Title
Permanent draft genome sequence of Dethiosulfovibrio peptidovorans type strain (SEBR 4207).

Permalink
https://escholarship.org/uc/item/9xn6x2c8

Journal
Standards in genomic sciences, 3(1)

ISSN
1944-3277

Authors
Labutti, Kurt
Mayilraj, Shanmugam
Clum, Alicia
et al.

Publication Date
2010-08-20

DOI
10.4056/sigs.1092865

Peer reviewed
Permanent draft genome sequence of *Dethiosulfovibrio peptidovorans* type strain (SEBR 4207T)

Kurt LaButti1, Shanmugam Mayilraj2-7, Alicia Clum1, Susan Lucas1, Tijana Glavina Del Rio1, Matt Nolan1, Hope Tice1, Jan-Fang Cheng1, Sam Pitluck1, Konstantinos Liolios1, Natalia Ivanova1, Konstantinos Mavromatis1, Natalia Mikhailova1, Amrita Pati1, Lynne Goodwin1,3, Amy Chen1, Krishna Palaniappan1, Miriam Land1,2, Loren Hauser1,3, Yun-Juan Chang1,5, Cynthia D. Jeffries1,5, Manfred Rohde6, Stefan Spring7, Markus Göker7, Tanja Woyke1, James Bristow1, Jonathan A. Eisen1,8, Victor Markowitz4, Philip Hugenholtz1, Nikos C. Kyrpides1, Hans-Peter Klenk7, and Alla Lapidus1

1 DOE Joint Genome Institute, Walnut Creek, California, USA
2 MTCC - Microbial Type Culture Collection, Institute of Microbial Technology, Chandigarh, India
3 Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA
4 Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA
5 Lawrence Livermore National Laboratory, Livermore, California, USA
6 HZI – Helmholtz Centre for Infection Research, Braunschweig, Germany
7 DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
8 University of California Davis Genome Center, Davis, California, USA

*Corresponding author: Hans-Peter Klenk

Keywords: anaerobic, motile, vibrio-shaped, thiosulfate-reducing, H₂S producing, peptide utilization, *Synergistaceae*, *Synergistetes*, GEBA

* Dethiosulfovibrio peptidovorans Magot et al. 1997 is the type species of the genus *Dethiosulfovibrio* of the family *Synergistaceae* in the recently created phylum *Synergistetes*. The strictly anaerobic, vibrioid, thiosulfate-reducing bacterium utilizes peptides and amino acids, but neither sugars nor fatty acids. It was isolated from an offshore oil well where it was been reported to be involved in pitting corrosion of mild steel. Initially, this bacterium was described as a distant relative of the genus *Thermoanaerobacter*, but was not assigned to a genus, it was subsequently placed into the novel phylum *Synergistetes*. A large number of repeats in the genome sequence prevented an economically justifiable closure of the last gaps. This is only the third published genome from a member of the phylum *Synergistetes*. The 2,576,359 bp long genome consists of three contigs with 2,458 protein-coding and 59 RNA genes and is part of the Genomic Encyclopedia of Bacteria and Archaea project.

Introduction

Strain SEBR 4207T (= DSM 11002 = JCM 15826) is the type strain of the species *Dethiosulfovibrio peptidovorans* (‘curved rod-shaped [vibrio] bacterium that reduces thiosulfate devouring peptides’), which represents the type species of the genus *Dethiosulfovibrio* [1]. *D. peptidovorans* strain SEBR 4207T was isolated in 1989 from an offshore oil well in the Congo (Brazzaville) and initially described by Magot et al. in 1997 [1]. The strain provided the first experimental evidence for the involvement of microbial thiosulfate reduction in the corrosion of steel (pitting corrosion). Strain SEBR 4207T utilizes only peptides and amino acids, but no sugar or fatty acids. For the first few years neither the strain nor the genus *Dethiosulfovibrio* could be assigned to an established higher taxon, except that the distant relationship to the genus *Thermaanaerovibrio* was reported [1].
taxonomic situation of the species was only recently further enlightened, when Jumas-Bilak et al. [2] combined several genera with anaerobic, rod-shaped, amino acid degrading, Gram-negative bacteria into the novel phylum *Synergistetes* [2]. The phylum *Synergistetes* contains organisms isolated from humans, animals, terrestrial and oceanic habitats: *Thermanaerovibrio*, *Dethiosulfovibrio*, *Aminiphilus*, *Aminobacterium*, *Aminomonas*, *Anaerobaculum*, *Jonquetella*, *Synergistes* and *Thermovirga*. Given the novelty of the phylum it is not surprising that many of the type strains from these genera are already subject to genome sequencing projects. Here we present a summary classification and a set of features for *D. peptidovorans* strain SEBR 4207\(^T\), together with the description of the genomic sequencing and annotation.

Classification and features

The 16S rRNA genes of the four other type strains in the genus *Dethiosulfovibrio* share between 94.2% (*D. salsuginis* [3]) and 99.2% (*D. marinus* [4]) sequence identity with strain SEBR 4207\(^T\), whereas the other type strains from the family *Synergistaceae* share 83.6 to 86.6% sequence identity [5]. There are no other cultivated strains that closely related. Uncultured clones with high sequence similarity to strain SEBR 4207\(^T\) were identified in a copper-polluted sediment in Chile (clones LC6 and LC23, FJ024724 and FJ024721, 99.1%). Metagenomic surveys and environmental samples based on 16S rRNA gene sequences provide no indication for organisms with sequence similarity values above 88% to *D. peptidovorans* SEBR 4207\(^T\), indicating that members of this species are not abundant in habitats screened thus far. The majority of these 16S rRNA gene sequences with similarity between 88% and 93% originate from marine metagenomes (status July 2010).

Figure 1 shows the phylogenetic neighborhood of *D. peptidovorans* SEBR 4207\(^T\) in a 16S rRNA based tree. The five copies of the 16S rRNA gene differ by up to one nucleotide from each other and by eight nucleotides from the previously published sequence generated from DSM 11002 (DPU52817).
Cells of *D. peptidovorans* SEBR 4207T stain Gram-negative [1]. Cells are vibrioid with pointed or round ends and lateral flagella (Figure 2, flagella not visible) and a size of 3-5 by 1 μm [1] (Table 1). Spores were not detected [1]. Optimal growth rate was observed at 42°C, pH 7.0 in 3% NaCl [1]. *D. peptidovorans* is capable of utilizing peptides and amino acids as a sole carbon and energy source and can ferment serine and histidine. In the presence of thiosulfate, strain SEBR 4207T is capable of utilizing alanine, arginine, asparagines, glutamate, isoleucine, leucine, methionine and valine as an electron acceptor. The strain is capable of producing acetate, isobutyrate, isovalerate, 2-methylbutyrate, CO₂ and H₂ from peptides. The strain uses elemental sulfur and thiosulfate but not sulfate as electron acceptor. H₂S is produced with a decrease in H₂. Cells do not have cytochrome or desulfoviridin [1]. When yeast extract was added as sole carbon and energy source together with trypticase, thiosulfate was used as sole electron acceptor. Strain SEBR 4207T was not able to utilize gelatine, casein, arabinose, fructose, galactose, glucose, lactose, maltose, mannose, rhamnose, ribose, sucrose, sorbose, trehalose, xylose, acetate, propionate, butyrate, citrate and lactate.

Genome sequencing and annotation

Genome project history

This organism was selected for sequencing on the basis of its phylogenetic position [17], and is part of the *Genomic Encyclopedia of Bacteria and Archaea* project [18]. The genome project is deposited in the Genome OnLine Database [10] and the complete genome sequence is deposited in GenBank. Sequencing, finishing and annotation were performed by the DOE Joint Genome Institute (JGI). A summary of the project information is shown in Table 2.

![Figure 2. Scanning electron micrograph of *D. peptidovorans* SEBR 4207T](image)
Table 1. Classification and general features of *D. peptidovorans* SEBR 4207 according to the MIGS recommendations [13].

MIGS ID	Property	Term	Evidence code
	Current classification		
	Domain	Bacteria	TAS [14]
	Phylum	Synergistetes	TAS [2]
	Class	Synergista	TAS [2]
	Order	Synergistales	TAS [2]
	Family	Synergistiae	TAS [2]
	Genus	*Dethiosulfovibrio*	TAS [1]
	Species	*Dethiosulfovibrio peptidovorans*	TAS [1]
	Type strain	SEBR 4207	TAS [1]
	Gram stain	negative	TAS [1]
	Cell shape	curved rods (vibrioid)	TAS [1]
	Motility	motile via lateral flagella	TAS [1]
	Sporulation	non-sporulating	TAS [1]
	Temperature range	mesophile, 20-45°C	TAS [1]
	Optimum temperature	42°C	TAS [1]
	Salinity	slightly halophilic, optimum 3% NaCl	TAS [1]
	MIGS-22 Oxygen requirement	anaerobic	TAS [1]
	Carbon source	peptides and amino acids	TAS [1]
	Energy source	peptides and amino acids	TAS [1]
MIGS-6	Habitat	marine, oil wells	TAS [1]
MIGS-15	Biotic relationship	free living	NAS
MIGS-14	Pathogenicity	non pathogenic	NAS
	Biosafety level	1	TAS [15]
	Isolation	from corroding off-shore oil wells	TAS [1]
MIGS-4	Geographic location	Emeraude oil field, Congo (Brazzaville)	TAS [1]
MIGS-5	Sample collection time	before 1989	TAS [1]
MIGS-4.1	Latitude	-5.05	NAS
MIGS-4.2	Longitude	11.78	NAS
MIGS-4.3	Depth	not reported	NAS
MIGS-4.4	Altitude	about sea level	NAS

Evidence codes - IDA: Inferred from Direct Assay (first time in publication); TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are from of the Gene Ontology project [16]. If the evidence code is IDA, then the property was observed by one of the authors or an expert mentioned in the acknowledgements.

Chemotaxonomy

None of the classical chemotaxonomic features (peptidoglycan structure, cell wall sugars, cellular fatty acid profile, menaquinones, or polar lipids) are known for *D. peptidovorans* SEBR 4207r or any of the other members of the genus *Dethiosulfovi- brio*.

Growth conditions and DNA isolation

D. peptidovorans SEBR 4207r, DSM 11002, was grown anaerobically in DSMZ medium 786 (*Dethiosulfovibrio peptidovorans* Medium) [19] at 42°C. DNA was isolated from 0.5-1 g of cell paste using Qiagen Genomic 500 DNA Kit (Qiagen, Hilden, Germany) following the protocol as recommended by the manufacturer, with modification st/FT for cell lysis as described in Wu *et al.* [18].

http://standardsingenomics.org
Table 2. Genome sequencing project information

MIGS ID	Property	Term
MIGS-31	Finishing quality	Permanent draft
	Libraries used	One 8 kb pMCL200 Sanger library, one 454 pyrosequence standard library and one Solexa library
MIGS-28	Libraries used	One 8 kb pMCL200 Sanger library, one 454 pyrosequence standard library and one Solexa library
MIGS-29	Sequencing platforms	ABI3730, 454 Titanium, Illumina GAii
MIGS-31.2	Sequencing coverage	8.0 x Sanger; 55.0 x pyrosequence
MIGS-30	Assemblers	Newbler version 1.1.02.15, Arachne
MIGS-32	Gene calling method	Prodigal 1.4, GenePRIMP
	INSDC ID	ABTR00000000
	Genbank Date of Release	May 1, 2009
	GOLD ID	Gc01332
	NCBI project ID	20741
	Database: IMG-GEBA	2501533205
MIGS-13	Source material identifier	DSM 11002
	Project relevance	Tree of Life, GEBA

Genome sequencing and assembly

The genome was sequenced using a combination of Sanger and 454 sequencing platforms. All general aspects of library construction and sequencing can be found at the JGI website. Pyrosequencing reads were assembled using the Newbler assembler version 1.1.02.15 (Roche). Large Newbler contigs were broken into overlapping fragments of 1,000 bp and entered into assembly as pseudo-reads. The sequences were assigned quality scores based on Newbler consensus q-scores with modifications to account for overlap redundancy and adjust inflated q-scores. A hybrid 454/Sanger assembly was made using Arachne assembler. Possible mis-assemblies were corrected and gaps between contigs were closed by primer walks off Sanger clones and bridging PCR fragments and by editing in Consed. A total of 392 Sanger finishing reads were produced to close gaps, to resolve repetitive regions, and to raise the quality of the finished sequence. Illumina reads were used to improve the final consensus quality using an in-house developed tool (the Polisher [20]). The error rate of the final genome sequence is less than 1 in 100,000. Together, the combination of the Sanger and 454 sequencing platforms provided 63.0× coverage of the genome. The final assembly contains 35,314 Sanger reads and 626,193 pyrosequencing reads.

Genome annotation

Genes were identified using Prodigal [21] as part of the Oak Ridge National Laboratory genome annotation pipeline, followed by a round of manual curation using the JGI GenePRIMP pipeline [22]. The predicted CDSs were translated and used to search the National Center for Biotechnology Information (NCBI) nonredundant database, UniProt, TIGRFam, Pfam, PRIAM, KEGG, COG, and InterPro databases. Additional gene prediction analysis and functional annotation was performed within the Integrated Microbial Genomes - Expert Review (IMG-ER) platform [23].

Genome properties

The genome is 2,576,359 bp long and assembled in one large contig and two small contigs (7,415 bp and 1,508 bp) with a 54.0% G+C content (Figure 3 and Table 3). Of the 2,517 genes predicted, 2,458 were protein-coding genes, and 59 RNAs; No pseudogenes were identified. The majority of the protein-coding genes (75.0%) were assigned with a putative function while the remaining ones were annotated as hypothetical proteins. The distribution of genes into COGs functional categories is presented in Table 4.
Figure 3. Graphical circular map of the genome (without the two small 1.5 and 7.4 kbp plasmids. From outside to the center: Genes on forward strand (color by COG categories), Genes on reverse strand (color by COG categories), RNA genes (tRNAs green, rRNAs red, other RNAs black), GC content, GC skew.

Table 3. Genome Statistics

Attribute	Value	% of Total
Genome size (bp)	2,576,359	100.00%
DNA coding region (bp)	2,391,158	92.81%
DNA G+C content (bp)	1,401,945	54.42%
Number of repolicons	3	
Extrachromosomal elements	2	
Total genes	2,517	100.00%
RNA genes	59	1.40%
rRNA operons	5	
Protein-coding genes	2,458	97.27%
Pseudo genes	0	0.00%
Genes with function prediction	1,888	75.01%
Genes in paralog clusters	438	17.41%
Genes assigned to COGs	1,952	77.55%
Genes assigned Pfam domains	2,007	79.74%
Genes with signal peptides	420	16.69%
Genes with transmembrane helices	619	24.59%
CRISPR repeats	2	
Table 4. Number of genes associated with the general COG functional categories

Code	value	%age	Description
J	149	6.7	Translation, ribosomal structure and biogenesis
A	0	0.0	RNA processing and modification
K	129	5.9	Transcription
L	115	5.3	Replication, recombination and repair
B	0	0.0	Chromatin structure and dynamics
D	28	1.3	Cell cycle control, mitosis and meiosis
Y	0	0.0	Nuclear structure
V	32	1.5	Defense mechanisms
T	133	6.1	Signal transduction mechanisms
M	119	5.5	Cell wall/membrane biogenesis
N	75	3.5	Cell motility
Z	0	0.0	Cytoskeleton
W	0	0.0	Extracellular structures
U	46	2.1	Intracellular trafficking and secretion, and vesicular transport
O	70	3.2	Posttranslational modification, protein turnover, chaperones
C	142	6.5	Energy production and conversion
G	113	5.2	Carbohydrate transport and metabolism
E	252	11.6	Amino acid transport and metabolism
F	65	3.0	Nucleotide transport and metabolism
H	99	4.6	Coenzyme transport and metabolism
I	44	2.0	Lipid transport and metabolism
P	125	5.8	Inorganic ion transport and metabolism
Q	31	1.4	Secondary metabolites biosynthesis, transport and catabolism
R	243	11.2	General function prediction only
S	161	7.4	Function unknown
-	565	22.5	Not in COGs

Acknowledgements

We would like to gratefully acknowledge the help of Esther Schüler for growing D. peptidovorans and Susanne Schneider for DNA extraction and quality analysis (both at DSMZ). This work was performed under the auspices of the US Department of Energy’s Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Berkeley National Laboratory under contract No. DE-AC02-05CH11231, Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, and Los Alamos National Laboratory under contract No. DE-AC02-06NA25396, UT-Battelle and Oak Ridge National Laboratory under contract DE-AC05-00OR22725, as well as German Research Foundation (DFG) INST 599/1-2. The Indian Council of Scientific and Industrial Research provided a Raman Research Fellowship to Shanmugam Mayilraj.

References

1. Magot M, Ravot G, Campaignolle X, Ollivier B, Patel BKC, Fardeau ML, Thomas P, Crolet JL, Garcia JL. Dethiosulfovibrio peptidovorans gen. nov., sp. nov., a new anaerobic, slightly halophilic, thiosulfate-reducing bacterium from corroding offshore oil wells. [9226912]. Int J Syst Bacteriol 1997; 47:818-824; doi:10.1099/00207713-47-3-818. PubMed

2. Jumas-Bilak E, Roudière L, Marchandin H. Description of ‘Synergistetes’ phyl. nov. and emended description of the phylum ‘Deferrribacteres’ and of the family Syntrophomonadaceae, phylum ‘Firmicutes’. [19406787]. Int J Syst Evol Microbiol 2009; 59:1028-1035; doi:10.1099/ijs.0.006718-0. PubMed

3. Diaz-Cárdenas C, López G, Patel BKC, Baena S. Dethiosukfovibrio salsuginis sp. nov., an anaerobic slightly halophilic bacterium isolated from a saline spring in Colombia. Int J Syst Bacteriol 2009; (In press); 10.1099/ijs.0.010835-0.
4. Surkov AV, Dubinina GA, Lysenko AM, Glöckner FO, Kuever J. *Dethiosulfovibrio russenensis* sp. nov., *Dethiosulfovibrio marinus* sp. nov. and *Dethiosulfovibrio acidaminovorans* sp. nov., novel anaerobic, thiosulfate- and sulfur-reducing bacteria isolated from *Thiodendron* sulfur mats in different saline environments. *Int J Syst Evol Microbiol* 2001; 51:327-337. PubMed

5. Chun J, Lee JH, Jung Y, Kim M, Kim S, Kim BK, Lim YW. EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. *Int J Syst Evol Microbiol* 2007; 57:2259-2261. PubMed doi:10.1099/ijs.0.64915-0

6. Lee C, Grasso C, Sharlow MF. Multiple sequence alignment using partial order graphs. *Bioinformatics* 2002; 18:452-464. PubMed doi:10.1093/bioinformatics/18.3.452

7. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. *Mol Biol Evol* 2000; 17:540-552. PubMed

8. Stamatakis A, Hoover P, Rougemont J. A Rapid Bootstrap Algorithm for the RAXML Web Servers. *Syst Biol* 2008; 57:758-771. PubMed doi:10.1080/10635150802429642

9. Yarza P, Richter M, Pelleys J, Euzeby J, Amani R, Schleifer KH, Ludwig W, Glöckner FO, Rosselló-Móra R. The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. *Syst Appl Microbiol* 2008; 31:241-250. PubMed doi:10.1016/j.syapm.2008.07.001

10. Liolios K, Chen IM, Mavromatis K, Tavaronakis N, Kyrpides NC. The Genomes OnLine Database (GOLD) in 2009: status of genomic and metagenomic projects and their associated metadata. *Nucleic Acids Res* 2010; 38:D346-D354. PubMed doi:10.1093/nar/gkp848

11. Chovatia M, Sikorski J, Schöder M, Lapidus A, Nolan M, Tice H, Glavina Del Rio T, Copeland A, Cheng JF, Lucas S, et al. Complete genome sequence of *Thermanaerovibrio acidaminovorans* type strain (Su883T). *Stand Genomic Sci* 2009; 1:254-261. doi:10.4056/sigs.40645

12. Chertkov O, Sikorski J, Brambilla E, Lapidus A, Copeland A, Glavina Del Rio T, Nolan M, Lucas S, Tice H, Cheng JF, et al. Complete genome sequence of *Aminobacterium colombiense* type strain (ALA-1T). *Stand Genomic Sci* 2010; 2:280-289. doi:10.4056/sigs.902116

http://standardsingenomics.org

13. Field D, Garrity G, Gray T, Morrison N, Selengut J, Sterk P, Tatusova T, Thomson N, Allen MJ, Angiuoli SV, et al. The minimum information about a genome sequence (MIGS) specification. *Nat Biotechnol* 2008; 26:541-547. PubMed doi:10.1038/nbt1360

14. Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms. Proposal for the domains Archaea and Bacteria. *Proc Natl Acad Sci USA* 1990; 87:4576-4579. PubMed doi:10.1073/pnas.87.12.4576

15. Classification of bacteria and archaea in risk groups. www.baua.de TRBA 466

16. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. *Nat Genet* 2000; 25:25-29. PubMed doi:10.1038/75556

17. Klenk HP, Göker M. En route to a genome-based classification of Archaea and Bacteria? *Syst Appl Microbiol* 2010; 33:175-182. PubMed doi:10.1016/j.syapm.2010.03.003

18. Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E, Ivanova NN, Kunin V, Goodwin L, Wu M, Tindall BJ, et al. A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. *Nature* 2009; 462:1056-1060. PubMed doi:10.1038/nature08656

19. List of growth media used at DSMZ: http://www.dsmz.de/microorganisms/media_list.php

20. Lapidus A, LaButti K, Foster B, Lowry S, Trong S, Goltsman E. POLISHER: An effective tool for using ultra short reads in microbial genome assembly and finishing. AGBT, Marco Island, FL, 2008.

21. Hyatt D, Chen GL, Locascio PF, Land ML, Larioli SV, et al. Complete genome sequence (MIGS) specification. *Nat Genet* 2001; 25:119. PubMed doi:10.1038/nmeth.1457

22. Pati A, Ivanova N, Mikhailova N, Ovchinkova G, Hooper SD, Lykidis A, Kyrpides NC. GenePRIMP: A gene prediction improvement pipeline for microbial genomes. *Nat Methods* 2010; 7:455-457. PubMed doi:10.1038/nmeth.1457

23. Markowitz VM, Ivanova NN, Chen IMA, Chu K, Kyrpides NC. IMG ER: a system for microbial genome annotation expert review and curation. *Bioinformatics* 2009; 25:2271-2278. PubMed doi:10.1093/bioinformatics/btp393