Differential binding of SARS-CoV-2 Spike protein variants to its cognate receptor hACE2 using molecular modeling based binding analysis

Mirza Sarwar Baig, Enam Reyaz, Angamuthu Selvakaniyan & Anuja Krishnan*

Department of Molecular Medicine, School of Interdisciplinary Sciences & Technology, Jamia Hamdard, New Delhi - 110062, India; E-mail: anuja.krishnan@jamiahamdard.ac.in; *Corresponding author

January 5, 2021; Revised February 24, 2021; Accepted February 27, 2021, Published February 28, 2021

DOI: 10.6026/97320630017337

Abstract:
The current emergence of novel coronavirus, SARS-CoV-2 and its ceaseless expansion worldwide has posed a global health emergency that has adversely affected the humans. With the entire world striving to understand the newly emerged virus, differences in morbidity and infection rate of SARS-CoV-2 have been observed across varied geographic areas, which have been ascribed to viral mutation and evolution over time. The homotrimeric Spike (S) glycoprotein on the viral envelope surface is responsible for binding, priming, and initiating infection in the host. Our phylogeny analysis of 1947 sequences of S proteins indicated there is a change in amino acid (aa) from aspartate (Group-A) to glycine (Group-B) at position 614, near the receptor-binding domain (RBD; aa positions 331-524). The two variants are reported to be in circulation, disproportionately across the world, with Group-A dominant in Asia and Group-B in North America. The trimeric, monomeric, and RBD of S protein of both the variant groups (A & B) were modeled using the Swiss-Model server and were docked with the human receptor angiotensin-converting enzyme 2 (hACE2) employing the PatchDock server and visualized in PyMol. Group-A S protein’s RBD bound imperceptibly to the two binding clefts of the hACE2 protein, on the other hand, Group-B S protein’s RBD perfectly interacted inside the binding clefts of hACE2, with higher number of hydrogen and hydrophobic interactions. This implies that the S protein’s amino acid at position 614 near the core RBD influences its interaction with the cognate hACE2 receptor, which may induce its infectivity that should be explored further with molecular and biochemical studies.

Keywords: SARS-CoV-2; Spike protein; hACE2; RBD; binding affinity; molecular docking; molecular modeling.
Background:
In December 2019, the city of Wuhan, Hubei province of China, witnessed patients inflicted with severe atypical pneumonia and respiratory illness, reporting the first case of novel coronavirus (CoV-2) infection in December 2019 [1,2]. Since then, it has sparked and restricted the entire globe, with nearly 85 million cases and more than 1.8 million fatalities as of the first week of January 2021 [3].

The genome of SARS-CoV-2 is around 30 kb, with a 3' end comprising orf1ab encoding orf1ab polyproteins, while the 3' end consists of genes encoding structural proteins, including spike (S), envelope (E), membrane (M), and nucleocapsid (N) proteins. The large replicase polyproteins pp1a and pp1ab are proteolytically cleaved into 16 putative nonstructural proteins (nspS). Structurally, S proteins (1273 amino acids) are homotrimeric, with each monomer of about 180 kDa, consisting of two subunits, S1 and S2. SARS-CoV-2 has a functional polybasic (furin) cleavage site at the S1-S2 boundary through the insertion of 2014–2015.

Model Building, validation, and quality evaluation
The target-template sequence alignments were performed for finding the highly homologous protein template deposited in PDB for generating the quaternary structure or models for all target sequences. The produced models’ geometry was parameterized in a CHARMM27 force field using the OpenMM library of ProMod version 33.0.0 available at the SWISS-MODEL server. The best homology models were selected according to three statistical parameters –Global Model Quality Estimation (GMQE), QMEAN, and quaternary structure quality estimate (QSQE) [10].

Structural comparison of the S protein of two groups of SARS-CoV-2
The human SARS-CoV-2 S glycoprotein (PDB ID 6VSB) was downloaded from the RCSB protein database. The .pdb format of the modeled SARS-CoV-2 trimeric S proteins (of Group-A and B) were opened in PyMOL Molecular Graphics System, Version 2.0 (Schrödinger, LLC) and superimposed with the native Electron Microscopic (EM) structure of the human SARS-CoV-2 S protein (PDB ID 6VSB) [7]. The structural or amino acid difference in SARS-CoV-2 Group-A S protein with Group- B S protein was observed by superimposing these modeled proteins in PyMOL.

Molecular docking of human SARS-CoV-2 S protein of two groups with human ACE2 receptor:
We performed three levels of molecular docking of human angiotensin-converting enzyme 2 (hACE2) receptor (PDB ID: 2AJF) [11] with two distinct groups (-A & -B) of human SARS-CoV-2 S protein. Initially, the hACE2 receptor was docked with human trimeric S glycoprotein SARS-CoV-2. Then, SARS-CoV-2 monomeric S protein was docked with the human hACE2 receptor. Finally, the hACE2 receptor was docked with the core RBD (331-524 aa) along with its proximal (from 300-330) and distal (from 525-615) regions of two distinct groups of SARS-CoV-2 S proteins. PatchDock server (http://bioinfo3d.cs.tau.ac.il/PatchDock/), which works on a Geometric Hashing Algorithm (GHA), was used for docking purposes. The default value of 4.0 Å of clustering RMSD for protein-protein docking and default complex type was tuned as the set docking parameters. The PatchDock output lists the top 20 potential docked complexes sorted by geometric shape complementarity (GSC) score and approximate interface (AI) area. The output also shows Atomic Contact Energy (ACE) and 3D
Results and Discussion:

Modeled S proteins exhibit accuracy and reliability

A total of 1947 S protein sequences were analyzed from different geographical regions of the world, and 36 prominent mutations were observed. The mutation at 614 amino acid position was the most predominant, with 1105 (56%) had GLY (G), while 842 (44%) had ASP (D) at 614 positions (Figure 1A). A total of 176 protein templates were found in the SMTL based on BLAST, and a total of 676 templates were found by HHblits database searching. Among them, 24 top filtered template structures were found suitable for homology modeling. Ultimately, the human SARS-CoV-2 S glycoprotein (PDB ID 6VSB) was selected as the most suitable template for homology modeling of stars-CoV-2 Group-A and B S proteins. The Group-A and -B S proteins showed 99.26% and 99.17% sequence identity, respectively, and an equal coverage (95%) with the template protein (PDB ID: 6VSB). The high QSOE score and GMQE value of 0.87 and 0.72, respectively, showed the accuracy and reliability of the SARS-CoV-2 Group-A and -B S protein models, deeming them reliable to do structural and docking analysis. Also, a low QMEAN of -2.81 and -3.10 resonates that the model of SARS-CoV-2 Group-A and -B S protein is of good quality. The number of observed two dihedral angles, i.e., Φ / Ψ pairs, determines the contour lines. In SARS-CoV-2 Group-A and -B S protein 90.49 % and 89.74 %, amino acids except proline or glycine were within the first contour line known as Ramachandran favored region (data not shown). The alignment of the modeled RBDs of human SARS-CoV-2 variants has the same scaffold as the template crystal structure of SARS-CoV-2 (PDB ID: 6vSB). The mutant site D614G is distal to RBD and found in the variable loop region. The core RBD of SARS-CoV-2 S protein is comprised of five major antiparallel β-sheets ($\beta1$- $\beta5$), three minor β-sheets (β' - β'') and six alpha-helices (a1-a6), which is structurally highly conserved. The modeled SARS-CoV-2 trimeric S protein of Group-A and Group-B was individually superimposed and compared with the native electron microscopic (EM) structure of the SARS-CoV-2 trimeric S protein template (PDB ID: 6VSB). The perfectly superimposed secondary structure elements of modeled proteins with native SARS-CoV-2 trimeric S protein reflect that the modeling is accurate. The ribbon diagrams clearly showed no significant observable structural changes in the modeled trimeric S proteins of group-A with group-B except one amino acid change ASP to GLY at position 614, present in the variable loop region (shown by arrow marks) (Figure 1 B).

S protein variants displayed altered interaction with the receptor hACE2

The molecular docking of hACE2 receptor with SARS-CoV-2 S protein of two distinct groups by PatchDock showed that GSC score (20400) and AI area (3946.10) was maximum for docking complex of hACE2 receptor with RBD of S1 subunit of S protein belonging to Group-B SARS-CoV-2, while the GSC score (17410) was lowest for docking complex of hACE2 receptor with trimeric S protein of Group-A human SARS-CoV-2. The visualization of the docked complexes of the hACE2 receptor with trimeric Group A S protein showed that hACE2 interacted far away from the RBD (Figure 2A I). While the hACE2 interacted in the proximity of the RBDs of Group-B human SARS-CoV-2 S protein (Figure 2A II). Similarly, the docked complexes of the hACE2 receptor with monomeric S protein revealed that the hACE2 interacted little away from the RBD of Group-A (Figure 2B I) compared to RBDs of Group-B human SARS-CoV-2 S protein (Figure 2B II).

The protein-protein interaction analysis revealed that the amino acids of group- A RBD peripherally interacted with two chains (A and B) of the hACE2 receptor. A closer investigation unveils that the RBD of group-A S protein improperly binds inside the cleft of chains A and B of the hACE2 receptor (Figure 3A). Interestingly, it was found that the ASP-614 amino acid containing motif is protruded from the interface (Figure 3C I). The interfacing amino acids between group-A RBD and hACE2 that are hydrogen bond-forming (red dots) are shown in Figure 3A.

Interestingly, on the other hand group-B RBD of S protein binds perfectly inside both the domains of chains A and B of the hACE2 receptor with several hydrogen bonds (red dots) and hydrophobic interactions (Figure 3B). The GLY614 amino acid containing motif is embedded in chain A of the hACE2 receptor (Fig 3C II). The exact interfacing amino acids between group-B RBD of S protein and hACE2 are shown in Figure 3B.

It was found that 19 aa residues of Group-A RBD interact with 21 aa residues of the hACE2 receptor (Table 1). Out of 19 amino acids of RBD of Group-A S protein, seven amino acids (ARG355, ARG357, THR33, LEU335, SER359, GLU536, and SER350) formed hydrogen bonds with the hACE2 receptor amino acids (GLN552, ASN556, LEU91, GLN338, ARG559, LYS419 and GLN89). Besides, 73 hydrophobic interactions between RBD of Group-A S proteins with 21 aa residues of hACE2 were observed (Table1). Moreover, this interaction pattern shows that the distal aa residues from core RBD, i.e., LYS529, SER530, GLU536, GLN580, THR581, and LEU582 of Group-A S protein are interacting with the hACE2. It is interesting to note that THR333 and THR500 of RBD strongly interact with the LEU91 and SER370 of hACE2 by forming one hydrogen and several hydrophobic bonds formation in proximity (2.66, 2.97Å) (Table 1).
Figure 1: (A) Schematic diagram of S protein’s core RBD (331-524 AA) along with proximal (from 300-330) and distal (from 525-615) regions of two distinct groups (-A and -B) of SARS-CoV-2; (B) Ribbon diagram of SARS-CoV-2 Group-A trimeric S protein (Magenta color) superimposed with modeled S protein of Group-B SARS-CoV-2. The enlarged image shows a structural change in variable loop region SARS-CoV-2 S protein of Group-A concerning the modeled Group-B protein.
Figure 2. (A) Molecular docking of modeled SARS-CoV-2 S protein with hACE2 receptor (A) Ribbon diagram showing protein-protein interaction between two distinct groups of SARS-CoV-2 trimeric spike protein (green) with hACE2 receptor (cyan) (I) Group-A and (II) Group-B. The RBDs of SARS-CoV-2 S protein from position 331-524 aa is shown in chain A (red), chain B (yellow), and chain C (orange). (B) Ribbon diagram showing protein-protein interaction between two distinct groups of SARS-CoV-2 monomeric spike protein (green) with the hACE-2 receptor (cyan). (I) Group-A and (II) Group-B monomeric SARS-CoV-2 S protein. The RBD of SI the domain of SARS-CoV-2 spike protein from position 331-524 aa (red).
A. hACE2 Chain A

B. RBD Group-B

ISSN 0973-2063 (online) 0973-8894 (print)
Bioinformation 17(2): 337-347 (2021)
Figure 3 (A) Ribbon diagram of group-A RBD (cyan) of SARS-CoV-2 S protein interacting with hACE2 receptor (green). The interacting amino acid residues are shown in the ball- stick model, and the hydrogen bonds (red broken lines) with bond length are shown in the insets. (B) Ribbon diagram of group-B RBD (cyan) of SARS-CoV-2 S protein interacting with hACE2 receptor (green). The interacting amino acid residues are shown in the ball- stick model, and the hydrogen bonds (red broken lines) with bond length are shown in the insets. (C) Surface diagram view of (I) group-ARBD (cyan) and (II) group-B RBD (cyan) of SARS-CoV-2 S protein in the reacting with hACE2 receptor (green). The interfacing amino acid residues are shown in red and blue patches.

Table 1: Interacting residues of RBD of Group-A human SARS-CV-2 with amino acids of hACE2 receptor protein

Amino acid residues of RBD of S-protein of Group A SARS-CoV-2	Amino acid residues of Human ACE2 receptor	Interaction type
ARG335, LYS356	GLN552	1 Hydrogen (2.84 Å) and 7 hydrophobic bonds
ARG357	GLN552, LYS553, ASN556	1 Hydrogen (64.3 Å) and 10 hydrophobic bonds
ASN331	GLU211, VAL212, LEU91	5 hydrophobic bonds
ILE332	LEU91, GLU564, LEU568	3 hydrophobic bonds
THR333	ASN90, LEU91, THR92	1 Hydrogen (2.66 Å) and 21 hydrophobic bonds
ASN334	THR92, SER563, GLU564,	3 hydrophobic bonds
LEU335	THR92, GLN386, ALA387,	1 Hydrogen (2.82 Å) and 4 hydrophobic bonds
ASN360	GLU564, ASN572, LEU568, LEU560	4 hydrophobic bonds
CYS561	LEU560, ARG559	1 hydrophobic bond
SER559	LEU560, ARG559,	1 Hydrogen (2.82 Å) and 2 hydrophobic bonds
PRO357	ARG559	6 hydrophobic bonds
GLU340	ALA857, ALA384, ARG559, PHE555	4 hydrophobic bonds
THR381, GLN980, LEU582	ASP213	3 hydrophobic bonds
GLU536	LYS419	1 Hydrogen (2.60 Å) and 2 hydrophobic bonds
LYS529, SER530	GLN89	1 Hydrogen (3.01 Å and 3 hydrophobic bonds

Table 2: Interacting residues of RBD of Group-B human SARS-CV-2 with amino acids of hACE2 receptor protein

Amino acid residues of RBD of S-protein of Group B SARS-CoV-2	Amino acid residues of Human ACE2 receptor	Interaction type
ALA372	TYR235, SER254, PRO253	6 hydrophobic bonds
SER254	SER254, PRO253	2 hydrophobic bonds
ASC70	GLU160	1 hydrophobic bond
VAL503	GLU160, ASP157	1 Hydrogen (3.02 Å) and 3 hydrophobic bonds
TYR508	GLU160, ILE151	2 hydrophobic bonds
GLU504	ASC151, GLU150, ASN154	3 hydrophobic bonds
ASP405	GLU150, ALA153, ASN154	3 hydrophobic bonds
ARG408	PRO253, TYR252, ALA251	3 hydrophobic bonds
PHE374	ASP157	1 hydrophobic bond
ASN437	ALA246, ASN250	1 Hydrogen (2.83 Å) and 20 hydrophobic bonds
TYR369	ASP250, ASN250	2 hydrophobic bonds
VAL407	LEU156	1 hydrophobic bond
PHE377	LYS247	1 hydrophobic bond
ASN250, ALA251, LEU281	TYR158	4 hydrophobic bonds
TYR252, ASP157, ALA251, TYR158	LEU156, SER280, LEU281	3 hydrophobic bonds
LYS247	LEU256, LEU281	3 hydrophobic bonds
The solvent-accessible surface area (SASA) of RBD of Group-A and Group-B SARS-CoV-2 S-protein was 19081.381 and 19037.311 Å², respectively. The molecular accessible surface area (MASA) of RBD of Group-A and Group-B SARS-CoV-2 was 32482.137 and 32607.174 Å², respectively (Table 2). The RBD of Group-A SARS-CoV-2 has a relatively smaller SASA in the RBD- hACE2 complex structure than that of Group-B SARS-CoV-2. A slightly larger surface contact area with the hACE2 receptor accompanies the increased SASA and MASA of Group-B SARS-CoV-2. We focused on the region (aa position 611-615) flanking the mutation site D614G. The relative SASA per residue for aa 611-615, i.e., LEU611, TYR612, GLN613, ASP614, and ALA615, is 46, 58, 46, 96, and 32%, respectively, within an overall SASA of 689.913 Å² for five residues of group-A RBD. For group B RBD, on the other hand, SASA per residue is 46, 60, 43, 92, and 37%, respectively, within an overall SASA of 547.525 Å² (Table 3). It is also noticeable that the solvent-accessible surface area of five distal amino acids of Group-B RBD is lower (547.525 Å²) than Group-A RBD (689.913 Å²). The ASP614 of Group-A RBD is more accessible (96%) than GLY614 (92%) of group-B RBD of SARS-CoV-2 to the hACE2 receptor. This implies that GLY614 is probably influencing the neighboring aa residues for overall increased accessibility of Group-B RBD to the hACE2 receptor.

Discussion:

The Spike protein and its RBD have emerged as a mutational hotspot in this novel strain of coronavirus [12]. Recent reports suggest enhanced binding affinity of SARS-CoV-2 to ACE2 receptor compared to SARS-CoV, which is probably responsible for increased infectivity and transmissibility [6,13]. The SARS-CoV-2 S protein adopts a homodimer architecture, of which the RBD undergoes a hinge-like conformational change from perfusion to post-fusion upon binding to the hACE2 receptor. The rotation of trimeric architecture at an angle of 52.2° (determined by aa residues D405-V622- V991) decreases the atomic collision or steric hindrance. It converts ACE2 inaccessible or close or down- conformation of

Table 3: Percentage Solvent accessible surface area (SASA) of distal amino acids from core RBD and its effect on an overall molecular and solvent accessible surface area of RBD.

SARS-CoV-2 Protein	Solvent accessible surface area (SASA) of RBD (Å²)	Molecular accessible surface area (MASA) of RBD (Å²)	Name of distal amino acids from core RBD	Percentage Solvent accessible surface area (%)	Overall Solvent accessible surface area (SASA) of five distal amino acids residues (Å²)
Group-A	19081.381	32482.137	LEU611	46	689.913
			TYR612	58	
			GLN613	40	
			ASP614	96	
			VAL615	32	
			LEU611	46	
			TYR612	60	
			GLN613	43	
			GLY614	92	
			VAL615	37	
Group-B	19037.311	32607.174	ALA246	547.525	

Note: The solvent-accessible surface area (SASA) of RBD of Group-A and Group-B SARS-CoV-2 S-protein was 19081.381 and 19037.311 Å², respectively. The molecular accessible surface area (MASA) of RBD of Group-A and Group-B SARS-CoV-2 was 32482.137 and 32607.174 Å², respectively (Table 2). The RBD of Group-A SARS-CoV-2 has a relatively smaller SASA in the RBD- hACE2 complex structure than that of Group-B SARS-CoV-2. A slightly larger surface contact area with the hACE2 receptor accompanies the increased SASA and MASA of Group-B SARS-CoV-2. We focused on the region (aa position 611-615) flanking the mutation site D614G. The relative SASA per residue for aa 611-615, i.e., LEU611, TYR612, GLN613, ASP614, and ALA615, is 46, 58, 46, 96, and 32%, respectively, within an overall SASA of 689.913 Å² for five residues of group-A RBD. For group B RBD, on the other hand, SASA per residue is 46, 60, 43, 92, and 37%, respectively, within an overall SASA of 547.525 Å² (Table 3). It is also noticeable that the solvent-accessible surface area of five distal amino acids of Group-B RBD is lower (547.525 Å²) than Group-A RBD (689.913 Å²). The ASP614 of Group-A RBD is more accessible (96%) than GLY614 (92%) of group-B RBD of SARS-CoV-2 to the hACE2 receptor. This implies that GLY614 is probably influencing the neighboring aa residues for overall increased accessibility of Group-B RBD to the hACE2 receptor.
trimeric spike protein into ACE2 accessible or open or up conformation of RBD of trimeric S protein [14]. Studies using computer-aided molecular modeling and protein-protein docking of SARS-CoV-2 spike protein with human ACE2 receptors have shed light on amino acid residues potentially involved in the effective protein-protein interaction [13]. However, the specific actual amino acid residues, which mediate this protein-protein interaction is still unknown. Our in-silico analysis elucidates the interacting amino acid residues between the SARS-CoV-2 RBD of Group- A and B S protein and hACE2 in detail. Through a single aa change at position 614, the S proteins’ overall secondary structure showed a similar folding pattern, with no significant structural difference, though minor differences at specific sections of coils or loops were spotted. The structurally preserved functional domains (RBD) and motifs (RBM) in S1 and S2 subunits suggest a highly conserved SARS-CoV-2 S protein structure. However, loop or coil modifications are known to affect the pathogenesis of murine hepatitis virus (MHV) and modulate neuroviroence and invasiveness of human coronavirus (HCoV-OC43) within the central nervous system (CNS) [15, 16]. Comparative analysis of structural features and interaction with hACE2 shows that Group-B forms a large binding interface and a larger number of interacting residues than Group-A. Since the trimeric and monomeric forms of spike protein are very bulky, interactin

B forms a large binding interface and a larger number of interacting amino acid residues between the SARS-CoV-2 RBD and hACE2 receptor. Single amino acid change enhancing protein interaction efficiency has been observed frequently in other proteins [21]. An insertion of basic aa residues into the loops in the avian influenza virus (H5N1) has reportedly caused its conversion from low pathogenicity to a highly pathogenic state [22]. Also, modifications in S1/S2 cause changes in feline coronavirus (FCoV) pathogenesis [23, 24, 25]. It could be hypothesized that the D614G substitution, distal to the receptor-binding motif in the RBD increased the binding capacity of Group B S protein to the human ACE2 receptor, which could be one of the reasons for its increased infectivity and pathogenicity.

Conclusion:
In conclusion, our study implies that the Group-B S protein having Gly at 614 aa position is structurally more accessible or exposed and binds compactly with hACE2 than the Group-A S protein having Asp at 614. Knowledge of the whole repertoire of residues involved in the interaction between SARS-CoV-2 trimeric S protein (not only core RBD) and hACE2 is needed to properly understand infectivity, transmissibility, and pathogenicity of novel coronaviruses. However, it is essential to note that the S protein mutation may not be the only determining factor for increased transmissibility and infectivity. The combination of mutations in other viral proteins could also affect replication efficiency and other life cycle steps, which need to be examined using the native virus.

References:
[1] Ashour HM et al. Pathogens, 2020 9 [PMID: 32143502]
[2] Zhu N et al. The New England Journal of Medicine, 2020 382: 727-33 [PMID: 31978945]
[3] Dong E and Du H, Gardner L. The Lancet. Infectious Diseases, 2020 20: 533-34. [PMID: 32087114]
[4] Andersen KG et al. Nature Medicine, 2020 26: 450-52 [PMID: 32284615]
[5] Du L et al. Nature Reviews. Microbiology, 2009 7: 226-36 [PMID: 19198616]
[6] Walls AC et al. Cell, 2020 181: 281-92 e6. [PMID: 32155444]
[7] Wrapp D et al. Science, 2020 367: 1260-63 [PMID: 32511295]
[8] Wu K et al. Journal of Virology, 2011 85: 5331-7 [PMID: 21415533]
[9] Zhang Y et al. Computational biology and Chemistry, 2005 29: 254-7 [PMID: 15979045]
[10] Studer G et al. Bioinformatics, 2020 36: 1765-71 [PMID: 32048708]
[11] Li F et al. Science, 2005 309: 1864-8 [PMID: 16166518]
[12] Sheikh JA et al. Infection, genetics and evolution, 2020 84: 104330 [PMID: 32335334]
[13] Lan J et al. Journal of Virology, 2020 94 [PMID: 31996437]
[14] Lan J et al. Nature, 2020 581: 215-20 [PMID: 32225167]
[15] Frana MF et al. Journal of Virology, 1985 56: 912-20 [PMID:
Articles published in BIOINFORMATION are open for relevant post publication comments and criticisms, which will be published immediately linking to the original article for FREE of cost without open access charges. Comments should be concise, coherent and critical in less than 1000 words.
