Foliation by free boundary constant mean curvature leaves

Fabio Montenegro

April 29, 2019

Abstract

Let M be a Riemannian manifold of dimension $n + 1$ with smooth boundary and $p \in \partial M$. We prove that there exists a smooth foliation around p whose leaves are submanifolds of dimension n, constant mean curvature and its arrive perpendicular to the boundary of M, provided that p is a nondegenerate critical point of the mean curvature function of ∂M.

1 Introduction

The strategy of the proof of this result was inspired by [2]. In this work, Rugang Ye considered the foliation by geodesic spheres around $p \in M$ of small radius and showed that this foliation can be perturbed into a foliation whose leaves are spheres of constant mean curvature, provided that p is a nondegenerate critical point of the scalar curvature function of M. So we are going to consider a family of foliations whose leaves are submanifolds of M with boundary contained in ∂M and it’s arriving perpendicular to the boundary of M. The idea is then to perturb each leaves to obtain, via implicit function theorem, a foliation whose leaves are hemispheres of constant mean curvature and its arrive perpendicular to the boundary of M, provided that p is a nondegenerate critical point of the mean curvature function of ∂M.

We refer to [1] for basic terminology in local Riemannian geometry. Let (M, g) be an $(n+1)$-dimensional Riemannian manifold with smooth boundary ∂M, $n \geq 2$. We will denote by ∇ and ∇ the covariant derivatives and by R and \bar{R} the full Riemannian curvature tensor of M and ∂M, respectively. The trace of second fundamental form of the boundary will be denoted by h. We will make use of the index notation for tensors, commas denoting covariant differentiation and we will adopt the summation convention.

Definition 1.1 Let T denote the inward unit normal vector field along ∂M. Let Σ be a submanifold with boundary $\partial \Sigma$ contained in ∂M. The unit conormal of $\partial \Sigma$ that points outside Σ will be denoted by ν. Σ is called free boundary when $\nu = -T$ on $\partial \Sigma$.
Acknowledgements. Part of this work was done while the author was visiting the university of Princeton, New Jersey. I would like to thank Fernando C. Marques for his kind invitation and helpful discussions on the subject.

2 Fermi Coordinate System

Consider a point \(p \in \partial M \) and an orthonormal basis \(\{e_1, \ldots, e_n\} \) for \(T_p \partial M \). Let \(B_r = \{ x \in \mathbb{R}^n : |x| < r \} \) be the open ball in \(\mathbb{R}^n \). There are \(r_p > 0 \) and \(t_p > 0 \) for which we can define the Fermi coordinate system centered at \(p, \varphi^0 : B_{r_p} \times [0, t_p) \to M \), given by

\[
\varphi^0(x, t) = \exp^{\mathcal{M}}_{\varphi^0(x)}(t T(x))
\]

where \(\varphi^0(x) = \exp^{\partial M}_p(x^i e_i) \) is the normal coordinate system in \(\partial M \) centered at \(p \) and \(T(x) \) is the inward unit vector normal to the boundary at \(\varphi^0(x) \).

For each \(\tau = (\tau_1, \ldots, \tau_n) \in B_{r_p/2} \) we will consider the Fermi coordinate system centered at

\[
c(\tau) = \exp^{\partial M}_p(\tau^i e_i),
\]

which we denote by \(\varphi^\tau : B_{r_p/2} \times [0, t_p) \to M \), and it defined by

\[
\varphi^\tau(x, t) = \exp^{\mathcal{M}}_{\varphi^\tau(x)}(t T(x))
\]

where

\[
\phi^\tau(x) = \exp_{c(\tau)}(x^i e_i^\tau),
\]

\(e_i^\tau \) are the parallel transport of \(e_i \) to \(c(\tau) \) along the geodesic \(c(s) \|_{0 \leq s \leq 1} \) in \(\partial M \), and \(T(x) \) is the inward unit vector normal to the boundary at \(\varphi^\tau(x) \in \partial M \).

We will denote the metric tensor of \(M \) by \(ds^2 \), the coefficients of \(ds^2 \) in the coordinates system \(\varphi^\tau \) by \(g^{\tau}_{ij}(x, t) \), and \(g_{ij}^{-1} = (g^{\tau}_{ij})^{-1} = (g^{\tau}_{ij}) \). The expansion of \(g^{\tau}_{ij} \) (up to fourth order) in Fermi coordinates can be found in [1] p.1604.

Lemma 2.1 In Fermi coordinates \((x_1, \ldots, x_n, t) \) centered at \(c(\tau) \in \partial M \) we have \(g^{\tau}_{ij}(x, t) = 1 \), \(g^{\tau}_{ir}(x, t) = 0 \), and

\[
g^{\tau}_{ij}(x, t) = \delta_{ij} + 2h_{ij} t + \cdots
\]

\[
+ \frac{1}{15} R_{ijkl} t x_k x_l + 2h_{ij, k} t x_k + (R_{titj} + 3h_{ik} h_{kj}) t^2 + \cdots
\]

\[
+ \frac{1}{15} R_{ijkl, m} t x_k x_l x_m + \left(\frac{2}{3} \text{Sym}_{ij}(R_{km} h_{mj}) + h_{ij, kl} \right) t x_k x_l + \cdots
\]

\[
+ (R_{titj, k} + 6 \text{Sym}_{ij} h_{il} h_{kj}) t^2 x_k + \cdots
\]

\[
+ \left(\frac{1}{15} R_{ijkl, mp} + \frac{1}{15} R_{ikql, m} R_{jmqp} \right) x_k x_l x_m x_p + \cdots
\]

\[
+ \left(\frac{2}{3} \text{Sym}_{ij}(R_{ilm} h_{pj}) + \frac{2}{3} \text{Sym}_{ij}(R_{ikl} h_{pj, m}) + \frac{1}{3} h_{ij, kl} \right) t x_k x_l x_m + \cdots
\]
We will work with the following set of functions

\[C_T^{2,0}(S_+^n) = \left\{ \varphi \in C^{2,0}(S_+^n); \frac{\partial \varphi}{\partial e_4} = 0 \text{ in } \partial S_+^n \right\} \] \tag{4}

3 Perturbation by free boundary submanifolds

We will work with the following set of functions

\[C_T^{2,0}(S_+^n) = \left\{ \varphi \in C^{2,0}(S_+^n); \frac{\partial \varphi}{\partial e_4} = 0 \text{ in } \partial S_+^n \right\} \] \tag{4}
where $S^n_+ = \{(x, t) \in \mathbb{R}^{n+1}; \ t^2 + |x|^2 = 1, \ t \geq 0\}$.

For $\varphi \in C^{2,\alpha}_{T}(S^n_+)$ we define

$$S^+_{\varphi} = \{(1 + \varphi(x, t))(x, t); \ (x, t) \in S^n_+\}$$

and

$$S_{r, \tau, \varphi} = \varphi^*(\alpha_r(S^+_{\varphi})) \quad (5)$$

where α_r is the dilation $(x, t) \mapsto (rx, rt)$ for $0 < r < r_0$ and r_0 sufficiently small such that $\alpha_{r_0}(\mathbb{B}_2 \times [0, 2)) \subset \mathbb{B}_{r_0/2} \times [0, t_p)$.

There are numbers $\delta_0 > 0$ and $r_0 > 0$ such that $S_{r, \tau, \varphi}$ is an embedded C^2 hypersurface in M^{n+1} for any $\|\varphi\|_{C^1} \leq \delta_0$ and $0 < r < r_0$. In addition $S_{r, \tau, \varphi}$ is a free boundary submanifold of M, this is, $\partial S_{r, \tau, \varphi} \subset \partial M$ and its arrive perpendicular to the boundary of M, because $\partial \varphi / \partial e_t = 0$. We denote the inward mean curvature function of $S_{r, \tau, \varphi}$ by $h(r, \tau, \varphi)$.

For $(x, t) \in S^n_+$ we have $H(r, \tau, \varphi)(x, t) = r h(r, \tau, \varphi)(\varphi^*(r(1 + \varphi(x, t))(x, t)))$. \quad (6)

But, by the Lemma 2.2 in [1, p.1604],

$$ds^2_{\tau, r}(x, t)(v, w) = \langle v, w \rangle_{\mathbb{R}^{n+1}} + O(r)$$

with $O(r) \to 0$ when $r = |(x, t)| \to 0$. One readily checks $ds^2_{\tau, r}$ extends smoothly to the euclidean metric when r goes to zero. Hence $H(r, \tau, \varphi)$ also extends to $r = 0$. Then by a straightforward computation the inward mean curvature function of S^+_{φ} at $(\bar{x}, \bar{t}) = (1 + s\varphi(x, t))(x, t)$ with respect to the metric $ds^2_{\tau, r}$ on \mathbb{B}^{2+}_2, can be written as
Corollary 3.2
The following holds true

\[H(r, \tau, s\varphi)(\bar{x}, \bar{t}) = \frac{1}{\Psi_s} \left(\Delta \rho - s \Delta \varphi - \frac{s^2}{2} \Delta \varphi^2 \right) \]

\[-1 + s\varphi \left[\frac{\partial \Psi_s}{\partial t} \left(t - s \frac{\partial \varphi}{\partial t} \right) + \sum_{i,j} g^{ij} \left(x_j - s \frac{\partial \varphi}{\partial x_j} \right) \right] \]

where \(\rho(x, t) = \frac{(t^2 + |x|^2)^2}{2} \), \(g^{ij} = g^{ij}(\bar{x}, \bar{t}) \),

\[\bar{\varphi}(x, t) = \varphi \left(\frac{x}{\sqrt{t^2 + |x|^2}}, \frac{\bar{t}}{\sqrt{t^2 + |x|^2}} \right), \]

\[\Psi_s = \Psi_s(r, x, t) = \left[\left(t - s(1+s\varphi) \frac{\partial \varphi}{\partial t} \right)^2 + \sum_{i,j} g^{ij}(tx, rt) \left(x_i - s(1+s\varphi) \frac{\partial \varphi}{\partial x_i} \right) \left(x_j - s(1+s\varphi) \frac{\partial \varphi}{\partial x_j} \right) \right]^{\frac{1}{2}} \]

and \(\Delta \) is the standard Laplace operator on \(B_2^+ \) relative to the metric \(ds^2_{r,t} \).

Lemma 3.1 We have

\[H(r, \tau, 0)(x, t) = n + [h^i_t t - (n + 3)h^i_j tx_i x_j] r + \left[\frac{3n+2}{2} h^i_j h^k_i h^r_j t^2 x_i x_j x_k x_i \right. \]

\[- (n + 4) h^i_j h^k_l tx_i x_j x_k + \left(- \frac{n+4}{2} R_{ijkl} - \frac{3n+20}{2} h^i_k h^j_l - h^i_j h^k_l \right) t^2 x_i x_j \]

\[+ \frac{1}{4} \bar{R}_{kikl} x_i x_j + 2 h^i_j x_i x_j + 2(h^i_j)^2 t^2 \right] r^2 + \left[\int_0^1 \frac{(1 - \eta)^2}{2} H_{rrr}(\eta r, \tau, 0) d\eta \right] r^3 \]

where every coefficient is computed at \(c(\tau) \).

Corollary 3.2 The following holds true

\[H(0, \tau, 0) = \lim_{r \to 0} H(r, \tau, 0) = n. \]

Now we consider \(H(r, \tau, \cdot) \) as a mapping from \(C^2(\bar{S}_\varphi^+ \right) \) into \(C^0(\bar{S}_\varphi^+) \) and let \(H_\varphi \) denote the differential of \(H \) with respect to \(\varphi \). In order to calculate \(H_\varphi \), we consider the variation of \(S_\varphi^+ \) by smooth maps \(f : S_\varphi^+ \times (-\epsilon, \epsilon) \to \mathbb{B}_2^+ \) given by \(f(x, t, s) = (1 + s \varphi(x, t))(x, t) \). For each \(s \in (-\epsilon, \epsilon) \) we denote \(f^s(x, t) = f(x, t, s) \). Note that \(f^s(\bar{S}_\varphi^+) = S_\varphi^+ \) is an embedded \(C^2 \) in \(\mathbb{B}_2^+ \) with \(\partial S_\varphi^+ \subset \partial \mathbb{B}_2^+ \). We will denote by \(N_s(r, \tau, \varphi) \) a unit vector field normal to \(S_\varphi^+ \) and \(\bar{H}(r, \tau, s\varphi) \) the mean curvature of \(S_\varphi^+ \). We decompose the variational vector field

\[\partial_s = \varphi(x, t)(x, t) = \partial^T_s + v^s N_s \]

where \(v^s \) is the function on \(S_\varphi^+ \) defined by \(v^s = ds^2_{r,t}(\partial_s, N_s) \).

By the Proposition 16 in [3, p.14] we have

\[H_\varphi(r, \tau, 0) \varphi = (\partial_s H(r, \tau, s\varphi)) \big|_{s=0} = dH(r, \tau, 0)(\partial^T_0) - L_{r,\tau} v_0 \]
and
\[\partial s ds^2\tau,\tau(N_s, e_t)|_{s=0} = -\partial v^0 \partial e_t + ds^2\tau,\tau(N_0, \nabla c_t) v^0 \]
where \(L_{\tau,\tau} = \Delta (s^2, ds^2\tau,\tau) + Ric_{\tau,\tau}(N_0, N_0) + \|B_{r,\tau}\| \) is the Jacobi operator.

In particular
\[H_{\varphi,\varphi}(0, \tau, 0) = L_{\varphi} := -(\Delta_{S^n} + n)\varphi, \quad (11) \]
where \(\Delta_{S^n} \) is the standard Laplace operator in \(S^n \).

Lemma 3.3 We have
\[H_{\varphi\varphi}(0, \tau, 0) = 2n \varphi^2 - (n-2) \left(\frac{\partial \varphi}{\partial x_i} \right)^2 - (n-2) \sum_i \left(\frac{\partial \varphi}{\partial x_i} \right)^2 \quad (13) \]
where \(\varphi \) was defined in (8).

The Jacob operator
\[L : C^{2,\alpha}_T(S^n_+) \to C^{0,\alpha}(S^n_+) \]
\[L = \Delta_{S^n} + n \] has an \(n \)-dimensional kernel \(K \) consisting of first order spherical harmonic functions \(x^i = x^i|_{S^n_+} \), \(i = 1, \ldots, n \), which satisfy
\[\partial \partial e_t x^i|_{S^n_+} = 0 \text{ in } \partial S^n_+. \]

In addition we have the \(L_2 \)-decompositions of spaces \(C^{2,\alpha}_N(S^n_+) = K \oplus K^\perp \) and \(C^{0,\alpha}(S^n_+) = K \oplus L(K^\perp) \). Let \(P \) denote the orthogonal projection from
$C^{0,\alpha}(S^n_+)$ onto K, and $T: K \rightarrow \mathbb{R}^n$ be the isomorphism sending $x^i|_{S^n_+}$ to e_i, the ith coordinate basis. Define $\tilde{P} = T \circ P$, that is,

$$\tilde{P}(f) = \frac{2}{w_{n+1}} \left(\int_{S^n_+} f x^i \right) e_i$$

because

$$\int_{S^n_+} x^i x^j = \frac{w_{n+1}}{2} \delta_{ij},$$

where $w_{n+1} = \text{Vol}(B_1)$.

Lemma 3.4 We have

$$\tilde{P}(H(r, \tau, 0)) = -\frac{2 w_n r^2}{(n+2)w_{n+1}} h_{jj,k} e_i + O(r^3). \quad (14)$$

Proof. From Lemma 3.1 and the fact that $\tilde{P}(x^{n+1}) = \tilde{P}(x^i x^j x^{n+1}) = 0$ we have

$$\tilde{P}(H(r, \tau, 0)) = \left[-(n+4)h_{ij,k}^+ \tilde{P}(x^{n+1} x^i x^j x^k) + 2 h_{ji,2}^+ \tilde{P}(x^{n+1} x^i) \right] r^2 + O(r^3)$$

where

$$\tilde{P}(x^{n+1} x^i x^j x^k) = \frac{2(\delta_{ij}\delta_{kl} + \delta_{ik}\delta_{jl} + \delta_{il}\delta_{jk}) w_n}{(n+2)(n+4)w_{n+1}} e_i$$

and

$$\tilde{P}(x^{n+1} x^i) = \frac{w_n \delta_{ij}}{w_{n+1}(n+2)} e_j.$$

Hence (14) follows.

Lemma 3.5 If $\varphi^\tau: S^n_+ \rightarrow \mathbb{R}$ is the solution of the Neumann problem

$$\begin{cases}
-(\Delta_{S^n_+} \varphi + n \varphi) = h_{ii}^+ x^{n+1} - (n+3) h_{ij}^+ x^i x^j x^{n+1} \\
\frac{\partial \varphi}{\partial e_{n+1}} = 0 \text{ on } \partial(S^n_+) \quad (15)
\end{cases}$$

then

$$\tilde{P}(H_{\varphi^\tau}(0, \tau, 0) \varphi^\tau) = 0 \quad (16)$$

and

$$\tilde{P}(H_{\varphi^\tau}(0, \tau, 0) \varphi^\tau \varphi^\tau) = 0. \quad (17)$$

for $||\tau|| < r_p/2$.

Proof. The function $\varphi^\tau = \frac{1}{2} h_{ij}^+ x^i x^j x^{n+1}$ is the solution of the problem (15).

Now we can use (12), (13) and the fact

$$\tilde{P}(x^{i_1} \ldots x^{i_k} x^{n+1}) = 0,$$

for all integer $k \geq 0$, to prove (16) and (17).
4 Main Theorem

Definition 4.1 Consider \(p \in \partial M \) and let \(U \) be a neighborhood of \(p \) on \(M \cup \partial M \). A smooth codimension 1 foliation \(\mathcal{F} \) of \(\cup \{ p \} \) for a neighborhood \(U \) of \(p \) is called a free boundary foliation centered at \(p \), provided that its leaves are all closed and free boundary.

Theorem 4.2 If \(p \in \partial M \) is a nondegenerate critical point of the mean curvature function of \(\partial M \), then there exist \(\delta > 0 \) and smooth functions \(\tau = \tau(r) \) and \(\phi = \phi(r) \) such that
\[
H(r, \tau(r), r\phi(r)) \equiv n \quad \text{for all } 0 \leq r < \epsilon.
\]
Hence the family \(\mathcal{F} = \{ S_r := S_{r, \tau(r), r\phi(r)} : 0 \leq r < \epsilon \} \) is a smooth family of constant mean curvature spheres with \(S_r \) having mean curvature \(n/r \). Furthermore \(\mathcal{F} \) is a free boundary foliation centered at \(p \).

Proof. We will use the Taylor’s formula with integral remainder
\[
H(r, \tau, r\phi) = n + [H_\tau(0, \tau, 0)\varphi + H_r(0, \tau, 0)] r
\]
\[
+ \left[\frac{1}{2} H_{\varphi\varphi}(0, \tau, 0)\varphi \varphi + H_{\varphi r}(0, \tau, 0)\varphi + \frac{1}{2} H_{rr}(0, \tau, 0)\right] r^2 + R(r, \tau, \varphi) r^3
\]
where
\[
R(r, \tau, \varphi) = \int_0^1 (1 - \eta) H_{\varphi r r}(\eta r, \tau, 0)\varphi d\eta + \frac{1}{2} \int_0^1 H_{\varphi r \varphi}(\eta r, \tau, 0)\varphi d\eta
\]
\[
+ \frac{1}{2} \int_0^1 (1 - \eta)^2 H_{\varphi \varphi \varphi}(r, \tau, \eta \varphi)\varphi \varphi d\eta.
\]
We are interested in solving the equation \(H(r, \tau, r\varphi) = n \), but first we are going to treat the equation
\[
P^\perp(H(r, \tau, r\varphi) - n) = 0,
\]
where \(P^\perp \) denotes the \(L^2 \) orthogonal projection from \(C_0^{\text{\alpha}} \) onto \(K^\perp \).

By \(\{11\} \) and the fact \(PL = PH_r(0, \tau, 0) = 0 \) we can write the equation in \(\{18\} \) as follows (after division by \(r \))
\[
L\varphi + H_r(0, \tau, 0) + \bar{R}(r, \tau, \varphi) r = 0,
\]
where
\[
\bar{R}(r, \tau, \varphi) = \frac{1}{2} P^\perp(H_{\varphi\varphi}(0, \tau, 0)\varphi \varphi) + P^\perp(H_{\varphi r}(0, \tau, 0)\varphi) + P^\perp\left(\frac{1}{2} H_{rr}(0, \tau, 0)\right)
\]
\[
+ P^\perp(R(r, \tau, \varphi)) r.
\]
Consider the mapping \(G : [0, r_p/8] \times \mathbb{B}_{r_p/4} \times \mathbb{B}_{\delta_0} \to K^\perp \) given by
\[
G(r, \tau, \varphi) = L\varphi + H_r(0, \tau, 0) + \bar{R}(r, \tau, \varphi) r,
\]
where \(\mathbb{B}_{\delta_0} = \{ \varphi \in K^\perp : \|\varphi\|_{C^{2,\alpha}} < \delta_0 \} \).
For \(\tau = 0 \), let \(\varphi_0 \in C^2_\mathcal{N}(\mathbb{R}^n) \) be a solution of the equation
\[
L\varphi_0 + H_r(0, 0, 0) = 0.
\]
One sees that \(G(0, 0, \varphi_0) = 0 \) and \(G\varphi_0(0, 0, \varphi_0) = (-\Delta - n) : K^\perp \to L(K^\perp) \) is a bounded invertible linear transformation. By the implicit function theorem we can solve \(P^\perp(H(r, \tau, r\varphi(r, \tau)) - n) = 0 \) for a function \(\varphi : [0, \delta) \times \mathbb{B}_\delta \to K^\perp \), for some \(0 < \delta \leq r_p/8 \), with \(\varphi(0, 0) = \varphi_0 \). Furthermore
\[
\varphi_r(0, 0) = -G\varphi(0, 0, \varphi_0)^{-1}G_r(0, 0, \varphi_0)
\]

\[
= -(-\Delta - n)^{-1} \frac{\partial}{\partial r} [\bar{R}(r, \tau, \varphi) r]|_{r=0, \varphi=\varphi_0} = -(-\Delta - n)^{-1} \bar{R}(0, 0, \varphi_0)
\]

where
\[
\bar{R}(0, 0, \varphi_0) = \frac{1}{2} H_{\varphi\varphi}(0, 0, 0)\varphi_0\varphi_0 + H_{\varphi r}(0, 0, 0)\varphi_0.
\]

Since
\[
L\varphi(r, \tau) + H_r(0, \tau, 0) + O(r) = 0,
\]
we have, for \(r = 0 \),
\[
L\varphi(0, \tau) + H_r(0, \tau, 0) = 0.
\]

Then, by Lemma \[3.5\]
\[
\tilde{P}(H_{\varphi r}(0, \tau, 0)\varphi(0, \tau)) = \tilde{P}(H_{\varphi\varphi}(0, \tau, 0)\varphi_0\varphi(0, \tau)) = 0.
\]

On the other hand,
\[
\varphi(r, \tau) = \varphi(0, \tau) + r \int_0^1 \varphi_r(\eta r, \tau) \, d\eta,
\]

so that
\[
\tilde{P}(H_{\varphi r}(0, \tau, 0)\varphi(r, \tau)) = r \tilde{P} \left(H_{\varphi r}(0, \tau, 0) \left(\int_0^1 \varphi_r(\eta r, \tau) \, d\eta \right) \right) \quad (19)
\]

and
\[
\tilde{P}(H_{\varphi\varphi}(0, \tau, 0)\varphi(r, \tau)) = r \tilde{P} \left(H_{\varphi\varphi}(0, \tau, 0)\varphi(r, \tau) \left(\int_0^1 \varphi_r(\eta r, \tau) \, d\eta \right) \right) + O(r^2).
\]

Now we consider the mapping \((r, \tau) \mapsto H(r, \tau, r\varphi(r, \tau)) - n\) whose values lie in \(K \) by the construction of \(\varphi(r, \tau) \). Let us solve the equation
\[
H(r, \tau, r\varphi(r, \tau)) - n = 0,
\]
which is equivalent to equation \(\tilde{P}(H(r, \tau, r\varphi(r, \tau)) - n) = 0 \) and, after division by \(r^2 \), it is equivalent to
\[
\frac{1}{2} \tilde{P}(H_{\varphi\varphi}(0, \tau, 0)\varphi) + \tilde{P}(H_{\varphi r}(0, \tau, 0)\varphi) + \frac{1}{2} \tilde{P}(H_{rr}(0, \tau, 0)) + \tilde{P}(R(r, \tau, \varphi)) r = 0,
\]

9
where \(\varphi = \varphi(r, \tau) \). By [19] and Lemma 0.4 the above equation may be written as follows

\[-\frac{2w_n}{(n+2)w_{n+1}} h_{jj,i}^r e_i + R_1(r, \tau, \varphi) r = 0,\]

with

\[R_1(r, \tau, \varphi) = \hat{P}(R(r, \tau, \varphi)) + r \hat{P}\left(H_{\varphi r}(0, \tau, 0) \left(\int_0^1 \varphi_{r}(\eta r, \tau) d\eta\right)\right)\]

\[+ r \hat{P}\left(H_{\varphi \tau}(0, \tau, 0) \varphi_{r}(r, \tau) \left(\int_0^1 \varphi_{r}(\eta r, \tau) d\eta\right)\right) + O(r^2).\]

In order to solve the above equation, consider \(F : [0, \delta) \times B(0, \delta) \to \mathbb{R}^n \) defined by

\[F(r, \tau) = -\frac{2w_n}{(n+2)w_{n+1}} h_{jj,i}^r e_i + R_1(r, \tau, \varphi) r.\] \hspace{1cm} (20)

By the assumption \(h_{jj,i}^r |_{\tau=0} = 0 \), we have \(F(0, 0) = 0 \) and the Hessian matrix

\[\frac{\partial F}{\partial \tau}(0, 0) = \left(\frac{\partial}{\partial \tau_j} h_{jj,i}^r \right)_{i,j} \bigg|_{\tau=0}\]

is nonsingular. Applying the implicit function theorem we obtain a solution \(\tau = \tau(r) \) of the equation \(H(r, \tau, r \varphi(r, \tau)) = n \) around \((r, \tau) = (0, 0) \), \(0 \leq r < \epsilon \), for some \(0 < \epsilon \leq \delta \).

4.1 The Foliation

It is clear that \(\mathcal{F} = \{ S_r = S_{r, \tau(r), r \varphi(r)} : 0 < r \leq \epsilon \} \) is a smooth family of embedded constant mean curvature hemisphere with \(S_r \) having mean curvature \(n/r \). We need to show that this family constitutes a foliation.

In order to prove this we consider the application \(X : (0, \epsilon) \times B_1 \to M \) given by

\[X(r, x) = \varphi^r(r(1 + r \varphi(r)(x, t(x))))(x, t(x))\]

where \(t(x) = \sqrt{1 - |x|^2} \) and \(\varphi^r \) is the Fermi coordinate system defined in [2]. Observe that \(X(B_1, r) = S_r \). Thus, it is sufficient to prove that \(X \) is a parametrization of \(M \), for small \(\epsilon > 0 \). It is enough to prove that

\[Y(r, x) = \left(\varphi^0\right)^{-1}(X(r, x))\]

is an immersion, where \(\varphi^0 \) is a Fermi coordinate system centred at \(p \) defined in [1].

Claim: The function \(\tau = \tau(r) \) satisfies \(\tau(r) = O(r^2) \).

We have that \(\tau(r) \) is a solution of the equation \(F(r, \tau(r)) = 0 \), where \(F \) is defined in [20]. By the implicit function theorem

\[\frac{\partial \tau}{\partial r}(0) = -\left(\frac{\partial f_1}{\partial \tau_j}(0)\right)^{-1} \left(\frac{\partial F_1}{\partial r}(0), \ldots, \frac{\partial F_n}{\partial r}(0)\right)\]

10
and
\[\frac{\partial F_i}{\partial r}(0,0) = \langle R_1(0,0,\varphi_0), e_i \rangle = \langle \tilde{P}(R(0,0,\varphi_0)), e_i \rangle = 0. \]

Then,
\[\frac{\partial \tau}{\partial r}(0) = 0. \] \hspace{1cm} (21)

Now
\[\frac{\partial \Upsilon}{\partial r}(r,x) = (d_x \Upsilon)((1 + r\varphi(r)(x,t))(x,t) + r((1 + r\varphi(r)(x,t))_x(x,t)) + \left(\frac{\partial \Upsilon}{\partial r} \right) (r(1 + r\varphi(r)(x,t))(x,t)) \]

and
\[\frac{\partial \Upsilon}{\partial r}(0,0) = \left. \frac{\partial}{\partial \tau} \left((\varphi^0)^{-1} \circ \varphi^\tau(r) \right) \right|_{\tau=0} \frac{\partial \tau^i}{\partial r}(0) = 0. \]

Using (21) we conclude that
\[(\partial \Upsilon / \partial r)(0,x) = (x,t(x)), \]
i.e.,
\[\Upsilon(r,x) = r(x,t(x)) + O(r^2). \]

Consequently
\[(\partial \Upsilon / \partial r)(r,x) = (x,t(x)) + O(r), \]
\[(\partial \Upsilon / \partial x_i)(r,x) = re_i - r(x_i/t(x))e_i + O(r^2) \]

and
\[\det \left(\frac{\partial \Upsilon}{\partial r} \frac{\partial \Upsilon}{\partial x_1} \ldots \frac{\partial \Upsilon}{\partial x_n} \right)(r,x) = r^2 \left(\frac{1}{t(x)} + O(r) \right) > 0, \]
for all \(0 < r < \epsilon' \leq \epsilon \) and some \(\epsilon' \) enough small.

References

[1] Fernando C. Marques, Existence Results for the Yamabe Problem on Manifolds with Boundary, Indiana University Mathematics Journal, Vol. 54, No. 5 (2005).

[2] Rugano Ye, Foliation by Constant Mean Curvature Spheres, Pacific Journal of Mathematics, Vol. 147, No. 2 (1991).

[3] Lucas C. Ambrozio, Rigidity of Area-Minimizing Free Boundary Surfaces in Mean Convex Three-Manifolds, arXiv:1301.6257v2[math.DG] 2 Sep 2013.