De Rham epsilon factors for flat connections on higher local fields

Michael Groechenig

Abstract

This note is a companion to the author’s Higher de Rham epsilon factors. Using Grayson’s binary complexes and the formalism of \(n\)-Tate spaces we develop a formalism of graded epsilon lines, associated to flat connections on a higher local field of characteristic 0. The definition is based on comparing a Higgs complex with a de Rham complex on the same underlying vector bundle.

Contents

1 Linear differential equations on higher local fields
 1.1 Definitions and basic properties .. 1
 1.2 Cyclic vectors ... 2
 1.3 Formal de Rham cohomology is finite-dimensional 2

2 De Rham epsilon-factors: definition and basic properties
 2.1 Recapitulation on Tate objects: categorical preliminaries 4
 2.2 A reformulation of BBE’s theory .. 4
 2.3 Higher local fields and closed 1-forms .. 6
 2.4 Induction .. 7
 2.5 Duality ... 7

3 The variation of epsilon-factors in families
 3.1 Epsilon-factors for epsilon-nice families 8
 3.2 The epsilon-crystal .. 9

1 Linear differential equations on higher local fields

This section is devoted to a study of flat connections \((E, \nabla)\) on the higher local field \(F_n = k((t_1)) \cdots ((t_n))\), where \(k\) denotes as always a field of characteristic 0. A lot of the material will be familiar to the expert. We include the often well-known proofs to demonstrate that the behaviour of differential equations on \(F_n\) is not any different from the theory of \(D\)-modules on algebraic varieties. We do not lay claim to originality in this subsection.

1.1 Definitions and basic properties

Definition 1.1. Let \((E, \nabla)\) be a flat connection on \(F_n\). The corresponding de Rham complex is the chain complex of \(F_n\)-vector spaces \(\Omega^*_{\nabla} = [E \xrightarrow{\nabla} E \otimes \Omega^1_{\nabla} \xrightarrow{\nabla} \cdots \xrightarrow{\nabla} E \otimes \Omega^n_{\nabla}]\). For \(i \in \mathbb{Z}\) we denote the \(i\)-th cohomology group of this complex by \(H^i_{\nabla}(E)\).
1.2 Cyclic vectors

The proof of the following lemma follows the lecture notes on algebraic D-modules by Braverman-Chmutova [24, Lecture 3]. We denote by D the ring of formal differential operators on $F_1 = k((t))$, which we define to be the free k-algebra $F_1(\partial)$ modulo the relation $[\partial, t] = 1$. It is clear that the centre is given by $Z(D) = k$ (relying heavily on the assumption that k has characteristic 0).

Lemma 1.2 (Cyclic Vector Lemma). Let (E, ∇) be a flat connection on $F_1 = k((t))$. Then, as a D-module, there exists a cyclic vector $s \in E$, that is, a generator $DS = E$.

Proof. The proof begins by observing that D does not have any proper two-sided ideals, thus is a simple k-algebra. Indeed, let $I \subset D$ be a two-sided ideal, distinct from the trivial ideal D. It is clear that the intersection $F_1 \cap I$ must be $\{0\}$. We will use the tautological filtration on D (also known as the order of differential operators) to establish that I must be the zero ideal. If there is a non-zero element in I, then there is a minimal integer $r \geq 1$, such that I contains an element p of order $\leq r$. Since p cannot be central in D (as $Z(D) = k$) we obtain the existence of either a differential operator q of order ≤ 1, such that $[p, q] \neq 0$. The definition of two-sided ideals shows that $[p, q] \in I$. Hence it is a non-zero element of I of order $\leq r - 1$ which contradicts the minimality assumption on r.

Since E is a finite-dimensional F_1-vector space, it has finite length as a F_1-module and therefore also as a D-module. We assume by induction that the existence of a cyclic vector has already been established for D-modules of smaller length than the one of E (the case of length 1 being automatically true). There exists a short exact sequence of D-modules

$$0 \rightarrow F \rightarrow E \xrightarrow{\phi} M \rightarrow 0,$$

such that F has length 1. Let $m \in M$ be a cyclic vector for M. We assume by contradiction that $\phi^{-1}(m)$ does not contain a cyclic vector for E. Then we have $DS \cap F = \{0\}$. Let $p \in D$ be a differential operator, such that $pm = 0$, and $f \in F$ an arbitrary element of F. We have $\phi(s + f) = m$, and therefore also $D(s + f) \cap F = \{0\}$. Since $p(s + f) = pf \in D(s + f) \cap F$, we must have that $pf = 0$. Therefore, the ideal $\text{Ann}(m)$ contains the two-sided ideal given by $\text{Ann}(F)$.

This leaves us with two options to consider, $\text{Ann}(F)$ equal to $\{0\}$ or D. The first case is not possible as then F would be isomorphic to D and hence $\text{dim}_F F = \infty$ which is impossible. We conclude that $\text{Ann}(m) = D$ which implies $M = 0$ and therefore simplicity of E. \hfill \square

Corollary 1.3. Let ∇ be a flat connection on the trivial rank m bundle $F_1^{\otimes m}$. There exist elements $a_0, \ldots, a_{m-1} \in F_1$, such that the k-vector space of ∇-flat sections is isomorphic to the k-vector space of solutions to the ordinary differential equation $y^{(m)} + a_{m-1}y^{(m-1)} + \cdots + a_0y = 0$.

Proof. Let s be a cyclic vector. The F_1-dimension of $E = F_1^{\otimes m}$ is m, which implies linear dependence of the $(m + 1)$-tuple $s, \partial s, \cdots \partial^m s$. Therefore we can write $\partial^m s = -\sum_{i=0}^{m-1} a_i \partial^i s$, for certain elements $a_i \in F_1$. We conclude that the D-module E is equivalent to the quotient $D/\langle \partial^m + \sum_{i=0}^{m-1} a_i \partial^i \rangle$. \hfill \square

Furthermore the cyclic vector lemma for F_1 implies the existence of cyclic vectors for F_n.

Corollary 1.4. Let (E, ∇) be a flat connection on F_n. Then E is cyclic as a module over $D_n = D_{F_n}$.

Proof. The ring D_n contains a subring $D' \subset D_n$ which is generated by $F_n = F_{n-1}((t_n))$ and $\partial_n = \frac{\partial}{\partial t_n}$. The ring D' is canonically isomorphic to $D_{F_{n-1}((t_n))}/F_{n-1}$. As a D'-module, E is cyclic by virtue of Lemma 1.2. This implies that E is cyclic as a D-module. \hfill \square

1.3 Formal de Rham cohomology is finite-dimensional

Lemma 1.5. An m-tuple of formal Laurent series $y_1, \ldots, y_m \in k((t))$ is k-linearly independent if and only if the Wronskian $W(y_1, \ldots, y_m) = |(y_{(j-1)})_{1 \leq i,j \leq m}|$ is non-zero.

Proof. It is clear that linear dependence of the m-tuple y_1, \ldots, y_m implies vanishing of the Wronskian. We prove the converse by induction on m, anchored to the case $m = 1$ which is a tautology. Let us assume that the statement has been proven for $(m - 1)$-tuples and that $y_1 \neq 0$. This allows us to divide every element of the m-tuple by y_1 (which changes the Wronskian by a factor of y_1^{-m}) and does not affect k-linear independence. Henceforth we assume without loss of generality $y_1 = 1$ and compute

$$0 = W(1, y_2, \ldots, y_m) = W(y_2', \ldots, y_m').$$
By assumption this shows that the \((m-1)\)-tuple \(y_1', \ldots, y_m'\) is \(k\)-linear independent. Let \(\lambda_2, \ldots, \lambda_m \in k\) be scalars bearing witness to this fact, i.e., \(\sum_{i=2}^{m} \lambda_i y_i' = 0\). Integrating this equation we obtain the existence of a scalar \(\lambda_1 \in k\), such that \(\lambda_1 \cdot 1 + \sum_{i=2}^{m} \lambda_i y_i = 0\). Since we assumed \(y_1 = 1\) this establishes a linear independence and hence concludes the proof.

Corollary 1.6. Let \(a_0, \ldots, a_{m-1} \in k((t))\). The k-vector space of solutions to the ordinary differential equation

\[y^{(m)} + a_{m-1} y^{(m-1)} + \cdots + a_0 y = 0 \]

is of dimension at most \(m\).

Proof. Let \(y_1, \ldots, y_{m+1}\) be solutions to the ordinary differential equation above. We claim that they are \(k\)-linearly dependent. As we have seen above this is equivalent to vanishing of the Wronskian \(W(y_1, \ldots, y_{m+1}) = |(y_i^{(j-1)})_{1 \leq i, j \leq m+1}|\). The \(F_1\)-linear relation \(y_i^{(m)} + a_{m-1} y_i^{(m-1)} + \cdots + a_0 y_i = 0\) (which holds for all \(i\) by assumption) describes a \(F_1\)-linear relation between the rows of the matrix \((y_i^{(j-1)})_{1 \leq i, j \leq m+1}\). This implies vanishing of the Wronskian.

Proposition 1.7. Let \((E, \nabla)\) be a flat connection on \(F_1 = k((t))\). The k-vector spaces \(\text{ker}(\nabla)\) and \(\text{coker}(\nabla)\) are finite-dimensional.

Proof. We begin by showing finite-dimensionality of the kernel. As we have seen in Subsection 1.2 there exists an \(m\)-th order linear differential equation \(y^{(m)} + a_{m-1} y^{(m-1)} + \cdots + a_0 y = 0\) whose solutions form a \(k\)-vector space isomorphic to \(\text{ker}(\nabla)\). Corollary 1.6 shows that this \(k\)-vector space is finite-dimensional.

Finite-dimensionality of the cokernel is shown by dualising. Since the \(k\)-vector spaces \(E\) and \(E \otimes \Omega^1_{F_1}\) are infinite-dimensional, it helps to endow them with the \(t\)-adic topology. This is the topology induced by the natural valuation on \(F_1 = k((t))\) (which is discrete on \(k\)). With respect to this topology, \(E\) is a so-called linearly locally compact \(k\)-vector space in the sense of Lefschetz (also known as Tate \(k\)-vector spaces). The residue pairing yields an isomorphism of the topological dual \(E^\vee\) with the Tate \(k\)-vector space \(E^\vee \otimes \Omega^1_{F_1}\) (where \(E^\vee\) refers to the \(K_1\)-linear dual). With respect to this isomorphism, the dual of the connection \(\nabla\) can be seen to be the map induced by the dual connection. We conclude finite-dimensionality of the cokernel of \(\nabla\) from finite-dimensionality of the kernel of the dual connection \(\nabla^\vee\).

Corollary 1.8. Let \((E, \nabla)\) be a flat connection on \(F_n\). For all degrees \(i \in \mathbb{Z}\) the de Rham cohomology groups \(H^i(E)\) are finite-dimensional \(k\)-vector spaces.

Before giving the proof it seems appropriate to summarise the underlying ideas. We argue by induction on \(n\), the case \(n = 1\) being a tautology. Let us assume that the assertion has been verified for flat connections on \(F_{n-1}\). There is a canonical inclusion of fields \(F_{n-1} \hookrightarrow F_n\), whose geometric counterpart is projection along the \(t_n\)-coordinate. The de Rham cohomology groups \(H^i(E)\) can be computed from a variant of the Leray spectral sequence relative to this map. Since \(F_n = F_{n-1}((t_n))\) we can apply the finiteness result of Proposition 1.7 for the \(n = 1\) case and the induction hypothesis to conclude the result.

Proof. Let \((E, \nabla)\) be a flat connection on \(F_n = F_{n-1}((t_n))\). We denote by \(\Omega^i_{F_n/F_{n-1}}\) the \(F_n\)-linear subspace of \(\Omega^i_{F_n}\), spanned by the elements \(dt_n\). By definition it is orthogonal to the subspace \((\Omega^i_{F_{n-1}})_{F_n} \hookrightarrow \Omega^i_{F_n}\), generated by the elements \(dt_1, \ldots, dt_{n-1}\). By taking exterior powers and tensor products we obtain \(F_n\)-linear subspaces \((\Omega^i_{F_{n-1}})_{F_n} \subset \Omega^i_{F_n}\) and \((\Omega^i_{F_{n-1}})_{F_n} \otimes_{F_n} \Omega^i_{F_{n-1}} \subset \Omega^{i+1}_{F_n}\).

There are natural differential operators \(\nabla': E \longrightarrow E \otimes (\Omega^1_{F_{n-1}})_{F_n}\), \(\nabla'': E \longrightarrow E \otimes \Omega^1_{F_{n-1}/F_{n-1}}\). More generally we may form the double complex

\[
\begin{array}{c}
E \\
\n\xrightarrow{\nabla'} E \otimes (\Omega^1_{F_{n-1}})_{F_n} \\
\xrightarrow{\nabla''} E \otimes (\Omega^1_{F_{n-1}})_{F_n} \otimes (\Omega^1_{F_{n-1}})_{F_n} \\
\end{array}
\]

Note that \(\nabla = \nabla' + \nabla''\) and \(\nabla' \nabla'' = -\nabla'' \nabla'\). We conclude that the de Rham complex \(\Omega^i(E)\) is isomorphic to the totalisation of this double complex. The associated spectral sequence is

\[E_2^{p,q} = H^p_{\nabla'}(H^q_{\nabla''}(E)) \Rightarrow H^{p+q}_{\nabla}(E).\]
By Proposition 1.7 $H^r_{\nabla,V}(E)$ is finite-dimensional, since $F_n = F_{n-1}(t_i)$. The induction hypothesis implies finite-dimensionality of $H^r_{\nabla,V}(H^q_{\nabla,V}(E))$. Therefore, every object appearing on the second page of our spectral sequence is finite-dimensional over k. Convergence of the spectral sequence (see [Sta, Tag 0132]) implies that the formal de Rham cohomology groups $H^r_{\nabla,V}(E)$ are of finite dimension over k. □

2 De Rham epsilon-factors: definition and basic properties

Given a flat connection (E,∇) on the higher local field $F_n = k((t_1)) \cdots ((t_n))$ we define a formalism of epsilon-factors. Our theory depends on an F_n-linearly independent n-tuple of 1-forms $\nu = (\nu_1, \ldots, \nu_n) \in \Omega^1_{F_n}$, and produces a graded (or super) line $\epsilon_{\nu}(E,\nabla)$. This graded line is naturally obtained from a homotopy point of the K-theory spectrum $K(k)$.

Our treatment begins with a recapitulation of the case $n = 1$, which is due to Beilinson–Bloch–Esnault [BBE02]. We reformulate their definition in terms of Grayson’s binary complexes [Gra12]. This perspective allows us a glimpse at the higher-dimensional generalisation. We then define epsilon-lines in arbitrary dimension n, by using Grayson’s iterated binary complexes, finite-dimensionality of formal de Rham cohomology (Corollary 1.8), and crucially, almost-commutativity of the ring of differential operators.

2.1 Recapitulation on Tate objects: categorical preliminaries

The notion of Tate objects in exact categories goes back to Beilinson’s [Bei87] and Kato’s [Kat00], and is inspired by Lefschetz’s theory of linearly locally compact vector spaces. We refer the reader to [Pre11] and [BGW14] for a detailed introduction to the theory and an overview of the history of Tate objects.

To an idempotent complete exact category C (see [Buh10] for an account of the general theory of exact categories) one defines an exact category of admissible Ind objects $\text{Ind}^a C$. It is the full subcategory of the category of Ind objects $\text{Ind} C$, whose objects can be represented as a formal colimit $\text{colim}_K X_k$, where for $F_1 \leq k_2 \in K$ the resulting morphism $X_{F_1} \longrightarrow X_{k_2}$ is an admissible monomorphism in the sense of exact categories. The dual construction yields $\text{Pro}^a C$, an exact category of admissible Pro objects.

The exact category $\text{Ind}^a \text{Pro}^a C$ contains an extension closed full subcategory $\text{Tate}^a(C)$ whose objects are referred to as elementary Tate objects. By definition, every elementary Tate object V belongs to an admissible short exact sequence

$$L \hookrightarrow V \twoheadrightarrow D,$$

where $L \in \text{Pro}^a C$ and $D \in \text{Ind}^a C$. One also says that $L \subset V$ is a lattice. The exact category of Tate objects $\text{Tate}(C)$ is defined to be the idempotent closure of $\text{Tate}^a(C)$.

The categorical quotient $\text{Ind}^a(C)/C$ was studied by Schlichting in [Sch04] as the suspension category SC. We denote its idempotent closure by $\text{Calk}(C)$ and refer to it as the category of Calkin objects. There is a natural functor $\text{Tate}(C) \longrightarrow \text{Calk}(C)$ given by sending V to V/L where L is a lattice in V. In fact, one has $\text{Tate}^a(C)/\text{Pro}^a(C) \cong \text{Ind}^a(C)/C$.

Remark 2.1. The most important input category C in this paper is $P_f(R)$, that is, the exact category of finitely generated projective R-modules. Here we denote by R a commutative ring (with unit). In this case we will simply write $\text{Tate}(R)$, in reference to $\text{Tate}(P_f(R))$.

2.2 A reformulation of BBE’s theory

For the purpose of this subsection we let (E,∇) denote a flat connection on $E = F_1 = k((t))$. Recall that E is an F-vector space and that $\nabla : E \longrightarrow E \otimes \Omega^1_{F}$ is a k-linear map, satisfying the Leibniz identity. Since F has a natural structure of a Tate vector space over k, so does E, and ∇ can be easily seen to be a morphism in this category. Furthermore this almost defines an isomorphism of linearly locally compact vector spaces (in a technical sense).

Lemma 2.2. A connection ∇ as above induces an isomorphism in the localised category $\text{Tate}^a(k)/\text{Pro}^a(k)$.

Proof. Consider the diagram of abstract k-vector spaces

$$\begin{array}{ccc}
E & \xrightarrow{\nabla} & E \otimes \Omega^1_F \\
\downarrow & \downarrow & \downarrow \\
K & \rightarrow & E/K \\
\downarrow & \downarrow & \downarrow \\
C & & C
\end{array}$$

(1)
where the diagonals are short exact sequences. The kernel K and cokernel C are finite-dimensional by virtue of Proposition 1.7. Furthermore, the k-vector spaces E and $E \otimes \Omega^1_k$ are endowed with a linearly locally compact topology (that is, they are Tate vector spaces). We claim that the diagram \square is a diagram in category of Tate vector spaces. This amounts to showing that all arrows represent continuous maps of topological vector spaces. Continuity of ∇ has already been asserted and can be checked using an explicit presentation in terms of coordinates. It remains to verify that the diagonal morphisms are continuous.

The k-linear map $i : K \hookrightarrow E$ is certainly continuous when endowing K with the discrete topology. Since K is finite-dimensional, this is the only possibility within the category of linearly locally compact k-vector spaces. Furthermore we assert that i has a continuous retraction r. To construct r one chooses a lattice $L \subset E$, such that $i(K) \subset L$. By definition of the category of linearly locally compact vector spaces there exists a retraction $r' : E \to L$. Moreover we know that the inclusion $K \hookrightarrow L$ has a retraction r'', since the category of linearly compact k-vector spaces is contravariantly equivalent to the category of discrete k-vector spaces (which is a split abelian category). We define $r = r'' \circ r'$. This shows that E/K is a direct summand of E and hence establishes continuity of the morphism $E \to E/K$.

Using the observation of the proof of Proposition 1.7 that the k-linear topological dual of the map $E \to E \otimes \Omega^1_k$ is equivalent to the dual connection ∇^*, we obtain continuity of the maps on the right hand side of diagram \square. □

In the category $\text{Tate}^+(k)/\text{Pro}^+(k)$ we have that morphisms with finite-dimensional kernel or cokernel are isomorphisms. In particular we see that $E \to E/K$ and $E/K \to E \otimes \Omega^1_k$ are isomorphisms in this localisation. Commutativity of the triangle in \square implies the assertion.

In the article [Gra12], Grayson approaches higher algebraic K-groups using the notion of (iterated) binary complexes. A binary complex in an additive category \mathcal{C} is a complex with two differentials, respectively a pair of complexes sharing the same objects. More precisely it is defined to be a collection of objects $(X^i)_{i \in \mathbb{Z}}$ and morphisms $d_{i,j}, d_{2,j} : X^j \to X^{j+1}$ for all $j \in \mathbb{Z}$, such that for $i = 1, 2$ and all $j \in \mathbb{Z}$ we have $d_{i,j+1} \circ d_{i,j} = 0$.

Definition 2.3. Let \mathcal{C} denote an additive category. We denote by $\text{BinCh}(\mathcal{C})$ the category whose objects are binary complexes $((X^i; d_{i,j}, d_{2,j})_{i \in \mathbb{Z}})$, and morphisms $\{(X^i; d_{i,j}, d_{2,j})_{i \in \mathbb{Z}} \to (Y^i; d'_{i,j}, d'_{2,j})_{i \in \mathbb{Z}}\}$ are given by tuples $(f^i)_{i \in \mathbb{Z}}$, such that $d'_{i,j} \circ f^j = f^{j+1} \circ d_{i,j}$ for all $i = 1, 2$ and $j \in \mathbb{Z}$.

Definition 2.4. Let (E, ∇) be a flat connection on $F = k((t))$ and $\nu \in \Omega^1_k$. We define $\Omega^\cdot_{\nabla, \nu}(E)$ to be the length 2 binary complex, given by

\[
\begin{array}{ccc}
E & \xrightarrow{\nabla} & E \otimes \Omega^1_k \\
\nu & \downarrow & \\
\end{array}
\]

in the exact category $\text{Calk}(k)$. For fixed ν this defines an exact functor $\Omega^\cdot_{\nabla, \nu} : \text{Loc}(F) \to \text{BinCh}(\text{Tate}(k))$.

One says that a binary complex $(X^*; d_1, d_2)$ in an exact category \mathcal{C} is exact (or synonymously acyclic), if both differentials define an exact complex in \mathcal{C} in the sense of [Bib10] Definition 8.8. We denote the corresponding extension-closed subcategory by $\text{BinCh}_{ex}(\mathcal{C})$. Grayson shows in [Gra12] that there exists a canonical morphism of connective spectra $K(\text{BinCh}_{ex}(\mathcal{C})) \to \Omega K(\mathcal{C})$. In the article he assumes that \mathcal{C} admits a calculus of long exact sequences, but this assumption is not needed to define the aforementioned morphism but only in proving the main result [Gra12] Theorem 4.3 that $K(\text{Ch}_{\geq 0}^{ex}(\mathcal{C})) \to K(\text{BinCh}_{ex}(\mathcal{C})) \to \Omega K(\mathcal{C})$ is a fibre sequence of connected spectra.

Lemma 2.5. Assume that ν is a non-zero 1-form on F. Then for every flat connection (E, ∇), the binary complex $\Omega^\cdot_{\nabla, \nu}(E)$ is exact in the Calkin category. In particular we have an exact functor

\[\Omega^\cdot_{\nabla, \nu} : \text{Loc}(F) \to \text{BinCh}_{ex}(\text{Calk}(k)).\]

Consequently we have for $\nu \in \Omega^1_k \setminus \{0\}$ a well-defined map of K-theory spectra

\[\varepsilon_{\nu} : K(\text{Loc}_{F_1}) \to K(k),\]

which we call the spectral ε-factor.
2.3 Higher local fields and closed 1-forms

Let us denote by \(\text{Loc}_{F_n} \), the exact category of pairs \((E, \nabla)\), where \(E \) is a finite rank \(F_n \)-vector space, and \(\nabla \) a formal flat connection on \(E \). In this subsection we will define for a \(F_n \)-linearly independent tuple of closed 1-forms \(\nu = (\nu_1, \ldots, \nu_n) \) on \(E \) a map of spectra

\[
\varepsilon_\nu : K(\text{Loc}_{F_n}) \longrightarrow K(k)
\]

which generalises the epsilon-factor formalism for the 1-local field \(k(t) \). One could argue that the assumption that the forms \(\nu_1, \ldots, \nu_n \) are closed is a feature of the higher-dimensional case, since it is automatically true for \(n = 1 \). However we believe that it should not be needed in order to have a well-defined \(\varepsilon_\nu \) (see the companion article [Gro]).

Definition 2.6. Let \((E, \nabla)\) be a de Rham local system on \(F_n \) and \(\nu \in (\Omega^1_{F_n})^n \) denote an \(F_n \)-linearly independent tuple of closed 1-forms. We define a multi-complex (whose totalisation is the formal de Rham complex) which is supported on the cube \(\{0,1\}^n \) which we identify with the power set \(\mathcal{P}(\{1, \ldots, n\}) \). For \(M \subset \{1, \ldots, n\} \) we use the notation

\[
\Omega^M \mathcal{L}_\nu(E) = E \otimes E_n(\nu_1 \wedge \cdots \wedge \nu_q) \subset E \otimes \Omega^q_{F_n},
\]

where \(M = \{i_1 < \cdots < i_q\} \). Furthermore, for every inclusion \(j : M \hookrightarrow N = M \cup \{i\} \), we let

\[
\nabla_j : \Omega^M \mathcal{L}_\nu(E) \longrightarrow \Omega^N \mathcal{L}_\nu(E)
\]

be the component of the connection \(\nabla : E \otimes \Omega^q_{F_n} \longrightarrow E \otimes \Omega_q^{q+1} \) with respect to the direct summands \(\Omega^M \mathcal{L}_\nu(E) \) and \(\Omega^N \mathcal{L}_\nu(E) \).

It is important to emphasise that without the assumption that \(\nu \) is an \(n \)-tuple of closed forms, this definition would not produce a multicomplex. Indeed anti-commutativity of the resulting squares is guaranteed by this assumption.

The proof of the following lemma is based on an observation on \(n \)-Tate objects. There is a natural embedding

\[
e : \mathbb{C} \hookrightarrow \text{Tate}(\mathbb{C}).
\]

This yields \(n \) distinct ways to embed \(\text{Tate}^{n-1}(\mathbb{C}) \) into \(\text{Tate}^n(\mathbb{C}) \) which we denote by \(e_1, \ldots, e_n \).

Lemma 2.7. The multicomplex of Definition 2.6 is acyclic in the category \(\text{Calk}^n(k) \).

Proof. A direct computation involving writing out power series in the variables \(t_1, \ldots, t_n \) allows one to infer the following claim.

Claim 2.8. Let \(V = \sum_j a_j \frac{\partial}{\partial t_j} \), where \(a_j \in F_n \), and \(a_i \neq 0 \). Then the kernel and cokernel of the map

\[
\nabla_V : E \longrightarrow E
\]

belongs to the full subcategory

\[
e_i(\text{Tate}^{n-1}) \hookrightarrow \text{Tate}^n.
\]

Applying this lemma to the vector fields given by the dual basis of \(\nu \) we deduce a similar statement for the differentials of the multicomplex refining the de Rham complex of \(E \). In particular, since \(e_i \) factors through the kernel of \(\text{Tate}^n \longrightarrow \text{Calk}^n \), we deduce the lemma.

Definition 2.9. For \((E, \nabla) \in \text{Loc}_{F_n} \) and \(\nu \in (\Omega^1_{F_n})^n \) a linearly independent \(n \)-tuple of closed 1-forms, we define a binary multicomplex supported on \(\{0,1\}^n \) in the sense of Grayson. It is constructed by adding extra differentials to the multicomplex \(\Omega^\nu_{\mathcal{L}}(E) \). For every inclusion \(j : M \hookrightarrow N = M \cup \{i\} \), we let

\[
\nu_i : \Omega^M \mathcal{L}_\nu(E) \longrightarrow \Omega^N \mathcal{L}_\nu(E)
\]

be the component of the morphism \(\wedge \nabla_i : E \otimes \Omega^q_{F_n} \longrightarrow E \otimes \Omega_q^{q+1} \) with respect to the direct summands \(\Omega^M \mathcal{L}_\nu(E) \) and \(\Omega^N \mathcal{L}_\nu(E) \). This binary multi-complex will be denoted by \(\mathcal{E}^\nu_{\mathcal{L}}(E) \).

Definition 2.10. We have an exact functor \(\varepsilon_\nu : \text{Loc}_{F_n} \longrightarrow (\text{BinCh}_{ex})((\text{Calk}^n(k))) \), sending \((E, \nabla)\) to the binary multicomplex \(\mathcal{E}^\nu_{\mathcal{L}}(E) \).

Definition 2.11. We define the map of spectra \(\varepsilon_\nu : K(\text{Loc}_n) \longrightarrow K(k) \) as the composition

\[
K(\text{Loc}_n) \xrightarrow{K(\varepsilon_\nu)} K((\text{BinCh}_{ex})((\text{Calk}^n(k)))) \longrightarrow K(k),
\]

where the second map combines Grayson’s \(K((\text{BinCh}_{ex})((\text{Calk}^n(k)))) \longrightarrow \Omega^n K(\text{Calk}^n(k)) \) with Saito’s equivalence \(K(\text{Tate}^n(k)) \simeq K(k) \) (see [Sai13]).
2.4 Induction

Let F_n^n/F_n be a finite extension of n-fields with last residue fields k'/k, and $y \in (\Omega^n_{F_n})^n$ be an E_n-linearly independent n-tuple. Observe that we have $\Omega^n_{F_n} \subseteq \Omega^n_{F_n}(\nu)$. A de Rham local system (E, ∇) on F_n^n gives rise to a de Rham local system on F_n. The resulting exact functor is denoted by $\text{Ind}: \text{Loc}_{F_n^n} \to \text{Loc}_{F_n}$ and will be referred to as induction with respect to F_n^n/F_n.

Proposition 2.12. There is a commutative diagram of spectra

\[
\begin{array}{ccc}
K(\text{Loc}_{F_n^n}) & \xrightarrow{\text{Ind}} & K(\text{Loc}_{F_n}) \\
\varepsilon \downarrow & & \varepsilon \downarrow \\
K(k') & \to & K(k).
\end{array}
\]

Proof. Note that every finite F_n^n-vector space E gives rise to an n-Tate k'-vector space. However, since k'/k is a finite field extension, we can also view E as an n-Tate k-vector space. Furthermore, the diagram of exact categories

\[
P_f(F_n^n) \xrightarrow{\text{Ind}} P_f(F_n) \\
\text{Tate}^n(k') \to \text{Tate}^n(k)
\]

commutes strictly. We obtain the commutative diagram above by applying the K-theory functor $K(-)$ to the following strictly commutative diagram of exact categories

\[
\begin{array}{ccc}
\text{Loc}_{F_n^n} & \xrightarrow{\text{Ind}} & \text{Loc}_{F_n} \\
\varepsilon \downarrow & & \varepsilon \downarrow \\
\text{BinCh}_{\text{ex}}^n \text{Calk}^n(k') & \to & \text{BinCh}_{\text{ex}}^n \text{Calk}^n(k)
\end{array}
\]

and using the natural map $K(\text{BinCh}_{\text{ex}}^n \text{Calk}^n(k)) \to K(k).$ \qed

2.5 Duality

In this subsection we will prove the proposition below. We refer the reader to [BCHW18] for the definition of duality for higher Tate objects.

Proposition 2.13. There is a commutative diagram of spectra

\[
\begin{array}{ccc}
\text{Loc}_{F_n} & \xrightarrow{(\cdot)^\vee} & \text{Loc}_{F_n} \\
\varepsilon \downarrow & & \varepsilon \downarrow \\
K(k) & \to & K(k).
\end{array}
\]

Let E be a finite-dimensional F_n-vector space. We denote by E^\vee its F_n-linear dual. Since E can be seen as an n-Tate k-vector space, it is also possible to consider the k-linear dual in the sense of n-Tate spaces, which we denote by E'. The following lemma relates the F_n-linear and n-Tate dual in a canonical fashion. It is the analogue of Serre duality for n-fields. Its proof is a straightforward extension of the well-known case where $n = 1$.

Lemma 2.14. For every finite-dimensional F_n-vector space E there is a natural isomorphism of n-Tate k-vector spaces $E \simeq E' \otimes \Omega^n_{F_n}$ which is induced by the higher residue pairing $\text{Res}(\cdot, \cdot): E \times (E^\vee \otimes \Omega^n_{F_n}) \to k$.

For $p > 0$ we define $\Omega^n_{F_n} = \Omega^{n-p}_{F_n} \otimes (\Omega^n_{F_n})^\vee$. It is easy to see that the F_n-linear dual of $\Omega^n_{F_n}$ is canonically isomorphic to $\Omega^n_{F_n}$, by virtue of the twisted pairing $\wedge: \Omega^n_{F_n} \otimes \Omega^{n-p}_{F_n} \to \Omega^n_{F_n}$. With respect to this notation we obtain the following isomorphisms from Lemma 2.14 as an immediate consequence.

Corollary 2.15. We have natural isomorphisms of n-Tate vector spaces $(E \otimes \Omega^n_{F_n})^\vee \simeq E' \otimes \Omega^n_{F_n}$.

With this isomorphism at hand we ask ourselves what the n-Tate dual of the map $E \otimes \Omega^n_{F_n} \xrightarrow{\nabla} E \otimes \Omega^{n+1}_{F_n}$ is. The answer to this question is given by the next corollary. We denote by ∇^\vee the dual connection on E'.
Corollary 2.16. With respect to the isomorphism of Corollary 2.15 we have
\[\nabla' = - \nabla^\vee : E^\vee \otimes \Omega^{n-p-1}_{F_p} \to E^\vee \otimes \Omega^n_{F_p}. \]

Proof. For \(s \in E \) and \(t \in E^\vee \) we have the relation \((\nabla s, t) + (s, \nabla^\vee t) = d(s, t) \). Applying the higher residue to both sides, we obtain \(\text{Res}(\nabla s, t) + \text{Res}(s, \nabla^\vee t) = 0 \), since the right hand side is exact. This shows \(\nabla t = - \nabla^\vee t \) for all \(t \in E^\vee \).

For a complex \(A^\bullet \) in an exact category \(\mathcal{C} \) we denote by \(\iota^* A^\bullet \) the complex obtained by replacing all differentials \(d_i : A^i \to A^{i+1} \) by \(-d^i \). We can construct an isomorphism \(A^\bullet \cong \iota^* A^\bullet \) in terms of a commutative ladder.

\[\cdots \to d_i : A^i \to A^{i+1} \to \to \cdot \cdot \cdot \]

However there is a second choice of an isomorphism, which replaces all vertical arrows \((-1)^i \) by \((-1)^{i+1} \). So we see that there is a \(\mu_2 \)-torsor of natural isomorphisms \(A^\bullet \cong \iota^* A^\bullet \). The same remark applies to binary complexes. As a consequence one sees that the proof of the proposition below produces not just one commutative square as in [3], but two (we remind the reader that in the context of \(\infty \)-categories, commutativity of diagrams is an exact structure and not a property).

Proof of Proposition 2.13. Corollary 2.16 implies that the \(n \)-Tate dual of the binary multicomplex \(E_{\nabla, \mathcal{C}}(E) \) is given by \(\iota^* E_{\nabla, \mathcal{C}}(E^\vee) \). Using one the natural isomorphisms above we obtain a commutative diagram of exact categories

\[\begin{array}{ccc}
\text{Loc}_{F_n} & \xrightarrow{(-)^\vee} & \text{Loc}_{F_n} \\
\downarrow E_{\nabla} & & \downarrow E_{-\nabla} \\
\text{BinCh}_{\text{ex}}^n \text{Calc}^n(k) & \xrightarrow{(-)^\vee} & \text{BinCh}_{\text{ex}}^n \text{Calc}^n(k)
\end{array} \]

Using the natural map of spectra \(K(\text{BinCh}_{\text{ex}}^n \text{Calc}^n(k)) \to K(k) \) we conclude the proof of the proposition.

3 The variation of epsilon-factors in families

3.1 Epsilon-factors for epsilon-nice families

As before we let \(k \) be a field of characteristic 0. We denote by \(R \) a commutative \(k \)-algebra, and use \(F^R_n \) as shorthand for the commutative ring \(R((t_1)) \cdots ((t_n)) \). As an \(R \)-module it carries the structure of an \(n \)-Tate \(R \)-module, and hence every finitely generated projective \(F^R_n \)-module admits a natural realisation in the exact category \(\text{Tate}^n(R) \). Given \(E \in P_f(F^R_n) \), and a relative connection \(\nabla : E \to E \otimes _F \Omega_{F/R} \), we investigate when it is possible to define an epsilon-factor \(\varepsilon(E, \nabla) \) in the \(K \)-theory spectrum \(K(R) \).

Definition 3.1. Let \((E, \nabla) \in \text{Loc}_R(F_n) \) be a de Rham local system, such that the formal de Rham multi-complex \(\Omega^R_{F} (E) \) is an acyclic multi-complex in \(\text{Calc}^n(R) \). We say that \((E, \nabla) \) is an epsilon-nice (or blissful) \(R \)-family of flat connections. The corresponding full subcategory of \(\text{Loc}^R(F_n) \) will be denoted by \(\text{Loc}_{\text{bliss}}^R(F_n) \).

Since formation of the de Rham complex \(\Omega^R_{F} (E) \) is an exact functor, and acyclic complexes form a fully exact and idempotent complete subcategory, we see that \(\text{Loc}_{\text{bliss}}^R(F_n) \) is an exact and idempotent complete category.

Remark 3.2. (a) In [BBE02] such \(R \)-families of flat connections are called nice.

(b) Intuitively speaking the irregularity type of the connection stays constant in epsilon-nice \(R \)-families. However, just as in loc. cit. we prefer to define epsilon-nice families in the abstract manner above.

For epsilon-nice families one can define a (spectral) de Rham epsilon factor, for every \(R \)-linearly tuple of closed relative 1-forms \((\nu_1, \ldots, \nu_n) \in \Omega^1_{F_n} \otimes_R R \).

Definition 3.3. We denote by \(\varepsilon_{\text{bliss}}^R \) the exact functor \(\text{Loc}_{\text{bliss}}^R(F_n) \to \text{BinCh}_{\text{ex}}^n \text{Calc}^n(R) \). Applying the \(K \)-theory functor we obtain a morphism of spectra \(\varepsilon_{\text{bliss}}^R : K(\text{Loc}_{\text{bliss}}^R(F_n)) \to K(R) \).
3.2 The epsilon-crystal

Epsilon-factors in families are naturally endowed with a partial connection (meaning that we cannot covariantly derive along all vector fields, but only along fields belonging to a subbundle). Since we are working with homotopy points of K-theory spectra this is best formalised using a crystalline approach. Before stating the main result of this subsection we have to introduce some notation.

Definition 3.4. (a) For a scheme S we denote by S^{dR} the presheaf on the category of schemes given by $T \mapsto S(T^{red})$. We have a natural transformation $S \to S^{red}$.

(b) A functor $H : \text{Sch} \to \text{Sp}$ extends to a functor $H : \text{PrSh}(\text{Sch}_{Nis}) \to \text{Sp}$, such that for a sheaf F, we have

$$H(F) \simeq \lim_{T/F} H(T).$$

In particular we get a well-defined spectrum $H(S^{dR})$ for every scheme S. We call it the spectrum of F-crystals over S.

(c) We refer to the spectrum $K(S^{dR})$ as the spectrum of K-crystals of S. Homotopy points thereof will be referred to as K-crystals defined over S.

Using the natural map of Nisnevich sheaves $K \to B^\infty \mathbb{G}_m$ we see that every K-crystal on S gives rise to a (graded) line with a flat connection on S. We will now show that the formalism of ϵ-factors has a natural crystalline refinement. This is the higher rank generalisation of the epsilon connection defined in section 3 of [BBE02] (furthermore they did not consider K-crystals). The proof is omitted, as it is based on the (P^1, ∞)-invariance property of algebraic K-theory detailed in the companion paper [Gro] to construct the epsilon connection.

Proposition 3.5. Let (E, ∇) be an object of $\text{Loc}(F_n)$, S an affine k-scheme and $\nu = (\nu_1, \ldots, \nu_n)$ a basis of $\Omega^1_{F^n/S}$. There exists a map $\epsilon^{\nu} : K(\text{Loc}(F_n)) \to K(S^{dR})$, which renders the diagram

$$\begin{array}{ccc}
K(\text{Loc}(F_n)) & \xrightarrow{\epsilon^{\nu}} & K(S^{dR}) \\
\downarrow & & \downarrow \\
K(S) & & K(S)
\end{array}$$

commutative.

Concluding remarks

In [Gro] the author introduced a theory of de Rham epsilon factors for D-modules on higher-dimensional varieties which is supported on points and gives rise to an epsilon-crystal. The definition in loc. cit. is a continuation of Patel’s theory of de Rham epsilon factors introduced in [Pat12]. We expect these two notions of de Rham epsilon factors to be equivalent.

Acknowledgements

The author thanks Oliver Braunling, Hélène Esnault, Javier Fresán, Markus Roeser and Jesse Wolfson for many interesting conversations about epsilon factors, differential equations and Tate objects.

References

[BBE02] A. Beilinson, S. Bloch, and H. Esnault, ϵ-factors for Gauss-Manin determinants, Mosc. Math. J. 2 (2002), no. 3, 477–532, Dedicated to Yuri I. Manin on the occasion of his 65th birthday. MR 1988970 (2004m:14011)

[BC] Alexander Braverman and Tatyana Chmutova, Lectures on algebraic D-modules, http://www.math.harvard.edu/~gaitsgde/grad_2009/Dmod_brav.pdf

[Bei87] A. Beilinson, How to glue perverse sheaves, K-theory, arithmetic and geometry (Moscow, 1984–1986), Lecture Notes in Math., vol. 1289, Springer, Berlin, 1987, pp. 42–51. MR 923134 (89b:14028)

[BGHW18] O. Braunling, M. Groechenig, A. Heleodoro, and J. Wolfson, On the normally ordered tensor product and duality for Tate objects, Theory and Applications of Categories 33 (2018), no. 13, 296–349.
[BGW14] O. Braunling, M. Groechenig, and J. Wolfson, *Tate Objects in Exact Categories (with appendix by Jan Stovicek and Jan Trlifaj)*, arXiv:1402.4969, 02 2014.

[Büh10] Theo Bühler, *Exact categories*, Expo. Math. 28 (2010), no. 1, 1–69. MR 2606234 (2011e:18020)

[Gra12] Daniel Grayson, *Algebraic K-theory via binary complexes*, Journal of the American Mathematical Society 25 (2012), no. 4, 1149–1167.

[Gro] M. Groechenig, *Higher de Rham epsilon factors*, https://arxiv.org/abs/1807.03190.

[Kat00] Kazuya Kato, *Existence theorem for higher local fields*, Invitation to higher local fields (Münster, 1999), Geom. Topol. Monogr., vol. 3, Geom. Topol. Publ., Coventry, 2000, pp. 165–195. MR 1804933 (2002e:11173)

[Pat12] D. Patel, *De Rham Epsilon-factors*, Invent. Math. 190 (2012), no. 2, 299–355. MR 2981817

[Pre11] Luigi Previdi, *Locally compact objects in exact categories*, Internat. J. Math. 22 (2011), no. 12, 1787–1821. MR 2872533

[Sai15] Sho Saito, *On Previdi’s delooping conjecture for K-theory*, Algebra Number Theory 9 (2015), no. 1, 1–11, arXiv:1203.0831.

[Sch04] M. Schlichting, *Delooping the K-theory of exact categories*, Topology 43 (2004), no. 5, 1089–1103. MR 2079996 (2005k:18023)

[Sta] Stacks Project Authors, *Stacks project*, http://math.columbia.edu/algebraic_geometry/stacks-git.

E-mail: m.groechenig@fu-berlin.de
Address: FU Berlin, Arnimallee 3, 14195 Berlin