Treatment strategies for advanced hepatocellular carcinoma: Sorafenib vs hepatic arterial infusion chemotherapy

Issei Saeki, Takahiro Yamasaki, Masaki Maeda, Takuya Hisanaga, Takuya Iwamoto, Koichi Fujisawa, Toshihiko Matsumoto, Isao Hidaka, Yoshio Marumoto, Tsuyoshi Ishikawa, Naoki Yamamoto, Yutaka Suehiro, Taro Takami, Isao Sakaida

Yamasaki T and Sakaida I were involved in critical editing of the manuscript.

Supported by the Japan Society for the Promotion of Science, KIBAN-B, No. 16H05287.

Conflict-of-interest statement: The authors have no conflict of interest to report.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Invited manuscript

Correspondence to: Takahiro Yamasaki, MD, PhD, Professor, Department of Oncology and Laboratory Medicine, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube 755-8505, Japan. t.yama@yamaguchi-u.ac.jp
Telephone: +81-836-222336
Fax: +81-836-222338

Received: March 27, 2018
Peer-review started: March 27, 2018
First decision: April 18, 2018
Revised: July 30, 2018
Accepted: August 6, 2018
Article in press: August 7, 2018
Published online: September 27, 2018

Abstract

Sorafenib is used worldwide as a first-line standard...
systemic agent for advanced hepatocellular carcinoma (HCC) on the basis of the results of two large-scale Phase III trials. Conversely, hepatic arterial infusion chemotherapy (HAIC) is one of the most recommended treatments in Japan. Although there have been no randomized controlled trials comparing sorafenib with HAIC, several retrospective analyses have shown no significant differences in survival between the two therapies. Outcomes are favorable for HCC patients exhibiting macroscopic vascular invasion when treated with HAIC rather than sorafenib, whereas in HCC patients exhibiting extrahepatic spread or resistance to transcatheter arterial chemomobilization, good outcomes are achieved by treatment with sorafenib rather than HAIC. Additionally, sorafenib is generally used to treat patients with Child-Pugh A, whereas HAIC is indicated for those with either Child-Pugh A or B. Based on these findings, we reviewed treatment strategies for advanced HCC. We propose that sorafenib might be used as a first-line treatment for advanced HCC patients without macroscopic vascular invasion or Child-Pugh A, while HAIC is recommended for those with macroscopic vascular invasion or Child-Pugh A or B. Additional research is required to determine the best second-line treatment for HAIC non-responders with Child-Pugh B through future clinical trials.

Key words: Treatment strategy; Hepatic arterial infusion chemotherapy; Sorafenib; Hepatocellular carcinoma

© The Author(s) 2018. Published by Baishideng Publishing Group Inc. All rights reserved.

GUIDELINES FOR ADVANCED HCC

The results of the global investigation of therapeutic decisions in HCC and of its treatment with sorafenib (GIDEON) study show differences in the management of HCC, including diagnosis, treatment, and monitoring, among several regions. In consequence, there have been regional differences in patient outcomes[3,4]. Although several guidelines for the clinical management of HCC have been established worldwide, there are some differences in the treatment algorithms among these guidelines. Table 1 shows the major recent guidelines from Asia, Europe and the United States[6-13]. The Barcelona clinic liver cancer (BCLC) staging system, which stratifies patients by tumor stage and underlying liver disease, is widely accepted in clinical practice[14]. Among the five HCC stages (BCLC 0, A, B, C and D), the advanced BCLC C stage includes symptomatic patients with performance status (PS) 1-2, vascular invasion, extrahepatic spread, or a combination thereof[15]. For patients with BCLC C and good liver function (Child-Pugh A), sorafenib is the preferred first-line treatment according to guidelines from Europe and the United States[11-13]. According to guidelines from Asia[7-9], systemic therapy (molecular-targeted drugs) or transcatheter arterial chemoembolization (TACE) is recommended as standard treatment for such patients. However, HAIC is not generally recommended as a standard of care in the above-mentioned guidelines.

Whereas sorafenib and HAIC are indicated for the patients with minor portal vein invasion (so-called Vp1, 2) or portal invasion at the first portal branch (so-called Vp3) in the Japan Society of Hepatology and Liver Cancer Study Group of Japan (JSH-LCSGJ) Consensus-based Treatment Algorithm for HCC revised in 2014, HAIC, but not sorafenib, is recommended for portal invasion at the main trunk of the portal vein (so-called Vp4)[9]. Fur-
Currently, according to the most recent version (2017) of the Clinical Practice Guidelines for HCC proposed by JSH, TACE, resection, HAIC, and molecular-targeted agents are equally recommended for HCC patients with portal invasion. It has also been argued that the treatment should be selected after considering all of the patient's conditions as a whole[10].

Finally, the 2017 version of the National Comprehensive Cancer Network (NCCN) Guidelines supports HAIC for unresectable HCC; however, its use in the context of a clinical trial is preferred[15].

SORAFENIB FOR ADVANCED HCC

Current status of sorafenib

Sorafenib is an oral multi-targeted kinase inhibitor that suppresses tumor growth, and it was the first drug to demonstrate a survival benefit in patients with advanced HCC. In two large-scale Phase III trials, although the response rate of sorafenib was only 2%-3.3% according to the Response Evaluation Criteria in Solid Tumors (RECIST), sorafenib treatment significantly improved overall survival (OS) [sorafenib vs placebo median survival time (MST): 10.7 mo vs 7.9 mo, hazard ratio (HR): 0.69, P < 0.001 in the SHARP trial; and MST: 6.5 mo vs 4.2 mo, HR: 0.68, P = 0.014 in the Asia-Pacific trial] and the time-to-progression (TTP) (sorafenib vs placebo TTP: 5.5 mo vs 2.8 mo, HR: 0.58, P < 0.001 in the SHARP trial; and TTP: 2.8 mo vs 1.4 mo, HR: 0.57, P = 0.0005 in the Asia-Pacific trial) in patients with advanced HCC[16,17]. Therefore, sorafenib is utilized as a standard first line agent for the treatment of advanced HCC worldwide[6-13]. Recently, Rimola et al[18] reported that 1% of patients treated with sorafenib (12/119) exhibited complete response (CR), according to RECIST, and the MST for those patients was 85.8 mo.

For several years, antiangiogenic tyrosine-kinase inhibitors other than sorafenib have failed in Phase III clinical trials[19,20]. However, recent studies have demonstrated the efficacy of two oral multi-kinase inhibitors, the second-line agent regorafenib, which is used for sorafenib-resistant HCC, and the first-line agent lenvatinib, which has been shown to be non-inferior to sorafenib for OS[21,22].

Regorafenib has been reported as a second-line agent following sorafenib because of improvement in OS (regorafenib vs placebo MST: 10.6 mo vs 7.8 mo, HR: 0.63, P < 0.0001) (RESORCE trial)[21]. According to the results of this study, regorafenib was approved in the United States and Japan in 2017.

Lenvatinib is an oral multi-target inhibitor of vascular endothelial growth factor (VEGF) receptors 1-3, fibroblast growth factor receptors 1-4, platelet-derived growth factor receptor alpha, KIT, and RET[23]. A comparative global Phase III trial of lenvatinib in the first-line setting (REFLECT trial) demonstrated non-inferiority to sorafenib in advanced HCC patients (lenvatinib vs sorafenib MST: 13.6 mo vs 12.3 mo, HR: 0.92)[22]. In addition, the progression-free survival (PFS), TTP, and overall response rate (ORR) were significantly better in patients treated with lenvatinib than in those treated with sorafenib (lenvatinib vs sorafenib, median PFS: 7.4 mo vs 3.7 mo, HR: 0.66, P < 0.0001; median TTP: 8.9 mo vs 3.7 mo, HR 0.63, P < 0.0001; ORR: 24.1% vs 9.2%, P < 0.0001). Lenvatinib is approved for unresectable thyroid cancer and has been usable for HCC in Japan prior to it being approved in the rest of the world. However, HCC patients with 50% or higher liver occupation, bile duct invasion, or main portal invasion met the exclusion criteria of the REFLECT trial. Such HCC patients may be candidates for general usage of sorafenib.

Predictive factors for response and survival

Bruix et al[24] conducted analyses of two large trials...
(827 patients, SHARP and Asia-Pacific trials) and reported prognostic factors. According to this report, vascular invasion, high alpha-fetoprotein (AFP), and high neutrophil-lymphocyte ratio (NLR) were prognostic factors for poorer OS, while lack of extrahepatic spread, HCV, and low NLR were predictive factors for greater sorafenib benefit. Among serum and plasma factors, VEGF [25-27], angioptiogen-2 (Ang-2) [25,26], AFP [25,26,28-31], NLR [32,33], TIE-2 expressing monocytes (TEMs) [34], microRNA [35-37], and circulating tumor cells (CTCs) [38] have been identified as potential biomarkers (Table 2). The expression of phospho-ERK [39-41], phospho-c-Jun [42], and VEGFR-2 [43], and amplification of FGF3/FGF4 [43], have been identified as possible predictive biomarkers in tissues (Table 3). In studies of imaging biomarkers, it has been reported that decreased blood flow after sorafenib treatment [44] and low pretreatment standardized uptake values of 18F-Fluorodeoxyglucose (FDG) in positron emission tomography (PET) [45] are associated with prolonged OS. Although there have been several reports of a correlation between adverse effects (hypertension, skin toxicity, diarrhea, etc.) and sorafenib efficacy, it has been difficult to establish conclusions because of difference in the frequencies of these adverse effects among patients of different races. However, Howell et al. [46] reported that patients with sorafenib-related toxicity such as diarrhea, hypertension, and hand-foot syndrome, had good prognoses in a large, multicenter prospective cohort study. Furthermore, the potential of other biomarkers has been explored [47]. Although several studies have investigated predictive biomarkers for response and survival associated with sorafenib, no such biomarkers have been established.

HAIC FOR ADVANCED HCC

Current status of HAIC

In HAIC, as it is theoretically possible to accumulate local concentrations of anti-cancer drugs in the liver and to reduce their systemic distribution, it is believed to have a stronger antitumor effect and lower incidence of adverse reactions compared with systemic chemotherapy. On the other hand, one disadvantage is the need to master the HAIC procedure, and several adverse effects are associated with HAIC including inflammation of blood vessels, arterial obstructions, peptic ulcers due to drug leakage, and infections or obstructions of reservoir catheters.

According to the 2017 version of the treatment algorithm for HCC produced by JSH [10], HAIC is recommended as a second-line treatment for patients with ≥4 HCCs and an absence of portal invasion, while HAIC is considered a first-line treatment for those with portal invasion.

HAIC has become widely used in Asia, especially Japan, where the main HAIC regimens are low-dose cisplatin (CDDP) combined with 5-fluorouracil (5-FU) (low-dose FP) [48-51], interferon (IFN) in combination with 5-FU (FAIT) [50,52,53], and CDDP alone [51,54-56] (Table 4). In both low-dose FP and FAIT regimens, the key drug is 5-FU. In addition, CDDP or IFN exert their own effects to amplify the effect of 5-FU, and they are therefore considered biochemical modulators of 5-FU. Moreover, one benefit of the CDDP alone regimen is that a catheter is inserted each time, making the troublesome implantation of a reservoir catheter unnecessary. The regimens using low-dose FP or FAIT have response rates of approximately 30%-40%, while the CDDP alone regimen has rates of approximately 20%-30% (Table 4) [58-51,55-57]. Survival is significantly better in patients with radiological response (CR or partial response (PR)) (so-called responders) than in patients with radiological no-response (stable or progressive disease) (so-called non-responders).

The principal reasons for low clinical recognition of HAIC are the small sample size of almost all studies and the lack of large randomized trials. However, effective results have been demonstrated by previous studies. In a report comparing the FAIT regimen of HAIC with historical controls, HAIC was shown to significantly improve survival [62]. A Japanese nationwide survey supported the efficacy of the low-dose FP regimen of HAIC for treating advanced HCC [69]. After adjusting for known risk factors, survival benefits of this therapy were evident (HR: 0.48, 95%CI: 0.41-0.56, P < 0.0001). In a propensity score-matched analysis, the MST was longer in patients who received HAIC (n = 341, 14.0 mo) than in those who did not receive active treatment (n = 341, 5.2 mo) (HR: 0.60, 95%CI: 0.49-0.73, P < 0.0001). In cases of Child-Pugh A or B disease with more than three tumors (370 propensity score-matched patients), the MST was longer in patients treated with HAIC (13.9 mo) than in those with no therapy (3.7 mo) (P < 0.0001). In cases of Child-Pugh A or B disease with portal vein tumor thrombus (378 propensity score-matched patients), the MST was also longer in patients treated with HAIC (7.9 mo) than in those with no therapy (3.1 mo) (P < 0.0001).

Predictive factors for response and survival

As HAIC is selected for advanced HCC patients with poor prognoses, it is important to identify predictive factors for response and survival (Table 5) [48,49,53,58-61].

The predictive factors for poor response to HAIC include the presence of vascular invasion [59], the presence of extrahepatic metastasis [58], NLR ≥ 2.87 [58], a concentration of serum VEGF ≥ 100 pg/mL [60], a negative HCV antibody test result [61], and a platelet count ≥ 15 × 10^9/μL [61], and a negative des-gamma-carboxy prothrombin (DCP) response (defined as a reduction of < 20% or an increase from baseline after a half course of HAIC (2 wks)) [60].

Survival benefits for HAIC have been reported in HAIC responders [53,60,61]. However, therapeutic effect is not an effective prognostic predictor. The poor prognostic predictors include not only tumor-associated factors,
such as more than three tumors, large tumors (> 3 cm), the presence of vascular invasion, the presence of extrahepatic metastasis and high AFP levels, but also those associated with the patient, including dysfunction of the liver reserve, ECOG PS 1-2, and a positive HBs antigen test result.

Additionally, poor prognostic predictors include negative responses of AFP or DCP, high levels of inflammation-related markers such as NLR and CRP, low transferrin levels (< 190 mg/dL) and high VEGF levels (≥ 100 pg/mL).

A new assessment score: Assessment for continuous treatment with HAIC

It is important to identify the effective benefit of early HAIC treatment in HCC patients. Therefore, we developed a new therapeutic assessment score to guide decisions regarding HAIC treatment, the Assessment for Continuous Treatment with HAIC (ACTH). The ACTH score (range, 0-3) is calculated from simple three parameters: Child-Pugh score before HAIC (A = 0, B = 1), AFP response (yes = 0, no = 1), and DCP response (yes = 0, no = 1). The tumor markers’ responses are

Table 2 Serum and plasma biomarkers of sorafenib response and survival

Biomarkers	Ref.	Publishing year	Case number	Predictive factors for response	Predictive factors for survival	Others
VEGF	Llovet et al[25]	2012	299	No predictive value	Not prognostic value	
	Miyahara et al[26]	2013	120	No predictive value	Not prognostic value	
	Tsuchya et al[27]	2014	63	No predictive value	VEGF response (a > 5% decrease during 8 wk of treatment): Better OS	
Ang-2	Llovet et al[25]	2012	299	No predictive value	Low Ang-2: Better OS	
	Miyahara et al[26]	2013	120	High Ang2: PD	Low Ang-2: Better OS	
Changes of AFP	Personeni et al[28]	2012	85	AFP response (a > 20% decrease during 8 wk of treatment): Better ORR, DCR	AFP response: Better OS	
	Yau et al[29]	2011	94	AFP response (a > 20% decrease during 6 wk of treatment): Better DCR	AFP response: Better PFS	
	Kuzuya et al[30]	2015	47	High AFP ratio (a > 1.2 at 2 wk relative to baseline): Poor OS	High poor prognostic score (the absence of disappearance of arterial tumor enhancement on CE-CT, AFP ratio of > 1.2, and two or more increments in CP score after 2 wk of Treatment): Poor OS and DCR	
	Nakazawa et al[31]	2013	59	AFP increase (more than 20% from baseline during 4 wk of treatment): PD	AFP increase: Better OS and PFS	
	Llovet et al[25]	2012	299	-	AFP > 200 ng/mL: Poor OS	
	Miyahara et al[26]	2013	120	-	Not prognostic value	
	Kuzuya et al[30]	2015	47	-	Not prognostic value	
NLR	Zheng et al[32]	2013	65	-	High NLR (> 4): Poor OS and TTP	
Howell et al[33]	2017	175	-	High NLR (> 2.5): Poor OS		
TEMs	Shoji et al[34]	2017	25	High ΔTEMs (changes in TEMs before and at 1 mo after therapy): PD	High ΔTEMs (changes in TEMs before and at 1 mo after therapy): Poor OS	
	Howell et al[34]	2017	175	-	High ΔTEMs (changes in TEMs before and at 1 mo after therapy): Poor OS	
MicroRNA	Stiuso et al[35]	2015	39	Upregulation of miR-423-5p after treatment: SD or PR	-	
	Yoon et al[36]	2017	24	Low miR-10b-3p: Poor OS		
	Nishida et al[37]	2017	53	High miR-181a-5p: PR + SD	High miR-181a-5p: Better OS	
CTCs	Li et al[38]	2016	59	pERK+/pAkt- CTCs: Better DCR	pERK+/pAkt- CTCs: Better DCR	

Ang-2: Angiopoietin-2; CE-CT: Contrast-enhanced computed tomography; NLR: Neutrophil-to lymphocyte ratio; AFP: Alpha-fetoprotein; CTC: Circulating tumor cells; TEMs: TIE-2-expression monocytes; VEGF: Vascular endothelial growth factor; PD: Progressive disease; OS: Overall survival; DCR: Disease control rate; ORR: Overall response rate; PFS: Progression-free survival; CP: Child-Pugh; pERK: Phosphorylated extracellular signal-regulated kinase; PR: Partial response; SD: Stable disease; TTP: Time to progression.

September 27, 2018 | Volume 10 | Issue 9
assessed as the difference between the baseline and 2 wk after HAIC induction (positive response: A reduction of ≥ 20% from the baseline). ACTH score could stratify patients’ survival (score ≤ 1 vs score ≥ 2, 15.1 mo vs 8.7 mo; P = 0.003)\(^\text{[48]}\). A validation study similarity showed that this score is useful for therapeutic assessment\(^{[62]}\). Therefore, the ACTH score makes it possible to provide an early prediction of the prognosis of advanced HCC patients receiving HAIC, and can improve treatment efficiency by switching to other treatments, such as sorafenib or an experimental treatment in a clinical trial, for patients with a score ≥ 2 (Figure 1).

Modified HAIC and the combination approach

Nagamatsu et al\(^{[63]}\) developed a modified procedure for administering a low-dose FP regimen: HAIC using 5-FU after lipiodol-transcatheter arterial infusion chemotherapy (Lip-TAI) with CDDP; a multicenter phase II study showed that the MST and response rate were 27.0 mo and 75% for advanced HCC patients with portal vein thrombosis, respectively\(^{[64]}\). Although this regimen produced a favorable outcome, it has not become widespread owing to the high level of proficiency needed for the procedure.

A multicenter open-labeled randomized Phase II trial was conducted to evaluate the effect of combining the CDDP regimen of HAIC with sorafenib for treating advanced HCC. The results showed that survival was significantly better for patients receiving sorafenib plus HAIC (MST, 10.6 mo) than those receiving sorafenib alone (MST, 8.7 mo) (HR: 0.60, \(P = 0.031\))\(^{[65]}\); however, there was not a significant difference in survival between patients receiving sorafenib plus HAIC using low-dose FP and those receiving sorafenib alone\(^{[66]}\). Therefore, further investigation is required.

Radiotherapy (RT) has become recognized as an optional treatment for HCC in the APASL and NCCN guidelines\(^{[6,15]}\), but it is not recommended in the AASLD and EASL guidelines\(^{[11,13]}\). For advanced HCC patients with intravascular tumor thrombus, a combination of HAIC with RT is a reasonable approach. Compared to HAIC alone, a beneficial effect of 3-D conformal radiotherapy (3D-CRT) for major portal vein tumor thrombosis combined with HAIC has been demonstrated, although these results came from retrospective cohort studies\(^{[67,68]}\).

SORAFENIB VS HAIC

Sorafenib is recommended as a first-line treatment worldwide for advanced HCC patients (those with

Table 3 Tissue biomarkers of sorafenib response and survival

Biomarkers	Ref.	Publishing year	Case number	Predictive factors for response	Predictive factors for survival
Expression of p-ERK	Aboou-Elfa et al\(^{[44]}\)	2012	33	-	High pERK: Longer TTP
	Chen et al\(^{[44]}\)	2013	54	-	High pERK: Longer TTP
	Negri et al\(^{[41]}\)	2015	77	-	High pERK: Shorter OS and PFS
Expression of p-c-Jun	Hagiwara et al\(^{[41]}\)	2012	39	High p-c-jun; Poor response	High p-c-jun; Shorter TTP and OS
Expression of VEGFR-2	Negri et al\(^{[41]}\)	2015	54	-	High VEGFR-2: Shorter OS and PFS
FGFR3/FGF4 amplification	Arao et al\(^{[38]}\)	2013	48	FGF3/FGF4 amplification: Responder	-

Table 4 Regimens of hepatic arterial infusion chemotherapy for advanced hepatocellular carcinoma

Ref.	Publishing year	Case number	Vascular invasion (%)	Regimens	Response rate (%)	Median survival time (mo)
Saeki et al\(^{[64]}\)	2015	90	ND	Low-dose FP, including the combination of LV/IV or IV plus IFN	34.4	10.6
Nousu et al\(^{[40]}\)	2013	476	44.1	CDDP + 5-FU	40.5	14.0 (341 patients)
Mondon et al\(^{[40]}\)	2012	34	90	IFNa, 5-FU	26.7	8.4
Yamashita et al\(^{[40]}\)	2011	35	90.3	Low-dose FP/CDDP	25.8	11.8
Nagano et al\(^{[40]}\)	2011	102	100	IFNa, CDDP, 5-FU	45.6	17.6
Obi et al\(^{[40]}\)	2006	116	100	IFNa, 5-FU	24.6	10.5
Ikeda et al\(^{[40]}\)	2013	25	100	CDDP powder (IA call)	28	7.6
Iwasa et al\(^{[40]}\)	2011	84	31	CDDP powder (IA call)	3.6	7.1
Kim et al\(^{[40]}\)	2011	41	83.3	CDDP	12.2	7.5
Yoshikawa et al\(^{[40]}\)	2008	97	27.5	CDDP powder (IA call)	33.8	ND

ND: Not described; Low-dose FP: Low-dose 5-FU plus Cisplatin; LV: Leucovorin; IV: Isovorin; IFN: Interferon; CDDP: Cisplatin.

ERK: Extracellular signal-regulated kinase; FGF: Fibroblast growth factor; TTP: Time to progression; OS: Overall survival; pERK: Phosphorylated extracellular signal-regulated kinase; PFS: Progressive-free survival; VEGFR: Vascular endothelial growth factor receptor.
Because of the low response rate to sorafenib, we suggest that maintaining the stability of HCC by suppressing tumor growth can significantly improve survival. Sorafenib therapy also worsens survival in patients with Child-Pugh B, unlike those with Child-Pugh A. Therefore, advanced HCC patients with Child-Pugh A are candidates for general usage of sorafenib.
Etiology

HCV

2970

62 mo

A (5)

HBV

233640

Hepatic

None

Tumor stage

III

Male

148 mo

IVA

A (5)

Cause of

γ

176 mo (dead)

120700

B (7)

None

7145

HCV

III

Male

CR

110

None

150

Low-dose FP

6.4

Vp4, Vv0

50

Vp3, Vv3

None

Therapeutic

260

151 mo (dead)

DCP (mAU/mL)

Low-dose FP

None

Larynx cancer

Male

Vp0, Vv0

Child-Pugh

Low-dose FP

68x781

Saeki I

Table 6 Clinical characteristics of three advanced hepatocellular carcinoma patients with complete response who have survived over 10 years

Age diagnosed as HCC	Sex	Etiology	Child-Pugh	Tumor stage	Previous treatment	Maximum tumor size (mm)	Vascular invasion	Regimen	Therapeutic effect	AFP (ng/mL)	DCP (mAU/mL)	HCC recurrence	Prognosis	Cause of death
67	Male	HCV	A (5)	IVA	None	110	Vp4, Vv0	Low-dose FP+IV	CR	120700	260	62 mo	151 mo (dead)	Hepatic failure
66	Male	HCV	A (5)	III	None	50	Vp0, Vv0	Low-dose FP+IV	CR	6.4	2970	None	176 mo (dead)	Larynx cancer
44	Male	HBV	B (7)	III	None	150	Vp3, Vv3	Low-dose FP+IV+Peg IFN	CR	7.148	253640	None	148 mo (alive)	-

1 According to the Liver Cancer Study Group of Japan; 2 The follow-up period ended on January 31, 2018. HCC: Hepatocellular carcinoma; AFP: Alpha-fetoprotein; DCP: Des-carboxyprothrombin; HCV: Hepatitis C virus; HBV: Hepatitis B virus; CR: Complete remission; Low-dose FP: Low-dose cisplatin combined with 5-FU; IV: Isovorin; Peg IFN: Pegylated interferon.

On the other hand, HAIC is not widely recommended as a standard of care for advanced HCC patients. As HAIC is thought to be one of the most effective treatment options for such patients, HAIC has become widely used in Asia, especially Japan. We propose that HAIC might be used as a treatment for achieving CR or PR. If patients with PR after HAIC receive additional therapies such as surgical resection, local ablation, or radiation, it is possible for those who show a disappearance of viable HCC to have a long survival time[64]. In addition, although liver reserve dysfunction is a poor prognostic factor[46,49,53,58-61], advanced HCC patients with Child-Pugh B are candidates for HAIC[6,10].

Currently, no criteria have been established for selecting advanced HCC patients to receive either sorafenib or HAIC. According to the results of two large-scale randomized controlled trials (RCTs), sorafenib indeed improved the survival of patients with macroscopic vascular invasion[16,17]. However, these HCC patients with macroscopic vascular invasion have poorer prognoses than those without such invasion[16,17,70,71]. Moreover, there have been no RCTs comparing sorafenib with HAIC. In a retrospective cohort study, while there was no significant difference in survival or disease progression between the two groups, while PFS was significantly longer in the HAIC group compared with the sorafenib group, particularly for patients with portal vein invasion and/or without extrahepatic spread[17,70]. On the other hand, survival was favorable in patients with HCC refractory to TACE treated with sorafenib rather than HAIC[24]. Furthermore, it is important to preserve liver function during and after chemotherapy in advanced HCC patients. It has been reported that liver function after therapy was not significantly reduced in patients treated with HAIC compared with those treated with sorafenib[78], and the Child-Pugh score of HAIC responders with deteriorated liver function was significantly improved after HAIC[79]. According to our report[82], most HAIC responders showed no deterioration of liver function. It was interesting to note that the Child-Pugh class of some responders with deteriorated liver function improved from B to A after HAIC, but this did not occur in non-responders. Therefore, we conclude that HAIC may be well tolerated by advanced HCC patients with deteriorated liver function.

As of 2017, only 10 years have passed since sorafenib was first shown to be efficacious against advanced HCC. As such, it is impossible to assess survival longer than 10 years. However, we can examine survival rates from shorter-duration studies. As previously mentioned, Rimola et al[18] reported a CR rate and MST for CR patients under sorafenib of 1% and 85.8 mo, respectively. Shiba et al[78] reported that the CR rate was below 0.6% (18/3047 patients) in a nationwide study from Japan. By contrast, the CR rate for HAIC was 4.0% (19/476 patients) in a nationwide survey in Japan[48]. According to our previous report[88], the CR rate under HAIC using a low-dose FP-based regimen was 5% (6/114 patients), and overall 1-, 3-, 5-, 7-, and 10-year cumulative survival rates were 43.9%, 10.0%, 5.6%, 2.8%, and 2.8%, respectively (MST: 10.2 mo). Three of six CR patients from our study survived over 10 years, though 2 patients have since died and only one is still alive (Table 6 and Figure 2). Further investigations are...
required to compare long-term survival rates between sorafenib and HAIC.

Finally, we present a draft proposal of a treatment strategy for advanced HCC (Figure 3): (1) For advanced HCC patients without macroscopic vascular invasion and Child-Pugh A, the first-line treatment should be sorafenib, and second-line treatments should be either regorafenib or HAIC; (2) For advanced HCC patients with macroscopic vascular invasion and Child-Pugh A, the first-line treatment should be HAIC, and the second-line treatments should be either sorafenib or experimental treatment in clinical trials; (3) For advanced HCC patients with Child-Pugh B, the first-line treatment should be HAIC, and the second-line treatment should be clinical trials. Miyaki et al. reported that additional therapy with sorafenib improved the prognosis of HAIC refractory patients compared with that of patients not treated with sorafenib therapy in a retrospective cohort study. Nonetheless, there have been no effective treatments for HAIC non-responders with deteriorated liver function (Child-Pugh B). We have shown the efficacy of an intra-arterial infusion therapy using the iron chelator deferoxamine for advanced HCC patients with deteriorated liver function, and clinical trials are now ongoing. Because the best second-line treatment for HAIC non-responders with Child-Pugh B is to enroll in clinical trials, this remains an issue for future research.

CONCLUSION

We reviewed the current status and predictive biomarkers regarding the administration of sorafenib and HAIC for advanced HCC, and we have proposed a treatment strategy for patients with advanced HCC. The success
Figure 3 Draft proposal of a treatment strategy for advanced hepatocellular carcinoma. (1) For advanced hepatocellular carcinoma (HCC) patients without macroscopic vascular invasion and Child-Pugh A, the first-line treatment should be sorafenib, while second-line treatments should be either regorafenib or experimental treatment in clinical trials; (2) For advanced HCC patients with macroscopic vascular invasion and Child-Pugh A, the first-line treatment should be sorafenib, while second-line treatments should be either regorafenib or hepatic arterial infusion chemotherapy (HAIC); (3) For advanced HCC patients with Child-Pugh B, the first-line treatment should be HAIC, and the second-line treatment should be clinical trials.

of sorafenib, regorafenib, and lenvatinib in treating advanced HCC has shifted the treatment paradigm to molecular-targeted therapies. Furthermore, several immune-oncologic agents have been identified with potential for the treatment of advanced HCC[82,83]. Thus, the chemotherapeutic interventions for advanced HCC have been kept up-to-date through several advances. However, alternative therapies will be required because of the high cost and ineffectiveness of these molecular agents for patients with deteriorated liver function.

REFERENCES

1 International Agency for Research on Cancer. GLOBOCAN 2012: Estimated Cancer Incidence, Mortality and Prevalence Worldwide in 2012. Available from: URL: http://globocan.iarc.fr/Default.aspx

2 Global Burden of Disease Liver Cancer Collaboration. Akinneyeju T, Abera S, Ahmed M, Alam N, Alemayohu MA, Allen C, Al-Raddadi R, Alvis-Guzman N, Amoako Y, Artaman A, Ayel TA, Barac A, Bensenor I, Berhan A, Bhutta Z, Castillo-Rivas J, Chitteen A, Choi JY, Cowie B, Dandona L, Dandona R, Dey S, Dicker D, Phue H, Ekwueme DU, Zaki MS, Fischer F, Fürst T, Hancock J, Hay SI, Hotez P, Jee SH, Kasaeian A, Khader Y, Khang YH, Kumar A, Kurz T, Larson H, Lopez A, Lunevicius R, Malekzadeh R, MeAlinden C, Meier T, Mendoza W, Mohd K, Moradi-Lakeh M, Nagel G, Nguyen Q, Nguyen O, Ogbo F, Patton G, Pereira DM, Pourmalek F, Qorbani M, Radfar A, Roshandel G, Salomon JA, Sanabria J, Sarthiou B, Satpathy M, Sawhney M, Sepanlou S, Shackleford K, Shore H, Sun J, Mengistu DT, Topor-Madry R, Tran B, Ukwaja KN, Vlassov V, Volset SE, Vos T, Wakayo T, Weiderpass E, Werdecker A, Yonemoto N, Younis M, Yu C, Zaidi Z, Zhu L, Murray CJL, Naghavi M, Fitzmaurice C. The Burden of Primary Liver Cancer and Underlying Etiologies From 1990 to 2015 at the Global, Regional, and National Level: Results From the Global Burden of Disease Study 2015. JAMA Oncol 2017; 3: 1683-1691 [PMID: 28933565 DOI: 10.1001/jamaoncol.2017.3055]

3 Tateishi R, Okanoue T, Fujiwara N, Okita K, Kiyosawa K, Omata M, Kumada H, Hayashi N, Koike K. Clinical characteristics, treatment, and prognosis of non-B, non-C hepatocellular carcinoma: a large retrospective multicenter cohort study. J Gastroenterol 2015; 50: 350-360 [PMID: 24929638 DOI: 10.1007/s00535-014-0973-8]

4 Urata Y, Yamasaki T, Saeki I, Iwai S, Kitahara M, Sawai Y, Tanaka K, Aoki T, Iwadou S, Fujita N, Nakayama Y, Maeshiro T, Takami T, Sakaia I. Clinical characteristics and prognosis of non-B non-C hepatocellular carcinoma patients with modest alcohol consumption. Hepatol Res 2016; 46: 434-442 [PMID: 26288059 DOI: 10.1111/hepr.12572]

5 Kudo M, Lencioni R, Marrero JA, Venook AP, Bronowicki JP, Chen XP, Dagher L, Furuse J, Geschwind JF, Ladrón de Guevara L, Papandreou C, Sunyal AJ, Takayama T, Yoon SK, Nakajima K, Lehr R, Heldner S, Ye SL. Regional differences in sorafenib-treated patients with hepatocellular carcinoma: GIDEON observational study. Liver Int 2016; 36: 1196-1205 [PMID: 26901163 DOI: 10.1111/liv.13096]

6 Kudo M, Matsui O, Izum N, Iijima H, Kadoya M, Imai Y, Okusaka T, Miyayama S, Tsuichini K, Uehama K, Hiraoka A, Ikeda M, Ogasawara S, Yahata S, Minami T, Yamakodo K; Liver Cancer Study Group of Japan. JSH Consensus-Based Clinical Practice Guidelines for the Management of Hepatocellular Carcinoma: 2014 Update by the Liver Cancer Study Group of Japan. Liver Cancer 2014; 3: 458-468 [PMID: 26280007 DOI: 10.1159/000343875]

7 Korean Liver Cancer Study Group (KLCG). National Cancer Center, Korea (NCC). 2014 Korean Liver Cancer Study Group-National Cancer Center Korea practice guideline for the management of hepatocellular carcinoma. Korean J Radiol 2015; 16: 465-522 [PMID: 25956580 DOI: 10.3348/jkr.2015.16.3.465]

8 Yau T, Tang YC, Yao TJ, Fan ST, Lo CM, Poon RT. Development of Hong Kong Liver Cancer staging system with treatment stratification for patients with hepatocellular carcinoma. Gastroenterology 2014; 146: 1691-700.e3 [PMID: 24583061 DOI: 10.1053/j.gastro.2014.02.032]

9 Omata M, Cheng AL, Kokudo N, Kudo M, Lee JM, Jia J, Tateishi R, Han KH, Chawla YK, Shinai S, Jafari W, Payawal DA, Ohki T, Ogasawara S, Chen PJ, Lesmana CRA, Lesmana LA, Gani RA, Obi S, Dokmeci AK, Sarin SK. Asia-Pacific clinical practice guidelines on the management of hepatocellular carcinoma: a 2017 update. Hepatol Int 2017; 11: 317-370 [PMID: 28620797 DOI: 10.1007/s12072-017-9799-9]
Clinical Practice Guidelines: Management of hepatocellular carcinoma. J Hepatol 2018; 69: 182-236 [PMID: 29628281 DOI: 10.1016/j.jhep.2018.03.019]

European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J Hepatol 2012; 56: 900-943 [PMID: 22470601 DOI: 10.1016/j.jhep.2011.09.016]

2018; 22: Suppl 7: viii1-vi48 [PMID: 22997453 DOI: 10.1093/annonc/mds225]

Brauj I, Sherman M; American Society for the Study of Liver Diseases. Management of hepatocellular carcinoma: an update. Hepatology 2011; 53: 1020-1022 [PMID: 21374666 DOI: 10.1002/hep.24199]

Brauj I, Llovet JM, Buxj I. Hepatocellular carcinoma. Lancet 2012; 379: 1245-1255 [PMID: 22353262 DOI: 10.1016/S0140-6736(11)61470-1]

Benson AB 3rd, D’Angelica MI, Abbott DE, Abrams TA, Alberts SR, Saenz DA, Are C, Brown DB, Chang DT, Covey AM, Hawkins I, Iyer R, Jacob R, Karachristos A, Kelley RK, Kim R, Palma F, Park JO, Sahai V, Scheffer T, Schmidt C, Sliekx JK, Singh G, Sohal D, Stein S, Tian GG, Vauthy JN, Venook AP, Zhu AX, Hoffmann KG, Darlow S. NCCN Guidelines Insights: Hepatobiliary Cancers, Version 1.2017. J Natl Compr Canc Netw 2017; 15: 563-573 [PMID: 28476736 DOI: 10.6004/jnccn.2017.0059]

Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, de Oliveira AC, Santoro A, Raoul JL, Forner A, Schwartz M, Porta C, Zeuzem S, Bolondi L, Gremijn TF, Galle PR, Serit JF, Borbath I, Häussinger D, Giannaris T, Shab M, Moscovich M, Voliotis D, Brauj I; SHARP Investigators Study Group. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2009; 359: 378-390 [PMID: 18650514 DOI: 10.1056/NEJMoa0900029]

Cheng AL, Kang YK, Chen Z, Tao C, Qin S, Kim JS, Luo R, Feng J, Ye S, Yang TS, Xu J, Sun Y, Liang H, Liu J, Wang J, Wang WY, Pan H, Burock K, Zou J, Voliotis D, Guan Z. Efficacy and safety of sorafenib in patients with the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol 2009; 10: 25-34 [PMID: 19095497 DOI: 10.1016/S1470-2045(08)70285-7]

Rimola J, Diaz-Gonzalez A, Darrell A, Varela M, Pons F, Hernandez-Guerra M, Delgado M, Castragudua J, Matilla A, Sangro B, Rodriguez de Lope C, Sala M, Gonzalez C, Huertas C, Minguez R, Rimola J, Diaz-Gonzalez Á, Díaz-González Á, Darnell A, Varela M, Pons F, He- morrhage J, Inflammatory C, Neutrophil-Lymphocyte Ratio J, Survival J, Tumor Response J, Patients J, Advanced J, Hepatocellular J, Hematology J, ADaM J, Liver J, 1705-2705 [PMID: 20917849 DOI: 10.1056/NEJMoa1006361]

Kudo M, Morizane C, Ueno M, Okusaka T, Tamai T, Suzuki T, Hisa T, Hayashi T, Nakajima K, Kumada H. Phase 2 study of lenvatinib in patients with advanced hepatocellular carcinoma. J Gastroenterol 2017; 52: 512-519 [PMID: 27704266 DOI: 10.1007/s00535-016-1263-4]

Brauj I, Cheng AL, Meinhardt G, Nakajima K, De Sanctis Y, Llovet J. Prognostic factors and predictors of sorafenib benefit in patients with hepatocellular carcinoma: Analysis of two phase III studies. J Hepatol 2017; 67: 999-1008 [PMID: 28687477 DOI: 10.1016/j.jhep.2017.06.026]

Llovet JM, Peña CE, Lathia CD, Shun M, Meinhardt G, Brauj I; SHARP Investigators Study Group. Plasma biomarkers as predictors of outcome in patients with advanced hepatocellular carcinoma. Clin Cancer Res 2012; 18: 2290-2300 [PMID: 22374331 DOI: 10.1158/1078-0432.CCR-11-2175]

Miyahara K, Nousu K, Morimoto Y, Takeuchi Y, Hagihara H, Kawai K, Onishi H, Ikeda F, Miyake Y, Nakamura S, Shiraha H, Takaki A, Honda M, Kaneko S, Tato T, Sato S, Obi S, Iwadou S, Kobayashi Y, Takaguchi K, Kariyama K, Takayama Y, Takabatake H, Yamamoto K; Okayama Liver Cancer Group. Pro-angiogenic cytokines for prediction of tumor response in patients with advanced hepatocellular carcinoma. Br J Cancer 2013; 109: 2072-2078 [PMID: 24045661 DOI: 10.1038/bjc.2013.554]

Tsuchiya A, Asahina Y, Matsuda S, Muroaka M, Nakata T, Suzuki Y, Tamaki N, Yasui Y, Suzuki S, Hosokawa T, Nishimura T, Ueda K, Kuzuya T, Nakashima H, Itakura J, Takahashi Y, Kuroski M, Enomoto N, Izumi N. Changes in plasma vascular endothelial growth factor at 8 weeks after sorafenib administration as predictors of survival for patients with advanced hepatocellular carcinoma. Cancer 2014; 120: 229-237 [PMID: 24122212 DOI: 10.1002/cncr.28384]

Personeni N, Bozzarelli S, Preszieriani T, Rimassa L, Tronconi MC, Selafan F, Carnaghi C, Pedicini V, Giordano L, Santoro A, Morillo D, Rizzoli R, Rossolino R, Tuzi E. Usefulness of alpha-fetoprotein response in patients treated with sorafenib for advanced hepatocellular carcinoma. J Hepatol 2012; 57: 101-107 [PMID: 22414670 DOI: 10.1016/j.jhep.2012.02.016]

Yau T, Yao TJ, Chan P, Wong P, Pang R, Fan ST, Poont RN. The significance of early alpha-fetoprotein level changes in predicting clinical survival and benefits in advanced hepatocellular carcinoma patients receiving sorafenib. Oncologist 2011; 16: 1270-1279 [PMID: 21888586 DOI: 10.1634/theoncologist.2011-0105]

Kuzuya T, Ishigami M, Izuishi Y, Honda T, Hayashi K, Yo- rooka Y, Ishikawa T, Nakano I, Goto H. Early Clinical Response after 2 Weeks of Sorafenib Therapy Predicts Outcomes and Anti-Tumor Response in Patients with Advanced Hepatocellular Carcinoma. PLoS One 2015; 10: e0138776 [PMID: 26421430 DOI: 10.1371/journal.pone.0138776]

Nakazawa T, Hidaka H, Takada J, Okuwaki Y, Tanaka Y, Watanabe M, Shibuya A, Minamino T, Kokuah K, Kozunoi W. Early increase of neutrophil-lymphocyte ratio predicts survival in patients with hepatocellular carcinoma receiving sorafenib. Eur J Gastroenterol Hepatol 2013; 25: 683-689 [PMID: 23959595 DOI: 10.1097/MEG.0b013e32835f193b]

Zheng YB, Zhao W, Liu B, Lu LG, He X, Huang JW, Li Y, Hu BS. The blood neutrophil-to-lymphocyte ratio predicts survival in patients with advanced hepatocellular carcinoma receiving sorafenib. Eur J Gastroenterol Hepatol 2013; 25: 683-689 [PMID: 23959595 DOI: 10.1097/MEG.0b013e32835f193b]

Howell J, Pinato DJ, Ramaswami R, Arizumi T, Ferrari C, Gibbin A, Burlone ME, Guaschino G, Tonituo P, Black J, Sellers L, Kudo M, Pirisi M, Sharma A, 2011-0105]

Shoji H, Yoshih S, Mano Y, Doi H, Sugiyama M, Osawa Y, Kimura K, Arai T, Ikowak A, Matsukawa A, Osaki Y, Fukui M, Taketomi A, Mizokati M, Kanto T. Pro-angiogenic TIE-2 expressing mono-
cytes/TEMs as a biomarker of the effect of sorafenib in patients with advanced hepatocellular carcinoma. *Int J Cancer* 2017; 141: 1011-1017 [PMID: 28555943 DOI: 10.1002/ijc.30804]

35 *Stiasso* P, Potenza N, Lombardi A, Ferrandino I, Monaco A, Zappavigna S, Vancore D, Mosca N, Castelli F, Porto S, Addeo R, Prete SD, De Vita F, Russo A, Caraglia M. MicroRNA-423-5p Promotes Autophagy in Cancer Cells and Is Increased in Serum From Hepatocarcinoma Patients Treated With Sorafenib. *Mol Ther Nucleic Acids* 2015; 4: e233 [PMID: 25782064 DOI: 10.1038/mta.2015.8]

36 Yoon EL, Yeon JE, Ko E, Lee HJ, Je JH, Yoo YJ, Kang SH, Suh SJ, Kim JH, Seo YS, Yim HJ, Byun KS. An Explorative Analysis for the Role of Serum miR-10b-3P Levels in Predicting Response to Sorafenib in Patients with Advanced Hepatocellular Carcinoma. *J Korean Med Sci* 2017; 32: 212-220 [PMID: 28049231 DOI: 10.3346/jkms.2017.32.2.212]

37 Nishida N, Arizumi T, Hagiwara S, Ida H, Sakurai T, Kudo M. MicroRNAs for the Prediction of Early Response to Sorafenib Treatment in Human Hepatocellular Carcinoma. *Liver Cancer* 2017; 6: 113-125 [PMID: 28275578 DOI: 10.1115/00449475]

38 Li J, Shi L, Zhang X, Sun B, Yang Y, Ge N, Liu H, Yang X, Chen L, Qian H, Wu M, Yin Z. pERK/pAkt phenotyping in circulating tumor cells as a biomarker for sorafenib efficacy in patients with advanced hepatocellular carcinoma. *Oncotarget* 2016; 7: 2640-2659 [PMID: 26544731 DOI: 10.18632/oncotarget.6104]

39 Abou-Alfa GK, Chen D. Strategies for treating advanced HCC

40 Chen D, Zhao P, Li SQ, Xiao WK, Yin XY, Peng BG, Liang LJ. Prognostic impact of pERK in advanced hepatocellular carcinoma patients treated with sorafenib. *Eur J Surg Oncol* 2013; 39: 974-980 [PMID: 23845703 DOI: 10.1016/j.ejso.2013.06.018]

41 Negri FY, Dal Bello B, Porta C, Campanini N, Rossi S, Tinelli C, Poggi G, Missale G, Fanello S, Salvaggi S, Ardizzoni A, Maria SE. Expression of pERK and VEGFR-2 in advanced hepatocellular carcinoma and resistance to sorafenib treatment. *Liver Int* 2015; 35: 2001-2008 [PMID: 25559745 DOI: 10.1111/lji.12778]

42 Hagiwara S, Kudo M, Nagai T, Inoue T, Ueshima K, Nishida N, Watanabe T, Sakurai T. Activation of JNK and high expression level of CD133 predict a poor response to sorafenib in hepatocellular carcinoma. *J Clin Oncol* 2006; 24: 4293-4300 [PMID: 16908937 DOI: 10.1200/JCO.2005.01.3441]

43 De Greve J, Douillard JY, Lathia C, Schwartz B, Taylor I. Molongoski A. Long-term outcome of combined interferon-α and 5-fluorouracil chemotherapy of 5-fluorouracil and cisplatin for advanced hepatocellular carcinoma patients receiving hepatic arterial infusion chemotherapy with or without 5-fluorouracil in locally advanced hepatocellular carcinoma. *J Cancer Res Clin Oncol* 2011; 137: 659-667 [PMID: 20552225 DOI: 10.1007/s00432-010-0917-5]

44 Ikeda M, Okusaka T, Furuse J, Mitsunaga S, Ueno H, Yamamura H, Inaba Y, Takeuchi Y, Satake M, Ariy A. A multi-institutional phase II trial of hepatic arterial infusion chemotherapy with cisplatin for advanced hepatocellular carcinoma with portal vein tumor thrombosis. *Chemother Pharmacol* 2013; 72: 463-470 [PMID: 23812005 DOI: 10.1007/s00228-013-2222-x]

45 Obi S, Yoshiha H, Toune R, Unuma T, Kanda M, Sato T, Tateshi R, Teratani T, Shina S, Omata M. Combination therapy of intraarterial 5-fluorouracil and systemic interferon-alpha for advanced hepatocellular carcinoma with portal venous invasion. *Cancer* 2006; 106: 1990-1997 [PMID: 16565970 DOI: 10.1002/cncr.21832]

46 Arizumi T, Ueshima K, Chishina H, Kono M, Takita M, Kitai S, Inoue T, Yada N, Hagiwara S, Minami Y, Sakurai T, Nishida N, Kudo M. Decreased blood flow after sorafenib administration is an imaging biomarker to predict overall survival in patients with advanced hepatocellular carcinoma. *Hepatology* 2013; 57: 1407-1415 [PMID: 22860726 DOI: 10.1002/hep.25956]

47 Lee JH, Park JY, Kim DY, Ahn SH, Han KH, Seo HJ, Lee JD, Choi HJ. Prognostic value of 18F-FDG PET for hepatocellular carcinoma patients treated with sorafenib. *Liver Int* 2011; 31: 1144-1149 [PMID: 21745288 DOI: 10.1016/j.liver.2011.02.0154]

48 Howard J, Pinato DJ, Ramaswami R, Bettinger D, Arizumi T, Ferrari C, Yan C, Gibbina A, Burlone ME, Guaschino G, Seller L, Black J, Pirisi M, Kudo M, Thimme R, Park JW, Sharma R. On-target sorafenib toxicity predicts improved survival in hepatocellular carcinoma: a multi-centre, prospective study. *Aliment Pharmacol Ther* 2017; 45: 1146-1155 [PMID: 28252185 DOI: 10.1111/apt.13977]

49 Shao YH, Hsu CH, Cheng AL. Predictive biomarkers of sorafenib efficacy in advanced hepatocellular carcinoma: Are we getting there? *World J Gastroenterol* 2015; 21: 10336-10347 [PMID: 26420960 DOI: 10.3748/wjg.v21.i36.10336]

50 Saeki I, Yamashita T, Iida N, Yamashita T, Nakagawa H, Arii K, Kitamura K, Kagaya T, Sakai Y, Mizukoshi E, Honda M, Kaneko M, Blood neutrophil to lymphocyte ratio as a predictor in patients with advanced hepatocellular carcinoma treated with hepatic arterial
with irradiation for advanced hepatocellular carcinoma with portal vein invasion. Hepatol Int 2015; 9: 105-112 [PMID: 25788384 DOI: 10.1007/s12072-014-9592-y]

90. Holabueque A, Cattan S, Romano O, Sergeant G, Mourad A, Louvet A, Dhautmont E, Brosolonski E, Truant S, Pruvot FR, Hebrard M, Ernst O, Mathurin P. Safety and efficacy of sorafenib in hepatocellular carcinoma: the impact of the Child-Pugh score. Aliment Pharmacol Ther 2011; 34: 1193-1201 [PMID: 21958438 DOI: 10.1111/j.1365-2036.2011.04860.x]

91. Bruix J, Raoul JL, Sherman M, Mazaferro V, Bollondi L, Craxi A, Galle PR, Santoro A, Beaugrand M, Sangiovanni A, Porta C, Gerken G, Marrero JA, Nadel A, Shan M, Moscovici G, Vlortois D, Llovet JM. Efficacy and safety of sorafenib in patients with advanced hepatocellular carcinoma: subanalyses of a phase III trial. J Hepatol 2012; 57: 821-829 [PMID: 22772733 DOI: 10.1016/j.jhep.2012.06.014]

92. Cheng AL, Guan Z, Chen Z, Tsao CJ, Qin S, Kim JS, Yang TS, Tak WY, Pan H, Yu S, Xu J, Fang F, Zou J, Lentinini G, Vlotitis D, Kang YK. Efficacy and safety of sorafenib in patients with advanced hepatocellular carcinoma according to baseline status: subset analyses of the phase III Sorafenib Asia-Pacific trial. Eur J Cancer 2012; 48: 1452-1465 [PMID: 22420282 DOI: 10.1016/j.ejca.2012.11.006]

93. Kawaoka T, Aikata H, Hyogo H, Morio R, Morio K, Hatoaka M, Fukuraha T, Kobayashi T, Naoshiro N, Miyaki D, Hirama M, Aikata H, Takakushi S, Waki K, Tsuji K, Kohno H, Kohto H, Mori T, Chayama K. Comparison of hepatic arterial infusion chemotherapy versus sorafenib monotherapy in patients with advanced hepatocellular carcinoma. J Dig Dis 2015; 16: 505-512 [PMID: 26121102 DOI: 10.1111/1751-2908.12267]

94. Fukubayashi K, Tanaka M, Izumi K, Watanabe T, Fujie S, Kashtani T, Yoshimura T, Tateyama T, Setoyma H, Naoe H, Kikuchi K, Sasaki Y. Evaluation of sorafenib treatment and hepatic arterial infusion chemoradiotherapy for advanced hepatocellular carcinoma: a comparative study using the propensity score matching method. Cancer Med 2015; 4: 1214-1223 [PMID: 26044168 DOI: 10.1002/cam4.476]

95. Hatooka M, Kawaoka T, Aikata H, Morio K, Kobayashi T, Hirama M, Aikata H, Morio K, Waki K, Honda Y, Mori N, Takaki S, Tsuji K, Kohno H, Mori T, Nonaka M, Hyogo H, Asaike Y, Chayama K. Comparison of Outcome of Hepatic Arterial Infusion Chemotherapy and Sorafenib in Patients with Hepatocellular Carcinoma Refractory to Transarterial Chemoembolization. Anticancer Res 2016; 36: 3523-3529 [PMID: 27354618]

96. Terashima T, Yamashita T, Arai K, Kobaguchi K, Kitamura K, Yamashita T, Sakai Y, Mizukishi E, Honda M, Kaneko S. Beneficial Effect of Maintaining Hepatic Reserve during Chemotherapy on the Outcomes of Patients with Hepatocellular Carcinoma. Liver Cancer 2017; 6: 236-249 [PMID: 28626734 DOI: 10.1159/000472262]

97. Terashima T, Yamashita T, Arai K, Kobaguchi K, Kitamura K, Yamashita T, Sakai Y, Mizukishi E, Honda M, Kaneko S. Response to chemotheraphy improves hepatic reserve for patients with hepatocellular carcinoma and Child-Pugh B cirrhosis. Cancer Sci 2016; 107: 1263-1269 [PMID: 27315783 DOI: 10.1111/cas.12992]

98. Shiba S, Okusaka T, Ikeda M, Saito H, Ichida T. Characteristics of 18 patients with hepatocellular carcinoma who obtained a complete response after treatment with sorafenib. Hepatol Res 2014; 44: 1268-1276 [PMID: 24405604 DOI: 10.1111/hepr.12297]

99. Yamashita T, Sakai K. Hepatic arterial infusion chemotherapy for advanced hepatocellular carcinoma and future treatments for the poor responders. Hepatol Res 2012; 42: 340-348 [PMID: 22151009 DOI: 10.1111/j.1877-0530.2011.00938.x]

100. Miyaki D, Aikata H, Kan H, Fujino H, Urabe A, Masaki K, Fukuraha T, Kobayashi T, Naoshiro N, Katakara K, Kobayashi T, Hirama M, Takakushi S, Ishikawa M, Kikaiwa H, Aoi K, Chayama K. Clinical outcome of sorafenib treatment in patients with advanced hepatocellular carcinoma refractory to hepatic arterial infusion chemotherapy. J Gastroenterol Hepatol 2013; 28:
Saeki I et al. Strategies for treating advanced HCC

1834-1841 [PMID: 23808713 DOI: 10.1111/jgh.12311]
80 Yamasaki T, Terai S, Sakaida I. Deferoxamine for advanced hepatocellular carcinoma. N Engl J Med 2011; 365: 576-578 [PMID: 21830988 DOI: 10.1056/NEJMc1105726]
81 Yamasaki T, Saeki I, Sakaida I. Efficacy of iron chelator deferoxamine for hepatic arterial infusion chemotherapy in advanced hepatocellular carcinoma patients refractory to current treatments. Hepatol Int 2014; 8 Suppl 2: 492-498 [PMID: 26201330 DOI: 10.1007/s12072-013-9515-3]
82 Kudo M. Immune Checkpoint Inhibition in Hepatocellular Carcinoma: Basics and Ongoing Clinical Trials. Oncology 2017; 92 Suppl 1: 50-62 [PMID: 28147363 DOI: 10.1159/000451016]
83 El-Khoueiry AB, Sangro B, Yau T, Crocenzi TS, Kudo M, Hsu C, Kim TY, Choo SP, Trojan J, Welling TH Rd, Meyer T, Kang YK, Yeo W, Chopra A, Anderson J, Dela Cruz C, Lang L, Neely J, Tang H, Dastani HB, Melero I. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 2017; 389: 2492-2502 [PMID: 28434648 DOI: 10.1016/S0140-6736(17)31046-2]

P- Reviewer: Hashimoto N, Roohvand F, Streba CT S- Editor: Ji FF L- Editor: A E- Editor: Tan WW
