Supplementary Materials for

Therapeutic targeting miR130b counteracts diffuse large B-cell lymphoma progression via OX40/OX40L-mediated interaction with Th17 cells

Rui Sun1, Pei-Pei Zhang2, Xiang-Qin Weng1, Xiao-Dong Gao1, Chuan-Xin Huang3, Li Wang1, Xiao-Xia Hu1, Peng-Peng Xu1, Lin Cheng1, Lu Jiang1, Di Fu1, Bin Qu4, Yan Zhao1, Yan Feng5, Hong-Jing Dou2,*, Zhong Zheng1,*, Wei-Li Zhao1,*

1Rui Sun, Pei-Pei Zhang, Xiang-Qin Weng and Xiao-Dong Gao contributed equally to this work.

1Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.

2State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, National Research Center for Translational Medicine at Shanghai, Shanghai Jiao Tong University, Shanghai, China.

3Department of Immunobiology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

4Department of Laboratory Medicine, Shanghai RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

5State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
*Corresponding authors: Wei-Li Zhao, Ph.D. Email: zhao.weili@yahoo.com, Zhong Zheng, Ph.D. Email: zheng_zhong89@163.com, Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 197 RuiJin Er Road, Shanghai 200025, China. Tel: 0086-21-64370045, Fax: 0086-21-64743206.
Hong-Jing Dou, Ph.D. Email: hjdou@sjtu.edu.cn, State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, National Research Center for Translational Medicine at Shanghai, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China. Tel: 0086-21-54748860, Fax: 0086-21-34202749.

This PDF file includes:

 Supplementary Table. 1 to Supplementary Table. 2
 Supplementary Fig. 1 to Supplementary Fig. 7
Characteristics	PFS		OS	
	HR (95% CI)	P value	HR (95% CI)	P value
Sex				
Female	1.243	0.190	1.233	0.290
Male				
Age				
> 60 years	1.567	0.006	2.471	<0.001
≤ 60 years				
ECOG				
0-1	2.394	<0.001	2.413	<0.001
2				
Ann Arbor				
I-II	3.406	<0.001	3.349	<0.001
III-IV				
Extranodal involvement				
No	1.381	0.051	1.349	0.133
Yes				
LDH				
Normal	4.060	<0.001	3.686	<0.001
Elevated				
International Prognostic Index (IPI)				
0-2	3.397	<0.001	3.462	<0.001
3+5				
MiR130b				
Low	3.232	<0.001	2.642	<0.001
High			1.720-4.060	<0.001
Variable	HR	(95% CI)	P value	
----------	------	--------------	---------	
PFS				
IPI	3.115	2.236-4.339	<0.001	
MiR130b	2.940	2.024-4.272	<0.001	
OS				
IPI	3.147	2.104-4.707	<0.001	
MiR130b	2.302	1.494-3.548	0.008	
Supplementary Fig. 1 Transfection efficiency of miR130b. a Real-time PCR analysis of miR130b expression in DB cells and OCI-ly10 cells. b Real-time PCR analysis of miR130b expression in DB cells transfected with control mimics or miR130b mimics, and OCI-ly10 cells
transfected with control inhibitor or miR130b inhibitor. c Real-time PCR analysis of IFNAR1, IFNAR2, STAT1, STAT2, STAT3 and OX40L on DB cells transfected with control mimics, miR130b mimics and OCI-ly10 cells transfected with control inhibitor, miR130b inhibitor. Data are summarized as mean ± SD (n=3). d Western blot analysis of IFNAR1, IFNAR2, p-STAT1, STAT1, p-STAT2, STAT2, p-STAT3, STAT3 and OX40L on DB cells transfected with control mimics, miR130b mimics and OCI-ly10 cells transfected with control inhibitor, miR130b inhibitor.
Supplementary Fig. 2 Representative flow cytometry images of miR130b modulated OX40/OX40L-mediated B-lymphoma cell interaction with Th17 cells via IFNAR1/p-STAT1 axis. a Representative flow cytometry images of OX40L expression on miR130b mimics
transfected DB co-culture system and miR130b inhibitor transfected OCI-ly10 co-culture system.

b Representative flow cytometry images of OX40L expression in the IFNAR1-knockdown DB co-culture system and IFNAR1-overexpressing OCI-ly10 co-culture system. c Representative flow cytometry images of OX40 expression in the IFNAR1-knockdown DB co-culture system and IFNAR1-overexpressing OCI-ly10 co-culture system. d Representative flow cytometry images of OX40L expression in the STAT1-knockdown DB co-culture system and STAT1-overexpressing OCI-ly10 co-culture system. e Representative flow cytometry images of OX40 expression in the STAT1-knockdown DB co-culture system and STAT1-overexpressing OCI-ly10 co-culture system. f Representative flow cytometry images of OX40L expression in DB cells and OCI-ly10 cells upon treatment with p-STAT1 inhibitor. g Representative flow cytometry images of OX40L expression in the STAT1^{Y701F} DB cells and STAT1^{Y701F} OCI-ly10 cells. h Representative flow cytometry images of Th17 cell percentage in the OX40L-knockdown DB co-culture system and OX40L-overexpressing OCI-ly10 co-culture system.
Supplementary Fig. 3 MiR130b regulated immune checkpoint genes. a Flow cytometry analysis of immune checkpoint genes in the control mimics or miR130b mimics transfected DB co-culture system. Data are summarized as mean ± SD (n=3). b Flow cytometry analysis of immune checkpoint genes in the control inhibitor or miR130b inhibitor transfected OCI-ly10 co-culture system. Data are summarized as mean ± SD (n=3).
Supplementary Fig. 4 Intracellular distribution and transfection efficiency of Cy5.5/Fam-labeled LNPs-miR130b control and Cy5.5/Fam-labeled LNPs-miR130b. a The particle size distribution, hydrodynamic size and zeta potential of the LNPs, LNPs-miR130b control and LNPs-miR130b antagonim. b Transmission electron microscope images of the LNPs, LNPs-miR130b control and LNPs-miR130b antagonim (negatively stained by phosphotungstic acid). c Immunofluorescence assay of LNPs and nucleotide in DB cells (left panel) and OCI-ly10 cells (right panel) transfected with Cy5.5/Fam-labeled LNPs-miR130b control or Cy5.5/Fam-labeled LNPs-miR130b antagonim. d Real-time PCR analysis of miR130b expression in DB cells transfected with Cy5.5/Fam-labeled LNPs-miR130b control or Cy5.5/Fam-labeled LNPs-miR130b antagonim and OCI-ly10 cells transfected with Cy5.5/Fam-labeled LNPs-miR130b control or Cy5.5/Fam-labeled LNPs-miR130b antagonim. Data are summarized as mean ± SD (n=3).
Supplementary Fig. 5 MiR130b regulated immune cell accumulation and cytokine secretion

a Flow cytometry analysis of immune cell subsets in the control mimics or miR130b mimics transfected DB co-culture system upon treatment with LNP-s-miR130b control or LNP-s-miR130b...
antagomir. Data are summarized as mean ± SD (n=3). b Flow cytometry analysis of immune cell subsets in the control inhibitor or miR130b inhibitor transfected OCI-ly10 co-culture system upon treatment with LNPs-miR130b control or LNPs-miR130b antagonir. Data are summarized as mean ± SD (n=3). c ELISA analysis of related immunological cytokines in the control mimics or miR130b mimics transfected DB co-culture system upon treatment with LNPs-miR130b control or LNPs-miR130b antagonir. Data are summarized as mean ± SD (n=3). d ELISA analysis of related immunological cytokines in the control inhibitor or miR130b inhibitor transfected OCI-ly10 co-culture system upon treatment with LNPs-miR130b control and LNPs-miR130b antagonir. Data are summarized as mean ± SD (n=3).
Supplementary Fig. 6 MiR130b mediated tumor apoptosis and cell cycle.

a Flow cytometry analysis of DB cell apoptosis in the control mimics or miR130b mimics transfected DB co-culture system upon treatment with or without OX40 agonistic antibody.

b Flow cytometry analysis of OCI-ly10 cell apoptosis in the control inhibitor or miR130b inhibitor transfected OCI-ly10 co-culture system upon treatment with or without OX40 agonistic antibody.

c Flow cytometry analysis of DB cell cycle in the control mimics or miR130b mimics transfected DB co-culture system upon treatment with or without OX40 agonistic antibody.

d Flow cytometry analysis of OCI-ly10 cell cycle in the control inhibitor or miR130b inhibitor transfected OCI-ly10 co-culture system upon treatment with or without OX40 agonistic antibody.
Supplementary Fig. 7 IL17 inhibitor mediated tumor autophagy. a Cell growth in the control mimics or miR130b mimics transfected DB co-culture system upon treatment with or without IL17 inhibitor. MTT assay was adopted to measure cell viability. Data are summarized as mean ± SD (n=3). b Cell growth in the control inhibitor or miR130b inhibitor transfected OCI-ly10 co-culture system upon treatment with or without IL17 inhibitor. MTT assay was adopted to measure cell viability. Data are summarized as mean ± SD (n=3). c Transmission electron microscope showed typical autophagosomes in the control mimics or miR130b mimics transfected DB co-culture system and control inhibitor or miR130b inhibitor transfected OCI-ly10 co-culture system upon treatment with or without IL17 inhibitor. The cells were counted from five visions selected at random and subjected for statistical analysis. Data are summarized as mean ± SD (n=5).