Proconiini Sharpshooters of Argentina, with Notes on Its Distribution, Host Plants, and Natural Enemies

Authors: Paradell, Susana L., Virla, Eduardo G., Logarzo, Guillermo A., and DellaPé, Gimena

Source: Journal of Insect Science, 12(116) : 1-17

Published By: Entomological Society of America

URL: https://doi.org/10.1673/031.012.11601
Proconiini Sharpshooters of Argentina, with notes on its distribution, host plants, and natural enemies

Susana L. Paradell1a, Eduardo G. Virla2b, Guillermo A. Logarzo3c, and Gimena Dellapé1d*

1Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. División Entomología. Paseo del Bosque s/n (1900), La Plata, Buenos Aires, Argentina
2PROIMI-Biotechnology, Biological Control Division, CONICET, Av. Belgrano y Pje Caseros (4000), San Miguel de Tucumán, Tucumán, Argentina
3USDA-ARS South American Biological Control Laboratory, Bolivar 1559 (1686), Hurlingham, Buenos Aires, Argentina

Abstract

The American tribe Proconiini (Hemiptera: Cicadellidae: Cicadellinae) is one of the largest groups of xylem-feeding insects and includes the majority of the known vectors of xylem-born phytopathogenic organisms. The significance of the pathogens that this group transmits gives them an important role as pests, mostly for citrus fruit, grapes, and almonds. Knowledge of these Hemiptera in Argentina is insufficient and fragmentary. Thus one of the aims of this paper is to summarize the available information of the Proconiini sharpshooters in Argentina. In addition, 14 species are mentioned for the first time in the country, and new distributional data are given for 18 species. Thirty-four new associations between sharpshooters and host plants are recorded. New records of egg parasitoids are given for Dechacona missionum, Molomea consolida, M. lineiceps, and Tapajosa similis.

Keywords: Auchenorrhyncha, Cicadellidae, Cicadellinae, biogeographic provinces, bionomics, parasitoids

Correspondence: a paradell@fcnym.unlp.edu.ar, b evirla@hotmail.com, c glogarzo@speedy.com.ar, d gimenadellape@gmail.com. *Corresponding author, All authors contributed equally to this paper

Editor: Peter H. Kerr was editor of this paper.
Received: 19 August 2011, Accepted: 6 February 2012
Copyright: This is an open access paper. We use the Creative Commons Attribution 3.0 license that permits unrestricted use, provided that the paper is properly attributed.
ISSN: 1536-2442 | Vol. 12, Number 116

Cite this paper as: Paradell SL, Virla EG, Logarzo GA, Dellapé G. 2012. Proconiini Sharpshooters of Argentina, with notes on its distribution, host plants, and natural enemies. Journal of Insect Science 12:116. Available online:
http://www.insectscience.org/12_116
Introduction

The Proconiini tribe (Hemiptera: Cicadellidae: Cicadellinae) is characterized by posterior legs at rest with knees not attaining posterior proepimeral margins, male pygofer and plates both usually with numerous evenly dispersed microsetae and antennal ledges usually protuberant in dorsal aspect (Young 1968). The tribe includes 422 species in 58 genera (McKamey 2007; Wilson et al. 2009) and is restricted to the New World, with only Homalodisca vitripennis having an extra-American distribution, after recent invasion of many islands in the Pacific Ocean (Pilkington et al. 2005). The sharpshooters are one of the largest groups of xylem-feeding insects and include the majority of the known vectors of xylem-born phytopathogenic organisms (Rakitov and Dietrich 2001; Redak et al. 2004).

The bacterium Xylella fastidiosa Wells (Xanthomonadales: Xanthomonadaceae) is a growing threat in the Neotropical region. It has been found in Mexico, Costa Rica, Venezuela, Paraguay, Brazil, and Argentina, and a clear association between the xylem-feeding habit of sharpshooters and their ability to transmit the bacterium has been observed (Hopkins 1989; Redak et al. 2004). Most South American countries are under high occurrence risk of this dangerous disease (Dellapé et al. 2011).

Xylella fastidiosa is the causal agent of diverse diseases: “Phony Peach Disease” (PPD), “Plum Leaf Scald” (PLS), “Pierce’s Disease” (PD) of grapes, “Almond Leaf Scorch” (ALS), “Coffee Leaf Scorch” (CLS), and “Citrus Variegated Chlorosis” (CVC) (Gravena et al. 1998; Redak et al. 2004). The bacterium is a known threat in diverse regions of Argentina affecting almonds (ALS) in Catamarca and La Rioja provinces (Nome et al. 1992; Haelterman et al. 1996), as well as citrus orchards (CVC) in Misiones, Corrientes, and Entre Rios provinces (De Coll et al. 2000; Beltrán et al. 2004; Costa et al. 2009).

The information on faunistic aspects of Proconiini in Latin America is almost nonexistent, particularly in Argentina. In addition, most of the knowledge on proconiine vectors is derived from studies done in countries of the Nearctic region. Relatively few transmission studies have been carried out in the Neotropic, where the majority of sharpshooter species occur (Redak et al. 2004; Silva et al. 2007; Marucci et al. 2008).

In Argentina, the Proconiini tribe is mainly distributed in the northern region (Young 1968; Remes Lenicov et al. 1999; Virla et al. 2008), and there is almost no information regarding this economically important group. Only for few species is there available data, and most of them provide only distributional records and/or species association with commercial crops (Costilla et al. 1972; Remes Lenicov and Tesón 1985; Paradell 1995; Remes Lenicov et al. 1997, 1998, 1999, 2004; Virla et al. 2008).

To obtain a better understanding about this tribe in Argentina, this paper contributes new distributional records and/or host plants associations and parasitoids, and also summarizes the available data of the Proconiini sharpshooters in the country.

Materials and Methods

Three sources were used to achieve the objectives: (1) bibliographical data; (2)
specimens housed in the most important entomological collections of Argentina: Instituto Miguel Lillo (IMLA), Museo de Ciencias Naturales de La Plata (MLP), Museo Argentino de Ciencias Naturales “Bernardino Rivadavia” (MACN); and (3) research conducted by the working group.

112 sites in 21 provinces of Argentina were surveyed between 22° S and 44° S (Figure 1). Most of the sites were sampled by sweeping on diverse crops, its surrounding vegetation, and both anthropically-modified environments and pristine ones. In four occasions, Malaise traps and yellow pan traps were used as well (in Buenos Aires, Córdoba, and Rio Negro provinces). The specimens collected were preserved in 70% ethanol, and voucher specimens were deposited in the IMLA and MLP collections.

Both male and female genitalia of the species were prepared for microscopic examination using Young’s techniques (1968). The parts were stored in microvials with glycerin. The specimens were identified using descriptions provided by Schröeder (1959), Young (1968), Emmrich (1975, 1984), Remes Lenicov et al. (1999), and Marucci et al. (2002). Data on Anacuerna centrolinea (Melichar) were obtained from the collection of the Staatliches Museum Für Naturkunde Stuttgart, Germany (SMNS).

An extensive distribution list of all species studied was made using both our own data, bibliographic records, and data of the specimens deposited in the Argentinean collections. Sharpshooter species were grouped into biogeographical regions proposed by Morrone (2001, 2006). The Jaccard Index was used to identify the similarities between the biogeographic provinces (Moreno 2001).

Results

In the Argentinean territory, 40 species of Proconiini were found: 14 of them were reported for first time in Argentina, and 18 species had extended in geographic distribution. Also, new associations with host plants were found for six species of sharpshooters, and new records of parasitoid wasps for four species.

Below, 14 species of Proconiini recorded for the first time in Argentina are listed (Table 1, symbolized with an “A”):

Acrogonia virescens (Metcalf). **Salta**: Abra Grande, Orán, 2♂♂ 1♀, III/67; 3♂♂ 1♀, 10/I-28/II/67, Golbach Leg. (IMLA). **Misiones**: Eldorado, 1♂ 2♀, 31/X/2008, Logarzo and Palottini Legs. (MLP).

Aulacizes basalis Walker. **Misiones**: San Antonio, 1♀, 7/XII/51, Willink and Monrós Legs.; Bernardo de Irigoyen, 1♀, 5/XII/51, Willink and Monrós Legs.; 2 de Mayo, 2♂♀, 30/XI/51, Willink and Monrós Legs.; Aristóbulo del Valle, 2♀♀, XI/51, Willink and Monrós Legs. (IMLA). **Corrientes**: Mburucuyá, 1♂, XI/57, Biraben Leg. (MLP).

Aulacizes insistans (Walker). **Misiones**: Iguazú, 1♀, XII/57, Biraben Leg. (MLP); **Misiones**: 2♀♀, without other data (MACN).

Aulacizes obsoleta Melichar. **Misiones**: Puerto Iguazú, 1♀, II/54, Willink and Golbach Legs. (IMLA); Iguazú, 2♀♀, XII/57, Biraben Leg.; Caraguatay, 1♂, I/60, Ronderos and Trotta Legs.; Eldorado (26° 25' 40" S, 54° 09' 38.02" W), 1♀, 30/X/2008, Logarzo and Palottini Legs. (MLP); 2♀♀, P. Aguirre Leg. (MACN).
Cicciana latreillei (Distant). Misiones: Puerto Iguazú, 4♂, 20/XII/2001, Logarzo and Manrique Legs. (MLP).

Diestostemma ptyloca Distant. Misiones: Iguazú, 3♂ 1♀, X/27; Iguazú, 1♂, X/77, Pepe Leg. (MACN).

Oncometopia expansa Melichar. Misiones: 4♂ 1♀, III/1897, Venturi Leg.; Eldorado, 2♂, XI/2008, Logarzo and Palottini Legs. (MLP).

Oncometopia fusca Melichar. Misiones: Rep. Guarani El Soberbio, 1♂, X/47, Viana Leg. (MACN); Loreto, 1♂, 21/IX/2003, Logarzo and Varone Legs. (MLP).

Oncometopia rubescens Fowler. Misiones: Panambi, 2♂, X/51, Monrós and Willink Legs. (IMLA).

Oncometopia venata Schröder. Misiones: Panambi, 1♂, 24/XI/51, Willink and Monrós Legs. (IMLA).

Phera carbonaria (Melichar). Misiones: Iguazú, 3♂ 1♀, 10/XI/73, Tonsic and Willink Legs.; Misiones: 1♂, 4/IV/10, Jörgensen Leg.; 1♂, 31/VIII/10, Jörgensen Leg.; Parque Provincial Urugua-i, 1♂, 13/XII/57; San Javier, 1♂, 16/XII/57, Biraben Leg.; Iguazú, 1♂, XI/44, Biraben Leg. (MLP); Misiones: 3♂; Dep. Concepción-Sta. Maria, 1♂, X/46, Viana Leg. (MACN).

Phera obtusifrons Fowler. Misiones: 2 de Mayo, 1♂, XI/73, Escobar and Claps Legs. (IMLA).

Tretogonia cribata Melichar. Corrientes: 9♂ 14♀, 2 without abdomen, II/59, Biraben Leg.; Chaco: 1♂ 2♀, III/59, Parko Leg. (MLP).

The geographic distributions of 18 species of Proconiini sharpshooters are extended as follows (Table 1, symbolized with “B” and “C”):

Anacuerna centrolínea (Melichar). Jujuy: Morro de la Providencia, Quebrada de Humahuaca, Abra Pampa, Iturbe (IMLA). Salta: Cachipampa (SMNS).

Aulacizes consperrsa Walker. Misiones: Puerto Iguazú (IMLA), Caraguatay (MLP).

Aulacizes quadripunctata (Germar). Misiones: San Pedro, Salto Encantado, San Antonio, Tobunas, Campo Grande, Caiquén, Aristóbulo del Valle (IMLA); San Javier, 25 de Mayo (MACN); San Ignacio, 2 de Mayo, Eldorado (MLP).

Dechacona missionum (Berg). Tucumán: Horco Molle, Monteros (MACN); La Higuera, Trancas. Salta: Pocitos, Urundel. Catamarca: Arroyo de Infanzón. Córdoba: Dique Los Molinos. Formosa: Estero La Florence, Clorinda (IMLA). Jujuy: Yuto, Gral. San Martín, Dique La Ciénaga. Salta: Bazán. Tucumán: Gonzalo. Misiones: Montecarlo. Corrientes: Empedrado (MLP).

Egidemia speculifera (Walker). Misiones: Puerto Bemberg, San Pedro, 2 de Mayo (IMLA); Guarani (MACN).

Molomea consolida Schröder. Jujuy: Yuto, Aguas Calientes. Misiones: Montecarlo, Loreto, Garuhapé, Eldorado (MLP). Jujuy: Laguna de Yala, Aguas Calientes. Salta: Embarcarón. Misiones: Puerto Bemberg,
Iguazú, Oro Verde, San Javier, Panambi, 2 de Mayo. Tucumán. Catamarca: San Antonio. Salta: Tartagal, Aguaray (IMLA). Misiones: Oberá, Posadas, Concepción, Santa María. Corrientes: Santo Tomé. Buenos Aires. Salta: Orán (MACN).

Molomea lineiceps Young. Corrientes: Las Marías-Virasoro. Jujuy: Caimancito. Salta: Abra Grande. Tucumán: Las Talitas, El Bachi (IMLA). Buenos Aires: Isla Martín García, Tigre. Corrientes: Monte Caseros, Santo Tomé. La Rioja. Santa Fé: Rosario (MACN). Tucumán: Horco Molle (MLP).

Ochrostacta diadema (Burmeister). Corrientes: Manantiales, Sauce. Formosa: Misión Laishi, Mojón de Ferry (IMLA). Chaco: between Vedia and Pres. Roca, Bermejo River (MACN). Santa Fé: Guadalupe (MLP).

Ochrostacta physocephala (Signoret). Misiones: San Ignacio, Pindapoy. Corrientes: Santo Tomé (MLP).

Oncometopia facialis (Signoret). Misiones: San Javier, Iguazú, Arroyo Uruquía-I, Santa Ana, San Antonio, Monte Carlo, Aristóbulo del Valle, Panambi. Corrientes: Isla Iyupe Grande. Salta: El Morenillo, San Lorenzo. Tucumán: Cerro San Javier, Lules, Horco Molle, Chilcas, La Ramada. Catamarca: Aconquija, Concepción, Belén, El Rodeo (IMLA). Misiones: Concepción, Santa María. Jujuy: Quebrada Río Blanco (MACN). Misiones: Eldorado, Loreto (MLP).

Oncometopia tucumana Schröder. Salta: Abra Grande, Aguaray, Tartagal, San Lorenzo. Catamarca: El Rodeo, Concepción, Belén. Misiones: Iguazú. Tucumán: San Javier, Cerro San Javier, Burruyucu, Chilcas (IMLA); Tucumán: Las Tipas (MLP).

Pseudometopia amblardii (Signoret). Misiones: Iguazú (IMLA); Loreto (MLP).

Tapajosa doeringi (Berg). Catamarca: El Suncho, Belén, El Alamito, El Rodeo. San Luis: San Francisco, San Martín, Merlo, Villa de Praga, Las Chacras, Cortaderas. Córdoba: Yacanto, Agua de Oro, La Cumbre, Punilla. Río Negro: Choel Choel (IMLA). Córdoba: Calamuchita, El Sauce, Argüello, San Javier. Buenos Aires: San Blas, Bahía Blanca. La Pampa: Conelio. Misiones. Formosa (MACN). Buenos Aires: Sierra de la Ventana, Monte Hermoso. Catamarca: Chumbicha (MLP).

Tapajosa rubromarginata (Signoret). Jujuy: San Salvador, Gral. San Martín. Salta: Orán, Chalichan. Córdoba: Los Molinos, Huerta Grande. Entre Ríos: Concepción del Uruguay. Buenos Aires: Magdalena. Mendoza: Tunuyán (MLP). Jujuy: Calilegua. Salta. Chaco: Resistencia. Córdoba: Calamuchita, El Jagüel, El Sauce, Argüello, La Paz, La Falda, Alta Gracia. Santa Fé: Garay. Buenos Aires: Rosas FC Sud, Tandil. Corrientes: Monte Caseros. Mendoza: Cacheueta. Neuquén: Loncopué. Río Negro: Río Valcheta (MACN). Salta: Cafayate. Catamarca: Aconquija, El Rodeo. Tucumán: Monteros, Acheral, Aguadita, El Siambon, Monte Bello. San Juan: San Martín. San Luis: Cortaderas. Formosa: Misión Laishi, Clarinda. Misiones: Timbó, San Vicente, Puerto Bemberg. Corrientes: Paso de los Libres, Manantiales. Córdoba: Cabania, Agua de Oro, Dique Los Molinos. Santa Fé: La Gallareta, Villa Ana (IMLA).

Tapajosa similis (Melichar). Jujuy: La Isla. Salta: Cafayate, Campo Quijano, Coronel Moldes. Catamarca: El Rodeo, Arroyo de Infanzón, El Alto. Tucumán: La Mezada, Horco Molle, Trancas, San Pedro de Colalao.
Montebello, Río Chico, Tafí Viejo. Entre Ríos: Gualeguaychú (IMLA). Misiones. Salta. Chaco (MACN). Tucumán: Las Tipas (MLP).

Teletusa limpida (Signoret). Misiones: Puerto Bemberg, Puerto Iguazú (IMLA).

Tretogonia bergi Young. Misiones (MACN).

Tretogonia notatifrons Melichar. Formosa: Clorinda, Misión Laishi, Mojón de Fierro. Chaco: Colonia Benítez. Misiones: Apóstoles, San José. Corrientes: Manantiales (IMLA). Chaco: Sáenz Peña, Resistencia, Barranqueras, Zapallar. Formosa: Las Ocas, El Refugio. Misiones: Iguazú, San Ignacio. Entre Ríos: La Paz. (MLP). Misiones: Posadas. Corrientes: Ita Ibaté, Paso de la Patria, San Cosme. Santa Fé: Garay (MACN).

Discussion

The literature provided information on other species of Proconiini found in Argentina such as: *Acrogonia flaveoloides* Young, *Homalodisca ignorata* Melichar, *Molomea cincta* (Signoret), and *Phera centrolineata* (Signoret) (Gravena et al. 1998; Remes Lenicov et al. 1999; Dellapé and Paradell 2011).

The species *Diestostemma bituberculata* (Signoret), *Molomea vermiculata* (Signoret), *Molomea xanthocephala* (Germar), and *Stictoscarta sulcicollis* (Germar) were cited for Argentina by Young (1968) and Metcalf (1965), but none of them describe the province or locality where the specimens were collected.

The Proconiini, as other xylem feeding leafhoppers, are considered polyphagous and have evolved with many unusual adaptations, such as host switching, to maximize nutrient uptake (Mizell and Andersen 2001). New associations with host plants were found for 11 Argentinean sharpshooters (27.5%); the cited host plants belong to 24 families (Alliaceae, Apiaceae, Apocynaceae, Asteraceae, Bignoniaceae, Commelinaceae, Convolvulaceae, Fabaceae, Lamiaceae, Malvaceae, Meliaceae, Moraceae, Myrtaceae, Oleaceae, Oxalidaceae, Plantaginaceae, Polygonaceae, Poaceae, Rutaceae, Salicaceae, Sapindaceae, Solanaceae, Urticaceae, and Verbenaceae). Both known and new data of host plants-sharpshooter associations are summarized in Table 2.

The knowledge about natural enemies of Proconiini in Argentina is insufficient. Sharpshooter species are attacked by egg predators (Dermaptera), entomopathogenic fungus (Ascomycota) (Mariani et al. 1997; Toledo et al. 2006), and several egg parasitoids belonging Trichogrammatidae and Mymaridae families (Hymenoptera). In recent times, investigations conducted to survey the egg parasitoids of the Proconiini sharpshooters resulted in a greater and more comprehensive understanding of egg parasitoid wasps; the majority of the representatives of this guild belong to *Gonatocerus* Nees (Mymaridae), a well-known genus showing a certain degree of specificity at level-tribe, because most of its species attacks Cicadellini and Proconiini sharpshooters (Triapitsyn et al. 2010). New records of parasitoids were found for 10 species (25%). Information of known natural enemies and new data are summarized in Table 3.

In Argentina, all the species of sharpshooters were found in two zones to north of latitude 40° S: one strip that connects the northeast with the mid-east of the country, and another from the northwestern to the mid-west (Figure
1. The most diverse genera (e.g., *Aulacizes* and *Oncometopia*) were found in both places. The eastern fringe includes the Paraná forest and was the most diverse; this is deeply linked to biogeographic systems of the Brazilian territory, which has the greatest diversity of Proconiini (Dellapé et al. 2011). All the studied sites where sharpshooters were found were grouped into the corresponding biogeographic provinces (sensu Morrone 2001, 2006) (Table 4).

Tapajosa Melichar, the most widely distributed genus, was found in all the biogeographic provinces (except in the Puna); both *T. rubromarginata* and *T. doeringi* were the species with southernmost distributional range (Figure 2). *Tapajosa rubromarginata* was the most frequent and ubiquitous species, which was found in 70 localities of the Argentinean territory.

Six genera (*Cicciana* Metcalf, *Diestostemma* Amyot and Serville, *Egidemia* China, *Homalodisca* Stål, *Phera* Stål, and *Teletusa* Distant) were restricted to Paraná Forest—an evergreen forest with altitudes between 500 and 1800 m a.s.l., characterized by abundant trees over 30 m, Bambuceae, and arbustive ferns (Cabrera and Willink 1973) (Figure 3). The monotypic genus *Dechacona* Young was widely distributed in the northern part of the country, with a broad altitudinal range (from 60 to 4000 m a.s.l.) (Figure 3).

Three other genera were found in two biogeographic provinces: *Acrogonia* Stål (associated with jungle environments, both in Paraná and Yunga forest), *Anacuerna* Young (distributed in high elevations of Yunga and Puna), and *Aulacizes* Amyot and Serville (linked to forest environments and very humid localities of Chacoan subregion on the shore of the “Esteros de Iberá”) (Figure 4).

The genus *Tretogonia* Melichar (Figure 5) was found in sites of the Chaco province, with *T. notatifrons* being its most widely distributed species. *Oncometopia* Young is the genus with more species and was mostly linked to forest sites (Figure 5), but the species *O. facialis* and *O. tucumana* seemed to have more plasticity, occurring in four biogeographic provinces and a variable range of altitudes. Species of *Molomea* China were found in six different biogeographic provinces, with *M. consolida* having the widest range, as it was found to occur in 27 localities, from 60 to 2100 m a.s.l. (Figure 6).

Considering the 40 species of sharpshooters inhabiting the Argentinean territory, 19 of them (47.5%) were found only in the Paraná forest, and three species (7.5%) occurred only in the driest region of Chaco. The high elevation of Puna hosted only two species as well as Central Patagonia, where the specimens were collected in oasis located along river valleys.

The number of shared species between biogeographic provinces was low. The range of values of the Jaccard index varied between 0-1, representing complete dissimilarity between sampling for any taxon to a perfect match between sampling, respectively. The highest Jaccard index was obtained for adjacent provinces like “Prepuna-Yunga” (0.6), “Chaco-Pampa” (0.53), and “Prepuna-Monte” (0.5), while there were no shared species between “Puna-Pampa” and “Puna-Central Patagonia” (0), located very far from each other (Table 5).

This is the most comprehensive compilation of information related to species of sharpshooters in Argentina. The need for knowledge of interrelationships of insect pests
and their environment has been emphasized by several authors in order to develop effective management tactics. In this context, the information given in this study could be useful for those involved in vector-control related programs.

Acknowledgements

We thank the curators of IMLA, MLP, and MACN entomological collections, Dr. Pedro Lozada who provided data on specimens deposited in SMNS, the reviewers for helpful comments, and Lic. D.A. Barrasso for critically reading the manuscript. Gimena Dellapé is a CONICET fellowship holder.

Editor’s note

Paper copies of this article will be deposited in the following libraries. Universitaetsbibliothek Johann Christian Senckenberg, Frankfurt Germany; National Museum of Natural History, Paris, France; Field Museum of Natural History, Chicago, Illinois, U.S.A.; University of Wisconsin, Madison, Wisconsin, U.S.A.; University of Arizona, Tucson, Arizona, U.S.A.; Smithsonian Institution Libraries, Washington D.C., U.S.A.; The Linnean Society, London, England. The date of publication is given in ‘About the Journal’ on the JIS website.

References

Beltrán VM, Cáceres S, Zubrzycki H, Ploper D, Willink E, Jaldo H. 2004. CVC associated vectors in Valencia Orange of Corrientes, Argentina. Proceedings of the International Society of Citriculture, 10th International Citrus Congress 75-83.

Cabrera AL, Willink A. 1973. Biogeografia de América Latina. Serie de Biología. Monografía N° 13. OEA Press.

Costa N, Plata MI, Garrán SM, Mika R. 2009. Detección de Clorosis Variegada de los Cítricos (CVC) en el Departamento de Concordia, Provincia de Entre Ríos. XIII Jornadas Fitosanitarias Argentinas E021.

Costilla M, Basco H, Osores V. 1972. Primera cita para Tucumán del bicho llovedor de la caña Tapajosa rubromarginata (Signoret) (Homoptera: Cicadellidae), en cultivos de caña de azúcar. IDIA 28: 126-129.

De Coll OR, Remes Lenicov AMM, Agostini J, Paradell S. 2000. Detection of Xylella fastidiosa in weeds and sharpshooters in orange groves affected with Citrus Variegated Chlorosis in Misiones, Argentina. Proceeding of the 14th Conference of the International Organization of Citrus Virologists, Insect-Transmitted Procaryotes 216-222.

Dellapé G, Paradell S. 2011. First record of the genus Homalodisca (Hemiptera: Cicadellidae) from Argentina and redescription of the female of H. ignorata. Revista de la Sociedad Entomológica Argentina 70(3-4): 363-367.

Dellapé G, Virla EG, Logarzo GA, Paradell S. 2011. New records on the geographical distribution of South American sharpshooters (Cicadellidae: Cicadellinae: Proconiini) and their potential as vectors of Xylella fastidiosa. The Florida Entomologist 94(2): 364-366.

Emmrich R. 1975. Zur Kenntnis der Gattung Oncometopia Stål, 1869 (Homoptera, Cicadellidae, Cicadellinae). Entomologische Abhandlungen des Staatlichen Museums für Tierkunde Dresden 40: 277-303.
Emmrich R. 1984. Weiteres zur Kenntnis derGattung Oncometopia Stål (s. str.) (Homoptera, Auchenorrhyncha, Cicadellidae, Cicadellinae). Reichenbachia 22: 113-124.

Gravena S, Lopes JRS, Paiva PEB, Yamamoto PT, Roberto SR. 1998. The Xylella fastidiosa vectors. In: Donadio LC, Moreira CS, Editors. Citrus Variegated Chlorosis. pp. 36-53. Estação Experimental de Citricultura.

Haelterman RM, Nome CF, Docampo DM, Nome SF. 1996. Hospedantes de Xylella fastidiosa, bacteria causal de la escaldadura del borde de la hoja del almendro (Prunus amygdalus). Revista de Investigaciones Agropecuarias INTA 26(2): 65-72.

Hopkins DL. 1989. Xylella fastidiosa: Xylem-limited bacterial pathogen of plants. Annual Review of Phytopathology 27: 271-290.

Logarzo GA, Virla EG, Triapitsyn SV, Jones W. 2004. Biology of Zagella delicata (Hymenoptera: Trichogrammatidae) an egg parasitoid of the sharpshooter Tapajosa rubromarginata (Hemiptera: Cleypeorrhyncha: Cicadellidae) in Argentina. The Florida Entomologist 87(4): 511-516.

Logarzo GA, De León JH, Triapitsyn SV, Gonzalez RH, Virla EG. 2006. First report of a Proconiine Sharpshooter, Anacuerna centrolinea (Hemiptera: Cicadellidae), in Chile, with notes on its biology, host plants, and egg parasitoids. Annals of the Entomological Society of America 99(5): 879-883.

Luft Albarracin E, Triapitsyn SV, Virla EG. 2009. An annotated key to the genera of Mymaridae (Hymenoptera: Chalcidoidea) in Argentina. Zootaxa 2129: 1-28.

Mariani R, Vera L, Virla EG. 1997. Aportes al conocimiento de Doru lineare (Dermaptera, Forficulidae), un insecto de importancia agronómica en el noroeste argentino. CIRPON Revista de Investigación X(1-4): 13-18.

Marucci RC, Cavichioli RR, Zucchi RA. 2002. Espécies de cigarrinhas (Hemiptera, Cicadellidae, Cicadellinae) em pomares de citros da região de Bebedouro, SP, com descrição de uma espécie nova de Acrogonia Stål. Revista Brasileira de Entomologia 46: 149-164.

Marucci RC, Lopes JRS, Cavichioli RR. 2008. Transmission Efficiency of Xylella fastidiosa by Sharpshooters (Hemiptera: Cicadellidae) in Coffee and Citrus. Journal of Economic Entomology 101(4): 1114-1121.

McKamey SH. 2007. Taxonomic catalogue of the leaffoppers (Membracoidea). Part 1. Cicadellinae. Memoirs of the American Entomological Institute 78: 1-394.

Metcalf ZP. 1965. General Catalogue of the Homoptera. Fascicle IV, Part 1 Tettigellidae. Agricultural Research Service, United States Department of Agriculture.

Mizell III RF, Andersen P. 2001. Keys to management of glassy-winged sharpshooter: interactions between host plants, malnutrition and natural enemies. Proceedings of the Pierce’s Disease Research Symposium 81-84.

Moreno CE. 2001. Métodos para medir la biodiversidad. MandT–Manuales y Tesis SEA, Volumen 1. Zaragoza.

Morrone JJ. 2001. Biogeografia de América Latina y el Caribe. MandT–Manuales y Tesis SEA, Volumen 3. Zaragoza.
Morrone JJ. 2006. Biogeographic areas and transition zones of Latin America and the Caribbean islands based on panbiogeographic and cladistic analyses of the entomofauna. *Annual Review of Entomology* 51: 467-94.

Nome SF, Haelterman RM, Docampo DM, Prataviera AG, Di Feo L, Del V. 1992. Escaldadura de las hojas del almendro en Argentina. *Fitopatologia Brasileira* 17(1): 57-60.

Paradell S. 1995. Especies argentinas de homópteros Cicadélicos asociados al cultivo de maíz Zea mays L. *Revista de la Facultad de Agronomía* 71(2): 213-234.

Pilkington LJ, Irvin NA, Boyd EA, Hoddle MS, Triapitsyn SV, Carey BG, Jones WA, Morgan DJW. 2005. Introduced parasitic wasps could control glassy-winged sharpshooter. *California Agriculture* 59: 223-228.

Rakitov R, Dietrich C. 2001. Evolution and historical ecology of the Proconiini sharpshooters. *Proceedings of the Pierce’s Disease Research Symposium* 139-140.

Redak R, Purcell A, Lopes JRS, Blua M, Mizell RF III, Andersen P. 2004. The biology of Xylem Fluid-Feeding Insect Vectors of Xylella fastidiosa and their relation to disease epidemiology. *Annual Review of Entomology* 49: 243-270.

Remes Lenicov AMM, Tesón A. 1985. Cicadélicos que habitan los cultivos de arroz (Homoptera, Cicadellidae). *Revista de Investigaciones Agropecuarias INTA* 20(1): 131-141.

Remes Lenicov AMM, Paradell S, Virla EG, Mariani R, Costamagna A, Varela G. 1997. Cicadélicos y Delfácidos perjudiciales al cultivo de maíz en la República Argentina (Insecta - Homoptera). *VI Congreso de Maíz* I: 58-74.

Remes Lenicov AMM, Virla EG, Manca ME. 1998. Difusión de Tapajosa rubromarginata (Homoptera: Cicadellidae) sobre cultivos cerealeros de la Argentina. *Revista de la Sociedad Entomológica Argentina* 57(1-4): 18.

Remes Lenicov AMM, Paradell S, De Coll OR, Agostini J. 1999. Cicadélinos asociados a citruss afectados por Clorosis Variegada (CVC) en la República Argentina (Insecta: Homoptera: Cicadellidae). *Revista de la Sociedad Entomológica Argentina* 58(3-4): 211-225.

Remes Lenicov AMM, Paradell S, Virla EG. 2004. Homoptera: Fulgoromorpha y Cicadomorpha. In: Cordo HA, Logarzo GA, Braun K, Di Iorio OR, Editors. *Catálogo de Insectos fitófagos de la Argentina*. pp. 330-342. Sociedad Entomológica Argentina Press.

Roberto SR, Coutinho A, Lima JEO, Miranda VS, Carlos EF. 1996. Transmissão de Xylella fastidiosa pelas cigarrinhas Dilobopterus costalimai, Acrogonia terminalis e Oncometopia facialis em citros. *Fitopatologia Brasileira* 21(4):517-518.

Schröeder H. 1959. Taxionomische und tiergeographische Studien an neotropischen Zikaden (Cicadellidae, Tettigellinae). *Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft* 499: 1-93.

Silva MRL, Meneguim AM, Paião FG, Meneguim L, Canerti MG, Leite Jr RP. 2007.
Infectividade Natural por *Xylella fastidiosa* Wells et al. de Cicadelineos (Hemiptera: Cicadellidae) de Lavouras Cafeeiras do Paraná. *Neotropical Entomology* 36(2): 274-281.

Toledo AV, Virla EG, Humber RA, Paradell S, López Lastra CC. 2006. First record of *Clonostachys rosea* (Ascomycota: Hypocreales) as an entomopathogenic fungus of *Oncometopia tucumana* and *Sonesimia grossa* (Hemiptera: Cicadellidae) in Argentina. *Journal of Invertebrate Pathology* 92(1): 7-10.

Triapitsyn SV, Logarzo GA, Virla EG, De León JH. 2007. A new species of *Gonatocerus* (Hymenoptera: Mymaridae) from Argentina, an egg parasitoid of *Tapajosa rubromarginata* (Hemiptera: Cicadellidae). *Zootaxa* 1619: 61-68.

Triapitsyn SV, Logarzo GA, De León JH, Virla EG. 2008. A new *Gonatocerus* (Hymenoptera: Mymaridae) from Argentina, with taxonomic notes and molecular data on the *G. tuberculifemur* species complex. *Zootaxa* 1949: 1-29.

Triapitsyn SV, Huber JT, Logarzo GA, Berezovskiy VV, Aquino DA. 2010. Review of *Gonatocerus* (Hymenoptera: Mymaridae) in the Neotropical region, with description of eleven new species of *Gonatocerus*. *Zootaxa* 2456: 1-243.

Virla EG, Logarzo GA, Jones W, Triapitsyn SV. 2005. Biology of *Gonatocerus tuberculifemur* (Ogloblin) (Hymenoptera: Mymaridae), an egg parasitoid of the sharpshooter, *Tapajosa rubromarginata* (Hemiptera: Cicadellidae). *The Florida Entomologist* 88(1): 67-71.

Virla EG, Cangemi L, Logarzo GA. 2007. Suitability of different host plants for nymphs of the Sharpshooter *Tapajosa rubromarginata* (Hemiptera: Cicadellidae: Proconini). *The Florida Entomologist* 90(4): 766-769.

Virla EG, Logarzo GA, Paradell S, Triapitsyn SV. 2008. Bionomics of *Oncometopia tucumana* (Hemiptera: Cicadellidae), a sharpshooter from Argentina, with notes on its distribution, host plants, and egg parasitoids. *The Florida Entomologist* 91(1): 55-62.

Virla EG, Luft Albarracin E, Triapitzyn SV, Viggiani G, Logarzo GA. 2009. Description and biological traits of a new species of *Paracentrobia* (Hymenoptera: Trichogrammatidae), an egg parasitoid of the sharpshooter *Tapajosa rubromarginata* (Hemiptera: Cicadellidae) in Argentina. *Studies on Neotropical Fauna and Environment* 44(1): 47-53.

Wilson MR, Turner JA, Mckamey SH. 2009. Sharpshooter Leafhoppers of the World (Hemiptera: Cicadellidae subfamily Cicadellinae). Amgueddfa Cymru - National Museum Wales. Available online, http://naturalhistory.museumwales.ac.uk/Shar pshooters

Yamamoto PT, Roberto SR, Praia-Júnior WD, Felippe MR, Miranda VS, Teixeira DC, Lopes JRS. 2000. Transmissão de *Xylella fastidiosa* pelas cigarrinhas *Homalodisca ignorata*, *Acrogonia virescens* e *Molomea cincta* (Hemiptera: Cicadellidae) em plantas cítricas. *Summa Phytopathology* 26(1): 128.

Young DA. 1968. Taxonomy study of the Cicadellinae (Homoptera: Cicadellidae). Part 1 Proconini. United States National Museum Bulletin 261. Smithsonian Institution Press.
Table 1. Geographic distribution of the Proconiini in Argentina by provinces, according to political divisions. The species Diestostemma bituberculata, Molomea vermiculata, M. xanthocephala, and Stictoscarta sulcicollis are not listed due to the lack of information about the collection site.

* Bibliographic data of distribution: (A) New records for Argentina; (B) New record for province(s); (C) New locality/localities; (*) Vector species of Xylella fastidiosa according to Roberto et al. (1996) and Yamamoto et al. (2000).

Species	Misiones	Corrientes	Salta	Tucumán	Jujuy	Catamarca	Buenos Aires	Formosa	Entre Ríos	Chaco	Córdoba	Santa Fé	San Luis	Río Negro	La Pampa	La Rioja	San Juan	Mendoza	Neuquén
Acrogonia flaveloides																			
Acrogonia virescens	A	A																	
Anacuerma centralina																			
Aulacizes basalis	A	A																	
Aulacizes conspersa	B																		
Aulacizes insistans	A																		
Aulacizes obsOLEta	A																		
Aulacizes quadripunctata	B																		
Cicciana latreillei	A																		
Dechacona missionum	*	*	C	B	B	B													
Diestostemma pyloca	A																		
Egidemia speculifera	B																		
Homalodiscus ignotus	A																		
Molomea cincta	*																		
Molomea consolda	C	B	B	B	B	B													
Molomea lineiceps	B	B	B	B	C	*													
Ochrostacta diadema	B	*	B	B		B													
Ochrostacta physcephala	B	B																	
Oncometopia expansa	A																		
Oncometopia facialis	A	B	B	B															
Oncometopia fusca	A																		
Oncometopia rubescens	A																		
Oncometopia tucumanana	B	C	C	*															
Oncometopia venenta	A																		
Phera carbonaria	A																		
Phera centralineata	A																		
Phera obtusifrons	A																		
Pseudometopia ambardi	A																		
Tapajosa doeringi	B	B	B		B	B													
Tapajosa rubromarginata	B	B	C	B	B	B													
Tapajosa similis	B	B	B	B		B													
Teleutusa limida	B																		
Tretogonia berti	B	*																	
Tretogonia callifera	A																		
Tretogonia cribata	A																		
Tretogonia notatifrons	C	C			*	B													

Total species: 30 11 9 7 7 6 6 6 5 5 4 2 2 1 1 1 1 1
Table 2. Host plants records of the sharpshooters occurring in Argentina.

Family	Host plants	Sharpshooters
Alliaceae	Allium sativum L. “garlic”	Tapajosa rubromarginata
Apsiaceae	Daucus carota L. “carrot”	Tapajosa rubromarginata
Apocynaceae	Rauvolfia ligustina R & S.	Tretogonia notatifrons
Asteraceae	Baccharis spp.	Tapajosa rubromarginata
	Dahlia pinnata L.	Tapajosa rubromarginataa
	Conyza spp.	Dechacona missioun, Molomea consolida, Tapajosa rubromarginata
	Helianthus annus L. “sunflower”	Tretogonia notatifrons
	Mikania spp.	Molomea consolida
Bignoniaceae	Tabebuia lapacho L.	Tapajosa rubromarginataa
	Tecoma stans (L.) Juss. ex Kunth “yellow trumpet-flower”	Oncometopia tucumanata, Molomea consolida,
Commelinaceae	Commelina erecta L.	Tapajosa rubromarginata
Convolvulaceae	Ipomea spp.	Tapajosa rubromarginata
Fabaceae	Bauhinia forficata Link.	Oncometopia tucumanata
	Glycine max (L.) “soy bean”	Tapajosa rubromarginata
	Medicago sativa L.	Tapajosa rubromarginata
	Phaseolus vulgaris L. “bean”	Dechacona missioun
	Trifolium spp. “white clover”	Dechacona missioun
	Vigna ungiculata (L.) Walp. “cowpea”	Tapajosa rubromarginata
Lamiaceae	Mentha spp. “mint”	Tapajosa rubromarginata
Malvaceae	Chorisia spp.	Tapajosa rubromarginata
	Gossypium sp. “cotton”	Tretogonia notatifrons
	Sida rhombifolia L.	Tapajosa rubromarginata
Meliaceae	Cedrela lilloi C.DC.	Oncometopia tucumanataa
Moraceae	Morus nigra L.	Tapajosa rubromarginata
Myrtaceae	Psidium guaiava L.	Oncometopia tucumanata
Oleaceae	Ligustrum lucidum Aiton	Oncometopia tucumanata
Oxalidaceae	Oxalis spp.	Dechaona missioun
Plantaginaceae	Plantago spp.	Tapajosa rubromarginata
	Avena sativa L. “oats”	Tapajosa rubromarginata
	Bromus spp.	Tapajosa rubromarginata
Poaceae	Cornus spp.	Tapajosa rubromarginata
	Cynodon dactylon (L.) Pers.	Dechaona missioun
	Oryza sativa L. “rice”	Tretogonia berger, Tretogonia notatifrons, Dechaona missioun
	Papilion spp.	Tapajosa rubromarginata
	Saccharum officinarum L. “sugarcane”	Tapajosa rubromarginata
	Setaria spp.	Tapajosa rubromarginata
	Sorghum halepense L. “Johnson grass”	Tapajosa rubromarginata, Oncometopia tucumanata, Dechaona missioun, Tapajosa rubromarginata
	Sorghum vulgare (Pers.)	Tapajosa rubromarginata
	Zea mays L. “corn”	Tapajosa rubromarginata, Oncometopia tucumanata, Dechaona missioun, Molomea consolida, Tretogonia notatifrons
Polygonaceae	Ruprechtia laxiflora Meinier	Oncometopia tucumanata
Rutaceae	Citrus sinensis Osbeck “sweet orange”	Acerogonia flavoeoloides, Molomea consolida, Oncometopia facialis, Phera centralineata, Molomea lineiceps
	Citrus limon (L.) Burm. “lemon”	Oncometopia tucumanata
Salicaceae	Populus spp. “poplar”	Tapajosa rubromarginata
Sapindaceae	Diospyros kaki L.	Tapajosa rubromarginata
Sorolaceae	Diatessaryx sorbifolia Radlk.	Oncometopia tucumanata
	Coptis chinensis L. “peppers”	Tretogonia notatifrons
	Solanum gracile Otto	Tapajosa rubromarginata
	Solanum nigrum L. “tomato”	Tapajosa rubromarginata
	Solanum sisymbriifolium Lam.	Tretogonia notatifrons
	Solanum tuberosum L. “potato”	Dechaona missioun
Urticaceae	Urtica dioica L.	Oncometopia tucumanata
Verbenaceae	Lantana camara L.	Tapajosa rubromarginata, Oncometopia tucumanata, Tapajosa simili

1Remes Lenicov and Tesón (1985), 2Remes Lenicov et al. (1998), 3Remes Lenicov et al. (1999), 4Beltrán et al. (2004), 5Virla et al. (2007), 6Virla et al. (2008). The data without references are new records.
Table 3. Summarized records of natural enemies of the Argentinean Proconiini sharpshooters (*)

Species	Records of natural enemies
Anacurna centrolina	**Gonatocerus tuberculiferum** (Ogolbin) (Hymenoptera: Myrmaridae) (Logarzo et al. 2006).
Dectacona missionum	**Anagrus brevipilhomma Say**; **Gonatocerus virilis** Triapitsyn; Logarzo & de León (Luft Albarracín et al. 2009).
Molomea consolda	**G. virilis** (Luft Albarracín et al. 2009). The egg masses are parasitized by two unidentifie species of **Gonatocerus** (Myrmaridae), one of **Oligosia Walker**, one of **Zagella**, and one of **Paracentrobia** (Trichogrammatidae).
Oncometopia lineiceps	**Gonatocerus annulicornis** (Ogolbin) (Hym.: Myrmaridae).
Oncometopia rubescens	**Gonatocerus sat Triapitsyn** (Triapitsyn et al. 2010)
Oncometopia tucumana	**Gonatocerus annulicornis** (Ogolbin); **G. tuberculiferum** (Triapitsyn et al. 2010).
Pseudometopia ambardi	**Gonatocerus sat** (Triapitsyn et al. 2010)
Tajosia rubromarginata	**Dory lineare** (Echsholtz) (Dermoptera: Forsiculidae) (Mariani et al. 1997), **Zagella delicata De Sarris** (Hym.: Trichogrammatidae) (Logarzo et al. 2004); **Gonatocerus tuberculiferum** (Virla et al. 2005); **G. virili** (Triapitsyn et al. 2007); **G. dekoni** Triapitsyn, Logarzo & Virla (Triapitsyn et al. 2008); **Paracentrobia tapajosae Virlia** (Morrone et al. 2010).
Tajosia similis	**Gonatocerus virilis** (Triapitsyn et al. 2010). We obtain, by the exposure of sentinel eggs, the following parasitoids: **G. tuberculiferum** (Hym.: Myrmaridae), one species of **Zagella**, one species of **Paracentrobia sp.** and one species of **Oligosia** (Hym., Trichogrammatidae).
Trettogonia noratifs	**Gonatocerus logarzoi Triapitsyn, G. virilis, G. annulicornis** (Triapitsyn et al. 2010)

(*) The data without references are new records.

Table 4. Distribution of the Argentinean Proconiini sharpshooters into the biogeographic provinces (according to Morrone 2001, 2006). The range of elevation of the localities in which each species occurs is given.

Species	Parana, Uru Discussão	Chaco	Yungas	Pampa	Monte	Puna	Central Patagonia	Range of Elevation (m.a.s.l.)	Total number of species in localities in South America	Species richness
Acrocnia flavosilicoides	x								1	1
Acrocnia virescens	x								3	3
Anacurna centrolina	x								170-370	5
Aulacizes basilis	x								1300-3480	5
Aulacizes conspersa		x							80-820	2
Aulacizes insistant	x								170	1
Aulacizes obsoleta	x								170	1
Aulacizes quadrinaculata	x								100-630	11
Ciccia laeaei									170	1
Dectacona missionum	x x x x x								60-4000	25
Diastostemma tryloca	x								170	1
Eglidemia speculifera	x								100-550	4
Helodiscus ignotus	x								170	1
Molomea cinia	x								65	1
Molomea consolda	x x x x x								60-2100	27
Molomea lineiceps	x x x x x								4-540	17
Ochrostacta didamea	x x								20-85	7
Ochrostacta physophila	x								80-150	3
Oncometopia expansa	x								120-170	2
Oncometopia facialis	x x x x								63-1400	24
Oncometopia fusca	x								165-210	2
Oncometopia rubescens		x							125	1
Oncometopia tucumana	x x x x								170-1540	24
Oncometopia venata	x								125	1
Phera carbonaria	x x								100-185	4
Phera centrellinae	x x x x								190	1
Phera obtusiforms	x								550	1
Pseudometopia ambardi	x x x x x								165-170	2
Trepajosa doeringi	x x x x x								5-1250	27
Trepajosa rubromarginata	x x x x x								7-13400	70
Trepajosa similis	x x x x x								22-1900	21
Telestus limpidus	x								100-170	2
Trepajosa herti	x x x x								40-300	6
Trepajosa callilera	x								60	2
Trepajosa eriba	x								40-110	2
Trepajosa notatifs	x x x x x								18-425	27
Species richness	31	15	9	8	7	5	2			
Table 5. Matrix of Jaccard Similarity Coefficient between Argentinean biogeographic provinces hosting Proconiini sharpshooter species.

	Paraná Forest	Chaco	Yunga	Prepuná	Puna	Monte	Pampa	Central Patagonia
Paraná Forest	1							
Chaco	0.31	1						
Yunga	0.21	0.41	1					
Prepuná	0.18	0.47	0.6	1				
Puna	0.02	0.06	0.22	0.12	1			
Monte	0.12	0.25	0.27	0.5	0.17	1		
Pampa	0.18	0.53	0.31	0.25	0	0.44	1	
Central Patagonia	0.05	0.13	0.1	0.29	0	0.4	0.25	1

Figure 1. Distribution of the Proconiini sharpshooters in Argentina (black dots). White dots indicate sampled localities without occurrence of Proconiini species. High quality figures are available online.

Figure 2. Distribution of the species of genus *Tapajosa* Melichar: *T. doeringi* (○), *T. rubromarginata* (●) and *T. similis* (Δ). High quality figures are available online.
Figure 3. Distribution of the genera *Cicciana* Metcalf (●), *Dechacona* Young (●), *Diestostemma* Amyot and Serville (○), *Egidemia* China (▲), *Homalodisca* Stål (+), *Phera* Stål (Δ), and *Teletusa* Distant (○). High quality figures are available online.

Figure 4. Distribution of the genera *Acrogonia* Stål (●), *Anacuerna* Young (▲), and *Aulacizes* Amyot and Serville (○). High quality figures are available online.

Figure 5. Distribution of the genera *Oncometopia* Stål (▲) and *Tretogonia* Melichar (○). High quality figures are available online.
Figure 6. Distribution of the genus *Molomea* China (●). High quality figures are available online.