Tensor Regression Using Low-rank and Sparse Tucker Decompositions

Talal Ahmed†, Haroon Raja‡, and Waheed U. Bajwa†

Abstract. This paper studies a tensor-structured linear regression model with a scalar response variable and tensor-structured predictors, such that the regression parameters form a tensor of order d (i.e., a d-fold multiway array) in $\mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d}$. This work focuses on the task of estimating the regression tensor from m realizations of the response variable and the predictors where $m \ll n = \prod_i n_i$. Despite the ill-posedness of this estimation problem, it can still be solved if the parameter tensor belongs to the space of sparse, low Tucker-rank tensors. Accordingly, the estimation procedure is posed as a non-convex optimization program over the space of sparse, low Tucker-rank tensors, and a tensor variant of projected gradient descent is proposed to solve the resulting non-convex problem. In addition, mathematical guarantees are provided that establish the proposed method converges to the correct solution under the right set of conditions. Further, an upper bound on sample complexity of tensor parameter estimation for the model under consideration is characterized for the special case when the individual (scalar) predictors independently draw values from a sub-Gaussian distribution. The sample complexity bound is shown to have a polylogarithmic dependence on $\tilde{n} = \max \{ n_i : i \in \{1, 2, \ldots, d\} \}$ and, orderwise, it matches the bound one can obtain from a heuristic parameter counting argument. Finally, numerical experiments demonstrate the efficacy of the proposed tensor model and estimation method on a synthetic dataset and a neuroimaging dataset pertaining to attention deficit hyperactivity disorder. Specifically, the proposed method exhibits better sample complexities on both synthetic and real datasets, demonstrating the usefulness of the model and the method in settings where $n \gg m$.

Keywords. Linear regression, sample complexity, sparsity, tensor regression, Tucker decomposition

AMS subject classifications. 41A52, 41A63, 62F10, 62J05

1. Introduction. Many modern data science problems involve learning a high-dimensional regression model, where the number of predictors is much larger than the number of samples. We focus on tensor-structured regression models, where the predictors appear naturally in the form of a tensor. Such regression models find applications within hyperspectral imaging [27, 6], climatology [24], neuroscience [1, 28], sentiment analysis [34], and computer vision [12]. In this work, specifically, we consider a linear tensor-structured regression model with response variable $y \in \mathbb{R}$, tensor (multiway array) of predictors $X \in \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d}$, tensor of regression parameters $B \in \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d}$, and noise $\eta \in \mathbb{R}$ such that $y = \langle X, B \rangle + \eta$, where $d \in \mathbb{Z}^+$ and $\langle \cdot, \cdot \rangle$ denotes the canonical inner product. Among the various applications of this model, a major one appears in neuroimaging data analysis, where the voxels (predictors) in a brain image naturally appear in the form of a tensor and the associated disease outcome (response) appears as a scalar variable [29, 28, 20, 38].

*Date of last revision: November 12, 2019.

Funding: This work was supported in part by the National Science Foundation (NSF) under awards CCF-1453073 and CCF-1910110, and by the Army Research Office (ARO) under award W911NF-17-1-0546.

†Department of Electrical and Computer Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA (talal.ahmed@rutgers.edu, waheed.bajwa@rutgers.edu).

‡Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA (hraja@umich.edu).
Mathematically, define \(\{X_i\}_{i=1}^m \), \(\{y_i\}_{i=1}^m \), and \(\{\eta_i\}_{i=1}^m \) to be the realizations of \(X, y \), and \(\eta \), respectively, where \(m \) refers to the number of observations/measurements such that \(m \ll n := \prod_i n_i \). Then, the realizations of the linear regression model can be expressed as
\[
y_i = \langle X_i, B \rangle + \eta_i, \quad i \in \{1, 2, \ldots, m\}.
\]

In this paper, given \(\{X_i\}_{i=1}^m \) and \(\{y_i\}_{i=1}^m \), we focus on the task of learning the regression model in (1.1), which is equivalent to estimating \(B \). Since we are considering the high-dimensional setting of \(m \ll n \) in this work, the learning task is ill-posed without imposition of additional constraints on the parameter tensor \(B \). We now discuss how this challenge has been addressed in prior work.

1.1. Relationship to Prior Work. One simple approach to estimating \(B \) is to vectorize the regression tensor \(B \) and the realizations \(\{X_i\}_{i=1}^m \) of the predictor tensor such that the model in (1.1) can equivalently be expressed as \(y_i = \langle \text{vec}(X_i), \text{vec}(B) \rangle + \eta_i \), where \(\text{vec}(\cdot) \) denotes the vectorization procedure. Since this reduces the original model to a vector-valued regression model, any of the traditional sparsity promoting techniques in the literature—such as forward selection/matching pursuit [23], least absolute shrinkage and selection operator (LASSO) [43], elastic net [50], adaptive LASSO [49], and Dantzig selector [8]—can be employed for estimating \(b := \text{vec}(B) \in \mathbb{R}^n \). However, a potential drawback of the vectorization operation is that the spatial correlation structure in tensor data might be lost, and a natural question is if we can explicitly exploit this structure for learning \(B \).

Among the various notions of tensor decompositions that capture spatial relationships among entries of a tensor, a popular decomposition is the Tucker decomposition [25, 39]. Specifically, the concept of low Tucker rank, which is the notion of rank associated with Tucker decomposition, has been successfully imposed on the regression tensor \(B \) for sample-efficient learning of tensor-structured regression models [13, 44, 36]. Some early convex approaches for estimating \(B \) in this regard were based on minimization of the sum of nuclear norms of matricizations of tensor \(B \) in each mode [30, 13, 44, 33]. To understand the sample complexity of such learning methods, consider the special case where the \(d \)-tuple \((r, r, \ldots, r)\) is the Tucker rank of \(B \) and the entries in \(X_i \) independently draw values from a Gaussian distribution for \(i \in \{1, 2, \ldots, m\} \). Under this special case, it was shown that convex approaches based on sum of nuclear norm minimization require \(\Omega(r\tilde{n}^{(d-1)}) \) samples for estimating \(B \) [33], where \(\tilde{n} := \max\{n_i : i \in \{1, 2, \ldots, d\}\} \). Since the number of degrees of freedom in \(B \) are on the order of \(r^d + \tilde{n}rd \) in this case, such sample complexity bound is clearly sub-optimal. Thus, more recently, focus has shifted to solving non-convex formulations of the learning problem for various tensor-valued regression models, in the hope of achieving better sample complexity [47, 11, 36]. In one such recent work that studies the imposition of low Tucker rank on \(B \) [36], it was shown that \(B \) can be learnt using \(\mathcal{O}((r^d + \tilde{n}rd)\log d) \) observations, which is order optimal up to a logarithmic factor.

Although the imposition of low Tucker rank on \(B \) allows for efficient learning, the sample complexity requirement of \(\mathcal{O}((r^d + \tilde{n}rd)\log d) \) poses a linear dependence on \(\tilde{n} \), where this linear dependence can easily become prohibitive in many application domains. For example, consider a case from neuroimaging data analysis, where a typical MRI image has size \(256 \times 256 \times 256 \) with \(r = 3 \) and \(d = 3 \) [48]. Clearly, \(\tilde{n} \gg r \) and \(\tilde{n} \gg d \) in this case, and question arises if we...
can tighten the aforementioned sample complexity bound. This goal cannot be achieved with the imposition of low Tucker rank alone on \(B \), since the degrees of freedom in \(B \), in this case, scale linearly with \(\bar{n} \). Another challenge with the imposition of low Tucker rank on \(B \) is that the resulting regression model does not encompass the typical situation where the response depends on only a few of the (scalar) predictors in the model (i.e., the sparsity assumption). In this work, we address both these challenges, simultaneously, by studying the imposition of multiple structures on \(B \), as explained next.

1.2. Our Contributions.

We study the regression model in (1.1) under the assumption that (i) the regression tensor \(B \) has low Tucker rank (to be made precise later) and (ii) the factor matrices corresponding to the Tucker decomposition of \(B \) are sparse. This simultaneous imposition of structure on \(B \) allows us to address both of the aforementioned challenges. First, the imposed sparse, low-rank structure massively reduces the number of degrees of freedom in \(B \), which helps get rid of the linear dependence of sample complexity on \(\bar{n} \). Second, the imposition of sparsity on the factor matrices induces sparsity in the regression tensor \(B \), which reflects the a priori belief that the response variable typically does not depend on all the (scalar) predictors, and facilitates model interpretability. Note that this simultaneous tensor structure is reminiscent of the notion of sparse PCA from matrix decomposition literature [51].

From a computational perspective, we formulate the problem of learning the sparse, low Tucker rank \(B \) as a non-convex problem, and we propose a projected gradient descent-based method to solve it. Furthermore, in our theoretical analysis, we show that the proposed computational procedure provides an approximately correct solution within a given number of algorithmic steps, under a certain restricted isometry assumption on realizations of the predictor tensor. In contrast, prior works that study recovery of simultaneously structured \(B \) either (i) formulate a convex problem for learning the parameter tensor [35], or (ii) impose a sparse, low CP-rank structure on \(B \) [16, 17], where [16] imposes a certain cubic structure on realizations of the predictor tensor and [17] lacks sample complexity guarantees.

We also evaluate the introduced restricted isometry condition for the case of independently and identically distributed sub-Gaussian (tensor-structured) predictors, and in the process, we characterize the sample complexity of parameter estimation for the case of sparse, low Tucker-rank regression tensor. We show that our sample complexity bound has only a polylogarithmic dependence on \(\bar{n} := \max \{ n_i : i \in \{1,2,\ldots,d\} \} \). On the other hand, in similar prior works, the sample complexity requirement has been shown to be either linear or super-linear in \(\bar{n} \) [44, 33, 36]. We also employ synthetic data experiments to demonstrate the efficacy of the proposed computational procedure. Finally, we conduct real-data experiments on a dataset of fMRI images pertaining to attention deficit hyperactivity disorder [32], and we show that the imposition of multiple structures on \(B \) allows for efficient neuroimaging analysis in the low sample size regime.

1.3. Notation.

Bold upper-case letters (\(Z \)), upper-case letters (\(Z \)), bold lower-case letters (\(z \)), lower-case letters (\(z \)), and underlined letters (\(\underline{z} \)) are used to denote tensors, matrices, vectors, scalars, and tuples, respectively. For any tuple \(\underline{z} \) and scalar \(\alpha \), we use \(\alpha\underline{z} \) to denote the tuple obtained by multiplying each entry of \(\underline{z} \) by \(\alpha \). For any scalar \(q \in \mathbb{Z}_+ \), we use \([[q]] \) as a shorthand for \(\{1,2,\ldots,q\} \). Given any vector \(\mathbf{u} \in \mathbb{R}^n \), \(\|\mathbf{u}\|_0 \) and \(\|\mathbf{u}\|_2 \) denote the \(\ell_0 \) and \(\ell_2 \) norms of vector \(\mathbf{u} \), respectively. Given two vectors \(\mathbf{u} \in \mathbb{R}^n \) and \(\mathbf{v} \in \mathbb{R}^n \) of
same dimension, $u \circ v$ denotes their outer product. Given any matrix U, the i-th column is denoted by $U(:, i)$, the spectral norm is denoted by $\|U\|_2$, while max $\|U(:, i)\|_2$ is denoted by $\|U\|_{i, 2}$. Given any two matrices U_1 and U_2, $U_1 \otimes U_2$ denotes the Kronecker product. Given any tensor Z, its (i_1, i_2, \ldots, i_d)-th entry is given by $Z(i_1, i_2, \ldots, i_d)$, the Frobenius norm $\|Z\|_F$ is given by $\sqrt{\sum_{i_1, i_2, \ldots, i_d} Z(i_1, i_2, \ldots, i_d)^2}$, the ℓ_1 norm $\|Z\|_1$ is given by $\sum_{i_1, i_2, \ldots, i_d} |Z(i_1, i_2, \ldots, i_d)|$, and the mode-$i$ matricization $Z(i_i)$ is the matrix obtained from column-arrangement of the mode-i fibers of Z. The conjugate transpose of a linear map $X : \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d} \rightarrow \mathbb{R}^m$ is denoted by $X^* : \mathbb{R}^m \rightarrow \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d}$. Following the tensor notation in [25], for matrices $\hat{U}_i \in \mathbb{R}^{n_i \times r_i}$, $i \in \{[d]\}$, and tensor $S \in \mathbb{R}^{r_1 \times r_2 \times \cdots \times r_d}$, we define $S \times_1 \hat{U}_1 \times_2 \hat{U}_2 \cdots \times_d \hat{U}_d$ as $\sum_{i_1, i_2, \ldots, i_d} S(i_1, i_2, \ldots, i_d) \hat{U}_1(:, i_1) \circ \hat{U}_2(:, i_2) \circ \cdots \circ \hat{U}_d(:, i_d)$. Finally, η_q refers to an identity matrix of size q, where $q \in \mathbb{Z}_+$.

1.4. Organization. The rest of this paper is organized as follows. In Sec. 2, we formally outline the proposed regression model, which includes a formal definition of sparse, low Tucker-rank tensors, and then we present a non-convex formulation of the problem for estimating the regression tensor. In Sec. 3, we propose a method for solving the posed non-convex problem, and in Sec. 4, we provide mathematical guarantees for the proposed method, based on a certain restricted isometry property of the predictor tensors. In Sec. 5, we evaluate the posed property for sub-Gaussian predictors and provide sample complexity bounds. Finally, in Sec. 6, we report results of extensive numerical experiments on both synthetic and real data, while concluding remarks are presented in Sec. 7.

2. Problem formulation. For ease of notation, let us define $\mathcal{W} := \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d}$, $\mathcal{Y} := \mathbb{R}^m$, and let us denote the collection of tensors $\{X_i\}_{i=1}^m$ in (1.1) by a linear map/measurement operator $X : \mathcal{W} \rightarrow \mathcal{Y}$ such that (1.1) can equivalently be expressed as

$$y = X(B) + \eta,$$

where $y = [y_1, y_2, \ldots, y_m]$, and $\eta = [\eta_1, \eta_2, \ldots, \eta_m]$. In this work, we impose that the parameter tensor $B \in \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d}$ is structured in the sense that it is r-rank and s-sparse, where the notion of an r-rank and s-sparse tensor is defined as follows.

Definition 2.1 (r-rank and s-sparse tensor). Given a rank tuple $r := (r_1, r_2, \ldots, r_d)$ and a sparsity tuple $s := (s_1, s_2, \ldots, s_d)$, a tensor $Z \in \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d}$ is said to be r-rank and s-sparse if Z can be expressed as $Z = S \times_1 U_1 \times_2 U_2 \cdots \times_d U_d$,

where $S \in \mathbb{R}^{r_1 \times r_2 \times \cdots \times r_d}$ and $U_i \in \mathbb{R}^{n_i \times r_i}$, with $\|U_i(:, j)\|_0 \leq s_i$, $i \in \{[d]\}$, $j \in \{[r_i]\}$. Notice that, trivially, $r_i \leq n_i$ and $s_i \leq n_i$.

Recall from [25] that (2.2) is expressing Z in terms of a Tucker decomposition, in which S is termed the core tensor and the U_i’s are referred to as factor matrices, with additional sparsity constraints on the factor matrices. It can also be seen from (2.2) that for the special case when $s_i = n_i$, the mode-i matricization of Z has rank r_i: rank$(Z(i)) = r_i$; i.e., the r-rank of Z is simply the Tucker rank of Z. Further, note that we are defining sparsity of Z in terms
of sparsity of the columns of the factor matrices \(\{U_i(:, j)\}, i \in [[d]], j \in r_i\), that are generating the tensor. This notion of sparsity is different from the conventional notion of sparsity, where sparsity is defined as the number of non-zero entries for the data structure under consideration, i.e., tensor \(\mathbf{Z}\) in this case. In contrast, the said notion of sparsity not only induces sparsity on \(\mathbf{Z}\) but also dramatically reduces the number of free parameters in \(\mathbf{Z} \in \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d}\) from \(n := \prod_i n_i\) to the order of \(\prod_i r_i + \sum_i r_i s_i \log n_i\), which can be significantly smaller than \(n\) for \(r_i \ll n_i\) and \(s_i \ll n_i\) (the \(\log n_i\) factor arises from the need to encode the locations of the \(s_i\) non-zero entries in a given column of \(U_i\)). This reduction in degrees of freedom allows us to learn the tensor regression model in (2.1) with lower sample complexity, as we show later.

Since we are requiring the unknown tensor \(\mathbf{B}\) to be \(r\)-rank and \(s\)-sparse in our regression model (2.1), we formally define a set of such tensors as follows:

\[
\mathcal{C} = \{\mathbf{S} \times_1 U_1 \times_2 U_2 \times_3 \cdots \times_d U_d : \mathbf{S} \in \mathbb{R}^{r_1 \times r_2 \times \cdots \times r_d}, \quad U_i \in \mathbb{R}^{n_i \times r_i}, \|U_i(:, j)\|_0 \leq s_i, i \in [[d]], j \in [[r_i]]\}.
\]

Using the definition of constraint set \(\mathcal{C}\), and given a known linear map \(\mathcal{X}\), we can pose the following constrained optimization problem for recovery of \(\mathbf{B}\) from noisy linear measurements \(\mathbf{y}\):

\[
\hat{\mathbf{B}} = \arg \min_{\mathbf{Z} \in \mathcal{C}} \frac{1}{2} \|\mathbf{y} - \mathcal{X}(\mathbf{Z})\|_2^2.
\]

We can see that the optimization problem posed in (2.4) is non-convex because of non-convexity of the constraint set \(\mathcal{C}\). In contrast, most of the prior works in tensor parameter estimation focus on solving convex relaxations of the tensor recovery problem for various notions of low-dimensional tensor structures [30, 13, 44, 33], hence benefiting from rich literature on theory and algorithms for convex optimization. But the issue with convex relaxation-based solutions is that convex relaxations can be suboptimal in terms of number of measurements required to solve the problem [33]. While posing and solving the tensor recovery problem in a non-convex form tends to circumvent this issue, it brings about difficulties in terms of theoretically characterizing behavior of the associated recovery algorithm. In the next section, we present our proposed method for solving (2.4), while theoretical characterization of the proposed approach follows in Sec. 4 and Sec. 5.

3. Estimation of \(r\)-rank and \(s\)-sparse Regression Tensors. In this section, we present a method for estimation of the structured parameter tensor \(\mathbf{B}\) in the regression model (2.1), given the linear map \(\mathcal{X}\), response vector \(\mathbf{y}\), and the assumption that \(\mathbf{B}\) is \(r\)-rank and \(s\)-sparse. Our method is inspired by the various projected gradient descent-based methods in the literature, where such methods have been employed for recovery of sparse vectors [7], low-rank matrices [22], and more recently, low-rank tensors [36, 47]. The method, termed tensor projected gradient descent (TPGD), is summarized in Algorithm 3.1. The TPGD method consists of two steps. First we perform gradient descent iteration over the objective function in (2.4) (Step 4, Algorithm 3.1), and then, we project the iterate onto set \(\mathcal{C}\), which is the set of \(r\)-rank and \(s\)-sparse tensors (Step 5, Algorithm 3.1). The projection operator, \(\mathcal{H} : \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d} \to \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d}\), in Step 5 of Algorithm 3.1 is defined as:

\[
\mathcal{H}(\tilde{\mathbf{B}}) := \arg \min_{\mathbf{B} \in \mathcal{C}} \|\tilde{\mathbf{B}} - \mathbf{B}\|_F^2.
\]
Algorithm 3.1 Tensor Projected Gradient Descent (TPGD)

1: **Input:** Linear map X, response vector y, step size μ, sparsity tuple s, rank tuple r
2: **Initialize:** Tensor B^0 and $k \leftarrow 0$
3: while Stopping criterion do
4: $\hat{B}^k \leftarrow B^k - \mu X^*(X(B^k) - y)$
5: $B^{k+1} \leftarrow \mathcal{H}(\hat{B}^k)$
6: $k \leftarrow k + 1$
7: end while
8: **return** Tensor $B^* = B^k$

In general, computation of the best low-rank approximation of a given tensor is considered to be an NP-hard problem [19, 36]. Despite that, several algorithms have been proposed in the literature for computing low-rank tensor approximations corresponding to various notions of tensor decompositions [25, 2, 14, 40]. Although these approximation algorithms do not come with mathematical guarantees regarding the accuracy of tensor approximation, they have been employed successfully in practice for tensor approximation within various methods for estimating tensor-structured parameters in regression models [47, 36]. The mathematical guarantees for these parameter estimation methods assume the goodness of the tensor approximation step, since the corresponding approximation algorithms are not guaranteed to compute the best approximation.

In a similar vein, in the mathematical guarantees for Algorithm 3.1 (Sec. 4), we assume that the best low-rank approximation (projection step in Step 5, Algorithm 3.1) can be exactly computed. However, in our numerical simulations (Sec. 6), we employ Algorithm 3.2 for computation of the projection step, where Algorithm 3.2 is essentially the Sparse Higher-Order SVD method [2]. Moreover, within Algorithm 3.2, we employ [18] for computation of the factor matrices $\{\bar{U}_j\}_{j=1}^d$ (Step 3, Algorithm 3.2). Later, in Sec. 6, our numerical simulations show that Algorithm 3.2 can, indeed, be effectively employed with Algorithm 3.1 to efficiently learn the regression model in (2.1) under certain conditions, despite the lack of mathematical guarantees for Algorithm 3.2.

Algorithm 3.2 Sparse Higher-Order SVD

1: **Input:** Tensor \bar{B}, sparsity tuple s, rank tuple r
2: for $j = 1, \ldots, d$ do
3: $\bar{U}_j \leftarrow$ First r_j, s_j-sparse principal components of $\bar{B}^{(j)}$
4: end for
5: $\bar{S} \leftarrow \bar{B} \times_1 \bar{U}_1 \times_2 \bar{U}_2 \times_3 \cdots \times_d \bar{U}_d$
6: **return** Tensor $\bar{B} = \bar{S} \times_1 \bar{U}_1 \times_2 \bar{U}_2 \times_3 \cdots \times_d \bar{U}_d$

4. Convergence Analysis of Tensor Projected Gradient Descent. In this section we provide theoretical guarantees for TPGD (Algorithm 3.1), which, as explained earlier, is a projected gradient method to solve (2.4). Variants of the projected gradient method have been analyzed for recovery of sparse vectors [7], low-rank matrices [22], and low-rank tensors [47, 36, 11] under the assumption that the linear map/measurement operator satisfies some
variant of the restricted isometry property (RIP) \cite{candes2010simple}. Since different tensor decompositions induce different notions of tensor rank \cite{Kolda2009,Lathauwer2000}, and different regression models lead to different measurement operators \cite{Kolda2009,vandereycken2014tensors}, various notions of RIP have also been posed for various tensor decompositions and regression models. Before we present the notion of RIP assumed on the linear map in this work, let us define a set of r-rank and ℓ-sparse tensors, with additional constraints on (i) the ℓ_1-norm of the associated core tensor and (ii) the ℓ_2-norm of columns of the associated factor matrices:

$$
\mathcal{G}_{r,\ell,\delta} = \{ S \times_1 U_1 \times_2 U_2 \times \cdots \times_d U_d : S \in \mathbb{R}^{r_1 \times r_2 \times \cdots \times r_d}, \| S \|_1 \leq \tau, \text{ and } U_i \in \mathbb{R}^{n_i \times r_i}, \| U_i(:,j) \|_0 \leq s_i, \| U_i(:,j) \|_2 \leq 1, i \in \{[d] \}, j \in \{[r_i] \} \}. \tag{4.1}
$$

From the ℓ_1-norm constraint on S and ℓ_2-norm constraint on $U_i(:,j)$, where $i \in \{[d] \}$ and $j \in \{[r_i] \}$, it follows that $\| Z \|_F \leq \tau$ for any $Z \in \mathcal{G}_{r,\ell,\delta}$. Thus, these ℓ_1 and ℓ_2-norm constraints allow us to put a bound on size of the set $\mathcal{G}_{r,\ell,\delta}$, which allows us to evaluate a bound on the covering number of the set $\mathcal{G}_{r,\ell,\delta}$ to obtain a sample complexity bound for tensor recovery, as follows in the next section.

For the recovery of r-rank and ℓ-sparse tensors considered in this work, we consider the following notion of RIP on the linear map \mathcal{X}.

\textbf{Definition 4.1 ($\{r,\ell,\delta,\mathcal{G}_{r,\ell,\delta}\}$-Restricted Isometry Property).} The restricted isometry constant $\delta_{r,\ell,\delta} \in (0,1)$ of a linear map $\mathcal{X} : \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d} \rightarrow \mathbb{R}^m$ acting on tensors of order d is the smallest quantity such that

$$
(1 - \delta_{r,\ell,\delta}) \| Z \|_F^2 \leq \| \mathcal{X}(Z) \|_2^2 \leq (1 + \delta_{r,\ell,\delta}) \| Z \|_F^2 \tag{4.2}
$$

for all tensors $Z \in \mathcal{G}_{r,\ell,\delta}$.

In the following we provide our first main theoretical result that characterizes the convergence behavior of TPGD under the assumption of an exact projection step (Step 5, Algorithm 3.1).

\textbf{Theorem 4.2.} (Convergence of TPGD) Let $y = \mathcal{X}(B) + \eta$, and let $B^0 \in \mathcal{G}_{r,\ell,\delta}$ be the tensor initialization in Algorithm 3.1. For some fixed $\gamma \in (0,1)$, if $\mathcal{X} : \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d} \rightarrow \mathbb{R}^m$ satisfies RIP in Definition 4.1 with $\delta_{r,\ell,\delta} = \frac{\gamma}{1 + \gamma}$, then for $b = \frac{1 + 3\delta_{r,\ell,\delta}^2}{1 - 3\delta_{r,\ell,\delta}^2}$, choosing some $c_1 > 0$, and fixing the step size $\mu = \frac{1}{1 + \delta_{r,\ell,\delta}^2}$, the TPGD algorithm (Algorithm 3.1) after

$$
t = \frac{1}{\log(\gamma)} \log \left(\frac{\| y - \mathcal{X}(B^0) \|^2}{c_1 \| \eta \|_2^2} \right) \text{ iterations obtains a solution } B^* \text{ such that}
$$

$$
\| B^* - B \|_F^2 \leq \frac{2}{1 - \delta_{r,\ell,\delta}^2} \left(1 + c_1 + \frac{b}{1 - \gamma} \right) \| \eta \|_2^2. \tag{4.3}
$$

\textbf{4.1. Discussion of Theorem 4.2.} Let $c_0 := \frac{2}{1 - 3\delta_{r,\ell,\delta}^2} \left(1 + c_1 + \frac{b}{1 - \gamma} \right) \| \eta \|_2^2$. Next, define the closed ball $B(c_0, B)$ with center at B and radius c_0 as the set of all $Z \in \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d}$ such that $\| Z - B \|_F^2 \leq d$. From definitions of c_0 and t it can be seen from Theorem 4.2 that the solution of TPGD will be in $B(c_0, B)$ after t iterations of TPGD. Note that although the mathematical guarantees in this section depend on the $(r,\ell,\delta,\mathcal{G}_{r,\ell,\delta})$-RIP property in Definition 4.1, we evaluate the property for a known family of linear maps in the next section.
Additionally, Theorem 4.2 also characterizes the impact of noise power \(\|\eta\|_2^2 \) and RIP constant \(\delta_{2r,2r} \) on convergence behavior of the TPGD algorithm. First, the radius of ball \(B(c_0, B) \) scales linearly with the noise power \(\|\eta\|_2^2 \). Thus, the more the noise power, the less accurate may the solution of TPGD be and vice versa. Second, it can be seen from the definition of \(t \) that the number of iterations required to reach \(B \) depends on noise power as a function of \(\log(1/\|\eta\|_2^2) \). This is significant as it informs us that for lower noise levels a better quality solution can be obtained at the expense of very small increase in the number of iterations. Third, Theorem 4.2 shows that the smaller the RIP constant \(\delta_{2r,2r} \), the smaller the radius of ball \(B(c_0, B) \). Thus, the larger the value of \(\delta_{2r,2r} \), the less accurate may the solution of TPGD be and vice versa. Furthermore, observing that \(\|y - \mathcal{X}(B^0)\|_2 \leq \sqrt{1 + \delta_{2r,2r}}\|B - B^0\|_F + \|\eta\|_2 \) for \(B^0 \in \mathcal{G}_{2r,2r} \), the theorem also shows that the rate of convergence of the algorithm is inversely related to the value of the RIP constant \(\delta_{2r,2r} \) and the initialization distance \(\|B - B^0\|_F \).

4.2. Remarks on Proof of Theorem 4.2

A key step in proving Theorem 4.2 is to show that any linear combination of two \(r \)-rank and \(s \)-sparse tensors has rank at most \(2r \) and sparsity \(s \). We formally describe this in terms of a lemma that appears in analysis of any step that involves linear combination of \(r \)-rank and \(s \)-sparse tensors.

Lemma 4.3. Let \(Z_a \in \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d} \) and \(Z_0 \in \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d} \) be members of the set \(\mathcal{G}_{r,s} \), where \(r := (r_1, r_2, \ldots, r_d), \ s := (s_1, s_2, \ldots, s_d) \), and \(\tau \in \mathbb{R}^+ \). Define \(Z_c = \gamma_a Z_a + \gamma_b Z_0 \), where \(\gamma_a, \gamma_b \in \mathbb{R} \). Then, \(Z_c \) is a member of the set \(\mathcal{G}_{2r,2s} \), where \(\kappa = (|\gamma_a| + |\gamma_b|)\tau \).

The proof of this lemma is provided in Appendix A, and the proof of Theorem 4.2 follows in Appendix B.

5. Evaluating the Restricted Isometry Property for Sub-Gaussian Linear Maps

In the previous section, we provided theoretical guarantees for recovery of the parameter tensor \(B \) using the TPGD method, based on assumption of the Restricted Isometry Property (Definition 4.1). In this section, we provide examples of linear maps that satisfy this property. Specifically, we consider linear maps in (2.1), \(\mathcal{X} \), that denote the collection of tensors in (1.1), \(\{X_i\}_{i=1}^m \), such that the entries of \(\{X_i\}_{i=1}^m \) are independently drawn from zero-mean, unit-variance sub-Gaussian distributions. We term such linear maps as sub-Gaussian linear maps. Before we evaluate the condition in Definition 4.1 for these maps, let us recall the definition of a sub-Gaussian random variable.

Definition 5.1. A zero-mean random variable \(Z \) is said to follow a sub-Gaussian distribution \(subG(\alpha) \) if there exists a sub-Gaussian parameter \(\alpha > 0 \) such that \(\mathbb{E}[\exp(\lambda Z)] \leq \exp \left(\frac{\lambda^2 \alpha^2}{2} \right) \) for all \(\lambda \in \mathbb{R} \).

In words, a \(subG(\alpha) \) random variable is one whose moment generating function is dominated by that of a Gaussian random variable. Some common examples of sub-Gaussian random variables include:

- \(Z \sim \mathcal{N}(0, \alpha^2) \Rightarrow Z \sim subG(\alpha) \).
- \(Z \sim \text{unif}(-\alpha, \alpha) \Rightarrow Z \sim subG(\alpha) \).
- \(|Z| \leq \alpha, \mathbb{E}[Z] = 0 \Rightarrow Z \sim subG(\alpha) \).
\[Z \sim \begin{cases} \alpha, & \text{with prob. } \frac{1}{2}, \\ -\alpha, & \text{with prob. } \frac{1}{2} \end{cases} \Rightarrow Z \sim \text{subG} (\alpha). \]

Next, we evaluate the Restricted Isometry Property (Definition 4.1) for sub-Gaussian linear maps.

Theorem 5.2. Let the entries of \(\{ \mathbf{X}_i \}_{i=1}^m \) be independently drawn from zero-mean, \(\frac{1}{m} \)-variance subG(\(\alpha \)) distributions. Define \(\bar{n} := \max \{ n_i : i \in [d] \} \). Then, for any \(\delta, \varepsilon \in (0, 1) \), the linear map \(\mathbf{X} \) satisfies \(\delta_{\mathbf{X}, \mathbf{Z}, \mathbf{r}, \tau} \leq \delta \) with probability at least \(1 - \varepsilon \) as long as

\[
m \geq \delta^{-2} \max \left\{ K_1 \tau^2 \left(\prod_{i=1}^d r_i + \sum_{i=1}^d s_i r_i \right) \left(\log(3\bar{n}d) \right)^2, \ K_2 \log(\varepsilon^{-1}) \right\},
\]

where the constants \(K_1, K_2 > 0 \) depend on \(\tau \) and \(\alpha \).

5.1. Discussion. We compare the result in Theorem 5.2 with sample complexity bounds in the literature for estimation of the parameter tensor \(\mathbf{B} \) in (2.1). Theoretically, we can pose the estimation problem as (i) low Tucker-rank recovery problem [36], or (ii) sparse recovery problem [37]. Thus, in this section, we first compare the sample complexity bound in Theorem 5.2 with complexity bounds from low rank recovery and sparse recovery literature. For ease of comparison, define \(\bar{r} := \max \{ r_1, r_2, \ldots, r_d \} \) and \(\bar{s} := \max \{ s_1, s_2, \ldots, s_d \} \). With these definitions, the sample requirement in Theorem 5.2 can be written as \(\mathcal{O}\left((\bar{r}^d + \bar{s} \bar{r} d) (\log(3 \bar{n} d))^2 \right) \).

We now compare this result with complexity bounds in prior works.

5.1.1. Low Tucker-rank recovery. Among the many works that study the problem of estimating \(\mathbf{B} \) under the imposition of low Tucker rank on \(\mathbf{B} \) [13, 44, 33, 36], the most tight sample complexity bound has been shown to be \(\mathcal{O}\left((\bar{r}^d + \bar{n} \bar{r} d) \log(d) \right) \) [36]. If we apply this complexity bound for estimating the parameter tensor \(\mathbf{B} \) in (2.1), the sample complexity requirement scales linearly with \(\bar{n} \). In contrast, since we consider sparsity on columns of the factor matrices within Tucker decomposition of \(\mathbf{B} \), our sample complexity bound has a linear dependence on \(\bar{s} \) and only a polylogarithmic dependence on \(\bar{n} \), where \(\bar{s} \ll \bar{n} \).

5.1.2. Sparse recovery. The regression model in (2.1), or equivalently the model in (1.1), can be vectorized such that the model can be expressed as \(y_i = \langle \operatorname{vec}(\mathbf{X}_i), \operatorname{vec}(\mathbf{B}) \rangle + \eta_i, \ i \in [m] \), and the problem of recovering \(\mathbf{B} \) can be posed as a sparse recovery problem. It has been shown that if the entries of \(\operatorname{vec}(\mathbf{X}_i), i \in [m] \), draw values from a Gaussian distribution, \(\operatorname{vec}(\mathbf{B}) \) can be recovered using \(\mathcal{O}(k \log(\bar{n}d/k)) \) samples [3], where \(k \) is the number of non-zero entries in \(\operatorname{vec}(\mathbf{B}) \). The number of non-zero entries in \(\operatorname{vec}(\mathbf{B}) \) are upper bounded by \((\bar{s} \bar{r})^d \), which leads to a worst-case sample complexity requirement of \(\mathcal{O}(d (\bar{s} \bar{r})^d \log(\bar{n}/\bar{s} \bar{r})) \). Thus, the sparse signal recovery literature poses a worst-case sample complexity requirement that has linear dependence on \(d (\bar{s} \bar{r})^d \). In contrast, since we consider the multi-dimensional structure within \(\mathbf{B} \), our sample complexity requirement has only linear dependence on \(\bar{r}^d + \bar{s} \bar{r} d \).

Finally, note that the number of free parameters in the parameter tensor \(\mathbf{B} \) are on the order of \(\prod_i r_i + \sum_i r_i s_i \log n_i \), which can be more conveniently expressed as \(\bar{r}^d + \bar{s} \bar{r} d \log \bar{n} \). Thus, the posed sample complexity requirement of \(\mathcal{O}\left((\bar{r}^d + \bar{s} \bar{r} d) (\log(3 \bar{n} d))^2 \right) \) in Theorem 5.2 is order-optimal up to a polylogarithmic factor.
5.2. Outline of the Proof. The general idea of the proof of Theorem 5.2 is similar to that of [22, Theorem 4.2], [10, Theorem 2.3], [26, Theorem 4.1], and [36, Theorem 2], where the main analytic challenge is to analyze the complexity of the set that is hypothesized to contain the regression parameters. In this work, the challenge translates into characterizing the complexity of the set $G_{T, G, r}$, for which we employ the notion of ϵ-nets and covering numbers, defined as follows.

Definition 5.3 (ϵ-nets and covering numbers). Let (V, h) be a metric space, and let $T \subset V$. The set $X \subset T$ is called an ϵ-net of T with respect to the metric h if for any $T_i \in T$, $\exists X_i \in X$ such that $h(X_i, T_i) \leq \epsilon$. The minimum cardinality of an ϵ-net of T (with respect to the metric h) is called the covering number of T with respect to the metric h and is denoted by $\Psi(T, h, \epsilon)$ in this paper.

Next, we provide an outline to the proof of Theorem 5.2. In the first step, we provide an upper bound on the covering number of $G_{T, G, r}$ with respect to the Frobenius norm, which forms our main contribution. In the second step, we employ a deviation bound from prior works [36, 26] to complete the proof of this theorem. A formal proof of Theorem 5.2 follows in Appendix G.

5.2.1. Bound on covering number of $G_{T, G, r}$. The following lemma provides a bound on the covering number of $G_{T, G, r}$ with respect to the Frobenius norm.

Lemma 5.4. For tuples $\tau := (r_1, r_2, \ldots, r_d)$, $\xi := (s_1, s_2, \ldots, s_d)$, and for any $\tau > 0$, the covering number of

$$G_{T, G, r} = \{S \times U_1 \times U_2 \times \cdots \times U_d : S \in \mathbb{R}^{r_1 \times r_2 \times \cdots \times r_d}, ||S||_1 \leq \tau, \text{ and } U_i \in \mathbb{R}^{s_i}, ||U(:, j)||_2 \leq 1, ||U_i(:, j)||_0 \leq s_i, i \in [d], j \in [[r_i]]\}$$

with respect to the metric h_G satisfies

$$\Psi(G_{T, G, r}, h_G, \epsilon) \leq \left(\frac{3\tau(d+1)}{\epsilon}\right)^d \prod_{i=1}^d \left(\frac{3\bar{n}\tau(d+1)}{\epsilon}\right) \sum_{i=1}^d s_i r_i, \epsilon \in (0, 1),$$

where $\bar{n} := \max\{n_i : i \in [[m]]\}$ and $h_G(G^{(1)}, G^{(2)}) = ||G^{(1)} - G^{(2)}||_F$ for any $G^{(1)}, G^{(2)} \in G_{T, G, r}$.

Let us provide an outline to the proof of Lemma 5.4, while a formal proof is provided in Appendix E. Define Cartesian product of metric spaces $(D_S, h_S), (D_{U_1}, h_{U_1}), (D_{U_2}, h_{U_2}), \ldots, (D_{U_d}, h_{U_d})$, that is

$$D_P := D_S \times D_{U_1} \times D_{U_2} \times \cdots \times D_{U_d},$$

where $D_S := \{S \in \mathbb{R}^{r_1 \times r_2 \times \cdots \times r_d} : ||S||_1 \leq \tau\}$, $h_S(S^{(1)}, S^{(2)}) := \frac{1}{\tau} ||S^{(1)} - S^{(2)}||_1$ for any $S^{(1)}, S^{(2)} \in D_S$, $D_{U_i} := \{U \in \mathbb{R}^{r_i} : ||U(:, j)||_2 \leq 1, ||U_i(:, j)||_0 \leq s_i, j \in [[r_i]]\}$, and $h_{U_i}(U^{(1)}_i, U^{(2)}_i) = ||U^{(1)}_i - U^{(2)}_i||_{1,2}$ for any $U^{(1)}_i, U^{(2)}_i \in D_{U_i}$, for all $i \in [d]$. First, we need to compute an upper bound on the covering number of D_P with respect to the metric h_P defined as

$$h_P(P^{(1)}, P^{(2)}) = \max \{ \max_{i \in [d]} \{h_{U_i}(U^{(1)}_i, U^{(2)}_i)\}, h_S(S^{(1)}, S^{(2)})\},$$

for any $P^{(1)} = (S^{(1)}, U^{(1)}_1, U^{(1)}_2, \ldots, U^{(1)}_d), P^{(2)} = (S^{(2)}, U^{(2)}_1, U^{(2)}_2, \ldots, U^{(2)}_d) \in D_P$. The following lemma provides a bound on h_P.

Lemma 5.5. For tuples $\tau := (r_1, r_2, \ldots, r_d), \xi := (s_1, s_2, \ldots, s_d)$, and for any $\tau > 0$, the covering number of D_P with respect to the metric h_P satisfies

$$\Psi(D_P, h_P, \epsilon) \leq \left(\frac{3\tau(d+1)}{\epsilon}\right)^d \prod_{i=1}^d \left(\frac{3\bar{n}\tau(d+1)}{\epsilon}\right) \sum_{i=1}^d s_i r_i, \epsilon \in (0, 1),$$

where $\bar{n} := \max\{n_i : i \in [[m]]\}$.
where \(P(1), P(2) \in \mathcal{D}_P \), \(S(1), S(2) \in \mathcal{D}_S \), and \(U_i^{(1)}, U_i^{(2)} \in \mathcal{D}_{U_i}, i \in [[d]] \). Specifically, using Lemma H.2, a bound on \(\Psi(\mathcal{D}_P, h_P, \epsilon) \) can be obtained as

\[
(5.3) \quad \Psi(\mathcal{D}_P, h_P, \epsilon) \leq \Psi(\mathcal{D}_S, h_S, \epsilon) \prod_{i=1}^{d} \Psi(\mathcal{D}_{U_i}, h_{U_i}, \epsilon).
\]

Thus, to compute an upper bound on \(\Psi(\mathcal{D}_P, h_P, \epsilon) \), we need upper bounds on \(\Psi(\mathcal{D}_S, h_S, \epsilon) \) and \(\Psi(\mathcal{D}_{U_i}, h_{U_i}, \epsilon) \), respectively. To obtain a bound on \(\Psi(\mathcal{D}_S, h_S, \epsilon) \), we employ the following lemma, which is proved in Appendix C.

Lemma 5.5. Define \(\mathcal{D}_S := \{ S \in \mathbb{R}^{r_1 \times r_2 \times \cdots \times r_d} : ||S||_1 \leq \tau \} \) with distance measure \(||.||_1 \). Then the covering number of \(\mathcal{D}_S \) (with respect to the norm \(||.||_1 \)) satisfies the bound

\[
\Psi(\mathcal{D}_S, ||.||_1, \epsilon) \leq \left(\frac{3\tau}{\epsilon} \right)^{\sum_{i=1}^{r_i} \epsilon}, \epsilon \in (0, 1).
\]

Similarly, to obtain a bound on \(\Psi(\mathcal{D}_{U_i}, h_{U_i}, \epsilon) \) for any \(i \in [[d]] \), we employ the following lemma, which is proved in Appendix D.

Lemma 5.6. Define \(\mathcal{D}_U := \{ U \in \mathbb{R}^{r \times r} : ||U(:,j)||_2 \leq 1, ||U(:,j)||_0 \leq s \text{ for all } j \in [[r]] \} \) with distance measure \(h_U \), where \(h_U(U^{(1)}, U^{(2)}) = ||U^{(1)} - U^{(2)}||_{1,2} \) for any \(U^{(1)}, U^{(2)} \in \mathcal{D}_U \). Then the covering number of \(\mathcal{D}_U \) with respect to the metric \(h_U \) satisfies the bound

\[
\Psi(\mathcal{D}_U, h_U, \epsilon) \leq \left(\frac{3r}{\epsilon} \right)^{sr}, \epsilon \in (0, 1).
\]

Therefore, the bound in (5.3) is evaluated using Lemma 5.5 and Lemma 5.6.

Given a bound on \(\Psi(\mathcal{D}_P, h_P, \epsilon) \) from (5.3), we are ready to derive a bound on the covering number of \(\mathcal{G}_{T,S,\tau} \) with respect to the metric \(h_G \). To this end, define a mapping \(\Phi \) such that

\[
\Phi(S, U_1, U_2, \ldots, U_d) = S \times_1 U_1 \times_2 U_2 \times_3 \cdots \times_d U_d
\]

where \((S, U_1, U_2, \ldots, U_d) \in \mathcal{D}_P \). Note from this definition that \(\Phi : \mathcal{D}_P \rightarrow \mathcal{G}_{T,S,\tau} \). We now employ the following lemma, which is formally proved in Appendix F, to establish that this mapping \(\Phi \) is Lipschitz with a Lipschitz constant of \(\tau (d + 1) \).

Lemma 5.7. Consider \((\mathcal{D}_P, h_P) \) to be the Cartesian product of metric spaces \((\mathcal{D}_S, h_S), (\mathcal{D}_{U_1}, h_{U_1}), (\mathcal{D}_{U_2}, h_{U_2}), \ldots, (\mathcal{D}_{U_d}, h_{U_d}) \), as defined in (5.1) and (5.2). Define mapping \(\Phi \) such that

\[
\Phi(S, U_1, U_2, \ldots, U_d) = S \times_1 U_1 \times_2 U_2 \times_3 \cdots \times_d U_d
\]

where \((S, U_1, U_2, \ldots, U_d) \in \mathcal{D}_P \). Further, define metric space \(\mathcal{G}_{T,S,\tau} \), where \(\mathcal{G}_{T,S,\tau} \) is defined in (4.1), and \(h_G(G^{(1)}, G^{(2)}) = ||G^{(1)} - G^{(2)}||_F \) for any \(G^{(1)}, G^{(2)} \in \mathcal{G}_{T,S,\tau} \). Then, given \(P^{(1)}, P^{(2)} \in \mathcal{D}_P \), we have

\[
(5.4) \quad h_G(\Phi(P^{(1)}), \Phi(P^{(2)})) \leq \tau (d + 1) h_P(P^{(1)}, P^{(2)}).
\]
Finally, the application of Lemma 5.7 with (5.3) and Lemma H.3, where (5.3) follows from Lemma H.2, establishes the statement of Lemma 5.4.

5.2.2. Deviation bound. Since $\delta_{\mathcal{L},\mathcal{G},\tau} = \sup_{\mathbf{z} \in \mathcal{G}} \left| \|\mathbf{X}(\mathbf{z})\|_2^2 - \mathbb{E}[\|\mathbf{X}(\mathbf{z})\|_2^2] \right|$, we derive a probabilistic bound on the right hand side of this equality to evaluate the condition in (4.1). To this end, we use techniques similar to those in [36, 26]. Specifically, define ξ to be a random vector in $\mathbb{R}^{n_1 n_2 \cdots n_d m}$ with independent entries from zero-mean, unit-variance, $\text{subG}(B)$ random variables. Further, let $\mathbf{Z} \in \mathcal{G}$, and define $V \mathbf{Z}$ to be a matrix in $\mathbb{R}^{m \times n_1 n_2 \cdots n_d m}$ such that

$$V \mathbf{Z} = \frac{1}{\sqrt{m}} \mathbb{I}_m \otimes \mathbf{Z}^\top$$

where $\mathbf{z} \in \mathbb{R}^{n_1 n_2 \cdots n_d \times 1}$ is the vectorized version of \mathbf{Z}. Then, we have the equivalence relationship $\mathbf{X}(\mathbf{Z}) = V \mathbf{Z} \xi$. For ease of notation, let us further define a set $\mathcal{M} := \{V \mathbf{z} : \mathbf{z} \in \mathcal{G}\}$. With this additional notation, we have $\delta_{\mathcal{L},\mathcal{G},\tau} = \sup_{\mathbf{M} \in \mathcal{M}} \left| \|\mathbf{M} \xi\|_2^2 - \mathbb{E}[\|\mathbf{M} \xi\|_2^2] \right|$, and we apply the following theorem to obtain a deviation bound on the right hand side of this equality.

Theorem 5.8 ([26, 36]). Let \mathcal{M}_0 be a set of matrices, and let ξ_0 be a random vector with independent entries from zero-mean, unit-variance, $\text{subG}(\alpha_0)$ random variables. For the set \mathcal{M}_0, define

$$d_F(\mathcal{M}_0) := \sup_{\mathbf{M} \in \mathcal{M}_0} \|\mathbf{M}\|_F, \quad d_{2 \rightarrow 2}(\mathcal{M}_0) := \sup_{\mathbf{M} \in \mathcal{M}_0} \|\mathbf{M}\|_2,$$

and $d_4(\mathcal{M}_0) := \sup_{\mathbf{M} \in \mathcal{M}_0} \|\mathbf{M}\|_{s_4} = \sup_{\mathbf{M} \in \mathcal{M}_0} \left(\text{tr}[(\mathbf{M}^\top \mathbf{M})^2] \right)^{1/2}$.

Furthermore, let $\gamma_2(\mathcal{M}_0, \| \cdot \|_2)$ be the Talagrand’s γ_2-functional [42]. Finally, set

$$E_0 = \gamma_2(\mathcal{M}_0, \| \cdot \|_2)(\gamma_2(\mathcal{M}_0, \| \cdot \|_2) + d_F(\mathcal{M}_0)) + d_F(\mathcal{M}_0)d_{2 \rightarrow 2}(\mathcal{M}_0)$$

$$V_0 = d_4^2(\mathcal{M}_0), \quad \text{and} \quad U_0 = d_{2 \rightarrow 2}^2(\mathcal{M}_0).$$

Then, for $t > 0$,

$$\mathbb{P}\left(\sup_{\mathbf{M} \in \mathcal{M}_0} \left[\|\mathbf{M} \xi\|_2^2 - \mathbb{E}[\|\mathbf{M} \xi\|_2^2] \right] \geq c_3 E_0 + t \right) \leq 2 \exp\left(-c_4 \min\left\{ \frac{t^2}{V_0^2}, \frac{t}{U_0} \right\} \right),$$

where the positive constants c_3, c_4 depend on α_0.

For the application of Theorem 5.8, we need to evaluate bounds on the metrics $d_F(\mathcal{M})$, $d_{2 \rightarrow 2}(\mathcal{M})$, $d_4(\mathcal{M})$, and $\gamma_2(\mathcal{M}, \| \cdot \|_2)$. However, the main analytical challenge in this application is evaluation of a bound on the Talagrand’s γ_2-functional $\gamma_2(\mathcal{M}, \| \cdot \|_2)$, which encompasses a geometric characterization of the metric space $(\mathcal{M}, \| \cdot \|_2)$. We obtain a bound on the Talagrand’s γ_2-functional using the following inequality [42, 36]:

$$\gamma_2(\mathcal{M}, \| \cdot \|_2) \leq C \int_0^{d_{2 \rightarrow 2}(\mathcal{M})} \sqrt{\log \Psi(\mathcal{M}, \| \cdot \|_2, \epsilon)} \, d\epsilon,$$ \((5.5)\)
where $C > 0$ and $\Psi(\mathcal{M}, \| \cdot \|_2, u)$ denotes the covering number of the metric space $(\mathcal{M}, \| \cdot \|_2)$ with respect to the metric $\| \cdot \|_2$. Thus, we employ the bound on covering number of $\mathcal{G}_{\mathcal{E}, \mathcal{S}, \tau}$ from Lemma 5.4 to evaluate (5.5), which enables us to obtain a bound on $\sup_{M \in \mathcal{M}} |\|M\|_F^2 - \mathbb{E} [\|M\|_F^2]|$ using Theorem 5.8. A formal proof of Theorem 5.2 follows in Appendix G.

6. Numerical Experiments. In this section, we perform experiments on synthetic and real-world data to analyze the performance of the proposed TPGD method (Algorithm 3.1), which, as explained before, is a tensor variant of the projected gradient descent (PGD) method. We compare TPGD with learning methods based on (i) vectorization of the parameter tensor, (ii) imposition of low Tucker-rank, and (iii) imposition of low CP-rank [25] on the parameter tensor B. To analyze linear vectorization-based methods, we employ LASSO [43] and linear support vector machine regression (SVR) [21]. To analyze imposition of low Tucker-rank and low CP-rank, we employ Tucker-rank and CP-rank variants of the tensor projected gradient descent method, respectively. Specifically, in the first variant, projection is performed onto a set of low Tucker-rank tensors [36], and we call this method PGD-Tucker. In the second variant, projection is performed onto a set of low CP-rank tensors [48], and we call this method PGD-CP. Thus, we draw comparisons of TPGD (Algorithm 3.1) with LASSO, SVR, PGD-Tucker, and PGD-CP.

Some relevant implementation details for these learning methods are as follows. For computation of the projection step H in Algorithm 3.1, we employ Algorithm 3.2, within which we employ the inverse power method from [18] for computation of Step 3. For computation of the projection steps in the Tucker rank (PGD-Tucker) and the CP rank (PGD-CP) based methods, we employ the tensor toolboxes in [45] and [4], respectively. Finally, we employ MATLAB’s in-built ‘fitlinear’ function [31] for implementing LASSO and SVR methods.

6.1. Synthetic Experiments. For synthetic-data experiments, we generate the r-rank and s-sparse tensor $B \in \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d}$ in (2.1) as follows. We set $d = 3$, $n_1 = 50$, $n_2 = 50$, $n_3 = 30$, and in (2.2), we set $s_1 = 6$, $s_2 = 6$, $s_3 = 4$, with $r_1 = 3$, $r_2 = 3$, and $r_3 = 3$. For each $j \in [d]$, we generate the column vector $U_j(:, i)$, for each $i \in [r]$, such that $\|U_j(:, i)\|_0 \leq s_j$. The locations of the s_j non-zero entries in $U_j(:, i)$ are chosen uniformly at random from $[n_j]$. Setting $a = 0.5$, we sample the non-zero entries in $U_j(:, i)$ from $(-1)^u(a + |z|)$, where u is drawn from a Bernoulli distribution with parameter 0.5 and z is drawn from a standard Gaussian distribution, i.e., Gaussian(0, 1). Finally, to generate the parameter tensor B, the entries of the core tensor S are sampled from a uniform distribution with parameters 0 and 1, and the tensor B is generated as in (2.2). To generate the response vector y, the tensors $\{X_j\}_{j=1}^m$ are generated such that their entries are i.i.d. Gaussian(0, 1/m), the noise vector η is sampled from Gaussian(0, $\sigma_y^2 I$), and then, the response vector y is generated as in (2.1).

The aforementioned experiment is performed for various values of m, repeating each experiment for increasing value of σ_y to analyze the impact of increasing noise power. For each value of m and σ_y, (i) the parameter tensor B, the linear map X, and the response vector y are generated as explained above, and (ii) a parameter estimate B^* is computed using each of the learning methods. The performance of each learning method is characterized using the normalized estimation error, which is defined as $\frac{\|B - B^*\|_F}{\|B\|_F}$. For each value of m and σ_y, this experimental procedure is repeated 50 times, and the median estimation error is reported.
Figure 1: Comparison of TPGD with PGD-Tucker and PGD-CP over synthetic data. For each value of m, the markers correspond to the median estimation error over 50 experiments; whereas, the shaded region for each marker pertains to the 25th and the 75th percentiles of the estimation error (over the 50 experiments). The experiment results are reported for (a) $\sigma_z = 0.1$, (b) $\sigma_z = 0.4$, and (c) $\sigma_z = 0.7$. Note that we report median error since an occasional failure in recovering the parameter tensor may lead to a spike in mean error.

in Fig. 1, along with the 25th and the 75th percentile of estimation error. The algorithmic parameters for each of the learning methods are set using separate validation experiments. Note that LASSO and SVR perform considerably worst than the other learning methods; thus, they are not included in Fig. 1 for clarity of plots.

We gain two interesting insights from Fig. 1. First, the plots demonstrate that the projection step \mathcal{H} in Algorithm 3.1 (TPGD method) can be computed accurately enough by Algorithm 3.2, enabling the TPGD method to achieve better sample complexity compared with the other learning methods, by exploiting the low-rank and sparse structure in the parameter tensor. In other words, despite the lack of theoretical guarantees for Algorithm 3.2, it can be employed in practice to compute the projection step (3.1) in Step 5, Algorithm 3.1. Second, comparing Fig. 1a, Fig. 1b, and Fig. 1c, we can see that as the noise power decreases, the accuracy of the solution of TPGD increases. This is also reflected in the statement of Theorem 4.2: the lower the noise power, the more accurate the solution of TPGD, and vice versa.

6.2. Neuroimaging Data Analysis. We also analyze the performance of TPGD for predicting attention deficit hyperactivity disorder (ADHD) diagnosis, using a preprocessed repository of ADHD-200 fMRI images [32] from the Donders Institute (NeuroImage), the Kennedy Krieger Institute (KKI), and the NYU Child Study Center (NYU). Specifically, we use preprocessed brain maps of fractional amplitude of low-frequency fluctuations (fALFF) [52] that were obtained using the Athena pipeline [5]. Note that fALFF is defined as the ratio of power within the low-frequency range (0.01–0.1 Hz) to that of the entire frequency range and as such it characterizes the intensity of spontaneous brain activity. Altered levels of fALFF have been
reported in a sample of children with ADHD relative to controls [46], so fALFF brain maps form a useful feature space for predicting ADHD diagnosis.

The train data consists of fALFF brain maps for individuals pertaining to NeuroImage, KKI, and NYU. For each of these imaging sites, each individual’s fALFF map forms a third-order tensor $X_i \in \mathbb{R}^{49 \times 58 \times 47}$, and the ADHD diagnosis y_i ($1 = \text{ADHD}$, $0 = \text{normal control}$) forms the response, where $i \in \{1, \ldots, m\}$ and m is the number of train samples. In our experiments, we have $m = 39$ for NeuroImage, $m = 78$ for KKI, and $m = 188$ for NYU, and we learn a regression model for each site, independently. Given fALFF maps $\{X_i\}_{i=1}^m$ and responses $\{y_i\}_{i=1}^m$ for each site, the task of learning the regression model in (1.1) is equivalent to learning the parameter tensor B. We estimate the unknown parameter tensor using TPGD, PGD-Tucker, PGD-CP, LASSO, and SVR.

Table 1: Comparison of TPGD with PGD-Tucker, PGD-CP, LASSO, and SVR for predicting diagnosis of test subjects corresponding to (a) Donders Institute (NeuroImage), (b) Kennedy Krieger Institute (KKI), and (c) New York University Child Study Center (NYU), respectively.

	(a) The Donders Institute (NeuroImage)	(b) Kennedy Krieger Institute (KKI)	(c) New York University Child Study Center (NYU)												
	TPGD	PGD-Tucker	PGD-CP	LASSO	SVR	TPGD	PGD-Tucker	PGD-CP	LASSO	SVR	TPGD	PGD-T Tucker	PGD-CP	LASSO	SVR
Specificity	0.68	0.57	0.57	1	0.89	0.63	0.50	0.50	1	1	0.58	0.67	0.67	0.42	0.17
Sensitivity	0.73	0.45	0.64	0.18	0.36	0.67	0.33	0.33	0	0	0.52	0.52	0.48	0.55	0.59
Harmonic mean	**0.70**	**0.50**	**0.60**	**0.31**	**0.51**	**0.65**	**0.40**	**0.40**	0	0	**0.55**	**0.59**	**0.56**	**0.48**	**0.26**

To analyze the performance of these learning methods, we employ separately provided test datasets for NeuroImage, KKI, and NYU, pertaining to fALFF maps of 25, 11, and 41 test subjects, respectively. To analyze the performance for each method, we use the estimate of B to compute the responses for the test subjects using (1.1). If the computed response is more than 0.5 for a test subject, the subject is labeled with ADHD and vice versa. To evaluate the predictive power of each method using test data, we use the notion of (i) specificity, which is the ratio of subjects not diagnosed with ADHD that are correctly labeled as normal controls, and (ii) sensitivity, which is the ratio of subjects diagnosed with ADHD that are correctly labeled with ADHD. The explained experimental procedure is repeated 50 times for each method and imaging site, and the median results on test data are reported in Table 1, along with the harmonic mean of reported specificity and sensitivity. The TPGD method tends to perform well in the low sample size regime, given that it provides the highest harmonic mean on test data for the NeuroImage and the KKI sites, respectively. For the NYU imaging
site, the PGD-Tucker method tends to work best; however, the performance of PGD-CP and TPGD methods is not much worst either.

7. Conclusion. In this work, we studied a tensor-structured linear regression model, with simultaneous imposition of a sparse and low Tucker-rank structure on the parameter tensor. We formulated the parameter estimation problem as a non-convex program, and then we proposed a projected gradient descent-based method to solve it. In our analysis, we provided mathematical guarantees for the proposed method based on the restricted isometry property. Furthermore, we evaluated the property for the case of sub-Gaussian predictors, characterizing the sample complexity of parameter estimation in the process. Finally, in our experiments with real-world data, we demonstrated that the simultaneously-structured tensor regression model is not restrictive, and it can be effectively employed for neuroimaging data analysis.

Appendix A. Proof of Lemma 4.3.
Since $Z_a \in G_{L,\beta,\tau}$, it can be expressed as

$$Z_a = S_a \times_1 U_{a,1} \times_2 U_{a,2} \cdots \times_d U_{a,d},$$

where $S_a \in \mathbb{R}^{r_1 \times r_2 \times \ldots \times r_d}$ such that $\|S_a\|_1 \leq \tau$, and $U_{a,i} \in \mathbb{R}^{r_i \times r_i}$, with $\|U_{a,i}(\cdot,j)\|_0 \leq s_i$, $\forall i \in [d]$, $j \in [r_i]$. Similarly, since $Z_b \in G_{L,\beta,\tau}$, it can be expressed as

$$Z_b = S_b \times_1 U_{b,1} \times_2 U_{b,2} \cdots \times_d U_{b,d},$$

where $S_b \in \mathbb{R}^{r_1 \times r_2 \times \ldots \times r_d}$ such that $\|S_b\|_1 \leq \tau$, and $U_{b,i} \in \mathbb{R}^{r_i \times r_i}$, with $\|U_{b,i}(\cdot,j)\|_0 \leq s_i$, $\forall i \in [d]$, $j \in [r_i]$. Let $Z_c = \gamma_a Z_a + \gamma_b Z_c$, where $\gamma_a \in \mathbb{R}$, $\gamma_b \in \mathbb{R}$, so that Z_c is some linear combination of Z_a and Z_b. Define the Cartesian product $D_P := [r_1] \times [r_2] \times \cdots \times [r_d]$. Using the definition of D_P, define $S_c \in \mathbb{R}^{2r_1 \times 2r_2 \times \ldots \times 2r_d}$ where

$$S_c(i_1, i_2, \ldots, i_d) = \begin{cases} \gamma_a S_a(i_1, i_2, \ldots, i_d) : (i_1, i_2, \ldots, i_d) \in D_P \\ \gamma_b S_b(i_1, i_2, \ldots, i_d) : (i_1 - r_1, i_2 - r_2, \ldots, i_d - r_d) \in D_P \\ 0 \end{cases}$$

for $(i_1, i_2, \ldots, i_d) \in [(2r_1) \times (2r_2) \times \cdots \times (2r_d)]$. Note that $\|S_c\|_1 = \|\gamma_a S_a\|_1 + \|\gamma_b S_b\|_1 \leq (|\gamma_a| + |\gamma_b|)\tau$. Furthermore, for $i \in [d]$, define $U_{c,i} \in \mathbb{R}^{r_i \times 2r_i}$ such that $U_{c,i} := [U_{a,i} \ U_{b,i}]$. Finally, with these definitions, Z_c can be expressed as

$$Z_c = S_c \times_1 U_{c,1} \times_2 U_{c,2} \cdots \times_d U_{c,d},$$

where $S_c \in \mathbb{R}^{2r_1 \times 2r_2 \times \ldots \times 2r_d}$ such that $\|S_c\|_1 \leq (|\gamma_a| + |\gamma_b|)\tau$, and $U_{c,i} \in \mathbb{R}^{r_i \times 2r_i}$ such that $\|U_{c,i}(\cdot,j)\|_0 \leq s_i$, for all $i \in [d]$, $j \in [2r_i]$. Therefore, Z_c is a member of the set $G_{2r_1,\beta,\kappa}$, where $\kappa = (|\gamma_a| + |\gamma_b|)\tau$.

Appendix B. Proof of Theorem 4.2. Let $\mathcal{L}(Z) := \|y - \mathcal{X}(Z)\|_2^2$ be the loss function for
any $Z \in \mathbb{R}^{n_1 \times n_2 \times \ldots \times n_d}$. Then, we have
\[
\mathcal{L}(B^{k+1}) - \mathcal{L}(B^k) = \|y - \mathcal{X}(B^{k+1})\|^2_F - \|y - \mathcal{X}(B^k)\|^2_F \\
= \|\mathcal{X}(B^{k+1})\|^2_F - \|\mathcal{X}(B^k)\|^2_F - 2\langle y, \mathcal{X}(B^{k+1} - B^k) \rangle \\
= \|\mathcal{X}(B^{k+1})\|^2_F + \|\mathcal{X}(B^k)\|^2_F - 2\|\mathcal{X}(B^k)\|^2_F - 2\langle y, \mathcal{X}(B^{k+1} - B^k) \rangle \\
= \|\mathcal{X}(B^{k+1} - B^k)\|^2_F + 2\langle \mathcal{X}(B^k) - \mathcal{X}(B^k), \mathcal{X}(B^{k+1}) - \mathcal{X}(B^k) \rangle \\
- 2\langle y, \mathcal{X}(B^{k+1} - B^k) \rangle \\
= \|\mathcal{X}(B^{k+1} - B^k)\|^2_F + 2\langle \mathcal{X}(B^k) - y, \mathcal{X}(B^{k+1} - B^k) \rangle \\
= \|\mathcal{X}(B^{k+1} - B^k)\|^2_F + 2\langle \mathcal{X}^*(\mathcal{X}(B^k) - y), B^{k+1} - B^k \rangle \\
\leq (1 + \delta_{2\mathcal{L},2r})\|B^{k+1} - B^k\|^2_F + 2\langle \mathcal{X}^*(\mathcal{X}(B^k) - y), B^{k+1} - B^k \rangle,
\] (B.1)
where the last inequality follows from application of Definition 4.1 with Lemma 4.3.

For any $Z \in \mathbb{R}^{n_1 \times n_2 \times \ldots \times n_d}$, define
\[
g(Z) := (1 + \delta_{2\mathcal{L},2r})\|Z - B^k\|^2_F + 2\langle \mathcal{X}^*(\mathcal{X}(B^k) - y), Z - B^k \rangle
\]
(a) \[= (1 + \delta_{2\mathcal{L},2r})\|Z - \tilde{B}^k + \mu\mathcal{X}^*(\mathcal{X}(B^k) - y)\|^2_F \\
+ 2\langle \mathcal{X}^*(\mathcal{X}(B^k) - y), Z - \tilde{B}^k + \mu\mathcal{X}^*(\mathcal{X}(B^k)) \rangle
\]
(b) \[= (1 + \delta_{2\mathcal{L},2r})\|Z - \tilde{B}^k\|^2_F - \frac{1}{1 + \delta_{2\mathcal{L},2r}}\|\mathcal{X}^*(\mathcal{X}(B^k) - y)\|^2_F,
\] (B.2)
where (a) follows by substituting $B^k = \tilde{B}^k + \mu\mathcal{X}^*(\mathcal{X}(B^k) - y)$ and (b) follows by substituting $\mu = \frac{1}{1 + \delta_{2\mathcal{L},2r}}$. Then, since $\|B^{k+1} - \tilde{B}^k\|^2_F \leq \|B - \tilde{B}^k\|^2_F$, which follows from $B^{k+1} = \mathcal{H}(\tilde{B}^k)$, we have $g(B^{k+1}) \leq g(B)$. Using $g(B^{k+1}) \leq g(B)$ with (B.1), we obtain
\[
\mathcal{L}(B^{k+1}) - \mathcal{L}(B^k) \leq (1 + \delta_{2\mathcal{L},2r})\|B - B^k\|^2_F + 2\langle \mathcal{X}^*(\mathcal{X}(B^k) - y), B - B^k \rangle
\]
\[= 2\delta_{2\mathcal{L},2r}\|B - B^k\|^2_F + (1 - \delta_{2\mathcal{L},2r})\|B - B^k\|^2_F \\
+ 2\langle \mathcal{X}^*(\mathcal{X}(B^k) - y), B - B^k \rangle \\
\leq 2\delta_{2\mathcal{L},2r}\|B - B^k\|^2_F + \|\mathcal{X}(B - B^k)\|^2_F \\
+ 2\langle \mathcal{X}^*(\mathcal{X}(B^k) - y), B - B^k \rangle \\
= 2\delta_{2\mathcal{L},2r}\|B - B^k\|^2_F + \|\mathcal{X}(B - B^k)\|^2_F \\
+ 2\langle \mathcal{X}(B^k), \mathcal{X}(B - B^k) \rangle - 2\langle y, \mathcal{X}(B - B^k) \rangle \\
= 2\delta_{2\mathcal{L},2r}\|B - B^k\|^2_F + \|\mathcal{X}(B)\|^2_F - \|\mathcal{X}(B^k)\|^2_F - 2\langle y, \mathcal{X}(B - B^k) \rangle \\
= 2\delta_{2\mathcal{L},2r}\|B - B^k\|^2_F + \|y - \mathcal{X}(B)\|^2_F - \|y - \mathcal{X}(B^k)\|^2_F \\
\leq \frac{2\delta_{2\mathcal{L},2r}}{1 - \delta_{2\mathcal{L},2r}}\|\mathcal{X}(B - B^k)\|^2_F + \mathcal{L}(B) - \mathcal{L}(B^k),
\] (B.3)
where the last two inequalities follow from application of Definition 4.1 with Lemma 4.3.

Thus, we have
\[
\mathcal{L}(B^{k+1}) \leq \frac{2\delta_{2\mathcal{L},2r}}{1 - \delta_{2\mathcal{L},2r}}\|\mathcal{X}(B - B^k)\|^2_F + \mathcal{L}(B).
\] (B.4)
Using \(\mathcal{X}(B) = y - \eta \), we have

\[
(B.5) \quad \| \mathcal{X}(B - B^k) \|_2^2 = \| y - \mathcal{X}(B^k) - \eta \|_2^2 \leq 2(\| y - \mathcal{X}(B^k) \|_2^2 + \| \eta \|_2^2) = 2(\mathcal{L}(B^k) + \| \eta \|_2^2),
\]

where the inequality follows since \((u + v)^2 \leq 2(u^2 + v^2)\) for all \(u, v \in \mathbb{R} \). Using (B.4) with (B.5), and observing \(\mathcal{L}(B) = \| \eta \|_2^2 \), we obtain

\[
(B.6) \quad \mathcal{L}(B^{k+1}) \leq \frac{4\delta_{2\mathcal{L},S,2\tau}}{1 - \delta_{2\mathcal{L},S,2\tau}} \left(\mathcal{L}(B^k) + \| \eta \|_2^2 \right) + \| \eta \|_2^2.
\]

Using \(\delta_{2\mathcal{L},S,2\tau} < \frac{\gamma}{1+\gamma}, \gamma < 1 \), and \(b = \frac{1+3\delta_{2\mathcal{L},S,2\tau}}{1-\delta_{2\mathcal{L},S,2\tau}} \) yields

\[
(B.7) \quad \mathcal{L}(B^{k+1}) \leq \gamma \mathcal{L}(B^k) + b\| \eta \|_2^2.
\]

Iterative application of this inequality leads to

\[
(B.8) \quad \mathcal{L}(B^k) \leq \gamma^k \mathcal{L}(B^0) + \frac{b}{1-\gamma} \| \eta \|_2^2
\]

for all \(k \geq 1 \).

Next, let us fix some \(K \in \mathbb{Z}^+ \). In order to obtain \(\mathcal{L}(B^K) \) that is small enough for some \(c_1 > 0 \), that is,

\[
(B.9) \quad \mathcal{L}(B^K) \leq \gamma^K \mathcal{L}(B^0) + \frac{b}{1-\gamma} \| \eta \|_2^2 \leq \left(c_1 + \frac{b}{1-\gamma} \right) \| \eta \|_2^2,
\]

the algorithm requires \(K \geq \frac{1}{\log(\frac{1}{\gamma})} \log(\frac{\mathcal{L}(B^0)}{c_1 \| \eta \|_2^2}) \). Finally, using Definition 4.1 with Lemma 4.3,

\[
\| B^K - B \|_F \leq \frac{1}{1 - \delta_{2\mathcal{L},S,2\tau}} \| \mathcal{X}(B^K - B) \|_2^2 \leq \frac{2}{1 - \delta_{2\mathcal{L},S,2\tau}} \left(\mathcal{L}(B^K) + \| \eta \|_2^2 \right)
\]

\[
(B.10) \quad \leq \frac{2}{1 - \delta_{2\mathcal{L},S,2\tau}} \left(1 + c_1 + \frac{b}{1-\gamma} \right) \| \eta \|_2^2,
\]

where \((c)\) and \((d)\) follow from (B.5) and (B.9), respectively.

Appendix C. Proof of Lemma 5.5.

Define \(D_{\hat{S}} := \{ \hat{S} : S \in D_S \} \), so that \(\| \hat{S} \|_1 \leq 1 \) for all \(\hat{S} \in D_{\hat{S}} \). By application of Lemma H.1, we have

\[
\Psi(D_{\hat{S}}, \| \cdot \|_1, \epsilon) \leq \left(\frac{3}{\epsilon} \right)^{d \sum_{i=1}^d r_i},
\]

for \(\epsilon \in (0, 1) \). The bound on \(\Psi(D_{\hat{S}}, \| \cdot \|_1, \epsilon) \) follows from a volume comparison argument between \(D_S \) and \(D_{\hat{S}} \).
Appendix D. Proof of Lemma 5.6.

The set \(D_U \) can be expressed as the Cartesian product of the sets \(D_U^{(j)} := \{ x \in \mathbb{R}^n : \|x\|_0 \leq s, \|x\|_2 \leq 1 \}, j \in [r] \). For any \(j \in [r] \), since there are \(\binom{n}{s} \) ways to choose the support of an \(s \)-sparse vector, we have

\[
\Psi(D_U^{(j)}, \| \cdot \|_2, \epsilon) \leq \left(\frac{n}{s} \right) \left(\frac{3}{\epsilon} \right)^s,
\]

with the application of Lemma H.1. Then, the covering number of \(D_U \) with respect to the metric \(h_U \), for any \(\epsilon \in (0, 1) \), satisfies the bound

\[
\Psi(D_U, h_U, \epsilon) \leq \prod_{j=1}^{r} \Psi(D_U^{(j)}, \| \cdot \|_2, \epsilon) \leq \left(\frac{n}{s} \right) \left(\frac{3}{\epsilon} \right)^s \leq \frac{n^s r}{(s!)^r} \left(\frac{3}{\epsilon} \right)^{sr},
\]

where (a) and (b) follow from Lemma H.2 and (D.1), respectively.

Appendix E. Proof of Lemma 5.4.

Recall the metric space \((D_S, h_S)\), where \(D_S := \{ S \in \mathbb{R}^{r_1 \times r_2 \times \cdots \times r_d} : \|S\|_1 \leq \tau \} \) and \(h_S(S^{(1)}, S^{(2)}) := \frac{1}{\tau} \|S^{(1)} - S^{(2)}\|_1 \) for any \(S^{(1)}, S^{(2)} \in D_S \). Using Lemma 5.5, the covering number of \(D_S \) with respect to the metric \(h_S \) satisfies the bound

\[
\Psi(D_S, h_S, \epsilon) \leq \left(\frac{3}{\epsilon} \right)^{\frac{d}{r_i}}, \epsilon \in (0, 1).
\]

Further, recall the metric space \((D_{U_i}, h_{U_i})\), where \(D_{U_i} := \{ U \in \mathbb{R}^{n_i \times r_i} : \|U(:, j)\|_2 \leq 1, \|U(:, j)\|_0 \leq s_i, j \in [r_i] \} \) and \(h_{U_i}(U_i^{(1)}, U_i^{(2)}) := \|U_i^{(1)} - U_i^{(2)}\|_{1,2} \) for any \(U_i^{(1)}, U_i^{(2)} \in D_{U_i}, i \in [d] \). Using Lemma 5.6, the covering number of \(D_{U_i} \) with respect to the metric \(h_{U_i} \) satisfies the bound

\[
\Psi(D_{U_i}, h_{U_i}, \epsilon) \leq \left(\frac{3n}{\epsilon} \right)^{s_i r_i}, \epsilon \in (0, 1),
\]

for any \(i \in [d] \). Next, recall the metric space \((D_P, h_P)\), where

\[
D_P := D_S \times D_{U_1} \times D_{U_2} \times \cdots \times D_{U_d}, \text{ and}
\]

\[
h_P(P^{(1)}, P^{(2)}) = \max \left\{ \max_{i \in [d]} \{ h_{U_i}(U_i^{(1)}, U_i^{(2)}) \}, h_S(S^{(1)}, S^{(2)}) \} \right.,
\]

such that \(P^{(1)}, P^{(2)} \in D_P, S^{(1)}, S^{(2)} \in D_S, \text{ and } U_i^{(1)}, U_i^{(2)} \in D_{U_i}, \text{ for any } i \in [d] \). Then, using Lemma H.2, the covering number of \(D_P \) with respect to the \(h_P \) metric satisfies the bound

\[
\Psi(D_P, h_P, \epsilon) \leq \left(\frac{3}{\epsilon} \right)^{\sum_{i=1}^{d} s_i r_i}, \epsilon \in (0, 1).
\]
To finally derive a bound on the covering number of $G_{\mathcal{L}_d\mathcal{S},\tau}$, recall that we use the metric based on the Frobenius norm, denoted by h_G, in order to cover the set $G_{\mathcal{L}_d\mathcal{S},\tau}$. Further, recall the mapping Φ defined as
\[
\Phi(S, U_1, U_2, \ldots, U_d) = S \times_1 U_1 \times_2 U_2 \times_3 \cdots \times_d U_d,
\]
where $(S, U_1, U_2, \ldots, U_d) \in \mathcal{D}_P$. From this definition, it follows that $\Phi : \mathcal{D}_P \to G_{\mathcal{L}_d\mathcal{S},\tau}$. Then, given $P^{(1)}, P^{(2)} \in \mathcal{D}_P$, from application of Lemma 5.7, it follows that
\[
(E.2) \quad h_G(\Phi(P^{(1)}), \Phi(P^{(2)})) \leq \tau(d + 1)h_P(P^{(1)}), P^{(2)}),
\]
which implies the mapping Φ is Lipschitz with a Lipschitz constant of $\tau(d + 1)$. Using (E.2) with (E.1) and Lemma H.3, the statement of this lemma follows.

Appendix F. Proof of Lemma 5.7. Let $G_a, G_b \in G_{\mathcal{L}_d\mathcal{S},\tau}$ such that
\[
G_a = S_a \times_1 U_{a,1} \times_2 U_{a,2} \times_3 \cdots \times_d U_{a,d}, \text{ and } \quad G_b = S_b \times_1 U_{b,1} \times_2 U_{b,2} \times_3 \cdots \times_d U_{b,d},
\]
where $S_a, S_b \in \mathcal{D}_S$, and $U_{a,i}, U_{b,i} \in \mathcal{D}_{U_i}, i \in [d]$. Then, we have
\[
h_G(G_a, G_b) = ||G_a - G_b||_F
\]
\[
= ||S_a \times_1 U_{a,1} \times_2 U_{a,2} \times_3 \cdots \times_d U_{a,d} - S_b \times_1 U_{b,1} \times_2 U_{b,2} \times_3 \cdots \times_d U_{b,d}||_F
\]
\[
= ||S_a \times_1 U_{a,1} \times_2 U_{a,2} \times_3 \cdots \times_d U_{a,d} \pm S_a \times_1 U_{a,1} \times_2 U_{a,2} \times_3 \cdots \times_{d-1} U_{a,d-1} \times_d U_{b,d}
\]
\[
\pm S_a \times_1 U_{a,1} \times_2 U_{a,2} \times_3 \cdots \times_{d-2} U_{a,d-2} \times_{d-1} U_{b,d-1} \times_d U_{b,d}
\]
\[
\pm \cdots \pm S_a \times_1 U_{a,1} \times_2 U_{b,2} \times_3 \cdots \times_{d-1} U_{b,d-1} \times_d U_{b,d}
\]
\[
- S_b \times_1 U_{b,1} \times_2 U_{b,2} \times_3 \cdots \times_{d-1} U_{b,d-1} \times_d U_{b,d}||_F
\]
\[
\leq ||S_a \times_1 U_{a,1} \times_2 U_{a,2} \times_3 \cdots \times_{d-1} U_{a,d-1} \times_d U_{a,d} - U_{b,d}||_F
\]
\[
+ ||S_a \times_1 U_{a,1} \times_2 U_{a,2} \times_3 \cdots \times_{d-2} U_{a,d-2} \times_{d-1} U_{a,d-1} \times_d U_{b,d}||_F
\]
\[
+ \cdots + ||S_a \times_1 U_{a,1} - U_{b,1} \times_2 U_{b,2} \times_3 \cdots \times_{d-1} U_{b,d-1} \times_d U_{b,d}||_F
\]
\[
+ ||(S_a - S_b) \times_1 U_{b,1} \times_2 U_{b,2} \times_3 \cdots \times_{d-1} U_{b,d-1} \times_d U_{b,d}||_F
\]
\[
(F.1)
\]
where $\pm V$ denotes $+V - V$ for any tensor $V \in \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d}$. Define $b_j := ||S_a \times_1 U_{a,1} \times_2 \cdots \times_j U_{a,j-1} \times_j (U_{a,j} - U_{b,j}) \times_{j+1} U_{b,j+1} \times_{j+2} \cdots \times_d U_{b,d}||_F$. With this definition, (F.1) can be re-written as
\[
(F.2) \quad h_G(G_a, G_b) \leq \sum_{j=1}^d b_j + ||(S_a - S_b) \times_1 U_{b,1} \times_2 U_{b,2} \times_3 \cdots \times_{d-1} U_{b,d-1} \times_d U_{b,d}||_F.
\]
We will bound the first d terms and the last term in (F.2) separately. Beginning with any term from among the first d terms in (F.2), for any $j \in [d]$, we have
\[b_j^2 = \|S_a \times_1 U_{a,1} \times_2 \cdots \times_{j-1} U_{a,j-1} \times_j (U_{a,j} - U_{b,j}) \times_{j+1} U_{b,j+1} \times_{j+2} \cdots \times_d U_{b,d}\|^2\]

\[= \sum_{i_1, i_2, \ldots, i_d} \left[(S_a \times_1 U_{a,1} \times_2 \cdots \times_{j-1} U_{a,j-1} \times_j (U_{a,j} - U_{b,j}) \times_{j+1} U_{b,j+1} \times_{j+2} \cdots \times_d U_{b,d}) (i_1, i_2, \ldots, i_d) \right]^2\]

\[= \sum_{i_1, i_2, \ldots, i_d} \left(\sum_{k_1, k_2, \ldots, k_d} S_a(k_1, k_2, \ldots, k_d) U_{a,1}(i_1, k_1) \cdots (U_{a,j} - U_{b,j})(i_j, k_j) \cdots U_{b,d}(i_d, k_d) \right) \cdot \left(\sum_{l_1, l_2, \ldots, l_d} S_a(l_1, l_2, \ldots, l_d) U_{a,1}(i_1, l_1) \cdots (U_{a,j} - U_{b,j})(i_j, l_j) \cdots U_{b,d}(i_d, l_d) \right)\]

\[= \sum_{k_1, k_2, \ldots, k_d} \sum_{l_1, l_2, \ldots, l_d} S_a(k_1, k_2, \ldots, k_d) S_a(l_1, l_2, \ldots, l_d) \sum_{i_1} U_{a,1}(i_1, k_1) U_{a,1}(i_1, l_1) \cdots \sum_{i_d} U_{b,d}(i_d, k_d) U_{b,d}(i_d, l_d)\]

\[= \sum_{i_1, i_2, \ldots, i_d} \sum_{k_1, k_2, \ldots, k_d} S_a(k_1, k_2, \ldots, k_d) S_a(l_1, l_2, \ldots, l_d) \left(\sum_{i_1, i_2, \ldots, i_d} (U_{a,j} - U_{b,j})(i_j, k_j)(U_{a,j} - U_{b,j})(i_j, l_j) \right)\]

\[\leq \|U_{a,j} - U_{b,j}\|^2 \sum_{k_1, k_2, \ldots, k_d} \sum_{l_1, l_2, \ldots, l_d} S_a(k_1, k_2, \ldots, k_d) S_a(l_1, l_2, \ldots, l_d)\]

\[(F.3)\]

\[\leq \|U_{a,j} - U_{b,j}\|^2 \|S_a\|_1 \|S_a\|_1 \leq \|U_{a,j} - U_{b,j}\|^2 \tau^2\]

where (a) follows since \(u^\top v \leq 1\) for any column vectors \(u\) and \(v\) such that \(\|u\|_2 \leq 1\) and \(\|v\|_2 \leq 1\). Similarly, to bound the last term in (F.2), note that

\[\|(S_a - S_b) \times_1 U_{b,1} \times_2 U_{b,2} \times_3 \cdots \times_{d-1} U_{b,d-1} \times_d U_{b,d}\|^2\]

\[= \sum_{i_1, i_2, \ldots, i_d} \sum_{k_1, k_2, \ldots, k_d} (S_a - S_b)(k_1, k_2, \ldots, k_d) U_{b,1}(i_1, k_1) U_{b,2}(i_2, k_2) \cdots U_{b,d}(i_d, k_d)\]

\[= \sum_{k_1, k_2, \ldots, k_d} \sum_{l_1, l_2, \ldots, l_d} (S_a - S_b)(k_1, k_2, \ldots, k_d) (S_a - S_b)(l_1, l_2, \ldots, l_d)\]

\[\sum_{i_1} U_{b,1}(i_1, k_1) U_{b,1}(i_1, l_1) \sum_{i_2} U_{b,2}(i_2, k_2) U_{b,2}(i_2, l_2) \cdots \sum_{i_d} U_{b,d}(i_d, k_d) U_{b,d}(i_d, l_d)\]
\[(F.4) \quad \leq \sum_{k_1, k_2, \ldots, k_d} \sum_{l_1, l_2, \ldots, l_d} (S_a - S_b)(k_1, k_2, \ldots, k_d)(S_a - S_b)(l_1, l_2, \ldots, l_d) \leq \|S_a - S_b\|_1^2.\]

Finally, using (F.2) with (F.3) and (F.4), we obtain

\[
h_G(G_a, G_b) \leq d \sum_{j=1}^d \tau \|U_{a,j} - U_{b,j}\|_{1,2} + \|S_a - S_b\|_1 \leq (d + 1) \tau \max\{\|U_{a,j} - U_{b,j}\|_{1,2}, \frac{1}{\tau} \|S_a - S_b\|_1\} \leq (d + 1) \tau h_P(P^{(1)}, P^{(2)}),
\]

which completes the proof of this lemma.

Appendix G. Proof of Theorem 5.2. We employ Theorem 5.8 with Lemma 5.4 to obtain a probabilistic bound on the restricted isometry property constant in Definition 4.1. Before we can employ Theorem 5.8, we need to evaluate bounds on the quantities \(d_F(M), d_2 \rightarrow 2(M), d_4(M), \) and \(\gamma_2(M, \|\cdot\|_2),\) which we obtain as follows. We obtain a bound on \(d_F(M)\) as

\[
\text{(G.1) } d_F(M) = \sup_{M \in \mathcal{M}} \|M\|_F = \sup_{Z \in \mathcal{G}_{L,8,\tau}} \|Z\|_F \leq \tau,
\]

where (a) follows from the definition of \(\mathcal{M}\) and (b) follows from the definition of \(\mathcal{G}_{L,8,\tau}\.\) Next, to obtain a bound on \(d_2 \rightarrow 2(M)\) and \(d_4(M)\), note that for any \(Z \in \mathcal{G}_{L,8,\tau}\) we have

\[
V_Z V_Z^\top = \frac{1}{m} \mathbb{I}_m \otimes z z^\top = \frac{\|z\|_2^2}{m} \mathbb{I}_m
\]

which leads to

\[
\text{(G.2) } d_2 \rightarrow 2(M) = \sup_{M \in \mathcal{M}} \|M\|_{2,\cdot} = \sup_{Z \in \mathcal{G}_{L,8,\tau}} \frac{\|Z\|_F}{\sqrt{m}} \leq \frac{\tau}{\sqrt{m}}, \text{ and}
\]

\[
d_4^4(M) = \sup_{M \in \mathcal{M}} \|M\|_4^4 = \sup_{M \in \mathcal{M}} \text{tr} \left((M^\top M)^2 \right) = \sup_{M \in \mathcal{M}} \text{tr} \left((MM^\top)^2 \right)
\]

which leads to

\[
\text{(G.3) } d_4^4(M) = \sup_{Z \in \mathcal{G}_{L,8,\tau}} \text{tr} \left(\left(\frac{\|Z\|_F^2}{m} \mathbb{I}_m \right)^2 \right) = \sup_{Z \in \mathcal{G}_{L,8,\tau}} \frac{\|Z\|_F^4}{m^2} \text{tr} \left(\mathbb{I}_m \right) \leq \frac{\tau^4}{m}.
\]

Finally, to obtain a bound on the Talagrand’s \(\gamma_2\)-functional, we employ (5.5) with Lemma 5.4 to obtain a bound on \(\gamma_2(M, \|\cdot\|_2)\) as
\[
\gamma_2(\mathcal{M}, \|\cdot\|_2) \leq C \int_0^{d_{2 \to 2}(\mathcal{M})} \sqrt{\log \Psi(\mathcal{M}, \|\cdot\|_2, u)} \, du \leq C \int_0^{\tau m} \sqrt{\log \Psi(\mathcal{M}, \|\cdot\|_2, u)} \, du \\
= C \sqrt{m} \int_0^{\tau} \sqrt{\log \Psi(\mathcal{M}, \|\cdot\|_F, \bar{u})} \, d\bar{u} \\
(\text{c}) \leq C \sqrt{\frac{d}{m} \prod_{i=1}^d r_i + \sum_{i=1}^d s_i r_i} \int_0^{\tau} \sqrt{\log \left(\frac{3 \bar{n} \tau (d + 1)}{\bar{u}} \right)} \, d\bar{u} \\
(\text{d}) \leq C \sqrt{\frac{d}{m} \prod_{i=1}^d r_i + \sum_{i=1}^d s_i r_i} \int_0^{\tau} \log \left(\frac{3 \bar{n} \tau (d + 1)}{\bar{u}} \right) \, d\bar{u} \\
= C \sqrt{\frac{d}{m} \prod_{i=1}^d r_i + \sum_{i=1}^d s_i r_i} \left[\tau \log (3\bar{n} + 1) + \tau \right] \\
(\text{G.4}) = \tilde{C} \sqrt{\frac{\tau^2}{m} \log (3\bar{n}d)},
\]

where \(\tilde{C} > 0\), (c) follows from Lemma 5.4, and (d) follows since \(\sqrt{\log_b(x/a)} \leq \log_b(x/a)\) for \(x/a \in \mathbb{R}^+, b \in \mathbb{R}^+, x \geq a b\). Now that we have evaluated bounds on \(d_F(\mathcal{M}), d_{2 \to 2}(\mathcal{M}), d_4(\mathcal{M}),\) and \(\gamma_2(\mathcal{M}, \|\cdot\|_2)\), we can evaluate the quantities \(E, U,\) and \(V\) in Theorem 5.8. Evaluating a bound on \(E\), we get

\[
E = \gamma_2(\mathcal{M}, \|\cdot\|_2)^2 + \gamma_2(\mathcal{M}, \|\cdot\|_2)d_F(\mathcal{M}) + d_F(\mathcal{M})d_{2 \to 2}(\mathcal{M}) \\
(\text{e}) \leq \tilde{C}^2 \frac{\tau^2}{m} \left[\log (3\bar{n}d) \right]^2 + \tilde{C} \tau \sqrt{\frac{\tau^2}{m} \log (3\bar{n}d)} + \frac{\tau^2}{\sqrt{m}} \\
(\text{G.5}) \leq \frac{\delta^2 \tilde{C}^2}{K_1} + \frac{\tau \delta \tilde{C}}{\sqrt{K_1}} + \frac{\tau \delta}{\sqrt{K_1}} \leq \frac{\delta \tilde{C}^2}{K_1} + \frac{\tau \delta \tilde{C}}{\sqrt{K_1}} + \frac{\tau \delta}{\sqrt{K_1}} \leq \frac{\delta (\tilde{C}^2 + \tilde{C} \tau + \tau)}{\min\{K_1, \sqrt{K_1}\}},
\]

where (e) follows from application of (G.1) and (G.2) with (G.4), (f) follows from the bound on \(m\), and (g) follows since \(\delta \in (0, 1)\). Setting \(K_1 \geq \max \left\{ \left(2c_1(\tilde{C}^2 + \tilde{C} \tau + \tau) \right)^2, 2c_1(\tilde{C}^2 + \tilde{C} \tau + \tau) \right\} \) in (G.5) for some \(c_1 > 0\), we obtain

\[
(\text{G.6}) c_1 E \leq \frac{\delta c_1 (\tilde{C}^2 + \tilde{C} \tau + \tau)}{\min\{K_1, \sqrt{K_1}\}} \leq \frac{\delta}{2}.
\]
Next, we can evaluate bounds on U and V as

\begin{equation}
U = d_{p-2}^2(M) \leq \frac{t^2}{m}, \quad V = d^2(M) \leq \frac{\tau^2}{\sqrt{m}},
\end{equation}

where (h) follows from (G.2) and (i) follows from (G.3). Finally, we use these bounds on U and V to bound the quantity $2 \exp\left(-c_2 \min\left\{\frac{t^2}{U}, \frac{t}{U}\right\}\right)$ as

\begin{align*}
2 \exp\left(-c_2 \min\left\{\frac{t^2}{U}, \frac{t}{U}\right\}\right) &\leq 2 \exp\left(-c_2 \min\left\{m \left(\frac{t}{\tau^2}\right)^2 \frac{t^2}{2}, \frac{t}{2}\right\}\right) \\
&\leq 2 \exp\left(-c_2 \min\left\{\frac{\delta}{2\tau^2} \frac{2K_2 \log(\epsilon^{-1})}{\delta^2}, \frac{K_2 \log(\epsilon^{-1})}{2\tau^2}\right\}\right) \\
&= 2 \exp\left(-c_2 K_2 \log(\epsilon^{-1}) \min\left\{\frac{\delta}{2\tau^2}, \frac{1}{\tau^2}\right\}\right) \leq \epsilon,
\end{align*}

where (j) follows from setting $t = \frac{\delta}{2}$ and using the bound on m, while (k) holds true for

\[K_2 \geq \max \left\{\left(2\tau^2\right)^2, 2\delta\right\} \left(\frac{\log(1/2)}{c_2 \log(\epsilon)} + \frac{1}{c_2}\right). \]

Using (G.6), (G.8), and $t = \frac{\delta}{2}$ with Theorem 5.8, the proof of this theorem follows.

Appendix H. Auxiliary Lemmas.

Lemma H.1. ([10]) For any fixed notion of norm $\| \cdot \|$, define a unit-norm ball $B_1 := \{x \in \mathbb{R}^n : \|x\| \leq 1\}$ with distance measure $\| \cdot \|$. Then the covering number of B_1 (with respect to the norm $\| \cdot \|$) satisfies the bound

\[\Psi(B_1, \| \cdot \|, \epsilon) \leq \left(\frac{3}{\epsilon}\right)^n, \quad \epsilon \in (0, 1). \]

Lemma H.2 ([15]). Define metric spaces $(D_1, h_1), (D_2, h_2), \ldots, (D_p, h_p)$. Further, define the Cartesian product $D_0 := D_1 \times D_2 \times \cdots \times_p D_p$ with respect to the norm $h_0(D_0, D_0) = \max_{j \in [p]} \{h_j(D_j, D_j)\}$, where $D_0, D_0 \in D_0$ such that $D_0^1 = D_1^1 \times D_2^1 \times \cdots \times_p D_p^1, D_0^2 = D_1^2 \times D_2^2 \times \cdots \times_p D_p^2$, and $D_j^1, D_j^2 \in D_j$ for any $j \in [p]$. Then, $\Psi(D_0, h_0, \epsilon)$ satisfies the bound

\[\Psi(D_0, h_0, \epsilon) \leq \prod_{j=1}^d \Psi(D_j, h_j, \epsilon). \]

Lemma H.3 ([41]). Define sets D_1 and D_2 with distance measures h_1 and h_2, respectively. Further, define map $\Phi : K \rightarrow D_2$ such that $K \subset D_1$. Then, for some $L > 0$, if Φ satisfies

\[h_2(\Phi(K_1), \Phi(K_2)) \leq L h_1(K_1, K_2) \text{ for } K_1, K_2 \in K, \]

i.e. Φ is a Lipschitz map with constant L, then, for any $\epsilon > 0$, we have

\[\Psi(\Phi(K), h_2, L \epsilon) \leq \Psi(K, h_1, \epsilon). \]
REFERENCES

[1] E. Acar, C. Aykut-Bingol, H. Bingol, R. Bro, and B. Yener, Multiway analysis of epilepsy tensors, Bioinformatics, 23 (2007), pp. i10–i18.

[2] G. Allen, Sparse higher-order principal components analysis, in Artificial Intelligence and Stat. (AISTATS), 2012, pp. 27–36.

[3] K. D. Ba, P. Indyk, E. Price, and D. P. Woodruff, Lower bounds for sparse recovery, in Proc. of the twenty-first annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, 2010, pp. 1190–1197.

[4] B. W. Bader et al., Matlab tensor toolbox version 3.0-dev. Available online, Oct. 2017, https://www.tensor toolbox.org.

[5] P. Bellec, C. Chu, F. Chouinard-Decorte, Y. Benhajali, D. S. Margulies, and R. C. Craddock, The neuro bureau ADHD-200 preprocessed repository, Neuroimage, 144 (2017), pp. 275–286.

[6] J. Bioucas-Dias et al., Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches, IEEE J. Select. Topics Appl. Earth Observ. Remote Sensing, 5 (2012), pp. 354–379.

[7] T. Blumensath and M. E. Davies, Iterative hard thresholding for compressed sensing, Applied and Computational Harmonic Analysis, 27 (2009), pp. 265–274.

[8] E. Candes and T. Tao, The Dantzig selector: Statistical estimation when p is much larger than n, Ann. Stat., 35 (2007), pp. 2313–2351.

[9] E. J. Candes, The restricted isometry property and its implications for compressed sensing, Comptes Rendus Mathematique, 348 (2008), pp. 589–592.

[10] E. J. Candes and Y. Plan, Tight oracle inequalities for low-rank matrix recovery from a minimal number of noisy random measurements, IEEE Transactions on Information Theory, 57 (2011), pp. 2342–2359.

[11] H. Chen, G. Raskutti, and M. Yuan, Non-convex projected gradient descent for generalized low-rank tensor regression, J. Mach. Learning Research (JMLR), 20 (2019), pp. 172–208.

[12] Y. Fu, G. Guo, and T. S. Huang, Age synthesis and estimation via faces: A survey, IEEE Transactions on Pattern Analysis and Machine Intelligence, 32 (2010), pp. 1955–1976.

[13] S. Gandy, B. Recht, and I. Yamada, Tensor completion and low-n-rank tensor recovery via convex optimization, Inverse Problems, 27 (2011), p. 025010.

[14] L. Grasedyck, D. Kressner, and C. Tobler, A literature survey of low-rank tensor approximation techniques, GAMM-Mitteilungen, 36 (2013), pp. 53–78.

[15] R. Gribonval, R. Jenatton, F. Bach, M. Kleinsteuber, and M. Seibert, Sample complexity of dictionary learning and other matrix factorizations, IEEE Transactions on Information Theory, 61 (2015), pp. 3469–3486.

[16] B. Hao, A. Zhang, and G. Cheng, Sparse and low-rank tensor estimation via cubic sketchings, arXiv preprint arXiv:1801.09326, (2018).

[17] L. He, K. Chen, W. Xu, J. Zhou, and F. Wang, Boosted sparse and low-rank tensor regression, in Advances in Neural Information Processing Systems, 2018, pp. 1009–1018.

[18] M. Hein and T. Bühler, An inverse power method for nonlinear eigenproblems with applications in 1-spectral clustering and sparse pca, in Proc. Advances in Neural Information Processing Systems, 2010, pp. 847–855.

[19] C. J. Hillar and L.-H. Lim, Most tensor problems are NP-hard, Journal of the ACM (JACM), 60 (2013), p. 45.

[20] C. Hinrichs et al., Spatially augmented LPboosting for AD classification with evaluations on the ADNI dataset, Neuroimage, 48 (2009), pp. 138–149.

[21] C.-H. Ho and C.-J. Lin, Large-scale linear support vector regression, J. Mach. Learning Research (JMLR), 13 (2012), pp. 3323–3348.

[22] P. Jain, R. Meka, and I. S. Dhillon, Guaranteed rank minimization via singular value projection, in Proc. Advances in Neural Inform. Process. Systems (NIPS), 2010, pp. 937–945.

[23] G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Statistical Learning, Springer Texts in Statistics, 2013.

[24] I. T. Jolliffe and D. B. Stephenson, Forecast Verification: A Practitioner’s Guide in Atmospheric Science, John Wiley & Sons, 2012.

[25] T. G. Kolda and B. W. Bader, Tensor decompositions and applications, SIAM review, 51 (2009),
pp. 455–500.

[26] F. Krahmer, S. Mendelson, and H. Rauhut, Suprema of chaos processes and the restricted isometry property, Communications on Pure and Applied Mathematics, 67 (2014), pp. 1877–1904.

[27] D. Landgrebe, Hyperspectral image data analysis, IEEE Signal Processing Mag., 19 (2002), pp. 17–28.

[28] N. Lazar, The Statistical Analysis of Functional MRI Data, Springer Science & Business Media, 2008.

[29] M. A. Lindquist et al., The statistical analysis of fMRI data, Statistical Science, 23 (2008), pp. 439–464.

[30] J. Liu, P. Musialski, P. Wonka, and J. Ye, Tensor completion for estimating missing values in visual data, IEEE Transactions on Pattern Analysis and Machine Intelligence, 35 (2012), pp. 208–220.

[31] MATLAB, version 9.4.0 (r2018a), 2018.

[32] M. P. Milham, D. Fair, M. Mennes, S. H. Mostofsky, et al., The ADHD-200 Consortium: A model to advance the translational potential of neuroimaging in clinical neuroscience, Frontiers in Systems Neuroscience, 6 (2012), p. 62.

[33] C. Mu, B. Huang, J. Wright, and D. Goldfarb, Square deal: Lower bounds and improved relaxations for tensor recovery, in Proc. Intl. Conf. Mach. Learning (ICML), 2014, pp. 73–81.

[34] B. Pang and L. Lee, Opinion mining and sentiment analysis, Foundations and Trends in Information Retrieval, 2 (2008), pp. 1–135.

[35] G. Raskutti, M. Yuan, and H. Chen, Convex regularization for high-dimensional multi-response tensor regression, The Annals of Statistics, 47 (2019), pp. 1554–1584.

[36] H. Rauhut, R. Schneider, and Ž. Stojanac, Low rank tensor recovery via iterative hard thresholding, Linear Algebra and its Applications, 523 (2017), pp. 220–262.

[37] I. Rish and G. Grabarnik, Sparse Modeling: Theory, Algorithms, and Applications, CRC press, 2014.

[38] S. Ryali, K. Supekar, D. A. Abrams, and V. Menon, Sparse logistic regression for whole-brain classification of fMRI data, NeuroImage, 51 (2010), pp. 752–764.

[39] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E. Papalexakis, and C. Faloutsos, Tensor decomposition for signal processing and machine learning, IEEE Trans. Signal Process., 65 (2017), pp. 3551–3582.

[40] W. W. Sun, J. Lu, H. Liu, and G. Cheng, Provable sparse tensor decomposition, J. Royal Statistical Society: Series B (Statistical Methodology), 79 (2017), pp. 899–916.

[41] S. Szarek, Metric entropy of homogeneous spaces, Banach Center Publications, 43 (1998), pp. 395–410.

[42] M. Talagrand, Upper and Lower Bounds for Stochastic Processes: Modern Methods and Classical Problems, vol. 60, Springer Science & Business Media, 2014.

[43] R. Tibshirani, Regression shrinkage and selection via the lasso, J. Roy. Statist. Soc. B., 58 (1996), pp. 267–288.

[44] R. Tomioka, T. Suzuki, K. Hayashi, and H. Kashima, Statistical performance of convex tensor decomposition, in Proc. Adv. in Neural Inform. Process. Systems (NIPS), 2011, pp. 972–980.

[45] N. Vervliet, O. Debals, L. Sorber, M. Van Barel, and L. De Lathauwer, Tensorlab 3.0, Mar. 2016, URL http://www.tensorlab.net. Available online.

[46] H. Zou, T. Hastie, and R. Tibshirani, Sparse principal component analysis, Journal of Computational and Graphical Statistics, 15 (2006), pp. 265–286.

[47] Q.-H. Zou, C.-Z. Zhu, Y. Yang, X.-N. Zuo, X.-Y. Long, Q.-J. Cao, Y.-F. Wang, and Y.-F. Zang, An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: Fractional ALFF, J. Neuroscience Methods, 172 (2008), pp. 137–141.