Fault-Tolerant Entity Resolution with the Crowd

Anja Gruenheid, Besmira Nushi
Donald Kossmann
Systems Group
Dep. of Computer Science
ETH Zurich
{agruen, nushib, donaldk}@inf.ethz.ch

ABSTRACT
In recent years, crowdsourcing is increasingly applied as a means to enhance data quality. Although the crowd generates insightful information especially for complex problems such as entity resolution (ER), the output quality of crowd workers is often noisy. That is, workers may unintentionally generate false or contradicting data even for simple tasks. The challenge that we address in this paper is how to minimize the cost for task requesters while maximizing ER result quality under the assumption of unreliable input from the crowd. For that purpose, we first establish how to deduce a consistent ER solution from noisy worker answers as part of the data interpretation problem. We then focus on the next-crowdsource problem which is to find the next task that maximizes the information gain of the ER result for the minimal additional cost. We compare our robust data interpretation strategies to alternative state-of-the-art approaches that do not incorporate the notion of fault-tolerance, i.e., the robustness to noise. In our experimental evaluation we show that our approaches yield a quality improvement of at least 20% for two real-world datasets. Furthermore, we examine task-to-worker assignment strategies as well as task parallelization techniques in terms of their cost and quality trade-offs in this paper. Based on both synthetic and crowdsourced datasets, we then draw conclusions on how to minimize cost while maintaining high quality ER results.

1. INTRODUCTION
Data cleaning and data integration are integral techniques for analytical and personalized data systems. Many efficient automated mechanisms addressing both of these problems have been integrated into large-scale systems over the last decades. Recently, several studies have shown that crowdsourcing can produce higher quality solutions for a subset of the data integration tasks [12, 36]. For complex problems such as entity resolution (ER) or picture classification crowdsourcing has been established as an alternative to automated techniques. In fact, approaches that prune the search space with automated ER mechanisms and then enhance data quality through crowdsourcing are common for a large number of high profile ER systems such as the Google Knowledge Graph [31] or the Facebook Entities Graph [32]. Even though the overall result quality of ER solutions generally benefits from human input, it can also be observed that crowd workers may make mistakes when executing tasks. These mistakes may be the result of carelessness, ambiguities in the task description, or even malicious behavior. More specifically, it is common to have crowd error rates as high as 30% [17] on well-established crowdsourcing platforms. Figure 1 shows an example for a task which may mislead humans and how these mistakes could be avoided intuitively.

Example 1 (Animal Classification). Crowd workers are given the task to determine which animals belong to the same breed, i.e., \(r_1 \) and \(r_2 \) are seals, \(r_3 \) and \(r_4 \) show sea lions. However, we observe that distinguishing the full-grown animals (records \(r_2 \) and \(r_4 \)) is easier than telling the baby animals (records \(r_1 \) and \(r_3 \)) apart because they have similar appearance characteristics.

In this paper, we study the problem of crowdsourced entity resolution with potentially erroneous input by crowd workers which we refer to as fault-tolerant entity resolution. We choose fault-tolerant as naming convention because crowd workers make faulty decisions that have to be tolerated by the ER engine. The terminology here indicates that we take all available information from the crowd into consideration when making robust decisions about the ER solution.
As worker input is usually not for free, our goal is to minimize the monetary cost while maximizing the overall ER result quality. Our solution consists of two components: First, we address data interpretation, i.e., how the answers provided by crowd workers lead to an ER solution, and discuss how it can be efficiently implemented for ER computation with potentially erroneous crowd answers. Second, we focus on minimizing the cost that crowdsourcing incurs which is also called the next-crowdsourcing problem.

Data Interpretation. Prior work in crowdsourced entity resolution [34, 36, 38] has focused on handling data interpretation and crowd worker quality as separate problems. For instance, this line of work proposed to use qualification tasks [20] to filter out malicious or low-performing workers or to use replicated tasks with quorum votes (e.g., majority of answers) to determine the correct answers in ambiguous cases [26]. If data quality is thus ensured, the ER algorithm can be designed under the assumption that there are no conflicts in the dataset. In contrast, we argue in our work that there are numerous sources for erroneous information from the crowd that a good ER algorithm needs to interpret correctly. Consider the following example: If workers misclassify the baby sea lion and seal (r1 and r3) with three positive and two negative votes and correctly identify the sea lion (r1 and r2) and seal pairs (r2 and r4) then all of these animals would be wrongly classified as the same species. Under the assumption of a majority-based decision scheme, even close decisions such as [r1, r4] are not questioned although the indecision of the crowd clearly indicates that this relationship is uncertain and should be explored further.

To overcome these mistakes, we propose a graph-based path ER technique to identify and appropriately interpret noisy data. Our technique considers both positive and negative (indirect) crowd answers between two records and provides provably better quality than majority-based approaches that only value the dominant decision. In addition, we discuss how to integrate available worker input efficiently into the decision making process, allowing for a consistent ER solution at any point in time.

Next-Crowdsource Problem. In addition to interpreting noisy data, we look at ways to minimize the cost that ER with erroneous crowd information incurs. In that context, we focus on (a) crowd task ordering and (b) task parallelization strategies. Generally, crowdsourced ER is executed on platforms such as Amazon Mechanical Turk [1] which allow task requesters to employ crowd workers for monetary compensation. These task providers therefore need to devise effective task assignment strategies that minimize the overall monetary cost by maximizing the information gain per cost unit. To address the challenge of task ordering, we develop three different ordering strategies that can be employed in the context of crowdsourced ER and examine them with synthetic and real-world datasets. We furthermore explore task parallelization in the second part of this work. It is a mechanism that tries to minimize the end-to-end runtime of crowdsourced ER by publishing multiple tasks at the same time on the platform. In our discussion of parallelization strategies, we show the trade-off between the runtime acceleration of crowdsourced ER and its monetary cost and output quality. We make the following contributions:

- Fault-tolerant entity resolution. We formally introduce fault-tolerant decision functions for ER that decide whether two records belong to the same entity or not. To handle unreliable information, we devise a path-based graph interpretation mechanism and define a clustering algorithm that computes the ER solution based on noisy pair-wise decisions to address the data interpretation problem.

- Cost and quality optimization. Given that the crowd is expensive to employ on a large scale, we discuss task ordering and parallelization strategies and the impact of these mechanisms on data quality and incurred cost. These mechanisms are essential to solve the next-crowdsourcing problem.

This paper is structured as follows: We first give an overview of the problems that this work addresses and outline how our work can be classified in the context of already existing work in Section 2. We then discuss our solution to the data interpretation problem in Section 3 and Section 4 and the next-crowdsourcing problem in Section 5. Our solutions are evaluated through experiments with datasets obtained from real-world as well as synthetic crowdsourcing setups in Section 6.

2. OVERVIEW

In this work, we discuss mechanisms to enable entity resolution with imperfect answers from crowd workers. In order to accurately capture the information provided by them, we need an efficient data structure that allows us to encode both their positive and negative signals. For this purpose, we introduce the notion of a votes graph that stores this information and will later allow us to efficiently interpret the crowd worker’s answers. An example for a votes graph can be seen in Figure 1.

Definition 2 (Votes Graph). A votes graph \(G = (R, E) \) is a weighted undirected graph that consists of records \(R \) as its nodes and a set of edges \(E \) which determine the direct relationship between any records \(r_i \) and \(r_j \) with \(r_i, r_j \in R \). For each record pair \([r_i, r_j] \) there exists at most one positive edge \(p_{ij} \) and one negative edge \(n_{ij} \). They correspond to the positive and negative crowd answers for this record pair. That is, while \(p_{ij} \) corresponds to the total number of votes that say that \(r_i \) and \(r_j \) belong to the same real-world entity, \(n_{ij} \) are the votes against it.

For simplicity, we assume that each vote from each data source (i.e., a specific worker) has the same weight. However, note that weighting schemes for (un-)reliable crowd workers can be easily integrated into the votes graph: For example if the system assumes a crowd worker to have complete knowledge, it can transform that worker’s votes to the maximal edge weight. Other transformations can be computed analogously.

2.1 Framework

There are two steps that are integral to automated ER systems on a (votes) graph \(G \) which are essential to understanding the general framework for crowdsourced ER. First, they establish all pair-wise similarities for any two records \(r_i \) and \(r_j \). Second, they determine a clustering \(C \) that optimizes the record-to-entity assignment according to some objective function, for example transitive closure or penalty optimization. We will go into detail on clustering...
alternatives later in this work, please refer to [Section 4] for details. This well-established pipeline for automated ER is similar but not equivalent to the pipeline for crowdsourced ER. Do understand the core differences, remember that the comparison of records in a crowdsourced environment raises two questions:

1. Given that each additional edge incurs a monetary cost, which edges do I really need to know about?

2. And if G is incomplete and there exist no direct votes between r_i and r_j, how can we estimate the similarity between them?

The first question is raised due to budgetary limitations that are inherent to crowdsourcing applications. Through these limitations and the choice of observed edges, other record pairs may only be known indirectly or not at all. To predict an accurate record-to-entity assignment, it is therefore necessary to estimate their relationship. ER solutions that are designed for the crowd therefore focus on two slightly different core problems than traditional ER: The first problem is how to understand, interpret, and enrich the data that has been retrieved from the crowd which we refer to in the following as the data interpretation problem. The second problem is to determine the next-crowdsource order in which record pair information is requested from the crowd.

To address both of these problems, crowdsourced ER algorithms [34, 36] generally follow the same incremental process outlined in Algorithm 1. Initially, they generate a set of record pairs (candidate pairs) $[r_i, r_j]$. This could be a complete set of record pairs or subset of those (for example using automatic similarity comparison to remove unlikely record pairs). These pairs are then sorted with regard to a predefined priority metric and added to a priority queue Q (Line 7). An example for such a priority queue is to order them according to their similarity in an automatic similarity computation. Iteratively, the top record pair is now retrieved and published as a task on a platform like Amazon Mechanical Turk to obtain information whether r_i and r_j in fact belong to the same entity (Line 5). Whenever a crowd worker responds, the answer is integrated into the votes graph G. Based on the new information in G, a clustering algorithm then determines the current entity resolution solution C (Line 8). For example a simple clustering mechanism would be to merge all records r_i and r_j into the same real-world entity if $p_{ij} > n_{ij}$. Finally, this new information from the crowd may influence other record pairs, which can lead to an adjustment of the priority queue for record pairs (Line 9). For example, if r_i and r_j, as well as r_j and r_k are assigned to the same cluster, then asking for record pair $[r_i, r_k]$ is superfluous if the algorithm exploits transitivity.

2.1.1 Problem Definition

To describe the data interpretation and next-crowdsource problems formally, we first define what an optimal solution entails in crowdsourced ER. For the data interpretation problem, the goal is to find a clustering C^* that represents the correct entity resolution solution, i.e., the record-to-entity mapping is equivalent to some ground truth. Finding such a clustering is straightforward if all pair-wise similarity estimates are correct. In other words, if there exists an oracle that knows whether any two records $r_i, r_j \in R$ belong to the same real-world entity then finding C^* with any of the well-established ER algorithms is trivial. The reason is that there are no contradictions in the edge set (i.e., there are no i,j,k s.t. $r_i = r_j$ and $r_i = r_k$ but $r_j \neq r_k$). That means that there exists one unique clustering C^* that is consistent with the specified pair-wise relations.

Under the assumption of incomplete or incorrect edges, i.e., erroneous votes from the crowd workers, finding C^* becomes an optimization problem. Specifically, we want to find the clustering C that is either equivalent to C^* or the best approximation thereof based on the current state of the votes graph G. To compute C, our algorithms estimate the distance to the optimal solution through a distance measure d which represents the similarity of C to C^*. It is essentially an objective function that estimates the correctness of a solution based on the clustering mechanics that define C^*. Examples for d include minimizing the number of negative similarity scores within the same and positive scores across clusters, or to maximize the number of positive edges within a cluster. The choice of optimization metric is dependent on the applied ER algorithm. However, assume in the following that the goal for all candidate mechanisms is to minimize $d(C, C^*)$ where $d(C, C^*)$ is the distance of C to C^* for simplicity. We can then formulate the data interpretation problem as follows.

Problem 3 (Data Interpretation Problem). Given are all record pairs $[r_i, r_j] \in G$ and a metric $d(C, C^*)$ that assigns a distance for any given clustering C from ground truth C^*. The data interpretation problem is to find the best clustering C such that $d(C, C^*) < d(C', C^*)$ for any alternative clustering C' of G.

The second problem of ER with a crowd is that crowdsourcing platforms incur cost for the task requester. The goal when issuing tasks, i.e., obtaining more information for specified edges in G, therefore becomes finding those tasks that provide maximal information for minimal cost. Minimizing the task space through intelligent vote requests is part of the next-crowdsource problem. In that context, task ordering is essential for efficient crowdsourced ER because it is highly correlated to the output quality in addition to the required (monetary) cost. To understand why, remember that the system needs to estimate pair-wise decisions in the data interpretation problem. Thus, it provides better solutions if it knows which questions enable fast convergence to the best possible clustering solution. The next-crowdsource problem can therefore be formalized as follows.

Problem 4 (Next-Crowdsource Problem). Given a votes graph G and a distance function $d(C, C^*)$. The next-
The second difference between different classes of crowdsourced ER: a fault-tolerant exhaustive, b fault-tolerant, and c consensus-based strategies. Notice that combining non-monotonic and consensus-based mechanisms is not possible. The reason is that consensus mechanisms can never lead to contradictions in the ER solution, thus violating the non-monotonicity property.

In the following, we examine how these categories of crowdsourced differ from each other and show the most prominent examples of existing work in either category. A more general overview of related work encompassing topics that are also outside of crowdsourced ER can be found in Section 7.

Consensus-Based Entity Resolution

Entity resolution strategies that are based on consensus decision usually allocate a fixed repetition budget for each crowdsourcing task. The crowd worker’s answers are then aggregated by task and consolidated according to some previously defined ER algorithm such as transitive closure or sorted neighborhood as shown by CrowdER [35] or Whang et al [38]. Errors made by the crowd workers are thus masked in the hope that a sufficient number of repetitions will result in the correct answer per task. In fact, these strategies optimize for crowdsourcing cost under the assumption of a perfect crowd. Thus, consensus is always reached and there are no contradictions in the record pairs that need to be resolved.

Fault-Tolerant Entity Resolution

We term fault-tolerant entity resolution those ER mechanisms that take as input all information made available by crowd workers and build an ER solution on top of that. In contrast to consensus-based ER, these ER mechanisms do not reject any of the crowd answers which introduces noise into the votes graph. The challenge is then to find a clustering on top of these possibly contradicting bits of information that maximizes the agreement between crowd answers. The work that we present in this paper builds upon preliminary work in [14]. Related work in this category [33] has introduced a theoretic crowdsourced ER solution that uses maximum likelihood methodology to find the optimal ER solution. This methodology is equivalent to using correlation clustering and is shown to be NP-complete. For clustering, the authors therefore fall back onto spectral clustering and transitive closure as alternative ER mechanisms. Their work furthermore addresses the next-crowdsourcing problem by finding those tasks that have the highest projected impact on the entity resolution solution.

Figure 2: Overview of different ER strategies.

2.1.2 Worker Quality

The quality of the entity resolution result is based on the quality of the answers the crowd workers provide. Formally, we define a correct answer for a record pair \([r_i, r_j]\) as the true positive or true negative answers, i.e., if \(r_i \) and \(r_j \) belong to the same entity, a correct answer is ‘Yes’. Similarly, a faulty answer for \([r_i, r_j]\) encompasses false positive and false negative answers of crowd workers. In our experimental evaluation, we show that faulty crowd answers have drastic impact on the ER quality as observed in pair-wise precision and recall (see Subsection 6.2 for details). Incorrect answers are often the result of incomplete knowledge in a certain domain or lack of attention during task execution. In fact, we observe an evenly distributed error rate for both false positive and false negative answers across all workers. For example, we employed 545 different workers to examine our landmarks dataset (see Section 6 for details) out of which only 19 workers (i.e., 3.5% of all workers) deviated significantly from the measured average worker quality because of errors in their answers. Out of these, only 9 did more than 20 tasks and thus had more significant impact on the results.

The algorithms presented in this paper do not differentiate between crowd workers but rather handle every worker equally. The reasons for that are two-fold. First, as mentioned above, we observe little variation in worker quality in our real-world experiments. Second, the same crowd is often not available for the same task more than once. As a result, available workers may not have a quality profile which the algorithm can fall back on. For example, in our landmarks dataset, we observed that only 51.3% of the workers executed more than 20 tasks. Obviously, it is only possible to build accurate error statistics per worker if these workers provide sufficient sample work. To compensate for missing error profiles, the general decision strategies that we explore in this work employ robust decision mechanisms that make them independent of worker error statistics.

2.2 Classification of Crowdsourced ER

Generally, this work discusses classes of crowdsourced ER captured by the framework shown in Figure 2. They can be differentiated by how they address (a) the next-crowdsourcing problem and (b) the data interpretation problem. In the next-crowdsourcing problem, task ordering can process in a monotonic manner or alternatively already resolved pairs may be reconsidered if evidence points to a mistake in the previous decisions. This non-monotonic task ordering is based on the assumption that input information is unreliable. Going back to the introductory example (Figure 1), imagine that a crowd worker first classifies the baby animals to be of the same kind, identifies the relationship of each baby and respective grown-up animal correctly, and then determines the difference in grown-up animals. To improve quality, it should be possible to re-evaluate the ER solution to correct the initial mistake of the workers. In our work we evaluate both non-monotonic and monotonic task ordering in our general execution framework (Line 3 in Algorithm 1).

The second difference between different classes of crowdsourced ER is that they either leverage complete (positive and negative even if contradictory) votes from the crowd or request a consensus decision. As a result, there exist three different strategies in the solution space for crowdsourced ER: a fault-tolerant exhaustive, b fault-tolerant, and c consensus-based strategies.
This estimate extends prior work because it is not only based on the candidate positive crowd answers but also possibly negative responses. In that respect, it is similar to our work on the next-crowdsource problem [Section 5], although we examine not only uncertainty reduction strategies but explore alternative means of optimizing for error reduction in the clustering solution.

Fault-Tolerant Exhaustive Entity Resolution. Exhaustive (non-monotonic) entity resolution differs from monotonic exploration of the ER space because record pairs that have been examined before can be re-evaluated at a later point in time. Thus, it is possible to reverse a decision once made during the clustering process. Prior work has not yet considered non-monotonic task execution for two reasons. First, it is more expensive especially if budget is invested on ‘hard’ tasks, i.e., tasks that crowd workers often disagree on. Second, existing work commonly reasons on a task level, i.e., the next question to ask is not one question for task but a set of questions for one task. As a result, once these questions have been asked, there exists sufficient signal from the crowd to determine an ER solution. To the best of our knowledge, our work is the first to explore non-monotonic task ordering in an extensive evaluation. In addition to sequential task execution, we also report on the trade-off between single-question execution and batch processing in Subsection 5.2.

3. DATA INTERPRETATION PROBLEM

A decision function is a function that determines the relationship of \(r_i \) and \(r_j \) based on \(G \). To correctly interpret the potentially noisy votes in \(G \), it needs to fulfill several properties which we define next. We then introduce a novel decision function called MinMAX that provides fault-tolerant data interpretation and adheres to these properties. To contrast MinMAX with alternative pair-wise decision functions, we discuss its (dis-)advantages in Subsection 3.4.

3.1 Properties of Pair-Wise Decision Functions

Given a votes graph \(G = (R, E) \), a desirable pair-wise decision function forms a decision about the relationship of two records \(r_i, r_j \in R \) by evaluating the information contained in the edge set \(E \) of the votes graph.

Definition 5 (Decision Function). A decision function \(f \) evaluates the relationship of two records \(r_i \) and \(r_j \in R \) by first finding all distinct acyclic paths \(H = (r_{i_1}, \ldots, r_{i_k}) \) connecting \(r_i \) and \(r_j \). It forms its decision based on the positive \(p_{ij} \) and negative \(n_{ij} \) votes that are part of these paths, for each \([r_k, r_l] \in H\). The result of \(f(r_i, r_j) \) is then either of three decision ‘yes’, ‘no’, or ‘unknown’, which describes whether \(r_i \) and \(r_j \) belong to the same entity.

Any decision function should obey all mathematical properties of an equivalence relation such as the ‘same-entity-as’ relation. More formally, we expect the following properties from such a decision function \(f \):

Reflexivity. For any record \(r_i \) and any votes graph:
\[f(r_i, r_i) = \text{‘yes’} \]

Symmetry. For records \(r_i \) and \(r_j \) and any votes graph:
\[f(r_i, r_j) = f(r_j, r_i) \]

Consistency. If the decision function decides that two records \(r_i \) and \(r_j \) point to the same entity, then there exists positive information between \(r_i \) and \(r_j \). Likewise, there has to exist negative information for a ‘no’ decision.

Convergence. For every connected record pair \([r_i, r_j]\), there has to exist an acyclic path \(H = (r_{i_1}, \ldots, r_{i_k}) \) connecting \(r_i \) and \(r_j \) which is computable. If \(r_i \) and \(r_j \) are unconnected, the default decision of the function is ‘unknown’.

Transitivity. For the three records \(r_i, r_k, \) and \(r_j \) and any votes graph:
\[f(r_i, r_k) = \text{‘yes’} \land f(r_k, r_j) = \text{‘yes’} \implies f(r_i, r_j) = \text{‘yes’} \]

Anti-transitivity. For the three records \(r_i, r_k, \) and \(r_j \) and any votes graph:
\[f(r_i, r_k) = \text{‘yes’} \land f(r_k, r_j) = \text{‘no’} \implies f(r_i, r_j) = \text{‘no’} \]
\[f(r_i, r_k) = \text{‘no’} \land f(r_k, r_j) = \text{‘yes’} \implies f(r_i, r_j) = \text{‘no’} \]

Consistency guarantees that the decision function forms appropriate decisions. Convergence of a decision is furthermore required because it guarantees that the decision function will always make a decision. Specifically, even if there exist cycles in the votes graph, the acyclic path generation will always generate a path between records \(r_i \) and \(r_j \). (Anti-)transitivity is an essential tool for cost-conscious environments such as ER in a crowdsourcing setup. Decision functions apply it because in contrast to traditional ER, each information request incurs additional monetary cost which is to be avoided. As a result, both transitivity and anti-transitivity are core concepts of decision functions in state-of-the-art ER solutions.

3.2 MinMax Similarity Measure

The MinMAX pair-wise decision function \(f_M \) uses both positive and negative information in the crowd workers’ input and establishes a similarity measurement for every record pair through path-based inference. It is a novel fault-tolerant technique that is inspired by work on preference functions [9] and voting schemes that discuss ranking pair-wise decisions [29]. While these mechanisms are used for decision-making in a space where crowd signals are one-dimensional (i.e., \(r_i \) and \(r_j \) belong together or \(r_i \) is better than \(r_j \)), obtaining information from the crowd for ER problems enables both positive and negative decision signals (i.e., \(r_i \) and \(r_j \) belong or do not belong together). MinMAX uses the notion of positive and negative acyclic paths in the votes graph to evaluate whether two records belong to the same entity. The score of a positive path between records \(r_i \) and \(r_j \) is denoted as \(p_{ij} \) while the negative path scores are referred to as \(n_{ij} \).

Definition 6 (MinMax Decision Function). Given two records \(r_i \) and \(r_j \) decides whether \(r_i \) and \(r_j \) belong to the same entity given the positive votes \(p_{ij} \) and the negative votes \(n_{ij} \) along the path(s) connecting these two records.

\[
f_M(r_i, r_j) = \begin{cases}
 \text{Yes}, & \text{if } p_{ij} - n_{ij} \geq q_p \\
 \text{No}, & \text{if } n_{ij} - p_{ij} \geq q_n \\
 \text{Do-not-know}, & \text{otherwise}
\end{cases}
\]

MinMAX decides that \(r_i \) and \(r_j \) belong to the same entity if there is sufficient evidence for such a decision represented through a quorum \(q_p \) (\(q_n \) for negative decisions). The higher \(q_p \) and \(q_n \), the more crowd workers need to support a positive (negative) decision which ensures better result quality. In
practice, we show that a quorum as low as 3 is sufficient for accurate decision making as shown in Section 6.

Definition 7 (Path Definition). A positive path in a votes graph is a sequence of records \(H_p = (r_i, \ldots, r_j) \) connecting records \(r_i \) and \(r_j \) such that all consecutive record pairs \([r_k, r_l] \) contain only positive weights, i.e., \(p_{kl} > 0 \). A negative path \(H_n = (r_i, \ldots, r_j) \) contains exactly one negative record pair \([r_k, r_l] \) such that \(n_{kl} > 0 \). All other record pairs on \(H'([r_k, r_l]) \) have positive weights with \(p_{kl} > 0 \).

The notion of paths allows for effective transitivity: If two records \(r_i \) and \(r_j \) are connected through a positive path with high weights and no negative paths, it is likely that they belong to the same entity. Anti-transitivity on the other hand can be leveraged with exactly one negative edge in the path only: If \(r_i \neq r_k \) and \(r_k \neq r_j \), there is no way to automatically infer the relationship of \([r_i, r_j]\).

Example 8 (Paths). Going back to the introductory example 1, imagine that we want to determine the positive and negative paths connecting \(r_2 \) and \(r_3 \). There exist negative paths \(H_{01} = (r_2, r_3, r_4) \) and \(H_{02} = (r_2, r_1, r_3) \). There also exists exactly on positive path \(H_p = (r_2, r_1, r_3) \) that has only positive path scores.

The core idea of the MinMax decision mechanism is that a path is only as strong as its weakest link, i.e., the edge in the path that has the lowest weight. Both positive and negative paths are thus assigned a score according to the minimum weight of all absolute edge weights. If there exist multiple paths that connect two records, we choose the path with the maximal score as it signifies a higher confidence from the crowd. We call the path scores for a record pair \([r_i, r_j]\) the positive score \(p_{ij} \) resp. the negative score \(n_{ij} \) of a path.

Definition 9 (Path Scores). Given records \(r_i \) and \(r_j \) \(\in R \), let \(H_p^{ij} \) denote the set of positive paths connecting \(r_i \) and \(r_j \). For every path \(H_p \in H_p^{ij} \), its score \(h(H_p) \) is computed as the minimum of all direct scores for any consecutive record pair \([r_k, r_l]\), i.e., \(h(H_p) = \min(p_{kl}) \), for all \([r_k, r_l] \in H_p \). The MinMax path score \(p_{ij}^* \) is then computed as \(\max(h(H_p) \forall H_p \in H_p^{ij}) \). Negative path scores \(n_{ij}^* \) are computed analogously.

Positive and negative MinMax scores can be represented as a two-dimensional matrix of record pairs: Positive path scores correspond to the upper triangular part of the matrix while negative path scores to the lower triangular. If there exists no positive or negative path between two records, \(p_{ij} \) resp. \(n_{ij}^* \) is set to 0.

Example 10 (MinMax Computation). To see how the MinMax scores are computed, take a look at Figure 3A where green edges signify positive and red edges equal negative votes. To make a decision for \([r_1, r_4]\), two positive paths are examined: \((r_3, r_4)\) with a score of 3 and \((r_3, r_1, r_2, r_4)\) with \(\min(1,3,1,3) = 1 \). The score for \(p_{34} \) is then computed as \(\max(1,3,1,3) = 1 \). To compute the negative score \(n_{34}^* \), we observe that there exists only one negative path, \((r_3, r_1, r_2, r_4)\). The negative path score \(n_{34}^* \) is thus \(\min(1,3,1,3) = 1 \).

Computing both, negative and positive, paths ensures fault-tolerant data interpretation. At the same time, it also gives the MinMax decision mechanism the power to adapt to inconsistencies found in crowd responses: Low confidence decisions can be outweighed through stronger evidence for the opposite decision.

Example 11 (Fault-Tolerance). Imagine that in Figure 3A the edges between \(r_2 \) and \(r_4 \) do not yet exist. The positive path connecting all records then indicates that they all belong to the same entity albeit with low confidence, i.e., \(p_{42} = \min(3,1,3) = 1 \). Introducing the new edge evidence between \(r_2 \) and \(r_4 \) weakens the previously made decision and causes the entity to be split into two separate entities. The negative edge between \(r_2 \) and \(r_4 \) now propagates to \((n_{42}^* = \min(3,1,3) = 3)\) and \((n_{24}^* = \min(3,1,3) = 3)\) respectively.

Choosing the weakest link of a path provides a mechanism to cautiously evaluate a path. Nevertheless, using absolute values has one general drawback: If a decision is based on a positive score outweighing a negative score or vice versa by a specified margin, dominating values can cause incorrect inference as a result of incomplete information. Thus, an algorithm relying on such information may make a decision for \([r_i, r_j]\) for which intuitively a decision should not be made. Imagine two records that are connected through a positive edge \((r_k, r_l)\) which dominates the path score, i.e., it is the minimal edge in the path. We say that \((r_k, r_l)\) is dominated if its counterpart, here the corresponding negative edge between \(r_k \) and \(r_l \), has a higher weight. Intuitively, this kind of inference should not be allowed as it propagates wrong beliefs: The votes indicate that a negative decision should be made but instead, the positive information is used for the path computation and therefore propagated into the path scores. This may lead to false conclusions as shown in the following example.

Example 12 (Dominating Votes). In Figure 3A \(r_1 \) is unequal to \(r_3 \) which is positively connected to \(r_4 \). Additionally, the crowd is unsure whether \(r_1 \) is unequal to \(r_2 \). Therefore, it should not be possible to infer whether \(r_1 \) and \(r_2 \) belong to the same or different entities. Computing the path scores as previously shown, MinMax proposes a negative score \(n_{12}^* = 3 \) for the record pair \((r_1, r_2)\) but as there exists no positive path between \(r_1 \) and \(r_2 \), \(p_{12} = 0 \). As a result, the relationship of \((r_1, r_2)\) is falsely estimated.

3.3 Properties of MinMax

To counter the effect described in 12 we modify MinMax to limit the propagation of dominated edges. More specifically, we can only compute a path between two records \(r_i \) and

(a) Internal representation (Example 10).

(b) Noise detection (Example 12).

Figure 3: MinMax computation.
\(r_i\) if any edge on the path is not dominated by its opposite edge.

Corollary 13 (Edge Domination). A vote \(p_{ij}\) (\(n_{ij}\)) for a record pair \([r_i, r_j]\) can be used for path computation only if it dominates \(n_{ij}\) (\(p_{ij}\)), i.e., \(p_{ij} > n_{ij}\) (\(p_{ij} < n_{ij}\)).

Next to avoiding wrong propagation of values, this corollary also guarantees that the path computation of MINMAX adheres to a weaker form of (anti)-transitivity. Remember that when working with erroneous data, conflicting information may lead to interpretation inconsistencies, i.e., there exist paths between records \(r_i\) and \(r_j\) that convey contradicting decisions, one positive and one negative. Weak (anti)transitivity guarantees that the decision function proceeds cautiously when encountering these noisy path values. Instead of risking a faulty decision, the decision function will return ‘unknown’ instead.

Definition 14 (Weak Transitivity). For records \(r_i\), \(r_k\), and \(r_j\) and any votes graph:
\[
f(r_i, r_k) = \text{‘yes’} \land f(r_k, r_j) = \text{‘yes’}
\]
\[
\Rightarrow f(r_i, r_j) = \text{‘yes’} \lor f(r_i, r_j) = \text{‘unknown’}
\]

Weak anti-transitivity is defined analogously.

Proposition 15 (Weak Transitivity of MinMax). MinMax is weakly transitive.

Proof Weak Transitivity of MinMax. Given three records \(r_i\), \(r_j\), and \(r_k\) in \(R\) transitivity is violated if \(f(r_i, r_k) = \text{‘yes’}, f(r_k, r_j) = \text{‘yes’}\) but \(f(r_i, r_j) = \text{‘no’}\). Path scores \(p_{ij}\) and \(n_{ij}\) are computed as follows:
\[
p_{ij} = \min\{p_{ik}, p_{kj}\}
\]
\[
n_{ij} = \max\{\min\{n_{ik}, H^p_{ik}\}, \min\{H^p_{ik}, n_{kj}\}\}\]

Equation 1 follows from the definition of positive path scores. Note that if there is any direct edge between \(r_i\) and \(r_j\), it can only improve the positive score \(p_{ij}\) due to the maximum computation of MinMax, which makes Equation 1 the worst case scenario for positive path computation. Computing \(n_{ij}\) means evaluating each negative subpath going through \(r_k\) with all possible positive paths \(H^p\) that complete the path from \(r_i\) to \(r_j\). Any direct edge between \(r_i\) and \(r_j\) is already considered in this computation because it is reflected in the subpath scores. For example, the computation of \(n_{ik}\) already considers all paths between \(r_i\) and \(r_k\) including those that contain a direct edge between \(r_i\) and \(r_j\).

If transitivity is violated then \(p_{ij} < n_{ij}\) must hold. However, this contradicts MinMax as described in the following case analysis designed according to Equation 1 and 2.

Case 1: \(p_{ij} = p_{ik}\)

- Case 1.1: \(n_{ij} = \min\{n_{ik}, H^p_{ik}\}\). Under the transitivity violation assumption, this means that \(p_{ik} \leq n_{ik}\) which violates 13 and the initial assumption that \(f(r_i, r_k) = \text{‘yes’}\).

- Case 1.2: \(n_{ij} = \min\{H^p_{ik}, n_{kj}\}\). This means that \(p_{ik} \leq H^p_{ik}\) for any positive path \(H^p_{ik}\). A strict inequality contradicts MinMax and the positive path score definition as \(p_{ik}\) is the strongest path between \(r_i\) and \(r_j\). An equality relationship is achieved for example if there is only one path or all paths have the same weight. As a result, it is possible to obtain \(p_{ij} = n_{ij}\), thus \(f(r_i, r_j) = \text{‘unknown’}\). This behavior is the reason why MinMax only guarantees weak transitivity.

Therefore, weak transitivity cannot be violated if path scores are computed as in Definition 9 and if MinMax is used as a decision function.

Case 2: \(p_{ij} \neq p_{ik}\) The proof for this condition is analogous to Case 1. □

Weak Anti-transitivity. For records \(r_i\), \(r_k\), and \(r_j\) and any votes graph:
\[
f(r_i, r_k) = \text{‘yes’} \land f(r_k, r_j) = \text{‘no’}
\]
\[
\Rightarrow f(r_i, r_j) = \text{‘no’} \lor f(r_i, r_j) = \text{‘unknown’}
\]

Weak anti-transitivity can be proven in a similar fashion. Violating weak anti-transitivity (i.e., \(f(r_i, r_j) = \text{‘yes’}\) and therefore \(p_{ij} > n_{ij}\)) contradicts the MinMax definition as well as the assumption that \(f(r_i, r_j) = \text{‘no’}\). Even though MinMax adheres to a weaker variant of transitivity, we show experimentally that transitivity is in practice leveraged efficiently in Section 6.

Furthermore, compared to a simple majority-based decision function, i.e., a function that decides in favor of the majority for every record pair \([r_i, r_j]\) (MA), MinMax obtains higher result quality due to this property. Quality in this context is defined as the pair-wise accuracy of records within the entity resolution solution. For example, if \(r_i\) and \(r_j\) are in the same cluster according to the ground truth but are put into different clusters by the ER algorithm then the accuracy of the result ER solution decreases. To understand why we claim that MinMax will eventually lead to the same or a better quality than a majority-based approach that builds upon dominating edges, let us revisit the running example in Figure 1. Here, we have observed one false decision between the baby animals \(r_1\) and \(r_3\). A majority-based algorithm would at this point form the decision ‘no’ and move on to the next record pair. However, the MinMax path scores in this example are \(p_{13} = 3\) and \(n_{13} = 2\) and if quorum \(q_0\) is bigger than 1, then this record pair is marked as unresolved. As a result, the system would require more information from the crowd workers to form a decision. In the worst case, this decision would not change making the final decision equivalent to that of the majority approach. In the best case, new workers would distinguish the species and increase the number of positive votes.

Corollary 16 (MinMax Result Quality). The result quality of MinMax is at least as good as the result quality of a majority-based decision function.

More formally, under the assumption of non-malicious task workers, i.e., worker answers correctly with probability \(p > 0.5\), the following observation holds: Given a vote set \(\mathcal{E}_i\) at timestamp \(t_i\) and an enriched vote set \(\mathcal{E}_{i+1}\) at \(t_{i+1}\) with \(|\mathcal{E}_i| < |\mathcal{E}_{i+1}|\), the decisions made by MinMax at \(t_{i+1}\) are more accurate than at \(t_i\). Imagine that at \(t_i\), a majority-based approach MA and MinMax compute their ER solution. Either decision made by MaxMin is then the same as made by MA or ‘unknown’ due to the weak transitivity of MinMax. To resolve unknown decisions, MinMax enriches the edge set to \(E_{i+1}\). The ER solution of MinMax based on \(E_{i+1}\) has at least the same quality as for \(E_i\) because \(p > 0.5\). As a result, the decisions made by MinMax at \(t_{i+1}\) are at least as good as the decisions made by MA at \(t_i\), i.e., MinMax might incur higher cost but will not have worse quality than MA.
3.4 Discussion

MinMax is a decision function computed on absolute values, associating record pairs with at most two numerical values that describe the relationship of the records in this pair. In contrast to working with absolute values, relative decision functions, i.e., computing the score of a record pair based on their distance and connectivity, can be used. The drawback of these functions is that they require to compute and maintain all paths between record pairs which is inefficient to execute in practice, especially in highly connected graphs. Furthermore, they have to be selected carefully as they need to fulfill the graph properties described in Section 3.1 This cannot be guaranteed for functions such as *sum* and *count* for example. Probabilistic decision functions are another set of functions that have been explored in amongst others where the authors also show that they are infeasible to compute even with a perfect crowd. For the remainder of this paper, we will thus focus on **MinMax** as a representative of a group of decision functions that adhere to the presented graph properties and provide minimal computational overhead.

4. CLUSTERING ALGORITHM

Traditional ER algorithms use the pair-wise information in a graph to construct a clustering that represents the final ER solution. This methodology is defined in the framework agglomer (Algorithm 1) as the data interpretation problem. In the last section, we have discussed how we can find pair-wise information. Now, we examine how we can efficiently cluster records into entities. Example algorithms herefore are cut or correlation clustering, which we adapt in the following to suit the incomplete resolution space that is inherent to incremental ER. Before going into detail on the applied ER algorithm, we first establish how the votes graph and the MinMax matrix can be adapted when new votes are collected from the crowd. The observations that we make are specific to MinMax but can be easily adapted to any decision function that has the properties defined in Section 3.

4.1 Updating the Votes Graph

As explained in Section 2 incremental ER requires an adjustment of its queue and its ER solution whenever new information becomes available. To understand the ER update process, i.e., the integration of a new positive or negative vote, first imagine how an update is propagated: Obviously, an update affects the records that are directly modified. From there on, it may affect connected records, which then further propagate the changes through the votes graph. This notion is visualized in Figure 4 for the running example where an edge between records *r*₃ and *r*₂ is modified while the edges between *r*₁ and *r*₃ resp. *r*₂ and *r*₄ remain untouched. As a result, the following three update operations need to be explored:

1. All paths connecting *r*₃ to any other record through *r*₄ may be modified.
2. All paths connecting *r*₄ to any other record through *r*₃ may be modified.
3. All paths that are connected through the new edge between *r*₃ and *r*₄ may be modified.

The records that are (indirectly) modified by the changes are called the update component of the update. They are those records for which either the positive or the negative path connecting them to any other record has been modified directly or indirectly through the update of an edge.

Theorem 17 (Update Component). The changes due to a new or modified edge *e*ᵢ ∈ *E* need to be propagated only along those edges *e*ₖ ∈ *E* for which either *p*ᵢₖ or *n*ᵢₖ changes.

Proof. The validity of this theorem derives from the fact that an update is a local change that affects the global computation of paths by modifying their subpaths. Therefore, if a path is not changed, then the scores of other paths that use this subpath will not change. The propagation of updates along edges is analogous to the propagation of change described in [Line 13].

The update functionality used to propagate changes for MinMax is described in Algorithm 2. Here, the increment computation is split into two parts: Algorithm Update describes how an increment can be realized, analogous to what is visualized in Figure 4. Function Compute then propagates the update along all affected paths recursively. The actual update computation uses a boolean path marker γ for declaring negative and positive paths (Lines 7–19) as follows:

- If γ = false, the algorithm knows that the current path is negative. It therefore evaluates only positive outgoing edges for nodes that have not been traversed on this path (Line 9). For each of these candidate paths, Compute is called again to propagate the update further.
- If γ = true, the algorithm follows the same procedure as above but has to consider all outgoing edges, independent of whether they are positive or negative. As a result, it is recursively called for both scenarios (Lines 18–19).

The Compute function is used by Algorithm Update for all three update scenarios described previously. The first two scenarios (Lines 8 and 9) explore all modified paths in the respective update direction. Solving the third scenario (Line 5) is more complex as all path alternatives that provide the MinMax score for a record pair (*r*ᵢ, *r*ⱼ) need to be stored. As this is infeasible to compute, only the path between *r*ᵢ and *r*ⱼ that has the highest path score, referred to as *path(rᵢ,rⱼ)*, is stored. In case there exist multiple paths with equal scores, the shortest path is chosen. Obviously, this approximation allows for imprecision in the result but as we show in our experimental evaluation, this simplification has no discernible impact on the result quality. After the changes to the MinMax matrix have been computed, we adjust the current ER solution by running a clustering algorithm on the set of modified records and their corresponding clusters (Line 6).
Algorithm 2. MinMax incremental update algorithm UPDATE and supporting function COMPUTE.

1 Algorithm: UPDATE(G = (R, E)), (r1, r2)) : void
2 compute_new_paths(r1, r2) do
3 // compute paths of form r1 → r2
4 R1 ← COMPUTE(r1, (r1, w1j > 0)
5 // compute negative paths of form r1 → j
6 Rj ← COMPUTE(r1, (r1, w1j > 0)
7 // compute paths of form j → r2
8 Rj ← COMPUTE(rj, {rj, wij > 0})
9 foreach rj ∈ Rj do
10 Rj ← COMPUTE(rj, {rj, wij > 0)
11 foreach rj ∈ Rj do
12 if wij > 0 then COMPUTE(rn, Rj ∪ r1, TRUE)
13 if wij > 0 then COMPUTE(rn, Rj ∪ r1, FALSE)
14 return Rj

Function: COMPUTE(r1, R1, γ) : void
15 if γ = false then
16 foreach rj ∈ R1 do
17 Rj ← G.get_records(r1, R1) : ∀rj ∈ Rj : rj ∉ R1 ∧ p1j > 0
18 foreach rj ∈ R1 do
19 Rj ← compute_negative_paths(r1, rij)
20 foreach rj ∈ R1 do
21 if pij > 0 then compute(rn, Rj ∪ r1, TRUE)
22 if pij > 0 then compute(rn, Rj ∪ r1, FALSE)
23 return Rn

Example 18 (UPDATE Algorithm). Going back to the initial example (Figure 2a), imagine that the edge between r3 and r4 is newly inserted. The algorithm then first explores the positive path between r3 and r2 but as p3,2 is already 1, it is not further pursued. In contrast, a negative path connecting the records did not previously exist, thus n3,4 is set to 3. Following the connecting positive edge to r1, the algorithm then sets n1,3 to 3. As no path value connecting r4 to any other record via r3 is changed, the update process finishes.

Theorem 19 (Complexity of Update). Updating the MinMax matrix has a complexity of O(mn2) in the worst case where m represents the number of records in the update component.

Proof. Updates connecting records r1 and r2 are propagated in three different ways as described previously. The number of paths in the update component is maximized if the update affects 2m in the first and second propagation phase (Lines 3 and 11). In the third phase, at most 2m · 2m pairwise scores need to be updated which results in a quadratic worst-case execution time.

Given the cost-optimized incremental structure of the votes graph, the average execution time is significantly lower in practice.

4.2 Clustering Records

Using up-to-date positive and negative path scores, an ER solution based on the current state of the votes graph and MinMax matrix can be computed. For that purpose, we employ a variant of correlation clustering which adheres to the concepts of intra-cluster density and inter-cluster sparsity. To evaluate whether two records r1 and r2 refer to the same entity, the benefit and penalty of having them in the same cluster are weighed off according to their pik, j and nij scores: If pik, j > nij then it is more beneficial to assign both to the same entity, otherwise they are assigned to different entities. We use a variation of an established approximation for clustering records called cautious correlation clustering [4] (Algorithm 3). The Resolve algorithm proceeds as follows. It first randomly selects a record r1 that has not been assigned to a cluster. It is then added to a new cluster c1 together with all those records rj that it is positively connected to, i.e., p1j, k > n1j, k. Record r1 can only become a part of c1 if it is not a part of a cluster yet. It next initiates a vertex removal phase in which all those records are removed from c1 where the penalties of keeping them in c1 outweigh the benefits (Line 7). For example if a r1 has a positive relationship with weight 1 to r1 but a negative relationship with weight 2 with rk ∈ c1, it is better to remove rj from r2 if the score of fulfilling [r1, r2] > 1. The ‘goodness’ of record rj is examined in function isGood which is a weighted validity computation analogous to the computation of δ-goodness in [4]. After the vertex removal phase has been completed, a record addition phase is initiated. Here, any records are added to c1 if the benefit of adding that record outweighs the penalty (Line 11).

Example 20 (Resolve Algorithm). In Figure 3a the votes graph contains records R = {r1, r2, r3, r4}. Picking r1 randomly, r1 is added in addition to r2, with p1,2 > n1,2 = 3 > 1, to cluster c1. Removing either r1 or r2 from the cluster does not provide a better clustering score, thus the cluster remains unchanged. Neither r3 nor r4 are added to c1 as for both the negative path values to any record in c1 is at least as high as the respective positive scores. Similarly, the algorithm constructs cluster c2 containing both r3 and r4. Thus, the final clustering is [(r1, r2), (r3, r4)].
Table 1: Time measurements for synthetic datasets with varying number of records n and a perfect crowd.

n	100	250	500	1000
Average	5.81ms	14.01ms	40.3ms	130.4ms
Max	36.33ms	24.4ms	58.7ms	172.5ms
Min	4.4ms	11.55ms	34.88ms	118.18ms

Instead of running resolve on all records after an update, it is only run on those records that are in any cluster that has been touched by an update (Algorithm 2, Line 6). Since these records do not necessarily represent whole clusters, the algorithm first expands the update component into a transitive update component, i.e., the original update component and all records that are in any of the clusters contained in the update component. Partial ER clustering for the transitive update component is triggered after each update to the votes graph to provide a consistent ER solution.

Theorem 21 (Complexity of resolve). Running entity resolution on the updated parts of the MinMax matrix has a worst case complexity in $O(|R|^m^*)$.

Proof. The vertex removal phase requires m^* repetitions at most where m^* is the number of records in the transitive update component. The vertex addition phase is bounded by the number of overall records in the graph, $|R|$. As both phases are initiated for all m^* records and $m^* < |R|$, resolve runs in $O(|R|m^*)$. □

4.3 Complexity

In practice, the Update as well as Resolve algorithm perform near linear when scaling up the number of nodes in the votes graph. To demonstrate the scaling behavior, we examined the processing time, i.e., the end-to-end time spent on integrating an update, for a synthetic dataset as shown in Table 1. The dataset has a maximum entity size of 50 and the distribution of entities within the ground truth follows a Zipf distribution. Varying the number of records, we can see that the processing time increases as expected due to the bigger votes graph which entails more propagation of updates. The increase is not quadratic but approximately linear: For $n = 100$ the time spent on average per update is 5.81ms, for $n = 250$ 14.01ms, for $n = 500$ 40.3ms, and for $n = 1000$ 130.4ms. The reason is that the graph size is not the only influence on execution time. Entity size as well as the amount of noise in the votes graph play a decisive role for our algorithm’s performance. The higher the number of positive votes in the graph, the higher the number of positive or negative paths in the votes graph. As a result, processing time per update will increase.

In different synthetic experiments we observe that the computational effort per update is not the bottleneck for crowdsourced ER. Instead, experiments where clusters are small, a lot more updates are required to complete the votes graph and to find a path between all records. The processing time of our real-world datasets is discussed in Section 6.

4.4 Path Optimization

While constructing the MinMax matrix, the Update algorithm described above maintains the current path and its score. To enable task requests efficiently, this knowledge can be used to define the investment points for further requests: If the score of a path needs to be modified (i.e., to increase certainty in the result), the minimal edge(s) in that path are those record pairs that have to be answered by the crowd. We observe that a minimal edge in a path between records r_1 and r_2 can most likely be improved if it satisfies either of the following requirements:

- If the path that is currently inspected is positive, then $p_{ij} \geq n_{ij}$ must hold.
- If the path is negative, then $n_{ij} \geq p_{ij}$ must hold.

The intuition here is that an edge can only get stronger if it gets more votes in its favor. This is more likely if it is already a dominating edge because if it is dominated, the crowd so far thought this decision to be the wrong one for this record relationship. Asking more questions for that record pair will thus likely result in the strengthening of the opposite decision which will not enhance the certainty of the candidate pair in question.

Example 22 (Edge Selection). Observing the paths connecting records r_2 and r_3 in Figure 3a there are two possible minimal paths, $\{r_2, r_1, r_2\}$ and $\{r_3, r_4, r_2\}$. The first path has its minimal edge between records r_1 and r_3 and since this edge is not dominated, improving the path at minimal cost would result in a request for more information on that record pair. The improvement of the second path on the other is not feasible as the minimal edge between r_2 and r_4 is dominated by its counterpart.

5. NEXT-CROWDSOURCE PROBLEM

As explained in Section 2.1.1, the next-crowdsourcing problem is to decide which record pairs should be resolved next to improve result quality for the lowest possible additional budget. Whichever task, i.e., comparison between records, is asked next is dependent on the current state of the votes graph. If there is no knowledge on how any records are related, there cannot be an informed decision on which task to issue to the crowd. On the other hand, if there is some pairwise information available it can be leveraged to refine the current ER solution.

In our work, we assume independence of data preprocessing but can leverage a preprocessing step analogous to the steps described in [36, 38]. Please refer to the publications dataset in Section 6 as an example. Note however that preprocessing steps such as hint generation through automatic similarity computation or blocking mechanisms that reduce the search space are orthogonal problems to this line of work. The reason is that automatic similarity metrics commonly rely on some kind of syntactic similarity that is not necessarily equivalent to what humans perceive. For example if pictures show a well-known landmark from different angles, humans can use knowledge about the building to answer the task based on semantic knowledge. Thus, we focus on enhancing the already existing votes graph through human knowledge in this section.

Solution Space. Two alternative approaches to solving the next-crowdsourcing problem through a queuing system are discussed in Subsubsection 2.1. The first one generates all candidate pairs, monotonically requesting pairs, and terminating when all pairs have been asked or inferred. The second
We introduce two types of parallelism for incremental ER querying strategies as the error reduction consensus measure ϕ and whether they favor quality over cost. For that purpose, it uses the strategy strategies then use the consensus of record pairs to prioritize candidate pairs are evaluated. For that purpose, it uses the consensus measure ϕ and if for both pairs of records $|\phi(r_i, r_j)| \neq 1$ respectively $\phi(r_k, r_l) \neq 1$ holds.

This strategy is able to provide high precision ER solutions: Instead of investing the budget into solving a lot of different pairs only partially, it focuses on resolving edges before moving on to the next record pair. As a result, this strategy provides introduces votes into the graph that it is certain about. In contrast, the second strategy that we introduce promotes completeness over correctness and distributes the budget in a breadth-first manner. It allows for a fast (but possibly imprecise) initial representation of record relationships within the dataset. We will refer to this strategy as the uncertainty reduction strategy (UnS) as it tries to obtain some information for any record pair first before asking more questions in depth to become more certain the record relationships.

Definition 25 (UnS). Given record pairs $[r_i, r_j]$ and $[r_k, r_l]$, query strategy ω_{UnS} prioritizes $[r_i, r_j]$ over $[r_k, r_l]$ if $|\phi(r_i, r_j)| < |\phi(r_k, r_l)|$ and if for both pairs of records $|\phi(r_i, r_j)| \neq 1$ respectively $\phi(r_k, r_l) \neq 1$ holds.

As we assume uncertainty to be at its highest when $\phi(r_i, r_j) = 0$, the absolute distance of the consensus measure to 0 is the certainty of $[r_i, r_j]$ for f. With no prior knowledge of record pairs, $[r_i, r_j]=0$ holds. Record pair $[r_i, r_j]$ would therefore be prioritized in comparison to any other record pair $[r_k, r_l]$ for which $0 < |\phi(r_k, r_l)| < 1$ holds. The reason is that such a score would indicate some knowledge of $[r_k, r_l]$.

Hybrid strategy (HyS). Under the assumption that the crowd fulfills their tasks perfectly, UnS will always dominate EnS in terms of its quality gain per cost unit as shown in Figure 5a on a dataset consisting of landmarks in Paris, France, and Barcelona, Spain with a perfect synthetic oracle. Quality is captured here through the f-measure of the ER solution while one cost unit corresponds to one evaluated record pair, i.e., one crowdsourced task. Details about the dataset and the experimental setup can be found in Section 6.

In real-world use cases, the assumption of a perfect oracle does not hold which causes the dynamics of the two querying strategies to shift: The quality improvement of ErS is predictable albeit at a higher overall cost while UnS makes an increased number of false local decisions especially if only little budget has been invested. These issues can be addressed through a hybrid querying strategy that combines the best of both. As positive task decisions have more impact on the ER solution due to the way (anti-)transitivity is defined, the hybrid strategy resolves positive decision candidates cautiously, following ErS. Candidate pairs that potentially lead to negative decisions are processed according to UnS to avoid spending budget on a request that potentially has not a lot of impact. This differentiation of decision strategies is analogous to the idea of reward functions in active learning: A positive vote indicates that the task is an important one and should be prioritized. In contrast, a negative vote would not trigger a reward and the record pair would be crowdsourced again at a later point again.

Definition 26 (HyS). Given record pairs $[r_i, r_j]$ and $[r_k, r_l]$, query strategy ω_{HyS} prioritizes $[r_i, r_j]$ over $[r_k, r_l]$ if $\phi(r_i, r_j) > \phi(r_k, r_l)$.
and if for both pairs of records \(|\varphi(r_i, r_j)| \neq 1\) respectively \(\varphi(r_k, r_l)| \neq 1\) holds.

If \(\varphi(r_i, r_j)\) and \(\varphi(r_k, r_l)\) are positive, the strategy will thus choose the record pair that has less uncertainty but is not yet certain following \(\omega_{ErS}\). In contrast, if \(\varphi(r_i, r_j)\) is below 0, it will only be chosen over \(\varphi(r_k, r_l)\) if its distance to 0 is lower which is the case if its consensus measure is bigger.

To enable a seamless hybrid strategy, it can be implemented through a double queue system: One of the queues contains positive candidate pairs and applies ErS while UnS is used for the negative queue. Whenever a record pair \([r_i, r_j]\) is inserted into this hybrid queuing system, it is inserted into either the positive or negative queue based on the current state of \(p_i^r\) and \(n_i^r\). For record pair extraction, the positive queue is accessed first and a record pair is pulled from the negative queue only if the positive queue does not contain any pairs.

5.2 Workload Parallelization

Integrating the crowd into the information collection process comes not only at a monetary but also temporal cost. In fact, it increases response time drastically. This is why task parallelization has become an established technique to limit the increase in execution time. Generally, there are two types of parallelization that are applicable for this kind of pair-wise crowdsourcing, intra-task and inter-task parallelization.

Intra-task parallelization. Instead of asking for a record pair once, the same pair is issued multiple times to different workers. For example for quorum or majority-based techniques, it is possible to compute the required number of tasks to achieve certainty on the fly: It depends on how many answers are required and how many tasks have been returned for this record pair previously.

Inter-task parallelization. Instead of asking for a series of distinct record pairs sequentially, the required pairs are analyzed and if they found independent of each other, they are released onto the crowdsourcing platform in parallel within a batch. This technique has been discussed in prior work, and is commonly realized by generating a spanning tree over all entities. In practice, we point out that uncertainty of the crowd hinders inter-task parallelization as shown with the following example.

Example 27 (Inter-task Parallelization). In Figure 6, \([r_3, r_4]\) is already known after which the algorithm decides to parallelize tasks \([r_1, r_2]\), \([r_1, r_3]\), and \([r_2, r_4]\). The answers to these tasks causes uncertainty to arise between \(r_1\) and \(r_3\) resp. \(r_2\) and \(r_4\).

When comparing sequential and parallel task execution for the different querying strategies with noisy answers occurring with a likelihood of 10%, the following three observations can be made: First, the absolute cost for ErS decreases when parallelizing task execution. The reason herefore is that inter-task parallelization requires connecting previously unconnected entities in a manner aimed to provide maximal coverage. To generate the spanning tree, the algorithm iterates over all candidate pairs in the queue in descending order of their objective. As a result, it is more likely that positive rather than negative candidate pairs are part of the spanning tree which in return improves the performance of ErS. The second observation is that the cost for both UnS and HS increases. Here, the opposite effect as for ErS takes hold: Parallelizing them forces both strategies to execute tasks with lower priority within the current batch if other (higher priority) tasks are not consistent with the existing spanning tree. Additionally, the resolution of contradictions in the result set incurs higher cost because of the necessity for more information but at the same time it lowers result quality due to noisier intermediate results. Third, HS maintains a better result cost and quality trade-off than either alternative approach because it is still able to leverage the benefits of both ErS and UnS.

6. EXPERIMENTAL EVALUATION

In this section, we compare fault-tolerant data interpretation mechanisms with consensus-based approaches and discuss the different querying strategies and parallelization techniques introduced in the previous section.

6.1 Experimental Setup

Two different real-world datasets that contain pictures resp. publication records are used in this evaluation. We evaluated these datasets both with synthetic and real-world crowds. To provide an extensive experimental evaluation on crowdsourced data, the datasets were crowdsourced completely on the Amazon Mechanical Turk platform, i.e., ten crowd workers solved each possible record pair. Each of these workers has a 90% acceptance rate to avoid malicious
workers. For all the experiments shown here, the results of the respective setup are averaged over at least 100 different single experiments. Note that this methodology allows us to compare the algorithms in a robust setting where all of them have the same chance to succeed.

Landmarks dataset. This dataset consists of 266 pictures of landmarks in two European cities, namely Paris, France, and Barcelona, Spain. It is based on a picture classification dataset for visual object identification algorithms, and contains 13 entities that are landmarks such as the Arc de Triomphe. In each task, a crowd worker is shown a pair of pictures and decides whether they show the same landmark. As shown in Table 2 there exist a total of 352,450 record pairs out of which about 7.8% are correctly identified as belonging to the same landmark. The crowd also identified another 4.6% as positive matches even though the ground truth was negative. As a result, 37.1% of all positive answers should be in fact negative. In total, about 2.8% of all extracted answers are false negative answers and 84.8% of all answers were true negatives.

Publications dataset. This dataset is a compressed version of the Cora dataset which is commonly used for string similarity evaluation. It is derived from the original dataset through relative compression, i.e., if an entity contained 5% of the records in the original dataset, it will contain approximately the same percentage of randomly selected records in the smaller dataset. Overall, this dataset has 3.47 records per entity on average and thus results in a higher amount of candidate negative decisions than the landmarks dataset. In fact, only 2.42% of all decision pairs are positive, out of which 64.04% are identified as such. We observe a high ratio of false positive decisions to the overall number of positive decisions: Here, 36.2% of all positive decisions are erroneous. We also observe that the absolute number of false positive and false negative decisions in the answer set are about equal and overall lower than for the landmarks dataset.

Algorithms. We evaluate three different data interpretation algorithms from the core classes identified in Section 2.

- **CER.** As state-of-the-art consensus-based strategy we choose CrowdER, which uses a majority-based decision strategy. It monotonically requests all candidate pairs from the crowd, merging those that are connected by a positive decision and can thus be classified as a consensus-based decision strategy.
- **FER.** This algorithm represents the class of fault-tolerant strategies. It incorporates the same non-repetitive queuing mechanism as CER but uses MinMax as decision function with a quorum size of 3 and repeats each task until q or the edge budget (b_E=10) is reached. Experiments with other quorum values are omitted here but show similar trends.
- **FEER.** This is an exhaustive fault-tolerant strategy which implements FER but maintains a non-monotonic queuing system: If an update to the internal MinMax strategy causes a pair to become uncertain, it is inserted back into the queue.

This evaluation will also focus on the two task ordering techniques discussed in Section 5: queuing strategies and parallelization. We evaluate the three queuing strategies presented previously, EntS which is a cautious mechanism that aims to optimize intermediate results, UniS which internally orders its candidate pairs according to their level of uncertainty, and their hybrid HS which cautiously processes positive and optimistically processes negative candidates. The hybrid strategy will serve as default strategy if not otherwise declared. To assess the impact of parallelization techniques, we implement as baseline a sequential process that iterates asking for exactly one record pair. We compare it to a combination of inter- and intra-task parallelization, i.e., if parallelized, the algorithm automatically computes a spanning tree over all entities and within an entity as well. For all candidate pairs, it then computes the minimal necessary investment to reach quorum or consensus and issues the resulting record pairs as a batch.

Metrics & Implementation. This evaluation uses mainly two standardized metrics, quality and cost. The cost of any experiment is simply measured as the number crowd accesses which is equivalent to the amount of requested record pairs. To measure quality, we use precision and recall where precision is the percentage of record pairs that are correctly associated with the same entity and recall is the percentage of record pairs that we correctly assign to the same entity. To provide a unified quality metric, the F-measure of these values is used as standard quality metric, defined as $\frac{2 \cdot \text{Precision} \cdot \text{Recall}}{\text{Precision} + \text{Recall}}$. We implemented all of the presented algorithms and strategies in Java, and experimented on a Linux machine with eight Intel Xeon L5520 cores (2.26GHz, cache 24MB).

6.2 The Impact of Crowd Error

To exemplify the impact of errors made by crowd workers, we synthetically generated two types of noise for the landmarks dataset. The first noise is false positive noise, p_f, which describes the percentage of decisions where crowd workers wrongly classify records r_i and r_j to belong to the same entity when in fact they belong to different entities according to the ground truth. Analogously, the second type of noise is false negative noise, p_n, where r_i and r_j are falsely assigned to the same entity. Figure 7 and Figure 8 show the results of this set of experiments, comparing different data interpretation models under uniform synthetic noise varying both p_f and p_n. We observe that if the crowd answers perfectly (Figure 8), Fer and Feer show rapid quality improvement per cost unit. Feer outperforms Fer because it dynamically adjusts the priority queue, pushing potentially positive candidate pairs to the front of the queue and therefore maximizing the information gain per crowd access. The
As records are merged that belong to different entities.

If uncertain, it requests more information from the crowd, thus allocating more budget. If the budget is still insufficiently high, the workers question their resolutions whenever they encounter a contradiction. This can be observed in Figure 9a through the increase in the respective precision curve for FEER (FER) after approximately 3k (4k) crowd accesses.

False Negative Information

If the crowd answers with false negative answers (Figure 7b), the workers decide to keep records apart which should be in the same entity with a likelihood of \(f_n = 0.3 \). We observe in this set of experiments that an increase in the number of questions asked \((v) \) leads to a provable increase in quality for Cer. Here, with \(v = 9 \) instead of 5, the final ER solution reaches a f-measure of 0.69 instead of 0.12. Compared to FEER and FER, CER still provides a lower quality improvement over crowd accesses because in order to reach better quality, more budget has to be invested into finding an ER solution. We notice also in this experiment that varying \(f_n \) changes the recall of the results but never the precision. This behavior is different to varying false positive information which influences both. To understand the different behaviorisms, remember the definition of precision and recall: Precision is negatively influenced through records being falsely assigned to the same entity, recall is negatively influenced by records in different entities that should be in the same entity according to the ground truth. As records can never falsely belong to the same entity through false negative votes, precision is not influenced by this type of crowd error.

Noisy Crowd Information

Combining both types of crowd error leads to a visible quality decrease for both Cer variations and larger budget requirements for both FEER and FER (Figure 7). We again observe that increasing the budget for Cer in fact positively influences the result quality but as we have shown for our real-world experiments (Section 6), it never reaches the same level of quality as both fault-tolerant approaches. The additionally required budget investment for these can be explained through the decision behavior of MinMAX: If uncertain, it requests more information from the crowd, thus allocating more budget. If the budget is granted, it leads to a steady improvement in result quality which itself is better than the Cer result quality at any point in time.

6.3 Landmarks Results

The landmarks dataset is an interesting use case as it provides an environment where no similarity metric enhances the performance of the ER strategies. Here, every candidate pair is initially equally likely. To contrast our techniques, we now...
which form 26.4% of all candidate positive decisions in the
performance of significant impact on result quality.

The algorithm and b) the landmarks dataset has only 13 big
candidates which results in a decrease in cost/quality gain. At this point,
Figure 10a) is due to its sensitivity to false negative decisions
in comparison to Fer (see difference in quality Δ_q and cost Δ_c in
Figure 10a) is due to its sensitivity to false negative decisions
which form 26.4% of all candidate positive decisions in the
landmarks dataset. While Cer maintains a minimum of 0.96 precision over time, its recall is at most 0.21 even if the
number of votes considered $|v|$ is increased from 5 to 9 which
only results in a decrease in cost/quality gain. At this point,
recall that a) positive decisions reduce the search space of the algorithm and b) the landmarks dataset has only 13 big
entities. Uncontested false negative decisions therefore have significant impact on result quality.

Performance of Fer and Feer. As shown in Figure 10a, it is possible that Fer outperforms Feer. While Feer uses an
adapting queuing system that obviously reduces the overall
cost, Fer requests candidate pairs as long as its queue is not empty. Its monotonic queue is generated in the beginning
and every candidate pair is polled from the queue in random order exactly once. Given noisy answers from the crowd,
this mechanism actually improves result quality intuitively
because it is not aimed to minimize the cost but to ask every candidate pair at some point in time which is more costly but
also more exhaustive than optimizing the queuing system.
To verify this hypothesis, we implemented a modification of
Feer that allows us to vary the connectivity of the entities
associated with each record κ which varies the number of
candidate pairs per entity combination. A higher value of κ
resembles more record pairs that are requested to test the relationship of two entities. For example, if the first entity
contains four records and the second entity contains three
records, there exist a total of 12 record pairs. Instead of
selecting one at random, it will select two random pairs if κ
is set to 0.2. Increasing the connectivity of the entities has
immediate consequences: First, the cost of Feer increases
and second, the quality of Feer improves significantly for
this dataset as shown in Figure 10a. With κ set to 0.2, we
now observe a better quality to cost ratio for Feer (result
quality of 0.916 with a total cost of 23,918 cost units) than
even Fer can offer (result quality of 0.856 with a total cost
of 27,197 cost units).

Finally, Figure 11 shows the performance comparison of
our algorithms for this dataset in sequential mode without
any modifications to the connectivity. We observe that in
this setup Fer takes at most 8.12ms per update while the
update cost of Feer is 51.93ms. The reason why Feer is slower that Fer lies in the readjustment of the queuing
system: As the dataset contains noise, record pairs get
occasionally reinserted into the queue. Generating these new
record pairs and adjusting their position in the queue incurs
computational overhead. This overhead is then reflected in
the execution time.

Summary. Figure 10a and Figure 10b show that for this
dataset Feer reaches a better cost/quality trade-off faster
than any other approach if the connectivity parameter κ
is adjusted. Furthermore, all fault-tolerant strategies signifi-
cantly outperform Cer in terms of quality as we observe
a minimal difference of at least 0.4 on the f-measure. This
improvement can be reached at lower cost than needed for
Cer for Feer. We also show that the low quality performance
of Cer does not depend on its available budget as the
output quality only minimally increases with a higher
budget (Figure 10a).
6.3.2 Querying strategies

When comparing the three proposed querying strategies for Feer in Figure 10c, similar cost/quality trade-offs in the real-world dataset than estimated with the synthetic crowd (Figure 5) can be observed. Here, HS clearly outperforms both alternative strategies as it provides better result quality at lower cost. The exact improvement that HS may offer depends on the underlying structure of the dataset and the crowd: More noise decreases the performance of UnS and highlights the robustness of HS. In comparison to EnS, HS provides better cost/quality trade-off if the number of entities in the result is large which highlights the exploitive nature of its processing of negative decision candidates. In contrast to the slight cost increase in Figure 5, all queuing strategies are 40-60% more expensive in the real-world experiment due to non-uniform error distribution. More specifically, we observe for the landmarks dataset that 5.2% of all pair-wise decisions are contested, i.e., there exist at least two crowd workers who have a different opinion than the other workers for the same pair of records.

6.3.3 Parallelization

Parallelizing the different data interpretation methodologies with intra and inter-cluster parallelization methods results in a worse quality/cost development for Feer than Fer though both are substantially better than Cer. The reason for the efficiency decrease of Feer lies in the noisy information that parallelization induces: It artificially creates race conditions, i.e., edges compete with each other for the highest score which results in them being marked as noisy and removed from the graph. This behavior also explains the high cost of Feer with $\kappa = 0.2$: It generates multiple connections per entity comparison thus further increasing the degree of parallelism and implicitly the noise. Comparing these results to the results of the synthetic experiments previously obtained in Figure 5c, we make similar observations for EnS and UnS than before while HS increases its advantage over both strategies due to the non-uniform noise distribution in this dataset.

6.4 Publications Results

In contrast to the landmarks dataset, the publications dataset consists of records with string-based attributes which allow for an easy application of string similarity metrics to prune the search space and reduce information access cost. That is, in this set of experiments, we first apply automated ER to obtain those candidate pairs that are uncertain which are then verified through crowdsourcing. In that context, the similarity metric s determines the level of matching with the Jaccard similarity as follows: First, if s exceeds an upper threshold, a positive decision with the maximum number of crowd votes is added to the votes graph. Record pairs that are below the lower threshold of s trigger a negative decision in the same manner. Furthermore, s is used to initiate all queues according to the current similarity belief.

6.4.1 Data interpretation

We make three observations when comparing the different data interpretation methodologies (Figure 13b and Figure 13a). First, fault-tolerant mechanisms clearly outperform consensus-based mechanisms regardless of the similarity threshold s that is applied to the record pairs. Independent of the number of votes spent by Cer, we observe a maximum precision of 0.92 and a maximum recall of 0.29, indicating that, again, Cer keeps records in different entities that should belong to the same entity. The second observation is that spent budget can be significantly reduced if automatic similarity measures are used before applying the data interpretation mechanisms but it does not influence the quality outcome of either technique. This suggests that the decisions made by the similarity metric are in fact decisions that the crowd workers make as well. As a result, tightening the thresholds only prunes undisputed decisions and thus reduces crowdsourcing costs without modifying the result quality. Third, we observe that for all approaches the cost/quality gain first increases and then stagnates, which is especially evident in Figure 13a. The average entity size in the publications dataset is only 3.47 which results in a large number of negative decisions between entity pairs overall. As cost is not bound here, all undetermined pairs have to be resolved until the algorithms
are finished. The significant number of negative decisions at the end of the execution (which is visibly more skewed than in the previously examined landmarks dataset) is due to the application of the similarity metric a priori, which boosts decisions that are more likely to be positive to the front of the priority queue.

Entity connectivity. The concept of connectivity ratios that was introduced for the landmarks dataset can also be applied to the publications dataset. Similarly to the previous experiment, we observe an increase in cost and quality when \(\kappa \) is increased. The changes to the resulting ER are not as significant as observed for the landmarks dataset but are within 2% of its quality while the cost increases by approximately 10%.

Summary. With these experiments, we show that fault-tolerant ER and automatic similarity metrics can be tightly integrated and result in a good quality solution for a smaller overall budget. If the similarity metric suits the dataset, it can efficiently decrease the search space for crowdsourced ER without a loss in quality and an improvement in cost (here 90% of the budget). Furthermore, these experiments show that reducing the search space does not necessarily benefit the decision function, as the output quality is still dependent on how noisy votes are handled. Here, both Feer and Fer significantly outperform \(\text{Cer} \).

6.4.2 Querying strategies

With a prepruned search space, querying strategies behave differently than in an unbiased decision space. We observe that for an increased lower bound of \(s \), \(\text{ErS} \) performs better than \(\text{UnS} \) (Figure 14b), while \(\text{UnS} \) dominates \(\text{ErS} \) in an uninformed setup (Figure 14a). Obviously, \(\text{ErS} \) performs well if the candidate space is comprised of mostly positive candidate pairs. On the other hand, it incurs higher cost if it likely asks negative decisions which occur more often if the lower threshold for \(s \) is decreased. The development of both \(\text{HS} \) and \(\text{UnS} \) are more straightforward as they rely on an exploratory way of evaluating the search space which makes them less dependent on prefiltering.

6.4.3 Parallelization

Surprisingly, parallelizing the candidate pairs for the publications dataset has significant impact on the performance of \(\text{Cer} \) (Figure 15). Here, the observed f-measure changes because the recall of both \(\text{Cer} \) variations increases to a maximum of .44 compared to the .29 achieved during sequential execution. The reason for this behavior attests to the instability of consensus-based approaches: It can be found in the order in which the record pairs that are extracted from the priority queue. For this dataset specifically, the ordering of the candidate pairs removes a candidate pair from the initial batch of tasks that has been falsely identified by the crowd and as a result, the output quality improves. In contrast, both Feer and Feer have consistent quality when executed sequentially or in parallel. Figure 15c shows the performance of the different querying strategies in parallel execution mode. Similarly to Figure 14b, we note that \(\text{ErS} \) is a valid alternative queuing strategy to \(\text{HS} \) given a prepruned search space, even if its cost is slightly higher than for \(\text{HS} \).

6.5 Discussion

Fault-tolerance is a requirement for entity resolution when handling unreliable data sources such as the crowd as shown in this section for two different datasets. Noisy information has direct impact on result quality and cannot be recovered from if the applied ER mechanism is not aware of these imperfections. Furthermore, we show that choices concerning task ordering are essential to the success of any ER mechanism: Queuing strategies as well as parallelization techniques impact the result quality and cost and cause different results in a noisy as in a perfect execution environment. Specifically, we observe that parallelization may improve execution time, i.e., the end-to-end time spent on the ER process, but it increases the allocated budget and often does not achieve the same ER quality level as a sequential execution could provide. The relative success of the presented queuing strategies then is dependent on the dataset itself, the size of the entities it contains, and also whether pre-pruning is an option. We have shown that a hybrid queuing strategy is a robust mechanism to order tasks consciously of the current state of the votes graph as alternative to pure error or uncertainty reduction strategies.

Scalability. For the sake of completeness, these experiments have been executed on datasets that were collected through a crowdsourcing platform. As a result, these datasets are limited in size though experiments with synthetically generated
larger datasets show the same tendencies for all algorithms and strategies (see Subsection 6.2 for an example of how synthetic experiments are conducted). We argue that as shown in the above real-world experiments, the state-of-the-art mechanisms incur comparable cost in terms of crowd accesses. Thus, fault-tolerant mechanisms on average provide higher quality results at the same cost because they are able to prioritize and question important record pairs that are central to the entity resolution solution. For larger datasets than examined in this set of experiments, we can imagine techniques such as automatic similarity metrics to minimize the candidate space for record pairs similar to those applied on the publications dataset here. Note that this does not diminish the impact of fault-tolerant decision mechanisms on the output quality as shown in our experiments (Subsection 6.4).

In terms of computational performance, our experiments show that the entity size as well as noise level in the answer set are correlated to the update propagation performance of \texttt{UPDATE} (Algorithm 2). That is, large clusters cause a large amount of positive decisions in the votes graph which in return means more update propagation as positive edges are always traversed independent of whether the candidate path is positive or negative. Furthermore, noisy edges obviously require more computation because every updated edge needs to be propagated into the votes graph. Here, we argue that computational scalability is often not a problem for the execution engine because

- the crowd is slower than the time taken to update the votes graph especially if it is constructed as a chain similar to what all presented approaches here try to achieve by leveraging transitivity.
- parallelization as described previously allows a variety of workers to respond to several tasks at the same time thus decreasing the end-to-end time spent on an ER problem.

(Crowdsourced) Entity Resolution. Automatic ER algorithms and their corresponding approximations, \cite{4,10}, are useful alternatives to crowdsourced ER algorithms in a variety of use cases: For example for the Cora dataset which contains text-based content, string-based similarity metrics have been shown to provide high quality output. In this paper, the purpose of using this dataset is to be comparable to previously done research in the same area. The use cases that we target with crowdsourced ER for real-world use cases are exemplified better through the landmarks dataset where pair-wise similarities are not straightforward to compute. In fact, identification of objects in pictures is still a hard task for computers. \cite{57}. In these cases, crowdsourced ER can be used to enhance and complement object identification either as a standalone solution or in collaboration with automatic similarity measurements that have been developed for visual computing. Analogously, we imagine crowdsourced ER to be used in other domains where information is not of the same data type or cannot be well correlated with automatic measures.

7. RELATED WORK

Entity Resolution. Entity resolution (also known as entity reconciliation, duplicate detection, or record linkage) is a critical task for data integration and cleaning. It has been studied extensively for several decades (see \cite{8} for a survey). There are a variety of approaches to ER ranging from local decision functions such as transitive closure, \cite{16}, to global objective functions such as cut or correlation clustering, \cite{4}. In this work, we combine the idea of having cohesive clusters of records with the quality guarantees that local decisions can provide, i.e., if the crowd argues for one decision over another, our algorithms ensure consistency with that decision. For automatic ER algorithms, cost optimization is often not as essential as in crowdsourced ER because it is not directly correlated with monetary cost. Nevertheless, approaches such as progressive ER, \cite{2}, and incremental ER, \cite{13}, work under the assumption that the information gain per update or new element to resolve should be maximized. This idea is similar to what we want to achieve with the presented queuing strategies, although our mechanisms differ in that the votes of the crowd are iteratively collected and decisions may change over time, i.e., they become invalidated, which is not the case for automatic ER approaches. Another interesting line of work if adjusted to the crowdsourcing context is scalable entity resolution \cite{10,28}. Here, the premise is to break down large entity resolution problems into smaller parts to enhance performance. It is well applicable in the context of crowdsourced entity resolution although it still assumes perfect knowledge about record relationships which is different than from the underlying assumptions of fault-tolerant entity resolution.

Crowdsourced Entity Resolution. Recently, hybrid human/machine entity resolution algorithms have attempted to automatically integrate humans as part of the ER process to increase the reconciliation quality \cite{24,41}. In \cite{35} the authors combine automatic machine learning techniques with crowdsourcing, whereas \cite{36} extends the work to further reduce the cost of crowdsourcing by taking transitive relationships into account and also adjusting the crowdsourcing process according to automated similarity measurements. One of the assumptions that is commonly made in previous work is to consider worker quality as an orthogonal problem as well as not taking negative feedback from humans (i.e., that two entities do not match) into account when creating an ER solution \cite{36,38}. Thus, eventual conflicts in the crowdsourced comparisons are discarded or ignored. In contrast, our approach uses all available information without filtering any of the retrieved data even if contradicting. Additionally, we closely examine queuing strategies that make a decision based on all available information rather than using a subset of information to determine the next record pair that is requested from the crowd \cite{54}. The strategies that we evaluate in this context allow users to determine whether they want to put emphasis on high precision or high recall in their result set to allow for flexibility when constructing the ER solution. Furthermore, there has been work on probabilistic crowdsourced ER \cite{52} which proposes a maximum likelihood approach but the proposed strategy is NP-hard and thus infeasible to compute in an online setting (see Subsection 2.2 for details). The techniques shown in this work are specifically designed for efficient online computation. Additionally, we provide quality guarantees and explore different prioritization techniques for record pairs which has not been discussed in any of the related crowdsourced ER works.
Crowd Quality. Since defining and computing good similarity measures is not always possible, there has been further work \[5, 11, 12, 40\] that minimize the use of distance functions for record comparisons. These methods either rely on Bayesian modelling or similar mechanisms to approximate the answers of their data sources after extensive data collection or apply knowledge specific to a certain platform and its characteristics. \[6, 17, 22\]. Error intervals for crowd workers or error estimates per worker group are alternative ways to model worker quality \[18\]. In contrast, our method provides good ER results in the absence of similarity distances and is able to provide an ER result without any prior training of our mechanism. Information on the quality of crowd workers can be leveraged with our approach by requiring high quality workers, for example determined through their behavioral patterns \[20\], to answer the current top candidate pair. Thus, this type of research can be used to enhance the computed ER result. Nevertheless, noise in the answer set cannot be excluded categorically even if worker quality is high as they may make mistakes and provide erroneous information.

Crowdsourced Database Operators. There has been a lot of research on crowdsourced operators (filtering, top-k, and entity resolution) under the assumption of predefined error behavior of the crowd. This research can be divided into two categories: Approaches that rely on the crowd to give answers that can be monotonously aggregated \[35, 39\] and those techniques that take specific error behavior of the crowd into consideration \[7, 15, 27\]. Our approaches vary from the first group of algorithms as we tolerate and in fact embrace noisy behavior of the crowd. To the best of our knowledge, none of the techniques developed in the second group of algorithms can be used to resolve the entity resolution problem efficiently.

Performance Optimizations. Orthogonal, as it can be easily employed on top of our fault-tolerant entity resolution framework, but relevant to our results is research that focuses on finding methods to improve the information gain from the crowd. That is, instead of looking at binary record comparisons as we do here, there have been alternative methods to batch tasks or to define interfaces specifically for certain crowdsourcing tasks that enable crowd workers to be more precise in their answers \[21\] and to convey more information in a single task \[23\]. Additionally, machine learning has been used to characterize the crowd as well as to optimize budget spending patterns \[19, 23\]. These spending patterns are similar to the queuing strategies that we present in this work although the idea in this type of work is to determine and leverage these patterns per worker. In contrast, we make more general observations on the applicability of recall resp. precision-oriented queuing strategies and how varying these strategies modifies output quality.

8. CONCLUSION

In this work, we discussed the problem of entity resolution with unreliable data collected through crowdsourcing. To handle this type of noisy data, we defined fault-tolerant mechanisms that interpret the pair-wise decisions on record relationships made by the crowd. We then discussed how these mechanisms can be integrated into an incremental ER framework that computes a consistent ER solution on the fly. In the second part of this work, we showed how uncertainty affects the next-crowdsource problem in terms of result quality and budget allocation. In that context, we evaluated different queuing strategies that order tasks according to different objectives for example minimizing the error or uncertainty first. Furthermore, intra- and inter-task parallelization mechanisms were added as execution modes to all techniques in order to evaluate the impact of task parallelization on the result quality and cost of the ER solutions. The need for fault-tolerant mechanisms was clearly shown in the experimental evaluation where the devised fault-tolerant mechanisms outperform consensus-based strategies significantly for two real-world datasets. Additionally, the evaluation clearly shows the impact of task ordering and parallelization mechanisms on crowdsourced entity resolution. Note that the techniques presented in this paper are not restricted to being used in the context of crowdsourcing only but can be used for any unreliable data source.

9. REFERENCES

[1] Amazon Mechanical Turk. www.mturk.com.
[2] Y. Altowim, D. V. Kalashnikov, and S. Mehrotra. Progressive Approach to Relational Entity Resolution. PVldb, 7(11):999–1010, 2014.
[3] Y. Avrithis, Y. Kalantidis, G. Tolias, and E. Spyrou. Retrieving Landmark and Non-landmark Images from Community Photo Collections. MM, pages 153–162, 2010.
[4] N. Bansal, A. Blum, and S. Chawla. Correlation Clustering. Machine Learning, 56(1-3):238–247, 2004.
[5] K. Bellare, S. Iyengar, A. G. Parameswaran, and V. Rastogi. Active Sampling for Entity Matching, pages 1131–1139, 2012.
[6] A. Bozzon, M. Brambilla, S. Ceri, and A. Mauri. Reactive Crowdsourcing. WWW, pages 153–164, 2013.
[7] S. B. Davidson, S. Khanna, T. Milo, and S. Roy. Using the Crowd for Top-K and Group-By Queries. ICDT, pages 225–236, 2013.
[8] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios. Duplicate Record Detection: A Survey. IEEE TKDE, 19(1):1–16, 2007.
[9] R. Fagin and E. L. Wimmers. A Formula for Incorporating Weights into Scoring Rules. Theoretical Computer Science, 239(2):309–338, 2000.
[10] L. Getoor and A. Machanavajjhala. Entity resolution for big data. KDD, page 1527, 2013.
[11] C. Gokhale, S. Das, A. Doan, J. F. Naughton, N. Rampalli, J. Shavlik, and X. Zhu. Corleone: Hands-off Crowdsourcing for Entity Matching. SIGMOD, pages 601–612, 2014.
[12] R. Gomes, P. Welinder, A. Krause, and P. Perona. Crowdclustering. NIPS, pages 558–566, 2011.
[13] A. Gruenheid, X. L. Dong, and D. Srivastava. Incremental Record Linkage. PVldb, 7(9):697–708, 2014.
[14] A. Gruenheid, D. Kossmann, S. Ramesh, and F. Widmner. Crowdsourcing Entity Resolution: When is A=B? Technical report, ETH Zurich, 2012.
[15] S. Guo, A. G. Parameswaran, and H. Garcia-Molina. So Who Won?: Dynamic Max Discovery with the Crowd. SIGMOD, pages 385–396, 2012.
[16] O. Hassanzadeh, F. Chiang, R. J. Miller, and H. C. Lee. Framework for evaluating clustering algorithms in duplicate detection. PVldb, 2(1):1282–1293, 2009.
[17] P. G. Ipeirotis, F. Provost, and J. Wang. Quality Management on Amazon Mechanical Turk. *SIGKDD Workshop on Human Computation*, pages 64–67, 2010.

[18] M. Joglekar, H. Garcia-Molina, and A. G. Parameswaran. Evaluating the Crowd with Confidence. *SIGKDD*, pages 686–694, 2013.

[19] D. R. Karger, S. Oh, and D. Shah. Budget-Optimal Task Allocation for Reliable Crowdsourcing Systems. *CoRR*, 62(1), 2014.

[20] G. Kazai, J. Kamps, and N. Milic-Frayling. Worker Types and Personality Traits in Crowdsourcing Relevance Labels. *CIKM*, pages 1941–1944, 2011.

[21] S. Komarov, K. Reinecke, and K. Z. Gajos. Crowdsourcing Performance Evaluations of User Interfaces. *CHI*, pages 207–216, 2013.

[22] M. Kosinski, Y. Bachrach, G. Kasneci, J. Van-Gael, and T. Graepel. Crowd IQ: Measuring the Intelligence of Crowdsourcing Platforms. *Proceedings of the 4th Annual ACM Web Science Conference*, 2012.

[23] M. Lease. On Quality Control and Machine Learning in Crowdsourcing. *AAAI Workshop*, 11, 2011.

[24] J. Lee, H. Cho, J.-W. Park, Y.-R. Cha, S.-W. Hwang, Z. Nie, and J.-R. Wen. Hybrid Entity Clustering Using Crowds and Data. *PVLDB*, 22(5):711–726, Oct. 2013.

[25] A. Marcus, D. Karger, S. Madden, R. Miller, and S. Oh. Counting with the crowd. *PVLDB*, pages 109–120, 2013.

[26] S. Nowak and S. Rüger. How Reliable Are Annotations via Crowdsourcing: A Study About Inter-annotator Agreement for Multi-label Image Annotation. *MIR*, pages 557–566, 2010.

[27] A. G. Parameswaran, H. Garcia-Molina, H. Park, N. Polyzotis, A. Ramesh, and J. Widom. CrowdScreen: Algorithms for Filtering Data with Humans. *SIGMOD*, pages 361–372, 2012.

[28] V. Rastogi, N. N. Dalvi, and M. N. Garofalakis. Large-Scale Collective Entity Matching. *PVLDB*, 4(4):208–218, 2011.

[29] M. Schulze. A new Monotonic, Clone-Independent, Reversal Symmetric, and Condorcet-Consistent Single-Winner Election Method. *Social Choice and Welfare*, 36, 2011.

[30] B. Settles. *Active Learning*. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool Publishers, 2012.

[31] A. Singhal. Introducing the Knowledge Graph: Things, not Strings. *Official Google Blog*, 2012.

[32] E. Sun and V. Iyer. Under the hood: The entities graph. *Facebook Engineering Blog*, 2013.

[33] V. Verroios and H. Garcia-Molina. Entity resolution with crowd errors. Technical report, Stanford University.

[34] N. Vesdapunt, K. Bellare, and N. N. Dalvi. Crowdsourcing Algorithms for Entity Resolution. *PVLDB*, 7(12):1071–1082, 2014.

[35] J. Wang, T. Kraska, M. J. Franklin, and J. Feng. CrowdER: Crowdsourcing Entity Resolution. *PVLDB*, 5(11):1483–1494, July 2012.

[36] J. Wang, G. Li, T. Kraska, M. J. Franklin, and J. Feng. Leveraging Transitive Relations for Crowdsourced Joins. *SIGMOD*, pages 229–240, 2013.

[37] T. Weyand and B. Leibe. Visual Landmark Recognition from Internet Photo Collections: A Large-Scale Evaluation. *CoRR*, abs/1409.5400, 2014.

[38] S. E. Whang, P. Lofgren, and H. Garcia-Molina. Question Selection for Crowd Entity Resolution. *PVLDB*, 6(6):349–360, Apr. 2013.

[39] S. E. Whang, D. Marmaros, and H. Garcia-Molina. Pay-As-You-Go Entity Resolution. *IEEE TKDE*, 25(5):1111–1124, May 2013.

[40] J. Yi, R. Jin, A. K. Jain, and S. Jain. Crowdclustering with Sparse Pairwise Labels: A Matrix Completion Approach. *AAAI Workshop*, 2012.

[41] J. Yi, R. Jin, A. K. Jain, S. Jain, and T. Yang. Semi-Crowdsourced Clustering: Generalizing Crowd Labeling by Robust Distance Metric Learning. *NIPS*, pages 1772–1780, 2012.