A REMARK ON GEODESICS IN THE BANACH MAZUR DISTANCE

ALVARO ARIAS AND VLADIMIR KOVALCHUK

Abstract. We show that there are uncountably many geodesics between any two non-isometric \(n \)-dimensional normed spaces. We construct two explicit geodesics that can be used to describe all the points of the other geodesics.

1. Introduction

The (multiplicative) Banach-Mazur distance between the \(n \)-dimensional normed spaces \(E \) and \(F \) is given by

\[
d(E, F) = \inf \{ \|T\|\|T^{-1}\| : T : E \to F \text{ is an isomorphism} \}.
\]

This quantity was introduced by Pełczyński and it measures how close \(E \) and \(F \) are isomorphic to each other. One can easily check that the infimum is attained, that \(d(E, F) = 1 \) iff \(E \) and \(F \) are isometric, and that \(d(E, F) \leq d(E, H)d(H, F) \). It follows that \(\log d(E, F) \) is a distance in the Banach Mazur compactum \(BM_n \), the set of isometry classes of \(n \)-dimensional normed spaces, that turns out to be compact with this metric.

The Banach Mazur distance has a geometric interpretation. Suppose that \(E = (\mathbb{R}^n, B_E) \) and \(F = (\mathbb{R}^n, B_F) \), where \(B_E \) and \(B_F \) are the unit balls of \(E \) and \(F \). Then one can easily check that \(d(E, F) \) is the smallest number \(L \geq 1 \) such that there exists an invertible map \(T : F \to E \) such that \(B_E \subset T(B_F) \subset LB_E \). If \(T : F \to E \) attains the distance and if we replace \(F \) by its isometric version \((\mathbb{R}^n, T(B_F)) \), we assume without loss of generality that

\[
(1) \quad B_E \subset B_F \subset d(E, F)B_E.
\]

This means that when the normed spaces are put in this canonical position, the distance is attained by the identity map.

Suppose that \((M, \rho)\) is a metric space. The length of a path \(\gamma : [a, b] \to (M, \rho) \) is defined by

\[
L(\gamma) = \sup_{a=t_0 \leq t_1 \leq \cdots \leq t_n = b} \sum_{i=1}^{n} \rho(\gamma(t_i), \gamma(t_{i-1})),
\]

where the supremum runs over all possible partitions. By the triangle inequality, we have that \(\rho(\gamma(a), \gamma(b)) \leq L(\gamma) \). A geodesic between \(x \in M \) and \(y \in M \) is a path \(\gamma \) that starts at \(x \), ends at \(y \), and that has length equal to \(\rho(x, y) \).

Definition 1. A metric space \((M, \rho)\) is a geodesic space if every two points in \(M \) are joined by a geodesic.

For the (multiplicative) distance in the Banach Mazur compactum \(BM_n \), the relevant concept is the following:

2000 Primary 52A21, 52A20; Secondary 46B70: code

Key words and phrases. Banach Mazur distance.
Definition 2. The \(n \)-dimensional normed space \(H \) is an intermediate space between \(E \) and \(F \) if \(d(E, F) = d(E, H) d(H, F) \).

We easily see that

Lemma 1. A path \(\gamma : [a, b] \to BM_n \) is a geodesic from \(E \) to \(F \) iff \(\gamma(a) = E, \gamma(b) = F \), and for every \(a = t_0 < t_1 < \cdots < t_n = b \), \(d(E, F) = \prod_{i=1}^{n} d(\gamma(t_i), \gamma(t_{i-1})) \).

Classical spaces provide examples of geodesics. It follows from Holder’s inequality that the paths \(\{ \ell_p^n : 1 \leq p \leq 2 \} \) and \(\{ \ell_p^n : 2 \leq q \leq \infty \} \) are geodesics in \(BM_n \). Indeed, if \(1 \leq r < s \leq \infty \), \(B_{\ell_p^r} \subset B_{\ell_p^s} \subset n^{\frac{1}{r} - \frac{1}{s}} B_{\ell_p^2} \). When \(2 \leq q < \infty \) we have

\[
B_{\ell_2^q} \subset B_{\ell_\infty^q} \subset n^{\frac{1}{q}} B_{\ell_2^q} \quad \text{and} \quad B_{\ell_2^q} \subset B_{\ell_\infty^q} \subset n^{\frac{1}{q} - \frac{1}{\infty}} B_{\ell_2^q}.
\]

This implies that \(d(\ell_p^n, \ell_\infty^q) \leq n^{\frac{1}{q} - \frac{1}{\infty}} \) and that \(d(\ell_p^n, \ell_\infty^q) \leq n^{\frac{1}{q}} \). Since

\[
\sqrt{n} = d(\ell_2^n, \ell_\infty^n) \leq d(\ell_2^n, \ell_q^n) d(\ell_q^n, \ell_\infty^n) \leq n^{\frac{1}{q} - \frac{1}{\infty}} n^{\frac{1}{q}} = \sqrt{n},
\]

we conclude that \(d(\ell_2^n, \ell_\infty^n) = n^{\frac{1}{q} - \frac{1}{\infty}} \) and \(d(\ell_2^n, \ell_\infty^n) = n^{\frac{1}{q}} \). If \(2 < q_1 < q_2 < \infty \), then \(B_{\ell_2^{q_1}} \subset B_{\ell_2^{q_2}} \subset n^{\frac{1}{q_1} - \frac{1}{q_2}} B_{\ell_2^2} \), which implies that \(d(\ell_2^{q_1}, \ell_2^{q_2}) \leq n^{\frac{1}{q_1} - \frac{1}{q_2}} \). Since

\[
n^{\frac{1}{q_1} - \frac{1}{q_2}} = d(\ell_2^{q_1}, \ell_2^{q_2}) \leq d(\ell_2^{q_1}, \ell_\infty^{q_2}) d(\ell_\infty^{q_1}, \ell_\infty^{q_2}) \leq n^{\frac{1}{q_2} - \frac{1}{\infty}} n^{\frac{1}{q_1} - \frac{1}{q_2}} = n^{\frac{1}{q_1} - \frac{1}{q_2}},
\]

we conclude that \(d(\ell_\infty^{q_1}, \ell_\infty^{q_2}) = n^{\frac{1}{q_1} - \frac{1}{q_2}} \). And from this, it follows that \(\{ \ell_q^n : 2 \leq q < \infty \} \) is a geodesic. The case \(\{ \ell_p^n : 1 \leq p \leq 2 \} \) is similar.

Notice that the path \(\{ \ell_p^n : 1 \leq p \leq \infty \} \) is not a geodesic because \(d(\ell_\infty^n, \ell_\infty^n) < d(\ell_2^n, \ell_2^n) d(\ell_2^n, \ell_\infty^n) = \sqrt{n} = n \) (see [4], for the case of \(n = 3 \) see [5]).

Interpolation spaces can be used to obtain geodesics and the previous examples illustrate this for \(\ell_p^n \) spaces. The technique works in more general settings, including in operator spaces (see [1]). Our results can be interpreted using the real interpolation \(K \)-method and \(J \)-method. However, we prefer to use geometric language.

2. Characterization of Intermediate Spaces

In this section we show that there are many intermediate spaces between any two non-isomorphic \(n \)-dimensional normed spaces. We first identify the “extreme” intermediate spaces and then use them to determine all of them and to describe geodesics.

We fix some notation. \(E \) and \(F \) are two non-isomorphic \(n \)-dimensional spaces that satisfy \(B_E \subset B_F \subset d(E, F) B_E \). For \(0 < \lambda < 1 \), let \(E_\lambda = (\mathbb{R}^n, B_\lambda) \) and \(F_\lambda = (\mathbb{R}^n, C_\lambda) \) be the normed spaces with unit balls defined by

\[
B_\lambda = (d(E, F)^\lambda B_E) \cap B_F \quad \text{and} \quad C_\lambda = \text{Conv} \left[B_E \bigcup \frac{1}{d(E, F)^{1-\lambda}} B_F \right],
\]

where \(\text{Conv}(S) \) is the convex hull of the set \(S \).

Lemma 2. For \(0 < \lambda < 1 \), \(B_E \subset C_\lambda \subset B_\lambda \subset B_F \)

Proof. Let \(0 < \lambda < 1 \) and let \(d = d(E, F) \). \(B_E \subset C_\lambda \) and \(B_\lambda \subset B_F \) follow from the definition of \(C_\lambda \) and \(B_\lambda \). We need to show that \(C_\lambda \subset B_\lambda \). By convexity of \(B_\lambda \), we only need to check that \(B_E \subset B_\lambda \) and that \(B_F \subset d(E, F)^{1-\lambda} B_\lambda \). Since \(d^\lambda \geq 1 \), \(B_E \subset d^\lambda B_E \); and since \(B_E \subset B_F \) (from (1)), we conclude that \(B_E \subset B_\lambda \). To check
the other inclusion, notice that \(d^{1-\lambda}B_\lambda = (dB_E) \cap (d^{1-\lambda}B_F) \). Then \(B_F \subset dB_E \) from (1) and since \(d^{1-\lambda} \geq 1 \), \(B_F \subset d^{1-\lambda}B_F \).

Using the notation of (2) we have

Proposition 1. For \(0 < \lambda < 1 \), the spaces \(E_\lambda \) and \(F_\lambda \) are intermediate spaces between \(E \) and \(F \). More precisely, \(d(E, E_\lambda) = d(E, F_\lambda) = d(E, F)^\lambda \) and \(d(E_\lambda, F) = d(F_\lambda, F) = d(E, F)^{1-\lambda} \).

Proof. Let \(0 < \lambda < 1 \) and \(d = d(E, F) \). We start with \(E_\lambda \). We claim that \(B_E \subset B_\lambda \subset dB_E \). The first inclusion follows from Lemma 2 and the second follows from the definition of \(B_\lambda \). Notice that this implies that \(d(E, E_\lambda) \leq d^\lambda \). Now we claim that \(B_\lambda \subset B_F \subset d^{1-\lambda}B_\lambda \). The first inclusion follows from Lemma 2. The definition of \(C_\lambda \) implies that \(B_F \subset d^{1-\lambda}C_\lambda \). Then by Lemma 2 again, \(B_F \subset d^{1-\lambda}C_\lambda \subset d^{1-\lambda}B_\lambda \). Notice that this implies that \(d(E_\lambda, F) \leq d^{1-\lambda} \). Since \(d = d(E, F) \leq d(E, E_\lambda) d(E_\lambda, F) \leq d^\lambda d^{1-\lambda} = d \), we conclude that \(d(E, E_\lambda) = d^\lambda \) and that \(d(E_\lambda, F) = d^{1-\lambda} \).

The proof of \(F_\lambda \) is similar. We claim that \(B_E \subset C_\lambda \subset dB_E \). The first inclusion follows from Lemma 2 and the second one follows from \(C_\lambda \subset B_\lambda \) and \(B_\lambda \subset dB_E \), which we proved in the previous paragraph. We also claim that \(C_\lambda \subset B_F \subset d^{1-\lambda}C_\lambda \). The first inclusion follows from Lemma 2 and the second one follows from the definition of \(C_\lambda \). Following the argument of the previous paragraph, we conclude that \(d(E, F_\lambda) = d^\lambda \) and \(d(F_\lambda, F) = d^{1-\lambda} \).

Corollary 1. The sets \(\{B_\lambda : 0 \leq \lambda \leq 1\} \) and \(\{C_\lambda : 0 \leq \lambda \leq 1\} \) are geodesics from \(F \) to \(E \).

Proof. Let \(d = d(E, F) \) and \(0 < \lambda_1 < \lambda_2 < 1 \). We claim that \(B_{\lambda_1} \subset B_{\lambda_2} \subset d^{\lambda_2-\lambda_1}B_{\lambda_1} \). The first inclusion follows from the definition of \(B_{\lambda_1} \). To check the second inclusion, notice that \(d^{\lambda_2-\lambda_1}B_{\lambda_1} = (dB_E) \cap (d^{\lambda_2-\lambda_1}B_F) \) and \(B_{\lambda_2} = (dB_E) \cap B_F \). Since \(d^{\lambda_2-\lambda_1} \geq 1 \), \(B_F \subset d^{\lambda_2-\lambda_1}B_{\lambda_1} \) and this implies that \(B_{\lambda_2} \subset d^{\lambda_2-\lambda_1}B_{\lambda_1} \).

From \(B_{\lambda_1} \subset B_{\lambda_2} \subset d^{\lambda_2-\lambda_1}B_{\lambda_1} \) it follows that \(d(E_{\lambda_1}, E_{\lambda_2}) \leq d^{\lambda_2-\lambda_1} \). Since \(d(E, E_{\lambda_1}) = d^{\lambda_1} \) and \(d^{\lambda_2} = d(E, E_{\lambda_2}) \leq d(E, E_{\lambda_1})d(E_{\lambda_1}, E_{\lambda_2}) \leq d^{\lambda_1}d^{\lambda_2-\lambda_1} = d^{\lambda_2} \), we conclude that \(d(E_{\lambda_1}, E_{\lambda_2}) = d^{\lambda_2-\lambda_1} \).

A similar argument shows that \(C_{\lambda_1} \subset C_{\lambda_2} \subset d^{\lambda_2-\lambda_1}C_{\lambda_1} \) and this implies that \(d(F_{\lambda_1}, F_{\lambda_2}) = d^{\lambda_2-\lambda_1} \).

Remark. One can check that the norms of \(E_\lambda \) and \(F_\lambda \) are given the real K-method and J-method ([3], pp. 96 - 105).

\[\|x\|_{E_\lambda} = K(x, d(E, F)^\lambda, E, F) \quad \text{and} \quad \|x\|_{F_\lambda} = J \left(x, \frac{1}{d(E, F)^{1-\lambda}}, E, F \right) \]

We now use the intermediate spaces of Proposition 1 to describe all other intermediate spaces. If \(X \) is an intermediate space between \(E \) and \(F \), then \(d(E, X) = d(E, F)^\lambda \) for some \(\lambda \in [0, 1] \). This number and the unit balls of the previous Proposition determine the intermediate spaces.

Theorem 1. Suppose that \(E, F, X \) are n-dimensional normed spaces. Then \(X \) is an intermediate space between \(E \) and \(F \) iff there exist \(\lambda \in [0, 1] \) and isometric copies of \(E, F, X \) in \(\mathbb{R}^n \) such that \(d(E, X) = d(E, F)^\lambda \), \(B_E \subset B_F \subset d(E, F)B_F \) and \(C_\lambda \subset B_X \subset B_\lambda \).
Proof. Suppose that X is an intermediate space between E and F. Then there exists $\lambda \in [0,1]$ such that $d(E, X) = d(E, F)^\lambda$ and $d(X, F) = d(E, F)^{1-\lambda}$. Find $T : X \to F$ and $S : E \to X$ such that $\|T\| = 1$, $\|T^{-1}\| = d(E, F)^{1-\lambda}$, $\|S\| = 1$ and $\|S^{-1}\| = d(E, F)^\lambda$. Then $T(B_X) \subset B_F \subset d(E, F)^{1-\lambda}T(B_X)$ and $S(B_E) \subset B_X \subset d(E, F)^\lambda S(B_E)$.

Replacing E and X by their isometries $(\mathbb{R}^n, T(S(B_E)))$ and $(\mathbb{R}^n, T(B_X))$ we get

$$B_E \subset B_X \subset d(E, F)^\lambda B_E \quad \text{and} \quad B_X \subset B_F \subset d(E, F)^{1-\lambda} B_X.$$

Combining these inclusions we get that $B_E \subset B_F \subset d(E, F)B_E$. Moreover, we clearly have $B_X \subset (d(E, F)^\lambda B_E) \cap B_F$ and $\text{Conv} \left[B_E \bigcup \frac{1}{d(E, F)\lambda} B_F \right] \subset B_X$.

On the other hand, suppose that there are isometric versions of E, F, and X that satisfy $B_E \subset B_F \subset d(E, F)B_E$ and $C \subset B_X \subset B_\lambda$. From the proof of Proposition [1] we have that $B_E \subset C_B \subset d(E, F)^\lambda B_E$ and $B_E \subset B_\lambda \subset d(E, F)^\lambda B_E$. Therefore we have that $B_E \subset C_B \subset B_X \subset B_\lambda \subset d(E, F)^\lambda B_E$, that implies that $d(E, X) \leq d(E, F)^\lambda$.

Similarly, $C_B \subset B_F \subset d(E, F)^{1-\lambda} C_B$ and $C_B \subset B_F \subset d(E, F)^{1-\lambda} B_F$. Then

$$B_X \subset B_\lambda \subset B_F \subset d(E, F)^{1-\lambda} C_B \subset d(E, F)^{1-\lambda} B_X,$$

and this implies that $d(X, F) \leq d(E, F)^{1-\lambda}$. Since $d(E, F) \leq d(E, X)d(X, F) \leq d(E, F)^\lambda d(E, F)^{1-\lambda} = d(E, F)$, we conclude that X is an intermediate space between E and F.

We now refine Lemma [2]

Lemma 3. Suppose E and F are non-isometric n-dimensional normed spaces satisfying $B_E \subset B_F \subset d(E, F)B_E$. Then $C_\lambda \not\subset B_\lambda$ for all $\lambda \in (0,1)$.

Proof. Let $C := \partial B_E \cap \partial B_F$. Then C is closed, non-empty (we need to have contact points between the spheres to attain the distance) and $C \neq \partial B_F$ (or $d(E, F) = 1$). Then $\partial B_F \setminus C$ is open in the relative topology of ∂B_F and $\partial B_F \setminus C$ is not closed (because ∂B_F is connected). Find $x \in C$ and $x_n \in \partial B_F \setminus C$ such that $x_n \to x$.

Since $x \in \partial B_E$, $x \in d(E, F)^\lambda B_E^\circ$ (the interior) and we can find n large enough so that $x_n \in d(E, F)^\lambda B_E^\circ$. It is clear that this x_n belongs to B_λ and we will show that it does not belong to C_λ. Find $f : \mathbb{R}^n \to \mathbb{R}$ linear, separating x_n from B_F°. Then we can assume that $f(x_n) = 1$ and that for all $y \in B_F$, $f(y) \leq 1$. If x_n belonged to C_λ we would write it as $x_n = \alpha y_1 + (1-\alpha)y_2$ for some $\alpha \in [0,1]$, $y_1 \in B_E$, $y_2 \in \frac{1}{d(E, F)\lambda} B_F$. Note that $f(y_1) \leq 1$ and $f(y_2) < 1$. Then $1 = f(x_n) = \alpha f(y_1) + (1-\alpha)f(y_2)$ implies that $\alpha = 1$ and $x_n = y_1$ which is not possible. Therefore, $x_n \not\in C_\lambda$.

3. Main Result

In this section we show there are uncountably many different geodesics between two non-isometric n-dimensional normed spaces. We will start recalling some standard definitions.

Definition 3. Set $(x, y) := \{\alpha x + (1-\alpha)y : \alpha \in (0,1)\}$. A face F of a convex set K is a subset of K satisfying the following: if $z \in F$, $x, y \in K$ and $z \in (x, y)$ then $x, y \in F$. A face F is exposed if there exists a separating hyperplane H such that $F = H \cap K$. If F has a non-empty relative interior in $F \cap H$, F is an
A REMARK ON GEODESICS IN THE BANACH MAZUR DISTANCE

(n−1)-dimensional face of K. The set of (n−1)-dimensional faces is denoted by \(F_{n-1}(K) \).

Lemma 4. The unit ball of a finite dimensional normed space \(E \) has at most countably many \((n−1)\)-dimensional faces.

Proof. Let \(\{ F_\alpha : \alpha \in I \} \) be the set of \((n-1)\)-dimensional faces of \(B_E \subset \mathbb{R}^n \), the unit ball of \(E \). Their interiors with respect to the relative topology of the sphere \(S_E \), the boundary of \(B_E \), form a disjoint family of non-empty open sets in \(S_E \). Since \(S_E \) is second countable, \(I \) is at most countable. □

The next proposition states if \(E \) and \(F \) are isometric, then \(F_{n-1}(B_E) \) and \(F_{n-1}(B_F) \) are equal up to affine maps. This provides a criterion to show that two normed spaces are not isometric. We are to exhibit an \(n−1 \) dimensional face that is not in the other. Notice that there are uncountably many non-isometric convex bodies in \(\mathbb{R}^{n-1} \), if \(n \geq 3 \). Since (after an affine map) any convex body \(K \) in \(\mathbb{R}^{n-1} \) can be a face of an \(n \)-dimensional normed space, there are a lot of options.

We need the following result, that is easy to prove:

Lemma 5. Let \(E \) and \(F \) be isometric \(n \)-dimensional normed spaces and let \(Q \in F_{n-1}(B_E) \). Then there exists \(Q' \in F_{n-1}(B_E) \) that is an affine copy of \(F \).

We state and show our main result in two parts, first one deals with \(BM_n \) for \(n \geq 3 \), the other with \(BM_2 \).

Theorem 2. Let \(n \geq 3 \) and let \(E \) and \(F \) be two non-isometric \(n \)-dimensional normed spaces satisfying \(B_E \subset B_F \subset d(E,F)B_E \). Then for each \(\lambda \in (0,1) \) the set \(\{ X \in BM_n : C_\lambda \subset B_X \subset B_\lambda \} \) contains uncountably many non-isometric spaces.

Proof. By Lemma 3 there exists \(x \in B_1 \setminus C_\lambda \) and since \(C_\lambda \) is closed, we can assume that \(x \in B_\lambda \setminus C_\lambda \). Find \(\epsilon > 0 \) such that \(B_\epsilon(x) \subset B_\lambda \setminus C_\lambda \). Then find a linear function \(f : \mathbb{R}^n \to \mathbb{R} \) separating \(\{ x \} \) from \(C_\lambda \). Assume that \(f(x) = 1 \) and that for all \(y \in C_\lambda, f(y) < 1 \). Let \(H = \{ z \in \mathbb{R}^n : f(z) = 1 \} \) be the hyperplane induced by \(f \) at \(x \). By Lemma 4 the collections \(F_{n-1}B_\lambda, F_{n-1}C_\lambda \) are countable. Since there are uncountably many non-isometric \(n−1 \)-dimensional Banach spaces, choose a unit ball \(K \in \mathbb{R}^{n-1} \) that is not affinely isometric to a ball in either collection. Find an affine copy of \(K \) inside \(H \cap B_\lambda(x) \) and call it \(K' \). Define the \(n \)-dimensional normed space \(X_K \) to have unit ball equal \(B_X := B_{X_K} := \text{Conv}(C_\lambda \cup K' \cup -K') \). Then \(C_\lambda \subset B_{X_K} \subset B_\lambda \) and \(B_{X_K} \) has an \(n−1 \) dimensional face isometric to \(K \). So by Lemma 5 it is not isometric to \(C_\lambda \) nor \(B_\lambda \). Since the construction produces uncountably many non-isometric spaces the claim follows. □

The above construction fails for \(n = 2 \) since all \(1 \)-dimensional normed spaces are isometric. We tackle the \(n = 2 \) case in the next section. We need some elementary results to show that there are uncountably many geodesics between \(E \) and \(F \).

Lemma 6. Suppose that \(X \) is an intermediate space between \(E \) and \(F \), that \(Y \) is an intermediate space between \(E \) and \(X \) and that \(Z \) is an intermediate space between \(X \) and \(F \). Then \(X \) is an intermediate space between \(Y \) and \(Z \).

Proof. This follows from the triangle inequality: \(d(E,F) \leq d(E,Y)d(Y,Z)d(Z,F) \leq d(E,Y)d(Y,X)d(X,Z)d(Z,F) = d(E,X)d(X,F) = d(E,F) \). Then the inequalities are equalities and \(d(Y,Z) = d(Y,X)d(X,Z) \). □
Corollary 2. If \(X \) is an intermediate space between \(E \) and \(F \), then there exists a geodesic from \(E \) to \(F \) containing \(X \).

Proof. Use Corollary 1 to construct geodesics from \(E \) to \(X \), from \(X \) and \(F \) and put them together. To see that the joined path is a geodesic from \(F \) to \(E \) we use Lemma 3 to show it satisfies the condition of Lemma 1. If the partition contains \(X \), it follows from the fact that \(X \) is an intermediate space and that both pieces are geodesics. And if the partition does not include \(X \), we use Lemma 3 adding \(X \) to the partition. \(\square \)

Combining Theorem 2 with the previous Corollary we get:

Corollary 3. There are uncountably many geodesics between any two non-isomorphic \(n \)-dimensional normed spaces for \(n \geq 3 \).

4. Dimension 2

In what follows \(K \) is a compact, convex and symmetric body of \(\mathbb{R}^2 \). By Lemma 4 there are at most countably many perfect 1-faces i.e. line segments \(F^1K \). Consider the set of triangles formed by joining the endpoints of line segments \([p, q]\) in \(F^1K \) to the origin, \(\Delta 0pq \). Call this set \(S_K := \{ \Delta 0pq : [p, q] \in F^1K \} \) and consider all possible ratios of areas of these triangles \(A_K := \{ \mu(\Delta 0pq) : T_1, T_2 \in S_K \} \), where \(\mu \) is the usual Lebesgue area measure. Since \(\mu(\phi(T)) = \det(\phi)(\mu(T)) \) we arrive at the following countable isometric invariant:

Lemma 7. Let \(\phi : (\mathbb{R}^2, B_E) \to (\mathbb{R}^2, B_F) \) be an invertible linear map with \(\phi(B_E) = B_F \). Then \(A_{B_E} = A_{B_F} \).

Now we prove Theorem 2 for \(n = 2 \). The idea is to find balls \(B_q \) satisfying \(C_\lambda \subset B_q \subset B_\lambda \), with two contiguous faces \([p_1, q]\) and \([q, p_2]\) such that \(\frac{\mu(\Delta 0p_1q)}{\mu(\Delta 0p_2q)} \) does not belong to \(A_{B_E} \) or \(A_{B_F} \).

Theorem 3. Suppose that \(n = 2 \) and that \(E \) and \(F \) are two non-isometric normed spaces satisfying \(B_E \subset B_F \subset \partial(E, F)B_E \). Then for each \(\lambda \in (0, 1) \) the set \(\{ X \in BM_n : C_\lambda \subset B_X \subset B_\lambda \} \) contains uncountably many non-isometric spaces.

Proof. By Lemma 3 there exists \(x \in B_\lambda \setminus C_\lambda \) and since \(C_\lambda \) is closed, we can assume that \(x \in B_\lambda^\circ \setminus C_\lambda \). Find \(\epsilon > 0 \) so that \(B_\epsilon(x) \subset B_\lambda^\circ \setminus C_\lambda \) and find a linear function \(f : \mathbb{R}^n \to \mathbb{R} \) separating \(B(x, \epsilon) \) from \(C_\lambda \). Then \(H = \{ z \in \mathbb{R}^2 : f(z) = f(x) \} \) is the hyperplane (line in this case) induced by \(f \) at \(x \); and \(H : B(x, \epsilon) \) is a segment that we denote \([p_1, p_2]\).

As a first step, let \(B = \text{conv}(C_\lambda \cup [p_1, p_2] \cup [-p_1, -p_2]) \). Notice that \(C_\lambda \subset B \subset B_\lambda \) and that the segment \([p_1, p_2]\) is a face of \(B \). For each \(q \in B(x, \epsilon) \) with \(f(q) > f(x) \) (i.e., \(q \) is inside \(B(x, \epsilon) \)) but outside the triangle \(\Delta 0p_1p_2 \) define

\[B_q = \text{conv}(C_\lambda \cup [p_1, p_2] \cup [-p_1, -p_2] \cup \{q, -q\}) \]

We still have that \(C_\lambda \subset B_q \subset B_\lambda \) and it is easy to check that, for \(i = 1, 2 \), the segment \([p_i, q]\) is a face of \(B_q \) if the line going through \(p_i \) and \(q \) does not intersect \(C_\lambda \). Since \(f \) separates \(B(x, \epsilon) \) and \(C_\lambda \) there are many points \(q \) with this property. In fact, it is easy to see that there exists \(0 < \delta < \epsilon \) small enough so that whenever \(q \in B(x, \delta) \) and \(f(q) > f(x) \), then the segments \([p_1, q]\) and \([q, p_2]\) are faces of \(B_q \).
Find two such points q_1 and q_2 that satisfy $f(q_1) = f(q_2) > f(x)$. Notice that the segment $[q_1, q_2]$ is parallel to the segment $[p_1, p_2]$ and that for any $q \in [q_1, q_2]$, the segments $[p_1, q]$ and $[q, p_2]$ are faces of B_q. Since $[q_1, q_2]$ is connected and since the values of $\frac{\mu(\triangle 0 p_1 q)}{\mu(\triangle 0 p_2 q)}$ when $q = q_1$ and $q = q_2$ are clearly different, the set of points $\left\{ \frac{\mu(\triangle 0 p_1 q)}{\mu(\triangle 0 p_2 q)} : q \in [q_1, q_2] \right\}$ is uncountable. This allows us to choose q’s such that (\mathbb{R}^2, B_q) is not isometric to $(\mathbb{R}^2, C_\lambda)$ or to $(\mathbb{R}^2, B_\lambda)$. Moreover, we can easily choose uncountably many non-isometric (\mathbb{R}^2, B_q)’s and the result follows.

This Theorem combined with Corollary23 imply that there are uncountably many geodesics between E and F, which completes the case $n \geq 2$. The proof of Theorem2 can be adapted to prove Theorem2 for $n \geq 3$.

References

1. Radu, C. (2014). Geodesics between Hilbertian operator spaces. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 108(2), 917-922.
2. Bennett, C., & Sharpley, R. C. (1988). Interpolation of operators (Vol. 129). Academic press.
3. Bourgain, J., & Szarek, S. J. (1988). The Banach-Mazur distance to the cube and the Dvoretzky-Rogers factorization. Israel Journal of Mathematics, 62(2), 169-180.
4. Xue, F. (2017). On the Banach-Mazur Distance between the Cube and the Crosspolytope. arXiv preprint arXiv:1705.01353.

University of Denver
Email address: alvaro.arias@du.edu, vladimir.kovalchuk@du.edu