Influence of Pulse Waveform and Frequency on Evoked Torque, Stimulation Efficiency, and Discomfort in Healthy Subjects

Rodrigo Rabello, BSc, Matias Fröhlich, PhD, Nicola Angelo Maffiuletti, PhD, and Marco Aurélio Vaz, PhD

Objective: The aim of the study was to determine the influence of neuromuscular electrical stimulation pulse waveform and frequency on evoked torque, stimulation efficiency, and discomfort at two neuromuscular electrical stimulation levels.

Design: This is a repeated measures study. The quadriceps muscle of 24 healthy men was stimulated at submaximal (neuromuscular electrical stimulation_{sub}) and maximal (neuromuscular electrical stimulation_{max}) levels using two pulse waveforms (symmetrical, asymmetrical) and three pulse frequencies (60, 80, 100 Hz). Repeated measures analysis of variance and effect sizes were used to verify the effect of pulse waveform and pulse frequency on stimulation efficiency (evoked torque/current intensity) and discomfort and to assess the magnitude of the differences, respectively.

Results: Stimulation efficiency was higher for symmetrical (neuromuscular electrical stimulation_{sub} = 0.88 ± 0.21 Nm/mA; neuromuscular electrical stimulation_{max} = 1.27 ± 0.46 Nm/mA) compared with asymmetrical (neuromuscular electrical stimulation_{sub} = 0.77 ± 0.21 Nm/mA; neuromuscular electrical stimulation_{max} = 1.02 ± 0.34 Nm/mA; δ = 0.66) but did not significantly differ between frequencies (δ = 0.17). At both neuromuscular electrical stimulation levels, there were no statistically significant differences in discomfort between pulse waveforms or frequencies.

Conclusions: The higher stimulation efficiency of symmetrical pulses suggests that this waveform would be preferred to asymmetrical pulses in clinical practice. Stimulation frequencies between 60 and 100 Hz can be used interchangeably because of similar efficiency and discomfort.

Key Words: Frequency, Waveform, Stimulation Efficiency, NMES

What Is Known

- Electrical stimulation parameters largely impact both the amount of torque that is produced and the discomfort perceived by the patient, consequently influencing the effectiveness of the technique.

What Is New

- A symmetrical pulse waveform has greater stimulation efficiency (more torque with less current intensity) than an asymmetrical one, for a comparable level of discomfort.

Neuromuscular electrical stimulation (NMES) consists in the application of trains of electrical stimuli to superficial muscles with the goal to generate involuntary contractions, whereby motor units are nonselectively recruited by depolarizing motor axons in proximity of the stimulating electrodes.1 Electrical current parameters, such as pulse waveform, pulse frequency, pulse duration, and current intensity, have a great influence on the amount of tension generated by a muscle during NMES (evoked torque) as well as on the level of discomfort perceived by the subject.2 Neuromuscular electrical stimulation is universally considered more efficient when it produces the highest torque with the smallest current intensity, as reflected by the highest possible stimulation efficiency in newton meter per milliampere,3 whereas subjective discomfort is also an important clinical outcome that should potentially be kept to the lowest possible level.4

The waveform of an electrical pulse represents the current intensity level variation over time. It can be symmetrical or asymmetrical and is often represented by geometric shapes.5 The area below an electrical current curve, which is influenced by pulse waveform, pulse duration, and current intensity, represents the level of electrical charge delivered to the muscle, this latter being proportional to torque production.6 Although pulse waveform is a very important NMES parameter, its impact on evoked torque has mainly been evaluated while modifying other parameters concurrently.7,8 Consequently, there is still poor knowledge on how pulse waveform per se affects evoked torque and stimulation efficiency.

The impact of different NMES parameters on evoked torque has been extensively studied and more particularly so for the functionally important and commonly stimulated quadriceps muscle.9–11 However, it is still unclear how tetanic stimulation frequencies, which are known to maximize evoked torque,12 in combination with different pulse waveforms (particularly symmetrical vs. asymmetrical pulses) may affect stimulation efficiency, as well as the level of perceived discomfort.
Therefore, the main aim of this study was to determine the influence of pulse waveform and frequency on evoked torque, stimulation efficiency, and discomfort at two different NMES levels: a standard submaximal level and the maximally tolerated current level. It was hypothesized that both NMES-evoked knee extension torque and current intensity—and therefore stimulation efficiency—as well as perceived discomfort would be comparable for equal-charge symmetrical and asymmetrical pulse waveforms. On the other hand, because more electrical charge is delivered at higher frequencies with the same current intensity, it was also expected that stimulation efficiency would increase in direct proportion to the increase in pulse frequency.

METHODS

Subjects

To reduce between-subject heterogeneity in NMES current levels and evoked torque, only healthy and physically active men were considered for this study. Subjects were recruited through social networks among physical education students of the university in which the study was conducted. Physical activity level and medical history were self-reported. To participate in the study, subjects should have reported a minimum of 150 mins of exercise a week, no lower limb injuries in the previous 6 mos and no history of cardiovascular or neurological disease. The Strengthening the Reporting of Observational studies in Epidemiology guidelines were used to ensure the reporting of this observational study (Supplemental Digital Content 1, http://links.lww.com/PHM/B76). All participants signed an informed consent form to participate in the study, which was approved by the university’s ethics committee (Certificate of Presentation for Ethical Appreciation Number 79564217.9.0000.5347).

The appropriate sample size was calculated a priori using G*Power software (Version 3.1.9.6; University of Trier, Trier, Germany). A repeated measures analysis of variance, within-between interaction (F tests family), was used, with a level of significance set at a P value of 0.05, power set at 0.95 to detect a medium effect ($f^2 > 0.35$; correlation among repeated measures = 0.5; number of groups = 2; number of measurements = 3; nonsphericity correction $\varepsilon = 1$). Based on these calculations, 24 subjects (age $= 25 \pm 4$ yrs, range = 20–35 yrs; body mass index $= 23.7 \pm 2.9$ kg/m2; 22 white) were recruited and completed all phases of the study.

Procedures

A repeated measures design was used in which all the subjects completed two NMES sessions in the laboratory separated by a 2-wk interval to avoid any possible carryover effect. The two sessions were identical, except for the type of pulse waveform (symmetrical or asymmetrical; Fig. 1B) that was randomly presented. Both NMES sessions consisted of a preparation phase without NMES (positioning, warm-up, and assessment of maximal voluntary contraction [MVC] torque), a preparation phase with NMES (motor point localization and familiarization), and an experimental phase (determination of NMES levels and testing using three different frequencies with symmetrical/asymmetrical pulses at two NMES intensity levels; Supplemental Digital Content 2, http://links.lww.com/PHM/B77). All procedures and assessments were conducted on the quadriceps/knee extensors of the dominant side (kicking leg) under static conditions (except warm-up contractions).

The dependent variables were evoked torque, current intensity, stimulation efficiency, and perceived discomfort. The independent variables were pulse waveform (symmetrical vs. asymmetrical), pulse frequency (60 vs. 80 vs. 100 Hz), and NMES level (submaximal [NMES$_{sub}$] vs. maximal [NMES$_{max}$]). Submaximal NMES was consistently used first, whereas pulse waveform and pulse frequency were randomized. Block randomization ($n = 4$) was used to guarantee that the symmetrical and asymmetrical waveforms were used for an equal number of subjects ($n = 12$) on the first session. Similarly, each of the six possible orders in which the three frequencies could be organized was used for an equal number of subjects ($n = 4$) for each session and intensity level. A new randomization was performed for each session and level (i.e., the randomization used for NMES$_{sub}$ on the symmetrical day did not influence the one used for NMES$_{max}$ on the asymmetrical day).

Preparation Phase Without NMES

Subjects were positioned in the chair of an isokinetic dynamometer (Biodex System 3 Pro; Biodex Medical System, Shirley, NY) with the hip joint flexed at approximately 90 degrees (Fig. 2B). They initially warmed up by performing 10 reciprocal concentric knee extension/extension cycles at an angular velocity of 90 degrees per second. Subsequently, their knee joint was fixed at 90 degrees of flexion and MVC torque (in newton meter) was evaluated using three efforts of 4–5 secs separated by 2-min rest periods. Only the trial with the highest MVC torque was further considered.

Preparation Phase With NMES

Neuromuscular electrical stimulation was consistently delivered with a multifunctional electrical stimulator designed and manufactured by the Bioengineering Department of a collaborating hospital, which allowed pulse waveform and frequency to be manipulated while controlling current intensity. Both the symmetrical and the asymmetrical waveforms had a quasi-rectangular positive phase with a 500-μsec duration but differed in their negative phase. The negative phase of the symmetrical waveform was also quasi-rectangular (500-μsec duration), while the negative phase of the asymmetrical waveform was triangular, with a slope increasing slowly and steadily until all the energy was dissipated (Fig. 1B).

To determine the exact location of the rectus femoris motor point, saline gel was applied on the skin covering the muscle belly, and a pen-shaped electrode was used to locate the motor point (Fig. 2A). Single pulses (biphasic symmetrical waveform with 100-μsec duration) were delivered with a frequency of 1 Hz at a sufficient intensity to produce a visible quadriceps contraction. The pen-shaped electrode was displaced over the skin, and the location where the pulse produced the largest knee extensor torque was identified as the motor point.
Two 7.5 × 13-cm rectangular electrodes with integrated self-adhesive gel (Arktus, Santa Tereza do Oeste, Brazil) were positioned proximally over the previously determined motor point, and distally approximately 5 cm above the patella’s upper edge (Fig. 2). With this configuration, subjects were familiarized to low-intensity NMES trains (duration: 6 secs with ramp-up and ramp-down phases of 2 and 1 sec, respectively) at the three experimental frequencies and the waveform selected.

FIGURE 1. A, Schematic representation of the waveforms used for NMES. B, The total current energy (sum of the positive and negative pulse phases) was similar for both waveforms. Neuromuscular electrical stimulation pulse shape, phase area (a), pulse area (pA), interpulse interval (I), and pulse amplitude (V) of the symmetrical and asymmetrical waveforms for the three different stimulation frequencies (60, 80, and 100 Hz). C, Approximated view showing the quasi-rectangular shape.

FIGURE 2. A, Motor point determination with a pen-shaped electrode. B, Position of the NMES electrodes on the thigh of a representative subject while seated in the test position.
for the specific session, with two trains per frequency. Trains were interspersed with rest periods of 2 mins.

Experimental Phase

Stimulation trains with a combination of symmetrical/asymmetrical pulses and 60, 80, and 100 Hz were delivered at two different levels: NMES_{sub} (20% of the MVC torque) and NMES_{max} (maximum tolerated current intensity). The 20% MVC torque target was selected because it corresponds to the lowest range of the therapeutic window¹⁷, is close to what has been used in previous studies^{18,19} and produces a minimum discomfort because of a relatively low stimulation intensity. The maximal tolerated current condition was selected as it corresponds to the most widely used NMES level in strength training^{20,21} and rehabilitation.^{22,23}

For all waveform-frequency combinations, the current intensity required to reach the NMES_{sub} level was determined by gradual increases until the desired torque was reached. After a 2-min rest interval, testing was performed by increasing current intensity during 2 secs (ramp up) until the determined value was reached, maintaining it constant for 3 secs, and finally decreasing to zero in 1 sec (ramp down). After the three frequencies (with symmetrical or asymmetrical pulses, depending on the day) were tested for the NMES_{sub} level, subjects rested for 10-min. Afterward, the same protocol was performed for the NMES_{max} level, where the required current intensity was determined by gradual increases until subjects signaled verbally that they had reached the highest tolerated current level.

During testing, the highest torque generated by each train was recorded by the dynamometer. The associated current intensity provided by the stimulator was also retained. Stimulation efficiency was calculated by dividing the evoked torque by the concomitant current intensity (in newton meter per milliampere).⁷ Immediately after each stimulation train, subjects were asked to report their discomfort level by making a vertical mark on a 0–10 visual analog scale, where 0 represented no discomfort and 10 the worst possible perceived discomfort.²⁴ Subjects were blinded as to which pulse waveform and frequency were used.

Statistical Analyses

Paired <i>t</i> tests were used to compare the MVC torque between the two sessions (symmetrical vs. asymmetrical). To verify the effect of pulse waveform and pulse frequency on current intensity, evoked torque and discomfort at both NMES_{sub} and NMES_{max} levels, a repeated measures two-way analysis of variance was used (factors: frequency and waveform). To verify the effect of pulse waveform, pulse frequency, and NMES level on stimulation efficiency, a repeated measures three-way analysis of variance was used (factors: waveform, frequency, and NMES level). Bonferroni post hoc tests were used to identify specific differences when appropriate. All analyses were performed with SPSS 20.0 (SPSS, Inc, Chicago, IL) software package adopting a significance level of 5% (<i>P</i> < 0.05). In addition, effect sizes (ESs, Cohen’s ‘<i>d</i>’) were calculated to assess the magnitude of the differences. Effect sizes were classified as small if <i>d</i> = 0.2, medium if <i>d</i> = 0.5, and large if <i>d</i> ≥ 0.80.²⁵ Results are presented as mean ± SD, unless otherwise stated.

RESULTS

The MVC torque was 235 ± 50 and 235 ± 58 Nm for symmetrical and asymmetrical sessions, respectively (<i>P</i> = 0.94). Effect sizes will only be shown for statistically significant comparisons, because ESs were small (<i>d</i> < 0.2) for all nonsignificant comparisons.

For NMES_{sub} (Fig. 3), there was a main effect of pulse waveform on current intensity, but not on evoked torque (<i>P</i> = 0.27) and discomfort (<i>P</i> = 0.13). Current intensity was lower (<i>P</i> ≤ 0.001) for symmetrical compared with asymmetrical pulses, with medium ESs (<i>d</i> range = 0.71–0.76). There was a main effect of pulse frequency on evoked torque, but not on current intensity (<i>P</i> = 0.44) and discomfort (<i>P</i> = 0.96). Evoked torque was higher (<i>P</i> = 0.04) at 80 Hz than at 60 Hz, with small ESs (<i>d</i> range = 0.05–0.14). There was no significant interaction between pulse waveform and frequency for any of the dependent variables (current intensity: <i>P</i> = 0.83; evoked torque: <i>P</i> = 0.57; discomfort: <i>P</i> = 0.42).

For NMES_{max} (Fig. 3), there was a main effect of pulse waveform on current intensity and evoked torque, but not on discomfort (<i>P</i> = 0.76). Current intensity was lower (<i>P</i> ≤ 0.001), whereas evoked torque was higher (<i>P</i> = 0.04) for symmetrical compared with asymmetrical pulses, with small to medium ESs (<i>d</i> range = 0.25–0.52 for current intensity, 0.26–0.37 for evoked torque). There was no main effect of pulse frequency for any of the dependent variables (current intensity: <i>P</i> = 0.26; evoked torque: <i>P</i> = 0.80; discomfort: <i>P</i> = 0.61). There was a significant interaction between pulse waveform and frequency for current intensity (<i>P</i> = 0.04). No interaction was found for the other dependent variables (evoked torque: <i>P</i> = 0.66; discomfort: <i>P</i> = 0.69).

For stimulation efficiency (Fig. 4), there was a main effect of pulse waveform and stimulation level, but not of pulse frequency (<i>P</i> = 0.17). Symmetrical pulses showed greater efficiency than asymmetrical pulses (<i>P</i> ≤ 0.001), with medium ESs (<i>d</i> range = 0.56–0.66). Stimulation efficiency at NMES_{max} was higher than at NMES_{sub} (<i>P</i> ≤ 0.001), with a large ES (<i>d</i> = 1.10). There was no significant interaction between pulse waveform, pulse frequency, and stimulation level (<i>P</i> = 0.96). There was a significant interaction between pulse waveform and stimulation level (<i>P</i> = 0.02), but no interaction was found between pulse waveform and frequency and between frequency and stimulation level (<i>P</i> = 0.66 and 0.65, respectively).

DISCUSSION

The main findings of this study were that stimulation efficiency of symmetrical pulses was greater compared with asymmetrical pulses, despite similar discomfort. This study also demonstrated that stimulation efficiency and discomfort were not influenced by pulse frequency, and stimulation efficiency was higher at NMES_{max} compared with NMES_{sub}. Stimulation efficiency of symmetrical pulses was greater than asymmetrical pulses at both NMES_{sub} and NMES_{max} levels. Because the only difference between the two pulse waveforms was the negative phase slope, the results suggest that the shape and/or duration of the negative phase (long triangular for asymmetrical), as opposed to a 500-μsec quasi-rectangular negative phase (symmetrical), may have affected evoked torque. In biphasic pulsed currents, the first phase (or stimulating phase) is used to elicit the desired
physiological effect, such as initiation of an action potential, whereas the second phase, or reversal phase, is used to reverse electrochemical processes occurring during the stimulating pulse. Therefore, as the negative phase of the asymmetrical pulse extended until the next pulse was initiated, the reversal of the electrochemical processes might not have been complete, thereby impeding some of the new action potentials to be produced, consequently affecting stimulation efficiency.

Stimulation efficiency was expected to increase proportionally with pulse frequency, because electrical charge is greater at higher frequencies for the same current intensity. However, efficiency did not differ between the three pulse frequencies, probably because of the fact that these frequencies are all too close to the plateau of the force-frequency relation. These results are similar to those reported in previous studies that evaluated the influence of stimulation frequency on NMES evoked torque, in which the frequency producing the highest torque was greater than 60 Hz, between 80 and 100 Hz, or close to 100 Hz. In these studies, however, stimulation efficiency was not reported.

Stimulation efficiency was higher for NMESmax than for NMESsub, suggesting a nonlinearity of the relationship between current intensity and evoked torque from submaximal to maximal levels. More specifically, progressively increasing
current intensity beyond the 20% MVC torque level apparently resulted in the recruitment of stronger motor units per unit of current compared with those recruited at lower intensities. These surprising results do not support the assumption that motor unit recruitment induced by NMES is random/nonselective (i.e., muscle fibers are activated without obvious sequencing related to fiber types), but they rather suggest that motor units could be recruited in order of their size also during NMES. If confirmed, these findings may have important implications for individuals showing specific impairments in fast muscle fibers (e.g., elderly, critically ill patients), as submaximal levels of NMES would probably not be able to activate these fibers sufficiently to promote beneficial adaptations.

From a clinical perspective, there are at least two important requirements for the utilization of NMES as a valid therapeutic modality: maximizing the presumed effectiveness by applying trains that produce the highest evoked torque with the lowest current intensity (i.e., maximizing stimulation efficiency) and/or minimizing the level of discomfort induced by NMES. In terms of efficiency, these results—despite having been obtained in healthy subjects and in acute conditions—suggest that symmetrical pulse waveforms seem to be more appropriate than asymmetrical pulses, whereas frequencies in the 60- to 100-Hz range may be used interchangeably. In terms of discomfort, no pulse waveform-frequency combination appeared superior to minimize self-reported discomfort, as already demonstrated in similar NMES studies. Taken together, these results seem to indicate an inconsistency between the subjective sensations resulting from actual muscle stimulation/contraction and objective characteristics of the stimulation (current intensity) or the contraction (evoked torque). This inconsistency invalidates, at least in part, the use of self-reported discomfort as a single main criterion for optimizing NMES use.

Limitations and Future Directions
The present study has several limitations worth noting. To avoid the occurrence of neuromuscular fatigue during each session, only one stimulation train per pulse waveform-frequency combination was considered, and in the same way, only one train was used to determine the required current intensity for each condition. Nevertheless, the intrasession reliability of evoked torque was tested before the study in 15 healthy subjects using three consecutive trains per condition, and intraclass correlation coefficients ranging from 0.88 to 0.96 were found (unpublished observations). Therefore, it was assumed that using a single train instead of multiple trains per condition was both valid and suitable for this protocol. Only healthy physically active men were included in this study, so as to reduce the intersubject heterogeneity in NMES current levels and evoked torque. Therefore, the present results cannot necessarily be generalized to women, elderly subjects, or patients with specific needs for NMES therapy. Finally, in the current repeated measure study, NMES was exclusively applied twice, and not with a therapeutic goal, so the presumed effectiveness of an actual NMES program can only be inferred from acute differences in stimulation efficiency between conditions. Therefore, future longitudinal studies should aim to investigate the real effectiveness of NMES protocols with different pulse characteristics and after multiple sessions, so as to provide specific clinical recommendations for optimal use of NMES current parameters.

CONCLUSIONS
The results of the present study demonstrated that when applying NMES to the quadriceps femoris muscle of healthy men at both maximal tolerated and submaximal levels, pulse waveform had a considerable influence on stimulation efficiency, but not on self-reported discomfort. More specifically, greater stimulation efficiency was found for symmetrical compared with asymmetrical pulses. On the other hand, pulse frequency in the 60- to 100-Hz range had no effect on both stimulation efficiency and discomfort. These findings may help clinicians make an informed decision when choosing the most appropriate pulse parameters for evidence-based NMES therapy in clinical practice.

ACKNOWLEDGMENTS
The authors would like to acknowledge Danton Pereira da Silva Júnior, Paulo Roberto Stefanni Sanches, Alessandro Schildt, Bruno Tondin, and Graciele Bruzzi for their technical expertise in the development of the Multifunctional Neuromuscular Electrical Stimulator.

REFERENCES
1. Collins DF: Central contributions to contractions evoked by tetanic neuromuscular electrical stimulation. Exerc. Sport Sci Rev 2007;35:102–9.
2. Robinson AJ, Snyder-Mackler L: Clinical Electrophysiologic Testing: Electrotherapy and Electrophysiologic Testing. Philadelphia, Wolters Kluwer Health/Lippincott Williams & Wilkins, 2008.
3. Lieber RL, Kelly MJ: Factors influencing quadriceps femoris muscle torque using transcutaneous neuromuscular electrical stimulation. Phys Ther 1991;71:715–21.
4. Delitto A, Strube MJ, Shulman AD, et al: A study of discomfort with electrical stimulation. Phys Ther 1992;72:410–21.
5. Dusset BM, Lam A, Griffin L: Neuromuscular electrical stimulation for skeletal muscle function. Yale J Biol Med 2012;85:201–15.
6. Gregory CM, Dixon W, Bickel CS: Impact of varying pulse frequency and duration on muscle torque production and fatigue. Muscle Nerve 2007;35:301–9.
7. Snyder-Mackler L, Garrett M, Roberts M: A comparison of torque generating capabilities of three different electrical stimulating currents. J Orthop Sports Phys Ther 1989;10:297–301.
8. DE Domenico G, Strauss G: Maximum torque production in the quadriceps femoris muscle group using a variety of electrical stimulators. *Aust J Physiother* 1986;32:51–6

9. Scott WR, Lee SC, Johnston TE, et al: Contractile properties and the force-frequency relationship of the paralyzed human quadriceps femoris muscle. *Phys Ther* 2006;86:788–99

10. Binder-Macleod SA, McDermont LR: Changes in the force-frequency relationship of the human quadriceps femoris muscle following electrically and voluntarily induced fatigue. *Phys Ther* 1992;72:95–104

11. Dreibati B, Lavet C, Pinti A, et al: Influence of electrical stimulation frequency on skeletal muscle force and fatigue. *Ann Phys Rehabil Med* 2010;53:266–77

12. Gregory CM, Bickel CS, Sharma N, et al: Comparing the force- and excursion-frequency relationships in human skeletal muscle. *Muscle Nerve* 2008;38:1627–9

13. Mauffuletti NA, Herrero AJ, Jubeau M, et al: Differences in electrical stimulation thresholds between men and women. *Ann Neurol* 2008;63:507–12

14. Faul F, Erdfelder E, Lang AG, et al: G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. *Behav Res Methods* 2007;39:175–91

15. Schäfer A, Sanches P, Junior D, et al: Desenvolvimento de um estimulador elétrico para uso em pacientes de UTI (Development of an electrical stimulator for use in ICU patients), in: Anais do XXV Congresso Brasileiro de Engenharia Biomédica – CBEB 2016. Foz do Iguaçu, PR, Brasil, Sociedade Brasileira de Engenharia Biomédica (SBEB), 2016:440–3

16. Botter A, Oprandi G, Lanfranco F, et al: Atlas of the muscle motor points for the lower limb: implications for electrical stimulation procedures and electrode positioning. *Eur J Appl Physiol* 2011;111:2461–71

17. Mauffuletti NA: Physiological and methodological considerations for the use of neuromuscular electrical stimulation. *Eur J Appl Physiol* 2010;110:225–34

18. Lai HS, Domenico GD, Strauss GR: The effect of different electro-motor stimulation training intensities on strength improvement. *Aust J Physiother* 1988;34:151–64

19. Talbot LA, Gaines JM, Ling SM, et al: A home-based protocol of electrical muscle stimulation for quadriceps muscle strength in older adults with osteoarthritis of the knee. *J Rheumatol* 2003;30:1571–8

20. Babault N, Bottaro M, Modesto K, et al: Training effects of alternated and pulsed currents on the quadriceps muscles of athletes. *Int J Sports Med* 2018;39:535–40

21. Gomes da Silva CF, Lima E Silva FX, Vianna KB, et al: Eccentric training combined to neuromuscular electrical stimulation is not superior to eccentric training alone for quadriceps strengthening in healthy subjects: a randomized controlled trial. *Braz J Phys Ther* 2018;22:502–11

22. Melo Mde O, Pompeo KD, Brodt GA, et al: Effects of neuromuscular electrical stimulation and low-level laser therapy on the muscle architecture and functional capacity in elderly patients with knee osteoarthritis: a randomized controlled trial. *Clin Rehabil* 2015;29:570–80

23. Devetis G, Mehn Y, Senliangolu Beyazal M: Short-term effects of neuromuscular electrical stimulation and ultrasound therapies on muscle architecture and functional capacity in knee osteoarthritis: a randomized study. *Clin Rehabil* 2019;33:418–27

24. Lein DH Jr., Eidson C, Hammond K, et al: The impact of varying interphase interval on neuromuscular electrical stimulation-induced quadriceps femoris muscle performance and perceived discomfort. *Physiother Theory Pract* 2019;1–9. doi: 10.1080/09593985.2019.1685032

25. Cohen J: *Statistical Power Analysis for the Behavioral Sciences*, 2nd ed. Hillsdale, NJ, Lawrence Earlbaum Associates, 1988

26. Merrill DR, Bikson M, Jefferys RG: Electrical stimulation of excitable tissue: design of efficacious and safe protocols. *J Neurosci Methods* 2005;141:171–98

27. Scally R, Barnes M: Physical Therapy, Philadelphia, Lippincott Company, 1989

28. Gregory CM, Bickel CS: Recruitment patterns in human skeletal muscle during electrical stimulation. *Phys Ther* 2005;85:358–64

29. Gondin J, Brocca L, Bellinzona E, et al: Neuromuscular electrical stimulation training induces atypical adaptations of the human skeletal muscle phenotype: a functional and proteomic analysis. *J Appl Physiol* 2011;110:433–50

30. Mauffuletti NA, Green DA, Vaz MA, et al: Neuromuscular electrical stimulation as a potential countermeasure for skeletal muscle atrophy and weakness during human spaceflight. *Front Physiol* 2019;10:1031

31. Medeiros FV, Bottaro M, Vieira A, et al: Kiilohertz and low-frequency electrical stimulation with the same pulse duration have similar efficiency for inducing isometric knee extension torque and discomfort. *Am J Phys Med Rehabil* 2017;96:388–94

32. De Oliveira PFA, Durigan JLQ, Modesto KAG, et al: Neuromuscular fatigue after low- and medium-frequency electrical stimulation in healthy adults. *Muscle Nerve* 2018;58:293–9