Supplementary Materials for

Cristae-dependent quality control of the mitochondrial genome

Christopher Jakubke, Rodaria Roussou, Andreas Maiser, Christina Schug, Felix Thoma, David Bunk, David Hörl, Heinrich Leonhardt, Peter Walter, Till Klecker, Christof Osman*

*Corresponding author. Email: osman@bio.lmu.de

Published 1 September 2021, Sci. Adv. 7, eabi8886 (2021)
DOI: 10.1126/sciadv.abi8886

The PDF file includes:

Figs. S1 to S9
Tables S1 to S3
Legends for movies S1 to S6

Other Supplementary Material for this manuscript includes the following:

Movies S1 to S6
Supplementary materials

Figure legends S1 to S9
Movie legends S1 to S6
Table legends S1 to S3
Supplementary figure S1-S9
Tables S1 to S3
Movie S1 to S6
Figure S1

(A) Quantitative PCR analysis of mtDNA levels of WT or Δcob::ARG8 strains, which were used in the pedigree analysis (Fig. 1C). No difference in mtDNA levels between both strains are apparent. The average value is derived from three biological replicates. The value for each biological replicate was derived from three technical replicates; Error bars indicate SD. n. s. - non significant, t-test.

(B) Carry-over cell material does not support growth upon restreaking. Replica plat- ing during the pedigree analysis results in carry-over of cell material. While such cell material is easily distinguished from growing cells by direct visual inspection of plates, it is difficult to discern on photos. For this experiment, cell material was restreaked on selective plate to demonstrate the difference between carry-over cell material and cell growth. Asterisks indicate carry-over cell material.

(C) PCR analysis corroborates results from the growth-based pedigree assay. Genomic DNA was extracted directly from YPD grown colonies without further incubation from three pedigree lineages and remaining cell material was replica plated onto YPG or SC-ARG (lacking arginine) plates. Presence of the COB gene (present in WT mtDNA, which supports growth on YPG) or the ARG8 gene (present in Δcob::ARG8 mtDNA, which supports growth on SC-Arg) was tested by PCR using specific oligos for the respective genes. PCR results correlate perfectly with the growth based analysis.

(D) Schematic illustration of the pedigree analysis, explaining the skipping of generations on a respective medium. YPG - rich medium containing the non-fermentable carbon source glycerol, SC-Arg - synthetic defined medium lacking arginine.
Figure S2

(A) Pedigree analysis of WT cells. The experiment is virtually identical to the experiment presented in Fig. 1C with the difference that the starting strains for the pedigree analysis had switched mating types. Specifically, in this experiment the strain containing WT mtDNA had mating type \textit{alpha}, whereas the strain containing \textit{\Delta cob::ARG8} had mating type \textit{a}. Striped bars indicate percentage of heteroplasmic cells containing WT and \textit{\Delta cob::ARG8} mtDNA. Grey or red bars indicate percentage of homoplasmic cells containing WT or \textit{\Delta cob::ARG8} mtDNA, respectively.

(B) Pedigree analysis of cells containing \textit{ARG8} inserted neutrally into mtDNA upstream of the \textit{COX2} gene. We cannot distinguish between cells that are heteroplasmic for both mtDNA species and cells where \textit{ARG8} had recombined into WT mtDNA. The shown result, however, indicates that \textit{ARG8} does not confer a strong disadvantage on mtDNA, which could lead to its removal.
Figure S3

(A) Quantitative PCR analysis of mtDNA levels of WT or Δcob::ARG8-TetO-TetR-3xmRuby3 strains, which were used for the microscopy experiments presented in Fig. 1D. A slight increase in the mtDNA levels of the Δcob::ARG8-TetO-TetR-3xmRuby3 is apparent. The average value is derived from three biological replicates. The value for each biological replicate was derived from three technical replicates; Error bars indicate SD. n. s. - non significant, t-test.

(B) Additional microscopic images of the inheritance of either LacO-marked intact or TetO-marked Δcob::ARG8-TetO mtDNA. Images complement data shown in Fig. 1D.

Scale bar: D 10 μm.
Figure S4

(A and B) Time-lapse microscopy of mating events between WT cells expressing either matrix-targeted NG or matrix-targeted mKate2. Mating events are shown, where either both cells contained WT mtDNA (A) or one cell contained WT mtDNA and the other contained $\Delta cob::ARG8$ mtDNA (B). Selected time-frames for (B) are shown in Fig. 1E.

(C and D) Similar to (A), except that cells with deletions of the nuclear-encoded $\Delta dnm1$ (C) or $\Delta atg32$ (D) were used.

Scale bars: A-D 10 μm.
Figure S5

(A) Schematic illustration of the NG-tagged ATP6 within mtDNA.

(B) Quantitative PCR analysis of mtDNA levels of WT or strains expressing the Atp6-NG protein. The average value is derived from three biological replicates. The value for each biological replicate was derived from three technical replicates; Error bars indicate SD. n. s. - non significant, t-test.

(C) Petite frequency of the Atp6-NG strain in comparison to WT and the Δatp21 strains.

(D) Westernblot analysis of strains harbouring either WT or ATP6-NG mtDNA. Aconitase (Aco1) was used as a loading control.

(E) Widefield fluorescence microscopy images of diploid cells harbouring ATP6-NG mtDNA and expressing nuclear-encoded matrix-targeted mScarlet. Scale bar: E 10 µm.
Figure S6

(A) Time-lapse microscopy of mating events between WT cells harbouring ATP6-NG mtDNA and WT cells harbouring WT mtDNA and expressing nuclear-encoded matrix-targeted Kate2.

(B) Time-lapse microscopy of mating events between cells expressing NG-tagged Cox4 and cells expressing nuclear-encoded matrix-targeted mKate2.

(C) Growth analysis of strains expressing NG fused to Pam16 or the transmembrane domain of Fis1 in comparison to WT. Strains were used in the time-lapse experiment presented in Fig. 2, E and F and Fig. S4D and E.

(D) Westernblot analysis of strains harbouring the NG-tagged version of Pam16. Aconitase was used as a loading control. Note that no signal for free NG is detectable indicating that NG is not cleaved off.

(E) Time-lapse microscopy of mating events between WT cells expressing NG fused to the transmembrane domain of Fis1 and WT cells expressing nuclear-encoded matrix-targeted mKate2.

(F) Time-lapse microscopy of mating events between cells expressing NG-tagged Pam16 and cells expressing nuclear-encoded matrix-targeted mKate2.

Scale bars: A and D-E 10 µm.
Figure S7

(A) Quantification of the equilibration of soluble Su9-mKate2 protein in mating experiments shown in Fig. 3A and B; ** P<0.01, t-test.

(B) Quantification of the Atp6-NG in the daughter cells of zygotes from mating experiments shown in Fig. 3A and B; * P<0.05, t-test.

(C) Spot test of strains expressing Atp6-NG or Atp6-mKate2 compared to the WT and a strain harbouring Δatp6 mtDNA.

(D) Quantification of the co-localization of Atp6-NG and Atp6-mKate2 in daughter cells derived from matings between WT, Δatp20 or Δatp20 cells, in which parental cells contained either ATP6-NG or ATP6-mKate2 mtDNA. The Pearson (PCC) and Manders (MCC) correlation coefficients between Atp6-NG and Atp6-mKate2 signals along the mitochondrial network of daughter cells were determined for multiple cells in three independent experiments; * P<0.05, ** P<0.01, t-test.
Figure S8

(A) Electron micrographs of mitochondria from WT, Δatp20, Δatp21, and Δatp20 Δatp21 cells grown in rich medium containing glucose.

(B) Quantification of cristae shape from cells grown in rich medium containing glucose. For each strain, mitochondria from 50 cells were scored for mitochondrial ultrastructure and grouped into the indicated categories. Shown is the mean ± standard deviation from three independent experiments. Examples of mitochondria with altered cristae shape are depicted on the right.

(C) Electron micrographs of mitochondria from Δatp20 Δatp21 cells grown in rich medium containing galactose. Shown are two representative cells. For each cell, the same mitochondrion was imaged in consecutive 70 nm ultrathin sections.

Scale bars: A and C 500 nm; B 200 nm.
Figure S9

(A) Quantitative PCR analysis of mtDNA levels of WT, Δatp20, Δatp21, Δatp20Δatp21, Δmic10, or Δmic60 strains containing WT or Δcob mtDNA. Strains were used for the pedigree analysis presented in Figure 4A-F. The average value is derived from three biological replicates. The value for each biological replicate was derived from three technical replicates; Error bars indicate SD. n. s. - non significant, t-test.

(B) Petite frequency of the indicated deletion strains.
Movie S1

Mitochondrial morphology during mating events of WT cells. Mating events between two cells containing either WT or Δcob::ARG8 mtDNA. Cells expressed either matrix-targeted mKate2 (WT mtDNA, cyan) or NG (Δcob::ARG8 mtDNA, magenta). Mating events were monitored by live-cell microscopy. Brightfield, single fluorescent channels and a merge from both fluorescent channels are shown.

Movie S2

Mitochondrial morphology during mating events of Δdnm1 cells. Mating events between two Δdnm1 cells containing either WT or Δcob::ARG8 mtDNA. Cells expressed either matrix-targeted mKate2 (WT mtDNA, cyan) or NG (Δcob::ARG8 mtDNA, magenta). Mating events were monitored by live-cell microscopy. Brightfield, single fluorescent channels and a merge from both fluorescent channels are shown. Images were taken in 7 min intervals.

Movie S3

Mitochondrial morphology during mating events of Δatg32 cells. Mating events between two Δatg32 cells containing either WT or Δcob::ARG8 mtDNA. Cells expressed either matrix-targeted mKate2 (WT mtDNA, cyan) or NG (Δcob::ARG8 mtDNA, magenta). Mating events were monitored by live-cell microscopy. Brightfield, single fluorescent channels and a merge from both fluorescent channels are shown. Images were taken
in 7 min intervals.

Movie S4

Diffusion of mitochondrial-encoded Atp6-NG throughout the mitochondrial network of zygotes. Cells expressing matrix-targeted mKate2 (cyan) were mated with cells expressing mtDNA-encoded Atp6-NG (magenta) and were monitored by live cell imaging. Brightfield, single fluorescent channels and a merge from both fluorescent channels are shown. Images were taken in 7 min intervals.

Movie S5

Diffusion of Fis-NG throughout the mitochondrial network of zygotes. Cells expressing matrix-targeted mKate2 (cyan) were mated with cells expressing nuclear-encoded Fis1-NG (magenta) and were monitored by live cell imaging. Brightfield, single fluorescent channels and a merge from both fluorescent channels are shown. Images were taken in 7 min intervals.

Movie S6

Diffusion of Pam16-NG throughout the mitochondrial network of zygotes. Cells expressing matrix-targeted mKate2 (cyan) were mated with cells expressing nuclear-encoded Pam16-NG (magenta) and were monitored by live cell imaging. Brightfield, single
fluorescent channels and a merge from both fluorescent channels are shown. Images were taken in 7 min intervals.

Table S1

Yeast strains used in this study.

Table S2

Primers used in this study.

Table S3

Plasmids used in this study.
Supplemental Figure 1

A

mtDNA levels
(fold change)

WT ∆cob

0.0 0.5 1.0 1.5

B

Dissection YPD plate

Homopl. for WT mtDNA

Homopl. for ∆cob mtDNA
Supplemental Figure 1

c

YPD
Dissection YPD plate
Lineage 1
Lineage 2
Lineage 3

YPG
Homopl. for WT mtDNA

SC-Arg
Homopl. for ∆cob mtDNA

Control	Lineage 1	Lineage 2	Lineage 3
WT ∆arg	WT ∆arg	WT ∆arg	WT ∆arg
Zygote	Gen. 1	Gen. 2	Gen. 1
Gen. 4	Gen. 5	Gen. 3	Gen. 4
Gen. 5	Gen. 5	Gen. 4	Gen. 5

COB amplicon

ARG8 amplicon

D Pedigree analysis, most often observed pattern

1. **Mating**
 - Δcob mtDNA
 - WT mtDNA

2. **Microdissection**
 - Heteroplasmic colony
 - Growth on YPG and SC-Arg

3. **Pedigree analysis, generation skipping**
 - Microdissection
 - Heteroplasmic colony
 - Growth on YPG and SC-Arg
 - Homoplasmic colony
 - Growth only on YPG

- Heteroplasmic colony
- Growth only on YPG
Supplemental Figure 2

A Wildtype - switched MAT types (N=55)

B Neutral ARG8 (N=16)
Supplemental Figure 3

A

mtdNA levels [fold change]

WT TetR
∆cob TetR

n.s.

B

Brightfield
LacI-3xGFP
∆cob TetR-3xmRuby3
Matrix
TagBFP
Merge

mtDNA levels [fold change]
Supplemental Figure 5

A

B

C

D

E
Supplemental Figure 8

A

Images showing mitochondrial structures in different strains:
- WT
- Δatp20
- Δatp21
- Δatp20Δatp21

B

Graph showing the percentage of mitochondria with different characteristics:
- WT
- Δatp20
- Δatp21
- Δatp20Δatp21

C

Images of cell 1 and cell 2 in Δatp20Δatp21 strain:
- No cristae
- Onion-like
- Septae

Scale bars are included for each image.
Supplemental Figure 9

A

mtDNA levels [fold change]

mtDNA Genotype	n. s.					
WT						
∆cob						
WT-Δatp20						
WT-Δatp21						
WT-Δmic10						
WT-Δmic60						
WT-Δatp20Δatp21						
WT-Δatp21						
WT-Δmic10						
WT-Δmic60						

B

Pelle frequency [%]

Genotype	Pelle frequency [%]			
WT	0			
Δatp20	5			
Δatp21	10			
Δmic10	15			
Δmic60	20			
Δatp20Δatp21	25			
Δmic10Δmic60	20			
Name / Alias	Short description	Mating type	Genotype	Source
-------------	-------------------	-------------	----------	--------
yCO380	WT	Mat a	leu2-3, 112 can1-100 ura3-1 his3-11, 15 mt-LacO	1
yCO381	WT	Mat alpha	leu2-3, 112 can1-100 ura3-1 his3-11, 15 mt-LacO	1
yCO391	∆arg8	Mat a	ade2-1 his3-11, 15 trp1-1 leu2-3, 112 ura3-1 CAN1 arg8::HIS3 intronless mtDNA	2
yCO354	∆arg8::HIS3 Δcob::ARG8M	Mat alpha	ade2-1 his3-11, 15 trp1-1 leu2-3, 112 ura3-1 CAN1 arg8::HIS3 cob::ARG8M intronless mtDNA	2
yCJ048	Neutral ARG8	Mat alpha	leu2-3, 112 can1-100 ura3-1 his3-11, 15 ∆arg8::hphNT1 ARG8::mtDNA	This study
yCO392	∆arg8	Mat alpha	ade2-1 his3-11, 15 trp1-1 leu2-3, 112 ura3-1 CAN1 arg8::HIS3 intronless mtDNA	This study
yCO969	∆arg8::HIS3 Δcob::ARG8M	Mat a	ade2-1 his3-11, 15 trp1-1 leu2-3, 112 ura3-1 CAN1 arg8::HIS3 cob::ARG8M intronless mtDNA	This study
yCO460	Δcob::ARG8-TetO-TetR-3xRuby	Mat a	leu2-3, 112 trp1-1 can1-100 ura3-1 his3-11, 15 ∆arg8::hphNT pvt100u-mtTagBFP HO-Su9-TetR-3xRuby3--KanMX4-HO Δcob::ARG8-TetO	This study
yCJ033	LacO- LacI-3xGFP	Mat alpha	leu2-3, 112 can1-100 ura3-1 his3-11, 15 mt-LacO HO-Su9-TagBFP-Pcup-Su9-3xGFP-LacI::kanMX4	This study
yCJ009	HO::Su9-mKate2	Mat a	leu2-3, 112 can1-100 ura3-1 his3-11, 15 mt-LacO HO::Su9-mKate2::kanMX6	This study
Strain	Chromosome	Genotype	Notes	
-----------	------------	-------------------	----------------------------	
yCJ010	HO::Su9-NG	Mat alpha	leu2-3,112 can1-100 ura3-1 his3-11,15 mt-LacO HO::Su9-NG::kanMX6	This study
yCJ078	Δarg8::HIS3 Δcob::ARG8M HO::Su9-NG	Mat alpha	ade2-1 his3-11,15 trp1-1 leu2-3,112 ura3-1 CAN1 arg8::HIS3 cob::ARG8M HO::Su9-NG-kanMX6 intronless mtDNA	This study
yCJ081	Δarg8::HIS3 HO::Su9-mKate2	Mat a	ade2-1 his3-11,15 trp1-1 leu2-3,112 ura3-1 CAN1 arg8::HIS3 intronless mtDNA HO::Su9-mKate2::kanMX6	This study
yCJ002	Δdnm1 Δarg8::HIS3 Δcob::ARG8M HO::Su9-NG	Mat alpha	ade2-1 his3-11,15 trp1-1 leu2-3,112 ura3-1 CAN1 arg8::HIS3 cob::ARG8M intronless mtDNA Δdnm1::hpNT1	This study
yCJ004	Δdnm1 Δarg8	Mat a	ade2-1 his3-11,15 trp1-1 leu2-3,112 ura3-1 CAN1 arg8::HIS3 intronless mtDNA Δdnm1::hpNT1	This study
yCJ085	Δdnm1 Δarg8::HIS3 Δcob::ARG8M HO::Su9-NG	Mat alpha	ade2-1 his3-11,15 trp1-1 leu2-3,112 ura3-1 CAN1 arg8::HIS3 cob::ARG8M intronless mtDNA Δdnm1::hpNT1 HO::Su9-NG-kanMX6	This study
yCJ086	Δdnm1 Δarg8 HO::Su9-mKate2	Mat a	ade2-1 his3-11,15 trp1-1 leu2-3,112 ura3-1 CAN1 arg8::HIS3 cob::ARG8M intronless mtDNA Δdnm1::hpNT1 HO::Su9-mKate2-kanMX6	This study
yCJ074	Δatg32 Δarg8::HIS3 Δcob::ARG8M	Mat alpha	ade2-1 his3-11,15 trp1-1 leu2-3,112 ura3-1 CAN1 arg8::HIS3 cob::ARG8M intronless mtDNA Δatg32::hpNT1	This study
yCJ075	Δatg32 Δarg8	Mat a	ade2-1 his3-11,15 trp1-1 leu2-3,112 ura3-1 CAN1 arg8::HIS3 intronless mtDNA Δatg32::hpNT1	This study
yCJ076	Δatg32 Δarg8::HIS3 Δcob::ARG8M HO::Su9-NG	Mat alpha	ade2-1 his3-11,15 trp1-1 leu2-3,112 ura3-1 CAN1 arg8::HIS3 cob::ARG8M intronless mtDNA Δatg32::hpNT1 HO::Su9-NG-kanMX6	This study
Strain	Type	Gene(s)	Markers/Replacements	Notes
----------	-----------------	-----------------------------------	---	------------------------------
yCJ077	Δatg32 Δarg8 HO::Su9-mKate2	Mat a	ade2-1 his3-11,15 trp1-1 leu2-3,112 ura3-1 CAN1 arg8::HIS3 intronless mtDNA Δatg32::hphNT1 HO::Su9-mKate2-kanMX6	This study
yCO114	rho0	Mat alpha	leu2 ura3-52 ade2-101 arg8::URA3 kar1-1 rho0	3
yCO115	rho+ Δcox2	Mat a	lys2 leu2-3,112 ura3-52 his3HinDIII arg8::hisG rho+ cox2-62	3
yCJ025	MR6 WT	Mat a	ade2-1 his3-11,15 trp1-1 leu2-3,112 ura3-1 CAN1 arg8::HIS3	4
yCJ026	MR10 Δatp6	Mat a	ade2-1 his3-11,15 trp1-1 leu2-3,112 ura3-1 CAN1 arg8::HIS3 Δatp6	4
yCJ043	ATP6-NG	Mat a	ade2-1 his3-11,15 trp1-1 leu2-3,112 ura3-1 CAN1 arg8::HIS3 ATP6-NG	This study
yCJ126	HO::Su9-mScarlet ATP6-NG	Mat a/alpha	ade2-1 his3-11,15 trp1-1 leu2-3,112 ura3-1 CAN1 arg8::HIS3 ATP6-NG HO::Su9-mScarlet-URA3	This study
yCJ045	HO::Su9-mKate2	Mat alpha	leu2-3,112 can1-100 ura3-1 his3-11,15 mt-LacO HO::Su9-mKate2-kanMX6	This study
yCJ019	COX4-NeonGreen	Mat alpha	leu2-3,112 can1-100 ura3-1 his3-11,15 mt-LacO Cox4-NeonGreen	This study
yCJ072	Fis1-NG	Mat a	ade2-1 his3-11,15 trp1-1 leu2-3,112 ura3-1 CAN1 arg8::HIS3 intronless mtDNA FIS1-NG::kanMX6	This study
yCJ114	Pam16-NG	Mata	leu2-3,112 can1-100 ura3-1 his3-11,15 mt-LacO PAM16-NG::kanMX	This study
yCJ051	Δatp21 ATP6-NG	Mat a	ade2-1 his3-11,15 trp1-1 leu2-3,112 ura3-1 CAN1 arg8::HIS3 ATP6-NG Δatp21::hphNT1	This study
yCJ052	Δatp21 HO::Su9-mKate2	Mat alpha	leu2-3,112 can1-100 ura3-1 his3-11,15 mt-LacO Mito Δatp21::hphNT1 HO::Su9-mKate2-kanMX6	This study
Strain	Description	Genotype	Notes	
----------	---	--	------------------------	
yCJ053	Δatp20 ATP6-NG	Mat a ade2-1 his3-11,15 trp1-1 leu2-3,112 ura3-1 CAN1 arg8::HIS3 ATP6-NG	This study	
yCJ054	Δatp20 HO::Su9-mKate2	Mat alpha leu2-3,112 can1-100 ura3-1 his3-11,15 mt-LacO Mito Δatp20::hphNT2 HO::Su9-mKate2-kanMX6	This study	
yCJ057	Δatp20 Δatp21 ATP6-NG	Mat a ade2-1 his3-11,15 trp1-1 leu2-3,112 ura3-1 CAN1 arg8::HIS3 ATP6-NG	This study	
yCJ058	Δatp20 Δatp21 HO::Su9-mKate2	Mat alpha leu2-3,112 can1-100 ura3-1 his3-11,15 mt-LacO Mito Δatp21::hphNT1 Δatp20::hphNT2 HO::Su9-mKate2-kanMX6	This study	
yCO754	Δmic10 ATP6-NG	Mat a ade2-1 his3-11,15 trp1-1 leu2-3,112 ura3-1 CAN1 arg8::HIS3 ATP6-NG	This study	
yCO755	Δmic10 HO::Su9-mKate2	Mat alpha leu2-3,112 can1-100 ura3-1 his3-11,15 mt-LacO Mito Δmic10::hphNT1 HO::Su9-mKate2-kanMX6	This study	
yCJ066	Δmic60 ATP6-NG	Mat a ade2-1 his3-11,15 trp1-1 leu2-3,112 ura3-1 CAN1 arg8::HIS3 ATP6-NG	This study	
yCJ067	Δmic60 HO::Su9-mKate2	Mat alpha leu2-3,112 can1-100 ura3-1 his3-11,15 mt-LacO Mito Δmic60::hphNT1 HO::Su9-mKate2-kanMX6	This study	
yCJ120	ATP6-mKate2	Mat a ade2-1 his3-11,15 trp1-1 leu2-3,112 ura3-1 CAN1 arg8::HIS3 ATP6-mKate2	This study	
yCJ084	ATP6-NG	Mat alpha leu2-3,112 can1-100 ura3-1 his3-11,15 ATP6-NG	This study	
yCJ123	ATP6-NG pvt100u-TagBFP	Mat alpha leu2-3,112 can1-100 ura3-1 his3-11,15 ATP6-NG pvt100u-TagBFP	This study	
yCJ124	ATP6-mKate2 pvt100u-TagBFP	Mat a	ade2-1 his3-11,15 trp1-1 leu2-3,112 ura3-1 CAN1 arg8::HIS3 ATP6-mKate2 pvt100u-TagBFP	This study
yCJ127	ATP6-NG Δatp20 pvt100u-TagBFP	Mat alpha	leu2-3,112 can1-100 ura3-1 his3-11,15 ATP6-NG Δatp20::NatNT2 pvt100u-TagBFP	This study
yCJ128	ATP6-mKate2 Δatp20 pvt100u-TagBFP	Mat a	ade2-1 his3-11,15 trp1-1 leu2-3,112 ura3-1 CAN1 arg8::HIS3 ATP6-mKate2 Δatp20::NatNT2 pvt100u-TagBFP	This study
yCJ130	ATP6-NG Δatp21 pvt100u-TagBFP	Mat alpha	leu2-3,112 can1-100 ura3-1 his3-11,15 ATP6-NG Δatp21::hphNT1 pvt100u-TagBFP	This study
yCJ132	ATP6-mKate2 Δatp21 pvt100u-TagBFP	Mat a	ade2-1 his3-11,15 trp1-1 leu2-3,112 ura3-1 CAN1 arg8::HIS3 ATP6-mKate2 Δatp21::hphNT1 pvt100u-TagBFP	This study
yCJ103	WT LacO-LacI	Mat alpha	leu2-3,112 can1-100 ura3-1 his3-11,15 mt-LacO Su9-3xGFP-LacI::kanMX6	This study
yCJ104	WT matrix-mKate2	Mat a	leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15 HO-Su9-mKate2	This study
yCJ105	LacO-Lacl Δatp21	Mat alpha	leu2-3,112 can1-100 ura3-1 his3-11,15 mt-LacO Su9-3xGFP-LacI::kanMX6 Δatp21::NatNT2	This study
yCJ106	matrix-mKate2 Δatp21	Mat a	leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15 HO-Su9-mKate2 Δatp21::NatNT2	This study
yCJ134	LacO-Lacl Δmic60	Mat alpha	leu2-3,112 can1-100 ura3-1 his3-11,15 mt-LacO Su9-3xGFP-LacI::kanMX6 Δmic60::hphNT1	This study
yCJ135	matrix-mKate2 Δmic60	Mat a	leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15 HO-Su9-mKate2 Δmic60::hphNT1	This study
yCJ020	Δatp20 Δarg8::HIS3 Δcob::ARG8M	Mat alpha	ade2-1 his3-11,15 trp1-1 leu2-3,112 ura3-1 CAN1 arg8::HIS3 cob::ARG8M intronless mtDNA Δatp20::hphNT1	This study
YCJ022	Δatp20 Δarg8	Mat a	ade2-1 his3-11,15 trp1-1 leu2-3,112 ura3-1 CAN1 arg8::HIS3 intronless mtDNA Δatp20::hphNT1	This study
------	--------------	-------	---	------------
YCJ046	Δatp20Δatp21 Δarg8::HIS3 Δcob::ARG8M	Mat alpha	ade2-1 his3-11,15 trp1-1 leu2-3,112 ura3-1 CAN1 arg8::HIS3 cob::ARG8M intronless mtDNA Δatp21::hphNT1 Δatp20::kanMX6	This study
YCJ047	Δatp20Δatp21 Δarg8	Mat a	ade2-1 his3-11,15 trp1-1 leu2-3,112 ura3-1 CAN1 arg8::HIS3 intronless mtDNA Δatp21::hphNT1 Δatp20::kanMX6	This study
YCJ055	Δatp21 Δarg8::HIS3 Δcob::ARG8M	Mat alpha	ade2-1 his3-11,15 trp1-1 leu2-3,112 ura3-1 CAN1 arg8::HIS3 cob::ARG8M intronless mtDNA Δatp21::hphNT1	This study
YCJ007	Δatp21 Δarg8	Mat a	ade2-1 his3-11,15 trp1-1 leu2-3,112 ura3-1 CAN1 arg8::HIS3 intronless mtDNA Δatp21::hphNT1	This study
YCO756	Δmic10 Δarg8::HIS3 Δcob::ARG8M	Mat alpha	ade2-1 his3-11,15 trp1-1 leu2-3,112 ura3-1 CAN1 arg8::HIS3 cob::ARG8M intronless mtDNA Δmic10::hphNT1	This study
YCO757	Δmic10 Δarg8	Mat a	ade2-1 his3-11,15 trp1-1 leu2-3,112 ura3-1 CAN1 arg8::HIS3 intronless mtDNA Δmic10::hphNT1	This study
YCJ070	Δmic60 Δarg8::HIS3 Δcob::ARG8M	Mat alpha	ade2-1 his3-11,15 trp1-1 leu2-3,112 ura3-1 CAN1 arg8::HIS3 cob::ARG8M intronless mtDNA Δmic60::hphNT1	This study
YCJ071	Δmic60 Δarg8	Mat a	ade2-1 his3-11,15 trp1-1 leu2-3,112 ura3-1 CAN1 arg8::HIS3 intronless mtDNA Δmic60::hphNT1	This study

1 Osman et al. 2015
2 Gruschke et al. 2011
3 Steele et al. 1996
4 Rak et al. 2007
Name / Alias	Sequence	
CO356 ∆dnm1 S1	CATTAAGTAGCTACCAGCAGTCTAAATACGGACTAAAGAATG	
	CGTACGCTGGAGCTGCAGAC	
CO357 ∆dnm1 S2	CGCAATGTTGAAGTAAGATCAAATGAGTAATTATGCAATTA	
	ATCGATGAATTCGAGGTGAGCTGCAGAC	
CO573 ∆atg32 S1	TCACAAAAACGGAAAAATCTGCCAGGAACAGGTAAAAACATGCGTACGCTGCAGGTCGAGCAGC	
CO574 ∆atg32 S2	GTGAGTAGGAACGTGTATGTTGTTGATATATGGAAAAAGGTATTATCGAGTAATTTCGAGGTCGAGC	
CO888 ∆mic10 S1	TGCTAGGAGGAGAAGGAAACGGAAAAAGACAAAAATATACCAGGCGTACGCTGCAGGTCGAGCAGC	
CO889 ∆mic10 S2	TATTTTTTTTTTGAATATATATATAAAGCAGCATCGTGCGCTTAAGACTAAATGCGTACGCTGCAGGTCR	
CO986 ∆atp20 S1	ACCTGGCGATAAACATTTCCAGAACGTATACGCTATCAATTCATCTGATCAGATCGTGCTGAGGTCGAC	
CO987 ∆atp20 S2	ACGAATACAGGTTGTTGGAATGAGATAGGTAATAAGAACAGGATGATGAGTTGAAAGTGCGTACGCTGCAGGTCGAC	
CO1104 ∆atp21 S1	CGGAACATAACGTATATAGGAACTAGCTGAGTGAGTTAAAGGATCGTACGCTGCAGGTCGAC	
CO1105 ∆atp21 S2	TAATGATGATATCCATTGCTATCTATTTATGGTGAAGCAGTGCTATTTAATGCGTACGCTGCAGGTCGAC	
CO1114 qPCR Cox1 fv	CTACAGTATACAGCATTTCAGGA	
CO1115 qPCR Cox1 rv	GTGCCCTGAATAGATGATAATGGT	
CO1116 qPCR Act1 fv	CACCCCTGTTTCTTTTGAAGTG	
CO1117 qPCR Act1 rv	CGTAGAAGGCTGGAAAGCTGTG	
CO1196 ∆mic60 S1	GGCATAAGAAGCGATTGAAAGTCTACTAAAAAAGCTAATTCGATGATGATGATGAGTTGAAAGATCGTACGCTGAGGTCGAC	
CO1197	AGGTGTAATGACGTACATCTCTTTTCTCTTTGTATTATTCTTTTC AATCGATGAATTGAGCTCG	
---------	---	
∆mic60 S2	GATAATCTACTTTTTTACAACAAATATAAAACAATGGCTCAA AAGGGAAGG	
CO1268 tagging of Fis1 fw	CCAAGCTTCTTATATAATTCATCCATCCATGGACA	
CO1269 tagging of Fis1 rv	GGATGAATTATAAGAAGCTTGGTCATGGTACTGA	
CO1270 backbone for Fis1-NG fw	GCAAGCTAAACAGATCTCTACCTTTCTTGTATTCTAAGAAAGAAAC	
CO1271 backbone for Fis1-NG rv	CGAATTCAAACAGATCTCTATCTGTG ACTGATGCAAGC AGCAATCGATCGTACGCTGCAGGTCGAC	
CO1677 tagging of Pam16 fw	GCTGCATGCTTTGCATAACACTTTGTGACGTATTAGGAGGCTT CTTGAATCGATGAAATTGAGGTCG	
CO1678 tagging of Pam16 rv	GCTGCATGCTTTCGATAACACTTTGTGACGTATTAGGAGGCTT CTTGAATCGATGAAATTGAGGTCG	
CO562 Amplification of COB for	AATCAAATGTGTATTTAAGTTAGTG	
CO562 Amplification of COB rev	TTATTATTAACATCTACCGATATAGAAT	
CO891 Amplification of ARG8 for	TCAAGACCTGAAGATTATGTATCACAAGAGG	
CO601 Amplification of ARG8 rev	TTAAGCATATACAGCTTGCAGACTAG	
CO982 S3 tagging of Cox4	TACAAACTAAAACCTTGTGTTGTTCAATATGATGACCAGCACCATCAA CGGTGACGCTGCTGGTTTA	
CO982 S2 tagging of Cox4	AAAAAGTAAAGAGAAGAAGGCAACTTGAATGATAAGATT AATCGATGAATTGAGGTCG	
Name / Alias	Needed for	Source
-------------	------------	--------
pCO021	Janke deletion cassette G418 resistance	1
pCO059	Janke deletion cassette NAT resistance	1
pCO074	Janke deletion cassette hygromycin resistance	1
pCO151	pvt100u-TagBFP	This study
pCO282	pCOB-ST5	2
pCO441	HO-\text{P}_{PGK1}-Su9-mKate2-kanMX6-HO	This study
pCO442	HO-\text{P}_{PGK1}-Su9-NG-kanMX6-HO	This study
pCO307	pCOB/ST5 Arg8+Term+synth-TetO	This study
pCO408	HO-\text{P}_{CUP}-Su9-3xGFP-LacI—\text{P}_{PGK}-Su9-TagBFP-KanMX	This study
pCO407	HO-\text{P}_{CUP}-Su9-TetR-3xRuby3—\text{P}_{PGK1}-Su9-TagBFP-KanMX4-HO	This study
pCO444	Plasmid for biolistic transformation and generation of \textit{ATP6}-mtNeonGreen	This study
pCO494	C-Terminal tagging of proteins with NeonGreen	This study
pCOJ103	Plasmid for biolistic transformation and generation of \textit{ATP6}-mtNeonGreen	This study

\(^1\) Janke et al. 2004
\(^2\) Gruschke et al. 2011