A Common Variant Of Ubiquinol-Cytochrome c Reductase Complex Is Associated with DDH

Ye Sun1,2, Cheng Wang3, Zheng Hao1, Jin Dai1,2, Dongyang Chen1, Zhihong Xu1, Dongquan Shi1,2, Ping Mao3, Huajian Teng2, Xiang Gao3, Zhibin Hu4, Hongbing Shen4, Qing Jiang1,2*

1 The Center of Diagnosis and Treatment for Joint Disease, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, Jiangsu 210008, China, 2 Laboratory for Bone and Joint Diseases, Model Animal Research Center, Nanjing University, Nanjing, Jiangsu 210061, China, 3 MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, Jiangsu 210061, China, 4 Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China

☯ These authors contributed equally to this work.
* jiangqing112@hotmail.com

Abstract

Purpose
Genetic basis of Developmental dysplasia of the hip (DDH) remains largely unknown. To find new susceptibility genes for DDH, we carried out a genome-wide association study (GWAS) for DDH.

Methods
We enrolled 386 radiology confirmed DDH patients and 558 healthy controls (Set A) to conduct a genome-wide association study (GWAS). Quality-control was conducted at both the sample and single nucleotide polymorphism (SNP) levels. We then conducted a subsequent case-control study to replicate the association between a promising loci, rs6060373 in UQCC gene and DDH in an independent set of 755 cases and 944 controls (set B).

Results
In the DDH GWAS discovering stage, 51 SNPs showed significance of less than 10^-4, and another 577 SNPs showed significance of less than 10^-3. In UQCC, all the 12 genotyped SNPs showed as promising risk loci. Genotyping of rs6060373 in set A showed the minor allele A as a promising risk allele (p = 4.82*10^-7). In set A, the odds ratio of allele A was 1.77. Genotyping of rs6060373 in Set B produced another significant result (p = 0.0338) with an odds ratio of 1.18 for risk allele A. Combining set A and set B, we identified a total p value of 3.63*10^-6 with the odds ratio of 1.35 (1.19–1.53) for allele A.

Conclusion
Our study demonstrates common variants of UQCC, specifically rs6060373, are associated with DDH in Han Chinese population.
Introduction

Developmental dysplasia of the hip (DDH, OMIM #142700) is one common skeletal disorder, presenting with shallow acetabulum and decreased coverage of the femoral head. [1] Incidence of DDH varies from 0.1% to 1.84% in Caucasian population, and 0.1%-0.5% in Chinese population. [2] Persistent DDH can induce chronic hip pain, dysfunction and increase the hip osteoarthritis risk. [3]

DDH is a polygenic disease with both environmental and genetic risk factors. [4] Though Mechanical factors (e.g. breech delivery, high birth weight, primiparity and oligoamnios) are suggested [5,6], it is accepted that genetic components are a crucial part in the etiology of DDH. Several DDH susceptibility genes (e.g. GDF5, TBX4, ASPN and PAPPA2) were discovered by association study in Chinese and Caucasian populations [7–10]. However, the genetic basis of DDH remains largely unknown.

Genome-wide association study (GWAS) is a genetic method for explaining complex human diseases such as osteoarthritis [11,12]. GWAS has the potential to identify new susceptibility genes with previously unknown function and their relationship to the disorder. Susceptibility genes for several common skeletal disorders have been identified by using this approach [11–13]. In order to find new susceptibility genes for DDH, we carried out a genome-wide association study for DDH. Within our GWAS result, we found 12 variants in Ubiquinol-cytochrome c reductase complex chaperone (UQCC) gene associated with DDH (Table 1).

UQCC encodes a zinc-binding protein, putatively repressed by fibroblast growth factor 2 (FGF2), which functions with several genes in morphogenesis and growth of skeleton. [14,15] UQCC is expressed in differentiating chondrocytes,[16] and is first expressed at early stages of mesenchymal cell proliferation in mouse.[17] UQCC has been reported as an important candidate gene in genome-wide association studies for spine bone size, height and testicular germ cell tumors.[18–20]

Based on the importance of UQCC in chondrogenesis, we thought UQCC could be an attractive candidate gene of DDH, and then conducted a subsequent case-control study to evaluate the association between UQCC gene and DDH, and found UQCC was associated with DDH

dbSNP ID	Chromosome Position	11	12	22	Sum	Allele 2 frequency	11	12	22	Sum	Allele 2 frequency	P Value	Odds ratio (95% CI)
rs6060355	33890061	259	110	17	386	0.187	286	226	46	558	0.285	0.00000104	1.74(1.39–2.17)
rs878639	33894463	259	110	17	386	0.187	284	228	46	558	0.287	0.00000349	1.75(1.40–2.91)
rs1406948	33905619	260	109	17	386	0.185	286	226	46	558	0.285	0.00000396	1.75(1.40–2.19)
rs6088791	33907909	260	109	17	386	0.185	285	226	46	557	0.285	0.00000657	1.76(1.41–2.20)
rs6060371	33913322	260	107	18	385	0.186	286	225	47	558	0.286	0.00000693	1.75(1.40–2.19)
rs6060373	33914208	260	109	17	386	0.185	285	226	47	558	0.287	0.00000482	1.77(1.41–2.21)
rs4911178	33952620	258	111	17	386	0.188	285	227	47	558	0.286	0.00000119	1.73(1.39–2.16)
rs60696658	33954913	258	110	17	385	0.187	286	223	48	557	0.286	0.00000877	1.74(1.40–2.18)
rs4911494	33971914	259	110	17	386	0.187	286	226	46	558	0.285	0.00000104	1.74(1.39–2.17)
rs6088813	33975181	259	110	17	386	0.187	284	226	46	556	0.286	0.00000832	1.75(1.40–2.18)
rs6087704	34001058	259	110	17	386	0.187	286	226	46	558	0.285	0.00000104	1.74(1.39–2.17)
rs6087705	34001250	259	110	17	386	0.187	286	226	46	558	0.285	0.00000104	1.74(1.39–2.17)

Population set A was genotyped. Allele 1 and allele 2 indicate the major and minor allele in the DDH population, respectively, and 11, 12 and 22 indicate homozygote of allele 1 and heterozygote and homozygote of allele 2, respectively. Odds ratio shown is for allele 1 versus allele 2.

doi:10.1371/journal.pone.0120212.t001

Table 1. Identified SNPs in UQCC gene in the genome-wide analysis.
Materials and Methods

Patients

We enrolled 386 radiology confirmed DDH patients and 558 healthy controls (Set A) to conduct a case-control genome-wide association study (GWAS). DDH patients were consecutively recruited from the Center of Diagnosis and Treatment for Development dysplasia of hip, Kang’ai Hospital. Controls were recruited from the First Affiliated Hospital of Nanjing Medical University and the Affiliated Nanjing Children’s Hospital of Nanjing Medical University (Nanjing, China) between March 2006 and March 2009.

An independent set of up to 755 cases and 944 controls (set B) were applied for replication of the most promising loci. DDH patients were also consecutively recruited from the Center of Diagnosis and Treatment for Development dysplasia of hip, Kang’ai Hospital. Controls were enrolled at the Physical Examination Center, Drum Tower Hospital, affiliated to the Medical School of Nanjing University. The diagnosis of DDH was made on the basis of clinical criteria and radiographic evidence by experts. All controls had no symptom or history of DDH. Subjects with any systemic syndrome were excluded. All the subjects were Han Chinese living in or around Nanjing. The study was approved by the ethical committee of the Nanjing University and the ethical committee of Nanjing Medical University, and written informed consent was obtained from all patients and controls. Written informed consent was obtained from guardians on behalf of the minors/children enrolled in this study.

Methods

DNA was extracted from all the subjects either from peripheral blood using the NucleoSpin Blood QuickPure Kit (Macherey-Nagel GmbH & Co. KG, Düren, German) or buccal swabs using the DNA IQ System (Promega, Madison, WI) according to the manufacture’s protocol. The set A samples were genotyped by using Illumina Human Omni ZhongHua-8BeadChips (Illumina, San Diego, CA, USA). Quality-control was conducted at both the sample and single nucleotide polymorphism (SNP) levels (S1 Fig). We performed case-control analysis for all the SNPs in set A. From the primary result, we found a region at 20q11.22 was significantly associated with DDH. 21 SNPs in the region showed significance. To check the most promising loci, set B samples were genotyped by Taqman assay. The samples were genotyped by laboratory personnel blinded to case status. Genotyping, data entry and statistical analyses results were reviewed by two authors independently. Five percent samples were randomly selected to duplicate and yielded a 100% concordance.

Statistics

The SAS software (version 9.2—SAS Institute, Cary, NC, USA) was used to test the association between DDH patients and control subjects. First of all, two-sided chi-squared tests were performed to determine the significance of differences in allelic frequencies and \(P < 0.05 \) was considered statistically significant for Set B. The data of set A and set B was then combined using an additive, 2-tailed Cochran-Mantel-Haenszel model. Hardy-Weinberg equilibrium was calculated by chi-squared test in both control and case groups.

Results

In the DDH GWAS discovering stage, associations were assessed in an additive model using logistic regression analyses with adjustment for the top eigenvector (Fig 1). 51 SNPs showed significance of less than \(10^{-4} \), and another 577 SNPs showed significance of less than \(10^{-3} \) (S1 Table). From these 628 SNPs we found 21 SNPs at a same region, 20q11.22. UQCC and GDF5 genes
located in this region. GDF5 was previously reported as DDH susceptibility gene by our group. [7] In UQCC, all the 12 genotyped SNPs showed promising difference of allele frequencies. Details of the genotypes and allele distributions of cases and controls of the 12 SNPs were listed in Table 1. All of them showed significance of less than 5×10^{-6}, with similar odds ratios ranging from 1.73 to 1.77 for the risk alleles (Table 1) rs6060373 was reported to be associated with body measurement traits and osteoarthritis, [18] and linkage Disequilibrium tests demonstrated rs6060373 had D' value >0.9 to all the other 11 SNPs within UQCC. (S2 Fig) So we chose rs6060373 as the most promising locus and conducted a case-control analysis in an independent set of subjects (set B).

Distributions of genotypes of rs6060373 in both case and control groups were conformed to Hardy-Weinberg equilibrium in both set A and set B ($p > 0.1$). Genotyping of rs6060373 in set A showed the minor allele A as a promising risk allele ($p = 4.82 \times 10^{-7}$). In set A, the odds ratio of allele A was 1.77 (Table 1). Genotyping of rs6060373 in another independent population consisting of 755 cases and 944 controls (Set B) produced another significant result ($p = 0.0338$) with an odds ratio of 1.18 for risk allele A (Table 2). Combining set A and set B, we identified a total p value of 3.63×10^{-6} with the odds ratio of 1.35 (1.19–1.53) for allele A.

Table 2. Association of rs6060373 in UQCC gene with DDH.

Population	Genotype	Allele G frequency	Genotype	Allele G frequency	P value for allele frequency	Odds ratio (95% CI)
	AA AG GG Sum			AA AG GG Sum		
Set A	260 109 17 386	0.19	285 226 47 558	0.29	4.82×10^{-7}	1.77 (1.41–2.21)
Set B	426 293 36 755	0.24	500 371 73 944	0.27	0.0338	1.18 (1.01–1.38)
Set A + Set B*	686 402 53 1141	0.22	785 597 120 1502	0.28	3.63×10^{-6}	1.35 (1.19–1.53)

Odds ratio shown is for allele A versus allele G.

*Set A and Set B were combined using an additive, 2-tailed Cochran-Mantel-Haenszel model.
Discussion

We conducted the first GWAS for DDH and identified a new DDH susceptibility gene UQCC. Important roles of UQCC have been revealed in body measurement traits (e.g. height, skeletal frame and spine size) and osteoarthritis. [18] rs6060373 was highlighted in previous reports, and it had D’ value >0.9 to other 11 SNPs in UQCC. [21] So we chose rs6060373 for replication study on behalf of other 11 SNPs in UQCC, and it appeared to be a risk locus for DDH.

UQCC encodes a zinc-binding protein as a chaperone in mitochondrial respiratory chain to assembly Ubiquinol-cytochrome c reductase, of which activity is reduced in yeast lacking UQCC. [22] Interestingly, activity of ubiquinol-cytochrome c reductase is significantly reduced in cultured osteoarthritic chondrocytes compared to normal chondrocytes. [23] UQCC is identified as a target gene of FGF2 using induction gene trap approach in embryonic stem cells. FGF2 plays a vital role in chondrogenesis. [24] Overexpression of FGF2 results in dyschondroplasia and hence dwarfism in mice while FGF2 knock-out mice will have decreased bone density and develop accelerated osteoarthritis. [25–28] UQCC, repressed by FGF2, is likely to be involved in regulation of skeletal development and chondrogenesis by FGF2. However, further studies are needed to reveal its specific functional role in growth.

In conclusion, our study demonstrates common variants of UQCC, specifically rs6060373, are associated with DDH in Han Chinese population.

Supporting Information

S1 Fig. Quality-control was conducted at both the sample and single nucleotide polymorphism (SNP) levels as illustrated. (JPG)

S2 Fig. Linkage Disequilibrium tests demonstrated all 12 SNPs within UQCC gene had a D’ value >0.9 to rs6060373. (JPG)

S1 Table. Summary of loci associated with DDH in GWAS discovering stages. (DOCX)

Author Contributions

Conceived and designed the experiments: YS CW ZH QJ. Performed the experiments: YS JD PM HJT ZH. Analyzed the data: DYC ZHX DQS. Contributed reagents/materials/analysis tools: XG ZBH HBS QJ. Wrote the paper: YS JD QJ.

References

1. Sollazzo V, Bertolani G, Calzolari E, Atti G, Scapoli C (2000) A two-locus model for non-syndromic congenital dysplasia of the hip (CDH). Ann Hum Genet 64: 51–59. PMID: 11246461
2. Laurence M, Harper PS, Harris R, Nevin NC, Roberts DF (1987) Report of the delegation of clinical geneticists to China, Spring 1986. Biol Soc 4: 61–77. PMID: 12314923
3. Jacobsen S, Sonne-Holm S (2005) Hip dysplasia: a significant risk factor for the development of hip osteoarthritis. A cross-sectional survey. Rheumatology (Oxford) 44: 211–218. PMID: 15479751
4. Carter CO, Wilkinson JA (1964) Genetic and environmental factors in the etiology of congenital dislocation of the hip. Clin Orthop Relat Res 33: 119–128. PMID: 5889015
5. Chan A, McCaul KA, Cundy PJ, Haan EA, Byron-Scott R (1997) Perinatal risk factors for developmental dysplasia of the hip. Arch Dis Child Fetal Neonatal Ed 76: F94–100. PMID: 9135287
6. Stein-Zamir C, Volovik I, Rishpon S, Sabi R (2008) Developmental dysplasia of the hip: risk markers, clinical screening and outcome. Pediatr Int 50: 341–345. doi: 10.1111/j.1442-200X.2008.02575.x PMID: 18539949
7. Dai J, Shi D, Zhu P, Qin J, Ni H, Xu Y, et al. (2008) Association of a single nucleotide polymorphism in growth differentiate factor 5 with congenital dysplasia of the hip: a case-control study. Arthritis Res Ther 10: R126. doi: 10.1186/ar2540 PMID: 18947434

8. Wang K, Shi D, Zhu P, Dai J, Zhu L, Zhu H, et al. (2010) Association of a single nucleotide polymorphism in Tbx4 with developmental dysplasia of the hip: a case-control study. Osteoarthritis Cartilage 18: 1592–1595. doi: 10.1016/j.joca.2010.09.008 PMID: 20887794

9. Shi D, Dai J, Zhu P, Qin J, Zhu L, Zhu H, et al. (2011) Association of the D repeat polymorphism in the ASPN gene with developmental dysplasia of the hip: a case-control study in Han Chinese. Arthritis Res Ther 13: R27. doi: 10.1186/ar3252 PMID: 21329514

10. Jia J, Li L, Zhao Q, Zhang L, Ru J, Liu X, et al. (2012) Association of a single nucleotide polymorphism in pregnancy-associated plasma protein-A2 with developmental dysplasia of the hip: a case-control study. Osteoarthritis Cartilage 20: 1592–1595. doi:10.1016/j.joca.2010.09.008 PMID: 20887794

11. Miyamoto Y, Shi D, Nakajima M, Ozaki K, Sudo A, Kotani A, et al. (2008) Common variants in DVWA on chromosome 3p24.3 are associated with susceptibility to knee osteoarthritis. Nat Genet 40: 994–998. doi:10.1038/ng.176 PMID: 18622395

12. Valdes AM, Evangelou E, Kerkhof HJ, Tamm A, Doherty SA, Kisand K, et al. (2011) The GDF5 rs143383 polymorphism is associated with osteoarthritis of the knee with genome-wide statistical significance. Ann Rheum Dis 70: 873–875. doi: 10.1136/ard.2010.134155 PMID: 20870806

13. Kou I, Takahashi Y, Johnson TA, Takahashi A, Guo L, Dai J, et al. (2013) Genetic variants in GPR126 are associated with adolescent idiopathic scoliosis. Nat Genet 45: 676–679. doi:10.1038/ng.2639 PMID: 2366238

14. Vetter K, Wurst W (2001) Expression of a novel mouse gene ‘mbFZb’ in distinct regions of the developing nervous system and the adult brain. Mech Dev 100: 123–125. PMID:11118897

15. Voight BF, Kudaravalli S, Wen X, Pritchard JK (2006) A map of recent positive selection in the human genome. PLoS Biol 4: e72. PMID:16494531

16. Imabayashi H, Mori T, Gojo S, Kiyono T, Sugiyama T, Irie R, et al. (2003) Redifferentiation of dedifferentiated chondrocytes and chondrogenesis of human bone marrow stromal cells via chondrosphere formation with expression profiling by large-scale cDNA analysis. Exp Cell Res 288: 35–50. PMID: 12878157

17. Goldring MB, Tsuchimochi K, Ijiri K (2006) The control of chondrogenesis. J Cell Biochem 97: 33–44. PMID: 16215986

18. Deng FY, Dong SS, Xu XH, Liu YJ, Liu YZ, Shen H, et al. (2013) Genome-wide association study identified UQCC locus for spine bone size in humans. Bone 53: 129–133. doi:10.1016/j.bone.2012.11.028 PMID: 23207799

19. Cook MB, Chia VM, Berndt SI, Graubard BI, Chanock SJ, Rubertone MV, et al. (2011) Genetic contributions to the association between adult height and testicular germ cell tumors. Int J Epidemiol 40: 731–739. doi: 10.1093/ije/dyq260 PMID: 21233139

20. Sanna S, Jackson AU, Nagaraja R, Willer CJ, Chen WM, Bonnycastle LL, et al. (2008) Common variants in the GDF5-UQCC region are associated with variation in human height. Nat Genet 40: 198–203. doi: 10.1038/ng.74 PMID: 18193045

21. Shi YY, He L (2005) SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res 15: 97–98. PMID: 15740637

22. Wu M, Tzagoloff A (1989) Identification and characterization of a new gene (CBP3) required for the expression of yeast coenzyme QH2-cytochrome c reductase. J Biol Chem 264: 11122–11130. PMID: 2544586

23. Maneiro E, Martin MA, de Andres MC, Lopez-Armada MJ, Fernandez-Sueiro JL, del Hoyo P, et al. (2003) Mitochondrial respiratory activity is altered in osteoarthritic human articular chondrocytes. Arthritis Rheum 48: 700–708. PMID: 12632423

24. Marie PJ, Coffin JD, Hurley MM (2005) FGF and FGFR signaling in chondrodysplasias and craniosynostosis. J Cell Biochem 96: 888–896. PMID: 16149058

25. Chia SL, Sawaji Y, Burleigh A, McLean C, Inglis J, Saklatvala J, et al. (2009) Fibroblast growth factor 2 is an intrinsic chondroprotective agent that suppresses ADAMTS-5 and delays cartilage degradation in murine osteoarthritis. Arthritis Rheum 60: 2019–2027. doi: 10.1002/art.24654 PMID: 19565481

26. Montero A, Okada Y, Tomita M, Ito M, Tsurukami H, Nakamura T, et al. (2000) Disruption of the fibroblast growth factor-2 gene results in decreased bone mass and bone formation. J Clin Invest 105: 1085–1093. PMID: 10772653

27. Sahni M, Raz R, Coffin JD, Levy D, Basilio C (2001) STAT1 mediates the increased apoptosis and reduced chondrocyte proliferation in mice overexpressing FGF2. Development 128: 2119–2129. PMID: 11493533
28. Madry H, Emkey G, Zurakowski D, Trippel SB (2004) Overexpression of human fibroblast growth factor 2 stimulates cell proliferation in an ex vivo model of articular chondrocyte transplantation. J Gene Med 6: 238–245. PMID: 14978777