Sum Rule of Quantum Uncertainties: Coupled Harmonic Oscillator System with Time-Dependent Parameters

DaeKil Park1,2 and Eylee Jung1,

1Department of Electronic Engineering, Kyungnam University, Changwon 631-701, Korea

2Department of Physics, Kyungnam University, Changwon 631-701, Korea

Abstract

The uncertainties $\langle \Delta x \rangle^2$ and $\langle \Delta p \rangle^2$ are analytically derived in N-coupled harmonic oscillator system when spring and coupling constants are arbitrarily time-dependent and each oscillator is in arbitrary excited state. When $N = 2$, it is shown that those uncertainties are just arithmetic average of uncertainties of two single harmonic oscillators. However, this arithmetic property is not generally maintained when $N \geq 3$. This property is recovered in N-coupled oscillator system if and only if $(N - 1)$ quantum numbers are equal. Generalization of our results to more general quantum system is briefly discussed.
Uncertainty [1–4] and entanglement [5–7] are two major characteristics of quantum mechanics. These properties make quantum mechanics to be different from classical mechanics. Quantum uncertainty provides a limit on the precision of measurement for incompatible observables. Most typical expression of uncertainty relation is $\Delta x \Delta p \geq \hbar/2$, where Δ means a standard deviation. Recently, different expressions of uncertainty relations were studied such as entropic uncertainty relations [8, 9] in the context of quantum information and generalized uncertainty principle [10] in the context of Planck scale physics. Even though entanglement is also studied from the beginning of quantum mechanics [5], it is extensively explored for last few decades with development of quantum technology. It is used as a physical resource in various quantum information processing such as quantum teleportation [11, 12], superdense coding [13], quantum cloning [14], quantum cryptography [15, 16], quantum metrology [17], and quantum computer [18, 19]. Furthermore, many experimentalists have tried to realize such quantum information processing in the laboratory for last few decades. As a result, quantum cryptography and quantum computer seems to approaching to the commercial level [20, 21].

Although these two phenomena seem to be distinct properties of quantum mechanics, there is some, albeit unclear, connection between them because of the fact that both are strongly dependent on the interaction between subsystems. For example, the uncertainty of a given system was computed in Ref. [22, 23] to discuss on the effect of the rest of universe [24]. It was shown that ignoring the rest of universe appears as an increasing of uncertainty and entropy in the system in which we are interested. In other words, if the system we are interested in is one of subsystems in the whole system and it interacts with other subsystems, its uncertainty and entanglement monotonically increase with increasing the interaction strength. More specifically, let us consider the two coupled harmonic oscillator system, whose Hamiltonian is

$$H_2 = \frac{1}{2} (p_1^2 + p_2^2) + \frac{1}{2} \left[k_0(x_1^2 + x_2^2) + J(x_1 - x_2)^2 \right].$$ \hspace{1cm} (1)

If we assume that the two oscillators, say A and B, were in each ground state, the uncertainty and entanglement of formation [25] (EoF) are given by [26]

$$(\Delta x \Delta p)_{A,B}^2 = \frac{1}{4} \left(\frac{1 + \xi}{1 - \xi} \right)^2 \quad \mathcal{E}_F = -\ln(1 - \xi) - \frac{\xi}{1 - \xi} \ln \xi$$ \hspace{1cm} (2)

where $h = 1$ and $\xi = \left\{ (\sqrt{k_0} + 2J - \sqrt{k_0})/(\sqrt{k_0} + 2J + \sqrt{k_0}) \right\}^2$. It is manifest to show that
both $(\Delta x \Delta p)^2_{A,B}$ and \mathcal{E}_F increase with increasing the coupling constant J. Thus, uncertainty and entanglement are, in this case, implicitly related to each other via ξ. In Ref. [27] quantum uncertainty is used to provide a sufficient criterion for inseparability for continuous variable systems. In Ref. [28] it was shown that the uncertainty relation for all eigenstates in the single harmonic oscillator system is saturated in the plot with respect to Gaussianity.

So far EoF cannot be exactly computed in the coupled harmonic oscillator system except ground state because of non-Gaussian nature of exciting states\(^1\). Since EoF and uncertainty exhibit similar behavior as Eq. (2) shows, one may use the uncertainty as a measure of entanglement after rescaling appropriately when EoF cannot be computed exactly. In this reason it is important to examine the uncertainty for the arbitrary excited states in the coupled harmonic oscillator system.

In there any other similarity between EoF and uncertainty? EoF is believed to have the additivity property\[^{[30]}\], even though still not solved completely. For mixed states EoF is generally defined by a convex-roof method\[^{[25, 31]}\] as follows:

$$
\mathcal{E}_F(\rho) = \min \sum_i p_i \mathcal{E}_F(\rho_i),
$$

where the minimum is taken over all possible ensembles of pure states with $\sum_i p_i = 1$. Let $\rho^{(i)} (i = 1, 2)$ be two bipartite density matrix and $\rho = \rho^{(1)} \otimes \rho^{(2)}$. If we regard ρ as a bipartite state, where $\rho^{(1)}$ and $\rho^{(2)}$ belong to each party, Eq. (3) guarantees $\mathcal{E}_F(\rho) \leq \mathcal{E}_F(\rho^{(1)}) + \mathcal{E}_F(\rho^{(1)})$. The additivity conjecture of EoF is that the equality always holds. Many examples were demonstrated in Ref. [32]. In this paper we will show that uncertainty in the coupled harmonic system also has particular additive property, which we call sum rule. We will present this sum rule in the coupled harmonic oscillator system with arbitrary time-dependent parameters.

We start with simple single harmonic oscillator Hamiltonian with arbitrary time-dependent frequency: $H_1 = \frac{p^2}{2} + \frac{1}{2} \omega^2(t)x^2$. This simple model is important to study on the squeezed states, which appear in various branches of physics such as quantum optics\[^{[33, 36]}\] and cosmology\[^{[37, 40]}\]. The time-dependent Schrödinger equation (TDSE) of this system was examined in detail in Ref. [41–44]. The linearly independent solutions $\psi_n(x, t) (n = 0, 1, \cdots)$

\(^1\) The Rényi-α entropies of few non-Gaussian states have been derived in Ref. [29].
are expressed in a form

\[\psi_n(x, t) = e^{-iE_n\tau(t)} \frac{1}{\sqrt{2\pi n!}} \left(\frac{\omega'}{\pi} \right)^{1/4} H_n(\sqrt{\omega'}x) e^{-\frac{v^2}{2}} \]

(4)

where \(\omega' = \frac{\omega(0)}{b^2} \) and

\[v = \omega' - i\frac{\dot{b}}{b} \quad E_n = \left(n + \frac{1}{2} \right) \omega(0) \quad \tau(t) = \int_0^t \frac{ds}{b^2(s)}. \]

(5)

In Eq. (4) \(H_n(z) \) is \(n \)th-order Hermite polynomial and \(b(t) \) satisfies the nonlinear Ernakov equation

\[\ddot{b} + \omega^2(t)b = \frac{\omega^2(0)}{b^3} \]

(6)

with \(b(0) = 1 \) and \(\dot{b}(0) = 0 \). As Eq. (4) exhibits, \(b(t) \) plays a role as a scaling of the frequency. Solution of the Ernakov equation was discussed in Ref. [43, 45–47]. If \(\omega(t) \) is time-independent, \(b(t) \) is simply one. If \(\omega(t) \) is instantly changed as

\[\omega(t) = \begin{cases} \omega_i & t = 0 \\ \omega_f & t > 0, \end{cases} \]

(7)

then \(b(t) \) becomes

\[b(t) = \sqrt{\frac{\omega_i^2 - \omega_f^2}{2\omega_f^2} \cos(2\omega_f t) + \frac{\omega_f^2 + \omega_i^2}{2\omega_f^2}}. \]

(8)

Of course, more general case of \(\omega(t) \) the nonlinear Ernakov equation should be solved numerically or approximately.

The \(d \)-dimensional Wigner distribution function[24, 48] is defined in terms of the phase space variables in a form

\[W(x, p : t) = \frac{1}{\pi^d} \int dz e^{-2i[p \cdot z]_t} \Psi^*(x + z : t)\Psi(x - z : t) \]

(9)

where \(x = (x_1, x_2, \cdots, x_d) \) and \(p = (p_1, p_2, \cdots, p_d) \). The Wigner distribution function is used to compute the expectation values. For example, the expectation value of \(f(x_1, p_1) \) can be computed by

\[\langle f(x_1, p_1) \rangle = \int dx dp f(x_1, p_1) W(x, p : t). \]

(10)

Also, the Wigner distribution function has information on the substate of density matrix \(\rho(x, x' : t) = \Psi(x : t)\Psi^*(x' : t) \). If \(\rho_A(x_1, x'_1 : t) = \text{Tr}_{2,3,\cdots,d} \rho(x, x' : t) \), the purity function of \(\rho_A \) can be computed as

\[P_A(t) \equiv \text{Tr}\rho_A^2 = 2\pi \int dx_1 dp_1 W^2(x_1, p_1 : t), \]

(11)
Then, the Wigner distribution function for \(H \) where \(W(x, t) \) yield an uncertainty
\[
\int_{-\infty}^{\infty} dx e^{-px^2 + 2px} H_m(ax + b) H_n(cx + d)
\]
(12)
\[
\frac{\sqrt{\pi} e^{\frac{2}{p}}} {p} \sum_{k=0}^{\min(m,n)} \binom{m}{k} \binom{n}{k} k! \left(1 - \frac{a^2}{p}\right) \frac{m-k}{2} \left(1 - \frac{c^2}{p}\right) \frac{n-k}{2} \left(\frac{2ac}{p}\right)^k
\times H_{m-k} \left(\frac{b + \frac{aq}{p}}{\sqrt{1 - \frac{a^2}{p}}} \right) H_{n-k} \left(\frac{d + \frac{cq}{p}}{\sqrt{1 - \frac{c^2}{p}}} \right).
\]

Then, the Wigner distribution function for \(H_1 \) can be written in a form
\[
W_n(x, p : t) = \frac{1}{\pi} \exp \left[-\omega' x^2 - \frac{1}{\omega'} \left(p + \frac{i}{b} x \right)^2 \right]
\times \sum_{k=0}^{n} \binom{n}{k} (-1)^{k} \frac{2^{n-k}}{(n-k)!} \left[\omega' x^2 + \frac{1}{\omega'} \left(p + \frac{i}{b} x \right)^2 \right]^{n-k}
= \frac{1}{n!\pi} \exp \left[-\omega' x^2 - \frac{1}{\omega'} \left(p + \frac{i}{b} x \right)^2 \right] U \left(-n, 1, 2 \left[\omega' x^2 + \frac{1}{\omega'} \left(p + \frac{i}{b} x \right)^2 \right] \right),
\]
where \(U(a, b, z) \) is a confluent hypergeometric function. It is straightforward to show
\[
\int dx dp W_n(x, p : t) = 2\pi \int dx dp W_n^2(x, p : t) = 1,
\]
which guarantees \(\psi_n(x, t) \) is pure state. Using the Wigner distribution function it is straightforward to show that for non-negative integer \(m \), \(\langle x^{2m+1} \rangle = \langle p^{2m+1} \rangle = 0 \) and
\[
\langle x^{2m} \rangle = \frac{2^n (m + n)!}{m!n!\sqrt{\pi} \omega^m} \Gamma \left(\frac{2m + 1}{2} \right) {}_2F_1 \left(-n, -n : -n - m : 1/2 \right)
\]
(14)
\[
\langle p^{2m} \rangle = \frac{2^n (m + n)!}{m!n!\sqrt{\pi} \omega^m} \Gamma \left(\frac{2m + 1}{2} \right) \left[\omega' + \frac{1}{\omega'} \left(\frac{i}{b} \right)^2 \right]^m {}_2F_1 \left(-n, -n : -n - m : 1/2 \right),
\]
where \(\Gamma(z) \) and \({}_2F_1(a, b : c : z) \) are gamma and hypergeometric functions. Thus, the uncertainties for \(x \) and \(p \) are
\[
(\Delta x)^2 = \frac{n + \frac{1}{\omega'}}{\omega'} \quad (\Delta p)^2 = \left(n + \frac{1}{\omega'} \right) \left[\omega' + \frac{1}{\omega'} \left(\frac{i}{b} \right)^2 \right],
\]
(15)
which yield an uncertainty
\[
(\Delta x \Delta p)^2 = \left(n + \frac{1}{\omega'} \right)^2 \left[1 + \frac{1}{\omega'^2} \left(\frac{i}{b} \right)^2 \right].
\]
(16)
Now let us consider the Hamiltonian \(H \) again when \(k_0 \) and \(J \) are arbitrarily time-dependent. It is not difficult to show that the Hamiltonian is diagonalized by introducing normal coordinates \(y_1 = (x_1 + x_2)/\sqrt{2} \) and \(y_2 = (-x_1 + x_2)/\sqrt{2} \), and their conjugate momenta \(\pi_1 \) and \(\pi_2 \) with normal mode frequencies \(\omega_1 = \sqrt{k_0} \) and \(\omega_2 = \sqrt{k_0 + 2J} \). If two oscillators are \(n^{th} \) and \(m^{th} \) states, in the following we will show that the uncertainties for \(x_j \) and \(p_j \) \((j = 1, 2)\) are just arithmetic mean of two single oscillators, that is

\[
(\Delta x_1)^2 = (\Delta x_2)^2 = \frac{1}{2} \left[\frac{2n + 1}{2\omega_1'} + \frac{2m + 1}{2\omega_2'} \right]
\]

\[
(\Delta p_1)^2 = (\Delta p_2)^2 = \frac{1}{2} \left[\frac{2n + 1}{2} \left\{ \omega_1' + \frac{1}{\omega_1'} \left(\frac{\ddot{b}_1}{b_1} \right)^2 \right\} + \frac{2m + 1}{2} \left\{ \omega_2' + \frac{1}{\omega_2'} \left(\frac{\ddot{b}_2}{b_2} \right)^2 \right\} \right]
\]

where \(\omega_j' = \omega_j(0)/b_j^2 \) \((j = 1, 2)\), and \(b_j \) satisfy their own nonlinear Ermakov equations \(\ddot{b}_j + \omega_j^2(t)b_j = \frac{\omega_j^2(0)}{b_j^2} \) with \(\ddot{b}_j(0) = 0 \) and \(b_j(0) = 1 \).

In order to show Eq. (17) we start with solutions of TDSE for \(H_2 \) in terms of \(y_j \), which is

\[
\psi_{n,m}(x_1, x_2 : t) = \frac{1}{\sqrt{2^{(n+m)}n!m!}} \left(\frac{\omega_1'\omega_2'}{\pi^2} \right)^{1/4} H_n(\sqrt{\omega_1'}y_1)H_m(\sqrt{\omega_2'}y_2) \times \exp \left[-i(E_{n,1}\tau_1 + E_{m,2}\tau_2) - \frac{1}{2} \left(v_1y_1^2 + v_2y_2^2 \right) \right],
\]

where \(E_{m,j} = (m + \frac{1}{2})\omega_j(0) \), \(\tau_j = \int_0^t \frac{ds}{\omega_j(s)} \), and \(v_j = \omega_j' - i\frac{\dot{b}_j}{b_j} \). Now, let us compute the Wigner distribution functions of \(H_2 \) system by choosing \(\Psi(x : t) = \psi_{n,m}(x_1, x_2 : t) \) in Eq. (9). If we change Eq. (18) into the original coordinates \(x_j \) and \(p_j \), and inserting it to Eq. (9), the computation of the Wigner distribution function is highly complicated. However, we can escape this difficulty. Since \(y_j \)'s are orthogonal normal modes, they preserve inner product and 2-dimensional volume elements. Thus, the Wigner distribution function for \(H_2 \) are simply reduced to

\[
W_{n,m}(x_1, x_2 : p_1, p_2 : t) = W_n(y_1, \pi_1 : t) \bigg|_{\omega' \rightarrow \omega_1', \dot{b} \rightarrow b_1} \times W_m(y_2, \pi_2 : t) \bigg|_{\omega' \rightarrow \omega_2', \dot{b} \rightarrow b_2},
\]

where \(W_n \) is a Wigner distribution function of the single harmonic oscillator given in Eq. (13).

At this stage we want to digress little bit. Sometimes we need to derive the lower-dimensional reduced Wigner distribution function to explore the properties of reduced
quantum state. Although, however, we can compute the 2-dimensional Wigner distribution function quickly by making use of normal mode, derivation of reduced 1-dimensional Wigner distribution function is very complicated problem. For example, let us consider $W_{n,m}(x_1, p_1 : t) \equiv \int dx_2 dp_2 W_{n,m}(x_1, x_2 : p_1, p_2 : t)$. The difficulty arises due to the fact that $dx_2 dp_2$ is not invariant measure in the normal modes. Thus, we should compute the reduced Wigner distribution function by making use of original coordinates and conjugate momenta. After long and tedious calculation it is possible to show

\[
W_{n,m}(x_1, p_1 : t) = \frac{\sqrt{4\omega'_1\omega'_2}}{\pi} \sum_{k=0}^{n} \sum_{\ell=0}^{m} \left(\begin{array}{c} n \\ k \end{array} \right) \left(\begin{array}{c} m \\ \ell \end{array} \right) \frac{(-1)^{k+\ell}}{(n-k)!(m-\ell)!} 2^{(n+m)-(k+\ell)} (20)
\]

\[
\times \left(-\frac{\partial}{\partial \mu_1} \right)^{n-k} \left(-\frac{\partial}{\partial \mu_2} \right)^{m-\ell} \frac{1}{\sqrt{\Omega(\mu_1, \mu_2 : t)}} \exp \left[-2 \Theta(x_1, p_1 : \mu_1, \mu_2 : t) \right] \bigg|_{\mu_1=\mu_2=1},
\]

where

\[
\Omega(\mu_1, \mu_2 : t) = \omega'_1\omega'_2(\mu_1^2 + \mu_2^2) + \left[\omega'^2_1 + \omega'^2_2 + \left(\frac{\dot{b}_1}{b_1} - \frac{\dot{b}_2}{b_2} \right)^2 \right] \mu_1\mu_2
\]

\[
\Theta(x_1, p_1 : \mu_1, \mu_2 : t) = \omega'_1 \left[\omega'^2_2 x_1^2 + \left(p_1 + \frac{\dot{b}_2}{b_2} x_1 \right)^2 \right] \mu_1^2\mu_2 + \omega'_2 \left[\omega'^2_1 x_1^2 + \left(p_1 + \frac{\dot{b}_1}{b_1} x_1 \right)^2 \right] \mu_1^2\mu_2.
\]

Thus, the reduced Wigner distribution function for $n = m = 0$ is easily computed by

\[
W_{0,0}(x_1, p_1 : t) = \frac{1}{\pi} \sqrt{\frac{4\omega'_1\omega'_2}{\Omega(1,1 : t)}} e^{-2\Theta(x_1,p_1,1,1 : t)/\Omega(1,1 : t)}.
\]

(22)

The purity function $P_{0,0}^A(t) = \text{tr} \rho^2_{0,0}(x_1, x'_1 : t)$, where $\rho_{0,0}(x_1, x'_1 : t)$ is an effective state of A-oscillator derived by taking a partial trace to $\rho_{0,0}(x_1, x_2 : x'_1, x'_2 : t) = \psi_{0,0}(x_1, x_2 : t)\psi^*_{0,0}(x'_1, x'_2 : t)$ over B-oscillator, is

\[
P_{0,0}^A(t) = 2\pi \int dx_1 dp_1 W_{0,0}^2(x_1, p_1 : t) = 2\sqrt{z}
\]

(23)

where $z = \omega'_1\omega'_2/\Omega(1,1 : t)$. From Eq. (20) one can show directly $\int dx_1 dp_1 W_{n,m}(x_1, p_1 : t) =$
1 by making use of simple binomial formula. Furthermore, it is possible to show

\[
2\pi \int dx_1dp_1W_{m,n}(x_1,p_1:t) = 4\sqrt{\omega_1^2\omega_2^2} \sum_{k,k'=0}^{n} \sum_{\ell,\ell'=0}^{m} \binom{n}{k} \binom{m}{\ell} \binom{m}{\ell'} (-1)^{k+k'+\ell+\ell'} \frac{2^{2(n+m)-(k+k'+\ell+\ell')}}{(n-k)!(n-k')!(m-\ell)!(m-\ell')} \times
\]

\[
\left(-\frac{\partial}{\partial \mu_1} \right)^{n-k} \left(-\frac{\partial}{\partial \nu_1} \right)^{n-k'} \left(-\frac{\partial}{\partial \mu_2} \right)^{m-\ell} \left(-\frac{\partial}{\partial \nu_2} \right)^{m-\ell'} \frac{1}{\sqrt{\Gamma(\mu_1, \mu_2; \nu_1, \nu_2)}} \bigg|_{\mu_1=\mu_2=\nu_1=\nu_2=1}
\]

where

\[
\Gamma(\mu_1, \mu_2; \nu_1, \nu_2) = \omega'_1\omega'_2 \left[\mu^2_1\nu^2_2(\mu_2 + \nu_2)^2 + \mu^2_2\nu^2_2(\mu_1 + \nu_1)^2 \right] + \mu_1\mu_2\nu_1\nu_2(\mu_1 + \nu_1)(\mu_2 + \nu_2) \left[\omega'^2_1 + \omega'^2_2 + \left(\frac{b_1}{b_1} - \frac{b_2}{b_2} \right)^2 \right].
\]

If we define the ratios

\[
\gamma_n = \frac{P_{n,0}(t)}{P_{0,0}(t)} \quad \delta_n = \frac{P_{n,n}(t)}{P_{0,n}(t)}
\]

they are summarized at Table I.

n	γ_n	δ_n
1	$\frac{1}{4}(3 - 4z)$	$\frac{1}{16}(9 - 40z + 144z^2)$
2	$\frac{1}{64}(41 - 104z + 144z^2)$	$\frac{1}{4096}(1681 - 19344z + 256608z^2 - 1440000z^3 + 2822400z^4)$
3	$\frac{1}{256}(147 - 540z + 1488z^2 - 1600z^3)$	too long

Table I: The ratios γ_n and δ_n for $n = 1, 2, 3$

The time-dependence of γ_n and δ_n is plotted in Fig. 1(a) and Fig. 1(b) when $k_0(0) = J(0) = 1$ and $k_0(t) = J(t) = 2$ ($t > 0$). As expected the figures exhibit that the effective states for A-oscillator is more and more mixed with increasing n. The remarkable fact these figures show is that the state $\rho_{n,n}$ is more mixed that $\rho_{n,0}$.

Now, let us return to discuss on the uncertainties. From Eq. (19) it is easy to show that $\langle y_j^{2m+1} \rangle = \langle \pi_j^{2m+1} \rangle = 0$, and $\langle y_j^{2m} \rangle$ and $\langle \pi_j^{2m} \rangle$ are equal to $\langle x^{2m} \rangle$ and $\langle p^{2m} \rangle$ in Eq. (14) with changing $\omega_j \rightarrow \omega_j'$ and $b \rightarrow b_j$. Using this fact and the normal modes it is easy to show Eq. (17).
FIG. 1: (Color online) The time-dependence of the ratios is plotted in Fig. 1(a) (γ_n) and Fig. 1(b) (δ_n) when $k_0(0) = J(0) = 1$ and $k_0(t) = J(t) = 2$ ($t > 0$). As expected the figures exhibit that the effective states for A-oscillator is more and more mixed with increasing n.

In order to check whether the property of arithmetic average for uncertainties is maintained or not in multi-coupled harmonic oscillator system we consider the three-coupled harmonic oscillator system, whose Hamiltonian is

$$H_3 = \frac{1}{2}(p_1^2 + p_2^2 + p_3^2) + \frac{1}{2} \left[k_0(t)(x_1^2 + x_2^2 + x_3^2) + J(t) \left\{ (x_1 - x_2)^2 + (x_1 - x_3)^2 + (x_2 - x_3)^2 \right\} \right].$$

(27)

The normal mode coordinates of H_3 is $y_1 = (x_1 + x_2 + x_3)/\sqrt{3}$, $y_2 = (x_1 - x_2)/\sqrt{2}$, and $y_3 = (x_1 + x_2 - 2x_3)/\sqrt{6}$ with normal mode frequencies $\omega_1 = \sqrt{k_0}$ and $\omega_2 = \omega_3 = \sqrt{k_0 + 3J} \equiv \omega$. If three oscillators are in n^{th}, m^{th}, and ℓ^{th} states respectively, the 3-dimensional Wigner distribution function can be computed in a form

$$W_{n,m}(x_1, x_2, x_3 : p_1, p_2, p_3 : t) = W_n(y_1, \pi_1 : t) \bigg|_{\omega' \rightarrow \omega'_1, b \rightarrow b_1} \times W_m(y_2, \pi_2 : t) \times W_\ell(y_3, \pi_3 : t)$$

(28)

where π_j are conjugate momenta of y_j and W_n is a Wigner distribution function of the single harmonic oscillator given in Eq. [13]. Of course, $b_1(t)$ and $b(t)$ are solutions for Ermakov equations for ω_1 and ω, and $\omega'_1 = \omega_1(0)/b_1^2(t)$ and $\omega' = \omega(0)/b^2(t)$. Then, it is
straightforward to show

\[(\Delta x_1)^2 = (\Delta x_2)^2 = \frac{1}{3} \left[\frac{2n + 1}{2\omega'_1} + \frac{3(2m + 1) + (2\ell + 1)}{4\omega'} \right] \tag{29}\]

\[(\Delta x_3)^2 = \frac{1}{3} \left[\frac{2n + 1}{2\omega'_1} + \frac{2\ell + 1}{2\omega'} \right] \]

\[(\Delta p_1)^2 = (\Delta p_2)^2 = \frac{1}{3} \left[\frac{2n + 1}{2} \left\{ \omega'_1 + \frac{1}{\omega'_1} \left(\frac{b_1}{b_1} \right)^2 \right\} + \frac{3(2m + 1) + (2\ell + 1)}{4} \left\{ \omega' + \frac{1}{\omega'} \left(\frac{b}{b} \right)^2 \right\} \right] \]

\[(\Delta p_3)^2 = \frac{1}{3} \left[\frac{2n + 1}{2} \left\{ \omega'_1 + \frac{1}{\omega'_1} \left(\frac{b_1}{b_1} \right)^2 \right\} + \frac{2\ell + 1}{2} \left\{ \omega' + \frac{1}{\omega'} \left(\frac{b}{b} \right)^2 \right\} \right]. \]

Thus, the property of the arithmetic average in uncertainties is not maintained when \(N = 3\) except \(m = \ell\).

Finally, let us consider the \(N\)-coupled harmonic oscillator system, whose Hamiltonian is

\[H_N = \frac{1}{2} \sum_{i=1}^{N} p_i^2 + \frac{1}{2} \sum_{i=1}^{N} x_i^2 + J(t) \sum_{i<j}^{N} (x_i - x_j)^2 \tag{30}\]

It is diagonalized by introducing the normal mode coordinates \(y_1 = (x_1 + x_2 + \cdots + x_N)/\sqrt{N}\) and \(y_j = (x_1 + x_2 + \cdots + x_{j-1} - (j-1)x_j)/\sqrt{J(j-1)}\) \((j = 2, 3, \cdots, N)\) with normal mode frequencies \(\omega_1 = \sqrt{k_0}\) and \(\omega_2 = \omega_3 = \cdots = \omega_N = \sqrt{k_0 + NJ} \equiv \omega). If \(N\) oscillators are \(n_1, n_2, \cdots, n_N\) states, the \(N\)-dimensional Wigner distribution function can be written in a form

\[W_{n_1,n_2,\cdots,n_N}(x, p : t) = W_{n_1}(y_1, \pi_1 : t) \bigg|_{\omega' = \omega'_1, b = b_1} \times \prod_{j=2}^{N} W_{n_j}(y_j, \pi_j : t), \tag{31}\]

where \(\pi_j\) are conjugate momenta of \(y_j\) and \(W_n\) is a Wigner distribution function of the single harmonic oscillator given in Eq. \[13\]. Then it is straightforward to show

\[(\Delta x_j)^2 = \frac{1}{N} \left[\frac{2n_1 + 1}{2\omega'_1} + \frac{1}{2\omega'} \left\{ \frac{2N(j-1)}{j} n_j + 2N \sum_{k=j+1}^{N} \frac{n_k}{k(k-1) + (N-1)} \right\} \right] \tag{32}\]

\[(\Delta p_j)^2 = \frac{1}{N} \left[\frac{2n_1 + 1}{2} \left\{ \omega'_1 + \frac{1}{\omega'_1} \left(\frac{b_1}{b_1} \right)^2 \right\} \right. \]

\[+ \left. \frac{1}{2} \left\{ \frac{2N(j-1)}{j} n_j + 2N \sum_{k=j+1}^{N} \frac{n_k}{k(k-1) + (N-1)} \right\} \left\{ \omega' + \frac{1}{\omega'} \left(\frac{b}{b} \right)^2 \right\} \right]. \]

One can show that Eq. \[32\] reproduces Eq. \[17\] and Eq. \[29\] when \(N = 2\) and \(N = 3\) if the quantum numbers \(n_1, n_2, \) and \(n_3\) are replaced by \(n, m, \) and \(\ell\). If \(n_2 = n_3 = \cdots = n_N, \) one can
show that \((\Delta x_j)^2\) and \((\Delta p_j)^2\) are independent of \(j\) and arithmetic average of uncertainties for each oscillator.

In this paper we compute the uncertainties \((\Delta x)^2\) and \((\Delta p)^2\) analytically in the \(N\)-coupled harmonic oscillator system. When \(N = 2\), it is shown that those uncertainties are just arithmetic average of uncertainties of two single harmonic oscillators. However, this property is not generally maintained when \(N \geq 3\). This property is recovered in \(N\)-coupled oscillator system only when \((N - 1)\) quantum numbers are equal.

Our calculation can be generalized to more general case. For example, let us consider a Hamiltonian

\[
\tilde{H}_3 = \frac{1}{2} (p_1^2 + p_2^2 + p_3^2) + \frac{1}{2} \left[k_0(t) \left(x_1^2 + x_2^2 + x_3^2 \right) + J_{12}(t)(x_1 - x_2)^2 + J_{13}(t)(x_1 - x_3)^2 + J_{23}(t)(x_2 - x_3)^2 \right].
\]

In this case the normal mode coordinates are

\[
y_1 = \frac{1}{\sqrt{3}} (x_1 + x_2 + x_3) \quad \quad \quad (34)
\]

\[
y_+ = A_+(-J_{12} + J_{23} - \zeta)x_1 + A_+(J_{12} - J_{13} + \zeta)x_2 + A_+(J_{13} - J_{23})x_3
\]

\[
y_- = A_-(J_{12} - J_{23} + \zeta)x_1 + A_-(J_{12} - J_{13} - \zeta)x_2 + A_-(J_{13} - J_{23})x_3
\]

with \(\zeta = \sqrt{J_{12}^2 + J_{13}^2 + J_{23}^2 - (J_{12}J_{13} + J_{12}J_{23} + J_{13}J_{23})}\) and

\[
A_{\pm} = \frac{1}{J_{13} - J_{23}} \sqrt{\frac{2\zeta \pm (J_{13} + J_{23} - 2J_{12})}{6\zeta}}. \quad \quad \quad (35)
\]

In this case the normal mode frequencies are \(\omega_1 = \sqrt{k_0}\) and \(\omega_{\pm} = \sqrt{k_0 + J_{12} + J_{13} + J_{23} \pm \zeta}\).

If the three oscillators are \(n^{th}\), \(m^{th}\), and \(\ell^{th}\) exciting states, our procedure yields

\[
(\Delta x_1)^2 = \frac{1}{3} \frac{2n + 1}{2\omega_1'} + A_+^2 u_+^2 \frac{2m + 1}{2\omega_+'} + A_-^2 \frac{2\ell + 1}{2\omega_-'} \quad \quad \quad (36)
\]

\[
(\Delta x_2)^2 = \frac{1}{3} \frac{2n + 1}{2\omega_1'} + A_+^2 v_+^2 \frac{2m + 1}{2\omega_+'} + A_-^2 v_-^2 \frac{2\ell + 1}{2\omega_-'}
\]

\[
(\Delta x_3)^2 = \frac{1}{3} \frac{2n + 1}{2\omega_1'} + (J_{13} - J_{23})^2 \left[A_+^2 \frac{2m + 1}{2\omega_+'} + A_-^2 \frac{2\ell + 1}{2\omega_-'} \right],
\]

where \(u_{\pm} = -J_{12} + J_{23} \pm \zeta, v_{\pm} = J_{12} - J_{13} \pm \zeta,\) and \(\omega_j' = \omega_j/b_j(t)\) \((j = 1, \pm)\). Of course \(b_j\)'s are the scaling factors of \(\omega_j\). Similarly, the uncertainties \((\Delta p_j)^2\) can be computed explicitly by following the same procedure.
The quantum information processing with continuous variables attracts much attention from the aspect of both theory and experiment\[50, 51\]. The quantum uncertainties are closely connected to inseparability criterion of the continuous variable quantum system\[27, 52\]. Furthermore, the distillation protocols to maximally entangled state have been already suggested in Ref. \[53, 54\]. We hope our results on explicit expressions of uncertainties may give valuable tools to the various continuous variable quantum information processing.

[1] W. Heisenberg, Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik, Z. Phys. 43 (1927) 172.

[2] E. H. Kennard, Zur Quantenmechanik einfacher Bewegungstypen, Z. Phys. 44 (1927) 326.

[3] H. P. Robertson, The Uncertainty Principle, Phys. Rev. 34 (1929) 163.

[4] P. Busch, T. Heinonen, and P. Lahti, Heisenberg’s uncertainty principle, Phys. Rep. 452, 155 (2007).

[5] E. Schrödinger, Die gegenwärtige Situation in der Quantenmechanik, Naturwissenschaften, 23 (1935) 807.

[6] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, England, 2000).

[7] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Quantum Entanglement, Rev. Mod. Phys. 81 (2009) 865 [quant-ph/0702225] and references therein.

[8] S. Wehner and A. Winter, Entropic uncertainty relations—a survey, New J. Phys. 12, 025009 (2010).

[9] P. J. Coles, M. Berta, M. Tomamichel, and S. Wehner, Entropic uncertainty relations and their applications, Rev. Mod. Phys. 89, 015002 (2017).

[10] A. N. Tawfik and A. M. Diab, Review on Generalized Uncertainty Principle, Rept. Prog. Phys.78 (2015) 126001 [arXiv:1509.02436 (physics.gen-ph)] and references therein.

[11] C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres and W. K. Wootters, Teleporting an Unknown Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels, Phys.Rev. Lett. 70 (1993) 1895.

[12] Y. H. Luo et al., Quantum Teleportation in High Dimensions, Phys. Rev. Lett. 123 (2019) 070505 [arXiv:1906.09697 (quant-ph)].
C. H. Bennett and S. J. Wiesner, *Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states*, Phys. Rev. Lett. **69** (1992) 2881.

V. Scarani, S. Lblisdir, N. Gisin and A. Acin, *Quantum cloning*, Rev. Mod. Phys. **77** (2005) 1225 [quant-ph/0511088] and references therein.

A. K. Ekert, *Quantum Cryptography Based on Bells Theorem*, Phys. Rev. Lett. **67** (1991) 661.

C. Kollmitzer and M. Pivk, Applied Quantum Cryptography (Springer, Heidelberg, Germany, 2010).

K. Wang, X. Wang, X. Zhan, Z. Bian, J. Li, B. C. Sanders, and P. Xue, *Entanglement-enhanced quantum metrology in a noisy environment*, Phys. Rev. **A97** (2018) 042112 [arXiv:1707.08790 (quant-ph)].

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, *Quantum Computers*, Nature, **464** (2010) 45 [arXiv:1009.2267 (quant-ph)].

G. Vidal, *Efficient classical simulation of slightly entangled quantum computations*, Phys. Rev. Lett. **91** (2003) 147902 [quant-ph/0301063].

S. Ghernaouti-Helie, I. Tashi, T. Laenger, and C. Monyk, *SECOQC Business White Paper*, [arXiv:0904.4073 (quant-ph)].

D. Han, Y. S. Kim, and M. E. Noz, *Coupled Harmonic Oscillators and Feynman’s Rest of the Universe*, cond-mat/9705029.

D. Han, Y. S. Kim, and M. E. Noz, *Illustrative Example of Feynman’s Rest of the Universe*, Am. J. Phys. **67** (1999) 61.

R. P. Feymann, Statistical Mechanics (Benjamin/Cummings, Reading, MA, 1972).

C. H. Bennett, D. P. DiVincenzo, J. A. Smokin and W. K. Wootters, *Mixed-state entanglement and quantum error correction*, Phys. Rev. **A 54** (1996) 3824 [quant-ph/9604024].

DaeKil Park, *Dynamics of entanglement and uncertainty relation in coupled harmonic oscillator system: exact results*, Quant. Inf. Proc. **17** (2018) 147 [arXiv:1801.07070 (quant-ph)].

L. M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, *Inseparability criterion for continuous variable systems*, Phys. Rev. Lett. **84** (2000) 2722 [quant-ph/9908056].

A. Mandilara and N. J. Cerf, *Quantum uncertainty relation saturated by the eigenstates of the
harmonic oscillator, Phys. Rev. A 86 (2012) 030102(R) [arXiv:1201.0453 (quant-ph)].

[29] Ilki Kim, Rényi-α entropies of quantum states in closed form: Gaussian states and a class of non-Gaussian states, Phys. Rev. E 97 (2018) 062141 [arXiv:1804.05980 (cond-mat)].

[30] O. Krueger and R. F. Werner, Some Open Problems in Quantum Information Theory, quant-ph/0504166.

[31] A. Uhlmann, Fidelity and concurrence of conjugate states, Phys. Rev. A 62 (2000) 032307 [quant-ph/9909060].

[32] G. Vidal, W. Dürr, and J. I. Cirac, Entanglement cost of mixed states, Phys. Rev. Lett. 89, (2002) 027091 [quant-ph/0112131].

[33] D. F. Walls, Squeezed states of light, Nature, 306 (5939) (1983) 141.

[34] R. Loudon and P. L. Knigh, Squeezed Light, J. Mod. Optics, 34 (1987) 709.

[35] L. A. Wu, M. Xiao, and H. J. Kimble, Squeezed states of light from an optical parametric oscillator, J. Opt. Soc. Am. B 4 (1987) 1465.

[36] R. Schnabel, Squeezed states of light and their applications in laser interferometers, Phys. Rep. 684 (2017) 1 [arXiv:1611.03986 (quant-ph)].

[37] L. P. Grishchuk and Y. V. Sidorov, Squeezed quantum states of relic gravitons and primordial density fluctuations, Phys. Rev. D 42 (1990) 3413.

[38] L. P. Grishchuk, Quantum effects in cosmology, Classical and Quantum Gravity, 10 (1993) 2449 [gr-qc/9302036].

[39] M. B. Einhorn and F. Larsen, Squeezed states in the de Sitter vacuum, Phys. Rev. D 68 (2003) 064002 [hep-th/0305056].

[40] C. Kiefer, I. Lohmar, D. Polarski, and A. A. Starobinsky, Pointer states for primordial fluctuations in inflationary cosmology, Classical and Quantum Gravity, 24 (2007) 1699 [astro-ph/0610700].

[41] H. R. Lewis Jr., and W. B. Riesenfeld, An Exact Quantum Theory of the TimeDependent Harmonic Oscillator and of a Charged Particle in a TimeDependent Electromagnetic Field, J. Math. Phys. 10 (1969) 1458.

[42] X. Ma and W. Rhodes, Squeezing in harmonic oscillators with time-dependent frequencies, Phys. Rev. A 39 (1989) 1941.

[43] M. A. Lohe, Exact time dependence of solutions to the time-dependent Schrödinger equation, J. Phys. A: Math. Theor. 42 (2009) 035307.
D. M. Tibaduiza, L. B. Pires, D. Szilard, A. L. C. Rego, C. A. D. Zarro and C. Farina,

Exact algebraic solution for a quantum harmonic oscillator with time-dependent frequency,

arXiv:1908.11006 [quant-ph].

E. Pinney, The nonlinear differential equation, Proc. Amer. Math. Soc. 1 (1950) 681.

V. Gritsev, P. Barmettler, and E. Demler Scaling approach to quantum non-equilibrium dy-

namics of many-body systems, New J. Phys. 12 (2010) 113005 arXiv:0912.2744 (cond-mat)].

A. del Campo, Exact quantum decay of an interacting many-particle system: the Calogero-

Sutherland model, New J. Phys. 18 (2016) 015014 arXiv:1504.01620 (quant-ph).

Y. S. Kim and M. E. Noz, Phase Space Picture of Quantum Mechanics (World Scientific,

Singapore, 1991).

Similar integral formula with Eq. 12 is presented at page 503 of A. P. Prudnikov, Y. A.

Brychkov, and O. I. Marichev, Integrals and Series volume 2 (Gordon and Breach Science,

New York, 1983), but it is erroneous. I corrected the integral formula by making use of

definition of the Hermite polynomial.

S. L. Braunstein and P. van Loock, Quantum Information with continuous variables, Rev.

Mod. Phys. 77 (2005) 513 quant-ph/0410100 and references therein.

G. Adesso, S. Ragy, and A. R. Lee, Continuous variable quantum information: Gaussian

states and beyond, Open. Syst. Inf. Dyn., 21 (2014) 1440001 arXiv:1401.4679 (quant-ph)].

R. Simon, Peres-Horodecki separability criterion for continuous variable systems, Phys. Rev.

Lett. 84 (2000) 2726 quant-ph/9909044.

L. M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, Entanglement purification of Gaussian

variable quantum states, Phys. Rev. Lett. 84 (2000) 4002 quant-ph/9912017.

G. Giedke, L. M. Duan, J. I. Cirac, and P. Zoller, All inseparable two-mode Gaussian contin-

uous variable states are distillable quant-ph/0007061.