Concise review on the comparative efficacy of endoscopic ultrasound-guided fine-needle aspiration vs core biopsy in pancreatic masses, upper and lower gastrointestinal submucosal tumors

Tawfik Khoury, Wisam Sbeit, Nicholas Ludvik, Divya Nadella, Alex Wiles, Caitlin Marshall, Manoj Kumar, Gilad Shapira, Alan Schumann, Meir Mizrahi

Abstract

Endoscopic ultrasound (EUS)-guided fine needle aspiration with or without biopsy (FNA/FNB) are the primary diagnostic tools for gastrointestinal submucosal tumors. EUS-guided fine needle aspiration (EUS-FNA) is considered a first line diagnostic method for the characterization of pancreatic and upper gastrointestinal lesions, since it allows for the direct visualization of the collection of specimens for cytopathologic analysis. EUS-FNA is most effective and accurate when immediate cytologic assessment is permitted by the presence of a cytopathologist on site. Unfortunately, the accuracy and thus the diagnostic yield of collected specimens suffer without this immediate analysis. Recently, an EUS-FNB needle capable of obtaining core samples (fine needle biopsy, FNB) has been developed and has shown promising results. This new tool adds a new dimension to the diagnostic and therapeutic utility of this technique. The aim of the present review is to compare the efficacy of EUS-FNA to that afforded by EUS-FNB in the characterization of pancreatic masses and of upper and lower gastrointestinal submucosal tumors.

Key words: Efficacy; Safety; Gastrointestinal masses;
Fine needle aspiration and biopsy

© The Author(s) 2018. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Endoscopic ultrasound (EUS)-guided sampling is the first diagnostic option for gastrointestinal submucosal and pancreatic lesions. In the past, fine needle aspiration (FNA) was the main method to obtain tissue for histological examination, however, it was associated with limited diagnostic accuracy. In the last decade, fine needle biopsy (FNB) needle was introduced into clinical practice, which allows for more tissue acquisition and improvement in diagnostic yield. In this updated minireview, we provide an overview on the role of EUS-FNA and FNB in certain gastrointestinal lesions. In addition, we provide a summary on the efficacy and safety profile of each procedure with reporting the recent guidelines recommendation.

INTRODUCTION

Endoscopic ultrasound (EUS)-guided fine needle aspiration (FNA) is considered the initial diagnostic tool for the assessment of gastrointestinal lesions including pancreatic, submucosal, and lymphatic lesions[1]. Despite the extensive utilization of this technique, it possesses several key limitations. Among these limitations is the wide variability in the diagnostic yield of collected specimens, as well as the loss of histological architecture in the obtained specimens.

The variability of yield is currently mitigated by performing cytopathologic examination on site immediately after the collection of the specimen. Furthermore, onsite cytopathologic evaluation not only increases diagnostic yield, but does so more efficiently, permitting fewer needle passes and, presumably, decreasing the risk of complications[2,3]. Unfortunately, onsite cytopathologic evaluation is not widely available. Therefore, the ability to offer quality EUS-FNA is geographically restricted to those centers with cytopathology.

In addition, FNA is unable to adequately preserve tissue architecture for histopathologic analysis. This is particularly important in the evaluation of gastrointestinal stromal tumors and lymphomas[4,5]. Furthermore, FNA is unable to provide adequate tissue for further analysis with immunohistochemistry, phenotyping, or genetic analysis so as to allow for personalized treatment.

Fortunately, a novel EUS-fine needle biopsy (FNB) has been developed, permitting the collection of core biopsies via an endoscopic approach. This technique has been examined in several studies and has been found to enable the acquisition of large amounts of tissue with conserved architecture sufficient for histologic analysis[6,7]. In recent years, several studies reported the diagnostic yield of EUS-FNA and EUS core needle biopsy for various gastrointestinal lesions. Thus, the aim of the present minireview is to compare the efficacy of EUS-FNA vs EUS-FNB of various gastrointestinal lesions.

EUS-GUIDED FNA AND FNB

Currently, two subsets of needles are available for tissue acquisition (FNA and FNB). In the beginning, only FNA needles were available and the size of the needle was either 19 or ranged from 22 to 25-gauge. Once FNB needles were developed, they initially utilized the Trucut biopsy needle (QuickCore™ needle; Cook Medical Inc., Winston-Salem, NC, United States), but its production was stopped later due to its overloaded firing mechanism and adverse events. Since then, three different FNB needles have been produced, which are easier to use than FNA needles. Examples include the Procore™ needle, which is characterized by a cutting bevel (reverse for 19, 22 and 25-gauge and 20-gauge antegrade beveled side slot) at the needle tip (Cook Medical Inc.), the Acquire™ end-cutting needle, which is characterized by a three-point needle tip (22 and 25-gauge; Boston Scientific Corp., Marlborough, MA, United States), and the SharkCore™ needle, which is characterized by six distal cutting edges at the needle tip (19, 22 and 25-gauge; Medtronic, Minneapolis, MN, United States)[8]. Regarding needle sizes, several studies have examined the impact of needle sizes on diagnostic accuracy and yield. Generally, a larger needle size (19 gauge) will obtain more tissue for histological assessment than the smaller 22 and 25-gauge needles. However, the limiting factor in usage of 19-gauge needles is its higher rate of complication and technical failure. On the other hand, the smaller needle sizes (22 and 25-gauge) are more technically feasible[8]. Moreover, when cytology is supposed to be enough for making a diagnosis, such as in the case in pancreatic lesions, previous meta-analysis demonstrated similar diagnostic yield of 22 and 25-gauge needles and non-superiority of the larger 19-gauge needle in diagnostic yield[9]. On the other hand, when tissue histology and architecture are needed for better assessment, such as in the case of gastrointestinal stromal tumors (GIST), lymphoma and autoimmune pancreatitis, a larger 19-gauge needle is preferred. A retrospective study reported the diagnostic yield of the SharkCore™ needles with EUS-FNA needles of solid upper gastrointestinal masses. More histological specimens were obtained with the SharkCore™ needles compared to EUS-FNA needles (59% vs 5%, P < 0.001)[10]. Furthermore, a recent study compared the SharkCore™ biopsy needle with...
Recently, the European society of gastrointestinal endoscopy (ESGE) released recommendation for the diagnosis of pancreatic lesions. ESGE recommends EUS-guided sampling for pathological diagnosis as a first diagnostic test (Strong recommendation, moderate quality evidence). In the case of the presence of suspected pancreatic malignancy with negative or indeterminate diagnosis, ESGE recommends either performing revision on the initial pathology specimens obtained or to repeat EUS-guided tissue acquisition or surgery (Weak recommendation, low quality evidence).

For pancreatic cystic lesions, ESGE recommends EUS-guided tissue acquisition for biochemical and cytological evaluation, except for radiologically appearing benign cysts less than 1 cm in diameter (Strong recommendation, low quality evidence).

The reported diagnostic accuracy of EUS-FNA for pancreatic mass lesions is variable and ranges from 78% to 95%[24], the sensitivity and specificity were reported to be 64% to 95% and 75% to 100%, respectively[24,25]. This value is declining for EUS-FNA in other organs such as mediastinal masses and gastrointestinal stromal tumors[26,27].

The diagnostic yield of EUS-FNA might be adversely affected in the absence of onsite cytopathologic assessment[26,29]. Furthermore, in the setting of chronic pancreatitis, the accuracy is declining[30]. A previous study by Gleeson et al[31] reported a 5%-7% false positive rate when obtaining tissue for cytological examination by EUS-FNA. To overcome this disadvantage, a new fine needle biopsy was used in pancreatic lesions, and subsequently there was an increased trend for the application of an FNB device designed to have a reverse bevel at the tip to obtain a core sample. It contains the characteristics of both FNA and a core biopsy needle[32]. This needle features greater flexibility for improved core tissue collection. In comparing the efficacy between FNA and FNB, a previous study demonstrated similarity in the diagnostic yields of EUS-FNB and EUS-FNA[33]. In these studies, both needles were similar in diagnostic accuracy for malignant lesions, however the number of needle passes to obtain adequate tissue was significantly lower in the FNB group. Another study by Atalawi et al[34] demonstrated that the sensitivity for pancreatic cancer diagnosis was 98%, while the specificity reached 100%. Moreover, another study showed that FNB was associated with significantly higher diagnostic yield compared to FNA (93.8% vs 28.1%, P < 0.01)[35]. Several other studies have shown superiority of EUS-FNB over the FNA method in obtaining adequate histopathological samples and higher diagnostic yields[32,32-38]. Additionally, Aadam et al[36] reported a significant rescue effect of FNA crossover to FNB. A recently released ESGE guideline recommended the use of 25 or 22-gauge needles for sampling pancreatic solid masses with no difference between FNA of FNB needles[39]. However, in the case of requirement for complete tissue architecture, such as lymphoma and GIST, the ESGE guideline recommends the use of a large bore FNB needle (19 or 22-gauge)[39].

EUS-FNA vs FNB in Pancreatic Masses

Rapid and accurate diagnosis of pancreatic masses is very important given the poor prognosis associated with pancreatic cancer. EUS-FNA is the main initial diagnostic modality for tissue acquisition of pancreatic lesions[21,22].

Recently, the European society of gastrointestinal endoscopy (ESGE) released recommendation for the diagnosis of pancreatic lesions. ESGE recommends EUS-guided sampling for pathological diagnosis as a first diagnostic test (Strong recommendation, moderate quality evidence). In the case of the presence of suspected pancreatic malignancy with negative or indeterminate diagnosis, ESGE recommends either...
proximal small intestine[46]). Nevertheless, they may present in any part of the gastrointestinal tract. The most common subepithelial tumors are GISTs[41-44]. In the past, the most widely accepted approach was surgical extraction of these gastrointestinal masses. However, there is increasing evidence supporting the need for precise histological diagnosis that could alter the patient’s management and prevent unnecessary surgeries for asymptomatic and benign lesions[45-49]. The use of cytological examination has been questioned by several previous reports. For example, FNA of gastrointestinal submucosal tumors was associated with only 61% diagnostic accuracy[50]. Wittmann et al[51] reported no difference between FNA and the Procore needle. Bang et al[52] found a similar diagnostic accuracy and number of needle passes needed for pathological diagnosis by using 22-gauge FNA and FNB techniques. However, this study was limited by a very small number of participants. During the last several years, different needles were implemented into clinical practice to improve the diagnostic yield of gastrointestinal submucosal lesions. A previous study reported the pooled analysis of EUS-FNB for malignancy. The diagnostic accuracy, sensitivity, specificity, positive predictive value and negative predictive value reached 85.96\%, 90.2\%, 99\%, 100\% and 78.9\%, respectively[53]. Another study showed that FNB was superior in extra-intestinal lesions[54]. Jeong et al[45] reported that the use of Trucut biopsy of submucosal tumors changed patient management in 30\% of cases. Moreover, there is growing evidence supporting the use of EUS-FNB over FNA techniques[55] given its higher diagnostic yield. A recent randomized multicenter clinical trial using EUS-FNB showed feasible histopathological diagnosis of intestinal lesions with diagnostic accuracy of approximately 93\% compared to EUS-FNA[53]. Another randomized controlled study reported a statistically significant better diagnostic yield of EUS-FNB compared to EUS-FNA in various gastrointestinal lesions[50] and, very recently, the use of FNB compared to FNA in gastric sub-epithelial tumors was associated with statistically significant higher diagnostic yield, higher proportion of adequate cellularity and reduced number of needle passes[56]. Although the literature is still lacking and only a few studies have been conducted, the present evidence might be sufficient to favor the use of FNB needles in gastrointestinal submucosal lesions until the establishment of guideline consensus in the field.

EUS-FNA VS FNB FOR RECTAL AND PERI-RECTAL TUMORS

Although EUS-guided procedures have been most studied for pancreatic and upper gastrointestinal lesions, they have also been used in the lower gastrointestinal tract. In this context, they are primarily useful for evaluation of rectal or perirectal lesions because of the difficult scope access beyond the rectum. Throughout the literature, there are only a few reports on FNA/FNB guided biopsy for lesions of the lower digestive tract[57-59]. Previous studies have reported equal efficacy of FNA and FNB and similar diagnostic accuracy in 10 of 11 patients[59]. Similarly, the diagnostic yield of EUS-FNA in rectal and sigmoid lesions (cancer and GIST) reached 90\% in ten patients[57]. This diagnostic yield of EUS-FNA was consistent among other studies. Sasaki et al[59] reported a EUS-FNA diagnostic yield of 95.5\% (21 of 22) in colorectal submucosal and extrinsic lesions. Prior studies have reported approximately 80\%-90\% diagnostic accuracy of EUS-FNA in diagnosing sub-epithelial tumors of the gastrointestinal tract[56,58]. On the other hand, a recent study has reported a decreased diagnostic accuracy of FNA/FNB in lower gastrointestinal lesions of approximately 50\%[59]. Notably, this low accuracy was associated with small lesions less than 20 mm in size, suggesting that EUS-FNA/FNB may require further improvement for optimal diagnostic utility in the detection of smaller lesions. Furthermore, in this study, the use of FNB was effective as it was sufficient for tissue acquisition to make a diagnosis of recurrent lymphoma after failure of EUS-FNA to obtain sufficient material for histopathological examination. In seven patients, the specimen obtained by EUS-FNB led to changes in the presumptive diagnosis - two of them were later diagnosed with malignancy via FNB after having received a diagnosis of benign mass by FNA, while the remaining five patients were diagnosed as having malignancy according to FNA that later were ruled out via FNB[18]. Thus, EUS-FNB can be considered a complementary procedure to overcome the limitations of EUS-FNA to enhance histopathological diagnoses. Notably, some exaggerated interventions for benign lesions can be obviated given the higher diagnostic yield of EUS-FNB. Thus, although the reported literature is insufficient, there may be an argument for considering EUS-FNB as an initial diagnostic vs using it concurrently with FNA. Further studies are needed to establish the clinical applications and diagnostic accuracy of EUS-FNB needles in lower gastrointestinal tumors.

CONCLUSION

FNA and FNB are both accepted as safe procedures with a low complication rate of approximately 1\%-2\%. At present, FNA is best performed with immediate onsite cytopathologic review, which is not broadly available. FNB is not limited in this regard, and it further provides information on a tissue's architecture and provides a greater sample yield allowing for further analyses, such as genetic sequencing and phenotyping to be performed, thereby allowing for provision of a more personalized treatment plan. Recently, several guidelines have been published. Ang et al[8] addressed the enhanced diagnostic importance in tissue acquisition and improved diagnostic accuracy when using FNB needles. Moreover, recent ESGE released guidelines recommended the use of either FNA or FNB needles (22 or 25-gauge) for routine
EUS-guided sampling of solid masses and lymph nodes. However, when the aim of the sampling is to obtain core tissue with more preserved architecture, the ESGE recommended the use of smaller 19 or 22-gauge FNB needles (low quality evidence, weak recommendation)\(^3\). Thus, in light of current evidence, we recommend considering application of those recommendations, as it appears that a strong argument can be made for FNB given that it provides a greater amount of information with fewer needle passes and fewer resources without appreciably increasing the risk of complication to the patient (Table 1). Finally, the decision of the type and needle size should be individualized according to the suspected lesion to be sampled.

Table 1 Summary of efficacy and safety of endoscopic ultrasound-guided fine needle aspiration with or without biopsy procedures

Procedure	Diagnostic accuracy	Safety (complications)	Mortality
Pancreatic, upper and lower GIST; Gastrointestinal stromal tumors; Submucosal tumors\(^1\)	Variable	Low	None
EUS-FNA	High	None	None
ROS available	Low-moderate	None	None
ROS unavailable	High	None	None
EUS-FNB	Low	None	None
Other gastrointestinal lesions (lymphoma, GIST and chronic pancreatitis)	Low	None	None
EUS-FNA	High	None	None
EUS-FNB	Low	None	None

\(^1\)Excluding lymphoma, GIST and chronic pancreatitis. ROSE: Rapid on-site evaluation; GIST: Gastrointestinal stromal tumors; EUS: Endoscopic ultrasound; FNA: Fine needle aspiration; FNB: Fine needle biopsy.

REFERENCES

1. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. *Ca Cancer J Clin* 2012; 62: 10-29 [PMID: 22237781 DOI: 10.3322/cac.201208]

2. Iglesias-Garcia J, Dominguez-Munoz JE, Abdulkader I, Larino-Noia J, Eugeneye E, Lozano-Leon A, Forteza-Vila J. Influence of on-site cytopathology evaluation on the diagnostic accuracy of endoscopic ultrasound-guided fine needle aspiration (EUS-FNA) of solid pancreatic masses. *Am J Gastroenterol* 2011; 106: 1705-1710 [PMID: 21483464 DOI: 10.1038/ajg.2011.119]

3. Klapman JB, Lograno R, Dye CE, Waxman I. Clinical impact of on-site cytopathology interpretation on endoscopic ultrasound-guided fine needle aspiration. *Am J Gastroenterol* 2003; 98: 1289-1294 [PMID: 12818271 DOI: 10.1111/j.1572-0241.2003.07472.x]

4. Jhala NC, Jhala DN, Chieng DC, Eloubeidi MA, Eltoum IA. Endoscopic ultrasound-guided fine-needle aspiration. A cytopathologist’s perspective. *Am J Clin Pathol* 2003; 120: 351-367 [PMID: 14502798 DOI: 10.1309/MRFR-J0XY-JLN8-NVDP]

5. Ribotero A, Vazquez-Sequeiros E, Wiersema LM, Wang KK, Clark JE, Wiersema MJ. EUS-guided fine-needle aspiration combined with flow cytometry and immunochemistry in the diagnosis of lymphoma. *Gastrointest Endosc* 2001; 53: 485-491 [PMID: 11275890 DOI: 10.1067/mge.2001.112841]

6. Sátfoóu A, Vilmann P, Guldhammer Skov B, Georgescu CV. Endoscopic ultrasound (EUS)-guided Trucut biopsy adds significant information to EUS-guided fine-needle aspiration in selected patients: a prospective study. *Scand J Gastroenterol* 2007; 42: 117-125 [PMID: 17190771 DOI: 10.1080/00365520600798800]

7. Levy MJ. Endoscopic ultrasound-guided trucut biopsy of the pancreas: prospects and problems. *Pancreatology* 2007; 7: 163-166 [PMID: 17592229 DOI: 10.1159/000104240]

8. Ang TL, Kwok ABE, Wang LM. Diagnostic Endoscopic Ultrasound: Technique, Current Status and Future Directions. *Gut Liver* 2018 [PMID: 29291601 DOI: 10.5009/gul17348]

9. Affolter KE, Schmidt RL, Matynia AP, Adler DG, Factor RE. Needle size has only a limited effect on outcomes in EUS-guided fine needle aspiration: a systematic review and meta-analysis. *Dig Dis Sci* 2013; 58: 1026-1034 [PMID: 23086117 DOI: 10.1007/s10620-012-2439-2]

10. Jovani M, Abidi WM, Lee LS. Novel fork-tip needles versus standard needles for EUS-guided tissue acquisition from solid masses of the upper GI tract: a matched cohort study. *Scand J Gastroenterol* 2017; 52: 784-787 [PMID: 28355953 DOI: 10.1080/00365521.2017.1306879]

11. El Chafic AH, Loren D, Siddiqui A, Mounzer R, Cosgrove N, Kowalski T. Comparison of FNA and fine-needle biopsy for EUS-guided sampling of suspected GI stromal tumors. *Gastrointest Endosc* 2017; 86: 510-515 [PMID: 28131864 DOI: 10.1016/j.gie.2017.01.010]

12. Al-Haddad M, Wallace MB, Woodward TA, Gross SA, Hodgens CM, Toton RD, Raimondo M. The safety of fine-needle aspiration guided by endoscopic ultrasound: a prospective study. *Endoscopy* 2008; 40: 204-208 [PMID: 18058615 DOI: 10.1055/s-2007-995336]

13. ASGE Standards of Practice Committee, Early DS, Acosta RD, Chandrasekhara V, Thathadi KV, Decker GA, Evans JA, Fanelli RD, Fisher DA, Fonkalsrud L, Hwang JH, Jue TL, Khashab MA, Lightdale JR, Muthusamy VR, Pasha SF, Saltzman JR, Sharaf RN, Shergill AK, Cash BD. Adverse events associated with EUS and EUS with FNA. *Gastrointest Endosc* 2013; 77: 839-843 [PMID: 23684089 DOI: 10.1016/j.gie.2013.02.018]

14. Wang KX, Ben QW, Jin ZD, Du YQ, Zou DW, Liao Z, Li ZS. Assessment of morbidity and mortality associated with EUS-guided FNA: a systematic review. *Gastrointest Endosc* 2011; 73: 823-290 [PMID: 21295642 DOI: 10.1016/j.gie.2010.10.045]

15. Zhu H, Jiang F, Zhu J, Du Y, Jin Z, Li Z. Assessment of morbidity and mortality associated with endoscopic ultrasound-guided fine-needle aspiration for pancreatic cystic lesions: A systematic review and meta-analysis. *Dig Endosc* 2017; 29: 667-675 [PMID: 28218999 DOI: 10.1111/den.12851]

16. Thomas T, Kaye PV, Ragunath K, Atthal G. Efficacy, safety, and predictive factors for a positive yield of EUS-guided Trucut biopsy: a large tertiary referral center experience. *Am J Gastroenterol* 2009; 104: 584-591 [PMID: 19262518 DOI: 10.1309/ajg2008.97]

17. Eloubeidi MA, Tannahane A. Prospective assessment of diagnostic utility and complications of endoscopic ultrasound-guided fine needle aspiration: a systematic review and meta-analysis. *Dig Endosc* 2013; 25: 784-802 [PMID: 23684089 DOI: 10.1016/j.gie.2013.02.018]

18. Thomas T, Kaye PV, Ragunath K, Atthal G. Efficacy, safety, and predictive factors for a positive yield of EUS-guided Trucut biopsy: a large tertiary referral center experience. *Am J Gastroenterol* 2009; 104: 584-591 [PMID: 19262518 DOI: 10.1309/ajg2008.97]

19. Eloubeidi MA, Tannahane A. Prospective assessment of diagnostic utility and complications of endoscopic ultrasound-guided fine needle aspiration: a systematic review and meta-analysis. *Dig Endosc* 2013; 25: 784-802 [PMID: 19262518 DOI: 10.1309/ajg2008.97]

20. Koh H, Yue J, Yue J, Lee S, Park SH, Yang DH, Kim KJ, Ye BD, Mung SY, Yang SK, Kim JH, Byeon JS. The clinical usefulness of endoscopic ultrasound-guided fine needle aspiration and biopsy for rectal and perirectal lesions. *Intest Res* 2015; 13: 135-144 [PMID: 25931998 DOI: 10.5217/ir.2015.13.2.135]

21. Mitri RD, Rimbaş M, Attili F, Fabbrini C, Carraza S, Di Maurizio L, Inzani F, Repici A, Gasbarrini A, Costamagna G, Larghi A.
Performance of a new needle for endoscopic ultrasound-guided fine-needle biopsy in patients with pancreatic solid lesions: A retrospective multicenter study. Endosc Ultrasound 2017 [PMID: 28385529 DOI: 10.1016/j.esus.2017.03.001]

20 Bang YJ, Haws R, Varadarajulu S. A meta-analysis comparing ProCore and standard fine-needle aspiration needles for endoscopic ultrasound-guided tissue acquisition. Endoscopy 2016; 48: 339-349 [PMID: 26561917 DOI: 10.1055/s-0043-1393354]

21 Fritscher-Ravens A, Topalidis T, Krause C, Thonke E, Jäckle S, Soehrenda N. Endoscopic ultrasound-guided fine-needle aspiration in focal pancreatic lesions: a prospective intrapatient evaluation of two needle assemblies. Endoscopy 2001; 33: 484-490 [PMID: 11437040 DOI: 10.1055/s-2001-14970]

22 Shah JN, Ahmad NA, Beilstein MC, Ginsberg GG, Kochman ML. Clinical impact of endoscopic ultrasoundon the management of malignancies. Clin Gastroenterol Hepatol 2004; 2: 1069-1073 [PMID: 15625651 DOI: 10.1016/S1542-3565(04)00444-6]

23 Dumonceau JM, Deprez PH, Janssen C, Iglesias-Garcia J, Langhi A, Vanbiervliet G, Aithal GP, Arcidiacono PG, Bastos P, Carrara S, Czako L, Fernández-Esparrach G, Fockens P, Gien A, Havre RF, Hassan C, Vilmin P, van Hoof JF, Polkowski M. Indications, results, and clinical impact of endoscopic ultrasound (EUS)-guided sampling in gastroenterology. European Society of Gastrointestinal Endoscopy (ESGE) Clinical Guideline - Updated January 2017. Endoscopy 2017; 49: 695-714 [PMID: 28511234 DOI: 10.1055/s-0043-109021]

24 Yoshinaga S, Suzuki H, Oda I, Saito Y. Role of endoscopic ultrasound-guided fine needle aspiration (EUS-FNA) for diagnosis of solid pancreatic masses. Dig Endosc 2011; 23 Suppl 1: 29-33 [PMID: 21535197 DOI: 10.1111/j.1443-1661.2011.01112.x]

25 Eloubeidi MA, Chen VK, Eltoum IA, Jhala D, Chieng DC, Jhala S, Vickers SM, Wilcox CM. Endoscopic ultrasound-guided fine-needle aspiration biopsy of patients with suspected pancreatic cancer: diagnostic accuracy and acute and 30-day complications. Am J Gastroenterol 2003; 98: 2663-2668 [PMID: 14887813 DOI: 10.1111/j.1572-0241.2003.00666.x]

26 Kramer H, Sanders J, Post WJ, Ginde HJ, Suurmeijer AJ. Analysis of cytologic specimens from mediastinal lesions obtained by endoscopic ultrasound-guided fine-needle aspiration. Cancer 2006; 108: 206-211 [PMID: 16752408 DOI: 10.1002/cncr.21914]

27 Watson RR, Biemboffler KF, Hamerski CM, Shergill AK, Shaw TH, Cha SW, Cho YD, Park SH. Core biopsy needle versus standard needle for endoscopic ultrasound-guided sampling of solid pancreatic masses: a randomized parallel-group study. Endoscopy 2014; 46: 1056-1062 [PMID: 25098611 DOI: 10.1055/s-0043-177558]

28 Polkowski M, Janssen C, Kaye P, Carrara S, Deprez P, Gines A, Fernández-Esparrach G, Eisendrath P, Aithal GP, Arcidiacono P, Barthet M, Bastos P, Fornelli A, Napoleon B, Iglesias-Garcia J, Soehrenda N, Hassan C, van Hoof JF, Dumonceau JM. Technical aspects of endoscopic ultrasound (EUS)-guided sampling in gastroenterology. European Society of Gastrointestinal Endoscopy (ESGE) Technical Guideline - March 2017. Endoscopy 2017; 49: 989-1006 [PMID: 28898917 DOI: 10.1055/s-0043-119219]

29 Ito S, Tsuchitani Y, Kim Y, Hashimoto S, Miura Y, Uemura T, Katsura K, Abe T, Sato K, Kato H. A gastrointestinal stromal tumor of the jejunal presenting with an intratumoral abscess: A case report and a literature review. Int J Surg Case Rep 2018; 48: 65-68 [PMID: 29854449 DOI: 10.1016/j.ijscr.2018.05.012]

30 Medeiros F, Corless CL, Duensing A, Hornick JL, Oliveira AM, Heinrich MC, Fletcher JA, Fletcher CD. KIT-negative gastrointestinal stromal tumors: proof of concept and therapeutic implications. Am J Surg Pathol 2004; 28: 889-894 [PMID: 15223958 DOI: 10.1016/S0002-9440(04)00070-X]

31 Miettinen M, Sarlomo-Rikala M, Lasota J. Gastrointestinal stromal tumors: recent advances in understanding of their biology. Hum Pathol 1999; 30: 1213-1220 [PMID: 10534170 DOI: 10.1006/sup1.1999.0040-0400]

32 van Hooft JE, Dumonceau JM, Jäckle S, Soehrenda N, Beuvon F, Grabar S, Leblanc S, Chaussade S, Terris B, Barret M, Prat F. Comparison of 22G reverse-beveled versus standard needle for endoscopic ultrasound-guided sampling of solid pancreatic lesions. United European Gastroenterol J 2015; 3: 343-352 [PMID: 26279842 DOI: 10.11171/2015060461577553]

33 Witt BL, Adler DG, Hilden K, Layfield LJ. A comparative needle study: EUS-FNA procedures using the HD ProCore(™) and EchoTip(®) 22-gauge needle types. Diagn Cytopathol 2013; 41: 1396-1397 [PMID: 23530900 DOI: 10.1002/dc.22971]

34 Alatali A, Leonov F, Grabar S, Leblanc S, Chausse S, Terris B, Barret M, Prat F. Comparison of 22G reverse-beveled versus standard needle for endoscopic ultrasound-guided sampling of solid pancreatic lesions. United European Gastroenterol J 2015; 3: 343-352 [PMID: 26279842 DOI: 10.11171/2015060461577553]

35 Huel T, Woe E, Anuradha S, Gupta R, Ramchandani M, Rakesh K, Shrestha R, Reddy DN, Lakhtakia S. Feasibility and clinical success of an end new 22G core needle: a prospective comparison study. Endoscopy 2013; 45: 792-798 [PMID: 24068588 DOI: 10.1055/s-0033-1344217]

36 Lee YN, Moon JH, Kim HK, Choi HJ, Choi MH, Kim DC, Lee TH, Cha SW, Cho YD, Park SH. Core biopsy needle versus standard aspiration needle for endoscopic ultrasound-guided sampling of solid pancreatic tumors: a randomized parallel-group study. Endoscopy 2014; 46: 1056-1062 [PMID: 25098611 DOI: 10.1055/s-0043-177558]
guided fine-needle aspiration: A single center experience in Saudi Arabia. *Indian J Pathol Microbiol* 2015; 58: 448-452 [PMID: 26549065 DOI: 10.4103/0377-4929.168868]

47 *de la Serna-Higuera* C, Pérez-Miranda M, Díez-Redondo P, Gil-Simón P, Herranz T, Pérez-Martín E, Ochoa C, Caro-Patón A. EUS-guided single-incision needle-knife biopsy: description and results of a new method for tissue sampling of subepithelial GI tumors (with video). *Gastrointest Endosc* 2011; 74: 672-676 [PMID: 21872716 DOI: 10.1016/j.gie.2011.05.042]

48 *Ikehara* H, Li Z, Watari J, Taki M, Ogawa T, Yamasaki T, Kondo T, Toyoshima F, Kono T, Tozawa K, Ohda Y, Tomita T, Oshima T, Fukui H, Matsuda I, Hirota S, Miwa H. Histological diagnosis of gastric submucosal tumors: A pilot study of endoscopic ultrasonography-guided fine-needle aspiration biopsy vs mucosal cutting biopsy. *World J Gastrointest Endosc* 2015; 7: 1142-1149 [PMID: 26468338 DOI: 10.4253/wjge.v7.i14.1142]

49 *Akahoshi* K, Sumida Y, Matsu N, Oya M, Akinaga R, Kubokawa M, Motomura Y, Honda K, Watanae M, Nagaie T. Preoperative diagnosis of gastrointestinal stromal tumor by endoscopic ultrasound-guided fine-needle aspiration. *World J Gastroenterol* 2007; 13: 2077-2082 [PMID: 17465451 DOI: 10.3748/wjg.v13.i4.2077]

50 *Hoda* KM, Rodriguez SA, Faigel DO. EUS-guided sampling of suspected GI stromal tumors. *Gastrointest Endosc* 2009; 69: 1218-1223 [PMID: 19394006 DOI: 10.1016/j.gie.2008.09.045]

51 *Wittmann* J, Kocjan G, Sguoros SN, Deheragoda M, Pereira SP. Endoscopic ultrasound-guided tissue sampling by combined fine needle aspiration and trucut needle biopsy: a prospective study. *Cytopathology* 2006; 17: 27-33 [PMID: 16417562 DOI: 10.1111/j.1365-2303.2006.00313.x]

52 *Bang* JY, Hebert-Magee S, Trevino J, Ramesh J, Varadarajulu S. Randomized trial comparing the 22-gauge aspiration and 22-gauge biopsy needles for EUS-guided sampling of solid pancreatic mass lesions. *Gastrointest Endosc* 2012; 76: 321-327 [PMID: 22658389 DOI: 10.1016/j.gie.2012.03.1392]

53 *Iglesias-Garcia* J, Poley JW, Larghi A, Giovannini M, Petrone MC, Abdulkader I, Monges G, Costamagna G, Arcidiacono P, Biemann K, Rindi G, Bories E, Doglioni C, Bruno M, Dominguez-Muñoz JE. Feasibility and yield of a new EUS histology needle: results from a multicenter, pooled, cohort study. *Gastrointest Endosc* 2011; 73: 1189-1196 [PMID: 21420083 DOI: 10.1016/j.gie.2011.01.053]

54 *Levy* MJ, Jondal ML, Clain J, Wiersema MJ. Preliminary experience with an EUS-guided trucut biopsy needle compared with EUS-guided FNA. *Gastrointest Endosc* 2003; 57: 101-106 [PMID: 12518144 DOI: 10.1067/mge.2003.49]

55 *Gerke* H, Rizk MK, Vanderheyden AD, Jensen CS. Randomized study comparing endoscopic ultrasound-guided Trucut biopsy and fine needle aspiration with high suction. *Cytopathology* 2010; 21: 44-51 [PMID: 19456845 DOI: 10.1111/j.1365-2303.2009.00656.x]

56 *Han* JP, Lee TH, Hong SJ, Kim HK, Noh HM, Lee YN, Choi HJ. EUS-guided FNA and FNB after on-site cytological evaluation in gastric subepithelial tumors. *J Dig Dis* 2016; 17: 582-587 [PMID: 27421815 DOI: 10.1111/1751-2980.12381]

57 *Hara* K, Yamao K, Ohashi K, Nakamura T, Suzuki T, Sawaki A, Matsumoto K, Okubo K, Tanaka K, Moriyama I, Matsueda K, Kosikawa T, Ueyama U, Yokoi T. Endoscopic ultrasonography and endoscopic ultrasound-guided fine-needle aspiration biopsy for the diagnosis of lower digestive tract disease. *Endoscopy* 2003; 35: 966-969 [PMID: 14606022 DOI: 10.1055/s-2003-43473]

58 *Sasaki* Y, Niwa Y, Hirooka Y, Okmiya N, Itoh A, Ando N, Miyahara R, Furuta S, Goto H. The use of endoscopic ultrasound-guided fine-needle aspiration for investigation of submucosal and extrinsic masses of the colon and rectum. *Endoscopy* 2005; 37: 154-160 [PMID: 15692931 DOI: 10.1055/s-2004-826152]

59 *Boo* SJ, Byeon JS, Park DH, Seo DW, Yang DH, Jung KW, Kim KJ, Ye BD, Myung SJ, Yang SK, Kim JH. EUS-guided fine needle aspiration and trucut needle biopsy for examination of rectal and perirectal lesions. *Scand J Gastroenterol* 2011; 46: 1510-1518 [PMID: 21936722 DOI: 10.3109/00365521.2011.615856]

60 *Arantes* V, Logroño R, Faruqi S, Ahmed I, Waxman I, Bhutani MS. Endoscopic sonographically guided fine-needle aspiration yield in submucosal tumors of the gastrointestinal tract. *J Ultrasound Med* 2004; 23: 1141-1150 [PMID: 15328428 DOI: 10.7863/jum.2004.23.9.1141]

61 *Hunt* GC, Smith PP, Faigel DO. Yield of tissue sampling for submucosal lesions evaluated by EUS. *Gastrointest Endosc* 2003; 57: 68-72 [PMID: 12518134 DOI: 10.1067/mge.2003.34]
