Serum antibodies against βH-crystallins in the American Cocker Spaniel

Nobuyuki Kanemaki,* Chiho Fukiage,† Yoichiro Ichikawa,* Thomas R. Shearer‡ and Mitsuyoshi Azuma†,‡

*Veterinary Teaching Hospital, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, 2525201, Japan; †Senju Laboratory of Ocular Sciences, Senju Pharmaceutical Co. Ltd, 1-5-5 Minatojima Minamimachi, Chuo-ku, Kobe, 6500047, Japan; and ‡Department of Integrative Bioscience, Oregon Health & Science University, 611 SW Campus Dr, Portland, OR, 97239, USA

Address communications to:
N. Kanemaki
Tel.: +81-42-754-7111
Fax: +81-42-769-2408
e-mail: kanemaki@azabu-u.ac.jp

Abstract

Objective To detect antibodies for lens βH-crystallins in the serum from the American Cocker Spaniel (ACS) presenting with and without cataracts and with and without uveitis.

Animal Studied Seventy-three American Cocker Spaniels and six normal Beagles.

Procedures Sera were collected from 73 ACSs, including those with normal lenses and those with cataracts, or uveitis. Fractionated, normal Beagle lens βH-crystallins were separated by one- or two-dimensional electrophoresis. The separated lens βH-crystallins were used on immunoblots as sentinel substrates against which the ACS sera were tested for the presence of antibodies against βH-crystallins.

Results Sera from approximately two-thirds of study animals contained antibodies to some βH-crystallin polypeptides, but reactivity varied among patients. Contrary to some hypotheses, serum antibodies to groups of βH-crystallins did not relate to the stages of cataract. However, detailed analysis by two-dimensional immunoblotting and mass spectrometry showed that three spots originating from βA1-crystallin were detected only in sera from cataract patients.

Conclusion Serum antibodies to βA1-crystallin may be associated with the development of cataract.

Key Words: American Cocker Spaniels, cataracts, dog, immunoblotting, serum antibodies, βH-crystallins

INTRODUCTION

Cataracts are a leading cause of poor visual acuity and blindness in dogs. A retrospective study reported significantly higher odds ratios for cataracts in six pure-bred dogs (including cocker spaniel, miniature schnauzer, toy poodle, Boston terrier, miniature poodle, and bichon frise) compared with mixed-bred dogs. For example, the American Cocker Spaniel (ACS) was reported in North America to have a prevalence of cataract of 8.8% during the period of 1964–2003, and similar prevalence (7.8%) was also reported in Brazil during the period of 2005–2008. Risk factors for cataract include the following: congenital defects, advancing age, genetic background, diabetes mellitus, uveitis, hypocalcemia, electric shock, and exposure to radiation or toxic substances, such as dinitrophenol and naphthalene. Postulated mechanisms for cataract formation include the following: (i) action of reactive oxygen species leading to breakdown of lens plasma membranes, (ii) loss of ion homeostasis and accumulation of sodium and calcium in lens, and (iii) post-translational modifications of the major structural proteins of the lens (α-, β-, and γ-crystallins) leading to their insolubilization and opacity. Postdevelopmental modifications, include truncation, phosphorylation, and deamidation. Another postulated mechanism is that the plasma membranes of the lens leak crystallins into the anterior chamber and systemic circulation, causing an autoimmune reaction to lens proteins, cataract formation, and uveitis. As this latter mechanism is controversial, the purpose of this study was to determine the relationship between serum antibodies to βH-crystallins and the stage of cataract in ACS. We focused on the β-crystallins because they are one of the

© 2013 The Authors Veterinary Ophthalmology published by Wiley Periodicals, Inc. on behalf of American College of Veterinary Ophthalmologists This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
most abundant components of the insolubilized, cataractous lens proteins. Although nonlenticular tissues (e.g., retina) may express low levels, the lens contains the highest concentration of \(\beta \)-crystallins.

MATERIALS AND METHODS

Animals

Seventy-three American Cocker Spaniels (40 males and 33 females) with medical records at the Veterinary Teaching Hospital of Azabu University during October 2003 to February 2010 were used. To collect normal lens proteins, eyes from six 2-year-old healthy Beagles (three males and three females) were enucleated in protocols not related to the present studies. Lenses were obtained by intracapsular surgery and then stored at \(-80^\circ\text{C}\) until use. All experimental animals were handled in accordance with the ARVO Statement for the Use of Animals in Ophthalmic and Vision Research and with the Guiding Principles in the Care and Use of Animals (DHEW Publication, NIH 80-23). The protocols were approved by the animal care and use committee of Azabu University.

As an inclusion criteria, all animals received a thorough ophthalmic examination including neuro-opthalmic examination, Schirmer Tear Test (Schirmer Tear Test strips; Eagle Vision, Memphis, TN, USA), fluorescein dye staining (Fluores Ocular Examination Test Paper; Showa Yakuhin Kako Co., Ltd, Tokyo, Japan), applanation tonometry (Tonopen XL; Medtronic Solan, USA), slit-lamp biomicroscopy equipped with a CCD camera (Kowa SL-14; Kowa Co, Tokyo, Japan), and indirect ophthalmoscopy. Stages of cataract were classified as immature, mature, or hypermature cataracts according to the criteria reported by Leasure, et al. Both eyes were scored for cataracts, and only data from the eye with the cataract in the most advanced stage were reported. Uveitis was also scored by observing conjunctival hyperemia, iris appearance and aqueous flare, as modified previously by Park, et al. Score 0 was defined as no conjunctival hyperemia, no iris hyperplasia or atrophy, and no aqueous flare; score 1 was defined as mild conjunctival hyperemia, mild iris hyperplasia or atrophy, and no aqueous flare; score 2 was defined as moderate conjunctival hyperemia, moderate iris hyperplasia or atrophy (possible darkening of the iris), and no or mild aqueous flare; and score 3 was defined as severe conjunctival hyperemia, severe iris hyperplasia or atrophy, and moderate aqueous flare.

Isolation and purification of lens proteins

Frozen lenses obtained from six 2-year-old Beagles were homogenized, and total water-soluble lens proteins were collected after centrifugation. Lens crystallins were fractionated using Sepharose CL-6B gel filtration. Groups of \(\beta \)-crystallins, termed H1, H2, H3, and H4, were further separated using 12.5% SDS-polyacrylamide gel electrophoresis using a Mini-PROTEAN® Tetra cell (Bio-Rad Laboratories, Inc., Tokyo, Japan). These \(\beta \)-crystallins were used as sentinel proteins for detecting serum antibodies described in the following sections because of previous comparative literature data, the known masses and migration positions of the seven separate gene products for \(\beta \)-crystallins polypeptides on electrophoresis, and the propensity of \(\beta \)-crystallins to become modified and precipitate in experimental cataract.

Detection of serum antibody reactivity by immunoblotting

\(\beta \)-crystallins separated by SDS-PAGE gels were electrotransferred to polyvinylidene difluoride (PVDF) membrane at 50 V for 90 min at ice-cold temperature using Tris-glycine buffer (25 mM Tris, 192 mM glycine, 20% methanol), using a Mini Trans-Blot Electrophoretic Transfer Cell (Bio-Rad Laboratories, Inc.). Sera from 73 ACSs were obtained by venipuncture, stored at \(-80^\circ\text{C}\), and flooded over the PVDF membrane at 1:200 dilution in 1% skim milk in Tris-Buffered Saline Tween 20. Immuneactivity was visualized with 3, 3', 5, 5'-tetramethylbenzidine and horseradish peroxidase conjugated to anti-rabbit IgG secondary antibody. A positive reaction was reported if staining was more intense than the negative control immunoblot reacted with the secondary antibody but no sera.

Two-dimensional electrophoresis and mass spectrographic analysis

Protein spots on the membrane were analyzed using the ImageJ (NIH) software. The molecular weights (MW) and isoelectric points (IP) of spots were estimated in triplicate using molecular weight markers (SDS7; Sigma) and 2-D SDS-PAGE standards (Bio-Rad). After the preparative gels were stained with Coomassie brilliant blue R-250 (Merck KGaA, Darmstadt, Germany), protein spots of interest were excised from the gels and digested with trypsin. The tryptic peptides were extracted and dried completely by centrifugal lyophilization. The peptides were analyzed by matrix-assisted laser desorption/ionization-time of flight-tandem mass spectrometry (MALDITOF-MS), performed using a Voyager-DE STR (Life Technologies, Tokyo, Japan). Mass spectra were used to search canine sequences in the NCBI nr database using the Mascot database search algorithms.

Statistical analysis

Statistical evaluations were performed with a commercially available software program (JMP10.0.2 statistical software; SAS Institute, Tokyo, Japan). The relationship between age and stage of cataract was evaluated by Spearman’s rank correlation coefficient. Correlation between the incidence of \(\beta \)-crystallins antibodies in sera and stages of cataract or uveitis were assessed by Pearson’s \(\chi^2 \)-test. The Mann–Whitney U-test was performed to compare the incidence of uveitis in cataractous patients and normal controls. \(P < 0.05 \) was defined as statistically significant.
RESULTS

Evaluations of 73 ACS dogs found 12 with both lenses normal, three dogs with at least one lens with immature cataracts, 32 dogs contained mature cataracts, and 15 had hypermature cataracts (Fig. 1a). Lenses in 11 dogs could not be observed due to corneal opacity due to ocular surface abnormalities or glaucoma; these dogs were excluded from further analysis. To maintain statistical validity, the data from the very small group of patients with immature cataracts were also eliminated. The stage of cataract was found to be negatively correlated with age in our patient population \((P = 0.0054, \text{Fig. 1b})\).

In addition to cataract, uveitis was the major ocular disease in our study patients (Table 1a). Uveitis developed concomitantly with cataract, and this might be a reason why anti-inflammatory drugs were used in mature and hypermature cataract patients (Table 1b).

Purification of dog lens crystallins yielded the four known major peaks\(^{22}\) for \(\alpha\)-, \(\beta H\)-, \(\beta L\), and \(\gamma\)-crystallins (data not shown), which contained several bands of crystallins (Fig. 2a). The polypeptides within the \(\beta H\)-crystallin group are comprised of seven separate gene products and their fragments,\(^{20}\) and four arbitrary groupings of these protein bands (termed H1, H2, H3, and H4) based on their common range of MW’s were used in a one-dimensional immunoblot assay for serum anti-\(\beta H\)-crystallin reactivity (Fig. 2b). No serum antibodies for any \(\beta H\)-crystallin were detected in approximately 30–40% of patients despite the existence of opacity (Fig. 3a, column ‘0’). This was highest frequency in the largest group with hypermature cataract (Fig. 3a, column ‘0’, open bar). The group of patients with the highest frequency of mature cataracts (~40%), and the group with highest frequency of normal lenses (~50%) contained 2 and 3 kinds of antibodies for \(\beta H\)-crystallins, respectively. Serum antibody reactivity to groups of \(\beta H\)-crystallin polypeptides varied between groups of cataract patients (Fig. 3b). The incidence of serum antibodies against \(\beta H\)-crystallins in ACSs was not positively related to stages of cataract (Fig. 3b). Indeed, serum antibody reactivity against the \(\beta H\)-crystallin H4 group was negatively correlated with stage of cataract \((P = 0.032, \text{Fig. 3b, H4*})\). Thus, the data do not confirm a positive relationship between serum \(\beta H\)-crystallin antibodies and stage of cataract.

Patients with cataract were also exhibited uveitis (Fig. 3c, ‘Mature’ and ‘Hypermature’). The stage of uveitis was not different between patients with mature and hypermature cataracts.

Patients with normal lenses did not develop uveitis (Fig. 3c, ‘Normal’). As with cataract, the stage of uveitis was negatively correlated with serum antibody reactivity against the \(\beta H\)-crystallin H4 group \((P = 0.025, \text{Fig. 3d, H4*})\).

Protein staining on the two-dimensional proteome map of noncataractous Beagle \(\beta H\) lens crystallins detected 14 protein individual spots (Fig. 4a), varying in molecular weight from 22 to 27 kDa and ranging in IP from 5.4 to 6.4. After destaining these protein spots, immunoblot assays for serum \(\beta H\)-crystallin antibody activities in ACS dogs were performed. Antibody to the large amount of landmark Spot 6, identified as \(\beta B2\)-crystallin, was most frequently observed in 11 patients (normal plus cataractous). Interestingly, antibody reactions to spots 1, 5 and 13 were found only in the serum from patients with cataract (Fig. 4b* and not in normal lenses (gray bars). Mass spectrographic analysis of these three spots indicated that they were from \(\beta A1\)-crystallin (Fig. 5).

DISCUSSION

A major finding of the present investigation was that serum antibodies to \(\beta H\)-crystallin in ACS dogs were not directly (positively) related to the stage of cataract.
We observed a significant decrease in anti-
H4-crystallin serum reactivity with stage of cataract. As cata-
ract stage was negatively associated with aging (Fig. 1b),
these ACS cataracts were likely due their known genetic
propensity for cataract.

Due to heredity predilection in some breeds (Canine Inherited Disorders Database; URL http://ic.upei.ca/cidd/breed/cocker-spaniel-american [accessed on 06 September 2013]) show increased risk of certain disorders including cataract. Further, the data do not support a proposed mechanism whereby βH-crystal-
lins leak from lenses due to membrane breakdown into
the serum causing a generalized increased autoimmune
reaction against lens proteins resulting in cataract. A simi-
lar negative correlation between serum antibodies against
general lens crystallins and stage of cataract in an
unknown species of dog was also reported, and the data
supporting a similar autoimmune mechanism for human
cataract are conflicted.

Another major new finding was presentation of a prote-
ome map for normal, canine βH-crystallins (Fig. 4a). Fea-
tures included the predominance of reactivity for the
abundant lens crystallin βB2. We noted 14 different
polypeptides with differing masses and PI’s. As only seven
separate gene products exist for the βH-crystallin family,
some of the spots were due to degradation and/or protein
modifications of the βH-crystallin polypeptides. For exam-
ple, spots 1, 5 and 13 were only found in sera from dogs
with cataractous lenses and showed three masses of 26.9,
22.3, and 23.7 kDa, respectively. These spots were deter-
mined to be βA1-crystallin (Fig. 5), which has a native
molecular weight of 22.3 kDa.

The β-crystallin family consists of four acidic (βA1-,
βA2-, βA3-, βA4-crystallin) and three basic (βB1-, βB2-, and βB3-crystallin) protein members that form homo-
dimers and then aggregate into complex hetero-oligomers.
Heterodimers of β-crystallins increase during aging and
cataracts, contributing consequently to the accumulation

Table 1. Diagnosis (a) and medication (b) reported in the medical records for ACS dogs

Group	n	Male	Female	Uveitis	Uveal cyst	Glaucoma	Lens luxation	Retinal degeneration	Retinal detagchment	KCS	Keratitis	Eyelashes and eyelid diseases	Skin and ear diseases
Normal	12	6	6	0	0	0	0	0	1	0	0	2	3
Immature	3	1	2	0	0	0	1	0	0	0	0	2	5
Mature	32	19	13	23	0	0	0	0	0	1	0	1	3
Hypermature	15	8	7	9	0	0	0	1	0	0	0	1	3
Others	11	6	5	2	8	3	0	1	1	2	2	2	3

Group	n	Steroids	NSAIDs	Antioxidants	Antibiotics	Eyedrops for glaucoma	NSAIDs	Antioxidant supplement	CAIs
Normal	12	1	0	0	1	0	0	0	0
Immature	3	0	0	0	0	0	0	1	0
Mature	32	6	8	4	9	0	5	2	0
Hypermature	15	6	1	0	5	0	1	1	0
Others	11	0	1	0	4	7	1	4	1

NSAIDs, Non-steroid anti-inflammatory drugs; CAIs, Carbonic anhydrase inhibitors.

Figure 2. (a) SDS-PAGE of the crystallin peak fractions from Sepharose chromatography of Beagle dog water-soluble proteins used to isolate crystallins (Bold arrow indicates βH fraction used for further purification and testing). Lane 1: molecular weight marker, lane 2: total water-soluble proteins before purification, lane 3: α crystallin, lane 4: βH-crystallin, lane 5: βL crystallin, and lane 6: γ crystallin. (b) Immunoblots using sera from individual dogs blotted against the four numbered βH bands at 23–29 kDa. (+) is a representative blot from a dog with serum antibodies reacting with all four bands; (−) is a negative control blot with no serum.

(Fig. 3b). We observed a significant decrease in anti-βH4-
crystallin serum reactivity with stage of cataract. As cata-
ract stage was negatively associated with aging (Fig. 1b),
these ACS cataracts were likely due their known genetic
propensity for cataract. Due to heredity predilection in some breeds (Canine Inherited Disorders Database; URL http://ic.upei.ca/cidd/breed/cocker-spaniel-american [accessed on 06 September 2013]) show increased risk of certain disorders including cataract. Further, the data do not support a proposed mechanism whereby βH-crystal-
lins leak from lenses due to membrane breakdown into
the serum causing a generalized increased autoimmune
reaction against lens proteins resulting in cataract. A simi-
lar negative correlation between serum antibodies against
general lens crystallins and stage of cataract in an
unknown species of dog was also reported, and the data
supporting a similar autoimmune mechanism for human
cataract are conflicted.

Another major new finding was presentation of a prote-
ome map for normal, canine βH-crystallins (Fig. 4a). Fea-
tures included the predominance of reactivity for the
abundant lens crystallin βB2. We noted 14 different
polypeptides with differing masses and PI’s. As only seven
separate gene products exist for the βH-crystallin family,
some of the spots were due to degradation and/or protein
modifications of the βH-crystallin polypeptides. For example,
spots 1, 5 and 13 were only found in sera from dogs
with cataractous lenses and showed three masses of 26.9,
22.3, and 23.7 kDa, respectively. These spots were deter-
mined to be βA1-crystallin (Fig. 5), which has a native
molecular weight of 22.3 kDa.

The β-crystallin family consists of four acidic (βA1-,
βA2-, βA3-, βA4-crystallin) and three basic (βB1-, βB2-, and βB3-crystallin) protein members that form homo-
dimers and then aggregate into complex hetero-oligomers.
Heterodimers of β-crystallins increase during aging and
cataracts, contributing consequently to the accumulation

© 2013 The Authors Veterinary Ophthalmology published by Wiley Periodicals, Inc. on behalf of American College of Veterinary Ophthalmologists, Veterinary Ophthalmology, 18, 109–115
of insoluble β-crystallins.11,26,27 The production of antibodies against β-crystallins may be related to the instability of dimer formation of β-crystallins.

Increased calcium is present in many types of cataract.8,28,29 Three types of calcium-activated proteases (calpain 1, calpain 2, and Lp82) are present in dog lenses (Y. Tamada, T.R. Shearer, M. Azuma, unpublished data), and we speculate that calpain may have caused increased degradation in ACS cataracts. Thus, while levels of antibodies to groups of βH-crystallins was not related to cataract, release of specific polypeptides, such as βA1-crystallin or its derivatives, may have been increased, and thereby increased serum antibodies to them in ACS cataract. Although more samples are needed, the data suggested that increased reactivity by βA1-crystallin antibodies is associated with cataract formation. If future studies detect anti-βA1-crystallin antibodies at the earlier stages of cataract formation, the antibody may be useful as a prognostic marker for earlier cataract treatment and prevention. This is especially pertinent as βA1-crystallin is one of the most abundant crystallins to be insolubilized in cataractous lenses.14,30

ACKNOWLEDGMENTS

The authors thank Yumiko Nishina and Hiroki Takahashi, graduate students in Azabu University, for help in a part of data analysis. We also thank Hideyuki Sakaki, PhD,
Senju Pharmaceutical Co Ltd, Kobe, Japan for his statistical consultation.

AUTHORS’ DISCLOSURE STATEMENT

Dr. Shearer is a paid consultant for Senju Pharmaceutical Co., Ltd., a company that may have a commercial interest in the results of this research and technology. Dr. Azuma is an employee of Senju Pharmaceutical Co., Ltd. These potential conflicts of interest were reviewed, and management plans approved by the OHSU Conflict of Interest in Technology Committee were implemented.

REFERENCES

1. Adkins EA, Hendrix DV. Outcomes of dogs presented for cataract evaluation: a retrospective study. Journal of the American Animal Hospital Association 2005; 41: 235–240.
2. Gelatt KN, Mackay EO. Prevalence of primary breed-related cataracts in the dog in North America. Veterinary Ophthalmology 2005; 8: 101–111.
3. Baumworcele N, Soares AM, Helms G et al. Three hundred and three dogs with cataracts seen in Rio de Janeiro, Brazil. Veterinary Ophthalmology 2009; 12: 299–301.
4. Barnett KC. The diagnosis and differential diagnosis of cataract in the dog. Journal of Small Animal Practice 1985; 26: 305–316.
5. Davidson MG, Nelms SR. Diseases of the canine lens and cataract formation. In: Veterinary ophthalmology, 4th edn. (ed. Gelatt KN). Blackwell Publishing, USA, 2007; 859–887.
6. Williams DL. Oxidation, antioxidants and cataract formation: a literature review. Veterinary Ophthalmology 2006; 9: 292–298.
7. Barros PS, Angelotti AC, Nobre F et al. Antioxidant profile of cataractous English Cocker Spaniels. Veterinary Ophthalmology 1999; 2: 83–86.
8. Rhodes JD, Sanderson J. The mechanisms of calcium homeostasis and signaling in the lens. Experimental Eye Research 2009; 88: 226–234.
9. Donaldson P, Kistler J, Mathias RT. Molecular solutions to mammalian lens transparency. News in Physiological Sciences 2001; 16:118–123.
10. Wilmarth PA, Tanner S, Dasari S et al. Age-related changes in human crystallins determined from comparative analysis of post-translational modifications in young and aged lens: do deamidation contribute to crystallin insolubility? Journal of Proteome Research 2006; 5: 2554–2566.
11. Takata T, Woodbury LG, Lampi KJ. Deamidation alters interactions of beta-crystallins in hetero-oligomers. Molecular Vision 2009; 15: 241–249.
12. Denis HM, Brooks DE, Alleman AR et al. Detection of anti-lens crystallin antibody in dogs with and without cataracts. Veterinary Ophthalmology 2003; 6: 321–327.
13. David LL, Shearer TR. Beta-crystallins insolubilized by calpain II in vitro contain cleavage sites similar to beta-crystallins insolubilized during cataract. FEBS Letter 1993; 21: 265–270.
14. Wang L, Liu D, Liu P et al. Proteomics analysis of water insoluble-urea soluble crystallins from normal and dexamethasone exposed lens. Molecular Vision 2011; 17: 3423–3436.
15. Dirks RP, Van Genesen ST, KrUse JJ et al. Extralenticular expression of the rodent betaB2-crystallin gene. Experimental Eye Research 1998; 66: 267–269.
16. Xi J, Farjo R, Yoshida S et al. A comprehensive analysis of the expression of crystallins in mouse retina. Molecular Vision 2003; 9: 410–419.
17. Leasure J, Gelatt KN, Mackay EO. The relationship of cataract maturity to intraocular pressure in dogs. Veterinary Ophthalmology 2001; 4: 273–276.
18. Park SA, Yi NY, Jeong MB et al. Clinical manifestations of cataracts in small breed dogs. Veterinary Ophthalmology 2009; 12: 205–210.
19. Daniel WJ, Noonan NE, Gelatt KN. Isolation and characterization of the crystallins of the normal and cataractous canine lens. Current Eye Research 1984; 3: 911–922.
20. Müller C, Distl O. Linkage and association analyses of intragenic SNPs in the canine beta-crystallin genes CRYBB1, CRYBB2, CRYBB3, CRYBA1 and CRYBA4 with primary cataracts in wire-haired Dachshunds. Animal Genetics 2008; 39: 87–88.
21. Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. *Proceedings of the National Academy of Sciences of the United States of America* 1979; **76**: 4350–4354.

22. Cobb BF 3rd, Price JE, Koenig VL. The distributions of the soluble protein components in the crystalline lenses of mammals. *Comparative Biochemistry and Physiology* 1969; **28**: 841–851.

23. Merck KB, de Haard-Hoekman WA, Cruysberg JR et al. Characterization of anti-crystallin autoantibodies in patients with cataract. *Molecular Biology Reports* 1993; **17**: 93–99.

24. Ibaraki N, Lin LR, Dang L et al. Anti-beta-crystallin antibodies (mouse) or sera from humans with age-related cataract are cytotoxic for lens epithelial cells in culture. *Experimental Eye Research* 1997; **64**: 229–238.

25. Ranjan M, Nayak S, Kosuri T et al. Immunochemical detection of glycated lens crystallins and their circulating autoantibodies in human serum during aging. *Molecular Vision* 2008; **14**: 2056–2066.

26. Chan MP, Dolinska M, Sergeev YV et al. Association properties of betaB 1- and betaA3-crystallins: ability to form heterotetramers. *Biochemistry* 2008; **47**: 11062–11069.

27. Takata T, Oxford JT, Brandon TR et al. Deamidation alters the structure and decreases the stability of human lens betaA3-crystallin. *Biochemistry* 2007; **46**: 8861–8871.

28. Robertson LJ, Morton JD, Yamaguchi M et al. Calpain may contribute to hereditary cataract formation in sheep. *Investigative Ophthalmology & Visual Science* 2005; **46**: 4634–4640.

29. Duncan G, Jacob TJ. Calcium and the physiology of cataract. *Ciba Foundation symposium* 1984; **106**: 132–152.

30. Feng J, Smith DL, Smith JB. Human lens beta-crystallin solubility. *The Journal of Biological Chemistry* 2000; **275**: 11585–11590.