18S rRNA Identification of Hydrobionts of Nizhniy Kaban Lake & Diversity Study through Next Generation Sequencing Method

1 Ludmila Frolova, 2 Anthony Elias Sverdrup
1-2 Kazan Federal University
Email: Lucie.Frolova@gmail.com

Received: 20th August 2019, Accepted: 30th September 2019, Published: 31st October 2019

Abstract
The paper presents the results of a study of the species diversity of freshwater Nizhniy Kaban Lake (Kazan, Russia) by the gene 18S rRNA based on the next-generation sequencing method. Nizhniy Kaban, Verhniy Kaban, and Sredniy Kaban Lakes are included in the system of urban Kaban Lakes, which are polluted lakes according to ecological studies. Sequences of the 18S rRNA gene fragment of the freshwater Nizhniy Kaban Lake hydrobionts were submitted to the international SRA database on NCBI website in fastq format with numbers SRR7510988, SRR7516481, SRR7465568. A total of 39505 (2016) and 22619 (2017) high-quality reads were obtained; 89.4% (2016) and 83.8% (2017) of the hydrobionts was classified to the kingdom level, while 74.7% (2016) and 81% (2017) was classified to the phylum level, 48.2% (2016) and 79.5% (2017) was classified to the class level, 74.7% (2016) and 81% (2017) was classified to the genus level, and 41.9% (2017) was classified to the species level. Analysis of the metagenomic data for Nizhniy Kaban Lake shows that indicator organisms identified by the 18S rRNA gene are grouped near the b-mesosaprobity. Nizhniy Kaban Lake can be characterized as contaminated, in terms of water quality, transitional from b- to a-mesosaprobity.

Keywords
Saprobity, Gene 18S rRNA, Next-Generation Sequencing, Freshwater Lake, Ecology

Introduction
At present time, the rapid development of metagenomics is associated with the proliferation of next-generation sequencing methods. Metagenomics can provide valuable information on the functional ecology of environmental communities [1]. We previously used metagenomic DNA sequencing to analyze species diversity by marker genes CO1 of animal organisms and rbcL of plants to assess the ecological state of freshwater Nizhniy Kaban Lake by bioindication [2, 3]. In contrast to the marker genes CO1 and rbcL, the gene 18S rRNA is present in all eukaryotes. The ribosomal genes (rRNA) are one of the most conserved genes. Therefore, the systematic position of the organism and the time of discrepancy with similar species can be determined on the basis of the analysis of similarities and differences in rRNA sequences [4]. For eukaryotes, it is most convenient to analyze 18S rRNA of the three types of rRNA.

The paper presents the results of a study of the species diversity of the freshwater Nizhniy Kaban Lake (Kazan, Russia) according to the gene 18S rRNA of freshwater organisms based on the next generation sequencing method. Nizhniy Kaban, Verhniy Kaban, and Sredniy Kaban Lakes are included in the system of urban Kaban Lakes, which are polluted lakes according to ecological studies.

Methods
Sampling from Nizhniy Kaban Lake (Kazan, Russia) was carried out in 2016-2017 in accordance with standard hydrobiological methods [5].

DNA was isolated from the precipitate obtained by centrifuging 50 ml of the sample at a speed of 10,000 g for 15 min using the FAST DNA Kit (MP biomedicals) according to the manufacturer's protocol. Amplification of the extracted DNA was carried out by Phusion High-Fidelity DNA polymerase (Thermo Fisher) using primers (Table 1).

Primers	Sequences
SR1_llumina	5'-tcgtcggcagctcagatgtataagagacagattaccgcggctgct-3'
SR1r_llumina	5'-gtctcgtgggctcggagatgtataagagacagtacctggttgatqctgccagt-3'

Table 1: Primers for PCR of 18S rRNA Gene

A second PCR cycle was performed to index samples (Nextera XT indices). Purification of PCR products was performed using Agencourt AMPure XP beads (Beckman Coulter). The obtained DNA libraries were sequenced on an Illumina MiSeq instrument (MiSeq Reagent kit v3). Metagenomic data were submitted to the international SRA database on NCBI website with the numbers SRR7510988, SRR7516481, SRR7465568 [6]. After filtering reeds by quality, trimming service sequences, and removing chimeric sequences, obtained nucleotide sequences of the 18S rRNA gene of hydrobionts were aligned with the BLAST program to establish the taxonomic composition. The Krona chart [7] and GraphPad [8] software were used for charts.
Results and Discussion
In 2016-2017 the next-generation sequencing method was used to identify hydrobionts by 18S rRNA gene from Nizhniy Kaban Lake. It is a lake about 2 km in length and 0.3 km in wide and has geographical coordinates of 55°46'35.6"N and 49°07'25.0"E (Fig. 1). Nizhniy Kaban Lake is located in the center of an industrial city, thus experiencing anthropogenic pressure. According to ecological studies, Nizhniy Kaban Lake is a polluted lake.

Figure 1: The Satellite Map of Nizhniy Kaban Lake (Kazan, Russia)
https://www.google.com

Krona chart of the hydrobionts represented by 18S rRNA gene amplicon-based species diversity
The percentage distribution of hydrobionts of Nizhniy Kaban Lake by reads for 2016 is shown in Fig. 2. The percentage distribution of hydrobionts of Nizhniy Kaban Lake by reads for 2017 is shown in Fig. 3. Each circle represents the kingdom, phylum, class, order, family, genus, and species from the inside to the outside of the circle, respectively, indicated by percent diversity.

Figure 2: The Percentage of 18S rRNA Hydrobionts by Reads of Nizhniy Kaban Lake (2016)
The percentage of 18S rRNA hydrobionts of Nizhniy Kaban Lake by kingdom

The percentage of species diversity of 18S rRNA hydrobionts of Nizhniy Kaban Lake by kingdom (2016-2017) shown in Figure 4. As can be seen from Fig. 4, the most numerous at the kingdom level, respectively, by year are Chromista (82.22% / 54.95%), Metazoa (4.44% / 12.87%) and Viridiplantae - 17.82% (2017) by species diversity.

The percentage of reads of 18S rRNA hydrobionts of Nizhniy Kaban Lake by kingdom (2016-2017) shown in Figure 5. As can be seen from Fig. 5 among the hydrobionts, the most numerous according by reads are Chromista (84.73% / 7.54%) and Metazoa – 74.29% (2017).
The percentage of species diversity and reads of 18S rRNA hydrobionts of Nizhniy Kaban Lake by phylum (2016-2017) shown in Figure 6. As can be seen from Fig. 6, the most numerous at the phylum level for 2016 are Ciliophora (14.89%), Cercozoa (12.77%), Bigya and Cryptophyta (6.38%), and Unclassified (46.81%) by species diversity; 2017 - Ochrophyta (15.94%), Chlorophyta (15.46%), Ciliophora (13.04%) and Unclassified (6.28%).

Figure 6: The Percentage of Species Diversity and Reads of 18S rRNA Hydrobionts of Nizhniy Kaban Lake by Phylum (2016-2017)

The species diversity of hydrobionts in 2017 is 41.9% of reads from the total number of organisms. Ten hydrobionts are included on a top by reads - Arctodiaptomus cf.stephanidesi (88.46%), Cryptomonas curvata (2.97%), Leiocephalium pseudosanguineum (0.96%), Paraphysomonas foraminifera (0.92%), Onychodiaptomus sanguineus (0.77%), Vorticella aequilata (0.58%), Coleps hirtus (0.46), Stephanodiscus parvus (0.42%), Poteriochromonas malhamensis (0.23%), Fragilaria rumpens (0.21%) (Fig 7).
Figure 7: The Species of Hydrobionts and Reads of Nizhniy Kaban Lake (2017)

122 hydrobionts of Nizhniy Kaban Lake were identified by 18S rRNA gene. Among them, there are 14 hydrobionts with saprobities in Sladechek's list [9]. Table 2 shows the saprobionts of Nizhniy Kaban Lake.

Species	Saprobity	Reads%
Cryptomonas curvata	b	2.970
Vorticella aequilata	p	0.580
Coleps hirtus	b-a	0.460
Eudiaptomus graciloides	o	0.120
Cyclops insignis	o-b	0.063
Keratella cochlearis	b-o	0.060
Tintinnidium fluviatile	o-b	0.035
Chlorella vulgaris	p-a	0.035
Botryococcus braunii	o-b	0.007
Sphaeroeca volvox	a	0.007
Nitzschia fonicola	o-b	0.007
Dinobryon divergens	b	0.007
Cyclotella meneghiniana	a-b	0.007
Chlamydomonas reinhardii	a	0.007

Table 2: Hydrobionts with Saprobities in Sladechek's List of Nizhniy Kaban Lake

1 Freshwater algae. They are not known to produce any toxins [10]. Cryptomonas are also photolithothrops that contribute to oxygenic carbon fixation making them highly critical to the carbon levels of freshwater environments [11].

2 Freshwater species of Ciliata. Vorticella habitats may include moist soil, mud and plant roots. They are known to feed on bacteria and can also form extracellular associations with mosquitoes, nematodes, prawns, and tadpoles [12].

3 The C. hirtus does not possess algal symbionts and feeds directly on other microbes [13]. Coleps feeds on bacteria, algae, flagellates, living and dead ciliates, animal and plant tissues [14]. Coleps uses toxicysts, which are organelles containing poison that it uses to capture its prey from its oral area.
Invertebrate animals. *E. graciloides* is only found at pH <5.5 when conductivity is above 2 mS / m [15].

Freshwater invertebrates. It lives along the plant-covered banks of stagnant and slow-flowing bodies of water, where it feeds on small fragments of plant material, animals or carrion. *Cyclops* has the capacity to survive unsuitable conditions by forming a cloak of slime [16].

Keratella cochlearis is a rotifer [17]. The planktonic animal occurs worldwide in freshwater and marine habitats.

Tintinnidium fluviatile - unicellular eukaryotes. A review of the ecology of the fresh-water Tintinnina indicated that water temperature seems to be the most essential ecologic factor [18].

Green eukaryotic microalgae, which has been present on earth since the Precambrian period [19].

Botryococcus braunii is a green planktonic microalga. The species is notable for its ability to produce high amounts of hydrocarbons, that are typically around 30–40% of their dry weight [20, 21].

Cyclorella is a centric diatom. *Cyclorella* occurs in stagnant waters. The nutrient content does not matter. They live both floating (plankton) and on the ground (benthos). *C. meneghiniana* was firstly described by Kützing [27].

Figure 8: The Percentage of Reads by Hydrobionts Saprobity of Nizhniy Kaban Lake (2017)

As can be seen from Fig. 8, most indicator organisms are grouped near *b* -mesosaprobity, which, in accordance with the classification of water quality, is characterized as polluted.

Summary

Based on the results of the study, the next-generation sequencing method was used to identify hydrobionts by *18S rRNA* gene for Nizhniy Kaban Lake for 2016-2017. A total of 39505 (2016) and 22619 (2017) high-quality reads were obtained; 89.4% (2016) and 83.8% (2017) of the hydrobionts was classified to the kingdom, while 74.7% (2016) and 81% (2017) was classified to the phylum level, 48.2% (2016) and 79.5% (2017) was classified to the class level, 79.6% (2017) was classified to the genus level, and 41.9% (2017) was classified to the species level. A total of 122 species were identified, among them there are 14 species with saprobity from Sladechek’s list. Algae *Cryptomonas curvata* of *b* -mesosaprobity is the most numerous by reads. *Cryptomonas* are also photolithothrophs that contribute to oxygenic carbon fixation making them highly critical to the carbon levels of fresh water environments [11]. *b* -mesosaprobity indicates that the water is polluted.

Conclusions

Usage of the next-generation sequencing method allows the identification of a large number of hydrobionts. The method can be used for bioindication for assessing the ecological state of water reservoirs. This is great practical interest in the field of monitoring of water reservoirs.
Acknowledgments
The work is performed according to the Russian Government Program of Competitive Growth of Kazan Federal University. The authors would like to thank Dr. Sergey Malanin and Evgenia Boulygina, scientists of Kazan Federal University for their assistance with experimental work.

References
1. J. Raes, I. Letunic, T. Yamada, L.J. Jensen, P. Bork, "Toward molecular trait-based decology through the integration of biogeochemical, geographical and metagenomic data", Molecular systems biology, vol. 7, p. 473, 2011.
2. L.L. Frolova, A.E. Sverdrup, "The monitoring of Nizhniy Kaban lake by rbcL gene of freshwater organisms using next-generation sequencing", Research journal of pharmaceutical, biological and chemical sciences (RJPBCS), vol. 9 (1), pp.262-271, 2018.
3. A.M. Khusainov, L.L. Frolova, “The evaluation of water quality of Nizhniy Kaban lake using next-generation sequencing.” Research Journal of Pharmaceutical, Biological and Chemical Sciences (RJPBCS), vol. 9 (6), pp. 272-279, 2018.
4. Ribosomal RNA by Denis LJ Lafontaine and David Tollervey Ribosomal RNA Gene Families // WWW.Molecular-Plant-Biotechnology.info
5. V.V. Bulon, "Guidelines for the collection and processing of materials in hydrobiological studies in freshwater bodies. Phytoplankton and its products", L.: State scientific-research institute of a lake fish farm, 32 pages, and 1981.
6. National Center for Biotechnology Information - http://www.ncbi.nlm.nih.gov/
7. Krona homepage - http://github.com/marbl/Krona/wiki
8. GraphPadSoftware - https://www.graphpad.com
9. V. Sladechek, “System of water quality from the biological point of view”, Arch. Hydrobiol. Ergeb. Limnol, pp. 179-191, 1973.
10. B.Choi, M.Son, J.I.Kim, W.Shin, "Taxonomy and phylogeny of the genus Cryptomonas (Cryptophyceae, Cryptophyta) from Korea", vol. 28 (4), pp.307-330, 2013.
11. K. Hoef-Emden, M. Melkonian, "Revision of the Genus Cryptomonas (Cryptophyceae): a Combination of Molecular Phylogeny and Morphology Provides Insights into a Long-Hidden Dimorphism". Protist, vol. 154 (3-4), pp. 371–409, 2003.
12. CPatil, CPNarkhede, RKSuryawanshi, SVPatil, "Vorticella sp: Prospective Mosquito Biocontrol Agent". Journal of Arthropod-Borne Diseases, vol. 10 (4), pp. 602–607, 2016.
13. Taxonomie und Ökologie von Ciliaten (Wimpertierchen) - http://www.ciliates.at/en/2016/01/29/coelphirtus-hirtus/
14. F. Buonanno, A. Anesi, G. Guella, "Chemical Offense by Means of Toxicysts in the Freshwater Ciliate, Coleps hirtus", Eukaryotic Microbiology, 2014.
15. NORWEGIAN BIODIVERSITY INFORMATION CENTER - https://www.artsdatabanken.no/Pages/220899
16. D. Cuvelier, T.C. Walter, "Cyclops Müller, 1785", World Copepoda database.
17. H. Streble, D. Krauter, “Das LebenimWassertropfen. Mikroflora und Mikrofauna des Süßwassers”, Kosmos Verlag, Stuttgart, 2006.
18. “Morphologie, Infraciliaturund Ökologie der limnischen Tintinnina: Tintinnidium fluviatile Stein, Tintinnidium pusillum Entz, Tintinnopsis cylindrata Daday and Codonella cratera (Leidy) (Ciliophora, Polyhymenophora), Journal of Eukaryotic Microbiology vol.26(1), pp.90-103, 2007.
19. C. Safi, B. Zebib, O. Merah, P. Y. Pontalier, C. Vaca-Garcia. "Morphology, composition, production, processing and applications of Chlorella vulgaris: A review." Renewable and Sustainable Energy Reviews, vol. 35, pp. 265–278, 2014.
20. P. Metzger, C. Largeau, "Botryococcus braunii: a rich source for hydrocarbons and related ether lipids", Applied Microbiology and Biotechnology, vol. 66 (25), pp. 486–496, 2005.
21. F.R. Wolf, A.M. Nonomura, J.A. Bassham, "Growth and Branched Hydrocarbon Production in a Strain of Botryococcus braunii (Chlorophyta)", Journal of Phycology, vol. 21 (3), pp. 388, 1985.
22. R. Lauterborn, “Über die Winterfauna einiger Gewässer der Oberrheinebene. Mit Beschreibungen neuer Protozoen.” Biologische Centralblatt vol. 14, pp. 390-398, 1894.
23. AlgaeBase - http://www.algaebase.org
24. Diatom in Wikipedia - https://en.wikipedia.org/wiki/Diatom
25. D.A. Caron, R.W. Sanders, L.E. Lim, C. Marrasé, L.A. Amaral, S. Whitney, R.B. Aoki, K.G. Porters, "Light-dependent phagotrophy in the freshwater mixotrophic chrysophyte Dinobryon cylindricum", Microbial Ecology, vol. 25(1) pp. 93–111, 1993.
26. D.M. C. Rashash, A.M. Dietrich, R.C. Hoehn, B.C. Parker, "The influence of growth conditions on odor-compound production by two chrysophytes and two cyanobacteria", Water Science and Technology, vol. 31 (11), pp. 165-172, 1995.
27. F.T. Kützing, "Die Kieselalgen der Bacillarien oder Diatomeen." Nordhausen: zu finden bei W. Köhne, pp. [i-vii] 1-152, pls 1-30, 1844.