The number of edges in k-quasi-planar graphs

Jacob Fox † János Pach‡ Andrew Suk§

December 13, 2011

Abstract

A graph drawn in the plane is called k-quasi-planar if it does not contain k pairwise crossing edges. It has been conjectured for a long time that for every fixed k, the maximum number of edges of a k-quasi-planar graph with n vertices is $O(n)$. The best known upper bound is $n(\log n)^{O(\log k)}$. In the present note, we improve this bound to $(n \log n)^{2^{\alpha_k(n)}}$ in the special case where the graph is drawn in such a way that every pair of edges meet at most once. Here $\alpha(n)$ denotes the (extremely slowly growing) inverse of the Ackermann function. We also make further progress on the conjecture for k-quasi-planar graphs in which every edge is drawn as an x-monotone curve. Extending some ideas of Valtr, we prove that the maximum number of edges of such graphs is at most $2^{2^{\alpha_k(n)}} n \log n$.

1 Introduction

A topological graph is a graph drawn in the plane such that its vertices are represented by points and its edges are represented by non-self-intersecting arcs connecting the corresponding points. In notation and terminology, we make no distinction between the vertices and edges of a graph and the points and arcs representing them, respectively. No edge is allowed to pass through any point representing a vertex other than its endpoints. Any two edges can intersect only in a finite number of points. Tangencies between the edges are not allowed. That is, if two edges share an interior point, then they must properly cross at this point. A topological graph is simple if every pair of its edges intersect at most once: at a common endpoint or at a proper crossing. If the edges of a graph are drawn as straight-line segments, then the graph is called geometric.

Finding the maximum number of edges in a topological graph with a forbidden crossing pattern is a fundamental problem in extremal topological graph theory (see §2). It follows from Euler’s Polyhedral Formula that every topological graph on n vertices and with no two crossing edges has at most $3n - 6$ edges. A graph is called k-quasi-planar if it can be drawn as a topological graph with no k pairwise crossing edges. A graph is 2-quasi-planar if and only

* A preliminary version of this paper with A. Suk as its sole author will appear in Proc. 19th Internat. Symp. on Graph Drawing (GD 2011, TU Eindhoven), LNCS, Springer, 2011
† Massachusetts Institute of Technology, Cambridge, MIT. Supported by a Simons Fellowship and NSF grant DMS 1069197. Email: fox@math.mit.edu
‡ EPFL, Lausanne and Courant Institute, New York, NY. Supported by Hungarian Science Foundation EuroGIGA Grant OTKA NN 102029, by Swiss National Science Foundation Grant 200021-125287/1, and by NSF Grant CCF-08-30272. Email: pach@cims.nyu.edu.
§ Massachusetts Institute of Technology, Cambridge. Supported by an NSF Postdoctoral Fellowship. Email: asuk@math.mit.edu.
if it is planar. According to an old conjecture (see Problem 1 in Section 9.6 of [5]), for any fixed \(k \geq 2 \) there exists a constant \(c_k \) such that every \(k \)-quasi-planar graph on \(n \) vertices has at most \(c_k n \) edges. Agarwal, Aronov, Pach, Pollack, and Sharir [1] were the first to prove this conjecture for simple 3-quasi-planar graphs. Later, Pach, Radoiˇ ci´ c, and T´ oth [17] generalized the result to all 3-quasi-planar graphs. Ackerman [1] proved the conjecture for \(k = 4 \).

For larger values of \(k \), first Pach, Shahrokhi, and Szegedy [18] showed that every simple \(k \)-quasi-planar graph on \(n \) vertices has at most \(c_k n (\log n)^{2k-4} \) edges. For \(k \geq 3 \) and for all (not necessarily simple) \(k \)-quasi-planar graphs, Pach, Radoiˇ ci´ c, and T´ oth [17] established the upper bound \(c_k n (\log n)^{4k-12} \). Plugging into these proofs the above mentioned result of Ackerman [1], for \(k \geq 4 \), we obtain the slightly better bounds \(c_k n (\log n)^{2k-8} \) and \(c_k n (\log n)^{4k-16} \), respectively. For large values of \(k \), the exponent of the polylogarithmic factor in these bounds was improved by Fox and Pach [10], who showed that the maximum number of edges of a \(k \)-quasi-planar graph on \(n \) vertices is \(n (\log n)^{O(\log k)} \).

For the number of edges of geometric graphs, that is, graphs drawn by straight-line edges, Valtr [22] proved the upper bound \(O(n \log n) \). He also extended this result to simple topological graphs whose edges are drawn as \(x \)-monotone curves [23].

The aim of this paper is to improve the best known bound, \(n (\log n)^{O(\log k)} \), on the number of edges of a \(k \)-quasi-planar graph in two special cases: for simple topological graphs and for not necessarily simple topological graphs whose edges are drawn as \(x \)-monotone curves. In both cases, we improve the exponent of the polylogarithmic factor from \(O(\log k) \) to \(1 + o(1) \).

Theorem 1.1. Let \(G = (V, E) \) be a \(k \)-quasi-planar simple topological graph with \(n \) vertices. Then \(|E(G)| \leq (n \log n)^{2^{\alpha(n)^{c_k}}} \), where \(\alpha(n) \) denotes the inverse of the Ackermann function and \(c_k \) is a constant that depends only on \(k \).

Recall that the Ackermann (more precisely, the Ackermann-Péter) function \(A(n) \) is defined as follows. Let \(A_1(n) = 2n \), and \(A_k(n) = A_{k-1}(A_k(n-1)) \) for \(k = 2, 3, \ldots \). In particular, we have \(A_2(n) = 2^n \), and \(A_3(n) \) is an exponential tower of \(n \) two’s. Now let \(A(n) = A_n(n) \), and let \(\alpha(n) \) be defined as \(\alpha(n) = \min \{ k \geq 1 : A(k) \geq n \} \). This function grows much slower than the inverse of any primitive recursive function.

Theorem 1.2. Let \(G = (V, E) \) be a \(k \)-quasi-planar (not necessarily simple) topological graph with \(n \) vertices, whose edges are drawn as \(x \)-monotone curves. Then \(|E(G)| \leq 2^{c_k^6 n \log n} \), where \(c \) is an absolute constant.

In both proofs, we follow the approach of Valtr [23] and apply results on generalized Davenport-Schinzel sequences. An important new ingredient of the proof of Theorem 1.1 is a corollary of a separator theorem established in [9] and developed in [8]. Theorem 1.2 is not only more general than Valtr’s result, which applies only to simple topological graphs, but its proof gives a somewhat better upper bound: we use a result of Pettie [20], which improves the dependence on \(k \) from double exponential to single exponential.

2 Generalized Davenport-Schinzel Sequences

The sequence \(u = a_1, a_2, \ldots, a_m \) is called \(l \)-regular if any \(l \) consecutive terms are pairwise different. For integers \(l, t \geq 2 \), the sequence

\[S = s_1, s_2, \ldots, s_{lt} \]
of length lt is said to be of type $up(l, t)$ if the first l terms are pairwise different and

$$s_i = s_{i+l} = s_{i+2l} = \cdots = s_{i+(t-1)l}$$

for every $i, 1 \leq i \leq l$. For example,

$$a, b, c, a, b, c, a, b, c,$$

is a type $up(3, 4)$ sequence or, in short, an $up(3, 4)$ sequence. We need the following theorem of Klazar [13] on generalized Davenport-Schinzel sequences.

Theorem 2.1 (Klazar). For $l \geq 2$ and $t \geq 3$, the length of any l-regular sequence over an n-element alphabet that does not contain a subsequence of type $up(l, t)$ has length at most

$$n \cdot l^{2(lt-3)} \cdot (10l)^{10a(n)^l}.$$

For $l \geq 2$, the sequence

$$S = s_1, s_2, \ldots, s_{3l-2}$$

of length $3l - 2$ is said to be of type $up-down-up(l)$ if the first l terms are pairwise different and

$$s_i = s_{2l-i} = s(2l-2)+i$$

for every $i, 1 \leq i \leq i$. For example,

$$a, b, c, d, c, b, a, b, c, d,$$

is an $up-down-up(4)$ sequence. Valtr and Klazar [14] showed that any l-regular sequence over an n-element alphabet, which contains no subsequence of type $up-down-up(l)$, has length at most $2^{cl} n$ for some constant c. This has been improved by Pettie [20], who proved the following.

Lemma 2.2 (Pettie). For $l \geq 2$, the length of any l-regular sequence over an n-element alphabet, which contains no subsequence of type $up-down-up(l)$, has length at most $2^{O(l^2)} n$.

For more results on generalized Davenport-Schinzel sequences, see [15, 20, 19].

3 On intersection graphs of curves

In this section, we prove a useful lemma on intersection graphs of curves. It shows that every collection C of curves, no two of which intersect many times, contains a large subcollection C' such that in the partition of C' into its connected components C_1, \ldots, C_t in the intersection graph of C, each component C_i has a vertex connected to all other $|C_i| - 1$ vertices.

For a graph $G = (V, E)$, a subset V_0 of the vertex set is said to be a separator if there is a partition $V = V_0 \cup V_1 \cup V_2$ with $|V_1|, |V_2| \leq \frac{2}{3}|V|$ such that no edge connects a vertex in V_1 to a vertex in V_2. We need the following separator lemma for intersection graphs of curves, established in [9].

Lemma 3.1 (Fox–Pach). There is an absolute constant c_1 such that every collection C of curves with x intersection points has a separator of size at most $c_1\sqrt{x}$.

3
Call a collection C of curves in the plane decomposable if there is a partition $C = C_1 \cup \ldots \cup C_t$ such that each C_i contains a curve which intersects all other curves in C_i, and for $i \neq j$, the curves in C_i are disjoint from the curves in C_j. The following lemma is a strengthening of Proposition 6.3 in [8]. Its proof is essentially the same as that of the original statement. It is included here, for completeness.

Lemma 3.2. There is an absolute constant $c > 0$ such that every collection C of $m \geq 2$ curves such that each pair of them intersect in at most t points has a decomposable subcollection of size at least $\frac{cm}{t \log m}$.

Proof of Lemma 3.2 We prove the following stronger statement. There is an absolute constant $c > 0$ such that every collection C of $m \geq 2$ curves whose intersection graph has at least x edges, and each pair of curves intersect in at most t points, has a decomposable subcollection of size at least $\frac{cm}{t \log m} + \frac{x}{m}$. Let $c = \frac{1}{5m^2}$, where $c_1 \geq 1$ is the constant in Lemma 3.1. The proof is by induction on m, noting that all collections of curves with at most three elements are decomposable. Define $d = d(m, x, t) := \frac{cm}{t \log m} + \frac{x}{m}$.

Let Δ denote the maximum degree of the intersection graph of C. We have $\Delta < d - 1$. Otherwise, the subcollection consisting of a curve of maximum degree, together with the curves in C that intersect it, is decomposable and its size is at least d, and we are done. Also, $\Delta \geq 2 \frac{x}{m}$, since $2 \frac{x}{m}$ is the average degree of the vertices in the intersection graph of C. Hence, if $\Delta \geq 2 \frac{cm}{t \log m}$, then the desired inequality holds. Thus, we may assume $\Delta < 2 \frac{cm}{t \log m}$.

Applying Lemma 3.1 to the intersection graph of C, we obtain that there is a separator $V_0 \subset C$ with $|V_0| \leq c_1 \sqrt{tx}$, where c_1 is the absolute constant in Lemma 3.1. That is, there is a partition $C = V_0 \cup V_1 \cup V_2$ with $|V_1|, |V_2| \leq 2|V|/3$ such that no curve in V_1 intersects any curve in V_2. For $i = 1, 2$, let $m_i = |V_i|$ and x_i denote the number of pairs of curves in V_i that intersect, so that

$$x_1 + x_2 \geq x - \Delta |V_0| \geq x - 2 \frac{cm}{t \log m} c_1 \frac{x}{\sqrt{tx}}. \quad (1)$$

As no curve in V_1 intersects any curve in V_2, the union of a decomposable subcollection of V_1 and a decomposable subcollection of V_2 is decomposable. Thus, by the induction hypothesis, C contains decomposable subcollection of size at least

$$d(m_1, x_1, t) + d(m_2, x_2, t) = \frac{cm_1}{t \log m_1} + \frac{x_1}{m_1} + \frac{cm_2}{t \log m_2} + \frac{x_2}{m_2} \geq \frac{c(m_1 + m_2)}{t \log (2m/3)} + \frac{(x_1 + x_2)}{2m/3}.$$

We split the rest of the proof into two cases.

Case 1. $x \geq t^{-1} \left(12 c_1 \frac{m}{\log m}\right)^2$. In this case, by (1), we have $x_1 + x_2 \geq \frac{5}{6}x$ and hence there is a decomposable subcollection of size at least

$$d(m_1, x_1, t) + d(m_2, x_2, t) \geq \frac{c(m_1 + m_2)}{t \log m} + \frac{5x}{4m} = d + \frac{x}{4m} - \frac{c(m - (m_1 + m_2))}{t \log m} \geq d + \frac{x}{4m} - \frac{c_1 \sqrt{tx}}{t \log m} > d,$$

completing the analysis.
Case 2. \(x < t^{-1}\left(12c_1c\frac{m}{\log m}\right)^2 \). There is a decomposable subcollection of size at least

\[
d(m_1, x_1, t) + d(m_2, x_2, t) \geq \frac{c(m_1 + m_2)}{t \log(2m/3)} \geq \frac{c}{t} \left(m - c_1\sqrt{tx}\right) \left(\frac{1}{\log m} + \frac{1}{2\log^2 m}\right)
\]

\[
\geq \frac{c}{t} \left(\frac{m}{\log m} + \frac{m}{2\log^2 m} - \frac{2c_1\sqrt{tx}}{\log m}\right) \geq \frac{c}{t} \left(\frac{m}{\log m} + \frac{m}{4\log^2 m}\right)
\]

\[
\geq \frac{c}{t} \left(\frac{m}{\log m} + \frac{m}{4\log^2 m}\right) \geq \frac{cm}{t \log m} + \frac{x}{m} = d,
\]

where we used \(c = \frac{1}{576c_1}\). \(\square\)

4 Simple Topological Graphs

In this section, we prove Theorem 1.1. The following statement will be crucial for our purposes.

Theorem 4.1. Let \(G = (V, E) \) be a \(k \)-quasi-planar simple topological graph with \(n \) vertices. Suppose that \(G \) has an edge that crosses every other edge. Then we have \(|E| \leq n \cdot 2^{\alpha(n)k} \), where \(\alpha(n) \) denotes the inverse Ackermann function and \(c_k \) is a constant that depends only on \(k \).

Proof of Theorem 4.1. Let \(k \geq 5 \) and \(c_k = 40 \cdot 2^{k^2 + 2k} \). To simplify the presentation, we do not make any attempt to optimize the value of \(c_k \). Label the vertices of \(G \) from 1 to \(n \), i.e., let \(V = \{1, 2, \ldots, n\} \). Let \(e = uv \) be the edge that crosses every other edge in \(G \). Note that \(d(u) = d(v) = 1 \).

Let \(E' \) denote the set of edges that cross \(e \). Suppose without loss of generality that no two of elements of \(E' \) cross \(e \) at the same point. Let \(e_1, e_2, \ldots, e_{|E'|} \) denote the edges in \(E' \) listed in the order of their intersection points with \(e \) from \(u \) to \(v \). We create two sequences of vertices \(S_1 = p_1, p_2, \ldots, p_{|E'|} \) and \(S_2 = q_1, q_2, \ldots, q_{|E'|} \subset V \), as follows. For each \(e_i \in E' \), as we move along edge \(e \) from \(u \) to \(v \) and arrive at the intersection point with \(e_i \), we turn left and move along edge \(e_i \) until we reach its endpoint \(u_i \). Then we set \(p_i = u_i \). Likewise, as we move along edge \(e \) from \(u \) to \(v \) and arrive at edge \(e_i \), we turn right and move along edge \(e_i \) until we reach its other endpoint \(w_i \). Then we set \(q_i = w_i \). Thus, \(S_1 \) and \(S_2 \) are sequences of length \(|E'| \) over the alphabet \(\{1, 2, \ldots, n\} \). See Figure 1 for a small example.

We need two lemmas. The first one is due to Valtr [23].

Lemma 4.2 (Valtr). For \(l \geq 1 \), at least one of the sequences \(S_1, S_2 \) defined above contains an \(l \)-regular subsequence of length at least \(|E'|/(4l) \). \(\square\)

Since each edge in \(E' \) crosses \(e \) exactly once, the proof of Lemma 4.2 can be copied almost verbatim from the proof of Lemma 4 in [23] and is left to the reader as an exercise.

For the rest of this section, we set \(l = 2^{k^2 + k} \) and \(t = 2^k \).

Lemma 4.3. Neither of the sequences \(S_1 \) and \(S_2 \) has a subsequence of type \(up(l, t) \).

Proof. By symmetry, it suffices to show that \(S_1 \) does not contain a subsequence of type \(up(l, t) \). The argument is by contradiction. We will prove by induction on \(k \) that the existence of such a sequence would imply that \(G \) has \(k \) pairwise crossing edges. The base cases \(k = 1, 2 \) are trivial. Now assume the statement holds up to \(k - 1 \). Let
Since a point on the edge e corresponds to s_{t+1} for $j = 0, 1, 2, \ldots, t-1$. We will think of s_{t+1} as a point on $a_{i,j}$ very close but not on edge e. For simplicity, we will let $s_{t+q} = s_q$ for all $q \in \mathbb{N}$ and $a_{i,j} = a_{i,j'}$ for all $j \in \mathbb{Z}$, where $j' \in \{0, 1, 2, \ldots, t-1\}$ is such that $j \equiv j' \pmod{t}$. Hence there are l distinct vertices v_1, \ldots, v_l, each vertex of which has l arcs emanating from it to the edge e.

Consider the arrangement formed by the t arcs emanating from v_1 and the edge e. Since G is simple, these arcs partition the plane into t regions. By the pigeonhole principle, there is a subset $V' \subset \{v_1, \ldots, v_l\}$ of size

$$\frac{l-1}{t} = \frac{2k^2+k-1}{2^k}$$

such that all of the vertices of V' lie in the same region. Let $j_0 \in \{0, 1, 2, \ldots, t-1\}$ be an integer such that V' lies in the region bounded by a_{1,j_0}, a_{1,j_0+1}, and e. See Figure [2]. In the case $j_0 = t-1$, the set V' lies in the unbounded region.

Let $v_i \in V'$ and a_{i,j_0+j_1} be an arc emanating from v_i for $j_1 \geq 1$. Notice that a_{i,j_0+j_1} cannot cross both a_{1,j_0} and a_{1,j_0+1}, since G is a simple topological graph. Suppose that a_{i,j_0+j_1} crosses a_{1,j_0+1}. Then all arcs emanating from v_i,

$$A = \{a_{i,j_0+1}, a_{i,j_0+2}, \ldots, a_{i,j_0+j_1-1}\}$$

must also cross a_{1,j_0+1}. Indeed, let γ be the simple closed curve created by the arrangement

$$a_{i,j_0+j_1} \cup a_{1,j_0+1} \cup e.$$

Since $a_{i,j_0+j_1}, a_{1,j_0+1},$ and e pairwise intersect at precisely one point, γ is well defined. We define points $x = a_{i,j_0+j_1} \cap a_{1,j_0+1}$ and $y = a_{1,j_0+1} \cap e$, and orient γ in the direction from x to y along γ.

Figure 1: In this example, $S_1 = v_1, v_3, v_4, v_3, v_2$ and $S_2 = v_2, v_2, v_1, v_5, v_5$.

$S = s_1, s_2, ..., s_{lt}$ be our up(l,t) sequence of length lt such that the first l terms are pairwise distinct and for $i = 1, 2, \ldots, l$ we have

$$s_i = s_{i+l} = s_{i+2l} = s_{i+3l} = \cdots = s_{i+(t-1)t}.$$
Figure 2: Vertices of V' lie in the region enclosed by $a_{1,j_0}, a_{1,j_0+1}, e$.

In view of the fact that a_{i,j_0+j_1} intersects a_{1,j_0+1}, the vertex v_i must lie to the right of γ. Moreover, since the arc from x to y along a_{1,j_0+1} is a subset of γ, the points corresponding to the subsequence

$$S' = \{s_q \in S \mid 2 + (j_0 + 1)l \leq q \leq (i - 1) + (j_0 + j_1)l\}$$

must lie to the left of γ. Hence, γ separates vertex v_i and the points of S'. Therefore, using again that G is simple, each arc from A must cross a_{1,j_0+1} (these arcs cannot cross a_{i,j_0+j_1}). See Figure 4.

By the same argument, if the arc a_{i,j_0-j_1} crosses a_{1,j_0} for $j_1 \geq 1$, then the arcs emanating from v_i,

$$a_{i,j_0-1}, a_{i,j_0-2}, \ldots, a_{i,j_0-j_1+1}$$

must also cross a_{1,j_0}. Since $a_{i,j_0+t/2} = a_{i,j_0-t/2}$, we have the following observation.

Observation 4.4. For half of the vertices $v_i \in V'$, the arcs emanating from v_i satisfy

1. $a_{i,j_0+1}, a_{i,j_0+2}, \ldots, a_{i,j_0+t/2}$ all cross a_{1,j_0+1}, or
2. $a_{i,j_0-1}, a_{i,j_0-2}, \ldots, a_{i,j_0-t/2}$ all cross a_{1,j_0}.

Since $t/2 = 2^{k-1}$ and

$$\frac{|V'|}{2} \geq \frac{l - 1}{2l} = \frac{2k^2 + k - 1}{2 \cdot 2^k} \geq 2^{(k-1)^2 + (k-1)},$$

by Observation 4.4 we obtain a $up(2^{(k-1)^2 + (k-1)}, 2^{k-1})$ sequence such that the corresponding arcs all cross either a_{1,j_0} or a_{1,j_0+1}. By the induction hypothesis, it follows that there exist k pairwise crossing edges.

Now we are ready to complete the proof of Lemma 4.1. By Lemma 4.2 we know that, say, S_1 contains an l-regular subsequence of length $|E'|/(4l)$. By Theorem 2.1 and Lemma 4.3 this subsequence has length at most

$$n \cdot l2^{(l-3)} \cdot (10l)^{10\alpha(n)l}.$$

Therefore, we have

7
(a) The case when $j_0 + j_1 \mod t \leq t - 1$.

(b) γ defined from Figure 3(a).

(c) The case when $j_0 + j_1 \mod t < j_0$. Recall $a_{i,j_0+j_1} = a_{i,j_0+j_1 \mod 2k}$.

d) γ defined from Figure 3(c).

Figure 3: Defining γ and its orientation.

$$\frac{|E'|}{4 \cdot l} \leq n \cdot 2^{(t-3)} \cdot (10l)^{10\alpha(n)t},$$

which implies

$$|E'| \leq 4 \cdot n \cdot 2^{(t-3)} \cdot (10l)^{10\alpha(n)t}.$$

Since $c'_k = 40 \cdot lt = 40 \cdot 2^{k^2+2k}$, $\alpha(n) \geq 2$ and $k \geq 5$, we have

$$|E| = |E'| + 1 \leq n \cdot 2^{c'_k(n)},$$

which completes the proof of Lemma 4.1.

Now we are in a position to prove Theorem 1.1.

Proof of Theorem 1.1. Let $G = (V, E)$ be a k-quasi-planar simple topological graph on n vertices. By Lemma 3.2 there is a subset $E' \subset E$ such that $|E'| \geq c|M|/\log |E|$, where c is an absolute constant and E' is decomposable. Hence, there is a partition...
\[E' = E_1 \cup E_2 \cup \cdots \cup E_t \]
such that each \(E_i \) has an edge \(e_i \) that intersects every other edge in \(E_i \), and for \(i \neq j \), the edges in \(E_i \) are disjoint from the edges in \(E_j \). Let \(V_i \) denote the set of vertices that are the endpoints of the edges in \(E_i \), and let \(n_i = |V_i| \). By Lemma 4.1, we have

\[
|E_i| \leq n_i 2^{\alpha' k}(n_i) + 2n_i,
\]

where the \(2n_i \) term accounts for the edges that share a vertex with \(e_i \). Hence,

\[
\frac{c|E|}{\log |E|} \leq \sum_{i=1}^{t} n_i 2^{\alpha' k}(n_i) + 2n_i \leq n 2^{\alpha' k}(n) + 2n,
\]

Therefore, we obtain

\[
|E| \leq (n \log n)2^{\alpha' k}(n),
\]

for a sufficiently large constant \(c_k \).

5 \(x \)-Monotone Topological Graphs

The aim of this section is to prove Theorem 1.2.

Proof of Theorem 1.2 For \(k \geq 2 \), let \(g_k(n) \) be the maximum number of edges in a \(k \)-quasi-planar topological graph whose edges are drawn as \(x \)-monotone curves. We will prove by induction on \(n \) that

\[
g_k(n) \leq 2^{ck^6} n \log n
\]

where \(c \) is a sufficiently large absolute constant.

The base case is trivial. For the inductive step, let \(G = (V, E) \) be a \(k \)-quasi-planar topological graph whose edges are drawn as \(x \)-monotone curves, and let the vertices be labeled \(1, 2, \ldots, n \). Let \(L \) be a vertical line that partitions the vertices into two parts, \(V_1 \) and \(V_2 \), such that \(|V_1| = \lfloor n/2 \rfloor \) vertices lie to the left of \(L \), and \(|V_2| = \lceil n/2 \rceil \) vertices lie to the right of \(L \). Furthermore, let \(E_1 \) denote the set of edges induced by \(V_1 \), let \(E_2 \) denote the set of edges induced by \(V_2 \), and let \(E' \) be the set of edges that intersect \(L \). Clearly, we have

\[
|E_1| \leq g_k(\lfloor n/2 \rfloor) \quad \text{and} \quad |E_2| \leq g_k(\lceil n/2 \rceil).
\]

It suffices that show that

\[
|E'| \leq 2^{ck^6/2}n,
\]

since this would imply

\[
g_k(n) \leq g_k(\lfloor n/2 \rfloor) + g_k(\lceil n/2 \rceil) + 2^{ck^6/2}n \leq 2^{ck^6} n \log n.
\]

In the rest of the proof, we only consider the edges belonging to \(E' \). For each vertex \(v_i \in V_1 \), consider the graph \(G_i \) whose vertices are the edges with \(v_i \) as a left endpoint, and two vertices
in G_i are adjacent if the corresponding edges cross at some point to the left of L. Since G_i is an incomparability graph (see [7], [11]) and does not contain a clique of size k, G_i contains an independent set of size $|E(G_i)|/(k-1)$. We keep all edges that correspond to the elements of this independent set, and discard all other edges incident to v_i. After repeating this process for all vertices in V_1, we are left with at least $|E'|(k-1)$ edges.

Now we continue this process on the other side. For each vertex $v_j \in V_2$, consider the graph G_j whose vertices are the edges with v_j as a right endpoint, and two vertices in G_j are adjacent if the corresponding edges cross at some point to the right of L. Since G_j is an incomparability graph and does not contain a clique of size k, G_j contains an independent set of size $|E(G_j)|/(k-1)$. We keep all edges that corresponds to this independent set, and discard all other edges incident to v_j. After repeating this process for all vertices in V_2, we are left with at least $|E'|(k-1)^2$ edges.

We order the remaining edges e_1, e_2, \ldots, e_m in the order in which they intersect L from bottom to top. (We assume without loss of generality that any two intersection points are distinct.) Define two sequences, $S_1 = p_1, p_2, \ldots, p_m$ and $S_2 = q_1, q_2, \ldots, q_m$, such that p_i denotes the left endpoint of edge e_i and q_i denotes the right endpoint of e_i. We need the following lemma.

Lemma 5.1. Neither of the sequences S_1 and S_2 has subsequence of type up-down-up($k^3 + 2$).

Proof. By symmetry, it suffices to show that S_1 does not have a subsequence of type up-down-up($k^3 + 2$). Suppose for contradiction that S_1 does contain such a subsequence. Then there is a sequence

$$S = s_1, s_2, \ldots, s_{k^3+2}$$

such that the integers s_1, \ldots, s_{k^3+2} are pairwise distinct and

$$s_i = s_{2(k^3+2)-i} = s_{2(k^3+2)}-2+i$$

for $i = 1, 2, \ldots, k^3 + 2$.

For each $i \in \{1, 2, \ldots, k^3 + 2\}$, let $v_i \in V_1$ denote the label (vertex) of s_i and let x_i denote the x-coordinate of the vertex v_i. Moreover, let a_i be the arc emanating from vertex v_i to the point on L that corresponds to $s_{2(k^3+2)-i}$. Let $A = \{a_2, a_3, \ldots, a_{k^3+1}\}$. Note that the arcs in A are enumerated downwards with respect to their intersection points with L, and they correspond to the elements of the “middle” section of the up-down-up sequence. We define two partial orders on A as follows.

$$a_i \prec_1 a_j \text{ if } i < j, \quad x_i < x_j \quad \text{and the arcs } a_i, a_j \text{ do not intersect},$$

$$a_i \prec_2 a_j \text{ if } i < j, \quad x_i > x_j \quad \text{and the arcs } a_i, a_j \text{ do not intersect}.$$

Clearly, \prec_1 and \prec_2 are partial orders. If two arcs are not comparable by either \prec_1 or \prec_2, then they must cross. Since G does not contain k pairwise crossing edges, by Dilworth’s theorem, there exist k arcs $\{a_1, a_2, \ldots, a_k\}$ such that they are pairwise comparable by either \prec_1 or \prec_2. Now the proof falls into two cases.

Case 1. Suppose that $a_1 \prec_1 a_2 \prec_1 \cdots \prec_1 a_k$. Then the arcs emanating from $v_{i_1}, v_{i_2}, \ldots, v_{i_k}$ to the points corresponding to $s_{2(k^3+2)-2+i_1}, s_{2(k^3+2)-2+i_2}, \ldots, s_{2(k^3+2)-2+i_k}$ are pairwise crossing. See Figure 4

Case 2. Suppose that $a_1 \prec_2 a_2 \prec_2 \cdots \prec_2 a_k$. Then the arcs emanating from $v_{i_1}, v_{i_2}, \ldots, v_{i_k}$ to the points corresponding to $s_{i_1}, s_{i_2}, \ldots, s_{i_k}$ are pairwise crossing. See Figure 5.
We are now ready to complete the proof of Theorem 1.2. By Lemma 4.2, we know that, S_1, say, contains a $(k^3 + 2)$-regular subsequence of length

$$|E'| \leq 4(k^3 + 2)(k - 1)^2.$$

By Lemmas 2.2 and 5.1 this subsequence has length at most $2c'k^6 n$, where c' is an absolute constant. Hence, we have

$$\frac{|E'|}{4(k^3 + 2)(k - 1)^2} \leq 2c'k^6 n,$$

which implies that

$$|E'| \leq 4k^5 2c'k^6 n \leq 2ck^6 / 2 n$$

for a sufficiently large absolute constant c. \qed

Figure 4: Case 1.
References

[1] E. Ackerman, On the Maximum Number of Edges in Topological Graphs with No Four Pairwise Crossing Edges. *Discrete Comput. Geom.* 41 (2009), 365–375.

[2] E. Ackerman, J. Fox, J. Pach, A. Suk, On Grids in Topological Graphs. *In Proceedings of the 25th Annual ACM Symposium on Computational Geometry*, 2009, 403-412.

[3] E. Ackerman, G. Tardos, On the Maximum Number of Edges in Quasi-Planar Graphs. *J. Comb. Theory Ser. A* 114 (2007), 563–571.

[4] P.K. Agarwal, B. Aronov, J. Pach, R. Pollack, and M. Sharir, Quasi-Planar Graphs Have a Linear Number of Edges. *Combinatorica* 17 (1997), 1–9.

[5] P. Brass, W. Moser, and J. Pach, “Research Problems in Discrete Geometry.” Springer-Verlag, Berlin, 2005.

[6] V. Capoyleas and J. Pach, A Turán-Type Theorem on Chords of a Convex Polygon. *J. Combinatorial Theory, Series B* 56 (1992), 9–15.

[7] R.P. Dilworth, A Decomposition Theorem for Partially Ordered Sets. *Annals of Math.* 51 (1950), 161–166.

[8] J. Fox and J. Pach, Erdős-Hajnal-Type Results on Intersection Patterns of Geometric Objects. In “Horizons of Combinatorics” (G.O.H. Katona et al., eds.), Bolyai Society Studies in Mathematics, Springer (2008), 79–103.

[9] J. Fox and J. Pach, Separator Theorems and Turán-Type Results for Planar Intersection Graphs. *Advances in Math.* 219 (2008), 1070–1080.
[10] J. Fox and J. Pach, Coloring K_6-Free Intersection Graphs of Geometric Objects in the Plane. In Proceedings of the 24th Annual ACM Symposium on Computational Geometry, 2008, 346–354.

[11] J. Fox, J. Pach, and Cs. Tóth, Intersection Patterns of Curves. Journal of the London Mathematical Society 83 (2011), 389–406.

[12] R. Fulek and A. Suk, Disjoint Crossing Families, In “Thirty Essays in Geometric Graph Theory” (J. Pach, ed), Springer, Berlin, 2012, to appear. See also arXiv:1004.2850, 2010.

[13] M. Klazar, A General Upper Bound in Extremal Theory of Sequences. Commentationes Mathematicae Universitatis Carolinae 33 (1992), 737–746.

[14] M. Klazar and P. Valtr, Generalized Davenport-Schinzel Sequences. Combinatorica 14 (1994), 463–476.

[15] G. Nivasch, Improved Bounds and New Techniques for Davenport–Schinzel Sequences and Their Generalizations. J. ACM 57 (2010), 1–44.

[16] J. Pach, R. Pinchasi, M. Sharir, and G. Tóth, Topological Graphs with No Large Grids. Graphs & Comb. 21 (2005), 355–364.

[17] J. Pach, R. Radoičić, and G. Tóth, Relaxing Planarity for Topological Graphs. Lecture Notes in Comput. Sci. 2866 (2003), Springer, 221–232.

[18] J. Pach, F. Shahrokhi, and M. Szegedy, Applications of the Crossing Number. J. Graph Theory 22 (1996), 239–243.

[19] S. Pettie, Generalized Davenport-Schinzel Sequences and Their 0-1 Matrix Counterparts. J. Comb. Theory Ser. A 118 (2011) 1863–1895.

[20] S. Pettie, On the Structure and Composition of Forbidden Sequences, with Geometric Applications. In Proceedings of the 27th Annual ACM Symposium on Computational Geometry, 2011, 370-379.

[21] G. Tardos and G. Tóth, Crossing Stars in Topological Graphs. SIAM J. Discret. Math. 21 (2007), 737–749.

[22] P. Valtr, On Geometric Graphs with No k Pairwise Parallel Edges. Discrete Comput. Geom. 19 (1997), 461–469.

[23] P. Valtr, Graph Drawings with No k Pairwise Crossing Edges. In Proceedings of the 5th International Symposium on Graph Drawing, 1997, 205–218.