Kinetic mechanism of nick sealing by T4 RNA ligase 2 and effects of 3′-OH base mispairs and damaged base lesions

MATHIEU CHAULEAU and STEWART SHUMAN
Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA

ABSTRACT
T4 RNA ligase 2 (Rnl2) repairs 3′-OH/5′-PO₄ nicks in duplex nucleic acids in which the broken 3′-OH strand is RNA. Ligation entails three chemical steps: reaction of Rnl2 with ATP to form a covalent Rnl2–(lysyl-Nζ)–AMP intermediate (step 1); transfer of AMP to the 5′-PO₄ of the nick to form an activated AppN– intermediate (step 2); and attack by the nick 3′-OH on the AppN– strand to form a 3′–5′ phosphodiester (step 3). Here we used rapid mix-quench methods to analyze the kinetic mechanism and fidelity of single-turnover nick sealing by Rnl2–AMP. For substrates with correctly base-paired 3′-OH nick termini, kₑₜₚᵡ₂ was fast (9.5 to 17.9 sec⁻¹) and similar in magnitude to kₑₜₚᵡ₃ (7.9 to 32 sec⁻¹). Rnl2 fidelity was enforced mainly at the level of step 2 catalysis, whereby 3′-OH base mispairs and oxoguanine, oxoadenine, or abasic lesions opposite the nick 3′-OH elicited severe decrements in the rate of 5′-adenylylation and relatively modest slowing of the rate of phosphodiester synthesis. The exception was the noncanonical A:oxoG base pair, which Rnl2 accepted as a correctly paired end for rapid sealing. These results underscore (1) how Rnl2 requires proper positioning of the 3′-terminal ribonucleoside at the nick for optimal 5′-adenylylation and (2) the potential for nick-sealing ligases to embed mutations during the repair of oxidative damage.

Keywords: 8-oxoguanine; RNA repair; abasic lesions; transient state kinetics

INTRODUCTION
Bacteriophage T4 RNA ligase 2 (Rnl2) is the exemplar of a distinct clade of ATP-dependent RNA ligases that repair 3′-OH/5′-PO₄ nicks in duplex RNA (Ho and Shuman 2002; Nandakumar et al. 2004, 2006). Rnl2 is also adept at sealing hybrid RNA:DNA substrates in which the 3′-OH strand at the nick is RNA and the 5′-PO₄ strand and template strand are DNA (Nandakumar and Shuman 2004). The Rnl2 enzyme family includes the RNA-editing ligases (RELs) of the protozoan parasites Trypanosoma and Leishmania (Blanc et al. 1999; Schnaufer et al. 2001; Palazzo et al. 2003; Deng et al. 2004). RELs are essential for kinetoplastid mRNA editing, which involves RNA-guided mRNA incision, RNA templated gap filling by UMP additions to form a duplex nick, and then nick sealing by the ligase. Thus, the RELs are promising drug targets for treatment of trypanosomiasis and leishmaniasis (Amaro et al. 2008; Durrant et al. 2010; Moshiri et al. 2011).

The ligation reaction of Rnl2 entails three nucleotidyl transfer steps akin to those of DNA ligases. In the first step, Rnl2 reacts with ATP in the absence of nucleic acid to form a covalent enzyme–(lysyl-Nζ)–AMP intermediate and release pyrophosphate. In step 2, Rnl2–AMP binds to the nicked duplex nucleic acid and transfers the adenylylate to the 5′-PO₄ terminus to form an adenylylated nicked intermediate. In step 3, Rnl2 directs the attack of the nick 3′-OH on the 5′-phosphoanhydride linkage, resulting in a repaired 3′–5′ phosphodiester and release of AMP.

T4 Rnl2 is the best-studied RNA ligase, and its properties reflect how the RELs are likely to function during mRNA editing (Nandakumar et al. 2006). T4 Rnl2 and RELs consist of two conserved domains. The structure of their N-terminal adenylyltransferase domains and the architecture of their AMP binding sites are nearly identical and are similar to the adenylyltransferase domains of DNA ligases (Deng et al. 2004; Ho et al. 2004). The adenylyltransferase domain of T4 Rnl2 is competent per se for catalysis of step 1 and step 3, but it is inactive in overall nick sealing and defective in binding to a nicked duplex substrate (Ho et al. 2004; Nandakumar and Shuman 2004, 2005). The Rnl2 C-terminal domain is required for step 2 of the ligation pathway. Crystal structures of Rnl2 have been captured at discrete steps along
the reaction pathway: the covalent Rnl2–AMP intermediate; Rnl2 bound to an adenylylated nicked duplex, in the state immediately following step 2; and Rnl2 at an adenylylated nick in a state poised for step 3 (Nandakumar et al. 2006). These structures disclosed a distinctive fold for the Rnl2 C-terminal domain, illuminated the stereochemistry of the nucleotidyl transfer steps, and revealed how remodeling of active-site contacts and conformational changes at the nick propel the ligation reaction forward. Extensive mutational analysis of Rnl2 has defined the amino acid functional groups required for each of the three chemical steps of strand joining (Ho and Shuman 2002; Yin et al. 2003; Nandakumar et al. 2004, 2006; Nandakumar and Shuman 2005).

The unique properties of Rnl2 have inspired novel practical applications. The ability of the Rnl2 N-terminal domain to ligate a pre-adenylylated polynucleotide to an RNA 3′-OH terminus has been harnessed for cloning and sequencing small RNAs (Pfeffer et al. 2005; Viollet et al. 2011). Full-length Rnl2 provides for highly efficient synthesis of RNAs containing site-specific modifications or labels by templated joining of multiple oligonucleotides. Indeed, Rnl2 is the best reagent available for templated joining of RNA strands (Nandakumar and Shuman 2004; Bullard and Bowater 2006). Here, our goal was to explore the kinetic mechanism of Rnl2, by implementing rapid mix-quench methods to analyze the transient-state kinetics of nick sealing by pre-formed Rnl2–adenylate. After deriving rate constants for the 5′-adenylylation (step 2) and phosphodiester synthesis (step 3) reactions, we proceeded to gauge the effects of base mispairs and base damage at the nick 3′-OH terminus on the kinetics of nick sealing. Our studies provide new insights to ligase fidelity and the potential for ligase-mediated mutagenesis during the repair of 3′-OH RNA nicks.

RESULTS AND DISCUSSION

Kinetic mechanism of nick sealing by Rnl2

We and others have applied rapid mix-quench methods to study the transient-state kinetics of DNA nick sealing by ATP-dependent DNA ligases (Lohman et al. 2011; Samai and Shuman 2011a,b, 2012; Taylor et al. 2011). Here we extended this approach to T4 Rnl2. The substrates we used were singly nicked duplexes composed of an 18-mer RNAOH strand and an 18-mer pDNA strand (labeled with 32P at the nick denoted by •). The 3′-OH strand is all RNA. The 3′ N:X base pair at the nick (highlighted in the shaded box) is variable. A product analysis by denaturing PAGE of a sealing reaction of Rnl2 at a 3′ C:I nick (where I is inosine) is shown. The times at which the reactions were quenched are specified above the lanes. The positions of the radiolabeled 18-mer 5′-PO4 strand (pNick), the 5′-adenylylated intermediate (AppNick), and the sealed product are indicated on the left. (B) The distributions of radiolabeled AppNick intermediate and sealed product during the reaction of Rnl2 at a 3′ C:I nick are plotted as a function of time. Each datum in the graph is the average of three separate experiments. The curve fits to the kinetic scheme are shown. (C) The step 2 and step 3 rate constants for sealing nicks with the indicated 3′ N:X pairs.

![Figure 1](image-url)
experiments. The kinetic profiles were fitted in MATLAB to a unidirectional scheme of 5′-PO₄ adenylylation (step 2: Rnl2-AMP • pNick → Rnl2 • AppNick) and subsequent phosphodiester synthesis (step 3: Rnl2 • AppNick → Rnl2 • AMP • RNApDNA), with allowance for reversible branching of Rnl2 • AppNick to an “out-of-pathway” state, as described in our prior studies of Chlorella virus DNA ligase (Samai and Shuman 2011a). The observed step 2 and step 3 rate constants (kstep2 and kstep3) for the series of correctly paired 3′:N:X nicks are shown in Figure 1C. (Control experiments with a 3′:2.6 sec U:A nick verified that the regime of 20-fold Rnl2-AMP excess sufficed to attain pseudo-first-order kinetics [i.e., the rate of the reaction was not responsive to a twofold increase or a twofold decrease in ligase concentration], signifying that initial binding of Rnl2-AMP to the nick was not rate-limiting.)

The salient theme from the kinetic analysis is that rates of step 2 and step 3 are rapid and similar in magnitude for the nicks with a correctly paired 3′-OH end. When the base pair at the nick 3′-OH terminus was U:A (mimicking the 3′-OH U:A nick terminus after the last uridylylate addition across from A in the guide RNA during mRNA editing), we derived rate constants of kstep2 = 14.3 sec⁻¹ and kstep3 = 15.6 sec⁻¹. The rates for the 3′:A:T substrate were similar (kstep2 = 17.9 sec⁻¹ and kstep3 = 18.8 sec⁻¹), as were those for the 3′:G:C nick (kstep2 = 9.5 sec⁻¹ and kstep3 = 14.8 sec⁻¹) and the 3′:C:I nick (kstep2 = 9.9 sec⁻¹ and kstep3 = 7.9 sec⁻¹). Only in the case of the 3′:G:C nick (kstep2 = 12.6 sec⁻¹ and kstep3 = 32 sec⁻¹) was the rate of step 3 more than twofold faster than step 2. These results indicate that Rnl2 has little specificity for the 3′-OH nucleobase or base pair when sealing a 3′-OH/5′-PO₄ nick.

It was instructive to compare the results for Rnl2 with the kinetic parameters for single-turnover sealing of DNA nicks by ATP-dependent DNA ligases. The observed step 2 and step 3 rate constants for Chlorella virus DNA ligase (ChVLig) were 2.4 sec⁻¹ and 25 sec⁻¹, respectively (Samai and Shuman 2011b, 2012). Thus, for ChVLig, the attack of the nick 3′-OH on AppDNA is an order of magnitude faster than the formation of AppDNA. Similar single-turnover kinetic studies were reported for human DNA ligase I (kstep2 = 2.6 sec⁻¹; kstep3 = 12 sec⁻¹) (Taylor et al. 2011) and T4 DNA ligase (kstep2 = 5.3 sec⁻¹; kstep3 = 38 sec⁻¹) (Lohman et al. 2011). It would appear that diverse ATP-dependent DNA ligases have similar kinetic properties with respect to steps 2 and 3, whereby step 2 is rate limiting. In contrast, Rnl2 catalysis of step 2 is faster than that of DNA ligases and is not disproportionate to the step 3 rate.

Rnl2 fidelity: effect of 3′-base mispairs on the kinetics of nick sealing

“Fidelity” refers to the capacity of a ligase to discriminate in the sealing of substrates containing paired versus mispaired bases flanking the nick. Different DNA ligases display distinct patterns of fidelity, with respect to how well the ligase discriminates and the hierarchy of which mispairs are or are not accepted by the ligase (Tomkinson et al. 1992; Husain et al. 1995; Shuman 1995; Luo et al. 1996; Sriskanda and Shuman 1998; Bhagwat et al. 1999; Tong et al. 2000; Nakatani et al. 2002; Lamarche et al. 2005; Wang et al. 2007a). The consistent theme is that DNA ligase fidelity is greatest on the 3′-OH side of the nick. High-fidelity DNA ligases have been used to develop detection/amplification methods for molecular diagnostics, including the detection of single-nucleotide polymorphisms and disease-associated mutations (Barany 1991; Li et al. 2005). Ligase-based detection entails the annealing of specific 3′-OH and 5′-PO₄ polynucleotide probes complementary to adjacent sequences in the gene of interest in a biological sample so that they form a duplex nick. For the method to work perfectly, the ligase must link the two adjacent probes only when the nucleotides at the nick are correctly base-paired. Because Rnl2 is naturally adept at ligating nicks templated by RNA, it could be a useful reagent for detecting RNA sequence variations based on similar principles. The caveat is that the fidelity of Rnl2 is uncharted territory. What is known is that the RNA sealing activity of Rnl2 is reduced drastically when the duplex substrate contains either a 1-nucleotide (nt) gap or unpaired 1-nt “flaps” at the 3′-OH or 5′-PO₄ end instead of a correctly paired nick (Nandakumar et al. 2004).

Here we evaluated the fidelity of Rnl2, focusing on the effects of 3′-OH base mispairs on the transient state kinetics of nick sealing. First, we gauged the effects of all 3′:N:purine mispairs, including those to inosine. (The inosine experiments are pertinent to whether Rnl2 can provide a ligase-detection assay for sites of A-to-I editing in biological RNA samples.) An exemplary kinetic profile for single-turnover sealing of a 3′:A:A mispaired nick is shown in Figure 2. Whereas the A:A mispair did not affect the yield of ligated product, it did slow the reaction, such that the endpoint was attained at 30 sec. The step 2 and step 3 rate constants for sealing the 3′:A:A mispair (0.22 sec⁻¹ and 1.9 sec⁻¹) were 65-fold and eightfold slower than the respective step 2 and 3 rates for a correctly paired 3′:U:A nick (Fig. 2). Thus, the 3′:A:A mispair exerted a more profound impact on the 5′-adenylylation reaction than on the subsequent step of phosphodiester synthesis.

A similar selective effect on step 2 rate versus step 3 was seen for the 3′:G:A (kstep2 = 0.34 sec⁻¹; kstep3 = 4.7 sec⁻¹) and 3′:G:A (kstep2 = 0.43 sec⁻¹; kstep3 = 2.0 sec⁻¹) mispairs.

The component rates of sealing of the 3′:U:G mispaired nick (kstep2 = 0.42 sec⁻¹; kstep3 = 7.0 sec⁻¹) were 30-fold and fivefold slower than the rates for the correctly paired 3′:G:C nick (Fig. 2), again highlighting selective impact of a 3′-perturbation on adenylylation of the 5′-PO₄. The selectivity was progressively less for the 3′:A:G mispair (kstep2 = 0.71 sec⁻¹; kstep3 = 4.1 sec⁻¹) and the 3′:G:G mispair (kstep2 = 0.53 sec⁻¹; kstep3 = 1.4 sec⁻¹), where the step 2 defects were of the same magnitude, but the step 3 defects were greater (Fig. 2). The 3′ inosine mispairs U:I (kstep2 = 0.86 sec⁻¹; kstep3 = 3.2 sec⁻¹), A:I (kstep2 = 1.5 sec⁻¹; kstep3 = 4.5 sec⁻¹) and G:I
effects and metabolism of oxoG in DNA have been studied intensively in light of its mutagenic properties, which ensue from the ability of oxoG in the syn nucleoside conformation to mispair with adenine (see Fig. 4). This pairing prompts DNA polymerases to embed A:oxoG mispairs, which can ultimately lead to G \rightarrow T transversions if not corrected. RNA is also sensitive to oxidative base damage. Indeed, the frequency of oxoG lesions in total RNA is reported to be higher than in total DNA, and several studies correlate elevated RNA oxoG levels with human neurodegenerative diseases (for review, see Wurtmann and Wolin 2009). Kinetoplastid mRNA editing occurs in the oxidative milieu of the mitochondrion, where the guide-RNA purine-tract template for U insertion might acquire 8-oxopurine lesions that could affect the efficiency and fidelity of RNA gap-filling and, in turn, influence the efficiency and outcome of the final ligation step executed by Rnl2-like RELs. Were polynucleotide ligases to seal mispairs at 8-oxopurines in the template strand, this would be promutagenic at the DNA level and might result in misediting of kinetoplastid mRNAs. There have been reports of oxopurine effects on T4 and human DNA ligases (Hashimoto et al. 2004; Zhao et al. 2007), but no studies of oxidative lesion effects on RNA joining.

To fill this knowledge gap, we determined the transient-state kinetics of T4 Rnl2 in sealing nicked duplexes with oxoG and oxoA bases in the template strand opposite the 3′-OH ribonucleotide at the nick. By testing all N:oxoG and

Effects of damaged base lesions on the kinetics of nick sealing by Rnl2

Oxidative damage to purine nucleobases in nucleic acids generates 8-oxoguanine (oxoG) and 8-oxoadenine (oxoA). The
FIGURE 4. Sealing of nicks with 3′ N:oxopurine lesions. (Top panel) The distributions of radiolabeled AppNick intermediate and sealed product during the reaction of Rnl2 at a 3′ A:oxoG nick are plotted versus time. Each datum is the average of three separate kinetic experiments. The curve fits are shown. (Inset) The chemical structure of the A:oxoG pair with oxoG in the syn conformation; (dashed lines) hydrogen-bonding contacts. (Bottom panel) The step 2 and step 3 rate constants for sealing nicks with the indicated 3′-OH N:oxoG and N:oxoA configurations.

N:oxoA pairs and then comparing the rate constants for sealing these damaged substrates to the rates for the corresponding undamaged N:G and N:A nicks, we aimed to answer the question of whether certain damaged mispair configurations are more or less prone to “unfaithful” sealing by Rnl2. The kinetic profile for sealing of the 3′ A:oxoG substrate is shown in Figure 4. The apparent step 2 and step 3 rate constants of 14.4 sec\(^{-1}\) and 17.8 sec\(^{-1}\) were typical of a correctly paired nick and were much faster than the rates of sealing the undamaged 3′ A:G nick (0.71 sec\(^{-1}\) and 4.1 sec\(^{-1}\)). Thus, Rnl2 accepts the 3′ A:oxoG mispair as a properly paired nick. Indeed, Rnl2 seals the A:oxoG nick as well as when the template oxoG is correctly paired with C (k\(_{\text{step2}} = 13.5 \text{ sec}^{-1}\); k\(_{\text{step3}} = 15.3 \text{ sec}^{-1}\)). In contrast, the U:oxoG (k\(_{\text{step2}} = 0.28 \text{ sec}^{-1}\); k\(_{\text{step3}} = 2.9 \text{ sec}^{-1}\)) and G:oxoG (k\(_{\text{step2}} = 0.43 \text{ sec}^{-1}\); k\(_{\text{step3}} = 2.1 \text{ sec}^{-1}\)) termini slowed the rates of step 2 and step 3 catalysis (Fig. 4) to a degree similar to that seen for the undamaged U:G and G:G mispairs (Fig. 2). We infer that (1) an 8-oxo atom in guanine is not deleterious per se, and (2) the consequence of oxoG in the template strand across from the nick 3′-OH is to enable the embedding of rAMP in lieu of rCMP at the repair junction. The rates of sealing of the 3′ N:oxoA substrates are shown in Figure 4. The paired U:oxoA nick was an effective substrate for Rnl2 (k\(_{\text{step2}} = 8.4 \text{ sec}^{-1}\); k\(_{\text{step3}} = 12.3 \text{ sec}^{-1}\)). The A:oxoA (k\(_{\text{step2}} = 0.88 \text{ sec}^{-1}\); k\(_{\text{step3}} = 2.4 \text{ sec}^{-1}\)) and G:oxoA (k\(_{\text{step2}} = 0.90 \text{ sec}^{-1}\); k\(_{\text{step3}} = 2.3 \text{ sec}^{-1}\)) mispairs were sealed at the same slowed rates as each other, and they displayed rate decrements in the range of those seen for the undamaged A:A and G:A mispairs. The C:oxoA mispair was the most deleterious configuration (k\(_{\text{step2}} = 0.27 \text{ sec}^{-1}\); k\(_{\text{step3}} = 0.99 \text{ sec}^{-1}\)), especially with respect to the step 3 rate. Thus, Rnl2 does not recognize any but U as the proper partner for pairing with oxoA in the template strand across from the nick 3′-OH.

Effects of abasic sites on the kinetics of nick sealing

Abasic sites formed during base excision repair are among the most common DNA lesions and represent a challenge to genome integrity, e.g., by causing polymerases to stall, slip, or misincorporate at an abasic site in the template strand. How ligases contend with abasic sites is an open question. Here we endeavored to answer it for Rnl2 via single-turnover kinetic analysis of the sealing of nicked duplexes with THF (tetrahydrofuran) abasic sites in the template strand opposite the 3′-OH ribonucleotide at the nick. All N:abasic configurations were tested. We envisioned that comparison of the step 2 and step 3 rate constants for N:abasic nicks with those of the correctly paired N:X substrates, and to N:X mispairs, would reveal, and potentially distinguish, the effects of having no base-pairing to template at the nick versus the effects of mispairing.

The kinetic profile for Rnl2 sealing of the 3′ A:abasic substrate in shown in Figure 5, along with the rate parameters for all four 3′ N:abasic nicks. The template abasic lesion was deleterious no matter the 3′-OH nucleotide across from it, especially with respect to the rate of step 2 catalysis. The order of preference by Rnl2 for the N base opposite the abasic template was A > G > C > U, with k\(_{\text{step2}}\) values spanning a 10-fold range from 0.87 sec\(^{-1}\) for Acabasic to 0.08 sec\(^{-1}\) for G:abasic.
U:abasic nicks (Fig. 5). The step 2 and step 3 rates for the A:C basic substrate were similar to those for the A:G, A:I, and A:C nicks, signifying that absence of a base across from the 3′-OH A had much the same effect as any of these several A:N mispairs. The effects of the G:abasic lesion (k_{step2} = 0.29 sec^{-1}; k_{step3} = 2.3 sec^{-1}) were similar to those of G:A, G:G, and G:I mispairs. In contrast, the U:abasic nick had a more detrimental effect on the step 2 rate (0.08 sec^{-1}) than did any of the U:N mispairs: U:G (0.42 sec^{-1}), U:I (0.86 sec^{-1}), U:C (0.43 sec^{-1}), and U:T (0.32 sec^{-1}). The step 2 defect of the C:abasic nick (0.15 sec^{-1}) was in the mid-range of those seen for C:N mispairs (0.054–0.34 sec^{-1}).

Conclusions and implications

Here we elucidated the kinetic mechanism of single-turnover nick sealing by T4 Rnl2–AMP and determined the effects of 3′-OH mispairs and base damage lesions on the rates of nick 5′-adenylylation and phosphodiester synthesis. The pertinent findings with respect to the sealing of perfectly paired nicks were that the rates of step 2 catalysis were rapid (9.5–17.9 sec^{-1}) and similar in magnitude to the step 3 rates (7.9–32 sec^{-1}). Rnl2 was kinetically sensitive to all 3′-OH base mispairs. The consistent and instructive results were that fidelity was manifest most strongly at the level of step 2 catalysis, whereby base mispairs elicited more severe decrements in the rate of 5′-adenylylation than phosphodiester synthesis. We surmise that Rnl2 is acutely dependent on proper positioning of the 3′-terminal ribonucleoside to attain optimal rates of 5′-adenylylation and that the mispair effects on step 2 rate reflect the degree to which the nick is structurally perturbed. This view is consistent with prior studies showing that (1) the majority of the atomic contacts of Rnl2 with the nicked duplex substrate are located on the 3′-OH side of the nick (Nandakumar et al. 2006); and (2) replacing the terminal 3′-OH at the nick with a 3′-H slows step 2 by a factor of 1000, even though the 3′-OH is not chemically transformed during the step 2 reaction (Nandakumar and Shuman 2005). Step 3 catalysis is also affected by modifications at the terminal sugar; to wit, replacing the 2′-OH at the nick with 2′-H slows step 3 by a factor of 25–35, with little effect on step 2 (Nandakumar and Shuman 2005).

Our evaluation of the effects of oxopurines and abasic sites in the template strand opposite the nick 3′-OH underscored the importance of a correctly positioned 3′-OH ribonucleotide for nick sealing by Rnl2. This was most evident in the “gain-of-function” elicited by a noncanonical 3′ A:oxoG pair (Fig. 4) that Rnl2 readily accepts for rapid sealing. Rnl2 displayed a hierarchy of mispair effects on the rates of nick sealing under single-turnover conditions, whereby C:C and A:A were the most detrimental. Thus, Rnl2 could, in principle, be a suitable reagent for RNA mutation detection. However, because, the yield of ligated product is not affected by 3′-OH mispairs with the template strand, successful implementation would require optimization of reaction times and conditions, for example, by performing the ligations under steady-state conditions (at substoichiometric Rnl2 concentrations in the presence of ATP) and exploring how variations in reaction components might enhance ligase fidelity (Bhagwat et al. 1999).

Despite the wealth of information concerning the structure and biochemical properties of T4 Rnl2 and its value as a molecular biology reagent, we remain ignorant of its biological role during T4 infection. It is noteworthy that phage T4 encodes two RNA ligases with quite different substrate specificities. RNA ligase 1 (Rnl1) was discovered and purified in 1972 based on its ability to seal single-stranded RNA ends (Silber et al. 1972). Rnl1 quickly became an essential reagent for RNA 3′-radiolabeling (England and Uhlenbeck 1978), notwithstanding that its biological function remained obscure until 1987, when it was shown that Rnl1 collaborates with T4 polynucleotide kinase to repair a break in the antibacterial loop of tRNA^{Lys} inflicted by the Escherichia coli antiviral ribotoxin PrrC (Amitsur et al. 1987). It was subsequently demonstrated that T4 Rnl1 has high inherent specificity for sealing breaks in the tRNA anticodon loop (Wang et al. 2007b). In contrast, T4 Rnl2 is most adept at sealing nicked duplex substrates in which the 3′-OH strand is RNA and, as shown here, the nick 3′-OH end is correctly paired. Given the strong structural and biochemical conservation of Rnl2 and RELs, it is reasonable to invoke a role for Rnl2 in the repair of breaks in RNA duplexes, generated perhaps as part of an RNA-damaging host response to virus infection (analogous to tRNA restriction by PrrC). The damage might be targeted to a pre-existing stable duplex segment of a bacterial RNA or entail guide-RNA mediated incision of a single-stranded segment of a viral RNA, akin to guided RNA slicing by Argonaute proteins or CRISPR RNA-guided targeting of foreign nucleic acids, including RNA targets (Hale et al. 2009, 2012). We are attracted to the idea that Rnl2 enzymes encoded by T4 and other DNA viruses are purposed to antagonize RNA-targeting CRISPR systems that provide acquired host immunity to infection. Also, the ability of Rnl2 to efficiently and rapidly seal RNA nicks when the template strand is DNA might come into play in repairing RNA damage inflicted by bacterial Argonautes that use DNA guides to direct endonucleolytic cleavage of RNA targets (Yuan et al. 2005; Wang et al. 2008).

MATERIALS AND METHODS

T4 Rnl2–AMP

His_{10}Rnl2 was produced in E. coli BL21(DE3) and purified by Ni-agarose affinity chromatography (Nandakumar et al. 2004). The protein concentration was determined with the Bio-Rad dye reagent using bovine serum albumin as the standard. The recombinant Rnl2 preparation comprises a mixture of ligase apoenzyme and enzyme–adenylate intermediate. The concentration of Rnl2–AMP was determined by measuring ATP-independent sealing of a singly nicked 36-bp substrate (with a 3′-OH C,G pair at the nick) as a function of
input Rnl2, whereby there is a 1:1 correspondence between molar yield of ligated 36-mer and the molar amount of catalytically active Rnl2–AMP in the reaction mixture. From the slope of the titration curve in the linear range of Rnl2 dependence, we determined that 45% of the enzyme was pre-adenylated and active in nick sealing.

Nicked duplex substrates

RNA oligonucleotides were purchased from Dharmacon and deprotected as instructed by the vendor. Unmodified DNA oligonucleotides and DNAs containing single inosine, 8-oxoguanine, 8-oxoadenine, or THF abasic nucleoside modifications were purchased from Eurofins MWG Operon. The 18-mer DNA strand was 5′-32P-labeled using T4 polynucleotide kinase and [γ-32P]ATP and then purified by electrophoresis through a nondenaturing 18% polyacrylamide gel. To form the nicked substrates, mixtures of 18-mer 5′-PO4 strand, 18-mer 3′-OH RNA strand, and 36-mer complementary template strand were annealed at a molar ratio of 1:5:2 in 200 mM NaCl, 10 mM Tris-HCl (pH 6.8), and 1 mM EDTA by serial incubation for 10 min at 65°C, 15 min at 37°C, and 30 min at 22°C. The substrates were stored at −20°C and thawed on ice immediately prior to use.

Kinetics of single-turnover nick sealing

A Kintek RQF3 rapid chemical quench apparatus was used to assay the reaction of a 32P-labeled nicked duplex with a 20-fold molar excess of pre-formed Rnl2–AMP at 22°C in the absence of added ATP. The rapid kinetic measurements were initiated by mixing two solutions (20 μL each) of 50 mM Tris acetate (pH 6.5), 5 mM DTT, 10 mM MgCl2, and 40 mM NaCl, containing 0.2 μM nicked duplex substrate and 4 μM Rnl2–AMP, respectively. The reactions were quenched by rapid mixing with 110 μL of 90% formamide, 40 mM EDTA. The products were analyzed by urea-PAGE, and the distribution of 32P-labeled nucleic acids (as sealed 36-mer RNAPDNA product, 18-mer AppDNA intermediate, and residual 18-mer pDNA substrate) was quantified by scanning the gel with a Fuji BAS2500 imager. Each experiment was repeated in triplicate. The distributions of AppDNA intermediate and sealed product were plotted as a function of reaction time. As noted previously for Chlorella virus DNA ligase (Samai and Shuman 2011a), our initial modeling of the data in Prism to a simple sequential reaction pathway described by two rate constants—for 5′-adenylation (step 2) and phosphodiester synthesis (step 3)—yielded poor fits to the experimental kinetic profiles for the 5′-adenylated intermediate, the level of which typically declined more slowly than could be simulated by the simple sequential pathway. To better model the experimental profiles for AppDNA and sealed product, we used the kinetic scheme described for Chlorella virus DNA ligase (Samai and Shuman 2011a), which includes a reversible transition of the step 2 product from an active “in pathway” state to an inactive “out of pathway” state. Simulations and curve fitting to the experimental data to this model were performed in MATLAB by inputting an initial kstep value (obtained by plotting the sum of AppDNA plus sealed RNAPDNA as a function of time and fitting the data to a single exponential in Prism) and stipulating that all other rates be greater than zero. Exemplary curve fits are shown in Figures 1–5. The step 2 and step 3 rate constants are compiled in the figures; the error values represent one standard deviation.

ACKNOWLEDGMENTS

This work was supported by NIH grant GM63611. S.S. is an American Cancer Society Research Professor. We thank Paul Smith for guidance with the kinetic modeling.

Received July 31, 2013; accepted September 25, 2013.

REFERENCES

Amaro RE, Schnaufer A, Interthal H, Hol W, Stuart KD, McCammon JA. 2008. Discovery of drug-like inhibitors of an essential RNA-editing ligase in Trypanosoma brucei. Proc Natl Acad Sci 105: 17278–17283.

Amitmur R, Levitz R, Kaufman G. 1987. Bacteriophage T4 anticondon nuclease, polynucleotide kinase, and RNA ligase reprocess the host lysine tRNA. EMBO J 6: 2499–2503.

Barany F. 1991. Genetic disease detection and DNA amplification using cloned thermostable ligase. Proc Natl Acad Sci 88: 189–193.

Bhagwat AA, Sanderson RJ, Lindahl T. 1999. Delayed DNA joining at 3′ mismatches by human DNA ligases. Nucleic Acids Res 27: 4028–4033.

Blanc V, Alfonzo JD, Aphasihev R, Simpson L. 1999. The mitochondrial RNA ligase from Leishmania tarentolae can join RNA molecules bridged by a complementary RNA. J Biol Chem 274: 24289–24296.

Bullard DR, Bowater RP. 2006. Direct comparison of nick-joining activity of the nuclease ligid from bacteriophage T4. Biochem J 398: 135–144.

Deng J, Schnaufer A, Salavati R, Stuart KD, Hol WG. 2004. High resolution crystal structure of a key editosome enzyme from Trypanosoma brucei: RNA editing ligase 1. J Mol Biol 343: 601–613.

Durrant JD, Hall L, Swift RV, Landon M, Schnaufer A, Amaro RE. 2010. Novel naphthalene-based inhibitors of T4 bacteriophage RNA editing ligase 1. PLoS Negl Trop Dis 4: e803.

England TE, Uhlenbeck OC. 1978. 3′-Terminal labelling of RNA with T4 RNA ligase. Nature 275: 560–561.

Hale CR, Zhao P, Olson P, Suf MO, Graevelyn BR, Wells L, Terns RM, Terns MP. 2009. RNA-guided RNA cleavage by a CRISPR RNA–Cas protein complex. Cell 139: 945–956.

Hale CR, Majumdar S, Elmore J, Pfister N, Compton M, Olson S, Resch AM, Glover CV, Graevelyn BR, Terns RM, et al. 2012. Essential features and rational design of CRISPR RNAs that function with the Cas RAMP module complex to cleave RNAs. Mol Cell 45: 292–302.

Hashimoto K, Tominaga Y, Nakabeppu Y, Moriya I. 2004. Futile short-patch DNA base excision repair of adenine 8-oxoguanine mispair. Nucleic Acids Res 32: 5928–5934.

Ho CK, Shuman S. 2002. Bacteriophage T4 RNA ligase 2 (gp24.1) exemplifies a family of RNA ligases found in all phylogenetic domains. Proc Natl Acad Sci 99: 12709–12714.

Ho CK, Wang LK, Lima CD, Shuman S. 2004. Structure and mechanism of RNA ligase. Structure 12: 327–339.

Husain I, Tomkinson AE, Burkhart WA, Moyer MB, Ramos W, Mackey ZB, Besterman JM, Chen J. 1995. Purification and characterization of DNA ligase III from bovine testes: Homology with DNA ligase I. J Biol Chem 270: 17278–17280.

Lamarche BJ, Showalter AK, Tsai MD. 2005. An error-prone viral DNA ligase. Biochemistry 44: 8408–8417.

Li J, Chu X, Liu Y, Jiang H, He Z, Zhang Z, Shen G, Yu RQ. 2005. A colorimetric method for point mutation detection using high-fidelity DNA ligase. Nucleic Acids Res 33: e168.

Lohnan GS, Chen L, Evans TC. 2011. Kinetic characterization of single strand break ligation in duplex DNA by T4 DNA ligase. J Biol Chem 286: 44187–44196.

Luo J, Bergstrom DE, Barany F. 1996. Improving the fidelity of Thermus thermophilus DNA ligase. Nucleic Acids Res 24: 3071–3078.

Moshiri H, Acoca S, Kala S, Najafabadi HS, Hogue H, Purisma E, Salavati R. 2011. Naphthalene-based RNA editing inhibitor blocks
RNA editing activities and editosome assembly in *Trypanosoma brucei*. *J Biol Chem* **286**: 14178–14189.

Nakatani M, Ezaki S, Atomi H, Imanaka T. 2002. Substrate recognition and fidelity of strand joining by an archaeal DNA ligase. *Eur J Biochem* **269**: 650–656.

Nandakumar J, Shuman S. 2004. How an RNA ligase discriminates RNA versus DNA damage. *Mol Cell* **16**: 211–221.

Nandakumar J, Shuman S. 2005. Dual mechanisms whereby a broken RNA end assists the catalysis of its repair by T4 RNA ligase 2. *J Biol Chem* **280**: 23484–23489.

Nandakumar J, Ho CK, Lima CD, Shuman S. 2004. RNA substrate specificity and structure-guided mutational analysis of bacteriophage T4 RNA ligase 2. *J Biol Chem* **279**: 31337–31347.

Nandakumar J, Shuman S, Lima CD. 2006. RNA ligase structures reveal the basis for RNA specificity and conformational changes that drive ligation forward. *Cell* **127**: 71–84.

Palazzo SS, Panigrahi AK, Igo RP, Salavati R, Stuart K. 2003. Kinetoplastid RNA editing ligases: Complex association, characterization, and substrate requirements. *Mol Biochem Parasitol* **127**: 161–167.

Pfeffer S, Sewer A, Lagos-Quintana M, Sheridan R, Sander C, Grässer FA, van Dyck LF, Ho CK, Shuman S, Chien M, et al. 2005. Identification of microRNAs of the herpesvirus family. *Nat Methods* **2**: 269–276.

Samai P, Shuman S. 2011b. Structure–function analysis of the OB and latch domains of *Chlorella* virus DNA ligase. *J Biol Chem* **286**: 13314–13326.

Samai P, Shuman S. 2011a. Functional dissection of the DNA interface of the nucleotidyl transferase domain of *Chlorella* virus DNA ligase. *J Biol Chem* **286**: 22642–22652.

Samai P, Shuman S. 2012. Kinetic analysis of DNA strand joining by *Chlorella* virus DNA ligase and the role of nucleotidyltransferase motif VI in ligase adenylylation. *J Biol Chem* **287**: 28609–28618.

Schnauper A, Panigrahi AK, Panicucci B, Igo RP, Salavati R, Stuart K. 2001. An RNA ligase essential for RNA editing and survival of the bloodstream form of *Trypanosoma brucei*. *Science* **291**: 2159–2162.

Shuman S. 1995. Vaccinia virus DNA ligase: Specificity, fidelity, and inhibition. *Biochemistry* **34**: 16138–16147.

Silber R, Malathi VG, Hurwitz J. 1972. Purification and properties of bacteriophage T4-induced RNA ligase. *Proc Natl Acad Sci* **69**: 3009–3013.

Sriskanda V, Shuman S. 1998. Specificity and fidelity of strand joining by *Chlorella* virus DNA ligase. *Nucleic Acids Res* **26**: 3536–3541.

Taylor MR, Conrad JA, Wahl D, O’Brien PJ. 2011. Kinetic mechanism of human DNA ligase I reveals magnesium-dependent changes in the rate-limiting step that compromise ligation efficiency. *J Biol Chem* **286**: 23054–23062.

Tomkinson AE, Tappe NJ, Friedberg EC. 1992. DNA ligase I from *Saccharomyces cerevisiae*: Physical and biochemical characterization of the CDC9 gene product. *Biochemistry* **31**: 11762–11771.

Tong J, Barany F, Cao W. 2000. Ligation reaction specificities of an NAD+−dependent DNA ligase from the hyperthermophile *Aquifex aeolicus*. *Nucleic Acids Res* **28**: 1447–1454.

Violet S, Fuchs RT, Munafo DB, Zhaung F, Robb G. 2011. T4 RNA ligase 2 truncated active site mutants: Improved tools for RNA analysis. *BMC Biotechnol* **11**: 72.

Wang Y, Lamarche BJ, Tsai MD. 2007a. Human DNA ligase IV and the ligase IV/XRCC4 complex: Analysis of nick ligation fidelity. *Biochemistry* **46**: 4962–4976.

Wang LK, Nandakumar J, Schwer B, Shuman S. 2007b. The C-terminal domain of T4 RNA ligase 1 confers specificity for tRNA repair. RNA **13**: 1235–1244.

Wang Y, Juranké S, Li H, Sheng G, Tuschi T, Patel DJ. 2008. Structure of an Argonaute silencing complex with a seed-containing guide DNA and target RNA duplex. *Nature* **456**: 921–926.

Wurttmann EJ, Wolin SL. 2009. RNA under attack: Cellular handling of RNA damage. *Crit Rev Biochem Mol Biol* **44**: 34–49.

Yin S, Ho CK, Shuman S. 2003. Structure–function analysis of T4 RNA ligase 2. *J Biol Chem* **278**: 17601–17608.

Yuan YR, Pei Y, Ma JB, Kuryavyi V, Zhadina M, Meister G, Chen HY, Yuan W, Zhao X, Muller JG, Halasyam M, David SS, Burrows CJ. 2007. In vitro ligation of oligodeoxynucleotide containing C8-oxidized purine lesions using bacteriophage T4 DNA ligase. *Biochemistry* **46**: 3734–3744.