Flower Colors in Common Bean Produced by Interactions of the Sal and V Loci and a Gametophyte Factor Ga Linked to Sal

Mark J. Bassett¹, Xue Lin-Bao¹, and L. Curtis Hannah¹

Vegetable Crops Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611

Additional index words. Phaseolus coccineus, P. vulgaris, common bean, certation, gametophyte factor, linkage

Abstract. Inheritance of red flower color was investigated in crosses using Lamprecht's lines M0169 and M0056, which are derived from Phaseolus coccineus L., and Univ. of Florida P. vulgaris L. breeding line 5-593. Based on segregation in the F₁ populations from 5-593 × M0169 and 5-593 × M0056, we hypothesize that the genotypes for flower colors are sal/sal V/V for 5-593 and Sal/Sal v/v for M0169 and M0056. The backcross 5-593 × F₁ (5-593 × M0056) segregated for four flower colors in about equal frequencies, and F₁, F₂, and F₃ progeny tests of the backcross plants provided confirmation of all the genotypes in the digenic model. The two recombinant true-breeding colors/genotypes were white (sal/sal v/v) and china rose (Sal/Sal V/V). We hypothesize that the large deficiency of plants carrying the Sal allele in segregating populations is due to a gametophyte factor linked to Sal. We propose the gene symbol Ga for the gametophyte factor locus, which achieves complete selection for pollen carrying Ga on female plants carrying Ga, i.e., no pollen carrying ga achieves fertilization. The linkage between Ga and the marker locus Sal is 17 CM (centiMorgan).

The genetics of red flower colors in Phaseolus vulgaris is incomplete. Tjebbes (1925) reported a red flower locus with a series of alleles in P. coccineus: Ad dominant to Au and both dominant to a. The red hues controlled by Ad and Au are very close, and a gives white flowers. AdAd is self-sterile and AuAu is partially sterile. Lamprecht (1948a) reported the existence of four dominant genes in P. coccineus that control various red hues in flowers, i.e., Am, Sal, Beg, and No. He demonstrated that the latter three genes (in the presence of P, T, v) each produce a different red hue independently of each other, whereas Am has expression only in the presence of Sal. However, neither Lamprecht nor any other researcher has published data showing joint segregation of gene combinations, such as Sal Beg or Sal No; hence, the possibility that Beg and No are really alleles at the Sal locus has not been ruled out. The gene combination Sal Am produces scarlet red. The colors produced by all other combinations of the dominant genes from P. coccineus remain speculative or uninvestigated. The interactions of V with the four red color genes also remain largely uninvestigated. Closing these voids in the genetics of flower color will be difficult in experiments where two or more genes segregate simultaneously. In such segregating populations, many of the progeny genotypes will have hues that are too close to classify without excessive errors (M.J.B., unpublished data). Ibrahim and Coyne (1975) crossed several P. coccineus plant introduction lines with several cultivars of P. vulgaris and obtained an F₂ segregation ratio of 3:1 for scarlet: white flowers when P. vulgaris was used as female. In reciprocal crosses with P. coccineus as female, only geranium pink and white flowers were observed in the F₂ prog- eny.

This paper presents results on the interaction of the Sal and V loci and proposes genotypes for the various colors observed.

Materials and Methods

The flower color names and numeric designations we used are taken from the Horticultural Colour Charts (Royal Horticultural Society, 1938). Lines M0169 and M0056 from Lamprecht's collection, now available as plant introduction lines 527711 through 527878 at Pullman, Wash., were selected as sources of the gene Sal for salmon red flower color. Lamprecht's (1948a) cross V0214 x M0056 was reported to exhibit certation (competitive advantage of one pollen genotype over another, resulting in unequal chances of fertilization) in the segregation of Sal and sal. Line M0169 had flower color nearly identical to M0056. The wing petal color of M0169 is carmine-rose 621/0 and that of M0056 is camellia-rose 622/1. Line 5-593 is a bush breeding line with black seeds, and the wing petals are bishops-violet 34/2 (genotype VV).

The crosses 5-593 × M0169 and 5-593 × M0056 were made in 1987. Flower color was recorded in the F₁ and F₂ populations. Selected F₁ plants with white flowers were progeny-tested in the field in 1988. The backcross test 5-593 × F₁ (5-593 × M0056) was made in 1988. Most of the BC₁-F₁ plants were progeny-tested in the field, but one remaining class was progeny-tested in the greenhouse. In 1989, selected plants from the greenhouse BC₁-F₂ were progeny-tested in F₂ and, in some cases, in F₃. These tests included plants with camellia-rose, magenta-rose, and mallow-pure flower colors.

Results and Discussion

The wing petals of F₁, 5-593 (violet) × M0169 (red) were china-rose 024/1 and those of F₂, 5-593 × M0056 were magenta-rose 027/2. The F₂ (both crosses) were classified for three flower color classes: "red", violet, and white (Table 1). The "red" class was a composite of several close red hues that could not be clearly distinguished. The violet class included two close colors.

Our hypothesis is that Sal is epistatic (dominant epistasis) to the V locus, and, in the presence of Sal, one of several red colors will be produced, depending on the genotype at V and whether the dominant allele at Sal is homozygous or not (Table...
Table 1. Genetic hypothesis for the interaction of Sal and V in F1 populations derived from the cross 5-593 x M0056 and the flower colors corresponding to each genotype.

Genotype	Wing petal color*
Sal/Sal V/V	China-rose 024/1
Sal/Sal V/v	Magenta-rose 027/2
Sal/sal V/V	China-rose 622/1
Sal/Sal V/v	Magenta-rose 027/2
Sal/sal V/V	White
sal/sal V/v	White

*Color names and numeric designation for hue and chroma are taken from The "Royal Horticultural Society (1938).

A range of hues was observed for these two genotypes varying from magenta 27/2 to hues redder than magenta-rose 027/2, but no reliable classification could be made within this range.

Table 2. Segregation for flower color (wing petals only) in F1 populations from two crosses between violet flowers (5-593) and red flowers (M0169 and M0056).

Cross	Flower color classes	x²	P		
5-593 x M0169	Red 249	5	13	16.96	<0.001
	Violet 95				
	White 13				
5-593 x M0056	Red 188	70	25	11.20	0.004
	Violet 70				
	White 25				
Combined data	Red 437	165	38	20.85	<0.001
	Violet 165				
	White 38				

1. In the absence of a dominant allele at Sal, the flowers will either be bishops-violet for V/V, cobalt-violet for V/v, or white for v/v (Table 1). The F1 data were tested for goodness of fit to a 12:3:1 ratio for red : violet : white flower color (Table 2). The data clearly do not fit this ratio for either cross, but the failure could be due to the certation effect reported by Lamprecht (1948a) in his crosses with M0056. There is a shortage of red plants and a surplus of violet plants, both effects possibly resulting from certation. Using the maximum likelihood method of Allard (1956), tests for linkage between Sal and V gave an estimate of 34.7 ± 9.02 CM (centiMorgan) for the F1 from 5-593 x M0169 and 50.9 ± 8.83 CM for the F1 from 5-593 x M0056. We cannot explain the apparent linkage disturbance in the first cross, but we doubt that any significant linkage exists because of the complete absence of linkage disturbance in the second cross; i.e., the result is not repeatable for the same genotypes in a different cross.

Our hypothesis to explain the certation effect is that the Sal locus is linked to another locus controlling microgametophytic function. Disturbed ratios of this type have been reported in maize and shown to be the result of a gametophyte factor linked to the marker gene, e.g., the linkage (25 cM) of the sugary locus with a gametophyte factor (Emerson, 1934) and the linkage (12 cM) of the brittle locus with another gametophyte factor (Burnham, 1936; Longley, 1961). We developed a model that fits the F1 data for 5-593 x M0056 very well (Table 3). This model assigns the following gametic frequencies to the pollen: 0.15 for Sal V, 0.15 for Sal v, 0.35 for sal V, and 0.35 for sal v. The same four gametes in the egg have equal frequencies, 0.25, assuming normal Mendelian segregation. When the same model is applied to the F1 data for 5-593 x M0169, the fit is very poor (Table 3). Most of the deviation from expected in the latter case is due to a large deficiency of white flower segregants; a deficiency in the double recessive class sometimes occurs in digenic segregations. Clearly, the certation effect reported by Lamprech (1948a) for his cross with M0056 has been confirmed by the data involving the cross 5-593 x M0056.

We continued the investigation by making the backcross 5-593 x F1 (5-593 x M0056). The hypothetical genotypes for the parents are sal/sal V/V for 5-593 and Sal/Sal V/v for M0056. If the model is correct, the BC-F1 should segregate for four flower color classes. The observed segregation gave an acceptable fit with the theoretical expectations (Table 4). If the sum of the red flower classes is compared to the sum of the violet flower classes, a surplus of violet flowers is observed, i.e., 25 red vs. 35 violet. This deviation from a 1:1 expected ratio of red : violet is not significant ($x^2 = 1.667, P = 0.20$). For the BC-F1, 120 seeds were planted. Due to the effects of segregation for genes causing crippling and lethality (possibly $D1-1$, $D1-2$ and/or $cr-1$, $cr-2$), 30 seedling lethals and 30 crippled seedlings were observed (Coyne, 1965; Finke et al., 1986; Shii et al., 1980). In summary, half of the population never flowered and could not be classified.

The 14 bishops-violet plants (Table 4) were progeny-tested, and all, totaling 607 BC-F2 plants, bred true for bishops-violet flower color (data not shown). These results support the hypothesized genotype sal/sal V/V. The 21 cobalt-violet plants (Table 4) were also progeny-tested, and the progeny in all plots segregated for three flower color classes (Table 5). The data are consistent with a 1:2:1 ratio for the three color classes, and the hypothesis that cobalt-violet has the genotype sal/sal V/V is supported. Eleven of the 14 mallow-purple plants (Table 4) were progeny-tested, and the progeny in all plots segregated for three color classes (Table 5). Clearly, the data do not fit a 1:2:1 ratio for the three color classes, and the deviation is the result of a large deficiency of china-rose segregants. The certation effect that makes the Sal allele have a transmission disadvantage with respect to the sal allele is clearly confirmed. The data also...
support the hypothesized genotype Sal/sal V/V for mallow-purple.

The segregation data from the BC$_2$F$_1$ from the 11 mallow-purple BC$_1$F$_1$ plants were also analyzed as 11 separate progenies, combining the china-rose and mallow-purple classes into a red class and testing for goodness of fit to a 3:1 ratio of red vs. bishops-violet flowers. Four of the progenies had P values <0.05 due to a shortage of "red" plants and an excess of bishops-violet. The distribution of proportions of the 11 progenies that were bishops-violet ranged from 0.27 to 0.45. Therefore, the entire distribution was skewed above the expected proportion of 0.25 (for a 3:1 ratio).

The 11 BC$_1$F$_1$ plants with magenta-rose flower color (Table 4) were tested in the greenhouse to allow a more intensive effort to discriminate between similar red hues. These progenies segregated again for all the same color classes observed in the original F$_1$ from 5-593 x M0056 (Tables 3 and 5). A complete classification without ambiguity of all colors was not possible even with the aid of color charts in a sheltered environment and the opportunity to label all plants and check the color designations repeatedly. For the colors magenta-rose, china-rose, and mallow-purple, a few plants in this range of colors were difficult to classify without ambiguity. These colors were combined in a group designated simply as "red". The classification of the BC$_2$F$_1$ differed from the classification of the original F$_1$ by separating out the camellia-rose segregants from the red class and splitting the violet class into its components, bishops-violet and cobalt-violet. Using these five classes and our model (Table 1), the expected frequencies for the five classes are 3:9:1:2:1 (Table 5). The observed data gave a very poor fit to the model, and this failure is due primarily to certation at the salmon locus. This can be demonstrated by comparing the combined data for the two red classes with the combined data for the violet and white classes, which gives x2 (3:1) = 50.789 and P < 0.001. However, if one does a chi-square test separately on the violet and white classes, x2 = 5.134 and P = 0.08, which is an acceptable fit. The appearance of both camellia-rose and white segregants in all 11 BC$_2$F$_1$ progenies supports the hypothesis that the genotype of the magenta-rose class in the BC$_2$F$_1$ is Sal/sal WV.

The genetic model predicts four true-breeding genotypes/colors, but, thus far, only one, sal/sal V/V for bishops-violet, has been demonstrated. Ten white F$_1$ segregants, six from 5-593x M0056 and four from 5-593 x M0169, were progeny-tested in F$_3$, and all plots, totaling 415 plants, were true-breeding for white (data not shown).

The third true-breeding class is china-rose. No china-rose plants were saved from the progeny test of mallow-purple BC$_1$F$_1$, but new china-rose segregants were derived from a genotype not yet demonstrated, Sal/Sal V/V, which was usually designated magenta-rose "china" to distinguish it from the bluer magenta-rose. A greenhouse progeny test (BC$_2$F$_1$) of a plant of this type gave eight magenta-rose, eight china-rose, and four camellia-rose progeny. The remnant seed tested in the field in plot 9-235 gave six camellia-rose and 46 "red" (magenta and china combined) progeny. The genotype of this plant is confirmed by the absence of any violet or white segregants, while segregating for camellia-rose. Seven of the eight china-rose BC$_2$F$_1$ plants were progeny-tested in the field, giving a total of 237 plants classified in the seven plots. All plots were true-breeding for china-rose (data not shown). Besides 9-235, six additional progeny tests of BC$_2$F$_1$, magenta-rose "china" plants were made. The combined data segregated for 47 camellia-rose and 161 "red", giving a good fit to the expected 3:1 ratio (x2 = 0.641, P = 0.42).

The fourth true-breeding class is camellia-rose. In 1989, 44 BC$_2$F$_1$ segregants with camellia-rose flower color were progeny-tested in BC$_2$F$_1$ field plots, involving a total of 1080 plants. Plants in seven plots were true-breeding for camellia-rose and 37 segregated for two classes, plants with either camellia-rose or white flowers. Testing the expected ratio of 1:2 for true-breeding to segregating plots, a poor fit is shown by the large chi-square (x2 = 6.016, P = 0.01). The data from the segregating plots were combined, and the observed segregation was 571 camellia-rose and 325 white-flowered plants. This proportion gave a poor fit to the expected 3:1 ratio for camellia-rose and white (x2 = 60.72, P < 0.001). Once again, certation at the salmon locus resulted in a shortage of camellia-rose plants. The question remains whether certation is due to a pleiotropic effect of the Sal locus or is produced by a linked locus for a gametophyte effect. For each segregating progeny, the ratio of

Table 5. Combined BC-F$_1$ segregation data from 21 BC-F$_1$ plants with cobalt-violet flower color and 11 BC-F$_1$ plants with mallow-purple flower color, and 11 BC-F$_1$ plants with magenta-rose flower color from the backcross 5-593 x F$_1$ (5-593 x M0056).

Parental BC$_1$ flower color	BC$_2$ flower color classes	Hypothesized genotype	No. of plants	χ^2 value	χ^2 ratio	P
Cobalt-violet	Bishops-violet	sal/sal V/V	244	1:2:1	0.000	
Cobalt-violet	White	sal/sal v/v	470	1:2:1	0.664	
White	sal/sal v/v	262	244		1.328	
Total			976	1.992	<0.37	
Mallow-purple	China-rose	Sal/Sal V/V	99	1:2:1	35.928	
Mallow-purple	Mallow-purple	Sal/Sal V/V	375	1:2:1	0.759	
Bishops-violet	sal/sal V/v	243	179.25		22.673	
Total			717	59.359	<0.001	
Magenta-rose	Camellia-rose	Sal/ - v/v	80	3:9:1:2:1:1	2.017	
Red#	Sal/ - V/ -	226	281.25		10.854	
Bishops-violet	sal/sal V/V	42	31.25		3.698	
Cobalt-violet	sal/sal v/v	90	62.50		12.100	
White	sal/sal v/v	62	31.25		30.258	
Total			500	58.926	<0.001	

The magenta-rose, china-rose, and mallow-purple classes were combined because a few plants were difficult to classify without ambiguity.
white-flowered segregants to total plants was calculated. The frequency distribution of these ratios appears to be bimodal (Table 6). The classes ranging from 0.13 to 0.33 appear to be distributed more or less normally about 0.25, the expected mean in the absence of certation. There are 14 progenies in this region of the distribution. There is a break in the distribution at class 0.37. A separate group of 23 progenies are distributed in the range from 0.41 to 0.57, which deviate greatly from the expected 0.25 mean. The most probable explanation of these data is that the latter 23 progenies resulted from the linkage of Sal with a gametophyte factor, for which the gene symbol Ga is proposed. The 14 progenies distributed around 0.25 resulted from segregation of Sal alleles that were freed from the linked gametophyte factor by the crossing-over that occurred in the BC-F₂ parents. Nine of the 11 BC-F₂ progenies derived from magenta-rose parents (Table 6) exhibited (individually) a shortage of Sal segregants (data not shown); thus, it must be assumed that these BC-F₂ parents carried the original parental (M0056) linkage arrangement, ga Sal/Ga sal, which will be explained below.

A reduction in the transmission rate of Sal alleles is demonstrated above, but it is not obvious whether reproduction is blocked before or after fertilization. We favor the hypothesis that the block occurs before fertilization due to a gametophyte factor, because a zygotic lethal effect would lead to consequences not observed. If a zygotic lethal effect were involved, this would lead to missing seeds in the pods at random positions, similar to chromosome translocation heterozygotes (Ashraf and Bassett, 1986). No such missing seeds in pods were observed in the parental plants that produced self-progeny showing certation.

The data in Table 6 can be used to estimate the two parameters involved in generating the non-Mendelian frequency of white-flowered plants. Gametophyte factors have been described in other plant species in which selection occurs during pollination. For example, Emerson (1934) described such a genetic system in maize and provided an exhaustive treatment of resultant data. In his material, pollen containing one allele of a gene termed Ga (gametophyte factor) are given a selective advantage over ga pollen in the fertilization process if the female plant contains at least one dose of the Ga allele. Action of the Ga locus is made apparent by non-Mendelian ratios of a linked gene. The data presented here concerning the unexpected ratios observed with sal can be explained by such a mechanism. Specifically, we propose that the sal allele is linked in repulsion to a gametophyte factor allele, Ga. On styler tissue containing the Ga allele, selection occurs for Ga pollen. The homologous chromosome in this particular cross, which contains the dominant allele at the pigment gene, Sal, is linked in repulsion to the recessive allele at the Ga locus, ga.

If one assumes that selection for Ga is complete (no ga pollen achieve fertilization) and that linkage between Ga and sal is complete (no recombination between these genes), then one would expect 50% white-flowered plants in the selfed generations presented in Table 6. Values less than 50% would be obtained if 1) recombination occurs between Ga and sal and/or 2) some ga pollen can achieve fertilization. Following the method of Emerson (1934), the data presented in Table 6 allow one to estimate the value of both of these functions.

Emerson (1934) discovered that the genetic analysis of progeny derived by self-pollination of a plant exhibiting altered ratios allows one to estimate the position of the Ga factor, as well as the relative strength of selection for Ga pollen on females containing the Ga allele. The formulas for estimating these functions are presented and explained below.

Although the frequency of progeny exhibiting the mutant phenotype is a function of both recombination and the degree of selection for the Ga allele, the frequency of Ga/ga heterozygotes within the selfed progeny from a Ga/ga heterozygote is independent of selection and is, in fact, equal to 50%. Using the symbols of Emerson (1934), let p equal the frequency of Ga pollen achieving fertilization and q the frequency of ga pollen achieving pollination. If Ga and ga are transmitted at equal frequencies through the female, then the frequency of Ga/ga heterozygotes will be p/2 + q/2. The first term in this expression represents the situation in which Ga is transmitted through the male, whereas the second term describes the frequency of Ga transmission through the female. Since Ga and ga are the only types of pollen achieving fertilization, p + q must equal 1. Substitution of 1 – p for q leads to the conclusion that the frequency of Ga/ga heterozygotes is equal to 1/2. Intuitively, one comes to the same conclusion if one considers cases where p = 1 (complete selection) or p = 0.5 (no selection). In the former case, only Ga is transmitted through the male and the resulting progeny would be composed of only two genotypes, Ga/Ga and Ga/ga. These would occur in a 1:1 ratio and the heterozygous class would make up 50% of the total. Similarly, if there is no selection, we would obtain Ga/Ga, Ga/ga, and ga/ga in a 1:2:1 ratio. Again, the heterozygous class would make up 50% of the progeny.

The frequency of Ga/ga heterozygotes maintaining the original, or parental, linkage relationship (in this case, ga Sal/Ga sal) is solely a function of the rate of recombination between the two genes. Let x equal the recombination fraction. If the genes Ga and sal are 100x map units apart, then the frequency of production of gametes containing the parental arrangement of alleles at these two loci would be 1 – x. The genotype ga Sal/Ga sal can be produced in two ways: the ga Sal chromosome can be transmitted through the male parent or through the female parent. Among all the 16 fertilization events possible in the self-pollination of a ga Sal/Ga sal heterozygote, the two fertilization events mentioned above would occur with the frequency of q(l – x)/2 + p(1 – x)/2. Since q = 1 – p, the expression simplifies to (1 – x)/2. Since Sal/sal heterozygotes make up 50% of the total progeny, the frequency of Sal/sal heterozygotes maintaining the parental linkage relationship with the ga locus (i.e., ga Sal/Ga sal) would be (1 – x). Sal/sal heterozygotes maintaining the parental linkage arrangement with the ga locus can easily be separated from the nonparental types since the former will produce > 25% white-flowered plants upon self-pollination.

Before one can calculate the linkage from the data in Table 6, it is necessary to remove any data that failed to show certation because the linkage was broken in BC-F₂, rather than BC-F₁. We determined that BC-F₂ parents #4 and #10 had already broken the Ga–sal linkage. When the BC-F₂ progeny from these

Upper class limits	No. BC-F₂ progenies	BC-F₂ progenies in each class of ratio (white flower/total)
0.13 0.17 0.21	0.25* 0.29 0.33 0.37 0.41 0.45 0.49 0.53 0.57	1 2 3 4 5 6 7 8 9

*The mean ratio expected in the absence of certation.
two parents (five progenies in all) were removed from Table 6, 32 BC-F1 progenies remained, rather than the original 37. Among these 32, 22 Sal/sal heterozygotes had maintained the parental arrangement of the Ga and ga alleles and 10 showed no evidence of certation. Thus, 22/32 = (1 – x) and we calculate the value of x to be 0.17, giving an estimate of 17 cM for the map distance between Sal and Ga. The same ratio is set equal to (1 – x)¹, regardless of whether the marker gene and gametophyte loci are linked in repulsion or coupling phase.

Once the map position of the Ga locus is identified relative to the marker gene, the intensity of selection conditioned by Ga can be calculated from the frequency of one of the genotypic classes within the F2 population. Of the 16 possible fertilization events resulting from selfing the heterozygote above, four will be sal/sal: Ga sal/Ga sal plants will occur with the frequency of p(1 – x)/2, ga sal/ga sal plants will occur at the frequency of x(q/2), and Ga sal/ga sal plants can occur in two ways with the following frequencies, (1 – x)p/2 and (1 – x)q/2. Substitution of 1 – p for q and combining the above frequencies leads to the equation for the frequency of plants with white flowers, which is equal to (p – 2px + x)/2. This formula is appropriate when there is repulsion-phase linkage between the marker and gametophyte loci, as with our data (Table 6). When the linkage is in coupling phase, one must set the ratio equal to (2p + 1 – p – x).

Among the 22 segregating plants in Table 6 with elevated ratios of white-flowered plants, the average frequency of plants with the recessive phenotype is 43.890. From this and from the estimate of x, we can calculate a value of p equal to 1.07. Since the maximum value for p is 1, we conclude that selection is virtually complete for the Ga allele over the ga allele. Deviation from the theoretical limit of 1 maybe a reflection of the fairly large variation in the observed value of the percentage of recessive phenotypes, a phenomenon that is common in the maize studies of gametophyte factors.

Lamprecht’s line M0056 was derived from a cross between P. vulgaris and P. coccineus (formerly multiflorus), hence the letter M for multigaris (Lamprecht’s term for interspecific materials). It is well established that genes from P. coccineus are lost through negative selection in interspecific germplasm with P. vulgaris cytoplasm (Lamprecht, 1935, 1941, 1948b, 1948c; Manshardt and Bassett, 1984; Smartt, 1970; Thomas, 1964). Our paper has elucidated a specific process by which this elimination of a P. coccineus allele is achieved. The Ga allele in P. vulgaris 5-593 is able to block fertilization of pollen carrying the ga allele from P. coccineus and reduce transmission of genes linked to this locus, e.g., Sal.

Literature Cited

Allard, R.W. 1956. Formulas and tables to facilitate the calculation of recombination values in heredity. Hilgardia 24:235-278.
Ashraf, M. and M.J. Bassett. 1986. Cyto genetic analysis of translocation heterozygosity in the common bean (Phaseolus vulgaris L.). Can. J. Genet. Cytol. 28:574-580.
Burnham, C.R. 1936. Differential fertilization in the Bt Pr linkage group of maize. J. Amer. Soc. Agron. 28:968-975.
Coyne, D.P. 1965. A genetic study of crippled morphology resembling virus symptoms in Phaseolus vulgaris. J. Hered. 56:154-176.
Emerson, R.A. 1934. Relation of the differential fertilization genes, Ga ga, to certain other genes of the Su-Tu linkage group of maize. Genetics 19:137-156.
Finke, M. L., D.P. Coyne, and J.R. Steadman. 1986. The inheritance and association of resistance to rust, common bacterial blight, plant habit and foliar abnormalities in Phaseolus vulgaris L. Euphytica 35:969-982.
Ibrahim, A.M. and D.P. Coyne. 1975. Genetics of stigma shape, cotyledon position, and flower color in reciprocal crosses between Phaseolus vulgaris L. and Phaseolus coccineus (Lam.) and implications in breeding. J. Amer. Soc. Hort. Sci. 100:622-626.
Lamprecht, H. 1935. Ron och Synpunkter vid Förädling av Köksvägerna. Beretn. Nordisk. Jordbr. Forsker Foren. 5th Kongr. Copenhagen July 1935.4-7:538-546.
Lamprecht, H. 1941. The limit between Phaseolus vulgaris and Ph. multiflorus from the genetical point of view. Proc. 7th Intl. Genet. Congr. Edinburgh, 1939. p. 179-180.
Lamprecht, H. 1948a. On the effect and linkage of genes transmitted from Phaseolus coccineus to Ph. vulgaris. Agr. Hort. Genet. 6:64-81.
Lamprecht, H. 1948b. The gene basis of evolution. Agr. Hort. Genet. 6:83-86.
Lamprecht, H. 1948c. Zur Lösung des Artsproblems. Neue und bisher unbekannte Ergebnisse der Kreuzung Phaseolus vulgaris L. x Ph. coccineus L. und Reziprok. Agr. Hort. Genet. 6:87-145.
Longley, A.E. 1961. A gametophyte factor on chromosome 5 of corn. Genetics 46:641-647.
Manshardt, R.M. and M.J. Bassett. 1984. Inheritance of stigma position in Phaseolus vulgaris x P. coccineus hybrid populations. J. Hered. 75:45-50.
Royal Horticultural Society. 1938. Horticultural colour chart. The Royal Horticultural Society, London.
Smartt, J. 1970. Interspecific hybridization between cultivated American species of the genus Phaseolus. Euphytica 19:480-489.
Shii, C. T., M.C. Mok, S.R. Temple, and D.W.S. Mok. 1980. Expression of developmental abnormalities in hybrids of Phaseolus vulgaris L. J. Hered. 71:218-222.
Thomas, H. 1964. Investigations into the inter-relationships of Phaseolus vulgaris L. and P. coccineus Lam. Genetics 35:59-74.
Tjebbes, K. 1925. Die Zeichnung der Samenschale von Phaseolus multiflorus. Hereditas 7:129-144.