Comparison between colorectal low- and high-grade mucinous adenocarcinoma with MUC1 and MUC5AC

Masayuki Onodera, Takashi Nishigami, Ikuko Torii, Ayuko Sato, Li-Hua Tao, Tatsuki R Kataoka, Reigetsu Yoshikawa, Tohru Tsujimura

Masayuki Onodera, Takashi Nishigami, Ikuko Torii, Ayuko Sato, Li-Hua Tao, Tatsuki R Kataoka, Department of Pathology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan

Reigetsu Yoshikawa, Department of Surgery, Hyogo College of Medicine, Nishinomiya, 663-8501, Japan

Author contributions: Onodera M, Yoshikawa R and Nishigami T collected materials and immunohistochemical analysis; Torii I, Sato A, and Tao LH cooperated in immunohistochemical staining; Kataoka TR analyzed the data statistically; Tsujimura T designed this study.

Supported by Grants-Aid for Researchers, Hyogo College of Medicine and Grants-in Aid for Scientific Research and Hitech Research Center Grant from the Ministry of Education, Science, Sports, Culture, and Technology of Japan

Correspondence to: Tohru Tsujimura, MD, PhD, Department of Pathology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan. tohru@hyo-med.ac.jp

Telephone: +81-798-456425 Fax: +81-798-456426

Received: March 23, 2009 Revised: July 31, 2009

Accepted: August 7, 2009 Published online: October 15, 2009

Abstract

AIM: To explore useful prognostic factors for mucinous adenocarcinoma (MAC) in the colon and rectum.

METHODS: MAC was divided into low- and high-grade types based on the degree of structural differentiation; low-grade MAC arisen from well to moderately differentiated adenocarcinoma and papillary carcinoma, and high-grade MAC from poorly differentiated adenocarcinoma and signet ring cell carcinoma. Immunohistochemically, the expression of 2 types of MUC1 (MUC1/DF and MUC1/CORE), MUC2, 2 types of MUC5AC (MUC5AC/CHL2 and HGM), MUC6, CDX2, and CD10 was examined in 16 cases of MAC consisting of 6 low- and 10 high-grade types.

RESULTS: MUC1/DF3 was expressed in 3 of 6 low-grade MAC (50%) and 10 of 10 high-grade MAC (100%). MUC1/CORE was expressed in 1 of 6 low-grade MAC (16.7%) and 7 of 10 high-grade MAC (70%). MUC2 was expressed in all MAC regardless of the grade. MUC5AC was expressed in 6 of 6 low-grade MAC (100%) and 4 of 10 high-grade MAC (40%). HGM was expressed in 5 of 6 low-grade MAC (83.3%) and 6 of 10 high-grade MAC (60%). Expression of MUC6 and CD10 was undetected in all MAC regardless of the grade. CDX2 was expressed in 5 of 6 low-grade MAC (83.3%) and 7 of 10 high-grade MAC (70%). Taken together, MUC1/DF3 was expressed significantly more frequently in high-grade MAC than in low-grade, and MUC5AC/CHL2 was expressed significantly more frequently in low-grade MAC than in high-grade.

CONCLUSION: It is proposed that MUC1/DF3 and MUC5AC/CHL2 immunostaining is useful to discriminate high-grade MAC from low-grade MAC.

Key words: Mucinous adenocarcinoma; Colon; Rectum; MUC1; MUC5AC

Peer reviewer: Peter JK Kuppen, PhD, Associate Professor, Department of Surgery, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands

Onodera M, Nishigami T, Torii I, Sato A, Tao LH, Kataoka TR, Yoshikawa R, Tsujimura T. Comparison between colorectal low- and high-grade mucinous adenocarcinoma with MUC1 and MUC5AC. World J Gastrointest Oncol 2009; 1(1): 69-73 Available from: URL: http://www.wjgnet.com/1948-5204/full/v1/i1/69.htm DOI: http://dx.doi.org/10.4251/wjgo.v1.i1.69

INTRODUCTION

Mucinous adenocarcinoma (MAC) is defined as a carcinoma with mucin composing more than 50% of the
lesion and characterized by pools of extracellular mucin that contain malignant epithelium as acinar structures, strips of cells or single cells. MAC is not classified into subtypes in the World Health Organization Classification of Tumors of the Digestive System[1]. However, it has been reported that MAC can be divided into two types based on the degree of structural differentiation. One type of MAC is low-grade MAC arisen from well to moderately differentiated adenocarcinoma and papillary carcinoma, and the other high-grade MAC arisen from poorly differentiated adenocarcinoma and signet ring cell carcinoma[2].

Mucins are the major component in the mucus gel on epithelial surfaces with a characteristic organ- and cell type-specific distribution. MUC1 is a large cell surface mucin glycoprotein expressed by most glandular and ductal epithelial cells[3]. Normal stomach mucosa is characterized by the production of MUC5AC by the surface epithelial mucous cells and MUC6 by the gastric glands[4]. MUC2 is the secreted mucin present predominantly in small and large intestine and confined to goblet cells[5]. It has also been reported that altered mucin expression is a feature of precancerous and cancer cells. For example, the expression of MUC1 is up-regulated in a variety of carcinomas including colorectal carcinoma[6-8]. A decrease of MUC2 expression has been reported in poorly differentiated colorectal adenocarcinoma[9]. The gastric mucin MUC5AC has been reported to be expressed in colorectal adenocarcinoma[10]. In addition, CD10, a membrane-bound zinc metallopeptidase, is a small intestinal type-brush border marker and is expressed in the intestinal phenotype of gastric carcinoma[11]. The expression of CD10 has not been examined in colorectal carcinoma. CDX2, an intestine-specific transcription factor, is expressed in the nuclei of normal colorectal tissue, colorectal adenocarcinoma, and mucinous types of adenocarcinoma of ovarian and lung origin[12]. However, expression of these molecules has not been investigated in colorectal adenocarcinoma.

Scorings of immunohistochemical results

Immunohistochemical stains were graded by the presence of positively stained tumor cells as follow: -, less than 5% of tumor cells; +, 5% to 50% of tumor cells; and ++, over 50% of tumor cells. The cases showing + and ++ were evaluated as “positive”.

Statistical analysis

The value was shown as mean ± SE. Statistical analysis was carried out by the Student's t-test or \(\chi^2 \)-test (Excel: Microsoft, Redmond, WA, USA). A P-value below 0.05 was considered significant.

RESULTS

Clinical and immunohistochemical characteristics of each case are shown in Table 1. There was no significant difference between patients with low-grade MAC and those with high-grade MAC in both sex ratio (M:F = 2:4 vs 4:6) and age distribution (67.8 ± 7.53 vs 58.6 ± 3.53, P = 0.229 at t-test). MUC1/DF3 and MUC1/CORE were immunolocalized on the membrane and/or cytoplasm of tumor cells.
intracytoplasmic lumen of tumor cells. MUC1/DF3 was positive in 3 of 6 low-grade MAC (50%) and 10 of 10 high-grade MAC (100%). MUC1/CORE was positive in 1 of 6 low-grade MAC (16.7%) and 7 of 10 high-grade MAC (70%). MUC2 was immunolocalized in the cytoplasm of tumor cells. MUC2 was expressed in all MAC regardless of the grade. MUC5AC/CHL2 and HGM were immunolocalized in the cytoplasm of tumor cells with goblet or columnar cell features. MUC5AC/CHL2 was positive in 6 of 6 low-grade MAC (100%) and 4 of 10 high-grade MAC (40%). HGM was positive in 5 of 6 low-grade MAC (83.3%) and 6 of 10 high-grade MAC (60%). MUC6 and CD10 were not detected in any MAC regardless of the grade. CDX2 was immunolocalized in the nucleus of tumor cells. CDX2 was positive in 5 of 6 low-grade MAC (83.3%) and 7 of 10 high-grade MAC (70%). Taken together, MUC1/DF3 was expressed significantly more frequently in high-grade MAC than in low-grade (P = 0.131, \(\chi^2 \) test), and MUC5AC/CHL2 was expressed significantly more frequently in low-grade MAC than in high-grade (P = 0.164, \(\chi^2 \) test) (Table 2). Representative immunostaining patterns of MUC1/DF3, MUC2, and MUC5AC/CHL2 in low- and high-grade MAC are shown in Figure 1.

Table 1 Clinical and immunohistochemical characteristics

Case	Location	Sex	Age	Grade	MUC1/DF3	MUC1/CORE	MUC2	MUC5AC/CHL2	HGM	MUC6	CD10	CDX2
1	T	F	71	Low	-	-	++	-	+	-	-	-
2	R	M	71	Low	-	-	++	++	-	-	-	-
3	A	F	83	Low	+	-	++	++	-	-	-	-
4	A	F	90	Low	+	+	++	+	-	-	-	-
5	R	F	48	Low	+	-	++	++	-	-	-	-
6	R	M	44	Low	-	-	++	-	-	-	-	-
7	R	F	75	High	++	++	+	-	-	-	-	-
8	T	F	57	High	++	+	++	-	-	-	-	-
9	R	M	47	High	++	+	++	-	-	-	-	-
10	R	M	63	High	+	++	+	-	-	-	-	-
11	A	M	57	High	+	-	++	-	-	-	-	-
12	A	F	68	High	+	+	++	-	-	-	-	-
13	T	F	48	High	++	+	+	+	-	-	-	-
14	R	F	75	High	++	+	++	-	-	-	-	-
15	R	M	48	High	++	+	++	-	-	-	-	-
16	A	F	48	High	+	-	++	++	-	-	-	-

T: Transverse colon; R: Rectum; A: Ascending colon; F: Female; M: Male. Immunohistochemical stains were graded by the presence of positively stained tumor cells as follow: -, less than 5% of tumor cells; +, 5% to 50% of tumor cells; and ++, over 50% of tumor cells.

Table 2 Summary of immunostaining

Antibodies	Low-grade MAC (%)	High-grade MAC (%)
MUC1/DF3	3/6 (50)	10/10 (100)
MUC1/CORE	1/6 (16.7)	7/10 (70)
MUC2	6/6 (100)	10/10 (100)
MUC5AC/CHL2	6/6 (100)	4/10 (40)
HGM	5/6 (83.3)	6/10 (60)
MUC6	0/6 (0)	0/10 (0)
CD10	0/6 (0)	0/10 (0)
CDX2	5/6 (83.3)	7/10 (70)

Proportions (%) of cases evaluated as “positive” are shown. Statistical analysis between low- and high-grade MAC was carried out by \(\chi^2 \) test. *A P-value below 0.05 was considered significant. MAC: Mucinous adenocarcinoma.

DISCUSSION

It has been reported that MUC1 is frequently expressed in invasive carcinomas, but not non-invasive carcinomas in various tissues, suggesting that the expression of MUC1 is related to increasing tendency for malignancy and invasion[13-15]. In the non-specific conventional adenocarcinoma of colon and rectum, MUC1 is considered to be a prognostic marker and served as a biological feature associated with the aggressiveness of advanced carcinomas[7]. We report that MUC1/DF3 was expressed significantly more frequently in high-grade MAC than in low-grade MAC in the colon and rectum. These results support that MUC1 is one of the indices of malignancy of tumors, and suggest that MUC1/DF3 immunostaining is useful to distinguish between low- and high-grade MAC.

MUC5AC is expressed in adenoma and conventional adenocarcinoma with wide to moderate differentiation in the colon and rectum[16-20]. In addition, MUC5AC has also been reported to be expressed in 56%-63% cases of colorectal MAC[17,18]. On the other hand, Kocer et al. have reported that the absence of MUC5AC expression in tumors can be a prognostic factor for more aggressive adenocarcinoma in the colon and rectum. In this study, we found that the frequency of MUC5AC/CHL2 expression was significantly lower in high-grade MAC compared with low-grade MAC. These findings are consistent with the results by Kocer et al.[19], and indicate that decreases in MUC5AC expression are a prognostic marker for aggressive and advanced MAC.

MUC2 has been reported to be expressed in poorly differentiated adenocarcinoma in the colon and rectum[16,18]. In this study, MUC2 was expressed in all colorectal MAC regardless of the grade. These results indicate that MUC2 is a positive marker for colorectal MAC but is not suitable to distinguish between low-grade MAC and high-grade MAC. MUC6 and CD10 were not detected in any MAC regardless of the grade. These molecules may be negative...
markers for colorectal MAC.

In summary, we compared immunohistochemical expression of MUC1, MUC2, MUC5AC, MUC6, CD10 and CDX2 between low- and high-grade MAC, and found that increased MUC1 and decreased MUC5AC expressions are related to malignant potential of colorectal MAC. Since the expression of MUC1/DF3 and MUC5AC/CHL2 differed significantly between low- and high-grade MAC in the colon and rectum, it is proposed that MUC1/DF3 and MUC5AC/CHL2 immunostaining is useful to distinguish between these two types of MAC.
Mac in the colon and rectum. The combination of markers in this study is quite
MUC5AC are useful markers to discriminate high-grade MAC from low-grade
and high-grade MAC. The results are interesting and indicate that MUC1 and
mucins (MUC1, MUC2, MUC5AC, and MUC6), CD10, and CDX2 between low-
This is a good descriptive study in which authors compared the expression of
specific distribution. Mucin binds to pathogens as part of the immune system.
MAC is defined as a carcinoma with mucin composing more than 50% of the
lesion. Mucin, a high molecular weight glycoprotein, is the major component in
the mucus gel on epithelial surfaces with a characteristic organ- and cell type-
specific distribution. Mucin binds to pathogens as part of the immune system.
Peer review
This is a good descriptive study in which authors compared the expression of
mucins (MUC1, MUC2, MUC5AC, and MUC6), CD10, and CDX2 between low-
and high-grade MAC. The results are interesting and indicate that MUC1 and
MUC5AC are useful markers to discriminate high-grade MAC from low-grade
MAC in the colon and rectum. The combination of markers in this study is quite
unique.

REFERENCES

1 Hamilton SR, Aalton LA. Pathology and genetics of tumors of the digestive system. World Health Organization Classification of Tumors. Lyon: IARC Press, 2000: 109
2 Japanese society for Cancer of the Colon and Rectum. General rules for clinical and pathological studies on cancer of the colon, rectum and anus, 7th ed. Tokyo: Kaneharashin, Japan, 2006
3 Gun JR Jr. Mucin genes and the proteins they encode: structure, diversity, and regulation. Am J Respir Cell Mol Biol 1992; 7: 557-564
4 Tsukashita S, Kushima R, Bamba M, Sugihara H, Hattori T. MUC gene expression and histogenesis of adenocarcinoma of the stomach. Int J Cancer 2001; 94: 166-170
5 Li A, Goto M, Horinouchi M, Tanaka S, Imai K, Kim YS, Sato E, Yonezawa S. Expression of MUC1 and MUC2 mucins and relationship with cell proliferative activity in human colorectal neoplasia. Pathol Int 2001; 51: 853-860
6 Zotter S, Lossnitzer A, Hageman PC, Delemarre JF, Hilken J, Hilgers J. Immunohistochemical localization of the epithelial marker MAM-6 in invasive malignancies and highly dysplastic adenosomas of the large intestine. Lab Invest 1987; 57: 193-199
7 Suzuki H, Shoda J, Kawamoto T, Shinozaki E, Miyahara N, Hotta S, Iizuka Y, Nakahara A, Tanaka N, Yanaka A, Irimura T. Expression of MUC1 recognized by monoclonal antibody MY.1E12 is a useful biomarker for tumor aggressiveness of advanced colon carcinoma. Clin Exp Metastasis 2004; 21: 321-329
8 Byrd JC, Bresalier RS. Mucins and mucin binding proteins in colorectal cancer. Cancer Metastasis Rev 2004; 23: 77-99
9 Wakatsuki K, Yamada Y, Narikyo M, Ueno M, Takayama T, Tamaki H, Miki K, Matsumoto S, Enomoto K, Yokotani T, Nakajima Y. Clinopathological and prognostic significance of mucin phenotype in gastric cancer. J Surg Oncol 2008; 98: 124-129
10 Drummond F, Putt W, Fox M, Edwards YH. Cloning and chromosome assignment of the human CDX2 gene. Ann Hum Genet 1997; 61: 393-400
11 Li MK, Folpe AL. CDX-2, a new marker for adenocarcinoma of gastrointestinal origin. Adv Anat Pathol 2004; 11: 101-105
12 Nishigami T, Onodera M, Torii I, Sato A, Tao LH, Kushima R, Kakuno A, Kishimoto M, Katsuyama E, Fujimori T, Hirano H, Satake M, Kuroda N, Nishiguchi S, Fujimoto J, Tsujimura T. Comparison between mucinous cystic neoplasm and intraductal papillary mucinous neoplasm of the branch duct type of the pancreas with respect to expression of CD10 and cytotokeratin 20. Pancreas 2009; 38: 558-564
13 Yonezawa S, Sato E. Expression of mucin antigens in human cancers and its relationship with malignancy potential. Pathol Int 1997; 47: 813-830
14 Yonezawa S, Taia M, Osako M, Kubo M, Tanaka S, Sakoda K, Takao S, Aiko T, Yamamoto M, Irimura T, Kim YS, Sato E. MUC1 mucin expression in invasive areas of intraductal papillary mucinous tumors of the pancreas. Pathol Int 1998; 48: 319-322
15 Higashi M, Yonezawa S, Ho YJ, Tanaka S, Irimura T, Kim YS, Sato E. Expression of MUC1 and MUC2 mucin antigens in intrahepatic bile duct tumors: its relationship with a new morphological classification of cholangiocarcinoma. Hepatology 1999; 30: 1347-1355
16 Park SY, Lee HS, Choe G, Chung JH, Kim WH. Clinopathological characteristics, microsatellite instability, and expression of mucin core proteins and p53 in colorectal mucinous adenocarcinomas in relation to location. Virchows Arch 2006; 449: 40-47
17 Biemer-Hüttmann AE, Walsh MD, McGuckin MA, Simms LA, Young J, Leggett BA, Jass JR. Mucin core protein expression in colorectal cancers with high levels of microsatellite instability indicates a novel pathway of morphogenesis. Clin Cancer Res 2000; 6: 1909-1916
18 Ishizu H, Kumagai J, Iishi Y, Takizawa T, Koike M. Mucin core protein expression by colorectal mucinous carcinomas with or without mucus hyperplasia. J Gastroenterol 2004; 39: 125-132
19 Koeber B, Soran A, Erdogan S, Karabayoglu M, Yildirim O, Ergolu A, Bozkurt B, Cengiz O. Expression of MUC5AC in colorectal carcinoma and relationship with prognosis. Pathol Int 2002; 52: 470-477
20 Nguyen MD, Plasil F, Wen P, Frankel WL. Mucin profiles in signet-ring cell carcinoma. Arch Pathol Lab Med 2006; 130: 799-804