A Model for Dark Energy Decay

Leila L. Graef
Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970, São Paulo, Brazil

We discuss a model of decay of dark energy into dark matter. This model provides a mechanism from field theory to unify the dark sector and alleviate the coincidence problem.

PACS numbers:

I. INTRODUCTION

We propose a model in which dark energy is described by the bosonic real part of the supersymmetric Wess-Zumino potential with a supersymmetry breaking term. This breaking term is of power-law type, adjusted so that we have the cosmological constant value at the metastable minimum.

\[V(\phi) = 2m\phi - 3\lambda\phi^2 + Q(\phi) \equiv U(\phi) + Q(\phi) \]

(1)

The equation of state of the scalar field is given by

\[w_\phi = \frac{p}{\rho} = \frac{1}{2} \phi^2 - V(\phi). \]

(2)

We can see that the field stationary in the metastable minima can have an associated negative pressure.

We compute here for what mass of the dark energy particle we can have a decay from the metastable vacuum to the stable one during the lifetime of the universe. The field oscillating in the stable vacuum behaves as dark matter, so this provides a mechanism to unify the dark sector and alleviate the coincidence problem.

II. COMPUTATION OF THE DECAY RATE

The decay rate (per unit volume) of a particle described by a potential \(V(\varphi) \), from the metastable to the stable minima, is given, according to the semiclassical method, by

\[\Gamma = \frac{S_E(\tilde{\varphi}(\rho))}{(2\pi\hbar)^2} e^{-\frac{S_E(\varphi)}{\hbar}} \times \left(\frac{\det(-\delta_{\mu\nu} + V''(\tilde{\varphi}(\rho)))^{-\frac{1}{2}}}{\det(-\delta_{\mu\nu} + V''(\varphi_+))} \right) \]

(3)

The classical equation of motion of the field \(\varphi \) described by the potential \(V(\varphi) \), is obtained by minimizing the action \(\frac{\delta S_E(\varphi(x))}{\delta \varphi} = 0 \). Due to the symmetry of the problem we have that \(\varphi(x, \tau) \rightarrow \varphi((|x|^2 + \tau^2)^{\frac{1}{2}}) \). Defining \(\rho = (|x|^2 + \tau^2)^{\frac{1}{2}} \) the equation of motion becomes

\[\frac{\partial^2 \varphi}{\partial \rho^2} + \frac{3}{\rho} \frac{\partial}{\partial \rho} \varphi - V'(\varphi) = 0. \]

(4)

The calculation of the action in the formula of the decay rate can be separated in three regions: outside the bubble of true vacuum, at the thin wall and inside the bubble of true vacuum,

\[S_E - S_\Lambda \approx 2\pi^2 \int_0^{R-\Delta} d\rho \rho^3(-\epsilon) + 2\pi^2 \int_{R-\Delta}^{R+\Delta} d\rho \rho^3 \left(\frac{1}{2} \frac{d\tilde{\varphi}}{d\rho} \right)^2 + U \]

(5)

and inside the bubble,

\[S_E - S_\Lambda \approx -\frac{7}{12} \pi^2 R^4 \epsilon + 2\pi^2 R^3 S_1 \]

where we defined \(S_1 = \int_{R-\Delta}^{R+\Delta} d\rho (\frac{1}{2} \frac{d\tilde{\varphi}}{d\rho})^2 + U \).

We get \(R \) minimizing the action: \(\frac{dS}{dR} = 0 \), obtaining \(R = 3S_1/\epsilon \).

Using the approximated equation of motion we get for \(S_1 \) the expression \(S_1 = \sqrt{2\left(\frac{4m^2}{\lambda^2}\right)} \).

Substituting this we can calculate the action

\[S = 10^{140} \left(\frac{m^{12}}{\lambda^8} \right) \approx 10^{156} m^{12}, \]

(6)

In our case we can estimate the pre-exponential term as 1 GeV\(^4\). Considering this and substituting \(S \) in the expression \(\Gamma \) we obtain the decay rate (per unit volume). Inverting the expression of the decay rate and calculating the fourth root we obtain the decay time:

\[\{exp(10^{156} m^{12})\}^{\frac{1}{4}} GeV^{-1}. \]

Equating this decay time to the age of the universe and calculating the \(\ln \) we obtain \(10^{156} m^{12} \sim 96, 7 \sim 10^8 \).

Thus, \(m \sim 10^{-13} GeV \).

III. CONCLUSION

We calculated that a particle of dark energy, with mass of the order \(m \sim 10^{-14} GeV \), described by the Wess-Zumino potential with a symmetry breaking term, can decay into dark matter during the age of the universe.