Identifying the Appropriate Frequency Response Function Driving Point of a Car Door Using Finite Element Analysis and Modal Testing

W I I Wan Iskandar Mirza¹, M N Abdul Rani*¹, M F Musa¹, M A Yunus¹, C Peter¹ and M A S Aziz Shah¹

¹Structural Dynamics Analysis and Validation, Faculty of Mechanical Engineering, Universiti Teknologi MARA (UiTM), 40000 Shah Alam, Selangor, Malaysia

*Corresponding author: mnarani@uitm.edu.my

Abstract. Identifying the appropriate frequency response function (FRF) driving point of complex structures is crucial to experimental modal analysis (EMA), but it is often found to be challenging and problematic. Traditionally, EMA analysts tend to place a reference sensor at several potential driving points and excite the points during testing. However, the approach is time-consuming. The aim of this work is to demonstrate an effective procedure for identifying the appropriate FRF driving point of a complex structure using finite element pre-test analysis and modal testing. The demonstration is performed on a car door structure comprising several geometrically complex structural components. The effective impedance method (EIM) is used to identify thirty potential driving points from the finite element model of the car door. The FRF data of the driving points is derived by using the FRF synthesis method and the derived data is compared with the EMA FRF data for validation purposes. Using EIM, three appropriate driving points covering all the modes required within the frequency of interest that is 0 to 100Hz has been successfully identified. The achievement suggests that the use of the effective impedance method for identifying the appropriate driving points is highly dependent on the accuracy and reliability of the finite element model.

1. Introduction

Identifying the appropriate frequency response function (FRF) driving points of a structure is a crucial to experimental modal analysts as the driving points are extremely important for excitations to be performed in modal testing [1,2]. However, when it comes to performing modal testing on a dynamically complex structure, identifying FRF driving points using modal testing has been seen to be more challenging and time-consuming [3–5]. Therefore, finite element pre-test analysis [6] is a good alternative approach for the identification.

The pre-test analysis can be performed using various methods as presented in [7]. One of the popular pre-test methods is the effective impedance method (EIM). Algorithms used in the method define a summation of all terms corresponding to particular DOF and yield vectors whose elements represent one DOF’s contribution to all modes of interest [8]. The detailed information about the method can be found in [9]. The method has been successfully used in identifying the optimal sensor placement for system identification and structural health monitoring as demonstrated in [10]. Another striking example as shown in [11] the optimal sensor placement for hyperbolic paraboloid fabric structure was successfully determined using EIM.
The pre-test analysis for a geometrically complex structure, however, requires a comprehensive procedure as the pre-test analysis is a case dependent [12]. This paper puts forward an idea of effectively identifying the appropriate FRF driving points of a complex structure using EIM pre-test analysis and experimental modal analysis. A geometrically complex car door consisting of several structural components is used for the identification. The accuracy of the pre-test analysis is evaluated by comparing the FE FRF with the measured counterparts obtained from modal testing.

1.1. Description of the test structure
Figure 1 shows the car door that consists of several structural components. The structural components are assembled using spot welded joints. The structure is made of galvanized steel, and the thicknesses vary from 0.8mm to 1.5mm. The height and width of the structure are approximately 1000mm and 1200mm respectively. The mass of the structure is 13.6kg.

![Figure 1. The car door structure](image)

Initially, the dynamic behaviour of the structure is calculated using the finite element method. The FE model is then used to identify several appropriate measurement points. The test structure is investigated under free-free boundary conditions in accordance with previous studies [13,14]. The frequency of interest for the investigation is between 15Hz and 100Hz, which contains twelve modes. The rigid body modes are neglected during the investigation.

2. Finite Element Modelling
Figure 3 presents the finite element model of the car door. The model was developed approximately similar to the test car door in [15]. The model of the structure was discretised into 35000 2D shell elements, and the size of the elements varies from 7mm and 8mm. The standard material properties for galvanized steel [15,16] was defined to the elements as follows; density; 7.850 kg/l, Poisson’s ratio: 0.3, and Young’s Modulus: 210,000 MPa. The natural frequencies and mode shapes of the finite element model were calculated using Nastran normal modes solution.
The effective impedance method (EIM) was used to identify and suggest the appropriate measurement points based on the modal data calculated from the FE model [9]. The identification was only carried out in a single direction that is Z-direction. The measurement points were determined with the aid of Siemens Virtual.Lab software. Figure 3 shows the suggested measurement points obtained from the FE model.

Since the FE model was developed based on assumptions, the FRF derived from the FE model is compared with the measured counterparts for validation purposes. The finite element FRF was derived using FRF synthesis method. For this method, the synthesized FRF matrix $H_{\text{syn}}(\omega_k)$ and mode shapes are expressed by:

$$H_{\text{syn}}(\omega_k) = \sum_{i=1}^{N} \frac{\{\Phi\}_i (\{\Phi\}_i^T)}{(\omega_n^2_i - \omega_k^2) + j2\xi_i \omega_k \omega_n_i}$$

(1)
where N is the number of calculated modes, $\{\emptyset\}_i$ is the ith mass normalised mode shapes, ω_{ni} is ith natural frequency and ξ_i is the ith modal damping ratio.

3. Test Configuration for the Test Structure
In this work, thirty drive points FRF were measured using experimental modal analysis (EMA). The experimental configuration of the test car door is illustrated in Figure 4. The experimental work was carried out by suspending the test car door using two soft springs to simulate free-free boundary conditions. This experimental configuration was designed as to the FE model [17–20]. The test car door was excited by using an impact hammer, and the resulting response was measured using a uniaxial accelerometer. The sensitivity of the transducers used was 21.65mV/N and 10mV/g respectively. Leuven Measurement System (LMS) SCADAS was used to acquire the dynamic data. In this study, the frequency bandwidth was set between 0 to 100 Hz with the frequency resolution of 0.5 Hz.

4. Results and Discussion
The level of accuracy of the pre-test analysis is evaluated by comparing the FE FRF data with the measured counterparts. In this work, thirty sets of FRF data were acquired from the synthesised and modal testing. Based on the normal modes analysis carried out, twelve modes have been identified within the frequency of interest between 0 to 100 Hz and the data is presented in Table 1 in which the number of modes indicates the number of the resonance frequencies found in the FRF peaks.
Table 1. The modes of the test model within the frequency of interest

No. of Mode	Resonance Frequency, Hz
1	39.756
2	47.950
3	55.068
4	64.481
5	67.131
6	71.160
7	76.768
8	78.058
9	85.506
10	89.304
11	91.549
12	95.886

4.1. FRF data calculated from the FE model
The appropriate FRF driving point points are identified based on the visibility of the resonance peaks within the frequency of interest. Table 2 shows the patterns obtained from the comparison of data between modes and FRF driving points. Green colour indicates a good and clear peak, yellow shows a poor peak and red illustrates no peak at all. Meanwhile, blue colour confirms a good driving point covering all modes with a good quality of FRF. From Table 2, it can be seen that only 37 per cent (11 points) of the total of the driving points has yielded a good quality of FRF data with good and clear peaks. The rest have shown evidence of missing modes and no peaks at all. However, the 14th driving point has marked the lowest visibility of resonance peak.

Table 2. Pattern summary of the number of modes against a number of the FE FRF driving points

Mode	FE Driving Points
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	

To reinforce the understanding of the pattern summary, two different driving points, which are points 4 and 14, were used in plotting FRFs as shown in Figure 5. It clearly shows that the FRF plotted from point 4, covering all resonance peaks required in this study is far superior to that of point 14 with missing several resonance peaks. The missing resonance peaks are at 55.07 Hz and 85.51 Hz. Therefore, point 14 may be inappropriate to be used for a driving point.

Figure 5. The FRF of point 4 and point 14

4.2. FRF data obtained from experimental modal analysis
As mentioned before, the FE model used was developed based on initial assumptions. The predicted results obtained from FE models sometimes differ from the measured counterparts. In this work, modal testing was performed on the car door to evaluate the accuracy of the numerically derived FRF driving points. Table 3 presents the summary of the number of modes related to the thirty points of measured driving points.
Table 3. Pattern summary of the number of modes against the number of the measured FRF driving points

Mode	Measured Driving Points														
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1															
2															
3															
4															
5															
6															
7															
8															
9															
10															
11															
12															

From Table 3, it shows that most of the measured driving points have yielded a poor quality of results in FRF. However, only three driving points (points 16, 23 and 24) have evidence of good visibility of the resonance peaks, in contrast to the FE driving points, which it has gained 11 driving points. The comparisons of FRF data between the FE and measured driving points, particularly of points 16, 23 and 24 are depicted in Figures 6, 7 and 8.
Figure 6. The comparison between the FE and measured FRF of point 16

Figure 7. The comparison between the FE and measured FRF of point 23

Figure 8. The comparison between the FE and measured FRF of point 24

From Figures 6, 7 and 8, the measured FRFs of the car door have low amplitude resonance peaks, indicating that the car door is a highly damped structure [21]. In addition, the FE FRF patterns presented in the figures are not in good agreement with the measured counterparts. This demonstrates that the FE model is incapable of accurately predicting the actual dynamic behaviour of the car door [22–24], whereas the FE model can be effectively used to identify the appropriate FRF driving points that are shown in Figure 9.
5. Conclusions and Recommendations

The procedure of identifying the appropriate FRF driving points of a car door using finite element and modal testing has been presented. The appropriate FRF driving points of the car door have been successfully identified using the effective impedance method, which is highly dependent on the accuracy and reliability of the FE model. The procedure demonstrated may be useful to the structural dynamics and experimental modal analysis community for confidently determining the dynamic behaviour of large, complex structures that are prevalent in the automotive and aerospace industries.

Acknowledgements

The authors are gratefully indebted to the Malaysian Ministry of Higher Education for providing financial support for this study through the GIP grant scheme (600-IRMI 5/3/GIP (012/2019). They would also like to express their gratitude for the help and support given by Prof. Ir. Dr. Hj. Abdul Rahman Omar, Prof. Dr. Hadariah Bahron, and SDAV group members.

References

[1] De Klerk D, Voormeeren S N and Petzsche T 2008 Enhanced FRF Determination using a 3D Impedance Head. Proceedings of the Twentysixth International Modal Analysis Conference, Orlando, FL

[2] Peter C, Rani M N A, Yunus M A, Zin M S M and Kalam A 2019 Inverse method for material properties identification of a kenaf reinforced composite Inverse Method for Material Properties Identification of a Kenaf Reinforced Composite AIP Conference Proceedings vol 020058

[3] Merkel R, C. G, B. K, Brown D and L. 1998 Important aspects of precise driving point FRF measurements using a mechanical impedance head sensor Proceedings of the International Modal Analysis Conference - IMAC 2 795–9

[4] Lam H F, Yang J H and Hu Q 2011 How to install sensors for structural model updating? Procedia Engineering 14 450–9

[5] Haapaniemi H, Luukkanen P, Nurkkala P, Rostedt J and Saarenheimo A 2003 Correlation Analysis of Modal Analysis Results from a Pipeline International Modal Analysis Conference

[6] Pickrel C R 1999 Practical approach to modal pretest design Mechanical Systems and Signal Processing 13 271–95

[7] Riveros Jerez C A, García Aristizábal E F and Rivero Jerez J E 2013 A Comparative Study of Sensor Placement Techniques for Structural Damage Detection. Revista El 10 23–37

[8] Zhang J, Maes K, De Roeck G, Reynders E, Papadimitriou C and Lombaert G 2017 Optimal sensor placement for multi-setup modal analysis of structures Journal of Sound and Vibration 401 214–32

[9] Kammer D C 1991 Kammer, Daniel C. “Sensor placement for on-orbit modal identification and
correlation of large space structures.” Journal of Guidance, Control, and Dynamics 14.2 (1991): 251-259.

[10] Rao A R M, Lakshmi K and Krishnakumar S 2014 A generalized optimal sensor placement technique for structural health monitoring and system identification Procedia Engineering 86 529–38

[11] Castro-triguero R, Macias E G, Gallego R, Sánchez Sánchez J and Vázquez Vicente E 2014 Optimal sensor placement methodology for operational modal system identification of a hyperbolic paraboloidal fabric EWSHM - 7th European Workshop on Structural Health Monitoring 1608–15

[12] Castro-Triguero R, Murugan S, Gallego R and Friswell M I 2013 Robustness of optimal sensor placement under parametric uncertainty Mechanical Systems and Signal Processing 41 268–87

[13] Wan Iskandar Mirza W I ., Abdul Rani M N, Yunus M A, Ayub M A, Sani M S M and Mohd Zin M S 2019 Frequency Based Substructuringfor Structure with Double Bolted Joints: A Case Study International Journal of Automotive and Mechanical Engineering 16 6188–99

[14] Omar R, Abdul Rani M N, Yunus M A, Mat Isa A A, Wan Iskandar Mirza W I ., Mohd Zin M S and Roslan L 2018 Investigation of Mesh Size Effect on Dynamic Behaviour of an Assembled Structure with Bolted Jointsusing Finite Element Method International Journal of Automotive and Mechanical Engineering 15 5695–708

[15] Halim N I A, Yunus M A, Kasolang S and Rani M N A 2016 Finite element model of the spot welded joints of Door in White (DIW) Journal of Engineering and Applied Sciences 11 2474–8

[16] Zin M S M, Rani M N A, Yunus M A, Ayub M A, Sani M S M and Shah M A S A 2019 Modal based updating for the dynamic behaviour of a car trunk lid AIP Conference Proceedings 2059

[17] Mirza W I I W I, Rani M N A and Starbuck D P 2019 Using single-axis multipoint connection approach for coupling test and finite element model in the frequency based substructuring method AIP Conference Proceedings 020034

[18] Zahari S N, Sani M S M, Husain N A, Ishak M and Zaman I 2016 Dynamic analysis of friction stir welding joints in dissimilar material plate structure Jurnal Teknologi 78 57–65

[19] Wan Iskandar Mirza W I ., Abdul Rani M ., Othman M H, Kasolang S and Yunus M A 2016 Reduced order model for model updating of a jointed structure Journal of Engineering and Applied Sciences 11 2383–6

[20] Omar R, Abdul Rani M N, Wan Iskandar Mirza W I ., Yunus M A and Othman M H 2017 Finite element modelling and updating for bolted lap joints Journal of Mechanical Engineering SI 4 202–22

[21] Bograd S, Schmidt A and Gaul L 2007 Modeling of damping in bolted structures VDI Berichte 97–100

[22] Yunus M A, Ouyang H, Abdul Rani M N and Misa A A 2013 Finite element modelling and updating of bolted joints in a thin sheet metal structure 20th International Congress on Sound and Vibration 2013, ICSV 2013 vol 2 pp 1146–52

[23] Yuen K 2012 Updating large models for mechanical systems using incomplete modal measurement Mechanical Systems and Signal Processing 28 297–308

[24] Husain N A, Khodaparast H H, Snaylam A, James S, Dearden G and Ouyang H 2010 Finite-element modelling and updating of laser spot weld joints in a top-hat structure for dynamic analysis Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 224 851–61