The glutathione S-transferases (GSTs) are a family of ubiquitously expressed polymorphic enzymes important for detoxifying endogenous and exogenous compounds. In addition to their classic activity of detoxification by conjugation of compounds with glutathione, many other functions are now found to be associated with GSTs. The associations between GST polymorphisms/functions and human disease susceptibility or treatment outcome, mostly in adults, have been extensively studied and reviewed. This mini review focuses on studies related to GST epidemiology and functions related to pediatric cancer. Opportunities to exploit GST in pediatric cancer therapy are also discussed.

Keywords: glutathione S-transferase, pediatric cancer, epidemiology, drug resistance, therapeutic target, microsatellite

GENERAL INFORMATION ON GLUTATHIONE S-TRANSFERASES

THE GST FAMILY

Glutathione S-transferase (GST) isozymes were originally discovered in rat liver cytosol during the early 1960s (Booth et al., 1961; Coombes and Stakelum, 1961). GSTs are drug-metabolizing enzymes that catalyze conjugation of glutathione with carcinogens, drugs, toxins, or products of oxidative stress. Two distinct superfamilies of GST isozymes exist (Table 1). One superfamily comprises cytosolic, soluble, dimeric enzymes. At present, eight distinct classes have been identified in this superfamily: alpha, kappa, mu, omega, pi, sigma, theta, and zeta. The other superfamily is composed of microsomal, membrane bound, trimERIC proteins. This family of proteins is also called MAPEG (membrane-associated proteins in eicosanoid and glutathione metabolism; Hayes and Strange, 2000). While GSTs are expressed in all tissues, specific isozyme distribution across different tissues in mammals is variable and complex (Hiley et al., 1989; Strange et al., 1989).

GST SUBSTRATES

Crystal structures have been determined for many soluble GSTs, often with bound substrates or products (Oakley, 2011). The “canonical fold” of a soluble GST subunit reveals an N-terminal a/b domain forming the GSH-binding site (G-site) and a second, a-helical domain forming most of the H-site that binds the electrophilic substrate (Figure 1). CDNB (1-chloro-2,4-dinitrobenzene) was initially adopted by biochemists as a “universal” GST substrate. However, it was soon realized that, although different transferases may exhibit overlapping substrate specificities, no common substrate exists that is metabolized by all GST isozymes (Table 1). Different amino acids in the substrate-binding site (H-site) of GST isozymes can account for substrate specificities. In view of the separate evolutionary histories of the cytosolic and MAPEG superfamilies, it is not surprising that they display marked differences in catalytic activities (Armstrong, 1997). Because its binding pocket for electrophiles is hydrophobic, Microsomal GST1 (MGST1) is uniquely suited among the GSTs to detoxify reactive intermediates of a more hydrophobic nature (Schaffert, 2011). The substrate specificity of individual GST isozymes suggests that each of them play a unique role in biotransformation of drugs. Genetic variations in these enzymes will therefore influence the response of individuals to environmental agents.

POLYMORPHISM AND EPIDEMIOLOGY

Genetic polymorphisms in the GST genes arise from nucleotide alterations that may change codons to generate unique alleles or even null genotypes. These amino acid substitutions cause steric changes in the substrate-binding site of the enzyme. As a consequence, the enzymatic activities of GST are significantly affected. Because different GST proteins differ in their ability to catalyze specific detoxification reactions, polymorphisms in GST will likely impact response to specific therapies. Many molecular epidemiological studies have tested associations between polymorphisms of GST genes and disease susceptibility. The results of such studies have often been conflicting. As a consequence, a number of meta-analyses have been carried out as part of the Human Genome Epidemiology (HuGE) Network, which provided evidence that GST polymorphisms can result in a small but significant increase in risk of some types of cancers or diseases (Hayes and Strange, 2000; Bolt and Their, 2006; Di Pietro et al., 2010; Economopoulos and Sergentanis, 2010; Josephy, 2010; McMahon et al., 2010). However, most meta-analyses suffered from a serious limitation: fail to distinguish between heterozygous and homozygous genotypes, which resulted in heterogeneity between studies. Now boundaries of the deletion polymorphisms have been cloned and analytical methods that assess copy number such as real-time PCR are now available (Timofeeva et al., 2009). These will be helpful in dissolving some of the heterogeneity observed in clinical evaluations.

FUNCTIONS OF GST

The classic activity of the GSTs is to detoxify reactive electrophiles by conjugation to glutathione (GSH), thereby reducing...
Table 1 | Human GSTs and their biochemical properties.

Super-family	Class	Chromosome	Gene	Protein	Substrate	Reference
Cytosolic	Alpha	6p12.2	GSTA 1	GSTA1-1	CDNB, NBD-CI, D5AD, PGE2, cholesterol a-oxide, dibenz[a,l]pyrene	Hayes and McLellan (1999), Dreij et al. (2002)
			GSTA 2	GSTA2-2	CDNB, NBD-CI, CuOOG, PGD2	Hayes and McLellan (1999)
			GSTA 3	GSTA3-3	Δ5AD, dibenz[a,l]pyrene	Johansson and Mannervik (2001), Dreij et al. (2002)
			GSTA 4	GSTA4-4	HNE, ETA	Hayes and McLellan (1999), Hubatsch et al. (1998), Balogh et al. (2011)
Cytosolic	Mu	1p13.3	GSTM1	GSTM1-1	CDNB, AFB1-epoxide, trans-4-phenyl-3-buten-2-one, tSO, adrenochrome, aflatoxin B1-8,9-epoxide	Hayes and McLellan (1999), Baez et al. (1997), Johnson et al. (1997)
			GSTM2	GSTM2-2	CDNB, DCNB, cyano DMNG, aminochrome, dopachrome, noradrenochrome	Hayes and McLellan (1999), Baez et al. (1997), Norrgard and Mannervik (2011)
			GSTM3	GSTM3-3	H2O2, PGH2	Hayes and McLellan (1999), Beuckmann et al. (2000)
			GSTM4	GSTM4-4	n.d.	Hayes and McLellan (1999), Berhane et al. (1994), Coles et al. (2000), Hu et al. (1997a,b,c), Hu et al. (2000), Tew et al. (2011)
			GSTM5	GSTM5-5	n.d.	Hayes and McLellan (1999), Tan et al. (1996)
Cytosolic	Pi	11q13	GSTP1	GSTP1-1	CDNB, acrolein, adenine propenal, thymine propenal, ETA, 4-vinylpyridine, BPDE, benzo(c)-phenanthrene, benzo(g)chrysene, BITC, actin, GSTP, peroxiredoxin VI	Hayes and McLellan (1999), Kanaoka et al. (1997)
Cytosolic	Sigma	4q22.3	GSTS1	GSTS1-1	PGH2	Huang et al. (1997), Sherratt et al. (1997)
Cytosolic	Theta	22q11.2	GSTT1	GSTT1-1	NBD-CI, CuOOG, acrylamide, glycidamide, EO, CAA, DCM, DBE, EPNP, MB	Tew et al. (2011)
Cytosolic	Zeta	14q24.3	GSTT2	GSTT2-2	CuOOG, 1-naphthyl sulfate	Hayes and McLellan (1999), Tan et al. (1996)
Cytosolic	Omega	10q24.3	GSTO1	GSTO1-1	DCA, fluorooctate, maleylacetoacetate	Tong et al. (1998a,b)
Mitochondria	Kappa	7q34-35	GSTK1	GSTK1-1	MMA, dehydroascorbate, HED, s-4-nitrophenacylglutathione	Tanaka-Kagawa et al. (2003), Board et al. (2000, 2008)
Microsomal	MAPEG	12p12.3	MGST1	MGST1-1	CDNB, NBD-CI, 4-nitrobenzyl chloride, Couth	Hayes and McLellan (1999)
			MGST2	MGST2-2	CDNB, 5-HPETE, LTA4	Hayes and McLellan (1999), Jakobsson et al. (1996)
			MGST3	MGST3-3	5-HPETE, LTA4	Jakobsson et al. (1997)
			LTC4S	LTC4S	LTA4	Jakobsson et al. (1996)
			FLAP	FLAP	Binds to AA and MK-886	Mancini et al. (1993), Mancini et al. (2001)

Modified from Hayes and Strange (2000). 5-HPETE, 5-hydroperoxyeicosatetraenoic acid; AA, arachidonic acid; BPDE, benzo(a)pyrene diol epoxide; BITC, benzyloxycyanate; CAA, chloroaacetaldelyde; CDNB, 1-chloro-2,4-dinitrobenzene; CuOOG, cumene hydroperoxide; DBE, dibromoethane; DCA, dichlroacetic acid; DCM, dichloromethane; DCNB, 1,2-dichloro-4-nitrobenzene; Δ5AD, delta(5)-androstene-3,17(20)-dione; EO, ethylene oxide; EPNP, 1,2-epoxy-3-(p-nitrophenoxy)propane; ETA, ethacrynic acid; HED, hydroxyethyl disulfide; HNE, 4-hydroxynonenal; LTA4, leukotriene A4; MB, methyl bromide; MMA, mono-methylarsonic acid; n.d., not determined; tSO, trans-stilbene oxide.

The likelihood of deleterious interactions between such reactive species and essential cellular components like proteins and nucleic acids. Knockout and transgenic mouse models were generated for many GST family members which helped to reveal the physiological function of GST isozymes (Elsby et al., 2003; Henderson and Wolf, 2011). Based on these and other model systems, many other activities are now associated with GSTs, including regulation of signaling pathways and anti-apoptotic activity by GSTP (Tew et al., 2011), anti- and pro-inflammatory functions of sigma-class GSTs (Flanagan and Smythe, 2011), activities of MGST1 related to mitochondria (Aniya and Imaizumi, 2011), regulation of the cardiac muscle ryanodine receptor (Dulhunty et al., 2011), and functions associated with asthma (Minelli et al., 2010).

GSTs and signaling pathway regulation

It is becoming apparent that GSTP family members participate in the maintenance of cellular redox homeostasis through a variety of mechanisms (Tew et al., 2011). GSTP1, for example, displays an anti-apoptotic activity based on protein–protein interactions with c-Jun N-terminal kinase (JNK; Adler et al., 1999; Figure 2).
GSTP1 was implicated in mediating S-glutathionylation of specific clusters of target proteins and in reactions that play a negative regulatory role in some kinase pathways through other protein–protein interactions. GSTP1 has also been implicated in regulating tumor necrosis factor-alpha (TNF-alpha) signaling primarily through a physical association with tumor necrosis factor receptor-associated factor 2 (TRAF2; Wu et al., 2006). In addition, physical interactions between the HPV16 E7 viral factor and GSTP1 were found to improve survival capabilities of host cells (Mileo et al., 2009). GSTA1 is also capable of suppressing JNK signaling caused by inflammatory cytokines or oxidative stress, likely because of the homology between GST A and P family members, (Romero et al., 2006). It was also reported that GSTM1 binds and inhibits the activity of Apoptosis Signaling Kinase-1 (ASK1; Cho et al., 2001). The GSTM1:ASK1 interaction dissociates under oxidative stress or heat shock, leading to activation of ASK1 and apoptosis (Dorion et al., 2002).

MGST1 and its dual function in mitochondria

Microsomal GST1 protects cells (and mitochondria) from oxidative stress by both conjugation and glutathione peroxidase functions (Johansson et al., 2010; Aniya and Imaizumi, 2011; Schaffert, 2011). MCF7 cells overexpressing MGST1 showed protection against agents that induce peroxidation. Mitochondria in these cells were shown to be protected from oxidative insult as measured by calcium loading capacity and respiration. MGST1 also induced cellular resistance against cisplatin in these cells (Johansson et al., 2010). In addition to these protective effects, MGST1 also has deleterious effects that contribute to oxidative stress-induced liver injury. Preliminary studies indicated that mitochondrial MGST1 was activated by reactive oxygen species (ROS). This activation led to its aggregation and induction of non-classical mitochondrial permeability transition (MPT). MPT induces mitochondrial dysfunction which results in apoptosis and necrosis. Therefore, depending on the context, MGST1 activation can either exhibit a protective or toxic effect on the liver and possibly other tissues (Schaffert, 2011).

GST IN PEDIATRIC CANCER

EPIEDEMOLOGY

As in adult cancers, a large number of epidemiological studies have tested possible associations between GST polymorphic variants as well as deletions with susceptibility of pediatric cancers (Table 2). GSTM1 is subject to a deletion polymorphism that is found in as many as 75% of Caucasians (Zhong et al., 1991;
Table 2 | Case–control studies on association of GST polymorphism with susceptibility or risk of relapse of childhood cancers.

Reference	Tumour type	Population	Region	Age (year; Median)	Genotype	No. of cases	No. of controls	Odds ratio	95% Confidence interval	p Value	Treatment applied		
SUSCEPTIBILITY													
Krajinovic et al. (1999)	ALL	French	Canada	1–21 (8)	GSTM1 null	174	304	1.8	1.2–2.6	0.004	NA		
Pakakasama et al. (2005)	ALL	Thai	Thailand	0.83–14.75 (6.25)	GSTM1 null	107	320	1.7	1.0–2.7	0.04	NA		
Pakakasama et al. (2005)	ALL	Thai	Thailand	0.83–14.75 (6.25)	GSTM1 and GSTT1 null	107	320	1.7	1.1–2.9	0.02			
Joseph et al. (2004)	ALL	Indian	India	0–14 (NA)	GSTM1 null	181	320	1.4	0.9–2.2	0.12			
Ashton et al. (2007)	NB	White	Australia	0–13.51 (1.26)	GSTM1 null	89	116	1.6	1.02–2.49	0.04	Standard protocol (see Reference)		
Davies et al. (2000)	AML/MDS	White	U.S.	NA (NA)	GSTT1 null	88	203	1.67	0.37–1.21	0.185			
Davies et al. (2000)	AML/MDS	White	U.S.	NA (NA)	GSTP1V105 homozygote	88	203	1.67	0.64–2.13	0.620			
Krajinovic et al. (2002)	ALL	French	Canada	NA (4.9)	GSTP1V105	278	301	1.5	1.1–2.0	0.02	NA		
Krajinovic et al. (2002)	ALL	French	Canada	NA (4.9)	GSTP1V105	278	301	2.1	1.3–3.4	0.003			
Gatebee et al. (2007)	ALL	Thai	Thailand	0.83–14.75 (5)	GSTP1V105	100	100	0.92	0.52–1.62	0.886	Risk-adapted chemotherapy regimens modified total XII protocol (see Reference)		
RISK OF RELAPSE													
Stanulla et al. (2000)	ALL	NA	Germany	0–18 (NA)	GSTM1 null	64	64	0.5	0.23–1.07	0.078	ALL BFM 86 and 90 trials (see Reference)		
			Austria		GSTP1V105	64	64	0.36	0.13–0.99	0.048			
			Switzerland		GSTP1V105	64	64	0.33	0.09–1.23	0.099			
Study	Type	Country	Age (Years)	GSTM1	GSTT1	GSTP1	GSTP1	p-value	Reference				
----------------	-------	---------	-------------	-------	-------	-------	-------	---------	-----------				
Anderer et al. (2000)	ALL	NA	Germany	0–18	NA	GSTM1 null	GSTT1 null	45 90	1.13	0.52–2.46	0.764	ALL: BFM 86 and 90 trials (see Reference)	
			Austria				GSTP1 V105		0.84	0.14–4.93	0.851		
			Switzerland				homozygote	45 90	0.18	0.02–1.53	0.117		
Takanashi et al. (2003)	ALL	Japanese	Japan	1.5–15	NA	GSTM1 null	GSTT1 null	12 70	NA	NA	0.68	ALL protocol (see Reference)	
						GSTT1 null	GSTM1 and GSTT1 null	12 70	NA	NA	0.22		
Chen et al. (1997)	ALL	Black and white U.S.	NA (NA)	GSTM1 null	GSTT1 null	197 416	1.2	0.87–	0.19	0.19	Extended intensified chemotherapy (see Reference)		
						GSTM1 and GSTT1 null	34 203	7.36	2.61–	0.0005			
		Black				GSTT1 null	GSTM1 and GSTT1 null	163 213	0.75	0.35–	0.68		
		White				GSTM1 and GSTT1 null	616 532	NA	NA	1	CCG protocols (see Reference)		
	ALL	White	U.S.	Mostly 1-10	GSTM1 null	GSTT1 null	35 201	NA	NA	1			
Davies et al. (2002)	ALL	White	U.S.	Mostly 1-10	GSTM1 null	GSTT1 null	139 185	1.03	0.66–1.61	NA	NA		
		Black		GSTT1 null	139 185	0.9	0.53–1.53	NA					
				GSTP1 V105 homozygote	136 185	0.75	0.24–2.34	NA					
Balta et al. (2003)	ALL/ANLL	Turkey	Turkey	0.58–17	GSTM1 null	GSTT1 null	234 460	1.54	0.84–2.83	0.16		Polish Paediatric Oncology Study Group recommended protocol (see Reference)	
				(6.8)	GSTT1 null	GSTP1 V105 homozygote	234 460	1.2	0.6–2.39	0.7			
Zielinska et al. (2004)	ALL/AML/NHL/RMS/PNET/CNST et al	Polish	Poland	3.5–12.92	GSTM1 null	GSTT1 null	234 460	5.7	2.4–13.8	0.0001			
				(754)	GSTP1 V105	GSTP1 1105	234 460	3.29	0.73–14.67	0.03			

NA, not available.
V105 was found to relate to increased susceptibility to childhood leukemia. Other studies showed that the double-null genotype was not significantly associated with susceptibility to ALL in Thailand (Gatedee et al., 2007). Interestingly, one group reported a significant association between GSTP1 polymorphism and susceptibility to ALL in Thai children. However, another group found that there was no statistically significant association between GSTP1 polymorphism and susceptibility to ALL in Thai children (Gatedee et al., 2007). Interestingly, one group reported that GSTO1 A140D and GSTO2 N142D polymorphism were both significantly associated with susceptibility to ALL in Thailand (Pongstaporn et al., 2009). These conflicting results were thought to be related to differences in ethnicity and age of the patients, treatment, and follow-up periods included in these studies.

GST AND DRUG RESISTANCE

Glutathione S-transferases have been implicated in the development of resistance toward chemotherapeutic agents which lead to relapse in pediatric cancers (Table 2). GSTT1 null genotype has been shown to confer a reduced risk of relapse in childhood ALL in several case studies (Anderer et al., 2000; Stanulla et al., 2000). However, the GSTT1 null genotype was also shown to be associated with an increased risk of death after chemotherapy in childhood AML (Davies et al., 2001). As to the GSTM1–GSTT1 double-null genotype, one group reported an increased risk of early relapse of ALL with double-null genotype (Takanashi et al., 2003) while a subsequent study reported the opposite result (Kham et al., 2004). Yet other studies showed that the double-null genotype was not associated with risk of relapse or treatment outcome in ALL (Davies et al., 1997; Davies et al., 2002; Balta et al., 2003; Jazbec et al., 2003). GSTP1 expression was significantly increased in relapsed AML, and GSTP1 V105 was found to be related to increased relapse rate of childhood leukemia (Sauerbrey et al., 1994; Beck et al., 1996; Zielinska et al., 2004).

Several studies using microarray technology have identified glutathione metabolism pathway to reflect tumor resistance to chemotherapy in Ewing’s sarcoma. The authors found that the expression of MGST1 clearly predict Ewing’s sarcoma prognosis and to be associated with doxorubicin chemosensitivity (Townsend and Tew, 2003; Schaefer et al., 2008; Scotlandi et al., 2009). In a separate microarray analysis for target genes of EWS/FLI, the master regulator of Ewing’s sarcoma, GSTM4 was found to be upregulated by EWS/FLI. Reduction of GSTM4 levels resulted in an increased sensitivity of Ewing’s sarcoma cells to chemotherapeutic agents (etoposide and fenretinide). This suggested a role for GSTM4 in drug resistance. In support of this hypothesis, patients with Ewing’s sarcoma whose tumors had lower levels of GSTM4 expression had worse outcomes than those with lower expression levels (Luo et al., 2009).

GSTM1 has been reported to be a significant risk factor for hematologic relapse in childhood ALL. Transduction of GSTM1 into T-acute lymphoblastic leukemia cells selectively decreased cellular sensitivity to dexamethasone in a manner that was independent of glutathione conjugation, but was due to apoptosis inhibition. Interestingly, p38-MAPK and Bim activation were suppressed, and NF-kappaB p50 was activated, in these GSTM1 expressing cells. The authors proposed that GSTM1 is a novel regulator of dexamethasone-induced apoptosis, and causes dexamethasone resistance by suppression of Bim through dual mechanisms of downregulation of p38-MAPK and up-regulation of NF-kappaB p50 (Hosono et al., 2010). Consistently, GSTM1 null genotype was associated with a reduced risk of relapse in ALL (Stanulla et al., 2000). Association of GSTM1 with resistance to adriamycin and cisplatin was also found in childhood hepatoblastoma (Bader et al., 1998).

Drug resistance is a common problem in the treatment of childhood rhabdomyosarcoma (RMS). To identify causes of drug resistance in this disease, Seitz et al. (2010) performed gene expression analysis of tumors from mice transplanted with embryonal or alveolar RMS cells and treated with vincristine. The authors found 2314 differentially expressed genes between the groups in alveolar RMS and 1387 in embryonal RMS. Pathway analysis revealed a cluster of five overexpressed genes of the GST family in animals treated with vincristine, suggesting a cause for drug resistance. *In vitro* experiments confirmed up-regulation of GST activity following incubation with doxorubicin and topotecan in RMS cell lines. Incubation with GST inhibitors resulted in a decreased cell viability. The authors concluded that reversal of drug resistance in childhood RMS may be achieved by GST inhibitors, at least in part. Thus, the GST family represents a promising target for further treatment strategies in childhood RMS (Seitz et al., 2010).

The association of GSTs with risk of relapse and drug resistance may not be a straightforward reflection of their ability to participate in detoxification reactions. Greater understanding of the numerous factors affecting GST expression and activity, as well as GST functions, may reveal further connections between GST and individual responses to disease and drugs.

REGULATION OF GST

Most cases of Ewing’s sarcoma express the EWS/FLI fusion oncoprotein (Turc-Carel et al., 1988). EWS/FLI functions as an aberrant transcription factor that mediates the transformed phenotype through the deregulation of several key target genes (Kinsey et al., 2006; Owen and Lessnick, 2006; Smith et al., 2006; Tirado et al., 2006; Luo et al., 2009). Furthermore, EWS/FLI has been shown to transcriptionally activate some of its gene targets through GGAA-containing microsatellite promoter elements (Gangwal et al., 2008). Interestingly, **GSTM4** contains a GGAA-microsatellite in its promoter. *In vitro* and *in vivo* studies revealed that EWS/FLI binds to the microsatellite and up-regulates **GSTM4** via this element. Other work has shown that the ability of EWS/FLI to activate gene expression through GGAA-microsatellite response elements is proportional to the length of the microsatellite, suggesting that microsatellite polymorphisms might affect target gene expression (Gangwal et al., 2010). Indeed, this hypothesis was supported by the finding that the number of GGAA repeats present in the **NR0B1** promoter positively correlated with the level of **NR0B1** mRNA expression in Ewing’s cells (Garcia-Aragoncillo et al., 2008). Further work will be needed to determine if a similar relationship...
exists for the \textit{GSTM4} gene, and if such a relationship correlates with drug resistance in Ewing’s sarcoma.

The GGAA-microsatellite is not shared by other GST family members, however. Other GST promoters contain response elements such as an antioxidant response element and a xenobiotic response element, as well as putative binding sites for transcription factors such as AP-1, MAF, Nrf1, Jun, Fos, and NF-kappaB. Such complex response elements suggest a mechanism for differential regulation of GST isozymes across tumor types in response to differing toxic insults.

GST AS TARGETS IN PEDIATRIC CANCER TREATMENT

The design and discovery of compounds that bind GST isozymes and modulate their biological activity has become an important aim in cancer research because GST isozymes are overexpressed in many cancer cell lines (Tew et al., 1996), and induce drug resistance by inactivating many chemotherapeutic compounds via GSH conjugation (Tew et al., 1997). There are a number of candidate GST-targeted drugs at various stages of preclinical development (Tew et al., 1997; Ruzza and Quintieri, 2009; Wondrak, 2009; Sau et al., 2010). Ethacrynic acid, an inhibitor that lacks class specificity for GSTs, represented a first attempt in this direction; however, its low affinity and deleterious side effects have discouraged its use in clinical practice (Tew et al., 1997). More recently, GSH peptidomimetic compounds have been designed, including TER 199 (Figure 3). However, many GSH derivatives are actively extruded from cancer cells by specific export pumps, such as the multidrug resistance protein, and so are unlikely to be highly efficacious (Muller et al., 1994; Morgan et al., 1996).

A new class of GST inhibitors, called NBD derivatives, has been designed recently (Ricci et al., 2005). A representative of this class is NBDHEX, which interacts with GSTP1 and triggers apoptosis in human tumor cells through dissociation of the JNK–GSTP1 complex (Turella et al., 2005; Figure 3). Osteosarcoma, Ewing’s sarcoma, and rhabdomyosarcoma cell lines were all found to be sensitive to NBDHEX \textit{in vitro} and in xenograft models (Scotlandi et al., 2009; Pasello et al., 2011). Importantly, NBDHEX was not extruded from tumor cells by multidrug resistance protein pumps (Ricci et al., 2005; Turella et al., 2005, 2006). NBDHEX had synergistic effect with doxorubicin, vincristine, cisplatin in an \textit{in vitro} study. \textit{In vivo} studies confirmed the cytostatic efficacy of NBD-HEX and its synergy with vincristine in Ewing’s sarcoma cells, and also its effect against the metastatic spread of osteosarcoma cells (Pasello et al., 2011). Although NBDHEX is still under preclinical \textit{in vivo} evaluation, it may be an interesting new therapeutic option for patients who are not highly responsive to conventional regimens.

Another approach is to design prodrugs that exploit the high GST expression levels found in drug resistant tumors and cells. Prodrugs would be preferentially activated by GST in malignant cells, thus sparing normal tissues and enhancing the therapeutic index. JS-K is a member of the \textit{O2-aryl diazeniumdiolate} compound family which was designed to release nitric oxide (NO) when activated by GSTs (Shami et al., 2006). JS-K has shown promise as a novel cancer therapeutic agent in a number of studies. For instance, JS-K selectively induces programmed cell death in breast cancer cells while sparing normal mammary epithelial cells under the same conditions (McMurtry et al., 2011; Figure 3). The selective anti-tumor activity of JS-K warrants its further investigation in pediatric cancers.

CONCLUSION

Many epidemiological studies have investigated possible associations between GST polymorphisms with risk of pediatric cancers. Some studies have indicated increased risk for specific genotypes, such as the \textit{GSTT1} and \textit{GSTM1} deletions, while other studies have not confirmed this association. These conflicting results need to be interpreted with caution. Many GST activities other than detoxification have been discovered and may contribute to different GST activities among individuals. GSTs have also been implicated in the development of resistance toward chemotherapeutic drugs. Although further studies are required to reveal the underlying mechanisms, drugs targeting GSTs have been designed to overcome resistance to conventional therapeutic agents. Little

![Figure 3](https://www.frontiersin.org/journal/10.3389/fonc.2011.00039/abstract)
progress has been made in understanding how GST expression and activity is regulated. Such studies will allow an understanding of the upstream players in the glutathione metabolism pathway and provide potential new approaches for the treatment of pediatric cancers.

ACKNOWLEDGMENTS

Stephen L. Lessnick is supported by the NIH (R21 CA138295, R01 CA140394), the Terri Anna Perine Sarcoma Fund, and the University of Utah Department of Pediatrics and Huntsman Cancer Institute/Huntsman Cancer Foundation. Joshua D. Schiffman is supported by Damon Runyon Clinical Investigator Award, Alex’s Lemonade Stand Foundation Epidemiology Award, and the Eunice Kennedy Shriver Children’s Health Research Career Development Award NICHD 5K21HD001410. Wen Luo is supported by the Alex’s Lemonade Stand Foundation and the Primary Children’s Medical Center Foundation. We also acknowledge NIH support to the Huntsman Cancer Institute (P30 CA042014).

REFERENCES

Adler, V., Yin, Z., Fuchs, S. Y., Benezra, M., Rosario, L., Tew, K. D., Pincus, M. R., Sardana, M., Henderson, C. J., Wolf, C. R., Davis, R. J., and Ronai, Z. (1999). Regulation of INK signaling by GSTp. EMBO J. 18, 1321–1334.
Anderer, G., Schrappe, M., Brechlin, A. M., Lauten, M., Muti, P., Welte, K., and Stanulla, M. (2000). Polymorphisms within glutathione S-transferase genes and initial response to glucocorticoids in childhood acute lymphoblastic leukemia. Pharmacogenetics 10, 715–726.
Aniya, Y., and Imaizumi, N. (2011). Mitochondrial glutathione transferases involving a new function for membrane permeability transition pore regulation. Drug Metab. Rev. 43, 292–299.
Armstrong, R. N. (1997). Structure, catalytic mechanism, and evolution of the glutathione transferases. Chem. Res. Toxicol. 10, 2–18.
Ashton, L. J., Murray, J. E., Haber, E. A., and Rallapalli, S. (2004). Polymorphisms within glutathione transferase mu gene (GSTM1) and childhood acute lymphoblastic leukemia: a case-control study. Gen. Hosp. Psychiatry 26, 551–557.
Balogh, L. M., Le Trong, I., Kripps, K. A., Shireman, L. M., Stenkamp, R. E., Zhang, W., Mannervik, B., and Atkins, W. M. (2011). Substrate specificity combined with stereopromiscuity in glutathione transferase A4-4-dependent metabolism of 4-hydroxyxenonol. Biochemistry 49, 1541–1548.
Baluja, G., Yukek, N., Ozyurek, E., Ertem, U., Viccinzone, G., Altay, C., and Gurgey, A. (2003). Characterization of MTHFR, GSTM1, GSTT1, GSTP1, and CYP1A1 genotypes in childhood acute leukemia. Ann. J. Hematol. 73, 134–160.
Beck, J., Handgrettinger, R., Klinge-biel, T., Dopfer, R., Schach, M., Ehninger, G., Niethammer, D., and Gubler, V. (1996). Expression of PKC isoform and MDR-associated genes in primary and relapsed AML. Leukemia 10, 426–433.
Berhane, K., Widersten, M., Engstrom, A., Kozarich, J. W., and Mannervik, B. (1994). Detoxification of base proenol and other αβ-un saturated aldehyde products of radical reactions and lipid peroxidation by human glutathione transferase. Proc. Natl. Acad. Sci. U.S.A. 91, 1480–1484.
Beuckmann, C. T., Fujimori, K., Urade, Y., and Hayashi, O. (2000). Identification of mu-class glutathione transferases M2-2 and M3-3 as catalyzing conjugations with glutathione. Biochem. J. 353, 733–738.
Board, P. G., Coggan, M., Cappello, J., Zhou, H., Oakley, A. J., and Anders, M. W. (2008). S(-4-nitrophenacyl)glutathione is a specific substrate for glutathione transferase omega 1-1. Anal. Biochem. 374, 25–30.
Booth, J. D., Waddell, P. G., and Coggan, M., Cappello, J., Zhou, H., Oakley, A. J., and Anders, M. W. (2008). S(-4-nitrophenacyl)glutathione is a specific substrate for glutathione transferase omega 1-1. Anal. Biochem. 374, 25–30.
Böhm, H. M., and Their, R. (2006). Relevance of the deletion polymorphisms of the glutathione S-transferases GSTT1 and GSTM1 in pharmacology and toxicology. Curr. Drug Metab. 7, 613–628.
Booth, J., Boyland, E., and Sims, P. (1961). An enzyme from rat liver catalyzing conjugations with glutathione. Biochem. J. 79, 516–524.
Chen, C. L., Liu, Q., Pui, C. H., Rivera, G. K., Sandlund, J. T., Ribeiro, R., Evans, W. E., and Relling, M. V. (1997). Higher frequency of glutathione S-transferase deletions in black children with acute lymphoblastic leukemia. Blood 89, 1701–1707.
Chu, S. G., Lee, Y. H., Park, H. S., Ryu, K., Kang, K. W., Park, J., Eom, S. J., Kim, M. J., Chang, T. S., Choi, S. Y., Shim, J., Kim, Y., Dong, M. S., Lee, M. J., Kim, S. G., Ichijo, H., and Choi, E. J. (2001). Glutathione S-transferase mu modulates the stress-activated signals by suppressing apoptosis signal-regulating kinase 1. J. Biol. Chem. 276, 12749–12755.
Coles, B., Yang, M., Lang, N. P., and Kadlubar, F. F. (2000). Expression of hGSTP1 alleles in human lung and catalytic activity of the native protein variants towards 1-chloro-2,4-dinitrobenzene, 4-vinylpyridine and (-)-anti benzo[a]pyrene-7,8-diol-9,10-oxide. Cancer Lett. 156, 167–175.
Coomber, B., and Stakelum, G. S. (1961). A liver enzyme that conjugates sulfobromophthalein with glutathione. J. Clin. Invest. 40, 981–988.
Davies, S. M., Bhatia, S., Ross, J. A., Kiffmeyer, W. R., Gaynor, P. S., Radloff, G. A., Robison, L. L., and Perentesis, J. P. (2002). Glutathione S-transferase genotypes, genetic susceptibility, and outcome of therapy in childhood acute lymphoblastic leukemia. Blood 100, 67–71.
Davies, S. M., Robison, L. L., Buckley, J. D., Radloff, G. A., Ross, J. A., and Perentesis, J. P. (2000). Glutathione S-transferase genotypes, genetic susceptibility, and outcome of therapy in childhood acute lymphoblastic leukemia. Blood 100, 67–71.
Dreij, K., Sundberg, K., Johansson, A. S., Nordling, E., Seidel, A., Persson, B., Mannervik, B., and Jernstrom, B. (2002). Catalytic activities of human alpha class glutathione transferases toward carcinogenic dibenzo[a]pyrene diol epoxides. Chem. Res. Toxicol. 15, 825–831.
Dulhunty, A. F., Hewawasam, R., Liu, D., Casarotto, M. G., and Board, G. P. (2011). Regulation of the cardiac muscle ryanodine receptor by glutathione transferases. Drug Metab. Rev. 43, 236–252.
Economopoulos, K. P., and Sergentanis, T. N. (2010). GSTM1, GSTT1, GSTP1, GSTA1 and colorectal cancer risk: a comprehensive meta-analysis. Eur. J. Cancer 46, 1617–1631.
Elaby, R., Kittingham, N. R., Goldring, C. E., Lovatt, C. A., Chamberlain, M., Henderson, C. J., Wolf, C. R., and Park, B. K. (2003). Increased constitutive c-Jun N-terminal kinase signaling in mice lacking glutathione...
Lu et al. GST in pediatric cancer

S-transferase. J. Biol. Chem. 278, 22243–22249.

Flanagan, J. U., and Smythe, M. L. (2011). Sigma-class glutathione transferases. Drug Metab. Rev. 43, 194–214.

Gangwal, K., Close, D., Enriquez, C. A., Hill, C. P., and Lessnick, S. L. (2010). Emergent properties of EWS/FLI regulation via GGAA microsatellites in Ewing’s sarcoma. Genes Cancer 1, 177–188.

Gangwal, K., Sankar, S., Hollenhorst, P. C., Kinsey, M., Haroldsen, S. C., Shah, A. A., Boucher, K. M., Watkins, W. S., Jorde, L. B., Graves, B. J., and Lessnick, S. L. (2008). Microsatellites as EWS/FLI response elements in Ewing’s sarcoma. Proc. Natl. Acad. Sci. U.S.A. 105, 10149–10154.

García-Aragoncillo, E., Carillo, J., Lalli, E., Agra, N., Gómez-Zómez, G., Pes-taño, A., and Alonso, J. (2008). Identification and characterization of a lymphoblastic leukemia cell line. J. Biol. Chem. 276, 33061–33065.

Johansson, K., Javviden, L., Gog-vadze, V., and Morgenstern, R. (2010). Multiple roles of microsomal glutathione transferase 1 in cellular protection: a mechanistic study. Free Radic. Biol. Med. 49, 1638–1645.

Johnson, W. W., Ueng, Y. F., Widersten, W., Mannervik, B., Hayes, J. D., Ster-rett, P. J., Ketterer, B., and Guen-gerich, F. P. (1997). Conjugation of highly reactive aflatoxin B1 exo-8,9-epoxide catalysed by rat and human glutathione transferases: estimation of kinetic parameters. Biochemistry 36, 3096–3060.

Joseph, T., Kusumakumary, P., Chacko, P., Abraham, A., and Pillai, M. R. (2004). Genetic polymorphism of CYP1A1, CYP2D6, GSTM1 and GSTT1 genetic polymorphisms. Mol. Cancer Res. 2, 30–37.

Kham, S. K., Soh, C. K., Heng, C. K., Aplenc, R., Dolzan, V., Deselaers, R., and Lessnick, S. L. (2009). GSTM4 is a microsatellite-containing EWS/FLI target involved in Ewing’s sarcoma oncogenesis and therapeutically relevant. Onco gene 28, 4126–4132.

Kainkny, M., Labuda, D., Richer, C., Karimi, S., and Sinnett, D. (1999). Susceptibility to childhood acute lymphoblastic leukemia: influence of CYP1A1, CYP2D6, GSTM1, and GSTT1 genetic polymorphisms. Blood 93, 1496–1501.

Kainkny, M., Labuda, D., and Sinnett, D. (2002). Glutathione S-transferase P1 genetic polymorphisms and susceptibility to childhood acute lymphoblastic leukaemia. Pharmacogenetics 12, 655–658.

Luo, W., Gangwal, K., Sankar, S., Boucher, K. M., Awasthi, S., Nanduri, B., and Lessnick, S. L. (2009). GSTM4 is a microsatellite-containing EWS/FLI target involved in Ewing’s sarcoma oncogenesis and therapeutic resistance. Oncogene 28, 4126–4132.

Mancini, J. A., Ibrahimovitz, M., Cox, M. E., Wong, E., Charleson, S., Pier-rier, H., Wang, Z., Prastis, P., and Vickes, P. J. (1993). 5-lipoxygenase-activating protein is an arachido-nate binding protein. FEBS Lett. 318, 277–281.

Mancini, J. A., Blood, K., Guay, J., Gordon, R., Claveau, D., Chan, C. N., and Rienteau, D. (2001). Cloning, expression, and up-regulation of inducible rat prostaglandin E synthase during lipopolysaccharide-induced pyres and adjuvant-induced arthritis. J. Biol. Chem. 279, 4469–4475.

Marino, S., Verzegnassi, F., Tamaro, P., Stocco, G., Bartoli, F., Decorti, G., and Rabusin, M. (2009). Response to glucocorticoids and toxicity in childhood acute lymphoblastic leukemia: role of polymorphisms of genes involved in glucocorticoid response. Pediatr. Blood Cancer 53, 984–991.

McMahon, B. A., Koyner, J. L., and Murray, P. T. (2010). Urinary glutathione S-transferases in the pathogenesis and diagnostic evaluation of acute kidney injury following cardiac surgery: a critical review. Curr. Opin. Crit. Care. 16, 530–535.

McMurtry, V., Saavedra, J. E., Nieves-Alicea, R., Simeone, A. M., Keefer, L. K., and Tari, A. M. (2011). JS-K, a nitric oxide-releasing prodrug, induces breast cancer cell death while sparing normal mammary epithelial cells. Int. J. Oncol. 38, 963–971.
Mileo, A. M., Abbruzzese, C., Matteucci, S., Bellacchio, E., Pisano, P., Federico, A., Maresca, V., Picardo, M., Giorgi, A., Maras, B., Schinina, M. E., and Paggi, M. G. (2009). Human papillomavirus-16 E7 interacts with glutathione S-transferase P1 and enhances its role in cell survival. PLoS ONE 4, e27254. doi:10.1371/journal.pone.0007254

Minelli, C., Granell, R., Newsom, R., Rose-Zerilli, M. J., Torrent, M., Ring, S. M., Holloway, J. W., Shaheen, S. O., and Henderson, J. A. (2010). Glutathione-S-transferase genes and asthma phenotypes: a human genome epidemiology (HuGE) system review and meta-analysis including unpublished data. Int. J. Epidemiol. 39, 539–550.

Morgan, A. S., Ciaccio, P. J., Tew, K. D., and Kauvar, L. M. (1996). Isozyme-specific glutathione S-transferase inhibitors potentiate drug sensitivity in cultured human tumor cell lines. Cancer Chemother. Pharmacol. 37, 363–370.

Muller, M., Meijer, C., Zaman, G. J., Borst, P., Scheper, R. J., Mulder, N. H., de Vries, E. G., and Jansen, P. L. (1994). Proc. Natl. Acad. Sci. U.S.A. 91, 13033–13037.

Nakamura, Y., Ohigashi, H., Masuda, S., Murakami, A., Morimitsu, Y., Kawamoto, Y., Osawa, T., Ima-gawa, M., and Uchida, K. (2000). Redox regulation of glutathione S-transferase induction by benzyl isothiocyanate: correlation of enzyme induction with the formation of reactive oxygen intermediates. Cancer Res. 60, 219–225.

Norrgard, M. A., and Mannervik, B. (2011). Engineering GST M2-2 for high activity with indene 1,2-oxide and indication of an H-site residue sustaining catalytic promiscuity. Arch. Biochem. Biophys. 509, 186–190.

Otteveld, A., Aerts, T., Cauwenberghs, H., de Prins, J., Van, M., and Schrijver, H. (2006). Caveolin-1 (CA V1) is a target of GSTT1-1 and can activate the cell proliferation in vitro. Br. J. Cancer. 79, 1143–1148.

Papavassiliou, G., Lianos, P., and Stavrou, G. (2011). Glutathione transferases: is there a role in cancer chemotherapy? Anticancer Agents Med. Chem. 11, 29–38.

Papavassiliou, G., Lianos, P., and Stavrou, G. (2011). Glutathione transferases: is there a role in cancer chemotherapy? Anticancer Agents Med. Chem. 11, 29–38.

Pasello, M., Manara, M. C., Michelacci, F., Fanelli, M., Hattinger, C. M., Niccolini, G., Landuzzi, L., Lollini, P. L., Caccari, A., Picci, P., Scotlandi, K., and Serra, M. (2011). Targeting glutathione-S-transferase enzymes in musculoskeletal sarcomas: a promising therapeutic strategy. Ann. Cell. Pathol. (Amst.) 34, 131–145.

Pongstaporn, W., Pakakasama, S., Sanganvis, S., Hongeng, S., and Petmit, S. (2009). Polymorphism of glutathione S-transferase Omega gene association with risk of childhood acute lymphoblastic leukemia. J. Cancer Res. Clin. Oncol. 135, 673–678.

Ricci, G., De Maria, F., Antonini, G., Turella, P., Bullo, A., Stella, L., Filomeni, G., and Caccari, A. M. (2005). 7-Nitro-2,1,3-benzoxadiazole derivatives, a new class of suicide inhibitors for glutathione s-transferases. J. Biol. Chem. 280, 26397–26405.

Robinson, A., Huntley, G. A., Booth, H. S., and Board, P. G. (2004). Modelling and bioinformatics studies of the human Kappa-class glutathione transferase predict e-Jun N-terminal kinase signal- ing and apoptosis in Caco-2 cells. Biochem. J. 379, 541–552.

Romero, L., Andrews, K., Ng, L., Jia, L., Ji, X., and Keefer, L. K. (2006). Antitumor activity of JS-K [O2-(2,4-dinitrophenyl)-1-(4-ethylcarboxyl)piperazin-1-yl] [diazem-1-ium-2,1-dioleate] and related O2-aryl diazeniumdiolates in vitro and in vivo. J. Med. Chem. 49, 4356–4366.

Sau, A., Pellizzari T regno, F., Valenti, F., Federici, G., and Caccari, A. M. (2010). Glutathione transferases and development of new principles to overcome drug resistance. Crit. Rev. Biochem. Mol. Biol. 45, 186–190.

Timofeeva, M., Jager, B., Rosenberger, A., Sauter, W., Wichmann, H. E., and Board, P. G. (1996). The role of glutathione-S-transferase P in signaling pathways and s-glutathionylation in cancer. Free Radic. Biol. Med. 21, 299–313.

Tew, K. D., Manevich, Y., Grek, C., Xiong, Y., Uys, J., and Townsend, D. M. (2011). The role of glutathione s-transferase P in signaling pathways and s-glutathionylation in cancer. Free Radic. Biol. Med. 21, 299–313.

Torella, P., Pulford, D. J., Harris-on, D. J., Green, T., and Hayes, J. D. (1997). Evidence that human class theta glutathione S-transferase T1-1 can activate the cell proliferation in vitro. Br. J. Cancer. 76, 220–226.
zeta catalyses the oxygenation of the carcinogen dichloroacetic acid to glyoxylic acid. Biochem. J. 331, 371–374.

Tong, Z., Board, P. G., and Anders, M. W. (1998b). Glutathione transferase zeta-catalyzed biotransformation of dichloroacetic acid and other α-haloacids. Chem. Res. Toxicol. 11, 1332–1338.

Townsend, D. M., and Tew, K. D. (2003). The role of glutathione-s-transferase in anti-cancer drug resistance. Oncogene 22, 7369–7375.

Turella, P., Cerella, C., Filomeni, G., Bullo, A., De Maria, F., Ghibelli, L., Cirillo, M. R., Gianfriglia, M., Mattei, M., Federici, G., Ricci, G., and Caccuri, A. M. (2005). Proapoptotic activity of new glutathione S-transferase inhibitors. Cancer Res. 65, 3753–3761.

Turella, P., Filomeni, G., Dupuis, M. L., Cirillo, M. R., Molinari, A., De Maria, F., Tombesi, M., Gianfriglia, M., Federici, G., Ricci, G., and Caccuri, A. M. (2006). A strong glutathione s-transferase inhibitor overcomes the P-glycoprotein-mediated resistance in tumor cells: NBDHEX triggers a caspase-dependent apoptosis in MDR1-expressing leukemia cells. J. Biol. Chem. 281, 23725–23732.

Wondrak, G. T. (2009). Redox-directed cancer therapeutics: molecular mechanisms and opportunities. Antioxid. Redox Signal. 11, 3013–3069.

Wu, Y., Fan, Y., Xue, B., Luo, L., Shen, J., Zhang, S., Jiang, Y., and Yin, Z. (2006). Human glutathion s-transferase P1-1 interacts with TRAF2 and regulates TRAF2-ASK1 signals. Oncogene 25, 5787–5800.

Zhong, S., Howie, A. F., Ketterer, B., Taylor, J., Hayes, J. D., Beckett, G. J., Wathen, C. G., Wolf, C. R., and Spurr, N. K. (1991). Glutathione S-transferase mu locus: use of genotyping and phenotyping assays to assess association with lung cancer susceptibility. Carcinogenesis 12, 1533–1537.

Zielinska, E., Zubowska, M., and Bodalski, J. (2004). Polymorphism within the glutathione S-transferase P1 gene is associated with increased susceptibility to childhood malignant diseases. Pediatr. Blood Cancer 43, 552–559.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.