Niclosamide Suppresses Proliferation, Induces Apoptosis and Inhibits Wnt/β-catenin Signaling Pathway in Human Ovarian Cancer Cells

Ayşe Çakir Gündoğdu1, Gülner Take Kaplanoğlu1, Hülya Sivas2, Reyhan Varol2, Cemile Merve Seymen1

1 Department of Histology and Embryology, Faculty of Medicine, Gazi University, Ankara, Turkey
2 Department of Biology, Faculty of Science, Anadolu University, Eskisehir, Turkey

ABSTRACT

Objective: The aim of this study is to investigate in vitro effects of an antihelminthic drug niclosamide on human ovarian carcinoma cell line OVCAR-3.

Methods: MTT assay was applied to investigate the cytotoxic effects of niclosamide on the cells. β-catenin levels in the cells were analyzed by immunocytochemistry, in order to assess the potency of niclosamide on Wnt/β-catenin signaling pathway that function in cell proliferation. The effects of the drug on apoptosis were detected by TUNEL method. All the assays were also performed for chemotherapy agent 5-fluorouracil (5-FU) and anticancer effects of these two drugs were compared.

Results: It was found that niclosamide at 1 μM and 2 μM concentrations reduced cell viability, whereas 5-FU showed its significant proliferation inhibitory effect at higher concentrations. Niclosamide led to an increase in apoptosis while this effect was weaker compared with 5-FU. Niclosamide treatment decreased β-catenin staining in the cells significantly but 5-FU did not affect β-catenin levels.

Conclusion: The results indicate that niclosamide induces apoptosis and suppresses cell proliferation by inhibiting Wnt/β-catenin signaling pathway in OVCAR-3 cells. In conclusion, these findings warrant further evaluation of niclosamide as a promising therapy for ovarian cancer.

Key Words: OVCAR-3, niclosamide, 5-fluorouracil, Wnt/β-catenin, proliferation, apoptosis

Transmission date: 09.21.2018
Received date: 12.21.2018

ÖZET

Amaç: Bu çalışmanın amacı, antihelmintik bir ilaç olan niklozamidin insan over kanseri hücre hattı OVCAR-3 üzerindeki in vitro etkilerini araştırmaktır.

Yöntemler: Niklozamidin hücreler üzerindeki sitotoksik etkilerini ve hücrelerdeki proliferasyonu inhibe eden potansiyel etkisini değerlendirmek üzere immunocytochemik analiz, hücrelerdeki β-katenin seviyelerini TUNEL yöntemleriyle analiz edilen diğer iki ilaç olan 5-florourasil (5-FU) için de yöntemler uygulandı.

Bulgular: 1 μM ve 2 μM konsantrasyonlardaki niklozamidin hücre canlılığını azalttı, 5-FU ise ancak daha yüksek konsantrasyonlarda olan hücrelerde apoptozine etki sağlamıştır. Niklozamidin apoptozinin etkisi ise 5-FU ile karşılaştırıldığında daha zayıf olup etkilememiştir.

Sonuç: Bulgular sonucunda, niklozamid OVCAR-3 hücrelerinde apoptozis ve hücre proliferasyonu üzerinde inhibisel etkileri bulunmuştur. Bu bulgular, niklozamidin over kanserindeki etkileri hakkında aktüel bir değerlendirme yapmakta durulduğu connaîtur.

Anahtar Sözcükler: OVCAR-3, niklozamid, 5-florourasil, Wnt/β-catenin, apoptozis

Geliş Tarihi: 21.09.2018
Kabul Tarihi: 21.12.2018
INTRODUCTION

Ovarian cancer is the most lethal gynecological malignancy although it is relatively uncommon among the female cancers (1). This high mortality rate is caused by the diagnosis of ovarian cancer usually at an advanced stage. The standard treatment for advanced ovarian cancer is based on the combination of surgery and chemotherapy (2). Although the treatment increases survival rates, the overall survival remains poor because most patients eventually develop tumour recurrence (2). Therefore, it is critical to search for novel therapeutic targets and explore new agents for the treatment of ovarian cancer.

Niclosamide (trade name Nicloside) is an oral salicylanilide in the anthelmintic family that is especially effective against cestodes which infects humans (3). It has been approved by FDA for the treatment of various tapeworm infestations and has been used in humans for approximately 50 years (4). It is believed that niclosamide exhibits its anthelmintic effects by inhibiting oxidative phosphorylation in the mitochondria of the tapeworm, but its mechanism of the action has not been well defined (5). Niclosamide has been identified as a potential cancer therapeutic agent and has antiproliferative activity in many cancer cells (e.g. head and neck cancer, colon cancer, breast cancer, prostate cancer, non-small cell lung cancer, ovarian cancer and acute myeloid leukemia) (6-12). In the present studies it has been demonstrated that niclosamide targets multiple signaling pathways including Stat3, NF-kB, PI3K/Akt and the extracellular signal-regulated kinase (ERK) pathways (13-15). It has been shown that niclosamide inhibits Wnt/β-catenin signaling by inducing the degradation of β-catenin (16). Wnt/β-catenin signaling plays an important role in many biological processes including cell fate specification, differentiation, proliferation, survival, migration, polarity and apoptosis in the great majority of cell types. Abnormalities in the levels and activities of Wnt signaling components cause defects in embryonic development. Aberrations in the Wnt/β-catenin signaling pathway are also involved in various human diseases such as cancer (21-23). Indeed, Wnt/β-catenin signaling has become a focus of research in trying to find targeted therapeutic agents for the treatment of various cancers.

In the present study we sought to investigate the potential effects of niclosamide in human ovarian cancer cells. We analyzed cytotoxic and apoptotic effects of the drug by MTT and TUNEL assays. In addition we explored the inhibitory action of niclosamide against β-catenin levels in the cells by using immunocytochemistry. We compared the results to the findings obtained from the anti-cancer agent 5-fluorouracil (5-FU).

METHODS

Reagents and cell culture

Niclosamide (2’,5-dichloro-4’-nitrosalicylanilide) (N3510) was purchased from Sigma-Aldrich (St. Louis, MO, USA) and was dissolved in DMSO (dimethyl sulfoxide) at a 10 mM concentration. 5-FU (03738) was obtained from Fluka (St. Louis, MO, USA) and was dissolved in DMSO (dimethyl sulfoxide) at a 10 mM concentration. The OVCAR-3 cell line OVCAR-3 was purchased from American Type Culture Collection (ATCC) (Rockville, MD, USA) and was cultured in RPMI-1640 medium (Lonza, Walkersville, MD) supplemented with 20% heat inactivated fetal bovine serum (FBS), 1% penicillin/streptomycin, 0.01 mg/mL bovine insulin and 1 mM sodium pyruvate (Sigma-Aldrich, St. Louis, MO, USA) at 37°C in a humidified incubator with a mixture of 95% air and 5% CO2.

Cell proliferation assay

The effects of niclosamide and 5-FU on cell proliferation were determined by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay as previously described, with some modification (24). Briefly, the exponentially growing cells (5x104 cells/well) were seeded in 96-well plates. After 48 h incubation, the cells were treated with various concentrations of niclosamide (0.2 μM, 0.4 μM, 1 μM, 2 μM, 5 μM, 10 μM, 20 μM, 40 μM) and 5-FU (0.2 μM, 0.5 μM, 10 μM, 20 μM, 40 μM). After incubation for 24, 48 and 72 h, the incubation medium was replaced with 25 μL 5 μg/ml MTT solution for incubation for 3 h at 37°C. The MTT solution was subsequently discarded, and 100 μL DMSO was added to dissolve the precipitate completely at room temperature. The optical density (OD) of each well was then measured by a BioTek EL808 microplate spectrophotometer (Winooski, VT, USA). The cell viability was expressed as relative viable cell number as compared with control OVCAR-3 cells and median inhibitory concentration (IC50) values were calculated. Each experiment was performed as quadruplicate and replicated at least 3 times.

TUNEL staining

Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay was used to detect DNA fragmentation and apoptotic cell death in OVCAR-3 cells. The TUNEL assay was performed using the ApopTag® Plus Peroxidase In Situ Apoptosis Detection Kit (Cat no. S7101) (Chemicon, Temecula, CA, USA). OVCAR-3 cells were plated in adherent conditions in round coverslips inserted in 24-well plates at 3x104 cells per well. After 48 h incubation, the cells were treated with 1 μM and 2 μM niclosamide or 10 μM and 20 μM 5-FU for 48h. Cells were fixed in 1% paraformaldehyde and permeabilized with 0.1% Triton X-100 solution in PBS for 5 min at 4°C. After endogenous peroxidase was inactivated in 3% hydrogen peroxide, cells were incubated in normal goat serum (5% v/v) and 2% bovine serum albumin (5% v/v) for 30 min at room temperature. The cell suspension was incubated with biotinylated goat anti-human IgG (1:50) for 30 min at room temperature. After washing, the slides were incubated with streptavidin peroxidase (859043) (Invitrogen, Carlsbad, CA) enzyme for 20 min. Peroxidase (TUNEL) assay was used to detect DNA fragmentation and apoptotic cell death. Cells were mounted using mounting medium and examined under computerized photolight microscope (Leica DM4000 B, Germany).

Immunocytochemical staining

Immunocytochemical staining (ICC) was performed on the cell-bearing coverslips of each experimental group. Rabbit polyclonal anti-β-catenin (71-2700) was purchased from Invitrogen (Carlsbad, CA) and used according to the manufacturer’s instruction. Briefly, the coverslips were washed with phosphate-buffered solution (PBS, pH 7.4), incubated for 5 minutes in 3% H2O2 and epitopes were stabilized by application of serum blocking solution for 5 min. Cells were then incubated with diluted primary antibody (1:100) overnight at 4°C in a humidity chamber followed by treatments with the biotinylated secondary antibody (859043) (Invitrogen, Carlsbad, CA) for 20 min and streptavidin peroxidase (859043) (Invitrogen, Carlsbad, CA) for 20 min. Color reaction was developed using DAB and cells were counterstained with Harris’ hematoxylin (008011) (Invitrogen, Carlsbad, CA). Cells were examined under a computerized photolight microscope (Leica DM4000 B, Germany).

Cells with cytoplasmic β-catenin staining were scanned in the 6 areas (1 central and 5 peripheral) of each coverslip. According to the staining intensity, the staining results were evaluated by two independent researchers and scored as negative (0), faint (1), weak to moderate (2), moderate to strong (4) and strong (5).

Statistical analysis

Data values of MTT assays were given as mean ± standard deviation (SD). Statistical differences were analyzed by one-way analysis of variance (ANOVA) carried out using SPSS 11.5 for windows (SPSS Inc, Chicago, USA). Scheffe and Tamhane tests were used as a post-hoc method to determine differences among groups and were considered statistically significant when p<0.001. SPSS 17.0 for windows (SPSS Inc, Chicago, USA) was used to analyze the data obtained from TUNEL assay and immunocytochemical staining. To determine whether TUNEL-positive cell count in each experimental group is statistically significant, z-test was applied. Proportion of positive cells to total cell number in one group compared with the other groups and differences at p<0.05 were considered statistically significant. The nonparametric Kruskal–Wallis test was conducted for comparing β-catenin staining intensity between groups. Since the statistical significance (p<0.001) was determined, Mann–Whitney U test was used to analyze differential immunostaining in the groups and p values less than 0.05 were considered to be statistically significant.

Statistical analysis

Data values of MTT assays were given as mean ± standard deviation (SD). Statistical differences were analyzed by one-way analysis of variance (ANOVA) carried out using SPSS 11.5 for windows (SPSS Inc, Chicago, USA). Scheffe and Tamhane tests were used as a post-hoc method to determine differences among groups and were considered statistically significant when p<0.001. SPSS 17.0 for windows (SPSS Inc, Chicago, USA) was used to analyze the data obtained from TUNEL assay and immunocytochemical staining. To determine whether TUNEL-positive cell count in each experimental group is statistically significant, z-test was applied. Proportion of positive cells to total cell number in one group compared with the other groups and differences at p<0.05 were considered statistically significant. The nonparametric Kruskal–Wallis test was conducted for comparing β-catenin staining intensity between groups. Since the statistical significance (p<0.001) was determined, Mann–Whitney U test was used to analyze differential immunostaining in the groups and p values less than 0.05 were considered to be statistically significant.
RESULTS

Niclosamide inhibits proliferation of OVCAR-3 cells

Cytotoxic effect of niclosamide in OVCAR-3 cells was evaluated by MTT assay. OVCAR-3 cells were incubated for 3 days with various concentrations (1–40 μM) of 5-FU to assess the antiproliferative action of the drug. 24 h after the treatment, there was no significant effect on cell viability. Concentrations 20 μM and above of 5-FU significantly inhibited OVCAR-3 cell growth and 20 μM concentration was determined as the IC₅₀ value of the drug (Figure 1A).

OVCAR-3 cells were exposed to increasing concentrations of niclosamide (0.2–8 μM) for 24, 48 and 72 h. Niclosamide exhibited weak antiproliferative activity against cancer cells after 24 h incubation. It inhibited cell growth after 48 h of treatment at 1 μM, 2 μM, 4 μM and 8 μM concentrations with 50% inhibition concentration (IC₅₀) of 2 μM. The viability of cells was decreased dramatically after 72 h exposure of niclosamide (Figure 1B).

Figure 1. Viability of OVCAR-3 cells treated with drugs for 24, 48 and 72 hours, performing MTT test (* p≤ 0.001). DMSO: 0.1% (v/v). 5-FU treatment (a). Niclosamide treatment (b)
Niclosamide induces apoptosis in OVCAR-3 cells

Data obtained from TUNEL assay showed that niclosamide significantly induced apoptosis in a dose-dependent manner in OVCAR-3 cells compared with the control and the DMSO control. However, percentage of TUNEL-positive cells indicated that 5-FU was more competent to induce apoptosis (Figure 2A). When 10 μM and 20 μM 5-FU triggered cell death in 63% and 90% of OVCAR-3 cells, apoptotic cell rates were 45% and 67% at the 1 μM and 2 μM niclosamide concentration respectively. Significant differences between groups were analyzed statistically (Figure 2B).

Figure 2. TUNEL staining of OVCAR-3 cells after 5-FU and niclosamide exposure for 48 h. TUNEL-positive cells (►), TUNEL-negative cells (∆), nucleus (+), nucleolus (⌂), cytoplasm (↔), weakly stained cells (⃰), ondulation on cell membrane (♦), nucleus with damaged chromatin structure (+), nuclear fragments as apoptotic bodies (◊) and lobulated nucleus (¶). Scale bars: 50μm for A, B, C, D, E, F; 20μm for A', B', C', D', E', F' (A). TUNEL-positive cell percentages compared between groups (*p < 0.001) (B)

Wnt/β-catenin pathway inhibition in OVCAR-3 cells by niclosamide

To elucidate the effects of niclosamide on β-catenin levels immunocytochemical staining was performed and location and relative abundance of the protein were evaluated. β-catenin was distributed in cell membrane and cytoplasm of OVCAR-3 cells under normal culture conditions. Strong membranous and moderate cytoplasmic staining was observed in the control and DMSO control cells. After 1 μM niclosamide treatment for 48 h, staining intensity became weaker. At the 2 μM concentration of niclosamide, β-catenin staining was significantly decreased. Most of the cells showed negative immunoreactivity whereas weak cytoplasmic staining was detected in a small number of cells (Figure 3A). Intensity comparisons between groups showed that reducing effect of niclosamide on β-catenin levels in the cells was statistically significant (Figure 3B). Staining protocol was also performed for the 10 μM and 20 μM concentrations of the 5-FU and reactivity intensity was found quite similar to control and DMSO control at both concentrations (Figure 3A). There were no statistically significant differences among control, DMSO control and 5-FU groups (Figure 3B).
DISCUSSION

Development of novel anticancer drugs that show less toxicity and are able to be administrated orally is important to improve the ovarian cancer treatment. Repurposing existing drugs that have been used for other indications to find new uses is an attractive strategy for the drug development process. Niclosamide is a salicylic acid derivative anti-helminthic drug that is effective against human tapeworms. It has low toxicity in mammals (oral LD$_{50}$ in rats, >5,000 mg/kg) and is safe (25, 26). Niclosamide has been recently investigated for use in cancer therapy because of its convenient properties. It has been demonstrated that niclosamide is able to inhibit cell proliferation and induce apoptosis at very low concentrations in many human cancer cells. IC$_{50}$ value was found to be less than 1 μM and niclosamide induced apoptosis at 1.2 and 2.4 μM concentrations in prostate and breast cancer cell lines (14). Significant anti-proliferative actions were detected at niclosamide concentrations 0.5–1.0 μM and the apoptotic induction was established in multiple myeloma cells (27). In the present study, we demonstrated the potential therapeutic activity of niclosamide against human ovarian cancer cells. Niclosamide inhibited cell proliferation in a dose- and time-dependent fashion. We showed that niclosamide displayed a significant anti-proliferative effect at a concentration as low as 2 μM after 48 h incubation of OVCAR-3 cells. This action was greater than 5-FU, the anti-cancer drug which is already used for treatment of several cancers, whose IC$_{50}$ value has been found to be 20 μM against OVCAR-3 cells in dose-response experiments. We also determined that niclosamide was able to induce ovarian cancer cell apoptosis significantly at 2 μM concentration compared to the control (p<0.05). However, 20 μM of 5-FU was more potent than niclosamide in apoptosis induction after 48 h incubation and this finding was validated with statistical comparison (p<0.001). Our data revealed that niclosamide is a potential therapeutic agent for ovarian cancer.

The Wnt/β-catenin signaling pathway is involved in tissue development and homeostasis. The target genes of the pathway regulate cell proliferation and apoptosis, and evidences indicated that aberrant up-regulation of this pathway promotes tumorigenesis of a variety of cancers (3-5). Dysregulation of Wnt/β-catenin signaling on the cell membrane, in the cytoplasm, and in the nucleus leads to aberrant activation of pathway and is involved in carcinogenesis of ovarian cancer (8). Thus, targeting the Wnt/β-catenin pathway is a promising new approach for the ovarian cancer therapy. Several studies demonstrated that niclosamide could inhibit Wnt/β-catenin signaling by down-regulating cytosolic β-catenin expression (22, 23).

Yo et al. used a drug screening method with more than 1200 clinically approved drugs and demonstrated that niclosamide selectively inhibits the growth of stem-like ovarian cancer-initiating cells by modulating metabolic signaling pathways including Wnt pathway (18). A significant reduction of Wnt/β-catenin signaling was observed in tumor cells isolated from patients’ ascites with primary ovarian cancer treated with niclosamide and carboplatin combination (28).
It has been reported that more soluble niclosamide analogs are able to produce cytotoxicity and inhibit Wnt signaling in ovarian cancer patient samples (29). King et al. reported that niclosamide inhibits WNT7A levels and TCF/LEF activity stimulated by a constitutively active β-catenin in human ovarian cancer cells (30). In this study, we investigated the status of Wnt/β-catenin signaling in OVCAR-3 cells and effects of niclosamide on the pathway. This was the first study which uses immunocytochemistry to investigate the Wnt/β-catenin signaling pathway mediated cell proliferation inhibitory effect of the drug on OVCAR-3 cells. We showed that cytotoxic β-catenin levels were increased in the cancer cells and after 2 μM niclosamide treatment for 48 h, cytoplasmic distribution of β-catenin was significantly reduced compared to the control (p<0.05). There was no statistically significant alteration of β-catenin labeling following 5-FU treatment of cells (p>0.05). These data suggest that niclosamide is a potent Wnt/β-catenin signaling inhibitor by inhibiting cytosolic β-catenin accumulation in ovarian cancer cells.

In conclusion, our data indicate that niclosamide inhibits ovarian cancer cell growth and induces apoptosis in vitro at low concentrations. Its antiproliferative activity might be caused by inhibiting Wnt/β-catenin signaling pathway in ovarian cancer cells. Niclosamide is a candidate monotherapy or in combination with current chemotherapeutics for the treatment ovarian cancer and worthy of further investigations.

Conflict of interest

No conflict of interest was declared by the authors.

REFERENCES

1. Lowe KA, Chia VM, Taylor A, O’Malley C, Kelsh M, Mohamed M, et al. An international assessment of ovarian cancer incidence and mortality. Gynecol Oncol 2013; 130:107-114.

2. Vargas-Hernández VM, Moreno-Eutimio MA, Acosta-Altamirano G, Vargas-Aguilar VM. Management of recurrent epithelial ovarian cancer. Gland Surg 2014; 3:198-202.

3. Garin J, Despeignes J, Billeau M: Present treatment of taeniasis with niclosamide. Lyon Med 1964; 212:1581-8.

4. Pearson RD, Hewlett EL. Niclosamide therapy for tapeworm infections. Ann Intern Med 1985; 102:550-1.

5. Weinbach EC, Garbus J. Mechanism of action of reagents that uncouple oxidative phosphorylation. Nature 1969; 221:1016-8.

6. Li R, You S, Hu Z, Chen ZG, Sica GL, Khuri FR, et al. Inhibition of STAT3 by niclosamide synergizes with erlotinib against head and neck cancer. PloS one 2013; 8: e74670.

7. Shi L, Zheng H, Hu W, Zhou B, Dai X, Zhang Y, Liu Z, Wu X, Zhao C, Liang G. Niclosamide inhibition of STAT3 synergizes with erlotinib in human colon cancer. Onco Targets Ther 2017; 10:1767-776.

8. Gangrade A, Patahk V, Augelli-Zafran CE, Wei HY, Oliver P, Suto M, et al. Preferential Inhibition of Wnt/β-Catenin Signaling by Novel Benzimidazole Compounds in Triple-Negative Breast Cancer. Int J Mol Sci 2018; 19. pii: E1524.

9. Schweizer MT, Haugk K, McKiernan JS, Gulati R, Cheng HH, Mues JL, et al. A phase I study of niclosamide in combination with enzalutamide in men with castration-resistant prostate cancer. PLoS One 2018; 13:e0198389.

10. Li R, Hu Z, Sun SY, Chen ZG, Owonikoko TK, Sica GL, et al. Niclosamide overcomes acquired resistance to erlotinib through suppression of STAT3 in non-small cell lung cancer cells. Mol Cancer Ther 2013; 12:2200-12.

11. Yo YT, Lin YW, Wang YC, Balch C, Huang RL, Chan MWY, et al. Growth inhibition of ovarian tumor—initiating cells by niclosamide. Mol Cancer Ther 2012; 11:1709-12.