1. Introduction. Let k be an algebraic number field of degree d over \mathbb{Q}, v a place of k and k_v the completion of k at v. We select two absolute values from the place v. The first is denoted by $\| \|$ and defined as follows:

(i) if $v | \infty$ then $\| \|$ is the unique absolute value on k_v that extends the usual absolute value on $\mathbb{Q}_\infty = \mathbb{R}$,

(ii) if $v | p$ then $\| \|$ is the unique absolute value on k_v that extends the usual p-adic absolute value on \mathbb{Q}_p.

The second absolute value is denoted by $| |_v$ and defined by $|x|_v = \|x\|_v^{d_v/d}$ for all x in k_v, where $d_v = [k_v : \mathbb{Q}_v]$ is the local degree. If $\alpha \neq 0$ is in k then these absolute values satisfy the product formula

$$\prod_v |\alpha|_v = 1.$$

Let $\overline{\mathbb{Q}}$ be an algebraic closure of \mathbb{Q} and $\overline{\mathbb{Q}}^\times$ the multiplicative group of nonzero elements in $\overline{\mathbb{Q}}$. The absolute, logarithmic Weil height (or simply the height)

$$h : \overline{\mathbb{Q}}^\times \to [0, \infty)$$

is defined as follows. Let α be a nonzero algebraic number; we select an algebraic number field k containing α, and then

$$h(\alpha) = \sum_v \log^+ |\alpha|_v,$$

where the sum on the right of (1.2) is over all places v of k. It can be shown that $h(\alpha)$ is well defined because the right hand side of (1.2) does not depend
on the field k. By combining (1.1) and (1.2) we obtain the useful identity

$$2h(\alpha) = \sum_v |\log |\alpha|_v|,$$

where $| \cdot |$ (an absolute value without a subscript) is the usual archimedean absolute value on \mathbb{R}.

Let $\text{Tor}(\overline{\mathbb{Q}}^\times)$ denote the torsion subgroup of $\overline{\mathbb{Q}}^\times$ and write

$$\mathcal{G} = \overline{\mathbb{Q}}^\times/\text{Tor}(\overline{\mathbb{Q}}^\times)$$

for the quotient group. If ζ is a point in $\text{Tor}(\overline{\mathbb{Q}}^\times)$, then it is immediate from (1.2) that $h(\alpha) = h(\zeta\alpha)$ for all points α in $\overline{\mathbb{Q}}^\times$. Thus h is constant on each coset of the quotient group \mathcal{G}, and so we may regard the height as a map

$$h : \mathcal{G} \to [0, \infty).$$

The height has the following well known properties (see [1, Section 1.5]):

(i) $h(\alpha) = 0$ if and only if α is the identity element in \mathcal{G},

(ii) $h(\alpha^{-1}) = h(\alpha)$ for all α in \mathcal{G},

(iii) $h(\alpha\beta) \leq h(\alpha) + h(\beta)$ for all α and β in \mathcal{G}.

These conditions imply that the map $(\alpha, \beta) \mapsto h(\alpha\beta^{-1})$ defines a metric on the group \mathcal{G} and therefore induces a metric topology. Our objective in this paper is to determine the completion of \mathcal{G} with respect to this metric.

Let r/s denote a rational number, where r and s are relatively prime integers and s is positive. If α is in $\overline{\mathbb{Q}}^\times$ and ζ_1 and ζ_2 are in $\text{Tor}(\overline{\mathbb{Q}}^\times)$, then all roots of the two polynomial equations

$$x^s - (\zeta_1\alpha)^r = 0 \quad \text{and} \quad x^s - (\zeta_2\alpha)^r = 0$$

belong to the same coset in \mathcal{G}. If we write $\alpha^{r/s}$ for this coset, we find that

$$(r/s, \alpha) \mapsto \alpha^{r/s}$$

defines a scalar multiplication in the abelian group \mathcal{G}. This shows that \mathcal{G} is a vector space (written multiplicatively) over the field \mathbb{Q} of rational numbers. Moreover, we have (see [1, Lemma 1.5.18])

$$h(\alpha^{r/s}) = |r/s|h(\alpha).$$

Therefore the map $\alpha \mapsto h(\alpha)$ is a norm on the vector space \mathcal{G} with respect to the usual archimedean absolute value $| \cdot |$ on its field \mathbb{Q} of scalars. From these observations we conclude that the completion of \mathcal{G} is a Banach space over the field \mathbb{R} of real numbers. It remains now to give an explicit description of this Banach space.

Let Y denote the set of all places y of the field $\overline{\mathbb{Q}}$. Let $k \subseteq \overline{\mathbb{Q}}$ be an algebraic number field such that k/\mathbb{Q} is a Galois extension. At each place v
of k we write

$$Y(k, v) = \{ y \in Y : y \mid v \}$$

for the subset of places of Y that lie over v. Clearly, we can express Y as the disjoint union

$$Y = \bigcup_v Y(k, v),$$

where the union is over all places v of k. If y is a place in $Y(k, v)$ we select an absolute value $\| y \|$ from y such that the restriction of $\| y \|$ to k is equal to $\| v \|$. As the restriction of $\| v \|$ to \mathbb{Q} is one of the usual absolute values on \mathbb{Q}, it follows that this choice of the normalized absolute value $\| y \|$ does not depend on k.

In Section 2 we show that each subset $Y(k, v)$ can be expressed as an inverse limit of finite sets. This determines a totally disconnected, compact, Hausdorff topology in $Y(k, v)$. Then (1.6) implies that Y is a totally disconnected, locally compact, Hausdorff space. Again the topology in Y does not depend on the field k. We also show that the absolute Galois group $\text{Aut}(\mathbb{Q}/k)$ acts transitively and continuously on the elements of each compact, open subset $Y(k, v)$.

In Section 4 we establish the existence of a regular measure λ, defined on the Borel subsets of Y, that is positive on open sets, finite on compact sets, and satisfies $\lambda(\tau E) = \lambda(E)$ for all automorphisms τ in $\text{Aut}(\mathbb{Q}/k)$ and all Borel subsets E of Y. The restriction of the measure λ to each subset $Y(k, v)$ is unique up to a positive multiplicative constant. We construct λ so that

$$\lambda(Y(k, v)) = \frac{[k_v : Q_v]}{[k : Q]}$$

for each Galois extension k of \mathbb{Q} and each place v of k. It follows from our construction that λ does not depend on the number field k. In particular, if l is any finite, Galois extension of \mathbb{Q}, if w is place of l and

$$Y(l, w) = \{ y \in Y : y \mid w \},$$

then

$$\lambda(Y(l, w)) = \frac{[l_w : Q_w]}{[l : Q]}.$$
so that \mathcal{X} is a co-dimension one linear subspace of $L^1(Y, \mathcal{B}, \lambda)$. For each point α in \mathcal{G} we define a map $f_\alpha : Y \to \mathbb{R}$ by
\begin{equation}
(1.9) \quad f_\alpha(y) = \log \|\alpha\|_y.
\end{equation}
If k is a finite Galois extension of \mathbb{Q} that contains α, then $y \mapsto \log \|\alpha\|_y$ is constant on each compact, open set $Y(k, v)$, and the value of this map on each set $Y(k, v)$ is nonzero for only finitely many places v of k. It follows that $f_\alpha(y)$ is a continuous function on Y with compact support. Using (1.7) and the product formula (1.1), we find that
\begin{equation}
(1.10) \quad \int_Y f_\alpha(y) \, d\lambda(y) = \sum_v \int_{Y(k, v)} \log \|\alpha\|_y \, d\lambda(y)
= \sum_v \left[\frac{[k_v : \mathbb{Q}_v]}{[k : \mathbb{Q}]}\right] \log \|\alpha\|_v = \sum_v \log |\alpha|_v = 0.
\end{equation}
This shows that $\alpha \mapsto f_\alpha(y)$ maps \mathcal{G} into the subspace \mathcal{X}. It follows easily that
\begin{equation*}
f_{\alpha \beta}(y) = f_\alpha(y) + f_\beta(y) \quad \text{and} \quad f_{\alpha^{r/s}}(y) = (r/s)f_\alpha(y),
\end{equation*}
and therefore $\alpha \mapsto f_\alpha(y)$ is a linear map from the vector space \mathcal{G} into \mathcal{X}. The L^1-norm of each function f_α is given by
\begin{equation}
(1.11) \quad \int_Y |f_\alpha(y)| \, d\lambda(y) = \sum_v \int_{Y(k, v)} |\log \|\alpha\|_y| \, d\lambda_v(y)
= \sum_v \left[\frac{[k_v : \mathbb{Q}_v]}{[k : \mathbb{Q}]}\right] |\log \|\alpha\|_v| = \sum_v |\log |\alpha|_v| = 2h(\alpha).
\end{equation}
This shows that the map $\alpha \mapsto f_\alpha$ is a linear isometry from the vector space \mathcal{G} with norm determined by $2h$ into the subspace \mathcal{X} with the L^1-norm. Let
\begin{equation}
(1.12) \quad \mathcal{F} = \{f_\alpha(y) : \alpha \in \mathcal{G}\}
\end{equation}
denote the image of \mathcal{G} under this linear map. Then $\alpha \mapsto f_\alpha$ is a linear isometry from the vector space \mathcal{G} (written multiplicatively) onto the vector space \mathcal{F} (written additively). Now the completion of \mathcal{G} is determined by finding the closure of \mathcal{F} in \mathcal{X}.

Theorem 1. Let \mathcal{X} be the co-dimension one subspace of $L^1(Y, \mathcal{B}, \lambda)$ defined by (1.8). Then \mathcal{F} is dense in \mathcal{X}.

It is immediate from Theorem 1 that there exists an isometric isomorphism from the completion of the vector space \mathcal{G} with respect to the height $2h$ onto the real Banach space \mathcal{X}.

The functions in the vector space \mathcal{F} belong to the real vector space $C_c(Y)$ of continuous functions with compact support. Hence \mathcal{F} belongs to the space $L^p(Y, \mathcal{B}, \lambda)$ for $1 \leq p \leq \infty$. Theorem 1 asserts that the closure of
\(\mathcal{F} \) in \(L^1(Y, \mathcal{B}, \lambda) \) is the co-dimension one subspace \(\mathcal{X} \). We also determine the closure of \(\mathcal{F} \) with respect to the other \(L^p \)-norms.

Theorem 2. If \(1 < p < \infty \) then \(\mathcal{F} \) is dense in \(L^p(Y, \mathcal{B}, \lambda) \).

Let \(C_0(Y) \) denote the Banach space of continuous real-valued functions on \(Y \) which vanish at infinity, equipped with the sup-norm. As \(\mathcal{F} \subseteq C_c(Y) \subseteq C_0(Y) \), it is clear that the closure of \(\mathcal{F} \) with respect to the sup-norm is a subspace of \(C_0(Y) \).

Theorem 3. The vector space \(\mathcal{F} \) is dense in \(C_0(Y) \).

It follows from the classification of separable \(L^p \)-spaces (see [3, pp. 14–15]) that the Banach space \(L^1(Y, \mathcal{B}, \lambda) \) has a Schauder basis, or simply a basis. As \(\mathcal{X} \subseteq L^1(Y, \mathcal{B}, \lambda) \) is a closed subspace of co-dimension one, it is easy to show that \(\mathcal{X} \) also has a basis. Then it follows from a well known result of Krein, Milman and Rutman [4] that a basis for \(\mathcal{X} \) can be selected from the dense subset \(\mathcal{F} \). Thus there exists a sequence of distinct elements \(\alpha_1, \alpha_2, \ldots \) in \(\mathcal{G} \) such that the corresponding collection of functions

\[
\{ f_{\alpha_1}(y), f_{\alpha_2}(y), \ldots \}
\]

is a basis for the Banach space \(\mathcal{X} \). That is, for every function \(F \) in \(\mathcal{X} \) there exists a unique sequence of real numbers \(x_1, x_2, \ldots \) such that

\[
F(y) = \lim_{N \to \infty} \sum_{n=1}^{N} x_n f_{\alpha_n}(y)
\]

in \(L^1 \)-norm. While these remarks establish the existence of such a basis, it would be of interest to construct an explicit example of a sequence \(\alpha_1, \alpha_2, \ldots \) in \(\mathcal{G} \) such that the corresponding sequence of functions (1.13) forms a basis for \(\mathcal{X} \).

2. Preliminary lemmas. We have stated Theorem 1 for the Weil height on algebraic number fields. However, many of the arguments can be given in the more general setting of a field \(K \) with a proper set of absolute values satisfying a product formula. We now describe this situation.

Let \(K \) be a field and let \(v \) be a place of \(K \). That is, \(v \) is an equivalence class of nontrivial absolute values on \(K \). We write \(K_v \) for the completion of \(K \) at the place \(v \). If \(L/K \) is a finite extension of fields then there exist finitely many places \(w \) of \(L \) such that \(w | v \). In general we have

\[
\sum_{w | v} [L_w : K_v] \leq [L : K],
\]

where \(L_w \) is the completion of \(L \) at \(w \). We say that \(v \) is well behaved if the
identity
\[\sum_{w|v} [L_w : K_v] = [L : K] \]
holds for all finite extensions \(L/K \) (see [5, Chapter 1, Section 4]).

Let \(\mathcal{M}_K \) be a collection of distinct places of \(K \) and at each place \(v \) in \(\mathcal{M}_K \) let \(\| \cdot \|_v \) denote an absolute value from \(v \). We say that the collection of absolute values
\[(2.1) \quad \{ \| \cdot \|_v : v \in \mathcal{M}_K \} \]
is proper if it satisfies the following conditions:

(i) each place \(v \) in \(\mathcal{M}_K \) is well behaved,
(ii) if \(\alpha \) is in \(K^\times \) then \(\| \alpha \|_v \neq 1 \) for at most finitely many places \(v \) in \(\mathcal{M}_K \),
(iii) if \(\alpha \) is in \(K^\times \) then the absolute values in (2.1) satisfy the product formula
\[\prod_{v \in \mathcal{M}_K} \| \alpha \|_v = 1. \]

Now suppose that (2.1) is a proper set of absolute values on \(K \) and \(L/K \) is a finite extension of fields. Let \(\mathcal{M}_L \) be the collection of places of \(L \) that extend the places in \(\mathcal{M}_K \). That is, if \(W_v(L/K) \) is the finite set of places \(w \) of \(L \) such that \(w \mid v \), then
\[\mathcal{M}_L = \bigcup_{v \in \mathcal{M}_K} W_v(L/K). \]

At each place \(w \) in \(W_v(L/K) \) we select an absolute value \(\| \cdot \|_w \) that extends the absolute value \(\| \cdot \|_v \) on \(K \). Then we define an equivalent absolute value \(| \cdot |_w \) from the place \(w \) by setting
\[\log |\alpha|_w = \frac{[L_w : K_v]}{[L : K]} \log \|\alpha\|_w \]
for all \(\alpha \) in \(L^\times \). In general, \(\| \cdot \|_w \) and \(| \cdot |_w \) are distinct but equivalent absolute values on \(L \). And we note that \(| \cdot |_w \) is an absolute value because
\[0 < \frac{[L_w : K_v]}{[L : K]} \leq 1. \]

Then it follows, as in [5, Chapter 2, Section 1], that
\[(2.2) \quad \{ | \cdot |_w : w \in \mathcal{M}_L \} \]
is a proper set of absolute values on \(L \). In particular, if \(\alpha \) is in \(L^\times \) then the absolute values in (2.2) satisfy the product formula
\[\prod_{w \in \mathcal{M}_L} |\alpha|_w = 1. \]
We assume that $K \subseteq N$ are fields, that N/K is a (possibly infinite) Galois extension, and we write $\text{Aut}(N/K)$ for the corresponding Galois group. We give $\text{Aut}(N/K)$ the Krull topology, and we briefly recall how this is defined. Let \mathcal{L} denote the set of intermediate fields L such that $K \subseteq L \subseteq N$ and L/K is a finite Galois extension. Obviously, \mathcal{L} is partially ordered by set inclusion. If L and M are in \mathcal{L} then the composite field LM is in \mathcal{L}, $L \subseteq LM$, $M \subseteq LM$, and therefore \mathcal{L} is a directed set. For each L in \mathcal{L} let $\text{Aut}(L/K)$ denote the Galois group of automorphisms of L that fix K. If $L \subseteq M$ are both in \mathcal{L}, we define $\pi_L^M : \text{Aut}(M/K) \to \text{Aut}(L/K)$ to be the map that restricts the domain of an automorphism in $\text{Aut}(M/K)$ to the subfield L. Then each map π_L^M is a surjective homomorphism of groups and π_L^L is the identity map. It follows that

\[\{ \text{Aut}(L/K), \pi_L^M \} \]

is an inverse system, and $\text{Aut}(N/K)$ can be identified with the inverse (or projective) limit:

\[\text{Aut}(N/K) = \lim_{\leftarrow L \in \mathcal{L}} \text{Aut}(L/K). \]

Thus $\text{Aut}(N/K)$ is a profinite group, and therefore is a totally disconnected, compact, Hausdorff, topological group. We write

\[\pi_L : \text{Aut}(N/K) \to \text{Aut}(L/K) \]

for the canonical map associated with each L in \mathcal{L}. Then π_L is continuous and the collection of open sets

\[\{ \pi_L^{-1}(\tau) : L \in \mathcal{L} \text{ and } \tau \in \text{Aut}(L/K) \} \]

is a basis for the Krull topology in $\text{Aut}(N/K)$.

Next we assume that v is a place of the field K. That is, v is an equivalence class of nontrivial absolute values on K. If L is in \mathcal{L} we write $W_v(L/K)$ for the set of places w of L such that $w \mid v$. As L/K is a finite extension, it follows that $W_v(L/K)$ is a finite set. If $L \subseteq M$ belong to \mathcal{L} we define connecting maps

\[\psi_L^M : W_v(M/K) \to W_v(L/K) \]

as follows: if w_M belongs to $W_v(M/K)$ then $\psi_L^M(w_M)$ is the unique place w_L in $W_v(L/K)$ such that $w_M \mid w_L$. If $L \subseteq M$ are in \mathcal{L} then each absolute value on L extends to M and therefore each connecting map ψ_L^M is surjective. We give each finite set $W_v(L/K)$ the discrete topology so that each map ψ_L^M is continuous. Clearly, ψ_L^L is the identity map. We find that

\[\{ W_v(L/K), \psi_L^M \} \]

is an inverse system of finite sets. Let

\[Y(K, v) = \lim_{\leftarrow L \in \mathcal{L}} W_v(L/K) \]
denote the inverse limit and write $\psi_L : Y(K, v) \to W_v(L/K)$ for the canonical continuous map associated to each L in \mathcal{L}. It follows, as in [2, Appendix 2, Section 2.4], that $Y(K, v)$ is a nonempty, totally disconnected, compact, Hausdorff space. Moreover (see [2, Appendix 2, Section 2.3]), the collection of open sets

\begin{equation}
\{ \psi^{-1}_L(w) : L \in \mathcal{L} \text{ and } w \in W_v(L/K) \}
\end{equation}

is a basis for the topology of $Y(K, v)$. Clearly, each subset in the collection (2.4) is also compact, and for each field L in \mathcal{L} we can write

$$
Y(K, v) = \bigcup_{w \in W_v(L/K)} \psi^{-1}_L(w)
$$

as a disjoint union of open and compact sets.

We recall that a map $g : Y(K, v) \to \mathbb{R}$ is \textit{locally constant} if at each point y in $Y(K, v)$ there exists an open neighborhood of y on which g is constant.

\textbf{Lemma 1.} Let $g : Y(K, v) \to \mathbb{R}$ be locally constant. Then there exists L in \mathcal{L} such that for each place w in $W_v(L/K)$ the function g is constant on the set $\psi^{-1}_L(w)$.

\textit{Proof.} At each point y in $Y(K, v)$ there exists a field $L^{(y)}$ in \mathcal{L} and a place $w^{(y)}$ in $W_v(L^{(y)}/K)$ such that y is contained in $\psi^{-1}_{L^{(y)}}(w^{(y)})$ and g is constant on the open set $\psi^{-1}_{L^{(y)}}(w^{(y)})$. By compactness there exists a finite collection of fields $L^{(1)}, \ldots, L^{(J)}$ in \mathcal{L}, and for each integer j a corresponding place $w^{(j)}$ in $W_v(L^{(j)}/K)$, such that

$$
Y(K, v) \subseteq \bigcup_{j=1}^J \psi^{-1}_{L^{(j)}}(w^{(j)}),
$$

and g is constant on each open set $\psi^{-1}_{L^{(j)}}(w^{(j)})$. Let $L = L^{(1)} \cdots L^{(J)}$ be the composite field, which is obviously in \mathcal{L}. If w is a place of L then there exists an integer j such that

$$
\psi^{-1}_L(w) \cap \psi^{-1}_{L^{(j)}}(w^{(j)})
$$

is not empty. As L is a finite extension of $L^{(j)}$, we conclude that $\psi^{-1}_{L^{(j)}}(w) = w^{(j)}$, and therefore

\begin{equation}
\psi^{-1}_L(w) \subseteq \psi^{-1}_{L^{(j)}}(w^{(j)}).
\end{equation}

Then (2.5) implies that g is constant on $\psi^{-1}_L(w)$.

Let $C(Y(K, v))$ denote the real Banach algebra of real-valued continuous functions on $Y(K, v)$ with the supremum norm. Let $LC(Y(K, v)) \subseteq C(Y(K, v))$ denote the subset of locally constant functions.
Lemma 2. The subset $LC(Y(K,v))$ is a dense subalgebra of $C(Y(K,v))$.

Proof. It is obvious that $LC(Y(K,v))$ is a subalgebra of $C(Y(K,v))$, and that $LC(Y(K,v))$ contains the constant functions. Now suppose that y_1 and y_2 are distinct points in $Y(K,v)$. Let U_1 be an open neighborhood of y_1, and U_2 an open neighborhood of y_2, such that U_1 and U_2 are disjoint. Then there exists a field L in \mathcal{L} and a place w in $W_v(L/K)$ such that

$$y_1 \in \psi^{-1}_L(w) \quad \text{and} \quad \psi^{-1}_L(w) \subseteq U_1.$$

As $\psi^{-1}_L(w)$ is both open and compact, the characteristic function of the set $\psi^{-1}_L(w)$ is a locally constant function that separates the points y_1 and y_2. Then it follows from the Stone–Weierstrass theorem that the subalgebra $LC(Y(K,v))$ is dense in $C(Y(K,v))$. ■

We select an absolute value from the place v of K and denote it by $\| \|_v$. If L is in \mathcal{L} and w is a place in $W_v(L/K)$, we select an absolute value $\| \|_w$ from w such that the restriction of $\| \|_w$ to K is equal to $\| \|_v$. As

$$N = \bigcup_{L \in \mathcal{L}} L,$$

it follows that each point (w_L) in $Y(K,v)$ determines a unique absolute value on the field N. That is, each point (w_L) in $Y(K,v)$ determines a unique place y of N such that $y \mid v$.

Now suppose y is a place of N such that $y \mid v$. Select an absolute value $\| \|_y$ from y such that the restriction of $\| \|_y$ to the subfield K is equal to $\| \|_v$. If L is in \mathcal{L} then the restriction of $\| \|_y$ to L must equal $\| \|_w$ for a unique place w_L in $W_v(L/K)$. Thus each place y of N with $y \mid v$ determines a unique point (w_L) in the product

$$\prod_{L \in \mathcal{L}} W_v(L/K)$$

such that $y \mid w_L$ for each L. It is trivial to check that

$$\psi^M_L(w_M) = w_L$$

whenever $L \subseteq M$ are in \mathcal{L}. Therefore each place y of N with $y \mid v$ determines a unique point (w_L) in the inverse limit $Y(K,v)$. In view of these remarks we may identify $Y(K,v)$ with the set of all places y of N that lie over the place v of K. In this way we determine a totally disconnected, compact, Hausdorff topology in the set of all places y of N that lie over the place v of K.

3. Galois action on places. Next we recall that the Galois group $\text{Aut}(N/K)$ acts on the set $Y(K,v)$ of all places of N that lie over v. More
precisely, if τ is in $\text{Aut}(N/K)$ and y is in $Y(K,v)$, then the map
\begin{equation}
\alpha \mapsto \|\tau^{-1}\alpha\|_y
\end{equation}
is an absolute value on N, and the restriction of this absolute value to K is clearly equal to $\|\cdot\|_v$. Therefore (3.1) determines a unique place τy in $Y(K,v)$. That is, the identity
\begin{equation}
\|\tau^{-1}\alpha\|_y = \|\alpha\|_{\tau y}
\end{equation}
holds for all α in N, for all τ in $\text{Aut}(N/K)$, and for all places y in $Y(K,v)$. It is immediate that $1y = y$ and $(\sigma \tau)y = \sigma(\tau y)$ for all σ and τ in $\text{Aut}(N/K)$. Thus $(\tau, y) \mapsto \tau y$ defines an action of the group $\text{Aut}(N/K)$ on the set $Y(K,v)$. Moreover, $\text{Aut}(N/K)$ acts transitively on $Y(K,v)$ (see [7, Chapter II, Proposition 9.1]).

Lemma 3. The function $(\tau, y) \mapsto \tau y$ from $\text{Aut}(N/K) \times Y(K,v)$ onto $Y(K,v)$ is continuous.

Proof. Let L be in \mathcal{L} and w in $W_v(L/K)$. In view of (2.4) we must show that
\[
\{ (\tau, y) \in \text{Aut}(N/K) \times Y(K,v) : \tau y \in \psi^{-1}_L(w) \}
\]
is open in $\text{Aut}(N/K) \times Y(K,v)$ with the product topology. For w in $W_v(L/K)$ we define
\[
E_w = \{ (\sigma, z) \in \text{Aut}(L/K) \times W_v(L/K) : \sigma z = w \}.
\]
Then we have
\[
\{ (\tau, y) \in \text{Aut}(N/K) \times Y(K,v) : \tau y \in \psi^{-1}_L(w) \}
\]
\[
= \{ (\tau, y) \in \text{Aut}(N/K) \times Y(K,v) : \pi_L(\tau)\psi_L(y) = w \}
\]
\[
= \bigcup_{(\sigma, z) \in E_w} \{ (\tau, y) \in \text{Aut}(K/k) \times Y(K,v) : \pi_L(\tau) = \sigma \text{ and } \psi_L(y) = z \}
\]
\[
= \bigcup_{(\sigma, z) \in E_w} \pi^{-1}_L(\sigma) \times \psi^{-1}_L(z),
\]
which is obviously an open subset of $\text{Aut}(N/K) \times Y(K,v)$. \blacksquare

4. The invariant measure. In this section it will be convenient to write $G = \text{Aut}(N/K)$. Let μ denote a Haar measure on the Borel subsets of the compact topological group G normalized so that $\mu(G) = 1$. If F is in $C(Y(K,v))$ and z_1 is a point in $Y(K,v)$ then it follows from Lemma 3 that $\tau \mapsto F(\tau z_1)$ is a continuous function on G with values in \mathbb{R}. Let z_2 be a second point in $Y(K,v)$. Because G acts transitively on $Y(K,v)$, there exists η in G so that $\eta z_2 = z_1$. Then using the translation invariance of Haar
Weil height

measure we get

\[(4.1) \quad \int_G F(\tau z_1) \, d\mu(\tau) = \int_G F(\tau \eta z_2) \, d\mu(\tau) = \int_G F(\tau z_2) \, d\mu(\tau).\]

It follows that the map \(I_v : C(Y(K, v)) \to \mathbb{R}\) given by

\[(4.2) \quad I_v(F) = \int_G F(\tau z_v) \, d\mu(\tau)\]

does not depend on the point \(z_v\) in \(Y(K, v)\).

Let \(\mathcal{M}_K\) be a collection of distinct places of \(K\) and at each place \(v\) in \(\mathcal{M}_K\) let \(\|\|_v\) denote an absolute value from \(v\). We assume that

\[\{\|\|_v : v \in \mathcal{M}_K\}\]

is a proper collection of absolute values. Again we assume that \(N/K\) is a (possibly infinite) Galois extension of fields. Let \(Y\) be defined by the disjoint union

\[(4.3) \quad Y = \bigcup_{v \in \mathcal{M}_K} Y(K, v).\]

Thus \(Y\) is the collection of all places \(y\) of \(N\) such that \(y \mid v\) for some place \(v\) in \(\mathcal{M}_K\). It follows that \(Y\) is a nonempty, totally disconnected, locally compact, Hausdorff space.

Let \(C_c(Y)\) denote the real vector space of continuous functions \(F : Y \to \mathbb{R}\) having compact support. If \(F\) belongs to \(C_c(Y)\) then there exists a finite subset \(S_F \subseteq \mathcal{M}_K\) such that \(F\) is supported on the compact set

\[\bigcup_{v \in S_F} Y(K, v).\]

In particular, we have \(I_v(F) = 0\) for almost all places \(v\) of \(\mathcal{M}_K\). Therefore we define \(I : C_c(Y) \to \mathbb{R}\) by

\[(4.4) \quad I(F) = \sum_{v \in \mathcal{M}_K} \int_G F(\tau z_v) \, d\mu(\tau),\]

where \(z_v\) is a point in \(Y(K, v)\) for each place \(v\) in \(\mathcal{M}_K\). By our previous remarks the value of each integral on the right of (4.4) does not depend on \(z_v\), and only finitely many of those integrals are nonzero. Hence there is no question of convergence in the sum on the right of (4.4).

Theorem 4. There exists a \(\sigma\)-algebra \(\mathcal{Y}\) of subsets of \(Y\), that contains the \(\sigma\)-algebra \(\mathcal{B}\) of Borel sets in \(Y\), and a unique, regular measure \(\lambda\) defined on \(\mathcal{Y}\), such that

\[(4.5) \quad I(F) = \int_Y F(y) \, d\lambda(y)\]
for all F in $C_c(Y)$. Moreover, the measure λ satisfies the following conditions:

(i) If η is in G and F is in $L^1(Y, \mathcal{Y}, \lambda)$ then

\begin{equation}
\int_{Y(K,v)} F(\eta y) \, d\lambda(y) = \int_{Y(K,v)} F(y) \, d\lambda(y)
\end{equation}

at each place v in \mathcal{M}_K.

(ii) If E is in \mathcal{Y} then

\[\lambda(E) = \inf \{ \lambda(U) : E \subseteq U \subseteq Y \text{ and } U \text{ is open} \}. \]

(iii) If E is in \mathcal{Y} then

\[\lambda(E) = \sup \{ \lambda(V) : V \subseteq E \text{ and } V \text{ is compact} \}. \]

(iv) If E is in \mathcal{Y} and $\lambda(E) = 0$ then every subset of E is in \mathcal{Y}.

Proof. Clearly, (4.4) defines a positive linear functional on $C_c(Y)$. By the Riesz representation theorem (see [8, Theorems 2.14 and 2.17]), there exists a σ-algebra \mathcal{Y} of subsets of Y, containing the σ-algebra \mathcal{B} of Borel sets in Y, and a regular measure λ defined on \mathcal{Y}, such that

\begin{equation}
I(F) = \int_Y F(y) \, d\lambda(y)
\end{equation}

for all F in $C_c(Y)$. If η is in G and F is in $C_c(Y)$, then by the translation invariance of the Haar measure μ we have

\begin{equation}
\int_{Y(K,v)} F(\eta y) \, d\lambda(y) = \int_G F(\eta \tau z) \, d\mu(\tau) = \int_G F(\tau z) \, d\mu(\tau)
\end{equation}

at each place v in \mathcal{M}_K. Initially (4.8) holds for all functions F in $C_c(Y)$. As $C_c(Y)$ is dense in $L^1(Y, \mathcal{Y}, \lambda)$ (see [8, Theorem 3.14]), it follows in a standard manner that (4.8) also holds for functions F in $L^1(Y, \mathcal{Y}, \lambda)$.

The properties (ii), (iii) and (iv) attributed to λ all are consequences of the Riesz theorem.

Because the Haar measure μ satisfies $\mu(G) = 1$, it is immediate from (4.2) and (4.5) that $\lambda(Y(K,v)) = 1$ at each place v in \mathcal{M}_K. As the places in \mathcal{M}_K are well behaved, we obtain a further identity for the λ-measure of basic open sets in each subset $Y(K,v)$.

Theorem 5. If L is in \mathcal{L} and w is a place in $W_v(L/K)$, then

\begin{equation}
\lambda(\psi_L^{-1}(w)) = \frac{[L_w : K_v]}{[L : K]}
\end{equation}
Proof. Let τ be in G. Then
\begin{equation}
\tau\psi^{-1}_L(w) = \{\tau y \in Y(K, v) : \psi_L(y) = w\} \\
= \{y \in Y(K, v) : \pi_L(\tau^{-1})\psi_L(y) = w\} \\
= \{y \in Y(K, v) : \psi_L(y) = \pi_L(\tau)w = \psi^{-1}_L(\pi_L(\tau)w)\}.
\end{equation}
Now let w_1 and w_2 be distinct places in $W_v(L/K)$. Select τ in G so that $\pi_L(\tau)w_2 = w_1$. Then (4.10) implies that
\[\tau\psi^{-1}_L(w_2) = \psi^{-1}_L(w_1),\]
and using (4.6) we find that
\[\lambda(\psi^{-1}_L(w_2)) = \lambda(\psi^{-1}_L(w_1)).\]
Because
\begin{equation}
Y(K, v) = \bigcup_{w \in W_v(L/K)} \psi^{-1}_L(w)
\end{equation}
is a disjoint union of $|W_v(L/K)|$ distinct sets, the sets on the right of (4.11) all have equal λ-measure, and $\lambda(Y(K, v)) = 1$, we conclude that
\begin{equation}
\lambda(\psi^{-1}_L(w)) = |W_v(L/K)|^{-1}.
\end{equation}
As v is well behaved we have
\begin{equation}
[L : K] = \sum_{v \in W_v(L/K)} [L_w : K_v].
\end{equation}
Because L/K is a Galois extension, all local degrees $[L_w : K_v]$ for w in $W_v(L/K)$ are equal, and we conclude from (4.13) that
\begin{equation}
|W_v(L/K)| = \frac{[L : K]}{[L_w : K_v]}.
\end{equation}
The identity (4.9) now follows from (4.12) and (4.14). □

Let $LC_c(Y)$ be the algebra of locally constant, real-valued functions on Y having compact support. Clearly, $LC_c(Y) \subseteq C_c(Y)$.

Lemma 4. Let g belong to $LC_c(Y)$. Then there exists L in \mathcal{L} such that for each place w in \mathcal{M}_L the function g is constant on the set $\psi^{-1}_L(w)$.

Proof. Let $S_g \subseteq \mathcal{M}_K$ be a finite set of places of K such that the support of g is contained in the compact set
\[V_g = \bigcup_{v \in S_g} Y(K, v).\]
For each place v in S_g we apply Lemma 1 to the restriction of g to $Y(K, v)$. Thus there exists a field $L^{(v)}$ in \mathcal{L} such that for each place w' in $W_v(L^{(v)}/K)$,
the function \(g \) is constant on \(\psi_{L(v)}^{-1}(w') \). Let \(L \) be the compositum of the finite collection of fields
\[
\{ L(v) : v \in S_g \}.
\]
Clearly, \(L \) belongs to \(\mathcal{L} \).

Let \(w \) be a place in \(\mathcal{M}_L \). If \(w \mid v \) and \(v \notin S_g \), then \(g \) is identically zero on \(\psi_L^{-1}(w) \), and in particular it is constant on this set. If \(w \mid v \) and \(v \in S_g \), then \(w \mid w' \) for a unique place \(w' \) in \(W_v(L(v)/K) \). Because
\[
\psi_{L(v)}^{-1}(w) \subseteq \psi_L^{-1}(w'),
\]
and \(g \) is constant on \(\psi_{L(v)}^{-1}(w') \), it is obvious that \(g \) is constant on \(\psi_L^{-1}(w) \).

Lemma 5. For \(1 \leq p < \infty \) the set \(LC_c(Y) \) is dense in \(L^p(Y, \mathcal{B}, \lambda) \). Moreover, \(LC_c(Y) \) is dense in \(C_0(Y) \) with respect to the sup-norm.

Proof. Let \(1 \leq p < \infty \). Because \(C_c(Y) \) is dense in \(L^p(Y, \mathcal{B}, \lambda) \), it suffices to show that if \(F \) is in \(C_c(Y) \) and \(\varepsilon > 0 \), then there exists a function \(g \) in \(LC_c(Y) \) such that
\[
\left\{ \int_Y |F(y) - g(y)|^p \, d\lambda(y) \right\}^{1/p} < \varepsilon.
\]
Let \(S_F \subseteq \mathcal{M}_K \) be a nonempty, finite set of places such that \(F \) is supported on the compact set
\[
V_F = \bigcup_{v \in S_F} Y(K, v).
\]
For each \(v \) in \(S_F \) we apply Lemma 2 to the restriction of \(F \) to \(Y(K, v) \). Thus there exists a locally constant function \(g_v : Y(K, v) \to \mathbb{R} \) such that
\[
\sup_{y \in Y(K, v)} \{|F(y) - g_v(y)| : y \in Y(K, v)\} < |S_F|^{-1/p} \varepsilon.
\]
Now define \(g : Y \to \mathbb{R} \) by
\[
g(y) = \begin{cases}
g_v(y) & \text{if } y \in Y(K, v) \text{ and } v \in S_F, \\
0 & \text{if } y \in Y(K, v) \text{ and } v \notin S_F. \end{cases}
\]
Then \(g \) is locally constant and supported on the compact set \(V_F \). Therefore \(g \) belongs to \(LC_c(Y) \). As \(\lambda(Y(K, v)) = 1 \) at each place \(v \) in \(\mathcal{M}_K \), we get
\[
\left\{ \int_Y |F(y) - g(y)|^p \, d\lambda(y) \right\}^{1/p} < \left\{ \sum_{v \in S_F} |S_F|^{-1/p} \varepsilon^p \right\}^{1/p} \leq \varepsilon.
\]
This proves the first assertion of the lemma.

As \(C_c(Y) \) is dense in \(C_0(Y) \) with respect to the sup-norm, the second assertion of the lemma follows by the same argument. In this case we select...
the locally constant functions \(g_v : Y(K, v) \to \mathbb{R} \) so that
\[
\sup \{|F(y) - g_v(y)| : y \in Y(K, v)\} < \varepsilon.
\]
Then we define \(g : Y \to \mathbb{R} \) as in (4.16). Again we find that \(g \) belongs to \(LC_c(Y) \), and the inequality
\[
\sup \{|F(y) - g(y)| : y \in Y\} < \varepsilon
\]
is obvious. ■

5. The completion of \(\mathcal{G} \). In this section we return to the situation considered in the introduction. We let \(K = \mathbb{Q}, N = \overline{\mathbb{Q}}, \) and we let \(\mathcal{M}_Q \) be the set of all places of \(\mathbb{Q} \). Then \(Y \) is the set of all places of \(\overline{\mathbb{Q}} \), and \(Y \) is a nonempty, totally disconnected, locally compact, Hausdorff space. By Theorem 4 there exists a \(\sigma \)-algebra \(\mathcal{Y} \) of subsets of \(Y \), containing the \(\sigma \)-algebra \(\mathcal{B} \) of Borel sets in \(Y \), and a measure \(\lambda \) on \(\mathcal{Y} \), satisfying the conclusions of that result. The basic identity (1.7) is verified by Theorem 5. Then the map
\[
(5.1) \quad \alpha \mapsto f_\alpha(y)
\]
defined by (1.9) is a linear map from the \(\mathbb{Q} \)-vector space
\[
\mathcal{G} = \overline{\mathbb{Q}}^\times / \text{Tor}(\overline{\mathbb{Q}}^\times)
\]
(written multiplicatively) into the vector space \(C_c(Y) \). The identity (1.10) implies that each function \(f_\alpha(y) \) belongs to the closed subspace \(\mathcal{X} \subseteq L^1(Y, \mathcal{B}, \lambda) \) defined by (1.8). It follows from basic properties of the height, and in particular (1.4), that
\[
\alpha \mapsto 2h(\alpha)
\]
defines a norm on \(\mathcal{G} \) with respect to the usual archimedean absolute value on \(\mathbb{Q} \). Then (1.11) shows that (5.1) defines a linear isometry of \(\mathcal{G} \) into the subspace \(\mathcal{X} \).

Lemma 6. Let \(k \) be an algebraic number field and let \(v \mapsto t_v \) be a real-valued function defined on the set of all places \(v \) of \(k \). If
\[
(5.2) \quad \sum_v t_v \log |\alpha|_v = 0
\]
for all \(\alpha \) in \(k^\times / \text{Tor}(k^\times) \), then the function \(v \mapsto t_v \) is constant.

Proof. Let \(S \) be a finite set of places of \(k \) containing all archimedean places, and assume that the cardinality of \(S \) is \(s \geq 2 \). We write \(\mathbb{R}^s \) for the \(s \)-dimensional real vector space of column vectors \(\mathbf{x} = (x_v) \) having rows indexed by places \(v \) in \(S \). In particular, we write \(\mathbf{t} = (t_v) \) for the column vector in \(\mathbb{R}^s \) formed from the values of the function \(v \mapsto t_v \) restricted to \(S \).
And we write \(u = (u_v) \) for the column vector in \(\mathbb{R}^s \) such that \(u_v = 1 \) for each \(v \) in \(S \).

Let
\[
U_S(k) = \{ \eta \in k : |\eta|_v = 1 \text{ for all } v \notin S \}
\]
denote the multiplicative group of \(S \)-units in \(k \). By the \(S \)-unit theorem (stated as [6, Theorem 3.5]), there exist multiplicatively independent elements \(\xi_1, \ldots, \xi_{s-1} \) in \(U_S(k) \) which form a fundamental system of \(S \)-units. Write
\[
M = ([k_v : \mathbb{Q}_v] \log \| \xi_r \|_v)
\]
for the associated \((s - 1) \times s\) real matrix, where \(r = 1, \ldots, s - 1 \) indexes rows and \(v \) in \(S \) indexes columns. As the \(S \)-regulator does not vanish, the matrix \(M \) has rank \(s - 1 \). Hence the null space
\[
N = \{ x \in \mathbb{R}^s : Mx = 0 \}
\]
has dimension 1. From the product formula we have \(Mu = 0 \). Therefore \(N \) is spanned by the vector \(u \). By hypothesis we have \(Mt = 0 \), and it follows that \(t \) is a scalar multiple of \(u \). That is, the function \(v \mapsto t_v \) is constant on \(S \). As \(S \) is arbitrary the lemma is proved.

We now prove Theorem 1. Let \(\mathcal{E}_1 \) denote the closure of \(\mathcal{F} \) in \(\mathcal{X} \). As \(\mathcal{F} \) is a vector space over the field \(\mathbb{Q} \), it follows that \(\mathcal{E}_1 \) is a vector space over \(\mathbb{R} \), and therefore \(\mathcal{E}_1 \) is a closed linear subspace of \(\mathcal{X} \). If \(\mathcal{E}_1 \) is a proper subspace then it follows from the Hahn–Banach theorem (see [9, Theorem 3.5]) that there exists a continuous linear functional \(\Phi : \mathcal{X} \to \mathbb{R} \) such that \(\Phi \) vanishes on \(\mathcal{E}_1 \), but \(\Phi \) is not the zero linear functional on \(\mathcal{X} \). We will show that such a \(\Phi \) does not exist, and therefore we must have \(\mathcal{E}_1 = \mathcal{X} \).

Let \(\Phi : \mathcal{X} \to \mathbb{R} \) be a continuous linear functional that vanishes on \(\mathcal{E}_1 \), but \(\Phi \) is not the zero linear functional on \(\mathcal{X} \). It follows from (1.8) that \(\mathcal{X}^\perp \subseteq L^\infty(Y, \mathcal{B}, \lambda) \) is the one-dimensional subspace spanned by the constant function 1. As the dual space \(\mathcal{X}^* \) can be identified with the quotient space \(L^\infty(Y, \mathcal{B}, \lambda)/\mathcal{X}^\perp \), there exists a function \(\varphi(y) \) in \(L^\infty(Y, \mathcal{B}, \lambda) \) such that \(\varphi(y) \) and the constant function 1 are linearly independent, and
\[
\Phi(F) = \int_Y F(y)\varphi(y) \, d\lambda(y)
\]
for all \(F \) in \(\mathcal{X} \). Because \(\Phi \) vanishes on \(\mathcal{E}_1 \) we have
\[
\int_Y f_\alpha(y)\varphi(y) \, d\lambda(y) = 0
\]
for each function \(f_\alpha \) in \(\mathcal{F} \).

Now let \(k \) be a number field in \(\mathcal{L} \) and let \(\alpha \) be in \(k^\times / \text{Tor}(k^\times) \subseteq \mathcal{G} \). From (4.9) and (5.3) we find that
\(0 = \sum_v \left\{ \int_{\psi_{k^{-1}(v)}} \log \|\alpha\|_y \varphi(y) \lambda(y) \right\}
\)
\(= \sum_v \left\{ \int_{\psi_{k^{-1}(v)}} \varphi(y) \lambda(y) \right\} \log \|\alpha\|_v \)
\(= \sum_v \left\{ \lambda(\psi_{k^{-1}(v)})^{-1} \int_{\psi_{k^{-1}(v)}} \varphi(y) \lambda(y) \right\} \log |\alpha|_v. \)

It follows from Lemma 6 that the function
\(v \mapsto \lambda(\psi_{k^{-1}(v)})^{-1} \int_{\psi_{k^{-1}(v)}} \varphi(y) \lambda(y)\)
is constant on the set of places \(v\) of \(k\). We write \(c(k)\) for this constant.

Let \(k \subseteq l\) be number fields in \(L\), and let \(v\) be a place of \(k\). Using (4.9) and (4.14) we have
\(\lambda(\psi_{k^{-1}(v)}) = |W_v(l/k)| \lambda(\psi_l^{-1}(w))\)
for all places \(w\) in the set \(W_v(l/k)\). This leads to the identity
\(c(l) = |W_v(l/k)|^{-1} \sum_{w \in W_v(l/k)} \left\{ \lambda(\psi_l^{-1}(w))^{-1} \int_{\psi_l^{-1}(w)} \varphi(y) \lambda(y) \right\} \)
\(= \lambda(\psi_{k^{-1}(v)})^{-1} \sum_{w \in W_v(l/k)} \left\{ \int_{\psi_l^{-1}(w)} \varphi(y) \lambda(y) \right\} \)
\(= \lambda(\psi_{k^{-1}(v)})^{-1} \int_{\psi_{k^{-1}(v)}} \varphi(y) \lambda(y) = c(k). \)

Thus there exists a real number \(C\) such that \(C = c(k)\) for all fields \(k\) in \(L\).

Let \(g\) belong to \(LC_c(Y)\). By Lemma 4 there exists a number field \(l\) in \(L\) such that \(g\) is constant on \(\psi_l^{-1}(w)\) for each place \(w\) of \(l\). Therefore
\(\int_Y g(y) \varphi(y) \lambda(y) = \sum_w \left\{ \int_{\psi_l^{-1}(w)} g(y) \varphi(y) \lambda(y) \right\} \)
\(= C \sum_w \left\{ \lambda(\psi_l^{-1}(w)) g(\psi_l^{-1}(w)) \right\} \)
\(= C \sum_w \left\{ \int_{\psi_l^{-1}(w)} g(y) \lambda(y) \right\} = C \int_Y g(y) \lambda(y). \)

By Lemma 5 the set \(LC_c(Y)\) is dense in \(L^1(Y, B, \lambda)\), and we conclude from (5.6) that
\(\int_Y F(y) \varphi(y) \lambda(y) = C \int_Y F(y) \lambda(y). \)
for all F in $L^1(Y, \mathcal{B}, \lambda)$. This shows that $\varphi(y) = C$ in $L^\infty(Y, \mathcal{B}, \lambda)$, and so contradicts our assumption that $\varphi(y)$ and the constant function 1 are linearly independent. Hence the continuous linear functional Φ does not exist, and therefore $\mathcal{E}_1 = \mathcal{X}$. This proves Theorem 1.

6. Proof of Theorems 2 and 3. We suppose that $1 < p < \infty$ and write \mathcal{E}_p for the closure of \mathcal{F} in $L^p(Y, \mathcal{B}, \lambda)$. As before, \mathcal{E}_p is a closed linear subspace. By the Hahn–Banach theorem it suffices to show that if $\Phi : L^p(Y, \mathcal{B}, \lambda) \to \mathbb{R}$ is a continuous linear functional that vanishes on \mathcal{E}_p, then in fact Φ is identically zero on $L^p(Y, \mathcal{B}, \lambda)$.

Let $p^{-1} + q^{-1} = 1$, and let $\varphi(y)$ be an element of $L^q(Y, \mathcal{B}, \lambda)$ such that $\Phi(F) = \int_Y F(y) \varphi(y) d\lambda(y)$ for all F in $L^p(Y, \mathcal{B}, \lambda)$. We assume that Φ vanishes on \mathcal{E}_p, and then we have

$$\int_Y f_\alpha(y) \varphi(y) d\lambda(y) = 0$$

for each function f_α in \mathcal{F}.

Let k be a number field in \mathcal{L} and let α be in $k^\times / \text{Tor}(k^\times) \subseteq \mathcal{G}$. As before, we apply (4.9) and (5.3) to obtain the identity (5.4). Then Lemma 6 implies that the function

$$v \mapsto \lambda(\psi_k^{-1}(v))^{-1} \int_{\psi_k^{-1}(v)} \varphi(y) d\lambda(y)$$

is constant on the set of places v of k. Now, however, we apply Hölder’s inequality and find that

$$\sum_v \lambda(\psi_k^{-1}(v))^{-1} \int_{\psi_k^{-1}(v)} |\varphi(y)|^q d\lambda(y) \leq [k : \mathbb{Q}] \int_Y |\varphi(x)|^q d\lambda(y) < \infty.$$

This shows that the constant value of the function (6.2) is zero. Thus we have

$$\int_{\psi_k^{-1}(v)} \varphi(y) d\lambda(y) = 0$$

for all k in \mathcal{L} and for all places v of k. It follows using Lemma 4 that

$$\int_Y g(y) \varphi(y) d\lambda(y) = 0$$

for all g in $LC_c(Y)$. By Lemma 5 the set $LC_c(Y)$ is dense in $L^p(Y, \mathcal{B}, \lambda)$, and we conclude that the continuous linear functional Φ is identically zero. This completes the proof of Theorem 2.
Next we suppose that E_∞ is the closure of F in $C_0(Y)$. Again it suffices to show that if $\Phi : C_0(Y) \to \mathbb{R}$ is a continuous linear functional that vanishes on E_∞, then Φ is identically zero on $C_0(Y)$. If Φ is such a linear functional, then by the Riesz representation theorem (see [8, Theorem 6.19]) there exists a regular signed measure ν, defined on the σ-algebra \mathcal{B} of Borel sets in Y, such that

$$\Phi(F) = \int_Y F(y) \, d\nu(y)$$

for all F in $C_0(Y)$. Moreover, we have $\|\Phi\| = \|\nu\|$, where $\|\Phi\|$ is the norm of the linear functional Φ and $\|\nu\|$ is the total variation of the signed measure ν. We assume that Φ vanishes on E_∞, and therefore

$$\int_Y f_\alpha(y) \, d\nu(y) = 0$$

for each function f_α in F. By arguing as in the proof of Theorem 2, we conclude that for each number field k in \mathcal{L} the function

$$v \mapsto \lambda(\psi_k^{-1}(v))^{-1}\nu(\psi_k^{-1}(v)),$$

defined on the set of all places v of k, is constant. As

$$\sum_v |\lambda(\psi_k^{-1}(v))^{-1}\nu(\psi_k^{-1}(v))| \leq [k : \mathbb{Q}] \sum_v |\nu(\psi_k^{-1}(v))| \leq [k : \mathbb{Q}] \|\nu\| < \infty,$$

we conclude that the value of the constant function (6.3) is zero. This shows that

$$\nu(\psi_k^{-1}(v)) = 0$$

for all k in \mathcal{L} and for all places v of k. It follows as before that

$$\Phi(g) = \int_Y g(y) \, d\nu(y) = 0$$

for all g in $LC_c(Y)$. As $LC_c(Y)$ is dense in $C_0(Y)$ by Lemma 5, we find that Φ is identically zero on $C_0(Y)$. This proves Theorem 3.

References

[1] E. Bombieri and W. Gubler, *Heights in Diophantine Geometry*, Cambridge Univ. Press, New York, 2006.
[2] J. Dugundji, *Topology*, Allyn and Bacon, Boston, 1966.
[3] W. B. Johnson and J. Lindenstrauss, *Basic concepts in the geometry of Banach spaces*, in: Handbook of the Geometry of Banach Spaces, Vol. 1, W. B. Johnson and J. Lindenstrauss (eds.), Elsevier, New York, 2001, 1–84.
[4] M. Krein, D. Milman and M. Rutman, *A note on bases in Banach space*, Comm. Inst. Sci. Math. Méc. Univ. Kharkoff (4) 16 (1940), 106–110 (in Russian).
[5] S. Lang, *Fundamentals of Diophantine Geometry*, Springer, New York, 1983.
[6] W. Narkiewicz, *Elementary and Analytic Theory of Algebraic Numbers*, PWN–Polish Sci. Publ., Warszawa, 1974.
[7] J. Neukirch, *Algebraic Number Theory*, Springer, New York, 1999.

[8] W. Rudin, *Real and Complex Analysis*, 3rd ed., McGraw-Hill, New York, 1987.

[9] —, *Functional Analysis*, 2nd ed., McGraw-Hill, New York, 1991.

Department of Mathematics
University of Texas
Austin, TX 78712, U.S.A.
E-mail: allcock@math.utexas.edu
vaaler@math.utexas.edu

Received on 24.6.2008
(5748)