Bisphosphonates are used for treatment of osteoporosis and metastatic bone lesions in multiple myeloma and breast cancer. Bisphosphonate-related osteonecrosis of the jaw (BRONJ) is known as an adverse effect of bisphosphonate therapy. Surgical treatment of BRONJ is often ineffective and should be considered only for symptomatic patients with extensive osteonecrosis. Recent reports have shown the successful transfer of a vascularized fibular flap in bisphosphonate-induced mandibular osteonecrosis.

We report a case of a 50-year-old patient who presented with bilateral maxillary BRONJ, which was reconstructed using a fibular flap. This is the first report of a vascularized fibular bone graft for reconstruction of bilateral maxilla in BRONJ.

CASE REPORT

A 50-year-old woman came to us presenting an extensive bone exposure of the bilateral maxilla and two segmental defects with floating maxilla. She had been given monthly infusions of zoledronate acid (Zometa; Novartis Pharmaceuticals, East Hanover, N.J.) for 59 months as treatment for metastatic bone dissemination from breast cancer since August 2004. With the diagnosis of BRONJ, zoledronate was stopped for 42 months, computed tomographic and magnetic resonance imaging confirmed the clinical suspicion of BRONJ, and the maxilla was connected to midface only with the vomer (Fig. 1).

Surgery was performed using an intraoral maxillary vestibular approach to the maxilla, which was resected up to and including apparently “healthy bone” (Fig. 2). Immediate reconstruction with a single vascularized fibular flap was performed to replace two maxilla defects by resecting the midportion of the fibula with no damage to the periosteum and vascular pedicle, after the donor site was screened to exclude metastases (Fig. 3).

Osteosynthesis was performed with two titanium miniplates on each site. She suffered from aspiration pneumonia postoperatively, treated with intravenous antibiotics, and discharged home after 14 days of hospitalization. Healing proceeded uneventfully without any adverse signs of wound healing or compromise to the vascularity of the flap. The patient was very satisfied with her results (Fig. 4). Her maxilla was no longer floating, and she was able to bite and chew something tough.

DISCUSSION

The first case of BRONJ was reported in 2003 in the United States. BRONJ is commonly induced by tooth extraction in patients treated with long-term, potent, high-dose intravenous bisphosphonates for the management of multiple myeloma, breast cancer, or prostate cancer.

The following criteria have to be fulfilled:

1. Current or previous treatment with a bisphosphonate
2. Exposed, necrotic bone in the maxillofacial region that persisted for more than 8 weeks
3. No history of radiation therapy to the jaws

The treatment of patients with BRONJ is still unclear: antibacterial mouth rinses, antibiotic therapy and pain control, surgical debridement, or resection. Stage-specific treatment is recommended for management of BRONJ. In the treatment of advanced BRONJ, the possibility of microvascular reconstruction has to be investigated.
reports on vascularized bone graft reconstruction of the mandible in BRONJ have been published recently, however, there is no study reporting maxillary reconstruction using fibular flap in bisphosphonate-related osteonecrosis. Cordeiro and Chen have reported about the algorithm for midface reconstruction after total and subtotal maxillectomy. Our BRONJ case wound fall under the category of type IIB defects—subtotal maxillectomy defects. For type IIB defects, an osteocutaneous free flap is needed from the algorithm. Ilium and the scapula, which are rich in bone marrow, are commonly involved in metastasization, and they are not suitable for osteocutaneous flap’s donor site in our case. By contrast, the fibula is rarely the site of metastatic bone disease. For this reason, we have adopted the fibula flap for this patient.

The effect of the transferred flap with a new input of blood supply might improve the surrounding tissue affected by the avascular necrosis caused by bisphosphonate. Also, patients with reasonable life expectancy with regard to their malignant disease should be considered for microvascular tissue transfer after aggressive resection of the affected region.

Yohei Sotsuka, MD, PhD
Department of Plastic Surgery
Hyogo College of Medicine
1-1 Mukogawa-cho
Nishinomiya City, Hyogo Prefecture, 663-8501 Japan
E-mail: sotsu@sotsuka.com
REFERENCES

1. Ruggiero SL, Dodson TB, Fantasia J, et al; American Association of Oral and Maxillofacial Surgeons. American Association of Oral and Maxillofacial Surgeons position paper on medication-related osteonecrosis of the jaw–2014 update. J Oral Maxillofac Surg. 2014;72:1938–1956.

2. Marx RE. Pamidronate (Aredia) and zoledronate (Zometa) induced avascular necrosis of the jaws: a growing epidemic. J Oral Maxillofac Surg. 2003;61:1115–1117.

3. Kühl S, Walter C, Acham S, et al. Bisphosphonate-related osteonecrosis of the jaws—a review. Oral Oncol. 2012;48:938–947.

4. Urade M, Tanaka N, Furusawa K, et al. Nationwide survey for bisphosphonate-related osteonecrosis of the jaws in Japan. J Oral Maxillofac Surg. 2011;69:e364–e371.

5. Mücke T, Haarmann S, Wolff KD, et al. Bisphosphonate related osteonecrosis of the jaws treated by surgical resection and immediate osseous microvascular reconstruction. J Craniomaxillofac Surg. 2009;37:291–297.

6. Seth R, Futran ND, Alam DS, et al. Outcomes of vascularized bone graft reconstruction of the mandible in bisphosphonate-related osteonecrosis of the jaws. Laryngoscope 2010;120:2165–2171.

7. Silva LF, Curra C, Munerato MS, et al. Surgical management of bisphosphonate-related osteonecrosis of the jaws: literature review. Oral Maxillofac Surg. 2016;20:9–17.

8. Sacco R, Sacco G, Acocella A, et al. A systematic review of microsurgical reconstruction of the jaws using vascularized fibula flap technique in patients with bisphosphonate-related osteonecrosis. J Appl Oral Sci. 2011;19:293–300.

9. Cordeiro PG, Chen CM. A 15-year review of midface reconstruction after total and subtotal maxillectomy: part I. Algorithm and outcomes. Plast Reconstr Surg. 2012;129:124–136.

10. Eckardt A, Fokas K. Microsurgical reconstruction in the head and neck region: an 18-year experience with 500 consecutive cases. J Craniomaxillofac Surg. 2003;31:197–201.