Frequency of ABO and Rhesus blood groups in Saudi healthy blood donors versus non-Saudi in a retrospective study in Makkah City

Amal Zaghloul1, 2, Mohammad Aldosari3, Talat. Al-bukhari2, Yonis Allohibi2, Shirin Teama1, 3, Ghada Wassif4, Iman Osheba3, 5, Nada Bajafier2.

1Clinical Pathology Department, Faculty of Medicine, Ain Shams University, Egypt.
2Hematology and Immunology Department, Faculty of Medicine, Umm Al Qura University, KSA.
3Department of laboratory, King Abdulaziz Hospital, Ministry of Health, Makkah, KSA.
4Department of Anatomy, Faculty of Medicine, Taibah University, Al Madinah Al Munawarah, KSA.
5Clinical Pathology Department, national liver institute, Egypt.

ABSTRACT

Purpose: to assess the frequency of ABO and Rh blood groups among Saudi and non-Saudi healthy blood donors and to compare between them.

Methods: A retrospective study was conducted; in Makkah City, Saudi Arabia. It included 15,365 participants of 44 nationalities who have attended the blood bank of King Abdul Aziz Hospital. The collected data were age, sex, nationality, ABO, and Rhesus blood groups.

Results: 46.8 % of the participants were O, 28.8 % A, 19.5 % B, and 4.9% AB. The nationalities with a higher frequency of blood group O were Saudi, Mauritanian, Yemeni, Thai, Malian, Sudanese, Jordanian, Indian, Moroccan, Somali, Malaysian, Indonesian, Myanmar, Nigerian, Pakistani, Bangladeshi, Algerian, Djibouti, Burkinabe, Eritrean, Ghanaian, Bahraini, Bosnian, Canadian, Gambian, Iraqi, and Sri Lankan. Those with a higher frequency of blood group A were Turkish, Palestinian, Syrian, Lebanese, Egyptian, Afghan, Chadian, French, Tunisian, Cameroonian, Ethiopian, and British. Those with a higher frequency of B were Nigerien, American, Nepalese, and two nationalities with higher AB frequency Filipino and Chinese. 91.6 % of all populations were Rh-positive, and 8.4% were Rh-negative. The Saudi participants were like some nationalities and differed from others.

Conclusion: In Makkah city, the higher frequency of ABO blood group in Saudi and non-Saudi people is O followed by A, then B, and AB. The Rh-positive is predominant, and 8.4% of the participants are negative. The ABO and Rh blood groups’ identifications are essential for providing suitable blood storage for individuals in need.

Keyword: ABO, Rh, blood groups, Saudi, non-Saudi.

Introduction

The ABO and Rhesus (Rh) blood groups are the most common blood group antigens. The ABO is divided into A, B, O, and AB [1, 2], according to the antigens present on the extra cellular surface of red blood cells (RBC). The O blood group has H antigen on its surface. The A, B, and AB have some oligosaccharides residues added to the H antigen, resulting in groups A, B, and AB [3, 4]. The ABO antigens are also present on the surface of cells and tissues in most persons [5]. The Rh blood type is the second blood group in its importance in transfusion medicine. It is highly polymorphic as it contains more than 44 different antigens. Rh antigens inheritance is determined by a complex of two closely linked genes: one encodes the D antigen, the other encodes the C or c, and E or e antigens [6].

On the surface of cells and tissues in most persons [5]. The Rh blood type is the second blood group in its importance in transfusion medicine. It is highly polymorphic as it contains more than 44 different antigens. Rh antigens inheritance is determined by a complex of two closely linked genes: one encodes the D antigen, the other encodes the C or c, and E or e antigens [6].
Frequency of ABO and Rhesus blood groups in Saudi healthy blood donors versus non-Saudi in a retrospective study in Makkah City

The terms Rh positive and Rh negative refer to the presence or absence of D antigen [7, 8]. The frequency of these blood groups varies from one geographic location to another. This reflects human people underlying genetic and ethnic diversity and suggests that a particular blood group showed protection or selective advantage to certain diseases [9-12]. In different parts of the world, the ABO and Rh rate showed variations in blood groups frequency. Some areas with a higher frequency of O, other of A, and others of B, and the Rh-positive is predominant [9, 13-22]. In Saudi Arabia, many studies have been carried out on ABO and Rh frequency, with few in Makkah city which have many residents of different nationalities. Most of these studies were done on the Saudi population and reported that the blood group O is the predominant one, followed by A, B, and AB, and the Rh-positive is dominant except for the Hail province, which showed a group frequency of O > B > A > AB [23-28]. The Aim of the study is to assess ABO and Rh blood groups frequency in Saudi and non-Saudi healthy blood donors in Makkah city and compare the frequency between different populations.

Methods
A retrospective cross-sectional study was conducted from April 2020 to January 2021 at the Hematology and Immunology Department of the Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia. The data were collected from the blood bank of King Abdul Aziz hospital. The collected data were from January 2014 to August 2019. The biomedical ethics of the faculty of medicine of the Umm Al-Qura University approved the protocol of this study, and the approval number was HAPO-02-K-012-2020-05-385. The followings data were collected:
1- Sociodemographic character data, which include age, sex, and nationality.
2- The ABO and Rh blood groups. The automated and manual methods were used for determination of ABO and Rh. The automated methods were the microplate or gel card [29-30]. In the microplate, the red cell suspension and monoclonal antibodies were pipetted onto a microwell plate and examined for agglutination. In reverse typing, the cells and patient’s plasma were mixed and examined for agglutination. In the gel card (forward), the RBC suspension was added to the column, which contains antisera of ABO/Rh. After centrifugation, the cell pellet was either at the top (positive) or bottom (negative). The manual methods were used to resolve discrepancies or confirm negativity of Rh [31].

All participants who were fulfilling the national blood transfusion guidelines in Saudi Arabia were included. All persons who were rejected from the blood bank to donate blood were excluded.

Statistical analysis
This statistical analysis was done using the SPSS program version 20. Quantitative data was described in the form of mean ± SD. The numbers and percentage of participants and the blood groups were calculated. The comparison between groups was performed by using the Student t-test.

Results:
The results were summarized in (Tables 1-4) and (Figure 1). This study included 15,365 persons. They were 15,181 males and 184 females with a ratio of 82.5:1. The mean age was 31.8±8.9 years, the median was 30 years, and their age ranged from 18 to 62 years. The nationality of the participants, their numbers, their age, and sex were showed in (Table 1). There was a significant increase in the age between Saudi and Malian, Myanmar, and Pakistani and a significant decrease between the Egyptian people. The frequency of blood groups in all the populations studied was showed in (Table 2). Of all participants, 46.8 % were O, 28.8 % A, 19.5 % B, and 4.9% AB. 91.6 % were Rh-positive, and 8.4% were Rh-negative. The following nationalities had a higher frequency of blood group O with variations in other blood groups order. The Mauritanian, Yemeni, Thai, Malian, Sudanese, Saudi, Jordanian, and Indian had a frequency of O > A > B > AB. The Moroccan showed O > A > B > AB. The Somali revealed O > A > AB and the absence of B. The Malaysian showed O > A = AB with the lack of B. The Indonesian, Myanmar, Nigerian, Pakistani, and Bangladeshi showed a frequency of O > B > A > AB. The Algerian and Djibouti showed O > A = B > AB. The Burkinabe and Eritrean displayed O > B > A with AB’s absence. The Ghanaian showed a frequency of O > B and a lack of A and AB. The Bahraini, Bosnian, Canadian, Gambian, Iraqi, and Sri Lankan showed 100% frequency of blood group O with the absence of other blood groups. In this study, some had a higher frequency of blood group A. The Turkish, Palestinian, Syrian, Lebanese, Egyptian, and Afghan had a frequency of A > O > B > AB. The Chadian revealed A > O > AB with an absence of B. The French and Tunisian showed 100% frequency of blood group A. The Cameroonian showed A > AB and the lack of B and O. The Ethiopian had A = O > B = AB. The British had A = B with an absence of AB and O. Few populations showed a higher frequency of blood group B with discrepancies in other blood groups'
Frequency of ABO and Rhesus blood groups in Saudi healthy blood donors versus non-Saudi in a retrospective study in Makkah City

arrangement. The Nigerien had B>O>A>AB. The American and Nepalese showed B> O with an absence of A and AB. The Filipino and Chinese populations showed a higher frequency of the AB blood group. The Filipino had AB>O=B>A and the Chinese had AB with the absence of A, B, and O. Comparing the frequency of blood groups in the Saudi population and other societies was shown in (Figure 1). There was a significant decrease in blood group A in the Saudi population compared to Tunisian, Syrian, Palestinian, and Egyptian. Also, there was a significant increase compared to Nigerian, Pakistani, Myanmar, Indonesian, and Bangladeshi. The remaining nationalities showed no significant difference in the frequency of the blood group A. Regarding blood group B; there was a significant decrease in blood group B of the Saudi population compared to Afghan, Bangladeshi, Egyptian, Indian, Myanmar, Nepalese, Nigerian, Nigerien, and Pakistani. In contrast, there was a significant increase to the Yemeni population. The remaining nationalities showed no significant difference in the frequency of blood group B. The comparison between the frequencies of blood group AB in the Saudi population showed a significant decrease compared to Afghan, Bangladeshi, Cameroonian, Chinese, Egyptian, Filipino, Indian, Nigerien, and Pakistani. Comparing the frequency of blood group O in the Saudi population showed a significant increase compared to Afghan, Bangladeshi, Egyptian, Indian, Myanmar, Pakistani, Palestinian, Syrian, and Tunisian. In contrast, there was a significant decrease when compared to Yemeni. The frequency of Rh of the different populations studied was shown in (Table 3). Some populations had Rh-positive only: Algerian, American, Bahraini, Bosnian, British, Canadian, Chadian, Djibouti, Eritrean, Filipino, French, Gambian, Indonesian, Iraqi, Malaysian, Moroccan, Nepalese, Sri Lankan, and Thai. Other populations showed positive and negative Rh with the predominant of the positive Rh. The highest frequency of Rh negativity were found in Tunisian (66.7%), Chinese(50%), Mauritanian(36.1%), Cameroonian(33.3%), Jordanian(16.1%), Sudanese(14.9%), Palestinian(14.7%), Afghan(12.2%), Saudi(8.6%), Nigerien(8.3%), Lebanese(8.3%), Egyptian(8.1%), Yemeni(8.1%), Ethiopian(7.7%), Pakistani(7.7%), Malian(6.8%), Turkish(5.7%), Somali(5.6%), Bangladeshi(5.4%), Nigerian(5.2%), Indian(5%), Burkinabe(4.8%) and Myanmar(3.2%). Comparing the Rh-negative frequency in the different populations to the Saudi population showed a significant increase of the Rh negativity in Mauritanian, Sudanese, Syrian, and Tunisian p<0.05. Moreover, the Saudi population showed a significant increase of Rh negativity than Myanmar and Nigerian p<0.05. The remaining populations showed no significant difference compared to the Saudi population p>0.05, (Table 3). The distributions of both the ABO and Rh in all populations studied were showed in (Table4).

Figure 1: Comparison of the blood group A, B, AB and O between Saudi population and other populations. N.B. Nationality with significant difference were shown.
Frequency of ABO and Rhesus blood groups in Saudi healthy blood donors versus non-Saudi in a retrospective study in Makkah City

Table 1: Sociodemographic characteristics of the participants.

Nationality	no.	Age Mean± SD	sex	Nationality	no.	Age Mean± SD	sex
		Male	female			Male	female
Afghan	74	28.8 ±7.0	1	Iraqi	1	30.1 ±11.7	1
Algerian	6	34.2 ±14.1	0	Jordanian	62	35.8 ±14.6	12
American	3	32.3 ±13.2	0	Lebanese	12	29.3 ±4.6	7
Bahraini	2	45.0 ±9.9	0	Malaysian	7	29.9 ±7.0 *HS	7
Bangladeshi	224	31.4 ±7.0	0	Malian	176	28.2 ±10.5	33
Bosnian	1	30	0	Mauritanian	36	28.1 ±14.8	15
British	2	37.5 ±14.8	0	Moroccan	15	28.7 ±6.3 *HS	439
Burkinabe	21	28.0 ±7.5	0	Myanmar	439	24.1 ±13.5 *HS	438
Cameroonian	3	34.7 ±10.8	0	Nepalese	4	25.5 ±1.3	4
Canadian	1	28	0	Nigerian	439	33.0 ±6.5	12
Chadian	9	29.3 ±5.5	0	Pakistani	853	27.4 ±12.5	68
Chinese	2	28.5 ±5.0	0	Palestinian	68	24.1 ±14.8	1
Djibouti	5	25.2 ±3.7	0	Saudi	8554	31.9 ±9.5 *S	8400
Egyptian	1130	33.5 ±8.3 *HS	2	Somali	18	27.7 ±11.5	18
Eritrean	10	28.3 ±9.8	0	Sudanese	451	30.6 ±12.8	451
Ethiopian	39	29.4 ±10.3	0	Sri Lankan	5	25.4 ±15.8	5
Filipino	8	34.6 ±7.3	2	Syrian	430	33.1 ±12.5	425
French	1	33	0	Thai	68	28.0 ±19.0	35
Gambian	6	42.2 ±1.2	0	Tunisian	6	26.5 ±11.1	2
Ghanaian	9	25.3 ±1.4	0	Turkish	35	26.5 ±11.1	2
Indian	220	28.8 ±12.3	1	Yemeni	1854	29.9 ±11.1	1850
Indonesian	44	29.5 ±13.9	3				
Total	15365	31.8 ±8.9	15.181	184			

HS= highly significant; s=significant
Table 2: The distributions of the ABO blood group in different nationalities studied.

Nationality	A%	B%	AB%	O%	Nationality	A%	B%	AB%	O%
Turkish	48.6	11.4	2.9	37.1	Malaysian	14.3	0	14.3	71.4
Palestinian	47.1	13.2	8.8	30.9	Indonesian	11.4	27.3	9.1	52.3
Syrian	42.3	17	5.1	35.6	Myanmar	20	33.7	4.8	41.5
Lebanese	41.7	25	8.3	25	Nigerian	22.6	25.3	3.9	48.3
Egyptian	35.9	22.4	9.8	31.9	Pakistani	20.2	35.5	7.5	36.8
Afghan	32.4	31.1	10.8	25.7	Bangladeshi	21.4	35.3	8	35.3
Chadian	44.4	0	22.2	33.3	Algerian	16.7	16.7	16.7	50
French	100	0	0	0	Djibouti	20	20	20	40
Tunisian	100	0	0	0	Burkinabe	14.3	38.1	0	47.6
Cameroonian	66.7	0	33.3	0	Eritrean	20	40	0	40
Ethiopian	35.9	23.1	5.1	35.9	Ghanaian	0	11.1	0	88.9
British	50	50	0	0	Bahraini	0	0	0	100
Mauritanian	16.7	11.1	2.8	69.4	Bosnian	0	0	0	100
Yemeni	30.4	9.3	3.2	57.1	Canadian	0	0	0	100
Thai	26.5	14.7	5.9	52.9	Gambian	0	0	0	100
Malian	25.6	22.7	2.3	49.4	Iraqi	0	0	0	100
Sudanese	25.7	20.4	4.7	49.2	Sri Lankan	0	0	0	100
Saudi	29.1	18.2	4.1	48.6	Nigerien	16.7	41.7	16.7	25
Jordanian	32.3	22.6	1.6	43.5	American	0	66.7	0	33.3
Indian	27.7	24.6	9.5	36.4	Nepalese	0	75	0	25
Moroccan	26.7	6.7	6.7	60	Filipino	12.5	25	37.5	25
Somali	27.8	0	11.1	61.1	Chinese	0	0	100	0
Frequency of ABO and Rhesus blood groups in Saudi healthy blood donors versus non-Saudi in a retrospective study in Makkah City

Table 3: The comparison of the frequency of Rh in different populations versus Saudi populations.

Nationality	No.	Positive	Negative	Nationality	No.	Positive	Negative
	N	%	N	%	N	%	N
Afghan	74	65	12.2	Iraqi	1	1	0
Algerian	6	6	0	Jordanian	62	52	16.1*S
American	3	3	0	Lebanese	12	11	1
Bahraini	2	2	0	Malaysian	7	7	0
Bangladeshi	224	212	94.6	Malian	176	164	6.8
Bosnian	1	1	0	Mauritanian	36	23	13
British	2	2	0	Moroccan	15	15	0
Burkinabe	21	20	95.2	Myanmar	439	425	3.2*HS
Cameroonian	3	2	66.7	Nepalese	4	4	0
Canadian	1	1	0	Nigerian	439	416	23
Chadian	9	9	0	Nigerian	12	11	8.3
Chinese	2	1	50	Pakistani	853	787	7.7
Djibouti	5	5	0	Palestinian	68	58	10
Egyptian	1130	1039	91.9	Saudi	8554	7817	8.6
Eritrean	10	10	0	Somali	18	17	5.6
Ethiopian	39	36	92.3	Soudanese	451	384	14.8*HS
Filipino	8	8	0	Sri Lankan	5	5	0
French	1	1	0	Syrian	430	378	12.1*S
Gambian	6	6	0	Thai	68	68	0
Ghanaian	9	9	0	Tunisian	6	2	66.7*HS
Indian	220	209	95	Turkish	35	33	5.7
Indonesian	44	44	100	Yemeni	1854	1704	8.1

HS=highly significant; S=significant
Frequency of ABO and Rhesus blood groups in Saudi healthy blood donors versus non-Saudi in a retrospective study in Makkah City

Table 4: The distributions of the ABO and Rh blood group in different nationality studied.

ABO, Rh	A%	B%	AB%	O%	ABO, Rh	A%	B%	AB%	O%			
Nationality	+v	-										
Afghan	27	5	23	3	14	7	27	5	23	3	14	7
Egypt	33	2	29	2	27	2	33	2	29	2	27	2
Lebanon	33	8	21	3	28	0	33	8	21	3	28	0
Palestinian	44	2	24	5	22	7	44	2	24	5	22	7
Syrian	39	2	33	3	28	3	39	2	33	3	28	3
Turkish	45	2	34	2	26	7	45	2	34	2	26	7
Chadian	44	0	22	0	32	0	44	0	22	0	32	0
Indian	24	3	14	6	13	9	24	3	14	6	13	9
Jordanian	21	11	0	5	44	1	21	11	0	5	44	1
Malian	23	1	32	0	46	2	23	1	32	0	46	2
Mauritian	13	2	19	0	33	0	13	2	19	0	33	0
Saudi	26	2	16	3	44	4	26	2	16	3	44	4
Sudanese	22	3	40	1	40	9	22	3	40	1	40	9
Thai	26	0	52	0	10	0	26	0	52	0	10	0
Yemeni	27	2	52	0	33	0	27	2	52	0	33	0
Moroccan	26	0	52	0	16	0	26	0	52	0	16	0
Somali	27	8	55	5	57	6	27	8	55	5	57	6
Malaysian	14	0	14	0	71	0	14	0	14	0	71	0
Bangladeshi	20	0	34	0	34	9	20	0	34	0	34	9
Indonesian	11	0	52	0	33	0	11	0	52	0	33	0
Myanmar	18	1	40	0	25	0	18	1	40	0	25	0
Nigerian	21	0	44	2	31	0	21	0	44	2	31	0

Note: The data is presented as frequencies, with the percentage values indicating the distribution of ABO blood groups (A%, B%, AB%, O%) across different nationalities.
Discussion
This retrospective study was done in Makkah city on healthy blood donors (Saudi and non-Saudi). 98.8% were male, and 1.2% were female. This is because there is no good awareness in females about blood donation or they are not accepted as blood donors because of anemia [32]. The blood donors' age ranged from 18 to 62 years, which is accepted for blood donation [33]. The significant difference in the age between Saudi and non-Saudi is of no importance as all matching the accepted age for donations. The Saudi population showed a frequency of O>A>B>AB and not O>A>B>AB [38, 39]. In Mali, some authors reported O>A>B>AB, and others O>B>A>AB [36, 42]. The Malaysian (n=7) and Somali (n=18) had the frequency of O>A>B>AB with an absence of B blood group. In Malaysia, the frequency was either O>B>A>AB or O>A>B>AB [43, 44]. In Somalia, the frequency was O>A>B>AB [45]. The absence of blood group B may be due to their small number. The Indonesian (n=44), Myanmar (n=439), and Nigerian (n=439) had the frequency of O>B>A>AB, which agrees [46-48], and disagrees [49, 50], with their countries results. In Indonesia, the frequency was B>O>AB>A [49], and in Nigeria, it was O>A>B>AB [50]. This may be explained by that these countries have different ethnic’s origins. In Pakistan, the frequency was either B>O>A>AB or A>O>B>AB [51, 52], and both are in contrast to our results, which was O>B>A>AB (n=853). This because some people have higher blood group incidence than others. The Bangladeshi (n=224) showed O=B>A>AB. This is similar to the results done in Bangladesh [17], which reported a higher frequency of either O or B. The Algerian (n=6) and Djibouti (n=5) had the frequency of O>A>B>AB. It agrees with previous studies in Algeria, but no studies were found for Djibouti. In Algeria, the frequency was either O>A>B>AB, or A>O>B>AB [53, 54]. The equal frequency of other blood groups in our work may be due to the small number of participants. The Burkinabe (n=21) had O>B>A with the absence of AB. This agrees with a study done in Burkina Faso [55], in the higher incidence of O. The AB blood group is the least proportion of the ABO blood group. The Eritrean (n=10) had O>B>AB with the AB’s absence. There were no previous references about the ABO in Eritrea. However, it agrees with most African people, which have a higher incidence of O blood group [48, 50, 55]. The Ghanaian (n=9) had O>B with the absence of the A and AB. They were like their country in the higher frequency of O [20, 21]. The lack of other blood groups is due to their small number. The Bahraini (n=2), Canadian (n=1), Bosnian (n=1), Sri – Lanka (n=5), Iraqi (n=1), and Gambian (n=6), all had frequency of O blood group only. This because they do not represent the whole population of their nationalities. They had a similar frequency as in their countries with some exception [56-62]. In Bosnia, some districts had a higher frequency of O, and others had of A [59]. In the American (n=3) and Nepalese (n=4), the frequency was B>O with the absence of other blood groups. These results contrasted with previous results and which showed a higher frequency of O [9, 50, 53, 54, 63]. The discrepancy is because they do not represent the whole population. In the Nigerien (n=12), the frequency was B>O>A>AB, but no previous results were found. In Chinese, participants (n=2) had an AB blood group with the absence of other blood groups. This is in contrast to a previous work, which was either A>O>B>AB or O>A>B>AB [64]. The discrepancy is due to our participants’ small number. In Filipino (n=8), they had AB>B=A, which contrasts with previous work that reported O>A>B>AB. The discrepancy is because they do not represent the whole population [65]. The Turkish (n=35), Palestinian (n=68), Syrian (n=430), Lebanese (n=12), Egyptian (n=1130), and Afghan (n=74) showed frequency of A>O>B>AB. In Turkish, Syrian, and Egyptian, our results agree with previous studies [13, 66-69]. In Palestinian and Lebanese previous works, the frequency was O>A>B>AB in some regions and A>O>B>AB in other regions [70-72]. Our results disagree with previous results in the Afghan, which was of O or B or O=B but not of A [73]. This may because they do not represent the whole population. In Ethiopian participants, both A and O had equal frequency. This agrees with previous results, which found some areas with a higher frequency of A and other of O [15, 74]. The Chadian(n=9), French (n=1), Tunisian (n=6), Cameroonian (n=3), and British (n=2) all had a higher frequency of blood group A which was followed by O or AB or equal to B or absent of other blood groups. This agrees with France and contrasts with Cameroon, Tunisia, and England, which reported O>A>B>AB [16, 75-77]. The discrepancy because they do not represent the whole population. In the Chadian, no previous works were found. Of all populations studied, 46.8% were O, 28.8% A, 19.5% B, and 4.9% AB. This is in agreement with previous results, which stated that the O allele is (63%), A (21%), and B (16%) [78]. The blood group A, B, AB, and O of the Saudi population had a significant or no significant
Frequency of ABO and Rhesus blood groups in Saudi healthy blood donors versus non-Saudi in a retrospective study in Makkah City

difference when compared to other people. (Figures 1). The presence or absence of significance is due to the variations in the blood group’s higher frequency. The variations are due to genetic and environmental factors. Also, the ABO blood group frequency may play a role in human disease [79]. The Rh-positive was predominant, and the Rh-negative ranged from 3.2% to 66.7%. The absence of Rh-negative in Indonesian, Malaysian, Thai, and Filipino agree with studies, which reported <1% of Rh-negative [38, 44, 49, 80-82]. The higher negativity in Tunisian, Chinese, and Cameroonian is due to their small number. All over the world, 5–11% are Rh-negative except Britain and the USA, 15 and 17%, respectively [83].

Limitation of the study
Some of the nationalities in our work had few numbers of participants, which need further studies to confirm our results.

Conclusion:
In Makkah city, the higher frequency of ABO blood group in Saudi and non -Saudi people is O followed by A, then B, and AB. The Rh-positive is predominant, and 8.4% of the participants are negative. The encouragement of blood donation is essential for providing suitable blood storage for individuals in need. We recommendations further studies are needed to be performed on the ABO and Rh genes frequencies and their alleles in Makkah city.

Conflict of Interest
None

Funding
None

References
1. Landsteiner K. Zur kenntnis der antifermentativen, lytischen und agglutinierenden wirkungen des blutersums und der lymphe. Zentbl. Bakt. 1900;27:553-416.
2. DesCastello A, Sturli A. Uber die Isoagglutinine im Serum gesunder und kranker menschen. Mfinch Med Wschar. 1902;49:1090–1095.
3. O’Donghaile D, Jenkins P, McGrath R T, Preston L, Field SP, Ward SE, et al. Expresser phenotype determines ABO(H) blood group antigen loading on platelets and von Willebrand factor. Scientific Reports. 2020;10:18-366.
4. Franchini M, Lippi G. The intriguing relationship between the ABO blood group: cardiovascular disease, and cancer. BMC Medicine. 2015;13:7. DOI 10.1186/s12916-014-0250-y.
5. De Mattos LC. Structural diversity and biological importance of ABO, H, Lewis and secretor histo-blood group carbohydrates. Rev bras hematol hemoter. 2016;38(4):331–340.
6. El Wafi M, El Housse H, Nourichafi N, Bauisk K, Benajiba M, Habti N. Prevalence of weak Antigen D among Antigen D Negative C/E and donors in Morocco. International Journal of Blood Transfusion and Immunohaematology. 2016;6(1): 3-6.
7. Alabdulmonema W, Shariq A, Alqossayir F, AbaAlkhail FM, Al-Musallam AY, Alzaaqi FO, et al. Sero-prevalence ABO and Rh blood groups and their associated Transfusion-Transmissible Infections among Blood Donors in the Central Region of Saudi Arabia. Journal of Infection and Public Health. 2020;13:299–305.
8. Davison GM, Hendrickse HL, Matsha TE. Do Blood Group Antigens and the Red Cell Membrane Influence Human Immunodeficiency Virus Infection. Cells. 2020;9:845. doi:10.3390/cells9040845.
9. Groot HE, Villegas Sierra LE, Said MA, Lipsic E, Karper JC, der Harst PV. Genetically Determined ABO Blood Group and its Associations with Health and Disease. Arterioscler Thromb Vasc Biol. 2020;40:830–838.
10. Zietz M, Zucker J, Tatonetti NP. Associations between blood type and COVID-19 infection, intubation, and death. Nature communications. 2020;11:5761 https://doi.org/10.1038/s41467-020-19623-x.
11. Furuya K, Nakajima H, Sasaki Y, Urita Y. An examination of co-infection in acute gastroenteritis and histo-blood group antigens leading to viral infection susceptibility. Biomedical reports 2016;4: 331-334.
12. Cooling L. Blood Groups in Infection and Host Susceptibility. Clin Microbiol Rev. 2015 Jul;28(3):801-870. doi: 10.1128/CMR.00109-14.
13. Gundem NS, Atas E. Distribution of ABO and Rh Blood Groups among Patients Admitted to a Gynaecology, Obstetrics and Children Hospital in Konya, Turkey. Journal of Clinical and Diagnostic Research. 2019;13(3): EC01-EC04.
14. Hamed CT, Bollahi MA, Abdelhamid I, Mahmoud M, Ba B, Ghaber S, et al. Frequencies and ethnic distribution of ABO and Rh (D) blood groups in Mauritania: results of first nationwide study. Int J Immunogenet. 2012;39 (2):151–154.
15. Fuwa, AW, Debelo DG. Distribution of ABO and Rh (D) blood groups among students attending secondary and preparatory schools in Bote town, Oromia national regional state, Ethiopia. Int. J. Sci. Technol. Educ. Res. 2019;10(1):1-8.
16. Ndoula ST, Noubiap JJN, Nansseu JRN, Wonkam A. Phenotypic and allelic distribution of the ABO and Rhesus (D) blood groups in the Cameroonian population. Int J Immunogenet. 2014;41(3):206–210.
17. Dewan G. Comparative frequency and allelic distribution of ABO and Rh (D) blood groups of major tribal communities of southern Bangladesh with general population and their determinants. Egypt J Med Hum Genet. 2015;16(2):141–147.
Frequency of ABO and Rhesus blood groups in Saudi healthy blood donors versus non-Saudi in a retrospective study in Makkah City

18. RAI J., SINGH B. Distribution of ABO Blood Groups and Rhesus factor Percentage Frequencies Amongst the Populations of Sikkim, India. Proc Indian Natn Sci Acad. 2017;83: 217-222.

19. Radia, A, Ghita B, Hajir S, Hicham Y, Mustapha AA, Mohamed C. Prevalence of Blood Groups at the Blood Transfusion Center at the Military Hospital Avicenna of Marrakech. American Journal of Laboratory Medicine. 2019;4(6): 101-104.

20. Doku GN, Agbozo WK, Annor RA, Kisseh GD, Owusu MA. Frequency of ABO/Rhesus (D) Blood Grouping and Ethnic Distribution in the Greater-Accra Region of Ghana, Towards Effective Blood Bank Inventory. Int J Immunogenet. 2019;46(2):67-73.

21. Smith S, Okai I, Abaidoo CS, Acheampong E. Association of ABO Blood Group and Body Mass Index: A Cross-Sectional Study from a Ghanaian Population. Journal of Nutrition and Metabolism. 2018;45 (8050152): 6. https://doi.org/10.1155/2018/8050152.

22. Rao C, Shetty J. Frequency of ABO and Rh D blood groups in Dakshina Kannada district of Karnataka – a study from rural tertiary care teaching hospital in south India. NUJHS. 2014;4(3):57-60. ISSN 2249-7110.

23. Elsayid M, Aseeri YY, Al Saqqi F. Alanazi A, Qureshi S. A Study of Prevalence of Blood Group of Saudi Patients in King Abdulaziz Medical City-Riyadh. Science Journal of Public Health. 2015;3(4):559-562.

24. Al-Noaeemi MC, Daghiri HA. The Significant High Prevalence of Blood Group ‘O’ in Yam Tribe of Najran City, the South Province of KSA. Blood Res Transfus J. 2018;2(1):1-5.

25. Eweidah MH, Rahiman S, Ali H, Al-Shamary AM. Distribution of ABO and RhD Blood Groups in Al Juf University of the Saudi Arabia. Anthropologist. 2011;13(2): 99-102.

26. Junainah E, Al-Amoudi S, Junainah J, El-ficki Y, baothman E, andijani A, et al Prevalence of ABO and Rh Blood Groups in Saudi Arabian Population. Life Science Journal. 2016;13(2):69-73.

27. Amal Zaghoul, Anas M Aljoaid, Duaa S Balkhi, Leena A Alharthi, Nasir A Alsibi, Ranin O Algethami, et al. Frequency of ABO blood groups in the Makkah city and their association with diseases. IAJPS. 2019;06 (01):551-557.

28. Moussa S, Al-zaylai F, Alnawmasi MO, Aljarwan MS, Ishammari HA, Alrashedi LM, et al. Pattern of distribution of ABO and Rhesus (RH) blood groups in haiil province, Saudi Arabia. International Journal of Medical and Health Research. 2018;4(3): 166-170.

29. Chun S, Ryu MR, Yeon Cha S, Young Seo J, Duck Cho D. ABO Mistyping of cis-AB Blood Group by the Automated Microplate Technique. Transfus Med Hemother. 2018;45(1):5-10. doi: 10.1159/000475506.

30. Harel VS, Pawar SG, Mahajan KD, Palaskar SG, More BP and Kulkarni KV. The Efficiency and Specificity of Matrix Gel Method from the Forensic Point of View, in Determination of ABO Blood Grouping and Rhesus Factor. Journal of Forensic Science & Criminology. 2018; 6(1):1-9. ISSN: 2348-9804.

31. Xu L, Li H, Yang S, Zeng W, Gan S, Chen X, et al. Interference in the indirect antiglobulin test and direct antiglobulin test from rheumatoid factor. Journal of International Medical Research. 2019; 48(3):1–11.

32. Zaghloul A, Saudy N, Bajuaifer N, Aldosari MS, Sunqurah AH, Jei DR, et al. Frequency of Iron Deficiency Anemia and beta Thalassemia Trait in Female Medical Students at Umm Al-Qura University in the Makkah Region. IAJPS. 2019;06 (01):1026-1034.

33. WHO. Who can give blood. Available from:https://www.who.int/campaigns/world-blood-donor-day/2018/who-can-give-blood.[Accessed 30-6-2020].

34. AlSuhaibani E.S., Kizilbash N.A., Afshan K., Malik S.Distribution and clinical trends of the ABO and Rh genes in select Middle Eastern countries. Genetics and Molecular Research. 2015;14 (3):10729-10742.

35. Abbas AA. Frequency of ABO and Rh D Blood Groups among Sudanese Blood Donors Attending Central Blood Bank in Wad Medani, Gezira State, Sudan. Int J Med Res Prof. 2017;3(2):45-51.

36. Theron M, Cross N, Cawkill P, Bustamante LY, Rayner JC. An in vitro erythrocyte preference assay reveals that Plasmodium falciparum parasites prefer Type O over Type A erythrocytes. Scientific reports. 2018;8:8133. DOI:10.1038/s41598-018-26559-2.

37. Al-Nahari AM. Gene Frequencies of ABO and Rh (D) Blood Group Alleles in Five Yemeni Provinces. Al-Kufa University Journal for Biology. 2017;9(2):200-207.

38. Anuphun T, Srichai S, Sudwilia Y, Jenwitheesuk K, Phunikhom K. ABO and Rhesus Blood Group Distribution in Blood Donors, Blood Transfusion Centre, Faculty of Medicine, Khon Kaen University, Thailand. Srinagarind Med J. 2018;33(suppl).

39. Kuesap J, Na-Bangchang K. The Effect of ABO Blood Groups, Hemoglobinopathy, and Heme Oxygenase-1 Polymorphisms on Malaria Susceptibility and Severity. Korean J Parasitol. 2018;56(2):167-173.

40. Al Hroob AM, Saghir S A M, Almaiman AA, Alsalahi OSA, Al-Wajeeth AS, Al-Shargi OYA, et al. Prevalence and Association of Transfusion Transmitted Infections with ABO and Rh Blood Groups among Blood Donors at the National Blood
Frequency of ABO and Rhesus blood groups in Saudi healthy blood donors versus non-Saudi in a retrospective study in Makkah City

Bank, Amman, Jordan. Medicina. 2020;56:701-711. doi:10.3390/medicina56120701.

41. Rawat S, BhagoraR, Hazari RS, Mane A, Kapoor P, Patil A. Frequency and Distribution of ABO and Rhesus Blood Group of Blood Donors. JMSCR. 2019;7 (11):148-152.

42. Traore K, Konate S, Thera MA, Niangaly A, Ba A, Niare A, et al. Genetic polymorphisms with erythrocyte traits in malaria endemic areas of Mali. PLoS ONE. 2019;14(1):1-10.

43. Amin R, Susanto D, Naher L. Distribution pattern of ABO and Rh blood groups and their allelic frequencies among different ethnic groups in Malaysia. Asian Journal of Medical Sciences. 2015; 6(4):25-29.

44. Hajar CGN, Zefarina Z, Riffin NS, Mohammad TH, Hassan MN, Poonachi P, et al. Extended blood group profiles for Malays, Chinese, and Indians in peninsular Malaysia. Egyptian Journal of Medical Human Genetics. 2020; 21:51-60.

45. Ismail AS. Distributional Patterns of ABO Blood Grouping and Rhesus Factor: Retrospective Cross-Sectional Study in Somali Regional Blood Bank. American Journal of Laboratory Medicine. 2019;4(2):48-52.

46. Wah ST, Chi SN, Kyaing KK, Khin AA, Aung T. Serological Detection of Rh-Del Phenotype among Rh-Negative Blood Donors at National Blood Center, Yangon, Myanmar. Advances in Hematology. 2020;2(3482124):5.

47. Suwito BE, Kalanjati VP, Abdurachman. Blood type and blood pressure correlations to body mass index in young adults. Fol Med Indones. 2020;56(3):203-207.

48. Musa AU, Ndkotsu MA, Abdul-Aziz H, Kilishi A, Aliyu I. Distribution of ABO and Rhesus blood group systems among blood donors in Sokoto North-western Nigeria. J Appl Hematol. 2015;6:136-138.

49. Marlentine M, Jusuf NK, Muis K. The relationship between ABO blood group typing with tinea corporis and or tinea cruris in Tanjung Gusta Prison, Medan-Indonesia. Bali Medical Journal (Bali Med J). 2019;8(1):303-306.

50. Ugwu NI. Pattern of ABO and Rhesus blood group distribution among students of Ebonyi State University, Abakaliki, South Eastern Nigeria. Asian Journal of Medical Sciences. 2016;7(1):101-104.

51. Butt SJ, Malik S, Malik H, Butt AJ. ABO and Rhesus Blood Grouping in Voluntary Blood Donors and its gender association. PMHMS. 2018;12(1):268-271.

52. Ullah S, Ahmad T. Distribution of ABO and Rh (D) Blood Groups in the Population of District Dir Lower, Khyber Pakhtunkhwa Pakistan. World Applied Sciences Journal. 2015;33(1):123-135.

53. Matough FA, Alhodier J, Abdulkader A, Abdulsalam J, Alwahaibi N. The frequency of ABO and Rhesus blood groups phenotypes, genotypes from Sebha city of Libya. JOPAS. 2019;18 (1):17-22.

54. Nabil B, Bounab S, Benazzi L, Yahiaoui M. Genetic polymorphisms of blood donors in Algeria through blood groups ABO, RH, and Kell. Transfus Clin Biol. 2020 Feb;27(1):43-51.

55. Sawadogo S, Nebie K, Millogo T, Kafendo E, Sawadogo AG, Dahourou H, et al. Distribution of ABO and RHD blood group antigens in blood donors in Burkina Faso. Int J Immunogenet. 2018; 46 (1):1-6.

56. Ad’hiah AH, Allami RH, Mohsin RH, Abdullah MH, AL-Sa’ady AJR, Alsudani MY. Evaluating of the association between ABO blood groups and coronavirus disease 2019 (COVID-19) in Iraqi patients. Egyptian Journal of Medical Human Genetics. 2020; 21:50-55.

57. Almadhi MA, Abdulrahman A, Alawadhdi A, Rabaan A, AlQahtani M. The effect of ABO blood group and antibody class on the risk of COVID-19 infection and severity of clinical outcomes. medRxiv preprint. doi: https://doi.org/10.1101/2020.09.22.20199422;

58. Canadian Blood Services (2016). Canadian blood services. Available from https://www.blood.ca/en

59. Fazlović A, Hamidović H, Avdić A, Jusić A. The analysis of blood type distribution of the ABO and Rh system in the population of Tuzla Canton (Bosnia and Herzegovina). 10th International Scientific Conference: Science and Higher Education in Function of Sustainable Development. 2017.

60. Roy B, Banerjee I, Sathian B, Mondal M, Saha CG. Blood Group Distribution and Its Relationship with Bleeding Time and Clotting Time: A Medical School Based Observational Study among Nepali, Indian and Sri Lankan Students. Nepal Journal of Epidemiology. 2011;1(4):135-140.

61. Loscertales MP, Brabin BJ. ABO phenotypes and malaria related outcomes in mothers and babies in The Gambia: a role for histo-blood groups in placental malaria. Malaria Journal. 2006;5:72-77.

62. Mederos LEA, Álvarez PB. Population Genetics for the ABO Blood System in a Population with Endemic Malaria. CCM. 2014;18(1):9-17.

63. Niroula DR, Jha MK, Limbu P, Pokhre I, Yadav SK, Mukhopadhyyay S. Ethnic variations of blood groups in a Medical College of Eastern Nepal. Kathmandu Univ Med J. 2018;61(1):18-22.

64. Liu J, Zhang S, Wang Q, Shen H, Zhang Y, Liu M. Frequencies and ethnic distribution of ABO and RhD blood groups in China: a population-based cross
Frequency of ABO and Rhesus blood groups in Saudi healthy blood donors versus non-Saudi in a retrospective study in Makkah City

sectional study. BMJ Open. 2017;7:e018476. doi:10.1136/bmjopen-2017-018476.
65. Barrera Jr. Phenotypic Distribution of ABO Blood Groups between Cosmopolitans and Regional Population of Lucban, Quezon. Tilamsik. 2018;10(1). Philippine E journal.
66. Salduz ZİY, Çetin G, Karatoprak C, Özder A, Bilging M, Gültepe I, et al. ABO and Rh Blood Group Distribution in Istanbul Province (Turkey). İstanbul Med J. 2015; 16: 98-100.
67. Al-Ani L, Mahmood HM, Abdulhaleem N. Genetically Determined ABO and (Rh) Rhesus Blood Groups and Their Associations with Diabetes Mellitus. Sys Rev Pharm. 2020;11(4):604-608.
68. Swelem O, Goubran F, Younis S, Kamel N. ABO, RH phenotypes and kell blood groups frequencies in an Egyptian population. Hematol Transfus Int J. 2018;6(2):71-75.
69. Abdelmonem M, Fyala A, Boraik A, Shedid M, Mohamed AH, Abdel-Rhman M. Distribution of Blood Types and ABO Gene Frequencies in Egypt. Am J Clin Pathol. 2019;152:S151-S155.
70. Alsadi R. Personality Traits and Their Relationship with Blood Groups among of Palestinian University Students. International Journal of Psychology and Behavioral Sciences. 2020;9(2):34-42.
71. Skaiya YA, Alhawary AS, Shbair AS, Hamouda BB. Frequency of ABO and Rh (D) blood groups in five Governates in Gaza -Strip. Pak J Med Sci. 2007;23(6):924-927.
72. Tarhini M, Kazan HF, Hijazi R, Raee A, Youness M, Ezedine M, et al. Prevalence of ABO and Rh blood group systems over the entire Lebanese population. Asian Journal of Science and Technology. 2018; 9(7):8440-8443.
73. Mazières S., Temory S. A., Vasseur H., Gallian P., Di Cristofaro J., Chiaroni J. Blood group typing in five Afghan populations in the North Hindu-Kush region: implications for blood transfusion practice. Transfusion Medicine Wiley. 2013;23(3):167-174.
74. Golassa L, Tsegaye A, Erko B, Mamo H. High rhesus (Rh(D) negative frequency and ethnic-group based ABO blood group distribution in Ethiopia. BMC Res Notes. 2017;10:330. DOI 10.1186/s13104-017-2644-3.
75. Yalaoui S, Fakhfakh R, Tritar F, Chaouch N, Mestiri T, et al. ABO blood groups and risk of covid-19. La Tunisie Medicale. 2020;98(12):888-891.
76. Joint United Kingdom (UK) Blood Transfusion and Tissue Transplantation Services Professional Advisory Committee . Transfusion Handbook (2) The ABO system. Available from: http://www.transfusionguidelines.org/transfusion-handbook/2-basics-of-blood-groups-and-antibodies/2-4-the-abo-system. [Accessed 10-1-2021].