Probing the chiral magnetic wave in pPb and PbPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV using charge-dependent azimuthal anisotropies

A. M. Sirunyan et al.∗
(CMS Collaboration)

(Received 29 August 2017; revised manuscript received 12 October 2018; published 18 December 2019)

Charge-dependent anisotropy Fourier coefficients (v_n) of particle azimuthal distributions are measured in pPb and PbPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV with the CMS detector at the LHC. The normalized difference in the second-order anisotropy coefficients (v_2) between positively and negatively charged particles is found to depend linearly on the observed event charge asymmetry with comparable slopes for both pPb and PbPb collisions over a wide range of charged particle multiplicity. In PbPb, the third-order anisotropy coefficient v_3 shows a similar linear dependence with the same slope as seen for v_2. The observed similarities between the v_2 slopes for pPb and PbPb, as well as the similar slopes for v_2 and v_3 in PbPb, are compatible with expectations based on local charge conservation in the decay of clusters or resonances, and constitute a challenge to the hypothesis that, at LHC energies, the observed charge asymmetry dependence of v_2 in heavy ion collisions arises from a chiral magnetic wave.

DOI: 10.1103/PhysRevC.100.064908

I. INTRODUCTION

Observing macroscopic phenomena arising from quantum anomalies is a subject of interest for a wide range of physics communities, from magnetized relativistic matter in three-dimensional Dirac and Weyl materials [1–3] to hot plasma in communities, from magnetized relativistic matter in three-anomalies is a subject of interest for a wide range of physics

Charge-dependent Fourier coefficients (v_n) of particle azimuthal distributions are measured in pPb and PbPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV with the CMS detector at the LHC. The normalized difference in the second-order anisotropy coefficients (v_2) between positively and negatively charged particles is found to depend linearly on the observed event charge asymmetry with comparable slopes for both pPb and PbPb collisions over a wide range of charged particle multiplicity. In PbPb, the third-order anisotropy coefficient v_3 shows a similar linear dependence with the same slope as seen for v_2. The observed similarities between the v_2 slopes for pPb and PbPb, as well as the similar slopes for v_2 and v_3 in PbPb, are compatible with expectations based on local charge conservation in the decay of clusters or resonances, and constitute a challenge to the hypothesis that, at LHC energies, the observed charge asymmetry dependence of v_2 in heavy ion collisions arises from a chiral magnetic wave.

DOI: 10.1103/PhysRevC.100.064908

I. INTRODUCTION

Observing macroscopic phenomena arising from quantum anomalies is a subject of interest for a wide range of physics communities, from magnetized relativistic matter in three-dimensional Dirac and Weyl materials [1–3] to hot plasma in the early universe or formed in relativistic heavy ion collisions [4–6]. In quantum chromodynamics, gluon fields within a localized region of space-time can form nontrivial topological configurations [7–10]. If approximate chiral symmetry is restored, the interactions of chiral quarks with these gluon fields can produce a chirality imbalance, violating the local CP symmetries [9,10]. This anomalous chiral effect can manifest itself as an electric current along or opposite to a strong magnetic field [11–13]. The electric charge separation produced by these currents is known as the chiral magnetic effect (CME) [11]. The chiral separation effect (CSE) is a similar process, where the separation of the chiral charges along the magnetic field will be induced by a finite density of the net electric charges [14]. The coupling of electric and chiral charge densities and currents leads to a long-wavelength collective excitation, known as the chiral magnetic wave (CMW) [14–17].

In relativistic heavy ion (AA) collisions, a strong magnetic field and the restoration of the approximate chiral symmetry, both necessary conditions for creating a CMW, may be present. The magnetic field is produced by the spectator protons and is, on average, perpendicular to the reaction plane defined by the impact parameter and beam directions. The propagation of the CMW leads to an electric quadrupole moment, where additional positive (negative) charges are accumulated away from (close to) the reaction plane [14]. Following a hydrodynamic evolution of the medium formed in AA collisions, this electric quadrupole moment is expected to result in a charge-dependent variation of the second-order anisotropy coefficient (v_2) in the Fourier expansion of the final-state particle azimuthal distribution. More specifically, the v_2 coefficient will exhibit a linear dependence on the observed event charge asymmetry [14], $A_{ch} \equiv (N_+ - N_-)/(N_+ + N_-)$, where N_+ and N_- denote the number of positively and negatively charged hadrons in each event,

\[v_{2,\pm} = b_{2,\pm}^{huc} \mp r A_{ch}. \] (1)

Here $b_{2,\pm}^{huc}$ represents the value in the absence of a charge quadrupole moment from the CMW for positively (+) and negatively (−) charged particles, and r denotes the slope parameter. In the presence of a CMW, the difference of v_2 values between positively and negatively charged particles will be proportional to A_{ch}. Similar charge-dependent effects from the CMW are not expected for the third-order anisotropy coefficient (v_3) [13].

Recent observations of the A_{ch} dependence of $v_{2,\pm}$ in AA collisions at RHIC at BNL and the CERN LHC are qualitatively consistent with expectations of the CMW mechanism [5,18,19]. However, the interpretation of the results remains inconclusive since alternative mechanisms have been proposed to generate charge-dependent v_2 coefficients without a CMW [20,21]. For example, it has been shown that local charge conservation (LCC) in the decay of clusters or resonances can qualitatively describe the charge-dependent v_2 data [20]. Decay particles from a lower transverse momentum (p_T) resonance tend to have a larger rapidity separation, resulting in...
a daughter more likely to fall outside the detector acceptance, leading to a nonzero \(A_{ch} \). Hence, this process generates a correlation between \(A_{ch} \) and the average \(p_T \) of charged particles, and therefore also between \(A_{ch} \) and the \(v_2 \) coefficient, since \(v_2 \) depends on \(p_T \). The LCC mechanism also applies to all higher-order anisotropy Fourier coefficients (\(v_n \)).

This paper presents measurements of the \(A_{ch} \) dependence of the \(\langle p_T \rangle \) and of the \(p_T \)-averaged \(v_n \) coefficients in pp and PbPb collisions at \(\sqrt{s_{NN}} = 5.02 \) TeV, using data collected with the CMS experiment at the LHC. It has been shown that \(pp \) and \(pp \) collisions with high charged-particle multiplicities can generate large final-state azimuthal anisotropies, comparable to those in AA collisions at similar event multiplicities [22–35]. However, the CMW contribution to any \(A_{ch} \)-dependent \(v_n \) signal is expected to be negligible in \(pp \) collisions: the induced magnetic field is smaller than in PbPb collisions (albeit of the same order of magnitude) and, more importantly, its correlation with the harmonic event planes is vanishingly small [6,36].

The recent observation of nearly identical charge-dependent azimuthal correlations in pp and PbPb suggested significant contamination of background sources (e.g., LCC) to any CME induced signal [6,37]. Therefore, a comparison between pp and PbPb systems and their \(A_{ch} \) dependence of the \(\langle p_T \rangle \) and the \(v_3 \) coefficient can differentiate between the CMW and LCC mechanisms. It is worth noting that a lack of experimental evidence for the CME [6,37] does not necessarily imply the absence of the CMW, as the CME requires an initial chirality imbalance from topological QCD charges (which may be too weak to be observed), whereas the CMW only requires an initial net electric charge density [14,16]. Therefore, the CME and CMW deserve independent experimental investigations.

II. THE CMS DETECTOR

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume, there are silicon pixel and strip detector sectors, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter. The silicon tracker measures charged particles within the pseudorapidity range \(|\eta| < 2.5 \). For charged particles with \(1 < p_T < 10 \) GeV/c and \(|\eta| < 1.4 \), the track resolutions are typically 1.5% in \(p_T \) and 25–90 (45–150) \(\mu \)m in the transverse (longitudinal) impact parameter [38]. Iron and quartz-fiber Cherenkov hadron forward (HF) calorimeters cover the range 2.9 < \(|\eta| \) < 5.2. A detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [39].

III. EVENT AND TRACK SELECTIONS

The \(pp \) data at \(\sqrt{s_{NN}} = 5.02 \) TeV, collected in 2013 using the CMS detector, correspond to an integrated luminosity of 35 \(nb^{-1} \). A subset of peripheral PbPb data at \(\sqrt{s_{NN}} = 5.02 \) TeV collected in 2015 (30–90% centrality, where centrality is defined as the fraction of the total inelastic cross section, with 0% denoting the most central collisions [40]), is also used. The sample is reconstructed with the same algorithm as the \(pp \) data, in order to compare directly the two systems at similar multiplicities. The event reconstruction, event selection and the trigger, including the dedicated triggers to collect a large sample of high-multiplicity \(pp \) events, are identical to those used in previous CMS particle correlation measurements [6,22,30]. In the offline analysis of \(pp \) (PbPb) collisions, hadronic events are selected by requiring the presence of at least one (three) energy deposit(s) greater than 3 GeV in each of the two HF calorimeters. Events are also required to contain a primary vertex within 15 cm of the nominal interaction point along the beam axis and 0.15 cm in the transverse direction. In the \(pp \) data sample, there is a 3% probability to have at least one additional interaction in the same bunch crossing (pileup). After the procedure used to reject pileup events is applied, the remaining sample has a purity of 99.8% for single collision events [32]. The pileup in PbPb data is negligible.

Primary tracks, i.e., tracks that originate at the primary vertex and satisfy the high-purity criteria of Ref. [38], are used to define the event charged-particle multiplicity (\(N_{\text{track}}^{\text{offline}} \)) and to perform correlation measurements. In addition, the impact parameter significance of the tracks with respect to the primary vertex in the beam and transverse direction is required to be less than 3. The relative uncertainty in \(p_T \) must be less than 10%. To ensure high tracking efficiency, only tracks with \(|\eta| < 2.4 \) and \(p_T > 0.3 \) GeV/c are used for \(A_{ch} \) and \(v_n \) measurements in this analysis. The \(pp \) and PbPb data are compared in ranges of \(N_{\text{track}}^{\text{offline}} \) where primary tracks with \(|\eta| < 2.4 \) and \(p_T > 0.4 \) GeV/c are counted, in order to match the trigger selection criterion implemented at the HLT in \(pp \) collisions.
FIG. 2. The elliptic anisotropy v_2 (top left) and event-averaged (p_T) (top right) for positively (h^+) and negatively (h^-) charged particles, and their normalized differences (bottom row), as functions of A_{ch}^{true} for the multiplicity range $185 < N_{ch}^{true} < 220$ of PbPb and PbPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV. Statistical uncertainties are smaller than the marker size, while systematic uncertainties are not displayed.

IV. ANALYSIS TECHNIQUE

In each multiplicity or centrality class, events are further divided into several ranges of the observed event charge asymmetry A_{ch}^{true}, calculated based on the number of positively and negatively charged particles from primary tracks. An example of the A_{ch}^{true} distribution for PbPb data in the 30–40% centrality range is shown in Fig. 1. Within each A_{ch}^{true} range, the v_n coefficients are obtained separately for tracks with positive (v_n^+) and negative (v_n^-) charge, and with $|\eta| < 2.4$ and $0.3 < p_T < 3$ GeV/c, using the two-particle cumulant method [41] with a pseudorapidity gap of at least one unit between the two particles to suppress the short-range correlations. Because of statistical limitations, the pseudorapidity gap chosen in this analysis is smaller than the value of two units typically used in other CMS correlation measurements, but results are found to be consistent between one and two units of pseudorapidity gap. Residual effects of short-range correlations may still contribute to the sum of the v_n^+, $v_n^- + v_n^+$, but not the difference since the effect is largely canceled out. However, this effect contributes to the pPb and PbPb systems similarly [32], so it has little impact on the comparison of the two systems.

The main physics observable of interest in this analysis is the slope parameter (ρ^{norm}) extracted by fitting a linear function to the normalized v_2 differences, $(v_2^+ - v_2^-)/(v_2^- + v_2^+)$, as a function of the true event charge asymmetry value, A_{ch}^{true}, obtained by correcting A_{ch}^{obs} for the detector acceptance and tracking efficiency. Based on Monte Carlo (MC) simulations, detector effects can be modeled as a Gaussian response of the A_{ch}^{true} distribution within $|\eta| < 2.4$, with a width determined from the simulated A_{ch}^{true} distribution at a given A_{ch}^{true} value. Combining the A_{ch}^{obs} distribution in data with the response function from MC simulations, the predicted correlation between A_{ch}^{obs} and A_{ch}^{true} in data is calculated. The slope of a linear fit to this correlation is used to obtain the average A_{ch}^{true}

FIG. 3. The normalized difference in elliptic flow v_2 between positive- and negative-charged particles, $(v_2^+ - v_2^-)/(v_2^- + v_2^+)$, as a function of charge asymmetry, is presented. The results are selected in centrality range 30–40% with particles within $|\eta| < 0.8$ and $0.2 < p_T < 5$ GeV/c, and are compared between the ALICE [19] and the CMS experiment in PbPb collisions at $\sqrt{s_{NN}} = 2.76$ and 5.02 TeV, respectively. The bars represent statistical point-by-point uncertainties.

FIG. 4. The linear slope parameters ρ^{norm} for v_2 (filled symbols) and (p_T) (open symbols) as functions of event multiplicity in pPb and PbPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV. Statistical and systematic uncertainties are indicated by the error bars and shaded regions, respectively.
TABLE I. The table summarizes the absolute and normalized slope parameters (r) from v_2 and (p_T) in ranges of multiplicity class, $N_{\text{ch}}^{\text{offline}}$, in pPb collisions at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$. The first uncertainty associated with the central values denotes statistical errors, while the second uncertainty represents the systematic uncertainty.

$N_{\text{ch}}^{\text{offline}}$	$r_{(v_2)}$	$\rho_{\text{norm}}^{(v_2)}$	$r_{(p_T)}$	$\rho_{\text{norm}}^{(p_T)}$
[120,150)	0.022 ± 0.001 ± 0.002	0.163 ± 0.01 ± 0.011	0.103 ± 0.001 ± 0.007	0.06 ± 0 ± 0.004
[150,185)	0.02 ± 0.001 ± 0.002	0.145 ± 0.008 ± 0.009	0.105 ± 0.001 ± 0.007	0.06 ± 0 ± 0.004
[185,220)	0.02 ± 0.001 ± 0.002	0.139 ± 0.008 ± 0.009	0.108 ± 0.001 ± 0.007	0.062 ± 0.001 ± 0.004
[220,260)	0.022 ± 0.002 ± 0.001	0.135 ± 0.012 ± 0.009	0.111 ± 0.002 ± 0.007	0.063 ± 0.001 ± 0.004

The slope of elliptic anisotropy as a function of A_{ch} has been observed in AuAu [18] and PbPb [19] systems at lower collision energies, as shown in Fig. 3 for 30–40% centrality PbPb events. The linear slope parameter, $r_{(v_2)}$, is extracted by a χ^2 fit to a linear function, which gives values of $0.149 ± 0.008$ for pPb and $0.108 ± 0.005$ for PbPb, in the multiplicity range $185 \leq N_{\text{ch}}^{\text{offline}} < 220$. A significant nonzero value of the linear slope parameter is observed in pPb collisions, even greater than that in PbPb collisions. Since the CMW effect is expected to be negligible in high-multiplicity pPb events, this observation might be caused, at LHC energies, by a mechanism unrelated to the CMW. The differences in the linear slope parameters observed in the pPb and PbPb systems remain to be understood.

The $r_{(p_T)}$ for positively and negatively charged particles are also measured as functions of $A_{\text{ch}}^{\text{true}}$, in the multiplicity range $185 \leq N_{\text{ch}}^{\text{offline}} < 220$ of pPb and PbPb collisions at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$, and shown in Fig. 2 (right column). The normalized $\langle p_T \rangle$ difference as a function of $A_{\text{ch}}^{\text{true}}$ is obtained for the two systems with the slope parameters displayed in the figure. A similar linear $A_{\text{ch}}^{\text{true}}$ dependence of the $\langle p_T \rangle$ value to that of v_2 is observed. This behavior is qualitatively consistent with the expectation of the LCC effect from resonance decays. Since v_2 has a strong dependence on particle p_T, a correlation between the p_T-averaged v_2 and A_{ch}, as observed in Fig. 2 (left), can also be induced by the LCC mechanism.

The extracted normalized slope parameters for v_2 and $\langle p_T \rangle$ as functions of event multiplicity in pPb and PbPb collisions are shown in Fig. 4. The ρ_{norm} values for both v_2 and $\langle p_T \rangle$ are found to have a weak dependence on the event multiplicity for both pPb and PbPb collisions, with values for ρ_{norm} approximately half of those for v_2. In the overlapping multiplicity range, normalized slope parameters are observed

TABLE II. The table summarizes the absolute and normalized slope parameters (r) from v_2 and (p_T) in ranges of multiplicity class, $N_{\text{ch}}^{\text{offline}}$, in PbPb collisions at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$. The first uncertainty associated with the central values denotes statistical errors, while the second uncertainty represents the systematic uncertainty.

$N_{\text{ch}}^{\text{offline}}$	$r_{(v_2)}$	$\rho_{\text{norm}}^{(v_2)}$	$r_{(p_T)}$	$\rho_{\text{norm}}^{(p_T)}$
[90,120)	0.02 ± 0.001 ± 0.001	0.12 ± 0.007 ± 0.009	0.084 ± 0.001 ± 0.006	0.056 ± 0 ± 0.004
[120,150)	0.023 ± 0.001 ± 0.002	0.131 ± 0.006 ± 0.009	0.084 ± 0.001 ± 0.006	0.056 ± 0.001 ± 0.004
[150,185)	0.022 ± 0.001 ± 0.001	0.119 ± 0.005 ± 0.008	0.087 ± 0.001 ± 0.006	0.057 ± 0.001 ± 0.004
[185,220)	0.022 ± 0.001 ± 0.001	0.108 ± 0.005 ± 0.007	0.087 ± 0.001 ± 0.006	0.058 ± 0.001 ± 0.004
[220,260)	0.025 ± 0.001 ± 0.001	0.126 ± 0.004 ± 0.008	0.091 ± 0.001 ± 0.005	0.059 ± 0.001 ± 0.004
[260,300)	0.025 ± 0.001 ± 0.001	0.122 ± 0.004 ± 0.007	0.093 ± 0.001 ± 0.005	0.06 ± 0.001 ± 0.003
[300,400)	0.028 ± 0 ± 0.001	0.133 ± 0.002 ± 0.007	0.094 ± 0.001 ± 0.005	0.061 ± 0 ± 0.003
[400,500)	0.03 ± 0 ± 0.001	0.141 ± 0.002 ± 0.007	0.099 ± 0.001 ± 0.005	0.064 ± 0.001 ± 0.003
The table summarizes the absolute and normalized slope parameters (r_v) from v_2 and v_3 in ranges of centrality class, in PbPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV. The first uncertainty associated with the central values denotes statistical errors, while the second uncertainty represents the systematic uncertainty.

Centrality (%)	r_{v2}	r_{v2}^{norm}	r_{v3}	r_{v3}^{norm}
30–40%	0.032 ± 0.001	0.162 ± 0.001 ± 0.006	0.01 ± 0.0006 ± 0.0004	0.149 ± 0.008 ± 0.006
40–50%	0.032 ± 0.001	0.151 ± 0.001 ± 0.006	0.0102 ± 0.0007 ± 0.0004	0.15 ± 0.01 ± 0.006
50–60%	0.028 ± 0.001	0.135 ± 0.001 ± 0.007	0.0083 ± 0.001 ± 0.0004	0.131 ± 0.016 ± 0.007
60–70%	0.024 ± 0.002	0.126 ± 0.002 ± 0.008	0.0054 ± 0.0016 ± 0.0003	0.102 ± 0.03 ± 0.006
70–80%	0.022 ± 0.001 ± 0.002	0.136 ± 0.004 ± 0.11
80–90%	0.022 ± 0.002 ± 0.002	0.171 ± 0.012 ± 0.014

The charge asymmetry dependence of the v_3 coefficient for positively and negatively charged particles is also studied in PbPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, as shown in Fig. 5 (top) for the 30–40% centrality class. As found for the v_2 values, the v_3^T (v_3^N) values also decrease (increase) as A_{ch}^{true} increases. No v_3 results for pPb collisions are reported because of limited statistical precision. The normalized v_3 difference, $(v_3^{-} - v_3^{+})/(v_3^{+} + v_3^{-})$, is derived as a function of A_{ch}^{true} in PbPb collisions and compared with that for v_2 in Fig. 5 (bottom). The normalized slope parameter of v_3, r_3^{norm}, agrees well with r_2^{norm} within statistical uncertainties. Charge-dependent higher harmonic v_n coefficients were measured in PbPb collisions at 2.76 TeV [5] and their magnitude was found to be smaller than that of the second order coefficient. We show in this paper that, once normalized, no difference is observed for the A_{ch}^{true} dependence between the charge-dependent v_2 and v_3.

The r_2^{norm} and r_3^{norm} values of PbPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV are shown in Fig. 6, as functions of centrality in the range 30–90%. As found for r_2^{norm}, a moderate centrality dependence of r_3^{norm} is observed. Over the centrality range studied in this analysis, the r_2^{norm} and r_3^{norm} slope parameters are consistent with each other within uncertainties. The CMW effect is expected with respect to the reaction plane, which is approximated by the second-order event plane in AA collisions, but highly suppressed with respect to the third-order event plane [13]. The observation of the harmonic order independence, reflected in the similar r_2^{norm} and r_3^{norm} values, indicates an underlying physics mechanism unrelated to the
CMW effect and, instead, can be qualitatively explained by the LCC effect [20]. Note that the results reported here and elsewhere [18,19] used the same population of particles to measure both v_2 and A_{ch}^{true}. However, the slope parameters are found to be reduced by about a factor of 3, if the A_{ch}^{true} and v_2 values are determined by two distinct groups of randomly selected particles. This suggests that the observed correlations are not of a collective nature.

VI. SUMMARY

In summary, the charge-dependent Fourier coefficients of the azimuthal anisotropy have been measured in pPb and PbPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV as functions of the charge asymmetry of the produced hadrons. The normalized differences in the v_2 coefficient between positively and negatively charged particles in pPb and PbPb, and that in the v_3 coefficient in PbPb collisions, are found to depend linearly on the charge asymmetry. The normalized slope parameters of the v_2 coefficient versus charge asymmetry in pPb collisions are found to be significant and similar to those in PbPb collisions over a wide range of charged particle multiplicities. The normalized slope parameters of the v_2 and v_3 coefficients in PbPb collisions show similar magnitudes for various centrality classes. A significant charged asymmetry dependence is also observed for the event-averaged transverse momenta of positively and negatively charged particles in both pPb and PbPb collisions. None of these observations, made at 5.02 TeV and within the CMS phase space window, are expected from the chiral magnetic wave as the dominant physics mechanism, while they are qualitatively consistent with predictions based on local charge conservation. The new measurements presented here indicate that, at LHC energies, the chiral magnetic wave is not the cause of the charge-dependent azimuthal anisotropies seen in pPb and PbPb collisions.

ACKNOWLEDGMENTS

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); ITP (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR and RAEP (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI and FEDER (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie Curie program and the European Research Council and Horizon 2020 Grant, Contract No. 675440 (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus program of the Ministry of Science and Higher Education, the National Science Center (Poland), Contracts No. Harmonia 2014/14/M/ST2/00428, No. Opus 2014/13/B/ST2/02543, No. 2014/15/B/ST2/03998, and No. 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406; the National Priorities Research Program by Qatar National Research Fund; the Programa Clarín-COFUND del Principado de Asturias; the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); the Welch Foundation, contract C-1845; and the Weston Havens Foundation (USA).

[1] B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X. Dai, T. Qian, and H. Ding, Experimental Discovery of Weyl Semimetals TaAs, Phys. Rev. X 5, 031013 (2015).
[2] X. Huang, L. Zhao, Y. Long, P. Wang, D. Chen, Z. Yang, H. Liang, M. Xue, H. Weng, Z. Fang, X. Dai, and G. Chen, Observation of the Chiral-Anomaly-Induced Negative Magnetoresistance in 3D Weyl Semimetal TaAs, Phys. Rev. X 5, 031023 (2015).
[3] Q. Li, D. E. Kharzeev, C. Zhang, Y. Huang, I. Pletikosic, A. V. Fedorov, R. D. Zhong, J. A. Schneeloch, G. D. Gu, and T. Valla, Observation of the chiral magnetic effect in ZrTe5, Nat. Phys. 12, 550 (2016).
A. Bzdak and P. Bozek, Contributions to the event-by-event

Y. Hatta, A. Monnai, and B.-W. Xiao, Elliptic flow difference of

L. Adamczyk et al.

E. V. Gorbar, V. A. Miransky, and I. A. Shovkovy, Normal

ALICE Collaboration, Charge-dependent flow and the search

D. E. Kharzeev, J. Liao, S. A. Voloshin, and G. Wang,

G. M. Newman, Anomalous hydrodynamics, J. High Energy

Y. Burnier, D. E. Kharzeev, J. Liao, and H.-U. Yee, Chiral

D. Kharzeev, Parity violation in hot QCD: Why it can happen,

D. Kharzeev, R. D. Pisarski, and M. H. G. Tytgat, Possibility of

ATLAS Collaboration, Observation of Long-Range Elliptic

PROBING THE CHIRAL MAGNETIC WAVE IN pPb AND …

PHYSICAL REVIEW C 100, 064908 (2019)

[4] B. I. Abelev et al. (STAR Collaboration), Observation of charge-dependent azimuthal correlations and possible local strong parity violation in heavy ion collisions, Phys. Rev. C 81, 054908 (2010).

[5] ALICE Collaboration, Charge Separation Relative to the Reaction Plane in Pb-Pb Collisions at $\sqrt{s_{NN}} = 2.76$ TeV, Phys. Rev. Lett. 110, 012301 (2013).

[6] CMS Collaboration, Observation of Charge-Dependent Azimuthal Correlations in p-Pb Collisions and its Implication for the Search for the Chiral Magnetic Effect, Phys. Rev. Lett. 118, 122301 (2017).

[7] T. D. Lee, A theory of spontaneous T violation, Phys. Rev. D 8, 1226 (1973).

[8] T. D. Lee and G. C. Wick, Vacuum stability and vacuum excitation in a spin 0 field theory, Phys. Rev. D 9, 2291 (1974).

[9] P. D. Morley and I. A. Schmidt, Strong P, CP, T violations in heavy-ion collisions, Z. Phys. C 26, 627 (1985).

[10] D. Kharzeev, R. D. Pisarski, and M. H. G. Tytgat, Possibility of Spontaneous Parity Violation in Hot QCD, Phys. Rev. Lett. 81, 512 (1998).

[11] D. Kharzeev, Parity violation in hot QCD: Why it can happen, and how to look for it, Phys. Lett. B 633, 260 (2006).

[12] D. E. Kharzeev, L. D. McLerran, and H. J. Warringa, The effects of topological charge change in heavy ion collisions: ‘event by event P and CP violation’, Nucl. Phys. A 803, 227 (2008).

[13] D. E. Kharzeev, J. Liao, S. A. Voloshin, and G. Wang, Chiral magnetic and vortical effects in high-energy nuclear collisions—A status report, Prog. Part. Nucl. Phys. 88, 1 (2016).

[14] Y. Burnier, D. E. Kharzeev, J. Liao, and H.-U. Yee, Chiral Magnetic Wave at Finite Baryon Density and the Electric Quadrupole Moment of Quark-Gluon Plasma in Heavy Ion Collisions, Phys. Rev. Lett. 107, 052303 (2011).

[15] G. M. Newman, Anomalous hydrodynamics, J. High Energy Phys. 01 (2006) 158.

[16] D. E. Kharzeev and H.-U. Yee, Chiral magnetic wave, Phys. Rev. D 83, 085007 (2011).

[17] E. V. Gorbar, V. A. Miransky, and I. A. Shovkovy, Normal ground state of dense relativistic matter in a magnetic field, Phys. Rev. D 83, 085003 (2011).

[18] L. Adamczyk et al. (STAR Collaboration), Observation of Charge Asymmetry Dependence of Pion Elliptic Flow and the Possible Chiral Magnetic Wave in Heavy-Ion Collisions, Phys. Rev. Lett. 114, 252302 (2015).

[19] ALICE Collaboration, Charge-dependent flow and the search for the chiral magnetic wave in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV, Phys. Rev. C 93, 044903 (2016).

[20] A. Bzdak and P. Bozek, Contributions to the event-by-event charge asymmetry dependence for the elliptic flow of π^+ and π^- in heavy-ion collisions, Phys. Lett. B 726, 239 (2013).

[21] Y. Hatta, A. Monnai, and B.-W. Xiao, Elliptic flow difference of charged pions in heavy-ion collisions, Nucl. Phys. A 947, 155 (2016).

[22] CMS Collaboration, Observation of long-range near-side angular correlations in proton-proton collisions at the LHC, J. High Energy Phys. 09 (2010) 091.

[23] ATLAS Collaboration, Observation of Long-Range Elliptic Azimuthal Anisotropies in $\sqrt{s} = 13$ and 2.76 TeV pp Collisions with the ATLAS Detector, Phys. Rev. Lett. 116, 172301 (2016).

[24] CMS Collaboration, Measurement of Long-Range Near-Side Two-Particle Angular Correlations in pp Collisions at $\sqrt{s} = 13$ TeV, Phys. Rev. Lett. 116, 172302 (2016).

[25] CMS Collaboration, Evidence for collectivity in pp collisions at the LHC, Phys. Lett. B 765, 193 (2017).

[26] CMS Collaboration, Observation of long-range near-side angular correlations in proton-lead collisions at the LHC, Phys. Lett. B 718, 795 (2013).

[27] ALICE Collaboration, Long-range angular correlations on the near and away side in pPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, Phys. Lett. B 719, 29 (2013).

[28] ATLAS Collaboration, Observation of Associated Near-Side and Away-Side Long-Range Correlations in $\sqrt{s_{NN}} = 5.02$ TeV Proton-Lead Collisions with the ATLAS Detector, Phys. Rev. Lett. 110, 182302 (2013).

[29] LHCb Collaboration, Measurements of long-range near-side angular correlations in $\sqrt{s_{NN}} = 5$ TeV proton-lead collisions in the forward region, Phys. Lett. B 762, 473 (2016).

[30] CMS Collaboration, Long-range two-particle correlations of strange hadrons with charged particles in pPb and PbPb collisions at LHC energies, Phys. Lett. B 742, 200 (2015).

[31] ALICE Collaboration, Long-range angular correlations of π, K, and p in p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, Phys. Lett. B 726, 164 (2013).

[32] S. Chatrchyan et al. (CMS Collaboration), Multiplicity and transverse momentum dependence of two- and four-particle correlations in pPb and PbPb collisions, Phys. Lett. B 724, 213 (2013).

[33] ATLAS Collaboration, Measurement of long-range pseudo-rapidity correlations and azimuthal harmonics in $\sqrt{s_{NN}} = 5.02$ TeV proton-lead collisions with the ATLAS detector, Phys. Rev. C 90, 044906 (2014).

[34] CMS Collaboration, Evidence for Collective Multiparticle Correlations in p-Pb Collisions, Phys. Rev. Lett. 115, 012301 (2015).

[35] K. Dusling, W. Li, and B. Schenke, Novel collective phenomena in high-energy proton-proton and proton-nucleus collisions, Int. J. Mod. Phys. E 25, 1630002 (2016).

[36] R. Belmont and J. L. Nagle, To CME or not to CME? Implications of $p+Pb$ measurements of the chiral magnetic effect in heavy ion collisions, Phys. Rev. C 96, 024901 (2017).

[37] CMS Collaboration, Constraints on the chiral magnetic effect using charge-dependent azimuthal correlations in pPb and PbPb collisions at the LHC, Phys. Rev. C 97, 044912 (2018).

[38] CMS Collaboration, Description and performance of track and primary-vertex reconstruction with the CMS tracker, J. Instrum. 9, P10009 (2014).

[39] CMS Collaboration, The CMS experiment at the CERN LHC, J. Instrum. 3, S08004 (2008).

[40] CMS Collaboration, Measurement of the elliptic anisotropy of charged particles produced in PbPb collisions at nucleon-nucleon center-of-mass energy $\sqrt{s_{NN}} = 2.76$ TeV, Phys. Rev. C 87, 014902 (2013).

[41] A. Bilandzic, R. Snellings, and S. Voloshin, Flow analysis with cumulants: Direct calculations, Phys. Rev. C 83, 044913 (2011).

[42] T. Pierog, Iu. Karpenko, J. M. Katz, E. Yatsenko, and K. Werner, EPOS LHC: Test of collective hadronization with data measured at the CERN Large Hadron Collider, Phys. Rev. C 92, 034906 (2015).
PROBING THE CHIRAL MAGNETIC WAVE IN PbPb AND … PHYSICAL REVIEW C 100, 064908 (2019)
PROBING THE CHIRAL MAGNETIC WAVE IN pPb AND …

PHYSICAL REVIEW C 100, 064908 (2019)

L. Perniè,174 D. Rathjens,174 A. Safonov,174 A. Tatarinov,174 K. A. Ulmer,174 N. Akchurin,175 J. Damgov,175 F. De Guio,175 P. R. Dudero,175 J. Faulkner,175 E. Gurpinar,175 S. Kunori,175 K. Lamichhane,175 S. W. Lee,175 T. Libeiro,175 T. Peltola,175 S. Undleeb,175 I. Volobouev,175 Z. Wang,175 S. Greene,176 A. Gurrola,176 R. Janjam,176 W. Johns,176 C. Maguire,176 A. Melo,176 H. Ni,176 P. Sheldon,176 S. Tuo,176 J. Velkovska,176 Q. Xu,176 M. W. Arenth,177 P. Barria,177 B. Cox,177 R. Hirosky,177 M. Joyce,177 A. Ledovskoy,177 H. Li,177 C. Neu,177 T. Sinthuprasith,177 Y. Wang,177 E. Wolfe,177 F. Xia,177 R. Harr,178 P. E. Karchin,178 J. Sturdy,178 S. Zaleski,178 M. Brodski,179 J. Buchanan,179 C. Caillol,179 S. Dasu,179 L. Dodd,179 S. Duric,179 B. Gomber,179 M. Grothe,179 M. Herndon,179 A. Hervé,179 U. Hussain,179 P. Klabbers,179 A. Lanaro,179 A. Levine,179 K. Long,179 R. Loveless,179 G. A. Pierro,179 G. Polese,179 T. Ruggles,179 A. Savin,179 N. Smith,179 W. H. Smith,179 D. Taylor,179 and N. Woods179

(CMS Collaboration)

1Yerevan Physics Institute, Yerevan, Armenia
2Institut für Hochenergiephysik, Wien, Austria
3Institute for Nuclear Problems, Minsk, Belarus
4Universiteit Antwerpen, Antwerpen, Belgium
5Vrije Universiteit Brussel, Brussel, Belgium
6Université Libre de Bruxelles, Bruxelles, Belgium
7Ghent University, Ghent, Belgium
8Université Catholique de Louvain, Louvain-la-Neuve, Belgium
9Université de Mons, Mons, Belgium
10Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
11Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
12Universidade Estadual Paulista, São Paulo, Brazil
13Universidade Federal do ABC, São Paulo, Brazil
14Institute for Nuclear Research and Nuclear Energy of Bulgaria Academy of Sciences
15University of Sofia, Sofia, Bulgaria
16Beihang University, Beijing, China
17Institute of High Energy Physics, Beijing, China
18State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
19Universidad de Los Andes, Bogota, Colombia
20University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
21University of Split, Faculty of Science, Split, Croatia
22University of Split, Faculty of Electronics, Split, Croatia
23Charles University, Prague, Czech Republic
24Universidad San Francisco de Quito, Quito, Ecuador
25Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
26National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
27Department of Physics, University of Helsinki, Helsinki, Finland
28Helsinki Institute of Physics, Helsinki, Finland
29Lappeenranta University of Technology, Lappeenranta, Finland
30IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
31Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Université Paris-Saclay, Palaiseau, France
32Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
33Centre de Calcu de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
34Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
35Georgian Technical University, Tbilisi, Georgia
36Tbilisi State University, Tbilisi, Georgia
37RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
38RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
39RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
40Deutsches Elektronen-Synchrotron, Hamburg, Germany
41University of Hamburg, Hamburg, Germany
42Institut für Experimentelle Kernphysik, Karlsruhe, Germany
43Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece
44National and Kapodistrian University of Athens, Athens, Greece
45National Technical University of Athens, Athens, Greece
46 University of Ioánnina, Ioánnina, Greece
47 MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
48 Wigner Research Centre for Physics, Budapest, Hungary
49 Institute of Nuclear Research ATOMKI, Debrecen, Hungary
50 Institute of Physics, University of Debrecen, Debrecen, Hungary
51 Indian Institute of Science (IISc), Bangalore, India
52 National Institute of Science Education and Research, Bhubaneswar, India
53 Panjab University, Chandigarh, India
54 University of Delhi, Delhi, India
55 Saha Institute of Nuclear Physics, HBNI, Kolkata, India
56 Indian Institute of Technology Madras, Madras, India
57 Bhabha Atomic Research Centre, Mumbai, India
58 Tata Institute of Fundamental Research-A, Mumbai, India
59 Tata Institute of Fundamental Research-B, Mumbai, India
60 Indian Institute of Science Education and Research (IISER), Pune, India
61 Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
62 University College Dublin, Dublin, Ireland
63a INFN Sezione di Bari, Bari, Italy
63b Università di Bari, Bari, Italy
63c Politecnico di Bari, Bari, Italy
64a INFN Sezione di Bologna, Bologna, Italy
64b Università di Bologna, Bologna, Italy
65a INFN Sezione di Catania, Catania, Italy
65b Università di Catania, Catania, Italy
66a INFN Sezione di Firenze, Firenze, Italy
66b Università di Firenze, Firenze, Italy
67 INFN Laboratori Nazionali di Frascati, Frascati, Italy
68a INFN Sezione di Genova, Genova, Italy
68b Università di Genova, Genova, Italy
69a INFN Sezione di Milano-Bicocca, Milano, Italy
69b Università di Milano-Bicocca, Milano, Italy
70a INFN Sezione di Napoli, Napoli, Italy
70b Università di Napoli ‘Federico II’, Napoli, Italy
71a Università della Basilicata, Potenza, Italy
71b Università G. Marconi, Roma, Italy
71c INFN Sezione di Padova, Padova, Italy
71d Università di Padova, Padova, Italy
71e Università di Trento, Trento, Italy
71f INFN Sezione di Pavia, Pavia, Italy
72a Università di Pavia, Pavia, Italy
73a INFN Sezione di Perugia, Perugia, Italy
73b Università di Perugia, Perugia, Italy
74a INFN Sezione di Pisa, Pisa, Italy
74b Università di Pisa, Pisa, Italy
74c Scuola Normale Superiore di Pisa, Pisa, Italy
74d INFN Sezione di Roma, Rome, Italy
75b Sapienza Università di Roma, Rome, Italy
76a INFN Sezione di Torino, Torino, Italy
76b Università di Torino, Torino, Italy
76c Università del Piemonte Orientale, Novara, Italy
77a INFN Sezione di Trieste, Trieste, Italy
77b Università di Trieste, Trieste, Italy
78 Kyungpook National University, Daegu, Korea
79 Chonbuk National University, Jeonju, Korea
80 Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
81 Hanyang University, Seoul, Korea
82 Korea University, Seoul, Korea
83 Seoul National University, Seoul, Korea
84 University of Seoul, Seoul, Korea
142Fermi National Accelerator Laboratory, Batavia, USA
145University of Florida, Gainesville, USA
146Florida International University, Miami, USA
147Florida State University, Tallahassee, USA
148Florida Institute of Technology, Melbourne, USA
149University of Illinois at Chicago (UIC), Chicago, USA
150The University of Iowa, Iowa City, USA
151Johns Hopkins University, Baltimore, USA
152The University of Kansas, Lawrence, USA
153Kansas State University, Manhattan, USA
154Lawrence Livermore National Laboratory, Livermore, USA
155University of Maryland, College Park, USA
156Massachusetts Institute of Technology, Cambridge, USA
157University of Minnesota, Minneapolis, USA
158University of Mississippi, Oxford, USA
159University of Nebraska-Lincoln, Lincoln, USA
160State University of New York at Buffalo, Buffalo, USA
161Northeastern University, Boston, USA
162Northwestern University, Evanston, USA
163University of Notre Dame, Notre Dame, USA
164The Ohio State University, Columbus, USA
165Princeton University, Princeton, USA
166University of Puerto Rico, Mayaguez, USA
167Purdue University, West Lafayette, USA
168Purdue University Northwest, Hammond, USA
169Rice University, Houston, USA
170University of Rochester, Rochester, USA
171The Rockefeller University, New York, USA
172Rutgers, The State University of New Jersey, Piscataway, USA
173University of Tennessee, Knoxville, USA
174Texas A&M University, College Station, USA
175Texas Tech University, Lubbock, USA
176Vanderbilt University, Nashville, USA
177University of Virginia, Charlottesville, USA
178Wayne State University, Detroit, USA
179University of Wisconsin - Madison, Madison, WI, USA

aAlso at Vienna University of Technology, Vienna, Austria.
bAlso at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China.
cAlso at Universidade Estadual de Campinas, Campinas, Brazil.
dAlso at Universidade Federal de Pelotas, Pelotas, Brazil.
eAlso at Université Libre de Bruxelles, Bruxelles, Belgium.
fAlso at Institute for Theoretical and Experimental Physics, Moscow, Russia.
gAlso at Joint Institute for Nuclear Research, Dubna, Russia.
hAlso at Suez University, Suez, Egypt; British University in Egypt, Cairo, Egypt.
iAlso at Fayoum University, El-Fayoum, Egypt; British University in Egypt, Cairo, Egypt.
jAlso at Helwan University, Cairo, Egypt.
kAlso at Université de Haute Alsace, Mulhouse, France.
lAlso at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia.
mAlso at Ilia State University, Tbilisi, Georgia.
nAlso at Cyprus Institute, Nicosia, Cyprus.
oAlso at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
pAlso at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany.
qAlso at University of Hamburg, Hamburg, Germany.
rAlso at Brandenburg University of Technology, Cottbus, Germany.
sAlso at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary.
tAlso at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.
uAlso at Institute of Physics, University of Debrecen, Debrecen, Hungary.
vAlso at Indian Institute of Technology Bhubaneswar, Bhubaneswar, India.
wAlso at Institute of Physics, Bhubaneswar, India.
