Natural enemies associated with *Maconellicoccus hirsutus* (Hemiptera: Pseudococcidae) in the state of São Paulo, Brazil

Ana Lúcia B. G. Peronti1*, Nilza Maria Martinelli, Júlia Godoy Alexandrino, Alberto Luiz Marsaro Júnior2, Angélica Maria Penteado-Dias3, and Lúcia M. Almeida4

Abstract

The pink hibiscus mealybug, *Maconellicoccus hirsutus* (Green) (Hemiptera: Pseudococcidae), occurs widely in Brazil, causing damage to some crops. However, information on beneficial insects acting to control populations of this pest in Brazil is practically non-existent. A survey was conducted in the state of São Paulo. The insect associates of *M. hirsutus* recorded on *Hibiscus rosa-sinensis* L. (Malvales: Malvaceae) were the parasitoid *Gyranoidea indica* Shafee, Alam & Agarwal (Hymenoptera: Encyrtidae) and the predators *Cycloneda sanguinea* (L.), *Cryptolaemus montrouzieri* Mulsant, *Chilocorus nigrita* (F.), *Exolectra sp.*, *Harmonia axyridis* (Pallas), *Tenuisvalvae notata* (Mulsant) (Coleoptera: Coccinellidae), and *Ceraeochrysa* sp. (Neuroptera: Chrysopidae). *Cryptolaemus montrouzieri* was the most commonly collected species on populations of *M. hirsutus* infesting plants of *H. rosa-sinensis*. *Chilocorus nigrita*, *Exolectra sp.*, *H. axyridis*, *T. notata*, and *Ceraeochrysa* sp. were associated for the first time with *M. hirsutus*, and *G. indica* was recorded for the first time in Brazil.

Key Words: invasive species; geographical distribution; biological control; parasitoid; predator

Resumo

A cochonilha rosada do hibisco, *Maconellicoccus hirsutus* (Green) (Hemiptera: Pseudococcidae), atualmente difundida de Norte a Sul do Brasil, vem causando danos a algumas plantas cultivadas. Entretanto informações sobre insetos atuando sobre o controle das populações dessa praga no país são praticamente inexistentes. Um levantamento foi realizado no Estado de São Paulo, e os inimigos naturais associados à *M. hirsutus* sobre *Hibiscus rosa-sinensis* L. (Malvales: Malvaceae) foram o parasitóide *Gyranoidea indica* Shafee, Alam & Agarwal (Hymenoptera: Encyrtidae) e os predadores *Cycloneda sanguinea* (L.), *Cryptolaemus montrouzieri* Mulsant, *Chilocorus nigrita* (F.), *Exolectra sp.*, *Harmonia axyridis* (Pallas), *Tenuisvalvae notata* (Mulsant) (Coleoptera: Coccinellidae), e *Ceraeochrysa* sp. (Neuroptera: Chrysopidae). *Cryptolaemus montrouzieri* foi a espécie mais comumente coletada sobre populações de *M. hirsutus* infestando plantas de *H. rosa-sinensis*. *Chilocorus nigrita*, *Exolectra sp.*, *H. axyridis*, *T. notata* e *Ceraeochrysa* sp. foram registradas pela primeira vez associadas com *M. hirsutus* e *G. indica* é registrada pela primeira vez no Brasil.

Palavras Chave: espécie invasora; distribuição geográfica; controle biológico, parasitóides; predadores

The pink hibiscus mealybug, *Maconellicoccus hirsutus* (Green) (Hemiptera: Pseudococcidae), has caused serious damage to many crops in tropical and subtropical regions around the world. *Maconellicoccus hirsutus* has been associated with more than 200 genera of host plants from 76 plant families (Ben-Dov et al. 2015). In Brazil, *M. hirsutus* was first recorded in 2010 on a plant of *Hibiscus rosa-sinensis* L. (Malvales: Malvaceae) in the state of Roraima (Marsaro Júnior et al. 2013) and subsequently in the states of Espírito Santo (Culik et al. 2013), Mato Grosso (Morais et al. 2015), Alagoas (Broglio et al. 2015), Bahia (CEPLAC/CEPEC 2014), and Santa Catarina (Alexandre et al. 2014), totaling a list of 19 host plants for these states. *Maconellicoccus hirsutus* is already causing damage to crops such as cacao (*Theobroma cacao* L.; Malvales: Malvaceae) in Bahia and Espírito Santo (CEPLAC/CEPEC 2014) and soursop (*Annona muricata* L.; Magnoliaceae: Annonaceae), star fruit (*Averrhoa carambola* L.; Oxalidales: Oxalidaceae), barbados cherry (*Malpighia glabra* L.; Malpighiales: Malpighiaceae), and cupuáçu tree (*Theobroma grandiflorum* [Wild. ex Sprengel] Schumann; Malvales: Malvaceae) in Alagoas (Broglio et al. 2015). In São Paulo State, *M. hirsutus* was first recorded on *H. rosa-sinensis* in an urban area of São Carlos in 2012 (Morais et al. 2015). Between 2013 and early 2014, Peronti & Martinelli (2014) recorded this pest in 11 municipalities of the state, infesting Erythrina spp. (Fabales: Fabaceae), *Ficus pumila* L. (Rosales: Moraceae), and *Eugenia uniflora* L. (Myrtales: Myrtaceae), but mainly *Hibiscus* species in urban areas and some teak, *Tectona grandis* L.f. (Lamiaceae: Lamiaceae), plantations in the northwest region of the state. Because of its wide host range and its rapid geographic expansion, not only to agricultural land but also to home gardens and forest areas,
biological control appeared as the most suitable method to manage populations of *M. hirsutus* (Sagarr & Peterkin 1999). Additionally, chemical management is hindered by (1) the waxy deposit on the mealybug bodies, which reduces penetration of the chemical solution (Kairo et al. 2000), and (2) the cryptic behavior of this insect which congregates in protected parts of the plants (Kairo et al. 2000; Chong 2009).

Among the 39 parasitoids and 42 predators of *M. hirsutus* known worldwide (Chong et al. 2015), 27 species are known to the Neotropical region (Culik et al. 2013; Chong et al. 2015). The mealybug destroyer, *Cryptolaemus montrouzieri* Mulsant (Coleoptera: Coccinellidae), and the parasitoids *Anagyrus kamali* Moursi, *Gyranusoida indica* Shafee, Alam & Agarwal (Hymenoptera: Encyrtidae) are used in large-scale biological control programs against *M. hirsutus* in many parts of the world (Culik et al. 2013; Chong et al. 2015).

In Brazil, only *A. kamali* was previously recorded as a natural enemy of *M. hirsutus*. It emerged from specimens collected on *H. rosa-sinensis* and *Glycine max* (L.) Merr. (Fabales: Fabaceae) in Boa Vista in the state of Roraima, and was probably introduced together with *M. hirsutus* in Brazil (Marsaro Júnior et al. 2013). The objective of this study was to survey species of natural enemies associated with *M. hirsutus* in the state of São Paulo, checking for pest–natural enemy associations known in other countries, and to document new associations.

Materials and Methods

A survey of the natural enemies associated with *M. hirsutus* on *H. rosa-sinensis* was conducted in urban areas of 3 municipalities of São Paulo State. Occasional samplings were carried out in São Carlos (22.0152778°S, 47.8911111°W) and Campinas (22.8554167°S, 48.3225000°W) in Jul and Jan 2013, respectively. Afterwards, monthly samplings were carried out in Jaboticabal (21.2552778°S, 48.3225000°W) between Mar and Jul 2014.

Infested plant parts were inspected visually for adult predators and, if present, were collected with an aspirator. Coccinellid and chrysopid larvae were placed in Petri dishes covered with muslin netting and fed with nymphs and adults of *M. hirsutus*. The adult insects that emerged were preserved by pinning. To obtain parasitoids of *M. hirsutus*, darkened specimens that showed a decrease in mobility were placed in glass tubes with a cotton lid. The emerging adult parasitoids were subsequently preserved in 100% ethanol.

The mealybugs previously preserved in 75% ethanol were mounted on microscopic slides following the method described by Gullan (1984) and identified according to morphological characteristics of the adult female as described by Miller (1999) and Miller et al. (2011). The hymenopteran parasitoids were identified using the keys by Noyes & Hayat (1994), the coccinellids were identified according to the keys by Gordon (1985), Araujo-Siqueira & Almeida (2006), and Costa et al. (2008), and the chrysoptids were identified by using the keys by Brooks & Barnard (1990).

Voucher specimens were deposited in the following institutions: mealybugs and chrysopids at the Department of Plant Protection, Universidade Estadual Paulista [FCAV/UNESP]; parasitoids at the Department of Ecology and Evolutionary Biology at Universidade Federal de São Carlos [UFSCar]; coccinellids at the Coleção Entomológica Pe. J.S. Moure, Department of Zoology, Universidade Federal do Paraná [UFPR].

Results

All pseudococcids confirmed to be *M. hirsutus*. Natural enemies recovered were the parasitoid *G. indica* (Hymenoptera: Encyrtidae) and the predators *Cycloneda sanguinea* (L.), *C. montrouzieri*, *Chilocorus nigrita* (F.), *Exoplectra sp.*, *Harmonia axyridis* (Pallas), and *Tenuisvalvae notata* (Mulsant) (Coleoptera: Coccinellidae) and *Ceraeochrysa sp.* (Neuroptera: Chrysopidae) (Table 1).

Cryptolaemus montrouzieri (larvae and adults) was the most commonly observed predator associated with colonies of *M. hirsutus* in the state of São Paulo, mainly on plants heavily infested by this pest. The remaining species of predators were generally in the adult stage, and the parasitoid *G. indica* was sporadically collected. Larval stages of the coccinellid *C. nigrita* and the green lacewing *Ceraeochrysa* sp. were also observed on a hedge of hibiscus plants in Jaboticabal. *Chilocorus nigrita*, *Exoplectra sp.*, *H. axyridis*, *T. notata*, and *Ceraeochrysa* sp. were recorded for the first time associated with *M. hirsutus*, and *G. indica* was recorded for the first time in Brazil (Table 1).

Discussion

COLEOPTERA

Chilocorus nigrita is indigenous to the Indian sub-continent and Indo-China and has been introduced into many regions for biological control purposes (Ponsonby 2009). Currently, *C. nigrita* is distributed

Natural studied	Origin	Material studied
Coleoptera: Coccinellidae		
Chilocorus nigrita	Oriental	10-I-2013, Campinas, SP, Marsaro Júnior AL col. (1 ex.); VI-2014, Jaboticabal, SP, Alexandrino JG col. (6 ex.).
Cryptolaemus montrouzieri	Australasian	6-XII-2012, São Carlos, SP, Peronti ALBG col. (8 ex.); 10-I-2013, Campinas, SP, Marsaro Júnior AL col. (4 ex.); III-2014, IV-2014, V-2014, Jaboticabal, SP, Alexandrino JG col. (20 ex.).
Cycloneda sanguinea	Neotropical	6-I-2013, São Carlos, SP, Peronti ALBG col. (1 ex.)
Exoplectra sp.	Neotropical	10-I-2013, Campinas, SP, Marsaro Júnior AL col. (1 ex.)
Harmonia axyridis	Paleartic	VI-2014, Jaboticabal, SP, Alexandrino JG col. (4 ex.)
Tenuisvalvae notata	Neotropical	10-I-2013, Campinas, SP, Marsaro Júnior AL col. (1 ex.)
Neuroptera: Chrysopidae		
Ceraeochrysa sp.		III-2014, Jaboticabal, SP, Alexandrino JG col. (2 ex.)
Hymenoptera: Encyrtidae		
Gyranusoida indica	Oriental	VII-2014, Jaboticabal, SP, Alexandrino JG col. (4 ex.)

*First association with *M. hirsutus*.

First report in Brazil.
in Bangladesh, Brazil, Chagos Archipelago, China, Fiji, Ghana, India, Indonesia, Madagascar, Malaysia, Mauritius, Myanmar, Oman, Pacific, Seychelles, South Africa, Sri Lanka, Thailand, Western Samoa, and Yemen (Pooreni 2004).

Recorded prey of C. nigrita are: Aleyrodidae (1 species), Aphididae (2 species), Psyllidae (1 species), Monophlebidae (1 species), Pseudococcidae (3 species), Asterochenidae (2 species), Cocididae (10 species), and Diaspididae (26 species) (Samways 1984). In South Africa, C. nigrita occasionally feeds on young mealybugs, and in the laboratory it sometimes feeds on young Planococcus citri (Risso) (Pseudococcidae), but not on the adults (Samways 1984). In northeastern Brazil, C. nigrita was first recorded in 1983 in Recife, state of Pernambuco (Samways 1989) and was observed preying on Diaspis echinacacti (Bouché) (Hemiptera: Diaspididae) infesting several cacti species in the states of Alagoas and Pernambuco (Lima & Gama 2001). Also, 1st-instars (crawlers) of this mealybug were phoretic on C. nigrita adults, which contributed to the spread of this pest (Lima & Gama 2001).

Cryptolaemus montrouzieri is native to the Australasian Zoogeographic Region, but now has a world-wide distribution due to its introduction in many countries for biological control purposes. This beetle is one of the most widely used biological control agents and has been used to target more than 16 pest species (Kairo et al. 2013). Cryptolaemus montrouzieri is a polyphagous predator with prey documented using to target more than 16 pest species (Kairo et al. 2013). Cryptolaemus montrouzieri is one of the most widely used biological control agents and has been used successfully as a biological control agent of aphids around the world (Saini 2004). According to Kondo & Gonzalez (2013), H. axyridis was introduced to Colombia in 1989 or earlier, making it the second oldest record of the species in South America after the deliberate releases of the species in Mendoza, Argentina in 1986 (Garcia et al. 1999). In Brazil, it was probably accidently introduced and first detected in Cucurbit, Paraná State, in 2002, feeding on 2 species of aphids (Almeida & Silva 2002). In the same municipalities, Martins et al. (2009) collected H. axyridis associated with potential prey species of aphids, scales, and psyllids that may be alternate prey sources, although most of the prey species were aphids. Harmania axyridis was recorded in the states of São Paulo, Minas Gerais, and Goiás (Harterreiten-Souza et al. 2012).

Teneuvalva notata is native to South America and a predator of mealybugs (Dreyer et al. 1997a,b). Recently, it was reported in the semi-arid region of Pernambuco, Brazilian State, associated with Ferrisia virgata (Cockerell) (Hemiptera: Pseudococcidae) on cotton and with Dactylopius opuntiae (Cockerell) (Hemiptera: Dactylopiidae) on cactus forage. In South America, it is distributed in Bolivia, Brazil (Amapá, Bahia, Mato Grosso do Sul, Rio de Janeiro, Rondônia, São Paulo), Colombia, and Paraguay (Barbosa et al. 2014). In 1980, it was introduced into Africa to control the cassava mealybug, Phenacoccus manihoti Mattile-Ferrero (Hemiptera: Pseudococcidae) (Herren & Neuenschwander 1991; Chakupurakal et al. 1994).

NEUROPTERA

Ceraeochrysa species are distributed from southeast Canada to Argentina, and it is the largest genus of Neotropical Chrysopinae (Brooks & Barnard 1990). Freitas et al. (2009), in the last review of the genus, recognized 63 species in the Neotropics, 21 of which occur in Brazil (Freitas & Penny 2001). According Sosa & Freitas (2010), larvae of Ceraeochrysa species feed on aphids, thrips, whiteflies, mites, and neontal larvae of Lepidoptera in various types of agroecosystems. However, other authors have associated these species as predators of coccoids. De Bortoli et al. (2005) demonstrated that this species had potential as a control agent of Selenaspidus sp. (Hemiptera: Diaspididae) and Coccus sp. (Hemiptera: Coccidae). Ceraeochrysa paraguarja (Navás) preferred the armored scale Selenaspidus sp. (De Bortoli & Murta 2006), and Ceraeochrysa cincta (Schneider) was observed on colonies of Leptococcus eugeniae (Miller & Denno) (as Plutococcus eugeniae) (Hemiptera: Pseudococcidae) (Eisner & Silberglied 1988). Eight species of Chrysopidae were associated with M. hirsutus, but of these only Chrysoperla carnea (Stephens) is known in Brazil (Chong et al. 2015).

HYMENOPTERA

Gyranusoides indica was described from India and introduced into Australia, Egypt, Guyana, several Caribbean countries (Noyes 2015), and California (USA) (Goolshy et al. 2002). In conjunction with the parasitoid A. kamali and the predator C. montrouzieri, G. indica has been widely used in biological control programs against the pink hibiscus mealybug. Gyranusoides mirzai (Agarwal) is associated with M. hirsutus, but it is restricted to the Oriental region (Chong et al. 2015). Gyranusoides indica has also been recorded as a parasitoid of other pseudococcids, including F. virgata, Nipaecoccus viridis (Newstead), and Pseudococcus longispinus (Targioni Tozzetti) (Sharaf & Meyerdtr 1987; Meyerdtr & Warkentin 1999; Abd-Rabou 2001). Evans et al. (2012) reported A. kamali and G. indica associated with M. hirsutus on San Andres Island, Colombia, and provided information and illustrations to differentiate the 2 species.
GENERAL DISCUSSION

Mutual occurrence of coccinellids and potential prey insects on a given plant does not necessarily indicate a prey–predator relationship, which must be positively observed in the field and/or tested in the laboratory (Hodek & Honek 1996). Of the insects collected on *H. rosa-sinensis* infested by *M. hirsutus* in the state of São Paulo, the predators *C. montrouzieri* and *C. sanguinea* and the parasitoid *G. indicus* have already been recorded as natural enemies of this pest in other countries. Of the new associated species, only *T. notata* has Pseudococcidae as main prey or host. *Harmonia axyridis* is a generalist predator that will take coccoids as prey but feeds mainly on aphids. Species of *Exolectra* are associated with the scale insect families Coelostomimidiae and Monophlebidae, and *Ceraeochrysa* species are generalist predators.

Secondary predators, or those species that will take prey prior to the species typically preferred, can be important in pest management. For example, *Nesticococcus sinensis* Tang (Hemiptera: Pseudococcidae) and *Eriococcus transversus* Green (synonym *Rhizococcus transversus*) (Hemiptera: Eriococcidae) are important pests of bamboo forests in southern Jiangsu (China), and the strategy used to control these pests involved using oil seed rape planted among the bamboo to attract aphids, which in turn attracted *Harmonia obscurusignata* (Liu) and *H. axyridis* (Xu & Wu 1989). After rape harvest, the coccinellids dispersed to the bamboo and fed on scales, reducing the scale population by 97 to 99%.

In our collections from some plants infested by the pink hibiscus mealybug, we observed aphids and/or other species of coccoids such as *Aphis gossypii* Glover (Aphididae), *Phenacoccus solenopsis* Tinsley (Pseudococcidae), *Parasaissetia nigra* (Nietner) (Coccidae), and *Pinnaespis* sp. (Diaspididae), and it is possible that some coccinellids documented in association with *M. hirsutus* were initially attracted to the plant because of the presence of one of these other pests. Furthermore, ladybeetles may provide some suppression when the pest population is high, but in lower populations because the beetles require large numbers of mealybugs to survive (Hoy et al. 2002), in which case other parasitoids and predators may provide some control.

In our observations, it was clear that *C. montrouzieri* was prevalent on large populations of *M. hirsutus* on *H. rosa-sinensis* in the state of São Paulo. However, additional ecological work in the field and tests in the laboratory are needed before proposing good management strategies against this pest in the state of São Paulo or other regions of Brazil.

Acknowledgments

We are grateful to Francisco José Sosa Duque from Universidad Centrocidential “Lisandro Alvarado,” Venezuela, who contributed with necessary information to identify the genus *Cereaoechrysa* (Neuroptera: Chrysopidae); to Takumasa Kondo (CORPOICA, Palmira, Colombia) for reviewing the manuscript; and to CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for financial support.

References Cited

Abd-Rabou S. 2001. Parasitoids attack mealybugs (Homoptera: Coccoidea: Pseudococcidae) in Egypt. Egyptian Journal of Agricultural Research 7: 1355–1376.

Alexandre F, Souza GP, Ebel J, Vieira R, Krueger R. 2014. Levantamento de detecção da pragas *Macunellicoccus hirsutus* Green (coccoiníla rosada do hibisco), em cultivos urbanos de híbiscos e ornamentais em Santa Catarina. In Anais da V Conferência Nacional de Defesa Agropecuária. Florianópolis, Santa Catarina, 25–28 Nov 2014, http://www.vcnuda-sc.com.br/downloads/anais_V_conferencia.pdf (last accessed 5 Jun 2015).

Almeida LM, Silva VB. 2002. Primeiro registro de *Harmonia axyridis* (Pallas) (Coleoptera, Coccinellidae): um coccinídeo originário da região Palêarctica. Revista Brasileira de Zoologia 19: 941–944.

Almeida LM, Corrêa GH, Giorgi JA, Grossi PC. 2011. New record of predatory ladybird beetle (*Coleoptera, Coccinellidae*) feeding on extrafloral nectaries. Revista Brasileira de Entomologia 55: 447–450.

Araújo-Siqueira M, Almeida LM. 2006. Estudo das espécies de *Cycloneda Crotch* (Coleoptera, Coccinellidae). Revista Brasileira de Zoologia 23: 550–568.

Barbosa PRR, Oliveira MD, Giorgi JA, Oliveira JE, Torres JB. 2014. Suitability of two prey species for development, reproduction, and survival of *Tenuivalve notata* (Coleoptera: Coccinellidae). Annals of the Entomological Society of America 107: 1102–1109.

Ben-Dov Y, Miller DR, Gibson GR. 2015. ScaleNet, http://www.sel.barc.usda.gov/scaletnet/scaletnet.htm (last accessed 10 Jun 2015).

Berkvens N, Bonte J, Berkvens D, Deforce K, Tirry L, De Clercq P. 2008. Pollen as an alternative food for *Harmonia axyridis*. Biocontrol 53: 201–210.

Broglio SMF, Cordero EP, Santos JM dos, Micheletti LB. 2015. Registro da cochinilha-rosada-do-hibisco infestando frutíferas em Macéio, Alagoas, Brasil. Revista Caatinga 28: 242–248.

Brooks SJ, Barnard PC. 1990. The green lacewings of the world: a generic review (Neuroptera: Chrysopidae). Bulletin of the British Museum of Natural History (Entomology) 59: 117–286.

CEPLAC/CEPEC. 2014. Ocorrência da cochinilha rosada em cacauais da Bahia e Espírito Santo, http://www.r2express.com.br/v1/2014/01/09/ocorrencia-da-cochinhiola-rosada-em-cacauais-da-bahia-e-espírito-santo (last accessed 10 Jun 2015).

Chakupurakal J, Markham RH, Neuenschwander P, Sakala M, Malambo C, Mulenda D, Banda E, Chalabesa A, Bird T, Haug T. 1994. Biological control of the cassava mealybug, *Phenacoccus manihoti* (Homoptera: Pseudococcidae), in Zambia. Biological Control 4: 254–262.

Chong JH. 2009. First report of the pink hibiscus mealybug, *Macunellicoccus hirsutus* (Green) (Homoptera: Pseudococcidae), in South Carolina. Journal of Agricultural and Urban Entomology 26: 87–94.

Chong JH, Arisztabal LF, Arthus SP. 2015. Biology and management of *Macunellicoccus hirsutus* (Homoptera: Pseudococcidae) on ornamental plants. Journal of Integrated Pest Management 6: 1–14.

Costa AV, Almeida LM, Corrêa GH. 2008. Revisão das espécies brasileiras do gênero *Exolectra* Chevolat (Coleoptera, Coccinellidae, Exoplectrinae, Exoplectrini). Revista Brasileira de Entomologia 52: 365–383.

Culik M, Fornrazier MJ, Santos Martins D, Peronti ALBG, Zanuncio JC. 2013. The invasive mealybug *Macunellicoccus hirsutus*; lessons for its current range expansion in South America and invasive pest management in general. Journal of Pest of Science 86: 378–397.

De Borotli SA, Murata AT. 2006. Aspectos biológicos de *Cereaoechrysa paraquacuta* (Navás, 1920) (Neuroptera: Chrysopidae) alimentada com diferentes presas. Biológico 68: 386–388.

De Borotli SA, Murata AT, Narciso RS, Brito CH. 2005. Aspectos nutricionais de *Cereaoechrysa cincta* Schneider, 1851 (Neuroptera: Chrysopidae) em diferentes presas. Revista de Agricultura 80: 1–11.

Dreyer BS, Neuenschwander P, Baumgärtner J, Dorn S. 1997a. Trophic influences on survival, development and reproduction of *Hyperaspis notata* (Col., Coccinellidae). Journal of Applied Entomology 121: 249–256.

Dreyer BS, Neuenschwander P, Bouyoyu B, Baumgärtner J. 1997b. The influence of temperature on the life table of *Hyperaspis notata*. Entomologia Experimentalis et Applicata 84: 85–92.

Eisner T, Silberglied RE. 1988. A chrysopid larva that cloaks itself in mealybug wax. Psyche 95: 15–19.

Evans G, Kondo T, Maya-Álvarez MF, Hoyos-Carvajal LM, Quiroz JA, Silva-Gómez M. 2012. First report of *Anagyrus kamali* Moursi and *Anagyrus mom骜us* Shafee, Alam and Agarwal (Hymenoptera: Encyrtidae), parasitoids of the pink hibiscus mealybug *Macunellicoccus hirsutus* (Green) (Hemiptera: Pseudococcidae), in San Andres Island, Colombia. Revista Corpoica Ciencia-da-cochonilha-rosada-em-cacauais-da-bahia-e-espirito-santo (last accessed 10 Jun 2015).

Freitas S, Penny ND. 2001. The green lacewings (*Neuroptera: Chrysopidae*) of Brazilian Agro-ecosystems. Proceedings of the California Academy of Sciences 52: 245–395.

Freitas S, Penny ND, Adams PA. 2009. A revision of the New World genus *Cereaoechrysa* (Neuroptera: Chrysopidae). Proceedings of the California Academy of Sciences 4: 503–610.

Garcia MF, Becerra VC, Reising CE. 1999. *Harmonia axyridis* Pallas (Coleoptera: Coccinellidae). Estudio biológico. Revista de la Facultad de Ciencias Agrarias 31: 85–91.

Goolsby JA, Kirk AA, Meyerdink DE. 2002. Seasonal phenology and natural enemies of *Macunellicoccus hirsutus* (Homoptera: Pseudococcidae) in Australia. Florida Entomologist 85: 494–498.
