Removability of singularity for nonlinear elliptic equations with $p(x)$-growth*

Yongqiang Fu, Yingying Shan†

Department of Mathematics, Harbin Institute of Technology, Harbin 150001, P.R. China

Abstract

Using Moser’s iteration method, we investigate the problem of removable isolated singularities for elliptic equations with $p(x)$-type nonstandard growth. We give a sufficient condition for removability of singularity for the equations in the framework of variable exponent Sobolev spaces.

Keywords: variable exponent space; isolated singularity; removable singularity.

2010 Mathematics Subject Classification: 35B60; 35J60.

1 Introduction

In recent years, the research of elliptic equations with variable exponent growth conditions has been an interesting topic. These problems possess very complicated nonlinearities, for instance, the $p(x)$-Laplacian operator $-\text{div}(|\nabla u|^{p(x)-2}\nabla u)$ is inhomogeneous, and these problems have many important applications, see [1, 2, 3]. Since Kováčik and Rákosník first studied the $L^{p(x)}$ spaces and $W^{k,p(x)}$ spaces in [4], many results have been obtained concerning these kinds of variable exponent spaces, see examples in [5−12].

In this paper, we study solutions to nonlinear elliptic equations with nonstandard growth in the divergence form

$$-\text{div}A(x,u,\nabla u) + g(x,u) = 0.$$ \hspace{1cm} (1.1)

in a punctured domain $\Omega \setminus \{0\}$, where $\Omega \subset \mathbb{R}^N$ is a bounded domain with smooth boundary.

Throughout the paper we suppose that the functions $A(\cdot,\xi,\eta) : \Omega \times \mathbb{R} \times \mathbb{R}^N \to \mathbb{R}^N$, $g(\cdot,\xi) : \Omega \times \mathbb{R} \to \mathbb{R}^N$ are measurable for all $\xi \in \mathbb{R}$, $\eta \in \mathbb{R}^N$, and $A(x,\cdot,\cdot)$, $g(x,\cdot)$ are continuous for almost all $x \in \Omega$. We also assume that the following structure conditions

$$A(x,\xi,\eta)\eta \geq \mu_1|\eta|^{p(x)},$$ \hspace{1cm} (1.2)

*This work was supported by the National Natural Science Foundation of China (Grant No. 11371110).
†Corresponding author. E-mail address: hit_shanyy@163.com

EJQTDE, 2013 No. 58, p. 1
\[|A(x, \xi, \eta)| \leq \mu_2|\eta|^{p(x)-1}, \quad (1.3) \]
\[A(x, \xi, -\eta) = -A(x, \xi, \eta) \quad (1.4) \]
\[|x|^{-\alpha}|\eta|^q \leq g(x, \xi) \text{sgn} \xi \leq C|x|^{-\alpha}|\eta|^q \quad (1.5) \]
are fulfilled for almost all \(x \in \bar{\Omega}, \xi \in \mathbb{R}, \eta \in \mathbb{R}^N \), where \(\mu_1, \mu_2 > 0, \alpha < N, C > 1 \) are constants, \(p, q \in C(\bar{\Omega}) \), \(1 < p^- \leq p(x) \leq p^+ < N \), and \(q(x) \gg p(x) - 1 \).

Here we denote
\[
p^- = \inf_{x \in \bar{\Omega}} p(x), \quad p^+ = \sup_{x \in \bar{\Omega}} p(x),
\]
and denote by \(q(x) \gg p(x) - 1 \) the fact that \(\inf_{x \in \bar{\Omega}} (q(x) - p(x) + 1) > 0 \).

For the Laplace’s equation, a set of capacity zero constitutes a removable singularity for a bounded harmonic function, while, a single point \(x_0 \) is removable if the solution is \(o(\log|x-x_0|) \) or \(o(|x-x_0|^{2-N}) \).

Serrin [13] considered the conditions of removability of an isolated singular point for equation (1.1) in the case of \(g(x, u) \equiv 0 \), it is shown that at an isolated singularity a positive solution has precisely the order of growth \(|x-x_0|^{\frac{p-N}{p-1}} \) if \(1 < p < N \), or \(\log \frac{1}{|x-x_0|} \) if \(p = N \).

Brezis and Veron [14] studied the equation of form (1.1) with a Laplace operator in the principal part. They proved the removability of isolated singularities for solutions under condition \(g(x, \xi) \text{sgn} \xi \geq |\xi|^q \) and \(q \geq \frac{N}{N-2}, N \geq 3 \).

For the equation of the form:
\[-\text{div} A(x, u, \nabla u) + a_0(x, u, \nabla u) = 0\]
Serrin [13, 15] considered the conditions of removability of an isolated singular point \(x_0 \), the condition has the form
\[u(x) = o \left(|x-x_0|^{\frac{p-N}{p-1}}^{\frac{p-N}{p-1}+\tau} \right), \quad 1 < p < N, \]
with positive number \(\tau \). Nicolosi et al. [16] obtained a precise condition for the removability of singularities, it has the form
\[u(x) = o \left(|x-x_0|^{\frac{p-N}{p-1}} \right), \quad 1 < p < N. \]

For equations with weighted functions \(v, w \), Mamedov and Harman [17] proved that an isolated singular point \(x_0 \) is removable for solutions of equation (1.1) if the condition of weighted functions
\[v(B(x_0, \varepsilon)) \left(\frac{w(B(x_0, \varepsilon))}{\varepsilon^pv(B(x_0, \varepsilon))} \right)^{\frac{q}{q-p+1}} = o(1), \quad \varepsilon \to 0, \]
and \(p > 1, q > p - 1 \) are fulfilled. For the removability of singularities for solutions of elliptic equations with absorption term (see [18, 19]).

EJQTDE, 2013 No. 58, p. 2
Recently, there have been a few papers on the study of the removability of singularities for the equations with nonstandard growth. Lukkari [20] investigated the removability of a compact set for the equation \(-\text{div} \left(|Du|^{p(x)-2} Du \right) = 0\). For the anisotropic elliptic equation, the removability of a compact set was proved by Cianci [21]. Cataldo and Cianci [22] considered the conditions of removability of an isolated singular point for equation (1.1) in the case of \(g(x, u) = |u|^{q-2} u\).

In this paper, following Moser’s method [23], we establish the condition

\[
1 < \frac{(p(x) - \alpha)q(x)}{q(x) - p(x) + 1} + \alpha \ll N \quad \text{a.e. on } \overline{\Omega}
\] (1.6)

to ensure the removability of singularities.

2 Preliminaries

We first recall some facts on spaces \(L^{p(x)}(\Omega)\) and \(W^{k,p(x)}(\Omega)\). For the details see [4, 8].

Let \(P(\Omega)\) be the set of all Lebesgue measurable functions \(p: \Omega \to [1, \infty]\), we denote

\[\rho_p(u) = \int_{\Omega, \Omega_\infty} |u|^{p(x)} \, dx + \sup_{x \in \Omega_\infty} |u(x)|,\]

where \(\Omega_\infty = \{x \in \Omega: p(x) = \infty\}\).

The variable exponent Lebesgue space \(L^{p(x)}(\Omega)\) is the class of all functions \(u\) such that \(\rho_{p(x)}(tu) < \infty\), for some \(t > 0\). \(L^{p(x)}(\Omega)\) is a Banach space equipped with the norm

\[\|u\|_{L^{p(x)}(\Omega)} = \inf\{\lambda > 0: \rho_{p(x)} \left(\frac{u}{\lambda} \right) \leq 1\}.\]

For any \(p \in P(\Omega)\), we define the conjugate function \(p'(x)\) as

\[p'(x) = \begin{cases}
\infty, & x \in \Omega_1 = \{x \in \Omega: p(x) = 1\}, \\
1, & x \in \Omega_\infty, \\
\frac{p(x)}{p(x) - 1}, & x \in \Omega \setminus (\Omega_1 \cup \Omega_\infty).
\end{cases}\]

Theorem 2.1 Let \(p \in P(\Omega)\). For any \(u \in L^{p(x)}(\Omega)\) and \(v \in L^{p'(x)}(\Omega)\),

\[\int_{\Omega} |uv| \, dx \leq 2\|u\|_{L^{p(x)}} \|v\|_{L^{p'(x)}}.\]

Theorem 2.2 Let \(p \in P(\Omega)\) with \(p^+ < \infty\). For any \(u \in L^{p(x)}(\Omega)\), we have

1) if \(\|u\|_{L^{p(x)}} \geq 1\), then \(\|u\|_{L^{p^-(x)}} \leq \int_{\Omega} |u|^{p^-(x)} \, dx \leq \|u\|_{L^{p^+(x)}});\]
(2) if \(\|u\|_{L^p(x)} < 1 \), then \(\|u\|_{L^p(x)}^+ \leq \int_\Omega |u|^{p(x)} \, dx \leq \|u\|_{L^p(x)}^- \).

The variable exponent Sobolev space \(W^{1,p(x)}(\Omega) \) is the class of all functions \(u \in L^{p(x)}(\Omega) \) such that \(|\nabla u| \in L^{p'(x)}(\Omega) \). \(W^{1,p(x)}(\Omega) \) is a Banach space equipped with the norm

\[
\|u\|_{W^{1,p(x)}} = \|u\|_{L^p(x)} + \|\nabla u\|_{L^{p(x)}}.
\]

We say that the function \(u(x) \) belongs to the space \(W^{1,p(x)}_{loc}(\Omega) \) if \(u(x) \) belongs to \(W^{1,p(x)}(G) \) in any subdomain \(G, \overline{G} \subset \Omega \).

Theorem 2.3 For any \(u \in W^{1,p(x)}(\Omega) \), we have

(1) if \(\|u\|_{W^{1,p(x)}} \geq 1 \), then \(\|u\|_{W^{1,p(x)}}^+ \leq \int_\Omega (|\nabla u|^{p(x)} + |u|^{p(x)}) \, dx \leq \|u\|_{W^{1,p(x)}}^- \);

(2) if \(\|u\|_{W^{1,p(x)}} < 1 \), then \(\|u\|_{W^{1,p(x)}}^+ \leq \int_\Omega (|\nabla u|^{p(x)} + |u|^{p(x)}) \, dx \leq \|u\|_{W^{1,p(x)}}^- \).

From Zhikov [5, 6], we know smooth functions are not dense in \(W^{1,p(x)}(\Omega) \) without additional assumptions on the exponent \(p(x) \). To study the Lavrentiev phenomenon, he considered the following log-Hölder continuous condition

\[
|p(x) - p(y)| \leq \frac{C}{-\log(|x - y|)} \tag{2.1}
\]

for all \(x, y \in \Omega \) such that \(|x - y| \leq \frac{1}{2} \). If the log-Hölder continuous condition holds, then smooth functions are dense in \(W^{1,p(x)}(\Omega) \) and we can define the Sobolev spaces with zero boundary values \(W^{1,p(x)}_0(\Omega) \), as the closure of \(C_0^{\infty}(\Omega) \) with the norm of \(\| \cdot \|_{W^{1,p(x)}(\Omega)} \).

Theorem 2.4 If \(u \in W^{1,p}_0(B_R(a)) \), \(1 \leq p < N \), then for any \(1 \leq q \leq p^* \), the inequality

\[
\left(\int_{B_R(a)} |u|^q \, dx \right)^{\frac{1}{q}} \leq C(N, p)R^{1+\frac{N}{p} - \frac{N}{q}} \left(\int_{B_R(0)} |Du|^p \, dx \right)^{\frac{1}{p}} \tag{2.2}
\]

is valid, where \(B_R(a) \) is the ball of radius \(R \) with centre \(a \).

We define \(p_\delta^+ = \sup_{y \in B_\delta(0) \cap \Omega} p(y), \quad p_\delta^- = \inf_{y \in B_\delta(0) \cap \Omega} p(y), \quad q_\delta^+ = \sup_{y \in B_\delta(0) \cap \Omega} q(y), \quad q_\delta^- = \inf_{y \in B_\delta(0) \cap \Omega} q(y), \)

where \(\delta > 0 \) is a constant.

Lemma 2.1 Since \(q(x) \gg p(x) - 1 \), then the set \(S = \{ \delta : p_\delta^+ - 1 < q_\delta^- \} \) is nonempty, bounded above and \(\delta_0 = \sup \{ \delta : p_\delta^+ - 1 < q_\delta^- \} < +\infty \).

EJQTDE, 2013 No. 58, p. 4
\textbf{Proof.} As \(q(x) \), \(p(x) \) are continuous on \(\overline{\Omega} \), for \(\varepsilon_1 \in (0, 1) \) and \(0 \in \Omega \), there exists \(\delta > 0 \) such that \(|q(0) - q(y)| < \varepsilon_1 \) and \(|p(0) - p(y)| < \varepsilon_1 \) whenever \(|y| < \delta \). For any \(y \in B_\delta(0) \cap \overline{\Omega} \), we have
\[
p(y) - 1 < p(0) - 1 + \varepsilon_1,
\]
and
\[
q(y) > q(0) - \varepsilon_1.
\]
As \(q(x) \gg p(x) - 1 \), take \(\varepsilon_1 = \frac{1}{4} \inf_{x \in \Omega} (q(x) - p(x) + 1) \),
\[
q(0) - \varepsilon_1 - (p(0) - 1 + \varepsilon_1) \geq \frac{1}{2} \inf_{x \in \Omega} (q(0) - p(0) + 1) > 0,
\]
then
\[
p(y) - 1 < p(0) - 1 + \varepsilon_1 < q(0) - \varepsilon_1 < q(y),
\]
and further
\[
p^+_\delta - 1 = \sup_{y \in B_\delta(0) \cap \Omega} (p(y) - 1) < q^-_\delta = \inf_{y \in B_\delta(0) \cap \Omega} q(y).
\]
So the set \(S = \{ \delta : p^+_\delta - 1 < q^-_\delta \} \) is nonempty. From the definition of the \(q(x) \gg p(x) - 1 \), we know the set \(S \) is bounded above. By the Continuum Property, it has a smallest upper bound \(\delta_0 \). This smallest upper bound \(\delta_0 \) is called the supremum of the set \(S \). We write \(\delta_0 = \sup S = \sup \{ \delta : p^+_\delta - 1 < q^-_\delta \} \).

Consider a solution \(u(x) \) of equation (1.1) with an isolated singularity. Assume that \(0 \in \Omega \) and zero is a singular point of the solution \(u(x) \). We say that \(u(x) \) is a solution in \(\Omega \setminus \{0\} \) if \(u \in W^{1,p(x)}(\Omega \setminus \{0\}) \) and for any test function \(\varphi \in W^{1,p(x)}_0(\Omega \setminus \{0\}) \cap L^\infty(\Omega \setminus \{0\}) \) in \(\Omega \setminus \{0\} \), the following equality is true:
\[
\int_\Omega (A(x, u, \nabla u) \varphi + g(x, u) \varphi) \, dx = 0.
\]
(2.3)

We say that the solution \(u(x) \) of equation (1.1) has a removable singularity at the point \(0 \) if the function \(u(x) \) is a solution in \(\Omega \setminus \{0\} \) and \(u \in W^{1,p(x)}(\Omega \setminus \{0\}) \cap L^\infty(\Omega \setminus \{0\}) \) implies that it belongs to the space \(W^{1,p(x)}(\Omega) \cap L^\infty(\Omega) \) and satisfies (2.3) for any test function \(\varphi \in W^{1,p(x)}_0(\Omega) \cap L^\infty(\Omega) \).

\section{Proof of theorems}

In this section we state and prove the following theorems.

In the sequel by \(C \) we denote a constant, the value of which may vary from line to line.
Theorem 3.1 Let \(u \in W^{1,p(x)}(\Omega \setminus \{0\}) \cap L^\infty(\Omega \setminus \{0\}) \) be a solution of equation (1.1) in \(\Omega \setminus \{0\} \). Assume that conditions (1.2) – (1.5), (2.1) are satisfied. Then for any \(0 < |x| \leq R < \min\{\text{dist}(0, \partial \Omega), \delta_0, 1\} \), the estimate

\[
|u(x)| \leq C|x|^{-Q},
\]

holds almost everywhere, where \(Q = Q(N, \alpha, p_R, p_R^+, q_R) \) and \(C = C(N, m, n, \mu_2, p_R^+, q_R, q_R^+, R) \).

Proof. For \(\rho < R \) we define a smooth cut-off function \(\varphi_1(x) \) satisfying conditions: \(\varphi_1(x) = 1 \) for \(\frac{\rho}{2} < |x| < \frac{3\rho}{4} \), \(\varphi_1(x) = 0 \) outside the set for \(\frac{\rho}{4} \leq |x| \leq \rho \), \(|\nabla \varphi_1(x)| \leq \frac{C}{\rho} \) and \(0 \leq \varphi_1(x) \leq 1 \).

Take the test function

\[
\psi(x) = (1 + |u(x)|)^m u(x) \varphi_1(x)^{n+p_R^+} \in W_0^{1,p(x)}(B_R(0) \setminus \{0\}),
\]

\(m, n \geq 0 \) are nonnegative numbers to be determined later, and then

\[
\nabla \psi(x) = m(1 + |u(x)|)^{m-1} \nabla u(x) |u(x)| \varphi_1(x)^{n+p_R^+} + (1 + |u(x)|)^m \nabla u(x) \varphi_1(x)^{n+p_R^+} \\
+ (1 + |u(x)|)^m u(x)(n + p_R^+) \varphi_1(x)^{n+p_R^+ - 1} \nabla \varphi_1(x).
\]

We substitute the test function \(\psi(x) \) into the integral identity (2.3), we obtain

\[
\int_{B_R(0)} mA(x, u, \nabla u)(1 + |u(x)|)^{m-1} \nabla u(x) |u(x)| \varphi_1(x)^{n+p_R^+} dx \\
+ \int_{B_R(0)} A(x, u, \nabla u)(1 + |u(x)|)^m \nabla u(x) \varphi_1(x)^{n+p_R^+} dx \\
+ \int_{B_R(0)} g(x, u)(1 + |u(x)|)^m u(x) \varphi_1(x)^{n+p_R^+} dx \\
+ \int_{B_R(0)} A(x, u, \nabla u)(1 + |u(x)|)^m u(x)(n + p_R^+) \varphi_1(x)^{n+p_R^+ - 1} \nabla \varphi_1(x) dx = 0.
\]

By virtue of the conditions (1.2) – (1.5),

\[
\int_{B_R(0)} \mu_1 m |\nabla u(x)|^{p(x)}(1 + |u(x)|)^{m-1} |u(x)| \varphi_1(x)^{n+p_R^+} dx \\
+ \int_{B_R(0)} \mu_1 |\nabla u(x)|^{p(x)}(1 + |u(x)|)^m \varphi_1(x)^{n+p_R^+} dx \\
+ \int_{B_R(0)} |x|^{-\alpha}|u(x)|^{q(x)+1}(1 + |u(x)|)^m \varphi_1(x)^{n+p_R^+} dx \\
\leq \int_{B_R(0)} \mu_2 (n + p_R^+) |\nabla u(x)|^{p(x)-1}(1 + |u(x)|)^{m+1} \varphi_1(x)^{n+p_R^+ - 1} |\nabla \varphi_1(x)| dx,
\]

EJQTDE, 2013 No. 58, p. 6
and using Young’s inequality, we have

\[
\int_{B_R(0)} \mu_1 |\nabla u(x)|^{p(x)} (1 + |u(x)|)^m \varphi_1(x)^{n+p_R} dx + \int_{B_R(0)} |x|^{-\alpha} |u(x)|^{q(x)+m+1} \varphi_1(x)^{n+p_R} dx
\]

\[
\leq \mu_2 \int_{B_R(0)} (1 + |u(x)|)^m \varphi_1(x)^{n+p_R} \left[|\nabla u(x)|^{p(x)-1} \right] \left[(n + p_R^+(1 + |u(x)|) \varphi_1(x)^{-1} |\nabla \varphi_1(x)| \right] dx
\]

\[
\leq \mu_2 C(\varepsilon_2) \int_{B_R(0)} (n + p_R^+)^{p(x)} (1 + |u(x)|)^{p(x)+m} \varphi_1(x)^{n+p_R^--p(x)} |\nabla \varphi_1(x)|^{p(x)} dx
\]

\[
+ \mu_2 \varepsilon_2 \int_{B_R(0)} (1 + |u(x)|)^m \varphi_1(x)^{n+p_R^--p(x)} |\nabla u(x)|^{p(x)} dx
\]

Take \(\varepsilon_2 = \frac{\mu_1}{2\mu_2} \), we have

\[
\frac{\mu_1}{2} \int_{B_R(0)} |\nabla u(x)|^{p(x)} (1 + |u(x)|)^m \varphi_1(x)^{n+p_R^+} dx + \int_{B_R(0)} |x|^{-\alpha} |u(x)|^{q(x)+m+1} \varphi_1(x)^{n+p_R^+} dx
\]

\[
\leq C(\mu_1, \mu_2) \int_{B_R(0)} (n + p_R^+) \frac{1}{\rho^{p(x)}} (1 + |u(x)|)^{p(x)+m} \varphi_1(x)^{n+p_R^--p(x)} dx.
\]

(3.2)

Denote \(p_R^* = \frac{N p_R^-}{N - p_R^-} = k p_R^- \). Since \(u(x) \in W^{1,p(x)}(B_R(0) \setminus \{0\}) \), then \(u(x) \in W^{1,p_R^-}(B_R(0) \setminus \{0\}) \) and \(\phi(x) = \left[(1 + |u(x)|)^{t+p_R^-} \varphi_1(x)^{s+p_R^-} \right]^{\frac{1}{\rho^{p_R^-}}} \in W_0^{1,p_R^-}(B_R(0)) \), where \(t + p_R^+ > k p_R^- \), \(s + p_R^+ > k p_R^- \).

As \(1 < p_R^- < N \), applying (2.2) to the function \(\phi(x) \), we have

\[
\int_{B_R(0)} (1 + |u(x)|)^{t+p_R^+} \varphi_1(x)^{s+p_R^+} dx
\]

\[
\leq C(N, p_R^-) \left(\int_{B_R(0)} |\nabla \phi(x)|^{p_R^-} dx \right)^k
\]

\[
= C(N, p_R^-) \left\{ \int_{B_R(0)} \left[\left(\frac{t + p_R^+}{k p_R^-} \right)^{p_R^-} (1 + |u(x)|)^{\frac{t+p_R^+}{k} - p_R^-} |\nabla u(x)|^{p_R^-} \varphi_1^{\frac{s+p_R^+}{k} - p_R^-} \right] dx \right\}^k
\]

\[
+ \left(\frac{s + p_R^+}{k p_R^-} \right)^{p_R^-} (1 + |u(x)|)^{\frac{s+p_R^+}{k} - p_R^-} |\nabla \varphi_1|^{p_R^-} dx \right\}^k
\]

\[
\leq C(N, p_R^-) \left(\frac{t + s + p_R^+}{k p_R^-} \right)^{p_R^-} \left\{ \int_{B_R(0)} \left[(1 + |u(x)|)^{\frac{t+p_R^+}{k} - p_R^-} |\nabla u(x)|^{p_R^-} \varphi_1^{\frac{s+p_R^+}{k} - p_R^-} \right] dx \right\}^k
\]

\[
+ \left(\frac{1}{\rho} \right)^{p_R^-} (1 + |u(x)|)^{\frac{t+p_R^+}{k} - p_R^-} \varphi_1^{\frac{s+p_R^+}{k} - p_R^-} dx \right\}^k
\]

EJQTDE, 2013 No. 58, p. 7
Taking \(m = \frac{t+p_R^-}{k} - p_R^- \), \(n + p_R^+ = \frac{s+p_R^-}{k} \) in (3.2) and using Young’s inequality, we have

\[
\int_{B_R(0)} (1 + |u(x)|) \frac{t+p_R^-}{x} - p_R^- |\nabla u(x)|^{p_R^-} \varphi_1^{s+p_R^-} \, dx \\
\leq \int_{B_R(0)} (1 + |u(x)|) \frac{t+p_R^-}{x} - p_R^- |\nabla u(x)|^{p(x)} \varphi_1^{s+p_R^-} \, dx + \int_{B_R(0)} (1 + |u(x)|) \frac{t+p_R^-}{x} - p_R^- \varphi_1^{s+p_R^-} \, dx
\]

(3.4)

\[
\leq C(\mu_1, \mu_2) \left(s + p_R^+ \right) \frac{1}{\rho p_R^-} \int_{B_R(0)} (1 + |u(x)|) \frac{t+p_R^-}{x} - p_R^- + p(x) \, dx.
\]

From (3.3) and (3.4) we get

\[
\int_{B_R(0)} (1 + |u(x)|)^{t+p_R^+} \varphi_1(x)^{s+p_R^-} \, dx \\
\leq C(s + p_R^+)^{kp_R^-} (t + s + p_R^+) \frac{1}{\rho p_R^-} \left[\int_{B_R(0)} (1 + |u(x)|)^{t+p_R^-} \varphi_1^{s+p_R^-} \, dx \right]^k,
\]

(3.5)

where \(C = C(N, \mu_1, \mu_2, p_R^+, p_R^-) \).

Denote

\[
I_i = \int_{B_R(0)} (1 + |u(x)|)^{t_i+p_R^-} \varphi_1(x)^{s_i+p_R^-} \, dx,
\]

\[
t_i = (q_R^- + kp_R^-) k^i - p_R^+ + \frac{(p_R^- - p_R^-) N}{p_R^-},
\]

\[
s_i = \left(s_0 + p_R^+ + \frac{N p_R^+}{p_R^-} \right) k^i - p_R^+ - \frac{N p_R^+}{p_R^-},
\]

where

\[
s_0 = \frac{p_R^+ \left(q_R^- + kp_R^- + \frac{(p_R^- - p_R^-) N}{p_R^- + 1} \right)}{k} - p_R^+ + 1.
\]

From (3.5), we get

\[
I_i \leq C(N, \mu_1, \mu_2, p_R^+, p_R^-) \left(t_i + s_i + p_R^+ \right) \frac{2kp_R^-}{\rho p_R^-} I_{i-1}^k.
\]

(3.6)

Since

\[
t_i + s_i + p_R^+ \leq \left(q_R^- + kp_R^- \right) k^i + \frac{(p_R^- - p_R^-) N}{p_R^-} + \left(s_0 + p_R^+ + \frac{N p_R^+}{p_R^-} \right) k^i - \frac{N p_R^+}{p_R^-}
\]

\[
\leq \left(q_R^- + kp_R^- + s_0 + p_R^+ + \frac{N p_R^+}{p_R^-} \right) k^i.
\]
iterate (3.6), then we have
\[
I_i \leq C \left(q_R^- + k p_R^- + s_0 + p_R^+ + \frac{N p_R^+}{p_R} \right)^{2 k p_R^+} \left(\frac{1}{\rho} k^{2 k p_R^+} t_R^{k^{2 k p_R^+}} \right) I_0 k^i,
\]
then
\[
\left[\int_{B_R(0)} |u(x)| \left(q_R^- + k p_R^- + s_0 + p_R^+ + \frac{N p_R^+}{p_R} \right)^{2 \sum_{j=1}^{i} k^{j-1} p_R^- + 2 \sum_{j=1}^{i} (i+1-j) k^{i-j} p_R^-} \varphi_1(x)^{s_0 + p_R^+} dx \right]^{1/\sigma} \quad \leq \quad C \left(q_R^- + k p_R^- + s_0 + p_R^+ + \frac{N p_R^+}{p_R} \right)^{2 \sum_{j=1}^{i} k^{j-1} p_R^- + 2 \sum_{j=1}^{i} (i+1-j) k^{i-j} p_R^-} \varphi_1(x)^{s_0 + p_R^+} dx \right]^{1/\sigma},
\]
(3.7)

and passing to the limit as \(i \to \infty \), we obtain
\[
\left\| u(x) \right\|_{L^\infty(q < |x| < \frac{2 \rho}{\sigma R})} \leq \left\| 1 + |u(x)| \right\|_{L^\infty(q < |x| < \frac{2 \rho}{\sigma R})} \left[\int_{B_R(0)} |u(x)| \left(q_R^- + k p_R^- + s_0 + p_R^+ + \frac{N p_R^+}{p_R} \right)^{2 \sum_{j=1}^{i} k^{j-1} p_R^- + 2 \sum_{j=1}^{i} (i+1-j) k^{i-j} p_R^-} \varphi_1(x)^{s_0 + p_R^+} dx \right]^{1/\sigma},
\]
(3.8)

where \(C = C(N, \mu_1, \mu_2, p_R^+, p_R^-) \).

Taking \(m = k p_R^- + \left(\frac{p_R^+ - p_R^-}{p_R} \right)^N \), \(s_0 \) in (3.2), we have
\[
\left[\int_{B_R(0)} |x|^{-\alpha} |u(x)| \left(q(x) + k p_R^- + \frac{\left(p_R^+ - p_R^- \right)^N}{p_R} \right)^{p_R^+ + 1} \varphi_1(x)^{s_0 + p_R^+} dx \right]^{1/\rho} \leq \quad C(N, \mu_1, \mu_2, p_R^+, p_R^-) \left[\int_{B_R(0)} |x|^{-\alpha} |u(x)| \left(p(x) + k p_R^- + \frac{\left(p_R^+ - p_R^- \right)^N}{p_R} \right)^{p_R^+ + 1} \varphi_1(x)^{s_0 + p_R^+ - p(x)} dx \right],
\]
(3.10)

EJQTDE, 2013 No. 58, p. 9
and further by (3.10), we get

\[
\int_{B_R(0)} (1 + |u(x)|)^{q(x) + k^+_R + \left(\frac{p^+_R - p^+_R}{p^+_R}\right)^N + 1} \varphi_1(x)^{s_0 + p^+_R} dx
\]

\[
\leq C(N, p^+_R, p^-_R, q^-_R) \int_{B_R(0)} (1 + |u(x)|)^{q(x) + k^+_R + \left(\frac{p^+_R - p^+_R}{p^+_R}\right)^N + 1} \varphi_1(x)^{s_0 + p^+_R} dx
\]

\[
\leq C + C \int_{B_R(0)} \rho^{\alpha - p^+_R} (1 + |u(x)|)^{p(x) + k^+_R + \left(\frac{p^+_R - p^+_R}{p^+_R}\right)^N} \varphi_1(x)^{s_0 + p^+_R} dx
\]

\[
\leq C + C \varepsilon \int_{B_R(0)} (1 + |u(x)|)^{q(x) + k^+_R + \left(\frac{p^+_R - p^+_R}{p^+_R}\right)^N} \varphi_1(x)^{s_0 + p^+_R} dx +
\]

\[
C(\varepsilon) \int_{B_R(0)} \rho^{\alpha - p^+_R} \frac{q(x) + k^+_R + \left(\frac{p^+_R - p^+_R}{p^+_R}\right)^N}{q(x) - p(x) + 1} \varphi_1(x)^{s_0 + p^+_R} dx.
\]

Take \(\varepsilon = \frac{1}{2C}\), we have

\[
\int_{B_R(0)} (1 + |u(x)|)^{q(x) + k^+_R + \left(\frac{p^+_R - p^+_R}{p^+_R}\right)^N} \varphi_1(x)^{s_0 + p^+_R} dx
\]

\[
\leq C \left(1 + \int_{B_R(0)} \rho^{\alpha - p^+_R} \frac{q(x) + k^+_R + \left(\frac{p^+_R - p^+_R}{p^+_R}\right)^N}{q(x) - p(x) + 1} dx \right),
\]

where \(C = C(N, \mu_1, \mu_2, p^+_R, p^-_R, q^-_R, R)\).

From (3.9), we have

\[
||u(x)||_{L^\infty(\frac{\rho}{2} < |x| < \frac{\rho}{4})} \leq C \left(\rho^{-\frac{k^+_R}{q^-_R}} + \rho^{-\frac{k^+_R}{q^-_R}} \int_{B_R(0)} \rho^{\alpha - p^+_R} \frac{q(x) + k^+_R + \left(\frac{p^+_R - p^+_R}{p^+_R}\right)^N}{q(x) - p(x) + 1} dx \right). \quad (3.11)
\]

If \(p^+_R \leq \alpha < N\), we have

\[
||u(x)||_{L^\infty(\frac{\rho}{2} < |x| < \frac{\rho}{4})} \leq C \rho^{-\frac{k^+_R}{q^-_R}},
\]

and

\[
|u(x)| \leq C |x|^{-\frac{k^+_R}{(\alpha-1)q^-_R}}, \quad \text{a.e.}
\]

where \(C = C\left(N, \mu_1, \mu_2, p^+_R, p^-_R, q^-_R, q^-_R, R\right)\).
If \(\alpha < p_R^+ \), we have
\[
||u(x)||_{L^\infty}^{q_R^-} \left(\frac{q_R^- \kappa}{p_R^-} \right) \leq C \rho \left(\frac{q_R^- \kappa p_R^-}{p_R^-} \right)^{q_R^- - 1},
\]
and
\[
|u(x)| \leq C |x| \left\{ \frac{(p_R^- - \alpha) \left(q_R^- + \kappa p_R^- \right)^{q_R^- - 1}}{q_R^-} + \frac{k p_R^+}{k - 1} \right\}
\]
where \(C = C \left(N, \mu_1, \mu_2, p_R^+, p_R^-, q_R^+, q_R^-, R \right) \).

The following is the main theorem in this paper.

Theorem 3.2 Let conditions (1.2) – (1.6), (2.1) be fulfilled. If \(u \) is a solution of equation (1.1) in \(\Omega \setminus \{0\} \), then the singularity of \(u(x) \) at the point 0 is removable.

Proof. For \(0 < r < R < \min \{ \text{dist}(0, \partial \Omega), \delta_0, 1 \} \), we denote \(m(r) = \sup \{ |u(x)| : r \leq |x| \leq R \} \). For sufficiently small \(r \leq \min \{ \frac{1}{e^2}, R^2 \} \), we define the function \(\psi_r(x) \) as follows:
\[
\psi_r(x) \equiv 0 \quad \text{for} \quad |x| < r,
\]
\[
\psi_r(x) \equiv 1 \quad \text{for} \quad |x| > \sqrt{r},
\]
\[
\psi_r(x) = \frac{2}{\ln \frac{r}{\sqrt{r}}} \ln \frac{|x|}{r} \quad \text{for} \quad r \leq |x| \leq \sqrt{r}.
\]

We take the following test function
\[
\varphi(x) = \psi_r^\gamma(x) \left[\ln \frac{u}{m(\varrho)} \right]_+^{(3.12)}
\]
for any \(x \in \Omega_\varrho \), where \(0 < \varrho < R \), \(\Omega_\varrho = \{ x \in B_R(0) : u(x) > m(\varrho) \} \), \(\gamma = \sup_{x \in \Pi} \frac{p(x) q(x)}{q(x) - p(x) + 1} \) is a constant and \(\varphi(x) \equiv 0 \) for \(x \notin \Omega_\varrho \).

For some \(0 < \varrho < R \), let the domain \(\Omega_\varrho \) be nonempty. Since \(\varphi(x) \in W_0^{1,p(x)}(\Omega \setminus \{0\}) \cap L^\infty(\Omega \setminus \{0\}) \), testing the equality (2.3) by \(\varphi \), we have
\[
\int_{\Omega_\varrho} A(x, u, \nabla u) \nabla u \frac{\psi_r^\gamma}{u} + g(x, u) \psi_r^\gamma(x) \ln \frac{u}{m(\varrho)} dx
\]
\[
+ \int_{\Omega_\varrho} A(x, u, \nabla u) \gamma \psi_r^{\gamma - 1}(x) \nabla \psi_r \ln \frac{u}{m(\varrho)} dx = 0.
\]

EJQTDE, 2013 No. 58, p. 11
By virtue of the conditions (1.2) – (1.4), we have

\[
\int_{\Omega_e} \mu_1 \frac{|\nabla u|^p(x)}{u} \psi_r^\gamma(x) dx + \int_{\Omega_e} |x|^{-\alpha} u^{g(x)} \psi_r^\gamma(x) \ln \frac{u}{m(\varrho)} dx \\
\leq \mu_2 \gamma \int_{\Omega_e} |\nabla u|^{p(x)-1} |\nabla \psi_r| \psi_r^{\gamma-1}(x) \ln \frac{u}{m(\varrho)} dx.
\]

By Young’s inequality,

\[
\begin{align*}
\mu_2 \gamma & \int_{\Omega_e} |\nabla u|^{p(x)-1} |\nabla \psi_r| \psi_r^{\gamma-1}(x) \ln \frac{u}{m(\varrho)} dx \\
& \leq C(\varepsilon_4) \int_{\Omega_e} u^{p(x)-1} \psi_r^{\gamma-p(x)} |\nabla \psi_r|^{p(x)} \left(\ln \frac{u}{m(\varrho)} \right)^{p(x)} dx + \mu_2 \gamma \varepsilon_4 \int_{\Omega_e} \psi_r^{\gamma-1} |\nabla u|^{p(x)} dx, \end{align*}
\]

take \(\varepsilon_4 = \frac{\mu_1}{2\mu_2 \gamma} \), then

\[
\begin{align*}
\frac{\mu_1}{2} & \int_{\Omega_e} \frac{|\nabla u|^p(x)}{u} \psi_r^\gamma(x) dx + \int_{\Omega_e} |x|^{-\alpha} u^{g(x)} \psi_r^\gamma(x) \ln \frac{u}{m(\varrho)} dx \\
& \leq C(\mu_1, \mu_2, \gamma) \int_{\Omega_e} u^{p(x)-1} \psi_r^{\gamma-p(x)} |\nabla \psi_r|^{p(x)} \left(\ln \frac{u}{m(\varrho)} \right)^{p(x)} dx.
\end{align*}
\]

Further,

\[
\begin{align*}
\int_{\Omega_e} u^{p(x)-1} \psi_r^{\gamma-p(x)} |\nabla \psi_r|^{p(x)} \left(\ln \frac{u}{m(\varrho)} \right)^{p(x)} dx & \\
& \leq C(\varepsilon_5) \int_{\Omega_e} |x|^{\frac{\alpha g(x)}{p(x)-1}+1-\alpha} \left(\ln \frac{u}{m(\varrho)} \right)^{1+\frac{g(x)-1)(q(x))}{p(x)-1}} |\nabla \psi_r|^{p(x) q(x)} dx \\
& \quad + \varepsilon_5 \int_{\Omega_e} |x|^{-\alpha} \ln \frac{u}{m(\varrho)} u^{q(x)} \psi_r^{(\gamma-p(x))q(x)}^{p(x)-1} dx.
\end{align*}
\]

Take \(\varepsilon_5 = \frac{1}{2C(\mu_1, \mu_2, \gamma)} \). Since \(\frac{\gamma-p(x)q(x)}{p(x)-1} > \gamma, \psi_r(x) \leq 1 \), we have

\[
\begin{align*}
\frac{\mu_1}{2} & \int_{\Omega_e} \frac{|\nabla u|^p(x)}{u} \psi_r^\gamma(x) dx + \frac{1}{2} \int_{\Omega_e} |x|^{-\alpha} u^{q(x)} \psi_r^\gamma(x) \ln \frac{u}{m(\varrho)} dx \\
& \leq C(\mu_1, \mu_2, \gamma) \int_{\Omega_e} |x|^{\frac{\alpha g(x)}{\gamma-p(x)+1}-\alpha} \left(\ln \frac{u}{m(\varrho)} \right)^{1+\frac{g(x)-1)(q(x))}{\gamma-p(x)} |\nabla \psi_r|^{p(x) q(x)} dx. \tag{3.13}
\end{align*}
\]
By Lemma 2.1, we get \(0 < 1 + \frac{(p R_R - 1)q R_R}{q R_R - p R_R + 1} < \infty\). Denote \(\lambda = \sup_{x \in \Omega} \left(\frac{p(x) - \alpha}{q(x) - p(x) + 1} + \alpha \right) \), and from Theorem 3.1 and (3.13), we have

\[
\frac{\mu_1}{2} \int_{\Omega} \frac{|\nabla u|^p(x)}{u} \psi_r^\gamma(x) dx + \frac{1}{2} \int_{\Omega} |x|^{-\alpha} u^{q(x)} \psi_r^\gamma(x) \ln \frac{u}{m(\varrho)} dx \\
\leq C \int_{\Omega \cap \{|x| \leq \sqrt{r}\}} |x|^{\alpha q(x)} \frac{1}{q(x) - p(x) + 1} - \alpha \left(\ln |x|^{-Q} + C \right)^{\frac{p(x) - 1}{q(x) - p(x) + 1}} \left(\frac{2}{|x| \ln \frac{1}{|x|}} \right)^{\frac{p(x)q(x)}{q(x) - p(x) + 1}} dx
\]

\[
\leq C \left(\ln \frac{1}{r} \right)^{-\frac{q R_R p R_R}{q R_R - p R_R + 1}} \int_{\Omega \cap \{|x| \leq \sqrt{r}\}} |x|^{\alpha q(x)} \frac{1}{q(x) - p(x) + 1} - \alpha \left(\ln \frac{1}{|x|} \right)^{1+\frac{(p R_R - 1)q R_R}{q R_R - p R_R + 1} \left(\frac{1}{|x|} \right)^{\lambda}} dx
\]

\[
\leq C \left(\ln \frac{1}{r} \right)^{-\frac{q R_R p R_R}{q R_R - p R_R + 1}} \int_{\sqrt{r}}^{\sqrt{r}} \left(\frac{1}{t} \right)^{\lambda} \left(\ln \frac{1}{t} \right)^{1+\frac{(p R_R - 1)q R_R}{q R_R - p R_R + 1} t^{N-1} dt}
\]

where \(C = C \left(N, \mu_1, \mu_2, \gamma, p R_R, p R_R, q R_R, q R_R, R \right) \).

Further, by (1.6), we get \(\lambda < N \), then

\[
\left(\ln \frac{1}{r} \right)^{-\frac{q R_R p R_R}{q R_R - p R_R + 1}} \int_{\sqrt{r}}^{\sqrt{r}} \left(\frac{1}{t} \right)^{\lambda} \left(\ln \frac{1}{t} \right)^{1+\frac{(p R_R - 1)q R_R}{q R_R - p R_R + 1} t^{N-1} dt}
\]

\[
\leq \left(\ln \frac{1}{r} \right)^{-\frac{q R_R p R_R}{q R_R - p R_R + 1}} \left(\ln \frac{1}{r} \right)^{1+\frac{(p R_R - 1)q R_R}{q R_R - p R_R + 1} \int_{\sqrt{r}}^{\sqrt{r}} t^{N-1} dt}
\]

\[
= \left(\ln \frac{1}{r} \right)^{-\frac{q R_R p R_R}{q R_R - p R_R + 1}} \left(\ln \frac{1}{r} \right)^{1+\frac{(p R_R - 1)q R_R}{q R_R - p R_R + 1} \frac{1}{N - \lambda} r^{\frac{1}{2}(N-\lambda)} \left(1 - r^{\frac{1}{2}(N-\lambda)} \right)}
\]

\[
\rightarrow 0,
\]

as \(r \rightarrow 0 \). Therefore, we obtain

\[
\lim_{r \rightarrow 0} \frac{\mu_1}{2} \int_{\Omega} \frac{|\nabla u|^p(x)}{u} \psi_r^\gamma(x) dx + \frac{1}{2} \int_{\Omega} |x|^{-\alpha} u^{q(x)} \psi_r^\gamma(x) \ln \frac{u}{m(\varrho)} dx \leq 0,
\]

then

\[
\mu_1 \int_{\Omega} \frac{\nabla u|^p(x)}{u} dx + \int_{\Omega} |x|^{-\alpha} u^{q(x)} \ln \frac{u}{m(\varrho)} dx = 0.
\]

Hence \(u(x) = m(\varrho) \) almost everywhere in \(\Omega \) and the Lebesgue measure of \(\Omega \) equals to zero. Considering further the function \(-u(x)\) instead of \(u(x)\), we obtain the boundedness of \(-u(x)\) in a neighborhood of the point 0. Thus we have proved that \(u \in L^\infty(\Omega) \).
Next, we take the test function
\[
\tilde{\varphi} = \psi^p u,
\]
where \(\psi \equiv 1 \) in \(B_{2\rho}(0) \setminus B_{\rho}(0) \), \(\psi \equiv 0 \) outside \(B_{2\rho}(0) \setminus B_{\rho}(0) \), \(0 \leq \psi(x) \leq 1 \), \(|\nabla \psi| \leq \frac{C}{\rho} \) and \(0 < \rho \leq 1 \). Testing the equality (2.3) by \(\tilde{\varphi} \), we have
\[
\int_{\Omega} A(x, u, \nabla u) \left(p^+ \psi^{p^+ - 1} u \nabla \psi + \psi^{p^+} \nabla u \right) + g(x, u) \psi^p u \, dx = 0.
\]
By virtue of the conditions (1.2) – (1.5), we have
\[
\int_{B_{5\rho}^\pm(0)} \mu_1 |\nabla u|^{p(x)\psi^p} \left| |x|^{-\alpha} |u|^{p(x)\psi^p} \nabla \psi \right| dx
\]
\[
\leq p^+ \mu_2 \int_{B_{5\rho}^\pm(0)} |\nabla u|^{p(x)\psi^p} - 1 |\nabla \psi| |u| dx
\]
\[
= p^+ \mu_2 \int_{B_{5\rho}^\pm(0)} \left[|\nabla \psi| |u|^{\psi^p - 1 - p^+ \frac{\rho^+}{p(x)}} \right] \left[|\nabla u|^{p(x)\psi^p - 1} \psi^p \right] dx
\]
\[
\leq C(\mu_2, p^+, \varepsilon_6) \int_{B_{5\rho}^\pm(0)} |\nabla \psi| |u|^{p(x)\psi^p - p(x)} dx + p^+ \mu_2 \varepsilon_6 \int_{B_{5\rho}^\pm(0)} |\nabla u|^{p(x)\psi^p} dx.
\]
Take \(\varepsilon_6 = \frac{\mu_1}{2p^\pm \mu_2} \), we have
\[
\int_{B_{5\rho}^\pm(0)} |\nabla u|^{p(x)\psi^p} dx \leq C(\mu_1, \mu_2, p^+) \int_{B_{5\rho}^\pm(0)} |\nabla \psi|^{p(x)\psi^p - p(x)} dx
\]
\[
\leq C \frac{1}{\rho^{p^+}} \max \left\{ ||u||_p^+, ||u||_\infty^p \right\} \left| B_{5\rho}^\pm(0) \right|
\]
\[
\leq C \frac{1}{\rho^{p^+} \omega_n} \left(\frac{5\rho}{2} \right)^N
\]
\[
= C(\mu_1, \mu_2, p^+) \rho^{N - p^+},
\]
where \(\omega_n \) is the volume of the unit ball, \(|B_{5\rho}^\pm(0)| \) is the volume of the ball \(B_{5\rho}^\pm(0) \).

Further,
\[
\int_{B_{2\rho}(0) \setminus B_{\rho}(0)} |\nabla u|^{p(x)} dx \leq C(\mu_1, \mu_2, p^+) \rho^{N - p^+}, \tag{3.14}
\]
then we obtain

\[
\int_{B_\rho(0)} |\nabla u|^p(x) dx = \sum_{j=1}^\infty \int_{B_{2^{-j}\rho}(0)\setminus B_{2^{-j-1}\rho}(0)} |\nabla u|^p(x) dx \\
\leq C \sum_{j=1}^\infty (2^{-j}\rho)^{N-p^+} \\
\leq C(\mu_1, \mu_2, p^+) \rho^{N-p^+} \\
\to 0,
\]

as \(\rho \to 0 \). So \(|\nabla u| \in L^p(x)(\Omega)\).

Thus, we have proved that \(u \in W^{1,p(x)}(\Omega) \cap L^\infty(\Omega) \).

Next, we will show that \(u(x) \) is a solution of equation (1.1) in the domain \(\Omega \). Pick \(\eta_\rho \in C_0^\infty(\mathbb{R}^N) \) be the cutoff function for the ball \(B_\rho(0) \), \(\eta_\rho \equiv 1 \) in \(B_\rho(0) \), \(\eta_\rho \equiv 0 \) outside the ball \(B_{2\rho}(0) \), \(|\nabla \eta_\rho| \leq \frac{C}{\rho} \) and \(0 < \rho \leq 1 \). Let \(\varphi \in W^{1,p(x)}_0(\Omega) \cap L^\infty(\Omega) \). Testing the equation (2.3) by the test function \((1 - \eta_\rho)\varphi\), we have

\[
\int_{\Omega} A(x, u, \nabla u)\nabla[(1 - \eta_\rho)\varphi] dx + \int_{\Omega} g(x, u)(1 - \eta_\rho)\varphi dx = 0,
\]

that is,

\[
\int_{\Omega} A(x, u, \nabla u)(1 - \eta_\rho)\nabla \varphi dx - \int_{\Omega} A(x, u, \nabla u)\varphi \nabla \eta_\rho dx + \int_{\Omega} g(x, u)(1 - \eta_\rho)\varphi dx = 0.
\]

Indeed,

\[
|A(x, u, \nabla u)(1 - \eta_\rho)\nabla \varphi| \leq \mu_2 |\nabla u|^{p(x)-1}|\nabla \varphi| \\
\leq \mu_2 \left(\frac{p(x)-1}{p(x)} |\nabla u|^{p(x)} + \frac{1}{p(x)} |\nabla \varphi|^{p(x)} \right) \\
\in L^1(\Omega),
\]

therefore, by Lebesgue’s Dominated Convergence Theorem, we have

\[
\lim_{\rho \to 0} \int_{\Omega} A(x, u, \nabla u)(1 - \eta_\rho)\nabla \varphi dx = \int_{\Omega} A(x, u, \nabla u)\nabla \varphi dx.
\]

In the same way,

\[
\lim_{\rho \to 0} \int_{\Omega} g(x, u)(1 - \eta_\rho)\varphi dx = \int_{\Omega} g(x, u)\varphi dx.
\]
Meanwhile, by (3.14), we have

\[
\left| \int_{\Omega} A(x, u, \nabla u) \varphi \nabla \eta_\rho dx \right| \leq \frac{C \mu_2}{\rho} \int_{B_{2\rho}(0) \setminus B_{\rho}(0)} |\nabla u|^{p(x)-1} dx
\]

\[
\leq \frac{C(\mu_2)}{\rho} \| |\nabla u|^{p(x)-1} \|_{L^{p(x)}(B_{2\rho}(0) \setminus B_{\rho}(0))} 1 \|_{L^{p(x)}(B_{2\rho}(0) \setminus B_{\rho}(0))} \leq C(\mu_1, \mu_2, p^+) \rho \left(\frac{\rho^{-1}(N-p^+)}{\rho^+} \right)^{\frac{1}{p^+}}
\]

\[
= C(\mu_1, \mu_2, p^+) \rho \left(\frac{\rho^{-1}(N-p^+)}{\rho^+} \right)^{\frac{1}{p^+}} \rightarrow 0
\]

as \(\rho \rightarrow 0 \).

So we have obtained that equality (2.3) is fulfilled for any test function.
Therefore, the isolated singular point 0 is removable for solutions of equation (1.1).

References

[1] M. Ružička. Electrorheological fluids: modeling and mathematical theory. Berlin: Springer-Verlag; 2000.

[2] E. Acerbi, G. Mingione. Regularity results for stationary electro-rheological fluids. Arch Ration Mech Anal. 2002; 164: 213–259.

[3] Y. M. Chen, S. Levine, M. Rao. Variable exponent, linear growth functionals in image restoration. SIAM J Appl Math. 2006; 66: 1383–1406.

[4] O. Kováčik, J. Rákosník. On Spaces \(L^{p(x)} \) and \(W^{k,p(x)} \). Czechoslovak Math J. 1991; 41(116): 592–618.

[5] V. V. Zhikov. On Lavrentiev’s phenomenon. Russ J Math Phys. 1995; 3: 249–269.

[6] V. V. Zhikov. On some variational problems. Russ J Math Phys. 1997; 5: 105–116.

[7] D. E. Edmunds, J. Lang, A. Nekvinda. On \(L^{p(x)} \) norms. Proc Roy Soc London Ser A. 1999; 455: 219–225.

[8] X. L. Fan, D. Zhao. On the spaces \(L^{p(x)} \) and \(W^{m,p(x)} \). J Math Anal Appl. 2001; 263: 424–446.

EJQTDE, 2013 No. 58, p. 16
[9] M. Mihailescu, V. Rădulescu. A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids. Proc Roy Soc London Ser A. 2006; 462: 2625–2641.

[10] J. Chabrowski, Y. Q. Fu. Existence of solutions for $p(x)$-Laplacian problems on a bounded domain. J Math Anal Appl. 2005; 306: 604–618. Erratum in: J Math Anal Appl. 2006; 323: 1483.

[11] Y. Q. Fu. The principle of concentration compactness in $L^{p(x)}$ spaces and its application. Nonlinear Anal. 2009; 71: 1876–1892.

[12] L. Diening, P. Harjulehto, P. Hästö, M. Růžička. Lebesgue and Sobolev Spaces with variable exponents. Lecture Notes in Mathematics. Vol. 2017. Berlin: Springer; 2011.

[13] J. Serrin. Local behavior of solutions of quasilinear equations. Acta Math. 1964; 111: 247–302.

[14] H. Brezis, L. Veron. Removable singularities of some nonlinear elliptic equations. Arch Ration Mech Anal. 1980; 75: 1–6.

[15] J. Serrin. Isolated singularities of solutions of quasilinear equations. Acta Math. 1965; 113: 219–240.

[16] F. Nicolosi, I. V. Skrypnik, I. I. Skrypnik. Precise pointwise growth condition for removable isolated singularities. Comm Partial Differential Equations. 2003; 28: 677–696.

[17] F. I. Mamedov, A. Harman. On the removability of isolated singular points for degenerating nonlinear elliptic equations. Nonlinear Anal. 2009; 71: 6290–6298.

[18] I. I. Skrypnik. Removability of an isolated singularity of solutions of nonlinear elliptic equations with absorption. Ukrainian Math J. 2005; 57: 972–988.

[19] V. Liskevich, I. I. Skrypnik. Isolated singularities of solutions to quasilinear elliptic equations with absorption. J Math Anal Appl. 2008; 338: 536–544.

[20] T. Lukkari. Singular solutions of elliptic equations with nonstandard growth. Math Nachr. 2009; 282: 1770–1787.

[21] P. Cianci. Removability of singularity for an anisotropic elliptic equation of second order with nonstandard growth. Nonlinear Anal. 2010; 73: 1812–1819.

[22] V. Cataldo, P. Cianci. On the removability of singularity for solutions of nonlinear elliptic equations with nonstandard growth. Complex Variables and Elliptic Equations. 2011; 57: 521–531.

[23] J. Moser. A new proof of De Giorgi’s theorem concerning the regularity problem for elliptic differential equation. Comm Pure Appl Math. 1960; 13: 457–468.

(Received July 5, 2013)

EJQTDE, 2013 No. 58, p. 17