Gene Expression Profiling of *Pseudomonas aeruginosa* Upon Exposure to Colistin and Tobramycin

Anastasia Cianciulli Sesso†, Branislav Lilić†, Fabian Amman², Michael T. Wolfinger²,³, Elisabeth Sonnleitner¹ and Udo Bläsi*

¹ Max Perutz Labs, Vienna Biocenter (VBC), Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria, ² Institute for Theoretical Chemistry, University of Vienna, Vienna, Austria, ³ Research Group Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria

Correspondence: Udo Bläsi
udo.blaesi@univie.ac.at

†These authors have contributed equally to this work

OPEN ACCESS

Edited by: Giuseppantonio Maisetta, University of Pisa, Italy

Reviewed by: Dinesh Sriramulu, Independent Researcher, Chennai, India
Katherina Sewald, Fraunhofer Institute for Toxicology and Experimental Medicine (FHG), Germany

Citation: Cianciulli Sesso A†, Lilić B†, Amman F, Wolfinger MT, Sonnleitner E and Bläsi U (2021) Gene Expression Profiling of *Pseudomonas aeruginosa* Upon Exposure to Colistin and Tobramycin. Front. Microbiol. 12:626715. doi: 10.3389/fmicb.2021.626715

INTRODUCTION

Pseudomonas aeruginosa (Pae) is an opportunistic pathogen known to cause nosocomial infections that are particularly detrimental to immunocompromised individuals and to patients suffering from cystic fibrosis (CF) (Williams et al., 2010). On the one hand, the pathogenic potential of *Pae* is based on its metabolic versatility, permitting fast adaptation to changing environmental conditions. On the other hand *Pae* can form biofilms and produce multiple virulence factors (Kerr and Snelling, 2009; Gellatly and Hancock, 2013). *Pae* is characterized by high intrinsic resistance to
a wide variety of antibiotics. It can further develop resistance by acquisition of genetic determinants through horizontal gene transfer, as well as by mutational processes affecting “resistance genes” that are collectively termed the resistome (Wright, 2007; Fajardo et al., 2008; Breidenstein et al., 2011; Jaillard et al., 2017). In this way, Pae has rendered most antibiotics ineffective, leaving polymyxins and aminoglycosides as last resort antibiotics.

Polymyxins are polycationic cyclic antimicrobial peptides. Owing to their positively charged 2,4-diaminobuteric acid (Dab) moieties they can electrostatically interact with the negatively charged lipopolysaccharide (LPS) of the outer membrane (OM) of Gram-negative bacteria, causing the displacement of LPS-stabilizing divalent cations, Ca\(^{2+}\) and Mg\(^{2+}\). This interaction is followed by insertion of the hydrophobic segments of the drug into the OM and its penetration via a self-promoted uptake mechanism. Cell death subsequently occurs by disintegration of the inner membrane (IM) and leakage of cellular components (El-Sayed Ahmed et al., 2020). Moreover, it has been reported that polymyxins can exert their toxic effects by causing phospholipid exchange between the OM and IM (Velkov et al., 2013), inhibition of respiratory enzymes of the NADH oxidase family (Deris et al., 2014), binding to bacterial DNA and disrupting its synthesis (Kong et al., 2011) and/or formation of reactive oxygen species (ROS) (Sampson et al., 2012; Yu et al., 2017). Nevertheless, the mode of bactericidal action of polymyxins in Pae remains controversial. For instance, a recent study (O’Driscoll et al., 2018) indicated that polymyxin E (colistin) does not exert its antibacterial effect by puncturing the IM or by inhibiting DNA replication and transcription. In addition, the exact contribution of polymyxin induced ROS to lethality of Pae is largely inconclusive (Brochmann et al., 2014; Lima et al., 2019).

In contrast, the regulatory circuits underlying polymyxin resistance are well understood in Pae. An increased resistance is conveyed by reduction of the net negative charge of LPS, resulting in diminished polymyxin binding (Jeannot et al., 2017; Poirel et al., 2017). The cellular machinery for covalent modification of negatively charged lipid A of LPS with positively charged 4-amino-l-arabinose (Lara4N) is encoded by the arn (pmr) operon. This operon is activated by at least five two-component systems (TCS) including PhoP/PhoQ (Barrow and Kwon, 2009), PmrA/PmrB (McPhee et al., 2003), ParR/ParS (Fernández et al., 2010), ColR/ColS and CprR/CprS (Fernández et al., 2012; Gutu et al., 2013). In addition, the cprA gene product was found to be required for polymyxin resistance conferred by the PhoP/PhoQ, PmrA/PmrB, and CprR/CprS TCSs (Gutu et al., 2013). Furthermore, a number of other functions contributing to intrinsic polymyxin resistance have been identified, which mainly affect LPS biosynthesis-related functions (regulatory functions, metabolism, synthesis and transport) (Fernández et al., 2013; Zhang et al., 2017; Sherry and Howden, 2018). Moreover, overproduction of spermidine and of the OM protein OprH have been shown to contribute as well to polymyxin susceptibility, as they can interact with divalent cation-binding sites of LPS, making them inaccessible for polymyxin binding (Young et al., 1992; Johnson et al., 2011). On the other hand, a reduced expression of oprD increased cell survival in the presence of polymyxins through an unknown mechanism (Mlynarcik and Kolar, 2019). Additionally, the MexXY-OprM and MexAB-OprM efflux pump systems can provide low to moderate polymyxin resistance and tolerance respectively (Pamp et al., 2008; Muller et al., 2011; Poole et al., 2015).

Aminoglycosides are positively charged antibiotics that initially interact with LPS of Gram-negative Bacteria. Aminoglycosides require an energized membrane for translocation into the cytoplasm. Once inside the cells, they bind to 16S rRNA at the A-site of the 30S ribosomal subunit, disrupting translation and causing the synthesis of aberrant polypeptides. These polypeptides can be inserted into the cell membrane, causing membrane damage, which leads to further intracellular accumulation of aminoglycosides. The established autocatalytic loop of membrane damage and their increased uptake results in stalling of ribosomes, and in complete inhibition of protein synthesis (Krause et al., 2016).

Covalent modifications of the negatively charged moieties of LPS, 16S rRNA methylation by RNA methyltransferases, ribosomal mutations and aminoglycoside modifying enzymes (AMEs) are exploited by Pae to counteract aminoglycosides (Poole, 2005; Garneau-Tsodikova and Labby, 2016; Krause et al., 2016; Valderrama-Carmona et al., 2019). The main efflux system responsible for the extrusion of aminoglycosides is MexXY-OprM (Poole, 2005). Its synthesis is controlled by PA5471, an anti-repressor of the mexXY operon repressor MexZ (Morita et al., 2006; Hay et al., 2013). Additional efflux systems include MexAB-OprM and an ortholog of the EmrE multidrug transporter of Escherichia coli (Poole, 2005; Nasie et al., 2012). Moreover, protein chaperones such as GroEL/ES, GrpE and HtpX, as well as the AmgR/AmgS TCS have been implicated in protecting the cells from polypeptides arising from drug induced mistranslation (Hinz et al., 2011; Wu et al., 2015).

A number of studies have confirmed the safety of colistin for treatment of acute pulmonary infections, while tobramycin was proven effective in suppressing chronic Pae airway infections in CF patients (Ramsey et al., 1999; Garnacho-Montero et al., 2003). However, in recent years a gradual decrease in baseline susceptibility of Pae to these last resort antibiotics was observed (Obritsch et al., 2004; Wi et al., 2017; Jain, 2018). As a refined understanding of the molecular regulatory circuits that contribute to resistance, tolerance and persister cell formation is key to develop new strategies/tools to combat Pae, we have employed RNA-seq and Ribo-seq in parallel to monitor gene expression responses of the clinical Pae isolate PA14 grown in synthetic cystic fibrosis sputum medium (SCFM) to inhibitory concentrations of colistin and tobramycin.

In addition to arn operon activation, which is known to result in reduced drug uptake, Pae responds to colistin by launching an anti-oxidative response, and by de-regulating genes belonging to the MexT and AlgU regulons. Concerning tobramycin, Pae seemingly goes through metabolic changes and envelope remodeling to prevent drug uptake, whereas its ramifications on translational processes are met with the stalled ribosome rescue response and the activation of type II toxin-antitoxin (TA) systems.
MATERIALS AND METHODS

Bacterial Strains and Growth Conditions

The clinical isolate *Pae* PA14 (Rahme et al., 1995) was used in all gene expression profiling experiments. Synthetic cystic fibrosis sputum medium (SCFM) was prepared as previously described (Palmer et al., 2007) with the modification specified in Tata et al. (2016). PA14 cells were grown aerobically in 500 ml SCFM at 37°C. At an OD$_{600}$ of 1.7, the cultures were treated with inhibitory concentrations of colistin (8 µg/ml; Sigma) and tobramycin (64 µg/ml; Sigma), respectively, or water was added as a control. The cultures reached OD$_{600}$ of 2 approximately 2 h after exposure to the antibiotics, as can be inferred from Supplementary Figure 1. 10 ml samples were withdrawn for RNA-seq analyses, while the remaining culture volume was used for the Ribo-seq experiments. The strain PA14ΔalgU was constructed as described in the Supplementary Text.

RNA-Seq

Total RNA was isolated from two biological replicates using the Trizol method (Ambion) according to the manufacturer’s instructions. The samples were treated with DNase I (TURBO™ DNase, Thermo Scientific), followed by phenol-chloroform-isooamyl alcohol (25:24:1) extraction and ethanol precipitation. Ribosomal RNA was depleted with The Ribo-Zero™ rRNA Removal Kit. The libraries were constructed using the NEBNext® Ultra™ Directional RNA Library Prep Kit for Illumina®. Hundred bp single end sequence reads were generated using the Illumina HiSeq200 platform at the in house Next Generation Sequencing Facility (VBGF, Vienna, Austria)². Quality control assessment of the raw reads using Fastqc² obviated further pre-processing. Sequencing adapter removal was performed with cutadap (Martin, 2011). Mapping of the samples against the PA14 reference genome (NCBI accession number NC_008463.1) was performed with Sgeimeh (Hoffmann et al., 2009) with default parameters. Reads mapping to rRNA or tRNA genes were discarded from all data and ignored for all follow-up analyses. The mapped sequencing data were prepared for visualization using the ViennaNGS box tool and visualized with the UCSC Genome Browser (Wolfinger et al., 2015). Reads per gene were counted using BEDTools (Quinlan and Hall, 2010) and the Refseq annotation of *Pae* (NC_002516.2). Differential gene expression analysis was performed with DESeq (Anders and Huber, 2010). All genes with a fold-change (FC) greater than ±2 and a multiple testing adjusted p-value below 0.05 were considered to be significantly modulated. The raw sequencing data were deposited in the European Nucleotide Archive (ENA) under accession number PRJEB41027.

RiboSeq

Ribosome profiling of elongating ribosomes (Ribo-seq; Ingolia et al., 2009) was performed with the same cultures as used for the RNA-seq analyses. Upon culture growth, the cells were treated for 10 min with chloramphenicol (300 µg/ml) to stop translation, and then harvested by centrifugation at 8,000 g for 15 min at 0°C. The cells were washed in 50 ml ice cold lysis buffer (10 mM MgOAc, 60 mM NH$_4$Cl, 10 mM TRIS-HCl, pH 7.6) and again pelleted by centrifugation at 5000 g for 15 min at 4°C. The pellets were re-suspended in 1 ml ice cold lysis buffer containing 0.2% Triton X-100, 100 µg/ml chloramphenicol and 100 U/ml DNase I, frozen in liquid nitrogen and cryogenically pulverized by repeated cycles of grinding in a pre-chilled mortar and freezing in a dry ice/ethanol bath. These lysates were centrifuged at 15,000 g for 30 min at 4°C to remove cellular debris. Hundred µl aliquots of the cleared lysates were treated with 4 µl of Micrococcal Nuclease (MNase, NEB) and 6 µl of the Ribolock RNase inhibitor (Thermo Scientific) for 1 h at 25°C with continuous shaking at 450 rpm. The lysates were then layered onto 10–40% linear sucrose density gradients in lysis buffer and centrifuged at 256,000 g for 3 h at 4°C. Five hundred µl gradient fractions were collected by continuously monitoring the absorbance at 260 nm. The RNA was extracted from fractions containing 70S ribosomes with phenol-chloroform-isooamyl alcohol (25:24:1), and precipitated with ethanol. The samples were then treated with DNase I (TURBOTM™ DNase, Thermo Scientific) and separated on a 15% polyacrylamide gel containing 8M urea. Ribosome protected mRNA fragments (ribosomal footprints) ranging in size of 20–40 nucleotides were removed and eluted from the polyacrylamide gel by overnight incubation in elution buffer (0.3 M NaOAc, 1 mM EDTA) at 4°C, which was followed by an additional round of phenol-chloroform-isooamyl alcohol (25:24:1) extraction and ethanol precipitation. The quality of RNA samples was subsequently analyzed with a 2100 Bioanalyzer and an Aligned RNA 6000 Pico Kit (Agilent Technologies). The RNA was further processed into cDNA libraries with NEBNext™ Small RNA Library Prep Set for Illumina® and their quality was assessed with the 2100 Bioanalyzer and a High Sensitivity DNA Kit (Agilent Technologies). Pipin Prep™ was used to purify the 140–160 bp cDNA products which corresponded to adapter-ligated 20–40 nucleotide long ribosomal footprints. RNA sequencing and data processing was performed as described above. The raw sequencing data were deposited in the ENA under accession number PRJEB41027.

RESULTS AND DISCUSSION

Quality Assessment and Data Analysis

To determine the effect of colistin and tobramycin on gene expression, parallel RNA-seq and Ribo-seq experiments were performed with planktonically grown PA14. The cultures reached OD$_{600}$ of 2 approximately 2 h after exposure to the antibiotics, as can be inferred from Supplementary Figure 1. As a control, total RNA and ribosome protected mRNA fragments (ribosomal footprints) were isolated from cultures grown without antibiotics. As the number of ribosomal footprint sequencing reads have been shown to correlate with those obtained from RNA-seq experiments (Ingolia et al., 2009), we first determined the representative gene expression correlations between RNA-seq and Ribo-seq. The number of RNA-seq and
Ribo-seq sequencing reads were normalized (BaseMean), and the Spearman correlation value (ρ-value) between them was assessed for each condition (controls, colistin and tobramycin treatment). The correlation coefficient between the average Ribo-seq and RNA-seq BaseMean expression values was 0.68 for the control, 0.81 for colistin, and 0.91 for tobramycin treated samples, respectively (Figure 1). Similar ρ-values have been also reported by other studies (Blevins et al., 2018).

Next, the FC in transcript abundance between antibiotic treated and untreated samples was calculated. The following criteria were applied for differential gene expression analysis and interpretation: (i) only annotated genes deposited in the Pseudomonas genome database (Winsor et al., 2016) were considered for comparison; (ii) genes with a low expression level (less than 100 RNA-seq or 50 Ribo-seq reads) were disregarded; (iii) all data sets a p-value (adjusted for multiple testing) of 0.05 was set as a threshold for significance and (iv) the change in FC had to exceed ± 2 for a given gene to be regarded as differentially expressed. When compared with the sequencing data acquired from the non-treated samples, 2056 and 3558 genes were found to be differentially abundant in RNA-seq after exposure to colistin and tobramycin, respectively, whereas that number in Ribo-seq amounted to 1124 and 1045 (Figure 2 and Supplementary Table 1). The scatter plots depicting the correlation between RNA-seq and Ribo-seq gene FC values are shown in Figure 3. Discrepancies in the number of de-regulated genes in RNA-seq when compared to Ribo-seq data have been reported before (Blevins et al., 2018), highlighting the importance of parallel application of these methods for assessment of gene expression. Interestingly, the vast majority of genes were significantly differentially expressed solely at the transcriptional or at the translational level by colistin and tobramycin. 1546 genes were de-regulated by colistin exclusively at the transcriptional level, whereas 614 genes were only affected at the translational level. In case of tobramycin 2778 genes showed FC values that exceeded ± 2 only in the RNA-seq data, while 274 genes were differentially expressed only in the Ribo-seq data. Moreover, 173 and 75 transcripts displayed opposite FC values in the two data sets after treatment with colistin and tobramycin, respectively (Figure 2 and Supplementary Table 1). These results showed that the differentially abundant transcripts observed with RNA-seq did not highly correlate with the outcome of the Ribo-seq
analyses and *vice versa*. An explanation for this observation could be that the expression of these genes is post-transcriptionally regulated. In any case, the patterns of PseudoCAP functional class distribution of annotated transcripts with altered expression in response to colistin or tobramycin were similar for the transcriptome and translome data (Figure 4).

Known Gene Expression Responses to Colistin and Tobramycin

To validate our data, we first scrutinized an assortment of genes known to be involved in maintenance of intrinsic and/or adaptive resistance of *Pae* toward colistin and tobramycin. In the case of colistin, we assessed the expression levels of the *oprD*, *pmrA*, and *pmrB* transcripts and of genes involved in the synthesis (i) and modification of LPS (such as the *arn* operon, *pagL*, *lpxO2*, *lpxC*, and *galU*), (ii) of spermidine (*PA14_63110*–*PA14_63120*), (iii) of the short-chain dehydrogenase/reductase family protein *CprA* (*PA14_43311*) and (iv) of the MexXY (*PA14_38395-AmrB*) and MexAB-OprM efflux pumps. As anticipated, the above mentioned genes were up-regulated upon colistin treatment, with the exception of *oprD* whose expression was down-regulated (Supplementary Table 2).

In the case of tobramycin, the abundance of genes known to be involved in (i) drug modification (*aph*), (ii) target binding inhibition (*rsmE*), (iii) extrusion (*mexXY* operon anti-repressor *PA14_72210*), (iv) maintenance of the cell membrane (*groEL/ES, grpE*, and *htpX*) as well as the genes encoding the AmgR/AmgS (*OmpR/EnvZ*) TCS were scrutinized. The transcription and/or translation of all the above mentioned genes was enhanced upon tobramycin treatment (Supplementary Table 2).

At a glance, energy metabolism-, translation-, and transcription- functional classes of genes were up-regulated after colistin exposure. On the other hand, colistin appears to negatively affect the abundance of mRNAs encoding functions involved in transport of small molecules, motility and attachment. Moreover, it translationally impaired expression of membrane protein genes (Figure 4).

The functional classes representing the majority of predominantly positively affected genes by tobramycin are related to transcriptional regulators, RNA processing and translation, whereas the most down-regulated gene functions are involved in energy metabolism, carbon compound catabolism and cell wall/LPS/capsule synthesis. Interestingly, motility and attachment genes were prominently down-regulated by tobramycin at the transcriptional level, whereas amino acid biosynthesis and metabolism genes were apparently more negatively affected at the translational level (Figure 4).

To find additional players and pathways involved in colistin and/or tobramycin resistance in *Pae*, we next took a closer look at all genes which displayed a ±10 FC in transcript abundance in antibiotic treated samples in the RNA-seq and/or Ribo-seq data sets (Supplementary Table 1).

Colistin Induces Oxidative Stress Response Genes

The accepted mode of action of polymyxins, i.e., causing a lesion in the IM, has been challenged by the finding that even supra-bactericidal colistin concentrations induced minor loss of intracellular components (O’Driscoll et al., 2018). However, polymyxins are also known to elicit oxidative damage in Bacteria through the production of ROS, such as superoxide O$_2^-$, hydrogenperoxide H$_2$O$_2$ and hydroxy radicals -OH (El-Sayed Ahmed et al., 2020). Both O$_2^-$ and H$_2$O$_2$ can injure proteins that possess iron-sulfur ([Fe–S]) clusters as cofactors. The maintenance of [Fe–S] proteins is of importance as they are required for many biological processes, including protein biosynthesis, respiration, central metabolism, photosynthesis, nitrogen fixation, DNA repair, RNA modification and gene regulation (Roche et al., 2013; Kimura and Suzuki, 2015). Polymyxin induced oxidative damage has been reported for Gram-negative and Gram-positive species, including *Acinetobacter baumannii* (Sampson et al., 2012), *Pae* (Brochmann et al., 2014; Lima et al., 2019), *Bacillus subtilis*, and the natural producer *Paenibacillus polymyxa* (Yu et al., 2019). Studies performed on the Gram-positive *P. polymyxa* provided a detailed explanation of how polymyxins might lead to ROS production. It has been hypothesized that colistin stimulates the tricarboxylic acid...
(TCA) cycle through an increase in the production of isocitrate (icdA), α-ketoglutaric (sucB), and malate (mdh) dehydrogenases, which in turn leads to increased NADH production and enhanced respiration rates (Yu et al., 2019). Accordingly, the concentration of O_2^- surges intracellularly, where it can be converted to H_2O_2 by the superoxide dismutase (SOD). The sodA (Mn-SOD) and sodB (Fe-SOD) genes were up-regulated in $P. \text{polymyxa}$ in the presence of colistin (Yu et al., 2017).
while inactivation of sodB in the Gram-negative bacterium \emph{A. boumannii} augmented its susceptibility to the same drug (Heindorf et al., 2014). Moreover, the involvement of sodC (CuZn-SOD) and catalase encoding katA genes in polymyxin resistance was observed in \emph{A. boumannii} and \emph{Staphylococcus aureus}, respectively (Antonic et al., 2013; Pournaras et al., 2014).

In our study, exposure of \emph{Pae} to inhibitory concentration of colistin resulted in an up-regulation of genes involved in the oxidative stress response (Table 1 and Supplementary Table 1). These genes include \emph{ahpF} (Ochsner et al., 2000b), \emph{iscR} (\emph{PA14_14710}) (Romsang et al., 2014), the \emph{PA14_21570-PA14_21580-PA14_21590-PA14_21600} operon (Farrant et al., 2020), and \emph{PA14_22320} (Salunkhe et al., 2005). Next, we assessed whether additional genes required for alleviation of ROS were differentially expressed upon colistin treatment, but were initially not accounted for due to the set ±10 FC threshold. The catalase encoding \emph{katA} and \emph{katB} genes (Brown et al., 1999; Ma et al., 1999), as well as the gene encoding their regulator OxyR (Wei et al., 2012) were up-regulated at both the transcriptional and translational level (Table 1 and Supplementary Table 1). Moreover, the \emph{sorX} gene and the majority of genes regulated by the redox-responsive SoxR regulator (\emph{mexG}, \emph{mexH}, \emph{mexI}, \emph{PA14_16310}, and \emph{PA14_35160}) (Palma et al., 2005) displayed an increased transcript and ribosomal footprint abundance (Table 1 and Supplementary Table 1).

The toxicity of ROS-generating agents is magnified by ferrous ions (Fe\(^{2+}\)) through the Fenton reaction (Kohanski et al., 2007; Yeom et al., 2010), wherein H\(_2\)O\(_2\) is oxidized by Fe\(^{2+}\) to generate OH radicals. These can inactivate enzymes and cause DNA and membrane damage, leading to growth arrest and ultimately to cell death (Yeom et al., 2010). Thus, Bacteria generally establish a tight control on expression of iron homeostasis genes. For instance, in \emph{P. polymyxia} the levels of the transcriptional regulator Fur, which represses iron acquisition genes, are increased upon colistin treatment (Yu et al., 2017). Fe\(^{2+}\) can be directly taken up from environment or it can be generated through reduction of free intracellular ferric (Fe\(^{3+}\)) ions bound to siderophores such as pyoveridine (PVD) or pyochelin (PCH), to iron-sulfur ([Fe-s]) cluster proteins or to heme (Ochsner et al., 2000a; Ratledge and Dover, 2000; Wandersman and Delepelaire, 2004; Cartron et al., 2006). Therefore, we also scrutinized the levels of transcripts encoding genes for iron acquisition and storage upon exposure to colistin. As judged from the RNA-seq data, the genes required for PVD biosynthesis and transport (Lamont and Martin, 2003), for heme uptake (\emph{has} locus; Ochsner et al., 2000a), the Feo system of Fe\(^{2+}\) uptake and the TonB2-ExbB1-ExbD1 complex (Zhao and Poole, 2000), which serves as an energy coupler for active iron transport across the outer membrane, were down-regulated (Table 1 and Supplementary Table 1). In addition, the majority of these genes was apparently not efficiently translated in neither the control nor in the colistin treated samples (≤50 Ribo-seq reads). Visual inspection of their sequencing profiles in the UCSC Genome Browser (Wolfinger et al., 2015) revealed a very low

Table 1 Gene expression response of \emph{PA14} grown in the presence of colistin versus untreated control.

Gene name	Gene ID	Gene product	RNA-seq FC\(^{1}\)	Ribo-seq FC\(^{1}\)
Oxidative stress response genes				
ahpF	PA14_01720	Alkyl hydroperoxide reductase	52.54\(^{2}\)	4.99
katA	PA14_09150	Catalase	8.45	4.75
mexI	PA14_09520	RND efflux transporter	2.31	2.5
mexH	PA14_09530	RND efflux membrane fusion protein	3.36	ND\(^{3}\)
mexG	PA14_09540	Hypothetical protein	4.7	4
PA14_14710	R14_14710	R14_14710	9.31	17.2
PA14_16310	R14_16310	MFS permease	22.54	3.98
PA14_21570	R14_21570	Hypothetical protein	12.84	8.05
PA14_21580	R14_21580	Hypothetical protein	15.15	6.37
PA14_21590	R14_21590	Hypothetical protein	10.72	9
PA14_21600	R14_21600	Hypothetical protein	9.95	6.61
PA14_22320	R14_22320	Hypothetical protein	10.1	3.97
PA14_35160	R14_35160	Hypothetical protein	4.89	2.74
soxR	PA14_35170	Redox-sensing activator of soxS	3.86	3.02
PA14_53300	PA14_53300	Alkyl hydroperoxide reductase ApoB	106.45	ND
sodB	PA14_56780	Cation-transporting P-type ATPase	9.57	ND
katB	PA14_61040	Superoxide dismutase	9.26	2.91
oxyR	PA14_70560	LysR family transcriptional regulator	2.43	2.72
Iron homeostasis genes				
exbB	PA14_02500	Transport protein ExbB	–2.93	X\(^{4}\)
exdB	PA14_02510	Transport protein ExbD	–10.34	X
pchA	PA14_09210	Salicylate biosynthesis	–3.35	17.28
pchB	PA14_09220	Isochorismate-pyruvate lyase	–3.09	13.26
pchC	PA14_09230	Pyochelin biosynthetic protein PchC	–2.35	6.34
pchD	PA14_09240	Pyochelin biosynthetic protein PchD	–6.01	ND
pchR	PA14_09260	Transcriptional regulator PchR	ND	4.48
pchE	PA14_09270	Dihydroaeruginic acid	ND	6.47
pchF	PA14_09280	Pyochelin synthetase	–2.56	11.04
pchG	PA14_09290	Pyochelin biosynthetic protein PchG	–2.25	13.01
pchH	PA14_09300	ABC transporter	–3.52	9.05
pchl	PA14_09320	ABC transporter	–2.91	13.46
fptA	PA14_09340	FeIII-pyochelin outer	–4.70	7.57
PA14_20000	PA14_20000	Transmembrane sensor	–11.29	X
hasR	PA14_20010	Heme uptake outer	–32.17	X
hasAp	PA14_20020	Heme acquisition protein	–1282.44	X
hasD	PA14_20030	Transport protein HasD	–38.16	X

\(^{1}\)\text{RNA-seq FC and Ribo-seq FC for up-regulated genes are shown.}

\(^{2}\)\text{The fold change (FC) was calculated using the Ribo-seq data.}

\(^{3}\)\text{The fold change was not significant.}

\(^{4}\)\text{The expression was not detected.}

(Continued)
Gene name	Gene ID	Gene product	RNA-seq Ribo-seq
hasE	PA14_20040	Metalloprotease secretion protein	FC \(\leq 10 \)
hasF	PA14_20050	Outer membrane protein	FC \(\leq 10 \)
pvdS	PA14_33260	Extracytoplasmic-function sigma-70 factor	FC \(\leq 10 \)
pvdG	PA14_33270	Protein PvdG	FC \(\leq 10 \)
pvdL	PA14_33280	Peptidase synthase	FC \(\leq 10 \)
PA14_33420	Hydrolyase	FC \(\leq 10 \)	
PA14_33610	Peptide synthase	FC \(\leq 10 \)	
pvdJ	PA14_33630	Protein PvdJ	FC \(\leq 10 \)
pvdD	PA14_33650	Pyoverdine synthase D	FC \(\leq 10 \)
fpvA	PA14_33880	Ferryperoxidase receptor	FC \(\leq 10 \)
pvdE	PA14_33890	Pyoverdine biosynthesis protein PvdE	FC \(\leq 10 \)
pvdF	PA14_33700	Pyoverdine synthetase F	FC \(\leq 10 \)
pvdO	PA14_33710	Protein PvdO	FC \(\leq 10 \)
pvdN	PA14_33720	Protein PvdN	FC \(\leq 10 \)
PA14_33730	Dippeptidase	FC \(\leq 10 \)	
opmQ	PA14_33750	Outer membrane protein	FC \(\leq 10 \)
PA14_33760	ABC transporter	FC \(\leq 10 \)	
PA14_33780	Transmembrane sensor	FC \(\leq 10 \)	
pvdA	PA14_33810	L-ornithine N5-oxygenase	FC \(\leq 10 \)
pvdQ	PA14_33820	Penicillin acylase-related protein	FC \(\leq 10 \)
feoC	PA14_56670	Hypothetical protein	FC \(\leq 10 \)
feoB	PA14_56680	Ferrous iron transport protein B	FC \(\leq 10 \)
feoA	PA14_56690	Ferrous iron transport protein A	FC \(\leq 10 \)

MexT regulon genes

Gene name	Gene ID	Gene product	RNA-seq Ribo-seq
PA14_22420	Hypothetical protein	FC \(\leq 10 \)	
PA14_22740	Hypothetical protein	FC \(\leq 10 \)	
PA14_28410	Hypothetical protein	FC \(\leq 10 \)	
mexF	PA14_32390	RND multidrug efflux transporter MexF	FC \(\leq 10 \)
mexE	PA14_32400	RND multidrug efflux membrane fusion protein MexE	FC \(\leq 10 \)
PA14_32480	Hypothetical protein	FC \(\leq 10 \)	
PA14_32490	Hypothetical protein	FC \(\leq 10 \)	
PA14_39060	Hypothetical protein	FC \(\leq 10 \)	
PA14_39420	Hypothetical protein	FC \(\leq 10 \)	
PA14_41190	Hypothetical protein	FC \(\leq 10 \)	
PA14_56620	Hypothetical protein	FC \(\leq 10 \)	
PA14_56640	Hypothetical protein	FC \(\leq 10 \)	
PA14_64530	Hypothetical protein	FC \(\leq 10 \)	

Anaerobic respiratory chain genes

Gene name	Gene ID	Gene product	RNA-seq Ribo-seq
nirN	PA14_06650	c-type cytochrome	FC \(\leq 10 \)
nirE	PA14_06660	Uroporphyrin-III c-methyltransferase	FC \(\leq 10 \)
nirJ	PA14_06670	Heme d1 biosynthesis protein NirJ	FC \(\leq 10 \)

Efflux pump genes

Gene name	Gene ID	Gene product	RNA-seq Ribo-seq
mexJ	PA14_16800	Efflux transmembrane protein	FC \(\leq 10 \)
mexK	PA14_16820	Efflux transmembrane protein	FC \(\leq 10 \)
oprJ	PA14_60820	Outer membrane protein OprJ	FC \(\leq 10 \)
mexD	PA14_60830	Multidrug efflux RND transporter MexD	FC \(\leq 10 \)
mexC	PA14_60850	Multidrug efflux RND membrane fusion protein	FC \(\leq 10 \)

Genes known to be up-regulated by polymyxins or in polymyxin resistant Pae strains

Gene name	Gene ID	Gene product	RNA-seq Ribo-seq
PA14_24360	Hypothetical protein	FC \(\leq 10 \)	
PA14_34170	Hypothetical protein	FC \(\leq 10 \)	
PA14_41280	Beta-lactamase	FC \(\leq 10 \)	
PA14_41290	Hypothetical protein	FC \(\leq 10 \)	
PA14_63220	Hypothetical protein	FC \(\leq 10 \)	

1. FC, fold-change, p-value \(\leq 0.05 \).
2. Genes with FC \(\leq -10 \) or \(\geq 10 \) are represented in bold.
3. ND, not differentially expressed, \(-2 \leq FC \leq 2 \) and/or p-value \(\geq 0.05 \).
4. X, not efficiently translated in the control and antibiotic treated samples, Ribo-seq BaseMean \(\leq 50 \).

(Continued)
ribosomal coverage (Supplementary Figure 2), which might be caused by the applied iron rich culturing conditions. For example, siderophore synthesis in *Pseudomonas* sp. is fully inhibited at >4–10 μM iron (Meyer, 1978; Dumas et al., 2013), a concentration far below of what was used in our experimental setup (100 μM FeSO₄). Counterintuitively, the genes for pyochelin synthesis and uptake are apparently translated in the presence of colistin (Table 1 and Supplementary Table 1). As pyochelin has a weaker affinity for iron when compared with pyoveridine (Dumas et al., 2013), ongoing synthesis could be necessary to meet sufficient metabolic requirements for iron.

In most Gram-negative Bacteria the ferric uptake regulator Fur complexed with Fe²⁺ is responsible for preventing the synthesis of PVD and PCH in iron replete conditions (Ochsn and Vasil, 1996; Vasil and Ochsner, 1999). Analogously to *P. polymixa*, fur was slightly up-regulated in both the RNA-seq and Ribo-seq data (Supplementary Table 1). Therefore, an explanation for the apparent translation of the PCH genes remains elusive.

An additional link between colistin resistance and iron homeostasis can be found in the increased synthesis of PA14_04180 (Table 1 and Supplementary Table 1), a putative periplasmic protein with a bacterial oligonucleotide/oligosaccharide-binding (OB-fold) domain, which can bind cationic ligands (Ginalska et al., 2004). Gene PA14_04180 was found to be regulated by the calcium responsive TCS CarS/CarR and the ferrous iron responsive BqsS/BqsR TCS (Kreamer et al., 2012; Guragain et al., 2016). The BqsS/BqsR system contributes to cationic stress tolerance as it is regulating the expression of several genes with known or predicted functions in polyamine biosynthesis/transport or polymyxin resistance in *Pae* (i.e., *oprH*, and PA14_63110) (Kreamer et al., 2015). Moreover, a periplasmic OB-fold protein OmdA, similar to PA14_04180, is controlled by the PmrA/PmrB TCS and was found to confer resistance to polymyxin B (Pilonicta et al., 2009).

In contrast to *P. polymixa* (Yu et al., 2019), we did not notice an up-regulation of TCA cycle genes or drastic changes in metabolic requirements for iron. For example, the nitrate reductase, a complex that catalyzes the first step of denitrification, were down-regulated after colistin treatment (Table 1 and Supplementary Table 1). It is possible that the ParR/ParS TCS positively regulates several genes involved in anaerobic respiration (*nirC*, *norC*, *norB*, *nosZ*, and *nosL*) (Fernández et al., 2010), however the reasons for activating the anaerobic respiratory chain in presence of colistin remain to be elucidated.

Colistin Induced Up-Regulation of the MexT Regulon

Colistin caused a significant up-regulation of the PA14 genes PA14_22420, PA14_22740, PA14_28410, mexF, mexE, PA14_32480, PA14_32490, PA14_39060, PA14_39420, PA14_41990, PA14_56620, PA14_56640, and PA14_64530 (Table 1 and Supplementary Table 1), all of which belong to the MexT regulon (Tian et al., 2009a; Hill et al., 2019). MexT is a transcriptional regulator of the LysR family known to control the expression of pathogenicity, virulence and antibiotic resistance determinants in *Pae* (Köhler et al., 1997a,b; Tian et al., 2009a; Huang et al., 2019). MexT regulates gene expression either directly through binding to the promoter region of distinct target genes, or indirectly through the activation of the MexEF-OprN efflux pump (Tian et al., 2009a;b; Olivares et al., 2012). Furthermore, MexT is a redox-responsive transcriptional activator implicated in diamide stress tolerance, in defense against the innate immune system-derived oxidant hypochlorous acid and against nitrosative stress (Fétar et al., 2011; Fargier et al., 2012; Farrant et al., 2020). Thus, the observed activation of MexT regulated genes might be a result of a defense mechanism being triggered against oxidative stress that arises as a consequence of colistin activity. As mentioned above, the denitrification pathway (*nir*, *nor*, and *nos* genes) was up-regulated in the presence of colistin (Table 1 and Supplementary Table 1), hence it is tempting to speculate whether this antibiotic can additionally inflict nitrosative stress to *Pae*. Moreover, Wang et al. (2013) showed that the deletion of *parK* and *parS* in *Pae* strain PA01 negatively impacts the transcript abundance of genes belonging to the MexT regulon, without affecting the expression levels of mexT.

Colistin Impacts the AlgU Regulon

Schulz et al. (2015) predicted that the primary regulon of the alternative sigma factor σ²² (*AlgU or AlgT*) in PA14 comprises 341 genes, while their mRNA profiling approach uncovered 222 genes that were down-regulated in an *algU* deletion- and up-regulated in an *algU* overexpressing strain, or vice versa. Our RNA-seq and Ribo-seq data sets show that colistin caused a change in expression at the transcriptional and/or the translational level of 141 out of those 222 AlgU-dependent genes (Supplementary Table 3). Envelope stress inducing agents cause proteolytic degradation of the AlgU anti-sigma factor MucA through regulated intramembrane proteolysis (RIP), which leads to the release of AlgU from the IM, and ultimately to the activation of the AlgU regulon (Wood et al., 2006; Damron...
and Goldberg, 2012). It is possible that the genes controlled by AlgU play a significant role in colistin susceptibility in Pae, as polymixinys have long been implicated in triggering envelope stress in Gram-negative Bacteria. As the transcription of algU itself was only slightly increased (2.65-fold) upon exposure to colistin (Supplementary Table 1), the regulation of the AlgU activity through RIP might explain the observed alterations in expression of the AlgU regulon. In view of our studies, we compared the susceptibility toward colistin of PA14 with an isogenic in frame algU deletion mutant. When compared with the PA14 WT strain, the minimal inhibitory concentration of colistin for PA14 was approximately fourfold reduced (Supplementary Figure 3), showing that the AlgU-dependent response counteracts the deleterious effects of colistin. In line with our observations, Murray et al. (2015) reported that a transposon insertion in algU affects the fitness of Pae in the presence of polymyxin B.

Colistin Affects Multiple Efflux-Pump Genes

Besides the aforementioned MexXY-OprM, MexAB-OprM, MexEF-OprN, and MexGH1-OmpD efflux pumps, a strong colistin-dependent induction of the mexCD-oprJ and mexJK operons was observed (Table 1 and Supplementary Table 1). Expression of mexCD-oprJ was shown to be enhanced by polymyxin B in an AlgU-dependent manner (Fraud et al., 2008), whereas the MexJK efflux system has so far not been linked to polymyxin susceptibility.

Tobramycin Down-Regulates Amino Acid Catabolism and Lower Tricarboxylic Acid Cycle Genes

The insertional inactivation of the genes encoding the Nuo and Nqr dehydrogenases was shown to increase tobramycin resistance of Pae (Schurek et al., 2008; Kindrachuk et al., 2011). It was hypothesized that their inactivation causes a reduction in the proton motive force and energy production, hence limiting the active uptake of tobramycin. The nuo and nqr genes were among the most down-regulated genes in the RNA-seq and Ribo-seq data after tobramycin treatment (Table 2 and Supplementary Table 1).

The catalytic activities of the isocitrate dehydrogenase Idh, the dihydrolipoamide succinyltransferase SucB and the aconitate hydratase PA14_53970 result in an increased NADH content and promote cellular respiration (Kohanski et al., 2007; Meylan et al., 2017). Upon tobramycin treatment, a down-regulation was observed for these genes of the lower part of the tricarboxylic acid (TCA) cycle (idh, sucB, and PA14_53970) (Table 2 and Supplementary Table 1). The diminished synthesis of enzymes of the lower part of TCA cycle upon tobramycin treatment is in agreement with a recent study, which suggested that Pae can bypass the decarboxylation steps of the cycle to reduce the NADH content, thus decreasing energy production. Growth of Pae on glyoxylate as sole carbon source leads to the activation of this bypass, and consequently an increase in tobramycin resistance (Meylan et al., 2017).

TABLE 2 | Gene expression response of PA14 grown in the presence of tobramycin versus untreated control.

Gene name	Gene ID	Gene product	RNA-seq FC1	Ribo-seq FC
Energy metabolism and tricarboxylic acid cycle cycle				
PA14_06800	PA14_06800	Hypothetical protein	18.422	X3
PA14_19900	PA14_19900	Leucine dehydrogenase	–104.77	–4.45
pdhB	PA14_19910	Pyruvate dehydrogenase E1 component beta chain	–94.26	–2.53
PA14_19920	PA14_19920	Branched-chain alpha-keto acid dehydrogenase subunit E2	–78.9	X
nqrA	PA14_25280	N(α-)-translocating NADH-quinone reductase subunit A	6.06	ND
nqrB	PA14_25305	N(α-)-translocating NADH-quinone reductase subunit B	ND	–4.6
nqrC	PA14_25320	N(α-)-translocating NADH-quinone reductase subunit C	–2.08	–2.66
nqrD	PA14_25330	N(α-)-translocating NADH-quinone reductase subunit D	–5.14	–3.25
nqrE	PA14_25340	N(α-)-translocating NADH-quinone reductase subunit E	–7.06	–2.51
nqrF	PA14_25350	N(α-)-translocating NADH-quinone reductase subunit F	–9.6	ND
nuoN	PA14_29850	NADH dehydrogenase subunit N	–20.61	–13.71
nuoM	PA14_29860	NADH dehydrogenase subunit M	–24.8	–3.99
nuoL	PA14_29880	NADH dehydrogenase subunit L	–25.56	–3.4
nuoK	PA14_29890	NADH dehydrogenase subunit K	–8.0	–6.97
nuoJ	PA14_29900	NADH dehydrogenase subunit J	–5.16	–15.98
nuoI	PA14_29920	NADH dehydrogenase subunit I	–9.55	–13.6
nuoH	PA14_29930	NADH dehydrogenase subunit G	–10.0	–4.88
nuoG	PA14_29940	NADH dehydrogenase subunit T	–46.39	–8.11
nuoF	PA14_29970	NADH dehydrogenase I subunit F	–13.36	–8.16
nuoE	PA14_29980	NADH dehydrogenase subunit E	–13.55	–5.35
icd	PA14_30190	Isocitrate dehydrogenase	–3.09	ND
sucD	PA14_43940	Succinyl-CoA synthetase subunit alpha	–9.39	–3.27
sucC	PA14_43950	Succinyl-CoA synthetase subunit beta	–3.73	ND
lpdG	PA14_43970	Dihydrolipoamide dehydrogenase	–16.47	–5.26
sucB	PA14_44000	Dihydrolipoamide succinyltransferase	–10.98	–9.15
sucA	PA14_44010	2-oxogluturate dehydrogenase E1	–4.27	–4.12

(Continued)
Gene name	Gene ID	Gene product	RNA-seq Ribo-seq	FC¹	FC¹
PA14_53970	PA14_53970	Aconitate hydratase	-18.05	-8.09	
Phenylalanine/Tyrosine catabolism					
fahA	PA14_38530	Fumarylacetoacetase	-30.98	-2.32	
maiA	PA14_38550	Maleylacetoacetate isomerase	-48.44	-3.57	
phhB	PA14_53000	Pterin-4-alpha-carbinolamine dehydratase	-14.76	-2.47	
Arginine catabolism					
PA14_57390	UDP-murF	6-diaminopimelolate dehydratase	-13.94	-2.78	
PA14_57380	Phospho-mraY				
PA14_57340	UDPdiphospho-murC				
PA14_57330	UDP-gnyA				
PA14_38460	Acyl-CoA gnyB				
PA14_47100	Threonine dehydratase ilvA2				
PA14_47100	Threonine dehydratase				
PA14_53010	Aromatic amino acid aminotransferase phhC	-104.5	-6.56		
PA14_68300	Arginine/ornithine antiporter				
PA14_68340	Ornithine				
PA14_68330	Arginine deiminase arcA				
PA14_53000	Pterin-4-alpha-glutamate synthase arcB				
PA14_53970	Aconitate hydratase				
Leucine/Valine/Isoleucin degradation and biosynthesis					
PA14_35490	Dihydroxyoamide dehydrogenase				
PA14_35500	Branched-chain alpha-keto acid dehydrogenase subunit	-91.67	-5.51		
bkdA2	PA14_35520	2-oxoisovalerate dehydrogenase subunit beta	-104.31	-4.84	
bkdA1	PA14_35530	2-oxoisovalerate dehydrogenase subunit alpha	-5.23	X	
gnyR	PA14_38430	Regulatory gene of gnyRDBHAL cluster	-12.88	ND	
gnyD	PA14_38440	Citronellol-CoA dehydrogenase. GnyD	-30.42	-2.32	
gnyB	PA14_38460	Acyl-CoA carboxyltransferase subunit beta	-27.71	X	
gnyH	PA14_38470	Gamma-carboxygeranyl-CoA hydratase	-33.85	-3.73	
gnyA	PA14_38480	Alpha subunit of geranyl-CoA carboxylase. GnyA	-26.11	X	
Peptidoglycan biosynthesis					
PA14_53970	D-alanine–D-alanine ligase	-151.66	-8.63		
PA14_53330	UDP-N-acetylglucosamine-l-alanine ligase	-78.75	-9.99		
murG	PA14_57340	UDP-Dphospho-l-muramoyl-glutamate-pentapeptide synthetase	-44.2	-8.27	
murD	PA14_57370	UDP-N-acetylglucosaminyl-l-alanyl-0-glutamate synthetase	-46.8	-10.56	
mraY	PA14_57380	Phospho-N-acetylglucosaminyl-pentapeptide-transferase	-13.67	-2.18	
murF	PA14_57390	UDP-N-acetylglucosaminyl-l-alanyl-0-glutamate-pentapeptide	-11.12	X	
(Continued)	(Continued)	(Continued)	(Continued)	(Continued)	(Continued)
Gene name	Gene ID	Gene product	RNA-seq Ribo-seq		
-----------	-----------	---	------------------		
			FC¹	FC	
flagJ	PA14_50380	Flagellar rod assembly protein/muramidase FlgJ	−9.17	−4.58	
flagI	PA14_50410	Flagellar basal body P-ring protein	−6.22	X	
flagH	PA14_50420	Flagellar basal body L-ring protein	−3.99	X	
flagG	PA14_50430	Flagellar basal body rod protein FlgG	ND	2.13	
flagF	PA14_50440	Flagellar basal body rod protein FlgF	ND	3.54	
pqsE	PA14_51380	Quinolone signal response protein	−80.7	−2.98	
pqsD	PA14_51390	3-oxoacyl-ACP synthase	−90.01	−5.86	
pqsC	PA14_51410	PqsC	−44.86	−4.06	
pqsB	PA14_51420	PqsB	−20.71	−2.34	
pqsA	PA14_51430	PqsA	−3.73	X	
PA14_55780	Phosphate transporter	−46.70	X		
PA14_55790	Two-component system	−15.49	−2.70		
PA14_55800	Hypothetical protein	−2.21	X		
PA14_55810	Hypothetical protein	−2.73	−2.00		
PA14_55820	Two-component response regulator	−25.16	X		
PA14_55840	Hypothetical protein	−84.76	X		
PA14_55850	Hypothetical protein	−68.52	X		
PA14_55860	Plus assembly protein	−98.84	X		
PA14_55880	Hypothetical protein	−105.85	X		
PA14_55900	Type II secretion system protein	−36.82	−9.16		
PA14_55920	Hypothetical protein	−15.84	−2.00		
PA14_55930	Type II secretion system protein	−2.75	ND		
PA14_55940	Plus assembly protein	−8.25	−7.96		
piIC	PA14_55870	Type 4 fimbrial biogenesis protein piC	−2.41	ND	
piID	PA14_55877	Type 4 preplin peptide PiD	−11.48	ND	
coaE	PA14_55878	Deyphospho-CoA kinase	ND	2.48	
fimU	PA14_60280	Type 4 fimbrial biogenesis protein FimU	−2.46	ND	
piIW	PA14_60290	Type 4 fimbrial biogenesis protein PiW	−11.99	X	
piIX	PA14_60300	Type 4 fimbrial biogenesis protein PiX	−9.12	X	
piIY1	PA14_60310	Type 4 fimbrial biogenesis protein PiY1	−4.06	ND	
piIE	PA14_60320	Type 4 fimbrial biogenesis protein PiE	−3.43	−2.53	
PA14_65520	Hypothetical protein	−21.34	−3.44		
PA14_65540	Hypothetical protein	−4.26	X		
estA	PA14_67510	Esterase EstA	−11.29	−2.17	
ABC transporters and Sha antipporter					
opuCA	PA14_13580	ABC transporter ATP-binding protein	−28.83	−7.05	
opuCB	PA14_13590	ABC transporter permease	−6	−4.83	

Stringent response and toxin-antitoxin systems

Gene name	Gene ID	Gene product	RNA-seq Ribo-seq		
			FC¹	FC	
opuCD	PA14_13600	ABC transporter substrate-binding protein	−4.73	−4.41	
nppA2	PA14_41130	ABC transporter substrate-binding protein	−1.97	X	
nppB	PA14_41140	Peptidyl nucleoside antibiotic ABC transporter	−10.23	X	
nppC	PA14_41150	Peptidyl nucleoside antibiotic ABC transporter	−30.15	−3.71	
nppD	PA14_41160	Peptidyl nucleoside antibiotic ABC transporter	−22.25	−4.98	
fabI	PA14_41170	NADH-dependent enoyl-ACP reductase	−21.89	−5.27	
phaG	PA14_50060	ShaA	−44.11	−3.99	
phaF	PA14_50090	ShaB	−29.33	−3.77	
phaE	PA14_50700	ShaC	−12.23	−2.9	
phaD	PA14_50710	ShaD	−7.08	−5.88	
phaC	PA14_50720	ShaE	−8.48	−7.78	
dppC	PA14_58450	Dipeptide ABC transporter permease DppC	−13.03	−3.55	
dppD	PA14_58470	Dipeptide ABC transporter ATP-binding protein	−34.43	−10.45	
dppF	PA14_58490	Dipeptide ABC transporter ATP-binding protein	−21.5	−4.19	

Transcription and translation

Gene name	Gene ID	Gene product	RNA-seq Ribo-seq		
			FC¹	FC	
tufB	PA14_08680	Elongation factor Tu	92.01	3.09	
rplC	PA14_08850	5OS ribosomal protein L3	27.97	ND	
rplD	PA14_08860	5OS ribosomal protein L4	23.35	2.05	
tyrS	PA14_10420	Tyrosyl-RNA synthetase	37.72	11.48	
orf2	PA14_12350	(dimethylallyl)adenosine tRNA methylotransferase	23.15	2.17	
rimM	PA14_15980	16S rRNA-processing protein RimM	55.59	5.82	
trmD	PA14_15990	tRNA (guanine-V(1))-methyltransferase	52.24	4.74	
rpsB	PA14_17060	3OS ribosomal protein S2	106.77	2.27	
deaD	PA14_27370	ATP-dependent RNA helicase	122.76	2.02	
infC	PA14_28660	Translation initiation factor IF-3	12.93	2.59	
yadB	PA14_62510	Glutamyl-tRNA/Asp synthetase	34.45	4.5	
yhbC	PA14_62780	Hypothetical protein	14.37	ND	
smbB	PA14_63060	SsrA-binding protein	12.7	2.36	
rpmE	PA14_66710	5OS ribosomal protein L31	316.32	ND	
prfH	PA14_72200	Peptide chain release factor-like protein	491.76	5.65	
rnpA	PA14_73420	Ribonuclease P	164.46	16.33	

(Continued)
Amino acid catabolism promotes the production of intermediate metabolites like fumarate, pyruvate, acetyl-CoA and α-ketoglutarate that fuel the TCA cycle, and thus could promote aminoglycosides uptake. Indeed, Pae responds to tobramycin by down-regulating genes encoding enzymes required for glycinic and serine (glyA2, gcvT2, sdaA), phenylalanine (pheB, pheC, maIA, fahA), arginine (arcABD) and branched-chain amino acid (bdkA1A2B-lpdV, gnyRBDDH and ldh) catabolism (Table 2 and Supplementary Table 1).

Moreover, we also noted that the utilization pathways of D-alanine for peptidoglycan synthesis and transport (ddl, mraY murG, murG, murD, murE) and for glycogen metabolism (PA14_36570, PA14_36580, PA14_36590, PA14_36605, PA14_36620, PA14_36630, glgB, PA14_36730) were down-regulated after exposure to tobramycin (Table 2 and Supplementary Table 1).

Tobramycin Impacts the Abundance of Genes Involved in Translation

Tobramycin promotes mistranslation, stop codon read-through and ribosome stalling (Aboa et al., 2002; Thompson et al., 2002; Harms et al., 2003; Vioque and Cruz, 2003). A number of genes related to translation were strongly up-regulated in the RNA-seq and Ribo-seq data, including the genes encoding translation initiation factor 3 (infC), ribosomal proteins (rpsB, rplC, rplD), a putative ribosomal maturation factor (yhbC), elongation factor EF-Tu (tufB) and ribonucleotide P (rnpA) (Table 2 and Supplementary Table 1).

Tobramycin Impacts the Abundance of Genes Involved in Translation

Tobramycin promotes mistranslation, stop codon read-through and ribosome stalling (Aboa et al., 2002; Thompson et al., 2002; Harms et al., 2003; Vioque and Cruz, 2003). A number of genes related to translation were strongly up-regulated in the RNA-seq and Ribo-seq data, including the genes encoding translation initiation factor 3 (infC), ribosomal proteins (rpsB, rplC, rplD), a putative ribosomal maturation factor (yhbC), elongation factor EF-Tu (tufB) and ribonucleotide P (rnpA) (Table 2 and Supplementary Table 1).

Tobramycin Impacts the Abundance of Genes Involved in Translation

Tobramycin promotes mistranslation, stop codon read-through and ribosome stalling (Aboa et al., 2002; Thompson et al., 2002; Harms et al., 2003; Vioque and Cruz, 2003). A number of genes related to translation were strongly up-regulated in the RNA-seq and Ribo-seq data, including the genes encoding translation initiation factor 3 (infC), ribosomal proteins (rpsB, rplC, rplD), a putative ribosomal maturation factor (yhbC), elongation factor EF-Tu (tufB) and ribonucleotide P (rnpA) (Table 2 and Supplementary Table 1).

Tobramycin Impacts the Abundance of Genes Involved in Translation

Tobramycin promotes mistranslation, stop codon read-through and ribosome stalling (Aboa et al., 2002; Thompson et al., 2002; Harms et al., 2003; Vioque and Cruz, 2003). A number of genes related to translation were strongly up-regulated in the RNA-seq and Ribo-seq data, including the genes encoding translation initiation factor 3 (infC), ribosomal proteins (rpsB, rplC, rplD), a putative ribosomal maturation factor (yhbC), elongation factor EF-Tu (tufB) and ribonucleotide P (rnpA) (Table 2 and Supplementary Table 1).
Figure 5 | Depiction of novel functions/pathways revealed in this study that are de-regulated upon (A) colistin and (B) tobramycin treatment. Major genes/pathways that are down-regulated and up-regulated based on the RNA-seq and/or Ribo-seq data are highlighted in rose and green, respectively. Positive- and negative regulation of gene expression is denoted by arrows and blocked lines, respectively. RIP - regulated intramembrane proteolysis.
tolerance to Pae and E. coli. They further reported that in E. coli Obg-mediated tolerance requires activation of the type I hokB-sokB TA system. Although a hokB ortholog is not present in Pae, we found multiple genes associated with type II TA systems including HigA (VapI) and ParE-ParD (PA14_01510-PA14_01520) that are up-regulated in the presence of tobramycin (Table 2 and Supplementary Table 1).

Comparison With Previous Transcriptome Studies

When compared with previous Pae transcriptome studies performed in the presence of polymyxins and tobramycin (Cummins et al., 2009; Fernández et al., 2010; Kindrachuk et al., 2011; Murray et al., 2015; Han et al., 2019; Ben Jeddou et al., 2020) this study revealed a larger number of de-regulated genes. Despite some variances, up-regulations concerning de-regulated genes exist. The arm operon, the speD2-speE2 (PA14_63110-PA14_63120) genes, the mexAB-oprN, the mexC, the mexXY (PA14_38395 and amrB), the galU, the cprA (PA14_43311) and the genes of unknown function PA2358 (PA14_34170), PA1797 (PA14_41280), PA14_41290 and PA4782 (PA14_63220) were also previously found to be de-regulated in response to polymyxins or in Pae strains harboring mutations that impact polymyxin resistance (Cummins et al., 2009; Fernández et al., 2010; Murray et al., 2015; Han et al., 2019; Ben Jeddou et al., 2020) (Table 1 and Supplementary Table 1). Kindrachuk et al. (2011) reported that bacteriostatic and bactericidal concentrations of tobramycin stimulate the expression of several heat shock genes and genes encoding transcriptional regulators, whereas genes involved in energy metabolism (i.e., nuo, nqr, and suc genes), motility and attachment (i.e., pil and flg genes) were down-regulated. Our RNA-seq and Ribo-seq results closely mirror these previous findings (Figure 4 and Supplementary Table 1).

The transcriptional repression of iron homeostasis- (i.e., has, pvd, pch, fpt, fpv) and sulfonate utilization genes (ssu) (Tralau et al., 2007) and an up-regulation of the denitrification pathway genes (nir, nor, nos) upon exposure to polymyxin B has been reported for PA14 grown in Mueller–Hinton broth (Ben Jeddou et al., 2020). However, this study did not reveal a positive effect on expression of oxidative stress response genes by polymyxin B. On the other hand, transcription of PA14_24360, ahpF, and ahpB was seemingly induced when PA14 was exposed to synthetic antimicrobial peptide dendrimers (Ben Jeddou et al., 2020).

CONCLUSION

In this study, SCFM was used for culturing Pae, a medium that approximates the environment in the lungs of CF patients (Palmer et al., 2007). To the best of our knowledge, no other gene profiling study has offered a more comprehensive view of Pae’s cellular responses to colistin and tobramycin, and especially under these culturing conditions.

Although the potential of colistin to instigate ROS production in Pae is known, this study revealed for the first time its impact on the expression of distinct oxidative stress response genes. Moreover, the study disclosed a colistin-dependent de-regulation of the AlgU regulon and an up-regulation of the MexT regulon taking on a previously undescribed roles in defense against polymyxin antibiotics (Figure 5).

The transcriptome and translome studies further indicated that the expression of multiple amino acid catabolism genes, lower TCA cycle genes, type II and VI secretion system genes and genes involved in motility and attachment are rewired in response to tobramycin, presumably to reduce drug uptake. Moreover, we discussed that the adverse effects of tobramycin on translation are countered through the expression of functions involved in stalled ribosome rescue, RNA methylation and type II TA systems. These findings might aid toward the optimization of strategies to increase the efficacy of these last resort drugs against Pae (Figure 5).

Moreover, our results implicate a number of hypothetical genes of unknown function in colistin and tobramycin resistance (Supplementary Table 1). Deciphering their roles could be the basis for future research to elucidate additional mechanisms of action and resistance to colistin and tobramycin.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article/Supplementary Material.

AUTHOR CONTRIBUTIONS

ACS, BL, ES, and UB conceived and designed the experiments. ACS and BL performed the experiments. ACS, BL, FA, MW, and UB analyzed the data. ACS, BL, and UB wrote the manuscript. All the authors contributed to the article and approved the submitted version.

FUNDING

The work was supported by the Austrian Science Fund (www.fwf.ac.at/en) through project P33617-B (UB and ES). ACS and BL were supported through the FWF funded doctoral program RNA-Biology W-1207.

ACKNOWLEDGMENTS

We are grateful to Petra Pusic and Marlena Rozner for their help with the RNA-seq and Ribo-seq experiments.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmicb.2021.626715/full#supplementary-material

Supplementary Figure 1 | Activity of (A) 8 µg/ml colistin and (B) 64 µg/ml tobramycin on growth of Pseudomonas aeruginosa PA14. The arrows represent
the points at which antibiotics were added to growing cultures (OD$_{600}$ of 1.7). Error bars indicate standard deviations obtained from two biological replicates.

Supplementary Figure 2 | Superimposition of the (A) tonB2-oxdB1-oxdB1, (B) fec, (C) has, and (D) pvd genes with the ribosome profiling data. In pink – open reading frames (ORF) of corresponding genes located on the negative strand of PA14 genomic DNA; in orange – ORFs of corresponding genes located on the positive strand of PA14 genomic DNA; in light green – mapped ribosomal footprints obtained from control samples, in dark green – mapped ribosomal footprints obtained from colistin treated samples.

Supplementary Figure 3 | Increased susceptibility of PA14ΔalgU toward colistin. (A) The microdilution assay was performed in duplicate with strains PA14 and PA14ΔalgU, aerobically grown in SCFM medium to an OD$_{600}$ of ~2.0. Then, 0.5 ml of the culture was mixed with 1.5 ml of SCFM medium, containing serial dilutions of colistin (concentration 4–64 µg/ml). The cultures were shaken at 37°C for 20 h and the pictures were taken. The minimal inhibitory concentrations (MICs; marked by red edging) correspond to the lowest concentration of colistin that visibly impeded growth. Control, no colistin added. (B) Graphical representation of the results shown in (A). The outcome of the duplicate assay was identical.

Supplementary Table 1 | RNA-seq and Ribo-seq differential gene expression analysis of Pae treated with colistin or tobramycin versus untreated control.

Supplementary Table 2 | Changes in transcript and ribosomal footprint abundance of genes which contribute to polymyxin and aminoglycoside resistance/susceptibility in Pae after exposure to colistin and tobramycin.

Supplementary Table 3 | Changes in transcript and ribosomal footprint abundance of genes belonging to the AlgU region in Pae (Schulz et al., 2015) in the presence of 8 µg/ml colistin.

REFERENCES

Abou, T., Ueda, K., Sunohara, T., Ogawa, K., and Aiba, H. (2002). SsrA-mediated protein tagging in the presence of miscoding drugs and its physiological role in *Escherichia coli*. Genes Cells 7, 629–638. doi: 10.1046/j.1365-2443.2002.00549.x

Anders, S., and Huber, W. (2010). Differential expression analysis for sequence count data. Genome Biol. 11:R106. doi: 10.1186/gb-2010-11-10-r106

Antonic, V., Stojadinovic, A., Zhang, B., Izadjoo, M. J., and Alavi, M. (2013). *Pseudomonas aeruginosa* induces pigment production and enhances virulence in a white phenotype variant of *Staphylococcus aureus*. Infect. Drug Resist. 6, 175–186. doi: 10.2147/IDR.S49039

Barrow, K., and Kwon, D. H. (2009). Alterations in two-component regulatory systems of *phoPQ* and pmrAB are associated with polymyxin B resistance in clinical isolates of *Pseudomonas aeruginosa*. Antimicrob. Agents Chemother. 53, 5150–5154. doi: 10.1128/AAC.00893-09

Ben Jeddou, F., Falconnet, L., Luscher, A., Siriwardena, T., Reymond, J. L., Deris, Z., et al. (2013). Modulating Disulfide Stress Resistance in *Pseudomonas aeruginosa*: all roads lead to resistance. *Emerg. Microbes Infect.* 9, 868–885. doi: 10.1080/22221751.2020.1754133

Fajardo, A., Martínez-Martin, N., Mercadillo, M., Galán, J. C., Ghiyels, B., Matthijs, S., et al. (2008). The Neglected Intrinsic Resistome of Bacterial Pathogens. *PLoS One* 3:e1619. doi: 10.1371/journal.pone.0001619

Fargier, E., Mac Aogáin, M., Mooij, M. J., Woods, D. F., Morrisey, J. P., Dobson, A. D. W., et al. (2012). MexT Functions as a Redox-Responsive Regulator Modulating Disulfide Stress Resistance in *Pseudomonas aeruginosa*. *J. Bacteriol.* 194, 3502–3511. doi: 10.1128/JB.00632-11

Kerr, H., et al. (2007). *Pseudomonas aeruginosa* to the innate immune system-derived oxidants hypochlorous acid and hypohiacyanous acid. *bioRxiv*. [Preprint]. doi: 10.1101/2020.01.09.900639

Fernández, L., Álvarez-Ortega, C., Wiegand, I., Olivares, J., Kocíncová, D., Lam, J. S., et al. (2013). Characterization of the polymyxin B resistome of *Pseudomonas aeruginosa*. Antimicrob. Agents Chemother. 57, 110–119. doi: 10.1128/AAC.01583-12

Fernández, L., Gooderham, W. J., Bains, M., McPhee, J. B., Ira, J. C., and Hancock, R. E. W. (2010). Adaptive resistance to the “last hope” antibiotics polymyxin B and colistin in *Pseudomonas aeruginosa* is mediated by the novel two-component regulatory system ParR-ParS. *Antimicrob. Agents Chemother.* 54, 3372–3382. doi: 10.1128/AAC.00242-10

Fernández, L., Jensen, H., Bains, M., Wiegand, I., Gooderham, W. J., and Hancock, R. E. W. (2012). The two-component system CprRS senses cationic peptides and triggers adaptive resistance in *Pseudomonas aeruginosa* independently of ParRS. *Antimicrob. Agents Chemother.* 56, 6212–6222. doi: 10.1128/AAC.01505-12

Petar, H., Gilmore, R., Klinoski, R., Daigle, D. M., Dean, C. R., and Poole, K. (2011). mexEF-oprE multidrug efflux operon of *Pseudomonas aeruginosa*: regulation by the MexT activator in response to nitrosative stress and chloramphenicol. *Antimicrob. Agents Chemother.* 55, 508–514. doi: 10.1128/AAC.00308-10

Fraud, S., Campigotto, A. J., Chen, Z., and Poole, K. (2008). MexCD-OprJ multidrug efflux system of *Pseudomonas aeruginosa*: involvement in chlorhexidine resistance and induction by membrane-damaging agents dependent upon the AlgU stress response sigma factor. *Antimicrob. Agents Chemother.* 52, 4478–4482. doi: 10.1128/AAC.01072-08

Gumper, H. B., Masuda, I., Frenkel-Morgenstern, M., and Hou, Y. M. (2015). Maintenance of protein synthesis reading frame by EF-P and m1G37-tRNA. *Nat. Commun.* 6:2226. doi: 10.1038/ncomms8226

Huang, H., Shao, X., Xie, Y., Wang, T., Zhang, Y., Wang, X., et al. (2019). Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathog. Dis. 67, 159–173. doi: 10.1111/1600-067X.12333

Ginalski, K., Kinch, L., Rychlewski, L., and Grishin, N. V. (2004). BOF: a novel family of bacterial OB-fold proteins. FEBS Lett. 567, 297–301. doi: 10.1016/j.febslet.2004.08.046

Gutu, A. D., Sgambati, N., Strasbourger, P., Brannon, M. K., Jacobs, M. A., Haugen, J. K., et al. (2012). BqsR/BqsS Constitute a Two-Component System That Senses Extracellular Fe(II) in Pseudomonas aeruginosa. J. Bacteriol. 194, 7658–7665. doi: 10.1128/jb.06302-12

Hassett, D. J., Schweizer, H. P., and Ohman, D. E. (1995). Pseudomonas aeruginosa sodA and sodB mutants defective in manganese- and iron-cofactored superoxide dismutase activity demonstrate the importance of the iron cofactor form in aerobic metabolism. J. Bacteriol. 177, 6330–6337. doi: 10.1128/jb.177.22.6330-6337.1995

Hassett, D. J., Woodruff, W. A., Wozniak, D. J., Vasil, M. L., Cohen, M. S., and Ohman, D. E. (1993). Cloning and characterization of the Pseudomonas aeruginosa sodA and sodB genes encoding manganese- and iron-cofactored superoxide dismutases: demonstration of increased manganese superoxide dismutase activity in alginate-producing bac. J. Bacteriol. 175, 7658–7665. doi: 10.1128/jb.175.23.7658-7665.1993

Hay, T., Freud, S., Lau, C. H. F., Gilmour, C., and Poole, K. (2013). Involvement of an ATP-dependent protease, PA0779/AsrA, in inducing heat shock in response to tobramycin in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 57, 2204–2215. doi: 10.1128/AAC.02353-12

Kong, L., Liu, Z., Hu, X., and Liu, S. (2011). Interaction of polymyxin B with ds-DNA, and determination of DNA or polymyxin B via resonance Rayleigh scattering and resonance non-linear scattering spectra. J. Bacteriol. 193, 4790–4797. doi: 10.1128/jb.05133-11

Hoffmann, S., Otto, C., Kurtz, S., Sharma, C. M., Khaitovich, P., Vogel, J., et al. (2009). Fast mapping of short sequences with mismatches, insertions and deletions using index structures. PLoS Comput. Biol. 5:e1000502. doi: 10.1371/journal.pcbi.1000502

Huang, H., Shao, X., Xie, Y., Wang, T., Zhang, Y., Wang, X., et al. (2019). An integrated genomic regulatory network of virulence-related transcriptional factors in Pseudomonas aeruginosa. Nat. Commun. 10:2931. doi: 10.1038/s41467-019-10778-w

Ingolia, N. T., Ghaemmaghami, S., Newman, J. R. S., and Weissman, J. S. (2009). Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324, 218–223. doi: 10.1126/science.1168978

Jalillar, M., van Belkum, A., Cady, K. C., Creeley, D., Shortridge, D., Blanc, B., et al. (2017). Correlation between phenotypic antibiotic susceptibility and the resistome in Pseudomonas aeruginosa. Int. J. Antimicrob. Agents 50, 210–218. doi: 10.1016/j.ijantimicag.2017.02.026

Jain, S. (2018). Emergence of Colistin Resistance among Gram Negative Bacteria in Urinary Tract Infections from Super Specialty Hospital of North India. Int. J. Infect. Dis. 73:133. doi: 10.1016/j.ijid.2018.04.3716

Jeanmot, K., Bolard, A., and Pésiat, P. (2017). Resistance to polymyxins in Gram-negative organisms. Int. J. Antimicrob. Agents 49, 526–535. doi: 10.1016/j.ijantimicag.2016.11.029

Johnson, L., Mulcahy, H., Kanevets, U., Shi, Y., and Lewenza, S. (2011). Surface-localized spermidine protects the Pseudomonas aeruginosa: outer membrane from antibiotic treatment and oxidative stress. J. Bacteriol. 194, 813–826. doi: 10.1128/jb.05230-11

Kerr, K. G., and Snelling, A. M. (2009). Pseudomonas aeruginosa: a formidable and ever-present adversary. J. Hosp. Infect. 73, 338–344. doi: 10.1016/j.jhin.2009.04.020

Kimura, S., and Suzuki, T. (2015). Iron-sulfur proteins responsible for RNA modifications. Biochim. Biophys. Acta Mol. Cell. Res. 1853, 1272–1283. doi: 10.1016/j.bbamcr.2014.12.010

Kindrachuk, K. N., Fernández, L., Bains, M., and Hancock, R. E. W. (2011). Involvement of an ATP-dependent protease, PA0779/AsrA, in inducing heat shock in response to tobramycin in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 55, 1874–1882. doi: 10.1128/AAC.00935-10

Kohanski, M., Dwyer, D., Hayete, B., Lawrence, C., and Collins, J. (2007). A common mechanism of cellular death induced by bacterial antibiotics. Cell. 130, 797–810.

Köhler, T., Epp, S. F., Curty, L. K., and Pechère, J. C. (1999). Characterization of MexT, the regulator of the MexE-MexF-OprN multidrug efflux system of Pseudomonas aeruginosa. J. Bacteriol. 181, 6300–6305. doi: 10.1128/jb.181.20.6300-6305.1999

Köhler, T., Michéa-Hamzehpoul, M., Henze, U., Gotoh, N., Curty, L. K., and Pechère, J. C. (1997a). Characterisation of MexE-MexF-OprN, a positively regulated multidrug efflux system of Pseudomonas aeruginosa. Mol. Microbiol. 23, 345–354. doi: 10.1111/j.1365-2958.1997.2281594.x

Köhler, T., Michéa-Hamzehpoul, M., Plesiat, P., Kahr, A. L., and Pechère, J. C. (1997b). Differential selection of multidrug efflux systems by quinolones in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 41, 2540–2543. doi: 10.1128/AAC.41.11.2540

Kong, L., Liu, Z., Hu, X., and Liu, S. (2011). Interaction of polymyxin B with ds-DNA, and determination of DNA or polymyxin B via resonance Rayleigh scattering and resonance non-linear scattering spectra. Microchim. Acta 173, 207–213. doi: 10.1007/s00604-011-0547-x

Kosono, S., Haga, K., Tomizawa, R., Kajiya, Y., Hatano, K., Takeda, S., et al. (2005). Characterization of a multigene-encoded sodium/hydrogen antiporter (Sha) from Pseudomonas aeruginosa. J. Bacteriol. 187, 5242–5248. doi: 10.1128/jb.187.15.5242-5248.2005

Krause, K. M., Serio, A. W., Kane, T. R., and Connolly, L. E. (2016). Aminoglycosides: an overview. Cold Spring Harb. Perspect. Med. 6:a027092. doi: 10.1101/cshperspect.a027092

Kreamer, N. N., Costa, F., and Newman, D. K. (2012). BqsR/BqsS constitute a two-component system that senses extracellular Fe(II) in Pseudomonas aeruginosa. J. Bacteriol. 194, 1195–1204. doi: 10.1128/jb.05634-11

Lamont, I. L., and Martin, L. W. (2003). Identification and characterization of novel pyoverdine synthesis genes in Pseudomonas aeruginosa. Microbiology 149, 833–842. doi: 10.1099/mic.0.26085-0
Obritsch, M. D., Fish, D. N., MacLaren, R., and Jung, R. (2004). National
Masuda, I., Matsubara, R., Christian, T., Rojas, E. R., Yadavalli, S. S., Zhang, L.,
Muller, C., Plésiat, P., and Jeannot, K. (2011). A two-component regulatory system
Mlynarcik, P., and Kolar, M. (2019). Molecular mechanisms of polymyxin
Pseudomonas fluorescens
Pae
Cianciulli Sesso et al.
Ochsner, U. A., Johnson, Z., and Vasil, M. L. (2000a). Genetics and regulation of
6766ñ6770. doi: 10.1128/JB.01318-12
Antimicrob.
β
and
10.1128/IAI.74.5.3012-3015.2006
Pletzer, D., Braun, Y., Dubiley, S., Lafon, C., Köhler, T., Page, M. G. P., et al. (2015).
Pamp, S. J., Gjermansen, M., Johansen, H. K., and Tolker-Nielsen, T. (2008).
F. M. (1995). Common virulence factors for bacterial pathogenicity in plants
Bioinformatics
68, 223ñ232. doi: 10.6016/chembiol.2016.12.015
Mlynarcik, P., and Kolar, M. (2019). Molecular mechanisms of polymyxin
resistance and detection of mcr genes. Biomed. Pap. 163, 28ñ38. doi: 10.5507/bp.2018.070
Morita, Y., Sobel, M. L., and Poole, K. (2006). Antibiotic inducibility of the
MxEx multidrug efflux system of Pseudomonas aeruginosa: involvement of the antibiotic-inducible PA5471 gene product. J. Bacteriol. 188, 1847ñ1855. doi: 10.1128/JB.188.9.1847-1855.2006
Mulcahy, H., O’Callaghan, J., O’Grady, E. P., Adams, C., and O’Gara, F. (2006). The posttranscriptional regulator RsmA plays a role in the interaction between Pseudomonas aeruginosa and human airway epithelial cells by positively regulating the type III secretion system. Infect. Immun. 74, 3012ñ3015. doi: 10.1128/IAI.74.5.3012-3015.2006
Muller, C., Pléiat, P., and Jeannot, K. (2011). A two-component regulatory system interconnects resistance to polymyxins, aminoglycosides, fluoroquinolones, and β-lactams in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 55, 1211ñ1221. doi: 10.1128/AAC.01252-10
Murray, J. L., Kwon, T., Marcotte, E. M., and Whiteley, M. (2015). Intrinsic antimicrobial resistance determinants in the superbug pseudomonas aeruginosa. MBio 6, e01603-15. doi: 10.1128/mBio.01603-15
Nasie, L., Steiner-Mordoch, S., and Schuldiner, S. (2012). New substrates on the block: clinically relevant resistances for EmrE and homologues. J. Bacteriol. 194, 6766ñ6770. doi: 10.1128/jb.01318-12
Obritsch, M. D., Fish, D. N., MacLaren, R., and Jung, R. (2004). National surveillance of antimicrobial resistance in Pseudomonas aeruginosa isolates obtained from intensive care unit patients from 1993 to 2002. Antimicrob. Agents Chemother. 48, 4606ñ4610. doi: 10.1128/AAC.48.12.4606-4610. 2004
Ochsner, U. A., Johnson, Z., and Vasil, M. L. (2000a). Genetics and regulation of two distinct haem-uptake systems, phu and has, in Pseudomonas aeruginosa. Microbiology 146, 185ñ198. doi: 10.1099/mic.0.022127-146-1ñ185
Ochsner, U. A., Vasil, M. L., Alabbagh, E., Parvatiyar, K., and Hassett, D. J. (2000b). Role of the Pseudomonas aeruginosa oxyS-recG operon in oxidative stress defense and DNA repair: oxyS-dependent regulation of katB-ankB, abpB, and abpC-abpF. J. Bacteriol. 182, 4533ñ4544. doi: 10.1128/JB.182.16.4533-4544. 2000
aeruginosa to Hydrogen Peroxide. Society 187, 2565–2572. doi: 10.1128/JB.187.8.2565

Sampson, T. R., Liu, X., Schroeder, M. R., Kraft, C. S., Burd, E. M., and Weiss, D. S. (2012). Rapid killing of Acinetobacter baumannii by polymyxins is mediated by a hydroxyl radical death pathway. Antimicrob Agents Chemother 56, 5642–5649. doi: 10.1128/AAC.05756-12

Schreiber, K., Krieger, R., Benkert, B., Eischbach, M., Arai, H., Schobert, M., et al. (2007). The anerobic regulatory network required for Pseudomonas aeruginosa nitratrepiration. J. Bacteriol. 189, 4310–4314. doi: 10.1128/JB.00240-07

Schulz, S., Eckweiler, D., Bielecka, A., Nicolai, T., Franke, R., Dötsch, A., et al. (2015). Elucidation of Sigma Factor-Associated Networks in Pseudomonas aeruginosa Reveals a Modular Architecture with Limited and Function-Specific Crosstalk. PLoS Pathog. 11:e1004744. doi: 10.1371/journal.ppat.1004744

Sherry, N., and Howden, B. (2018). Emerging Gram negative resistance to last-line antimicrobial agents fosfomycin, colistin and ceftazidime-avibactam—epidemiology, laboratory detection and treatment implications. Expert Rev. Anti. Infect. Ther. 16, 289–306. doi: 10.1186/14787210.2018.1453807

Shiver, A. L., Osadnik, H., Kritikos, G., Li, B., Krogan, N., Typas, A., et al. (2016). A Chemical-Genomic Screen of Neglected Antibiotics Reveals Illicit Transport of Kasugamycin and Blastidacin S. PLoS Genet. 12:e1006124. doi: 10.1371/journal.pgen.1006124

Tata, M., Wölfinger, M. T., Amman, F., Roschanski, N., Dötsch, A., Sonnleitner, M., et al. (2019). The protein diversity of Pseudomonas aeruginosa: A toolbox for building efficient next-generation sequencing analysis pipelines. F1000Res. 4:50. doi: 10.12688/f1000research.6157.2

Wright, G. D. (2007). The antibiotic resistome: the nexus of chemical and genetic diversity. Nat. Rev. Microbiol. 5, 175–186. doi: 10.1038/nrmicro1614

Copyright © 2021 Ciancucci Sesso, Litić, Amman, Wölfinger, Sonnleitner and Bläsli. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.