Regulation of Mouse p45 NF-E2 Transcription by an Erythroid-specific GATA-dependent Intronic Alternative Promoter*

(Received for publication, October 21, 1999)

Emanuela Moroni†‡, Tiziana Mastrangelo§, Riccardo Razzini†, Linda Cairns‡‡, Paolo Moi‡‡, Sergio Ottolenghi†*, and Barbara Giglioni†

From the †Centro di Studio sulla Patologia Cellulare, Consiglio Nazionale delle Ricerche, Istituto di Patologia Generale, Università di Milano, Via Mangiagalli, 31, 20133 Milano, **Dipartimento di Genetica e di Biologia dei Microrganismi, Università di Milano, Via Celoria, 26, 20133 Milano, and the ‡Istituto di Clinica e Biologia dell’Era Eolutiva, Via Jenner s/n, 09121 Cagliari and Istituto di Ricerca sulle Talassemie e Anemie Mediterranee, Consiglio Nazionale delle Ricerche, Via Boccaccio, 8 Selargiuss, 09047 Cagliari, Italy

The erythroid-enriched transcription factor NF-E2 is composed of two subunits, p45 and p18, the former of which is mainly expressed in the hematopoietic system. We have isolated and characterized the mouse p45 NF-E2 gene; we show here that, similar to the human gene, the mouse gene has two alternative promoters, which are differentially active during development and in different hematopoietic cells. Transcripts from the distal promoter are present in both erythroid and myeloid cells; however, transcripts from an alternative proximal 1b promoter, lying in the first intron, are abundant in erythroid cells, but barely detectable in myeloid cells. During development, both transcripts are detectable in yolk sac, fetal liver, and bone marrow. Transfection experiments show that proximal promoter 1b has a strong activity in erythroid cells, which is completely dependent on the integrity of a palindromic GATA-1 binding site. In contrast, the distal promoter 1a is not active in this assay. When the promoter 1b is placed 3′ to the promoter 1a and reporter gene, in an arrangement that resembles the natural one, it acts as an enhancer to stimulate the activity of the upstream promoter 1a.

NF-E2† is a transcription factor that was originally identified through its ability to interact, in vitro, with the porphobilinogen deaminase promoter and with critical functional elements of the β-globin locus control region (LCR) (1–3). NF-E2 recognizes the extended DNA sequence GCTGAG(C/T)CA, which includes the core symmetric AP-1 motif, as well as other non consensus sequences (4–6); these recognition motifs are present in several genes involved in the heme-synthetic pathway in erythroblasts and in genes expressed in megakaryocytes.

NF-E2 is an obligate heterodimer between a 45-kDa polypeptide (p45 NF-E2) (7), predominantly expressed in the hematopoietic system, and one of the widely expressed ~18-kDa proteins (p18/Maf-K, Maf-G, and Maf-F), belonging to the Maf family (8–14). Both p45 and p18 subunits belong to the basic leucine zipper family of transcription factors. Five p45 NF-E2-related polypeptides have also been identified (15–21). Given the ability of large and small subunits to heterodimerize and to recognize the extended NF-E2 binding motif or variants of it, there is an enormous potential for regulation of genes containing NF-E2 sites.

Of the several large and small subunits of the NF-E2 “family,” p45 NF-E2 is the only one that shows highly restricted expression, being detected primarily within the hematopoietic lineage, in erythroid, megakaryocytic, and mast cells, and possibly neutrophils (7, 9, 22–24). In erythroid cell lines, such as mouse erythroleukemia cells (MEL), NF-E2 increases when erythroid differentiation is induced (1, 25). Secondary expression sites include intestine, lung, and placenta (7, 24). The restricted expression of p45 NF-E2 suggests a critical role of this protein in at least some hematopoietic lineages. Indeed, homozygous inactivation of the p45 NF-E2 gene in the mouse (by homologous recombination) leads to a fatal hemorrhagic disease due to faulty megakaryocytic maturation and lack of platelets (4). However, in the same mice, only minor erythroid cell defects were observed (26, 27), suggesting some functional complementation in the erythroid lineage by other related genes (possibly Nrf-1, but not Nrf-2) (28, 29).

Evidence that p45 NF-E2 deficiency might affect at least a subset of erythroid cells is provided, however, by the lack of β-globin expression in a MEL cell line in which the endogenous p45 gene is inactive due to a retroviral integration; forced expression of p45-cDNA in these cells restores β-globin expression (30, 31).

So far, the transcriptional regulation of p45 NF-E2 expression has not been extensively investigated. Recently, it was reported that two cDNA isoforms of p45 NF-E2 exist in human cells, resulting from transcription from two alternative promoters and differential splicing of the transcripts into the common second exon RNA. As the transcript from the distal promoter/first exon is more abundant in adult erythroid cells, and the transcript from the proximal promoter/first exon is predominant in fetal cells, they were termed “adult” and “fetal”, respectively (32).

In this work, we have investigated the presence in the mouse p45 NF-E2 gene of similar promoters and studied the regulation of their expression by RNA analysis during development and by transfection. The distal promoter/first exon (1a) corresponds to the human adult promoter (32) and drives the ex-
pression of the previously described mouse mRNA (7); the proximal mouse promoter/first exon (1b), lies in the first intron, and corresponds to the human fetal promoter (32).

EXPERIMENTAL PROCEDURES
Genomic Library Screening, DNA Subcloning, and Sequencing—A mouse genomic library in A/FinII (CLONTECH) was initially screened by standard procedures for NF-E2 p45 gene fragments with a mouse p45 cDNA (kindly provided by Dr. N. Andrews). DNA from positive phage clones was then analyzed by Southern blotting and hybridization using a 32P-labeled 235-nt human genomic fragment of the first p45 intron, including the alternative fetal exon and its promoter (32). Hybridization was carried out at moderate stringency in the presence of 250 mM NaPO4, pH 7.2, 7% SDS, 1 mM EDTA, pH 8.0, at 38 °C. Filters were washed twice for 20 min in 20 mM NaPO4, pH 7.2, 5% SDS, 1 mM EDTA, pH 8.0, at 56 °C and finally at 65 °C for 5 min with the same solution. Positive fragments were subcloned into pGEM-ZfI+ (Promega) and sequenced to identify the proximal promoter/first exon (1b). The distal promoter/first exon (1a) was further identified by hybridization to an oligonucleotide (antisense, 5′-TCCGAGTTTACACTGTTCTCCCT from the 5′ end of the published cDNA sequence (7) and sequencing with the T7 sequencing kit (Amersham Pharmacia Biotech).

RT-PCR—For RT-PCR experiments, RNA was obtained at various developmental stages from mouse G207c2 ES cells, fetal liver, adult marrow, and thymus. RNA was isolated according to Ref. 33. cDNA synthesis was carried out in a total volume of 20 μl containing 1 μg of RNA, 5 μM each of dNTPs, 1 unit of SuperScript reverse transcriptase (200 units/μl, Life Technologies, Inc.), 1× PCR buffer (Perkin Elmer), 1.5 mM MgCl2, 0.2 mM dNTPs, 0.5 mM EDTA, pH 8.0, at 56 °C. The mixtures were kept on ice for 20 min. Electrophoresis was carried out in 5% acrylamide gels in 50 mM Tris borate, pH 8.2, at 20 °C. Some reactions in a 50–100-fold excess relative to the labeled oligonucleotide were kept on ice for 20 min. Ethidium bromide was used to show bands on 5% acrylamide gels in 50 mM Tris borate, pH 8.2, at 20 °C. The supershifts were carried out under the conditions described above for GATA-1 binding, with 0.2 μg of anti-GATA-1 rat monoclonal antibody (Santa Cruz Biotechnology, Santa Cruz, CA) or an anti-human GATA-1-specific antibody (38) kindly provided by Dr. Claudio Santoro. Unlabeled competitor oligonucleotides were added to some reactions in a 50–100-fold excess relative to the labeled oligonucleotide. Melt curves were used to show that reaction products were specific. Autoradiographs were obtained by exposure of the filters to Fuji film and further probed with a radioactively labeled cloned plasmid.

Ribonuclease Protection Assay—Total RNA from mouse fetal liver was extracted according to Ref. 34. Poly(A)+ RNA was prepared using Message Maker mRNA isolation system (Life Technologies, Inc.). To prepare 1b and 1a riboprobes, a 335-nt 1b fragment and a 400-nt 1a fragment extending from the first 1b exon (position 651, Fig. 2A) or the first 1a exon (position 406, Fig. 3), respectively, into upstream flanking sequence were cloned into the pBluecript vector. The sense and antisense oligos were transcribed with T7 polymerase using the MaxiScript in vitro transcription kit (Ambion Inc.) and purified according to the instructions of the manufacturer. Probes (=200,000 cpm/sample) were hybridized overnight at 50 °C in 10 μl of the hybridization buffer provided in the RPA III kit (Ambion Inc.) with either RNA (poly(A)+), 5 μg and 20 μg of carrier E. coli tRNA, or with carrier tRNA alone. Following hybridization, the samples were processed at 37 °C for 30 min with a 1:100 dilution of RNase A/RNase T1 mix from the same kit, according to the instructions. The digested samples were run on 6% acrylamide-urea denaturing gels, together with Maxam and Gilbert G+A ladder of 32P-labeled DNA probes, and autoradiographed.

Determination of the Transcription Initiation Sites by RT-PCR—To determine the transcription initiation start sites of promoters 1b and 1a, the 2 antisense oligonucleotide (see above) was combined, in RT-PCR experiments, with the following sense oligonucleotides on the promoter/exon 1b and 1a regions.

For the 1b region (Fig. 2B), oligonucleotides were: 1, 5′-CTGACTGTTACTACACATCTCCGCC; 2, 5′-CTGCTCTGACTAACACTTCCCAC; 3, 5′-CTGCTCTGACTAACACTTCCCAC; 4, 5′-GGGAGGGCCTGCTGTCTCTACAT; 5, 5′-GGGAGGGCCTGCTGTCTCTACAT; 6, 5′-GGGAGGGCCTGCTGTCTCTACAT; 7, 5′-GCTACCTGCGCCGAGTT; 8, 5′-GCTACCTGCGCCGAGTT; 9, 5′-GAGGAGGGCGTTTGGCTATCCAC; and 10, 5′-GGACCTAAGGATGAGGAG.

For the 1a region (Fig. 3), oligonucleotides were: A1, 5′-GGGAGGGCGTTTGGCTATCCAC; A2, 5′-GGACCTAAGGATGAGGAG; A3, 5′-GGGAGGGCGTTTGGCTATCCAC; A4, 5′-GCTACCTGCGCCGAGTT; A5, 5′-GCTACCTGCGCCGAGTT; A6, 5′-GGGAGGGCGTTTGGCTATCCAC; A7, 5′-GAGGAGGGCGTTTGGCTATCCAC; A8, 5′-GCTACCTGCGCCGAGTT; A9, 5′-GGACCTAAGGATGAGGAG; A10, 5′-GGGAGGGCGTTTGGCTATCCAC.

Electrophoretic Mobility Shift Assay (35, 36)—Nuclear extracts were prepared according to Ref. 37. The standard binding reaction (20 μl) contained 0.1–0.2 ng of 32P-labeled oligonucleotide, 2–5 μg of crude nuclear protein, 1–3 μg of antibody (Santa Cruz Biotechnology, Santa Cruz, CA) or an anti-human GATA-1-specific antibody (38) kindly provided by Dr. Claudio Santoro. After the GATA-1 antiserum was absorbed on the oligonucleotide, 2–5 μg of crude nuclear protein, 1–3 μg of poly(dl-dc), 2 μg of bovine serum albumin in a buffer consisting of 4 mM spermidine, 50 mM NaCl, 1 mM EDTA, 10 mM Tris-HCl, pH 7.9, 1 mM dithiothreitol, and 0.5 mM phenylmethylsulfonyl fluoride. Unlabeled competitor oligonucleotides were added to some reactions in a 50–100-fold excess relative to the labeled oligonucleotide. Melt curves were used to show that reaction products were specific. Autoradiographs were obtained by exposure of the filters to Fuji film and further probed with a radioactively labeled cloned plasmid.

Construction of Reporter Plasmids—Fragments of the promoters/first exons 1a and 1b were amplified by PCR using specific oligonucleotides with terminally added KpnI restriction enzyme sites, and cloned into the KpnI site of pG2L-Base Vector (Promega) carrying a firefly luciferase reporter gene (plasmids 1a p-luc and 1b p-luc, respectively). The 1a fragment is 239 nt long and spans nt 7–405 (Fig. 3); the 1b fragment is 373 nt long and spans nt 223–605 (Fig. 2A). The same 1b fragment was also obtained as an MboI restriction fragment, and inserted (both in the sense and antisense orientations, relative to transcription) into the BamHI site downstream of the luciferase reporter gene driven by the promoter 1a (plasmid 1a p-luc-1b enh sense and plasmid 1a p-luc-1b enh antisense). All the cloned fragments were sequenced to verify the absence of PCR-generated mutations. A plasmid carrying a mutation at the GATA-tandem motif in the promoter 1b was obtained by PCR-mediated mutagenesis (plasmid GATA-1 1b p-luc). Two partially overlapping oligonucleotides carrying a GA→TT and a TG→AA substitution (sense strand) and the complementary mutations (antisense strand) of the tandem repeat (nt 459–469 and 472–473, underlined in Fig. 2B) were used to separately
amplify, with external primers, the 5’ and 3’ portions of the promoter 1b. The two fragments were purified, combined, and reamplified with the external primers only, to yield the full-size mutated promoter 1b that was then cloned into the pGL-Basic plasmid. The accuracy of the sequence was verified by sequencing.

Plasmid Preparation—Each plasmid preparation was obtained by two sequential cesium chloride centrifugations; the DNA was then dialyzed against 1 mM EDTA, 10 mM Tris-HCl, pH 7.5.

Transient Transfection Experiments—Human erythroleukemic K562 and HEL cells were collected during the exponential phase of growth, washed, and resuspended in cold phosphate-buffered saline. For each transfection 10⁷ cells, in 200 µl (HEL cells) or 800 µl (K562 cells), were electroporated at 200 V (HEL cells) or 400 V (K562 cells) at 960 microfarsads using the Gene Pulser Bio-Rad) electroporator in the presence of 20 µg of the luciferase reporter construct to be tested and 2 µg of the Renilla luciferase pRL-TK plasmid, as an internal control. The cells were further incubated for 2 days in RPMI 1640 and 10% fetal calf serum, glutamine, and antibiotics, collected by centrifugation, washed twice in phosphate-buffered saline, lysed, and processed for analysis using the Dual-Luciferase Reporter Assay System kit (Promega) exactly as specified by the manufacturer’s instructions. Aliquots of the cell lysates were used to sequentially determine the activities of the firefly and Renilla luciferases for each sample. Each transfection was carried out with at least two independent plasmid preparations, each in duplicate or triplicate samples.

Stable Transfection Experiments—10 µg of p-luc plasmids, linearized by digestion with Scal, were electroporated as above into K562 cells, both in presence (3 µg) and absence of linearized Renilla luciferase pRL-TK plasmid, together with the pPNT C-418 resistance plasmid. After selection in G-418 (600 µg/ml) for 10 days, populations of resistant cells were assayed for firefly luciferase (or firefly/Renilla luciferase) activity.

RESULTS

The Mouse p45 NF-E2 Gene Includes an Alternatively Spliced Exon Homologous to the Human p45 NF-E2 “Fetal” Exon—Using a probe corresponding to the human “fetal” first exon of the p45 NF-E2 gene, we isolated from a mouse genomic phage library three overlapping phage clones. Mapping and sequencing data identify a region with strong homology to the human “fetal” first exon within the first intron of the mouse p45 NF-E2 gene. Fig. 1 summarizes the organization and transcription of the corresponding region in the human and mouse genes. The potential mouse “fetal” exon (1b) lies in the most 3' part of a large (more than 4 kilobase pairs) intron, and is separated from exon 2 by 240 nucleotides (man) or 513 nucleotides (mouse). This conclusion is based on a combination of genomic sequencing and RT-PCR data (see below). Fig. 2A shows the genomic sequence of part of the mouse intron 1, encompassing exon 1b (bold characters) and the most 5’ portion of the previously described exon 2. A comparison between the mouse genomic sequences and human sequences in the vicinity of exon 1b (Fig. 2B) identifies a ≈120-nt-long stretch of mouse sequences showing high homology (≈86%) to the region immediately upstream to the human exon 1b; the homology decreases to ≈57% in the 250 nt further upstream (data not shown), and is completely lost downstream to position 651 of the mouse sequence (data not shown). The human 1b cDNA (“fetal” cDNA in Ref. 32) has its 5’ end at position 671 (Fig. 2B, arrow); to ascertain if the homologous region in the mouse gene is part of the putative exon 1b, we performed RT-PCR on MEL cell RNA using a primer pair designed on this sequence (oligonucleotide 1, sense; Fig. 2B) and on the second exon (antisense, nt 98 to nt 76 from the ATG; Ref. 7), respectively. This primer pair successfully amplified a 195-nt band. Sequencing of this band (data not shown), and comparison with the genomic sequence (Fig. 2A), confirmed that the putative mouse exon 1b is indeed transcribed into an RNA that is spliced into the second exon at nt 1165 (Fig. 2A).

A similar comparison is presented in Fig. 3 for the mouse and human promoter/first exon 1a. Strong homology is detected between these sequences only in a region of ≈180 nucleotides (nt 263–445 of the mouse sequence).

Mouse 1a and 1b p45 transscripts are present at relatively low abundance; to define the start site of transcription of the mouse promoters 1a and 1b, we purified poly(A)⁺ RNA from mouse fetal liver and performed RNase protection experiments (Fig. 4). The 1a antisense probe extended from nucleotide 406 to nucleotide 8 of the promoter/exon 1a sequence (Fig. 3), whereas the 1b antisense probe extended from nucleotide 651 (within exon 1b) to nucleotide 317 of the promoter/exon 1b sequence (Fig. 2A). Using probe 1a, over 10 bands of lengths ranging between 45 and 95 nt were visible, the major ones being of approximately 70 nt (Fig. 4A, lane 3). These data suggest that 1a transcription starts between nt 310 and 362, as shown in Fig. 3 (vertical arrowheads). Using probe 1b, we detected four bands (Fig. 4A, lane 7) ranging between approximate lengths of 38–48 nt, and several weaker bands in the range of 50–110 nt; these data indicate that transcription of exon 1b starts at several sites as shown in Fig. 2B (vertical arrowheads). To independently confirm these data, several forward PCR primers, corresponding to staggered exon 1b sequences (Fig. 2B, arrow), were used in RT-PCR experiments (in conjunction

Fig. 1. Schematic representation of the organization of alternative promoters in the murine and human p45 NF-E2 genes. A, the alternative “adult” and “fetal” exons of the human p45 gene (32) are labeled 1a and 1b, both in human and mouse. Exon 1A represents an additional alternative second exon previously reported in Ref. 30. Alternative splicing events are indicated. Arrows represent the location of PCR primers. B, exon-intron junctions and intron lengths of the 1a and 1b exons are shown. Data for the human sequences are from Ref. 32; data for the 1a-exon 2 mouse intron boundaries are from Ref. 39.
with a downstream antisense oligonucleotide in exon 2). Using oligonucleotides 1–4, the expected amplified bands were readily obtained (Fig. 4B), whereas weak bands (well visible by hybridization; data not shown) were detected with oligonucleotides 5 and 6. No amplification was observed with oligonucleotides 7–10. These data are in very good agreement with the RNase protection results and indicate that most 1b transcripts start between position 605 and 614 of the 1b sequence (Fig. 2B), with fewer transcripts starting in the more upstream region, approximately up to nucleotides 530–540. The major transcription start sites of the promoter 1b appear to be located some 10–15 nucleotides more upstream than the human transcription start region (Fig. 2B). Similar experiments (data not shown) performed with promoter/exon 1a primers demonstrate a strong amplified band with the upstream oligonucleotide A1 and a weaker band with oligonucleotide A2 (Fig. 3); oligonucleotides 3–7 yield very weak bands. These data, taken together with the RNase protection experiments, indicate that most transcripts start between positions 331 and 354 (Fig. 3); the latter position corresponds to the 5’ end of the previously characterized p45 NF-E2 cDNA (7). These experiments allow us to define the promoter sequences immediately upstream to the 1b and 1a transcription start sites.

Several potential binding sites for transcription factors, including an upstream palindromic tandem GATA-1 site and a downstream GATA-1 site (Fig. 2B, boxed) are conserved 5’ to the 1b transcription start site in both the mouse and human genes. In contrast to the findings in exon 1b, no obvious binding sites for erythroid transcription factors are detectable in the mouse promoter/exon 1a sequence; this is in agreement with previous observations with the human promoter (32).

The mouse exon 1b, like the human exon, shows no translation initiation site; it is also much shorter than the human fetal exon, due to the insertion of a splice site 120 nt downstream to the transcription initiation site.

Differential Expression from the Promoters 1b and 1a during Development—To evaluate the relative expression of transcripts arising at promoters 1b and 1a, we developed an RT-
PCR assay using a common antisense primer mapping in exon 2, and different sense primers mapping in exons 1b and 1a, respectively (see “Experimental Procedures”). Total RNAs were obtained from mouse yolk sac, fetal liver, and adult bone marrow. Following retrotranscription with random primers, different samples, containing equal amounts of total cDNA (based on normalization by actin RT-PCR; data not shown), were amplified with the 1b and 1a specific primer pairs. The results were evaluated in the exponential phase of the amplification by hybridization to a cloned DNA fragment including only the exon 2 common to both amplified bands. Using the 1a-specific pair, two bands of 395 and 283 nt are detected (Fig. 5). The upper less abundant band was shown by sequencing to represent a transcript including exon 1a, the alternatively spliced exon 1A (30) and exon 2 (see Fig. 1A), the lower band includes only exons 1a and 2. Using the 1b-specific primer amplification pair, only one band of 195 nt is detected (Fig. 5). The results indicate that transcripts from the promoter 1b are much more abundant than those from the promoter 1a during the embryonic-fetal stage, representing over 80% of the total. On the other hand, the percentage of transcripts from 1b is somewhat lower, varying between 40% and 50% of the total in bone marrow from adult mice. Bone marrow cells were further fractionated into the erythroid and myeloid components, by separation on magnetic beads coated with antibodies against an erythroid (TER-119) or a myeloid (Mac-1) membrane antigen. In erythroid cells, the proportion of 1b transcripts was about 75% of the total p45-NF-E2 transcripts, whereas in myeloid cells it was as low as 10–15% (Fig. 5B).

The very low expression of 1b transcripts in myeloid cells was further confirmed by analysis of myeloid interleukin-3-dependent Mac-1-positive progenitors immortalized from mice transgenic for SV40 T gene driven by GATA-1 regulatory elements (40); in these cells the proportion of 1b transcripts was even lower (<5%) than in bone marrow myeloid cells (data not shown).

The Promoter 1b Includes a Strong GATA-1 Binding Site—As shown in Fig. 2, the promotor 1b contains a sequence resembling a tandem palindromic GATA-binding site, which is highly conserved between mouse and man (16 out of 17 nucleotides). An oligonucleotide encompassing this site (nt 450–480, Fig. 2B and “Experimental Procedures”) generates a strong
indicated on the top row and bottom row) and 1b (the hybridization at cycle 30 was underexposed relative to those at Mac-1, fractionated myeloid cells from adult bone marrow. Note that (30) present in the 1a transcript. The calculated percentages of the 1b mutated and normal oligonucleotides (Fig. 6), destroying the GATA-1 consensus, abolished the ma-

Fig. 5. RT-PCR analysis of 1a and 1b transcripts. The hybrid-

The hybridization to a p45 second exon probe of a Southern blot of the amplified 1a (top row) and 1b (bottom row) transcripts is shown. The RNAs used are indicated on the top of each panel. A, YS, yolk sac; FL, fetal liver; dpc, days post coitum; BM, adult bone marrow. Cycle numbers are shown on the corresponding lanes. 1A, this band includes the alternative exon 1A (30) present in the 1a transcript. The calculated percentages of the 1b band versus 1b+1a bands are as follows: yolk sac, 8.5–10.5 days post coitum: 72%, 52%, and 75%, respectively; fetal liver, 10.5–13.5 days post coitum: 89%, 96%, and 92%, respectively; adult bone marrow: 42% and 39%. These percentages were calculated using different exposures of the autoradiograms shown, and comparing bands of similar intensities (see “Experimental Procedures”), usually at cycle 20 or 23 (for 1b) versus cycle 23 or 26 (for 1a). B, TER-119, fractionated erythroid cells; Mac-1, fractionated myeloid cells from adult bone marrow. Note that the hybridization at cycle 30 was underexposed relative to those at cycles 23 and 26.

GATA-1 band obtained with either the p45 GATA palindrome or the HS2 GATA oligonucleotide (Fig. 6A, lanes 3 and 7). These data indicate that the weak residual band detected with the mutated oligonucleotide is not related to a GATA-1-binding protein. Interestingly, the mutation of only one (i.e., either the 5’ or the 3’ of the two GATA-1 consensus sites) strongly decreased but did not abolish, the binding of the oligonucleotide, as shown by direct binding (Fig. 6C, lanes 2 and 3) and competition experiments (Fig. 6C, lanes 6–8). Finally, the identity of the putative GATA-1 band was confirmed by an antibody-supershift experiment. We used two anti-GATA-1 specific antibodies (provided by Dr. C. Santoro (Ref. 38) and by Santa Cruz Biotechnology); both supershifted most (at least 80%) of the putative GATA-1 band (Fig. 6D, lanes 1 and 2, and data not shown). The weak band generated by the mutated p45 GATA-1 oligonucleotide was not affected by the antibody (Fig. 6D, lanes 3 and 4), confirming that this band is not related to GATA-1.

As K562 cells contains some GATA-2 protein (44), an anti-GATA-2 antibody (Santa Cruz Biotechnology) was also used. The anti-GATA-2 antibody did not affect the binding when added to the reactions (data not shown).

The Promoter 1b Is Stronger than the Promoter 1a in Transfection Experiments in Erythroid Cells, and Its Activity Depends on the GATA-1 Binding Site—The promoter 1b shows potential binding sites for the erythroid transcription factor GATA-1, whereas the promoter 1a does not. We evaluated the activity of these promoters by transient transfection of luciferase reporter constructs in erythroid cells. Transfection was carried out in the presence of Renilla luciferase, driven by the herpes simplex virus thymidine kinase promoter, to normalize for transfection efficiency.

Fig. 7 indicates that the promoter 1b is much more active than the promoter 1a in both the K562 and HEL erythroleu-

K562 cells, the activity of the promoter 1b is close to that of the p45 NF-E2 gene (data not shown). Using extracts from non-erythroid cells, a preparation of each plasmid (with sequences arising at the downstream located 1b element are either unstable or efficiently stopped at the strong poly(A) addition region preceding the promoter cloning site of pLUC. These data indicate that 1b sequences have enhancer activity.

This conclusion was confirmed by stable transfection experiments in K562 cell populations in which 1b-luc gave a 4-fold higher activity than 1a p-luc, and 1a p-luc-1b enh sense gave a 3.5-fold higher activity than 1a p-luc (data not shown).

To compare the activities of promoters 1b and 1a in erythroid versus non-erythroid cells, a preparation of each plasmid (with firefly luciferase as reporter) was transfected into both cell types (K562 and HEL cells), together with a fixed amount of Renilla luciferase plasmid (Table I). Whereas, in erythroid K562 cells, the activity of the promoter 1b is close to that of the

Fig. 6. RT-PCR analysis of 1a and 1b transcripts. The hybridiz-

As shown in Fig. 7 (compare lanes E and G to lanes B and D), the 1b element stimulates (5–6-fold), in both orientations, the activity of the weak promoter 1a in K562 and HEL cells.

In contrast, the control (1a-less) luc-1b enh plasmids showed very little activity above background, indicating that any transcripts arising at the downstream located 1b element are either unstable or efficiently stopped at the strong poly(A) addition region preceding the promoter cloning site of pLUC. These data indicate that 1b sequences have enhancer activity.
strong TK-promoter driving Renilla luciferase activity (Table I), in non-erythroid HeLa cells, the activity of the 1b promoter is extremely low and only slightly above that of the promoter-less pGL basic vector plasmid; thus, the luciferase to Renilla activity ratio is greatly reduced in HeLa cells, relative to the corresponding experiment in K562 cells. Both the 1a p-luc and 1a p-luc-1b enh constructs in HeLa cells show the same very low activity as the 1b p-luc construct. Therefore, neither promoter is significantly active in HeLa cells.

GATA-1 is a hematopoietic restricted transcription factor, that is particularly abundant in the erythroid system. As the promoter 1b contains a strong GATA-1 binding sequence, we destroyed it by substituting, in both sites of the palindrome, the same mutation as in the mutant p45 GATA oligonucleotide, within plasmid 1b p-luc (Figs. 2B and 7). When transfected into K562 cells, this plasmid (GATA-1-1b p-luc) showed essentially no activity (lane H), as compared with the wild type counterpart (lane C).

Fig. 6. GATA-1 binds to the p45 GATA palindrome. Electrophoretic mobility shift assays were performed with labeled oligonucleotide probes (indicated below the figures) and nuclear extracts from human erythroid K562 cells. Wild type or mutant oligonucleotides (indicated above the figures) were used as specific unlabeled competitors in a 50-fold molar excess (A and C) or as otherwise indicated (B). In D, an anti-GATA-1 antibody (38) was added where indicated (+). Identical results were obtained with antibodies from Santa Cruz Biotechnology. wt p45 GATA, mut p45 GATA, 5' mut p45 GATA, and 3' mut p45 GATA, the normal, doubly mutated and 5' or 3' -mutated p45 GATA palindrome oligonucleotides (nt 450–480, Fig. 2B and “Experimental Procedures”), respectively; HS2 GATA, a GATA-1 binding oligonucleotide from the enhancer of the GATA-1 gene (see Ref. 41 and “Experimental Procedures”). In panel D, the arrow points to the antibody-supershifted GATA-1 band.
Conservation of Two Alternative p45 NF-E2 Promoters between Man and Mouse—
p45 NF-E2 gene expression is regulated in a complex way; in fact, p45 RNA or protein is detected in only a subset of hematopoietic cells and in few non-hematopoietic cells. The discovery in man of two alternative p45 promoters adds to this complexity (32).

In this paper, we asked whether the alternative promoter arrangement is conserved between man and mouse. As shown in Figs. 1, 2, and 3, both the overall structural organization, with promoter 1b lying in the intron comprised between promoter 1a and exon 2, and significant sequence homology, are conserved between man and mouse. These observations argue in favor of important, and possibly distinct, functional roles for these promoters.

Transcripts from the Promoter 1b Are Abundant in Erythroid, but Not Myeloid, Cells—Initial analysis of the expression pattern of 1a and 1b transcripts in man, led to the suggestion that 1b and 1a transcripts be termed fetal and adult, respectively (32). The availability of early hematopoietic cells from mouse embryos allowed us to further probe this distinction.

The results shown in Fig. 5 indicate that indeed transcripts from exon 1b are largely predominant in samples from the early yolk sac and fetal liver, representing 80–90% of the total p45 transcripts.

As hematopoiesis at early stages (embryonic day 8.5–9.5), particularly in the yolk sac, is mainly of the primitive type, whereas at later developmental stages definitive hematopoiesis is predominant, it might be suggested that p45 mRNA transcription from the promoter 1b is an important feature of both primitive and definitive embryonic-fetal hematopoiesis. However, p45 transcripts arising at promoter 1b are also abundant in adult bone marrow samples (Fig. 5A, right panels), representing on average approximately 40–50% of the total transcripts. This result blurs the proposed distinction (32) between a fetal (1b) and an adult (1a) promoter. In evaluating this distinction, a further note of caution should be added; bone marrow cells represent a very heterogeneous population, containing a very large proportion of myeloid cells, whereas in fetal liver and particularly in yolk sac the erythroid component is predominant. Indeed, TER-119-positive cells from adult bone marrow, representing a highly enriched erythroid population, express >75% 1b transcripts (relative to the total) (Fig. 5B), a figure that approaches that detected in fetal liver; on the other hand, the myeloid component (Mac-1-positive cells) from the same marrow expresses only 10–15% 1b transcripts relative to the total.

Table 1

CONSTRUCT	K562 activity (%)	HEL activity (%)	K562 X±S.D.	HEL X±S.D.
1a p-luc	0.014 ± 0.0013	0.033 ± 0.003		
1b p-luc	0.2 ± 0.04	0.02 ± 0.002		
1a p-luc-1b enh	0.13 ± 0.01	0.033 ± 0.006		

Discussion

Conservation of Two Alternative p45 NF-E2 Promoters between Man and Mouse—p45 NF-E2 gene expression is regulated in a complex way; in fact, p45 RNA or protein is detected in only a subset of hematopoietic cells and in few non-hematopoietic cells. The discovery in man of two alternative p45 promoters adds to this complexity (32).

In this paper, we asked whether the alternative promoter arrangement is conserved between man and mouse. As shown in Figs. 1, 2B, and 3, both the overall structural organization, with promoter 1b lying in the intron comprised between promoter 1a and exon 2, and significant sequence homology, are conserved between man and mouse. These observations argue in favor of important, and possibly distinct, functional roles for these promoters.

Transcripts from the Promoter 1b Are Abundant in Erythroid, but Not Myeloid, Cells—Initial analysis of the expression pattern of 1a and 1b transcripts in man, led to the suggestion that 1b and 1a transcripts be termed fetal and adult, respectively (32). The availability of early hematopoietic cells from mouse embryos allowed us to further probe this distinction.
than the developmental stage, the larger proportion of erythroid cells in these organs than in bone marrow. This conclusion is in agreement with the observation that human peripheral granulocytes abundantly express a p45 transcript, exclusively at the 1b element in extracts from Tal-1-positive cells, and therefore of significant potential relevance. Several tandem repeated GATA-1 sites are known to be strong functional elements (41, 43–46). The tandem repeat strongly binds GATA-1 as determined by gel shift analysis with promoter 1b, and therefore of significant potential relevance. Sites, and in particular a tandem palindromic GATA-1 site (Fig. 5A), which lies 8 nt upstream the major transcription initiation region (Fig. 2B), in the promoter 1a, a conserved region extends 60–80 nt upstream the major transcription starts. Psicheda et al. (32) had previously noticed the presence of potential binding sites for erythroid transcription factors (GATA-1, EKLF, stage-specific element binding factor) in the potential binding sites for erythroid transcription factors (GATA-1, EKLF, stage-specific element binding factor) in the promoter 1b, and not in the promoter 1a. Only the GATA-1 sites, and in particular a tandem palindromic GATA-1 site (Fig. 2B, boxed) appear to be conserved between man and mouse in promoter 1b, and therefore of significant potential relevance.

The observation that GATA-1 might contribute to p45 NF-E2 gene expression, has some implications for the interpretation of the phenotype of the knock-out of GATA-1 and p45 NF-E2 genes in mouse. In both instances, severe abnormalities of megakaryocytopoiesis and platelet production have been observed (26, 52, 53, 54). GATA-1 and NF-E2 are coexpressed in megakaryocytes and might have common as well as separate target genes (6, 22, 55, 56); it can now be further speculated that the deficiency of expression of GATA-1 in megakaryocytes from mice carrying a mutant GATA-1 locus (52) might be directly responsible for the observed down-regulation of NF-E2 in megakaryocytes (54), contributing to the severity of the phenotype.

Neither the promoter 1b nor the 1a is active in non-erythroid HeLa cells. As p45 NF-E2 expression occurs in some non-hematopoietic tissues, other regulatory elements, not included in these constructs, or non-hematopoietic tissue-specific factors may be necessary for non-hematopoietic p45 expression.

Acknowledgments—We thank M. Minuzzo and A. Ronchi for help and discussion and C. Santoro for the gift of an anti-GATA-1 antibody.

REFERENCES

1. Mignotte, V., Wall, L., deBoer, E., Grosveld, F., and Romeo, P. H. (1989) Nucleic Acids Res. 17, 2825–2831
2. Ney, P. A., Sorrentino, B. P., McDonagh, K. T., and Nienhuis, A. W. (1990) Genes Dev. 4, 993–1006
3. Talbot, D., and Grosveld, F. (1991) EMBO J. 10, 1291–1298
4. Blank, V., Kim, M. J., and Andrews, N. C. (1997) Blood 89, 447–451
5. Kataoka, K., Noda, M., and Nishizawa, M. (1994) Mol. Cell. Biol. 14, 70–712
6. Deveaux, S., Cohen-Kaminsky, S., Shivasdasi, R. A., Andrews, N. C., Filipe, A., Kuzniak, I., Orkin, S. H., Romeo, P.-H., and Mignotte, V. (1997) EMBO J. 16, 5654–5661
7. Andrews, N. C., Erdjument-Bromage, H., Davidson, B. M., Tempst, P., and Orkin, S. H. (1993) Proc. Natl. Acad. Sci. U. S. A. 90, 11488–11492
8. Noyer, P. A., Andrews, N. C., Jane, S. M., Safer, B., Purucker, M. E., Weresowicz, S., Morton, C. C., Goff, S. C., Orkin, S. H., and Nienhuis, A. W. (1993) Mol. Cell. Biol. 13, 5604–5612
9. Igarashi, K., Kataoka, K., Itoh, K., Hayashi, N., Nishizawa, M., and Yamamoto, M. (1994) Nature 370, 569–572
10. Kataoka, K., Igarashi, K., Itoh, K., Fujiiwara, K. T., Noda, M., Yamamoto, M., and Nishizawa, M. (1995) Mol. Cell. Biol. 15, 2180–2190
11. Blank, V., Kim, M. J., and Andrews, N. C. (1997) Blood 89, 3925–3935
12. Fujino, K., Kato, R., Tanimoto, Y., Hoshino, H., and Nishizawa, M. (1994) Mol. Cell. Biol. 14, 700–712
13. Igarashi, K., Itoh, K., Motohashi, H., Hayashi, N., Matuzaiki, Y., Nakaochi, H., Nishizawa, M., and Yamamoto, M. (1995) J. Biol. Chem. 270, 7615–7624
14. Chen, J. Y., Han, X.-L., and Kan, Y. W. (1995) Proc. Natl. Acad. Sci. U. S. A. 90, 11371–11375
15. Caterina, J. J., Donze, D., Sun, C.-W., Ciavatta, D. J., and Townes, T. M. (1994) Proc. Natl. Acad. Sci. U. S. A. 90, 40–46
16. Ma, P., Chen, K., Anusin, I., Cao, A., and Kan, Y. W. (1994) Proc. Natl. Acad. Sci. U. S. A. 91, 9926–9930
17. Chui, D. H. K., Tang, W., and Orkin, S. H. (1995) Biochem. Biophys. Res. Commun. 209, 40–46
18. Igarashi, K., Itoh, K., Hayashi, N., Nishizawa, M., and Yamamoto, M. (1995) Mol. Cell. Biol. 15, 4184–4193
19. Igarashi, K., Itoh, K., Motohashi, H., Hayashi, N., Hoshino, H., Nishizawa, M., and Igarashi, M. (1996) Mol. Cell. Biol. 16, 6083–6095
20. Igarashi, K., Hoshino, H., Muto, A., Suzuki, S., Nishikawa, S., Nakauchi, H., and Yamamoto, M. (1998) J. Biol. Chem. 273, 11783–11790
21. Romeo, P.-H., Prandini, M.-H., Joulin, V., Mignotte, V., Prenant, M., Vainchenker, W., Marguerie, G., and Uzan, G. (1999) Nature 344, 447–449
22. Toki, T., Itoh, J., Araki, K., Kitazawa, J., Yokoyma, M., Igarashi, K., Yamamoto, M., and Ito, E. (1999) Biochem. Biophys. Res. Commun. 219, 760–765
23. Chen, J. Y., Han, X.-L., and Kan, Y. W. (1993) Proc. Natl. Acad. Sci. U. S. A. 90, 11366–11370
24. Ney, P. A., Sorrentino, B. P., Lowrey, C. H., and Nienhuis, A. W. (1990) Nucleic Acids Res. 18, 6011–6017
25. Shivasdasi, R. A., Rosenberg, M. F., Zuckerk-Franklin, D., Jackson, C. W., Leicht, P. S., Sarts, C. J., and Orkin, S. H. (1995) Mol. Cell. Biol. 15, 6885–704
26. Shivasdasi, R. A., and Orkin, S. H. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 8890–8894
27. Karas, T., Takakashi, S., Komeno, T., Itoh, J., Nagasawa, T., and Yamamoto, M.
GATA-dependent Alternative Promoter of Mouse p45 NF-E2 Gene

M. (1998) J. Biochem. (Tokyo) 123, 376–379
29. Martin, F., van Deursen, J. M., Shivdasani, R. A., Jackson, C. W., Troutman, A. G., and Ney, P. A. (1998) Blood 91, 3459–3466
30. Lu, S. J., Rowan, S., Bani, M. R., and Ben-David, Y. (1994) Proc. Natl. Acad. Sci. U. S. A. 91, 8398–8402
31. Kothow, K. J., and Orkin, S. H. (1995) Mol. Cell. Biol. 15, 4640–4647
32. Pischiedda, C., Coco, S., Melis, A., Marin, M. G., Kan, Y. W., Cao, A., and Mei, P. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 3511–3515
33. Moroni, E., Cairns, L. A., Ottolenghi, S., Giglioni, B., Ashihara, E., Migliaccio, G., and Migliaccio, A. R. (1995) Biochem. Biophys. Res. Commun. 231, 299–304
34. Chomezynski, P., and Sacchi, N. (1987) Anal. Biochem. 162, 156–159
35. Singh, H., Sen, R., Baltimore, D., and Sharp, P. A. (1986) Nature 319, 154–158
36. Ronchi, A., Bottardi, S., Mazzaacchelli, C., Ottolenghi, S., and Santoro, C. (1995) J. Biol. Chem. 270, 21934–21941
37. Dignam, J. D., Lebowitz, R. M., and Roeder, R. G. (1983) Nucleic Acids Res. 11, 1475–1489
38. Calligaris, R., Bottardi, S., Cogoi, S., Apezteguia, I., and Santoro, C. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 11598–11602
39. Peters, L. L., Andrews, N. C., Eicher, E. M., Davidson, M. B., Orkin, S. H., and Lux, S. E. (1995) Nature 362, 768–770
40. Cairns, L. A., Crotta, S., Minuzzo, M., Moroni, E., Granucci, F., Nicolis, S., Schirò, R., Puzzi, L., Giglioni, B., Ricciardi, P., and Ottolenghi, S. (1994) EMBO J. 13, 4577–4586
41. Nicolis, S., Bertini, C., Ronchi, A., Crotta, S., Lanfranco, L., Moroni, E., Giglioni, B., and Ottolenghi, S. (1991) Nucleic Acids Res. 19, 5285–5291
42. Nagai, T., Harigae, H., Ishihara, H., Motohashi, H., Minegishi, N., Tsuihuya, S., Hayashi, N., Gu, L., Andres, B., Engel, J. D., and Yamamoto, M. (1994) Blood 84, 1074–1084
43. Ronchi, A., Cirò, M., Cairns, L., Basilico, L., Corbelli, P., Ricciardi-Castagnoli, P., Cross, M., Ghyssels, J., and Ottolenghi, S. (1997) Genes Funct. 1, 245–258
44. Tsai, S. F., Strauss, E., and Orkin, S. H. (1991) Genes Dev. 5, 919–931
45. Trainor, C. D., Omichinski, J., Vanderberg, T. L., Gronenborn, A. M., Clare, G. M., and Felsenfeld, G. (1996) Mol. Cell. Biol. 16, 2238–2247
46. Anderson, R. P., Crable, S. C., and Lingrel, J. B. (1998) J. Biol. Chem. 273, 14347–14354
47. Wadman, I. A., Osada, H., Grutz, G. G., Agulnick, A. D., Westphal, H., Forster, A., and Rabbitts, T. H. (1997) EMBO J. 16, 3145–3157
48. Lecontie, N., Bernard, O., Naert, K., Joulin, V., Larsen, C. J., Romeo, P. H., and Mathieu-Mahul, D. (1994) Oncogene 9, 2623–2632
49. Bockamp, E.-O., McLaughlin, F., Murrell, A. M., Gotgens, B., Robb, L., Bleyl, C. G., and Green, A. R. (1995) Blood 1053–1054
50. Crossley, M., Tsang, A. P., Bicker, J. J., and Orkin S. H. (1994) J. Biol. Chem. 269, 15440–15444
51. Tsang, A. P., Visvader, J. E., Turner, C. A., Fujiiwa, Y., Yu, C., Weiss, M. J., Crossley, M., and Orkin, S. H. (1997) Cell 90, 109–119
52. Shivdasani, R. A., Fujiiwa, Y., McDevitt, M. A., and Orkin, S. H. (1997) EMBO J. 13, 3965–3973
53. Takahashi, S., Komeno, T., Suwabe, N., Yoh, K., Nakajima, O., Nishimura, S., Kuroha, T., Nagasawa, T., and Yamamoto M. (1998) Blood 92, 434–442
54. Vyas, P., Ault, K., Jackson, C. W., Orkin, S. H., and Shivdasani, R. A. (1999) Blood 93, 2867–2875
55. Martin, D. I. K., Zon, L. I., Mutter, G., and Orkin, S. H. (1990) Nature 344, 444–446
56. Lemarchand-V, Ghyssael, J., Mignotte, V., Rahuel, C., and Romeo, P.-H. (1995) Mol. Cell. Biol. 13, 668–676
Regulation of Mouse p45 NF-E2 Transcription by an Erythroid-specific GATA-dependent Intronic Alternative Promoter
Emanuela Moroni, Tiziana Mastrangelo, Riccardo Razzini, Linda Cairns, Paolo Moi, Sergio Ottolenghi and Barbara Giglioni

J. Biol. Chem. 2000, 275:10567-10576.
doi: 10.1074/jbc.275.14.10567

Access the most updated version of this article at http://www.jbc.org/content/275/14/10567

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 55 references, 31 of which can be accessed free at http://www.jbc.org/content/275/14/10567.full.html#ref-list-1