Foodborne urinary tract infections: a new paradigm for antimicrobial-resistant foodborne illness

Lora Nordstrom, Cindy M. Liu and Lance B. Price

INTRODUCTION

Public health concerns over the widespread non-therapeutic use of antimicrobials in food-animal production (FAP) have been voiced repeatedly since the 1960s, but little has been done to address these concerns in the US (FDA, 2012a). While some of the seminal research on the selection and transfer of antibiotic-resistant bacteria from food-animals to humans was conducted on Escherichia coli (Levy, 1978), the public health burden has largely been measured based on the classic food-borne pathogens, Campylobacter and Salmonella. However, today, we recognize that there is also frequent zoonotic transfer of antibiotic-resistant Staphylococcus aureus and E. coli from food animals to humans, and we must consider these events when attempting to quantify the full impact of antimicrobial use in FAP.

Traditionally, foodborne infections were limited to those affecting the gastrointestinal tract, but a growing number of studies linking foodborne E. coli with urinary tract infections (UTIs) challenge that narrow definition and have led us to adopt the term: foodborne UTI or FUTI (i.e., food contamination, poultry products, UPEC, urinary tract infections). Urinary tract infections (UTIs) are among the most common bacterial infections worldwide. Disproportionately affecting women, UTIs exact a substantial public burden each year in terms of direct medical expenses, decreased quality of life, and lost productivity. Increasing antimicrobial resistance among strains of extraintestinal pathogenic Escherichia coli challenges successful treatment of UTIs. Community-acquired UTIs were long considered sporadic infections, typically caused by the patients’ native gastrointestinal microbiota; however, the recent recognition of UTI outbreaks with probable foodborne origins has shifted our understanding of UTI epidemiology. Along with this paradigm shift come new opportunities to disrupt the infection process and possibly quell increasing resistance, including the elimination of non-therapeutic antimicrobial use in food-animal production.

The public health burden of urinary tract infections

Urinary tract infections are the most common bacterial infections in the developed world, and among infections, only upper respiratory infections account for more hospitalizations each year (Mazzulli, 2002; Russo and Johnson, 2003). All ages are affected by UTIs and pediatric cases account for over a million office visits and 500,000 emergency-department visits per year (Spencer et al., 2010). Due to anatomical differences and the hormonal milieu of the urinary tract, women are significantly more likely than men to develop a UTI, and nearly half of all women will have a UTI during their lifetime (Foxman, 2003). When taking into account all age groups, the annual number of uncomplicated UTI cases is 6–8 million in the US and 130–175 million worldwide, and the vast majority of these cases are caused by E. coli (Russo and Johnson, 2003). The resultant costs associated with community-acquired UTI in the US approach $1.5 billion (Foxman, 2003).

Most cases of UTIs only involve the bladder (i.e., cystitis or lower UTIs) and resolve without sequelae; however, the infection can ascend to infect the kidney (i.e., pyelonephritis or upper UTI; Scholes et al., 2005). Although less frequent than cystitis, pyelonephritis affects approximately 250,000 individuals in the US each year (Russo and Johnson, 2003). Repeated cases of pyelonephritis, particularly in children, can cause scarring of the kidneys, leading to renal hypertension and even kidney failure later in life (Orellana et al., 2004).
Bloodstream infections originating in the urinary tract (uresepsis) are common and serious complications of UTIs. Urosepsis is more common in nosocomial UTIs (up to 12% of all nosocomial cases), but community-acquired urosepsis – particularly from antimicrobial-resistant *E. coli* – is occurring with increasing frequency (Rodríguez-Bazo et al., 2006; Lee et al., 2012). The timely treatment of urosepsis is critical to reducing mortality, but the increasing prevalence of antibiotic-resistant *E. coli* limits clinical options and delays appropriate therapy (Rodríguez-Bazo et al., 2010).

ANTIMICROBIAL RESISTANCE IN *E. coli*, THE MAJOR UROPATHOGEN

Escherichia coli is the single most common uropathogen, causing 75–95% of all uncomplicated cystitis and pyelonephritis cases in the United States (Hooton, 2012). The *E. coli* strains that cause UTIs are known as extraintestinal pathogenic *E. coli* (ExPEC) and are genetically and phenotypically distinct from non-pathogenic commensal *E. coli* and from diarrheagenic *E. coli*, which cause gastrointestinal infections (Johnson, 1991; Russo and Johnson, 2000). While ExPEC can colonize the human gastrointestinal tract similar to other *E. coli*, they are uniquely associated with infections outside of the gut, including: meningitis (Kim, 2012), osteomyelitis (Johnson and Russo, 2002; Lee et al., 2010), peritonitis (Berti et al., 2010), and pneumonia (Johnson et al., 2003), sepsis, and, as discussed, UTI. In contrast to the diarrheagenic *E. coli* subgroups, where antimicrobials have limited utility, antimicrobials are critical for treating ExPEC infections.

As a general rule, antibiotics are considered no longer efficacious once the prevalence of resistance reaches 20% in a given population (Warren et al., 1999; Gupta et al., 2011). Thus, the general rise in antimicrobial-resistant and multidrug-resistant (MDR) *E. coli* worldwide has made clinical management of UTIs much more challenging (Smith et al., 2006; Johnson et al., 2009; Bahadin et al., 2011; Joos et al., 2011; Uesola and Arondage, 2011; Callen et al., 2012). A survey of 1,729 human and food-animal *E. coli* isolates from 1950 to 2002 showed the overall MDR prevalence increased from 7.2% in the 1950s to 63.6% in the early 2000s (Tadesse et al., 2012). This increase was particularly marked among the food-animal isolates, which showed significant increases in resistance against 11 out of 15 antimicrobials tested, including ampicillin, trimethoprim-sulfamethoxazole (TMP-SMZ), cefotaxim, gentamicin, and amoxicillin/clavulanic acid (Tadesse et al., 2012).

The increasing challenge of antimicrobial resistance is epitomized by the global increase in *E. coli* that possess extended-spectrum beta-lactamases (ESBLs), a suite of enzymes that confer resistance to cephalosporins and monobactams (Woodford et al., 2004; Nicolas-Chanoine et al., 2008; Tobin et al., 2011; Johnson et al., 2012; Matsumura et al., 2012). In *E. coli*, ESBL genes are typically found on mobile genetic elements, which facilitate the carriage, accumulation, and transfer of antimicrobial-resistance genes. This is well illustrated by the ST131 clonal group – one of the most clinically important ExPEC lineages – that carries ESBL genes within transposon-like structures encoded on mobilizable plasmids (Perino and Pitout, 2010; Canton et al., 2012; Matsumura et al., 2012). Additional antimicrobial resistance genes often colocalize on these plasmids, including elements conferring resistance to fluoroquinolones, aminoglycosides, and TMP-SMZ (Johnson et al., 2010; Pitout, 2012).

Another important mechanism facilitating the increase in antimicrobial-resistant UTIs is the introduction and clonal expansion of competitive, resistant *E. coli* strains in the community. These events appear to contribute more to the resistant UTI burden than de novo selection of resistant strains through clinical antimicrobial use (Smith et al., 2008). A longitudinal study of antimicrobial-resistant *E. coli* revealed that resistant populations were comprised of relatively few *E. coli* clonal groups and not the diverse population that would be expected from frequent de novo selection. In this study and others, the cessation of TMP-SMZ use did not decrease TMP-SMZ resistance; further suggesting that clinical antimicrobial use is not the sole driver of antimicrobial-resistant *E. coli* UTIs (Enne et al., 2001; Smith et al., 2008; Sundqvist et al., 2010).

Although the molecular and epidemiological mechanisms for the amplification of antimicrobial-resistant UTIs are complex, antimicrobial resistance in *E. coli* has largely followed antimicrobial use trends in human medicine and animal production, and with that, the clinical community has seen the loss of multiple antimicrobial classes against *E. coli* (Warren et al., 1999; Gupta et al., 2011). Tetracycline was introduced to clinical medicine in 1948 and served as a first-line therapy for UTIs until growing resistance gradually reduced its utility (Datta et al., 1971). Ampicillin was routinely used to treat UTIs after being introduced in 1961, but it also fell from favor due to exceedingly high resistance rates (NARMS, 2010). In 1999, the Infectious Disease Society of America (IDSA) declared ampicillin and amoxicillin unsuitable for treating UTI due to poor efficacy (Warren et al., 1999). Similarly, the emergence of fluoroquinolone-resistant *E. coli* is now limiting the utility of fluoroquinolones for treating patients with UTIs (Wang et al., 2001; Zeros et al., 2003; Christiansen et al., 2011; Kersmans et al., 2012; Longhù et al., 2012).

The increase in antimicrobial resistant UTIs in the community setting has also added caveats to standard clinical practice guidelines. The 2011 IDSA recommendation indicated that nitrofurantoin or TMP-SMZ should be used as first line treatments for uncomplicated UTI, however, the statement was issued with the qualification that TMP-SMZ should not be used if local resistance rates exceed 20% (Gupta et al., 2011). Indeed, many clinicians now rely almost exclusively on nitrofurantoin due to the growing TMP-SMZ resistance (Manges et al., 2001; Burman et al., 2003; France et al., 2005; Hooton, 2012; Vellinga et al., 2012).

DISCOVERY OF UTI OUTBREAKS

Historically, UTIs were considered sporadic infections, but we now recognize that UTIs can also occur in outbreaks. In 2010, George and Manges (2010) conducted a systematic review of outbreak and non-outbreak studies involving *E. coli*. From 1950 to July of 2009, 12 *E. coli* UTI outbreaks were identified, with the first outbreak reported in 1986 and the latest in 2008. Nine of these 12 outbreaks occurred in Europe, including two in the UK (Phillips et al., 1986; Woodford et al., 2004), three in Spain (Prats et al., 2000; Otro et al., 2006; Blanco et al., 2009), and one each in Denmark (Olesen et al., 1994), Portugal (Mendonca et al., 2007), and Croatia.
Antimicrobial-resistant *E. coli* from food animals and retail meat than from healthy human controls in Europe (Jakobsen et al., 2011). Another study from Canada showed similar findings (Bergeron et al., 2012). Additionally, clonal phylogroup D *E. coli*, which is frequently associated with UTI, was shown to be more common among poultry products than other types of meat (Vincent et al., 2010).

Other studies have shown that foodborne *E. coli* are not only genetically related to those causing UTIs in humans, they are also capable of causing UTIs in vivo (Jakobsen et al., 2010a,b). In a study conducted by Jakobsen et al. (2010b), all 13 foodborne phylogroup B2 *E. coli* strains tested in a murine UTI model led to lower UTIs in the animals and nine of the isolates also caused pyelonephritis. A similar investigation of 23 CgA isolates from poultry meat, chickens, and humans showed that all CgA strains from meat or food animals caused lower UTIs, and all but one of the isolates produced kidney infections (Jakobsen et al., 2010a).

To determine whether meat and poultry consumption is associated with development of antibiotic-resistant UTIs, a case-control study was initiated in which the dietary habits of women with MDR UTIs were compared with women with antimicrobial-susceptible UTIs (Manges et al., 2007). In this study, women with MDR UTIs were 3.7 times more likely to report recent consumption of chicken, while those with ampicillin or cephalosporin-resistant infections were more 3.2 times more likely to report pork consumption (Manges et al., 2007).

FOODBORNE URINARY TRACT INFECTIONS: A NEW PARADIGM

Taken together, the studies reviewed above provide compelling evidence that retail meat, particularly poultry, serves as an important reservoir for human exposure to antibiotic-resistant *E. coli* that is causing UTIs. Thus, the term foodborne UTIs or FUTIs has been adopted to describe these infections. The traditional mode of foodborne diseases necessarily involves an infection or toxification of the gastrointestinal tract; however, in FUTIs, the etiologic agent causes no gastrointestinal pathologies. Likewise, with classic foodborne infections, ingestion is the rate-limiting step: if a susceptible host consumes a sufficient dose of a pathogenic microbe, disease will ensue. The FUTI model requires at least two steps: (1) a susceptible host ingests a uropathogen and (2) an infectious dose of the uropathogen is transferred from the host’s gastrointestinal tract to his or her urinary tract. As shown above, the first step appears to occur regularly in the community; therefore, the rate-limiting step is expected to be the transfer of the uropathogen to the urinary tract. Given these important distinctions, FUTIs represent a significant shift from the classic foodborne illness paradigm and broaden the implications of antibiotic-resistant *E. coli* in the food supply.

FUTIs AND ANTIMICROBIAL USE IN POULTRY PRODUCTION

Among the major meat producing species, chickens and turkeys appear to be the greatest source of human exposure to antibiotic-resistant ExPEC, and this has important implications regarding antimicrobial use in poultry production. In the US, antimicrobials are administered to poultry as feed and water additives as well as chick and egg (in ovo) injections. Even antimicrobials considered critical for human health and treatment...
of Gram-negative extraintestinal diseases have been used for routine, non-therapeutic purposes in broiler chickens in the US and Canada. For example, day-old chicks and poultry eggs are routinely injected with amoxicillin (gentamicin) and third-generation cephalosporins (cefotiop), which has been directly associated with cephalosporin-resistant foodborne infections (Dutil et al., 2010). Given the strong evidence for FUTIs, the critical nature of antimicrobial therapy for treating UTIs, and the clear links between antimicrobial use in PAP and the selection for antimicrobial-resistant E. coli, a revamping of the antimicrobial classes and antimicrobial applications permitted in this industry is warranted.

There have been some recent, albeit minor, advancements in US agricultural antimicrobial-use policy. In 2012, the FDA released new voluntary guidelines discouraging the use of antimicrobials for growth promotion purposes and encouraging the inclusion of veterinary oversight in the application of medically important antimicrobials in food animals (FDA, 2012a). Unfortunately, without any surveillance system in place to ensure compliance, it will be difficult to know if these voluntary guidelines have any positive impact. Likewise, in 2012 the FDA released a final rule restricting extra-label uses of cephalosporins in food animals, including in ovo injection of poultry eggs (FDA, 2012b), but this ruling does not ban the common practice of injecting day-old chicks with cephalosporins. It is important to note that although the US Department of Agriculture (USDA) prohibits the use of antimicrobials in poultry sold under the USDA Organic label, these regulations are only applied starting on day 2 of the animals’ life (USDA, 2012). This is an important loophole that may diminish the distinction between the microbial quality of USDA Organic and conventional products.

CONCLUSION

As described above, FUTIs represent a major paradigm shift in our understanding of foodborne disease, but require additional research to accurately quantify their contribution to antibiotic-resistant UTIs in general. Of particular value would be studies that integrate contemporaneous, geographically bounded sampling of the foodborne and UTI E. coli isolates, advanced molecular techniques to evaluate clonal and temporal relationships, and detailed food consumption surveys from study participants. More basic research could also reveal why ExPEC strains are more prevalent among poultry species as compared to other food-animals and reveal new opportunities for interventions, such as on-farm ExPEC vaccination programs. Likewise, FUTIs and their potential impact on human health should be considered when evaluating agricultural antibiotic use policies in the US and abroad.

ACKNOWLEDGMENT

This work was supported by a grant from United States Army Medical Research and Materiel Command (W81XWH-11-1-0728).

REFERENCES

Blahna, J., Teso, S. S., and Mathew, S. (2012). Antimicrobial susceptibility patterns of uropathogenic isolates. J. Antimicrob. Chemother. 62, 415–420.

Bengoa, C., Price, L., Boerlin, P., Diaz-Perez, M., Del, L., Rod-Smith, R. J., et al. (2012). Chicken as reservoir of extraintestinal pathogenic Escherichia coli in humans, Canada Emerg. Infect. Dis. 18, 415–421.

Brett, J., Johnson, J. R., Ouattara, B., Lefebvre-Hautvast, V., Johnston, B., Maturo, M., et al. (2012). Diversity and virulence profiles of Escherichia coli isolates causing spontaneous bacterial pyelonephritis and bacteriuria in patients with cirrhosis. J. Clin. Microbiol. 50, 2700–2714.

Bettahar, K. A., Cooke, E. M., O’Farrell, S., and Shuster, R. A. (1987). The effect of diet on intestinal Escherichia coli. J. Hyg. 79, 45–50.

Blanco, M., Alonso, M. P., Nicolas-Bettelheim, K. A., Cooke, E. M., Bergeron, C. R., Prussing, C., Boerlin, P., Nordstrom et al. Review of foodborne UTI literature 63, 1135–1141.

Bosch, F. J., van Veenan, C., and Inoue, G. (2013). Antimicrobial resistance patterns in uropathogenic urinary tract infections – the constant need to revise prescribing habits. S. Afr. Med. J. 101, 529–531.

Burman, W. J., Broussard, F. E., Murray, R. K., Splitt, E. V., Vahid, H. A., MacKenzie, T. D., et al. (2010). Conventional and molecular epidemiology of trimethoprim-sulfamethoxazole resistance among urinary Escherichia coli isolates. Ann. N. Y. Acad. Sci. 115, 358–364.

Canton, R., Gonzalo-Alba, J. M., and Melero-Montoya, A. T. (2012). CTX-M enzymes: origin and diffusion. Front. Microbiol. 3:109. doi: 10.3389/fmicb.2012.00110

Christiansen, N., Nielsen, L., Jakobson, L., Stoger, M., Hamon, L. H., and Frimodt-Moller, N. (2011). Fluoroquinolone resistance mechanisms in urinary tract pathogenic Escherichia coli isolated during rapidly increasing fluoroquinolone consumption in a low-income country. Microb. Drug Resist. 17, 295–306.

Crepet, D. E. (1988). Antibiotic resistance from food. N. Engl. J. Med. 319, 1206–1207.

Cullen, J. M., Monnet, D. L., P. R., McCal- laugh, E., Ahmad, S. O’Farrell, F., Huyin, R. J., et al. (2012). The changing pattern of antimicrobial resistance within 42,035 Escherichia coli isolates from nosocomial, community and urology patient-specific urinary tract infections, Dublin, 1999–2008. BJU Int. 109, 1198–1206.

Datta, N., Fair, M. C., Reeves, D. S., Brunning, W., Orkens, E., and Orkens, L. (1971). B Factors in Escherichia coli in faeces after oral chemotherapy in general practice. Lancet 1, 312–315.

Doll, L., Irots, R., Painly, R., Ng, L. K., Avery, B., Boerlin, P., et al. (2010). Cefotiof resistance in Salmonella enterica serovar Heidelberg from chicken meat and humans, Canada Emerg. Infect. Dis. 16, 48–54.

Driscoll, V. L., Lovemore, D. M., Stephens, P., and Hall, L. M. (2001). Persistence of sulfonamide resistance in Escherichia coli in the UK despite national prescribing restriction. J. Antimicrob. Chemother. 47, 1295–1308.

FDA (2012a). The Judicious Use of Antimicrobial Drugs in Food-Producing Animals (GIP-2000). Silver Spring, MD: Food and Drug Administration.

FDA (2012b). New animal drugs: cephalosporin drugs, extralab ani- mal drug use; order of prohibition. Fed. Regul. 77, 719–795.

Fomum, B. (2003). Epidemiology of urinary tract infections: incidence, morbidity, and economic costs. Di. Muret 45, 53–70.

France, A. M., Ekapit, K. M., Freeman, A., Zalewski, C. A., Blahna, M., Zhang, L., et al. (2005). Clinical groups and the spread of resistance to trimethoprim-sulfamethoxazole in uropathogenic Escherichia coli. Clin. Infect. Dis. 40, 1101–1107.

George, D. B., and Manges, A. R. (2010). A systematic review of outbreak and non-outbreak studies of extraintestinal pathogenic Escherichia coli causing community-acquired infections. Epidemiol. Infect. 138, 1679–1690.

Gupta, K., Histon, T. M., Naher, K. G., Wall, B., Calgan, R., Miller, L. G., et al. (2011). International clinical practice guidelines for the treat- ment of acute uncomplicated cystitis and pyelonephritis in women: a 2010 update by the Infectious Diseases Society of America and the European Society for Microbiology and Infecc- tious Diseases. Clin. Infect. Dis. 52, e555–e520.

Hobson, D. J., Nickol, L. E., Shannon, S., Bouchillon, S., and Badal, R. (2011). Antimicrobial susceptibility of global important urinary tract iso- lates of Escherichia coli: results from the Study for Monitoring Antimicrob- ial Resistance Trends (SMART) pro- gram: 2008–2010. Diug. Microbiol. Infect. Dis. 70, 307–311.

Histon, T. M. (2012). Clinical practice. Uncomplicated urinary tract infec- tions. N. Engl. J. Med. 366, 1028–1037.
Johnson, T. J., Gameau, P., Kurbanic, A., Brunt, G., Segger, M., Haral, J., et al. (2011). Molecular-based detection of extended virulence and antimicrobial resistance genes profiles in phylogroup B2 Escherichia coli of human, meat and animal origin. J. Med Microbiol. 60, 1582–1591.

Jalalobad, L., Hammerum, A. M., and Frimodt-Moller, N. (2010a). Detection of clonal group A Escherichia coli isolates from broiler chickens, broiler chicken meat, community-dwelling humans, and urinary tract infection (UTI) patients and their virulence in a mouse UTI model. Appl. Environ. Microbiol. 76, 8285–8294.

Jalalobad, L., Hammerum, A. M., and Frimodt-Moller, N. (2010b). Virulence of Escherichia coli B2 isolates from meat and animals in a murine model of ascending urinary tract infection (UTI): evidence that UTI is a nosocomial. J. Clin. Microbiol. 48, 2978–2980.

Johnson, J. R. (1991). Virulence factors in Escherichia coli urinary tract infection. Clin. Microbiol. Rev. 4, 80–128.

Johnson, J. R., Gajewski, J. R., Liu, J. W., and Russo, T. A. (2003). Extrainvasive Escherichia coli as a cause of urinary tract infection. J. Infect. Dis. 188, 859–864.

Johnson, J. R., Strain, M. R., Coy, C., Johnson, B., Clavitis, C., Kunkowski, M. A., et al. (2007). Antimicrobial drug-resistant Escherichia coli from humans and poultry products. Minn.nesota and Wisconsin, 2002–2004. Emerg. Infec. Dis. 13, 838–846.

Johnson, J. R., Urban, C., Wasserman, S., Jorgensen, H. J., Lewis, S. E., and Hansen, G. M. (2000). Molecular and immunological analysis of Escherichia coli sequence type ST131 (O25:H4) and Shiga Toxin-M-15 among extended-spectrum-beta-lactamase-producing E. coli from the United States. 2000–2004. Antimic. agents Chemother. 46, 234–235.

Johnson, T. J., Jordan, D., Kantravan, S., Still, A. L., Roll, N. P., Wimmermuller, Y. M., et al. (2018). Sequence analysis and characterization of a transferable hybrid plasmid encoding multidrug resistance and enabling nosocomial potential for extraintestinal Escherichia coli. Infect. Immun. 76, 193–1942.

Karamousi, G., Wagner, G., Zehentmaier, S., Fink, W., Spiegel, W., and Hoffmann, K. (2012). Antibacterial resistance in uncomlicated urinary tract infections in women: ECO-MENS II data from primary healthcare care in Austria. BMC Infect. Dis. 12:222. doi: 10.1186/1471-2334-12-222.

Kim, K. S. (2012). Current concepts on the pathogenesis of the Escherichia coli meningitis: implications for therapy and prevention. Curr. Opin. Infect. Dis. 25, 273–278.

Kumar, C. M., Hua, T. H., Krishnan, C., Kunin, C. M., Hua, T. H., Krishnan, C., Kunin, C. M., and Liu, J. W. (2010). Refractory meningitis: implications for therapy and spread of the ST131 clone among extended-spectrum beta-lactamase-producing E. coli in Japan. J. Antimicrob. Chemother. 65, 156–162.

Mandell, T. (2001). Resistance trends in urinary tract pathogens and impact on management. J. Urol. 166, 1720–1722.

Mendonca, N., Lettin, J., Man- agite, N., Avellar, E., and Morie, M. (2007). Spread of extended-spectrum beta-lactamase CTX-M-producing Escherichia coli clinical isolates in community and noso- comial environments in Portugal. Antimicrob. Agents Chemother. 51, 1946–1955.

NARMS. (2010). NARMS 2008 Executive Report. Silver Spring, MD: Food and Drug Administration. NARMS. (2012). NARMS 2010 Retail Meat Report. Silver Spring, MD: Food and Drug Administration.

Nicholls-Chinnery, M. H., Blanc, Y., Leflief-Eustaut, V., Dumart, B., Aloum, M. P., Carica, M. M., et al. (2008). International emergence of Escherichia coli clone O25:H4-ST131 producing CTX-M-15. J. Antimicrob. Chemother. 61, 273–281.

Okosho, A. O. and Arowoowe, T. I. (2011). Antibiotic resistance pattern of uropathogenic Escherichia coli in South-West Nigeria. Afr. J. Med. Sci. 40, 235–238.

Osborn, B., Kolmos, H. I., Orskov, F., and Orskov, E. (1984). Cluster of multi- resistant Escherichia coli O78:H10 in Greater Copenhagen. Scand. J. Infect. Dis. 26, 409–410.

Ottoboni, F., Bospers, P., Ranagjara, V., Zhao, J. H., Eng, N. D., Forich, J., et al. (2004). Relationship between acute prostatitis, renal scarring, and vesicoureteral reflux. Results of a coordinated research project. J. Urol. 171, 1122–1126.

Ouwe, N., Janssena, C., Cerecoida, E., Delgado-Iribarren, A., Wilhelmi, L., Orskov, F., and Orskov, E. (2000). Spread of Escherichia coli strains with high-level colistin and ceftazidime resistance between the community, long-term care facilities, and hospital institutions. J. Clin. Microbiol. 44, 2399– 2406.

Peirano, G., and Pitout, J. D. (2010). Molecular epidemiology of Escherichia coli producing CTX-M beta-lactamase: the worldwide emergence of clone ST131 O25:H4. J. Antimicrob. Agents 35, 316–321.

Phillips, I., Eijkelen, S., King, A., Gran- don, W. R., Rowse, B., Front, J. A., et al. (1988). Epidemic multidrug-resistant Escherichia coli infection in West Lambeth Health District. Lancet 1, 1036–1041.

Pitout, J. D. (2012). Extraintestinal pathogenic Escherichia coli: a com- bination of virulence with antibiotic resistance. Front. Microbiol. 3. doi: 10.3389/fmicb.2012.00008.

Pitout, J. D., Gregson, D. B., Church, D. L., Eldor, B., and Lapiere, K. B. (2005). Community-wide outburst of clonally related CTX-M-14 beta-lactamase-producing Escherichia coli strains in the Calvary health region. J. Clin. Microbiol. 43, 2844–2849.

Prins, G., van den Broucke, M., Bulcke, D., Dalmau, D., Mangel, N., Coll, P., et al. (2006). Escherichia coli serotype O353K12:H1 as a uropathogenic clone. J. Clin. Microbiol. 45, 209–215.

Rodrigues-Bano, R., Naruoso, M., Romo, L., Maimain, M. A., de Castro, M., Rios, M. J., et al. (2006). Bacteriuria due to extended-spectrum beta-lactamase-producing Escherichia coli in the CTX-M era: a new clinical challenge. Clin. Infect. Dis. 43, 1407–1415.

Rodrigues-Bano, R., Pinzón, E., Gijón, P., Hernández, J. R., Ruiz, M., Pena, C., et al. (2000). Community-onset bacteriuria due to extended-spectrum beta-lactamase-producing Escherichia coli: risk factors and progres- sion. Clin. Infect. Dis. 30, 40–48.

Russo, T. A., and Johnson, J. R. (2000). Proposal for a new inclusive designa- tion for extraintestinal pathogenic isolates of Escherichia coli: ExPEC. J. Infect. Dis. 181, 2733–2734.

Russo, T. A., and Johnson, J. R. (2003). Medical and economic impact of extraintestinal infections due to Escherichia coli: focus on an increasingly important endemic problem. Microbe 5, 449–456.

Schloesser, D., Hoxton, T. M., Roberts, P. L., Gupta, K., Stepleton, A. E., and Stamm, W. E. (2005). Risk factors associated with acute pyelonephritis in healthy women. Ann. Intern. Med. 142, 10–27.

Smith, S. P., Tang, J. R., and Russo, T. A. (2008). Temporal changes in the
prevalence of community-acquired antimicrobial-resistant urinary tract infections affected by Escherichia coli clonal group composition. Clin. Infect. Dis. 46, 689–695.

Spencer, J. D., Schneider, A., McHugh, K., and Haines, D. S. (2010). Pediatric urinary tract infections: an analysis of hospitalizations, charges, and costs in the USA. Pediatrics. Nephrol. 25, 2489–2497.

Stamm, W. E. (2001). An epidemic of urinary tract infections. Emerg. Infect. Dis. 7, 589–593.

Sundqvist, M., Geli, P., Andersson, S., and Kalenic, S. (2008). Genetic characterization of highly fluoroquinolone-resistant clinical Escherichia coli strains from China: role of acr mutations. Antimicrob. Agents Chemother. 45, 1527–1532.

Vellenga, A., Tansey, S., Hannahs, B., Bennett, K., Murphy, A. W., and Cormican, M. (2012). Trimethoprim and ciprofloxacin resistance and prescribing in urinary tract infection associated with Escherichia coli: a multilevel model. J. Antimicrob. Chemother. 67, 2523–2530.

Vicente, C., Bootlin, P., Dragunali, D., Dovers, C. M., Delit, L., Galimba, C., et al. (2010). Food reservoir for Escherichia coli causing urinary tract infections. Emerg. Infect. Dis. 16, 88–93.

Vraneš, J., Manjim, T., Bedenčič, B., Mlinarče-Dzepina, A., Kašč, S., and Kalenic, S. (2008). Clonal dissemination of highly virulent extended-spectrum beta-lactamase-producing Escherichia coli strains isolated from the urine of non-hospitalized patients in Zagreb region. Int. J. Antimicrob. Agents 31(Suppl. 1), S19–S24.

Wang, H., Drink-Fou, E. L., Chen, M., and Levy, S. B. (2001). Generic characterization of highly fluoroquinolone-resistant clinical Escherichia coli strains from China. Antimicrob. Agents Chemother. 45, 1533–1537.

Warren, J., Almestrand, E., Insel, J. B., Johnson, J. R., Schaffner, A. J., and Stamm, W. E. (1999). Guidelines for antimicrobial treatment of uncomplicated acute bacterial cystitis and acute pyelonephritis in women. Infectious Diseases Society of America (IDSA). Clin. Infect. Dis. 29, 745–758.

Woodford, N., Kaufmann, M. E., Karsik, E., and Harder, J. W. (2007). Molecular epidemiology of multi-resistant Escherichia coli isolates from community-onset urinary tract infections in Cornwall, England. J. Antimicrob. Chemother. 59, 106–109.

Woodford, N., Ward, M. E., Kaufmann, M. E., Terrone, J., Fagan, E. L., James, D., et al. (2004). Community and hospital spread of Escherichia coli producing CTX-M extended-spectrum betalactamases in the UK. J. Antimicrob. Chemother. 54, 735–741.

Xia, X., Meng, J., Zhou, S., Bedenčič, B., Jones, N. G., Abres, S. L., et al. (2011). Identification and antimicrobial resistance of enterotoxigenic Escherichia coli from retail meats. J. Food Prot. 74, 38–44.

Zarros, M. J., Herdberger, E., Niscini, D. P., Ritchie, D. I., Blackmore, L. K., and Carey, E. A., et al. (2005). Relationship between fluoroquinolone use and changes in susceptibility to fluoroquinolones of selected pathogens in United States teaching hospitals, 1991–2000. Clin. Infect. Dis. 37, 1643–1648.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 10 October 2012; paper pending publication: 10 November 2012; accepted: 09 February 2013; published online: 06 March 2013.

Copyright © 2013 Nordstrom, Liu and Price. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and any change made is indicated.

This article was submitted to Frontiers in Antimicrobials, Resistance and Chemotherapy, a specialty of Frontiers in Microbiology.

Copyright © 2013 Nordstrom, Liu and Price. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and any change made is indicated.