Effects of food type and abundance on begging and sharing in Asian small-clawed otters (Aonyx cinereus)

Madison Bowden-Parry Corresp., 1, Erik Postma 1, Neeltje Boogert 1

1 Department of Biosciences, University of Exeter, Penryn, Cornwall, United Kingdom

Corresponding Author: Madison Bowden-Parry
Email address: madisonbowdenparry@gmail.com

Begging for food, a conspicuous solicitation display, is common in a variety of taxa, and it has received extensive research attention in a parent-offspring context. Both theoretical models and empirical evidence suggest that offspring begging can be an honest signal of hunger or a mediator of competition between siblings. At a behavioural mechanistic level, begging for food can be a form of harassment aimed at persuading those in possession of food to share. Food sharing, defined as the transfer of a defendable food item from one individual to another, can vary considerably between species, age-classes and food type and abundance. We investigated the determinants of begging and food-sharing behaviours in Asian small-clawed otters (Aonyx cinereus), a group-living species that commonly exhibits begging in captivity. We presented two captive otter populations with three food types that varied in exploitation complexity, in three different abundances. We predicted that begging rates would be highest when food was in lowest abundance and hardest to exploit, and that increased begging would lead to increased food sharing. We found that, over time, increased begging rates were indeed correlated with increased food transfers, but neither food type complexity nor abundance affected begging or sharing rates. However, age category was significantly associated with begging and food sharing rates: juvenile otters begged more and shared less than adult otters. The results from this first experimental study on begging and food sharing within the Mustelid family begin to reveal some of the drivers of these behaviours.
Effects of food type and abundance on begging and sharing in Asian small-clawed otters (*Aonyx cinereus*)

Madison Bowden-Parry¹, Erik Postma¹ and Neeltje J. Boogert¹

¹ Department of Biosciences, University of Exeter, Penryn, Cornwall, United Kingdom

Corresponding Author:

Madison Bowden-Parry¹

66 Radyr Avenue, Mayals, Swansea, Wales SA3 5DT

Email address: madisonbowdenparry@gmail.com
Abstract

Begging for food, a conspicuous solicitation display, is common in a variety of taxa, and it has received extensive research attention in a parent-offspring context. Both theoretical models and empirical evidence suggest that offspring begging can be an honest signal of hunger or a mediator of competition between siblings. At a behavioural mechanistic level, begging for food can be a form of harassment aimed at persuading those in possession of food to share. Food sharing, defined as the transfer of a defendable food item from one individual to another, can vary considerably between species, age-classes and food type and abundance. We investigated the determinants of begging and food-sharing behaviours in Asian small-clawed otters (*Aonyx cinereus*), a group-living species that commonly exhibits begging in captivity. We presented two captive otter populations with three food types that varied in exploitation complexity, in three different abundances. We predicted that begging rates would be highest when food was in lowest abundance and hardest to exploit, and that increased begging would lead to increased food sharing. We found that, over time, increased begging rates were indeed correlated with increased food transfers, but neither food type complexity nor abundance affected begging or sharing rates. However, age category was significantly associated with begging and food sharing rates: juvenile otters begged more and shared less than adult otters. The results from this first experimental study on begging and food sharing within the Mustelid family begin to reveal some of the drivers of these behaviours.
Introduction

Begging for food, a conspicuous display that can involve both physical and vocal solicitation behaviours (Kilner and Johnstone 1997; Wright and Leonard 2007), is widespread across taxa (Bayern et al. 2007; Carter and Wilkinson 2013; Gilby 2006; Goodall 1986; Hauser 1992; Hauser and Marler 1993; Silk et al. 2013) and has received extensive research attention in a parent-offspring context (Trivers 1974; Royle et al. 2002). Theoretical models of begging have focussed on the nutritional demands of offspring and food solicitation interactions with their parents (Grafen 1990; Zahavi 1975). These models, and empirical evidence, support two main explanations for begging: an ‘honest signal of hunger’ (Bowers et al. 2019; Kilner and Johnstone 1997; Godfray 1991,1995; Mock and Parker 1997), which is most commonly tested in young birds (e.g., Capodeanu-Nägler et al. 2017; Christe et al. 1996; Karasov and Wright 2002), and competition between siblings for the acquisition of food from parents, known as the ‘sibling scramble hypothesis’ (Harper 1986; Stamps et al. 1978; Macnair and Parker 1979; Parker 1985).

As begging and the resultant food sharing are typically documented to occur between kin, these interactions can be explained by inclusive fitness benefits (Hamilton 1964).

Although food sharing is common between relatives, it also occurs between unrelated conspecifics, mates, adults and non-biological offspring (de Kort et al. 2006; Feistner and McGrew 1989; Jaeggi et al. 2008). Food sharing is commonly observed in nonhuman animals, including primates (de Waal 2000; Jaeggi and Van Schaik 2011; Silk et al. 2013), corvids (termed ‘allofeeding’, de Kort et al. 2006; Heinrich 1988; Stacey and Koenig 1990; Thiollay 1991), leaf-nosed bats (vampire bats: Carter and Wilkinson 2013; Denault and McFarlane 1995; Wilkinson 1984), oceanic dolphins (Fedorowicz et al. 2003; Hoelzel 1991; Wright et al. 2016), rodents (spiny mice: Porter, Moore and White 1981) and big cats (Cooper 1991). It is widely defined as the transfer of a defendable food item from one food-motivated individual to another,
which in many circumstances is an unresisted transfer (de Kort et al. 2006; Feistner and McGrew 1989; Hadjichrysanthou and Broom 2012). However, the exact definition of food sharing appears to depend on species and context (Hadjichrysanthou and Broom 2012).

While food sharing between kin is easily explained through inclusive fitness benefits, at a mechanistic level food sharing may be motivated by harassment avoidance (Carter and Wilkinson 2013; Gilby 2006; Jones 1984; Stevens and Stephens 2002; Wrangham 1975; Wright and Leonard 2007). The harassment avoidance (or ‘sharing-under-pressure’) hypothesis states that persistent begging might coerce conspecifics into sharing their food. Similar to the ‘tolerated theft’ model of food sharing in humans (Blurton Jones 1984, 1987; Isaac 1978), sharing can provide benefits to food owners. By sharing, food owners can reduce further harassment by beggars, and thus gain the benefits of dismissing the recipient and eating the remainder of their food in peace (Jones 1984; de Kort et al. 2006; Stevens and Stephens 2002; Stevens 2004; Wrangham 1975). However, unlike tolerated theft, the harassment avoidance hypothesis in not contingent upon hunger asymmetry (Blurton Jones Jones 1984, 1987; Isaac 1978) and predicts that (1) harassment is costly to the food owner, (2) harassment elicits food sharing and (3) food sharing reduces harassment (Stevens and Stephens 2002). In this study, we tested whether begging and sharing frequencies were correlated within two family groups.

Both begging and food sharing frequencies vary considerably between species, age groups and contexts (Boesch et al. 2002; Hadjichrysanthou and Broom 2012). Factors such as food availability and food type may explain some of this variation (Elgar 1986). For example, food availability has been shown to influence offspring begging frequencies in various bird species (Quillfeldt and Masello 2004; Price and Ydenberg 1995; Smith and Montgomerie 1991), with food limitation increasing overall begging activity and intensity (Budden and Wright 2001;
Food type can also influence begging frequency: increased begging for novel food types has been observed in several primate species, such as chimpanzees (Nishida and Turner 1996), marmosets (Brown et al. 2005), lion tamarins (Price and Fiestner 1993) and cotton-top tamarins (Feistner and Chamove 1986), although this is not always the case (bonobo; Kuroda 1984). Studies of how both food abundance and food type influence begging and food sharing frequencies in non-primate mammals remain rare. Here, we tested whether some of the variation in begging and sharing frequencies may be explained by food abundance and food type in two family groups of otters (de Waal 2000).

Food sharing by adults with dependent offspring is common among various primate species (Feistner and Price 1990, 2000; Hiraiwa-Hasegawa 1990; Jaeggi et al. 2008; Nishida and Turner 1996; Rapaport and Ruiz-Miranda 2002; Ruiz-Miranda et al. 1999; Silk 1978; Ueno and Matsuzawa 2004). In some species of Callitrichids (Feistner and Price 1990; 2000; Rapaport and Ruiz-Miranda 2002; Ruiz-Miranda et al. 1999), food transfers mostly involve ‘difficult-to-process’ foods, are controlled by adults, and peak during weaning. However, in chimpanzees, most food transfers of difficult-to-process foods occur before weaning (Hiraiwa-Hasegawa 1990; Nishida and Turner 1996; Silk 1978). In some cases, such food transfers are begged for and controlled by juveniles rather than adults (Jaeggi et al. 2008; Nishida and Turner 1996; Ueno and Matsuzawa 2004). In orangutans, offspring solicitation is dependent upon foraging skill level, with more competent offspring soliciting fewer food items than dependent offspring (Jaeggi et al. 2008). In this study, we tested whether otter age classes differed in their foraging efficiency and begging and sharing frequencies.

We studied the gregarious Asian small-clawed otter, the smallest of all 13 extant species within the Mustelid family (Aziz 2018; Foster-Turley 1992; Hussain et al. 2011; Wayre 1978).
This species is a suitable model system to examine drivers of food sharing behaviour, because they form large family romps (ca. 12 individuals), exhibit extreme begging behaviour in captivity (i.e., incessant, loud vocalisations towards zookeepers and each other prior to and during provisioning times) that can be quantified to test for harassment avoidance, and they are abundant in zoos and wildlife centres. Asian small-clawed otters feed on both fish and invertebrates in the wild (Chanin 1985; Mason and Macdonald 1987), are independent foragers at ~13 months old (Watt 1991; 1993) and have a very high metabolic rate (Marshall et al. 1988). Some individuals will consume 20-25% of their body mass in food per day (Costa and Kooyman 1982; Kenyon 1969; Morrison et al. 1974), suggesting that the energetic cost of food sharing, as well as begging, might be relatively high in this species.

We presented two captive family groups with three food types that varied in the complexity of their prey defences (inferred by exploitation latency) in three different abundances. First, we tested the prediction from the harassment avoidance hypothesis (Stevens and Stephens 2002; Wrangham 1975) that, assuming harassment was costly to food owners, otters would show more food sharing the more begging they received. We also predicted that, given their high metabolic rate and nutritional needs, otters would beg more for food when food abundance was low, and when food was difficult to exploit. However, in these circumstances (i.e., of low food abundance), one might expect less sharing as food owners might be less responsive to the begging of group mates when their own nutritional needs take priority. We also predicted that juveniles would harass (i.e., beg) more and share less than adults, given that juvenile animals typically show less efficient foraging behaviour, and are nutritionally dependent on adults (Bolnick et al. 2003; Capodeanu-Nägler et al. 2017).
Materials & Methods

Ethical statement

The University of Exeter departmental ethics committee (2018/2334), Newquay Zoo and the Tamar Otter and Wildlife Centre approved all experiments in this study.

Subjects

This study was conducted on two groups of otter, all of which were captive-born and raised. The group kept at the Tamar Otter and Wildlife Centre in Launceston consisted of 12 related subjects including 6 adults and 6 juveniles, while the group kept at Newquay Zoo in Newquay consisted of 8 related subjects, of which 3 were adults and 5 juveniles. All juveniles were 6 to 12 months old (see Table S1). Otters were identified by distinctive markings on their face and body. The groups differed in their regular feeding regime; at Tamar, food was provided at variable times of day and their diet (standardised in weight) consisted of various food items, including whiting, clams, oysters and fish-based biscuits. Occasionally the keepers would introduce chicks, helmeted guinea fowl and queen scallops. The feeding regime at Newquay followed a strict schedule, with the group being fed at 9 AM, 12 AM, 4 PM and 6 PM, and their diet consisted of chicks, mice, minced beef meatballs and hard-boiled eggs. The observations and experiments described below took place from March to May 2018.

Experimental food presentations

To investigate how food sharing and harassment would vary with food-extraction complexity and food abundance, we conducted 9 experimental food presentations per group. The two otter groups were tested within their normal zoo enclosures. Prior to experimental trials, otters in Newquay were fed ~14-20 chicks for their 9 AM feed, and 8 mice, 6 hard-boiled eggs and 8 minced beef balls for their midday feed. The Tamar group varied in their feeding times throughout the day.
However, they were always fed whiting and fish biscuits at midday prior to the experimental treatments. The experimental treatments took place at least one hour after the otter’s regular feeding times and were undertaken between 12-4 PM. This limited any food-driven anticipatory behaviour and fullness from a previous feed.

We varied food complexity by presenting three natural prey types: rainbow trout (*Oncorhynchus mykiss*), shore crab (*Carcinus maenas*) and blue mussels (*Mytilus edulis*), which we presented on consecutive days in a randomised order. Shore crabs averaged 8cm in diameter and the rainbow trout were cut into 5cm-width pieces. These food types were novel to the Newquay group and represented a non-regular prey type to the Tamar group. The hard shells of shore crabs and mussels required dexterous manipulation by otters to exploit, whereas the soft flesh and lack of protective shell made trout an easily exploitable food type. We inferred food type complexity by the amount of time otters spent to exploit each food item, measured for five adults and five juveniles in each otter group (i.e., n=20 observations per food type) from first touch to consumption of the piece of food. This confirmed that trout was the easiest (i.e., fastest) to exploit (average latency +/- SD (seconds): 80.83 +/- 32.58 s), followed by mussels (112.75 +/- 45.46 s), with crabs taking the longest to consume (224.96 +/- 93.55 s). The abundance of each prey type was manipulated to be either half as many food items as there were otters (low), the same number of food items as there were otters (medium) or double the number of food items as there were otters (high).

Each otter group experienced one trial per day, starting with prey of medium complexity, then hard, then easy to exploit, in either low, medium or high abundances (in a randomised order) until all 9 trials (representing all possible combinations of food type and abundance) were completed. Due to only two otter families being studied, food type was not randomised across
groups to avoid confounding group ID and food type order. After conducting the three different abundance trials per food type, there was an inter-trial interval of 2-5 days. This interval was implemented to reduce anticipatory behaviour towards the trials, which could have influenced the otters’ behaviours. For each trial, the zookeepers would close the otters inside their pen whilst we placed the food at random locations within the same 3 x 3 m vicinity inside the otter enclosure for each treatment. Once the otters were released, we filmed the group until all food items were consumed. We filmed all trials with three video cameras placed such that they covered the whole enclosure area.

Video analyses

We scored all videos of experimental food presentations using the definitions adapted from de Waal (1997). A ‘beggar’ was defined as any individual that approached within an ‘otter’s arm’s length’ of the ‘food owner’, while making vocal solicitations.

Food sharing behaviours

(i) collect near: beggar retrieves food item from near owner’s arms, or within an otter’s arm length of owner. There is no retaliation from the food owner when food item is taken;

(ii) relaxed claim: beggar takes part of the food, or the whole food item that the food owner possesses (i.e., in the owner’s paws) without resistance from owner;

(iii) food giving: owner facilitates transfer of food by actively moving it toward beggar.

Harassment behaviours

(iii) passive begging: beggar sits near and stares at the food owner (no physical contact), within ca. ≤1m of food owner. The beggar will often be in the owner’s view, but the beggar can sit and
stare from behind, commonly whilst making long, repetitive vocalisations directed at the food owner.

(iv) active begging: beggar physically contacts owner or food. The owner has full view of the beggar, and the beggar’s paws are either on the food item itself, or on the food owner’s paws. Active begging can be distinguished from an attack or other aggressive interactions as the latter involved lunges with or without physical contact (e.g., grabbing the other’s side of their neck with their teeth). Aggressive interactions or attacks were exceedingly rare and usually lasted no longer than 10 seconds.

We scored the number of sharing and harassment behaviours for each individual in each food presentation trial video. The food sharing behavioural category ‘collect near’ (e.g., collecting food scraps or broken off pieces within an otter’s arm’s length of a feeding individual) was included in the analysis as a voluntary food transfer; in each instance when an otter was successful, and collected a piece of food near the owner, there was clear possession of food by the owner. On occasions when ‘collect near’ was unsuccessful, i.e., the approaching otter tried but failed to collect a nearby piece of food, the food owner responded by either collecting the nearby piece themselves and turning away, turning their head to stare at the approaching otter, or engaging in a lunge towards the approaching otter. This suggested that, by reacting to the approaching otter’s presence, the food owner regarded the nearby food item as within their possession.

This categorisation of food sharing and begging behaviours is commonly used to examine food interactions and strategies (Boesch and Boesch 1989; de Waal 1989, 1997a, b; Stevens 2004; de Waal 1993). We also recorded any harassment behaviours that resulted in food transfers and the IDs of the initiator and receiver of food transfers. Coding of the videos started when the first piece
of food was touched by an individual and ended when all food items were eaten or after 45 minutes of food exposure.

Statistical analyses

All analyses of begging and sharing behaviours were performed in R 3.6.1 (R Development Core Team 2019) using generalised linear mixed-effect models (GLMMs) implemented in the lme4 package (Bates et al. 2014). The total number of active and passive begging occurrences (the most common type of harassment behaviours observed), and the sum of all types of voluntary sharing behaviours (i.e., collect near, relaxed claim and food giving), per otter and trial duration were modelled assuming a Poisson error distribution and using a log link function. Trial duration measured in minutes was log-transformed and included as an offset term (offset(log(trialduration/60))) to account for the variable lengths of each food presentation trial, effectively transforming the number of begging and sharing events into a begging and sharing rate (the number of events per hour). To account for overdispersion, we included an observation-level random effect (OLRE) (Harrison 2014). Furthermore, to control for repeated measures of the same 20 individuals, and for the fact that we recorded the behaviour of all individuals within each of 18 experimental trials (9 per zoo), we included both otter ID and trial number as random effects in our model structure. To test for the overall significance of our key predictors, we compared the full models with respective null models using a Likelihood ratio test (hereafter LRT), using the LRT R function “drop1” with argument ‘test’ set to ‘Chi’ (Bates et al. 2014; Dobson 2002).

Firstly, to test if otters were more likely to share if they received more begging, which would support the harassment avoidance hypothesis, we constructed a GLMM with Poisson error distribution using the total number of ‘food transfers’ (i.e., both voluntarily and following harassment) for each food presentation trial for each otter as our response variable. We fitted the
total number of instances of ‘begging received’ per otter per trial, and the offset for trial duration, as our only fixed effects. We included the observation-level random effect as well as otter ID and trial as random effects.

Before testing whether food type, food abundance, otter sex and age affected begging frequency, we first checked whether juvenile otters were less efficient foragers than adults, and whether any difference in foraging efficiency between age categories increased with food type complexity. Such age differences in foraging efficiency might then explain age differences in begging frequencies. We analysed the five (randomly selected) observations of food exploitation latency per otter age category per food type per zoo with a linear mixed-effects model (LMM). The response variable was the log-transformed latency to exploit the food type from first touch to complete ingestion, while the fixed effects were food type, age category and their interaction. Zoo ID was included as a random effect.

We then constructed a Poisson-GLMM with the total number of active and passive begging occurrences per food presentation trial per otter as the response variable. Food type (crabs, mussels or trout), food abundance (low, medium or high), as well as sex, otter age category (juvenile or adult), zoo and the offset for trial duration were included as fixed effects, and we included the observation-level identifier, otter ID and trial as random effects. To improve convergence, we used the “BOBYQA” optimizer. To test whether the same predictors affected food sharing frequencies, we ran the exact same model, but using the total number of sharing occurrences per food presentation trial per otter as the response variable.

To test if the age composition of food owner-receiver dyads influenced the frequency of voluntary sharing, we fitted another Poisson-GLMM using the number of directional voluntary sharing occurrences summed for each potential dyad in each otter group across all trials and
treatments as our response variable. We fitted the age composition of the otter dyad (i.e., Adult sharing with Adult, Juvenile-Juvenile, Adult-Juvenile or Juvenile-Adult) and the offset for trial duration as our fixed effects. We included the observation-level random effect as well as the ID of the sharing individual and the ID of the receiving individual as our random effects. We also performed the post-hoc Tukey multiple comparison test to compare the different age composition-dyads for significant differences in directional sharing frequencies.

To detect and identify any outliers within our models, we used an exploratory analysis approach where we calculated the interquartile range for our non-normally distributed response residuals and the upper and lower Tukey fences (upper fence; $Q_3 + 1.5 \times IQR$, lower fence = $Q_1 - 1.5 \times IQR$; Tukey 1977) to determine any data points outside of this range. Of 20 subjects, there were 12 individuals within our ‘total number of begging occurrences’ variable that were considered to be outliers. These 12 individuals were all juveniles (\leq12 months). Our ‘total number of sharing occurrences’ revealed 1 individual to be an outlier, our ‘total number of food transfers’ revealed no outliers and our ‘total times that begging was received’ contained 11 individuals classed as outliers. The extreme values, or ‘outliers’ in our ‘total number of begging occurrences’ were all generated by juveniles and the extreme values in our ‘total times that begging was received’ were mostly adults being begged to. This indicated that there were age group differences and thus, all ‘outliers’ were included in our analyses (code available on Figshare and see Table S2, S3 and S4 for results excluding ‘outliers’).

Results

Is begging correlated with food transfers?

There was a positive relationship between the frequency with which otters received begging and the number of times they transferred food: the more begging individuals received, the more often
they transferred food (Table 1, Fig. 1; LRT for begging received: $X^2 (1) = 13.19$, $P = <.001$; 95% confidence interval [CI] 0.04-0.14). Effect size estimates showed that for every begging bout, otters were estimated to receive on average 1.6 food transfers (ranging from 0.55-3.31 for the shortest and longest trial durations, respectively).

Do food type and abundance affect begging and sharing frequencies?

Juveniles took significantly longer than adults to exploit the experimentally provided foods (LRT for age category: $X^2 (1) = 9.75$, $P = 0.002$). However, this difference in foraging efficiency between juveniles and adults did not increase with food type complexity (LRT for food type-age interaction: $X^2 (2) = 0.40$, $P = 0.82$). Across age categories, food type did not significantly affect otters’ begging rates (LRT for food type: $X^2 (2) = 3.60$, $P = 0.17$; 95% confidence interval food type trout [CI] -1.20-0.22; 95% confidence interval food type mussel [CI] -1.37-0.05). Although otters appeared to beg less when more food was available (Table 2, Fig. 2), food abundance did not significantly affect otters’ begging rates either (LRT for food abundance: $X^2 (2) = 4.09$, $P = 0.13$; 95% confidence interval high food abundance [CI] -1.40-0.05; 95% confidence interval medium food abundance [CI] -0.76-0.64).

Neither food abundance nor food type affected otters’ sharing rates (Table 3; LRT for food abundance: $X^2 (2) = 1.79$, $P = 0.41$; 95% confidence interval high food abundance [CI] -0.33-0.86; 95% confidence interval medium food abundance [CI] -0.21-0.99). LRT food type: $X^2 (2) = 0.92$, $P = 0.63$; 95% confidence interval food type trout [CI] -0.56-0.64; 95% confidence interval food type mussel [CI] -0.78-0.38 (Table 3).
Do otter age, zoo and sex correlate with begging and sharing frequencies?

Juveniles begged significantly more than adults over all trials (Table 2, Fig. 3; LRT for age category: $X^2 (1) = 7.53, P = 0.006$; 95% confidence interval juveniles [CI] 0.21-1.10). There were no significant effects of otter sex or zoo on begging frequencies (LRT for zoo: $X^2 (1) = 2.67, P = 0.10$, sex: $X^2 (1) = 0.04, P = 0.84$; 95% confidence interval Tamar group [CI] -0.12-1.17; 95% confidence interval sex: male [CI] -0.40-0.48). Effect size estimates showed that for each time an adult begged, juveniles begged 2.19 times (ranging from 0.73-4.40 for shortest and longest trial durations). We found that juveniles shared significantly less than adults over all trials (Table 3, Fig. 4; LRT for age category; $X^2 (1) = 12.85, P <$.001; 95% confidence interval juveniles [CI] -1.29- -0.43). An overall effect size estimate of 0.77 showed that juveniles shared ca. 23% less than adults (ranging from 0.26-1.55 for shortest and longest trial durations, respectively). There was no significant effect of zoo or otter sex on sharing frequency (LRT for zoo: $X^2 (1) = 0.39, P = 0.53$, sex: $X^2 (1) = 0.53, P = 0.47$; 95% confidence interval Tamar group [CI] -0.75-0.39; 95% confidence interval sex: male [CI] -0.57-0.29).

The age composition of otter dyads had a significant effect on sharing (LRT for sharing dyad age composition: $X^2 (3) = 13.179, P = 0.004$); juvenile dyads (J-J) shared significantly less than adult dyads (A-A) (Tukey post-hoc test, $P = 0.034$) and juveniles shared significantly less with adults than adults did with each other (Tukey post-hoc test, $P < .001$). All other comparisons of age composition were not significant (>0.05) (see Table 4, Fig. 5).

Discussion

Harassment avoidance or ‘sharing-under-pressure’

Otters showed both passive and active begging during our experimental trials, and food owners responded to both forms of harassment (i.e., behaviours that restrict the food owner’s ability to eat their food in peace) by sharing their food. This suggests that harassment is costly to the food
owner, and that this cost forces them to share instead. Our results thus provide support for the
harassment avoidance/sharing-under-pressure hypothesis, which assumes begging imposes high
ergetic and opportunity costs on the food owner (Stevens and Stephens 2002; Wrangham
1975). While harassment hence seems to be a parsimonious explanation for the food sharing
observed in our captive otter family groups, the drivers of food sharing in this species could be
further explored. For example, one could experimentally vary the ease with which food items can
be monopolised, as well as quantify the relative costs of begging and sharing food.

Begging behaviour and food type/abundance treatments

Although begging was somewhat less frequent when food was abundant, neither food type nor
abundance had a significant effect on begging or sharing frequencies. Captive otters often show
incessant begging, which has been proposed to be related to excessive hunger (Gothard 2007)
and/or boredom (Hawke et al. 2000). Excessive hunger seems an unlikely cause of the otters’
begging behaviour, given that zoos follow guidelines of adequate nutrition, diets and feeding
regimes, and part of the otters’ daily diet is often used as enrichment to encourage natural
foraging skills and reduce boredom (IUCN/SSC Otter Specialist Group 2012). However, it
should also be noted that the exact nutrient requirements for captive otters are still unknown and
these guidelines can vary dramatically between species and institutions (IUCN/SSC Otter
Specialist Group 2012; Lombardi 2002).

Wild otters have a high metabolic rate and spend up to 60% of their time foraging (Davis
et al. 1992; Marshall et al. 1988; Spelman 1999; Hoover and Tyler 1986). Their diet is nutrient-
dense, and wild otters eat small amounts and frequently (IUCN/SSC Otter Specialist Group
2012; Marshall et al. 1988). For a species with such a high energy requirement and an
opportunistic foraging strategy, we expected to see an increase in begging behaviour during our
low food abundance treatment. Although food limitation can increase begging frequencies in some food-sharing species (Quillfeldt and Masello 2004; Price and Ydenberg 1995; Smith and Montgomerie 1991), occurrences of begging in other species appear to be independent of food availability and ownership (Kuroda 1984). Here, we observed otters begging across all food abundance conditions and regardless of food ownership.

Our experimental manipulation of food type also did not appear to affect begging or sharing frequencies, which might be due the fact that most otter species are generalists (Timm-Davis et al. 2015), and their diets reflect the local abundance of food (Almeida et al. 2012; Clavero et al. 2003; Krpo-Ćetković et al. 2019; Lanszki and Körmendi 1996). Asian small-clawed otters are manual predators who rely on extractive foraging, using their clawless fingers to reach into crevices and sieve through silt (Ladds et al. 2017). Their jaws are well equipped to crack hard shells compared to other mouth-oriented species and their partially webbed paws allow for greater dexterity (Sivasothi and Nor 1994; Timm-Davis et al. 2015). Although all of the food types used in this study represented novel prey to the captive otters we tested, they are part of a typical diet for wild Asian-small clawed otters (Chanin 1985; Mason and Macdonald 1987). This adaptation to a generalist diet (Timm-Davis et al. 2015) could partly explain why food type had no effect on begging frequency in this study.

Begging behaviour and otter age

Juveniles exhibited more begging behaviour than adults, and within the group of juveniles, the youngest individuals begged more than others. Explanations for juveniles begging for food have centred around begging being an honest signal of hunger (Bowers et al. 2019; Kilner and Johnstone 1997; Godfray 1991; Mock and Parker 1997) and competition between siblings (Harper 1986; Stamps, Metcalf and Krishnan 1978; Macnair and Parker 1979; Parker 1985).
According to the honest signalling hypothesis (Bowers et al. 2019; Kilner and Johnstone 1997; Godfray 1991; Mock and Parker 1997), the costly qualities of extravagant begging behaviours advertise an offspring’s current nutritional need (Cotton et al. 1996; Kilner 1995; Kilner and Johnstone 1997; Ottoson et al. 1997). However, this idea remains somewhat controversial (Mock et al. 2011; Parker et al. 2002), and others have argued that stronger, rather than hungrier, individuals can maintain higher and longer levels of begging (Grafen 1990; Parker et al. 2002).

In captive Asian small-clawed otters, behaviours such as food handling, chewing and swallowing are energetically expensive (Borgwardt and Culik 1999), and in some otter species, juveniles have similar mass-specific energy demands as adults (sea otters: Thometz et al. 2014). In addition to needing food constantly, foraging skills in some species of otters do not fully develop until 13 months old (Watt 1991; 1993). In our study, the most frequently begging individuals were ~3-12 months old. Perhaps, the extensive begging displayed by these young individuals was indeed an honest signal of hunger, reinforced by competition with older siblings (Field et al. 2005). Moreover, the higher begging frequencies in these young individuals could also be influenced by foraging incompetence, and thus their dependence on older offspring and adults for the acquisition of food (Jaeggi et al. 2008), as we found that juveniles were less efficient foragers than adults across all food types. This difference in foraging competence might also help explain why we observed less food sharing between juveniles and from juveniles to adults as compared to adult dyads (see below).

Food sharing behaviour, food type/abundance treatments and the effect of age

Food sharing frequencies have been observed to differ between food types in some species, including chimpanzees (Boesch and Boesch 1989; Rose 1997) and capuchins (de Waal 2000), but not in others (Kuroda 1984; bonobo). Although food abundance and quality thus have the
potential to influence some food sharing instances in nature (Elgar 1986), we did not find an
effect of food abundance nor food type on sharing frequency. Our study suggests that these
ecological factors appear to have little influence on food sharing in Asian small-clawed otters.
This may be due to the fact that we studied otters in captivity; given that captive animals get
 provisioned several times per day, our food manipulations may have been less relevant and
effective than if we had been able to study more food-motivated individuals in the wild.

Although food abundance and type did not influence sharing frequencies, we found that
juvenile otters shared food significantly less often than did adults. Older animals tend to be more
skilled and efficient at catching prey compared to juveniles (Goss-Custard and Durell 1987;
Stalmaster and Gessamen 1984; Woo et al. 2008) and the inefficiency of juveniles’ foraging
behaviour can lead to intra-specific competition with older individuals (Field et al. 2005). In sea
otters, juveniles are proficient at tool use and prey handling by 5 months of age, while juveniles
in other hand-oriented otter species are proficient only at 13 months of age (Payne and Jameson
1984; Watt 1991; 1993). It is possible that the youngest individuals in our study were in
competition with adults and older siblings for the acquisition of food, and were thus less inclined
to share food, while the highly competent adult foragers could afford to share. It would be of
value for future studies to examine age-class influences on food competition and food transfer
behaviours in more detail.

Conclusion

The experiments presented in this study provide the first exploration and insights into food
sharing and the use of begging behaviours in the Asian small-clawed otter. We found that otters
are more likely to share food with increased harassment, in the form of begging behaviours,
supporting the harassment avoidance/sharing-under-pressure hypothesis. Furthermore, we found
evidence that juveniles shared less and begged more than adults, with the youngest juveniles begging more than the others. However, food abundance and food type appear to have little influence on food sharing and begging behaviours in Asian small-clawed otters. It is important to note that this may be due to the fact that our subjects were in a captive setting, and thus our food manipulations may be less effective than they might be in wild and more food-motivated individuals. This study had a relatively small sample size and it is essential to repeat this study on more groups of otters with a larger range of ages and group sizes. The frequent begging behaviours observed during this study, and the considerable variation in begging across age groups, also warrant further study. In addition, we suggest that further investigation of food sharing in Asian small-clawed otters considers the influence of social bonds on food transfers, as social dominance, partner-choice and social network structure might help further explain food sharing in this highly sociable species.

Acknowledgements

We thank Newquay Zoo and Tamar Otter and Wildlife Centre for access to their otter groups. We also thank The University of Exeter for the loan of equipment and Georgina Hume, Tiffany Volle and Alex Saliveros for their field assistance.

References
Almeida, D., Copp, G.H., Masson, L., Miranda, R., Murai, M. and Sayer, C.D. 2012. Changes in the diet of a recovering Eurasian otter population between the 1970s and 2010. Aquatic Conservation: Marine and Freshwater Ecosystems. 22. 26-35.

Aziz, M.A. 2018. Notes on Population Status and Feeding Behaviour of Asian Small-Clawed Otter (Aonyx cinereus) in the Sundarbans Mangrove Forest of Bangladesh. IUCN Otter Spec. Group Bull. 35:3-10.

Bachman, G.C. and Chappell, M.A. 1998. The energetic cost of begging behaviour in nestling house wrens. Animal Behaviour. 55:607-1618.

Bates, D., Maechler, M., Bolker, B. and Walker, S. 2014. lme4: Linear mixed-effects models using Eigen and S4 (Version 1.0-6). March 2019. http://CRAN.Rproject.org/package=lme4. Accessed March 2020.

Blurton Jones, N.G. 1987. Tolerated theft, suggestions about the ecology and evolution of sharing, hoarding and scrounging. Information (International Social Science Council). 26: 31-54.

Boesch, C. and Boesch, H. 1989. Hunting behavior of wild chimpanzees in the Tai National Park. American journal of physical anthropology. 78: 547-573.

Boesch, C., Hohmann, G. and Marchant, L. (eds.) 2002. Behavioural diversity in chimpanzees and bonobos. Cambridge University Press, Cambridge, United Kindom.
Boggs, C.L. 1995. Male nuptial gifts: phenotypic consequences and evolutionary implications. Pp 215-242 in insect reproduction (S.R. Leather and J. Hardie ed). CRC Press. United States.

Bolnick, D.I., Svanbäck, R., Fordyce, J.A., Yang, L.H., Davis, J.M., Hulsey, C.D. and Forister, M.L. 2003. The ecology of individuals: incidence and implications of individual specialization. The American Naturalist. 161:1-28.

Bolten, A.B., Robinson, F.A., Nation, J.L. and Yu, S.J. 1983. Food Sharing Between Honeybee Colonies in Flight Cages. Journal of Apicultural Research. 22:98-100.

Borgwardt, N. and Culik, B.M. 1999. Asian small-clawed otters (Amblonyx cinerea): resting and swimming metabolic rates. Journal of Comparative Physiology B. 169:100-106.

Bowers, E.K., Jenkins, J.B., Mueller, A.J., Miller, K.D., Thompson, C.F. and Sakaluk, S.K. 2019. Condition-dependent begging elicits increased parental investment in a wild bird population. The American Naturalist. 193:725-737.

Brownell, C.A., Svetlova, M. and Nichols, S. 2009. To share or not to share: When do toddlers respond to another's needs?. Infancy. 14: 117-130.

Brown, G.R., Almond, R.E. and Bergen, Y.V. 2004. Begging, stealing, and offering: food transfer in nonhuman primates. Advances in the Study of Behaviour. 34:265-295.
Brown, G.R., Almond, R.E. and Bates, N.J. 2005. Adult–infant food transfer in common marmosets: an experimental study. American Journal of Primatology: Official Journal of the American Society of Primatologists. 65: 301-312.

Budden, A.E. and Wright, J. 2001. Begging in nestling birds. Pp 83-119 in Current ornithology (V. Nolan Jr and F. Charles, eds.). Springer, Boston, Massachusetts.

Carter, G.G., Farine, D.R., Crisp, R.J., Vrtilek, J.K., Ripperger, S.P. and Page, R.A. 2020. Development of new food-sharing relationships in vampire bats. Current Biology. 30: 1275-1279.

Carter, G.G. and Wilkinson, G.S. 2013. Food sharing in vampire bats: reciprocal help predicts donations more than relatedness or harassment. Proceedings of Royal Society B. 280: 1-6.

Capodeanu-Nägler, A., Eggert, A.K., Vogel, H., Sakaluk, S.K. and Steiger, S. 2017. Species divergence in offspring begging and parental provisioning is linked to nutritional dependency. Behavioral Ecology. 29:42-50.

Chanin, P. 1985. The natural history of otters. Pp 179-180 in Fact on File. Oxford. London, Croom Helm.
Christe, P., Richner, H. and Oppliger, A. 1996. Begging, food provisioning, and nestling competition in great tit broods infested with ectoparasites. Behavioral Ecology. 7:127-131.

Clavero, M., Prenda, J. and Delibes, M. 2003. Trophic diversity of the otter (*Lutra lutra*) in temperate and Mediterranean freshwater habitats. Journal of Biogeography. 30:761-769.

Clutton-Brock, T. 2009. Cooperation between non-kin in animal societies. Nature. 462:51-52.

Cooper, S.M. 1991. Optimal hunting group size: the need for lions to defend their kills against loss to spotted hyaenas. African Journal of Ecology. 29:130-136.

Costa, D.P. and Kooyman, G.L. 1982. Oxygen consumption, thermoregulation, and the effect of fur oiling and washing on the sea otter, *Enhydra lutris*. Canadian Journal of Zoology. 60:2761-2767.

Dale, R., Range, F., Stott, L., Kotrschal, K. and Marshall-Pescini, S. 2017. The influence of social relationship on food tolerance in wolves and dogs. Behavioral ecology and sociobiology. 71:2-12.

Davis, H.G., Aulerich, R.J., Bursian, S.J., Sikarskie, J.G. and Stuht, J.N. 1992. Feed consumption and food transit time in northern river otters (*Lutra canadensis*). Journal of Zoo and Wildlife Medicine. 1:241-244.
De Kort, S.R., Emery, N.J. and Clayton, N.S. 2006. Food sharing in jackdaws, *Corvus monedula*: what, why and with whom?. Animal Behaviour. 72:297-304.

DeNault, L.K. and McFarlane, D.A. 1995. Reciprocal altruism between male vampire bats, *Desmodus rotundus*. Animal Behaviour. 49:855-856.

De Waal, F.B. (ed.). 1996. Pp 132-1136 in Good natured. Harvard University Press. Cambridge, London.

De Waal, F.B. 1997a. The chimpanzee's service economy: food for grooming. Evolution and Human Behaviour. 18:375-386.

De Waal, F. B. 1997b. Food transfers through mesh in brown capuchins. Journal of Comparative Psychology. 111:370–378.

De Waal, F.B. 1989. Food sharing and reciprocal obligations among chimpanzees. Journal of Human Evolution. 18:433-459.

De Waal, F.B. 2000. Attitudinal reciprocity in food sharing among brown capuchin monkeys. Animal Behaviour. 60:253-261.

De Waal, F.B. and Berger, M.L. 2000. Payment for labour in monkeys. Nature. 404:563-564.
Dobson, A. J. 2002. An introduction to generalized linear models. (2nd, ed). CRC Press, Boca Raton.

Elgar, M.A. 1986. The establishment of foraging flocks in house sparrows: risk of predation and daily temperature. Behavioral Ecology and Sociobiology. 19:433-438.

Evans, C.S. and Marler, P. 1994. Food calling and audience effects in male chickens, Gallus gallus: their relationships to food availability, courtship and social facilitation. Animal Behaviour. 47:1159-1170.

Fedorowicz, S.M., Beard, D.A. and Connor, R.C. 2003. Food sharing in wild bottlenose dolphins. Compartimiento de alimento en delfines bufeos silvestres. Aquatic Mammals. 29:355-359.

Feistner, A.T.C. and McGrew, W.C. 1989. Food-sharing in primates: a critical review. Perspectives in primate biology. 3:21-36.

Feistner, A.T.C. and Chamove, A.S. 1986. High motivation toward food increases food-sharing in cotton-top tamarins. Developmental Psychobiology: The Journal of the International Society for Developmental Psychobiology. 19: 439-452.

Feistner, A.T.C and Price, E.C. 1990. Food-sharing in cotton-top tamarins (Saguinus oedipus). Folia primatologica. 54:34-45.
Feistner, A.T. and Price, E.C. 2000. Food sharing in black lion tamarins (*Leontopithecus chrysopygus*). American Journal of Primatology: Official Journal of the American Society of Primatologists. 52:47-54.

Field, I.C., Bradshaw, C.J., Burton, H.R., Sumner, M.D. and Hindell, M.A. 2005. Resource partitioning through oceanic segregation of foraging juvenile southern elephant seals (*Mirounga leonina*). Oecologia. 142: 127-135.

Foster-Turley, P. 1992. Conservation aspect of the ecological of Asian small-clawed otter and Smooth-coated otter on the Malay Peninsula. IUCN Specialist Group Bull. 7:26-29.

Gilby, I.C. 2006. Meat sharing among the Gombe chimpanzees: harassment and reciprocal exchange. Animal Behaviour. 71:953-963.

Goodall, J. 1986. The chimpanzees of Gombe: Patterns of behavior. Harvard University Press, Cambridge. The Journal of Tropical Ecology. 3:190-191.

Godfray, H.C.J. 1991. Signalling of need by offspring to their parents. Nature. 352:328-330.

Godfray, H.C.J. 1995. Signaling of need between parents and young: parent-offspring conflict and sibling rivalry. The american naturalist. 146:1-24.
Goss-Custard, J.D. and Durell, S.L.V.D. 1987. Age-related effects in oystercatchers, *Haematopus ostralegus*, feeding on mussels, *Mytilus edulis*. I. Foraging efficiency and interference. The Journal of Animal Ecology. 1:521-536.

Grafen, A. 1990. Biological signals as handicaps. Journal of theoretical biology. 144:517-546.

Griffiths, S.W. and Armstrong, J.D. 2002. Kin-biased territory overlap and food sharing among Atlantic salmon juveniles. Journal of Animal Ecology. 71:480-486.

Hadjichrysanthou, C. and Broom, M. 2012. When should animals share food? Game theory applied to kleptoparasitic populations with food sharing. Behavioral Ecology. 23:977-991.

Hamilton, W. D. 1964 The genetical evolution of social behaviour. Theoretical Biology. 7:1–52.

Harper, A.B., 1986. The evolution of begging: sibling competition and parent-offspring conflict. The American Naturalist. 128:99-114.

Harrison, X.A. 2014. Using observation-level random effects to model overdispersion in count data in ecology and evolution. PeerJ. 2:e616. DOI 10.7717/peerj.616.

Hauser, M.D. 1992. Costs of deception: cheaters are punished in rhesus monkeys (*Macaca mulatta*). Proceedings of the National Academy of Sciences. 89:12137-12139.
Hauser, M.D. and Marler, P. 1993. Food-associated calls in rhesus macaques (*Macaca mulatta*): II. Costs and benefits of call production and suppression. Behavioral Ecology. 4:206-212.

Hawke, L., Lauer, P., Bartholomeusz, D. and Steen, Z. 2000. Effects of increased food dispersal and random feeding time/place on stereotyped behaviours in otters at Adelaide Zoo. International Zoo News. 47:71-81.

Heinrich, B. 1988. Winter foraging at carcasses by three sympatric corvids, with emphasis on recruitment by the raven, *Corvus corax*. Behavioral Ecology and Sociobiology, 23:141-156.

Hiraiwa-Hasegawa M. 1990. Role of food sharing between mother and infant in the ontogeny of feeding behavior. Pp 267-275 in The chimpanzees of the Mahale Mountains: sexual and life history strategies. (Nishida T, eds.). Tokyo: University of Tokyo Press.

Holekamp, K.E. and Smale, L. 1990. Provisioning and food sharing by lactating spotted hyenas, *Crocuta crocuta*. Ethology. 86:191-202.

Hoelzel, A.R. 1991. Killer whale predation on marine mammals at Punta Norte, Argentina; food sharing, provisioning and foraging strategy. Behavioral Ecology and Sociobiology. 29:197-204.

Hoover, J.P. and Tyler, R.D. 1986. Renal function and fractional clearances of American river otters (*Lutra canadensis*). Journal of Wildlife Diseases. 22:547-556.
Isaac, G. 1978. The food-sharing behavior of protohuman hominids. Scientific American. 238: 90-109.

IUCN/SSC Otter Specialist Group. 2012. Summary of Nutrition Guidelines for Otters in Zoos, Aquaria, Rehabilitation, and Wildlife Sanctuaries. Online. IUCN/SSC Otter Specialist Group, Otters in Zoos, Aquaria, Rehabilitation, and Wildlife Sanctuaries (OZ) Task Force. 1-26.

Jaeggi, A.V., Van Noordwijk, M.A. and Van Schaik, C.P. 2008. Begging for information: mother–offspring food sharing among wild Bornean orangutans. American Journal of Primatology: Official Journal of the American Society of Primatologists. 70:533-541.

Jaeggi, A.V. and Van Schaik, C.P. 2011. The evolution of food sharing in primates. Behavioral Ecology and Sociobiology. 65:2125-2140.

Johnson, R.H. 1982. Food-sharing behavior in captive Amazon River dolphins (Inia geoffrensis). Biological Systems. 43:1-3.

Jones, N.B. 1984. A selfish origin for human food sharing: tolerated theft. Ethology and Sociobiology. 5:1-3.

Kaplan, H., Gurven, M., Hill, K. and Hurtado, A.M. 2005. The natural history of human food sharing and cooperation: a review and a new multi-individual approach to the negotiation of...
norms. Moral sentiments and material interests: The foundations of cooperation in economic life.

Karasov, W.H. and Wright, J. 2002. Nestling digestive physiology and begging. Pp 199-219 in The Evolution of Begging (J. Wright and M.L. Leonard, eds.). Springer, Dordrecht.

Kenyon, W. 1969. The sea otter in the eastern Pacific Ocean. North American Fauna. 68:1-352.

Kilner, R. 1995. When do canary parents respond to nestling signals of need?. Proceedings of the Royal Society of London. Series B: Biological Sciences. 260: 343-348.

Kilner, R. and Johnstone, R.A. 1997. Begging the question: are offspring solicitation behaviours signals of need?. Trends in Ecology & Evolution. 12:11-15.

Krpo-Ćetković, J., Subotić, S., Skorić, S. and Ćirović, D. 2019. Diet of the Eurasian otter (Lutra lutra) on the River Gradac, Serbia: Predation in a brown trout-dominated stream. Aquatic Conservation: Marine and Freshwater Ecosystems. 29:282-291.

Kuroda, S. 1984. Interaction over food among pygmy chimpanzees. Pp. 301-324 in The pygmy chimpanzee (R. L. Susman, ed.). Springer. New York: Plenum.

Ladds, Z., Hoppitt, W. and Boogert, N.J. 2017. Social learning in otters. Royal Society open science. 4: 2-3.
Lanszki, J. and Körmendi, S. 1996. Otter diet in relation to fish availability in a fish pond in Hungary. Acta Theriologica. 41:127-136.

Liévin-Bazin, A., Pineaux, M., Le Covec, M., Gahr, M., Bovet, D. and von Bayern, A.M. 2019. Food sharing and affiliation: An experimental and longitudinal study in cockatiels (Nymphicus hollandicus). Ethology. 125:276-288.

Lombardi, C. 2002. Zoo standards for keeping otters in captivity. <https://www.pjc.cc.fl.us/sctag/otterstandards.doc>.

Macnair, M.R. and Parker, G.A. 1979. Models of parent-offspring conflict. III. Intra-brood conflict. Animal Behaviour. 27:1202-1209.

Marshall, J.T. 1988. Mammals of Thailand. Pp 296-487 in Association for the Conservation of Wildlife. (Lekagul, B. and McNeely, J. eds.). Thailand.

Mason, C.F. and Macdonald, S.M. 1987. The use of spraints for surveying otter Lutra lutra populations: an evaluation. Biological conservation. 41:167-177.

McGrew, W.C. and William, C. 1975. Patterns of plant food sharing by wild chimpanzees. Contemporary primatology. 304-309.

Mock, D. W. and Parker G A.1997. The Evolution of Sibling Rivalry. Oxford University Press. Oxford.
Mock, D.W., Dugas, M.B. and Strickler, S.A. 2011. Honest begging: expanding from signal of need. Behavioral Ecology. 22:909-917.

Morrison, P., Rosenmann, M. and Estes, J.A. 1974. Metabolism and thermoregulation in the sea otter. Physiological zoology. 47:218-229.

Nishida, T. and Turner, L.A. 1996. Food transfer between mother and infant chimpanzees of the Mahale Mountains National Park, Tanzania. International journal of primatology. 17:947-968.

Parker, G.A. 1985. Models of parent-offspring conflict. V. Effects of the behaviour of the two parents. Animal Behaviour. 33:519-533.

Parker, G.A., Royle, N.J. and Hartley, I.R. 2002. Begging scrambles with unequal chicks: interactions between need and competitive ability. Ecology Letters. 5:206-215.

Porter, R.H., Moore, J.D. and White, D.M. 1981. Food sharing by sibling vs nonsibling spiny mice (Acomys cahirinus). Behavioral Ecology and Sociobiology. 8:207-212.

Price, K. and Ydenberg, R. 1995. Begging and provisioning in broods of asynchronously-hatched yellow-headed blackbird nestlings. Behavioral Ecology and Sociobiology. 37:201-208.
Quillfeldt, P. and Masello, J.F. 2004. Context-dependent honest begging in Cory’s shearwaters (Calonectris diomedea): influence of food availability. Acta ethologica. 7:73-80.

Rapaport, L.G. and Ruiz-Miranda, C.R. 2002. Tutoring in wild golden lion tamarins. International Journal of Primatology. 23:1063-1070.

R Development Core Team. (2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org/.

Rose, L.M. 1997. Vertebrate predation and food-sharing in Cebus and Pan. International Journal of Primatology. 18: 727-765.

Royle, N.J., Hartley, I.R. and Parker, G.A. 2002. Begging for control: when are offspring solicitation behaviours honest?. Trends in Ecology & Evolution. 17:434-440.

Ruiz-Miranda, C.R., Kleiman, D.G., Dietz, J.M., Moraes, E., Grativol, A.D., Baker, A.J. and Beck, B.B. 1999. Food transfers in wild and reintroduced golden lion tamarins, Leontopithecus rosalia. American Journal of Primatology: Official Journal of the American Society of Primatologists. 48:305-320.

Smith, H.G. and Montgomerie, R. 1991. Nestling American robins compete with siblings by begging. Behavioral Ecology and Sociobiology. 29:307-312.
Stacey, P.B. and Koenig, W.D. (eds.) 1990. Pp 215-462 in Cooperative breeding in birds: long term studies of ecology and behaviour. Cambridge University Press. Cambridge, Great Britain.

Stalmaster, M.V. and Gessaman, J.A. 1984. Ecological energetics and foraging behaviour of overwintering bald eagles. Ecological Monographs. 54:407-428.

Stamps, J.A., Metcalf, R.A. and Krishnan, V.V. 1978. A genetic analysis of parent-offspring conflict. Behavioral Ecology and Sociobiology. 3:369-392.

Silk, J.B. 1978. Patterns of food sharing among mother and infant chimpanzees at Gombe National Park, Tanzania. Folia primatologica. 29:129-141.

Silk, J.B., Brosnan, S.F., Henrich, J., Lambeth, S.P. and Shapiro, S. 2013. Chimpanzees share food for many reasons: the role of kinship, reciprocity, social bonds and harassment on food transfers. Animal behaviour. 85:941-947.

Sivasothi, N. and Nor, B.H.M. 1994. A review of otters (Carnivora: Mustelidae: Lutrinae) in Malaysia and Singapore. In Ecology and Conservation of Southeast Asian Marine and Freshwater Environments including Wetlands. 285:151-170.

Spelman, L.H. 1999. Otter anesthesia. Zoo and Wild Animal Medicine: Current Therapy, 4:436-443.
Stevens, J.R. 2004. The selfish nature of generosity: harassment and food sharing in primates. Proceedings of the Royal Society of London. Series B: Biological Sciences. 271:451-456.

Stevens, J.R. and Gilby, I.C. 2004. A conceptual framework for nonkin food sharing: timing and currency of benefits. Animal Behaviour. 67:603-614.

Stevens, J.R. and Stephens, D.W. 2002. Food sharing: a model of manipulation by harassment. Behavioral Ecology. 13:393-400.

Thiollay, J.M. 1991. Foraging, home range use and social behaviour of a group-living rainforest raptor, the Red-throated Caracara Daptrius americanus. Ibis. 133:382-393.

Thometz, N.M., Tinker, M.T., Staedler, M.M., Mayer, K.A. and Williams, T.M. 2014. Energetic demands of immature sea otters from birth to weaning: implications for maternal costs, reproductive 36ehaviour and population-level trends. Journal of Experimental Biology. 217:2053-2061.

Timm-Davis, L.L., DeWitt, T.J. and Marshall, C.D. 2015. Divergent skull morphology supports two trophic specializations in otters (Lutrinae). PloS one. 10:2-3.

Trivers, R.L. 1971. The evolution of reciprocal altruism. The Quarterly review of biology. 46:35-57.
Trivers, R.L., 1974. Parent-offspring conflict. Integrative and Comparative Biology. 14:249-264.

Tukey, J.W. 1977. Exploratory data analysis. Addison-Wesley, Massachusetts, United States. 2:1-20.

Ueno, A. and Matsuzawa, T. 2004. Food transfer between chimpanzee mothers and their infants. Primates. 45:231-239.

Vahed, K. 1998. The function of nuptial feeding in insects: a review of empirical studies. Biological Reviews. 73:43-78.

von Bayern, A.M., de Kort, S.R., Clayton, N.S. and Emery, N.J. 2007. The role of food-and object-sharing in the development of social bonds in juvenile jackdaws (Corvus monedula). Behaviour. 144:711-733.

Watt, J. 1991. Prey selection by coastal otters (Lutra lutra). PhD dissertation, University of Aberdeen. Scotland, Great Britain.

Watt, J. 1993. Ontogeny of hunting behaviour of otters (Lutra lutra L.) in a marine environment. In Symposia of the Zoological Society of London. 65:87-104.
Watson, K.A. and Ritchison, G. 2018. Effect of variation in nestling hunger levels on the begging behaviour of nestlings and the provisioning behaviour of adult American Kestrels. Avian Biology Research. 11:35-43.

Wayre, P. 1978. Status of otters in Malaysia, Sri Lanka and Italy. In Otters (N. Duplaix, ed). Proceedings of the First Working Meeting of the Otter Specialist Group, International Union for the Conservation of Nature, Gland, Switzerland. 152-155.

Wilkinson, G.S. 1984. Reciprocal food sharing in the vampire bat. Nature. 308:181-184.

Wilkinson, G.S., Carter, G.G., Bohn, K.M. and Adams, D.M. 2016. Non-kin cooperation in bats. Philosophical Transactions of the Royal Society B: Biological Sciences. 371:1-6.

Woo, K.J., Elliott, K.H., Davidson, M., Gaston, A.J. and Davoren, G.K. 2008. Individual specialization in diet by a generalist marine predator reflects specialization in foraging behaviour. Journal of Animal Ecology. 77:1082-1091.

Wrangham, R.W. 1975. Behavioural ecology of chimpanzees in Gombe National Park, Tanzania. PhD dissertation, University of Cambridge. Cambridge, United Kingdom

Wright, J. and Leonard, M.L. 2007. Pp. 343-337 in The evolution of begging: competition, cooperation and communication (eds.) Kluwer Academic Publishers. Dordrecht, The Netherlands.
Wright, B.M., Stredulinsky, E.H., Ellis, G.M. and Ford, J.K. 2016. Kin-directed food sharing promotes lifetime natal philopatry of both sexes in a population of fish-eating killer whales, Orcinus orca. Animal Behaviour. 115:81-95.

Zahavi, A. 1975. Mate selection—a selection for a handicap. Journal of theoretical Biology. 53:205-214.
Table 1 (on next page)

Generalised linear mixed effects model showing how the amount of begging an otter received influenced how often they shared food.

Intercept refers to total “sharing” when begging received is 0. The significant values are highlighted in bold.
GLMM output

Begging and food transfers	B	SE	df	z	p
Fixed effects					
(Intercept)	-2.655	0.146	-18.226	<.001	
Begging received	0.091	0.025	1	3.562	<.001
Random effects					
Variance					
obs (intercept)	0.233				
ID (intercept)	0.067				
trial (intercept)	0.144				
Observation	180				
ID	20				
Table 2 (on next page)

Generalised linear mixed effects model results showing how food type, food abundance, age category, sex and zoo correlated with the total amount of begging shown by otters.

Intercept refers to “crab” food type, “low” food abundance, “adult” age category, “female” sex and “Newquay” zoo. The significant values are highlighted in bold.
GLMM output

	B	SE	df	z	p
Fixed effects					
(Intercept)	-2.935	0.395	-7.429	<.001	
Food type					
crab	0	0			
mussel	-0.625	0.335	2	-1.869	0.062
trout	-0.490	0.339	2	-1.444	0.149
Food density					
low	0	0			
medium	-0.078	0.331	2	-0.236	0.813
high	-0.673	0.343	2	-1.966	0.049
Age category					
adult	0	0			
juvenile	0.655	0.218	1	3.004	0.003
Sex					
female	0				
male	0.043	0.215	1	0.201	0.840
Zoo					
Newquay	0	0			
Tamar	0.529	0.310	1	1.706	0.088
Random effects	Variance				
obs	(Intercept)	0.433			
ID	(Intercept)	0.081			
trial	(Intercept)	0.198			
Observation	180				
ID	20				
Table 3 (on next page)

Generalised linear mixed effects model showing how food type, food abundance, age category, sex and zoo correlated with the total amount of voluntary food sharing by otters.

Intercept refers to “crab” food type, “low” food abundance, “adult” age category, “female” sex and “Newquay” zoo. The significant values are highlighted in bold.
GLMM output

Sharing	B	SE	df	z	p
Fixed effects					
(Intercept)	-2.477	0.355	-6.983	<.001	
Food type	crab	0	0		
mussel	-0.195	0.280	2	-0.697	0.486
trout	0.060	0.292	2	0.207	0.836
Food density	low	0	0		
medium	0.395	0.289	2	1.365	0.172
high	0.253	0.290	2	0.872	0.383
Age category	adult	0	0		
juvenile	-0.844	0.206	1	-4.105	<.001
Sex	female	0			
male	-0.155	0.208	1	-0.742	0.458
Zoo	Newquay	0	0		
Tamar	-0.173	0.276	1	-0.625	0.532
Random effects					
obs	(Intercept)	0.157			
ID	(Intercept)	0.084			
trial	(Intercept)	0.127			
Observation	180				
ID	20				
Table 4 (on next page)

Generalised linear mixed effects model showing how the age composition of otter dyads correlated with the total amount of voluntary food sharing between them.

Intercept refers to “adult-adult” sharing. The first individual indicates the food sharer while the second indicates the receiver. Significant values are highlighted in bold.
GLMM output					
directional sharing	B	SE	df	z	p
Fixed effects					
(Intercept)	-4.505	0.2109	-21.357	<.001	
Age category					
AA	0	0			
AJ	-0.393	0.216	3	-1.821	0.069
JA	-1.037	0.272	3	-3.811	<.001
JJ	-0.794	0.295	3	-2.694	0.007
Random effects					
obs					
(Intercept)	0.142				
Breceive					
(Intercept)	0.092				
Ashare					
(Intercept)	0.172				
Observation	188				
ID	20				
Figure 1

Number of individual food transfers across all trials, as a function of begging received.

The more begging individuals received, the more often they transferred food. Points indicate individual otters. Jitter has been applied to data points to visualise those lying on top of each other.
Figure 2

Individual begging occurrences across all trials, as a function of food abundance and type.

Begging increased when less food was available, but not significantly so. Boxes represent the interquartile range and the bars within the boxes are the median values. Whiskers indicate values within +/- 1.5 times the interquartile range.
Figure 3

Individual begging occurrences across all trials, as a function of age category.

Juveniles begged more than adults. Boxes represent the interquartile range and the bars within the boxes are the median values. Whiskers indicate values within +/- 1.5 times the interquartile range.
Figure 4

Individual sharing occurrences across all trials, as a function of age category.

Adults shared more often than did juveniles. Boxes represent the interquartile range and the bars within the boxes are the median values. Whiskers indicate values within +/- 1.5 times the interquartile range.
Figure 5

Dyadic voluntary sharing occurrences across all experimental food presentations as a function of the otter dyad's age composition. The first individual indicates the food sharer while the second indicates the receiver.

Sharing was most frequent amongst adult dyads. Boxes represent the interquartile range and the bars within the boxes are the median values. Whiskers indicate values within +/- 1.5 times the interquartile range.