Gastrointestinal Symptoms in Patients with COVID-19

Mohammed Abbas1; Rafik ElBeblawy1; Islam Gadelmoula1; Suvarna Rekha2; Bettina Sinanova2; Jose Bordon1,2

1Center of Excellence for Research in Infectious Diseases, Division of Infectious Diseases, University of Louisville School of Medicine, Louisville, KY, USA; 2Washington Health Institute, Washington, D.C., USA

*mka.abbas@louisville.edu

Abstract

Introduction: Though coronavirus disease 2019 (COVID-19) is predominantly a respiratory illness, a growing number of studies reported gastrointestinal (GI) symptoms among these patients. We examined the incidence of GI symptoms in patients with COVID-19 and GI symptoms as the initial presentation of the disease.

Methods: We examined peer-reviewed studies in English of patients with COVID-19 that reported GI symptoms. We searched PubMed and Google Scholar for articles published up to June 30, 2020, by using the keywords “COVID-19,” “Coronavirus,” “severe acute respiratory syndrome coronavirus 2,” “SARS-CoV-2,” “gastrointestinal tract,” “gastrointestinal diseases,” and “gastrointestinal symptoms and signs.” Studies with fewer than 30 patients and also those studies that did not report nausea, vomiting, and diarrhea were excluded.

Results: We reviewed 26 studies that reported GI symptoms among patients with COVID-19. Twenty-three studies were from China, and the three remaining studies were from three different countries: the US, France, and South Korea. The mean age of patients was 47.2 years, and 50.3% were females. Out of a total of 7,212 patients, 672 patients had nausea and/or vomiting (8.7%), and 732 (9.5%) had diarrhea; 6.8% of patients had GI symptoms as the initial presentation of COVID-19.

Conclusion: GI symptoms are not common in COVID-19 patients. However, the recognition of GI symptoms may significantly help in implementing steps to prevent SARS-CoV-2 transmission. Testing for COVID-19 in patients presenting with only GI symptoms may help detect and prevent the spread of COVID-19.

Introduction

COVID-19 has been reported primarily as a respiratory illness, however patients with COVID-19 also have GI symptoms such as nausea, vomiting, diarrhea, and abdominal pain.[1, 2] Interestingly the first case of COVID-19 reported in the US developed vomiting and diarrhea 4-6 days after the onset of the fever and respiratory symptoms.[3] Subsequent stool tests detected SARS CoV-2. The GI tract is the target of the SARS-CoV-2 given that the cell membrane angiotensin-converting enzyme 2 (ACE-2); which is the SARS CoV-2 receptor, is present in the enterocytes of the small and large intestine.

A recent systematic review from studies published until March 30, 2020 reported that 12% of patients with COVID-19 have GI symptoms.[4] There is a growing literature of COVID-19 associated with GI involvement and many questions with pending answers. There is a need for the clinical characterization of the GI symptoms of patients with COVID-19. In this regard, it remains to be determined the severity, incidence and types of presentations of the GI symptoms among patients with COVID-19. A characterization of the GI symptoms of patients with COVID-19 will guide physicians to deliver the optimal medical management of these patients.

In an effort to characterize the GI clinical symptoms of patients with COVID-19, we reviewed the English literature to determine the incidence of GI symptoms of patients with COVID-19 and to determine how many patients presented initially with GI symptoms only or the GI symptoms associated with other symptoms.
Methods

Review design

This was a secondary analysis of studies published in English language of peer-reviewed journals on COVID-19 associated with GI symptoms.

Database search strategies

We searched PubMed and Google Scholar for articles up to June 30, 2020. We used the following keywords in our search, ‘COVID-19’, ‘Coronavirus’, ‘SARS-CoV-2’, ‘gastrointestinal tract’, ‘gastrointestinal diseases’, ‘gastrointestinal symptoms and signs’.

Inclusion criteria

Peer review studies on COVID-19 that reported GI symptoms in the English language.

Exclusion criteria

Scientific studies with a patient count below 30 and those studies that did not report nausea, vomiting, and diarrhea.

After reviewing the articles, we included 26 studies for analysis. Institutional review board approval was not required given this study did not involve direct human participant research.

Results

Studies included in the review

A total of 26 studies reported GI symptoms among patients with COVID-19 (Table 1).[5-30] Twenty-one studies were not included according to the exclusion criteria. All included studies were retrospective or case series. Twenty-three studies were from China and the 3 remaining studies were from three different countries: US, France and South Korea. The mean age of patients was 47.2 years and 50.3% were female.

Table 1. Characteristics of COVID-19 positive cases and deaths from COVID-19 in Jefferson County (KY) as of May 6th, 2020.

Study	Characteristics	Nausea and vomiting (%)	Diarrhea (%)
Guan et al.[5]	Median age: 47.0 years [IQR 35, 58] Females 49.1%	55 (5)	42 (3.8)
Pan et al.[6]	Mean age: 52.9 years (SD 16) Females 47.5%	4 (2)	35 (17.1)
Zhou et al.[7]	Median age: 56.0 years [IQR 46.0, 67.0] Females 38%	7 (3.7)	9 (4.7)
Lu et al.[8]	Median age: 6.7 years (Range 1–15) Females 39.2%	11 (6.4)	15 (8.8)
Yang et al.[9]	Mean age: 45.1 years (SD 13.35) Females 45.6%	11 (7.4)	2 (1.3)
Zhang et al.[10]	Median age: 57.0 years (Range 25–87) Females 49.3%	31 (22.1)	18 (12.9)
Wang et al.[11]	Median age: 56.0 years [IQR 42, 68] Females 45.7%	19 (13.8)	14 (10.1)

continued on next page

Abbreviations: IQR, interquartile range; SD, standard deviation.
Study	Location	Median Age (Range)	Females	Median (IQR)	Median (Range)	Females
Liu et al.[12]	China	57.0 years (20–83)	55.5%	0 (0)	2 (2)	3 (3)
Zhao et al.[13]	China	43.0 years (17–75)	46.6%	2 (2)	3 (3)	
Chen et al.[14]	China	55.5 years (21–82)	32.3%	1 (1)	2 (2)	
Xu et al.[15]	China	50 years (18–86)	57%	7 (7.8)	5 (5.6)	
Shi et al.[16]	China	49.5 years (25–81)	48%	4 (4.9)	3 (3.7)	
Wu et al.[17]	China	46.1 years (15.42)	51.3%	1 (1.3)	1 (1.3)	
Chen et al.[18]	China	51 years (42.75, 62)	64.3%	7 (16.7)	7 (16.7)	
Wei et al.[19]	China	37 years (24–74)	66.7%	22 (26.2)	26 (31)	
Lin et al.[20]	China	45.3 years (18.3)	52.6%	21 (22.1)	23 (24.2)	
Song et al.[21]	China	49.0 years (16–76)	51%	3 (5.9)	5 (9.8)	
Han et al.[22]	China	62.5 years (27–92)	55.8%	24 (11.7)	67 (32.5)	
Nobel et al.[23]	USA		48%	63 (22.7)	56 (20.1)	
Luo et al.[24]	China		44%	204 (17.9)	69 (6)	
Jin et al.[25]	China	46.1 years (14.19)	50%	21 (3.2)	53 (8.1)	
Park et al.[26]	Korea	26 years (18–57)	54%	1 (2.2)	7 (15.2)	
Lian et al.[27]	China	45 years (5–88)	47.7%	22 (4.7)	36 (7.7)	

Abbreviations: IQR, interquartile range; SD, standard deviation.
Incidence of GI symptoms among patients with COVID-19

The total patient count from all studies was 7,212. Out of all patients, 672 had nausea or/and vomiting (8.7%) and 732 (9.5%) patients had diarrhea.

Characterization of GI symptoms among patients with COVID-19

The most common GI symptoms were nausea or/and vomiting 8.7%, and diarrhea 9.5%. Other symptoms such as anorexia, constipation, and abdominal pain were rarely mentioned and therefore not included in our study.

Percentage of patients initially presenting with GI symptoms only

Our review revealed that 6.8% of patients had GI symptoms as the only or initial presentation of COVID-19 (Table 2).

Included studies that reported GI symptoms among patients with COVID-19

This review included 26 studies of patients with COVID-19 and GI symptoms published up to June 30, 2020. Most of the studies were from China and had a relatively small number of patients. A similar review to ours included 29 studies published until March 30, 2020.[4] Preprint publications were not included in our review. In an effort to maximize the data quality, our review included only peer reviewed articles in English.

Incidence of GI symptoms in COVID-19 patients and its significance.

Our study examined 1,404 patients (19.5%) with GI symptoms from a total of 7,212 patients with documented COVID-19. Furthermore, our study revealed an incidence of 8.7% of nausea/vomiting and 9.5% diarrhea among patients with COVID-19. There has been a wide variation in the percentages of these symptoms in different studies. Parasa et al. reported an incidence of nausea and vomiting of 4.6% and diarrhea 7.4%.[4] The variation of incidence of the nausea, vomiting and diarrhea could be due to many factors such as failure to report these symptoms in the early months of the pandemic by patients and healthcare workers, the novelty of the disease, and lack of awareness of the possible relationship between GI symptoms and the COVID-19. Overall, GI symptoms in COVID-19 were not common.

Discussion

The presence of GI symptoms among COVID-19 patients can be explained by two mechanisms. First, the GI tract is abundant with ACE-2 receptors to which the virus binds and enters the cell.[31] This is similar to how the virus binds to the respiratory tract where it multiplies and causes symptoms.[10] This mechanism suggests that the virus may cause acute gastritis and/or enteritis, resulting in nausea, vomiting, and diarrhea.[25] The second mechanism is a recent theory, through the ‘Gut-Lung Axis’. [32, 33] Normally, the change in the microbiota and immune regulation of the digestive tract causes an indirect dysregulating effect on the respiratory tract and thus leads to lung infection. However recently, a study suggested that this axis could be bidirectional.[34] This means that lung microbiota may affect the gut microbiota composition, therefore leading to GI symptoms (Figure 1).

Another important observation seen in COVID-19 patients is that they can present with GI symptoms initially before the respiratory symptoms (Table 2). Therefore, it is important to report and inquire about GI symptoms to help identify infection and control the spread of the disease. Patients with GI symptoms should be isolated and tested for COVID-19 by polymerase chain reaction (PCR) from a respiratory swab. There is also evidence for fecal viral shedding in pa-
Table 2. Number of COVID-19 cases presented initially with gastrointestinal symptoms only.

Study	Characteristics	Gastrointestinal symptoms (%)
Pan *et al.*[6] Am J Gastroenterol China, n=204	Mean age: 52.9 years (SD 16) Females 47.5%	6 (2.9)
Wang *et al.*[11] JAMA China, n=138	Median age: 56.0 years [IQR 42, 68] Females 45.7%	14 (10.1)
Liu *et al.*[12] Chin Med J (Engl) China, n=137	Median age: 57.0 years (Range 20–83) Females 55.5%	11 (8)
Chen *et al.*[14] Lancet China, n=99	Mean age: 55.5 years (Range 21–82) Females 32.3%	3 (3)
Lin *et al.*[20] Gut China, n=95	Mean age: 45.3 years (SD 18.3) Females 52.6%	11 (11.6)
Total n=673		45 (6.7)

Abbreviations: IQR, interquartile range; SD, standard deviation.

Patients with COVID-19[18, 22, 35] At this point, the stool testing for SARS CoV-2 may help with the early detection of COVID-19 patients presenting only with GI symptoms.

It is recommended that awareness is raised among healthcare workers and the general public regarding the important relationship between GI symptoms and COVID-19. To help make sure that an individual does not transmit the disease, people with these symptoms are advised to seek medical attention for appropriate evaluation and treatment. PCR testing of patients with just GI symptoms for COVID-19 using respiratory swabs may also help with early detection of the disease and reduce the risk for disease spreading. Although PCR testing of stool samples is not approved yet, it could be used as another option for screening. Even when there are no risk factors, patient-isolation for a few days could be beneficial until the test results are available, or the patient develops upper respiratory symptoms. To have a clearer picture, healthcare personnel need to document GI symptoms for COVID-19 patients whether at presentation or throughout the disease course. Special precautions should be extended to all individuals dealing with stool from patients with COVID-19.

Our review has some strengths and limitations. Some of the strengths are the inclusions of peer reviewed studies in English and inclusion of publications up to June 30, 2020. In relation to the limitations, most of these studies were predominantly from China and the relatively small number of patients per studies. Therefore, these results cannot be used to represent the worldwide population. In addition, only a handful of studies mentioned the patients that presented initially with GI symptoms only.

In conclusion, GI symptoms are not common in COVID-19 patients and the recognition of these symptoms may significantly help in implementing steps for preventing disease transmission. It is essential to share this knowledge among the community, encourage the reporting and documentation of these symptoms. Testing for COVID-19 in patients presenting with GI symptoms only may help detect and prevent spreading of the disease. More studies are needed to capture targeted data so that more accurate and precise outcomes can be drawn.
Figure 1. Proposed bidirectional gut-lung axis.

Received: August 25, 2020
Accepted: September 4, 2020
Published: September 30, 2020

Copyright: © 2022 The author(s). This original article is brought to you for free and open access by ThinkIR: The University of Louisville’s Institutional Repository. For more information, please contact thinkir@louisville.edu. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding Source: The author(s) received no specific funding for this work.

Conflict of Interest: All authors declared no conflict of interest in relation to the main objective of this work.

References

1. Guo YR, Cao QD, Hong ZS, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - an update on the status. Mil Med Res 2020; 7(1):11. doi: 10.1186/s40779-020-00240-0. PMID: 32189119.

2. Gu J, Han B, Wang J. Covid-19: Gastrointestinal manifestations and potential fecal-oral transmission. Gastroenterology 2020; 158(6):1518-9. doi: 10.1053/j.gastro.2020.02.054. PMID: 32142785.

3. Holshue ML, DeBolt C, Lindquist S, et al. First case of 2019 novel coronavirus in the United States. N Engl J Med 2020; 382(10):929-36. doi: 10.1056/NEJMoa2001191. PMID: 32004427.

4. Parasa S, Desai M, Thoguluva Chandrasekar V, et al. Prevalence of gastrointestinal symptoms and fecal viral shedding in patients with coronavirus disease 2019: A systematic review and meta-analysis. JAMA Netw Open 2020; 3(6):e2011335. doi: 10.1001/jamanetworkopen.2020.11335. PMID: 32525549.

5. Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020; 382(18):1708-20. doi: 10.1056/NEJMoa2002032. PMID: 32109013.

6. Pan L, Mu M, Yang P, et al. Clinical characteristics of COVID-19 patients with digestive symptoms in Hubei, China: A descriptive, cross-sectional, multicenter study. Am J Gastroenterol 2020; 115(5):766-73. doi: 10.14309/ajg.0000000000000620. PMID: 32287140.

7. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020; 395(10229):1054-62. doi: 10.1016/s0140-6736(20)30566-3. PMID: 32171076.

8. Lu X, Zhang L, Du H, et al. SARS-CoV-2 infection in children. N Engl J Med 2020; 382(17):1663-5. doi: 10.1056/NEJMoa2005073. PMID: 32187458.

9. Yang W, Cao Q, Qin L, et al. Clinical characteristics and imaging manifestations of the 2019 novel coronavirus disease (COVID-19): A multi-center study in Wenzhou City, Zhejiang, China. J Infect 2020; 80(4):388-93. doi: 10.1016/j.jinf.2020.02.016. PMID: 32112884.

10. Zhang JJ, Dong X, Cao YY, et al. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy 2020; 75(7):1730-41. doi: 10.1111/all.14238. PMID: 32077115.
11. Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020; 323(11):1061-9. doi: 10.1001/jama.2020.1585. PMID: 32031570.

12. Liu K, Fang YY, Deng Y, et al. Clinical characteristics of novel coronavirus cases in tertiary hospitals in Hubei province. Chin Med J (Engl) 2020; 133(9):1025-31. doi: 10.1097/cm9.0000000000000744. PMID: 32044814.

13. Zhao W, Zhong Z, Xie X, Yu Q, Liu J. Relation between chest CT findings and clinical conditions of coronavirus disease (COVID-19) pneumonia: A multicenter study. AJR Am J Roentgenol 2020; 214(5):1072-7. doi: 10.2214/ajr.20.22976. PMID: 32125873.

14. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020; 395(10223):507-13. doi: 10.1016/s0140-6736(20)30211-7. PMID: 32070143.

15. Xu X, Yu C, Qu J, et al. Imaging and clinical features of patients with 2019 novel coronavirus SARS-CoV-2. Eur J Nucl Med Mol Imaging 2020; 47(5):1275-80. doi: 10.1007/s00259-020-04735-9. PMID: 32107577.

16. Shi H, Han X, Jiang N, et al. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: A descriptive study. Lancet Infect Dis 2020; 20(4):425-34. doi: 10.1016/s1473-3099(20)30086-4. PMID: 32105637.

17. Wu J, Liu J, Zhao X, et al. Clinical characteristics of imported cases of coronavirus disease 2019 (COVID-19) in Jiangsu province: A multicenter descriptive study. Clin Infect Dis 2020; 71(15):706-12. doi: 10.1093/cid/ciaa199. PMID: 32109279.

18. Chen Y, Chen L, Deng Q, et al. The presence of SARS-CoV-2 RNA in the feces of covid-19 patients. J Med Virol 2020; 92(7):833-40. doi: 10.1002/jmv.25825. PMID: 32243607.

19. Wei XS, Wang X, Niu YR, et al. Diarrhea is associated with prolonged symptoms and viral carriage in coronavirus disease 2019. Clin Gastroenterol Hepatol 2020; 18(8):1753-9.e2. doi: 10.1016/j.cgh.2020.04.030. PMID: 32311512.

20. Lin L, Jiang X, Zhang Z, et al. Gastrointestinal symptoms of 95 cases with SARS-CoV-2 infection. Gut 2020; 69(6):997-1001. doi: 10.1093/gutjnl/2020-321013. PMID: 32241899.

21. Song F, Shi N, Shan F, et al. Emerging 2019 novel coronavirus (2019-nCoV) pneumonia. Radiology 2020; 295(1):210-7. doi: 10.1148/radiol.2020200274. PMID: 32027573.

22. Han C, Duan C, Zhang S, et al. Digestive symptoms in COVID-19 patients with mild disease severity: Clinical presentation, stool viral RNA testing, and outcomes. Am J Gastroenterol 2020; 115(6):916-23. doi: 10.14309/ajg.0000000000000664. PMID: 32301761.

23. Nobel YR, Phipps M, Zucker J, et al. Gastrointestinal symptoms and coronavirus disease 2019: A case-control study from the United States. Gastroenterology 2020; 159(1):373-5.e2. doi: 10.1053/j.gastro.2020.04.017. PMID: 32294477.

24. Luo S, Zhang X, Xu H. Don’t overlook digestive symptoms in patients with 2019 novel coronavirus disease (COVID-19). Clin Gastroenterol Hepatol 2020; 18(7):1636-7. doi: 10.1016/j.cgh.2020.03.043. PMID: 32205220.

25. Jin X, Lian JS, Hu JH, et al. Epidemiological, clinical and virological characteristics of 74 cases of coronavirus-infected disease 2019 (COVID-19) with gastrointestinal symptoms. Gut 2020; 69(6):1002-9. doi: 10.1136/gutjnl-2020-320926. PMID: 32213556.

26. Park SK, Lee CW, Park DI, et al. Detection of SARS-CoV-2 in fecal samples from patients with asymptomatic and mild COVID-19 in Korea. Clin Gastroenterol Hepatol 2021; 19(7):1387-94.e2. doi: 10.1016/j.cgh.2020.06.005. PMID: 32534042.

27. Lian J, Jin X, Hao S, et al. Epidemiological, clinical, and virological characteristics of 465 hospitalized cases of coronavirus disease 2019 (COVID-19) from Zhejiang province in China. Influenza Other Respir Viruses 2020; 14(5):564-74. doi: 10.1111/irv.12758. PMID: 32397011.

28. Klopfenstein T, Kadiane-Oussou NJ, Royer PY, Toko L, Gendrin V, Zayet S. Diarrhea: An underestimated symptom of COVID-19 disease 2019. Clin Res Hepatol Gastroenterol 2020; 44(3):282-3. doi: 10.1016/j.clinre.2020.04.002. PMID: 32371006.

29. Zhang H, Liao YS, Gong J, Liu J, Xia X, Zhang H. Clinical characteristics of coronavirus disease (COVID-19) patients with gastrointestinal symptoms: A report of 164 cases. Dig Liver Dis 2020; 52(10):1076-9. doi: 10.1016/j.dld.2020.04.034. PMID: 32507692.

30. Zheng T, Yang C, Wang HY, et al. Clinical characteristics and outcomes of COVID-19 patients with gastrointestinal symptoms admitted to Jianghan Fangcang shelter hospital in Wuhan, China. J Med Virol 2020; 92(11):2735-41. doi: 10.1002/jmv.26146. PMID: 32510173.

31. Harmer D, Gilbert M, Borman R, Clark KL. Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme. FEBS Lett 2020; 584(2):107-10. doi: 10.1016/j.febslet.2020.02.060. PMID: 12459472.

32. Budden KF, Gellatly SL, Wood DL, et al. Emerging pathogenic links between microbiota and the gut-lung axis. Nat Rev Microbiol 2017; 15(1):55-63. doi: 10.1038/nrmicro.2016.142. PMID: 27694885.

33. He Y, Wen Q, Yao F, Xu D, Huang Y, Wang J. Gut-lung axis: The microbial contributions and clinical implications. Crit Rev Microbiol 2017; 43(1):81-95. doi: 10.1080/1040841X.2016.1176988. PMID: 27781554.

34. Enaud R, Prevel R, Ciarlo E, et al. The gut-lung axis in health and respiratory diseases: A place for inter-organ and inter-kingdom crosstalks. Front Cell Infect Microbiol 2020; 10:9. doi: 10.3389/fcimb.2020.00009. PMID: 32140452.

35. Ling Y, Xu SB, Lin YX, et al. Persistence and clearance of viral RNA in 2019 novel coronavirus disease rehabilitation patients. Chin Med J (Engl) 2020; 133(9):1039-43. doi: 10.1097/cm9.0000000000000774. PMID: 32118639.