Brevundimonas spp: Emerging global opportunistic pathogens

Michael P. Ryan and J. Tony Pembroke

ABSTRACT
Non-fermenting Gram-negative bacteria are problematic in clinical locations, being one of the most prevalent causes of nosocomial infections. Many of these non-fermenting Gram-negative bacteria are opportunistic pathogens that affect patients that are suffering with underlying medical conditions and diseases. *Brevundimonas* spp., in particular *Brevundimonas diminuta* and *Brevundimonas vesicularis*, are a genus of non-fermenting Gram-negative bacteria considered of minor clinical importance. Forty-nine separate instances of infection relating to *Brevundimonas* spp. were found in the scientific literature along with two pseudo-infections. The majority of these instances were infection with *Brevundimonas vesicularis* (thirty-five cases – 71%). The major condition associated with *Brevundimonas* spp. infection was bacteraemia with seventeen individual cases/outbreaks (35%). This review identified forty-nine examples of *Brevundimonas* spp. infections have been discussed in the literature. These findings indicate that infection review programs should consider investigation of possible *Brevundimonas* spp. outbreaks if these bacteria are clinically isolated in more than one patient.

Introduction
Gram-negative, non-fermenting bacteria are an emerging concern in clinical locations, being a common cause of nosocomial infections. Opportunistic pathogens from this group include many different bacterial species, including: *Acinetobacter baumannii*, *Burkholderia cepacia*, *Ralstonia pickettii*, *Pseudomonas aeruginosa*, *Sphingomonas paucimobilis*, and *Stenotrophomonas maltophilia* [1–8]. The group can survive in a wide variety of environments including different water sources (aircraft water, bottled water, hospital water, purified water) [9–12], and are usually resistant to a wide array of antimicrobials [13,14]. Examples include resistance to penicillins, aminoglycosides and monobactams in *R. pickettii* [13] and penicillins, aminoglycosides, carbapenems and monobactams in *S. maltophilia* [14]. Bacteria such as these have the ability to infect patients/individuals with underlying medical conditions and diseases. Examination of the scientific literature showed multiple types of infections resulting from *Brevundimonas* spp. This indicates that the genus may be a more widespread pathogen than was hitherto thought, with infections caused by *Brevundimonas* spp. being invasive and severe. The goal of this study was to give an overview of the range of *Brevundimonas* spp. infections, any underlying conditions associated with *Brevundimonas* spp. infections and the treatment options used in the treatment of any *Brevundimonas* spp. infections in order to assist medical practitioners.

Genus Brevundimonas
The genus *Brevundimonas* was first proposed by Segers et al [15]; incorporating *Pseudomonas diminuta* and *Pseudomonas vesicularis* [16,17]. Several species of the genus *Caulobacter* were later transferred to *Brevundimonas* significantly emending the description of the genus [18]. Currently, there are 25 species with valid published names within the *Brevundimonas* genus (http://www.bacterio.net/brevundimonas.html). The type species is *Brevundimonas diminuta*; with the type strain being LMG 2089.

Brevundimonas species are aerobic Gram-negative, oxidase and catalase positive, non-fermenting rods 1 to 4 μm in length and 0.5 μm in width, belonging to the Alphaproteobacteria class and Caulobacteraceae.
family with a DNA G + C content of 65% to 68% [15]. Motility is provided by one short polar flagellum. *Brevundimonas* spp. have been isolated from multiple environments, including soils [9–21], deep subsea floor sediment [22] activated sludge,[23] black sand, [24], deep subsea floor sediment [25] numerous aquatic habitats [26], purified water [27] and also from the condensation water of a Russian space laboratory [28].

Brevundimonas spp.

Brevundimonas diminuta

Brevundimonas diminuta is the type species of the *Brevundimonas* genus. It has been isolated from clinical specimens, including blood and urine [15] as well as from the lung sputum of cystic fibrosis patients [29]. *B. diminuta* is not believed to be a significant pathogen and its virulence is generally low. *B. diminuta* is used as a test organism to validate reverse-osmosis (RO) filtration devices for drinking water purification and is also used to test the porosity of pharmaceutical-grade filters (0.2 μm) due to the small size of the bacterium when grown in minimal media [30,31]. The bacterium has however been shown to be capable of penetrating these filters [32]. The bacterium has been used as a potential bioremediator of marine oil pollution including diesels, n-alkanes and polycyclic aromatic hydrocarbons [33,34] and insecticides [35]. *B. diminuta* has also been used to mitigate the toxic effects of heavy metals on plant growth (rice) in contaminated soils [36]. *B. diminuta* also possesses the ability to survive sanitizers such as Hydrogen Peroxide + Peracetic Acid [37]. All available reported incidences of infection credited to *B. diminuta* are listed in Table 1–3.

Brevundimonas vesicularis

Brevundimonas vesicularis has been isolated from eye, urine, wound cultures, the central nervous system, cervical specimens [38], and also been found in the lung sputum of cystic fibrosis patients [39]. The organism has been shown to support the growth of *Legionella* in nutrient limited water conditions [40]. The mechanism behind this phenomenon has not been elucidated but it is hypothesised to be due to cryptic growth, with *B. vesicularis* having the ability to grow in nutrient limited conditions and *Legionella* growing on this [40]. Further research is required to gain a fuller understanding of this phenomenon. *B. vesicularis* has been used as a potential bioremediator of polyaromatic hydrocarbons [41]. All reported incidences of infection credited to *B. vesicularis* are listed in Table 1–3.

Identification of Brevundimonas spp

Members of the *Brevundimonas* spp. are Gram negative with cells appearing as straight slim rods upon Gram staining. They are non-spore forming. They are aerobic with optimal growth temperatures of between 30–37°C. They are oxidase positive and give variable results for catalase (usually positive). *B. diminuta* colonies have a chalk white appearance on MacConkey agar, whereas *B. vesicularis* colonies have an orange colour given by an intracellular pigment. Both grow slowly on ordinary nutrient media [42]. Both *B. vesicularis* and *B. diminuta* can be identified via commercial biochemical identification kits or systems such as the API 20 NE system, the VITEK 2 system (bioMerieux) or the Phoenix-100 automated system (Becton Dickinson). MALDI-TOF identification is also being used for identification of *Brevundimonas* spp. in clinical situations [43,44]. Species specific Real Time PCR primers and Fluorescence in situ hybridization (FISH) probes have been designed for *B. diminuta* [45]. These can be seen in Table 4.

Factors associated with Infection

Underlying causes

The majority of infections with *Brevundimonas* (Table 1–3) were found to have an underlying condition or disease that allowed patients to succumb to *Brevundimonas* infection. Seven patients, who were suffering with various types of cancer, contracted *Brevundimonas* -related bacteraemia, Urinary Tract Infection (UTI) and Empyema [46]; a 56-year-old female with *Lupus glomerulonephritis* acquired a *Brevundimonas* -related leg ulcer [47] and an infant suffering from Pompe disease was diagnosed with *Brevundimonas* -related bacteraemia [48]. Other examples of patients infected with *Brevundimonas* having underlying conditions are shown in Table 1–3. Such examples demonstrate the role of *Brevundimonas* as an opportunistic pathogen in immunocompromised individuals. Many of these instances of infection were hospital acquired although a large number were community acquired, which is interesting as opportunistic pathogens such as *Brevundimonas* spp or *R. pickettii* are usually contracted in hospital settings [7].

Co-Infection

Reports of cases of co-infection with *Brevundimonas* spp and other bacteria were rare with only two instances
Table 1. Incidences of *Brevundimonas* spp. infection from 1978–2000 — Main characteristics of the case reports.

Author (Ref)/Species	Year	Sex/Age	Country	Co-morbidity	Type of infection	Susceptible to	Resistance to	Antibiotic treatment	Outcome
Otto et al. [53], *B. vesicularis*	1978	Multiple cases (5 cases)	USA	N/A	Cervicitis	Ampicillin, Carbenicillin, Gentamicin, Kanamycin, Nitrofurantoin, Streptomycin, Tetracycline	Colistin, Nalidixic acid, Sulfisoxazole	N/A	N/A
Vanholder et al. [54], *B. vesicularis*	1990	M/62	Belgium	Hemodialysis	Bacteraemia/HA	N/A	N/A	Cefotaxime, Tobramycin	Complete recovery
Vanholder et al. [55], *B. vesicularis*	1992	F/62	Belgium	Hemodialysis	Bacteraemia/HA	N/A	N/A	Cefotaxime, Tobramycin	Complete recovery
Planes et al. [56], *B. vesicularis*	1992	W/54	USA	Systemic lupus erythematosus and chronic active autoimmune hepatitis	Bacteraemia/HA	N/A	N/A	Ceftazidime, Tobramycin	Surgical resection of the infected tissue
Pasadakis et al. [57], *B. diminuta*	1993	N/A	Greece	End-stage renal failure	Peritonitis	N/A	N/A	Initial 500 mg/L ceftazidime in a 1-L + 1.7 mg/kg of tobramycin. Maintenance doses 250 mg/2 L of ceftazidime + 16 mg/2 L of tobramycin	Complete recovery
Oberhelman et al. [58], *B. vesicularis*	1994	M/5	USA	Sickle cell anaemia	Pneumonia/CA	N/A	N/A	Ceftriaxone, Gentamicin	Complete recovery
Calegari et al. [59], *B. vesicularis*	1996	M/60	Uruguay	Trauma	Botryomycosis/CA	N/A	N/A	Cefuroxime	Complete recovery
Gilad et al. [60], *B. vesicularis*	2000	F/42	Israel	Mitrval valve replacement	Bacteraemia/HA	Amoxicillin-Clavulanate, Aminoglycosides, Co-trimoxazole, Impenem, Mezlocillin, Piperacillin, Piperacillin-Tazobactam	Ampicillin, Aztreonam, Cefuroxime, Ceftriaxone, Ceftazidime, Ciprofloxacin	Piperacillin- Tazobactam	Complete recovery

M- Male, F- Female, N/A – Not Available, CA – Community Acquired, HA- Hospital Acquired.
Author (Ref)	Year	Sex/Age	Country	Co-morbidity	Type of infection	Susceptible to	Resistance to	Antibiotic treatment	Outcome
Lee et al. [61], Various	2000–2010	Multiple (30 cases)	Taiwan	Cancer patients	Bacteraemia	Ciprofloxacin, Colistin, Doripenem, Tigecycline	Amikacin, Piperacillin/tazobactam	Cefotaxime, Ceftadidine, Cefmetazole, Cefazolin, Cefuroxime, Ceftriaxone, Imipenem, Piperacillin/tazobactam	Complete recovery
Seve et al. [62], B. diminuta	2004	F/35	France	Leukaemia	Bacteraemia/HA	Ciprofloxacin, Imipenem	Amikacin, Ceftazidime, Piperacillin	Initially Ceftazidime, Amikacin	Complete recovery
Chi et al. [63], B. vesicularis	2004	M/38	Taiwan	None	Tonsillitis/CA	Cefoperazone	Amoxicillin, Aztreonam, Ceftazidime, Ciprofloxacin, Flomoxef, Gentamicin, Tobramycin, Ceftriaxone	Amoxicillin/Clavulanic acid	Complete recovery
Chi et al. [63], B. diminuta	2004	M/62	Taiwan	Liver cirrhosis, Encephalopathy, Spontaneous bacterial peritonitis	Bloodstream infection/CA	Amikacin, Aztreonam, Ceftoxime, Cefepime, Chloramphenicol, Ciprofloxacin Flomoxef, Gentamicin, Imipenem, Piperacillin-Tazobactam, Tetracycline, Tobramycin, Cotrimoxazole	Cefotaxime	Complete recovery	
Han et al. [46], B. diminuta	2005	Multiple (7 Cases)	USA	Cancer	Bacteraemia, Urinary Tract Infection, Empyema/HA	Amikacin, Imipenem and Ticarcillin/clavulanate	Amoxicillin, Cefepime, Ciprofloxacin	Cefepime, Imipenem, Levofloxacin, Meropenem, Nafcillin, Tobramycin, Ticarcillin/clavulanate, Vancomycin	Complete recovery
Karadag et al. [38], B. vesicularis	2005–2011	Multiple (8 cases)	Turkey	Neonates	Septicaemia/HA	Amikacin, Imipenem, Aztreonam, Ceftazidime, Piperacillin/tazobactam	Amoxicillin, Cefepime, Ciprofloxacin, Flomoxef, Meropenem	Ampicillin, Ceftazidime, Ciprofloxacin, Flomoxef, Meropenem	7 Complete recovery, 1 Died
Vahid [64] B. vesicularis	2005	W/36	USA	Acute myelogenous leukaemia	Bacteraemia	Ciprofloxacin, Ticaracillin-Clavulanate	Amikacin, Aztreonam, Ceftazidime, Ceftriaxone, Meropenem, Piperacillin/tazobactam	Ampicillin, Cephalothin, Ciprofloxacin	Complete recovery
Papaefstathiou et al., [85], B. vesicularis	2005	F/92	Greece	Cardiac failure	Bacteraemia/CA	Amoxicillin-clavulanate, Aminoglycosides, Azlocillin, Aztreonam Second and Third-generation Cephalosporins, Imipenem, Piperacillin, Tetracycline, Trimethoprim-Sulfamethoxazole	Cefuroxime, Netilmicin	N/A	Died
Niedermeier et al. [66], B. vesicularis	2005	F/37	USA	Acute myeloid leukemia, Pregnancy, Pancytopenia	Sepsis/HA	N/A	Clindamycin, Piperaclilin-tazobactam	N/A	Complete recovery from sepsis
Mondello et al. [67], B. vesicularis	2006	M/24	Italy	Pilocytic astrocytoma	Meningitis/HA	Ciprofloxacin, Co-trimoxazole, Tetracycline	N/A	Initially: Ceftriaxone, Ciprofloxacin, Co-trimoxazole After Treatment failure: Amikacin	Complete recovery

(Continued on next page)
Author (Ref)	Year	Sex/Age	Country	Co-morbidity	Type of infection	Susceptible to	Resistance to	Antibiotic treatment	Outcome	
Choi et al. [68], B. *vesicularis*	2006	M/55	South Korea	Diabetes, Continuous ambulatory peritoneal dialysis	Peritonitis/CA	N/A	N/A	Aztreonam, Cefazolin, Ceftazidime, Ciprofloxacin, Vancomycin Cefazolin, Gentamicin	Complete recovery	
Yang et al. [69], B. *vesicularis*	2006	M/40	Taiwan	None	Endocarditis/CA	Amikacin, Amoxicillin, Gentamicin, Piperacillin, Aztreonam, Cefepime, Meropenem, Netilmicin, Ampicillin, Ciprofloxacin, Cefazolin, Cefmetazole, Cefadroxime, Ceftriaxime, Ceftriaxone, Ticarcillin	N/A			
Zhang et al. [70], B. *vesicularis*	2006–2009	Multiple Cases (22 patients)	Taiwan	Various (Cancer, heart failure, COPD, Kidney disease)	Bacteraemia/CA/HA	N/A		Various (Penicillin’s, Cephalosporins)	Complete recovery in 21 cases. 1 case of death	
Pelletier et al. [71], B. *vesicularis*	2007	F/45	USA	None	Keratitis	Ceftazidime, Ciprofloxacin, Gentamicin, Levofloxacin	N/A	Ceftazidime	Complete recovery	
Sofer et al. [72], B. *vesicularis*	2007	F/15 Month old	Israel	None	Septic Arthritis/CA	Aminoglycosides, Aminopenicillins, Cephalosporins, Piperacillin, Quinolones, Trimethoprimsulfamethoxazole	N/A	Cefuroxime	Complete recovery	
Menuet et al. [29], B. *vesicularis*	2008	F/17	France	Cystic Fibrosis	Pneumonia	Amikacin, Ceftriaxone, Gentamicin, Imipenem, Isopenicillin, Rifampicin, Piperacillin/tazobactam, Ticarcillin, Ticarcillin-Clavulanate, Tobramycin	N/A	Imipenem, Tobramycin	Complete recovery	
Panasiti et al. [73], B. *vesicularis*	2008	M/71	Italy	None	Cutaneous Infection/CA	Amikacin, Cefoxitin, Ceftazidime, Cefuroxime, Cefalotin, Cepodoxime, Gentamycin, Tobramycin	N/A	Amoxicillin-Clavulanate	Complete recovery	
Viswanathan et al. [74], B. *vesicularis*	2009	M/Infant	India	Newborn	Sepsis/HA	Amikacin, Cefotaxime, Ciprofloxacin, Gentamicin, Meropenem, Ofloxacin, Piperacillin/tazobactam	N/A	Amikacin, Cefotaxime	Complete recovery	
Chandra et al. [75], B. *vesicularis*	2010	M/31	USA	Biliary Pancreatitis	Bacteraemia	Amikacin, Cefuroxime, Cefepime, Ciprofloxacin, Gentamicin, Piperacillin/tazobactam, Polymyxin B	Aztreonam. Cefuroxime		Complete recovery	
Restrepo et al. [76], B. *vesicularis*	2010	F/44	Columbia	None known	Reactive Arthritis + Bacteraemia	Amikacin, Imipenem, Meropenem, Piperacillin/tazobactam	Aztreonam, Ciprofloxacin	Initially: Amikacin, Ciprofloxacin Following Sensitivity testing: Piperacillin/tazobactam	Complete recovery	
Estrela and Abraham [77], B. *vancomycit*	2010	N/A	Germany	N/A	Endocarditis	N/A	N/A	Piperacillin/tazobactam	N/A	

M- Male, F- Female, N/A – Not Available, CA – Community Acquired, HA- Hospital Acquired.
Author (Ref)	Year	Sex/Age	Country	Co-morbidity	Type of infection	Susceptible to	TResistance to	Antibiotic treatment	Outcome
Shang et al. [78], B. vesicularis	2011	M/83	Taiwan	Type 2 diabetes, Hypertension	Progressive leucocytosis/HA	Amikacin, Ampicillin/ Sulbactam, Cefazolin, Ceftriaxone, Ceftazidime, Gentamicin, Imipenem, Piperaclidin/Tazobactam	Ampicillin, Ciprofloxacin	N/A	Complete recovery
Shang et al. [78], B. vesicularis	2011	M/25	Taiwan	Lymphoma	Febrile neutropenia/HA	Amikacin, Ampicillin/ Sulbactam, Cefazolin, Ceftriaxone, Ceftazidime, Gentamicin, Imipenem, Piperaclidin/Tazobactam	Ceftriaxone, Ceftazidime, Cefepime, Ciprofloxacin	Ceftriaxone	Complete recovery
Bhatawadekar & Sharma [79] B. vesicularis	2011	F/Infant	India	Infant	Bacteraemia/CA	Amikacin, Amoxicillin, Cefotaxime, Ciprofloxacin, Gentamicin, First Generation Cephalosporins, Imipenem, Meropenem, Piperaclidin, Ticarcillin	Ceftriaxone, Cefoxitin, Co-trimazaxole, Netilmicin	Cefotaxime	Complete recovery
Yoo et al. [80], B. vesicularis	2012	M/30	South Korea	N/A	Liver Abscess	Amikacin, Ampicillin/ Sulbactam, Imipenem	Minocycline, Tigecycline	Ceftriaxone, Ampicillin- Sulbactam	Complete recovery
Almuzara et al. [47], B. diminuta	2012	F/56	Argentina	Lupus glomerulonephritis	Leg ulcer	Aztreonam, Ceftriaxone, Cefepime, Ciprofloxacin	Ampicillin, Ampicillin/ Sulbactam, Aztreonam, Cefotaxime, Cefoxitin, Cefotaxime, Ceftazidime, Cefepime, Ciprofloxacin, Colistin, Gentamicin, Imipenem, Meropenem, Piperaclidin/ Tazobactam, Trimethoprim-sulfamethoxazo	Ceftriaxone, Ampicillin- Sulbactam, Tigecycline plus imipenem	Complete recovery
Karadag et al. [81], B. vesicularis	2012	M/Infant	Turkey	Neonate	Neonatal sepsis	Amikacin, Ceftriaxone, Gentamicin, Imipenem	Ampicillin, third- generation Cephalosporins, Piperaclidin-tazobactam	Empirical Ampicillin, Gentamicin. After susceptibility testing Meropenem followed by ciprofloxacin	Complete recovery
Khalifa et al. [48], B. vesicularis	2012	F/Infant	Tunisia	Pompe disease	Bacteraemia	Amikacin, Aztreonam Cefotaxime, Ceftazidime, Ciprofloxacin, Gentamicin, Imipenem, Ofloxacin, Piperaclidin/ tazobactam	Piperaclidin, Ticarcllin	Ceftazidime 100 mg / kg daily for 10 days and Amikacin 15 mg / kg daily	Complete recovery
Pandit et al. [82], B. diminuta	2012	F/66	USA	N/A	Keratitis/CA	Amikacin, Gentamicin, Tobramycin	Ceftriaxone, Ofloxacin, Ciprofloxacin, Moxifloxacin	Besifloxacin and Tobramycin, Following identification Tobramycin was changed to Gentamicin Initially; Ciprofloxacin	Complete recovery
Lu et al. [45], B. diminuta	2013	M/38	China	None	Pleuritis	Amikacin, Chloramphenicol, Gentamicin, Cefoperazone-Sulbactam, Meropenem, Piperaclidin/tazobactam, Tetracycline	Aztreonam, Ceftazidime, Cefepime, Ciprofloxacin, Levofloxacin, Trimethoprim-sulfamethoxazole	Ppiperacillin, Ticarcillin	Complete recovery

(Continued on next page)
Author (Ref)	Year	Sex/Age	Country	Co-morbidity	Type of infection	Susceptible to	Resistance to	Antibiotic treatment	Outcome	
Nandy et al. [83], *B. vesicularis*	2013	F/Infant	India	Infant	Bacteraemia	Meropenem, Cefazidime/Clavulanic acid, Netilmicyn, Cefepime, Ampicillin/Sulbactam, Piperacillin/Tazobactam, Levofloxacin, Ciprofloxacin, Cefazidime, Tobramycin, Gentamicin	Cotrimaxazole, Nalidixic acid	Piperacillin/ Tazobactam, Amikacin, Gentamycin, Fluconazole, Ciprofloxacin, Meropenem	Complete recovery	
Shobha et al. [84], *B. diminuta*	2013	Infant	India	None	Urinary Tract Infection	Amikacin, Amoxicillin-Clavulanate, Cefotaxime, Cefepime, Imipenem, Ticarcillin/clavulanic acid, Trimethoprim-sulfamethoxazole		Ampicillin, Ciprofloxacin	Ticarcillin/clavulanic acid	Complete recovery
Gupta et al. [49], *B. vesicularis*	2014	M/24	India	None	Urinary Tract Infection	Minocycline, Piperacillin/tazobactam Trimethoprim-sulfamethoxazole		Amikacin, Amoxicillin, Amoxicillin-Clavulanate, Aztreonam Cefazidime, Cefoperazone, Cefoperazone-Sulbactam, Cefoxitin, Cefotaxime, Colistin, Ertapenem, Gentamicin, Imipenem, Levofloxacin, Meropenem, Netilmicin, Norfloxacin, Tobramycin	Complete recovery	
Shujat et al. [85], *B. vesicularis*	2014	F	Pakistan	Gall Bladder issues	Bacteraemia	N/A	N/A	Meropenem	Complete recovery	
Kishore [86] *B. vesicularis*	2014	M/51	India	Diabetes Mellitus (Type 2), Coronary Artery Disease	Bacteraemia	N/A	Ampicillin-Sulbactam	Amikacin, Amoxyclav	Complete recovery	
Mahapatra et al. [87], *B. diminuta*	2014	M/35	India	N/A	Post-traumatic abscess peritoneal dialysis-associated peritonitis	Cefepime, Cefotaxime, Gentamicin, Imipenem, Piperacillin	N/A	N/A	Complete recovery following catheter removal	
Ra et al. [88], *B. vesicularis*	2015	F/71	South Korea	End stage renal disease, Hypertension and diabetes mellitus	Bacteraemia	Ampicillin, Amikacin, Ceftriaxone, Cefepime, Cefazolin, Cefazidime, Ciprofloxacin, Gentamicin, Imipenem, Levofloxacin, Piperacillin/tazobactam Trimethoprim-sulfamethoxazole	Aztreonam, Tobramycin	N/A	Complete recovery	
Cao et al. [89], *B. diminuta*	2015	M/62	China	Myelodysplastic syndrome, Diabetes Mellitus (Type 2)	Bacteraemia	Amikacin, Cefoperazone, Levofloxacin, Piperacillin/tazobactam		Aztreonam, Tobramycin	N/A	Complete recovery
Singh and Bhatia [90], *B. vesicularis*	2015	8 month old	India	Infant	Septicaemia/ CA	Amoxicillin-Clavulanate, Cefazidime	Initially: Amikacin, Ceftriaxone, Vancomycin Following Sensitivity testing: Cefoperazone, Levofloxacin, Piperacillin/tazobactam		Complete recovery	
Authors	Year	Age	Gender	Country	Disease Description	Pathogen Characteristics	Treatment	Outcome		
-----------------------	------	-----	--------	---------	-------------------------------------	--------------------------	-----------	----------------------		
Chandra et al. [91],	2017	M/18		India	Nephrotic syndrome	Imipenem, meropenem, amikacin, gentamicin, fluoroquinolones, minocycline, tigecycline, cefoperazone-sulbactam, ceftazidime, cefepime, and cotrimoxazole	Colistin	Complete recovery		
B. vesicularis										

| Swain and Rout [92] | 2017 | M/56| | India | Type-2 diabetes mellitus, hypertension with epileptic disorder | Amikacin, Ceftazidime, Ceftazidime/clavulanic acid, Cefuroxime, Ceftriaxone, Ciprofloxacin, Levofloxacin, Netilmicin | Amoxicillin/clavulanic acid | Complete recovery |
| B. diminuta | | | | | | | | |

M- Male, F- Female, N/A – Not Available, CA – Community Acquired, HA- Hospital Acquired.
Acinetobacter and (in a UTI) of was not discovered. Lee subsequently differentiated Brevundimonas as the cause of pseudo-outbreak in a tertiary care centre. The treatment of bacterial infection, even though the organism was detected. The source of the contamination was traced to pre-prepared inoculant media (used in the testing procedures in the USA. The contamination was traced to pre-prepared inoculant media (used in the testing procedures). Pseudo-outbreaks can be problematic as they can result in superfluous treatments given to patients (e.g. unnecessary antibiotics or the removal of indwelling devices such as catheters) and can waste valuable time and resources in the clinical setting. The causes of pseudo-outbreaks may be due to a number of different factors such as contaminated water used in the bacterial testing procedures or contamination of materials used in laboratory testing. However, it should be noted that the majority of cases listed in Table 1–3 cephalosporins, penicillins or aminoglycoside antibiotics were given to treat patients and these were mostly successful.

Little is known about resistance mechanisms in Brevundimonas spp. Resistance to the fluoroquinolone family of antibiotics has been detected in outbreaks due to mutations in the quinolone resistance-determining region (QRDR) of the host gyrA, gyrB and parC genes [46]. Gupta et al. found co-infection (in a UTI) of B. vesicularis along with Candida tropicis and Acinetobacter spp. [49].

Pseudo-outbreaks

As can be seen in Table 5 to date only two pseudo-outbreaks have been reported with Brevundimonas spp. Pseudo-outbreaks can be problematic as they can result in superfluous treatments given to patients (e.g. unnecessary antibiotics or the removal of indwelling devices such as catheters) and can waste valuable time and resources in the clinical setting. The causes of pseudo-outbreaks may be due to a number of different factors such as contaminated water used in the bacterial testing procedures or contamination of materials used in laboratory testing. However, it should be noted that the majority of cases listed in Table 1–3 cephalosporins, penicillins or aminoglycoside antibiotics were given to treat patients and these were mostly successful.

Little is known about resistance mechanisms in Brevundimonas spp. Resistance to the fluoroquinolone family of antibiotics has been detected in outbreaks due to mutations in the quinolone resistance-determining region (QRDR) of the host gyrA, gyrB and parC genes [46]. Gupta et al. found co-infection (in a UTI) of B. vesicularis along with Candida tropicis and Acinetobacter spp. [49].

Breakdown of cases of infection with Brevundimonas spp.

Literature searches presented in Table 1–3 illustrate 49 separate instances of infection relating to Brevundimonas spp. The majority of these instances were infection with B. vesicularis (thirty-five cases – 71%). One outbreak had both B. vesicularis and B. diminuta and one case of infection with B. vancanneytii was reported. The rest of the cases were made up B. diminuta infections (twelve cases -24%). The major breakdown of condition were as follows: seventeen instances of bacteraemia (34%), five instances of septicaemia/sepsis (10%), three instances of pneumonia/pleuritis (6%), two instances each of endocarditis (4%), keratitis (4%), and urinary tract infection (4%). Serious infections with Brevundimonas spp include four instances of septicaemia (8%), two of endocarditis (4%), one of septic arthritis (2%) and one of meningitis (2%). Other conditions include instances of two cases of

Table 4. Molecular methods applied to identify Brevundimonas spp. [45].

Method	Target	Sequence	Species
Real Time PCR	gyrB	Forward Primer: ATCGAGACATCTGCTGCTATGAGGG	
		Reverse Primer: TGTTTGTTGGAGCGACAGCATGG	
		Real-Time Probe: AGCTCATGCAATCCGCCGCCGAGAAA	
Real Time PCR	rpoD	Forward Primer: AGTCCCTCAAGGCTATTTCGGCT	
		Reverse Primer: GGCCTCATTGCTGGAACTTGGT	
		Real-Time Probe: AGGCACATCAAGGGAATGGCCGT	
FISH	gyrB	AAGAACGACAGGTCGCTCCGAGC	
FISH	rpoD	TCAAGGCTATTTCGGCTCGGAGAT	

| (one individual case and four cases as part of an outbreak) of co-infection being described in the literature. Han et al described seven cases of infection with B. diminuta within the same outbreak, four of these cases had other microorganism’s co-isolated (coagulase-negative Staphylococcus – bacteraemia, Moraxella osloensis – catheter, Enterococcus sp. – UTI and Staphylococcus aureus – empyema) [46]. Gupta et al. found co-infection (in a UTI) of B. vesicularis along with Candida tropicis and Acinetobacter spp. [49].

Pseudo-outbreaks

As can be seen in Table 5 to date only two pseudo-outbreaks have been reported with Brevundimonas spp. Pseudo-outbreaks can be problematic as they can result in superfluous treatments given to patients (e.g. unnecessary antibiotics or the removal of indwelling devices such as catheters) and can waste valuable time and resources in the clinical setting. The causes of pseudo-outbreaks may be due to a number of different factors such as contaminated water used in the bacterial testing procedures or contamination of materials used in laboratory testing. However, it should be noted that the majority of cases listed in Table 1–3 cephalosporins, penicillins or aminoglycoside antibiotics were given to treat patients and these were mostly successful.

Little is known about resistance mechanisms in Brevundimonas spp. Resistance to the fluoroquinolone family of antibiotics has been detected in outbreaks due to mutations in the quinolone resistance-determining region (QRDR) of the host gyrA, gyrB and parC genes [46]. Gupta et al. found co-infection (in a UTI) of B. vesicularis along with Candida tropicis and Acinetobacter spp. [49].

Breakdown of cases of infection with Brevundimonas spp.

Literature searches presented in Table 1–3 illustrate 49 separate instances of infection relating to Brevundimonas spp. The majority of these instances were infection with B. vesicularis (thirty-five cases – 71%). One outbreak had both B. vesicularis and B. diminuta and one case of infection with B. vancanneytii was reported. The rest of the cases were made up B. diminuta infections (twelve cases -24%). The major breakdown of condition were as follows: seventeen instances of bacteraemia (34%), five instances of septicaemia/sepsis (10%), three instances of pneumonia/pleuritis (6%), two instances each of endocarditis (4%), keratitis (4%), and urinary tract infection (4%). Serious infections with Brevundimonas spp include four instances of septicaemia (8%), two of endocarditis (4%), one of septic arthritis (2%) and one of meningitis (2%). Other conditions include instances of two cases of
Table 5. Incidences of *Brevundimonas* spp. Pseudo-infection from 1978 – 2017. Main characteristics of the case reports.

Author (Ref)	Year	Sex/Age	Country	Co-morbidity	Type of infection	Susceptible to	Resistance to	Antibiotic treatment	Outcome
Kim et al. [50],	2011	Multiple	South	Multiple	Pseudobacteraemia	N/A	Amikacin, Ciprofloxacin, Colistin, Ceftazidime, Cefepime, Cefotaxime Imipenem,	Ampicillin / sulbactam, Cefpiran, Metronidazole, Netilmicin	N/A
B. diminuta		(3 cases)	Korea				Ceftazidime, Piperacillin / Tazobactam, Tobramycin		
Lee et al. [51],	2017	Multiple	USA	Multiple	Pseudo-infection	Levofoxin, Meropenem, Piperacillin / tazobactam, Trimethoprim – sulfamethoxazole			
B. diminuta		(12 cases)					Ceftazidime		

M- Male, F- Female, N/A – Not Available
tonsillitis (2%), two of liver abscess (2%) and two of botryomycosis (2%). There have also been two reported instances (4%) of *Brevundimonas* spp infection that have caused two or more conditions: bacteraemia and reactive arthritis, bacteraemia, urinary tract infection and empyema. Four instances of death have been related to *Brevundimonas* spp infection, three of bacteraemia and one of septicaemia.

Conclusions

Brevundimonas spp. are not currently considered as major pathogens. However, this should be re-evaluated in light of our investigations where forty-nine examples of *Brevundimonas* spp. infections have been found in the literature. These species have characteristics, such as ability to pass through sterilising filters, which may allow them to cause potentially harmful infections and even death on occasion. Although it is of low virulence and not as big a risk as other non-fermenting Gram-negative bacteria such as *Burkholderia* etc., it should not be overlooked as a possible cause of nosocomial infections and should be considered for inclusion in hospital screening and prevention programs. These programs should consider investigation of possible *Brevundimonas* spp outbreaks if these bacteria are clinically isolated in more than one patient.

ORCID

Michael P. Ryan http://orcid.org/0000-0002-0489-0579

J. Tony Pembroke http://orcid.org/0000-0001-9340-7026

References

[1] Coughlan A, Ryan MP, Cummins NM, et al. The response of *Pseudomonas aeruginosa* biofilm to the presence of a glass polyalkenoate cement formulated from a silver containing glass. J Mater Sci. 2011;46:285–7. doi:10.1007/s10853-010-4945-y.

[2] Peleg AY, Seifert H, Paterson DL. *Acinetobacter baumanii*: Emergence of a Successful Pathogen. Clin Microbiol Rev. 2008;21(3):538–82. doi:10.1128/CMR.00058-07.

[3] de Bentzmann S, Plésiat P. The *Pseudomonas aeruginosa* opportunistic pathogen and human infections. Environ Microbiol. 2011;13(7):1655–65. doi:10.1111/j.1462-2920.2011.02469.x.

[4] Ryan MP, Adley CCF. *Sphingomonas paucimobilis*: A persistent Gram-negative nosocomial infectious organism. J Hosp Infect. 2010;75(3):153–7. doi:10.1016/j.jhin.2010.03.007.

[5] Folescu TW, da Costa CH, Cohen RWF, et al. *Burkholderia cepacia* complex: Clinical course in cystic fibrosis patients. BMC Pulm Med. 2015;15:158. doi:10.1186/s12890-015-0148-2.

[6] Brooke JS. *Stenotrophomonas maltophilia*: An Emerging Global Opportunistic Pathogen. Clin Microbiol Rev. 2012;25(1):2–41. doi:10.1128/CMR.00019-11.

[7] Ryan MP, Pembroke J, Adley CC. *Ralstonia pickettii*: A persistent Gram-negative nosocomial infectious organism. J Hosp Infect. 2006;62:278–84. doi:10.1016/j.jhin.2005.08.015.

[8] Ryan MP, Adley CC. *Ralstonia* spp: Emerging global opportunistic pathogens. Eur J Clin Microbiol Infect Dis. 2014;33:291–304. doi:10.1007/s10096-013-1975-9.

[9] Handschu H, Ryan MP, O’Dwyer J, et al. Assessment of the Bacterial Diversity of Aircraft Water: Identification of the Frequent Fliers. PLOS ONE. 2017;12:e0170567. doi:10.1371/journal.pone.0170567.

[10] Falcone-Dias MF, Vaz-Moreira I, Manaia CM. Bottled mineral water as a potential source of antibiotic resistant bacteria. Water Res. 2012;46:3612–22. doi:10.1016/j.watres.2012.04.007.

[11] Soto-Giron MJ, Rodriguez-R LM, Luo C, et al. Biofilms on Hospital Shower Hoses: Characterization and Implications for Nosocomial Infections. Appl Environ Microbiol. 2016;82:2872–83. doi:10.11128/AEM.03529-15.

[12] Kulakov LA, McAlister MB, Ogden KL, et al. Analysis of Bacteria Contaminating Ultrapure Water in Industrial Systems. Appl Environ Microbiol. 2002;68:1548–55. doi:10.1128/AEM.68.4.1548-1555.2002.

[13] Ryan MP, Adley CC. The antibiotic susceptibility of water based bacteria *Ralstonia pickettii* and *Ralstonia insidiosa*. J Med Microbiol. 2013;62:1025–1031. doi:10.1099/jmm.0.054759-0.

[14] Flores-Treviño S, Gutiérrez-Fernan R, et al. *Stenotrophomonas maltophilia* in Mexico: Antimicrobial resistance, biofilm formation and clonal diversity. J Med Microbiol. 2014;63:1524–30. doi:10.1099/jmm.0.074385-0.

[15] Segers P, Vancanneyt M, Ogden KL, et al. Phylogeny and polyphasic taxonomy of *Caulobacter* species. Int J Syst Evol Microbiol. 2016;65:73. doi:10.1099/ijsem.0.011700-0.

[16] Handschu H, Ryan MP, O’Dwyer J, et al. Assessment of the Bacterial Diversity of Aircraft Water: Identification of the Frequent Fliers. PLOS ONE. 2017;12:e0170567. doi:10.1371/journal.pone.0170567.

[17] Busing KJ, Doll W, Freytag K. Die Bakterien der medizinischen Blutegel. Arch Mikrobiol. 1953;19:52.

[18] Abraham W-R, Strömpl C, Meyer H, et al. Phylogeny and polyphasic taxonomy of *Caulobacter* species. Proposal of *Maricaulis* gen. nov. with *Maricaulis maris* (Poindexter) comb. nov. as the type species, and emended description of the genera *Brevundimonas* and *Caulobacter*. Int J Syst Evol Microbiol. 1999;49:1053–73.

[19] Kang S-J, Choi N-S, Choi JH, et al. *Brevundimonas nae-jangsanensis* sp. nov., a proteolytic bacterium isolated from soil, and reclassification of *Mycoplasma bullata* into the genus *Brevundimonas* as *Brevundimonas bullata* comb. nov. Int J Syst Evol Microbiol. 2009;59:3155–60. doi:10.1099/ijsem.0.011700-0.
[20] Yoon J-H, Kang S-J, Lee J-S, et al. Brevundimonas terrae sp. nov., isolated from an alkaline soil in Korea. Int J Syst Evol Microbiol. 2006;56:2915–9. doi:10.1099/ijs.0.64253-0.

[21] Wang J, Zhang J, Ding K, et al. Brevundimonas viscosa sp. nov., isolated from saline soil. Int J Syst Evol Microbiol. 2012;62:2475–9. doi:10.1099/ijs.0.035352-0.

[22] Tsubouchi T, Shimane Y, Usui K, et al. Brevundimonas abyssalis sp. nov., a dimorphic prosthecate bacterium isolated from deep-sea subfloor sediment. Int J Syst Evol Microbiol. 2013;63:1987–94. doi:10.1099/ijs.0.043364-0.

[23] Ryu SH, Park M, Lee JR, et al. Brevundimonas aveniformis sp. nov., a stalked species isolated from activated sludge. Int J Syst Evol Microbiol. 2007;57:1561–5. doi:10.1099/ijs.0.64737-0.

[24] Choi J-H, Kim M-S, Roh SW, et al. Brevundimonas basilis sp. nov., isolated from black sand. Int J Syst Evol Microbiol. 2010;60:1488–92. doi:10.1099/ijs.0.013557-0.

[25] Tsubouchi T, Koyama S, Mori K, et al. Brevundimonas denitrificans sp. nov., a denitrifying bacterium isolated from deep subseafloor sediment. Int J Syst Evol Microbiol. 2014;64:3709–16. doi:10.1099/ijs.0.067199-0.

[26] Abraham W-R, Estrela AB, Nikitin DI, et al. Brevundimonas halotolerans sp. nov., Brevundimonas poinxterae sp. nov. and Brevundimonas staleyi sp. nov., prosthecate bacteria from aquatic habitats. Int J Syst Evol Microbiol. 2010;60:1837–43. doi:10.1099/ijs.0.016832-0.

[27] Penna VTC, Martins SAM, Mazzola PG. Identification of bacteria in drinking and purified water during the monitoring of a typical water purification system. BMC Public Health. 2002;2:13. doi:10.1186/1471-2458-2-13.

[28] Li Y, Kawamura Y, Fujiwara N, et al. Sphingomonas yabuchiae sp. nov. and Brevundimonas nasdae sp. nov., isolated from the Russian space laboratory MIR. Int J Syst Evol Microbiol. 2004;54:819–25. doi:10.1099/ijs.0.02829-0.

[29] Menuet M, Bittar F, Stremler N, et al. First isolation of two colistin-resistant emerging pathogens, Brevundimonas diminuta and Ochrobactrum anthropi, in a woman with cystic fibrosis: a case report. J Med Case Rep. 2008;2:373. doi:10.1186/1752-153X-2-373.

[30] Sundaram S, Eisenhuth J, Howard G, Jr., et al. Retention of water-borne bacteria by membrane filters. Part I: Bacterial challenge tests on 0.2 and 0.22 micron rated filters. PDA J Pharm Sci Technol. 2001;55:65–86.

[31] Sundaram S, Eisenhuth J, Howard G, et al. Method for Qualifying Microbial Removal Performance of 0.1 Micron Rated Filters Part I: Characterization of Water Isolates for Potential Use as Standard Challenge Organisms to Qualify 0.1 Micron Rated Filters. PDA J Pharm Sci Technol. 2001;55:346–72.

[32] Lee S-H, Lee S-S, Kim C-W. Changes in the Cell Size of Brevundimonas diminuta Using Different Growth Agitation Rates. PDA J Pharm Sci Technol. 2002;56:99–108.

[33] Guermouche M’rassi A, Bensalah F, Gury J, et al. Isolation and characterization of different bacterial strains for bioremediation of n-alkanes and poly cyclic aromatic hydrocarbons. Environ Sci Pollut Res Int. 2015;22:15332–46. doi:10.1007/s11356-015-4343-8.

[34] Wang X, Wang X, Liu M, et al. Bioremediation of marine oil pollution by Brevundimonas diminuta: effect of salinity and nutrients. Desalination Water Treat. 2016;57:19768–75. doi:10.1080/19443994.2015.1106984.

[35] Zhao J, Tang X, Wang D, et al. Isolation and identification of malathion-degrading strain of Brevundimonas diminuta. 2011 International Conference on Electrical and Control Engineering. 2011;1600–2.

[36] Singh N, Marwa N, Mishra Sk, et al. Brevundimonas diminuta mediated alleviation of arsenic toxicity and plant growth promotion in Oryza sativa L. Ecotoxicol Environ Saf. 2016;125:25–34. doi:10.1016/j.ecoenv.2015.11.020.

[37] Mazzola PG, Martins AM, Penna TC. Chemical resistance of the gram-negative bacteria to different sanitizers in a water purification system. BMC Infect Dis. 2006;6:131. doi:10.1186/1471-2334-6-131.

[38] Karadag N, Karagol BS, Kundak AA, et al. Spectrum of Brevundimonas vesicularis infections in neonatal period: a case series at a tertiary referral center. Infection. 2012;40:509–15. doi:10.1016/s1501-012-0274-1.

[39] Fernández-Olmos A, García-Castillo M, Morosini M-I, et al. MALDI-TOF MS improves routine identification of non-fermenting Gram negative isolates from cystic fibrosis patients. J Cyst Fibros. 2012;11:59–62. doi:10.1016/j.jcf.2011.09.001.

[40] Koide M, Higa F, Tateyama M, et al. Role of Brevundimonas vesicularis in supporting the growth of Legionella in nutrient-poor environments. New Microbiol. 2014;37:33–9.

[41] Gebrell AS, Abraham W-R. Diversity and Activity of Bacterial Biofilm Communities Growing on Hexachlorocyclohexane. Water Air Soil Pollut. 2016;227:295. doi:10.1007/s11270-016-2988-7.

[42] Lipuma J, Currie B, Peacock S, et al. Burkholderia, Stenotrophomomas, Ralstonia, Cupriavidus, Pandorea, Brevundimonas, comamonas, Delftia and Acidovorax. In: Versalovic J, Carroll K, Funke G, Jorgensen J, Landry M, Warnock D, editors. Manual of Clinical microbiology. 10th ed. Washington: DC: ASM Press; 2011. p. 692–713.

[43] Mellmann A, Cloud J, Maier T, et al. Evaluation of Matrix-Assisted Laser Desorption Ionization-Time-Of-Flight Mass Spectrometry in Comparison to 16S rRNA Gene Sequencing for Species Identification of Nonfermenting Bacteria. J Clin Microbiol. 2008;46:1946–54. doi:10.1128/JCM.00157-08.

[44] Lu B, Shi Y, Zhu F, et al. Pleuritis due to Brevundimonas diminuta in a previously healthy man. J Med Microbiol. 2013;62:479–82. doi:10.1099/jmm.0.045013-0.

[45] Donofrio RS, Bestervelt LL, Saha R, et al. Quantitative real-time PCR and fluorescence in situ hybridization approaches for enumerating Brevundimonas diminuta in drinking water. J Ind Microbiol Biotechnol. 2010;37:909–18. doi:10.1007/s10295-010-0738-1.

[46] Han XY, Andrade RA. Brevundimonas diminuta infections and its resistance to fluoroquinolones. J Antimicrob Chemother. 2005;55:853–9. doi:10.1093/jac/dki319.

[47] Almuzara MN, Barberis CM, Rodriques CH, et al. First Report of an Extensively Drug-Resistant VIM-2 Metallo-β-Lactamase-Producing Brevundimonas diminuta Clinical Isolate. J Clin Microbiol. 2012;50:2830–2. doi:10.1128/JCM.00924-12.

[48] Khalifa BHA, Bouzidi H, Sfar MT, et al. [Brevundimonas vesicularis bacteremia in an infant presenting with Pompe disease]. Medecine et maladies infectieuses. 2012;42:370–1.
[49] Gupta PK, Appannanavar SB, Kaur H, et al. Hospital acquired urinary tract infection by multidrug-resistant Brevundimonas vesicularis. Indian J Pathol Microbiol. 2014;57:486–8. doi:10.4103/0377-4929.138789.

[50] Kim YH, Koh EM, Lee YW, et al. Pseudo-outbreak of Brevundimonas diminuta. Kor J Clin Microbiol. 2011;14:115–7. doi:10.5145/KJCM.2011.14.3.115.

[51] Lee RA, Moser SA, Long M, et al. Pseudo-outbreak of Brevundimonas diminuta Attributed to Contamination of Culture Medium Supplement. Infect Control Hosp Epidemiol. 2017;38:598–601. doi:10.1017/ice.2017.17.

[52] Adelowo OO, Fagade OE. The tetracycline resistance gene tet39 is present in both Gram-negative and Gram-positive bacteria from a polluted river, southwestern Nigeria. Lett Appl Microbiol. 2009;48:167–72. doi:10.1111/j.1472-765X.2008.02523.x.

[53] Otto LA, Deboo BS, Capers EL, et al. Pseudomonas aeruginosa from cervical specimens. J Clin Microbiol. 1978;7:341–5.

[54] Vanholder R, Vanhaecke E, Ringoir S. Pseudomonas septicaemia due to deficient disinfectant mixing during reuse. Int J Artif Organs. 1992;15:19–24.

[55] Vanholder R, Vanhaecke E, Ringoir S. Waterborne Pseudomonas aeruginosa. ASAIO Trans. 1990;36:M215–6.

[56] Planes AM, Ramirez A, Fernandez F, et al. Pseudomonas aeruginosa bacteremia. Infection. 1992;20:367–8. doi:10.1007/BF01710687.

[57] Pasadakis P, Thodis E, Eftimimiadou A, et al. Treatment and prevention of relapses of CAPD Pseudomonas peritonitis. Adv Perit Dial. 1993;9:206–10.

[58] Oberhelman RA, Humbert JR, Santorelli FW. Pseudomonas aeruginosa causing bacteremia in a child with sickle cell anemia. South Med J. 1994;87:821–22. doi:10.1097/00007611-199408000-00012.

[59] Calegari I, Gezuele EG, Torres E, et al. Botryomycosis caused by Pseudomonas aeruginosa. Int J Dermatol. 1996;35:817–8. doi:10.1111/j.1365-4632.1996.tb02984.x.

[60] Gilad J, Borer A, Peled N, et al. Hospital-acquired Brevundimonas vesicularis septicaemia following open-heart surgery: Case report and literature review. Scand J Infect Dis. 2000;32:90–91.

[61] Lee MR, Huang YT, Liao CH, et al. Bacteremia caused by Brevundimonas species at a tertiary care hospital in Taiwan, 2000–2010. Eur J Clin Microbiol Infect Dis. 2011;30:1185–91. doi:10.1007/s10096-011-1210-5.

[62] Seve S, Mohammedi I, Martin O, et al. [Brevundimonas vesicularis bacteremia in a patient in aplasia]. Presse Med (Paris, France: 1983). 2004;33:172. doi:10.1016/S0755-4982(04)98516-8.

[63] Chi C-Y, Fung C-P, Wong W-W, et al. Brevundimonas bacteremia: Two case reports and literature review. Scand J Infect Dis. 2004;36:59–61. doi:10.1080/03655540310018879.

[64] Vahid, B. Brevundimonas vesicularis bacteremia following allogenic bone marrow transplantation. Int J Infect Dis. 2006;5:1.

[65] Papaestathiou C, Christopoulous C, Zoumberi M, et al. Fatal community-acquired Brevundimonas vesicularis bacteremia in an elderly patient. Clin Microbiol Newsl. 2005;27:57–8. doi:10.1016/j.clinmicnews.2005.04.002.

[66] Niedermeier DM, Frei-Lahr DA, Hall PD. Treatment of Acute Myeloid Leukemia During the Second and Third Trimesters of Pregnancy. Pharmacother. 2005;25:1134–40. doi:10.1592/phco.2005.25.8.1134.

[67] Mondello P, Ferrari L, Carnevale G. Nosocomial Brevundimonas vesicularis meningitis. Infez Med. 2006;14:235–7.

[68] Choi W, Lee C, Kim A, et al. CAPD Peritonitis Due to Brevundimonas vesicularis. Perit Dial Int. 2006;26:510–2.

[69] Yang M-L, Chen Y-H, Chen T-C, et al. Case report: Infective endocarditis caused by Brevundimonas vesicularis. BMC Infect Dis. 2006;6:179. doi:10.1186/1471-2334-6-179.

[70] Zhang C-C, Hsu H-J, Li C-M. Brevundimonas vesicularis bacteremia resistant to trimethoprim-sulfamethoxazole and ceftazidime in a tertiary hospital in southern Taiwan. J Microbiol Immunol Infect. 2012;45:448–52. doi:10.1016/j.jmii.2012.01.010.

[71] Pelletier JS, Ide T, Yoo SH. Brevundimonas vesicularis keratitis after laser in situ keratomileusis. J Cataract Refract Surg. 2010;36:340–3. doi:10.1016/j.jcrs.2009.07.050.

[72] Sofer Y, Zmira S, Amir J. Brevundimonas vesicularis septic arthritis in an immunocompetent child. Eur J Pediatr. 2007;166:77–78.

[73] Panasiti V, Devirgiliis V, Mancini M, et al. A cutaneous infection caused by Brevundimonas vesicularis: A case report. Int J Immunopathol Pharmacol. 2008;21:457–61. doi:10.1177/039463200802100226.

[74] Viswanathan R, Singh A, Mukherjee R, et al. Brevundimonas vesicularis: A new pathogen in newborn. J Pediatric Infect Dis. 2010;5:189–91.

[75] Chandra AB, Chandra PA, Chapnick EK. Bacteremia Caused by Brevundimonas vesicularis in a Patient with Biliary Pancreatitis. Infect Dis Clin Pract. 2010;18:54–5. doi:10.1097/IPC.0b013e3181a4c87e.

[76] Restrepo M, Andrea Granda P, Saldañiria C, et al. Artritis reactiva asociada con bacteriemia por Brevundimonas diminuta. Revista Colombiana de Reumatologia. 2010;17:245–8. doi:10.1016/S0212-8123(10)70071-2.

[77] Estrella AB, Abraham W-R. Brevundimonas vancanneytii sp. nov., isolated from blood of a patient with endocarditis. Int J Syst Evol Microbiol. 2011;61:2129–34. doi:10.1099/ijs.0.015651-0.

[78] Shang ST, Chiu SK, Chan MC, et al. Invasive Brevundimonas vesicularis bacteremia: Two case reports and review of the literature. J Microbiol Immunol Infect. 2012;45:468–72. doi:10.1016/j.jmii.2011.12.021.

[79] Bhattachawerak SM, Sharma J. Brevundimonas vesicularis bacteremia: A rare case report in a female infant. Ind J Med Microbiol. 2011;29:420–2. doi:10.4103/0255-0857.90184.

[80] Yoo SH, Kim MJ, Roh KH, et al. Liver abscess caused by Brevundimonas vesicularis in an immunocompetent patient. J Med Microbiol. 2012;61:1476–9. doi:10.1099/jmm.0.045120-0.

[81] Karadag N, Karagol BS, Dursun A, et al. A premature neonate with early-onset neonatal sepsis owing to Brevundimonas vesicularis complicated by persistent meningitis and lymphadenopathy. Paediatr Int Child Health. 2012;32:239–41. doi:10.1179/2046905512Y.0000000019.
[82] Pandit RT. *Brevundimonas diminuta* Keratitis. Eye & Contact Lenses. 2012;38:63–5. doi:10.1097/ICL.0b013e31821c04f7.

[83] Nandy S, Das A, Dudeja M, et al. *Brevundimonas vesicularis* bacteremia in a neonate: a rare case report. Natl J Integr Res Med. 2013;4:170–2.

[84] Shobha K, Ramachandra L, Gowrish S, et al. *Brevundimonas diminuta* causing urinary tract infection. WebMed Central Microbiol. 2013;4(9):WMC004411.

[85] Shujat U, Ikram A, Abbasi SA, et al. A Case of Bacteremia by *Brevundimonas vesicularis* in a Hospitalized Patient. J Coll Physicians Surg Pak. 2015;25:391.

[86] Kishore A. *Brevundimonas* Bactremia-A Rare Case Report in Diabetic Patient. Int J Med Res. 2014;2:58–60. doi:10.5455/ijmr.20150331035641.

[87] Mahapatra A, Pattanaik D, Majhi S, et al. Post traumatic abscess caused by *Brevundimonas diminuta*: a rare case report. Indian J Pathol Microbiol. 2014;57:354–6. doi:10.4103/0377-4929.134754.

[88] Ra H, Ho J, Yoon HJ, et al. S-337: A case of peritoneal dialysis-associated peritonitis caused by *Brevundimonas vesicularis*. Kor J Inter Med. 2015;2015:206-.

[89] Cao H, Li M, Yang X, et al. *Brevundimonas diminuta* bacteremia in a man with myelodysplastic syndromes. Indian Journal of Pathology and Microbiology. 2015;58:384–6. doi:10.4103/0377-4929.162920.

[90] Singh S, Bhatia BD. *Brevundimonas* Septicemia: A Rare Infection with Rare Presentation. Indian Ped. 2015;52:901. doi:10.1007/s13312-015-0743-6.

[91] Chandra A, Das A, Sen M, et al. *Brevundimonas diminuta* infection in a case of nephrotic syndrome. Indian J Pathol Microbiol. 2017;60:279–81. doi:10.4103/IJPM.IJPM_679_15.

[92] Swain B, Rout S. *Brevundimonas diminuta*: An unusual cause for bacteraemia at a teaching hospital. The Antisep tic. 2017;114:27–28.