (11.9) specializes to
\[
\partial \text{Den}(T)^{(2)} = 1 - q^{2a}.
\]
On the other hand, \(L(L^b)\) is a ball centered at a vertex lattice of type 0 with radius \(a\) in this case. One can show \(\text{Int}(L)^{(2)} = 1 - q^{2a}\) exactly as in (11.8).

Now we assume \(\chi(-u_2 u_3) = 1\). In this case, (11.9) specializes to
\[
\partial \text{Den}(L)^{(2)} = 1 + q^{2a} - 2q^{a+b}.
\]
Let \(r = b - a\), and \(L^b = \text{Span}\{x_1, x_2\}\). Then \(L(\pi^{-a}L^b)\) is a ball centered at a vertex lattice of type 0 with radius \(r\) in the Bruhat–Tits tree \(L_{2,1}\). Hence,
\[
L(L^b) = \{\Lambda \mid \Lambda \in L_3, \ d(\Lambda, L(\pi^{-a}L^b)) \leq a\}.
\]
When \(a = 1\), \(Y^0(\pi^{-1}L^b) = Y^0(L^b) \setminus B(L^b)\). Then combining with Theorem 1.4, it is not hard to see
\[
\begin{align*}
\text{Int}(L)^{(2)} &= 2(q + 1 + q \cdot 2(q + q^2 + \cdots + q^r)) - (q + 1)|Y^0(L^b) \setminus B(L^b)| - |B(L^b)| \\
&= 1 + q^2 - 2q^{b+1},
\end{align*}
\]
where we use the fact
\[
|Y^0(\pi^{-1}L^b)| = 1 + 2(q + q^2 + \cdots + q^r),
\]
and
\[
|B(L^b)| = (q - 1)q(1 + 2(q + q^2 + \cdots + q^r)) + 2q^{r+2}.
\]

1723
Corollary 11.4. For any lattice \(L^g \oplus \mathcal{O}_F x \subset \mathcal{V} \) of rank 3, we have
\[
\text{Int}(L)^{(2)} = \partial\text{Den}(L)^{(2)}.
\]

12. Global applications

In this section we assume that \(F \) is an imaginary quadratic field with discriminant \(d_F \). Denote by \(a \mapsto \bar{a} \) the complex conjugation on \(F \). The result in this section can be easily extended to CM number fields (totally imaginary quadratic extension of a totally real number field) and more general level structures at split places, see [LZ22a] and [HLSY22]. We restrict to the imaginary quadratic fields to make the exposition as simple as possible.
12.1 Unitary Shimura varieties and special cycles

In this subsection, we briefly review the definition of an integral model of Shimura variety defined in [BHK+20] over Spec \mathcal{O}_F. Let

$$\mathcal{M}^{Kra}_{(1,n-1)} \to \text{Spec } \mathcal{O}_F$$

be the algebraic stack which assigns to each \mathcal{O}_F-scheme S the groupoid of isomorphism classes of quadruples $(A, \iota, \lambda, \mathcal{F}_A)$ where:

1. $A \to S$ is an abelian scheme of relative dimension n;
2. $\iota : \mathcal{O}_F \to \text{End}(A)$ is an action satisfying the following determinant condition (the Kottwitz condition of signature $(1, n - 1)$)
 $$\text{char}(T - \iota(\alpha) | \text{Lie } A) = (T - s(\alpha))(T - s(\bar{\alpha}))^{n-1} \in \mathcal{O}_S[T],$$
 for all $\alpha \in \mathcal{O}_F$ where $s : \mathcal{O}_F \to \mathcal{O}_S$ is the structure morphism;
3. $\lambda : A \to A^\vee$ is a principal polarization whose Rosati involution satisfies $\iota(\alpha)^* = \iota(\bar{\alpha})$ for all $\alpha \in \mathcal{O}_F$;
4. $\mathcal{F}_A \subseteq \text{Lie } A$ is a principal \mathcal{O}_F-stable \mathcal{O}_S-module local direct summand of rank $n - 1$ satisfying the Krämer condition; \mathcal{O}_F acts on $\text{Lie } A/\mathcal{F}_A$ by the structure map $s : \mathcal{O}_F \to \mathcal{O}_S$ and acts on \mathcal{F}_A by the complex conjugate of the structure map.

Two objects $(A, \iota, \lambda, \mathcal{F}_A)$ and $(A', \iota', \lambda', \mathcal{F}_A')$ in $\mathcal{M}^{Kra}_{(1,n-1)}(S)$ are isomorphic if there is an \mathcal{O}_F-linear isomorphism $f : A \to A'$ of abelian schemes such that $f^*(\lambda') = \lambda$ and $f_s(\mathcal{F}_A) = \mathcal{F}_A'$. The stack $\mathcal{M}^{Kra}_{(1,n-1)}$ is flat of dimension $n - 1$ over $\text{Spec } \mathcal{O}_F$. It is smooth over $\text{Spec } \mathcal{O}_F[1/d_F]$ and has semi-stable reduction over primes of F dividing d_F. This is indicated by the corresponding behaviour of its local model studied in [Krä03]. Analogously one can define $\mathcal{M}_{(0,1)} \to \mathcal{O}_F$ be the algebraic stack which assigns to each \mathcal{O}_F-scheme S the groupoid of isomorphism classes of triples (E, ι_0, λ_0) where:

1. $E \to S$ is an abelian scheme of relative dimension 1;
2. $\iota_0 : \mathcal{O}_F \to \text{End}(E)$ is an action such that its induced action on $\text{Lie } E$ agrees with the complex conjugate of the structure map $s : \mathcal{O}_F \to \mathcal{O}_S$;
3. $\lambda_0 : E \to E^\vee$ is a principal polarization whose Rosati involution satisfies $\iota_0(\alpha)^* = \iota_0(\bar{\alpha})$ for all $\alpha \in \mathcal{O}_F$.

The stack $\mathcal{M}_{(0,1)}$ is smooth of relative dimension 0 over $\text{Spec } \mathcal{O}_F$, see, for example, [How15, Proposition 2.1.2].

Assume that \mathbb{F} is an algebraically closed field of characteristic p over \mathcal{O}_F. Let

$$(E_0, \iota_0, \lambda_0, A, \iota, \lambda, \mathcal{F}_A) \in (\mathcal{M}_{(0,1)} \times \mathcal{M}^{Kra}_{(1,n-1)})((\text{Spec } \mathbb{F})$$

For any prime number $\ell \neq p$, we can define a Hermitian form $h(x, y)$ on the Tate module

$$T_\ell(E_0, A) := \text{Hom}_{\mathcal{O}_F}(T_\ell(E_0), T_\ell(A))$$

as in [KR14b, §2.3] using the polarizations λ_0, λ and Weil pairings on E_0, A.

Fix a Hermitian space W over F of signature $(1, n - 1)$ that contains a self-dual lattice \mathfrak{a} and a Hermitian space W_0 over signature $(0, 1)$ that contains a self-dual lattice \mathfrak{a}_0. Define

$$V := \text{Hom}_F(W_0, W), \quad L := \text{Hom}_{\mathcal{O}_F}(\mathfrak{a}_0, \mathfrak{a}).$$

Here V and L are equipped with Hermitian forms coming from those on W_0 and W. Define $G := \text{U}(W)$. Also define the group scheme $\text{GU}(W)$ over \mathbb{Q} by

$$\text{GU}(W)(\mathbb{Q}) = \{ g \in \text{GL}_R(W \otimes R) \mid (gv, gw) = c(g)(v, w), \forall v, w \in W \otimes R \},$$

1725
where R is any \mathbb{Q}-algebra. Also define $Z := \text{Res}_{F/\mathbb{Q}} G_m = \text{GU}(W_0)$ and
\[
\hat{G} := Z \times_{G_m} \text{GU}(W),
\] (12.3)
where the maps from the factors on the right-hand side to G_m are $\text{Nm}_{F/\mathbb{Q}}$ and the similitude character $c(g)$, respectively. We have an isomorphism of group schemes
\[
\hat{G} \rightarrow Z \times U(W), (z, g) \mapsto (z, z^{-1}g).
\] (12.4)
Let K_G be the compact subgroup of $G(A_f)$ that stabilizes the lattice $a \otimes \hat{\mathbb{Z}}$ and $K_Z = \hat{\mathbb{Z}}^\times \subset Z(A_f)$. Under the isomorphism (12.4), define
\[
K := K_Z \times K_G.
\] (12.5)

Now define $\mathcal{M} \subset \mathcal{M}_{(0,1)} \times \mathcal{M}_{\text{Kra}}^{(1, n-1)}$ to be the open and closed substack such that
\[
(E_0, t_0, \lambda_0, A, \iota, \lambda, \mathcal{F}_A) \in \mathcal{M}(S)
\]
if and only if there is an isomorphism of Hermitian $\mathcal{O}_F \otimes \mathbb{Z}_\ell$-modules
\[
T_\ell(E_{0,s}, A_s) \cong L \otimes \mathbb{Z}_\ell
\] (12.6)
for any geometric point $s \in S$ and prime ℓ that is not the same as the characteristic of s. Then \mathcal{M} is an integral model of the Shimura variety associated to the group \hat{G} with level structure defined by K.

Now we review the definition of special cycles. For $(E, t_0, \lambda_0, A, \iota, \lambda, \mathcal{F}_A) \in \mathcal{M}(S)$ where S is an \mathcal{O}_F-scheme, consider the projective \mathcal{O}_F-module of finite rank
\[
V'(E, A) = \text{Hom}_{\mathcal{O}_F}(E, A).
\]
On this module there is a Hermitian form $h'(x, y)$ defined by
\[
h'(x, y) = t_0^{-1}(\lambda_0^{-1} \circ y^\vee \circ \lambda \circ x),
\] (12.7)
where y^\vee is the dual homomorphism of y. It is proved in [KR14b, Lemma 2.7] that $h'(x, y)$ is positive semi-definite. The following is [KR14b, Definition 2.8].

Definition 12.1. For $T \in \text{Herm}_m(\mathbb{Z})_{>0}$, the special cycle $\mathcal{Z}(T)$ is the stack of collections $(E, t_0, \lambda_0, A, \iota, \lambda, \mathcal{F}_A, x)$ where
\[
(E, t_0, \lambda_0, A, \iota, \lambda, \mathcal{F}_A) \in \mathcal{M}(S)
\]
and $x = (x_1, \ldots, x_m) \in \text{Hom}_{\mathcal{O}_F}(E, A)^m$ such that
\[
h'(x, x) = (h'(x_i, x_j)) = T.
\]

When $t \in \mathbb{Z}_{>0}$, each component of $\mathcal{Z}(t)$ is a divisor by [How15, Proposition 3.2.3]. In general, $\mathcal{Z}(T)$ does not necessarily have the expected codimension which is the rank of T.

Let $\mathcal{C} = \{C_\ell\}$ be an incoherent collection of local Hermitian spaces of rank n such that $C_\ell \cong V_\ell$ for all finite ℓ and C_∞ is positive definite. For a non-singular Hermitian matrix T of rank n with values in \mathcal{O}_F, let V_T be the Hermitian space with Gram matrix T. Define
\[
\text{Diff}(T, \mathcal{C}) := \{p \text{ a place of } \mathbb{Q} \mid C_\ell \text{ is not isomorphic to } (V_T)_p\}.
\] (12.8)
Then $\text{Diff}(T, \mathcal{C})$ is a finite set consisting of places of \mathbb{Q} inert or ramified in F. By [KR14b, Proposition 2.22], $\mathcal{Z}(T)$ is empty if $|\text{Diff}(T, \mathcal{C})| > 1$. If $\text{Diff}(T, \mathcal{C}) = \{p\}$ for a finite prime p inert or ramified in F, it is proved in [KR14b] that the support of $\mathcal{Z}(T)$ is on the supersingular locus
of M over $\text{Spec } \mathbb{F}_p$. Let e be the ramification index of F_p/\mathbb{Q}_p. Define the arithmetic degree

$$\widehat{\deg}_T = \chi(Z(T), \mathcal{O}_{Z(t_1)} \otimes^L \mathcal{O}_{Z(t_2)} \otimes^L \mathcal{O}_{Z(t_n)}) \cdot \log p^{2/e}, \quad (12.9)$$

where \otimes^L denotes the derived tensor product on the category of coherent sheaves on M, χ is Euler characteristic and t_i ($1 \leq i \leq n$) are the diagonal entries of T. When $\text{Diff}(T, C) = \{\infty\}$, $Z(T)$ is empty [KR14b, Lemma 2.7] and the arithmetic degree $\widehat{\deg}_T(v)$ is the integration of a green current $G(T, v)$ ($v > 0$ is a positive-definite Hermitian matrix of order n) defined by Liu [Liu11] and García and Sankaran [GS19]; see, for example, [LZ22a, Equation (15.3.0.2)].

12.2 Eisenstein series

On the analytic side, let $\chi : \mathbb{A}/\mathbb{Q}^\times \to \mathbb{C}^\times$ be the quadratic character associated to the extension F/\mathbb{Q}. Fix a character $\eta : \mathbb{A}^\times_F \to \mathbb{C}^\times$ such that $\eta|_{\mathbb{A}^\times_F} = \chi^n$. We consider an incoherent Eisenstein series $E(z, s, \Phi)$ associated to a section $\Phi = \otimes \Phi_p$ in a degenerate principal series representation $I(s, \eta)$ of $U(n, n)(\mathbb{A})$ (see [LZ22a, §12] or [KR14b]), where $\tau \in \mathbb{H}_n$ (see (1.18)), $s \in \mathbb{C}$ and Φ_p is given as follows. The section Φ_{∞} is the standard weight n section. When $p < \infty$ is unramified in F, Φ_p is the standard section associated to the characteristic function of L^p_n via the map $\lambda : S(C^n_p) \to I(0, \eta_p)$:

$$\lambda(\varphi)(g) = \omega(g)\varphi(0),$$

where ω is the Weil representation of $U(n, n)$ associated to the character χ. When p is ramified in F, define

$$\Phi_p = \Phi^0_p + \sum_{i=1}^{[n/2]} A_{p, r}^i(s) \cdot \Phi^i_p, \quad (12.10)$$

Here Φ^0_p is the standard section associated to the characteristic function L^p_n, Φ^i_p is the standard section associated to the characteristic function of $(\mathcal{H}^e_{n, i})^n$ at p with $\epsilon = -\chi_p(L_p)$, and

$$A_{p, r}^i(0) = 0, \quad \frac{d}{ds} A_{p, r}^i(s)|_{s=0} = \frac{(-1)^n}{p^{2i}} \cdot c_{n, i}^e \cdot \log p, \quad (12.11)$$

where $c_{n, i}^e$ are as in (1.9). Let ψ be the standard additive character of \mathbb{A}/\mathbb{Q}, i.e.

$$\psi_\infty(x) = \exp(2\pi i x), \quad \psi(x) = \exp(-2\pi i \lambda(x)), \quad (12.12)$$

where λ is the canonical map $\mathbb{Q}_l \to \mathbb{Q}_l/\mathbb{Z}_l \hookrightarrow \mathbb{Q}/\mathbb{Z}$. Let $E_T(\tau, s, \Phi)$ (respectively, $E'_T(\tau, \Phi)$) be the Tth Fourier coefficient of $E(\tau, s, \Phi)$ (respectively, $E'(\tau, 0, \Phi)$) with respect to ψ. Then, for $s \gg 0$, we have the following product formula (see, for example, [LZ22a, §12.4]):

$$E_T(\tau, s, \Phi) = c_\infty \cdot \prod_{p < \infty} W_{T, p}(1, s, \Phi_p) \cdot q^T, \quad (12.13)$$

where c_∞ is a constant independent of T calculated in [Liu11, Proposition 4.5], and $W_{T, p}(1, s, \Phi_p)$ is the local Whittaker integral defined in [KR14b, Equation (10.2)].

12.3 An equivalent form of Conjecture 1.1

In this subsection we assume p is a prime of \mathbb{Q} ramified in F. Let $| \cdot |_p$ be the non-Archimedean valuation on F_p normalized so that $|\sqrt{d_F}^p| = 1/p$. For $\epsilon = \pm 1$, let V^ϵ_p be the (unique up to isomorphism) F_p/\mathbb{Q}_p-Hermitian space of dimension n and sign ϵ. For any lattice M_p of rank n in V^ϵ_p, let $\Phi_{M_p} \in I_p(s, \eta_p)$ be the standard section associated to the characteristic function of M^ϵ_p.

1727
By [Shi22, Proposition 9.7], we have
\[W_{T,p}(1, r, \Phi_{M_p}) = \gamma_p(V_p^n) \cdot |\det(M_p)|_{p}^{n} \cdot |d_F|_{p}^{f} \cdot \alpha_{e}(M_p, L_T, X)|_{X=\hat{m}^{-2r}}, \quad (12.14) \]
where \(f = \frac{1}{2}n^2 + \frac{1}{4}(n - 1) \), \(\alpha_p(\cdot, \cdot, X) \) is the local density polynomial defined in (5.1) at the place \(p \) and \(\gamma_p(V_p) \) is an 8th root of unity defined in [KR14b, Equation (10.3)]. By [KR14b], we know
\[\gamma_p(V_p^\epsilon) = -\gamma_p(V_p^{-\epsilon}). \quad (12.15) \]

For \(T \in \text{Herm}_n(F) \), choose a lattice \(L_T \) in the Hermitian space \(V_p^{X_p(T)} \) with Gram matrix \(T \). Then (12.14) and (12.15) imply that Conjecture 1.1 at the place \(p \) is equivalent to the following conjecture.

Conjecture 12.2. Let \(V \) be the space of special quasi-homomorphisms as in (1.2) such that \(\chi_p(V) = \epsilon \). Let \(T \in \text{Herm}_n(F) \) such that \(\chi_p(T) = \epsilon \) and \(L_T \) be a lattice of rank \(n \) in \(V \) with Gram matrix \(T \). Then
\[\text{Int}(L_T) \cdot \log p = \frac{W_{T,p}(1, 0, \Phi_p)}{W_{I_{n^{-\epsilon},p}}(1, 0, \Phi_p)}, \]
where \(\Phi_p \) is defined in (12.10).

12.4 (Global) arithmetic Siegel–Weil formula

Similar to [LZ22a, Theorem 1.3.1], we have the following theorem.

Theorem 12.3 (Arithmetic Siegel–Weil formula for non-singular coefficients). Assume that the fundamental discriminant of \(F \) is \(d_F \equiv 1 \) (mod 8) and that Conjecture 1.1 holds for every \(F_p \) with \(p|d_F \). For any non-singular Hermitian matrix \(T \) with values in \(\mathcal{O}_F \) of size \(n \), we have
\[E_T^p(\tau, 0, \Phi) = C \cdot \hat{\deg}_T(v) \cdot q^T, \quad q^T = \exp(2\pi i \text{tr}(T \tau)), \]
where \(C \) is an explicit constant that only depends on \(F \) and \(L \), \(\hat{\deg}_T(v) = \hat{\deg}_T \) for positive-definite \(T \), and \(\tau = u + iv \). In particular, the arithmetic Siegel–Weil formula holds for \(n = 2, 3 \) for non-singular \(T \).

Proof. We sketch the main idea of the proof. When \(|\text{Diff}(T, C)| > 1 \), both sides are zero. When \(\text{Diff}(T, C) = \{p\} \) for a finite prime \(p \neq 2 \) (as \(d_F \equiv 1 \) (mod 8)), then \(T \) is positive definite and the support of \(Z(T) \) is on the supersingular locus of \(M \) over \(\text{Spec} \mathbb{F}_p \) although it has higher than expected dimension and needs ‘derivation’ to make it correct dimensional cycle (we skip it here and just define its degree in the following). When \(p \) is inert in \(F \), the theorem is proved in [LZ22a, Theorem 1.3.1]. When \(p \) is ramified in \(F \), the theorem can be proved in a similar fashion assuming Conjecture 1.1. The key is that by the \(p \)-adic uniformization theorem [RZ96, Chapter 6], for each component \(Z \) of \(Z(T)(\mathbb{F}_p) \), the arithmetic degree of \(Z(T) \) supported on \(Z \)
\[\chi(Z, \mathcal{O}_{Z(t_1)} \otimes \mathbb{Z}^* \mathcal{O}_{Z(t_2)} \otimes \mathbb{Z}^* \mathcal{O}_{Z(t_3)} \cdot \log p, \quad (12.16) \]
is the same as \(\text{Int}(L) \cdot \log p \) (\(L \) has Gram matrix \(T \)) in Conjecture 1.1. In particular, this number is independent of the choice of \(Z \) and depends only on \(T \). Assuming that Conjecture 1.1 (or rather its equivalent form Conjecture 12.2) holds, this is then equal to \(c_{p,1} W_{T,p}(1, 0, \Phi_p) \) for some constant \(c_{p,1} \neq 0 \). Thus, \(\hat{\deg}_T \) is this number times the number of components of \(Z(T)(\mathbb{F}_p) \), which can be counted via the Siegel–Weil formula. Combining these results together with (12.13),

1728
we can prove\[C_p \cdot \deg_T \cdot q^T = E_T(\tau, 0, \Phi) \]
for some explicit constant C_p independent of T. Similar argument holds when $\text{Diff}(T, \mathcal{C}) = \{\infty\}$ in which case the theorem is proved in [Liu11] and [GS19]. Finally, one checks that C_p is independent of the choice of p. □

\section*{Acknowledgements}
We thank C. Li for his help during the preparation of this paper. We thank the referees for their careful reading of the paper and their comments which make the paper more readable.

\section*{Conflicts of Interest}
None.

\appendix

\section*{Appendix A Calculation of primitive local density}
In this appendix, we provide the proofs of Propositions 5.9 and 5.10. Throughout this section, M is unimodular of rank $m \geq 2$ unless clearly stated otherwise. Let $\{v_1, \ldots, v_{2k}, v_{2k+1}, \ldots, v_{2k+m}\}$ be a basis of $M^{[k]} = \mathcal{H}^k \oplus M$ with Gram matrix $\mathcal{H}^k \oplus \text{Diag}(I_{m-1}, \nu)$. Let L be a Hermitian lattice of rank n with Gram matrix T. An isometric embedding $\varphi : L \rightarrow M$ is called primitive if its image in $M/\pi M$ has dimension rank$\mathcal{O}_p(L)$. We call a vector v primitive in M if $\pi^{-1}v \notin M$ or, equivalently, the natural embedding $\varphi : \text{Span}_{\mathcal{O}_p}\{v\} \hookrightarrow M$ is primitive. For a $v \in M^{[k]}$, we let $\text{Pr}_{\mathcal{H}^k}(w_i)$ be the projection of w_i to \mathcal{H}^k.

\section*{A.1 Proof of Proposition 5.9}
The main purpose of this subsection is to prove the first four parts of Proposition 5.9. Part (5) of this proposition follows from Proposition 5.7 and Corollaries A.10 and A.12.

Proof. For part (1), choose $M(1) = (t\pi/2)v_1 + v_2 \in M^{[k]}$ with $q(M(1)) = t$. Then

$$M(1)^\perp = \text{Span}_{\mathcal{O}_p}\left\{ \frac{-t}{2}v_1 + v_2, v_3, \ldots, v_{2k}, v_{2k+1}, \ldots, v_{2k+m} \right\}$$

\[\cong \langle -t \rangle \oplus \mathcal{H}^{k-1} \oplus M, \quad (A.1) \]

which is represented by $\text{Diag}(-t, \mathcal{H}^{k-1}, S)$. It is easy to check

$$|M^{[k]} : M(1) \oplus M(1)^\perp|^{-1}|M(1)^\vee : M(1)| = |t\pi|_F |t\pi|^{-1}_F = 1.$$

For parts (2) and (3), assume first that M is isotropic (and unimodular). In this case, we may choose a basis $\{v'_{2k+1}, \ldots, v'_{2k+m}\}$ of M with Gram matrix $\text{Diag}(\mathcal{H}_0, 1, \ldots, 1, -\nu)$. Choose $M(0) = (t/2)v'_{2k+1} + v'_{2k+2}$ with $q(M(0)) = t$. Then

$$M(0)^\perp = \text{Span}\left\{v_1, \ldots, v_{2k}, \frac{t}{2}v'_{2k+1} + v'_{2k+2}, v'_{2k+3}, \ldots, v'_{2k+m}\right\}$$

\[\cong \mathcal{H}^k \oplus \text{Span}\{v'_{2k+3}, \ldots, v'_{2k+m}\} \oplus \langle -t \rangle. \]

as claimed. Moreover,

$$|M^{[k]} : M(0) \oplus M(0)^\perp|^{-1}|M(0)^\vee : M(0)| = |t|_F |t\pi|^{-1}_F = q.$$

Next, assume that M is anisotropic. In this case, M has rank 2 and has Gram matrix $\text{Diag}(1, \nu)$ with $\chi(M) = \chi(-\nu) = -1$. In this case, $E = F_0(\sqrt{-\nu})$ is a unramified quadratic field

1729
Lemma A.2. For primitive vectors proves Proposition 5.9(1)–(3).

Lemma A.1. Note that \(g \in H \cap \langle t \nu \rangle \), and
\[
|\mathcal{M}^{[k]} : N(0) \otimes \mathcal{M}^{[k]}|^{-1} |\mathcal{M}(0) : |\mathcal{M}(0) / H| = |\pi|^{-1} = q.
\]

When \(\nu(t) > 0 \), \(t \notin N(0) \otimes \mathcal{M}^{[k]} \). Thus, there is no primitive \(M(0) \in M \) with \(q(M(0)) = t \). This proves Proposition 5.9(1)–(3).

The proof of part (4) follows from the following four lemmas.

Lemma A.1. For primitive vectors \(w_1, w_2 \in H \) with \(q(w_1) = q(w_2) \), we can find an element \(g \in U(H) \) such that \(q(w_1) = w_2 \).

Proof. We treat the case \(i \) is odd first. Assume \(v = a_1 v_1 + a_2 v_2 \). Then \(v \) is primitive implies that \(a_1 \) or \(a_2 \) is a unit. Without loss of generality, we assume \(a_2 = 1 \) by the action of \(\begin{pmatrix} a_2 & 0 \\ 0 & a_2^{-1} \end{pmatrix} \). Now note that \(q(v) = (v, v) = (a_1 - a_1)^i \). Hence, we can write \(a_1 = \alpha + q(v)\pi^{-i}/2 \), where \(\alpha \in \mathcal{O}_F \). Now let \(g = (\begin{pmatrix} 1 & \beta \pi \\ 0 & 1 \end{pmatrix} \) and it is straightforward to check that \(g \in U(H) \) and \(q(v) = (q(v)\pi^{-i}/2)v_1 + v_2 \).

Now we deal with the case \(i \) is even. Again, we can assume \(v = a_1 v_1 + v_2 \). Then \(q(v) = (a_1 + a_1)^i \). Hence we can write \(a_1 = (q(v)/2)\pi^{-i} + \beta \pi \), where \(\beta \in \mathcal{O}_F \). Now let \(g = (\begin{pmatrix} 1 & \beta \pi \\ 0 & 1 \end{pmatrix} \), and it is straightforward to check that \(g \in U(H) \) and \(q(v) = (q(v)\pi^{-i}/2)v_1 + v_2 \).

Lemma A.2. Assume \(M \) is any lattice such that \(\nu(M) \geq i \). For \(w_1, w_2 \in H_\xi \otimes M \), if \(Pr_{H_\xi}^k(w_1) \) and \(Pr_{H_\xi}^k(w_2) \) are primitive and \(q(w_1) = q(w_2) \), then there exists \(g \in U(H_\xi \otimes M) \) with \(q(w_1) = w_2 \).

Proof. Choose a basis \(\{v_1, \ldots, v_{2k}\} \) of \(\mathcal{H}_i^k \) such that the associated Gram matrix is \(\mathcal{H}_i^k \). We also choose a basis \(\{v_{2k+1}, \ldots, v_{2k+m}\} \) of \(M \). Write \(w_1 = \sum_{i=1}^{2k+m} a_i v_i \). Since \(Pr_{H_\xi}^k(w_1) \) is primitive, \(a_i \) is a unit for some \(i \in \{1, \ldots, 2k\} \). Without loss of generality, we may assume \(a_1 = 1 \). Let \(w' = w_1 + ((-1)^{i+1} q(w_1)\pi^{-i}/2)v_2 \), then
\[
q(w') = q(w_1) + \left(w_1, \frac{(-1)^{i+1} q(w_1)\pi^{-i}/2}{2} \right) v_2 = 0,
\]
and \((w', v_2) = (v_1, v_2) \). As a result, \(M_1 = \text{Span}_{\mathcal{O}_E} \{w_1, v_2\} = \text{Span}_{\mathcal{O}_E} \{w', v_2\} \) is isometric to \(\mathcal{H}_i \).

Note that \(\nu(q(w_1)) \geq i \) is guaranteed by the assumption \(\nu(M) \geq i \).

Similarly, we can show \(w_2 \in M_2 \) for some \(M_2 \) that is isometric to \(\mathcal{H}_i \). However, the assumption \(\nu(M) \geq i \) and [Jac62, Proposition 4.2] imply that there exist \(g \in U(H_\xi \otimes M) \) such that \(q(M_1) = M_2 \). In particular, \(g(w_1) \in M_2 \). Since both \(g(w_1) \) and \(w_2 \) are in \(M_2 \), the problem is reduced to Lemma A.1.

Lemma A.3. For primitive vectors \(w_1, w_2 \in M \) with \(q(w_1) = q(w_2) \), we can find an element \(g \in U(M) \) such that \(g(w_1) = w_2 \).

Proof. Since \(M \) is unimodular, we can decompose
\[
M = H_0^k \otimes M',
\]
where \(M' = 0 \) or an anisotropic unimodular Hermatian lattice of rank 1 or 2. If \(Pr_{H_0^k}(w_1) \) and \(Pr_{H_0^k}(w_2) \) are primitive, this is Lemma A.2. If \(Pr_{H_0^k}(w_1) \) is not primitive, then \(Pr_{M'}(w_1) \) is primitive and, thus, \(q(Pr_{M'}(w_1)) \in \mathcal{O}_E^\times \). This implies that \(q(w_2) = q(w_1) \) is a unit, and \(M = \mathcal{O}_Fw_1 \otimes (\mathcal{O}_Fw_1)^\perp \). Therefore, there is some \(g \in U(M) \) with \(g(w_1) = w_2 \). \(\Box \)
Lemma A.4. Assume that w_1, $w_2 \in M^{[k]}$ are primitive and that $\Pr_{H^k}(w_1)$ and $\Pr_{H^k}(w_2)$ are not primitive. Then we can find $g \in U(M^{[k]})$ such that $g(w_1) = w_2$.

Proof. Let $\{v_1, \ldots, v_{2k+m}\}$ be a basis of $H^k \oplus M$, whose Gram matrix is $H^k \oplus \text{Diag}(1, \ldots, \nu)$ where ν is a unit. Assume $v \in M^{[k]}$ is primitive and $\Pr_{H^k}(v)$ is not primitive, then we can write $v = \sum_{i=1}^{2k} \pi a_i v_i + \sum_{j=2k+1}^{2k+m} a_j v_j$, where some a_j is a unit for $2k + i \leq j \leq 2k + m$. Again, without loss of generality, we may assume $a_{2k+m} = 1$. For $i \leq k$, we set $v_{2i-1}' = v_{2i-1} + \frac{a_{2i-1}}{\nu} v_{2k+m}$, $v_{2i}' = v_{2i} - \frac{a_{2i-1}}{\nu} v_{2k+m}$.

Let $M_v = \text{Span}_\mathbb{F}_p \{v_1', \ldots, v_{2k}'\}$. Then it is easy to check that M_v is perpendicular to v. Moreover, M_v is isometric to H^k since $\text{val}_p((v_{2i-1}', v_{2i}')) = -1$ and $0 \leq \text{val}_p((v_i', v_j'))$ for other $1 \leq i, j \leq 2k$. Hence, we can find $g_v \in U(M^{[k]})$ such that $g_v(M_v) = \text{Span}_\mathbb{F}_p \{v_1, \ldots, v_{2k}\}$ and $g_v(v) \in \text{Span}_\mathbb{F}_p \{v_{2k+1}, \ldots, v_{2k+m}\} = M$.

Applying the above to w_1 and w_2, we can find $g_{w_1}, g_{w_2} \in U(M^{[k]})$ such that $g_{w_1}(w_1), g_{w_2}(w_2) \in M$. Now the problem is reduced to Lemma A.3, and the lemma is proved. □

According to Lemmas A.2 and A.4, a primitive vector $v \in M^{[k]}$ is either in the same orbit of a vector $M(1) \in H^k$ or a vector $M(0) \in M$. Lemma A.1 implies that primitive vectors $M(1), M'(1) \in H^k$ with $q(M(1)) = q(M'(1))$ lie in the same orbit. Lemma A.3 implies the similar result for primitive $M(0), M'(0) \in M$ with $q(M(0)) = q(M'(0))$. A combination of the above proves part (4) of Proposition 5.9. □

A.2 Proof of Proposition 5.10

In this subsection, we prove the first part of Proposition 5.10, which we restate as follows for the convenience of the reader.

Proposition A.5. Let L be a Hermitian O_F-lattice of rank 2 and $v(L) > 0$. Let $\varphi : L \to M^{[k]}$ be a primitive isometric embedding. Let $d(\varphi)$ be the dimension of the image of the map

$$\Pr_{H^k} \circ \varphi : L \to H^k$$

in $H^k / \pi H^k$. Then

$$\varphi(L) \perp \simeq (-L) \otimes H^{k-d(\varphi)} \otimes M^{(d(\varphi))},$$

where $M^{(d(\varphi))}$ is unimodular of rank equal to $(\text{rank}(M) - 2(2 - d(\varphi)))$ and $\det M^{(d(\varphi))} = (-1)^{d(\varphi)}\det M$. In particular, if $d(\varphi) = 1$, then $\text{rank}(M) \geq 2$, and if $d(\varphi) = 0$, then $\text{rank}(M) \geq 4$.

Proof. This proposition follows from Lemmas A.6 and A.7. □

Lemma A.6. Let the notation be as in Proposition A.5. If $\text{rank}(M^{[k]}) \leq 4$, then

$$\varphi(L) \simeq (-L).$$

In particular, such an φ does not exist if $\chi(M^{[k]}) = -1$ or $\text{rank}(M^{[k]}) < 4$.

Proof. First, assume $M^{[k]} = H^2$ and $L \simeq H_i$ where $i > 0$. Let $\varphi(L) = \text{Span}_\mathbb{F}_p \{w_1, w_2\}$ such that the Gram matrix of $\{w_1, w_2\}$ is H_i. By Lemma A.1, we may assume $w_1 = v_1$. Then we may write $w_2 = a_1 v_1 + \pi v_2 + a_3 v_3 + a_4 v_4$, and $\min \{v_3(a_3), v_3(a_4)\} = 0$ by assumption. Without loss of generality, we may assume $a_3 = 1$. Now a direct calculation shows that

$$\varphi(L) \perp = \text{Span}_\mathbb{F}_p \{v_1 + (-\pi)^{i+1} v_4, v_3 + a_4 v_4\}.$$
Its Gram matrix is
\[
\begin{pmatrix}
0 & (-\pi)^i \\
(-\pi)^i & (a_4 - \bar{a}_4)^{-1}
\end{pmatrix} = \begin{pmatrix}
0 & (-\pi)^i \\
(-\pi)^i & -a_1(-\pi)^i - \bar{a}_1\pi^i
\end{pmatrix} \approx \begin{pmatrix}
0 & -(-\pi)^i \\
(-\pi)^i & 0
\end{pmatrix},
\]

hence \(\varphi(L)^\perp \approx L\).

Now we treat the case \(M^{[k]} = \mathcal{H}^2\) and \(L \approx \text{Diag}(u_1(-\pi_0^a), u_2(-\pi_0^b))\) where \(0 < a \leq b\). Again, let \(\varphi(L) = \text{Span}_{\mathcal{O}_F}\{w_1, w_2\}\) such that the Gram matrix of \(\{w_1, w_2\}\) is \(\text{Diag}(u_1(-\pi_0^a), u_2(-\pi_0^b))\), and we can assume \(w_1 = v_1 - (q(w_1)\pi/2)v_2\) without loss of generality. Then we may write \(w_2 = a_1(v_1 + (q(w_1)\pi/2)v_2) + a_3v_3 + a_4v_4\), hence \(\min\{v_\pi(a_3), v_\pi(a_4)\} = 0\) by assumption again. We may assume \(a_3 = 1\) and a direct calculation shows that
\[
\varphi(L)^\perp = \text{Span}_{\mathcal{O}_F}\{v_1 + \frac{q(w_1)\pi}{2}v_2 - \bar{a}_1q(w_1)\pi v_4, v_3 + \bar{a}_4v_4\}.
\]

Set
\[
v_3' = v_1 + \frac{q(w_1)\pi}{2}v_2 - \bar{a}_1q(w_1)\pi v_4 \quad \text{and} \quad v_4' = a_1v_3' + v_3 + \bar{a}_4v_4.
\]

Then \(\varphi(L)^\perp = \text{Span}_{\mathcal{O}_F}\{v_3', v_4'\}\) and the Gram matrix of \(\{v_3', v_4'\}\) is
\[
\begin{pmatrix}
-q(w_1) & 0 \\
0 & a_1\bar{a}_1q(w_1) - (a_3\bar{a}_4 - \bar{a}_3a_4)\pi^{-1}
\end{pmatrix} = \begin{pmatrix}
-q(w_1) & 0 \\
0 & -q(w_2)
\end{pmatrix}.
\]

Now assume \(M^{[k]} = \mathcal{H} \oplus M\), where \(M\) is unimodular of rank 2. We only treat the case \(L \approx \mathcal{H}_i\) in detail, and the argument for \(L\) represented by a diagonal matrix is similar. We assume that \(M^{[k]}\) has a basis \(\{v_1, \ldots, v_i\}\) with Gram matrix \(\mathcal{H} \oplus \text{Diag}(1, \nu)\) where \(\nu\) is a unit. Let \(\varphi(L) = \text{Span}_{\mathcal{O}_F}\{w_1, w_2\}\) where the Gram matrix of \(\{w_1, w_2\}\) is \(\mathcal{H}_i\). Then one can check that at least one of \(w_1\) and \(w_2\) is primitive in \(\mathcal{H}\). By Lemma A.1, we can assume that
\[
w_1 := \varphi(m_1) = v_1, \quad w_2 := \varphi(m_2) = a_1v_1 + \pi^i v_2 + a_3v_3 + a_4v_4
\]

and
\[
(w_2, w_2) = a_1\pi^i - \bar{a}_1\pi^i + a_3\bar{a}_3 + a_4\bar{a}_4\nu = 0. \quad (A.2)
\]

By our assumption we know that \(\min\{v_\pi(a_3), v_\pi(a_4)\} = 0\). Since we assume \(i \geq 1\), (A.2) implies that both \(a_3\) and \(a_4\) are in \(\mathcal{O}_F^{\times}\). This, in turn, implies that \(-\nu \in \text{Nm}_F/F_0(\mathcal{O}_F^{\times}) = \mathcal{O}_F^{\times}\). Hence, \(M^{[k]} \approx \mathcal{H} \oplus \mathcal{H}_0\) and we can instead assume that \(\{v_1, v_2, v_3, v_4\}\) has Gram matrix \(\mathcal{H} \oplus \mathcal{H}_0\). We can further assume that
\[
w_1 = v_1, \quad w_2 = a_1v_1 + \pi^{i+1}v_2 + v_3 + a_4v_4
\]

with
\[
(w_2, w_2) = a_1\pi^i - \bar{a}_1\pi^i + a_4 + \bar{a}_4 = 0.
\]

By direct calculation, it is easy to see that
\[
\varphi(L)^\perp = \text{Span}_{\mathcal{O}_F}\{v_1 - (-\pi)^iv_4, v_3 - \bar{a}_4v_4\}.
\]

Its Gram matrix is
\[
\begin{pmatrix}
0 & (-\pi)^i \\
(-\pi)^i & -a_4 - \bar{a}_4
\end{pmatrix} = \begin{pmatrix}
0 & (-\pi)^i \\
(-\pi)^i & a_1\pi^i - \bar{a}_1\pi^i
\end{pmatrix} \approx \begin{pmatrix}
0 & -(-\pi)^i \\
(-\pi)^i & 0
\end{pmatrix}.
\]

Finally, assume \(M^{[k]}\) is unimodular of rank 4. We treat the case \(L \approx \mathcal{H}_i\) in detail, and the other cases follow from a similar argument. Let \(\varphi(L) = \text{Span}_{\mathcal{O}_F}\{w_1, w_2\}\) such that the Gram
Note that, as a byproduct of the above argument, we actually also proved that if \(\operatorname{rank}(M) \) contains a \(H \). We can assume that \(M \) has a basis \(\{v_1, v_2, v_3, v_4\} \) with Gram matrix \(H_0 \oplus \operatorname{diag}(1, \epsilon) \) where \(\epsilon \in \mathcal{O}_F^\times \). By Lemma A.2 we can assume that \(w_1 = v_1 \). Then we have

\[
w_2 = a_1 v_1 + \pi^i v_2 + \sum_{j=3}^{4} a_j v_j,
\]

and

\[
(w_2, w_2) = a_1 (-\pi)^i + a_3 + a_4 \epsilon = 0. \tag{A.3}
\]

By our assumption we know that \(\min \{ v_\pi(a_3), v_\pi(a_4) \} = 0 \). Since we assume \(i \geq 1 \), (A.3) implies that both \(a_3 \) and \(a_4 \) are in \(\mathcal{O}_F^\times \). This, in turn, implies that \(-\epsilon \in \operatorname{Nm}_{F/F_0}(\mathcal{O}_F^\times) = \mathcal{O}_{F_0}^\times \). Hence, \(M \) and we can instead assume that \(\{v_1, v_2, v_3, v_4\} \) has Gram matrix \(H_0 \oplus H_0 \). We can further assume that

\[
w_1 = v_1, \quad w_2 = a_1 v_1 + \pi^i v_2 + v_3 + a_4 v_4
\]

with

\[
(w_2, w_2) = a_1 (-\pi)^i + a_4 = 0.
\]

By a direct calculation, it is easy to see that

\[
\varphi(L)^\perp = \operatorname{Span}_{\mathcal{O}_F} \{v_1 - (-\pi)^i v_4, v_3 - a_4 v_4\}.
\]

Its Gram matrix is

\[
\begin{pmatrix}
0 & -(-\pi)^i \\
-(-\pi)^i & a_4 - a_4
\end{pmatrix} = \begin{pmatrix}
0 & -(-\pi)^i \\
-(-\pi)^i & a_4 - a_4
\end{pmatrix} \approx \begin{pmatrix}
0 & -(-\pi)^i \\
-(-\pi)^i & 0
\end{pmatrix}.
\]

Note that, as a byproduct of the above argument, we actually also proved that if \(\operatorname{rank}(M) < 4 \) or \(M \) is not split, then no such \(\varphi \) exists. The lemma is proved.

Lemma A.7. Assume \(\nu(L) \geq 0 \). Let \(\varphi : L \to M \) be a primitive isometric embedding. Let \(d(\varphi) \) be the dimension of \(\operatorname{Pr}_{H^k}(\varphi(L)) \otimes \mathcal{O}_F \mathbb{F}_q \) in \(H^k/\pi H^k \). Then there exist a \(g \in \mathcal{U}(M) \) such that

\[
g(\varphi(L)) \subset H^{d(\varphi)} \oplus I_{4-2d(\varphi)} \subset M\]

where \(I_{4-2d(\varphi)} \) is a unimodular sublattice of \(M \) with rank \(4 - 2d(\varphi) \).

Proof. We prove the case for \(L \approx H_i \) in detail, and the other cases are similar. Let \(\{v_1, \ldots, v_{2k+m}\} \) be a basis of \(M \) whose Gram matrix is \(H^k \oplus \operatorname{diag}(1, \ldots, 1, \nu) \) where \(\nu \) is a unit. Set \(\varphi(L) = \operatorname{Span}_{\mathcal{O}_F} \{w_1, w_2\} \).

Assume \(d(\varphi) = 2 \). If \(i = -1 \), then there is nothing to prove. Therefore, we may assume \(i > -1 \). By Lemma A.2, without loss of generality, we can assume that \(w_1 = v_1 \). Then

\[
w_2 = a_1 v_1 + \pi^{i+1} v_2 + \sum_{j=3}^{2k+m} a_j v_j.
\]

By the assumption that \(d(\varphi) = 2 \), we know that

\[
\min \{ v_\pi(a_j) \mid 3 \leq j \leq 2k \} = 0.
\]

Hence, applying Lemma A.2 to \(H^{k-1} \oplus M \), we can find a \(g \in \mathcal{U}(M) \) such that

\[
gw_1 = v_1, \quad gw_2 \in H^2,
\]

where \(H^2 \) refers to the first direct summand in the decomposition \(H^k \oplus M = H^2 \oplus H^{k-2} \oplus M \).
Q. He, Y. Shi and T. Yang

When \(d(\varphi) = 1 \), without loss of generality, we can assume \(\text{Pr}_{\mathcal{H}^k}(w_1) \) is primitive. By Lemma A.2, we can assume that \(w_1 = v_1 \). Then
\[
 w_2 = a_1 v_1 + \pi^{i+1} v_2 + \sum_{j=3}^{2k+m} a_j v_j.
\]
By the assumption that \(d(\varphi) = 1 \), we know that
\[
 \min\{v_\pi(a_j) \mid 3 \leq j \leq 2k\} \geq 1.
\]
Since we assume \(\varphi \) is primitive, we know that
\[
 \min\{v_\pi(a_j) \mid 2k + 1 \leq j \leq 2k + r\} = 0.
\]
Then we are done by applying Lemma A.4 to \(\mathcal{H}^{k-1} \oplus M \).

When \(d(\varphi) = 0 \), without loss of generality, we may assume \(w_1 = v_{2k+1} + v_{2k+2} \) by Lemma A.4. Here, we pick \(v_{2k+i} \) so that the corresponding Gram matrix is \(\text{Diag}(1, -1, 1, \ldots, -\nu) \) (this is possible since we assume \(m \geq 4 \)). Since \(\varphi \) is primitive with \(d(\varphi) = 0 \), then
\[
 w_2 = \sum_{i=1}^{2k} \pi a_i v_i + \sum_{i=2k+1}^{2k+m} a_i v_i,
\]
and
\[
 \min\{v_\pi(a_j) \mid 2k + 3 \leq j \leq 2k + r\} = 0.
\]
We are done by applying Lemma A.4 to \(\mathcal{H}^k \oplus \text{Span}_F \{v_{2k+3}, \ldots, v_{2k+m}\} \).

\[\square\]

A.3 Calculation of primitive local density

In this subsection, we compute primitive local density polynomials and prove the formulas in Propositions 5.9 and 5.10. Assume \(L \) is represented by a non-singular Hermitian matrix \(T \) of rank \(n \leq 2 \). We let \(\tilde{v} \) denote the image of \(v \) in \(M^{[k]} \otimes \mathcal{O}_F \mathbb{F}_q \). Let
\[
 (M^{[k]})^n(i) := \{ (v_j) \in M^{n,(n)}_k \mid \text{Span}_{\mathbb{F}_q} \{\text{Pr}_{\mathcal{H}^k}(\tilde{v}_j), 1 \leq j \leq n\} \text{ has rank } i \},
\]
where \(M^{n,(n)}_k \) is as in (5.5), and
\[
 \beta_i(M, L, X) := \int_{\text{Herm}_n(F)} dY \int_{(M^{[k]})^n(i)} \psi(Y, T(x) - T) \, dx. \tag{A.4}
\]
Note that
\[
 \sum_{i=0}^n \beta_i(M, L, X) = \beta(M, L, X)^{(n)} \tag{A.5}
\]
is the primitive local density defined earlier, and we will shorten it as \(\beta(M, L, X) \). Note that if \(L \) is of the form \(\mathcal{H}^l \), then \(\beta(M, L, X) = \beta_n(M, L, X) \).

First, by a variant of [CY20], Chao Li and Yifeng Liu obtained the following formula of \(\beta(\mathcal{H}^k, L) \).

Lemma A.8 [LL22, Lemma 2.16]. Let \(b_1 \leq \cdots \leq b_n \) be the unique integers such that \(L^{\vee}/L \approx \mathcal{O}_F/(\pi^{b_1}) \oplus \cdots \oplus \mathcal{O}_F/(\pi^{b_n}) \). Let \(t_o(L) \) be the number of non-zero entries in \((b_1, \ldots, b_n) \). Then
\[
 \beta(\mathcal{H}^k, L) = \prod_{k-(n+t_o(L))/2 < i \leq k} (1 - q^{-2i}).
\]

1734
Kudla–Rapoport conjecture for Krämer models

Lemma A.9. Assume L is of rank n, then

$$\beta_n(M, L, q^{-2k}) = \beta(\mathcal{H}^k, L).$$

In particular, if L is of the form \mathcal{H}^j, then

$$\beta(M, L, q^{-2k}) = \beta(M, L, q^{-2k}) = \beta(\mathcal{H}^k, L).$$

Proof. Recall that $T(x) = (x, x)$ is the moment matrix of $x \in (M^{[k]})^n$. For a $x_2 \in M^n$, let $T'(x_2) = T - T(x_2)$.

Then a similar argument as in the proof of Lemma A.9 gives the first identity. In this case, we need to replace $T''(x_2) = T - T'(x_2)$. Then

$$\beta_n(M, L, q^{-2k}) = \int_{\text{Herma}_n(F)} \psi((-Y, T'((x_1, x_2)) - T)) \, dx_1 \, dx_2$$

$$= \int_{\text{Herma}_n(F)} \psi((-Y, T(x_1) + T(x_2) - T)) \, dx_1 \, dx_2$$

$$= \int_{\text{Herma}_n(F)} \psi((-Y, T(x_1) - T'(x_2))) \, dx_1 \, dx_2.$$

Note that if L and L' are two Hermitian \mathcal{O}_F-lattices with moment matrix T and T' such that $T - T' \in \text{Herma}_n(\mathcal{O}_{F_0})$, then $t_o(L) = t_o(L')$. Hence, for any $x_2 \in M^n$, we have by Lemma A.8

$$\beta(\mathcal{H}^k, T'(x_2)) = \int_{\text{Herma}_n(F)} \psi((-Y, T(x_1) - T'(x_2))) \, dx_1$$

$$= \int_{\text{Herma}_n(F)} \psi((-Y, T(x_1) - T)) \, dx_1$$

$$= \beta(\mathcal{H}^k, T).$$

Therefore,

$$\beta_n(M, L, q^{-2k}) = \text{vol}(M^n, dx_2) \cdot \int_{\text{Herma}_n(F)} \psi((-Y, T(x_1) - T)) \, dx_1$$

$$= \int_{\text{Herma}_n(F)} \psi((-Y, T(x_1) - T)) \, dx_1$$

$$= \beta(\mathcal{H}^k, L).$$

Combining the above two lemmas, we have the following.

Corollary A.10.

1. If L is of rank 1, then we have

$$\beta_1(M, L, X) = 1 - X.$$

2. If L is of rank 2, then we have

$$\beta_2(M, L, X) = \begin{cases} (1 - X), & \text{if } L = \mathcal{H}, \\ (1 - X)(1 - q^2X), & \text{otherwise}. \end{cases}$$

Lemma A.11. For an \mathcal{O}_F-Hermitian lattice, let $L = L/\pi L$ be its reduction modulo π with resulting quadratic form. Let $r(M, L)$ to be the number of isometries from L to M. Then

$$\beta_0(M, L, X) = X^n \beta(M, L) = q^{-mn+n^2}r(M, L)X^n.$$

Proof. The second identity follows from the same proof of [CY20, Theorem 3.12]. Then a similar argument as in the proof of Lemma A.9 gives the first identity. In this case, we need to replace
\(M^n \oplus (\mathcal{H}^k)^{n,(n)} \) in the proof of Lemma A.9 with \(M^{n,(n)} \oplus (\pi \mathcal{H}^k)^n \). The factor \(X^n \) shows up because \(\text{vol}((\pi \mathcal{H}^k)^n) = (q^{-2k})^n \). We leave the details to the reader. □

Note that [LZ22b, Lemma 3.2.1] provides a uniform formula for \(|r(\overline{M},L)| \). As a result, we obtain the following corollaries.

Corollary A.12. Assume \(L = \mathcal{O}_F \mathbf{x} \) is of rank 1 (we allow \(q(\mathbf{x}) = 0 \)).

1. If \(v(L) = 0 \), then
 \[
 \beta_0(M, L, X) = \begin{cases}
 (1 + \chi(M)\chi(L)q^{-(m-1)/2})X, & \text{if } m \text{ is odd}, \\
 (1 - \chi(M)q^{-m/2})X, & \text{if } m \text{ is even}.
 \end{cases}
 \]

2. If \(v(L) > 0 \), then
 \[
 \beta_0(M, L, X) = \begin{cases}
 (1 - q^{1-m})X, & \text{if } m \text{ is odd}, \\
 (1 - q^{1-m} + \chi(M)(q-1)q^{-m/2})X, & \text{if } m \text{ is even}.
 \end{cases}
 \]

Corollary A.13. Assume \(L \) is of rank 2. When \(t(L) = 1 \), we assume that \(L \) has Gram matrix \(T = \text{Diag}(u_1, u_2(-\pi_0)^b) \) with \(b > 0 \).

1. If \(m \) is odd, then
 \[
 \beta_0(M, L, X) = \begin{cases}
 q(1 - q^{1-m})X^2, & \text{if } t(L) = 0, \\
 q(1 + \chi(M)\chi(u_1)q^{(3-m)/2})(1 - q^{1-m})X^2, & \text{if } t(L) = 1, \\
 q(1 - q^{1-m})(1 - q^{3-m})X^2, & \text{if } t(L) = 2.
 \end{cases}
 \]

2. If \(m \) is even, then
 \[
 \beta_0(M, L, X) = \begin{cases}
 q(1 - \chi(L)q^{1-m} + \chi(L)\chi(M)(q - \chi(L))q^{-m/2})X^2, & \text{if } t(L) = 0, \\
 q(1 - \chi(M)q^{-m/2})(1 - q^{2-m})X^2, & \text{if } t(L) = 1, \\
 q((1 - q^{2-m}) + \chi(M)(q^2 - 1)q^{-m/2})(1 - q^{2-m})X^2, & \text{if } t(L) = 2.
 \end{cases}
 \]

Finally, we calculate \(\beta_1(M, L, X) \).

Proposition A.14. Assume \(L \) is as in Corollary A.13. Let \(\delta_{\mathbb{E}}(m) = 1 \) or 0 depending on whether \(m \) is even or odd.

1. If \(t(L) = 2 \), then
 \[
 \beta_1(M, L, X) = q(q + 1)((1 - q^{1-m}) + \delta_{\mathbb{E}}(m)\chi(M)(q - 1)q^{-m/2})X(1 - X).
 \]

2. If \(t(L) = 1 \), then
 \[
 \beta_1(M, L, X) = \begin{cases}
 q(1 + q - q^{1-m} + \chi(M)\chi(u_1)q^{(3-m)/2}X(1 - X), & \text{if } m \text{ is odd}, \\
 q(1 + q - q^{1-m} - \chi(M)q^{-m/2})X(1 - X), & \text{if } m \text{ is even}.
 \end{cases}
 \]

3. If \(t(L) = 0 \) and \(\chi(L) = 1 \), i.e. \(L \cong \mathfrak{H}_0 \), then
 \[
 \beta_1(M, L, X) = q(q + 1 - 2q^{1-m} + \delta_{\mathbb{E}}(m)\chi(M)(q - 1)q^{-m/2})X(1 - X).
 \]

4. If \(t(L) = 0 \) and \(\chi(L) = -1 \), then
 \[
 \beta_1(M, L, X) = q(q + 1)(1 - \delta_{\mathbb{E}}(m)\chi(M)q^{-m/2})X(1 - X).
 \]
Proof. First we assume $L = \mathcal{H}_i$. We claim that

$$
\beta_1(M, \mathcal{H}_i, X) = \begin{cases}
q(1 - X) \left(2\beta_0(M, 0, X) + \sum_{\alpha \in (O_{F_0}/(\pi_0))^{\times}} \beta_0(M, \langle -2\alpha \rangle, X) \right), & \text{if } i = 0, \\
q(q + 1)(1 - X)\beta_0(M, 0, X), & \text{if } i \geq 1.
\end{cases}
$$

Here $\alpha(M, 0, X) = \alpha(M, O_{F_0} x, X)$ with $q(x) = 0$ and $x \neq 0$. Assuming the claim, the proposition for $L = \mathcal{H}_i$ follows from Corollary A.12.

To prove the claim, it suffices to show the identity for $X = q^{-2k}$ for sufficiently many $k \geq 0$. Recall

$$
I(M^{[k]}, L, d) = \left\{ \phi \in \text{Hom}_{O_F}(L/\pi_0^d L, M^{[k]}/\pi_0^d M^{[k]}) \mid (\phi(x), \phi(y)) \equiv (x, y) \mod \pi^{2d-1}, \forall x, y \in L \right\}.
$$

Let

$$
J(M^{[k]}, L, d) := \{ \phi \in I(M^{[k]}, L, d) \mid \dim_{\mathbb{F}_q} \text{Pr}_{\mathcal{H}^k}(\phi(L)) = \dim_{\mathbb{F}_q} \text{Pr}_M(\phi(L)) = 1 \}.
$$

Then

$$
\beta_1(M, L, q^{-2k}) = \lim_{d \to \infty} q^{-(4(2k+m) - 4)d} |J(M^{[k]}, L, d)|.
$$

Let $\{l_1, l_2\}$ be a basis of L with Gram matrix \mathcal{H}_i. For $\phi \in J(M^{[k]}, L, d)$, it will be determined by $w_i = \phi(l_i)$. Let $w_{i, \mathcal{H}} = \text{Pr}_{\mathcal{H}^k}(w_i)$, and $w_{i, M} = \text{Pr}_M(w_i)$. Since $\text{rank}_{\mathbb{F}_q} \text{Pr}_{\mathcal{H}^k}(\phi(L)) = 1$, $\text{rank}_{\mathbb{F}_q} \text{Pr}_{\mathcal{H}^k}(w_i) = 1$ for $i = 1$ or 2.

Now we define a partition of $J(M^{[k]}, L, d)$. Assume $\alpha \in O_{F_0}$. Let

$$
J_\alpha(M^{[k]}, L, d) := \{ \phi \in I(M^{[k]}, L, d) \mid \text{rank}_{\mathbb{F}_q} \mathcal{M}_1, \mathcal{H} = 1, \mathcal{M}_{2, \mathcal{H}} = \alpha \mathcal{M}_{1, \mathcal{H}} \},
$$

$$
J_\infty(M^{[k]}, L, d) := \{ \phi \in I(M^{[k]}, L, d) \mid \text{rank}_{\mathbb{F}_q} \mathcal{M}_{2, \mathcal{H}} = 1, \mathcal{M}_{1, \mathcal{H}} = 0 \}.
$$

Then it is easy to verify

$$
J(M^{[k]}, L, d) = \bigcup_{\alpha \in O_{F_0}/(\pi_0)} J_\alpha(M^{[k]}, L, d) \cup J_\infty(M^{[k]}, L, d).
$$

Now we compute $|J_\alpha(M^{[k]}, L, d)|$. To determine a $\phi \in J_\alpha(M^{[k]}, L, d)$, we choose $w_1 = \phi(l_1)$ first. By definition, we have

$$
\lim_{d \to \infty} q^{2(2k+m) - 1)d} \# \{ w_1 \in M^{[k]}/\pi_0^d M^{[k]} \mid w_1 \mathcal{H} \text{ is primitive, and } q(w_1) \equiv 0 \mod \pi_0^d \} = \beta_1(M^{[k]}, 0) = 1 - q^{-2k}. \quad (A.6)
$$

Given such a w_1, now we find the number of $w_2 = \phi(l_2)$ such that ϕ lies in $J_\alpha(M^{[k]}, L, d)$. By Lemma A.2, we may assume $w_{1, \mathcal{S}} = 0$. Let $w_2 = w_{2, M} + \alpha w_1 + \pi w_{\mathcal{H}}$, where $w_{\mathcal{H}} \in \mathcal{H}^k$. Then the corresponding ϕ lies in $J_\alpha(M^{[k]}, L, d)$ if and only if

$$
\pi^i \equiv (w_1, w_2) \equiv (w_1, \pi w_{\mathcal{H}}) \mod \pi^{2d-1}
$$

and

$$
0 \equiv q(w_2) \equiv \text{tr}((\alpha w_1, \pi w_{\mathcal{H}})) - \pi_0 q(w_{\mathcal{H}}) + q(w_{2, M}) \equiv \alpha \text{tr}(\pi^i) - \pi_0 q(w_{\mathcal{H}}) + q(w_{2, M}) \mod \pi^{2d-1}.
$$

First,

$$
\lim_{d \to \infty} q^{-2d(2k-1)} \# \{ \pi w_{\mathcal{H}} \in \mathcal{H}^k/\pi_0^d \mathcal{H}^k \mid (w_1, \pi w_{\mathcal{H}}) \equiv \pi^i \mod \pi^{2d-1} \} = q^{1 - 2k}. \quad (A.7)
$$

1737
Second, for each fixed πw_H we have
\[
\lim_{d \to \infty} q^{(-2m+1)d} \# \{w_{2,M} \in M/\pi_0^d M \mid w_{2,M} \text{ primitive}, \ q(w_{2,M}) \equiv -\alpha \tau(\pi^i) + \pi_0 q(w_H) \mod \pi_0^d \} \\
= \beta(M, \langle -\alpha \tau(\pi^i) + \pi_0 q(w_H) \rangle) \\
= \begin{cases}
\beta(M, \langle -2\alpha \rangle), & \text{if } i = 0, \\
\beta(M, 0), & \text{if } i > 0.
\end{cases}
\tag{A.8}
\]

By symmetry, $|J_\infty(M[k], L, d)| = |J_0(M[k], L, d)|$. Now a combination of (A.6), (A.7) and (A.8) implies that
\[
\beta_1(M, H, q^{-2k}) = \lim_{d \to \infty} q^{(-4(2k+m)+4)d} \left(\sum_{\alpha \in O_F/(\pi_0)} |J_\alpha(M[k], L, d)| + |J_\infty(M[k], L, d)| \right) \\
= \begin{cases}
q(1 - X) \left(2\beta_0(M, 0, q^{-2k}) + \sum_{\alpha \in O_F/(\pi_0)} \beta_0(M, -2\alpha, q^{-2k}) \right), & \text{if } i = 0, \\
q(q + 1)(1 - X)\beta_0(M, 0, q^{-2k}), & \text{if } i \geq 1,
\end{cases}
\]
as claimed.

Next, we assume L has a basis $\{l_1, l_2\}$ whose Gram matrix is Diag$(u_1(-\pi_0)^a, u_2(-\pi_0)^b)$ with $0 \leq a \leq b$. Let $w_i = \phi(l_i)$ as before. Then the number of possible choices for w_1 is given by
\[
q^{2(2k+m-1)d} \beta_1(M, (u_1(-\pi_0)^a), q^{-2k})
\]
for sufficiently large d. We may assume $w_1 = w_{1,H}$ without loss of generality. Let $w_2 = w_{2,M} + \alpha w_1 + \pi w_H$ as before. Then ϕ lies in $J_\alpha(M[k], L, d)$ if and only if
\[
0 \equiv (w_1, w_2) \equiv (w_1, \alpha w_1) + (w_1, \pi w_H) \mod \pi^{2d-1}
\]
and
\[
u_2(-\pi_0)^b \equiv q(w_2) \equiv (w_{2,M} + \alpha w_1 + \pi w_H, w_2) \equiv q(w_{2,M}) - \alpha^2 q(w_1) - \pi_0 q(w_H) \mod \pi^{2d-1}.
\]
Now
\[
\lim_{d \to \infty} q^{(-4k+2)d} \# \{\pi w_H \in H^k/\pi_0^d H^k \mid (w_1, \pi w_H) \equiv -(w_1, \alpha w_1) \mod \pi^{2d-1} \} = q^{1-2k},
\]
and for a fixed πw_H we have
\[
\lim_{d \to \infty} q^{(-2m+1)d} \# \{w_{2,M} \in L_S/\pi_0^d L_S \mid w_{2,M} \text{ primitive}, \ q(w_{2,M}) \equiv u_2(-\pi_0)^b + \alpha^2 q(w_1) + \pi_0 q(w_H) \mod \pi^{2d-1} \} \\
= \beta(M, \langle u_2(-\pi_0)^b + \alpha^2 q(w_1) + \pi_0 q(w_H) \rangle).
\]
Now this proposition follows from a similar argument as before, and we leave the details to the reader. \[\square\]

References

ACZ16 T. Ahsendorf, C. Cheng and T. Zink, O-displays and π-divisible formal O-modules, J. Algebra 457 (2016), 129–193.

Bro89 K. S. Brown, Buildings (Springer, 1989).
Kudla–Rapoport conjecture for Krämer models

BHK+20 J. Bruinier, B. Howard, S. S. Kudla, M. Rapoport and T. Yang, Modularity of generating series of divisors on unitary Shimura varieties I, Astérisque 421 (2020), 7–125.

Cho22 S. Cho, Special cycles on unitary shimura varieties with minuscule parahoric level structure, Math. Ann. 384 (2022), 1747–1813.

CY20 S. Cho and T. Yamauchi, A reformulation of the Siegel series and intersection numbers, Math. Ann. 377 (2020), 1757–1826.

GY00 W. T. Gan and J.-K. Yu, Group schemes and local densities, Duke Math. J. 105 (2000), 497–524.

GS19 L. E. Garcia and S. Sankaran, Green forms and the arithmetic Siegel–Weil formula, Invent. Math. 215 (2019), 863–975.

Gro86 B. Gross, On canonical and quasi-canonical liftings, Invent. Math. 84 (1986), 321–326.

Har13 R. Hartshorne, Algebraic geometry, vol. 52 (Springer Science & Business Media, 2013).

HSY22 Q. He, C. Li, Y. Shi and T. Yang, A proof of the Kudla–Rapoport conjecture for Krämer models, Preprint (2022), arXiv:2208.07988.

HSY23 Q. He, Y. Shi and T. Yang, The Kudla–Rapoport conjecture at a ramified prime for $U(1,1)$, Trans. Amer. Math. Soc. 376 (2023), 2257–2291.

How15 B. Howard, Complex multiplication cycles and Kudla–Rapoport divisors II, Amer. J. Math. 137 (2015), 639–698.

How19 B. Howard, Linear invariance of intersections on unitary Rapoport–Zink spaces, Forum Math. 31 (2019), 1265–1281.

Jac62 R. Jacobowitz, Hermitian forms over local fields, Amer. J. Math. 84 (1962), 441–465.

Kat99 H. Katsurada, An explicit formula for Siegel series, Amer. J. Math. 121 (1999), 415–452.

Kit83 Y. Kitaoka, A note on local densities of quadratic forms, Nagoya Math. J. 92 (1983), 145–152.

Krä03 N. Krämer, Local models for ramified unitary groups, in Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, vol. 73 (Springer, 2003), 67–80.

Kud97 S. Kudla, Central derivatives of Eisenstein series and height pairings, Ann. Math. 146 (1997), 545–646.

KR11 S. Kudla and M. Rapoport, Special cycles on unitary Shimura varieties I. Unramified local theory, Invent. Math. 184 (2011), 629–682.

KR14a S. Kudla and M. Rapoport, An alternative description of the Drinfeld p-adic half-plane, Ann. Inst. Fourier 64 (2014), 1203–1228.

KR14b S. Kudla and M. Rapoport, Special cycles on unitary Shimura varieties II: global theory, J. Reine Angew. Math. 2014 (2014), 91–157.

LL22 C. Li and Y. Liu, Chow groups and L-derivatives of automorphic motives for unitary groups, II, Forum Math. Pi 10 (2022), e5.

LZ22a C. Li and W. Zhang, Kudla–Rapoport cycles and derivatives of local densities, J. Amer. Math. Soc. 35 (2022), 705–797.

LZ22b C. Li and W. Zhang, On the arithmetic Siegel–Weil formula for GSpin Shimura varieties, Invent. Math. 228 (2022), 1353–1460.

Liu11 Y. Liu, Arithmetic theta lifting and L-derivatives for unitary groups, I, Algebra Number Theory 5 (2011), 849–921.

Pap00 G. Pappas, On the arithmetic moduli schemes of pel Shimura varieties, J. Algebraic Geom. 9 (2000), 577.

RSZ18 M. Rapoport, B. Smithling and W. Zhang, Regular formal moduli spaces and arithmetic transfer conjectures, Math. Ann. 370 (2018), 1079–1175.

RTW14 M. Rapoport, U. Terstiege and S. Wilson, The supersingular locus of the Shimura variety for $GU(1,n–1)$ over a ramified prime, Math. Z. 276 (2014), 1165–1188.
Kudla–Rapoport conjecture for Krämer models

RZ96 M. Rapoport and T. Zink, *Period spaces for p-divisible groups*, vol. 141 (Princeton University Press, 1996).

Shi18 Y. Shi, *Special cycles on the basic locus of unitary Shimura varieties at ramified primes*, Algebra Number Theory, to appear. Preprint (2018), arXiv:1811.11227.

Shi22 Y. Shi, *Special cycles on unitary Shimura curves at ramified primes*, Manuscripta Math. (2022), doi:10.1007/s00229-022-01412-z.

SABK94 C. Soulé, D. Abramovich, J. F. Burnol and J. K. Kramer, *Lectures on Arakelov geometry*, Cambridge Studies in Advanced Mathematics, vol. 33 (Cambridge University Press, 1994).

Tam63 T. Tamagawa, *On the \(\zeta\)-functions of a division algebra*, Ann. Math. 77 (1963), 387–405.

Ter13 U. Terstiege, *Intersections of special cycles on the Shimura variety for GU(1, 2)*, J. Reine Angew. Math. 684 (2013), 113–164.

Zha21 W. Zhang, *Weil representation and arithmetic fundamental lemma*, Ann. Math. 193 (2021), 863–978.

Qiao He qhe36@wisc.edu
Department of Mathematics, University of Wisconsin Madison, Van Vleck Hall, Madison, WI 53706, USA

Yousheng Shi shi58@wisc.edu
Department of Mathematics, University of Wisconsin Madison, Van Vleck Hall, Madison, WI 53706, USA

Tonghai Yang thyang@math.wisc.edu
Department of Mathematics, University of Wisconsin Madison, Van Vleck Hall, Madison, WI 53706, USA

Compositio Mathematica is owned by the Foundation Compositio Mathematica and published by the London Mathematical Society in partnership with Cambridge University Press. All surplus income from the publication of *Compositio Mathematica* is returned to mathematics and higher education through the charitable activities of the Foundation, the London Mathematical Society and Cambridge University Press.