ТЕЛОМЕРИЗОВАННЫЕ ФИБРОБЛАСТЫ КАК ПОТЕНЦИАЛЬНЫЙ ОБЪЕКТ ДЛЯ 3D-МОДЕЛИРОВАНИЯ ПАТОЛОГИЧЕСКИХ ГИПЕРПРОФИЛКСИОННЫХ РУБЦОВ IN VITRO

В. С. Шадрин, П. М. Кожин, О. О. Шошина, Н. Г. Лузгина, А. Л. Русанов
Научно-исследовательский институт биомедицинской химии имени В. Н. Ореховича, Москва, Россия

Пояс обширных клеточных моделей для изучения патогенеза гипертрофических рубцов является актуальной задачей. Целью исследования является оценить перспективу использования теломеризованных фибробластов в качестве объекта для 3D-моделирования патологических гипертрофических рубцов in vitro. Фибробласты НФ и Фб-hTERT культивировали в двух модах: нормотрофической и патологической, в интактном состоянии и при воздействии TGFβ1. Метаболическую активность клеток оценивали методом МТТ. Скорость заращения дефекта монослой клеток вычисляли с помощью scratch-теста. Уровень экскрессии генов, ассоциированных с гипертрофическими процессами, определяли методом qRT-PCR. Для Фб-hTERT характерно более выраженные по сравнению с НФ усиление метаболической активности клеток при воздействии TGFβ1 (для 1 нг/мл 179 ± 12% и 135 ± 13% соответственно; р < 0.05). Сфероиды, сформированные из Фб-hTERT, были значительно крупнее сфероидов, полученных из НФ. Продукция основных специфичных для фибробластов белков, ассоциированных с продукцией внеклеточного матрикса (COL1A1, COL3A1, FN1), при стимуляции TGFβ1 была ниже в Фб-hTERT по сравнению с НФ (более чем в 2,5 и 2 раза соответственно; р < 0.05). Интактные НФ более активно, по сравнению с Фб-hTERT, восстанавливали дефект монослой (в 2,28 раза на вторые сутки; р < 0.05), одинаково активные при воздействии TGFβ1 при увеличении скорости заполнения дефекта клетками Фб-hTERT (в 2 раза на вторые сутки; р < 0.05), но не НФ. Таким образом, теломеризованные фибробласты имеют ряд фенотипических признаков, характерных для келоидных фибробластов, но в то же время есть ограничения, которые следует учитывать при использовании Фб-hTERT для моделирования патологических гипертрофических рубцов.

Ключевые слова: in vitro модель, фибробласты, hTERT, гипертрофический рубец, келоидный рубец, TGFβ1

Финансирование: работа выполнена при финансовой поддержке Министерства науки и высшего образования Российской Федерации в рамках ФЦП “Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2014–2020 годы” (соглашение № 05.604.21.0219, Уникальный идентификатор проекта РФМЕФИ60419X0219).

Вклад авторов: Н. Г. Лузгина, А. Л. Русанов — концепция и дизайн исследования; В. С. Шадрин, П. М. Кожин, О. О. Шошина, Н. Г. Лузгина, А. Л. Русанов — анализ литературы, анализ и интерпретация полученных данных, редактирование рукописи; В. С. Шадрин, П. М. Кожин — планирование и проведение исследования; В. С. Шадрин — написание статьи.

Для корреспонденции: Валерий Сергеевич Шадрин
ул. Погодинская, д. 10, стр. 8, г. Москва, 119121; valerianshadrin@gmail.com

Статья принята к печати: 02.09.2020
Статья опубликована онлайн: 27.09.2020

DOI: 10.24075/vrgmu.2020.057

TELOMERIZED FIBROBLASTS AS A CANDIDATE 3D IN VITRO MODEL OF PATHOLOGICAL HYPERTROPHIC SCARS

Shadrin VS, Kozhin PM, Shoshina OO, Luzgina NG, Rusanov AL
Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia

The search for the optimal cell model for studying the pathogenesis of pathological scars is a pressing challenge. This study aimed at evaluating the feasibility of using telomereized fibroblasts for the in vitro 3D modeling of pathological hypertrophic scars. NF and Fb-hTERT cells were cultured as monolayers and spheroids in the absence and presence of TGFβ1. The metabolic activity of the cultured cells was assessed using the MTT assay. Cell migration was estimated using the scratch assay. The expression of genes associated with fibrous scar tissue growth was measured by qRT-PCR. Fb-hTERT cells were more metabolically active than NF cells absent presence of TGFβ1 (for 1 ng/ml 179 ± 12% vs. 135 ± 13% respectively; p < 0.05). Spheroids grown from Fb-hTERT cells were significantly larger than those derived from NF cells. In the presence of TGFβ1, the expression of proteins associated extracellular matrix production (COL1A1, COL3A1, FN1) was lower in Fb-hTERT cells than in NF cells (more than 2.5 and 2-fold, respectively; p < 0.05). Intact NF cells were more active in closing the scratch than Fb-hTERT cells: on day 2, the gap closure rate was 2.28 times higher in NF cells (p < 0.05). Thus, telomereized fibroblasts have a few phenotypic traits observed in keloid fibroblasts; still there are some limitations that should be accounted for when using Fb-hTERT cells for the modeling of pathological hypertrophic scars.

Keywords: in vitro model, fibroblasts, hTERT, hypertrophic scar, keloid scar, TGFβ1

Funding: this research was supported by the Russian Ministry of Science and Higher Education and was conducted under the Federal Targeted Program on Research and Development in Priority Fields of Science and Technology for 2014–2020 (Agreement 05.604.21.0219, Project ID RFMEFI60419X0219).

Author Correspondence should be addressed: Valerian S. Shadrin
Pogodinskaya, 10, str. 8, Moscow, 119121; valerianshadrin@gmail.com

Received: 28.08.2020
Accepted: 02.09.2020
Published online: 27.09.2020

DOI: 10.24075/vrgmu.2020.057

Ежегодно в мире после хирургических вмешательств, травм и ожогов более чем у 100 млн пациентов образуются рубцы кожных покровов. В зависимости от локализации и глубины повреждения, условий заживления раны и индивидуальных особенностей организма процесс регенерации может значительно варьировать по проявлениям и последствиям и приводить к образованию нормальных (нормотрофических) или патологических рубцов. Чрезмерная активация гипертрофических процессов, развивающихся в силу различных причин, приводит к образованию так называемых гипертрофических и келоидных рубцов. Оба варианта рубцов — проявление фибропролиферативного расстройства, в результате которого происходят чрезмерная...
активация фибробластов в ране и аберрантное образование внеклеточного матрикса [1].

Для изучения патогенеза гиперпластических рубцов и разработки эффективных средств их профилактики и лечения необходимы удобные и доступные экспериментальные модели in vitro, получаемые на основе клеток, способных наиболее полно воспроизводить патологические профилогенные программы. Использование с этой целью фибробластов, выделенных из области келоидов, сопряжено со сложностями доступа к достаточному количеству клинического материала, а также вариабельностью фенотипа клеток, полученных от различных доноров. В связи с этим поиск оптимизированных модельных клеток, наиболее полно воспроизводящих фенотип келоидных фибробластов, является актуальной задачей. Представляется перспективным использовать с этой целью иммortalизованные клеточные линии, имеющие неограниченное число делений и стабильный фенотип вне зависимости от клеточного пассажа.

Известно, что для келоидных фибробластов характерна высокая пролиферативная активность и быстрый рост, повышенная экспрессия коллагена I, фибронектина, эластина, периостина (регулирует синтез коллагена I типа), тенасцина (участвует в клеточной адгезии) [2, 3], что приводит к избыточной наработке соединительной ткани, в том числе за пределами локуса повреждения кожи, а также ряд метаболических особенностей, свойственных клеткам опухолей [4, 5].

Есть мнение, что фенотип фибробластов в патологических рубцах может определять высокую активность теломеразы [6]. Так, за счет снижения теломеразной активности в клетках фибробластах, авторам одного из исследований удалось вызвать активность роста и пролиферации клеток, а также нормализовать ряд других фенотипических параметров клеток, что позволило прийти к заключению о перспективности стратегии ингибиторов теломеразы при терапии келоидов [5]. В этой связи представляется интерес оценка перспективы использования теломеризованных фибробластов для моделирования патологических гиерпластических рубцов in vitro.

При разработке адекватных моделей патологических рубцов важно использовать оптимальные способы культивирования клеток. Известно, что в центре келоидных тканей часто возникает гипоксия вследствие окклюзии капилляров из-за избытка коллагена и эндотелиальных клеток [7]. Краевые фибробLASTА метаболически более активны, проникают в окружающие ткани и активируют клетки [8]. В связи с этим перспективны модели, основанные на культивировании клеток in vitro.

Для индукции профиброгенного фенотипа фибробластов in vitro часто используют трансформирующий фактор роста (TGFβ) [9]. Этот многофункциональный белок регулирует рост клеток, дифференцировку, подвижность и выработку внеклеточного матрикса в нормальном процессе заживления ран, но его повышенная экспрессия может приводить к развитию фиброзных нарушений [10]. TGFβ1 стимулирует рост и секрецию коллагена, индуцирует биосинтез фибронектина в клеточных фибробластах [11]. Представляет интерес функциональный ответ потенциальных моделей клеток на воздействие данного ростового фактора.

Целью исследования было оценить перспективу использования теломеризованных фибробластов in качестве объекта для 3D-моделирования патологических гипертрофических рубцов in vitro.

МАТЕРИАЛЫ И МЕТОДЫ

Клеточные линии

Исследование проводили на культурах нормальных (НФ) и теломеризованных (Фб-hTERT) фибробластов кожи человека. НФ были получены из криобанка («Перспектива»; Россия) и представляли собой первичные клеточные линии фибробластов третьего пассажа, выделенные из краевой плоти доноров в возрасте 25–38 лет. Для учета индивидуальных особенностей клеток, полученных от различных доноров, при проведении экспериментов были использованы три клеточные линии. Фб-hTERT были любезно предоставлены проф. Е. Е. Егоровым (Институт молекулярной биологии имени В. А. Энгельгардта РАН). Культура была получена в результате введения гена катализитического компонента теломеразы в фибробласты кожи линии 1608. Данные клетки имеют устойчивый фенотип, воспроизводимый до 200-го пассажа [12].

Культивирование клеток

Для культивирования использовали полную культуральную среду DMEM/F-12 (Gibco; США), содержащую 10% FBS («Диазим»; Россия), 1% раствор антибиотика-антибиотикомикотика (в финальной концентрации: пенициллин 100 ед./мл, стрептомицин 100 ед./мл, амфотерицин Б 0,25 мкг/мл) (Gibco; США) и 1% раствор GlutaMAX (ферментивная концентрация диапептида L-аланил-L-глутамина — 2 мМ) (Gibco; США).

Исследование влияния TGFβ1 на клетки методом MTT

Для MTT-теста [13] в каждую лунку плоскоподного 96-луночного планшета вносили по 2,5 тыс. клеток НФ (четвертый пассаж) и Фб-hTERT из культурального флакона с 70%-й конфлюентностью и преинкубировали 96-луночного планшета вносили по 2,5 тыс. клеток НФ (четвертый пассаж) и Фб-hTERT из культурального флакона с 70%-й конфлюентностью и преинкубировали.
вносили 5, 10 или 20 тыс. клеток (НФ или Фб-hTERT) на лунку из культурального флакона с 70%-й концентрацией и инкубировали десять суток в полной среде DMEM/F-12 при 37 °C и 5% CO₂. Среду меняли каждые 24 ч.

Для исследования влияния TGFβ1 на сфероиды вносили 20 тыс. клеток НФ и 10 тыс. клеток Фб-hTERT на лунку (для получения сфероидов примерно одинакового размера) из культурального флакона с 70%-й концентрацией и инкубировали трое суток в полной среде DMEM/F-12 с добавлением 1 нг/мл TGFβ1 при 37 °C и 5% CO₂. Среду меняли каждые 24 ч для поддержания концентрации фактора роста на постоянном уровне.

Клетки фотографировали ежедневно в течение всего срока культивирования с помощью микроскопа Primovert (Carl Zeiss; Германия). Определение параметров сфероидов (диаметр) производили с помощью программного пакета для обработки изображений ImageJ и его расширения Fiji (National Institutes of Health; США) [14].

Результаты исследования

Определение уровня экспрессии генов, ассоциированных с гиперпластическими процессами, методом qRT-PCR

С учетом литературных данных в качестве целевых генов были выбраны гены, кодирующие синтез коллагена I, коллагена III, фибронectина, а также ген PAI-1. Данный список генов, безусловно, не является исчерпывающим, но увеличение уровня их экспрессии позволяет констатировать факт модуляции профиброгенного потенциала клеток.

Для qRT-PCR до флакон вносили клеточную суспензию (по 200 клеток в 5 мл среды) проникали сфероиды 48 ч в полной среде DMEM/F-12 при 37 °C и 5% CO₂. Затем среду меняли на культуру 1 нг/мл TGFβ1 и инкубировали клетки еще 48 ч, меняя среду каждые 24 ч. После этого из сфероид выделяли РНК с помощью набора RNeasy Mini Kit (Qiagen; Германия) по стандартному протоколу. Количества полученной РНК измеряли на приборе NanoDrop 2000c (Thermo Scientific; США). Для проведения реакции обратной транскрипции использовали набор MMLV RT kit («Евроген»; Россия) по стандартному протоколу, добавляя в реакцию по 1 мкг РНК. qPCR проводили, используя qPCRmix-HS SYBR+LowROX («Евроген»; Россия). Для каждого гена и каждого образца реакцию проводили в трех повторах.

В качестве референсного гена использовали GAPDH. Использовали следующие прямеры:

- GAPDH Forward Primer F: 5'-TCGACAGCTCAGCGCATCTTTG-3' Reverse Primer R: 5'-ACCAATACCTGACTGACCTTT-3';
- COL1A1 F: 5'-CCAGAGGAAAGGCGAAGTC-3' R: 5'-CAAGCTCTCGGCTATG-3';
- COL3A1 F: 5'-CTGAGGTAAAGGTTGAAGTT-3' R: 5'-GTCAGGCTCTGCTTGGTC-3';
- FN1 F: 5'-GATAAGGCTTACCACTGAAAC-3' R: 5'-ACCAAGACCACACACTCTAC-3';
- PAI-1 F: 5'-GGAGCTTACCAAGAATCTTT-3' R: 5'-GCTCACGCTGATCTCACT-3'.

Статистическая обработка данных

Полученные результаты обрабатывали с помощью языка программирования для статистической обработки данных R. Различие между группами определяли с помощью t-критерия с поправкой Бенджамини–Хохберга на множественное сравнение. Статистически значимыми считали при p < 0,05. Данные представлены в виде M ± m, если не указано иное.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

Нормальные и иммortalизованные фибробласты кожи различались размерами и пролиферативной активностью. При выращивании в низкой плотности (менее 50% конфлюентности) НФ имели площадь 723 ± 54 мкм², а клетки Фб-hTERT — 675 ± 29 мкм².

Среда с культурами клеток монолои достигали при плотности 16,5 ± 3,1 тыс./см². 100%-ю конфлюентность клетки достигали при плотности 41,9 ± 7,2 тыс./см².

Каждый сфероид фотографировали ежедневно в течение всего срока культивирования в виде M ± m. Затем среду меняли, наносили клетки, fotografировали в течение двух суток. Каждую лунку фотографировали по всей длине повреждения монолои. Затем среду меняли, наносили клетки еще 48 ч, меняя среду каждые 24 ч. После этого из лунки 24-луночного планшета вносили по 50 тыс. клеток с помощью scratch-теста до образования дефекта монослои в лунке. Затем клетки инкубировали в течение двух суток. Каждую лунку фотографировали в течение всего срока культивирования с помощью лазерного конфокального микроскопа LSM 710 (Carl Zeiss; Германия) с использованием единого набора антител и буферов.

Полученные препараты последовательно визуализировали с помощью программного пакета для обработки изображений ImageJ и его расширения Fiji (National Institutes of Health; США) [15]. Вычисляли площадь восстановления дефекта за 24 ч и 48 ч и находили процентное соотношение с начальной площадью дефекта. Эксперимент проводили в трех повторах по три лунки.

Определение синтеза коллагена I клетками сфероидов

Сфероиды формировали, как описано выше. После трех суток инкубации сфероиды из 10 тыс. клеток фиксировали в 4%-м формалине, подвергали стандартной гистологической процедуре с заключением в парафин, изготавливали парафиновые срезы и окрашивали первичными антителами козы к коллагену I человека («ИМТЕК»; Россия) и вторичными FITC-конъюгированными антителами к IgG козы (ab6881, Abcam; США). Для каждой группы использовали три биологических образца, для дальнейшей окраски брали по пять срезов с образца. Все препараты подвергали окраске одновременно с использованием единого набора реактивов (разведения антител и буферов).

Статистическая обработка данных

Полученные результаты обрабатывали с помощью языка программирования для статистической обработки данных R. Различие между группами определяли с помощью t-критерия с поправкой Бенджамини–Хохберга на множественное сравнение. Статистически значимыми различия считали при p < 0,05. Данные представлены в виде M ± m, если не указано иное.
MMT-тест показал дозозависимое влияние TGFβ1 на культуры НФ и Фб-hTERT (рис. 1B). Достоверное увеличение метаболической активности Фб-hTERT и НФ обнаружено при добавлении 0,1 нг/мл и 1 нг/мл TGFβ1 соответственно. Максимальное увеличение метаболической активности клеток обоих линий наблюдалось при воздействии TGFβ1 в концентрации 1 нг/мл, и оно было достоверно выше у Фб-hTERT (179 ± 12% и 135 ± 13% соответственно; p < 0,05). Дальнейшее увеличение концентрации ростового фактора в среде приводило к уменьшению метаболической активности клеток, по сравнению с воздействием 1 нг/мл TGFβ1. Исходя из полученных данных, для повышения профбронгенной активности клеток в дальнейшем использовали TGFβ1 в концентрации 1 нг/мл.

С помощью scratch-теста было продемонстрировано, что восстановление дефекта монослоя клеток НФ и Фб-hTERT, в том числе в условиях воздействия TGFβ1, различалось (рис. 2). Величина данного показателя через 24 и 48 ч от начала исследования была достоверно выше у контрольных (без воздействия TGFβ1) клеток НФ, в сравнении с контрольными клетками Фб-hTERT. В то же время после добавления в среду культивируемых клеток TGFβ1 скорость заращения дефекта монослоя у НФ на всем протяжении исследования не имела достоверных различий с контролем. В тех же условиях величина аналогоусного показателя у Фб-hTERT достоверно превышала таковую у клеток контроля более чем в два раза как через 24 ч после начала исследования (33 ± 8% и 13 ± 7% соответственно), так и на вторые сутки наблюдения (61 ± 10% и 30 ± 7% соответственно). Таким образом, НФ в сравнении с Фб-hTERT быстрее восстанавливали дефект монослоя в интактном состоянии, а клетки Фб-hTERT, напротив, при стимуляции TGFβ1.

При культивировании клеток в виде клеточных сфероидов, сформированных из различного количества исследуемых клеток (5 тыс., 10 тыс. и 20 тыс.), было установлено, что во всех экспериментальных ситуациях размер сфероидов уменьшался в течение первых пяти суток культивирования, а затем оставался относительно стабильным (рис. 3A). Причем, чем больше было взято клеток для формирования сфероида, тем более выраженной была скорость уменьшения его размеров, что характерно как для НФ, так и для Фб-hTERT.
Размеры сфероидов из клеток Фб-hTERT превосходили размеры сфероидов из НФ примерно в два раза, несмотря на то что сами клетки Фб-hTERT меньше, чем НФ.

Для оценки влияния TGFβ1 на клетки НФ и Фб-hTERT, культивируемые в виде сфероидов, использовали клеточные образования, сформированные из 20 тыс. клеток — для НФ и 10 тыс. клеток — для Фб-hTERT (рис. 3Б). Используемое число клеток позволило получить сфероиды примерно сопоставимых размеров. Данный параметр важен для функционирования подобных клеточных образований, так как определяет интенсивность трофических процессов в краевых и центральных клетках, а также интенсивность гипоксии в центре сфероида.

В условиях добавления в питательную среду TGFβ1 в концентрации 1 нг/мл через 24 ч было обнаружено достоверное увеличение размеров сфероидов, сформированных из НФ, в сравнении с размерами сфероидов контрольной группы, состоящих из клеток НФ (рис. 4). Затем данные различия уменьшились и исчезали к третьим суткам культивирования.

Сфероиды, полученные из Фб-hTERT, вели себя несколько иначе. В присутствии TGFβ1 их размер на первые и вторые сутки культивирования достоверно уменьшался по сравнению с контролем. К третьим суткам данные различия также нивелировались.

Отмеченные незначительные различия в динамике изменения размеров сфероидов из НФ и Фб-hTERT при воздействии TGFβ1 на ранних сроках культивирования можно объяснить фенотипическими особенностями клеток разных линий, а также их исходно разным числом в клеточном образовании. Однако следует отметить, что на третьи сутки культивирования по мере формирования и уплотнения сфероидов данные различия практически отсутствовали.

Клетки НФ и Фб-hTERT имели различия в экспрессии генов, ассоциированных с развитием гиперпластических процессов, как в интактном состоянии, так и при воздействии TGFβ1 (рис. 5).

В интактных НФ по сравнению с Фб-hTERT выявлена тенденция к повышению экспрессии генов, кодирующих...
синтез коллагенов I и III. В клетках Фб-hTERT, в свою очередь, несколько более активно экспрессировался PAI-1. Экспрессия гена, кодирующего синтез фибронектина, в клетках НФ и Фб-hTERT была сопоставимой.

При инкубации исследуемых клеток с TGFβ1 в концентрации 1 нг/мл в течение двух суток в клетках НФ по сравнению с контролем отмечена тенденция к увеличению экспрессии всех исследованных генов. Значимые различия выявлены для гена, кодирующего синтез фибронектина.

В то же время в клетках Фб-hTERT при воздействии TGFβ1 достоверное изменение экспрессии COL1A1, COL3A1, FN1, PAI-1 не обнаружено.

Отмеченные различия базовой и стимулированной TGFβ1 экспрессии коллагена I клетками НФ и Фб-hTERT сохранялись и при их культивировании в виде сфероидов (рис. 6A). По данным микроскопического исследования, уровень экспрессии коллагена в сфероидах, сформированных из НФ, был значительно выше, чем в сфероидах Фб-hTERT (рис. 6B). При воздействии TGFβ1 в сфероидах, сформированных из НФ, наблюдалось выраженное увеличение продукции коллагена I в 1,7 раз, в то время как в сфероидах, полученных из Фб-hTERT, в тех же экспериментальных условиях увеличение экспрессии коллагена I было умеренным (в 1,4 раза).

ОСУЩЕСТВЛЕНИЕ РЕЗУЛЬТАТОВ

Проведено сравнительное исследование нормальных и теламеризованных фибробластов кожи человека (НФ и Фб-hTERT соответственно) в аспекте возможности стимулирования их профиброгенного потенциала in vitro. Известно, что в фибробластах, выделенных из коллоидных рубцов, происходит активация теломеразы [6]. По-видимому, это связано с морфологическими изменениями клеток, что определяет перспективность использования Фб-hTERT в качестве модельных клеток при разработке in vitro моделей патологических гиперпластических (коллоидных и гипертрофических) рубцов. В то же время, по данным литературы, фенотип нормальных фибробластов может быть значительно приближен к таковому у клеток, выделенных из теламеризованных рубцов, в результате использования ростовых факторов, играющих ключевое значение в патогенезе гиперпластических патологических процессов, в частности TGFβ1 [16]. Известно, что данный ростовой фактор активирует множество сигнальных каскадов, приводящих к увеличению пролиферации, адгезии и миграции клеток, продукции внеклеточного матрикса [17].

Как было отмечено ранее, для моделирования in vitro любой ткани, в том числе соединительной ткани в норме и в патологическом рубцевании, важно воспроизведение ее трехмерной структуры, позволяющее обеспечивать поведение клеток с учетом их межклеточного взаимодействия и взаимного влияния. В связи с этим были использованы фенотипические особенности НФ и Фб-hTERT при их культивировании в виде клеточных сфероидов. Эту модель активно используют для исследования канцерогенеза и экспериментальной оценки эффективности противораковой терапии, ввиду того что микрорельеф, питание, газообмен и физиология клеток в сфероидах наиболее точно воспроизводят таковые в опухолях [18]. В то же время ранее не использовали для создания клеточной модели патологического гиперпластического рубца, что определяет новый подход к решению этой проблемы.

В целом, исследование показало, что интактные Фб-hTERT по сравнению с НФ имели ряд фенотипических признаков, характерных для иммортализованных клеток: более мелкие размеры, высокую скорость удвоения и формирования конфлюентного монослоя, что, по-видимому, обусловлено их высокой пролиферативной активностью. Эта особенность Фб-hTERT, вероятно, также определяет и более высокую по сравнению с НФ метаболическую активность клеток в покое и при воздействии TGFβ1 (данные MTT-теста).

Метод MTT позволяет оценить метаболическую или при некоторых дополнениях пролиферативную активность клеток [19]. В настоящем исследовании показано, что фактор активации TGFβ1 на метаболическую активность НФ и Фб-hTERT, более выраженной для Фб-hTERT. Данное наблюдение согласуется с результатами других исследований, посвященных оценке влияния TGFβ1 на пролиферативную и метаболическую активность фибробластов [20, 21]. В целом, наиболее существенное метаболическое активности исследованных клеток было при воздействии TGFβ1 в концентрации 1 нг/мл, более выраженной — у Фб-hTERT.
Интенсивность флуоресценции коллагена I в сфероидах Фб-hTERT от НФ при том же воздействии TGFβ1 в концентрации 1 нг/мл. * — статистически значимые различия в интенсивности флуоресценции коллагена I в сфероидах при воздействии TGFβ1 и без (*p < 0,05); # — статистически значимые различия в интенсивности флуоресценции коллагена I в сфероидах Фб-hTERT от НФ при том же воздействии TGFβ1 (*p < 0,05).

Динамика изменения размеров сфероидов в процессе их культивирования, зарегистрированная в настоящем исследовании, согласуется с результатами других экспериментов [22, 23]. В них также отмечено резкое уменьшение размеров сфероидов в первые сутки культивирования и последующий постепенный переход на плато, что называют «созреванием» клеточного сфероида. Представляются также закономерным результатом о более резком уменьшении размеров сфероидов, для формирования которых использовали большее число клеток (максимальным этот показатель был для сфероидов, сформированных из 20 тыс. клеток), так как оптимальными, с точки зрения возможности обеспечения проникновения питательных веществ к клеткам сфероида и адекватного газообмена, считаются диаметры сфероидов в диапазоне от 200–500 мкм [24].

Необходимо отметить, что сфероиды, сформированные из Фб-hTERT, были значительно крупнее сфероидов, полученных из НФ, несмотря на более крупные размеры данных клеток. Это может быть обусловлено более высокой пролиферативной активностью, что, в свою очередь, обусловлено, по-видимому, большей потенциальной способностью клеток к миграции.

Воздействие TGFβ1 приводило к уменьшению размеров сфероидов, сформированных из Фб-hTERT, а также увеличивало скорость заполнения дефекта монослоя (scratch-test). Более низкую у интактные Фб-hTERT, по сравнению с НФ. Возможно, наряду с увеличением пролиферативной активности в данной экспериментальной ситуации усиливалась способность клеток Фб-hTERT к адгезии и межклеточной кооперации. Однако данный вопрос требует дальнейшего изучения.

Важно отметить, что сфероиды Фб-hTERT имели и другие фенотипические отличия от нормальных дифференцированных фибробластов. Например, продукция основных специфичных для данных клеток белков, используемых для формирования структуры волокнистой соединительной ткани (коллаген I и III типов, фибронектин), была снижена, по сравнению с НФ, как в интактных клетках, так и при стимуляции TGFβ1, в том числе при культивировании клеток в виде сфероидов (данные ПЦР-исследования, флуоресцентного окрашивания клеток в составе сфероидов). Так как данные клетки иммortalизованы, по-видимому, в них наиболее активны программы пролиферации, а не дифференцировки. В связи с этим, как в исходных, так и в стимулированных клетках, наблюдается низкая экспрессия генов, связанных с продукцией коллагена (характерна для дифференцированных клеток соединительной ткани). В то же время НФ демонстрировали состояние этих программ, активность которых возрастала при воздействии TGFβ1.

Как известно, экспрессия генов, обеспечивающих синтез компонентов соединительной ткани, оказывается повышенной в клетках келоидных рубцов. Рядом исследователей показано повышение транскрипции и трансляции коллагена I и III типов, фибронектина в луксах гиперпластических процессов [2]. Повышенным уровнем экспрессии гена ингибитора активатора плазминогена PAI-1, не характерным для нормальных фибробластов, объясняют увеличение количества коллагена в келоидах [25]. Примечательно, что в нашем исследовании экспрессия гена PAI-1 у интактных клеток Фб-hTERT была выше, чем у НФ.

Кроме того, интактные НФ более активно, по сравнению с Фб-hTERT, восстанавливали дефект монослоя (scratch-test). Данный методический подход используют для косвенной оценки регенераторного потенциала клеток (способности восстанавливать дефект). При этом скорость заполнения дефекта клетками обусловлена увеличением их пролиферации и/или миграционной активности. Известно, что TGFβ1 способствует заживлению ран [17]. В наших экспериментах воздействие TGFβ1 приводило к увеличению скорости заполнения дефекта клетками Фб-hTERT, но не НФ. Для оценки данного результата необходим дальнейший анализ влияния TGFβ1 в клетках Фб-hTERT и НФ на клеточные программы адгезии и межклеточной кооперации, участвующие в реализации способности клеток к миграции. Относительная интенсивность флуоресценции коллагена I в сфероидах Фб-hTERT от НФ при том же воздействии TGFβ1 (*p < 0,05).
способность по сравнению с НФ восстанавливать дефект монослоя (scratch-тест) под воздействием TGFβ1; повышенный по сравнению с НФ уровень экспрессии гена PAI-1 (на уровне тенденции, статистически незначимо). Важны их способность к неограниченному числу делений, фенотипическая однородность клеток различных пассажей, способность образовывать клеточные сфероиды, что определяет перспективность использования данных клеток при 3D-моделирования патологических гиперпластических рубцов. Однако в данных клетках снижена экспрессия белков, ассоциированных с продукцией компонентов внеклеточного матрикса (COL1A1, COL3A1, FN1), в том числе и при воздействии TGFβ1. В то время как для келлодиных фибробластов характерна гиперпродукция данных белков. Данное обстоятельство следует учитывать при использовании Ф6-hTERT для моделирования патологических гипертрофических рубцов. Целесообразны дальнейшие исследования для оценки возможности и условий активации экспрессии белков внеклеточного матрикса в данных клетках.

Литература

1. Jumper N, Paus R, Bayat A. Functional histopathology of keloid disease. Histology and histopathology. 2015; 30 (9): 1033–57.
2. Sidgwick GP, Bayat A. Extracellular matrix molecules implicated in hypertrophic and keloid scarring. Journal of the European Academy of Dermatology and Venereology. 2012; 26 (2): 141–152.
3. Liang CJ, Yen YH, Hung LY, Wang SH, Pu OM, Chien HF, et al. Thalidomide inhibits fibronectin production in TGF-β1-treated normal and keloid fibroblasts via inhibition of the p38/Smad3
4. De Felice B, Wilson RR, Nacca M. Telomere shortening may be associated with human keloids. BMC medical genetics. 2009; 10 (1): 110.
5. Huang Y, Lin LX, Bq QX, Wang P, Wang XM, Liu J, et al. Effects of hTERT antisense oligodeoxynucleotide on cell apoptosis and expression of hTERT and bcl-2 mRNA in keloid fibroblasts. European Review for Medical and Pharmacological Sciences. 2017; 21 (8): 1944–51.
6. Yu D, Shang Y, Yuan J, Ding S, Luo S, Hao L. Wntβ-catenin signaling exacerbates keloid cell proliferation by regulating telomerase. Cellular Physiology and Biochemistry. 2016; 39 (5): 2001–13.
7. Kischer OW, Thies AC, Chvapil M. Perivascular myofibroblasts and microvascular occlusion in hypertrophic scars and keloids. Human pathology. 1982; 13 (9): 819–24.
8. Bran GM, Goessler UR, Hormann K, Riedel F, Sadick H. Keloids: current concepts of pathogenesis. International journal of molecular medicine. 2009; 24 (3): 283–93.
9. Chin D, Boyle GM, Parsons PG, Coman WB. What is transforming growth factor-beta (TGF-β)? British journal of plastic surgery. 2004; 57 (3): 215–21.
10. Yang GP, Lim JI, Phan TT, Lorenz HP, Longaker MT. From scarless fetal wounds to keloids: molecular studies in wound healing. Wound repair and regeneration. 2003; 11 (6): 411–8.
11. Jagadeesan J, Bayat A. Transforming growth factor beta (TGFβ) and keloid disease. International journal of surgery. 2007; 5 (4): 278–85.
12. Egorov EE, Terekhov SM, Vishniakova K, Karachentsev DN, Kazimrichuk EV, Tsvetkova TG, et al. Telomerization as a method of obtaining immortal human cells preserving normal properties. Ontogenez. 2003; 34 (3): 183.
13. Kupcak L. Estimation of cell number based on metabolic activity: the MTT reduction assay. In Mammalian cell viability. Humana press, 2011: 13–19.
14. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nature methods. 2012; 9 (7): 676–82.
15. Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O, et al. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome biology. 2006; 7 (10): R100.
16. Lee TY, Chin GS, Kim W, Chau D, Gittes GK, Longaker MT. Expression of transforming growth factor-beta 1, 2, and 3 proteins in keloids. Annals of plastic surgery. 1999; 43 (2): 179–84.
17. Klass BR, Grobbelaar AO, Rolfe KJ. Transforming growth factor β1 signalling, wound healing and repair: a multifunctional cytokine with clinical implications for wound repair, a delicate balance. Postgraduate Medical Journal. 2009; 85 (999): 9–14.
18. Friedrich J, Ebner R, Kunz-Schughart LA. Experimental anti-tumor therapy in 3-D: spheroids—old hat or new challenge? International journal of radiation biology. 2007; 83 (11–12): 849–71.
19. Ohno M, Abe T. Rapid colorimetric assay for the quantification of leukemia inhibitory factor (IL1F and interleukin-6 (IL-6). Journal of immunological methods. 1991; 145 (1–2): 199–203.
20. Meran S, Thomas DW, Stephens P, Enoch S, Martin J, Steadman R, et al. Hyaluronan facilitates transforming growth factor-β1-mediated fibroblast proliferation. Journal of Biological Chemistry. 2008; 283 (10): 6530–45.
21. Negroes M, Hagood JS, Espinoza CR, Balderas-Martinez YI, Selman M, Pardo A. Transforming growth factor beta 1 induces methylation changes in lung fibroblasts. PLoS one. 2019; 14 (10): e0223512.
22. Takezawa T, Mori Y, Yonaha T, Yoshizato K. Characterization of morphology and cellular metabolism during the spheroid formation by fibroblasts. Experimental cell research. 1993; 208 (2): 430–41.
23. Frandsen SK, Gibot L, Madi M, Gehl J, Rols MP. Calcium electroporation: evidence for differential effects in normal and malignant cell lines, evaluated in a 3D spheroid model. PLoS One. 2015; 10 (12): e0144028.
24. Mittler F, Obeid P, Ruína AV, Haguet V, Gidrol Y, Balakirev MY. High-content monitoring of drug effects in a 3D spheroid model. Frontiers in oncology. 2017; 7: 293.
25. Tuan TL, Wu H, Huang EY, Chong SS, Laug W, Messadi D, et al. Increased expression of hTERT antisense oligodeoxynucleotide in cell apoptosis and expression of hTERT and bcl-2 mRNA in keloid fibroblasts. European Review for Medical and Pharmacological Sciences.
Expression of transforming growth factor beta 1, 2, and 3 proteins in keloids. Annals of plastic surgery. 1999; 43 (2): 179–84.

17. Klass BR, Grolboelaar AO, Rolfe KJ. Transforming growth factor β1 signalling, wound healing and repair: a multifunctional cytokine with clinical implications for wound repair, a delicate balance. Postgraduate Medical Journal. 2009; 85 (999): 9–14.

18. Friedrich J, Ebner R, Kurz-Schuhhart LA. Experimental anti-tumor therapy in 3-D: spheroids—old hat or new challenge? International journal of radiation biology. 2007; 83 (11–12): 849–71.

19. Ohno M, Abe T. Rapid colorimetric assay for the quantification of leukemia inhibitory factor (LIF) and interleukin-6 (IL-6). Journal of immunological methods. 1991; 145 (1–2): 199–203.

20. Meran S, Thomas DW, Stephens P, Enoch S, Martin J, Steadman R, et al. Hyaluronan facilitates transforming growth factor-β1-mediated fibroblast proliferation. Journal of Biological Chemistry. 2008; 283 (10): 6530–45.

21. Negrieros M, Hagoord JS, Espinoza CR, Balderas-Martinez YI, Selman M, Pardo A. Transforming growth factor beta 1 induces methylation changes in lung fibroblasts. PloS one. 2019; 14 (10): e0223512.

22. Takezawa T, Mori Y, Younaha T, Yoshizato K. Characterization of morphology and cellular metabolism during the spheroid formation by fibroblasts. Experimental cell research. 1993; 208 (2): 430–41.

23. Frandsen SK, Gibot L, Madi M, Gehl J, Rols MP. Calcium electroporation: evidence for differential effects in normal and malignant cell lines, evaluated in a 3D spheroid model. PLoS One. 2015; 10 (12): e0144028.

24. Mittler F, Obed P, Ruina AV, Haguet V, Gidrol X, Balakin M V. High-content monitoring of drug effects in a 3D spheroid model. Frontiers in oncology. 2017; 7: 293.

25. Tuan TL, Wu H, Huang EY, Chong SS, Lauw W, Messadi D, et al. Increased plasminogen activator inhibitor-1 in keloid fibroblasts may account for their elevated collagen accumulation in fibrin gel cultures. The American journal of pathology. 2003; 162 (5): 1579–89.