REVIEW

Randomized Controlled Trials of Add-On Antidepressants in Schizophrenia

Viacheslav Terevnikov, MD, PhD; Grigori Joffe, MD, PhD; Jan-Henry Stenberg, PhD

Kellokoski Hospital, Kellokoski, Finland (Dr Terevnikov); Department of Psychiatry, Helsinki University Central Hospital, Hospital District of Helsinki and Uusimaa, Helsinki, Finland (Drs Joffe and Stenberg).

Correspondence: Viacheslav Terevnikov, MD, Kellokoski Hospital, Vanha Valtatie 198, 04500 Kellokoski, Finland (viacheslav.terevnikov@hus.fi).

Abstract

Background: Despite adequate treatment with antipsychotics, a substantial number of patients with schizophrenia demonstrate only suboptimal clinical outcome. To overcome this challenge, various psychopharmacological combination strategies have been used, including antidepressants added to antipsychotics.

Methods: To analyze the efficacy of add-on antidepressants for the treatment of negative, positive, cognitive, depressive, and antipsychotic-induced extrapyramidal symptoms in schizophrenia, published randomized controlled trials assessing the efficacy of adjunctive antidepressants in schizophrenia were reviewed using the following parameters: baseline clinical characteristics and number of patients, their on-going antipsychotic treatment, dosage of the add-on antidepressants, duration of the trial, efficacy measures, and outcomes.

Results: There were 36 randomized controlled trials reported in 41 journal publications (n = 1582). The antidepressants used were the selective serotonin reuptake inhibitors, duloxetine, imipramine, mianserin, mirtazapine, nefazodone, reboxetine, trazodone, and bupropion. Mirtazapine and mianserin showed somewhat consistent efficacy for negative symptoms and both seemed to enhance neurocognition. Trazodone and nefazodone appeared to improve the antipsychotics-induced extrapyramidal symptoms. Imipramine and duloxetine tended to improve depressive symptoms. No clear evidence supporting selective serotonin reuptake inhibitors’ efficacy on any clinical domain of schizophrenia was found. Add-on antidepressants did not worsen psychosis.

Conclusions: Despite a substantial number of randomized controlled trials, the overall efficacy of add-on antidepressants in schizophrenia remains uncertain mainly due to methodological issues. Some differences in efficacy on several schizophrenia domains seem, however, to exist and to vary by the antidepressant subgroups—plausibly due to differences in the mechanisms of action. Antidepressants may not worsen the course of psychosis. Better designed, larger, and longer randomized controlled trials are needed.

Keywords: antidepressants, antipsychotics, schizophrenia, add-on treatment

Introduction

It is well established that antipsychotics are effective in the majority of patients with schizophrenia (Leucht et al., 2011). However, from one-fifth to one-third of the overall number of subjects undergoing the treatment demonstrate only partial, if any, improvement despite the antipsychotic treatment, adequate in terms of dosage and duration (Pantelis and Lambert, 2003). Treatment of these patients remains a major challenge, causing a serious burden for patients and their families and incurring high public health costs (Jablenski, 2000).

Clozapine, the prototypic “atypical” antipsychotic (previously referred to most often as second-generation antipsychotic [SGA]), is proven to be effective in a significant proportion of the
patients who do not respond to other antipsychotic medications (Kane et al., 1998; Asenjo-Lobos et al., 2010; Kane and Correll, 2010). The mechanisms of the superior efficacy of clozapine are still obscure and are usually attributed to the drug’s complex receptor profile (Melzer, 2012). However, some serious, sometimes life-threatening, adverse effects of clozapine (eg, weight gain, epileptic seizures, ileus, or agranulocytosis) limit its use in clinical practice (Kane et al., 1998). This calls for the search of new treatment strategies, including psychopharmacological approaches.

Indeed, a number of medications have been studied as adjuncts to antipsychotics with a goal to improve positive, negative, affective, or cognitive symptoms of schizophrenia resistant to antipsychotic medication alone. These pharmacological agents include lithium, anticonvulsants, antiinflammatory and glutamatergic drugs, sex hormones, cholinesterase and phosphodiesterase inhibitors, and various antidepressants (Singh et al., 2010; Leucht et al., 2011; Vernon et al., 2014). Although the use of antidepressants added to antipsychotics in schizophrenia has been a subject of intensive research during the recent decades, the evidence regarding their efficacy still remains conflicting (Rinkelmann et al., 2013). Nevertheless, antidepressants tend to be routinely used by clinicians (Zink et al., 2010; Himelhoch et al., 2012). For instance, in the Clinical Trials of Intervention Effectiveness study, about one-third of the participants were receiving an antidepressant at the study baseline (Chakos et al., 2006). Thus, there seems to exist a gap between the wide use of antidepressants in clinical practice and the research evidence supporting this approach.

The present study aimed to review the published randomized controlled trials (RCTs) with antidepressants added to antipsychotics in the treatment of schizophrenia.

Methods

Published RCTs assessing the efficacy of adjunctive antidepressants in schizophrenia were searched for in the PUBMED, PsycINFO, and PsyCIT databases from January 1960 to December 2013, using the following keywords: “schizophrenia” AND “antidepressant” OR “tricyclic antidepressant” OR “monoaminooxidase inhibitor” OR “selective serotonin reuptake inhibitor” OR “norepinephrine reuptake inhibitor”, as well as “schizophrenia” AND “amitriptyline” OR “imipramine” OR “clomipramine” OR “fluoxetine” OR “fluvoxamine” OR “sertraline” OR “paroxetine” OR “citalopram” OR “escitalopram” OR “venlafaxine” OR “duloxetine” OR “bupropion” OR “milnacipran” OR “reboxetine” OR “trazodone” OR “nefazodone” OR “mianserin” OR “mirtazapine” OR “vortioxetine” OR “vilazodone” OR “agomelatine”, as well as “schizophrenia” AND “double-blind” AND “augmentation”, as well as “schizophrenia” AND “double-blind” AND “adjunctive.” To obtain further data, hand searches of references in published review articles as well as cross-referencing were used.

All citations were reviewed using the following parameters: baseline clinical characteristics of patients and their antipsychotic treatment, dose of the add-on antidepressant, duration of the trial, number of participants, efficacy measures, and outcome.

Results

We were able to locate a total of 36 RCTs (reported in 41 journal publications) including 1582 subjects with a diagnosis of schizophrenia or schizoaffective disorder (Table 1). All included trials employed head-to-head, parallel group, double-blind design comparing the efficacy of an add-on antidepressant vs add-on placebo with the exception of trials by Friedman et al. (2005) and Stryjer et al. (2010) that employed a crossover design. The vast majority of trials were small with the number of subjects ranging from 14 to 53. This number was exceeded only in the trial by Salokangas and coauthors (1996) (n = 90). The duration of the trials ranged from 1 to 24 weeks. In 18 trials, an antidepressant was added to first-generation antipsychotics (FGAs), in 11 trials to SGAs, and in the rest of the trials to various antipsychotics.

In all trials, the efficacy measures—Brief Psychiatric Rating Scale, Positive and Negative Syndrome Scale (PANSS), Scale for the Assessment of Negative Symptoms, Scale for the Assessment of Positive Symptoms, Clinical Global Impression Scale, and the Wing’s scale—were used prospectively from baseline to endpoint. In only 14 studies were a priori defined minimum cut-off points on the Brief Psychiatric Rating Scale or PANSS scales used as an inclusion criterion, while in the others the subjects were vaguely defined to be “symptomatic” or “suffering from positive or negative symptoms” despite adequate antipsychotic treatment. Twenty-two trials included clinically stable subjects. Furthermore, in 21 trials, a thoroughly defined period of an unchanged antipsychotic treatment was required prior to participation in the study. This period varied from 1 week to 6 months. Presence of the current significant depressive symptoms served as an exclusion criterion in 12 trials. Of the others, 15 trials used depression rating scales as an outcome measure: the Hamilton Rating Scale for Depression, Calgary Depression Scale for Schizophrenia, Beck Depression Inventory, or Montgomery–Åsberg Depression Rating Scale. Extrapyramidal symptom rating scales—the Simpson–Angus Scale for extrapyramidal effects, the Abnormal Involuntary Movements Scale, and the Barnes Akathisia Scale—were used in 17 trials. Noteworthy, 5 trials were initially designed to investigate the effect of antidepressant add-on treatment of antipsychotic-induced weight gain (Poyurovsky et al., 2002; Rustillo et al., 2003; Poyurovsky et al., 2003a) or smoking cessation (Evins et al., 2005a; Weiner et al., 2012). These trials also utilized psychopathology rating scales (PANSS, Scale for the Assessment of Negative Symptoms, Scale for the Assessment of Positive Symptoms, Hamilton Rating Scale for Depression) and were thus included into this review.

The add-on antidepressant and add-on placebo groups did not generally differ significantly in baseline clinical characteristics. In only one trial (Joffe et al., 2009) the add-on antidepressant group had somewhat higher PANSS total scores at baseline.

Add-On Antidepressants in the Treatment of Positive and Negative Symptoms of Schizophrenia

The included RCTs are presented in Table 1. In regard to the negative symptoms, trials with the tricyclic antidepressants (TCAs) yielded mainly positive results, but the studies were relatively old (Collins and Dundas, 1967; Waehrens and Gerlach, 1980; Siris et al., 1991). The outcomes of the SSRI trials as a group were controversial. Of 6 studies with fluoxetine, only 2 were positive (Spina et al., 1994; Goff et al., 1995). While both studies with fluvoxamine (Silver and Nassar, 1992; Silver et al., 2000) and the only study with paroxetine (Jockers-Scherubl et al., 2005) were positive, adjunctive citalopram (Salokangas et al., 1996; Friedman et al., 2005), escitalopram (Iancu et al., 2010), and sertraline (Lee et al., 1998; Mulholland et al., 2003) failed to demonstrate any benefits in any of the published trials. Likewise, both trials with the selective noradrenaline reuptake inhibitor reboxetine were negative (Schutz and Berk, 2001; Poyurovsky, 2003a). Conversely, in the only trial with the selective serotonin and noradrenaline reuptake...
Antidepressant Group	Author(s)	Year	Antidepressant	Dose, Mg	Antipsychotic	N	Duration, wk	Efficacy Measures	Outcome
TCA	Collins and Dungas	1967	Amitryptiline	n/r	Perphenazine	87	12	Wing scale	Improvement in amitriptyline group.
	Waehrens and Gerlach	1980	Maprotiline	n/r	Various FGAs	20	16	n/r	No between group differences.
	Siris et al.	1991	Imipramine	n/r	Depot FGAs	14	24	n/r	Improvement in negative symptoms in imipramine group.
SSRI	Spina et al.	1994	Fluoxetine	20	Various FGAs	34	12	SANS, SAPS	Improvement on the SANS in fluoxetine group. No change on the SAPS in either group.
	Goff et al.	1995	Fluoxetine	20	Depot FGAs	41	6	BPRS	Greater improvement in fluoxetine group on the BPRS negative subscale. No change on the BPRS positive subscale in either group.
	Buchanan et al.	1996	Fluoxetine	20	Clozapine	33	8	SANS	No change in either group.
	Arango et al.	2000	Fluoxetine	20-40	Various FGAs	32	8	BPRS, SANS	No change in either group.
	Poyurovski et al.*	2002	Fluoxetine	20	Olanzapine	30	8	SANS, SANS	Greater reduction on the SAPS in placebo group than in fluoxetine group.
	Silver and Nassar	1992	Fluvoxamine	50-100	Various FGAs	30	7	PANSS	No change in either group.
	Silver et al.	2000	Fluvoxamine	50-100	Various FGAs	53	6	SANS, SANS	Improvement on the SANS in fluvoxamine group. No change on the SAPS in either group.
	Lee et al.	1998	Sertraline	50	Haloperidol	36	8	PANSS	No change in either group.
	Mulholand et al.*	2003	Sertraline	50	Various FGAs and risperidone	26	8	BPRS, SANS	No change in either group.
	Salokangas et al.	1996	Citalopram	20-40	Various FGAs	90	12	PANSS	Decrease on the PANSS total scale in both groups, no between group differences.
	Friedman et al.	2005	Citopram	40	Various SGAs	19	24	PANSS	No change in either group.
	Lancu et al.	2010	Excitopram	20	Various FGAs and SGAs	38	10	PANSS, SANS, CGI	No change in either group.
	Jockers et al.	2005	Paroxetine	30	Various FGAs and SGAs	29	12	PANSS	Improvement in paroxetine group on the PANSS negative subscale.
NRI	Schutz and Berk	2001	Reboxetine	8	Haloperidol	30	8	PANSS	No change in either group.
	Poyurovski et al.*	2003	Reboxetine	4	Olanzapine	26	6	SANS, SANS	No change in either group.
SNRI	Mico et al.	2011	Duloxetine	60	Clozapine	33	16	BPRS, PANSS	Improvement on the BPRS, PANSS negative, PANSS general and PANSS total (sub)scales in duloxetine group.
NDRI	Evins et al.*	2005	Bupropion	300	Clozapine, FGAs, SGAs	53	12	SANS	No change in either group.
Receptor-blocking antidepressants	Weiner et al.*	2012	Bupropion	300	Clozapine, FGAs, SGAs	32	12	n/a	No change in either group.
	Decina et al.	1994	Trazodone	n/r	n/r	47	6	BPRS, SANS	Improvement on the BPRS and SANS in trazodone group.
	Hayashi et al.	1997	Trazodone	50-200	n/r	39	5	BPRS, SANS	Improvement on the BPRS negative subscale in trazodone group.
	Stryjer et al.*	2010	Trazodone	100	n/r	13	1	PANSS	No change in either group.
	Shiloh et al.	2002	Mianserin	30	Various FGAs	18	6	BPRS, SANS, SANS	Improvement on the BPRS in mianserin group.
inhibitor duloxetine, the active medication outperformed placebo on the PANSS negative subscale (Mico et al., 2011). Bupropion, a noradrenaline and dopamine reuptake inhibitor, demonstrated a trend toward improvement in negative symptoms that did not reach statistical significance in one RCT (Evins et al., 2005a). In another RCT (Weiner et al., 2012), bupropion did not override placebo (for review, see Englisch et al., 2013). For mianserin, trazodone, nefazodone, and mirtazapine (further referred to as receptor-blocking antidepressants, since they affect serotonin 5HT2 receptors rather than monoamine transporters, as opposed to the vast majority of existing antidepressants that are monoamine transporter blockers), most of the RCTs (8 of 12) were positive: 2 of 3 studies with trazodone (Decina et al., 1994; Hayashi et al., 1997), 1 of 3 studies with mianserin (Hayashi et al., 1997), and 6 of 7 studies with mirtazapine (Berk et al., 2001; Zoccali et al., 2004; Joffe et al., 2009; Abbasi et al., 2010; Cho et al., 2011; Caforio et al., 2013). In only one study, an add-on antidepressant (mirtazapine) improved the positive symptoms of schizophrenia (Joffe et al., 2009). Noteworthy, a trend ($P = .07$) in favor of an antidepressant was also found in 1 of 3 RCTs with mianserin (Shiloh et al., 2002).

Add-On Antidepressants in the Treatment of Depressive Symptoms of Schizophrenia

Antidepressant augmentation was found to be effective in the treatment of depressive symptoms of schizophrenia in only a small number of studies. These included imipramine (Siris et al., 1987), fluoxetine (Spina et al., 1994), sertraline (Mulholand et al., 2003), citalopram (Zisook, 2009), reboxetine (Poyurovski et al., 2003a), duloxetine (Mico et al., 2011), and mirtazapine (Terevnikov et al., 2011). The majority of the identified studies, however—3 RCTs with fluoxetine (Buchanan et al., 1996; Arango et al., 2000; Bustillo et al., 2003), 2 RCTs with mirtazapine (Zoccali et al., 2004; Berk et al., 2009), and one RCT for each with paroxetine (Jockers-Scherubl et al., 2005), reboxetine (Schutz and Berk, 2001), mianserin (Poyurovski et al., 2003b), and trazodone (Stryjer et al., 2010)—generated negative results. Also both RCTs with bupropion (Dufresne et al., 1988; Evins et al., 2005a) were negative (though a desired trend was observed in the latter one. For review, see Englisch et al. [2013]).

Add-On Antidepressants in the Treatment of Extrapyramidal Side-Effects of Antipsychotics

All trials with the SSRIs (Goff et al., 1995; Lee et al., 1998; Arango et al., 2000; Bustillo et al., 2003; Mulholand et al., 2003; Jockers-Scherubl et al., 2005) demonstrated negative outcomes, as did both trials with reboxetine (Schutz and Berk, 2001; Poyurovski et al., 2003a). Of the receptor-blocking antidepressants, mianserin failed to show superiority over placebo in both conducted trials (Hayashi et al., 1997; Poyurovski et al., 2003b), while both trials with trazodone (Hayashi et al., 1997; Stryjer et al., 2010) and the only trial with nefazodone (Wynchank and Berk, 2003) were positive. Mirtazapine was superior to placebo in alleviating antipsychotic-induced extrapyramidal symptoms (EPS) in only 1 of the 5 conducted trials (Joffe et al., 2009).

Add-On Antidepressants in the Treatment of Cognitive Dysfunction in Schizophrenia

Of the SSRIs, the only available study (one with citalopram) did not reveal any improvement in cognitive functions
Table 1b. Antidepressants in Treatment of Depressive Symptoms

Antidepressant Group	Author(s)	Year	Antidepressant	Dose, mg	Antipsychotic	Duration, wk	Efficacy Measures	Outcome
TCA	Siris et al.	2000	Imipramine	n/r	Flufenazine decanoate	70	6	HDRS, SADS
SSRIs	Spina et al.	1994	Fluoxetine	20	Various FGAs	34	12	HDRS
	Buchanan et al.	1996	Fluoxetine	20	Clozapine	33	8	n/r
	Arango et al.	2000	Fluoxetine	20-40	Various FGAs	32	8	HDRS
	Bustillo et al.*	2003	Fluoxetine	60	Olanzapine	31	8	HDRS
	Mulholand et al.	2003	Sertraline	50	Various FGAs, risperidone	26	8	HDRS, BDI
	Jockers et al.	2005	Paroxetine	30	Various FGAs and SGAs	29	12	HDRS
	Iancu et al.	2010	Escitalopram	20	Various FGAs and SGAs	38	10	HDRS
	Schutz and Berk	2001	Reboxetine	8	Haloperidol	30	8	HDRS
	Poyurovski et al.*	2003	Reboxetine	4	Olanzapine	26	6	HDRS
NRI	Schutz and Berk	2001	Reboxetine	8	Haloperidol	30	8	HDRS
	Poyurovski et al.*	2003	Reboxetine	4	Olanzapine	26	6	HDRS
	Shiloh et al.	2002	Mianserin	30	Haloperidol, perphenazine	18	6	HDRS
	Poyurovski et al.	2003	Mianserin	15	Various FGAs	30	4	HDRS
	Stryjer et al.*	2010	Trazodone	100	n/r	13	1	HDRS
	Zoccali et al.	2004	Mirtazapine	30	Clozapine	24	8	BPRS (depressive factor)
	Berk et al.	2009	Mirtazapine	30	Various SGAs	40	6	CDSS, HDRS
	Terevnikov et al.	2011	Mirtazapine	30	Various FGAs	41	6	CDSS, PANSS (depression item)

Improvement in imipramine group.
Improvement in fluoxetine group.
No change in either group.
No change in fluoxetine group.
No change in either group.
No change in either group.
Improvement on both measures in sertraline group.
No change in either group.
No change in either group.
No change in either group.
Improvement in duloxetine group.
No change in either group.
No change in either group.
Improvement on the HDRS in both groups with no between-group difference.
No change in either group.
No change in either group.
Improvement on both measures in mirtazapine group.
Antidepressant Group	Author(s)	Year	Antidepressant	Dose, mg	Antipsychotic	Duration, wk	Efficacy Measures	Outcome
SSRIs	Goff et al.	1995	Fluoxetine	20 Depot FGAs	41 6	n/r	No change in either group.	
	Arango et al.	2000	Fluoxetine	20–40 Various FGAs	32 8	MIMS	No change in either group.	
	Bustillo et al.*	2003	Fluoxetine	60 Olanzapine	31 8	SAS, BAS, AIMS	No change in either group.	
	Lee et al.	1998	Sertraline	50 Haloperidol	36 8	SAS	No change in either group.	
	Mulholand et al.*	2003	Sertraline	50 Various FGAs, risperidone	26 8	ESRS, BAS	No change in sertraline group, worsening of ESRS scores in placebo group.	
Receptor-blocking	Jockers et al.	2005	Paroxetine	30 Various FGAs and SGAs	29 12	SAS, BAS, AIMS	No change in either group.	
	Iancu et al.	2010	Escitalopram	20 Various FGAs and SGAs	38 10	AIMS	No change in either group.	
	Schutz and Berk	2001	Reboxetine	8 Haloperidol	30 8	SAS	No change in either group.	
	Poyurovski et al.*	2003	Reboxetine	4 Olanzapine	26 6	BAS, SAS	SAS scores decreased in both groups with no between-group difference in observed change.	
	Hayashi et al.	1997	Trazodone	50–200 n/r	39 5	AIMS	Improvement in trazodone group.	
	Stryjer et al.	2010	Trazodone	100 n/r	13 1	SAS, BAS	Between group differences on the BAS scores in favour of trazodone. No changes on SAS scores in either group.	
	Hayashi et al.	1997	Mianserin	20–60 n/r	39 5	AIMS	No change in either group.	
	Poyurovski et al.	2003	Mianserin	15 Various FGAs	30 4	BAS, SAS, AIMS	No change in either group.	
	Berk et al.	2001	Mirtazapine	30 Haloperidol	30 6	SAS	No change in either group.	
	Joffe et al.*	2009	Mirtazapine	30 Various FGAs	39 6	SAS	Improvement on the SAS scores in mirtazapine group. No between group differences.	
	Berk et al.	2009	Mirtazapine	30 Various SGAs	40 6	SAS	No change in either group.	
	Abbasi et al.	2010	Mirtazapine	30 Risperidone	40 8	ESRS	No change in either group.	
	Lee et al.	2011	Mirtazapine	15–30 Risperidone	21 8	SAS, BAS	No between group differences on either measure.	
	Wynchank and Berk	2003	Nefazodone	100 Haloperidol	49 1	SAS, BAS, AIMS	Improvement on the SAS in nefazodone group. No changes on the BAS or AIMS in either group.	
Of the receptor-blocking antidepressants, mianserin added to FGAs showed beneficial effects on memory and learning with no between-group differences for executive functions (Poyurovski et al., 2003b). Mirtazapine outperformed placebo in between-group comparisons for visual-spatial ability and general mental speed/attentional control but not for other neurocognitive functions (Stenberg et al., 2010). Evins and collaborators (2005b) reported improvement in attention tests in an RCT with adjunctive bupropion, a noradrenaline and dopamine reuptake inhibitor.

Results

The effects of different groups of add-on antidepressants on major psychopathology domains of schizophrenia are summarized in Table 2. The vast majority of publications reported no favorable effect of add-on antidepressants on the schizophrenia symptom domains. The only exception was the group of the receptor blocking antidepressants, with 9 studies reporting desirable results for negative symptoms (vs 3 studies that did not show benefits for this symptom domain) and, correspondingly, 2 studies (vs 1 study) for cognitive deficits.

No add-on RCTs with new novel antidepressants vortioxetine, vilazodone, or agomelatine could be located.

Adverse Effects Due to Adjunctive Antidepressants in Schizophrenia

The majority of the included studies reported overall good tolerability of antidepressant-antipsychotic combinations. Spina et al. (1994) observed, however, more common adverse effects in patients receiving add-on fluoxetine compared with those receiving an antipsychotic alone. Noteworthy, no RCTs reported worsened psychosis due to adjunctive antidepressants.

Discussion

We were able to identify 36 RCTs on combinations of antidepressants with an ongoing antipsychotic treatment published in the period from 1968 to 2013. The RCTs comprised the majority of the existing antidepressants and aimed to study their efficacy for the main clinical domains of schizophrenia. To summarize, the existing evidence regarding the efficacy of antidepressants in the treatment of schizophrenia is mixed.

The methodological quality of the studies varied. Overall, the later RCTs reported more precisely than the earlier ones the outcome criteria, the dosages of the study drugs, the clinical scales used, the patient population’s clinical and demographic characteristics, etc. This progress of the clinical study methodology advocates, in general, giving more weight to the most recent studies. Nevertheless, both old and recent RCTs have a number of restrictions. Almost all of them comprise small patient samples. Many publications express secondary analysis from the studies originally designed for negative (or sometimes also for overall) but not affective symptoms. This uncertainty possibly contributes to the heterogeneity of results obtained in different studies and makes a between-study comparison difficult.

Antidepressants in the Treatment of Negative Symptoms of Schizophrenia

Only 5 of 14 RCTs with SSRIs reported favorable results. This puts into question the efficacy of this antidepressant group (Friedman et al., 2005). Of the receptor-blocking antidepressants, mianserin added to FGAs showed beneficial effects on memory and learning with no between-group differences for executive functions (Poyurovski et al., 2003b).
in the treatment of schizophrenia's negative symptoms. From a theoretical viewpoint, these findings possibly indicate that the increase of serotonin availability in the brain per se is not enough to alleviate the negative symptoms.

The data on selective serotonin and noradrenaline reuptake inhibitor (SNRIs) are scarce. Only one small study (with duloxetine) is available. Its desirable result needs further validation in larger studies. Studies with other SNRIs are also necessary.

For the TCAs, even though 2 of the 3 existing studies were positive, the small number of trials and methodological issues (omitted report on outcome measures or use of psychiatric scales with questionable reliability) makes the significance of these results uncertain.

In both available studies with reboxetine and bupropion, the active drug was not more efficacious than placebo, indicating that catecholamine reuptake inhibition alone is seemingly insufficient to alleviate negative symptoms of schizophrenia. Data on the receptor-blocking antidepressants are more convincing, since they outperformed placebo in 10 of the 13 reported RCTs. This advantage may plausibly be interpreted with the dissimilar pharmacodynamic mechanisms of action of these compounds. While not affecting monoamine transporters (and thus reuptake of monoamines), all receptor-blocking antidepressants inhibit the postsynaptic serotonin 5HT2 receptors, a property that they share with clozapine and other SGAs (Meltzer, 1999). The theory of atypicality, especially popular in

Antidepressant-Group	Effect	Negative Symptoms	Positive Symptoms	Depressive symptoms	Extrapyramidal symptoms	Cognitive symptoms
TCA + 1,4 (n = 101)	n/a	4 (n = 14)	n/a	n/a	n/a	
0 2 (n = 20)	n/a	n/a	n/a	n/a	n/a	
SSRI + 5,7,8,15,29 (n = 187)	n/a	n/a	7,21 (n = 60)	n/a	n/a	
0 9,10,13,14,18,20,21,28,35 (n = 489)	n/a	n/a	9,14,20,29,35	(n = 163)	n/a	
NRI + 17,22 (n = 56)	n/a	17 (n = 30)	n/a	17,22 (n = 56)	n/a	
0 22 (n = 33)	n/a	n/a	n/a	n/a	n/a	
SNRI + 38 (n = 33)	n/a	38 (n = 33)	n/a	n/a	n/a	
0 32, 40 (n = 85)	n/a	n/a	3,26 (n = 91)	n/a	27 (n = 53)	
NDRI + 26, 40 (n = 85)	n/a	n/a	26, 40 (n = 85)	n/a	n/a	
Receptor blocking + antidepressants	6,11,12,16,19,25,31,32,36,41 (n = 325)	31 (n = 39)	39 (n = 41)	11,24,31,34 (n = 140)	23,33 (n = 67)	
0 23,30,34 (n = 83)	6,11,12,16,19,23,25,30,32,34,36 (n = 341)	19,23,25,30,34 (n = 125)	12,16,23,30,32,37 (n = 200)	n/a		

Abbrivations: n/a, no published RCTs found; NDRI, noradrenaline and dopamine reuptake inhibitor; NRI, selective noradrenaline reuptake inhibitor; SNRI, serotonin and noradrenaline reuptake inhibitor; SSRI, selective serotonin reuptake inhibitor; TCA, tricyclic antidepressant; +, result favoring antidepressant over placebo; 0, no difference between antidepressant and placebo.

Worsening of schizophrenia symptoms was not reported in any of the studies. The numbers in the syndrome columns refer to the index number of the RCT listed below. The list is arranged in chronological order, meaning that the larger the number the more recent (and often methodologically more reliable) is the corresponding study. The positive (+) and negative (0) studies ratio depicts roughly the balance of pro et contra evidence for each antidepressant group in each symptom domain. (The studies are not weighted in terms of methodological quality or number of participants and should be thus taken with caution).

List of RCTs:
1. Collins and Dungas, 1967
2. Waehrens and Gerlach, 1980
3. Dufresne et al., 1988
4. Siris et al., 1991
5. Silver and Nassar, 1992
6. Decina et al., 1994
7. Spina et al., 1994
8. Goff et al., 1995
9. Buchanan et al., 1996
10. Salokangas et al., 1996
11. Hayashi et al., 1997(a)
12. Hayashi et al., 1997(b)
13. Lee et al., 1998
14. Arango et al., 2000
15. Silver et al., 2000
16. Berk et al., 2001
17. Schutz and Berk, 2001
18. Poyurovsky et al., 2002
19. Shiloh et al., 2002
20. Bustillo et al., 2003
21. Mullol and, 2003
22. Poyurovsky et al., 2003(a)
23. Poyurovsky et al., 2003(b)
24. Wynchan and Berk, 2003
25. Zoccali et al., 2004
26. Evins et al., 2005(a)
27. Evins et al., 2005(b)
28. Friedman et al., 2005
29. Jockers-Scherubl et al., 2005
30. Berk et al., 2009
31. Joffe et al., 2009
32. Abbasi et al., 2010
33. Stenber et al., 2010
34. Stryjer et al. 2010
35. Iancu et al. 2010
36. Cho et al., 2011
37. Lee et al., 2011
38. Mico et al., 2011
39. Terevnikov et al., 2011
40. Weiner et al., 2012
41. Caforio et al., 2013
the late 1990s, postulates that antipsychotics with higher affinity to the 5HT2 than to the dopamine D2 receptors (the atypical antipsychotics, or SGAs) were more effective in treating positive and negative symptoms and cognitive deficits and less prone to cause extrapyramidal side-effects compared with the FGAs, potent dopamine D2 blockers with low or negligible 5HT2 receptor inhibition (Meltzer and Massey, 2011). The rationale for the use of the receptor-blocking antipsychotics in schizophrenia is the presumption that combination of an inhibitor of the 5HT2 receptor (antidepressant) with a relatively pure D2 blocker (FGA) would result in a clinical effect resembling that of the SGAs, with possible additional benefits in terms of efficacy and tolerability (Berk et al., 2001; Joffe et al., 2009). Preliminary evidence for this presumption was gained in a study by Duinkerke and coauthors (1993) in which add-on ritanserin, a pure 5HT2 blocker devoid of antidepressive properties, improved negative symptoms in haloperidol-treated schizophrenia patients.

On the other hand, in 4 of 6 positive studies, mirtazapine was added to risperidone, clozapine, or olanzapine – each of them known to be a potent 5HT2A/C blocker by itself, which makes little sense from the viewpoint of the above-mentioned atypicality theory. A possible explanation for this advantageous effect may be the affinity of mirtazapine to some other (than 5HT2) types of receptors. In addition to the 5HT2 receptors, mirtazapine inhibits the postsynaptic serotonin 5HT3 receptors and presynaptic noradrenaline α2 receptors and indirectly stimulates postsynaptic serotonin 5HT1A receptors (de Boer, 1996), all of these believed to be involved in the pathophysiology of schizophrenia. Antagonists of the 5HT3 receptors seem potentially beneficial in the treatment of schizophrenia (Costall and Naylor, 1992). In a preclinical study by Pitsikas and Borsini (1996), a 5HT3 receptor antagonist, itasetron, demonstrated procognitive effects, and in a clinical trial by Zhang and collaborators (2006), another 5HT3 antagonist, ondansetron, was added to an on-going treatment with haloperidol and improved negative symptoms, general psychopathology, and cognitive functions in patients with schizophrenia.

Blockade of the noradrenaline α2 receptors also may be useful in the treatment of schizophrenia. In an RCT by Litman and coauthors (1996), the α2 antagonist idazoxan added to fluoxetine produced clinical improvement comparable with that of clozapine. This finding was later supported by 2 preclinical studies. Wadenberg and coauthors (2007) found idazoxan to potentiate the antipsychotic-like effect of both FGA (haloperidol) and SGA (olanzapine) and also to reverse haloperidol-induced catalepsy in the laboratory animals. In another preclinical study, Marcus and coauthors (2010) reported that adjunctive idazoxan had improved the efficacy of risperidone and facilitated cortical dopaminergic and glutamatergic neurotransmission.

Rummel et al. (2005) performed a systematic review of 5 RCTs (comprising the TCAs, receptor-blocking antidepressants, and SSRIs) available at that time and fulfilling the rigorous systematic review criteria. The authors concluded that “the combination of antipsychotics and antidepressants may be more effective in treating negative symptoms of schizophrenia than antipsychotics alone.” This conclusion, although not differentiating between effects of different antidepressant subgroups, is mainly in line with that of the current review.

The efficacy of add-on antidepressants on negative symptoms of schizophrenia was reviewed by Singh and coauthors (2010). Based on an analysis of 23 RCTs (n = 819), the authors found that add-on treatment with antidepressants was more effective for negative symptoms in chronic schizophrenia than monotherapy with antipsychotics. In particular, Singh and collaborators concluded that fluoxetine, trazodone, and ritanserin were the most efficient antidepressants for treating negative symptoms, while the majority of other antidepressants did not express such advantages compared with placebo. These findings seem to be controversial, especially for fluoxetine, which has been unable to outperform placebo in 3 of 5 studies published to date. Unlike Singh and co-workers (2010), we have found that data supporting clinical efficacy of add-on antidepressants on negative symptoms is most consistent for the receptor-blocking antidepressants. This difference in the results may be partly explained by the different number of studies included in these 2 reviews (9 RCTs on receptor-blocking antidepressants in the review by Singh and co-authors vs 13 RCTs in the current review). Some of the RCTs with receptor-blocking antidepressants (Abbasi et al., 2010; Stryjer et al., 2010; Cho et al., 2011; Caforio et al., 2013) were not available at the time of preparation of the review by Singh and co-authors. Furthermore, the discrepancy could result from different methodology employed by Singh and co-authors, who based their conclusions on the computation of the effect size for each antidepressant separately.

Engisch and colleagues (2013) did not find in their review any RCT data on improved negative symptoms with adjunctive bupropion.

Antidepressants in the Treatment of Positive Symptoms of Schizophrenia

Antidepressants seem to have no desirable effect on positive symptoms of schizophrenia, as almost all RCTs were disappointing in this respect. The only exception was a study by Joffe and coauthors (2009), in which mirtazapine (but not placebo) added to on-going therapy with various FGAs improved positive symptoms. This result diverged from other mirtazapine trials. It is possible that in that particular study, the researchers succeeded in minimizing the regression to the mean by a sound process of stabilization of clinical status and dosage of the FGAs. Also, placebo response and low adherence to the protocol procedures were minimized by a placebo run-in period, which probably explained the high patient retention level. Stabilization and low drop-out rate might permit for surfacing a possible additive antipsychotic effect of mirtazapine. This observation, however, has to be replicated in other studies with similarly rigorous methodology.

In clinical practice, physicians are sometimes concerned with a risk of worsening or exacerbation of psychosis when prescribing antidepressants to patients with schizophrenia (Petit, 1994). Moreover, some current schizophrenia treatment guidelines suggest caution when using antidepressants (APA, 2004). This review does not support this opinion, since not a single study with an add-on antidepressant reported worsening of positive symptoms. The majority of the presented RCTs, however, involved subjects with chronic schizophrenia, with only 3 trials comprising acutely ill subjects. It therefore remains unclear to what extent this observation can be extrapolated to acute schizophrenia.

Antidepressants in the Treatment of Depressive Symptoms of Schizophrenia

Only 2 of 6 studies with SSRIs were positive, and exactly the same proportion (2 of 6) was found with regard to receptor-blocking antidepressants. This puts the efficacy of both antidepressant groups into question. The antidepressants with sound noradrenaline activity may, however, be of interest for this symptom domain, since 1 of the 2 existing RCTs with
reboxetine, the only study with imipramine, and the only study with duloxetine (compounds with a pronounced noradrenaline enhancing effect) reported improved depression. A trend in favor of active compound over placebo was observed in 1 of 2 RCTs with adjunctive noradrenaline and dopamine inhibitor bupropion. Of the 6 published trials with the receptor-blocking antidepressants, only one (Terenikov et al., 2011) reported improved depression with add-on mirtazapine.

To summarize, the evidence regarding the efficacy of antidepressants in the treatment of depression in schizophrenia is scarce and controversial. The main methodological issue in this area is that the study population was not selected specifically for depressive symptoms, with the only exception of the post-psychotic depression study by Siris and co-authors (1987). In the rest of the studies, change in depression scores was a subject for a secondary analysis.

Also, Whitehead and coauthors (2012) in their Cochrane review concluded that, although antidepressants may be of some benefit for people with depression and schizophrenia, the evidence was still far from convincing. The authors of that review also emphasized poor quality of the available literature as a contributing factor for this uncertainty.

Antidepressants in the Treatment of Extrapyramidal Side-Effects of Antipsychotics

For the monoamine transporter inhibitors, only SSRIs and the noradrenaline reuptake inhibitor reboxetine studies were identified. All these studies were negative, probably not surprisingly given the lack of theoretical basis for such combination in EPS. Moreover, the SSRIs are reported to even cause EPS in patients given the lack of theoretical basis for such combination in EPS. For the monoamine transporter inhibitors, only SSRIs and the antidepressants in the Treatment of Extrapyramidal as a contributing factor for this uncertainty.

Antidepressants in the Treatment of Cognitive Deficits Related to Schizophrenia

Neurocognitive effects of antidepressants added to antipsychotics in schizophrenia have been studied in only 3 RCTs.

A serotonin reuptake inhibitor, citalopram, did not improve cognition in schizophrenia (Friedman et al., 2005). The increase of availability of serotonin alone in the brain may not therefore improve neurocognition.

Evins and coauthors (2005b) reported improved attention in patients with schizophrenia treated with bupropion for smoking cessation. This positive change became significant only after controlling for abstinence status. The influence of nicotine use and smoking cessation on cognitive performance in this study makes the results difficult to interpret.

On the contrary, 2 receptor-blocking antidepressants with a similar mechanism of action, mianserin (Poyurovsky et al., 2003b) and mirtazapine (Stenberg et al., 2010, 2011), did improve neurocognition in FGA-treated schizophrenia patients.

As for the negative symptoms, the plausible proneurocognitive effect of mirtazapine and mianserin in schizophrenia may emerge from their receptor-binding profile. First, they may enhance prefrontal catecholamine activity via SHT2A or SHT2C receptor blockade (as most SGAs do), thereby enhancing activity of the prefrontal cortex (Liegeois et al., 2002; Menzies, 2007). Second, the SHT3 receptor modulation by mianserin or mirtazapine could improve neurocognition (Akhondzadeh et al., 2009) through increased release of acetylcholine (Passani and Biandina, 1998). Third, mirtazapine might improve neurocognition as a result of the indirect agonism of SHT1A receptors (Sumiyoshi et al., 2007). Fourth, mianserin and mirtazapine inhibit the noradrenergic α2 receptors. Inhibition of the α2 receptors can enhance neurocognition via noradrenaline-mediated modulation of response to environmental stimuli (Friedman et al., 2004). Furthermore, the α2 receptor antagonism seems to boost hippocampal neurogenesis (Rizk et al., 2006). Mirtazapine is an even more potent α2 antagonist than clozapine, which may explain its additional neurocognition-enhancing effect even if added to clozapine, as demonstrated in an open label trial by Delle Chiaie et al. (2007). Mirtazapine may also boost the levels of the Brain-Derived Neurotrophic Factor (Rogoz et al., 2005), a major mediator of neurogenesis and neuroplasticity, which are often abnormal in patients with schizophrenia (Rizos et al., 2008).

Vernon and coauthors (2014) found in their meta-analysis clinically negligible (although statistically significant) improvement of neurocognitive functions with adjuvant antidepressants. However, while Vernon and colleagues analyzed pooled antidepressants, in the current review, each antidepressant studied has been given separately.

The number of studies presented in both reviews was small. Thus, the evidence for the proneurocognitive potential of add-on antidepressants is, so far, insufficient but deserves further research.

Limitations

The RCT is the gold standard of clinical efficacy studies. However, RCTs are fraught with patient selection bias and, thus, the results of available naturalistic prospective studies, mirror design studies, as well as pertinent register studies should be taken into account for balanced clinical decisions. Furthermore, we have not performed quantitative analyses of the data nor included unpublished data as it would be required for a systematic meta-analysis. Moreover, the vast majority of the available
RCTs are small and methodologically heterogenic, which calls for caution when interpreting our results. In a substantial part of the RCTs in this review, the reported outcomes were a result of secondary analysis.

This review has focused predominantly on the efficacy of adjunctive antidepressants, while in clinical practice the potential benefits should be balanced against unwanted side-effects of these drugs and of antidepressant-antipsychotic combinations.

Further Directions

In the future, well-designed, larger, and longer RCTs are needed. There is also a need for trials designed specifically for certain symptom domains, with appropriately selected patients and pertinent rating scales. Despite an existing theoretical rationale, there is a lack of studies assessing the effects of bupropion, reboxetine, SNRIs, and reversible inhibitors of monoamine oxidase A on cognitive function in schizophrenia.

The future studies should also focus on new, novel, add-on antidepressants that have come into clinical practice in recent years. Of interest may be, for instance, vortioxetine. In addition to the conventional inhibition of the serotonin (5HT) transporter, vortioxetine demonstrates an affinity to the serotonin 5HT1a, 5HT1b, 5HT1d, 5HT3, and 5HT7 receptors. Furthermore, it modulates the GABA, MNDA, noradrenergic, dopaminergic, cholinergic, and histaminergic neurotransmitter systems (Leiser et al., 2015; Stahl, 2015). Some of these receptors and neurotransmitters may be involved in pathophysiology of schizophrenia.

In addition to the symptoms of depression, vortioxetine may improve cognitive functions in patients with major depressive disorder (Sole et al., 2015).

Conclusions

There exists a substantial number of RCTs on the efficacy of add-on antidepressants, but due to methodological issues the results remain uncertain. Receptor-blocking antidepressants mirtazapine and mianserin show somewhat consistent efficacy for negative symptoms. The evidence for EPS, neurocognition, and depression domains is even more ambiguous and should be interpreted with caution. Some receptor-blocking antidepressants (trazodone and nefazodone) seem to improve FGA-induced EPS, while others (mirtazapine and mianserin) appear to enhance neurocognition. Transporter-blocking antidepressants with prominent noradrenergic activity tended to improve depressive symptoms.

The overall data for the SSRIs are rather disappointing. An add-on antidepressant (mirtazapine) improved positive symptoms in only one study. However, the data unequivocally show that adjunctive antidepressants do not worsen psychosis, at least in chronic schizophrenia. The caution recommended for antidepressants in some current schizophrenia treatment guidelines may, therefore, need reappraisal.

Interest Statement

None.

References

Abbasi SH, Behpournia H, Ghoreshi A, Salehi B, Raznahan M, Rezazadeh SA, Rezaei F, Akhondzadeh S (2010) The effect of mirtazapine add-on therapy to risperidone in the treatment of schizophrenia: a double-blind randomized placebo-controlled trial. Schizophr Res 116:101–106.

Akhondzadeh S, Mohammad M, Noroozian M, Karamghadiri N, Ghoreshi A, Jamshidi AH, Forghani S (2009) Added ondansetron for stable schizophrenia: a double blind, placebo controlled trial. Schizophr Res 107:206–212.

American Psychiatric Association: Practice guidelines for the treatment of patients with schizophrenia, second edition (2004). Am J Psychiatry 161:1–56.

Arango C, Kirkpatrick B, Buchanan RW (2000) Fluoxetine as an adjunct to conventional antipsychotic treatment of schizophrenia patients with residual symptoms. J Nerv Ment Dis 188:50–53.

Asenjo Lobos C, Komossa K, Rummel-Klug C, Hunger H, Schmid F, Schwarz S, Leucht S (2010) Clozapine versus other atypical antipsychotics for schizophrenia. Cochrane Database Syst Rev 10:CD006693. doi: 10.1002/14651858.

Berk M, Ichim C, Brook S (2001) Efficacy of mirtazapine add-on therapy to haloperidol in the treatment of the negative symptoms of schizophrenia: a double-blind randomized placebo-controlled study. Int Clin Psychopharmacol 16:87–92.

Berk M, Gama CS, Sundram S, Hustig H, Koopowitz L, D’Souza R, Malloy H, Rowland C, Monkhouse A, Monkhouse A, Bole F, Sathiyamoorthy S, Piskulic D, Dodd S (2009) Mirtazapine add-on therapy in the treatment of schizophrenia with atypical antipsychotics: a double-blind, randomised, placebo-controlled clinical trial. Hum Psychopharmacol 24:233–238.

Buchanan RW, Kirkpatrick B, Bryant N, Ball P, Breier A (1996) Fluoxetine augmentation of clozapine treatment in patients with schizophrenia. Am J Psychiatry 153:1625–1627.

Busillo JR, Lauriello J, Parker K, Hammond R, Rowland L, Bogen- schutz M, Keith S (2003) Treatment of weight gain with fluoxetine in olanzapine-treated schizophrenic outpatients. Neuropsychopharmacol 28:527–529.

Caforio G, Di Giorgio A, Rampino A, Rizzo M, Romano R, Taurisano P, Fazio L, De Simeis G, Ursini G, Blasi G, Nardini M, Mancini M, Bertolino A (2013) Mirtazapine add-on improves olanzapine effect on negative symptoms of schizophrenia. J Clin Psychopharmacol 33:810–812.

Chakos MH, Glick ID, Miller AL, Hamner MB, Miller DD, Patel JK, Tapp A, Keefe RS, Rosenheck RA (2006) Baseline use of concomitant psychotropic medications to treat schizophrenia in the CATIE trial. Psychiatr Serv 57:1094–1101.

Cho SJ, Yook K, Kim B, Choi TK, Lee KS, Kim YW, Lee JE, Suh S, Yook KH, Lee SH (2011) Mirtazapine augmentation enhances cognitive and reduces negative symptoms in schizophrenia patients treated with risperidone: a randomized controlled trial. Prog Neuropsychopharmacol Biol Psychiatry 35:208–211.

Collins AD, Dundas J (1967) A double-blind trial of amitriptyline/perphenazine, perphenazine and placebo in chronic withdrawn inert schizophrenics. Br J Psychiatry 113:1425–1429.

Costall B, Naylor RJ (1992) Astra Award Lecture. The psychopharmacology of 5-HT3 receptors. Pharmacol Toxicol 71:401–415.

De Boer T (1996) The pharmacologic profile of mirtazapine. J Clin Psychiatry 57(Suppl 4):19–25.

Decina P, Mukherjee S, Bocola V, Saraceni F, Hadjichristos C, Scapicchio P (1994) Adjunctive trazodone in the treatment of negative symptoms of schizophrenia. Hosp Community Psychiatry 45:1220–1223.

Delle Chiaie R, Salviati M, Fiorentini S, Biondi M (2007) Add-on mirtazapine enhances effects on cognition in schizophrenic patients under stabilized treatment with clozapine. Exp Clin Psychopharmacol 15:563–568.

Terevnikov et al. | 11
Dufresne RL, Kass DJ, Becker RE (1988) Bupropion and thiothixene versus placebo and thiothixene in the treatment of depression in schizophrenia. Drug Develop Res 12:259–266.

Duinkerke SJ, Botter PA, Jansen AA, van Dongen PA, van Haafken AJ, Boom AJ, van Laarhoven JH, Busard HL (1993) Ritanserin, a selective 5-HT/2/1C antagonist, and negative symptoms in schizophrenia. A placebo-controlled double-blind trial. Br J Psychiatry 163:451–455.

Englisch S, Morgen K, Meyer-Lindenberg A, Zink M (2013). Risks and benefits of bupropion treatment in schizophrenia: a systematic review of the current literature. Clin Neuropharmacol 36:209–215.

Evins AE, Cather C, Deckersbach T, Freudenreich O, Culhane MA, Olm-Shipman CM, Henderson DC, Schoenfeld DA, Goff DC, Rigotti NA (2005a) A double-blind placebo-controlled trial of bupropion sustained-release for smoking cessation in schizophrenia. J Clin Psychopharmacol 25:218–225.

Evins AE, Deckersbach T, Cather C (2005b) Independent effects of tobacco abstinence and bupropion on cognitive function in schizophrenia. J Clin Psychiatry 66:1184–1190.

Friedman JI, Ocampo R, Elbaz Z, Parrella M, White L, Bowler S, Davis KL, Harvey PD (2005) The effect of citalopram adjunctive treatment added to atypical antipsychotic medications for cognitive performance in patients with schizophrenia. J Clin Psychopharmacol 25:237–242.

Goff DC, Midha KK, Sarid-Segal O (1995) A placebo-controlled trial of fluoxetine added to neuroleptic in patients with schizophrenia. Psychopharmacology (Berl) 117:417–423.

Gowoni S, Racchi M, Masoero E, Zamboni M, Ferini-Strambi L (2001) Extrapyramidal symptoms and antidepressant drugs: neuropharmacological aspects of a frequent interaction in the elderly. Mol Psychiatry 6:134–142.

Haleem Dj (2006) Serotonergic modulation of dopamine neurotransmission: a mechanism for enhancing therapeutics in schizophrenia. J Coll Physicians Surg Pak 16:556–562.

Hayashi T, Yokota N, Takahashi T, Kawara Y, Nishikawa T, Yano T, Furutani M, Fujitaka T, Horiguchi J, Yamawaki S (1997) Benefits of trazodone and mianserin for patients with late-life chronic schizophrenia and tardive dyskinesia: an add-on, double-blind, placebo-controlled study. Int Clin Psychopharmacol 12:199–205.

Himelhoch S, Slade E, Kreyenbuhl J, Medoff D, Brown C, Dixon L (2012) Antidepressant prescribing patterns among VA patients with schizophrenia. Schizophr Res 136:32–35.

Hinkelmann K, Vassouris A, Kellner M, Jahn H, Wiedemann K, Raedler TJ (2013) No effects of antidepressants on negative symptoms in schizophrenia. J Clin Psychopharmacol 33:686–690.

Iancu I, Tschernihovsky E, Bodner E, Ficcone AS, Lowengrub K (2010) Escitalopram in the treatment of negative symptoms in patients with chronic schizophrenia: a randomized double-blind placebo-controlled trial. Psychiatry Res 179:19–23.

Jablensky A (2000) Epidemiology of schizophrenia: the global burden of disease and disability. Eur Arch Psychiatry Clin Neurosci 250:274–285.

Jockers-Scherubl MC, Bauer A, Godemann F, Reischies FM, Selig F, Schlattmann P (2005) Negative symptoms of schizophrenia are improved by the addition of paroxetine to neuroleptics: a double-blind placebo-controlled study. Int Clin Psychopharmacol 20:27–31.

Joffe G, Terevnikov V, Joffe M, Stenberg JH, Burkin M, Tiilinen J (2009) Add-on mirtazapine enhances antipsychotic effect of first generation antipsychotics in schizophrenia: a double-blind, randomized, placebo-controlled trial. Schizophr Res 108:245–251.

Kane JM, Honigfeld G, Singer J, Meltzer HY, Clozaril Collaborative Study Group (1998) Clozapine for the treatment-resistant schizophrenic. Arch Gen Psychiatry 45:789–796.

Kane JM, Correll CU (2010) Pharmacologic treatment of schizophrenia. Dialogues Clin Neurosci 12:345–357.

Lee MS, Kim YK, Lee SK, Suh KY (1998) A double-blind study of adjunctive sertraline in haloperidol-stabilized patients with chronic schizophrenia. J Clin Psychopharmacol 18:399–403.

Lee J, Cho SJ, Lee KS, Yook K, Choe AY, Lee S, Kim B, Kim KH, Choi TK, Lee SH (2011) The tolerability of mirtazapine augmentation in schizophrenic patients treated with risperidone: a preliminary randomized placebo-controlled trial. Clin Psychopharmacol Neurosci 9:73–77.

Leiser SC, Li Y, Pehson AL, Dale E, Smagin G, Sanchez C (2015). Serotonergic regulation of prefrontal cortical circuits involved in cognitive processing: a review of individual 5-HT receptor mechanisms and concerted effects of 5-HT receptor exemplified by the multimodal antidepressant vortioxetine. ACS Chem Neurosci. 2015 Mar 16. [Epub ahead of print]

Leucht S, Heres S, Kissling W, Davis JM (2011) Evidence-based pharmacotherapy of schizophrenia. Int J Neuropsychopharmacol 14:269–284.

Liégeois JF, Ichikawa J, Meltzer HY (2002) 5-HT(2A) receptor antagonism potentiates haloperidol-induced dopamine release in rat medial prefrontal cortex and inhibits that in the nucleus accumbens in a dose-dependent manner. Brain Res 947:157–165.

Litman RE, Su TP, Potter WZ, Hong WW, Pickar D (1996) Ilozoxan and response to typical neuroleptics in treatment-resistant schizophrenia. Comparison with the atypical neuroleptic, clozapine. Br J Psychiatry 168:571–579.

Marcus MM, Wiker C, Frånberg O, Konradsson-Geukens A, Langsjo X, Jardemark K, Svensson TH (2010) Adjunctive alpha2-adrenoceptor blockade enhances the antipsychotic-like effect of risperidone and facilitates cortical dopaminergic and glutamatergic, NMDA receptor-mediated transmission. Int J Neuropsychopharmacol 13:891–903.

Meltzer HY (1999) Treatment of schizophrenia and spectrum disorders: pharmacotherapy, psychosocial treatments, and neurotransmitter interactions. Biol Psychiatry 46:1321–1327.

Meltzer HY, Massey BW (2011) The role of serotonin receptors in the action of atypical antipsychotic drugs. Curr Opin Pharmacol 11:59–67.

Meltzer HY (2012) Update on typical and atypical antipsychotic drugs. Annu Rev Med 64:1–6.

Menzies L, Ooi C, Kamath S, Suckling J, McKenna P, Fletcher P, Bullmore E, Stephenson C (2007) Effects of gamma-aminobutyric acid-modulating drugs on working memory and brain function in patients with schizophrenia. Arch Gen Psychiatry 64:156–167.

Mico U, Bruno A, Pandolfo G, Maria Romeo V, Mallamace D, D’Arrigo C, Spina E, Zoccali RA, Muscatello MR (2011) Duloxetine as adjunctive treatment to clozapine in patients with schizophrenia: a randomized, placebo-controlled trial. Psychiatry Res 190:192–197.

Mulholland C, Lynch G, King DJ, Cooper SJ (2003) A double-blind, placebo-controlled trial of sertraline for depressive symptoms in patients with stable, chronic schizophrenia. J Psychopharmacol 17:107–112.

Pantelis C, Lambert TJ (2003) Managing patients with “treatment-resistant” schizophrenia. Med J Aust 178:62–66.
Passani MB, Blandina P (1998) Cognitive implications for H3 and 5-HT3 receptor modulation of cortical cholinergic function: a parallel study. Methods Find Exp Clin Pharmacol 20:725–733.

Petit M (1994) Antidepressive drug treatment of the schizophrenic subject. Encephale 20:667–674.

Pitsikas N, Borsini F (1996) Itasetron (DAU 6215) prevents age-related memory deficits in the rat in a multiple choice avoidance task. Eur J Pharmacol 311:115–119.

Poyurovsky M, Pashinian A, Gil-Ad I, Maayan R, Schneidman M, Fuchs C, Weizman A (2002) Olanzapine-induced weight gain in patients with first-episode schizophrenia: a double-blind, placebo-controlled study of fluoxetine addition. Am J Psychiatry 159:1058–1060.

Poyurovsky M, Isaacs I, Fuchs C, Schneidman M, Faragian S, Weizman R, Weizman A (2003a) Attenuation of olanzapine-induced weight gain with reboxetine in patients with schizophrenia: a double-blind, placebo-controlled study. Am J Psychiatry 160:297–302.

Poyurovsky M, Koren D, Gonopolsky I, Schneidman M, Fuchs C, Weizman A, Weizman R (2003b) Effect of the 5-HT2 antagonist mianserin on cognitive dysfunction in chronic schizophrenia patients: an add-on, double-blind placebo-controlled study. Eur Neuropsychopharmacol 13:123–128.

Rizk P, Salazar J, Raisman-Vozari R, Marien M, Rumberg F, Debeir T (2006) The alpha2-adrenoceptor antagonist dexefaroxan enhances hippocampal neurogenesis by increasing the survival and differentiation of new granule cells. Neuropsychopharmacology 31:1146–1157.

Rizos EN, Rontos I, Laskos E, Argesis G, Michalopoulou PG, Vasilopoulos D, Gournellis R, Lykouras L (2008) Investigation of serum BDNF levels in drug-naive patients with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 32:1308–1311.

Rummel C, Kissling W, Leucht S (2006) Antidepressants for the negative symptoms of schizophrenia. Cochrane Database Syst Rev DOI:10.1002/14651858.CD005581.pub2.

Robó Z, Skuza G, Legutko B (2005) Repeated treatment with mirtazapine induces brain-derived neurotrophic factor gene expression in rats. J Physiol Pharmacol 56:661–671.

Salokangas R, Saarijarvi S, Taiminen T, Kallioniemi H, Lehto H, Niemi H, Tuominen J, Ahola V, Syvälahti E (1996) Citalopram as an adjuvant in chronic schizophrenia: a double-blind placebo-controlled study. Acta Psychiatr Scand 94:175–180.

Schultz G, Berk M (2001) Reboxetine add on therapy to haloperidol in the treatment of schizophrenia: a preliminary double-blind randomized placebo-controlled study. Int Clin Psychopharmacol 16:275–278.

Shilo R, Zemishlany Z, Aizenberg D, Valevski A, Bodinger L, Munitz H, Weizman A (2002) Mianserin or placebo as adjuncts to typical antipsychotics in resistant schizophrenia. Int Clin Psychopharmacol 17:59–64.

Silver H, Nassar A (1992) Fluvoxamine improves negative symptoms in treated chronic schizophrenia: an add-on double-blind, placebo-controlled study Biol Psychiatry 31:698–704.

Silver H, Barash I, Aharon N, Kaplan A, Poyurovsky M (2000) Fluvoxamine augmentation of antipsychotics improves negative symptoms in psychotic chronic schizophrenia patients: a placebo-controlled study. Int Clin Psychopharmacol 15:257–261.

Singh SP, Singh V, Kar N, Chan K (2010) Efficacy of antidepressants in treating the negative symptoms of chronic schizophrenia: meta-analysis. Br J Psychiatry 197:174–179.

Siris SG, Morgan V, Fagerstrom R, Rifkin A, Cooper TB (1987) Adjunctive imipramine in the treatment of postpsychotic depression. A controlled trial. Arch Gen Psychiatry 44:533–539.

Siris SG, Bermanzohn PC, Gonzalez A, Mason SE, White CV, Shuwall MA (1991) The use of antidepressants for negative symptoms in a subset of schizophrenic patients. Psychopharmacol Bull 27:331–335.

Solé B, Jiménez E, Martinez-Aran A, Vieta E (2015) Cognition as a target in major depression: new developments. Eur Neuropsychopharmacol 25:231–247.

Spina E, De Domenico P, Ruelle C, Longobardo N, Gatto C, Ancione M, Di Rosa AE, Caputi AP (1994) Adjunctive fluoxetine in the treatment of negative symptoms in chronic schizophrenic patients. Int Clin Psychopharmacol 9:281–285.

Stahl SM (2015) Modes and nodes explain the mechanism of action of vortioxetine, a multimodal agent (MMA): enhancing serotonin release by combining serotonin (5HT) transporter inhibition with actions at 5HT receptors (5HT1A, 5HT1B, 5HT7 receptors). CNS Spectr 20:93–97.

Stenberg JH, Terevnikov V, Joffe M, Tiibonien J, Tchoukhine E, Burk M, Joffe G (2010) Effects of add-on mirtazapine on neurocognition in schizophrenia: a double-blind, randomized, placebo-controlled study. Int J Neuropsychopharmacol 13:433–441.

Stenberg JH, Terevnikov V, Joffe M, Tiibonien J, Burkin M, Tchoukhine E, Joffe G (2011) More evidence on proneurocognitive effects of add-on mirtazapine in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 35:1080–1086.

Stryjer R, Rosenzwaig S, Bar F, Ulman AM, Weizman A, Spivak B (2010) Trazodone for the treatment of neuroleptic-induced acute akathisia: a placebo-controlled, double-blind, crossover study. Clin Neuropharmacol 33:219–22.

Sumiyoshi T, Park S, Jayathilake K, Roy A, Ertugrul A, Meltzer HY (2007) Effect of buspirone, a serotonin1A partial agonist, on cognitive function in schizophrenia: a randomized, double-blind, placebo-controlled study. Schizophr Res 95:158–168.

Tatara A, Shimizu S, Shin N, Sato M, Sugiyuchi T, Imaki J, Ohno Y (2012) Modulation of antipsychotic-induced extrapyramidal side effects by medications for mood disorders. Prog Neuropsychopharmacol Biol Psychiatry 38:252–259.

Terevnikov V, Stenberg JH, Tiibonien J, Joffe M, Burkin M, Tchoukhine E, Joffe G (2011) Add-on mirtazapine improves depressive symptoms in schizophrenia: a double-blind randomized placebo-controlled study with an open-label extension phase. Hum Psychopharmacol Clin 26:188–193.

Vernon JA, Grudnikoff E, Seidman AJ, Frazier TW, Vemulapalli MS, Pareek P, Goldberg TE, Kane JM, Correll CU (2014) Antidepressants for cognitive impairment in schizophrenia: a systematic review and meta-analysis. Schizophr Res 159:385–394.

Wadenberg ML, Wiker C, Svensson TH (2007) Enhanced efficacy of both typical and atypical antipsychotic drugs by adjunctive alpha2 adrenoceptor blockade: experimental evidence. J Neuropsychopharmacol 13:433–441.

Whitehead C, Moss S, Cardno A, Lewis G, Furtado VA (2012) Antidepressants for people with both schizophrenia and depression (review). Cochrane Database Syst Rev DOI:10.1002/14651858.CD002305.
Wynchank D, Berk M (2003) Efficacy of nefazodone in the treatment of neuroleptic-induced extrapyramidal side effects: a double-blind randomised parallel group placebo-controlled trial. Hum Psychopharmacol Clin 18:271–275.
Zhang ZJ, Kang WH, Li Q, Wang XY, Yao SM, Ma AQ (2006) Beneficial effects of ondansetron as an adjunct to haloperidol for chronic, treatment-resistant schizophrenia: a double-blind, randomised, placebo-controlled study. Schizophr Res 88:102–110.
Zink M, Englisch S, Meyer-Lindentag A (2010) Polypharmacy in schizophrenia. Current Opinion in Psychiatry 23:103–111.
Zisook S, Kasckow JW, Golshan S, Fellows I, Solorzano E, Lehman D, Mohamed S, Jeste DV (2009) Citalopram augmentation for subsyndromal symptoms of depression in middle-aged and older outpatients with schizophrenia and schizoaffective disorder: a randomized controlled trial. J Clin Psychiatry 70:562–571.
Zoccali R, Muscatello MR, Cedro C, Neri P, La Torre D, Spina E, Di Rosa AE, Meduri M (2004) The effect of mirtazapine augmentation of clozapine in the treatment of negative symptoms of schizophrenia: a double-blind, placebo-controlled study. Int Clin Psychopharmacol 19:71–76.