Bounding slopes of \(p \)-adic modular forms

Lawren Smithline

June 21, 2001

Abstract

Let \(p \) be prime, \(N \) be a positive integer prime to \(p \), and \(k \) be an integer. Let \(P_k(t) \) be the characteristic series for Atkin’s \(U \) operator as an endomorphism of \(p \)-adic overconvergent modular forms of tame level \(N \) and weight \(k \). Motivated by conjectures of Gouvêa and Mazur, we strengthen a congruence in [W] between coefficients of \(P_k \) and \(P_{k'} \) for \(k' \) \(p \)-adically close to \(k \). For \(p - 1 \mid 12 \), \(N = 1 \), \(k = 0 \), we compute a matrix for \(U \) whose entries are coefficients in the power series of a rational function of two variables. We apply this computation to show for \(p = 3 \) a parabola below the Newton polygon \(N_0 \) of \(P_0 \), which coincides with \(N_0 \) infinitely often. As a consequence, we find a polygonal curve above \(N_0 \). This tightest bound on \(N_0 \) yields the strongest congruences between coefficients of \(P_0 \) and \(P_k \) for \(k \) of large \(3 \)-adic valuation.

1 Overview and background

Let \(p \) be a prime number, \(N \) be a positive integer relatively prime to \(p \), and \(k \) be an integer. Let \(B \) be a \(p \)-adic ring between \(\mathbb{Z}_p \) and \(\mathbb{O}_p \), the ring of integers in \(\mathbb{C}_p \). Denote by \(M_k(N, B) \) the \(p \)-adic overconvergent modular forms of tame level \(N \) and weight \(k \) and by \(S_k(N, B) \) the subspace of overconvergent cusp forms.

For every weight \(k \), Atkin’s \(U \) operator is an endomorphism of \(M_k(N, B) \) stabilizing \(S_k(N, B) \). Denote by \(U^{(k)} \) the restriction of \(U \) to \(M_k(N, B) \) and by \(U_{(k)} \) the restriction to \(S_k(N, B) \). These are compact operators, so the characteristic series

\[
P_k(t) = \det(1 - tU_{(k)}), \quad Q_k(t) = \det(1 - tU^{(k)})
\]

exist.

Let \(a_m(P_k) \) be the coefficient of \(t^m \) in \(P_k(t) \). As a function on a suitably defined space of weights \(k \), \(a_m(P_k) \) is a rigid analytic function of \(k \).

Wan [W], and Buzzard [B] construct \(\tilde{N}(m) \), which grows as \(O(m^2) \) and depends on \(p \) and \(N \) and not on \(k \) such that \(v_p(a_m(P_k)) > \tilde{N}(m) \).

Gouvêa and Mazur [GM] note, in an earlier work, the existence of \(\mathfrak{N}(m) \) and show, for prime \(p \geq 5 \), integer \(l \) and positive integer \(n \),

\[
v_p(a_m(P_k) - a_m(P_{k+lp^{p}(p-l)}) \geq n + 1.
\]
Following a remark in [Ka], the result in Equation (1) extends to $p = 2, 3$.

In section 2, we show

$$v_p(a_m(P_k) - a_m(P_{k+lp^n(p-1)})) \geq \hat{N}(m - 2) + n + 1.$$ \hspace{1cm} (2)

In section 3, for each $p = 2, 3, 5, 7, 13, N = 1$, we construct a matrix M for $U(0)$ with respect to an explicit basis. We show, for M_{ij} the entries of M,

$$\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} M_{ij} x^i y^j$$

is the power series expansion of a rational function of two variables.

In section 4, we show for $p = 3$,

$$v_p(a_m(Q_0)) \geq 3 \left(\frac{m}{2} \right) + 2m,$$

with equality if and only if there is positive integer j such that $m = (3^j - 1)/2$. The secant segments joining these vertices of the Newton polygon N'_0 of Q_0 form a polygon curve above N'_0. We find evidence in support of a conjecture in [G] on the distribution of slopes of classical modular forms.

1.1 Motivating conjectures

The zeros of $P_k(t)$ are reciprocals of $U^{(k)}$ eigenvalues. For rational number α, let $d(k, \alpha)$ denote the number of $U^{(k)}$ eigenvalues with p-adic valuation α.

Conjecture 1.1 (Gouvêa-Mazur) Let k, l be integers, n be a positive integer, and $\alpha < n$. Then $d(k, \alpha) = d(k + lp^n(p - 1), \alpha)$.

Wan [W] uses Equation (1) and the construction of $\hat{N}(m)$ to compute a quadratic concave up function $f_{Wan}(n)$ such that the conclusion of Conjecture 1.1 holds for $\alpha < f_{Wan}(n)$.

The stronger congruence in Equation (2) together with the method of [W] shows there is quadratic $f(n)$ with quadratic term smaller than that of $f_{Wan}(n)$ such that the conclusion of Conjecture 1.1 holds for $\alpha < f(n)$

Conjecture 1.2 (Gouvêa) Let R_k be the multiset of slopes with multiplicity of classical p-oldforms in $M_k(N, \mathbb{Z}_p)$. The probability that an element of R_k chosen with uniform distribution is in the interval $\left(\frac{k-1}{p+1}, \frac{p(k-1)}{p+1} \right)$ diminishes to zero as k increases without bound.
1.2 Spaces of overconvergent modular forms

For \(p \geq 5 \), let \(E_{p-1} \) be the level one Eisenstein series. Let \(M_k(N, B) \) be the classical weight \(k \) level \(N \) modular forms with coefficients in \(B \).

Proposition 1.3 (Katz) For \(p \geq 5 \) and any \(f \in M_k(N, B) \), there are \(b_j \in M_{k+j(p-1)}(N, B) \) for \(j \geq 0 \) and \(r \in \mathcal{O}_p \) of positive valuation such that

\[
f = b_0 + \sum_{j=1}^{\infty} r^j b_j / E_{p-1}^j,
\]

(3)

There is a distinguished choice of \(b_j \) after choosing \(r \) and direct sum decompositions

\[M_{k+j(p-1)} = E_{p-1} \cdot M_{k+(j-1)(p-1)} \oplus W_{k+j(p-1)}, \]

such that \(b_j \in W_{k+j(p-1)}(N, B) \) for \(j > 0 \).

See [Ka], Propositions 2.6.1 and 2.8.1. The parameter \(r \) is the growth condition and \(v_p(r) \) is bounded above by the given \(f \).

Let \(\mathcal{M}_k(N, B, r) \) be the space of modular forms with growth condition \(r \). The space \(\mathcal{M}_k(N, B) \) is \(\bigcup_{v_p(r) > 0} \mathcal{M}_k(N, B, r) \).

Remark 1.3.1 For \(p = 3 \), \(N > 2 \) and prime to 3, Theorem 1.7.1 of [Ka] shows there is a level \(N \) lift of the characteristic 3 Hasse invariant, so an analogous expansion result holds. Proposition 2.8.2 of loc. cit. shows the expansion result for \(N = 2 \).

Proposition 1.4 Suppose \(p = 2 \) or 3 and \(N \) relatively prime to \(p \). For any \(f \in \mathcal{M}_k(N, B) \) there are \(b_j \in M_{k+4j}(N, B) \) and \(r \in \mathcal{O}_p \) of positive valuation such that

\[
f = b_0 + \sum_{j=1}^{\infty} r^{4j/(p-1)} b_j / E_4^j,
\]

There is a distinguished choice of \(b_j \) after choosing \(r \) and direct sum decompositions

\[M_{k+4j} = E_4 \cdot M_{k+4(j-1)} \oplus W_{k+4j}(N, B), \]

such that \(b_j \in W_{k+4j}(N, B) \) for \(j > 0 \).

Proof. We follow the remark at the end of Subsection 2.1 of loc. cit.. Let \(B \) be the fourth power of the Hasse invariant \(A \) for \(p = 2 \) and the square of \(A \) for \(p = 3 \). In either case, \(B \) is a weight 4 level 1 modular form defined over \(\mathbf{F}_p \). A version of Deligne’s congruence holds: \(B \equiv E_4 \mod 2^4 \) and \(B \equiv E_4 \mod 3 \).

For \(N > 2 \), and relatively prime to \(p \), the functor “isomorphism classes of elliptic curves with level \(N \) structure” is representable by a scheme which is smooth over \(\mathbf{Z}[1/N] \) and the formation of modular forms commutes with base change to a ring in which \(p \) is topologically nilpotent. So we repeat the construction of \(p \)-adic modular forms for \(p = 2, 3 \) and Katz expansions with powers of \(r^{4/(p-1)} E_4^{-1} \).
For $p = 2, 3$ (and 5), and $N = 1$, Section 1.4 of \[Se2\] states weight zero forms have expansions in powers of ΔE_4^{-3} where Δ is the weight 12 level 1 cusp form. Coleman\[C2\] shows

$$E_k \cdot \mathcal{M}_0(N, B) = \mathcal{M}_k(N, B).$$

$M_k(N, B)$ is a free B module, so $M_k(N, B) = E_4 \cdot M_{k-4}(N, B) \oplus W_k(N, B)$ for some $W_k(N, B) \subset M_k(N, B)$. \hfill \square

Theorem 1.5 (Coleman) Let k_1, k_2 be weights. Let $G(q) \in M_{k_1-k_2}(N, B)$. Let Ξ be the operator multiplication by $G(q)/G(q^p)$. If $1/G \in M_{k_2-k_1}(N, B)$ then $U^{(k_1)}$ is similar to $U^{(k_2)} \Xi$.

Remark 1.5.1 The Eisenstein series satisfy the hypothesis of Theorem 1.5.

1.3 Notations for matrices and Newton Polygons

Let M be a matrix over a ring, possibly of infinite rank. Let n be a nonnegative integer. Let $s = (s_1, s_2, s_3, \ldots, s_n)$ be a sequence of n distinct natural numbers.

The $n \times n$ diagonal major of M associated to s is the $n \times n$ matrix A whose entry A_{ij} is M_{s_i,s_j}.

A selection of a M associated to s and degree n permutation π is a sequence of n elements, $(M_{s_{\pi(1)},s_{\pi(2)}}, \ldots, M_{s_{\pi(n)},s_{\pi(n)}})$.

The $n \times n$ diagonal minor of M associated to s is the determinant of the $n \times n$ diagonal major of M associated to s.

The upper $n \times n$ diagonal major of M is the diagonal major associated to the sequence $(1, 2, 3, \ldots, n)$.

The diagonal matrix $D = \text{diag}(d_i : i \geq 1)$ is the matrix with entries $D_{ii} = d_i$ and zero elsewhere.

The Newton polygon of power series $P(t)$ is the function $N(m)$ which is the lower convex hull of the set $(m, v_p(a_m(P)))$, defined for real $m \geq 0$.

A vertex of the Newton polygon $N(m)$ is a point $(m, N(m))$ such that $N(m) = v_p(a_m(P))$.

A side of a Newton polygon $N(m)$ is a line segment whose endpoints are vertices.

The slopes of a Newton polygon are the slopes of its sides.

The multiplicity of a slope is the difference of the first coordinates of its endpoints.

We denote by $N_k(m)$ the Newton polygon of P_k, and by $N_k(m)$ a function such that $N_k(m) \geq N_k(m)$. We indicate by $N_k(m)$ a function such that for all weights k, $N_k(m) \geq N_k(m)$.

We denote by $N_k'(m)$ the Newton polygon of Q_k, and by $N_k'(m)$ a function such that $N_k'(m) \geq N_k'(m)$.

We state as Lemma \[K2\] that if $p - 1 \mid 12$ and $N = 1$, then $P_k(t) = (1-t)Q_k(t)$. For these cases, $N_k(m) = N_k(m + 1)$.

4
2 Comparing Newton polygons for U in different weights

Retain p, N, k as before, and let l be an integer and n be a positive integer. For $p = 2$, we require $n \geq 2$. Let $k' = k + l(p - 1)p^n$. At the end of the section, we show there is a quadratic $\tilde{N}(m)$ such that

$$v_p(a_m(P_k) - a_m(P_{k'})) \geq \tilde{N}(m - 2) + n + 1.$$

We now describe only the case $p > 3$ for clarity. Section 1.2 reviews the differences for $p = 2, 3$ from the case $p > 3$.

Let $r = p^{1/(p+1)}$. Choose a basis $\{b_{0,s}\}$ for the module $M_k(N, B)$. For $i > 0$, choose a basis $b_{i,s}$ for the module $W_{k+i(p-1)}(N, B)$.

Let $e_{i,s} = r^i E_{p-1}^{-i} b_{i,s}$. Let M be the matrix for $U^{(k)}$ with respect to the basis $\{e_{i,s}\}$.

Let $N_k(m)$ be the Newton polygon of $P_k(t)$.

Lemma 2.1 of [W] includes

Lemma 2.2 (Wan) Let k be a weight. If $d_v \leq m < d_{v+1}$ for some $v \geq 0$, then

$$N_k(m) \geq \frac{p - 1}{p + 1} \left(\sum_{u=0}^{v} um_a + (v + 1)(m - d_v) \right) - m.\tag{4}$$

Definition 2.1 Let $\tilde{N}_k(m)$ be the right side of Equation (4).

The m_a have an upper bound, depending on p and N, so $\tilde{N}_k(m)$ grows quadratically. Wan shows $N_k(m) = \tilde{N}_k(m)$ when both are less than $n + 1$.

Lemma 2.3 Let A be the matrix for $U^{(k)}$ with respect to basis $e_{i,s} = r^{-i} e_{i,s}$. Then

$$v_p(A_{i,s}^{u,v}) \geq \frac{(up - i)}{(p + 1)}$$

and also at least zero.

Proof. $U^{(k)}$ stabilizes $M_k(N, B, 1)$, as shown in [GM].

Proposition 2.4 $E_{p-1}^n(q)/E_{p-1}^n(q^p) \in 1 + p^{n+1} M_0(1, \mathbb{Z}_p, 1)$.

Proof. In weight zero, the only $e_{i,s}$ not 0 at the cusp ∞ is the constant function 1. The q-expansion of $(E_{p-1} - 1)/p$ is in $q\mathbb{Z}[[q]]$.

Theorem 2.5 For k, k' as above, $v_p(a_m(P_k) - a_m(P_{k'})) \geq \tilde{N}_k(m - 2) + n + 1$.

PROOF. Let C be the matrix with respect to the basis $\epsilon_{i,s}$ for multiplication by $E_p^n(q)/E_p^{n-1}(q^p)$ considered as an operator on $M_k(N,B,r)$.

Let $M^{(k')} = MC$. By Theorem 1.5, $M^{(k')}$ is a matrix for an operator similar to $U^{(k')}$ on $M_{k'}(N,B,r)$ and $M^{(k')}$ acts on $M_k(N,B,r)$.

By Proposition 2.4, the matrix C^{-1} is a matrix with entries in $p^{n+1}B$, so $M - M^{(k')}$ has entries in $p^{n+1}B$.

The difference $a_m(P_k) - a_m(P_{k'})$ is equal to

$$\text{tr } M - \text{tr } M^{(k')}.$$

These traces are the sums of all the different $m \times m$ diagonal minors of M and $M^{(k')}$, so the difference contains terms (up to sign)

$$\prod_{i=1}^{m} M^{(k')}_{s_i,s_{\pi(i)}} - \prod_{i=1}^{m} M_{s_i,s_{\pi(i)}},$$

where s is a sequence of m integers, π is a permutation of degree m.

Let

$$Z = \prod_{i=1}^{m} (z_i + w_i) - \prod_{i=1}^{m} (z_i),$$

where $z_i \in B$ and $w_i \in p^{n+1}B$, be instance of equation (5).

The sequence (z_1, z_2, \ldots, z_m) is a selection of M. By Lemma 2.3, the product of any $m - j$ of them has valuation at least $\hat{N}_k (m - 2j)$. The product of any j of the w_i has valuation at least $j(n+1)$.

Rewrite (6) as

$$Z = \sum_{\emptyset \neq s \subseteq \{1,2,\ldots,m\}} \prod_{i \in s} w_i \prod_{i \notin s} z_i.$$

(7)

For any subset s of size j,

$$v_p(\prod_{i \in s} w_i \prod_{i \notin s} z_i) \geq \hat{N}_k (m - 2j) + j(n+1).$$

The set s is nonempty, so,

$$v_p(Z) \geq \hat{N}_k (m - 2) + n + 1,$$

for every instance of Equation (6).

\[\square \]

Corollary 2.5.1 There is a quadratic $\hat{N}(m)$ independent of k such that the conclusion of Theorem 2.5 holds.

PROOF. Given p,N, Wan shows there are finitely many different $\hat{N}_k(m)$. Let $\hat{N}(m)$ be the infimum of them. \[\square \]
3 Computing tame level 1 U for $p \in \{2, 3, 5, 7, 13\}$

Let p be a prime such that $X_0(p)$ has genus 0, that is, $p \in \{2, 3, 5, 7, 13\}$ and $N = 1$. We show how to compute $U(0)$ with respect to an explicit basis.

The curve $X_0(p)$ has a uniformizer

$$d_p = p^{-1} \sqrt[3]{\Delta(q^p)/\Delta(q)}$$

with simple zero at the cusp ∞, pole at the cusp 0, and leading q expansion coefficient 1.

Let $\pi: X_0(p) \to X_0(1)$ be the map which ignores level p structure. Let $\hat{j} = \pi^*(j)$. The map π is ramified above $j = 0, 1728, \infty$ only.

Proposition 3.1 There is a degree $p + 1$ polynomial H_p over \mathbb{Z} with constant term 1 such that

$$d_p \hat{j} = H_p(d_p).$$

Proof. The map π has degree $p + 1$. The product $d_p \hat{j}$ has a pole only at the cusp 0. Hence, there is a polynomial H_p satisfying the proposition.

H_p has integer coefficients, because the q-expansion of $d_p \hat{j}$ at ∞ is in $1 + q\mathbb{Z}[[q]]$. \square

Remark 3.1.1 The ramification degrees of π over $j = 0$ are 1 and 3, yielding roots of multiplicity 1 or 3 of $H_p(d_p)$. Points over $j = 1728$ are roots of multiplicity 1 or 2 of $H_p(d_p) - 1728d_p$. We calculate H_p by equating q-expansions.

Lemma 3.2 $P_k(t) = (1 - t)Q_k(t)$

Proof. $X_0(p)$ has genus 0, so the only weight zero noncuspidal eigenforms are constants and the eigenvalue is 1. By a theorem of [H], or as a consequence of Theorem 1.5, in every weight k, $d(k, 0) = 1$ and a slope zero eigenform is noncuspidal. \square

Let $t_2 = 4$, $t_3 = 3$. For $p \geq 5$, let $t_p = 1$.

Let $c_2 = 0$, $c_3 = 1728$, $c_5 = 0$, $c_7 = 1728$, and $c_{13} = 432000/691$.

Let $e = 12/(p^2 - 1)$.

Lemma 3.3 The Newton polygon of $H_p(d_p) - c_p d_p$, as a polynomial in d_p, has a single side of slope ep.

Lemma 3.4 The weight 12 power of $E_{t_p(p-1)}$ is $(j - c_p)\Delta$.

The lemmas are direct computations.

Proposition 3.5 Let $r < p/(p + 1)$. The disc $D = \{z: z \in X_0(1), v_p(E_{t_p(p-1)}(z)) < t_pr\}$ is isomorphic to $\{z: z \in X_0(p), v_p(d_p(z)) > -er(p+1)\}$.

Proof. When \(z \in X_0(1) \) is a point of supersingular reduction, \(\Delta(z) \) is a unit. At a point of ordinary reduction, \(E_{p(p-1)}(z) \) is a unit and \(v_p(\Delta(z)) \geq 0 \). By Lemma 3.3, \(D = \{ z : v_p(j(z) - c_p) < er(p + 1) \} \).

Lemma 3.3 shows the relation \((j - c_p)d_p = H_p - c_p d_p\) is uniquely invertible for \(d_p \) such that \(v_p(d_p(z)) > -er(p + 1) \), establishing the isomorphism. \(\square \)

Corollary 3.5.1 \(S_0(1, Z_p) \subset d_p Z_p[[d_p]]. U_{(0)} \) acts as a matrix \(M \) on a basis of powers of \(d_p \).

Let \(\mathcal{W} \) be the rigid subspace of \(X_0(p) \) where \(v_p(\pi^*(E_{tp(p-1)})) < tp/(p + 1) \). The section \(s \) of \(\pi \) over \(\pi(W) \) such that for elliptic curve \(E \), \(s(E) \) is the pair \((E, C)\) for \(C \) the canonical order \(p \) subgroup of \(E \) is an isomorphism.

Let \(V \) be the pullback of \(\phi \), the Deligne-Tate lift of Frobenius on \(X_0(1)/F_p \). Let \(w_p \) be the Atkin-Lehner involution on \(X_0(p) \).

Lemma 3.6 For points of \(\mathcal{W} \),

\[
V(j) \circ \pi = j \circ w_p.
\]

Proof. The Atkin-Lehner involution acts as

\[
w_p: (E, C) \to (E/C, E[p]/C).
\]

\(E \) has a canonical subgroup of order \(p \), and

\[
V: E \to E/\ker \phi^*.
\]

coincides with \(s^* \circ w_p^* \circ \pi^* \).

We identify \(\mathcal{W} \) with \(\pi(W) \) via section \(s \). \(\square \)

Proposition 3.7 For points of \(\mathcal{W} \),

\[
H_p(p^{12/(1-p)}/d_p)V(d_p) - p^{12/(1-p)}H_p(V(d_p))/d_p = 0.
\] (8)

Proof. The modular equation

\[
H_p(w_p^*(d_p))V(d_p) = H_p(V(d_p))w_p^*(d_p)
\]

holds on \(\mathcal{W} \) and \(w_p(d_p) = (p^{12/(1-p)}/d_p) \). \(\square \)

Theorem 3.8 There is an algebraic function \(I_p(y, x) \) and a matrix \(M \) for \(U_{(0)} \) with respect to the basis \(d_p^n \) such that entries \(M_{ij} \) satisfy a generating function equation

\[
\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} M_{ij} x^i y^j = \frac{y}{p} \frac{d}{dy} \log I_p(x, y). \tag{9}
\]
Proof. Clear denominators and factor $V(d_p) - w_p^*(d_p)$ from Equation (8) to determine an algebraic relation
\[d_p^N I_p(V(d_p), 1/d_p) \]
between d_p and $V(d_p)$, of degree p in d_p. The inverse of V applied to coefficient of d_p^{p-1} is $\text{tr} V(d_p) = pH(d_p)$.

The values of $U(d_p^n)$ for $n = 0$ to $p - 1$ and the coefficients of I_p determine a recurrence for $U(d_p^n)$ for $n \geq p$. □

Remark 3.8.1 The $I_p(x,y)$ for $p = 2, 3, 5, 7, 13$ are

\[
\begin{align*}
I_2 &= 1 - (2^{12}x^2 + 3 \cdot 2^4)x - xy^2, \\
I_3 &= 1 - (3^{12}x^3 + 4 \cdot 3^5x^2 + 10 \cdot 3^3x)y - (3^{6}x^2 + 4 \cdot 3^2x)y^2 - xy^3, \\
I_5 &= 1 - (5^{12}x^5 + 6 \cdot 5^{10}x^4 + 63 \cdot 5^7x^3 + 52 \cdot 5^5x^2 + 63 \cdot 5^2x)y \\
&\quad - (5^{6}x^4 + 6 \cdot 5^3x^2 + 52 \cdot 5^2x)y^2 \\
&\quad - (5^{5}x^3 + 6 \cdot 5^4x^2 + 63 \cdot 5x)y^3 - (5^{3}x^2 + 6 \cdot 5)x)y^4 - xy^5, \\
I_7 &= 1 - (7^{12}x^7 + 4 \cdot 7^{11}x^6 + 46 \cdot 7^9x^5 + 272 \cdot 7^7x^4 + \\
&\quad 845 \cdot 7^5x^3 + 176 \cdot 7^2x^2 + 82 \cdot 7x)y - \ldots - xy^7, \\
I_{13} &= 1 - (13^{12}x^{13} + 2 \cdot 13^{12}x^{12} + 25 \cdot 13^{11}x^{11} + 196 \cdot 13^{10}x^{10} + \\
&\quad 1064 \cdot 13^9x^9 + 4180 \cdot 13^8x^8 + 12086 \cdot 13^7x^7 + \\
&\quad 25660 \cdot 13^6x^6 + 39182 \cdot 13^5x^5 + 41140 \cdot 13^4x^4 + \\
&\quad 27272 \cdot 13^3x^3 + 9604 \cdot 13^2x^2 + 1165 \cdot 13)x)y - \ldots - xy^{13}.
\end{align*}
\]

Proposition 3.9 The p-adic valuation of M_{ij} is at least $\epsilon(p \cdot i - j) - 1$. There is a parabola $N(m)$ with quadratic coefficient $6/(p+1)$ such that $N_0(m) \geq N(m)$.

Proof. Let $M_{ij}' = p^{e(j-1)}M_{ij}$. The matrix (M_{ij}') is similar to (M_{ij}). Theorem [3.8] shows
\[
\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} M_{ij}'x^iy^j = \frac{y}{d_p} \log I_p(p^{-e}x, p^e y).
\tag{10}
\]

Direct calculation shows $I_p(p^{-e}x, p^e y)$, for the I_p displayed in Remark [3.8.1] is a polynomial in $p^{e(p-1)}x$ and y with integer coefficients. Hence, $v_p(M_{ij}') \geq i \cdot e(p - 1)$. □

3.1 Tame level 1 and $p = 2$ or 3

Emerton [E] calculates the lowest positive slope 2-adic modular forms of every weight. Concise expressions for the q-expansions of a few forms facilitate computation.

Serre [S2] observes that for a compact operator M expressed as a matrix on a basis of a Banach space, if c_i is the infimum of the valuations of column i of M, then $\text{tr} (\Lambda^n M)$ has valuation at least the sum of the n smallest c_i.

9
Proposition 3.10 For $p = 2$ and even weight k, there is an \mathcal{O}_2 basis $\{e_n\}_{n \geq 1}$ of $S_k(1, \mathcal{O}_2)$ such that the image of $U(k)$ is a subset of $\bigoplus S^n e_n \mathcal{O}_2$.

Proof. This is a rewriting of Proposition 3.21 of [E] in language amenable to the noted observation of Serre. The basis element e_n is $F_k d_2^n$ for a certain weight k form F.

Recall $N'_k(m)$ is the Newton polygon of $Q_k(t)$.

Corollary 3.10.1 $N'_k(m) \geq 3 \binom{m+1}{2}$.

Lemma 3.11 Suppose $p = 3$. Let $S = \sqrt{3} V(\Delta)$. S^2 is in $M_6(1, \mathbb{Z}_p)$ and does not vanish at the cusp ∞. The quotient $S/V(S)$ is in $M_0(1, \mathcal{O}_3, 3/2)$ and as a power series in $Z[[d_3]]$, $S/V(S) - 1$ is in the ideal $(9d_3, 27d_3^3)$.

Proof. Direct calculation and comparison of q expansions shows S is the Eisenstein series for level 3, weight 3 and character τ, the 3-adic Teichmuller character. S^2 is a level 3 weight 6 classical modular form and thus a tame level 1 weight 6 overconvergent modular form.

The curve $X_0(9)$ has genus zero and uniformizer

$$d_9 = \sqrt[3]{V(\Delta)/\Delta}.$$

The ramification of the forgetful map to $X_0(3)$ shows

$$d_3 = d_9 + 9d_9^2 + 27d_9^3.$$

Reversal of this relation between d_3 and d_9 and the observation

$$S/V(S) = d_9/d_3$$

shows $S/V(S)$ is in $M_0(1, \mathcal{O}_3, 3/2)$, has constant term 1, and $S/V(S) - 1 \in (9d_3, 27d_3^3) \subset Z[[d_3]]$.

Proposition 3.12 For $p = 3$ and even weight k divisible by 3, $N'_k(m) \geq 3 \binom{m}{2}$.

Proof. Let R be the multiplication by $(S/V(S))^{k/3}$ operator. Theorem 1.5 shows the composition $U(0) R$ is similar to $U(k)$. Lemma 3.11 shows the conclusions of Proposition 3.9 hold for $U(0) R$.

[10]
3.2 Further example for $p = 3$, $N = 1$, $k = 0$.

Let $p = 3$, $N = 1$ and
\[\hat{N}'_0(m) = \frac{3}{2}m(m-1) + 2m. \]

We work an example of Proposition 3.9.

Lemma 3.13 $N'_0(m) \geq \hat{N}'_0(m)$.

Proof. Recall $e = 3/2$. Equation (10) shows
\[
3 \sum_{i,j} M'_{ij} x^i y^j = \frac{9(10xy + 8\sqrt{3}x^2y + 3xy^2) + 3^5(4\sqrt{3}x^2y + 2x^2y^2) + 3^8x^3y}{1 - 3^3(10xy + 4\sqrt{3}x^2y + x^3y) - 3^6(4\sqrt{3}x^2y + x^2y^2) - 3^9x^3y}.
\]

(11)

Following the last step of Proposition 3.9, substitute $\delta = 3^3x$ into the right side of Equation (11) to get
\[
G(\delta, y) = \frac{10\delta y + 8\sqrt{3}\delta y^2 + 3\delta y^3 + 4\sqrt{3}\delta^2 y + 2\delta^2 y^2 + \delta^3 y}{1 - 10\delta y - 4\sqrt{3}(\delta y^2 + \delta^2 y) - (\delta y^3 + \delta^2 y^2 + \delta^3 y)}.
\]

(12)

The valuation of M'_{ij} is at least $i \cdot e(p-1) - 1 = 3i - 1$. So
\[N'_0(m) \geq \sum_{i=1}^{m} 3i - 1 = \hat{N}'_0(m). \]

\[\square\]

4 For $p = 3$, $N = 1$, \hat{N}'_0 is a sharp parabola below N'_0

Let $p = 3$ and $N = 1$ and
\[m_i = \sum_{j=0}^{i-1} 3^j = \frac{3^i - 1}{2}. \]

Theorem 4.1 The set $E = \{m : m \in \mathbb{Z}, N'_0(m) = \hat{N}'_0(m)\}$ is the same as $\{m_i : i \geq 0\}$.

Proof. We show for all $m \geq 0$, that $m \in E$ if and only if $(m - 1)/3 \in E$.

The leading coefficient of P_0 is 1, so $0 \in E$.

Let M' be the matrix for $U(0)$ with respect to basis $\{3^{3m/2}d^m\}$.

Lemma 3.13 shows M'_{ij} has valuation at least $3i - 1$, so there is a matrix K over \(\mathbb{Z}[\sqrt{3}]\) and diagonal matrix $D = diag(3^{3i-1})$ such that $M' = DK$.

Let $\bar{K} = K \mod \sqrt{3}\mathbb{Z}[\sqrt{3}]$ and let $c_m(\bar{K})$ be its upper $m \times m$ diagonal minor.
Every $m \times m$ diagonal minor of M' has valuation at least $\hat{N}_0'(m)$ and the inequality is strict except for the upper $m \times m$ diagonal minor. So we have reduced the theorem to showing that $m \in E$ if and only if $c_{m}(\bar{K}) \neq 0$.

Call a degree m permutation π excellent if the selection of \bar{K} associated to $(1, 2, \ldots, m)$ and π is a sequence of nonzero entries of \bar{K}.

Claim 1. If there is a degree m excellent π, then $m = m_i$ for some i.

We establish Claim 1 by induction. The trivial degree 0 permutation is excellent.

The entries of K satisfy a linear recurrence. Equation (12) with x substituted for δ is

$$G(x, y) = \frac{10xy + 4\sqrt{3}xy(x + 2y) + xy(x^2 + 2xy + 3y^2)}{1 - xy(10 + 4\sqrt{3}(x + y) + x^2 + xy + y^2)}.$$

The coefficient of x^iy^j is the entry of K in row i and column j.

Let \bar{G} be the generating function for entries of \bar{K}. \bar{G} is the reduction of G to $\mathbb{F}_3[[x, y]]$.

Let

$$R(i) = (1 + (xy + x^3y + x^2y^2 + xy^3) + (xy + x^3y + x^2y^2 + xy^3)2^i),$$

and

$$\bar{G}_0(x, y) = xy(1 - xy + y^2).$$

Let

$$\bar{G}_j = \bar{G}_0 \cdot \prod_{i=0}^{j-1} R(i)$$

and

$$\bar{C}_j = \prod_{i=j}^{\infty} R(i).$$

For all nonnegative integers j, $\bar{C}_j^3 = \bar{C}_{j+1}$ and $\bar{G} = \bar{G}_j \bar{C}_j$.

By direct computation,

$$\bar{G}_1 = (x^{-1}y + 1 - xy^{-1} + y^{-2})\bar{G}_0^3 + xy + x^2y^4 + x^6y^2, \quad (13)$$

and so

$$\bar{G} = (x^{-1}y + 1 - xy^{-1} + y^{-2})\bar{G}_0^3 + (xy + x^2y^4 + x^6y^2)\bar{C}_1. \quad (14)$$

Equation (14) shows the coefficient of x^iy^j in \bar{G} is the same as the coefficient of x^iy^j in \bar{G}^3. This coefficient is zero if i is not divisible by 3.

Suppose degree m permutation π is excellent. The only unit in row 1 is in column 1, so $\pi(1) = 1$. The functions

$$\sigma(i) = \pi(3i)/3, \quad \sigma'(i) = (\pi(3i - 1) - 1)/3, \quad \sigma''(i) = (\pi(3i + 1) + 1)/3 \quad (15)$$

are excellent degree $\lfloor m/3 \rfloor$ permutations, and $3 | (m - 1)$.

The inductive step is complete.

Claim 2. For any m_i, there is a unique degree m_i excellent π.

12
We proceed by induction. The unique degree 0 permutation is excellent.

Equation (14) shows for excellent degree \(m \) permutations \(\sigma, \sigma', \sigma'' \), there is an excellent degree \(m \) permutation \(\pi \), computed by reversing Equations (15).

If there is a unique degree \((m - 1)/3 \) excellent \(\sigma \), then there is a unique degree \(m \) excellent \(\pi \). Claim 2 is established.

Claim 1 shows for \(m \) not equal to any \(m_i \), that \(c_m(K) = 0 \). Claim 2 shows for each \(m_i \), there is a unique selection of the upper \(m_i \times m_i \) diagonal major of \(K \) which contributes a nonzero term to \(c_{m_i}(K) \). Hence, \(c_m(K) \neq 0 \) if and only if there is \(i \) such that \(m = m_i \).

\[\square \]

Corollary 4.1.1 Let \(L \) be the secant line such that \(L(m_i) = \tilde{N}_0'(m_i) \) and \(L(m_{i+1}) = \tilde{N}_0'(m_{i+1}) \). If \(m \) is such that \(m_i < m < m_{i+1} \), then

\[\tilde{N}_0'(m) < N_0'(m) \leq L(m). \]

Proposition 4.2 Let \(l \) be an integer, \(n \) be a nonnegative integer. Let \(k = 2 \cdot 3^{n+1} \cdot l \).

Let \(s \) be an integer, \(0 \leq s < 2 \cdot 3^{n-1} \). If \(N_0'(s) = \tilde{N}_0'(s) \), then \(N_k'(s) = \tilde{N}_0'(s) \).

Proof. Let \(R = (S/V(S))^{k/3} \). The binomial theorem shows the coefficient of \(d_3^m \) in \(R \) has valuation at least \([3m/2] + n - v_3(m) \).

Let \(C \) be the matrix for the multiplication by \(R \) operator on \(S_0(1, O_p) \) with respect to the basis \(\{3^{3m/2}d^m\} \).

Let \(M' \) be the matrix for \(U_{(0)} \) with respect to the same basis.

By Theorem 1.5, \(M'C \) is similar to a matrix for \(U_{(k)} \).

For all \(i, j, v_3(M'_{ij}) \geq 3i - 1 \). For \(i > j \) or \(j > 3i \), \(M_{ij}' = 0 \).

For all \(j > 0 \), \(C_{jj} = 1 \). For \(j, m > 0 \), \(v_3(C_{j+m,j}) \geq n - v_3(m) \) and \(C_{j,j+m} = 0 \).

For odd \(m \), including \(m = 3n-1 \), \(v_3(C_{3j+m,j}) \geq \frac{1}{2} \).

For all \(i, v_3(M'_{ij} - (M'C)_{ij}) \geq 3i - 1 \).

For \(i \leq s \), \(v_3(M'_{ij} - (M'C)_{ij}) > 3i - 1 \), because

\[(M'C)_{ij} = \sum_{k=j}^{3i} M'_{ik}C_{kj}, \]

and \(3i \leq 3s < 2 \cdot 3^n \).

If \(N_0'(s) = \tilde{N}_0'(s) \) then \(N_k'(s) = N_0'(s) \).

\[\square \]

Corollary 4.2.1 Let \(l \) be an integer and \(n \) be a nonnegative integer. Let \(k = 2 \cdot 3^{n+1} \cdot l \).

For integer \(i \), \(0 \leq i < n - 1 \), there are exactly \(3^i \) overconvergent \(3 \)-adic modular forms of weight \(k \) with slope in \([m_{i+1} + 1, m_{i+2} - 2] \), and these have average slope \(3^{i+1} - 1 \).

Proof. By Proposition 1.2 \(N_k'(m_i) = N_0'(m_i) \) and \(N_k'(m_{i+1}) = N_0'(m_{i+1}) \). There are \(3^i = m_{i+1} - m_i \) slopes with multiplicity accounted for by the edges joining these vertices of the Newton polygon \(N_k' \). The difference \(N_k'(m_{i+1}) - N_k'(m_i) \) is \(3^i(3^{i+1} - 1) \).

The average slope is \(3^{i+1} - 1 \). The minimum of these slopes is at least \(3m_i + 2 \) and the maximum at most \(3m_{i+1} - 1 \).

\[\square \]
Corollary 4.2.2 Let k be an even integer and i be a positive integer. If
\[v_3(k) \geq \frac{[\hat{N}'_0(m_{i+1}) + \hat{N}'_0(m_i)]}{2} - \hat{N}'_0((m_{i+1} + m_i)/2) + i + 2, \]
then for $m \leq m_{i+1}$, $N'_0(m) = N'_k(m)$.

Proof. The Newton polygons N'_0 and N'_k both have vertices $(m_i, \hat{N}'_0(m_i))$ and $(m_{i+1}, \hat{N}'_0(m_{i+1}))$.

By Corollary 4.1.1 and Theorem 2.5, $v_3(a_m(P_k)) = v_3(a_m(P_0))$ for every m between m_i and m_{i+1}.

Affirming a pattern noticed by Gouvêa [G],

Corollary 4.2.3 Let $k = 2 \cdot 3^n + 1$. The classical weight k level 3 oldforms have slopes outside $[k/4, 3k/4]$.

Proof. There are $m_n = \frac{k}{12} - \frac{1}{2}$ cuspidal level 1 normalized eigenforms. There are $2m_i + 2$ classical level 3 oldforms, and one pair of these comes from the weight k Eisenstein series. The slopes of the forms in this pair are 0 and $k - 1$.

By Proposition 4.1.2, $N'_k(m_n) = \hat{N}'_0(m_n)$, because $m_n < 2 \cdot 3^{n-1}$.

The slope $N'_k(m_n) - N'_k(m_n - 1)$ is less than
\[\hat{N}'_0(m_n) - \hat{N}'_0(m_n - 1) = 3m_n - 1 = \frac{k}{4} - 1. \]

The mates of these m_i oldforms have slopes greater than $\frac{3k}{4}$.

References

[B] K. Buzzard, Families of modular forms. Proceedings of Journée Arithmetic 2000.
[C] R. Coleman, Classical and overconvergent modular forms. Journal de Théorie des Nombres de Bordeaux 7 (1995) 333-365.
[C2] R. Coleman, p-adic Banach spaces and families of modular forms. Inv. Math. 127 (1997) 417–479.
[E] M. Emerton, 2-adic Modular forms of minimal slope. Doctoral thesis, Harvard University, 1998.
[G] F. Gouvêa, Where the slopes are. Unpublished notes, 1999.
[GM] F. Gouvêa and B. Mazur, On the characteristic series of the U operator. Ann. Inst. Fourier 43 (1993) 301–312.
[H] H. Hida, Elementary theory of L-functions and Eisenstein series, Cambridge University Press, 1993.
[Ka] N. Katz, p-adic properties of modular schemes and modular forms. Springer Lecture Notes in Mathematics 350 (1972) 69–190.
[Se] J. P. Serre, *Endomorphismes complètement continues des espaces de Banach p-adique*, Publ. Math. IHES 12 (1962), 69–85.

[Se2] J. P. Serre, Formes modulaires et fonctions zêta p-adiques. Springer Lecture Notes in Mathematics 350 (1972) 191–268.

[W] D. Wan, *Dimension Variation of Classical and p-adic Modular Forms*. Inv. Math. 133 (1998) 449–463.

Department of Mathematics
Malott Hall
Cornell University
Ithaca, NY 14853
USA

lawren@math.cornell.edu