P16^{ink4a} Immunoexpression Profile in HPV-Oral Lesions from HIV-Infected Patients

Rosales-Terrazas Estrella¹, Ramírez-Amador Velía¹, García-Carrancá Alejandro^{2,3}, Guido-Jiménez Miriam^{1,3}, Igroyen-Camacho Esther¹, Ortiz-Sánchez Elizabeth¹ and Anaya-Saavedra Gabriela*¹

¹Universidad Autónoma Metropolitana-Xochimilco, Mexico
²Unidad de Virus y Cáncer, Instituto Nacional de Cancerología (INCan), Secretaría de Salud, Mexico
³Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México

Abstract

Background: In HIV-patients, a proportion of benign HPV-associated oral lesions (HPV-OLs) contain high-risk HPV (HR-HPV) sequences. Recent studies demonstrated a p16^{INK4a} overexpression in HPV-induced cancer and dysplastic lesions through pRB degradation by the E7-HPV oncoprotein; so, it has been considered a surrogate marker of HR-HPV oncogenic activity.

Objective: To establish the p16^{INK4a} expression in HPV-OL from HIV-infected patients.

Materials and method: A cross-sectional study was conducted in three HIV/AIDS referral centers in Mexico City. We performed histopathological diagnosis, HPV-DNA amplification, direct sequencing, and p16^{INK4a} immunohistochemical staining in 10.3%. The U-Mann-Whitney, X², and Fisher’s exact tests were used to determine the association between variables.

Result: In a total of 849 adult HIV-individuals examined, we found 29 (3.4%) patients with HPV-OLs, being multifocal lesions 8.7% of HPV-OLs. The E7-HPV oncoprotein was identified in 82.7% and HR-HPV in 10.3%. HPV-OLs exhibited a moderate/strong but only nuclear p16^{INK4a} immunohistochemical expression; no correlation between p16^{INK4a} expression and HPV type were found.

Conclusion: In HPV-OLs from HIV-infected patients, the comparable p16^{INK4a} immunoexpression, independently of the specific HPV-type, as well as the absence of cytoplasmic staining, may suggest a lack of HR-HPV activity. Longitudinal studies based on oncogenic viral gene expression are warranted.

Keywords: p16; Human papillomavirus; Oral warts; HIV

Introduction

The human papillomavirus-associated oral lesions (HPV-OLs) comprise a group of benign lesions: squamous cell papilloma (SCP), verruca vulgaris (VV), accumulated condyloma (AC), and multifocal epithelial hyperplasia (MEH) [1], that in immunosuppressed patients may occur with a florid presentation, occasionally with an atypical morphology and unusual HPV-types [1,2]. In immune competent adults its prevalence is around 1% [3-5], but in HIV/AIDS adult patients has reached 6.9% [6], particularly after the introduction of highly active antiretroviral therapy (HAART) [7-9].

These benign oral lesions are typically associated with low-risk HPV (LR-HPV) types [1,10,11], however some high-risk HPV (HR-HPV) like HPV-16, 18 and 31, have been also identified [2,6,12-14]. In HIV-patients, a proportion of benign HPV-associated oral lesions (HPV-OLs) contain high-risk HPV (HR-HPV) sequences. Recent studies demonstrated a p16^{INK4a} overexpression in HPV-induced cancer and dysplastic lesions through pRB degradation by the E7-HPV oncoprotein; so, it has been considered a surrogate marker of HR-HPV oncogenic activity.

The p16^{INK4a} gene, located on chromosome 9p21, is a cyclin-dependent kinase inhibitor that acts as a negative cell cycle regulator [19,20], therefore, is an important biomarker of cellular transformation [21,22]. Besides its role as tumor suppressor gene, p16^{INK4a} has been associated with HR-HPV infection in cervical cancer [23] and, although controversial results, in a number of oral and oropharyngeal cancer studies [19,24,25]. The HPV-E7 oncogene inactivates pRB, leading to p16^{INK4a} overexpression via E2F alteration; thus, p16^{INK4a} overexpression is considered a hallmark of HPV-induced transformation [23,26] and a surrogate marker of HR-HPV oncogenic activity [22,26].

Thus the aim of the present study was to investigate the value of p16^{INK4a} in HPV-OL considering the finding of HR-HPV in HPV-OLs and the increased risk of oral and oropharyngeal cancer in HIV-patients.

Method

A cross-sectional study was conducted in three HIV/AIDS referral centers in Mexico City (Clínica Especializada Condesa (CEC), Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán and Instituto Nacional de Enfermedades Respiratorias). The study was approved by the review boards of the participating institutions, and the participants read and signed an informed written consent form before their participation in the study.

During the period 2009–2012, 849 HIV-patients (≥18 years old) who attended a routine visit at the Oral Pathology and Medicine Clinics of the above mentioned institutions were examined; 29 patients presented solitary or multiple HPV-OLs (prevalence: 3.4%). Exclusion criteria considered patients who attended one of the referral centers...
(CEC) between 2009 and 2011, since these patients were included in a previous report [6]. Demographic data (age, sex, schooling, and occupation), tobacco use, and alcohol consumption were recorded. Clinical and laboratory data including HIV-transmission category, CDC clinical stage [27], lymphocyte CD4⁺ T-cell count, HIV viral load levels, and type and duration of HAART administration were obtained from the medical records. HAART was defined as the concomitant use of three antiretroviral (ARV) drugs, either a combination of two types of ARV’s (nucleoside reverse transcriptase inhibitors [NRTIs], non-nucleoside reverse transcriptase inhibitors [NNRTIs], protease inhibitors [PIs], or a fusion inhibitor [FIs]), or three NRTIs [28]. Patients were considered to be on HAART if they received ARV drugs for more than 30 days.

HPV-OLs were identified according to predetermined clinical criteria [1,29,30] by three Oral Pathology and Medicine specialists with experience in the recognition of these lesions. The clinical characteristics of HPV-OLs were registered; a section of the tissue was obtained using a disposable punch, fixed in 10% formalin solution, and then the tissue was processed. The histopathological diagnosis was performed by the Oral Pathology and Medicine Department staff of the Universidad Autónoma Metropolitana, based on pre-established criteria [1,29,30].

Although a number of patients showed more than one HPV-OL, the largest, or the one that produced more discomfort was chosen to be removed, and therefore, utilized to the molecular analysis, particularly when secondary lesions were too small or did not cause discomfort, so, surgical treatment was not indicated.

DNA was extracted using the QIAamp DNA FFPE tissue kit (Qiagen, Duesseldorf, Germany) for purification of genomic DNA from formalin-fixed paraffin-embedded tissues, according to the manufacturer’s instructions. The total DNA concentration was determined by spectrophotometry and the ratio of 260/280 was determined by spectrophotometry and the ratio of 260/280 was measured using a NanoDrop 2000 spectrophotometer (Thermo Scientific/Waltham, MA, USA). To demonstrate the integrity of the purified DNA, a β-globin gene PCR assay (260/280 pb) was performed in each sample, with PCO4/GH20 primers. Genomic HPV-DNA amplification was carried out using MY09/MY11 [31] and GP5+/GP6+ primers [32]. Additionally, in order to identify HPV 16 and 18, E6 specific primers F204/R419 [33] and HZ30/E65 [34] were used.

In every PCR reaction, water and DNA from the HeLa cell line were used as a negative and positive control, respectively. PCR was performed in a programmable thermal cycler (Mastercycler gradient; Eppendorf, Westbury, NY). All the reagents used were prepared and stored in a PCR-amplified products free area. In order to visualize the PCR products after amplification, a 5 µl aliquot of each sample was analyzed by electrophoresis in a 1.5% agarose gel with ethidium bromide staining (10 mg/ml) (Sigma Chemical Co., St. Louis, MO, USA) and was then visualized by UV light.

Positive PCR products were purified using the DNA Clean and Concentrator™.5 purification protocol (Zymo Research Corp/USA), and subsequently sent to an external service (Macrogen Inc, Seoul, Korea) for automated DNA sequencing by using one of the PCR primers as a sequencing primer (GP5+). The obtained sequences were matched and compared with the GenBank database sequences (National Center for Biotechnology Information, Bethesda, MD, USA) using the BLAST program (http://blast.ncbi.nlm.nih.gov/), blinded to the histopathological results.

Additionally, for the immunohistochemical detection of p16INK4a, three-micrometer paraffin-embedded HPV-OL sections were placed on Kling-on HIER supercharged slides (Biocare Medical) and immunostained with the anti-p16 mouse monoclonal antibody (SAB300036 Sigma, monoclonal anti-p16 antibody, Sigma-Aldrich Co. LLC., MO, USA) at a 1:250 dilution. The staining was performed on the Ventana BenchMark GX (Roche Diagnostics International Ltd., Rotkreuz, Switzerland) automated staining system, according to manufacturer’s instructions. The slides were counterstained with hematoxylin for 4 minutes, and post-counterstained with Bluing Reagent, a buffered lithium carbonate solution (Ventana Medical Systems, Inc) for other 4 minutes. A cervical cancer sample and a p16INK4a-negative oral cancer sample were used as positive and negative controls, respectively. Additionally, in order to have comparison parameters, four normal oral mucosa samples from equivalent locations (labial, lingual, buccal, and palatal mucosa) obtained from two oral mucoceses and two fibrous hyperplasias samples were also processed.

All immunohistochemical slides were examined for positive staining by light microscopy by three blinded independent observers. Each slide was placed on the optical photomicroscope (Olympus BX43; Olympus, San Diego, CA, USA), and four digital pictures were taken with 10x objective on each sample; two marginal and two central epithelium fields were selected and stored as jpeg files. To calculate the percentages of positive cells, the numbers for both negative and positive cells were counted in each image using a 6x6 grid. Afterwards, the percentage of positive cells was calculated as follows: positive cell number/total cell nuclei × 100. Positivity of p16INK4a was considered when >75% of cells showed a moderate/strong nuclear (with or without cytoplasmic) stain [35].

Descriptive data were summarized through medians and interquartile intervals. In order to determine the association between categorical variables and the dependent variables, the X² and Fisher’s exact (when necessary) tests were used; for dimensional variables the U-Mann-Whitney was applied. Risk factors were assessed using logistic regression models, and odds ratios and 95% confidence intervals for the corresponding categories were constructed. A 2-sided p value ≤0.05 was considered significant. The statistical analysis was done in the SPSS (v.20) program.

Results

Twenty-nine HIV-infected individuals were included, 27 (93.1%) were males (25 [92.6%] men who have sex with men [MSM]), with a median age of 39 (Q1-Q3: 32.5–44) years. More than half of the patients had no history of tobacco (17/58.6%) or alcohol (16/55.2%) consumption. Twenty-two patients (75.9%) were in advanced stages of CDC clinical stage [27], lymphocyte CD4⁺ T-cell count was 243 (Q1-Q3: 169-455) cells/mm³; 19 (65.5%) of the patients had undetectable HIV-RNA plasma levels (Table 1).

As it is shown in Table 2, 18 (62.1%) of the 29 patients showed more than one HPV-OL being MEH the most frequent type of lesion. Patients with multiple HPV-OL had a longer median time of HAART use (44 months, Q1-Q3: 8-87) than those with solitary lesions (7 months, Q1-Q3: 2-16 months) (p=0.015), and were in more advanced stages of the disease (100%) than those with one HPV-OL (61%) (p=0.026).

The labial mucosa was the most frequent location (16 cases, 55.2%), followed by the buccal mucosa (6 cases, 20.7%) and the tongue (5 cases,
After purification, the median DNA concentration was 562.5 (Q1-Q3) ng/μl. All 29 samples were positive for β-globin gene amplification. Genomic HPV-DNA reactions with GP5+/6+ were positive in all samples, but only in 8 (27.6%) using MY09/11. Only one sample (3.4%) amplified a fragment from the HPV-16 E6 gene, and not a single sample was positive to HPV-18 E6 gene amplification.

As shown in Table 3, 24 of the 29 HPV-OLs had low-risk HPV (82.7%), the most frequent types found were HPV-32 (44.8%), 13 (20.7%), and 6 (13.8%). In three samples (10.3%) we identified mixed high (HPV-16) combined with low-risk HPV (32 and 42) types; interestingly, we identified two unexpected sequences (HPV-74 and LVX100). In the analysis by HPV-OL, the most frequent viral type in MEH was HPV-32 (66.7%) and HPV-13 in SCP (41.7%); in VV and AC only HPV-32 sequences were identified.

The four patients with MEH had multiple HPV oral infection: three

Table 3: HPV types and histopathological diagnosis in 29 HPV-OL samples from HIV-infected individuals.

HPV Type	MEH (n=15)	SCP (n=12)	VV/AC (n=2)	Total (n=29)
	n (%)	n (%)	n (%)	n (%)
Low risk HPV				
32	7 (46.7)	1 (8.3)	2 (100)	10 (34.5)
13	1 (6.7)	5 (41.7)	--	6 (20.7)
6	2 (16.7)	2 (13.3)	--	4 (13.8)
7	--	2 (16.7)	--	2 (6.9)
11	--	2 (16.7)	--	2 (6.9)
Low and high risk HPV				
16 and 32	2 (13.4)	--	--	2 (6.8)
16 and 42	1 (6.7)	--	--	1 (3.4)
Undetermined HPV type				
74*	1 (6.7)	--	--	1 (3.4)
LVX100	1 (6.7)	--	--	1 (3.4)

MEH: Multifocal Epithelial Hyperplasia; SCP: Squamous Cell Papilloma; VV: Verruca Vulgaris; AC: Accumulated Condyloma. *The sample had also HPV-13.

Citation: Rosales-Terrazas E, Ramírez-Amador V, García-Carrancá A, Guido-Jimenez M, Higoyen-CAndacho E, et al. (2014) P16*\#\#1*\#\#Immunoeexpression Profile in HPV-Oral Lesions from HIV-Infected Patients. J AIDS Clin Res 6: 411. doi:10.4172/2155-6113.1000411

Figure 1: Clinical images of different HPV-OLs.

A) Multifocal epithelial hyperplasia in lower labial mucosa: multiple conjoining sessile papules with a flat surface. B) Squamous cell papilloma in lower labial mucosa: exophytic pedunculated lesion with finger-like projections. C) Accumulated condyloma in buccal mucosa: exophytic extensive multiple lesion with whitish color. D) Multiple HPV-OLs presentation.
showed mixed low and high-risk sequences (HPV-16 and 32, HPV-16 and 42 and HPV 16 and 32), and one LR-HPV (HPV-13 and 74). All of them presented lymphocyte CD4+ counts less than 200 cells/mm².

P16^INK4a immunoexpression

All the normal oral mucosa samples were negative for p16^INK4a according to the criteria described in the material and methods section: the samples showed a weak staining in the basal cell layer, which gradually decreased (until disappearance) towards to superficial layers. In contrast, at it is explained in Table 4, all HPV-OL showed a moderate/strong nuclear p16^INK4a immunostaining (median of 97.9%). It is remarkable that despite the total and intense nuclear expression, none of the HPV-OL samples exhibited cytoplasmic p16^INK4a immunostaining (Figure 2).

No correlation was observed between the p16^INK4a immunostaining and the specific type of lesion, the HPV type (low or high risk), or the clinical characteristics of the patients.

Discussion

In the present study, though low-risk HPV was identified in the majority of HPV-OLs from HIV/AIDS patients, HR-HPV sequences were found in 10.3% of cases, always in combination with LR-HPV. Additionally, a moderate/strong p16^INK4a nuclear immunostaining was found, in contrast with the weak or absent expression observed in normal oral mucosa. The comparable p16^INK4a staining in both low and high risk-HPV types, as well as the absence of cytoplasmic expression, suggest that the identification of HR-HPV in these lesions was not biologically significant.

While in HIV-patients there are few detailed reports on the epidemiology and behaviour of HPV-OLs [36], the prevalence found in the present study (3.4%) correspond to previous reported frequencies (3-6.9%) [6,37]. Despite the relatively low frequency of HPV-OL in HIV-patients, the lesions could exhibit a widespread distribution and high rates of recurrence, that usually implies complications in its management and treatment [38].

Most published studies have used the generic term “oral warts” to describe HPV-OLs [7-9,12,37,39-41]; only few studies [6,42-45], as this one, indicate the specific type of HPV-OL, so, the possibility of making comparisons is limited. However, in the present study, like in a previous one [6], the most common lesion was MEH. In Mexico [46-48], like in other Latino American countries such as Colombia [49] and Peru [50], MEH may be present in specific ethnic and racial groups, particularly in childhood [51], which may explain the high frequency found in our population.

The labial mucosa was the most frequently affected site (55.2%), while in HIV-patients there are few detailed reports on the epidemiology and behaviour of HPV-OLs [36], the prevalence found in the present study (3.4%) correspond to previous reported frequencies (3-6.9%) [6,37]. Despite the relatively low frequency of HPV-OL in HIV-patients, the lesions could exhibit a widespread distribution and high rates of recurrence, that usually implies complications in its management and treatment [38].

Most published studies have used the generic term “oral warts” to describe HPV-OLs [7-9,12,37,39-41]; only few studies [6,42-45], as this one, indicate the specific type of HPV-OL, so, the possibility of making comparisons is limited. However, in the present study, like in a previous one [6], the most common lesion was MEH. In Mexico [46-48], like in other Latino American countries such as Colombia [49] and Peru [50], MEH may be present in specific ethnic and racial groups, particularly in childhood [51], which may explain the high frequency found in our population.

The labial mucosa was the most frequently affected site (55.2%), similar to previous reports [6,52,53]. According with Mravak-Stipetic et al. [54], the labial mucosa is one of the most frequently exposed locations to microtrauma, which is a requirement for HPV transmission in different oral sites.

ID	HPV-OL	HPV type	p16^INK4a immunostaining	
			Positive cells (%)	Global intensity
1	MEH	74*	99.5	Strong
2	MEH	32	99.1	Strong
3	MEH	32	98.7	Strong
4	MEH	32	91.1	Moderate
5	MEH	32	99.9	Moderate
6	MEH	32	99.3	Moderate
7	MEH	32	98.7	Moderate
8	MEH	32	98.8	Moderate
9	MEH	32	99.8	Moderate
10	MEH	16	99.1	Moderate
11	MEH	16	99.7	Moderate
12	MEH	13	98.6	Moderate
13	MEH	LX100	98.9	Moderate
14	MEH	6	98.5	Moderate
15	MEH	6	98.4	Moderate
16	SCP	32	95.7	Strong
17	SCP	13	98.4	Moderate
18	SCP	13	98.7	Moderate
19	SCP	13	97.7	Moderate
20	SCP	13	98.0	Moderate
21	SCP	13	100	Moderate
22	SCP	11	97.3	Moderate
23	SCP	11	98.5	Moderate
24	SCP	7	97.4	Moderate
25	SCP	7	99.3	Moderate
26	SCP	6	98.1	Strong
27	SCP	6	99.3	Moderate
28	VV	32	84.4	Moderate
29	AC	32	97.8	Strong

MEH = multifocal epithelial hyperplasia; SCP = squamous cell papilloma; VV = verruca vulgaris; AC = acuminate condyloma. *The sample had also HPV-16; +The sample had also HPV-32; †The sample had also HPV-42.

Table 4. Descriptive summary of the 29 HPV-OL in HIV/AIDS infected individuals.
Patients with more than one HPV-OL had been on HAART for longer periods of time than those with single lesions (44 vs. 7 months, p=0.015). It has been mentioned that some of the factors that could influence the augmented frequency of HPV-OL in HIV patients in the post-HAART era could be the increased survival of patients and the altered immune status for long periods of time, rather than the prolonged administration of antiretrovirals [6,55].

The majority of the samples (82.7%) had LR-HPV, higher than the 65.4% [6] and 47.1% [12] found in two previous studies that included 55 and 34 HPV-OL affected HIV-patients, respectively. The two cited studies, as well as the present one, used similar same sample collection techniques, the L1 consensus primers, and comparable HPV detection assays (PCR), so, the different frequencies could be explained by the inherent bias associated with small sample sizes, rather than with methodological differences.

In immune competent individuals HPV-13 and 32 have been identified in 75-100% [1] of MEH, HPV-13 being the commonest strain reported in most studies [1,48], including the Mexican population [47]. In contrast, in our results, similar to other reports [56,57], HPV-32 was identified in most cases. The possible association between HPV-32 oral infection in HIV-infected patients merits future studies.

In this respect, several studies [58-61] have found HPV-infection in the normal oral mucosa of HIV/AIDS patients, in frequencies that vary from 20 [61] to 80% [58]. Moreover, current studies have reported the frequency of HR-HPV, specifically the type 16, in values that fluctuate from 0.6% [62] to 2.8% [63]. Interestingly, most of infections cleared within one year [62]; thus, probably the 10.3% of the HPV-OLs containing HR-HPV in our study represents a transient HPV infection.

According with the established criteria detailed in the material and methods section [35], that considered positivity of p16 when >75% of cells showed a moderate/strong nuclear (with or without cytoplasmic) stain, we assessed the normal oral mucosa samples in the present study as p16INK4a negative, similar to previous reports [64-67] in immunocompetent individuals. In contrast, and in agreement with recent evidence, the identification of >75% of nuclear and cytoplasmic p16INK4a staining represents a good cutoff for HPV presence [35]. In consequence, whilst more than 95% of the samples in our results showed p16INK4a nuclear positivity, the immunostaining profile did not fulfill the criteria to consider it as a marker of HR-HPV infection, given that none of the samples exhibited cytoplasmic staining.

Additionally, p16INK4a immunostaining in both LR and HR-HPV samples was comparable in the present study, which could be explained by the highly proliferative activity of the lesions. Physiological stress, oncogene-driven senescence and replicative senescence due to DNA damage or oxidative stress have been proposed to explain p16INK4a overexpression in normal tissues [24]. Although there is less data about the molecular interactions made by E6 and E7 proteins of the LR-HPV, it is known that E7 protein from LR-HPV, as in HR-HPV, can also inactivate the RB protein and consequently, resulting in overexpression of p16INK4a [68]. According with a recent review [68], there is sufficient evidence explaining that despite considerable differences in the outcomes of low and high risk mucosotropic HPV’s, both strains infect and replicate in the same general manner, and presumably encounter the same cellular environments.

In conclusion, the nuclear immunostaining of p16INK4a in HPV-OLs did not accomplish the criteria for HPV oncoprotein driven overexpression, which is critical in the context of the increased cancer incidence reported in HIV/AIDS patients [15-18]. In HPV-OLs from HIV-infected patients, the comparable p16INK4a immunostaining, independently of the specific HPV-type, as well as the absence of cytoplasmic staining, may suggest a lack of HR-HPV activity.

Our results emphasize that HPV-OL in patients with HIV infection are benign, and could bring information that clinicians can employ to comfort patients that develop multiple HPV-OL in the setting of HIV infection and HAART. Longitudinal studies based on viral transcriptional activity are warranted.

Acknowledgments

This research is the result of Rosales-Terrazas Estrella’s research project to obtain a master’s degree in the Oral Pathology and Medicine postgraduate program of the Universidad Autonoma Metropolitana-Xochimilco. This work was supported by the PROMEP-SEP PTC program (Grant PROMEP/103-509/4255), with supplemental funding from the Basic Sciences Research Area of the Universidad Autonoma Metropolitana-Xochimilco.

References

1. Syrjänen S (2003) Human papillomavirus infections and oral tumors. Med Microbiol Immunol 192: 123-128.
2. Völter C, He Y, Delius H, Roy-Burman A, Greenspan JS, et al. (1996) Novel HPV types present in oral papillomatous lesions from patients with HIV infection. Int J Cancer 66: 453-456.
3. Castellanos JL, Díaz-Guzmán L (2008) Lesions of the oral mucosa: an epidemiological study of 861 Mexican patients. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 105: 79-85.
4. Robledo-Sierra J, Mattsson U, Svedensten T, Jonelt M (2013) The morbidity of oral mucosal lesions in an adult Swedish population. Med Oral Patol Oral Cir 18: e766-772.
5. Campisi G, Margiotta V (2001) Oral mucosal lesions and risk habits among men in an Italian study population. J Oral Pathol Med 30: 22-28.
6. Anaya-Saavedra G, Flores-Moreno B, García-Carrancá A, Irigoyen-Camacho E, Guido-Jimenez M, et al. (2013) HPV oral lesions in HIV-infected patients: the impact of long-term HAART. J Oral Pathol Med 42: 443-449.
7. King MD, Reznik DA, O’Daniels CM, Larsen NM, Osterholt D, et al. (2002) Human papillomavirus-associated oral warts among human immunodeficiency virus-seropositive patients in the era of highly active antiretroviral therapy: an emerging infection. Clin Infect Dis 34: 641-648.
8. Greenspan D, Canchola AJ, MacPhail LL, Cheikh B, Greenspan JS (2001) Effect of highly active antiretroviral therapy on frequency of oral warts. Lancet 357: 1411-1412.
9. Patton LL, McKaig R, Strauss R, Rogers D, Eron JJ Jr (2000) Changing prevalence of oral manifestations of human immuno-deficiency virus in the era of protease inhibitor therapy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 89: 299-304.
10. Infante-Cossio P, Gonzalez DH, Hernandez-Gutierrez J, Bornero-Martin JH (2008) Oral inverted ductal papilloma associated with condyloma acuminata and HPV in an HIV+ patient. Int J Oral Maxillofac Surg 37: 1159-1161.
11. Moerman M, Danielides VG, Nousia CS, Van Wanzeele F, Forsyth R, et al. (2001) Recurrent focal epithelial hyperplasia due to HPV13 in an HIV-positive patient. Dermatology 203: 339-341.
12. Ma SC, Hu J, Zhao J, Speight P (2004) [Typing human papilloma virus (HPV) infection in the warts of oral mucosa from HIV-positive patients]. Hua Xi Kou Qiang Yi Xue Za Zhi 22: 423-425.
13. Aboulafia DM (2002) Condyloma acuminatum presenting as a dorsal tongue lesion in a patient with AIDS. AIDS Read 12: 165-167, 172-3.
14. Paparotto Lopes SM, Meeks VI (2001) Analysis of HPV 16 and 18 by in situ hybridization in oral papilloma of HIV+ patients. Gen Dent 49: 386-389.
15. Ortiz AP, Pérez-Iriarry J, Soto-Salgado M, Suárez E, Pérez N, et al. (2014) Human papillomavirus-related cancers among people living with AIDS in Puerto Rico. Prev Chronic Dis 11: E80.
16. Gomis B, Ferrer M, Festa A, Scarcella C, Donato F, et al. (2013) Incidence of AIDS-defining cancers and virus-related and non-virus-related non-AIDS-defining cancers among HIV-infected patients compared with the general population in a large health district of Northern Italy. 1999-2009. HIV Med 14: 481-490.

17. Strickler HD (2009) Does HIV/AIDS have a biological impact on the risk of human papillomavirus-related cancer? J Natl Cancer Inst 101: 1103-1105.

18. Grulich AE, van Leeuwen MT, Falster MO, Vajdic CM (2007) Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis. Lancet 370: 59-67.

19. El-Naggar AK, Westra WH (2012) p16 expression as a surrogate marker for HPV-related oropharyngeal carcinoma: a guide for interpretative relevance and consistency. Head Neck 34: 459-461.

20. Thomas J, Primiaux T (2012) Is p16 immunohistochemistry a more cost-effective method for identification of human papilloma virus-associated head and neck squamous cell carcinoma? Ann Diagn Pathol 16: 91-99.

21. Rayess H, Wang MB, Srivatsan ES (2012) Cellular senescence and tumor suppressor gene p16. Int J Cancer 130: 1715-1725.

22. Wilkiewicz AK, Knudsen KE, Dicker AP, Knudsen ES (2011) The meaning of p16(nk4a) expression in tumors: functional significance, clinical associations and future developments. Cell Cycle 10: 2497-2503.

23. Bergeron C, Ronco G, Reuschenbach M, Wentzensen N, Arbyn M, et al. (2014) The clinical impact of using p16(NK4A) immunohistochemistry in cervical histopathology and cytology: An update of recent developments. Int J Cancer .

24. Mooreen JJ, Gültelik SE, Streetmans JM, Haesevoets A, Peutz-Kootstra CJ, et al. (2014) P16(NK4A) immunostaining is a strong indicator for high-risk HPV-associated oropharyngeal carcinomas and dysplasias, but is unreliable to predict low-risk HPV-infection in head and neck papillomas and laryngeal dysplasias. Int J Cancer 134: 2108-2117.

25. Singhdi AD, Westra WH (2010) Comparison of human papillomavirus in situ hybridization and p16 immunohistochemistry in the detection of human papillomavirus-associated head and neck cancer based on a prospective clinical experience. Cancer 116: 2166-2173.

26. Salazar CR, Anayannis N, Smith RV, Wang Y, Haigentz M Jr, et al. (2014) Combined P16 and human papillomavirus testing predicts head and neck cancer survival. Int J Cancer 135: 2404-2412.

27. Schneider E, Whitmore S, Glynn KM, Dominguez K, Mitsch A, et al. (2008) Revised surveillance case definitions for HIV infection among adults, adolescents, and children aged <18 months and for HIV infection and AIDS among children 18 months to <13 years—United States, 2008. MMWR Recomm Rep 57: 1-12.

28. Thompson MA, Aberg JA, Hoy JF, Teleni A, Benson C, et al. (2012) Antiretroviral treatment of adult HIV infection: 2012 recommendations of the International Antiviral Society-USA panel. JAMA 308: 387-402.

29. Kumaraswamy KL, Vidyha M (2011) Human papilloma virus and oral infections: an update. J Cancer Res Ther 7: 120-127.

30. Abbey LM, Page DG, Sawyer DR (1980) The clinical and histopathologic features of a series of 464 oral squamous cell papillomas. Oral Surg Oral Med Oral Pathol 49: 419-428.

31. Manos MM, Ting T, Wright DK, Lewis AJ, Broker TR, et al. (1989) Use of polymerase chain reaction amplification for the detection of genital human papillomavirus. Cancer Cells 7: 209-214.

32. de Roda Husman AM, Walboomers JM, van den Brule AJ, Meijer CJ, Snijders RJ (1989) Human papillomavirus in the lesions of the oral mucosa according to histopathology and cytology: An update of recent developments. Int J Cancer .

33. Ortega KL, Vale DA, Magalhães MH (2009) Impact of PI and NNRTI HAART-based therapy on oral lesions of Brazilian HIV-infected patients. J Oral Pathol Med 38: 489-494.

34. Nunes Mde A, Azevedo-e-Silva M, Gonçalves CP, Trope BM, Oliveira Lhd, et al. (2008) Human papillomavirus detection and typification in cutaneous and mucosal lesions of HIV-seropositive patients. Int J STD AIDS 19: 611-616.

35. Pinheiro A, Marcones W, Zakrzewska JM, Robinson PG (2004) Dental and oral lesions in HIV infected patients: a study in Brazil. Int Dent J 54: 131-137.

36. Ledeña-Montes C, Vega-Memije E, Garcés-Ortíz M, Cardiel-Nieves M, Juárez-Luna C (2005) Multifocal epithelial hyperplasia. Report of nine cases. Med Oral Patol Oral Cir Bucal 10: 394-401.

37. García-Corona C, Vega-Memije E, Mosqueda-Taylor A, Yamamoto-Furusu JK, Rodríguez-Carreón AA, et al. (2004) Association of HLA-DR4 (DRB1*0404) with human papillomavirus infection in patients with focal epithelial hyperplasia. Arch Dermatol 140: 1227-1231.

38. García-Corona C, Vega-Memije E, Mosqueda-Taylor A, Yamamoto-Furusu JK, Rodríguez-Carreón AA, et al. (2004) Association of HLA-DR4 (DRB1*0404) with human papillomavirus infection in patients with focal epithelial hyperplasia. Arch Dermatol 140: 1227-1231.

39. Ortega KL, Vale DA, Magalhães MH (2009) Impact of PI and NNRTI HAART-based therapy on oral lesions of Brazilian HIV-infected patients. J Oral Pathol Med 38: 489-494.

40. Nunes Mde A, Azevedo-e-Silva M, Gonçalves CP, Trope BM, Oliveira Lhd, et al. (2008) Human papillomavirus detection and typification in cutaneous and mucosal lesions of HIV-seropositive patients. Int J STD AIDS 19: 611-616.

41. Pinheiro A, Marcones W, Zakrzewska JM, Robinson PG (2004) Dental and oral lesions in HIV infected patients: a study in Brazil. Int Dent J 54: 131-137.

42. Ledeña-Montes C, Vega-Memije E, Mosqueda-Taylor A, Yamamoto-Furusu JK, Rodríguez-Carreón AA, et al. (2004) Association of HLA-DR4 (DRB1*0404) with human papillomavirus infection in patients with focal epithelial hyperplasia. Arch Dermatol 140: 1227-1231.

43. García-Corona C, Vega-Memije E, Mosqueda-Taylor A, Yamamoto-Furusu JK, Rodríguez-Carreón AA, et al. (2004) Association of HLA-DR4 (DRB1*0404) with human papillomavirus infection in patients with focal epithelial hyperplasia. Arch Dermatol 140: 1227-1231.

44. Ortega KL, Vale DA, Magalhães MH (2009) Impact of PI and NNRTI HAART-based therapy on oral lesions of Brazilian HIV-infected patients. J Oral Pathol Med 38: 489-494.

45. Nunes Mde A, Azevedo-e-Silva M, Gonçalves CP, Trope BM, Oliveira Lhd, et al. (2008) Human papillomavirus detection and typification in cutaneous and mucosal lesions of HIV-seropositive patients. Int J STD AIDS 19: 611-616.

46. Pinheiro A, Marcones W, Zakrzewska JM, Robinson PG (2004) Dental and oral lesions in HIV infected patients: a study in Brazil. Int Dent J 54: 131-137.

47. Ledeña-Montes C, Vega-Memije E, Mosqueda-Taylor A, Yamamoto-Furusu JK, Rodríguez-Carreón AA, et al. (2004) Association of HLA-DR4 (DRB1*0404) with human papillomavirus infection in patients with focal epithelial hyperplasia. Arch Dermatol 140: 1227-1231.

48. García-Corona C, Vega-Memije E, Mosqueda-Taylor A, Yamamoto-Furusu JK, Rodríguez-Carreón AA, et al. (2004) Association of HLA-DR4 (DRB1*0404) with human papillomavirus infection in patients with focal epithelial hyperplasia. Arch Dermatol 140: 1227-1231.

49. Ortega KL, Vale DA, Magalhães MH (2009) Impact of PI and NNRTI HAART-based therapy on oral lesions of Brazilian HIV-infected patients. J Oral Pathol Med 38: 489-494.

50. Nunes Mde A, Azevedo-e-Silva M, Gonçalves CP, Trope BM, Oliveira Lhd, et al. (2008) Human papillomavirus detection and typification in cutaneous and mucosal lesions of HIV-seropositive patients. Int J STD AIDS 19: 611-616.
58. Amornthatree K, Sriplung H, Mitarnun W, Nittayananta W (2012) Impacts of HIV infection and long-term use of antiretroviral therapy on the prevalence of oral human papilloma virus type 16. J Oral Pathol Med 41: 309-314.

59. Beachler DC, Weber KM, Margolick JB, Strickler HD, Cranston RD, et al. (2012) Risk factors for oral HPV infection among a high prevalence population of HIV-positive and at-risk HIV-negative adults. Cancer Epidemiol Biomarkers Prev 21: 122-133.

60. Fakhry C, Sugar E, D’Souza G, Gillison M (2010) Two-week versus six-month sampling interval in a short-term natural history study of oral HPV infection in an HIV-positive cohort. PLoS One 5: e11916.

61. Richter KL, van Rensburg EJ, van Heerden WF, Boy SC (2008) Human papilloma virus types in the oral and cervical mucosa of HIV-positive South African women prior to antiretroviral therapy. J Oral Pathol Med 37: 555-559.

62. Kreimer AR, Pierce Campbell CM, Lin HY, Fujo W, Paperfuss MR, et al. (2013) Incidence and clearance of oral human papillomavirus infection in men: the HIM cohort study. Lancet 382: 877-887.

63. Edelstein ZR, Schwartz SM, Hawes S, Hughes JP, Feng Q, et al. (2012) Rates and determinants of oral human papillomavirus infection in young men. Sex Transm Dis 39: 860-867.

64. Cantarutti AL, Fernandes LP, Saldanha MV, Marques AE, Vianna LM, et al. (2014) Evaluation of immunohistochemical expression of p16 and presence of human papillomavirus in oral and oropharyngeal carcinoma. J Craniofac Surg 25: 210-214.

65. Poomsawat S, Buajeeb W, Khovidhunkit SO, Punyasinh J (2011) Overexpression of cdk4 and p16 in oral lichen planus supports the concept of premalignancy. J Oral Pathol Med 40: 294-299.

66. Queiroz AB, Focchi G, Dobó C, Gomes TS, Ribeiro DA, et al. (2010) Expression of p27, p21(WAF/Cip1), and p16(INK4a) in normal oral epithelium, oral squamous papilloma, and oral squamous cell carcinoma. Anticancer Res 30: 2799-2803.

67. Buajeeb W, Poomsawat S, Punyasinh J, Sanguansin S (2009) Expression of p16 in oral cancer and premalignant lesions. J Oral Pathol Med 38: 104-108.

68. Pim D, Banks L (2010) Interaction of viral oncoproteins with cellular target molecules: infection with high-risk vs low-risk human papillomaviruses. APMIS 118: 471-493.