Materials Research Express

PAPER

On certain distance and degree based topological indices of Zeolite LTA frameworks

S Prabhu, G Murugan, Michael Cary, M Arulperumjothi and Jia-Bao Liu

1 Department of Mathematics, Sri Venkateswara College of Engineering, Sriperumbudur 602117, India
2 Department of Mathematics, Chennai Institute of Technology, Chennai 600069, India
3 Division of Resource Economics and Management, West Virginia University, Morgantown 26506, United States of America
4 Department of Mathematics, Loyola College, University of Madras, Chennai 600034, India
5 School of Mathematics and Physics, Anhui Jianzhu University, Hefei 230601, People’s Republic of China

E-mail: drsavariprabhu@gmail.com

Keywords: Molecular graph, Zeolite LTA Frameworks, Distance based topological indices, Valency based molecular descriptors

Abstract

Zeolites are aluminosilicates with extensive application both commercially and in materials science. Current applications include dehydrating natural gas and in humidity sensors. Synthesis of new frameworks is an important area of research in chemistry and materials science. The Zeolite LTA framework in particular is getting much attention in this area due to its potential for application. Topological indices are graph invariants which provide information on the structure of graphs and have proven very useful in quantitative structure activity relationships (QSAR) and quantitative structure property relationships (QSPR) at predicting important chemico-physical aspects of chemical compounds. In this paper we compute nine of the most significant distance based topological indices of the Zeolite LTA framework and thirteen valency based molecular descriptors.

1. Introduction

Zeolites are naturally occurring aluminosilicates commonly used as catalysts [1]. Due to their widespread application and diversity of possible frameworks, the synthesis of new zeolite frameworks is an important area of research in materials science. While computer simulations have shown there to be millions of possible zeolite frameworks, only just over forty have been found naturally [2]. In addition to these naturally occurring zeolite frameworks, approximately 250 more have been synthetically created [3]. Given the chemical and commercial importance of zeolites, further development of new zeolite frameworks is an important area of research in chemistry and materials science [4].

To aid in this developmental process, foreknowledge of the structure of possible candidate frameworks is critical. To aid in this endeavor, computation of the topological indices of the molecular graphs of candidate frameworks has proven to be a useful tool. In fact, topological indices of molecular graph families have a long history of contributing to the developmental process; for example, consider [5–10]. While other important computational studies have been carried out on various zeolite frameworks [2, 11], computation of the most important topological indices has not yet occurred. This is precisely the contribution of this paper. We compute nine of the most important topological indices specifically for the Zeolite LTA framework.

Topological indices are graph invariants in the form of real numbers which reflect the structure of the graph. In the case of molecular graphs, topological indices correlate to important structural characteristics and consequences such as the boiling point via quantitative structure activity relationships (QSAR) and quantitative structure property relationships (QSPR) [12]. These regression methods allow for researchers to estimate important properties of potential zeolite framework candidates for synthesis, including reactivity and solubility, in order to determine ideal candidate frameworks for a given purpose [13].

Zeolite LTA frameworks are experiencing widespread development and finding greater practical use. For example, they have proven extremely useful at dehydrating natural gas [14, 15]. Additionally, they have found...
use in humidity sensors due to their extremely hydrophilic nature \[16–18\]. With such commercial potential, furthering our knowledge of the underlying structure of the Zeolite LTA framework is economically imperative.

The molecular graph of the Zeolite LTA framework (see figure 1) has been previously studied \[19\]. Molecular graphs in general are graph theoretical representations of the structure of a chemical compound. Figures 2(a) and (b) explains about the unit cell of Zeolite LTA and \(Z(2 \times 2 \times 2)\). Thus we may define a molecular graph \(G = (V, E)\) where the vertex set \(V\) represent the atoms comprising the chemical compound and the edge set \(E\) represents the various bonds of the chemical compound \[20\]. In order to quantify the information encoded in the molecular graph, we compute topological indices which take the general form

\[
TI(G) = \sum_{\{u,v\} \subseteq V \times V} f(u, v)
\]

(1)

where \(TI(G)\) is the topological index in question and \(f(u, v)\) is particular to our choice of topological index.

Many standard graph theoretical properties allow for more efficient analyses of the structural characteristics of molecular graphs. For example, a vertex cut method for molecular graphs has been developed \[21\]. This approach relies on the existence of a vertex whose removal creates two disconnected subgraphs. Similarly, the notion of Hamilton-connectedness of molecular graphs and of subgraphs of molecular graphs has been studied \[12\]. In that approach the existence of certain Hamiltonian paths (paths that contain every vertex in the graph) was related to a topological index known as the Detour index. Other topics, such as dominating sets (sets of vertices which are collectively adjacent to every vertex in the graph), have also proven extremely useful in aiding in the computation of topological indices \[22, 23\]. For more references on dominating sets in particular, the reader is referred to several quality works \[24–26\].

Figure 1. Construction of Zeolite LTA Structures.
While important topological indices have been computed for a variety of important families of molecular graphs \[27, 28\], this problem remains open for Zeolite LTA frameworks. In particular, we compute the following topological indices: Wiener, Edge-Wiener, Vertex-edge Wiener, Vertex Szeged, Edge Szeged, Edge-vertex Szeged, Padmukar-Ivan, Schultz, and Gutman.

In order to compute these topological indices using the novel combination of methods in this paper, we used MATLAB®. However, readers are interested in computing topological indices for any purpose are referred to the open source Python package MathChem \[29\].

For further information on Zeolites and their applications, the reader is referred to the following reference texts \[30–35\]. For general information on related chemistry and materials science matters, the reader is referred to the following texts \[36–38\]. For more on algebraic graph theory and the algebraic and graph theoretical tools used herein, the reader is referred to the standard text by Godsil \[39\].

2. Preliminaries

As all graphs referred to in this paper are molecular graphs, we simply use the term graph. For any vertex \(v \in V(G) \) we denote the degree of \(v \) by \(d_G(v) \) and the neighborhood of \(v \) by \(N_G(v) \). The degree of a vertex \(v \) is simply the cardinality of the neighborhood of that vertex, i.e., \(d_G(v) = |N_G(v)| \), and the neighborhood of a vertex \(v \) is the set of vertices connected to \(v \) by an edge. When the graph is known, we shorten these notations to \(d(v) \) for the degree of \(v \) and \(N(v) \) for the neighborhood of \(v \). The distance between two vertices \(u, v \in V(G) \), denoted \(d(u, v) \), is the length of a shortest path in \(G \) between \(u \) and \(v \). Since all graphs are undirected, the relation \(d(u, v) \) is symmetric, i.e., \(d(u, v) = d(v, u) \) for all pairs \(u, v \subseteq V \times V \).

We can define an analog for edges as follows. First we define the distance between a vertex \(w \) and an edge \(e = uv \) by \(d(w, e) = \min\{d(w, u), d(w, v)\} \). Extending this concept to edges \(e, f \in E(G) \) where \(e = uv \) and \(f = xy \), the distance between \(e \) and \(f \) is given by \(d(e, f) = \min\{d(u, f), d(v, f)\} = \min\{d(x, e), d(y, e)\} \).

As analogous concepts to \(N_G(v) \), we present four measures of partitioning the vertices and edges of \(G \) by relative proximity. Let \(e = uv \in E(G) \). These four measures tell us the relative size of the set of vertices (or edges) closer to either \(u \) or \(v \) than the other. They are defined as follows.

\[
\begin{align*}
 n_u(e) &= \{|x \in V(G) : d(u, x) < d(v, x)\} \\
 n_v(e) &= \{|x \in V(G) : d(v, x) < d(u, x)\} \\
 m_u(e) &= \{|f \in E(G) : d(u, f) < d(v, f)\} \\
 m_v(e) &= \{|f \in E(G) : d(v, f) < d(u, f)\}
\end{align*}
\]

(2)

Related to this concept is the notion of partitioning a graph into \(\Theta \)-classes, or subgraphs whose edges satisfy an asymmetric distance property. This property will be useful in several of the following preliminary results and is formally defined below.
Definition 1. [40] Two edges \(e = xy \) and \(f = uv \) in a graph belong to the same \(\Theta \)-class if they satisfy the relation \(e \Theta f \) where \(d(x, u) + d(y, v) = d(x, v) + d(y, u) \).

Theorem 1. [41] Let \(G \) be a partial cube and let \(F_1, F_2, \ldots, F_k \) be its \(\Theta \)-classes. Let \(n_1 \) and \(n_2 \) be the number of vertices in the two connected components of \(G - F_i \). Then \(W(G) = \sum_{i=1}^{k} n_1 n_2 \).

Lemma 1. A connected graph \(G \) admits a partition \(\{F_i\}_{i=1}^{k} \) of \(E(G) \) into convex cuts with components \(GF_1 \) and \(GF_2 \) for each \(i \). Let \(R \) be the set of all shortest paths with the property that for each pair of vertices of \(G \) there exists a unique path in \(R \) connecting them. For any \(P_i(e, f) \in R \) and each \(i \), the following statements hold:

1. If \(\{u, v\} \subseteq V(GF_1) \) or \(\{u, v\} \subseteq V(GF_2) \), then \(|E(P_i(u, v)) \cap F_i| = 0 \)
2. If \(u \in V(GF_1) \) and \(v \in V(GF_2) \), then \(|E(P_i(u, v)) \cap F_i| = 1 \)

Lemma 2. A connected graph \(G \) admits a partition \(\{F_i\}_{i=1}^{k} \) of \(E(G) \) into convex cuts with components \(GF_1 \) and \(GF_2 \) for each \(i \). Let \(S \) be a set of shortest paths with the property that for each pair of edges of \(G \) there exists a unique path in \(S \) connecting them. For any \(P_i(e, f) \in S \) and each \(i \), the following statements hold:

1. If \(\{e, f\} \subseteq E(GF_1) \) or \(\{e, f\} \subseteq E(GF_2) \), then \(|E(P_i(e, f)) \cap F_i| = 0 \)
2. If \(e \in F_i \) and \(f \in E(GF_1) \) or \(f \in E(GF_2) \), then \(|E(P_i(e, f)) \cap F_i| = 0 \)
3. If \(e \in E(GF_1) \) and \(f \in E(GF_2) \), then \(|E(P_i(e, f)) \cap F_i| = 1 \).

Theorem 2. Let \(H \) be a cube (partial) and let \(S_1, S_2, \ldots, S_k \) be its \(\Theta \)-classes with \(|S_i| = s_i \) such that \(H - S_i \) has exactly 2 convex components \(HS_i \) and \(HS_i^1 \) for \(1 \leq i \leq k \) with \(|V(HS_i)| = n_i \), \(|V(HS_i^1)| = n - n_i \), \(|E(HS_i^1)| = m_i \) and \(|E(HS_i^1)| = m_i - n_i \). Then

1. [41] \(W(G) = \sum_{i=1}^{k} n_i (n - n_i) \)
2. [42] \(W_1(G) = \sum_{i=1}^{k} m_i (m - m_i) \)
3. [42] \(W_2(G) = \frac{1}{2} \sum_{i=1}^{k} [n_i (m - m_i - s_i) + (n - n_i) m_i] \)
4. [43] \(W_3(G) = \frac{1}{2} \sum_{i=1}^{k} [n_i (m - m_i - s_i) + (n - n_i) m_i] \)
5. [42] \(Sz_1(G) = \sum_{i=1}^{k} s_i n_i (n - n_i) \)
6. [44] \(Sz_2(G) = \sum_{i=1}^{k} s_i m_i (m - m_i - s_i) \)
7. [45] \(Sz_{ev} = \frac{1}{2} \sum_{i=1}^{k} [n_i (m - m_i - s_i) + (n - n_i) m_i] \)
8. [46] \(PI(G) = m^2 - \sum_{i=1}^{k} s_i^2 \)
9. [46] \(S(G) = mn + 2 \sum_{i=1}^{k} [n_i (m - m_i - s_i) + (n - n_i) m_i] \)
10. [47] \(Gut(G) = 2m^2 + \sum_{i=1}^{k} [4m_i (m - m_i - s_i) - s_i^2] \)

With these definitions in place, we are now ready to present the formulae for the nine topological indices to be computed in the following section. These formulae are presented in the following table 1.

3. Various distance based topological indices of Zeolite LTA

In this section we present exact expression of various distance based topological indices of Zeolite LTA using the well known cut method and theorem 2. These results were obtained using MATLAB® code which implements the methods discussed throughout this paper.

Theorem 3. For \(G = Z(p, q, r) \), \(p \leq q \leq r \) we have

1. \(W(G) = (-96p^3r + 480p^3q^2r + 1440pq^3r + 480pq^2r^2 - 480pq^2 - 480pqq - 480q^2r + r)/5 \).
2.
\[W_1(G) = (-6912p^5q^2 + 1152p^5q - 2232p^5r - 56p^5 + 23040p^4q^r + 1200p^4q^2 + 9000p^4q^2 - 4800p^4q + 1000p^4q^2 + 7620p^4r^2 + 700p^4r - 10 080p^3q^r^2 - 11640p^3q^r - 14 820p^3r^2 - 16320p^3r^2 + 4680p^3q - 2040p^3q - 10 910p^3q + 840p^3r - 80^3 - 2232p^2q^2 + 9000p^2r^2 + 4500p^2q^2^2 - 5120p^2q^2^2 - 17400p^2q^r^2 - 4270p^2q^2 - 21 600p^2q^r^2 - 8010p^2q^r^2 + 23 010p^2q^r^2 + 4680p^2q^r^2 + 2760p^2q^r^2 + 4770p^2q^r^2 + 240p^2q^r^2 + 522p^2q^r^2 - 480p^2q^r^2 + 5100p^2q^r^2 - 380p^2q^r + 312pq^2 - 1320pq^2 + 308pq^4 - 2640pq^2^2 + 1440pq^4 + 360pq^4^2 + 14 040pq^4^2 + 5520pq^4^2 + 4470pq^4^2 - 1440pq^4^2 + 602pq^4 - 2160pq^4 + 1920pq^4^2 - 120pq^4^2 - 240pq^4 - 384pq^4 - 120pq^4 + 240pq^4 - 240pq^4^2 + 782pq^4 - 192pq + 16p - 8q^2 + 40pqr + 120pqr^2 - 4680pqr^2 - 2940pqr^2 - 7630pqr^2 + 1680pqr^2 - 120pqr + 840pqr + 280pqr^2 + 1680pqr - 280pqr^2 + 8q - 40pq - 80r^2 + 80r^2)/15.\]

3. \[W_2(G) = (-840q^r^5 + 80q^r^5 + 2520pq^r^2^2 - 240pq^r^4 - 280q^r^4^2 + 3360p^2q^r^2 + 360p^2q^r^2 + 360p^2q^r^2 + 240p^2q^r^2 + 1680q^r^5 + 160q^r^5 - 312p^2q^r^2 + 4200q^4q^r^2 + 700p^4q^r^2 + 1440p^4q^r^2 + 640p^2q^r^2 + 840p^2q^r^2 + 2640p^2q^r^2 + 1440p^2q^r^2 + 480p^2q^r^2 + 260p^2q^r^2 - 240pq^r^2 + 720pq^r^2 - 80pq^2 + 192pqr + 160pqr^2 - 72p^3q^r^2 + 16p^r + 2880pq^r^2^2 - 180pq^r^2 - 1940pq^r^2 - 360pq^r^2 + 1320pq^r^2 + 1440pq^r^2 + 1980pq^r^2 + 300pq^r^2 - 80pq^r^2 - 80pq^r^2 - 16p - 86pq^r^2 + 132pq^2 + 715pq + 60pq - 20pq^r + 180pq^r - 312pq^2 + 380pq^4 + 360pq^4^2^2 + 255pq^2^2 + 192pq^2 + 16pq^4 + 144pq^4 - 28pq)./5.\]

4. \[S_{ev}(G) = (-576p^4q^2 + 1728p^4q^2 - 1440p^4q^2 - 288pq^4^2 + 288pq^4^2 + 288pq^4^2 + 1728pq^4^2 + 768p^6q^3 - 576p^5q^6 - 1152q^r^6).\]

5. \[S_{ev}(G) = (5760p^6q^3 - 34560p^6q^3 - 240p^6q - 60p^6q^r + 10368p^6q^r - 6912p^6q^r - 8640p^6q^r - 576p^5q^2 + 19440p^5q^3 - 8640p^5q^2 - 2220p^5q^r + 5867p^5q^r - 3696p^5q^r - 66240p^4q^r - 107 130p^4q^r + 19440p^4q^r + 15120p^4q^r - 720p^4q^r + 16 560pq^4^2 - 66240p^4q^r + 22560pq^4^2 - 1440pq^4q^r - 600pq^4q^r - 81 750pq^4q^r + 7920pq^4q^r - 120pq^4 + 6480p^3q^4 + 19 440p^3q^4^2 + 26712p^3q^4^2 - 19440p^3q^4^2 - 38340p^3q^4^2 + 100pq^4q^r - 49 100pq^4q^r + 144720pq^4q^r^3 - 82920pq^4q^r^3 + 188 540pq^4q^r^3 + 38120pq^4q^r^3 + 5160pq^4q^r^3 + 4160pq^4q^r^3 - 20160pq^4q^r^3 +64 16 230pq^4q^r^3 + 8102pq^4q^r^3 - 2160pq^4q^r^3 + 160pq^4q^r^3 - 4032pq^4q^r^3 + 39240pq^4q^r^3 + 2400pq^4q^r^3 + 720pq^4q^r^3 - 2160pq^4q^r^3 - 2256pq^4q^r^3 + 2160pq^4q^r^3 + 2640pq^4q^r^3 + 5040pq^4q^r^3 + 19440pq^4q^r^3 + 38280pq^4q^r^3 + 27 200pq^4q^r^3 + 45600pq^4q^r^3 + 16710pq^4 + 10 800pq^4q^r - 1792pq^4q^r^3 + 1840pq^4q^r - 5760pq^4q^r - 1440pq^4q^r - 2560pq^4q^r + 4240pq^4q^r^3 + 456pq^2 + 13 350pq^2 + 2880pq^2 + 120pq^2 - 120pq^2 + 8424pq^2q^r - 15120pq^2q^r + 26 660pq^2q^r - 5760pq^2q^r + 2800pq^2q^r - 4032pq^2q^r - 12960pq^2q^r^3 + 12 240pq^2q^r^4 - 7200pq^2q^r^3)\]
The graph $G_{12} = (\{p, q\} - \{p, q\} \cup \{p, q\} \cup \{p, q\})$.

6. $S_2(G) = \{4320p^4q^6 - 3569p^6q^3 - 648p^6q^4 - 720p^6q^7
\}
 + 12960p^3q^6 + 4392p^6q + 11520p^3q^6 + 9312p^6q^3 - 365p^3q^6 + 2160p^3q^6 - 720p^3q^6
+ 369p^3q^6 - 12480p^3q^6 - 14220p^3q^6 - 2160p^3q^6
+ 1623p^4q^7 - 504p^4q^7 - 1380p^4q^7 - 6240p^4q^7 + 1440p^4q^7 - 7920p^4q^7
+ 240p^4q^7 - 720p^4q^7 + 2160p^4q^7 - 2256p^4q^7 - 2160p^3q^7 - 2640p^3q^7 - 504p^3q^7
+ 23760p^3q^7 + 7360p^3q^7 + 21720p^3q^7 + 2040p^3q^7 - 160p^3q^7 - 2880p^3q^7 - 1120p^3q^7
+ 2880p^3q^7 + 7440p^3q^7 - 880p^3q^7 - 336p^3q^7 + 2400p^3q^7 + 242p^3q^7 + 2160p^3q^7 - 3520p^3q^7
+ 1920p^3q^7 - 2440p^3q^7 + 2160p^4q^7 + 1440p^4q^7 - 1920p^4q^7 - 480p^4q^7
+ 576p^4q^7 - 468p^4q^7 - 1840p^4q^7 + 2880p^4q^7 - 240p^4q^7 - 15120p^4q^7 - 720p^4q^7
+ 5760p^4q^7 - 640pq^7 - 252pq^7 - 1440pq^7
+ 1440pq^7 - 48pq^7 - 336p^3q^7 - 5040p^3q^7 - 1680p^3q^7 - 1008p^3q^7
+ 960p^3q^7 + 480pq^7 - 960pq^7)/5.

7. $P(I(G)) = -48p^2q^2 + 24pq^2 + 24pq^2
\}
 + 2304p^2q^2 - 856p^2q^2 + 80pq^2 - 88pq^2 + 24pq^2
+ 16pq^2 - 328pq^2 - 64pq^2 - 24pq^2 - 24pq^2 - 72pq^2 + 32pq^2
+ 108pq^2

8. $S(G) = (-3360p^7 + 320p^7 + 1008pq^7 - 960pq^7 - 1120p^7
+ 13440p^7 - 1440p^7 - 1440p^7 - 960p^7 - 6720pq^7 + 640pq^7 + 768pq^7 + 320pq^7
+ 2880pq^7 - 1920pq^7 - 960pq^7 + 2560pq^7 + 1680pq^7 + 1040pq^7 - 3360pq^7
+ 2800pq^7 - 1248pq^7 + 640pq^7 + 5760pq^7
+ 10560pq^7 - 5760pq^7 - 480pq^7 + 5760pq^7
+ 2880pq^7 + 64pq^7 + 11520pq^7 - 7480pq^7 - 7760pq^7 - 1440pq^7
+ 5380pq^7 - 5760pq^7 + 6960pq^7
+ 1200pq^7 - 320pq^7 + 320pq^7 - 645pq^7 + 456pq^7 + 352pq^7 + 288pq^7 + 240pq^7 - 804pq^7
+ 720pq^7 - 128pq^7 + 1520pq^7 + 1440pq^7
+ 1020pq^7 + 768pq^7 + 64pq^7 + 576pq^7 - 112pq^7)/5.

9. $Gat(G) = (-2764pq^5 - 4605pq^5 - 8928pq^5 - 1248pq^5 - 224pq^5 + 92160pq^5 + 480pq^5
+ 36000pq^5 - 1920pq^5 + 400pq^6
+ 30480pq^6 + 2800pq^6 - 40 320pq^6 - 46560pq^6 + 6000pq^6 + 65280pq^6
+ 18720pq^6 + 8160pq^6 + 4320pq^6 + 3360pq^6 + 320pq^6 = 8928pq^6 + 18000pq^6
+ 60480pq^6 - 6960pq^6 - 16 720pq^6
+ 86400pq^6 + 5042pq^6 + 67 680pq^6 + 20 880pq^6
+ 11040pq^6 + 17 760pq^6 + 960pq^6 + 1728pq^6 - 1920pq^6
+ 20640pq^6 + 1520pq^6 + 1248pq^6 - 5280pq^6 + 1520pq^6 + 10560pq^6
+ 5760pq^6 + 1440pq^6 + 56 160pq^6 + 2208pq^6
+ 7200pq^6 + 3840pq^6 + 2048pq^6 + 8640pq^4
+ 7680pq^4 - 480pq^4 - 960pq^4 - 1536pq^4 + 480pq^4 - 960pq^4
+ 2768pq^4 - 768pq^4 + 64pq^4 - 32pq^4 + 160pq^4 + 480pq^4 - 18720pq^4 - 11760pq^4 - 3160pq^4
+ 7440pq^4 - 480pq^4 + 3360pq^4 + 1120pq^4 + 6720pq^4 - 1120pq^4 + 32q - 160q - 320q)/15.

Proof. The graph $Z(p, q, r)$, $p \leq q \leq r$ has $n = 24pq^r$ number of vertices and $m = 48pqr - 4(pq + qr + pr)$ number of edges. The sets $\{S_j : 1 \leq j \leq 6\}$ divides graph $Z(p, q, r)$ into two convex components. We have

$s_1 = 4pr : 1 \leq i \leq q - 1$

$n_1 = 24pr : 1 \leq i \leq q - 1$

$m_1 = \{36p + 4r(p - 1) + 4(p - 1)i + 4pr(i - 1) : 1 \leq i \leq q - 1\}

$s_2 = 4pq : 1 \leq i \leq r - 1$

$n_2 = 24pq : 1 \leq i \leq r - 1$

$m_2 = \{36pq + 4(p - 1) + 4q(p - 1)i + 4pq(i - 1) : 1 \leq i \leq r - 1\}

$s_3 = 4qr : 1 \leq i \leq p - 1$

$n_3 = 24qri : 1 \leq i \leq p - 1$

$m_3 = \{36qr + 4(q - 1) + 4q(q - 1)i + 4qr(i - 1) : 1 \leq i \leq p - 1\}$
To illustrate the techniques used in this paper, we present an illustration of the different types of cuts of three faces namely front (figures 3(a)), top (figure 3(b)) and side (figure 3(c)) views of $Z(p, q, r)$ crystal of employed in the Zeolite LTA framework to compute the topological indices.

4. Various degree based topological indices of Zeolite LTA

In this section we compute the degree based topological indices listed in table 2 for the Zeolite LTA framework the same manner as in the previous section.

There are $8(pq + qr + pr)$ vertices of degree 3 and $24pq - 8(pq + qr + pr)$ vertices are of degree 4. The edge partitions are presented in table 3.

Theorem 4. For $G = Z(p, q, r), p \leq q \leq r$ we have

1. $R_6(G) = 48(16^a)pq + [8(9^a) + 8(12^a) - 20(16^a)]$

 $(pq + qr + pr) + [4(9^a) + 8(12^a) - 12(16^a)](p + q + r) + 48(16^a - 12^a)$

2. $R(G) = \{288\sqrt{3}pq + (96 - 56\sqrt{3})(pq + qr + pr) + (96 - 40\sqrt{3})(p + q + r) - 576 + 288\sqrt{3}/24\sqrt{3} \}

3. $RR(G) = 192pq + (16\sqrt{3} - 56)(pq + qr + pr) + (16\sqrt{3} - 36)(p + q + r) + 192 - 96\sqrt{3}$
Table 2. Degree based topological indices.

Topological Indices	Mathematical Expressions
Generalized Randić [56]	$R_1(G) = \sum_{uv \in E(G)} [d(u)d(v)]^4$
Randić [57]	$R(G) = \sum_{uv \in E(G)} \sqrt{d(u)d(v)}$
Reciprocal Randić [58]	$RR(G) = \sum_{uv \in E(G)} \sqrt{d(u)d(v)}$
Reduced reciprocal Randić [59]	$RRR(G) = \sum_{uv \in E(G)} \sqrt{(d(u) - 1)(d(v) - 1)}$
First Zagreb [20]	$M_1(G) = \sum_{uv \in E(G)} d(u)^2$
Second Zagreb [20]	$M_2(G) = \sum_{uv \in E(G)} d(u)d(v)$
Reduced Second Zagreb [60]	$RM_2(G) = \sum_{uv \in E(G)} (d(u) - 1)(d(v) - 1)$
Hyper Zagreb [61]	$HM(G) = \sum_{uv \in E(G)} [d(u) + d(v)]^2$
Augmented Zagreb [62]	$AZ(G) = \sum_{uv \in E(G)} \left(\frac{d(u) + d(v)}{2d(u) + d(v) + 1} \right)^3$
Atom bond connectivity [63]	$ABC(G) = \sum_{uv \in E(G)} \sqrt{\frac{d(u) + d(v)}{d(u) + d(v) + 1}}$
Harmonic [64]	$H(G) = \sum_{uv \in E(G)} \frac{1}{d(u) + d(v)}$
Sum-connectivity [65]	$SC(G) = \sum_{uv \in E(G)} \frac{1}{d(u) + d(v)}$
Geometric arithmetic [66]	$GA(G) = \sum_{uv \in E(G)} \frac{d(u) + d(v)}{d(u) + d(v) + 1}$

4. $RRR(G) = 144pqr + (8\sqrt{6} - 42)(pq + qr + pr) + (8\sqrt{6} - 4)(p + q + r) + 144 - 48\sqrt{6}$.

5. $M_1(G) = 384pqr - 56(pq + qr + pr)$.

6. $M_2(G) = 768pqr - 152(pq + qr + pr) - 60(p + q + r) + 192$.

Table 2. Degree based topological indices.

Topological Indices	Mathematical Expressions
Generalized Randić [56]	$R_1(G) = \sum_{uv \in E(G)} [d(u)d(v)]^4$
Randić [57]	$R(G) = \sum_{uv \in E(G)} \sqrt{d(u)d(v)}$
Reciprocal Randić [58]	$RR(G) = \sum_{uv \in E(G)} \sqrt{d(u)d(v)}$
Reduced reciprocal Randić [59]	$RRR(G) = \sum_{uv \in E(G)} \sqrt{(d(u) - 1)(d(v) - 1)}$
First Zagreb [20]	$M_1(G) = \sum_{uv \in E(G)} d(u)^2$
Second Zagreb [20]	$M_2(G) = \sum_{uv \in E(G)} d(u)d(v)$
Reduced Second Zagreb [60]	$RM_2(G) = \sum_{uv \in E(G)} (d(u) - 1)(d(v) - 1)$
Hyper Zagreb [61]	$HM(G) = \sum_{uv \in E(G)} [d(u) + d(v)]^2$
Augmented Zagreb [62]	$AZ(G) = \sum_{uv \in E(G)} \left(\frac{d(u) + d(v)}{2d(u) + d(v) + 1} \right)^3$
Atom bond connectivity [63]	$ABC(G) = \sum_{uv \in E(G)} \sqrt{\frac{d(u) + d(v)}{d(u) + d(v) + 1}}$
Harmonic [64]	$H(G) = \sum_{uv \in E(G)} \frac{1}{d(u) + d(v)}$
Sum-connectivity [65]	$SC(G) = \sum_{uv \in E(G)} \frac{1}{d(u) + d(v)}$
Geometric arithmetic [66]	$GA(G) = \sum_{uv \in E(G)} \frac{d(u) + d(v)}{d(u) + d(v) + 1}$

4. $RRR(G) = 144pqr + (8\sqrt{6} - 42)(pq + qr + pr) + (8\sqrt{6} - 4)(p + q + r) + 144 - 48\sqrt{6}$.

5. $M_1(G) = 384pqr - 56(pq + qr + pr)$.

6. $M_2(G) = 768pqr - 152(pq + qr + pr) - 60(p + q + r) + 192$.

Table 3. The Edge partition of Zeolite graph.

(d(u), d(v))	Frequency
(3,3)	8(pq + qr + pr) + 4(p + q + r)
(3,4)	8(pq + qr + pr) + 8(p + q + r) - 48
(4,4)	48pqr - 20(pq + qr + pr) - 12(p + q + r) + 48

7. \(RM_2(G) = 432pqr - 100(pq + qr + pr) - 44(p + q + r) + 144\).

8. \(HM(G) = 3072pqr - 600(pq + qr + pr) - 232(p + q + r) + 720\).

9. \(AZ(G) = [49152000pqr - 4666532(pq + qr + pr) - 3855657(p + q + r) + 13320192]/54000\).

10. \(ABC(G) = [648 - 12\sqrt{3} + 72\sqrt{5} - 270\sqrt{2})(pq + qr + pr) + (16\sqrt{5} + 72\sqrt{5} - 162\sqrt{2})(p + q + r) + 648\sqrt{2} - 432\sqrt{5}]/18\sqrt{3}.

11. \(H(G) = [252pqr - (pq + qr + pr) + 13(p + q + r) - 361]/21.

12. \(SC(G) = 24\sqrt{14}pqr + (8\sqrt{14} + 16\sqrt{3} - 10\sqrt{42})(pq + qr + pr) + (4\sqrt{14} + 16\sqrt{3} - 6\sqrt{42})(p + q + r) + 24(\sqrt{42} - 2\sqrt{3})\).

13. \(GA(G) = [336pqr + (32\sqrt{3} - 84)(pq + qr + pr) + (32\sqrt{3} - 56)(p + q + r) - 192\sqrt{3} + 336]/7.

Proof.

\[
R_n(G) = \sum_{u,v\in E(G)} [d(u)d(v)]^n
= (3 \times 3)^n(8(pq + qr + pr) + 4(p + q + r)) + (3 \times 4)^n(8(pq + qr + pr) + 8(p + q + r) - 48)
+ (4 \times 4)^n(48pqr - 20(pq + qr + pr) - 12(p + q + r) + 48)
= 48(16^n)pqr + 8(9^n) + 8(12^n) - 40\sqrt{3}\frac{p + q + r}{24}.

R(G) = \frac{1}{\sqrt{3 \times 3}}(8(pq + qr + pr) + 4(p + q + r)) + \frac{1}{\sqrt{3 \times 4}}(8(pq + qr + pr) + 8(p + q + r) - 48)
+ \frac{1}{\sqrt{4 \times 4}}(48pqr - 20(pq + qr + pr) - 12(p + q + r) + 48)
= 288\sqrt{3}pqr + 96\sqrt{3} \frac{p + q + r}{24}.

RR(G) = \sum_{u,v\in E(G)} (d(u)d(v))
= (3 \times 3)^n(8(pq + qr + pr) + 4(p + q + r)) + (3 \times 4)^n(8(pq + qr + pr) + 8(p + q + r) - 48)
+ (4 \times 4)^n(48pqr - 20(pq + qr + pr) - 12(p + q + r) + 48)
= 192pqr + (16\sqrt{3} - 56)(pq + qr + pr) + (16\sqrt{3} - 56)(p + q + r) + 192 - 96\sqrt{3}.

RRR(G) = \sum_{u,v\in E(G)} (\sqrt{d(u)} - 1)(\sqrt{d(v)} - 1)
= (2 \times 2)^n(8(pq + qr + pr) + 4(p + q + r)) + (2 \times 3)^n(8(pq + qr + pr) + 8(p + q + r) - 48)
+ (3 \times 3)^n(48pqr - 20(pq + qr + pr) - 12(p + q + r) + 48)
= 144pqr + (8\sqrt{6} - 42)(pq + qr + pr) + (8\sqrt{6} - 4)(p + q + r) + 144 - 48\sqrt{6}.

M_4(G) = \sum_{u\in V(G)} d(u)^2
= (3^n(8(pq + qr + pr)) + 4^2(24pqr - 8(pq + qr + pr))
= 384pqr - 56(pq + qr + pr)
\[M_2(G) = \sum_{uv \in E(G)} d(u)d(v) \\
= (3 \times 3)(8(pq + qr + pr) + 4(p + q + r)) + (3 \times 4)(8pq + qr + pr + 8(p + q + r) - 48) \\
= + (4 \times 4)(48pqr - 20(pq + qr + pr) - 12(p + q + r) + 48) \\
= 768pqr - 152(pq + qr + pr) - 60(p + q + r) + 192 \]

\[RM_2(G) = \sum_{uv \in E(G)} (d(u) - 1)(d(v) - 1) \\
= (2 \times 2)(8(pq + qr + pr) + 4(p + q + r)) + (2 \times 3)(8pq + qr + pr + 8(p + q + r) - 48) \\
= + (3 \times 3)(48pqr - 20(pq + qr + pr) - 12(p + q + r) + 48) \\
= 432pqr - 100(pq + qr + pr) - 44(p + q + r) + 144 \]

\[HM(G) = \sum_{uv \in E(G)} [d(u) + d(v)]^2 \\
= (3 + 3)^2(8(pq + qr + pr) + 4(p + q + r)) + (3 + 4)^2(8pq + qr + pr + 8(p + q + r) - 48) \\
= + (4 + 4)^2(48pqr - 20(pq + qr + pr) - 12(p + q + r) + 48) \\
= 3072pqr - 600(pq + qr + pr) - 232(p + q + r) + 720 \]

\[AZ(G) = \sum_{uv \in E(G)} \left(\frac{d(u)d(v)}{d(u) + d(v) - 2} \right)^3 \\
= \left(\frac{3 \times 3}{3 + 3 - 2} \right)^3(8pq + qr + pr + 4(p + q + r)) + \left(\frac{3 \times 4}{3 + 4 - 2} \right)^3(8pq + qr + pr + 8(p + q + r) - 48) \\
= + \left(\frac{4 \times 4}{4 + 4 - 2} \right)^3(48pqr - 20(pq + qr + pr) - 12(p + q + r) + 48) \\
= [4915200pqr - 4666532(pq + qr + pr) - 3855657(p + q + r) + 13320192] / 54000 \]

\[ABCG(G) = \sum_{uv \in E(G)} \sqrt{\frac{d(u) + d(v) - 2}{d(u)d(v)}} \\
= \sqrt{\frac{3 + 3 - 2}{3 \times 3}}(8pq + qr + pr + 4(p + q + r)) + \sqrt{\frac{3 + 4 - 2}{3 \times 4}}(8pq + qr + pr + 8(p + q + r) - 48) \\
= + \sqrt{\frac{4 + 4 - 2}{4 \times 4}}(48pqr - 20(pq + qr + pr) - 12(p + q + r) + 48) \\
= 648\sqrt{2}pqr + (32\sqrt{3} + 72\sqrt{5} - 270\sqrt{1})pq + qr + pr \\
= +(16\sqrt{3} + 72\sqrt{5} - 162\sqrt{2})(p + q + r) + 648\sqrt{2} - 432\sqrt{5} / 18\sqrt{3} \]

\[H(G) = \sum_{uv \in E(G)} \frac{2}{d(u) + d(v)} \\
= \frac{2}{(3 + 3)}(8pq + qr + pr + 4(p + q + r)) + \frac{2}{(3 + 4)}(8pq + qr + pr + 8(p + q + r) - 48) \\
= + \frac{2}{(4 + 4)}(48pqr - 20(pq + qr + pr) - 12(p + q + r) + 48) \\
= [252pqr - (pq + qr + pr) + 13(p + q + r) - 36] / 21 \]

\[SC(G) = \sum_{uv \in E(G)} \frac{1}{\sqrt{d(u) + d(v)}} \\
= \frac{1}{\sqrt{3 + 3}}(8pq + qr + pr + 4(p + q + r)) + \frac{1}{\sqrt{3 + 4}}(8pq + qr + pr + 8(p + q + r) - 48) \\
= + \frac{1}{\sqrt{4 + 4}}(48pqr - 20(pq + qr + pr) - 12(p + q + r) + 48) \\
= 24\sqrt{2}pqr + (8\sqrt{14} + 16\sqrt{3} - 10\sqrt{42})(pq + qr + pr) + (4\sqrt{14} + 16\sqrt{3} - \sqrt{42})(p + q + r) \\
= + 24(\sqrt{2} - 2\sqrt{3}) \]
GA(G) = \sum_{\text{arc} \in E(G)} \frac{2(\sqrt{d(u)d(v)})}{d(u) + d(v)} = 2 \left(\frac{\sqrt{3 \times 3}}{3 + 3}\right)(8(pq + qr + pr) + 4(p + q + r)) + 2 \left(\frac{\sqrt{4 \times 4}}{4 + 4}\right)(48pq - 20(pq + qr + pr) - 12(p + q + r) + 48) = [336pq + (32\sqrt{3} - 84)(pq + qr + pr) + (32\sqrt{3} - 56)(p + q + r) - 192\sqrt{3} + 336]/7

5. Conclusion

In this paper we give the exact expression for various distance based topological indices of Zeolite LTA framework works using the well known cut method and also we compute various degree based indices of Zeolite LTA framework works. These indices are under investigation for other variants of β-cage like Sodalite (SOD) and Faujasite (FAU).

Funding information

This study was not funded by any grant.

Conflict of interest

The authors declare that they have no conflict of interest.

ORCID iDs

S Prabhu https://orcid.org/0000-0002-1922-910X
G Murugan https://orcid.org/0000-0002-1432-9523
M Arulperumjothi https://orcid.org/0000-0001-8557-1643
Jia-Bao Liu https://orcid.org/0000-0002-9620-7692

References

[1] Hill J R and Sauer J 1995 Molecular mechanics potential for silica and zeolite catalysts based on ab initio calculations. 2. aluminosilicates The Journal of Physical Chemistry 99 9536–50
[2] Earl D J and Deem M W 2006 Toward a database of hypothetical zeolite structures Ind. Eng. Chem. Res. 45 5449–54
[3] Database of zeolite structures (http://iza-structure.org/databases) Accessed: 2019-03-16
[4] Li J, Corma A and Yu J 2015 Synthesis of new zeolite structures Chem. Soc. Rev. 44 7112–27
[5] Hayat S and Imran M 2015 Computation of certain topological indices of nanotubes covered by c 5 and c 7 Journal of Computational and Theoretical Nanoscience 12 533–41
[6] Munir M, Nazeer W, Rafique S and Kang S 2016 M-polynomial and degree-based topological indices of polyhex nanotubes Symmetry 8 149
[7] Arockiaraj M, Clement J and Balasubramanian K 2016 Analytical expressions for topological properties of polycyclic benzenoid networks J. Chemom. 30 682–97
[8] Arockiaraj M, Klavžar S, Mustašić S and Balasubramanian K 2019 Distance-based topological indices of nanosheets, nanotubes and nanotriangles of SiO x J. Math. Chem. 57 343–69
[9] Arockiaraj M, Clement J and Shalini A J 2016 Variants of the szeged index in certain chemical nanosheets Can. J. Chem. 94 608–19
[10] Arockiaraj M, Kavitha S R J, Balasubramanian K and Gutman I 2018 Hyper-wiener and wiener polarity indices of silicate and oxide frameworks J. Math. Chem. 56 1493–510
[11] First E L, Gouraris C E, Wei J and Houssain C A 2011 Computational characterization of zeolite porous networks: an automated approach Phys. Chem. Chem. Phys. 13 17339–58
[12] Prabhu S, Nisha Y S, Cary M, Arulperumjothi M and Qi X On detour index of join of hamilton-connected graphs Ars Combinatoria Forthcoming
[13] Roy K, Kar S and Das R N 2015 A Primer on QSAR/QSRR Modeling: Fundamental Concepts (Berlin: Springer)
[14] Shirazian S and Ashrafizadeh S N 2015 Synthesis of substrate-modified lta zeolite membranes for dehydration of natural gas Fuel 148 112–9
[15] Shirazian S and Ashrafizadeh S N 2015 Lta and ion-exchanged lta zeolite membranes for dehydration of natural gas J. Ind. Eng. Chem. 22 132–7
[16] Alcantara G P, Ribeiro L E B, Alves A F, Andrade C M G and Fruett F 2017 Humidity sensor based on zeolite for application under environmental conditions Microporous Mesoporous Mater. 247 38–45
[17] Wenten I G et al 2017 Lta zeolite membranes: current progress and challenges in pervaporation RSC Adv. 7 29520–39
[18] Mintova S, Jaber M and Valkchev V 2015 Nanosized microporous crystalline emerging applications Chem. Soc. Rev. 44 7207–33
[19] Treacy M M J, Rivin I, Balkovský E, Randall K H and Foster M D 2004 Enumeration of periodic tetrahedral frameworks. ii. polynodal graphs Microporous Mesoporous Mater. 74 121–32
[20] Gutman I and Trinajstić N 1972 Graph theory and molecular orbitals. total ϕ-electron energy of alternant hydrocarbons Chem. Phys. Lett. 17 535–8
[21] Arociraiar J, Kavitha S R J and Balasubramanian K 2016 Vertex cut method for degree and distance-based topological indices and its applications to silicate networks J. Math. Chem. 54 1728–47
[22] Bolóvčánin B and Fürtaba T 2016 On extremal zgress indices of trees with given domination number Appl. Math. Comput. 279 208–18
[23] Hosamani S M 2016 Correlation of domination parameters with physicochemical properties of octane isomers Applied Mathematics and Nonlinear Sciences 1 345–52
[24] Arumugam S, Bagga J and Chandrasekar K R 2012 On dominator colorings in graphs Proc. -Mathematical Sciences 122 561–71
[25] Cory M 2019 Dominator colorings of digraphs arXiv:1902.07241
[26] Prabhu S, Arulmozhi A K and Arulperumjithi M 2018 On power domination in certain chemical graphs International Journal of Pure and Applied Mathematics 118 11–9
[27] Prabhu S and Arulperumjithi M 2017 On certain topological indices of benzenoid compounds Journal of Advances in Chemistry 13 6406–12
[28] Prabhu S, Arulperumjithi M and Murugan G 2018 On certain topological indices of titanium dioxide nanosheet and nanotube Nanoscale & Nanotechnology-Asia 8 309–16
[29] Vasilyev A and Stevanović D 2014 Mathchem: a python package for calculating topological indices MATCH Commun. Math. Comput. Chem. 71 657–80
[30] Breck D W 1984 Zeolite Molecular Sieves: Structure, Chemistry and Use(Malabar, FL: Krieger)
[31] Martens J A and Jacobs P A 1987 Synthesis of High-Silica Aluminosilicate Zeolites vol 33 (Amsterdam: Elsevier)
[32] Bärlöcher C, McCusker L B and Olson D H 2007 Atlas of Zeolite Framework Types (Amsterdam: Elsevier)
[33] Auberbach S M, Carrado K A and Dutta P K 2003 Handbook of Zeolite Science and Technology (Boca Raton, FL: CRC Press)
[34] Smith J V 1963 A structural classification of zeolites MSA Spec. Pap. I 281–90
[35] Hedlund I, Schoeman B and Sertie J 1997 Ultra thin oriented zeolite Ia film Chem. Commun. 1193–4
[36] Khadikar P V, Singh J and Prabhu S 2007 A method of computing the pi index of benzenoid hydrocarbons using orthogonal cuts J. Chem. Inf. Comput. Sci. 47 187–97
[37] Ozin G A, Kupferman A and Stein A 1989 Advanced zeolite materials science Adv. Mater. 1 69–86
[38] Jandeleit B, Schaefer D J, Powers T S, Turner H W and Weinberg W H 1999 Combinatorial materials science and catalysis Angew. Chem. Int. Ed. 38 2394–52
[39] Godsil C and Royle G F 2013 (Algebraic Graph Theory vol 207) (Switzerland, AG: Springer Science & Business Media)
[40] Džoković D Z 1973 Distance-preserving subgraphs of hypercubes J. Comb. Theory B 14 263–7
[41] Klavžar S, Gutman I and Mohar B 1995 Labeling of benzenoid systems which reflects the distance relations The Journal for Chemical Information and Computer scientists 35 590–3
[42] Yousefi-Azari H, Khalifeh M H and Ashrafi A R 2011 Computing the edge wiener and edge szeged indices of graphs J. Comput. Appl. Math. 235 4866–70
[43] Gutman I and Klavžar S 1995 An algorithm for the calculation of the szeged index of benzenoid hydrocarbons J. Chem. Inf. Comput. Sci. 35 1011–4
[44] Manuel P, Rajasingh I and Arockiaraj M 2013 Total-szeged index of C4-nanotubes, C4-nanotori and dendrimer nanostars Journal of Computational and Theoretical Nanoscience 10 405–11
[45] John P E, Khadikar P V and Singh J 2007 A method of computing the pi index of benzenoid hydrocarbons using orthogonal cuts J. Math. Chem. 42 17
[46] Khalifeh M H, Yousefi-Azari H and Ashrafi A R 2010 Another aspect of graph invariants depending on the path metric and an application in nanoscience Comput. Math. Appl. 60 2460–8
[47] Wiener H 1947 Structural determination of paraffin boiling points JACS 69 17–20
[48] Randić M 1993 Novel molecular descriptor for structure-property studies Chem. Phys. Lett. 211 478–83
[49] Khalifeh M H, Yousefi-Azari H, Ashrafi A R and Wagner S G 2009 Some new results on distance-based graph invariants Eur. J. Comb. 30 1149–63
[50] Gutman I 1994 Selected properties of the schulz molecular topological index J. Chem. Inf. Comput. Sci. 34 1087–9
[51] Gutman I and Ashrafi A R 2008 The edge version of the szeged index Croat. Chem. Acta 81 263–6
[52] Khalifeh M H, Yousefi-Azari H, Ashrafi A R and Gutman I 2008 The edge szeged index of product graphs Croat. Chem. Acta 81 277–81
[53] Mahmiani A, Khormoli O, Iranmanesh A and Yousefizad M 2010 The new version of szeged index of benzenoid hydrocarbons using orthogonal cuts Optoelectronics and Advanced Materials-Rapid Communications 5 2182–4
[54] Khadikar P V, Karmarkar S and Agrawal V K 2001 A novel pi index and its applications to qspr/qar studies J. Chem. Inf. Comput. Sci. 41 934–49
[55] Schultz H P 1989 Topological organic chemistry. 1. graph theory and topological indices of alkanes J. Chem. Inf. Comput. Sci. 29 227–8
[56] Bollobás B and Erdős P 1998 Graphs of extremal weights Ars Combinatoria 50 225–33
[57] Randić M 1975 Characterization of molecular branching JACS 97 6609–15
[58] Favaron O, Mahéo M and Sacle J-F 1993 Some eigenvalue properties in graphs (conjectures of graffiti-ii) Discrete Math. 111 197–220
[59] Manoos F C G, Jinüer H S, Bruns R E, Kubira A F and Muniz E C 2012 Development of a new topological index for the prediction of normal boiling point temperatures of hydrocarbons: the fi index J. Mol. Liq. 165 125–32
[60] Fürtaba T, Gutman I and Ediz S 2014 On difference of zagreb indices Discrete Appl. Math. 178 83–8
[61] Shiri G H, Rezapour H and Sayadi A M 2013 The hyper-zagreb index of graph operations Iranian Journal of Mathematical Chemistry 4 213–20
[62] Fürtaba T, Graovac A and Vukičević D 2010 Augmented zagreb index J. Math. Chem. 48 370–80
[63] Estrada E, Torres L, Rodríguez I and Gutman I 1998 An atom-bond connectivity index: modelling the enthalpy of formation of alkanes Chem. Phys. Lett. 281 9–12
[64] Fajtlowicz S 1987 On conjectures of graffiti-ii Congr. Numer. 60 187–97
[65] Zhou B and Trinajstić N 2009 On a novel connectivity index J. Math. Chem. 46 1252–70
[66] Vukičević D and Fürtaba T 2009 Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges J. Math. Chem. 46 1369–76