Entity Hierarchy Embedding

Zhiting Hu, Poyao Huang, Yuntian Deng, Yingkai Gao, Eric Xing
School of Computer Science
Carnegie Mellon University
Outline

- Background
 - Distributed representation
- Entity hierarchy embedding
- Applications & Experiments
 - Entity linking
 - Entity search
Outline

- Background
 - Distributed representation
- Entity hierarchy embedding
- Applications & Experiments
 - Entity linking
 - Entity search
Distributed Representation

- Learn compact vectors (a.k.a. embedding) for
 - words [Mikolov et al., 2013, Bengio, et al. 2003, C&W, 2008]
 - phrases [Passos et al., 2014]
 - concepts [Hilland Korhonen, 2014]

http://colah.github.io/posts/2015-01-Visualizing-Representations/
Distributed Representation

- Learn compact vectors (a.k.a. embedding) for
 - words [Mikolov et al., 2013, Bengio, et al. 2003, C&W, 2008]
 - phrases [Passos et al., 2014]
 - concepts [Hilland Korhonen, 2014]

- Expected to capture semantic relatedness of the words/concepts
Distributed Representation

- Learn compact vectors (a.k.a. embedding) for
 - words [Mikolov et al., 2013, Bengio, et al. 2003, C&W, 2008]
 - phrases [Passos et al., 2014]
 - concepts [Hillard Korhonen, 2014]

- Expected to capture semantic relatedness of the words/concepts
- Widely used to improve performance
 - sentiment analysis [Tang et al., 2014], machine translation [Zhang et al., 2014], information retrieval [Clinchant and Perronnin, 2013], video understanding [Chang et al., 2015], etc.
Distributed Representation

Background

NNLM [Bengio, et al. 2003]

RNNLM [Mikolov, et al. 2010]

CBOW & Skip-gram

[Mikolov, et al. 2013]
Distributed Representation

- Induce word/phrase embedding from *free text*
- Limited in utilizing *structured knowledge*

RNNLM [Mikolov, et al. 2010]
Structured Knowledge

- Knowledge bases
 - Wikipedia, Freebase, Dbpedia, …
Structured Knowledge

- Knowledge bases
 - Wikipedia, Freebase, Dbpedia, ...

- Entities, relations
 - recent work, e.g., TransE [Bordes et al., 2011; Wang et al., 2014; Lin et al., 2015], learns entity vectors from the relational structure
 - usually does not incorporate text
 - lacks an explicit entity relatedness measure
Structured Knowledge

- Knowledge bases
 - Wikipedia, Freebase, Dbpedia, ...

- Entities, relations
 - recent work, e.g., TransE [Bordes et al., 2011; Wang et al., 2014; Lin et al., 2015], learns entity vectors from the relational structure
 - usually does not incorporate text
 - lacks an explicit entity relatedness measure

- Entity hierarchies
Structured Knowledge

- Knowledge bases
 - Wikipedia, Freebase, Dbpedia, …

- Entities, relations
 - recent work, e.g., TransE [Bordes et al., 2011; Wang et al., 2014; Lin et al., 2015], learns entity vectors from the relational structure
 - usually does not incorporate text
 - lacks an explicit entity relatedness measure

- Entity hierarchies
 - encode rich knowledge on entity relatedness
 - heuristic use: hand-crafted features [Ponzetto & Strube, 2007]
 - few distributed representation has incorporated hierarchical knowledge
This work: entity hierarchy embedding

- Integrates *hierarchical structure* from KBs into distributed representation learning
- Develops a principled optimization-based framework
 - incorporating both free text and hierarchical structure
 - efficient to handle large complex hierarchies
Outline

- Background
 - Distributed representation
- Entity hierarchy embedding
- Applications & Experiments
 - Entity linking
 - Entity search
Recap: skip-gram word embedding

- Objective: find a representation for each word that is useful for predicting its context

Apple released their first Apple Watch update.

\[
\frac{1}{T} \sum_{t=1}^{T} \sum_{-c \leq j \leq c, j \neq 0} \log p(w_{t+j} | w_t)
\]

\[
p(w_C | w_T) = \frac{\exp \left\{ v_{w_C}^T v_{w_T} \right\}}{\sum_{w \in \mathcal{V}} \exp \left\{ v_{w}^T v_{w_T} \right\}}
\]
Recap: skip-gram word embedding

- Objective: find a representation for each word that is useful for predicting its context

1) Context of a word
 - words surrounding the target word

2) Similarity measure of context prediction
 - inner-product

\[
\frac{1}{T} \sum_{t=1}^{T} \sum_{-c \leq j \leq c, j \neq 0} \log p(w_{t+j}|w_t)
\]

\[
p(w_C|w_T) = \frac{\exp \{v_{w_C}^T v_{w_T}\}}{\sum_{w \in \mathcal{V}} \exp \{v_{w}^T v_{w_T}\}}
\]

Apple released their first Apple Watch update.
Entity hierarchy embedding

- Objective: find a representation for each entity that is useful for predicting its context
- Entity: each corresponds to an encyclopedia article in KB (e.g. Wikipedia)

1) Context of an entity
 - entities occurs in its encyclopedia article
 - entity annotations are readily available

2) Similarity measure of context prediction
 - incorporates entity hierarchy

\[
p(e_C|e_T) = \frac{\exp \{-d(e_T, e_C)\}}{\sum_{e \in \mathcal{E}} \exp \{-d(e_T, e)\}}
\]
Incorporating hierarchy

- Distance metric learning and aggregation

\[
p(e_C|e_T) = \frac{\exp \{-d(e_T, e_C)\}}{\sum_{e \in \mathcal{E}} \exp \{-d(e_T, e)\}}
\]
Incorporating hierarchy

- Distance metric learning and aggregation
 - associate a separate distance metric $M_h \in \mathbb{R}^{n \times n}$ (n: dimension of the embedding) with each category node h
 - measure the distance between two entities under some \textit{aggregated} distance metric

$$p(e_C|e_T) = \frac{\exp \{-d(e_T, e_C)\}}{\sum_{e \in \mathcal{E}} \exp \{-d(e_T, e)\}}$$
Incorporating hierarchy

- Distance metric learning and aggregation
 - associate a separate distance metric $M_h \in \mathbb{R}^{n \times n}$ (n: dimension of the embedding) with each category node h
 - measure the distance between two entities under some *aggregated* distance metric

Mahalanobis distance

\[
\begin{align*}
 d(e_1, e_2) &= \left(v_{e_1} - \bar{v}_{e_2} \right)^T M_{e_1, e_2} (v_{e_1} - \bar{v}_{e_2}) \\
 d(e_1, e_3) &= \left(v_{e_1} - \bar{v}_{e_3} \right)^T M_{e_1, e_3} (v_{e_1} - \bar{v}_{e_3})
\end{align*}
\]

v_e: entity vector as a target
\[\bar{v}_e: entity\ vector\ as\ a\ context\]
Metric aggregation

- Given two entities e and e', $M_{e,e'} \in \mathbb{R}^{n \times n}$
- A naïve approach
 - $M_{e,e'} = \sum_{h \in P_{e,e'}} M_h$
 - $P_{e,e'}$: path between e and e' in the hierarchy
- Problem
 - entity hierarchy usually has complex DAG structure
 - many paths between two entities
 - use only the shortest path?
 ignore other related category nodes
 fail to capture the full aspects of entity relatedness
Metric aggregation

- Given two entities e and e', $M_{e,e'} \in \mathbb{R}^{n \times n}$
- A naïve approach
 - $M_{e,e'} = \sum_{h \in P_{e,e'}} M_h$
 - $P_{e,e'}$: path between e and e' in the hierarchy
- Problem
 - entity hierarchy usually has complex DAG structure
 - many paths between two entities
 - use only the shortest path?
 - ignore other related category nodes
 - fail to capture the full aspects of entity relatedness
- An ideal scheme
 - taking into account all possible paths/related categories between two entities
 - efficient to handle large complex hierarchy
Metric aggregation (cont.)

- Extend $P_{e,e'}$:
 - the set of all category nodes in any of the $e \rightarrow e'$ paths
- Aggregated metric:

 $M_{e,e'} = \gamma_{e,e'} \sum_{h \in P_{e,e'}} \pi_{ee',h} M_h$

 scaling factor, \propto distance between the least common ancestor and e/e'

 $\sum_{h \in P_{e,e'}} \pi_{ee',h} = 1$

 - balance the size of P across different entity pairs
 - $\pi_{ee',h} \propto$ distance between h and e/e'

Hierarchy Embedding
Metric aggregation (cont.)

- Extend $P_{e,e'}$:
 - the set of all category nodes in any of the $e \rightarrow e'$ paths

- Aggregated metric:

$$M_{e,e'} = \gamma_{e,e'} \sum_{h \in P_{e,e'}} \pi_{ee',h} M_h$$

scaling factor, \propto distance between the least common ancestor and e/e'

$$\sum_{h \in P_{e,e'}} \pi_{ee',h} = 1$$

- balance the size of P across different entity pairs
- $\pi_{ee',h} \propto$ distance between h and e/e'

- Develop an efficient algorithm to find $\{P_{e,e'},\pi_{ee'},\gamma_{e,e'}\}$
 - time complexity $O(#\text{child of two entities' common ancestors})$
 (Theorem 1)
Summing up

Entity Hierarchy

h_1 h_2 e_3

e_1 e_2

Text Context

Entity pairs

(e_1, e_2)

$M_{e_1, e_2} = M_{h_2}$

(e_1, e_3)

$M_{e_1, e_3} = \pi_{h_1} M_{h_1} + \pi_{h_2} M_{h_2}$

Dist. metrics

Hierarchy Embedding

$p(e_C | e_T) = \frac{\exp \{-d(e_T, e_C)\}}{\sum_{e \in E} \exp \{-d(e_T, e)\}}$

$\mathcal{L} = \frac{1}{|D|} \sum_{(e_T, e_C) \in D} \log p(e_C | e_T)$
Outline

- Background
 - Distributed representation
- Entity hierarchy embedding
- Applications & Experiments
 - Entity linking
 - Entity search
Experiments

Training data:
- Wikipedia entities and categories
- 4.1M entities, 0.8M categories, 12 layers
- 87.6M entity pairs extracted from Wikipedia text corpus
- 100-dim entity vectors
- 100x100-dim category distance metrics (restricted to be diagonal)
Entity Linking

- link surface forms (mentions) of entities in a document to entities in a reference KB
- "Apple released an operating system Lion": Apple Inc. & Mac OS X Lion
- Intuition: entities in a document tend to be semantically related

\[
P(A|M) \propto \prod_{i=1}^{M} P(e_{m_i} | m_i) \sum_{j=1}^{M} \frac{1}{d(e_{m_i}, e_{m_j}) + \epsilon}
\]

- entity assignments and mentions in a document
- relatedness of \(e_{m_i}\) to other entities in the document
- mention-to-entity compatibility score,
 \(\propto\) frequency that \(m_i\) refer to \(e_{m_i}\) in Wikipedia

Experiments ➔ Entity linking
Results

- **Dataset: IITB** (http://www.cse.iitb.ac.in/soumen/doc/CSAW/Annot)
 - ~100 docs, 17K mentions
 - we use only the mentions whose referent entities are contained in Wikipedia (i.e., excludes NIL)

Methods	Precision	Recall	F1
CSAW	0.65	0.74	0.69
Entity-TM	0.81	0.80	0.80
Ours-NoH	0.78	0.85	0.81
Ours	**0.87**	**0.94**	**0.90**

Table 1: Entity linking performance
Entity Search

- Query: a natural language question Q and one or more desired entity categories C
 - $Q =$ “films directed by Akira Kurosawa”, $C = \{\text{Japanese films}\}$
- Retrieve a list of relevant entities in response to the query

Our method:
- Identify referent entities of the mentions in Q
 - Film, Akira Kurosawa
 - augment the short query text with background knowledge
- Find the most related entities within the categories in C
Results

Dataset: INEX 2009 entity ranking track
(http://www.inex.otago.ac.nz/tracks/entityranking/entity-ranking.asp)
 ○ 55 queries

Methods	Precision@10	Precision@R
Balog	0.18	0.16
K&K	0.31	0.28
Chen	0.55	0.42
Ours	**0.57**	**0.46**

Table 2: Entity search performance.
Qualitative analysis

- Entity vectors
- Most relevant entities in a given category
- Applications in semantic search, recommendation, knowledge base completion, …

Target entity	Most related entities
black hole	American films: Hidden Universe 3D
	Hubble (film)
	Quantum Quest
	Particle Fever
Youtube	Chinese websites: Tudou
	56.com
	Youku
	YinYueTai
Harvard University	businesspeople in software:
	Jack Dangermond
	Bill Gates
	Scott McNealy
	Marc Chardon
X-Men: Days of Future Past (film)	children’s television series:
	Ben 10: Race Against Time
	Kim Possible: A Sitch in Time
	Ben 10: Alien Force
	Star Wars: The Clone Wars

Table 3: Most related entities under specific categories. “Overall” represents the most general category that includes all the entities.
Qualitative analysis

- Category distance metrics
- Subcategories of the category ``Microsoft''
 - Relevant categories are embedded close to each other
Conclusion

● Incorporate hierarchical knowledge in distributed representation learning
 o exploit both text context and entity hierarchy
 o distance metric learning and aggregation
 o efficient algorithm for aggregation

● Improve entity linking and entity search

● Promising qualitative results

Future work
● Incorporate other sources of knowledge
Thanks!