ELLIPTIC CURVES FROM SEXTICS

MUTSUO OKA

Abstract. Let \(\mathcal{N} \) be the moduli space of sextics with 3 (3,4)-cusps. The quotient moduli space \(\mathcal{N}/G \) is one-dimensional and consists of two components, \(\mathcal{N}_{\text{torus}}/G \) and \(\mathcal{N}_{\text{gen}}/G \). By quadratic transformations, they are transformed into one-parameter families \(C_s \) and \(D_s \) of cubic curves respectively. First we study the geometry of \(\mathcal{N}/G, \varepsilon = \text{torus, gen} \) and their structure of elliptic fibration. Then we study the Mordell-Weil torsion groups of cubic curves \(C_s \) over \(\mathbb{Q} \) and \(D_s \) over \(\mathbb{Q}(\sqrt{-3}) \) respectively. We show that \(C_s \) has the torsion group \(\mathbb{Z}/3\mathbb{Z} \) for a generic \(s \in \mathbb{Q} \) and it also contains subfamilies which coincide with the universal families given by Kubert [Ku] with the torsion groups \(\mathbb{Z}/6\mathbb{Z}, \mathbb{Z}/6\mathbb{Z} + \mathbb{Z}/2\mathbb{Z}, \mathbb{Z}/9\mathbb{Z} \) or \(\mathbb{Z}/12\mathbb{Z} \). The cubic curves \(D_s \) has torsion \(\mathbb{Z}/3\mathbb{Z} + \mathbb{Z}/3\mathbb{Z} \) generically but also \(\mathbb{Z}/3\mathbb{Z} + \mathbb{Z}/6\mathbb{Z} \) for a subfamily which is parametrized by \(\mathbb{Q}(\sqrt{-3}) \).

1. Introduction

Let \(\mathcal{N}_3 \) be the moduli space of sextics with 3 (3,4)-cusps as in [O2]. For brevity, we denote \(\mathcal{N}_3 \) by \(\mathcal{N} \). A sextic \(C \) is called of a torus type if its defining polynomial \(f \) has the expression \(f(x,y) = f_2(x,y)^3 + f_3(x,y)^2 \) for some polynomials \(f_2, f_3 \) of degree 2, 3 respectively. We denote by \(\mathcal{N}_{\text{torus}} \) the component of \(\mathcal{N} \) which consists of curves of a torus type and by \(\mathcal{N}_{\text{gen}} \) the curves of a general type (=not of a torus type). We denote the dual curve of \(C \) by \(C^* \). Let \(G = \text{PGL}(3, \mathbb{C}) \). The quotient moduli space is by definition the quotient space of the moduli space by the action of \(G \).

In §2, we study the quotient moduli space \(\mathcal{N}/G \). We will show that \(\mathcal{N}/G \) is one dimensional and it has two components \(\mathcal{N}_{\text{torus}}/G \) and \(\mathcal{N}_{\text{gen}}/G \) which consist of sextics of a torus type and sextics of a general type respectively. After giving normal forms of these components \(C_s, s \in \mathbb{P}^1(\mathbb{C}) \) and \(D_s, s \in \mathbb{P}^1(\mathbb{C}) \), we show that the family \(C_s \) contains a unique sextic \(C_{54} \) which is self dual (Theorem 2.8) and \(C_{54} \) has an involution which is associated with the Gauss map (Proposition 2.12).

In section 3, we study the structure of the elliptic fibrations on the components \(\mathcal{N}/G, \varepsilon = \text{torus, gen} \) which are represented by the normal families \(C_s, s \in \mathbb{P}^1(\mathbb{C}) \) and \(D_s, s \in \mathbb{P}^1(\mathbb{C}) \). Using a quadratic transformation we write these families by smooth cubic curves \(C_s \) and \(D_s \) which are defined by the following cubic polynomials.

\[
C_s : \quad x^3 - \frac{1}{4} s(x - 1)^2 + sy^2 = 0 \\
D_s : \quad -8x^3 + 1 + (s + 35)y^2 - 6x^2 + 3x - 6\sqrt{-3}y - 3\sqrt{-3}x \\
\quad \quad \quad -6\sqrt{-3}x^2 - 12\sqrt{-3}xy + (s - 35)xy = 0
\]

Date: November, 1999, first version.
We show that C_s, $s \in \mathbb{P}^1(\mathbb{C})$ (respectively D_s, $s \in \mathbb{P}^1(\mathbb{C})$) has the structure of rational elliptic surfaces X_{431} (resp. X_{3333}) in the notation of [Mit1].

In section 4, we study their torsion subgroups of the Mordell-Weil group of the cubic families C_s and D_s. The family C_s is defined over \mathbb{Q} and D_s is defined over quadratic number field $\mathbb{Q}(\sqrt{-3})$. Both families enjoy beautiful arithmetic properties. We will show that the torsion group $(C_s)_{\text{tor}}(\mathbb{Q})$ is isomorphic to $\mathbb{Z}/3\mathbb{Z}$ for a generic $s \in \mathbb{Q}$ but it has subfamilies $C_{\varphi(u)}, C_{\varphi_2(r)}$, $C_{\varphi_2(t)}$, $C_{\varphi_2(t; \nu)}$, $u, r, t, \nu \in \mathbb{Q}$ for which the Mordell-Weil torsion group are $\mathbb{Z}/6\mathbb{Z}$, $\mathbb{Z}/6\mathbb{Z} + \mathbb{Z}/2\mathbb{Z}$, $\mathbb{Z}/9\mathbb{Z}$ and $\mathbb{Z}/12\mathbb{Z}$ respectively. Each of these groups is parametrized by a rational function with \mathbb{Q} coefficients which is defined over \mathbb{Q} and this parametrization coincides, up to a linear fractional change of parameter, to the universal family given by Kubert in [Kub].

As for $(D_s)_{\text{tor}}(\mathbb{Q}(\sqrt{-3}))$, we show that $(D_s)_{\text{tor}}(\mathbb{Q}(\sqrt{-3})$ is generically isomorphic to $\mathbb{Z}/3\mathbb{Z} + \mathbb{Z}/3\mathbb{Z}$ but it also takes $\mathbb{Z}/3\mathbb{Z} + \mathbb{Z}/6\mathbb{Z}$ for a subfamily $D_{\xi(t)}$ parametrized by a rational function with coefficients in \mathbb{Q} and defined on $\mathbb{Q}(\sqrt{-3})$.

2. Normal forms of the moduli \mathcal{N}

We consider the submoduli $\mathcal{N}^{(1)}$ of the sextics whose cusps are at $O := (0, 0)$, $A := (1, 1)$ and $B := (1, -1)$. As every sextic in \mathcal{N} can be represented by a curve in $\mathcal{N}^{(1)}$ by the action of G, we have $\mathcal{N}/G \cong \mathcal{N}^{(1)}/G^{(1)}$ where $G^{(1)}$ is the stabilizer of $\mathcal{N}^{(1)}$: $G^{(1)} := \{g \in G; g(\mathcal{N}^{(1)}) = \mathcal{N}^{(1)}\}$. By an easy computation, we see that $G^{(1)}$ is the semi-direct product of the group $G_0^{(1)}$ and a finite group \mathcal{K}, isomorphic to the permutation group S_3 where $G_0^{(1)}$ is defined by

$$G_0^{(1)} := \{ M = \begin{pmatrix} a_1 & a_2 & 0 \\ a_2 & a_1 & 0 \\ a_1 - a_3 & a_2 & a_3 \end{pmatrix} \in G; a_3(a_1^2 - a_2^2) \neq 0 \}$$

Note that $G_0^{(1)}$ is normal in $G^{(1)}$ and $g \in G_0^{(1)}$ fixes singular points pointwise. The isomorphism $\mathcal{K} \cong S_3$ is given by identifying $g \in \mathcal{K}$ as the permutation of three singular locus O, A, B. We will study the normal forms of the quotient moduli $\mathcal{N}/G \cong \mathcal{N}^{(1)}/G^{(1)}$.

Lemma 2.1. For a given line $L := \{ y = bx \}$ with $b^2 - 1 \neq 0$, there exists $M \in G_0^{(1)}$ such that L^M is given by $x = 0$.

Proof. By an easy computation, the image of L by the action of M^{-1}, where M is as above, is defined by $(a_1 - ba_2)y + (a_2 - ba_1)x = 0$. Thus we take $a_1 = ba_2$. Then $a_1^2 - a_2^2 = a_3^2(b^2 - 1) \neq 0$ by the assumption. \[\square\]

Lemma 2.2. The tangent cone at O is not $y \pm x = 0$ for $C \in \mathcal{N}^{(1)}$.

Proof. Assume for example that $y - x = 0$ is the tangent cone of C at O. The intersection multiplicity of the line $L_1 := \{ y - x = 0 \}$ and C at O is 4 and thus $L_1 \cdot C \geq 7$, an obvious contradiction to Bezout theorem. \[\square\]

Let $\mathcal{N}^{(2)}$ be the subspace of $\mathcal{N}^{(1)}$ consisting of curves $C \in \mathcal{N}^{(1)}$ whose tangent cone at O is given by $x = 0$. Let $G^{(2)}$ be the stabilizer of $\mathcal{N}^{(2)}$. By Lemma 2.1 and Lemma 2.2, we have the isomorphism:
Corollary 2.3. \(N^{(1)}/G^{(1)} \cong N^{(2)}/G^{(2)} \).

It is easy to see that \(G^{(2)} \) is generated by the group \(G_{0}^{(2)} := G^{(2)} \cap G_{0}^{(1)} \) and an element \(\tau \) of order two which is defined by \(\tau(x, y) = (x, -y) \). Note that

\[
G_{0}^{(2)} = \{ M = \begin{pmatrix} a_{1} & 0 & 0 \\ 0 & a_{1} & 0 \\ a_{1} - a_{3} & 0 & a_{3} \end{pmatrix} \in G_{0}^{(1)} : a_{1}a_{3} \neq 0 \}.
\]

For \(C \in N^{(2)} \), we associate complex numbers \(b(C), c(C) \in \mathbb{C} \) which are the directions of the tangent cones of \(C \) at \(A, B \) respectively. This implies that the lines \(y - 1 = b(C)(x - 1) \) and \(y + 1 = c(C)(x - 1) \) are the tangent cones of \(C \) at \(A \) and \(B \) respectively. We have shown that \(C \in N_{\text{torus}}^{(2)} \) if and only if \(b(C) + c(C) = 0 \) and otherwise \(C \) is of a general type and they satisfy \(c(C)^{2} + 3c(C) - b(C)c(C) + 3 - 3b(C) + b(C)^{2} = 0 \) (§4, [12]).

We consider the subspaces:

\[
N_{\text{torus}}^{(3)} := \{ C \in N_{\text{torus}}^{(2)} : b(C) = 0 \}, \quad N_{\text{gen}}^{(3)} := \{ C \in N_{\text{gen}}^{(2)} : b(C) = c(C) = -3 \}
\]

and we put \(N^{(3)} := N_{\text{torus}}^{(3)} \cup N_{\text{gen}}^{(3)} \).

Remark. The common solution of both equations: \(b + c = c^{2} + 3c - bc + 3 - 3b + b^{2} = 0 \) is \((b, c) = (1, -1)\) and in this case, \(C \) degenerates into two non-reduced lines \(y^{2} - x^{2} = 0 \) and a conic.

Lemma 2.4. Assume that \(C \in N^{(2)} \). Then there exists a unique \(C' \in N^{(3)} \) and an element \(g \in G^{(2)} \) such that \(C' = C'' \). This implies that

\[
N_{\text{torus}}/G \cong N_{\text{torus}}^{(2)}/G^{(2)} \cong N_{\text{torus}}^{(3)}, \quad N_{\text{gen}}/G \cong N_{\text{gen}}^{(2)}/G^{(2)} \cong N_{\text{gen}}^{(3)}
\]

Proof. Assume that \(C \in N_{\text{torus}}^{(1)}, b + c = 0 \). Consider an element \(g \in G_{0}^{(1)} \),

\[
g^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 - a_{3} & 0 & a_{3} \end{pmatrix}
\]

The image \(L_{A}^{2} \) is given by \(y - x + xa_{3} - a_{3} - bxa_{3} + ba_{3} = 0 \). Thus we can solve the equation \(a_{3}(1 - b) - 1 = 0 \) in \(a_{3} \) uniquely as \(a_{3} = 1/(1 - b) \) as \(b \neq 1 \). Thus \(g \in G_{0}^{(1)} \) is unique if it fixes the singular points pointwise and thus \(C' \) is also unique. It is easy to see that the stabilizer of \(N_{\text{torus}}^{(3)} \) is the cyclic group of order two generated by \(\tau \), as \(C'' \) is even in \(y \) (see the normal form below) and \(C'' \) is for any \(C' \in N_{\text{torus}}^{(3)} \). Thus we have \(N_{\text{torus}}^{(2)}/G^{(2)} \cong N_{\text{torus}}^{(3)} \).

Consider the case \(C \in N_{\text{gen}}^{(2)} \). Then the images of the tangent cones at \(A, B \) by the action of \(g \) are given by \(y - x + xa_{3} - a_{3} - bxa_{3} + ba_{3} = 0 \) and \(y + x - xa_{3} + a_{3} - cxa_{3} + ca_{3} = 0 \) respectively. Assume that \(b(C)^{g} = c(C)^{g} \). Then we need to have \(a_{3}(1 - b) - 1 = a_{3}(-1 - c) + 1 \), which has a unique solution in \(a_{3} \), if \(*b - c - 2 \neq 0 \). Assume that \(c^{2} + 3c - bc + 3 - 3b + b^{2} = 0 \) and \(b - c - 2 = 0 \). Then we get \((b, c) = (1, -1)\) which is excluded as it corresponds to a non-reduced sextic. Thus the condition \(* \) is always satisfied. Put \((b', c') := (b(C)^{g}, c(C)^{g})\). They satisfy the equality \(c^{2} + 3c' - b'c' + 3 - 3b' + b'^{2} = 0 \) and
Thus we have either $b' = c' = \sqrt{-3}$ or $b' = c' = -\sqrt{-3}$. However in the second case, $(C^g)^r$ belongs to the first case. Thus $b' = c' = \sqrt{-3}$ and $C^g \in \mathcal{N}^{(3)}_{\text{torus}}$ as desired. \hfill \Box

2.1. Normal forms of curves of a torus type. In [O2], we have shown that a curve in $\mathcal{N}^{(1)}_{\text{torus}}$ is defined by a polynomial $f(x, y)$ which is expressed by a sum $f_2(x, y)^3 + sf_3(x, y)^2$ where $f_2(x, y)$ is a smooth conic passing through O, A, B and $f_3(x, y) = (y^2 - x^2)(x - 1)$.

Proposition 2.5. The direction of the tangent cones at O, A and B are the same with the tangent line of the conic $f_2(x, y) = 0$ at these points.

This is immediate as the multiplicity of $f_3(x, y)^2$ at O, A, B are 4. Assume that $C \in \mathcal{N}^{(3)}_{\text{torus}}$, that is, the tangent cones of C at O, A and B are given by $x = 0, y - 1 = 0$ and $y + 1 = 0$ respectively. Thus the conic $f_2(x, y) = 0$ is also uniquely determined as $f_2(x, y) = y^2 + x^2 - 2x$. Therefore $\mathcal{N}^{(3)}_{\text{torus}}$ is one-dimensional and it has the representation

\[
C_s : f_{\text{torus}}(x, y, s) := f_2(x, y)^3 + sf_3(x, y)^2 = 0
\]

For $s \neq 0, 27, \infty$, C_s is a sextic with three $(3,4)$-cusps, while C_{27} obtains a node. If $g \in C^{(2)}$ fixes the tangent lines $y \pm 1 = 0$, then $g = e$ or τ. As $C_s^g = C_s$, this implies that $C_s^g = C_s$. Thus $C_s \neq C_t$ if $s \neq t$.

2.2. Normal form of sextics of a general type. For the moduli \mathcal{N}_{gen} of sextics of a general type, we start from the expression given in §4.1, [O2]. We may assume $b = c = \sqrt{-3}$. Then the parametrization is given by

\[
f_{\text{gen}}(x, y, s) := f_0(x, y) + sf_3(x, y)^2, \quad f_3(x, y) = (y^2 - x^2)(x - 1)
\]

where s is equal to a_{06} in [O2] and f_0 is the sextic given by

\[
f_0(x, y) := y^6 + y^5(6\sqrt{-3} - 6\sqrt{-3}x) + y^4(35 - 76x + 38x^2)
\]

\[
+ y^3(-24\sqrt{-3}x + 36\sqrt{-3}x^2 - 12\sqrt{-3}x^3) + y^2(-94x^2 + 200x^3 - 103x^4)
\]

\[
+ y(24\sqrt{-3}x^3 - 42\sqrt{-3}x^4 + 18\sqrt{-3}x^5) + 64x^3 - 133x^4 + 68x^5
\]

Let $D_s := \{f_{\text{gen}}(x, y, s) = 0\}$ for each $s \in \mathbb{C}$. Observe that $D_0 = \{f_0(x, y) = 0\}$ is a sextic with three $(3,4)$-cusps and of a general type. For the computation of dual curves using Maple V, it is better to take the substitution $\sqrt{-3}$ to make the equation to be defined over \mathbb{Q}. Summarizing the discussion, we have

Theorem 2.8. The quotient moduli space \mathcal{N}/G is one dimensional and it has two components.

1. The component $\mathcal{N}_{\text{torus}}/G$ has the normal forms $C_s = \{f(x, y, s) = 0\}$ where $f(x, y, s) = f_2(x, y)^3 + sf_3(x, y)^2$, $f_2(x, y) = y^2 + x^2 - 2x$ and $f_3(x, y) = (y^2 - x^2)(x - 1)$. The curve C_{s_1} is a unique curve in \mathcal{N}/G which is self-dual.

2. The component $\mathcal{N}_{\text{gen}}/G$ has the normal form: $f_{\text{gen}}(x, y, s) = f_0(x, y) + sf_3(x, y)^2$ where f_3 is as above and the sextic $f_0(x, y) = 0$ is contained in \mathcal{N}_{gen}. This component has no self-dual curve.

Proof of Theorem 2.8. We need only prove the assertion for the dual curves. The proof will be done by a direct computation of dual curves using the method of §2, [O2] and the above parametrizations. We use Maple V for the practical computation. Here
is the recipe of the proof. Let X^*, Y^*, Z^* be the dual coordinates of X, Y, Z and let $(x^*, y^*) := (X^*/Z^*, Y^*/Z^*)$ be the dual affine coordinates.

(1) Compute the defining polynomials of the dual curves C^*_s and D^*_s respectively, using the method of Lemma 2.4, \cite{O1}. Put $g_{torus}(x^*, y^*, s)$ and $g_{gen}(x^*, y^*, s)$ the defining polynomials.

(2) Let $G_{\varepsilon}(X^*, Y^*, Z^*, s)$ be the homogenization of $g_{\varepsilon}(x^*, y^*, s)$, $\varepsilon =$ torus or gen. Compute the discriminant polynomials $\Delta_{Y^*} G_{\varepsilon}$ which is a homogeneous polynomial in X^*, Z^* of degree 30 (cf. Lemma 2.8, \cite{O2}). Recall that the multiplicity in $\Delta_{Y^*} G_{\varepsilon}$ of the pencil $X^* - \eta Z^* = 0$ passing through a singular point is generically given by $\mu + m - 1$ where μ is the Milnor number and m is the multiplicity of the singularity (\cite{O2}). Thus the contribution from a $(3,4)$-cusp is 8. Thus if C^*_s has three $(3,4)$-cusps, it is necessary that $\Delta_{Y^*}(G) = 0$ has three linear factors with multiplicity ≥ 8.

(3-1) For the curves of a general type, an easy computation shows that it is not possible to get a degeneration into a sextic with 3 $(3,4)$-cusps by the above reason.

(3-2) For the curves of a torus type, we can see that $s = 54$ is the only parameter such that $C^*_s \in \mathcal{N}$. Thus it is enough to show that $C^*_s \cong C_{54}$.

(4) The dual curve C^*_{54} of C_{54} is defined by the homogeneous polynomial

$$
G(X^*, Y^*, Z^*) := 128X^5Z^* + 1376X^4Z^* + 192X^3Y^2Z^* + 4664X^3Z^* - 2X^2Y^*^4 - 1584X^2Y^*Z^* + 7090X^2Z^* + 58X^*Y^*Z^* - 3060X^*Y^*Z^* + 5050X^*Z^* + Y^* - 349Y^*Z^* - 1725Y^*Z^* + 1375Z^*^6
$$

We can see that C^*_{54} is isomorphic to C_{54} as $(C^*_{54})^4 = C_{54}$ where

$$
A = \begin{pmatrix}
-4/3 & 0 & -5/3 \\
0 & 1 & 0 \\
-5/3 & 0 & -13/3
\end{pmatrix}
$$

2.3. **Involution τ on C_{54}.** For a later purpose, we change the coordinates of \mathbb{P}^2 so that the three cusps of C_s are at $O_Z := (0,0,1), O_Y := (0,1,0), O_X := (1,0,0)$. A new normal form in the affine space is given by $C_s : f_2(x, y)^3 + sf_3(x, y)^2 = 0$ where $f_2(x, y) := xy - x + y$ and $f_3(x, y) := -xy$. In particular, C_{54} is defined by

$$
f(x, y) = (xy - x + y)^3 + 54x^2y^2 = 0
$$

In this coordinate, C^*_{54} is defined by

$$
-28y^3 - 17x^4y^2 - 17x^2y^4 - 28x^3y^3 - 2y^5 + 1788x^3y + 1788x^2y - 17y^4 - 17x^4 + 262xy + 1788x^3y^3 - 1788xy^2 - 262x^4y - 1788xy^3 - 1788x^3y^2 - 8166x^2y^2 + 28x^3 - 262x^4y - 2x^5 - 2xy^5 + 1 - 17y^2 - 17x^2 + 2x^5 + 2x - 2y + x^6 + y^6 = 0
$$

It is easy to see that $(C^*_{54})^{A_1} = C_{54}$ where

$$
A_1 := \begin{pmatrix}
-1/3 & 3/7 & -1/3 \\
3/7 & -1/3 & 1/3 \\
-1/3 & 1/3 & -7/3
\end{pmatrix}
$$

For a given $A \in GL(3, \mathbb{C})$, we denote the automorphism defined by the right multiplication of A by φ_A. Let $F(X, Y, Z)$ be the homogenization of $f(x, y)$. Then the Gauss map
dual\(_{C_{54}} : C_{54} \to C_{54}^*\) is defined by
\[
dual_{C_{54}}(X, Y, Z) = (F_X(X, Y, Z), F_Y(X, Y, Z), F_Z(X, Y, Z))
\]
where \(F_X, F_Y, F_Z\) are partial derivatives. We define an isomorphism \(\tau : C_{54} \to C_{54}\) by the composition \(\varphi_{A_1} \circ \dual_{C_{54}}\). Then \(\tau\) is the restriction of the rational mapping: \(\Psi : C^2 \to C^2\), \((x, y) \mapsto (x_d, y_d)\) and
\[
\begin{align*}
x_d &:=-y^3+4x^2-2x^2y+4x^4y^2-8x^3y-4xy^2-8xy^2+2xy^2+2x^4y^2+109x^2y^2+4y^2+4x^3
\quad -4y^4+4x^3y^3+4x^4y^3+4y^4-8y^4+109x^2y^2-2xy^2-8xy^2+4x^2y^2+4x^2+y^2+4x^3
\quad -4y^4+4x^3y^3+4x^4y^3+4y^4-8y^4+109x^2y^2-2xy^2-8xy^2+4x^2y^2+4x^2+y^2+4x^3
\end{align*}
\]

Observe that \(\tau\) is defined over \(\mathbb{Q}\). \(C_{54}\) has three flexes of order 2 at \(F_1 := (1, -1/4, 1)\), \(F_2 := (1/4, -1, 1)\), \(F_3 := (4, -4, 1)\) and \(\tau\) exchanges flexes and cusps:
\[
\begin{align*}
\tau(O_X) &= F_1, \tau(O_Y) = F_2, \tau(O_Z) = F_3, \\
\tau(F_1) &= O_X, \tau(F_2) = O_Y, \tau(F_3) = O_Z
\end{align*}
\]

Furthermore we assert that

Proposition 2.12. The morphism \(\tau\) is an involution on \(C_{54}\).

Proof. By the definition of \(\tau\) and Lemma 2.13 below, we have \((C := C_{54})\):
\[
\tau \circ \tau = (\varphi_{A_1} \circ \dual_C)^2 = (\dual_{C_{A_1}} \circ \varphi_{A_1}) \circ (\varphi_{A_1}^{-1} \circ \dual_C) = \text{id}
\]
as \(A_1\) is a symmetric matrix. \(\square\)

Let \(C\) be a given irreducible curve in \(\mathbb{P}^2\) defined by a homogeneous polynomial \(F(X, Y, Z)\) and let \(B \in \text{GL}(3, \mathbb{C})\). Then \(C^B\) is defined by \(G(X, Y, Z) := F((X, Y, Z)B^{-1})\).

Lemma 2.13. Two curves \((C^B)^*\) and \((C^*)^{B^{-1}}\) coincide and the following diagram commutes.

\[
\begin{array}{ccc}
C & \xrightarrow{\dual_{C}} & C^* \\
\downarrow \varphi_B & & \downarrow \varphi_B^{-1} \\
C^B & \xrightarrow{\dual_{C^B}} & (C^B)^*
\end{array}
\]

Proof. The first assertion is the same as Lemma 2, [O2]. The second assertion follows from the following equalities. Let \((a, b, c) \in C\).
\[
dual_{C^B}(\varphi_B(a, b, c)) = (G_X(\varphi_B(a, b, c)), G_Y(\varphi_B(a, b, c)), G_Z(\varphi_B(a, b, c)))
\]
\[
= (F_X(a, b, c), F_Y(a, b, c), F_Z(a, b, c))^{B^{-1}} = \varphi_{B^{-1}}(\dual_C(a, b, c)) \quad \square
\]

In section 5, we will show that \(\tau\) is expressed in a simple form as a cubic curve.

3. Structure of elliptic fibrations

We consider the elliptic fibrations corresponding to the above normal forms. For this purpose, we first take a linear change of coordinates so that three lines defined by \(f_3(x, y) = 0\) changes into lines \(X = 0, Y = 0\) and \(Z = 0\). The corresponding three cusps are now at \(O_Z = (0, 0, 1), O_Y = (0, 1, 0), O_X = (1, 0, 0)\) in \(\mathbb{P}^2\). Then we take the quadratic transformation which is a birational mapping of \(\mathbb{P}^2\) defined by

\((X, Y, Z) \mapsto (YZ, ZX, XY)\). Geometrically this is the composition of blowing-ups at \(O_X, O_Y, O_Z\) and then the blowing down of three lines which are strict transform of \(X, Y, Z = 0\). It is easy to see that our sextics are transformed into smooth cubics for which \(X = 0, Y = 0\) and \(Z = 0\) are tangent lines of the flex points. Those flexes are the image of the \((3,4)\)-cusps. We take a linear change of coordinates so that the flex on \(Z = 0\) is moved at \(O := (0, 1, 0)\) with the tangent \(Z = 0\). Then the corresponding families are described by the families given by \(\{h_{torus}(x, y, s) = 0; s \in \mathbb{P}^1\}\) and \(\{h_{gen}(x, y, s) = 0, s \in \mathbb{P}^1\}\) where

\[
\begin{align*}
C_s : h_{torus}(x, y, s) &:= x^3 - \frac{1}{4}s(x - 1)^2 + sy^2, \\
D_s : h_{gen}(x, y, s) &:= -8x^3 + 1 + (s + 35)y^2 - 6x^2 + 3x \\
&\quad -6\sqrt{-3}y - 3\sqrt{-3}x - 6\sqrt{-3}x^2 - 12\sqrt{-3}xy + (s - 35)xy
\end{align*}
\]

Let \(H_s(X, Y, Z, S, T) = h_s(X/Y, Y/Z, S/T)Z^3T\) for \(\varepsilon = \text{torus, gen}\). We consider the elliptic surface associated to the canonical projection \(\pi : S_\varepsilon \to \mathbb{P}^1\) where \(S_\varepsilon\) is the hypersurface in \(\mathbb{P}^1 \times \mathbb{P}^2\) which is defined by \(H_s(X, Y, Z, S, T) = 0\).

Case I. Structure of \(S_{torus} \to \mathbb{P}^1\). For simplicity, we use the affine coordinate \(s = S/T\) of \(\{T \neq 0\} \subset \mathbb{P}^1\) and denote \(\pi^{-1}(s)\) by \(C_s\). We see that the singular fibers are \(s = 0, 27, \infty\). \(C_\infty\) consists of three lines, isomorphic to \(I_3\) in Kodaira’s notation, \([Ko]\). \(C_27\) obtains a node and this fiber is denoted by \(I_1\) in \([Ko]\). The fiber \(C_0\) is a line with multiplicity 3. The surface \(S_{torus}\) has three singular points on the fiber \(C_0\) at \((X, Y, Z) = (0, 1/2, 1), (0, -1/2, 1), (0, 1, 0)\). Each singularity is an \(A_2\)-singularity. We take minimal resolutions at these points. At each point, we need two \(\mathbb{P}^1\) as exceptional divisors and let \(p : \tilde{S}_{torus} \to S_{torus}\) be the resolution map. The composition \(\tilde{\pi} := \pi \circ p : \tilde{S}_{torus} \to \mathbb{P}^1\) is the corresponding elliptic surface. Now it is easy to see that \(\tilde{C}_0 := \tilde{\pi}^{-1}(0)\) is a singular fiber with 7 irreducible components, which is denoted by \(IV^*\) in \([Ko]\). Here we used the following lemma. The elliptic surface \(\tilde{S}_{torus}\) is rational and denoted by \(X_{431}\) in \([Mi-I]\).

Assume that the surface \(V := \{(s, x, y) \in \mathbb{C}^3; f(s, x, y) = 0\}\) has an \(A_2\) singularity at the origin where \(f(s, x, y) := sx + y^3 + sx \cdot h(s, x, y)\) where \(h(O) = 0\). Consider the minimal resolution \(\pi : \tilde{V} \to V\) and let \(\pi^{-1}(O) = E_1 \cup E_2\). It is well-known that \(E_1 \cdot E_2 = 1\) and \(E_i^2 = -2\) for \(i = 1, 2\).

Lemma 3.1. Consider a linear form \(\ell(s, x, y) = as + bx + cy\) and let \(L'\) be the strict transform of \(\ell = 0\) to \(\tilde{V}\).

1. **Assume that** \(b = c = 0\) and \(a \neq 0\). Then \((\pi^* \ell) = 3L' + 2E_1 + E_2\) and \(L' \cdot E_1 = 1\) and \(L'\) does not intersect with \(E_2\), under a suitable ordering of \(E_1\) and \(E_2\).
2. **Assume that** \(abc \neq 0\). Then we have \((\pi^* \ell) = L' + E_1 + E_2\) and \(L' \cdot E_i = 1\) for \(i = 1, 2\).

The proof is immediate from a direct computation.

Case II. Structure of \(S_{gen} \to \mathbb{P}^1\). Now consider the elliptic surface \(S_{gen}\). Put \(D_s = \pi^{-1}(s)\). The singular fibers are at \(s = -35, -53 + 6\sqrt{-3}, -53 - 6\sqrt{-3}\) and \(s = \infty\). The fiber \(s = \infty\) is already \(I_3\) and \(S_{gen}\) is smooth on this fiber. On the other hand, \(S_{gen}\) has an \(A_2\)-singularity on each fiber \(D_s\), \(s = -35, -53 + 6\sqrt{-3}, -53 - 6\sqrt{-3}\). Let \(p : \tilde{S}_{gen} \to S_{gen}\) be the minimal resolution map and we consider the composition \(\tilde{\pi} := \pi \circ p : \tilde{S}_{gen} \to \mathbb{P}^1\)
as above. Then using (2) of Lemma \[3\], we see that \(\tilde{S} : \tilde{S}_{gen} \to \mathbb{P}^1 \) has four singular fibers and each of them is \(I_3 \) in the notation \([K\alpha]\). This elliptic surface is also rational and denoted as \(X_{3333} \) in \([\text{Mi}-P]\).

4. Torsion group of \(C_s \) and \(D_s \)

Consider an elliptic curve \(C \) defined over a number field \(K \) by a Weierstrass short normal form: \(y^2 = h(x), \quad h(x) = x^3 + Ax + B \). The j-invariant is defined by \(j(C) = -1728(4A)^3/\Delta \) with \(\Delta = -16(4A^2 + 27B^2) \). We study the torsion group of the Mordell-Weil group of \(C \) which we denote by \(C_{tor}(K) \) hereafter.

Recall that a point of order 3 is geometrically a flex point of the complex curve \(C \) \([\text{Si}]\) and its locus is defined by \(\mathcal{F}(f) := f_{x,x}f_y^2 - 2f_{x,y}f_xf_y + f_{y,y}f_x^2 = 0 \) where \(f(x,y) \) is the defining polynomial of \(C \) \([\text{OJ}]\). In our case, \(\mathcal{F}(f) = 24xy^2 - 18x^4 - 12x^2A - 2A \). The unit of the group is given by the point at infinity \(O := (0,1,0) \) and the inverse of \(P = (\alpha,\beta) \in C \) is given by \((\alpha,-\beta) \) and we denote it by \(-P \). For a later purpose, we prepare two easy propositions. Consider a line \(L(P, m) \) passing through \(-P \) defined by \(y = m(x-\alpha) - \beta \). The x-coordinates of two other intersections with \(C \) are the solution of \(q(x) := f(x, m(x-\alpha) - \beta)/(x-\alpha) \) which is a polynomial of degree 2 in \(x \). Let \(\Delta_x q \) be the discriminant of \(q \) in \(x \). Note that \(\Delta_x q \) is a polynomial in \(m \).

(A) When does a point \(Q \in C \) exist such that \(2Q = P \).

Assume that a \(K \) point \(Q = (x_1, y_1) \) satisfies \(2Q = P \). Geometrically this implies that the tangent line \(T_Q C \) passes through \(-P \).

Proposition 4.1. There exists a \(K \)-point \(Q \) with \(2Q = P \) if and only if \(m \) is a \(K \)-solution of \(\Delta_x q(m) = 0 \) and \(x_1 \) is the multiple solution of \(q(x) = 0 \). If \(P \) is a flex point, \(\Delta_x q(m) = 0 \) contains a canonical solution which corresponds to the tangent line at \(P \) and \(m = -f_x(\alpha,\beta)/f_y(\alpha,\beta) \). For any \(K \)-solution \(m \) with \(m \neq -f_x(\alpha,\beta)/f_y(\alpha,\beta) \), the order of \(Q \) is equal to \(2 \cdot \text{order } P \).

(B) When does a point \(Q \in C \) exist such that \(3Q = P \).

Assume that a \(K \)-point \(Q = (x_1, y_1) \) satisfies \(3Q = P \). Put \(Q' := 2Q \) and put \(Q' = (x_2, y_2) \). Let \(T_Q C \) be the tangent line at \(Q \). Then \(T_Q C \) intersects \(C \) at \(-Q' \). Then \(-3Q \) is the third intersection of \(C \) and the line \(L \) which passes through \(Q, Q' \). Thus three points \(-P, Q, Q' \) are colinear. Write \(L \) as \(y = m(x-\alpha) - \beta \). Then \(x_1, x_2 \) are the solutions of \(q(x) = 0 \). Thus we have

\[
(4.2) \quad x_2 = -\text{coeff}(q, x)/\text{coeff}(q, x^2) - x_1, \quad y_1 = m(x_1-\alpha) - \beta
\]

where \(\text{coeff}(q, x^i) \) is the coefficient of \(x^i \) in \(q(x) \). Let \(L_Q(x, y) \) be the linear form defining \(T_Q C \) and let \(R(x) \) be the resultant of \(f(x, y) \) and \(L_Q(x, y) \) in \(y \). Put \(R_1(x) := R(-\text{coeff}(q, x)/\text{coeff}(q, x^2) - x) \). Then by the above consideration, \(x = x_1 \) is a common solution of \(q(x) = R_1(x) = 0 \). Let \(R_2(m) \) be the resultant of \(q(x) \) and \(R_1(x) \). Note that if \(\Delta_x q(m) = 0 \), \(L \) is tangent to \(C \) at \(Q \) and \(R_2(m) = 0 \). In this case, \(2Q = P \).

Proposition 4.3. Assume that there exists a \(K \)-point \(Q \) with \(3Q = P \) and order \(Q = 3 \cdot \text{order } P \) and let \(m \) be as above. Then \(R_2(m) = 0 \) and \(\Delta_x q(m) \neq 0 \). Moreover \(x_1 \) is given as a common solution of \(q(x) = R_1(x) = 0 \).
Actually one can show that $R_2(m)$ is divisible by $(\Delta_x q)^2$.

4.1. **Cubic family associated with sextics of a torus type.** We have observed that the family C_s for $s \in \mathbb{Q}$ is defined over \mathbb{Q}. First, recall that C_s is defined by

\begin{equation}
C_s : x^3 - \frac{1}{4}s(x-1)^2 + sy^2 = 0
\end{equation}

and the Weierstrass normal form is given by $C_s : y^2 = x^3 + a(s)x + b(s)$ where

\begin{equation}
a(s) = -\frac{1}{48}s^4 + \frac{1}{2}s^3, \quad b(s) = -\frac{1}{24}s^6 + \frac{1}{4}s^4 + \frac{1}{864}s^6
\end{equation}

Put $\Sigma := \{0, 27, \infty\}$. This corresponds to singular fibers. We have two sections of order 3: $s \mapsto (\frac{1}{17}s^2, \pm\frac{1}{5}s^2)$. Put $P_1 := (\frac{1}{12}s^2, \frac{1}{2}s^2)$. Thus the torsion group is at least $\mathbb{Z}/3\mathbb{Z}$. By [Ma], the possible torsion group which has an element of order 3 is one of $\mathbb{Z}/3\mathbb{Z}$, $\mathbb{Z}/6\mathbb{Z}$, $\mathbb{Z}/2\mathbb{Z} + \mathbb{Z}/6\mathbb{Z}$, $\mathbb{Z}/9\mathbb{Z}$ or $\mathbb{Z}/12\mathbb{Z}$. The j-invariant of C_s is given by

\begin{equation}
j(C_s) := j_{\text{torus}}(s), \quad j_{\text{torus}}(s) := s(s - 24)^3/(s - 27)
\end{equation}

(1) Assume that $(C_s)_{\text{tor}}(\mathbb{Q})$ has an element of order 6, say $P_2 := (\alpha_2, \beta_2) \in C_s \cap \mathbb{Q}^2$. We may assume that $P_2 + P_2 = P_1$. By Proposition [4.1], this implies that $x = \alpha_2$ must be the multiple solution of

\[q(x) := s^4 - 36s^3 - 72ms^2 - 6xs^2 - 6s^2m^2 + 72m^2x - 72x^2 = 0 \]

As $-f_x(-P_1)/f_y(-P_1) = -s/2$, we must have $m \neq -s/2$ and thus

\begin{equation}
\Delta'_x q := \Delta_x q/(2m + s) = s^3 - 32s^2 - 2ms^2 - 4m^2s + 8m^3 = 0
\end{equation}

The curve $\Delta'_x q = 0$ is a rational curve and we can parametrize $\Delta'_x q = 0$ as $s = \varphi_6(u)$, $m = \varphi_6(u)$ where

\begin{equation}
\varphi_6(u) := 32/(1 + 2u)(2u - 1)^2
\end{equation}

The point P_2 is parametrized as

\begin{equation}
P_2 = \left(\frac{128}{3}(2u + 1)^2(-1 + 2u)^{1/2}, \frac{512(6u + 1)}{(-1 + 2u)^5(2u + 1)^2}\right)
\end{equation}

where $u \in \mathbb{Q}$. We put $A_6 := \{s = \varphi_6(u); u \in \mathbb{Q}\}$ and $\Sigma_6 := \varphi^{-1}(\Sigma)$. Note that $\Sigma_6 = \{-1/2, 1/2, 5/6, -1/6\}$.

(1-2) Assume that we are given $s = \varphi(u)$ and we consider the case when (4.7) has three rational solutions in m for a fixed s. This is the case if $\varphi_6(u) = \varphi_6(v)$ has two rational solutions different from u. This is also equivalent to $(C_s)_{\text{tor}}(\mathbb{Q})$ has $\mathbb{Z}/2\mathbb{Z} + \mathbb{Z}/2\mathbb{Z}$ as a subgroup. The equation is given by the conic

\begin{equation}
Q : \quad 4u^2 - 2u + 4uv - 1 - 2v + 4v^2 = 0
\end{equation}

By an easy computation, Q is rational and it has a parametrization as follows.

\begin{equation}
u = \varphi_2(r) := \frac{-36 + 5r^2}{6(12 + r^2)}, \quad v(r) := \frac{-1}{6}\left(\frac{r^2 + 24r - 36}{(12 + r^2)}\right)
\end{equation}
The generators are P_2 of order 6 and $R = (\gamma, 0)$ of order 2 where
\[
\gamma := -\frac{81}{4} \frac{(r^4 - 48r^3 + 72r^2 - 342)(12 + r^2)^4}{(r^2 - 36)^4 r^4}
\]

Put $\varphi_{6,2}(r) := \varphi_6(\varphi_2(r))$, which is given explicitly as
\[
\varphi_{6,2}(r) = 27(12 + r^2)/r^2(r - 6)^2(r + 6)^2
\]
We define a subset $A_{6,2}$ of A_6 by the image $\varphi_{6,2}(Q)$. Put $\Sigma_{6,2} := \varphi_{6,2}(\Sigma)$. It is given by $\Sigma_{6,2} = \{0, \pm 2, \pm 6\}$.

(2) Assume that there exists a rational point $P_3 = (\alpha_3, \beta_3)$ of order 9 such that $3P_3 = P$. By Proposition 113, this is the case if and only if
\[
R_3(m, s) := 512m^9 + 768m^8s - 512m^6s^3 - 1536m^6s^2 - 192s^4m^5
- 6144m^5s^3 - 6528m^4s^4 + 96s^5m^4 - 12288m^3s^4 - 2048m^3s^5 + 64s^6m^3 + 480s^6m^2
- 15360s^5m^2 - 6144s^6m + 384s^7m - 6s^8m + 56s^8 - 512s^6 - 768s^7 - s^9 = 0
\]
has a rational solution. Here R_3 is $R_2/(\Delta s q)^2(s + 2m)s^4$ up to a constant multiplication. Again we find that the curve \{(m, s) \in \mathbb{C}^2; R_3(m, s) = 0\} is rational and we can parametrize this curve as $s = \varphi_9(t)$, $m = \psi_9(t)$ where
\[
\varphi_9(t) := \frac{1}{8} \frac{(-1+9t^2-3t+3t^3)^3}{3(t-1)^2(t+1)^4}
\psi_9(t) := \frac{1}{16} \frac{(-1+9t^2-3t^3)^2(t-3t+1+3t^2)}{t^3(t-1)^4(t+1)^4}
\]
The generator $P_3 = (\alpha_3, \beta_3)$ is given by
\[
\begin{align*}
\alpha_3 &= \frac{1}{768} \frac{(1-18s+15t^2-12t^3+15t^4+36t^5+33t^6)(9t^2-1+3t^3-3t)}{(t-1)(t+1)^4r^6} \\
\beta_3 &= \frac{1}{512} \frac{(1+3r^3)(9r^2-1+3r^3-3r)}{(t-1)^2(t+1)^4r^6}
\end{align*}
\]
We put $A_9 := \{\varphi_9(t); t \in \mathbb{Q}\}$ and $\Sigma_9 := \varphi_9^{-1}(\Sigma) = \{0, 1, -1\}$.

(3) Assume that $s \in A_6$ and $(C_s)_{tor}(Q)$ has an element $P_4 = (\alpha_4, \beta_4) \in C_s \cap \mathbb{Q}^2$ of order 12. Then we may assume that $P_4 + P_4 = P_2$. This implies that the tangent line at P_4 passes through $-P_2$. Write this line as $y = n(x - \alpha_2) - \beta_2$. By the same discussion as above, the equality $\Gamma(n_1, u) = 0$ holds where Γ is the polynomial defined by
\[
\Gamma(u, n_1) := -786432u^4 - 98304n_1u^3 - 524288u^2 + 393216u^2 - 16384n_1u^2
- 3072n_1^2u^2 + 131072u + 24576n_1u + 4096n_1 + 16384 + 256n_1^2 + n_1^4
\]
and $n = n_1/(2u + 1)/(2u - 1)^2$. Again we find that $\Gamma = 0$ is a rational curve and we have a parametrization: $u = u(\nu)$ and $n_1 = n_1(\nu)$ where
\[
\begin{align*}
u(\nu) &= \frac{1}{2} \frac{(\nu^2+2\nu^2+5)}{(\nu^2+\nu^3-3)^2}, \quad n_1(\nu) = -16 \frac{(2\nu^2-4\nu^3-4\nu^4+3)}{(\nu^4-6\nu^2-3)^4} \\
s = \varphi_{12}(\nu) := \varphi_6(\nu(\nu)), \quad \varphi_{12}(\nu) := -\frac{(\nu^4-3-6\nu^2)^3}{(n-1)^2(1+\nu)^2}(\nu^4-1+\nu)^2}
\end{align*}
\]
The generator of the torsion group $\mathbb{Z}/12\mathbb{Z}$ is $P_4 = (\alpha_4, \beta_4)$ where
\[
\begin{align*}
\alpha_4 &= \frac{1}{12} \frac{(\nu^4-1+\nu)^2(\nu^2+3)}{(n-1)^2(1+\nu)^2(r+1)^2} \\
\beta_4 &= -\frac{1}{2} \frac{(\nu^4-6\nu^2-3)^6\nu(\nu^2+3)}{(n-1)^2(1+\nu)^2(\nu^4+1)^2}
\end{align*}
\]
We put $A_{12} := \{ \varphi_{12}(\nu) ; \nu \in \mathbb{Q} \}$. By definition, $A_{12} \subset A_6$. The singular fibers $\Sigma_{12} := \varphi^{-1}(\Sigma)$ is given by $\{ 0, \pm 1 \}$. Summarizing the above discussion, we get

Theorem 4.16. The j-invariant is given by $j_{\text{torus}}(s) = s(s - 24)^3/(s - 27)$ and the Mordell-Weil torsion group of C_s is given as follows.

$$(C_s)_{\text{tor}}(\mathbb{Q}) = \begin{cases}
\mathbb{Z}/3\mathbb{Z} , & s \in \mathbb{Q} - A_6 \cup A_9 \cup \Sigma \\
\mathbb{Z}/6\mathbb{Z} , & s = \varphi_6(u) \in A_6 - A_{6,2} \cup A_{12}, u \in \mathbb{Q} - \Sigma_6 \\
\mathbb{Z}/6\mathbb{Z} + \mathbb{Z}/2\mathbb{Z}, & s = \varphi_{6,2}(r) \in A_{6,2}, r \in \mathbb{Q} - \Sigma_{6,2} \\
\mathbb{Z}/9\mathbb{Z} , & s = \varphi_9(t) \in A_9, t \in \mathbb{Q} - \Sigma_9 \\
\mathbb{Z}/12\mathbb{Z} , & s = \varphi_{12}(\nu) \in A_{12}, \nu \in \mathbb{Q} - \Sigma_{12}
\end{cases}$$

4.2. **Comparison with Kubert family.** In [Ku], Kubert gave parametrizations of the moduli of elliptic curves defined over \mathbb{Q} with given torsion groups which have an element of order ≥ 4. His family starts with the normal form:

$$E(b,c) : y^2 + (1 - c)x y - bx^3 = x^3 - bx^2$$

We first eliminate the linear term of y and then the coefficient of x^2. Let $K_w(b,c)$ be the Weierstrass short normal form, which is obtained in this way. The j-invariant is given by

$$j(E(b,c)) = \frac{(1 - 8bc^2 - 8bc - 4c + 16b + 6c^2 + 16b^2 - 4c^2 + c^4)^3}{b^3(3c^2 - c - 3c^3 - 8bc^2 + b - 20bc + c^4 + 16b^2)}$$

For a given elliptic curve E defined over K with Weierstrass normal form $E : y^2 = x^3 + ax + b$ and a given $k \in K$, the change of coordinates $x \mapsto x/k^2, y \mapsto y/k^3$ changes the normal form into $y^2 = x^3 + ak^4x + bk^6$. We denote this operation by $\Psi_k(E)$.

1. Elliptic curves with the torsion group $\mathbb{Z}/6\mathbb{Z}$. This family is given by a parameter c with $b = c + c^2$.
2. Elliptic curves with the torsion group $\mathbb{Z}/6\mathbb{Z} + \mathbb{Z}/2\mathbb{Z}$. This family is given by a parameter c_1 with $b = c + c^2$ and $c = (10 - 2c_1)/(c_1^2 - 9)$.
3. Elliptic curves with the torsion group $\mathbb{Z}/9\mathbb{Z}$. The corresponding parameter is f and $b = cd, c = fd - f, d = f(f - 1) + 1$.
4. Elliptic curves with the torsion group $\mathbb{Z}/12\mathbb{Z}$. The corresponding parameter is τ and $b = cd, c = fd - f, d = m + \tau, f = m/(1 - \tau)$ and $m = (3\tau - 3\tau^2 - 1)/(\tau - 1)$.

Proposition 4.18. Our family $C_{\varphi_{6,2}}(\theta), C_{\varphi_{6,2}}(\psi), C_{\varphi_9}(\tau), C_{\varphi_{12}}(\nu)$ are equivalent to the respective Kubert families. More explicitly, we take the following change of parameters to make their j-invariants coincide with those of Kubert and then we take the change of coordinates of type Ψ_k to make the Weierstrass short normal forms to be identical with $K_w(x,y)$.

1. For $C_{\varphi_{6,2}}(\theta)$, take $u = -(c - 1)/(3c + 1)$ and $k = c^2/(3c + 1)^2$.
2. For $C_{\varphi_{6,2}}(\psi)$, take $r = -12/(c_1 - 3)$ and $k = 4(-5 + c_1)^2(c_1 - 1)^3/(c_1^2 - 6c_1 + 21)^2/(c_1 - 3)(c_1 + 3)$.
3. For $C_{\varphi_9}(\tau)$, take $t = f/(f - 2)$ and $k = f^3/(f - 2)^3/(3f^2 + 1)^2$.
4. For $C_{\varphi_{12}}(\nu)$, take $\nu = -1/(2\tau - 1)$ and $k = (\tau - 1)\tau^4(-2\tau + 2\tau^2 + 1)(-1 + 2\tau)^2/(6\tau^4 - 12\tau^3 + 12\tau^2 - 6\tau + 1)^2$.

We omit the proof as the assertion is immediate from a direct computation.
4.3. **Involutions on** \(C_{54} \). We consider again the self-dual curve \(C := C_{54} \) (see §3). The Weierstrass normal form is \(y^2 = x^3 - 98415x + 11691702 \). Note that \(54 \in A_6 - A_{12} \cup A_{6,2} \cup \Sigma \). In fact, \(54 = \varphi_0(1/6) \) and \(54 \notin \varphi_1 \). The j-invariant is 54000 and the torsion group \(C_{tor}(\mathbb{Q}) \) is \(\mathbb{Z}/6\mathbb{Z} \) and the generator is given by \(P = (-81, 4374) \). Other rational points are \(2P = (243, -1458), 3P = (162, 0), 4P = (243, 1458), 5P = (-81, -4374) \), and \(O = (0, 1, 0) \) (= the point at infinity). Recall that \(C \) has an involution \(\tau \) which is defined by (2.10) in §3. To distinguish our original sextic and cubic, we put

\[
C^{(6)} : (xy - x + y)^3 + 54x^2y^2 = 0, \quad C^{(3)} : y^2 = x^3 - 98415x + 11691702
\]

The identification \(\Phi : C^{(3)} \to C^{(6)} \) is given by the rational mapping:

\[
\Phi(x, y) = \left(\frac{-2916}{(27x - 5103) - y}, \frac{2916}{y + 27x - 5103} \right)
\]

and the involution \(\tau^{(3)} \) on \(C^{(3)} \) is given by the composition \(\Phi^{-1} \circ \tau \circ \Phi \). After a boring computation, \(\tau^{(3)} \) is reduced to an extremely simple form in the Weierstrass normal form and it is given by \(\tau^{(3)}(x, y) = (p(x, y), q(x, y)) \) where

\[
(4.19) \quad p(x, y) := 81 \frac{2x - 567}{x - 162}, \quad q(x, y) := -19683 \frac{y}{(x - 162)^2}
\]

Note that \(C \) has another canonical involution \(\iota \) which is an automorphism defined by \(\iota : (x, y) \mapsto (x, -y) \). We can easily check that \(\tau^{(3)} \circ \iota = \iota \circ \tau^{(3)} \). Note that \(\tau^{(3)}(P) = 2P, \tau^{(3)}(2P) = P, \tau^{(3)}(3P) = O, \tau^{(3)}(O) = 3P, \tau^{(3)}(4P) = 5P, \tau^{(3)}(5P) = 4P \). Let \(\eta : C \to C \) be the translation by the 2-torsion element 3P i.e., \(\eta(x, y) = (x, y) + (162, 0) \). It is easy to see that \(\tau^{(3)} \) is the composition \(\iota \circ \eta \). That is \(\tau^{(3)}(x, y) = (x, -y) + (162, 0) \) where the addition is the addition by the group structure of \(C_{54} \). Thus

Theorem 4.20. The involution \(\tau \) on sextics \(C^{(6)} \) is equal to the involution \(\tau^{(3)} \) on \(C^{(3)} \) which is defined by (4.19) and it is also equal to \((x, y) \mapsto (x, -y) + (162, 0) \).

4.4. **Cubic family associated with sextics of a general type.** We consider the family of elliptic \(D_s \) curves associated to the moduli of sextics of a general type with three \((3,4)\)-cusps. Recall that \(D_s \) is defined by the equation:

\[
D_s : \quad -8s^3 + 1 + sy^2 + 35y^2 - 6x^2 + 3x - 6\sqrt{-3}y - 3\sqrt{-3}x
-6\sqrt{-3}x^2 - 12\sqrt{-3}xy + (s - 35)xy = 0
\]

This family is defined over \(\mathbb{Q}(\sqrt{-3}) \). We change this polynomial into a Weierstrass normal form by the usual process killing the coefficient of \(y \) and then killing the coefficient of \(x^2 \). A Weierstrass normal forms is given by \(y^2 = x^3 + a(s)x + b(s) \) where

\[
\begin{cases}
a(s) := -\frac{1}{768}(s + 47)(s + 71)(s^2 + 70s + 1657) \\
b(s) := \frac{1}{55296}(s^2 + 70s + 793)(s^4 + 212s^3 + 17502s^2 + 648644s + 9038089)
\end{cases}
\]

The singular fibers are \(s = -35, -53 + 6\sqrt{-3}, -53 - 6\sqrt{-3} \) and \(s = \infty \). Put \(\Sigma = \{-35, -53 + \pm 6\sqrt{-3}, \infty \} \). In this section, we consider the Modell-Weil torsion over the
quadratic number field $\mathbb{Q}(\sqrt{-3})$. First we observe that this family has 8 sections of order three $\pm P_{3,i}, i = 1, \ldots, 4$ where $P_{3,i}$ are given by

\begin{align}
(4.22) \quad P_{3,1} & := (x_{3,1}, y_{3,1}), \quad \begin{cases} x_{3,1} := 5041/48 + 71s/24 + s^2/4 \\
y_{3,1} := 2917/4 + 53s/2 + s^2/4 \end{cases} \\
(4.23) \quad P_{3,2} & := (x_{3,2}, y_{3,2}), \quad \begin{cases} x_{3,2} := -2209/16 - 47s/8 - s^2/16 \\
y_{3,2} := \sqrt{-3}(s^2 + 106s + 2917)(s + 35)/144 \end{cases} \\
(4.24) \quad P_{3,3} & := (x_{3,3}, y_{3,3}), \quad \begin{cases} x_{3,3} := s^2/4 + 793/48 + 35s/24 + (s + 35)\sqrt{-3}/2 \\
y_{3,3} := (-1 + \sqrt{-3}(s + 35)(s + 6\sqrt{-3} + 53)/8 \end{cases} \\
(4.25) \quad P_{3,4} & := (x_{3,4}, y_{3,4}), \quad \begin{cases} x_{3,4} := s^2/4 + 793/48 + 35s/24 - (s + 35)\sqrt{-3}/2 \\
y_{3,4} := -(1 + \sqrt{-3}(s + 53 - 6\sqrt{-3}(s + 35)/8 \end{cases}
\end{align}

Thus they generate a subgroup isomorphic to $\mathbb{Z}/3\mathbb{Z} + \mathbb{Z}/3\mathbb{Z}$. We can take the generators $P_{3,1}, P_{3,2}$ for example. Thus by [Ke-Mo], $(D_s)_{tor}(\mathbb{Q}(\sqrt{-3}))$ is isomorphic to one of the following.

(a) $\mathbb{Z}/3\mathbb{Z} + \mathbb{Z}/3\mathbb{Z}$, (b) $\mathbb{Z}/3\mathbb{Z} + \mathbb{Z}/6\mathbb{Z}$ and (c) $\mathbb{Z}/6\mathbb{Z} + \mathbb{Z}/6\mathbb{Z}$.

The case (b) is forgotten in the list of [Ke-Mo] by an obvious type mistake. By the same discussion as in 5.1, there exists $P \in D_s$ with order 6 and $2P = P_{3,1}$ if and only if

$$\Delta(s, m) := s^3 + 85s^2 - 4ms^2 - 568ms + 1555s - 16m^2s - 1136m^2 - 15465 - 20164m + 64m^3 = 0$$

Fortunately the variety $\Delta = 0$ is again rational and we can parametrize it as

\begin{align}
(4.26) \quad s &= \xi_6(t), \quad \xi_6(t) := -(27t^2 - 1304t^2 + 17920t - 71680)/(t - 8)(t - 16)^2 \\
(4.27) \quad m &= \psi(t), \quad \psi(t) := -(128t^2 + 3t^3 + 1536t - 6144)/(t - 8)(t - 16)^2
\end{align}

It turns out that the condition for the existence of $Q \in D_s$ with $2Q = P_{3,2}$ is the same with the existence of $P, 2P = P_{3,1}$. Assume that $s = \xi_6(t)$. Then by an easy computation, we get $P = (x_{6,1}, y_{6,1})$ and $Q = (x_{6,2}, y_{6,2})$ where

\begin{align}
x_{6,1} & := -\frac{1}{3} \left[\frac{-3072t^5 + 1179640t^4 + 86016t^3 - 1327104t^3 - 56623104t^3 + 113246208 + 47t^6}{(t - 8)^2(t - 16)^4}\right] \\
y_{6,1} & := \frac{4t^2(t - 2t + 192)(7t^3 - 144t^2 + 768)}{(t - 8)^3(t - 8)^4} \\
x_{6,2} & := \frac{1}{3} \left[\frac{376t^5 - 2016t^4 + 40704t^3 - 29491t^3 - 1179648t^2 + 28311552t - 113246208}{(t - 8)^2(t - 16)^4}\right] \\
y_{6,2} & := \frac{8}{7} \left[\frac{\sqrt{-3}(t - 12)(t - 12 - 4\sqrt{-3})(7t - 72 + 8\sqrt{-3})(7t - 72 - 8\sqrt{-3})(t - 12 + 4\sqrt{-3})}{(t - 16)^3(t - 8)^4}\right]
\end{align}

It is easy to see by a direct computation that $3P = 3Q = (\alpha, 0)$ where

$$\alpha := -\frac{2}{3} \left[\frac{(t^2 - 48t + 384)(13t^4 - 528t^3 + 8064t^2 - 55296t + 147456)}{(t - 8)^2(t - 16)^4}\right]$$

and $Q - P = P_{3,3}$. Now we claim that

Claim 1. $(D_s)_{tor}(\mathbb{Q}(\sqrt{-3})) = \mathbb{Z}/3\mathbb{Z} + \mathbb{Z}/6\mathbb{Z}$ with generators $P_{3,3}$ and P.

In fact, if the torsion is \(\mathbf{Z}/6\mathbf{Z} + \mathbf{Z}/6\mathbf{Z} \), there exist three elements of order two. However \(f_0(x) := f(x, 0) \) factorize as \((x - \alpha)f_{0,0}(x)\) and their discriminants are given by

\[
\Delta_x f_0 := \frac{2048^6(t-12)^3(t^2-4t+192)^3(7t^2-144t+768)^6}{(t-8)^9(t-16)^8}
\]

\[
\Delta_x f_{0,0} := 165888(t-12)^3(t^2-24t+192)^3(t-8)^7(t-16)^8
\]

Consider quartic \(Q_4 : g(t, v) := 165888(t-12)(t^2-24t+192)(t-8) - v^2 = 0 \). Thus \(D_s \) has three two torsion elements if and only if the quartic \(g(t, v) = 0 \) has \(\mathbf{Q}(\sqrt{-3}) \)-point \((t_0, v_0)\) with \(t_0 \not= 8, 16, 12, 12 \pm 4\sqrt{-3} \). The proof of Claim is reduces to:

Assertion 1. There are no such point on \(Q_4 \).

Proof. By an easy birational change of coordinates, \(g(t, v) = 0 \) is equivalent to the elliptic curve \(C := \{ x^3 + 1/16777216 - y^2 = 0 \} \). We see that \(C \) has two element of order three, \((0, \pm 1/4096)\) and three two-torsion \((-1/256, 0), (1/512 - 1/512\sqrt{-3}, 0) \) and \((1/512 + 1/512\sqrt{-3}, 0) \). Again by [Ke-Md], \(\text{C}_{\mathbf{tor}}(\mathbf{Q}(\sqrt{-3})) = \mathbf{Z}/2\mathbf{Z} + \mathbf{Z}/6\mathbf{Z} \). As the rank of \(C \) is 0 (\([S-Z] \)), there are exactly 12 points on \(C \). They correspond to either zeros or poles of \(\Delta_x(f_0) \). This implies that the quartic \(Q_4 \) has no non-trivial points and thus \(C \) does not have three 2-torsion points. This completes the proof of the Assertion and thus also proves the Claim.

Now we formulate our result as follows. Let \(A_6 = \{ s = \sqrt[3]{6} \}; \ t \in \mathbf{Q}(\sqrt{-3}) \) and \(\Sigma_6 := \sqrt[3]{6}^{-1}(\Sigma) \) is given by \(\Sigma_6 = \{ 8, 16, 0, 12, 12 \pm 4\sqrt{-3}, (72 \pm 8\sqrt{-3})/7 \} \).

Theorem 4.28. The Mordell-Weil torsion of \(D_s \) is given by

\[
(D_s)_{\text{tor}}(\mathbf{Q}(\sqrt{-3})) = \begin{cases}
\mathbf{Z}/3\mathbf{Z} + \mathbf{Z}/3\mathbf{Z} & s \in \mathbf{Q}(\sqrt{-3}) - A_6 \cup \Sigma \\
\mathbf{Z}/6\mathbf{Z} + \mathbf{Z}/3\mathbf{Z} & s = \sqrt[3]{6}(t) \in A_6, \ t \in \mathbf{Q}(\sqrt{-3}) - \Sigma_6
\end{cases}
\]

The \(j \)-invariant is given by

\[
j(D_s) = \frac{1}{64} \frac{(s + 47)^3(s + 71)^3(s^2 + 70s + 1657)^3}{(s + 35)^3(s^2 + 106s + 2917)^3}
\]

4.5. **Examples.** (A) First we consider the case of elliptic curves \(C_s \). In the following examples, we give only the values of parameter \(s \) as the coefficients are fairly big. The corresponding Weierstrass normal forms are obtained by [1.3].

1. \(s = 54 \). The curve \(C_{54} \) with torsion group \(\mathbf{Z}/6\mathbf{Z} \) has been studied in §1.3.

2. Take \(r = 3 \), \(s = \varphi_{6,2}(3) = 343/9 \). Then the torsion group is isomorphic to \(\mathbf{Z}/6\mathbf{Z} + \mathbf{Z}/2\mathbf{Z} \) with generators \(P_2 = (-55223/972, -588245/486) \) and \(R = (88837/972, 0) \). The \(j \)-invariant is given by \(7^3 \cdot 127^3/2^2 \cdot 3^6 \cdot 5^2 \).

3. Take \(t = -3 \), \(s = \varphi_9(-3) = 1/216 \). Then the torsion group is isomorphic to \(\mathbf{Z}/9\mathbf{Z} \) and the generator \(P_3 = (289/55987, -7/4109904) \). The \(j \)-invariant is \(71^3 \cdot 73^3/2^9 \cdot 3^9 \cdot 7^3 \cdot 17 \).

4. Take \(v = 3 \), \(s = \varphi_{12}(3) = -27/80 \). Then the torsion is isomorphic to \(\mathbf{Z}/12\mathbf{Z} \) with generator \(P_4 = (-2997/25600, -6561/102400) \). The \(j \)-invariant is \(-11^3 \cdot 59^3/2^{12} \cdot 3 \cdot 5^3 \).

(B) We consider elliptic curves \(D_s \) defined over \(\mathbf{Q}(\sqrt{-3}) \). The normal form is given by [1.21].

5. Take \(s = 1 \). Then \((D_1)_{\text{tor}}(\mathbf{Q}(\sqrt{-3})) = \mathbf{Z}/3\mathbf{Z} + \mathbf{Z}/3\mathbf{Z} \) and the generators are \((x_{3,1}, y_{3,1}) = (108, 756) \) and \((x_{3,2}, y_{3,2}) = (-144, 756\sqrt{-3}) \). The \(j \)-invariant is \(2^{15} \cdot 3^3 / 7^3 \).
6. Take \(t = 4 \) and \(s = -299/9 \). Then the torsion is isomorphic to \(\mathbb{Z}/6\mathbb{Z} + \mathbb{Z}/3\mathbb{Z} \). The generators can be taken as \((x_{6,1}, y_{6,1}) = (-2351/243, -532/243)\) and \((x_{3,3}, y_{3,3}) = (8\sqrt{-3}/9 - 2171/243, -680/81 + 248\sqrt{-3}/81)\). The \(j \)-invariant is given by \(5^3 \cdot 17^3 \cdot 31^3 \cdot 2203^3 / 2^6 \cdot 3^6 \cdot 7^3 \cdot 19^6 \).

4.6. Appendix. Parametrization of rational curves. Parametrizations of a rational curves are always possible and there exists even some programs to find a parametrization on Maple V. For the detail, see [Ab-Ba] and [B-K] for example. In our case, it is easy to get a parametrization by a direct computation. For a rational curves with degree less than or equal four is easy. For other case, we first decrease the degree, using suitable bitational maps. We give a brief indication. We remark here that the parametriz ation is unique up to a linear fractional change of the parameter.

(1) For the parametrization of \(s^3 - 32s^2 - 2m^2s - 4m^2 + 8m^3 = 0 \), put \(m = us \).

(2) For the parametrization of

\[
R_3(m, s) := 512m^9 + 768m^8s - 512m^6s^3 - 1536m^6s^2 - 192s^4m^5 \\
-6144m^5s^3 - 6528m^4s^4 + 96s^4m^4 - 12288m^3s^4 - 2048m^3s^5 + 64s^6m^3 + 480s^6m^2 \\
-15360s^5m^2 - 6144s^6m + 384s^7m - 6s^8m + 56s^8 - 512s^6 - 768s^7 - s^9 = 0
\]

put successively \(s = s_1/m_1 \) and \(m = 1/m_1 \), then put \(n_1 = n_2/s_1^2 \), then \(s_1 = s_2 - 2 \) and \(n_2 = n_4s_2 \). This changes degree of our curve to be 6. Then \(s_2 + s_3 - 4 \) and \(n_4 = n_5 + 2 \) and \(n_5 = n_6s_3 \). This changes our curve into a quartic. Other computation is easy.

4.7. Further remark. Professor A. Silverberg kindly communicated us about the paper [R-S]. He gave a universal family for \(\mathbb{Z}/3\mathbb{Z} + \mathbb{Z}/3\mathbb{Z} \) over \(\mathbb{Q}(\sqrt{-3}) \), which is given by

\[
A(u) : y^2 = x^3 + a_0(u)x + b_0(u)
\]

where

\[
a_0(u) = -27u(8 + u^3), \quad b_0(u) = -54(8 + 20u^3 - u^6)
\]

and the subfamily, given by \(u = (4 + \tau^3)/(3\tau^2) \), describes elliptic curves with torsion \(\mathbb{Z}/6\mathbb{Z} + \mathbb{Z}/3\mathbb{Z} \). Again by an easy computation, we can show that by the change of parameter \(s = -47 + 12u \) we can identify \(D_3 \) and \(A(u) \). Our subfamily for \(\mathbb{Z}/6\mathbb{Z} + \mathbb{Z}/3\mathbb{Z} \) is also the same with that of [R-S] by the fractional change of parameter: \(t = 8(\tau - 2)/(\tau - 1) \).

We would like to thank H. Tokunaga for the valuable discussions and informations about elliptic fibrations and also to K. Nakamula and T. Kishi for the information about elliptic curves over a number field. I am also grateful to SIMATH for many computations.

References

[Ab-Ba] S. S. Abhyankar and C.L. Bajaj, Automatic parametrization of rational curves and surfaces III: Algebraic plane curves. Computer Aided Geometric Design 5 (1988), 309-321.

[B-K] E. Brieskorn and H. Knörrer, Ebene Algebraische Kurven, Birkhäuser (1981), Basel-Boston - Stuttgart.

[D] A. Degtyarev, Alexander polynomial of a curve of degree six, J. Knot Theory and its Ramification, Vol. 3, No. 4, 439-454, 1994

[vH] M. van Hoeij, Rational parametrizations of algebraic curves using a canonical divisor, J. Symbolic Computation (1996) 11, 1-19.

[Ke-Mo] M. A. Kenku and F. Momose, Torsion points on elliptic curves defined over quadratic fields, Nagoya Math. J. Vol. 109 (1988), 125-149

15
[Ko] K. Kodaira, On compact analytic surfaces II, Ann. of Math. 77 (1963) 563-626 and III, Ann. of Math. 78 (1963) 1-40.

[Ku] D.S. Kubert, Universal bounds on the torsion of elliptic curves, Proc. London Math. Soc. (3) 33 (1976) 193-237.

[Ma] B. Mazur, Rational isogenies of prime degree, Invent. Math. 44 (1978) 129-162.

[Ma-P] R. Miranda and U. Persson, On Extremal Rational Elliptic Surfaces, Math. Z. 193, 537-558 (1986).

[N] M. Namba, Geometry of projective algebraic curves, Decker, New York, 1984.

[O1] M. Oka, Flex Curves and their Applications, Geometriae Dedicata, Vol. 75 (1999), 67-100.

[O2] M. Oka, Geometry of cuspidal sextics and their dual curves, to appear in Advanced Studies in Pure Math. 27, 1999?, Singularities and arrangements, Sapporo-Tokyo 1998.

[R-S] K. Rubin and A. Silverberg, Mod 6 representations of elliptic curves, 213–220 in Automorphic Forms, Automorphic Representations and Arithmetic, Proceedings of Symposia in Pure Mathematics, vol. 66, Part 1, AMS, 1999.

[S-Z] U. Schneiders and H. G. Zimmer, The rank of elliptic curves upon quadratic extension, Computational number theory (1989), 239-260.

[Si] J. H. Silverman, The Arithmetic of Elliptic Curves, GTM 106, Springer, New-York, 1986.

[W] R. Walker, Algebraic curves, Dover Publ. Inc., New York, 1949.

[Z] H. G. Zimmer, Torsion of elliptic curves over cubic and certain biquadratic number fields, Arithmetic geometry, 203-220, Contemporary Math. 174, Amer. Math. Soc.

Department of Mathematics, Tokyo Metropolitan University
Minami-Ohsawa, Hachioji-shi Tokyo 192-03, Japan

E-mail address: oka@comp.metro-u.ac.jp