R11. Challenges and future directions of potential natural products leads against 2019-nCoV outbreak

Meirambek Ospanov
University of Mississippi

Francisco León
University of South Carolina

Janar Jenis
Al-Farabi Kazakh National University, (Kazakhstan)

Ikhlas A. Khan
University of Mississippi

Mohamed A. Ibrahim
University of Mississippi, mmibrahi@olemiss.edu

Follow this and additional works at: https://egrove.olemiss.edu/pharm_annual_posters

Part of the Pharmacy and Pharmaceutical Sciences Commons

Recommended Citation

Ospanov, Meirambek; León, Francisco; Jenis, Janar; Khan, Ikhlas A.; and Ibrahim, Mohamed A., "R11. Challenges and future directions of potential natural products leads against 2019-nCoV outbreak" (2020). *Annual Poster Session*. 11.
https://egrove.olemiss.edu/pharm_annual_posters/11

This Book is brought to you for free and open access by the Pharmacy, School of at eGrove. It has been accepted for inclusion in Annual Poster Session by an authorized administrator of eGrove. For more information, please contact egrove@olemiss.edu.
Challenges and future directions of potential natural products leads against 2019-nCoV outbreak

Meirambek Ospanov1, Francisco Leo2, Janar Jenis2, Ikhlas A. Khan2, Mohamed A. Ibrahim1

1National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, USA
2Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA

The chemical structure of the bark of Alnus japonica exhibited biologically active compounds for combination therapy of COVID-19 infections. This short review rationalized different key natural products with known activity against coronaviruses as potential leads against COVID-19 [1].

Supported by the Kazakhstan Ministry of Education and Science, the Ministry of Science, Education, and Sport of the Republic of Croatia, and the National Science Foundation.

ABSTRACT

Chloroquine, the first small molecule Food and Drug Administration (FDA) approved to treat COVID-19, later revoked, was impeded and developed from quinine sharing the same quinoline core (Fig. 1). Quinine is the biosynthetic component, an old antimalarial agent, it was isolated from the bark of Cinchona officinalis and other related species of Montevideum. (Fig. 3) to have potent activity against human coronavirus OC43 infections [4].

Several alkaloids have shown antiviral activity, for example, Kim et al. 2019, showed that two-butyloxyquinolines alkaloids such as, tert-aramine (1), fhagminoline (2), and hydroxychloroquine (3) isolated from Styraxina serranella and other related species of Montevideum, (Fig. 3) to have potent activity against human coronavirus OC43 infections [4].

In 2005, Lin et al. studied phenolic compounds which were evaluated for their inhibitory effects on the SARS-CoV-2 NS3pro. Also, epigallocatechin (9) and hesperidin (10) dose-dependently inhibited cleavage activity of the 3Cpro in vitro vitro cell-free and cell-based assays, the IC50 values of 6.66 µM (9) and hesperidin (10) were 112 µM and 60 µM, respectively [5].

REFERENCES

1. M. Ospanov, et al. Challenges and future directions of potential natural products leads against 2019-nCoV outbreak. Current Plant Biology (2020). https://doi.org/10.1016/j.antiviral.2020.01.018
2. G. Li, E. De Clercq, Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat. Rev. Drug Discov 19 (2020) 149–158. https://doi.org/10.1038/s41573-020-0036-4
3. W. Yin, et al., Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by Remdesivir. Science 368 (6498) (2020) 1499–1504. https://doi.org/10.1126/science.abc5580
4. D.E. Kim, et al., Natural biologically active compounds from quinine isolated from the bark of Alnus japonica exhibited biologically active compounds for combination therapy of COVID-19 infections. This short review rationalized different key natural products with known activity against coronaviruses as potential leads against COVID-19 [1].

Approved small molecules in treat COVID-19

Chloroquine, the first small molecule Food and Drug Administration (FDA) approved to treat COVID-19, later revoked, was impeded and developed from quinine sharing the same quinoline core (Fig. 1). Quinine is the biosynthetic component, an old antimalarial agent, it was isolated from the bark of Cinchona officinalis and other related species of Montevideum. (Fig. 3) to have potent activity against human coronavirus OC43 infections [4].

Several alkaloids have shown antiviral activity, for example, Kim et al. 2019, showed that two-butyloxyquinolines alkaloids such as, tert-aramine (1), fhagminoline (2), and hydroxychloroquine (3) isolated from Styraxina serranella and other related species of Montevideum, (Fig. 3) to have potent activity against human coronavirus OC43 infections [4].

In 2005, Lin et al. studied phenolic compounds which were evaluated for their inhibitory effects on the SARS-CoV-2 NS3pro. Also, epigallocatechin (9) and hesperidin (10) dose-dependently inhibited cleavage activity of the 3Cpro in vitro vitro cell-free and cell-based assays, the IC50 values of 6.66 µM (9) and hesperidin (10) were 112 µM and 60 µM, respectively [5].

REFERENCES

1. M. Ospanov, et al. Challenges and future directions of potential natural products leads against 2019-nCoV outbreak. Current Plant Biology (2020). https://doi.org/10.1016/j.antiviral.2020.01.018
2. G. Li, E. De Clercq, Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat. Rev. Drug Discov 19 (2020) 149–158. https://doi.org/10.1038/s41573-020-0036-4
3. W. Yin, et al., Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by Remdesivir. Science 368 (6498) (2020) 1499–1504. https://doi.org/10.1126/science.abc5580
4. D.E. Kim, et al., Natural biologically active compounds from quinine isolated from the bark of Alnus japonica exhibited biologically active compounds for combination therapy of COVID-19 infections. This short review rationalized different key natural products with known activity against coronaviruses as potential leads against COVID-19 [1].

Approved small molecules in treat COVID-19

Chloroquine, the first small molecule Food and Drug Administration (FDA) approved to treat COVID-19, later revoked, was impeded and developed from quinine sharing the same quinoline core (Fig. 1). Quinine is the biosynthetic component, an old antimalarial agent, it was isolated from the bark of Cinchona officinalis and other related species of Montevideum. (Fig. 3) to have potent activity against human coronavirus OC43 infections [4].

Several alkaloids have shown antiviral activity, for example, Kim et al. 2019, showed that two-butyloxyquinolines alkaloids such as, tert-aramine (1), fhagminoline (2), and hydroxychloroquine (3) isolated from Styraxina serranella and other related species of Montevideum, (Fig. 3) to have potent activity against human coronavirus OC43 infections [4].

In 2005, Lin et al. studied phenolic compounds which were evaluated for their inhibitory effects on the SARS-CoV-2 NS3pro. Also, epigallocatechin (9) and hesperidin (10) dose-dependently inhibited cleavage activity of the 3Cpro in vitro vitro cell-free and cell-based assays, the IC50 values of 6.66 µM (9) and hesperidin (10) were 112 µM and 60 µM, respectively [5].