ФАРМАКОЭКОНОМИЧЕСКОЕ ОБОСНОВАНИЕ ПРОВЕДЕНИЯ АНТИПНЕВМОКОККОВОЙ ВАКЦИНАЦИИ В ГРУППАХ РИСКА ДЛЯ ПРОФИЛАКТИКИ ВНЕБОЛЬНИЧНЫХ ПНЕВМОНИЙ СРЕДИ ВЗРОСЛОГО НАСЕЛЕНИЯ АСТРАХАНСКОЙ ОБЛАСТИ

Е.А. Орлова, И.П. Дорфман, М.А. Орлов, М.А. Абдуллаев

Федеральное государственное бюджетное образовательное учреждение высшего образования
«Астраханский государственный медицинский университет»
Министерства здравоохранения Российской Федерации
414000, Россия, г. Астрахань, ул. Бакинская, д. 121

Получено 30.08.2020 Принята к печати 15.12.2020

Цель. Обосновать экономическую эффективность и выбор стратегии вакцинопрофилактики в контингентах повышенного риска развития респираторной пневмококковой инфекции среди взрослого населения Астраханской области.

Материалы и методы. За период с 2015 по 2018 гг. проанализированы данные о числе зарегистрированных заболеваний у пациентов, проживающих в районе обслуживания медицинских организаций (форма № 591 от 27.11.2015; № 679 от 22.11.2019). Изучена основная документация по диспансеризации, представленная медицинскими учреждениями (форма № 030/у «Контрольная карта диспансерного наблюдения», списки лиц, подлежащих диспансерному наблюдению в отчетном году, Приказы МЗ РФ № 1344 от 21.12.2012; № 173н от 29.03.2019). Проанализированы отчетно-статистические материалы территориального фонда обязательного медицинского страхования Астраханской области (ТФОМС АО) по оплате медицинской помощи 12970 пациентам, перенесшим пневмонию в 2015–2018 гг. Для финансового обеспечения вакцинопрофилактики учитывались результаты конкурсных торгов по закупкам пневмококковых вакцин, организованных региональным министерством здравоохранения. Расчеты выполнялись в соответствии с методическими указаниями «Экономическая эффективность вакцинопрофилактики». МУ 3.3.1878-04 от 04.03.2004.

Результаты. При проспективном расчете затрат на реализацию вакцинопрофилактики установлено, что окупаемость вакцинации с применением ПКВ 13(«Превенар 13») и ППВ 23 («Пневмовакс 23») в условиях 95% охвата прививками регистрируется через 2 года. Экономическая выгода вакцинопрофилактики за счет снижения возможного числа пневмоний (ПН) по окончании 2028 года составит 968,2 млн руб. Заключение. Установлена экономическая целесообразность проведения вакцинопрофилактики взрослого контингента с повышенным риском развития пневмококковой инфекции. Наиболее эффективным для ограничения распространения пневмококковой инфекции характеризуется стратегия последовательного применения ПКВ13 и ППВ23. Результаты исследования подлежат широкому внедрению в перспективные планы вакцинопрофилактики и практику здравоохранения Астраханской области.

Ключевые слова: вакцинопрофилактика; вакцинация; пневмококковая инфекция; внебольничная пневмония; ПКВ 13; ППВ 23; группы риска; фармакоэкономический анализ; Астраханская область

Список сокращений: ПН – пневмония; ПКВ13 – пневмококковая конъюгированная вакцина «Превенар 13»; ППВ23 – пневмококковая поливалентная вакцина «Пневмовакс 23»; ВП – внебольничная пневмония; ПИ – пневмококковая инфекция; ХОБЛ – хроническая обструктивная болезнь легких; ИБС – ишемическая болезнь сердца; ХСН – хроническая сердечная недостаточность; СД – сахарный диабет; ВИЧ – вирус иммунодефицита человека

Для цитирования: Е.А. Орлова, И.П. Дорфман, М.А. Орлов, М.А. Абдуллаев. Фармаκоэкономическое обоснование проведения антипневмококковой вакцинации в группах риска для профилактики внебольничных пневмоний среди взрослого населения Астраханской области. Фармация и фармакология. 2020;8(6):436-445. DOI: 10.19163/2307-9266-2020-8-6-436-445
© Е.А. Орлова, И.П. Дорфман, М.А. Орлов, М.А. Абдуллаев, 2020

For citation: E.A. Orlova, I.P. Dorfman, M.A. Orlov, M.A. Abdullaev. Pharmacoeconomic evaluation of anti-pneumococcal vaccination in risk groups for the prevention of community-acquired pneumonia among adults in the Astrakhan region. Pharmacy & Pharmacology. 2020;8(6):436-445. DOI: 10.19163/2307-9266-2020-8-6-436-445
PHARMACOECONOMIC EVALUATION OF ANTI-PNEUMOCOCCAL VACCINATION IN RISK GROUPS FOR THE PREVENTION OF COMMUNITY-ACQUIRED PNEUMONIA AMONG ADULTS IN THE ASTRAKHAN REGION

E.A. Orlova, I.P. Dorfman, M.A. Orlov, M.A. Abdullaev

Astrakhan State Medical University
121, Bakinskaya Str., Astrakhan, Russia, 414000

E-mail: eorlova56@mail.ru

Received 30 Aug 2020
Accepted 15 Dec 2020

The aim. To evaluate the economic efficiency and the choice of the vaccination strategy in the respiratory pneumococcal infection risk groups among the adult population of the Astrakhan region.

Materials and methods. The data for the period of 2015–2018 were analyzed on the number of registered diseases in the patients living in the service area of the medical organizations (Form No.12, Federal State Statistics Service Orders No. 591, dated 27 November, 2015; No. 679, dated 22 November, 2019). The following working directives were studied: the base medical examination documentation submitted by medical institutions (Form No. 030/y “Dispensary Monitoring Checklist”; lists of the persons subjected to medical observation in the reporting year; Orders of the Ministry of Health of the Russian Federation: No. 1344, dated 12 December, 2012; No. 173n, dated 29 March, 2019). Statistical materials of the territorial fund for compulsory medical insurance of the Astrakhan region on the payment of medical care to 12,970 patients who had pneumonia in 2015–2018, were analyzed. The financial support of vaccination based on the results of tenders for the procurement of pneumococcal vaccines organized by the regional Ministry of Health, was considered. The calculations were carried out in accordance with the guidelines of “Cost-effectiveness of vaccine prophylaxis” (Methodological guidelines 3.3.1878-04, dated 04.03.2004).

Results. The prospective calculation of the vaccination cost showed that the benefits of vaccination with pneumococcal conjugate vaccine Prevenar13 (PCV13) and pneumococcal polyvalent vaccine Pneumovax 23 (PPV23) with a 95% vaccination coverage, are recorded after 2 years. The economic benefit of vaccination by reducing the possible number of pneumonias at the end of 2028 will be 968.2 million rubles.

Conclusion. The economic feasibility of vaccine prophylaxis of the adult contingent with an increased risk of developing pneumococcal infection has been established. The sequential strategy of PCV13 and PPV23 application provides the most effective localization of pneumococcal infection. The research results should be widely introduced into the long-term plans for vaccination and healthcare practice in the Astrakhan region.

Keywords: vaccine prophylaxis; vaccination, pneumococcal infection; community-acquired pneumonia; PCV13; PPV23; risk groups; pharmacoeconomic analysis; Astrakhan region

Abbreviations: PN – pneumonia; PCV13 – pneumococcal conjugate vaccine “Prevenar 13”; PPV23 – pneumococcal polyvalent vaccine “Pneumovax 23”; CAP – community-acquired pneumonia; PI – pneumococcal infection; COPD – chronic obstructive pulmonary disease; CHD – coronary heart disease; CHF – chronic heart failure; DM – diabetes mellitus; HIV – human immunodeficiency virus.

ВВЕДЕНИЕ

Внебольничная пневмония (ВП) занимает ведущее положение в структуре заболеваемости и смертности от инфекционных болезней в мире. По данным ВОЗ в мире ежегодно отмечается 2,98 миллиона случаев, из них 1,72 миллиона случаев являются пневмококковой пневмонией. В России ежегодно отмечается 3,9 случая пневмонии на 1000 человек в год среди лиц старше 18 лет [1, 2]. Однако эти показатели не отражают истинную заболеваемость ВП в России, которая по различным источникам достигает 14–15% и составляет более 1,5 млн человек [3]. Наиболее уязвимыми категориями по развитию пневмококковой инфекции (ПИ) являются дети раннего возраста и взрослые с хроническими заболеваниями легких, сердечно-сосудистой системы, печени, почек, сахарным диабетом (СД) и иммунодефицитными состояниями [4, 5]. Как показывают исследования, риск развития ПИ существенно повышен у пациентов с фоновыми заболеваниями в возрасте от 50 до 64 лет. По сравнению с соматически здоровыми лицами, риск развития ПИ выше в 13,3 раза у онкогематологических больных; в 9,8 раз – при хронической обструктивной болезни легких (ХОБЛ); в 6,5 раз – при ВИЧ-инфекции; в 5,8 раз – при иммунноспрессивных состояниях и хронических заболеваниях печени. Риск развития ПИ также увеличен при курении – в 4,4 раза; сердечно-сосудистых заболеваний – в 4,2 раза; хронических заболеваниях почек и сахарном диабете соответственно в 4,2 и 3 раза [6, 7].

В России на 500 тыс. случаев, зарегистрированных за один год заболеваний, пневмококковую инфекцию
имеют 76% взрослых и 90% детей в возрасте до 5 лет [8]. Сложившаяся ситуация уже диктует необходимость проведения специфической вакцинации в группах риска. При ХОБЛ вакцинация уменьшает число обострений, стабилизирует показатели функциональных тестов и способствует замедлению прогрессирования дыхательной недостаточности [9, 10]. Активность вакцинации увеличивается при коморбидной патологии. Например, ХОБЛ в 1/3 случаев коморбидна с ишемической болезнью сердца (ИБС). Общая смертность пациентов с хронической сердечной недостаточностью (ХСН) при развитии пневмонии повышается в 1,8–4,6 раза, а риск летального исхода увеличивается на 49,5%. Установлено, что перенесенная пневмония у данной категории больных способствует прогрессированию недостаточности кровообращения на 17,7%, повышению риска развития острого коронарного синдрома — на 14,1% и любого нарушения ритма — на 5,3% [11–13]. Негативным вкладом из-за прогрессирующей ХОБЛ является значительное увеличение экономических потерь за счет прямых и косвенных затрат до 61,6 млрд руб. [14]. ПИ способствует сенсибилизации и утяжелению хронического неспецифического воспаления в бронхах, усиливает их гиперреактивность у пациентов с бронхиальной астмой [15, 16]. При наличии заболеваний почек ПИ встречается чаще, чем в среднем в популяции, протекает более тяжело и с возможными летальным исходом. У пациентов с хронической почечной недостаточностью, особенно у получающих программный гемодиализ, часто развиваются пневмонии и сепсис. Следует отметить, что риск смерти от пневмонии в данной ситуации повышается в 14–16 раз [17, 18].

Доказана необходимость вакцинации против ПИ при сахарном диабете и метаболическом синдроме. Известно, что эти категории больных имеют дефекты иммунологической защиты против всех видов микробной инфекции, включая инфекции пневмококковой этиологии. Риск развития инвазивных форм ПИ у них по сравнению со здоровыми лицами выше в 6 раз [19]. Кроме того, Streptococcus pneumoniae является одним из наиболее частых возбудителей рецидивирующей пневмонии у больных сахарным диабетом, которая достаточно часто развивается при микроаспирации содержимого ротоглотки или же лудка в связи с парезом пищевода [20]. К сожалению, в исследованиях отмечается, что иммунизация против ПИ у вышеуказанной категории пациентов и по ные не соответствует достаточному объему [21, 22].

В общем круге проблем по предупреждению ПИ приоритетное развитие получила специфическая вакцинация, препятствующая распространению устойчивых к антибиотикам штаммов и сокращающая развитие наиболее тяжелых клинических форм пневмоний. Вакцинопрофилактика является не только эффективным, но и затратным мероприятием. Особенно это касается стран с ограниченными материальными ресурсами, не способными обеспечить достаточный охват населения вакцинацией. Однако ущерб от заболеваний пневмококковой этиологии, которые могут быть предотвращены широкой иммунизацией населения, остается выше ожидаемых перспектив. Данное положение конкретно определяет высокую экономическую эффективность вакцинопрофилактики. В этой связи решение проблемы заключается в разработке перспективных региональных программ вакцинопрофилактики в группах риска по развитию ПИ, имеющих удельное фармакоэкономическое обоснование.

Цель. Обосновать экономическую эффективность и выбор стратегии вакцинопрофилактики в контингентах повышенного риска развития респираторной пневмококковой инфекции среди взрослого населения Астраханской области.

Материалы и методы
Исследование проводилось на территории Астраханской области (по данным Росстата население — 1 005 967 человек). Численность населения г. Астрахани составляет 504 501 человек. Общий контингент с риском развития ПИ представлен взрослыми пациентами от 18 лет и старше с хроническими формами сердечно-сосудистых (ИБС, кардиомиопатии) и бронхолегочных (ХОБЛ, хронический бронхит, бронхиальная астма) заболеваний, больными сахарным диабетом и ожирением, реконвалесцентами после острого среднего отита, а также перенесенными менингитами. Группы меньшей численности составили пациенты с хроническими заболеваниями печени, почек и гемобластозами (табл. 1). В общей сложно сти количество лиц в группах риска за период 2015–2018 гг. составило в среднем 99 228 человек. При наличии хронических заболеваний, требующих наблюдения и лечения, все они были отнесены к 3 группе диспансерного учета.

Для отбора пациентов в группы риска, верификации их клинического диагноза и планирования вакцинопрофилактики применялись нормативно-правовые документы. За период 2015–2018 гг. проанализированы данные о числе зарегистрированных заболеваний у пациентов, проживающих в районе обслуживания медицинских организаций (форма № 12)1, 2. Изучена основная документация по диспансеризации, представленная медицинскими
ми учреждениями г. Астрахани и области (форма № 030/у «Контрольная карта диспансерного наблюдения», списки лиц, подлежащих диспансерному наблюдению в отчетном году»4,5). Проанализированы отчетно-статистические материалы ТФОМС АО по оплате медицинской помощи 12970 пациентам, перенесшим пневмонию в 2015–2018 гг.

Выполнение профилактических мероприятий в медицинских организациях оценивалось в соответствии с национальным календарем профилактических прививок5.

При расчете затрат на вакцинацию учитывались результаты конкурсных торгов по закупкам пневмококковых вакцин, проведенных региональным министерством здравоохранения в 2015–2018 гг. Стоимость ППВ23 («Пневмовакс 23») в 2015 году составляла 2500 руб. и снизилась до 1800 руб. в 2016 году. Стоимость ПКВ13 («Превенар 13») в 2017–2018 гг. оставалась без изменений и соответствовала 1700 руб.

В интерпретации полученных результатов исследования применялся фармакоэкономический анализ осуществленных (ретроспективно) и планируемых (прогнозно) профилактических мероприятий. Действуя основной цели алгоритма вычислений являлись методические указания «Экономическая эффективность вакцинопрофилактики»6. Для определения компонентов экономических оценок вакцинопрофилактики последовательно применялись формулы 1–18. Для получения результатов изменения исходных региональных показателей в алгоритме вычислений использовалась программная база MS Excel.

Последовательный расчет затрат, связанных с реализацией выбранной стратегии вакцинопрофилактики и предотвращенным ущербом, проводился поэтапно. Основными этапами данного расчетного алгоритма являлись:

– Ретроспективный анализ заболеваемости и охвата вакцинацией взрослых пациентов в группах риска развития ПИ в Астраханском регионе за 2015–2018 гг.;

– Ретроспективный анализ заболеваемости пневмонией у взрослых пациентов 18 и более лет и расчётом фактических финансовых затрат, связанных с лечением, в динамике за 4 года;

– Проспективный расчет затрат на лечение пневмонии в зависимости от экономической целесообразности применения вакцинопрофилактики в альтернативных вариантах «без вакцинации» и «с вакцинацией»;

– Сопоставление «затрат» и «выгод» по заключительным результатам дивергентного анализа вакцинопрофилактики и определение ее эффективности в перспективе 10 лет.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На первом этапе исследования проводился анализ заболеваемости в группах риска по развитию ПИ среди взрослого населения Астраханской области за период 2015–2018 гг. Выявлена ежегодная тенденция к росту показателей общего количества пациентов. Особое внимание вызывают заболевания сердечно-сосудистой системы. Увеличение их показателей через 4 года составило 17117 зарегистрированных случаев, что по отношению к исходному 2015 году достигло 46,5%. Второе место заняли пациенты с СД и ожирением, составившие в 2018 году 30,8% от общего числа пациентов в группах риска. Также выявлены тенденции к росту хронических заболеваний легких, ЛОР-органов и печени. В сопоставлении с 2015 годом их показатели по окончанию 4 лет увеличились соответственно на 18,3%, 6,9% и 17,8%. Отсюда следует, что ежегодное повышение заболеваемости в вышеуказанных группах риска является определяющим условием для оптимизации профилактических мероприятий и обязательного применения современных технологий по иммунопрофилактике.

Чтобы создать предпосылки для планирования эффективной вакцинопрофилактики, нам рассчитывался ежегодный средний темп роста (Трп) количества пациентов в группах риска по формуле [23]:

\[T_{\text{рп}} = \left(\frac{N_{\text{конеч.}} - N_{\text{нач.}}}{\text{ср}} \right)^{\frac{1}{s}} - 1, \]

где: \(N_{\text{нач.}} \) – количество человек в группах риска в последующий год наблюдения; \(N_{\text{конеч.}} \) – количество человек в группах риска в предыдущий год наблюдения; \(s \) – количество лет наблюдения.

Проведенные вычисления показали, что средний темп количественного роста в группах риска развития ПИ за период 2015–2018 гг. составил 5981 (6,3%) человек. Полученный результат, исходящий от анализа исходных показателей за 4 года, убедительно указывает на необходимость безотлагательного решения вопросов вакцинопрофилактики.

В рамках второго этапа исследования ретроспективно проанализирована заболеваемость пневмонией (ПН) среди взрослого населения Астраханской области и рассчитаны затраты на её лечение, реализованные в 2015–2018 гг. За указанный период
общее количество пациентов, перенесших ПН, составило 12970 человек. Затраты на полученное им лечение рассчитывались по формуле [24]:

$$\text{Cost}_{\text{пн}} = \text{Cost}_{1\text{пн}} \times N,$$

где: $\text{Cost}_{\text{пн}}$ – затраты на лечение ПН; $\text{Cost}_{1\text{пн}}$ – стоимость лечения одного случая; N – количество случаев.

Согласно таблице 2, средняя стоимость лечения 1 случая пневмонии составила 20156,23 руб., поэтому общие финансовые затраты достигли значительной суммы в 265 234 598,53 руб.

Таким образом, сохранение тенденций к увеличению показателей заболеваемости ПН в течение 4 лет и росту финансовых затрат на лечение характеризуют сложившуюся в регионе ситуацию, в которой явно обозначилась необходимость оптимизации мероприятий по профилактике и терапии этого заболевания. Как свидетельствует клиническая практика, одним из путей повышения эффективности лечебно-профилактических мероприятий и влияния на заболеваемость ПН является иммунопрофилактика с применением современных пневмококковых вакцин.

Исходя из этой позиции нами проанализированы возможности ежегодного охвата вакцинацией взрослого контингента из групп риска по ПИ и среднего-дового прироста заболеваемости ПН среди жителей региона на протяжении 4 лет (табл. 3). Началом вакцинопрофилактики против ПИ среди взрослого населения в Астраханском регионе с применением ППВ23 считается 2015 год. В течение этого года, в связи с риском развития ПИ, получили такую вакцинацию 2185 человек. Данный показатель в 2016 году был минимальным и составил 176 человек. В 2017 году тактика проведения вакцинопрофилактики изменилась из-за применения двух вакцин. В общей сложности обеими вакцинами было привито 2289 человек, из них 635 получили ППВ23 и 1654 – ПКВ13. В 2018 году обеими вакцинами было привито 2289 человек, из них 635 получили ППВ23 и 1654 – ПКВ13. В 2019 году тактика проведения вакцинопрофилактики изменилась из-за применения двух вакцин. В общей сложности обеими вакцинами было привито 2289 человек, из них 635 получили ППВ23 и 1654 – ПКВ13. В 2018 году обеими вакцинами было привито 2289 человек, из них 635 получили ППВ23 и 1654 – ПКВ13. В 2019 году та видимо, что ПКВ13 является более эффективной вакциной в отношении предотвращения ПН.

На следующем этапе исследования нами проводились расчеты предполагаемого количества человек в группах риска в перспективе на 10 лет. За основу расчета был принят средний темп роста числа пациентов (Тр) в группах риска ПИ с 2015 по 2018 гг. Данный подход позволил проспективно рассчитать аналогичные показатели, представляющие количество лиц в группах риска в период 2019–2028 гг. (табл. 4).

В сопоставлении также следовало оценить роль альтернативных стратегий профилактики «без вакцинации» и «с вакцинацией» в предупреждении вероятных случаев ПН. Учитывая низкий уровень вакцинопрофилактики в 2015–2018 гг. (средний показатель 1,7%), мы посчитали этот временной эпизод периодом без проведения вакцинопрофилактики. Исходя из условий стратегии невмешательства («без вакцинации»), для расчета ежегодного показателя заболеваемости ПН (включаясь вновь зарегистрированные случаи в течение года) применялась формула [9]:

$$K_{\text{ср}} = \frac{k_{\text{ср}}}{\pi_{\text{ср}}} \times 100000,$$

где: $K_{\text{ср}}$ – средний показатель заболеваемости; $k_{\text{ср}}$ – среднее число заболеваний за период; $\pi_{\text{ср}}$ – средняя численность привитых, выраженные в абсолютных величинах.

Отсюда следует, что за период 2015–2018 гг. заболеваемости ПН по Астраханской области составил 3268 человек. Полученный показатель также был актуален для расчетов вероятного числа случаев ПН, которые имели бы место без вакцинопрофилактики после 2018 года на протяжении 10 лет (табл. 4). Исходя и вышесказанного, расчет проводился по формуле [10]:

$$m_{i} = K_{\text{ср}} \times \pi_{i} /100000,$$

где: m_{i} – вероятное число заболеваний в году при отсутствии вакцинопрофилактики; $K_{\text{ср}}$ – средний показатель заболеваемости; π_{i} – численность контингента за 1 год, выраженные в абсолютных величинах.

Таким образом, полученные данные могут свидетельствовать о наличии взаимосвязанных тенденций к росту количества лиц в группах риска и вероятных случаях ПН, в общей причине которых кроется минимальная по охвату и эффективности вакцинация. Безусловно, что стратегии с отсутствием вакцинопрофилактики в 2015–2018 гг. являются «без вакцинации», представлены на рисунке 1.
Таблица 1 – Нозологическая характеристика и численность пациентов в группах риска развития пневмококковой инфекции

Группы риска (чел), годы	2015	2016	2017	2018
Сердечно-сосудистые заболевания	36839	43898	49782	53956
Хронические заболевания легких	10680	11899	12008	13076
Сахарный диабет и ожирение	30357	32394	32117	33874
Острый средний отит, менингит	6610	7417	7554	7064
Заболевания печени, включая цирроз печени	2247	2452	2467	2648
Заболевания почек, хроническая почечная недостаточность	238	266	285	273
Гемобластозы	678	698	8428	809
Общее количество пациентов в группах риска:	86118	97433	103318	110042

Таблица 2 – Количество зарегистрированных случаев пневмонии и затраты на лечение

Период, годы	2015	2016	2017	2018	Итоговый результат
Случаи пневмонии	2766	3234	3193	3777	12970
Стоимость 1 случая, руб.	15 420,93	22 638,17	19 525,00	23 040,81	20 156,23
Суммарные затраты на лечение, руб.	42 654 292,38	73 211 841,78	62 343 325	87 025 139,37	265 234 598,53

Таблица 3 – Результаты вакцинации в группах риска и среднегодовой прирост заболеваемости пневмонией у взрослых в Астраханской области

Период, годы	2015	2016	2017	2018	Исходно: 2766 случаев ПН
Общее количество привитых, чел.	2185	176	2297	2197	16,9
Охват вакцинацией, %	2,5	0,2	2,2	2	15,4
Прирост заболеваемости пневмонией, %	36,5				

Таблица 4 – Динамика количественных показателей в группах риска и заболеваемости пневмонией в Астраханской области в проспективном расчете на 10 лет

Годы	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028
Группы риска, чел.	116997	124392	132253	140612	149499	158948	168994	179675	191031	203105
Вероятные случаи пневмонии	3823	4065	4322	4595	4885	5194	5522	5871	6242	6637

Таблица 5 – Количество предотвращенных случаев пневмонии и стоимость предотвращенного ущерба в перспективе на 10 лет

Период, годы	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028
Вероятные случаи пневмонии без вакцинопрофилактики (м)	3823	4065	4322	4595	4885	5194	5522	5871	6242	6637
Вероятные случаи пневмонии на фоне вакцинопрофилактики (в т.ч. у вакцинированных и не вакцинированных) (л)	118	95	47	86	91	98	77	71	75	93
Предотвращенные случаи пневмонии (а)	3705	3970	4275	4509	4794	5096	5445	5800	6167	6544
Стоимость предотвращенного ущерба, млн руб.	74,6	80,0	86,2	90,9	96,6	102,7	109,7	116,9	124,3	131,9
Рисунок 1 – Проспективный расчет затрат на лечение страховых случаев пневмонии в Астраханской области при применении вариантной стратегии «без вакцинации»

Рисунок 2 – Соотношение затрат планируемой вакцинации и предотвращенного ущерба за период 2019–2028 гг.

Рисунок 3 – Расчетные показатели вероятных случаев ПН среди прививаемого контингента
Необходимо подчеркнуть, что затраты на лече-
ние ПН среди застрахованных лиц в Астраханской
области будут существенно увеличиваться на про-
тяжении всех 10 лет исследования. По результатам
проспективного расчета финансовых затрат, на фоне
альтернативной стратегии «без вакцинации» оказан-
ная медицинская помощь этой категории пациен-
tов может оцениваться в сумму, составляющую 1,31
млрд руб.

Для прогнозирования отсроченных во времени
результатов профилактических мероприятий в вари-
анте «с вакцинацией» на 10 лет вперед рассчитыва-
лись затраты на вакцинацию и предотвращенный с
ее помощью ущерб. Расчет стоимости вакцинопро-
филактики в данном альтернативном варианте про-
водился по формуле [24]:

\[\text{Cost}_{\text{w}} = \text{Cost}_{\text{v}} \times N_{\text{v}} \]

где: \(\text{Cost}_{\text{w}} \) – стоимость вакцинопрофилактики;
\(\text{Cost}_{\text{v}} \) – стоимость лекарственного препарата;
\(N_{\text{v}} \) – количество привитых.

Затраты на вакцинацию рассчитывались в соот-
ветствии с действующей в стране схемой проведения
прививок. Согласно национальному календарю, па-
циентам вводится одноразово в течение всей жизни
ПКВ 13. Лица, ежегодно пополняющие список групп
риска, также будут нуждаться в вакцинации ПКВ 13.
По окончании 1 года проводится первичная вакци-
нация ППВ 23 и через 5 лет – ревакцинация этой же
вакциной.

Планируемая в перспективе на 10 лет вакцино-
профилактика представляет собой высокозатратный
и долгосрочный профилактический мероприятие-
ем, способным оказать существенное влияние на
снижение количества случаев ПН. Определяющим
условием повышения эффективности вакцинопрофи-
латики ПЯ явилось применение двух независи-
мых коммерческих вакцин ПКВ 23 и ППВ 23. По расчетным данным в 2019 году ожидается 3632 человек, а в 2020 году также будут нуждаться в вакцинации ПКВ 13. Лица, ежегодно пополняющие список групп риска, также будут нуждаться в вакцинации ПКВ 13.

При моделировании процесса планируемой вакцинопрофилактики важным аспектом являлся учет повторных мероприятий, которые имели бы место за каждый год без вакцинопрофилактики; \(L_{\text{v}} \) – заболевшие ПН (в т.ч. вакцинированных и невакцинированных).

Из таблицы 5 следует, что вероятные случаи ПН на фоне вакцинопрофилактики приближает к однона-
правленной тенденции к снижению по окончании
2020 года. Однако вероятность случаев развития
ПН в 2028 году остается повышенной у лиц, вновь
поступивших в группу риска и получивших только
первичную вакцинацию ПКВ13. К этой категории от-
несены 375 человек, у которых плановая первичная
вакцинация ППВ23 должна проводиться в 2029 году,
выходящим за временные рамки настоящего иссле-
дования. Вместе с тем, в 2028 году успеют получать
прививки ППВ23 еще 352 человека, пополнившие
группу риска в 2027 году.

Таким образом, оценка преимуществ стратегии
вакцинопрофилактики «с вакцинацией» исходит от предот-
вращенных затрат, представленных как экономиче-
ский ущерб, связанный с распространением случа-
ев ПН, которые были предупреждены в результате
вакцинопрофилактики с использованием ППВ 13 и
ППВ 23. Для уточнения данного финансового аспек-
tа определялись предотвращенные затраты, рассчи-
tанные как произведение средней стоимости одного
случая заболевания на число предотвращенных слу-
чаев. Полученная в результате расчета общая сумма
предотвращенного экономического ущерба состави-
ла 1,14 млрд руб.

Как показано на рисунке 3, количество вероят-
ных случаев ПН у вакцинированных и невакциниро-
ванных лиц в условиях стратегии «с вакцинацией» в
целом позитивно снизилось, а вместе с ними умень-
шились затраты на лечение.

На заключительном этапе исследования была
рассчитана разница между затратами на вакцина-
цию в избранной нами группе риска ПИ и ущербом,
предотвращенным при ее реализации в течение 10
лет. Планируемый охват вакцинацией составил 95%.
Сравнение «затрат» на вакцинацию и «выгод» в сто-
imostных единицах явилось основным подходом к
оценке экономических параметров вакцинопрофи-
lактики. При моделировании процесса планируемой
вакцинопрофилактики важным аспектом являлся учет
всех вакцинированных лиц, в том числе и лиц, коли-
чественно пополняющих группу риска с поправкой на
ежегодный показатель среднего темпа роста (Треты).
Как указывалось выше, финансовые затраты на вакцинацию до 8,8 млн руб. максимально увеличились в 2025 году из-за повторной вакцинации ППВ 23. В то же время, предотвращенный ущерб составил в денежном эквиваленте 109,7 млн руб. и продолжал увеличиваться, достигая в 2028 году 131,9 млн руб. Ранним показателем эффективности профилактической работы следует считать факт самоокупаемости проводимой вакцинации через 2 года, когда затраты на ее проведение впервые снизились до 828 тыс. руб. (рис. 2).

Интегральный показатель экономической выгоды рассчитывался как разница между предотвращенным ущербом (1,14 млрд руб.) и суммой затрат на вакцино-профилактику (28,5 млн руб.) и стоимостью лечения случаев ПН у вакцинированных и невакцинированных (17,1 млн руб.). На основании полученного результата чистая экономическая выгода за окончание 2028 года может составить 968,2 млн руб.

ЗАКЛЮЧЕНИЕ

В настоящем исследовании рассматриваются возможности повышения эффективности вакцинации против ПН среди взрослого населения Астраханского региона и подходы к фармакоэкономическому анализу вакцинопрофилактики. Для объективизации, сlohившейся к настоящему времени ситуации проанализирована динамика заболеваемости в группах риска развития ПН за период 2015–2018 гг. Установлено отсутствие позитивных тенденций при заболеваниях сердечно-сосудистой системы. За 4 прошедших года их суммарное увеличение достигло 46,5%. Следующими по значимости показателями являлись СД и ожирение, составившие по окончании 2018 года 30,8% в общей структуре патологии. Особое внимание вызывает возрастание хронической бронхолегочной патологии. Спустя 4 года искомый показатель повысился в 2,5 раза. В исследовании данный период считался «без вакцинации». Чтобы получить ответ на вопрос о величине возможного ущерба при отсутствии вакцинации, нами проводился проспективный расчет затрат на лечение ПН в подобных условиях в течение ближайших 10 лет (2019–2028 гг.). По заключительным результатам расчета финансовых затрат «без вакцинации» рассчитывались предотвращенные затраты на фоне альтернативной стратегии «с вакцинацией». Чтобы получить ответ на вопрос о величине возможного ущерба при отсутствии вакцинации, нами проводился проспективный расчет затрат на лечение ПН в подобных условиях в течение ближайших 10 лет (2019–2028 гг.). По заключительным результатам расчета финансовых затрат «без вакцинации» рассчитывались предотвращенные затраты на фоне альтернативной стратегии «с вакцинацией». Чтобы получить ответ на вопрос о величине возможного ущерба при отсутствии вакцинации, нами проводился проспективный расчет затрат на лечение ПН в подобных условиях в течение ближайших 10 лет (2019–2028 гг.). По заключительным результатам расчета финансовых затрат «без вакцинации» рассчитывались предотвращенные затраты на фоне альтернативной стратегии «с вакцинацией». Чтобы получить ответ на вопрос о величине возможного ущерба при отсутствии вакцинации, нами проводился проспективный расчет затрат на лечение ПН в подобных условиях в течение ближайших 10 лет (2019–2028 гг.). По заключительным результатам расчета финансовых затрат «без вакцинации» рассчитывались предотвращенные затраты на фоне альтернативной стратегии «с вакцинацией». Чтобы получить ответ на вопрос о величине возможного ущерба при отсутствии вакцинации, нами проводился проспективный расчет затрат на лечение ПН в подобных условиях в течение ближайших 10 лет (2019–2028 гг.). По заключительным результатам расчета финансовых затрат «без вакцинации» рассчитывались предотвращенные затраты на фоне альтернативной стратегии «с вакцинацией». Чтобы получить ответ на вопрос о величине возможного ущерба при отсутствии вакцинации, нами проводился проспективный расчет затрат на лечение ПН в подобных условиях в течение ближайших 10 лет (2019–2028 гг.). По заключительным результатам расчета финансовых затrat «без вакцинации» рассчитывались предотвращенные затраты на фоне альтернативной стратегии «с вакцинацией». Чтобы получить ответ на вопрос о величине возможного ущерба при отсутствии вакцинации, нами проводился проспективный расчет затрат на лечение ПН в подобных условиях в течение ближайших 10 лет (2019–2028 гг.). По заключительным результатам расчета финансовых затрат «без вакцинации» рассчитывались предотвращенные затраты на фоне альтернативной стратегии «с вакцинацией». Чтобы получить ответ на вопрос о величине возможного ущерба при отсутствии вакцинации, нами проводился проспективный расчет затрат на лечение ПН в подобных условиях в течение ближайших 10 лет (2019–2028 гг.). По заключительным результатам расчета финансовых затрат «без вакцинации» рассчитывались предотвращенные затраты на фоне альтернативной стратегии «с вакцинацией». Чтобы получить ответ на вопрос о величине возможного ущерба при отсутствии вакцинации, нами проводился проспективный расчет затрат на лечение ПН в подобных условиях в течение ближайших 10 лет (2019–2028 гг.). По заключительным результатам расчета финансовых затрат «без вакцинации» рассчитывались предотвращенные затраты на фоне альтернативной стратегии «с вакцинацией». Чтобы получить ответ на вопрос о величине возможного ущерба при отсутствии вакцинации, нами проводился проспективный расчет затрат на лечение ПН в подобных условиях в течение ближайших 10 лет (2019–2028 гг.). По заключительным результатам расчета финансовых затрат «без вакцинации» рассчитывались предотвращенные затраты на фоне альтернативной стратегии «с вакцинацией». Чтобы получить ответ на вопрос о величине возможного ущерба при отсутствии вакцинации, нами проводился проспективный расчет затрат на лечение ПН в подобных условиях в течение ближайших 10 лет (2019–2028 гг.). По заключительным результатам расчета финансовых затрат «без вакцинации» рассчитывались предотвращенные затраты на фоне альтернативной стратегии «с вакцинацией». Чтобы получ...
5. Брико Н.И., Цапкова Н.Б., Батыршина Н.П., Куликов А.Ю., Акимова Ю.И. Методология фармакоэкономического анализа динамики показателей качества жизни у больных хронической обструктивной болезнью легких на основе вакцинации против пневмококковой инфекции и возможный механизм действия вакцинации у больных бронхиальной астмой // Пульмонология. – 2019. – № 4. – С. 46–46.

10. Костинов М.П., Жестков А.В. Профилактика обострений хронических заболеваний у пациентов с сахарным диабетом // Здравоохранение Российской Федерации. – 2014. – Т. 15. – № 4. – С. 72–87.

11. Костинова Е.С., Пахомов Д.В., Чебыкина А.В., Магаршак О.О. Сравнительный анализ динамики показателей качества жизни у больных хронической обструктивной болезнью легких на фоне вакцинации против пневмококковой инфекции с использованием 13-валентной конъюгированной вакцины // Пульмонология. – 2015. – Т. 25. – № 2. – С. 163–166. DOI: 10.18093/0869-0189-2015-25-2-163-166.

12. Чучалин А.Г., Брико Н.И., Намазова-Баранова Л.С. Современные подходы к вакцинопрофилактике пневмококковой инфекции у взрослых пациентов с сахарным диабетом 2 типа // Клин. та эксперим. мед. дис. – 2013. – № 2. – С. 112–120.

13. Игнатова Г.Л., Блинова Е.В., Антонов В.Н., Гребнёва И.В. Анализ влияния вакцинопрофилактики пневмококковой инфекции у пациентов с хронической обструктивной болезнью легких в сочетании с сахарным диабетом // Терапевтический архив. – 2019. – Т. 91. – № 11. – С. 54–59. DOI: 10.26442/0403660.2019.11.000424.

14. Игнатова Г.Л., Блинова Е.В., Антонов В.Н., Гребнёва И.В. Процессы и вакцинация против социально значимых инфекций // Журнал Сердечная Недостаточность. – 2016. – № 5. – С. 473–480. DOI: 10.14341/DM0820.

15. Коха Р.Н., Парамонова Н.С., Малышко Н.А. Мониторинг эффективности разных схем профилактики обострений хронических заболеваний у пациентов с сахарным диабетом // Эпидемиология и вакцинопрофилактика. – 2018. – № 28. – С. 193–199. DOI: 10.18093/0869-0189-2018-28-2-193-199.

16. Бараков А.А., Куликов Н.И., Намазова-Баранова Л.С. Современные клинико-епидемиологические характеристики пневмококковых инфекций // Лечащий врач. – 2012. – № 4. – С. 79.

17. Митра С., Стеян GE., Бхупалам S., Хавилчек DH. Immuno- geneticity of 13-valent conjugate pneumococcal vaccine in patients 50 years and older with end-stage renal disease and on dialysis. Clin Vaccine Immunol. – 2016. – Vol. 23. – P. 884–887. DOI: 10.1128/CVI.00153-16.

18. Костинов М.П., Чучалин А.Г., Коровкина Е.С. Инновационные подходы к вакцинопрофилактике пневмококковой инфекции // Лечащий врач. – 2014. – № 1. – С. 146–159.

19. Баранов А.А., Куликов Н.И., Намазова-Баранова Л.С. Современная клинико-эпидемиологическая характеристика пневмококковых инфекций // Лечащий врач. – 2012. – № 6. – С. 79.

20. Березняков И.Г., Махаринская Е.С., Дорошенко О.В. Особенности течения внебольничной пневмонии у пациентов с сахарным диабетом 2 типа // Клин. та эксперим. мед. дис. – 2013. – № 2. – С. 112–120.

21. Матвеева А.В., Балаев В.Ю., Цыганова М.И., Мохно ва Е.В., Никитина З.И., Контова В.Н. Автоматизированные процессы и вакцинация против социально значимых инфекций // Журнал МедиАль. – 2014. – № 2. – С. 72–87.

22. Парамонова Н.С., Маликова Р.С., Постникова Л.Б., Костинова Е.С., Пахомов Д.В., Чебыкина А.В., Магаршак О.О. Сравнительный анализ динамики показателей качества жизни у больных хронической обструктивной болезнью легких на фоне вакцинации против пневмококковой инфекции с использованием 13-валентной коньюгированной вакцины // Пульмонология. – 2015. – № 25. – С. 163–166. DOI: 10.18093/0869-0189-2015-25-2-163-166.

23. Кульков А.Ю., Абдулаев Мусаледин Абусаламович – доктор медицинских наук, профессор, заведующий кафедрой медицинской реабилитации, ФГБОУ ВО «Астраханский государственный медицинский университет имени Н.И. Пирогова» Минздрава России. ОРЦИД: 0000-0001-7374-2660. E-mail: abdullaev-musalitdin@gmail.ru

24. Орлов Михаил Александрович – доктор медицинских наук, профессор, заведующий кафедрой фармакологии, ФГБОУ ВО «Астраханский государственный медицинский университет имени Н.И. Пирогова» Минздрава России. ОРЦИД: 0000-0002-8995-6572. E-mail: orlovdoc56@gmail.com