On Graded Quasi-Prime Submodules

Khaldoun Al-Zoubi
Department of Mathematics and Statistics, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
e-mail: kfzoubi@just.edu.jo

Rashid Abu-Dawwas
Department of Mathematics, Yarmouk University, Irbid, Jordan
e-mail: rrashid@yu.edu.jo

Abstract. Let G be a group with identity e. Let R be a G-graded commutative ring and M a graded R-module. In this paper, we introduce the concept of graded quasi-prime submodules and give some basic results about graded quasi-prime submodules of graded modules. Special attention has been paid, when graded modules are graded multiplication, to find extra properties of these submodules. Furthermore, a topology related to graded quasi-prime submodules is introduced.

1. Introduction

Graded prime submodules of graded modules over graded commutative rings have been introduced and studied in [2, 5]. Here we introduce the concept of graded quasi-prime submodules and we investigate some properties of graded quasi-prime submodules of graded modules over graded commutative rings and consider some conditions under which a graded quasi-prime submodule of a graded module is graded prime. Also, the behavior of graded quasi-prime submodules under localization is studied. Furthermore, we introduce a topology on the set of graded quasi-prime submodules and some properties of this topology are given.

Before we state some results, let us introduce some notation and terminologies. Let G be a group with identity e and R be a commutative ring. Then R is a G-graded ring if there exist additive subgroups R_g of R such that $R = \bigoplus_{g \in G} R_g$ and $R_g R_h \subseteq R_{gh}$ for all $g, h \in G$. We denote this by (R, G). The elements of R_g are called homogeneous of degree g where R_g is the additive subgroup of R indexed

* Corresponding Author.
Received November 29, 2013; revised August 23, 2014; accepted October 2, 2014.
2010 Mathematics Subject Classification: 13A02, 16W50.
Key words and phrases: graded quasi-prime submodules, graded prime submodules.

259
by \(g \in G \). If \(x \in R \), then \(x \) can be written uniquely as \(\sum_{g \in G} x_g \), where \(x_g \) is the component of \(x \) in \(R_g \). Moreover, \(h(R) = \bigcup_{g \in G} R_g \). Let \(I \) be an ideal of \(R \). Then \(I \) is called a graded ideal of \((R, G) \) if \(I = \bigoplus_{g \in G} (I \cap R_g) \). Thus, if \(x \in I \), then \(x = \sum_{g \in G} x_g \) with \(x_g \in I \). An ideal of a \(G \)-graded ring need not be \(G \)-graded (see Example 2.4 in [1]).

Let \(R = \bigoplus_{g \in G} R_g \) be a \(G \)-graded ring and let \(I \) be a graded ideal of \(R \). Then the quotient ring \(R/I \) is also a \(G \)-graded ring. Indeed, \(R/I = \bigoplus_{g \in G} (R/I)_g \) where \((R/I)_g = \{ x + I : x \in R_g \} \). For the simplicity, we will denote the graded ring \((R, G) \) by \(R \). Let \(R \) be a \(G \)-graded ring and \(M \) an \(R \)-module. We say that \(M \) is a \(G \)-graded \(R \)-module (or \(G \)-graded \(R \)-module) if there exists a family of subgroups \(\{M_g\}_{g \in G} \) of \(M \) such that \(M = \bigoplus_{g \in G} M_g \) (as abelian groups) and \(R_g M_h \subseteq M_{gh} \) for all \(g, h \in G \). Here, \(R_g M_h \) denotes the additive subgroup of \(M \) consisting of all finite sums of elements \(r_g s_h \) with \(r_g \in R_g \) and \(s_h \in M_h \). Also, we write \(h(M) = \bigcup_{g \in G} M_g \) and the elements of \(h(M) \) are called homogeneous. Let \(M = \bigoplus_{g \in G} M_g \) be a graded \(R \)-module and \(N \) a submodule of \(M \). Then \(N \) is called a graded submodule of \(M \) if \(N = \bigoplus_{g \in G} (N \cap M_g) \). In this case, \(N_g \) is called the \(g \)-component of \(N \). Moreover, \(M/N \) becomes a \(G \)-graded \(R \)-module with \(g \)-component \((M/N)_g = (M_g + N)/N \) for \(g \in G \). Let \(R \) be a \(G \)-graded ring and \(S \subseteq h(R) \) be a multiplicatively closed subset of \(R \). Then the ring of fraction \(S^{-1}R \) is a graded ring which is called the graded ring of fractions. Indeed, \(S^{-1}R = \bigoplus_{g \in G} (S^{-1}R)_g \) where \((S^{-1}R)_g = \{ r/s : r \in R, s \in S \text{ and } g = (\deg s)^{-1}(\deg r) \} \). Let \(M \) be a graded module over a \(G \)-graded ring \(R \) and \(S \subseteq h(R) \) be a multiplicatively closed subset of \(R \). The module of fractions \(S^{-1}M \) over a graded ring \(S^{-1}R \) is a graded module which is called the module of fractions, if \(S^{-1}M = \bigoplus_{g \in G} (S^{-1}M)_g \) where \((S^{-1}M)_g = \{ m/s : m \in M, s \in S \text{ and } g = (\deg s)^{-1}(\deg m) \} \). We write \(h(S^{-1}R) = \bigcup_{g \in G} (S^{-1}R)_g \) and \(h(S^{-1}M) = \bigcup_{g \in G} (S^{-1}M)_g \). Consider the graded homomorphism \(\eta : M \to S^{-1}M \) defined by \(\eta(m) = m/1 \). For any graded submodule \(N \) of \(M \), the submodule of \(S^{-1}M \) generated by \(\eta(N) \) is denoted by \(S^{-1}N \). Similar to non graded case, one can prove that \(S^{-1}N = \{ \beta \in S^{-1}M : \beta = m/s \text{ for } m \in N \text{ and } s \in S \} \) and that \(S^{-1}N \neq S^{-1}M \) if and only if \(S \cap (N :_RM) = \phi \). If \(K \) is a graded submodule of an \(S^{-1}R \)-module \(S^{-1}M \), then \(K \cap M \) will denote the graded submodule \(\eta^{-1}(K) \) of \(M \). Moreover, similar to the non graded case one can prove that \(S^{-1}(K \cap M) = K \). For more details, one can refer to [4].

2. Some Properties of Graded Quasi-Prime Submodules

In this section, we define the graded quasi-prime submodules and give some of their basic properties.

Definition 2.1. A proper graded submodule \(N \) of a graded \(R \)-module \(M \) is said to
be a graded quasi-prime if whenever K_1 and K_2 are graded submodules of M with $K_1 \cap K_2 \subseteq N$, either $K_1 \subseteq N$ or $K_2 \subseteq N$.

The following lemma is known, but we write it here for the sake of references.

Lemma 2.2. [3, Lemma 2.1] Let R be a G-graded ring and M a graded R-module. Then the following hold:

(i) If I and J are graded ideals of R, then $I + J$ and $I \cap J$ are graded ideals.

(ii) If N is a graded submodule of M, $r \in h(R)$, $x \in h(M)$ and I is a graded ideal of R, then Rx, IN and rN are graded submodules of M.

(iii) If N and K are graded submodules of M, then $N + K$ and $N \cap K$ are also graded submodules of M and $(N :_R M) = \{r \in R : rM \subseteq N\}$ is a graded ideal of R.

(iv) Let $\{N_\lambda\}$ be a collection of graded submodules of M. Then $\sum_\lambda N_\lambda$ and $\bigcap_\lambda N_\lambda$ are graded submodules of M.

Recall that a proper graded submodule N of a graded R-module M is said to be graded irreducible if for each graded submodules K_1 and K_2 of M, $N = K_1 \cap K_2$ implies that either $N = K_1$ or $N = K_2$.

Theorem 2.3. Let R be a G-graded ring, M a graded R-module and N a graded submodule of M. If N is a graded quasi-prime submodule of M, then N is a graded irreducible submodule of M.

Proof. Assume that N is a graded quasi-prime submodule of M and K_1, K_2 are graded submodules of M such that $N = K_1 \cap K_2$. Since N is a graded quasi-prime submodule and $K_1 \cap K_2 \subseteq N$, we have either $K_1 \subseteq N$ or $K_2 \subseteq N$ and hence either $N = K_1$ or $N = K_2$. Thus N is a graded irreducible submodule.

Theorem 2.4. Let R be a G-graded ring, M a graded R-module and N a graded quasi-prime submodule of M. If V is a graded submodule contained in N, then N/V is a graded quasi-prime submodule of M/V.

Proof. Let K_1 and K_2 be graded submodules of M such that $(K_1/V) \cap (K_2/V) \subseteq N/V$. Then $K_1 \cap K_2 = (K_1 + V) \cap (K_2 + V) \subseteq N + V = N$. Since N is a graded quasi-prime submodule, either $K_1 \subseteq N$ or $K_2 \subseteq N$. It follows that either $K_1/V \subseteq N/V$ or $K_2/V \subseteq N/V$. Thus N/V is a graded quasi-prime submodule.

In the following theorem, we give a characterization of graded quasi-prime submodules.

Theorem 2.5. Let R be a G-graded ring, M a graded R-module and N a proper graded submodule of M. Then the following statements are equivalent.

(i) N is a graded quasi-prime submodule of M.

(ii) For every pair of elements \(m, m' \in h(M) \) such that \(mR \cap m'R \subseteq N \), either \(m \in N \) or \(m' \in N \).

Proof. (i) \(\Rightarrow \) (ii) This follows from Lemma 2.2(2) and the definition of graded quasi-prime.

(ii) \(\Rightarrow \) (i) Let \(K_1 \) and \(K_2 \) be graded submodules of \(M \) such that \(K_1 \cap K_2 \subseteq N \) and \(K_1 \not\subseteq N \). Then there exists an element \(k_h \in (K_1 \cap h(M)) \setminus N \). Now, let \(g \in G \) and set \(m = \sum_{g \in G} m_g \in K_2 \). Then for all \(g \in G \), \(k_hR \cap m_gR \subseteq K_1 \cap K_2 \subseteq N \). By our assumption, we obtain \(m_g \in N \). So \(m \in N \), which indicates that \(K_2 \subseteq N \). Thus \(N \) is a graded quasi-prime submodule of \(M \).

Recall that a graded \(R \)-module \(M \) is called graded multiplication if for each graded submodule \(N \) of \(M \), \(N = (N :_R M)M \), (see [5, Definition 2]). Also, a proper graded submodule \(N \) of a graded \(R \)-module \(M \) is called graded prime submodule if whenever \(r \in h(R) \) and \(m \in h(M) \) with \(rm \in N \), either \(r \in (N :_r M) \) or \(m \in N \), (see [2, Definition 2.2]). The following result provides some conditions under which a graded prime submodule is graded quasi-prime.

Theorem 2.6. Let \(R \) be a \(G \)-graded ring, \(M \) a graded multiplication \(R \)-module and \(N \) a graded submodule of \(M \). If \(N \) is a graded prime submodule of \(M \), then \(N \) is a graded quasi-prime.

Proof. Assume that \(N \) is a graded prime and let \(K_1, K_2 \) be graded submodules of \(M \) such that \(K_1 \cap K_2 \subseteq N \) but \(K_1 \not\subseteq N \) and \(K_2 \not\subseteq N \). Since \(M \) is a graded multiplication, \(K_1 = J_1M \) and \(K_2 = J_2M \) for some graded ideals \(J_1 \) and \(J_2 \) of \(R \). So there are \(j_1 \in J_1 \cap h(R) \), \(j_2 \in J_2 \cap h(R) \) and \(m_1, m_2 \in h(M) \) such that \(j_1m_1 \notin N \) and \(j_2m_2 \notin N \). Since \(N \) is a graded prime submodule and \(j_1j_2m_1 \in K_1 \cap K_2 \subseteq N \), we conclude that \(j_2 \in (N :_R M) \), i.e., \(j_2M \subseteq N \). So \(j_2m_2 \in N \), a contradiction. Thus \(N \) is graded quasi-prime.

Lemma 2.7. Let \(R \) be a \(G \)-graded ring and \(M \) a faithful graded multiplication \(R \)-module. Then \(\bigcap_{\alpha \in \Delta} (I_\alpha M) = \left(\bigcap_{\alpha \in \Delta} I_\alpha \right)M \) where \(I_\alpha \) is a graded ideal of \(R \).

Proof. See [5, Theorem 8].

A proper graded ideal \(P \) of a graded ring \(R \) is said to be graded quasi-prime if for graded ideals \(J_1 \) and \(J_2 \) of \(R \), the inclusion \(J_1 \cap J_2 \subseteq P \) implies that either \(J_1 \subseteq P \) or \(J_2 \subseteq P \).

Theorem 2.8. Let \(R \) be a \(G \)-graded ring, \(M \) a faithful graded multiplication \(R \)-module and \(N \) a graded submodule of \(M \). Then \(N \) is a graded quasi-prime submodule of \(M \) if and only if \((N :_R M) \) is a graded quasi-prime ideal of \(R \).

Proof. \(\Rightarrow \) Assume that \(N \) is a graded quasi-prime submodule. By Lemma 2.2(iii), \((N :_R M) \) is a graded ideal. Let \(J_1 \) and \(J_2 \) be graded ideals of \(R \) such that \(J_1 \cap J_2 \subseteq \)
and hence \((N :_R M), i.e., (J_1 \cap J_2)M \subseteq N\). By Lemma 2.7, we have \((J_1 \cap J_2)M = (J_1M) \cap (J_2M) \subseteq N\). Since \(N\) is a graded quasi-prime submodule of \(M\), either \(J_1M \subseteq N\) or \(J_2M \subseteq N\) and so either \(J_1 \subseteq (N :_R M)\) or \(J_2 \subseteq (N :_R M)\). Thus \((N :_R M)\) is a graded quasi-prime ideal of \(R\).

\((\Leftarrow)\) Assume that \((N :_R M)\) is a graded quasi-prime ideal of \(R\) and let \(K_1, K_2\) be graded submodules of \(M\) such that \(K_1 \cap K_2 \subseteq N\). Then \((K_1 \cap K_2 :_R M) \subseteq (N :_R M)\) and hence \((K_1 :_R M) \cap (K_2 :_R M) \subseteq (N :_R M)\). Since \((N :_R M)\) is a graded quasi-prime ideal of \(R\), either \((K_1 :_R M) \subseteq (N :_R M)\) or \((K_2 :_R M) \subseteq (N :_R M)\). Since \(M\) is a graded multiplication, we conclude that either \(K_1 = (K_1 :_R M)M \subseteq (N :_R M)M = N\) or \(K_2 = (K_2 :_R M)M \subseteq (N :_R M)M = N\). Thus \(N\) is a graded quasi-prime submodule of \(M\).

The graded radical of a graded ideal \(I\), denoted by \(Gr(I)\), is the set of all \(x = \sum_{g \in G} x_g \in R\) such that for each \(g \in G\) there exists \(n_g > 0\) with \(x_g^{n_g} \in I\). Note that if \(r\) is a homogeneous element of \(R\), then \(r \in Gr(I)\) if and only if \(r^n \in I\) for some \(n \in \mathbb{N}\), (see [7, Definition 2.1]). Recall that a proper graded ideal \(P\) of \(R\) is said to be a graded prime ideal if whenever \(r, s \in h(R)\) with \(rs \in P\), then either \(r \in P\) or \(s \in P\), (see [7]). The following theorem shows the relationship between graded prime submodules and graded quasi-prime submodules.

Theorem 2.9. Let \(R\) be a \(G\)-graded ring, \(M\) a faithful graded multiplication \(R\)-module and \(N\) a graded submodule of \(M\) such that \(Gr((N :_R M) = (N :_R M)\). Then \(N\) is a graded quasi-prime submodule if and only if it is graded prime.

Proof. \((\Rightarrow)\) Assume that \(N\) is a graded quasi-prime submodule. By Theorem 2.8, \((N :_R M)\) is a graded quasi-prime ideal of \(R\). First, we show that \((N :_R M)\) is a graded prime ideal. Let \(I_1, I_2\) be graded ideals of \(R\) such that \(I_1I_2 \subseteq (N :_R M)\). Hence by [7, Proposition 2.4], we conclude that \(I_1 \cap I_2 \subseteq Gr(I_1 \cap I_2) \subseteq Gr(I_1I_2) \subseteq Gr((N :_R M)) = (N :_R M)\). Since \((N :_R M)\) is a graded quasi-prime ideal, either \(I_1 \subseteq (N :_R M)\) or \(I_2 \subseteq (N :_R M)\). So \((N :_R M)\) is a graded prime ideal by [7, Proposition 1.2]. It follows that \(N\) is a graded prime submodule of \(M\) by [5, Corollary 3].

\((\Leftarrow)\) Theorem 2.6.

The following results study the behavior of graded quasi-prime submodules under localization.

Theorem 2.10. Let \(N\) be a graded submodule of a graded \(R\)-module \(M\) and \(S \subseteq h(R)\) be a multiplicatively closed subset of \(R\). If \(S^{-1}N\) is a graded quasi-prime submodule of \(S^{-1}M\), then \(S^{-1}N \cap M\) is a graded quasi-prime submodule of \(M\).

Proof. Assume that \(S^{-1}N\) is a graded quasi-prime submodule and let \(K_1, K_2\) be graded submodules of \(M\) such that \(K_1 \cap K_2 \subseteq S^{-1}N \cap M\). It is easy to see that \(S^{-1}K_1 \cap S^{-1}K_2 \subseteq S^{-1}N\). Since \(S^{-1}N\) is a graded quasi-prime, either \(S^{-1}K_1 \subseteq S^{-1}N\) or \(S^{-1}K_2 \subseteq S^{-1}N\) and hence either \(K_1 \subseteq S^{-1}N \cap M\) or \(K_2 \subseteq S^{-1}N \cap M\). Thus \(S^{-1}N \cap M\) is a graded quasi-prime submodule.
Recall that a proper graded submodule N of a graded R-module M is said to be a graded primary submodule if whenever $r \in h(R)$ and $m \in h(M)$ with $rm \in N$, then either $m \in N$ or $r \in Gr((N :_R M))$ (see [5, Definition 6]).

Lemma 2.11. Let N be a graded submodule of a graded R-module M and $S \subseteq h(R)$ be a multiplicatively closed subset of R such that $Gr((N :_R M)) \cap S = \phi$. If N is a graded primary submodule of M, then $S^{-1}N \cap M = N$.

Proof. Let $x = \sum_{g \in G} x_g \in S^{-1}N \cap M$. Then for all $g \in G$, there are elements $n_{g} \in N \cap h(M)$ and $s \in S$ such that $x_{g} = \frac{m_{g}}{s}$. Hence there exists $t \in S$ such that $stx_{g} = tn_{g} \in N$. Since N is a graded primary submodule and $Gr((N :_R M)) \cap S = \phi$, $x_{g} \in N$. So $x \in N$, which shows that $S^{-1}N \cap M \subseteq N$. The opposite inclusion is obvious. Thus $S^{-1}N \cap M = N$. \hfill \Box

Theorem 2.12. Let N be a graded primary submodule of a graded R-module M and $S \subseteq h(R)$ be a multiplicatively closed subset of R such that $Gr((N :_R M)) \cap S = \phi$. If N is a graded quasi-prime submodule of M, then $S^{-1}N$ is a graded quasi-prime submodule of $S^{-1}M$.

Proof. Assume that N is a graded quasi-prime submodule of M and let K_{1}, K_{2} be graded submodules of $S^{-1}M$ such that $K_{1} \cap K_{2} \subseteq S^{-1}N$. Then $(K_{1} \cap M) \cap (K_{2} \cap M) \subseteq S^{-1}N \cap M$. By Lemma 2.11, $S^{-1}N \cap M = N$. Since N is a graded quasi-prime submodule, either $K_{1} \cap M \subseteq N$ or $K_{2} \cap M \subseteq N$. So either $K_{1} = S^{-1}(K_{1} \cap M) \subseteq S^{-1}N$ or $K_{2} = S^{-1}(K_{2} \cap M) \subseteq S^{-1}N$. Thus $S^{-1}N$ is graded quasi-prime. \hfill \Box

3. Topology on the Graded Quasi-Prime Submodules

In this section, we introduce a topology on the set of graded quasi-prime submodules and some properties of this topology are given.

If R is a G-graded ring and M is a graded R-module, we consider $qSpec_{g}(M)$ which is the set of all graded quasi-prime submodules of M. We call $qSpec_{g}(M)$, the graded quasi-prime spectrum of M. For each subset $A \subseteq h(M)$, let $qV_{g}(A) = \{ P \in qSpec_{g}(M) : A \subseteq P \}$.

Theorem 3.1. Let R be a G-graded ring and M a graded R-module. Then the following hold:

(i) For each subset $A \subseteq h(M)$, $qV_{g}(A) = qV_{g}(N)$, where N is the graded submodule of M generated by A.

(ii) $qV_{g}(0) = qSpec_{g}(M)$ and $qV_{g}(M) = \phi$.

(iii) If $\{ N_{\alpha} \}_{\alpha \in \Delta}$ is a family of graded submodules of M, then $\bigcap_{\alpha \in \Delta} qV_{g}(N_{\alpha}) = qV_{g}(\sum_{\alpha \in \Delta} N_{\alpha})$.

For every pair \(N \) and \(K \) of graded submodules of \(M \), \(qV_g(N \cap K) = qV_g(N) \cup qV_g(K) \).

Proof. (i) – (iii) Clear.

(iv) Let \(N \), \(K \) be any graded submodules of \(M \) and \(P \in qV_g(N \cap K) \). Then \(N \cap K \subseteq P \). Since \(P \) is a graded quasi-prime submodule, either \(N \subseteq P \) or \(K \subseteq P \), i.e., \(P \in qV_g(N) \) or \(P \in qV_g(K) \). Hence \(qV_g(N \cap K) \subseteq qV_g(N) \cup qV_g(K) \). Other side of the inclusion is obvious. Thus \(qV_g(N \cap K) = qV_g(N) \cup qV_g(K) \).

Let \(q\zeta_g(M) = \{ qV_g(N) : N \) is a graded submodule of \(M \} \). Then \(q\zeta_g(M) \) contains the empty set and \(q\text{Spec}_g(M) \). Also, \(q\zeta_g(M) \) is closed under arbitrary intersections and finite unions. Therefore, \(q\zeta_g(M) \) satisfies the axioms for the closed sets of the unique topology \(q\tau_g \) on \(q\text{Spec}_g(M) \). Then the topology \(q\tau_g(M) \) on \(q\text{Spec}_g(M) \) is called the quasi-Zariski topology. Let \(X = q\text{Spec}_g(M) \). For every subset \(S \) of \(h(M) \), define \(X_S = X - qV_g(S) \). In particular, if \(S = \{ a \} \), then we denote \(X_S \) by \(X_a \).

Theorem 3.2. Let \(M \) be a graded \(R \)-module. Then the set \(\{ X_a : a \in h(M) \} \) is a basis for the quasi-Zariski topology on \(X \).

Proof. Let \(U \) be a non-void open subset of \(X \). Then \(U = X - qV_g(N) \) for some graded submodule \(N \) of \(M \). Assume that \(N \) is generated by \(A \subseteq h(M) \). Then \(U = X - qV_g(N) = X - qV_g(\bigcup_{a \in A} \{ a \}) = X - \bigcap_{a \in A} qV_g(a) = \bigcup_{a \in A} (X - qV_g(a)) = \bigcup_{a \in A} X_a. \)

For each graded submodule \(N \) of a graded \(R \)-module \(M \), we consider \(q\text{Gr}_M(N) = \{ P : P \) is a graded quasi-prime submodule of \(M \) containing \(N \} \).

Lemma 3.3. Let \(N \) be a graded submodule of a graded \(R \)-module \(M \). Then the following hold:

(i) \(qV_g(N) = qV_g(q\text{Gr}_M(N)) \).

(ii) For each graded submodule \(K \) of \(M \), \(qV_g(K) \subseteq qV_g(N) \) if and only if \(q\text{Gr}_M(N) \subseteq q\text{Gr}_M(K) \).

Proof. Clear

Recall that a topological space is said to be Noetherian if its closed sets satisfy the descending chain condition. Also, recall that a graded \(R \)-module \(M \) is called graded Noetherian if it is satisfies the ascending chain condition on graded submodules of \(M \).

Theorem 3.4. Let \(R \) be a \(G \)-graded ring and \(M \) a graded \(R \)-module. If \(M \) is graded Noetherian, then \(q\text{Spec}_g(M) \) is a Noetherian topological space.

Proof. Let \(\cdots \subseteq qV_g(N_3) \subseteq qV_g(N_2) \subseteq qV_g(N_1) \) be a descending chain of closed subsets of \(q\text{Spec}_g(M) \), where \(\{ N_k \}_{k=1}^{\infty} \) is a family of graded submodules of \(M \).
By Lemma 3.3, we have $q\text{Gr}_M(N_1) \subseteq q\text{Gr}_M(N_2) \subseteq q\text{Gr}_M(N_3) \subseteq \cdots$. Since M is graded Noetherian, there exists a positive integer k such that $q\text{Gr}_M(N_k) = q\text{Gr}_M(N_{k+i})$ for each $i = 1, 2, 3, \ldots$. By Lemma 3.3, we conclude that

$$qV_g(N_k) = qV_g(q\text{Gr}_M(N_k)) = qV_g(q\text{Gr}_M(N_{k+i})) = qV_g(N_{k+i})$$

for all $i = 1, 2, 3 \ldots$ Thus $q\text{Spec}_g(M)$ is a Noetherian topological space. \hfill\box

Acknowledgments. The authors wish to thank sincerely the referees for their valuable comments and suggestions.

References

[1] R. Abu-Dawwas and M. Ali, *Comultiplication modules over strongly graded rings*, Int. J. Pure Appl. Math., 81(5) (2012), 693-699.

[2] S. E. Atani, *On graded prime submodules*, Chiang Mai J. Sci., 33(1) (2006), 3-7.

[3] F. Farzalipour and P. Ghasvand, *On the union of graded prime submodules*, Thai. J. Math., 9(1) (2011), 49-55.

[4] C. Nastasescu and F. Van Oystaeyen, *Graded Ring Theory*, Mathematical Library 28, North Holand, Amsterdam, 1982.

[5] K. H. Oral, U. Tekir and A. G. Agargun, *On graded prime and primary submodules*, Turk. J. Math., 35 (2011), 159-167.

[6] M. Refai and K. Al-Zoubi, *On graded primary ideals*, Turk. J. Math., 28 (2004), 217-229.

[7] M. Refai, M. Hailat, and S. Obiedat, *Graded radicals and graded prime spectra*, Far East J. Math. Sci. (FJMS), Part I, (2000), 59-73.