A new approach to the criterion of the liquid-glass transition

D S Sanditov1,2 *, S Sh Sangadiesv1, M V Darmaev1

1 Buryat State University, 67000 Ulan-Ude, Smolin st. 24a, Russia;
2 Institute of Physical Materials Science SB RAS,
670031, Ulan-Ude, Sakhyanovoy st., 6, Russia.
*e-mail: sanditov@bsu.ru

Annotation. A liquid transforms into a frozen glassy state when its cooling rate \(q = \frac{dT}{dt} \) reaches a certain fraction of \(C_g \) of the characteristic cooling rate \(q_g = \frac{T_g}{\tau_g} \), which is closely related to the structure relaxation time \(\tau_g \) at the glass transition temperature \(T_g \).

Key words: generalized criterion, glass transition temperature, relaxation time, cooling rate, model, atomic delocalization.

Elucidation of the nature of the glass transition of liquids is the most difficult problem in condensed matter physics (see, for example, [1-4]).

This work is devoted to the analysis and generalization of kinetic criteria for glass transition using the model of delocalized atoms [5, 6]. The characteristic cooling rate of the glass-forming melt is introduced and a generalized criterion for the liquid-glass transition is proposed.

From the point of view of the relaxation approach, in the process of glass transition of a liquid, the decisive role is played by the relationship between the relaxation time of the structure \(\tau \) and the cooling rate of the melt \(q \). In 1951, Bartenev [7], proceeding from general considerations, proposed the following relationship between these quantities (the glass transition equation)

\[
C q \tau_g = 1,
\]

where \(\tau_g \) is the relaxation time at the glass transition temperature \(T_g \), \(C \) – is an empirical parameter. Here and below, \(q \) should be understood as the absolute value of the rate of temperature change \(|q| \) when cooling the melt or when heating the glass.

Volkenshtein and Ptitsyn [8] developed a physical theory according to which particles of a glass-forming liquid can be in two states separated by an energy barrier. The solution of the constructed kinetic equation leads to the conclusion that the criterion for the liquid-glass transition is the following equation

\[
C \tau_g = \delta T_g .
\]

The \(\delta T_g \) value is interpreted as a temperature band characterizing the interval of the transition from liquid to glass upon cooling.

Schmelzer et al. [1, 9] introduce the characteristic time of temperature variation \(\tau_T = T/q \) and consider the relationship between \(\tau_T \) and the relaxation time of the structure \(\tau \). According to Schmelzer's assumption, the liquid passes into a glassy state when, upon cooling, the time of structural relaxation \(\tau \) increases and becomes equal to the characteristic time of temperature change \(\tau_T \). Proceeding from these considerations, taking into account \(q = \frac{dT}{dt} \), Schmelzer formulated the following kinetic criterion for glass transition [1, 9].

\[
\frac{\tau}{\tau_T}\approx 1, \quad \left[\frac{1}{T} \frac{dT}{dt} \right]_{T-T_T} = C_3, \quad C_3 \approx 1 .
\]

Let us dwell on the analysis of the indicated glass transition criteria using the model of delocalized atoms [5, 6].
The temperature dependence of the structural relaxation time in the glass transition region \(\tau(T) \) is successfully described by the Williams-Landel-Ferry (WLF) equation [10]

\[
\ln \frac{\tau(T)}{\tau(T_g)} = -\frac{C_1}{T - T_g} - \frac{C_2}{T - T_g + C_2}
\]

Substitution of \(\tau(T) \) from this equation into the Volkenstein–Ptitsyn relation [8]

\[
\frac{dT}{d\tau} = C T^g
\]

leads to equality

\[
q_T = \frac{C_2}{C_1}
\]

where the parameters of the WLF equation \(C_1 \) and \(C_2 \) within the framework of the model of delocalized atoms have the following physical meaning [5]

\[
C_1 = \frac{1}{f_g}, \quad C_2 = \frac{f_g}{\beta_f}
\]

moreover, the product of \(T_g \) and the coefficient of thermal expansion of the fluctuation volume at the glass transition temperature \(\beta_f \) is a single-valued function of the fraction of the fluctuation volume \(f_g \) frozen at the glass transition temperature [5],

\[
\beta_f T_g = f_g \ln(1/f_g)
\]

From the above expressions (5) - (7) we obtain the following interpretation of the glass transition equation

\[
q_T = \frac{f_g}{\ln(1/f_g)} T_g
\]

The fluctuation volume of an amorphous substance \(\Delta V_e \) is due to thermal displacements of atoms [5]

\[
\Delta V_e = N_e \Delta V_e
\]

where \(N_e \) is the number of delocalized atoms (kinetic units), \(\Delta V_e \) is the elementary fluctuation volume required for the delocalization of an atom - its limiting displacement from the local equilibrium position. The volume fraction of the fluctuation volume \(f_g \) frozen at the glass transition temperature \(T_g \) weakly depends on the nature of amorphous substances [5, 6] (Table 1)

\[
f_g = \frac{\Delta V_e}{V_T} \approx 0.020 - 0.030
\]

For glasses of one class, the value of \(f_g \) turns out to be an almost universal constant \(f_g \approx const. \) The constancy of \(f_g \) is valid with the accuracy of the constancy of the logarithm of the ratio of the limiting values of viscosity [11]:

\[
1/f_g = \ln(\eta_0/\eta_g), \quad \eta_0 \approx const
\]

where \(\eta_0 \approx const \) is the high-temperature limit of viscosity, \(\eta_g \approx const \) is the viscosity at the glass transition temperature (the rule of constancy of viscosity at \(T = T_g \)).

Dividing both sides of equality (8) by the glass transition temperature \(T_g \), we arrive at the generalized kinetic glass transition criterion

\[
q_T = C_g, \quad C_g = \frac{f_g}{\ln(1/f_g)} \approx 7 \cdot 10^{-3},
\]

which can be written as an expression for determining the transition temperature \(T_g \)

\[
\left(\frac{1}{T} \frac{dT}{d\tau} \right)_{T=T_g} = C_g, \quad C_g \approx 7 \cdot 10^{-3}.
\]

When estimating \(C_g \), we used the averaged value \(f_g \approx 0.025 \) (Table 1).

Relation (10) can be considered as a justification and generalization of the Schmelzer glass transition criterion (3). In this case, the constant \(C_3 \) acquires a certain physical meaning

\[
C_3 = C_g = \frac{f_g}{\ln(1/f_g)} \approx const \approx 7 \cdot 10^{-3}
\]

This eliminates the drawback of criterion (3), which is reduced to equating the constant \(C_3 \) to one: \(C_3 \approx 1 \), and in fact in the form of a postulate without any special justification. It is easy to see that...
Schmelzer's criterion (3) leads to an erroneous equality: \(q \tau_g \approx T_g \), which contradicts the glass transition equation (2), which follows from the classical Volkenstein-Ptitsyn theory. For example, for silicate glasses at \(T_g \approx 800 \) K, the product \(q \tau_g \) according to criterion (3), should correspond to the value: \(q \tau_g \approx 800 \) K, while the typical values of the product \(q \tau_g \) for these glasses are about [6]: \(q \tau_g \approx (5 \times 10)^3 \) K.

Table 1

Parameters of the Williams – Landel – Ferry equation \(C_1, C_2 \) and glass transition characteristics of amorphous substances (data from [6] were used)

Amorphous substance	\(T_g \) K	\(C_1 \)	\(C_2 \) K	\(\delta T_s = \frac{C_2}{C_1} \) K	\(f_s = \frac{1}{C_1} \)	\(C_s \) \(\cdot 10^3 \)	
Sodium silicate glass Na\(_2\)O-SiO\(_2\)							
Na\(_2\)O, mol.\%	15	782	36	430	12	0.028	7.8
20	759	36	390	11	0.028	7.8	
25	739	35	355	10	0.028	7.8	
30	721	35	322	9	0.028	7.8	
33	712	35	304	9	0.028	7.8	
35	705	35	291	8	0.028	7.8	
Polyisobutylene	202	38	104	2.7	0.026	7.1	
Polyvinyl acetate	305	36	47	1.3	0.028	7.8	
Polyvinylchloroacetate	296	40	40	1.0	0.025	6.8	
Polymethyl acrylate	276	42	45	1.1	0.024	6.4	
Polyurethane	238	36	33	0.9	0.028	7.8	
Natural rubber	300	38	54	1.4	0.026	7.1	
Methacrylate polymers							
ethyl	335	40	65	1.6	0.025	6.8	
n-butyl	300	39	97	2.5	0.026	7.1	
n-butyl	253	37	107	2.9	0.027	7.5	
Mg\(_6\)Cu\(_{17}\)Sn\(_{16}\).5	653	38	100	2.6	0.026	7.1	
Fe\(_{0.7}\)P\(_{3.2}\)C\(_7\)	736	38	120	3.2	0.026	7.1	
Metallic glass							
Pd\(_{40}\)Ni\(_{40}\)P\(_{20}\)	602	39	93	2.4	0.026	7.1	
Pt\(_{40}\)Ni\(_{15}\)P\(_{25}\)	500	37	95	5	0.027	7.5	
Pd\(_{77}\)Cu\(_{23}\)Sn\(_{16}\).5	653	38	100	2.6	0.026	7.1	
Fe\(_{0.7}\)P\(_{3.2}\)C\(_7\)	736	38	120	3.2	0.026	7.1	
Low molecular weight organic glasses							
Propanol	98	41	25	0.6	0.024	6.4	
Propylene glycol	160	44	40	0.9	0.023	6.1	
Glycerol	185	42	53	1.3	0.024	6.4	
Rosin	303	36	29	0.8	0.028	7.8	
Isobutyl alcohol	118	38	38	1.0	0.026	7.1	

The generalized kinetic criterion for glass transition (10) as applied to silicate glasses for the product \(q \tau_g \) gives the values (\(T_g \approx 700\text{+}800 \) K)

\[
q \tau_g = C_s T_g = 5 \times 6 \text{ K},
\]

which are in agreement with the typical data for the indicated glasses.

The generalized criterion for the liquid-glass transition (9) proposed by us can be formulated as follows: a liquid passes into a frozen glassy state when its cooling rate \(q \) reaches a certain fraction of \(C_g \) of the characteristic cooling rate \(q_0 = (T_g/\tau_g) \), which is closely related to the relaxation time of the structure \(\tau_g \) at glass transition temperature \(T_g \):

\[
\frac{q}{q_0} = \left(\frac{T_g}{\tau_g} \right) = C_g \quad (11)
\]

A similar, but slightly different formulation is possible: the liquid glassy when the relaxation time of the structure \(\tau_g \) reaches a fraction of \(C_g \) of the characteristic time of temperature change \(\tau_q = (T_q/q) : \)
\[
\frac{\tau_g}{\tau_f} \left(\frac{T_g}{q} \right) = C_g.
\] (12)

Thus, a generalization of the kinetic criteria for glass transition of Bartenev (1), Volkenstein - Ptitsyn (2), Schmelzer (3) has been proposed. The generalized kinetic criterion for glass transition (9) includes the relaxation time \(\tau_g \), the cooling rate \(q \), the transition temperature \(T_g \), and the almost universal value of \(C_g \), which is determined by the volume fraction of the fluctuation volume \(f_g \) frozen at the glass transition temperature \(T_g \).

Acknowledgment
This work was supported by the Ministry of Science and Higher Education of the Russian Federation (Grant No. 3.5406.2017 / 8.9).

References
1. Tropin T V, Schmelzer J W and Aksenov V L, 2016 Phys. - Usp. 59, 42.
2. Sanditov D S and Ojovan M I, 2019 Phys. - Usp. 62, 111.
3. Sanditov D S and Bartenov G M, Physical Properties of Disordered Structures, Nauka, Novosibirsk, 1982.
4. Rostiashvili V G, Irzhak V I and Rozenberg B A, Glass Transitions in Polymers, Khimiya, Leningrad, 1987.
5. Sanditov D S, 2012 J. Exp. Theor. Phys. 115, 112.
6. Sanditov D S, 2016 J. Exp. Theor. Phys. 123, 429.
7. Bartenev G M, 1951 Dokl. Akad. Nauk SSSR 76, 227.
8. Vol'kenshtein M V and Ptitsyn O B, 1956 Zh. Tekh. Fiz. 26, 2204.
9. Schmelzer J W P, 2012 J. Chem. Phys 136, 074512.
10. Ferry J D, Viscoelastic Properties of Polymers, John Wiley & Sons, Inc., New York, 1980.
11. Sanditov D S, Razumovskaya I V and Mashanov A A, 2020 Polym. Sci., Ser. A 62, 588.