ORIGINAL ARTICLE

Pharmacogenomics of the Efficacy and Safety of Colchicine in COLCOT

Marie-Pierre Dubé, PhD; Marc-André Legault, BSc; Audrey Lemaçon, PhD; Louis-Philippe Lemieux Perreault, PhD; René Fouodjio, MSc; David D. Waters, MD; Simon Kouz, MD; Fausto J. Pinto, MD, PhD; Aldo P. Maggioni, MD; Rafael Diaz, MD; Colin Berry, MD, PhD; Wolfgang Koenig, MD; Jose Lopez-Sendon, MD; Habib Gamra, MD; Ghassan S. Kiwan, MD; Géraldine Asselin, MSc; Sylvie Provost, MSc; Amina Barhdadi, PhD; Maxine Sun, MSc; Mariève Cossette, MSc; Lucie Blondeau, MSc; Ian Mongrain, MSc; Anick Dubois, PhD; David Rhaïds, PhD; Nadia Bouabdallah, MD; Michelle Samuel, MPH, PhD; Simon de Denus, BPharm, PhD; Philippe L. L’Allier, MD; Marie-Claude Guertin, PhD; François Roubille, MD, PhD; Jean-Claude Tardif, MD

BACKGROUND: The randomized, placebo-controlled COLCOT (Colchicine Cardiovascular Outcomes Trial) has shown the benefits of colchicine 0.5 mg daily to lower the rate of ischemic cardiovascular events in patients with a recent myocardial infarction. Here, we conducted a post hoc pharmacogenomic study of COLCOT with the aim to identify genetic predictors of the efficacy and safety of treatment with colchicine.

METHODS: There were 1522 participants of European ancestry from the COLCOT trial available for the pharmacogenomic study of COLCOT trial. The pharmacogenomic study’s primary cardiovascular end point was defined as for the main trial, as time to first occurrence of cardiovascular death, resuscitated cardiac arrest, myocardial infarction, stroke, or urgent hospitalization for angina requiring coronary revascularization. The safety end point was time to the first report of gastrointestinal events. Patients’ DNA was genotyped using the Illumina Global Screening array followed by imputation. We performed a genome-wide association study in colchicine-treated patients.

RESULTS: None of the genetic variants passed the genome-wide association study significance threshold for the primary cardiovascular end point conducted in 702 patients in the colchicine arm who were compliant to medication. The genome-wide association study for gastrointestinal events was conducted in all 767 patients in the colchicine arm and found 2 significant association signals, one with lead variant rs6916345 (hazard ratio, 1.89 [95% CI, 1.52–2.35]; \(P=7.41 \times 10^{-9}\)) in a locus which colocalizes with Crohn disease, and one with lead variant rs74795203 (hazard ratio, 2.51 [95% CI, 1.82–3.47]; \(P=2.70 \times 10^{-8}\)), an intronic variant in gene SEPHS1. The interaction terms between the genetic variants and treatment with colchicine versus placebo were significant.

CONCLUSIONS: We found 2 genomic regions associated with gastrointestinal events in patients treated with colchicine. Those findings will benefit from replication to confirm that some patients may have genetic predispositions to lower tolerability of treatment with colchicine.

Key Words: acute coronary syndrome • colchicine • gastrointestinal diseases • myocardial infarction • pharmacogenetics

Inflammation plays an important role in atherosclerosis and in processes leading to and following a myocardial infarction. The COLCOT (Colchicine Cardiovascular Outcomes Trial) has recently shown the benefits of the anti-inflammatory medication colchicine in reducing the rate of ischemic cardiovascular events in 4745 patients...
METHODS
The data underlying this article cannot be shared publicly to preserve the privacy of study participants; however, the data are available from the corresponding authors upon reasonable requests. The analytic methods and study materials may be made available to other researchers for purposes of reproducing the results or replicating the procedure. Summary statistics are available publicly for download and visualization via PheWEB4 at URL: http://statgen.org/pheweb/colcot. The COLCOT clinical trial was registered at URL: https://www.clinicaltrials.gov under the unique identifier NCT02551094. The study protocol was approved by the Montreal Heart Institute research ethics committee and complies with the Declaration of Helsinki. Written informed consent was obtained from all participating subjects. Full Methods are available in the Data Supplement of the article.

RESULTS
There were 1522 participants included in the pharmacogenomic analysis of COLCOT of which 767 were randomized to colchicine and 755 to placebo (Figure I in the Data Supplement). The baseline characteristics of patients according to the study treatment groups are shown in Table 1. The mean age of participants was 60.9 years and 81.3% were male. The COLCOT study primary cardiovascular end point occurred in 6.2% of patients who consented to the pharmacogenomic substudy, as compared to 6.3% of those in the main trial (P=0.86; Table I in the Data Supplement). Gastrointestinal adverse events occurred in 23.4% of the pharmacogenomic study population, as compared to 17.6% of the COLCOT trial participants (P=1.8×10−5).

Genetic Determinants of Cardiovascular Efficacy With Colchicine
The pharmacogenomic analyses of the primary cardiovascular efficacy end point were limited to the 702 participants randomized to colchicine who used the study drug with at least 80% compliance in the first 6 months of treatment. Of those, 39 patients had an event. The prespecified analysis for the ATP binding cassette subfamily B member 1 gene (ABCB1) variant rs1045642 and the CYP3A4 (cytochrome P450 family 3 subfamily A member 4) metabolizer phenotype was not associated with the primary cardiovascular efficacy end point (P=0.77 and P=0.91, respectively), and none of the tested genetic variants passed the genome-wide association study (GWAS) significance threshold (P<5×10−8; Figure IIA in the Data Supplement). However, the GWAS analysis had limited power, and negative results should be interpreted with care. The sex-stratified GWAS with 576 male participants also did not provide any GWAS-significant findings (Figure IIB in the Data Supplement), however, there was some interest for the top signal on chromosome 9 at rs10811106 (P=5.8×10−5) near the stabilizer of axonemal microtubules 1 (SAXO1) gene (also known as FAM154A), as it encodes the stabilizer of axonemal microtubules 1 (Figure IIB in the Data Supplement).

Genetic Determinants of Gastrointestinal Adverse Events With Colchicine
There were 767 participants randomized to colchicine who were included in the genetic analyses for gastrointestinal adverse events, of those, 187 had a gastrointestinal event. The ABCB1 rs1045642 variant and the CYP3A4 metabolizer phenotype were not associated with gastrointestinal adverse events (P=0.97 and P=0.31, respectively). We found 22 genetic variants significantly associated with gastrointestinal events at

Nonstandard Abbreviations and Acronyms

Acronym	Description
ABCB1	ATP Binding Cassette Subfamily B Member 1 gene
COLCOT	Colchicine Cardiovascular Outcomes Trial
CYP3A4	cytochrome P450 family 3 subfamily A member 4
GWAS	genome-wide association study
HAUS6	HAUS augmin like complex subunit 6
HR	hazard ratio
SAXO1	stabilizer of axonemal microtubules 1 gene
SEPHS1	selenophosphate synthetase 1 gene
2 loci located on chromosomes 6 and 10 (Figure). The most significant association on chromosome 6 was the intergenic variant rs6916345 ($P=7.41\times10^{-9}$). When conditioning on rs6916345, no additional genetic variants remained significant at $P<5\times10^{-8}$ in the region, and rs6916345 had the highest probability of being causal by CAVIAR analysis (Data Supplement). The minor allele (A) was associated with gastrointestinal events in the colchicine group (hazard ratio [HR], 1.89 [95% CI, 1.52–2.35], $P=7.41\times10^{-9}$) with an estimated effect in the placebo group of HR=1.30 (95% CI, 1.04–1.62; $P=0.02$). The interaction term between rs74795203 and colchicine treatment was significant ($P=3.13\times10^{-6}$; Table 2). When conditioning on rs10128117 or rs74795203, no additional genetic variants remained significant at $P<5\times10^{-8}$. Individuals with the AG or GG genotype at rs74795203 represented 13% of the trial population. Gastrointestinal adverse events were reported by 47.1% of patients with the AG or GG genotype in the colchicine arm compared with 18.9% in the placebo arm (HR, 3.98 [95% CI, 2.24–7.07], $P=2.33\times10^{-6}$; Table 3). The GWAS limited to 622 male participants did not identify additional association signals.

DISCUSSION

In this pharmacogenomic study of the randomized, placebo-controlled COLCOT trial, genetic variants were found to be associated with gastrointestinal events in patients treated with colchicine, offering insights into the biological mechanisms underlying the tolerability of treatment with colchicine. Although the signal did not reach the significance threshold, we have found an interesting genetic region on chromosome 9 in the prespecified analysis in males that is possibly associated with the cardiovascular benefits of colchicine. The locus is particularly interesting as it spans the SAXO1 gene, and it colocalizes with the expression of the HAUS augmin like complex subunit 6 (HAUS6) gene which is involved in microtubule generation from existing microtubules and in kinetochore-microtubule attachment and central spindle formation during anaphase. The cardiovascular event risk allele at the leading variant reduces HAUS6 expression, and it may possibly interact with the effects of colchicine on tubulin binding and microtubule polymerization. However, replication of this locus in future cardiovascular studies with colchicine is necessary.

The genome-wide analysis of gastrointestinal adverse events found 2 associated regions. The first region on chromosome 6 is particularly appealing as it colocalizes with a previously identified locus for Crohn disease. The risk allele of the lead variant at this locus was previously associated with Crohn disease risk and with reticulocyte counts and hemoglobin concentrations, which are common extraintestinal complication of Crohn disease. The second genetic locus on chromosome 10 overlaps the SEPHS1, which encodes an enzyme that synthesizes selenophosphate from selenide and ATP. We found evidence of colocalization of the region with expression of the SEPHS1, which encodes an enzyme that synthesizes selenophosphate from selenide and ATP. We found evidence of colocalization of the region with expression of the...
SEPHS1, with correlation between the gastrointestinal disorder risk allele and lower SEPHS1 gene expression.

Despite the relatively small proportion of participants who consented to take part in the pharmacogenomic substudy of COLCOT (32%), we have found significant and credible association signals predictive of gastrointestinal events with colchicine use. There may be volunteer bias in the pharmacogenomic subgroup compared with the main trial population, and we observed a lower occurrence of deaths, possibly attributable to the fact that not all patients were recruited into the pharmacogenomic substudy at the baseline visit. This may have contributed to reducing the statistical power for detecting genetic association signals with the primary cardiovascular end point which included cardiovascular death. We also noted an overrepresentation of patients who reported suffering from gastrointestinal disorders during the course of the trial from both the colchicine and the placebo arm. This could be due to correlation between patient willingness to participate and to share information on milder gastrointestinal adverse events. We do not expect that this observation had an impact on the pharmacogenomic findings with gastrointestinal events, as the 2 genetic association signals identified were strong and had strong interaction effects with colchicine treatment.

Because this study was a post hoc investigation, these results are considered as hypothesis-generating, and they will have to be replicated before using the information for clinical decision-making. Colchicine is used throughout the world for indications of gout, familial Mediterranean fever, pericarditis, and, since the COLCOT trial, for secondary cardiovascular prevention. There are other ongoing and planned clinical trials designed to assess the cardiovascular benefits of colchicine where it may be possible to replicate the findings if genetic material is collected. Reliance on observational studies and registries to conduct replication studies will become an option as the long-term use of colchicine for the

Table 2. Genetic Association Results of the Leading Genetic Variants Found to be Significantly Associated in the COLCOT Pharmacogenomic Study

End point	Leading variant	EA	EAF	COLCOT arm	No. of total	No. of events (%)	HR (95% CI)	P value	Interaction P value*
Gastrointestinal adverse events	rs6916345	A	0.50	Colchicine	751	183 (24.4)	1.89 (1.52–2.35)	7.41x10^-9	2.96x10^-8
				Placebo	741	168 (22.7)	1.30 (1.04–1.62)	0.02	2.96x10^-8
	rs7495203	G	0.06	Colchicine	764	187 (24.5)	2.51 (1.82–3.47)	2.70x10^-9	3.13x10^-4
				Placebo	751	173 (23.0)	0.71 (0.46–1.09)	0.11	3.13x10^-4

Reported results are for Cox proportional hazards regression adjusted for age, sex, and 10 principal components for genetic ancestry. Chr indicates chromosome; COLCOT, Colchicine Cardiovascular Outcomes Trial; EA, effect allele; EAF, effect allele frequency in COLCOT population; HR, hazard ratio; and N, number of patients.

*Interaction P value represents the association result for the variant by colchicine interaction term. Chromosomal position reporting according to GRCh37.
prevention of secondary cardiovascular disease gains in popularity in the coming years. Short-term use of colchicine for the treatment of gout could provide useful data for replication of the genetic variants associated with gastrointestinal events.

In conclusion, in the present pharmacogenomic study of the COLCOT trial, we have found genetic variants associated with gastrointestinal events in patients treated with colchicine. Those findings will benefit from replication to confirm our observations that some patients may have genetic predispositions to lower tolerability of treatment with colchicine.

ARTICLE INFORMATION

Received August 23, 2020; accepted January 13, 2021.

Affiliations

Montreal Heart Institute (M-PD, M-AL, AL, -LPLP, RF, GA, SP, A.B, M.S., M.C, L.B, IM, AD, DR, NB, MS, SdD, PLL, M-CG, J-CT), Université de Montréal Beaulieu-Saucier Pharmacogenomics Centre (M-PD, M-AL, AL, -LPLP, RF, GA, SP, A.B, M.S., IM, AD, SdD), Department of Medicine (M-PD, M-AL, MS, NB, MS, J-CT), and Departments of Biochemistry and Molecular Medicine, Faculty of Medicine (M-AL), Université de Montréal, Canada. San Francisco General Hospital, CA (D.W.W.). Centre Hospitalier Régional de Lanaudière, Joliette, Canada (S.K.). Santa Maria University Hospital (CHULN), CAML, CCUL, Faculdade de Medicina da Universidade de Lisboa, Portugal (F.J.P.). Maria Cecilia Hospital, GVM Care and Research, Italy (A.P.M.). Estudios Clinicos Latinoamerica, Rosario, Argentina (R.D.). University of Glasgow, NHS Glasgow Clinical Research Facility, United Kingdom (C.B.), Deutsches Herzzentrum München, Technische Universität München, Munich, Germany (W.K.). DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany (W.K.). Institute of Epidemiology and Medical Biometry, University of Ulm, Germany (W.K.), H La Paz, iLabPaz, UAM, Ciber-CV Madrid, Spain (J.L.-S.), Fatima Bourguiba University Hospital, Monastir, Tunisia (H.G.). Belizean Medical Centre, Beirut, Lebanon (G.S.K). Montreal Health Innovation Coordinating Centre, Canada (M.C, L.B, M-CG). Université de Montréal, Faculty of Pharmacy, Canada (SdD). PhyMedExp (Physiologie et Médecine Expérimentale du Coeur et des Muscles), Université de Montréal, INSERM, Centre National de la Recherche Scientifique, Cardiology Department, CHU de Montpellier, France (F.R.).

Acknowledgments

We acknowledge the technical support of Diane Valois and Isabelle Fillon for the genotyping work and of Yannick Couture and Sylvain Versailles for blood and DNA sample preparation. We thank the patients and staff who supported this study.

Sources of Funding

This work was supported by the Health Collaboration Acceleration Fund supported by the Government of Quebec (to Dr Tardif). M.-A. Legault is supported by a Frederick Banting and Charles Best Canada Graduate Scholarship Doctoral Award from the Canadian Institutes of Health Research (CIHR). Dr Tardif holds the Canada Research Chair in Personalized Medicine and the Université de Montréal endowed research chair in atherosclerosis. Dr Dubé holds the Canada Research Chair in Personal Medicine Data Analysis. Dr Berry is supported by the British Heart Foundation (RE/18/6134217). Dr de Denus holds the Université de Montréal Beaulieu-Saucier Chair in Pharmacogenomics. The funding sources had no role in study design, conduct, or analyses.

Disclosures

Dr Dubé reports grants from the Government of Quebec during the conduct of the study; personal fees from Dalcor, personal fees and other from GlaxoSmithKline, other from AstraZeneca, other from Pfizer, other from Servier, other from Sanofi, other from AstraZeneca, other from Servier, other from Sanofi, outside the submitted work; in addition, Dr Dubé has a patent Methods for Treating or Preventing Cardiovascular Disorders and Lowering Risk of Cardiovascular Events issued to Dalcor, no royalties received, a patent Genetic Markers for Predicting Responsiveness to Therapy with HDL-Raising or HDL Mimicking Agent issued to Dalcor, no royalties received, and a patent Methods for using low-dose colchicine after myocardial infarction with royalties paid to Invention assigned to the Montreal Heart Institute. Dr Tardif reports grants from the Government of Quebec, grants from Canadian Institutes of Health Research, grants from Montreal Heart Institute Foundation during the conduct of the study; grants from AstraZeneca, grants, personal fees and other from Dalcor, grants from Servier, personal fees from Sanofi, grants and personal fees from Servier, grants and personal fees from Dalcor, grants from Sanofi, other from Johnson & Johnson, personal fees and other from Amgen, grants, personal fees and other from AstraZeneca, grants, personal fees and other from Novartis, other from Celgene, other from Biogen, other from Gilead, other from Roche, other from Boston Scientific, personal fees and other from Bausch Health, other from GSK, personal fees and other from BMS, other from TG Therapeutics, other from Becton Dickinson, other from Spectrum Pharmaceuticals, personal fees from Merck, personal fees from Eli Lilly, personal fees from Pfizer, personal fees from Servier, grants and personal fees from Boehringer-Ingelheim, personal fees from Servier, grants from Esai, grants from Amarin Pharma, grants from Theracons, outside the submitted work; Dr Magni reports personal fees from Servier, personal fees from Dalcor, personal fees from Novartis, outside the submitted work; Dr Diaz reports grants from the Montreal Health Innovations Coordinating Centre, during the conduct of the study; grants from Dalcor, grants from Population Health Research Institute, outside the submitted work; Dr Berry reports that the University of Glasgow has received research and consultancy support for work done by CB with AstraZeneca, Abbott Vascular, Dalcor, GSK, Heartflow, Menarini and Novartis. Dr Koenig reports personal fees and other from AstraZeneca, personal fees and other from Servier, personal fees and other from Sanofi, personal fees from Roche, personal fees from Bayer, personal fees from Eli Lilly, personal fees from Servier, grants from AstraZeneca, personal fees and other from Pfizer, personal fees from The Medicines Company, personal fees from Dalcor, personal fees from Novartis, personal fees and other from AstraZeneca, personal fees and other from Bayer, grants and personal fees from Servier, personal fees and other from Sanofi, personal fees and other from Sanofi, personal fees and other from Amgen, personal fees and other from Sanofi, personal fees from Sanofi, personal fees from Novartis, personal fees from Bayer, grants and personal fees from Boehringer-Ingelheim, personal fees from Servier, grants from Esai, grants from Amarin Pharma, grants from Theracos, outside the submitted work; Dr Magni reports personal fees from Servier, personal fees from Dalcor, personal fees from Novartis, outside the submitted work; Dr Diaz reports grants from the Montreal Health Innovations Coordinating Centre, during the conduct of the study; grants from Dalcor, grants from Population Health Research Institute, outside the submitted work; Dr Berry reports that the University of Glasgow has received research and consultancy support for work done by CB with AstraZeneca, Abbott Vascular, Dalcor, GSK, Heartflow, Menarini and Novartis. Dr Koenig reports personal fees and other from AstraZeneca, other from Pfizer, other from Servier, other from The Medicines Company, personal fees from Dalcor, personal fees from Novartis, personal fees and other from Amgen, personal fees from Convidia, personal fees and other from Daiichi-Sankyo, personal fees from Berlin-Chemie, personal fees from Sanofi, personal fees from

Table 3. Effect of Colchicine on Gastrointestinal Adverse Events Compared With Placebo Stratified by Genotype Groups

End point	Genotype	Group %	No. of total	No. with events	% events colchicine	% events placebo	HR (95% CI)	P value*
Gastrointestinal adverse events	GG	25%	383	80	13.7%	28.0%	0.43 (0.26–0.69)	5.45×10⁻⁴*
	AG	50%	742	167	23.2%	21.8%	1.08 (0.80–1.47)	0.61
	AA	25%	367	104	36.9%	16.8%	2.42 (1.57–3.72)	5.77×10⁻⁴*
	AA	87%	1319	299	21.6%	23.8%	0.88 (0.70–1.11)	0.28
	AG	12%	186	59	47.6%	19.2%	3.79 (2.13–6.73)	5.57×10⁻⁴*
	GG	1%	10	2
	AG+GG	13%	196	81	47.1%	18.9%	3.98 (2.24–7.07)	2.33×10⁻⁴

Chr indicates chromosome; HR, hazard ratio; and N, number of patients.

*P value is comparing colchicine vs placebo by Cox proportional hazards regression adjusted for age, sex, and 10 principal components for genetic ancestry. Chromosomal position reporting according to GRCh37.
REFERENCES
1. Tardif JC, Kout S, Waters DD, Bertrand OF, Diaz R, Maggioni AP, Pinto FJ, Duguid J, Pouliot S, Dean AF, O’Leary AS, et al. Pharmacogenomics of COLCOT. Clin Pharmacol Ther. 2012;92:414–417. doi: 10.1038/clpt.2012.96

2. Liscum JE, Goodfellow PN, Haseloff J. dsRNA-induced gene silencing in plants. Cell. 2000;100:841–852. doi: 10.1016/S0092-8674(00)80844-9

3. Dubé et al. Pharmacogenomics of COLCOT. Circ Genom Precis Med. 2021;14:e003183. DOI: 10.1161/CIRCGEN.120.003183 April 2021 228

4. Uehara R, Nozawa RS, Tomioka A, Petry S, Vale RD, Obuse C, Goshima G. Human blood cell trait variation and links to common complex disease. Nat Genet. 2016;48:1415–1429.e19. doi: 10.1038/ng.3760

5. de Lange KM, Moutsianas L, Lee JC, Lamb CA, Luo Y, Kennedy NA, Jostins L, Healey A, Maller J, Plagnol V, et al. Fine-mapping causal variants with an approximate bayesian method using marginal test statistics. PLoS Genet. 2018;14:e1007660. doi: 10.1016/j.pmed.2018.04.062

6. de Groot H, van der Toorn K, Roosendaal F, et al. XLstat: analysis of variance in XLStat, EDGAR, and XLStat. J Am Stat Assoc. 2014;109:1076–1086. doi: 10.1080/01621459.2013.805769
31. Sáez ME, González-Pérez A, Hernández-Olasagarré B, Beló A, Moreno-Grau S, de Rojas I, Monté-Rubio G, Orellana A, Valero S, Comella JX, et al. Genome Wide Meta-Analysis identifies common genetic signatures shared by heart function and Alzheimer's disease. Sci Rep. 2019;9:16665. doi: 10.1038/s41598-019-52724-2

32. Ernst J, Kellis M. Chromatin-state discovery and genome annotation with ChromHMM. Nat Protoc. 2017;12:2478–2492. doi: 10.1038/nprot.2017.124

33. Yeh MM, Bosch DE, Daacud SS. Role of hepatocyte nuclear factor 4-alpha in gastrointestinal and liver diseases. World J Gastroenterol. 2019;25:4074–4091. doi: 10.3748/wjg.v25.i30.4074

34. Burdin DV, Kolobov AA, Brocker C, Soshnev AA, Samusik N, Demyanov AV, Brilloff S, Jarzebska N, Martens-Lobenhoffer J, Mith M, et al. Diabetes-linked transcription factor HNF4α regulates metabolism of endogenous methylarginines and β-aminoisobutyric acid by controlling expression of alanine-glyoxylate aminotransferase 2. Sci Rep. 2016;6:35503. doi: 10.1038/srep35503

35. Møller AM, Dalgaard LT, Ambye L, Hansen L, Schmitz O, Hansen T, Pedersen O. A novel Phe75fsdelT mutation in the hepatocyte nuclear factor-4alpha gene in a Danish pedigree with maturity-onset diabetes of the young. J Clin Endocrinol Metab. 1999;84:367–369. doi: 10.1210/jcem.84.1.5396

36. Marcil V, Sinnett D, Seidman E, Boudreau F, Gendron FP, Beaulieu JF, Lambert M, Bitton A, Sanchez R, et al. Association between genetic variants in the HNF4A gene and childhood-onset Crohn's disease. Genes Immun. 2012;13:556–565. doi: 10.1038/gene.2012.37

37. Wilson A, Reyes E, Olfman J. Prevalence and outcomes of anemia in inflammatory bowel disease: a systematic review of the literature. Am J Med. 2004;116(Suppl 7A):44S–49S. doi: 10.1016/j.amjmed.2003.12.011

38. Gentschew L, Bishop KS, Han DY, Morgan AR, Fraser AG, Lam WJ, Karunasinghe N, Campbell B, Ferguson LR. Selenium, selenoprotein genes and Crohn's disease in a case-control population from Auckland, New Zealand. Nutrients. 2012;4:1247–1259. doi: 10.3390/nu4091247

39. Lauc G, Huffman JE, Pučič M, Zgaga L, Adamczyk B, Mužinič A, Novokmet M, Polašek O, Gornik O, Kristič J, et al. Loci associated with N-glycosylation of human immunoglobulin G show pleiotropy with autoimmune diseases and haematological cancers. PLoS Genet. 2013;9:e1003225. doi: 10.1371/journal.pgen.1003225

40. Plomp R, Ruhaak LR, Uh HW, Reidling KR, Selman M, Houwing-Duistermaat JJ, Slagboom PE, Beekman M, Wuhrer M. Subclass-specific IgG glycosylation is associated with markers of inflammation and metabolic health. Sci Rep. 2017;7:12325. doi: 10.1038/s41598-017-12495-0

41. Li T, DiLillo DJ, Bournaos S, Giddens JP, Ravetch JV, Wang LX. Modulating IgG effector function by Fc glycan engineering. Proc Natl Acad Sci U S A. 2017;114:3485–3490. doi: 10.1073/pnas.1702173114