Study on River Health Assessment Method of the Urbanized Area in Eastern Plain of China

Yifan Ding*, Yongxing Ji, Xiaomei Liu and Jinlong Wu
Shanghai Water Engineering Design & Research Institute, Shanghai, 200061, China
*Corresponding author’s e-mail: florawithyou@163.com

Abstract. River health assessment is an important decision-making basis of ecological protection and watershed management. In this study, we established the river health evaluation method of the urbanized area in eastern plain of China. In recent years, Shanghai city has carried out many comprehensive river rehabilitation and ecological restoration projects. Two small rivers with different health condition background were taken as examples to reveal the river health status before and after their rectification. The assessment result shows that the health status of river A restored from Sick (RHI=0.074) to Sub-healthy (RHI=0.510), and river B from Sub-healthy (RHI=0.585) to Ideal (RHI=0.956). This conclusion is consistent with the actual situation, and the evaluation results are reasonable.

1. Introduction
Ecosystem health of rivers is the goal of water environmental management, and river health evaluation is an important bond and basis of water environment and ecosystem management [1]. The U.S. Environment Agency (U. S. E. P. A) proposed RBP (Rapid Bioassessment Protocol) incorporated the characteristics of the stream, including width, flow, matrix type and size, into the assessment [2]. ISC (Index of Stream Condition) in Australia, RHS (River Habitat Survey) in England, ISG (Index of Stream Geomorphology) in South Africa, RCE (Riparian, Channel, and Environmental Inventory) in Sweden, all of them emphasize the significance and importance of river landscapes, river morphology, including river cross-sectional patterns, and the depth ratio of sections, which are important to river ecosystems [3-5].

Since 2010, Chinese government has paid more attention to the ecological protection of rivers and watersheds, and important policies, systems and opinions on the ecological protection and water environment clearly required regular assessment of river health. Somedifferent river health evaluation index systems were put forward to some important rivers such as The Yellow River, the Yangtze River, and the Pearl River.

However, the domestic and foreign evaluation of river health mainly focuses on large river basins, barely on the urbanized areas or small rivers of the eastern plain. The existing index system is not suitable for small urbanized rivers, as the representation and availability of indicators are very different from large watersheds and small rivers. Therefore, it is necessary to carry out research on the rivers in the urbanized areas of the eastern plain in China, which are numerous, insufficient hydrodynamics, dense river networks and high environmental pressure.

In this paper, a river health evaluation system was put forward to this area, and two small urbanized rivers were used as examples to study the river health status changes in this area.
2. Index System and Classification Standards

2.1 Index system
Following the principles of scientific, operable, systematic, independent and complete, reference to domestic and foreign literature and the Shanghai River Ecological Governance Design Guide and other guiding documents, an index system of 3 levels, 4 dimensions, a total of 9 basic indicators was defined, shown in Table 1.

2.2 Weight distribution
Using the expert scoring method, 30 experts answered the questionnaires and the scores were analyzed to determine the weight of the indicators, shown in Table 1.

Table 1. Index system and indicator weights of river health index

Goal layer	Effect layer	Layer	Meanings of index	Weight	Data source
River Health Index	Water safety	Flood control	Embankment compliance ratio	0.144	Field investigation
	Water environment	Water quality	quality standards for surface water	0.179	Water analysis
		Water Liquidity	Connectivity to near water	0.151	Field investigation
		Transparency	Transparency	0.094	Water analysis
Water Ecology	Ecological shore protection ratio	Ecological shore protection ratio	0.106	Field investigation	
	Riverside zone vegetation	Vegetation cover in riverbank zone	0.117	Aerial/remote sensing	
	Large aquatic plant cover	Total plants coverage in water	0.129	Aerial/remote sensing	
Human-water relations	Hydrophilic accessibility	Walkwayalongtheriver	0.082	Field investigation	
	Resident satisfaction	Resident satisfaction	0.104	Questionnaire	

2.3 Evaluation criteria
Based on local realities and a large amount of literature, the evaluation criteria for indicators are developed, shown in Table 2.

Table 2. Evaluation criteria of river health index

Index layer	Evaluation value				
	1	0.8	0.6	0.3	0
Flood control/%	[95,100]	[85,95)	[65,85)	[50,65)	[0,50)
Water quality *	III and above	IV	V	Inferior V	Black stench
Water Liquidity	CONNECTED BOTH ENDS	CONNECTED&TUBE CULVERT	CONNECTED&SEVERED TUBE CULVERT&SEVERED	CONNECTED&SEVERED & SEVERED	CONNECTED & SEVERED
Transparency/cm	[80,100]	[50,80)	[30,50)	[10,30)	[0,10)
Ecological shore ratio/%	[90,100]	[70,90)	[50,70)	[30,50)	[0,30)
Vegetation coverage/%	[75,100]	[40,75)	[10,40)	[10,0)	0
Large aquatic plant coverage/%	[75,100]	[40,75)	[10,40)	[10,0)	0
Hydrophilic accessibility	UNIMPED	UNIMPEDIFIED	PARTLY-THROUGHLY	ONLY ON SOME SPOTS	COMPLETELY ENCLOSED
Resident satisfaction/% [90, 100] [80, 90) [60, 80) [40, 60) [0, 40)

+Environmental quality standards for surface water, Ministry of Ecological Environment of China

2.4 River Health Grading Standard
River Health index (RHI) is classified as 5 levels: Ideal (0.8 \(\leq \) RHI \(\leq \) 1.0), Healthy (0.6 \(\leq \) RHI < 0.8), Sub-healthy (0.4 \(\leq \) RHI < 0.6), Unhealthy (0.2 \(\leq \) RHI < 0.4) and Sick (0 \(\leq \) RHI < 0.2).

3. Case study
3.1 Project Overview
River A (Xihuangtong River) is in Pudong District, amongst the residential areas. River A is about 720m long and 15m wide. The water was turbid and green, the transparency was below 10cm, NH3-N content was as high as 19.1 mg/L, an unpleasant smell was obvious, and river sludge was floating, mixed with oil to oil-stained zones. After the treatment, the NH3-N content is below 2.0 mg/L, the transparency reaches 40cm, and the aquatic plant cover reaches 30%.

River B (Waihuanlindai River) is in the outer ring forest shelterbelt of Baoshan District, about 800m long and 15m wide. The main problem of this river was eutrophication, with a NH3-N content of 2 to 3 mg/L. After the measures including shore slope dressing, greening, building culverts to link the near river and walkway transfixion, the flood risk is eliminated, water quality is improved, water connectivity is strengthened, and the river has become a scenic landscape.

3.2 Results and discussions
Basic data was collected and assessed by the river health index system established above, and the result shows that the health status of river A restored from Sick (RHI = 0.074) to Sub-healthy (RHI = 0.510), and river B from Sub-healthy (RHI = 0.585) to Ideal (RHI = 0.956).

4. Conclusion
In this paper, a complete river health assessment system was established, the method is intuitive and simple. This system was used to assess the health of two small rivers of Shanghai, before and after the
water environment improvements. And the health of both them was improved significantly. This conclusion is consistent with the actual situation, and the evaluation results were reasonable.

Acknowledgments
This work is sponsored by Shanghai Sailing Program and Self-Leading Talent Program in Huangpu District, Shanghai.

References
[1] Barbour, M. T., Gerritsen, J., Snyder, B. D. (1999) Rapid Bioassessment protocols for Use in Wadeable Streams and Rivers: Periphyton, Benthic Macroinvertebrates, and Fish. BDS USEPA, California
[2] Cude C G. (2001) Oregon water quality index. Journal of the American Water Resources Association, 37(1):125-137
[3] Y.W. Zhao, & Z.F. Yang. (2005). River health: concept, assessment method and direction. Scientia Geographic Sinica, 25(1), 119-124.
[4] D. PONT, Bernard Hugueny, & C. ROGERS. (2007). Development of a fish-based index for the assessment of river health in Europe: the European fish index. Fisheries Management & Ecology, 14(6), 427-439.
[5] Leah Barclay, Toby Gifford, & Simon Linke. (2017). River listening: acoustic ecology and aquatic bioacoustics in global river systems. Leonardo, 51(3), 1-2.