KEYWORDS

Mn- matrices, partially balanced incomplete block (PBIB) design, regular bipartite and Mn-graphs

* Davinder Kumar Garg
Associate Professor, Department of Statistics
Punjabi University, Patiala. * correspondent author

Syed Aadil Farooq
Research Scholar, Department of Statistics
Punjabi University, Patiala

ABSTRACT

Partially balanced incomplete block designs with four and five associate classes have been constructed by using modified (Mn) magnificent matrices which are otherwise known as Mn-matrices. A modified structure of the magnificent (Mn) matrices of type-III originally introduced by Mohan [9] is proposed in this paper. The present work is the continuation of our earlier research work in this direction. Here, we have also studied the properties and applications of the modified magnificent (Mn) matrix of type III. Illustrations of the construction of some symmetric PBIB designs, corresponding M-graphs that can be constructed with the help of such designs have also been discussed in detail.

1. Introduction:
Block designs are extensively used in almost all fields of human activities including agriculture, industry, animal husbandry etc. Among the class of block designs, incomplete block designs and specifically partially balanced incomplete block (PBIB) designs are most widely used type of designs. In view of this, there is a need to construct such type of designs. Various authors Bose and Nair [1], Bose [2], Bose and Shimamoto [3] Garg and Syed [6], Kageyama [7], Mohan [9], Mohan et.al [2006a], Mohan et.al [2006b], Cohn [4], Liu[8] and Raghavarao [12], have constructed two and higher associate class PBIB designs.

Recently, some type of designs which are useful in signal and image processing, in the construction of codes, designs, and graphs have been constructed by Colbourn [5]. In this paper, we have attempted to modify the magnificent (M) matrix of type III earlier introduced by Mohan [9] and also tried to construct PBIB designs with four and five associate classes along with their association schemes.

2. Some definitions
Definition 2.1 when \(n \) is a prime takes values 7, 11 only. M- matrices \((a)\) is defined as a matrix obtained from \(a = i+1\). \((j+1)\text{mod}(n)\) \(i,j=1,2,3,\ldots, n\). This is a symmetric matrix. In the resulting matrix retain 1 as it is and substitute 0 for even numbers and +1 for odd numbers. Let the resulting matrix be called M\(_n\)-matrix of type I.

Definition 2.2 MN- matrix of second type is obtained by the equation \(a = (i+1)(j+1)\text{mod}(n)\) where \(n \) is a prime takes values 7, 11 only. In this matrix since each row or column has \(n \) elements whereas \(n \) is a prime, \(1 \) to \(n \) elements do come in all the columns and rows , and each element comes once in each row and each column . In the resulting matrix substitute 1 for odd numbers and -1 for even numbers keeping 1 in the matrix as it is. Then this resulting matrix is called MN- matrix of type III. In the resulting matrix, each row and each column come in all columns and rows, and each element comes once in all columns and rows. When \(n \) is odd 1 to \(n \) elements do come in all columns and rows, and each element comes once in each row and each column. In the resulting matrix delete \(n^{th}\) element from all rows and \(n^{th}\) row, Substitute 1 for odd numbers and 0 for even numbers, keeping 1 in the matrix as it is. This is also symmetric matrix. We discuss these two types of matrices while giving examples for their construction and applications of these matrices in the later sections.

The third possible ways by taking by \((a) = (d,d,d, \text{mod}(n))\) by suitably defining \(d, d, d\), in different ways. Where is a Kronecker product.

\[a_j = 2(i+j)\text{mod}(n)\] where \(n > 3 \) is a positive odd integer

Definition 2.3 The MN- matrix of type III is obtained by the equation \(a_j = 2(i+j)\text{mod}(n)\) where \(n > 3 \) is a positive odd integer and \(i,j=1,2,3, \ldots, n\). In this matrix since each row or column has \(n \) elements. When \(n \) is odd 1 to \(n \) elements do come in all columns and rows, and each element comes once in each row and each column. In the resulting matrix delete \(n^{th}\) element from all rows and \(n^{th}\) row, Substitute 1 for odd numbers and 0 for even numbers, keeping 1 in the matrix as it is. Then this resulting matrix is called MN- matrix of type III. In the resulting matrix substitute 1 for odd numbers and 0 for even numbers keeping 1 in the matrix as it is. Then this resulting matrix is called MN- matrix of type III.

Proposition 2.4 MN- matrices of type III is obtained by using \(a_j = 2(i+j)\text{mod}(n)\), where \((n>3)\) is a positive odd integer. In the resulting matrix substitute 1 for odd numbers and 0 for even numbers keeping 1 in the matrix as it is. Then this resulting matrix is called MN- matrix of type III. In the resulting matrix substitute 1 for odd numbers and 0 for even numbers keeping 1 in the matrix as it is. Then this resulting matrix is called MN- matrix of type III. In the resulting matrix, each row and each column number of +1’s is \((n-1)/2 \) and the number of -1’s is \((n-1)/2 \).

Proof: Since \(n \) is odd, In the resulting matrix in each row (column) each element of \(1,2,3,\ldots, n-1 \) occurs exactly once. And among these \((n-1)/2\) elements are odd numbers \((n-1)/2\) are even numbers. Consequently as we replace even number by 0's and odd numbers by +1s retaining 1 as it is we get the \((n-1)/2\) elements are +1s and \((n-1)/2\) elements are -1s.

As these two types of MN- matrices are non-orthogonal, we define the orthogonal number for them as follows:

Definition 2.5 The orthogonal number of a given matrix with entries \(x\) defined as sum of products of the corresponding numbers in the two given two rows of the matrix (called inner product of the rows). Consider any two rows \(R=(r_1, r_2, \ldots, r_s)\) and \(R'=(s_1, s_2, \ldots, s_s)\) and then the orthogonal number denoted by ‘g’ can be defined as \(g=\sum r_is_i\). For even numbers and -1 for even numbers keeping 1 in the matrix as it is. Then this resulting matrix is called MN- matrix of type III.

3. New association scheme
When we consider after converting the MN- matrix of type III as an incidence matrix then it becomes a PBIB design in which there are \(v\) rows and \(v\) columns .We consider \(v \) columns as blocks of the new designs. The association scheme of the newly constructed designs will be as follows:

If two treatments occurs together \(0, 1, 2, \ldots, n-1\) times in the blocks of the new design, then they are respectively \(I^4, 2^2, 3^3, \ldots, n^n\) associates and \(n_1=1, n_2=2, \ldots, n_n=2\).

4. Illustrations: In this section, we have given two illustrations as below:

4.1 Take \(n=9\), from definition 2.3, \(M_n = (a) = 2(i+j)\text{mod}(n)\)
for \(i,j=1,2,3\ldots \ n \). Magnificent (\(M_n \)) matrix is given by
\[
\begin{pmatrix}
4 & 6 & 8 & 1 & 3 & 5 & 7 & 9 & 2 \\
6 & 8 & 1 & 3 & 5 & 7 & 9 & 2 & 4 \\
8 & 1 & 3 & 5 & 7 & 9 & 2 & 4 & 6 \\
1 & 3 & 5 & 7 & 9 & 2 & 4 & 6 & 8 \\
3 & 5 & 7 & 9 & 2 & 4 & 6 & 8 & 1 \\
5 & 7 & 9 & 2 & 4 & 6 & 8 & 1 & 3 \\
7 & 9 & 2 & 4 & 6 & 8 & 1 & 3 & 5 \\
9 & 2 & 4 & 6 & 8 & 1 & 3 & 5 & 7 \\
2 & 4 & 6 & 8 & 1 & 3 & 5 & 7 & 9 \\
\end{pmatrix}
\]

Delete \(n \)th element from all rows and leaving \(n \)th row, we get
\[
\begin{pmatrix}
4 & 6 & 8 & 1 & 3 & 5 & 7 & 2 \\
6 & 8 & 1 & 3 & 5 & 7 & 2 & 4 \\
8 & 1 & 3 & 5 & 7 & 2 & 4 & 6 \\
1 & 3 & 5 & 7 & 2 & 4 & 6 & 8 \\
3 & 5 & 7 & 2 & 4 & 6 & 8 & 1 \\
5 & 7 & 2 & 4 & 6 & 8 & 1 & 3 \\
7 & 2 & 4 & 6 & 8 & 1 & 3 & 5 \\
2 & 4 & 6 & 8 & 1 & 3 & 5 & 7 \\
\end{pmatrix}
\]

don

Now, substituting 1 for odd numbers and -1 for even numbers and keeping 1 as it is and further considering -1’s as zeros, the above \(M_n \) matrix reduces to
\[
\begin{pmatrix}
0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
\end{pmatrix}
\]

Consider the above \(M_n \) matrix as the incidence matrix, then it will generate a four associate class PBIB design with parameters
\(v=8=b, \ r=4=k, \ \lambda_1=0, \ \lambda_2=2, \ \lambda_3=3, \ n_1=1, n_2=2, n_3=2, n_4=2 \)
which follows the association scheme 3.

P-matrices of the association scheme are given by
\[
P_1 = \begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 & 2 \\
0 & 0 & 2 & 0 \\
0 & 2 & 0 & 0 \\
\end{pmatrix}
\]
\[
P_2 = \begin{pmatrix}
0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
\end{pmatrix}
\]
\[
P_3 = \begin{pmatrix}
0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
\end{pmatrix}
\]
\[
P_4 = \begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{pmatrix}
\]

Also, by considering the above \(M_n \) matrix as an adjacency matrix of a graph, which is called the \(M_n \)-graph, can be drawn as follows:

4.2 Take \(n=11 \), from definition 2.3 \(M_n=(a_{ij})=2(i+j) \mod (n) \) for \(i,j=1,2,3\ldots \ n \). Magnificent (\(M_n \)) matrix is given by
\[
\begin{pmatrix}
4 & 6 & 8 & 10 & 1 & 3 & 5 & 7 & 9 & 11 & 2 \\
6 & 8 & 10 & 1 & 3 & 5 & 7 & 9 & 11 & 2 & 4 \\
8 & 10 & 1 & 3 & 5 & 7 & 9 & 11 & 2 & 4 & 6 \\
10 & 1 & 3 & 5 & 7 & 9 & 11 & 2 & 4 & 6 & 8 \\
3 & 5 & 7 & 9 & 11 & 2 & 4 & 6 & 8 & 10 & 1 \\
5 & 7 & 9 & 11 & 2 & 4 & 6 & 8 & 10 & 1 & 3 \\
7 & 9 & 11 & 2 & 4 & 6 & 8 & 10 & 1 & 3 & 5 \\
9 & 11 & 2 & 4 & 6 & 8 & 10 & 1 & 3 & 5 & 7 \\
11 & 2 & 4 & 6 & 8 & 10 & 1 & 3 & 5 & 7 & 9 \\
\end{pmatrix}
\]

Now, delete \(n \)th element from all rows and leaving \(n \)th row, we get
\[
\begin{pmatrix}
4 & 6 & 8 & 10 & 1 & 3 & 5 & 7 & 9 & 2 \\
6 & 8 & 10 & 1 & 3 & 5 & 7 & 9 & 2 & 4 \\
8 & 10 & 1 & 3 & 5 & 7 & 9 & 2 & 4 & 6 \\
10 & 1 & 3 & 5 & 7 & 9 & 2 & 4 & 6 & 8 \\
3 & 5 & 7 & 9 & 2 & 4 & 6 & 8 & 10 & 1 \\
5 & 7 & 9 & 2 & 4 & 6 & 8 & 10 & 1 & 3 \\
7 & 9 & 2 & 4 & 6 & 8 & 10 & 1 & 3 & 5 \\
9 & 2 & 4 & 6 & 8 & 10 & 1 & 3 & 5 & 7 \\
2 & 4 & 6 & 8 & 10 & 1 & 3 & 5 & 7 & 9 \\
\end{pmatrix}
\]
Now, substituting 1 for odd numbers and -1 for even numbers keeping 1 as it is, and further considering -1's as zeros, the above M_1 matrix reduces to

\[
M_1 = \begin{bmatrix}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\end{bmatrix}
\]

Consider the above M_1 matrix as the incidence matrix then it will generate a five associate class PBIB design with parameters

\[
v = 10 = b, \quad r = 5 = k, \quad \lambda_1 = 0, \quad \lambda_2 = 1, \quad \lambda_3 = 2, \quad \lambda_4 = 3, \quad \lambda_5 = 4, \quad n_1 = 1, n_2 = 2, n_3 = 2, n_4 = 2, n_5 = 2
\]

and follows the association scheme 3_P.

P-matrices of the new association scheme are given by

\[
P_1 = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}, \quad P_2 = \begin{bmatrix}
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}, \quad P_3 = \begin{bmatrix}
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}, \quad P_4 = \begin{bmatrix}
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

Also, by considering the above M_1 matrix as an adjacency matrix of a graph, which is called the M_1-graph, can be drawn as follows

Conclusion: In this paper, we have proposed the modified M_n-matrices of Type III, which are structurally different but serve the same purpose as defined by Mohan [9]. Here, we have substituted 1 for odd numbers, 0 for even numbers and keeping 1 in the matrix as it is, as a result we get M_n-matrix of type III that generates new higher associate class PBIB designs.

REFERENCE

[1] Bose, R.C., & Nas, K.R. (1939). Partially balanced incomplete block designs. Sankhya, 4, pp.337-372.
[2] Bose, R.C. (1963). Strongly regular graphs, partial geometries and partially balanced designs. Pacific J. Math., 13, pp. 389-419.
[3] Bose, R.C & Shimamoto, T. (1952). Classification and analysis of partially balanced incomplete block designs with two associate classes. J.Amer.Stat.Assoc., 47, 151-184.
[4] Cohn, J.H.E. (1963). Determinants with elements + 1. J.London Math. Soc., 14, 581-588.
[5] Colbourn, C.J., Dinitz, J.H., & Stinson, D.R. (1999). Applications of Combinatorial Designs to Communications, Cryptography, and Networking (1999). Surveys in Combinatorics, 1993, Walker (Ed.), Cambridge University Press.
[6] Garg & Syed (2013). Construction of PBIB designs using Magnificent (Mn) Matrices. Submitted for possible publication in Far East Journal of theoretical Statistics, 2013.
[7] Kageyama, S. & Mohan, R.N. (1984). On the construction of group divisible partially balanced incomplete block designs. Bull. of the Faculty of School education, Hiroshima University, part II, 2, pp.57-60.
[8] Liu, C.W. (1963). A method of constructing certain symmetrical partially balanced designs. Scientia Sinica, 12, pp. 1935-1936.
[9] Mohan, R.N. (2001). Some class of Mn-matrices and Mn-graph and their applications. JCISS 26, 1-4, pp.51-78.
[10] Mohan, R.N., & Kageyama, S., Moon Ho Lee, & Yang, G.(2006a). Certain new M matrices and their properties and applications. Submitted to Linear Algebra and Applications released as e print, arXiv:Math cs/ 0604035 Dt. April 6,2009.
[11] Mohan, R.N., Kageyama, S., Moon Ho Lee, & Yang.G(2006b). Certain new M matrices and their properties and applications. Submitted to Linear Algebra and Applications | released as e print,arXiv:Math cs/ 0604035 Dt. June 6,2009.
[12] Raghavarao, D.(1971). Constructions and combinatorial problems in Design of Experiments. New York, John Wiley Inc.