Abstract

In this paper, we give a positive answer to the question raised in Kosiński (Complex Anal Oper Theory 9(6):1349–1359, 2015) and Zapałowski (J Math Anal Appl 430(1):126–143, 2015), i.e., we show that the pentablock \(\mathcal{P} \) is a \(\mathbb{C} \)-convex domain.

Contents

1 Introduction ... 1
2 Preliminary Results ... 2
 2.1 Pentablock .. 2
 2.2 Pentablock as a Hartogs Domain 3
 2.3 Some Useful Results 3
 2.4 \(\mathbb{C} \)-convex Domain 4
3 The Set of All Tangent Hyperplanes to \(\mathcal{P} \) at the Non-smooth Part 4
4 Proof of Theorem 1.1 .. 13
References .. 13

1 Introduction

Recently, many authors showed great interest in two domains: the symmetrized bidisc and the tetrablock, arising from the \(\mu \)-synthesis, from the aspect of geometric function theory. Actually, both domains are \(\mathbb{C} \)-convex but non-convex, and they cannot be exhausted by domains biholomorphic to convex ones, with the Lempert’s theorem (see Lempert [13,14]) holding on these two domains, i.e., the Lempert function and the Carathéodory distance coincide on them (see [2,6–8,20]). So from the point of view of the Lempert’s theorem holding, these two domains play an important role in...
the study of a long-standing open problem whether Lempert’s theorem still holds for \(\mathbb{C} \)-convex domain. However, as far as we know, the answer is positive for \(\mathbb{C} \)-convex domain with \(\mathcal{C}^2 \) boundary (see [10]).

In 2015, Agler, Lykova and Young [1] introduced a new bounded domain \(\mathcal{P} \) by

\[
\mathcal{P} := \left\{ (a_{21}, \text{tr} A, \det A) : A = [a_{ij}]_{i,j=1}^2 \in \mathbb{B} \right\},
\]

where

\[
\mathbb{B} := \left\{ A \in \mathbb{C}^{2 \times 2} : ||A|| < 1 \right\}
\]
denotes the open unit ball in the space \(\mathbb{C}^{2 \times 2} \) with the usual operator norm. They called this domain the pentablock as \(\mathcal{P} \cap \mathbb{R}^3 \) is a convex body bounded by five faces, three of which are flat and two are curved (see [1]).

The pentablock \(\mathcal{P} \) is polynomially convex and starlike about the origin, but neither circled nor convex. Moreover, it does not have a \(\mathcal{C}^1 \) boundary (see [1]). This new domain is also arising from the \(\mu \)-synthesis, just like the symmetrized bidisc and the tetrablock. So it is naturally to consider analogous properties of the pentablock, such as the question about \(\mathcal{C} \)-convexity of \(\mathcal{P} \), and Lempert’s theorem on the equality of holomorphically invariant functions and metrics for the pentablock (see [1,12,19]). In this paper, we give a positive answer to the \(\mathcal{C} \)-convexity of \(\mathcal{P} \). More precisely, we obtain the following theorem.

Theorem 1.1 The pentablock \(\mathcal{P} \) is a \(\mathcal{C} \)-convex domain.

Throughout this paper, \(\mathbb{D} \) denotes the open unit disc in the complex plane, while \(\mathbb{T} \) denotes the unit circle. And other basic notions, definitions, and properties from the theory of invariant functions, linearly convex and \(\mathcal{C} \)-convex domains that we shall use in the paper may be found in [3,9,11].

2 Preliminary Results

2.1 Pentablock

We first recall the definition of the pentablock \(\mathcal{P} \).

Theorem 2.1 [1, Theorem 1.1 and Theorem 5.2] Let

\[
(s, p) = (\lambda_1 + \lambda_2, \lambda_1 \lambda_2),
\]

where \(\lambda_1, \lambda_2 \in \mathbb{D} \). Let \(a \in \mathbb{C} \) and

\[
\beta = \frac{s - \bar{s}p}{1 - |p|^2}.
\]

The following statements are equivalent:
(1) \((a, s, p) \in \mathcal{P}\),
(2) \(|a| < \left| 1 - \frac{\frac{1}{2}s\bar{\beta}}{1 + \sqrt{1 - |\beta|^2}} \right|\),
(3) \(|a| < \frac{1}{2}|1 - \bar{\lambda}_1\lambda_2| + \frac{1}{2}(1 - |\lambda_1|^2)^{\frac{1}{2}}(1 - |\lambda_2|^2)^{\frac{1}{2}}\),
(4) \(\sup_{z \in \mathbb{D}} |\Psi_z(a, s, p)| < 1\), where \(\Psi_z\) is the linear fractional map

\[
\Psi_z(a, s, p) = \frac{a(1 - |z|^2)}{1 - sz +pz^2}.
\]

2.2 Pentablock as a Hartogs Domain

Following the description of the pentablock \(\mathcal{P}\), we can learn that the pentablock \(\mathcal{P}\) is closely related to the symmetrized bidisc \(\mathbb{G}_2\), which is defined by

\[
\mathbb{G}_2 = \left\{(s, p) \in \mathbb{C}^2 : |s - \bar{p}| + |p|^2 < 1 \right\}.
\]

In fact, the pentablock \(\mathcal{P}\) can be seen as a Hartogs domain in \(\mathbb{C}^3\) over the symmetrized bidisc \(\mathbb{G}_2\) (see [1]), that is,

\[
\mathcal{P} = \left\{(a, s, p) \in \mathbb{D} \times \mathbb{G}_2 : |a|^2 < e^{-\varphi(s, p)} \right\},
\]

where

\[
\varphi(s, p) = -2 \log \left| 1 - \frac{\frac{1}{2}s\bar{\beta}}{1 + \sqrt{1 - |\beta|^2}} \right|,
\]

\((s, p) \in \mathbb{G}_2\) and \(\beta = s - \bar{p} + |p|^2\).

Hartogs domain is a one of important research object in several complex variable. For the studies on Hartogs domain, please refer to [4,5,16–18]. So considering the pentablock \(\mathcal{P}\) as a Hartogs domain will be great helpful for us to study the convexity of the pentablock \(\mathcal{P}\).

2.3 Some Useful Results

In this subsection, we will give some useful results on the symmetrized bidisc \(\mathbb{G}_2\) and the pentablock \(\mathcal{P}\). In order to study the pentablock \(\mathcal{P}\), it is sufficient to learn the \(\mathbb{C}\)-convexity of \(\mathbb{G}_2\).

Theorem 2.2 [15] The symmetrized bidisc \(\mathbb{G}_2\) is \(\mathbb{C}\)-convex.

Through the study of the boundary of \(\mathcal{P}\), we can learn that there are two main part of the boundary, i.e., the smooth part and the non-smooth part. So it is necessary to study some basic convexity property of \(\mathcal{P}\) to simplify the problem.

Theorem 2.3 [12, Proposition 9] The pentablock \(\mathcal{P}\) is linearly convex.
In order to study the \mathbb{C}-convexity of \mathcal{P} in some simple way, we give the whole holomorphic automorphism group $\text{Aut}(\mathcal{P})$ as follows.

Theorem 2.4 [12, Theorem 15] All mappings of the form

$$f_{\omega, \nu}(a, \lambda_1 + \lambda_2, \lambda_1 \lambda_2) = \left(\frac{\omega(1-|\alpha|^2)a}{1-\bar{\alpha}(\lambda_1+\lambda_2)+\bar{\alpha}^2\lambda_1\lambda_2}, \nu(\lambda_1) + \nu(\lambda_2), \nu(\lambda_1)\nu(\lambda_2)\right),$$

where $(a, \lambda_1 + \lambda_2, \lambda_1 \lambda_2) \in \mathcal{P}$, $\lambda_1, \lambda_2 \in \mathbb{D}$, ν is a Möbius function of the form $\nu(\lambda) = \frac{\eta \lambda - a}{1-\bar{\alpha} \lambda}$, and where $\omega, \eta \in \mathbb{T}$, $\alpha \in \mathbb{D}$, form the whole group $\text{Aut}(\mathcal{P})$ of holomorphic automorphisms of the pentablock \mathcal{P}.

2.4 \mathbb{C}-convex Domain

A domain $D \subset \mathbb{C}^n$ is called \mathbb{C}-convex if for any affine complex line ℓ such that $\ell \cap D \neq \emptyset$, and the set $\ell \cap D$ is connected and simply connected. For a domain $D \subset \mathbb{C}^n$ and a point $a \in \mathbb{C}^n$, we denote by $\Gamma_D(a)$ the set of all complex hyperplanes L such that $(a + L) \cap D = \emptyset$. Then we have the basic criterion on \mathbb{C}-convexity.

Theorem 2.5 [3, Theorem 2.5.2] The bounded domain $D \subset \mathbb{C}^n$, $n > 1$, is \mathbb{C}-convex iff for any boundary point $x \in \partial D$, the set $\Gamma_D(x)$ is non-empty and connected.

Remark 2.6 By Theorem 2.5, we only need to give a full description of the tangent hyperplanes to the pentablock \mathcal{P}. And together with Theorem 2.3, we can only need to consider the non-smooth part of the boundary. Furthermore, through Theorem 2.4 we can simplify the situation into just four different types, i.e., (1) $(a, 1, 0)$ with $|a| \leq \frac{1}{2}$; (2) $(a, 0, -1)$ with $|a| < 1$; (3) $(1, 0, -1)$; (4) $(0, 2, 1)$.

3 The Set of All Tangent Hyperplanes to \mathcal{P} at the Non-smooth Part

In this section, we will give a full description of the tangent hyperplanes to the pentablock \mathcal{P} at the non-smooth boundary part. Set $P_0 = (a_0, s_0, p_0)$ be a non-smooth boundary point of the pentablock \mathcal{P}, and let $\Gamma_{\mathcal{P}}(P_0)$ denote the set of all tangent hyperplanes to \mathcal{P} at the boundary point P_0. Now assume the hyperplane in \mathbb{C}^3 that

$$\mathcal{L} := \{(a, s, p) \in \mathbb{C}^3 : k_1 a + k_2 s + k_3 p = 0\}.$$

Then

$$\mathcal{L} \in \Gamma_{\mathcal{P}}(P_0) \iff P_0 \in \mathcal{L} \text{ and } \mathcal{L} \cap \mathcal{P} = \emptyset.$$

Together with automorphisms of \mathcal{P} by Theorem 2.4, we can only need to consider some special boundary points P_0:

(1) If $(s_0, p_0) \in \partial G_2 \setminus \partial \delta G_2$ and $|a_0|^2 \leq e^{-\psi(s_0, p_0)}$.

Actually we can assume that $(s_0, p_0) = (1, 0)$, and then we have $|a_0| \leq \frac{1}{2}$. Now we consider the hyperplane in \mathbb{C}^3 passing through the boundary point P_0,

$$\mathcal{L} := \{(a, s, p) \in \mathbb{C}^3 : k_1(a - a_0) + k_2(s - s_0) + k_3(p - p_0) = 0\}. \quad (3.1)$$
If \(k_1 \neq 0 \), then \(L = \{(a, s, p) \in \mathbb{C}^3 : a = a_0 + k_2(1 - s) - k_3 p\} \).

Next suppose that \(L \in \Gamma_\mathcal{P}(P_0) \), so we get \(L \cap \mathcal{P} = \emptyset \). This means that for any \((s, p) \in \mathbb{G}_2\), we have

\[
|a_0 + k_2(1 - s) - k_3 p|^2 \geq e^{-\varphi(s, p)}.
\]

Now set \(p = 0 \), we can learn that for any \(s \in \mathbb{D} \),

\[
\frac{1}{2} + \frac{1}{2}(1 - |s|^2)^\frac{1}{2} \leq |a_0 + k_2(1 - s)| \leq |a_0| + |k_2(1 - s)|.
\]

Together with \(|a_0| \leq \frac{1}{2} \), we obtain that the following inequality holds for all \(s \in \mathbb{D} \).

\[
|k_2| \geq \frac{\frac{1}{2}(1 - |s|^2)^\frac{1}{2}}{|1 - s|}
\]

hence, taking \(s \) tends to 1, we can conclude that such \(k_2 \) does not exist. It follows that if the hyperplane \(L \) in (3.1) belongs to \(\Gamma_\mathcal{P}(P_0) \), then \(k_1 = 0 \).

Moreover, if we have a hyperplane \(L \in \Gamma_\mathcal{P}(P_0) \), then consider the following hyperplane in \(\mathbb{C}^2 \):

\[
L' := \{(s, p) \in \mathbb{C}^2 : (a, s, p) \in L\}.
\]

Easily, we can see that \((s_0, p_0) = (1, 0) \in L' \cap \partial \mathbb{G}_2 \) and \(L' \cap \mathbb{G}_2 = \emptyset \). So

\[
L' \in \Gamma_{\mathbb{G}_2}(s_0, p_0).
\]

This implies that

\[
\Gamma_\mathcal{P}(P_0) \subseteq \mathbb{C} \times \Gamma_{\mathbb{G}_2}(s_0, p_0).
\]

Clearly the other inclusion holds. Therefore, we have

\[
\Gamma_\mathcal{P}(a_0, 1, 0) = \mathbb{C} \times \Gamma_{\mathbb{G}_2}(1, 0) \quad \left(|a_0| \leq \frac{1}{2}\right).
\]

(2) If \((s_0, p_0) \in \partial \mathbb{G}_2 \) and \(|a_0|^2 < e^{-\varphi(s_0, p_0)}\).

From the assumption, we can learn that \(s_0^2 \neq 4p_0 \). Otherwise, \(e^{-\varphi(s_0, p_0)} = 0 \). Hence, we can assume that \((s_0, p_0) = (0, -1) \) and \(|a_0| < 1 \).

By the same way, consider the hyperplane passing through the boundary point \(P_0 \) with the assumption \(k_1 \neq 0 \), namely,

\[
L = \{(a, s, p) \in \mathbb{C}^3 : a = a_0 + k_2s + k_3(1 + p)\}.
\]

Then suppose that \(L \in \Gamma_\mathcal{P}(P_0) \), so this leads to \(L \cap \mathcal{P} = \emptyset \). Hence, for any \((s, p) \in \mathbb{G}_2\), we have

\[
|a_0 + k_2s + k_3(1 + p)|^2 \geq e^{-\varphi(s, p)}.
\]
Now set $s = 0$, we obtain that for any $p \in \mathbb{D}$,
\[
1 \leq |a_0 + k_3(1 + p)| \leq |a_0| + |k_3(1 + p)|.
\]

This means that the following inequality
\[
|k_3(1 + p)| \geq 1 - |a_0| > 0
\]
holds for any $p \in \mathbb{D}$. Thus such k_3 does not exist. And it follows that k_1 must be zero. Therefore, following by the same procedure, we obtain
\[
\Gamma P(a_0, 0, -1) = \mathbb{C} \times \Gamma_{G_2}(0, -1) \quad (|a_0| < 1).
\]

(3) $(s_0, p_0) \in \partial s \setminus \Sigma$ and $|a_0|^2 = e^{-\varphi(s_0, p_0)}$.

By the assumption, we can also see that $s_0^2 \neq 4p_0$. So we can assume $(a_0, s_0, p_0) = (1, 0, -1)$. Then consider the hyperplane
\[
\mathcal{L} := \{(a, s, p) \in \mathbb{C}^3 : a = 1 + k_2s + k_3(1 + p)\},
\]
and suppose that $\mathcal{L} \in \Gamma P(P_0)$. This implies that $\mathcal{L} \cap P = \emptyset$. Thus for any $(s, p) \in G_2$, we have
\[
|1 + k_2s + k_3(1 + p)|^2 \geq e^{-\varphi(s, p)}.
\]

Let $s = 0$, then for any $p \in \mathbb{D}$, we have
\[
|1 + k_3 + k_3 p| \geq 1.
\]

Now we give the following lemma to help us.

Lemma 3.1 For any $z \in \mathbb{D}$, the inequality $|1 + k + k z| \geq 1$ holds iff $k \geq 0$.

Proof Set $f(z) = 1 + k + k z$, and then we directly learn that $f(z)$ is a holomorphic function on \mathbb{D}. Since $|f(z)| \geq 1$, it means that $f(z)$ has no zero in \mathbb{D}. Hence, by the maximal principle, $|f(z)| \geq 1$ holds for all $z \in \overline{\mathbb{D}}$. Now let $|z| = 1$, we can obtain
\[
|1 + k + k z| \geq 1,
\]
\[
\Leftrightarrow |1 + k|^2 + |k|^2 - 1 \geq -2 \text{Re} \left((|k|^2 + k)z \right), \quad (|z| = 1)
\]
\[
\Leftrightarrow 2|k|^2 + 2\text{Re}k \geq 2 \left| k + |k|^2 \right|, \quad \text{(the inequality holds for all } z \in \partial \mathbb{D})
\]
\[
\Rightarrow (\text{Re})^2 \geq |k|^2.
\]

This means that k is real. Now if $k < 0$, then there exists $M > 0$ such that
\[
M|k| < 1,
\]
and we can choose z_0 with $-1 < z_0 < 0$ such that

$$1 + z_0 < M.$$

Hence, we have

$$0 < 1 + Mk < 1 + k(1 + z_0) < 1.$$

This leads to a contradiction. On the other hand, for $k \geq 0$, the inequality is evidently valid. Therefore, we conclude that $k \geq 0$. \hfill \Box

By Lemma 3.1, we have $k_3 \geq 0$. Now we want to prove the inequality (3.2) on the whole Γ_2.

If there exists $(s_1, p_1) \in \partial \Gamma_2$ such that the inequality (3.2) does not hold. Then set $a_1 = 1 + k_2 s_1 + k_3 (1 + p_1)$, and by the assumption, we have

$$|a_1|^2 < e^{-\varphi(s_1, p_1)}. \quad (3.3)$$

Since $(a_1, s_1, p_1) \in \mathcal{L}$ and $\mathcal{L} \in \Gamma P(a_0, s_0, p_0)$, we can see that

$$\mathcal{L} \in \Gamma P(a_1, s_1, p_1).$$

So together with (3.3), by the case (1) and case (2), we know that such \mathcal{L} does not exist. Hence, the inequality (3.2) also holds for all $(s, p) \in \Gamma_2$.

Back to the inequality (3.2), since $(s, p) \in \Gamma_2$, we can set $s = \lambda_1 + \lambda_2$ and $p = \lambda_1 \lambda_2$. So for any $(\lambda_1, \lambda_2) \in \partial(D \times D)$, we have

$$|1 + k_2 \lambda_1 + k_3 + \lambda_2 (k_2 + k_3 \lambda_1)| \geq \frac{1}{2} |1 - \bar{\lambda}_1 \lambda_2|.$$

Now let $\lambda_1 = 1$, then for any $\lambda_2 \in \partial D$, we can obtain

$$|1 + k_2 + k_3 + \lambda_2 (k_2 + k_3)| \geq \frac{1}{2} |1 - \lambda_2|,$$

$$\Leftrightarrow |1 + k|^2 + |k|^2 - \frac{1}{2} \geq -\text{Re} \left(\left(2k + 2|k|^2 + \frac{1}{2} \right) \lambda_2 \right), \quad (k = k_2 + k_3)$$

$$\Leftrightarrow 2|k|^2 + 2\text{Re}k + \frac{1}{2} \geq 2|k|^2 + 2k + \frac{1}{2}, \quad \text{(the inequality holds for all } \lambda_2 \in \partial D)$$

$$\Rightarrow (\text{Re}k)^2 \geq |k|^2.$$

This implies that k is real. On the other hand, we can learn that if k is real, then we have

$$2|k|^2 + 2\text{Re}k + \frac{1}{2} = 2k^2 + 2k + \frac{1}{2}$$

$$= \frac{1}{2} (2k + 1)^2 \geq 0.$$
Thus we can obtain that for any \(\lambda_2 \in \partial \mathbb{D} \),

\[
|1 + k_2 + k_3 + \lambda_2(k_2 + k_3)| \geq \frac{1}{2}|1 - \lambda_2| \iff k = k_2 + k_3 \text{ is real}.
\]

Since \(k_3 \geq 0 \), \(k_2 \) is real. Following this result, we want to omit the assumption \(\lambda_1 = 1 \). Thus we give the following lemma.

Lemma 3.2 For any \((\lambda_1, \lambda_2) \in \partial \mathbb{D} \times \partial \mathbb{D} \), the inequality

\[
|1 + k_2\lambda_1 + k_3 + \lambda_2(k_2 + k_3\lambda_1)| \geq \frac{1}{2}|\lambda_1 - \lambda_2|
\]

holding is equivalent to \(k_3^2 + k_3 \geq k_2^2 \).

Proof By direct calculation, we have

\[
|1 + k_2\lambda_1 + k_3 + \lambda_2(k_2 + k_3\lambda_1)| \geq \frac{1}{2}|\lambda_1 - \lambda_2|,
\]

\[
\iff |1 + k_2\lambda_1 + k_3|^2 + |k_2 + k_3\lambda_1|^2 - \frac{1}{2} \geq -\text{Re}\left(\frac{1}{2}(2(k_2 + k_3\lambda_1)(1 + k_2\bar{\lambda}_1 + k_3) + \frac{1}{2}\bar{\lambda}_1)\lambda_2\right),
\]

\[
\iff \left(\frac{1}{2} + 2k_2^2\right) + (2k_3 + 2k_3^2) + (2k_2 + 4k_2k_3)\text{Re}\lambda_1
\]

\[
\geq \left|\left(\frac{1}{2} + 2k_2^2\right)\bar{\lambda}_1 + (2k_3 + 2k_3^2)\lambda_1 + (2k_2 + 4k_2k_3)\right|.
\]

Now set \(a = \frac{1}{2} + 2k_2^2, b = 2k_3 + 2k_3^2 \) and \(c = 2k_2 + 4k_2k_3 \). Thus we see that if

\[
a + b + c\text{Re}\lambda_1 \geq |a\bar{\lambda}_1 + b\lambda_1 + c|,
\]

then we have

\[
(1 - (\text{Re}\lambda_1)^2)(4ab - c^2) \geq 0.
\]

It follows

\[
k_3^2 + k_3 \geq k_2^2.
\]

Notice that \(a > 0 \) and \(b \geq 0 \). So if we want to get the equivalence condition for the inequality (3.4), we only need to consider the following inequality holding for all \(\lambda_1 \in \partial \mathbb{D} \),

\[
a + b + c\text{Re}\lambda_1 \geq 0.
\]

However, it is not hard to see

\[
a + b \geq |c|.
\]

So together with \(a + b \geq 0 \), we obtain that the inequality (3.5) is equivalent to

\[
(a + b)^2 \geq c^2.
\]
In fact, \((a + b)^2 - c^2 \geq (a + b)^2 - 4ab \geq 0\). Hence, this must be an equivalence condition. \(\square\)

Therefore, we have

\[\Gamma P(1, 0, -1) \subseteq (\mathbb{C} \times \Gamma G_2(0, -1)) \cup \{(a, s, p) \in \mathbb{C}^3 : a = 1 + k_2s + k_3(1 + p)\}, \]

where \(k_2\) is real, \(k_3 \geq 0\) and \(k_3^2 + k_3 \geq k_2^2\).

Now we want to show the other inclusion. Let \(k_2\) be a real number, and \(k_3 \geq 0\) with \(k_3^2 + k_3 \geq k_2^2\). Then consider the hyperplane

\[L := \{(a, s, p) \in \mathbb{C}^3 : a = 1 + k_2s + k_3(1 + p)\}. \]

In order to prove \(L \in \Gamma P(1, 0, -1)\), we only need to show the following inequality

\[|1 + k_2s + k_3(1 + p)|^2 \geq e^{-\varphi(s, p)} \]

holding for any \((s, p) \in \mathbb{C}^2\).

Define

\[h(s, p) = 1 + k_2s + k_3(1 + p). \]

If \(k_2 \neq 0\) and \(k_3 \neq 0\), then \(h(s, p)\) is a well-defined holomorphic function on \(\mathbb{C}^2\).

By Lemma 3.2, for any \((s, p) \in \partial \mathbb{C}^2\), we have

\[|h(s, p)|^2 \geq e^{-\varphi(s, p)}. \]

Now set \(s = \lambda_1 + \lambda_2\) and \(p = \lambda_1 \lambda_2\), and then for any \((\lambda_1, \lambda_2) \in \partial \mathbb{D} \times \partial \mathbb{D}\), we have

\[|1 + k_2(\lambda_1 + \lambda_2) + k_3(1 + \lambda_1 \lambda_2)| \geq \frac{1}{2} |\lambda_1 - \lambda_2|. \]

(3.7)

Thus, if there exists \((s_1, p_1) \in \partial \mathbb{C}^2\) such that \(h(s_1, p_1) = 0\), then we must have \(s_1^2 = 4p_1\). Hence, we can assume that \(s_1 = 2\lambda_0\) and \(p_1 = \lambda_0^2\) for some \(\lambda_0 \in \partial \mathbb{D}\). So for \(h(s_1, p_1) = 0\), we obtain

\[1 + 2k_2\lambda_0 + k_3(1 + \lambda_0^2) = 0. \]

(3.8)

Notice that \(|\lambda_0| = 1\), and then assume \(\lambda_0 = x_0 + y_0i\). Thus we have \(x_0^2 + y_0^2 = 1\). From (3.8), we see that

\[1 + 2k_2(x_0 + y_0i) + k_3(2x_0^2 + 2x_0y_0i) = 0. \]

Thus we get

\[\begin{cases} \k_2y_0 + k_3x_0y_0 = 0, \\ 1 + 2k_2x_0 + 2k_3x_0^2 = 0. \end{cases} \]
If $y_0 = 0$, then $2|k_2| = 2k_3 + 1$, which contradicts to $k_2^2 + k_3 \geq k_2^2$; if $y_0 \neq 0$, then $k_2 = -k_3x_0$. It follows that $1 + 2k_2x_0 + 2k_3x_0^2 = 1 \neq 0$. Hence, such λ_0 does not exist. This means that for any $(s, p) \in \partial s \cap \mathbb{D}$, we have

$$h(s, p) \neq 0.$$ \hfill (3.9)

Next we want to prove that the inequality (3.7) still holds for any $(\lambda_1, \lambda_2) \in \partial \mathbb{D} \times \mathbb{D}$, i.e.,

$$|1 + k_2(\lambda_1 + \lambda_2) + k_3(1 + \lambda_1\lambda_2)| \geq \frac{1}{2}|\lambda_1 - \lambda_2|, \quad (\lambda_1, \lambda_2) \in \partial \mathbb{D} \times \mathbb{D}.$$

If there exists $(\lambda_0^1, \lambda_0^2) \in \partial \mathbb{D} \times \mathbb{D}$ such that

$$1 + k_2(\lambda_0^1 + \lambda_0^2) + k_3(1 + \lambda_0^1\lambda_0^2) = 0,$$

then we have

$$1 + k_2\lambda_0^1 + k_3 = -(k_2 + k_3\lambda_0^1)\lambda_0^2.$$

Thus, if $k_2 + k_3\lambda_0^1 = 0$, then λ_0^2 is real. So we have

$$0 = 1 + k_2\lambda_0^1 + k_3 = 1 - k_3(\lambda_0^1)^2 + k_3 = 1.$$

This leads to a contradiction. Hence, since $|\lambda_0^1| < 1$, we can see

$$|1 + k_2\lambda_0^1 + k_3| < |k_2 + k_3\lambda_0^1|,$$

$$\Leftrightarrow 1 + 2k_3 < -2k_2\text{Re}\lambda_0^1, \quad (|\lambda_0^1| = 1)$$

$$\Leftrightarrow 1 + 4k_3 + 4k_3^2 < 4k_2^2(\text{Re}\lambda_0^1)^2 \leq 4k_2^2 \leq 4k_3 + 4k_3^2.$$

This leads to another contradiction. Thus, define

$$g_{\lambda_1}(\lambda_2) := \frac{\frac{1}{2}(\lambda_1 - \lambda_2)}{1 + k_2(\lambda_1 + \lambda_2) + k_3(1 + \lambda_1\lambda_2)},$$

and then we get that for any fixed $\lambda_1 \in \partial \mathbb{D}$, $g_{\lambda_1}(\lambda_2)$ is a well-defined holomorphic function on $\overline{\mathbb{D}}$. Thus, by the maximal principle, together with (3.7), we have

$$|g_{\lambda_1}(\lambda_2)| \leq 1, \quad \forall \lambda_2 \in \overline{\mathbb{D}}.$$

So, we can obtain that the inequality

$$|h(\lambda_1, \lambda_2)| \geq \frac{1}{2}|\lambda_1 - \lambda_2|.$$

holds for all \((\lambda_1, \lambda_2) \in \partial \mathbb{D} \times \mathbb{D}\), and also for all \((\lambda_1, \lambda_2) \in \mathbb{D} \times \partial \mathbb{D}\). Thus, together with (3.9), we can conclude that
\[h(s, p) \neq 0 \quad (s, p) \in \partial \mathbb{G}_2. \]

Notice that \(k_2 \neq 0\) and \(k_3 \neq 0\), so by the Hartogs theorem we have
\[h(s, p) \neq 0 \quad (s, p) \in \overline{\mathbb{G}_2}. \]

Now set \(s = \beta + \bar{\beta} p\), then if we want to show (3.6), we only need to prove the following inequality
\[|1 + k_2 \beta + k_3 + (k_2 \bar{\beta} + k_3) p| \geq \left| 1 - \frac{\frac{1}{2}(|\beta|^2 + \bar{\beta}^2 p)}{1 + \sqrt{1 - |\beta|^2}} \right| \] (3.10)
holds for any \((\beta, p) \in \mathbb{D} \times \mathbb{D}\).

Fixed any \(\beta \in \mathbb{D}\), define
\[f_{\beta}(p) = \frac{1 - \frac{1}{2}(|\beta|^2 + \bar{\beta}^2 p)}{1 + k_2 \beta + k_3 + (k_2 \bar{\beta} + k_3) p}, \]
and then we can see that \(f_{\beta}(p)\) is a well-defined holomorphic function on \(\overline{\mathbb{D}}\). So if we want to show (3.10), we only need to prove that for any fixed \(\beta \in \mathbb{D}\),
\[|f_{\beta}(p)| \leq 1, \quad \forall p \in \mathbb{D}. \]

With the maximal principle, we just need to show
\[|f_{\beta}(p)| \leq 1, \quad \forall p \in \partial \mathbb{D} \text{ with any fixed } \beta \in \mathbb{D}. \]

However, for any fixed \(\beta \in \mathbb{D}\) and \(p \in \partial \mathbb{D}\), there exist \(\lambda_1, \lambda_2\) such that
\[|\lambda_1| = |\lambda_2| = 1, \quad \beta = \frac{\lambda_1 + \lambda_2}{2} \text{ and } p = \lambda_1 \lambda_2. \]

So it suffices to show the following inequality
\[|1 + k_2(\lambda_1 + \lambda_2) + k_3(1 + \lambda_1 \lambda_2)| \geq \frac{1}{2} |\lambda_1 - \lambda_2| \]
holding for all \((\lambda_1, \lambda_2) \in \partial \mathbb{D} \times \partial \mathbb{D}\). By Lemma 3.2, we can conclude that
\[\mathcal{L} \in \Gamma_p(1, 0, -1). \]
Now if \(k_3 = 0 \), then \(k_2 = 0 \). Easily, we can see that
\[
\mathcal{L} = \{ a = 1 \} \in \Gamma_{\mathcal{P}}(1, 0, -1);
\]
and if \(k_2 = 0 \), then \(\mathcal{L} = \{ a = 1 + k_3(1 + p) \} \). Notice that
\[
|1 + k_3(1 + p)| \geq 1 + k_3 - k_3|p| \geq 1.
\]
Hence, we can also see that \(\mathcal{L} \in \Gamma_{\mathcal{P}}(1, 0, -1) \).

Therefore, we have
\[
\Gamma_{\mathcal{P}}(1, 0, -1) = (\mathbb{C} \times \Gamma_{\mathcal{G}_2}(0, -1)) \cup \{(a, s, p) \in \mathbb{C}^3 : a = 1 + k_2s + k_3(1 + p)\},
\]
where \(k_2 \) is real, \(k_3 \geq 0 \) and \(k_3^2 + k_3 \geq k_2^2 \).

(4) \((s_0, p_0) \in \partial \mathcal{G}_2 \cap \Sigma \) and then \(a_0 = 0 \).

Now suppose that \((a_0, s_0, p_0) = (0, 2, 1) \), and then by the same way, consider the hyperplane
\[
\mathcal{L} := \{(a, s, p) \in \mathbb{C}^3 : a = k_2(2 - s) + k_3(1 - p)\} \in \Gamma_{\mathcal{P}}(0, 2, 1).
\]

Using the same argument, we obtain that for any \((s, p) \in \overline{\mathcal{G}_2} \),
\[
|k_2(2 - s) + k_3(1 - p)|^2 \geq e^{-\varphi(s, p)}.
\]

Now set \(p = 1 \), then we have \(-2 \leq s \leq 2 \). So we obtain
\[
|k_2(2 - s)| \geq \sqrt{1 - \frac{1}{4}s^2}.
\]

Thus, such \(k_2 \) does not exist as \(s \to 2^- \). This leads that \(k_1 \) must be zero. Therefore, we obtain
\[
\Gamma_{\mathcal{P}}(0, 2, 1) = \mathbb{C} \times \Gamma_{\mathcal{G}_2}(2, 1).
\]

In summary, we can give a full description of \(\Gamma_{\mathcal{P}}(P_0) \) as follows.

Theorem 3.3 We can give the description of the tangent hyperplanes to the pentablock \(\mathcal{P} \) at four different boundary points.

(1) \(\Gamma_{\mathcal{P}}(a_0, 1, 0) = \mathbb{C} \times \Gamma_{\mathcal{G}_2}(1, 0) \), \(|a_0| \leq \frac{1}{2} \);
(2) \(\Gamma_{\mathcal{P}}(a_0, 0, -1) = \mathbb{C} \times \Gamma_{\mathcal{G}_2}(0, -1) \), \(|a_0| < 1 \);
(3) \(\Gamma_{\mathcal{P}}(1, 0, -1) = (\mathbb{C} \times \Gamma_{\mathcal{G}_2}(0, -1)) \cup \{(a, s, p) \in \mathbb{C}^3 : a = 1 + k_2s + k_3(1 + p)\} \), where \(k_2 \) is real, \(k_3 \geq 0 \) and \(k_3^2 + k_3 \geq k_2^2 \);
(4) \(\Gamma_{\mathcal{P}}(0, 2, 1) = \mathbb{C} \times \Gamma_{\mathcal{G}_2}(2, 1) \).
4 Proof of Theorem 1.1

Proof Linear convexity of \(\mathcal{P} \) implies that in the case of a smooth boundary point \(P_0 \in \partial \mathcal{P} \), the set \(\Gamma_1 P (P_0) \) is a singleton. Consider then the non-smooth point \(P_0 \in \partial \mathcal{P} \). By Theorem 2.4, it is sufficient to consider the only four different cases

\[
P_0 = (a_0,1,0), |a_0| \leq \frac{1}{2}; \\
P_0 = (a_0,0,-1), |a_0| < 1; \\
P_0 = (1,0,-1); \\
P_0 = (0,2,1).
\]

Then Theorems 3.3 and 2.2 imply that \(\Gamma_1 P (P_0) \) is the union of connected sets whose intersection is non-empty for the non-smooth boundary point \(P_0 \), so it is connected. Thus, by Theorem 2.5, we can conclude that the pentablock \(\mathcal{P} \) is \(\mathbb{C} \)-convex. This finishes the proof.

Acknowledgements The author would like to thank Dr. E.C. Bi, Prof. Z.H. Tu, Prof. Ł. Kosiński, and Prof. W. Zwonek for so many help and suggestions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Agler, J., Lykova, Z.A., Young, N.J.: The complex geometry of a domain related to \(\mu \)-synthesis. J. Math. Anal. Appl. 422(1), 508–543 (2015)
2. Agler, J., Young, N.J.: The hyperbolic geometry of the symmetrized bidisc. J. Geom. Anal. 14(3), 375–403 (2004)
3. Andersson, M., Passare, M., Sigurdsson, R.: Complex Convexity and Analytic Functionals. Birkhäuser, Basel (2004)
4. Bi, E.C., Tu, Z.H.: Remarks on the canonical metrics on the Cartan–Hartogs domains. C.R. Math. 355(7), 760–768 (2017)
5. Bi, E.C., Tu, Z.H.: Rigidity of proper holomorphic mappings between generalized Fock–Bargmann–Hartogs domains. Pac. J. Math. 297(2), 277–297 (2018)
6. Costara, C.: The symmetrized bidisc and Lempert’s theorem. Bull. Lond. Math. Soc. 36(5), 656–662 (2004)
7. Edigarian, A.: A note on C. Costara’s paper. Ann. Polon. Math. 83, 189–191 (2004)
8. Edigarian, A., Kosiński, Ł., Zwonek, W.: The Lempert theorem and the tetrablock. J. Geom. Anal. 23(4), 1818–1831 (2013)
9. Hörmander, L.: Notions of Convexity. Birkhäuser, Basel (1994)
10. Jacquet, D.: \(\mathbb{C} \)-convex domains with \(C^2 \) boundary. Complex Var. Elliptic Equ. 51(4), 303–312 (2006)
11. Jarnicki, M., Pflug, P.: Invariant Distances and Metrics in Complex Analysis. de Gruyter, Berlin (1993)
12. Kosiński, Ł.: The group of automorphisms of the pentablock. Complex Anal. Oper. Theory 9(6), 1349–1359 (2015)
13. Lempert, L.: La métrique de Kobayashi et la représentation des domaines sur la boule. Bulletin de la Société Mathématique de France 109, 427–474 (1982)
14. Lempert, L.: Intrinsic distances and holomorphic retracts. In: Complex Analysis and Applications (Varna, 1981), vol. 81, pp. 341–364. Publishing House of the Bulgarian Academy of Sciences, Sofia (1984)

15. Nikolov, N., Pflug, P., Zwonek, W.: An example of a bounded C-convex domain which is not biholomorphic to a convex domain. Math. Scand. 102(1), 149–155 (2008)

16. Tu, Z.H., Wang, L.: Rigidity of proper holomorphic mappings between certain unbounded non-hyperbolic domains. J. Math. Anal. Appl. 419(2), 703–714 (2014)

17. Tu, Z.H., Wang, L.: Rigidity of proper holomorphic mappings between equidimensional Hua domains. Math. Ann. 363(1–2), 1–34 (2015)

18. Yang, H., Bi, E.C.: Remarks on Rawnsley's ε-function on the Fock–Bargmann–Hartogs domains. Arch. Math. 112(4), 417–427 (2019)

19. Zapalowski, P.: Geometric properties of domains related to μ-synthesis. J. Math. Anal. Appl. 430(1), 126–143 (2015)

20. Zwonek, W.: Geometric properties of the tetrablock. Arch. Math. 100(2), 159–165 (2013)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.