The Hamiltonian problem and t-path traceable graphs

Kashif Bari
Department of Mathematics and Statistics
San Diego State University
San Diego, California
kashbari@math.tamu.edu

Michael E. O’Sullivan
Department of Mathematics and Statistics
San Diego State University
San Diego, California
mosullivan@mail.sdsu.edu

Abstract

The problem of characterizing maximal non-Hamiltonian graphs may be naturally extended to characterizing graphs that are maximal with respect to non-traceability and beyond that to t-path traceability. We show how traceability behaves with respect to disjoint union of graphs and the join with a complete graph. Our main result is a decomposition theorem that reduces the problem of characterizing maximal t-path traceable graphs to characterizing those that have no universal vertex. We generalize a construction of maximal non-traceable graphs by Zelinka to t-path traceable graphs.

1 Introduction

The motivating problem for this article is the characterization of maximal non-Hamiltonian (MNH) graphs. Skupien and co-authors give the first broad family of MNH graphs in [6] and describe all MNH graphs with 10 or fewer vertices in [2]. The latter paper also includes three constructions—types $A1$, $A2$, $A3$—with a similar structure. Zelinka gave two constructions of graphs that are maximal non-traceable; that is, they have no Hamiltonian path, but the addition of any edge gives a Hamiltonian path. The join of such a graph with a single vertex gives a MNH graph. Zelinka’s first family produces, under the join with K_1, the Skupien MNH graphs from [6]. Zelinka’s second family is a broad generalization of the type $A1$, $A2$, and $A3$ graphs of [2]. Bullock et al [1] provide further examples of infinite families of maximal non-traceable graphs.

In this article we work with two closely related invariants of a graph G, $\hat{\mu}(G)$ and $\mu(G)$. The μ-invariant, introduced by Ore [5], is the maximal number of paths in G required to cover the vertex set of G. We show that $\hat{\mu}(G) = \mu(G)$ unless G is Hamiltonian, when $\hat{\mu}(G) = 0$. Maximal non-Hamiltonian graphs are maximal with respect to $\hat{\mu}(G) = 1$, and maximal non-traceable graphs are maximal with respect to $\hat{\mu}(G) = 2$. It is useful to broaden the perspective to study, for arbitrary t, graphs that are maximal with respect to $\hat{\mu}(G) = t$, which we call t-path traceable graphs.

In Section 2 we show how the $\hat{\mu}$ and μ invariants behave with respect to disjoint union of graphs and the join with a complete graph. Section 3 derives the main result, a decomposition theorem that reduces the problem of characterizing maximal t-path traceable to characterizing those that have no universal vertex, which we call trim. Section 4 presents a generalization of the Zelinka construction to t-path traceable graphs.
2 Traceability and Hamiltonicity

It will be notationally convenient to say that the complete graphs K_1 and K_2 are Hamiltonian. As justification for this view, consider an undirected graph as a directed graph with each edge having a conjugate edge in the reverse direction. This perspective does not affect the Hamiltonicity of a graph with more than 3 vertices, but it does give K_2 a Hamiltonian cycle. Similarly, adding loops to any graph with more than 2 vertices does not alter the Hamiltonicity of the graph, but K_1, with an added loop, has a Hamiltonian cycle.

Let G be a graph. A vertex, $v \in V(G)$, is called a universal vertex if $\deg(v) = |V(G)| - 1$.

Lemmas 2.2 Traceability and Hamiltonicity

Let G denote the graph complement of G, having vertex set $V(G)$ and edge set $E(K_n) \setminus E(G)$. We will use the disjoint union of two graphs, $G \sqcup H$ and the join of two graphs $G \ast H$. The latter is $G \sqcup H$ together with the edges $\{vw|v \in V(G) \text{ and } w \in V(H)\}$.

Definition 1. A set of s disjoint paths in a graph G that includes every vertex in G is a s-path covering of G. Define the following invariants.

$$
\mu(G) := \min_{s \in \mathbb{N}} \{\exists \text{s-path covering of } G\}.
$$

$$
\tilde{\mu}(G) := \min_{l \in \mathbb{N}_0} \{K_l \ast G \text{ is Hamiltonian }\}
$$

$$
i_H(G) := \begin{cases}
1 & \text{if } G \text{ is Hamiltonian} \\
0 & \text{otherwise}
\end{cases}
$$

We will say G is t-path traceable when $\mu(G) = t$. A set of t disjoint paths that cover a t-path traceable graph G is a minimal path covering.

Note that $K_r \ast (K_s \ast G) = K_{r+s} \ast G$. If G is Hamiltonian then so is $K_r \ast G$ for $r \geq 0$. (In particular this is true for $G = K_1$ and $G = K_2$.)

We now have a series of lemmas that lead to the main result of this section, which is a formula showing how the μ-invariant and $\tilde{\mu}$-invariant behave with respect to disjoint union and the join with a complete graph.

Lemma 2. $\tilde{\mu}(G) = \min_{l \in \mathbb{N}_0} \{K_l \ast G \text{ is Hamiltonian }\}$

Proof. Since $K_l \ast G$ is a subgraph of $K_l \ast G$, a Hamiltonian cycle in $K_l \ast G)$ would also be one in $K_l \ast G$.

Let $\tilde{\mu}(G) = a$. Suppose C is a Hamiltonian cycle in $K_a \ast G$ and write C as $v \sim P_1 \sim Q_1 \sim \ldots \sim P_s \sim Q_s \sim v$, where v is a vertex in G and the paths $P_i \in G$ and $Q_i \in K_a$. If any Q_i contains 2 vertices or more, say u and w_1, \ldots, w_k with $k \geq 1$, then we may simply remove all the vertices, except u, and end up with a Hamiltonian graph on K_{a-k}. This contradicts the minimality of $a = \tilde{\mu}(G)$. Therefore, C must not contain any paths of length greater than two in the subgraph K_a, and any Hamiltonian cycle on $K_a \ast G$ is also a Hamiltonian cycle on $K_a \ast G$. \hfill \Box

Lemma 3. $\tilde{\mu}(G) = \mu(G) - i_H(G)$

Proof. If G is Hamiltonian (including P_1 and P_2) then $\tilde{\mu}(G) = 0$, $\mu(G) = 1$ so the equality holds. Suppose G is non-Hamiltonian with $\mu(G) = t$ and t-path covering P_1, \ldots, P_l. Let K_l
have vertices u_1, \ldots, u_t. In the graph $K_t \ast G$, there is a Hamiltonian cycle: $v_1 \sim P_1 \sim v_2 \sim P_2 \sim \cdots \sim v_t \sim P_t \sim v_1$. Thus $\mu(G) \leq t = \mu(G)$.

Let $\tilde{\mu}(G) = a$, so there is a Hamiltonian cycle in $K_a \ast G$. Removing the vertices of K_a breaks the cycle into at most a disjoint paths covering G. Thus $\mu(G) \leq \tilde{\mu}(G)$. □

Lemma 4. $\mu(G \sqcup H) = \mu(G) + \mu(H)$ and $\tilde{\mu}(G \sqcup H) = \tilde{\mu}(G) + \tilde{\mu}(H) + i_H(G) + i_H(H)$.

Proof. A path covering of G may be combined with a path covering of H to create one for $G \sqcup H$. Conversely, paths in a t-path covering of $G \sqcup H$ can be partitioned into those contained in G and those contained in H, giving a path covering of G and one of H. Consequently

$$\mu(G \sqcup H) = \mu(G) + \mu(H)$$

Since $G \sqcup H$ is not Hamiltonian we have

$$\tilde{\mu}(G \sqcup H) = \mu(G \sqcup H) + i_H(G \sqcup H)$$

$$= \mu(G) + \mu(H)$$

$$= \tilde{\mu}(G) + i_H(G) + \tilde{\mu}(H) + i_H(H)$$

□

Lemma 5. For any graph G,

$$\mu(K_s \ast G) = \max \{1, \mu(G) - s\}$$

$$\tilde{\mu}(K_s \ast G) = \max \{0, \tilde{\mu}(G) - s\}$$

In particular, if $K_s \ast G$ is Hamiltonian then $\mu(K_s \ast G) = 1$ and $\tilde{\mu}(K_s \ast G) = 0$; otherwise, $\mu(K_s \ast G) = \mu(G) - s$ and $\tilde{\mu}(K_s \ast G) = \tilde{\mu}(G) - s$.

Proof. The formula for $\tilde{\mu}$ is immediate when G is Hamiltonian since we have observed that this forces $K_s \ast G$ to be Hamiltonian. Otherwise, it follows from $K_r \ast (K_s \ast G) = K_{r+s} \ast G$: if $\tilde{\mu}(G) = a$, then $K_r \ast (K_s \ast G)$ is Hamiltonian if and only if $r + s \geq a$.

The formula for μ may be derived from the result for $\tilde{\mu}$ using Lemma 4. We may also prove it directly. Observe that it is enough to prove $\mu(K_1 \ast G) = \max \{1, \mu(G) - 1\}$. Let u be the vertex of K_1. Let $\mu(G) = t$ and P_1, \ldots, P_t a t-path covering of G. If $t = 1$ then u can be connected to the initial vertex of P_1 to create a 1-path covering of $K_1 \ast G$. For $t \geq 2$, the path $P_1 \sim u \sim P_2$ along with P_3, \ldots, P_t gives a $(t-1)$-path covering of $K_1 \ast G$. Thus for $t \geq 1$, $\mu(K_1 \ast G) \leq t - 1$. Suppose Q_1, \ldots, Q_d were a minimal d-path covering of $K_1 \ast G$, with u a vertex of Q_1. Removing u gives at most a $(d+1)$-path covering of G. Thus $\mu(K_1 \ast G) + 1 \geq t$. This shows $\mu(K_1 \ast G) = \mu(G) - 1$ for $\mu(G) \geq 2$. □

The main result of this section is the following two formulas for the μ and $\tilde{\mu}$ invariants for the disjoint union of graphs, and the join with a complete graph.
Proposition 6. Let \(\{G_j\}_{j=1}^m \) be graphs.

\[
\mu\left(\bigcup_{j=1}^m G_j \right) = \sum_{j=1}^m \mu(G_j) \quad \text{and} \quad \hat{\mu}\left(\bigcup_{j=1}^m G_j \right) = \sum_{j=1}^m \hat{\mu}(G_j) + \sum_{j=1}^m i_H(G_j).
\]

Furthermore, \(\hat{\mu}\left(\bigcup_{j=1}^m G_j \right) \ast K_r = \max \{0, \sum_{j=1}^m \hat{\mu}(G_j) + \sum_{j=1}^m i_H(G_j) - r\} \).

Proof. We proceed by induction. The base case \(k = 2 \) is exactly Lemma 4. Assume the formula holds for \(k \) graphs we will prove it for \(k + 1 \) graphs.

\[
\mu\left(\bigcup_{j=1}^{k+1} G_j \right) = \mu\left(\bigcup_{j=1}^k G_j \cup G_{k+1} \right)
\]

\[
= \mu\left(\bigcup_{j=1}^k G_j \right) + \mu(G_{k+1})
\]

\[
= \sum_{j=1}^k \mu(G_j) + \mu(G_{k+1})
\]

\[
= \sum_{j=1}^{k+1} \mu(G_j)
\]

By Lemma 5 and the fact that disjoint graphs are not Hamiltonian, we have,

\[
\hat{\mu}\left(\bigcup_{j=1}^m G_j \right) = \mu\left(\bigcup_{j=1}^m G_j \right) + i_H\left(\bigcup_{j=1}^m G_j \right)
\]

\[
= \sum_{j=1}^m \mu(G_j) + 0
\]

\[
= \sum_{j=1}^m (\hat{\mu}(G_j) + i_H(G_j))
\]

\[
= \sum_{j=1}^m \hat{\mu}(G_j) + \sum_{j=1}^m i_H(G_j)
\]

Therefore, we have by Lemma 5,

\[
\hat{\mu}\left(\bigcup_{j=1}^m G_j \right) \ast K_r = \max \{0, \sum_{j=1}^m \hat{\mu}(G_j) + \sum_{j=1}^m i_H(G_j) - r\}
\]

\[
= \max \{0, \sum_{j=1}^m \hat{\mu}(G_j) + \sum_{j=1}^m i_H(G_j) - r\}
\]
The following lemma will be useful in the next section. To express it succinctly we introduce the following Boolean condition. For a graph G and vertex $v \in G$, $T(v, G)$ is true if and only if v is a terminal vertex in some minimal path covering of G.

Lemma 7. Let $v \in G$ and $w \in H$.

$$\mu((G \sqcup H) + vw) = \begin{cases}
\mu(G \sqcup H) - 1 & \text{if } T(v, G) \text{ and } T(w, H) \\
\mu(G \sqcup H) & \text{otherwise}
\end{cases}$$

Proof. Let $\mu(G) = c$, $\mu(H) = d$ and $\mu((G \sqcup H) + vw) = t$. Clearly, $t \leq c + d$.

Let R_1, \ldots, R_t be a minimal path cover of $(G \sqcup H) + vw$. If no R_i contains vw then this is also a minimal path cover of $(G \sqcup H)$ so $t = c + d$. Suppose R_1 contains vw and note that R_1 is the only path with vertices in both G and H. Removing vw gives two paths $P \subseteq G$ and $Q \subseteq H$. Paths P and Q along with R_2, \ldots, R_t cover $G \sqcup H$, so $t + 1 \geq c + d$. Thus, t can either be $c + d$ or $c + d - 1$.

If $t = c + d - 1$, then we have the minimal $(t + 1)$-path covering P, Q, R_2, \ldots, R_t of $G \sqcup H$, as above. We note that v must be a terminal point of P and w must be a terminal point of Q, by construction. This path covering may be partitioned into a c-path covering of G containing P and a d-path covering of H containing Q. Thus, $T(v, G)$ and $T(w, H)$ hold.

Conversely, suppose $T(v, H)$ and $T(w, H)$ both hold. Let P_1, \ldots, P_c be a minimal path of G with v a terminal vertex of P_1 and let Q_1, \ldots, Q_d be a minimal path cover of H with w a terminal vertex of Q_1. The edge vw knits P_1 and Q_1 into a single path and $P_1 \sim Q_1, P_1, \ldots, P_c, Q_1, \ldots, Q_d$ is a $c + d - 1$ cover of $(G \sqcup H) + vw$. Consequently, $t \leq c + d - 1$.

Thus, $T(v, G)$ and $T(w, H)$ both hold if and only if $t = c + d - 1$. Otherwise, $t = c + d$.

Corollary 8. Let $v \in G$ and $w \in H$.

$$
\tilde{\mu}((G \sqcup H) + vw) = \begin{cases}
\tilde{\mu}(G \sqcup H) - 2 & \text{if } G = H = K_1 \\
\tilde{\mu}(G \sqcup H) - 1 & \text{if } T(v, G) \text{ and } T(w, H) \\
\tilde{\mu}(G \sqcup H) & \text{Otherwise}
\end{cases}
$$

Proof. Let $\delta = 1$ if $T(v, G)$ and $T(w, H)$ are both true and $\delta = 0$ otherwise. Then

$$
\tilde{\mu}((G \sqcup H) + vw) = \mu((G \sqcup H) + vw) - i_H((G \sqcup H) + vw) = \mu((G \sqcup H) - \delta - i_H((G \sqcup H) + vw)
$$

The final term is -1 if and only if $G = H = K_1$.

3 Decomposing Maximal t-path traceable graphs

In this section we prove our main result, a maximal t-path traceable graph may be uniquely written as the join of a complete graph and a disjoint union of graphs that are also maximal...
Proof. We have already shown that \mathcal{H} for $t \geq 0$ and $\mathcal{N}t$ for $t \geq 1$.

$$\mathcal{M}_t := \{G|\mu(G) = t \text{ and } \mu(G + e) < t, \forall e \in E(G)\}$$
$$\mathcal{N}_t := \{G \in \mathcal{M}_t|G \text{ is connected and has no universal vertex }\}$$

The set \mathcal{M}_0 is the set of complete graphs. The set \mathcal{M}_1 is the set of graphs with a Hamiltonian path but no Hamiltonian cycle, that is, maximal non-Hamiltonian graphs. For $t > 1$, \mathcal{M}_t is also the set of graphs G such $\mu(G) = t$ and $\mu(G + e) = t - 1$ for any $e \in E(G)$. We will call these maximal t-path traceable graphs. A graph in \mathcal{N}_t will be called trim.

Proposition 9. For $0 \leq s < t$, $G \in \mathcal{M}_t$ if and only if $K_s \ast G \in \mathcal{M}_{t-s}$.

Proof. We have $\mu(K_s \ast G) = \mu(G) - s$, so we just need to show that $K_s \ast G$ is maximal if and only if G is maximal. The only edges that can be added to $K_s \ast G$ are those between vertices of G, that is, $E(K_s + G) = E(G)$. For such an edge e,

$$\mu\left((K_s \ast G) + e\right) = \mu\left(K_s \ast (G + e)\right) = \mu(G + e) - s$$

Consequently, $\mu(G + e) = \mu(G) - 1$ if and only if $\mu\left((K_s \ast G) + e\right) = \mu(K_s \ast G) - 1$. \square

Note that the proposition is false for $s = t > 0$ since $K_s \ast G$ will not be a complete graph and \mathcal{M}_0 is the set of complete graphs. The proof breaks down in \square.

Proposition 10. Let $G \in \mathcal{M}_c$ and $H \in \mathcal{M}_d$. The following are equivalent.

1. $G \sqcup H \in \mathcal{M}_{c+d+i_H(G)+i_H(H)}$
2. Each of G and H is either complete or has no universal vertex.

Proof. We have already shown that $\mu(G \sqcup H) = c + d + i_H(G) + i_H(H)$. We have to consider whether adding an edge to $G \sqcup H$ reduces the μ-invariant. There are three cases to consider, the extra edge may be in $E(G)$ or $E(H)$ or it may join a vertex in G to one in H. Since G is maximal, adding an edge to G is either impossible, when G is complete, or it reduces the μ-invariant of G. This edge would also reduce the μ-invariant of $G \sqcup H$ by Lemma. The case for adding an edge of H is the same. Consider the edge vw for $v \in V(G)$ and $w \in V(H)$. By Corollary the μ-invariant will drop if and only if v is the terminal point of a path in a minimal path covering of G and similarly for w in H, that is, $T(v, G)$ and $T(w, H)$. Clearly this holds for all vertices in a complete graph. The following lemma shows that $T(v, G)$ holds for $G \in \mathcal{M}_c$ with $c > 0$ if and only if v is not a universal vertex in G. Thus, in order for $G \sqcup H$ to be maximal G must either be complete, or be maximal itself, and have no universal vertex, and similarly for H. \square

As a key step before the main theorem, the next lemma shows that in a maximal graph, each vertex is universal, or a terminal vertex in a minimal path covering.
Lemma 11. Let $c \geq 1$ and $G \in \mathcal{M}_c$. For any two non-adjacent vertices v, w in G there is a c-path covering of G in which both v and w are terminal points of paths. Moreover, a vertex $v \in G$ is a terminal point in some c-path covering if and only if v is not universal.

Proof. Suppose $c > 1$ and let v, w be non-adjacent in G. Since G is maximal $G + vw$ has a $(c - 1)$-path covering, P_1, \ldots, P_{c-1}. The edge vw must be contained in some P_j because G has no $(c - 1)$-path covering. Removing that edge gives a c-path covering of G with v and w as terminal vertices. The special case $c = 1$ is well known, adding the edge vw gives a Hamiltonian cycle, and removing it leaves a path with endpoints v and w. A consequence is that any non-universal vertex is the terminal point of some path in a c-path covering.

Suppose P_1, \ldots, P_c is a c-path covering of $G \in \mathcal{M}_c$ with v a terminal point of P_t. Then v is not adjacent to any of the terminal points of P_j for $j \neq i$, for otherwise two paths could be combined into a single one. In the case $c = 1$, v cannot be adjacent to the other terminal point of P_1, otherwise G would have a Hamiltonian cycle. Consequently a universal vertex is not a terminal point in a c-path covering of G.

Theorem 12. For any $G \in \mathcal{M}_t$, $t > 0$, G may be uniquely decomposed as $K_s \ast (G_1 \sqcup \ldots \sqcup G_r)$, where s is the number of universal vertices of G, and each G_j is either complete or $G_j \in \mathcal{N}_j$ for some $t_j > 0$. Furthermore $t = \sum_{j=1}^{r} t_j + \sum_{j=1}^{r} i_H(G_j) - s$.

Proof. Suppose $G \in \mathcal{M}_t$ and let s be the number of universal vertices of G. Let r be the number of components in the graph obtained by removing the universal vertices from G, let G_1, \ldots, G_r be the components and let $\hat{\mu}(G_j) = t_j$.

Proposition 9 shows that $t = \sum_{j=1}^{r} t_j + \sum_{j=1}^{r} i_H(G_j) - r$. By Proposition 9 we have that $G \in \mathcal{M}_t$ if and only if $G_1 \sqcup \ldots \sqcup G_r \in \mathcal{M}_{t+s}$. Furthermore, each G_j must be in \mathcal{N}_j for otherwise we could. Without loss of generality if we add an edge e to G_1, such that $\hat{\mu}(G_1 + e) < t_1$, then

$$\hat{\mu}(G + e) = \hat{\mu}(G_1 + e) + \sum_{j=2}^{r} t_j + \sum_{j=1}^{r} i_H(G_j) - s$$

$$< \sum_{j=1}^{r} t_j + \sum_{j=1}^{r} i_H(G_j) - s$$

$$= t$$

Now, we apply Proposition 10 so then $G_1 \sqcup \ldots \sqcup G_r \in \mathcal{M}_{t+s}$, where $t + s = \sum_{j=1}^{r} t_j + \sum_{j=1}^{r} i_H(G_j)$ if and only if G_j is either trim or complete. In other words, $G_j \in \mathcal{N}_j$ for $t_j > 0$ or $G_j \in \mathcal{M}_0$ for $t_j = 0$.

\[7\]
4 Trim maximal t-path traceable graphs

Skupien \[6\] discovered the first family of maximal non-Hamiltonian graphs, that is, graphs in \mathcal{M}_1. These graphs are formed by taking the join with K_r of the disjoint union of $r + 1$ complete graphs. The smallest graph in \mathcal{N}_2 is shown in Figure 1. Chvátal identified its join with K_1 as the smallest maximal non-Hamiltonian graph that is not 1-tough, that is, not one of the Skupien family. Jamrozik, Kalinowski and Skupien \[2\] generalized this example to three different families.

Family A_1 replaces each edge $u_i v_i$ with an arbitrary complete graph containing u_i and replaces the K_3 formed by the u_i with an arbitrary complete graph. The result has four cliques, the first three disjoint from each other but each intersecting the fourth clique in a single vertex. This graph is also in \mathcal{N}_2 and its join with K_1 gives a maximal non-Hamiltonian graph. Family A_2 is formed by taking the join with K_2 of the disjoint union of a complete graph and the graph in \mathcal{N}_2 just described. Theorem 12 shows that the resulting graph is in \mathcal{M}_1. Family A_3 is a modification of the A_1 family based on the graph in Figure 2, which is in \mathcal{N}_2. Bullock, Frick, Singleton and van Aardt \[1\] recognized that two constructions of Zelinka \[7\] gave maximal non-traceable graphs, that is, elements of \mathcal{N}_2. Zelinka’s first construction is like the Skupien family: formed from $r + 1$ complete graphs followed by the join with K_{r-1}. The Zelinka Type II family contains graphs in \mathcal{N}_2 that are a significant generalization of the graphs in Figures 1 and 2. In this section we generalize this family further to get graphs in \mathcal{N}_t for arbitrary t. Our starting point is the graph in Figure 3 which is in \mathcal{N}_3.

Example 13. Consider K_m with $m \geq 2t - 1$ and vertices u_1, \ldots, u_m. Let G be the graph containing K_m along with vertices v_1, \ldots, v_{2t-1} and edges $u_i v_i$. The case with $t = 3$ and $m = 5 = 2t - 1$ is Figure 3. We claim $G \in \mathcal{N}_t$.

One can readily check that this graph is t-path covered using $v_{2i-1} \sim u_{2i-1} \sim v_{2i} \sim v_{2i+1}$ for $i = 1, \ldots, t - 1$ and $v_{2t-1} \sim u_{2t-1} \sim u_{2t} \sim \cdots \sim u_m$. We check that G is maximal. By the symmetry of the graph, we need only consider the addition of the edge $v_1 u_m$ and $v_1 v_2$. In either case, the last and the first paths listed above may be combined into one, either

\[
\begin{align*}
\text{or } v_{2t-1} \sim v_{2t-1} \sim \cdots \sim u_m & \sim v_1 \sim u_1 \sim u_2 \sim v_2, \\
v_{2t-1} \sim v_{2t-1} \sim \cdots \sim u_m & \sim u_1 \sim v_1 \sim v_2.
\end{align*}
\]
Figure 2: The join of this graph with K_1 is the smallest graph in the A_3 family.

Thus, adding an edge creates a $(t - 1)$-path covered graph, proving maximality.

The next proposition shows that the previous example is the only way to have a trim maximal t-path covered graph with $2t - 1$ degree-one vertices. We start with a technical lemma.

Lemma 14. Let G be a connected graph and let $u_1, v_1, v_2, v_3 \in G$ with $\text{deg}(v_i) = 1$, and u adjacent to v_1 and v_2 but not v_3. Then $\mu(G) = \mu(G + uv_3)$.

Proof. Let P_1, \ldots, P_r be a minimal path covering of $G + uv_3$; it is enough to show that there are r-paths covering G. If the covering doesn’t include uv_3, then P_1, \ldots, P_r also give a minimal path covering of G establishing the claim of the lemma. Otherwise, suppose uv_3 is an edge of P_1. We consider two cases.

Suppose P_1 contains the edge uv_1 (or similarly uv_2). Then P_1 has v_1 as a terminal point and one of the other paths, say P_2, must be a length-0 path containing simply v_2. Let Q be obtained by removing uv_1 and uv_3 from P_1. Then $v_1 \sim u \sim v_2, Q, P_3, \ldots, P_r$, gives an r-path covering of G.

Suppose P_1 contains neither uv_1 nor uv_2. Then each of v_1 and v_2 must be on a length-0 path in the covering, say P_2 and P_3 are these paths. Furthermore u must not be a terminal point of P_1, for, if were, the path could be extended to include v_1 or v_2, reducing the number of paths required to cover G. Removing u from P_1 yields two paths, Q_1, Q_2. Then $v_1 \sim u \sim v_2, Q_1, Q_2, P_4, \ldots, P_r$ gives an r-path cover of G. This proves the lemma.

Proposition 15. Let $G \in \mathcal{G}_t$. The number of degree-one vertices in G is at most $2t - 1$. This occurs if and only if the $2t - 1$ vertices of degree-one have distinct neighbors and removing the degree-one vertices leaves a complete graph.

Proof. Each degree-one vertex must be a terminal point in a path covering. So any graph G covered by t paths can have at most $2t$ degree-one vertices. Aside from the case $t = 1$ and...
Figure 3: Whirligig in N_3.

$G = K_2$, we can see that a graph with $2t$ degree-one vertices cannot be maximal t-path traceable as follows. It is easy to check that a $2t$ star is not t-path traceable (it is also not trim). A t-path traceable graph with $2t$ degree-one vertices must therefore have an interior vertex w that is not connected to one of the degree-one vertices v. Such a graph is not maximal because the edge vw can be added leaving $2t - 1$ degree-one vertices. This graph cannot be $(t - 1)$-path covered.

Suppose that $G \in N_t$ with $2t - 1$ degree-one vertices, $v_1, \ldots, v_{2t - 1}$. Lemma 14 shows that no two of the v_i can be adjacent to the same vertex, for that would violate maximality of G. So, the v_i have distinct neighbors. Furthermore, all the nodes except the v_i can be connected to each other and a path covering will still require at least t paths since there remain $2t - 1$ degree-one vertices. This proves the necessity of the structure claimed in the proposition. The previous example showed that the graph is indeed in N_t.

We can now generalize the Zelinka family.

Construction 16. Let $U_0, U_1, \ldots, U_{2t - 1}$ be disjoint sets and $U = \bigcup_{i=0}^{2t-1} U_i$. Let $m_i = |U_i|$ and assume that for $i > 0$ the U_i are non-empty, so $m_i > 0$. For $i = 1, \ldots, 2t - 1$ (but not $i = 0$) and $j = 1, \ldots, m_i$, let V_{ij} be disjoint from each other and from U. Form the graph with vertex set $U \cup \left(\bigcup_{i=1}^{2t-1} \left(\bigcup_{j=1}^{m_i} V_{ij} \right) \right)$ and edges uu' for $u, u' \in U$ and uv for any $u \in U_i$ and $v \in V_{ij}$ with $i = 1, \ldots, 2t - 1$ and $j = 1, \ldots, m_i$. The cliques of this graph are K_U and $K_{U \cup V_{ij}}$ for each $i = 1, \ldots, 2t - 1$ and $j = 1, \ldots, m_i$.

The graph in Figure 2 has $m_0 = 0$, $m_1 = m_2 = 1$ and $m_3 = 2$, and the graph in Figure 4 indicates the general construction.
Theorem 17. The graph W in Construction 16 is a trim, maximal t-path traceable graph.

Proof. We must show that W is t-path covered and not $(t - 1)$-path covered, and that the addition of any edge yields a $(t - 1)$-path covered graph. The argument is analogous to the one in Example 13.

Let R be a Hamiltonian path in U_0. For each $i = 1, \ldots, 2t - 1$ and $j = 1, \ldots, m_i$ let Q_{ij} be a Hamiltonian path in $K_{V_{ij}}$. Let P_i be the path

$$P_i : Q_{i1} \sim u_{i1} \sim \cdots \sim Q_{im_i} \sim u_{im_i}$$

and let P_i^{-1} be the reversal of P_i.

Since there is an edge $u_{im_i}u_{j_{m_j}}$ there is a path $P_i \sim P_j$ for any $i \neq j \in \{1, \ldots, 2t - 1\}$. Therefore the graph W has a t-path covering $P_{2i-1} \sim P_{2i}$ for $i = 1, \ldots, (t - 1)$, along with $P_{2t-1} \sim R$. We leave to the reader the argument that there is no $(t - 1)$-path cover.

To show W is maximal we show that after adding an edge e, we can join two paths in the t-path cover above, with a bit of rearrangement. There are three types of edges to consider, the edge e might join V_{ij} to $U_{i'}$ for $i \neq i'$; or V_{ij} to $V_{ij'}'$ for $j \neq j'$; or V_{ij} to $V_{i'j'}'$ for $i \neq i'$. Because of the symmetry of W, we may assume $i = 1$ and $j = 1$ and that the vertex chosen from V_{ij} is the initial vertex of Q_{i1}. Other simplifications due to symmetry will be evident in what follows.

In the first case there are two subcases—determined by $i' \geq 2t$ or not—and after permutation, we may consider the edge e from the initial vertex of Q_{11} to the terminal vertex of R, or to the terminal vertex of P_{2t-1}. We can then join two paths in the t-path cover: either $P_{2i-1} \sim R \sim P_1 \sim P_2$ or $P_2 \sim P_1 \sim P_{2t-1} \sim R$.

11
Suppose next that we join the initial vertex of Q_{11} with the terminal vertex of Q_{12}. We then rearrange P_1 and join two path in the t-path cover to get

$$P_{2t-1} \sim R \sim u_{11} \sim Q_{11} \sim Q_{12} \sim u_{12} \sim \cdots \sim Q_{1m_1} \sim u_{1m_1} \sim \overleftarrow{P_2}$$

Finally, suppose that we join the initial vertex of Q_{11} with the initial vertex of $Q_{2t-1,1}$. Then we rearrange to

$$R \sim \overleftarrow{P}_{2t-1} \sim P_1 \sim \overleftarrow{P}_2.$$

\[\square\]

References

[1] F. Bullock, M. Frick, J. Singleton, S. van Aardt, K. Mynhardt, Maximal Nontraceable Graphs with Toughness less than One, Electronic Journal of Combinatorics 18 (2008), #R18.

[2] J. Jamrozik, R. Kalinowski, Z. Skupien, A Catalogue of Small Maximal Nonhamiltonian Graphs, Discrete Mathematics 39 (1982), 229-234.

[3] A. Marcyzk, Z. Skupien, Maximum nonhamiltonian tough graphs, Discrete Mathematics 96 (1991), 213-220.

[4] S. Noorvash, Covering the vertices of a graph by vertex-disjoint paths, Pacific Journal of Mathematics 58 (1975), 159-168.

[5] O. Ore, Arc Coverings of graphs, Ann. Mat. Ser. IV 55 (1961), 315-321.

[6] Z. Skupien, On Maximum non-Hamiltonian graphs, Rostock. Math. Kolloq. 11 (1979), 97-106.

[7] B. Zelinka, Graphs maximal with respect to absence of Hamiltonian Paths, Discussiones Mathematicae, Graph Theory 18 (1998), 205-208.