Predicting Later-Life Outcomes of Early-Life Exposures

Kim Boekelheide,1 Bruce Blumberg,2 Robert E. Chapin,3 Ila Cote,4 Joseph H. Graziano,5 Amanda Janesick,2 Robert Lane,6 Karen Lillycrop,7 Leslie Myatt,8 J. Christopher States,9 Kristina A. Thayer,10 Michael P. Waalkes,10 and John M. Rogers11

1Department of Pathology and Laboratory Medicine, Division of Biology and Medicine, Brown University, Providence, Rhode Island, USA; 2Departments of Developmental and Cell Biology and Pharmaceutical Sciences, University of California–Irvine, Irvine, California, USA; 3Developmental and Reproductive Toxicology Center of Expertise, Drug Safety Research and Development, Pfizer Global Research and Development, Groton, Connecticut, USA; 4Office of Research and Development, National Center for Environmental Assessment, U.S. Environmental Protection Agency, Washington, DC, USA; 5Department of Environmental Health Sciences, Institute of Developmental Sciences, University of Southampton, Southampton, United Kingdom; 6Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, Texas, USA; 7Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA; 8Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA; 9Toxicology Assessment Division, National Health Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA

BACKGROUND: In utero exposure of the fetus to a stressor can lead to disease in later life. Epigenetic mechanisms are likely mediators of later-life expression of early-life events.

OBJECTIVES: We examined the current state of understanding of later-life diseases resulting from early-life exposures in order to identify in utero and postnatal indicators of later-life diseases, develop an agenda for future research, and consider the risk assessment implications of this emerging knowledge.

METHODS: This review was developed based on our participation in a National Research Council workshop titled “Use of in Utero and Postnatal Indicators to Predict Health Outcomes Later in Life: State of the Science and Research Recommendations.” We used a case study approach to highlight the later-life consequences of early-life malnutrition and arsenic exposure.

DISCUSSION: The environmental sensitivity of the epigenome is viewed as an adaptive mechanism by which the developing organism adjusts its metabolic and homeostatic systems to suit the anticipated extraterrestrial environment. Inappropriate adaptation may produce a mismatch resulting in subsequent increased susceptibility to disease. A nutritional mismatch between the prenatal and postnatal environments, or early-life obesogen exposure, may explain at least some of the rapid increases in the rates of obesity, type 2 diabetes, and cardiovascular diseases. Early-life arsenic exposure is also associated with later-life diseases, including cardiovascular disease and cancer.

CONCLUSIONS: With mounting evidence connecting early-life exposures and later-life disease, new strategies are needed to incorporate this emerging knowledge into health protective practices.

KEY WORDS: arsenic, development, epigenetics, exposure, fetal, malnutrition, obesogen, PPAR. Environ Health Perspect 120:1353–1361 (2012). http://dx.doi.org/10.1289/ehp.1204934 [Online 6 June 2012]

There are now well-described instances of human in utero exposures that have produced significant increases in later-life susceptibility to disease. Best known are the studies of the Dutch famine (Painter et al. 2005). During the winter of 1944–1945, toward the end of World War II, the population in German-occupied western Holland had only very limited food available, with an average daily intake of <1,000 calories for several months. Children born to women who were pregnant during this famine were small for gestational age (SGA). Later in life, this in utero–deprived cohort developed an increased incidence of various adult-onset diseases, including obesity, diabetes, cardiovascular disease, and renal dysfunction. In addition, the children born to members of this in utero–deprived cohort were also SGA, indicating a passage of this predilection through generations (Painter et al. 2008). Another example of the later-life consequences of an early-life chemical exposure is in utero and early childhood exposure to arsenic-contaminated drinking water in Chile. Beginning in 1958, with the development of a new water supply, the population of a large town in the Antofagasta region of northern Chile was exposed to very high levels of arsenic (~800 ppb in drinking water; the U.S. Environmental Protection Agency (EPA) maximum contaminant level is 10 ppb), an exposure that abruptly ended with the institution of water filtration in 1970 (Daiphine et al. 2011; Smith et al. 2006; Yuan et al. 2007). The cohort of individuals exposed to arsenic early in life was later found to have significant deficiencies in lung function and increases in cardiovascular mortality compared with a nonexposed control group (Daiphine et al. 2011; Smith et al. 2006; Yuan et al. 2007).

The potential scope of the problem is illustrated by an example from the recent economics literature, where evidence of effects of the 1918 Spanish flu pandemic was seen in the economic performance and achievements of its victims. Men born to U.S. mothers who contracted the flu while pregnant had reduced educational attainment, increased rates of physical disabilities, lower socioeconomic status, 5–9% overall lower income, and approximately 30% greater welfare payments (Almond 2006). In a Brazilian cohort born during and soon after this same flu pandemic, children of flu-exposed mothers were less likely to be literate, to have graduated college, to be employed, or to ever have had formal employment (Nelson 2010). Although not

Address correspondence to K. Boekelheide, Department of Pathology and Laboratory Medicine, Division of Biology and Medicine, Brown University, Box G-E5, Providence, RI 02912 USA. Telephone: (401) 863-1783. Fax: (401) 863-9008. Email: kim.boekelheide@brown.edu

This review is a joint effort of the participants in a National Research Council (NRC) workshop titled “Use of in Utero and Postnatal Indicators to Predict Health Outcomes Later in Life: State of the Science and Research Recommendations” held in October 2010 in Washington, DC. The authors thank the staff, particularly K. Sawyer, and members of the NRC Standing Committee on Emerging Science for Environmental Health Decisions. Publication was supported by a grant from the National Institutes of Health (P20ES018169) and the U.S. Environmental Protection Agency (EPA) (RD-83459401-1) to the Brown University Formative Center for the Evaluation of Environmental Impacts on Fetal Development. This document has been reviewed by the National Health and Environmental Effects Research Laboratory, U.S. EPA, and approved for publication. Approval does not signify that the contents reflect the views of the agency, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. R.E.C. is employed by Pfizer Global Research and Development, Groton, CT. B.B. holds several patents related to nuclear receptor sequence and function that do not constitute an endorsement or recommendation for use. The other authors declare they have no actual or potential competing financial interests.

Received 7 January 2012; accepted 6 June 2012.
every association seen in the U.S. cohort was observed in the Brazilian counterpart—and
despite the fact that no aggregate economic impact number has been estimated—the
results between the two studies were impressively concordant. The end result of this body
of work is the powerful indication that early-
life exposures have a strong, significant, and
long-lasting effect on later-life function and
disease in this circumstance.

Here we discuss examples of human expo-
sures to adverse intrauterine environments that
underscore the dramatic biological consequences of
interference with normal development. Human data provide strong biological plausi-
ability connecting early-life exposures to later-life
disease and raise the important question of the
underlying molecular mechanisms responsible
for these long-lasting effects. Because alterations
in DNA sequence per se do not explain the
later-life effects of these exposures, epigenetic
mechanisms have been invoked. To study these
epigene
tic mechanisms in detail has required the
development of appropriate animal models
such as the agouti mouse (Dolinoy et al. 2007).
To date, this emerging knowledge has not been
incorporated into risk assessment processes or
regulatory practice. Indeed, significant scientific
and conceptual barriers must still be overcome
as health protective measures are developed for
early-life exposures that induce molecular effects
resulting in later-life disease. In this review, we
explore the scientific basis for these latent effects and
discuss the risk assessment context, form-

Results

Early-life exposures, later-life effects, and epi-
genetlic mechanisms. In humans, early insults
are associated with later-life liabilities, includ-
ing prematurity, low birth weight, maternal
infection during pregnancy, toxic exposures, and
malnutrition. Premature birth (< 37 com-
pleted weeks gestation) is an important late-
life event of increasing incidence (Martin
2011). Decreasing age at birth has been asso-
ciated with increased odds of high systolic
blood pressure in a population-based cohort
study of young adult men (Johansson et al.
2005), and premature birth before 35 weeks
gestational age predicted the development of
diabetes in both adult men and women (Kajantie et al. 2010; Pilgaard et al. 2010).

Maternal infection during pregnancy has been
associated with neuropsychiatric disorders such as autism and schizophrenia (Brown
and Patterson 2011; Meyer et al. 2011; Patterson
2011). Both human and animal studies sup-
port this association, with suggested mecha-
nisms ranging from altered hippocampal
neurotransmitter signalizing to persistent chronic
inflammation (Bahnsonni et al. 2010; Buehler
2011; Meyer et al. 2008; Moreno et al. 2011).

Numerous early-life toxic exposures have
been linked to later-life health effects, with
particularly strong evidence regarding maternal
smoking during pregnancy being predictive of
impaired fertility, obesity, hypertension, and
neurobehavioral deficits (Bruin et al. 2010;
Gustafsson and Kallen 2011; Heinsonen et al.
2011; Simonetti et al. 2011; Thiering et al.
2011). Animal studies suggest that nicotine
alone may be enough to elicit the long-term
consequences of maternal smoking on progeny
(Bruin et al. 2010) and that prenatal and peri-
natal toxicant exposures can result in latent
effects, including elevated blood pressure, insu-
lin resistance, and obesity (Faites et al. 2009;
Lasiter et al. 2008; Lessure et al. 2008).

Malnutrition is an example of an environ-
mental stressor that invokes a predictive adap-
tive response in the developing organism
(Hanson et al. 2011). The fetus appears to use
the in utero environment to predict and
prepare for the postnatal environment. That
is, an organism alters its developmental path

to produce a phenotype that gives it a survival
or reproductive advantage in postnatal life
(Figure 1).

Fetal malnutrition can be defined as either
overnutrition or undernutrition, or as a defi-
ciency of specific nutrients. Studies of the
Dutch famine of 1944–1945 have implicated
maternal undernutrition in the pathogenesis
of multiple diseases, including coronary heart
disease, hypertension, obesity, insulin resis-
tance, and schizophrenia (de Rooij et al. 2006;
Painter et al. 2005; Ravelli et al. 1976, 1998;
Roseboom et al. 2000; Susser et al. 1996). Fetal nutrition is also affected by placental
dysfunction and uteroplacental insufficiency. In
developed countries, the diseases associated
with placental insufficiency, such as maternal
smoking and pregnancy-induced hyperten-
sion (e.g., preeclampsia), are the most com-
mon causes of fetal undernutrition (Bergmann
et al. 2008; Henriksen and Clausen 2002).
Preeclampsia, for example, affects up to
3 million people in the United Kingdom
and 15 million people in the United States
(Davis et al. 2012). Moreover, the incidence
of diseases such as preeclampsia is increasing
in developing countries (Lopez-Jaramillo et al.
2005). Fetal undernutrition leads to intra-
uterine growth restriction (IUGR; the fail-
ure of the fetus to reach its genetic growth
potential due to a pathological event). IUGR
in humans predicts adult disease, including
hypertension, diabetes, obesity, cardiovascular
disease, respiratory dysfunction, and neuro-
cognitive disease (Joss-Moore and Lane 2009;
Lahti et al. 2006; Varvarigou 2010). The
relationship between IUGR and adult disease
is often studied using measures such as the
ponderal index (birth weight × 100/crown–
heel length). The ponderal index reflects
fetal undernutrition because, when presented
with limited nutrition, the fetus will maintain
body length but not body weight (asymmetric
growth restriction or brain sparing) (Bartha
et al. 1998; Fok et al. 2009; Patterson and
Pouliot 1987). A reduced ponderal index has
been associated with multiple diseases, includ-
ing insulin resistance, obesity, behavioral
symptoms of attention deficit hyperactivity
disorder, coronary heart disease, and hyper-
tension (Fan et al. 2010; Jarvelin et al. 2004;
Lahti et al. 2006; Lithell et al. 1996; Loaiza
et al. 2011; Walther 1988). Other measures of
fetal malnutrition in the newborn that have
been predictive of adult disease include placen-
tal efficiency (fetal weight/placental weight),
placental morphometry, and combinations of
maternal and placental size (Eriksson et al.
2011; Hemachandra et al. 2006).

IUGR in animals similarly predicts adult
morbidities such as hypertension, obesity, and
insulin resistance (Baserga et al. 2007; Desai
et al. 2005, 2007; Joss-Moore et al. 2010b;
Simmons et al. 2001; Tsirka et al. 2001). Common animal models of fetal malnutrition include placental insufficiency, food restriction, protein restriction, micronutrient deficiency, and glucocorticoid exposure. Although the molecular pathogenesis may differ, these models give rise to a similar profile of adult diseases. Both offspring sex and the timing of exposure influence the later-life consequences of exposure (Fu et al. 2009; Ke et al. 2006).

Timing and intergenerational effects of exposures. The Dutch famine cohort illustrates the critical effect of timing of exposures in humans (Figure 2). Individuals who were in utero early in gestation during the famine suffer from an increased incidence of coronary heart disease, hypertension, dyslipidemia, and obesity, whereas those who were in utero mid-gestation suffer from an increased incidence of obstructive airway disease and impaired glucose tolerance (Roseboom et al. 2001, 2006).

In an examination of the impact of exposures across generations using the Dutch famine cohort, Painter et al. (2008) found evidence that progeny (F3) of women (F1) born during the famine suffered from increased neonatal adiposity and poor adult health, including neurological disorders, and respiratory and autoimmune conditions. Animal studies also provide support for the occurrence of intergenerational consequences of exposure. F1 female rats, hypertensive as a result of pre-natal malnutrition, transmit the predisposition toward hypertension and endothelial dysfunction to their F2 progeny (Torrens et al. 2008). F1 male rats exposed to the endocrine disruptor vinclozolin in utero may also pass on a number of disease states involving prostate, kidney, immune system, and metabolism (hypercholesterolemia) to the F4 generation (Anway et al. 2006).

Epigenetic mechanisms. The underlying mechanism responsible for these myriad effects of exposures is, at least in part, epigenetic (Figure 3). Epigenetics forms the basis of how eukaryotes regulate gene expression. Epigenetic modifications direct access of the transcriptional machinery and cofactors to regulatory regions of the gene, modulating transcriptional initiation, elongation, and termination. Studies in multiple model systems demonstrate that epigenetic modifications are important along the entire gene, including untranslated regions (Einstein et al. 2010; Fu et al. 2006, 2009).

Epigenetic modifications operate as an “on/off switch” to regulate gene expression, as with imprinting, or as a rheostat control to increase or decrease expression. Epigenetic modifications that function as a rheostat are often driven by environmental conditions, particularly those that are extreme, and are thought to function as a cellular memory of previous environmental conditions (Hanson et al. 2011), so that future environments can be physiologically anticipated. In this context, epigenetic modifications may represent accessible molecular markers of early-life events that may be more stable than direct measures of gene expression. The epigenetic modifications most often studied include the histone code, DNA CpG methylation, and microRNA (miRNA) expression levels.

The histone code contains the most capacity for epigenetic modification (Ruthenberg et al. 2007). Each cell contains approximately 3×10^{6} nucleosomes, each consisting of histone core proteins that can be differentially acetylated, methylated, or phosphorylated. Presumably, cells and tissues adjust their histone codes during development in response to ambient conditions to fine tune the regulation of gene expression in anticipation of the future extrauterine environment.

DNA methylation occurs on cytosines in CpG sequences and is associated with specific early-life events, including maternal malnutrition, in utero fertilization, transplacental exposures, and IUGR (Gomes et al. 2009; Heijmans et al. 2008; Katari et al. 2009; Perera et al. 2009; Steegers-Theunissen et al. 2009; Tobi et al. 2009). Although many different early-life events lead to similar adult phenotypes, the epigenetic modifications that occur in these exposures may be different; in other words, the end result may be the same, but the pathways giving rise to that result may be different.

miRNAs are a class of small RNAs 21–25 nucleotides in length that act as post-transcriptional regulators of gene expression (Du and Zamore 2007). These small RNAs bind to the 3′-untranslated regions of target mRNA transcripts and disrupt the translational machinery or lead to transcript degradation, depending on the level of sequence complementarity. Humans have approximately 1,000 miRNAs, each of which can interact with a family of target RNAs, creating a regulatory mechanism with the potential to modulate about 60% of the protein-coding genes (Sayed and Abdellatif 2011).

Placenta. The placenta, a readily accessible human tissue that may reflect the fetal environment, could prove to be a very useful tool for understanding the mechanisms underpinning the developmental origins of disease; it could also serve as a tissue source for biomarkers to predict later disease risk. The placenta grows and develops throughout gestation in a dynamic, highly orchestrated manner (Myatt and Roberts 2006). Placental vascular development is important for the transfer of flow-limited substrates and for fetal cardiovascular loading and heart fitness. Placental growth is under the control of imprinted genes that may up- or down-regulate growth depending on the parent of origin. Placental 11β-hydroxysteroid dehydrogenase-2 (11βHSD2) activity is developmentally regulated, responds to nutrients and oxygen levels, and regulates fetal exposure to maternal cortisol (Li et al. 2011). Oxidative stress is increasingly seen as a regulator of placental and fetal growth and development (Myatt 2010). Pregnancies complicated by obesity, preeclampsia, and IUGR...
are associated with increased placental oxidative and nitrative stress, leading to covalent modifications of placental proteins based on observational studies in humans (Myatt 2010).

The placenta has a distinct DNA methylation profile that changes throughout gestation in response to environmental cues (Chu et al. 2011; Novakovic et al. 2011). Placental epigenetic biomarkers have emerged as an active and informative area for the identification of early-life indicators of later-life disease (Maccani and Marsit 2009). Infant growth restriction has been associated with distinct patterns of placental DNA methylation (Banister et al. 2011). Placentas from large-for-gestational-age newborns had differential methylation of the glucocorticoid receptor (GR) gene (Filiberto et al. 2011). Maternal smoking has been associated with downregulation of the placental miRNAs miR-16, miR-21, and miR-126a (Maccani et al. 2010), and reduced expression of miR-16 and miR-21 has been associated with SGA newborns (Maccani et al. 2011). Therefore, the placenta is a source of integrated molecular information about the developmental life history of the fetus and its environmental interactions.

In utero and postnatal epigenetic modifications that predict end points such as obesity, insulin resistance, and hypertension. In mice, differences in micronutrient intake during pregnancy induced differences in the coat color of offspring due to hypomethylation of the 5′ end of the agouti gene (Wolff et al. 1998), whereas a protein-restricted diet during pregnancy led to hypomethylation of promoter regions of metabolically important regulators—the GR and peroxisome proliferator-activated receptor (PPAR) α genes (Lillycrop et al. 2007). In this rodent model, hypomethylation of GR and PPARα was accompanied by an increase in their expression and that of their target genes, PEPCK (phosphoenolpyruvate carboxykinase) and AOX (acyl CoA oxidase), and the metabolic processes that they control, namely, glucogenogenesis and β-oxidation. Altered methylation status of the liver PPARα promoter in juvenile offspring was due to hypomethylation of four specific CpG dinucleotides, two of which predicted the level of the mRNA transcript and persisted into adulthood (Lillycrop et al. 2008). The differentially methylated CpGs corresponded to transcription factor binding sites, which suggests that changes in the epigenetic regulation of genes established during development will induce altered transcription in response to specific stimuli and modify the capacity of the tissue to respond to metabolic challenge. Other animal studies have shown that folic acid supplementation (Wolff et al. 1998), neonatal overfeeding (Plagemann et al. 2009), constrained intrauterine blood supply (Pham et al. 2003), and maternal behavior (Weaver et al. 2004) alter the epigenetic regulation of genes in the offspring and that these changes are associated with an altered phenotype.

Hypomethylation of the imprinted JG2 (insulin-like growth factor 2) gene has been observed in genomic DNA isolated from whole blood from 60 individuals who were exposed periconceptually to famine in utero during the Dutch famine compared with their unexposed same-sex siblings (Heijmans et al. 2008). In two independent cohorts, the methylation status of a single CpG site in the promoter region of the retinoid X receptor α (RXRα) in the umbilical cord was positively associated with childhood adiposity in both boys and girls, such that RXRα promoter methylation explained more than one-fifth of the variance in childhood fat mass (Godfrey et al. 2011). These human studies indicate that epigenetic marks may allow identification of individuals at increased risk of chronic disease in later life before the onset of clinical disease, thus facilitating targeted intervention strategies.

PPARγ and obesity. Rates of obesity have increased in infants, young children, and adolescents (Koebrick et al. 2010; McCormick et al. 2010; Taveras et al. 2009), suggesting that obesity is being programmed prenatally or in early childhood. Growing evidence supports a contribution of endocrine-disrupting chemicals (EDCs) in the obesity epidemic, and mechanisms are being revealed for at least a few EDCs (Janesick and Blumberg 2011a). Obesogens are chemicals that promote obesity by increasing the number of fat cells (and fat storage into existing fat cells), by changing the amount of calories burned at rest, by altering energy balance to favor storage of calories, and by altering the mechanisms through which the body regulates appetite and satiety (reviewed by Janesick and Blumberg 2011a). PPARγ plays an important role in nearly all aspects of adipocyte biology and is thought to be the master regulator of adipogenesis (Evans et al. 2004; Tontonoz and Spiegelman 2008). Activation of PPARγ in preadipocytes increases their differentiation into adipocytes, and PPARγ is required for adipocyte differentiation in vitro and in vivo (Rosen et al. 1999). The ligand-binding pocket of PPARγ is large and considered to be promiscuous (Maloney and Waxman 1999). A number of chemicals act as PPARγ ligands, many of which are obesogenic (Janesick and Blumberg 2011b).

One obesogen for which a mechanism of action is known is the organotin tributyltin (TBT) (Grun et al. 2006). In mice, a single prenatal exposure to TBT during gestation resulted in premature accumulation of fat in adipose tissues and increased size of the fat depot relative to overall body mass (Grun et al. 2006). In mouse pups born to TBT-treated mothers, the liver, testis, mammary gland, and inguinal adipose tissue, which normally do not store lipids before feeding commences, all had stored fat at birth (Grun et al. 2006). TBT has a nanomolar affinity for both RXR and PPARγ, activates PPARγ–RXR heterodimer binding to DNA, and directly regulates transcription of its target genes (Grun et al. 2006; Kanayama et al. 2005; Tontonoz and Spiegelman 2008).

Mature adipocytes are generated from multipotent stromal cells (MSCs) found in almost all fetal and adult tissues (da Silva Meirelles et al. 2006). MSCs can differentiate into bone or adipose tissue, a balance mediated by PPARγ (reviewed by Takada et al. 2009). Intriguingly, exposure to the environmental obesogen TBT or the pharmaceutical obesogen rosiglitazone have been reported to induce the differentiation of MSCs into adipocytes at the expense of bone via PPARγ activation (Kirchner et al. 2010). Moreover, pregnant dams treated with a single dose of TBT or rosiglitazone produced pups with MSCs that in vitro differentiated into adipocytes about twice as frequently as did MSCs from controls (Kirchner et al. 2010). Thiazolidinedione anti-diabetic drugs such as rosiglitazone are potent activators of PPARγ (Lehmann et al. 1995) and are known to increase weight and fat cell number in humans (Shadid and Jensen 2003).

MSCs derived from mice exposed to TBT in utero have exhibited alterations in the methylation status of the CpG islands of adipogenic genes such as AP2 and PPARγ. This altered methylation was associated with an increased number of preadipocytes in the MSC compartment and an increased frequency with which MSCs differentiate into adipocytes upon adipogenic stimulation (Kirchner et al. 2010). Understanding how adipocyte number is programmed at the genomic level will be of critical importance in understanding how the set point for adipocyte number is modified by chemicals, dietary factors, or the intrauterine environment.

In utero and postnatal indicators that predict diseases caused by arsenic exposure. Early-life exposure to inorganic arsenic produces a wide range of malignant and nonmalignant diseases in humans. Exposure to arsenic from naturally contaminated drinking water affects roughly 140 million people worldwide (Pilsner et al. 2009). For example, in Bangladesh, where exposure began in the early 1970s, there is a generation of women and men who have been exposed to arsenic for their entire lives. The placenta is not a barrier to arsenic; thus, children are born with blood concentrations of arsenic and its toxic metabolites similar to those present in their mothers (Hall et al. 2007). Increased lung cancer and bronchiectasis have been reported in young Chilean men and women who were exposed to arsenic only during prenatal and early
arsenic exposures accelerate and exacerbate atherosclerosis. The postweaning studies have shown a clear linear dose response, further confirming the cardiovascular risk from arsenic exposure. These animal model results are consistent with early epidemiologic findings in Taiwan (Chen et al. 1996) and recent findings in Bangladesh (Chen et al. 2011) that show an arsenic dose response related to mortality from cardiovascular disease.

Discussion

When we consider all of the human and animal evidence together (Table 1), many questions and research directions arise as to how we should develop and improve upon strategies to identify the individuals in whom early-life events predict adult diseases:

- Can epigenetic biomarkers be used to identify mechanisms, so we can treat the cause and not the symptom?
- How do we assess the information stored in the genome?
- Can epigenetic biomarkers be used as integrative measures of mixed exposures?
- How do we prioritize the investigation of different epigenetic mechanisms (DNA methylation, histone modifications, miRNAs) involving different sites within the epigenome?
- What are the most critical developmental time points for producing a later-life effect of an exposure?
- What are nonepigenetic mechanisms by which early-life events alter adult disease risk, and are there early markers for these?
- How relevant is sex and tissue specificity?

Development of improved molecular and computational approaches that can generate and sift through exponentially increasing amounts of data is an overarching research priority. Just as important, understanding the epigenetic and nonepigenetic mechanisms that underlie the relationship between early-life events and adult disease risk will be essential in terms of (a) interpreting the data, (b) prioritizing the findings, and (c) designing specific interventions that treat causes—both environmental and physiologic—and not only markers of adverse consequences of early-life events.

The pleiotropic effects of arsenic exposure on human health and in animal models illustrate an important area for further research. Animal studies suggest that the varied disease outcomes resulting from similar exposures are dependent on the disease predilection of the animal. Thus, in utero arsenic exposure induces cancer in adulthood in cancer-susceptible mouse strains and cardiovascular disease in atherosclerosis-prone strains. These observations suggest that the particular disease manifestation of arsenic exposure in humans may be dependent on the genetic predisposition of the individual as well as the life-stage timing of exposure, and that arsenic exposure may accelerate an underlying predilection to pathology. For example, a single nucleotide polymorphism near the gene for arsenic methyltransferase has been associated with an increased risk for arsenic-induced skin lesions (Pierce et al. 2012). It is not clear whether cessation of arsenic exposure can reduce the disease incidence, but emerging human data indicate that short, high-level arsenic exposure in early life is linked to cancer (Yorifuji et al. 2010), again emphasizing life-stage timing of exposure. Future research focusing on plasma biomarkers of disease in animal models and translating these to human populations will be of great benefit in identifying disease risk and in developing potential intervention strategies. In addition, large-scale genetic association studies in arsenic-exposed humans may provide valuable clues about disease susceptibility in both arsenic-exposed and unexposed populations.

How do we define the scope of this problem? We envision three distinct research strategies that can be used to define the scope and importance of early-life exposures predisposing later-life disease. The first approach would identify changes in known epigenetic targets already shown to be responsive following exposures of interest using high throughput in vitro systems and regulating on the result. However, this approach may be premature and too narrow scientifically because of our limited understanding of the underlying biology. A second approach would add a number of preliminary end points (such as epigenetic modifications) and pathway measures (such as DNA methylation capability) onto the very early part of a 2-year rodent bioassay beginning with an in utero exposure; early biomarkers could then be associated with later-life disease. This approach would produce large amounts of data, but at great cost in time and resources. An intermediate approach would be to assemble a comprehensive list of possible end points and pathways that might plausibly link exposure to a response (to the degree that this is known now) and then test a number of known “bad actors” (and their inactive congeners) to see which combinations of pathways and end points can separate the known actives from the known inactives. This approach would be limited to pathways that are currently known, but an advantage would be that it would generate some survey-scale data relatively quickly. Undoubtedly, all three of these research approaches will be used going forward to provide risk assessors with sufficiently robust data to begin the risk characterization of the relationship between early-life exposure and later-life disease.

How do we incorporate this emerging knowledge into risk assessment practices and health protective policies? The emerging science
described here may be instructive for risk assessment and public health decision making. To be useful in these processes, science must address questions of interest to risk managers, including:

- What adverse effects will result from exposure (hazard identification)?
- At what level of exposure will these effects occur (exposure/dose–response relationships)?
- How certain are we of these effects (risk characterization)?

These questions are discussed below, exploring the extent to which early-life indicators of later-life disease may inform risk assessment.

Hazard identification

Both animal and human evidence now support a causative relationship between early-life exposures and a wide variety of later-life diseases (Schug et al. 2011). There is also an emerging understanding of the underlying mechanisms through which this can occur. The examples

Table 1. Examples of in utero exposures that result in adverse health outcomes later in life.

Behavior and/or Condition	Mechanistic-, biomarker-, or epigenetic-related finding
Maternal death, fetal growth	Hypomethylation of IGF2 gene (Heijmans et al. 2008)
Dietary during Dutch famine (1944–1945): obesity, diabetes, insulin resistance, coronary heart disease, hypertension, renal dysfunction, schizophrenia, and SGA in the birth cohort (de Roos et al. 2006; Painter et al. 2005; Ravello et al. 1976, 1998; Roseboom et al. 2000; Susser et al. 1998)	Association with health outcome is dependent on trimester of exposure
Positive relationship between maternal serum PFOA and IUGR, hypertension, diabetes, obesity, cardiovascular disease, respiratory dysfunction, neurological disorders (Joss-Moore and Lane 2009; Lahit et al. 2006; Varvarigou 2010; Walther 1988)	Reduced ponderal index: insulin resistance, obesity, behavioral symptoms of attention deficit hyperactivity disorder, coronary heart disease, hypertension (Fan et al. 2010; Jarvelin et al. 2004; Lahit et al. 2006; Lithell et al. 1996; Loaiza et al. 2011; Walther 1988)
Premature birth: increased blood pressure (males) and diabetes (Johansson et al. 2005; Kajantie et al. 2010; Martin 2011; Pilgaard et al. 2010)	Differential in coat color and adiposity in the ApoA mouse (Waterland 2006)
Maternal illness during pregnancy	Decreased expression of ApoA epiallele and hypermethylation of the agouti ApoA metastable epiallele
Infection: autism and schizophrenia (Brown and Patterson 2011; Meyer et al. 2011; Patterson 2011)	Differences in GR expression and DNA methylation of GR gene promoter in hippocampus (Weaver et al. 2004)
Spanish flu pandemic, United States and Brazil: reduced educational attainment, increased rates of physical disabilities, lower socioeconomic status in males (Almond 2006; Nelson 2010)	Biomarkers of exposure: cord blood, meconium, saliva nicotine and cotinine
Arsenic in northern Chile, 1958–1970: lung cancer, impaired lung function, myocardial infarction in infants, cardiovascular mortality in adults (Daiphine et al. 2011; Rosenberg 1974; Smith et al. 2006; Yuan et al. 2007)	Gene expression profiles changes in Thai infants were indicative of the activation of molecular networks associated with inflammation, apoptosis, stress, and metal exposure (Fry et al. 2007)
Japanese, 1955 (contaminated milk powder): leukemia, skin, liver, and pancreatic cancers in adults exposed as neonates (Yorifuji et al. 2010)	Perfluorooctanoic acid in Denmark: positive association between maternal serum PFDA at 30 weeks gestation and overweight/obesity, serum insulin, and leptin in females at 20 years of age; negative association with adiponectin
Animal	Treatment of stem cells during malignant transformation by arsenic in utero results in an overabundance of cancer SCs as cancer phenotype is acquired (Tokar et al. 2011)
Perfluorooctanoic acid: increased body weight in midadulthood, increased serum leptin and insulin (Hines et al. 2009)	Estrogen receptor mediated
Diethylnitrosamine: female reproductive tract cancer and malformations; male reproductive tract anomalies, increased risk of breast cancer at > 40 years of age (Adami et al. 2012; Rubin 2007)	Altered GR expression, decreased placental 11p-HSD2
Dexamethasone: lower birth weight, hypertension, hyperglycemia, insulin resistance, enhanced stress response, obesity (variable), premature differentiation of organs and tissues (Cleasby et al. 2003; O’Regan et al. 2008; Seckl et al. 2000; Seckl and Meany 2004)	Altered methylation of GR promoters (Weaver et al. 2004)
TBT: fat accumulation in adipose tissue in F1 mice (Grun et al. 2006); MSCs from F1 pups differentiate into adipocytes about twice as frequently in culture as MSCs from controls (Kirchner et al. 2011)	Nanomolar affinity for RXR and PPARγ, activates PPARγ-RXR heterodimer binding to DNA and directly regulates transcription of its target genes (Grun and Blumberg 2006; Kanayama et al. 2005; Tontonoz and Spiegelman 2008)
Microarray analysis of adipose tissue from mice exhibited alterations in the methylation status of the Cpg islands of adipogenic genes such as AP2 and PPARγ (Kirchner et al. 2010)	Mice derived from mice exhibited alterations in the methylation status of the Cpg islands of adipogenic genes such as AP2 and PPARγ (Kirchner et al. 2010)
presented above focus primarily, but not exclusively, on epigenetic mechanisms and include exposures to chemicals, malnutrition, and other environmental stressors. As stated by Burdge and Lillycrop (2010),

[the] process that underlies induction of differential risk of disease by variation in the prenatal environment reflects environmental cues acting through developmental plasticity, which generate a range of genotypes from a single genome. Recent findings show that altered epigenetic regulation of specific genes is central to the process by which different phenotypes are generated and hence differential risk of disease.

Chemicals and other environmental agents appear to have the ability to mislead the developing organism, resulting in maladaptation associated with increased disease (Janesick and Blumberg 2011a; Joss-Moore et al. 2010a). Alterations in DNA methylation, chromatin remodeling, and miRNA expression can modulate SCF in fat and produce persistent changes in gene expression, resulting in downstream effects on cell, tissue, and organism functions in later life. These perturbed epigenetic targets can be used as early indicators of adverse health effects. Confidence in these early events as indicators is based on a systems biology level of understanding, compared with alterations in single isolated events. For specific, well-developed examples, such as IGF2 hypomethylation in Dutch famine victims and increased methylation of RARx at birth associated with childhood adiposity, the case for causal links between these upstream molecular events and later-life effects is compelling. In certain situations, evidence may be sufficient to describe the upstream event or indicator itself as an adverse event.

Exposure/dose–response relationships. For arsenic and obesogens, quantitative relationships between exposure or dose response and various indicators are evident, thus establishing their role as causal biomarkers of exposures. Currently, the quantitative relationships between these indicators and risks of disease must be experimentally or observationally determined. Given the complex and multifactorial nature of disease risks, it is not yet possible to predict quantitatively the risk of disease from the indicator exposure response or dose response alone. Complicating factors are a) the specific disease is contingent on interactions with the environment throughout the life course; b) the timeframe of environmental exposure, relative to the stage of in utero development, can influence the type of disease observed in later life; and c) identification of appropriate indicators from among the variety of associative and secondary changes occurring within the body is clearly complicated and difficult. Fortunately, this field is rapidly developing, and further advances will be aided by the increasing mechanistic understanding of human variability in response and the role of complex environmental exposures in disease risks.

Risk characterization. For the examples discussed above, evidence for a causal relationship between specific early indicators and adverse outcomes is provided by experimental evidence in animals and supported by observational human data. Taken together, the evidence for a causal relationship between early-life exposures, specific early indicators, and later-life disease is consistent, coherent across various types of studies, and biologically plausible. These examples illustrate the types of data and approaches that can inform risk assessment, as well as the substantial challenges that remain for general use of these types of data in risk assessment.

Conclusion

The examples presented here of early-life exposures that result in later-life disease provide both proof of concept and insights into the value of specific information. Although insufficient data are available on a substantial number of chemicals and risk indicators, for a wide spread application in current risk assessments, this new knowledge paves the way to a deeper understanding of the underlying biology and evaluation of potential public health risks. To further the use of these types of data in future risk assessments, additional basic biological research aimed at increasing knowledge of inherent epigenetic and gene regulatory structures of targeted genomic regions and their roles in disease must be supported. These new approaches have significant potential in generating novel causal biomarkers of exposure and of increasing understanding of susceptibility and responses to complex environmental exposures, thus serving as sophisticated indicators of potential risks.

REFERENCES

Adami HO, Lagiou P, Trichopoulou D. 2012. Breast cancer following diethylstilbestrol exposure in utero: insights from a tragedy. Eur J Epidemiol 27:1–3.

Almond D. 2006. Is the 1918 influenza pandemic over? Long-term effects of early-life exposures, thus serving as sophisticated indicators of disease. Environ Health Perspect 114:112–113.

Arritger JA, Khan II, Taylor PD, Nathanielsz PW, Poston L. 2004. Developmental programming of the metabolic syndrome by maternal nutritional imbalance: how strong is the evidence from experimental models in mammals? J Physiol 561(pt 1):395–377.

Atzori L, Antonucci R, Barberini L, Locci E, Marincola FC, Dessi A, Atzori L, Noto A, Visser GH, Gazzolo D, Zanardo V, et al. 2010. Urinary reveals markers of metabolic syndrome. J Matern Fetal Neonatal Med 24(suppl 2):35–39.

Baratta M, Blumberg B, Lillycrop KA. 2010. Umbilical cord blood flow and neonatal morbidity: a multivariate analysis. Eur J Obstet Gynecol Reprod Biol 79(1):27–33.

Banister CE, Koestler DC, Maccani MA, Padbury JF, Burdge GC, Lillycrop KA. 2010. Nutrition, epigenetics, and developmental plasticity: implications for understanding human disease. Annu Rev Nutr 30:315–339.

Barton DE, Aposhian HV, Gandolfi AJ. 2003. The metabolism of inorganic arsenic oxides, gallium arsenide, and arsenine: a toxicological review. Toxicol Appl Pharmacol 193(3):309–334.

Banister CE, Koestler DC, Maccani MA, Padbury JF, Burdge GC, Lillycrop KA. 2010. Nutrition, epigenetics, and developmental plasticity: implications for understanding human disease. Annu Rev Nutr 30:315–339.

Cen C, Chu JJ, Chan YH, Liu JT, Tai YY. 1998. Dose-response relationship between ischemic heart disease mortality and long-term arsenic exposure. Arterioscler Thromb Vasc Biol 18(4):504–510.

Chen Y, Graziano HJ, Parvez F, Liu M, Slavkovich V, Kalra T, et al. 2011. Arsenic exposure from drinking water and mortality from cardiovascular disease in Bangladesh: prospective cohort study. BMJ 342:d2431: doi:10.1136/bmj.d2431 (Online 5 May 2011).

Chu T, Handley D, Bunce K, Surti U, Hogge WA, Peters DG. 2011. Structural and regulatory characterization of the placental epigenome at its maternal interface. PLoS One 6(2):e14723; doi:10.1371/journal.pone.0014723 (Online 23 February 2011).

Cleasby ME, Kelly PA, Walker BR, Seckl JR. 2003. Programming of rat muscle and fat metabolism by in utero exposure to glucocorticoids. Endocrinology 144(3):999–1007.

da Silva Meirelles L, Chaqastelles PC, Nardi NB. 2006. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 119(pt 11):2204–2213.

Daumy DH, Ferreccio C, Guntur S, Yuan Y, Hammond SK, Balmes J, et al. 2011. Lung function in adults following in utero and childhood exposure to arsenic in drinking water: preliminary findings. Int Arch Occup Environ Health 84(6):591–600.

Davis EF, Newton L, Lewandowski AJ, Lazard M, Kelly BA, Kyriakou T, et al. 2012. Pre-eclampsia and offspring cardiovascular health: mechanistic insights from experimental studies. Clin Sci (Lond) 123(2):53–72.

de Rooij SR, Painter RC, Phillips DI, Osmond C, Michels RP, Bossuyt PM, et al. 2006. Hypothalamic–pituitary–adrenal axis activity in adults who were prenatally exposed to the Dutch famine. Eur J Endocrinol 151(1):153–160.

Desi M, Babu J, Ross MG. 2007. Programmed metabolic syndrome: prenatal undernutrition and postweaning overnutrition. Am J Physiol Regul Integr Comp Physiol 293(6):R2306–R2314.

Desi M, Gayle D, Babu J, Ross MG. 2005. Programmed obesity in intrauterine growth-restricted newborns: modulation by newborn nutrition. Am J Physiol Regul Integr Comp Physiol 289(6):R193–R198.

Desi A, Atzori L, Noto A, Visser GH, Gazzolo D, Zanardo V, et al. 2011. Metabolomics in newborns with intrauterine growth retardation (IUGR): urine reveals markers of metabolic syndrome. J Matern Fetal Neonatal Med 24(suppl 2):35–39.

Doloiny DC, Huang D, Jirtle RL. 2007. Maternal nutrient supplement counteracts bisphenol A-induced DNA hypomethylation in early development. Proc Natl Acad Sci USA 104(32):13056–13061.

Du T, Zamode P. 2007. Beginning to understand microRNA function. Cell Res 17(10):661–663.

Einstein F, Thompson RF, Bhagat TD, Fazzari MJ, Verma A, Barzilai N, et al. 2010. Cytosine methylation dysregulation in neonates following intrauterine growth restriction. PLoS One 5(11):e8877; doi:10.1371/journal.pone.0008877 (Online 28 January 2010).
Eriksson KG, Jankietz E, Thornburg KL, Osmond C, Barker DJ. 2011. Small birth size and placental size predict coronary heart disease in men. Eur Heart J 32(18):2297–2303.

Evans RM, Barish GD, Wang YX. 2004. PPARs and the complex journey to obesity. Nat Med 10(4):395–401.

Fan Z, Zhang F, Xu Y, Li L, Fan M, Xu T, Gong X, et al. 2010. Relationship between birth size and coronary heart disease in China. Ann Med 42(8):596–602.

Filiberto AC, Maccani MA, Koester D, Wilhelm-Benartzi C, Avioli LV, Pack CE, et al. 2011. Birthweight is associated with DNA promoter methylation of the glucocorticoid receptor in human placenta. Epigenetics 6(5):566–572.

Fok TF, Hon KL, Ng PC, Wong E, So HK, Lau J, et al. 2009. Use of antiendometriotic indices to reveal nutritional status: normative data from 10,226 Chinese neonatals. Neonatology 95(1):23–32.

Freitas MJ, Cooper RL, Buckalew A, Jayaraman S, Mills L, Laws SC. 2009. Characterization of the hypothalamic-pituitary-adrenal axis response to stress and metabolites in the male rat. Toxicol Sci 112(1):88–99.

Fry RC, Navasumrit P, Valiaathan C, Svensson JP, Hogan BJ, Luo M, et al. 2007. Activation of inflammation/NF-κB signaling in infants born to arsenic-exposed mothers. PLoS Genet 1(3):e207; doi:10.1371/journal.pgen.0010207 [Online 23 November 2007].

Fu G, McKnight RA, Yu X, Callaway CW, Lane RH. 2006. Growth retardation alters the hepatic transcriptome in adult male IUGR rats. J Biol Chem 283(10):6483–6491.

Fu G, Yu X, Callaway CW, Lane RH, McKnight RA. 2009. Epigenetics: intraperinatal growth retardation (IUGR) modifies the IUGR transcriptome along the rat hepatic IGF-1 gene. FASEB J 23(8):2448–2454.

Goodfrye SM, Sheppard A, Gluckman PD, Lillycrop KA, Burdge GC, McLean C, et al. 2011. Epigenetic promoter methylation at birth is associated with child’s later adiposity. Diabetes 50(10):1528–1534.

Gomes MV, Huber J, Ferriani RA, Amaral Neto AM, Ramos ES. 2009. Abnormal methylation at the KdDM1 imprinting control region in clinically normal children conceived by assisted reproductive technologies. Mol Hum Reprod 15(8):471–477.

Grun F, Blumberg B. 2006. Environmental obesogens: organo- tides and endocrine disruption via nuclear receptor signaling. Endocrinology 147(suppl 1):S55–S55.

Grun F, Watanabe H, Zamanian Z, Maeda L, Arima K, Cubacha R, Fu Q, Yu X, Callaway CW, Lane RH, McKnight RA. 2005. Developmental plasticity and developmental origins of non-communicable disease: theoretical considerations. Physiol Genomics 23(6):1121–1129.

Hanson M, Godfrey KM, Lillycrop KA, Slater-Jefferies JL, Hanson MA, Godfrey KM, et al. 2011b. Evidence for widespread changes in pregnancy-induced hypertension: are there regional differences for this global problem? J Hypertens 29(10):1121–1129.

Hansen MA, Asper-Buchting M, Banister CE, McGinnigal B, Padbury JF, Marsit DJ. 2010. Maternal cigarette smoking during pregnancy is associated with downregulation of miR-16, miR-21, and miR-146a in the placenta. Epigenetics 5(7):583–589.

Hansen MA, Marsit DJ. 2009. Epigenetics in the placenta. Am J Reprod Immunol 62(2):76–89.

Hansen MA, Padbury JF, Marsit DJ. 2011. miR-18b and miR-21 expression levels in the placenta of women associated with fetal growth. PLoS One 6(8):e22102; doi:10.1371/journal.pone.0022102 [Online 15 June 2011].

Maletny EK, Wexman DJ. 1999. trn-trans-Activation of PPARα and PPARγ by structurally diverse immunological chemicals. Toxicol Appl Pharmacol 161(2):209–218.

Martin JA. 2011. Preterm births—United States, 2007. MMWR Surveill Summ 56(supp):79–78.

McCormick DP, Sarroozi K, Jordan L, Ray LA, Jain S. 2010. Infant obesity: are we ready to make this diagnosis? J Pediatr 157(1):15–19.

Meyer U, Nyffeler M, Yee BK, Knusel I, Felden J. 2008. Adult body mass and behavioral psychological markers of prenatal immune challenge during early/middle and late fetal development in mice. Brain Behav Immun 22(4):469–486.

Meyer U, Weiner I, McAlonan GM, Felden J. 2011. The neuro- pathological contribution of prenatal inflammation to schizophrenia. Expert Rev Neurother 11(1):129–32.

Moreno JL, Kurita M, Holloway T, Lopez J, Cadagan R, Martinez-Sobrido L, et al. 2011. Maternal influenza viral infection causes schizophrenia-like alterations of 5-HTA and mGlur receptors in the adult offspring. J Neurosci 31(5):1883–1872.

Mylläri O. 2010. Reactive nitrogen and oxygen species and functional adaptation of the placenta. Placenta 31(suppl):S56–S59.

Mylläri O, Roberts VH. 2006. Placental mechanisms and developmental origins of health and disease. In: Developmental Origins of Health and Disease (Gluckman P, Hanson M, Beedle A, et al.). Blackwell, Oxford, UK. Press,130–142.

Nelson RE. 2010. Testing the fetal origins hypothesis in a developing country: evidence from the 1918 Influenza Pandemic. Health Econ 19(10):1181–1192.

Neelová-NR, Padilla-Banks E, Jefferson VN. 2009. Environmental epigenetics and obesity. Mol Cell Endocrinol 304(1–2):84–98.

Novakovíc B, Yuan RK, Gordon L, Penarrubia SM, Sharyk, Molfetta A, et al. 2011. Evidence for widespread changes in promoter methylation profile in human placenta in response to increasing gestational age and environmental/ stochastic factors. BMC Genomics 12:592; doi:10.1186/1471- 2164-12-592 [Online 26 October 2011].

O'Regan CG, Benyo DJ, Shackelford MA, 2008. Prenatal dexamethasone 'programmes' hypertension, but stress- induced hypertension in adult offspring. J Endocrinol 196(1):343–352.

Painter IJ, Riddell CM, Gluckman P, Hanson M, Phillips DI, Roseboom TJ. 2008. Transgenerational effects of prenatal environmental exposure to the Dutch famine on neonatal adiposity and health in later life. BJOG 115(10):1243–1249.

Painter IJ, Roseboom TJ, Blicke K. 2007. Transgenerational effects of prenatal environmental exposure to the Dutch famine and disease in later life: an overview. Reprod Toxicol 23(3):345–352.

Patton CL, Tilling K. 2011. Maternal infection and immune involve- ment as risk factors for common mental health problems. Trends Med Biol 21(6):113–118.

Patton CL, Pouliot MR. 1987. Neonatal morphometrics and environmental Health Perspectives
Rosenberg HG. 1974. Systemic arterial disease and chronic arsenicism in infants. Arch Pathol 97(6):360–365.
Rubin MM. 2007. Antenatal exposure to DES: lessons learned... future concerns. Obstet Gynecol Surv 62(8):548–555.
Ruttenburg AJ, Li H, Patel DJ, Alls CD. 2007. Multivalent engagement of chromatin modifications by linked binding modules. Nat Rev Mol Cell Biol 8(12):983–994.
Sayed D, Abdelatif M. 2011. MicroRNAs in development and disease. Physiol Rev 91(3):827–887.
Schlegel TT, Janesick A, Blumberg B, Heindel JJ. 2011. Endocrine disrupting chemicals and disease susceptibility. J Steroid Biochem Mol Biol 121(3–5):204–215.
Seckl JR, Clesasby M. 2004. Glucocorticoidc programming. Ann NY Acad Sci 1032:83–84.
Shadid S, Jensen MD. 2002. Effects of pigilozane versus diet and exercise on metabolic health and fat distribution in upper body obesity. Diabetes Care 25(1):314–315.
Simmons RA, Templeton LJ, Gertz SJ. 2001. Intrauterine growth retardation leads to the development of type 2 diabetes in the rat. Diabetologia 50(1):227–229.
Simonetti GD, Schwartz R, Klett M, Hoffmann GF, Liaw J, von Ehrenstein O, et al. 2006. Increased mortality from lung cancer and bronchiectasis in young adults after exposure to prenatal arsenic. Environ Health Perspect 114:1293–1296.
Smith AH, Marshall G, Yuan Y, Ferreccio C, Liaw J, von Ehrenstein O, et al. 2006. Increased mortality from lung cancer and bronchiectasis in young adults after exposure to prenatal arsenic. Environ Health Perspect 114:1293–1296.

Rosenberg ED, Sarraf P, Troy AE, Bradwin G, Moore K, Milstone DS, et al. 1999. PPARγ gamma is required for the differentiation of adipose tissue in vivo and in vitro. Mol Cell 4(4):611–617.

Environmental Health Perspectives • VOLUME 120 • NUMBER 10 • October 2012