SUMOylation regulates nucleo-cytoplasmic shuttling of Elk-1

S. Salinas, A. Briancon-Marjollet, G. Bossis, M. A. Lopez, M. Piechaczyk, I. Jariel-Encontre, A. Debant, R. A. Hipskind

To cite this version:

S. Salinas, A. Briancon-Marjollet, G. Bossis, M. A. Lopez, M. Piechaczyk, et al.. SUMOylation regulates nucleo-cytoplasmic shuttling of Elk-1. Journal of Cell Biology, Rockefeller University Press, 2004, 165 (6), pp.767–73. 10.1083/jcb.200310136 . hal-02262387

HAL Id: hal-02262387
https://hal.archives-ouvertes.fr/hal-02262387
Submitted on 1 Jun 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
SUMOylation regulates nucleo-cytoplasmic shuttling of Elk-1

Sara Salinas,1 Anne Briançon-Marjollet,2 Guillaume Bossis,1 Marie-Aude Lopez,1 Marc Piechaczyk,1 Isabelle Jariel-Encontre,1 Anne Debant,2 and Robert A. Hipskind1

1Institut de Génétique Moléculaire de Montpellier, UMR5535, and 2Centre de Recherches en Biochimie Macromoléculaire, FRE2593, Centre National de la Recherche Scientifique, IFR122, 34293 Montpellier, Cedex 05, France

SUMOylation regulates nuclear retention of Elk-1. Accordingly, overexpression of Elk-1(3R) in PC12 cells, where cytoplasmic relocalization of Elk-1 has been linked to differentiation, enhances neurite extension relative to Elk-1. The effect of Elk-1, but not of the 3R mutant, was blocked upon cotransfection with SUMO-1 or -2 and enhanced by coexpression with mutant Ubc-9. Thus, SUMO conjugation is a novel regulator of Elk-1 function through the control of its nuclear-cytoplasmic shuttling.

Introduction

MAPK cascades play a central role in the cellular response to diverse extracellular stimuli and therefore regulate numerous processes, such as cell proliferation, fate, and differentiation. Upon their activation, MAPKs translocate to the nucleus, where they target transcription factors, either directly or indirectly via the activation of other kinases, to induce the appropriate genetic response. A primary nuclear target of activated MAPKs is the ternary complex factor family of ETS-domain transcription factors, namely the proteins Elk-1, SAP-1, and NET/ERP/SAP-2/Elk-3 (Wasylyk et al., 1998). Ternary complex factor phosphorylation drives the rapid induction of immediate early gene transcription through a ternary complex formed on serum response elements together with serum response factor (SRF). This activity is mediated by several regions of sequence and functional homology: the NH2-terminal ETS DNA-binding domain, a motif that mediates protein–protein interactions with SRF, and the COOH-terminal transcription activation domain induced by MAPK phosphorylation on multiple sites. Elk-1 also contains the R motif, which represses basal transcriptional activation, particularly in the context of fusion proteins containing the Gal4 DNA-binding domain (Yang et al., 2002). Recently, Yang et al. (2003) reported that this repression is dependent on SUMOylation.

SUMO modification is an important mechanism for post-translational regulation of protein function (Seeler and Dejean, 2003). Three SUMO isoforms exist. SUMO-1 shows 47% homology at the protein level with SUMO-2 and -3, whereas SUMO-2 and -3 are 95% homologous (Kim et al., 2002). SUMOylation of target proteins is a multi-step process involving the E1-activating complex SAE1/2 and the E2-conjugating enzyme Ubc-9 in mammalian cells (Tatham et al., 2001). These two suffice to drive SUMO conjugation in vitro; in vivo, this may also involve E3 factors (Seeler and Dejean, 2003). SUMO proteases have also been identified, underscoring the reversible, transient nature of SUMO modification. Many transcription regulatory proteins are SUMOylated, which is linked to numerous nuclear processes, including subnuclear localization, transcriptional activation or repression, and nucleo-cytoplasmic trafficking (Seeler and Dejean, 2003). Importantly, SUMO addition appears to occur upon nuclear import, and mutation of the NLS in certain proteins blocks their SUMOylation (Seeler and Dejean, 2003).
Elk-1, like many transcriptional regulators, is localized to the nucleus in cultured cells (Janknecht et al., 1994). This is mediated through an NLS, present within the ETS domain, that is independent of DNA binding (Janknecht et al., 1994; Vanhoutte et al., 2001). In the central nervous system, however, Elk-1 is found in both the nuclear and cytoplasmic compartments (Sgambato et al., 1998; Vanhoutte et al., 2001). This redistribution is found upon NGF-driven differentiation of PC12 cells, where neurite elongation is not observed when Elk-1 is restricted to the nucleus (Vanhoutte et al., 2001). Here, we report that SUMOylation of Elk-1 has an important role in its nuclear localization and thus its ability to induce neuritogenesis in PC12 cells. All SUMO isoforms can be conjugated to Elk-1 on any of three lysines that lie within or near the R motif. Elk-1 mutated in all three SUMOylation sites shuttles more rapidly than wild-type (WT) Elk between nuclei in HeLa-Balb/C heterokaryons, and enhances neurite extension in PC12 cells. Shuttling by WT Elk-1 is virtually eliminated by coexpression with SUMO, which also blocks Elk-1-driven PC12 differentiation. Thus, SUMOylation is a novel regulator of Elk-1 function that acts by controlling Elk-1 nuclear presence.

Results and discussion

Elk-1 binds to Ubc9 and can be conjugated to all three SUMO isoforms in vitro

The motif ψKxE, where ψ is an aliphatic amino acid and x is any amino acid, is the binding site for the E2 conjugating enzyme Ubc9 and for transfer of SUMO to the ε amino group of lysine (Rodriguez et al., 2001; Sampson et al., 2001). Elk-1 contains three potential SUMOylation sites, surrounding lysines 230, 249, and 254, that lie outside the domains involved in DNA binding, interactions with SRF and MAPKs, and transcriptional activation (Fig. 1 A). K230 and K249 lie within the R motif, which mediates repression of basal transcriptional activity when fused to the Gal4 DNA-binding domain (Yang et al., 2002). This has recently been linked to their SUMOylation (Yang et al., 2003). We used several tests to evaluate SUMO conjugation to Elk-1 at these sites in our system.

Figure 1. In vitro SUMOylation of Elk-1 is blocked by mutating all three consensus sites. (A) The major functional domains in human Elk-1 are indicated. Shown below is the consensus site for Ubc-9 binding and SUMOylation ψKxE, where ψ is an aliphatic amino acid and K is the lysine conjugated to SUMO, as are the sequences surrounding the three major consensus sites in Elk-1, centered at lysines 230, 249, and 254. (B) 35S-labeled Elk-1, PML, or p38α were incubated with GST or GST-Ubc9 bound to glutathione agarose. After washing, bound proteins were separated by SDS-PAGE and visualized by autoradiography of the dried gel. Input indicates 10% of the 35S-protein added to the incubation. White lines indicate that intervening lanes have been spliced out. (C) 35S-Elk-1, either WT or mutated in each consensus site (as shown below the panel) was incubated with the indicated components. The reactions were analyzed by SDS-PAGE as in B. Elk-1 and SUMOylated Elk-1 bands are indicated. The white line indicates that intervening lanes were spliced out. (D) Elk-1 WT and the triple mutant 3R were tested for conjugation to SUMO-1 (top), -2 (middle), or -3 (bottom) as in C.
Elk-1 SUMOylation

Elk-1 SUMOylation

Salinas et al. 769

was shifted to a slower migrating species conjugated to GST-SUMO-1 (Fig. 1 C); its appearance required the addition of Ubc9 and GST-SUMO-1. Elk-1 could also be modified with SUMO-2 and SUMO-3 in vitro (Fig. 1 D). To identify the residue involved, the three candidate lysines were mutated to arginine. No single Lys-Arg mutation blocked SUMO-1 conjugation (Fig. 1 C). Double mutation of the lysines reduced but did not fully block SUMOylation in vitro (not depicted), whereas mutation all three consensus sites eliminated conjugation of SUMO-1, -2, and -3 (Fig. 1 D).

Overexpressed Elk-1 is SUMOylated on lysines 230, 249, and 254 in cellula

To show that Elk-1 was modified by SUMO in cells, HeLa cells were transfected with expression vectors for either WT Elk or Elk3R bearing the HA epitope and one of the three forms of SUMO with a NH$_2$-terminal oligohistidine tag. To avoid problems with SUMO peptidases, cells were lysed with 6 M Guanidinium-HCl and the histidine-tagged proteins, i.e. conjugated to SUMO, purified by metal affinity chromatography. The purified proteins were visualized by immunoblotting with an Elk-specific antiserum. A fraction of overexpressed WT Elk was conjugated to (His)SUMO-1 (Fig. 2 A), which was not observed with Elk3R (Fig. 2 A). SUMO conjugation to WT Elk, but not to Elk3R, was also apparent upon coexpression with either (His)SUMO-2 or -3 (Fig. 2, B and C). In addition, both SUMO-2 and -3 generated a ladder of SUMOylated Elk that could reflect modification on multiple sites and/or their oligomerization (Tatham et al., 2001). The same ladder was observed after cotransfection of expression vectors for the single mutants K230R, K249R, and K254R and (His)SUMO-2 (Fig. 2 D). Nevertheless, K249 appears to be preferentially modified, followed by K254 and finally K230, even though equivalent levels of each mutant were expressed (Fig. 2 D). Notably, combination of any two mutations lowered but did not abolish SUMOylation (unpublished data). Thus, the ladder reflects SUMO oligomerization and that any of the three sites is a target for SUMO conjugation in transfected cells.

SUMO conjugation to Elk plays a role in the dynamics of its nuclear-cytoplasmic shuttling

SUMO modification correlates with nuclear localization of certain transcriptional regulators (Seeler and Dejean, 2003), and mutation of the NLS compromises SUMOylation of the proteins SP100, HDAC4, Sma4δ, and MDM1 (Sternsdorf et al., 1999; Kirsh et al., 2002; Miyauuchi et al., 2002; Lin et al., 2003). To analyze intracellular localization, we generated expression vectors for EGFP-Elk WT and 3R fusion proteins. In HeLa cells, these vectors encoded proteins of the expected molecular size recognized by an Elk-specific antibody (not depicted). The GFP-Elk3R fusion was predominantly nuclear, like WT protein, 24 h after transfection (Fig. 3 A). This indicates that the three K to R mutations do not disrupt the NLS, which lies mainly in the Ets domain.

To test whether the mutant protein might show altered kinetics of nuclear export, we used heterokaryon analysis. HeLa cells transfected with the WT and mutant EGFP-Elk expression vectors were fused to Balb/C mouse fibroblasts using polyethylene glycol (Caceres et al., 1998). Nuclei of the two cell types are easily distinguished by fluorescence (Fig. 3 B). No EGFP signal could be detected in unfused mouse cells, whereas EGFP staining was readily visible in both the HeLa and mouse nuclei in the fused cells (Fig. 3 B, arrows indicate the mouse nucleus). Analysis of EGFP staining in mouse nuclei at different times after the induction of cell fusion revealed that EGFP-Elk3R shuttled more quickly to mouse nuclei (Table I). To test the effect of SUMO overexpression on

Figure 2. Conjugation of all three SUMO isoforms to Elk-1 in transfected cells. HeLa cells were transfected with expression vectors for Elk-1 WT or 3R, together with vectors for (His)SUMO-1 (A), -2 (B), or -3 (C) as indicated below the lanes. Total proteins (Input) and His-tagged proteins were purified from denaturing cell lysates, separated on SDS-PAGE and visualized by immunoblotting for Elk-1. Left, Ni-NTA bound proteins; right, total protein. (D) HeLa cells transfected with expression vectors for (His)SUMO-2 and either WT Elk-1 or the mutants K230R, K249R, K254R, or 3R were analyzed as in A–C.
shuttling, we used HeLa cells that stably overexpress SUMO-1 or -2. Transfection and fusion of HeLa-SUMO-1 or -2 cells enhanced the differential kinetics observed between WT and mutant Elk. SUMO strongly reduced shuttling of EGFP-Elk to the fused mouse nucleus, whereas it barely affected the kinetics of EGFP-Elk3R transfer (Table I). Thus, Elk localization to the nucleus actually reflects a balance between nuclear import and nuclear export. This balance is regulated by SUMOylation because it was sensitive to coexpression with SUMO and to mutation of the three SUMO acceptor sites in Elk, which led to a more rapid localization of Elk3R to the Balb/C nucleus in heterokaryons.

Elk3R enhances neurite outgrowth by PC12 cells relative to the WT protein

NGF treatment of PC12 cells induces their neuronal differentiation, which can be easily visualized by neurite outgrowth. Transfection of an expression vector for WT Elk leads to increased PC12 differentiation (Fig. 4 A), an effect that is linked to the relocation of Elk to the cytoplasm (Vanhoutte et al., 2001). Therefore, Elk3R would be expected to increase PC12 differentiation in the absence of NGF because it shuttles more rapidly than WT Elk from the nucleus. Thus, PC12 cells were transfected with expression vectors that encode HA-tagged versions of WT Elk or two mutants, Elk3R and Elk3A. Elk3A has Ser to Ala mutations in the major phosphorylation sites in the activation domain, which compromises signaling-driven reporter gene activation (Janknecht et al., 1993). 48 h after transfection, cells were fixed and evaluated microscopically for neurite outgrowth and by immunofluorescence for expression of GFP or HA-tagged Elk. Expression of WT Elk, Elk3A and Elk3R induced neurite extension relative to GFP-transfected cells (Fig. 4). WT Elk and Elk3A led to a twofold increase in the number of cells presenting neurites relative to GFP (Fig. 4 B), suggesting that Elk–1-driven gene expression is not important in inducing neurite extension under basal conditions. In contrast, shuttling is important because differentiation was increased another twofold by Elk3R (Fig. 4 B; Fig. 5, B–D). Thus, Elk expression is sufficient to increase PC12 differentiation in the absence of NGF and Elk3R enhances this phenotype.

Importantly, SUMOylation of endogenous Elk-1 was detectable in PC12 cell extracts. A band migrating at the position expected for SUMOylated Elk-1 reacted with an Elk-1 antibody in immunoblots of denaturing lysates of PC12 cells (Fig. 4 C). A similar band was detected using a SUMO-1 antibody when Elk-1 was purified by immunoprecipitation from nondenaturing lysates (Fig. 4 C), indicating that a proportion of endogenous Elk-1 is conjugated to SUMO-1 in PC12 cells.

Cotransfection of SUMO suppresses and dominant negative (DN) Ubc9 enhances differentiation induced by WT Elk

In light of these results, enhancing or blocking SUMOylation of WT Elk would be expected to diminish or augment its ability to induce neurites, respectively. To test the former, PC12 cells were cotransfected with expression vectors encoding either GFP-SUMO-1 or -2 and those described above for WT and Elk3R. GFP-SUMO-1 and HA-Elk localized to the same cells, and their coexpression clearly affected WT Elk-driven differentiation (Fig. 5 A), lowering the percentage of cells with neurites to that observed with SUMO-1 alone (Fig. 5 B). SUMO-2 showed the same reduction in WT Elk-driven differentiation (Fig. 5 C). In con-

Table I. Quantification of EGFP-Elk-1 WT and 3R shuttling in HeLa-Balb/C heterokaryons

Min after fusion	HeLa	HeLa-SUMO-1	HeLa-SUMO-2						
	wt	3R	ratio^b	wt	3R	ratio^b	wt	3R	ratio^b
30	28%	48%	0.58	17%	43%	0.40	13%	37%	0.35
45	33%	56%	0.59	20%	58%	0.35	25%	58%	0.43
60	53%	70%	0.76	22%	70%	0.31	30%	77%	0.39

^aKinetics of transfer of EGFP-Elk-1 WT and 3R to Balb/C nuclei as a function of stable overexpression of SUMO-1 or -2 in HeLa cells. The percentage of positive Balb/C nuclei in heterokaryons relative to total number of fused cells is shown. The values are representative of at least three independent experiments.

^bwt/3R.
Elk3R enhances PC12 differentiation relative to Elk-1 WT. PC12 cells were transfected with expression vectors for (HA)Elk-1 WT, 3A or 3R, or EGFP as a control. Cells were processed 48 h later. (A) Elk-1 was visualized using an anti-HA antibody and F-actin with phalloidin-Cy3. (B) Percentage of HA-positive PC12 cells presenting neurites, defined by a length at least twice that of the cell body (Strach et al., 2002). The numbers are representative of four experiments. The error bars indicate the SEM. (C) Immunoblot detection of endogenous Elk-1 in native and denaturing lysates of PC12 cells (top), and of SUMO-1-conjugated Elk-1 in Elk-1 but not p38MAPK immunoprecipitates from native lysates of PC12 cells (bottom). IgG denotes the signal from the antibody used for precipitation.

Coexpression of SUMO blocks and of DN-Ubc9 enhances PC12 differentiation driven by Elk-1 WT. (A) PC12 cells were transfected with expression vectors for pEGFP-SUMO-1 and (HA)Elk-1 WT or 3R. Cells were processed 48 h later. Elk-1 was visualized with an anti-HA antibody. (B and C) PC12 cells were transfected with expression vectors for pEGFP (B) or pEYFP (C), (HA)Elk-1 WT or 3R, pEGFP-SUMO-1 (B) or -2 (C) as indicated, and processed as in A. Percentage of HA- and GFP-positive PC12 cells presenting neurites, as defined in the legend to Fig. 4 B. The numbers are representative of three experiments. (D) PC12 cells were transfected with expression vectors for HA-DN-Ubc9 and pEGFP Elk-1 WT or 3R as indicated and processed as described above. The numbers are representative of three experiments. The error bars indicate the SEM.

Contrast, SUMO-1 or -2 did not affect neurite induction by Elk3R (Fig. 5, B and C). To test the effect of blocking SUMOylation, we used a version of Ubc9 bearing a C35S mutation in the catalytic site that acts as a DN inhibitor of SUMO conjugation. Cotransfection with DN-Ubc9 increased neurite induction by WT Elk to the level observed with Elk3R.
with Elk3R (Fig. 5 D), which was unaltered in the presence of mutant Ubc9. These data show that PC12 differentiation, a physiological indicator of Elk intracellular localization, is strongly affected by altering the balance of SUMOylation of Elk and thereby the dynamics of its nuclear-cytoplasmic shuttling. This illustrates a novel functional role for Elk conjugation to SUMO of regulating its nuclear presence. This would have important consequences for the other role attributed to Elk SUMOylation, involving repression of Elk basal transcriptional activation, as well as for Elk function as a key mediator of intracellular signaling-driven transcriptional activation.

Materials and methods

Reagents

Peroxidase-coupled secondary antibodies, glutathione agarose, protein A-Sepharose, oligonucleotides, and phallolidin coumarin phenyl isothiocyanate (CPICT) were obtained from Sigma-Aldrich. All other reagents were obtained from local suppliers.

Constructs and mutagenesis

pCDNA3-HA-Elk-1 contains the Elk-1 coding region inserted downstream of the HA epitope in pCDNA3.1. Lysines 230, 249, and 254 were mutated to arginine using a site-directed mutagenesis kit (Stratagene) and appropriate mutant primers. Double and triple mutants were generated by subsequent mutagenesis. All mutations were confirmed by sequence analysis.

Cell culture, heterokaryon analysis, and immunofluorescence microscopy

HeLa and Balb/C cells were grown in DME (Invitrogen) supplemented with 10% FBS (Invitrogen) and antibiotics in 5% CO$_2$. Lysates were obtained from 106 cells lysed in IP buffer (0.15 M Na$_2$HPO$_4$, 10 mM Tris-HCl, pH 8.0 (buffer A); then buffer A at pH 6.3; then buffer A at pH 4.5). Elk-1 was produced using the T3-TNT reticulocyte lysate system (Promega) and 5 μCi-35S-methionine (43 TBq/mMol, 10 μCi/µl; Perkin-Elmer) according to the supplier’s protocol. An aliquot of 1\timesElk-1 was incubated with the beads in 100 µl buffer B (20 mM Tris-HCl, pH 7.5, 150 mM NaCl, 0.1% Tween 20) for 30 min at RT (Sampson et al., 2001). After three washes in B buffer, the beads were resuspended in SDS-PAGE sample mix, boiled, and separated by SDS-PAGE. 1\timesElk-1 was visualized by autoradiography.

In vitro SUMOylation reactions contained 1 µl 35S-Elk-1, 2 µl HeLa cell SUMO E1 activation fraction II.4 (provided by M. Rodriguez, Institut Jacques Monod, Paris; Rodriguez et al., 1999), 10 µl ATP regenerating system (50 mM Tris-HCl, pH 7.6, 5 mM MgCl$_2$, 2 mM ATP, 10 mM creatine phosphate, 3.5 U/ml creatine kinase and 0.6 U/ml inorganic pyrophosphatase), 10 µg purified GST-SUMO-1 and 1 µg purified, recombinant Ubc9. The reactions were incubated 3 h at 37°C, then stopped by adding 1/5 vol 10% SDS-5% β-mercaptoethanol, boiled and separated by SDS-PAGE. 35S-Elk-1 was visualized by autoradiography.

Denaturation purification and analysis of SUMO-Elk conjugates

His$_6$-Elk was transfected with the appropriate Elk-1 expression vector, along with pCDNA3HisSUMO-1, -2, or -3. 16 h later, cells were lysed in 1 ml 10% Guanidinium-HCl, 0.1 M Na$_2$HPO$_4$, 10 mM Tris-HCl, pH 8.0 (Rodriguez et al., 1999). 50 µl lysate was precipitated with 1 ml 5% TCA for total protein. Lysates were incubated 3 h at RT with 75 µl nTA agarose (Qiagen) prewashed with lysis buffer. The slurry was washed with buffer A (8 M urea, 0.1 M Na$_2$HPO$_4$, 10 mM Tris-HCl, pH 8.0 (buffer A); buffer A at pH 6.3; then buffer A at pH 4.5. DN-Ubc9 was subcloned in pcDNA3.1-HA. pEGFPL11-Elk3R, the BspBI–PflMI fragment of pEGFPL11-Elk was constructed by the insertion of Elk-1 sequence into the Accl and BamHI sites of pEGFPL11. For pEGFPL11-Elk3R, the BplII–PflMI fragment of pEGFPL11-Elk was replaced with that from Elk3R.

We thank R. Hay and M. Rodriguez for materials, and M. Rodriguez, H. Ensen, and M. Le Clech for their insight.

This work was supported by the Association pour la Recherche sur le Cancer (A. Debant, I. Jariel-Encontre, and R.A. Hiskind), the Ligue Nationale contre le Cancer (A. Debant), and the Centre National de la Recherche Scientifique. S. Salinas and A. Briancon-Marjollet are doctoral fellows of the French Research and Education Ministry. S. Salinas has a 6-mo doctoral fellowship from the Ligue.
Ub9 promotes nuclear accumulation and metabolic stability of tumor suppressor Smad4. J. Biol. Chem. 278:31043–31048.

Miyauchi, Y., S. Yogosawa, R. Honda, T. Nishida, and H. Yasuda. 2002. Sumoylation of Mdm2 by protein inhibitor of activated STAT (PIAS) and RanBP2 enzymes. J. Biol. Chem. 277:50131–50136.

Nissen, L.J., J.C. Gelly, and R.A. Hippskind. 2001. Induction-independent recruitment of CREB-binding protein to the c-fos serum response element through interactions between the bromodomain and Elk-1. J. Biol. Chem. 276:5213–5221.

Rodriguez, M.S., J.M. Desterro, S. Lain, C.A. Midgley, D.P. Lane, and R.T. Hay. 1999. SUMO-1 modification activates the transcriptional response of p53. EMBO J. 18:6455–6461.

Rodriguez, M.S., C. Dargemont, and R.T. Hay. 2001. SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting. J. Biol. Chem. 276:12654–12659.

Sampson, D.A., M. Wang, and M.J. Matunis. 2001. The small ubiquitin-like modifier-1 (SUMO-1) consensus sequence mediates Ub9 binding and is essential for SUMO-1 modification. J. Biol. Chem. 276:21664–21669.

Seeler, J.S., and A. Dejean. 2003. Nuclear and unclear functions of SUMO. Nat. Rev. Mol. Cell Biol. 4:690–699.

Sgambato, V., P. Vanhoutte, C. Pages, M. Rogard, R. Hippskind, M.J. Besson, and J. Caboche. 1998. In vivo expression and regulation of Elk-1, a target of the extracellular-regulated kinase signaling pathway, in the adult rat brain. J. Neurosci. 18:214–226.

Sternsdorf, T., K. Jensen, B. Reich, and H. Will. 1999. The nuclear dot protein sp100, characterization of domains necessary for dimerization, subcellular localization, and modification by small ubiquitin-like modifiers. J. Biol. Chem. 274:12555–12566.

Tatham, M.H., E. Jaffray, O.A. Vaughan, J.M. Desterro, C.H. Botting, J.H. Naismith, and R.T. Hay. 2001. Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ub9. J. Biol. Chem. 276:35368–35374.

Vanhoutryte, P., J.L. Nissen, B. Brugg, B.D. Gaspera, M.J. Besson, R.A. Hippskind, and J. Caboche. 2001. Opposing roles of Elk-1 and its brain-specific isoform, short Elk-1, in nerve growth factor-induced PC12 differentiation. J. Biol. Chem. 276:5189–5196.

Wasylyk, B., J. Hagman, and A. Gutierrez-Hartmann. 1998. Ets transcription factors: nuclear effectors of the Ras-MAP-kinase signaling pathway. Trends Biochem. Sci. 23:213–216.

Yang, S.H., D.C. Bumpas, N.D. Perkins, and A.D. Sharrocks. 2002. The ETS domain transcription factor Elk-1 contains a novel class of repression domain. Mol. Cell. Biol. 22:5036–5046.

Yang, S.H., E. Jaffray, R.T. Hay, and A.D. Sharrocks. 2003. Dynamic interplay of the SUMO and ERK pathways in regulating Elk-1 transcriptional activity. Mol. Cell. 12:63–74.