Nanoscale mechanism of UO$_2$ formation through uranium reduction by magnetite

Zezhen Pan1, Barbora Bártová1,2, Thomas LaGrange3, Sergei M. Butorin4, Neil C. Hyatt5, Martin C. Stennett5, Kristina O. Kvashnina6,7 & Rizlan Bernier-Latmani1

Uranium (U) is a ubiquitous element in the Earth’s crust at ~2 ppm. In anoxic environments, soluble hexavalent uranium (U(VI)) is reduced and immobilized. The underlying reduction mechanism is unknown but likely of critical importance to explain the geochemical behavior of U. Here, we tackle the mechanism of reduction of U(VI) by the mixed-valence iron oxide, magnetite. Through high-end spectroscopic and microscopic tools, we demonstrate that the reduction proceeds first through surface-associated U(VI) to form pentavalent U, U(V). U(V) persists on the surface of magnetite and is further reduced to tetravalent UO$_2$ as nanocrystals (~1–2 nm) with random orientations inside nanowires. Through nanoparticle re-orientation and coalescence, the nanowires collapse into ordered UO$_2$ nanoclusters. This work provides evidence for a transient U nanowire structure that may have implications for uranium isotope fractionation as well as for the molecular-scale understanding of nuclear waste temporal evolution and the reductive remediation of uranium contamination.
Redox transformations from soluble uranium (U) hexavalent species (U(VI)) to insoluble tetravalent species (U(IV)) largely constrain uranium biogeochemical behavior. This redox reaction occurs in the remediation of soils and sediments where biologically generated minerals may immobilize contaminant U(VI) as U(IV), as well as in palaeo-redox studies where the isotopic signature of uranium reduction may be used to indicate the presence of O₂ in the geological record.2,7 Redox-active minerals, including Fe(II)- or sulphide-bearing minerals such as pyrite, mackinawite, magnetite, green rust, and Fe(II)-containing clays1,2,5–16 are responsible for U(VI) reduction in ore deposits, anoxic aquifers, and marine sediments. Iron(II)-bearing minerals have gained attention also due to their importance in nuclear waste disposal where steel corrosion products may include magnetite (Fe₃O₄)1,2,17–19.

The molecular mechanism of U(VI) abiotic reduction by Fe(II)-bearing reducing agents, the electron transfer to U(VI), and the subsequent precipitation of U(IV) oxide have not been fully unraveled. Generally, studies to date have suggested that the reduction process consists of U(VI) adsorption followed by electron transfer by structural, adsorbed, or aqueous Fe(II) to result in the formation of U(IV)3,18,20. The reaction pathway and kinetics are controlled mainly by aqueous geochemistry conditions12,21,22 and mineral characteristics, such as the availability of Fe(II) in either solid structures or aqueous phase1,10,11,18. Most laboratory studies report the final reduced product as U(IV), occurring as nanoparticulate uraninite (UO₂)₃,9–12,18. Meanwhile, others have observed the formation of non-uraninite U(IV)8,22, or monomeric U(IV) species due to the presence of ligands or biomass that preclude the precipitation of UO₂3,23. Moreover, contradictory morphologies have been suggested, including the formation of a coating of UO₂ on the surface of mackinawite23, or individual UO₂ nanoparticles associated with the edge of green rust particles9 and large magnetite crystals12, as well as stand-alone aggregates away from the magnetite surface11,22. Thus, a molecular-scale view of the process of formation of uraninite and its crystal growth process is still lacking.

The presence of pentavalent U (U(V)) as an intermediate valence state, has been demonstrated in laboratory experiments24–26, and its importance as a long-lasting intermediate in the reductive process is starting to be recognized. However, uncertainty about its presence and of its role in reduction pathways involving iron oxides remains. The reduction of U(VI) to U(IV) can occur via (a) two single-electron transfer steps, from U(VI) to U(V), and U(V) to U(IV), or (b) from U(VI) to U(IV) followed by disproportionation of two U(V) to U(IV) and U(VI)22,27–29. Theoretical calculations reported the reduction from U(VI) to U(IV) by aqueous Fe(II) to be facile29 and demonstrated that the incorporation of U in solid phases widens the stability field of U(V) species in the reduction by magnetite16. U(V) incorporation into iron oxide phases has been described experimentally in several scenarios. First, through the reduction of U(VI)-incorporated hematite by aqueous Fe(II)30 or during the Fe(II)-induced transformation of iron oxides, from ferrihydrite to goethite or magnetite21,31,32. Second, it is well established that during the coprecipitation of U and magnetite, U(V) is incorporated into the iron oxides and persists for up to a year33. Third, the presence of U(V) has been detailed when U(VI) was reduced by pre-formed magnetite at relatively low pH values (<5) at which dissolution and recrystallization of iron oxides occur16,26,34. However, under neutral pH conditions, which is the more likely scenario in reducing soils and sediments, a single study showed the presence of U₃O₈ (harboring U(V) and U(VI)35) with X-ray photoelectron spectroscopy (XPS)19. In contrast, most other studies did not show direct evidence of U(V) on the pre-formed magnetite surface11,22.

In iron oxides is considered to hold a uranate(V) structure because the first shell U–O bond distances are ~2.0–2.1 Å33,36, as opposed to a uranyl(V) structure, which has short U–O trans-dioxo bonds (1.9 Å) and longer equatorial bonds (2.50 Å)37.

Thus, while U(VI) reduction by minerals has been studied for decades, the molecular mechanism of formation of uraninite is mostly unknown. The role of U(V), the transfer of electrons to U from the mineral surface, and the formation of UO₂ are all poorly constrained. Furthermore, under some conditions, abiotic U(VI) reduction shows an isoconcentration fractionation behavior deviating from equilibrium38,39. Depending on the reducing agent and on the chemical conditions, the isotopic fractionation magnitude and direction appear to vary38,39. The mechanism by which this purported kinetic isotope fractionation occurs remains unknown. Clearly, a thorough understanding of the underlying mechanism of U(VI) reduction along with the identification of intermediate species formed would allow a better interpretation of the isotope fractionation behavior. Overall, an understanding of the mechanistic underpinnings of U reduction is essential in better constraining predictions and explanations of its occurrence in the fields of nuclear waste disposal, remediation, and palaeo-redox reconstructions.

In addition to synchrontron-based techniques and XPS as tools to probe valence states, we introduce an additional tool, electron energy-loss spectroscopy (EELS), which has been used to unravel the 5f occupancy of actinides at the micro- and nanoscale40–42. Correlations between M₄ and M₅, or N₄ and N₅ edge intensity ratios and the number of 5f electrons have been demonstrated for actinide elements40,43. For U species, the branching ratio, defined as the ratio of the M₄ edge intensity to the sum of the intensities of the M₄ and M₅ edges in EELS spectra, increases with electron occupancy of the 5f orbital, that is, the occupancy of 0 for U(VI), 1 for U(V), and 2 for U(IV)40,44. This relationship provides the opportunity to spatially determine the U valence state for heterogeneous samples using nanoscale electron spectroscopy in the transmission electron microscope.

In the present study, we select to work with magnetite nanoparticles and examine the reduction mechanism and morphology of uranium species at neutral pH values. U(VI) is observed to be reduced gradually to a U(V)/U(IV) mixture, which remains for an extended period before complete reduction to U(IV). We discover that the reduction starts with the formation of nanocrystals (1–2 nm diameter) on and around magnetite nanoparticles, followed by their self-assembly into nanowires. The nanowires extend and form a network structure which persists for weeks but eventually disappear with only uraninite nanoclusters remaining. The experimental findings for this system help to expand our understanding of iron–uranium redox chemistry and the stability and bioavailability of uranium species in natural and engineered environments. Additionally, by considering the reductive mineralization of U at the near-atomic scale, this work opens the field to further studies of reduction-induced crystallization at the mineral–water interface.

Results

Bulk characterization of reduction products. Upon amendment of U(VI) to the magnetite suspension, rapid U(VI) adsorption was observed as evidenced by the precipitous decrease in aqueous uranium concentration such that only 1.7% of the initial U(VI) remains in the aqueous phase after 10 min (Supplementary Fig. 1). We applied an extraction with 100 mM bicarbonate, which complexes adsorbed U(VI) surface species while it does not target U(IV)45. The extraction suggests that reduction was much slower than adsorption, as exemplified by the slow decrease in the amount of U extracted with the bicarbonate solution (Supplementary Fig. 1). The U M₄ edge high-energy-resolution
fluorescence detection X-ray absorption near-edge structure spectroscopy (HERFD-XANES) spectra (collected with an X-ray emission spectrometer) obtained from solid-phase samples collected at 4, 8, 12, and 16 h show a shift in the energy position of the absorption edge with time (Fig. 1a), indicating the progressive reduction of U. Furthermore, the two post-edge features characteristic of uranyl(VI) (at 3728.6 and 3732.1 eV), gradually decrease in intensity over time (Fig. 1a). Concomitantly, a shoulder appears in the sample spectra, corresponding to the U (IV) white line position (at 3,725.2 eV, dashed line a), suggesting the reduction of U(VI) to U(IV). This shoulder feature in the spectra is consistent with the U L3 edge extended X-ray absorption fine structure (EXAFS) spectroscopy measurement showing the formation of U(IV) crystalline species over time (Supplementary Fig. 2). More importantly, because of its exquisite energy resolution, the M4 edge HERFD-XANES technique makes it possible to identify the U(V) valence in a mixture of uranium valence states. Spectra of samples acquired with M4 edge HERFD-XANES were interpreted by iterative-target transformation factor analysis (ITFA) to quantify the contribution of the three different U valence states (Supplementary Fig. 3). The result suggests the initial reduction of U(VI) to U(V), the appearance of U(IV) at 8 h and the persistence of a U(VI)/U(V)/U(IV) mixture until 16 h (Fig. 1b). The U(IV) component increases from 8% to 52% within 16 h, while U(IV) increases from 0 to 24% in the same period. Our observations with M4 edge HERFD-XANES reveal the clear presence of U(V) as a dominant reduction product and evidence of the persistence of U(V) species under neutral pH conditions (Fig. 1b).

We also applied L3 edge HERFD-XANES to confirm the reduction from the mixed-valence (U(VI)/U(V)/U(IV)) to U(IV) for samples equilibrated longer than 24 h. Considering the first derivative of each HERFD-XANES spectrum, we observed a shift of the position of the inflection point to progressively lower energies for 24, 48, 96 h, and 4 weeks of equilibration (Supplementary Fig. 4b). The 4-week sample has the same energy position as a non-crystalline U(IV) sample. Thus, we conclude that the L3 edge EXAFS and L3 edge HERFD-XANES measurements are consistent with the M4 edge XANES results, and both indicate slow reduction from U(VI) to U(IV) via the formation of an intermediate oxidation state (based on the M4 edge data).

The dissolution and recrystallization of iron oxides at lower pH conditions or Fe(II)-induced U(VI) reduction during the iron oxide transformation process can result in the incorporation of U(V) species into the near-surface solid structure, as uranate(V) species. The L3 edge HERFD-XANES spectrum of a U(V) reference consisting of uranate(V) incorporated into the magnetite structure exhibits a broad feature in the white line region (Supplementary Fig. 4), which was also observed in previous studies. This feature is absent in the time course samples, indicating that U(V) detected here is not likely to be incorporated inside the crystal structure of magnetite. In the M4 edge HERFD-XANES measurement, uranyl(V) species usually exhibit two post-edge features 1.4 and 3.6 eV from the white line peak (indicated by dashed line b), which represent the short trans-dioxo and equatorial U-O bonds. The L3 edge XANES spectra of uranyl(V)-carbonate complex also exhibits two post-edge peaks. These small peaks were observed neither in the M4 nor in the L3 edge XANES spectra of any of the samples considered, suggesting that uranyl(V) is not the dominant U(V) species. Thus, combining results from the M4 edge and the L3 edge HERFD-XANES, we conclude that U(V) is neither incorporated into the magnetite structure, nor is it a surface uranyl(V). We hypothesize that the species represents a non-uranyl(V) surface species but determining the exact speciation is challenging, and beyond the scope of this work.

Nanoscale morphology and mineralogy. To monitor the morphology of reduced U species and identify the localization of U(V) species, we imaged the reduction process at the nanoscale by Scanning Transmission Electron Microscopy (STEM). Additionally, we probed the mineralogy of the U-bearing precipitates by applying fast Fourier transform (FFT) analysis to atomically resolved High-Angle Annular Dark-field STEM (HAADF-STEM) images from samples incubated for 4, 24, 72 h, 5 days, and 4 weeks, and selected-area electron diffraction (SAED) at 72 h. We used the magnetite phase as an internal calibration for precise lattice parameter determination (details of the FFT and SAED data analysis are described in “Method” section and Supplementary Note 1).

After 4 h of reaction, no distinct reduction products were observed. Low- and high-magnification HAADF-STEM images...
only a UO$_2$ phase (fcc crystal structure, space group 225 and $a = 0.541$ nm) was present in the nanowires (Fig. 3). The diffraction patterns of other possible UO$_{2+x}$ phases, such as U$_3$O$_8$ or U$_4$O$_9$, both of which include U(V), do not fit the experimental data. In those early stages of growth, we also observed that nanoparticles of uranium oxides might exhibit epitaxial growth on the magnetite surface at some locations (Fig. 3). The accumulation of U atoms occurred along planes in the same orientations as lattice planes of the magnetite nanoparticle, exhibiting similar d-spacing. This crystallographic correspondence suggests the growth of nanocrystalline uraninite on specific facets of the magnetite about directions that minimize the lattice mismatch (Fig. 2e).

Images obtained from the 24-h (Fig. 2g–i) and especially the 72-h samples (Fig. 4a, b) reveal the presence of bundles of nanowires, which in comparison to the ones observed for the 12-h, show substantial elongation and increase in numbers. The nanowires were confirmed as solid-phase U precipitates by energy-dispersive X-ray spectroscopy EDS (Fig. 2i). Observed nanowires are mostly 5–10 nm wide but can be tens or hundreds of nanometers in length, possibly depending on their stage of formation. More examples of the presence of bundles of nanowires are included in Figs. 5 and 6; Supplementary Fig. 6.

High-magnification imaging revealed that nanowires were composed of strings of nanoparticles, some of which consisted of individual bright spots (e.g., Fig. 4b). The bright spots are columns of U atoms in the uranium oxide nanoparticles, which appear well-oriented about low-index crystallographic directions (Fig. 4b; Supplementary Fig. 5d, e). For the 24-h sample, we identified at least two low-index zone axes as [011] and [001] in a relatively thin and short nanowire by simulation with Vesta50 (Fig. 2g). While the nanoparticles within the nanowires exhibited average sizes well under 5 nm up until 72 h, at that point in the reaction and beyond, single crystals of larger size (\geq5 nm) were identified (Supplementary Fig. 5d, e), suggesting the possible crystallization of uranium oxides. FFT analysis of the nanowire bunches at both 24 (Fig. 5a, b) and 72 h (Figs. 4b and 5c, d) evidenced a ring-like pattern containing spatial frequencies (lattice d-spacings) that confirmed the UO$_2$ assignment obtained for the 4-h sample, with lattice d-spacings variations within the measurement deviation (Supplementary Table 2). The associated error was within the allowance and compared well with the SAED measurements of the nanowires, which were used to validate the FFT analysis (Supplementary Note 1). The ring-like pattern also supports the presence of multiple orientations of UO$_2$ nanoparticles in nanowires. The 72-h sample was selected for analysis by SAED because of the abundance of nanowires sufficiently distant...
Nanoclusters formed by similar size nanoparticles with FFT that starts to misorientation between the nanoparticles. The streaks in FFT show slight orientation (in this case, the [011] zone axis). The streaks in FFT show slight misorientation between the nanoparticles.

After 72 h of incubation, a second morphology emerges at the expense of the nanowires: it consists of phase-bright nanoclusters covering magnetite particles and becoming the dominant morphology in the 5-day and 4-week incubations. Here, we refer to the bright, contrasted cluster of UO2 nanoparticles in the 5-day sample; and a connected nanocluster, respectively. This particular morphology suggests that the nanowires collapse into the nanocluster. Nanoclusters formed by larger nanoparticles, with FFT that reveals all particles have the same orientation (in this case, the [011] zone axis). The streaks in FFT show slight misorientation between the nanoparticles.

From magnetite particles to preclude interference. The complete ring pattern from the SAED measurement further confirms the crystal structure as UO2, as it matched neither U3O8 nor UO3 (Supplementary Figs. 7, 8 and Supplementary Note 1). After 72 h of incubation, a second morphology emerges at the expense of the nanowires: it consists of phase-bright nanoclusters covering magnetite particles and becoming the dominant morphology in the 5-day and 4-week incubations. Here, we refer to the bright, contrasted cluster of UO2 nanoparticles in the HAADF-STEM images as phase-bright nanoclusters (pointed out by orange arrows in Fig. 4). At those time points, much less uranium is associated with the magnetite surface relative to the early stages of the reduction, and the morphology of the uranium oxide phases shifts further away from nanowires and more towards nanoclusters. Furthermore, in the 5-day matrix, the phase-bright nanoclusters include nanoparticles that are larger and that appear to exhibit more preferred orientations along low-index zone axes (Fig. 4c, d) than those associated with nanowires at 72 h. This trend is evidenced by comparing the FFT pattern for the 72-h nanowires and the 5-day nanoclusters: the 72-h ring pattern suggests the presence of nanoparticles in many different orientations, whereas the 5-day FFT shows streaks. The pattern, between ring and spot pattern, underscores the fact that the nanoparticles start to take preferential orientation at 5 days comparing to 72 h. Furthermore, in the 4-week sample, the observed phase-bright nanoclusters form a streak-spot like pattern, suggesting that a specific orientation of nanoparticles is achieved at this stage. FFT analysis concludes that the observed low-index zone axes (ZA) in Fig. 4f is [011]. Observed nanoparticles in each nanocluster of the 4-week sample have the same orientation with low-index zone axes (Fig. 5e, f). Small misorientation between nanoparticles was still present in the 4-week sample, resulting in a streak-spot-like pattern instead of a perfect spot pattern. Thus, from 72 h to 4 weeks, the nanoparticles in the nanowires grow, and the nanowires progressively collapse to form nanoclusters of oriented UO2 nanoparticles. The collapse of nanowires into nanoclusters is observable starting at 72 h and for longer incubation periods. At 5 days, nanowires appear to be connected to a nanocluster, suggesting the collapse of the former into the latter (Fig. 4d).

Overall, the direct imaging of the lattice structure combined with FFT image analysis at different stages of the reduction (Fig. 5) as well as SAED analysis (Supplementary Figs. 7 and 8) led to the conclusion that the predominant phase formed in nanowires and in phase-bright nanoclusters is uraninite (UO2) with a U(VI) valence state, ruling out the possibility of mixed U valence states in the nanowires. The appearance of nanoparticles identified as uraninite and their increased abundance corroborate the XANES- and EXAFS-derived conclusions.

An identical-location TEM (IL-TEM) experiment was performed to monitor the reduction process in the same sample over time. This technique allows the repeated probing of specific locations on a grid and thus, the imaging of reaction products as a function of time. Magnetite nanoparticles were deposited on a TEM grid (Fig. 6a), which was immersed into a U(VI) solution to initiate the reduction. After 18 h of incubation, uraninite nanowires were observed at the very location that was imaged before uranium amendment (Fig. 6b). The nanowires formed a network that was morphologically distinct from the magnetite aggregates (Fig. 6c). The TEM grid was immersed once more into the U(VI) solution, and after another 47 h (thus, after a total of 65 h of reaction), the same area was imaged. The nanowires extended further to connect one end of the magnetite agglomerate to the other, forming a bridge (Fig. 6d, e). The rate of nanowire formation and their abundance differed from those observed in batch experiments, likely due to the change in the Fe:U ratio. Nonetheless, through this quasi in situ method, the formation of nanowires and their significant growth during the reduction process was captured, providing strong support for nanowire formation as a result of U reduction by magnetite.

It is intriguing that the specific morphology of uraninite reported here has not been previously observed in the magnetite system, despite a number of studies on the topic. We attribute this discrepancy to the variability in reduction kinetics. Depending on the aqueous composition (pH, carbonate), the reaction conditions (e.g., ratio of U to Fe), and the reactivity of the magnetite surface, the extent and the rate of reduction can vary significantly, varying from 1 day to 10 days of contact time to reach full reduction. A yield of 50 to 100% U(IV) was observed after 1 d of contact time with magnetite in studies with the pH varied between 5 and 10.11,19,34 In contrast, depending on both the bicarbonate concentration (0 or 2 mM HCO3-) and the U:Fe ratio, the complete reduction was obtained within 1.6 to 5 days in the study in which similar uraninite clusters were observed previously.22 In the experiments reported here, the Fe(II)/Fe(III) ratio in the magnetite was determined to be ~0.51, which is the expected stoichiometry. Moreover, the presence of nanowires during the reduction at pH 6.2 and 8 (control 5) also suggests that the formation of nanowires occurs more generally, under varied aqueous chemistry conditions (Supplementary Fig. 6). Overall,
slow reduction kinetics in the current study were crucial to allow imaging of the transient formation of these structures as well as capturing the intermediate U(V) species. Additionally, the nanowires were readily observable due to the spatial resolution and magnification afforded by Cs-corrected microscopy and to the temporal characterization of the UO₂ morphology. In an effort to determine whether such structures could have been observed in previous studies, we scoured seventeen manuscripts considering U(VI) heterogeneous reduction by Fe(II)-containing minerals¹⁻³,⁸⁻¹⁵,¹⁸,¹⁹,²²,²⁵,²⁶,³⁴. Of those, only six used electron microscopy to consider the product of the reduction¹,²,⁹,¹⁴,²²,²⁶. Of those, only one²² imaged the temporal progression in morphology. However, for that study, the reduction rate was likely faster than in our work, due to a lower U:Fe ratio. In summary, we attribute the novel observation of UO₂ nanowires reported here to experimental factors, chief among which are the kinetics of U(VI) reduction and the systematic temporal characterization of the U(IV) product.

Thus, the major contribution of this work is to have captured the intermediate steps in UO₂ formation, while reaching the same endpoints as others²². The formation of U(IV) nanowires has been previously reported when glutathione was used to reduce U (VI)⁵¹ as organic molecules could serve as a template for the support/organization of the nanowires in that case. However, in the present system, piperazine-N,N′-bis(2-ethanesulfonic) acid (PIPES) was the only organic molecule present, and its role in contributing to the formation of nanowires structure has been ruled out by including a control experiment lacking PIPES (Supplementary Fig. 6c).

Fig. 5 Scanning transmission electron micrographs of U-magnetite samples. a, b 24-h, c, d 72-h, and e, f 4-week samples and the corresponding FFT acquired from the white square box in each panel (high-angle annular dark-field scanning transmission electron microscopy image scale bar = 10 nm). Panels a1, b1, c1 and d1 show radial distribution profiles⁷³ of the region delineated by white squares in a–d, to confirm the assignment to UO₂. Black spectra represent the acquired radial distribution profiles; the green profiles are background-subtracted while the blue ones are fitted by Gatan DigitalMicroGraph® software (green and blue profiles are very similar and can appear to be indistinguishable). The d-spacings obtained from the radial distribution profile were compared to those of a UO₂ standard in Supplementary Table 2. For the 4-week sample, e and f represent well-oriented bright phase nanoclusters that were composed of uraninite nanoparticles in the [001] and [011] zone axes. Panel d was also displayed in Fig. 4b.

Nanoscale valence state. We performed spatially resolved measurements of the U valence state in the various U-magnetite samples using TEM EELS (Supplementary Note 2). With a parallel probe of ~200 nm in diameter, we measured the integral intensity of the M₄ and M₅ edges for uranium and calculated the ratio of their edge intensities, referred to as the branching ratio, which varies according to the valence.⁴⁴,⁵² The experimental parameters and electron dose can influence the branching ratio, and we used uranium oxide standards of known valence to calibrate the branching ratio and to determine the influence of the electron dose. Electron beam-induced reduction was significantly

Fig. 5: Scanning transmission electron micrographs of U-magnetite samples. a, b 24-h, c, d 72-h, and e, f 4-week samples and the corresponding FFT acquired from the white square box in each panel (high-angle annular dark-field scanning transmission electron microscopy image scale bar = 10 nm). Panels a1, b1, c1 and d1 show radial distribution profiles of the region delineated by white squares in a–d, to confirm the assignment to UO₂. Black spectra represent the acquired radial distribution profiles; the green profiles are background-subtracted while the blue ones are fitted by Gatan DigitalMicroGraph® software (green and blue profiles are very similar and can appear to be indistinguishable). The d-spacings obtained from the radial distribution profile were compared to those of a UO₂ standard in Supplementary Table 2. For the 4-week sample, e and f represent well-oriented bright phase nanoclusters that were composed of uraninite nanoparticles in the [001] and [011] zone axes. Panel d was also displayed in Fig. 4b.
suppressed at liquid-nitrogen sample temperatures. We observed a decreasing trend of branching ratios for the set of standards, uraninite for U(IV), UMoO$_5$ for U(V) and UO$_3$ for U(VI), from 0.6956, 0.6887 to 0.6640 (median values from 10–13 measurements), providing a reliable reference set to resolve U valence states (Fig. 7; Supplementary Table 3). In a previous study, branching ratios for U(VI) and U(IV) were reported to be 0.633 ± 0.0180 and 0.708 ± 0.011 with mixed-valence states oxides exhibiting ratios in between those values. The smaller range of branching ratios in our study may result from the higher electron doses required to study the lower sample volume of nanowires and to obtain the EELS signal to noise ratio necessary for branching ratio calculation. A detailed discussion of the measurement procedures is provided in Supplementary Note 2.

EELS spectra of U species either associated with nanowires or located on the magnetite surface were measured to obtain the corresponding branching ratios (Supplementary Fig. 9). For the 24-h sample, regions comprised mainly of nanowire bundles were measured, and the obtained branching ratio of 0.7005 agrees well with the U(IV) uraninite reference, confirming that uranium in the nanowires is fully reduced. For regions that mostly comprised adsorbed U complexes on magnetite nanoparticles, the obtained branching ratio was 0.6768. This suggests a valence state between U(VI) and U(IV). There are two possible interpretations of this result. One is that it was challenging to isolate magnetite spatially from the nanowires, and thus the signal reported here could include a U(IV) contribution from the nanowires. The second is that U(V) is the dominant species on the surface, along with contributions from U(VI). To prove our hypothesis that both U(VI) and U(V) are present on the magnetite surface, we also collected EELS spectra on a 4-h sample, which being in the early stages of the reaction, contained no or few nanowires. In this sample, the branching ratio obtained from the magnetite surface was 0.6730, slightly lower than that of the 24-h sample, suggesting a lesser contribution from reduced U species, so a higher fraction of U(VI). This finding supports but does not prove the persistence of U(V) on the magnetite surface.

Fortunately, two more pieces of information are available. The M$_4$ edge HERFD-XANES measurements show the persistence of U(V) at 16 h, and presumably also at 24 h (based on L$_3$ edge HERFD-XANES) and the EELS data for nanowires at 24 h rule out the presence of U(V) in those structures. Thus, the only parsimonious explanation for the persistence of U(V) in the 24-h sample is that it is associated with the magnetite surface.

Discussion

The combination of bulk and nanoscale techniques in this study provided sufficient information to propose a conceptual mechanistic model that includes valence state and morphological transitions for U(VI) reduction by magnetite (Fig. 8). U(VI) adsorbed on the magnetite surface is reduced to U(V), and progressively to U(IV), which forms dispersed uraninite nanoparticles. The formation of uraninite nanoparticles from soluble species in the aqueous phase cannot be excluded, as the location of uraninite formation could not be directly ascertained from static TEM images. However, based on wet chemistry analyses, the concentration of aqueous U was <1% of the total U after 1 h and 0.5% after 12 h, suggesting that the vast majority of U was associated with the solid phase (through adsorption and reduction). Consequently, the dominant process is heterogeneous reduction, and U(IV) formation most likely occurred at the magnetite surface. We attribute the lack of attachment of individual UO$_2$ particles to the magnetite surface to electrostatic repulsion between the negatively charged uraninite nanoparticles (pHPzc value close to pH 6) and the either negatively or close to neutrally charged magnetite surface (pHPzc value around 6.9; in the current study at pH values of 7 and 8 (Supplementary Fig. 10)). This repulsion is also expected between the close to neutrally charged uraninite nanoparticles and the slightly positively-charged magnetite surface at a pH value of 6.2, condition at which nanowire formation was also observed (Supplementary Fig. 6e, f). Instead of associating with the magnetite...
surface, nanometer-sized U nanoparticles are attracted by van der Waals forces to reduce the surface energy and self-assemble into nanowires. Previous work with hematite nanoparticles indicates that when nanoparticles are very small, van der Waals attraction force can pull particles/small nanoclusters together to form larger aggregates.

The spontaneous self-assembly of U nanoparticles into nanowires that persist for days but ultimately collapse to form phase-bright nanoclusters remains unexplained. The looming questions are, why do nanowires form, and why do they fall apart? The nanowires typically are ~5–10 nm in diameter, ~2–5 uraninite nanoparticles wide, and grow outwards from the magnetite surface. As discussed above, some epitaxial growth of uraninite nanoparticles on the magnetite surface is observable (Fig. 3). We propose that these nanoparticles serve as anchors for the nanowires that grow outwards, away from magnetite, through the spontaneous aggregation of uraninite nanoparticles wide, and grow outwards from the magnetite surface. As discussed above, some epitaxial growth of uraninite nanoparticles on the magnetite surface is observable (Fig. 3). We propose that these nanoparticles serve as anchors for the nanowires that grow outwards, away from magnetite, through the attachment of free-floating UO₂ nanoparticles repulsed from the magnetite surface by electrostatic forces. Individual nanoparticles in the nanowires exhibit multiple orientations but with predominantly low-index zone axes. Thus, we propose that the nanowire assembly may be the result of crystallization by particle attachment (CPA) where van der Waals forces attract UO₂ nanoparticles. Thus, uraninite nanoparticles attach to growing nanowires while adsorbed U(VI)/U(V) continues to be reduced to U(IV) oxides and further precipitated uraninite contributes to the growth/extension of nanowires. Individual nanowires connect to others forming bundles and eventually a network of uraninite nanowires.

Oriented attachment (OA), and nearly oriented attachment are potential CPA pathways. Study of the aggregation/attachment behavior of Fe oxide, Ti oxide, and Au nanoparticles during crystal growth has revealed that either OA or aggregation followed by coalescence occurred and resulted in bulk crystals. Furthermore, iron oxides in natural samples were shown to form ordered nanoparticle chains via OA, as an example of aggregation-based crystal growth. Such OA requires particle rotation to achieve the correct alignment, as was demonstrated in an in situ TEM experiment of free-floating ferrihydrite nanoparticles. Oriented attachment of nanoparticles has also been invoked in the growth of uraninite crystals during biotic reduction of U(VI) by Shewanella putrefaciens CN32 and Desulfitobacterium spp. Despite no nanowire morphology was observed. However, the static images in our study revealed random rather than ordered nanoparticle orientations in the nanowires. Perhaps association with a nanowire impedes nanoparticle rotation, hindering attachment-favorable particle-to-particle alignment. A similar explanation was proposed for the reported alignment about different zone axes of ferrihydrite nanoparticles trapped by other particles. The observation of several low-index zone axes for uraninite nanoparticle may either suggest a nearly OA pattern, or that the particle attachment is followed by coalescence among nanoparticles. Unfortunately, direct evidence for OA or nearly OA is lacking in this study, and future in situ TEM experiments are required to conclusively demonstrate this process.

In the transition from nanowires to phase-bright nanoclusters, the predominance of low-index zone axes remains while the nanoparticles coalesce, forming larger crystals and removing the voids in the nanowire structure. Coalescence between nanoparticles is usually driven by thermodynamics for surface energy reduction, which has been reported to occur for nanoparticles at room temperature. During coalescence, re-arrangement occurs on contact surfaces and nanoparticles reorganize into aligned planes to form larger particles with the same orientation. At 5 days, the transition is incomplete as UO₂ nanoparticles do not all have the same orientation, but at 4 weeks, the nanoclusters exhibit almost exclusively a single low-zone axis orientation (e.g., [011] ZA) and only uraninite nanoclusters (no nanowires) were observed, heralding the end of the reduction. The nanoclusters occur in association with magnetite (Fig. 4). Detached uraninite nanoclusters have been observed in a previous study where the authors proposed either the formation of UO₂ on the mineral surface followed by detachment or the formation of UO₂ in solution from aqueous U(V) or U(IV). With the additional insights brought by this study, we can now conclude the formation of UO₂ from surface-associated-U(V) reduction followed by the detachment of uraninite nanoparticles, the formation of nanowires, and their ultimate collapse into UO₂ nanoclusters.

The findings reported here of the transient valence state and nanowire structure significantly improve our understanding of molecular-scale mechanisms during U(VI)–magnetite interactions and advance our interpretation of the environmental behavior of U species. This detailed mechanistic understanding of the steps of formation of UO₂ at the magnetite surface can serve to refine the fate and transport models of uranium in the subsurface and to relate the isotopic fractionation behavior occurring at mineral–water interfaces to the underlying mechanistic details of reduction. More generally, the uranium-magnetite system represents an ideal model system to delineate the CPA pathway(s) in the heterogeneous reductive mineralization process.

Naturally, more remains to be investigated, particularly regarding the universality of this finding. Will other mineral surfaces, e.g., mackinawite, exhibit a similar mechanism?
nanowires also form during biotic U(VI) reduction? This possibility in biotic systems will require cryo-electron microscopy to unravel. Future in situ experiments with systematic observations of the crystallization process are required to decipher the pathways of CPA, e.g., the dynamic migration, orientation, and attachment of nanoparticles, in order to gain insight into crystal growth after nanoparticle formation at the mineral–water interface. Furthermore, the impact of the transient intermediate pentavalent valence state and the nanowire morphology on uranium isotope fractionation and other environmental behavior of U species opens novel avenues for the investigation of uranium uptake and mobility in biotic systems will require cryo-electron microscopy to preserve them for ICP-MS (Perkin-Elmer) analysis. A control experiment with no addition of nanoparticles, in order to gain insight into crystal growth after nanoparticle formation at the mineral–water interface. Furthermore, the impact of the transient intermediate pentavalent valence state and the nanowire morphology on uranium isotope fractionation and other environmental behavior of U species opens novel avenues for the investigation of uranium uptake and mobility in biotic systems will require cryo-electron microscopy to preserve them for ICP-MS (Perkin-Elmer) analysis. A control experiment with no addition of nanoparticles, in order to gain insight into crystal growth after nanoparticle formation at the mineral–water interface. Furthermore, the impact of the transient intermediate pentavalent valence state and the nanowire morphology on uranium isotope fractionation and other environmental behavior of U species opens novel avenues for the investigation of uranium uptake and mobility in biotic systems will require cryo-electron microscopy to preserve them for ICP-MS (Perkin-Elmer) analysis. A control experiment with no addition of nanoparticles, in order to gain insight into crystal growth after nanoparticle formation at the mineral–water interface. Furthermore, the impact of the transient intermediate pentavalent valence state and the nanowire morphology on uranium isotope fractionation and other environmental behavior of U species opens novel avenues for the investigation of uranium uptake and mobility in biotic systems will require cryo-electron microscopy to preserve them for ICP-MS (Perkin-Elmer) analysis. A control experiment with no addition of nanoparticles, in order to gain insight into crystal growth after nanoparticle formation at the mineral–water interface. Furthermore, the impact of the transient intermediate pentavalent valence state and the nanowire morphology on uranium isotope fractionation and other environmental behavior of U species opens novel avenues for the investigation of uranium uptake and mobility in biotic systems will require cryo-electron microscopy to preserve them for ICP-MS (Perkin-Elmer) analysis. A control experiment with no addition of nanoparticles, in order to gain insight into crystal growth after nanoparticle formation at the mineral–water interface. Furthermore, the impact of the transient intermediate pentavalent valence state and the nanowire morphology on uranium isotope fractionation and other environmental behavior of U species opens novel avenues for the investigation of uranium uptake and mobility in biotic systems will require cryo-electron microscopy to preserve them for ICP-MS (Perkin-Elmer) analysis. A control experiment with no addition of nanoparticles, in order to gain insight into crystal growth after nanoparticle formation at the mineral–water interface. Furthermore, the impact of the transient intermediate pentavalent valence state and the nanowire morphology on uranium isotope fractionation and other environmental behavior of U species opens novel avenues for the investigation of uranium uptake and mobility in biotic systems will require cryo-electron microscopy to preserve them for ICP-MS (Perkin-Elmer) analysis. A control experiment with no addition of nanoparticles, in order to gain insight into crystal growth after nanoparticle formation at the mineral–water interface. Furthermore, the impact of the transient intermediate pentavalent valence state and the nanowire morphology on uranium isotope fractionation and other environmental behavior of U species opens novel avenues for the investigation of uranium uptake and mobility in biotic systems will require cryo-electron microscopy to preserve them for ICP-MS (Perkin-Elmer) analysis. A control experiment with no addition of nanoparticles, in order to gain insight into crystal growth after nanoparticle formation at the mineral–water interface. Furthermore, the impact of the transient intermediate pentavalent valence state and the nanowire morphology on uranium isotope fractionation and other environmental behavior of U species opens novel avenues for the investigation of uranium uptake and mobility in biotic systems will require cryo-electron microscopy to preserve them for ICP-MS (Perkin-Elmer) analysis. A control experiment with no addition of nanoparticles, in order to gain insight into crystal growth after nanoparticle formation at the mineral–water interface. Furthermore, the impact of the transient intermediate pentavalent valence state and the nanowire morphology on uranium isotope fractionation and other environmental behavior of U species opens novel avenues for the investigation of uranium uptake and mobility in biotic systems will require cryo-electron microscopy to preserve them for ICP-MS (Perkin-Elmer) analysis. A control experiment with no addition of nanoparticles, in order to gain insight into crystal growth after nanoparticle formation at the mineral–water interface. Furthermore, the impact of the transient intermediate pentavalent valence state and the nanowire morphology on uranium isotope fractionation and other environmental behavior of U species opens novel avenues for the investigation of uranium uptake and mobility in biotic systems will require cryo-electron microscopy to preserve them for ICP-MS (Perkin-Elmer) analysis. A control experiment with no addition of nanoparticles, in order to gain insight into crystal growth after nanoparticle formation at the mineral–water interface. Furthermore, the impact of the transient intermediate pentavalent valence state and the nanowire morphology on uranium isotope fractionation and other environmental behavior of U species opens novel avenues for the investigation of uranium uptake and mobility in biotic systems will require cryo-electron microscopy to preserve them for ICP-MS (Perkin-Elmer) analysis. A control experiment with no addition of nanoparticles, in order to gain insight into crystal growth after nanoparticle formation at the mineral–water interface. Furthermore, the impact of the transient intermediate pentavalent valence state and the nanowire morphology on uranium isotope fractionation and other environmental behavior of U species opens novel avenues for the investigation of uranium uptake and mobility in biotic systems will require cryo-electron microscopy to preserve them for ICP-MS (Perkin-Elmer) analysis. A control experiment with no addition of nanoparticles, in order to gain insight into crystal growth after nanoparticle formation at the mineral–water interface. Furthermore, the impact of the transient intermediate pentavalent valence state and the nanowire morphology on uranium isotope fractionation and other environmental behavior of U species opens novel avenues for the investigation of uranium uptake and mobility in biotic systems will require cryo-electron microscopy to preserve them for ICP-MS (Perkin-Elmer) analysis. A control experiment with no addition of nanoparticles, in order to gain insight into crystal growth after nanoparticle formation at the mineral–water interface. Furthermore, the impact of the transient intermediate pentavalent valence state and the nanowire morphology on uranium isotope fractionation and other environmental behavior of U species opens novel avenues for the investigation of uranium uptake and mobility in biotic systems will require cryo-electron microscopy to preserve them for ICP-MS (Perkin-Elmer) analysis. A control experiment with no addition of nanoparticles, in order to gain insight into crystal growth after nanoparticle formation at the mineral–water interface. Furthermore, the impact of the transient intermediate pentavalent valence state and the nanowire morphology on uranium isotope fractionation and other environmental behavior of U species opens novel avenues for the investigation of uranium uptake and mobility in biotic systems will require cryo-electron microscopy to preserve them for ICP-MS (Perkin-Elmer) analysis. A control experiment with no addition of nanoparticles, in order to gain insight into crystal growth after nanoparticle formation at the mineral–water interface. Furthermore, the impact of the transient intermediate pentavalent valence state and the nanowire morphology on uranium isotope fractionation and other environmental behavior of U species opens novel avenues for the investigation of uranium uptake and mobility in biotic systems will require cryo-electron microscopy to preserve them for ICP-MS (Perkin-Elmer) analysis. A control experiment with no addition of nanoparticles, in order to gain insight into crystal growth after nanoparticle formation at the mineral–water interface. Furthermore, the impact of the transient intermediate pentavalent valence state and the nanowire morphology on uranium isotope fractionation and other environmental behavior of U species opens novel avenues for the investigation of uranium uptake and mobility in biotic systems will require cryo-electron microscopy to preserve them for ICP-MS (Perkin-Elmer) analysis. A control experiment with no addition of nanoparticles, in order to gain insight into crystal growth after nanoparticle formation at the mineral–water interface. Furthermore, the impact of the transient intermediate pentavalent valence state and the nanowire morphology on uranium isotope fractionation and other environmental behavior of U species opens novel avenues for the investigation of uranium uptake and mobility in biotic systems will require cryo-electron microscopy to preserve them for ICP-MS (Perkin-Elmer) analysis. A control experiment with no addition of nanoparticles, in order to gain insight into crystal growth after nanoparticle formation at the mineral–water interface. Furthermore, the impact of the transient intermediate pentavalent valence state and the nanowire morphology on uranium isotope fractionation and other environmental behavior of U species opens novel avenues for the investigation of uranium uptake and mobility in biotic systems will require cryo-electron microscopy to preserve them for ICP-MS (Perkin-Elmer) analysis. A control experiment with no addition of nanoparticles, in order to gain insight into crystal growth after nanoparticle formation at the mineral–water interface. Furthermore, the impact of the transient intermediate pentavalent valence state and the nanowire morphology on uranium isotope fractionation and other environmental behavior of U species opens novel avenues for the investigation of uranium uptake and mobility in biotic systems will require cryo-electron microscopy to preserve them for ICP-MS (Perkin-Elmer) analysis. A control experiment with no addition of nanoparticles, in order to gain insight into crystal growth after nanoparticle formation at the mineral–water interface. Furthermore, the impact of the transient intermediate pentavalent valence state and the nanowire morphology on uranium isotope fractionation and other environmental behavior of U species opens novel avenues for the investigation of uranium uptake and mobility in biotic systems will require cryo-electron microscopy to preserve them for ICP-MS (Perkin-Elmer) analysis. A control experiment with no addition of nanoparticles, in order to gain insight into crystal growth after nanoparticle formation at the mineral–water interface. Furthermore, the impact of the transient intermediate pentavalent valence state and the nanowire morphology on uranium isotope fractionation and other environmental behavior of U species opens novel avenues for the investigation of uranium uptake and mobility in biotic systems will require cryo-electron microscopy to preserve them for ICP-MS (Perkin-Elmer) analysis. A control experiment with no addition of nanoparticles, in order to gain insight into crystal growth after nanoparticle formation at the mineral–water interface. Furthermore, the impact of the transient intermediate pentavalent valence state and the nanowire morphology on uranium isotope fractionation and other environmental behavior of U species opens novel avenues for the investigation of uranium uptake and mobility in biotic systems will require cryo-electron microscopy to preserve them for ICP-MS (Perkin-Elmer) analysis. A control experiment with no addition of nanoparticles, in order to gain insight into crystal growth after nanoparticle formation at the mineral–water interface. Furthermore, the impact of the transient intermediate pentavalent valence state and the nanowire morphology on uranium isotope fractionation and other environmental behavior of U species opens novel avenues for the investigation of uranium uptake and mobility in biotic systems will require cryo-electron microscopy to preserve them for ICP-MS (Perkin-Elmer) analysis. A control experiment with no addition of nanoparticles, in order to gain insight into crystal growth after nanoparticle formation at the mineral–water interface. Furthermore, the impact of the transient intermediate pentavalent valence state and the nanowire morphology on uranium isotope fractionation and other environmental behavior of U species opens novel avenues for the investigation of uranium uptake and mobility in biotic systems will require cryo-electron microscopy to preserve them for ICP-MS (Perkin-Elmer) analysis. A control experiment with no addition of nanoparticles, in order to gain insight into crystal growth after nanoparticle formation at the mineral–water interface. Furthermore, the impact of the transient intermediate pentavalent valence state and the nanowire morphology on uranium isotope fractionation and other environmental behavior of U species opens novel avenues for the investigation of uranium uptake and mobility in biotic systems will require cryo-electron microscopy to preserve them for ICP-MS (Perkin-Elmer) analysis. A control experiment with no addition of nanoparticles, in order to gain insight into crystal growth after nanoparticle formation at the mineral–water interface. Furthermore, the impact of the transient intermediate pentavalent valence state and the nanowire morphology on uranium isotope fractionation and other environmental behavior of U species opens new...
Transmission electron microscopy. Synthetic magnetite and uranium associated with magnetite solids were separated from the aqueous phase by an Nd magnet followed by decantation of the liquid. Collected solids were dispersed into 70% ethanol solution and sealed in a serum bottle anoxic and sonicated for 5 min. A drop of the sonicated suspension was then deposited onto a ultra-thin carbon grid (Electron Microscopy Sciences CF200-CU; 200 nm square mesh; 3–4 nm carbon foil; copper grid; silicon free) and was immediately transferred into a vacuum desiccator for preservation before the measurement. The sample spent <2 min under ambient conditions. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images were collected on a double-corrected Titan 60–300 transmission electron microscope (Thermo-Fischer Scientific) operated at 300 keV with ~80 pA beam current. The same measurement conditions were applied to acquire images for control samples 1 through 4 as described later. Diffraction pattern analysis. Diffraction pattern analysis on single-crystal nanoparticle as well as concentration relationship simulations was done using IEMS software. Experimentally obtained Fast Fourier Transform (FFT) pattern of selected UO2 and Fe3O4 nanocrystals (Fig. 3) were indexed based on following crystal files UO2-1541665 and Fe3O4-9002316 from Crystallography Open Database. Other possible structures U2O3 and U3O8 were applied but not fitting with the experimental data. Ring FFT pattern from bunches of nanowires was analyzed using the radial distribution profile function in Gatan DigitalMicrograph® software. The radial distribution profile was plotted by a graphical program, and peaks were measured and compared with studied structures (Fig. S5).

Identification: TEM. A magnetite nanoparticle suspension (5 mM as Fe, equilibrated with 20 mM PIPES and 1 mM NaHCO3) was drop-casted on a customized chip patterned with a 50-nm-thick SiNx membrane electron-transparent window. The magnetite-deposited chip was then mounted into a holder inside an anoxic chamber and the system was transferred to a ThermoFisher Scientific Tecnai Osiris transmission electron microscope for imaging. High-angle annular dark-field STEM (HAADF-STEM) images of different magnetite clusters were acquired at 200 kV to observe the evolution in their structure. The same chip was retrieved and immersed into a U-containing solution (200 mM, equilibrated with 20 mM PIPES and 1 mM NaHCO3) to undergo reaction for 18 h. After 18 h, the chip was retrieved in the microscope to acquire HAADF images of the same magnetite cluster. The same procedure was followed for the 65 h time point.

All manipulations were performed in an anoxic chamber (O2 ≤ 0.1 ppm), and the membrane was sealed anoxically to be transferred between the anoxic chamber and the microscope. The loading procedure was kept short to minimize exposure of the chip to O2.

Sample preparation conditions for TEM control experiments. Several control samples were prepared to exclude the contribution of artifacts to the formation of nanowires. We considered the impact of using a magnet to separate magnetite from the suspension (control 1), the use of ethanol to disperse the sample before imaging (control 2), and the use of a PIPS buffer for the experiments (control 3). Additionally, we synthesized a separate batch of magnetite to ensure that the observations were reproducible (control 4). Two batches of adsorption-reaction experiments were performed at pH 6.2 and 8 to investigate the extent of nanowire formation at varied pH conditions (control 5). All samples were imaged and analyzed under the same conditions with double-aberration corrected Titan 60–300 as the samples presented elsewhere in this paper.

Control sample 1 (Cont 1): to rule out the impact of using an Nd magnet during the separation of U-associated magnetite from the suspension, the solid suspension was collected from the supernatant and was placed in an Eppendorf tube to enable nanoparticle settling. After removing the supernatant, the remaining solid phase was dispersed into 70% ethanol.

Control sample 2 (Cont 2): U-associated magnetite solids were dispersed into DI water to examine the impact of the solvent used for dispersion.

Control sample 3 (Cont 3): to check the possibility that the formation of nanowires might be due to the presence of PIPS buffer, a control experiment with no PIPS was performed, with the same loading of magnetite, uranyl chloride, and bicarbonate concentrations. The pH of the mixture was adjusted by the addition of 0.1 N HCl and 0.1 N NaOH.

Control sample 4 (Cont 4): a new batch of magnetite stock was produced to probe whether the formation of the nanowire structures was independent of the magnetite batch.

Control sample 5 (Cont 5): to investigate whether the formation of nanowires is related to a specific pH condition, a control experiment was performed with the pH value adjusted to 6.2 or 8, while maintaining the same magnetite loading, uranyl chloride, and bicarbonate concentrations. The pH of PIPS buffer was adjusted to control the pH of the reaction solutions.

Additiona...
20. Jeon, B. H., Dempsey, B. A., Burgos, W. D., Barnett, M. O. & Roden, E. E. Nature Communications 11:4001 (2020).
22. Latta, D. E., Mishra, B., Cook, R. E., Kemner, K. M. & Boyanov, M. I. Stable U.
24. Renshaw, J. C. et al. Bioreduction of uranium: environmental implications of a.
28. Kern, D. M. H. & Orlemann, E. F. The potential of the uranium (V), uranium.
32. Nico, P. S., Stewart, B. D. & Fendorf, S. Incorporation of oxidized uranium.
35. Kvashnina, K. O., Butorin, S. M., Martin, P. & Glatzel, P. Chemical state of.
36. Roberts, H. E. et al. Uranium(V) incorporation mechanisms and stability in Fe.
39. Brown, S. T., Basu, A., Ding, X., Christensen, J. N. & DePaolo, D. J. Uranium.
40. Tobin, J. G. et al. Competition between delocalization and spin-orbit splitting.
43. Finazzi, M. et al. X-ray magnetic circular dichroism at the U absorption edges.
44. Colella, M., Lumpkin, G. R., Zhang, Z., Buck, E. C. & Smith, K. L. Determination of the uranum valence state in the brannerite structure using EELS, XPS, and EDX. Phys. Chem. Miner. 32, 52–64 (2005).
45. Alessi, D. S. et al. Quantitative separation of monomeric U(VI) from UO2 in products of U(VI) reduction. Environ. Sci. Technol. 46, 6150–6157 (2012).
Acknowledgements
We thank Luca Loreggian at École Polytechnique Fédérale de Lausanne (EPFL) for helpful instructions and discussions on the project and also Margaux Molinas for assistance with Identical-location Transmission Electron Microscopy (IL-TEM). We thank Vasiliki Tileli and Tzu-Hsien Shen at EPFL for their instructions and help in performing IL-TEM experiment. We thank Duncan T.L. Alexander and Emad Oveisi at EPFL for helpful microscopy discussions. We thank Daniel Giammar and Anshuman Satpathy at Washington University in St. Louis for providing a UO2 reference sample. The work at EPFL was supported by Swiss National Science Foundation Grant 200021E-164309 and European Research Council Consolidator Grant 725675 (UNEARTH). The M4 edge high-energy-resolution fluorescence detection X-ray absorption near-edge structure spectroscopy (HERFD-XANES) was carried out at Beamline ID26, European Synchrotron Radiation Facility. The L3 edge HERFD-XANES and L3 edge extended X-ray absorption spectroscopy fine structure were carried out at Beamline I20, DLS, and Beamline BM20, ESRF. We acknowledge Diamond Light Source (DLS) for time on Beamline I20-Scanning under proposals SP20581-1, SP20581-2, and Beamline B18 under proposal SP15955. We thank beamline scientists Fred Mossel-mans and Shu Hayama for beamtime assistance. The research leading to this result has been supported by the project CALIPSOPlus under Grant Agreement 730872 from the EU Framework Programme for Research and Innovation HORIZON 2020. The work at ESRF was supported by European Research Grant 759696 (TOP). S.M.B. acknowledges support from the Swedish Research Council (research grant 2017-06465).

Author contributions
R.B.-L. and T.L. designed research; Z.P., B.B., and T.L. performed research; T.L., S.M.B., N.C.H., M.C.S., and K.O.K. contributed new reagents/analytic tools; Z.P., B.B., T.L., K.O.K., and R.B.-L. analyzed data; and Z.P., B.B., T.L., and R.B.-L. wrote the paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-020-17795-0.

Correspondence and requests for materials should be addressed to R.B.-L.

Peer review information Nature Communications thanks Edgar Buck and Drew Latta for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.