The α_{2c}Del322-325 adrenergic receptor polymorphism is not associated with heart failure due to idiopathic dilated cardiomyopathy in black Africans

J DU PREEZ, LO MATOLWENI, J GREENBERG, P MNTLA, AA ADEYEMO, BM MAYOSI

Summary

Background: A four-amino acid deletion was identified within the α_{2c}-adrenergic receptor (α_{2c}-Del322-325) that, when homozygous, increases the risk of heart failure in African-Americans nearly six-fold. We hypothesised that homozygosity for the α_{2c}-Del322-325 polymorphism may be a risk factor for heart failure due to idiopathic dilated cardiomyopathy (DCM) in black South Africans.

Methods: The α_{2c}-Del322-325 polymorphism was genotyped in 37 patients with heart failure and 34 controls, all of black African ancestry. Genotyping was performed by a size-fractionation assay.

Results: The patients studied ranged in age from 21 to 79 years with a mean age of 50 years, and 62% were male. No significant difference was observed in homozygosity for the α_{2c}-Del322-325 polymorphism or in allele and genotype frequencies between patients and controls. The frequency of the allele containing the deletion was 0.54 in cases and 0.53 in controls. The genotype frequencies in the patients were consistent with those of the controls ($p = 0.56$).

Conclusions: Homozygosity for the α_{2c}-Del322-325 polymorphism is not associated with an increased risk for heart failure due to idiopathic DCM in black South Africans.
interest was amplified from genomic DNA using oligonucleotides 5′-TGGTCCCCCGACTACCGAAA-3′ and 5′-FAM-TGACCAGGCACGCAAAGG-3′. Amplicons were size-fractionated on an ABI Prism® 3100 genetic analyzer (Applied Biosystems). The genotype and allele frequencies in cases and controls were compared.

The \(\chi^2 \) test was used to evaluate the association between heart failure and genotype. This was an exploratory study; hence it was not designed to maximise power to detect an association. However, given the frequency of the deletion variant in the study, the study had 91, 84 and 69% power to detect a significant association at a 95% significance level for a genotypic relative risk of heart failure of five, four and three, respectively, under an additive model (the reported increased risk is five-fold for the association of the polymorphism with heart failure in black subjects).

Results

The 37 patients studied ranged in age from 21 to 79 years with a mean age at diagnosis of 48 (± 16) years, and 25 of the patients (68%) were male. The mean left ventricular ejection fraction was 36% (± 9%), and 29 patients (78%) underwent cardiac catheterisation to exclude coronary artery disease. All patients were on standard medication for symptomatic heart failure, and two had a past history of hypertension. The HIV status of the cases was not determined in this series.

The distribution of allele frequencies was in Hardy-Weinberg equilibrium (\(p = 0.734 \)). There was no significant association between the \(\alpha_2 \)-Del322-325 polymorphism and heart failure under an additive model (\(\chi^2 = 0.018, p = 0.894 \)), a dominant model (\(\chi^2 = 0.177, p = 0.674 \)), or a recessive model (\(\chi^2 = 0.348, p = 0.556 \)); the recessive model is equivalent to comparing deletion homozygotes to the rest.

No significant difference was observed in allele and genotype frequencies of the \(\alpha_2 \)-Del322-325 polymorphism between cases and controls (see Table 1). The frequency of the allele containing the deletion was 0.54 in cases and 0.53 in controls compared to 0.41 in black controls in the Small study.²

Discussion

In this study no association was found between the \(\alpha_2 \)-Del322-325 polymorphism and heart failure due to idiopathic DCM in black South Africans. Similar studies of the genetic association of the \(\alpha_2 \)-Del322-325 polymorphism with heart failure in Japanese and Italian patients also failed to confirm the finding.²³ Furthermore, in a study of \(\alpha_2 \)-Del322-325 and \(\beta_1 \)Arg389 polymorphisms and traits that are precursors of systolic heart failure (ie, increased left ventricular end-diastolic volume (EDV) or decreased left ventricular ejection fraction (LVEF)), no association was found in either the African-American or the white American patients.²

There are several reasons that may explain the discrepancy between our findings and the original report of an association,² but this is not unusual in case-control studies. First, we studied black Africans with idiopathic dilated cardiomyopathy, whereas the African-Americans studied, who have a different allele frequency to African blacks, had heart failure due to a number of causes including ischaemic heart disease. Second, it should be noted that this study was exploratory and the power to detect smaller relative risks (for many complex diseases, relative risks of 1.3 to 1.8 are typical) was quite limited. A larger study would demonstrate if this is indeed so. Finally, we used different genotyping methods that may limit the generalisability of our findings.

Despite these limitations, the results of our study suggest that the \(\alpha_2 \)-Del322-325 polymorphism is unlikely to be a major risk factor for heart failure due to idiopathic DCM in our African patients.

References

1. Mayosi BM. Contemporary trends in the epidemiology and management of cardiomyopathy and pericarditis in sub-Saharan Africa. Heart 2007; 93: 1176–1183.
2. Moolman-Smook JC, Mayosi BM, Brink PA, Corfield VA. Molecular genetics of cardiomyopathy: changing times, shifting paradigms. Cardiovasc J South Afr 2003; 14: 145–155.
3. Small KM, Wagoner LE, Levin AM, Kardia SLR, Liggett SB. Synergistic polymorphisms of \{beta\}1- and \{alpha\}2C-adrenergic receptors and the risk of congestive heart failure. N Engl J Med 2002; 347: 1135–1142.
4. Khogali SS, Mayosi BM, Beattie JM, McKenna WJ, Watkins H, Poulton J. A common mitochondrial DNA variant associated with susceptibility to dilated cardiomyopathy in two different populations. Lancet 2001; 357: 1265–1267.
5. Nonen S, Okamoto H, Akino M, Matsui Y, Fujijo Y, Yoshiyama M, et al. No positive association between adrenergic receptor variants of alpha2cDel322-325, beta1Ser49, beta1Arg389 and the risk for heart failure in the Japanese population. Br J Clin Pharmacol 2005; 60: 414–417.
6. Metra M, Zani C, Covolo L, Nodari S, Pezzali N, Gelatti U, et al. Role of \{beta\}1- and alpha2c-adrenergic receptor polymorphisms and their combination in heart failure: a case-control study. Eur J Heart Fail 2006; 8: 131–135.
7. Canham RM, Das SR, Leonard D, Abdullah SM, Mehta SK, Chung AK, et al. Alpha2cDel322-325 and beta1Arg389 adrenergic polymorphisms are not associated with reduced left ventricular ejection fraction or increased left ventricular volume. J Am Coll Cardiol 2007; 49: 274–276.