Reversible Simulation of Irreversible Computation by Pebble Games

Ming Li∗ John Tromp† Paul Vitányi‡

Abstract

Reversible simulation of irreversible algorithms is analyzed in the stylized form of a ‘reversible’ pebble game. The reachable reversible simulation instantaneous descriptions (pebble configurations) are characterized completely. As a corollary we obtain the reversible simulation by Bennett and that among all simulations that can be modelled by the pebble game, Bennett’s simulation is optimal in that it uses the least auxiliary space for the greatest number of simulated steps. One can reduce the auxiliary storage overhead incurred by the reversible simulation at the cost of allowing limited erasing leading to an irreversibility-space tradeoff. We show that in this resource-bounded setting the limited erasing needs to be performed at precise instants during the simulation. We show that the reversible simulation can be modified so that it is applicable also when the simulated computation time is unknown.

1 Introduction

The ultimate limits of miniaturization of computing devices, and therefore the speed of computation, are constrained by the increasing density of switching elements in the device. Linear speed up by shortening interconnects on a two-dimensional device is attended by a cubing of dissipated energy per unit area per second. Namely, we square the number of switching elements per area unit and linearly increase the number of switching events per switch per time unit. In the long run, the attending energy dissipation on this scale cannot be compensated for by cooling. Ignoring architectural improvements, reduction of the energy dissipation per elementary computation step therefore determines future advances in computing power.

J. von Neumann reputedly thought that a computer operating at temperature T must dissipate at least $kT \ln 2$ Joule per elementary bit operation [Burks, 1966]. R. Landauer [Landauer, 1961] demonstrated that it is only the ‘logically irreversible’ operations in a physical computer that are required to dissipate energy by generating a corresponding amount of entropy for each bit of information that gets irreversibly erased. As a consequence, any arbitrarily large reversible computation can be performed on an appropriate physical device using only one unit of physical energy in principle.

∗Supported in part by the NSERC Operating Grant OGP0046506, ITRC, a CGAT grant, and the Steacie Fellowship. Current address: Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong. On sabbatical leave from: Department of Computer Science, University of Waterloo, Waterloo, Ont. N2L 3G1, Canada. E-mail: mli@cs.cityu.edu.hk; mli@math.uwaterloo.ca

†Partially supported by the European Union through NeuroCOLT ESPRIT Working Group Nr. 8556, and by NWO through NFI Project ALADDIN under Contract number NF 62-376 and NSERC under International Scientific Exchange Award ISE0125663. Affiliations are CWI and the University of Amsterdam. Address: CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands; tromp@cwi.nl

‡Partially supported by the European Union through NeuroCOLT ESPRIT Working Group Nr. 8556, and by NWO through NFI Project ALADDIN under Contract number NF 62-376 and NSERC under International Scientific Exchange Award ISE0125663. Affiliations are CWI and the University of Amsterdam. Address: CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands; paulv@cwi.nl
2 Reversible Turing Machines

Currently, we are used to design computational procedures containing irreversible operations. To perform the intended computations without energy dissipation the related computation procedures need to become completely reversible. Fortunately, all irreversible computations can be simulated in a reversible manner \cite{Lecerf1963, Bennett1973}. All known reversible simulations do not change the computation time significantly, but do require considerable amounts of auxiliary memory space. In this type of simulation one needs to save on space; time is already almost optimal.

Consider the standard model of Turing machine. The elementary operations are rules in quadruple format \((p, s, a, q)\) meaning that if the finite control is in state \(p\) and the machine scans tape symbol \(s\), then the machine performs action \(a\) and subsequently the finite control enters state \(q\). Such an action \(a\) consists of either printing a symbol \(s'\) in the tape square under scan, or moving the scanning head one tape square left, right or not at all.

Quadruples are said to overlap in domain if they cause the machine in the same state and scanning the same symbol to perform different actions. A deterministic Turing machine is defined as a Turing machine with quadruples no two of which overlap in domain.

Now consider the special format (deterministic) Turing machines using quadruples of two types: read/write quadruples and move quadruples. A read/write quadruple \((p, a, b, q)\) causes the machine in state \(p\) scanning tape symbol \(a\) to write symbol \(b\) and enter state \(q\). A move quadruple \((p, *, \sigma, q)\) causes the machine in state \(p\) to move its tape head by \(\sigma \in \{-1, 0, +1\}\) squares and enter state \(q\), oblivious to the particular symbol in the currently scanned tape square. (Here ‘−1’ means ‘one square left’, ‘0’ means ‘no move’ and ‘+1’ means ‘one square right’.) Quadruples are said to overlap in range if they cause the machine to enter the same state and either both write the same symbol or (at least) one of them moves the head. Said differently, quadruples that enter the same state overlap in range unless they write different symbols. A reversible Turing machine is a deterministic Turing machine with quadruples no two of which overlap in range. A \(k\)-tape reversible Turing machine uses \((2k+2)\) tuples which, for each tape separately, select a read/write or move on that tape. Moreover, any two tuples can be restricted to some single tape where they don’t overlap in range.

To show that each partial recursive function can be computed by a reversible Turing machine one can proceed as follows. Take the standard irreversible Turing machine computing that function. We modify it by adding an auxiliary storage tape called the ‘history tape’. The quadruple rules are extended to 6-tuples to additionally manipulate the history tape. To be able to reversibly undo (retrace) the computation deterministically, the new 6-tuple rules have the effect that the machine keeps a record on the auxiliary history tape consisting of the sequence of quadruples executed on the original tape. Reversibly undoing a computation entails also erasing the record of its execution from the history tape.

This notion of reversible computation entails also erasing the record of its execution from the history tape.

3 Reversible Programming

Reversible Turing machines or other reversible computers will require special reversible programs. One feature of such programs is that they should be executable when read from bottom to top as well as when read from top to bottom. Examples are the programs \(F(\cdot)\) and \(A(\cdot)\) we show in the later sections. In general, writing reversible programs will be difficult. However, given a general reversible simulation of irreversible computation, one can simply write an oldfashioned irreversible program in

\[2\]
an irreversible programming language, and subsequently simulate it reversibly. Below we address the question of parsimonious resource-bounded reversible simulations.

In terms of real computers, eventually there will be reversible computer architectures running reversibly programmed compilers. Such a compiler receives an irreversible program as input and reversibly compiles it to a reversible program. Subsequently, the reversible program is executed reversibly.

There is a decisive difference between reversible circuits and reversible special purpose computers on the one hand, and reversible universal computers on the other hand. While one can design a special-purpose reversible version for each particular reversible circuit using reversible universal gates, such a method does not suffice to execute an arbitrary irreversible program on a fixed universal reversible computer architecture. In this paper we are interested the latter question: the design of methods which take any irreversible program and make it run in a reversible manner on a fixed universal reversible machine.

4 Related Work

The reversible simulation in [Bennett, 1973] of T steps of an irreversible computation from x to $f(x)$ reversibly computes from input x to output $\langle x, f(x) \rangle$ in $T' = O(T)$ time. However, since this reversible simulation at some time instant has to record the entire history of the irreversible computation, its space use increases linearly with the number of simulated steps T. That is, if the simulated irreversible computation uses S space, then for some constant $c > 1$ the simulation uses $T' \approx c + cT$ time and $S' \approx c + c(S + T)$ space. This can be an unacceptable amount of space for many practically useful computations.

The question arises whether one can reduce the amount of auxiliary space needed by the simulation by a more clever simulation method or by allowing limited amounts of irreversibility.

In [Bennett, 1989] another elegant simulation technique is devised reducing the auxiliary storage space. This simulation does not save the entire history of the irreversible computation but it breaks up the simulated computation into segments of about S steps and saves in a hierarchical manner checkpoints consisting of complete instantaneous descriptions of the simulated machine (entire tape contents, tape heads positions, state of the finite control). After a later checkpoint is reached and saved, the simulating machine reversibly undoes its intermediate computation, reversibly erasing the intermediate history and reversibly canceling the previously saved checkpoint. Subsequently, the computation is resumed from the new checkpoint onwards.

The reversible computation simulates k^n segments of length m of irreversible computation in $(2k-1)^n$ segments of length $\Theta(m + S)$ of reversible computation using $n(k-1)+1$ checkpoint registers using $\Theta(m + S)$ space each, for each k, n, m.

This way it is established that there are various trade-offs possible in time-space in between $T' = \Theta(T)$ and $S' = \Theta(TS)$ at one extreme ($k = 1, m = T, n = 1$) and (with the corrections of Levine & Sherman, 1990) $T' = \Theta(T^{1+\epsilon}/S')$ and $S' = \Theta(c(\epsilon)S(1 + \log T/S))$ with $c(\epsilon) = c2^{1/\epsilon}$ for each $\epsilon > 0$, using always the same simulation method but with different parameters k, n where $\epsilon = \log_k(2k - 1)$ and $m = \Theta(S)$. Typically, for $k = 2$ we have $\epsilon = \log 3$. Since for $T > 2^S$ the machine goes into a computational loop, we always have $S \leq \log T$. Therefore, it follows from Bennett’s simulation that each irreversible Turing machine using space S can be simulated by a reversible machine using space S^2 in polynomial time.

In [Li & Vitányi, 1996] two of us proposed a quantitative study of exchanges of computing resources such as time and space for number of irreversible operations which we believe will be relevant for the physics of future computation devices.
There, we analyzed the advantage of adding limited irreversibility to an otherwise reversible simulation of conventional irreversible computations. This may be of some practical relevance for adiabatic computing. Our point of departure is the general method of Bennett [Bennett, 1989] to reversibly simulate irreversible algorithms in the stylized form of a pebble game. While such reversible simulations incur little overhead in additional computation time, they use an unacceptable amount of additional memory space during the computation. We showed that among all simulations which can be modeled by the pebble game, Bennett’s simulation is optimal in that it uses the least auxiliary space for the greatest number of simulated steps.

In that paper we conjectured that all reversible simulations of an irreversible computation can essentially be represented as the pebble game defined below, and that consequently the lower bound of Corollary 2 applies to all reversible simulations of irreversible computations. Contradicting this conjecture, [K.J. Lange, P. McKenzie, and A. Tapp, 1997] have shown that there exists a linear space reversible simulation of an irreversible computation of the following type. The original irreversible computation should have a reversible linear space constructable space bound, and the reversible simulation of a given irreversible computation—when run in reverse—cycles through the set of all initial configurations that cause the irreversible computation to terminate in the target final configuration rather than homing in on the single initial configuration of the irreversible computation. The reversible simulation time can be exponential in the irreversible computation time. This reversible simulation of the irreversible computation \(x \mapsto f(x) \) actually simulates all irreversible computations \(y \mapsto f(y) \) such that \(f(y) = f(x) \).

Instructed by [K.J. Lange, P. McKenzie, and A. Tapp, 1997] we refine the conjecture to: “Polynomial time reversible simulations of an irreversible computation can essentially be represented as the pebble game defined below, and consequently the lower bound of Corollary 2 applies to all polynomial time reversible simulations of irreversible computations.” In fact, for “polynomial time” one should actually think of, say, at most “square time.” What one wants is that the reversible simulation is feasible which means that both the simulation time overhead and the simulation space overhead do not increase too much. If this conjecture is true then the trade-offs below turn into a space-irreversibility hierarchy for polynomial time computations.

5 Outline Current Work

We improve and extend the reversible simulation work in [Bennett, 1989, Li & Vitányi, 1996]. First, we note that it is possible to improve the situation by reversibly simulating only irreversible steps. Call a quadruple of a Turing machine irreversible if its range overlaps with the range of another quadruple. A step of the computation is irreversible if it uses an irreversible quadruple. Let the number of irreversible steps in a \(T \) step computation be denoted by \(I \). Clearly, \(I \leq T \). Then, Bennett’s simulation results hold with \(T \) in the auxiliary space use replaced by \(I \). In particular, \(S' = O(S \log I) \). In many computations, \(I \) may be much smaller than \(T \). There arises the problem of estimating the number of irreversible steps in a computation. (More complicatedly, one could extend the notion of irreversible step to those steps which can be reversed on local information alone. In some cases this is possible even when the used quadruple itself was irreversible.)

In the sequel we first define the reversible pebble game. We then completely characterize the realizable pebble configurations of the reversible pebble games. That is, we completely characterize the reachable instantaneous descriptions of a Turing machine reversibly simulating an irreversible computation. As corollaries we obtain Bennett’s simulation result, [Bennett, 1989], the impossibility result and the irreversibility tradeoff in [Li & Vitányi, 1996]. Subsequently, we show that for such a tradeoff...
to work the limited irreversible actions have to take place at precise times during the reversible simulation, and cannot be delayed to be executed all together at the end of the computation (as is possible in computations without time or space resource bounds). Finally, in all such reversible simulations it is assumed that the number of steps to be simulated is known in advance and used to construct the simulation (for that number of steps). We show how to reversibly simulate an irreversible computation of unknown computing time, using the same order of magnitude of simulation time.

6 Reversible Simulation

Analyzing the simulation method of Bennett, 1989 shows that it is essentially no better than the simple simulation in terms of time versus irreversible erasure trade-off. Extra irreversible erasing can reduce the simulation time of the former method to \(\Theta(T) \), but the ‘simple’ method has \(\Theta(T) \) simulation time without irreversible erasures anyway, but at the cost of large space consumption. Therefore, it is crucial to decrease the extra space required for the pure reversible simulation without increasing time if possible, and in any case further reduce the extra space at the cost of limited numbers of irreversible erasures.

Since no general reversible simulation of an irreversible computation, better than the above one, is known, and it seems likely that each proposed method must have similar history preserving features, analysis of this particular style of simulation is expected to give results with more general validity. We establish lower bounds on space use and upper bounds on space versus irreversible erasure trade-offs. To analyze such trade-offs we use Bennett’s brief suggestion in Bennett, 1989 that a reversible simulation can be modelled by the following ‘reversible’ pebble game. Let \(G \) be a linear list of nodes \(\{1, 2, \ldots, T_G\} \). We define a pebble game on \(G \) as follows. The game proceeds in a discrete sequence of steps of a single player. There are \(n \) pebbles which can be put on nodes of \(G \). At any time the set of pebbles is divided in pebbles on nodes of \(G \) and the remaining pebbles which are called free pebbles.

At each step either an existing free pebble can be put on a node of \(G \) (and is thus removed from the free pebble pool) or be removed from a node of \(G \) (and is added to the free pebble pool). Initially \(G \) is unpebbled and there is a pool of free pebbles. The game is played according to the following rule:

Reversible Pebble Rule: If node \(i \) is occupied by a pebble, then one may either place a free pebble on node \(i + 1 \) (if it was not occupied before), or remove the pebble from node \(i + 1 \).

We assume an extra initial node 0 permanently occupied by an extra, fixed pebble, so that node 1 may be (un)pebbled at will. This pebble game is inspired by the method of simulating irreversible Turing Machines on reversible ones in a space efficient manner. The placement of a pebble corresponds to checkpointing the current state of the irreversible computation, while the removal of a pebble corresponds to reversibly erasing a checkpoint. Our main interest is in determining the number of pebbles \(k \) needed to pebble a given node \(i \).

The maximum number \(n \) of pebbles which are simultaneously on \(G \) at any one time in the game gives the space complexity \(nS \) of the simulation. If one deletes a pebble not following the above rules, then this means a block of bits of size \(S \) is erased irreversibly. The limitation to Bennett’s simulation is in fact space, rather than time. When space is limited, we may not have enough place to store garbage, and these garbage bits will have to be irreversibly erased. We establish a tight lower bound for any strategy for the pebble game in order to obtain a space-irreversibility trade-off.
7 Reachable Pebble Configurations

We describe the idea of Bennett’s simulation \cite{Bennett, 1989}. Given that some node \(s \) is pebbled, and that at least \(n \) free pebbles are available, the task of pebbling nodes \(s + 1, \ldots, s + 2^n - 1 \) can be seen to reduce to the task of first pebbling nodes \(s + 1, \ldots, s + 2^{n-1} - 1 \) using \(n - 1 \) free pebbles, then placing a free pebble on node \(s + 2^{n-1} \), then unpebbling nodes \(s + 1, \ldots, s + 2^{n-1} - 1 \) to retrieve our \(n - 1 \) pebbles, and finally pebbling nodes \(s + 2^{n-1} + 1, \ldots, s + 2^n - 1 \) using these pebbles. By symmetry, an analogous reduction works for the task of unpebbling nodes \(s + 1, \ldots, s + 2^n - 1 \) with \(n \) free pebbles.

The following two mutually recursive procedures implement this scheme; their correctness follows by straightforward induction.

\[
\text{pebble}(s, n) \\
\{ \\
\quad \text{if } (n = 0) \text{ return; } \\
\quad t = s + 2^{n-1}; \\
\quad \text{pebble}(s, n - 1); \\
\quad \text{put a free pebble on node } t \\
\quad \text{unpebble}(s, n - 1) \\
\quad \text{pebble}(t, n - 1); \\
\}
\]

\[
\text{unpebble}(s, n) \\
\{ \\
\quad \text{if } (n = 0) \text{ return; } \\
\quad t = s + 2^{n-1}; \\
\quad \text{unpebble}(t, n - 1); \\
\quad \text{pebble}(s, n - 1) \\
\quad \text{remove the pebble from node } t \\
\quad \text{unpebble}(s, n - 1); \\
\}
\]

The difficult part is showing that this method is optimal. It turns out that characterizing the maximum node that can be pebbled with a given number of pebbles is best done by completely characterizing what pebble configurations are realizable. First we need to introduce some helpful notions.

In a given pebble configuration with \(f \) free pebbles, a placed pebble is called \textit{available} if there is another pebble at most \(2^f \) positions to its left (0 being the leftmost node). According to the above procedures, an available pebble can be removed with the use of the free pebbles. For convenience we imagine this as a single big step in our game.

Call a pebble configuration \textit{weakly solvable} if there is a way of repeatedly removing an available pebble until all are free. Note that such configurations are necessarily realizable, since the removal process can be run in reverse to recreate the original configuration. Call a pebble configuration \textit{strongly solvable} if all ways of repeatedly removing an available pebble lead to all being free. Obviously any strongly solvable configuration is also weakly solvable.

The starting configuration is obviously both weakly and strongly solvable. How does the single rule of the game affect solvability? Clearly, adding a pebble to a weakly solvable configuration yields another weakly solvable configuration, while removing a pebble from a strongly solvable configuration yields
another strongly solvable configuration. It is not clear if removing a pebble from a weakly solvable configuration yields another one. If such is the case then we may conclude that all realizable configurations are weakly solvable and hence the two classes coincide. This is exactly what the next theorem shows.

Theorem 1 Every weakly solvable configuration is strongly solvable.

Proof. Let \(f \) be the number of free pebbles in a weakly solvable configuration. Number the placed pebbles \(f, f + 1, \ldots, n - 1 \) according to their order of removal. It is given that, for all \(i \), pebble \(i \) has a higher-numbered pebble at most \(2^i \) positions to its left (number the fixed pebble at infinity). Suppose a pebble of rank \(g > f \) is also available. It suffices to show that if pebble \(g \) is removed first, then pebbles \(f, f + 1, \ldots, g - 1 \) are still available when their turn comes. Suppose pebble \(j \) finds pebble \(g \) at most \(2^j \) places to its left (otherwise it will still be available for sure). Then after removal of pebbles \(g, f, f + 1, \ldots, j - 1, \) it will still find a higher-numbered pebble at most \(2^j + 2f + 2f+1 + \ldots + 2^{j-1} \leq 2^{j+1} \) places to its left, thus making it available given the extra now free pebble \(g \). \(\square \)

Corollary 1 A configuration with \(f \) free pebbles is realizable if and only if its placed pebbles can be numbered \(f, f + 1, \ldots, n - 1 \) such that pebble \(i \) has a higher-numbered pebble at most \(2^i \) positions to its left.

Corollary 2 The maximum reachable node with \(n \) pebbles is \(\sum_{i=0}^{n-1} 2^i = 2^n - 1 \).

Moreover, if pebble \((s, n)\) takes \(t(n) \) steps we find \(t(0) = 1 \) and \(t(n) = 3t(n - 1) + 1 = (3^{n+1} - 1)/2 \). That is, the number of steps \(T'_G \) of a winning play of a pebble game of size \(T_G = 2^n - 1 \) is \(T'_G \approx 1.53^n \), that is, \(T'_G \approx T_G^{\log 3} \).

The simulation given in [Bennett, 1989] follows the rules of the pebble game of length \(T_G = 2^n - 1 \) with \(n \) pebbles above. A winning strategy for a game of length \(T_G \) using \(n \) pebbles corresponds with reversibly simulating \(T_G \) segments of \(S \) steps of an irreversible computation using \(S \) space such that the reversible simulator uses \(T' \approx ST'_G \approx ST_G^{\log 3} \) steps and total space \(S' = nS \). The space \(S' \) corresponds to the maximal number of pebbles on \(G \) at any time during the game. The placement or removal of a pebble in the game corresponds to the reversible copying or reversible cancelation of a ‘checkpoint’ consisting of the entire instantaneous description of size \(S \) (work tape contents, location of heads, state of finite control) of the simulated irreversible machine. The total time \(T_GS \) used by the irreversible computation is broken up in segments of size \(S \) so that the reversible copying and canceling of a checkpoints takes about the same number of steps as the computation segments in between checkpoints.

We can now formulate a trade-off between space used by a polynomial time reversible computation and irreversible erasures. First we show that allowing a limited amount of erasure in an otherwise reversible computation means that we can get by with less work space. Therefore, we define an \(m \)-erasure pebble game as the pebble game above but with the additional rule

- In at most \(m \) steps the player can remove a pebble from any node \(i > 1 \) without node \(i - 1 \) being pebbled at the time.

An \(m \)-erasure pebble game corresponds with an otherwise reversible computation using \(mS \) irreversible bit erasures, where \(S \) is the space used by the irreversible computation being simulated.

\[1\] If we are to account for the permanent pebble on node 0, we get that the simulation uses \(n + 1 \) pebbles for a pebble game with \(n \) pebbles of length \(T_G + 1 \). The simulation uses \(n + 1 = S'/S \) pebbles for a simulated number of \(S(T_G + 1) \) steps of the irreversible computation.
Lemma 1 There is a winning strategy with $n + 2$ pebbles and $m - 1$ erasures for pebble games G with $T_G = m2^n$, for all $m \geq 1$.

Proof. The strategy is to use 2 pebbles as springboards that are alternately placed 2^n in front of each other using the remaining n pebbles to bridge the distance. The most backward springboard can be erased from its old position once all n pebbles are cleared from the space between it and the front springboard. We give the precise procedure in self-explanatory pseudo PASCAL using the procedures given in section 4.

Procedure $A(n, m, G)$:
for $i := 0, 1, 2, \ldots, m - 1$:
 pebble($i2^n$, n);
 put springboard on node $(i + 1)2^n$;
 unpebble($i2^n$, n);
 if $i < m - 1$ erase springboard on node $i2^n$;

The simulation time T'_G is $T'_G \approx 2m \cdot 3^{n-1} + 2 \approx 2m(T_G/m)^{\log 3} = 2m^{1-\log m} T_G^{\log 3}$ for $T_G = m2^{n-1}$. □

Theorem 2 (Space-Irreversibility Trade-off) (i) Pebble games G of size $2^n - 1$ can be won using n pebbles but not using $n - 1$ pebbles.

(ii) If G is a pebble game with a winning strategy using n pebbles without erasures, then there is also a winning strategy for G using E erasures and $n - \log(E + 1)$ pebbles (for E is an odd integer at least 1).

Proof. (i) By Corollary 2.

(ii) By (i), $T_G = 2^n - 1$ is the maximum length of a pebble game G for which there is a winning strategy using n pebbles and no erasures. By Lemma 4, we can pebble a game G of length $T_G = m2^{n-\log m} = 2^n$ using $n + 1 - \log m$ pebbles and $2m - 1$ erasures. □

We analyze the consequences of Theorem 2. It is convenient to consider the special sequence of values $E := 2^{k+2} - 1$ for $k := 0, 1, \ldots$. Let G be Bennett’s pebble game of Lemma 2 of length $T_G = 2^n - 1$. It can be won using n pebbles without erasures, or using $n - k$ pebbles plus $2^{k+2} - 1$ erasures (which gives a gain over not erasing as in Lemma 2 only for $k \geq 1$), but not using $n - 1$ pebbles.

Therefore, we can exchange space use for irreversible erasures. Such a trade-off can be used to reduce the excessive space requirements of the reversible simulation. The correspondence between the erasure pebble game and the otherwise reversible computations using irreversible erasures that if the pebble game uses $n - k$ pebbles and $2^{k+2} - 1$ erasures, then the otherwise reversible computation uses $(n - k)S$ space and erases $(2^{k+2} - 1)S$ bits irreversibly.

Therefore, a reversible simulation of an irreversible computation of length $T = (2^n - 1)S$ can be done using nS space using $(T/S)^{\log 3}S$ time, but is impossible using $(n - 1)S$ space. It can also be performed using $(n - k)S$ space, $(2^{k+2} - 1)S$ irreversible bit erasures and $2^{(k+1)(1-\log 3)+1}(T/S)^{\log 3}S$ time. In the extreme case we use no space to store the history and erase about $4T$ bits. This corresponds to the fact that an irreversible computation may overwrite its scanned symbol irreversibly at each step.

Definition 1 Consider a simulation using S' storage space and T' time which computes $y = \langle x, f(x) \rangle$ from x in order to simulate an irreversible computation using S storage space and T time which computes
if \(f(x) \) from \(x \). The irreversible simulation cost \(B^{S'}(x, y) \) of the simulation is the number of irreversibly erased bits in the simulation (with the parameters \(S, T, T' \) understood).

If the irreversible simulated computation from \(x \) to \(f(x) \) uses \(T \) steps, then for \(S' = nS \) and \(n = \log(T/S) \) we have above treated the most space parsimonious simulation which yields \(B^{S'}(x, y) = 0 \), with \(y = \langle x, f(x) \rangle \).

Corollary 3 (Space-Irreversibility Trade-off) Simulating a \(T = (2^n - 1)S \) step irreversible computation from \(x \) to \(f(x) \) using \(S \) space by a computation from \(x \) to \(y = \langle x, f(x) \rangle \), the irreversible simulation cost satisfies:

(i) \(B^{(n-k)S}(x, y) \leq B^{nS}(x, y) + (2^{k+2} - 1)S \), for \(n \geq k \geq 1 \).

(ii) \(B^{(n-1)S}(x, y) > B^{nS}(x, y) \), for \(n \geq 1 \).

For the most space parsimonious simulation with \(n = \log(T/S) \) this means that

\[
B^{S(\log(T/S)-k)}(x, y) \leq B^{S\log(T/S)}(x, y) + (2^{k+2} - 1)S.
\]

8 Local Irreversible Actions

Suppose we have an otherwise reversible computation containing local irreversible actions. In [Li & Vitányi, 1996](#) it is shown that we can always simulate such a computation with an otherwise reversible computation with all irreversibly provided bits provided at the beginning of the computation, and all irreversibly erased bits erased at the end of the computation. This is when we are in the situation when there are no a priori bounds on the resources in time or space consumed by the computation.

However, in the case above were there are very tight bounds on the space used by the computation, we found in Lemma [7] a method were at the cost of limited erasing, precisely controled with respect to its spacing in the computation time, we could save on the auxiliary space use. By Corollary [2] it is impossible to shift these erasures to the end of the computation, since if we do, then the same auxiliary space is still needed at precise times spaced during the simulation time.

Quantum computing is a particular form of reversible computation. Apart from classical irreversible erasures, quantum computing has a nonclassical form of irreversibility, namely the irreversible observations. An irreversible observation makes the superposition of the quantum state of the computer collapse from the original state space to a subspace thereof, where the probability amplitudes of constituent elements of the new superposition are renormalized. It is well-known and observed in some papers [Shor, 1994](#), that we can replace all observations during the quantum computation by a composition of observations at the end of the computation. One wonders if this non-classical type of irreversibility constituted by irreversible observation of quantum states also is constrained to strictly local instants during the computation by restrictions on time or space resources. This seems to be the case in the \(\sqrt{n} \) data item queries unstructured database search algorithm of Grover [Grover, 1996](#). There, we have to observe and renormalize at precise time instants during the computation to achieve the improvement of \(O(\sqrt{n}) \) data item queries in the quantum algorithm over the classically required \(\Omega(n) \) queries.

9 Reversible Simulation of Unknown Computing Time

In the previous analysis we have tacitly assumed that the reversible simulator knows in advance the number of steps \(T \) taken by the irreversible computation to be simulated. Indeed, the exhibited programs \(F(\cdot) \) and \(A(\cdot) \) have parameters \(I_k \) and \(G \) involving \(T \). In this context one can distinguish on-line
computations and off-line computations to be simulated. On-line computations are computations which interact with the outside environment and in principle keep running forever. An example is the operating system of a computer. Off-line computations are computations which compute a definite function from an input (argument) to an output (value). For example, given as input a positive integer number, compute as output all its prime factors. For each input such an algorithm will have a definite running time.

There is a simple device to remove this dependency for batch computations without increasing the simulation time too much. Suppose we want to simulate a computation with unknown computation time T. Then we simulate t steps of the computation with t running through the sequence of values $2, 2^2, 2^3, \ldots$. For each value t takes on we reversibly simulate the first t steps of the irreversible computation. If $T > t$ then the computation is not finished at the end of this simulation. Subsequently we reversibly undo the computation until the initial state is reached again, set $t := 2t$ and reversibly simulate again. This way we continue until $t \geq T$ at which bound the computation finishes. The total time spent in this simulation is

$$T' \leq 2 \sum_{i=1}^{\lceil \log T \rceil} 2^i \log 3 \leq 2(4T)^{\log 3}.$$

This is the canonical case. With these figures, just like the original simulation, by suitable choice of parameter k we can obtain $T' = \Theta(T^{1+\epsilon}/S^\epsilon)$, for each constant $\epsilon > 0$.

Acknowledgment

Wim van Dam pointed at a small error in the original proof of Lemma 1 in [Li & Vitányi, 1996]. Correcting the proof gives almost the same result (Lemma 1 in the current paper).

References

[Bennett, 1973] C.H. Bennett. Logical reversibility of computation. *IBM J. Res. Develop.*, 17:525–532, 1973.

[Bennett, 1989] C.H. Bennett. Time-space trade-offs for reversible computation. *SIAM J. Comput.*, 18(1989), 766-776.

[Grover, 1996] L.K. Grover, A fast quantum mechanical algorithm for database search, *Proc. 28th ACM Symp. Theory of Computing*, 1996, 212-219.

[Landauer, 1961] R. Landauer. Irreversibility and heat generation in the computing process. *IBM J. Res. Develop.*, 5:183–191, 1961.

[K.J. Lange, P. McKenzie, and A. Tapp, 1997] K.J. Lange, P. McKenzie, and A. Tapp, Reversible space equals deterministic space, *Proc. 12th IEEE Computational Complexity Conference*, IEEE Comp. Soc. Press, 1997, To appear.

[Lecerf, 1963] Y. Lecerf, Machines de Turing réversibles. Récursive insolvabilité en $n \in N$ de l’équation $u = \theta^n$, où θ est un “isomorphisme de codes”, *Comptes Rendus*, 257(1963), 2597-2600.
[Levine & Sherman, 1990] R.Y. Levine and A.T. Sherman, A note on Bennett’s time-space trade-off for reversible computation, *SIAM J. Comput.*, 19:4(1990), 673-677.

[Li & Vitányi, 1996] M. Li and P.M.B. Vitányi, Reversibility and adiabatic computation: trading time and space for energy, *Proc. Royal Society of London, Series A*, 452(1996), 769-789.

[Shor, 1994] P. Shor, Algorithms for quantum computation: Discrete log and factoring, *Proc. 35th IEEE Symposium on Foundations of Computer Science*, 1994, 124-134.

[Burks, 1966] J. von Neumann. *Theory of Self-Reproducing Automata*. A.W. Burks, Ed., Univ. Illinois Press, Urbana, 1966.