ML Estimation and CRBs for Reverberation, Speech and Noise PSDs in Rank-Deficient Noise-Field

Yaron Laufer, Student Member, IEEE, Bracha Laufer-Goldshtein, Student Member, IEEE, and Sharon Gannot, Senior Member, IEEE

Abstract—Speech communication systems are prone to performance degradation in reverberant and noisy acoustic environments. Dereverberation and noise reduction algorithms typically require several model parameters, e.g., the speech, reverberation and noise power spectral densities (PSDs). A commonly used assumption is that the noise PSD matrix is known. However, in practical acoustic scenarios, the noise PSD matrix is unknown and should be estimated along with the speech and reverberation PSDs. In this paper, we consider the case of rank-deficient noise PSD matrix, which arises when the noise signal consists of multiple directional interference sources, whose number is less than the number of microphones. We derive two closed-form maximum likelihood estimators (MLEs). The first is a non-blocking-based estimator which jointly estimates the speech, reverberation and noise PSDs, and the second is a blocking-based estimator, which first blocks the speech signal and then jointly estimates the reverberation and noise PSDs. Both estimators are analytically compared and analyzed, and mean square errors (MSEs) expressions are derived. Furthermore, Cramér-Rao Bounds (CRBs) on the estimated PSDs are derived. The proposed estimators are examined using both simulation and real reverberant and noisy signals, demonstrating the advantage of the proposed method compared to competing estimators.

Index Terms—Dereverberation, Noise reduction, Maximum likelihood estimation, Cramér-Rao Bound.

I. INTRODUCTION

In many hands-free scenarios, the measured microphone signals suffer from an additive background noise, which may originate from both environmental sources and from microphone responses. Apart from noise, if the recording takes place in an enclosed space, the recorded signals may also contain multiple sound reflections from walls and other objects in the room, resulting in a reverberation. As the level of noise and reverberation increases, the perceived quality and intelligibility of the speech signal deteriorate, which in turn affect the performance of speech communication systems, as well as automatic speech recognition (ASR) systems.

In order to reduce the effects of reverberation and noise, speech enhancement algorithms are required, which aim at recovering the clean speech source from the recorded microphone signals. Speech dereverberation and noise reduction algorithms often require the power spectral densities (PSDs) of the speech, reverberation and noise components. In the multichannel framework, a commonly used assumption (see e.g. in [1]–[10]) is that the late reverberant signal is modelled as a spatially homogeneous sound field, with a time-varying PSD multiplied by a spherical diffuse time-invariant spatial coherence matrix. As the spatial coherence matrix depends only on the microphone geometry, it can be calculated in advance. However, the reverberation PSD is an unknown parameter that should be estimated. Numerous methods exist for estimating the reverberation PSD. They are broadly divided into two classes, namely non-blocking-based estimators and blocking-based estimators. The non-blocking-based approach jointly estimate the PSDs of the late reverberation and speech. The estimation is carried out using the maximum likelihood (ML) criterion [3], [6] or in the least-squares (LS) sense, by minimizing the Frobenius norm of an error PSD matrix [8]. In the blocking-based method, the desired speech signal is first blocked using a blocking matrix (BM), and then the reverberation PSD is estimated. Estimators in this class are also based on the ML approach [1], [5], [7], [9] or the LS criteria [2], [4].

All previously mentioned methods do not include an estimator for the noise PSD. In [1], [3], a noiseless scenario is assumed. In [2], [4]–[10], the noise PSD matrix is assumed to be known in advance, or that an estimate is available. Typically, the noise PSD matrix is assumed to be time-invariant, and therefore can be estimated during speech-absent periods using a voice activity detector (VAD). However, in practical acoustic scenarios the spectral characteristics of the noise might be time-varying, e.g. when the noise environment includes a background radio or TV, and thus a VAD-based algorithm may fail. Therefore, the noise PSD matrix has to be included in the estimation procedure.

Some papers in the field deal with performance analysis of the proposed estimators. We give a brief review of the commonly used tools to assess the quality of an estimator. Theoretical analysis of estimators typically consists of calculating the bias and the mean square error (MSE), which coincides with the variance for unbiased estimators. The Cramér-Rao Bound (CRB) is an important tool to evaluate the quality of any unbiased estimator, since it gives a lower bound on the MSE. An estimator that is unbiased and attains the CRB, is called efficient. The maximum likelihood estimator (MLE) is asymptotically efficient [11], namely attains the CRB when the amount of samples is large.

Theoretical analysis of PSD estimators in the noise-free scenario was addressed in [12], [13]. In [12], CRBs were derived for the reverberation and the speech MLEs proposed in [3]. These MLEs are efficient, i.e. attain the CRB for any number of samples. In addition, it was pointed out that the non-
blocking-based reverberation MLE derived in [3] is identical to the blocking-based MLE proposed in [1]. In [13], it was shown that the non-blocking-based reverberation MLE of [3] obtains a lower MSE compared to a noiseless version of the blocking-based LS estimator derived in [2].

In the noisy case, quality assessment was discussed in [9] and [14]. In [9], it was numerically demonstrated that an iterative blocking-based MLE yields lower MSE than the blocking-based LS estimator proposed in [2]. In [14], closed-form CRBs were derived for the two previously proposed MLEs of the reverberation PSD, namely the blocking-based estimator in [5] and the non-blocking-based estimator in [6]. The CRB for the non-blocking-based reverberation estimator was shown to be lower than the CRB for the blocking-based estimator. However, it was shown that in the noiseless case, both reverberation MLEs are identical and both CRBs coincide.

As opposed to previous works, the assumption of known noise PSD matrix is not made in [15]. The noise is modelled as a spatially homogeneous sound field, with a time-varying PSD multiplied by a time-invariant spatial coherence matrix. It is assumed that the spatial coherence matrix of the noise is known in advance, while the time-varying PSD is unknown. Two different estimators were developed, based on the LS method. In the first one, a joint estimator for the speech, noise and late reverberation PSDs was developed. As an alternative, a blocking-based estimator was proposed, in which the speech signal is first blocked by a BM, and then the noise and reverberation PSDs are jointly estimated. However, this model only fits spatially homogeneous noise fields that are characterized by a full-rank covariance matrix. Moreover, in [9] it was claimed that the ML approach is preferable over the LS estimation procedure.

In this paper, we treat the noise PSD matrix as an unknown parameter. We assume that the noise PSD matrix is a rank-deficient matrix, as opposed to the spatially homogeneous assumption considered in [15]. This scenario arises when the noise signal consists of a set of directional interfering sources, whose number is smaller than the number of microphones. We assume that the positions of the interfering sources are fixed, while their spectral PSD matrix is time-varying, e.g. when the acoustic environment includes radio or TV. It should be emphasized that, in contrast to [15] which estimates only a scalar PSD of the noise, in our model the entire spectral PSD matrix of the noise is estimated, and thus the case of multiple non-stationary noise sources, can be handled. We derive closed-form MLEs of the various PSDs, for both the non-blocking-based and the blocking-based methods. The proposed estimators are analytically studied and compared, and the corresponding MSEs expressions are derived. Furthermore, CRBs for estimating the various PSDs are derived.

An important benefit of considering the rank-deficient noise as a separated problem, is due to the form of the solution. In the ML framework, a closed-form solution exists for the noiseless case [1], [3] but not for the full-rank noise scenario, thus requiring iterative optimization techniques [5], [6], [9] (as opposed to LS method that has closed-form solutions in both cases). However, we show here that when the noise PSD matrix is a rank-deficient matrix, closed-form MLE exists, which yields simpler and faster estimation procedure with low computational complexity, and is not sensitive to local maxima.

The remainder of the paper is organized as follows. Section II introduces some notations and preliminary notes. Section III presents the problem formulation, and describes the probabilistic model. Section IV derives the MLEs for both the non-blocking-based and the blocking-based methods, and Section V presents the CRB derivation. Section VI demonstrates the performance of the proposed estimators by an experimental study based on both simulated data and recorded room impulse responses (RIRs). The paper is concluded in Section VII.

II. NOTATION AND PRELIMINARIES

In this work, scalars are denoted with regular lowercase letters, vectors are denoted with bold lowercase letters and matrices are denoted with bold uppercase letters. A list of notations used in our derivations is given in Table I.

For a random vector \(\mathbf{a} \), a multivariate complex Gaussian probability density function (PDF) is given by [16]:

\[
N_c(\mathbf{a}; \mathbf{\mu}_a, \Phi_a) = \frac{1}{|\Phi_a|^{1/2}} \exp \left(- (\mathbf{a} - \mathbf{\mu}_a)^H \Phi_a^{-1} (\mathbf{a} - \mathbf{\mu}_a) \right),
\]

(1)

where \(\mathbf{\mu}_a \) is the mean vector and \(\Phi_a \) is an Hermitian positive definite complex covariance matrix. For a positive definite Hermitian form \(\mathbf{x}^H \mathbf{Z} \mathbf{x} \), where \(\mathbf{x} \sim N_c(0, \Phi_x) \) and \(\mathbf{Z} \) a Hermitian matrix, the variance is given by [17] p. 513, Eq. (15.29-15.30):

\[
\text{var}(\mathbf{x}^H \mathbf{Z} \mathbf{x}) = \text{Tr}[\Phi_x \mathbf{Z} \Phi_x \mathbf{Z}].
\]

(2)

For the Kronecker product, the following identities hold [17]:

\[
\text{Tr}[\mathbf{X} \mathbf{Y}] = (\text{vec}(\mathbf{X}^H))^H \text{vec}(\mathbf{Y}),
\]

(3)

\[
\text{vec}(\mathbf{X} \mathbf{Y} \mathbf{Z}) = (\mathbf{Z}^T \otimes \mathbf{X}) \text{vec}(\mathbf{Y}),
\]

(4)

\[
(\mathbf{W} \otimes \mathbf{X}) (\mathbf{Y} \otimes \mathbf{Z}) = (\mathbf{WY}) \otimes (\mathbf{XZ}).
\]

(5)

III. PROBLEM FORMULATION

A. Signal Model

Consider a speech signal received by \(N \) microphones, in a noisy and reverberant acoustic environment. We work with the short-time Fourier transform (STFT) representation of the measured signals. Let \(k \in [1, K] \) denote the frequency bin index, and \(m \in [1, M] \) denote the time frame index. The \(N \)-channel observation signal \(\mathbf{y}(m, k) = \)

TABLE I: Notation
\((\cdot)^T \)
\((\cdot)^H \)
\((\cdot)^* \)
\(
\(\text{Tr}[\cdot] \)
\(\otimes \)
\(\text{vec}(\cdot) \)
\[[y_1(m, k), \ldots, y_N(m, k)]^\top \in \mathbb{C}^N \] writes

\[y(m, k) = g_d(k)s(m, k) + r(m, k) + u(m, k), \quad (6) \]

where \(s(m, k) \in \mathbb{C} \) is defined as the direct speech component, as received by the first microphone (designated as a reference microphone). \(g_d(k) = [1, g_{d,2}(k), \ldots, g_{d,N}(k)] \in \mathbb{C}^N \) is the time-invariant relative direct-path transfer function (RDTF) vector between the reference microphone and all microphones, \(r(m, k) = [r_1(m, k), \ldots, r_N(m, k)] \in \mathbb{C}^N \) denotes the late reverberation and \(u(m, k) = [u_1(m, k), \ldots, u_N(m, k)] \in \mathbb{C}^N \) denotes the noise. It is assumed that the noise signal consists of \(T \) interfering sources, i.e.

\[u(m, k) = A_u(k)s_u(m, k), \quad (7) \]

where \(s_u(m, k) \in \mathbb{C}^T \) denotes the vector of noise sources and \(A_u(k) \in \mathbb{C}^{N \times T} \) is the noise acoustic transfer function (ATF) matrix, assumed to be time-invariant. It is assumed that \(T \leq N - 2 \).

B. Probabilistic Model

The speech STFT coefficients are assumed to follow a zero-mean complex Gaussian distribution with a time-varying PSD \(\phi_S(m, k) \). Hence, the PDF of the speech writes:

\[p(s(m, k); \phi_S(m, k)) = \mathcal{N}_c(s(m, k); 0, \phi_S(m, k)). \quad (8) \]

The late reverberation signal is modelled by a zero-mean complex multivariate Gaussian distribution:

\[p(r(m, k); \Phi_r(m, k)) = \mathcal{N}_c(r(m, k); 0, \Phi_r(m, k)). \quad (9) \]

The reverberation PSD matrix is modelled as a spatially homogeneous and isotropic sound field, with a time-varying PSD, \(\Phi_r(m, k) = \phi_R(m, k)\Gamma_R(k) \). It is assumed that the time-invariant coherence matrix \(\Gamma_R(k) \) can be modelled by a spherically diffuse source field [18]:

\[\Gamma_{R,ij}(k) = \text{sinc} \left(\frac{2\pi f_s k d_{ij}}{c} \right), \quad (10) \]

where \(\text{sinc}(x) = \sin(x)/x \) and \(d_{ij} \) is the inter-distance between microphones \(i \) and \(j \), \(f_s \) denotes the sampling frequency and \(c \) is the sound velocity.

The noise sources vector is modelled by a zero-mean complex multivariate Gaussian distribution with a time-varying PSD matrix \(\Psi_u(m, k) \in \mathbb{C}^{T \times T} \):

\[p(s_u(m, k); \Psi_u(m, k)) = \mathcal{N}_c(s_u(m, k); 0, \Psi_u(m, k)). \quad (11) \]

Using (7) and (11), it follows that \(u(m, k) \) has a zero-mean complex multivariate Gaussian distribution with a PSD matrix \(\Phi_u(m, k) \in \mathbb{C}^{N \times N} \), given by

\[\Phi_u(m, k) = A_u(k)\Psi_u(m, k)A_u^H(k). \quad (12) \]

The PDF of \(y(m, k) \) therefore writes

\[p(y(m, k); \Phi_y(m, k)) = \mathcal{N}_c(y(m, k); 0, \Phi_y(m, k)). \quad (13) \]

where \(\Phi_y \) is the PSD matrix of the input signals. Assuming that the components in (6) are independent, \(\Phi_y \) is given by

\[\Phi_y(m, k) = \phi_S(m, k)g_d(k)g_d^H(k) + \phi_R(m, k)\Gamma_R(k) + A_u(k)\Psi_u(m, k)A_u^H(k). \quad (14) \]

A commonly used dereverberation and noise reduction technique is to estimate the speech signal using the multichannel minimum mean square error (MMSE) estimator, which yields the multichannel Wiener filter (MCWF), given by [19]:

\[\hat{s}_{MCWF}(m, k) = \frac{g_d^H(k)\Phi_y^{-1}(m, k)g_d(k) + \phi_S^{-1}(m, k)y(m, k)}{g_d^H(k)\Phi_y^{-1}(m, k)g_d(k) + \phi_S^{-1}(m, k)}, \quad (15) \]

where

\[\Phi_y(m, k) \triangleq \phi_R(m, k)\Gamma_R(k) + A_u(k)\Psi_u(m, k)A_u^H(k) \quad (16) \]

denotes the total interference PSD matrix. For implementing [15], we assume that the RDTF vector \(g_d \) and the spatial coherence matrix \(\Gamma_R \) are known in advance. The RDTF depends only on the direction of arrival (DOA) of the speaker and the geometry of the microphone array, and thus it can be constructed based on a DOA estimate. The spatial coherence matrix is calculated using (10), based on the spherical diffuseness assumption.

The noise ATF matrix \(A_u(k) \) is in general not available (since such estimate requires that each noise is active separately). To circumvent the problem, we assume that a speech-absent segment (where all noise sources are active) is available, in which we apply the eigenvalue decomposition (EVD) to the noise PSD matrix \(\Phi_u \). Note that rank(\(\Phi_u \)) = rank(\(\Phi_u \)) = \(T \leq N - 2 \), i.e. \(\Phi_u \) is a rank-deficient matrix. Based on the computed eigenvalues and eigenvectors, a \(T \) - rank representation of the noise PSD matrix is given by

\[\Phi_u(m_0, k) = V(k)\Lambda(m_0, k)V^H(k), \quad (17) \]

where \(\Lambda(m_0, k) \in \mathbb{C}^{T \times T} \) is the eigenvalues matrix (comprised of the non-zero eigenvalues) and \(V(k) = [v_1(k), \ldots, v_T(k)] \in \mathbb{C}^{N \times T} \) is the corresponding eigenvectors matrix. \(V(k) \) is a basis that spans the noise ATFs subspace, and thus [20]

\[A_u(k) = V(k)G(k), \quad (18) \]

where \(G(k) \in \mathbb{C}^{T \times T} \) consists of projections coefficients of the original ATFs on the basis vectors. Substituting (18) and (15), yields

\[y(m, k) = g_d(k)s(m, k) + r(m, k) + V(k)s_v(m, k), \quad (19) \]

where \(s_v(m, k) \triangleq G(k)s_v(m, k) \). It follows that the noise PSD matrix in (12) can be recast as

\[\Phi_v(m, k) = V(k)\Psi_v(m, k)V^H(k), \quad (19) \]

where \(\Psi_v(m, k) = G(k)\Phi_u(m, k)G^H(k) \). Using this basis change, the MCWF in [15] is now computed with

\[\Phi_v(m, k) = \phi_R(m, k)\Gamma_R(k) + V(k)\Psi_v(m, k)V^H(k). \quad (21) \]

As a result, rather than requiring the knowledge of the exact noise ATF matrix, we use \(V \) that is learned from a speech-absent segment. Due to this basis change, we will need to
estimate \(\Psi_v \) instead of \(\Psi_u \).

Clearly, estimators of the late reverberation \(\phi_R \), speech \(\phi_S \) and noise PSD \(\Psi_v \) are required for evaluating the MCWF. For the sake of brevity, the frame index \(m \) and the frequency bin index \(k \) are henceforth omitted whenever possible.

IV. ML ESTIMATORS

We propose two ML-based methods: (i) Non-blocking-based estimation: Simultaneous ML estimation of the speech, reverberation and noise PSDs; and (ii) Blocking-based estimation: Elimination of the speech PSD using a BM, and then joint ML estimation of the reverberation and noise PSDs. Both methods are then compared and analyzed.

A. Non-Blocking-Based Estimation

We start with the joint ML estimation of the reverberation, speech and noise PSDs. Based on the short-time stationarity assumption \([9, 12]\), it is assumed that the PSDs are approximately constant across small number of consecutive time frames, denoted by \(L \). We therefore denote \(\tilde{y}(m) \in \mathbb{C}^{L \times N} \) as the concatenation of \(L \) previous observations of \(y(m) \):

\[
\tilde{y}(m) \triangleq \left[y^T(m - L + 1), \cdots, y^T(m) \right]^T.
\]

(22)

The set of unknown parameters is denoted by \(\phi(m) = [\phi_R(m), \phi_S(m), \phi_V(m)]^T \), where \(\phi_V \) denotes \(\{\Psi_{v,j}\}_{j=1}^N \). Assuming that the \(L \) consecutive signals in \(\tilde{y} \) are i.i.d., the PDF of \(\tilde{y} \) writes (see e.g. \([12]\)):

\[
p(\tilde{y}(m); \phi(m)) = \left(\frac{1}{\pi N |\Phi_y(m)|} \right)^L \exp \left(- \text{Tr} \left[\Phi_y^{-1}(m) R_y(m) \right] \right).
\]

(23)

where \(R_y \) is the sample covariance matrix, given by

\[
R_y(m) = \frac{1}{L} \sum_{\ell = m - L + 1}^m y(\ell) y^H(\ell).
\]

(24)

The MLE of the set \(\phi(m) \) is therefore given by

\[
\phi_{ML}(m) = \arg \max_{\phi(m)} \log p(\tilde{y}(m); \phi(m)).
\]

(25)

To the best of our knowledge, for the general noisy scenario this problem is considered as having no closed-form solution. However, we will show that when the noise PSD matrix \(\Phi_u \) is rank-deficient, with \(T = \text{rank}(\Phi_u) \leq N - 2 \), a closed-form solution exists. In the following, we present the proposed estimators. The detailed derivations appear in the Appendices.

In Appendix A it is shown that the MLE of \(\phi_R(m) \) is given by:

\[
\phi_{ML}^{\text{ML}}(m) = \frac{1}{N - (T + 1)} \text{Tr} \left[Q R_y(m) \Gamma_R^{-1} \right],
\]

(26)

where \(Q \in \mathbb{C}^{N \times N} \) is given by

\[
Q = I_N - A (A^H \Gamma_R^{-1} A)^{-1} A^H \Gamma_R^{-1},
\]

(27)

and \(A \in \mathbb{C}^{N \times (T + 1)} \) is the speech-plus-noise subspace

\[
A = \begin{bmatrix} g_d, v_1, \cdots, v_T \end{bmatrix}.
\]

(28)

The matrix \(Q \) is a projection matrix onto the subspace orthogonal to the speech-plus-noise subspace. The role of \(Q \) is to block the directions of the desired speech and noise signals, in order to estimate the reverberation level.

Once we obtain the MLE for the late reverberation PSD, the MLEs for the speech and noise PSDs can be computed. In Appendix B it is shown that the MLE for the speech PSD writes

\[
\phi_{ML}^S(m) = w_s^H R_y(m) - \phi_{ML}^{\text{ML}}(m) \Gamma_R w_s,
\]

(29)

where \(w_s \in \mathbb{C}^N \) is a minimum variance distortionless response (MVDR) beamformer that extracts the speech signal while eliminating the noise, given by

\[
w_s^H = \frac{g_d^H P_g^\perp \Gamma_R^{-1}}{g_d^H P_g \Gamma_R^{-1} g_d}
\]

(30)

and \(P_g^\perp \in \mathbb{C}^{N \times N} \) is a projection matrix onto the subspace orthogonal to the noise subspace, given by

\[
P_g^\perp = I_N - \Gamma_R^{-1} V (V^H \Gamma_R^{-1} V)^{-1} V^H.
\]

(31)

Note that

\[
w_s^H g_d = 1, \quad w_s^H V = 0.
\]

(32)

The estimator in (29) can be interpreted as the variance of the noisy observations minus the estimated variance of the reverberation, at the output of the MVDR beamformer \([12]\).

In Appendix C it is shown that the MLE of the noise PSD can be computed with

\[
\psi_{ML}^V(m) = w_u^H R_y(m) - \phi_{ML}^{\text{ML}}(m) \Gamma_R w_u,
\]

(33)

where \(w_u \in \mathbb{C}^{N \times T} \) is a multi-source linearly constrained minimum variance (LCMV) beamformer that extracts the noise signals while eliminating the speech signal:

\[
W_u^H = \left(V^H P_g^\perp \Gamma_R^{-1} V \right)^{-1} V^H P_g^\perp \Gamma_R^{-1},
\]

(34)

and \(P_g^\perp \in \mathbb{C}^{N \times N} \) is a projection matrix onto the subspace orthogonal to the speech subspace, given by

\[
P_g^\perp = I_N - \Gamma_R^{-1} g_d g_d^H.
\]

(35)

Note that

\[
w_u^H g_d = 0, \quad w_u^H V = I_T.
\]

(36)

Interestingly, the projection matrix \(Q \) can be recast as a linear combination of the above beamformers (see Appendix D):

\[
Q = I_N - g_d w_s^H - V W_u^H.
\]

(37)

Using (32), (36) and (37), it can also be noted that \(Q \) is orthogonal to both beamformers

\[
w_s^H Q = 0, \quad W_u^H Q = 0.
\]

(38)

In the noiseless case, i.e. when \(T = 0 \), \(Q \) reduces to

\[
Q = I_N - g_d w_s^H = \left(P_g^\perp \right)^H,
\]

(39)

where

\[
w_s^H = \frac{g_d^H \Gamma_R^{-1}}{g_d^H \Gamma_R^{-1} g_d}
\]

leading to the same closed-form
estimators as in [5, Eq. (7)]:
\[\phi_{RL}^{\text{ML}}(m) = \frac{1}{N-1} \text{Tr} \left[(I_N - g_d w_{s_0}^H) R_{y}(m) \Gamma_R^{-1} \right], \]
\[\phi_{SL}^{\text{ML}}(m) = w_{s_0}^H \left(R_{y}(m) - \phi_{RL}^{\text{ML}}(m) \Gamma_R \right) w_{s_0}. \]

B. Blocking-Based Estimation

As a second approach, we first block the speech component using a BM, and then jointly estimate the PSDs of the reverberation and noise. Let \(B \in \mathbb{C}^{N \times N-1} \) denote the BM, which satisfies \(B^H g_d = 0 \). The output of the BM is given by
\[z(m) \triangleq B^H y(m) = B^H (r(m) + u(m)). \]
The PDF of \(z(m) \in \mathbb{C}^{N-1} \) therefore writes:
\[p(z(m); \Phi_z(m)) = N_c(z(m); 0, \Phi_z(m)), \]
where the PSD matrix \(\Phi_z(m) \in \mathbb{C}^{N-1 \times N-1} \) is given by
\[\Phi_z(m) = B^H \Phi_1(m) B, \]
where \(\Phi_1 \) is the total interference matrix, defined in [16].

Under this model, the parameter set of interest is \(\phi(m) = [\phi_R(m), \psi_V(m)]^T \). Similarly to \(\Phi_z(m) \), it is assumed that \(\Phi_z(m) \) is fixed during the entire segment. Let \(\tilde{z} \in \mathcal{C}^{L(N-1)} \) be defined similarly to \(\tilde{y} \) in (22). Assuming again \(L \) i.i.d. concatenated snapshots, the PDF of \(\tilde{z} \) writes
\[p(\tilde{z}(m); \tilde{\phi}(m)) = \left(\frac{1}{\pi^{N-1} \Phi_z} \exp \left(- \text{Tr} \left[\Phi_z^{-1}(m) R_{z}(m) \right] \right) \right)^L, \]
where \(\Phi_z(m) \) is given by
\[R_z(m) = \frac{1}{L} \sum_{\ell=-m-L+1}^L \tilde{z}(\ell) \tilde{z}^H(\ell) = B^H R_{y}(m) B. \]
The MLE of \(\tilde{\phi}(m) \) is obtained by solving:
\[\tilde{\phi}_{RL}^{\text{ML}}(m) = \arg\max_{\phi(m)} \log p(\tilde{z}(m); \tilde{\phi}(m)). \]
To the best of our knowledge, this problem is also considered as having no closed-form solution. Again, we argue that if the noise PSD matrix satisfies \(T = \text{rank}(\Phi_u) \leq N-2 \), then we can obtain a closed-form solution. Multiplying (20) from left by \(B^H \) and from right by \(B \), the noise PSD matrix at the output of the BM writes
\[B^H \Phi_u(m) B = \tilde{V} \Psi_V(m) \tilde{V}^H, \]
where \(\tilde{V} \in \mathcal{C}^{(N-1)\times T} \) is the reduced noise subspace:
\[\tilde{V} \triangleq B^H \tilde{V} = [\tilde{v}_1, \ldots, \tilde{v}_T]. \]
In Appendix E the following MLME is obtained:
\[\phi_{RL}^{\text{ML}}(m) = \frac{1}{N-1 - T} \text{Tr} \left[Q R_z(m) (B^H \Gamma_R B)^{-1} \right], \]
where \(Q \in \mathcal{C}^{(N-1)\times(N-1)} \) is given by
\[Q = I_{N-1} - \tilde{V} \left(B^H (B^H \Gamma_R B)^{-1} \tilde{V} \right)^{-1} B^H (B^H \Gamma_R B)^{-1}. \]
After the BM was applied, the remaining role of \(\tilde{Q} \) is to block the noise signals, in order to estimate the reverberation level.

Note that \(\text{Tr} [Q] = \text{Tr} [\tilde{Q}] = N - 1 - T \).

Given \(\phi_{RL}^{\text{ML}}, \) it is shown in Appendix F that the MLE for the noise PSD writes
\[\Psi_V^{\text{ML}, \tilde{z}}(m) = \tilde{W}_u^H \left(R_z(m) - \phi_{RL}^{\text{ML}, \tilde{z}}(m) (B^H \Gamma_R B) \right) \tilde{W}_u, \]
where \(\tilde{W}_u \in \mathbb{C}^{(N-1)\times T} \) is a multi-source LCMV beamformer, directed towards the noise signals after the BM, given by
\[\tilde{W}_u^H = \left(\tilde{V}^H (B^H \Gamma_R B)^{-1} \tilde{V} \right)^{-1} \tilde{V}^H (B^H \Gamma_R B)^{-1}. \]
Note that with this notation, \(\tilde{Q} \) in (51) can be recast as
\[\tilde{Q} = I_{N-1} - \tilde{V} \tilde{W}_u^H. \]
Since \(\tilde{W}_u^H \tilde{V} = I_T \), it also follows that
\[\tilde{W}_u^H \tilde{Q} = 0. \]
Also, in Appendix G it is shown that
\[\tilde{W}_u = B \tilde{W}_u, \]
namely the LCMV of (54), used in the non-blocking-based approach, can be factorized into two stages: The first is a BM that blocks the speech signal, followed by a modified LCMV, which recovers the noise signals at the output of the BM.

C. Comparing the MLEs

In this section, the obtained blocking-based and non-blocking-based MLEs are compared. We will use the following identity, that is proved in [14, Appendix A]:
\[B (B^H \Gamma_R B)^{-1} B^H = \Gamma_R^{-1} - \frac{\Gamma_R^{-1} g_d^H \Gamma_R^{-1} g_d}{g_d^H \Gamma_R^{-1} g_d}, \]
Substituting (35) into (57) yields
\[B (B^H \Gamma_R B)^{-1} B^H = \Gamma_R^{-1} - \frac{\Gamma_R^{-1} g_d^H \Gamma_R^{-1} g_d}{g_d^H \Gamma_R^{-1} g_d}. \]

1) **Comparing the reverberation PSD estimators:** First, we compare the reverberation PSD estimators in (26) and (50). Substituting (34) into (50) and then using (46), (49), (56) and (57), yields the following equation:
\[\phi_{RL}^{\text{ML}}(m) = \frac{1}{N-1 - T} \text{Tr} \left[Q R_z(m) (B^H \Gamma_R B)^{-1} \right]. \]
Using (37) and noting that \(g_d^H \Gamma_R^{-1} Q = 0 \), yields (26). It follows that both estimators are identical:
\[\phi_{RL}^{\text{ML}} \equiv \phi_{RL}^{\text{ML}, \tilde{z}}. \]
It should be noted that in [12], [14], the two MLEs of the reverberation PSD were shown to be identical in the noiseless case. Here we extend this result to the noisy case, when the noise PSD matrix is a rank-deficient matrix.
2) Comparing the noise PSD estimators: The noise PSD estimators in (33) and (52) are now compared. Substituting (46) into (52) and then using (50) and (60), yields the same expression as in (33), and therefore
\[
\Psi^\text{ML,Y}_v = \Psi^\text{ML,Z}.
\] (61)

D. MSE Calculation

In the sequel, the theoretical performance of the proposed PSD estimators is analyzed. Since the non-blocking-based and the blocking-based MLEs were proved in section IV-C to be identical for both reverberation and noise PSDs, it suffices to analyze the non-blocking-based MLEs.

1) Theoretical performance of the reverberation PSD estimators: It is well known that for an unbiased estimator, the MSE is identical to the variance. We therefore start by showing that the non-blocking-based MLE in (26) is unbiased. Using (24), the expectation of (26) writes
\[
\mathbb{E}\left(\phi^\text{ML,Y}_R(m)\right) = \frac{1}{N-1-T}\mathbb{E}\left[\mathbb{E}\left(\phi^\text{ML,Y}_R(m)\right)\right].
\] (62)
Then, we use the following property (see (85d):
\[
\Gamma^{-1}_R Q = \phi_R(m)\Phi^{-1}_Y(m) Q,
\] (63)
to obtain
\[
\mathbb{E}\left(\phi^\text{ML,Y}_R(m)\right) = \frac{\phi_R(m)}{N-1-T}\mathbb{E}\left[Q\right] = \phi_R(m).
\] (64)
It follows that the reverberation MLE is unbiased, and thus the MSE is identical to the variance. Using the i.i.d. assumption, the variance of the non-blocking-based MLE in (26) is given by
\[
\text{var}\left(\phi^\text{ML,Y}_R(m)\right) = \frac{1}{L(N-1-T)^2}\text{var}\left(y^H(m)\Gamma^{-1}_R Q y(m)\right).
\] (65)
In order to simplify (65), we use the identity in (2). Since
\[
y(m) \sim \mathcal{N}_V(0, \Phi_y(m) \Gamma R),
\] and $\Gamma^{-1}_R Q$ is a Hermitian matrix (note that $Q^H = \Gamma^{-1}_R Q \Gamma R$), we obtain
\[
\text{var}\left(\phi^\text{ML,Y}_R(m)\right) = \frac{1}{L(N-1-T)^2} \mathbb{E}\left[y^H(m)\Gamma^{-1}_R Q y(m)\Gamma^{-1}_R Q y(m)\right].
\] (66)
Finally, using (65) and (85b), the variance writes
\[
\text{var}\left(\phi^\text{ML,Y}_R(m)\right) = \frac{\phi^2_R(m)}{L(N-1-T)}.
\] (67)
Note that in the noiseless case, namely $T = 0$, the variance reduces to the one derived in (12), (13).

2) Theoretical performance of the noise PSD estimators: Using (24), (14) and (32), and based on the unbiasedness of $\phi^\text{ML,Y}_R(m)$, it can be shown that $\Psi^\text{ML,Y}_v(m)$ in (33) is an unbiased estimator of $\Psi_v(m)$.

Next, we calculate the variance of the diagonal terms of $\Psi^\text{ML,Y}_v(m)$. To this end, we write the (i, j) entry of $\Psi^\text{ML,Y}_v(m)$ in (33) as
\[
\left[\Psi^\text{ML,Y}_v(m)\right]_{ij} = w^H_i \left(R_y(m) - \phi^\text{ML,Y}_R(m) \Gamma_R\right) w_j.
\] (68)
for $i, j = 1, \ldots, T$, where w_i is the ith column of the matrix W_i in (13). Using a partitioned matrix to simplify w_i, it can be shown that
\[
w_i^H = v^H_i P^\perp_{V_i} \frac{\Gamma^{-1}_R}{v_i} \Gamma R v_i,
\] (69)
where $V_i \in \mathbb{C}^{N \times T-1}$ is composed of all the vectors in V, i.e. $V_i = [v_1, \cdots, v_{i-1}, v_{i+1}, \cdots, v_T]$, and $P^\perp_{V_i} \in \mathbb{C}^{N \times N}$ is the corresponding projection matrix onto the subspace orthogonal to V_i.

It can be verified that $w_i^H v_i = \delta_{ij}$. Denote the diagonal terms of Ψ_v by $\{\psi_i\}_{i=1}^T$. In Appendix [I], it is shown that
\[
\text{var}\left(\psi_i^\text{ML,Y}(m)\right) = \psi_i^2(m) \left[\left(1 + \xi_i(m)\right)^2 \frac{1}{L} \left(\frac{1 - \xi_i(m)}{\xi_i(m)}\right)^2 + \frac{1}{N-1-T} \frac{1}{\xi_i^2(m)}\right],
\] (71)
where $\xi_i(m)$ is defined as the noise-to-reverberation ratio at the output of w_i:
\[
\xi_i(m) = \frac{\psi_i(m) - \psi_i^2(m) v_i^H \phi_R(m) \Gamma R w_i}{v_i^H \phi_R(m) \Gamma R w_i + \psi_i(m) v_i^H P^\perp_{V_i} \frac{\Gamma^{-1}_R}{v_i} \Gamma R v_i}.
\] (72)

3) Theoretical performance of the speech PSD estimator: Using (24), (14) and (32), and based on the unbiasedness of $\phi^\text{ML,Y}_Y(m)$, it can be shown that $\Psi^\text{ML,Y}_S(m)$ is an unbiased estimator of $\Psi_S(m)$. In a similar manner to (71), the variance of (29) can be shown to be
\[
\text{var}\left(\psi_i^\text{ML,Y}(m)\right) = \frac{\phi_S^2(m)}{L/N} \left[\left(1 + \varepsilon(m)\right)^2 \frac{1}{\varepsilon(m)} + \frac{1}{N-1-T} \frac{1}{\varepsilon^2(m)}\right],
\] (73)
where $\varepsilon(m)$ is defined as the signal-to-reverberation ratio at the output of w_s:
\[
\varepsilon(m) \triangleq \frac{\phi_S(m)}{w_i^H \phi_R(m) \Gamma R w_s} = \frac{\phi_S(m)}{\phi_R(m)} g^H v P^\perp_{V} \frac{\Gamma^{-1}_R}{v} g_d.
\] (74)
When the reverberation level is low, (73) reduces to
\[
\text{var}(\psi_i^\text{ML,Y}(m)) \xrightarrow{\varepsilon(m) \to \infty} \frac{\phi_S^2(m)}{L}.
\] In the noiseless case, i.e. $T = 0$, (73) becomes identical to the variance derived in (12), (13).

V. CRB Derivation

In this section, we derive the CRB on the variance of any unbiased estimator of the various PSDs.

A. CRB for the Late Reverberation PSD

In Appendix [I] it is shown that the CRB on the reverberation PSD writes
\[
\text{CRB}(\phi_R) = \frac{1}{L(N - (T + 1))}.
\] (75)
The resulting CRB is identical to the MSE derived in (67), and thus the proposed MLE is an efficient estimator.
B. CRB for the Speech and Noise PSDs

The CRB on the speech PSD is identical to the MSE derived in (23), as outlined in Appendix [I]. The CRB on the noise PSD can be derived similarly. We conclude that the proposed PSD estimators are efficient.

VI. Experimental Study

In this section, the proposed MLEs are evaluated in a synthetic Monte-Carlo simulation as well as on measurements of a real room environment. In Section VI-A a Monte-Carlo simulation is conducted in which signals are generated synthetically based on the assumed statistical model. The sensitivity of the proposed MLEs is examined with respect to the various model parameters, and the MSEs of the proposed MLEs are compared to the corresponding CRBs. In Section VI-B the proposed estimators are examined in a real room environment, by utilizing them for the task of speech dereverberation and noise reduction using the MCWF.

A. Monte-Carlo Simulation

1) Simulation Setup: In order to evaluate the accuracy of the proposed estimators, synthetic data was generated according to the signal model in (6), by simulating \(L \) i.i.d. snapshots of single-tone signals, having a frequency of \(f = 2000 \) Hz. The signals are captured by a uniform linear array (ULA) with \(N \) microphones, and inter-distance \(d \) between adjacent microphones. The desired signal component \(s \) was drawn according to a complex Gaussian distribution with a zero-mean and a PSD \(\phi_s \). The RDTF is given by

\[
g_d = \exp (-j2\pi f \tau), \tag{76}\]

where \(\tau \in \mathbb{R}^N \) is the time difference of arrival (TDOA) w.r.t. the reference microphone, given by \(\tau = \frac{d \sin(\theta)}{c} \times [0, \cdots, N - 1]^T \), and \(\theta \) is the DOA, defined as the broadside angle measured w.r.t. the perpendicular to the array. The reverberation component \(r \) was drawn according to a complex Gaussian distribution with a zero-mean and a PSD \(\phi_r \). The RDTF is given by

\[
r = \frac{1}{\sqrt{R}} \sum_{n=1}^{N} \sin \left(\frac{\theta}{2} \right) \sin \left(2\pi f \frac{d \sin(\theta)}{c} \right), \tag{77}\]

2) Simulation Results: In Fig. 1(a) the nMSEs are presented as a function of the number of snapshots. Clearly, the nMSEs of all the estimators decrease as the number of snapshots increases. As expected from the analytical study, it is evident that the non-blocking-based and the blocking-based MLEs yield the same nMSE, for both the reverberation and noise PSDs. Furthermore, for all quantities the nMSEs coincide with the corresponding CRBs.

We now study the effect of varying the reverberation level. Let the signal-to-reverberation ratio (SRR) be defined as

\[
SRR = 10 \log \left(\frac{\phi_s}{\phi_r} \right) \tag{78}\]

In this experiment, we change \(\phi_r \) s.t. the resulting SRR ranges between \(-20 \) dB and \(20 \) dB. In Fig. 1(b) the nMSEs are presented as a function of SRR. It is evident that the nMSEs of the reverberation PSD estimators are independent of \(\phi_r \), while for the speech and noise PSDs, the nMSEs decrease as the reverberation level decreases.

We now examine the effect of changing the speech PSD level. Let the signal-to-reverberation-plus-noise ratio (SNR) be defined as

\[
SNR = 10 \log \left(\frac{\phi_s}{\phi_r + \phi_n} \right) \tag{79}\]

In Fig. 1(c) the nMSEs are presented as a function of SNR. It is shown that the speech PSD estimator is improved as the speech level increases. For the reverberation and noise PSD estimators, the performance is independent of \(\phi_s \).

We now examine the effect of increasing the noise level. Let the signal-to-noise ratio (SNR) be defined as

\[
SNR = 10 \log \left(\frac{\phi_s}{\phi_n} \right) \tag{80}\]

In Fig. 1(d) the nMSEs are presented as a function of SNR. It is shown that the speech PSD estimator is improved as the noise level decreases.

B. Experiments with Recorded Room Impulse Responses

The performance of the proposed PSD estimators is now evaluated in a realistic acoustic scenario, for the task of speech
dereverberation and noise reduction. In our experiments, microphone signals were synthesized using real speech signals and measured RIRs. The proposed PSD estimators were used in order to calculate the MCWF.

1) Competing Algorithms: The proposed method is compared to [15], in which the MCWF is implemented using the blocking-based or the non-blocking-based LS estimators. Therein, a spatially homogeneous noise sound field is assumed, namely $\Phi_u(m,k) = \phi_U(m,k)\Gamma_U(k)$, where $\Gamma_U(k)$ is a known time-invariant spatial coherence matrix, and $\phi_U(m,k)$ denotes the unknown time-varying PSD, which has to be estimated, along with the speech and reverberation PSDs. Although this method considers a different noise model, it is chosen as the baseline since this is the only work that estimates the noise PSD.

2) Implementation of the MCWF: It is well-known that the MCWF can be decomposed into an MVDR beamformer followed by a single-channel Wiener postfilter [21], [22]:

$$\hat{s}_{MCWF}(m) = \frac{\hat{\gamma}(m)}{\hat{\gamma}(m) + 1} g^H_d \hat{\Phi}_1^{-1}(m) g_d, \quad y(m), \quad (77)$$

where

$$\hat{\gamma}(m) = \frac{\hat{\phi}_S(m)}{\hat{\phi}_{RE}(m)} \quad (78)$$

denotes the SRNR at the output of the MVDR, and $\hat{\phi}_{RE}(m) \triangleq \left(g^H_d \hat{\Phi}_1^{-1}(m) g_d \right)^{-1}$ is the residual interference at the MVDR output.

The implementation of (78) requires the estimate of the speech PSD, which is missing in the blocking-based framework. By substituting the obtained blocking-based reverberation and noise estimates, namely $\hat{\phi}_R^{ML,z}$ and $\hat{\Psi}_v^{ML,z}$, into the general likelihood function in (23), the maximization becomes a one-dimensional optimization problem, and a closed-form solution is available [2], [23]:

$$\hat{\phi}_S(m) = w^H_{MVDR}(m) \left(R_v(m) - \hat{\phi}_R^{ML,z}(m) \Gamma_R \right. - \hat{V} \hat{\Psi}_v^{ML,z}(m) \hat{v}^H \left) w_{MVDR}(m). \quad (79)$$

However, it was shown in [15] that rather than using (78), better dereverberation performance is obtained by using the
In our experiments, the MCWF was implemented with the two variants of computing \(\hat{\gamma}(m) \) is estimated by
\[
\hat{\gamma}_{DD}(m) = \beta \frac{|\hat{s}(m-1)|^2}{\hat{\phi}_{RE}(m-1)} + (1 - \beta) \frac{\hat{\phi}_{S}(m)}{\hat{\phi}_{RE}(m)},
\]
where \(\beta \) is a weighting factor, and \(\hat{\phi}_S \) is an instantaneous estimate based on the MVDR output [8]:
\[
\hat{\phi}_S(m) = \max \left(|w_{MVDR}(m)y(m)|^2 - \hat{\phi}_{RE}(m), 0 \right).
\]
In our experiments, the MCWF was implemented with the two variants of computing \(\hat{\gamma} \): i) The direct implementation in (78), which will be referred to as Dir; and ii) the decision-directed implementation in (80) with the speech PSD estimated as in (81), denoted henceforth as DD.

The results of an oracle MCWF with true parameters are also presented, in order to illustrate the efficiency of the proposed method. The oracle speech PSD was computed by convolving the anechoic speech signal with the direct part of the RIR, and the oracle late reverberation PSD was computed by convolving the anechoic speech signal with the reverberation tails of the RIR, which were assumed to start 2 msec after the direct path.

3) Performance Measures: The speech quality was evaluated in terms of three common objective measures, namely perceptual evaluation of speech quality (PESQ) [25], frequency-weighted segmental SNR (fwSNRseg) [26] and log-likelihood ratio (LLR) [26]. The measures were computed, and then the EVD is applied in order to extract the spatial basis \(V \) that replaces the noise ATF matrix \(A_u \) (see (19)). For the estimators of [15], the noise coherence matrix \(\Gamma_U \) was computed using the speech-absent segment.

The following values of the parameters were used. The sampling rate was set to 16 kHz, the STFT was computed with windows of 32 msec and 75% overlap between adjacent time frames. As the experiment consists of real-life non-stationary speech signals, the sample covariance matrix \(R_y(m) \) was estimated using recursive averaging [9] with a smoothing factor of \(\alpha = 0.7 \), rather than the moving-window averaging of [24]. The same applies also for \(R_u(m) \). The smoothing parameter for the decision-directed in (80) was set to \(\beta = 0.9 \). The gain of the single channel post-filter was lowered bounded by \(-15 \text{ dB}\).

5) Experimental Results: The performance measures were calculated by averaging over the 10 speakers. PESQ, fwSNRseg and LLR scores are presented in Table III. Low LLR indicates a high speech quality. The best results are highlighted in boldface. It is shown that the proposed non-blocking-based MLEs yield the best PESQ and fwSNRseg results, while the proposed blocking-based MLEs result with the best LLR scores. Furthermore, each of the non-blocking ML implementations outperforms the competing non-blocking LS implementation, for almost all cases. The same applies for the blocking ML methods, except for the LLR in the blocking ML DD method. The advantage of the proposed method can be attributed to the fact that the full \(T \times T \) spectral noise PSD matrix \(\Psi \) is estimated in each frame, and thus the non-stationarity of all the noise sources can be followed, while [15] estimates only a single parameter \(\phi_U \). The performance difference may also be attributed to the superiority of the ML approach over the LS estimation procedure, as claimed in [9].

It should be noted that although the blocking-based and the non-blocking-based noise and reverberation MLEs were proved to be identical, the non-blocking ML Dir and the blocking ML Dir implementations differ, due to the fact they use different speech PSD estimators in (29) and (79). However, both the non-blocking ML DD and the blocking ML DD use (81) to estimate \(\phi_S \), and thus they have approximately the same performance.

Fig. 3 depicts several sonogram examples of the various signals at RSNR of 15 dB. Fig. 3(a) shows \(s \), the direct speech signal as received by the first microphone. Fig. 3(b) depicts \(y_1 \), the noisy and reverberant signal at the first microphone. Figs. 3(c) and 3(d) show the MCWF output computed with (78), using the proposed blocking-based and non-blocking-based MLEs, respectively. We conclude that the application of the MCWF, implemented based on the proposed MLEs, reduces significantly noise and reverberation, while maintaining low speech distortion.
TABLE III: Speech Quality Measures

Alg./RSNR	0dB	5dB	10dB	15dB	20dB	0dB	5dB	10dB	15dB	20dB	0dB	5dB	10dB	15dB	20dB
Unprocessed	1.25	1.37	1.51	1.63	1.72	-18.32	-14.87	-11.95	-9.73	-8.17	1.49	1.27	1.05	0.87	0.73
Blocking LS	1.57	1.74	1.87	1.97	2.04	-8.33	-6.12	-4.84	-4.19	-3.60	0.96	0.83	0.75	0.69	0.64
Blocking LS	1.57	1.77	1.94	2.08	2.17	-5.94	-4.10	-3.15	-2.58	-2.24	0.84	0.77	0.73	0.71	0.66
Blocking ML	1.68	1.88	2.05	2.17	2.25	-9.07	-6.45	-5.49	-3.41	-2.68	0.90	0.76	0.67	0.61	0.57
Blocking ML	1.63	1.85	2.06	2.22	2.34	-4.48	-2.98	-2.18	-1.85	-1.85	0.82	0.81	0.85	0.91	0.98
Non-blocking LS	1.69	1.83	1.95	2.04	2.09	-7.17	-5.80	-4.87	-4.25	-3.93	0.96	0.90	0.88	0.87	0.82
Non-blocking LS	1.62	1.81	1.98	2.13	2.22	-5.08	-3.81	-2.94	-2.57	-2.31	0.88	0.87	0.89	0.91	0.84
Non-blocking ML	1.82	2.03	2.18	2.28	2.35	-5.66	-3.81	-2.76	-2.14	-1.90	0.85	0.80	0.79	0.79	0.77
Non-blocking ML	1.64	1.86	2.07	2.23	2.34	-4.45	-2.96	-2.17	-1.84	-1.84	0.83	0.82	0.85	0.92	0.97

Oracle MCWF | 2.33 | 2.70 | 3.03 | 3.26 | 3.36 | -0.94 | 0.71 | 1.70 | 2.22 | 2.46 | 0.43 | 0.33 | 0.27 | 0.24 | 0.22 |

(a) Clean direct speech at microphone #1.
(b) Noisy and Reverberant signal at microphone #1.
(c) Output of the MCWF (direct implementation) using the proposed blocking-based MLEs.
(d) Output of the MCWF (direct implementation) using the proposed non-blocking-based MLEs.

Fig. 3: An example of audio sonograms, with RSNR of 15 dB.

VII. CONCLUSIONS

In this contribution, we discussed the problem of joint dereverberation and noise reduction, in the presence of directional noise sources, forming a rank-deficient noise PSD matrix. As opposed to state-of-the-art methods which assume the knowledge of the noise PSD matrix, we propose to estimate also the time-varying noise PSD matrix, assuming that a basis that spans the noise ATF subspace is known. MLEs of the reverberation, speech and noise PSDs are derived for both the non-blocking-based and the blocking-based methods. The resulting MLEs are of closed-form and thus have low computational complexity. The proposed estimators are theoretically analyzed and compared. For both the reverberation and the noise PSD estimators, it is shown that the non-blocking-based MLE and the blocking-based MLE are identical. The estimators were shown to be unbiased, and the corresponding MSEs were calculated. Moreover, CRBs on the various PSDs were derived, and were shown to be identical to the MSEs of the proposed estimators. The discussion is supported by an experimental study based on both simulated data and real-life audio signals. It is shown that using the proposed estimators yields a large performance improvement with respect to a competing method.

APPENDIX A

The proof follows the lines of [23]. First, we use (20) and rewrite the PSD matrix of the microphone signals in (14) as

$$\Phi_y(m) = A\Phi_{sv}(m)A^H + \phi_R(m)\Gamma_R,$$ \hspace{1cm} (82)
where A is defined in (28) and $\Phi_{sv}(m) \in \mathbb{C}^{(T+1) \times (T+1)}$ is given by
\[
\Phi_{sv}(m) = \begin{bmatrix}
\phi_S(m) \\
0 \\
\Psi_{Y}(m)
\end{bmatrix}.
\] (83)

Then, we define $P \in \mathbb{C}^{N \times N}$ as an orthogonal projection matrix onto the speech-plus-noise subspace
\[
P = A (A^H \Gamma_R^{-1} A)^{-1} A^H \Gamma_R^{-1}.
\] (84)

and $Q = I_N - P$ is the orthogonal complement. We will make use of the following properties, which can be easily verified:
\[
P = PP, \quad Q = QQ, \quad Q\Phi_Y(m) = \phi_R(m)Q\Gamma_R, \quad \Phi_Y^{-1}(m)Q = \phi_R^{-1}(m)\Gamma_R^{-1}Q.
\] (85a) (85b) (85c) (85d)

\[
\Phi_Y^{-1}(m)A = \Gamma_R^{-1}A(\Phi_{sv}(m)A^H \Gamma_R^{-1}A + \phi_R(m)I)^{-1}.
\] (85e)

Using [11, Eq. 15.47-15.48], the derivative of the log likelihood function w.r.t. $\phi_R(m)$ is given by
\[
\mathcal{L}(\phi_R(m)) \triangleq \frac{\partial \log p(y(m); \phi(m))}{\partial \phi_R(m)} = L \text{Tr} \left[(\Phi_Y^{-1}(m)R_Y(m) - I) \Phi_Y^{-1}(m)\Gamma_R \right].
\] (86)

Using (85a) and (85b) it follows that
\[
\mathcal{L}(\phi_R(m)) = L \text{Tr} \left[Q \Gamma_R (\Phi_Y^{-1}(m)R_Y(m) - I) \Phi_Y^{-1}(m)Q + P \Gamma_R (\Phi_Y^{-1}(m)R_Y(m) - I) \Phi_Y^{-1}(m)P \right].
\] (87)

However, by substituting (83) into (87), it can be shown that the second term vanishes (follows from setting the derivative of the likelihood w.r.t. Φ_{sv} in (89) to zero). Hence,
\[
\mathcal{L}(\phi_R(m)) = L \text{Tr} \left[Q \Gamma_R (\Phi_Y^{-1}(m)(R_Y(m) - \Phi_Y(m)) \right.
\]
\[
\times \Phi_Y^{-1}(m)Q \right].
\] (88)

(a) $L\phi_R^{-2}(m) \text{Tr} \left[Q(R_Y(m) - \Phi_Y(m))\Gamma_R^{-1}Q \right]$

(b) $L\phi_R^{-2}(m) \text{Tr} \left[Q(R_Y(m))(\Gamma_R^{-1} - \phi_R(m))Q \right],
\] (89)

where (a) follows from (85c) and (85d), and (b) follows from (85b) and (85c). Finally, using (27) we have $\text{Tr}[Q] = N - (T + 1)$. Thus, setting (88) to zero yields (89).

APPENDIX B

Using [23, Eq. (12)], the derivative of the log likelihood function $\log p(y(m); \phi(m))$ w.r.t. Φ_{sv} is given by
\[
\mathcal{L}(\Phi_{sv}(m)) \triangleq \frac{\partial \log p(y(m); \phi(m))}{\partial \Phi_{sv}(m)} = L (A^H (\Phi_Y^{-1}(m)R_Y(m) - I) \Phi_Y^{-1}(m)A)^T.
\] (90)

Using (85c) and setting the result to zero yields
\[
\Phi_{sv}^{\text{ML}}(m) = (A^H \Gamma_R^{-1} A)^{-1} A^H \Gamma_R^{-1} \left(R_Y(m) - \phi_{sv}^{\text{ML}}(m)\Gamma_R \right) \times \Gamma_R^{-1} A (A^H \Gamma_R^{-1} A)^{-1}.
\] (91)

In order to simplify the expression of (90), we define a partitioned matrix
\[
A^H \Gamma_R^{-1} A = \begin{bmatrix}
\bar{g}_{sv}^H \Gamma_R^{-1} \bar{g}_d \\
\bar{g}^H \Gamma_R^{-1} \bar{g}_d \\
\bar{g}^H \Gamma_R^{-1} \bar{g}_d
\end{bmatrix}.
\] (92)

Using the formula of the inverse of a partitioned matrix and then taking the $(1,1)$ entry of Φ_{sv}^{ML}, the MLE of ϕ_S in [29] is obtained.

APPENDIX C

We note that $\Phi_Y(m)$ is the $T \times T$ lower-right block of the full $(T + 1) \times (T + 1)$ matrix $\Phi_{sv}(m)$ in (83). Using again the formula for the inverse of the partitioned matrix in (91) and taking the corresponding entries, yields (35).

APPENDIX D

The proof follows by substituting the inverse of the partitioned matrix (91) into (37), and then using the definitions in (30) and (34).

APPENDIX E

First, we use (48) to rewrite the PSD matrix of the BM output in (44) as
\[
\Phi_{sv}(m) = \bar{V} \Phi_Y(m) \bar{V}^H + \phi_R(m) B^H \Gamma_R B,
\] (93)

where \bar{V} is defined in (49). The proof is now similar to that of Appendix A with the following changes: A, $\Phi_{sv}(m)$, Γ_R and $R_Y(m)$ are replaced with \bar{V}, $\Phi_Y(m)$, $B^H \Gamma_R B$ and $R_{sv}(m)$, respectively.

APPENDIX F

Using (92), the MLE of $\Phi_Y(m)$ can be calculated in a similar manner to (90), with
\[
\Phi_{sv}^{\text{ML}}(m) = \bar{W}_u^H \left(R_Z(m) - \phi_{sv}^{\text{ML}}(m) (B^H \Gamma_R B) \right) \bar{W}_u,
\] (94)

where \bar{W}_u is given in (53).

APPENDIX G

Substituting (49) into (53), and then using (58), leads to
\[
\bar{W}_u^H = (V^H P_g^T \Gamma_R^{-1} V)^{-1} V^H B (B^H \Gamma_R B)^{-1}.
\] (95)

Right multiplying (94) by B^H, using again (58) and then comparing to (34), yields (56).

APPENDIX H

Using (23), (26) and the i.i.d. assumption, the variance of (68) can be recast as
\[
\text{var} \left(\psi_{sv}^{\text{ML}}(m) \right) = \frac{1}{L} \text{var} \left[y(m) (w_i w_i^H - w_i^H \Gamma_R w_i)/N - 1 - T \right].
\] (96)

To proceed, we use (2), (63), and (38) to obtain
\[
\text{var} \left(\psi_{sv}^{\text{ML}}(m) \right) = \frac{1}{L} \left[(w_i^H \Phi_Y(m) w_i)^2 + (w_i^H \phi_{sv}(m) \Gamma_R w_i)^2 \right].
\] (97)
Finally, using (13) and (56) yields (11). The right hand side of (72) is obtained by substituting (69) into the definition of ξ_i, and noting that $\left(P_{y_1}^T, P_{y_2}^T\right)^T = \Gamma_R P_{y_1}^T P_{y_2}^T \Gamma_R^{-1}$.

APPENDIX I

Using the definitions of Φ_y and Φ_{y_0} in (82) and (83), we denote the set of unknown parameters by $\alpha = [\phi_R, \phi_{SV}]^T \in \mathbb{C}^{(T+1)^2+1}$, where $\phi_{SV} \triangleq \text{vec}(\Phi_{sv}) \in \mathbb{C}^{(T+1)^2}$, as Φ_y is a PSD matrix of a Gaussian vector. The Fisher information of each parameter is given by (29):

$$I_{ij}^y = L \text{Tr} \left[\Phi_y^{-1} \partial \Phi_y \Phi_y^{-1} \partial \Phi_y \right],$$

(97)

where I_{ij}^y is the Fisher information of α_i and α_j and $i, j = 1, \ldots, (T + 1)^2 + 1$. In order to facilitate the derivation, we use (4) and vectorize (82) to obtain an $N^2 \times 1$ vector:

$$\phi_y \triangleq \text{vec}(\Phi_y) = (A^* \otimes A) \text{vec}(\Phi_{sv}) + \phi_R \text{vec}(\Gamma_R).$$

(98)

Using (3), (4), (97) and (98), the full Fisher information matrix (FIM) writes:

$$\frac{1}{L} I_{ij}^y = \left(\frac{\partial \phi_y}{\partial \alpha} \right)^H \left(\Phi_y^{-1} \otimes \Phi_y^{-1} \right) \left(\frac{\partial \phi_y}{\partial \alpha} \right).$$

(99)

Next, we define the following partitioned matrix:

$$[g \Delta] \triangleq \left(\Phi_y^{-T/2} \otimes \Phi_y^{-1/2} \right) \left[\frac{\partial \phi_y}{\partial \alpha} \right] \left(\frac{\partial \phi_y}{\partial \alpha} \right)^T.$$

(100)

Using (100) and (5), the FIM in (99) writes

$$\frac{1}{L} I_{ij}^y = \left[\frac{g^H}{\Delta^H} \right] [g \Delta] = \left[\frac{g^H g}{\Delta^H \Delta} \right].$$

(101)

The CRB for ϕ_R is given by CRB (ϕ_R) = $[I_{ij}^{-1} \mathbb{1}_{11}]$. Using the formula of the inverse of a partitioned matrix, the CRB writes

$$\text{CRB} (\phi_R) = \frac{1}{L} \left(g^H g - g^H \Delta \left(\Delta^H \Delta \right)^{-1} \Delta^H g \right)^{-1},$$

(102)

where $\Pi_{\Delta} \in \mathbb{C}^{N^2 \times N^2}$ is a projection matrix onto the subspace orthogonal to Δ:

$$\Pi_{\Delta} \triangleq \Delta \left(\Delta^H \Delta \right)^{-1} \Delta^H, \quad \Pi_{\Delta} = \mathbb{I}_{N^2} - \Pi_{\Delta}. $$

(103)

We now simplify (102). First, we use (98) along with (4) to write g as

$$g = \left(\Phi_y^{-T/2} \otimes \Phi_y^{-1/2} \right) \text{vec}(\Gamma_R) = \text{vec}(\Phi_y^{-1/2} \Gamma_R \Phi_y^{-1/2}).$$

(104)

Similarly, Δ is simplified by using (98) along with (5),

$$\Delta = \left(\Phi_y^{-T/2} \otimes \Phi_y^{-1/2} \right) (A^* \otimes A) =
\left(\Phi_y^{-T/2} A^* \right) \otimes \left(\Phi_y^{-1/2} A \right).$$

(105)

In order to calculate $\Pi_{\Delta} g$, the following identity is used (31):

$$\Pi_{\Delta} g = I \otimes \Pi_{\Gamma} + \Pi_{\Delta} \otimes I - \Pi_{\Delta} \otimes \Pi_{\Gamma} \otimes \Pi_{\Gamma} \otimes \Pi_{\Gamma}$$

(106)

Hence,

$$\Pi_{\Delta} g = \begin{bmatrix} Q \left(\Phi_y^{-1/2} \otimes \Phi_y^{-1/2} \right) \text{vec}(\Phi_y^{-1/2} \Gamma_R \Phi_y^{-1/2}) \\ (I \otimes \Pi_{\Phi_y^{-1/2} A} + \Pi_{\Phi_y^{-1/2} A} \otimes \Pi_{\Phi_y^{-1/2} A}) \otimes I \\ - \Pi_{\Phi_y^{-1/2} A} \otimes \Pi_{\Phi_y^{-1/2} A} \times \text{vec}(\Phi_y^{-1/2} \Gamma_R \Phi_y^{-1/2}) \\ \text{vec}(\Pi_{\Phi_y^{-1/2} A} \Phi_y^{-1/2} \Gamma_R \Phi_y^{-1/2} + \Phi_y^{-1/2} \Gamma_R \Phi_y^{-1/2} \Pi_{\Phi_y^{-1/2} A}) - \Pi_{\Phi_y^{-1/2} A} \left(\Phi_y^{-1/2} \Gamma_R \Phi_y^{-1/2} \right) \Pi_{\Phi_y^{-1/2} A} \right).$$

(107)

where (a) follows by (104) and (105), (b) follows by (106) and (c) follows by (4). Left multiplying (107) by g^H yields the reciprocal of the CRB in (102):

$$g^H \Pi_{\Delta} g = \text{vec}(\Phi_y^{-1/2} \Gamma_R \Phi_y^{-1/2}) \otimes I \times \text{vec}(\Pi_{\Phi_y^{-1/2} A} \Phi_y^{-1/2} \Gamma_R \Phi_y^{-1/2} + \Phi_y^{-1/2} \Gamma_R \Phi_y^{-1/2} \Pi_{\Phi_y^{-1/2} A} - \Pi_{\Phi_y^{-1/2} A} \left(\Phi_y^{-1/2} \Gamma_R \Phi_y^{-1/2} \right) \Pi_{\Phi_y^{-1/2} A}).$$

(108)

where (a) follows by (104) and (b) follows by (5). To proceed, let us define $D \in \mathbb{C}^{N \times (N-T)}$ as a matrix that spans the nullspace of the matrix A s.t. $D^H A = 0$, i.e. a blocking matrix of the speech-plus-noise signals. Since $\left(\Phi_y^{-1/2} D \right)^H \Phi_y^{-1/2} A = 0$, it follows that $\Pi_{\Phi_y^{-1/2} A} = \Pi_{\Phi_y^{-1/2} A} D$.

(109)

and thus

$$\Phi_y^{-1/2} \Pi_{\Phi_y^{-1/2} A} \Phi_y^{-1/2} = \Phi_y^{-1/2} \Pi_{\Phi_y^{-1/2} A} D \Phi_y^{-1/2}$$

(a)

$$= D \left(D^H \Phi_y \Gamma_R D \right)^{-1} D^H \Phi_y \Gamma_R^{-1} \Phi_y^{-1/2} \Gamma_R^{-1} \Phi_y^{-1/2} \Pi_{\Phi_y^{-1/2} A} D \Phi_y^{-1/2} \Pi_{\Phi_y^{-1/2} A} \Phi_y^{-1/2} \Gamma_R^{-1} \Phi_y^{-1/2} \Pi_{\Phi_y^{-1/2} A}$$

(b)

$$= \phi_R^{-2} \Gamma_R^{-1} \Phi_y D \left(D^H \Phi_y \Gamma_R D \right)^{-1} D^H \Phi_y \Gamma_R^{-1} \Phi_y^{-1/2} \Gamma_R^{-1} \Phi_y^{-1/2} \Pi_{\Phi_y^{-1/2} A} D \Phi_y^{-1/2} \Pi_{\Phi_y^{-1/2} A}$$

(c)

where (a) and (b) follows since $D^H \Phi_y = D^H \Phi_y \Gamma_R$ and (c) follows by (109). Substituting (110) into (108) and using the property $\Pi_{\Delta} \Pi_{\Delta} = \Pi_{\Delta}$, yields

$$g^H \Pi_{\Delta} g = \phi_R^2 \text{Tr} \left[\Pi_{\Phi_y^{-1/2} A} \right] = \phi_R^2 \left(N - (T + 1) \right).$$

(111)

Substituting (111) into (102) yields (75).

APPENDIX J

We define the following partitioned matrix:

$$[s \mathbf{W}] \triangleq \left(\Phi_y^{-T/2} \otimes \Phi_y^{-1/2} \right) \left[\frac{\partial \phi_y}{\partial \alpha} \right] \left(\frac{\partial \phi_y}{\partial \alpha} \right).$$

(112)
where $\sigma \triangleq \text{vec} \left(\{ \phi s \} \setminus \{ \phi s \} \right)$. Similarly to (101)–(102), we use (112) to construct the FIM, and then compute its inverse and take the corresponding component,

$$\text{CRB} (\phi s) = \frac{1}{L} \left(s^H \Pi W s \right)^{-1}. \quad (113)$$

We define a partition of W as

$$W = \left(\Phi_y^{-T/2} \otimes \Phi_y^{-1/2} \right) \left[\frac{\partial \phi_y}{\partial \sigma} \frac{\partial \phi_y}{\partial \Sigma} \right] \triangleq \left[\Sigma | g \right]. \quad (114)$$

Using the blockwise formula for projection matrices [32],

$$\Pi_1^1 = \Pi_\Sigma - \Pi_\Sigma g (g^H \Pi_\Sigma g)^{-1} g^H \Pi_\Sigma. \quad (115)$$

We note that Σ can be further partitioned as

$$\Sigma = \left(\Phi_y^{-T/2} \otimes \Phi_y^{-1/2} \right) \times \left[V^* \otimes [g^* \otimes V, V^* \otimes g_d] \right] \triangleq \left[C | D \right]. \quad (116)$$

In a similar manner to (115), we obtain

$$\Pi_\Sigma^1 = \Pi_\Sigma - \Pi_\Sigma D (D^H \Pi_\Sigma D)^{-1} D^H \Pi_\Sigma. \quad (117)$$

Substituting into (117) and then into (113), yields

$$\text{CRB} (\phi s) = \frac{1}{L} \left(\alpha_s - \alpha_s^H \Theta_d^\perp \alpha_{ds} - \beta_s^H \beta_g \right)^{-1}. \quad (118)$$

where $\alpha_s = s^H \Pi_\Sigma^1 s$, $\alpha_{ds} = D^H \Pi_\Sigma^1 s$, $\Theta_d = D^H \Pi_\Sigma^1 D$, $\beta_g = \alpha_s - \alpha_s^H \Theta_d^\perp \alpha_{ds}$, $\beta_g = \alpha_s - \alpha_s^H \Theta_d^\perp \alpha_{ds}$, and $\alpha_g = s^H \Pi_\Sigma^1 g$. These quantities can be computed using similar techniques to those used in the derivation of (104)–(111). Due to space constraints, the detailed derivation is omitted.Collecting all the terms and substituting into (118), yields the same expression as the MSE in (73).

REFERENCES

[1] U. Kjems and J. Jensen, “Maximum likelihood based noise covariance matrix estimation for multi-microphone speech enhancement,” in Proceedings of the 20th European Signal Processing Conference (EUSIPCO), 2012, pp. 295–299.

[2] S. Braun and E. A. Habets, “Dereverberation in noisy environments using reference signals and a maximum likelihood estimator,” in Proceedings of the 21st European Signal Processing Conference (EUSIPCO), 2013, pp. 1–5.

[3] A. Kuklasinski, S. Doclo, S. H. Jensen, and J. Jensen, “Maximum likelihood based multi-channel isotropic reverberation reduction for hearing aids,” in Proceedings of the 22nd European Signal Processing Conference (EUSIPCO), 2014, pp. 61–65.

[4] S. Braun and E. A. Habets, “A multichannel diffuse power estimator for dereverberation in the presence of multiple sources,” EURASIP Journal on Audio, Speech, and Music Processing, vol. 2015, no. 1, p. 34, 2015.

[5] O. Schwartz, S. Braun, S. Gannot, and E. A. Habets, “Maximum likelihood estimation of the late reverberant power spectral density in noisy environments,” in IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), 2015, pp. 1–5.

[6] O. Schwartz, S. Gannot, and E. A. Habets, “Joint maximum likelihood estimation of late reverberant and speech power spectral density in noisy environments,” in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2016, pp. 151–155.

[7] A. Kuklasinski, S. Doclo, and J. Jensen, “Maximum likelihood psd estimation for speech enhancement in reverberant and noisy conditions,” in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2016, pp. 599–603.

[8] O. Schwartz, S. Gannot, and E. A. Habets, “Joint estimation of late reverberant and speech power spectral densities in noisy environments using frobenius norm,” in 22nd European Signal Processing Conference (EUSIPCO), 2016, pp. 1123–1127.

[9] A. Kuklasinski, S. Doclo, S. H. Jensen, and J. Jensen, “Maximum likelihood PSD estimation for speech enhancement in reverberation and noise,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 24, no. 9, pp. 1599–1612, 2016.

[10] S. Braun, A. Kuklasinski, O. Schwartz, O. Thiergart, E. A. Habets, S. Gannot, S. Doclo, and J. Jensen, “Evaluation and comparison of late reverberation power spectral density estimators,” IEEE/ACM Transactions on Audio, Speech and Language Processing, vol. 26, no. 6, pp. 1052–1067, 2018.

[11] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1993.

[12] J. Jensen and M. S. Pedersen, “Analysis of beamformer directed single-channel noise reduction system for hearing aid applications,” in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2015, pp. 91–95.

[13] A. Kuklasinski, S. Doclo, T. Gerkmann, S. Holdt Jensen, and J. Jensen, “Multi-channel PSD estimators for speech dereverberation—a theoretical and experimental comparison,” in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2018.

[14] O. Schwartz, S. Gannot, and E. A. Habets, “Cramér–Rao bound analysis of reverberation level estimators for dereverberation and noise reduction,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 25, no. 8, pp. 1680–1693, 2017.

[15] I. Kodrasi and S. Doclo, “Joint late reverberation and noise power spectral density estimation in a spatially homogenous noise field,” in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2015, pp. 91–95.

[16] R. A. Wooding, “The multivariate distribution of complex normal variables,” Biometrika, vol. 43, no. 1/2, pp. 212–215, 1956.

[17] A. Graham, Kronecker products and matrix calculus with applications. Courier Dover Publications, 2013.

[18] B. F. Cron and C. H. Sherman, “Spatial-correlation functions for various noise models,” The Journal of the Acoustical Society of America, vol. 34, no. 11, pp. 1732–1736, 1962.

[19] H. L. Van Trees, Optimum array processing: Part IV of detection, estimation and modulation theory. Wiley, 2002.

[20] S. Markovich, S. Gannot, and I. Cohen, “Multichannel eigenspace beamforming in a reverberant noisy environment with multiple interfering speech signals,” IEEE Tran. on Audio, Speech, and Language Processing, vol. 17, no. 6, pp. 1071–1086, 2009.

[21] K. U. Simmer, J. Bitzer, and C. Marro, “Post-filtering techniques,” in Microphone arrays. Springer, 2001, pp. 39–60.

[22] R. Balan and J. Rosca, “Microphone array speech enhancement by Bayesian estimation of spectral amplitude and phase,” in IEEE Sensor Array and Multichannel Signal Process. Workshop, 2002, pp. 209–213.

[23] H. Ye and R. D. DeGroat, “Maximum likelihood DOA estimation and asymptotic Cramér-Rao bounds for additive unknown colored noise,” IEEE Transactions on Signal Processing, vol. 43, no. 4, pp. 938–949, 1995.

[24] Y. Ephraim and D. Malah, “Speech enhancement using a minimum-mean square error short-time spectral amplitude estimator,” IEEE Tran. on Acoustics, Speech, and Signal Processing, vol. 32, no. 6, pp. 1109–1121, 1984.

[25] I.-T. Recommendation, “Perceptual evaluation of speech quality (PESQ): An objective method for end-to-end speech quality assessment of narrow-band telephone networks and speech codecs,” Rec. ITU-T P.862, 2001.

[26] S. R. Quackenbush, T. P. Barnwell, and M. A. Clements, Objective measures of speech quality. Prentice Hall, 1988.

[27] E. Hadad, F. Heese, P. Vary, and S. Gannot, “Multichannel audio database in various acoustic environments,” in International Workshop on Acoustic Signal Enhancement (IWAENC), 2014, pp. 313–317.

[28] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, and D. S. Pallett, “DARPA TIMIT acoustic-phonetic continuous speech corpus CD-ROM. NIST speech disc 1-1.1,” Disc, 1993.

[29] W. J. Bangs, “Array processing with generalized beamformers,” Ph.D. dissertation, Yale University, New Haven, CT, 1972.

[30] P. Stoica, E. G. Larsson, and A. B. Gershman, “The stochastic CRB for array processing: A textbook derivation,” IEEE Signal Processing Letters, vol. 8, no. 5, pp. 148–150, 2001.

[31] A. Gershman, P. Stoica, M. Pesavento, and E. G. Larsson, “Stochastic Cramér–Rao bound for direction estimation in unknown noise fields,” IEEE Tran. on Audio, Speech, and Language Processing, vol. 14, no. 1, pp. 2–8, 2006.

[32] C. R. Rao and H. Toutenburg, Linear models: least squares and alternatives. Springer, 1999.