Explicit formulae for Chern–Simons invariants of the hyperbolic orbifolds of the knot with Conway’s notation \(C(2n, 3) \)

Ji-Young Ham\(^1\) · Joongul Lee\(^2\)

Received: 5 January 2016 / Revised: 12 September 2016 / Accepted: 13 September 2016
Published online: 15 November 2016
© Springer Science+Business Media Dordrecht 2016

Abstract We calculate the Chern–Simons invariants of the hyperbolic orbifolds of the knot with Conway’s notation \(C(2n, 3) \) using the Schlafli formula for the generalized Chern–Simons function on the family of \(C(2n, 3) \) cone-manifold structures. We present the concrete and explicit formula of them. We apply the general instructions of Hilden, Lozano, and Montesinos-Amilibia and extend the Ham and Lee’s methods. As an application, we calculate the Chern–Simons invariants of cyclic coverings of the hyperbolic \(C(2n, 3) \) orbifolds.

Keywords Chern–Simons invariant · \(C(2n, 3) \) · Orbifold · Riley–Mednykh polynomial · Orbifold covering

Mathematics Subject Classification 57N10 · 57R19 · 57M99 · 57M25 · 57M27 · 57M50

1 Introduction

Chern–Simons invariant [1,21] was defined to be a geometric invariant and became a topological invariant after the Mostow Rigidity Theorem [23]. Various methods of finding Chern–Simons invariant using ideal triangulations have been introduced [2–
4, 24, 25, 32] and implemented [6, 9]. But, for orbifolds, to our knowledge, there does not exist a single convenient program which computes Chern–Simons invariant.

Instead of working on complicated combinatorics of 3-dimensional ideal tetrahedra to find the Chern–Simons invariants of the hyperbolic orbifolds of the knot with Conway’s notation $C(2n, 3)$, we deal with simple one-dimensional singular loci. Similar methods for volumes can be found in [11, 13]. We use the Schläfli formula for the generalized Chern–Simons function on the family of $C(2n, 3)$ cone-manifold structures [15]. In [16] a method of calculating the Chern–Simons invariants of two-bridge knot orbifolds were introduced but without explicit formulae. In [10], the Chern–Simons invariants of the twist knot orbifolds are computed. Similar approaches for $SU(2)$-connections can be found in [19] and for $SL(2, C)$-connections in [18]. For explanations of cone-manifolds, you can refer to [5, 13, 14, 20, 26, 27, 30].

The main purpose of the paper was to find the explicit and efficient formulae for Chern–Simons invariants of the hyperbolic orbifolds of the knot with Conway’s notation $C(2n, 3)$. Using the instruction in [15, Theorem 3.9] one can compute Chern–Simons invariants of the hyperbolic orbifolds of any knot or using the instruction in [16, Theorem 1.4], one can compute Chern–Simons invariants of the hyperbolic orbifolds of any two bridge knot one by one, theoretically. But the actual computations require some caution. For $C(2n, 3)$, to get a nice expression for the longitude, we used different coordinates for the representation of the knot group from those used in [13]. After this paper, we could present Chern–Simons invariants of the hyperbolic orbifolds of the knot with Conway’s notation $C(2n, 4)$ [12]. We had to elevate the precision to higher degree than the normal in Mathematica to find the right variety as n gets larger. We expect we can at least handle a few more families.

For a two-bridge hyperbolic link, there exists an angle $\alpha_0 \in [\frac{2\pi}{3}, \pi)$ for each link K such that the cone-manifold $K(\alpha)$ is hyperbolic for $\alpha \in (0, \alpha_0)$, Euclidean for $\alpha = \alpha_0$, and spherical for $\alpha \in (\alpha_0, \pi)$ [14, 20, 26, 27]. We will use the Chern–Simons invariant of the lens space $L(6n + 1, 4n + 1)$ calculated in [16]. Let us denote $C(2n, 3)$ by T_{2n}. The following theorem gives the formulae for T_{2n}. Note that if $2n$ of T_{2n} is replaced by an odd integer, then T_{2n} becomes a link with two components. Also, note that the Chern–Simons invariant of hyperbolic cone-manifolds of the knot with Conway’s notation $C(-2n, -3)$ is the same as that of the knot with Conway’s notation $C(2n, 3)$ up to sign. For the Chern–Simons invariant formula, since the knot T_{2n} has to be hyperbolic, we exclude the case when $n = 0$.

Theorem 1.1 Let $X_{2n}(\alpha), 0 \leq \alpha < \alpha_0$ be the hyperbolic cone-manifold with underlying space S^3 and with singular set T_{2n} of cone-angle α. Let k be a positive integer such that k-fold cyclic covering of $X_{2n}(\frac{2\pi}{k})$ is hyperbolic. Then the Chern–Simons invariant of $X_{2n}(\frac{2\pi}{k})$ (mod $\frac{1}{k}$ if k is even or mod $\frac{1}{2k}$ if k is odd) is given by the following formula:

$$
\text{cs} \left(X_{2n} \left(\frac{2\pi}{k} \right) \right) \equiv \frac{1}{2} \text{cs} \left(L(6n + 1, 4n + 1) \right) + \frac{1}{4\pi^2} \int_{\frac{2\pi}{k}}^{\alpha_0} \text{Im} \left(2 \log \left(-M^{-4n-2}M^{-2} + x \right) \right) \, d\alpha
$$

Springer
Explicit formulae for Chern–Simons invariants...

$$+ \frac{1}{4\pi^2} \int_{\alpha_0}^{\pi} I m \left(\log \left(-M^{-4n-2} \frac{M^{-2} + x_1}{M^2 + x_1} \right) \right) d\alpha,$$

where for $M = e^{i\frac{\alpha}{2}}$, x ($Im(x) \leq 0$), x_1, and x_2 are zeroes of Riley–Mednykh polynomial $P_{2n} = P_{2n}(x, M)$ which is given recursively by

$$P_{2n} = \begin{cases}
Q P_{2(n-1)} - M^8 P_{2(n-2)} & \text{if } n > 1, \\
Q P_{2(n+1)} - M^8 P_{2(n+2)} & \text{if } n < -1,
\end{cases}$$

with initial conditions

$$P_{-2} = M^2 x^2 + \left(M^4 - M^2 + 1 \right) x + M^2,$$

$$P_0 = M^{-2} \text{ for } n < 0 \text{ and } P_0 = 1 \text{ for } n > 0,$$

$$P_2 = -M^4 x^3 + \left(-2M^6 + M^4 - 2M^2 \right) x^2$$

$$+ \left(-M^8 + M^6 - 2M^4 + M^2 - 1 \right) x + M^4, \text{ and } M = e^{i\alpha} \text{ and }$$

$$Q = -M^4 x^3 + \left(-2M^6 + 2M^4 - 2M^2 \right) x^2$$

$$+ \left(-M^8 + 2M^6 - 3M^4 + 2M^2 - 1 \right) x + 2M^4,$$

where x_1 and x_2 approach common x as α decreases to α_0 and they come from the components of x and \bar{x}.

2 Two bridge knots with Conway’s notation $C(2n, 3)$

A knot K is a two bridge knot with Conway’s notation $C(2n, 3)$ if K has a regular two-dimensional projection of the form in Fig. 1. For example, Fig. 2 is knot $C(4, 3)$. K has 3 left-handed horizontal crossings and $2n$ right-handed vertical crossings. Recall that we denote it by T_{2n}. One can easily check that the slope of T_{2n} is $3/(6n + 1)$ which is equivalent to the knot with slope $(4n + 1)/(6n + 1)$ [29]. For example, Fig. 2 shows the regular projections of knot 73 with slope 3/13 which is equivalent to the knot with slope 9/13.

We will use the following fundamental group of the knot with Conway’s notation $C(2n, 3)$ [11,17,28]. The following proposition can also be obtained by reading off the fundamental group from the Schubert normal form of T_{2n} with slope $\frac{4n+1}{6n+1}$ [28,29].

Proposition 2.1

$$\pi_1(X_{2n}) = \left\langle s, t \mid swt^{-1}w^{-1} = 1 \right\rangle,$$

where $w = (ts^{-1}tst^{-1}s)^n$.

Springer
Chern-Simons invariants of $C(2n, 3)$

Fig. 1 A two bridge knot with Conway’s notation $C(2n, 3)$ for $n > 0$ (left) and for $n < 0$ (right)

Fig. 2 The knot 7_3

3 The Riley–Mednykh polynomial

Given a set of generators, $\{s, t\}$, of the fundamental group for $\pi_1(X_{2n})$, we define a representation $\rho : \pi_1(X_{2n}) \to \text{SL}(2, \mathbb{C})$ by

$$
\rho(s) = \begin{bmatrix} M & 1 \\ 0 & M^{-1} \end{bmatrix}, \quad \rho(t) = \begin{bmatrix} M & 0 \\ 2 - M^2 - M^{-2} - x & M^{-1} \end{bmatrix}.
$$

Then ρ can be identified with the point $(M, x) \in \mathbb{C}^2$. Using [11], when M varies we have an algebraic set whose defining equation is the following Riley–Mednykh polynomial:
Theorem 3.1 \(\rho \) is a representation of \(\pi_1(X_{2n}) \) if and only if \(x \) is a root of the following Riley–Mednykh polynomial \(P_{2n} = P_{2n}(x, M) \) which is given recursively by

\[
P_{2n} = \begin{cases}
Q P_{2(n-1)} - M^8 P_{2(n-2)} & \text{if } n > 1, \\
Q P_{2(n+1)} - M^8 P_{2(n+2)} & \text{if } n < -1,
\end{cases}
\]

with initial conditions

\[
P_{-2} = M^2 x^2 + (M^4 - M^2 + 1) x + M^2, \\
P_0 = M^{-2} \quad \text{for } n < 0 \quad \text{and} \quad P_0 = 1 \quad \text{for } n > 0,
\]

\[
P_2 = -M^4 x^3 + \left(-2M^6 + M^4 - 2M^2\right) x^2 \\
+ \left(-M^8 + 2M^6 - 2M^4 + 2M^2 - 1\right) x + M^4,
\]

and

\[
Q = -M^4 x^3 + \left(-2M^6 + 2M^4 - 2M^2\right) x^2 \\
+ \left(-M^8 + 2M^6 - 3M^4 + 2M^2 - 1\right) x + 2M^4.
\]

3.1 Longitude

Let \(l = w w^* s^{-4n} \), where \(w^* \) is the word obtained by reversing \(w \). Let \(L = \rho(l)_{11} \). Then \(l \) is the longitude which is null-homologous in \(X_{2n} \). And we have

Theorem 3.2 \([11]\)

\[
L = -M^{-4n-2} \frac{M^{-2} + x}{M^2 + x}.
\]

4 Schläfli formula for the generalized Chern–Simons function

The general references for this section are \([10,15,16,22,31]\). We introduce the generalized Chern–Simons function on the family of \(C(2n, 3) \) cone-manifold structures. For the oriented knot \(T_{2n} \), we orient a chosen meridian \(s \) such that the orientation of \(s \) follows by orientation of \(T_{2n} \) coincides with orientation of \(S^3 \). Hence, we use the definition of Lens space in \([16]\) so that we can have the right orientation when the definition of Lens space is combined with the following frame field. On the Riemannian manifold \(S^3 - T_{2n} - s \) we choose a special frame field \(\Gamma \). A special frame field \(\Gamma = (e_1, e_2, e_3) \) is an orthonormal frame field such that for each point \(x \) near \(T_{2n} \), \(e_1(x) \) has the knot direction, \(e_2(x) \) has the tangent direction of a meridian curve, and \(e_3(x) \) has the knot to point direction. A special frame field always exists by Proposition 3.1 of \([15]\). From \(\Gamma \) we obtain an orthonormal frame field \(\Gamma_\alpha \) on \(X_{2n}(\alpha) - s \) by the Schmidt orthonormalization process with respect to the geometric structure.
of the cone manifold $X_{2n}(\alpha)$. Moreover it can be made special by deforming it in a neighborhood of the singular set and s if necessary. Γ' is an extension of Γ to $S^3 - T_{2n}$. For each cone-manifold $X_{2n}(\alpha)$, we assign the real number:

$$I(X_{2n}(\alpha)) = \frac{1}{2} \int_{\Gamma'} Q - \frac{1}{4\pi} \tau(s, \Gamma') - \frac{1}{4\pi} \left(\frac{\beta \alpha}{2\pi} \right),$$

where $-2\pi \leq \beta \leq 2\pi$, Q is the Chern–Simons form:

$$Q = \frac{1}{4\pi^2} (\theta_{12} \wedge \theta_{13} \wedge \theta_{23} + \theta_{12} \wedge \Omega_{12} + \theta_{13} \wedge \Omega_{13} + \theta_{23} \wedge \Omega_{23}),$$

and

$$\tau(s, \Gamma') = -\int_{\Gamma}(s) \theta_{23},$$

where (θ_{ij}) is the connection 1-form, (Ω_{ij}) is the curvature 2-form of the Riemannian connection on $X_{2n}(\alpha)$ and the integral is over the orthonormalizations of the same frame field. When $\alpha = \frac{2\pi}{k}$ for some positive integer, $I(X_{2n}(\frac{2\pi}{k})) \mod \frac{1}{k}$ if k is even or mod $\frac{1}{2k}$ if k is odd) is independent of the frame field Γ and of the representative in the equivalence class β and hence an invariant of the orbifold $X_{2n}(\frac{2\pi}{k})$. $I(X_{2n}(\frac{2\pi}{k})) \mod \frac{1}{k}$ if k is even or mod $\frac{1}{2k}$ if k is odd) is called the Chern–Simons invariant of the orbifold and is denoted by $\text{cs}(X_{2n}(\frac{2\pi}{k}))$.

On the generalized Chern–Simons function on the family of $C(2n, 3)$ cone-manifold structures we have the following Schläfli formula:

Theorem 4.1 (Theorem 1.2 of [16]) For a family of geometric cone-manifold structures, $X_{2n}(\alpha)$, and differentiable functions $\alpha(t)$ and $\beta(t)$ of t we have

$$dI(X_{2n}(\alpha)) = -\frac{1}{4\pi^2} \beta d\alpha.$$

5 Proof of the Theorem 1.1

For $n \geq 1$ and $M = e^{i \frac{x}{2}}$, $P_{2n}(x, M)$ have $3n$ component zeros, and for $n \leq -1$, $- (3n + 1)$ component zeros. The component which gives the maximal volume is the geometric component [7, 8, 11] and in [11] it is identified. For each T_{2n}, there exists an angle $\alpha_0 \in [\frac{2\pi}{3}, \pi]$ such that T_{2n} is hyperbolic for $\alpha \in (0, \alpha_0)$, Euclidean for $\alpha = \alpha_0$, and spherical for $\alpha \in (\alpha_0, \pi]$ [14, 20, 26, 27]. Denote by $D(X_{2n}(\alpha))$ be the set of zeros of the discriminant of $P_{2n}(x, e^{i \frac{x}{2}})$ over x. Then α_0 will be one of $D(X_{2n}(\alpha))$.

On the geometric component we can calculate the Chern–Simons invariant of an orbifold $X_{2n}(\frac{2\pi}{k})$ (mod $\frac{1}{k}$ if k is even or mod $\frac{1}{2k}$ if k is odd), where k is a positive integer such that k-fold cyclic covering of $X_{2n}(\frac{2\pi}{k})$ is hyperbolic:
Explicit formulae for Chern–Simons invariants...

Table 1 Chern–Simons invariant of \(X_{2n} \) for \(n \) between 1 and 9 and for \(n \) between −9 and −1

\(2n \)	\(\alpha_0 \)	\(\text{cs} (X_{2n}) \)	\(2n \)	\(\alpha_0 \)	\(\text{cs} (X_{2n}) \)
2	2.40717	0.346796	2	2.09440	0
4	2.75511	0.187220	4	2.68404	0.202492
6	2.87826	0.116482	6	2.84713	0.287081
8	2.94175	0.0787607	8	2.92433	0.300333
10	2.98054	0.0554891	10	2.96942	0.356274
12	3.00671	0.030565	12	2.99899	0.373511
14	3.02556	0.0283589	14	3.01989	0.385781
16	3.03978	0.0200137	16	3.03545	0.394957
18	3.05090	0.0117308	18	3.04747	0.402076

Table 2 Chern–Simons invariant of the hyperbolic orbifold, \(\text{cs}(X_{2n}(\frac{2\pi}{k})) \) for \(n \) between 1 and 9 and for \(k \) between 3 and 10, and of its cyclic covering, \(\text{cs}(M_k(X_{2n})) \)

\(k \)	\(\text{cs} (X_2(\frac{2\pi}{k})) \)	\(\text{cs} (M_k(X_2)) \)	\(\text{cs} (X_4(\frac{2\pi}{k})) \)	\(\text{cs} (M_k(X_4)) \)
3	0.0200137	0.0600411	0.163905	0.491714
4	0.186810	0.747239	0.207480	0.829920
5	0.00166425	0.00832123	0.0602662	0.301331
6	0.0504594	0.302756	0.140577	0.843464
7	0.0163411	0.114387	0.0610011	0.427008
8	0.116987	0.935894	0.00457501	0.036600
9	0.0292866	0.263580	0.0181733	0.163560
10	0.0595395	0.595395	0.0302655	0.302655

\(k \)	\(\text{cs} (X_6(\frac{2\pi}{k})) \)	\(\text{cs} (M_k(X_6)) \)	\(\text{cs} (X_8(\frac{2\pi}{k})) \)	\(\text{cs} (M_k(X_8)) \)
3	0.0117308	0.0351925	0.0392668	0.117800
4	0.0254160	0.101664	0.115898	0.463593
5	0.0770172	0.385086	0.0209964	0.104982
6	0.130155	0.780930	0.149082	0.894495
7	0.0343996	0.240797	0.0382671	0.267870
8	0.0925471	0.740377	0.0866540	0.693232
9	0.0295838	0.266254	0.0170042	0.153038
10	0.0810442	0.810442	0.0636841	0.636841

\[
\text{cs} \left(\frac{2\pi}{k} \right) \equiv I \left(X_{2n} \left(\frac{2\pi}{k} \right) \right) \left(\text{mod} \frac{1}{k} \right)
\equiv I \left(X_{2n}(\pi) \right) + \frac{1}{4\pi^2} \int_{\frac{\pi}{k}}^{\frac{\pi}{k}} \beta \, d\alpha \left(\text{mod} \frac{1}{k} \right)
\]
Table 2 continued

k	$cs\left(X_{10}\left(\frac{2\pi}{X}\right)\right)$	$cs\left(M_k(X_{10})\right)$	$cs\left(X_{12}\left(\frac{2\pi}{X}\right)\right)$	$cs\left(M_k(X_{12})\right)$
3	0.0749335	0.224800	0.116132	0.348396
4	0.218720	0.874878	0.078447	0.214260
5	0.0783315	0.391658	0.042852	0.214260
6	0.0150995	0.0905970	0.055083	0.330499
7	0.0560983	0.392688	0.0098623	0.0690364
8	0.0948488	0.758790	0.110442	0.883540
9	0.0185935	0.167341	0.110442	0.883540
10	0.0605490	0.605490	0.0648550	0.648550

k	$cs\left(X_{14}\left(\frac{2\pi}{X}\right)\right)$	$cs\left(M_k(X_{14})\right)$	$cs\left(X_{16}\left(\frac{2\pi}{X}\right)\right)$	$cs\left(M_k(X_{16})\right)$
3	0.161005	0.483014	0.0416866	0.125060
4	0.192332	0.769328	0.058936	0.235574
5	0.0116320	0.0581602	0.0831339	0.415670
6	0.0993703	0.596222	0.146399	0.878396
7	0.0393825	0.275677	0.000227239	0.00159067
8	0.00537856	0.0430285	0.0280750	0.224600
9	0.0409719	0.368747	0.00154689	0.0139220
10	0.0735205	0.735205	0.0849545	0.849545

k	$cs\left(X_{18}\left(\frac{2\pi}{X}\right)\right)$	$cs\left(M_k(X_{18})\right)$
3	0.0907588	0.272277
4	0.177274	0.709096
5	0.0564774	0.282387
6	0.0286139	0.171683
7	0.0343586	0.240510
8	0.0526332	0.421066
9	0.0195418	0.175876
10	0.0982547	0.982547

\[
\equiv \frac{1}{2} \left(L(6n + 1, 4n + 1) + \frac{1}{4\pi^2} \int_{\alpha_0}^{\alpha_0} \text{Im} \left(2 * \log \left(-M^{-4n-2} \frac{M^{-2} + x}{M^2 + x} \right) \right) d\alpha \right) \\
+ \frac{1}{4\pi^2} \int_{\alpha_0}^{\pi} \text{Im} \left(\log \left(-M^{-4n-2} \frac{M^{-2} + x_1}{M^2 + x_1} \right) + \log \left(-M^{-4n-2} \frac{M^{-2} + x_2}{M^2 + x_2} \right) \right) d\alpha \\
\left(\mod \frac{1}{k} \text{ if } k \text{ is even or } \mod \frac{1}{2k} \text{ if } k \text{ is odd} \right)
\]

where the second equivalence comes from Theorem 4.1 and the third equivalence comes from the fact that \(I (X_{2n}(\pi)) \equiv \frac{1}{2} cs\left(L(6n + 1, 4n + 1)\right) \left(\mod \frac{1}{2} \right), \)
Explicit formulae for Chern–Simons invariants...

Table 3 Chern–Simons invariant of the hyperbolic orbifold, \(cs(X_{2n}(\frac{2\pi n}{k})) \) for \(n \) between \(-9\) and \(-2\) and for \(k \) between \(3\) and \(10\), and of its cyclic covering, \(cs(M_k(X_{2n})) \)

\(k \)	\(cs(X_{-4}(\frac{2\pi}{k})) \)	\(cs(M_k(X_{-4})) \)	\(cs(X_{-6}(\frac{2\pi}{k})) \)	\(cs(M_k(X_{-6})) \)
3	0.0578105	0.173431	0.0502767	0.150830
4	0.0141698	0.0566791	0.206063	0.824252
5	0.0771122	0.385561	0.0724185	0.362092
6	0.113440	0.680638	0.136957	0.821740
7	0.0647357	0.453150	0.0334583	0.234208
8	0.0262590	0.210072	0.0770408	0.616327
9	0.0506565	0.455908	0.0530941	0.477846
10	0.0693643	0.693643	0.0324771	0.324771

\(k \)	\(cs(X_{-8}(\frac{2\pi}{k})) \)	\(cs(M_k(X_{-8})) \)	\(cs(X_{-10}(\frac{2\pi}{k})) \)	\(cs(M_k(X_{-10})) \)
3	0.0260938	0.0782813	0.159369	0.478108
4	0.121024	0.484097	0.0211627	0.804659
5	0.0343014	0.171507	0.0799373	0.396986
6	0.123924	0.743545	0.0941609	0.564965
7	0.0354455	0.248118	0.0204861	0.143403
8	0.0887397	0.709918	0.0833782	0.667026
9	0.0158804	0.142923	0.0170947	0.153852
10	0.0555635	0.555635	0.0614793	0.614793

\(k \)	\(cs(X_{-12}(\frac{2\pi}{k})) \)	\(cs(M_k(X_{-12})) \)	\(cs(X_{-14}(\frac{2\pi}{k})) \)	\(cs(M_k(X_{-14})) \)
3	0.119699	0.359097	0.0758416	0.227525
4	0.163139	0.652556	0.0503095	0.201238
5	0.0170874	0.0854371	0.0493320	0.246660
6	0.0558073	0.334844	0.0125167	0.0751005
7	0.0683200	0.478240	0.0397753	0.278427
8	0.0693583	0.554866	0.0503822	0.403058
9	0.00963738	0.0867365	0.0527761	0.474985
10	0.0587154	0.587154	0.0509898	0.509989

\(k \)	\(cs(X_{-12}(\frac{2\pi}{k})) \)	\(cs(M_k(X_{-12})) \)	\(cs(X_{-14}(\frac{2\pi}{k})) \)	\(cs(M_k(X_{-14})) \)
3	0.0291847	0.0875541	0.147267	0.441800
4	0.184443	0.737773	0.0665438	0.266175
5	0.0785018	0.392509	0.00562151	0.0281075
6	0.132806	0.796838	0.0843746	0.506248
7	0.00813976	0.0569783	0.0458762	0.321134
8	0.0283132	0.226505	0.00418700	0.0334960
9	0.0372653	0.335388	0.0196972	0.177275
10	0.0401699	0.401699	0.0272925	0.272925
Theorem 3.2, and geometric interpretations of hyperbolic and spherical holonomy representations. The following theorem gives the Chern–Simons invariant of the Lens space $L(6n + 1, 4n + 1)$:

Theorem 5.1 (Theorem 1.3 of [16])

$$
\text{cs}(L(6n + 1, 4n + 1)) \equiv \frac{4n + 4}{12n + 2} \pmod{1}.
$$

6 Chern–Simons invariants of the hyperbolic orbifolds of the knot with Conway’s notation $C(2n, 3)$ and of its cyclic coverings

The Table 1 gives the approximate Chern–Simons invariant of T_{2n} for each n between -9 and 9 except the unknot and the amphicheiral knot. We used Simpson’s rule for the approximation with 10^4 (5×10^3 in Simpson’s rule) intervals from 0 to α_0 and 10^4 (5×10^3 in Simpson’s rule) intervals from α_0 to π. The Table 2 (resp. the Table 3) gives the approximate Chern–Simons invariant of the hyperbolic orbifold, $\text{cs}(X_{2n}(\frac{2\pi}{k}))$ for n between 1 and 9 (resp. for n between -9 and -2) and for k between 3 and 10, and of its cyclic covering, $\text{cs}(M_k(X_{2n}))$. We again used Simpson’s rule for the approximation with 10^4 (5×10^3 in Simpson’s rule) intervals from $\frac{2\pi}{k}$ to α_0 and 10^4 (5×10^3 in Simpson’s rule) intervals from α_0 to π.

We used Mathematica for the calculations. We record here that our data in Table 1 and those obtained from SnapPy match up up to six decimal points.

Acknowledgements The authors would like to thank Alexander Mednykh, Hyuk Kim, Nathan Dunfield and anonymous referees.

References

1. Chern, S., Simons, J.: Some cohomology classes in principal fiber bundles and their application to Riemannian geometry. Proc. Natl. Acad. Sci. USA 68, 791–794 (1971)
2. Cho, J., Kim, H., Kim, S.: Optimistic limits of kashaev invariants and complex volumes of hyperbolic links. J. Knot Theory Ramif. 23(9), 1450049 (2014)
3. Cho, J., Murakami, J.: The complex volumes of twist knots via colored Jones polynomials. J. Knot Theory Ramif. 19(11), 1401–1421 (2010)
4. Cho, J., Murakami, J., Yokota, Y.: The complex volumes of twist knots. Proc. Am. Math. Soc. 137(10), 3533–3541 (2009)
5. Cooper, D., Hodgson, C.D., Kerckhoff, S.P.: Three-dimensional orbifolds and cone-manifolds, vol. 5 of MSJ Memoirs. Mathematical Society of Japan, Tokyo (2000). With a postface by Sadayoshi Kojima
6. Culler, M., Dunfield, N.M., Weeks, J.R., et al.: SnapPy. http://www.math.uic.edu/~3m/SnapPy/
7. Dunfield, N.M.: Cyclic surgery, degrees of maps of character curves, and volume rigidity for hyperbolic manifolds. Invent. Math. 136(3), 623–657 (1999)
8. Francaviglia, S., Klaff, B.: Maximal volume representations are Fuchsian. Geom. Dedicata 117, 111–124 (2006)
9. Oliver Goodman. Snap. http://sourceforge.net/projects/snap-pari
10. Ham, J.-Y., Lee, J.: Explicit formulae for Chern–Simons invariants of the twist knot orbifolds and edge polynomials of twist knots. Matematicheskii Sbornik 207(9), 144–160 (2016)
11. Ham, J.-Y., Lee, J.: The volume of hyperbolic cone-manifolds of the knot with Conway’s notation $C(2n, 3)$. J. Knot Theory Ramif. 25(6), 1650030 (2016)
Explicit formulae for Chern–Simons invariants...

12. Ham, J.-Y., Lee, J., Mednykh, A., Rasskazov, A.: On the volume and the Chern–Simons invariant for the 2-bridge knot orbifolds. arXiv:1607.08044 (2016)
13. Ham, J.-Y., Mednykh, A., Petrov, V.: Trigonometric identities and volumes of the hyperbolic twist knot cone-manifolds. J. Knot Theory Ramif 23(12), 1450064 (2014)
14. Hilden, H., Lozano, M.T., Montesinos-Amilibia, J.M.: On a remarkable polyhedron geometrizing the figure eight knot cone manifolds. J. Math. Sci. Univ. Tokyo 2(3), 501–561 (1995)
15. Hilden, H.M., Lozano, M.T., Montesinos-Amilibia, J.M.: On volumes and Chern–Simons invariants of geometric 3-manifolds. J. Math. Sci. Univ. Tokyo 3(3), 723–744 (1996)
16. Hilden, H.M., Lozano, M.T., Montesinos-Amilibia, J.M.: Volumes and Chern–Simons invariants of cyclic coverings over rational knots. In: Topology and Teichmüller spaces (Katinkulta, 1995), pp. 31–55. World Sci. Publ., River Edge, NJ (1996)
17. Hoste, J., Shanahan, P.D.: A formula for the A-polynomial of twist knots. J. Knot Theory Ramif. 13(2), 193–209 (2004)
18. Kirk, P., Klassen, E.: Chern–Simons invariants of 3-manifolds decomposed along tori and the circle bundle over the representation space of T^2. Commun. Math. Phys. 153(3), 521–557 (1993)
19. Kirk, P.A., Klassen, E.P.: Chern–Simons invariants of 3-manifolds and representation spaces of knot groups. Math. Ann. 287(2), 343–367 (1990)
20. Kojima, S.: Deformations of hyperbolic 3-cone-manifolds. J. Differ. Geom. 49(3), 469–516 (1998)
21. Meyerhoff, R.: Hyperbolic 3-manifolds with equal volumes but different Chern–Simons invariants. In: Low-dimensional topology and Kleinian groups (Coventry/Durham, 1984), volume 112 of London Math. Soc. Lecture Note Ser., pp. 209–215. Cambridge Univ. Press, Cambridge (1986)
22. Meyerhoff, R., Ruberman, D.: Mutation and the η-invariant. J. Differ. Geom. 31(1), 101–130 (1990)
23. Mostow, G.D.: Quasi-conformal mappings in n-space and the rigidity of hyperbolic space forms. Inst. Hautes Études Sci. Publ. Math. 34, 53–104 (1968)
24. Neumann, W.D.: Combinatorics of triangulations and the Chern–Simons invariant for hyperbolic 3-manifolds. In: Topology ’90 (Columbus, OH, 1990), volume 1 of Ohio State Univ. Math. Res. Inst. Publ., pp 243–271. de Gruyter, Berlin (1992)
25. Neumann, W.D.: Extended Bloch group and the Cheeger–Chern–Simons class. Geom. Topol. 8, 413–474 (2004)
26. Porti, J.: Spherical cone structures on 2-bridge knots and links. Kobe J. Math. 21(1–2), 61–70 (2004)
27. Porti, J., Weiss, H.: Deforming Euclidean cone 3-manifolds. Geom. Topol. 11, 1507–1538 (2007)
28. Riley, R.: Parabolic representations of knot groups. I. Proc. Lond. Math. Soc. 3(24), 217–242 (1972)
29. Schubert, H.: Knoten mit zwei Brücken. Math. Z. 65, 133–170 (1956)
30. Thurston, W.: The geometry and topology of 3-manifolds. Lecture Notes, Princeton University (1977/78). http://library.msri.org/books/gt3m
31. Yoshida, T.: The η-invariant of hyperbolic 3-manifolds. Invent. Math. 81(3), 473–514 (1985)
32. Zickert, C.K.: The volume and Chern–Simons invariant of a representation. Duke Math. J. 150(3), 489–532 (2009)