Biological aspects of brown-marbled grouper (Epinephelus fuscoguttatus) from Taka Bonerate National Park, District of Selayar Islands, South Sulawesi, Indonesia

FATMA1,*, ACHMAR MALLAWA2, NAJAMUDDIN2, MUKTI ZAINUDDIN3, FACHRIE REZKA AYYUB3
1Doctoral Student in Fisheries Science, Faculty of Marine Science and Fisheries, Universitas Hasanuddin. Jl. Perintis Kemerdekaan, Tamalanrea, Makassar 90245, South Sulawesi, Indonesia. Tel.: +62-411-585034, Fax.: +62-411-585868, *email: fatma.rezka@gmail.com
2Fisheries Department, Faculty of Marine Science and Fisheries, Universitas Hasanuddin. Jl. Perintis Kemerdekaan, Tamalanrea, Makassar 90245, South Sulawesi, Indonesia
3Environmental Education Postgraduate Program, Universitas Negeri Makassar. Jl. Bontolangkasa, Gunung Sari, Makassar 90222, South Sulawesi, Indonesia

Manuscript received: 13 November 2021. Revision accepted: 29 January 2022

Abstract. Fatma, Mallawa A, Najamuddin, Zainuddin M, Ayyub FR. 2022. Biological aspects of brown-marbled grouper (Epinephelus fuscoguttatus) from Taka Bonerate National Park, District of Selayar Islands, South Sulawesi, Indonesia. Biodiversitas 23: 1140-1153. Knowledge regarding biological aspects of fishes such as the brown-marbled grouper can provide important information for fisheries management. This research was conducted from February 2020 to February 2021 to determine the length-weight relationship, condition factor, gonad maturity stage and spawning pattern. size at first maturity and feeding habits of brown-marbled groupers in Taka Bonerate National Park. The sample comprised 1042 brown-marbled groupers with a total length (TL) range of 23-97 cm and a weight range of 0.5-17.6 kg. The length-weight equation was W: 0.0001L²-5.9555 (R²: 0.8935). For male brown-marbled grouper (n: 569), TL range was 47-97 cm, weight range 1.65-17.60 kg, regression equation W: 0.0002L²-4.731 (R²: 0.7716), condition factor range 0.56-2.36 (mean 1.236±1.019), and length at first maturity 66.34 cm. For female brown-marbled grouper (n: 473) TL range was 23-73 cm (mean 46.84 cm), weight range 0.50-6.6 kg (mean 2.23 kg), regression equation W: 0.0007L²-1.057 (R²: 0.7416), condition factor range 0.55-2.17 (mean 1.225±1.018), and length at first maturity 45.43 cm. The growth pattern was negative allometric with regression coefficient b < 3 for both sexes separately and combined. The majority of both male and female fish caught had mature gonads with indications of a partial spawning pattern. The fish diet was carnivorous, predominantly piscivorous (74%), with gut contents comprising 64% unidentified fish and 26% unidentified decapod crustaceans. Over-exploitation of fish can cause negative impacts on populations, so the relationship between length and weight, condition factors and maturity level gonad of fish can be used in fisheries management.

Keywords: Condition factor, Epinephelus, feeding habit, length-weight

INTRODUCTION

The Taka Bonerate National Park is situated in the Flores Sea, with waters rich in fisheries resources. Local fishermen are still using traditional fishing gears and capture fish mainly in the traditional fishing zone, which has an area of 481,334 ha. This zone was designated for the benefit of the local communities who have used these marine resources for the needs of their generations. The utilization of reef fish resources by the local community should be in accordance with the agreements and provisions of the legislation in vigor (Taka Bonerate National Park Authority 2019). Andon fishing in Indonesia is a system whereby fishermen/fishing vessels from one administrative area in Indonesia can fish in waters under the aegis of another administrative area within Indonesia.

Many fishermen in coastal communities benefit directly from catching groupers (both live and dead grouper trades), which are important for their livelihoods and also contribute to national food security (Khasanah et al. 2019). The ever-increasing market demand and high economic value of groupers have led to an increase in fishing intensity so that an increasing number of grouper stocks are vulnerable to extirpation (Cheung et al. 2013). There has been a decline in the abundance of many Indonesian grouper populations due to heavy fishing pressure (Halim et al. 2020; Khasanah et al. 2020). However, there is a lack of data on the biological aspects of brown-marbled grouper (Epinephelus fuscoguttatus) in Taka Bonerate National Park, South Sulawesi, Indonesia.

Based on the situation described above, research is needed on biological aspects of brown-marbled grouper is needed in the Taka Bonerate National Park, including their growth pattern, condition factor, gonad maturity stage, size at first maturity and spawning pattern, and eating habits. This study provides important basic data on the biological condition of fish in the Serranidae family, specifically brown-marbled grouper. These data can be used to inform policymaking and support the sustainable management of groupers in the waters of the Taka Bonerate National Park, Selayar Islands District, South Sulawesi Province, Indonesia.
MATERIALS AND METHODS

Study site and time

This research was conducted from February 2020 to February 2021 in the waters of the Taka Bonerate National Park, Selayar Islands District in the South Sulawesi Province, Indonesia (Figure 1). The Grouper fish samples were collected from fish landing sites (fishing bases). Grouper samples were caught using several fishing gears (i.e., hand line fishing, spearfishing, and trapping) with a total catch of 1042 specimens. Where local fishermen land their catch, as well as from fish collectors (intermediary traders), which were located in several islands in the Taka Bonerate National Park. The islands include, Pulau Rajuni, Pulau Jinato and Pulau Tarupa.

Collection and measurement of brown-marbled grouper samples

Fish samples were collected through the following fishing activities and visits to fish collectors. Brown-marbled grouper samples were selected using the Stratified Random Sampling method, in which the levels were fishing grounds, fish landing sites and fish size. The number of samples taken was adjusted to the catch volume (Rahman et al. 2013); if any fish had been caught, the sample comprised 10% of the individual brown-marbled grouper caught if the catch was small, the fish caught were taken as samples.

Each fish was measured and weighed in the field (Figure 2). Total length (TL) was measured to the nearest mm using a tape measure or fish ruler from the tip of the snout to the tip of the tail fin. Digital scales were used to measure wet weight to the nearest 0.1 g. The samples were divided into five groups or length size classes based on TL.

Sample preservation and gut contents

For feeding habit analysis, the samples were preserved in a container filled with a 10% solution of formalin (Formaldehida) and transported to the Fish Parasite and disease Laboratory, Faculty of Marine Science and Fisheries, Universitas Hasanuddin in Makassar, Indonesia. Each sample was dissected to remove the digestive tract or gut (stomach and intestines) and reproductive organs (gonads). The contents of each gut were observed and the contents were identified, counted and weighed following the methods described in Natarajan and Jhingran (1961).

Figure 1. Map of the Study Sites in Taka Bonerate National Park. Red and white boxes indicate fishing grounds. Zone legend: Red: core zone; green: monitoring zone; yellow: marine protected zone; turquoise: rehabilitation zone; purple: cultural and historical protection zone; grey: land; uncolored (with blue depth scale): traditional fishing zone. (Source: Bakosurtanal published a landscape-scale 1:50,000 edition I map of Indonesia in 1991, the National Statistics Agency published a digital administrative map of Indonesia (Podes) SP_2016, and map of the spatial plans of the Selayar Islands District in 2016)
stained with hematoxyline and eosin (Luna 1968; Panigoro et al. 2007). The prepared histological slides of each gonad were observed under a binocular microscope (Olympus CX23) to determine the gonad maturity stage using an adapted version of the gonad maturity stage description for brown-marbled grouper (Pears et al. 2007), as shown in Table 1.

Data analysis

Length-weight relationship

The length-weight relationship was calculated based on the formula in Ricker (2001):

\[W = a L^b \]

This formula was converted into the following linear equation through logarithmic transformation:

\[\log W = \log a + b \log L \]

Where, \(W \): sampled fish weight (g); \(L \): sampled fish length (cm); \(a \): Intercept \(\log a \); intercept so \(a \): antilog (intercept); \(b \): Slope (regression coefficients).

GMS	Reproductive stage	Histological description
F1	Immature female	No evidence of prior spawning, ovary small and lamellae well-packed with gonia and previtellogenic oocytes (chromatin nucleolar and perinucleolar stages)
F2	Mature resting female	Ovary dominated by pre-vitellogenic oocytes. Prior spawning is indicated by the presence of muscle bundles and occasional atretic vitellogenic oocytes. Ovary generally larger in diameter than those of immature females and maybe vacuolated
F3	Undetermined inactive female	Ovary contains gonad and pre-vitellogenic oocytes but unable to determine if fish has spawned previously (mature) and is in a resting state or is an immature female
F4	Mature ripening female	Stage 3 oocytes the most advanced oocyte present. May contain signs of prior spawning
F5	Mature ripe female	Ovary in active vitellogenesis. Usually dominated by stages 3 and 4 oocytes, although early stages of oocytes also present in varying amounts
F6	Mature near spawning female	Ovary in active vitellogenesis as ripe female but some oocytes have become hydrated (stage 5) indicating imminent spawning likely
F7	Mature spent female	Ovary generally disorganized and undergoing atresia, with muscle bundles and extensive vascularization. Many contain brown bodies. Stage 2 oocytes the most advanced healthy oocyte present
	Transitional	Proliferating testicular tissue in a gonad that has evidence of prior spawning as a female (degenerating vitellogenic oocytes and muscle bundles), where spermatozoa have not yet proceeded to fill the dorsal sperm sinuses. Spermatogenesis has progressed at least to the spermatid stage, and areas of testicular tissue with clusters of spermatocytes, spermatids or spermatozoa present within lamellae and associated with the gonad wall. Ovarian tissue dominates and the most advanced healthy female germ cells are stage 2. Atretic and fragmenting oocytes may be present
M1	Primary male	Proliferating testicular tissue in a gonad similar in appearance to an immature ovary, where spermatogenesis has progressed at least to the secondary spermatocyte stage. Ovarian tissue dominates the lamellae, which are not yet of the typical lobular form of the mature testes, and there are no signs of prior spawning as a female
M2	Mature resting male	Testes are dominated by testicular tissue, which may contain crypts of gonia and spermatocytes. Later stages of spermatogenesis (spermatids and spermatozoa) rare or absent. Evidence of prior spawning as a male indicated by well-developed but collapsed major sperm ducts, which are now empty of sperm
M3	Mature ripening male	Testes contain proliferating testicular tissue, including secondary spermatocytes, spermatids and spermatozoa, but major sperm ducts are not yet filled with sperm
M4	Mature ripe male	Testes dominated by crypts of spermatocytes, spermatids and spermatozoa. Crypts of spermatozoa ruptured and joined within the testicular lobules, forming central sperm sinuses, and major sperm sinuses and ducts filled with sperm
M5	Mature spent male	Testes disorganized and vacuolated with numerous brown bodies and well-developed stromal tissue. Some spermatozoa may still be present in lobules, but major sperm sinuses and ducts empty or collapsed

Figure 2. Measure of a brown-marbled grouper sample from the Taka Bonerate National Park, Selayar Islands, Indonesia. Bar: 5 cm
The growth pattern of the brown-marbled grouper populations was obtained from the value of the regression coefficient b. b = 3: isometric growth, meaning a proportional increase in length and weight; b > 3: positive allometric growth, meaning weight increases faster than length; b < 3: negative allometric growth, meaning length increases faster than weight.

Condition factor

The condition factor is an indicator of the relative condition or fatness of an individual fish and can be calculated based on the length and weight data.

Based on Effendie (2002), if b = 3 (isometric growth), the condition factor K is calculated using the equation:

\[K = \frac{W}{L^b} \times 10^5 \]

If b ≠ 3 (allometric growth pattern), then the equation used is:

\[K = \frac{W}{aL^b} \]

Where, K: condition factor; W: measured weight (gram); L: total length (mm); a and b are the length-weight parameters for the population (W: aL^b).

The condition factor (K) tends to be in the range 2-4 for fish with slim bodies and in the range 1-3 for more round-bodied fish (Effendie 2002).

Size at first maturity and spawning pattern

The mean size at first maturity and spawning was calculated as the length at which 50% of fish had mature gonads and has spawned using the formula in King (1995) as follows:

\[P = \frac{1}{1+\exp^{-r(L-LM)}} \]

Where, P: proportion of fish with mature gonads or having spawned at a given length; L_M: mean length at which 50% of fish had mature gonads; L: fish total length; r: curve slope angle.

Feeding habit

The gut content data were analyzed to determine the feeding habit and preference using the index of preponderance (IP) following Natarajan and Jhingran (1961) and Effendie (2002). The equation used was:

\[IP_j = \frac{\sum (Vi \times Oi)}{\sum (Vi \times Oi)} \times 100 \]

Where, IP_i: index of preponderance of the i^th food; Vi: percentage of the i^th food by volume; Oi: frequency of occurrence of the i^th food; \(\sum Vi \times Oi\) = sum of (Vi x Oi) for all food types.

The percentage by volume and frequency of occurrence of each food were calculated as follows:

\[\text{Vi} = \frac{\text{volume of food (prey) item i}}{\text{total volume of food (gut contents)}} \times 100 \]

\[Oi = \frac{\text{the number of fish guts containing food (prey) i}}{\text{the number of all fish guts containing some food (prey)}} \times 100 \]

The feeding habit analysis follows the method from Nikolsky (1963), divided the food items identified into three categories based on the IP value of each food (prey) type, IP > 40%: main food; IP in the range 4-40%: complementary food; IP < 4%: additional food.

RESULTS AND DISCUSSION

Length-weight relationship

The length-weight Relationships (LWR) of the brown-marbled grouper males, females, and both sexes combined sampled from the Taka Bonerate National Park are presented on a logarithmic scale (Figures 3-5). Descriptive statistics and LWRs for the brown-marbled grouper males, females, and both sexes combined are presented in Table 2.

![Figure 3. Length-weight relationship of male brown-marbled grouper (n: 569)](image)

![Figure 4. Length-weight relationship of female brown-marbled grouper (n: 473)](image)
A synopsis of the size range and length-weight relationship of brown-marbled grouper from Taka Bonerate National Park by sex and overall was shown in Table 2. The t-tests show that the values of b were all significantly different from 3 (b ≠ 3; t-score > ttable). All these b values were less than 3, indicating an allometric negative growth pattern for this brown-marbled grouper population. The coefficient of determination (R2) values indicate that the respective length-weight equations explain around 77% of the variation in weight for a given length for male groupers, 74% for female groupers, and 89% for both sexes combined.

Based on the results of the t-test data analysis to see if the value of b = 3 for male and female brown-marbled grouper, as well as combined data in the waters of Taka Bonerate National Park, it seems that the value of b ≠ 3 (t score > ttable) where brown-marbled grouper (combined) 2.59, male brown-marbled grouper 2.47, and female brown-marbled grouper 2.10 (Table 2). So the value of b < 3 is a negative allometric growth pattern for brown-marbled grouper (combined), male brown-marbled grouper, and female brown-marbled grouper with different values (P<0.05) was found in the brown-marbled grouper. As a result, the growth in length outpaces the increase in weight.

According to Ndiaye et al. (2015), differences in the length-weight relationship between male and female fish of the same species have indicated that one sex gains weight faster than the other for a given increase in length. In this study, the values of b indicated that, relative to their length, male brown-marbled grouper gain weight were faster than females. This difference could be related to the size classes because the female groupers were mostly in smaller size classes than the males, and smaller fish tended to grow proportionally, which were faster in length than in weight compared to larger fish (Saputra et al. 2005). According to Effendie (2002), several factors can substantially affect the length and/or the weight and thereby indirectly influence the value of b. The length-weight parameters for brown-marbled grouper from Taka Bonerate National Park are compared with those for other brown-marbled grouper populations and other grouper species in Table 3.

The allometric negative growth pattern means that weight gain was not proportional to growth in length (Muchlisin et al. 2010). Allometric negative growth patterns have also been reported for brown-marbled grouper populations around Pulo Aceh in Aceh Province and for female brown-marbled grouper from Bobong, Taliabu in Maluku Utara Province (Ramadhani et al. 2017). Isometric growth patterns have also been reported for male brown-marbled grouper from Bobong Taliabu, Maluku Utara (Tangke et al. 2020) and hatchery-raised brown-marbled Grouper in Bornoe, Malaysia (Mustafa et al. 2015). Similar to the data on brown-marbled grouper populations, the data for other grouper species in Table 3 showed wide variation in growth patterns.

Condition factor

The condition factor (K) has reflected the fatness of an individual fish relative to the length-weight relationship for the population as a whole and generally has in the range 1-3 for round-bodied fishes and 2-4 for fish with laterally or vertically compressed body shapes (Effendie 2002). The condition factor K of brown-marbled grouper from Taka Bonerate National Park varied from 0.56-2.36 for males and 0.55-2.1 for females (Figure 6 and Figure 7). In general, values of K greater than 1 indicate that the fish is plump enough to be suitable for human consumption (Effendie 2002).

Table 2. Length-weight relationship of brown-marbled grouper from Taka Bonerate National Park, Selayar Islands, Indonesia by sex

Parameter	Male	Female	Combined
Number of fish sampled	569	473	1,042
Total length range (cm)	47-97	23-73	23-97
Weight range (g)	1.65-17.6	0.5-6.6	0.5-17.6
Intercept coefficient	-3.7459	-3.1857	-3.9833
Regression coefficient (b)	2.4731	2.1057	2.5955
Determination coefficient (R²)	0.7716	0.7416	0.8935
Correlation coefficient (r)	0.878	0.861	0.945

- Length-weight relationship regression equation
 - Male: \(W = 0.00002L^2 \)
 - Female: \(W = 0.00007L^{1.057} \)
 - Combined: \(W = 0.00001L^{2.5955} \)

- t-test result
 - Male: \(t_{score} > t_{table(0.05;506)} \)
 - Female: \(t_{score} > t_{table(0.05;506)} \)
 - Combined: \(t_{score} > t_{table(0.05;506)} \)

- Growth pattern
 - Allometric negative
 - Allometric negative
 - Allometric negative
Table 3. Length-weight relationship parameters reported for brown-marbled grouper and some other grouper species from various regions

Site description	"a"	"b"	R²	Growth pattern	Grouper species	Reference
Taka Bonerate National Park, Indonesia	0.0001	2.5955	0.8935	Allometric negative	Epinephelus fuscoguttatus	This study
Park, South Sulawesi, Indonesia	0.0002 (male)	2.4731	0.7716	Allometric negative	Epinephelus fuscoguttatus	
	0.0007 (female)	2.1057	0.7416	Allometric negative		
Other regions in Indonesia						
Bobong Taliabu, Maluku Utara, Indonesia	0.0098 (male)	3.14475	0.9252	Isometric	E. fuscoguttatus	Tangke et al. (2020)
	0.0752 (female)	2.503	0.90029	Allometric negative	E. fuscoguttatus	
Pulo Aceh, Aceh Besar, District, Aceh, Indonesia	-12.34	2.847	0.8199	Allometric negative	E. fuscoguttatus	Ramadhani et al. (2017)
Padang City, West Sumatra, Indonesia	0.0000315 (male)	2.8613		Allometric negative	E. coeruleopunctatus	Bulanin et al. (2017)
	0.0000386 (female)	2.8384		Allometric negative	E. coeruleopunctatus	
Kurau Fishing Port, Bangka Tengah District, Indonesia	0.000668 (male)	3.87	0.701	Isometric	Plectropomus leopardus	Fittianisa et al. (2020)
	0.010142 (female)	3.0941		Isometric		
Other countries						
Borneo Marine Research Institute Hatchery, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia	-1.5855	2.9185	0.950	Isometric	E. fuscoguttatus	Mustafa et al. (2015)
Coastal waters of Pulau Mafia, Tanzania	0.0116	3.08	0.985	Isometric	E. malabaricus	Gaspare and Bryceson (2013)
Southwestern coast of Senegal	0.006	2.99	0.97	Isometric	E. aeneus	Ndiaye et al. (2015)
	0.006	3	0.98	Isometric	E. aeneus	
	0.013	2.96	0.98	Isometric	E. aeneus	
Southwestern India	0.002	2.89		Allometric negative	E. diacanthus	Ramachandran and Ramalingam (2020)

Figure 6. Condition factor K of male brown-marbled grouper (n: 569)

Figure 7. Condition factor K of female brown-marbled grouper (n: 473)
The histograms (Figures 6 and 7) showed that the most frequent condition factor class for male brown-marbled grouper was $K = 0.9203-1.0103$ (23.0%), followed by $K = 1.0103-1.1003$ (19.8%). For female brown-marbled grouper the predominant class was $K = 0.9248-1.0178$ (24.5%) followed by $K = 1.0178-1.1108$ (19.0%). The distributions for both sexes showed a long right-skewed tail, with a small number of exceptionally plump individuals. Overall, throughout the study period, the male groupers sampled tended to have a higher condition factor than female groupers, while condition factor also varied with size, tending to increase with fish length. Seasonal variations in K values were likely linked to reproductive activity, as gonad maturity and spawning affect condition factors, especially for females as ripe ovaries tend to represent a greater proportion of body weight and vary more in weight over the reproductive cycle than testes (Effendie 2002).

Similarly, to growth, the condition factor can be affected by both internal and external factors. These can include general and seasonal environmental conditions, food availability and parasitism, stress levels, gonad development and reproductive cycles, as well as feeding patterns and activity, all of which can have a major effect on fish health and affected condition factor (Zargar et al. 2012; Awasthi et al. 2015). Furthermore, condition factor data can provide information on factors such as prey availability, fish density, climatic conditions, fish behavior and spawning or reproductive cycles (Ighwela et al. 2011). Fluctuations in the mean condition factor values for both male and female fish were caused by non-uniform individual weights in each length class. These differences in K between fish with the same body length could be due to several factors, including feeding (e.g., current gut fullness or recent success in finding prey) and reproduction (gonad maturity stage and spawning cycle stage), as ripe gonads are heavier than immature or spent gonads.

Gonad maturity stage

Gonad maturity stage can be used to estimate the reproductive status of a fish, the size and age at first maturity within a given species or population, and the proportion of mature individuals within a stock, as well as to improve understanding of the reproductive cycle of fish species or population (Sulistiono et al. 2001). Gonad maturity stage is very important in research on fish population biology because it can be used to determine the ratio between fish with ripe gonads and immature gonads within the population, spawning size, spawning seasons as well as spawning cycles and patterns (Effendie 2002). Recording changes in the level of maturity can indicate whether the fish will spawn, have just spawned or have finished spawning. Research of brown-marbled grouper populations on the Great Barrier Reef, Australia, has suggested that both gonad morphology and demographic data strongly indicated monandric protogynous hermaphroditism in this species (Pears et al. 2007). In particular, they have found that “younger age groups contained only immature and mature females, and all males were above the size and age of 100% female maturity, consistent with secondary males derived from mature females by adult sex change” As protogynous hermaphrodites, at least some brown-marbled grouper under-go a gonadal differentiation process from the mature female phase to the mature male phase.

Male gonads (Testes)

Histological observations on the gonad maturity stage (GMS) of sampled male brown-marbled grouper were presented (Figures 8-11). Based on the histological characteristics (Pears et al. 2007), the histological examination of male brown-marbled grouper gonads (testes) showed that most fish were in the mature ripe male stage (Figure 8) with gonads contained proliferating testicular tissue, including the development of secondary spermatocytes, spermatids, and spermatozoa (Figure 9). In the tubule lumen, the tubules were lined with cells that would later develop into sperm cells (spermatozoa or male gametes). The developing sperm travel through the tubules (Figures 10 and 11). An empty peripheral sperm duct was seen, and histological examination of the level of testicular development shows that connective tissue was more dominant; spermatogonia are attached to the cell membrane and some have developed primary spermatocytes (Figure 10).
Female Gonads (Ovaries)

Based on the histological characteristics (Pears et al. 2007), the histological examination of female brown-marbled grouper gonads (ovaries) showed that the female groupers had ovaries in several stages of gonadal development (Figures 12-19). The gonad maturity stages observed included immature females with small ovaries, lamellae well-enclosed with previtellogenic gonia and oocytes (chromatin-nucleolar and perinucleolar stages) and oocytes in stage 1 or stages 1 and 2 (Figures 12 and 18) through to mature ripe females with oocytes in stages 1 to 4 (Figure 16) or 1 to 5 (Figures 13 and 19). In the mature ripening female stage, the most advanced oocytes were in stage 3 (Figures 15 and 17). The mature ripe female stage was characterized by ovaries with active vitellogenesis, usually dominated by stage 3 and 4 oocytes. Some gonads showed signs of spawning, such as atretic vitellogenic oocytes (AVO) and muscle and connective tissue bundles (MB) (Figure 19).

Size at first maturity and spawning

The length at first maturity is very important in fish stock management because it can be used to determine the size of the mesh used to catch the fish. However, factors such as the availability of food can affect the length at which fish gonads mature and vary between species, populations, between males and females of the same species/population, and between individuals (Dahlan et al. 2015). The mean size at first maturity for brown-marbled grouper in Taka Bonerate National Park was calculated using the formula in King (1995) for male brown-marbled grouper (Figure 21) and female brown-marbled grouper (Figure 22).

The mean size at first maturity (Lm) is a key parameter for determining the smallest allowable catch size for a given species or population. Furthermore, estimating size at first maturity is one way to determine stock condition. Fish stock abundance and size may decline if the fish caught are about to spawn or are immature fish that have not yet spawned, so preventive measures are needed, such as the
use of selective fishing gear such as mesh size adjusted to the target fish allowable catch size (Dahlan et al. 2015). The analysis results showed that, on average, brown-marbled grouper in Taka Bonerate National Park reach maturity as females at 45.43 cm TL and as males at 66.34 cm TL. These values were compared to length at first maturity for other brown-marbled grouper populations and other grouper species in Table 4.

Figure 12. Immature female with oocytes in stages 1-2. DG: Gonad Wall

Figure 13. Mature ripe female with oocytes in stages 1-5. DG: Gonad wall

Figure 14. Mature ripe female with oocytes in stages 1-4

Figure 15. Mature ripening female with oocytes in stages 1-3

Figure 16. Mature ripe female with oocytes in stages 1-4. DG: gonad wall

Figure 17. Mature ripening female with oocytes in stages 1-3
Figure 18. Immature female with oocytes in stages 1-2

Figure 19. Mature ripe female with oocytes in stages 1-5. AVO: atretic vitellogenic oocytes; MB: muscle and connective tissue bundles

Figure 20. Mean size at first maturity for male brown-marbled grouper in Taka Bonerate National Park, Selayar Islands, Indonesia

Figure 21. Mean size at first maturity for female brown-marbled grouper in Taka Bonerate National Park, Selayar Islands, Indonesia

Table 4. Mean length at first maturity for brown-marbled grouper populations and other grouper species in Indonesia

Location	Species	Mean length at first maturity (cm)	Reference
Taka Bonerate National Park	Epinephelus fuscoguttatus	45.43	This study
Indonesia (unknown sites)	E. fuscoguttatus	51 (3 kg)	Slamet et al. (2001)
	E. coioides	55 (4 kg)	
	Cromileptes altivelis	36 (1 kg)	
Indonesia (unknown sites)	C. altivelis	42 (1 kg)	Slamet et al. (2004);
	E. fuscoguttatus	51 (2.1 kg)	Slamet et al. (2010)
	E. taurus	55 (4 kg)	
	E. polypekadion	38 (1.5 kg)	
	E. fasciatus	26 (0.3 kg)	
Takalar District	E. areolatus	23 (0.223 kg)	Sitepu (2014)
Taka Bonerate National Park	E. polypekadion	885.9 (g)	Khasanah et al. (2019)
Wakatobi National Park	E. polypekadion	1058.4 (g)	Khasanah et al. (2019)

Feeding habit

The food items identified in the guts of brown-marbled groupers from Taka Bonerate National Park were described in Table 5. The Index of Preponderance (IP) indicates which food items predominate in the diet of the fish sampled (Nikolsky 1963). The Index of Preponderance values for each of the food items identified in the guts of brown-marbled grouper from Taka Bonerate National Park were shown in Figure 22. The parameters and values from which the index of preponderance for brown-marbled grouper (E. fuscoguttatus) from Taka Bonerate National Park were shown Table 6.
Table 5. Food items found in the guts of brown-marbled grouper from Taka Bonerate National Park, South Sulawesi Province, Indonesia

No	Category and description	Example
1	Unidentified fish	
	Unidentified fish or fish body parts such as heads, parts of the body, tails or bones	
2	Unidentified decapods (shrimps)	
	Whole shrimp or shrimp body parts such as heads, parts of the body or carapace which could	
	be identified	
3	Major group fish	
	Fish (Acanthochromis sp) identified as belonging to the major group	
4	Unidentified decapods (crabs)	
	Crab carapace or body parts	

Table 6. Index of Preponderance (IP) for each food type identified in the guts of brown-marbled grouper from Taka Bonerate National Park, Kepulauan Selayar District, South Sulawesi Province, Indonesia

Food type	Vi	Oi	Vi x Oi	IP	Food category
Unidentified fish	4.6981	100	469.81	63.955	Main
Unidentified Decapods (shrimp)	1.3424	100	134.24	18.275	Complementary
Major group fish (Acanthochromis sp.)	0.7366	100	73.66	10.028	Complementary
Unidentified Decapods (crabs)	0.5687	100	56.87	7.742	Complementary
Total	787.48		787.48	100.000	

Figure 22. Index of preponderance of food items found in the guts of brown-marbled grouper from Taka Bonerate National Park, Kepulauan Selayar District, South Sulawesi Province, Indonesia

Based on the Index of Preponderance, the brown-marbled grouper in Taka Bonerate National Park were carnivorous and predominantly piscivorous, with a prevalence of 100% for all four food types identified. Overall, unidentified fish comprise more than half of their diet (64%), with a further 10% of a single major fish group genus, the spiny chromis Acanthochromis sp. According to Fish Base (Froese and Pauly 2021), this genus is comprised of just one species A. polyacanthus and is a reef-associated fish with a wide distribution in Western Pacific, from Indonesia and the Philippines to northeastern Australia and Melanesia. The remaining two food types were both decapod crustaceans, with shrimp contributing more than twice as much as crabs to brown-marbled grouper gut contents. However, like the spiny chromis Acanthochromis sp., with reference to Nikolsky (1963) both types of
decapods contributed more than 4% and were thus classified as complimentary food items, with no additional food items identified. Non-food items or entrained matter found in the brown-marbled grouper guts included fragments of coral fragments and of the seagrass *Enhalus acoroides*.

The feeding habit of brown-marbled grouper in Taka Bonerate National Park is similar to that reported for other groupers. Research on the Malabar grouper (*Epinephelus malabaricus*) by Badhul et al. (2015) in the bays of Palk and Mannar found this grouper to be carnivorous while also reporting macro plankton in the gut contents; the Malabar grouper diet was dominated by fish, with other types of food including crabs, shrimp and squid (*Sepia* sp.). These prey items tend to be available or abundant throughout all seasons. In addition, microplankton such as juvenile copepods, zoa stage larvae, *Lucifer* sp., the larvae of *Alima* sp., and other crustaceans were also found.

In conclusion, the length-weight relationship of brown-marbled grouper in the waters of Taka Bonerate National Park, Selayar Islands District, South Sulawesi Province, shows a negative allometric growth pattern, where an increase in length is faster than weight gain. The condition factor (K) was in the range of ± 0.55 to 2.37 overall, ± 0.56 to 0.37 for male brown-marbled grouper and ± 0.55 to 2.17 for female brown-marbled grouper. The gonad maturity stage (GMS) of male brown-marbled grouper was dominated by the mature ripe male stage; female brown-marbled grouper GMS ranged from immature to fully mature, with the majority of gonads sampled in the mature ripe female category. Size at first maturity for brown-marbled grouper in Taka Bonerate National Park was 45.43 cm for females and 66.34 cm for males of this protogynous hermaphrodite. Brown-marbled grouper eating habit is carnivorous, predominantly piscivorous (74%), with the main food item being unidentified fish (64%). Some management and monitoring strategies for grouper fisheries were needed, such as limited groupers fishing activities so that fish have not spawned are not caught. This will be useful for further fisheries management of grouper.

REFERENCES

Awasthi M, Kashyap A, Seraajuddin M. 2015. Length-weight relationship and condition factor of five sub-populations of *Trichogaster lalius* (Oosphoromidae) of central and eastern regions of India. *J Ichthyol* 55 (6): 849-853. DOI: 10.1134/S0032945215060028.

Badhul MA, Srinivasan M, Tiwary C, Vaitheeswarani S, Kalasevali M, Sidker MNA, Min WW. 2015. Food and feeding biology of fish *Epinephelus malabaricus* of Palk Bay and Gulf of Mannar coastal waters. *Ind J Curr Res Multidiscip* 1 (7): 12-19.

Bulânin U, Maœrizal M, Muchlisin ZA. 2017. Length-weight relationships and condition factors of the whitespoted grouper *Epinephelus coeruleopunctatus* Bloch, 1790 in the coastal waters of Padang City, Indonesia. *Ach J Anim Sci* 2 (1): 23-27. DOI: 10.13170/ajas.2.13.6570.

Cheung W, Mitcheson WLYS, Braymen MT, Gittens LG. 2013. Are the last remaining Nassau grouper *Epinephelus striatus* fisheries sustainable? Status quo in the Bahamas. *Endanger Species Res* 20: 27-39. DOI: 10.3354/esr00472.

Dahlan MA, Omar SBA, Tresnati J, Umar MT, Nur M. 2015. Nisbah kelamin dan ukuran pertama kali matang gonad ikan layang deles (*Decapterus macrosoma* Bleeker, 1841) di perairan Teluk Bone, Sulawesi Selatan. *Torani* 25 (1): 25-29. DOI: 10.35911/torani.v25i1.260. [Indonesia]

Effendie MI. 2002. Biologi Perikanan. Yayasan Pustaka Nusantara, Yogyakarta.

Fitriani A, Nurhayati, Lisma, 2020. Pola pertumbuhan ikan kerapu sumu (*Plectropomus leopardus*) di Pelabuhan Perikanan Pantai Karau Kabupaten Bangka Tengah. *Indon Perikanan dan Kelautan* 25 (3): 208-215. [Indonesia]

Froese R, Pauly D. 2021. FishBase. www.fishbase.org.

Gaspare L, Bryceson I. 2013. Reproductive biology and fishery-related characteristics of the malabar grouper (*Epinephelus malabaricus*) caught in the coastal waters of Mafia Island, Tanzania. *J Mar Biol* 2013: 786589. DOI: 10.1155/2013/786589.

Halim A, Loneragan NR, Wiryawan B, Hordyk AR, Sondita MFA, Yulianto I. 2020. Evaluating data-limited fisheries for grouper (*Serranidae*) and snapper (*Lutjanidae*) in the Coral Triangle, eastern Indonesia. *Reg Stud Mar Sci* 38: 101388. DOI: 10.1165/rmsa.2020.101388.

Ighwela A, Ahmed B, Abol-Munafii B. 2011. Condition factor as an indicator of growth and feeding intensity of Nile Tilapia fingerlings (*Oreochromis niloticus*) fed on different levels of mallowse. Am-Eur J Agric Environ Sci 11: 559-563.

King M. 1995. Fisheries Biology, Assessment and Management. Blackwell Publishing Ltd, United Kingdom.

Khasanah M, Kadir NN, Jompa J. 2019. Reproductive biology of three important threatened/near-threatened groupers (*Plectropomus leopardus, Epinephelus polyphekadion* and *Plectropomus areolatus*) in Eastern Indonesia and implications for management. *Animals* 9: 1-18. DOI: 10.3390/ani9090643.

Khasanah M, Nurdin N, de Mitcheson YS, Jompa J. 2020. Management of the grouper export trade in Indonesia. *Rev Fish Sci Aquac* 28 (1): 1-15. DOI: 10.20323/osa2/2019.154240.

Luna LG. 1968. Manual of Histological Staining Methods of the Armed Forces. Institute of Pathology, McGraw-Hill, New York.

Muchlisin ZA, Musman M, Siti-Azizah MN. 2010. Length-weight relationships and condition factors of two threatened fishes, *Rhabdorn tawarenis* and *Poropuntius tawarenis*, endemic to Lake Laut Tawar, Aceh Province, Indonesia. *J Appl Ichthyol* 26: 949-953. DOI: 10.1111/j.1439-0426.2010.01524.x.

Mustafa S, Hajini MH, Senoo S, Kian AYS. 2015. Conditioning of broodstock of brown-marbled grouper, *Epinephelus fascoguttatus*, in a recirculating aquaculture system. *Aquac Rep* 2: 117-119. DOI: 10.1016/j.aqrep.2015.09.004.

Nataraian AV, Jinugran AG. 1961. Index of preponderence method of grading the food elements in the stomach analysis of fishes. *Ind J Fish* 8 (1): 54-59.

Ndawei W, Diouf K, Samba-O, Ndiiaya P, Anjifili J. 2015. The length–weight relationship and condition factor of white grouper (*Epinephelus aeneus*, Geoffroy Saint Hilaire, 1817) at the southwest coast of Senegal, West Africa. *Int J Adv Res* 3: 145-153.

Nikolsky GV. 1963. The Ecology of Fishes. Academic Press, United States.

Panigoro N, Astuti M, Bahnan PDC, Salifira, Wakita. 2007. Teknik Dasar Histologi dan Atlas Dasar Histopatologi Ikan. Baliu Badidaya Air Tawar Jambi and Japan International Cooperation Agency, Jambi. [Indonesia]

Pears RJ, Choat JH, Mapstone BD, Begg GA. 2007. Reproductive biology of a Large, Aggregation-Spawning Serranid, *Epinephelus fascoguttatus* (Forsskal): Management implication. *J Fish Biol* 71: 795-817. DOI: 10.1111/j.1095-8649.2007.01545.x.

Rahman. 2013. Karakteristik populasi ikan biawan (*Helostoma temminckii* cuvier) di Danau Kelubi Kecamatan Tanjung Hilir. *Protobiont.v2i2.2747*.

Ramchandran S, Ramalingam L. 2020. Population dynamics of spinycheek grouper *Epinephelus diacantus* (Valenciennes, 1828) from the southwest coast of India. *Int J Fish Aquat Stud* 8 (5): 299-307. DOI: 10.22271/fish.2020.v8.5.d.2337.

Ramadhan A, Muchlisin ZA, Sarong MA, Batubara AS. 2017. Length-weight relationships and condition factors of groupers (*Serranidae*) harvested from Pulo Ace Waters, Aceh Besar District, Aceh Province. *Depk Mar* 6 (2): 112-121. DOI: 10.13170/depk.6.2.7017.

Ricker WE. 2001. Computation and Interpretation of Biological Statistics of Fish Populations. Bulletin Fisheries Resources Board, Canada.

Saputra SW, Sukimun S, Boer M, Affandi R, Monnigta DR. 2005. Dinamika populasi udang jari (*Metapenaeus eugrems* eugrems of Man 1907) di...
Laguna Segara Anakan, Cilacap, Jawa Tengah. Jurnal Ilmu-Ilmu Perairan dan Perikanan Indonesia 12 (1): 51-58. [Indonesia]
Sitepu FG. 2014. Aspek biologi ikan kerapu (Epinephelus areolatus Forsskal, 1775) di Perairan Desa Galesong Kota Kabupaten Takalar. Torani 24 (2): 9-19. DOI: 10.35911/torani.v24i2.224. [Indonesia]
Slamet B, Tridjoko NA, Giri P, Agus, Setiadjarma. 2001. Pengamatan Aspek Biologi Reproduksi Beberapa Jenis Ikan Kerapu. Teknologi Budidaya Laut dan Pengembangan Sea Farming di Indonesia. Departemen Kelautan dan Perikanan dan Japan International Cooperation Agency, Jakarta. [Indonesia]
Slamet B, Tridjoko GNAA, Prijono A, Setiadarma. 2004. Pengamatan ukuran kedewasaan pada ikan kerapu bebek (Cromileptes altivelis), kerapu macan (Epinephelus fuscoguttatus), kerapu lumpur (E. coioides), kerapu batik (E. microdon), dan kerapu karet (E. ongus). Prosiding Seminar Hasil Penelitian Pertanian, Perikanan dan Kelaautan. Yogyakarta, 25 September 2004. [Indonesia]
Slamet B, Suwirya K, Apri, Supri, SETYADI I. 2010. Beberapa Aspek Biologi Reproduksi Ikan Kerapu Raja Sunu (Plectropoma laevis). Prosiding Forum Inovasi Teknologi Akukultur. Pusat Penelitian dan Pengembangan Perikanan Budidaya. Jakarta. [Indonesia]
Sulistiono KTH, Riani E, Watanabe S. 2001. Kematangan gonad beberapa jenis ikan buntal (Tetraodon lunaris, T. flaviatilis, T. reticularis) di Perairan Ujung Pangkah Jawa Timur. Jurnal Iktiologi Indonesia 1 (2): 25-30. DOI: 10.32491/jii.v1i2.197. [Indonesia]
Taka Bonerate National Park Authority. 2019. Directorate General of Nature Resources and Ecosystem Conservation, Ministry of Environment and Forestry, Jakarta. http://www.tnTakaBonerate.com/?page_id=5
Tangke U, Silooy FD, Malik FR, Susiana. 2020. Length-Weight Relationship of brown-marbled grouper (Epinephelus fuscoguttatus Forsskal, 1775) in Bobong Taliabu Waters of North Maluku, Indonesia. Proceedings of the 5th International Conference on Food, Agriculture and Natural Resources. Ternate. 17-19 September 2019.
Zargar UR, Yousuf AR, Mustaq B, Jain D. 2012. Length–weight relationship of the crucian carp, Carassius carassius in relation to water quality, sex and season in some lentic water bodies of Kashmir Himalayas. Turk J Fish Aquat Sci 12: 683-689. DOI: 10.4194/1303-2712-v12_3_17.