POSTERIOR BELLY OF DIGASTRIC - A KEY MUSCLE TO LOCATE IMPORTANT NEUROVASCULAR STRUCTURES OF UPPER NECK REGION

Manjula Patil *1, Sangamesh Rakaraddi2.

1Associate Professor, S. Nijalingappa Medical College, Bagalkot, Karnataka, India.
2Assistant Professor, Department of Anatomy, S. Nijalingappa Medical College, Bagalkot, Karnataka, India.

ABSTRACT

Introduction: Posterior belly of digastric muscle (PBD) is located amidst of important neurovascular structures of head and neck region. Spinal accessory (SAN), Facial (FN) and Hypoglossal nerves (HGN), Common carotid artery (CCA) and internal jugular vein (IJV) are related deep to PBD. It is also easily identifiable landmark in this region. Establishing the accurate relationship between PBD and above mentioned structure would be of great help to head and neck surgeons to perform the surgeries with fewer complications.

Aims and objectives: To establish the near accurate relationship between PBD with HGN, FN, SAN, CCA and IJV.

Materials and methods: Fifty sagittal sections of head and neck region (25 right & 25 left sides) were studies for relation of PBD with various structures using Digital callipers: Length & extended length of PBD, distance between: tip of the mastoid process to HGN loop, PBD to FN trunk, midpoint of PBD to midpoint of IJV & bifurcation of CCA, relationship between IJV and SAN above PBD. Statistical analysis carried out using SPPS version 16.

Results: Distances measured were, Length of PBD was 3.20±0.08cm & 3.56±1.00cm on right & left side respectively indicating slightly longer length on left side. Extended length was 6.5±0.64cms & 6.8±1.12cms on right and left side respectively, TMP to HGN- where it crossed the PBD was 2.17±0.5 on right & 1.92±0.47cms on left, FN trunk and origin of PBD mean was 0.52cm (range 0.5 – 0.90cm), PBD to midpoint of IJV was 6.12±0.88cm on right & 6.44±1.02cm on left, midpoint of PBD to bifurcation of CCA2.56±0.74cm on right & 2.99±0.78cm on left. Relationship b/w SAN & IJV above PBD lateral to IJV in 95% on right 93% on left side. There was no significant right & left difference between all the parameters.

Conclusions: PBD can be very good landmark to locate various neurovascular structures of head & neck region.

KEYWORDS: Posterior belly of digastric (PBD), Neurovascular bundle of head and neck, Facial never, Hypoglossal nerve, Spinal accessory nerve, Common carotid artery, Internal jugular vein.

INTRODUCTION

Digastric muscle is located in the upper part of the neck. It has two bellies with separate embryological origins and innervations. It forms the limits for submandibular, Submental and carotid triangles. Among the two bellies, posterior belly of digastric is located amidst of important neurovascular bundles of upper neck region [1].
The Spinal accessory nerve (SAN), Facial nerve (FN) and Hypoglossal nerve (HGN), Common carotid artery (CCA) and internal jugular vein (IJV) are related very closely deep to PBD [2].

Radical su-prahyoid neck dissections are often required to remove metastatic lymph nodes in the carcinoma involving the floor of the mouth. In such dissections, PBD serves as a useful landmark [3].

Palpation of PBD is a mandatory procedure in temperomandibular disorders [4].

During the surgery, the PBD is the most easily identifiable landmark for facial nerve dissection during parotidectomy, with a consistent anatomical relationship with the facial nerve trunk [5]. It is also easily identifiable landmark in this region. There is limited literature with respect to PBD. The accurate relationship between PBD and above mentioned structure would be of great help to head and neck surgeons to perform the surgeries with fewer complications.

**Aims and objectives:**
To establish the near accurate relationship between PBD with HGN, FN, SAN, CCA and IJV.

**MATERIALS AND METHODS**

Fifty sagittal sections of head and neck region (25 right & 25 left sides) were studied for relation of PBD with various structures using Digital callipers at department of anatomy, S. N. Medical College, Bagalkot.

Following parameters were studied:
1. Length (Fleshy part)
2. Extended length of PBD (distance between tip of the mastoid process (TMP) to junction between body & greater cornu of hyoid bone)
3. Distance between tip of the mastoid process to HN loop
4. Distance between PBD to FN trunk,
5. Midpoint of PBD to midpoint of IJV (midpoint b/w angle of the mandible and sternoclavicular joint)
6. Midpoint of PBD to midpoint of CCA
7. Relationship between IJV and SAN above PBD.

Statistical analysis carried out using SPPS version 16.
Table 1: Relation of Posterior belly of digastric with neurovascular bundles of head and neck region.

| Sl. no | Parameter                                      | Right side  | Left side  |
|--------|-----------------------------------------------|-------------|------------|
| 1      | Length of PBD                                 | 3.20 ± 0.08cm | 3.56 ±1.00cm |
| 2      | Extended length of PBD                        | 6.5±0.64cms  | 6.8±1.12cms |
| 3      | Distance b/w TMP to HGN                       | 2.17±0.5 cms  | 1.92±0.47cms |
| 4      | FN trunk and origin of PBD                    | 0.52cm       | 0.90 cm     |
| 5      | Midpoint PBD to midpoint of IJV               | 6.12±0.88cm  | 6.44±1.02cm |
| 6      | Midpoint of PBD to bifurcation of CCA         | 2.56±0.74cm  | 2.99±0.78cm |
| 7      | Relationship b/w SAN & IJV above PBD lateral to IJV | 95% lateral to IJV | 93% lateral to IJV |

No variations were noted in the PBD. PBD length was more on left side (3.56 ±1.00cm) but no statistical significance was observed between the two sides. The HGN crossed PBD anterior to TMP at a distance of 2.17±0.5 cms and 1.92±0.47cms on right and left respectively. FN trunk was located about 0.52 to 0.90cms from the origin of PBD. The midpoint of IJV and CCA were located 6.12 to 6.44 cms and 2.56 to 2.99 cms from the midpoint of PBD respectively. Relation of SAN was lateral to IJV in 93-95% specimens above the PBD. 

**RESULTS**

HGN crossing the PBD anterior to TMP

These parameters are important in the neck region, especially in relation to submandibular gland resection, since this muscle and its tendon are anatomical reference points during operations[8](Table 3).

**Distance between PBD to FN trunk**

Identification of the facial nerve trunk is essential during surgery of the parotid gland to avoid its damage. Postoperative facial nerve weakness can be temporary (10-50%) or permanent(0.5 %).[5]. Thus relationship between PBD and FN may give additional landmark to identify FN (Table 4)

**Distance between Midpoint of PBD to midpoint of IJV(This distance is midpoint between the angle of the mandible and sternoclavicular joint)**

When operating above the level of PBD, IJV and SAN are at risk. Therefore, it is necessary to recognize the morphometric anatomy of the digastric muscle in order to avoid complications to the IJV and spinal accessory nerve during therapeutic procedures[12](Table 5).

**Distance between midpoint of PBD to bifurcation of CCA**

This parameter helps to avoid injury to CCA in upper neck surgeries(Table 6).

**Relationship between IJV and SAN above PBD.**

The knowledge of relationship between SAN & IJV minimises the complication to these structures during upper neck surgeries(Table 7)[12]

**DISCUSSION**

PBD is amidst of important neurovascular bundle of head & neck region[1]. Palpating PBD is a very important step in temperomandibular joint disorder[4].Various authors have reported variation of PBD earlier [2]. Such a variations are important to note to avoid injury to nearby structures during operations.In our study we did not come across any variations among PBD.

We studied the length & extended length of PBD.

In contrary to Vrinda[1] and shin et al[6] study, our study showed slightly more length on left side. The variation in length may due to positioning of the sagittal heads and other minor contributory factors. These parameters may help radical suprahyoid neck procedures designed to remove metastatic lymph nodes in carcinoma involving floor of mouth. In such dissections, PBD serves as a useful landmark [7].

**Table 2**: Extended length of Posterior belly of digastric.
Table 3: Distance between PBD to FN trunk,

| Studies               | Right side | Left side |
|-----------------------|------------|-----------|
| Vrinda et al [1]      | 2.72 ± 0.8 cm | 2.1 ± 0.57 cm |
| Shin et al[6]         |            |           |
| Present study         | 2.17±0.5 cm  | 1.9±0.47cm  |

Table 4: Distance between PBD to FN trunk.

| Studies               | Results   |
|-----------------------|-----------|
| Rea et al.[9]         | 5.5 ± 2.1 mm   |
| Pather and Osman[10]  | 9.7–24.3 mm | 12.4 mm (cad) |
| Witt et al.[11]       | 10.7 mm (live) |
| Shaha et al [5]       | 6–9.5 mm (cad) |
| Present study (Table 1)| 6–11.5 mm (live) |

Table 5: Distance between Midpoint of PBD to midpoints of IJV.

| Studies               | Right     | Left      |
|-----------------------|-----------|-----------|
| Vrinda et al[1]       | 6.58 ± 0.99 cm | 6.1 ± 0.96 cm |
| Present study         | 6.12±0.88cm  | 6.44±1.02cm  |

Table 6: Distance between midpoints of PBD to bifurcation of CCA.

| Studies               | Right     | Left      |
|-----------------------|-----------|-----------|
| Vrinda et al [1]      | 3.04 ± 0.61 cm | 2.78 ± 0.74 cm |
| Present study (Table 1)| 2.56±0.74cm  | 2.99±0.78cm  |

Table 7: Relationship between IJV and SAN above PBD.

| Studies               | Right | Left   |
|-----------------------|-------|--------|
| Hensley ML et al[12]  | (%6) lateral, (%3) medial, (%1) |         |
| Present study (Table 1)| 95% lateral, 93% lateral | 5% medial, 7% medial |

CONCLUSION

In view of complicated anatomy of upper neck region its not enough to have single landmark to locate the structures. PBD is an easily approachable landmark in the upper neck region. The PBD represents a good landmark during the upper neck dissection to identify the important neurovascular bundle.

Limitations: This study has inherent limitations of study on cadavers. To get accurate results study has to be done in living individuals. This study acts as a rough guide to locate the structures in relation to PBD.

Conflicts of Interests: None

REFERENCES

[1]. Vrinda Hari Ankolekar, Anne D. Souza, Rohini Alva, Antony Sylvan D. Souza, Mamatha HosapatnaPosterior belly of the digastic muscle: An important landmark for various head and neck surgeries. Archives of Clinical and Experimental Surgery2015; 4(2):79-82.

[2]. Bergmann RA, Afifi AK, Mlyauchi R. Muscular sys-tem: Alphabetical listing of muscles: D. Available from: http://www.anatomyatlases.org/Anatomic V ariants/Muscular S yst em/Text/D/06Digastricus.shtml. [Last accessed on May 06 2014].

[3]. Mehta V, Gupta V, Arora J, Yadav Y, Suri RK, Rath G, et al. Bilateral bipartite origin of the posterior belly of digastic muscle: A clinico-anatomical ap-praisal. Int J Exp Clin Anat2011;5:44-7.

[4]. Türp JC, Arima T, Minagi S. Is the posterior belly of the digastic muscle palpable? A qualitative systematic review of the literature. Clin Anat2005;18:318-22.

[5]. Saha S, Pal S, Sengupta M, Chowdhury K, Saha VP, Mondal L. Identification of facial nerve during parotidectomy: A combined anatomical & surg-i-cal study. Indian J Otolaryngol Head Neck Surg2014;66:63-8.

[6]. Shin DS, Bae HG, Shim JJ, Yoon SM, Kim RS, Chang JC. Morphometric study of hypoglossal nerve and facial nerve on the submandibular region in Korean. J Korean Neurosurg Soc 2012;51:253-61.

[7]. Suen JY, Stern SJ. Cancer of neck. In: Myers EN, Suen JY, editors. Cancer of Head and Neck. WB. Saunders Co, Philadelphia, 1996;462-84.

[8]. Liquidato BM, Barros MD, Alves AL, Pereira CS. Anatomical study of the digastic muscle: Variations in the anterior belly. Int J Morphol2007; 25:797-800.

[9]. Rea PM, McGarry G, Shaw-Dunn J (2010) The precision of four commonly used surgical landmarks for locating the facial nerve in anterograde parotidectomy in humans. Ann Anat 192(1):27–32

[10]. Pather N, Osman M (2006) Landmarks of the facial nerve: implications for parotidectomy. Surg Radiol Anat 28(2):170–175.

[11]. Witt RL, Weinstein GS, Reijo LK (2005) Tympano-mastoid suture and digastic muscle in cadaver and live parotidectomy. Laryngoscope 115(4):574–577.

[12]. Hinsley ML, Hartig GK. Anatomic relationship be-tween the spinal accessory nerve and internal jugu lar vein in the upper neck. Otalaryngol Head Neck Surg2010;143:239-41.

How to cite this article: Manjula Patil, Sangamesh Rakaraddi. POSTERIOR BELLY OF DIGASTRIC - A KEY MUSCLE TO LOCATE IMPORTANT NEUROVASCULAR STRUCTURES OF UPPER NECK REGION. Int J Anat Res 2020;8(2.3):7539-7542. DOI: 10.16965/ijar.2020.153