Neopterin and other inflammatory markers in the early period following allogeneic bone marrow transplantation: series of 3 cases

Beata Kuśnierz-Cabala¹, Dorota Hawrylecka², Patrycja Mensah-Glanowska², Beata Piątkowska-Jakubas³, Bogdan Solnica¹, Aleksander B. Skotnicki², Paulina Dumnicka³

¹ Diagnostics Unit, Department of Clinical Biochemistry, Jagiellonian University School of Medicine, Kraków, Poland
² Department of Hematology, Jagiellonian University School of Medicine, Kraków, Poland
³ Diagnostics Unit, University Hospital, Kraków, Poland

KEY WORDS

allogeneic bone marrow transplantation, interleukin 18, neopterin, serum amyloid A

ABSTRACT

The 3 case reports presented here constitute a pilot study assessing the profile of changes in concentrations of selected inflammatory markers, including C-reactive protein, serum amyloid A, neopterin, and interleukin 18, in an early period after allogeneic stem cell transplantation.

INTRODUCTION

Allogeneic hematopoietic stem cell transplantation (alloHSCT) is currently a recognized therapeutic option for malignant and nonmalignant diseases of the hematopoietic system. High-dose chemotherapy and transplantation-conditioning chemoradiotherapy entail organ and tissue damage and thus may cause inflammation and release of cytokines as well as inflammatory mediators (tumor necrosis factor-α [TNF-α], interleukin [IL]-1β, IL-18).

1‑3 The onset of acute graft versus host disease (aGVHD) coincides with the period of aplasia associated with the highest risk of infection and other complications resulting from the toxicity of conditioning therapy. Hence, the differential diagnosis of early posttransplant complications poses a major clinical challenge.1,2,4

Acute phase proteins, especially C-reactive protein (CRP), are commonly used to monitor the activity of inflammatory response. Serum amyloid A protein (SAA) is synthesized in the liver in response to stress and inflammation, mainly under the influence of IL-1β, IL-6, and TNF-α. SAA is characterized by the most dynamic increase in serum concentrations among all the known acute phase proteins, and its measurement is more useful than that of CRP levels in patients subjected to immunosuppression during bone marrow transplantation.5

Neopterin is regarded as a marker of cell-mediated immune response, and its determination is sometimes useful in evaluating the extent of the inflammatory response and its prognosis. Neopterin is mainly used for monitoring allogeneic graft recipients, so as to early diagnose complications such as bacterial and viral infections.6

CASE 1

The patient was a 19-year-old man with severe aplastic anemia. Cyclophosphamide (Cy200) was used in graft conditioning. The graft material was made up of stem cells harvested from human leukocyte antigen (HLA)-compatible bone marrow taken from the patient’s brother (mononuclear cells [MNC] 5.95 × 10⁸/kg body weight, CD34(+) 3.15 × 10⁶/kg body weight). Cyclosporine A and 4 doses of methotrexate (8 mg/m²) were used for GVHD prophylaxis (TABLE). No complications occurred in the posttransplant period. Spontaneous hematopoietic regeneration (>500 neutrophiles/μl) was achieved on day 15. No aGVHD signs and symptoms were observed. The patient was discharged 28 days after grafting. We did not detect any symptoms of chronic GVHD during follow-up.

From day –7 (before alloHSCT), IL-18 concentrations started to fall within the value range determined in the population of healthy volunteers (31.6–257.8 pg/ml), reaching maximum values of 235.9 pg/ml on day +4 (after alloHSCT). The CRP and SAA concentrations remained close...
to the normal range, and during the whole peri-
transplant period did not exceed 7.2 mg/l for SAA,
and 4.29 mg/l for CRP (day 0). Absence of an in-
flammatory process and activation of the im-
mune system were confirmed by normal neopt-
terin concentrations (0–10 nmol/l), which were
maintained during the peritransplant period.
The highest concentration (17.45 nmol/l) was
observed on day 0.

CASE 2 The patient was a 38-year-old woman
with acute myeloblastic leukemia (AML-M4 ac-
cording to the French-American-British [FAB]
classification), and a high risk of disease relapse
due to complex cytogenetic changes. Chemother-
apy using BuCy2 was applied for graft condition-
ing. Graft material was harvested from HLA-com-
patible peripheral blood obtained from the pa-
tient’s brother after prior mobilization by granu-
locyte colony-stimulating factor (G-CSF), in doses
of MNC 2.17×10^{8}/kg body weight, and CD34(+) 4.52×10^{6}/kg
body weight (**Table**). Furthermore,
there was major and minor ABO and Rh– incom-
patibility. Cyclosporine A and methotrexate were
used for GVHD prophylaxis. During the period
of aplasia, the patient was pyrexic (>38°C from
day +7), and the results of microbiological tests
were negative. Spontaneous regeneration of he-
matopoiesis (neutrophiles >500/μl) was achieved
on day +16. During follow-up, there were symp-
toms of aGVHD, manifest as a cutaneous rash
covering 50% of the body surface area, chole-
static jaundice with deterioration of the patient’s
condition, classified as stage 3 and requiring sys-
temic steroid therapy on day +17. Initially, there
was a positive response to immunosuppressive
therapy, but later infectious complications de-
veloped and increasing cytopenia occurred due
to ABO incompatibility, among others. Eventu-
ally, aGVHD transformed into a chronic extensive
form with a number of complications. The pa-
tient died on day 198 as a result of posttrans-
plant complications.

From day –7, IL-18 concentrations were twice
as high as in Case 1, thus exceeding normal val-
ues. An almost 2- to 3-fold increase in its concen-
tration for 10 days after alloHSCT indicates acti-
vation of the immune system. Neopterin, whose
concentrations between day –7 and +8 remained
normal, is characterized by alternative dynamics.
Starting from day +10, a more than 2-fold increase
in concentration was noted (from 23.40 nmol/l
on day +10, to 42.13 nmol/l on day +18). High
neopterin concentrations, which confirmed con-
stant inflammatory stimulation, were consist-
tent with clinical symptoms of stage 3 aGVHD.
In this case, the CRP measurement was useful.
Starting from day +4, there was a significant in-
crease in CRP, and the peak levels were reached
on day +8. For SAA, however, an almost 3-fold in-
crease was observed on day +2, with a maximum
concentration of 293 mg/l on day +6.

TABLE	Clinical status of patients after alloHSCT with different grades of aGVHD											
Patients	Sex	Disease (donor/bone donor/recipient)	Disease progression by Tx	BMT/PBSCT Conditioning	CMV status	aGVHD	Relapse	Neopterin	Death			
case 1	M/M	CR1	BMT	Cy200	+/+	CSA + MTX	3.15	5.95	0	yes	–	no
case 2	F/M	CR1	BMT	BuCy2	+/+	CSA + MTX	4.52	2.17	0	yes	–	yes
case 3	M/F	CR1	BMT	BuCy2	+/+	CSA + MTX	1.07	1.13	0	yes	–	yes

| Abbreviations: aGVHD – acute graft versus host disease, BMT – bone marrow transplantation, cGVHD – chronic GVHD, CR1 – first remission, CMV – cytomegalovirus, MNC – mononuclear cells, PBSCT – peripheral blood stem cell transplantation, Tx – transplantation |
CASE 3 The patient was a 43-year-old male with high-risk AML (AML-M1 according to the FAB classification). In this case, the course of pretransplant therapy caused posttransplant complications. Daunorubicine-cytarabine-cladribine induction therapy was complicated, during an 18-day agranulocytosis period, by hemorrhage originating from the descending portion of the duodenum, which resulted in hypovolemic shock. Initially, bleeding was treated endoscopically without success. Subsequently, laparotomy showed numerous ischemic foci on the wall of the small intestine, together with 2 perforations. On day +6, the patient was reoperated due to diffuse peritonitis, and segmental resection of the small intestine was performed. During the postoperative period, bleeding recurred and was treated conservatively. During histological examination of specimens from the intestinal wall, myeloblastic cells were identified. Hematological remission was achieved through chemotherapy. In total, 2 cycles of consolidation chemotherapy were administered, without complications.

The patient was scheduled for alloHSCT from his 41-year-old, HLA-compatible sister. Cytomegavirus (CMV) serological status: recipient IgM+/donor IgM-, blood groups: recipient O RhD(+) /donor A RhD(+) (major ABO incompatibility). Graft conditioning was performed using the BuCy2 regimen. Graft material consisted of hematopoietic bone marrow cells in doses of MNC1.13 × 10⁶/kg recipient body mass and CD34(+) 1.07 × 10⁶/kg recipient body mass (Table). Cyclosporine A and methotrexate were used for GVHD prophylaxis. From day +4, a gradual deterioration of the patient’s condition was observed: pyrexia up to 39.5°C, abdominal pain, diarrhea (2000 ml/day), increasing jaundice, fluid retention, as well as symptoms of circulatory insufficiency. Conservative treatment was used including broad-spectrum antibiotic therapy, antifungal treatment, electrolyte supplementation, antithrombin III, diuretics, parenteral alimentation, transfusion of erythrocyte concentrate, platelet concentrates, and albumin, as well as modification of cyclosporine dosage. From day +11 there was a marked deterioration of the patient’s condition: an increase in bilirubinemia from 151 to 330 μmol/l on day +16, a gradual increase in the amount of loose stool excreted, as well as potentiation of the symptoms of renal insufficiency. Due to a lack of effective engraftment, additional transplantation of hematopoietic cells of the same donor’s peripheral blood, after G-CSF stimulation, was planned for day +18. On the basis of the clinical manifestations and laboratory test results, aGVHD was diagnosed, and on day +13 methylprednisolone administration was initiated (2 mg/kg). An improvement in the patient’s general condition was achieved. There was a reduction in diarrhea alongside deterioration of liver and kidney function. The patient had fever up to 39°C, and in microbiological tests, *Pseudomonas aeruginosa* infection of the central catheter was diagnosed. Despite guided antibiotic therapy, there was further deterioration of the patient’s condition, with dominant symptoms of circulatory and respiratory insufficiency, and episodes of pulmonary edema. Despite intensive therapy (mechanical ventilation), the patient died on day +16 as a result of multiple organ failure.

In the pre-alloHSCT period, we observed an almost 4-fold increase in IL-18 concentrations (720 pg/ml) compared with the healthy population, and the initial concentration in this patient was 2.5 times higher than in Case 2. The peracute course of aGVHD, which was finally graded as stage 6, is reflected in the dynamics of changes in IL-18 concentrations, whose lowest value, 496.45 pg/ml on day +6, exceeded the maximum value observed at this point in time in Case 2. The dynamics and pattern of changes in neopterin concentrations were different in Case 3 – no normal values were observed during the whole peritransplant period. Starting from day –7, neopterin concentration was almost twice as high as the values observed in stage 3 aGVHD (46.33 nmol/l in the fourth day after HSCT). Increased neopterin concentrations were sustained until day +16 (41.55 nmol/l), when the patient died. SAA concentrations showed more dynamic changes than CRP did. Its maximum concentration (666.0 mg/l) was achieved on day +4, while for CRP, it was observed until day +12 (260.0 mg/l).

DISCUSSION Acute GVHD often displays a chronic course, which reduces the quality of life of patients who have had transplantation. Immunosuppressive therapy initiated immediately after proper diagnosis determines the procedure’s effectiveness and allows us to avoid steroid resistance, which is associated with the rate of fatal GVHD in almost 80% of patients.

Differential diagnosis of aGVHD poses a serious challenge. The similar mechanism of other complications indicates a clinical picture that is difficult to interpret unequivocally, and multiple GVHD risk factors result in further problems while establishing the definite diagnosis. Risk factors for aGVHD include the number of T lymphocytes in the graft, differences in minor histocompatibility antigens, the degree of compatibility in the HLA system, gender differences, donor alloimmunization (transfusion, partus), recipient age, the type and dose of conditioning chemotherapy/radiotherapy, CMV serological status, origin of hematopoietic cells, and the recipient’s microbiological environment.

For many years researchers have sought laboratory markers, which would facilitate differential diagnosis of early posttransplant complications, with an emphasis on aGVHD. To date, most attention has been paid to proinflammatory cytokines, particularly TNF-α, IL-6, and IL-1β. However, these cytokines only demonstrate activation of the immune system associated with toxicity of chemotherapy, and activation of bacteria, mainly present in the gastrointestinal...
Available studies provide discordant data on the use of other cytokines, such as IL-18, IL-7, and IL-15, among others. According to a study by Fuchs et al., in patients who have had bone marrow transplantation, a decrease in neopterin concentrations is often observed. However, if complications develop, its concentration increases. Neopterin determination between days 2 and 7 after alloHSCT is of potential prognostic value, and its increase during this time could suggest a highly probable occurrence of immunological complications. This, however, must be corroborated by further investigation. Therefore, increased neopterin concentrations, which were maintained before alloHSCT in Case 3, may be considered a marker of poor prognosis, and a useful supplementation to the diagnosis of the immune system activation.

The current results, like other reports, did not bring consistent conclusions. Despite evident changes in neopterin and SAA concentrations, apart from Case 1 (without evidence of aGVHD), they do not allow for the differentiation of aGVHD from other early complications of the posttransplant period. The SAA measurement may be used as a complementary test to CRP measurement.

This pilot study would be greatly improved by including additional patients. Nonetheless, our findings yield interesting new information which might facilitate the diagnosis of posttransplant complications.

REFERENCES

1. Piątkowska-Jakubas B, Krawczyk J, Skotnicki AB. [New immunological aspects of acute graft vs. host reaction, following allogeneic bone marrow transplantation]. Adv Clin Exp Med. 2004; 13: 1003-1011. Polish.

2. Ewing P, Miklos S, Olkiewicz KM, et al. Donor CD4+ T-cell production of tumor necrosis factor alpha significantly contributes to the early pro-inflammatory events of graft-versus-host disease. Exp Hematol. 2007; 35: 155-163.

3. Ju XP, Xu B, Xie ZF, et al. Cytokine expression during acute graft-versus-host disease after allogeneic peripheral stem cell transplantation. Bone Marrow Transpl. 2005; 35: 1179-1186.

4. Apperley JF, Gluckman E, Gratwohl A, et al. The EBMT Handbook 5th Edition Haematopoietic Stem Cell Transplantation. European School of Haematology, 2008 revised edition.

5. Cooper D, Sharples L, Cornelissen J, et al. Comparison between procalcitonin, serum amyloid A and C-reactive protein as markers of serious bacterial and fungal infections after solid organ transplantation. Transpl Proc. 2001; 33: 1808-1810.

6. Fuchs D, Wachter H. Neopterin. In: Thomas L, ed. Clinical laboratory diagnostics. Frankfurt, Germany: TH Verlagsgesellschaft; 1998: 707-710.

7. Wojnar J, Giebel S, Holowiecka-Goral A, et al. [The effect of chronic GVHD on long-term results of allogeneic hematopoietic cell transplantation in adult patients with acute lymphoblastic leukemia]. Pol Arch Med Wewn. 2006; 116: 671-677. Polish.
OPIS PRZYPADKU

Neopteryna i inne markery zapalne we wczesnym okresie po allogenicznej transplantacji szpiku kostnego – seria 3 przypadków

Beata Kuśnierz-Cabala¹, Dorota Hawrylecka², Patrycja Mensah-Glanowska², Beata Piątkowska-Jakubas², Bogdan Solnica¹, Aleksander B. Skotnicki², Paulina Dumnicka³

¹ Zakład Diagnostyki, Katedra Biochemii Klinicznej, Uniwersytet Jagielloński, Collegium Medicum, Kraków
² Katedra i Klinika Hematologii, Uniwersytet Jagielloński, Collegium Medicum, Kraków
³ Zakład Diagnostyki, Szpital Uniwersytecki, Kraków

SŁOWA KLUCZOWE
allogeniczny przeszczep szpiku kostnego, interleukina 18, neopteryna, surowicy amyloid A

STRESZCZENIE
Przedstawiono opis 3 przypadków klinicznych stanowiący badanie pilotowe oceniające profil zmian stężenia wybranych parametrów zapalnych, w tym białka C-reaktywnego, surowicznego amyloidu A, neopteryny oraz interleukiny 18 we wczesnym okresie po allogenicznym przeszczepie komórek macierzystych.