Steganography in color images with random order of pixel selection and encrypted text message embedding

Krasimir Kordov1 and Stanimir Zhelezov2

1Department of Computer Informatics, Faculty of Mathematics and Computer Science, Konstantin Preslavski University of Shumen, Shumen, Shumen, Bulgaria
2Department of Computer Systems and Technologies, Faculty of Mathematics and Computer Science, Konstantin Preslavsky University of Shumen, Shumen, Shumen, Bulgaria

ABSTRACT

Information security is major concern in modern digital ages, and the outdated algorithms need to be replaced with new ones or to be improved. In this article a new approach for hiding secret text message in color images is presented, combining steganography and cryptography. The location and the order of the image pixels chosen for information embedding are randomly selected using chaotic pseudo-random generator. Encrypting the secret message before embedding is another level of security designed to misguide the attackers in case of analyzing for traces of steganography. Evaluating the proposed stegoalgorithm. The standard statistical and empirical tests are used for randomness tests, key-space analysis, key-sensitivity analysis, visual analysis, histogram analysis, peak signal-to-noise ratio analysis, chi-square analysis, etc. The obtained results are presented and explained in the present article.

INTRODUCTION

Steganology is an ancient science that is becoming more and more widely used with the development of digital information.

It consists of two main areas: steganography and steganalysis. Steganography is an interdisciplinary applied science field (Cox et al., 2007; Stanev & Szczypiorski, 2016), a set of technical skills and art for ways to hide the fact of transmission (presence) of information. It is one of the most effective approaches to protecting important information by hiding it (data hiding). High-tech steganography summarizes the areas for hiding messages using communication and computer technology, nanotechnology and modern advances in sciences such as biology, chemistry and others (Wu et al., 2020; Kopyra & Ogiela, 2020; Abd-El-Atty et al., 2020).

Steganalysis has exactly the opposite task. It combines methods and technologies for detecting secret steganographic communications. Along with the beginning of the development of modern ways of hiding information, at the end of the 20th century research in the field of steganalysis (Johnson & Jajodia, 1998; Provos & Honeyman, 2001;...
Fridrich & Goljan, 2002) has begun. Steganalysis is divided into two main categories: blind and targeted (Zhelezov, 2016). Targeted steganalysis methods have been developed to detect data embedded with specific stegoalgorithms and they are very accurate against certain stegomethods. The blind analysis methods are based on algorithms that require prior “training” with a series of empty and filled containers. The most characteristic of both types of analysis is that their methods are based on statistical dependencies in the analyzed subjects (Nissar & Mir, 2002). Such a method is POV (Pairs of Values) as part of the chi-square analysis (Westfeld & Pfitzmann, 1999; Fridrich, Goljan & Du, 2001).

Related work
One of the latest research which shows successful Optical Character Recognition (OCR) steganography technique with good results in steganalysis, is presented in (Chatterjee, Ghosal & Sarkar, 2020). Other example of resent steganographic research is described in (Pak et al., 2020), where the authors are using chaotic map for constructing a steganographic algorithm. Popular methods for image steganography are analyzed in Table 1.

The main task of the steganographic algorithm is to reduce the efficiency of such methods and thus to increase its reliability. For this purpose, it is necessary to choose a method of embedding that does not violate the statistical dependencies.

For this reason, a Spread Spectrum Steganography approach (Marvel, Boncelet & Retter, 1999; Satish et al., 2004) based on a pseudo-random sequence generator has been chosen in this article. Additional text encryption is applied for transforming the secret message into unreadable character sequence for increasing the level of security of the proposed steganographic algorithm. In this approach, the resulting pseudo-random sequences are used to determine the message embedding positions. This leads to preserving the statistical dependencies in the container. Another advantage of this approach is related to some types of targeted steganalysis. They extract the values of the smallest bits of the file sequentially and analyze them for repetitive sequences. With the embedding method proposed in the article this type of steganalysis is completely ineffective.

Motivation and justification
The text messages and the digital images are the most used information carriers concerning the data flow in the Internet and mobile communications. There are thousand of chat applications designed for short text messages correspondence using different ways to secure the communications between the users. Variety of cryptographic algorithms are implemented in order to protect the transferred information. Unfortunately, some of the encryption methods have become outdated and the new ones are being invented to improve secure communication. Information security will always be a major concern that motivates the development of new secret methods for data distribution and real-time communication. Such method is proposed in this work by combining two general scientific areas: steganography and cryptography.
Reference	Method	Notes
Marvel, Bonculet & Retter (1999)	The method uses a fast compressed-domain embedding technique to facilitate on-the-fly compressed-domain public-key steganography	Low probability of detection and leaving an observer unaware that the hidden data exist. The method works with grayscale images
Satish et al. (2004)	The method is based on a scheme of chaos based spread spectrum image steganography (CSSIS) involving the use of chaotic encryption and chaotic modulation in spread spectrum image steganography (SSIS)	A novel scheme of the use of chaos based encryption. Robustness is achieved by interleaving the message using a chaotic sequence
Baby et al. (2015)	The method is based on hiding multiple color images into a single color image using the Discrete Wavelet Transform	DWT increases the payload of the steganographic process by data compression. The proposed approach provides a good PSNR and SSIM value which establish the robustness of this work
Amirulhaqi, Purboyo & Nugrahaeni (2017)	The method is based on Spread Spectrum Steganography and the Vigenere Cipher embedding in gif images	The method consists of three processes, namely the spreading, modulation, and insertion of a GIF image to the message
Yadav & Dutta (2017)	The method is based on spread spectrum image steganography with RSA message encryption.	High level of security. Spreading the message all over the pixels of the cover media using pseudo random generator that generates random locations of pixels in an image and embedding message with Least Significant Bit algorithm to make it highly indiscernible
Gaurav & Ghanekar (2018)	The method presents a steganography algorithm based on local reference edge detection technique and exclusive disjunction in the sharp edge region compared to the uniform region of the image	This paper presents an improved steganography technique on the basis of HVS system with an improved XOR technique
Chatterjee, Ghosal & Sarkar (2020)	The method is based on Optical Character Recognition (OCR) based Steganographic technique.	Advantages—indicating correct classification by the model and high PSNR values. The method works with grayscale images. Slow embedding process for large images
Pak et al. (2020)	The method is based on an improved 1D chaotic system model	The conventional one-dimensional (1D) chaotic map has a simple structure, which is easy to implement and has a low computational cost. The algorithm shows a good performance against statistical analysis attacks. Conventional one-dimensional (1D) chaotic map has a drawback that the range of chaotic behaviors is narrow and the distribution of key sequence is uniform
An outline of the proposed work

Our main focus is to present a different approach for classic LSB Steganography in images using random order of pixel selection and embedding encrypted text message. In order to achieve our goal the proposed technique requires the following steps:

- constructing novel pseudo-random generator
- secure text encryption, using the constructed pseudo-random generator
- choosing random pixels (in chaotic order) from an image, using the constructed pseudo-random generator for embedding information
- using traditional LSB pixel's color modification for hiding, leaving no traces of steganography.

PSEUDO-RANDOM GENERATOR BASED ON DUFFING MAP AND CIRCLE MAP

For random pixel selection we are using pseudo-random generator (PRG) described in this section. Pseudo-random generators (also called Pseudo-random number generators (PRNG)) are software realized and unlike True-random generators (TRG) are easy for implementation with significantly lower cost and time consumption. This is why they are often used in cryptographic and steganographic systems. Examples of PRGs can be found in (Kordov, 2014, 2015b). The requirement resistance of PRGs is to different types of attacks are discussed in this section.

Duffing map description

The Duffing map is well known two dimensional non-linear discrete-time dynamical system with chaotic behavior (Holmes & Moon, 1983) which is a discrete version of Duffing oscillator (Van Dooren, 1988). Duffing map is given by:

\[
\begin{align*}
x_{t+1} &= y_t \\
y_{t+1} &= -bx_t + ay_t - y_t^3,
\end{align*}
\]

where \(x_t\) and \(y_t\) are double variables, calculated on every iteration, and \(a\) and \(b\) are fixed parameters of the Duffing map. For chaotic behavior the parameters are set to \(a = 2.75\) and \(b = 0.2\) (Hasan et al., 2017; Riaz et al., 2018). The initial test values we used for variables are \(x_0 = -0.63825\) and \(y_0 = 0.37713\) and Fig. 1 is a graphical representation of the Duffing map with the described values.

Circle map description

The Circle map is explored for chaotic behavior in Shenker (1982) and DeGuzman & Kelso (1991). It has random-like properties and is suitable for constructing PRGs (Kordov, 2015a). The Standard circle map equation is:

\[
\theta_{t+1} = (\theta_t + \Omega - \frac{K}{2\pi} \sin(2\pi\theta_t)) \mod 1,
\]

where \(\theta\) is a double variable and \(\Omega\) and \(K\) are the controlling parameters with values
Ω = 0.7128281828459045, K = 0.5. The initial value for the variable we used for experiments in this article is \(\theta_0 = -0.329054 \). Figure 2 is a graphical representation of the Circle map with the described values.

Figure 1 Duffing Map Plot with \(a = 2.75 \), \(b = 0.2 \), \(x_0 = -0.63825 \) and \(y_0 = 0.37713 \).

Figure 2 Circle Map Plot with \(\Omega = 0.7128281828459045 \), \(K = 0.5 \) and \(\theta_0 = -0.329054 \).
Random bit extraction process

The proposed bit extraction process is using Eqs. (1) and (2) and contains the following steps:

- The initial values of the constant parameters from Eqs. (1) and (2) are determined and the initial values of the double variables are set (described in the previous sections).
- For additional security, first N iterations from Eq. (1) and first M iterations from Eq. (2) are skipped. (We randomly chose $N = M = 541$).
- On every iteration of Eq. (1), x_t and y_t are used for calculation of additional double variable p_t:

\[
\begin{align*}
temp_{1t} &= \text{integer}(x_t \times 10^9) \mod 2, \\
temp_{2t} &= \text{integer}(y_t \times 10^9) \mod 2, \\
p_t &= \text{temp1 XOR temp2} \quad (3)
\end{align*}
\]

and θ_t from Eq. (2) is used for calculation of the variable q_t:

\[
q_t = \text{integer}(\theta_t \times 10^9) \mod 2 \quad (4)
\]

- The produced random bit is obtained by performing XOR operation between the variables p_t and q_t.
- The previous two steps are repeated until the necessary random binary sequence is reached.

Key-sensitivity analysis

This test is performed to determine the behavior of the proposed PRG if there are changes in the secret key that is used to produce binary sequences. To test the key sensitivity very similar secret keys are used (described in Table 2) by changing a single digit in one of the initial double variables.

The results of the experiment are graphically presented in Fig. 3 and clearly show that the final binary sequence is different every time even if the secret keys are very similar.

Table 2 Secret keys values.

Secret Key	Variable values		
	x_0	y_0	θ_0
K1	-0.63825	0.37713	-0.329054
K2	-0.63824	0.37713	-0.329054
K3	-0.63826	0.37713	-0.329054
K4	-0.63825	0.37712	-0.329054
K5	-0.63825	0.37714	-0.329054
K6	-0.63825	0.37713	-0.329053
K7	-0.63825	0.37713	-0.329055
similar. This means the proposed PRG is very sensitive to any changes in the initial conditions.

Key-space analysis

The key-space includes the variety of possible values of the used variables in random bit generation. Equation (1) has two initial variables that can have different values (x_0 and y_0) and Eq. (2) has one variable $-\theta_0$. The parameters from the equations are constant so they cannot be part of the secret key. In addition to the secret key, the integer values of N and M also can have different values. Considering the floating point standard of IEEE for double variables ([IEEE Computer Society, 2008](https://ieeexplore.ieee.org/document/4826178)) every double variable has precision about 10^{-15}. Combining the three variables we have $(10^{15})^3 \approx 2^{149}$ plus $(2^{32})^2$ for the two integer variables and final about 2^{213} for key-space. The required key-space for resisting brute-force attacks is 2^{100} ([Alvarez & Li, 2006](https://www.ias.ac.in/article/fulltext/jbcs/02/05/0565-0577)) which means that the proposed PRG is secure enough. Key-space comparison is presented in Table 3.
Randomness evaluation
The most important property of a PRG is to produce random binary numbers. To evaluate the randomness 1 billion bits are generated and the sequence is tested with the most popular statistical test software packages.

NIST—random test
The first software for randomness evaluation is NIST—Statistical Test Suite (*Bassham et al., 2010*) and includes 17 base tests. The testing process is performed by dividing the tested sequence into 1,000 subsequences with length of 1,000,000 bits. All the NIST need to have P-values in the range $[0,1)$ to be considered for successfully passed. The results for all tests are summarized in Table 4.

DIEHARD—random test
The second test package is DIEHARD software (*Marsaglia, 1995*) and contains 19 test for randomness. The tests applied for the same bitstream of 1 billion bits generated by our PRG. The acceptable range again for calculated P-values is $[0,1)$ for passing the individual tests. The results for all tests are summarized in Table 5.

All the tests in Table 5 have P-values in range $[0,1)$, indicating that all the tests for randomness evaluation are passed.

ENT—random test
The ENT statistical test software (*Walker, 2008*) is the last package we used for randomness evaluation. The ENT software tests are: Entropy test, Optimum compression test, χ^2 distribution test, Arithmetic mean value test, Monte Carlo π estimation test, and Serial correlation coefficient test. In Table 6 are presented the results for all tests from ENT software.

STEGANOGRAPHY IN COLOR IMAGES WITH RANDOM PIXEL SELECTION
The proposed method combines the classical Least-significant bit (LSB) value replacement by choosing random positions of hiding in the image. The random order and the message encryption is performed by the proposed PRG.

Message embedding algorithm
The process is performed by the following steps:

1. The text information is transformed to vector V of binary sequence using ASCII table values of the characters.

Table 3 Key-space comparison of PRGs.
Reference
Kordov (2015a)
Kordov (2014)
Kordov (2015b)
Proposed
2. Control character sequence marking the end of the secret message is converted also in binary sequence and added to the vector \(V \). (In our case we used “*#”).

3. The binary sequence in vector \(V \) is encrypted using XOR operation and random sequence produced by PRG with Secret Key 1. The result vector is \(V' \).

4. The proposed PRG is used with the Secret Key 2 to produce two times 24 bits for selecting random position in an image with following rule:

\[
\begin{align*}
\text{x position} &= \text{integer}(24\text{bits}) \mod \text{image width}, \\
\text{y position} &= \text{integer}(24\text{bits}) \mod \text{image height}
\end{align*}
\] (5)

5. If a pixel with position \((x,y)\) is used the previous step is repeated until unused pixel position is found.

6. LSB technique is used for embedding three bits from vector \(V' \) into RED, GREEN and BLUE color values of the selected pixel.

7. Steps 4–6 are repeated until the sequence from vector \(V' \) is embedded into the final stego image.

Message extraction algorithm

The process is performed by the following steps:

1. The proposed PRG is used with the Secret Key 2 to produce two times 24 bits for selecting random position in the image with the following rule:

\[
\begin{align*}
\text{x position} &= \text{integer}(24\text{bits}) \mod \text{image width}, \\
\text{y position} &= \text{integer}(24\text{bits}) \mod \text{image height}
\end{align*}
\] (6)

2. If a pixel with position \((x,y)\) is used the previous step is repeated until unused pixel position is found.

3. The LSB values from RED, GREEN and BLUE colors are copied into vector \(V' \).

4. Every 8 bits are transformed into char value and every last two obtained characters are compared with the control sequence that marks the end of the message (“*#”).

5. Steps 1–4 are repeated until the control sequence is reached.

6. The binary sequence in vector \(V' \) is decrypted using XOR operation and random sequence produced by PRG with Secret Key 1. The result vector is \(V'' \).

7. Vector \(V \) is transformed from binary sequence into ASCII chars equivalent forming the original hidden text message.

EXPERIMENTAL SETUP

For our empirical experiments we used 2.40 GHz Intel Core i7-3630QM Dell Inspiron laptop with 8 GB RAM, x64 Windows 10 Pro operating system. The proposed method is realized using C++ programming language and the test images are personal photos taken within our university region. Sixteen color images are selected—8 with dimensions \(256 \times 256 \) and 8 with dimensions \(512 \times 512 \). MATLAB R2016a software is used for histogram plotting and image analysis and processing. The initial values used for PRG are \(x_0 = -0.63825, \ y_0 = 0.37713, \ \theta_0 = -0.329054 \) and for \(N \) and \(M = 541 \).
STEGANOGRAPHIC ANALYSIS

In this section, the most used tests for steganographic analysis are included for testing the proposed stego algorithm. The color images are tested by embedding secret messages with different length. The messages are random only for the experiments and contain 100 letters (800 bits), 200 letters (1,600 bits), 300 letters (2,400 bits), 400 letters (3,200 bits), 500 letters (4,000 bits), 1,000 letters (8,000 bits), and 2,000 letters (16,000 bits). All the test in Supplemental File 1 and 2.

Visual analysis

This is the most mandatory test for steganographic algorithm. A necessary requirement for any stego algorithm is to leave no visual traces of embedded secret messages or message container changes. Figure 4 shows one of the test images with its corresponding stego images with different lengths of embedded information.

Figure 4 clearly demonstrates that there are no visual differences between the images and no traces of hidden messages. More examples are presented in Fig. 5, to confirm that there are no visual trace of steganography in corresponding stego images.

Histogram analysis

The image histograms are used for graphical representation of the tonal distribution of the red, green and blue colors. This experiment is designed to analyze if there are any changes in color distribution when the proposed steganographic method is applied.

NIST test	P-value	Pass rate
Frequency	0.844641	991/1,000
Block-frequency	0.140453	993/1,000
Cumulative sums (Forward)	0.002820	993/1,000
Cumulative sums (Reverse)	0.723804	995/1,000
Runs	0.664168	991/1,000
Longest run of Ones	0.803720	996/1,000
Rank	0.473064	994/1,000
FFT	0.552383	991/1,000
Non-overlapping templates	0.513087	990/1,000
Overlapping templates	0.911413	996/1,000
Universal	0.494392	994/1,000
Approximate entropy	0.540204	989/1,000
Random-excursions	0.480341	650/657
Random-excursions Variant	0.531001	648/657
Serial 1	0.989786	993/1,000
Serial 2	0.413628	990/1,000
Linear complexity	0.574903	995/1,000

Table 4 NIST test suite results. The minimum pass rate for each statistical test with the exception of the random excursion (variant) test is approximately = 980 for a sample size = 1,000 binary sequences. The minimum pass rate for the random excursion (variant) test is approximately = 642 for a sample size = 657 binary sequences.
Table 5 DIEHARD statistical test results.

DIEHARD test	P-value
Birthday spacings	0.3811619
Overlapping 5-permutation	0.7670145
Binary rank \((31 \times 31)\)	0.6561000
Binary rank \((32 \times 32)\)	0.4885290
Binary rank \((6 \times 8)\)	0.4461883
Bitstream	0.5432060
OPSO	0.6106608
OQSO	0.5272964
DNA	0.5160838
Stream count-the-ones	0.4152015
Byte count-the-ones	0.6557379
Parking lot	0.5087899
Minimum distance	0.2999120
D spheres	0.8421500
Squeeze	0.5968610
Overlapping sums	0.4620793
Runs up	0.6446245
Runs down	0.2258565
Craps	0.7826510

Table 6 ENT statistical test results.

ENT test	Result
Entropy	7.9999999 bits per byte
Optimum compression	OC would reduce the size of this 125,000,000 byte file by 0%
\(\chi^2\) distribution	For 125,000,000 samples is 211.12, and randomly would exceed this value 97.92% of the times
Arithmetic mean value	127.4897 (127.5 = random)
Monte Carlo \(\pi\) estimation	3.142024754 (error 0.01%)
Serial correlation coefficient	\(-0.000085\) (totally uncorrelated = 0.0)

Figure 6 shows the histograms of a test image with its corresponding stego images and Table 7 shows average pixel intensity values.

The histogram attack method (Fridrich & Goljan, 2002) is historically the first statistical attack described in the resources. It is based on the fact that with LSB embedding, the even pixel values either remain unchanged (unmodified) or are being increased by 1, while the odd pixel values either remain unchanged or decrease. Thus, the values \((2_i, 2_{i+1})\) form a pair of values (PoV), which are exchanged during embedding. This asymmetry in the embedding function can be used and a statistical test applied to confirm or deny that the
even values follow the known distribution. The statistical steganalysis based on the Chi-square method is based on this. It makes a histogram (the frequency of occurrence of each color in the image) of the color distribution and based on it, pairs of adjacent values (PoV) are formed, differing in the youngest bit. Then a theoretical histogram of the color distribution is made, showing the expected distribution of the values in the presence of hidden information and pairs of adjacent values are formed again. The difference between the observed and expected occurrence frequencies for each pair is sought. In our case the observation of Fig. 6 shows that the tonal distribution is not changed when the secret messages are hidden in the plain image.

Peak signal-to-noise ratio and structural similarity analysis

The Peak Signal-to-Noise Ratio (PSNR) measure the possible maximum power of the clean signal against the power of the noise signal. Poorly changing the pixel values of an image can lead to corruption of the image quality which may uncover a possible steganography. PSNR is calculated using the following equation:

$$PSNR = 10 \log_{10} \frac{MAX^2}{MSE} (dB),$$

where MAX is the maximum possible value of the pixel color. Considering that every pixel has 8 bits for red, green and blue color, we use the average value of the three values.
meaning \(MAX = 2^8 - 1 = 255 \). MSE is the mean square error between the plain and stego images defined as:

\[
MSE = \frac{1}{NM} \sum_{i=1}^{N} \sum_{j=1}^{M} (p_{x,y} - s_{x,y})^2
\]

(8)

where \(p_{x,y} \) and \(s_{x,y} \) are the corresponding pixel values from the plain and stego images, respectively. Considering the color images have red, green and blue values for every pixel, the \((p_{x,y} - s_{x,y})^2 \) is calculated by:

\[
\frac{(r_{\text{Value,plain}} - r_{\text{Value,ste}})^2 + (g_{\text{Value,plain}} - g_{\text{Value,ste}})^2 + (b_{\text{Value,plain}} - b_{\text{Value,ste}})^2}{3}
\]

(9)

The Structural Similarity (SSIM) is another method used in steganographic analysis proposed and described in Wang et al. (2004). The test is designed to determine the similarity between two images, in our case the similarity between plain and corresponding stego images. Values close to 1 are indicators for the best possible structural similarity between the compared images.

Part of the obtained values for MSE, PSNR and SSIM are shown in Table 8. The MSE and PSNR values are calculated for images with 100 chars (800 bits), 1,000 chars.

Figure 5 Additional examples of the proposed steganographic scheme. (A) Container image—Main corpus. (B) Container image—Monument. (C) Container image—Solar panels. (D) Container image—Fitness. (E) Stego image—Main corpus. (F) Stego image—Monument. (G) Stego image—Solar panels. (H) Stego image—Fitness. The photos were taken by the authors.
Table 8 shows high values for PSNR (over 60 dB) meaning the stego algorithm do not destroy the image quality with considered minimum requirement of 20–30 dB for low quality. The obtained values for SSIM are close to the best possible value −1.

Additional metrics analysis

Some researchers use different metrics for steganographic analysis of their methods. For evaluation of the proposed algorithm we performed additional experiments for the most used indicators—Average Difference (AD), Structural Content (SC), Normalized Cross-Correlation (NCC), Maximum Difference (MD), Laplacian Mean Squared Error (LMSE), Normalized Absolute Error (NAE), Image Quality Index (IQI). The best possible value for SC, NCC, MD and IQI is 1 and for AD, LMSE and NAE is 0. The results for our method are presented in Table 8. All the results are available in Supplemental File 3.

The obtained results in Table 9 show results close to the perfect values demonstrating the stability and efficiency of the proposed stegoalgorithm.
Table 8 The MSE, PSNR and SSIM values for images with 100 chars (800 bits), 1,000 chars (8,000 bits), and 2,000 chars (16,000 bits) embedded.

File name	Stego Image with 100 chars embedded	Stego Image with 1,000 chars embedded	Stego Image with 2,000 chars embedded						
	MSE	PSNR	SSIM	MSE	PSNR	SSIM	MSE	PSNR	SSIM
f1-256x256	0.001587	76.12527	0.999985	0.016464	65.96539	0.999859	0.032562	63.00366	0.999723
f2-256x256	0.001480	76.42789	0.999986	0.015305	66.28259	0.999856	0.030289	63.18000	0.999715
f3-256x256	0.001541	76.25239	0.999993	0.016159	66.04664	0.999917	0.031754	63.11288	0.999845
f4-256x256	0.001511	76.33925	0.999996	0.015839	66.13363	0.999958	0.031494	63.14851	0.999921
f5-256x256	0.001434	76.56432	0.999987	0.015283	66.13782	0.999865	0.031296	63.17595	0.999732
f6-256x256	0.001556	76.20960	0.999992	0.015579	66.20535	0.999910	0.030823	63.24209	0.999825
f7-256x256	0.001633	76.00177	0.999993	0.015717	66.16723	0.999929	0.030640	63.26797	0.999862
f8-256x256	0.001526	76.29560	0.999993	0.015289	66.28693	0.999939	0.030563	63.27879	0.999878
f1-512x512	0.000404	82.06314	0.999996	0.003708	72.43954	0.999969	0.007530	69.36273	0.999936
f2-512x512	0.000366	82.49349	0.999996	0.003826	72.30319	0.999956	0.007805	69.20715	0.999910
f3-512x512	0.000397	82.14587	0.999997	0.003601	72.56648	0.999975	0.007263	69.51953	0.999949
f4-512x512	0.000408	82.02237	0.999998	0.003979	72.13336	0.999984	0.007813	69.20900	0.999969
f5-512x512	0.000381	82.31620	0.999996	0.003731	72.41281	0.999960	0.007599	69.32331	0.999917
f6-512x512	0.000347	82.72579	0.999998	0.003601	72.56648	0.999978	0.007313	69.48998	0.999955
f7-512x512	0.000404	82.06314	0.999997	0.004047	72.05905	0.999968	0.008007	69.09608	0.999938
f8-512x512	0.000370	82.44849	0.999998	0.003792	72.34234	0.999979	0.007710	69.26054	0.999958
Comparison

In order to compare the proposed method with other image steganographic algorithms we use the presented metrics (where available) in related articles. The main metrics for defining the security and the reliability of the stegomethods are related to preserving the quality of the cover images and keeping the similarity with the stego images. For the image quality estimation the PSNR and MSE metrics are applied, and for the similarity of the cover and corresponding stego images—SSIM metric. The following Table 9 contains the most used metrics.

File name	AD	SC	NCC	MD	LMSE	NAE	IQI
f1-256x256	0.000061	1.00000	0.999999	1.000000	0.000003	0.000010	1.00000
f2-256x256	0.000107	1.00000	1.000000	1.000000	0.000045	0.000011	1.00000
f3-256x256	0.000015	1.00000	0.999999	1.000000	0.000009	0.000012	1.00000
f4-256x256	−0.000107	0.99999	1.000001	1.000000	0.000008	0.000014	1.00000
f5-256x256	−0.000122	0.99999	1.000001	1.000000	0.000029	0.000009	1.00000
f6-256x256	0.000336	1.00000	0.999998	1.000000	0.000005	0.000014	1.00000
f7-256x256	0.000076	1.00000	1.000000	1.000000	0.000026	0.000013	1.00000
f8-256x256	0.000000	1.00000	1.000000	1.000000	0.000017	0.000003	1.00000
f1-512x512	0.000000	1.00000	1.000000	1.000000	0.000004	0.000004	1.00000
f2-512x512	0.000000	1.00000	1.000000	1.000000	0.000004	0.000004	1.00000
f3-512x512	0.000023	1.00000	1.000000	1.000000	0.000004	0.000004	1.00000
f4-512x512	−0.000019	1.00000	1.000000	1.000000	0.000024	0.000002	1.00000
f5-512x512	0.000008	1.00000	1.000000	1.000000	0.000003	0.000003	1.00000
f6-512x512	0.000034	1.00000	1.000000	1.000000	0.000078	0.000003	1.00000
f7-512x512	0.000038	1.00000	1.000000	1.000000	0.000006	0.000003	1.00000
f8-512x512	0.000072	1.00000	0.999999	1.000000	0.000006	0.000003	1.00000

Chi-square analysis

In this article, steganalytic software based on the Chi-square method is used (available at http://www.guillermito2.net/stegano/tools/index.html). The software graphically shows the positions of the pixel values according to the image Chi-square value of the tested image. The red curve indicates the Chi-square values of the tested images and the green values represent the average value of the LSBs. If the green values are below the red curve the test didn’t pass successfully. Otherwise, it is assumed that the test was passed successfully, that is, there are no indications of a hidden message. For visual comparison we constructed a single screen shot image with six diagrams containing the results of the software.
Figure 7 demonstrates the results of our tests. The first is a diagram of the container and below are the corresponding stego files. The red curve is constantly at zero value leaving no green point under it. The Chi-square tests show that there is no trace of steganography in the stego files, indicated that the proposed algorithm can withstand against Chi-square attacks.

COMPUTATIONAL AND COMPLEXITY ANALYSIS

The proposed algorithm is tested with the conditions described in Experimental Setup Section. Concerning the complexity of our method, it is defined by the computations and iterations of the calculations for encryption and embedding operations. Considering the linear computation of every operation(random numbers generation, LSB modification...)}
etc.) do not affect the complexity, the theoretical complexity of the proposed scheme is \(\Theta(8 \times n) \) equated to \(\Theta(n) \), where \(n \) defines the input data of the algorithm. The input data of the algorithm is the secret message for embedding which is processed as bit sequence (8 bits for a character). The image parameters (width and height) do not increase the time consumption, because the number of random selected pixels depends only from the length of the embedded secret message. However, the images size is related to the memory consumption.

The following Table 11 summarizes the results of our empirical experiment for embedding different size of secret text messages.

The results in Table 11 show that the proposed method is very fast and the computational complexity depends entirely of the secret text length.

CONCLUSIONS

In this manuscript a new method for steganography is presented. The base of the proposed algorithm is a PRG used for secret message encryption and random pixels selection for data embedding. Proving the level of security the PRG is statistically tested for randomness and key-sensitivity, and the key-space analysis defines a necessary level of brute-force attacks resistance with minimum requirement \(2^{100} \) for key-space.

The steganographic algorithm is evaluated with visual analysis, file size comparison, histogram analysis and chi-square analysis and the results show that there are no traces of steganography when a secret message is hidden in the tested color images. The PSNR
analysis indicates that the quality of the signal in stego images remains high, considered that the good quality of the signal is above 20 dB. Additional tests indicates high similarity between cover and the corresponding stego images for proving the security and the reliability of the proposed scheme. The presented method can be improved for real-time video communication with embedded data.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This research is supported by the European Regional Development Fund and the Operational Program “Science and Education for Smart Growth” under contract UNITe No. BG05M2OP001-1.001-0004-C01 (2018–2023). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
European Regional Development Fund: BG05M2OP001-1.001-0004-C01 (2018–2023).

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
- Krasimir Kordov conceived and designed the experiments, performed the experiments, analyzed the data, performed the computation work, prepared figures and/or tables, authored or reviewed drafts of the paper, and approved the final draft.
- Stanimir Zhelezov conceived and designed the experiments, performed the experiments, analyzed the data, performed the computation work, prepared figures and/or tables, authored or reviewed drafts of the paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The source code are available in the Supplemental Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/peerj-cs.380#supplemental-information.

REFERENCES

Abd-El-Atty B, Iliyasu AM, Alaskar H, El-Latif A, Ahmed AA. 2020. A robust quasi-quantum walks-based steganography protocol for secure transmission of images on cloud-based e-healthcare platforms. *Sensors* **20**(11):3108 DOI 10.3390/s20113108.

Alvarez G, Li S. 2006. Some basic cryptographic requirements for chaos-based cryptosystems. *International Journal of Bifurcation and Chaos* **16**(8):2129–2151 DOI 10.1142/S0218127406015970.
Amirulhaqi A, Purboyo TW, Nugrahaeni RA. 2017. Security on gif images using steganography with lsb method, spread spectrum and the vigenere cipher. *International Journal of Applied Engineering Research* 12(23):13604–13609.

Baby D, Thomas J, Augustine G, George E, Michael NR. 2015. A novel dwt based image securing method using steganography. *Procedia Computer Science* 46:612–618 DOI 10.1016/j.procs.2015.02.105.

Bassham L III, Rukhin A, Soto J, Nechvatal J, Smid M, Barker E, Leigh S, Levenson M, Vangel M, Banks D, Heckert A, Dray J, Vo S. 2010. Sp 800-22 rev. 1a. a statistical test suite for random and pseudorandom number generators for cryptographic applications. Gaithersburg: National Institute of Standards & Technology DOI 10.6028/NIST.SP.800-22r1a.

Chatterjee A, Ghoosal SK, Sarkar R. 2020. Lsb based steganography with ocr: an intelligent amalgamation. *Multimedia Tools and Applications* 79(17–18):1–19 DOI 10.1007/s11042-019-08472-6.

Cox I, Miller M, Bloom J, Fridrich J, Kalker T. 2007. *Digital watermarking and steganography*. Second Edition. Burlington: Morgan Kaufmann Publishers.

DeGuzman GC, Kelso JAS. 1991. Multifrequency behavioral patterns and the phase attractive circle map. *Biological Cybernetics* 64(6):485–495 DOI 10.1007/BF002613.

Fridrich J, Goljan M. 2002. Practical steganalysis of digital images: state of the art. *Security and Watermarking of Multimedia Contents IV, International Society for Optics and Photonics* 4675:1–13.

Fridrich J, Goljan M, Du R. 2001. Detecting lsb steganography in color, and gray-scale images. *IEEE Multimedia* 8(4):22–28 DOI 10.1109/93.959097.

Gaurav K, Ghanekar U. 2018. Image steganography based on canny edge detection, dilation operator and hybrid coding. *Journal of Information Security and Applications* 41:41–51 DOI 10.1016/j.jisa.2018.05.001.

Hasan MM, Faruqi TM, Tazrean M, Chowdhury TH. 2017. Biometric encryption using duffing map. In: *2017 4th International Conference on Advances in Electrical Engineering (ICAEE)*. 737–742.

Holmes PJ, Moon FC. 1983. Strange attractors and chaos in nonlinear mechanics. *Journal of Applied Mechanics* 50(4B):1021–1032 DOI 10.1115/1.3167185.

IEEE Computer Society. 2008. IEEE standard for floating-point arithmetic. In: *IEEE Std 754-2008*. Piscataway: IEEE, 1–70.

Johnson N, Jajodia S. 1998. Steganalysis of images created using current steganography software. In: *International Workshop on Information Hiding*. 273–289.

Koptyra K, Ogiela MR. 2020. Distributed steganography in pdf file—secrets hidden in modified pages. *Entropy* 22(6):600 DOI 10.3390/e22060600.

Kordov K. 2015a. Modified pseudo-random bit generation scheme based on two circle maps and xor function. *Applied Mathematical Sciences* 9:129–135 DOI 10.12988/ams.2015.411887.

Kordov K. 2015b. Signature attractor based pseudorandom generation algorithm. *Advanced Studies in Theoretical Physics* 9(6):287–293 DOI 10.12988/astp.2015.517.

Kordov KM. 2014. Modified chebyshev map based pseudo-random bit generator. *AIP Conference Proceedings* 1629:432–436.

Marsaglia G. 1995. *The marsaglia random number cdrom including the diehard battery of tests of randomness*. Tallahassee: Florida State University.

Marvel LM, Boncelet CG, Retter CT. 1999. Spread spectrum image steganography. *IEEE Transactions on Image Processing* 8(8):1075–1083 DOI 10.1109/83.777088.
Nissar A, Mir AH. 2002. Classification of steganalysis techniques: a study. Mathematical and Software Engineering 20(6):1758–1770.

Pak C, Kim J, An K, Kim C, Kim K, Pak C. 2020. A novel color image lsb steganography using improved 1d chaotic map. Multimedia Tools and Applications 79(1–2):1409–1425 DOI 10.1007/s11042-019-01803-0.

Provos N, Honeyman P. 2001. Detecting steganographic content on the internet. Ann Arbor: Center for Information Technology Integration, 48103–44943.

Riaz M, Ahmed J, Shah RA, Hussain A. 2018. Novel secure pseudorandom number generator based on duffing map. Wireless Personal Communications 99(1):85–93 DOI 10.1007/s11251-017-0130-9.

Satish K, Jayakar T, Tobin C, Madhavi K, Murali K. 2004. Chaos based spread spectrum image steganography. IEEE Transactions on Consumer Electronics 50(2):587–590 DOI 10.1109/TCE.2004.1309431.

Shenker SJ. 1982. Scaling behavior in a map of a circle onto itself: empirical results. Physica D: Nonlinear Phenomena 5(2–3):405–411 DOI 10.1016/0167-2789(82)90033-1.

Stanev S, Szczypiorski K. 2016. Steganography training: a case study from university of shumen in bulgaria. International Journal of Electronics and Telecommunications 62(3):315–318 DOI 10.1515/eletel-2016-0043.

Van Dooren R. 1988. On the transition from regular to chaotic behaviour in the duffing oscillator. Journal of Sound and Vibration 123(2):327–339 DOI 10.1016/S0022-460X(88)80115-9.

Walker J. 2008. Ent: a pseudorandom number sequence test program. Available at http://www.fourmilab.ch/random/.

Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. 2004. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing 13(4):600–612 DOI 10.1109/TIP.2003.819861.

Westfeld A, Pfitzmann A. 1999. Attacks on steganographic systems. In: International Workshop on Information Hiding. 61–76.

Wu P, Chang X, Yang Y, Li X. 2020. BASN—learning steganography with a binary attention mechanism. Future Internet 12(3):43 DOI 10.3390/fi12030043.

Yadav P, Dutta M. 2017. 3-level security based spread spectrum image steganography with enhanced peak signal to noise ratio. In: 2017 Fourth International Conference on Image Information Processing (ICIIP). Piscataway: IEEE, 1–5.

Zhelezov S. 2016. Modified algorithm for steganalysis. Mathematical and Software Engineering 1(2):31–36.