Stress-induced Cellular Senescence Contributes to Chronic Inflammation and Cancer Progression

SHINKO KOBASHIGAWA1,2, YOSHIHIKO M. SAKAGUCHI1, SHINICHIRO MASUNAGA2, EIICHIRO MORI1*

1Department of Future Basic Medicine, Nara Medical University, Kashihara, Nara, 634-8521, Japan
2Kyoto University, Institute of Integrated Radiation and Nuclear Science, Kumatori, Osaka, 590-0494, Japan

Abstract: Cellular senescence has long been considered to act as a tumor suppressor or tumor suppression mechanism and described as a phenomenon of irreversible cell cycle arrest. Cellular senescence, however, is now considered to have physiological functions other than tumor suppression; it has been found to be involved in embryogenesis, tissue/organ aging, and wound healing. Surprisingly, cellular senescence is also demonstrated to have a tumor progressive role in certain situations. Senescent cells exhibit secretory phenotypes called senescence-associated secretory phenotype (SASP), which secrete a variety of SASP factors including inflammatory cytokines, chemokines, and growth factors, as well as matrix remodeling factors that promote the alteration of neighboring tissue microenvironments. Such SASP factors have been known to drive the mechanisms underlying the pleiotropic features of cellular senescence. In this review, we examine current knowledge of cellular senescence at molecular and cellular levels, with a focus on chronic inflammation and tumor progression.

Key Words: senescence, senescence-associated secretory phenotype (SASP), reactive oxygen species (ROS), ionizing radiation, heat shock response (HSR)

1. Introduction

Hayflick and Moorhead1) were the first to describe the limited divisions of cells and term this irreversible cell cycle arrest as cellular senescence. Senescent cells remain metabolically active, but their growth is irreversibly halted and their morphological characteristics altered as large, flat, and refractile2,3). Irreversible cell cycle arrest is now thought to be dependent upon the shortening of telomeres; an expression of the catalytic subunit of the telomerase holo-enzyme (hTERT) is enough to bypass cellular senescence4-6). Telomeres are folded d-loop/t-loop structures located at the ends of chromosomes that serve to mask DNA ends from being recognized as DNA double-strand-breaks (DSBs)7,8). Telomerase activity is absent from most normal human somatic cells. After serial divisions, telomeres become too short to have sufficient binding sites for shelterin proteins (the latter being protein complexes known to protect telomeres) and are remodeled with a “capped” structure9). Telomere shortening-related senescence is called replicative senescence. Nonetheless, mouse
embryonic fibroblasts (MEFs) undergo cellular senescence despite telomerase activity\(^5\). Senescence in vitro can be bypassed by culturing in serum-free media or low oxygen conditions in MEFs\(^5,10,11\). Cellular senescence is hence, induced not only by telomere shortening, but also by certain culture conditions\(^5\). Several studies found that irreversible cell cycle arrest can be induced when normal cells are exposed to a variety of stressors, including telomere erosion, oxidative stress, ionizing radiation, and the activation of oncogenes such as Ras\(^12-17\). Such cellular senescence is called premature senescence, and is also known as stress-induced senescence (SIS) or oncogene-induced senescence (OIS). Senescence induced by oncogenic stimuli is recognized as a tumor suppression mechanism due to its irreversible arrest of proliferation\(^18,19\).

However, findings from recent studies suggest that the secretion of inflammatory cytokines, chemokines, and the induction of matrix remodeling factors in senescent cells lead to inflammation and cancer progression\(^5,20\). This phenomenon is known as senescence-associated secretory phenotype (SASP) and as summarized in Tables I and II, SASP factors are associated with multiple functions, either in the suppression or progression of tumorigenesis. The role of this process is dependent on p53-induced cellular senescence; p53 null/mutant cells bypass senescence, and accelerates tumor growth and invasiveness after SASP factor

Table I. A summary of the functions and mechanisms of SASP factors and multiple roles of cellular senescence in vivo mouse study. Senescent cells are shown to have multiple functions (e.g. embryogenesis, aging, wound healing, tumor suppression, tumor promotion) in vivo.

Function	Activation stimuli	SASP factors	Possible mechanism
Embryogenesis	Development	TGFβ, SMAD, CEBPβ, CSF1	TGFβ, SMAD and PDK/FoxO-p21-senescence-tissue remodeling (ref. 22)
			p21, p15-senescence- SASP- tissue growth patterning (ref. 23)
Aging	BubR1\(^{hi}\)	(–)	p16-senescence- age related dysfunction (ref. 29)
	Naturally-occurring (RS?) senescence	(–)	p16-senescence- age related dysfunction (ref. 30)
	RS	IFNα, IL6, TNFα, MX1	telomere instability-cytosolic DNA- cGAS/STING-SASP- HP1β and p16-senescence (ref. 114)
Wound healing	CCl\(_4\)	IL11, IL8, IL6	CCl\(_4\)-p53/16 dependent senescence-SASP- immune system-reduced liver fibrosis (ref. 31)
	Bacterial artificial	PDGF-AA	injury-senescence fibroblasts and endothelial cells- SASP-wound healing (ref. 32)
	chromosome (BAC), IR (X-ray)		
Tumor suppression	CKI\(_{aT}^{aT}\) knockout	IxB, TNF, factors suppressed by NSAID	CKI\(_{aT}^{aT}\)-DNA damage response-SASP factor-p53 dependent senescence (ref. 21)
	Ras	TGFβ family ligands, VEGF, CCL2, CCL20	Ras-IL1 signaling-TGFβ family, VEGF, CCL2 and CCL20-p15 and p21-senescence (ref. 101)
Tumor promotion	CKI\(_{aT}^{aT}\) knockout	IxB, TNF, Factors suppressed by NSAID	CKI\(_{aT}^{aT}\)-DNA damage response-SASP (p53 mutation/ null) proinvasive gene expression signature (ref. 21)
	Obesity or DMBA	IL6, Groot, CXCL9	obesity-deoxycholic acid-DNA damage-SASP factors-promote hepatocellular carcinoma (ref. 94)
	Bleomycin, RS	IL6, IL8, GM-CSF	p38-AUF1-SASP factors-tumor promotion (ref. 119)
Inflammation	RS, H-Ras\(^{12/0}\), etoposide	IL1α, IL8	cytoplasmic chromatin-cGAS/STING-NF\(_{xB}\)-SASP (ref. 110)
Drug resistance	doxorubicin	IL6, Timp1	doxysolbidin-p38 activation-IL6 from the thymic stroma-lymphoma cell surviving (ref. 109)
signaling\(^{21}\). It remains unclear why cells become senescent, yet are not removed from the tissue. This suggests that cellular senescence may have a role other than the suppression of tumorigenesis. Muñoz-Espín \textit{et al.}\(^{22}\) and Storer \textit{et al.}\(^{23}\) proposed that the cells become senescent as part of embryogenesis fine-tuning. Both studies found that senescent cells contribute to macrophage infiltration and tissue formation through SASP\(^{22,23}\).

Cellular senescence is associated with a number of other functions, including organismal aging (Table I). The accumulation of senescent cells is typically observed in aging tissues\(^{24-28}\). Studies have found that the removal of senescent cells from the tissue prolongs mice lifespan and prevents age-dependent changes in several organs\(^{29,30}\). Yet, cellular senescence has also been shown to limit the extent of fibrosis following liver damage, and underscore the interplay between senescent cells and the tissue microenvironment\(^{31}\). This finding demonstrates the contribution of cellular senescence in an additional role of wound-healing and repair in tissue\(^{31,32}\).

Due to its multiple roles, researchers argue that there may be different types of cellular senescence (Tables I and II). For example, the expression of telomerase has been found to prevent cellular senescence, but not epigenetic aging or DNA methylation-based aging; Kabacik and colleagues\(^{33}\) suggest that each senescent cell and paracrine cell may have different epigenetic aging backgrounds. In another study, senescent cells during development are removed by immune system such as macrophage and thought not to be associated with DNA damage response\(^{22,34}\).

\textbf{Table II.} A summary of the functions and mechanisms of SASP factors and multiple roles of cellular senescence in vitro study. SASP factors are shown to have multiple functions including the establishment of cellular senescence in vitro.

Function	SASP factors	Possible mechanism													
Senescence	IL6, IL8, IL1α, IL1α, PAI-1, IGFBP7, IL1α, IL6, TGFβ, IL7, TNFα, factors related cGAS, Factors related cGAS/STING	Ras-ROS-DNA damage-decrement of histone methylation-SASP factors (ref. 12)	Factors bind to CXCR2	IL6α, NFκB and C/EBPβ-chemokines-CXCR2 (IL8RB)-p53 dependent senescence (ref. 13)	BRAF\(^{V600E}\)-MEK-ERK-IGFBP7-down regulation of MEK and ERK (ref. 54)	IL1α-NFκB and C/EBPβ-CXCL1, CXCL2	mTOR-SASP factors-prostate tumour growth (ref. 102)	IL1α, NFκB and C/EBPβ-IL6, IL8-invasiveness of metastatic cancer cells (ref. 103)	Ras-ROS-DNA damage-decrement of histone methylation-SASP factors (ref. 12)	NFκB and C/EBPβ-chemokines-CXCR2 (IL8RB)-p53 dependent senescence (ref. 13)	BRAF\(^{V600E}\)-MEK-ERK-IGFBP7-down regulation of MEK and ERK (ref. 54)	IL6, IL8, osteopontin	1) DNA damage-ATM, NFκB-IL6, IL8-2) HDAC inhibition-osteopontin-invasive breast cancers (ref. 107)	IL6, IL8, IL1β, GROα, GM-CSF, IGFBP2	senescence-SASP factors (ref. 50)
Tumor promotion	IL6, IL8, IL1β, GROα, GM-CSF, IGFBP2	Ras-ROS-DNA damage-decrement of histone methylation-SASP factors (ref. 12)	IL6, IL8, NFκB, CXCL1, CXCL2	Ras-ROS-DNA damage-decrement of histone methylation-SASP factors (ref. 12)	Ras-ROS-DNA damage-decrement of histone methylation-SASP factors (ref. 12)	IL6, IL8, osteopontin	Ras-ROS-DNA damage-decrement of histone methylation-SASP factors (ref. 12)	IL6, IL8, osteopontin	Ras-ROS-DNA damage-decrement of histone methylation-SASP factors (ref. 12)	Ras-ROS-DNA damage-decrement of histone methylation-SASP factors (ref. 12)					
Tumor suppression	IL6, IL8, IL1α, IL1α	Ras-ROS-DNA damage-decrement of histone methylation-SASP factors (ref. 12)	IL6, IL8, NFκB, CXCL1, CXCL2	Ras-ROS-DNA damage-decrement of histone methylation-SASP factors (ref. 12)	Ras-ROS-DNA damage-decrement of histone methylation-SASP factors (ref. 12)	IL6, IL8, osteopontin	Ras-ROS-DNA damage-decrement of histone methylation-SASP factors (ref. 12)	IL6, IL8, osteopontin	Ras-ROS-DNA damage-decrement of histone methylation-SASP factors (ref. 12)	Ras-ROS-DNA damage-decrement of histone methylation-SASP factors (ref. 12)					
Inflammation	IL6, IL8, IL1β, GROα, GM-CSF, IGFBP2	Ras-ROS-DNA damage-decrement of histone methylation-SASP factors (ref. 12)	IL6, IL8, osteopontin	Ras-ROS-DNA damage-decrement of histone methylation-SASP factors (ref. 12)	Ras-ROS-DNA damage-decrement of histone methylation-SASP factors (ref. 12)	IL6, IL8, osteopontin	Ras-ROS-DNA damage-decrement of histone methylation-SASP factors (ref. 12)	IL6, IL8, osteopontin	Ras-ROS-DNA damage-decrement of histone methylation-SASP factors (ref. 12)	Ras-ROS-DNA damage-decrement of histone methylation-SASP factors (ref. 12)					
Radioresistance	IL6	IR-IL6-decrease of mitochondrial membrane potential-radioresistance (ref. 98)	IL6	IR-IL6-autophagy, STAT3-NFκB activation-rescue effect (ref. 99)											
2. How is cellular senescence induced?

In replicative senescence, telomere erosion activates DNA damage sensor proteins, such as ataxia telangiectasia-mutated protein kinase (ATM) or ATM and RAD3-related protein kinase (ATR). They, in turn, activate p53, a cell cycle check point protein, and induce irreversible cell cycle arrest\(^7,8\). SIS is also initiated by DNA damage response. Essentially, quiescent cells are not activated in DNA damage response pathways that include p53. A primary difference between quiescent cells and senescent cells is, while quiescent cells are in G0 cell cycle phase, senescent cells are in the G1 phase. The cell cycle arrest and cellular senescence have the same step, such as activation of p53\(^5\). Arrested cells enter the next cell cycle phase when damage is repaired, and where the damage is irreparable, persistent G1 cell cycle arrest undergo cellular senescence. It is important to note that senescent cells are still metabolically active in the G1 phase of the cell cycle.

Senescent cells are arrested in G1 phase due to the constant activation of cyclin dependent kinase inhibitors (CDKI) in the cells\(^3,5\). There are two types of CDKI: the KIP/CIP family and INK4 family. KIP/CIP family proteins, including p21\(^{Cip1}\) and p27\(^{kip1}\), inhibit a broad range of CDK. INK4 family proteins, including p16\(^{INK4a}\), p15\(^{INK4b}\) and p19\(^{INK4d}\), inhibit CDK4\(^3,5\). Both p53 and p16\(^{INK4a}\)-Rb pathways play critical roles in the induction of senescence\(^5\). When telomere shortening or DNA damage occurs, p53 is activated by ATM or ATR. P53 then transcriptionally activates p21\(^{Cip1}\)\(^36\). Unlike p21\(^{Cip1}\), p16\(^{INK4a}\) is upregulated from p53 independently\(^3,7-39\). Although telomeric DNA damage induces p53 activation and not p16\(^{INK4a}\)\(^40\), cellular senescence is dependent on p16\(^{INK4a}\) in some human cells\(^5,41\). In vivo imaging has demonstrated that p16\(^{INK4a}\) positive senescent cells, accumulated with age, cross talk with p53 through DNA damage response-dependent reduction of DNA (cytosine-5)-methyltransferase 1 (DNMT1)\(^24\). All CDKs that phosphorylate Rb proteins is cooperatively inactivated by p21\(^{Cip1}\) and p16\(^{INK4a}\), thereby triggering full Rb activation and premature senescence cell cycle arrest at G1 phase\(^42,43\). The inactivation of Rb and p53 in senescent MEFs results in the reversal of senescent phenotype, leading to cell cycle re-entry. This suggests that Rb and p53 are not only required for the onset of cellular senescence, but also for the maintenance of senescence in MEFs\(^44,45\).

Over-expression of an oncogene, Ras, induces the upregulation of E2F transcription factor. Over-activated E2F transcription factor binds to the p19\(^{INK4d}\) promoter, which in turn suppresses MDM2, a p53 ubiquitination enzyme, and induces p53 accumulation\(^46\). Recent findings revealed alternative functions of p19\(^{INK4d}\) in halting cell proliferation independent from p53\(^47-49\). For example, Webber and colleagues\(^48\) showed that an over-expression of p19\(^{INK4d}\) in p53/ MDM2/ p19\(^{INK4d}\) triple knockout cells stopped cell proliferation. Tago \textit{et al}.\(^49\) found that the p53-independent tumor-suppressive effects of p19\(^{INK4d}\) may be mediated by its ability to enhance sumoylation of a diverse group of protein targets.

It is still debatable whether cellular senescence is strictly irreversible\(^5\). There have been instances where the inactivation of interleukins bypasses senescence\(^17,45,50\). This may be accounted by the multi-phased establishment of cellular senescence \textit{via:} phase 1 — triggering events; phase 2 — initiation of the senescence response; phase 3 — entry into senescence; and phase 4 — further deepening of senescence phenotypes\(^51\). DNA damage response occurs in phase 2 and is reversed when DNA damage is repaired. P16\(^{INK4a}\) is expressed in phase 3 and likely contains irreversible cell cycle arrest. Phase 4 contains an altered chromatin structure, called senescence-associated heterochromatic foci (SAHF)\(^52\). As cells undergo phases 1 to 4, the probability of proliferation decreases, and they are led towards irreversible arrest\(^51\). While CDKI is a key player in the initiation of cellular senescence, the process remains a complicated one and the precise mechanisms for the
establishment of cellular senescence is still unknown. We summarized the induction of cellular senescence in Table III via means other than the CDKI pathway, with a focus on SASP factors and reactive oxygen species.

Studies have demonstrated the roles of SASP factors such as IL-8, IL-6, IL-1α, IL-1β, PAI-1, IGFBP-5, and IGFBP-7, in the establishment of both replicative senescence and OIS (Tables I and II)\cite{12,13,21,53-55}. Such SASP factors are downstream targets of C/EBPβ and NF-κB transcription factors, and typically associated with inflammation\cite{5}. Another study by Acosta et al.\cite{13} demonstrated that the downregulation of a chemokine receptor, CXCR2, inhibits replicative senescence and OIS. Since CXCR2 is activated not only by IL-8 but also by other cytokines, this finding suggests that multiple SASP factors simultaneously contribute to the establishment of senescence. Interestingly, all the SASP factors found to be associated with replicative senescence (IL-8, IL-6, PAI-1, IGFBP-5) are factors that induce p53-dependent senescence\cite{13,53,55}. Hence, it is likely that SASP-mediated establishment of cellular senescence is closely linked with DNA damage responses that involve p53. Additionally, it suggests that persistent DNA damage is required for the induction of these SASP factors\cite{5}.

Table III. List of mechanisms underlying the establishment of senescent cells, other than CDKI pathways. The SASP factors and ROS are likely to be involved in the establishment of cellular senescence.

Factors for senescence	Activation stimuli	Possible mechanism	Types of cells
(-) p19 (RS)	---	Senp3-SUMOylated protein (Npm/B23)-cell cycle arrest act independently of the Mdm2-p53 axis, G1 phase arrest Sumoylation of endogenous Mdm2 and NPM proteins-tumor suppression	mouse fibroblasts (NIH 3T3, 293T cell, MEFs (ref. 47)
Ras	---	paracrine activation of the SASPs	HFs (Embryo and breast), epithelial cells (ref. 50)
BRAFV600E	---	BRAFV600E-synthesis and secretion of IGFBP7-autocrine/paracrine pathways to inhibit BRAF-MEK-ERK signaling-senescence and apoptosis	HFs (BJ), human melanoma cell, human primary melanocyte (ref. 54)
RS, H-RasV12E, NFkB, and C/EBPβ-chemokines-CXCR2 (IL8RB)-p53 dependent senescence	---	p53-PAI1-PKBαΔGUT1-cytosolic CyclinD1-senescence IGFBP5-p53-senescence Telomere instability-cytosolic DNA-cGAS-STING-autophagy-senescence Telomere instability-cytosolic DNA-cGAS-STING-SASP-HP1β and P16-senescence	MEFs and HFs (BJ) (ref. 53)
CKIαNep KO	---	1) CKIαNep-DNA damage response-SASP factor-p53 dependent senescence 2) p53 mutation/null-proinvasive gene expression signature	HFs (V15), mouse (vivo) (ref. 64)
Ras and ROS	---	Ras-ROS-DNA damage-decrement of histone methylation-SASP factors RS, H-RasV12E, etoposide 20% and 40% ROS-chromatin fragments in cytosol-cGAS-SASP factors	HFs (HDFs) (ref. 12)
ROS	---	H2O2-short the lifespan	osteosarcoma (U2OS), HFs (BJ) (ref. 104)
---	H2O2-p53-p21-Rb-G1 arrest	HFs (IMR-90) (ref. 56)	
Mild hypoxia	ROS-single strand breaks-telomere shortening-senescence	HFs (WI-38) (ref. 57)	
RS	ROS-telomere shortening-senescence	human embryonic cell, Werner syndrome (WS) cell (ref. 58)	
-	H2O2-short the lifespan	mouse (vivo) (ref. 60)	
RS	ROS-counteracts telomere shortening	MRC-5 cell (ref. 64)	
IR (γ-ray)	IR-Drp1-Ros-senescence	HFs (BJ, hTERT) (ref. 15)	
Reactive oxygen species (ROS) are involved in the establishment and stabilization of senescence. Studies have reported that hydrogen peroxide treatment or cell culturing under hyperoxic conditions may lead to premature cellular senescence56,57, and the relief of oxidative stress can retard this process58-60. ROS accelerate telomere shortening, damage DNA directly, and induce DNA damage response61-64. Conversely, the activation of major downstream effectors of the DNA damage response can induce ROS production65-67. The DNA damage response triggers mitochondrial dysfunction, leading to enhanced ROS production through p53, p21Cip1, GADD45A, p38, GRB2, and TGF\textbeta68. Takahashi et al.69 observed a cooperation between the p16Ink4a/Rb pathway and mitogenic signals to induce ROS, which thereby activates protein kinase C delta (PKC\delta) in human senescent cells. In addition, once activated, PKC\delta promotes the further generation of ROS, thus establishing a positive feedback loop to sustain ROS-PKC\delta signaling69. This sustained activation of ROS-PKC\delta signaling results in a blocking of cytokinesis via the reduction of WARTS (a mitotic exit network kinase also referred to as LATS1) in human senescent cells. Another study by Jun et al.70 reported that the matricellular protein CCN1, which is dramatically expressed at the site of wound repair, induces DNA damage response pathways, and activates p53 and ROS-generating RAC1-NOX1 complex. This results in the ROS-dependent activation of the p16Ink4a/Rb pathway, leading to fibroblast senescence.

3. Radiation-induced cellular senescence

Radiation-induced senescent cells have similar morphologies as replicative senescent cells. They have enlarged and flattened shapes, and are stained positive by senescence-associated beta-galactosidase (SA-\beta-gal), a marker of cellular senescence71. Radiation induces DSBs that activate ATM and p53 (Fig. 1), demonstrating that as with replicative senescence, radiation-induced senescence requires p53 activation72. The dependence of cell radio-sensitivities on induced DNA damage and the ability of cells to repair DNA damage has been well-established. Cell cycles are arrested to allow for DNA damage repair after exposure to radiation, and resume after DNA damage repair is complete. Where irreparable DNA damage occurs, cells undergo either apoptosis or senescence. The definitive factor for either apoptosis or senescence remains unknown, but research suggests the types of cells and damage to be important determinants5. For example, ionizing radiation induces senescence in fibroblasts as well as apoptosis in lymphocytes.

The generation of radicals during irradiation is thought to be one of the most damaging factors for nucleic DNA. The generation of radicals during irradiation is strongly related to the induction of cellular fate, including the induction of radiation-induced cellular senescence. However, treatment with ascorbic acid during irradiation (pre-treatment) was not effective for suppressing radiation-induced cellular senescence55. A number of studies also consistently found delays in the increase of ROS.

\textbf{Fig. 1.} A scheme of radiation-induced cellular senescence. Both p53-related G1 cell cycle arrest and secretion of SASP factors (NF-\kappaB, IL-6, IL-8) are required for the establishment of senescence.
with peaks on the third day post irradiation15,68,73-75).

Interestingly, delayed ROS may be involved in radiation-induced cellular senescence; treatment of ascorbic acid after irradiation (post-treatment) was found to decrease the number of SA-β-gal positive cells and phosphorylated p3815. Passos et al.68 also observed that p21Cip1 induces mitochondrial ROS through serial signaling through p53, p21Cip1, GADD45A, p38, GRB2, and TGFβ. The pathway is necessary and sufficient for the stability of growth arrest during the establishment of the senescent phenotype68). Another study found that mitochondria depletion abrogates the secretion of SASP factors (e.g. IL-6 and IL-8) and the development of cellular senescence in irradiated cells76). In addition, Acosta et al.13 established the necessity of chemokine receptor CXCR2 in the establishment of cellular senescence. We present a model of cellular senescence induction by radiation based on existing observations in Fig. 1, where DSBs have been observed to activate ATM through auto-phosphorylation. While the downstream of ATM is important for cell cycle arrest, this alone is insufficient for senescence. Positive feedback of p38 and the mitochondrial ROS pathway may induce SASP factors, such as NF-κB, IL-6, and IL-8. As presented, both G1 arrest and SASP factor signaling are required for radiation-induced cellular senescence.

4. Heat stress and cellular senescence

Heat stress has been applied as a form of cancer therapy. Heat stress over 42.5°C affects cancer cells more selectively than normal cells and is likely to lead cancer cells to death. In many studies, temperatures ranging from 38°C to 45°C is typically applied. Heat stress causes a myriad of DNA damage, including double-strand-breaks, single-strand-breaks, partial DNA re-replication, and centrosome over-duplication77-79). Additionally, cell cycle arrest such as G1/S arrest and G2/M arrest is induced to enable DNA repair80). Heat stress stimulates heat shock factor 1 (HSF1), which in turn promotes the expression of heat shock proteins (HSPs) by recognising simple binding sites in the HSPs promotor region, heat shock elements (HSEs). HSPs function as molecular chaperones by unfolding and correctly folding misfolded proteins under stress conditions81,82). Both HSF1 and HSPs play important roles in heat shock response (HSR), the protective response to various cellular stresses. It is evident that through these responses, heat stress leads cells to apoptosis, proliferation, quiescence, and cellular senescence (Fig. 2)83,84). Nonetheless, the mechanism driving cellular senescence by heat shock has yet to be identified.

Fig. 2. Both cellular senescence and HSR inhibit each other. Depending on the extent of stress, cells go into ① proliferation and quiescence, ② cellular senescence, or ③ apoptosis. The induction of cells to cellular senescence or growth depends on the balance between heat stress and HSR. However, HSR suppresses cellular senescence through inhibition of p38 in mild heat stress.
The sensitivity of heat stress depends on the cell cycle phase. Cycling cells are found to be more sensitive to heat stress than quiescent cells\(^8^5\). In addition, cellular response to heat stress in early S phase is different than in other phases\(^7^9\). Only cells in the early S phase are induced to prolonged G2/M arrest and cellular senescence in response to heat stress\(^8^6\), suggesting that heat-stress induced cellular senescence is initiated by DSBs accompanying DNA replication. Activation of p53 leads to the next G2/M arrest. The degradation and transcriptional suppression of mitotic regulators (Cdt1-switching) may result in mitosis skip\(^8^7\) and then irreversible G1/S arrest\(^8^8\). This mitosis skip is necessary and sufficient for senescence induction\(^8^7\).

Surprisingly, the activation of HSR is known to suppress cellular senescence\(^8^9,9^0\). The difference between the induction and the suppression of cellular senescence lies in the trigger; they are caused by different HSR conditions. HSF1 inhibits p38 activation and consequently, the SASP pathway. HSF1 is adversely suppressed by p38 activation in senescent cells, which show weakened HSR\(^9^1,9^2\), resulting in senescent cells that are susceptible to elimination from the tissue given heat stress. In addition, some SASP factors are reduced through inhibition of p38 after mild heat stress. Through the elimination of senescent cells, stress-less and stressful cells are distinguished in order to keep tissue homeostasis. Our hypothesis is that the balance between heat shock and HSR affects cellular fate including cellular senescence, apoptosis, proliferation, and quiescence (Fig. 2). Lethal heat shock is likely to induce apoptosis. Adequate HSR to heat stress may lead cells to proliferation rather than cellular senescence, while weak HSR may lead cells to cellular senescence rather than proliferation. In fact, repeated heat stress has an anti-aging effect through the elimination of senescent cells\(^9^3\).

5. Senescence-associated secretory phenotype (SASP)

As discussed above, SASP factors demonstrate a wide range of functions, such as cellular senescence, inflammation, aging, tumor suppression, tumor progression, embryogenesis, wound healing, and radio-resistance (Tables I and II)\(^1^3,2^2,2^3,2^9,3^0,5^0,9^4\). While SASP factors, such as NF-κB, IL-8 and IL-6, are known to be radiation-induced bystander factors\(^9^5-9^9\), recent studies demonstrate a contrary side to SASP factors in tumor suppression and progression in vivo\(^1^3,2^1,9^4\). Some in vivo examinations have shown that IL-1α, IL-6 and IL-8 induce cellular senescence and suppress tumor growth\(^1^3,2^1\), yet, these SASP factors have also been found to contribute to tumor promotion\(^2^1,9^4\) (Table I). It is now known that SASP induced senescence requires p53 activity, and SASP factors promote cell growth in p53-null cells in vivo\(^2^1,9^4\). In vivo changes to SASP factors, such as matrix metalloproteases, in its insoluble protein/extracellular matrix components, including decreases in a number of collagens and proteoglycans, can be observed\(^1^0^0\). Consequently, senescent cells affect neighboring cells through paracrine signaling, and alter the tissue microenvironments. Another in vitro study demonstrated that SASP factors induce an epithelial-mesenchymal transition, which marks an important step in cancer progression and metastasis\(^5^0\).

The cell contextual difference of responses for SASP factors where pre-malignant cells tend to promote proliferation, contrary to normal cells, remains unclear. Mechanisms for SASP induction are still being investigated. SASP is recently viewed as a dynamic process that can be divided into several phases\(^1^0^0\). The first phase of secretion occurs within a few hours after the induction of DNA damage. However, the onset of this phase is not sufficient to initiate cellular senescence, since it does not preclude complete DNA repair or apoptosis\(^5^1\). Early self-amplifying SASP is initiated in the next phase within a few days after DNA damage.
damage. Important SASP factors, such as IL-1α, are secreted during this phase101-103. Over the subsequent 4-10 days, the autocrine effect of SASP intensifies secretions of most SASP factors, ultimately leading to the formation of mature SASP. Paracrine cell senescence is promoted by SASP104, and the development of cellular senescence and the secretion of SASP factors form positive feedback loops50.

SASP is initiated by genotoxic stress such as telomere shortening, radiation, oncogene activation and oxidative stress50,105. Notably, the initiation of cellular senescence requires irreparable DNA lesions and sustained DNA damage response7,40,105,106. DNA damage response has been found to induce the degradation of H3K9 histone methyltransferases through APC/C-Cd41 ubiquitin ligase, and expression of SASP factors such as IL-6 and IL-8(2). The depletion of DNA damage response including ATM, Chk2, NBS1, and H2AX is sufficient to prevent the secretion of SASP factors20,105,107. While a defect of ATM suppresses SASP, the administration of ATM inhibitors does not105,108,109. DNA damage response is important for the induction of SASP, and development of mature SASP over a short duration. Taken together, ATM-dependent DNA damage response is clearly involved in the regulation of SASP, but the direct relationship between ATM-dependent DNA damage response and SASP, and its functional elements remain to be elucidated.

The innate immunity cytosolic DNA-sensing cGAS-STING (cyclic GMP-AMP synthase-stimulator of interferon genes) pathway has been reported as another SASP pathway in recent researches110-115. The accumulation of cytoplasmic chromatin like micro-nuclei, activates cGAS-STING cytoplasmic DNA sensors, provoking SASP through the activation of NF-κB110-112. Nassour \textit{et al.}113 reported the activation of autophagy by telomere erosion through the cGAS-STING pathway, and the bypassing of replicative senescence by autophagy inhibition.

The mitogen activated protein kinase p38 is another important pathway in response to genotoxic stress. Although p38 is well-known for its role in the regulation of several cytokines such as IL-1, IL-6, IL-8 and TNFα116-118, its direct role in the regulation of SASP was only recently identified108,119. Unlike ATM-dependent DNA damage response, p38 is not immediately activated following genotoxic stress; activation only occurs a few days after genotoxic stress10. P38 activates downstream targets, MSK1 and MSK2, which phosphorylate p65, a transactivation subunit of NF-κB, and initiates the expression of many SASP factors100,120-122.

6. Cancer therapy and cellular senescence

As outlined in Table I, cellular senescence contributes to chronic inflammation and cancer progression through secretion of SASP factors in vivo21,94. Moreover, the accumulation of senescent cells predisposes one to age-related diseases and shortens one’s lifespan30. We believe that the prevention of cellular senescence or elimination of senescent cells in normal tissue is an important issue to address in radiation and hyperthermia therapy. The inhibition of mitochondrial ROS is one of the effective tools in preventing cellular senescence after radiation exposure15,76. In addition, a recent study demonstrated the efficacy of senolytic drugs in the selective elimination of senescent cells23; a combined treatment of dasatinib and quercetin (D + Q) was found to reduce the number of senescent cells in aged tissue and improve health span24. Another study found ABT-263 and ABT-737, inhibitors of BCL-2 family, to reduce senescent stem cells in radiation-exposed and aged mice25. Baker and colleagues29,30 showed the selective elimination of p16INK4a-positive senescent cells by apoptosis using AP20187. AP20187 is a synthetic drug that induces dimerization of the membrane-bound
myristoylated FK506-binding-protein-caspase 8 (FKBP-Casp8) fusion protein, expressed downstream of p16\(^{INK4a}\) promoter. Further developments are needed given that currently, this method requires the genetic manipulation of FKBP-Casp8 insertion downstream of p16\(^{INK4a}\) promoter. Rapamycin is another senolytic drug that targets SASP through the inhibition of mTOR pathway\(^{76,102,126}\). Rapamycin treatment applied to different organisms has been observed to extend their lifespan\(^{123,127}\). We suggest further investigations into SASP and the identification of time at which senescent cells should be removed after radiotherapy and chemotherapy, since SASP factors are also involved in positive functions such as wound healing and repair\(^{31,32}\). By extension, replicative senescence, SIS, and OIS are important processes to be elucidated.

Acknowledgements

The authors thank Ms. Keren-Happuch E Fan Fen for her critical reading of the manuscript. The authors thank Dr. Yu Sanada (Kyoto University, Japan), and Dr. Genro Kashino (Nara Medical University, Japan) for supporting our work.

There is no conflict of interest.

Funding

This work was supported by grants from JSPS KAKENHI [JP17H07031 to E.M., JP16K19836 to S.K., JP19K08150 to S.K.], Takeda Science Foundation to E.M., Kanzawa Medical Research Foundation to E.M., Uehara Memorial Foundation to E.M., Nakatomi Foundation to E.M., Konica Minolta Science and Technology Foundation to E.M., Naito Foundation to E.M., MSD Life Science Foundation to E.M., Mochida Memorial Foundation for Medical and Pharmaceutical Research to E.M., SENSIN Medical Research Foundation to E.M., Terumo Foundation for Life Sciences and Arts to E.M., Nara Kidney Disease Research Foundation to E.M., Novartis Research Grants to E.M., and by unrestricted funds provided to E.M. from Dr. Taichi Noda (KTX Corp., Aichi, Japan) and Dr. Yasuhiro Horii (Koseikai, Nara, Japan).

Summary of Abbreviations

- ATM; ataxia telangiectasia-mutated protein kinase
- ATR; ATM and RAD3-related protein kinase
- CDKI; cyclin dependent kinase inhibitors
- cGAS-STING; cyclic GMP-AMP synthase-stimulator of interferon genes
- DNMT1; DNA (cytosine-5)-methyltransferase 1
- DSBs; DNA double-strand-breaks
- HSEs; heat shock elements
- HSF1; heat shock factor 1
- HSPs; heat shock proteins
- HSR; heat shock response
- MEFs; mouse embryonic fibroblasts
- OIS; oncogene-induced senescence
- PAI-1; plasminogen activator inhibitor-1
- PKCd; protein kinase C delta
ROS; reactive oxygen species
SASP; senescence-associated secretory phenotype
SA-β-gal; senescence-associated beta-galactosidase
SIS; stress-induced senescence

References
1) Hayflick L., Moorhead P.S.: The serial cultivation of human diploid cell strains. Exp Cell Res, 25: 585-621, 1961.
2) Blander G., de Oliveira R.M., Conboy C.M., Haigis M., Guarente L.: Superoxide dismutase 1 knock-down induces senescence in human fibroblasts. J Biol Chem, 278: 38966-38969, 2003.
3) Hagen T.M., Yowe D.L., Bartholomew J.C., Wehr C.M., Do K.L., Park J.Y., Ames B.N.: Mitochondrial decay in hepatocytes from old rats: membrane potential declines, heterogeneity and oxidants increase. Proc Natl Acad Sci USA, 94: 3064-3069, 1997.
4) Bodnar A.G., Ouellette M., Frolkis M., Holt S.E., Chiu C.-P., Morin G.B., Harley C.B., Shay J.W., Lichtsteiner S., Wright W.E.: Extension of life-span by introduction of telomerase into normal human cells. Science, 279: 349-352, 1998.
5) Kuilman T., Michaloglou C., Mooi W.J., Peepers D.S.: The essence of senescence. Genes Dev, 24: 2463-2479, 2010.
6) Vaziri H., Benchimol S.: Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span. Curr Biol, 8: 279-282, 1998.
7) Acosta J.C., O’Loghlen A., Banito A., Guijarro M.V., Augert A., Raguz S., Fumagalli M., Da Costa M., Brown C., Popov N., Takatsu Y., Melamed J., d’Adda di Fagagna F., Bernard D., Hernando E., Gil J.: Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell, 133: 1006-1018, 2008.
8) Ramsey M.R., Sharpless N.E.: ROS as a tumour suppressor? Nat Cell Biol, 8: 1213-1215, 2006.
9) Bartek J., Bartkova J., Lukas J.: DNA damage signalling guards against activated oncogenes and tumour progression. Oncogene, 26: 7773-7779, 2007.
20) Rodier F., Campisi J.: Four faces of cellular senescence. J Cell Biol, 192: 547-556, 2011.
21) Pribluda A., Elyada E., Wiener Z., Hamza H., Goldstein R.E., Biton M., Burstain I., Morgenstern Y., Brachya G., Billauer H., Biton S., Snir-Alkalay I., Vucic D., Schlereth K., Mernberger M., Stiewe T., Oren M., Alitalo K., Pikarsky E., Ben-Neriah Y.: A senescence-inflammatory switch from cancer-inhibitory to cancer-promoting mechanism. Cancer Cell, 24: 242-256, 2013.
22) Munoz-Espin D., Canamero M., Maraver A., Gomez-Lopez G., Contreras J., Murillo-Cuesta S., Rodriguez-Baeza A., Varela-Nieto I., Raberto J., Collado M., Serrano M.: Programmed cell senescence during mammalian embryonic development. Cell, 155: 1104-1118, 2013.
23) Storer M., Mas A., Robert-Moreno A., Pecoraro M., Ortells M.C., Di Giacomo V., Yosef R., Pilpel N., Krizhanovsky V., Sharpe J., Keyes W.M.: Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell, 155: 1119-1130, 2013.
24) Yamakoshi K., Takahashi A., Hirota F., Nakayama R., Kubo Y., Mann D.J., Ohmura M., Hirao A., Saya H., Arase S., Hayashi Y., Nakao K., Matsumoto M., Ohtani N., Hara E.: Real-time in vivo imaging of p16Ink4a reveals cross talk with p53. J Cell Biol, 186: 393-407, 2009.
25) Dimri G.P., Lee X., Basile G., Acosta M., Scott G., Roskelley C., Medrano E.E., Linskens M., Rubelj I., Pereira-Smith O., Peacocke M., Campisi J.: A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA, 92: 9363-9367, 1995.
26) Krishnamurthy J., Torrice C., Ramsey M.R., Kovalev G.I., Al-Regaiey K., Su L., Sharpless N.E.: Ink4a/Arf expression is a biomarker of aging. J Clin Invest, 114: 1299-1307, 2004.
27) Herbig U., Ferreira M., Condel L., Carey D., Sedivy J.M.: Cellular senescence in aging primates. Science, 311: 1257, 2006.
28) Wang C., Jurk D., Maddick M., Nelson G., Martin-Ruiz C., von Zglinicki T.: DNA damage response and cellular senescence in tissues of aging mice. Aging Cell, 8: 311-323, 2009.
29) Baker D.J., Wijshake T., Tchkonia T., LeBrasseur N.K., Childs B.G., van de Sluis B., Kirkland J.L., van Deursen J.M.: Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature, 479: 232-236, 2011.
30) Baker D.J., Childs B.G., Durik M., Wijers M.E., Sieben C.J., Zhong J., A. Saltness R., Jeganathan K.B., Verzosa G.C., Pezeshki A., Khazaie K., Miller J.D., van Deursen J.M.: Naturally occurring p16Ink4a-positive cells shorten healthy lifespan. Nature, 530: 184-189, 2016.
31) Krizhanovsky V., Yon M., Dickins R.A., Hearn S., Simon J., Miething C., Yee H., Zender L., Lowe S.W.: Senescence of activated stellate cells limits liver fibrosis. Cell, 134: 657-667, 2008.
32) Demaria M., Ohtani N., Youssef S.A., Rodier F., Toussaint W., Mitchell J.R., Laberge R.M., Vijg J., Van Steeg H., Dolle M.E., Hoeijmakers J.H., de Bruin A., Hara E., Campisi J.: An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell, 31: 722-733, 2014.
33) Kabacik S., Horvath S., Cohen H., Raj K.: Epigenetic ageing is distinct from senescence-mediated ageing and is not prevented by telomerase expression. Aging (Albany NY), 10: 2800-2815, 2018.
34) Munoz-Espin D., Serrano M.: Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol, 15: 482-496, 2014.
35) Sherr C.J., Roberts J.M.: CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev, 13: 1501-1512, 1999.
36) el-Deiry W.S., Tokino T., Velculescu V.E., Levy D.B., Parsons R., Trent J.M., Lin D., Mercer W.E., Kinzler K.W., Vogelstein B.: WAF1, a potential mediator of p53 tumor suppression. Cell, 75: 817-825, 1993.
37) Hara E., Smith R., Parry D., Tahara H., Stone S., Peters G.: Regulation of p16CDKN2 expression and its implications for cell immortalization and senescence. Mol Cell Biol, 16: 859-867, 1996.
38) Alcorta D.A., Xiong Y., Phelps D., Hannon G., Beach D., Barrett J.C.: Involvement of the cyclin-dependent kinase inhibitor p16(INK4a) in replicative senescence of normal human fibroblasts. Proc Natl Acad Sci USA, 93: 13742-13747, 1996.
39) Ohtani N., Zebedee Z., Huot T.J., Stinson J.A., Sugimoto M., Ohashi Y., Sharrocks A.D., Peters G., Hara E.: Opposing effects of Ets and Id proteins on p16INK4a expression during cellular senescence. Nature, 409: 1067-1070, 2001.
40) Herbig U., Jobling W.A., Chen B.P., Chen D.J., Sedivy J.M.: Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol Cell, 14: 501-513, 2004.
41) Beausejour C.M., Krutolica A., Galimi F., Narita M., Lowe S.W., Yaswen P., Campisi J.: Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J, 22: 4212-4222, 2003.
42) Mitra J., Dai C.Y., Somasundaram K., El-Deiry W.S., Satyamoorthy K., Herlyn M., Enders G.H.: Induction of p21(WAF1/CIP1) and inhibition of Cdk2 mediated by the tumor suppressor p16(INK4a). Mol Cell Biol, 19: 3916-3928, 1999.
43) Takeuchi S., Takahashi A., Motoi N., Yoshimoto S., Tajima T., Yamasaki K., Hirao A., Yanagi S., Fukami K., Ishikawa Y., Sone S., Hara E., Ohtani N.: Intrinsic cooperation between p16INK4a and p21Waf1/Cip1 in the onset of cellular senescence and tumor suppression in vivo. Cancer Res, 70: 9381-9390, 2010.
44) Sage J., Miller A.L., Perez-Mancera P.A., Wysocki J.M., Jacks T.: Acute mutation of retinoblastoma gene function is sufficient for cell cycle re-entry. Nature, 424: 223-228, 2003.
45) Dirac A.M., Bernards R.: Reversal of senescence in mouse fibroblasts through lentiviral suppression of p53. J Biol Chem, 278: 11731-11734, 2003.
46) Sherr C.J.: Divorcing ARF and p53: an unsettled case. Nat Rev Cancer, 6: 663-673, 2006.
47) Kuo M.L., den Besten W., Thomas M.C., Sherr C.J.: Arf-induced turnover of the nucleolar nucleophosmin-associated SUMO-2/3 protease Senp3. Cell Cycle, 7: 3378-3387, 2008.
48) Weber J.D., Jeffers J.R., Rehg J.E., Randle D.H., Lozano G., Roussel M.F., Sherr C.J., Zambetti G.P.: p53-independent functions of the p19(ARF) tumor suppressor. Genes Dev, 14: 2358-2365, 2000.
49) Tago K., Chiocca S., Sherr C.J.: Sumoylation induced by the Arf tumor suppressor: a p53-independent function. Proc Natl Acad Sci USA, 102: 7689-7694, 2005.
50) Coppe J.P., Patil C.K., Rodier F., Sun Y., Munoz D.P., Goldstein J., Nelson P.S., Desprez P.Y., Campisi J.: Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol, 6: 2853-2868, 2008.
51) Baker D.J., Sedivy J.M.: Probing the depths of cellular senescence. J Cell Biol, 202: 11-13, 2013.
52) Narita M., Narita M., Krizhanovsky V., Nunez S., Chicas A., Hearn S.A., Myers M.P., Lowe S.W.: A novel role for high-mobility group a proteins in cellular senescence and heterochromatin formation. Cell, 126: 503-514, 2006.
53) Kortlever R.M., Higgins P.J., Bernards R.: Plasminogen activator inhibitor-1 is a critical downstream target of p53 in the induction of replicative senescence. Nat Cell Biol, 8: 877-884, 2006.
54) Wajapeeyee N., Serra R.W., Zhu X., Mahalingam M., Green M.R.: Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7. Cell, 132: 363-374, 2008.
55) Kim K.S., Seu Y.B., Baek S.H., Kim M.J., Kim K.J., Kim J.H., Kim J.R.: Induction of cellular senescence by insulin-like growth factor binding protein-5 through a p53-dependent mechanism. Mol Biol Cell, 18: 4543-4552, 2007.
56) Chen Q.M., Bartholomew J.C., Campisi J., Acosta M., Reagan J.D., Ames B.N.: Molecular analysis of H2O2-induced senescent-like growth arrest in normal human fibroblasts: p53 and Rb control G1 arrest but not cell replication. Biochem J, 332: 43-50, 1998.
57) von Zglinicki T., Saretzki G., Docke W., Lotze C.: Mild hyperoxia shortens telomeres and inhibits proliferation of fibroblasts: a model for senescence? Exp Cell Res, 220: 186-193, 1995.
58) Kashino G., Kodama S., Nakayama Y., Suzuki K., Fukase K., Goto M., Watanabe M.: Relief of oxidative stress by ascorbic acid delays cellular senescence of normal human and Werner syndrome fibroblast cells. Free Radic Biol Med, 35: 438-443, 2003.
59) Linford N.J., Schriner S.E., Rabinovitch P.S.: Oxidative damage and aging: spotlight on mitochondria. Cancer Res, 66: 2497-2499, 2006.
60) Schriner S.E., Linford N.J., Martin G.M., Treuting P., Ogburn C.E., Emond M., Coskun P.E., Ladiges W., Wolf N., Van Remmen H., Wallace D.C., Rabinovitch P.S.: Extension of murine life span by overexpression of catalase targeted to mitochondria. Science, 308: 1909-1911, 2005.

61) Chen Q., Fischer A., Reagan J.D., Yan L.J., Ames B.N.: Oxidative DNA damage and senescence of human diploid fibroblast cells. Proc Natl Acad Sci USA, 92: 4337-4341, 1995.

62) Lu T., Finkel T.: Free radicals and senescence. Exp Cell Res, 314: 1918-1922, 2008.

63) Rai P., Young J.J., Burton D.G., Giribaldi M.G., Onder T.T., Weinberg R.A.: Enhanced elimination of oxidized guanine nucleotides inhibits oncogenic RAS-induced DNA damage and premature senescence. Oncogene, 30: 1489-1496, 2011.

64) Saretzki G., Murphy M.P., von Zglinicki T.: MitoQ counteracts telomere shortening and elongates lifespan of fibroblasts under mild oxidative stress. Aging Cell, 2: 141-143, 2003.

65) Polyak K., Xia Y., Zweier J.L., Kinzler K.W., Vogelstein B.: A model for p53-induced apoptosis. Nature, 389: 300-305, 1997.

66) Macip S., Igarashi M., Fang L., Chen A., Pan Z.Q., Lee S.W., Aaronson S.A.: Inhibition of p21-mediated ROS accumulation can rescue p21-induced senescence. EMBO J, 21: 2180-2188, 2002.

67) Macip S., Igarashi M., Berggren P., Yu J., Lee S.W., Aaronson S.A.: Influence of induced reactive oxygen species on p3-mediated cell fate decisions. Mol Cell Biol, 23: 8576-8585, 2003.

68) Passos J.F., Nelson G., Wang C., Richter T., Similillion C., Proctor C.J., Miwa S., Olijslagers S., Hallinan J., Wipat A., Saretzki G., Rudolph K.L., Kirkwood T.B., von Zglinicki T.: Feedback between p21 and reactive oxygen production is necessary for cell senescence. Mol Syst Biol, 6: 347, 2010.

69) Takahashi A., Ohtani N., Yamakoshi K., Iida S., Tahara H., Nakayama K., Nakayama K.I., Ide T., Saya H., Hara E.: Mitogenic signalling and the p16INK4a-Rb pathway cooperate to enforce irreversible cellular senescence. Nat Cell Biol, 8: 1291-1297, 2006.

70) Jun J.I., Lau L.F.: The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nat Cell Biol, 12: 676-685, 2010.

71) Suzuki M., Suzuki K., Kodama S., Watanabe M.: Interstitial chromatin alteration causes persistent p53 activation involved in the radiation-induced senescence-like growth arrest. Biochem Biophys Res Commun, 340: 145-150, 2006.

72) Takahashi A., Mori H., Somako G.I., Ohnishi K., Ohnishi T.: Heat induces gammaH2AX foci formation in mamalian cells. Cancer Res, 64: 8839-8845, 2004.
cells. Mutat Res, 656: 88-92, 2008.
79) Petrova N.V., Velichko A.K., Razin S.V., Kantidze O.L.: Early S-phase cell hypersensitivity to heat stress. Cell Cycle, 15: 337-344, 2016.
80) Furusawa Y., Yamanouchi Y., Iizumi T., Zhao Q.L., Mitsuhashi Y., Morita A., Enomoto A., Tabuchi Y., Kondo T.: Checkpoint kinase 2 is dispensable for regulation of the p53 response but is required for G2/M arrest and cell survival in cells with p53 defects under heat stress. Apoptosis, 22: 1225-1234, 2017.
81) Gomez-Pastor R., Burchflel E.T., Thiele D.J.: Regulation of heat shock transcription factors and their roles in physiology and disease. Nat Rev Mol Cell Biol, 19: 4-19, 2018.
82) Jacob P., Hirt H., Bendahmane A.: The heat-shock protein/chaperone network and multiple stress resistance. Plant Biotechnol J, 15: 405-414, 2017.
83) Gao C.Q., Zhao Y.L., Li H.C., Sui W.G., Yan H.C., Wang X.Q.: Heat stress inhibits proliferation, promotes growth, and induces apoptosis in cultured Lantang swine skeletal muscle satellite cells. J Zhejiang Univ Sci B, 16: 549-559, 2015.
84) Alekseenko L.L., Zemelko V.I., Dominma A.P., Lyublinskaya O.G., Zenin V.V., Pugovkina N.A., Kozhuhkrarova I.V., Borodkin A.V., Grinchuk T.M., Fridlyanskaya, II, Nikolsky N.N.: Sublethal heat shock induces premature senescence rather than apoptosis in human mesenchymal stem cells. Cell Stress Chaperones, 19: 355-366, 2014.
85) Alekseenko L.L., Shilina M.A., Lyublinskaya O.G., Kornienko J.S., Anatskaya O.V., Vinogradov A.E., Grinchuk T.M., Fridlyanskaya, II, Nikolsky N.N.: Quiescent human mesenchymal stem cells are more resistant to heat stress than cycling cells. Stem Cells Int, 2018: 3753547, 2018.
86) Velichko A.K., Petrova N.V., Razin S.V., Kantidze O.L.: Mechanism of heat stress-induced cellular senescence elucidates the exclusive vulnerability of early S-phase cells to mild genotoxic stress. Nucleic Acids Res, 43: 6309-6320, 2015.
87) Johmura Y., Shimada M., Misaki T., Naiki-Ito A., Miyoshi H., Motoyama N., Ohtani N., Hara E., Nakamura M., Morita A., Takahashi S., Nakanishi M.: Necessary and sufficient role for a mitosis skip in senescence induction. Mol Cell, 55: 73-84, 2014.
88) Suzuki M., Yamauchi M., Oka Y., Suzuki K., Yamashita S.: Live-cell imaging visualizes frequent mitotic skipping during senescence-like growth arrest in mammary carcinoma cells exposed to ionizing radiation. Int J Radiat Oncol Biol Phys, 83: e241-250, 2012.
89) Yaglom J.A., Gabai V.L., Sherman M.Y.: High levels of heat shock protein Hsp72 in cancer cells suppress default senescence pathways. Cancer Res, 67: 2373-2381, 2007.
90) Perez F.P., Zhou X., Morisaki J., Jurivich D.: Electromagnetic field therapy delays cellular senescence and death by enhancement of the heat shock response. Exp Gerontol, 43: 307-316, 2008.
91) Kim G., Meriin A.B., Gabai V.L., Christians E., Benjamin I., Wilson A., Wolozin B., Sherman M.Y.: The heat shock transcription factor Hsf1 is downregulated in DNA damage-associated senescence, contributing to the maintenance of senescence phenotype. Aging Cell, 11: 617-627, 2012.
92) Gutsman-Conrad A., Heydari A.R., You S., Richardson A.: The expression of heat shock protein 70 decreases with cellular senescence in vitro and in cells derived from young and old human subjects. Exp Cell Res, 241: 404-413, 1998.
93) Rattan S.I., Ali R.E.: Hormetic prevention of molecular damage during cellular aging of human skin fibroblasts and keratinocytes. Ann N Y Acad Sci, 1100: 424-430, 2007.
94) Yoshimoto S., Loo T.M., Atarashi K., Kanda H., Sato S., Oyadomari S., Iwakura Y., Oshima K., Morita H., Hattori M., Honda K., Ishikawa Y., Hara E., Ohtani N.: Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature, 499: 97-101, 2013.
95) Fu J., Yuan D., Xiao L., Tu W., Dong C., Liu W., Shao C.: The crosstalk between alpha-irradiated Beas-2B cells and its bystander U937 cells through MAPK and NF-kappaB signaling pathways. Mutat Res, 783: 1-8, 2016.
96) Pahan K., Liu X., McKinney M.J., Wood C., Sheikh F.G., Raymond J.R.: Expression of a dominant-negative mutant of p21(ras) inhibits induction of nitric oxide synthase and activation of nuclear factor-kappaB in primary astrocytes. J
97) Anrather J., Csizmadia V., Soares M.P., Winkler H.: Regulation of NF-kappaB RelA phosphorylation and transcriptional activity by p21(ras) and protein kinase Czeta in primary endothelial cells. J Biol Chem, 274: 13594-13603, 1999.

98) Tamari Y., Kashino G., Mori H.: Acquisition of radioresistance by IL-6 treatment is caused by suppression of oxidative stress derived from mitochondria after gamma-irradiation. J Radiat Res, 58: 412-420, 2017.

99) Kong E.Y., Cheng S.H., Yu K.N.: Induction of autophagy and interleukin 6 secretion in bystander cells: metabolic cooperation for radiation-induced rescue effect? J Radiat Res, 59: 129-140, 2018.

100) Malaquin N., Martinez A., Rodier F.: Keeping the senescence secretome under control: Molecular reins on the senescence-associated secretory phenotype. Exp Gerontol, 82: 39-49, 2016.

101) Acosta J.C., Banito A., Wuestefeld T., Georgilas A., Janich P., Morton J.P., Athineos D., Kang T.W., Lasitschka F., Andrulis M., Pascual G., Morris K.J., Khan S., Jin H., Dharmalingam G., Snijders A.P., Carroll T., Capper D., Pritchard C., Inman G.J., Longerich T., Sansom O.J., Benitha S.A., Zender L., Gil J.: A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol, 15: 978-990, 2013.

102) Laberge R.M., Sun Y., Orjalo A.V., Patil C.K., Freund A., Zhou L., Curran S.C., Davalos A.R., Wilson-Edell K.A., Liu S., Limbad C., Demaria M., Li P., Hubbard G.B., Ikeno Y., Javors M., Desprez P.Y., Benz C.C., Kapahi P., Nelson P.S., Campisi J.: MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat Cell Biol, 17: 1049-1061, 2015.

103) Orjalo A.V., Bhaumik D., Gengler B.K., Scott G.K., Campisi J.: Cell surface-bound IL-1alpha is an upstream regulator of the senescence-associated IL-6/IL-8 cytokine network. Proc Natl Acad Sci USA, 106: 17031-17036, 2009.

104) Hubackova S., Krejcikova K., Bartek J., Hodny Z.: IL-1- and TGFbeta-Nox4 signaling, oxidative stress and DNA damage response are shared features of replicative, oncogene-induced, and drug-induced paracrine 'bystander senescence'. Aging (Albany NY), 4: 932-951, 2012.

105) Rodier F., Coppe J.P., Patil C.K., Hoeijmakers W.A., Munoz D.P., Freund A., Campeau E., Davalos A.R., Campisi J.: Persistent DNA damage signalling triggers IL-1a-secretion associated with the senescence-associated inflammatory cytokine secretion. Nat Cell Biol, 11: 973-979, 2009.

106) Rossiello F., Herbig U., Longhese M.P., Fumagalli M., d’Adda di Fagagna F.: Irreparable telomeric DNA damage and persistent DDR signalling as a shared causative mechanism of cellular senescence and ageing. Curr Opin Genet Dev, 26: 89-95, 2014.

107) Pazolli E., Alsphac E., Milczarek A., Prior J., Piwnica-Worms D., Stewart S.A.: Chromatin remodeling underlies the senescence-associated secretory phenotype of tumor stromal fibroblasts that supports cancer progression. Cancer Res, 72: 2251-2261, 2012.

108) Freund A., Patil C.K., Campisi J.: p38MAPK is a novel DNA damage response-independent regulator of the senescence-associated secretory phenotype. EMBO J, 30: 1536-1548, 2011.

109) Gilbert L.A., Hemann M.T.: DNA damage-mediated induction of a chemoresistant niche. Cell, 143: 355-366, 2010.

110) Dou Z., Ghosh K., Vizioli M.G., Zhu J., Sen P., Wangensteen K.J., Simithy J., Lan Y., Lin Y., Zhou Z., Capell B.C., Xu C., Xu M., Kieckhaefer J.E., Jiang T., Shoshkes-Carmel M., Tanim K., Barber G.N., Seykora J.T., Millar S.E., Kaestner K.H., Garcia B.A., Adams P.D., Berger S.L.: Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature, 550: 402-406, 2017.

111) Gluck S., Guey B., Gulen M.F., Wolter K., Kang T.W., Schmacke N.A., Bridgeman A., Rehwinkel J., Zender L., Ablasser A.: Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat Cell Biol, 19: 1061-1070, 2017.

112) Takahashi A., Loo T.M., Okada R., Kamachi F., Watanabe Y., Wakita M., Watanabe S., Kawamoto S., Miyata K., Barber G.N., Ohtani N., Hara E.: Downregulation of cytoplasmic DNases is implicated in cytoplasmic DNA accumulation and SASP in senescent cells. Nat Commun, 9: 1249, 2018.
113) Nassour J., Radford R., Correia A., Fuste J.M., Schoell B., Jauch A., Shaw R.J., Karlseder J.: Autophagic cell death restricts chromosomal instability during replicative crisis. Nature, 565: 659-663, 2019.

114) Lan Y.Y., Heather J.M., Eisenhaure T., Garris C.S., Lieb D., Raychowdhury R., Hacohen N.: Extraneural DNA accumulates in aged cells and contributes to senescence and inflammation. Aging Cell, 18: e12901, 2019.

115) Vanpouille-Box C., Demaria S., Formenti S.C., Galluzzi L.: Cytosolic DNA sensing in organismal tumor control. Cancer Cell, 34: 361-378, 2018.

116) Beyaert R., Cuenda A., Vanden Berghe W., Plaisance S., Lee J.C., Haegeman G., Cohen P., Fiers W.: The p38/RK mitogen-activated protein kinase pathway regulates interleukin-6 synthesis response to tumor necrosis factor. EMBO J, 15: 1914-1923, 1996.

117) Cuenda A., Rouse J., Doza Y.N., Meier R., Cohen P., Gallagher T.F., Young P.R., Lee J.C.: SB 203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1. FEBS Lett, 364: 229-233, 1995.

118) Shapiro L., Dinarello C.A.: Osmotic regulation of cytokine synthesis in vitro. Proc Natl Acad Sci USA, 92: 12230-12234, 1995.

119) Alsphach E., Flanagan K.C., Luo X., Ruhland M.K., Huang H., Pazolli E., Donlin M.J., Marsh T., Piwnica-Worms D., Monahan J., Novack D.V., McAllister S.S., Stewart S.A.: p38MAPK plays a crucial role in stromal-mediated tumorigenesis. Cancer Discov, 4: 716-729, 2014.

120) Vermeulen L., De Wilde G., Van Damme P., Vanden Berghe W., Haegeman G.: Transcriptional activation of the NF-kappaB p65 subunit by mitogen- and stress-activated protein kinase-1 (MSK1). EMBO J, 22: 1313-1324, 2003.

121) Kefaloyianni E., Gaitanaki C., Beis I.: ERK 1/2 and p38-MAPK signalling pathways, through MSK1, are involved in NF-kappaB transactivation during oxidative stress in skeletal myoblasts. Cell Signal, 18: 2238-2251, 2006.

122) Borodkina A.V., Deryabin P.I., Giukova A.A., Nikolsky N.N.: "Social life" of senescent cells: What is SASP and why study it? Acta Naturae, 10: 4-14, 2018.

123) de Magalhaes J.P., Passos J.F.: Stress, cell senescence and organismal ageing. Mech Ageing Dev, 170: 2-9, 2018.

124) Zhu Y., Tchkonia T., Pirtskhalava T., Gower A.C., Ding H., Giorgadze N., Palmer A.K., Ikono Y., Hubbard G.B., Lenburg M., O'Hara S.P., LaRusso N.F., Miller J.D., Roos C.M., Verzosa G.C., LeBrasseur N.K., Wren J.D., Farr J.N., Khosla S., Stout M.B., McGowan S.J., Fuhrmann-Stroissnigg H., Gurkar A.U., Zhao J., Colangelo D., Dorronsoro A., Ling Y.Y., Barghouthy A.S., Navarro D.C., Sano T., Robbins P.D., Niedermhofer L.J., Kirkland J.L.: The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell, 14: 644-658, 2015.

125) Chang J., Wang Y., Shao L., Laberge R.-M., Demaria M., Campisi J., Janakiraman K., Sharpless N.E., Ding S., Feng W., Luo Y., Wang X., Aykin-Burns N., Krager K., Ponnappan U., Hauer-Jensen M., Meng A., Zhou D.: Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med, 22: 78-83, 2016.

126) Herranz N., Gallage S., Mellone M., Wuestefeld T., Klots S., Hanley C.J., Raguz S., Acosta J.C., Innes A.J., Banito A., Georgalis A., Montoya A., Wolter K., Dharmlandam G., Faull P., Carroll T., Martinez-Barbera J.P., Cutilias P., Reisinger F., Heikenwalder M., Miller R.A., Withers D., Zender L., Thomas G.J., Gil J.: mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype. Nat Cell Biol, 17: 1205-1217, 2015.

127) Harrison D.E., Strong R., Sharp Z.D., Nelson J.F., Astle C.M., Flurkey K., Nadon N.L., Wilkinson J.E., Frenkel K., Carter C.S., Pahor M., Javors M.A., Fernandez E., Miller R.A.: Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature, 460: 392-395, 2009.
ストレス誘発細胞老化は
炎症・がん細胞増殖促進に関与する

小橋川新子1,2, 坂口義彦1, 増永慎一郎2, 森英一朗1

1奈良県立医科大学, 医学部, 未来基礎医学
2京都大学複合原子力科学研究所, 放射線生命科学研究部門, 粒子線生物学研究分野

要　旨: 細胞老化は細胞増殖を停止させることで, がん抑制機構として長らく考えられてきた. しかしながら近年では, 細胞老化はがん抑制の他に, 発生, 組織の老化, 損傷修復など, 様々な機能があることがわかってきている. 驚くべきことに, p53 変異, 欠失などのある一定の条件下では, 細胞老化は分泌因子を介してがん促進に寄与することもわかってきている. 老化細胞は炎症性サイトカイン, ケモカイン, 増殖因子, マトリックスリモデリング因子などの分泌 (senescence-associated secretory phenotype; SASP) を亢進させ, 周辺環境を変化させる. そのような SASP 因子は, 細胞老化が多面的機能を持つ要因となっている. 本総説では, 慢性炎症, がん促進に着目した, 細胞老化に関する分子, 細胞レベルで得られている知見を紹介する.

Thermal Med, 35[4]: 41-58, 2019.