Bulk Viscous Matter-dominated Universes: Asymptotic Properties

Arturo Avelino, Ricardo García-Salcedo, Tame Gonzalez, Ulises Nucamendi, and Israel Quiros

Abstract. By means of a combined use of the type Ia supernovae and $H(z)$ data tests, together with the study of the asymptotic properties in the equivalent phase space – through the use of the dynamical systems tools – we demonstrate that the bulk viscous matter-dominated scenario is not a good model to explain the accepted cosmological paradigm, at least, under the parametrization of bulk viscosity considered in this paper. The main objection against such scenarios is the absence of conventional radiation and matter-dominated critical points in the phase space of the model. This entails that radiation and matter dominance are not generic solutions of the cosmological equations, so that these stages can be implemented only by means of unique and very specific initial conditions, i.e., of very unstable particular solutions. Such a behavior is in marked contradiction with the accepted cosmological paradigm which requires of an earlier stage dominated by relativistic species, followed by a period of conventional non-relativistic matter domination, during which the cosmic structure we see was formed. Also, we found that the bulk viscosity is positive just until very late times in the cosmic evolution, around $z < 1$. For earlier epochs it is negative, been in tension with the local second law of thermodynamics.

Keywords: Viscous dark matter, cosmological observations constraints, dynamical systems
1 Introduction

Within the context of early inflation, it has been known since long time ago that an imperfect fluid with bulk viscosity in cosmology can produce an accelerated expansion without the need of a cosmological constant or some other inflationary scalar field \cite{1} (although some authors do not agree with this conclusion \cite{2}). Further extrapolation of this idea – used to induce an accelerated expanding Universe without the need of unknown components like dark energy fields – leads to the possibility that one alternative candidate to explain the present acceleration can be bulk viscous pressure of a imperfect fluid characterizing dark matter \cite{3}, in this sense, this class of models represents an unified description of the dark sector in a similar way that the Chaplygin gas model. No matter how attractive it seems, this idea faces some problems, among them, the need to have a satisfactory mechanism for the origin and composition of the bulk viscosity \cite{7}.

From a thermodynamical point of view the bulk viscosity in a physical system is due to its deviations from the local thermodynamic equilibrium \cite{5}. In a cosmological setting, the bulk viscosity may arise when the cosmic fluid expands (or contracts) too fast so that the system does not have enough time to restore its local thermodynamic equilibrium and then it arises an effective pressure restoring the system to its thermal equilibrium. When the fluid reaches again the thermal equilibrium then the bulk viscous pressure vanishes \cite{5, 6}. Therefore, in an accelerated expanding Universe, it may be natural to assume the possibility that the expansion process is actually a collection of states out of thermal equilibrium in a small fraction of time giving rise to the existence of a bulk viscosity \cite{7}.

Usually the way to test the theoretical (and observational) viability of a given cosmological model is through using known solutions of the cosmological field equations, or by seeking for new particular
solutions that are physically plausible. However, in general, the cosmological field equations are very difficult to solve exactly. Even if a given analytic solution can be found, it will not be unique, but just one in a large set of them. This is not to talk about stability of given solution(s). An alternative way around is to invoke the dynamical systems tools to extract very useful information about the asymptotic properties of the model instead. In this regard, knowledge of the critical (also equilibrium or singular) points in the phase space – corresponding to a given cosmological model – is a very important information since, independent on the initial conditions chosen, the orbits of the corresponding autonomous system of ordinary differential equations (ODE) will always evolve for some time in the neighborhood of these points. Besides, if the point were an (global) attractor, independent of the initial conditions, the orbits will always be attracted towards it (either into the past or into the future). Going back to the original cosmological model, the existence of the equilibrium points can be correlated with generic cosmological solutions that might really decide the fate and/or the origin of the cosmic evolution.

A phase space for a model which is consistent with the presently accepted cosmological paradigm should contain critical points associated with: i) a radiation-dominated (relativistic) stage, followed by ii) a matter-dominated (non-relativistic) phase, which is important to allow for the formation of the amount of cosmic structure we see, and iii) an accelerated expanding stage which possibly might last for ever. Perhaps, there should be also a critical point in the phase space associated with an early inflationary period, however, this would require of further refinements of a given cosmological model which is primarily intended to explain the period lasting between decoupling of radiation and baryons and up to the present accelerating phase.

In the present paper we will make a combined use of the dynamical systems tools and of the type Ia supernovae test, to extract as much as possible useful information about the asymptotic properties of a bulk viscous matter-dominated Universe, in order to be able to judge about its theoretical viability to accommodate the accepted cosmological paradigm. In the specific model we shall be investigating the cosmological dynamics is fueled by a conventional baryonic matter component jointly with a fluid with bulk viscosity of the form: $\zeta = \zeta_0 + \zeta_1 H + \zeta_2 \dot{a}/\ddot{a}$ playing the role of dark matter, where ζ_0, ζ_1, and ζ_2 are constants to be determined by the observations and $H = \dot{a}/a$ is the Hubble parameter. The term ζ_0 takes into account the simplest parametrization for the bulk viscosity: a constant. The term $\zeta_1 H$ characterizes the possibility of a bulk viscosity proportional to the expansion ratio of the Universe, while the third term $\zeta_2 \dot{a}/\ddot{a}$ takes into consideration the influence acceleration of the expansion might has on the bulk viscosity.

The results of the present study will convincingly show that the model of bulk viscosity considered here (see also [7, 8]) is in marked contradiction with the presently accepted cosmological paradigm and, hence, should be ruled out. In fact, it will be shown that there are not any critical points in the phase space of this cosmological model which could be associated with either radiation or matter domination. This, in turn, entails that radiation and matter dominance are not generic solutions of the model. These can be, at most, very particular solutions that can be achieved under specific initial conditions. This is in marked contradiction with the accepted cosmological paradigm in that the latter requires of an earlier stage dominated by relativistic species (specifically a radiation-dominated era), followed by a period of conventional matter domination during which the cosmic structure we see was formed.

The paper has been organized as it follows. The relevant details of the model are exposed in section 2, followed by its observational testing using the supernovae SNe Ia data in section 3.1. In the first part of the dynamical systems study in section 4, for sake of simplicity, we will resort to a single component to embrace radiation, baryons, etc. Then, in subsection 4.3, we consider a more physically involved model where the cosmic dynamics is fueled by radiation, dark matter, and pressureless bulk viscous matter. In order to draw the phase portraits we use the best estimated values of the free parameters of section 3.1. A thorough discussion of the results of our study, based on the combined use of the properties of the model in the equivalent phase space and of the Ia supernovae and $H(z)$ data tests, is given in section 5. It will be evident that, independent of the values of the free parameters, there are not critical points in the phase space that could be correlated with either radiation or matter dominance stages. In the final section 6 brief conclusions are given. An appendix section is included.
2 Cosmology of bulk viscous matter-dominated Universes.

In this section we analyze a cosmological model composed by a baryon matter and a bulk viscous components with dust behavior \((w = 0) \) as dark matter, in a spatially flat universe. The energy-momentum tensor for the pressureless baryon component is given as a perfect fluid as usual
\[
T_{\mu\nu}^{(m)} = \rho_B u_\mu u_\nu,
\]
where \(\rho_B \) is the energy density of the baryon component and \(u^\mu \) is the four-velocity vector. The energy-momentum tensor of the bulk viscous component is that of an \textit{imperfect fluid} with a first-order deviation from the thermodynamic equilibrium. It can be expressed as \[9\];
\[
T_{\mu\nu}^{(v)} = \rho_v u_\mu u_\nu + (g_{\mu\nu} + u_\mu u_\nu)P_v^*,
\]
where
\[
P_v^* \equiv P_v - \zeta \nabla_v u^\nu,
\] (2.1)
\(\rho_v \) and \(P_v \) are the energy density and pressure of the viscous fluid respectively. The term \(g_{\mu\nu} \) is the metric tensor, and the subscript \(" \) stands for \textit{viscous} component. The term \(\zeta \) is a \textit{bulk viscous} coefficient that arises in a fluid when it is out of the local thermodynamic equilibrium and which induces a \textit{viscous pressure} \(-\zeta \nabla_v u^\nu \) [5]. The term \(P_v^* \) is an effective pressure composed by the pressure \(P_v \) of fluid plus the bulk viscous pressure. It was initially proposed in reference [10] for relativistic dissipative processes in thermodynamic systems out of local equilibrium, and later on the authors of Ref. [11] developed an equivalent formulation.

Here we shall explore the cosmological implications of such a model by assuming that the Universe is filled with bulk viscous fluid only. For Friedmann-Robertson-Walker (FRW) spacetimes with flat spatial sections we have
\[
ds^2 = -dt^2 + a^2(t)(dr^2 + r^2d\Omega^2),
\]
where \(a(t) \) is the scale factor. The conservation equations for the pressureless baryon matter and the viscous component can be written respectively as
\[
\dot{\rho}_B + 3H\rho_B = 0,
\]
\[
\dot{\rho}_v + 3H(\rho_v + P_v^*) = 0,
\] (2.2)
where \(H \equiv \dot{a}/a \) is the Hubble parameter and, as usual, the over-dot stands for time derivative. The solution of the first equation in (2.2) for the matter component is \(\rho_B = \rho_{B0}a^{-3} \), where \(\rho_{B0} \) is the present value of the matter energy density. On the other hand, the bulk viscous pressure \(-\zeta \nabla_v u^\nu \) can be written as \(-3\zeta H \). So, assuming the general equation of state for the viscous component as \(P_v = w\rho_v \), the second conservation equation in (2.2) for the viscous fluid becomes
\[
\dot{\rho}_v + 3H(1 + w)\rho_v - 9\zeta H^2 = 0.
\] (2.3)

The Einstein’s equations for the model are
\[
H^2 = \frac{8\pi G}{3}(\rho_B + \rho_v), \quad \frac{\ddot{a}}{a} = -\frac{4\pi G}{3}[\rho_B + (1 + 3w)\rho_v - 9\zeta H].
\] (2.4)

We assume the parametrization for the bulk viscosity \(\zeta \) of the viscous component \(\rho_v \) in the form of the following expansion:
\[
\zeta = \zeta_0 + \zeta_1 H + \zeta_2 \left(\frac{\dot{a}}{a} \right),
\] (2.5)
where \(\zeta_0 \), \(\zeta_1 \) and \(\zeta_2 \) are constants to be determined by the observations. The term \((\ddot{a}/a) \) in (2.5) can be written as \((\ddot{a}/a) = (\dot{a}/a)/H \). So, using second equation in (2.4), it can be written as
\[
\frac{\ddot{a}}{a} = -\frac{4\pi G}{3H}[\rho_B + (1 + 3w)\rho_v - 9\zeta H].
\] (2.6)
Confidence intervals

Figure 1. Confidence intervals for the dimensionless viscous coefficients ($\tilde{\zeta}_0, \tilde{\zeta}_1$) of a bulk viscosity parametrization of the form $\zeta = \tilde{\zeta}_0 + \tilde{\zeta}_1 H$ (we have set $\tilde{\zeta}_2 = 0$). We find as best estimates ($\tilde{\zeta}_0 = 3.12^{+0.35}_{-0.34}$, $\tilde{\zeta}_1 = -0.96 \pm 0.3$), see table 1. The solid red, dashed and filled contour plots correspond to the use of SNe, $H(z)$ and the joint SNe + $H(z)$ data sets respectively. The gray shaded area at the bottom left indicates the forbidden region where the total bulk viscosity $\tilde{\zeta}$ given by eq.(A.2) is negative at the present-day ($z = 0$). The confidence intervals shown correspond to 68.3%, 95.4% and 99.73% of probability. The Hubble constant H_0 was marginalized assuming a constant prior probability distribution for H_0. It was assumed the values $\tilde{\Omega}_v(z = 0) = 0.96, \Omega_{B0} = 0.04$ and $w = 0$.

We can see that if the magnitude of the term $9\zeta H$ is greater than “$\rho_B + (1 + 3w)\rho_v$” then it is induced an acceleration in the expansion of the Universe, i.e., $\ddot{a} > 0$.

For simplicity, we define the dimensionless bulk viscous coefficients as

$$
\tilde{\zeta} \equiv \left(\frac{8\pi G}{3H_0} \right) \zeta, \quad \tilde{\zeta}_0 \equiv \left(\frac{24\pi G}{H_0} \right) \zeta_0
$$

$$
\tilde{\zeta}_1 \equiv (24\pi G) \zeta_1, \quad \tilde{\zeta}_2 \equiv \left(\frac{4\pi G}{3} \right) \zeta_2.
$$

The dimensionless Friedmann constraint – first equation in (2.4) – can be written as

$$
E^2 \equiv \left(\frac{H}{H_0} \right)^2 = \Omega_{B0} a^{-3} + \tilde{\Omega}_v,
$$

where $\Omega_{B0} \equiv \rho_{B0}/\rho_{\text{crit}}$ and $\tilde{\Omega}_v \equiv \rho_v/\rho_{\text{crit}}$. The evolution of the viscous density $\tilde{\Omega}_v$ is given by the numerical solution of the ordinary differential equation (A.4). See Appendix A for details.

3 Cosmological probes

We test the viability of the model and constrain its free parameters ($\tilde{\zeta}_0, \tilde{\zeta}_1, \tilde{\zeta}_2$) using the type Ia Supernovae (SNe Ia) observations and the Hubble parameter $H(z)$ measured at different redshifts. We compute the best estimated values for pairs of ($\tilde{\zeta}_0, \tilde{\zeta}_1, \tilde{\zeta}_2$), the goodness-of-fit of the model to the data and the confidence intervals by a χ^2 function minimization, to constrain their possible values with levels of statistical confidence which are shown in figures 1–3.
Figure 2. Confidence intervals for $(\tilde{\zeta}_0, \tilde{\zeta}_2)$ of a bulk viscosity parametrization of the form $\zeta = \zeta_0 + \zeta_2(\ddot{a}/\dot{a})$ (we set $\tilde{\zeta}_1 = 0$). We find as best estimates $(\tilde{\zeta}_0 = 1.59^{+0.06}_{-0.05}, \tilde{\zeta}_2 = 0.05^{+0.007}_{-0.01})$, see table 1. The solid red, dashed and filled contour plots correspond to the use of SNe, $H(z)$ and the joint SNe + $H(z)$ data sets respectively. The gray shaded area at the top left indicates the forbidden region where the total bulk viscosity $\tilde{\zeta}$ given by eq.(A.2) is negative at the present-day ($z = 0$). The confidence intervals shown correspond to 68.3%, 95.4% and 99.73% of probability.

Figure 3. Confidence intervals for $(\tilde{\zeta}_1, \tilde{\zeta}_2)$ of a bulk viscosity parametrization of the form $\zeta = \zeta_1 H + \zeta_2(\ddot{a}/\dot{a})$ (we set $\tilde{\zeta}_0 = 0$). The solid red, dashed and filled contour plots correspond to the use of SNe, $H(z)$ and the joint SNe + $H(z)$ data sets respectively. The confidence intervals shown correspond to 68.3%, 95.4% and 99.73% of probability. The best estimated values for $(\tilde{\zeta}_1, \tilde{\zeta}_2)$ are all those points that lie on the line equation $\tilde{\zeta}_2 = m\tilde{\zeta}_1 + b$, where $m = -0.19808$, $b = 0.30918$ with $\chi^2_{\text{min}} = 639.131$ (green line) when using the combined SNe + $H(z)$ data sets, except at the singular point $(\tilde{\zeta}_1 = 1, \tilde{\zeta}_2 = 1/9)$ that corresponds to the vertex visible in the figure. The gray shaded area indicates the forbidden region where the total bulk viscosity $\tilde{\zeta}$ given by eq.(A.2) is negative at the present day ($z = 0$).
Table 1. Best estimated values of the dimensionless viscous coefficients ($\tilde{\zeta}_0, \tilde{\zeta}_1, \tilde{\zeta}_2$) for the dark component with bulk viscosity parametrized as $\zeta = \zeta_0 + \tilde{\zeta}_1 H + \tilde{\zeta}_2 (\dot{a}/a)$. It was assumed $w = 0$ and $\Omega_{\Lambda_0} (z = 0) = 0.96$ for the dark component, and $\Omega_{B_0} = 0.04$ for the baryon matter. The best estimates were computed using the SNe + $H(z)$ data sets. The first two columns show the best estimated values for pairs of viscous coefficients ($\tilde{\zeta}_i, \tilde{\zeta}_j$), where the remaining viscous coefficient $\tilde{\zeta}_k$ in each case, is set to zero (third column). The fourth and fifth columns show the minimum of the χ^2 function and its corresponding “χ^2 function by degrees of freedom”: $\chi^2_{d.o.f.} = \chi^2_{\text{min}}/(n - p)$, where n is the number of data, and p is the number of free parameters estimated. The errors in the estimations are given to 1σ. The best estimated values for ($\tilde{\zeta}_1, \tilde{\zeta}_2$), with $\tilde{\zeta}_0 = 0$, correspond to all those points which lie on the line $\tilde{\zeta}_2 = m\tilde{\zeta}_1 + b$ ($m = -0.19808, b = 0.30918$), with $\chi^2_{\text{min}} = 639.131$ ($\chi^2_{d.o.f.} = 1.08$). Figures 1 to 3 show the confidence intervals. The Hubble constant H_0 was marginalized assuming a constant prior distribution.

![Figure 4](image)

Figure 4. Evolution of the total bulk viscosity $\tilde{\zeta}$ with respect to the redshift z. The left and right panels correspond to the cases ($\tilde{\zeta}_0, \tilde{\zeta}_1$) and ($\tilde{\zeta}_0, \tilde{\zeta}_2$) respectively. The central thick lines come from the evaluation of the equation (A.2) at the best estimated values for ($\tilde{\zeta}_0, \tilde{\zeta}_1$) and ($\tilde{\zeta}_0, \tilde{\zeta}_2$) respectively (see table 1). We notice that total bulk viscosity $\tilde{\zeta}$ arises with positive values just at late times, at around a redshift $z = 2.5$. It is not shown the negative values of $\tilde{\zeta}$ because they are forbidden by the local second law of thermodynamics (see section 3.3). The error bands are given at 68.3% (1σ) of confidence level (see Appendix B for details).

3.1 Type Ia Supernovae

We use the “Union2.1” SNe Ia data set (2012) from “The Supernova Cosmology Project” (SCP) composed by 580 type Ia supernovae [12]. The luminosity distance d_L in a flat FRW cosmology, is computed through

$$d_L(z, \tilde{\zeta}_0, \tilde{\zeta}_1, \tilde{\zeta}_2, H_0) = \frac{c(1 + z)}{H_0} \int_0^z \frac{dz'}{E(z', \tilde{\zeta}_0, \tilde{\zeta}_1, \tilde{\zeta}_2)},$$

where $E(z, \tilde{\zeta}_0, \tilde{\zeta}_1, \tilde{\zeta}_2)$ is given by the expression (2.8) and c is the speed of light given in units of km/sec. The theoretical distance moduli for the k-th supernova with redshift z_k is defined as

$$\mu^j(z_k, \tilde{\zeta}_0, \tilde{\zeta}_1, \tilde{\zeta}_2, H_0) \equiv m - M = 5 \log_{10} \left[\frac{d_L(z_k, \tilde{\zeta}_0, \tilde{\zeta}_1, \tilde{\zeta}_2, H_0)}{1 \text{ Mpc}} \right] + 25,$$

where m and M are the apparent and absolute magnitudes of the SNe Ia respectively, and the
Evolution of the dimensionless density parameters of the viscous dark matter component $\Omega_v(z)$ [upper curve] and the baryon component $\Omega_B(z)$ [lower curve] with respect to the redshift z, for the cases $(\tilde{\zeta}_0, \tilde{\zeta}_1)$ and $(\tilde{\zeta}_0, \tilde{\zeta}_2)$. The thick black lines come from the evaluation of the equation (A.6) at the best estimated values for $(\tilde{\zeta}_0, \tilde{\zeta}_1)$ and $(\tilde{\zeta}_0, \tilde{\zeta}_2)$ (see table 1). The error bands are given at 68.3% (1σ) of confidence level (see Appendix B for details). We see that $\Omega_v(z)$ is always the dominant component with respect to $\Omega_m(z)$ at late times, so . It is seen a bouncing in the evolution of the densities at a redshift of around $z = 2.5$, that corresponds when the total bulk viscosity $\tilde{\zeta}$ has a transition from negative to positive values as $z \rightarrow 0$ (see figure 4).

Evolution of the deceleration parameter $q(z)$ with respect to the redshift z for the cases $(\tilde{\zeta}_0, \tilde{\zeta}_1)$ and $(\tilde{\zeta}_0, \tilde{\zeta}_2)$. The thick black lines come from the evaluation of the equation (A.7) at the best estimated values for $(\tilde{\zeta}_0, \tilde{\zeta}_1)$ and $(\tilde{\zeta}_0, \tilde{\zeta}_2)$ (see table 1). We notice that both cases predict an accelerating expanding Universe at late times, with a transition from deceleration to acceleration at about $z \simeq 1$. The error bands are given at 68.3% (1σ) of confidence level (see Appendix B).

superscript ‘t’ stands for “theoretical”. We construct the statistical χ^2 function as

$$\chi^2_{\text{SNe}}(\tilde{\zeta}_0, \tilde{\zeta}_1, \tilde{\zeta}_2) \equiv \sum_{k=1}^{n} \frac{[\mu^t(z_k, \tilde{\zeta}_0, \tilde{\zeta}_1, \tilde{\zeta}_2) - \mu_k]^2}{\sigma_k^2},$$

where μ_k is the observational distance moduli for the k-th supernova, σ_k^2 is the variance of the measurement and n is the amount of supernova in the data set ($n = 580$). The results are shown in table 1 and the confidence intervals for the pairs $\tilde{\zeta}_0$ vs $\tilde{\zeta}_1$, $\tilde{\zeta}_0$ vs $\tilde{\zeta}_2$ and $\tilde{\zeta}_1$ vs $\tilde{\zeta}_2$ are shown in figures 1 to 3 respectively. The Hubble constant H_0 is marginalized assuming a constant prior distribution (see appendix A of [8]).

3.2 Hubble expansion rate

For the Hubble parameter $H(z)$ measured at different redshifts, we use the 12 data listed in table 2 of Busca et al. (2012) [14], where 11 data come from references [15]–[17]. The value $H_0 = 70$ km s$^{-1}$
Mpc\(^{-1}\), is assumed for the data of Blake et al. (2011) [15] as Busca et al. suggest. The \(\chi^2\) function is defined as
\[
\chi^2_{Hi}(\tilde{\zeta}_0, \tilde{\zeta}_1, \tilde{\zeta}_2) = \sum_{i=1}^{12} \left(\frac{H(z_i, \tilde{\zeta}_0, \tilde{\zeta}_1, \tilde{\zeta}_2) - H_{i}^{\text{obs}}}{\sigma_{Hi}} \right)^2,
\]
where \(H(z_i, \tilde{\zeta}_0, \tilde{\zeta}_1, \tilde{\zeta}_2)\) and \(H_{i}^{\text{obs}}\) are the theoretical and observed values respectively and \(\sigma_{Hi}\) the standard deviation of each \(H_{i}^{\text{obs}}\) entry.

The total \(\chi^2\) function which combines the SNe and \(H(z)\) data sets together, is chosen in the following way:
\[
\chi^2 = \chi^2_{\text{SNNe}} + \chi^2_{H}.
\]
where \(\chi^2_{\text{SNNe}}\) and \(\chi^2_{H}\) are given by expressions (3.2) and (3.3) respectively. The function \(\chi^2\) is then numerically minimized in order to compute the “best estimates” for pairs of the viscous coefficients: \((\zeta_0, \tilde{\zeta}_1)\), \((\zeta_0, \tilde{\zeta}_2)\), and \((\tilde{\zeta}_1, \tilde{\zeta}_2)\), where the remaining viscous coefficient in each case is assumed to vanish. The minimum value of the \(\chi^2\) function gives the best estimated values of the pairs \((\zeta_0, \tilde{\zeta}_1)\), \((\zeta_0, \tilde{\zeta}_2)\), and \((\tilde{\zeta}_1, \tilde{\zeta}_2)\), and measures the goodness-of-fit of the model to data.

The definition of “\(\chi^2\) function by degrees of freedom”: \(\chi^2_{d.o.f.} \equiv \chi^2_{\min}/(n - p)\), where \(n\) is the number of total combined data used, and \(p\) is the number of free parameters estimated, is also used in our computations.

3.3 Local Second Law of Thermodynamics

The local entropy production for a fluid on a FRW spacetime is expressed as [9]
\[
T \nabla_{\nu} s'' = \zeta (\nabla_{\nu} u'')^2 = 9H^2 \zeta,
\]
where \(T\) is the temperature of the fluid, \(\nabla_{\nu} s''\) is the rate of entropy production in a unit volume, and \(\zeta\) is the total bulk viscosity. The second law of the thermodynamics can be stated as \(T \nabla_{\nu} s'' \geq 0\).

Hence, since the Hubble parameter \(H\) is positive for an expanding Universe, Eq. (3.5) implies that \(\zeta \geq 0\), where \(\zeta\) is given by the expression (A.2). This inequality is an additional constraint in the possible values for the total dimensionless viscous parameter in our model.

4 Dynamical Systems

The dynamical systems tools offer a powerful mean to extract relevant information out of the given cosmological model by investigating the equivalent phase space. Critical points in the phase space: past/future attractors, saddle points, etc., can be correlated with generic solutions of the cosmological field equations (see C). In order to be able to apply these tools one has to follow the steps enumerated here: i) to identify the phase space variables that allow writing the system of cosmological equations in the form of an autonomous system of ODE,\(^1\) ii) with the help of the chosen phase space variables to build an autonomous system of ODE out of the original system of cosmological equations, and an usually forgotten or unappreciated step, iii) to identify the phase space spanned by the chosen variables that is relevant to the cosmological model under study.

Our goal in this section is to write the cosmological equations of the model (2.2-2.4):\(^2\)
\[
\dot{\rho}_B + 3H\rho_B = 0, \quad \dot{\rho}_v + 3H(1 + \omega)\rho_v - 9\zeta H^2 = 0, \quad 3H^2 = \rho_v + \rho_B, \quad 6\dot{H} + 6H^2 = -\rho_B - (1 + 3\omega)\rho_v + 9\zeta H,
\]
in the form of an autonomous system of ODE. To this end we have to choose appropriate phase space variables. In the present case our starting phase space variable is the dimensionless energy density parameter of the viscous fluid:

\(^1\)There might be several different possible choices, however, not all of them allow for the minimum possible dimensionality of the phase space.

\(^2\)Here we use units where \(8\pi G = 1\).
\[x \equiv \Omega_v = \frac{\rho_v}{3H^2}, \quad 0 \leq x \leq 1. \quad (4.2) \]

In terms of this variable the Friedmann constraint (third equation in (4.1)) can be written as \(\Omega_B = 1 - x \), where we use the standard definition of the dimensionless energy density parameter of the \(i \)-th matter component, \(\Omega_i \equiv \rho_i/3H^2 \). Also, one can write the following autonomous ODE:

\[x' = -3(1 + \omega)x - 2x \frac{H'}{H} + 3 \frac{\zeta}{H}, \quad (4.3) \]

or, since

\[2 \frac{H'}{H} = -3(1 + \omega x) + 3 \frac{\zeta}{H}, \quad (4.4) \]

the former equation can be written in more compact form:

\[x' = 3(x - 1) \left(\omega x - \frac{\zeta}{H} \right), \quad (4.5) \]

In the above equations the tilde accounts for derivative with respect to the parameter, \(\tau = \ln a \).

As already mentioned, here we shall investigate a viscous coefficient of the form given in equation (2.5): \(\zeta = \zeta_0 + \zeta_1 H + \zeta_2 \dot{a}/a \), or, since \(\dot{a}/a = H + H' \), then the viscous parameter will obey the following equation:

\[\frac{\zeta}{H} = \frac{\zeta_0}{H} + \zeta_1 + \zeta_2 + \frac{H'}{H} \zeta_2 = \frac{2\zeta_1 - (1 + 3\omega x)\zeta_2}{2 - 3\zeta_2}, \quad (4.6) \]

where, in the last row, we have taken into consideration equation (4.4). If we substitute back Eq.(4.6) into (4.5), we obtain the following master ODE:

\[x' = \frac{6(x - 1)}{2 - 3\zeta_2} \left(\omega x - \frac{\zeta_0}{H} - \zeta_1 + \frac{\zeta_2}{2} \right). \quad (4.7) \]

Several cosmological parameters, such as the deceleration parameter \(q = -1 - H'/H \), and the equation of state (EoS) effective parameter \(\omega_{\text{eff}} = -1 - 2H'/3H \), can also be rewritten in terms of the variable \(x \). In fact, if take into account equations (4.4) and (4.6) one obtains:

\[q = \frac{1 + 3\omega x - 3\zeta_0/H - 3\zeta_1}{2 - 3\zeta_2}, \quad \omega_{\text{eff}} = \frac{2\omega x - 2\zeta_0/H - 2\zeta_1 + \zeta_2}{2 - 3\zeta_2}, \quad (4.8) \]

respectively.

Depending on the particular case of (4.6) under consideration one would need yet another phase space variable which would be related with the viscous coefficient \(\zeta_0 \) (see below). In what follows we shall split the dynamical systems study into two different cases: i) when the viscous EoS parameter \(\omega \neq 0 \), and ii) when the viscous fluid is dust: \(\omega = 0 \).

4.1 Viscous EoS \(\omega \neq 0 \)

4.1.1 Case with \(\zeta_0 = 0 \).

If we set \(\zeta_0 = 0 \) in Eq.(4.7), we obtain the following autonomous ODE for this particular case:

\[x' = \frac{6\omega(x - 1)}{2 - 3\zeta_2} \left(x - \frac{2\zeta_1 - \zeta_2}{2\omega} \right). \quad (4.9) \]

The phase space is the segment, \(\Psi = \{ x | 0 \leq x \leq 1 \} \).

Two equilibrium/critical points are found:
1. The first one,

\[P_v : \left(x = \frac{\rho_v}{3H^2} = 1 \right), \]

corresponds to the viscous matter-dominated solution. The deceleration and EoS effective parameters, in this case, are given by:

\[q = \frac{1 + 3(\omega - \zeta_1)}{2 - 3\zeta_2}, \quad \omega_{\text{eff}} = \frac{2(\omega - \zeta_1) + \zeta_2}{2 - 3\zeta_2}. \]

The solution corresponds to accelerated expansion whenever, either \(\zeta_1 > (1 + 3\omega)/3, \zeta_2 < 2/3, \) or, \(\zeta_1 < (1 + 3\omega)/3, \zeta_2 > 2/3. \) Otherwise it will correspond to decelerated expansion instead.

If consider small \(\tau \)-dependent perturbation \(\epsilon = \epsilon(\tau) \) around this critical point: \(x \rightarrow 1 + \epsilon(\tau) \), up to \(O(\epsilon^2) \), the perturbation will obey the following linearized ODE: \(\epsilon'(\tau) = \lambda \epsilon(\tau) \), which can be readily integrated,

\[\epsilon(\tau) = \epsilon_0 e^{\lambda \tau}, \quad \lambda = \frac{3\zeta_2 - 2\zeta_1 + 2\omega}{2 - 3\zeta_2}, \]

where \(\epsilon_0 \) is an integration constant. The solution is stable or, in other words, it is a future attractor in the phase segment if \(\lambda < 0 \), i.e., if either \(2\zeta_1 - \zeta_2 < 2\omega, \zeta_2 < 2/3, \) or \(2\zeta_1 - \zeta_2 < 2\omega, \zeta_2 > 2/3, \) which coincide with the regions in the space of parameters \((\zeta_1, \zeta_2, \omega)\) where the point \(P_v \) is correlated with inflationary expansion \((q < 0) \). Otherwise, if \(2\zeta_1 - \zeta_2 > 2\omega, \zeta_2 < 2/3, \) or \(2\zeta_1 - \zeta_2 > 2\omega, \zeta_2 > 2/3, \) the viscous matter-dominated solution is unstable (it is a past attractor), while the expansion occurs at a decelerated pace. Hence, either the viscous matter-dominated critical point \(P_v \left(3H^2 = \rho_v \right) \), is the future inflationary attractor/end-point of any phase space orbit, or, alternatively, it is the past attractor/source point in the phase space, which is associated with decelerated expansion.

2. The second critical point,

\[P_B/v : \left(x = \frac{2\zeta_1 - \zeta_2}{2\omega} \right) \Rightarrow 3H^2 = \frac{2\omega\rho_v}{2\zeta_1 - \zeta_2}, \]

exists whenever \(^3\) \(0 < 2\zeta_1 - \zeta_2 \leq 2\omega, \) and corresponds to matter/viscous matter-scaling solution:

\[\frac{\Omega_B}{\Omega_v} = \frac{2\omega - 2\zeta_1 + \zeta_2}{2\zeta_1 - \zeta_2}. \]

The deceleration and the EoS parameters for this critical point are: \(q = 1/2 \) and \(\omega_{\text{eff}} = 0 \) respectively. Small \(\tau \)-dependent perturbations around this critical point will obey, \(\epsilon' = \lambda \epsilon, \) or after integration,

\[\epsilon(\tau) = \epsilon_0 e^{\lambda \tau}, \quad \lambda = \frac{2\zeta_1 - \zeta_2 - 2\omega}{2 - 3\zeta_2}. \]

Hence the scaling critical point is stable, i.e., it is the future attractor in the phase space, if \(\zeta_2 < 2/3. \) Otherwise, if \(\zeta_2 > 2/3, \) this equilibrium point is the past attractor. In consequence, when the scaling equilibrium point exists, either it is the future attractor while the first equilibrium point \((x = 1)\) is the past attractor, or vice versa.

The properties of these equilibrium points are summarized in table 2. In this particular case when \(\zeta_0 = 0 \) \((\omega \neq 0)\), if \(2\zeta_1 - \zeta_2 < 2\omega, \) then the orbits in the phase segment either depart from the viscous matter-dominated, decelerated solution, and end-up at the, also decelerated, scaling solution, or they are repelled from the scaling equilibrium point (corresponding to decelerated expansion always) and are attracted towards the viscous matter-dominated inflationary solution. In either case none of these scenarios is suitable to accommodate the present cosmological paradigm, since there is no any critical point that could be associated with conventional matter and/or radiation dominance.

\(^3\)We shall be assuming that \(\omega \) is a non-negative quantity, which covers the most interesting physical situations.
Existence and stability of the critical points P_i for the particular case when $\omega \neq 0, \zeta_0 = 0$.

P_i	x	Existence	Stability
P_v	1	Always	Stable if $2\zeta_1 - \zeta_2 > 2\omega$, $\zeta_2 < 2/3$, or if $2\zeta_1 - \zeta_2 > 2\omega$, $\zeta_2 < 2/3$. Unstable if $2\zeta_1 - \zeta_2 < 2\omega$, $\zeta_2 < 2/3$, or if $2\zeta_1 - \zeta_2 > 2\omega$, $\zeta_2 > 2/3$.
$P_{B/v}$	$\frac{2\omega - \zeta_2}{2\omega}$	$6 < 2\zeta_1 - \zeta_2 \leq 2\omega$	Stable if $\zeta_2 < 2/3$, Unstable if $\zeta_2 > 2/3$.

Table 2.

which are included here in the matter component characterized by energy density ρ_B. Radiation and matter-dominated phases are necessary to explain the formation of the amount of cosmic structure we see, in particular the right growth of structure [13].

An interesting situation occurs when $\zeta_2 = 0, \zeta_1 \neq 0$. In this case, for the viscous matter-dominated solution $x = 1$, one has

\[q = \frac{1 + 3(\omega - \zeta_1)}{2}, \quad \omega_{eff} = \omega - \zeta_1, \]

so that the solution is inflationary if $\zeta_1 > (1 + 3\omega)/3$. Besides, this critical point is a future attractor in the phase space (segment) only if $\zeta_1 > \omega$. Hence, this solution is stable and inflationary only if $\zeta_1 > \omega + 1/3$. Alternatively, the scaling equilibrium point $x = \zeta_1/\omega$,

\[\frac{\Omega_B}{\Omega_v} = \frac{\omega - \zeta_1}{\zeta_1}, \quad q = 1/2, \omega_{eff} = 0, \]

exists whenever, $0 < \zeta_1 \leq \omega$. It is stable whenever it exists, $\zeta_1 < \omega$. Hence, when both critical points coexist, the viscous matter-dominated (decelerated) solution is the past attractor, while the (also decelerating) scaling solution is the future attractor. Curiously, if $\zeta_1 > \omega + 1$, i.e., if the viscous matter-dominated solution is the future attractor (besides, it is the only critical point in the phase segment), the effective EoS parameter behaves like a phantom, $\omega_{eff} < -1$.

If, on the contrary, $\zeta_1 = 0, \zeta_2 \neq 0$, then for the viscous matter-dominated critical point $x = 1$,

\[q = \frac{1 + 3\omega}{2 - 3\zeta_2}, \quad \omega_{eff} = \frac{2\omega + \zeta_2}{2 - 3\zeta_2}, \]

so that this solution corresponds to inflationary expansion if $\zeta_2 > 2/3$. It is stable when, either, $\zeta_2 + 2\omega < 0, \zeta_2 < 2/3$, or, $\zeta_2 + 2\omega > 0, \zeta_2 > 2/3$. The scaling solution, $x = -\zeta_2/2\omega$,

\[\frac{\Omega_B}{\Omega_v} = \frac{2\omega + \zeta_2}{\zeta_2}, \]

exists if $-2\omega \leq \zeta_2 < 0$. It is stable whenever it exists. In this case the viscous matter-dominated cosmic fluid mimics phantom behavior if $\zeta_2 > \omega + 1 (\omega_{eff} < -1)$. As before, no critical point in the phase space can be associated with conventional matter dominance contrary to what is required by the standard cosmological paradigm.

4.1.2 Case with $\zeta_0 \neq 0$.

In this case to the already existing variable x one has to add a new one:

\[y = \frac{1}{\zeta_0/H + 1} \Rightarrow \zeta_0 = \frac{1 - y}{y}. \]

\[^4 \text{As a matter of fact, in the present work, for simplicity, it has been assumed that the conventional matter behaves like pressureless dust, but it is clear that even if consider it to be radiation there would not be any critical point associated with radiation-domination (see the next section).} \]
Hence, the phase space is the bounded plane region
\[\Psi = \{(x, y) | 0 \leq x \leq 1, 0 < y \leq 1\}. \]

As before, the Friedmann constraint reads \(\Omega_B = 1 - x \). The corresponding autonomous system of ODE looks like
\[
\begin{align*}
 x' &= \frac{3(2 - 2\zeta_1 + \zeta_2)}{(2 - 3\zeta_2)} y (x - 1) \left(y + \frac{2\omega xy - 2}{2 - 2\zeta_1 + \zeta_2} \right), \\
 y' &= \frac{3(2 - \zeta_1 - \zeta_2)}{2 - 3\zeta_2} (y - 1) \left(y + \frac{\omega xy - 1}{2 - \zeta_1 - \zeta_2} \right).
\end{align*}
\] (4.10)

For the deceleration and EoS parameters the following expressions are obtained:
\[
\begin{align*}
 q &= \frac{(4 - 3\zeta_1)y + 3\omega xy - 3}{(2 - 3\zeta_2)y}, \\
 \omega_{eff} &= \frac{(2 - 2\zeta_1 + \zeta_2)y + 2\omega xy - 2}{(2 - 3\zeta_2)y}.
\end{align*}
\] (4.11)

The critical points of (4.10), \(P_i : (x_i, y_i) \), together with their main properties are summarized below.

1. Viscous matter-dominated solution \(P_v : (1, 1) \). This case corresponds either to the formal limit \(\zeta_0 = 0 \), or to the initial singular state characterized by \(H \to \infty \). We have
\[
\begin{align*}
 q &= \frac{1 - 3\zeta_1 + 3\omega}{2 - 3\zeta_2}, \\
 \omega_{eff} &= \frac{\zeta_2 - 2\zeta_1 + 2\omega}{2 - 3\zeta_2}.
\end{align*}
\]
The eigenvalues of the linearization (Jacobian) matrix for this point are:
\[
\begin{align*}
 \lambda_1 &= \frac{3(1 - \zeta_1 - \zeta_2 + \omega)}{2 - 3\zeta_2}, \\
 \lambda_2 &= \frac{3(\zeta_2 - 2\zeta_1 + 2\omega)}{2 - 3\zeta_2}.
\end{align*}
\]
This solution is a past attractor if, either \(\zeta_1 < \omega + 1/3, \zeta_2 < 2/3 \), or \(\zeta_1 > \omega + 1/3, \zeta_2 > 2/3 \).

2. de Sitter (also viscous fluid-dominated) solution
\[
P_{dS} : \left(1, \frac{1}{2 - \zeta_1 - \zeta_2 + \omega}\right) \Rightarrow H = H_0 = \frac{\zeta_0}{1 - \zeta_1 - \zeta_2 + \omega},
\]
characterized by \(q = -1, \omega_{eff} = -1 \). The eigenvalues of the Jacobian matrix corresponding to this critical point are:
\[
\begin{align*}
 \lambda_1 &= -\frac{3(1 - \zeta_1 - \zeta_2 + \omega)}{2 - 3\zeta_2}, \\
 \lambda_2 &= -\frac{3}{(2 - \zeta_1 - \zeta_2 + \omega)^2}.
\end{align*}
\]
The de Sitter solution \(P_{dS} \) exists whenever \(0 < y \leq 1 \), i.e., if: \(\zeta_1 + \zeta_2 \leq \omega + 1 \). It is the future attractor in \(\Psi \) if: \(\zeta_1 + \zeta_2 < \omega + 1, \zeta_2 < 2/3 \). Otherwise, if: \(\zeta_1 + \zeta_2 < \omega + 1, \zeta_2 > 2/3 \), \(P_{dS} \) is a saddle critical point instead.

3. Matter/viscous matter-scaling solution,
\[
P_{B/v} : \left(\frac{2\zeta_1 - \zeta_2}{2\omega}, 1\right), \quad \Omega_B = \frac{2\omega - 2\zeta_1 + \zeta_2}{2\zeta_1 - \zeta_2}.
\]
Critical points ($\omega \neq 0$, $\zeta_0 \neq 0$)

P_i	x	y	Existence	Ω_B	ω_{eff}	q
P_v	1	1	Always	0	$\frac{2(\omega - \zeta_1) + \zeta_2}{2 - \zeta_2}$	$\frac{1 + 3(\omega - \zeta_1)}{2 - \zeta_2}$
P_{ds}	1	$\frac{1}{2 - \zeta_1 - \zeta_2 + \omega}$	$\zeta_1 + \zeta_2 \leq \omega + 1$	0	-1	-1
$P_{B/v}$	$\frac{2(\omega - \zeta_1) + \zeta_2}{2 - \zeta_2}$	1	$\frac{\zeta_1}{2} \leq \zeta_1 \leq \frac{3\zeta_1}{2} + \omega$	$\frac{2(\omega - \zeta_1) + \zeta_2}{2 - \zeta_2}$	0	1/2

Table 3. Existence and relevant parameters of the critical points P_i for the case when $\omega \neq 0$, $\zeta_0 \neq 0$.

Stability of the critical points ($\omega \neq 0$, $\zeta_0 \neq 0$)

P_i	x	y	Stability	λ_1	λ_2
P_v	1	1	Unstable if $\zeta_1 < \omega + 1/3$, $\zeta_2 < 2/3$, or if $\zeta_1 > \omega + 1/3$, $\zeta_2 > 2/3$	$\frac{3(\zeta_1 - 2\zeta_1 + 2\zeta_2)}{2 - 3\zeta_2}$	$\frac{3\zeta_2(\omega - \zeta_1 + 2\zeta_2)}{2 - 3\zeta_2}$
P_{ds}	1	$\frac{1}{2 - \zeta_1 - \zeta_2 + \omega}$	Stable if $\zeta_1 + \zeta_2 < \omega + 1$, $\zeta_2 < 2/3$, Saddle if $\zeta_1 + \zeta_2 < \omega + 1$, $\zeta_2 > 2/3$.	$\frac{-3\zeta(\omega - \zeta_1 + \zeta_2)}{2 - 3\zeta_2}$	$\frac{-3(\omega - \zeta_1 + \zeta_2)}{(2 - \zeta_1 - \zeta_2 + \omega)^2}$
$P_{B/v}$	$\frac{2(\omega - \zeta_1) + \zeta_2}{2 - \zeta_2}$	1	Saddle if $2\zeta_1 - \zeta_2 < 2\omega$, $\zeta_2 < 2/3$, Unstable if $2\zeta_1 - \zeta_2 < 2\omega$, $\zeta_2 > 2/3$.	$3/2$	$\frac{-3\zeta_2(\omega - \zeta_1 + 2\zeta_2)}{2 - 3\zeta_2}$

Table 4. Stability of the critical points P_i for the case when $\omega \neq 0$, $\zeta_0 \neq 0$. The eigenvalues of the linearization matrix around a given critical point are λ_1 and λ_2.

This critical point exists ($0 \leq x \leq 1$) if, $\zeta_2 \leq 2\zeta_1 \leq \zeta_2 + 2\omega$. It is characterized by, $q = 1/2$, $\omega_{eff} = 0$. The eigenvalues of the corresponding Jacobian matrix are

$$
\lambda_1 = 3/2, \quad \lambda_2 = -\frac{3(\zeta_2 - 2\zeta_1 + 2\omega)}{2 - 3\zeta_2},
$$

so that, if, $2\zeta_1 - \zeta_2 < 2\omega$, $\zeta_2 < 2/3$, it is a saddle point in the phase space. Otherwise, if, $2\zeta_1 - \zeta_2 < 2\omega$, $\zeta_2 > 2/3$, it is the past attractor instead.

The main properties (existence, stability, etc.) are summarized in tables 3, 4

4.2 Pressureless Viscous Fluid ($\omega = 0$).

In this case equations (4.10) simplify to:

$$
x' = \frac{3(2 - 2\zeta_1 + \zeta_2)}{2 - 3\zeta_2} \left(x - 1 \right) \left(y - 1 - \frac{1}{1 - \zeta_1 + \zeta_2/2} \right),
\qquad
y' = \frac{3(2 - \zeta_1 - \zeta_2)}{2 - 3\zeta_2} \left(y - 1 \right) \left(y - 1 - \frac{1}{2 - \zeta_1 - \zeta_2} \right).
$$

Besides,

$$
q = \frac{(4 - 3\zeta_1)y - 3}{(2 - 3\zeta_2)y}, \quad \omega_{eff} = \frac{(1 - \zeta_1 + \zeta_2)\sqrt{2} - 1}{2(2 - 3\zeta_2)y}.
$$

Only two critical points of the autonomous system of ODE (4.12) are found:

1. Viscous matter-dominated solution P_v : $(1, 1)$. The relevant parameters are:

$$
q = \frac{1 - 3\zeta_1}{2 - 3\zeta_2}, \quad \omega_{eff} = \frac{\zeta_2 - 2\zeta_1}{2 - 3\zeta_2},
$$

while the eigenvalues of the linearization matrix are:

$$
\lambda_1 = \frac{3(\zeta_2 - 2\zeta_1)}{2 - 3\zeta_2}, \quad \lambda_2 = \frac{3(1 - \zeta_1 - \zeta_2)}{2 - 3\zeta_2}.
$$
Figure 7. Phase portraits \((x, y)\) for the case \(4.1.2\), for different choices of the free parameters \(\zeta_1\), and \(\zeta_2\) \((\omega = 1/3)\). We have taken best estimated values of \(\zeta_1 = \zeta_1/3\), and \(\zeta_2 = 6\zeta_2\) from table 1: \(\zeta_1 = -0.96, \zeta_2 = 0\) – left-hand panel, and \(\zeta_1 = 0, \zeta_2 = 0.05\) – right-hand panel. In both cases the orbits are repelled from the viscous matter-dominated solution and approach to the de Sitter future attractor. The scaling critical point does not exist.

Critical points for the case \(\omega = 0\) (pressureless viscous fluid)

\(P_i\)	\(x\)	\(y\)	Existence	Stability	\(\Omega_B\)	\(\omega_{eff}\)	\(q\)
\(P_d\)	1	1	Always	Saddle if \(\zeta_1 + \zeta_2 > 1\), \(2\zeta_1 < \zeta_2 < 2/3\), or if \(\zeta_1 + \zeta_2 < 1\), \(2/3 < \zeta_2 < 2\zeta_1\); Unstable if \(\zeta_1 + \zeta_2 < 1\), \(2\zeta_1 < \zeta_2 < 2/3\), or if \(\zeta_1 + \zeta_2 > 1\), \(2/3 < \zeta_2 < 2\zeta_1\);	0	\(\frac{2 - 2\zeta_1 - 2\zeta_2}{2 - 3\zeta_2}\)	\(\frac{1 - \zeta_1}{2 - 3\zeta_2}\)
\(P_{ds}\)	\(\frac{1}{2 - \zeta_1 - \zeta_2}\)	\(\zeta_1 + \zeta_2 \leq 1\)	Stable if \(\zeta_2 < 2/3\), saddle otherwise	0	-1	-1	

Table 5. Existence, stability and other relevant properties of the critical points \(P_i\) for the pressureless viscous fluid case \((\omega = 0)\).

2. de Sitter equilibrium point

\[
P_{ds} : \left(1, \frac{1}{2 - \zeta_1 - \zeta_2}\right), \quad q = -1, \quad \omega_{eff} = -1,
\]

which is also dominated by the bulk viscous matter \((x = 1)\). The eigenvalues of the Jacobian matrix are:

\[
\lambda_1 = -\frac{3(1 - \zeta_1 - \zeta_2)}{2 - 3\zeta_2}, \quad \lambda_2 = -\frac{3}{(2 - \zeta_1 - \zeta_2)^2}.
\]

The existence, stability, and other relevant properties of these critical points are shown in the table 5. As seen, as in the former cases, there are not equilibrium points in the phase space that could be correlated with conventional matter-dominance. A phase of conventional matter-dominance is required for the formation of the observed amount of cosmic structure. This is one of the most unwanted features of the viscous fluid scenario and, as shown, this conclusion is irrespective of whether we consider \(\omega \neq 0\), or, \(\omega = 0\). In the next subsection we shall see that this conclusion is robust enough and it holds true even if add a radiation component to the model.
4.3 Model of bulk viscous matter with conventional matter and radiation

In this section we shall investigate a more physically involved scenario with bulk viscous matter, with the bulk viscosity coefficient given by (2.5). Here, besides a pressureless \((\omega = 0)\) viscous matter component, we shall include conventional (non-relativistic or dust) matter, and also radiation. The cosmological equations are the following:

\[
3H^2 = \rho_r + \rho_B + \rho_v, \quad 6\dot{H} + 6H^2 = -2\rho_r - \rho_B - \rho_v + 9\zeta H,
\]

\[
\dot{\rho}_r + 4H\rho_r = 0, \quad \dot{\rho}_B + 3H\rho_B = 0, \quad \dot{\rho}_v + 3H\rho_v - 9\zeta H^2 = 0,
\]

where \(\rho_r\) is the energy density of the radiation component and, as before, \(\rho_B\) and \(\rho_v\) stand for the energy densities of non-relativistic (pressureless) matter and of bulk viscous (also pressureless) component, respectively.

In order to transform the above system of equations into a system of autonomous ODE we introduce the following variables of the phase space (the two first variables \(x\), and \(y\), coincide with the former definitions and we add a new variable \(z\)):

\[
x = \Omega, \quad y = \frac{1}{\zeta_0/H + 1}, \quad z \equiv \Omega_r = \frac{\rho_r}{3H^2}.
\]

The following autonomous system of ODE is obtained,

\[
x' = 3(1 - x)\frac{\zeta}{H} + xz, \quad y' = \frac{y(y - 1)}{2} \left(z + 3 - 3\frac{\zeta}{H} \right), \quad z' = z \left(z - 1 - 3\frac{\zeta}{H} \right),
\]

where

\[
\frac{\zeta}{H} = \frac{2 + (2\zeta_1 - (z + 1)\zeta_2 - 2)y}{(2 - 3\zeta_2)y}.
\]

The Friedmann constraint can be written as \(\Omega_B = 1 - x - z\), while the bounded 3D phase space is given by

\[
\Psi = \{(x, y, z)|0 \leq x \leq 1, \ 0 < y \leq 1, \ 0 \leq z \leq 1\}.
\]

For the deceleration parameter \(q = -1 - \dot{H}'/H\), and the effective EoS parameter \(\omega_{eff} = -1 - 2\dot{H}'/3H\), one obtains,

\[
q = \frac{1 + z - 3\zeta/H}{2}, \quad \omega_{eff} = \frac{z - \zeta}{3H},
\]

respectively.

Three equilibrium points are found in the phase space \(\Psi\) (4.17). A summary of these points, \(P_i: (x_i, y_i, z_i)\), together with their main features is given below.

\(P_i\)	\(x\)	\(y\)	Existence	Stability	\(\Omega_B\)	\(\omega_{eff}\)	\(q\)
\(P_v\)	1	1	Always	Saddle if \(\zeta_1 + \zeta_2 > 1, 2\zeta_1 < \zeta_2 < 2/3\), or if \(\zeta_1 + \zeta_2 < 1, 2/3 < \zeta_2 < 2\zeta_1\), or if \(\zeta_1 < 1/3, \zeta_2 < 2/3\), Unstable if \(\zeta_1 + \zeta_2 < 1, 2\zeta_1 < \zeta_2 < 2/3\), or if \(\zeta_1 + \zeta_2 > 1, 2/3 < \zeta_2 < 2\zeta_1\),	0	\(\frac{\zeta_2 - \zeta_1}{2 - \zeta_2}\)	\(\frac{1 - \zeta_1}{2 - \zeta_2}\)
\(P_{DS}\)	\(\frac{1}{2 - \zeta_1 - \zeta_2} \zeta_1 + \zeta_2 \leq 1\)	Stable if \(\zeta_2 < 2/3\), saddle otherwise	0	-1	-1		

Table 6. Existence, stability and other relevant properties of the critical points \(P_i\) for the pressureless viscous fluid case \((\omega = 0)\).
1. Bulk viscous matter/radiation-scaling

\[P_{r/v} : (3(\zeta_2 - \zeta_1), 1, 1 - 3(\zeta_2 - \zeta_1)) \Rightarrow \Omega_v = \frac{1 - 3(\zeta_2 - \zeta_1)}{3(\zeta_2 - \zeta_1)}. \]

This solution exists if \(0 \leq 3(\zeta_2 - \zeta_1) \leq 1 \), i.e., when \(\zeta_1 \leq \zeta_2 \leq \zeta_1 + 1/3 \). In this case the cosmic expansion is decelerating, \(q = 1 \), while \(\omega_{eff} = 1/3 \). The eigenvalues of the Jacobian matrix for this point are,

\[\lambda_1 = 1, \quad \lambda_2 = 2, \quad \lambda_3 = \frac{2[1 - 3(\zeta_2 - \zeta_1)]}{2 - 3\zeta_2}, \]

so that it is a unstable critical point in \(\Psi \) if \(\zeta_2 < 2/3 \), and a saddle point otherwise.

2. Bulk viscous matter-dominance, \(P_v : (1, 1, 0) \Rightarrow \Omega_v = 1 \). This point is characterized by

\[q = \frac{1 - 3\zeta_1}{2 - 3\zeta_2}, \quad \omega_{eff} = \frac{\zeta_2 - 2\zeta_1}{2 - 3\zeta_2}, \]

and by the following eigenvalues of its linearization matrix:

\[\lambda_1 = -\frac{2[1 - 3(\zeta_2 - \zeta_1)]}{2 - 3\zeta_2}, \quad \lambda_2 = \frac{3(1 - \zeta_1 - \zeta_2)}{2 - 3\zeta_2}, \quad \lambda_3 = \frac{3(\zeta_2 - 2\zeta_1)}{2 - 3\zeta_2}. \]

3. de Sitter (also bulk viscous matter-dominated, \(\Omega_v = 1 \)) solution,

\[P_{dS} : \left(1, \frac{1}{2 - \zeta_1 - \zeta_2}, 0\right) \Rightarrow H = \frac{\zeta_0}{1 - \zeta_1 - \zeta_2}. \]

For this solution \(q = \omega_{eff} = -1 \). Since the eigenvalues of the Jacobian matrix are,

\[\lambda_1 = -4, \quad \lambda_2 = -3, \quad \lambda_3 = -\frac{3(1 - \zeta_1 - \zeta_2)}{2 - 3\zeta_2}, \]

then, if it exists, the de Sitter solution is a stable attractor in \(\Psi \) if \(\zeta_2 < 2/3 \). Otherwise \(\zeta_2 > 2/3 \) it is a saddle point instead.

We see that a same pattern arises: there are not found conventional dark matter and/or radiation domination critical points in the phase space. As it is suggested by the results of the former subsections, if consider a different EoS parameter \(\omega \neq 0 \) (say, \(\omega = 1/3 \)) for the bulk viscous matter, then an additional conventional matter/bulk viscous fluid-scaling critical point \(P_{B/v} \) would arise. In general, there can be found critical points where the different components of the conventional matter (including radiation) scale with the viscous matter, but, in no case conventional matter-dominance is an equilibrium point. This result can rule out the bulk viscous matter-dominated models as acceptable models for the description of the cosmological dynamics of our Universe.

5 Discussion

In this section we shall make use of the results of a combined investigation of type Ia supernovae test (section 3.1), and of the dynamical systems study (section 4, see also C), to check the viability of the bulk viscous matter model to explain the presently accepted cosmological paradigm. Here, without loss of generality, we shall analyze only the model studied in section 4.3 where the cosmological dynamics is fueled by radiation, conventional pressureless matter, and bulk viscous (also pressureless) matter. There are found three critical points (\(\zeta_0 \neq 0 \) of the equivalent autonomous system of ODE corresponding to this model (see TAB.6): i) bulk viscous matter/radiation-scaling solution \(P_{r/r} \), ii)
Figure 8. Phase portraits \((x, y)\) for the case 4.2, for different choices of the free parameters \(\zeta_1\), and \(\zeta_2\) \((\omega = 0)\). We have taken the best estimated values of \(\zeta_1 = \tilde{\zeta}_1/3\), and \(\zeta_2 = 6\tilde{\zeta}_2\) \((\tilde{\zeta}_0 \neq 0)\) from table 1: \(\tilde{\zeta}_1 = -0.96, \tilde{\zeta}_2 = 0\) – left-hand panel, and \(\tilde{\zeta}_1 = 0, \tilde{\zeta}_2 = 0.05\) – right-hand panel. In both cases the orbits are repelled from the viscous matter-dominated solution and approach to the de Sitter future attractor.

bulk viscous matter dominance \(P_v\), and iii) de Sitter (also bulk viscous matter dominated) solution \(P_{dS}\). If set \(\tilde{\zeta}_0 = 0\) only the bulk viscous matter/radiation-scaling solution (point \(P_{v/r}\)), and the bulk viscous matter-dominated point \(P_v\), survive. In what follows we shall focus in the physically more interesting case where \(\zeta_0 \neq 0\) which shows a richer phase space dynamics.

There are four regions of interest in the parameters space \((\zeta_1, \zeta_2)\):

- **R1**: region where the three points co-exist together. In this region the viscous matter/radiation-scaling solution \((P_{v/r})\) is the past attractor, the bulk viscous matter-dominated phase \((P_v)\) is a saddle point, while the de Sitter solution \((P_{dS})\) is the stable attractor.

- **R2**: region where only \(P_{v/r}\) and \(P_v\) co-exist. In this case the bulk viscous matter-dominated solution (point \(P_v\)) is the past attractor, while, the viscous matter/radiation-scaling solution is a saddle point in the phase space. Not of cosmological interest since there is not critical point which can be associated with a present stage of accelerated expansion.

- **R3**: region where only the critical point \(P_v\) – corresponding to viscous matter dominance – and the de Sitter solution (point \(P_{dS}\)) co-exist. In this case, either i) \(P_v\) is the past attractor and \(P_{dS}\) is the stable attractor, or ii) \(P_v\) is a saddle point while \(P_{dS}\) continues being the future attractor (no past attractor exists), or iii) \(P_{dS}\) is a saddle point while \(P_v\) is the stable attractor (no past attractor exist). The latter case is not of interest for cosmology since there is not any critical point which could be associated with decelerated expansion.

- **R4**: region where the only existing critical point is \(P_v\) – bulk viscous matter dominance. In this region \(P_v\) is either a saddle or an unstable critical point. Not of interest for cosmology since there is not any critical point corresponding to the present stage of accelerated expansion.

As seen, only regions R1, R3 i), and R3 ii) could be of cosmological interest. If substitute \(\zeta_1\) and \(\zeta_2\) by their best estimated values in table 1, in both cases the region of parameters space R1 above is single out. In this case \(P_{v/r}\) is the past attractor, \(P_v\) is a saddle point (both \(P_{v/r}\) and \(P_v\) are associated with decelerated expansion), while \(P_{dS}\) is the stable attractor. As mentioned, in R1 there is an equilibrium point (point \(P_{v/r}\)) where the bulk viscous fluid scales in a constant fraction.
with radiation. In this case the effective fluid behaves like radiation, but one which is partly bulk viscous. As already mentioned in the introduction, in a cosmological setting the bulk viscosity may arise when the cosmic fluid expands (or contracts) too fast so that the system does not have enough time to restore its local thermodynamic equilibrium and, then, it arises an effective pressure restoring the system to its thermal equilibrium. When the fluid reaches again the thermal equilibrium the bulk viscous pressure vanishes [5, 6]. This would mean that the stage of the expansion associated with \(P_{\nu/r} \) may last for just a brief period of time while the Universe was out of thermodynamic equilibrium, perhaps not enough to produce the right peace of the growth of the fluctuations. If there is a very brief period of radiation domination, then, as long as the fluctuations re-enter the horizon these will not be sufficiently damped, and correspondingly, an unacceptable large value of the dispersion of the density contrast at the scale \(8 h^{-1}\text{Mpc} \) \((\sigma_8) \) might be obtained (see a similar discussion but in the opposite direction in Ref.[13]). Besides, in either case although in the bulk viscous matter-dominated stage the effective fluid mimics dust, viscosity may affect the formation of structure in a way that can be observationally tested.

As seen from the above analysis the most serious objection against bulk viscous matter scenarios is the absence of conventional matter and radiation dominated eras. Such a behavior is in marked contradiction with the big bang paradigm according to which, back enough into the past when the temperature of the Universe was larger than \(10^4 \) K, the dynamics of the cosmic evolution was driven by a relativistic mixture in the form of radiation (radiation dominated stage). As the Universe expanded and cooled down to temperatures below \(10^4 \) K (and up to \(3 \times 10^3 \) K), the density of radiation diluted and the cosmic evolution entered in a stage of (non-relativistic) matter dominance. During this phase radiation decoupled from baryons to form the cosmic microwave background and, what is more important, atoms and the derived cosmic structure we see (galaxies, clusters of galaxies, etc.) were formed.

Here we have shown that the absence of such conventional matter and radiation-dominated phases is irrespective of the region in the space of parameters \(\zeta_0, \zeta_1, \zeta_2, \) and \(\omega \), so that our conclusion is robust enough and the bulk viscous matter-dominated scenario should be ruled out, at least for the parametrization considered in this paper.

6 Conclusion

In this paper we have applied the dynamical systems tools, in conjunction with the SNe Ia data testing, to judge about the possibility that cosmological bulk viscous matter can stand for an alternative to dark energy. We chose a formerly used parametrization of bulk viscosity [7, 8] with the addition of a term measuring the influence of the acceleration of expansion:

\[
\zeta = \zeta_0 + \zeta_1 H + \zeta_2 \left(\frac{\ddot{a}}{a} \right).
\]

The study of the asymptotic properties of the model in the equivalent phase space shows that there are not critical points that could be associated with either conventional radiation or matter dominance. This result is independent of the values taken by the free parameters of the model. In consequence, the bulk viscous matter-dominated model is not able to accommodate the presently accepted cosmological paradigm. This argument alone can be considered as a serious objection against cosmological models of bulk viscosity. Notwithstanding, we recommend that other possible parametrizations of bulk viscosity should be considered before concluding to rule out the models.

The authors thank SNI of Mexico for support. A. A. acknowledges the financial support by the Mexican CONACyT and SNI grants 45804 and 56170 respectively and the Instituto Avanzado de Cosmología (IAC) collaboration. The work of R. G.-S. was partly supported by SIP20120991, SIP20131811 and also by COFEE-IPN and EDI-IPN grants. U. N. acknowledges financial support from SNI-CONACyT, PROMEP-SEP and CIC-UMSNH. I. Q. thanks “Programa PRO-SNI, Universidad de Guadalajara” for support under grant No 146912.
7 Acknowledgments

The authors thank SNI of Mexico for support. A. A. acknowledges the financial support by the Mexican CONACyT and SNI grants 45804 and 56170 respectively and the Instituto Avanzado de Cosmología (IAC) collaboration. The work of R. G.-S. was partly supported by SIP20120991, SIP20131811 and also by COFAA-IPN and EDI-IPN grants. U. N. acknowledges financial support from SNI-CONACyT, PROMEP-SEP and CIC-UMSNH. I. Q. thanks “Programa PRO-SNI, Universidad de Guadalajara” for support under grant No 146912.

A The viscous density parameter \(\tilde{\Omega}_v(z) \)

In this section we deduce the ordinary differential equation that has to be solved numerically to compute the evolution of the density parameter of the bulk viscosity \(\tilde{\Omega}_v(z) \). Inserting equation (2.6) into (2.5), and after re-arranging terms, we obtain the following expression for the bulk viscosity

\[
\zeta = \frac{\zeta_0 + \zeta_1 H - \zeta_2 \left(\frac{4\pi G}{H^2} \right) \left[\rho_B + (1 + 3w)\rho_v \right]}{1 - 9 \left(\frac{4\pi G}{H^2} \right) \zeta_2},
\]

(A.1)

Given the definitions (2.7) of the dimensionless bulk viscous coefficients, as well as \(\Omega_{B0} \equiv \rho_{B0}/\rho_{crit} \) and \(\tilde{\Omega}_v \equiv \rho_v/\rho_{crit} \), the equation (A.1) can be rewritten in dimensionless form as

\[
\tilde{\zeta} = \frac{\tilde{\zeta}_0 + \tilde{\zeta}_1 E - \left(9\tilde{\zeta}_2 / E \right) \left[\Omega_{B0}^{-3} + (1 + 3w)\tilde{\Omega}_v \right]}{9 \left(1 - 9\tilde{\zeta}_2 \right)},
\]

(A.2)

with \(\tilde{\zeta}_2 \neq 1/9 \). Hence, the conservation equation for the viscous component (2.3) in terms of dimensionless quantities is the ordinary differential equation (ODE):

\[
a \frac{d\tilde{\Omega}_v}{da} + 3(1 + w)\tilde{\Omega}_v - 9\tilde{\zeta}E = 0,
\]

(A.3)

where \(E \) and \(\tilde{\zeta} \) are given by the equations (2.8) and (A.2) respectively. Expressing this ODE (A.3) in terms of the redshift \(z \) we obtain

\[
(1 + z)\frac{d\tilde{\Omega}_v(z)}{dz} - 3(1 + w)\tilde{\Omega}_v(z) + 9\tilde{\zeta} \left[\tilde{\Omega}_v(z) + \Omega_{B0}(1 + z)^3 \right]^{1/2} = 0.
\]

(A.4)

We solve numerically this ODE assuming a dust behavior for the viscous matter (i.e., \(w = 0 \)) and the initial conditions \(\tilde{\Omega}_v(0) \equiv \tilde{\Omega}_v(z = 0) = 0.96, \Omega_{B0} = 0.04 \).

The dimensionless Hubble parameter \(E \equiv H/H_0 \) becomes

\[
E(\tilde{\zeta}_0, \tilde{\zeta}_1, \tilde{\zeta}_2) = \sqrt{\Omega_v(z) + \Omega_{B0}(1 + z)^3},
\]

(A.5)

where \(\tilde{\Omega}_v(z) \) is given by the numerical solution of the ODE (A.4), with \(\tilde{\zeta}_2 \neq 1/9 \).

On the other hand, the dimensionless density parameters of the viscous dark matter \(\Omega_v(z) \) and baryon \(\Omega_m(z) \) components, can be expressed as

\[
\Omega_v(z) = \frac{\tilde{\Omega}_v(z)}{\tilde{\Omega}_v(z) + \Omega_{B0}(1 + z)^3},
\]

(A.6a)

\[
\Omega_B(z) = \frac{\Omega_{B0}(1 + z)^3}{\tilde{\Omega}_v(z) + \Omega_{B0}(1 + z)^3},
\]

(A.6b)

where \(\tilde{\Omega}_v(z) \) is given by the ODE (A.4). The evolution of \(\Omega_v(z) \) and \(\Omega_B(z) \) are shown in figure 5. For the deceleration parameter \(q(a) = -(\ddot{a}/a)H^{-2} \), one obtains

\[
q(z) = \frac{\Omega_{B0}(1 + z)^3 + \tilde{\Omega}_v(z) - 9\tilde{\zeta}E(z)}{2(\Omega_{B0}(1 + z)^3 + \tilde{\Omega}_v(z))},
\]

(A.7)
where ζ and $E(z)$ are given by Eqs. (A.2) and (A.5) respectively. The evolution of $q(z)$ is shown in figure 6.

B Error propagation

In this section we describe the procedure that we followed to compute the propagation of the errors shown in bands of figures 4–6.

Given our ignorance in the possible values for the viscous parameters ($\zeta_0, \zeta_1, \zeta_2$) before the statistical analysis, we consider flat prior probability functions for their values. So, from the Bayes theorem, and assuming that each datum of the SNe and $H(z)$ datasets is Gaussian distributed, the posterior probability distribution function is proportional to the likelihood function, obtaining

$$\text{prob}(\zeta_0, \zeta_1, \zeta_2, |\text{Data}, I) = \text{cte} \cdot \exp \left(-\frac{\chi^2}{2}\right), \quad (B.1)$$

where χ^2 is given by the function (3.4), I corresponds to the background information about the parameters and “cte” is a normalization constant that contains our flat prior probability assumptions.

Because of numerical stability it is better to consider the natural logarithm of the posterior probability to work with, i. e., $L \equiv -\ln[\text{prob}(\zeta_0, \zeta_1, \zeta_2, |\text{Data}, I)]$.

Given that the posterior probability is approximately Gaussian near to the best estimated values for the cases (ζ_0, ζ_1) and (ζ_0, ζ_2) (see figures 1 and 2), the covariance matrix C can be computed as

$$(C^{-1})_{ij} = \frac{\partial^2 L}{\partial \zeta_i \partial \zeta_j} \quad (B.2)$$

Next, the variance σ^2 on any cosmological quantity $Q(\zeta_0, \zeta_1, \zeta_2)$, can be computed with the standard formula for error propagation that takes into account the covariance among the variables (see for instance [18])

$$\sigma_Q^2 = \sum_{i=1}^{n} \left(\frac{\partial Q}{\partial \zeta_i}\right)^2 C_{ii} + 2 \sum_{i=1}^{n} \sum_{j=i+1}^{n} \left(\frac{\partial Q}{\partial \zeta_i}\right) \left(\frac{\partial Q}{\partial \zeta_j}\right) C_{ij} \quad (B.3)$$

where C_{ij} corresponds to the ij-th element of the covariance matrix C. Given that we take only pairs of parameters then, $n = 2$.

Following the prescription indicated in the expression (B.2), we find the following covariance matrices $C_{(0,1)}, C_{(0,2)}$ for the cases (ζ_0, ζ_1) and (ζ_0, ζ_2) respectively,

$$C_{(0,1)} = \begin{pmatrix} 0.1116 & -0.08986 \\ -0.08986 & 0.0730 \end{pmatrix}, \quad C_{(0,2)} = \begin{pmatrix} 0.0028 & -0.00039 \\ -0.00039 & 0.000062 \end{pmatrix}. \quad (B.4)$$

For the case (ζ_1, ζ_2), it was not possible to find a covariance matrix with real value components.

Using the formula (B.3), the variance expressions for the total bulk viscosity $\tilde{\zeta}(z)$, Eq. (A.2), the density parameters $\Omega_i(z)$, Eqs. (A.6), and the deceleration parameter $q(z)$, Eq. (A.7), in the case of (ζ_0, ζ_1) as free parameters, have the respective forms

$$\sigma_{\tilde{\zeta}}^2 = \frac{C_{11}}{324} \left(\frac{\tilde{\zeta}_1 \partial_{(0)} \tilde{\Omega}_v(z)}{\sqrt{(z+1)^3 \Omega_B + \tilde{\Omega}_v(z)}} + 2\right)^2 + \left(\frac{2(z+1)^3 \Omega_B + \tilde{\zeta}_1 \partial_{(1)} \tilde{\Omega}_v(z) + 2\tilde{\Omega}_v(z)}{324[(z+1)^3 \Omega_B + \tilde{\Omega}_v(z)]}\right) \left[C_{22} \left(2(z+1)^3 \Omega_B + \tilde{\zeta}_1 \partial_{(1)} \tilde{\Omega}_v(z) + 2\tilde{\Omega}_v(z)\right) + 2C_{12} \left(2\sqrt{(z+1)^3 \Omega_B + \tilde{\Omega}_v(z)} + \tilde{\zeta}_1 \partial_{(0)} \tilde{\Omega}_v(z)\right)\right]. \quad (B.5)$$
\[\sigma^2_{\Omega} = \frac{(z+1)^6 \Omega_{B0}^2 \left(\partial_{(0)} \tilde{\Omega}_v(z)(C_{11} \partial_{(0)} \tilde{\Omega}_v(z) + 2C_{12} \partial_{(1)} \tilde{\Omega}_v(z)) + C_{22} \partial_{(1)} \tilde{\Omega}_v(z)^2 \right)}{\left(z+1 \right)^3 \Omega_{B0} + \tilde{\Omega}_v(z)^2} \]

(B.6)

\[\sigma^2_q = \frac{C_{11} \left(2(z+1)^3 \Omega_{B0} - \tilde{\zeta}_0 \partial_{(0)} \tilde{\Omega}_v(z) + 2\tilde{\Omega}_v(z) \right)^2}{16 \left(z+1 \right)^3 \Omega_{B0} + \tilde{\Omega}_v(z)^2} \]

(B.7)

\[\sigma^2_q = \frac{C_{12} \left(\tilde{\zeta}_0 \partial_{(1)} \tilde{\Omega}_v(z) \right)}{\left(z+1 \right)^3 \Omega_{B0} + \tilde{\Omega}_v(z)^2} \]

(B.10)

where we use the definition \(\partial_{(i)} \equiv \partial / \partial \tilde{\zeta}_i \) and \(\tilde{\Omega}_v(z) \) is given by the numerical solution of the differential equation (A.4). For the case \((\tilde{\zeta}_0, \tilde{\zeta}_2) \) we obtain

\[\sigma^2_q = \frac{1}{324(1-9\tilde{\zeta}_2)^2} \left[4C_{11}(1-9\tilde{\zeta}_2)^2 \left(1 - \frac{9\tilde{\zeta}_2 \partial_{(0)} \tilde{\Omega}_v(z)}{2\sqrt{(z+1)^3 \Omega_{B0} + \tilde{\Omega}_v(z)}} \right)^2 \right] + \]

(B.8)

\[36C_{12} (1-9\tilde{\zeta}_2) \left(\frac{9\tilde{\zeta}_2 \partial_{(0)} \tilde{\Omega}_v(z)}{2\sqrt{(z+1)^3 \Omega_{B0} + \tilde{\Omega}_v(z)}} \right) \left(\frac{-2(z+1)^3 \Omega_{B0} + \tilde{\zeta}_2(9\tilde{\zeta}_2 - 1) \partial_{(2)} \tilde{\Omega}_v(z) - 2\tilde{\Omega}_v(z)}{\sqrt{(z+1)^3 \Omega_{B0} + \tilde{\Omega}_v(z)}} + 2\tilde{\zeta}_0 \right) + \]

\[81C_{22} \left(\frac{-2(z+1)^3 \Omega_{B0} + \tilde{\zeta}_2(9\tilde{\zeta}_2 - 1) \partial_{(2)} \tilde{\Omega}_v(z) - 2\tilde{\Omega}_v(z)}{\sqrt{(z+1)^3 \Omega_{B0} + \tilde{\Omega}_v(z)}} + 2\tilde{\zeta}_0 \right)^2 \],

\[\sigma^2_{\Omega} = \frac{(z+1)^6 \Omega_{B0}^2 \left(\partial_{(0)} \tilde{\Omega}_v(z)(C_{11} \partial_{(0)} \tilde{\Omega}_v(z) + 2C_{12} \partial_{(2)} \tilde{\Omega}_v(z)) + C_{22} \partial_{(2)} \tilde{\Omega}_v(z)^2 \right)}{\left(z+1 \right)^3 \Omega_{B0} + \tilde{\Omega}_v(z)^2} \]

(B.9)

Finally, given the above expressions and the matrix components \(C_{ij} \) from (B.4), we add and subtract the square root of \(\sigma^2_q \) to the central functions (A.2), (A.6) and (A.7) respectively for each case to obtain the surrounding boundary lines, the bands, of figures 4–6.
C Remarks on phase space analysis

Usually the way to test the (theoretical/observational) viability of a given cosmological model is through using known solutions of the cosmological field equations or by seeking for new particular solutions that are physically plausible. However, in general, the cosmological field equations are very difficult to solve exactly and even when an analytic solution can be found it will not be unique but just one in a large set of them. This is not to talk about stability of given solutions.

An alternative way around is to invoke the dynamical systems tools to extract useful information about the asymptotic properties of the model instead. In this regard knowledge of the critical (also equilibrium or fixed) points in the phase space corresponding to a given cosmological model is a very important information since, independent on the initial conditions chosen, the orbits of the corresponding autonomous system of ordinary differential equations (ODE) will always evolve for some time in the neighborhood of these points. Besides, if the point were a global attractor, independent of the initial conditions, the orbits will always be attracted towards it either into the past or into the future. Going back to the original cosmological model, the existence of the critical points can be correlated with generic cosmological solutions that might really decide the fate and/or the origin of the cosmic evolution.

The above interplay between a cosmological model and the corresponding phase space is possible due to an existing isomorphism between exact solutions of the cosmological field equations and points in the equivalent phase space spanned by given variables \((x, y, ...)\). When we replace the original field variables \(H, \rho_{cdm}, \rho_{gde}, \text{etc.}\) by the phase space variables

\[
x = x(H, \rho_{cdm}, ...), \quad y = y(H, \rho_{cdm}, ...), \quad ...,
\]

we have to keep in mind that, at the same time, we trade the original set of non-linear second order differential equations with respect to the variable \(\tau\) in the equivalent phase space spanned by given variables \((x, y, ...)\). When we replace the original field variables \(H, \rho_{cdm}, \rho_{gde}, \text{etc.}\) by the phase space variables

\[
x = x(H, \rho_{cdm}, ...), \quad y = y(H, \rho_{cdm}, ...), \quad ...,
\]

we have to keep in mind that, at the same time, we trade the original set of non-linear second order differential equations with respect to the variable \(\tau = \ln a\):

\[
x' = f(x, y, ...), \quad y' = g(x, y, ...),
\]

etc. The most important feature of the latter autonomous system of ODE is that the functions \(f(x, y, ...), g(x, y, ...), ...,\) do not depend explicitly on the parameter \(\tau\). In other words, we are trading the study of the cosmological dynamics of \(H = H(t), \rho_{cdm} = \rho_{cdm}(t), ...,\) by the study of the flux in \(\tau\)-parameter of the equivalent autonomous system of ODE. The critical points of this system \(P_i : (x_i, y_i, ...), \text{i.e.,}\) the roots of the system of algebraic equations

\[
f(x, y, ...) = 0, \quad g(x, y, ...) = 0, ...,
\]

correspond to solutions of the original system of cosmological equations. If consider small linear perturbations around \(P_i\)

\[
x \to x_i + \delta x(\tau), \quad y \to y_i + \delta y(\tau), ...,
\]

then these would obey the following system of coupled ODE:

\[
\begin{pmatrix}
\delta x' \\
\delta y'
\end{pmatrix} = \begin{pmatrix}
f_x & f_y & ... \\
g_x & g_y & ... \\
\vdots & \vdots & \vdots
\end{pmatrix}_{P_i} \begin{pmatrix}
\delta x \\
\delta y
\end{pmatrix}, \tag{C.1}
\]

where the square matrix in the right-hand-side (RHS) of \((C.1)\) is the Jacobian (also linearization) matrix evaluated at \(P_i\). If diagonalize \(J\) then the coupled system of ODE \((C.1)\) gets decoupled:

\[
\begin{pmatrix}
\delta x' \\
\delta y'
\end{pmatrix} = \begin{pmatrix}
\lambda_1 & 0 & 0 & ... \\
0 & \lambda_2 & 0 & ... \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & ... & \lambda_n
\end{pmatrix} \begin{pmatrix}
\delta x \\
\delta y
\end{pmatrix}, \tag{C.2}
\]
where λ_1, λ_2, etc., are the eigenvalues of the Jacobian matrix J, and the linear perturbations $\delta \dot{x}$, $\delta \dot{y}$, etc., are linear combinations of \dot{x}, \dot{y}, \ldots: $\delta \dot{x} = c_{11}\delta x + c_{12}\delta y + \ldots$, $\delta \dot{y} = c_{21}\delta x + c_{22}\delta y + \ldots$, etc. Perturbations in Eq. (C.2) are easily integrated:

$$\delta \dot{x}(\tau) = \delta \dot{x}(0) e^{\lambda_1 \tau}, \quad \delta \dot{y}(\tau) = \delta \dot{y}(0) e^{\lambda_2 \tau}, \quad \ldots$$

(C.3)

In case the eigenvalues had non-vanishing imaginary parts the critical point P_i is said to be spiral. Depending on the signs of the real parts of all of the eigenvalues of J the equilibrium point $P_i : (x_i, y_i, \ldots)$ can be classified into: i) source point or past attractor if the real parts of all of the eigenvalues were positive quantities, ii) saddle point if at least one of the real parts of the eigenvalues were of a different sign (for example, $Re(\lambda_1) < 0$, $Re(\lambda_2) > 0$, etc.), and iii) future attractor if the real parts of all of the eigenvalues were negative quantities. In the last case the equilibrium point is stable against small perturbations δx, δy, etc., since these exponentially decay in τ-time (see equations (C.3)).

If a given equilibrium point $P_a : (x_a, y_a, \ldots)$ were a global attractor, then, independent on the initial conditions chosen $x(\tau_0) = x_0$, $y(\tau_0) = y_0$, \ldots, every orbit in the phase space will approach to P_a into the future $\{(\tau : \tau > \tau_0)\}$; i. e., the (stable) attractor is the end point of any orbit in Ψ. On the contrary, if a given critical point $P_s : (x_s, y_s, \ldots)$ were unstable, i. e., small perturbations around P_s uncontrollably grow up with τ, then this point was a past attractor or, also, the source point of any orbit in the phase space. For a third class of critical points, the so called "saddle points", depending on the initial conditions chosen, orbits in Ψ can approach to this point, spend some time around it and then be repelled from it to finally approach to the stable attractor if it exists.

Suppose we have a typical phase portrait, composed of a source critical point P_s, a saddle point P_s, and a stable (global) attractor P_a. Each one of these points corresponds to a given solution of the original cosmological equations,

$$H = H_s(z), \quad H = H_s(z), \quad H = H_a(z),$$

respectively. In the above expressions z is the redshift which is related with τ: $\tau = -\ln(z + 1)$. A also typical orbit in the phase space will start at P_s for $\tau = -\infty$, then will approach to P_s and, after a finite (perhaps sufficiently long) $\Delta \tau$, will be repelled by P_s to finally be attracted towards P_a. The parallel history in terms of the equivalent cosmological dynamics will be the following. The expansion starts with a Hubble parameter dynamics $H = H_s(z)$ then, as the Universe expands, the cosmic history enters a transient period characterized by the dynamics dictated by $H = H_s(z)$. After a perhaps long yet finite period $\Delta \tau$ the cosmic expansion will abandon the latter phase to enter into a stage which dynamics obeys $H = H_a(z)$ lasting for ever.

To illustrate the above discussion with a concrete cosmological model, take as an example the so called "lambda-cold-dark-matter" (Λ-CDM) model. The cosmological equations for this model in a flat FRW spacetime are,

$$3\dot{H}^2 = \rho_B + \Lambda, \quad 2\dot{H} = -\rho_B, \quad \dot{\rho}_B + 3H\rho_B = 0,$$

where ρ_B is the energy density of the CDM and Λ is the cosmological constant. It is convenient to introduce the variable $x \equiv \Lambda/3H^2$ of the phase segment $\{x|0 \leq x \leq 1\}$. The Friedmann constraint can be written as $\Omega_B = 1 - x$. The autonomous ODE obtained in this case is the following: $x' = 3x(1-x)$. There are two critical points of this ODE: i) the matter dominated solution $x = 0$ ($\Omega_B = 1$), which happens to be a source point (past attractor), and ii) the de Sitter solution $x = 1$ ($H = \sqrt{\Lambda/3}$), which is the stable (future) attractor. Hence, since a typical trajectory in the phase segment starts at $x = 0$ and end ups at $x = 1$, then in this model the cosmic history starts in a matter dominated period (essential for the formation of structure) and end ups in an inflationary stage lasting for ever into the future.

6In general the eigenvalues can be complex numbers.

7In what follows we shall assume the point P_i is an hyperbolic equilibrium point.

8For purposes of space, our discussion here is oversimplified, since, in general, critical points can be of many types, for instance, spiral, etc. Besides, there can be found also (un)stable manifolds such as cycles, etc. To worsen things there can coexist several local attractors, saddle points, etc., so that, in general, a given orbit in the phase space can approach to several saddle points before they end up at a given local attractor.
If we improve this model by adding a radiation matter component, there would be three critical points in the (now 2D) phase space: i) a radiation-dominated phase (unstable critical point), followed by ii) a transient matter-dominated stage (saddle point), and iii) a de Sitter point (stable attractor). In this case the cosmic history starts at a radiation-dominated stage, then enters a transient period of matter dominance (essential for the formation of cosmic structure), to finally approach to the stable attractor (the de Sitter phase) which will last for ever into the future. This is, precisely, the behavior one expects from a model designed to recreate the presently adopted cosmological paradigm. One has to care only about giving appropriate initial conditions $x_0 = x(\tau_0)$, etc., so as to get enough formation of structure, i.e., to ensure that the corresponding orbit in the phase space will spend enough time in the neighborhood of the saddle critical point associated with the matter-dominated solution.

We want to underline that, the fact that a given exact solution of the cosmological equations cannot be associated with a critical point in the equivalent phase space, does not mean at all that the above solution does not exist. In fact it might exist, but it should not be a stable solution, so it should not be useful in a cosmological setting. To illustrate our point take as an example, again, the Λ-CDM model. There is a large set of known (classes of) solutions to the cosmological equations of the model, however, only the radiation-dominated, matter-dominated, and the de Sitter solutions, are of importance in a cosmological context which is compatible with the accepted cosmological paradigm. The latter is characterized by the following stages: i) early time inflationary period, followed by ii) a radiation-dominated, and iii) a matter-dominated phases, both associated with a stage of decelerated expansion, and iv) a present period of accelerated expansion which might last forever.

References

[1] Heller M., Klimek Z., Suszycki L., Astrophys. Space Science 20 (1973) 205; Zimdahl W., Phys. Rev. D 53 (1996) 5483 [arXiv: astro-ph/9601189]; Maartens R., Mendez V., Phys. Rev. D 55 (1997) 1937 [arXiv:astro-ph/9611205]; Tawfik A. et al. (2010) Annalen Phys. 522 912-923 [arXiv:1008.0971]; Tawfik (2011) Annalen Phys. 523 423-434 [arXiv:1102.2626].

[2] Hiscock W. A., Salmonson J., 1991 Phys. Rev. D 43 (1991) 3249.

[3] Kremer G. M., Devecchi F. P., Phys. Rev. D 67 (2003) 047301 [arXiv:gr-qc/0212046]; Cataldo M., Cruz N., Lepe S., Phys. Lett. B 619 (2005) 5 [arXiv:hep-th/0506153]; Fabris J. C., Goncalves S. V. B., de Sá Ribeiro R., Gen. Rel. Grav. 38 (2006) 495 [arXiv:astro-ph/0503632]; Breivik I., Gorbunova O., Gen. Rel. Grav. 37 (2005) 2039 [arXiv:gr-qc/0504001]; Hu M.-G., Meng X.-H., Phys. Lett. B 635 (2006) 186 [astro-ph/0511615]; Ren J., Meng X.-H., Phys. Lett. B 633 (2006) 1 [arXiv:astro-ph/0511163]; Ren J., Meng X.-H., Phys. Lett. B 636 (2006) 5 [arXiv:astro-ph/0602462]; Szydlowski M., Hrycyna O., Ann. Phys. 322 (2007) 2745 [arXiv:astro-ph/0602115]; Debnath P. S., Paul B. C., Beesham A., Phys. Rev. D 76 (2007) 123505; Colistete R. Jr, Fabris J. C., Tossa J., Zimdahl W., Phys. Rev. D 76 (2007) 103516 [arXiv:astro-ph/0706.4086]; Singh C. P., Kumar S., Pradhan A., Class. Quant. Grav. 24 (2007) 455; Meng X.-H., Dou X., Commun. Theor. Phys. 52 (2009) 377 [arXiv:astro-ph/0812.4904]; Capozziello S. et al. (2006) Phys. Rev. D 73 043512 [astro-ph/0508350]; Montiel A., Breton, JCAP 1108 (2011) 023 [arXiv:1107.0271].

[4] Zimdahl W., Phys. Rev. D 61 (2000) 083511 [arXiv:astro-ph/9910483]; Zimdahl W., Schwarz D., Balakin A. B., Pavón D., Phys. Rev. D 64 (2001) 063501 [arXiv:astro-ph/0009353]; Mathews G. J., Lan N. Q., Kolda C., Phys. Rev. D 78 (2008) 043525 [arXiv:astro-ph/0801.0853].

[5] Wilson J. R., Mathews G. J., Fuller G. M., Phys. Rev. D 75 (2007) 043521 [arXiv:astro-ph/0609687].

[6] Okumura H., Yonezawa F., Physica A 321 (2003) 207; Ilg P., Ottinger H. C., Phys. Rev. D 61 (2000) 023510; Xinzhong C., Spiegel E. A., Mon. Not. R. Astron. Soc. 323 (2001) 865.

[7] Avelino A., Nucamendi U., JCAP 1008 (2010) 009 [arXiv:gr-qc/1002.3605].

[8] Avelino A., Nucamendi U., JCAP 0904 (2009) 006 [arXiv:gr-qc/0811.3253].
[9] Weinberg S., *Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity*, John Wiley & Sons, Inc., New York, U.S.A. (1971); Astrophys. J. 168 (1971) 175; Misner C. W., Thorne K. S., Wheeler J. A., *Gravitation*, W. H. Freeman and Company (1973) pag. 567; Hofmann S., Schwarz D. J., Stoecker H., Phys. Rev. D64 (2001) 083507.

[10] Eckart C., Phys. Rev. 58 (1940) 919.

[11] Landau L. D., Lifshitz E. M., *Fluid Mechanics*, Addison-Wesley, Reading, U.S.A. (1958).

[12] Suzuki N. et al, Astrophy. J. 746 (2012) 85 [arXiv: astro-ph.CO/1105.3470].

[13] Amendola, L., Phys. Rev. D62 (2000) 043511 [e-Print: astro-ph/9908023]; Phys. Rev. D60 (1999) 043501 [e-Print: astro-ph/9904120].

[14] Busca Nicolas *et al.* 2012, [arXiv:1211.2616]

[15] Blake C. *et al.* 2011, MNRAS, 418, 1725

[16] Blake C. *et al.* 2012, MNRAS, 425, 405; Chuang, Chia-Hsun, Yun Wang 2012, MNRAS, 426, 226; Reid, B.A., L. Samushia, M.White *et al.* 2012, [arXiv:1203.6641]; Xu, X., Cuesta, A.J., N. Padmanabhan *et al.* 2012, [arXiv:1206.6732]

[17] Riess, A.G., L. Macri, S. Casertano *et al.* 2011, ApJ, 730, 119

[18] Herman Berendsen, “Data and Error Analysis, a student’s guide to”, Cambridge University Press, 2011, ISBN 978-0-521-11940-5.