UC San Diego
UC San Diego Previously Published Works

Title
Ethambutol-resistant Mycobacterium kansasii cervical lymphadenitis in an immunocompetent adult patient: A case report and literature review

Permalink
https://escholarship.org/uc/item/6p48t1nr

Authors
Asensi, Víctor
Palacios, Juan J
Rivas-Carmenado, Maria
et al.

Publication Date
2020-02-01

DOI
10.1016/j.jctube.2019.100137

Peer reviewed
Ethambutol-resistant *Mycobacterium kansasi* cervical lymphadenitis in an immunocompetent adult patient: A case report and literature review

Víctor Asensia,a,⁎, Juan J. Palaciosb, Maria Rivas-Carmenadoa,⁎, Tomás Suárez-Zarracinaa,⁎, Enrique García-Carusa,a, Luis M. Fernándeza, Héctor E. Torrisc, Joshua Fiererd, José A. Cartona,a,⁎

a Infectious Diseases Unit, Hospital Universitario Central de Asturias, Oviedo University School of Medicine, Oviedo, Spain

b Regional Mycobacterial Unit, Department of Microbiology, Hospital Universitario Central de Asturias, Oviedo University School of Medicine, Oviedo, Spain

c Department of Pathology, Hospital Universitario Central de Asturias, Oviedo University School of Medicine, Oviedo, Spain

d VA San Diego Healthcare System, San Diego, California, USA, University of California San Diego School of Medicine, San Diego, USA

e Group of Translational Research in Infectious Diseases, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain

⁎ Corresponding author at: Infectious Diseases Unit, Hospital Universitario Central de Asturias, Avenida de Roma s/n, 33011 Oviedo, Spain.

E-mail address: vasensia@gmail.com (V. Asensio).

https://doi.org/10.1016/j.jctube.2019.100137

ARTICLE INFO

Keywords:
Mycobacterium kansasi
Cervical lymphadenitis
Immunocompetent
Resistance
Ethambutol
Quantiferon

1. Introduction

Mycobacterium kansasi is the second most commonly isolated of pathogenic non-tuberculous mycobacteria (NTM), after *Mycobacterium avium complex* (MAC) in patients with the acquired immunodeficiency syndrome (AIDS), and it is the most virulent [1]. *M. kansasi* usually causes lung disease. Extrapulmonary involvement is rare in immunocompetent adults, but does occur in immunocompetent children and in HIV-infected and other immunosuppressed adults [1–3]. *M. kansasi* is probably the easiest of NTM to treat effectively due to similarities with *M. tuberculosis*. *M. kansasi* is classically resistant to pyrazinamide (PZA) and sensitive to rifampin (RIF), isoniazid (INH), ethambutol (EMB), macrolides and aminoglycosides [4,5].

We report here a case of an adult immunocompetent patient with isolated supraventricular lymphadenitis due to *M. kansasi* resistant to EMB, that was successfully treated with 12 months of RIF + CLR therapy.

2. Case presentation

A 65-year-old male farmer with mild bronchiectasis was referred to our hospital with a 3 months history of asymptomatic neck mass. The patient was in a perfect state of health except for the cervical lump. He did not have serious infections in the past. A family history of opportunistic infections was not reported. Physical exam revealed a weight of 106 kg and an enlarged right supraventricular tumor. The mass was soft and not painful to pressure with overlying erythema (Fig. 1A). Cervical–thoracic computed tomography (CT) confirmed the presence of right supraventricular necrotic lymphadenopathy, 36 × 45.7 × 67 mm in diameter (Fig. 1B). No other CT cervical or thoracic lymphadenopaties or pulmonary lesions were observed except for mild bibasilar bronchiectasis. A fine needle aspiration (FNA) procedure was performed showing 1–9 acid-fast bacilli (AFB)/100 high power fields by Ziehl-Neelsen staining of the aspirated pus (Fig. 1C).FNA cytology showed granulomatous inflammation. Sputum Ziehl-Neelsen staining, quantitative PCR (qPCR) and culture in Löwenstein-Jensen medium were...
negative for mycobacteria. A tentative diagnosis of tuberculous lymphadenitis was made and the patient was started on oral INH 300 mg + RIF 600 mg + PZA 1500 mg + EMB 15 mg/kg daily. Routine hemogram and biochemistry values were normal with an ESR of 25 mm/h, and C-reactive protein (C-RP) of 0.7 mg/dl. Quantiferon TB Gold assay and HIV serology were negative.

Blood levels of IgG, IgM, IgA, complement proteins and granulocytes were normal. Fluorescent-activated cell sorter (FACS) analysis of lymphocytic subpopulations in peripheral blood was normal: CD3+ lymphocytes were normal. Fluorescent-activated cell sorter (FACS) analysis of TB Gold assay and HIV serology were negative.

3 months of therapy. Seven months after the end of treatment he remains well.

3. Discussion

Ours is the 6th reported case of M. kansasii extrapulmonary lymphadenitis in immunocompetent adults; 5 cases in children under 18 have also been reported. (Table 1) [6-14]. Sites of dissemination included cervical and mediastinal lymph nodes, skin, brain, soft tissue, joint, and peritoneum. Two patients had multiple non-nodal sites of involvement; one had concomitant Salmonella bacteremia suggesting an acquired defect in T cell immunity, and the work-up for immunodeficiency was not reported for the second case, who relapsed after treatment with INH, RIF and EMB [10,12].

Our patient had subtype I M. kansasii lymphadenitis, the subtype most frequently found in humans and the most pathogenic, but rarely isolated from the environment [11,15].

This is intriguing because he was a farmer and might be exposed to other serotypes of M. kansasii by outdoors exposure to contaminated soil and water via aerosol or cutaneous contact or by drinking contaminated lake, river, or even tap water [1-3]. However, since the node was superclavicular, it is more likely to have spread from a lung focus not seen in the cervico-thoracic CT. Drinking contaminated spring water while farming or eating raw vegetables in contact with contaminated water or soil are other possibilities of having acquired M. kansasii infection by this patient.

Quantiferon–TB Gold test was negative in our immunocompetent patient. This is interesting because M. kansasii is one of the antigens making the Quantiferon–TB Gold test, a peptide cocktail stimulating the proteins ESAT-6, CFP-10 and TB7.7. The Quantiferon–TB Gold might be positive in M. kansasii infections [16]. However only 52% of the patients with M. kansasii disease were positive for the test in one Japanese study [17].

The M. kansasii strain from our case showed EMB resistance by microdilution, direct agar proportion and Etest drug susceptibility methods. CIP, LVX AMK, KAN, and TGC resistances were also observed. Very recently Bakulat et al. reported that M. kansasii EM resistance assessed by broth microdilution and Etest was observed in 83/85 (97.7%) of different subtypes (I to VI, I/II and IIB) of M. kansasii strains from 7 European countries and South Korea [18]. It will be of interest to determine if this high “in vitro” resistance of M. kansasii to EMB is confirmed in follow-up studies. Resistances to CIP (17/85, 20%) and CLR (1/85, 1.2%) were also reported in the same study.

A case of EMB and INH-resistant M. kansasii chronic tenosynovitis in an immunocompetent was reported in 2018 from the USA. The patient, with previous chemical hand skin damage had continuous exposure to a freshwater lake. He was cured with 6 months of CLR ± RIF therapy [19].

All the seven M. kansasii lymphadenitis cases in immunocompetent hosts reported in which the outcome was available were cured. Four of them received 6–18 months of EMB along with RIF and INH and/or CLR and two also underwent surgery with success.

It is no clear presently that there is a gold standard therapy for M. kansasii infection. The use of a rifamycin ± a macrolide seems reasonable with the potential addition of EMB [4]. However, the frequency of EMB resistance needs to be confirmed in additional studies. Some additional caution is also needed because although the European resistance rate to CLR is very low, a 26.8% resistance of M. kansasii subtype I to CLR has been recently reported from strains isolated in China [20].
Reference/ Year	Country	Number of cases	Race	Age (years) /Gender	Symptoms	Lymphadenitis site	Other organs involved	Culture source	M. kansasii subtype	Comorbidities	EMB sensitivity	Therapy	Duration (months)	Outcome
Kanlikama et al.1993	Turkey	2	European	13.3/NA	Neck mass	Submandibular	No	LN	NA	No	NA	INH + RIF + EMB	NA	Cure
Flint et al.2000	New Zealand	1	European	2.2/NA	Neck mass	NA	NA	NA	NA	No	NA	EMB + CLR + surgery	NA	NA
Kob et al.2001	France	1	European	79/F	Fever, cough, itching, night sweats	Mediastinal	Skin	LN	NA	No	NA	INH + RIF + EMB	NA	NA
de Juan et al.2002	Spain	1	European	2/M	Neck mass + spontaneous fistula	Left lateral cervical	No	LN	NA	No	Sensitive	CLR + EMB	6	Cure
Tabatabaei et al.2007	USA	1	European	74/M	Fever, somnolence, mental status changes	Left supraclavicular, parastrachial, prestrachial, hilar	Brain	LN	NA	Diabetes, alcohol abuse	Sensitive	INH + RIF + EMB	18	Cure
Salles et al.2007	France	1	European	56/F	Neck mass	Right parotid, submaxillary	No	LN	IV	No	Sensitive	RIF + EMB + CLR	NA	NA
Hsiao et al.2014	Taiwan	1	Chinese	67/M	Neck mass	Soft tissue, lung, joint, peritoneum	LN	NA	Hypothyroidism/ Salmonella 09 (group D) infection	Sensitive	INH + RIF + EMB	18	Cure/ Relapse/ Permanent cure	
Blanc et al.2016	France	1	Adult, NA age and gender	Neck mass	Cervical	No	NA	NA	NA	NA	NA	NA	11	Probable cure
Loizos et al.2018	Cyprus	1	European	17/M	Neck mass	Cervical	No	LN	NA	No	NA	RIF + CLR + surgery	2	Cure
Asensi et al.2016	Spain	1	European	65/M	Neck mass + post-FNA fistula	Right supraclavicular	No	LN	I	Bronchiectasis	Resistant	INH + RIF + CLR	12	Cure

INH = isoniazid; RIF = rifampin; EMB = ethambutol; CLR = clarythromycin; FNA = fine needle aspiration; NA = not available; M = male; F = female; LN = lymph node.
Availability of data and materials

The clinical, image and microbiological data supporting this work are included in the article.

Ethics approval and consent to participate

This was an observational study, in which the patient underwent routine clinical care for M. kansasii lymphadenitis, without any change in its management or specific determinations or procedures. Therefore, no formal written informed consent was obtained from the patient. The Research Ethics Committee of the Principality of Asturias granted a formal waiver of ethical approval for this study.

The patients has signed a Hospital Universitario Central de Asturias (HUCA) written consent form for publication of his clinical data and images. Abiding by the Declaration of Helsinki the anonymity of the patient was preserved.

CRediT authorship contribution statement

Víctor Asensi: Conceptualization, Formal analysis, Data curation.
Juan J. Palacios: Funding acquisition, Formal analysis, Data curation.
Maria Rivas-Carmenado: Funding acquisition.
Tomás Suárez-Zarracina: Funding acquisition.
Enrique García-Carus: Funding acquisition.
Luis M. Fernández: Funding acquisition.
Héctor E. Torres: Funding acquisition.
Josua Fierer: Writing - original draft, Writing - review & editing.
José A. Carton: Conceptualization.

Declaration of Competing Interest

The authors declare that they have no conflict of interest.

References

[1] Horsburgh Jr. CR, Selik RM. The epidemiology of disseminated nontuberculous mycobacterial infection in the acquired immunodeficiency syndrome (AIDS). Am Rev Respir Dis 1989;139:4-7. https://doi.org/10.1164/ajrccm/139.1.4.
[2] Bittner MJ, Horowitz EA, Safanek TJ, Freeheim LC. Emergence of Mycobacterium kansasii as the leading mycobacterial pathogen isolated over a 20-year period at a Midwestern Veterans Affair hospital. Clin Infect Dis 1996;22:1109-10. https://doi.org/10.1093/clinids/22.6.1109.
[3] Bloch KC, Zwerling L, Pletcher MJ, Hahn JA, Gerberding JL, Ostroff SM, Vugia DJ, Reingold AL. Incidence and clinical implications of isolation of Mycobacterium kansasii: results of a 5-year, population-based study. Ann Intern Med 1998;129:698–704. https://doi.org/10.7326/0003-4819-129-9-19981101-00004.
[4] Griffith DE. Management of disease due to Mycobacterium kansasii. Clin Chest Med 2000;22:613–21.
[5] Brown-Elliot BA, Nash KA, Wallace Jr. RJ. Antimicrobial susceptibility testing, drug resistance mechanisms and therapy of infections with nontuberculous mycobacteria. Clin Microbiol Rev 2012;25:545–82. https://doi.org/10.1128/CMR.05030-11.
[6] Kanlikama M, Ozhshingou C, Akan E, Öznak K. Mycobacterial species causing cervicofacial infection in Turkey. Eur Arch Otorhinolaryngol 1993;250:237–9.
[7] Flux D, Mahadevan M, Barber C, Grayson D, Small R. Cervical lymphadenitis due to nontuberculous mycobacteria: surgical treatment and review. Int J Pediatr Otorhinolaryngol 2000;53:187–94.
[8] Kobr R, Dhoţe R, Garcia-Ricart F, Perring S, Carlotti A, Arfi C, Christoforov B. Cutaneous and mediastinal lymphadenitis due to Mycobacterium kansasii. J Infect 2001;42:277–8. https://doi.org/10.1053/jinf.2000.0809.
[9] de Juan Martin F, Marin Bravo MC, Bouthelier Moreno M, Lezcano Carrera MA, Zubiri Ari L, Adiego Leza ML. Infección por micobacterias no tuberculosas en inmunocompetentes. An Esp Pediatr 2002;56:357–9.
[10] Tabatabaei N, Jost J, Goldschmidt-Clermont P, Murdoch D. Central nervous system infection and cutaneous lymphadenitis due to Mycobacterium kansasii in an immunocompetent patient. Infection 2007;4:291–4. https://doi.org/10.1007/s10152-007-0208-7.
[11] Salles Y, Fabre M, Guitterez MC, Chaudier B, Soler C. Cervical adenitis caused by Mycobacterium kansasii: advantage of the INNO-LIPA V2 test in diagnosis of nontuberculous mycobacterial diseases. Pathol Biol (Paris) 2007;55:543–5. https://doi.org/10.1016/j.pbi.2007.08.008.
[12] Hsiao CH, Lai CC, Hsueh PR. High recurrence rate of lymphadenitis due to nontuberculous mycobacteria and its association with concurrent Salmonella infection in Taiwan. J Microbiol, Immunol Infect 2014;47:217–21. https://doi.org/10.1016/j.jmii.2012.11.003.
[13] Blanch P, Dutronc H, Peuchant O, Dauchy F-A, Cazanave C, Neau D, et al. Nontuberculous mycobacterial infections in a French hospital: a 12-year retrospective study. PLoS ONE 2016;11:e0168290. https://doi.org/10.1371/journal.pone.0168290.
[14] Loizos A, Soteriades ES, Pieridou D, Koliou MG. Lymphadenitis by non-tuberculous mycobacteria in children. Pediatr Int 2018;60:1062–7. https://doi.org/10.1111/ped.13700.
[15] Taillard C, Greub G, Weber R, Pfiffer GE, Bodmer T, Zimmerli S, Frei R, Bassetti S, Rohner P, Piffaretti JC, Bernasconi E, Bille J, Teleni A, Prod'hom G. Clinical implications of Mycobacterium kansasii species heterogenicity: Swiss National Survey. J Clin Microbiol 2003;41:1240-4. https://doi.org/10.1128/jcm.41.3.1240-1244.2002.
[16] Quantiferon –TB gold (QFT) elisa package insert 08/2016. QUIAGEN, Germantown, MD, USA. Available at: http://www.quantiferon.com/wp-content/uploads/2017/04/English_QFT_ELISA_R04_082016.pdf.
[17] Kobashi Y, Mouri K, Yagi S, Obaye Y, Miyashita N, Matsushima T, Kageoka T, Oka M. Clinical evaluation of the Quantiferon-TB Gold test in patients with non-tuberculous mycobacterial disease. Int J Tuberc Dis 2009;13:422-6; 4. https://doi.org/10.1016/j.ijtld.2008.10.019.
[18] Bakaia Z, Modrzejewska M, Pennings L, Proboszcz M, Sahin D, van Ingen J, Jagielinski T. Drug susceptibility profiling and genetic determinants of drug resistance in Mycobacterium kansasii. Antimicrob Agents Chemother 2018;62:e01788-17. https://doi.org/10.1128/AAC.01788-17. pii-17.
[19] Wang M, Berry M, Lehto- Hoffman A, Li L, Ramesar N. Chronic tenosynovitis due to Mycobacteria kansasii in an immunocompetent host. Case Rep Infect Dis 2018;2018:3297531 https://doi.org/10.1155/2018/3297531.
[20] Li Y, Pang Y, Tong X, Zheng H, Zhao Y, Wang C. Mycobacterium kansasii subtype I is associated with clarithromycin resistance in China. Front Microbiol 2018;9:2097. https://doi.org/10.3389/fmicb.2018.02097.