GREEN’S CONJECTURE FOR CURVES ON RATIONAL SURFACES WITH AN ANTICANONICAL PENCIL

MARGHERITA LELLI–CHIESA

ABSTRACT. Green’s conjecture is proved for smooth curves C lying on a rational surface S with an anticanonical pencil, under some mild hypotheses on the line bundle $L = \mathcal{O}_S(C)$. Constancy of Clifford dimension, Clifford index and gonality of curves in the linear system $|L|$ is also obtained.

1. INTRODUCTION

Green’s Conjecture concerning syzygies of canonical curves was first stated in [G] and proposes a generalization of Noether’s Theorem and the Enriques-Babbage Theorem in terms of Koszul cohomology, predicting that for a curve C

$$K_{p,2}(C, \omega_C) = 0 \quad \text{if and only if } p < \text{Cliff}(C).$$

Quite remarkably, this would imply that the Clifford index of C can be read off the syzygies of its canonical embedding. The implication $K_{p,2}(C, \omega_C) \neq 0$ for $p \geq \text{Cliff}(C)$ was immediately achieved by Green and Lazarsfeld ([G, Appendix]) and the conjectural part reduces to the vanishing $K_{c-1,2}(C, \omega_C) = 0$ for $c = \text{Cliff}(C)$, or equivalently, $K_{g-c-1,1}(C, \omega_C) = 0$.

One naturally expects the gonality k of C to be also encoded in the vanishing of some Koszul cohomology groups. In fact, Green-Lazarsfeld’s Gonality Conjecture predicts that any line bundle A on C of sufficiently high degree satisfies

$$K_{p,1}(C, A) = 0 \quad \text{if and only if } p \geq h^0(C, A) - k.$$

Green ([G]) and Ehbauer ([E]) have shown that the statement holds true for any curve of gonality $k \leq 3$. As in the case of Green’s Conjecture, one implication is well-known (cf. [G, Appendix]); it was proved by Aprodu (cf. [A1]) that the conjecture is thus equivalent to the existence of a non-special globally generated line bundle A such that $K_{h^0(C, A) - k,1}(C, A) = 0$.

Both Green’s Conjecture and Green-Lazarsfeld’s Gonality Conjecture are in their full generality still open. However, by specialization to curves on $K3$ surfaces, they were proved for a general curve in each gonality stratum of M_g by Voisin and Aprodu (cf. [V1, V2, A2]). Combining this with an earlier result of Hirschowitz and Ramanan (cf. [HR]), the two conjectures follow for any curve of odd genus $g = 2k - 3$ and maximal gonality k.

In [A2], Aprodu provided a sufficient condition for a genus g curve C of gonality $k \leq (g+2)/2$ to satisfy both conjectures; this is known as the linear growth condition and is expressed in terms of the Brill-Noether theory of C only:

$$\dim W^1_d(C) \leq d - k \quad \text{for } k \leq d \leq g - k + 2.$$

Aprodu and Farkas ([AF]) used the above characterization in order to establish Green’s Conjecture for smooth curves lying on arbitrary $K3$ surfaces. It is natural to ask whether a similar strategy can solve Green’s Conjecture for curves lying on anticanonical rational surfaces, since these share some common behaviour with $K3$ surfaces. The situation gets more complicated because such a surface S is in general non-minimal and its canonical bundle is non-trivial; in particular, given a line bundle $L \in \text{Pic}(S)$, smooth curves in the linear system $|L|$ do not form
a family of curves with constant syzygies, as it happens instead in the case of K3 surfaces. Our main result is the following:

Theorem 1.1. Let S be a smooth, projective, rational surface with an anticanonical pencil and let L be a line bundle on S such that $L \otimes \omega_S$ is nef and big. In the special case where $h^0(S, \omega_S^2) = \chi(S, \omega_S^2) = 2$, also assume that the Clifford index of a general curve in $|L|$ is not computed by the restriction of the anticanonical bundle ω_S^2.

Then, any smooth, irreducible curve $C \in |L|$ satisfies Green’s Conjecture.

With no hypotheses on the line bundle L, we obtain Green’s Conjecture and Green-Lazarsfeld’s Gonality Conjecture for a general curve in $|L|_s$, where $|L|_s$ denotes the locus of smooth and irreducible curves in the linear system $|L|$ (cf. Proposition 5.2). For later use, we denote by $g(L) := 1 + (c_1(L)^2 + c_1(L) \cdot K_S)/2$ the genus of any curve in $|L|_s$.

Examples of surfaces as in Theorem 1.1 are given by all rational surfaces S whose canonical divisor satisfies $K_S^2 > 0$, or equivalently, having Picard number $\rho(S) \leq 9$, such as Del Pezzo surfaces ($-K_S$ ample), generalized Del Pezzo surfaces ($-K_S$ is nef and big), some blow-ups of Hirzebruch surfaces. However, the class of surfaces that we are considering also includes surfaces S with $K_S^2 \leq 0$, such as rational elliptic surfaces (i.e., smooth complete complex surfaces that can be obtained by blowing up \mathbb{P}^2 at 9 points, which are the base locus of a pencil of cubic curves with at least one smooth member).

We also obtain the following:

Theorem 1.2. Assume the same hypotheses as in Theorem 1.1 and let $g(L) \geq 4$. Then, all curves in $|L|_s$ have the same Clifford dimension r, the same Clifford index and the same gonality. Moreover, if the curves in $|L|_s$ are exceptional, then one of the following occurs:

(i) $r = 2$ and any curve in $|L|_s$ is the strict transform of a smooth, plane curve under a morphism $\phi : S \to \mathbb{P}^2$ which is the composition of finitely many blow-ups.

(ii) $r = 3$ and S can be realized as the blow-up of a normal cubic surface $S' \subset \mathbb{P}^3$ at a finite number of points (possibly infinitely near); any curve in $|L|_s$ is the strict transform under the blow-up map of a smooth curve in $|−3K_{S'}|$.

This generalizes results of Pareschi (cf. [P1]) and Knutsen (cf. [K]) concerning the Brill-Noether theory of curves lying on a Del Pezzo surface S. In [K], the author proved that line bundles violating the constancy of the Clifford index only exist when $K_S^2 = 1$; they are described in terms of the coefficients of the generators of $\text{Pic}^0(S)$ in their presentation. In fact, one can show that such line bundles are exactly those satisfying $L \otimes \omega_S$ is nef and big and the restriction of the anticanonical bundle ω_S^2 to a general curve in $|L|_s$ computes its Clifford index (cf. Remark 2).

The proofs of Theorem 1.1 and Theorem 1.2 rely on vector bundle techniques à la Lazarsfeld (cf. [La1]); in particular, we consider rank-2 bundles $E_{C,A}$, which are the analogue of the Lazarsfeld-Mukai bundles for K3 surfaces. The key fact proved in Section 3 is that, if A is a complete, base point free pencil on a general curve $C \in |L|_s$, the dimension of $\text{ker} \mu_{0,A}$ is controlled by $H^2(S, E_{C,A} \otimes E_{C,A}^\vee)$; if this is nonzero, the bundle $E_{C,A}$ cannot be slope-stable with respect to any polarization H on S.

By considering Harder-Narasimhan and Jordan-Hölder filtrations, in Section 4 we perform a parameter count for pairs (C, A) such that $E_{C,A}$ is not μ_H-stable; this gives an upper bound for the dimension of any irreducible component W of $W_d^1(|L|)$ which dominates $|L|$ under the natural projection $\pi : W_d^1(|L|) \to |L|_s$. It turns out (cf. Proposition 5.1) that, if a general curve $C \in |L|_s$ is exceptional, the same holds true for all curves in $|L|_s$ and one is either in case (i) or (ii) of Theorem 1.2 in this context we recall that Green’s Conjecture for curves of Clifford dimension 2 and 3 was verified by Loose in [Lo]. If instead C has Clifford dimension 1, our parameter count ensures that it satisfies the linear growth condition (3). In order to deduce Green’s
Then, for every smooth integral divisor\(\mathcal{Y} \), we make use of the hypotheses made on \(L \) and show that the Koszul group\(K_{g−c−1,1}(C,\omega_C) \) does not depend (up to isomorphism) on the choice of \(C \in |L|_s \), as soon as \(c \) equals the Clifford index of a general curve in \(|L|_s \). Semicontinuity will imply the constancy of the Clifford index and the gonality.

Acknowledgements: I am grateful to my advisor Gavril Farkas, who suggested me to investigate the topic.

2. Syzygies and Koszul Cohomology

If \(L \) is an ample line bundle on a complex projective variety \(X \), let \(S := \text{Sym}^*H^0(X, L) \) be the homogeneous coordinate ring of the projective space \(\mathbb{P}(H^0(X, L)^\vee) \) and set \(R(X) := \bigoplus_m H^0(X, L^m) \). Being a finitely generated \(S \)-module, \(R(X) \) admits a minimal graded free resolution

\[
0 \to E_k \to \cdots \to E_1 \to E_0 \to R(X) \to 0,
\]

where for \(k \geq 1 \) one can write \(E_k = \sum_{i \geq k} S(-i - 1)^{\beta_{k,i}} \). The syzygies of \(X \) of order \(k \) are by definition the graded components of the \(S \)-module \(E_k \). We say that the pair \((X, L)\) satisfies property \((N_p)\) if \(E_0 = S \) and \(E_k = S(-k - 1)^{\beta_{k,k}} \) for all \(1 \leq k \leq p \). In other words, property \((N_0)\) is satisfied whenever \(\phi_L \) embeds \(X \) as a projectively normal variety, while property \((N_1)\) also requires that the ideal of \(X \) in \(\mathbb{P}(H^0(X, L)^\vee) \) is generated by quadrics; for \(p > 1 \), property \((N_p)\) means that the syzygies of \(X \) up to order \(p \) are linear.

The most effective tool in order to compute syzygies is Koszul cohomology, whose definition is the following. Let \(L \in \text{Pic}(X) \) and \(F \) be a coherent sheaf on \(X \). The Koszul cohomology group \(K_{p,q}(X, F, L) \) is defined as the cohomology at the middle-term of the complex

\[
\bigwedge^{p+1} H^0(L) \otimes H^0(F \otimes L^{q-1}) \to \bigwedge^p H^0(L) \otimes H^0(F \otimes L^q) \to \bigwedge^{p-1} H^0(L) \otimes H^0(F \otimes L^{q+1}).
\]

When \(F \simeq \mathcal{O}_X \), the Koszul cohomology group is conventionally denoted by \(K_{p,q}(X, L) \). It turns out (cf. [G]) that property \((N_p)\) for the pair \((X, L)\) is equivalent to the vanishing

\[
K_{i,q}(X, L) = 0 \quad \text{for all } i \leq p \text{ and } q \geq 2.
\]

In particular, Green’s Conjecture can be rephrased by asserting that \((C, \omega_C)\) satisfies property \((N_p)\) whenever \(p < \text{Cliff}(C) \).

In the sequel we will make use of the following results, which are due to Green. The first one is the Vanishing Theorem (cf. [G] Theorem (3.a.1)), stating that

\[
K_{p,q}(X, E, L) = 0 \quad \text{if } p \geq h^0(X, E \otimes L^q).
\]

The second one (cf. [G] Theorem (3.b.1)) relates the Koszul cohomology of \(X \) to that of a smooth hypersurface \(Y \subset X \) in the following way.

Theorem 2.1. Let \(X \) be a smooth irreducible projective variety and assume \(L, N \in \text{Pic}(X) \) satisfy

\[
H^0(X, N \otimes \mathcal{L}^q) = 0 \quad \forall q \geq 0.
\]

Then, for every smooth integral divisor \(Y \in |L| \), there exists a long exact sequence

\[
\cdots \to K_{p,q}(X, L^q, N) \to K_{p,q}(X, N) \to K_{p,q}(Y, N \otimes \mathcal{O}_Y) \to K_{p-1,q+1}(X, L^q, N) \to \cdots.
\]
3. Petri map via vector bundles

Let S be a smooth rational surface with an anticanonical pencil and $C \subset S$ be a smooth, irreducible curve of genus g. We set $L := \mathcal{O}_S(C)$. If A is a complete, base point free g^r_d on C, as in the case of $K3$ surfaces, let $F_{C,A}$ be the vector bundle on S defined by the sequence

$$0 \to F_{C,A} \to H^0(C, A) \otimes \mathcal{O}_S \xrightarrow{ev_A} A \to 0,$$

and set $E_{C,A} := F_{C,A}^\vee$. Since $N_{C|S} = \mathcal{O}_C(C)$, by dualizing the above sequence we get

$$(7) \quad 0 \to H^0(C, A)^\vee \otimes \mathcal{O}_S \to E_{C,A} \to \mathcal{O}_C(C) \otimes A^\vee \to 0.$$\hspace{1cm}

This trivially implies that:

- $\chi(S, E_{C,A} \otimes \omega_S) = h^0(S, E_{C,A} \otimes \omega_S) = g - d + r$,
- $\text{rk} E_{C,A} = r + 1, c_1(E_{C,A}) = L, c_2(E) = d$,
- $h^2(S, E_{C,A}) = 0, \chi(S, E_{C,A}) = g - d + r - c_1(L) \cdot K_S$.

Being a bundle of type $E_{C,A}$ is an open condition. Indeed, a vector bundle E of rank $r + 1$ is of type $E_{C,A}$ whenever $h^1(S, E \otimes \omega_S) = h^2(S, E \otimes \omega_S) = 0$ and there exists $\Delta \in G(r + 1, H^0(S, E))$ such that the degeneracy locus of the evaluation map $ev_A : \Lambda \otimes \mathcal{O}_S \to E$ is a smooth connected curve.

Notice that the dimension of the space of global sections of $E_{C,A}$ depends not only on the type of the linear series A but also on $A \otimes \omega_S$. In particular, one has

$$h^0(S, E_{C,A}) = r + 1 + h^0(C, \mathcal{O}_C(C) \otimes A^\vee),$$

$$h^1(S, E_{C,A}) = h^0(C, A \otimes \omega_S).$$

Moreover, if the line bundle $\mathcal{O}_C(C) \otimes A^\vee$ has sections, then $E_{C,A}$ is generated off its base points. In the case $r = 1$, we prove the following.

Lemma 3.1. Let A be a complete, base point free g^1_d on $C \subset S$. If either

- $h^0(S, \omega_C^\vee) > 2$, or
- $h^0(S, \omega_C^\vee) = 2$ and $A \not\simeq \omega_C^\vee \otimes \mathcal{O}_C$

holds, then $h^0(C, A \otimes \omega_S) = 0$.

Proof. Since $L \otimes \omega_S$ is effective, the short exact sequence

$$0 \to L^\vee \otimes \omega_S^\vee \to \omega_S^\vee \to \omega_S^\vee \otimes \mathcal{O}_C \to 0$$

implies $h^0(C, \omega_S^\vee \otimes \mathcal{O}_C) \geq h^0(S, \omega_C^\vee)$ and the statement follows trivially if $h^0(S, \omega_C^\vee) > 2$. Let $h^0(S, \omega_C^\vee) = 2$ and $h^0(C, A \otimes \omega_S) > 0$. Then necessarily $h^0(C, \omega_S^\vee \otimes \mathcal{O}_C) = 2$ and $A \otimes \omega_S$ is the fixed part of the linear system of sections of A. Since A is base point free by hypothesis, then $A \simeq \omega_S^\vee \otimes \mathcal{O}_C$. \hfill \Box

Under the hypotheses of the above Lemma, the bundle $E_{C,A}$ is globally generated off a finite set and $\chi(S, E_{C,A}) = h^0(S, E_{C,A}) = g - d + 1 - c_1(L) \cdot K_S$. We remark that the vanishing of $h^1(S, E_{C,A})$ turns out to be crucial in most of the following arguments and this is why the assumptions on the anticanonical linear system of S are needed.

The following proposition gives a necessary and sufficient condition for the injectivity of the Petri map $\mu_{0,A} : H^0(C, A) \otimes H^0(C, \omega_C \otimes A^\vee) \to H^0(C, \omega_C)$.

Proposition 3.2. If $C \subset |L|_s$ is general and either $h^0(S, \omega_C^\vee) > 2$ or $h^0(S, \omega_C^\vee) = 2$ and $A \not\simeq \omega_C^\vee \otimes \mathcal{O}_C$, then for any complete, base point free pencil A on C one has:

$$\ker \mu_{0,A} \simeq H^2(S, E_{C,A} \otimes E_{C,A}^\vee).$$

In particular, the vanishing of the one side implies the vanishing of the other.
Corollary 3.3 can be alternatively proved by arguing in the following way. W dominates Ext corollary 3.3. Let duality.

Indeed, as in [P2, Lemma 1], one finds a commutative diagram

\[
\begin{array}{cccccc}
0 & \to & \omega_S \otimes \mathcal{O}_C & \to & F_{C,A} \otimes \omega_C \otimes A^\vee & \to & \omega_C \otimes A^{-2} & \to & 0 \\
\| & & \| & & \| & & \| & & \\
0 & \to & \omega_S \otimes \mathcal{O}_C & \to & \Omega^1_{C} \otimes \omega_C & \to & \omega^2_C & \to & 0,
\end{array}
\]

where the homomorphism induced by s on global sections is \(\mu_{1,A} \) and the coboundary map \(H^0(C, \omega_C^2) \to H^1(C, \omega_S \otimes \mathcal{O}_C) \) equals (up to a scalar factor) \(\rho^0\).

If \(A \) has degree \(d \), look at the natural projection \(\pi : W^1_d(\vert L \vert) \to \vert L \vert_s \). First order deformation arguments (see, for instance, [ACG, p. 722]) imply that

\[
\mathrm{Im}(d\pi_{(C,A)}) \subset \mathrm{Ann}(\mathrm{Im}(\rho^0 \circ \mu_{1,A})).
\]

Therefore, by Sard’s Lemma, if \(C \in \vert L \vert_s \) is general, the short exact sequence (8) is exact on the global sections for any base point free \(A \in W^1_d(C \setminus W^1_d(C)) \), and \(\ker \mu_{0,A} \cong H^0(C, F_{C,A} \otimes \omega_C \otimes A^\vee) \).

By tensoring short exact sequence (7) with \(F_{C,A} \otimes \omega_S \), one finds that

\[
H^0(C, F_{C,A} \otimes \omega_C \otimes A^\vee) \cong H^0(S, E^\vee_{C,A} \otimes E_{C,A} \otimes \omega_S)
\]

because \(H^1(S, F_{C,A} \otimes \omega_S) \cong H^2 \Gamma(S, E^\vee_{C,A} \otimes E_{C,A} \otimes \omega_S) = 0 \) for \(i = 0, 1 \). The statement follows now by Serre duality.

Corollary 3.3. Let \(H \) be any polarization on \(S \) and \(W \) be an irreducible component of \(W^1_d(\vert L \vert) \) which dominates \(\vert L \vert \) and whose general points correspond to \(\mu_H \)-stable bundles; in the special case where \(h^0(S, \omega_S^\vee) = 2 \), assume that general points of \(W \) are not of the form \((C, \omega_S^\vee \otimes \mathcal{O}_C)\).

Then, \(\rho(g, 1, d) \geq 0 \) and \(W \) is reduced of dimension equal to \(\dim \vert L \vert + \rho(g, 1, d) \).

Proof. Let \((C, A)\) be a general point of \(W \). If \(E_{C,A} \) is stable, \(E_{C,A} \otimes \omega_S \) also is. The inequality \(\mu_H(E_{C,A}) > \mu_H(E_{C,A} \otimes \omega_S) \) implies that \(H^2(S, E^\vee_{C,A} \otimes E_{C,A} \otimes \omega_S) \cong \mathrm{Hom}(E_{C,A}, E_{C,A} \otimes \omega_S) = 0 \). As a consequence, \(W \) is smooth in \((C, A)\) of the expected dimension.

Remark 1. Corollary 3.3 can be alternatively proved by arguing in the following way. Let \(M := M_H^m(c) \) be the moduli space of \(\mu_H \)-stable vector bundles on \(S \) of total Chern class \(c = 2 + c_1(L) + d \omega \in H^{2r}(S, \mathbb{Z}) \), where \(\omega \) is the fundamental cocycle. Since every \([E] \in M \) satisfies \(\mathrm{Ext}^2(E, E) = 0 \), it turns out that \(M \) is smooth, irreducible projective variety of dimension \(4d - c_1(L)^2 - 3 \) (cf. [CoMR, Remark 2.3]), as soon as it is non-empty. Let \(M^0 \) be the open subset of \(M \) parametrizing vector bundles \([E]\) of type \(E_{C,A} \); if this is non-empty, define \(G \) as the Grassmann bundle on \(M^0 \) with fiber over \([E]\) equal to \(G(2, H^0(S, E)) \). Look at the rational map \(h : G \to W^1_d(\vert L \vert) \) sending a general \((E, \Lambda) \in G\) to the pair \((C_\Lambda, A_\Lambda)\), where \(C_\Lambda \) is the degeneracy locus of the evaluation map \(ev_\Lambda : \Lambda \otimes \mathcal{O}_S \to E \) and \(\mathcal{O}_{C_\Lambda}(C_\Lambda) \otimes A^\vee \) is its cokernel. Since any
$[E] \in M^0$ is simple, one easily checks that h is birational onto its image, that is denoted by \mathcal{W}. As a consequence, the dimension of \mathcal{W} equals:

$$4d - c_1(L)^2 - 3 + 2(g - d - 1 - c_1(L) \cdot K_S) = 2d - 3 - c_1(L) \cdot K_S \leq \dim |L| + \rho(g, 1, d).$$

4. Parameter Count

By the analysis performed in the previous section, given a polarization H on S, the linear growth condition for a general curve in $|L|_s$ can be verified by controlling the dimension of every dominating component $\mathcal{W} \subset W_j(|L|)$, whose general points are pairs (C, A) such that $A \not\cong \omega_S^\vee \otimes \mathcal{O}_C$ and the bundle $E_{C,A}$ is not μ_H-stable. Indeed, if $A \cong \omega_S^\vee \otimes \mathcal{O}_C$ for a general point of \mathcal{W}, then $\omega_S^\vee \otimes \mathcal{O}_C$ is an isolated point of $W^1_\delta(C')$ for every $C' \in |L|_s$.

Let A be a complete, base point free g^1_1 on a curve $C \in |L|_s$ such that the bundle $E := E_{C,A}$ is not μ_H-stable and $A \not\cong \omega_S^\vee \otimes \mathcal{O}_C$ if $h^0(S, \omega_S^\vee) = 2$. The maximal destabilizing sequence of E has the form

$$(9) \quad 0 \to M \to E \to N \otimes I_\xi \to 0,$$

where $M, N \in \text{Pic}(S)$ satisfy

$$(10) \quad \mu_H(M) \geq \mu_H(E) \geq \mu_H(N),$$

with both or none of the inequalities being strict, and I_ξ is the ideal sheaf of a 0-dimensional subscheme $\xi \subset S$ of length $l = d - c_1(N) \cdot c_1(M)$.

Lemma 4.1. In the above situation, assume that general curves in $|L|_s$ have Clifford index c. If $\mu_{0,A}$ is non-injective and C is general in $|L|$, then the following inequality holds:

$$(11) \quad c_1(M) \cdot c_1(N) + c_1(N) \cdot K_S \geq c.$$

Proof. Being a quotient of $E := E_{C,A}$ off a finite set, N is base component free and is non-trivial since $H^2(S, N \otimes \omega_S) = 0$. As a consequence, $h^0(S, N) \geq 2$. Proposition 3.2 implies that $\text{Hom}(E, E \otimes \omega_S) \neq 0$. Applying $\text{Hom}(E, -)$ to the short exact sequence (9) twisted with ω_S, we obtain

$$0 \to \text{Hom}(E, M \otimes \omega_S) \to \text{Hom}(E, E \otimes \omega_S) \to \text{Hom}(E, N \otimes \omega_S \otimes I_\xi) \to \cdots.$$

Apply now $\text{Hom}(-, N \otimes \omega_S \otimes I_\xi)$ (respectively $\text{Hom}(-, M \otimes \omega_S)$) to exact sequence (9), and find that $\text{Hom}(E, N \otimes \omega_S \otimes I_\xi) = 0$ (resp. $\text{Hom}(E, M \otimes \omega_S) \simeq \text{Hom}(N \otimes I_\xi, M \otimes \omega_S)$), hence $N^\vee \otimes M \otimes \omega_S$ is effective and $h^0(S, M \otimes \omega_S) \geq 2$. This ensures that $N \otimes \mathcal{O}_C$ contributes to the Clifford index of C and

$$c \leq \text{Cliff}(N \otimes \mathcal{O}_C) = c_1(N) \cdot (c_1(N) + c_1(M)) - 2h^0(C, N \otimes \mathcal{O}_C) + 2 \leq c_1(N)^2 + c_1(N) \cdot c_1(M) - 2h^0(S, N) + 2 = c_1(N) \cdot c_1(M) + c_1(N) \cdot K_S.$$

Now, upon fixing a nonnegative integer l and a line bundle N such that (10) is satisfied for $M := L \otimes N^\vee$, we want to estimate the number of moduli of pairs (C, A) such that the bundle $E_{C,A}$ sits in a short exact sequence like (9). The following construction is analogous to the one performed in [LC, Section 4] in the case of K3 surfaces. Let $\mathcal{E}_{N,l}$ be the moduli stack of extensions of type (9), where $l(\xi) = l$. Having fixed $c \in H^2(S, \mathbb{Z})$, we denote by $\mathcal{M}(c)$ the moduli stack of coherent sheaves of total Chern class c. We consider the natural maps $p : \mathcal{E}_{N,l} \to \mathcal{M}(c(M)) \times \mathcal{M}(c(N \otimes I_\xi))$ and $q : \mathcal{E}_{N,L} \to \mathcal{M}(c(E))$, which send the C-point of $\mathcal{E}_{N,l}$ corresponding to extension (9) to the classes of $(M, N \otimes I_\xi)$ and E respectively. Notice that, since M, N lie in $\text{Pic}(S)$, the stack $\mathcal{M}(c(M))$ has a unique C-point endowed with a
1-dimensional space of automorphisms, while $\mathcal{M}(c(N \otimes I_\xi))$ is corepresented by the Hilbert scheme $S[^l_0]$ parametrizing 0-dimensional subschemes of S of length l.

We denote by $\hat{Q}_{N,l}$ the closure of the image of q and by $Q_{N,l}$ its open substack consisting of vector bundles of type $E_{C,A}$ for some $C \in |L|_s$ and $A \in W^1_1(C)$, with $d := l + c_1(M) \cdot c_1(N)$ and $A \not= \omega_S^N \otimes O_C$ if $h^0(S, \omega_S^N) = 2$. Let $\mathcal{G}_{N,l} \rightarrow Q_{N,l}$ be the Grassmann bundle whose fiber over $[E] \in Q_{N,l}(\mathbb{C})$ is $G(2, H^0(S, E))$. By construction, a \mathbb{C}-point of $\mathcal{G}_{N,l}$ corresponding to a pair $([E], \Lambda)$, with $\Lambda \in G(2, H^0(S, E))$, comes endowed with an automorphism group equal to $\text{Aut}(E)$. We define $\mathcal{W}_{N,l}$ to be the closure of the image of the rational map $\mathcal{G}_{N,l} \dashrightarrow W^1_1(|L|)_s$, which sends a general point $([E], \Lambda) \in \mathcal{G}_{N,l}(\mathbb{C})$ to the pair (C_A, A_A) where the evaluation map $\text{ev}_{\Lambda} : \Lambda \otimes O_S \rightarrow E$ degenerates on C_Λ and has $O_{C_\Lambda}(C_\Lambda) \otimes A^\Lambda_\Lambda$ as cokernel. The following proposition gives an upper bound for the dimension of $\mathcal{W}_{N,l}$.

Proposition 4.2. Assume that general curves in $|L|_s$ have Clifford index c. Then, every irreducible component \mathcal{W} of $W^1_1(|L|)_s$ which dominates $|L|$ and is contained in $\mathcal{W}_{N,l}$ satisfies

$$\dim \mathcal{W} \leq \dim |L| + d - c - 2.$$

Proof. The fiber of p over a \mathbb{C}-point of $\mathcal{M}(c(M)) \times \mathcal{M}(c(N \otimes I_\xi))$ corresponding to $(M, N \otimes I_\xi)$ is the quotient stack

$$[\text{Ext}^1(N \otimes I_\xi, M)/\text{Hom}(N \otimes I_\xi, M)],$$

where the action of the Hom group on the Ext group is trivial. The fiber of q over $[E] \in \hat{Q}_{N,l}(\mathbb{C})$ is the Quot-scheme $\text{Quot}_S(E, P)$, where P is the Hilbert polynomial of $N \otimes I_\xi$. The condition $\mu_H(M) \geq \mu_H(N)$ implies that $\text{Ext}^2(N \otimes I_\xi, M) \simeq \text{Hom}(M, N \otimes O_S \otimes I_\xi)^\vee = 0$, hence the dimension of the fibers of p is constant and equals

$$-\chi(S, N \otimes M^\vee \otimes O_S \otimes I_\xi) = -g + 2c_1(N) \cdot c_1(M) + c_1(M) \cdot K_S + l.$$

By looking at the tangent and obstruction spaces at any point, one shows that the Quot schemes constructing the fibers of q are either all 0-dimensional or all smooth of dimension 1; indeed, $\text{Hom}(M, N \otimes I_\xi) = 0$ unless $M \simeq N$ and $l = 0$, in which case $\text{Ext}^1(M, N \otimes I_\xi) = H^1(S, O_S) = 0$. As a consequence, if nonempty, $Q_{N,l}$ has dimension at most $3l - 2 - g + 2c_1(N) \cdot c_1(M) + c_1(M) \cdot K_S$.

Since the map $h_{N,l}$ forgets the automorphisms, its fiber over a pair $(C, A) \in \mathcal{W}_{N,l}$ is the quotient stack

$$[U/\text{Aut}(E_{C,A})],$$

where U is the open subscheme of $\mathbb{P}(\text{Hom}(E_{C,A}, O_{C}(C) \otimes A^\vee))$ whose points correspond to morphisms with kernel equal to $O_{S}[^2_0]$, and $\text{Aut}(E_{C,A})$ acts on U by composition. Using the vanishing $h^i(S, E_{C,A} \otimes O_S) = 0$ for $i = 1, 2$, one checks that

$$\text{Hom}(E_{C,A}, O_C(C) \otimes A^\vee) \simeq H^0(S, E_{C,A} \otimes E_{C,A}^\vee),$$

and U is isomorphic to $\mathbb{P}\text{Aut}(E_{C,A})$. Hence, the fibers of $h_{N,l}$ are stacks of dimension -1 and

$$\dim \mathcal{W}_{N,l} \leq 3l - 1 - g + 2c_1(N) \cdot c_1(M) + c_1(M) \cdot K_S + 2(g - d - 1 - c_1(L) \cdot K_S) = d + g - 3 - c_1(N) \cdot c_1(M) - c_1(N) \cdot K_S - c_1(L) \cdot K_S.$$

The conclusion follows now from the fact that $\dim |L| \geq g - 1 - c_1(L) \cdot K_S$, along with Lemma 4.1.

5. PROOF OF THE MAIN RESULTS

We recall some facts about exceptional curves, that is, curves of Clifford dimension greater than 1. Coppens and Martens ([CM]) proved that, if C is an exceptional curve of gonality k and Clifford dimension r, then $\text{Cliff}(C) = k - 3$ and C possesses a 1-dimensional family of g^r_k. Furthermore, if $r \leq 9$, there exists a unique line bundle computing $\text{Cliff}(C)$ (cf. [ELMS]).
this is conjecturally true for any r. Curves of Clifford dimension 2 are precisely the smooth plane curves of degree ≥ 5, while the only curves of Clifford dimension 3 are the complete intersections of two cubic surfaces in \mathbb{P}^3 (cf. [Ma]). We will use these results in the proof of the following:

Proposition 5.1. Let L be a line bundle on a smooth, rational surface S with an anticanonical pencil. If $g(L) \geq 4$ and a general curve $C \in |L|_s$ is exceptional, then any other curve inside $|L|_s$ has the same Clifford dimension r of C and either case (i) or (ii) of Theorem 1.2 occurs.

Proof. Since any curve of odd genus and maximal gonality has Clifford dimension 1 (cf. [A3, Corollary 3.11]), we can assume that general curves in $|L|_s$ have gonality $k \leq (g+2)/2$ and are exceptional. There exists a component W of $W^1_2(|L|)$ of dimension at least $\dim |L| + 1$ and, by Corollary 3.3, this is contained in $W_{N,l}$ for some N and l. Notice that the line bundle N is nef since it is globally generated off a finite set. Furthermore, it follows from the proof of Proposition 4.2 that N and $M := L \otimes N^\vee$ satisfy equality in (1), that is,

$$k - 3 = c_1(M) \cdot c_1(N) + c_1(N) \cdot K_S = k - l + c_1(N) \cdot K_S;$$

in particular, $N \otimes O_C$ computes the Clifford index of a general $C \in |L|_s$ and $h^1(S, M^\vee) = 0$. Having at least a 2-dimensional space of sections, the line bundle $\omega_S^\vee \otimes O_C$ has degree $\geq k$, thus $-c_1(M) \cdot K_S \geq k - 3 + l$.

Assume $h^0(S, N \otimes \omega_S) \geq 2$; the restriction of M to a general curve $C \in |L|_s$ contributes to its Clifford index and

$$k - 3 \leq \text{Cliff}(M \otimes O_C) = c_1(M) \cdot c_1(N) + c_1(M) \cdot K_S \leq 3 - 2l.$$

As $k \geq 2r$ (cf. [ELMS, Proposition 3.2]), we have $r \leq 3$; if $r = 3$, then $l = 0$, while $r = 2$ implies $l \leq 1$. Let $r = 2$; since $\chi(S, N) = h^0(S, N) = h^0(C, N \otimes O_C) = 3$ and $h^1(S, N \otimes \omega_S) = 0$ for $i = 1, 2$ (as one can check twisting (2) with ω_S and taking cohomology), then $c_1(N)^2 = l + 1$ and $h^0(S, N \otimes \omega_S) = l \leq 1$, contradicting our assumption. Hence, the inequality $h^0(S, N \otimes \omega_S) \geq 2$ implies $r = 3$ and $l = 0$.

Assume instead that $h^0(S, N \otimes \omega_S) \leq 1$; we get $c_1(N)^2 \leq 3 - l$ and $h^0(C, N \otimes O_C) = h^0(S, N) = \chi(S, N) \leq 4 - l$. Since $N \otimes O_C$ computes the Clifford index of C, then $r \leq 3$ holds in this case as well. Moreover, $l = 0$ when $r = 3$, and $l \leq 1$ if $r = 2$.

Let $r = 2$ and $l = 1$; then, $c_1(N)^2 = -c_1(N) \cdot K_S = 2$. By [Ha, Lemma 2.6, Theorem 2.11], N is base point free and not composed with a pencil, hence it defines a generically finite map $\psi_S : S \to |L|_{\psi_S}$ splitting into the composition of a birational morphism $\phi : S \to S'$, which contracts the finitely many curves E_1, \ldots, E_h having zero intersection with $c_1(N)$, and a ramified double cover $\pi : S' \to \mathbb{P}^2$. Let $N' := \pi^*(O_{\mathbb{P}^2}(1))$; since $N = \psi_S^*(N')$ and ψ_S preserves both the intersection products and the dimensions of cohomology groups, we have $c_1(N')^2 = -c_1(N') \cdot K_{S'} = 2$ and

$$1 = h^0(S, N \otimes \omega_S) \geq h^0(S, N \otimes \omega_S(-E_1 - \cdots - E_h)) = h^0(S', N' \otimes \omega_{S'}).$$

We apply Theorem 3.3. in [Ha] and get $N' = \omega_{S'}^\vee$ and $K_{S'} = 2$ (cases (b), (c), (d) of the aforementioned theorem cannot occur since they would contradict $c_1(N')^2 = 2$). The line bundle $N \otimes O_C$ is very ample because it computes $\text{Cliff}(C)$ (cf. [ELMS, Lemma 1.1]); hence, C is isomorphic to $C' = \psi(C)$ and $\omega_{S'}^\vee \otimes O_{C'}$ is also very ample. Proceeding as in the proof of [Pi] Lemma 2.6 (where the ampleness of $\omega_{S'}^\vee$ is not really used), one shows that $\phi(C') \in | - 2K_{S'}|$. This gives a contradiction because it implies $g(C') = g(C) = 3$.

Up to now, we have shown that $r \leq 3$ and $l = 0$, hence $-c_1(N) \cdot K_S = 3$ and $c_1(N)^2 > 0$. By [Ha, Proposition 3.2], the line bundle N defines a morphism $\phi_N : S \to \mathbb{P}^n$ which is birational to its image and only contracts the finitely many curves which have zero intersection with $c_1(N)$. If $r = 2$, then ϕ_N is the blow-up of \mathbb{P}^2 at finitely many points (maybe infinitely near) and any
curve in $|L|_s$ is the strict transform of a smooth plane curve. For $r = 3$, the image of ϕ_N is a normal cubic surface $S' \subset \mathbb{P}^3$ and any curve in $|L|_s$ is the strict transform of a smooth curve in $|−3K_{S'}|$ hence has Clifford dimension 3.

The following result is now straightforward.

Proposition 5.2. Let C be a smooth, irreducible curve lying on a rational surface S with an anticanonical pencil. If C is general in its linear system, then C satisfies Green’s Conjecture; if moreover C is not isomorphic to the complete intersection of two cubics in \mathbb{P}^3, then it satisfies Green-Lazarsfeld’s Gonality Conjecture as well.

Proof. We assume that C has genus $g \geq 4$, Clifford dimension 1, Clifford index c and gonality $k \leq (g + 2)/2$. Having fixed $k \leq d \leq g − k + 2$, Corollary 3.3 and Proposition 4.2 imply that every dominating component W of $W_d^1(|L|)$ has dimension $\leq \dim |L| + d − k$, hence C satisfies the linear growth condition. Green’s Conjecture for smooth plane curve and complete intersection of two cubics in \mathbb{P}^3 was established by Loose in [Lo], while Aprodu proved Green-Lazarsfeld’s Gonality Conjecture for curves of Clifford dimension 2 in [Al].

We proceed with the proof of Theorem 1.1.

Proof of Theorem 1.1. We can assume $g(L) \geq 4$. By Proposition 5.2, if $C \in |L|_s$ is general then $K_{g−c−1,1}(C, \omega_C)$ is regular and has geometric genus 0. We remark that this also implies that

$$H^0(C, \omega_C) \cong H^0(S, L \otimes \omega_S), \quad \forall C \in |L|_s.$$

Equality (6) for $q = 0$ is trivial since $|L|$ contains a smooth, irreducible curve. For $q \geq 2$, the line bundle $N^{q−1}$ is nef and big and the Kawamata-Viehweg Vanishing Theorem (cf. [La2, Theorem 4.3.1]) implies that

$$0 = H^1(S, N^{−(q−1)} \otimes \omega_S) \cong H^1(S, (L \otimes \omega_S)^{q−1} \otimes \omega_S) = H^1(S, N^q \otimes L^q).$$

By adjunction, for any curve $C \in |L|_s$, we obtain the following long exact sequence

$$\cdots \rightarrow K_{g−c−1,1}(S, L^q, L \otimes \omega_S) \rightarrow K_{g−c−1,1}(S, L \otimes \omega_S) \rightarrow K_{g−c−1,1}(C, \omega_C) \rightarrow K_{g−c−2,2}(S, L^q, L \otimes \omega_S) \rightarrow \cdots.$$

The group $K_{g−c−1,1}(S, L^q, L \otimes \omega_S)$ trivially vanishes since $H^0(S, \omega_S) = 0$. By the Vanishing Theorem applied to $K_{g−c−2,2}(S, L^q, L \otimes \omega_S)$, we can conclude that

$$H^0(C, \omega_C) \cong K_{g−c−1,1}(C, \omega_C),$$

provided that $g − c − 2 \geq h^0(S, L \otimes \omega_S^2)$. We can assume $h^0(S, L \otimes \omega_S^2) \geq 2$ and we are under the hypothesis that the anticanonical system contains a pencil. Hence, $\omega_S^2 \otimes \mathcal{O}_C$ contributes to the Clifford index and, if $C \in |L|_s$ is general, then:

$$c = \text{Cliff}(C) \leq \text{Cliff}(\omega_S^2 \otimes \mathcal{O}_C) = −c_1(L) \cdot K_S − 2h^0(C, \omega_S^2 \otimes \mathcal{O}_C) + 2 \leq −c_1(L) \cdot K_S − 2h^0(S, \omega_S^2) + 2.$$

Since $H^1(S, L \otimes \omega_S^2) \cong H^1(S, L^q \otimes \omega_S^q) = 0$, we have

$$h^0(S, L \otimes \omega_S^2) = χ(S, L \otimes \omega_S^2) = g + c_1(L) \cdot K_S + K_S^2 \leq g − c + 1 − h^0(S, \omega_S^2) = h^1(S, \omega_S^2).$$
Knutsen’s conditions because, if \(\Gamma \)
\(\text{base point free pencil on} \)
\(C \) when
\(C \) is a net on
\(\chi \)
\(C \) has degree 1; we denote by \(c \) their Clifford index.

By semicontinuity of the gonality, all curves in \(|L|_s \) have gonality
\(k \) and Clifford index \(k - 2 \); in particular, \(\omega^\vee \otimes \mathcal{O}_C \) computes \(\text{Cliff}(C) \). The easiest example where the gonality is not constant is provided by \(L = \omega^{-n}_S \) for \(n \geq 3 \).

Vice versa, if \(S \) has degree 1 and \(\text{Cliff}(\omega^\vee_S \otimes \mathcal{O}_C) = \text{Cliff}(C) \) for a general \(C \in |L|_s \), one recovers Knutsen’s conditions because, if \(\Gamma \) is a smooth rational curve with \(\Gamma^2 = 0 \), then \(\mathcal{O}_S(\Gamma) \) cuts out a base point free pencil on \(C \), and if \(c_1(L)^2 \geq 8 \) and \(E \) is a \((-1)\)-curve, then \(\mathcal{O}_C(-K_S + E) \) defines a net on \(C \) which contributes to its Clifford index. This shows that the extra hypothesis we make when \(\chi(S, \omega^\vee_S) = h^0(S, \omega^\vee_S) = 2 \) is unavoidable.

References

[A1] M. Aprodu, *On the vanishing of higher syzygies of curves*, Math. Zeit. 241 (2002), 1-15.

[A2] M. Aprodu, *Remarks on syzygies of d-gonal curves*, Math. Res. Lett. 12 (2005), 387-400.

[A3] M. Aprodu, *Lazarsfeld-Mukai bundles and applications*, arXiv:1205.4415.

[AF] M. Aprodu, G. Farkas, *The Green Conjecture for smooth curves lying on arbitrary K3 surfaces*, Compos. Math. 147 (2011), 839-851.

[ACG] E. Arbarello, M. Cornalba, P. A. Griffiths, *Geometry of algebraic curves. Volume II. With a contribution by Joseph Daniel Harris*, Grundlehren der mathematischen Wissenschaften, 267, Springer-Verlag, Berlin (2011).

[CM] M. Coppens, G. Martens, *Secant spaces and Clifford’s Theorem*, Compos. Math. 78 (1991), 193-212.

[CoMR] L. Costa, R. M. Miro-Roig, *Rationality of moduli spaces of vector bundles on rational surfaces*, Nagoya Math. J. 165 (2002), 43-69.

[E] S. Ehbauer, *Syzygies of points in projective space and applications*, Zero-dimensional schemes (Ravello, 1992), De Gruyter, Berlin, 1994, 145-170.

[ELMS] D. Eisenbud, H. Lange, G. Martens, and F-O. Schreyer, *The Clifford dimension of a projective curve*, Compos. Math. 72 (1989), 173-204.

[G] M. L. Green, *Koszul cohomology and the geometry of projective varieties*, J. Diff. Geom. 19 (1984), 125-171.

[Ha] B. Harbourne, *Birational morphisms of rational surfaces*, J. Algebra 190 (1997), 145-162.

[HR] L. Hirschowitz, S. Ramanan, *New evidence for Green’s conjecture on syzygies of canonical curves*, Ann. Sci. Éc. Norm. Supér. (4) 31 (1998), 145-152.

[K] A. L. Knutsen, *Exceptional curves on Del Pezzo surfaces*, Math. Nachr. 256 (2003), 58-81.

[La1] R. Lazarsfeld, *Brill-Noether-Petri without degenerations*, J. Diff. Geom. 23 (1986), 299-307.

[La2] R. Lazarsfeld, *Positivity in algebraic geometry. I*, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, 49, Springer-Verlag, Berlin (2004).

[LC] M. Lelli-Chiesz, *Stability of rank-3 Lazarsfeld-Mukai bundles on K3 surfaces*, arXiv:1112.2938.

[Lo] F. Loose, *On the graded Betti numbers of plane algebraic curves*, Manuscr. Math. 64 (1989), 503-514.

[Ma] H. Martin, *Über den Clifford-Index algebraischer Kurven*, J. Reine Angew. Math. 336 (1982), 83-90.

[P1] G. Pareschi, *Exceptional linear systems on curves on Del Pezzo surfaces*, Math. Ann. 291 (1991), 17-38.

[P2] G. Pareschi, *A proof of Lazarsfeld’s Theorem on curves on K3 surfaces*, J. Alg. Geom. 4 (1995), 195-200.
[V1] C. Voisin, *Green’s generic syzygy conjecture for curves of even genus lying on a K3 surface*, J. Eur. Math. Soc. 4 (2002), 363-404.

[V2] C. Voisin, *Green’s canonical syzygy conjecture for generic curves of odd genus*, Compos. Math. 141 (2005), 1163-1190.