Understanding normal and abnormal development of the Wolffian/epididymal duct by using transgenic mice

Aki Murashima1, Bingfang Xu2, Barry T Hinton2

The development of the Wolffian/epididymal duct is crucial for proper function and, therefore, male fertility. The development of the epididymis is complex; the initial stages form as a transient embryonic kidney; then the mesonephros is formed, which in turn undergoes extensive morphogenesis under the influence of androgens and growth factors. Thus, understanding of its full development requires a wide and multidisciplinary view. This review focuses on mouse models that display abnormalities of the Wolffian duct and mesonephric development, the importance of these mouse models toward understanding male reproductive tract development, and how these models contribute to our understanding of clinical abnormalities in humans such as congenital anomalies of the kidney and urinary tract (CAKUT).

Asian Journal of Andrology (2015) 17, 749–755; doi: 10.4103/1008-682X.155540; published online: 26 June 2015

Keywords: epididymis; mesonephros; transgenic mice; Wolffian duct

INTRODUCTION
Understanding the mechanisms that regulate the development of the Wolffian duct (WD) is important because disruption of epididymal function may arise as a consequence of its abnormal development. Very little is known of either the process of WD development or the nature and causes of congenital defects that lead to male infertility. For example, it is clear that an undeveloped initial segment of the epididymis leads to male infertility1,2 and considering that the human epididymis has an initial segment-like epithelium,3 it is important to at least understand the development of this region. There are three developmental processes that are considered to be important during the development of the WD: (1) mesonephros formation, (2) stabilization of the ductal system and further growth, (3) postnatal differentiation (Figure 1). Each process is dependent upon developmental factors as shown by WD phenotypic mice carrying mutations of each factor.

This review focuses on mouse models that display abnormalities in WD or mesonephric development, the importance of these mouse models toward understanding male reproductive tract development, and how these models contribute to understanding clinical abnormalities in humans. Table 1 shows mutations of genes in mice that display Wolffian/epididymal duct phenotypes.

DEVELOPMENT OF WOLFFIAN/EPIDIDYMAL DUCT AND MOUSE MODELS

Mesonephros formation
During development, the nephric duct/Wolffian duct (WD) arises from the anterior, intermediate mesoderm, and extends caudally.4 In the case of mouse, WD formation begins approximately on embryonic day (E) 8.5 and is completed by reaching the cloaca at E9.55 (Figure 1a and 1b). As the WD elongates, it induces the formation of nephric tubules through a mesenchymal-epithelial transition process. The tubules form three kidney primordia: pronephros, mesonephros and metanephros (Figure 1c). The pronephros and mesonephros are transient kidneys and degenerate soon after their formation. However, in the mesonephros, the WD and cranial mesonephric tubules (MT) are retained and give rise to the male reproductive tract including the epididymis and effenter ducts, respectively.

Because WD formation is crucial for kidney development in mammals, many mouse models that show abnormal WD or mesonephric development also display urogenital abnormalities. The paired domain transcription factors Pax2 and Pax8 are well-known inducers of the initial formation of the WD.6-8 The LIM-class homeobox gene Lim1 is required for the extension of the WD.9,10 Mice carrying a null mutation of Emx2, a mouse homologue of the Drosophila head gap gene empty spiracles (ems), display normal WD development until E10.5, but at later time points the duct degenerates, resulting in lack of a kidney and a failure of the reproductive tract to develop.11 Mice carrying a null mutation of Gata3, which is a transcriptional target of Pax2 and Pax8, also show defects in WD initiation.12

Growth factors can differentially regulate gene expression especially through epithelial-mesenchymal interactions. Fibroblast growth factor (FGF) signaling is one of the well analyzed growth factor signaling events during mesonephric formation. Fgf8 encodes an FGF ligand, which is expressed in the intermediate mesoderm, and lack of its expression results in the absence of the cranial mesonephros and MTs.13
FGF ligands bind and activate alternatively-spliced forms of four tyrosine kinase FGF receptors (FGFRs 1–4). During mesonephric development, Fgfr1 is expressed in the mesenchyme while Fgfr2 is in the epithelium, maintaining the WD and mesonephric mesenchyme. The function of FGFR2 in the WD epithelia is suggested to maintain the caudal part of the WD in the mesonephros by regulating cell proliferation. Wnt genes encode a family of secreted glycoproteins regulating multiple processes during development, including cell proliferation and cell polarity. Among the Wnt genes, Wnt9b is mainly expressed in the WD epithelium while Wnt7b is faintly expressed from E9.5 onward. In animals devoid of Wnt9b their MTs are absent, and the epididymis is lacking at birth despite the normal formation of the WD at E10.5. β-catenin-dependent canonical WNT signaling, which mainly regulates cell proliferation and differentiation, is sufficient to rescue MT induction in Wnt9b null mice. On the other hand, during metanephric kidney development, attenuation of Wnt9b affects the planar cell polarity of the epithelium and lead to tubules with an increased diameter. Further spatiotemporal analyses of epididymal development in this mutant would contribute to our understanding of this molecule in tubulogenesis and its maintenance.

The number of MTs differs between species, and their function as a secretory organ is observed in pigs and humans but not in mice. The number of efferent ducts reaching the testis also differs between species. It is unclear whether there is a correlation between early MT number and the final number of efferent ducts observed in the adult. MT formation may resemble the formation of the renal nephron; both have the characteristic ‘J’ or ‘S’ shape during early development. The nephric tubule is formed through a mesenchymal-to-epithelial transition, and this cellular process is shared between mesonephric and metanephric tubules. Pax2/8, Emx2 and Lim1 are expressed in the condensed nphrogenic cord and are required for tubulogenesis in addition to WD development. The Wilms' tumor suppressor gene Wt-1 and the homeobox gene Six1 are also expressed in the nephrogenic mesenchymal condensation throughout the nephrogenic cord. Mice lacking Wt-1 or Six1 lack caudal MTs while cranial MTs are intact. These observations indicate that the regulation of the cranial and caudal set of MTs is distinct.

Conversely, lack of the forkhead transcription factors Foxc1 and Foxc2, as well as Sonic hedgehog (Shh) expressed in the notochord or floor plate, results in supernumerary MT formation, suggesting suppressive effects of these genes on MT formation. It is important to uncover how the differential regulation of tubule formation and stabilization along the anterior-posterior axis of the nephrogenic cord is established.

The connection between the rete testis and efferent ducts is observed at E13.5, and testicular fluid transport is detected at the corresponding stage of the rat embryo. The patterning of efferent duct formation is intriguing, but the manner by which they reach the testis is not clear. There are at least two hypotheses on how the efferent ducts could be formed: (1) that a subset of MTs branch and fuse with each other forming the characteristic network of ductules, (2) that branching morphogenesis does not occur and the characteristic development in this mutant would contribute to our understanding of this molecule in tubulogenesis and its maintenance.
network of ductules is formed by simple fusion of a subset of MTs. The latter hypothesis would seem more feasible than the first because of the presence of blind-ended tubules. These MTs only fuse to one other MT, leaving one end sealed, hence becoming blind-ended. Obviously, there must be considerable coordination between the fusion events that limit the number of MTs that can fuse, resulting in the conus (2–3 fused MTs) and the single common ductule.

Identification of the genes and processes by which the formation and patterning of the efferent ducts occur is crucial, and the GUDMAP in situ hybridization database (http://www.gudmap.org/index.html) clearly shows some potential genes that may regulate their formation, e.g., collagen triple helix repeat containing 1 (Cthrc1), cortexin 3 (Ctxn3) and laminin, alpha1 (Lama1). Lunatic fringe (Lfng) is one of the mammalian fringe genes encoding a modifier of the notch receptor expressed in the developing WD, MTs and testis. Lfng-null mice show partial bilateral blockage of the connection between the rete testis and the efferent ducts, indicating the involvement of notch signaling in establishing the rete testis-efferent duct boundary.

The origins of nephron progenitor cells are suggested to differ between mesonephros and metanephros.

Table 1: Mouse models which show defects in WD/epididymal duct development

Gene	Type of mutation, Cre driver	Phenotype of the mutant	References
Pax2	KO	Dysgenesis of WD and MD, absence of MT	7
Pax8	KO	Normal	24
Pax2/Pax8	dKO	Dysgenesis of WD and MD, absence of MT	8
Lim1	KO	Dysgenesis of WD	10
	Pax2-Cre	Defect in caudal WD extension	9
Gata3	KO	Dysgenesis of WD and MD, absence of MT	12
Wt-1	KO	Absence of caudal MT	26
Six1	KO	Absence of caudal MT	27
Osf1	KO	Defect in WD extension, absence of MT	100
Emx2	KO	Regression of whole WD	11
Wnt9b	KO	Absence of MT, absence of epididymis	17
Fgf8	T-Cre	Regression of cranial mesonephrons	13
Fgrl1/2	T-Cre	Dysgenesis of WD and MT	13
	Paf3-Cre	Absence of MT	15
Fgr2	Hoxb7-Cre	Regression of caudal WD	16
Ssh	KO	Numerous ectopic MT, ectopic UB	29
Foxc1/2	Foxc1/Mf1c, KO	Numerous ectopic MT, ectopic UB	28, 101
c-ret	ret-k	Reduced number of MT	102
Raldh2	KO	Absence of WD	103
Lfng	KO	Blockage of the connection between efferent duct and rete testis	36
Ar	Tfmr, KO	WD regression	40,41
Inhba	KO	Failed to develop ductal coiling in epididymis	53
Sfrp1/2	dKO	Shortened vas deferens	56
Vang/2	Vangl2^{2_{op}}	Shortened vas deferens	56
Wnt5a	KO	Shortened vas deferens	56
Pkd1	KO, Pax2-Cre	Coiling defect, cystic dilation of efferent ducts	54
Pten	Rnase10-Cre	Dedifferentiation of IS	2
Ros1	KO	Undifferentiated IS	1
Dusp6	KO	Large caput and corpus	67
Frs2	Hoxb7-Cre	Morphologically normal	68
	Rnase10-Cre	Abnormal shape of epididymis	68
Ar	Ap2a-Cre	Defective epithelial cell differentiation	47
Rnase10-Cre	KO	Absence of IS, defective epithelial cell differentiation	70
Fox3-Cre	KO	Absence of IS, defective epithelial cell differentiation	71
Probasin-Cre	KO	Small epididymis and seminal vesicle	69
Dicer	Defb4-Cre	Epithelial cell dedifferentiation	75
miR-29a	miR-29b^{1^{op}}transgene	Hyoplastic epididymis	77
Lgr4	Lgr4^{op}	Short, dilated and much less convoluted epididymal ducts	104
Shp1	mev/mev	Aherent epidymal region	66
Hoxa11	KO	Transformation of vas deferens to epididymis	79
Hoxa10	KO	Transformation of vas deferens to epididymis	80

WD: wolffian duct; MT: mesonephric tubules; UB: ureteric bud; IS: initial segment; MD: mullerian duct
derived from a posterior immature caudal population, which is positive for Brachyury (T) expression, and persists in the posterior end of the embryo until body axis extension is complete (Figure 1a). On the other hand, the WD and at least part of the mesonephric mesenchyme arise from the anterior intermediate mesoderm, which is defined by Osr1 expression at E9.5 (Figure 1b). These recent studies may indicate that abnormal body axis extension affects the intermediate mesodermal cell fate. It is possible that disruption of the A-P body axis extension affects not only the metanephric mesenchyme but also the mesonephric mesenchymal distribution, and subsequently further male reproductive tract development. Conditionally-induced mutations of the planar cell polarity (PCP) pathway-related genes, Wnt5a, Ror2 and Vangl2, which are important for A-P body axis extension, demonstrate that insufficient A-P axis extension of the posterior intermediate mesoderm is correlated with urogenital tract abnormalities. It is clear that more studies are needed to examine the early formation of the intermediate mesoderm and how this translates into development of the WD.

Stabilization of the ductal system and further growth: elongation and coiling

During embryogenesis, the mesonephros gives rise to a stable male reproductive tract whereas the mesonephros in the female regresses (Figure 1d and 1e). Androgens produced in the testis are a major factor regulating this stabilization. Following gonadal sex differentiation, the testis begins to produce the androgen, testosterone, at approximately E12.5. Unlike for other androgen-dependent organs, such as the prostate and seminal vesicle, it has been suggested that locally-produced, and not systemic androgen, from the testis is necessary for WD stabilization. Indeed, fluorescence labeling of an androgen ligand shows that androgen is transported within the luminal fluid. However, there are studies showing that testicular androgen delivered via the systemic circulation is sufficient to prevent WD regression. Subcutaneous testicular grafts stabilize the WD in female marsupial embryos. Androgens act through the androgen receptor (AR), a member of the nuclear receptor superfamily. The expression of AR is mainly detected in the mesenchyme surrounding WD epithelium at E13.5 in the mouse. Tissue-specific Ar knockout (KO) analyses demonstrate that WD stabilization and coiling is induced in the absence of epithelial-expressed Ar, demonstrating the importance of Ar in the mesenchyme. This finding is consistent with the observation from tissue recombination experiments on androgen-insensitive Testicular feminized (Tfm) mice. Several growth factors, including FGF and Epidermal growth factor (EGF), are suggested to mediate androgen functions in the prostate and WD. However, the molecular mechanisms by which androgens regulate these genes in vivo are not known.

To create a long, highly-convoluted epididymal duct, the WD begins to elongate and coil from E15.5, following stabilization (Figure 1e). This process is also androgen-dependent, but growth factor signaling has been reported to regulate this elongation event. Tomaszewski et al. reported that Inhba, a subunit of both inhibins and activins, is a regional paracrine factor in mouse mesonephroi that controls coiling of the epithelium in the anterior WD. Pkd1, whose mutation accounts for 85% of autosomal dominant polycystic kidney disease, and is a membrane-spanning glycoprotein involved in growth factor signaling transduction and cytoskeleton dynamics. Epididymal coiling is absent from the Pkd1 mutant. In both mutations, epithelial cell proliferation is attenuated. Recently, mathematical modeling has suggested that epididymal tubule morphogenesis is dependent upon the cell proliferation area in the tubule and mechanical resistance from the tissues surrounding the tubule.

The secreted frizzled-related proteins (SFRPs) antagonize WNT ligand protein binding to its receptor FZD. The double KO (dKO) of Sfrp1 and Sfrp2 genes results in a shortened WD and vas deferens. Androgen administration to these animals never rescues this phenotype, indicating that the abnormalities in Sfrp1/2 dKO mutant male embryos are not caused by insufficient production of testosterone from the testes, but may reflect insensitivity of some target tissues to androgens. It is also possible to consider that these phenotypes are, at least partially, a secondary consequence of the A-P extension defect of intermediate mesoderm formation described above. Although recent analyses have partially revealed the molecular mechanisms of ductal morphogenesis, further analyses should be performed including how androgen signaling regulates these molecules.

Postnatal differentiation: regional differentiation and epithelial cell differentiation

The epididymis consists of distinct anatomical regions that vary between species. However, in the mouse four regions can be defined: initial segment and caput, corpus and cauda epididymidis (Figure 1f). Each region is further divided into many segments characterized by expression of specific mRNAs, proteins and a repertoire of cell types. The segments, divided by septa, are observed after birth and are distinct during puberty, postnatal (P) days 14–35. Impaired epididymal regionalization or epithelial cell differentiation results in male infertility. For example, if the initial segment does not develop, then male infertility results. Data from efferent duct ligation (EDL) experiments suggested that luminal fluid coming from testis is responsible for the maintenance of initial segment cell survival, proliferation and differentiation.

Several growth factors, including FGFs 2, 4 and 8, are detected in testicular fluid, and Fgfrs are expressed in the epithelium of the initial segment. During normal development, high activity of the MAPK pathway, especially p-MAPK1/3 (p-ERK1/2), is detected in the initial segment. EDL abolishes their activities, emphasizing the importance of lumicrine factors regulating their activity. Ros1 encodes an orphan receptor tyrosine kinase that is expressed in few epithelia, among them the WD and its derivatives. Loss of Ros1 expression or a naturally-occurring mutation of Shp1 (mce), a negative regulator of ROS1, results in abnormal differentiation of the initial segment. RNase10-Cre drives gene recombination in the initial segment epithelia from P17 onward. RNase-Cre-mediated mutation in Pten, a negative regulator of PIP3/AKT signaling, induces dedifferentiation of the initial segment. In these animals, abnormal differentiation results in an abnormally shaped initial segment. MAPK signaling regulators such as DUSP6 and FRS2 play important roles in epididymal cell proliferation and survival during postnatal development.

Androgens are important regulators of epididymal development from embryonic to adult stages. From later stages of development to the adult stage, expression in the epithelia is greater than that in the mesenchyme. Several Ar KO mice have been reported, and the majority show a hypoplastic epididymis and defective epithelial cell differentiation. A differentiated epididymal epithelium is pseudostratified and comprises principal, clear, narrow and recently-identified dendritic cells throughout the duct. Similar to other pseudostratified epithelia, for example the trachea, the epididymal luminal environment regulates secretion and absorption of ions, water, organic solutes and proteins. The molecular mechanisms of epididymal epithelial differentiation are not clear. Chimeric mutation of the Ar indicates that defective epithelial cell differentiation is cell-autonomous. Dicer and small RNAs also regulate epididymal
Hox genes are evolutionarily-conserved transcriptional regulators that determine body patterning. As found for body plan formation, vertebrae and the gut, Hox genes, Hoxa10 and Hoxa11 are suggested to determine the boundary between the epididymis and vas deferens. Later studies by Snyder et al. showed that there were additional region-specific (efferent ducts, epididymis and vas deferens) Hox transcripts that may define boundaries along the reproductive tract during development.

POSSIBLE CONTRIBUTION OF MOUSE MODELS TO UNDERSTAND HUMAN CINICAL ABNORMALITIES

One of the most well-known congenital anomalies of the epididymis or vas deferens is congenital bilateral absence of the vas deferens (CBAVD). It occurs in 1%–2% of men with infertility. 60%–90% of the CBAVD men harbor at least one associated cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation. 10%–40% of CBAVD men do not have recognizable CFTR gene abnormalities accompanied by unilateral renal agenesis (URA). Presumably, CBAVD patients have disrupted morphogenesis of the early mesonephros owing to the mutation of genes. Those genes involved in mesonephros formation, e.g., Pax2, Wt-1 and Fgfs, may be viable candidate genes responsible for CBAVD with renal malformation.

Conversely, congenital anomalies of kidney and urinary tract (CAKUT) often carry mutations in genes, such as PAX2 and WT-1, and male mice carrying mutations of these genes also exhibit reproductive tract malformations. Syndromes with renal tract abnormalities also carry mutations in the genes described above. Branchio-Oto-Renal (BOR) syndrome is a genetic condition that typically disrupts the development of tissues in the neck and causes malformations of the ears and kidneys. EYA1, the human homolog of the Drosophila eyes absent gene, is the most common gene responsible for BOR. Further, Foxc1 regulates Eya1 expression. Mutations in the SIX1 gene can be detected in 2% of individuals with the clinical diagnosis of BOR. Mutations in both ROR2 and WNT5A have been implicated in a rare genetic disease, Robinow syndrome, which exhibits several defects such as dwarfism, hydrencephalus and genital abnormalities. Because these syndromes often exhibit lethal abnormalities, it is still unclear if these mutations affect male fertility in humans.

Epididymal disjunction is the failure of the efferent ducts to reach the testis, which may reflect the failure of the efferent ducts to elongate, and presumably coil, during their development. Interestingly, one study has shown that 30%–79% of boys with an undescended testis also have Wolfian duct abnormalities, of which 25% display epididymal disjunction. Therefore, it is important that epididymal abnormalities be detected at orchidopexy, or other male infertility, which may be classified as idiopathic, will result. As mentioned above, it is not clear how the efferent ducts form, elongate, are directed toward the testis and then fuse with the rete testis. Obviously, mouse models that display epididymal disjunction will greatly aid our understanding of this abnormality.

SUMMARY

One of the striking characteristics of the epididymis is its complex developmental process. The primordium of the epididymis, the mesonephros, arises as a part of the transient kidney, and its stability and differentiation are regulated by hormonal signaling including by androgens and growth factors. In human, it transforms its morphology to form a 6 m duct that is coiled and packed into a three-dimensional organ of approximately 10 cm in length. Recent studies utilizing a variety of transgenic mice have revealed the molecular contribution of numerous factors at each stage of epididymal development. The molecular dissection of the developmental mechanisms of the epididymis has just begun. Integrative understanding of the hierarchy and interaction of each factor will provide new directions in this field. Considering that the epididymis shares its origin with the urinary tract, it is noteworthy that the molecular mechanisms which lead to kidney mal-development, such as CUBKUT, may provide significant insight for the mesonephros derivative mal-development, such as CBAVD and vice versa.

COMPETING FINANCIAL INTERESTS

Neither author declares a competing interest.

ACKNOWLEDGMENTS

We would like to thank Prof. Gen Yamada and Dr. Mika Okazawa for the supportive discussion. This work is supported by Grant-in-Aid for Young Scientists B (25860771), and National Institutes of Health Eunice Kennedy Shriver NICHD Grants HD069654 and HD068836 (BTH).

REFERENCES

1. Sonnenberg-Riethmacher E, Walter B, Riethmacher D, Godecke S, Birchmeier C. The e-ras tyrosine kinase receptor controls regionalization and differentiation of epithelial cells in the epididymis. Genes Dev 1996; 10: 1184–93.
2. Xu B, Washington AM, Hinton BT. PTEN signaling through RAF1 proto-oncogene serine/threonine kinase (RAF1)/ERK in the epididymis is essential for male fertility. Proc Natl Acad Sci U S A 2014; 111: 18643–8.
3. Yeung CH, Cooper TG, Bergmann M, Schulze H. Organization of tubules in the human caput epididymidis and the urostratula of their epithelia. Am J Anat 1991; 191: 261–79.
4. Atsuta Y, Tadokoro R, Saito D, Takahashi Y. Transgenesis of the Wolffian duct visualizes dynamic behavior of cells undergoing tubulogenesis in vivo. Dev Growth Differ 2013; 55: 579–90.
5. Staack A, Donjacour AA, Brody J, Cunha GR, Carroll P. Mouse urogenital development: a practical approach. Differentiation 2003; 71: 402–13.
6. Saxen L. Organo genesis of the kidney. Cambridge University Press; 1987.
7. Torres M, Gómez-Pardo E, Dressler GR, Gruss P. Par-2 controls multiple steps of urogenital development. Development 1995; 121: 4057–65.
8. Bouchard M, Souabni A, Mandler M, Neubüser A, Busslinger M. Nephric lineage specification by Pax2 and Pax8. Dev Biol 2002; 256: 380–91.
9. Kobayashi A, Shawlot W, Kania A, Behringer RR. Requirement of Lim1 for female reproductive tract development. Development 2004; 131: 539–49.
10. Miyamoto N, Yoshida M, Kuratani S, Matsuo I, Aizawa S. Defects of urogenital development in mice lacking Emx2. Development 1997; 124: 1653–64.
11. Grote D, Souabni A, Busslinger M, Bouchard M, Pax2/8-regulated Gata 3 expression is necessary for morphogenesis and guidance of the nephric duct in the developing kidney. Development 2006; 133: 53–61.
12. Kitagaki J, Ueda Y, Chi X, Sharma N, Elder CM, et al. FGFB is essential for formation of the ductal system in the male reproductive tract. Development 2011; 138: 5369–78.
13. Ornitz DM, Itoh N. Fibroblast growth factor receptors. Genome Biol. 2001;2(3):REVIEWS3005. Epub 2001 Mar 9. Review.
14. Polaida DP, Kish K, Kutay B, Hains D, Kegg H, et al. Role of fibroblast growth factor receptors 1 and 2 in the metanephric mesenchyme. Dev Biol 2006; 291: 325–39.
15. Okazawa M, Morishima A, Harada M, Nakagata N, Noguchi M, et al. Region-specific regulation of cell proliferation by FGF receptor signaling during the Wolffian duct development. Dev Biol 2015; 400: 139–47.
16. Carroll TJ, Park JS, Hayashi S, Majumdar A, McMahon AP. Wnt9b plays a central role in the regulation of mesenchymal to epithelial transitions underlying organogenesis of the mammalian urogenital system. Dev Cell 2005; 9: 283–92.
17. Karner CM, Chirumamilla R, Aoki S, Igarashi P, Wallingford JB, et al. Wnt9b signaling regulates planar cell polarity and kidney tubule morphogenesis. Nat Genet 2009; 41: 793–9.
18. de Martin MV, Rombaux L. A morphologic study of the mesonephros of the human embryo. J Ultrastruct Res 1966; 16: 399–427.
19. Tiedemann K, Egger G. Vascularization and glomerular ultrastructure in the pig mesonephros. Cell Tissue Res 1984; 238: 165–75.
20. Smith C, Mackay S. Morphological development and fate of the mouse mesonephros. J Anat 1991; 174: 171–84.
Donjacour AA, Thomson AA, Cunha GR. FGF-10 plays an essential role in the growth of the fetal prostate.

Murashima A, Miyagawa S, Ogino Y, Nishida-Fukuda H, Araki K, Renfree MB, Fenelon J, Wijiyanti G, Wilson JD, Shaw G. Wolffian duct differentiation of Leydig and Sertoli cells to testosterone production in mouse fetal testes.

Lyon MF, Hawkes SG. X-linked gene for testicular feminization in the mouse.

Johnston SH, Rauskolb C, Wilson R, Prabhakaran B, Irvine KD, et al. A family of mammalian Fringe genes implicated in boundary determination and the Notch pathway. Development 1997; 124: 2245-54.

Tessarollo L, Nagarajan L, Parada LF. c-ros: the vertebrate homolog of the sevenless proto-oncogene c-ros in several organs suggests that it may play roles in their development and mature functions. Oncogene 1994; 9: 773-80.

Keilhack H, Müller M, Böhmer SA, Frank C, Weidner KM, et al. Negative regulation of Ros receptor tyrosine kinase signaling. An epithelial function of the SH2 domain protein tyrosine phosphatase SHP-1. J Cell Biol 2001; 152: 689-96.

Xu B, Yang L, Lye RJ, Hinton BT, p-MAPK1/3 and DUSP5 regulate epididymal cell proliferation and survival in a region-specific manner in mice. Biol Reprod 2010; 83: 807-17.

Xu B, Yang L, Hinton BT. The role of fibroblast growth factor receptor substrate 2 (FRS2) in the regulation of two activity levels of the components of the extracellular signal-regulated kinase (ERK) pathway in the mouse epididymis. Biol Reprod 2013; 89: 1-13.

Simanainen U, McMakar N, Davey RA, Zajac JD, Handelsman DJ. Severe subfertility in mice with androgen receptor inactivation in sex accessory organs but not in testis. Endocrinology 2008; 149: 3330-8.

Krutsikh A, De Gendt K, Sharp V, Verhoeven G, Poutanen M, et al. Targeted inactivation of the androgen receptor gene in murine proximal epididymis causes epithelial hypotrophy and obstructive azoospermia. Endocrinology 2011; 152: 689-96.

O’Hara L, Welsh M, Sanders PT, Smith LB. Androgen receptor expression in the caput epididymal epithelium is essential for development of the initial segment and epididymal spermatozoa transit. Endocrinology 2011; 152: 718-29.

Sun EL, Flukinger CJ. Development of cell types and of regional differences in the postnatal rat epididymis. Am J Anat 1979; 154: 27-55.

Da Silva N, Cortez Retamozzo V, Reinecker HC, Wildgruber M, Hill E, et al. A dense network of dendritic cells populates the murine epididymis. Reproduction 2011; 141: 653-63.

Shum WW, Da Silva N, McKee M, Smith PJ, Brown D, et al. Transepithelial projections from basal cells are luminal sensors in pseudostriated epithelia. Cell 2008; 135: 1108-17.

Björkgrén I, Saastamoinen L, Krutsikh A, Huhntaniemi I, Poutanen M, et al. Dicer1 ablation in the mouse epididymis causes dedifferentiation of the epithelium and imbalance in sex steroid signaling. PLoS One 2012; 7: e38457.

Ma W, Xie S, Ni M, Huang X, Hu S, et al. MicroRNA-29a inhibited epididymal cell proliferation by targeting nuclear autoantigenic sperm protein (NASP). J Biol Chem 2012; 287: 10189-99.

Ma W, Hu S, Yao G, Xie S, Ni M, et al. An androgen receptor-microRNA-29a regulatory circuitry in mouse epididymis. J Biol Chem 2013; 288: 29369-81.

McGinnis W, Krumlauf R. Homeobox genes and axial patterning. Cell 1992; 68: 283-302.

Hsieh-Li HM, Witte DP, Weinstein M, Branford W, Li H, et al. Hoxa 11 structure, extensive antitoxin transcription, and function in male and female fertility. Development 1995; 121: 1373-85.
80 Podlasek CA, Seo RM, Clemens JQ, Ma L, Maas RL, et al. Hoxa-10 deficient male mice exhibit abnormal development of the accessory sex organs. Dev Dyn 1999; 214: 1–12.
81 Bomgardner D, Hinton BT, Turner TT. Hox transcription factors may play a role in regulating segmental function of the adult epididymis. J Androl 2001; 22: 527–31.
82 Snyder EM, Small CL, Bomgardner D, Xu B, Evanoff R, et al. Gene expression in the efferent ducts, epididymis, and vas deferens during embryonic development of the mouse. Dev Dyn 2010; 239: 2479–91.
83 Jequier AM, Ansell ID, Bulpinmore NJ. Congenital absence of the vasa deferentia presenting with infertility. J Androl 1985; 6: 15–9.
84 Anguiano A, Oates RD, Ames JA, Dean M, Gerrard B, et al. Congenital bilateral absence of the vas deferens. A primarily genital form of cystic fibrosis. JAMA 1992; 267: 1794–7.
85 Augarten A, Yahav Y, Kerem BS, Hale D, Laufer J, et al. Congenital bilateral absence of vas deferens in the absence of cystic fibrosis. Lancet 1994; 344: 1473–4.
86 McCallum T, Milunsky J, Munarriz R, Carson R, Sadeghi-Nejad H, et al. Unilateral renal agenesis associated with congenital bilateral absence of the vas deferens: phenotypic findings and genetic considerations. Hum Reprod 2001; 16: 282–8.
87 Pope JC 4th, Brock JW 3rd, Adams MC, Stephens FD, Ichikawa I. How they begin and how they end: classic and new theories for the development and deterioration of congenital anomalies of the kidney and urinary tract, CAKUT. J Am Soc Nephrol 1999; 10: 2018–28.
88 Abdelhak S, Kalatzis V, Heilig R, Compair S, Samson D, et al. A human homologue of the Drosophila eyeless absent gene underlies branchio-oto-renal (BOR) syndrome and identifies a novel gene family. Nat Genet 1997; 15: 567–64.
89 Kochhar A, Orten DJ, Soenssen JL, Fischer SM, Cremers CW, et al. Six1 mutation screening in 247 branchio-oto-renal syndrome families: a recurrent missense mutation associated with BOR. Hum Mutat 2008; 29: 565.
90 Afzal AR, Rajab A, Fenske CD, Oldridge M, Elango N, et al. Recessive Robinow syndrome, allelic to dominant brachydactyly type B, is caused by mutaion of ROR2. Nat Genet 2000; 25: 419–22.
91 Person AD, Beiraghi S, Sieben CM, Hermanson S, Neumann AN, et al. WT1 mutation in patients with autosomal dominant Robinow syndrome. Dev Dyn 2010; 239: 327–37.
92 Girgis SM, Etriby AN, Ibrahim AA, Kahlil SA. Testicular biopsy in azoospermia. A review of the last ten years’ experiences of over 800 cases. Fertil Steril 1969; 20: 467–77.
93 Kroovand RL, Perlmutter AD. Congenital anomalies of the vas deferens and epididymis. In: SJ Hogan and ESE Hafez, editors. Pediatric Andrology. Boston: Martinus Nijhoff Publishers; 1981. p. 173–80.
94 Turek PJ, Ewalt DH, Snyder HM, Duckett JW. Normal epididymal anatomy in boys. J Urol 1994; 151: 726–7.
95 Zvivodic Z, Huskic J, Dzidarevic S, Karadvic K, Zvivodic D. Incidence of epididymal disjunction anomalies associated with an undescended testis. Folia Med 2009; 44: 65–8.
96 Tzouanacou E, Wegener A, Wymeersch FJ, Wilson V, Nicolas JF. Redefining the progression of lineage segregations during mammalian embryogenesis by clonal analysis. Dev Cell 2009; 17: 365–76.
97 Takemoto T, Uchikawa M, Yoshida M, Bell DM, Lovell-Badge R, et al. Tbx6-dependent Sox2 regulation determines neural or mesodermal fate in axial stem cells. Nature 2011; 470: 394–8.
98 Chia I, Grote D, Marcotte M, Batourina E, Mendelsohn C, et al. Nephric duct insertion is a crucial step in urinary tract maturation that is regulated by a Gata3-Raldh2-Ret molecular network in mice. Development 2011; 138: 2089–97.
99 Pole RJ, Qi BG, Beasley SW. Patterns of apoptosis during degeneration of the pronephros and mesonephros. J Urol 2002; 167: 269–71.
100 Wang Q, Lan Y, Cho ES, Maltby KM, Jiang R. Odd-skipped related 1 (Odd 1) is an essential regulator of heart and urogenital development. Dev Biol 2005; 288: 582–94.
101 Mattiske D, Kume T, Hogan BL. The mouse forkhead gene Foxc1 is required for primordial germ cell migration and antral follicle development. Dev Biol 2006; 290: 447–58.
102 Schuchardt A, D’Agati V, Pachnis V, Costantini F. Renal agenesis and hypoplasia in ret-k- mutant mice result from defects in ureteric bud development. Development 1996; 122: 1919–29.
103 Niederreither K, Subbarayan V, Dotti P, Chambon P. Embryonic retinoic acid synthesis is essential for early mouse post-implantation development. Nat Genet 1999; 21: 444–8.
104 Hoshii T, Takeo T, Nakagata N, Takeya M, Araki K, et al. LGR 4 regulates the postnatal development and integrity of male reproductive tracts in mice. Biol Reprod 2007; 76: 303–13.
105 Mendive F, Laurent P, Van Schoore G, Skarnes W, Pochet R, et al. Defective postnatal development of the male reproductive tract in LGR 4 knockout mice. Dev Biol 2006; 290: 421–34.