CRISPR 2 PCR and high resolution melting profiling for identification and characterization of clinically-relevant *Salmonella enterica* subsp. *enterica*

Nuttachat WisittipanitEqual first author, 1, Chaiwat Pulsrikarn 2, Sudarat Srisong 3, Rungthiwa Srimora 3, Nattinee Kittiwan 4, Kritchai PoonchareonCorresp. Equal first author, 5

1 Department of Material Engineering, School of Science, Mae Fah Luang University, Chiang Rai, Thailand
2 Department of Medical Sciences, WHO National Salmonella and Shigella Center, National Institute of Health, Ministry of Public Health, Nonthaburi, Thailand
3 Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, Thailand
4 Veterinary Diagnostic Center, Veterinary Research and Development Center (Upper Northern Region), Lampang, Thailand
5 Division of Biochemistry, School of Medical Sciences, The University of Phayao, Phayao, Thailand

Corresponding Author: Kritchai Poonchareon
Email address: kof_of@hotmail.com

Background: Nontyphoidal *Salmonella* spp. constitute a major bacterial cause of food poisoning. Each *Salmonella* serotype causes distinct virulence to humans.

Method: A small cohort study was conducted to characterize several aspects of *Salmonella* isolates obtained from stool of diarrheal patients (n = 26) admitted to Phayao Ram Hospital, Phayao province, Thailand. A simple CRISPR 2 molecular analysis was developed to rapidly type *Salmonella* isolates employing both uniplex and high resolution melting (HRM) curve analysis.

Results: CRISPR 2 monoplex PCR generated a single *Salmonella* serotype-specific amplicon, showing S. 4,5,12:i- with highest frequency (42%), S. Enteritidis (15%) and S. Stanley (11%); S. Typhimurium was not detected. CRISPR 2 HRM-PCR allowed further classification of S. 4,5,12:i- isolates based on their specific CRISPR 2 signature sequences. Highest prevalence of *Salmonella* infection was during the summer season (April to August). Additional studies were conducted using standard multiplex HRM-PCR typing, which confirmed CRISPR 2 PCR results and, using a machine-learning algorithm, clustered the majority of serotypes into six clades; repetitive element-based (ERIC) PCR, which clustered the serotypes into three clades only; antibiogram profiling, which revealed majority resistant to ampicillin (73%); and test for extended spectrum β-lactamase production (two isolates) and PCR-based detection of *bla* alleles.

Conclusion: CRISPR 2 PCR provided a simple assay for detection and identification of clinically-relevant *Salmonella* serotypes. In conjunction with antibiogram profiling and rapid assay for β-lactamase producers, this approach should facilitate detection and appropriate treatment of Salmonellosis in a local hospital setting. In addition, CRISPR 2 HRM-PCR profiling enabled clustering of S. S. 4,5,12:i- isolates according to CRISPR 2 locus signature sequences, indicative of their different evolutionary trajectories, thereby providing a powerful tool for future epidemiological studies of virulent *Salmonella* serotypes.
CRISPR 2 PCR and high resolution melting profiling for identification and characterization of clinically-relevant *Salmonella* enterica subsp. enterica

Nuttachat Wisitipanit¹, Chaiwat Pulsrikarn², Sudarat Srisong³, Runghiwa Srimora³, Nattinee Kittiwann⁴, Kritchai Poonchareon³

¹Department of Material Engineering, School of Science, Mae Fah Luang University, Chiang Rai, Thailand
²Department of Medical Sciences, WHO National Salmonella and Shigella Center, National Institute of Health, Ministry of Public Health, Nonthaburi, Thailand
³Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, Thailand
⁴Veterinary Research and Development Center (Upper Northern Region), Hang Chat, Lampang, 52190, Thailand.

Corresponding Author:
Kritchai Poonchareon
19 Moo 2, Tambon Maeka, Amphur Muang, Phayao, 56000, Thailand
Email address: kof_of@hotmail.com

Abstract

Background: Nontyphoidal *Salmonella* spp. constitute a major bacterial cause of food poisoning. Each *Salmonella* serotype causes distinct virulence to humans.

Method: A small cohort study was conducted to characterize several aspects of *Salmonella* isolates obtained from stool of diarrheal patients (n = 26) admitted to Phayao Ram Hospital, Phayao province, Thailand. A simple CRISPR 2 molecular analysis was developed to rapidly type *Salmonella* isolates employing both uniplex and high resolution melting (HRM) curve analysis.

Results: CRISPR 2 monoplex PCR generated a single *Salmonella* serotype-specific amplicon, showing *S*. 4,5,12:i- with highest frequency (42%), *S*. Enteritidis (15%) and *S*. Stanley (11%); *S*. Typhimurium was not detected. CRISPR 2 HRM-PCR allowed further classification of *S*. 4,5,12:i- isolates based on their specific CRISPR 2 signature sequences. Highest prevalence of *Salmonella* infection was during the summer season (April to August). Additional studies were conducted using standard multiplex HRM-PCR typing, which confirmed CRISPR 2 PCR results and, using a machine-learning algorithm, clustered the majority of serotypes into six clades;
repetitive element-based (ERIC) PCR, which clustered the serotypes into three clades only;

antibiogram profiling, which revealed majority resistant to ampicillin (73%); and test for
extended spectrum β-lactamase production (two isolates) and PCR-based detection of bla alleles.

Conclusion: CRISPR 2 PCR provided a simple assay for detection and identification of
clinically-relevant Salmonella serotypes. In conjunction with antibiogram profiling and rapid
assay for β-lactamase producers, this approach should facilitate detection and appropriate
treatment of Salmonellosis in a local hospital setting. In addition, CRISPR 2 HRM-PCR
profiling enabled clustering of S. 4,5,12:i- isolates according to CRISPR 2 locus signature
sequences, indicative of their different evolutionary trajectories, thereby providing a powerful
tool for future epidemiological studies of virulent Salmonella serotypes.

Introduction
Salmonella enterica can cause human gastroenteritis owing to inadequate hygienic standards of
living and/or consuming poorly prepared fresh food. S. enterica has been subtyped to more than
2,463 serovars according to their antigenic properties (Kauffman, 1972); however, only a limited
number of serovars cause human infection (Uzzau et al., 2000) and, thus, identification of these
serotypes is of public health importance. Distribution of Salmonella serovars is markedly
different among continents (Galanis et al., 2006), but within a single country such as Thailand
serovars slightly varies in different geographical regions, the most common clinical serovars
being S. 4, 5, 12:i-, Anatum, Derby, Enteritidis, and Weltevreden (Bangtrakulnonth et al., 2004)
(Padungtod & Kaneene, 2006).

Emergence of multi-drug resistance (MDR) in the major prevalent non-typhoidal Salmonella
serovars found in human gastroenteritis is related to an acquisition of antibiotic-resistant genes
especially in S. Typhimurium (Velge, Cloeckart & Barrow, 2005). In Thailand, a significant
increase in resistance to amikacin, kanamycin and second line antibiotic ceftriaxone is suggested
to be related to over-use of antibiotics to livestock feed and in medical treatment (Boonmar et al.,
1998). Also, an increase in resistance to quinolones such as nalidixic acid was reported
(Sirsichote et al., 2010). Failure of treatment from third-generation cephalosporins, the extended
spectrum β-lactamases (ESBLs), has created a major threat to treatment of MDR microbial
pathogens and has stimulated studies on their epidemiology (Rupp & Fey, 2003). ESBL genes,
such as blaOXA, blaSHV, blaTEM and the more recent blaCTX-M, generate different levels of
virulence and transmission capability (Ewers et al., 2012). ESBL β-lactemase CTX-M is of
particular concern due to its global dissemination through both clonal and horizontal gene
transfer (Cantón, González-Alba & Galán, 2012).

The standard method for Salmonella identification is based on a culture method (ISO 6579:2000,
2002). The assay uses different selective media, followed by serotyping based on various
combinations of O and H antigenic determinants (Kauffman, 1972). These methods require
skilled personnel to perform the standardized protocols, which are laborious and time-
consuming. In order to reduce the turnover time for subtyping Salmonella spp., multiplex PCR of
specific gene determinants was introduced, which depends on sequence polymorphisms of rfb
locus and flagellar alleles (Kim et al., 2006), (Masek et al., 2014). Other molecular modifications such as high resolution melting temperature (HRM)-PCR assay has been coupled to multiplex PCR for detection of polymorphisms of 16S rDNA (O’Regan et al., 2008), \textit{fljB}, \textit{gyrB} and \textit{ycfQ} (Zeinzinger et al., 2012). HRM-PCR was applied to discriminate between two most prevalent clinical serotypes, namely, \textit{S. Enteritidis} and \textit{S. Typhimurium} (Bratčikov & Mauricas, 2009).

Clustered regularly interspaced short palindromic repeats (CRISPR) were discovered as a new family of repeated DNA sequences in many prokaryotes (Jansen et al., 2002). Their genetic signatures are characterized by repeated patterns of DNA, known as direct repeats (DRs), 24-47 bp in length, and DNA variable sequences (spacers) of 21-72 bp (Shariat & Dudley, 2014). Adjacent to the CRISPR locus are a “leader sequence” and cas (CRISPR-associated sequence) gene (Horvath & Barrangou, 2010). \textit{Salmonella} spp. harbor two different CRISPR loci, namely, CRISPR 1 and CRISPR 2 that correlate with \textit{Salmonella} serotype and multilocus sequence type (Fabre et al., 2012). Characterization of CRISPR alleles provide information of spacer content for performing \textit{Salmonella} typing and subtyping (Fabre et al., 2012), (Liu et al., 2011). CRISPR typing was recently applied to identify virulent \textit{Salmonella} infection of chicken raised in a single farm as well as in farms from different areas (Fei et al., 2017), (Li et al., 2018). More recently, CRISPR loci polymorphisms were utilized in a single-step assay to identify multiple \textit{Salmonella} spp. contamination of a poultry sample (Thompson et al., 2018).

In order to reduce operational cost and turnover time of the traditional culture assay for detecting and serotyping \textit{Salmonella} spp., a simple CRISPR 2-based conventional and monoplex HRM-PCR was developed in conjunction with HRM triplex and a novel machine-learning algorithm tool to analyze and identify \textit{Salmonella} serotypes in correlation with repetitive element-based (ERIC)-PCR genotyping and a rapid ESBL test, and, in addition, to distinguish \textit{S. 4,5,12:i-} isolates from different epidemiological settings.

Materials & Methods

1. Isolation and identification of \textit{Salmonella} in stool of diarrheal patients

Stool samples were collected from patients \((n = 26)\) with diarrhea during May 2016 to July 2017 at Phayao Ram Hospital, Phayao province, Thailand. Diarrhea is defined as patients showing related symptoms of fecal incontinence diagnosed by a physician and participants signed the consent forms after brief explanation of research project. Samples were incubated in buffered peptone water (Oxoid, Hampshire, UK) at 37 C° overnight, plated on SS and XLD agar (Oxoid), and suspected \textit{Salmonella} colonies indicated by using a triple sugar iron (TSI) slant (Oxoid, Hampshire, UK) assay and lysine iron agar (LIA) (Biomedia, Nontanuri, Thailand).

Conventional biochemical tests (glucose fermentation, lactose oxidation, gas and H2S production, urease assay, methyl red staining, and indole, motility and Voges-Proskauer tests) were performed according to ISO 6579:2002.

The study protocols were approved by the Ethical Committee of Phayao University (no. 57 02 04 0020).
2. Determination of β-lactam antibiotic resistance profile and ESBL phenotype

Susceptibility to β-lactam antibiotics was performed using a disk diffusion method according to Clinical and Laboratory Standards Institute (CLSI) guidelines (CLSI, 2016) using ampicillin (AMP, 10 µg), cefotaxime (CTX, 30 µg), ceftazidime (CAZ, 30 µg), ciprofloxacin (CIP, 5 µg), ertapenem (ETP, 10 µg), and gentamycin (GEN, 10 µg) discs (Oxoid), with Escherichia coli ATCC 25922 as control. ESBL phenotype was evaluated using a double-dish method (CLSI, M100S, 2016) employing CTX alone and in combination with clavulanic acid (10 µg) (Oxoid), with in-house known ESBL-producing and -negative E. coli strains as controls. A rapid ESBL was slightly modified from the ESBL NDP (Nordmann, Dortet & Poirel, 2012), which is based on observation of color change due to acid production of ESBL-producing bacteria. Salmonella isolate was inoculated in one ml of NB broth (Oxoid, Hampshire, UK) and incubated at 37 °C overnight, each experiment conducted in duplicate. Then culture was centrifuged at 13,000 g for 2 min, pellet washed twice with 700 µL of 1X 10 mM Tris HCl pH 8.0 containing 1 mM EDTA buffer and mixed with 100 µL of lysis buffer (B-PERII Bacterial Protein Extraction Reagent (Pierce/Thermo Scientific, Villebon-sur-Yvette, France), followed by 100 µL of revelation solution (0.05% (w/v) phenol red) with and without 6 g/ml cefotaxime and incubation at 37 °C for 10 min; yellow color in latter indicating positive result.

3. Determination of Salmonella serotypes by HRM-PCR

DNA was extracted from Salmonella isolates as previously described (McNerney et al., 2017). In brief, one ml aliquot of an overnight culture was sedimented as described above, washed twice with 400 µL of TE buffer, resuspended in the same volume of TE buffer, incubated at 80°C for 20 min, and cooled to ambient temperature. Then, a 50 µL aliquot of lysozyme solution (10 mg/mL) was added and the solution incubated at 37°C for one hour with occasionally shaking, followed by addition of 75 µL of 10% SDS/proteinase K (10 mg/mL) solution, vigorous vertexing and incubation at 65°C for 10 min. Following addition of 100 µL of 5 M NaCl and 100 µL of prewarmed (65°C) 10% N-cetyl-N,N,N,-trimethyl ammonium bromide (CTAB)/5 M NaCl solution, the mixture was further incubated at 65°C for 10 min, followed by addition of 750 µL of chloroform: isoamyl alcohol (24:1) and centrifugation at 11,000 g at 4°C for 5 min. DNA in the upper aqueous was precipitated with ethanol, resuspended in 50 µL of double-distilled water and stored at -20°C until used.

Multiplex HRM-PCR was performed using a combination of primers to amplify fljB (170 bp), gyrB (171 bp) and ycfQ (241 bp) (Table 1). HRM-PCR mixture (10 µL) contained 1 µL of DNA, 0.1 pmol of gyrB, 0.075 pmol of fljB and 0.075 pmol of ycfQ primer pairs and 2 µL of HOT FIREPol EvaGreen: no ROX Mix (Solis Biodyne, Tartu, Estonia). Thermocycling was performed in a BIO-RAD CFX96TM Real-Time System (Bio-Rad, Hercules, CA, USA) as follows: 95°C for 15 min, followed by 45 cycles of 95°C for 10 s, 60°C for 10 s and 72°C for 20 s. Samples were then heated at 95°C for 1 min, cooled to 40°C for 1 min and then heated from 70 to 95°C at 0.2 /s, with 25 fluorescence data acquisitions/°C. HRM profiles were generated using a Precision
Melt Analysis software V 1.2 (BIO-RAD, Hercules, CA, USA) with sensitivity setting at 0.30, temperature shift at threshold 5, pre-melt normalization range from 80.87 to 81.51°C, and post-melt normalization range from 89.17 to 89.92 °C. Following normalizing and temperature shifting, difference plots were generated relative to HRM profile of S. Bareilly (as baseline).

4. Hierarchical clustering of HRM curves using dynamic time warping (DTW) algorithm
A dendrogram of normalized HRM curves was constructed using a DTW algorithm to determine distance measurements (Lu et al., 2017); the entire dendrogram construction was performed in Python programming language (GV, 1995). In short, a smooth spline approximation was determined from each normalized HRM curve using cubic splines of splrep function in scipy module (Jones E, Oliphant E, Peterson P, 2001) followed by a rate curve calculated from negative first derivative of the resulting spline employing a splev function. The curve was then z-normalized using a zscore function to calculate DTW distances, in which l^2-norm is the distance function (only between 80 and 94°C). Hierarchical clustering based on DTW distances was preformed based on a neighbor-joining method to generate a dendrogram.

5. DNA profiling by ERIC PCR
ERIC-PCR mixture contained 0.1 μL of extracted Salmonella DNA, primer set (Table 1), 2 μL of HOT FIREPol Blend Master Mix Plus 10 mM MgCl2 (Solis Biodyne), and double-distilled water to make 10 μL. Thermocycling was performed in Veriti Thermal Cycler, Applied Biosystems (Thermo Fisher Scientific, Waltham, MA, USA) as follows: 95°C for 15 min; followed by 40 cycles of 95°C for 1 min, 54°C for 2 min and 72°C for 4 min; and a final step at 72°C for 10 min. Amplicons were separated by 4% agarose gel-electrophoresis, stained with RedSafe dye (INiRON, Kirkland, WA, USA) and recorded with a Molecular Imager Gel DOC™ XR+ (Bio-Rad, Berkeley, CA, USA) equipped with an Image Lab™ software as JPEG images at 300 dpi resolution.

6. Analysis of ERIC PCR amplicon profile and phylogenetic tree
Amplicon patterns generated by ERIC-PCR were analyzed and employing a curve-based algorithm (Pearson correlation) together with an open-source GelJ software (Heras et al., 2015) to create a similarity scale, and analysis of constructed phylogenetic tree clusters was by an unweighted pair-group using arithmetic averages algorithm (UPGMA).

7. CRISPR 2 uniplex and HRM-PCR assays of Salmonella isolates
Salmonella isolates (n = 55) included, in addition, previously characterized Salmonella spp. [S. 4,5,12:i- (n = 15), S. Typhimurium (n = 6) and other Salmonella serotypes (n = 8)] (Poonchareon et al., 2019a) (Poonchareon et al., 2019c). CRISPR 2 uniplex PCR mixture (10 μL) contained 1 μL of DNA, primer set (IDT, Singapore) (Table 1) and 2 μL of HOT FIREPol Blend Master Mix Plus 10 mM MgCl2 (Solis Biodyne). Thermocycling was carried out as described above but using the following conditions: 95°C for 12 min; 35 cycles of 94°C for 60 s, 59°C for 60 s and 72°C for 90 s; and a final step at 72°C for 7 min. Amplicons were analyzed
and recorded as described above. Amplicons of S. 4, [5], 12, i- isolates from this study and those previously characterized (nos. 1, 23, 25, 35, 56, 76, 142, 152, 157, and 249) (Poonchareon et al., 2019a) (Poonchareon et al., 2019c) were purified from PCR clean up & gel extraction kit; GeneDirex (Bio-Helix, Keelung City, Taiwan) and sequenced by First BASE Lab (Seri kembangan, Selangor, Malaysia). DNA sequences were aligned and compared with a BioEdit software package (https://bioedit.software.informer.com).

CRISPR 2 HRM-PCR mixture (10 μL) contained 1 μL of DNA, 0.1 pmol of CRISPR 2_F and 0.075 pmol of CRISPR 2_R (IDT) (Table 1), and 2 μL of HOT FIREPol EvaGreen: no ROX Mix (Solis Biodye) and thermocycling was performed as described above but under the following conditions: 95°C for 12 min, followed by 35 cycles of 95°C for 60 s, 59°C for 60 s and 72°C for 90 s. Samples were then heated at 95°C for 1 min, cooled to 40°C for 1 min and HRM profiles generated and analyzed as described above but using HRM profile of S. Agona as baseline. Clustering of S. 4, 5, 12: i- isolates was achieved with a pre-melt normalization range of 87.7-88.2°C and a post-melt normalization range of 93.5-93.7 °C, with S. 4, 5, 12: i- M76 as reference isolate.

Characterization of CRISPR 2 amplicon sequences

CRISPR 2 DNA sequences in fasta format were uploaded to https://crisprcas.i2bc.paris-saclay.fr/CrisprCasFinder/Index with default setting. Information of CRISPR 2 region (molecular signature of CRISPR 2 locus), e.g. DR consensus sequence, DR length and number of spacers, were provided directly in the form of DNA sequences or numeral data.

Identification of bla alleles

Reaction mixture (10 μL) for multiplex PCR of bla alleles of interest contained 1 μL of DNA, bla primer sets (IDT) (Table 1) and 2 μL of HOT FIREPol Blend Master Mix Plus 10 mM MgCl2 (Solis Biodye) and thermocycling was conducted as described above but using the following conditions: 95°C for 15 min; 40 cycles of 95°C for 40 s, 60°C for 40 s and 72°C for 60 s; and a final step at 72°C for 7 minutes. Amplicons were analyzed (using 1.5% agarose gel) and recorded as described above.
Results

1. *Salmonella* serotypes of clinical isolates from stools of diarrheal patients, Phayao Ram Hospital, Phayao province.

Multiplex HRM-PCR of *Salmonella* fljB, gyrB and ycfQ amplicons from 26 patients stool samples isolates generated 11 distinct HRM profiles (HRM_1-11) with HRM_1 predominant (n = 10, indicative of *S*. 4,[5],12,i-), followed by HRM_6 (n = 4, indicative of *S*. Enteritidis) and HRM_8 (n = 3, indicative of *S*. Stanley) (Fig. 1). HRM_5 profile (n = 2) was similar to those previously identified for *Salmonella* serotypes *S*. Agona, *S*. Corvallis, *S*. Derby, and *S*. Kedougou (Poonchareon et al., 2019b). The other seven HRM profiles were not characterized and considered as indicative of rare or unknown *Salmonella* serotypes.

ERIC PCR was applied to characterize genetic relatedness of *S*. Enteritidis (HRM_6), HRM_2, _3, _4, _5, _7, _9, _10, and _11 *Salmonella* isolates. Phylogenetic tree constructed from ERIC PCR amplicon sizes revealed these *Salmonella* isolates clustered into three distinct clades (Fig. 2). *Salmonella* isolates 378 and 454 (HRM_5) were in clade 1 and assigned *S*. Weltevreden. All *S*. Enteritidis isolates (HRM_6) were grouped in clade 2, and *Salmonella* isolates with serotypes unidentified from multiplex HRM-PCR profiles were grouped together in clade 3 and still remained untyped except for *Salmonella* isolate 412 (HRM_4) that was assigned *S*. 4,5,12:i-.

2. Phylogenic tree based on multiplex HRM-PCR of clinical *Salmonella* isolates and association with other characteristics.

A DTW algorithm was applied to transform HRM-PCR profiles into numerical data to allow construction of a phylogenetic tree (Lu et al., 2017), resulting in grouping of the 26 clinical isolates into six clades (Fig. 3). *S*. 4,5,12:i-, *S*. Enteritidis and *S*. Stanley was clustered in clade 2, 4 and 6, respectively while HRM types of unidentified serotypes were mainly distributed in clade 3 and 5 except HRM_5 (*S*. Weltevreden) and isolate 412 (HRM_4, *S*. 4,5,12:i-) was in clade 1 and 3 respectively. It is worth noting that *S*. 4,5,12:i- isolates were clustered in clades 2 (n = 8) and 3 (n = 1), but three were unassigned. Ampicillin resistance was predominantly associated with *bla*TEM, and two ESBL-producing *Salmonella* isolates (based on a double-dish assay) harbored *bla*CTX group 1. One ESBL-producing *S*. 4,5,12:i-, isolate 412 (assigned by ERIC-PCR, Fig. 2) demonstrated a multidrug-resistant phenotype, including CIP resistance.

3. CRISPR 2 uniplex and HRM-PCR analyses

In order to simplify *Salmonella* serotyping based on multiplex PCR of fljB, gyrB and ycfQ, uniplex PCR of CRISPR 2 locus was developed. The 26 clinical *Salmonella* isolates each generated a single amplicon, size of which was indicative of serotype when compared with known *Salmonella* serotypes, namely, 830 bp of *S*. Enteritidis and 1,700 bp of *S*. 4,5,12:i- (Fig 4). *Salmonella* isolate 412, shown by ERIC-PCR to be *S*. 4,5,12:i-, generated an amplicon of 1,700 bp. However, samples 378 and 454 (*S*. Weltevreden) and 312, 413 and 495 (*S*. Stanley) failed to demonstrated amplicons of consistent sizes. Amplicon sizes of the remaining samples did not correspond to the three *Salmonella* serotype standards. Thus, CRISPR2 uniplex PCR,
although simpler to perform, had limited ability in providing definitive identification of *Salmonella* serotypes based on amplicon sizes.

IHRM temperature-shifted difference profiles (relative to *S. 4,5,12:i- M26*) of CRISPR 2 uniplex amplicons of the 11 *S. 4,5,12:i-* isolates from this study and other previously identified samples produced three different profiles (clusters 1-3) (Fig 5). Cluster 1 contained five known human and four from minced pork samples, cluster 2 four isolates from this study and three known human isolates and cluster 3 seven isolates from this study (including samples 345 and 394 that were not grouped in any of the six clades inferred from multiplex HRM PCR profiling (Fig. 3) and sample 412) and one known human sample (Table 2). The three ESBL-producing *Salmonella* clinical isolates in cluster 1 carried a novel variant DR consensus sequence (Fabre et al., 2012). Interestingly, ESBL-producing *Salmonella* isolate 412 (cluster 3), isolated in 2017, was not grouped with the other three ESBL-producing *S. 4,5,12:i-* isolates collected earlier, suggesting the possibility of a different evolution trajectory of isolate 412.

5. Seasonal prevalence of *Salmonella* serotypes collected from stools of patients, Phayao Ram Hospital

Over a period of one calendar year, infection at Phayao Ram Hospital of *Salmonella* serotypes identified using multiplex HRM-PCR profiling peaked during the summer period (April to August) (Fig. 6), with, as expected, *S. 4,5,12:i-* being predominant, but all serotypes were represented. Although minor peaks were discernable, they are not of significance owing to the limited number of *Salmonella* isolates examined.

Discussion

In Thailand, *Salmonella* is the leading cause of food poisoning with approximately 359-389/100000 of the population affected (National Disease Surveillance, 2560). In Phayao province, the estimated number of cases of food poisoning increased from 143 to 288/100,000 between 2015 to 2016, but with no reported mortality (National Antimicrobial Resistance Surveillance Center, 2017). *Salmonella* spp. isolated from stool of patients, especially from infants, are consistent among studies irrespective of geographical locations (Pulsrikarn et al., 2013), (Parry & Threlfall, 2008). There were 105 cases admitted to Phayao Hospital from *Salmonella* food poisoning from January to December 2014 (Phayao Hospital, 2015).

Multiplex HRM-PCR assay of *Salmonella* serotypes, although not able to type all eight serotypes responsible for food poisoning, is adequate in identifying the majority of pertinent clinical *Salmonella* serotypes in particular *S. 4,5,12:i-* and *S. Enteritidis* that are frequently identified as the serotypes responsible for human and veterinary infections worldwide (Frasson et al., 2016). The method is less time consuming, with a turn-around time of approximately 8-12 hours, compared to 3-5 days using standard conventional technique and is less complicated to perform. A number of different primers have been employed in multiplex PCR for genotyping and serotyping *Salmonella* spp. (O’Regan et al., 2008), (Kim et al., 2009), but the numbers have been kept to a minimum owing to the vast variety of HRM profiles that could be generated (Masek et al., 2014).
S. 4,5,12:i:- is considered a major virulent Salmonella serotype that has successfully dispersed throughout many geographical areas and harbor various groups of antibiotic resistance genes (Guerra et al., 2000). In the present study, most of the Salmonella spp. collected from diarrheal patients were resistant to only ampicillin, although the identification of an ESBL- producing S. 4,5,12:i- suggests a possible contamination of the chain of food production originating from swine and chicken farms in this region (Angkititrakul et al., 2005). ESBL-producing and MDR S.4,5,12:i:- harboring virulent blaCTX group 1 is frequently found in other regions of Thailand (Amavisit, Boonyawiwat & Bangtrakulnont, 2005) and in Southeast Asian countries (Tamang et al., 2011) and other continents (Yang et al., 2015). Several rapid ESBL tests are available with demonstrated superiority in reducing operational time, simplicity in procedure and high accuracy (Nordmann, Dortet & Poirel, 2012). A convenient and rapid ESBL test based on observed color change of direct samples (Dierikx et al., 2010) was employed in our study without any discrepancies previously reported (Srisrattakarn et al., 2016). Because the commonly prescribed drugs for gastroenteritis treatment are the quinolone and β-lactam-related antibiotics, emergence of MDR Salmonella resistant to both ciprofloxacin and cefotaxime has compromised use of the drugs in cases with complications, such as bacteremia with underlying diseases or in children (Guarino, Bruzzese & Giannattasio, 2018). Association of resistance to a particular β-lactam antibiotic with a Salmonella serotype highlights the usefulness of rapid serotyping and the emergence of S. 4,5,12:i- resistant in both ciprofloxacin and cefotaxime indicates the need for implementation of surveillance in local hospitals. Although the peak season for Salmonella infection in the study region was in the summer season, consistent predominance of virulent S. 4,5,12:i- among the isolates throughout the year is be of concern.

CRISPR polymorphism has been effectively applied in typing and subtyping several clinically important bacteria such as Mycobacterium tuberculosis and Salmonella spp. (Kamerbeek et al., 1997), (Liu et al., 2011). A significantly improved CRISPR-based method (CRISPOL) for Salmonella subtyping was effectively applied to characterize more than 2,000 isolates of Salmonella Typhimurium and variant S. I 4,5,12:i- (Fabre et al., 2012). However, a simple and rapid conventional PCR assay was also developed to characterize certain specific serotypes (Xiong et al., 2016). Our small cohort study indicates a preliminary protocol of CRISPR 2 uniplex PCR allowed simultaneous detection and differentiation among three clinically important Salmonella serotypes, namely S. 4,[5],12:i:., S. Enteritidis and S. Typhimurium but this needs confirmation using a larger collection of Salmonella isolates. This CRISPR 2 uniplex PCR method should be less complicated to adapt in quantitative analysis of Salmonella contamination in food products compared to quantitative multiplex PCR (Maurischat et al., 2015). In addition, application of CRISPR HRM-PCR profiling to address CRISPR 1 and 2 sequence polymorphisms has allowed differentiation of eleven Salmonella serotypes (Bratčikov & Mauricas, 2009). CRISPR 2 HRM-PCR profiling in our hands indicated S. 4,5,12:i- isolates could be readily differentiated, possibly reflecting differences in evolutionary trajectories of the S. 4,[5],12:i- isolates from this region of the country.
The limited number of S. 4,5,12:i- isolates available in this particular area necessitates further studies of a larger cohort of S. 4,[5],12:i- isolates not only from the study area but from various epidemiological backgrounds to enable correlation of important virulent features with epidemiological settings. Interestingly, application of CRISPR 1 and 2 PCR methods for Salmonella identification allowed detection of multiple Salmonella serovars in a single sample (Thompson et al., 2018). This application of CRISPR 2 PCR for identification of multiple Salmonella serotypes in a specimen will be further explored.

Conclusions

The study demonstrates the ability of applying multiplex HRM-PCR profiling and a novel protocol of CRISPR 2 uniplex PCR together with HRM profiling to rapidly and conveniently serotype clinically important Salmonella isolates. In conjunction with a rapid ESBL test, antibiogram profile and detection of β-lactamase genes should provide a powerful strategy for predicting antibiotic resistance phenotypes associated with particular serotypes. Moreover, CRISPR 2 HRM-PCR profiling provides a novel tool for classification of S. 4,[5],12:i- according to evolutionary trajectories stemming from various epidemiological settings.

Acknowledgements

The author received no funding for this work. The authors appreciated research cooperation from Veterinary Research and Development Center (Upper Northern Region). Finally, we were indebted Prof. Emeritus Prapon Wilairat, Mahidol University for providing invaluable suggestions and encouragement and for proof-reading the final manuscript.

References

Amavisit P, Boonyawiwat W, Bangtrakulnont a. 2005. Characterization of Salmonella enterica Serovar Typhimurium and Monophasic Salmonella Serovar 1 , 4 ,[5], 12 : i :- Isolates in Thailand. 43:2736–2740. DOI: 10.1128/JCM.43.6.2736.

Angkititrakul S, Chomvarin C, Chaita T, Kanistanon K, Waethewutajarn S. 2005. Epidemiology of antimicrobial resistance in Salmonella isolated from pork, chicken meat and humans in Thailand. Southeast Asian Journal of Tropical Medicine and Public Health 36:1510–1515.

Bangtrakulnonth A, Pornreongwong S, Pulskiram C, Sawanpanyalert P, Hendriksen RS, Lo Fo Wong DM a, Aarestrup FM. 2004. Salmonella Serovars from Humans and Other Sources in...
Boonmar S, Bangtrakulnonth A, Pornruangwong S, Samosornsuk S, Kaneko KI, Ogawa M. 1998. Significant increase in antibiotic resistance of *Salmonella* isolates from human beings and chicken meat in Thailand. Veterinary Microbiology 62:73–80.

Bratčíkov M, Mauricas M. 2009. The use of high-resolution melting analysis for *Salmonella* spp. CRISPR sequence genotyping. Acta medica Lituanica 16:98–102. DOI: 10.2478/v10140-009-0014-8.

Cantón R, González-Alba JM, Galán JC. 2012. CTX-M enzymes: Origin and diffusion. Frontiers in Microbiology 3:1–19. DOI: 10.3389/fmicb.2012.00110.

CLSI. 2016. M100S: Performance Standards for Antimicrobial Susceptibility Testing. Wayne, PA, USA: Clinical and Laboratory Standards Institute.

Dierikx C, van Essen-Zandbergen A, Veldman K, Smith H, Mevius D. 2010. Increased detection of extended spectrum beta-lactamase producing *Salmonella* enterica and *Escherichia coli* isolates from poultry. Veterinary Microbiology 145:273–278. DOI: 10.1016/j.vetmic.2010.03.019.

Fabre L, Zhang J, Guigon G, Le Hello S, Guibert V, Accou-Demartin M, de Romans S, Lim C, Roux C, Passet V, Diancourt L, Guibourdenche M, Issenhuth-Jeanjean S, Achtman M, Brisse S, Sola C, Weill FX. 2012. Crispr typing and subtyping for improved Laboratory surveillance of *Salmonella* infections. PLoS ONE 7. DOI: 10.1371/journal.pone.0036995.

Fei X, He X, Guo R, Yin C, Geng H, Wu K, Yin K, Geng S, Pan Z, Li Q, Jiao X. 2017. Analysis of prevalence and CRISPR typing reveals persistent antimicrobial-resistant *Salmonella* infection across chicken breeder farm production stages. Food Control 77:102–109. DOI: 10.1016/j.foodcont.2017.01.023.

Frasson I, Bettanello S, Canale E De, Richter SN, Palù G. 2016. Serotype epidemiology and multidrug resistance patterns of *Salmonella* enterica infecting humans in Italy. Gut Pathogens:1–7. DOI: 10.1186/s13099-016-0110-8.

Galantis E, Lo Fo Wong DMA, Patrick ME, Binsztein N, Cieslik A, Chalermchaikit T, Aidara-Kane A, Ellis A, Angulo FJ, Wegener HC. 2006. Web-based surveillance and global *Salmonella* distribution, 2000-2002. Emerging Infectious Diseases 12:381–388.
Guarino A, Bruzzese E, Giannattasio A. 2018. Antibiotic treatment of acute gastroenteritis in children. F1000Research 7:1–10. DOI: 10.12688/f1000research.12328.1.

Guerra B, Laconcha I, Soto SM, Gonzalez-Hevia Mangeles, Mendoza MC. 2000. Molecular characterisation of emergent multiresistant Salmonella enterica serotype [4,5,12:i:-] organisms causing human salmonellosis. FEMS Microbiology Letters 190:341–347.

GV R. 1995. Python tutorial, Technical Report CS-R9526, Centrum voor Wiskunde en Informatica (CWI). Amsterdam.

Heras J, Domínguez C, Mata E, Pascual V, Lozano C, Torres C, Zarazaga M. 2015. GelJ - a tool for analyzing DNA fingerprint gel images. BMC Bioinformatics 16:1–8. DOI: 10.1186/s12859-015-0703-0.

Horvath P, Barrangou R. 2010. CRISPR/Cas, the immune system of Bacteria and Archaea. Science 327:167–170. DOI: 10.1126/science.1179555.

ISO 6579:2000. 2002. Microbiology of food and animal feeding stuffs — Horizontal method for the detection of Salmonella spp. Geneva, Switzerland.

Jansen R, Van Embden JDA, Gaastra W, Schouls LM. 2002. Identification of genes that are associated with DNA repeats in prokaryotes. Molecular Microbiology 43:1565–1575. DOI: 10.1046/j.1365-2958.2002.02839.x.

Jones E, Oliphant E, Peterson P. 2001. Open Source Scientific Tools for Python. SciPy.

Kamerbeek J, Schouls L, Kolk A, Van Agterveld M, Van Soolingen D, Kuipers B, Bunschoten A, Molhuizen H, Shaw R, Goyal M, Van Embden J. 1997. Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. Journal of Clinical Microbiology 35:907–914.

Kauffman F. 1972. Serologic diagnosis of Salmonella species. Munksgaard, Copenhagen, Denmark, Copenhagen, Denmark.

Kim S, Frye JG, Hu J, Fedorka-Cray PJ, Gautom R, Boyle DS. 2006. Multiplex PCR-based method for identification of common clinical serotypes of Salmonella enterica subsp. enterica. Journal of Clinical Microbiology 44:3608–3615. DOI: 10.1128/JCM.00701-06.

Kim J, Jeon S, Rhie H, Lee B, Park M, Lee H, Lee J, Kim S. 2009. Rapid Detection of Extended Spectrum β-Lactamase (ESBL) for Enterobacteriaceae by use of a Multiplex PCR-based Method. Infect Chemother 41:181–184. DOI: 10.3947/ic.2009.41.3.181.
Li Q, Wang X, Yin K, Hu Y, Xu H, Xie X, Xu L, Fei X, Chen X, Jiao X. 2018. Genetic analysis and CRISPR typing of *Salmonella* enterica serovar Enteritidis from different sources revealed potential transmission from poultry and pig to human. International Journal of Food Microbiology 266:119–125. DOI: 10.1016/j.ijfoodmicro.2017.11.025.

Liu F, Kariyawasam S, Jayarao BM, Barrangou R, Gerner-Smidt P, Ribot EM, Knabel SJ, Dudley EG. 2011. Subtyping *Salmonella* enterica serovar enteritidis isolates from different sources by using sequence typing based on virulence genes and clustered regularly interspaced short palindromic repeats (CRISPRs). Applied and Environmental Microbiology 77:4520–4526. DOI: 10.1128/AEM.00468-11.

Lu S, Mirchevska G, Phatak SS, Li D, Luka J, Calderone RA, Fonzi WA. 2017. Dynamic time warping assessment of high resolution melt curves provides a robust metric for fungal identification. PLoS ONE 12:1–21. DOI: 10.1371/journal.pone.0173320.

Masek BJ, Hardick J, Won H, Yang S, Hsieh YH, Rothman RE, Gaydos CA. 2014. Sensitive detection and serovar differentiation of typhoidal and nontyphoidal *Salmonella* enterica species using 16S rRNA gene PCR coupled with high-resolution melt analysis. Journal of Molecular Diagnostics 16:261–266. DOI: 10.1016/j.jmoldx.2013.10.011.

Maurischat S, Baumann B, Martin A, Malorny B. 2015. Rapid detection and specific differentiation of *Salmonella* enterica subsp. Enterica Enteritidis, Typhimurium and its monophasic variant 4,[5],12:i: By real-time multiplex PCR. International Journal of Food Microbiology 193:8–14. DOI: 10.1016/j.ijfoodmicro.2014.10.004.

McNerney R, Clark TG, Campino S, Rodrigues C, Dolinger D, Smith L, Cabibbe AM, Dheda K, Schito M. 2017. Removing the bottleneck in whole genome sequencing of *Mycobacterium tuberculosis* for rapid drug resistance analysis: a call to action. International Journal of Infectious Diseases 56:130–135. DOI: 10.1016/j.ijid.2016.11.422.

National Antimicrobial Resistance Surveillance Center. 2017. National Antimicrobial Resistance Surveillance Center, Thailand (NARST) Antiograms.

National Disease Surveillance. 2560. National Disease Surveillance (Report 506). Available at http://www.boe.moph.go.th/ (accessed March 1, 2016).

Nordmann P, Dortet L, Poirel L. 2012. Rapid detection of extended-spectrum-β-lactamase-producing *Enterobacteriaceae*. Journal of Clinical Microbiology 50:3016–3022. DOI: 10.1128/JCM.00859-12.
513 O’Regan E, McCabe E, Burgess C, McGuinness S, Barry T, Duffy G, Whyte P, Fanning S, Španová A. 2008. Development of a real-time multiplex PCR assay for the detection of multiple Salmonella serotypes in chicken samples. BMC microbiology 8:1–11. DOI: 10.1186/1471-2180-8-156.

517 Padungtod P, Kaneene JB. 2006. Salmonella in food animals and humans in northern Thailand. International Journal of Food Microbiology 108:346–354. DOI: https://doi.org/10.1016/j.ijfoodmicro.2005.11.020.

518 Parry CM, Threlfall EJ. 2008. Antimicrobial resistance in typhoidal and nontyphoidal Salmonellae. Current Opinion in Infectious Diseases 21:531–538.

519 Phayao Hospital. 2015. Percentage of Susceptible Organisms isolated by sites from Phayao Hospital. Phayao.

520 Poonchareon K, Narong Nuanmuang, Prommuang P, Sriisan S. 2019a. High-resolution melting-curve analysis for serotyping of Salmonella spp. group B isolated from minced pork in the Northern part of Thailand. Journal of Associated Medical Sciences 52:62–71. DOI: 10.14456/jams.2018.3.

521 Poonchareon K, Pulsrikarn C, Khamvichai S, Tadee P. 2019b. Feasibility of high resolution melting curve analysis for rapid serotyping of Salmonella from hospitalised patients. Journal of Associated medical Sciences 52:36–40. DOI: 10.14456/jams.2018.3.

522 Poonchareon K, Pulsrikarn C, Nuanmuang N, Khamai P. 2019c. Effectiveness of BOX-PCR in Differentiating Genetic Relatedness among Salmonella enterica Serotype 4,[5],12:i:- Isolates from Hospitalized Patients and Minced Pork Samples in Northern Thailand. International Journal of Microbiology 2019. DOI: 10.1155/2019/5086240.

523 Pulsrikarn C, Pornreongwong S, Tribuddharat C, Meethai C, Srifuengfung S. 2013. Serogroup and Serovar Distribution of Salmonella in Siriraj Hospital. Siriraj Med J 65:s34–s37.

524 Rupp ME, Fey PD. 2003. Extended Spectrum Beta-Lactamase (ESBL)-Producing Enterobacteriaceae: Considerations for Diagnosis, Prevention and Drug Treatment. Drugs 63:353–365.

525 Shariat N, Dudley EG. 2014. CRISPRs: Molecular Signatures Used for Pathogen Subtyping. Applied and Environmental Microbiology 80:430–439. DOI: 10.1128/AEM.02790-13.

526 Sirsichote P, Bangtrakulnonth A, Tianmanee K, Unahalekhaka A, Oulai A, Chittaphithakchhai P, Kheowrod W, Hendriksen RS. 2010. Serotypes and antimicrobial resistance of Salmonella
enterica Spp. in central Thailand, 2001-2006. Southeast Asian Journal of Tropical Medicine and Public Health 41:1405–1415.

Srisrattakarn A, Lulitanond A, Wilailuckana C, Charoensri N, Wonglakorn L, Piyapatthanakul S, Supajeen A, Chanawong A. 2016. Modification and evaluation of the Carba NP test by use of paper strip for simple and rapid detection of carbapenemase-producing Enterobacteriaceae. World Journal of Microbiology and Biotechnology 32:1–8. DOI: 10.1007/s11274-016-2064-x.

Tamang MD, Nam HM, Kim TS, Jang GC, Jung SC, Lim SK. 2011. Emergence of extended-spectrum Beta-lactamase (CTX-M-15 and CTX-M-14)-producing nontyphoid Salmonella with reduced susceptibility to ciprofloxacin among food animals and humans in Korea. Journal of Clinical Microbiology 49:2671–2675.

Thompson CP, Doak AN, Amirani N, Schroeder EA, Wright J, Kariyawasam S, Lamendella R, Shariat NW. 2018. High-resolution identification of multiple Salmonella serovars in a single sample by using CRISPRSeq. Applied and Environmental Microbiology 84:1–13. DOI: 10.1128/AEM.01859-18.

Uzzau S, Brown DJ, Wallis T, Rubino S, Leori G, Bernard S, Casadesús J, Platt DJ, Olsen JE. 2000. Host adapted serotypes of Salmonella enterica. Epidemiology and infection 125:229–255.

Velge P, Cloeckart A, Barrow P. 2005. Emergence of Salmonella epidemics: The problems related to Salmonella enterica serotype Enteritidis and multiple antibiotic resistance in other major serotypes. Veterinary Research 36:267–288.

Xiong D, Song L, Geng S, Tao J, An S, Pan Z, Jiao X. 2016. One-step PCR detection of Salmonella Pullorum/Gallinarum using a novel target: The flagellar biosynthesis gene flhB. Frontiers in Microbiology 7:1–7. DOI: 10.3389/fmicb.2016.01863.

Yang X, Wu Q, Zhang J, Huang J, Guo W, Cai S. 2015. Prevalence and characterization of monophasic Salmonella serovar 1,4,[5],12:i:- of food origin in China. PLoS ONE 10:1–10. DOI: 10.1371/journal.pone.0137967.

Zeinzinger J, Pietzka AT, Stöger A, Kornschober C, Kunert R, Allerberger F, Mach R, Ruppitsch W. 2012. One-step triplex high-resolution melting analysis for rapid identification and simultaneous subtyping of frequently isolated Salmonella serovars. Applied and Environmental Microbiology 78:3352–3360. DOI: 10.1128/AEM.07668-11.
Table 1 (on next page)

Primers used in this study
Primer	Genes	Sequence (5'→ 3')	Size of PCR-product (bp)	Primer Concentration (pmol/ul)	Reference
HRM Multiplex fljB, gyrB and genes (HRM-rt PCR)					
fljB_f	fljB	GTGAAAGATACACGAGTAACAACG	170	0.1	(Zeinzinger et al., 2012)
fljB_r		CAAAGTACTGGTATTATCTGCG	171	0.1	(Zeinzinger et al., 2012)
gyrB_f	gyrB	AAACGCCGATCCCCACCGA	171	0.075	(Zeinzinger et al., 2012)
gyrB_r		TCATCGCGCGACGGAG	171	0.075	(Zeinzinger et al., 2012)
ycfQ_f	ycfQ	GCCTACTCTCTATGGGGAATTAC	241	0.075	(Zeinzinger et al., 2012)
ycfQ_r		GATATCGGCGGAGGCGC	241	0.075	(Zeinzinger et al., 2012)
CRISPR 2 Monoplex					
B1	CRISPR 2 loci	GAGGACATACYTRATCCTACGACC	Variable	0.2	(Fabre et al., 2012)
B2		GTTGCGDATAKRYGRTGRGATGTRG	0.2		(Fabre et al., 2012)
Multiplex 1 TEM variants including TEM-1 and TEM-2, SHV variants including SHV-1, OXA-1-like including OXA-1, OXA-4 and OXA-30					
TEM_f	TEM	CATTTCCTGCTCGCCCTTATTCC	800	0.4	(Dallenne et al., 2010)
TEM_r		CGTTCATCCATAGTGTCCTGAC	713	0.4	(Dallenne et al., 2010)
SHV_f	SHV	AGCCGCTTGAGCAAAATACAC	713	0.4	(Dallenne et al., 2010)
SHV_r		ATCCCGACGATAAACACCAC	713	0.4	(Dallenne et al., 2010)
OXA_f	OXA	GCCGACGATTCACCTAAAG	564	0.4	(Dallenne et al., 2010)
OXA_r		GACCCCAAGTCTTCTGTAAGTG	564	0.4	(Dallenne et al., 2010)
Multiplex 2 CTX-M group 1 and group 9 variants of CTX-M group 1 including CTX-M-1, CTX-M-3 and CTX-M-15 variants of CTX-M group 9 including CTX-M-9 and CTX-M-14					
CTX 1_f	CTX-M group 1	TTAGGAARTGTCGCGCTGGA	688	0.4	(Dallenne et al., 2010)
CTX 1_r		CGTATCGGCTGCTGCTGCTG	688	0.2	(Dallenne et al., 2010)
CTX 9_f	CTX-M group 9	TCAACCGCTGCCGATGCTG	561	0.4	(Dallenne et al., 2010)
CTX 9_r		TGATTGCTGCCTGGGCG	561	0.4	(Dallenne et al., 2010)
Molecular typing					
ERIC_f	ERIC-PCR	ATGTAAGCTCCTGCGGATTCAC	Variable	25	(Versalovic, Koeth & Lupski, 1991)
ERIC_r		AAGTAAGCTGACTGGGCGAGCG	25		(Versalovic, Koeth & Lupski, 1991)

Y=T or C; R=A or G; S=G or C; D=A or G or T
Table 2 (on next page)

Properties of *Salmonella* 4,5,12:i- isolates present in clusters based on CRISPR 2 uniplex high resolution melting PCR profiles.

DR, direct repeat; ESBL, extended spectrum beta lactamase; ref, reference strain; Spacer count, number of spacers in CRISPR 2 locus; similar DNA sequence of DR consensus labelled with the same superscript number.
Cluster	Serotype	ID	Source	Year of isolation	ESBL	Amplicon size (bp)	CRISPR length (bp)	Spacer count	DR concensus sequence	DR Length (bp)	Group (% Identity)
1	4,5,12 : i-	M1	Human	2015	1,959	579	21	1	CCGTTTATCCCCGCTGGCGGGGGAACAC^1	29	3, 2(99.45), 1(50.69)
1	4,5,12 : i-	M25	Human	2015	1,959	1,493	24	1	CCGTTTATCCCCGCTGGCGGGGGAACAC^1	29	1 (100)
1	4,5,12 : i-	M152	Human	2015	1,959	1,493	24	2	GTGTTCCCCGCGCCAGCGGGGATAAACC^2	29	2 (100)
1	4,5,12 : i-	M157	Human	2016	1,959	1,493	24	2	GTGTTCCCCCGCCAGCGGGGATAAACC^2	29	2 (100)
1	4,5,12 : i-	M249	Human	2015	1,959	579	21	1	CCGTTTATCCCCGCTGGCGGGGGAACAC^1	29	1 (100)
1	4,5,12 : i-	En11	Minced pork	2017	1,959	1,493	24	1	CCGTTTATCCCCGCTGGCGGGGGAACAC^1	29	1 (100)
1	4,5,12 : i-	En21	Minced pork	2017	1,959	1,493	24	1	CCGTTTATCCCCGCTGGCGGGGGAACAC^1	29	1 (100)
1	4,5,12 : i-	En20	Minced pork	2017	1,959	1,493	24	1	CCGTTTATCCCCGCTGGCGGGGGAACAC^1	29	1 (100)
1	4,5,12 : i-	En29	Minced pork	2017	1,959	1,493	24	1	CCGTTTATCCCCGCTGGCGGGGGAACAC^1	29	1 (100)

Cluster 2

2	4,5,12 : i-	M23	Human	2015	1,959	1,493	21	1	CCGTTTATCCCCGCTGGCGGGGGAACAC^1	29	1 (100)
2	4,5,12 : i-	M56	Human	2015	1,959	1,493	24	1	CCGTTTATCCCCGCTGGCGGGGGAACAC^1	29	1 (100)
2	4,5,12 : i-	M142	Human	2015	1,959	1,493	21	1	CCGTTTATCCCCGCTGGCGGGGGAACAC^1	29	1 (100)
2	4,5,12 : i-	444	Human	2017	1,959	1,493	24	1	CCGTTTATCCCCGCTGGCGGGGGAACAC^1	29	1 (100)
2	4,5,12 : i-	474	Human	2017	1,959	1,493	24	1	CCGTTTATCCCCGCTGGCGGGGGAACAC^1	29	1 (100)
2	4,5,12 : i-	484	Human	2017	1,959	1,493	24	1	CCGTTTATCCCCGCTGGCGGGGGAACAC^1	29	1 (100)
2	4,5,12 : i-	497	Human	2017	1,959	1,493	24	1	CCGTTTATCCCCGCTGGCGGGGGAACAC^1	29	1 (100)

Cluster 3

3	4,5,12 : i-	M35	Human	2015	1,959	1,493	24	1	GTGTTCCCCGCGCCAGCGGGGATAACC^2	29	2 (100)
3	4,5,12 : i-	316	Human	2016	1,959	1,493	24	1	GTGTTCCCCGCGCCAGCGGGGATAACC^2	29	2 (100)
3	4,5,12 : i-	345	Human	2016	1,959	1,493	24	1	GTGTTCCCCGCGCCAGCGGGGATAACC^2	29	2 (100)
3	4,5,12 : i-	350	Human	2016	1,959	1,493	24	1	GTGTTCCCCGCGCCAGCGGGGATAACC^2	29	2 (100)
3	4,5,12 : i-	392	Human	2016	1,959	1,493	24	1	GTGTTCCCCGCGCCAGCGGGGATAACC^2	29	2 (100)
3	4,5,12 : i-	394	Human	2016	1,959	1,493	24	1	GTGTTCCCCGCGCCAGCGGGGATAACC^2	29	2 (100)
3	4,5,12 : i-	412	Human	2017	1,959	1,493	24	1	GTGTTCCCCGCGCCAGCGGGGATAACC^2	29	2 (100)
3	4,5,12 : i-	458	Human	2017	1,959	1,493	24	1	GTGTTCCCCGCGCCAGCGGGGATAACC^2	29	2 (100)
3	4,5,12 : i-	EN8	Minced pork	2017	1,959	1,493	24	1	GTGTTCCCCGCGCCAGCGGGGATAACC^2	29	2 (100)
ref	4,5,12 : i-	M76	Human	2015	1,959	1,493	24	1	CCGTTTATCCCCGCTGGCGGGGGAACAC^1	29	1(100)
Figure 1

High resolution temperature-shifted difference melting profiles of multiplex PCR amplicons from clinical *Salmonella* isolates of diarrheal patients stools (n = 26), Phayao Ram Hospital, Phayao province, Thailand (2016-2017).

Multiplex PCR of *fliB*, *yrB* and *ycfQ* was carried out employing primer pairs listed in Table 1. Temperature-shifted difference profiles relative to S. Bareilly were produced using a Precision Melt Analysis software V 1.2 (BIO-RAD, Hercules, CA, USA). (A) HRM profiles of *Salmonella* isolates (assigned HRM 1-11). (B) HRM profiles of the three most prevalent HRM profiles and their assigned *Salmonella* serotypes. (C) HRM_5 profile compared to known *Salmonella* serotypes (Poonchareon et al., 2019b). RFU, relative fluorescence unit.
Manuscript to be reviewed

Ref: S. Barielle

A

Temperature Shifted Difference Curve

Ref: S. Barielle

B

Temperature Shifted Difference Curve

Ref: S. Barielle

C

Temperature Shifted Difference Curve

Ref: S. Barielle
Figure 2

Phylogeny tree of repetitive element-based (ERIC)-PCR amplicon size profiles of *Salmonella* isolates from diarrheal patients stools, Phayao Ram Hospital, Phayao province, Thailand (2016-2017).

ERIC-PCR was performed using primers listeded in Table 1. The phylogeny tree was constructed using an unweighted pair-group using arithmetic averages algorithm. Clustering into clades employed a curve-based algorithm (Pearson correlation) together with an open-source GelJ software (Heras et al., 2015). *Known *Salmonella* serotypes. HRM, multiplex high resolution melting PCR; ND, no designation of serotype.
Clade 1	Clade 2	Clade 3	Isolate name	HRM Typing	ERIC PCR Typing
				Stanley*	
				Kedougou*	
				Weltevreden*	
454				HRM_5	Weltevreden
378				HRM_5	Weltevreden
487			Enteritidis	Enteritidis	Enteritidis
			Enteritidis	Enteritidis	Enteritidis
450			Enteritidis	Enteritidis	
402			Enteritidis	Enteritidis	
393			Enteritidis	Enteritidis	
				Agona*	
483			HRM_10	ND	
443			HRM_3	ND	
475			HRM_2	ND	
482			HRM_9	ND	
466			HRM_7	ND	
4,5,12,i-				4,5,12,i-	
412			HRM_4	4,5,12,i-	
411			HRM_11	ND	
Figure 3

Phylogeny tree based on multiplex high resolution melting (HRM) PCR profiles of *Salmonella* isolates (n = 26) from diarrheal patients stools, Phayao Ram Hospital, Phayao province, Thailand (2016-2017).

Phylogeny tree was constructed using a dynamic time warping algorithm (Python platform). Properties of the clinical Salmonella isolates are also shown. Salmonella isolate of known serotype is marked with an asterisk. ESBL, extended spectrum β-lactamase producer; ERIC PCR Typing, repetitive element-based PCR amplicon size profile; HRM Typing, multiplex HRM PCR profiling; ID, sample number; P, positive; R, resistant.
Figure 4

Gel electrophoresis of CRISPR 2 uniplex PCR amplicons of Salmonella isolates of (n = 26) from diarrheal patients stools, Phayao Ram Hospital, Phayao province, Thailand (2016-2017).

Uniplex PCR was performed using primers listed in Table 1. Number indicates sample ID. Name/number in box indicates Salmonella isolate of known serotype. marker, DNA size markers.
Figure 5

High resolution melting temperature-shifted difference profiles of CRISPR 2 uniplex amplicons of Salmonella isolates from diarrheal patients stools, Phayao Ram Hospital, Phayao province, Thailand (2016-2017).

Temperature-shifted difference melting profiles relative to (A) S. Agona and (B) S. 4,5,12:i-M76 were generated using a BIO-RAD CFX96TM Real-Time System (Bio-Rad, Hercules, CA, USA). In (A), S. Typhimurium samples (n = 5) were from known stocks; in (B) S. 4,5,12:i-samples included clinical samples from this study (n = 11), other human samples (n = 9) and pork meat (n = 4) (see Table 2). EN 8, S. 4,5,12:i- isolate from minced pork; RFU, relative fluorescence unit.
Figure 6

Seasonal variation of *Salmonella* isolates from diarrheal patients (n = 64) admitted to Phayao Ram Hospital, Phayao province, Thailand (April 2015- July 2017).

Y-axis indicates cumulative number of cases in a given month. Serotype was determined using multiplex high resolution melting PCR profiling.