Obesity and dietary fat influence dopamine neurotransmission: exploring the convergence of metabolic state, physiological stress, and inflammation on dopaminergic control of food intake

Conner W. Wallace and Steve C. Fordahl* ©

The Department of Nutrition, UNC Greensboro, Greensboro, NC 27412, USA

Abstract

The aim of this review is to explore how metabolic changes induced by diets high in saturated fat (HFD) affect nucleus accumbens (NAc) dopamine neurotransmission and food intake, and to explore how stress and inflammation influence this process. Recent evidence linked diet-induced obesity and HFD with reduced dopamine release and reuptake. Altered dopamine neurotransmission could disrupt satiety circuits between NAc dopamine terminals and projections to the hypothalamus. The NAc directs learning and motivated behaviours based on homeostatic needs and psychological states. Therefore, impaired dopaminergic responses to palatable food could contribute to weight gain by disrupting responses to food cues or stress, which impacts type and quantity of food consumed. Specifically, saturated fat promotes neuronal resistance to anorectic hormones and activation of immune cells that release proinflammatory cytokines. Insulin has been shown to regulate dopamine neurotransmission by enhancing satiety, but less is known about effects of diet-induced stress. Therefore, changes to dopamine signalling due to HFD warrant further examination to characterise crosstalk of cytokines with endocrine and neurotransmitter signals. A HFD promotes a proinflammatory environment that may disrupt neuronal endocrine function and dopamine signalling that could be exacerbated by the hypothalamic–pituitary–adrenal and κ-opioid receptor stress systems. Together, these adaptive changes may dysregulate eating by changing NAc dopamine during hedonic versus homeostatic food intake. This could drive palatable food cravings during energy restriction and hinder weight loss. Understanding links between HFD and dopamine neurotransmission will inform treatment strategies for diet-induced obesity and identify molecular candidates for targeted therapeutics.

Keywords: High-fat diet: Dopamine neurotransmission: Nucleus accumbens: Homeostatic feeding: Hedonic feeding: Inflammation: Insulin resistance: Diet-induced obesity: Hypothalamic–pituitary–adrenal stress axis: Kappa-opioid receptors

Introduction

Overweight and obesity prevalence has steadily increased with 42.4% of US adults currently classified as obese1. Food intake is controlled by many factors, including an obesogenic food environment with ubiquitous access to cheap, calorie-rich, palatable foods. Herein, ‘palatable foods’ are defined as those with high energy density primarily from fat or sugar. Over-consumption of palatable food is proposed to shift brain dopamine signalling within the nucleus accumbens (NAc)2–3. The NAc is a limbic–motor interface which integrates salient stimuli with memory and context, reward availability and value, sensory information, physiological state and homeostatic needs4. It sends efferent projections to cortical and motor regions, processing environmental and biological stimuli to drive motivated behaviour. Disrupting homeostasis in the NAc by stimulating excessive dopamine release may contribute to obesity with extended access to highly palatable foods that acutely cause phasic dopamine release in the NAc5,8. Perturbations to NAc dopamine by consuming a diet high in saturated fat (HFD) may disrupt natural NAc food reward learning and reduce NAc dopamine tone over time7–11. Changes in dopamine tone or phasic dopamine release in the NAc may significantly impact food seeking8,11–13, reward9,11,12 and satiety11,13,14. However, the mechanisms by which diet and obesity alter dopamine neurotransmission and behaviour are not fully characterised. Therefore, the purpose of this review is to highlight the literature and identify research gaps related to mechanisms by which diet-induced obesity interfere with NAc dopamine, including interactions between inflammation, physiological stress and κ-opioid receptor function which together with endocrine hormones modulate NAc dopamine to influence food intake behaviours.

Dopamine circuitry and motivated behaviour

Food intake is controlled by energy status and neural circuits regulating homeostasis and reward. Two primary dopamine circuits include the nigrostriatal tract from substantia nigra to dorsal striatum/caudate putamen controlling motivation and habitual

* Corresponding author: Steve C. Fordahl, email scfordah@uncg.edu
behaviour, and the mesocorticolimbic tract from ventral tegmental area (VTA) to NAc controlling Pavlovian reward learning15. These dopamine neurons form synaptic terminals with γ-aminobutyric (GABA)-releasing medium spiny neurons (MSNs), comprising “90–95 % of neurons within the NAc16, which express dopamine D1 receptor (D1R) and dopamine D2 receptor (D2R) subtypes that propagate dopamine signalling to control cortical and motor processing37. An excellent review of homeostatic crosstalk with the dopamine reward system by Ferrario and colleagues highlighted how glucose and endocrine indicators of energy status (insulin, leptin) inhibit or excite dopaminergic reward activity directly in the VTA, NAc and striatum2. Hormones also indirectly modulate dopaminergic activity by targeting key homeostatic regions in the hypothalamus that initiate food seeking behaviours via GABAergic and glutamatergic inputs to VTA and NAc2,18. There are multiple subtypes of these neurons within the lateral hypothalamus (LH) and arcuate nucleus (ARC) that respond to energy status by releasing appetite neuropeptides. These include orexin/hypocretin (orexigenic, LH to VTA/NAc), melanin-concentrating hormone (orexigenic, LH to NAc), neuropeptide Y (NPY)/agouti-related peptide (AGRP) (orexigenic, ARC to LH) and pro-opiomelanocortin (POMC)/cocaine- and amphetamine-regulated transcript (CART) (anorectic, ARC to VTA/NAc)2. These appetite systems underly many mechanisms by which HFD and stress perturb dopamine control of food intake and will be discussed in detail throughout this review. In addition to homeostatic engagement of hypothalamic afferents to the VTA and NAc, feeding is also controlled by a NAc to hypothalamic satiety circuit. This was demonstrated by direct inhibition or stimulation of D1R-expressing MSNs that project from the NAc shell to the LH, where D1R inhibition increased licking for fat and sugar but stimulation decreased ingestive responses37. Overall, NAc dopamine neurotransmission and subsequent GABA output controls motivated behaviour, and homeostatic signals from the hypothalamus comprise important inputs that regulate feeding. Therefore, diet-induced disruption to these circuits may be particularly consequential for individuals restricting food intake (Fig. 1).

The ventral striatum is central to reward processing, integrating glutamatergic and GABAergic inputs from the hypothalamus, cortex, amygdala and hippocampus with dopaminergic projections from the VTA or substantia nigra20. The NAc assimilates these signals to determine hedonic value and sends GABA via the ‘direct’ route with direct control of dopamine release with afferents to VTA, internal globus pallidus or substantia nigra (MSNs with D1Rs), or the ‘indirect’ route via globus pallidus externa and ventral pallidum (MSNs with D2Rs). GABA afferents to the thalamus then modulate excitatory output to the cortex that controls behavioural selection and motor activity37. D1Rs have lower affinity for dopamine than do D2Rs21,22 and respond to phasic dopamine release due to unexpected rewards and cue learning that promotes cyclic adenosine monophosphate (cAMP) signalling with downstream phosphorylation of dopamine-regulating proteins33 and increased MSN firing probability25. Conversely, D2Rs are activated at lower dopamine concentrations by spontaneous pacemaking activity of dopamine neurons23 than D1Rs, and activate opposing intracellular signalling, to decrease MSN firing probability25. Consequently, D2Rs communicate dopamine tone so that phasic release events (unexpected rewards) or lack thereof (absence of expected reward) alter concentration that is detected by D1Rs to promote response. This dopamine signalling pattern is important for NAc learning that relies on phasic dopamine release initiated by a rewarding, unconditioned stimulus that becomes tied to a conditioned cue over repeated exposures. In the theory of reward prediction error29, hedonic value is determined based on magnitude of dopamine release, which is up- or down-regulated upon further cue exposures. This reward-learning model is central to motivation and survival and may become ‘hijacked’ by palatable foods.

Dopamine in the NAc responds to food intake and may promote obesity

Dopamine pathways control motivated and habitual behaviour, including that related to food. The VTA–NAc mesolimbic dopaminergic pathway influences motivated behaviour by enhancing willingness to work for rewards29. Mesolimbic dopamine increased during lever pressing to obtain food27, and NAc core dopamine depletion reduced response in fixed ratio tasks with more pronounced decreases in higher ratio schedules28. Moreover, food deprivation augments dopaminergic responses to food, demonstrated by increased NAc dopamine in response to maize oil feeding after food restriction6. Interestingly, phasic dopamine release was enhanced in food-restricted rats following cues that predict sucrose versus cues for saccharin5. This suggested energy-providing foods have greater salience than energy-null foods when homeostatic energy needs influence physiological state, but dopamine release induced by food cues that initiate food intake could be enhanced in individuals with obesity. Indeed, those who were obese showed enhanced striatal and NAc dopamine release in response to palatable food images after consumption of an energy-dense meal29. This was in contrast to healthy, lean individuals whose meal pleasantness ratings correlated with striatal dopamine release29 and who experienced striatal dopaminergic activation immediately during milkshake consumption and 20 min post-ingestion when gut signals reached the brain31. Additionally, when food access is not interrupted but availability of palatable foods is limited, dopamine release is increased during access to the preferred food under limited compared with ad libitum access in rodents. For instance, constant access to sucrose for 21 d failed to evoke the same magnitude of dopamine release in the NAc shell as daily intermittent access to sucrose14. Therefore, dopamine release in response to food can be influenced by physiological state and food availability, and the NAc controls initial hedonic responses to palatable food intake and promotes cue-associated learning and motivation to obtain food that is interfaced with homeostatic need.

Effects of HFD on dopamine

Prolonged consumption of highly palatable diets may disrupt dopamine reward signalling. Chronic HFD intake and diet-induced obesity impact VTA dopamine neuron activity and interfere with mechanisms regulating dopamine at synaptic
terminals within the NAc. Changes include lowered D2R binding potential as well as reduced dopamine transporter (DAT) function and membrane localisation. Furthermore, HFD intake activates inflammatory processes that may contribute to neuronal insulin resistance and leptin resistance attenuate satiation and reward valuation of palatable foods by altering NAc synaptic dopamine and disrupt orexigenic and anorectic communication between the LH, ARC and VTA. Finally, chronic HFD intake shifts opioid control of NAc dopamine neurotransmission, which could amplify stress-induced feeding and have consequences for obese individuals on energy restricted diets. Overall, studies presented below demonstrate HFD consumption acutely increases NAc dopamine, but prolonged intake reduces capacity for dopamine neurotransmission through repeated stimulation of dopamine receptors, resistance to hormonal and homeostatic signals, and up-regulated inflammatory signalling.

Effects on synaptic control of dopamine within the NAc

Dopamine transporter, D1 receptors and D2 receptor availability. Chronic HFD intake alters dopamine neurotransmission to promote food seeking with obesity susceptibility dependent on the activation of NAc dopamine and alteration to dopamine receptors and the DAT. For example, genetic differences in the DAT gene significantly increased likelihood of obesity. Further, intake of a HFD or intraperitoneal injection of lipid solution acutely increased NAc dopamine, and sucrose intake dose-dependently increased NAc dopamine. Conversely, chronic HFD feeding reduced maximal dopamine reuptake rate (Vmax), while extended access to a Western diet (WD), a HFD with added sugar, decreased striatal and NAc core dopamine release and reuptake. Further, while obesogenic diet and food restriction both reduced striatal DAT surface expression and reuptake, obesogenic diet decreased but food restriction increased D2R protein expression. These findings suggest food restriction primes the dopamine system to respond to food exposure. HFD-induced changes develop over time, as 6-week but not 2-week exposure to HFD decreased NAc dopamine Vmax and membrane-associated DAT expression. Effects of HFD also depend on fat type, as rats chronically fed 50% saturated HFD experienced reduced DAT and increased D1R protein expression versus 50% monounsaturated olive oil or control diet. Similarly, consumption of a HFD versus control diet reduced dopamine reuptake Vmax and attenuated phasic dopamine release, which did not occur in mice fed a diet high in polyunsaturated flaxseed oil. Further, consumption of a WD versus low-fat control diet for 12 weeks reduced NAc D1R protein expression but increased total D2R and p-dopamine- and cAMP-regulated phosphoprotein-32 (DARPP-32) protein expression, the latter which activates D1R-mediated signalling downstream. HFD...
feeding from lactation through adulthood similarly increased NAc DARPP-32 but decreased D1R and D2R gene expression that was exacerbated after HFD was removed for 4 weeks48. Conversely, HFD-induced reduction in D1Rs and D2Rs was restored by HFD removal. These results suggest adaptive changes in DAT, D1R and D2R expression due to repeated HFD-mediated activation of D1R signal transduction leading to down-regulated D1R and D2R availability. Interestingly, D1R-expressing MSNs were activated in proportion to palatable food consumption while intra-uterine protein-restriction-induced reduction of NAc shell D1Rs increased palatable milk consumption55, leading Durst et al. (2019) to suggest D1R stimulation during consumption builds to a ‘satiety threshold’ sent to LH GABA neurons. Endocannabinoid-mediated synaptic plasticity of this circuit was later demonstrated to promote overeating after food restriction or exposure to HFD54. Therefore, the NAc–LH satiety circuit may be inhibited due to HFD-induced disruption of D1R signalling.

Much attention has also been paid by neuroimaging studies to striatal D2R availability. Decreased NAc core but increased NAc shell D2R binding potential were linked to impulsive behaviour56. Furthermore, calorie restriction was used to maintain similar intake between groups, and chronic HFD in absence of obesity decreased NAc D2R protein expression and increased impulsivity in a task to obtain food55. Conversely, obesity in absence of diet manipulations also affects D2Rs, as chow-fed, obese mice with genetic leptin receptor inactivation increased NAc and striatal D2R availability \textit{in vivo} using [3H]raclopride but decreased D2R availability \textit{ex vivo} using [3H]spermonone57. Interestingly, these differences were eliminated between calorie-restricted lean and obese mice57. Based on the radioligands used, results suggested obesity reduced striatal dopamine concentration and postsynaptic D2R availability. Conversely, 3–4 weeks of limited daily access to a cafeteria diet reduced ethanol intake but increased D2R autoreceptor function58. One group used [3H]raclopride55–57 to assess diet-induced alterations to D2Rs over time and found that 20 d on a 40 % HFD versus chow increased D2R binding density in the NAc and striatum that was maintained after HFD removal59. Conversely, diet-induced obesity that developed over 20 weeks of HFD feeding decreased striatal D2R binding59 but increased NAc core and striatal D2R mRNA expression57. Further, obesity-resistant mice had increased NAc DAT binding59, which may promote dopamine clearance and protect against obesity. These studies suggest palatable foods upregulate dopamine neurotransmission which is shifted by chronic HFD intake to decreased D2R binding and capacity for dopamine release. However, clinical research showed negative correlation between age and D2R binding throughout midbrain regions with body mass index (BMI) correlating positively with D2R availability only for those over 30 years old59. This suggests that adolescent striatal development and decline of D2R expression patterns with age could partially explain associations between D2R availability and BMI. Overall, HFD-induced obesity alters function and expression of NAc proteins regulating dopamine to reduce capacity for NAc dopaminergic reward that promotes overeating and weight gain.

Acetylcholine, GABA and glutamate in the NAc.

Control of VTA–NAc dopamine signals that initiate motivated actions relies on a complex network of acetylcholine, glutamate and GABA, which are all affected by HFD intake. About 5 % of NAc neurons are GABAergic or cholinergic interneurons (CIN)17. The latter stimulate dopamine release via acetylcholine that activates dopamine receptors on dopamine axon terminals51. Activation of MSNs relies on glutamate targeting ionotropic \textalpha amino-\textdelta mesityl-\textgamma aspartate (NMDA) and \textalpha amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPA) on CINs to release acetylcholine60,61. Glutamate also negatively regulates dopamine directly by metabotropic glutamate receptors62 and indirectly via MSN retrograde \texteta O2 release63. Glutamatergic inputs to NAc communicate physical and nutritive qualities of food, memory, physiological need and environmental cues20, which prompts initiation or cessation of feeding. Indeed, either AMPA and NMDA receptor agonism64 or antagonism65 in the NAc shell can induce voracious feeding. However, consumption of a WD56 or a HFD57 increased AMPA/NMDA receptor ratio66,67, prolonged excitatory postsynaptic currents onto MSNs66, and increased NAc phosphorylated GluR1 AMPA subunit52 and NAc shell NMDAR and metabotropic glutamate receptor68 expression, but inhibited ability to induce long-term depression onto MSNs67, effects which together increased motivation to obtain palatable food67,68. Further, the NAc receives GABA from VTA69, globus pallidus externa70, cortex71, bed nucleus of the stria terminalis72, and local MSNs and interneurons24. GABA signals reduce dopamine concentration73 to stop cue-associated reward behaviour70 or food intake and induce avoidance behaviour69,71. These effects occur directly via dopamine axon terminal74 GABA\textsubscript{A}-receptor-mediated reduction of dopamine74 and indirectly via GABA\textsubscript{A}-receptor-mediated reduction of acetylcholine69,75. Conversely, NAc shell GABA\textsubscript{A} and GABA\textsubscript{B} antagonism decreased food intake while fasted75, but agonism increased fat and sucrose76 as well as regular food intake while sated77, suggesting GABA inhibits NAc-LH MSNs to disinhibit feeding. However, GABA\textsubscript{A} agonism also inhibited bingeing on HFD during an intermittent access paradigm79. Overall, glutamatergic and cholinergic signalling within NAc promotes food intake, while the system of GABAergic disinhibition throughout the NAc, VTA and hypothalamus may decrease dopamine release and stop intake or disinhibit feeding via NAc shell MSNs, but prolonged HFD intake reduces sensitivity of these systems to promote overeating and highlights the complexity of dopaminergic regulation of ingestive behaviours.

Effects on the VTA

VTA dopaminergic output underlies motivated behaviours and is affected by consumption of a HFD74,79,80. The VTA receives glutamatergic and GABAergic signals from local interneurons and limbic and cortical regions82 as well as local somatodendritic dopamine release that negatively regulates dopamine neuron excitability74. Glutamatergic and cholinergic inputs activate receptors on VTA dopamine neurons to promote NAc dopamine release84. The VTA receives orexin from LH, NPY from orexigenic glucose-sensing ARC neurons282, and anorectic POMC/
CART signals from ARC\(^2\). The VTA integrates this information related to homeostasis and environmental cues with dopamine neurons projecting to the NAc. However, HFD intake reduced VTA tyrosine hydroxylase (TH) mRNA\(^{10}\) and protein\(^{8,9}\) expression, which occurred regardless of obesity and was restored after switching to low-fat diet\(^{10}\). This showed HFD intake reduced capacity for dopamine synthesis, because TH is the rate-limiting enzyme in synthesising dopamine\(^8\). Further, 6-week ad libitum HFD feeding attenuated D2R agonist quinpirole-induced inhibition of VTA dopamine neuron firing, suggesting D2R desensitisation\(^{85}\), whereas intermittent access to cafeteria diet for 3 weeks increased inhibitory effects of quinpirole and reduced ethanol and sucrose intake\(^{58}\), showing sensitivity of VTA autoreceptor function to type and length of diet. HFD intake similarly reduced excitability of mouse VTA GABA neurons\(^{89}\) that reduce NAc dopamine concentration\(^{69,73}\) and stop behaviour (e.g. food intake)\(^{69,71}\). Overall, HFD and obesity affect VTA dopamine and GABA neuron protein expression and function, and a further diet-induced effect includes altered sensitivity to direct responses of VTA neurons to hormonal indicators of energy status.

VTA neurons express receptors for insulin and leptin\(^{87}\) with leptin-receptor-expressing dopamine and GABA neurons projecting to the NAc\(^{89}\), and activation of these receptors decreases food intake. Insulin in the VTA is important in reducing dopamine neuron activity to control behaviour, demonstrated by reduced locomotion and NAC dopamine after VTA application of insulin\(^8\). In the VTA, insulin reduced somatodendritic dopamine release and hedonic feeding, which was abolished by blocking the DAT\(^{90}\). Furthermore, insulin induced AMPAR- and endocannabinoid-mediated long-term depression in VTA dopamine neurons which was attenuated by genetic or diet-induced elevation of insulin\(^{91,92}\), showing a role of insulin in the VTA to signal satiety that is inhibited by HFD. VTA signalling is also affected by leptin resistance, as HFD consumption reduced ability of VTA leptin administration to limit food intake and weight gain in obesity-prone rats\(^8\) and induced leptin resistance specifically in the VTA and ARC\(^{45}\). Diet-induced obesity also spurred leptin resistance in ARC NPY/AGRP and POMC/CART neurons\(^{42}\) and LH neurotensin–galanin–GABA neurons\(^{84,95}\) necessary for reducing food intake by inhibiting orexin and activating VTA neurons\(^{94,95}\). Therefore, lack of hypothalamic and VTA insulin and leptin signalling may reduce capacity for NAc dopamine release to promote compensatory over-seeking of palatable food.

Effects on anorectic hormones in the NAC

Insulin gains access to the brain via transport across the blood–brain barrier\(^{38}\) and local production in the brain\(^{77}\), and activation of tyrosine kinase receptors by insulin promotes phosphatidylinositol-3 kinase (PI3K) and protein kinase B (Akt) or the mitogen-activated protein kinase (MAPK)/extracellular-signal-regulated kinase (ERK) pathways, the latter which is also known as the Ras-Raf-MAPK/ERK kinase (MEK)-ERK cascade\(^{26}\). Insulin valuates food reward by fine-tuning dopamine neurotransmission at NAc dopamine terminals. For example, NAc core and shell insulin administration increased dopamine release and reuptake in control animals but not in animals consuming HFD\(^{34,40}\). Furthermore, HFD-induced impairments were reversed by promoting insulin receptor substrates, while effects of insulin were abolished by inhibiting insulin receptor or PI3K\(^{34}\), implicating HFD-induced insulin resistance in impaired dopamine control. Insulin receptors expressed on NAc dopamine neuron terminals\(^9\) activate Akt and ERK to shuttle DAT to the plasma membrane to promote dopamine reuptake\(^{96}\). Dopamine release is also promoted by insulin as NAc CINs expressed insulin receptors at high density\(^{40}\) and released acetylcholine in response to insulin\(^{10,43}\), supporting necessity of insulin in encoding sucrose preference\(^{40}\). While an obesogenic diet blunted insulin-induced NAc dopamine release and reuptake\(^{43}\), food restriction alternately enhanced insulin receptor expression and stimulated dopamine reuptake\(^{50}\). Similar effects have been shown with impaired leptin signalling, as leptin-deficient mice had reduced electrically evoked NAc shell dopamine release and reduced TH and DAT expression\(^{89}\), whereas leptin increased activity of NAc DAT and TH and increased amphetamine-evoked dopamine release\(^{99}\). Leptin activates intracellular signalling cascades similarly to insulin in addition to the Janus-activated kinases (JAK)–signal transducers and activators of transcription (STAT)–suppressors of cytokine signalling (SOCS) pathway that reduce NPY/AGRP but increase POMC/CART and LH neurotensin neuronal activity\(^2,100\). Further, leptin is also transported into the brain\(^{102}\) and is expressed in plasma and cerebrospinal fluid in proportion to adipocyte size\(^{102}\) and adiposity\(^103\), suggesting that leptin conveys energy sufficiency. However, individuals with obesity have elevated plasma leptin\(^{100}\), supporting leptin resistance as a comorbidity of obesity. Collectively, these studies showed NAc insulin promotes reward seeking by encoding reward salience via increased dopamine release and maintenance of dopamine reuptake, and, whereas food restriction may prime dopamine responses through insulin, HFD-induced insulin and leptin resistance may reduce NAc dopamine neurotransmission to alternately promote food seeking. A putative contributor to leptin and insulin resistance associated with diet-induced obesity is chronic inflammation triggered by saturated fats and rapid adipose tissue expansion\(^{58,104,105}\).

HFD and obesity drive inflammatory processes that modulate dopamine control of food intake

Adipose tissue expansion in obesity reduces blood flow to adipocytes to induce hypoxia and release of cytokines causing local and systemic inflammation\(^{104}\). Indeed, increased expression of inflammatory genes triggered by hypoxia-inducible factor 1α were found in the adipose tissue of insulin-resistant individuals with obesity\(^{109}\). Further, obesity and HFD intake both stimulated cytokine release from peripheral and central immune cells\(^{106–108}\). Saturated fatty acids promote inflammation directly by promoting lipopolysaccharide (LPS) absorption\(^{109}\) and activating macrophages, microglia and astrocytes similarly to LPS by binding to toll-like receptor-4 (TLR4) and binding partners cluster of differentiation 14 and myeloid differentiation factor-2 (MD-2) to prompt receptor
internalisation58,59,108,110. Toll-like immune receptors recognize pathogens, trigger nuclear factor-kappa B (NF-κB) signalling, and promote cytokine release58,111. Macrophages exposed to saturated fatty acids showed direct binding to MD-2 and TLR4, increased NF-κB and MAPK signalling, and interleukin-6 (IL-6) and tumour necrosis factor-α (TNFα) release119. Additionally, TNFα dampened the insulin signal via serine phosphorylation of insulin receptor substrate 1 in adipocytes112 whereas loss-of-function mutations in TNFα and TNFα receptors prevented HFD-induced insulin resistance113. Similarly, TLR4 gene mutation protected against HFD-induced obesity and promoted insulin signalling105. Insulin resistance due to inflammation is one key mediator of HFD-induced alterations to dopamine.

Inflammatory cytokines decrease dopamine packaging and signal transduction via reduced function and expression of vesicular monoamine transporter 2 and D2R but increase function or expression of DAT, which alters dopamine reuptake174. Additionally, inflammatory cytokines and reactive oxygen species reduced availability of the cofactor tetrahydrobiopterin required by TH for dopamine synthesis112. Further, systemic administration of proinflammatory cytokines IL-6 and IL-2 decreased NAc extracellular dopamine, though IL-1β had no effects110. Inflammatory processes may lower synaptic dopamine and alter feeding behaviours. Indeed, TLR4 knockout (KO) mice exhibited reduced preference for fat and sugar and attenuated WD-induced food intake, weight gain and palatable food preference117. Additionally, saturated HFD but not mono-unsaturated fat increased anxiety and depressive behaviour in conjunction with increased plasma cytokines and NAc cytokine and NF-κB transcriptional activity associated with heightened expression of microglial and astrocytic markers118. Further, intake of a free-choice cafeteria diet altered morphology of NAc MSNs and increased proinflammatory cytokine expression related to microglial activation, whereas microglial inhibition restored these effects and prevented diet-induced intake and weight gain119. Together, saturated fat and obesity may promote inflammation and insulin resistance that decrease dopamine synthesis, vesicular packaging, and capacity for dopamine release and reuptake. However, we posit that HFD-induced neuroinflammation uniquely promotes insulin resistance within the NAc as a primary driver of reduced reward value that promotes overconsumption of palatable foods, but a major gap involves lack of pharmacological investigation assessing interactions between insulin, LPS, inflammatory cytokines and microglial activation on behaviour and presynaptic dopamine neurotransmission in the NAc after chronic HFD intake during obesity.

Neuroinflammation interacts with stress to modulate dopamine and food intake

Stress encompasses a variety of homeostatic disruptions which may be acute or chronic and physiological or psychological in nature. Food intake and body weight can change in response to stress depending on the type, intensity and duration of the stresor and activation of specific stress circuits. As discussed above, the physiological stress of diet-induced inflammation alters dopamine signalling in the NAc. Likewise, psychological stress related to substance use disorders120 and diet-induced118,121 anxiety have been linked to disruptions in dopamine homeostasis. This next section highlights how acute or chronic stress responses alter food intake, discussing the impacts of dietary fat and induction of inflammation on these processes.

Acute stress: role of HPA, CRF and inflammation on food intake

Acute stress encompasses a huge variety of physiological and psychological triggers that activate the hypothalamic–pituitary–adrenal (HPA) stress axis in a coordinated effort with metabolic, immune, autonomic nervous, and digestive systems to increase breathing and heart rate but slow digestion in preparation for ‘fight or flight’ response122,123. Various stressors induce the hypothalamic paraventricular nucleus (PVN) to release corticotrophin-releasing factor (CRF), stimulating the pituitary gland to release adrenocorticotropic (ACTH) that targets adrenal glands to release glucocorticoids (corticosterone in rodents) and promote stress responses124. The hypothalamus also activates sympathetic neurons in response to stress that induce adrenal release of epinephrine and NPY to mobilise nutrients via glycogenolysis and gluconeogenesis124. In this context, CRF acutely produces anorexia and weight loss that may last several days124. Indeed, either a single exposure to LPS or acute immobilisation stress reduced food intake and body weight that persisted for over a week125. Human studies support this construct, as the most stressful event of each day increased the likelihood of eating less126, which was mediated by delayed digestive processes induced by acute stress127. Acute stress in healthy adults lacking comorbidities and stressors related to obesity appear to slow digestion and reduce food intake. However, induction of inflammation during saturated HFD consumption could interact with classical stress systems to promote effects of stress on reward pathways. For example, intraperitoneal LPS injection increased plasma ACTH and corticosterone and hypothalamic/pituitary proinflammatory cytokines in CRF KO and wild-type mice128. Reciprocally, CRF promoted cortical microglial proliferation and dose-dependently increased TNFα release mediated by phosphorylation of MAPK intracellular signalling proteins shared by TLR4 activation129. Therefore, HPA axis and proinflammatory molecules engage in intracellular crosstalk and can independently promote stress. Acutely, stress mobilises nutrients and dampens food intake, but these behavioural effects might be altered during up-regulated inflammatory signalling. Overall, effects of HFD intake on the interactions between inflammatory and stress systems in the NAc have not been tested to determine effects on dopamine or behaviour during obesity or diet-related stressors (Fig. 2).

The immediate effects of acute stress are contextual and influenced by environmental factors. Interestingly, NAc dopamine release was increased during cues predicting foot shock, decreased during foot shock, then stimulated after lever pressing to stop the shock130,131. This shows NAc dopamine neurotransmission is involved in learning behaviours to avoid negative stimuli. Stress may directly induce dopamine activity, as CRF dose-dependently increased VTA dopamine neuron release.
firing which was abolished by antagonising CRF receptor α_{132}, and CRF may activate both VTA GABA and dopamine neurons133. However, pharmacological activation of the HPA axis increased progressive ratio response in HFD but not chow-fed groups, which was reversed by antagonising CRF receptor α_{134}. Importantly, acute stress does not occur in isolation, and up-regulation of inflammatory signalling by HFD consumption could alter effects of acute stress. For example, LPS application 24 h after acute, inescapable tail shock promoted hippocampal NF-κB, TNFα, IL-6 and IL-1β gene expression, corticosterone, and microglial NF-κB and IL-1β responsiveness that was fully attenuated when TLR2, TLR4135 and glucocorticoid receptors136 were blocked during stress, and this stress-induced priming of neuroinflammation was mediated by transition of microglia, but not astrocytes, from a quiescent to an active state137. There are also sex effects within stress-induced priming of inflammatory microglial activation. The same stress paradigm similarly primed central proinflammatory cytokines, reduced anti-inflammatory pathways, and acutely reduced sucrose intake in males and females138. However, LPS 24 h after tail shock or glucocorticoid injection induced peripheral proinflammatory cytokines and reduced central glucocorticoid receptors in females but induced microglial IL-6 and IL-1β mRNA expression specifically in males139. Overall, specific effects of acute stress on food intake depend on prior exposure to a stressor and complex peripheral and central inflammatory signalling, suggesting those with chronic, diet-induced elevated proinflammatory states might be primed to be more reactive and have alternate behavioural responses to chronic stress, though further study is required explore this interaction in dopaminergic centres that influence food intake, like the NAc.

Chronic stress and food intake

Chronic, repeated stressors may affect food intake and body weight differently than acute stress, particularly in an obesogenic state which may promote socio-behavioural and physiological stressors. Effects of stress on hypothalamic nuclei may override homeostatic feeding. For example, inescapable foot shock engaged the HPA axis in addition to increased NPY but decreased AGRP expression, and α-melanocyte stimulating hormone released by ARC POMC/CART neurons increased stress-induced HPA activation139. Furthermore, associating a place or flavour with NPY/AGRP neuron activation reduced preference for that place or food140, and AGRP neuron activity was reduced due to food cues140 and initiation of feeding141. Therefore, negative valence associated with firing of AGRP neurons may provide motivation to perform behaviours that induce positive valence like eating which could provide a stress alleviating effect. This is important given obesity-prone rats fed HFD for 6 weeks had greater HPA axis activity with greater central CRF concentrations and plasma corticosterone than chow counterparts132. Therefore, the transition in stress response that occurs over repeated stress exposures could be exacerbated by diet-induced obesity and greater stress reactivity. Acute restraint decreased ARC AGRP expression142 but increased hypothalamic POMC expression in conjunction with reduced food intake144.

Fig. 2. Effect of acute stress on dopamine neurotransmission and palatable food intake: acute exposures to stress engage the PVN and promote sympathetic and HPA axis activation leading to direct engagement of dopamine pathways. Downstream, glucocorticoid response and promotion of anorectic versus orexigenic neuropeptides inhibit food intake. However, acute stress associated with short-term removal of HFD activates stress systems that may persist for extended periods to promote seeking and intake of palatable foods. Further, activation of stress systems may reduce chow intake but promote consumption of palatable foods that acutely activate NAc dopamine neurotransmission and provide an alternate ‘avoidance or escape’ behaviour.

ACTH, adrenocorticotropic; CORT, corticosterone/cortisol; CRF, corticotrophin-releasing factor; NPY, neuropeptide Y; POMC, pro-opiomelanocortin; AGRP, agouti-related peptide; HPA, hypothalamic–pituitary–adrenal; KOR, κ-opioid receptor; Δ, change.

Acute Stress

- **Blood & Hypothalamus**
 - \uparrow Plasma ACTH & CORT 139,144
 - \uparrow Hypothalamic CRF, NPY, & POMC 139,143,144
 - \uparrow AGRP activity & expression 139,143,144
 - CRF and NPY Δ VTA & NAc GABA
 - \uparrow VTA dopamine neuron firing 132,133

- **Mesolimbic Dopamine**
 - \uparrow NAc dopamine contributes to anticipation and processing during stressful events 131

- **Effect of Palatable Food**
 - Type of access (Intermittent vs. ad libitum) & length of palatable food exposure Δ the HPA axis and dopaminergic response to acute stress 132,133

- **Behavioural Outcomes**
 - Acute stress related to replacement of a preferred food (swapping a HFD with standard chow)
 - \uparrow HPA axis and KOR activation which promotes palatable food seeking and consumption 45,181,185
Conversely, chronic restraint increased LH AGRP and decreased ARC melanocortin 4 receptor that responds to POMC. This showed unique activation of hypothalamic anorectic versus orexigenic signalling, respectively, in response to acute versus chronic stress. Diet-induced inflammation may mediate these effects, as acute lipid infusion or palmitate exposure in AGRP/NPY neurons increased TNFα, proinflammatory cytokines and NPY expression. Conversely, 8-week HFD consumption reduced TNFα and AGRP expression while 20-week consumption promoted TNFα in NPY and AGRP neurons. This suggests palatable foods acutely induce hypothalamic inflammation in regions that innervate the NAc followed by up-regulation of protective mechanisms which are eventually overcome with extended HFD intake, and dietary responses to chronic stress likely depend on inflammatory status related to food composition and availability associated with responsibility of NPY/AGRP and POMC/CART neurons and NAc dopamine cue learning.

Extended glucocorticoid responses may shift stress reactivity and impact hormonal regulation of energy stores. Glucocorticoids act to mobilise nutrients via gluconeogenesis and adipose tissue lipolysis during stress. However, these effects over an extended period could lead to hyperinsulinaemia, hyperleptinemia, and insulin and leptin resistance. Indeed, 7 d of artificial glucocorticoid administration in healthy women increased food intake, plasma insulin and plasma leptin, while exercise decreased cortisol response to stress (i.e. cortisol reactivity) accompanied by reduced disordered eating. Maniam and Morris proposed glucocorticoid-induced stimulation of the dopamine system provides motivation to resolve stressful situations which may be ‘hijacked’ into motivation to obtain palatable foods. For example, in samples of women, presence of obesity increased cortisol reactivity which was associated with increased calorie consumption. Downstream, glucocorticoids promote feeding by negatively regulating CRF and activating orexigenic NPY neurons that are inhibited by insulin and leptin and interconnected with the LH, NAc and VTA. Therefore, during diet-induced obesity, chronic stress promotes glucocorticoid-induced activation of feeding centres and removes the stop signal from hypothalamus to VTA to promote dopamine-motivated feeding. It is important to note that glucocorticoids are involved in normal feeding responses, as restoring corticosterone to adrenalectomised rats increased saccharin intake and sucrose intake to control levels. On the other hand, access to lard blunted corticosterone response during restraint stress. Therefore, diet interacts with glucocorticoids to modulate stress-induced feeding. Indeed, mice exposed to chronic social stress after 12 weeks on a HFD showed improved weight loss, reduced plasma insulin and leptin, and dampened anxiodepressive behaviours versus stressed controls or non-stressed HFD groups, suggesting a potentially stress-alleviating effect of palatable food intake. Overall, diet-induced obesity produces neurochemical shifts and maladaptive stress responses, but an opportunity for future investigation lies in whether HPA axis and κ-opioid receptor stress responses drive food intake for obese individuals during the chronic diet-related stress of restricting calories for weight loss.

Effects of a HFD on κ-opioid-receptor-mediated stress, dopamine, and food intake

The HPA axis interacts with κ-opioid receptors (KORs) to gate NAc dopamine signalling. Indeed, expression of CRF, ACTH and glucocorticoids systemically and centrally are co-regulated with dynorphin, a ligand for KORs, and its precursor prodynorphin with ligands in either system inducing expression and release reciprocally to promote stress responses. KORs are G-protein-coupled receptors that inhibit adenylyl cyclase and cAMP activity and are co-expressed within NAc DAT-expressing neurons. Blocking NAc KORs inhibited dopamine reuptake and increased extracellular dopamine, while KOR activation increased reuptake to limit extracellular dopamine. KORs are present within NAc presynaptic dopamine terminals, MSNs, and GABAergic and cholinergic interneurons and reduce extracellular dopamine to promote feeding cessation. However, ventricular KOR agonism promoted HFD intake during satiation, whereas KOR antagonism in a fasted state reduced HFD intake, and systemic KOR agonism reduced NAc core phasic dopamine release parallel to reduced motivation to obtain sucrose. This suggests KORs control extracellular dopamine to alter rewarding effects of food. In the NAc, KOR activation during nicotine exposure decreased basal and evoked dopamine, while KOR antagonism attenuated alcohol self-administration during withdrawal. Furthermore, acute stress promoted TNFα in the amygdala, and amygdalar TNFα potentiated anxiety during withdrawal that was blocked by CRF antagonism. Therefore, HPA axis, KOR and inflammatory systems interact to induce dysphoria and relapse during withdrawal, and up-regulation of these symptoms during diet-induced obesity could promote food cravings when energy is restricted for weight loss.

Neuroinflammation interacts with stress and reward systems. Indeed, exposing women to stress induced plasma IL-6 concentrations that correlated with reduced NAc dopamine activation during an fMRI reward learning task. Further, chronic intake of saturated HFD versus low fat or intermittent monounsaturated fat increased anxiodepressive behaviours, plasma corticosterone, and hypothalamic and NAc inflammatory cytokine and TLR4 expression. Conversely, prodynorphin overexpression promoted anti-inflammatory M2 versus M1 phenotype of hippocampal microglia and inhibited LPS-induced TLR4 activation of NF-κB to promote IL-4 and IL-10 but inhibit IL-1β and IL-6 release. Reciprocally, intraplantar injection of IL-1β increased KOR mRNA expression in basal root ganglia neurons. However, dynorphin, enkephalin and KOR expression in the NAc were not affected by WD intake or 18-d replacement with chow or 18 d of ad libitum or intermittent access to a HFD. Therefore, while HFD intake itself does not appear to alter dynorphin/KOR expression, it appears that KORs dampen proinflammatory responses induced by saturated fat and could engage in intracellular crosstalk with inflammatory molecules similarly to the HPA axis. Human neuroimaging studies linked a dopaminergic response to the consumption of palatable food, palatable food cues or smelling food odours with increased reports of...
pleasure, and wanting of food. Therefore, changing a lifetime of food preferences by restricting energy intake to lose weight may be particularly stressful and activate stress pathways that dampen dopamine signalling.

In support of KOR system involvement during palatable food restriction, pair feeding of WD to chow intake levels in controls reduced NAc KOR expression in absence of obesity, but 18 d of WD replacement with chow did not alter KOR expression. Therefore, it is possible that differences in KOR expression become neutralised over 18 d of diet replacement or by diet-induced weight gain, or that specifically KOR function could be up-regulated. HFD intake alters food preferences, as replacement of a WD or HFD with chow persistently reduced food intake and acutely increased plasma corticosterone and anxiety-like behaviour. Further, whereas HFD intake promoted sucrose anhedonia, palatable food removal increased preference for sucrose and motivation to obtain sucrose and fat that occurred as soon as 3 d after diet removal but persisted for several weeks. This indicates prolonged enhancement of salience for palatable food when a preferred diet is not available, and it is possible that KORs, which contribute to the rewarding properties of food, promote this effect. Further, HFD intake started at parturition reduced VTA TH and NAc D1R and D2R expression in male and female mice, but 4 weeks of HFD replacement exacerbated this reduction in the VTA of females and NAc of males but oppositely restored these effects in the VTA of males and NAc of females. However, when HFD is introduced in adolescence, HFD replacement does not recover D2R expression in females with strong promotion of palatable food intake, though effects were attenuated during adult-onset HFD. This suggests prolonged effects of a HFD on dopamine synthesis and signalling in the VTA alter the capacity for neurotransmission in the NAc. Changes in NAc neurotransmission occur via alterations to D1Rs and D2Rs resulting in increased salience of palatable foods when they are no longer available. These effects were significantly mediated by sex and age of palatable food introduction with high vulnerability during adolescence. Overall, individuals with clinical obesity or that persistently consume a HFD may be poorly adapted to control palatable food cravings during energy restriction owing to diet-induced or psychological stress that engages the HPA or KOR systems.

Conclusions

NAc dopamine neurotransmission is affected by physiological state and access to highly palatable foods that promote obesity, inflammation and hormonal resistance. Chronic engagement of the HPA axis and KOR stress systems by repeated exposures to daily life stressors interact with the inflammatory and hormonal systems disrupted during obesity. Ultimately, palatable food intake acutely increases dopamine release and reuptake, but extended HFD intake reduces the capacity for dopamine neurotransmission. These trends are related to the physiological...
consequences of obesity that together promote the vulnerability to overeat in order to promote synaptic dopamine to combat obesity-related dysphoria and reduction of dopamine tone. The effect of dietary fat on dopamine’s influence overeating could be exacerbated by stress due to dietary restriction or removal of preferred foods. However, pharmacologically targeting receptors that mediate stress in the brain, like KORs, or controlling diet-induced inflammation that engages in crosstalk with KOR system-mediated stress may improve the success of weight loss interventions by attenuating the impact of stress on the dopamine system. Moreover, the dampening of dopamine neurotransmission by long-term consumption of a HFD, specifically high in saturated fat, could be potentiated by inflammation acting on dopamine neurons, which could heighten stress responses that further attenuate dopamine signalling. The result could be an increase in palatable food seeking and consumption to curb potential negative affect with an acute but transient increase in dopamnergic signalling.

Acknowledgements
This publication was supported by the National Institute of Diabetes and Digestive.

Financial Support
Kidney Diseases of the National Institutes of Health under Award Number R15DK119897. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Conflict of Interest
The authors declare no conflict of interest.

Authorship
C.W.W. and S.C.F. conceptualised the review, C.W.W. wrote the review, and S.C.F. provided guidance on content and organisation.

References
1. Hales CM, Carroll MD, Fryar CD & Ogden CL (2020) Prevalence of obesity and severe obesity among adults: United States, 2017–2018. NCHS Data Brief 360. https://www.cdc.gov/nchs/products/databriefs/db360.htm
2. Ferrario CR, Labouebe G, Liu S, et al. (2016) Homeostasis meets motivation in the battle to control food intake. J Neurosci 36, 11469–11481. doi: 10.1523/JNEUROSCI.2338-16.2016
3. Matikainen-Ankney BA & Kravitz AV (2018) Persistent effects of obesity: a neuroplasticity hypothesis. Ann N Y Acad Sci 1428, 1–19. doi: 10.1111/nyas.13665
4. Day JJ & Carelli RM (2007) The nucleus accumbens and Pavlovian reward learning. Neuroscientist 13, 148–159. doi: 10.1177/1073858406295954
5. Mccutcheon JE, Beeler JA & Roitman MF (2012) Sucrose-predictive cues evoke greater phasic dopamine release than saccharin-predictive cues. Synapse 66, 346–351. doi: 10.1002/syn.21519
6. Liang N-C, Hajnal A & Norgren R (2006) Sham feeding corn oil increases accumbens dopamine in the rat. Am J Physiol Integr Comp Physiol 291, R1236–R1239. doi: 10.1152/ajpregu.00226.2006
7. Lee Y, Kroemer NB, Oehme L, Beuthien-Baumann B, Goschke T & Smolka MN (2018) Lower dopamine tone in the striatum is associated with higher body mass index. Eur Neuropsychopharmacol 28, 719–731. doi: 10.1016/j.euroneuro.2018.03.009
8. Sharma S, Fernandes MF & Fulton S (2013) Adaptations in brain reward circuitry underlie palatable food cravings and anxiety induced by high-fat diet withdrawal. Int J Obes 37, 1183–1191. doi: 10.1038/ijo.2012.197
9. Sharma S & Fulton S (2013) Diet-induced obesity promotes depressive-like behaviour that is associated with neural adaptations in brain reward circuitry. Int J Obes 37, 382–389. doi: 10.1038/ijo.2012.48
10. Li Y, South T, Han M, Chen J, Wang R & Huang XF (2009) High-fat diet decreases tyrosine hydroxylase mRNA expression irrespective of obesity susceptibility in mice. Brain Res 1268, 181–189. doi: 10.1016/j.brainres.2009.02.075
11. Geiger BM, Halburcak M, Avena NM, Moyar MC, Hoebel BG & Pothen ES (2009) Deficits of mesolimbic dopamine neurotransmission in rat dietary obesity. Neuroscience 159, 1193–1199. doi: 10.1016/j.neuroscience.2009.02.007
12. Mikhailova MA, Bass CE, Grinevich VP, et al. (2016) Optogenetically-induced tonic dopamine release from VTA-nucleus accumbens projections inhibits reward consummatory behaviors. Neuroscience 333, 54–64. doi: 10.1016/j.neuroscience.2016.07.006
13. Avena NM, Rada P, Moise N & Hoebel BG (2005) Sucrose sham feeding on a binge schedule releases accumbens dopamine repeatedly and eliminates the acetylcholine satiety response. Neuroscience 139, 813–820. doi: 10.1016/j.neuroscience.2005.12.037
14. Rada P, Avena NM & Hoebel BG (2005) Daily binging on sugar repeatedly releases dopamine in the accumbens shell. Neuroscience 134, 737–744. doi: 10.1016/j.neuroscience.2005.04.043
15. Baik J-H (2013) Dopamine signaling in food addiction: role of dopamine D2 receptors. BMB Rep 46, 519–526. doi: 10.5483/BMB Rep.2013.46.11.207
16. Kemp JM & Powell T (1971) The structure of the caudate nucleus of the cat: light and electron microscopy. Philos Trans R Soc Lond B Biol Sci 262, 383–410.
17. Burke DA, Rotstein HG & Alvarez VA (2017) Striatal local circuitry: a new framework for lateral inhibition. J Neurosci 37, 1427–1437. doi: 10.1172/JCI88878
18. Jais A & Bruning JC (2017) Hypothalamic inflammation in obesity: a neuroplasticity hypothesis. J Clin Invest 127, 24–32. doi: 10.1172/JCI88878
19. O’Connor BC, Kremer Y, Lefort S, et al. (2015) Accumal D1R neurons projecting to lateral hypothalamus authorize feeding. Neuron 88, 553–564. doi: 10.1016/j.neuron.2015.09.038
20. Steiner H & Tseng KY, eds (2016) The Handbook of Basal Ganglia Structure and Function. Second. Cambridge, MA: Academic Press, 2016.
21. Beaulieu J-M & Gainetdinov RR (2011) The physiology, signal-transduction, and pharmacology of dopamine receptors. Pharmacol Rev 63, 182–217. doi: 10.1124/pr.110.002642
22. Richfield UK, Penney JB & Young AB (1989) Anatomical and affinity state comparisons between dopamine D1 and D2 receptors in the rat central nervous system. Neuroscience 30, 767–777. doi: 10.1016/0306-4522(89)90168-1
23. Surmeier DJ, Ding J, Day M, Wang Z & Shen W (2007) D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci 30, 228–235. doi: 10.1016/j.tins.2007.03.008

24. Gantz SC, Ford CP, Morikawa H & Williams JT (2018) The evolving understanding of dopamine neurons in the substantia nigra and ventral tegmental area. Annu Rev Physiol 80, 219–241. doi: 10.1146/annurev-physiol-021317-121615

25. Volkow ND & Morales M (2015) The brain on drugs: from reward to addiction. Cell 162, 712–725. doi: 10.1016/j.cell.2015.07.046

26. Bailey MR, Simpson EH & Balsam PD (2016) Neural substrates underlying effort, time, and risk-based decision making in motivated behavior. Neurobiol Learn Mem 133, 233–256. doi: 10.1016/j.nlm.2016.07.015

27. McCullough LD & Salamone JD (1992) Involvement of nucleus accumbens dopamine in the motor activity induced by periodic food presentation: a microdialysis and behavioral study. Brain Res 592, 29–36. doi: 10.1016/0006-8993(92)91654-W

28. Aberman J & Salamone J (1999) Nucleus accumbens dopamine depletions make rats more sensitive to high ratio requirements but do not impair primary food reinforcement. Neuroscience 92, 545–552. doi: 10.1016/S0306-4522(99)00004-4

29. Eisenstein SA, Black KJ, Samara A, et al. (2020) Striatal dopamine responses to feeding are altered in people with obesity. Obesity 28, 765–771. doi: 10.1002/oby.22753

30. Small DM, Jones-Gotman M & Dagher A (2003) Feeding-induced dopamine release in dorsal striatum correlates with meal pleasantness ratings in healthy human volunteers. Neuroimage 19, 1709–1715. doi: 10.1016/S1053-8119(03)00253-2

31. Thanarajah SE, Backes H, DiFeliceantonio AG, et al. (2019) Food intake recruits orosensory and post-ingestive dopaminergic circuits to affect eating desire in humans. ACS Chem Neurosci 10, e58251. doi: 10.1021/acschemneuro.9b00308

32. Wang Y, Qian Y, Fang Q, et al. (2017) Saturated palmitic acid induces myocardial inflammatory injuries through direct binding to TLR4 accessory protein MD2. Nat Commun 8, 1–14. doi: 10.1038/ncomms13997

33. Stouffer MA, Woods CA, Patel JC, et al. (2015) Insulin enhances striatal dopamine release by activating cholinergic interneurons and thereby signals reward. Nat Commun 6, 1–12. doi: 10.1038/ncomms9543

34. Matheny M, Shapiro A, Tümer N & Scarpace PJ (2011) Region-specific diet-induced and leptin-induced cellular leptin resistance includes the ventral tegmental area in rats. Neuropharmacology 60, 480–487. doi: 10.1016/j.neuropharm.2010.11.002

35. Wang Y, Qian Y, Fang Q, et al. (2017) Saturated palmitic acid induces myocardial inflammatory injuries through direct binding to TLR4 accessory protein MD2. Nat Commun 8, 1–14. doi: 10.1038/ncomms13997

36. Huang XF, Yu Y, Zavitsanou K, Han M & Storlien L (2007) Effects of diet and insulin on dopamine transporter kinetics in rodent brain slices. Eur J Neurosci 25, 794–804. doi: 10.1111/j.1460-9568.2007.05444.x

37. Wu X, Yu Y, Zavitsanou K, Han M & Storlien L (2007) Effects of diet and insulin on dopamine transporter kinetics in rodent brain slices. Eur J Neurosci 25, 794–804. doi: 10.1111/j.1460-9568.2007.05444.x

38. Wang Y, Qian Y, Fang Q, et al. (2017) Saturated palmitic acid induces myocardial inflammatory injuries through direct binding to TLR4 accessory protein MD2. Nat Commun 8, 1–14. doi: 10.1038/ncomms13997

39. Wang Y, Qian Y, Fang Q, et al. (2017) Saturated palmitic acid induces myocardial inflammatory injuries through direct binding to TLR4 accessory protein MD2. Nat Commun 8, 1–14. doi: 10.1038/ncomms13997

40. Stouffer MA, Woods CA, Patel JC, et al. (2015) Insulin enhances striatal dopamine release by activating cholinergic interneurons and thereby signals reward. Nat Commun 6, 1–12. doi: 10.1038/ncomms9543

41. Matheny M, Shapiro A, Tümer N & Scarpace PJ (2011) Region-specific diet-induced and leptin-induced cellular leptin resistance includes the ventral tegmental area in rats. Neuropharmacology 60, 480–487. doi: 10.1016/j.neuropharm.2010.11.002

42. Eniori PJ, Evans AE, Sinayah P, et al. (2007) Diet-induced obesity causes severe but reversible leptin resistance in susceptible melanocortin neurons. Cell Metab 15, 181–194. doi: 10.1016/j.cmet.2007.02.004

43. Patel JC, Stouffer MA, Mancini M, Nicholson C, Carr KD & Rice ME (2019) Interactions between insulin and diet on striatal dopamine uptake kinetics in rodent brain slices. Eur J Neurosci 49, 794–804. doi: 10.1111/ejn.15958

44. Buiningezel AW (2009) kappa-Opioid receptor signaling and brain reward function. Brain Res Rev 58, 127–146. doi: 10.1016/j.brainresrev.2009.09.008

45. Pickering C, Alsio J, Huntig AI, & Schioth HB (2009) Withdrawal from free-choice high-fat-high-sugar diet induces craving only in obesity-prone animals. Psychopharmacol (Berl) 204, 431–443. doi: 10.1007/s00213-009-1474-y

46. Rada P, Avena NM, Barson JR, Hoebel BG & Leibowitz SF (2012) A high-fat meal, or intraperitoneal administration of a fat emulsion, increases extracellular dopamine in the nucleus accumbens. Brain Sci 2, 242–253. doi: 10.3390/brainsci2020242

47. Hajnal A, Smith GP & Norgren R (2004) Oral sucrose stimulation increases accumbens dopamine in the rat. Am J Physiol Integr Comp Physiol 286, R31–R37. doi: 10.1152/ajpregu.00282.2003

48. Carlin J, Hill-Smith TE, Lucki I & Reyes TM (2013) Reversal of dopamine system dysfunction in response to high-fat diet. Obesity 21, 2513–2521. doi: 10.1002/oby.20374

49. Epstein LH, Jaroni JL, Paluch RA, et al. (2002) Dopamine transporter genotype as a risk factor for obesity in African-American smokers. Obes Res 10, 1232–1240. doi: 10.1038/oby.2002.168

50. Jones KT, Woods C, Zhen J, Antonio T, Carr KD & Reith MEA (2019) Effects of diet and insulin on dopamine transporter activity and expression in rat caudate-putamen, nucleus accumbens, and midbrain. J Neurochem 140, 728–740. doi: 10.1111/jnc.13930

51. Barnes CN, Wallace CW, Jacobowitz BS & Fordahl SC (2020) Reduced phasic dopamine release and slowed dopamine uptake occur in the nucleus accumbens after a diet high in saturated but not unsaturated fat. Nutr Neurosci 1–13. doi: 10.1080/1028415X.2019.1707421

52. Balik JH (2013) Dopamine Signaling in reward-related behaviors. Front Neural Circuits 7, 1–16. doi: 10.3389/fncir.2013.00152

53. Durst M, Koczol K, Balázs T, Eyer MD & Thööze Z (2019) Reward-representing D1-type neurons in the medial shell of the accumbens nucleus regulate palatable food intake. Int J Obes 45, 917–927. doi: 10.1038/s41366-018-0135-y

54. Thoeni S, Loureiro M, O’Connor E & Luscher C (2020) Depression of accumbal to lateral hypothalamic synapses gates overeating. Neuron 107, 1–15. doi: 10.1016/j.neuron.2020.03.029

55. Barlow RL, Gorges M, Wearn A, et al. (2018) Ventral striatal D2/3 receptor availability is associated with impulsive choice...
behavior as well as limbic corticostriatal connectivity. *Int J Neuropsychopharmacol* **21**, 705–715. doi: 10.1093/ijnppy030

56. Adams WK, Sussman JL, Kaur S, D’ouza AM, Kieffer TJ & Winstanley CA. Long-term, calorie-restricted intake of a high-fat diet in rats reduces impulse control and ventral striatal D2 receptor signalling – two markers of addiction vulnerability. *Eur J Neurosci* **42**, 3095–3104. doi: 10.1111/ejn.13117

57. Thanos P, Michailides M, Piyis Y, Wang G & Volkov N. Food restriction markedly increases dopamine D2 receptor (D2R) in a rat model of obesity as assessed with in-vivo muPET imaging ([11C] raclopride) and in-vitro ([3H] spiperone) autoradiography. *Synapse* **62**, 50–61. doi: 10.1002/syn.20468

58. Cook JB, Hendrickson LM, Garwood GM, Toungate KM, Nania C V & Morikawa H. Junk food diet-induced obesity increases D2 receptor autoinhibition in the ventral tegmental area and reduces ethanol drinking. *Plos One* **12**, 1–17. doi: 10.1371/journal.pone.0183685

59. Dang LC, Samazne-Larkin GR, Castrellon JJ, Perkins SF, Cowan RL & Zaid DH. Associations between dopamine D2 receptor availability and BMI depend on age. *Neuroimage* **138**, 176–183. doi: 10.1016/j.neuroimage.2016.05.044

60. Sulzer D, Cragg SJ & Rice ME. Striatal dopamine neurotransmission: regulation of release and uptake. *Basal Ganglia* **6**, 123–148. doi: 10.1002/bag.201602001

61. Kostillo P, Zhang Y-F, Threlfell S & Cragg SJ. Cortical control of striatal dopamine transmission via striatal cholinergic interneurons. *Cereb Cortex* **26**, 4160–4169. doi: 10.1093/cercor/bhw252

62. Zhang H & Sulzer D. Glutamate spillover in the striatum depresses dopaminergic transmission by activating Group I metabotropic glutamate receptors. *J Neurosci* **23**, 10585–10592. doi: 10.1523/neeurosci.23-33-10585.2003

63. Avshalumov M V, Patel JC & Rice ME (2008) AMPA receptor-dependent H2O2 generation in striatal medium spiny neurons but not dopamine axons: one source of a retrograde signal that can inhibit dopamine release. *JNeurophysiol* **100**, 1590–1601. doi: 10.1152/jn.90548.2008

64. Ech JA, Lamonte N, Christian G, Znamensky V, Ackerman TF & Bodnar RJ (2001) Excitatory amino acid receptor subtype agonists induce feeding in the nucleus accumbens shell in rats: opioid antagonist actions and interactions with μ-opioid agonists. *Brain Res* **921**, 86–97. doi: 10.1016/s0006-8993(01)03094-3

65. Maldonado-irizarry CS, Swanson CJ & Kelley AE (1995) Glutamate receptors in the nucleus accumbens shell control feeding behavior via the lateral hypothalamus. *J Neurosci* **15**, 6779–6788. doi: 10.1523/neeurosci.15-10-06779.1995

66. Fritz BM, Muñoz B, Yin F, Bauchle C & Atwood BK (2008) A high-fat, high-sugar ‘Western’ diet alters dorsal striatal glutamate, opioid, and dopamine transmission in mice. *Neuroscience* **372**, 1–15. doi: 10.1016/j.neuroscience.2017.12.036

67. Brown RM, Kuchich YM, Spencer S, et al. (2017) Addiction-like synaptic impairments in diet-induced obesity. *Biol Psychiatry* **81**, 797–806. doi: 10.1016/j.biopsych.2015.11.019

68. Camacho A, Montalvo-Martínez L, Cardenas-Perez RE, Fuentes-Mera L & Garza-ocáfas L (2017) Obesogenic diet intake during pregnancy programs aberrant synaptic plasticity and addiction-like behavior to a palatable food in offspring. *Behav Brain Res* **350**, 46–55. doi: 10.1016/j.bbr.2017.05.014

69. Brown MT, Tan KR, O’Connor EC, Nkonkonko I, Muller D & Lüscher C (2012) Ventral tegmental area GABA projections pause accumbal cholinergic interneurons to enhance associative learning. *Nature* **492**, 452–456. doi: 10.1038/nature11657

70. Mallet N, Schmidt R, Leventhal D, et al. (2016) Arky pallidal cells send a stop signal to striatum. *Neuron* **89**, 308–316. doi: 10.1016/j.neuron.2015.12.017

71. Lee AT, Vogt D, Rubenstein JL & Sohal VS (2014) A class of GABA-ergic neurons in the prefrontal cortex sends long-range projections to the nucleus accumbens and elicits acute avoidance behavior. *J Neurosci* **34**, 11519–11525. doi: 10.1523/JNEUROSCI.1157-14.2014

72. Smith JB, Khog JR, Ross DL, et al. (2016) Genetic-based dissection unveils the inputs and outputs of striatal patch and matrix compartments. *Neuron* **91**, 1089–1084. doi: 10.1016/j.neuron.2016.07.046

73. Smolders I, De Klippel N, Sarre S, Elbingh G & Michotte Y (1995) Tonic GABAergic modulation of striatal dopamine release studied by in vivo microdialysis in the freely moving rat. *Eur J Pharmacol* **284**, 83–91. doi: 10.1016/0014-2203(95)0069-V

74. Charara A, Heilman C, Levey AI & Smith Y (2000) Pre- and postsynaptic localization of GABA(B) receptors in the basal ganglia in monkeys. *Neuroscience* **95**, 127–140. doi: 10.1016/S0306-4522(99)00409-1

75. Kandov Y, Israel Y, Kest A, et al. (2006) GABA receptor subtype antagonists in the nucleus accumbens shell and ventral tegmental area differentially alter feeding responses induced by deprivation, glucoprivation and lipopropion in rats. *Brain Res* **1082**, 86–97. doi: 10.1016/j.brainsci.2006.01.112

76. Basso AM & Kelley AE (1999) Feeding induced by GABA(A) receptor stimulation within the nucleus accumbens shell: regional mapping and characterization of macronutrient and taste preference. *Behav Neurosci* **113**, 324–336. doi: 10.1037/0735-7044.113.2.324

77. Stratford TR & Kelley AE (1997) GABA in the nucleus accumbens shell participates in the central regulation of feeding behavior. *J Neurosci* **17**, 4434–4440. doi: 10.1523/neeurosci.17-11-0434.1997

78. Tsumekawa T, Banno R, Yaginuma H, et al. (2019) GABA(B) receptor signaling in the mesolimbic system suppresses binge-like consumption of a high-fat diet. *Science* **20**, 337–347. doi: 10.1016/j.jneurosci.2019.09.032

79. Butler MJ & Eckel LA (2018) Eating as a motivated behavior: modulatory effect of high fat diets on energy homeostasis, reward processing and neuroinflammation. *Integr Zool* **13**, 673–686. doi: 10.1111/1749-4877.12540

80. Morales M & Margolis EB (2017) Ventral tegmental area: cellular heterogeneity, connectivity and behaviour. *Nat Rev Neurosci* **18**, 73–85. doi: 10.1038/nrn.2016.165

81. Wickham R, Soelecki W, Rathbun L, McIntosh JM & Addy NA (2013) Ventral tegmental area αβ2 nicotinic acetylcholine receptors modulate phasic dopamine release in the nucleus accumbens core. *Psychopharmacology (Berlin)* **229**, 73–82. doi: 10.1007/s00213-013-3082-0

82. Gumbs MCR, Vuurenge AH, Egges L, et al. (2019) Afferent neuropeptide Y projections to the ventral tegmental area in normal-weight male Wistar rats. *J Comp Neurol* **527**, 2659–2674. doi: 10.1002/cne.24698

83. Naneix F, Tantot F, Glangetas C, et al. (2017) Impact of early consumption of high-fat diet on the mesolimbic dopaminergic system. *eNeuro* **4**, 1–12. doi: 10.1523/EJNEURO.0120-17.2017

84. Levitt M, Spector S, Sjoerdsma A & Udenfriend S (1964) Elucidation of the rate-limiting step in norepinephrine biosynthesis. *Eur J Pharmacol* **284**, 921–935. doi: 10.1016/0014-2203(99)0069-V

85. Soyama S, Mori M, Kanamaru S, et al. (2014) Obesity attenuates D2 autoreceptor-mediated inhibition of putative ventral tegmental area dopaminergic neurons. *Physiol Rep* **2**, 1–11. doi: 10.1111/phy2.12004
86. Koyama S, Kawaharada M, Terai H, et al. (2013) Obesity decreases excitability of putative ventral tegmental area GABAergic neurons. *Physiol Rep* 1, 1–12. doi: 10.1002/pr.2126

87. Figlewicz DP, Evans SB, Murphy J, Hoen M & Baskin DG (2003) Expression of receptors for insulin and leptin in the ventral tegmental area/substantia nigra (VTA/SN) of the rat. *Brain Res* 967, 104–115. doi: 10.1016/S0006-8993(02)04087-8

88. Fulton S, Pissios P, Manchon RP, et al. (2006) Leptin regulation of the mesoaccumbens dopamine pathway. *Neuron* 51, 811–822. doi: 10.1016/j.neuron.2006.09.006

89. Naef L, Seabrook L, Hsiao J, Li C & Borgland SL (2019) Insulin promotes dopamine transporter and tyrosine hydroxylase in the nucleus accumbens in vivo. *Eur J Neurosci* 50, 2146–2155. doi: 10.1111/ejn.14291

90. Mehel DM, Wong JCY, Dong YJ & Borgland SL (2012) Insulin in the ventral tegmental area reduces hedonic feeding and suppresses dopamine concentration via increased reuptake. *Eur J Neurosci* 36, 2336–2346. doi: 10.1111/j.1460-9568.2012.08168.x

91. Labouèbe G, Liu S, Dias C, et al. (2013) Insulin induces long-term depression of ventral tegmental area dopamine neurons via endocannabinoids. *Nat Neurosci* 16, 300–308. doi: 10.1038/nn.3321

92. Liu S, Labouèbe G, Karunanakaran S, Clee SM & Borgland SL (2013) Effect of insulin on excitatory synaptic transmission onto dopamine neurons of the ventral tegmental area in a mouse model of hyperinsulinemia. *Nutr Diabetes* 3, e97. doi: 10.1038/nutdiab.2013.38

93. Bruijnzweel AW, Qi X & Corrie LW (2013) Anorexic effects of intra-VTA leptin are similar in low-fat and high-fat-fed obese rats but attenuated in a subgroup of high-fat-fed obese rats. *Pharmacol Biochem Behav* 103, 573–581. doi: 10.1016/j.pbb.2012.10.012

94. Opland D, Sutton A, Woodworth H, et al. (2013) Loss of neuropeptide-receptor-1 disrupts the control of the mesolimbic dopamine system by leptin and promotes hedonic feeding and obesity. *Mol Metab* 2, 423–434. doi: 10.1016/j.molmet.2013.07.008

95. Leidma E, Gazea M, Patchev A V., et al. (2020) Blunted leptin sensitivity during hedonic overeating can be reestablished by activating galanin 2 receptors (Gal2R) in the lateral hypothalamus. *Acta Physiol* 228, 1–16. doi: 10.1111/apha.13345

96. Zeng Y, Zhang L & Hu Z (2016) Cerebral insulin, insulin signaling pathway, and brain angiogenesis. *Neural Sci* 37, 9–16. doi: 10.1007/s10072-015-2386-8

97. Mehran AE, Templeman NM, Brigidis GS, et al. (2012) Hyperinsulinemia drives diet-induced obesity independently of brain insulin production. *Cell Metab* 16, 723–737. doi: 10.1016/j.cmet.2012.10.019

98. Nash AI (2017) Crosstalk between insulin and dopamine signaling: a basis for the metabolic effects of antipsychotic drugs. *J Chem Neuroanat* 83–84, 59–68. doi: 10.1016/j.jchemneu.2016.07.010

99. Perry ML, Leinninger GM, Chen R, et al. (2010) Leptin promotes dopamine transporter and tyrosine hydroxylase activity in the nucleus accumbens of Sprague-Dawley rats. *J Neurochem* 114, 666–674. doi: 10.1111/j.1471-4159.2010.06757.x

100. Houseknecht KL & Spurlock ME (2003) Leptin regulation of lipid homeostasis: dietary and metabolic implications. *Nutr Res Rev* 16, 83. doi: 10.1079/nrr/200256

101. Banks WA, Kastin AJ, Huang W, Jaspan JB & Maness LM (1996) Leptin enters the brain by a saturable system independent of insulin. *Peptides* 17, 305–311. doi: 10.1016/0196-9781(96)00025-3

102. Hamilton B, Paglia D, Kwan A & Deitel M (1995) Increased obese m motorcycle expression in omental fat cells from massively obese humans. *Nat Med* 1, 953–956. doi: 10.1016/s0995-9553

103. Schwartz M, Peskind E, Raskind M, Boyko E & Porte D Jr (1996) Cerebrospinal fluid leptin levels: relationship to plasma levels and to adiposity in humans. *Nat Med* 2, 589–593. doi: 10.1038/nm956-589

104. Lee MJ, Wu Y & Fried SK (2010) Adipose tissue remodeling in pathophysiology of obesity. *Curr Opin Clin Nutr Metab Care* 13, 371–376. doi: 10.1097/MCO.0b013e32833aabef

105. Tsukumo D, Carvalhal-Filho M, Carvalheira J, et al. (2007) Loss-of-function mutation in toll-like receptor 4 prevents diet-induced obesity and insulin resistance. *Diabetes* 56, 1986–1998. doi:https://doi.org/10.2373/db06-1595

106. Lawler HM, Underkofler CM, Kern PA, Erickson C, Bredbeck B & Rasouli N (2016) Adipose tissue hypoxia, inflammation, and fibrosis in obese insulin-sensitive and obese insulin-resistant subjects. *J Clin Endocrinol Metab* 101, 1422–1428. doi: 10.1210/jc.2015-4125

107. Wu H, Liu Q, Kalavagunta PK, et al. (2017) Normal diet vs high fat diet—a comparative study: behavioral and neuroimmunological changes in adolescent male mice. *Metab Brain Dis* 1–14. doi: 10.1007/s11011-017-0140-z

108. Boura-Hulson S, Pecht T, Jung S & Radich A (2019) Obesity and dysregulated central and peripheral macrophage–neuron cross-talk. *Eur J Immunol* 49, 19–29. doi: 10.1002/eji.201747389

109. Fritsche K (2015) The science of fatty acids and inflammation. *Adv Nutr* 6, 2930–3108. doi: 10.3945/an.114.006940

110. Ciesielksa A & Kwiatkowska K (2015) Modification of pro-inflammatory signaling by dietary components: the plasma membrane as a target. *BioEssays* 37, 789–801. doi: 10.1002/bies.201500017

111. Kennedy A, Martinez K, Chung C-C, LaPoint K & McIntosh M (2018) Blunted leptin decreases excitability of putative ventral tegmental area reducing hedonic feeding and suppresses dopamine concentration via increased reuptake. *Eur J Neurosci* 50, 2146–2155. doi: 10.1111/ejn.14291

112. Hotamisligil G, Peraldi P, Budavari A, Ellis R, White M & Spiegelman B (1996) IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. *Science* (80-) 271, 665–668. doi: 10.1126/science.271.5249.665

113. Uysal K, Wiesbrock S, Marino M & Hotamisligil G (1997) Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. *Nature* 389, 610–614. doi: 10.1038/39335

114. Felger JC & Treadway MT (2017) Inflammation effects on motivation and motor activity: role of dopamine. *Neuropsychopharmacology* 42, 216–241. doi: 10.1038/npp.2016.143

115. Neurauter G, Schrocksnadel K, Scholl-Burgi S, et al. (2008) Chronic immune stimulation correlates with reduced phenylalanine turnover. *Curr Drug Metab* 9, 622–627. doi: 10.2174/13892008785821738

116. Song C, Merali Z & Anisman H (1999) Variations of nucleus accumbens dopamine and serotonin following systemic interleukin-1, interleukin-2 or interleukin-6 treatment. *Neuroscience* 88, 823–836. doi: 10.1016/s0306-4522(98)00271-1

117. Camandola S & Mattson MP (2017) Toll-like receptor 4 mediates fat, sugar, and umami taste preference and food intake and body weight regulation. *Obesity* 25, 1237–1245. doi: 10.1002/oby.21871

118. Décarie-Spain L, Sharma S, Hryhorczuk C, et al. (2018) Nucleus accumbens inflammation mediates anxiodepressive
behavior and compulsive sucrose seeking elicited by saturated dietary fat. *Mol Metab* 10, 1–13. doi: 10.1016/j.molmet.2018.01.018

119. Gutiérrez-Martos M, Girard B, Mendonça-Netto S, et al. (2017) Cafeteria diet induces neuroplastic modifications in the nucleus accumbens mediated by microglia activation. *Addict Biol* 23, 735–749. doi: 10.1111/adb.12541

120. Radke AK & Gewirtz JC (2012) Increased dopamine receptor activity in the nucleus accumbens shell ameliorates anxiety during drug withdrawal. *Neuropsychopharmacology* 37, 2405–2415. doi: 10.1038/npn.2012.97

121. Duthiel S, Ota KT, Wolleh ES, Rasmussen K & Duman RS (2016) High-fat diet induced anxiety and anhedonia: impact on brain homeostasis and inflammation. *Neuropsychopharmacology* 41, 1874–1887. doi: 10.1038/npn.2015.357

122. McEwen BS (2007) Physiology and neurobiology of stress and adaptation: central role of the brain. *Physiol Rev* 87, 873–904. doi: 10.1152/physrev.00041.2006

123. McEwen BS & Gianaros PJ (2010) Central role of the brain in stress and adaptation: links to socioeconomic status, health, and disease. *Ann N Y Acad Sci* 1186, 190–222. doi: 10.1111/j.1749-6632.2009.05531.x

124. Rabasa C & Dickson SL (2016) Impact of stress on metabolism and energy balance. *Curr Opin Behav Sci* 9, 71–77. doi: 10.1016/j.cobeha.2016.01.011

125. Valles A, Marti O, García A & Armario A (2000) Single exposure to stressors causes long-lasting, stress-dependent reduction of food intake in rats. *Am J Physiol Regul Integr Comp Physiol* 279, 1188–1194. doi: 10.1152/ajpregu.2000.279.3.r1138

126. Stone A & Brownell K (1994) The stress-eating paradox: multiple daily measurements in adult males and females. *Psychol Heal* 9, 425–436. doi: 10.1080/08870449408407469

127. Wing RR, Blair EH, Epstein LH & McDermott MD (1990) Psychological stress and glucose metabolism in obese and normal-weight subjects: a possible mechanism for differences in stress-induced depression. *Heat Physiol*. 693–700. doi: 10.1037/0728-0135.9.6.693

128. Kariagina A, Romanenko D, Ren SG & Chesnokova V (2004) Hypothalamic-pituitary-cytokine network. *Endocrinology* 145, 104–112. doi: 1210.cn.2003-0669

129. Wang W, Ji P & Dow KE (2003) Corticotropin-releasing hormone induces proliferation and TNF-α release in cultured rat microglia via MAP kinase signalling pathways. *J Neurochem* 84, 189–195. doi: 10.1046/j.1471-4159.2003.01544.x

130. Oleson EB, Gentry RN, Chioma VC & Cheer JF (2012) Subsecond dopamine release in the nucleus accumbens predicts conditioned punishment and its successful avoidance. *J Neurosci* 32, 14804–14808. doi: 10.1525/JNEUROSCI.3087-12.2012

131. Wenzel JM, Rauscher NA, Cheer JF & Oleson EB (2015) A role for phasic dopamine release within the nucleus accumbens in encoding aversion: a review of the neurochemical literature. *ACS Chem Neurosci* 6, 16–26. doi: 10.1021/cn500255p

132. Wanat MJ, Hopf FW, Stuber GD, Phillips PEM & Bonci A (2008) Corticotropin-releasing factor increases mouse ventral tegmental area dopamine neuron firing through a protein kinase C-dependent enhancement of Ih. *J Physiol* 586, 2157–2170. doi: 10.1111/j.physiol.2007.150078

133. Korotkova TM, Brown RE, Sergeeva OA, Ponomarenko AA & Haas HL (2006) Effects of arousal- and feeding-related neuropeptides on dopaminergic and GABAergic neurons in the ventral tegmental area of the rat. *Eur J Neurosci* 23, 2677–2685. doi: 10.1111/j.1460-9588.2006.04792.x

134. Liu X (2015) Enhanced motivation for food reward induced by stress and attenuation by corticotrophin-releasing factor receptor antagonism in rats: implications for overeating and obesity. *Psychopharmacology (Berl)* 232, 2049–2060. doi: 10.1007/s00213-014-3838-1

135. Weber MD, Frank MG, Sobesky JL, Watkins LR & Maier SF (2013) Blocking toll-like receptor 2 and 4 signaling during a stressor prevents stress-induced priming of neuroinflammatory responses to a subsequent immune challenge. *Brain Behav Immun* 32, 112–121. doi: 10.1016/j.bbi.2013.03.004

136. Frank MG, Thompson BM, Watkins LR & Maier SF (2012) Glucocorticoids mediate stress-induced priming of microglial pro-inflammatory responses. *Brain Behav Immun* 26, 337–345. doi: 10.1016/j.bbi.2011.10.005

137. Frank MG, Baratta M V., Sprunger DB, Watkins LR & Maier SF (2007) Microglia serve as a neuroimmune substrate for stress-induced potentiation of CNS pro-inflammatory cytokine responses. *Brain Behav Immun* 21, 47–59. doi: 10.1016/j.bbi.2006.03.005

138. Fonken LK, Frank MG, Gaudet AD, et al. (2018) Neuroinflammatory priming to stress is differentially regulated in male and female rats. *Brain Behav Immun* 70, 257–267. doi: 10.1016/j.bbi.2018.03.005

139. Haas HL (2006) Effects of arousal- and feeding-related neurochemicals on dopaminergic and GABAergic neurons in the tegmental area dopamine neuron firing through a protein kinase C-dependent enhancement of Ih. *J Physiol* 586, 2157–2170. doi: 10.1111/j.physiol.2007.150078

140. Betley JN, Xu S, Cao ZFH, et al. (2015) Neurons for hunger and thirst transmit a negative-valence teaching signal. *Nature* 521, 180–185. doi: 10.1038/nature14416

141. Mandelblat-Cerf Y, Ramesh RN, Burgess CR, et al. (2015) Arcuate hypothalamic AgRP and putative POMC neurons show opposite changes in spiking across multiple timescales. *eLife* 4, 1–25. doi: 10.7554/eLife.07122

142. Shin AC, Mohankumar SMJ, Sirtivcu MP, et al. (2010) Chronic exposure to a high-fat diet affects stress axis function differentially in diet-induced obese and diet-resistant rats. *Int J Obes* 34, 1218–1226. doi: 10.1038/ijo.2010.34

143. Chagra SL, Zavala JK, Hall MV. & Gosselink KL (2011) Acute and repeated restraint differentially activate orexigenic pathways in the rat hypothalamus. *Regul Pept* 167, 70–78. doi: 10.1016/j.regpep.2010.11.006

144. Calvez J, Fromentin G, Nadkarni N, et al. (2011) Inhibition of food intake induced by acute stress in rats is due to satiation effects. *Physiol Behav* 104, 675–683. doi: 10.1016/j.physbeh.2011.07.012

145. Dalvi PS, Chalmers JA, Luo V, et al. (2017) High fat induces acute and chronic inflammation in the hypothalamus: effect of high-fat diet, palmitate and TNF-α on appetite-regulating NPY neurons. *Int J Obes* 41, 149–158. doi: 10.1038/ijo.2016.183

146. Stumpo DJ & Kletzenf RB (1981) Glucosegenesis in rat liver parenchymal cells in primary culture: permissive effect of the glucocorticoids on glucagon stimulation of glucosegenesis. *J Cell Physiol* 107, 11–19. doi: 10.1002/jcp.1041070105

147. Gravholt CH, Dall R, Christiansen JS, Møller N & Schmitz O (2011) Glucocorticoid-induced potentiation of CNS pro-inflammatory cytokine responses. *Brain Behav Immun* 25, 425–431. doi: 10.1016/j.bbi.2011.04.009

148. Nicod N, Giusti V, Besse C & Tappy L (2003) Metabolic adaptations to dexamethasone-induced insulin resistance in healthy volunteers. *Obes Res* 11, 625–631. doi: 10.1038/oby.2003.90
149. Zakrzewska KE, Cusin I, Stricker-Krongrad A, et al. (1999) Induction of obesity and hyperleptinemia by central glucocorticoid infusion in the rat. Diabetes 48, 365–370. doi: 10.2377/diabetes.48.2.365

150. Giordano R, Marzotti S, Berardelli R, et al. (2012) BCII polymorphism of the glucocorticoid receptor gene is associated with increased obesity, impaired glucose metabolism and dyslipidaemia in patients with Addison’s disease. Clin Endocrinol (Oxf) 77, 863–870. doi: 10.1111/j.1365-2225.2012.0439.x

151. Uddén J, Björntorp P, Arner P, Barkeling B, Meurling L & Rössner S (2003) Effects of glucocorticoids on leptin levels and eating behaviour in women. J Intern Med 253, 225–231. doi: 10.1046/j.1365-2760.2003.01099.x

152. La Fleur SE, Houshyar H, Roy M & Dallman MF (2005) Choice
153. Bhatnagar S, Bell ME, Liang J, Soriano L, Nagy TR & Dallman
154. Epel E, Lapidus R, McEwen B & Brownell K (2001) Stress
155. Zakrzewska KE, Cusin I, Stricker-Krongrad A, et al.
156. Wittmann M, Schunk E, Rosskotthen I, et al. (2009) Prodynorphin-derived peptides are critical modulators of anxiety and regulate neurochemistry and corticosterone. Neuropsychopharmacology 34, 775–785. doi: 10.1038/npp.2008.142

157. Wittmann M, Schunk E, Rosskotthen I, et al. (2009) Prodynorphin-derived peptides are critical modulators of anxiety and regulate neurochemistry and corticosterone. Neuropsychopharmacology 34, 775–785. doi: 10.1038/npp.2008.142

158. Konkoy CS & Childers SR (1989) Dynorphin-selective inhibition of adenyl cyclase in guinea pig cerebellum membranes. Mol Pharmacol 36, 627–633.

159. Prather PL, McGinn TM, Claude PA, Liu-Chen LY, Loh HH & Law PY (1995) Properties of a κ-opioid receptor expressed in CHO cells: interaction with multiple G-proteins is not specific for any individual Gs subunit and is similar to that of other opioid receptors. Mol Brain Res 29, 356–346. doi: 10.1016/0169-328X(94)00286-F

160. Singhos AI, Charakin C, Colago EEO & Pickel VM (2001) Major coexpression of κ-opioid receptors and the dopamine transporter in ncell accumbens axonal profiles. Synapse 42, 185–192. doi: 10.1002/syn.10005

161. Zhu J & Reith MEA (2008) Role of dopamine transporter in the action of psychostimulants, nicotine, and other drugs of abuse. CNS Neurosci Drug Dev Targets 7, 393–409. doi: 10.2174/187152708786927787

162. Spanagel R, Herz A & Shippenberg TS (1990) The effects of opioid peptides on dopamine release in the nucleus accumbens: an in vivo microdialysis study. J Neurochem 55, 1734–1740. doi: 10.1111/j.1471-4159.1990.tb04963.x

163. Thompson AC, Zapata A, Justice JB, Vaughan RA, Sharpe LG & Shippenberg TS (2000) κ-Opioid receptor activation modulates dopamine uptake in the nucleus accumbens and opposes the effects of cocaine. J Neurosci 20, 9333–9340.

164. Karkhanis A, Holleran KM & Jones SR (2017) Dynorphin/ Kappa Opioid Receptor Signaling in Preclinical Models of Alcohol, Drug, and Food Addiction. Vol 136, 1st ed. Elsevier Inc. doi: 10.1016/bs.im.2017.08.001

165. Ookuma K, Barton C, York DA & Bray GA (1997) Effect of enterostatin and kappa-opioids on macronutrient selection and consumption. Peptides 18, 785–791. doi: 10.1016/S0196-9781(97)00029-6

166. Ehner SR, Roitman MF, Potter DN, Rachlin AB & Chartoff EH (2010) Depressive-like effects of the kappa opioid receptor agonist salmonin A are associated with decreased phasic dopamine release in the nucleus accumbens. Psychopharmacology (Berl) 210, 241–252. doi: 10.1007/s00213-010-1836-5

167. Tejeda HA, Natividad LA, Orfila JR, Torres OV & O’Dell LE (2012) Dysregulation of kappa-opioid receptor systems by chronic nicotine modulate the nicotine withdrawal syndrome in an age-dependent manner. Psychopharmacology (Berl) 224, 289–301. doi: 10.1007/s00213-012-2752-7

168. Del Pilar Escobar A, Cornejo FA, Andrés ME & Fuentealba JA (2011) Cytokine signals following acute stress in healthy female participants. J Neuroendocrinol 23, 347–357. doi: 10.1111/j.1365-2307.2011.02533.x

169. Smits JAJ (2016) Heated hatha yoga to target cortisol reactivity and eating behaviour in women. J Intern Med 280X(92)90205-P

170. Konno K, Kato H, Nakayama H, et al. (1994) Specificity for any individual G-proteins is not specific for any individual Gs subunit and is similar to that of other opioid receptors. Mol Brain Res 29, 356–346. doi: 10.1016/0169-328X(94)00286-F

171. Ookuma K, Barton C, York DA & Bray GA (1997) Effect of enterostatin and kappa-opioids on macronutrient selection and consumption. Peptides 18, 785–791. doi: 10.1016/S0196-9781(97)00029-6

172. Ebner SR, Roitman MF, Potter DN, Rachlin AB & Chartoff EH (2010) Depressive-like effects of the kappa opioid receptor agonist salmonin A are associated with decreased phasic dopamine release in the nucleus accumbens. Psychopharmacology (Berl) 210, 241–252. doi: 10.1007/s00213-010-1836-5

173. Tejeda HA, Natividad LA, Orfila JR, Torres OV & O’Dell LE (2012) Dysregulation of kappa-opioid receptor systems by chronic nicotine modulate the nicotine withdrawal syndrome in an age-dependent manner. Psychopharmacology (Berl) 224, 289–301. doi: 10.1007/s00213-012-2752-7

174. Nealey KA, Smith AW, Davis SM, Smith DG & Walker BM (2009) Induction of obesity and hyperleptinemia by central glucocorticoids: a genetically specific effect. J Neuroendocrinol 21, 257–265. doi: 10.1111/j.1365-2191.2009.01935.x

175. Law PY (1995) Properties of a specific for any individual Gs subunit and is similar to that of other opioid receptors. Mol Brain Res 29, 356–346. doi: 10.1016/0169-328X(94)00286-F

176. Wittmann M, Schunk E, Rosskotthen I, et al. (2009) Prodynorphin-derived peptides are critical modulators of anxiety and regulate neurochemistry and corticosterone. Neuropsychopharmacology 34, 775–785. doi: 10.1038/npp.2008.142

177. Treadway MT, Admon R, Arulpragasam AR, et al. (2017) Cytokine involvement in stress may depend on corticotrophin releasing factor to sensitize ethanol withdrawal anxiety. Brain Behav Immun 25(Suppl. 1), S146–S154. doi: 10.1016/j.bbi.2011.02.018

178. Treadway MT, Admon R, Arulpragasam AR, et al. (2017) Association between interleukin-6 and striatal prediction-error signals following acute stress in healthy female participants. Biol Psychiatry 82, 570–577. doi: 10.1016/j.biopsych.2017.02.1185

179. Prather PL, McGinn TM, Claude PA, Liu-Chen LY, Loh HH & Law PY (1995) Properties of a κ-opioid receptor expressed in CHO cells: interaction with multiple G-proteins is not specific for any individual Gs subunit and is similar to that of other opioid receptors. Mol Brain Res 29, 356–346. doi: 10.1016/0169-328X(94)00286-F

180. Spanagel R, Herz A & Shippenberg TS (1990) The effects of opioid peptides on dopamine release in the nucleus accumbens: an in vivo microdialysis study. J Neurochem 55, 1734–1740. doi: 10.1111/j.1471-4159.1990.tb04963.x
178. Aslani S, Vieira N, Marques F, Costa PS, Sousa N & Palha JA (2015) The effect of high-fat diet on rat’s mood, feeding behavior and response to stress. Transl Psychiatry 5, e684–688. doi: 10.1038/tp.2015.178

179. Liu L, Xu Y, Dai H, Tan S, Mao X & Chen Z (2020) Dynorphin activation of kappa opioid receptor promotes microglial polarization toward M2 phenotype via TLR4/NF-κB pathway. Cell Biosci 10, 1–12. doi: 10.1186/s13578-020-00387-2

180. Puehler W, Rittner HL, Mousa SA, Alsiö J, Olszewski PK, Norbäck AH, Liu L, Xu Y, Dai H, Tan S, Mao X & Chen Z (2020) Dynorphin decreases GABA concentration in the frontal cortex and hippocampus of rats. Biol Res 49, 1–6. doi: 10.1186/s40659-016-0075-6

181. Bake T, Baron J, Duncan JS, Morgan DGA & Mercer JG (2017) Removal of high-fat diet primes excitatory synapses for long-term depression in orexin neurons. J Physiol 596, 305–316. doi: 10.1113/JP275177

182. Linehan V, Fang LZ & Hirasawa M (2018) Short-term high-fat diet primes excitatory synapses for long-term depression in orexin neurons. J Physiol 596, 305–316. doi: 10.1113/JP275177

183. Foster MT, Warne JP, Ginsberg AB, Foster MT, Solomon MB, Huhman KL & Bartness TJ (2006) Palatable food primes excitatory synapses for long-term depression in orexin neurons. Neurosci 171, 779–787. doi: 10.1016/j.neuroscience.2010.09.046

184. Small DM, Zatorre R, Evans A & Jones-Gotman M (2001) Changes in brain activity related to eating chocolate: from pleasure to aversion. Brain 124, 1720–1733. doi: 10.1093/brain/124.9.1720

185. Ali EF, MacKay JC, Graitson S, et al. (2018) Palatable food dampens the long-term behavioral and endocrine effects of juvenile stressor exposure but may also provoke metabolic syndrome in rats. Front Behav Neurosci 12, 1–15. doi: 10.3389/fnbeh.2018.00216

186. van den Top M, Zhao FY, Viriyapong R, et al. (2017) The impact of ageing, fasting and high-fat diet on central and peripheral glucose tolerance and glucose-sensing neural networks in the arcuate nucleus. J Neuroendocrinol 29, 1–23. doi: 10.1111/jene.12528

187. Lee AK, Mojtahed-Jalberi M, Kyriakou T, et al. (2010) Effect of high-fat feeding on expression of genes controlling availability of dopamine in mouse hypothalamus. Nutrition 26, 411–422. doi: 10.1016/j.nut.2009.05.007

188. Foster MT, Warne JP, Ginsberg AB, et al. (2019) Palatable foods, stress, and energy stores sculpt corticotropin-releasing factor, adrenocorticotropic and corticosterone concentrations after restraint. Endocrinology 150, 2325–2333. doi: 10.1210/en.2008-1426

189. Tannenbaum BM, Brindley DN, Tannenbaum GS, Dallman MF, McArthur MD & Meaney MJ (1997) High-fat feeding alters both basal and stress-induced hypothalamic-pituitary-adrenal activity in the rat. Am J Physiol Endocrinol Metab 273, 1168–1177. doi: 10.1152/ajpendo.1997.273.6.e1168

190. Nobunaga M, Obukuro K, Kurauchi Y, et al. (2014) High fat diet induces specific pathological changes in hypothalamic orexin neurons in mice. Neurochem Int 78, 61–66. doi: 10.1016/j.neubiorev.2014.09.002

191. Vaessen T, Hernaas D, Myin-Gemeyrs I & van Amelsvoort T (2015) The dopaminergic response to acute stress in health and psychopathology: a systematic review. Neurosci Biobehav Rev 56, 241–251. doi: 10.1016/j.neubiorev.2015.07.008

192. Tannenbaum BM, Brindley DN, Tannenbaum GS, Dallman MF, McArthur MD & Meaney MJ (1997) High-fat feeding alters both basal and stress-induced hypothalamic-pituitary-adrenal activity in the rat. Am J Physiol Endocrinol Metab 273, 1168–1177. doi: 10.1152/ajpendo.1997.273.6.e1168

193. Foster MT, Warne JP, Ginsberg AB, et al. (2009) Palatable foods, stress, and energy stores sculpt corticotropin-releasing factor, adrenocorticotropic and corticosterone concentrations after restraint. Endocrinology 150, 2325-2333. doi: 10.1210/en.2008-1426

194. Foster MT, Solomon MB, Huhman KL & Bartness TJ (2006) Social defeat increases food intake, body mass, and adiposity in Syrian hamsters. Am J Physiol Regul Integr Comp Physiol 290, 1284–1293. doi: 10.1152/ajpregu.00437.2005

195. Ali EF, MacKay JC, Graffin S, et al. (2018) Palatable food dampens the long-term behavioral and endocrine effects of juvenile stressor exposure but may also provoke metabolic syndrome in rats. Front Behav Neurosci 12, 1–15. doi: 10.3389/fnbeh.2018.00216