Linear structural evolution induced tunable photoluminescence in clinopyroxene solid-solution phosphors

Zhiguang Xia¹, Yuanyuan Zhang¹, Maxim S. Malakeev², Victor V. Atuchin³ & Yi Luo¹

¹School of Materials Sciences and Technology, China University of Geosciences, Beijing 100083, China, ²Laboratory of Crystal Physics, Institute of Physics, SB RAS, Krasnoyarsk 660036, Russia, ³Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090, Russia.

Clinopyroxenes along the Jervisite (NaScSi₂O₆) – Diopside (CaMgSi₂O₆) join have been studied, and a solid-solution of the type (Na₁₋ₓCaₓ)(Sc₁₋ₓMgₓ)Si₂O₆ has been identified in the full range of 0 ≤ x ≤ 1. The powder X-ray patterns of all the phases indicate a structural similarity to the end compounds and show smooth variation of structural parameters with composition. The linear structural evolution of iso-structural (Na₁₋ₓCaₓ)(Sc₁₋ₓMgₓ)Si₂O₆ solid-solutions obeying Vegard’s rule has also been examined and verified by high resolution transmission electron microscopy (HRTEM). The continuous solid-solutions show the same structural type, therefore the photoluminescence spectra of Eu²⁺ doped samples possess the superposition of spectral features from blue-emitting component (CaMgSi₂O₆:Eu²⁺) and yellow-emitting one (NaScSi₂O₆:Eu²⁺). This indicates that the spectroscopic properties of (Na₁₋ₓCaₓ)(Sc₁₋ₓMgₓ)Si₂O₆ clinopyroxene solid-solutions are in direct relations with structural parameters, and it is helpful for designing color-tunable photoluminescence with predetermined parameters.

White light-emitting diodes (w-LEDs) lighting can offer many benefits, and nowadays phosphor-converted w-LEDs utilizing phosphors to convert the radiation of a near-UV or blue LED chip into white light are paid more attentions. Although yellow-emitting Y₃Al₅O₁₂:Ce³⁺ based phosphors pumped by blue LEDs are commercial available, however, low color rendering index and high color temperature for the lack of sufficient red emission restrict its wide application. As an improved way, three-band w-LEDs with excellent light quality were proposed by the combination of the blue-emitting GaN-based LED with green and red phosphors, or pumping tricolor phosphors with near-UV or violet LED. Alternatively, it is also an excellent strategy to develop a single-phase white-emitting phosphor, and the conventional single-phase white phosphors were designed with the codoped tricolor emitting activator ions and the energy transfer among them, such as Eu²⁺-Mn²⁺ system, Ce³⁺-Mn²⁺ system, Eu²⁺-Tb³⁺-Mn²⁺ system, Ce³⁺-Tb³⁺-Mn²⁺ system, and so on. However, the investigations on single-doped activator with full-color-emitting phosphors were rarely reported. Such a way can be principally realized by designing the activator ions entering different crystallographic sites and showing corresponding full-color emission in the single host system. Herein we reveal a new approach to realizing the color-tunable photoluminescences through spectral mixing in the composition-controlled solid-solution system, as reported in the present study of iso-structural clinopyroxene solid-solution phosphors (Na₁₋ₓCaₓ)(Sc₁₋ₓMgₓ)Si₂O₆:Eu²⁺.

Pyroxenes belong to the group of chain silicates with the general formula [M²][M¹]T₂O₆. The mineral group of the pyroxenes shows rich crystal chemistry due to the wide range of possible cationic substitutions. Their possible space groups are C2/c, P2₁/c and P2₁/n depending on their chemical composition and genetic history, in which monoclinic pyroxenes forming in the C2/c structures are called clinopyroxenes. In the course of the present investigation, we report on the binary solid-solution series of Jervisite (NaScSi₂O₆) – Diopside (CaMgSi₂O₆) with a coupled Na⁺—Ca⁺ and Sc³⁺—Mg²⁺ substitution. The Ca-rich clinopyroxene—diopside with ideal end-member composition of CaMgSi₂O₆ is an important component of both mafic and ultramafic rocks, and CaMgSi₂O₆:Eu²⁺ has been previously proposed as a blue-color phosphor (with peak emission at ~449 nm). NaScSi₂O₆:Eu²⁺ has been recently developed in our group as a new yellow-emitting phosphor with peak at 532 nm. Since the two phosphor systems show blue and yellow emission, color-tunable photoluminescence and even the single-phase white phosphors can be expected among them. However, no detailed structural
investigations have been produced so far along this solid-solution series, and no studies of photoluminescence properties in (Na$_{1-x}$Ca$_x$)(Sc$_{1-y}$Mg$_y$)Si$_2$O$_6$:Eu$^{2+}$ have been reported.

Results

Determination and evidence of linear structural evolution. The chemical composition of the samples can be generalized as (Na$_{1-x}$Ca$_x$)(Sc$_{1-y}$Mg$_y$)Si$_2$O$_6$:0.03Eu$^{2+}$ (0 ≤ x ≤ 1). The XRD patterns recorded from the (Na$_{1-x}$Ca$_x$)(Sc$_{1-y}$Mg$_y$)Si$_2$O$_6$:0.03Eu$^{2+}$ (x = 0, 0.2, 0.4, 0.6, 0.8 and 1.0) solid-solution can be very well refined as the one-phase patterns, corresponding to any one of the JCPDS card files of NaScSi$_2$O$_6$ (JCPDS, 82-0532), a = 9.837(2) Å, b = 9.055(5), c = 5.3488(6) Å, β = 107.175(5)$^\circ$, V = 455.20(4) Å3, and CaMgSi$_2$O$_6$ (JCPDS, 78-1390), a = 9.751(3), b = 8.931(3), c = 5.2552(2) Å, β = 105.89(3)$^\circ$, V = 440.2(2) Å3. (Supporting Information, Figure S1). In order to further examine the phase purity and cation site occupancy in the solid-solution phosphors at each composition of x = 0, 0.2, 0.4, 0.6, 0.8 and 1.0, the respective Rietveld difference plots and the fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters were defined, which are given in the supporting information (Figure S2–S7 and Table S1–S6). The main parameters of processing and refinement of the (Na$_{1-x}$Ca$_x$)(Sc$_{1-y}$Mg$_y$)Si$_2$O$_6$:0.03Eu$^{2+}$ solutions are given in Table S7. It is found that the refined x values are in good relation with nominal x values taken in the designed compositions. Furthermore, there are no additive superstructure peaks observed in the XRD patterns, and this indicates the absence of Na/Ca and Mg/Sc ordering. Thus, the ions are randomly mixed at atomic level. As a further examination of the utility of the Na$^{2+}$/Ca$^{2+}$ and Sc$^{3+}$/Mg$^{2+}$ substitutions, the unit cell parameters (a, b, c and V) of solid-solution series obtained from Rietveld analysis are given in Figure 1. All the three unit cell parameters and unit cell volume are proportional to x values, which also verified that the solutions are iso-structural. There are not any structural kinks over the composition range of 0 ≤ x ≤ 1. It is the most interesting to find that the parallel substitution in two cation sublattice obeys excellent Vegard’s rule for structural parameters with the linear fitting factors (R2) in the range of 0.9949–0.997615

According to linear structural evolution, solid-solution phosphor with composition of (Na$_{0.7}$Ca$_{0.3}$)Sc$_{0.691(6)}$Mg$_{0.309(6)}$Si$_2$O$_6$:0.03Eu$^{2+}$ was selected, and its structure was carefully refined (Figure 2). There is no impurity peaks detected in the pattern, and it is iso-structural to CaMgSi$_2$O$_6$ and NaScSi$_2$O$_6$ compounds as discussed above. Furthermore, as an example, we have also refined the Eu$^{2+}$ sites in (Na$_{0.7}$Ca$_{0.3}$)Sc$_{0.7}$Mg$_{0.3}$Si$_2$O$_6$ system. It is proposed that the model (Ca$_{0.97}$Na$_{0.03}$)Sc$_{0.7}$Mg$_{0.3}$Si$_2$O$_6$ should be in good relation with effective ion radii system earlier obtained for oxides. As it was discussed above, NaScSi$_2$O$_6$ and CaMgSi$_2$O$_6$ can form a complete series of solid-solutions. In the solutions, the replacement of Mg$^{2+}$ by Sc$^{3+}$ in the M1 site is strongly accompanied by a Ca$^{2+}$ replacement by Na$^{+}$ in the M2 site, to assure the charge balance. The polyhedral representation of the structure of (Na$_{0.7}$Ca$_{0.3}$)Sc$_{0.7}$Mg$_{0.3}$Si$_2$O$_6$:0.03Eu$^{2+}$ solid-solution, and both the co-existing (Sc/Mg) octahedra and (SiO$_4$) tetrahedra are shown in the inset of Figure 2. In this structure, the cations of Na$^{+}$, Ca$^{2+}$ and Eu$^{2+}$ possess the same crystallographic positions.

Coexistence and the element distribution of Na, Sc, Ca, Mg, Si and O in the solid-solution series was examined and verified by the HRTEM and the corresponding Energy Dispersive X-ray Spectrometry (EDS) analysis as shown in Figure 3a–b. Figure 3a shows the TEM image obtained from the selected solid-solution crystal of representative composition with x = 0.4, and all the elements can be detected in the solid-solution from one complete microcrystal sample (red square region) (Figure 3b). The fine structures of typical (Na$_{1-x}$Ca$_x$)(Sc$_{1-y}$Mg$_y$)Si$_2$O$_6$:Eu$^{2+}$ solid-solution phosphor samples are further examined by HRTEM and fast Fourier transform (FFT) images as show in Figure 3c–f suggesting the different selected compositions (x = 0 for Figure 3c, x = 0.4 for Figure 3d, x = 0.8 for Figure 3e and x = 1 for Figure 3f). Both of the HRTEM and FFT patterns recorded for the selected samples indicated that there were not significant structural defects in these single-phase samples and
confirmed the highly single-crystalline nature. It could be seen in Figure 3 (d) and 3(f) that the continuous lattice fringes measurements with d spacings of 0.458 nm and 0.362 nm could be assigned to the corresponding (020) and (111) planes with conventional d spacing 0.452 nm for NaScSi2O6 or 0.447 nm for CaMgSi2O6 and 0.366 nm for CaMgSi2O6 or 0.367 for NaScSi2O6. From the above discussion on XRD analysis, the behavior of structural parameters in the (Na1-xCa)x(Sc1-xMgx)Si2O6 (0 ≤ x ≤ 1) solid-solutions is in line with Vegard’s rule. Therefore, we tried to find the similar relationship in the microstructure. Accordingly, we could transfer the measured d spacings in different orientation into the same d spacing value of [020] based on the classic Bragg equation19. As is shown in Figure 3c–f, d-spacings of the principal planes are about 0.304 nm corresponding to (221), 0.336 nm corresponding to (021) and 0.362 nm corresponding to (111) for samples with compositions of x = 0.4, x = 0.8 and x = 1. Therefore, d spacing of normalized (020) were 0.458 nm, 0.452 nm, 0.446 nm and 0.442 nm, for the four selected samples of (Na1-xCa)x(Sc1-xMgx)Si2O6Eu2+ with x = 0, 0.4, 0.8 and 1, respectively. In order to verify the relationship of the structure and the composition in this series of samples, Figure S8 gives the d spacings of normalized (020) planes as a function of x values in (Na1-xCa)x(Sc1-xMgx)Si2O6 solid-solution series. The excellent linear structural evolution of d-spacings in the (020) planes can be also found in the selected samples with the variation of x values.

Tunable photoluminescence and its application in pc-LEDs. The interesting linear structural evolution of iso-structural (Na1-xCa)x(Sc1-xMgx)Si2O6 solid-solution have been found above. However, if the linear behavior of structural parameters is linked with spectroscopic properties, it can be helpful for designing crystal hosts with color-tunable photoluminescence since the changes in spectra can be caused by changes in the Eu2+ center environment. In the case of pyroxenes, CaMgSi2O6:Eu2+ was previously reported as a blue-emitting phosphor and NaScSi2O6:Eu2+ phosphor shows yellow emission. Therefore, Na environment of Eu2+ center leads to spectrum with maximum in yellow region, and Ca environment produce another emission centers in blue region, and the nature on the Eu2+ emission and their variation on the emission color will be discussed below. We believe that the variation of blue/yellow emission intensity ratio is expected to be adjusted by the composition value x in (Na1-xCa)x(Sc1-xMgx)Si2O6:Eu2+ solid-solution phosphors. The PL spectra of (Na1-xCa)x(Sc1-xMgx)Si2O6:0.03Eu2+ solid-solution phosphors upon 365 nm excitation are shown in Figure 4a. Among them, the activator concentration of Eu2+ was fixed at the optimal value (0.03) and the composition of x in (Na1-xCa)x(Sc1-xMgx)Si2O6 solid-solution was varied over the range of x = 0–1. When x = 0, it denotes NaScSi2O6:Eu2+ phosphor, which exhibits a yellow emission band extending from 410 to 700 nm with a maximum at ~532 nm. With the continuous introduction of CaMgSi2O6 a blue emission band corresponding to the luminescence of CaMgSi2O6:Eu2+ phosphor appears and its intensity enhanced with x increasing. Therefore, the as-prepared solid-solution phosphors exhibit a tunable color emission under UV excitation from yellow to blue experiencing the white light emission region. The digital images of some selected phosphors under 365 nm UV lamp are shown in the inset of Figure 4a, and the corresponding visible light emission (yellow → white → blue color) can be clearly observed with increasing x value. Furthermore, the right inset in Figure 4a shows the PLE of the selected (Na0.7Ca0.3)(Sc0.7Mg0.3)Si2O6:0.03Eu2+ sample, and the similar broad excitation bands monitored by two different emission centers, yellow emission center at 532 nm and blue emission at 449 nm, have been clearly found ranging from 200 to 450 nm, which are both ascribed to the transitions of Eu2+ between the ground state 4f7 and the crystal-field split 4f5d configuration20. The above spectral results indicate that this series of phosphors can be used as the color-tunable or a single-phase white-emitting phosphor in w-LEDs. We have also measured the absolute quantum efficiency of (Na0.7Ca0.3)(Sc0.7Mg0.3)Si2O6:0.03Eu2+ phosphor, and the value is 12.2%. It is found that luminescence efficiency of the solid-solution phase is not high in such a condition; however, we should notice that quantum efficiencies can be modified by the controlling of the phosphor particle size, size distribution, morphology and crystalline defects. The optimization of the luminescence properties can be developed. As an illustration, the EL spectrum of a fabricated w-LED lamp by using single (Na0.7Ca0.3)(Sc0.7Mg0.3)Si2O6:0.03Eu2+ phosphor sample and a n-UV LED chip (λex = 370 nm) and the photographs of the w-LED lamp package are demonstrated in the inset of Figure 4b. The EL spectrum clearly shows a n-UV chip emission peak at ~370 nm, a blue emission band at ~454 nm and a yellow emission band at ~537 nm.
corresponding to the two different emission centers in (Na$_{0.7}$Ca$_{0.3}$)(Sc$_{0.7}$Mg$_{0.3}$)Si$_2$O$_6$:0.03Eu$^{2+}$ phosphor. The EL spectral measurement result reveals that CIE color coordinates are (0.303, 0.421) at a cold white light correlated color temperature (CCT) of 6403 K and a CRI value (R_a) is determined as 72. As a newly developed phosphor system, it is believed that its properties can be further explored and optimized to obtain high-quality white light emission in the future research.

Discussion

The above results underline the linear structural evolution of the isostructural (Na$_{1-x}$Ca$_x$)(Sc$_{1-x}$Mg$_x$)Si$_2$O$_6$ solid-solutions and the color-tunable emission observed at different x values. That is to say, this series of intermediate compounds do not show substantial changes in structure with any active defect formation, however their spectra can have features from both blue and yellow spectra. We suppose that the additive behavior of spectroscopic properties performs in a similar linear character and the luminescent spectra of the (Na$_{1-x}$Ca$_x$)(Sc$_{1-x}$Mg$_x$)Si$_2$O$_6$:Eu$^{2+}$ solid-solution phosphors can be considered as a superposition of luminescent spectra of NaScSi$_2$O$_6$:Eu$^{2+}$ and CaMgSi$_2$O$_6$:Eu$^{2+}$. To verify this hypothesis, the spectra of NaScSi$_2$O$_6$:Eu$^{2+}$ ($x = 0$) and CaMgSi$_2$O$_6$:Eu$^{2+}$ ($x = 1$) in Figure 4a were approximated by functions $F_0(\lambda)$ and $F_1(\lambda)$, respectively. The Gauss function $F(\lambda) = A \times \exp(-((\lambda - \lambda_0)^2)/H)$ was used for the approximation. Here λ_0 is the spectral position of individual band maximum in nm. H is proportional to square of

Figure 3 | (a) TEM image of (Na$_{1-x}$Ca$_x$)(Sc$_{1-x}$Mg$_x$)Si$_2$O$_6$:0.03Eu$^{2+}$ ($x = 0.4$) sample, (b) corresponding EDS analysis on a single crystal, and HRTEM images of the selected area for different samples of (Na$_{1-x}$Ca$_x$)(Sc$_{1-x}$Mg$_x$)Si$_2$O$_6$:0.03Eu$^{2+}$ solid-solution series with different x values, $x = 0$ (c), $x = 0.4$ (d), $x = 0.8$ (e) and $x = 1$ (f). The corresponding enlarged lattice fringes and their FFT patterns of the HRTEM images are given in the respective inset.
Figure 4 | (a) PL spectra ($\lambda_{ex} = 365$ nm) of (Na$_{1-x}$Ca$_x$)(Sc$_{1-x}$Mg$_x$)Si$_2$O$_6$:0.03Eu$^{2+}$ solid-solution phosphors with different x values, and the right inset shows the PLE and PL spectra of the selected (Na$_{0.7}$Ca$_{0.3}$)(Sc$_{0.7}$Mg$_{0.3}$)Si$_2$O$_6$:0.03Eu$^{2+}$ sample, and the upper inset gives the digital images of some selected phosphors under 365 nm UV lamp. (b) the calculated spectra of (Na$_{1-x}$Ca$_x$)(Sc$_{1-x}$Mg$_x$)Si$_2$O$_6$:0.03Eu$^{2+}$ phosphors by using functions $F_x(\lambda)$ based on the spectra of NaScSi$_2$O$_6$:0.03Eu$^{2+}$ ($x = 0$) and CaMgSi$_2$O$_6$:0.03Eu$^{2+}$ ($x = 1$) in the linear superposition of functions $F_0(\lambda)$ and $F_1(\lambda)$. The inset gives the EL spectrum of a fabricated w-LED lamp by using (Na$_{0.7}$Ca$_{0.3}$)(Sc$_{0.7}$Mg$_{0.3}$)Si$_2$O$_6$:0.03Eu$^{2+}$ sample and the photographs of the w-LED lamp package.
width of the spectrum. The parameters of $\lambda_0 = 532$ nm, $H = 2500$ nm were used for $F_0(\lambda)$ and $\lambda_0 = 449$ nm, $H = 500$ nm were used for $F_1(\lambda)$. Parameters A_0 and A_1 were found by least square approximation method. Since peaks of spectra are a little asymmetric it was decided to add one more Gauss function for each $F_0(\lambda)$ and $F_1(\lambda)$. The parameters of this additional function are: $\lambda_0 = 590$ nm, $H = 2500$ nm for $F_0(\lambda)$ and $\lambda_0 = 470$ nm, $H = 1000$ nm for $F_1(\lambda)$. Final approximation by least square method gives: $F_0(\lambda) = 48.497 \times \exp(- (\lambda - 532)/2500) + 12.075 \times \exp(- (\lambda - 590)/2500) + 1.635 \times \exp(- (\lambda - 449)/500) + 18.587 \times \exp(- (\lambda - 470)/1000) - 1.428$.

As is shown in Figure 4b, these functions will prove the pits in the measured spectra of NaScSi$_2$O$_6$:Eu$^{2+}$ ($x = 0$) and CaMgSi$_2$O$_6$:Eu$^{2+}$ ($x = 1$) shown in Figure 4a. Then, the luminiscent spectra of the solid-solution phosphors with intermediate composition were calculated as a superposition of $F_0(\lambda)$ and $F_1(\lambda)$ ($x = 0 < x < 1$) based on the linear relationship. The calculated spectra of NaSc$_{1-x}$Ca$_x$Sc$_1$$_2Mg_{1-x}Si_2O_6$:Eu$^{2+}$ solid-solution phosphors by using functions $F_0(\lambda)$ and $F_1(\lambda)$ are shown in Figure 4b. The relation between the measured (Figure 4a) and calculated (Figure 4b) spectra is qualitatively good. As is also given in Figure S9, it superimposes the experimental emission curves (shown in Figure 4a) with the calculated emission curves (shown in Figure 4b) for $x = 0, 0.3, 1.0$. The data can clearly prove the points. This result shows that the supposition about the additive behavior of spectroscopic properties is plausible. We also suggest that linear behavior of cell parameters in other compound systems is linked with such additive behavior of spectroscopic properties and can be useful for obtain spectra with predetermined parameters. Evidently, this approach can be developed for other complex solid-solution phosphors.

It is interesting to consider the nature of the emission band superposition in the present solutions (NaSc$_{1-x}$Ca$_x$)(Sc$_1$$_2Mg_{1-x}$)Si$_2O_6$:Eu$^{2+}$. There are two emission bands clearly observed in Figure 4a. Therefore, the existence of two different Eu$^{2+}$ sites may be supposed in the solid solution. Moreover, these two bands are being located at exactly the same position as in the end members. Since two emission bands are still visible in the single phase solid solution, there are two Eu$^{2+}$ sites with different local environment. It is proposed that, in the solid solution all Na$^+$ ions have to be surrounded by Sc$^{3+}$ ions in order to avoid a local charge mismatch. Likewise, Ca$^{2+}$ ions are surrounded by Mg$^{2+}$ ions. There is still a random distribution of these small NaSc units and CaMg units. But there are local clusters of NaSc and CaMg. That would result in two different Eu$^{2+}$ sites with difference in the covalency, therefore both bands (blue and yellow emission) are still visible in the solid solution explaining the emission spectra we observe.

In conclusion, the new solid-solution phosphors (NaSc$_{1-x}$Ca$_x$)(Sc$_1$$_2Mg_{1-x}$)Si$_2O_6$:Eu$^{2+}$, showing continuously controlled yellow-white-blue emission, are obtained as x increases from 0 to 1. Based on the Rietveld analysis, the unit cell parameters and volumes decrease with increasing relative content of CaMgSi$_2$O$_6$ in the solid-solution series obeying Vegard’s rule of linear relationship, and the excellent linear structural evolution can be also verified by HRTEM examination from the linear variation of d-spacings in the (020) planes with x. The luminescent spectra of the solid-solution phosphors were verified as a superposition of linear mixing by the blue-emitted component (CaMgSi$_2$O$_6$:Eu$^{2+}$) and yellow one (NaSc$_2$SiO$_4$:Eu$^{2+}$). The linear behaviour of structural parameters is linked with spectroscopic properties variation and it is helpful for designing color-tunable photoluminescence with predetermined parameters, which will open a window for the study of color-tunable phosphor materials based on the crystal chemistry strategy.

Methods

Sample preparation. All the Eu$^{3+}$ doped (NaSc$_{1-x}$Ca$_x$)(Sc$_1$$_2Mg_{1-x}$)Si$_2O_6$ ($0 \leq x \leq 1$) solid-solution phosphors were prepared via a sol-gel method. The starting materials of Eu$_2$O$_3$ (>99.99%) and Sc(NO$_3$)$_3$ were supplied by China Minhs (Beijing) Research Institute, Beijing, China, and MnCO$_3$ (>99.5%), NaNO$_3$, (>99.9%) and SiO$(H_2O)_3$ (>99.9%) were purchased from Sinopharm Chemical Reagent Co. Ltd., Shanghai, China. Briefly, stoichiometric Eu$_2$O$_3$ was dissolved in HNO$_3$ to obtain soluble Eu(NO$_3$)$_3$; then the stoichiometric amounts of NaNO$_3$, Ca(NO$_3$)$_2$, Mg(NO$_3$)$_2$ and Sc(NO$_3$)$_3$, were added and dissolved in ethanol under stirring. After this, the designed amounts SiO$(H_2O)_3$ were added successively in the above solution. The resultant mixtures were stirred at 80°C for 30 min, and homogeneously powders were obtained. After drying at 120°C for 12 h, the dried gels were ground and treated at 800°C for 2 h in the air, and then fully ground and sintered at 1200°C for 5 h in the CO reducing atmosphere. Finally, they were furnace-cooled to room temperature, and fine powders were obtained after grinding.

Structure and optical measurements. Powder X-ray diffraction data were collected by a Panalytical Xpert diffractometer with the Cu Kα radiation at 40 kV and 40 mA. The data for Rietveld analysis were collected in a step-mode with the step size of 0.02° and 20 s counting time per step over the 20 range from 5° to 130°, and the X-ray beam was controlled by a 0.5° fixed divergence slit. The crystal structure of NaSc$_2$SiO$_6$ (ICPDS 82-0532) was used as a start model for Rietveld refinement. High-resolution transmission electron microscopic (HRTEM) images were characterized by a JEOL JEM-2010 microscope with an accelerated voltage of 200 kV. Photoluminescence excitation (PLE) and emission (PL) spectra were characterized by an F-4600 model fluorescence spectrophotometer with the photomultiplier tube operating at 400 V and the 150 W Xe lamp used as the excitation source. The quantum efficiency (QE) was measured by an Absolute Photoluminescence Quantum Yield Measurement System (C9920-02, Hamamatsu-Photonics) with an integrating sphere at room temperature.

Fabrication of pc-LEDs. The white-light n-UV LED was fabricated using a mixture of silicon resin and the as-prepared white-emitting (Na$_{0.7}$Ca$_{0.3}$)(Sc$_{0.7}$Mg$_{0.3}$)Si$_2$O$_6$::0.03Eu$^{3+}$ sample being dropped onto a 370 nm UV chip. The EL spectrum, CCT, and CIE value of the lamp, were examined by a PMS-80 Plus UV Vis-near IR Spectro-photocolorimeter (Everline, China) instrument.
20. Blasse, G. & Grabmaier, B. C. *Luminescent Materials* [Blasse, G., Grabmaier, B. C. (ed.)] (Springer-Verlag, Berlin, 1994).

Acknowledgments

This research was supported by the National Natural Science Foundations of China (Grant No.51002146, No. 51272242), Natural Science Foundations of Beijing (2132050), the Program for New Century Excellent Talents in University of Ministry of Education of China (NCET-12-0950), Fundamental Research Funds for the Central Universities (2011YLY131), and this study was also partially supported by SB RAS, Grant 28.12. Zhiguo Xia was supported by Beijing Nova Program (Z131103000412047).

Author contributions

Z.X. proposed the idea of this experimental design, carried out XRD measurements, fabricated pc-LEDs and wrote the paper. Y.Z. synthesized materials and performed the spectral measurement. M.M. carried out the structural analysis and spectral mixing calculation. V.A. participated in discussions of the data and the revision of the paper. Y.L. performed the TEM measurement. All authors reviewed the manuscript.

Additional information

Supplementary information accompanies this paper at http://www.nature.com/scientificreports

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Xia, Z.G., Zhang, Y.Y., Molokeev, M.S., Atuchin, V.V. & Luo, Y. Linear structural evolution induced tunable photoluminescence in clinopyroxene solid-solution phosphors. Sci. Rep. 3, 3310; DOI:10.1038/srep03310 (2013).

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported license. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0