Measures used for the evaluation of balance in individuals with Parkinson’s disease: a systematic review

JAMILE BENITE PALMA LOPES1), GILENO EDU LAMEIRA DE MELO3), ROBERTA DELASTA LAZZARI1), CIBELE ALMEIDA SANTOS1), RENATA CALHES FRANCO DE MOURA1), ARISLANDER JONATHAN LOPES DUMONT1), LUIZ ALFREDO FERREIRA BRAUN3), NATALIA ALMEIDA CARVALHO DUARTE1), RODOLFO BORGES PAREIRA3), ISABELA MARQUES MIZIARA3), CLAUDIA SANTOS OLIVEIRA1)*

1) Movement Analysis Lab, University Nove de Julho (UNINOVE): Rua Itapicuru, 380, Apto: 111, Perdizes, CEP: 05006-000, São Paulo, Brazil
2) Center of Biological Sciences and Health, State University Pará (UEPA), Brazil
3) College Guaraicá and State University Midwest (UNICENTRO-PR), Brazil
4) School of Postural and Manual Therapy, Salgado Institute of Integral Health, Paraná, Brazil
5) Electrical Engineering College (FEELT), University of Uberlândia (UFU), Brazil

Abstract. [Purpose] The present literature review was conducted on the use of different measures for the evaluation of balance in patients with Parkinson’s disease. [Materials and Methods] The PubMed, Bireme, SciELO, Lilacs, and PEDro electronic databases were searched for relevant studies. [Results] The searches initially led to the retrieval of 3,623 articles, 540 of which were potentially eligible after limiting the search to clinical trials published in the last five years. A total of 264 duplicates were removed, and 276 articles were excluded based on their titles and abstracts. The full texts of 84 articles were analyzed, and only those with a PEDro score higher than four points (n=25) were included in the review. [Conclusion] Different methods, such as scales, tests, and equipment, are used for the evaluation of balance in patients with Parkinson’s disease. More than one measure has been employed in most studies, and there is no consensus on a single precise measure for the evaluation of balance in this population.

Key words: Parkinson’s disease, Balance, Postural control

INTRODUCTION

Parkinson’s disease (Parkinson’s) is a progressive, chronic, neurodegenerative disease1 stemming from the atrophy of grey matter. It is estimated that 10 million individuals around the world suffer from Parkinson’s, and this figure is expected to double by the year 20302). The prevalence of Parkinson’s ranges from 0.3% among individuals aged less than 60 years to 1% among those aged 60 or older3). The progressive nature of the disease causes both motor and non-motor alterations. The main motor alterations are associated with the risk of falls, which leads to a sedentary lifestyle and the reduction in activities of daily living exerts a negative impact on clinical aspects1–5).

The main clinical manifestations of Parkinson’s are shaking, stiffness, slowness of movement, postural alterations, and stooped gait, leading patients to adopt a flexed posture due to the dominance of pro-gravitational muscles, with forward leaning of the head, the chin tilted toward the thorax, kyphotic thorax, protracted shoulders, the arms rotated internally, and, flexion of the hips, knees, and elbows, which projects the body forward, compromising postural orientation and leading to
impaired balance. All these postural changes, together with other alterations, lead to postural instability, which is considered one of the main characteristics of patients with Parkinson’s. This instability leads to a progressive reduction in both static and dynamic balance, affecting one’s ability to remain standing without support or even sit down.

Researchers believe that postural instability is related to the loss of the capacity to control intentional movements of the center of body mass on the support base during activities that involve the transfer of weight. Many individuals with Parkinson’s demonstrate inadequate interactions among the vestibular, visual, and proprioceptive systems, with consequent changes in the biomechanics of the body.

The motor rehabilitation process for patients with Parkinson’s is normally directed toward static and functional balance training to provide greater interactions with the surrounding environment through treadmill training, balance training involving virtual reality programs, the combination of dance and motor training, etc. A set of assessment measures to determine the effects of particular interventions has been validated and reported in literature. Assessment measures are important for analysis of functional changes in all stages of the disease and are particularly sensitive with regard to the evaluation of therapeutic intervention. The Unified Parkinson’s Disease Rating Scale (UPDRS), Berg Balance Scale, Timed Up and Go Test, Six-Minute Walk Test (6WMT), 10-Meter Walk Test (10MWT), and a force plate to determine the center of pressure are among the measures used for the evaluation of balance. Moreover, a combination of different measures previously used in controlled clinical trials is often employed.

The aim of the present study was to perform a systematic review of the literature for the analysis of different measures used in the evaluation of balance in patients with Parkinson’s disease.

MATERIALS AND METHODS

The PubMed (National Library of Medicine), BVS Bireme, SciELO, LILACS and PEDro electronic databases were searched for relevant studies addressing balance in patients with Parkinson’s disease. For this purpose, the following combinations of keywords were used: Parkinson’s disease and balance evaluation, Parkinson Disease and balance alterations, Parkinson Disease and balance change, Parkinson Disease and change in balance, Parkinson Disease and Balance Control and Parkinson Disease and Postural Control Balance. The search was limited to randomized controlled, clinical trials published in the previous five years (inclusion criteria).

The searches initially led to the retrieval of 3,623 articles, 540 of which were potentially eligible based on the inclusion and exclusion criteria. A total of 264 duplicates were removed, and 276 articles were excluded based on their titles and abstracts. The full texts of 84 articles were analyzed, with the inclusion of only those that met the eligibility criteria and had a PEDro score higher than four points. Thus, 25 studies were selected for the present systematic review (Fig. 1).

RESULTS

Table 1 displays the PEDro scores of the 25 studies that met the eligibility criteria and were included in the present systematic review. Diverse methods for the evaluation of balance in individuals with Parkinson’s were used in studies with different intervention protocols and comparisons between the experimental and control groups (Table 2).

DISCUSSION

In the context of chronic neurological disorders, efforts are made to diminish physical difficulties and allow affected individuals to perform activities of daily living with the greatest possible efficiency and independence. Thus, assessment tools and specific measures that address more generic aspects, such as muscle strength, range of motion, functioning, and im-
improvements in quality of life, are needed for individuals with Parkinson’s. It is important for assessment methods to analyze functional changes in all stages of the disease and to be particularly sensitive in the evaluation of therapeutic interventions.

Among the specific Parkinson’s classification measures used in the studies analyzed, the UPDRS is a validated scale that provides an objective perspective and allows the classification of individuals with Parkinson’s. The UPDRS is also widely used by physiotherapists for the evaluation of balance in clinical practice, as it has specific items for the assessment of this characteristic. The scale was found to be precise and sensitive according to the results of 14 articles analyzed in the present systematic review, the study populations of which were subject to different intervention protocols.

Volpe et al. conducted a study involving 24 patients with Parkinson’s allocated to two groups and assessed balance using the UPDRS. Regarding the motor skills section of the scale, the authors found a significant improvement in the experimental group (dance) in comparison with the control group (conventional physical therapy).

Eleven studies included in the present review used the Berg Balance Scale for the assessment of balance. This scale is composed of 14 tasks that are common in daily living. Each item is scored from 0 to 4 points, with a maximum score of 56.

Table 1. Scores of articles included in literature review

Reference	Eligibility	Randomized allocation	Confidential allocation	Similar prognosis	Blinded subjects	Blinded therapists	Key results	Intention to treat analysis	Comparison between groups	Precision and variability	Score
Abud Qutubuddin et al., 2013	Y	Y	N	Y	N	N	Y	N	Y	Y	5/10
Sara Pires et al., 2014	Y	Y	N	N	N	N	Y	N	Y	Y	6/10
Chirs J., Hass et al., 2012	Y	Y	N	N	N	N	Y	Y	Y	N	6/10
Fuzhong Li et al., 2012	Y	Y	N	N	Y	Y	Y	Y	Y	7/10	
Xia Shen et al., 2015	Y	Y	Y	N	N	Y	Y	Y	Y	8/10	
Natalie E., Allen et al., 2010	Y	Y	Y	N	N	N	Y	N	Y	6/10	
Emma Stack et al., 2012	Y	Y	Y	N	N	N	N	N	Y	5/10	
Xian Shen et al., 2014	Y	Y	Y	Y	N	N	N	N	Y	7/10	
C., Tassorelli et al., 2014	Y	Y	N	N	Y	Y	N	N	Y	8/10	
Nima Toosizadeh et al., 2014	Y	Y	Y	Y	N	N	Y	N	Y	7/10	
Alessandro Picelli et al., 2012	Y	Y	N	Y	N	N	N	N	Y	5/10	
Nicola Smania et al., 2010	Y	Y	Y	Y	Y	Y	Y	Y	Y	10	
Mohan Ganesan et al., 2014	Y	Y	N	Y	N	N	N	N	Y	6/10	
José Eduardo Pompeu et al., 2012	Y	Y	N	N	Y	N	Y	N	Y	6/10	
Nan-yong Lee et al., 2015	Y	Y	N	Y	N	N	N	N	Y	5/10	
Elisa Pelosi et al., 2010	Y	Y	N	Y	N	N	N	N	Y	6/10	
Atefeh Azarpaiakan et al., 2014	Y	Y	Y	Y	Y	Y	Y	Y	Y	10	
Giuseppe Frazzitta et al., 2014	Y	Y	Y	Y	Y	Y	Y	Y	Y	10	
Colleen G., Canning et al., 2014	Y	Y	Y	Y	Y	Y	Y	Y	Y	9/10	
Margaret Schenkman et al., 2012	Y	Y	Y	Y	N	Y	Y	Y	Y	10	
Gustavo Christofoli et al., 2010	Y	Y	Y	Y	N	Y	Y	Y	Y	8/10	
Gao Qiang et al., 2014	Y	Y	Y	Y	N	N	Y	Y	Y	8/10	
Serene S Paulo et al., 2014	Y	Y	Y	Y	Y	Y	Y	Y	Y	10	
Xia Shen et al., 2012	Y	Y	Y	Y	N	N	N	Y	Y	7/10	
Ryan P., Duncan et al., 2012	Y	Y	Y	Y	N	N	N	Y	Y	7/10	

Y: yes; N: no
Authors and year of publication	Study design	Intervention	Outcomes
Abud Qutubuddin et al., 2013	Clinical trial	Forced exercise on stationary bike (EG)	1-UPDRS
			2-BBS
			3-Finger Taping Test
			4-PDQ-39
Sara Pires et al., 2014	Clinical trial	Combination of musical auditory cues and regular physical therapy (EG)	1-UPDRS
		Regular physical therapy alone (CG)	2-BBS
			3-TUG
			4-PDQ-39
Chirs J.Hass et al., 2011	Clinical trial	PRT program (EG)	1-FRT
		No intervention (CG)	2-TUG
			3-UPDRS
Fuzhong Li et al., 2012	Clinical trial	Adapted Tai Chi program	1-Isokinetic dynamometer
		Tree groups; Tai chi, resistance training, and stretching	2-GAITRite
			3-FRT
			4-UPRDS
			5-TUG
Fuzhong Li et al., 2012	Clinical trial	Technology-assisted balance and gait training (EG)	1-Single-leg stance test
		Strengthening exercises (CG)	2-Coordinated stability test
			3-Sway meter
			4-BBS
			5-FOG Questionnaire
			6-SPPB
			7-Short-FES
			8-PDQ-39
Natalie E. Allen et al., 2010	Clinical trial	Minimally supervised exercise program	1-Algorith
			2-Coordinated stability test
			3-Sway meter
			4-BBS
			5-FOG Questionnaire
			6-SPPB
			7-Short-FES
			8-PDQ-39
Xian Shen et al., 2014	Clinical trial	Balance and gait training with enhanced feedback (EG)	1-ABC
		Lower limb strength training (CG)	2-Limits-of-stability test
			3-Single-leg stance test
C. Tassorelli et al., 2014	Clinical trial	Injection of botulinum toxin type A + intensive program (EG)	1-Kinematic analysis of movement
		Saline solution + intensive program (CG)	2-EMG
			3-UPRDS
			4-VAS
Nima Toosizadeh et al., 2014	Clinical trial	Electroacupuncture (EG)	1-SF-12
		Sham treatment (CG)	2-Short-FES
			3-MMSE
			4-UPRS
Alessandro Picelli et al., 2012	Clinical trial	Robot-assisted treadmill training (EG)	1-BBS
		Treadmill training alone (CG)	2-ABC
			3-TUG
			4-10MWT
Nicola Smania et al., 2010	Clinical trial	Balance training (EG)	1-BBS
		General physical exercises (CG)	2-ABC
			3-Postural transfer test
			4-COP
			5-UPRDS
			6-H&Y
			7-Staging scale
			8-GDS
Authors and year of publication	Study design	Intervention	Outcomes
-------------------------------	-------------	--------------	----------
Mohan Ganesan et al., 2013²⁹	Clinical trial	Tree groups: dopamine, dopamine + conventional treadmill training, dopamine + PWSTT	1-UPDRS, 2-Dynamic posturography, 3-BBS, 4-POMA
José Eduardo Pompeu et al., 2012²⁹	Clinical trial	Training performed with 10 Wii Fit™ games (EG) Balance exercises (CG)	1-UPRS
Nam-Yong Lee et al., 2015²⁹	Clinical trial	NDS + FES + Dance (EG) NDS + FES (CG)	1-BBS, 2-Modified Barthel Index, 3-Beck Depression Inventory
Elisa Pelosin et al., 2010²⁹	Clinical trial	Physical therapy + strategic video (EG) Physical therapy + video of landscapes (CG)	1-FOG Questionnaire
Atefeh Azarpaikan et al., 2014³⁰	Clinical trial	NFT training period	1-BBS, 2-ECG, 3-Isokinetic dynamometer
Giuseppe Frazzitta et al., 2014³¹	Clinical trial	Intensive aerobic exercises (EG) Non-intensive exercises (CG)	1-UPDRS, 2-BBS, 3-6WMT
Colleen G. Canning et al., 2014³²	Clinical trial	Minimally supervised exercises – PD WEBB (EG) Habitual care (CG)	1-Coordinated balance stability test, 2-FOG Questionnaire, 3-FES-I, 4-Physical Activity Questionnaire, 5-SF-12V2, 6-SF-6D, 7-PDQ-39
Margaret Schenkman et al., 2012³³	Clinical trial	Supervised FBF and AE physical exercise program (EG) Conventional at-home physical exercise (CG)	1-CS-PFP, 2-FRT, 3-UPRDRS, 4-PDQ-39
Gustavo Christofoletti et al., 2010³⁴	Clinical trial	Balance and motor function stimulation exercise protocol (EG)	1-BBS, 2-TUG
Gao Qiang et al., 2014³⁵	Clinical trial	Yang-style Tai Chi exercise protocol (EG) No intervention (CG)	1-BBS, 2-TUG, 3-UPDRS
Serene S Paulo et al., 2014³⁶	Clinical trial	Muscle strength training of legs with pneumatic equipment (EG) Simulated low-intensity exercise (CG)	1-Muscle strength, 2-10MWT, 3-TUG, 4-Single-leg stance test
Xia Shen et al., 2012³⁷	Clinical trial	Training with repetitive steps on preparatory visual tracks (EG) UM-detook (CG)	1-UPRDS, 2-Limits-of-stability test, 3-GAITRite
Ryan P. Duncan et al., 2012³⁸	Clinical trial	Tango dance program (EG) No intervention (CG)	1-UPRDS, 2-Mini BESTest, 3-FOG Questionnaire, 4-6WMT, 5-9HPT, 6-GAITRite
points. The points are based on the time for which a position is held, the distance to which the upper limb is capable of reaching out in front of the body, and the time required to complete each task. This is a fast, precise assessment tool for detecting changes in balance among individuals with Parkinson’s. In a previous systematic review with meta-analysis, Chih-Hsuan Chou et al. found that a reduction in the gait velocity score on the Berg Balance Scale was correlated with impairment regarding the performance of activities of daily living.

The Timed Up and Go Test is used to quantify functional mobility based on the time (in seconds) required to perform the task of standing up from a chair (seat approximately 46 in height and armrests 65 cm in height), walking three meters, turning around, returning to the chair, and sitting down again. This measure has a specific relationship with gait speed and functional mobility. In the population studied, the Timed Up and Go Test is a good predictor of the risk of falls. Although it was not specifically designed for the assessment of balance, the importance of this measure to the evaluation of dynamic balance related to mobility was evident in the studies analyzed in the present review. In a systematic review with meta-analysis involving 53 studies, Schoene et al. found that the Timed Up and Go Test was a sensitive assessment tool for the evaluation of gait stability and balance in more than 50% of the studies, which is in agreement with the findings of the present systematic review.

A large portion of the studies employed three or more assessment tools, which were always accompanied by tests and equipment. Several studies have addressed the use of assessment measures for the evaluation of balance among individuals with Parkinson’s with the aim of designing interventions that favor an improvement in quality of life and a reduction in the risk of falls. Thus, the studies analyzed evaluated individuals in a complex fashion with functional approaches that were adaptable to the needs of such patients.

The present review shows that a variety of different assessment tools are used for the evaluation of balance in patients with Parkinson’s disease, such as scales, tests, and equipment. The majority of studies employed more than one measure, and there is no consensus regarding a single, precise assessment tool for the evaluation of balance in this population.

ACKNOWLEDGEMENT

The authors gratefully acknowledge financial support from the Brazilian National Council for Scientific and Technological Development (CNPq).

REFERENCES

1) Uhrbrand A, Stenager E, Pedersen MS, et al.: Parkinson’s disease and intensive exercise therapy—a systematic review and meta-analysis of randomized controlled trials. J Neurol Sci, 2015, 353: 9–19. [Medline] [CrossRef]
2) King LA, Priest KC, Nutt J, et al.: Comorbidity and functional mobility in people with Parkinson’s disease. PM R, 2014, 94: 2152–2157.
3) Lenka A, Jhunjhunwala KR, Saini J, et al.: Structural and functional neuroimaging in patients with Parkinson’s disease and visual hallucinations: a critical review. Parkinsonism Relat Disord, 2015, 21: 683–691. [Medline] [CrossRef]
4) Yogev-Seligmann G, Giladi N, Gruendlinger L, et al.: The contribution of postural control and bilateral coordination to the impact of dual tasking on gait. Exp Brain Res, 2013, 226: 81–93. [Medline] [CrossRef]
5) Conradsson D, Lofreguen N, Stahlea A, et al.: The conceptual framework of the novel to balance training in Parkinson’s disease protocol factor a randomized controlled trial. BMC Neurol, 2012, 12: 111.
6) Takeuti T, Maki T, Silva CV, et al.: Correlation between balance and incidence of falls in patients with Parkinson’s disease. Neurosci, 2011, 19: 237–243.
7) Abe PT, Vitorino DF, Guimarães LH, et al.: Análise do equilíbrio nos pacientes com doença de Parkinson grau leve e moderado através da fotogrametria. Neurocienc, 2004, 12: 2.
8) Shen X, Mak MK: Balance and gait training with augmented feedback improves balance confidence in people with Parkinson’s disease: a randomized controlled trial. Neurorehabil Neural Repair, 2014, 28: 524–535. [Medline] [CrossRef]
9) Pompeu JE, Mendes FA, Silva KG, et al.: Effect of Nintendo Wii™-based motor and cognitive training on activities of daily living in patients with Parkinson’s disease: a randomised clinical trial. Physiotherapy, 2012, 98: 196–204. [Medline] [CrossRef]
10) Lee NY, Lee DK, Song HS: Effect of virtual reality dance exercise on the balance, activities of daily living, and depressive disorder status of Parkinson’s disease patients. J Phys Ther Sci, 2015, 27: 145–147. [Medline] [CrossRef]
11) Song CS: Intrarater reliability of action research arm test for individuals with Parkinson’s disease. J Phys Ther Sci, 2012, 24: 1355–1357. [CrossRef]
12) Sampaio RF, Mancini MC, Fonseca ST: Produção científica e atuação profissional: aspectos que limitam essa integração na fisioterapia e na terapia ocupacional. Rev Bras Fisioter, 2002, 6: 3.
13) Cholewa J, Gorzkowska A, Szpelawry M, et al.: Influence of functional movement rehabilitation on quality of life in people with Parkinson’s disease. J Phys Ther Sci, 2014, 26: 1329–1331. [Medline] [CrossRef]
14) Bennie S, Bruner K, Dizon A, et al.: Measurements of balance: comparison of the timed ‘Up and Go’ test reach test with the Berg Balance Scale. J Phys Ther Sci, 2003, 15: 93–97. [CrossRef]
15) Hemmi O, Shibay, Saito T, et al.: Spectral analysis of gait variability of stride interval time series: comparison of young, elderly and Parkinson’s disease patients. J Phys Ther Sci, 2009, 21: 105–111. [CrossRef]
16) Han J, Jung J, Lee J, et al.: Effect of muscle vibration on postural balance of Parkinson’s diseases patients in bipedal quiet standing. J Phys Ther Sci, 2013, 25:
