Imaging Techniques in Endodontics: An Overview

B. S. Deepak, T. S. Subash, V. J. Narmatha, T. Anamika, T. K. Snehil, D. B. Nandini

Department of Conservative Dentistry and Endodontics, Bapuji Dental College, †Department of Oral Pathology, College of Dental Sciences, Davangere, Karnataka, India

ABSTRACT

This review provides an overview of the relevance of imaging techniques such as, computed tomography, cone beam computed tomography, and ultrasound, to endodontic practice. Many limitations of the conventional radiographic techniques have been overcome by the newer methods. Advantages and disadvantages of various imaging techniques in endodontic practice are also discussed.

Key words: Computed tomography, cone beam computed tomography, cone beam volumetric tomography, endodontics, radiovisiography, ultrasound

INTRODUCTION

Radiographs are the most accurate and least subjective diagnostic aids available to endodontists for diagnosis of diseases affecting the maxilla and mandible. Conventional X-rays using an analog film or digital receptor produce two-dimensional (2D) image of a three-dimensional (3D) object. The anatomical structures surrounding the tooth, superimpose and make it difficult to interpret the conventional X-ray image.[1-3] Radiographs are an important part of root canal therapy, especially for diagnosis, treatment, and follow-up. However, routine radiographic procedures do not accurately demonstrate the presence of every lesion, the real size of the lesion or its spatial relationship with the anatomical structures.[4] Newer imaging techniques in use include: Digital imaging systems (Direct, Indirect, Optically scanned), Computed tomography (CT), Tuned aperture computed tomography (TACT), Localized computed tomography (micro-computed tomography), Ultrasonography, Magnetic resonance Imaging (MRI), Radioisotope imaging, Single photon emission computed tomography (SPECT), Positron emission tomography (PET), Cone beam volumetric tomography (CBVT), Radiovisiography (RVG), and Denta scan.[5-7]

Imaging plays an important role in endodontics and is routinely utilized for the following diagnosis [Table 1].
The improvements in imaging technology have helped in obtaining a near perfect image for accurate diagnosis. Advantages and disadvantages of various imaging techniques in endodontics are presented.

Ultrasound in endodontics

Ultrasound (US) and Magnetic resonance imaging do not expose patients to any radiation. Ultrasound uses sound waves with a frequency outside the range of human hearing (20 kHz) and can be used to view normal and pathological conditions involving the bones and soft tissues of the oral and maxillofacial regions. US is a valuable technique that can be used in place of conventional X-rays as it has a greater ability to differentiate between cystic and non-cystic lesions. The alveolar bone appears as a total reflecting surface (white), if healthy; the root contours of the teeth are even whiter (hyperechoic). A fluid-filled cavity in the bone appears as a hypo-reflecting surface (dark). The degree of reflection depends on the clarity of the fluid (hypoechoic). A simple serous filled cavity has no reflection (anechoic or transonic). Solid lesions in the bone have a mixed echogenic appearance, which means their echoes are reflected with various intensities (shades of gray). If the bone is irregular or resorbed in the proximity of the lesion, the scan is seen as an inhomogeneous echo. If the bony contour limiting a lesion is reinforced, then it is very bright.

Ultrasound in dentistry is used for the detection of fractures in the facial region, to detect parotid lesions during fine needle aspiration cytology, to assess the content of the lesions before surgery. However, US is difficult to use in the posterior region of the oral cavity, because the thick cortical plate in the posterior region prevents ultrasound waves from traversing easily. Results of selected ultrasound studies are summarized in Table 2.

Radio visiography

One of the direct digital radiographic techniques used in dentistry is radio visiography (RVG). This system is based on digital image capture with a charged coupled device (CCD) capable of image enhancement using up to 256 shades of gray. RVG was first commercially used in the United Kingdom in 1989; since then it has undergone several changes.

Radio visiography comprises of four basic components, an X-ray unit, an electronic timer, an intraoral sensor, a display processing unit (DPU), and a printer.

Applications of radio visiography in endodontics

Radio visiography is used for diagnosing carious lesions, measuring root lengths, and in detecting periapical pathology and root fractures.

Features of radio visiography

Image enhancement: The gray window effect, known as the x function, allows the operator to select and expand on a specific 60 levels of gray from the 256 available, which may aid in the diagnosis of accessory root canals. The millimeter grid incorporated in the system helps in measuring the length of the root canal. The use of pseudo color assigns different colors to certain gray levels, which can help to visualize particular features that are unclear on images. RVG requires 23% of the radiation dose when compared to the conventional radiograph. Resolution of RVG is nine line pairs/mm, which is inferior to conventional X-ray films, but it is adequate for most diagnostic tasks. Advantages and disadvantages of various imaging techniques in endodontics are presented.

Table 1: Role of imaging in endodontics

Preoperative
• To analyze dental and alveolar hard tissue morphology
• Pathological alterations
• Morphology of tooth, including location and number of root canals, pulp chamber size, calcifications, root structure, direction, and curvature
• Iatrogenic defects
• Crown and root fractures

Intraoperative
• To determine the proper working length of the root canal system
• Tooth and bone changes

Postoperative
• To evaluate the root canal obturation and seal
• Tooth and periapical hard tissue changes after treatment
• Planning for surgical considerations

Figure 1: (a-b) Radiovisio graphic (RVG) and Ultrasound (US) images of a periapical lesion (1a) RVG image shows a well-circumscribed, radiolucent, periapical lesion with a sclerotic border, measuring about 2 x 1 cm in diameter (white arrow) (1b) USG shows a hypoechoic, well-contoured cavity, with no evidence of internal vasculature (Black arrow).

Figure 2: Various RVG images (a) Pseudo color RVG image shows obturation in the apical third of the root canal and resorption of the root apex. (b) 3D RVG image of a periapical lesion and root canal obturation. (c) Normal RVG image of a periapical lesion and root canal obturation.
The application of computed tomography in endodontics

Identification of anatomical structures

The alveolar process is the portion of the mandibular bone and maxillary bone that holds the roots of the teeth, the periodontal ligament, the periapical tissues, and the lamina dura. It is, therefore, the area of major interest in the field of endodontics, as most pathological changes, which involve the condition of the roots of the teeth, the possible presence of foreign bodies, and the osteolytic or condensing inflammatory reactions in the bone, occur in this area. The alveolar process is easily visualized and the periodontal space can be imaged, especially if there are pathological conditions.

The extension of the maxillary sinus and the floor of the nose and their relationship with the roots of the teeth are of great importance in the study of the origin and dimension of endodontic lesions. The dental CT offers excellent visualization of maxillary sinus and adjacent teeth.

Table 2: Results of selected ultrasound studies are summarized

Study	Description
Maity et al.	Ultrasound with color power doppler is an efficient tool for monitoring bone healing as compared to the conventionally employed radiographic method.
Aseem et al.	Ultrasound and color doppler imaging have the potential to supplement conventional radiography in monitoring the postsurgical healing of periapical lesions of endodontic origin.
Aggarwal et al.	CT scans and ultrasound with power doppler flowmetry provide an additional diagnostic tool, without invasive surgery, where the treatment option is nonsurgical.
Rajendran	The application of the ultrasound and color power doppler is a viable and nonhazardous tool for monitoring the healing of periapical lesions.
Carvalho	The healing or expansion of periapical lesions can be evaluated by means of digital subtraction radiography using Adobe Photoshop CS software.
Gundappa et al.	Conventional imaging and digital imaging enable the diagnosis of periapical disease, but not of its nature, while the ultrasound can provide accurate information on the pathological nature of the lesion.
Cotti et al.	A tentative differential diagnosis between a cystic lesion and a granuloma can be made.
Mikogeorgis	Changes to the periapical tissue structure are easily detectable by using contrast enhancement and pseudo-coloring methods.
Scheven	The ultrasound may influence odontoblast activity and dentin repair by modulating the production of endogenous growth factors in the dentin pulp complex.
Yoshioka et al.	The subtraction method with direct digital radiography will be a useful tool to evaluate the healing process in endodontic treatments.
Culjat et al.	An ultrasound clearly shows the 2 D contour of the dentinoenamel junction with a depth and lateral resolution of approximately 100 and 750 µm.
William et al.	When applied to intraoral images, color-coded image processing of digital images has a limited value in the estimation of periradicular lesion dimensions.
Kullendorf	Subtraction radiography improves the detection of small lesions in the periapical bone area.

Table 3: RVG - Advantages and disadvantages

Advantages of RVG	Disadvantages of RVG
Substantial radiation dose reduction	Loss of resolution from screen to print images
Production of instantaneous images	Relatively small sensor size
Control of contrast	Greater thickness than conventional films
Ability to enlarge specific areas that may be of use in visualizing instrument location during endodontic treatment	
Potential for storage in a computer and subsequent transmission of the images	

Computed tomography

Computed tomography (CT) produces 3D images of an object by using a series of 2D image data, to mathematically reconstruct a cross-section of the object. It is unique in that it provides images of a combination of soft tissues, bone, and blood vessels. The technique of Dental CT also known as Dentascan was developed by Schwartz et al. The Dental CT can be performed with a conventional CT, a spiral CT, or a multislice CT scanner.
Computed tomography studies are summarized in Table 5.

Table 4: Results of selected RVG studies are summarized

Author(s)	Study Details
Radel et al.	Kodak RVG 8000 images with enhanced contrast produced significantly lesser measurement error than unenhanced contrast Schick CDR images.
Martinez et al.	None of the techniques was totally satisfactory in establishing the true working length.
Saad et al.	This technique was useful in medically compromised patients, who had no need to be exposed to excessive or repeated radiation during endodontic therapy.
Sullivan et al.	The accuracy of RVG with fixed contrast was not significantly different from conventional radiography with Kodak E speed films.
Mistak et al.	No statistically significant differences between direct digital radiography (DDR) stored images, DDR transmitted images, and conventional film images were seen.
Kullendorff et al.	Image processing had a limited effect on the diagnostic accuracy; altering of contrasts and brightness was preferred for the detection of periapical lesions.
Scarfe et al.	Conventional film and RVG-S digital radiographic images for the detection of accessory / lateral canals either alone or in combination with radiopaque contrast material was low.
Ellingsen et al.	Accurate identification of the position of the tips of size 8 – 10 instruments was achieved on all D and E speed radiographs with the use of magnification.
Ellingsen et al.	Using RVG, identification was achieved on 95% of the zoom images in the negative to positive mode.
Yokota et al.	Using RVG, the controlled adjustment of contrast in the images was now possible.
Russell et al.	It could be concluded that RVG was an alternative to conventional intraoral radiography.
Shearer et al.	RVG could be considered to be of equal value to conventional film radiography.
Horner et al.	RVG in its present form should be considered as an adjunct rather than a replacement for conventional intraoral film.

Conventional film and RVG-S digital radiography have been compared. The software used along with the spiral / helical CT allows assessment in all three dimensions. It provides axial, panoramic, paraxial, and 3D volume rendering, which helps in diagnostic purposes [Figure 3]. Results of selected Conventional computed tomography studies are summarized in Table 5.

Table 5: Summary of selected computed tomography studies

Author(s)	Study Details
Aggarwal[44]	Two palatal canals with separate orifices and apical foramen have been confirmed with the help of a spiral CT.
Reuben[45]	The majority of the mandibular first molars have a three-canal configuration.
Ballal et al.[46]	Spiral CT is an accurate diagnostic aid in the endodontic management of unusual cases.
Gopikrishna et al.[47]	Spiral CT is an objective method to confirm the three-dimensional anatomy of the teeth.
Tasdemir et al.[48]	CT helps in accurately assessing the root canal morphology.
Zormechtingi et al.[49]	CT images show the complexities of the pulp space in primary molars.
Nance et al.[50]	The CT can be used for a quantitative study of oral hard tissues in the presence of metal restorations.
Cotti et al.[51]	CT provide specific information about the type of lesion and the degree of bone repair after non-surgical treatment.
Youssefzadeh et al.[52]	CT is superior to dental radiography in the detection of vertical root fractures.
Vannier et al.[53]	The TACT system is superior to the conventional film in the detection of extra root canals in the molars.
Nielsen et al.[54]	A micro CT accurately presents the external and internal morphologies of the tooth.
Tachibana et al.[55]	An anatomical configuration of the teeth is clearly observed in the CT.
Trope et al.[56]	A cyst can be differentiated from the periapical granuloma by a CT because of the marked difference in density.

Cone-beam volumetric tomography (CBVT) or cone-beam computed tomography (CBCT) has been specifically designed to produce undistorted three-dimensional information of the maxillofacial skeleton as well as three-dimensional images of the teeth and their surrounding tissues. This is usually achieved with a substantially lower radiation dose that is very effective, compared to conventional computed tomography (CT).[58]

Cone-beam computed tomography (CBCT) uses a cone-shaped beam instead of the fan-shaped one used by the
Deepak, et al.: Imaging techniques in endodontics

Applications of cone beam computed tomography in the management of endodontic problems

Endodontic applications of CBCT are less known and not as thoroughly studied.

Specific endodontic applications of CBCT are being identified as the technology becomes more prevalent. Potential endodontic applications include diagnosis of endodontic pathosis and canal morphology, assessment of pathosis of the non-endodontic origin, evaluation of root fractures and trauma, analysis of external, internal root resorption, and invasive cervical resorption, and pre-surgical planning.\(^{[61]}\)

Periapical disease may be detected early using CBCT compared to the periapical views, and the true size, extent, nature, and position of periapical and resorptive lesions can be assessed. Root fractures, root canal anatomy, and the true nature of the alveolar bone topography around the teeth may be assessed. The CBCT scans are desirable to assess posterior teeth prior to periapical surgery, as the thickness of the cortical and cancellous bone can be accurately determined, as can the inclination of roots in relation to the surrounding jaw. The relationship of anatomical structures such as the maxillary sinus and inferior dental nerve to the root apices may also be clearly visualized.\(^{[58]}\)

Uses of CBCT are summarized in Table 6.

Cone beam computed tomography can determine the difference in density between the cystic cavity content and the granulomatous tissue, and is preferred as a choice for noninvasive diagnosis.\(^{[62]}\)

Cone beam computed tomography allows each root and its surrounding structures to be evaluated. Regions of interest can be compared over time. The pre-surgical application of CBCT is an asset in locating lesions, mandibular canals, and the maxillary antrum [Figure 4].\(^{[61]}\)

Advantages
The advantages include increased accuracy, higher resolution, scan time reduction, and lower radiation dose. Elimination of anatomic noise, facilitates the assessment of a number of important features on endodontic diagnosis, treatment, and long-term management.\(^{[61]}\)

Disadvantages
With regard to CBCT images, the presence of an intracanal metallic post might lead to equivocated interpretations as a result of artifact formation. When metallic objects are present in either the tooth of interest or an adjacent one, artifacts can pose difficulties in the analysis of images. In these cases, periapical radiographs are helpful to complement the diagnosis. Distortion of metallic structures due to differential absorption is known as a cupping artifact.\(^{[62]}\)

Although CBCT technology is efficient in imaging hard tissue, it is not very reliable in the imaging of soft tissue, as a result of the lack of dynamic range of the X-ray detector.

Availability of Cone beam computed tomography is limited to major metropolitan areas at present. Limitations also include medico-legal issues pertaining to the acquisition and interpretation of CBCT data. Various dental applications of CBCT (e.g., oral and maxillofacial surgery) require a large field of view (FOV) to capture all maxillofacial structures within the volume. There is a growing concern among oral and maxillofacial radiologists that dentists without proper training should not perform or interpret CBCT images. Results of selected CBCT studies are summarized in Table 7.

CONCLUSION
Imaging technology aids in the diagnosis of endodontic

Table 6: Uses of CBCT

Uses of CBCT in endodontics
• Evaluation of root canal anatomy
• Study external and internal macro morphology in three-dimensional reconstruction of the teeth
• Evaluation of root canal preparation
• During root canal obturation
• In re-treatment
• Evaluation of coronal microleakage
• Detection of bone lesions
• Experimental endodontology, where it has proved to be accurate in identifying apical periodontitis

Figure 4: Cone beam CT image shows a sagittal view of impacted maxillary canine with severe dilaceration (arrow).
pathosis and canal morphology, assessing root and alveolar fractures, in the analysis of resorptive lesions, identification of the pathosis of non-endodontic origin, and pre-surgical assessment before root-end surgery. When compared with CT, CBCT has increased accuracy, higher resolution, reduced scan time, a reduction in radiation dose, and reduced cost for the patient. As compared with conventional periapical radiography, CBCT eliminates the superimposition of the surrounding structures, providing additional, clinically relevant information. The drawbacks of CBCT include limited availability, significant capital investment, and medico-legal considerations. As the CBCT technology evolves, clinicians will be able to adopt 3-D imaging into their diagnostic repertoire. As accurate diagnostic information leads to better clinical outcomes, CBCT might prove to be an invaluable tool in the modern dental practice.

Table 7: Summary of selected CBCTs studies

Reference	Summary
Kaya et al.	The results of this study support the use of CBCT to measure bone density before and after endodontic treatment. The Schneiderian membrane in the vicinity of roots with apical lesions tends to be significantly thicker when compared to the roots of teeth without apical pathosis.
Bornstein et al.	CBCT with larger FOV is useful in nonsurgical endodontic treatment and gives more information compared to digital periapical radiography.
Suter et al.	Limited CBCT scans visualized the expansion of the cysts and the involvement of the neighboring structures in both the cases.
Nurbakhsh et al.	CBCT imaging revealed lower-than-expected prevalence of mucositis adjacent to teeth with apical periodontitis.
Cymerman et al.	CBCT scanning was helpful in evaluating patients presenting with concurrent sinus and dental complaints.
Costa et al.	CBCT scanning showed high accuracy in detecting horizontal root fracture. Without a metallic post, however, the presence of a metallic post significantly reduced the specificity and sensitivity.
Abella et al.	CBCT imaging is useful in identifying the root canal system and the surrounding structures.
Janner et al.	CBCT scan of the teeth can be useful to determine the endodontic working length in combination with clinical measurements.
Bauman et al.	The reliability of detection of maxillary molar mesiobuccal 2 canals in the CBCT scans increased, as the resolution improved.
Bhuva et al.	CBCT provides additional relevant information on the location and nature of root-resorptive defects when compared with the conventional radiographs.
Idiyatullin et al.	CBCT scans can provide the identification of changes in the maxillary sinus and potential causes of sinusitis.
Kottoor et al.	This study reveals the superior diagnostic accuracy of CBCT for the detection of a vertical root fracture.
Shemesh et al.	CBCT imaging in endodontically challenging cases can facilitate a better understanding of the complex root canal anatomy.
Yoshioka et al.	The risk to misdiagnose strip perforations was high with both CBCT and periapical radiography, but CBCT scans showed a significantly higher sensitivity.
Faitaroni et al.	CBCT imaging may provide detailed high resolution images of oral structures, which help to make an initial diagnostic hypothesis and to plan surgery.
Liang et al.	Treatment outcome, length, density of root fillings, and outcome predictors, as determined with CBCT scans, might not be the same as the corresponding values determined with periapical radiographs.
Kovisto et al.	The CBCT scan is an accurate, noninvasive method to evaluate the position of the mandibular canal.
Bornstein et al.	Limited CBCT is advantageous for treatment planning in mandibular molars, before apical surgery.
Ozer	CBCT scans are reliable in detecting simulated vertical root fracture, and 0.2 mm voxel was the best protocol, considering the lower x-ray exposure and good diagnostic performance.
Bueno et al.	CBCT images reveal an abnormality that is unable to be detected in a conventional periapical radiograph. A map-reading approach reduces problems related to detection of root perforations near metallic artifacts.
Loannidis et al.	CBCT images provide a precise description of the anatomy of seven maxillary and mandibular molars with single roots and single canals.
Blattner et al.	CBCT scanning is a reliable method to detect the mesiobuccal (MB)2 canal, when compared to the gold standard of the physical sectioning of the specimen.
Le et al.	CBCT images helped in accurate diagnosis and management of unusual root canal morphology in mandibular first molar.
Fan et al.	CBCT images combined with careful exploration may provide an effective way for identifying the nature of the canal system and enhancing debridement in these complex canal anatomies.
Patel et al.	CBCT was effective and reliable in detecting the presence of resorptive lesions. CBCT’s superior diagnostic accuracy also resulted in an increased likelihood of their correct management.
Ravindra	CBCT provided accurate 3D reconstructions of the teeth that could be used for diagnosis, treatment planning, and simulation.

REFERENCES

1. Goldman M, Pearson AH, Darzenta N. Endodontic success-who’s reading the radiograph? Oral Surg Oral Med Oral Pathol 1972;33:432-7.
2. Grondahl HG, Huurnonen S. Radiographic manifestations of periapical inflammatory lesions. Endod Topics 2004;8:55-67.
3. Goldman M, Pearson AH, Darzenta N. Reliability of radiographic interpretations. Oral Surg Oral Med Oral Pathol 1974;38:287-93.
4. Cotti E, Campisi G, Garau V, Puddu G. A new technique for the study of periapical bone lesions: Ultrasound real time imaging. Int Endod J 2002;35:148-52.
5. Mol A. Image processing tools for dental applications. Dent Clin N Am 2000;44:299-318.
6. Nair MK, Nair UP. Digital and Advanced Imaging in Endodontics: A review. J Endod 2007;33:1-6.
radiology. 4th ed. Netherlands: Elsevier Health Sciences; 2007.
8. SenthilKumar B, Nazargi MM. Ultrasound in dentistry: A review. Journal of Indian Academy of Dental Specialists 2010;1:44-5.
9. Cotti E, Campisi G, Ambu R, Dettori C. Ultrasound real time imaging in the differential diagnosis of periapical lesions. Int Endod J 2003;36:556-63.
10. Cotti E, Campisi G. Advanced radiographic techniques for the detection of lesions in bone. Endod Topics 2004;7:52-72.
11. Hirai T, Manders EK, Nagamoto K, Saggers GC. Ultrasonic observation of facial bone fractures: Report of cases. J Oral Maxillofac Surg 1996;54:776-9.
12. Maitry I, Kumara A, Shukla AK, Usha HL, Naveen DN. Monitoring of healing by ultrasound with color power doppler after root canal treatment of maxillary anterior teeth with periapical lesions. J Conserv Dent 2011;14:252-7.
13. Aseem P, Tikku AP, Kumar S, Loomba K, Chandra A, Verma P, et al. Use of ultrasound, color Doppler imaging and radiography to monitor periapical healing after endodontic surgery. J Oral Sci 2010;52:411-6.
14. Aggarwal V, Logani A, Shah N. The Evaluation of computed tomography scans and ultrasounds in the differential diagnosis of periapical lesion. J Endod 2008;34:1312-5.
15. Rajendran N, Sundaresan B. Efficacy of ultrasound and color power doppler as a monitoring tool in the healing of endodontic periapical lesions. J Endod 2007;33:181-6.
16. Carvalho FB, Gonzalves M, Tanomaru-Filho M. Evaluation of chronic periapical lesions by digital subtraction radiography by using Adobe Photoshop CS. A technical report. J Endod 2007;33:493-7.
17. Gundappa M, Suk NG, Whaites EJ. Comparison of ultrasound, digital and conventional radiography in differentiating periapical lesions. Dentomaxillofac Radiol 2006;35:326-33.
18. Cotti E, Simbola V, Dettori C, Campisi G. Echographic evaluation of lesion dimensions. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1999;88:603-11.
19. Mikrogeorgis G, Lyroundia K, Molyvadas I, Nikolaidis N, Pitas I. Digital radiograph registration and subtraction: A useful tool for the evaluation of the growth of chronic apical periodontitis. J Endod 2004;30:513-6.
20. Scheven BA, Man J, Millard JL, Cooper PR, Lea SC, Walmsley AD, et al. VEGF and odontoblast like cells: Stimulation by low frequency ultrasound. Arch Oral Biol 2009;54:185-91.
21. Yoshikoa T, Kobayashi C, Suda H, Sasaki T. An observation of the healing process of periapical lesions by digital subtraction radiography. J Endod 2002;28:589-91.
22. Cullat M, Singh RS, Yoon DC, Brown ER. Imaging of human tooth enamel using ultrasound. Med Imaging 2003;22:526-9.
23. color-coded image enhancements for the assessment of periradicular lesion dimensions. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1999;88:603-11.
24. Kulendroff B, Grondahl K, Rohlmin L, Henriksson CO. Subtraction radiography for the diagnosis of periapical bone lesions. Dent Traumatol 1988;4:253-9.
25. Wolfgang L. The dental digital radiograph. N Y State Dent J 2001;67:38-40.
26. Van der stelt PF. Better imaging: The advantages of digital radiography. N Y State Dent J 2001;67:38-40.
27. Brooks SL, Miles DA. Advances in diagnostic imaging in dentistry. Dent Clin North Am 1993;37:91-111.
28. Ong EY, Pittford TR. Comparison of radio visiography with radiographic film in root length determination. Int Endod J 1995;28:25-9.
29. Radl RT, Goodell GG, McLanahan SB, Cohen ME. In vitro radiographic determination of distances from working length files to root ends comparing kodak RVG 6000, Schick CDR, and kodak insight film. J Endod 2006;32:566-9.
30. Martinez Lozana MA, Forner Navarro L, Sanchez Cortes L, Llena –Puy C. Methodological considerations in the determination of working length. Int Endod J 2001;34:371-6.
31. Saad AY, Al-Nazhan S. Radiation dose reduction during endodontic therapy: A new technique combining an apex locator (Root ZX) and a digital imaging system (Radiovisiography). J Endod 2000;26:32-5.
32. Sullivan JE, Fiore PM, Koerber A. Radiovisiography in the detection of periapical lesions. J Endod 2000;26:32-5.
33. Mistak EJ, Loushine RJ, Primack MD, West LA, Runyan D. Interpretation of periapical lesions comparing conventional, direct digital and telephonically transmitted radiographic images. J Endod 1998;24:262.
34. Kulendroff B, Nilsson M. Diagnostic accuracy of direct digital dental radiography for detection of periapical bone lesions. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1996;82:585-9.
35. Scarfe W, Fana CR, Farman AG. Radiographic detection of accessory/ lateral canals: Use of radio visiography and hypaque. J Endod 1995;21:185-90.
36. Ellingsen MA, Harrington GW, Holllender LG, Odont D. Radiovisiography versus conventional radiography for detection of small instruments in endodontic length determination. Part 1. In vitro evaluation. J Endod 1995;21:326-31.
37. Ellingsen MA, Holllender LG, Odont D, Harrington GW. Radio visiography versus conventional radiography for detection of small instruments in endodontic length determination. In vivo evaluation. J Endod 1995;21:516-20.
38. Yokota ET, Miles DA, Newton CW, Brown CE. Interpretation of periapical lesions using Radio visiography. J Endod 1994;20:490-4.
39. Russell M, Pitts NB. Radio visiography: A preliminary subjective assessment in a hospital paediatric dentistry department. Int J Paed Dent 1993;3:77-82.
40. Shearer AC, Horner K, Wilson NH. Radio visiography for imaging root canals: An in vitro comparison with conventional radiography. Quint Int 1990;21:789-94.
41. Horner K, Shearer AC, Walker A, Wilson NH. Radio visiography: An initial evaluation. Br Dent J 1990;168:244-8.
42. Worthington P, Rubenstein J, Hatcher DC. The role of cone beam computed tomography in the planning and placement of implants. J Am Dent Assoc 2010;128:195-245.
43. Schwartz MS, Rothman SL, Rohdes ML, Chafatz N. Computed tomography. Part I: Preoperative assessment of the mandible for endosseous implant therapy: A new technique combining an apex locator (Root ZX) and a digital imaging system (Radiovisiography). J Endod 2000;26:144-7.
44. Aggarwal V, Singla M, Logani A, Shah N. Endodontic management of a maxillary first molar with two palatal canals with the aid of spiral computed tomography: A case report. J Endod 2009;35:137-9.
45. Reuben J, Volmurung N, Kandaswamy D. The evaluation of root canal morphology of the mandibular first molar in an Indian population using spiral computed tomography scan: An in vitro study. J Endod 2008;34:212-5.
46. Ballal S, Sachdeva GS, Kandaswamy D. Endodontic management of a fused mandibular second molar and paramolar with the aid of spiral computed tomography: A case report. J Endod 2007;33:1247-51.
47. Gopikrishna V, Bharagavi N, Kandaswamy D. Endodontic management of a maxillary first molar with a single root and a single canal diagnosed with the aid of spiral CT: A case report. J Endod 2006;32:687-91.
48. Tasdemir T, Aydemir H, Inan U, Unal O. Canal preparation with Hero 642 rotary Ni–Ti instruments compared with stainless steel hand file K–file assessed using computed tomography. Int J Oral Maxillofac Implants 1987;2:134-41.
49. Zoremchhingi, Joseph T, Varma B, Mungara J. A study of root canal morphology of human primary molars using computerised tomography: An in vitro study. J Indian Soc Pedod Prev Dent 2005;23:7-12.
50. Nance R, Tyndall D, Levin LG, Trope M. Identification of root canals in molars by tuned-aperture computed tomography. Int Endod J 2000;33:392-6.
51. Cotti E, Vargiu P, Dettori C, Mallatini G. Computerized tomography in the management and follow up of extensive periapical lesion. Dent Traumatol 1999;15:186-9.
52. Youssifzadeh S, Gahleitner A, Dorrffner R, Bernhart T, Kainberger FM. Dental vertical root fractures: Value of CT in detection. Radiology 1999;21:545-9.
53. Vannier MW, Hildebolt CF, Conover G, Knapp RH, Crothers NY, Wang G. Three-dimensional dental imaging by spiral CT: A progress report. Oral Surg Oral Med Oral Path Oral Radiol Endod 1997;84:561-70.

54. Nielsen RB, Alyassim AM, Peters DD, Carnes DL, Lancaster J. Microcomputed tomography: An advanced system for detailed endodontic research. J Endod 1995;21:361-8.

55. Tachibana H, Matsumoto K. Applicability of X-ray computerized tomography in endodontics. Dent Traumatol 1990;6:16-20.

56. Trope M, Pettigrew J, Petras J, Barnett ET, Rosing L. Differentiation of radicular cyst and granulomas using computerized tomography. Dent Traumatol 1989;6:69-72.

57. Ganz SD. Cone beam computed tomography-assisted treatment planning concept. Dent Clin N Am 2011;55:515-36.

58. Patel S, Dawood A, Pitt ford T, Whaites E. The potential application of cone beam computed tomography in the management of endodontic problems. Int Endod J 2007;40:818-30.

59. Matherne RP, Angelopoulos C, Kulid JC, Tira D. Use of cone beam computed tomography to identify root canal systems \textit{in vitro}. J Endod 2008;34:87-9.

60. Simon JH, Enciso R, Malfaz JM, Rogers R, Perry MB, Patel A. Differential diagnosis of large periapical lesions using cone beam computed tomography measurements and biopsy. J Endod 2006;32:833-7.

61. Cotton TP, Geisler TM, Hoden DT, Schwartz SA, Schindler WG. Endodontic application of cone beam computed tomography. J Endod 2007;33:1121-32.

62. Estrela C, Bueno MR, Leles CR, Azevedo B, Azevedo JR. Accuracy of cone beam computed tomography and panoramic and periapical radiography for detection of apical periodontitis. J Endod 2008;34:273-9.

63. Kaya S, Yavuz I, Uysal I, Akkus Z. Measuring bone density in healing periapical lesions using cone beam computed tomography: A clinical investigation. J Endod 2012;38:28-31.

64. Bornstein MM, Wasmer J, Sendi P, Jannersonamine FM, Buser D. Characteristics and dimensions of the Schneiderian membrane in maxillary molars with respect to apical surgery: A comparative radiographic analysis using limited cone beam computed tomography. J Endod 2012;38:51-7.

65. Kim S. Endodontic application of Cone beam computed tomography in South Korea. J Endod 2012;38:153-7.

66. Suter VG, Buttner M, Albertoni HI, Reichart PA, Bornstein MM. Expansive nasopalatine duct cysts with nasal involvement mimicking apical lesion of endodontic origin: A report of 2 cases. J Endod 2011;37:1320-6.

67. Nurbakhsh B, Friedman S, Kulkarni GV, Basran B, Lam E. Resolution of maxillary sinus mucositis after endodontic treatment of maxillary teeth with apical periodontitis: A cone-beam computed tomography pilot study. J Endod 2011;37:1504-11.

68. Cymerman JJ, Cymerman DH, O'Dwyer RS. Evaluation of odontogenic maxillary sinusitis using cone-beam computed tomography: Three case reports. J Endod 2011;37:1465-9.

69. Costa FF, Gaia BF, Amaral FG, Cavalcanti MG. Detection of horizontal root fracture with small-volume cone-beam computed tomography in the presence and absence of intracanal metallic post. J Endod 2011;37:1456-9.

70. Abella F, Mercade M, Duran-Sindreu F, Roig M. Managing severe curvature of radix entomolaris: Three-dimensional analysis with cone beam computed tomography. Int Endod J 2011;44:876-85.

71. Janner SF, Jeger FB, Lussi A, Bornstein MM. Precision of endodontic working length measurements: A pilot investigation comparing cone-beam computed tomography scanning with standard measurement techniques. J Endod 2011;37:1046-51.

72. Bauman R, Scarfe W, Clark S, Morelli J, Scheetz J, Farman A. Ex vivo detection of mesiobuccal canals in maxillary molars using CBCT at four different isotropic voxel dimensions. Int Endod J 2011;44:752-8.

73. Bhuvu B, Barnes JJ, Patel S. The use of limited cone beam computed tomography in the diagnosis and management of a case of perforating internal resorption. Int Endod J 2011;44:777-86.

74. Idiyatullin D, Corum C, Moller S, Prasad HS, Garwood M, Nixford DR. Dental magnetic resonance imaging: Making the invisible visible. J Endod 2011;37:745-52.

75. Edlund M, Nair MK, Nair UP. Detection of vertical root fractures by using cone-beam computed tomography: A clinical study. J Endod 2011;37:768-72.

76. Kottoor J, Velmurugan N, Surendran S. Endodontic Management of a maxillary first molar with eight root canal systems evaluated using cone-beam computed tomography scanning: A case report. J Endod 2011;37:715-9.

77. Shemesh H, Cristescu RC, Wesselin PR, Wu MK. The use of cone-beam computed tomography and digital periapical radiographs to diagnose root perforations. J Endod 2011;37:513-6.

78. Yoshioka T, Kikuchi I, Adorno CG, Suda H. Periapical bone defects of root filled teeth with persistent lesions evaluated by cone-beam computed tomography. Int Endod J 2011;44:245-52.

79. Faitaroni LA, Bueno MR, Carvalho AA, Mendonca EF, Estrela C. Differential diagnosis of apical periodontitis and nasopalatine duct cyst. J Endod 2011;37:403-10.

80. Liang YH, Li G, Wesselin PR, Wu MK. Endodontic outcome predictors identified with periapical radiographs and cone-beam computed tomography scans. J Endod 2011;37:326-31.

81. Kovisto T, Ahmad M, Bowles WR. Proximity of the mandibular canal to the tooth apex. J Endod 2011;37:311-5.

82. Bornstein MM, Lauber R, Sendi P, Arx TV. Comparison of periapical radiography and limited cone-beam computed tomography in mandibular molars for analysis of anatomical landmarks before apical surgery. J Endod 2011;37:151-7.

83. Ozer SY. Detection of vertical root fractures by using cone beam computed tomography with variable voxel sizes in an \textit{in vivo} model. J Endod 2011;37:75-9.

84. Bueno MR, Estrela C, Figueiredo JA, Azevedo BC. Map-reading strategy to diagnose root perforations near metallic intracanal posts by using cone beam computed tomography. J Endod 2011;37:85-90.

85. Loannidis K, Lambrianidis T, Beltes P, Besi E, Malliari M. Endodontic management and cone-beam computed tomography evaluation of seven maxillary and mandibular molars with single roots and single canals in a patient. J Endod 2011;37:103-9.

86. Blattner TC, George N, Lee CC, Kumar V, Yelton CD. Efficacy of cone-beam computed tomography as a modality to accurately identify the presence of second mesiobuccal canals in maxillary first and second molars: A pilot study. J Endod 2010;36:867-70.

87. Le SH, Jung DH, Kim EC, Min KS. Identification of independent middle mesial canal in mandibular 1st molar using cone beam computed tomography imaging. J Endod 2010;36:542-5.

88. Fan B, Min Y, Lu G, Yang J, Cheung GS, Gutman JL. Negotiation of C-shaped canal systems in mandibular second molars. J Endod 2009;35:1003-8.

89. Patel S, Dawood A, Wilson R, Horner K, Mannocci F. The detection and management of root resorption lesions using intraoral radiography and cone beam computed tomography – an \textit{in vivo} investigation. Int Endod J 2009;42:831-8.

90. Rawi BA, Hassan B, Vandenberge B, Jacobs R. Accuracy assessment of three-dimensional surface reconstructions of teeth from cone beam computed tomography scans. J Oral Rehabil 2010;37:352-8.