Odd Vertex equitable even labeling of cyclic snake related graphs

P. Jeyanthi
Govindammal Aditanar College for Women, India
and
A. Maheswari
Kamaraj College of Engineering and Technology, India
Received : January 2018. Accepted : March 2018

Abstract

Let G be a graph with p vertices and q edges and $A = \{1, 3, ..., q\}$ if q is odd or $A = \{1, 3, ..., q + 1\}$ if q is even. A graph G is said to admit an odd vertex equitable even labeling if there exists a vertex labeling $f : V(G) \rightarrow A$ that induces an edge labeling f^* defined by $f^*(uv) = f(u) + f(v)$ for all edges uv such that for all a and b in A, $|v_f(a) - v_f(b)| \leq 1$ and the induced edge labels are $2, 4, ..., 2q$ where $v_f(a)$ be the number of vertices v with $f(v) = a$ for $a \in A$. A graph that admits an odd vertex equitable even labeling is called an odd vertex equitable even graph. Here, we prove that the graph nC_4-snake, $CS(n_1, n_2, ..., n_k)$, $n_i \equiv 0(\text{mod} 4), n_i \geq 4$, be a generalized kC_n-snake, $TOQS_n$ and $TOQS_n$ are odd vertex equitable even graphs.

Keywords : vertex equitable labeling, vertex equitable graph, odd vertex equitable even labeling, odd vertex equitable even graph.

AMS Subject Classification (2010) : 05C78
1. Introduction

All graphs considered here are simple, finite, connected and undirected. Let $G(V,E)$ be a graph with p vertices and q edges. We follow the basic notations and terminology of graph theory as in [3]. A graph labeling is an assignment of integers to the vertices or edges or both, subject to certain conditions and a detailed survey of graph labeling can be found in [2]. The vertex set and the edge set of a graph are denoted by $V(G)$ and $E(G)$ respectively.

The concept of vertex equitable labeling was due to Lourdusamy and Seenivasan in [16] and further studied in [5]-[14]. Let G be a graph with p vertices and q edges and $A = \{0, 1, 2, \ldots, \lfloor \frac{q}{2} \rfloor \}$. A graph G is said to be vertex equitable if there exists a vertex labeling $f : V(G) \rightarrow A$ that induces an edge labeling f^* defined by $f^*(uv) = f(u) + f(v)$ for all edges uv such that for all a and b in A, $|v_f(a) - v_f(b)| \leq 1$ and the induced edge labels are $1, 2, 3, \ldots, q$, where $v_f(a)$ is the number of vertices v with $f(v) = a$ for $a \in A$. The vertex labeling f is known as vertex equitable labeling. A graph G is said to be a vertex equitable if it admits a vertex equitable labeling.

Motivated by the concept of vertex equitable labeling of graphs, Jeyanthi, Maheswari and Vijaya Lakshmi defined a new labeling namely *odd vertex equitable even labeling* [15]. A graph G with p vertices and q edges and $A = \{1, 3, \ldots, q\}$ if q is odd or $A = \{1, 3, \ldots, q + 1\}$ if q is even. A graph G is said to admit an odd vertex equitable even labeling if there exists a vertex labeling $f : V(G) \rightarrow A$ that induces an edge labeling f^* defined by $f^*(uv) = f(u) + f(v)$ for all edges uv such that for all a and b in A, $|v_f(a) - v_f(b)| \leq 1$ and the induced edge labels are $2, 4, \ldots, 2q$ where $v_f(a)$ be the number of vertices v with $f(v) = a$ for $a \in A$. A graph that admits an odd vertex equitable even labeling is called an odd vertex equitable even graph. In [15] they proved that the graphs like path, P_n, $P_n \cup K_{1,n-2}$ ($n \geq 3$), $K_{2,n}$, T_p-tree, a ladder L_n, arbitrary super subdivision of any path P_n are odd vertex equitable even graphs.

Also they proved that the graphs $K_{1,n}$ is an odd vertex equitable even graph iff $n \leq 2$, the graph $G = K_{1,n} \cup K_{1,n-2}$ ($n \geq 3$) is an odd vertex equitable even graph and cycle C_n is an odd vertex equitable even graph if $n \equiv 0 \text{ or } 1 \pmod{4}$. In addition, they proved that if every edge of a graph G is an edge of a triangle, then G is not an odd vertex equitable even graph.
We use the following definitions in the subsequent section.

Theorem 1.1. The cycle C_n is an odd vertex equitable even graph if $n \equiv 0$ or 1 ($\mod 4$).

Theorem 1.2. Let $G_1(p_1, q_1), G_2(p_2, q_2), \ldots, G_m(p_m, q_m)$ be an odd vertex equitable even graphs with $\sum_{i=1}^{m-1} q_i$ is even, q_m is even or odd and u_i, v_i be the vertices of $G_i(1 \leq i \leq m)$ labeled by 1, if q_i is odd or $q_i + 1$ if q_i is even. Then the graph G obtained by identifying v_1 with u_2 and v_2 with u_3 and v_3 with u_4 and so on until we identify v_{m-1} with u_m is also an odd vertex equitable even graph.

Definition 1.3. The corona $G_1 \odot G_2$ of the graphs G_1 and G_2 is defined as a graph obtained by taking one copy of G_1 (with p vertices) and p copies of G_2 and then joining the i^{th} vertex of G_1 to every vertex of the i^{th} copy of G_2.

Definition 1.4. Let G_1 be a graph with p vertices and G_2 be any graph. A graph $G_1 \diamond G_2$ is obtained from G_1 and p copies of G_2 by identifying one vertex of i^{th} copy of G_2 with i^{th} vertex of G_1.

Definition 1.5. [1] A kC_n -snake is defined as a connected graph in which all the k-blocks are isomorphic to the cycle C_n and the block-cut point graph is a path. Let P be the path of minimum length that contains all the cut vertices of a kC_n -snake. Barrientos proved that any kC_n -snake is represented by a string $s_1, s_2, \ldots, s_{k-2}$ of integers of length $k - 2$ where the i^{th} integer, s_i on the string is the distance between i^{th} and $(i+1)^{th}$ cut vertices on the path P from one extreme and is taken from $S_n = \{1, 2, \ldots, \left\lfloor \frac{n}{2} \right\rfloor \}$. The strings obtained for both extremes are assumed to be the same. Then there are at most $\left\lfloor \frac{n}{2} \right\rfloor^{k-2}$ non isomorphic kC_n -snakes. For example, the string of a $10C_4$ -snake is shown in Figure 1.1 is $2, 2, 1, 2, 1, 1, 2, 1$. A kC_n -snake is said to be linear if each integer of its string is $\left\lfloor \frac{n}{2} \right\rfloor$.
A nC_k-snake is said to be linear if each integer of its string is $\left\lfloor \frac{k}{2} \right\rfloor$. The linear nC_4-snake graph with diagonal vertices u_{1j} $(1 \leq j \leq n + 1)$, left to the diagonal vertices v_{1j} $(1 \leq j \leq n)$ and right to the diagonal vertices w_{1j} $(1 \leq j \leq n)$ is denoted by QS_n. For example, a linear $3C_4$-snake graph QS_3 is shown in Figure 1.2.

Figure 1.1: An embedding of $10C_4$-snake

Figure 1.2: A linear $3C_4$-snake QS_3

Definition 1.6. A generalized kC_n-snake is defined as a connected graph in which each block is isomorphic to a cycle C_n for some n and the block-cut point graph is a path. It is denoted by $CS(n_1, n_2, ..., n_k)$ where $B_1, B_2, ..., B_k$ are the consecutive blocks and B_i is isomorphic to C_{n_i}. By applying the same methods used to obtain the strings of a kC_n-snake, we can show that any generalized kC_n-snake can also be represented by a string of integers $s_1, s_2, ..., s_{k-2}$ of length $k - 2$ where $s_{i-1} \in S_{n_i}$.
Definition 1.7. [4] Let T be a tree and u_0 and v_0 be the two adjacent vertices in T. Let u and v be the two pendant vertices of T such that the length of the path $u_0 - u$ is equal to the length of the path $v_0 - v$. If the edge u_0v_0 is deleted from T and u and v are joined by an edge uv, then such a transformation of T is called an elementary parallel transformation (or an ept) and the edge u_0v_0 is called transformable edge. If by the sequence of ept’s, T can be reduced to a path, then T is called a T_p-tree (transformed tree) and such sequence regarded as a composition of mappings (ept’s) denoted by P, is called a parallel transformation of T. The path, the image of T under P, is denoted as $P(T)$. A T_p-tree and the sequence of two ept’s reducing it to a path are illustrated in Figure 1.3.

![Figure 1.3](image)

2. Main Results

In this section, we prove that nC_4-snake, $CS(n_1, n_2, ..., n_k)$, $n_i \equiv 0 (\text{mod} 4)$, $n_i \geq 4$, be a generalized kC_n-snake, $TOQS_n$ and $TOQS_n$ are odd vertex equitable even graphs.

Theorem 2.1. The nC_4-snake is an odd vertex equitable even graph.

Proof. Let G be a nC_4-snake with n blocks and $G_i = C_4$, $1 \leq i \leq n - 1$ and u_i, v_i be the vertices with labels 1 and $q + 1$ respectively. By Theorem 1.2, nC_4 admits an odd vertex equitable even labeling. An example for odd vertex equitable even labeling of $3C_4$-snake is shown in Figure 2.1.
Theorem 2.2. Let $G = CS(n_1, n_2, ..., n_k), n_i \equiv 0(\text{mod}4), n_i \geq 4$ be a generalized kC_n-snake with its strings $s_1, s_2, ..., s_{k-2}$ where $s_i \in \{1\}, 1 \leq i \leq k$. Then G is an odd vertex equitable even graph.

Proof. By Theorem 1.1, the cycle C_n is an odd vertex equitable even graph if $n \equiv 0(\text{mod}4)$. By Theorem 1.2, $CS(n_1, n_2, ..., n_k), n_i \equiv 0(\text{mod}4)$, is an odd vertex equitable even graph. An example for odd vertex equitable even labeling of $CS(8, 4, 12)$ is shown in Figure 2.2.
Theorem 2.3. If T be a T_p -tree on m vertices, then the graph $\hat{T}\tilde{QS}_n$ is an odd vertex equitable even graph.

Proof. Let T be a T_p -tree with m vertices. By the definition of a transformed tree there exists a parallel transformation P of T such that for the path $P(T)$ we have (i) $V(P(T)) = V(T)$ (ii) $E(P(T)) = (E(T) - E_d) \cup E_p$ where E_d is the set of edges deleted from T and E_p is the set of edges newly added through the sequence $P = (P_1, P_2, ..., P_k)$ of the epts P used to arrive at the path $P(T)$. Clearly, E_d and E_p have the same number of edges.

Now denote the vertices of $P(T)$ successively by $u'_1, u'_2, ..., u'_m$ starting from one pendant vertex of $P(T)$ right up to the other one. Let $u_{i1}, u_{i2}, ..., u_{i(n+1)}, v_1, v_2, ..., v_k$ and $w_1, w_2, ..., w_k (1 \leq i \leq m)$ be the vertices of i^{th} copy of P_n with $u_{i(n+1)} = u'_i$.

Then $V(\hat{T}\tilde{QS}_n) = \{u_{ij} : 1 \leq i \leq m, 1 \leq j \leq n + 1 \text{ with } u_{i(n+1)} = u'_i\} \cup \{u'_i, v_{ij}, w_{ij} : 1 \leq i \leq m, 1 \leq j \leq n\}$ and $E(\hat{T}\tilde{QS}_n) = \{e'_i = u'_i u_{i+1}' : 1 \leq i \leq m - 1\} \cup E(\tilde{QS}_n)$.

Here $|V(\hat{T}\tilde{QS}_n)| = m(3n + 1)$ and $|E(\hat{T}\tilde{QS}_n)| = 4mn + m - 1$.

Let $A = \{1, 3, ..., 4mn + m - 1\}$.

Define a vertex labeling $f : V(\hat{T}\tilde{QS}_n) \rightarrow A$ as follows:

For $1 \leq i \leq m, 1 \leq j \leq n + 1$ $f(u_{ij}) = \begin{cases} (4n + 1)(i - 1) + 4j - 3 & \text{if } i \text{ is odd} \\ (4n + 1)i - (4j - 3) & \text{if } i \text{ is even} \end{cases}$

For $1 \leq i \leq m, 1 \leq j \leq n$.

$f(v_{ij}) = f(u_{ij})$, $f(w_{ij}) = \begin{cases} (4n + 1)(i - 1) + 4j - 1 & \text{if } i \text{ is odd} \\ (4n + 1)i - (4j - 1) & \text{if } i \text{ is even} \end{cases}$

For the vertex labeling f, the induced edge labeling f^* is as follows:

For $1 \leq i \leq m - 1$ $f^*(e'_i) = 2(4n + 1)i$.

The induced edge labels of \tilde{QS}_n are $2(4n + 1)(i - 1) + 2j(1 \leq i \leq m, 1 \leq j \leq 2n)$ if i is odd and $2(4n + 1)(i - 1) + 2j(1 \leq i \leq m, 1 \leq j \leq 2n)$ if i is even.

Let v_iv_j be a transformed edge in T for some indices $i, j, 1 \leq i \leq j \leq m$.

Let P_1 be the ept that deletes the edge v_iv_j and adds an edge $v_{i+t}v_{j-t}$ where t is the distance of v_i from v_{i+t} and the distance of v_j from v_{j-t}.

Let P be a parallel transformation of T that contains P_1 as one of the constituent epts. Since $v_{i+t}v_{j-t}$ is an edge in the path $P(T)$, it follows that $i + t + 1 = j - t$ which implies $j = i + 2t + 1$.

Therefore, i and j are of opposite parity, that is, i is odd and j is even or vice-versa.

The induced label of the edge v_iv_j is given by $f^*(v_iv_j) = f^*(v_{i}v_{i+2t+1}) = f(v_i) + f(v_{i+2t+1}) = 2(4n + 1)(i + t)$ and

$$f^*(v_{i+t}v_{j-t}) = f^*(v_{i+t}v_{i+t+1}) = f(v_{i+t}) + f(v_{i}v_{i+t+1}) = 2(4n + 1)(i + t).$$

Therefore, $f^*(v_iv_j) = f^*(v_{i+t}v_{j-t})$. It can be verified that the induced edge labels of $TOQS_n$ are $2, 4, 6, ..., 8mn + 2m - 2$ and $|v_f(a) - v_f(b)| \leq 1$ for all $a, b \in A$.

Hence, $TOQS_n$ is an odd vertex equitable even graph.

An example for odd vertex equitable even labeling of $TOQS_2$ where T is a T_p-tree on 8 vertices is shown in Figure 2.3.
Theorem 2.4. Let T be a T_p-trees on m vertices. Then the graph $T\tilde{O}QS_n$ is an odd vertex equitable even graph.

Proof. Let T be a T_p-tree with m vertices. By the definition of a transformed tree there exists a parallel transformation P of T such that for the path $P(T)$ we have (i) $V(P(T)) = V(T)$ (ii) $E(P(T)) = (E(T) - E_d) \cup E_p$ where E_d is the set of edges deleted from T and E_p is the set of edges newly added through the sequence $P = (P_1, P_2, ..., P_k)$ of the epts P used to arrive at the path $P(T)$. Clearly, E_d and E_p have the same number of edges. Now denote the vertices of $P(T)$ successively by $u_1', u_2', ..., u_m'$ starting from one pendant vertex of $P(T)$ right up to the other one.

Let $u_1, u_2, ..., u_{i(n+1)}, v_1, v_2, ..., v_m$ and $w_1, w_2, ..., w_m(1 \leq i \leq m)$ be the vertices of i^{th} copy of P_n. □
Then \(V(T\overline{QS}_n) = \{u_{ij} : 1 \leq i \leq m, 1 \leq j \leq n + 1\} \cup \{u_i, v_i, w_{ij} : 1 \leq i \leq m, 1 \leq j \leq n\} \) and \(E(T\overline{QS}_n) = E(QS_n) \cup \{e'_i = u_{i}u_{i+1} : 1 \leq i \leq m-1\} \cup \{e''_i = u_{i}u_{i(n+1)} : 1 \leq i \leq m\}. \)

Here \(|V(T\overline{QS}_n)| = m(3n + 2) \) and \(|E(T\overline{QS}_n)| = 4mn + 2m - 1. \)

Let \(A = \{1, 3, ..., 4mn + 2m - 1\}. \)

Define a vertex labeling \(f : V(T\overline{QS}_n) \rightarrow A \) as follows:

For \(1 \leq i \leq m, 1 \leq j \leq n+1 \)

\[
 f(u_{ij}) = \begin{cases}
 (4n + 2)(i - 1) + 4j - 3 & \text{if } i \text{ is odd} \\
 (4n + 2)i - (4j - 3) & \text{if } i \text{ is even}
\end{cases}
\]

For \(1 \leq i \leq m, 1 \leq j \leq n \)

\[
 f(v_{ij}) = f(u_{ij}), \quad f(w_{ij}) = \begin{cases}
 (4n + 2)(i - 1) + 4j - 1 & \text{if } i \text{ is odd} \\
 (4n + 2)i - (4j - 1) & \text{if } i \text{ is even}
\end{cases}
\]

\[
 f(u'_i) = \begin{cases}
 (4n + 2)i - 1 & \text{if } i \text{ is odd} \\
 (4n + 2)i - (4n + 1) & \text{if } i \text{ is even}
\end{cases}
\]

For the vertex labeling \(f \), the induced edge labeling \(f^* \) is as follows:

For \(1 \leq i \leq m - 1 \)

\[
 f^*(e'_i) = 2(4n + 2)i,
\]

For \(1 \leq i \leq m \)

\[
 f^*(e''_i) = \begin{cases}
 2(4n + 2)i - 2 & \text{if } i \text{ is odd} \\
 2(4n + 2)(i - 1) + 2 & \text{if } i \text{ is even}
\end{cases}
\]

The induced edge labels of \(QS_n \) are \(2(4n+2)(i-1)+2j \) (\(1 \leq i \leq m, 1 \leq j \leq 2n \)) if \(i \) is odd and \(2(4n+2)(i-1)+2j \) (\(1 \leq i \leq m, 1 \leq j \leq 2n \)) if \(i \) is even.

Let \(v_iv_j \) be a transformed edge in \(T \) for some indices \(i, j, 1 \leq i \leq j \leq m \).

Let \(P_t \) be the ept that deletes the edge \(v_iv_j \) and adds an edge \(v_{i+t}v_{j-t} \) where \(t \) is the distance of \(v_i \) from \(v_{i+t} \) and the distance of \(v_j \) from \(v_{j-t} \).

Let \(P \) be a parallel transformation of \(T \) that contains \(P_t \) as one of the constituent epts. Since \(v_{i+t}v_{j-t} \) is an edge in the path \(P(T) \), it follows that \(i + t + 1 = j - t \) which implies \(j = i + 2t + 1 \).

Therefore, \(i \) and \(j \) are of opposite parity, that is, \(i \) is odd and \(j \) is even or vice-versa.

The induced label of the edge \(v_iv_j \) is given by \(f^*(v_iv_j) = f^*(v_{i+2t+1}) = f(v_i) + f(v_{i+2t+1}) = 2(4n + 2)(i + t) \) and
Odd vertex equitable even labeling of cyclic make related graphs

\[f^*(v_{i+t}v_{j-t}) = f^*(v_{i+t}v_{i+t+1}) = f(v_{i+t}) + f(v_{i+t+1}) = 2(4n+2)(i+t). \]

Therefore, \(f^*(v_iv_j) = f^*(v_{i+t}v_{j-t}) \).

It can be verified that the induced edge labels of \(\tilde{T}_{\text{OQS}} \) are \(2, 4, 6, \ldots, 8mn+4m-2 \) and \(|v_f(a) - v_f(b)| \leq 1 \) for all \(a, b \in A \).

Hence, \(\tilde{T}_{\text{OQS}} \) is an odd vertex equitable even graph.

An example for odd vertex equitable even labeling of \(\tilde{T}_{\text{OQS}}_2 \) where \(T \) is a \(T_p \)-tree on 8 vertices is shown in Figure 2.4.

![Figure 2.4](image-url)
References

[1] C. Barrientos, Difference Vertex Labelings, Ph.D. Thesis, Universitat Politecnica de Catalunya, Barcelona, (2004).

[2] Joseph A. Gallian, A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics, 19, (2017)#DS6.

[3] F. Harary, Graph theory, Addison Wesley, Massachusetts, (1972).

[4] S. M. Hedge and Sudhakar Shetty, On Graceful Trees, Applied Mathematics E-Notes, 2, pp. 192-197, (2002).

[5] P. Jeyanthi and A. Maheswari, Some results on vertex equitable labeling, Open J. Discrete Math., 2, pp. 51-57, (2012).

[6] P. Jeyanthi and A. Maheswari, Vertex equitable labeling of Transformed Trees, Journal of Algorithms and Computation, 44, pp. 9-20, (2013).

[7] P. Jeyanthi and A. Maheswari, Vertex equitable labeling of cyclic snakes and bistar graphs, Journal of Scientific Research, 6, (1), pp. 79-85, (2014).

[8] P. Jeyanthi and A. Maheswari, Vertex equitable labeling of families of graphs, Graph theory Notes of New York, LXVII, pp. 34-42, (2014).

[9] P. Jeyanthi and A. Maheswari, Vertex Equitable Labeling of Super Subdivision Graphs, Scientific International, 27 (4), pp. 1-3, (2015).

[10] P. Jeyanthi, A. Maheswari and M. Vijayalakshmi, Vertex equitable labeling of cycle and star related graphs, Journal of Scientific Research, 7, pp. 33-42, (2015).

[11] P. Jeyanthi and A. Maheswari, Vertex equitable labeling of cycle and path related graphs, Utilitas Mathematica, 98, pp. 215-226, (2015).

[12] P. Jeyanthi, A. Maheswari and M. Vijaya Lakshmi, Vertex equitable labeling of Double Alternate Snake Graphs, Journal of Algorithms and Computation, 46, pp. 27-34, (2015).
[13] P. Jeyanthi, A. Maheswari and M. Vijaya Lakshmi, New Results on Vertex Equitable Labeling, Journal of Algebra Combinatorics Discrete structures and Applications, 3, (2), pp. 97-104, (2016).

[14] P. Jeyanthi, A. Maheswari and M. Vijaya Lakshmi, Vertex Equitable Labeling of Union of Cyclic Snake graphs, Proyecciones Journal of Mathematics, 35, (2), pp. 177-186, (2016).

[15] P. Jeyanthi, A. Maheswari and M. Vijaya Lakshmi, Odd Vertex Equitable Even Labeling, Proyecciones Journal of Mathematics, 36, (1), pp. 1-11, (2017).

[16] A. Lourdusamy and M. Seenivasan, Vertex equitable labeling of graphs, Journal of Discrete Mathematical Sciences and Cryptography, 11, (6), pp. 727-735, (2008).

P. Jeyanthi
Research Centre,
Department of Mathematics,
Govindammal Aditanar College for Women,
Tiruchendur-628215, Tamilnadu,
India
e-mail : jeyajeyanthi@rediffmail.com

and

A. Maheswari
Department of Mathematics,
Kamaraj College of Engineering and Technology,
Virudhunagar, Tamilnadu,
India
e-mail : bala_nithin@yahoo.co.in