Dynamic controllers for column synchronization of rotation matrices: a QR-factorization approach

Johan Thunberga, Johan Markdahla, Jorge Goncalvesa

aLuxembourg Centre for Systems Biomedicine, University of Luxembourg, 6, avenue du Swing, L-4367 Belvaux, Luxembourg

Abstract

In the multi-agent systems setting, this paper addresses continuous-time distributed synchronization of columns of rotation matrices. More precisely, \(k \) specific columns shall be synchronized and only the corresponding \(k \) columns of the relative rotations between the agents are assumed to be available for the control design. When one specific column is considered, the problem is equivalent to synchronization on the \((d-1)\)-dimensional unit sphere and when all the columns are considered the problem is equivalent to synchronization on \(\text{SO}(d) \). We design dynamic control laws that solve these synchronization problems. The control laws are based on the introduction of auxiliary variables in combination with a QR-factorization approach. The benefit of this QR-factorization approach is that we can decouple the dynamics of the \(k \) columns from the remaining \(d-k \) ones. Under the control scheme, the closed loop system achieves almost global convergence to synchronization for quasi-strong graph interaction topologies.

Key words: Multi-agent systems; attitude synchronization; consensus algorithms; sensor networks; network topologies.

1 Introduction

This paper considers multi-agent systems continuously evolving on \(\text{SO}(d) \), i.e., the set of \(d \times d \) rotation matrices. The agents interact locally with each other and the neighborhood structure is determined by an interaction graph that is quasi-strongly connected. For such systems, we address the following synchronization problem. We shall design control laws in the body fixed coordinate frames of the agents such that \(k \) specific columns of the rotation matrices asymptotically synchronize (converge to the set where they are the same and equal to a constant matrix) as time goes to infinity. The control laws shall be designed by using the corresponding \(k \) columns of the relative rotations between the agents. Such control laws can be used to solve the synchronization problem on the unit sphere, or problems where various degrees of reduced attitudes are available, or the problem where complete rotations are available. To solve the problem we introduce auxiliary variables and use a QR-factorization approach. The benefit of this approach is that the dynamics of the \(k \) columns considered can be decoupled from the dynamics of the remaining \(d-k \) ones.

Two important special cases of the problem considered are synchronization of whole rotation matrices, i.e., synchronization on \(\text{SO}(d) \), and synchronization of one specific column vector, i.e., synchronization on the \((d-1)\)-sphere. In these cases, for obvious reasons of applicability, the dimensions \(d = 2 \) and \(d = 3 \) have been mostly considered. The distributed synchronization problem on the unit sphere has been studied from various aspects Sarlette (2009), Olfati-Saber (2006), Li & Spong (2014), Li (2015). Recently there have been some new developments Markdahl et al. (2016), Markdahl & Goncalves (2016), Pereira & Dimarogonas (2015). In Markdahl & Goncalves (2016) the classical geodesic control law is studied for undirected graph topologies. Each agent moves in the tangent space in a weighted average of the directions to its neighbors. Almost global synchronization is de facto shown by a characterization of all the equilibria; the equilibria that are not in the synchronization set are shown to be unstable and the equilibria in the synchronization set are shown to be stable. The analysis procedure in that paper can be seen to parallel the one in Tron et al. (2012) (also for undirected topologies) for the case of synchronization on \(\text{SO}(3) \), where intrinsic control laws are designed for almost global synchronization. For the case \(d = 2 \) an
The set of invertible matrices in $\mathbb{R}^{d \times d}$ is
$$\text{GL}(d) = \{ Q \in \mathbb{R}^{d \times d} : \det(Q) \neq 0 \}.$$

We will make use of directed graphs, which have node set $\mathcal{V} = \{1, 2, \ldots, n\}$ and edge sets $\mathcal{E} \subset \mathcal{V} \times \mathcal{V}$. Such a directed graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ is quasi-strongly connected if it contains a rooted spanning tree or a center, i.e., there is one node to which there is a directed path from any other node in the graph. A directed path is a sequence of (not more than n) nodes such that any two consecutive nodes in the path comprises an edge in the graph. For $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ we define $\mathcal{N}_i = \{ j \in \mathcal{V} : (i, j) \in \mathcal{E} \}$ for all i.

We will consider a multi-agent system with n agents. There are n coordinate systems \mathcal{F}_t, each of which corresponding to a unique agent i in the system. There is also a world (or global) coordinate system \mathcal{F}_w. At each time t, each coordinate system \mathcal{F}_t is related to the global coordinate system \mathcal{F}_w via a rotation $Q_i(t) \in \text{SO}(d)$. This means that $Q_i(t)$ transforms vectors in \mathcal{F}_i to vectors in \mathcal{F}_w.

For all i, let $Q_i(t, k)$ be the “tall matrix” consisting of the first k columns of $Q_i(t)$. Thus, $Q_i(t, d) = Q_i(t)$ and $Q_i(t, 1)$ is the first column of $Q_i(t)$. All the columns of $Q_i(t, k)$ are obviously mutually orthogonal and elements of the $(d-1)$-sphere. Let $Q_{ij}(t) = Q_i^T(t)Q_j(t)$ and $Q_{ij}(t, k) = Q_i^T(t, d)Q_j(t, k)$ for all i, j. These matrices comprise the relative transformations respective the k first columns of the relative transformations between the coordinate frames \mathcal{F}_i and \mathcal{F}_j. Note that the columns of $Q_{ij}(t, k)$ are the first k columns of $Q_{ij}(t, d)$.

The matrix $R_i(t, d)$, or shorthand $R_i(t)$, is an element of $\mathbb{R}^{d \times d}$ for all i, t. The matrix $R_i(t, k) \in \mathbb{R}^{k \times k}$ is the upper left $k \times k$ block matrix of the matrix $R_i(t)$. These $R_i(t, k)$’s are communicated between the agents. For $R_i(t, k)$ invertible we define $R_{ij}(t, k)$ as $R_i(t, k)R_j^{-1}(t, k)$. Observe the difference between $Q_{ij}(t, k)$ and $R_{ij}(t, k)$, i.e., $Q_{ij}(t, k) = Q_i^{-1}(t, k)Q_j(t, k)$, whereas $R_{ij}(t, k) = R_i(t, k)R_j^{-1}(t, k)$.

Let $Q(t, k) = [Q_1^T(t, k), Q_2^T(t, k), \ldots, Q_n^T(t, k)]^T \in \mathbb{R}^{nd \times k}$ and $R(t, k) = [R_1^T(t, k), R_2^T(t, k), \ldots, R_n^T(t, k)]^T \in \mathbb{R}^{nk \times k}$.

The functions $\text{low}(\cdot)$ and $\text{up}(\cdot)$ are defined for matrices in $\mathbb{R}^{m_1 \times m_2}$ for all $m_1 \geq m_2$. The function $\text{low}(\cdot)$ returns a matrix of the same dimension as the input, a matrix in $\mathbb{R}^{m_1 \times m_2}$ that is, where each (i, j)-element of the matrix is equal to that of the input matrix if $i = j$ and equal to 0 if $i \neq j$. The function $\text{up}(\cdot)$ returns a matrix in $\mathbb{R}^{m_2 \times m_2}$. Each (i, j)-element of the matrix is equal to that of the input matrix if $i \leq j$ and equal to 0 if $i > j$.

We continue by introducing two assumptions that will be used in the problem formulation in the next section.

2 Preliminaries

We start this section with some set-definitions. The d-dimensional special orthogonal group is
$$\text{SO}(d) = \{ Q \in \mathbb{R}^{d \times d} : Q^TQ = I_d, \det(Q) = 1 \}.$$

The set of skew symmetric matrices is
$$\text{so}(d) = \{ \Omega \in \mathbb{R}^{d \times d} : \Omega^T = -\Omega \}.$$

The d-dimensional unit sphere is
$$S^d = \{ y \in \mathbb{R}^{d+1} : \|y\|_2 = 1 \}.$$
Assumption 1 (Connectivity) It holds that \mathcal{G} is quasi-strongly connected and $i \in \mathcal{N}_i$ for all i.

Assumption 2 (Dynamics) The time evolution of the state of each agent i is given by

$$
\frac{d}{dt}Q_i(t, d) = Q_i(t, d)U_i(t, d),
$$

where $U_i(t, d) \in \text{so}(d)$ and $Q_i(0, d) \in \text{SO}(d)$. In particular it holds that

$$
\frac{d}{dt}Q_i(t, k) = Q_i(t, d)U_i(t, k), \forall k \in \{1, 2, \ldots, d\},
$$

where $U_i(t, k) = U_i(t, d)[I_k, 0]^T$.

The $U_i(t, d)$'s are the controllers we are to design. An important thing to note in (2) is that $U_i(t, d)$, or rather the columns thereof, are defined in the \mathcal{F}_i-frames. If those would have been defined in the world frame \mathcal{F}_W, the agents would have needed to know their own rotations to that frame, i.e., the Q_i-matrices. Those matrices are not assumed to be available for the agents.

We let $(\text{SO}(d))^n$ be the following subset of $\mathbb{R}^{n \times d}$,

$$
\{Z : Z = [Z_1^T, Z_2^T, \ldots, Z_i^T]^T, Z_i \in \text{SO}(d) \forall i\}.
$$

We let $(\text{GL}(d))^n$ be the following subset of $\mathbb{R}^{n \times d}$,

$$
\{Z : Z = [Z_1^T, Z_2^T, \ldots, Z_n^T]^T, Z_i \in \text{GL}(d) \forall i\}.
$$

3 Problem formulation

The goal is to design $U_i(t, d)$ (and in particular $U_i(t, k)$) as a dynamic feedback control law such that the $Q_i(t, k)$-matrices asymptotically aggregate or converge to the synchronization set. In this problem, formally presented below, a key assumption in the control design is that the information available for the agents is both relative and local. This means that no knowledge of a global coordinate system is assumed and only relative rotations and vectors between local neighboring agents are used.

Problem 1 Let Assumption 1 and Assumption 2 hold. Let $d \geq 2$ and $k \leq d - 1$. Design the $U_i(t, d)$-controllers as continuous functions of t and the elements in the collection $\{Q_{ij}(t, k)\}_{j \in \mathcal{N}_i}$ such that the following is fulfilled: there is a unique continuous solution for the Q_i's and there is $Q \in \text{SO}(d)$ such that

$$
\lim_{t \to \infty} \|Q_i(t, k) - \bar{Q}[I_k, 0]^T\| = 0 \forall i.
$$

In Problem 1 we made the assumption that $k \leq d - 1$. This restriction of the k's to those smaller than or equal to $d - 1$ can be made without loss of generality. If all the $Q_i(t, d - 1)$'s are equal, so are all the $Q_i(t, d)$'s. This means that synchronization of the $Q_i(t, d - 1)$'s is equivalent to synchronization of the $Q_i(t, d)$'s.

For $k = 1$, our problem was studied in e.g., Markdahl et al. (2016), Markdahl & Goncalves (2016), Pereira & Dimarogonas (2015) and for $k = 1, d = 2$ in Scardovi et al. (2007). For the case $k = d$, the problem has been studied in e.g., Thunberg et al. (2014), Deng et al. (2016), Ren (2010), Sarlette et al. (2010), Tron et al. (2013), Tron & Vidal (2014). In general, for $k < d - 1$, the Problem 1 is related to synchronization on the Grassmann manifold $\text{Grass}(k, d)$, which was studied in Sarlette & Sepulchre (2009). It is de facto synchronization on a compact Stiefel manifold.

4 Proposed solution

In this section we propose a control algorithm as a candidate solution to Problem 1. Before we introduce the control algorithm, Algorithm 1 below, we define the set

$$
\mathcal{D}_1(k) = (\text{SO}(d)[I_k, 0]^T)^n \times (\mathcal{R}^+(k))^n.
$$

The set $\mathcal{R}^+(k)$ comprise the upper triangular matrices in $\mathbb{R}^{k \times k}$, whose diagonal elements are positive. The algorithm below is restricted to those $\{Q(t, k), R(t, k)\}$'s contained in $\mathcal{D}_1(k)$. We will show in the next section that this restriction does not comprise a limitation from a practical point of view since the set $\mathcal{D}_1(k)$ is invariant under the proposed control scheme for all but a set of measure zero of the initial points.

It is important to note that $U_i(t, d)$ and not $U_i(t, k)$ is the controller that is used by agent i. The latter is however the part of the controller that affects $Q_i(t, k)$ according to (2). At the initialization step, the matrix $R_i(0, k)$ is chosen (or constructed by) each agent i, whereas $Q_i(0, k)$ is not. The latter is not known by the agent under our “relative information only”-assumption in the control design.

5 Convergence of Algorithm 1

Suppose Assumption 1 and Assumption 2 hold and Algorithm 1 is used. We define

$$
\mathcal{D}_2(k) = \{[Q(0, k), R(0, k)] : 1) [Q(t, k), R(t, k)] \in \mathcal{D}_1(k) \forall t \geq 0, 2) \exists \bar{Q} \in \text{SO}(d) \text{ and } R \in \text{GL}(k), \text{ s.t.} \lim_{t \to \infty} [Q(t, k), R(t, k)] = [\bar{Q}[I_k, 0]^T, \bar{R}] \forall i\}.
$$

A verbal interpretation of the set $\mathcal{D}_2(k)$ is the following one. It is the set of initial points in $\mathcal{D}_1(k)$ such that 1)
Algorithm 1 Distributed control algorithm for synchronization of the $Q_i(t,k)$'s

Initialization at time 0: for all i, choose $d \geq 2$ and $0 \leq d - 1$, let $R_i(0,k)$ be upper triangular with positive elements on the diagonal, and let $Q_i(0,d) \in \text{SO}(d)$.

Inputs to agent i at time $t \geq 0$: $(Q_{ij}(t,k))_{j \in N_i}$ and $(R_{ij}(t,k))_{j \in N_i}$.

Controllers at time $t \geq 0$ when $R_i(t,k) \in \text{GL}(k)$:

let, for all i,

\[
V_i(t,k) = \sum_{j \in N_i} a_{ij}(Q_{ij}(t,k)R_{ji}(t,k) - [I_k,0]^T), \tag{3}
\]

\[
U_i(t,d) = [\text{low}(V_i(t,k)),0] - [\text{low}(V_i(t,k)), 0]^T \tag{4}
\]

\[
R_i(t,k) = \text{up}((V_i(t,k) - U_i(t,k))R_i(t,k)), \tag{5}
\]

where

\[
U_i(t,k) = \text{low}(V_i(t,k)) - [I_k,0]^T([\text{low}(V_i(t,k))]^T[I_k,0]^T). \tag{6}
\]

all the $R_i(t,k)$’s are invertible at all times t larger than 0, and 2) the $Q_i(t,k)$’s and the $R_i(t,k)$’s converge to matrices $\bar{Q}[I_k,0]^T$ respective \bar{R}, where \bar{R} is invertible.

Now, it would be good if we could prove that the set $D_0(k)$ contains most of $D_2(k)$. The following proposition provides such a result; it is the main result of the paper. It is claiming almost global convergence to the synchronization set for Algorithm 1. For all but a set of measure zero of $Q_i(t,k)$’s and $R_i(t,k)$’s, the matrices converge to the synchronization set. The rest of this section is dedicated to the proof of the claim in the proposition.

Proposition 2 Suppose Assumption 1 and Assumption 2 hold and Algorithm 1 is used. The set $D_0(k) - D_2(k)$ has measure zero in $D_0(k)$.

5.1 Proof of Proposition 2

By inspection, we can verify that if all the $Q_i(t,k)$’s are equal and all the $R_i(t,k)$’s are equal, then all the expressions in (3)-(6) are equal to zero, which means that the system is at equilibrium. Now, what we want to establish is the almost global convergence to such an equilibrium. However, the structure of the system seems at first hand complicated, which might make the convergence analysis cumbersome.

Now, instead of studying the dynamics of the closed loop system under (3)-(6), the main idea of the proof of Proposition 2 is to show that when $[Q(0,k), R(0,k)]$ is contained in $D_2(k)$, there is a change of coordinates so that after this change of coordinates the dynamics of the system is described by a simple consensus protocol for matrices in $\mathbb{R}^{d \times k}$, see (7) below. The idea is to, instead of studying the convergence of a seemingly complicated dynamical system, use well-known results for the simple consensus protocol. This approach is indeed not new, see for example [Scardovi et al. (2007) and Sarlette & Sepulchre (2009)].

A complication here is that in order to establish the convergence result in Proposition 2 we need to guarantee that in general the matrices evolving under the consensus protocol have full rank for all time points along the trajectories (as well as in the limit). This result is provided by Lemma 4 below. After the lemma has been provided we give the proof of Proposition 2.

We begin by recalling the following known result.

Proposition 3 (Dieci & Eirola (1999)) Any full column rank time-varying C^k-matrix has a C^k QR-decomposition.

We continue by introducing

\[
D_3(k) = \{X = [X_1^T, X_2^T, \ldots, X_n^T]^T \in \mathbb{R}^{nd \times k}: X_i \in \mathbb{R}^{d \times k} \text{ has full column rank } \forall i, \}\n\]

and providing the aforementioned Lemma 4.

Lemma 4 Suppose Assumption 1 holds and $k \leq d - 1$. Suppose $[Q(0,d), R(0,k)] \in D_0(k)$. We define $Z_i(t,k) = Q_i(t,k)R_i(t,k)$ for all i, t. We also define $Z(t,k) = [Z_1(t,k), Z_2(t,k), \ldots, Z_n(t,k)]$ for all t. Suppose that for $t \geq 0$ it holds that

\[
\dot{Z}_i(t,k) = \sum_{j \in N_i} a_{ij}(Z_j(t,k) - Z_i(t,k)), \tag{7}
\]

Then the following hold

1) there is a unique analytic solution for (7);

2) the convex hull of the $Z_i(t,k)$’s is forward invariant for any t and there is $\bar{Z} \in \mathbb{R}^{d \times k}$ (as a function of the initial state) such that $\|Z(t,k) - \bar{Z}\|_F$ goes to zero as t goes to infinity;

3) for any time interval $[0,t_1)$ during which the $Z_i(t,k)$’s have full column rank, the $Q_i(t,k)$’s and the $R_i(t,k)$’s can be chosen as smooth functions (of t), where $Q_i(t,d) \in \text{SO}(d)$, and $R_i(t,k) \in \text{GL}(k)$;

4) for all but a set of measure zero of the initial points $Z(0,k) \in D_3(k)$, the matrix \bar{Z} in (2) has full column rank;
(5) for all but a set of measure zero of initial points $Z(0, k) \in D_3(k)$, it holds that $Z(t, k) \in D_3(k)$ for all $t \geq 0$.

Proof: (1) The dynamics for Z can be written as

$$\dot{Z} = -(L \otimes I_d)Z,$$

(8) where L is the weighted graph Laplacian matrix defined by: $[L]_{ij} = 0$ if $i \neq j$ and $(i, j) \notin E$; $[L]_{ij} = -a_{ij}$ if $i \neq j$ and $(i, j) \notin E$; $[L]_{ii} = \sum_{j \in \mathbb{N}} a_{ij}$. The matrix L is implicitly parameterized by the a_{ij}'s. The unique analytic solution to (8) is

$$Z(t, k) = A(t)Z(0, k),$$

(9) where $A(t) = \exp(-(L \otimes I_d)t)$.

(2) (8) is convergent due to the properties of the graph Laplacian matrix L. A proof of statement (2) is obtained by direct application of the results in Z. Lin et al (2007) or [Shi & Hong, 2009].

(3) Direct application of (1) and Proposition 3. We can without loss of generality assume that the $R_i(t, k)$’s have positive elements on the diagonal. Suppose it was not the case, then we multiply $Q_i(t, k)$ and $R_i(t, k)$ with a diagonal matrix from the right and the left, respectively. This diagonal matrix is constant and has 1’s at ii-entries where $[R_i(t, k)]_{ii}$ is positive and -1’s at the ii-entries where $[R_i(t, k)]_{ii}$ is negative. Since $k \leq d - 1$, we can choose this diagonal matrix such that the resulting orthogonal matrix after the multiplication (from the right) with the diagonal matrix is an element of $SO(d)$.

(4) (8) is translation invariant. Translation invariance means that if we disturb the initial $Z_i(0, k)$’s by adding a matrix Ξ to all the $Z_i(0, k)$’s the matrix Ξ is canceled out in the dynamics (8), i.e. it is invariant to this common translation of the initial states. As a consequence, the state trajectories for the disturbed initial conditions are equal to those without the disturbance up to the added Ξ. This also holds in the limit so the equivalent matrix to Z for such disturbed initial conditions is $\dot{Z} + \Xi$.

It holds that $\mathbb{R}^{nd \times k} - D_3(k)$ has measure zero. The rest of this proof is about showing that the subset of $D_3(k)$ under consideration comprises all but a measure zero of $\mathbb{R}^{nd \times k}$. Now we define

$$\mathcal{A} = \{X = [X_1^T, X_2^T, \ldots, X_n^T]^T \in \mathbb{R}^{nd \times k} : X_i = X_j \in \mathbb{R}^{d \times k} \forall i, j\}.$$

In the above, \mathcal{A} and \mathcal{A}^\perp are linear subspaces of $\mathbb{R}^{nd \times k}$. The set \mathcal{A} is the synchronization set and the set \mathcal{A}^\perp is its orthogonal complement defined via the standard trace inner product. Each $Z(0, k)$ can be written as a sum of two matrices $X = [X_1^T, X_2^T, \ldots, X_n^T]^T$ and $Y = [Y_1^T, Y_2^T, \ldots, Y_n^T]^T$, where X is an element of \mathcal{A} and Y an element of \mathcal{A}^\perp. Furthermore it holds that $\dot{Z}(X + Y) = Z(Y) + X_1$, where Z is given as a function of the initial condition. Now, for any fixed $Y \in \mathcal{A}^\perp$ it holds that $Z(X + Y) = Z(Y) + X_1$ has full rank for all but a set of measure zero of the X_i’s in $\mathbb{R}^{d \times k}$.

(5) The columns of $A(t)$ are linearly independent for all t analytic in t. Thus the matrix $A(t)$ has a smooth QR-factorization $Q(t)R(t)$, see Proposition 3.

We will without loss of generality only consider the case $i = 1$ and prove that $Z_i(t, k)$ will be of full rank for all $t \geq 0$ for all but a set of measure zero of the $Z_i(0, k)$’s in $D_3(k)$. We can make this “wlog-assumption” since the procedure of the proof is equivalent for the other choices of i after a permutation of the Z_i-matrices.

Let $z^1(t)$ be the first column of $Z(t, k)$, $z^2(t)$ the second column and so on. Let

$$B(t) = ([I_d, \ldots, 0]A(t))^T,$$

$$C(t, 0) = ([0, I_{(n-1)d}]\hat{Q}^T(t))^T,$$

$$C(t, 1) = ([0, I_{(n-1)d}]\hat{Q}^T(t))^T, z^1(0)],$$

$$\vdots$$

$$C(t, d) = ([0, I_{(n-1)d}]\hat{Q}^T(t))^T, z^1(0), \ldots, z^d(0)].$$

The $C(t)$’s are implicitly parameterized by the $Z(0, k)$’s. It holds that $Z_1(t, k) = B^T(t)Z(0, k)$ and it also holds that $\text{im}(C(t, 0)) = \ker(B^T(t))$ for all t. The columns of $C(t, 0)$ comprise a smooth orthogonal basis for $\ker(B^T(t))$. Now, if there is a t_1 such that the rank of $Z_1(t_1, k)$ is smaller than k, there must be a $k \in \{1, 2, \ldots, k\} \cup \{a \in \mathbb{R}^{(n-1)d+k-1} : C(t, k-1)a = z^k(0)\}$.

We refer to this as condition a).

Now, the remainder of the proof amounts to showing that for $k \in \{1, 2, \ldots, k\}$ only for a set of measure zero of $z^k(0)$’s there is $[t, a^T]^T \in \mathbb{R}^{(n-1)d+k}$ such that condition a) is fulfilled. Once this is showed we can conclude that $Z(t, k)$ has full rank for all t for all but a set of measure zero of the initial conditions (i.e., $Z(0, k)$). If the latter would not have been true, there would have been a k for which condition a) is satisfied for a positive measure of $z^k(0)$’s, but that would have been a contradiction.

For all \tilde{k} we define

$$g_k([t, a^T]^T) = C(t, \tilde{k} - 1) a,$$

which is a smooth mapping from $\mathbb{R}^{(n-1)d+k}$ to \mathbb{R}^{nd} (we allow for negative t’s here). It is a nonlinear (and smooth) function of t and a linear function in a. The elements of a comprise weights in the sum of columns of $C(t, \tilde{k} - 1)$,
which is the returned vector of $g_k ([t, a^T]^T)$. We want to show that we cannot in general choose t and a such that this column sum is equal to $z^k (0)$, thereby showing that condition a) is not fulfilled in general. Now, the rank of the Jacobian matrix of g_k is at most $(n-1)d + \bar{k} < nd$ for all $[t, a^T]^T \in \mathbb{R}^{(n-1)d + \bar{k}}$. Hence all $[t, a^T]^T$ are critical points and, due to Sard's theorem, $\text{im}(g_k)$ has measure zero in \mathbb{R}^{nd}. This means that condition a) is only fulfilled for a set of measure zero of $z^k (0)$’s.

Now, it holds that $\mathbb{R}^{nd \times k} - \mathcal{D}_3 (k)$ has measure zero. We also know that $\mathcal{D}_4 (k) \subset \mathcal{D}_3 (k)$, and we have just shown that $\mathbb{R}^{nd \times k} - \mathcal{D}_4 (k)$ has measure zero. Thus $\mathcal{D}_3 (k) - \mathcal{D}_4 (k)$ has measure zero.

Remark 5 In the proof of (5) we did not use the property that the matrix in the right-hand side of (8) is $-(L \otimes I_d)$. The result also holds for any other matrix in $\mathbb{R}^{nd \times nd}$. Furthermore, a straightforward generalization is that only for a measure zero set of the initial matrices $R_{ij} (t, k)$, any matrix block of Z with more rows than columns loses rank at a finite time.

Proof of Proposition 2: We begin by returning to the system in Lemma 4. We suppose Assumption 1 and Assumption 2 hold and that $Z(t, k)$ is the solution of (7). We define the set $\mathcal{D}_4 (k)$ as those $Z(0, k)$’s in $\mathcal{D}_3 (k)$ for which it holds that Z has full column rank and $Z(t, k) \in \mathcal{D}_3 (k)$ for all t.

There is a diffeomorphism h between $\mathcal{D}_3 (k)$ and $\mathcal{D}_1 (k)$. For every $\mathbf{X} = [X_1^T, X_2^T, \ldots, X_n^T]^T$ in $\mathcal{D}_3 (k)$, h provides the unique $[\tilde{Q}, \tilde{R}] = [[\tilde{Q}_1^T, \ldots, \tilde{Q}_n^T]^T, [\tilde{R}_1^T, \ldots, \tilde{R}_n^T]^T]$ in $\mathcal{D}_1 (k)$ such that $X_i = \tilde{Q}_i \tilde{R}_i$ for all i. To see that it is a diffeomorphism we note the following. Let $h(X_i) = [\tilde{Q}_i, \tilde{R}_i]$. The \tilde{R}_i-matrix is the upper triangular matrix obtained by Cholesky’s factorization of $X_i^T X_i$. Cholesky’s factorization is analytic on the set of positive definite matrices (see LeC 2014). The \tilde{Q}_i-matrix is given by $\tilde{Q}_i = X_i \tilde{R}_i^{-1}$, where \tilde{R}_i^{-1} is analytic on the set of invertible matrices. As for h^{-1}, it holds that $h^{-1} ([\tilde{Q}_i, \tilde{R}_i]) = X_i = \tilde{Q}_i \tilde{R}_i$, where the right-hand side in the last equation is analytic in the two matrices.

Figure 1 below illustrates relations between the $\mathcal{D}_i (k)$’s.

It holds that $\mathbb{R}^{nd \times k} - \mathcal{D}_3 (k)$ has measure zero. It also holds that set $\mathcal{D}_3 (k) - \mathcal{D}_4 (k)$ has measure zero, see (4) and (5) in Lemma 4. The rest of the proof amounts to showing that $\mathcal{D}_2 (k) = h(\mathcal{D}_4 (k))$. We know that $\mathcal{D}_3 (k) - \mathcal{D}_4 (k)$ has measure zero and that a measure zero set is mapped to a measure zero set under a diffeomorphism. Hence, if we show that $\mathcal{D}_2 (k) = h(\mathcal{D}_4 (k))$, then we know that $h(\mathcal{D}_3 (k) - \mathcal{D}_4 (k)) = \mathcal{D}_2 (k) - \mathcal{D}_2 (k)$ and that this set has measure zero. We first show that 1) $h(\mathcal{D}_4 (k)) \subset \mathcal{D}_2 (k)$ and then show that 2) $h^{-1}(\mathcal{D}_2 (k)) \subset \mathcal{D}_4 (k)$.

\[Z(t, k) = [Z_1^T (t, k), \ldots, Z_n^T (t, k)]^T \]

\[= [(\tilde{Q}_1 (t, k) \tilde{R}_1 (t, k))^T, \ldots, (\tilde{Q}_n (t, k) \tilde{R}_n (t, k))^T]^T, \]

where $[\tilde{Q}_i (t, k), \tilde{R}_i (t, k)]$ is the unique QR-decomposition of $Z_i (t, k)$ with positive diagonal elements for $\tilde{R}_i (t, k)$. These QR-decompositions are smooth according to Proposition 3.

Now we prove that the dynamics for the $\tilde{Q}_i (t, k)$’s and $\tilde{R}_i (t, k)$’s have the same structure as (3)-(5). For all i, it holds that

\[\dot{Z}_i (t, k) = \dot{\tilde{Q}}_i (t, k) \dot{\tilde{R}}_i (t, k) + \dot{\tilde{Q}}_i (t, k) \tilde{R}_i (t, k) \]

\[= \tilde{Q}_i (t, d) \dot{U} (t, k) \tilde{R}_i (t, k) + \tilde{Q}_i (t, k) \dot{\tilde{R}}_i (t, k) \]

and it also holds that

\[\dot{\tilde{Z}}_i (t, k) = \sum_{j \in \mathcal{N}_i} a_{ij} (Z_j (t, k) - Z_i (t, k)) \]

\[= \sum_{j \in \mathcal{N}_i} a_{ij} (\tilde{Q}_j (t, k) \tilde{R}_j (t, k) - \tilde{Q}_i (t, k) \tilde{R}_i (t, k)), \]

Thus,

\[\tilde{Q}_i (t, d) \dot{U} (t, k) \tilde{R}_i (t, k) + \tilde{Q}_i (t, k) \dot{\tilde{R}}_i (t, k) \]

\[= \sum_{j \in \mathcal{N}_i} a_{ij} (\tilde{Q}_j (t, k) \tilde{R}_j (t, k) - \tilde{Q}_i (t, k) \tilde{R}_i (t, k)). \]

We can express the last equation above as

\[\tilde{Q}_i (t, d) \dot{U} (t, k) + \tilde{Q}_i (t, k) \dot{\tilde{R}}_i (t, k) (\tilde{R}_i (t, k))^{-1} \]

\[= \sum_{j \in \mathcal{N}_i} a_{ij} (\tilde{Q}_j (t, k) \tilde{R}_j (t, k) - \tilde{Q}_i (t, k)), \]

or

\[\dot{U} (t, k) + [(\dot{\tilde{R}}_i (t, k) (\tilde{R}_i (t, k))^{-1})^T, 0]^T \]

\[= \sum_{j \in \mathcal{N}_i} a_{ij} (\tilde{Q}_j (t, k) \tilde{R}_j (t, k) - [I_k, 0]^T), \]
where \(\tilde{Q}_{ij}(t, k) = \tilde{Q}^T(t, d)\tilde{Q}_{j}(t, k) \) and \(\tilde{R}_{ji}(t, k) = \tilde{R}_i(t, k)(\tilde{R}_i(t, k))^{-1} \). In the following we take equation (11) as the starting point and define

\[
\tilde{V}_i(t, k) = \sum_{j \in \mathbb{N}_i} a_{ij}(\tilde{Q}_{ij}(t, k)\tilde{R}_{ji}(t, k) - [I_k, 0]^T),
\]

which is equivalent to (3). Now, since \(\tilde{R}_i(t, k)(\tilde{R}_i(t, k))^{-1} \) is upper triangular we can obtain the lower part of \(\tilde{U}_i(t, k) \) as \(\tilde{V}_i(t, k) \). Since \(\tilde{U}_i(t, d) \) is an element of \(\mathfrak{so}(d) \) for all \(t \), it holds that the upper part of \(\tilde{U}_i(t, k) \) is given by [\(I_k, 0 \)]\(T \) \(\tilde{V}_i(t, k) \). Thus,

\[
\tilde{U}_i(t, d) = \tilde{V}_i(t, k) + [I_k, 0]^T \tilde{V}_i(t, k),
\]

which is equivalent to (4) and (6), respectively. Now we can solve for \(\tilde{R}_i(t, k) \) in \(\tilde{V}_i(t, k), \tilde{U}_i(t, k) \), and \(\tilde{R}_i(t, k) \).

The solution is

\[
\tilde{R}_i(t, k) = \text{up}(\tilde{V}_i(t, k) - \tilde{U}_i(t, k)),
\]

which is equivalent to (5).

Since \(h \) is a diffeomorphism, it holds that when the \(Z_i(t, k) \)'s converge to a full rank matrix \(Z \) as \(t \) goes to infinity, the \(\tilde{Q}_i(t, k) \)'s converge to \(\tilde{Q} \) and the \(\tilde{R}_i(t, k) \)'s converge to \(\tilde{R} \) as \(t \) goes to infinity, where \([Q, R] \) is the unique QR-decomposition of \(Z \) with positive diagonal elements in \(R \). It indeed holds that the \(Z_i(t, k) \)'s converge to a full rank matrix \(Z \) as \(t \) goes to infinity, since the assumption is that \(Z(0, t) \) is in \(D_4(k) \).

2) Here we show that \(h^{-1}(D_2(k)) \subset D_4(k) \). Let \([Q^T(0, k), R^T(0, k)] \) in \(D_2(k) \) be the initial condition for the dynamical system governed by (3)-(6). At time \(t \), let \(Z_i(t, k) = h([Q^T(t, k), R^T(t, k)]) = Q_i(t, k)R_i(t, k) \), where \(Q_i(t, k) \) and \(R_i(t, k) \) are the matrices corresponding to agent \(i \) at time \(t \). Since \([Q^T(0, k), R^T(0, k)] \) is in \(D_2(k) \) and \(h \) is a diffeomorphism, it holds that \(Z_i(t, k) \) has full rank for all \(i, t \) and all the \(Z_i(t, k) \)'s converge to a full rank matrix \(Z \). What remains to be shown, is that \(Z(t, k) \) has the dynamics (7). For all \(i \), it holds that

\[
\frac{d}{dt} \tilde{Z}_i(t, k) = \tilde{Q}_i(t, d)^T \tilde{Z}_i(t, k) - \tilde{R}_i(t, k) \tilde{R}_i(t, k)^{-1}
\]

above. We obtain the following.

\[
U_i(t, k) + [\text{up}(V_i(t, k) - U_i(t, k))^T, 0]^T
\]

\[
= \text{low}(U_i(t, k)) + [\text{up}(V_i(t, k))^T, 0]^T
\]

\[
= \text{low}(\text{low}(V_i(t, k)) - [I_k, 0]^T \text{low}(V_i(t, k))^T[I_k, 0]^T)
\]

\[
+ [\text{up}(V_i(t, k))^T, 0]^T
\]

\[
= V_i(t, k).
\]

Now, by definition it holds that

\[
V_i(t, k) = \sum_{j \in \mathbb{N}_i} a_{ij}(Q_{ij}(t, k)R_{ji}(t, k) - [I_k, 0]^T),
\]

By multiplication of \(Q_i(t, d) \) from the left and \(R_i(t, k) \) from the right, respectively, we obtain that

\[
\dot{Z}_i(t, k) = Q_i(t, d)V_i(t, k)R_i(t, k)
\]

\[
= \sum_{j \in \mathbb{N}_i} a_{ij}(Q_j(t, k)R_j(t, k) - Q_i(t, k)R_i(t, k))
\]

\[
= \sum_{j \in \mathbb{N}_i} a_{ij}(Z_j(t, k) - Z_i(t, k))
\]

\[\blacksquare\]

Remark 6 In the proof we did not address the issue that \(Q_i(t, d) \) needs to be in \(\mathfrak{so}(d) \). If \(k = d \), there is not a bijection \(h \) between \(D_3(k) \) and \(D_1(k) \). However, since we only consider \(k \) to be at most \(d - 1 \), the \(d - k \) last columns of \(Q_i(t, d) \) can be chosen such that \(Q_i(t, d) \) is in \(\mathfrak{so}(d) \).

Remark 7 For the QR-factorization in the proof, we are not using the standard convention where the “Q-matrix” is in \(\mathbb{R}^{d \times d} \) and the “R-matrix” is in \(\mathbb{R}^{d \times k} \); such a factorization is not unique (but can be chosen as a smooth function of \(t \)). Instead we let the “Q-matrix” be in \(\mathbb{R}^{d \times k} \) and the “R-matrix” be in \(\mathbb{R}^{k \times k} \). Those latter matrices are unique.

Remark 8 In part 1) of the proof, we can replace the 0’s in the expression for \(\tilde{U}_i(t, d) \) with something nonzero. Thus the expression for \(\tilde{U}_i(t, k) \) is not unique, whereas the expression for \(\tilde{U}_i(t, k) \) is.

6 Illustrative example

Fig. 2 provides an illustrative example of the convergence when the controllers are given by Algorithm 1. Five agents were considered, i.e., \(n = 5 \), and the dimension \(d \) was chosen to 3. The topology of \(G \) was quasi-strongly connected but not strongly connected. The \(Q_i(0, d) \)'s and the \(R_i(0, d) \)'s were generated by first creating square matrices where each element is drawn from the Gaussian distribution with mean 0 and variance 1, and then
performing QR-factorization of these matrices. The a_{ij}-scalars were generated by drawing samples from the uniform distribution with $(0, 1)$ as support. The simulations were conducted in Matlab by calling the function ode45.

Fig. 2. Top three figures: convergence of $\|Q_i(t, k) - Q_1(t, k)\|_F$ to 0 for all i and k. Second from top three figures: convergence of $\|R_i(t, k) - R_1(t, k)\|_F$ to 0 for all i and k. Second from bottom two figures: convergence of $\|U_i(t, k)\|_F$ and $\|\dot{R}_i(t, k)\|_F$ to 0 for all i. Bottom three figures: The convergence on the unit sphere of the individual columns of the $Q_{ij}(t, d)$-matrices. Left: convergence of the first columns; middle: convergence of the second columns; right: convergence of the third columns. The red disc denotes the unit vector that the columns converge to.

7 Conclusions

We addressed the problem of column synchronization for rotation matrices in multi-agent systems. In this problem the first k columns of the agents’ rotation matrices shall be synchronized by only using the corresponding k first columns of the relative rotations between the agents. For the proposed control scheme, we prove almost global convergence under quasi-strong interaction connectivity. The control scheme is based on the introduction of auxiliary state variables combined with a QR-factorization approach. The QR-factorization approach allows to separate the dynamics for the columns of interest from the remaining ones. This separation, in turn, enables us to only use the first k columns of the relative rotations in the control design.

References

Deng, J., Liu, Z., Wang, L. & Baras, J. S. (2016), Attitude synchronization of multiple rigid bodies in SE(3) over proximity networks, in ‘2016 35th Chinese Control Conference (CCC)’, IEEE, pp. 8275–8280.

Dieci, L. & Eirola, T. (1999), ‘On smooth decompositions of matrices’, SIAM Journal on Matrix Analysis and Applications 20(3), 800–819.

Lee, P. (2014), ‘Matrix factorizations via the inverse function theorem’, arXiv preprint arXiv:1408.2611.

Li, W. (2015), ‘Collective motion of swarming agents evolving on a sphere manifold: A fundamental framework and characterization’, Scientific reports.

Li, W. & Spong, M. W. (2014), ‘Unified cooperative control of multiple agents on a sphere for different spherical patterns’, IEEE Transactions on Automatic Control 59(5), 1283–1289.

Markdahl, J. & Goncalves, J. (2016), Global convergence properties of a consensus protocol on the n-sphere, in ‘Decision and Control (CDC), 2016 IEEE 55th Conference on’, IEEE, pp. 3487–3492.

Markdahl, J., Wenjun, S., Hu, X., Hong, Y. & Goncalves, J. (2016), Global and invariant aspects of consensus on the n-sphere, in ‘the 22nd International Symposium on Mathematical Theory of Networks and Systems’. Olfati-Saber, R. (2006), Swarms on Sphere: A Programmable Swarm with Synchronous Behaviors like Oscillator Networks, in ‘Proceedings of the 45th IEEE Conference on Decision and Control’, IEEE, pp. 5060–5066.

Pereira, P. O. & Dimarogonas, D. D. V. (2015), Family of controllers for attitude synchronization in s^2, in ‘54th IEEE Conference on Decision and Control’.

Ren, W. (2010), ‘Distributed cooperative attitude synchronization and tracking for multiple rigid bodies’, IEEE Transactions on Control Systems Technology 18(2), 383–392.

Sarlette, A. (2009), Geometry and Symmetries in Coordination Control, PhD thesis, Université de Liège. Sarlette, A., Bonnabel, S. & Sepulchre, R. (2010), ‘Coordinated motion design on lie groups’, IEEE Transactions on Automatic Control 55(5), 1047–1058.

Sarlette, A. & Sepulchre, R. (2009), ‘Consensus optimization on manifolds’, SIAM Journal on Control and Optimization 48(1), 56–76.

Sarlette, A., Sepulchre, R. & Leonard, N. E. (2009), ‘Au-
tonomous rigid body attitude synchronization’, *Automatica* 45(2), 572–577.
Scardovi, L., Sarlette, A. & Sepulchre, R. (2007), ‘Synchronization and balancing on the n-torus’, *Systems & Control Letters* 56(5), 335–341.
Shi, G. & Hong, Y. (2009), ‘Global target aggregation and state agreement of nonlinear multi-agent systems with switching topologies’, *Automatica* 45(5), 1165–1175.
Thunberg, J., Goncalves, J. & Hu, X. (2016), ‘Consensus and formation control on se (3) for switching topologies’, *Automatica* 66, 109–121.
Thunberg, J., Montijano, E. & Hu, X. (2011), Distributed attitude synchronization control, in ‘50th IEEE Conference on Decision and Control and European Control Conference’, IEEE, pp. 1962–1967.
Thunberg, J., Song, W., Montijano, E., Hong, Y. & Hu, X. (2014), ‘Distributed attitude synchronization control of multi-agent systems with switching topologies’, *Automatica* 50(3), 832–840.
Tron, R., Afsari, B. & Vidal, R. (2012), ‘Intrinsic consensus on SO(3) with almost-global convergence’, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC) (3), 2052–2058.
Tron, R., Afsari, B. & Vidal, R. (2013), ‘Riemannian consensus for manifolds with bounded curvature’, *IEEE Transactions on Automatic Control* 58(4), 921–934.
Tron, R. & Vidal, R. (2014), ‘Distributed 3-D localization of camera sensor networks from 2-D image measurements’, *IEEE Transactions on Automatic Control* 59(12), 3325–3340.
Z. Lin, B. Francis. & Maggiore, M. (2007), ‘State agreement for continuous-time coupled nonlinear systems’, *SIAM Journal on Control and Optimization* 46(1), 288–307.