ABSTRACT

Objective: Infertility has been known to cause serious social and emotional problems in India. Microorganisms may be a primary cause for this infertility. This study was carried out to know the prevalence of microorganisms in the infertility couples of a tertiary caring teaching hospital.

Methods: One thousands of couples were screened for the infertility test presented at the outpatient Department of Obstetrics and Gynaecology. The suspected infertility couples were tested for microbial contamination in their reproductive sample. Simultaneously, the demographic data of all patients were documented, and all the data were analyzed with SPSS 20 software.

Result: From one thousand couples, 288 couples were found infertility symptoms, whereas 67.71% were primary infertility problems and rest were secondary. It is due to male factor (27.08%), female factor (50%), and both (4.86%) but 18.05 were unexplained. From vaginal swabs, 186 and semen 145 microbial colony were grown. However, Chi-square (χ²) showed that there is no significant difference between the growth of microbial colony from semen or vaginal swap as p=0.06. Eight varieties of bacteria (387) and Candida albicans (37) were documented.

Conclusion: With respect to older ages of the infertile couples, it is more chances to infections. Antibiotic should be prescribed to primary infertility couples and infections can be avoided the cross transmission during intercourse.

Keywords: Primary infertility, Candida, Semen, Antibiotic, Vaginal swab.

INTRODUCTION

In India, childless couples are suffered both mentally and socially to live. The psychological problem is associated with the increase of infertility duration. However, the reason behind these infertile couples is varied from couple to couple. The cause may be male factor, female factor, both male and female factors or sometimes idiopathic [1]. In about 60% of married couples, 90% would achieve pregnancy in 12 months, and 95% would be able to achieve pregnancy in 18-24 months [2]. Failure to achieve pregnancy at the end of this period is not a definite criterion to arrive at a diagnosis of infertility as the age of the woman must be taken into consideration. Female fertility is at its peak between the ages of 18 and 24 years, while, it starts to decline after the age of 34 years [3].

Infertility in the female may be traced to age, tubal factor, ovarian factor, and uterine factor among others [4]. Male infertility, a common problem worldwide, is a neglected reproductive health issue in India [3]. It is estimated that the male factor accounts for 20-50% of the cause of infertility in different parts of India [4,5]. Male infertility may actually occur following the occlusion of the vas deferens [6]. Similarly, a high level of hyperprolactinemia has been associated with male infertility [7,8]. Also associated with the condition is the antispermantibodies [9] as well as genital infections [10,11]. Studies have equally revealed a higher concentration of aflatoxin in infertile India males than those in the fertile control, indicating that aflatoxin may contribute significantly to male infertility [12]. The WHO [13] minimal criteria for normal semen include on the average a volume of 1.5 ml; minimal count of 20 millions sperm/ ml; sperm motility of 60%, and no blood cells. Microbial infections have been reported to reduce sperm viability. Chlamydia trachomatis infections lead to blockage in the epididymis, following chronic epididymis and variably lead to azoospermia [14]. However, Ureaplasma urealyticum infections which induce leukocytespermia consequently lead to sperm damage, decrease sperm numbers, and invariably impaired sperm motility [15].

Vaginal infection is a common disease of women. Causes of vaginal discharge include physiological, infective (e.g., bacterial vaginosis, candidiasis, trichomoniasis), and non-infective (foreign bodies, cervical ectopy, and genital tract malignancy) [1]. Although after 40 years, there is a fall in estrogen production. An estrogen deficient state in vagina and the immune-compromised status due to diabetes or other associated factors can lead to growth of abnormal flora which may, in turn, lead to infections. Bacterial vaginal infections are often least understood, and empirical antifungal therapy for any vaginal infection without high vaginal swab (HVS) culture is still in practice. Normal vaginal pH in women of reproductive age is acidic; pH is normally ≤4.5. In bacterial vaginosis and infection with Trichomonas vaginalis, vaginal pH is elevated >4.5. In vaginal candidiasis, vaginal pH is ≤4.5. Women of reproductive age with vaginal discharge should have a HVS cultured if, postnatal or post miscarriage, vaginitis without discharge, pre or post gynecological surgery, pre or post termination of pregnancy, symptoms not characteristic of bacterial vaginosis were seen [16-19]. In this study, we have screened to the infertile couples whether the microbiota is the primary cause also documented the demographic data of the couples.

METHODS

This is a prospective study and carried out form January 2012 to December 2015 and approved from our Institutional Ethics Committee. A total of 1000 couples were screened for infertile, and 288 were enrolled for this study. For the females, HVSs are collected. While for the corresponding males (spouses), semen samples were collected using the masturbation method. All semen samples were sent to the laboratory within 15 minutes of collection and analyzed using the
WHO criteria. [13] The endocervical swabs or high vagina swabs were subjected to standard microbiological analysis. All the samples were grown in specific medium such as nutrient agar (NA), blood agar, chocolate agar, and cystine lactose electrolyte deficient agar for proper growth of bacteria and suborders dextrose agar, potato dextrose agar for fungi. Then, the colonies were identified by CLSI guideline, and with previous methods, i.e. all specimens were inoculated onto NA, MacConkey agar, and blood agar by streaking. and the plates were incubated aerobically at 37°C for 24 hrs. Discrete colonies were picked from the growth and subcultured to obtain pure colonies (Fig. 1), and biochemical tests were carried out.

In addition, the picked discrete colonies were Gram-stained, and thereafter, the consequent biochemical tests were done for the identification of microbiota with previous methods [18-30].

RESULTS

A total number of 1000 couples studied and documented the demographic data and cause of infertility. Among the 1000 couples, 712 couples have no infertility symptoms, whereas 288 couples had infertility symptoms (Table 1). Out of 288 infertility couple, 195 primers, 93 were secondary. With questioner, it was revealed that 44.8% infertility couples were suffered since <5 years whereas 55.2% suffered >10 years. With medical tests, it was revealed that 27.08% were suffered with malefactors and 50% were revealed futures. About 4.86% were suffered both husband and wives. However, 10% of couples were not found any reasons. Among the couples, 9.02% husbands were taken medication for their infertility management, and 57.98% females were taken management for their infertility (Table 1).

All the infected couples are divided into their respective ages. It was revealed that in females, i.e., the wives are more infected as compare to the female (Tables 2 and 3).

In wives, the rate of infections increased in the older age groups as compared to elders. The two-tailed p=0.4160 and by conventional criteria, this difference is considered to be not statistically significant. Hence, the organisms are found in equally in both husband and wives. In wives, at the age of the more than 40, there was more chance to infections (Table 2). In husbands, a total of 145 colonies are identified. From the 145 colonies, 219 colonies were found in the age group on 20-39 years. Younger age group had less number of colli as compared to the older age groups (Table 3). All the samples of infertile couples were screened for microbial growth. Among the 288 couples, the samples of 186 wives and 145 husbands were infected with microbial colony (Table 4). From the chi-square, it was revealed that the p value was more than 0.05. Hence, it is equally distributed in both husbands and wives (Table 4).

From the growth of the microbial colony, it was revealed that there is no any difference between the growth of organisms in the same couples with different couples as p was more than 0.05 from the Chi-square test (Table 5).

A total number of 414 microbial colonies are observed in this study. Among them, 37 Candida albicans and rest 387 bacterial colonies were revealed. Among the bacterial colonies, Escherichia coli was highest frequency (113), and Staphylococcus aureus was next to E. coli. Only, 3 Streptococcus sp. were found in this study (Table 6).

DISCUSSION

In our study, E. coli arguably the dominant organism implicated in primary infertility; among males and females alike. With a prevalence rate of 27.29% isolates from the samples of infertile couple’s culture, it clearly surpasses S. aureus which had a prevalence of 22.71% whereas 21.01%, 16.67%, 8.94%, 3.14%,1.21%,0.97%, and 0.72% were found for Pseudomonas sp., Coagulase negative Staphylococi, C. albicans, Klebsiella sp., Proteus sp., Enterococcus faecalis, and Streptococcus sp.,

Table 1: Characteristics of infertility among the couples
Variables/characteristics
Presence of infertility among couples
Absent
Present
Type of infertility among couples (n=288)
Primary
Secondary
Duration of infertility (in years)
<5 years
>10
Causes of infertility
Male factors
Female factor
Both
Idiopathic
Receiving previous management for infertility
Husbands
Wives

Table 2: Distribution of microbial isolates in relation age of wives
Age range

<20
20-29
30-39
>40
Total

Table 3: Distribution of microbial isolates in relation age of husbands
Age of husbands

<30
30-39
40-49
50-59
>60
Total
respectively. It is pertinent to note that *E. coli*, the most prevalent Gram-negative organism implicated in urinary tract infection [11], is not the dominant cause of primary infertility in females. Its prevalence rate of 15.5% among isolates from endocervical swab, 19.4% of isolates from HVs places it behind both *Klebsiella* spp. and *Proteus* spp. as the dominant Gram-negative bacterial isolated from these cases of primary infertility. It is important to highlight the fact that the isolation rate of *S. aureus* is a significant difference at p<0.0001 when bacteria is compared with no growth.

Table 4: Number of colony observed from respective couples

Couple	Mixed colony	Single microbial isolate	No growth	Total
Wife	122	64	102	288
Husband	97	48	143	288
Total	219	112	145	376

Table 5: Number of same colony observed in both husbands and wives

Samples from couple	Same couple	Different couple	Total
Growth	182	37	219
No growth	37	108	145
Total	219	145	364

Table 6: Frequency of microbial isolated from the couples

Microbial isolates	Microbial isolates in frequency (n=414)	Percentage of Microbial isolated
E. coli	113	27.29
S. aureus	94	22.71
Pseudomonas sp.	76	21.01
Coagulase negative	69	16.67
Staphylococci	37	8.94
C. albicans	13	3.14
Klebsiella sp.	5	1.21
Proteus sp.	4	0.97
Enterobacter sp.	3	0.72

REFERENCES

1. Agboola A. Infertility and subinfertility. In: Akin A, editor. Textbook of Obstetrics and Gynaecology. Vol. 1. Ibadan: Heinman Educational Books; 2004. p. 174-6.

2. Collier J, Longmore M, Scally P. Infertility: Causes and test. In: Collier J, Longmore M, Scally P. editors. Oxford Handbook of Clinical Specialties. 6th ed. Oxford: Oxford University Press; 2003. p. 58-9.

3. Okonofua F, Menakaya U, Onemu SO, Omo-Aghoja LO, Bergstrom S. A case-control study of risk factors for male infertility in Nigeria. Asian J Androl 2005;7(4):351-61.

4. Chukudebele WO, Esege N, Megafu U. Etiological factors in infertility in Enugu, Nigeria. Infertility 1979;2(2):193-200.

5. Esiama OA, Orji EO, Lasiri AS. Male contribution to infertility in Ille-Ife, Nigeria. Niger J Med 2002;11(2):70-2.

6. Ojengbede OA, Omonrue WE, Ladipo OA. Screening for obstruction of the vas deferens in Nigerian men with azoospermia using the alpha-glucosidase reaction in semen. Afr J Med Sci 1992;21(7):79-81.

7. Adejumon CA, Ilesanmi AO, Ode OE. Hyperprolactinemia as a cause of male infertility in Ibadan, West Afr J Med 1999;18:17-9.

8. Onemu SO, Ibeh N. Studies on the significance of positive bacterial flora. Int Fertil Women Mol 2001;46:210-4.

9. Oloot O. Male infertility; Risk factors, causes and management-A review. J Microbiol Biotechnol Res 2012;2(4):641-5.

10. Obi M, Praksa V. Isolation of sperm agglutinating factor from *Staphylococcus aureus* isolated from a woman with unexplained infertility. Fertil Steril 2005; 84, 1539-41.

11. World Health Organization. WHO Laboratory Manual for the examination of Human Semen and Sperm-Cervical Mucus Interaction. Cambridge: Cambridge University Press; 1999.

12. Ochnerdor FR, Ozdemir K, Rabenau H, Fener T, Orenkek R, Milbradt R, et al. *Chlamydia trachomatis* and *Ureaplasma urealyticum* as a cause of male infertility in Ibadan, West Afr J Med 1999;18:17-9.

13. Mitchell H. Vaginal discharge—causes, diagnosis, and treatment. BMJ 2004;328(7451):1306-8.

14. Royal College of Obstetricians & Gynaecologists; British Association for Sexual Health and HIV. The management of women of reproductive age attending non-genitourinary medicine settings complaining of vaginal discharge. J Fam Plann Reprod Health Care 2006;32(1):33-42.

15. Cailouette JC, Sharp CF Jr, Zimmerman GJ, Roy S. Vaginal pH as a marker for bacterial pathogens and menopausal status. Am J Obstet Gynecol 1997;176(6):1270-5.

16. Radcliffe K, Jusuf I, Cowan FM, Fitzgerald M, Wilson J. UK national guidelines on sexually transmitted infections and closely related conditions. Sex Transm Infect 1999;75:S1.

17. Blackwell AL, Thompson PD, Wareham K, Emery SJ. Health gains from screening for infection of the lower genital tract in women attending for termination of pregnancy. Lancet 1993;342(8865):206-10.

18. Dubey D, Rath S, Sahu MC, Rout S, Debata NK, Padhy RN. A report on infection dynamics of inducible clindamycin resistance of *Staphylococcus aureus* isolated from a teaching hospital in India. Asian Pac J Trop Biomed 2013;3(2):148-53.

19. Rath S, Dubey V, Sahu MC, Debata NK, Padhy RN. Surveillance of multidrug resistant *Escherichia coli* in community and a hospital from Odisha. Asian Pac J Trop Dis 2014;4(2):140-9.
20. Dash A, Sahu K, Senapati JN, Debata NK, Sahoo J, Raulo BC, et al. Surveillance of antibiotic sensitivity and resistance pattern of bacteria isolated from orthopaedic wound discharge. Int J Pharm Sci Rev Res 2016;36(1):208-11.
21. Sahu MC, Patnaik R, Padhy RN. In vitro combination-efficacy of ceftriaxone and leaf extract of Combretum albidum G. Don against multidrug resistant Pseudomonas aeruginosa and host-toxicity testing with human lymphocytes. J Acute Med 2014;4(1):26-37.
22. Sahu MC, Rath S, Dubey D, Debata NK, Padhy RN. Multidrug resistance of Pseudomonas aeruginosa as known from surveillance of nosocomial and community infections in an Indian teaching hospital. J Public Health 2012;20(4):413-23.
23. Sahu MC, Dubey D, Rath S, Panda T, Padhy RN. Monograph: In vitro efficacy of 30 ethnomedicinal plants used by Indian aborigines against 6 multidrug resistant gram-positive pathogenic bacteria Asian Pac J Trop Dis 2015;5(2):136-50.
24. Sahu MC, Padhy RN. Bayesian evaluation of two conventional diagnostic methods for pathogenic fungal infections. J Acute Med 2014;4(3):109-19.
25. Sahu MC, Debata NK, Padhy RN. In vitro efficacy of Butea monosperma Lam. Against 12 clinically isolated multidrug resistant bacteria. Asian Pac J Trop Dis 2013;3(3):217-26.
26. Uh Y, Choi SJ, Jang IH, Lee KS, Cho HM, Kwon O, et al. Colonization rate, serotypes, and distributions of macrolide-lincosamide-streptogramin B resistant types of group B streptococci in pregnant women. Korean J Clin Microbiol 2009;12(4):174-9.
27. Bayraktar MR, Ozerol IH, Gucluer N, Celik O. Prevalence and antibiotic susceptibility of Mycoplasma hominis and Ureaplasma urealyticum in pregnant women. Int J Infect Dis 2010;14(2):e90-5.
28. Donati L, Di Vico A, Nucci M, Quagliozi L, Spagnuolo T, Labianca A, et al. Vaginal microbial flora and outcome of pregnancy. Arch Gynecol Obstet 2010;281(4):589-600.
29. Divyashanthi CM, Adithiyakumar S, Bharathi N. Study of prevalence and antimicrobial susceptibility pattern of bacterial isolates in a tertiary care hospital. Int J Pharm Pharm Sci 2014;7(1):185-90.
30. Iyothi P. Antibiotic sensitivity pattern of Citrobacter spp. isolated from patients with urinary tract infections in tertiary care hospital in South India. Int J Pharm Pharm Sci 2014;7(1):252-4.
31. Hay PE, Morgan DJ, Ison CA, Bhide SA, Romney M, McKenzie P, et al. A longitudinal study of bacterial vaginosis during pregnancy. Br J Obstet Gynaecol 1994;101(12):1048-53.
32. Lee SE, Romero R, Kim EC, Yoon BH. A high Nugent score but not a positive culture for genital mycoplasmas is a risk factor for spontaneous preterm birth. J Matern Fetal Neonatal Med 2009;22(3):212-7.
33. Choi SJ, Park SD, Jang IH, Uh Y, Lee A. The prevalence of vaginal microorganisms in pregnant women with preterm labor and preterm birth. Ann Lab Med 2012;32:194-200.