INTRODUCTION

Denture base materials are composed of an acrylic resin mostly made up of polymethyl methacrylate (PMMA)\(^1,2\). The major shortcomings that limit the use of PMMA are its inadequate flexure strength properties\(^1\). Flexural fatigue of the prosthetic material usually results from chewing forces including compressive, tensile and shear stresses\(^2\).

This shortcoming can be overcome with the addition of fracture-resistant materials to the PMMA resin. In that regard, alterations of the mechanical properties of PMMA by chemical modification or by adding material into the resin have been attempted\(^1,3-5\). However, a satisfactory alternative material to PMMA has not yet been developed\(^3,4,6,7\).

The primary method of chemical modification of a polymer is to convert it into a copolymer\(^8\). Copolymers have been used to strengthen the denture base\(^9\). A new material with better mechanical and chemical properties could be through by treatment of different monomers with each other in various volumetric proportions\(^9\). In this way, the flexural strength, flexural modulus, impact strength, thermal durability, and adhesion properties may be improved\(^9\). It is known that the more cross-linking there is between the polymer beads, the higher the physical and chemical properties of resins, so the resin could exhibit superior properties to linear polymers\(^10\). Therefore, compared to linear polymers, copolymers exhibit greater polymerization rates, increased mechanical properties and lower water absorption properties\(^11\).

Fluoroalkyl methacrylate, butadiene styrene, 2-hydroxyethyl methacrylate, isobutyl methacrylate, 1,3-bis(methacryloxypropyl) tetramethyldisiloxane, narnaoyl, and phenyl methacrylate monomers were treated with methyl methacrylate to enhance the mechanical and physical properties of the denture base\(^6,7,12,13\). Although the results of previous studies differed from each other, an entirely alternative copolymer denture base resin to PMMA with entirely superior chemical and physical features was not found. Therefore, we hypothesized that the copolymerization of either ethyl-methacrylate (EMA), butyl-methacrylate (BMA), or isobutyl-methacrylate (IBMA) with PMMA would provide a copolymer which could be confirmed with FTIR and \(^1\)H-NMR, and the end products would have better flexural strength and flexural modulus. The purpose of this study was to determine the mechanical properties, such as the flexural strength and flexural modulus, of all copolymer groups were found to be higher than those of the control group. The flexural moduli of the BMA and ethyl-methacrylate groups were similar to those of the control.

Keywords: Copolymer, Denture bases, Mechanical property

MATERIALS AND METHODS

Specimen preparation

The specimens were fabricated from the PMMA based heat cured resin (QC-20, Dentsply, Addlestone, UK). For copolymerization three different methacrylate monomers —EMA (Sigma-Aldrich, Dorset, UK), BMA (Sigma-Aldrich) and IBMA (Sigma-Aldrich) were added to the monomer of PMMA which was the control group. Maximum flexural strength and modulus resulted from a 40% concentration of IBMA. The flexural strength and modulus values of all copolymer groups were found to be higher than those of the control group. The flexural moduli of the BMA and ethyl-methacrylate groups were similar to those of the control.
are given in Table 1. Specimens divided into 13 groups for all tests including flexural strength and flexural modulus \((n=10\), Table 2). The tests were carried out according to the protocol reported for flexural strength and flexural modulus by ISO standards\(^{14,15}\). The specimens in sizes of \(64\times10\times3.3\) mm were prepared for tests\(^{14}\). Specimens of the copolymer groups formed by the addition of volumetric percent of 10-20-30-40 of EMA, BMA and IBMA monomers to the monomer methyl methacrylate (MMA) of heat-cured resin. The polymer-monomer ratio was 23 g/10 mL in all groups. Polymerization has been carried out in accordance with the manufacturer’s instructions. Then all specimens were polished with 600 grit sandpaper.

**Flexural strength test**

The specimens were stored in distilled water at a temperature of \(37\pm1°C\) for 50±2 h before flexural testing. All the specimens from each group were subjected to flexural strength test under 3-point loading using a universal system testing machine (Lloyd LRX, Lloyd Instruments, Hampshire, UK). The distance between the supporting wedges was 50 mm and the cross-head speed used was 0.5 cm/min and engage the center of the specimen until the specimen fractured. Flexural strength and flexural modulus were automatically calculated.

\(^1\)H-NMR spectroscopy

An NMR spectrometer (Bruker DRX 400, Bruker BioSpin, Karlsruhe, Germany) was used for the \(^1\)H-NMR spectra of all copolymer groups including the control group. A 5-mg resin sample was dissolved in 1 mL of deuterated chloroform (CDCl\(_3\)) (Sigma-Aldrich) and tetramethylsilane was preferred as an internal standard for the \(^1\)H-NMR study.

**FTIR analysis**

Control and the copolymer resin groups were characterized by FTIR spectroscopy (FT/IR-430, JASCO, Tokyo, Japan). Polymerized specimens were dried using a dry-heat oven for 12 h at 70°C to eliminate H\(_2\) molecules from the system. The specimens were cut into small pieces. One milligram sample size was used for each test group to acquire a clear FTIR spectrum.

### Table 1  Chemical formula and molecular weight of the monomers used in this study and the codes

| Monomer code | Molecular weight (g/mol) | Chemical formula |
|--------------|--------------------------|-----------------|
| MMA          | 100.12                   | H\(_2\)C\(\stackrel{O}{\mathrm{C}}\)OCH\(_3\) |
| EMA          | 114.14                   | H\(_2\)C\(\stackrel{O}{\mathrm{C}}\)OCH\(_3\) |
| BMA          | 142.20                   | H\(_2\)C\(\stackrel{O}{\mathrm{C}}\)OCH\(_3\) |
| IBMA         | 142.20                   | H\(_2\)C\(\stackrel{O}{\mathrm{C}}\)OCH\(_3\) |

### Table 2  Volumetric percents of monomers

| Monomer code | Molecular weight (g/mol) |
|--------------|--------------------------|
| 100% MMA (Control) |                      |
| 10% EMA+90% MMA     | 10% BMA+90% MMA          |
| 20% EMA+80% MMA     | 20% BMA+80% MMA          |
| 30% EMA+70% MMA     | 30% BMA+70% MMA          |
| 40% EMA+60% MMA     | 40% BMA+60% MMA          |
| 10% IBMA+90% MMA    | 10% IBMA+90% MMA         |
| 20% IBMA+80% MMA    | 20% IBMA+80% MMA         |
| 30% IBMA+70% MMA    | 30% IBMA+70% MMA         |
| 40% IBMA+60% MMA    | 40% IBMA+60% MMA         |
Statistical analysis
The data of flexural strength and modulus analyzed by applying two-way and cytotoxicity data were analyzed by applying the three-way analysis of variance. Bonferroni correction used for multiple comparisons.

RESULTS
The structure of the copolymerized compound was elucidated by spectroscopic techniques such as $^1$H-NMR and FTIR. In FTIR spectrum, a robust stretching vibration signal of $\text{C}=\text{O}$ was observed at $1,730 \text{ cm}^{-1}$. C-O stretching band of esters appeared between $1,268$ and $1,062 \text{ cm}^{-1}$. The stretching band of methyl and methylene $\text{C}-\text{H}$ appeared at $2,952 \text{ cm}^{-1}$, on the other hand, a $\text{C}-\text{H}$ bending signal of the same group appeared at $1,455 \text{ cm}^{-1}$ (Fig. 1).

In the $^1$H-NMR spectrum of poly(methyl methacrylate-co-ethyl methacrylate), methyls protons appeared at $\delta 0.86$ and $1.05$ as a singlet. The methylene protons were observed at $\delta 1.62$ as a singlet. The methoxy group resonated at $3.62$ as a singlet. The signal of the methylene protons of ester group appeared at downfield as a multiplet ($\delta 4.14$) due to the electron delocalization effect of lone-pair electrons on oxygen atoms (Fig. 2). In the $^1$H-NMR spectrum of poly(methyl methacrylate-co-butyl methacrylate), the methyls protons appeared at $\delta 0.87$ and $1.05$ as a singlet. The signal observed at $\delta 1.62$...
as a singlet belonged to the methylene protons. The ester group methylenes were observed at \( \delta 2.07 \) and \( \delta 2.20 \) as a multiplet. The signals observed at \( \delta 3.63 \) consistent with the methoxy protons. The methylene protons bonding to the oxygen resonated at 4.15 as a multiplet (Fig. 3). In the \(^1\)H-NMR spectrum of poly(methyl methacrylate-co-isobutyl methacrylate), the methyls protons appeared at \( \delta 0.87 \) and \( \delta 1.05 \) as a singlet. The signal observed at \( \delta 1.61 \) as a singlet belonged to the methylene protons. The ester group of methylene proton was observed at \( \delta 2.20 \) as a multiplet. The signals observed at \( \delta 3.63 \) consistent with the methoxy protons. The downfield signal observed at \( \delta 4.15 \) as a multiplet suit with the methylene bonding to the oxygen. Therefore, the spectral values accord with the structure (Fig. 4).

Regardless of the concentration rates, total BMA and IBMA copolymers were statistically different from the control group concerning flexural strength (\( p<0.05 \)). While the flexural strength of the control group was 82 MPa, the flexural strength of the total EMA, BMA and IBMA copolymer groups was 86, 96 and 95 MPa, respectively. There was no statistically significant...
Table 3  Flexural strength distribution by material and monomer concentration

| Material | Concentration (%) | n  | Flexural strength (Mpa) mean±SD |
|----------|-------------------|----|---------------------------------|
| Control  | Control           | 10 | 82.245±9.2(A)                  |
|          | 10                | 10 | 82.114±16.642(x)               |
|          | 20                | 10 | 90.963±14.786(x)               |
| EMA      | 30                | 10 | 78.783±8.06(x)                 |
|          | 40                | 10 | 91.891±11.217(x)               |
|          | Total             | 40 | 85.938±13.814(A)               |
|          | 10                | 10 | 95.773±7.705(x)                |
|          | 20                | 10 | 95.688±9.769(x)                |
| BMA      | 30                | 10 | 91.126±6.458(x)                |
|          | 40                | 10 | 101.673±12.427(x)              |
|          | Total             | 40 | 96.065±9.765(B)                |
|          | 10                | 10 | 87.682±15.333(x)               |
|          | 20                | 10 | 92.681±15.688(x)               |
| IBMA     | 30                | 10 | 89.717±15.996(x)               |
|          | 40                | 10 | 109.699±13.704(y)              |
|          | Total             | 40 | 94.945±17.062(B)               |
|          | Control           | 10 | 82.245±9.2(a)                  |
|          | 10                | 30 | 88.523±14.487(a)               |
|          | 20                | 30 | 93.111±13.334(ab)              |
|          | 30                | 30 | 86.542±12(a)                   |
|          | 40                | 30 | 101.088±14.146(b)              |
|          | Total             | 130| 91.541±14.381                  |

Two-way analysis of variance was used. (ABC): Intergroup difference for material (abc): Intergroup difference for concentration; (xy): Material x difference between groups for concentration. Bonferroni correction was used for multiple comparison. Significance level is 0.05.

Table 4  Two way ANOVA results of flexural strength test

| Source                | Type III sum of squares | Mean square | F      | p     |
|-----------------------|-------------------------|-------------|--------|-------|
| Concentration (%)     | 2,819.165               | 939.722     | 6.535  | <0.001|
| Material              | 5,508.234               | 1,836.078   | 12.769 | <0.001|
| Concentration (%) *material | 2,035.418           | 226.158     | 1.573  | 0.129 |

R-squared=0.634 (adjusted R-squared=0.564)

difference between the control group and total BMA and EMA copolymers concerning flexural modulus (p>0.05). Values of the flexural modulus of control and total EMA, BMA and IBMA groups were 2,430, 2,619, 2,839 and 2,933 MPa, respectively. When each group was evaluated in itself, it was observed that the concentration increase did not cause a statistical difference in the flexural strength and flexural modulus values except for 40% IBMA copolymer group (p<0.05). However, the flexural strength and the flexural modulus tended to increase numerically with increasing of concentration and the flexural strength and flexural modulus values of almost all copolymer groups were determined to be higher than the control group. The flexural strength and the modulus of the EMA groups was (82–92 MPa, 2,373–2,865 MPa), the flexural strength of the BMA groups was (96–102 MPa, 2,642–3,095 MPa), and the flexural strength and modulus of the IBMA groups was (88–110 MPa, 2,650–3,581 MPa), respectively. Maximum flexural strength and modulus had been seen in the 40% IBMA (101 MPa, 3,580 MPa) copolymer group. Minimum flexural strength had been seen for the control groups (86 MPa, 2,430 MPa) and the 30% EMA groups showed the lowest flexural modulus (2,373 MPa). Means and standard error of means of flexural strength and flexural modulus are shown in Tables 3–6.
Table 5  Flexural modulus distribution by material and monomer concentration

| Material | Concentration (%) | n  | Flexural modulus (Mpa) mean±SD       |
|----------|-------------------|----|-------------------------------------|
|          |                   |    |                                     |
| Control  | Control           | 10 | 2,429.579±258.92(A)                  |
|          | 10                | 10 | 2,463.266±355.548(x)                 |
|          | 20                | 10 | 2,776.331±417.666(x)                 |
| EMA      | 30                | 10 | 2,372.683±437.596(x)                 |
|          | 40                | 10 | 2,864.518±460.244(x)                 |
|          | Total             | 40 | 2,619.199±453.961(A)                 |
|          | 10                | 10 | 2,826.982±385.172(x)                 |
|          | 20                | 10 | 2,642.029±377.012(x)                 |
| BMA      | 30                | 10 | 2,792.661±210.699(x)                 |
|          | 40                | 10 | 3,094.883±431.881(x)                 |
|          | Total             | 40 | 2,839.139±384.252(AB)                |
| IRMA     | 30                | 10 | 2,733.55±671.218(x)                  |
|          | 40                | 10 | 3,580.72±600.348(y)                  |
|          | Total             | 40 | 2,933.24±660.501(B)                  |
|          | Control           | 10 | 2,429.579±258.92(a)                  |
|          | 10                | 30 | 2,646.88±422.692(a)                  |
|          | 20                | 30 | 2,728.88±413.915(a)                  |
|          | 30                | 30 | 2,632.96±498.668(a)                  |
|          | 40                | 30 | 3,180.04±572.423(b)                  |
|          | Total             | 130| 2,768.916±518.932                    |

Two-way analysis of variance was used. (ABC): Intergroup difference for material (abc): Intergroup difference for concentration; (xy): Material x difference between groups for concentration. Bonferroni correction was used for multiple comparison. Significance level is 0.05.

Table 6  Two way ANOVA results of flexural modulus test

| Source                   | Type III sum of squares | Mean square | F         | p          |
|--------------------------|-------------------------|-------------|-----------|------------|
| Concentration (%)        | 4,518,048.878           | 1,506,016.293 | 8.746     | <0.001     |
| Material                 | 6,132,264.905           | 2,044,088.302 | 11.871    | <0.001     |
| Concentration (%) *material | 3,910,291.597           | 434,476.844  | 2.523     | 0.010      |

R-squared=0.570 (Adjusted R-squared=0.604)

DISCUSSION

The present study evaluated the mechanical effects of PMMA copolymers with either EMA, BMA, or IBMA. The results revealed that all copolymers, in agreement with the established hypothesis, provided improved flexural strength and flexural modulus.

The flexural strength of resin is an indicator of its hardness and resistance to fracture. A flexural strength test is essential to determine the strength of the denture base against the masticatory forces. This test an indicator of tensile and compressive strength and elastic modulus. In the present study, three different monomers having the same functional alkyl group were used to create a new copolymer with improved mechanical attributes.

Several studies are reported to have improved the mechanical properties of PMMA by chemical modification, such as by the addition of copolymer structures into the resin for the purpose of creating a rubber phase in the resin matrix. This resin was called a high-impact resin. Rodford was the first to present this method using low molecular weight butadiene-styrene rubbers (butadiene-styrene b-copolymer) to strengthen PMMA denture base polymers. Butadiene-styrene b-copolymers, which are macromers, were
polymerized. Then the macromer was dissolved in methyl methacrylate to obtain different copolymers. In this way, the PMMA/copolymer blend was formed. Rodford19) studied the mechanical properties of this material and reported that high-impact denture base resins could be produced with macromer-methyl methacrylate copolymers. In the study, the butadiene-styrene b-copolymer played a role as a rubber phase in the blend. However, the flexural strength of conventional heat-cured acrylic resins has shown better results than that of high-impact resins18,20. At the same time, the incorporation of rubber has not been entirely successful in that it can contribute to reduced stiffness, enhanced creep, and water sorption21,22. The search for alternative materials for the denture base is still in progress. In the present study, a rubber phase was not used to obtain copolymer resins.

The addition of a monomer to a polymer is a matter of interest to obtain materials with superior properties that can be used as alternatives to PMMA4,6,7. Studies have reported that different monomers had been incorporated into MMA to reinforce PMMA3,4,6,7,12,19,23-25. Nonetheless, the results of these studies, though different from each other, failed to create a material superior to PMMA. Cunha et al.3 examined the effect of fluoroalkyl methacrylate (10 and 20% [v/v], FMA) on the flexural strength of a denture base acrylic resin. The synthesized resin had a lower flexural strength and flexural modulus, possibly due to the different intermolecular distances caused by the presence of fluorine in the methacrylic polymers. Kurata et al.6 studied three fluoro-substituted monomer and three styrene-type monomers; however, the resulting copolymer was also inferior to PMMA because of the presence of bulky and hydrophobic group monomers. The properties of the new material depend on the compatibility of the monomers forming the blend. However, if the polymer pairs do not react with each other, a material with inferior mechanical properties may be formed6. The Monomer groups that are compatible with each other have been shown to form copolymers with superior mechanical properties26,27. Therefore, monomers having the same functional group (methacrylate) as PMMA were preferred to form the copolymers in this study. In this way, it was intended to obtain copolymer formation without damaging the chemical resin matrix of PMMA.

A direct comparison of the mechanical properties of the PMMA copolymers with other copolymer studies could not be performed due to the differences in the copolymerization process, monomer type, and the ratio or mechanical test methods. According to ISO specifications14, flexural strength should not be less than 65 MPa and flexural modulus should not be less than 2,000 MPa for conventional heat-cured resins. All materials in the present study exhibited higher values of flexural strength and flexural modulus than the ISO guidelines. The flexural strength and flexural modulus of the control group were 82 and 2,430 MPa, respectively, and all test groups provided better values. The highest flexural strength was observed in the total BMA copolymer group (96 MPa). This was followed by the total IBMA group (95 MPa), the total EMA group (86 MPa), and the control group (82 MPa). The highest flexural modulus was observed in the total IBMA group (2,933 MPa). This was followed by the total BMA group (2,833 MPa), the total EMA group (2,619 MPa), and the control group (2,430 MPa). The flexural strength and flexural modulus tended to increase with increasing concentrations and the flexural strength and flexural modulus values of almost all copolymer groups were higher than those of the control group. The greater the concentration, the greater the changes in the maximum flexural strength and flexural modulus in the IBMA copolymer group. However, the BMA group had the lowest change in the flexural strength and modulus. The maximum flexural strength and flexural modulus were observed in the 40% IBMA group, while minimum flexural strength was observed in the 10% EMA group and the minimum flexural modulus was found in the control group. A possible cause of the changes in flexural strength and flexural modulus was the residual monomer content, which could plasticize the resin, reducing the interchain forces and resulting in deformation under loading28. Another factor that affected the physical properties was the polymerization degree of the copolymer, which is directly related to the molecular weight. Therefore, the polymerization degree through the molecular weight could affect mechanical strength29. Among the copolymers produced in the present study, EMA had the lowest molecular weight and the lower flexural strength observed in the EMA group might result from the lower molecular weight.

Copolymer type and the number of cross-linking agents in the polymer have significant effects on many properties of resins30. It is known that increased cross-linking between polymer beads improves the physical and chemical properties of resins and causes them to exhibit superior properties compared to linear polymers30. It was reported by Clark31 that the binding of an alkyl group containing more carbons instead of the CH₃ group to the PMMA chain may increase the flexibility of the polymer. The addition of EMA, BMA, and IBMA, which contain higher numbers of carbon groups, into methyl methacrylate is thought to increase the flexural strength and flexural modulus of the copolymer groups. In other words, the copolymerization of PMMA with EMA, BMA, and IBMA could increase the flexural strength and flexural modulus values by the increasing the cross-linking in the polymer network.

Johnson and Jones30 examined the effect of the copolymerization of PMMA with EMA and BMA on flexural modulus using concentrations of 25, 50, and 75% (v/v) EMA and BMA added to MMA. Contrary to our study, a decrease in flexural modulus was observed as the concentration ratio of the added monomer increased. In another study, Sahin et al.12 used 2, 3, and 5% monomer ratios to perform the copolymerization of PMMA with IBMA. Their results showed that the flexural strength and flexural modulus of the 2% IBMA copolymer group was higher than the control group. However, the
flexural strength and flexural modulus of the IBMA groups showed a tendency to decrease with increasing concentrations, and the flexural strength and flexural modulus of the 3 and 5% IBMA groups were lower than those of the control group. Meanwhile, increasing the concentration did not cause any change in the flexural modulus values for the EMA and BMA groups in the present study. The reason why these results were not consistent with our study is thought to be due to the fact that the ratio of monomers used in the study was different from ours. More recently, Tugut et al. reported that IBMA content in copolymers increased flexural strength; however, a decrease in flexural strength was found with an increase in monomer concentration. In the present study, an increase in monomer concentration provided an increase in flexural strength, which is contradictory to the Tugut et al. A possible explanation could be the fiber content of the monomer used in their study.

The FTIR spectroscopic method is the most commonly used method for analyzing the structure of polymers. Meanwhile, the chemical structures of denture base resins are usually evaluated by H-NMR. In this study, the copolymerized acrylic resins were verified by both FTIR and H-NMR spectroscopy. Methylene and methylene stretching of PMMA were observed in the FTIR spectra for all test groups. According to the FTIR spectroscopy results, the targeted polymer structures were obtained. In the FTIR spectra of both the control and copolymers, a strong –C=O (carbonyl) double bond peak of the methyl methacrylate monomer at 1,600 cm \(^{-1}\) disappeared, indicating the formation of the copolymer. In the H-NMR spectra of MMA-co-EMA, MMA-co-BMA, and MMA-co-IBMA, methylene protons appeared at approximately 1 ppm as a singlet. The methoxy group resonated at 3.62 ppm as a singlet. In the H-NMR spectrum, the expected methyl, methoxy group and methylene protons of the ester group resonated for each copolymer group. The H-NMR spectral values accorded with the structure. These results confirmed that the copolymerization of PMMA with EMA, BMA, and IBMA was successful.

It might not be possible to transfer the present results directly to other studies because of the difference in the method, the monomer type, or the monomer ratio used in this study. The present study also has certain limitations. Firstly, only the flexural strength and flexural modulus were evaluated. Additional tests, such as impact strength, shear strength, water absorption, Vickers hardness, and surface roughness might be beneficial in determining the characteristics of the material. Secondly, residual monomer amounts should be determined. Finally, lower and/or higher concentrations should also be studied.

CONCLUSION
The present study synthesized three different copolymers of PMMA and evaluated their flexural strength and flexural modulus as mechanical properties. The copolymers were synthesized by treatment of EMA, BMA, and IBMA with MMA, and were verified by both FTIR and H-NMR spectroscopy. The flexural strength and flexural modulus values of all copolymer groups were found to be higher than the control group, and a concentration-dependent increase was observed. In order to obtain better features than conventional heat cured resin, studies utilizing different volumetric percentages of the monomers and involving different mechanical and physical tests should be performed.

ACKNOWLEDGMENTS
The authors are thankful to Dr. Ramazan Erenler for generous assistance to H-NMR and FTIR analyses.

REFERENCES
1) Jagger DC, Harrison A, Jandt KD. The reinforcement of dentures. J Oral Rehabil 1999; 26: 185-194.
2) John J, Gangadhar SA, Shah I. Flexural strength of heat-polymerized poly(methyl methacrylate) denture resin reinforced with glass, aramid, or nylon fibers. J Prosthet Dent 2001; 86: 424-427.
3) Cunha TR, Regis RR, Bonatti MR, de Souza RF. Influence of incorporation of fluoroalkyl methacrylates on roughness and flexural strength of a denture base acrylic resin. J Appl Oral Sci 2009; 17: 103-107.
4) Kurata S, Morishita K, Shimoyama K, Umemoto K. Basic study on the application of novel functional monomers to a denture base resin. Dent Mater J 2008; 27: 214-217.
5) Rodford R. The development of high impact strength denture-base materials. J Dent 1986; 14: 214-217.
6) Umemoto K, Kurata S. Basic study of a new denture base resin applying hydrophobic methacrylate monomer. Dent Mater J 1997; 16: 21-30.
7) Umemoto K, Kurata S, Morishita K, Kawase T. Basic study of a new soft resin applied with bifunctional siloxane oligomer. Dent Mater J 2007; 26: 656-658.
8) Phillips R. In: Dyson J, editor. Phillips’ science of dental materials. 9th ed. Philadelphia: Saunders Co; 1991. p. 166-168.
9) Arlen M, Dadman MD. The reinforcement of polystyrene and poly(methyl methacrylate) interfaces using alternating copolymers. Polymer 2003; 44: 6883-6889.
10) Di Lorenzo ML, Frigione M. Compatibilization criteria and procedures for binary blends: a review. J Polym Eng 1997; 17: 429-459.
11) Moszner N, Fischer UK, Angermann J, Rheinberger V. Bis(acrylamide)s as new cross-linkers for resin-based composite restoratives. Dent Mater 2006; 22: 1157-1162.
12) Sahin O, Ozdemir AK, Turgut M, Bostug A, Sumar Z. Investigation of flexural strength and cytotoxicity of acrylic resin copolymers by using different polymerization methods. J Adv Prosthodont 2015; 7: 98-107.
13) Jagger DC, Jagger RG, Allen SM, Harrison A. An investigation into the transverse and impact strength of “high strength” denture base acrylic resins. J Oral Rehabil 2002; 29: 263-267.
14) Organization BS. ISO 1567 Dentistry Denture base polymers 1999.
15) Sun Y, Song SY, Lee KS, Park JH, Ryu JJ, Lee JY. Effects of reline materials on the flexural strength of refined thermoplastic denture base resins. J Adv Prosthodont 2018; 10: 361-366.
16) Uzun G, Hersek N. Comparison of the fracture resistance of six denture base acrylic resins. J Biomater Appl 2002; 17: 19-29.
17) Tamareselvy K, Rueggeberg FA. Dynamic mechanical analysis of two crosslinked copolymer systems. Dent Mater 1994; 10: 290-297.
18) Cho K AT, Ryu HS, Seo KH. Mechanical effects according to the type of poly(styrene-co-methyl methacrylate) copolymers at polystyrene/poly(methyl methacrylate) interfaces. Polymer 1996; 37: 4849-4852.
19) Rodford RA. Further development and evaluation of high impact strength denture base materials. J Dent 1990; 18: 151-157.
20) Johnston EP, Nicholls JI, Smith DE. Flexure fatigue of 10 commonly used denture base resins. J Prosthet Dent 1981; 46: 478-483.
21) Ibrahim MR, Katman HY, Karim MR, Koting S, Mashaan NS. The effect of crumb rubber particle size to the optimum binder content for open graded friction course. Sci World J 2014; 2014: 240768.
22) Lalande L, Plummer CJ, Månson J-AE, Gérard P. Microdeformation mechanisms in rubber toughened PMMA and PMMA-based copolymers. Eng Frac Mech 2006; 73: 2413-2426.
23) Aydogan EA, Durkan R. Influence of acrylamide monomer addition to the acrylic denture-base resins on mechanical and physical properties. Int J Oral Sci 2013; 5: 229-235.
24) Kurata S, Yamazaki N. Synthesis of dimethacryloyl ethyl-1,1,6,6-tetrahydro-perfluorohexamethylene-1,6-dicarbamate as dental base monomers and the mechanical properties of the copolymers of the monomer and methyl methacrylate. Dent Mater J 2011; 30: 103-108.
25) Johnson JA, Jones DW. The mechanical properties of PMMA and its copolymers with ethyl methacrylate and butyl methacrylate. J Mater Sci 1994; 29: 870-876.
26) Lyatskaya Y, Balazs AC. Using copolymer mixtures to compatibilize immiscible homopolymer blends. Macromolecules 1996; 29: 7581-7587.
27) Lyatskaya Y, Gersappe D, Balazs AC. Effect of copolymer architecture on the efficiency of compatibilizers. Macromolecules 1995; 28: 6278-6283.
28) Dogan A, Bek B, Cevik NN, Usanmaz A. The effect of preparation conditions of acrylic denture base materials on the level of residual monomer, mechanical properties and water absorption. J Dent 1995; 23: 313-318.
29) Flory P, Vrij A. Melting points of linear-chain homologs. The normal paraffin hydrocarbons. J Am Chem Soc 1963; 85: 3548-3553.
30) Blagojevic V, Murphy VM. Microwave polymerization of denture base materials. A comparative study. J Oral Rehabil 1999; 26: 804-808.
31) Clarke RL. Dynamic mechanical thermal analysis of dental polymers. III. Heterocyclic methacrylates. Biomaterials 1989; 10: 630-633.
32) Tugut F, Turgut M, Saraydin D. Influence of concentrations of methacrylate and acrylate monomers on the properties of fiber reinforced polymethyl methacrylate denture base materials. Acta Chemica Iasi 2018; 26: 329-350.
33) Aydogan EA, Durkan R, Bagis B. The effect of acrylamide incorporation on the thermal and physical properties of denture resins. J Adv Prosthodont 2013; 5: 110-117.