UFBoot2: Improving the Ultrafast Bootstrap Approximation

Diep Thi Hoang,†,1 Olga Chernomor,†,2 Arndt von Haeseler,2,3 Bui Quang Minh,*,2 and Le Sy Vinh*,1

1Faculty of Information Technology, University of Engineering and Technology, Vietnam National University, Hanoi, Vietnam
2Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna, Medical University Vienna, Vienna, Austria
3Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria
†These authors contributed equally to this work.
*Corresponding authors: E-mails: minh.bui@univie.ac.at; vinhls@vnu.edu.vn.
Associate editor: Michael S. Rosenberg

Abstract

The standard bootstrap (SBS), despite being computationally intensive, is widely used in maximum likelihood phylogenetic analyses. We recently proposed the ultrafast bootstrap approximation (UFBoot) to reduce computing time while achieving more unbiased branch supports than SBS under mild model violations. UFBoot has been steadily adopted as an efficient alternative to SBS and other bootstrap approaches. Here, we present UFBoot2, which substantially accelerates UFBoot and reduces the risk of overestimating branch supports due to polytomies or severe model violations. Additionally, UFBoot2 provides suitable bootstrap resampling strategies for phylogenomic data. UFBoot2 is 778 times (median) faster than SBS and 8.4 times (median) faster than RAxML rapid bootstrap on tested data sets. UFBoot2 is implemented in the IQ-TREE software package version 1.6 and freely available at http://www.iqtree.org.

Key words: phylogenetic inference, ultrafast bootstrap, maximum likelihood, model violation, polytomies.

Here, we present UFBoot2 that substantially speeds up UFBoot and reduces the risk for overestimated branch support due to polytomies or severe model violations. We also discuss several resampling strategies for phylogenomics data recently implemented in UFBoot2. In the following, we will outline these improvements.

Accelerating UFBoot

The likelihood computation is the major runtime bottleneck of all ML software because it lies at the core of all analyses. The pruning algorithm (Felsenstein 1981) efficiently computes the likelihood of phylogenetic trees, but still does not scale well for large data sets. Therefore, we adopted a modification to Felsenstein’s algorithm (see supplementary method, Supplementary Material online), first introduced in RAxML. The modification exploits the reversible property of models of sequence evolution typically used in phylogenetic analysis, which led to a theoretical speedup of 4 (for DNA) or 20 (for protein data) when estimating branch lengths. Moreover, we employed the SIMD (single instruction, multiple data) feature to concurrently compute the likelihood of two MSA sites with streaming SIMD extensions or four MSA sites with advanced vector extensions, thus leading to a theoretical speedup of two or four compared with a non-SIMD implementation. IQ-TREE code was further optimized to avoid redundant computations.

We benchmark the runtimes on 70 DNA and 45 protein MSAs (DOI 10.5281/zenodo.854445) from TreeBASE, previously analyzed in Nguyen et al. (2015). The command-lines used to perform bootstrap methods are provided in
supplementary table S1, Supplementary Material online. UFBoot2 achieved a median speedup of 2.4 times (maximum: 77.3) compared with UFBoot version 0.9.6 (released on October 20, 2013).

Correction for Polytomies

Polytomies refer to multifurcating nodes in the tree that cannot be resolved due to low phylogenetic signal in the data. However, phylogenetic reconstruction always assumes strictly bifurcating trees. When resolving polytomies, there might be multiple equivalently optimal bifurcating trees (Whelan and Money 2010). As UFBoot (and other bootstrap approaches) saves only a single optimal bifurcating tree for each bootstrap MSA, it might cause overoptimistic bootstrap supports for short branches (Simmons and Norton 2014).

To correct for this shortcoming, UFBoot2 implemented the following technique. Instead of assigning the bootstrap tree with the highest RELL for each bootstrap MSA, UFBoot2 will randomly select one of the trees encountered during tree search, whose RELL score is less than ϵ_{boot} (default: 0.5) away from the highest RELL. As a result, UFBoot2 will not give high supports for branches resolving the multifurcations.

It was shown with a star tree simulation that SBS and RBS sometimes led to false positives (bootstrap supports $> 95\%$ for nonexisting branches), whereas with this technique UFBoot never supported such branches (support values $\leq 88\%$) (Simmons and Norton 2014). We repeated the star tree simulation for UFBoot2 with the same setting as proposed in (Simmons and Norton 2014). We used Seq-Gen 1.3.2x (Rambaut and Grass 1997) to evolve 100 DNA MSAs, each of 15,000 sites, along a 4-taxa star tree with four terminal branch lengths of 0.05, under JC model. For each MSA, we performed UFBoot2 runs under JC and GTR+Γ, each with 1,000 bootstrap replicates and up to 1,000 search iterations (invoked in IQ-TREE via “-bcor 1” option). The simulation results show that UFBoot2 resembles the original UFBoot in that it never supports nonexisting branches (support values $\leq 88\%$).

Reducing the Impact of Model Violations

Minh et al. (2013) showed that severe model violations inflate UFBoot support values. To resolve this issue, UFBoot2 provides an option to conduct an additional step once the tree search on the original MSA is completed. Here, the best RELL-trees are further optimized using a hill-climbing nearest-neighbor interchange (NNI) search based directly on the corresponding bootstrap MSA. Thus, this extra step operates like SBS, but with a quick tree search to save time. Bootstrap supports are then summarized from the resulting corrected bootstrap trees. In the following, we called this UFBoot2 + NNI, which can be invoked in IQ-TREE via “-bnni” option.

We repeated the PANDIT simulations (Minh et al. 2013) to compare the accuracy of UFBoot2 and UFBoot2 + NNI with SBS (1,000 replicates using IQ-TREE) and RBS (RAxML bootstrapping criterion). The simulations include 5,690 DNA MSAs (DOI 10.5281/zenodo.854445) generated by Seq-Gen (Rambaut and Grass 1997), where the model parameters and the tree (which we will call the true tree in the following) were inferred from the original MSAs downloaded from the PANDIT database (Whelan et al. 2006). The accuracy of a bootstrap method M is defined by $f_M(x)$, the percentage of branches with support value x (across all reconstructed trees) that occur in the true tree (Hillis and Bull 1993). Thus, $f_M(x)$ reflects the probability that a branch with support x is a true branch. Figure 1 shows the results (y-axis depicts $f_M(x)$). If the sequence evolution model used to infer the ML-tree agrees with the model used for simulations, then SBS, RBS, and UFBoot2 + NNI underestimated branch supports, the latter to a lower degree (fig. 1A; curves above the diagonal). This conservative behavior of SBS and RBS corroborates previous studies (Hillis and Bull 1993; Minh et al. 2013). Whereas UFBoot2 obtained almost unbiased branch supports (fig. 1A; curve close to the diagonal), that is, closely matching the true probability of branches being correct. Thus, UFBoot2 resembles the behavior of the original UFBoot (Minh et al. 2013).

Severe model violations do not influence SBS (fig. 1B; RBS not shown because RAxML does not support simpler models). However, UFBoot2 (like UFBoot) overestimated the branch supports (fig. 1B; curve below the diagonal), whereas UFBoot2 + NNI only slightly underestimated the bootstrap values (fig. 1B; curve closest to the diagonal). Thus, UFBoot2 + NNI helps to overcome the problem of unduly high supports by UFBoot2 in the presence of severe model violations.

In terms of computation times based on the analysis of 115 benchmark MSAs, UFBoot2, and UFBoot2 + NNI showed a median speedup of 778 (range: 200–1,848) and 424 (range: 200–1,848) compared with SBS, respectively. Compared with RBS, UFBoot2, and UFBoot2 + NNI are 8.4 (range: 1.5–51.2) and 5.0 (range: 0.8–32.6) times faster, respectively. Therefore, UFBoot2 + NNI is two times (median) slower than UFBoot2. Supplementary Figures S1–S3, Supplementary Material online, show the distributions of runtime ratios between SBS/RBS/UFBoot and UFBoot2/UFBoot2 + NNI.

We conclude that UFBoot2 and UFBoot2 + NNI are fast alternatives to other bootstrap approaches. Under no or mild model violations, UFBoot2 has the interpretation of unbiased bootstrap support as suggested for UFBoot (Minh et al. 2013). That is, one can trust branches with UFBoot2 support $> 95\%$. Users are advised to apply model violation detection methods (Goldman 1993; Weiss and von Haeseler 2003; Nguyen et al. 2011) before bootstrap analyses. UFBoot2 + NNI should be applied if severe model violations are present in the data set at hand.

Resampling Strategies for Phylogenomic Data

Recent phylogenetic analyses are typically based on multiple genes to infer the species tree, the so-called phylogenomics. To facilitate phylogenomic analysis, UFBoot2 implements several bootstrap resampling strategies: i) resampling MSA-sites within partitions (denoted as MSA-site resampling as the default option), ii) resampling genes instead of MSA-sites...
(gene-resampling, invoked via “-bsam GENE” option), and iii) resampling genes and subsequently resamples MSA-sites within each gene (gene-site resampling, invoked via “-bsam GENESITE” option) (Gadagkar et al. 2005). Strategy (i) preserves the number of MSA-sites for all genes in the bootstrap MSAs, whereas strategies (ii) and (iii) will lead to different number of sites in the bootstrap MSAs.

To investigate the impact of the three resampling strategies, we reanalyzed the metazoan data with 21 species, 225 genes, and a total of 171,077 amino-acid sites (Salichos and Rokas 2013). Figure 2 shows the ML tree inferred with IQ-TREE under edge-unlinked partition model (Chernomor et al. 2016), which allows separate sets of branch lengths across partitions. The tree replicates previous results (Salichos and Rokas 2013).
UFBoot2: Improving the Ultrafast Bootstrap Approximation · doi:10.1093/molbev/msx281

Molecular Biology and Evolution

Rokas 2013) and shows the Protostomia clade (Telford et al. 2015). However, discrepancies between resampling strategies are observed: while MSA-site and gene-resamplings obtained high supports (>95%) for branches along the backbone of the tree (fig. 2; bold lines), lower supports (80%) were estimated by gene-site resampling.

By further examining 14 other empirical data sets (Bouchenak-Khelladi et al. 2008; Fabre et al. 2009; Stamatakis and Alachiotis 2010; van der Linde et al. 2010; Pyron et al. 2011; Nyakatura and Bininda-Emonds 2012; Springer et al. 2012; Hinchliff and Roalson 2013; Salichos and Rokas 2013; Dell’Ampio et al. 2014), we observed more discrepancies between resampling strategies (data not shown). Exceptionally, for some data sets, a number of branches showed almost no support (<10%) for one resampling but high supports (>95%) for the other two resampling strategies. However, there is no tendency toward systematically lower supports obtained by one resampling strategy.

Taking into account the above findings, we recommend to apply all alternative resampling strategies. If similar bootstrap supports are obtained, then one can be more confident about the results.

Conclusions

UFBoot2 significantly improves speed and accuracy of bootstrap values compared with UFBoot. It also offers new functionalities in the presence of model violations and in its applicability to phylogenomic data. In general, since SBS, RBS, and UFBoot2 + NNI share a disadvantage of being conservative, more research is necessary to understand the different biases introduced by the available phylogenetic bootstrap estimation methods.

Supplementary Material

Supplementary data are available at Molecular Biology and Evolution online.

Acknowledgments

This work was supported by Vietnam National Foundation for Science and Technology Development (102.01-2013.04). A.V.H., B.Q.M., and O.C. were supported by the Austrian Science Fund—FWF (grant nos. I-2805-B29 and I-1824-B22). The authors thank Stephen Crotty and two anonymous reviewers for helpful comments on the manuscript.

References

Bouchenak-Khelladi Y, Salamin N, Savolainen V, Forest F, van der Bank M, Chase MW, Hodkinson TR. 2008. Large multi-gen phylogenetic trees of the grasses (Poaceae): progress towards complete tribal and generic level sampling. Mol Phylogenet Evol. 47(2):488–505.

Chernomor O, von Haeseler A, Minh BQ. 2016. Terrace aware data structure for phylogenomic inference from supermatrices. Syst Biol. 65(6):997–1008.

Dell’Ampio E, Meusemann K, Szucsich NU, Peters RS, Meyer B, Borner J, Petersen M, Aberer AJ, Stamatakis A, Walz MG, et al. 2014. Decisive data sets in phylogenetics: lessons from studies on the phylogenetic relationships of primarily wingless insects. Mol Biol Evol. 31(1):239–249.

Efro M. 1979. Bootstrap methods: another look at the jackknife. Ann Stat. 7(1):1–26.

Fabre P-H, Rodrigues A, Douzery EJP. 2009. Patterns of macroevolution among Primates inferred from a supermatrix of mitochondrial and nuclear DNA. Mol Phylogenet Evol. 53(3):808–825.

Felsenstein J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol. 17(6):368–376.

Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution (NY) 39(4):783–791.

Gadaffi SR, Rosenberg MS, Kumar S. 2005. Inferring species phylogenies from multiple genes: concatenated sequence tree versus consensus gene tree. J Exp Zool B Mol Dev Evol. 304B(1):64–74.

Goldman N. 1993. Statistical tests of models of DNA substitution. J Mol Evol. 36(2):182–198.

Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 59(3):307–321.

Hillis DM, Bull JJ. 1993. An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol. 42(2):182–192.

Hinchliff CE, Roalson EH. 2013. Using supermatrices for phylogenetic inquiry: an example using the sedges. Syst Biol. 62(2):205–219.

Kishino H, Miyata T, Hasegawa M. 1990. Maximum likelihood inference of protein phylogeny and the origin of chloroplasts. J Mol Evol. 31(2):151–160.

Minh BQ, Nguyen MAT, von Haeseler A. 2013. Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol. 30(5):1188–1195.

Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 32(1):268–274.

Nguyen MAT, Claere S, von Haeseler A. 2011. MISFITS: evaluating the goodness of fit between a phylogenetic model and an alignment. Mol Biol Evol. 28(1):143–152.

Nyakatura K, Bininda-Emonds ORP. 2012. Updating the evolutionary history of Carnivora (Mammalia): a new species-level super-tree complete with divergence time estimates. BMC Biol. 10(1):12.

Pyron RA, Burbrink FT, Colli GR, de Oca ANM, Vitt LJ, Kuczynski CA, Wiens JJ. 2011. The phylogeny of advanced snakes (Colubroidea), with discovery of a new subfamily and comparison of support methods for likelihood trees. Mol Phylogenet Evol. 58(2):329–342.

Rambaut A, Grass NC. 1997. Seq-Gen: an application for the Monte Carlo simulation of DNA sequence evolution along phylogenetic trees. Bioinformatics 13(3):235–238.

Salichos L, Rokas A. 2013. Inferring ancient divergences requires genes plus model. Mol Phylogenet Evol. 53(3):808–825.

Simmons MP, Norton AP. 2014. Divergent maximum-likelihood-branch-support values for polytomies. Mol Phylogenet Evol. 73:87–96.

Springer MS, Meredith RW, Gatesy J, Emerling CA, Park J, Rabosky DL, Stadler T, Steiner C, Ryder OA, Janecka JE, et al. 2012. Macroevolutionary dynamics and historical biogeography of primate diversification inferred from a species supermatrix. Stanyon R, editor. PLoS One 7e49521.

Stamatakis A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analysis with thousands of taxa and mixed models. Bioinformatics 22(1):2688–2690.

Stamatakis A, Alachiotis N. 2010. Time and memory efficient likelihood-based tree searches on phylogenomic alignments with missing data. Bioinformatics 26(12):i132–i139.

Stamatakis A, Hoover P, Rougemont J, Renner S. 2008. A rapid bootstrap algorithm for the RAxML web servers. Syst Biol. 57(5):758–771.

Telford MJ, Budd GE, Philippe HH. 2015. Phylogenetic insights into animal evolution. Curr Biol. 25(19):R876–R887.
van der Linde K, Houle D, Spicer GS, Steppan SJ. 2010. A supermatrix-based molecular phylogeny of the family Drosophilidae. *Genet Res (Camb)* 92(1):25–38.
Vinh LS, von Haeseler A. 2004. IQPNNI: moving fast through tree space and stopping in time. *Mol Biol Evol*. 21(8):1565–1571.
Weiss G, von Haeseler A. 2003. Testing substitution models within a phylogenetic tree. *Mol Biol Evol*. 20(4):572–578.

Whelan S, de Bakker PIW, Quevillon E, Rodriguez N, Goldman N. 2006. PANDIT: an evolution-centric database of protein and associated nucleotide domains with inferred trees. *Nucleic Acids Res*. 34:D327–D331.
Whelan S, Money D. 2010. The prevalence of multifurcations in tree-space and their implications for tree-search. *Mol Biol Evol*. 27(12):2674–2677.