Study of production of (anti)deuteron observed in Au+Au collisions at $\sqrt{s_{NN}}=14.5, 62.4$ and 200 GeV

Ying Yuan, 1*

1) Mathematics and Physics Teaching and Research Section,
College of Pharmacy,
Guangxi University of Chinese Medicine,
Nanning 530200, China

Abstract

Transverse momentum distributions of deuterons and anti-deuterons in Au+Au collisions at $\sqrt{s_{NN}}=14.5, 62.4$ and 200 GeV with different centrality are studied in the framework of the multi-source thermal model. Transverse momentum spectra are conformably and approximately described by the Tsallis distribution. The dependence of parameters (average transverse momenta, effective temperature and entropy index) on event centrality are obtained. It is found that the parameters increase with increase of the average number of particles involved in collisions, which reveals the nuclear stopping degree increases with collision centrality.

PACS numbers: 12.40.Ee, 13.85.-t, 24.10.Pa, 25.75.-q

Keywords: transverse momentum distributions; (anti-)deuterons; effective temperature; Au+Au collisions; $\sqrt{s_{NN}}=14.5, 62.4$ and 200 GeV.

* E-mail address: yuany@gxtcmu.edu.cn
I. INTRODUCTION

The study of strongly interacting matter at extreme temperatures and densities is provided a chance by heavy-ion collisions at ultra-relativistic energies \(^{1-5}\). The production mechanism of nuclei in ultra-relativistic heavy ion collisions deserves more investigation since it may give important message on the quantum chromodynamics (QCD) phase transition from quark-gluon plasma (QGP) to hadron gas (HG) \(^{6,7}\). The RHIC is scheduled to run at the energies which are around the critical energy of phase transition from hadronic matter to QGP \(^{8}\). The theoretical study of nuclei and anti-nuclei has been undertaken for many years, for example the thermal model and coalescence model \(^{9-13}\). In particular, the study of transport phenomena is major important to the understanding of many fundamental properties \(^{14}\). The spectra of transverse momentum of particles produced in high energy collisions are of high interest as soon as they provide us with an important information of the kinetic freeze-out state of the interacting system \(^{15}\). At the stage of kinetic freeze-out, the effective temperature is not a real temperature, and it describes the sum of excitation degree of the interacting system and the effect of transverse flow \(^{16}\).

In this paper, using the Tsallis distribution \(^{17-19}\) in the multisource thermal model to simulate the transverse momentum distributions of (anti-)deuterons in Au+Au collisions at RHIC, we compare them with experiment data taken from the STAR Collaboration \(^{20}\). The main purpose of this work is to extract the information on effective temperature, because it allows us to extract the kinetic freeze-out temperature.

II. THE MODEL AND METHOD

The model used in the present work is the multisource thermal model \(^{21-23}\). In this model, many emission sources are formed in high-energy nucleus-nucleus collisions. The different distributions can describe the emission sources and particle spectra, such as the Tsallis distribution, the standard (Boltzmann, Fermi-Dirac and Bose-Einstein) distributions, the Tsallis+standard distributions \(^{24-29}\), the Erlang distribution \(^{21}\), etc. The Tsallis distribution can be described by two or three standard distribution.

The experimental data of the transverse momentum spectrum of the particles are fitted by using the Tsallis distribution which can describe the temperature fluctuation in a few
sources to give an average value. The Tsallis distribution has many function forms [17–19, 24–31].

In the rest frame of a considered source, we choose a simplified form of the joint probability density function of transverse momentum (p_T) and rapidity (y) [8],

$$f(p_T, y) \propto \frac{d^2N}{dydp_T} = \frac{gV}{(2\pi)^2} p_T \sqrt{p_T^2 + m_0^2} \cosh y \times [1 + \frac{q-1}{T}(\sqrt{p_T^2 + m_0^2} \cosh y - \mu)]^{-\frac{q}{q-1}}. \quad (1)$$

Here, N is the particle number, g is the degeneracy factor, V is the volume of emission sources, m_0 is the rest mass of the studied particle, T is the temperature which describes averagely a few sources (local equilibrium states), q is the entropy index which describes the degree of non-equilibrium among different states, μ is the chemical potential which is related to $\sqrt{s_{NN}}$ [32]. In the RHIC energy region, μ is approximately zero. We can extract the values of T, q and V from reproducing the particle spectra, where T, q are fitted independently for the studied particle, and V is related to other parameters.

The Monte Carlo distribution generating method is used to obtain p_T. Let r_1 denote the random numbers distributed uniformly in $[0, 1]$. A series of values of p_T can be obtained by

$$\int_0^{p_T} f_{p_T}(p_T)dp_T < r_1 < \int_0^{p_T+dp_T} f_{p_T}(p_T)dp_T. \quad (2)$$

Here, f_{p_T} is the transverse momentum probability density function which is an alternative representation of the Tsallis distribution as follows:

$$f_{p_T}(p_T) = \frac{1}{N} \frac{dN}{dp_T} = \int_{y_{min}}^{y_{max}} f(p_T, y) dy. \quad (3)$$

where y_{max} and y_{min} are the maximum and minimum rapidity, respectively.

Under the assumption of isotropic emission in the source rest frame, we use the Monte Carlo method to acquire the polar angle:

$$\theta = 2\arcsin \sqrt{r_2}. \quad (4)$$

Thus, we can obtain a series of values of momentum and energy due to the momentum $p = \frac{p_T}{\sin \theta}$ and the energy $E = \sqrt{p^2 + m_0^2}$. Therefore, the corresponding values of rapidity can be obtained according to the definition of rapidity.

III. RESULTS AND DISCUSSION

A. Transverse momentum spectra

Fig. 1 demonstrates mid-rapidity ($|y|<0.3$) transverse momentum spectra for deuterons
FIG. 1: Deuterons transverse momentum spectra in Au+Au collisions at \(\sqrt{s_{NN}} = 14.5 \) GeV for 0–10%, 10–20%, 20–40%, 40–60% and 60–80% centralities. Calculations are shown by the solid lines. Experimental data taken from the STAR Collaboration \(^\text{[20]}\) are represented by the symbols.

In Au+Au collisions at \(\sqrt{s_{NN}} = 14.5 \) GeV for 0–10%, 10–20%, 20–40%, 40–60% and 60–80% centralities. The symbols represent the experimental data of STAR Collaboration \(^\text{[20]}\). The solid lines are our calculated results fitted by using the Tsallis distribution based on eq. (1) at mid-rapidity. The values of the related parameters \(T, q \) are given in Table 1 along with the \(\chi^2/dof \) (\(\chi^2 \) and number of degree of freedom). It is found that the calculations of the Tsallis distribution are in keeping with the experimental data well.

In Fig. 2, Fig. 3, the curves and symbols are similar to Fig. 1. Fig. 2 demonstrates mid-rapidity (\(|y| < 0.3 \)) transverse momentum spectra for deuterons in Au+Au collisions at \(\sqrt{s_{NN}} = 200 \) GeV for 0–10%, 10–20%, 20–40%, 40–60% and 60–80% centralities. The values of the related parameters \(T, q \) are given in Table 2 and 3 along with the \(\chi^2/dof \) (\(\chi^2 \) and number of degree of freedom). It is found that the calculations of the Tsallis distribution are in keeping with the experimental data well.

In Fig. 4, Fig. 5, Fig. 6 (anti-deuterons), the curves and symbols are similar to Fig. 1. One
FIG. 2: Deuterons transverse momentum spectra in Au+Au collisions at $\sqrt{s_{NN}}=62.4$ GeV for 0 – 10%, 10 – 20%, 20 – 40%, 40 – 60% and 60 – 80% centralities. Calculations are shown by the solid lines. Experimental data taken from the STAR Collaboration are represented by the symbols.

one can see that the calculations also can describe approximately the experimental data of anti-deuterons with different centrality intervals of event. The values of the related parameters T, q are given in Table 1, 2 and 3.

B. Average transverse momenta

Fig. 7 presents the centrality dependence of deuterons and anti-deuterons average transverse momenta ($\langle p_T \rangle$) at mid-rapidity ($|y|<0.3$) for $\sqrt{s_{NN}}=14.5, 62.4$ and 200 GeV. The hollow symbols are the experiment data taken from the Fig. 1-6, and the solid symbols are the calculations of the Tsallis distribution. One sees in this figure that the calculations can describe the experimental data well in the range of the errors permitted. For deuterons, the values of average transverse momenta in the different incident energy get closer with decrease of centrality percentage. It has indicated that the nuclear stopping degree increases
FIG. 3: Deuterons transverse momentum spectra in Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV for $0 - 10\%$, $10 - 20\%$, $20 - 40\%$, $40 - 60\%$ and $60 - 80\%$ centralities. Calculations are shown by the solid lines. Experimental data taken from the STAR Collaboration are represented by the symbols.

TABLE I: Values of T, q, and χ^2/dof corresponding to the curves in figs. 1 and 4.

Figure	Type 1	Type 2	T (GeV)	q	χ^2/dof
Fig. 1	d	0-10%	0.507 ± 0.028	1.205 ± 0.159	0.099
		10-20%	0.487 ± 0.022	1.185 ± 0.158	0.055
		20-40%	0.447 ± 0.044	1.165 ± 0.109	0.055
		40-60%	0.387 ± 0.041	1.105 ± 0.076	0.110
		60-80%	0.347 ± 0.011	1.005 ± 0.009	1.136
Fig. 4	\bar{d}	0-10%	0.507 ± 0.001	1.205 ± 0.001	0.388
		10-20%	0.487 ± 0.001	1.165 ± 0.001	0.268
		20-40%	0.447 ± 0.001	1.145 ± 0.001	0.376
		40-60%	0.387 ± 0.001	1.055 ± 0.001	0.619
		60-80%	0.347 ± 0.001	1.025 ± 0.001	1.006
FIG. 4: Anti-deuterons transverse momentum spectra in Au+Au collisions at $\sqrt{s_{NN}}=14.5$ GeV for $0-10\%$, $10-20\%$, $20-40\%$, $40-60\%$ and $60-80\%$ centralities. Calculations are shown by the solid lines. Experimental data taken from the STAR Collaboration are represented by the symbols.

TABLE II: Values of T, q, and χ^2/dof corresponding to the curves in figs. 2 and 5.

Figure	Type 1	Type 2	T (GeV)	q	χ^2/dof
Fig. 2	d	0-10%	0.607 ± 0.001	1.215 ± 0.057	0.052
		10-20%	0.567 ± 0.001	1.195 ± 0.042	0.073
		20-40%	0.527 ± 0.003	1.175 ± 0.023	0.083
		40-60%	0.507 ± 0.004	1.135 ± 0.011	0.138
		60-80%	0.487 ± 0.004	1.045 ± 0.004	0.260
Fig. 5	\bar{d}	0-10%	0.607 ± 0.003	1.215 ± 0.002	1.430
		10-20%	0.567 ± 0.001	1.195 ± 0.005	1.402
		20-40%	0.527 ± 0.001	1.175 ± 0.004	1.791
		40-60%	0.507 ± 0.001	1.135 ± 0.002	1.649
		60-80%	0.487 ± 0.001	1.035 ± 0.001	2.917
FIG. 5: Anti-deuterons transverse momentum spectra in Au+Au collisions at $\sqrt{s_{NN}}=62.4$ GeV for 0 – 10%, 10 – 20%, 20 – 40%, 40 – 60% and 60 – 80% centralities. Calculations are shown by the solid lines. Experimental data taken from the STAR Collaboration are represented by the symbols.

TABLE III: Values of T, q, and χ^2/dof corresponding to the curves in figs. 3 and 6.

Figure	Type	Type 2	T (GeV)	q	χ^2/dof
Fig. 3	d	0-10%	0.667 ± 0.005	1.235 ± 0.020	0.080
		10-20%	0.647 ± 0.003	1.215 ± 0.016	0.040
		20-40%	0.627 ± 0.004	1.195 ± 0.034	0.005
		40-60%	0.607 ± 0.001	1.175 ± 0.005	0.057
		60-80%	0.547 ± 0.002	1.045 ± 0.003	0.658
Fig. 6	\(\bar{d}\)	0-10%	0.667 ± 0.001	1.232 ± 0.005	0.066
		10-20%	0.647 ± 0.001	1.205 ± 0.005	0.030
		20-40%	0.627 ± 0.001	1.195 ± 0.004	0.040
		40-60%	0.607 ± 0.001	1.175 ± 0.002	0.052
		60-80%	0.547 ± 0.001	1.045 ± 0.001	0.148
FIG. 6: Anti-deuterons transverse momentum spectra in Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV for 0 – 10%, 10 – 20%, 20 – 40%, 40 – 60% and 60 – 80% centralities. Calculations are shown by the solid lines. Experimental data taken from the STAR Collaboration [20] are represented by the symbols.

with collision centrality.

C. Dependence of parameters on number of participating nucleons

Fig. 8 and Fig. 9 give the change trends of parameters (T and q) with the average number of participants for deuterons and anti-deuterons produced in Au+Au collision at mid-rapidity ($|y|<0.3$) for $\sqrt{s_{NN}}=14.5$, 62.4 and 200 GeV. The symbols represent the parameter values extracted from Fig. 1-3 and Fig. 4-6 and listed in Table 1-3.

From Fig. 8 and Fig. 9, we can see that the values of parameters increase with decrease of centrality percentage. It can be explained by the more nuclei involved in the collision, the more intense the collision, the higher the temperature of the collision center, and the higher the corresponding effective temperature. The dependence of effective temperature on collision energy increases with the increase of collision energy. Under the same collision parameters, the entropy increases with the increase of collision energy, indicating that the
FIG. 7: Deuterons and anti-deuterons average transverse momenta ($\langle p_T \rangle$) as a function of $\langle N_{\text{part}} \rangle$ at mid-rapidity ($|y|<0.3$) for $\sqrt{s_{NN}}=14.5$, 62.4 and 200 GeV. Calculations are shown by the solid symbols. Experimental data taken from the Fig. [1-6] are represented by the hollow symbols.

higher the collision energy is, the more different microscopic states the particle may have, and the less time it takes to form the final state particle. The kinetic freeze-out temperature can be extracted from the effective temperature, the correlation between Kinetic freeze-out temperature and centrality will be focused in the future work.

IV. SUMMARY AND OUTLOOK

In summary, we have presented the transverse momentum distributions of (anti-)deuterons in Au+Au collisions at RHIC for 0 – 10%, 10 – 20%, 20 – 40%, 40 – 60% and 60 – 80% centralities. The Tsallis distribution in the multisource thermal model has been used in all calculations. Based on this model, we have investigated transverse momentum distributions of (anti-)deuterons, and the law between effective temperature and entropy with the centrality of collision. In conclusion, it can give the agreement between calculation results and the experimental data. The effective temperature and the entropy
FIG. 8: Dependence of T on the average number of participants for deuterons and anti-deuterons in events with different centrality intervals. The symbols represent the parameter values listed in Table 1, 2 and 3.

index extracted from d and \bar{d} increase with decrease of centrality percentage at the same incident energy. And at the same collision centrality, they increase with increase of incident energy. But the Kinetic freeze-out temperature and the evolution of time during the collision have yet to be studied in depth.

Data Availability

The data used to support the findings of this study are included within the article and are cited at relevant places within the text as references.

Conflict of Interests

The author declare that there is no conflict of interests regarding the publication of this paper.
FIG. 9: Dependence of q on the average number of participants for deuterons and anti-deuterons in events with different centrality intervals. The symbols represent the parameter values listed in Table 1, 2 and 3.

Acknowledgements

This work was supported by the Introduction of Doctoral Starting Funds of Scientific Research of Guangxi University of Chinese Medicine under Grant No.2018BS024, the Natural Science Foundation of Guangxi Zhuangzu Autonomous Regions of China under Grant no. 2012GXNSFBA053011, and Research support project of Guangxi institutions of higher learning No.200103YB071.
[1] C. Alt et al. [NA49 Collaboration], “Energy dependence of Λ and Ξ production in central Pb+Pb collisions at 20A, 30A, 40A, 80A, and 158A GeV measured at the CERN Super Proton Synchrotron,” Physical Review C, vol. 78, no. 3, Article ID 034918, 2008.

[2] J. X. Sun, F. H. Liu and E. Q. Wang, “Pseudorapidity Distributions of Charged Particles and Contributions of Leading Nucleons in Cu-Cu Collisions at High Energies,” Chinese Physics Letters, vol. 27, no. 3, Article ID 032503, 2010.

[3] E. Q. Wang, F. H. Liu, M. A. Rahim, S. Fakhraddin, J. X. Sun, “Singly and Doubly Charged Projectile Fragments in Nucleus-Emulsion Collisions at Dubna Energy in the Framework of the Multi-Source Model,” Chinese Physics Letters, vol. 28, no. 8, Article ID 082501, 2011.

[4] B. C. Li, and M. Huang, “Strongly coupled matter near phase transition,” Journal of Physics G-Nuclear and Particle Physics, vol. 36, no. 6, Article ID 064062, 2009.

[5] F. H. Liu, “Anisotropic emission of charged mesons and structure characteristic of emission source in heavy ion collisions at 1–2A GeV,” Chinese Physics B, vol. 17, no. 8, pp. 883-895, 2008.

[6] R. Arsenescu et al. [NA52 Collaboration], “An investigation of the antinuclei and nuclei production mechanism in Pb + Pb collisions at 158 A GeV,” New Journal of Physics, vol. 5, Article ID 150, 2003.

[7] Q. F. Li, Y. J. Wang, X. B. Wang and C. W. Shen, “Helium-3 production from Pb+Pb collisions at SPS energies with the UrQMD model and the traditional coalescence afterburner,” Science China: Physics, Mechanics and Astronomy, vol. 59, no. 3, Article ID 632002, 2016.

[8] H. L. Lao, H. R. Wei, F. H. Liu and Roy A. Lacey, “An evidence of mass-dependent differential kinetic freeze-out scenario observed in Pb-Pb collisions at 2.76 TeV,” The European Physical Journal A, vol. 52, Article ID 203, 2016.

[9] Stanislaw Mrowczynski, Patrycja Slon, “Hadron-Deuteron Correlations and Production of Light Nuclei in Relativistic Heavy-Ion Collisions,” http://arxiv.org/abs/nucl-th/1904.08320v2.

[10] St. Mrowczynski, “Production of Light Nuclei in the Thermal and Coalescence Models,” Acta Physica Polonica B, vol. 48, no.4, pp. 707-716, 2017.

[11] St. Mrowczynski, "^4He versus ^4Li and production of light nuclei in relativistic heavy-ion col-
P. Liu, J. H. Chen, Y. G. Ma and S. Zhang, “Production of light nuclei and hypernuclei at High Intensity Accelerator Facility energy region,” *Nuclear Science and Techniques*, vol. 28, no. 4, Article ID 55, 2017.

F. X. Liu, G. Chen, Z. L. Zhe, D. M. Zhou and Y. L. Xie, “Light (anti)nuclei production in Cu+Cu collisions at $\sqrt{s_{NN}}=200$ GeV,” *The European Physical Journal A*, vol. 55, Article ID 160, 2019.

B. C. Li, Y. Y. Fu, L. L. Wang, F. H. Liu, “Dependence of elliptic flows on transverse momentum and number of participants in Au+Au collisions at $\sqrt{s_{NN}}=200$ GeV,” *Journal of Physics G-Nuclear and Particle Physics*, vol. 40, no. 2, Article ID 025104, 2013.

Y. H. Chen, F. H. Liu and Edward K. Sarkisyan-Grinbaum, “Event patterns from negative pion spectra in proton-proton and nucleus-nucleus collisions at SPS,” *Chinese Physics C*, vol. 42, no. 10, Article ID 104102, 2018.

M. Waqas, F. H. Liu, L. L. Li and Haidar Masud Alfanda, “Analysis of effective temperature and kinetic freeze-out volume in high energy nucleus-nucleus and proton-proton collisions,” http://arxiv.org/abs/hep-ph/2001.06796v1

C. Tsallis, “Possible generalization of Boltzmann-Gibbs statistics,” *Journal of Statistical Physics*, vol. 52, no. 1-2, pp. 479-487, 1988.

T. S. Biró, G. Purcsel and K. Ürmössy, “Non-extensive approach to quark matter,” *The European Physical Journal A*, vol. 40, no. 3, Article ID 325, 2009.

J. Cleymans, D. Worku, “Relativistic thermodynamics: Transverse momentum distributions in high-energy physics,” *The European Physical Journal A*, vol. 48, no. 11, Article ID 160, 2012.

J. Adam et al. [STAR Collaboration], “Beam energy dependengce of (anti-)deuteron production in Au+Au collisions at RHIC,” *Physical Review C*, vol. 99, no. 6, Article ID 064905, 2019.

F. H. Liu, Y. Q. Gao and H. R. Wei, “On Descriptions of Particle Transverse Momentum Spectra in High Energy Collisions,” *Advances in High Energy Physics*, vol. 2014, Article ID 293387, 2014.

F. H. Liu, Y. Q. Gao, T. Tian, and B. C. Li, “Unified description of transverse momentum spectrums contributed by soft and hard processes in high-energy nuclear collisions,” *European...*
Physical Journal A, vol. 50, no. 6, Article ID 94, 2014.

[23] F. H. Liu, J. S. Li, “Isotopic production cross section of fragments in 56Fe+p and 136Xe(124Xe)+Pb reactions over an energy range from 300 A to 1500 A MeV,” Physical Review C, vol. 78, no. 4, Article ID 044602, 2008.

[24] F. Büyükkilic, D. Demirhan, “A fractal approach to entropy and distribution functions,” Physics Letters A, vol. 181, no. 1, pp. 24-28, 1993.

[25] J. C. Chen, Z. P. Zhang, G. Z. Su, L. X. Chen and Y. G. Shu, “q-generalized BoseEinstein condensation based on Tsallis entropy,” Physics Letters A, vol. 300, no. 1, pp. 65-70, 2002.

[26] J. M. Conroy, H. G. Miller, “Color superconductivity and Tsallis statistics,” Physical Review D, vol. 78, no. 5, Article ID 054010, 2008.

[27] F. Pennini, A. Plastino, and A. R. Plastino, “Tsallis entropy and quantal distribution functions,” Physics Letters A, vol. 208, no. 4-6, pp. 309-314, 1995.

[28] A. M. Teweldeberhan, A. R. Plastino, and H. G. Miller, “On the cut-off prescriptions associated with power-law generalized thermostatistics,” Physics Letters A, vol. 343, no. 1-3, pp. 71-78, 2005.

[29] J. M. Conroy, H. G. Miller, and A. R. Plastino, “Thermodynamic consistency of the q-deformed FermiCDirac distribution in nonextensive thermostatistics,” Physics Letters A, vol. 374, no. 45, pp. 4581-4584, 2010.

[30] H. Zheng, L. L. Zhu, “Comparing the Tsallis Distribution with and without Thermodynamical Description in Collisions,” Advances in High Energy Physics, vol. 2016, Article ID 9632126, 2016.

[31] H. Zheng, L. L. Zhu, “Can Tsallis Distribution Fit All the Particle Spectra Produced at RHIC and LHC?,” Advances in High Energy Physics, vol. 2015, Article ID 180491, 2015.

[32] A. Andronic, P. B. Munzinger, and J. Stachel, “The horn, the hadron mass spectrum and the QCD phase diagram C the statistical model of hadron production in central nucleus-nucleus collisions,” Nuclear Physics A, vol. 834, no. 1-4, pp. 237c-240c, 2010.