Abstracts

ET-04
ENHANCING DRUG DELIVERY WITH MRI-GUIDED FOCUSED ULTRASOUND FOR DIFFUSE INTRINSIC PONTINE GLIOMA MODEL
Joji Ishida1,2, Saia Alli1, Andrew Bondoc2, Naohide Fujita2, Hynnynen Kullervo2,3, Rutka James1,2,3,1 Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan

Diffuse intrinsic pontine glioma (DIPG) is surgically unrectasable and one of the most devasting tumours in children. To date, there have been no effective chemotherapeutics against DIPG, despite a myriad of clinical trials. The intact blood-brain barrier (BBB) is partly responsible for the limited clinical response to chemotherapy. MRI-guided focused ultrasound (MRgFUS) is a promising non-invasive tissue ablation method for treating CNS tumours. Moreover, MRgFUS allows for temporary and repeatable BBB disruption. Our first objective was to determine the feasibility and safety of temporary BBB disruption in the brainstem using MRgFUS following intravenous administration of microbubbles in vivo. Our second objective was to select effective chemotherapeutics against DIPG cell lines, and to examine their therapeutic effects with MRgFUS in a murine model of DIPG which exhibits an intact BBB. Non-invasive opening of the BBB was determined in the brainstem of normal rodents using physiological monitoring and histological analysis. Docorubicin was selected from a drug screen consisting of conventional chemotherapeutics tested against DIPG cell lines. We established SU-DIPG17 orthotopic xenografts which demonstrated diffusely infiltrative tumour growth. By LC-MSMS analysis, MRgFUS led to a 4-fold increase in doxorubicin concentrations within the brainstem tumours as compared to controls. Moreover, the volumetric tumour growth rate was significantly suppressed in MRgFUS-treated animals, which also exhibited decreased Ki-67 expression. We demonstrated the feasibility and safety of MRgFUS in the rodent brainstem and have shown that MRgFUS increases doxorubicin uptake in the brainstem of a rodent model of DIPG. This preclinical data provides critical support for clinical trials investigating MRgFUS-mediated BBB opening, which may greatly improve chemotherapeutic efficacy against DIPG in children.

ET-05
ALECTINIB AND CERTINIB, THE SECOND-GENERATION ALK INHIBITORS, EFFECTIVELY INDUCE GLOBLASTOMA CELL DEATH
Daisuke Kawashiki1,2, Masamichi Takahashi1, Shun Yamamura1,4, Tatsuya Kobayashi1,2,3, Eita Uchida1,4, Yasuo Iwadate1, Koichi Ichimura1,2, Arata Tomiyama1,2,3,1 Division of Brain Tumor Translational Research, National Cancer Center Research Institute

Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase that only expresses in the developmental stage of the central and peripheral nervous system. A variety of ALK gene alterations, such as oncogenic fusion, activating point mutation, or wild type gene amplification, have been repeatedly discovered as the powerful oncogene in various tumors. These ALK mutations are expected as potential therapeutic targets. Some ALK inhibitors have already been approved and used for the clinical treatment of non-small cell lung cancers harboring oncogenic ALK fusion.

Previously, we reported classical ALK inhibitors triggered cell death in human glioblastoma (GBM) cells, which did not express ALK, via suppression of transcription factor STAT3 activation but not in normal tissue-derived cells. In this study, we investigated the anti-tumor effect of newly-developed ALK inhibitors in GBM cells. As a result, second-generation ALK inhibitors, alecfitinib and ceritinib, induced cell death in various human GBM cell lines with lower concentrations than other ALK inhibitors. Also, alecfitinib and ceritinib suppressed STAT family activity in these GBM cell lines. We consider alecfitinib and ceritinib might be a novel therapeutic agent against GBMs. Further investigation about the specific anti-tumor mechanism of these second-generation ALK inhibitors in GBM cells is currently on-going.

ET-06
SUPPRESSION OF GLOBLASTOMA THROUGH NOVEL DRUG BASED ON “GENE SWITCH TECHNOLOGY”
Etsuzo Yamamoto1,2, Yoshiki Akiyama1, Atsushi Mienaza1, Masamitsu Miyakami1,2, Yasuzumi Matsui1, Hiroshi Sugiyama1, Susumu Miyamoto1,2, Yusuke Kamikubo1,2, Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan

Diffuse intrinsic pontine glioma (DIPG) is surgically unresectable and one of the most devasting tumours in children. To date, there have been no effective chemotherapeutics against DIPG, despite a myriad of clinical trials. The intact blood-brain barrier (BBB) is partly responsible for the limited clinical response to chemotherapy. MRI-guided focused ultrasound (MRgFUS) is a promising non-invasive tissue ablation method for treating CNS tumours. Moreover, MRgFUS allows for temporary and repeatable BBB disruption. Our first objective was to determine the feasibility and safety of temporary BBB disruption in the brainstem using MRgFUS following intravenous administration of microbubbles in vivo. Our second objective was to select effective chemotherapeutics against DIPG cell lines, and to examine their therapeutic effects with MRgFUS in a murine model of DIPG which exhibits an intact BBB. Non-invasive opening of the BBB was determined in the brainstem of normal rodents using physiological monitoring and histological analysis. Docorubicin was selected from a drug screen consisting of conventional chemotherapeutics tested against DIPG cell lines. We established SU-DIPG17 orthotopic xenografts which demonstrated diffusely infiltrative tumour growth. By LC-MSMS analysis, MRgFUS led to a 4-fold increase in doxorubicin concentrations within the brainstem tumours as compared to controls. Moreover, the volumetric tumour growth rate was significantly suppressed in MRgFUS-treated animals, which also exhibited decreased Ki-67 expression. We demonstrated the feasibility and safety of MRgFUS in the rodent brainstem and have shown that MRgFUS increases doxorubicin uptake in the brainstem of a rodent model of DIPG. This preclinical data provides critical support for clinical trials investigating MRgFUS-mediated BBB opening, which may greatly improve chemotherapeutic efficacy against DIPG in children.