Learning and Knowledge Transfer with Memory Networks for Machine Comprehension

Mohit Yadav. Lovekesh Vig. Gautam Shroff

TCS Research New-Delhi

Presented by Kyo Kim

April 24, 2018
Overview

1. Motivation
2. Background
3. Proposed Method
4. Dataset and Experiment Results
5. Summary
Motivation
Obtaining high performance in "machine comprehension" requires abundant human annotated dataset.

- Measured by question answering performance.

In a real-world dataset with small amount of data, wider range of vocabulary can be observed and the grammar structure is often complex.
High-level Overview of Proposed Method

1. Curriculum based training procedure.
2. Knowledge transfer to increase the performance in dataset with less abundant labeled data.
3. Pre-trained memory network on small dataset.
Background
1. Vectorize the problem tuple.
2. Retrieve the corresponding memory attention vector.
3. Use the retrieved memory to answer the question.
Vectorize the problem tuple

- **Problem tuple:** \((q, C, S, s)\)
 - \(q\): question
 - \(C\): context text
 - \(S\): set of answer choices
 - \(s\): correct answer \((s \in S)\)

- **Question and context embedding matrix** \(A \in \mathbb{R}^{p \times d}\)
 - Query vector: \(\tilde{q} = A\Phi(q)\)
 - \(\Phi\): Bag of words
 - Memory vector: \(\tilde{m}_i = A\Phi(c_i)\) for \(i = 1, \cdots, n\) where \(n = |C|\) and \(c_i \in C\)
Retrieve the corresponding memory attention vector

- Attention distribution: \(a_i = softmax(\mathbf{m}_i^\top \mathbf{q}) \).
- Second memory vector: \(\mathbf{r}_i = B\Phi(c_i) \) where \(B \) is another embedding matrix similar to \(A \).
- Aggregated vector: \(\mathbf{r}_o = \sum_{i=1}^n a_i \mathbf{r}_i \)
- Prediction vector: \(\hat{a}_i = softmax((\mathbf{r}_o + \mathbf{q})^\top U\Phi(s_i)) \)
 - \(U \) is the embedding matrix for the answers
End-to-end Memory Networks Cont.

Answer the question

- Pick s_i that corresponds to the highest \hat{a}_i.

Cross-entropy Loss

$$L(P, D) = \frac{1}{N_D} \sum_{n=1}^{N_D} \left[a_n \cdot \log(\hat{a}_n(P, D)) + (1 - a_n) \cdot \log(1 - \hat{a}_n(P, D)) \right]$$
Curriculum Learning

- First proposed by Bengio et al. (2009)
- Introduce samples with increasing "difficulty".
- Better local minima even under non-convex loss.
Pre-training and Joint-training

Pre-training

- Have a pre-trained model to initially guide the training process in a similar domain.

Joint-training

- Exploit the similarity between two different domains by training the model in two different domains simultaneously.
Proposed Method
Curriculum Inspired Training (CIT)

Difficulty Measurement

\[
SF(q, S, C, s) = \frac{\sum_{\text{word} \in \{q \cup S \cup C\}} \log(\text{Freq(word))}}{\#\{q \cup S \cup C\}}
\]

- Partition the dataset into a fixed number of chapters with increasing difficulty.
- Each chapter consists of \(\bigcup_{i=1}^{\text{current chapter}} \text{partition}[i] \).
- The model is trained with a fixed number of epochs per chapter.
Loss Function

\[
L(P, D, en) = \frac{1}{N_D} \sum_{n=1}^{N_D} \left[(a_n \cdot \log(\hat{a}_n(P, D))) \\
+ (1 - a_n) \cdot \log(1 - \hat{a}_n(P, D)) \cdot 1_{en \geq c(n) \cdot epc} \right]
\]

- \(en\): Current epoch
- \(c(n)\): Chapter number that the example \(n\) is assigned to
- \(epc\): Epochs per chapter
Joint-Training

General Joint Loss Function

$$\hat{L}(P, TD, SD) = 2\gamma \cdot L(P, TD) + 2(1 - \gamma) \cdot L(P, SD) \cdot F(N_{TD}, N_{SD})$$

- **TD**: Target dataset
- **SD**: Source dataset
- **N_D**: Number of examples in the dataset D
- **γ**: Tunable weight parameter
Loss Functions

Joint-training

\[\gamma = \frac{1}{2} \text{ and } F(N_{TD}, N_{SD}) = 1 \]

\[\hat{L}(P, TD, SD) = L(P, TD) + L(P, SD) \]

Weighted joint-training

\[\gamma \in (0, 1) \text{ and } F(N_{TD}, N_{SD}) = \frac{N_{TD}}{N_{SD}}. \]

\[\hat{L}(P, TD, SD) = 2\gamma \cdot L(P, TD) + 2(1 - \gamma) \cdot L(P, SD) \cdot \frac{N_{TD}}{N_{SD}} \]
Curriculum joint-training

\[\gamma = \frac{1}{2} \text{ and } F(N_{TD}, N_{SD}) = 1 \]

\[\hat{L}(P, TD, SD) = L(P, TD, en) + L(P, SD, en) \]

Weighted Curriculum joint-training

\[\gamma \in (0, 1) \text{ and } F(N_{TD}, N_{SD}) = \frac{N_{TD}}{N_{SD}}. \]

\[\hat{L}(P, TD, SD) = 2\gamma \cdot L(P, TD, en) \]

\[+ 2(1 - \gamma)L(P, SD, en) \cdot \frac{N_{TD}}{N_{SD}} \]
\[\gamma = 0 \text{ and } c \in \mathbb{R}^+ \]

\[\hat{L}(P, TD, SD) = c \cdot L(P, SD) \]
Dataset and Experiment Results
Dataset

	MCTest-160	MCTest-500	CNN-11K	CNN-22K	CNN-55K	Dailymail-55K
# Train	280	1400	11,000	22,000	55,000	55,000
# Validation	120	200	3,924	3,924	3,924	2,500
# Test	200	400	3,198	3,198	3,198	2,000
# Vocabulary	2856	4279	26,550	31,932	40,833	42,311
# Words \notin Dailymail-55K	—	—	1,981	2,734	6,468	—

Figure: Dataset used for experiments.
Experiment Results

Model + Training Methods	CNN-11 K	CNN-22 K	CNN-55 K						
	Train	Valid	Test	Train	Valid	Test	Train	Valid	Test
SW §	21.33	20.35	21.48	21.80	20.61	20.76	21.54	19.87	20.66
SW+D §	25.45	25.40	25.90	25.61	25.25	26.47	25.85	25.74	26.94
SW+W2V §	43.90	43.01	42.60	45.70	44.10	42.23	45.06	44.50	43.50
MemNN §	98.98	45.96	46.08	98.07	49.28	51.42	97.31	54.98	56.69
MemNN+CIT §	96.44	47.17	**49.04**	98.36	52.43	**52.73**	91.14	57.26	**57.68**
SW+Dailymail ‡	30.19	31.21	30.60	31.70	30.87	32.01	31.56	33.07	31.08
MemNN+W2V ‡	86.57	43.78	45.99	94.1	49.98	51.06	95.2	51.47	53.66
MemNN+SrcOnly ‡	25.12	26.78	27.08	25.43	26.78	27.08	24.79	26.78	27.08
MemNN+Pre-train ‡	92.82	52.87	52.06	95.12	53.59	55.35	96.33	56.64	59.19
MemNN+Jo-train ‡	65.78	53.85	55.06	64.85	55.94	55.69	77.32	57.76	57.99
MemNN+CIT+Jo-train ‡	77.74	55.93	55.74	78.96	55.98	56.85	71.89	56.83	59.07
MemNN+W+Jo-train ‡	71.72	54.30	55.70	79.64	55.91	56.73	71.15	57.62	58.34
MemNN+W+CIT+Jo-train ‡	80.14	56.91	**57.02**	79.04	57.90	**57.71**	76.91	58.14	**59.88**

Figure: The table has two major rows. The upper row are models that only used the target dataset. The lower rows are models that used both the target and source dataset.
Experiment Results

Model + Training Methods	Exact	Para.	Part.Clue	Multi.Sent.	Co-ref.	Ambi./Hard
SW §	3(23.1%)	12(29.2%)	2(10.5%)	0(0.0%)	0(0.0%)	2(11.7%)
SW+D §	6(46.1%)	14(34.1%)	2(10.5%)	0(0.0%)	0(0.0%)	3(17.6%)
SW+W2V §	10(76.9%)	20(48.7%)	5(26.3%)	0(0.0%)	0(0.0%)	7(41.1%)
MemNN §	8(61.5%)	20(48.7%)	12(63.1%)	1(50.0%)	0(0.0%)	2(11.7%)
MemNN+CIT §	10(76.9%)	19(46.3%)	12(63.1%)	1(50.0%)	3(37.5%)	2(11.7%)
SW+Dailymail ‡	6(46.1%)	19(46.3%)	5(26.3%)	0(0.0%)	0(0.0%)	2(11.7%)
MemNN+W2V ‡	6(46.1%)	27(65.8%)	5(26.3%)	0(0.0%)	0(0.0%)	7(41.1%)
MemNN+SrchOnly §	6(46.1%)	12(29.2%)	2(10.5%)	0(0.0%)	0(0.0%)	2(11.7%)
MemNN+Pre-train ‡	11(84.6%)	25(60.9%)	12(63.1%)	0(0.0%)	0(0.0%)	1(5.9%)
MemNN+Jo-train ‡	8(61.5%)	29(70.7%)	10(52.6%)	2(100%)	0(0.0%)	5(29.4%)
MemNN+CIT+Jo-train ‡	10(76.9%)	27(65.8%)	10(52.6%)	0(0.0%)	3(37.5%)	5(29.4%)
MemNN+W+Jo-train ‡	11(84.6%)	29(70.7%)	10(52.6%)	2(100%)	0(0.0%)	5(29.4%)
MemNN+W+CIT+Jo-train ‡	11(84.6%)	27(65.8%)	10(52.6%)	2(100%)	3(37.5%)	5(29.4%)
Chen et al. (2016) §	13(100%)	39(95.1%)	17(89.5%)	1(50.0%)	3(37.5%)	1(5.9%)
Sordoni et al. (2016) §	13(100%)	39(95.1%)	16(84.2%)	1(50.0%)	3(37.5%)	5(29.4%)
Total Number Of Samples	13	41	19	2	8	17

Figure: Categorical performance measurement in CNN-11 K. The table has two major rows. The upper row are models that only used the target dataset. The lower rows are models that used both the target and source dataset.
Experiment Results

Table: Knowledge Transfer Performance Results

Training Methods	MCTest-160			MCTest-500		
	One	Multi.	All	One	Multi.	All
SW	66.07	53.12	59.16	54.77	53.04	53.83
SW+D	75.89	60.15	67.50	63.23	57.01	59.83
SW+D+W2V	79.46	59.37	68.75	65.07	58.84	61.67
SW+D+CNN-11K	79.78	59.37	**67.67**	64.33	57.92	**60.83**
SW+D+CNN-22K	76.78	60.93	**68.33**	64.70	59.45	**61.83**
SW+D+CNN-55K	78.57	59.37	**68.33**	65.07	59.75	**62.16**
SW+D+CNN-11K+W2V	77.67	59.41	68.69	65.07	61.28	63.00
SW+D+CNN-22K+W2V	78.57	60.16	69.51	66.91	60.00	63.13
SW+D+CNN-55K+W2V	79.78	60.93	**70.51**	66.91	60.67	**63.50**

Figure: Knowledge transfer performance result.
Figure: Loss convergence comparison between model trained with CIT and without CIT.
MemNN is often used in QA.
Ordering the samples lead to better local minima.
Joint-training is useful in obtaining better performance on small target dataset.
Using pre-trained model improves performance.
The End