The effective function of circular RNA in colorectal cancer

Mandana Ameli-Mojarad1, Melika Ameli-Mojarad1, Mahrooyeh Hadizadeh2, Chris Young3, Hosna Babini4, Ehsan Nazemalhosseini-Mojarad5* and Maziar Ashrafian Bonab2*

Abstract
Colorectal cancer (CRC) is the 3rd most common type of cancer worldwide. Late detection plays role in one-third of annual mortality due to CRC. Therefore, it is essential to find a precise and optimal diagnostic and prognostic biomarker for the identification and treatment of colorectal tumorigenesis. Covalently closed, circular RNAs (circRNAs) are a class of non-coding RNAs, which can have the same function as microRNA (miRNA) sponges, as regulators of splicing and transcription, and as interactors with RNA-binding proteins (RBPs). Therefore, circRNAs have been investigated as specific targets for diagnostic and prognostic detection of CRC. These non-coding RNAs are also linked to metastasis, proliferation, differentiation, migration, angiogenesis, apoptosis, and drug resistance, illustrating the importance of understanding their involvement in the molecular mechanisms of development and progression of CRC. In this review, we present a detailed summary of recent findings relating to the dysregulation of circRNAs and their potential role in CRC.

Keywords: Circular RNA, Colorectal cancer, Long non-coding RNA, Noncoding RNA

Background
Colorectal cancer (CRC) is one of the most common malignancies ranking third in the incidence and second in mortality among other cancers in the world. The global incidence of CRC is increasing, with approximately 3640 deaths and 17,930 new cases in 2020 [1, 2]. The exact mechanisms underlying CRC development remain unknown, however, risk factors that are strongly related to CRC include genetics, diet, tobacco smoking, heavy alcohol consumption, inactive lifestyle and age, where > 50 is a significant risk factor for CRC. However, recent evidence has also detected an increased risk for young adults [3]. Clearly the disorder is multifactorial in nature, with no common identifiable predictor of pre-disposition [4]. Here, we will review the molecular evidence to date.

Genetic and epigenetic alterations have both been found in CRC patients; changes in chromosomal copy number, aberrant gene methylation, and dysregulated gene expression, including tumor suppressor genes such as APC, BRAF, DCC, TP53, SMAD4, SMAD2, oncogenes such as KRAS and NRAS, and DNA repair genes including MLH1 and MSH6 [5, 6].

Dividing these mutation types into functional pathways broadly identifies three separate mechanisms: Chromosomal instability, which is the most common cause of genomic instability in CRC, significantly linked to alterations in APC and KRAS genes [7, 8]. In hereditary and sporadic colorectal cancer, microsatellite instability (MSI) is another key pathway. Germline mutation in one of the DNA mismatch repair genes, MLH1, MSH2, MSH6, or PMS2 leads to hereditary nonpolyposis colorectal cancer.
The majority of the human genome (~90%) is transcribed as ncRNAs, which contain multiple classes of RNAs with various lengths [17]. Many studies have identified functional roles for ncRNAs, in various physiological and pathological processes, such as diabetes, cardiovascular disease, and cancer [18–20]. Classes of short ncRNAs include microRNAs (miRNAs), small interfering RNAs (siRNAs) and short piwi-interacting RNAs (piRNAs), meanwhile, linear IncRNAs (long non-coding RNAs) and circular RNAs are both classified as long noncoding RNAs [21]. circRNAs, however, are a new class of long ncRNAs, Processing largely from exotic or intronic sequences, and are remarkably unstable in structure and show tissue-specific expression, also displaying developmental stage regulation, with evolutionary conservation among species [25].

The non-coding RNAs

The majority of the human genome (~90%) is transcribed as ncRNAs, which contain multiple classes of RNAs with various lengths [17]. Many studies have identified functional roles for ncRNAs, in various physiological and pathological processes, such as diabetes, cardiovascular disease, and cancer [18–20]. Classes of short ncRNAs include microRNAs (miRNAs), small interfering RNAs (siRNAs) and short piwi-interacting RNAs (piRNAs), meanwhile, linear IncRNAs (long non-coding RNAs) and circular RNAs are both classified as long noncoding RNAs [21]. circRNAs, however, are a new class of long ncRNAs, Processing largely from exotic or intronic sequences, and are remarkably unstable in structure and show tissue-specific expression, also displaying developmental stage regulation, with evolutionary conservation among species [25].

Functions of circRNAs

circRNAs have regulatory roles in gene expression by sponging miRNAs, competing with other RNAs for binding to miRNAs and RNA binding proteins (RBPs) to modulate the local concentration of RBPs and RNAs as part of the competing endogenous RNA (ceRNA) network [26]. circRNAcircRNACDR1as (ciRS-5-7), for example, which has more than 70 conserved binding sites for miR-7, and is highly expressed in human and mouse brains [27, 28]. SRY, which encodes both linear and circular RNAs, is involved in sex determination in testis development. circRNA SRY can control metastasis and invasion of tumor cells via sponging miR-138 [29, 30]. Another circRNA, known as CircITCH, plays similar roles as a miRNA sponge, via miR-7, miR-17, and miR214, to inhibit proliferation through the Wnt/β-catenin signaling pathway [31], which is illustrated in Fig. 1A.

Although circRNAs are considered to be non-coding RNAs due to lack of 5′-cap structure and 3′-polyadenylation tail, circRNAs have been shown to generate protein products in a cap-independent manner [32]. Interestingly, many circRNAs are sometimes translated, indeed using high-content genomic screening, Legnini et al. found Circ-ZNF609 can translate into a protein in a splicing-dependent and cap-independent manner [33]. Yang Y et al. discovered CircFBXW7, produced from the FBXW7 gene, encoding a novel 21-kDa protein FBXW7-185aa, which reduced the half-life of c-Myc by antagonizing USP28-induced c-Myc stabilization [34].

The overall activities of circRNAs are intricately intertwined with RNA binding proteins, modulating the stability of mRNAs, regulating gene transcription, and translating proteins [35] and are involved in the regulation of cell proliferation, pluripotency and early lineage differentiation, epithelial-mesenchymal transition (EMT), cancer progression and chemoradiotherapy resistance, as shown in Fig. 2.

Upregulation of circRNAs in CRC

Among all the validated aberrantly expressed circRNAs in colorectal cancer, upregulation of circRNAs more often associates with oncogenesis. Xia et al. found abnormally expressed circRNAs through CircRNA high-throughput
sequencing, identifying Circ-0053277 as having the ability to sponge miR-2467-3p, and as being significantly upregulated in CRC tissues, where it facilitated CRC cell migration, proliferation, and epithelial-mesenchymal transition [36]. Similarly, Li et al. identified CircVAPA as being upregulated in tissues and plasma, serving as a sponge for miR-101. Furthermore, they showed that the expression level of miR-125a was decreased in CRC cells, and CircVAPA knockdown repressed CRC cells cycle progression, invasion, and migration [37]. Knockdown of CircVAPA can also suppress CRC cell cycle progression, invasion, and migration by sponging miR-125a [38].

Yahang et al. found that Hsa_Circ_0026416 which was upregulated in CRC tissues and plasma, and has a key role in promoting the progression of CRC both in vitro and in vivo, may function as a ceRNA to sponge miR-346 [39].

Knockdown of another upregulated circRNA, CircACAP2 (hsa_circ_0007331), which was reported to be significantly upregulated in CRC tissues and colon cancer cells lines, suppressed proliferation and invasion by downregulating T lymphoma invasion and metastasis protein 1 (Tiam1) expression, through upregulated miR-21-5p expression (40). Another highly overexpressed circRNA in CRC is Hsa_circ_0136666, derived from the PRKDC gene, which can regulate proliferation and migration of CRC cells by sponging miR-136 [41].
Downregulated circRNAs in CRC

As well as being overexpressed, other circRNAs are downregulated in CRC. Wang X et al. showed hsa_Circ_001988 was significantly downregulated in 31 matched colorectal cancer tissue samples, proposing this circRNA as a novel diagnosis potential biomarker in the CRC [42]. Geng Y reported hsa_Circ_0009361 to be significantly downregulated in both CRC tissues and derived cells. circRNA promoting the proliferation, epithelial-mesenchymal transition, migration, and invasion of CRC cells by sponging of miR-582. Conversely, overexpression of hsa_Circ_0009361 caused upregulation in the expression of adenomatous polyposis coli 2 (APC2) and blocked the activity of the Wnt/β-catenin pathway [43]. Circ-ITGA7, which sponges’ miR-370-3p to increase ITGA7 transcription, through inhibition of RREB1 via oncogenic Ras has been shown to be down-regulated in CRC tissue samples [44]. Indeed, Circ-ITGA7 has also been shown to directly act as a tumor suppressor in CRC, with clinical features including cancer differentiation, lymph node metastasis, distant metastasis, and alterations in the TNM stage [45]. circRNA Circ-FBXW7 silencing was previously reported to enhance the proliferation, cell migration, and invasion of CRC cells in culture. In contrast, overexpression of Circ-FBXW7 significantly suppressed CRC cell proliferation, migration, and invasion. Similarly, Circ-FBXW7 silencing was also shown to stimulate tumor growth in SW480 and SW620 tumor models, whereas Circ-FBXW7 overexpression repressed tumor progression in the same system. This suggests that Circ-FBXW7 could serve as a target biomarker of CRC. Potential mechanisms have been proposed, including upregulated mRNA and protein expressions of NEK2 and mTOR, and diminished the PTEN expression (46). circRNA Circ_021977 is another circRNA found to be down-regulated in CRC. Circ_021977 was shown to sponge miR-10b-5p, with a regulatory axis inhibiting proliferation, migration, and invasion in CRC via p21 and p53 [47]. Dysregulated circRNA expression in CRC is summarized in Table 1.

circRNAs as biomarkers for colorectal cancer

Through improvements in high-throughput sequencing, circRNA microarray, and chip analysis we now know circRNAs are differentially expressed in CRC, and certain circRNAs are involved in various biological processes such as proliferation, migration, invasion, and apoptosis. Due to the unique structure of circRNAs, which confers resistance to RNase and longer half-lives, they can therefore be potential candidates for diagnostic biomarkers. However, the underlying biological function of circRNAs requires further investigation [138, 139].

Several circRNAs have been proposed as useful therapeutic targets for CRC. For instance, hsa_circ_022382 which is derived from the human FADS2 gene is overexpressed in 200 CRC tissues, where CircFADS2 overexpression was positively associated with clinicopathological features. CircFADS2 expression may therefore be a promising biomarker for prognostic investigation in CRC patients [95]. In another study, hsa_circ_0026344 was shown to be significantly downregulated in 32 CRC patients compared to paired adjacent non-tumorous tissues. The expression of hsa_circ_0026344 was correlated with tumor size and lymph metastasis. Functionally, circRNA-0026344 overexpression significantly suppressed CRC cell proliferation and colony formation as well as promoted apoptosis by...
CircRNA	GENE Related miRNA	Expression	Targeted molecules/ pathways	Function	References (DOI)
circ_0007142	miR-455-5p	Up	SGK1	Regulates cell proliferation, apoptosis, migration, and invasion	[48] 2021
hsa_circ_102049	miR-761, miR-192-3p	Up	FRAS1	Promoting liver metastasis	[49] 2021
LONP2	Mir-17	Up	DGCR8	Prognostic predictor for anti-metastasis target	[50] 2020
CircPTK2 (hsa_circ_0005273)		Up	binding to vimentin protein	Metastasis and may serve as a potential therapeutic target for CRC metastasis, Promote EMT	[51] 2020
circPACRGL	miR142-39,506-3p	Up	TGF-β1	Promoted CRC cell proliferation, migration, and invasion, as well as differentiation	[52] 2020
hsa_circ_0053277	miR-2467-3p	Up	MMP14	Facilitated the development of CRC accelerated cell proliferation	[37] 2020
Hsa_circ_001680	miR-340	Up	BMI1	Enhance the proliferation and migration capacity of CRC cells	[53] 2020
circSAMRCC1	miR-140-3p	Up	MMP-2, MMP-9, VEGF	Cell viability, migration, and invasion	[54] 2020
CircHIPK3	miR-1207-5p	Up	FMNL2	Promote Cell Progression, migration, and invasion in CRC	[55] 2020
circ-HIPK3	Mir-7	Up	FAK/IGF1R/EGFR/YY1	Promotes CRC growth and metastasis Prognostic	[56] 2020
circHUWE1	miR-486	Up		Promotes Cell Proliferation, Migration, and Invasion	[57] 2020
circVAPA	miR-101	Up	CREB5	Promotes CRC cell proliferation, migration, invasion, and inhibit apoptosis	[38] 2020
CircAPLP2	miR-101-3p	Up	Notch Signaling Notch1	Promotes proliferation and metastasis	[58] 2020
circ-FARSA	miR-330-5p	Up	LASP1	Proliferation, migration, and invasion of CRC cells in vitro	[59] 2020
CircAGFG1	miR-4262 and miR-185-5p	Up	WNT/β-catenin CTNNB1	Promote metastases	[60] 2020
circ5615	miR-149-5p	Up	WNT/β-catenin pathway	Exerted oncogenic function	[61] 2020
circular RNA 001,971	miR-29c-3p	Up	VEGFA	CRC cell proliferation, Invasion and angiogenesis	[62] 2020
CircPRMT5	miR-377	Up	E2F3	Cell proliferation and migration	[63] 2020
Circular RNA NOX4	microRNA-485-5p	Up	CKS1B	Promotes the development of colorectal cancer	[64] 2020
circRAE1	miR-338-3p	Up	TYRO3	Promotes colorectal cancer cell migration and invasion	[65] 2020
CircRNA	GENE Related miRNA	Expression	Targeted molecules/pathways	Function	References (DOI)
-------------------	--------------------	------------	---	---	------------------
Hsa_circ_0079662		Up	TNF-α HOXA9	Induces the resistance mechanism of the chemotherapy drug oxaliplatin through the TNF-α pathway	[66] 2020
Hsa_circ_0026416	miR-346	Up	NFIB	Promotes proliferation and migration	[39] 2020
circ_0136666	miR-383	Up	CREB1 proteins (HK2 and LDHA)	Accumulation on the proliferation and glycolysis and the promoting impact on the apoptosis of CRC	[67] 2020
hsa_circRNA_102209	miR-761	Up		Promotes the growth and metastasis	[68] 2020
Hsa_circ_0005963	miR-122	Up	PKM2	Chemoresistance. In vitro and in vivo studies	[69] 2020
Circ TUBB				Interacting with smoking can enhance colorectal cancer risk	[70] 2020
CircRNA_101951	miR-6833, miR-1301-3P	Up	KIF3A	Promote migration and invasion	[71] 2020
Circ-PNN, hsa_circ_0101802	miR-937-5p	Up	circFNDC3B-enriched exosomes can inhibit angio genesis and CRC progression		[74] 2020
CircFNDC3B				Promotes Colorectal Cancer Cell Proliferation and Metastasis	
circ_0060745	miR-473,6	Up	CSE1L	Promotes Colorectal Cancer Cell Proliferation and Metastasis	[75] 2020
circRUNX1	miR-145-5p	Up	IGF1 signaling	Promote Cell Growth Metastasis/Proliferation/migration	[76] 2020
circHOMER1	miR-138-5p	Up	HEY1	A decrease in glucose consumption Treated with lidocaine, indicating the inhibition of CRC cell viability mediated by lidocaine through suppressing aerobic glycolysis	[77] 2020
Hsa_circ_0001806	miR-193a-5p	Up	COL1A1	Correlated with TNM stage, depth of invasion, lymphatic metastasis, and distant metastasis	[78] 2020
circMAT2B	miR-610	Up	E2F1	Induces Colorectal Cancer Proliferation	[79] 2020
circ_0000512	miR-296-5p/	Up	RUNX1	Cell Proliferation cell viability and colony formation	[80] 2020
Circ_0056618	miR-206	Up	CXCR4 VEGF-A	Promoted cell proliferation, migration, and angiogenesis	[81] 2020
CircRNA_0001946	MicroRNA-135a-5p	Up	EMT	A tumor promoter by activating the miR-135a	[82] 2020
CircRNA	GENE Related miRNA	Expression	Targeted molecules/ pathways	Function	References (DOI)
------------------	--------------------	------------	-----------------------------	---	-----------------
Hsa_circ_0038646	miR-331-3p	Up	GRIK3	Promotes cell proliferation and migration	[83] 2020
Circ_circ_000731	miR-760	Up	DCP1A	Regulate the Growth and Chemoradiotherapy Resistance might play a positive role	[84] 2020
Circ-PRKDC	miR-375/	Up	FOXM1 Axis and Wnt/β-Catenin	Circ-PRKDC enhanced 5-FU resistance in CRC	[85] 2020
CircRNA UBAP2	Mir-199a	Up	VEGFA	Regulate the Growth and Chemoradiotherapy Resistance might play a positive role	[86] 2020
Hsa_circ_0000231	miR-502-5p	Up	MYO6	CRC progression	[87] 2020
circGLIS2	miR-671	Up	NF-κB	Promotes colorectal cancer cell motility	[88] 2020
Circular RNA CCDC66	miR-3140	Up	PI3KK	Apoptosis	[89] 2020
circCCDC66	miR-33b/miR-93/	Up	autophagy	Promotes the tumorigenesis	[90] 2020
Hsa_circ_0128846	hsa-miR-1184	Up	YAP signaling	Promotes CRC growth and metastasis	[91] 2020
Hsa_circ_0007534	miR613 SLC25A22	Up	SLC25A22	Promote proliferation was correlated with tumor stage and lymph node metastasis	[93] 2020
CircFAT1	miR-520b miR-302c-3p	Up	UHRF1	CRC cell proliferation, apoptosis, and glycolysis	[94] 2020
CircFADS2				Biomarkers of CRC	[95] 2020
Circ-000166	miR-326	Up	LASP1	Cell growth and apoptosis in CRC cell lines	[96] 2020
circ-ACAP2	Mir21-5p	Up	Tiam1	Promotes CRC cell proliferation, migration, and invasion	[49] 2020
circ-ZNF609	miR-150	Up	Gli1	Promotes CRC cell migration	[33] 2020
circ-NSD2	miR-199b	Up	Sp/DDR1/JAG1	Promotes CRC metastasis	[97] 2020
Circ-DENND4C	miR-760	Up	SLC2A1	Promote Migration and glycolysis	[98] 2020
circ-Lgr4		Up	circLgr4-peptide/Lgr4/ Wnt/β-catenin	Promotes CRC stem cell self-renewal, tumorigenesis and invasion	[99] 2020
hsa_circ_000984	miR-106b	Up	CDK6	Promotes CRC growth and metastasis	[100] 2020
Has _circ -140,388	Mir486 -Sp	Up	PLAGL2 IGF2 WNT- β-CATENIN	Metastasis	[57] 2020
Has-circ-0004680	Mir- 613	Up	CCT3 WNT3/EGFR	Metastasis	[101] 2020
Has _circ-001,900	Mir328-Sp Mir7	Up	E2F1 IGF1 CAMSAP1	Promotes CRC progression	[102] 2020
hsa_circ_0007534		Up	ARHGAP32	Migration, invasion	[93] 2021
Has-circ- 0,007,843	Mir- 518-Sp	Up		Promotes proliferation and inhibits apoptosis	[103] 2020
CircRNA	GENE Related miRNA	Expression	Targeted molecules/pathways	Function	References (DOI)
--------------	--------------------	------------	--	---------------------------------------	-----------------
circRNA_100876	miR-516b	Up		Inhibit proliferation and metastasis	[104] 2020
CircRNA_0000392	miR-193a-5p	Up	PIK3R3/AKT	Promoter proliferation of CRC	[105] 2020
circRNA_002144	miR-615-5p	Up	LARP1	Promotes growth and metastasis	[106] 2020
Circ-Erbin	miR-125a-5p and miR-138-5p	Up	4EBP-1	Promotes growth and metastasis of CRC	[107] 2020
CircRNA 100,146	miR-149	Up	HMGA2	Promotes Colorectal Cancer Progression	[108] 2020
circ-NSUN2	miR-125a-5p and miR-138-5p	Up	IGF2BP2/HMG A2	Promotes CRC liver metastasis	[109] 2019
circCCT3	Mir613	Up	VEGFA, WNT signaling	Contributes to metastases	[101] 2019
Circ_0000218	miR-139-3p	Up	RAB1A	Promoted CRC proliferation and metastasis	[110] 2019
circFMN2	miR-1182	Up	hTERT	Cell proliferation and migration	[111] 2019
Circ 32,883	Mir501-5p	Up	EML5	Promote resistance to folfox	[112] 2019
Circ ACC1	Up		c-Jun/AMPK	Promotes CRC cell fatty acid β-oxidation, glycolysis and growth	[113] 2019
hsa_circ_102958	miR-585	Up	CDC25B	Promotes CRC tumorigenesis	[114] 2019
Has- circ-101555	Mir 597-5p	Up	CDK6/RPA3	Promote progression	[115] 2019
Has-circ-0079993	Mir 139-3p	Up	CREB1	Promotes CRC cell proliferation	[116] 2019
Has-circ-PIP5K1A	Mir 1273	Up	Irf4/cdx2/ZIC1	Promote progression CRC	[117] 2019
hsa_circ_0055625	ITG88	Up	miR-106b	Increases colon cancer cell growth was associated with pathological TNM stage and metastasis	[118] 2019
hsa_circ_0136666	PRKDC	SH2B1	Mir136	Promote proliferation and invasion	[41] 2019
hsa_circ_0073195	miR-199-b	Up	Ddr1 and Jag1 signaling	Promotes metastasis	[97] 2019
hsa_circ_0071589	MIR-600	Up	Fat1/EZH2	Promotes carcinogenesis tumor growth, invasion, and migration	[119] 2018
circRNA_100290	FZD4/SCL30A7	Up	Mir516b	Promotes colorectal cancer	[120] 2018
Cirs7	miR-7	Up	EGFR and IGF1R	Promotes progression	[27, 121] 2017
Circ00000504	Mir485-5p	Up	Tubgpc3/Stat3	Promote resistance to 5fu	[122] 2017
hsa_circ_000984	CDK6	Up	Mir 106b	Promotes cells proliferation and metastasis	[100] 2017
hsa_circ_0020397 (circBNAP)	DOCK1/FD3/1	Up	Mir138	Can regulate CRC cell viability, apoptosis, and invasion	[123] 2017
Circ-0001313	Mir-3383p/33b5p/935p	Up	Cc066	Promote resistance to radiotherapy and 5fu	[124] 2017
CircRNA	GENE Related miRNA	Expression	Targeted molecules/pathways	Function	References (DOI)
----------------	--------------------	------------	------------------------------	--	-----------------
Has-circ-001569 miR145	Up	ABC1	E2F5	The regulator in cell proliferation and invasion	[125] 2016
circ_0007142 miR-122-5p	Down	CDC25A		Proliferation, colony formation, migration, and invasion	[48] 2020
CircCSNK1G1 miR-455-3p	Down	MYO6		Proliferation, migration and invasion cell growth and metastasis	[126] 2020
CircTADA2A miR-374a-3p	Down	KLF14		Tumor suppressor in CRC	[127] 2020
circ-SMAD7 miR‑374a‑3p, miR‑31‑5p	Down	eIF4A3	PCNA	circ-SMAD7 could inhibit cell migration and invasion of CRC by suppressing the EMT process,	[128] 2020
circ_cse1l	Down	eIF4A3	PCNA	circ_cse1l inhibited the proliferation of CRC	[129] 2020
ITGA5 circRNA	miR-107,	Down	FOXJ3	Act as a tumor suppressor in CRC	[130] 2020
CircDDX17 miR‑31‑5p/	Down	KANK1		Tumor suppressor blocked CRC progression	[131] 2020
Hsa_circ_0137008 microRNA-338-5p	Down	eIF4A3	PCNA	Inhibited the progression of CRC	[132] 2020
CircNOL10 miR-135a-Sp; miR-135b-Sp	Down	KLF9		Mediating proliferation, cell cycle, migration, and invasion	[133] 2020
circ_0021977 miR-10b-5p	Down	P21; P53		Suppresses proliferation, migration, and invasion by CRC cells	[47] 2020
circRNACBL11 YWHAE	Up	Mir6778-5p		Suppress cell proliferation	[134] 2019
Circ CDYL c-Myc cyclin D1	Down	miR-150-5p/		Inhibits CRC cell growth and migration	[135] 2019
circITGA7 ITGA7 Reb1 Ras’s pathway ASXL1	Down	miR-370-3p, miR-3187-3p		Inhibits colorectal cancer growth and metastasis	[44] 2019, [45] 2018
hsa_circ_0009361 Mir582-3p	Down	APC2/Wnt/β-catenin		Inhibits CRC progression	[43] 2019
hsa_circ_0000523 METTL3 dKK1 WNT/β-catenin	Down	Mir-31		Correlated to the tumorigenesis-Proliferation	[136] 2018
circTCH DDX17 WNT/β-catenin	Down	miR-7, miR-17, miR-214		Proliferation (−)	[31] 2015
regulating miR-21 and miR-31 levels [45]. Other circRNAs with biomarker potential are summarized in Table 3.

circRNAs as therapeutic targets in colorectal cancer

Targeted therapy has been widely used in the clinic due to its excellent efficacy, and it can work on cancerous cells by directly inhibiting cell proliferation, differentiation, and migration [50]. Indeed, monoclonal antibodies, for instance, are currently an important player in targeted therapies [51]. circRNAs moderate drug resistance by sponging microRNAs both in traditional chemotherapeutic drugs, advanced targeted drugs, and immunotherapeutic drugs. For example, therapeutic targeting of ciRS-7 may become a promising strategy for colorectal cancer patients, since higher expression of ciRS-7 correlated with multiple clinicopathologic factors, such as advanced T-stage, lymph node, and distant metastasis, and ciRS-7 overexpression promotes the EGFR/RAF1/MAPK pathway by inhibiting miR-7 activity [121, 155]. Yang et al. indicated that high expression of circPTK2 positively correlated with poorer survival, showing CircPTK2 can bind to vimentin and promote EMT growth and metastasis in CRC cells, therefore ciRS-7 may become a therapeutic target for CRC metastasis [51]. The relation between circPTK2 in CRC is shown in Fig. 3.

Another highly expressed circRNA in CRC tissue is Circ_001680 which was observed to enhance the proliferation and migration capacity of CRC cells. Fluorescence reporter assays confirmed that circ_001680 alters the expression of BMI1 by targeting miR-340. More importantly, Circ_001680 was found to promote the propagation of cancer stem cells in CRC and induce resistance against Irinote by modifying the miR-340 target gene BMI1 n [53]. Safe and effective delivery of ncRNAs is a significant therapeutic paradigm for all cancers. Since unmodified oligonucleotides are not stable in circulation, modifications of oligonucleotides are essential to increasing efficacy and stability. Most current oligonucleotide therapies need an additional delivery system to achieve these desired biological effects. Several options need to be considered in selecting a delivery system, including stability, evasion of the innate immune system, avoidance of non-specific interactions with serum proteins, and non-target cells. One of the common strategies to increase the circulation time for therapeutic oligonucleotides is shielding the exterior of delivery vehicles with polyethylene glycol (PEG). This strategy may prevent the non-specific function of particles with immune cells and other non-target tissues. Although a variety of delivery systems has been developed in the laboratory, challenges remain in bringing the full potential of RNAi to clinical approaches [156].

Table 2 The characteristics of circRNAs in CRC as a chemotherapy resistance

CircRNA	GENE related miRNA	Expression	Targeted molecules/ pathways	Function	References (DOI)	Year
Hsa_circ_0079662	Up	TNF-α, HOXA9	Induces the resistance mechanism of the chemotherapy drug oxaliplatin through the TNF-α pathway	[66] 2020		
Hsa_circ_0005963	miR-122	Up	PKM2	Chemo-resistance: In vitro and in vivo	[69] 2020	
Circ_0007031	miR-760	Up	DCP1A	Regulate the Growth and Chemoradiotherapy Resistance	[84] 2020	
CircDDX17	miR-31-5p	Down	KANK1	Tumor suppressor, Strengthened chemosensitivity of CRC to 5-Fu	[131] 2020	
Circ-PRKDC	miR-375	Up	FOXM1, Axis and WBT/β-Catenin	Enhanced 5-FU resistance in CRC	[85] 2020	
Circ-0001313	mir-3383p	Up	Ccdec66	Promote resistance to radiotherapy and 5fu	[124] 2019	
Circ 32,883	Mir501-5p	Up	EmL5	Promote resistance to folfox	[122] 2019	
Circ0007006	Mir300, 653-5p, 628-5p	Up	Promote resistance to 5fu		[122] 2017	
Circ0000504	Mir485-5p	Up	Tubgcp3, Stat3	Promote resistance to 5fu	[122] 2017	
circRNAs however, offer significant increases in stability over current strategies.

Conclusions and perspectives
Following advancements in high-throughput sequencing, the field of circRNAs has attracted more attention and is currently an area of intense interest in the field of cancer research. circRNAs are an ideal biomarker in cancer, and are stably expressed in exosomes, blood, and saliva, where specific circRNAs have been indicated as promising prognostic or diagnostic biomarkers already.

Abnormal expression of circRNAs has been observed in a wide range of human malignancies and their dysregulation can alter gene expression networks, leading to dramatic changes in cell fates, including cancer initiation and progression. circRNAs can be both oncogenic

CircRNA	GENE related miRNA	Expression	Targeted molecules/pathways	Function	References (DOI)
Hsa_circ_0002320	miR-519d-3p	Down	Noninvasive diagnostic blood biomarker for CRC prognosis	[140] 2020	
circMBOAT2	miR-33b/miR-93/	Up tissues serum	A novel tumor marker and regulates proliferation/migration	[141] 2020	
hsa_circ_0060927		Up DNMT3B/EZH2/MYC/YAP1	Potential diagnostic markers	[142] 2020	
circ-CCDC66		Up Wnt/β-catenin pathway	Promoting CRC growth and metastasis	[91] 2020	
circ_0005075		Up TROAP	Potential target for the prognosis biomarker	[143] 2020	
Hsa_circ_0004831		Up WNT and p53 signaling pathway	Prognostic biomarker	[144] 2020	
hsa_circ_104916		Down	Prognosis biomarker Inhibiting CRC cell proliferation, migration, invasion, and inducing apoptosis	[145] 2019	
hsa_circ_0004585		Up tissues serum	Potential diagnostic biomarker for CRC	[146] 2019	
hsa-circ-0004771		Up tissues serum	Novel potential diagnostic biomarker	[147] 2019	
circ-PPP1R12A Has-circ-000,423	Up tissues serum	Hippo/YAP Prognosis	Prognostic biomarker Promoting pathogenesis and metastasis	[148] 2019	
circ-MTO1		Down WNT/β-catenin	Prognostic biomarker, Inhibiting cell proliferation and invasion	[149] 2018	
hsa_circ_0001649	SHARE	Down	Novel diagnostic biomarker Expression level is closely associated with pathological differentiation	[150] 2018	
Has_circ_14,717		Down P16	Prognostic biomarker Inhibiting CRC cell proliferation, colony formation, and growth	[151] 2018	
hsa_circ_0026344	miR-21/miR-31	Down	Prognostic biomarker Inhibiting CRC cell growth and invasion and induces apoptosis	[45] 2018	
Has-circ-0000711		Down	Diagnostic Prognostic biomarker	[152] 2018	
Cir-7 CDR1 EGFR/RAF1/MAPK pathway	Up tissues serum	Mir-7	Prognostic biomarker	[27] 2018	
hsa_circ_0000567	SETD3	Down	Potential diagnostic biomarker	[153] 2018	
hsa_circ_001988	FBXW7	Down	Diagnostic biomarker	[42] 2015	
hsa_circ_0003906		Down	Diagnostic biomarker	[154] 2015	
and anti-oncogenic, so could potentially be utilized in the treatment and prognosis of colorectal cancer. Although recent advances on circRNAs have highlighted some interesting insights, much work remains to be done to translate circRNAs into clinical application for clinical patient benefit. Major hurdles include the development of an efficient siRNAs delivery system, and the assessment of safety and side effects, yet, clearly circRNAs have significant potential for the treatment and diagnosis of CRC.

Abbreviations
cRNA: Competing endogenous RNA; circRNAs: Circular RNAs; siRNA: Small interfering RNA; ncRNA: Noncoding RNA; HNPCC: Hereditary nonpolyposis colorectal cancer; ciRNAs: Intronic circRNAs; ecircRNA: Exonic circRNAs; ELciRNA: Exon–intron-circRNAs; miRNA: MicroRNA; RBP: RNA-binding protein; PEG: Polyethylene glycol; CRC: Colorectal cancer.

Acknowledgements
Not applicable.

Authors’ contributions
MA and MA contributed equally in conception, design and data collection and drafting of the manuscript. C.Y and M.H contributed in editing and drafting the manuscript and E. N and M. B were the supervising and revising the manuscript.

Funding
Not applicable.

Availability of data and materials
Data will be provided based on reasonable request.

Fig. 3 CircPTK2 is overexpressed in CRC tissues and is associated with tumor metastasis

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no conflict of interest, All authors approved the final version for submission.

Author details
1. Department of Biology, Faculty of Basic Science, Kharrazi University, Tehran, Iran. 2. School of Medicine, University of Sunderland, City Campus, Chester Road, Sunderland SR1 3SD, UK. 3. Institute of Health & Life Sciences, De Montfort University, Leicester, UK. 4. Department of Cell & Molecular Biology, Faculty of Science, Tehran University of Medical Science, Tehran, Iran. 5. Gastroenterology and Liver Disease Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Received: 15 July 2021 **Accepted:** 3 September 2021

Published online: 17 September 2021

References

1. Keum NN, Giovannucci E. Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies. Nat Rev Gastroenterol Hepatol. 2019;16(12):713–32.
2. Siegel RL, Miller KD, Goding Sauer A, Fedewa SA, Butterly LF, Andersen JC, et al. Colorectal cancer statistics, 2020. CA Cancer J Clin. 2020;70(3):145–64.
3. Zheng Y, Hua X, Win AK, Macininis RJ, Gallinger S, Le Marchand L, et al. A new comprehensive colorectal cancer risk prediction model incorporating family history, personal characteristics, and environmental factors. Cancer Epidemiol Biomarkers Prev. 2020;29(3):549–57.
4. Kuipers EJ, Grady WM, Lieberman D, Seufferlein T, Sung JI, Roelens PG, et al. Colorectal cancer. Nat Rev Dis Prim [Internet]. 2015;1:15065.
5. Koveitypour Z, Panahi F, Vakilian M, Peymani M, Seyed Forootan F, Nasr Esfahani MH, et al. Signaling pathways involved in colorectal cancer progression. In: Cell and bioscience, vol. 9. BioMed Central Ltd.; 2019. https://pubmed.ncbi.nlm.nih.gov/31827763/
6. Gausachs M, Borras E, Chang K, Gonzalez S, Azaara D, Amador AD, et al. Mutational heterogeneity in APC and KRAS arises at the crypt level and leads to polyclonality in early colorectal tumorigenesis. Clin Cancer Res. 2017;23(19):5936–47.
7. APC, K-ras, and p53 gene mutations in colorectal cancer patients: correlation to clinicopathologic features and postoperative surveillance—PubMed. https://pubmed.ncbi.nlm.nih.gov/15943410/
8. Pino MS, Chung DC. The chromosomal instability pathway in colon cancer. Gastroenterology. 2010;138(6):2059–72.
9. Mármoł I, Sánchez-de-Diego C, Pradilla Díeste A, Cerrada E, Rodríguez Yoldi MJ. Colorectal carcinoma: a general overview and future perspectives in colorectal cancer. Int J Mol Sci. 2017;18(1):197. https://doi.org/10.3390/ijms18010197
10. Collura A, Lefeuvre JH, Svecak M, Tougeron D, Zaanan A, Duval A. Microsatellite instability and cancer: from genomic instability to personalized medicine. Medecine/sciences, vol. 35. Editions EDK. 2019. p. 535–43. https://pubmed.ncbi.nlm.nih.gov/31274083/
11. Wang X, Wang D, Zhang H, Feng M, Wu X. Genome-wide analysis of DNA methylation identifies two CpG sites for the early screening of colorectal cancer. Epigenomics. 2020;12(1):37–52.
12. Okita A, Takahashi S, Ouchi K, Inoue M, Watanabe M, Endo M, et al. Consensus molecular subtypes classification of colorectal cancer as a predictive factor for chemotherapeutic efficacy against metastatic colorectal cancer. Onco target. 2018;9(27):18698–711.
13. Slaby O, Laga R, Sedlacek O. Therapeutic targeting of non-coding RNAs in cancer. Biochemical journal, vol. 474. Portland Press Ltd, 2017. p. 4219–51. https://pubmed.ncbi.nlm.nih.gov/2942381/

14. Matsi S, Corey DR. Non-coding RNAs as drug targets. Nature reviews drug discovery, vol. 16. Nature Publishing Group, 2017. p. 167–79. https://pubmed.ncbi.nlm.nih.gov/27444227/

15. Panni S, Levering RC, Porras P, Orchard S. Non-coding RNA regulatory networks. Biochimica et Biophysica Acta—gene regulatory mechanisms, vol. 1863. Elsevier B.V, 2020. https://pubmed.ncbi.nlm.nih.gov/31493559/

16. Hao S, Cong L, Qu R, Liu R, Zhang G, Li Y. Emerging roles of circular RNAs in colorectal cancer. Oncotargets and therapy, vol. 12. Dove Medical Press Ltd, 2019. p. 4765–77. https://pubmed.ncbi.nlm.nih.gov/31354303/

17. Akhave V5, Pat D, Kanduri C. Long noncoding RNA: genome organization and mechanism of action. Adv Exp Med Biol. 2017;1008:47–74.

18. Ameli-Mojarad M, Ameli-Mojarad M, Nourbakhsh M, Nazemalhosseini-Mojarad E. Circular RNA hsa_circ_0005046 and hsa_circ_0001791 may become diagnostic biomarkers for breast cancer early detection. J Oncol. 2021;2021:1–7.

19. Tian D, Xiang Y, Tang Y, Ge Z, Li Q, Zhang Y. Circ-ADAM9 targeting PTEN and ATG7 promotes autophagy and apoptosis of diabetic endothelial progenitor cells by sponging mir-20a-5p. Cell Death Dis. 2020;11(7):526.

20. Jakobi T, Czajkowsky LF, Reinhardt R, Dietrich C. Profiling and validation of the circular RNA repertoire in adult murine hearts. Genomics, proteomics and bioinformatics, vol. 14. Beijing Genomics Institute; 2016. p. 216–23.

21. St Laurent G, Wahlstedt C, Kapranov P. The landscape of long noncoding RNA classification. Trends Genet. 2015;31(5):239–51.

22. Greene J, Baird AM, Brady L, Lim M, Gray SG, McDermott R, et al. Circular RNAs: Biogenesis, function and role in human diseases. Frontiers in molecular biosciences, vol. 4. Frontiers Media S.A, 2017. https://pubmed.ncbi.nlm.nih.gov/28634583/

23. Chen LL, Yang L. Regulation of circRNA biogenesis. RNA Biol. 2015;12(4):381–8.

24. Wang M, Yu F, Li P. Circular RNAs: Characteristics, function and clinical significance in hepatocellular carcinoma. In: Cancers, vol. 10. MDPI AG; 2018. https://www.mdpi.com/1999-4915/10/9/2625.

25. Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, et al. The RNA binding protein quaking regulates formation of circRNAs. Cell. 2015;160(6):1125–34.

26. Pan H, Li T, Jiang Y, Pan C, Ding Y, Huang Z, et al. Overexpression of circular RNA crs-7 abolishes the tumor suppressive effect of miR-7 on gastric cancer via PTEN/PI3K/AKT signaling pathway. J Cell Biochem. 2018;119(7):440–6.

27. Liu L, Liu F, Huang M, Xie K, Xie QS, Liu CH, et al. Circular RNA crs-7 promotes the proliferation and metastasis of pancreatic cancer by regulating miR-7-mediated EGFR/STAT3 signaling pathway. Hepatobiliary & Pancreatic Dis Int. 2019;18(6):580–6.

28. Capel B, Swain A, Nicolis S, Hacker A, Walter M, Koopman P, et al. Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell. 1993;73(5):1019–30.

29. Memczak S, Jens M, Elefantin A, Torti F, Krueger J, Rybak A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495(7441):333–8.

30. Huang G, Zhu H, Shi Y, Wu W, Cai H, Chen X. Circ-ITCH plays an inhibitory role in colorectal cancer progression via miR-455–5p/SGK1 axis. J Pathol. 2018;246(2):166–79.

31. Lu H, Yao B, Wen X, Jia B. FBXW7 circular RNA regulates protein quaking regulation of circRNAs. Cell. 2015;160(6):1125–34.

32. Abe N, Matsumoto K, Nishihara M, Nakano Y, Shibata A, Maruyama H, et al. Rolling circle translation of circular RNA in living human cells. Sci Rep. 2015;5(1):1–9.

33. Yu CT, Kuo HC. The emerging roles and functions of circular RNAs and their generation. Journal of biomedical science, vol. 26. BioMed Central Ltd.; 2019. p. 1–12. Doi: https://doi.org/10.1186/s12929-019-0523-z

34. Xiao H, Liu M. Circular RNA hasa_circ_0053277 promotes the development of colorectal cancer by upregulating matrix metalloproteinase 14 via miR-2467–3p sequestration. J Cell Physiol. 2020;235(3):2881–90.

35. Yang G, Zhang T, Ye J, Yang J, Chen C, Cai S, et al. Circ-ITGA7 sponges miR-3187–3p to upregulate ASXL1, suppressing colorectal cancer proliferation. Cancer Manag Res. 2019;11:4699–509.

36. Lu H, Yao B, Wen X, Jia B. FBXW7 circular RNA regulates proliferation, migration and invasion of colorectal carcinoma through NEK2, mTOR, and PTEN signaling pathways in vitro and in vivo. BMC Cancer. 2019;19(1):918.

37. Hu C, Jiang W, Hui B, Rong D, Fu K, Dong C, et al. The circ_0021977/miR-10b-5p/P21 and PS3 regulatory axis suppresses proliferation, migration, and invasion in colorectal cancer. J Cell Physiol. 2020;235(3):2273–85.

38. Wei T, Wu H, Zhang L, Li K, Xiao X, Zhang L, et al. Circular RNA circ_0070142 regulates cell proliferation, apoptosis, migration and invasion via miR-455–5p/SKLG1 axis in colorectal cancer. Anticancer Drugs. 2020;32(1):223–33.

39. He JH, Li YG, Han ZP, Zhou JB, Chen WM, Ly YB, et al. The CircRNA-ACAP2/Hsa-miR-21–5p/Tiam1 regulatory feedback circuit affects the proliferation, migration, and invasion of colon cancer SW480 cells. Cell Physiol Biochem. 2018;49(4):1539–50.

40. Han K, Wang FW, Cao CH, Ling H, Chen JW, Chen RX, et al. CircLONP2 enhances colorectal carcinoma invasion and metastasis through modulating the maturation and exosomal dissemination of microRNA-17. Mol Cancer. 2020;19(1):1–15.

41. Yang H, Li X, Meng Q, Sun H, Wu S, Wu H, et al. CircPTK2 (hsa_circ_0005273) as a novel therapeutic target for metastatic colorectal cancer. Mol Cancer. 2020;19(1):1–15.

42. Shang A, Gu C, Wang W, Wang X, Sun J, Zeng B, et al. Exosomal circular PACRGL promotes progression of colorectal cancer via the miR-142-3p/miR-506-3p-TGF-β1 axis. Mol Cancer. 2020;19(1):1–15.

43. Jian X, He H, Zhu J, Zhang Q, Zheng Z, Liang X, et al. Hsa_circ_0016802 regulates PDCD4 via miR-1207–5p to regulate cell progression in colorectal cancer. Oncotargets and therapy, vol. 12. Dove Medical Press Ltd, 2019. p. 10170–9.
56. Zeng K, Chen X, Xu M, Liu X, Hu X, Xu T, et al. CircHIPK3 promotes colorectal cancer growth and metastasis by sponging miR-7 article. Cell Death Dis. 2018;9(4):1–15.

57. Chen HY, Li XN, Ye CX, Chen ZL, Wang ZJ. Circular RNA ciclHUNE1 is upregulated and promotes cell proliferation, migration and invasion in colorectal cancer by sponging miR-486. Oncog Targets Ther. 2020;13:6315–27.

58. Wu HB, Huang SS, Lu CG, Tian SD, Chen M. CircAPLP2 regulates the proliferation and metastasis of colorectal cancer by targeting miR-101-3p to activate the Notch signalling pathway. Am J Transl Res. 2020;12:2554–69.

59. Lu C, Lu Qian X, Dou L, Cang S. Knockdown of circular RNA circ-FARSA restricts colorectal cancer cell growth through regulation of miR-330–5p/LASP1 axis. Arch Biochem Biophys. 2020;689:108434.

60. Zhang L, Dong X, Yan B, Yu W, Shan L. Circular AGFG1 drives metastasis and stemness in colorectal cancer by modulating YY1/CTNNB1. Cell Death Dis. 2020;11(7):1–15. https://doi.org/10.1038/s41419-020-2707-6.

61. Ma Z, Han C, Xia W, Wang S, Li X, Fang P, et al. circRNA515 functions as a ceRNA to promote colorectal cancer progression by upregulating TNKS. Cell Death Dis. 2020;11(5):1–14. https://doi.org/10.1038/s41419-020-2514-0.

62. Chen C, Huang Z, Mo X, Song Y, Li X, Li et al. The circular RNA circ001971/ miR-29c-3p axis modulates colorectal cancer growth, metastasis, and angiogenesis. Colorectal Cancer J. Exp Clin Cancer Res. 2020;39(1):1–15.

63. Yang B, Du K, Yang C, Xiang L, Xu Y, Cao C, et al. CircPRTM5 circular RNA promotes proliferation of colorectal cancer through sponging miR-377 to induce E2F3 expression. J Cell Mol Med. 2020;24(6):3431–7.

64. Wang X, Tao G, Huang D, Liang S, Zhang D. Circular RNA NOX4 promotes the development of colorectal cancer via the microRNA-485–5p/CKS1B axis. Oncol Rep. 2020;44(5):2009–20.

65. Du J, Xu J, Chen J, Liu W, Wang P, Ye K. CircRae1 promotes colorectal cancer cell migration and invasion by modulating miR-338–3p/THYROID axis. Cancer Cell Int. 2020;21:496.

66. Lai M, Liu G, Li R, Bai H, Zhao J, Xiao P, et al. Hsa_circ0079662 induces the resistance mechanism of the chemotherapy drug oxaliplatin through the TNF-α pathway in human colon cancer. J Cell Mol Med. 2020;24(9):5021–7.

67. Li Y, Zhang H, Zhang X, Huang G. Circ_0136666 facilitates the progression of colorectal cancer via mir-383/crbl1 axis. Cancer Manag Res. 2020;12:6795–806.

68. Li C, Zhou H. Circular RNA hsa_circRNA_102209 promotes the growth and metastasis of colorectal cancer through miR-761-mediated Ras and RAB interactor 1 signaling. Cancer Med. 2020;9(18):6710–25.

69. Wang X, Zhang H, Yang H, Bai M, Ning T, Deng T, et al. Exosomal circular RNAs reveals Circ-PNN as a potential biomarker for colorectal cancer progression via mir-383/creb1 axis. Cancer Manag Res. 2020;12:8465–79.

70. Liu Y, Pei L, Xie P, Guo G. Circ-prkdc contributes to 5-fluorouracil resistance of colorectal cancer cells by regulating mir-375/foxm1 axis and wnt/b-catenin pathway. Onco Targets Ther. 2020;13:5939–53.

71. Dai J, Zhuang Y, Tang M, Qian Q, Chen J. CircRNA UBAP2 facilitates the progression of colorectal cancer by regulating miR-199a/VEGFA pathway. Eur Rev Med Pharmacol Sci. 2020;24(15):7963–76.

72. Liu Y, Li H, Ye X, Ji A, Fu X, Wu H, et al. Hsa_circ000231 knockdown inhibits the glycolysis and progression of colorectal cancer cells by regulating miR-902–5p/miR8 axis. World J Surg Oncol. 2020;18(1):1–13.

73. Chen J, Yang X, Liu R, Wen C, Wang H, Huang L, et al. Circular RNA GLIS2 promotes colorectal cancer cell motility via activation of the NF-κB pathway. Cell Death Dis. 2020;11(9):1–13.

74. Lin YC, Yu YS, Lin HH, Hisao KY. Oxaliplatin-induced DHX9 phosphorylation promotes oncogenic circular RNA CCDC66 expression and development of chemoresistance. Cancers (Basel). 2020;11(12):6041–59.

75. Hsiao KY, Lin YC, Gupta SK, Chang N, Yen L, Sun HS, et al. Noncoding RNA effects of circular RNA CCDC66 promote colon cancer growth and metastasis. Cancer Res. 2020;77(17):2359–50.

76. Wang X, Chen X, Liu W, Liu T, Sun D. Hsa_circ0128846 promotes tumorigenesis of colorectal cancer by sponging hsa-miR-1184 and releasing AJUBA and inactivating Hippo/YAP signalling. J Cell Mol Med. 2020;24(7):9908–24.

77. Ding DY, Wang D, Shu ZB. Erratum: Hsa_circ0007534 knockdown represses the development of colorectal cancer cells through regulating miR-613/SLC25A22 axis (European Review for Medical and Pharmacological Sciences 2020 24(6):3004–3022 DOI: https://doi.org/10.26355/eurrev_202003_20665) European Review for Medical and Pharmacological Sciences, vol. 25. Verduci Editore s.r.l; 2021. p. 570.

78. Hu B, Yuan X, Zou Q, Zhang D, Su D, Yao J, et al. CircFAT1 suppresses colorectal cancer development through regulating miR-520b/ UHRF1 axis or miR-302c-3p/UHRF1 axis. Cancer Med. 2021;10(14):1–38.

79. Xiao YS, Tang HZ, Yuan XH, Xiong CH, Xu XY, Zeng YF. CircFAD2S2: a potential prognostic biomarker of colorectal cancer. Exp Biol Med. 2020;245(12):1233–41. https://doi.org/10.1177/15353702202292969.

80. Hao Q, Zhang Z. Hsa_circRNA_000166 facilitated cell growth and limited apoptosis through targeting miR-326/LASRP1 axis in colorectal cancer. Gastroenterol Res Pract. 2020;2020:8834359. https://doi.org/10.1155/2020/8834359.

81. Chen L, Zhi Y, Zhang W, Zhao Y, Deng M, Liu YH, et al. NDS2 circular RNA promotes metastasis of colorectal cancer by...
99. Zhi X, Zhang J, Cheng Z, Bian L, Qin J. circLgr4 drives colorectal tumorigenesis and invasion through Lgr4-targeting peptide. Int J Cancer. 2019. https://doi.org/10.1002/ijc.32549.

100. Xu KW, Zheng BA, Hu ZM, Qian ZY, Huang CJ, Liu XQ, et al. Circular RNA hsa_circ_0009849 promotes colon cancer growth and metastasis by sponging miR-106b. Oncotarget. 2017;8(3):15674–83.

101. Li W, Xu Y, Wang X, Cao G, Wu W, Wang X, et al. CircCCT3 modulates vascular endothelial growth factor A and Wnt signaling to enhance colorectal cancer metastasis through sponging miR-613. DNA Cell Biol. 2020;39(1):118–25.

102. Zhou C, Liu HS, Wang FW, Hu T, Liang ZX, Lan N, et al. circCAMSAP1 promotes tumor growth in colorectal cancer via the miR-328-5p/E2F1 axis. Mol Ther. 2020;28(3):914–28.

103. He JH, Han ZP, Luo J, Jiang JW, Zhou JB, Chen WM, et al. Hsa_circ_0007843 acts as a miR-518c-5p sponge to regulate the migration and invasion of colon cancer SW480 cells. Front Genet. 2020;11:1.

104. Zhang J, Wang H, Wu K, Zhan F, Zeng H. Dysregulated circRNA_100876 contributes to proliferation and metastasis of colorectal cancer by targeting miR-155-5p. Cancer Biol Ther. 2020;21(8):733–40.

105. Weng W, Wei Q, Toden S, Yoshida K, Nagasaka T, Fujimori T, et al. circRNA_circ_003019 targets miR-124 in colorectal cancer. Biochem Biophys Res Commun. 2018;503(4):429–35.

106. Wang L, Peng X, Lu X, Wei Q, Chen M, Liu L. Inhibition of has_circ_0001313 (circCDDC66) induction enhances the radio-sensitivity of colon cancer cells via tumor suppressor miR-338–3p. Effects of circRNA_0001313 on colon cancer radio-sensitivity. Pathol Res Pract. 2019;215(4):689–96.

107. Xie H, Ren X, Xin S, Lan X, Lu G, Lin Y, et al. Emerging roles of circular RNA_001569 targeting miR-145 in the proliferation and invasion of colorectal cancer. Oncotarget. 2016;7(18):26680–91.

108. Huang X, Shen X, Peng L, Mai W, Wang Y, Zheng H. CircCSNK1G1 contributes to the development of colorectal cancer by increasing the expression of MYO6 via competitively targeting miR-455–3p. Cancer Manag Res. 2020;12:9563–75.

109. Li Z, Yao H, Wang S, Li G, Gu X. CircTADA2A suppresses the progression of colorectal cancer via miR-374a-3p/FLK14 axis. J Exp Clin Cancer Res. 2020;39(1):1–14.

110. Wang DK, Chong RE, Song BL, Fan KF, Liu YF. Circular RNA circ-SMAD7 is downregulated in colorectal cancer and suppresses tumor metastasis by regulating epithelial mesenchymal transition. Eur Rev Med Pharmacol Sci. 2020;24(4):1736–42.

111. Xu B, Yang N, Liu Y, Kong P, Han M, Li B. Circ_cse1l inhibits colorectal cancer progression by the MicroRNA 149/HMGA2 Axis. Mol Sci. 2020;25(10):e920623-1.

112. Huang G, Ma J, Zhang L. Integrin subunit alpha 5 (ITGA5) gene circular RNA sponges miR-146. Biomed Pharmacother. 2019;102:1188–94.

113. Han J, Zhao G, Ma X, Dong Q, Zhang H, Wang Y, et al. CircRNA circ-BANPs-mediated miR-503/LARP1 signaling contributes to lung cancer progression. Biochem Biophys Res Commun. 2018;503(4):2429–35.

114. Ren TJ, Liu C, Hou JF, Shan FX. CircDDX17 reduces 5-fluorouracil resistance in colorectal cancer cells. Cell Biol. 2019;41(2):e00445-20.

115. Zhang Y, Zhang Z, Yi Y, Wang Y, Fu J. CircNOL10 acts as a sponge of miR-181b. Oncotarget. 2017;8(10):13455–61.

116. Jin Y, Yu LL, Zhang B, Liu CF, Chen Y. Circular RNA hsa_circ_0000523 regulates the malignant phenotype in colorectal cancer cells. Onco Targets Ther. 2020;13:5165–76.

117. Li H, Jin X, Liu B, Zhang P, Chen W, Li G. CircRNA CBL1 suppresses cell proliferation by sponging miR-6778–5p in colorectal cancer. BMC Cancer. 2019;19(1):1–14.

118. Cui W, Dai J, Ma J, Gu H. Circday/microRNA-150–5p participates in modulating growth and migration of colon cancer cells. Gen Physiol Biophys. 2019;38(6):485–95.

119. Lin J, Yu LL, Zhang B, Liu CF, Chen Y. Circular RNA hsa_circ_000523 regulates the proliferation and apoptosis of colorectal cancer cells as miRNA sponge. Braz J Med Biol Res. 2018;51(12).

120. Raza U, Zhang JD, Sahin O. MicroRNAs: Master regulators of drug resistance, stemness, and metastasis. In: Journal of molecular medicine, vol. 92. Springer Verlag. 2014. p. 321–36.
138. Wr J, Ne S. Detecting and characterizing circular RNAs. Nat Biotechnol. 2014;32(5):453–61.
139. Jin Y, Yu LL, Zhang B, Liu CF, Chen Y. Circular RNA hsa_circ_0005523 regulates the proliferation and apoptosis of colorectal cancer cells as miRNA sponge. Braz J Med Biol Res. 2018;51(12):e7811. https://doi.org/10.1590/1414-431X20187811.
140. Yang N, Xu B, Kong P, Han M, Li BH. Hsa_circ_0002320: a novel clinical biomarker for colorectal cancer prognosis. Medicine (Baltimore). 2020;99(28):e21224.
141. Tang X, Sun Q, He Q, Wang C, Shi J, Gao L, et al. Circular noncoding RNA circMBOAT2 is a novel tumor marker and regulates proliferation/migration by sponging miR-519d-3p in colorectal cancer. Cell Death Dis. 2020;11(8):1–15.
142. Sadeghi H, Heiat M. A novel circular RNA hsa_circ_0060927 may serve as a potential diagnostic biomarker for human colorectal cancer. Mol Biol Rep. 2020;47(9):6649–55.
143. Jin YD, Ren YR, Gao YX, Zhang L, Ding Z. Hsa_circ_0005075 predicts a poor prognosis and acts as an oncogene in colorectal cancer via activating Wnt/B-catenin pathway. Eur Rev Med Pharmacol Sci. 2019;23(8):3111–9.
144. Xing L, Xia M, Jiao X, Fan L. Hsa_circ_0004831 serves as a blood-based prognostic biomarker for colorectal cancer and its potentially circRNA-miRNA-mRNA regulatory network construction. Cancer Cell Int. 2020;20(1):1–9.
145. Min L, Wang H, Zeng Y. CircRNA-104916 regulates migration, apoptosis and epithelial-mesenchymal transition in colon cancer cells. Front Biosci Landmark. 2019;24:819–32. https://doi.org/10.2741/4753.
146. Tian J, Xi X, Wang J, Yu J, Huang Q, Ma R, et al. CircRNA hsa_circ_0004585 as a potential biomarker for colorectal cancer. Cancer Manag Res. 2019;11:5413–23.
147. Pan B, Qin J, Liu X, He B, Wang X, Pan Y, et al. Identification of serum exosomal hsa-circ-0004771 as a novel diagnostic biomarker of colorectal cancer. Front Genet. 2019;10:1096.
148. Zheng X, Chen L, Zhou Y, Wang Q, Zheng Z, Xu B, et al. A novel protein encoded by a circular RNA circPPP1R12A promotes tumor pathogenesis and metastasis of colon cancer via Hippo-YAP signaling. Mol Cancer. 2019;18(1):1–13.
149. Gi Z, Li LF, Wang CY, Wang Y, Ma WL. CircMTO1 inhibits cell proliferation and invasion by regulating Wnt/B-catenin signaling pathway in colorectal cancer. Eur Rev Med Pharmacol Sci. 2018;22(23):2023–9.
150. Ji W, Qiu C, Wang M, Mao N, Wu S, Dai Y. Hsa_circ_0001649: A circular RNA and potential novel biomarker for colorectal cancer. Biochem Biophys Res Commun. 2018;497(1):122–6.
151. Wang F, Wang J, Gao X, Xu L, Chen L. Hsa_circ_0014717 is downregulated in colorectal cancer and inhibits tumor growth by promoting p16 expression. Biomed Pharmacother. 2018;98:775–82.
152. Li J, Ni S, Zhou C, Ye M. The expression profile and clinical application potential of hsa_circ_0000711 in colorectal cancer. Cancer Manag Res. 2018;10:2777–84.
153. Wang J, Li X, Lu L, He L, Hu H, Xu Z. Circular RNA hsa_circ_0005567 can be used as a promising diagnostic biomarker for human colorectal cancer. J Clin Lab Anal. 2018;32(5):e22379.
154. Zhou F, Lin H, Chen Z, Huang Z, Hu J. The expression profile and clinical significance of circRNA0003906 in colorectal cancer. Oncol Targets Ther. 2017;10:5187–93.
155. Sang M, Meng L, Liu S, Ding P, Chang S, Ju Y, et al. Circular RNA ciRS-7 maintains metastatic phenotypes as a ceRNA of miR-1299 to target MMPs. Mol Cancer Res. 2018;16(11):1665–75.
156. Kanasty R, Dorkin JR, Vegas A, Anderson D. Delivery materials for siRNA therapeutics. In: Nature materials, vol. 12. Nature Publishing Group; 2013. p. 967–77.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.