New species and records of Diaporthe from Jiangxi Province, China

Qin Yang¹,²,³, Ning Jiang¹, Cheng-Ming Tian¹

¹ The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing 100083, China ² Forestry Biotechnology Hunan Key Laboratories, Central South University of Forestry and Technology, Changsha 410004, China ³ The Key Laboratory for Non-Wood Forest Cultivation and Conservation of the Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China

Corresponding author: Cheng-Ming Tian (chengmt@bjfu.edu.cn)

Abstract

Diaporthe species have often been reported as important plant pathogens, saprobes and endophytes on a wide range of plant hosts. Although several Diaporthe species have been recorded, little is known about species able to infect forest trees in Jiangxi Province. Hence, extensive surveys were recently conducted in Jiangxi Province, China. A total of 24 isolates were identified and analysed using comparisons of DNA sequence data for the nuclear ribosomal internal transcribed spacer (ITS), calmodulin (cal), histone H3 (his3), partial translation elongation factor-1α (tef1) and β-tubulin (tub2) gene regions, as well as their morphological features. Results revealed five novel taxa, D. bauhiniae, D. ganzhouensis, D. schimae, D. verniciicola, D. xunwuensis spp. nov. and three known species, D. apiculatum, D. citri and D. multiguttulata.

Keywords

DNA phylogeny, five new taxa, forest trees, systematics, taxonomy

Introduction

The genus Diaporthe Nitschke (Sordariomycetes, Diaporthales) represents a cosmopolitan group of fungi occupying diverse ecological behaviour as plant pathogens, endophytes and saprobes (Muralli et al. 2006; Rossman et al. 2007; Udayanga et al. 2014,
2015; Fan et al. 2015, 2018; Guarnaccia and Crous 2017; Guarnaccia et al. 2018; Yang et al. 2018, 2020; Manawasinghe et al. 2019; Marin-Felix et al. 2019). Diaporthe species are responsible for diseases on a wide range of plant hosts, including agricultural crops, forest trees and ornamentals, some of which are economically important. Several symptoms, such as root and fruit rots, dieback, stem cankers, leaf spots, leaf and pod blights and seed decay are caused by Diaporthe spp. (Uecker 1988; Rehner and Uecker 1994; Mostert et al. 2001; Santos et al. 2011; Thompson et al. 2011; Udayanga et al. 2011).

Diaporthe was historically considered as monophyletic, based on its typical sexual morph and Phomopsis asexual morph (Gomes et al. 2013). However, Gao et al. (2017) recently revealed its paraphyletic nature, showing that Mazzantia (Wehmeyer 1926), Ophiodiaporthe (Fu et al. 2013), Pustulomyces (Dai et al. 2014), Phaeocytostroma and Stenocarpella (Lamprecht et al. 2011) are embedded in Diaporthe s. lat. Furthermore, Senanayake et al. (2017) recently included additional two genera in Diaporthe s. lat., namely Paradiaporthe and Chiangraiomycetes.

Species identification criteria in Diaporthe were originally based on host association, morphology and culture characteristics (Mostert et al. 2001; Santos and Phillips 2009; Udayanga et al. 2011), which led to the description of over 200 species (Hyde et al. 2020). Some species of Diaporthe were reported to colonise a single host plant, while other species were found to be associated with different host plants (Santos and Phillips 2009; Diogo et al. 2010; Santos et al. 2011; Gomes et al. 2013). In addition, considerable variability of the phenotypic characters was found to be present within a species (Rehner and Uecker 1994; Mostert et al. 2001; Santos et al. 2010; Udayanga et al. 2011). During the past decade, a polyphasic approach, based on multi-locus DNA data, morphology and ecology, has been employed for species boundaries in the genus Diaporthe (Crous et al. 2012; Huang et al. 2015; Guarnaccia and Crous 2017; Guarnaccia et al. 2018; Yang et al. 2018, 2020). The classification of Diaporthe has been progressing and the basis for the species identification is a combination of morphological, cultural, phytopathological and phylogenetical analyses (Gomes et al. 2013; Udayanga et al. 2014, 2015; Fan et al. 2015; Huang et al. 2015; Gao et al. 2016, 2017; Guarnaccia and Crous 2017; Guarnaccia et al. 2018; Yang et al. 2018, 2020; Manawasinghe et al. 2019).

In Jiangxi Province, China, some forest trees were observed to be infected with fungal pathogens that cause dieback and leaf spots. Cankered branches and leaves with typical Diaporthe fruiting bodies were also found in the area. However, we found that only limited research had been undertaken regarding the fungal pathogens isolated from forest trees in Jiangxi Province. Hence, the present study was conducted to identify Diaporthe species that cause dieback and leaf spots disease in the forest trees in Jiangxi Province through morphological and multi-locus phylogenetic analyses, based on modern taxonomic concepts.
Materials and methods

Isolates

Fresh specimens of *Diaporthe* were isolated from the collected branches and leaves of six host plants during the collection trips conducted in Jiangxi Province (Table 1). A total of 24 isolates were established by removing a mucoid conidia mass from conidiomata, spreading the suspension on the surface of 1.8% potato dextrose agar (PDA) and incubating at 25 °C for up to 24 h. A single germinating conidium was plated on to fresh PDA plates. Specimens were deposited at the Museum of the Beijing Forestry University (BJFC). Axenic cultures were maintained at the China Forestry Culture Collection Centre (CFCC).

Morphological observation

Agar plugs (6 mm diam.) were taken from the edge of actively-growing cultures on PDA and transferred on to the centre of 9 cm diam. Petri dishes containing 2% tap water agar, supplemented with sterile pine needles (PNA; Smith et al. 1996) and potato dextrose agar (PDA) and incubated at 25 °C under a 12 h near-ultraviolet light/12 h dark cycle to induce sporulation, as described in recent studies (Gomes et al. 2013; Lombard et al. 2014). Colony characters and pigment production on PNA and PDA were noted in the 10-day culture. Colony features were rated according to the colour charts of Rayner (1970). Cultures were examined periodically for the development of conidiomata. The microscopic examination was based on the morphological features of conidiomata obtained from the fungal growth, mounted in clear lactic acid. At least 30 conidia were measured to calculate the mean size/length. Micro-morphological observations were done at 1000× magnification using a Leica compound microscope (DM 2500) with interference contrast (DIC) optics. Descriptions, nomenclature and illustrations of taxonomic novelties were deposited at MycoBank (www.MycoBank.org).

DNA extraction, PCR amplification and sequencing

Genomic DNA was extracted from colonies grown on cellophane-covered PDA, using a CTAB (cetyltrimethylammonium bromide) method (Doyle and Doyle 1990). DNA was estimated by electrophoresis in 1% agarose gel and the yield was measured using the NanoDrop 2000 (Thermo Scientific, Waltham, MA, USA), following the user manual (Desjardins et al. 2009). The PCR amplifications were performed in the DNA Engine Peltier Thermal Cycler (PTC-200; Bio-Rad Laboratories, Hercules, CA, USA). The primer set ITS1/ITS4 (White et al. 1990) was used to amplify the ITS region. The primer pair CAL228F/CAL737R (Carbone and Kohn 1999) was used to amplify the calmodulin gene (*cal*) and the primer pair CYLH4F (Crous et al. 2004) and H3-1b (Glass and Donaldson 1995) were used to amplify part of the histone H3 (*his3*) gene.
Table 1. Reference sequences included in molecular phylogenetic analyses of *Diaporthe*.

Species	Isolate	Host	Location	GenBank accession numbers
D. acercola	MFLUCC 17-0956	*Acer negundo*	Italy	KJ964224 KJ964137 NA KJ964180 KJ964074
D. acerigna	CFCC 52554	*Acer tataricum*	China	MH121489 MH121413 MH121449 MH121531 NA
D. acutipontis	CGMCC 3.18285	*Coffea* sp.	China	KX986764 KX999274 NA KX999155 KX999195
D. alangi	CFCC 52556	*Aulagium kurzii*	China	MH121491 MH121415 MH121451 MH121533 MH121573
D. alina	CBS 146.46	*Alnus sp.*	Netherlands	KC343008 KC343250 KC343592 KC343743 KC343976
D. ampelina	STEU 2660	*Vitis vinifera*	France	AF230751 AF745026 NA AF745056 JX275452
D. amygdali	CBS 126.079	*Praus dulcis*	Portugal	KC343022 KC343264 KC343566 KY343748 KC343990
D. anglica	CBS 111.592	*Hiraculum ghyphodendrum*	Austria	KC343027 KC343569 KC343511 KC343753 KC343995
D. apiculatum				
D. arecae	CFCC 52527	*Areca catechu*	India	KC343032 KC343274 KC343516 KC343758 KC344000
D. artemisi	CBS 114.979	*Artemisia camphorata*	Hong Kong	KC343034 KC343276 KC343518 KC343670 KC344002
D. asaeana	MFLUCC 12-0299a	Unknown dead leaf	Thailand	KT459414 KT459464 NA KT459448 KT459432
D. baubiniiae	CGMCC 3.17533	*Camellia sinensis*	China	KP267986 NA NA KP267970 KP293476
D. beilharzii				
D. biglobata	CGMCC 3.17252	*Citrus grandis*	China	JX109378 JX109389 JX109359 JX109376 JX108591
D. biglobata	CGMCC 3.17248	*Citrus limon*	China	JX109382 NA JX109354 NA JX109661 JX109403
D. biglobata	CFCC 52584	*Juglandus regia*	China	MH121159 MH121437 MH121477 MH121561 MH121598
D. bohmeriae	CPC 28222	*Vitis vinifera*	Czech	MG281017 MG281710 MG281363 MG281536 MG281188
D. brasiliensis	CBS 133.183	*Aspidochlamys tonomatana*	Brazil	KC343042 KC343284 KC343526 KC343768 KC344010
D. caatingae	CBS 141542	*Tecoma inamona*	Brazil	KY089272 NA NA KY115603 KY115600
D. caryae	CFCC 52563	*Carya illinoensis*	China	MH121498 MH121422 MH121458 MH121540 MH121580
D. celeniae	CPC 28262	*Vitis vinifera*	Czech	MG281017 MG281712 MG281363 MG281538 MG281190
D. clastrotina	CBS 139.27	*Celastrus sp.*	USA	KC343947 KC343289 KC343531 KC343773 KC344015
D. creicida	CFCC 52565	*Cercis chinensis*	China	MH121500 MH121424 MH121460 MH121542 MH121582
D. charleworthii	BRIP 54884m	*Rhaponticum rugosum*	Australia	KJ197288 NA NA KJ197250 KJ197268
D. cinnamonii	CFCC 52569	*Cinnamomum sp.*	China	MH121504 NA MH121464 MH121546 MH121586
D. citri	AR 3405	*Citrus sp.*	USA	KC843311 KC843157 NA KC843071 KC843187
D. citrus	CFCC 53079	*Citrus sinensis*	China	MK573940 MK574579 MK574595 MK574615 MK574635
D. citri	CFCC 53080	*Citrus sinensis*	China	MK573941 MK574580 MK574596 MK574616 MK574636
D. citri	CFCC 53081	*Citrus sinensis*	China	MK573942 MK574581 MK574597 MK574617 MK574637
D. citri	CFCC 53082	*Citrus sinensis*	China	MK573943 MK574582 MK574598 MK574618 MK574638
D. citri	CGMCC 3.15224	*Citrullus lanatus*	China	JQ954645 KC574579 JQ90515 JQ954663 KC357459
D. citri	CGMCC 3.15225	*Citrus sinensis*	China	JQ954648 KC574579 NA JQ954666 NA
D. collaria	MFLU 17-2770	*Magnolia champaca*	Thailand	MG800115 MG873042 NA MG873040 MG873041
D. conica	CFCC 52571	*Alangium chinense*	China	MH121506 MH121428 MH121466 MH121548 MH121588
D. curvicornis	CBS 136.25	*Aegaeolobus linearis*	Unknown	KC343031 KC343273 KC343515 KC343757 KC343999
D. cuprea	CBS 117.499	*Aegaeolobus linearis*	South Africa	KC343057 KC343299 KC343541 KC343783 KC344025
D. davidi	ZJUD89	*Citrullus lanatus*	China	JQ90624 NA JQ90566 JQ90503 JQ90445
D. endophylica	CBS 133.811	*Schinus terebinthifolius*	Brazil	KC343065 KC343307 KC343549 KC343791 KC343965
D. ert	AR5193	*Ulmus sp.*	Germany	KJ210529 KJ349999 KJ420850 KJ210550 KJ420799
Species	Isolate	Host	Location	GenBank accession numbers
-------------------------	------------	---	----------------	-----------------------------------
Diaporthe fraxini-	BRIP 54781	Fraxinus angustifolia	Australia	JX862528 NA NA JX862534 KF170920
angustifoliae				
Diaporthe fraxincola	CFCC 52582	Fraxinus chinensis	China	MH121517 MH121435 NA MH121559 NA
Diaporthe fructicola	MAFF 246408	Pseudalia edulis * D. edulis f. flavicornis	Japan	LC342734 LC342738 LC342737 LC342735 LC342736
Diaporthe fukubunii	MAFF 625034	Pyrus pyrifolia	Japan	JQ807469 NA NA JQ807418 NA
Diaporthe fuscola	CGMCC 3.17087	Lithocarpus glabra	China	KF576281 KF576233 NA KF576256 KF576305
Diaporthe genae	CBS 180.91	Cannabis sativa	USA	KC343112 KC343354 KC343596 KC343838 KC344080
Diaporthe gonzosensis	CFCC 5087	Unknown dead wood	China	MK432665 MK442985 MK443010 MK578139 MK578065
Diaporthe garethjonesii	MFLUCC 12-0542a	Unknown dead leaf	Thailand	KT459423 KT459470 NA KT459457 KT459441
Diaporthe guangziemii	JZB320094	Vitis vinifera	China	MK357577 MK376277 NA MK523566 MK500168
Diaporthe gulae	BRIP 54025	Helianthus annuus	Australia	JF431299 NA NA KJ197271 JN645803
Diaporthe helicis	AR5211	Hedera helix	France	KJ210538 KJ345043 KJ240875 KJ210559 KJ420828
Diaporthe heterophyllae	CBS 143769	Acasia heterophylla	France	MG600222 MG600218 MG600220 MG600224 MG600226
Diaporthe hispaniae	CPC 30321	Vitis vinifera	Spain	MG281112 MG281820 MG281471 MG281644 MG281296
Diaporthe iberae	JZB320123	Vitis vinifera	China	MK353809 MK500235 NA MK523570 MK500148
Diaporthe incompleta	CGMCC 3.18288	Camellia sinensis	China	KY986794 KY999289 KY999265 KY999186 KY999226
Diaporthe infersa	CBS 133812	Schinus terebinthifolius	Brazil	KC343126 KC343368 KC343610 KC343852 KC344094
Diaporthe juglandicola	CFCC 51134	Juglon mandshurica	China	KU985101 KX024616 KX024622 KX024628 KX024634
Diaporthe kadurae	CFCC 52586	Kadowia longipetulata	China	MH121521 MH121439 MH121479 MH121563 MH121600
Diaporthe kochmanii	BRIP 54033	Helianthus annuus	Australia	JF431295 NA NA JN645809 NA
Diaporthe kongii	BRIP 54031	Portalaca grandiflora	Australia	JF431301 NA NA JN645797 KJ197272
Diaporthe litchicola	BRIP 54030	Litchi chinensis	China	JX862533 NA NA JX862539 KF170925
Diaporthe littorcarpus	CGMCC 3.15175	Lithocarpus glabra	China	KC353104 KF576235 KC153095 KF576311
Diaporthe lonicenae	MFLUCC 17-0963	Lonicera sp.	Italy	KY964190 KY964116 NA KY964146 KY964073
Diaporthe lusitanicae	CBS 12312	Forsnicolum vulgare	Portugal	KC343136 KC343578 KC343620 KC343862 KC344104
Diaporthe macrolecii	BRIP 57892a	Helianthus annuus	Australia	KJ197277 NA NA KJ197239 KJ197257
Diaporthe middletonii	BRIP 54884e	Raphisap rustam undulatum	Australia	KJ197286 NA NA KJ197248 KJ197266
Diaporthe miricica	BRIP 54736j	Raphisap rustam undulatum	Australia	KJ197282 NA NA KJ197244 KJ197262
Diaporthe musigena	MFLUCC 16-0113	Prunus persica	China	KU557563 KU557611 NA KU557631 KU557585
Diaporthe multiguttulata	ZJUD98	Citrus grandis	China	KJ409633 NA KJ409755 KJ409512 KJ409454
Diaporthe neilliae	BRIP 54000	Citrus maxima	China	MK432645 MK442967 MK442992 MK578121 MK578084
Diaporthe novae	CGMCC 3.17093	Citrus maxima	China	MK432646 MK442968 MK442993 MK578122 MK578049
Diaporthe novoccini	CGMCC 3.17531	Citrus maxima	China	MK432647 MK442969 MK442994 MK578123 MK578050
Diaporthe ochracea	CBS 129519	Musa sp.	Australia	KC343143 KC343385 KC343627 KC343869 KC344111
Diaporthe oeillae	CBS 144.27	Spinacea sp.	USA	KC343144 KC343386 KC343628 KC343870 KC344112
Diaporthe penetireum	CBS 109490	Ambrosia trifida	USA	KC343145 KC343387 KC343629 KC343871 KC344113
Diaporthe pascoei	BRIP 54847	Persia americana	Australia	JX862532 NA NA JX862538 KF170924
Diaporthe passiflorica	CBS 141329	Passiflora floridica	Malaysia	KX222892 NA KX228367 NA KX228387
Diaporthe penetireum	CGMCC 3.17532	Camellia sinensis	China	KP714505 NA KP714493 KP714517 KP714529
Diaporthe perjuncta	CBS 109745	Ulmus glabra	China	KC343172 KC343414 KC343656 KC343898 KC344140
Species	Isolate	Host	Location	GenBank accession numbers
----------------------	--------------------	-------------------------------------	------------------------	-------------------------------------
				ITS cal bns3 tefl mh2
D. perseae	CBS 151.73	Persea gratissima	Netherlands	KC343173 KC343415 KC343657 KC343899 KC344141
D. pescicola	MFLUCC 16-0105	Prunus persica macrophylla	China	KU557555 KU557603 NA KU557623 KU557579
D. podocarpis-	CGMCC 3.18281	Podocarpus macrophylla	China	XX986774 XX999278 XX999246 XX999167 XX999207
D. pseudomangiferae	CBS 101339	Mangifera indica	Dominican Republic	KC343181 KC345423 KC345665 KC345907 KC344149
D. pseudophoenix-	CBS 462.69	Phoenix dactylifera	Spain	KC343184 KC345426 KC345668 KC345910 KC344152
D. porulai-pinnatae	MFLUCC 136413	Prunus pinnata macrophylla	South Africa	KF777159 NA NA NA KF777252
D. pterocarpica	MFLUCC 10-0580a	Pterocarpus indicus	Thailand	JQ619887 JX197433 NA JX275403 JX275441
D. pulla	CBS 338.89	Hedera helix	Yugoslavia	KC343152 KC343394 KC343636 KC343878 KC344120
D. pyracanthae	CAA 4683	Pyracantha coccinea	Portugal	KY435635 KY435656 KY435645 KY435625 KY435666
D. racemae	CBS 143770	Eucaula racemosa	South Africa	MG600223 MG600219 MG600221 MG600225 MG600227
D. rutetata	CFCC 50062	Juglandus mandshurica	China	KP208847 KP208849 KP208851 KP208853 KP208855
D. sacchari	BRIP 54609b	Helianthus annuus	Australia	KJ197287 NA NA KJ197249 KJ197267
D. sarcophagus	CFCC 51986	Sambucus williamii	China	KY852495 KY852499 KY852503 KY852507 KY852511
D. schima	CFCC 51013	Schima superba	China	MK432640 MK442962 MK442987 MK578116 MK578043
D. schisandrae	CFCC 51988	Schisandra chinensis	China	KY852497 KY852501 KY852505 KY852509 KY852513
D. scotti	MFLU 15-1279	Schisandra chinensis	Italy	KY964226 KY964139 NA KY964182 KY964109
D. senae	CFCC 51636	Senna bicapularis	China	KY203724 KY228875 NA KY228885 KY228891
D. serpentina	BRIP 55665a	Helianthus annuus	Australia	KJ197274 NA NA KJ197236 KJ197254
D. sienensis	MFLUCC 10-573a	Dasypachys lanceolata	Thailand	JQ619879 NA NA JX275393 JX275429
D. sojae	FAU 6935	Glycine max	sp	USA KJ90719 KJ612116 KJ652908 KJ590762 KJ610875
D. stenospora	CBS 139099	Vaccinium corymbosum	Italy	KJ160579 KJ160548 MF183550 KJ160611 KJ160528
D. tabescens	ICMP 20663	Citrus sp	China	KJ90587 NA KJ90529 KJ90466 KJ90408
D. tabellipicola	MFLU 17-1197	Dead wood	China	MG746632 NA NA MG746633 MG746634
D. subordinaria	CBS 464.90	Plantago lanceolata	New Zealand	KC343214 KC343456 KC343698 KC343940 KC344182
D. tanicola	MFLUCC 16-0117	Prunus persica	China	KU557567 NA NA KU557635 KU557591
D. tectae	MFLUCC 12-0777	Tectona grandis	China	KU712430 KU749345 NA KU749359 KU749377
D. tectonendophytica	MFLUCC 13-0471	Tectona grandis	China	KU712439 KU749354 NA KU749367 KU749354
D. tectonigera	MFLUCC 12-0767	Tectona grandis	China	KU712429 KU749358 NA KU749371 KU749376
D. terebinthifoliid	CBS 133180	Schinus terebinthifolius	Brazil	KC343216 KC343458 KC343700 KC343942 KC344184
D. teratum	CFCC 3.15183	Teratumena gymnastisbenna	China	KC153098 NA NA KC153089 NA
D. thunbergii	MFLUCC 10-576a	Thunbergia laurifolia	Thailand	JQ619893 JX197440 NA JX275409 JX275449
D. tiensinensis	CFCC 51999	Inglandia regia	China	MF279843 MF279888 MF279828 MF279858 MF279873
D. tiliobasis	BRIP 62248a	Theobroma cacao	Australia	KR936130 NA NA KR936133 KR936132
D. ukurundiensis	CFCC 52592	Acker ukurundien	China	MH121527 MH121445 MH121485 MH121569 NA
D. uslobiensi	CFCC 3.17569	Citrus sp	China	KJ90587 NA KJ90529 KJ90466 KJ90408
D. undulata	CFCC 52594	Carica ilicifolia	China	MH121529 MH121447 MH121487 MH121606
D. variegata	CGMCC 3.18293	Leaf of unknown host	China-Laos border	KX98798 NA KX999269 KX999190 KX999230
D. variegata	BRIP 57887a	Podium gajtosa	Australia	KR936126 NA NA KR936129 KR936128

Species: D. perseae, D. pescicola, D. podocarpis-macrophylli, D. pseudomangiferae, D. pseudophoenix-nicola, D. porulai-pinnatae, D. pterocarpica, D. pulla, D. pyracanthae, D. racemosae, D. rostrata, D. sackstonii, D. sambucusii, D. sojae, D. sterilis, D. streptocarpica, D. subclavata, D. subellipicola, D. subordinaria, D. taoicola, D. tectonae, D. tectonendophytica, D. tectonigena, D. terebinthifoliid, D. tibetensis, D. tiliobasis, D. ukurundiensis, D. uslobiensi, D. undulata, D. variegata.
Diaporthe species from cankered branches and leaves

Species	Isolate	Host	Location	GenBank accession numbers				
				ITS	**cal**	**his3**	**tef1**	**tub2**
D. verniciicola	CFCC 53109	Vernicia montana	China	MK573944	MK574583	MK574599	MK574619	MK574639
D. verniciicola	CFCC 53110	Vernicia montana	China	MK573945	MK574584	MK574600	MK574620	MK574640
D. verniciicola	CFCC 53111	Vernicia montana	China	MK573946	MK574585	MK574601	MK574621	MK574641
D. verniciicola	CFCC 53112	Vernicia montana	China	MK573947	MK574586	MK574602	MK574622	MK574642
				MK573944	MK574583	MK574599	MK574619	MK574639
D. viniferae	JZB20071	Vitis vinifera	China	MK341551	MK500107	MK500119	MK500012	
D. virgiliae	CMW40748	Virgilia arboidea	South Africa	KP247566	NA	NA	NA	KP247575
D. xishuangbanica	CGMCC 3.18282	Camellia sinensis	China	KX986783	NA	KX999255	KX999175	KX999216
D. xishuangbanica	CFCC 53085	Unknown dead wood	China	MK432663	MK442983	MK443008	MK578137	MK578065
D. xishuangbanica	CFCC 53086	Unknown dead wood	China	MK432664	MK442984	MK443009	MK578138	MK578064
D. yunnanensis	CGMCC 3.18289	Coffea sp.	China	KX986796	KX999290	KX999267	KX999188	KX999228
Diaporthella corylina	CBS 121124	Corylus sp.	China	KC343004	KC343246	KC343488	KC343730	KC343972

Newly sequenced material is indicated in bold type. NA, not applicable.

The primer pair EF1-728F/EF1-986R (Carbone and Kohn 1999) was used to amplify a partial fragment of the translation elongation factor 1α gene (**tef1**). The primer sets T1 (O’Donnell and Cigelnik 1997) and Bt2b (Glass and Donaldson 1995) were used to amplify the beta-tubulin gene (**tub2**); the additional combination of Bt2a/Bt2b (Glass and Donaldson 1995) was used in case of amplification failure of the T1/Bt2b primer pair. The PCR amplifications of the genomic DNA with the phylogenetic markers were done using the same primer pairs and conditions as in Yang et al. (2018). The PCR products were assayed via electrophoresis in 2% agarose gels, while the DNA sequencing was performed using an ABI PRISM 3730XL DNA Analyser with a BigDye Terminator Kit v.3.1 (Invitrogen, USA) at the Shanghai Invitrogen Biological Technology Company Limited (Beijing, China).

Phylogenetic analyses

The quality of the amplified nucleotide sequences was checked and combined using SeqMan v.7.1.0 and reference sequences were retrieved from the National Center for Biotechnology Information (NCBI), based on recent publications on the genus *Diaporthe* (Guarnaccia et al. 2018; Yang et al. 2018, 2020). Sequences were aligned using MAFFT v. 6 (Katoh and Toh 2010) and corrected manually using Bioedit 7.0.9.0 (Hall 1999). The best-fit nucleotide substitution models for each gene were selected using jModelTest v. 2.1.7 (Darriba et al. 2012) under the Akaike Information Criterion.

The phylogenetic analyses of the combined gene regions were performed using Maximum Likelihood (ML) and Bayesian Inference (BI) methods. ML was conducted using PhyML v. 3.0 (Guindon et al. 2010), with 1000 bootstrap replicates while BI was performed using a Markov Chain Monte Carlo (MCMC) algorithm in MrBayes v. 3.0 (Ronquist et al. 2003). Two MCMC chains, started from random trees for 1,000,000 generations and trees, were sampled every 100th generation, resulting in a
total of 10,000 trees. The first 25% of trees were discarded as burn-in of each analysis. Branches with significant Bayesian Posterior Probabilities (BPP) were estimated in the remaining 7500 trees. Phylogenetic trees were viewed with FigTree v.1.3.1 (Rambaut and Drummond 2010) and processed by Adobe Illustrator CS5. Sequence alignment and phylogenetic trees were deposited in TreeBASE (submission ID: S25213). The nucleotide sequence data of the new taxa were deposited in GenBank (Table 1).

Results

The phylogenetic position of the 24 isolates of *Diaporthe* was determined by the phylogenetic analysis of the combined ITS, *cal*, *his3*, *tef1* and *tub2* sequences data. Reference sequences of the representative species used in the analysis were selected from Yang et al. (2018) and supplemented with sequences from GenBank. The ITS, *cal*, *his3*, *tef1*, *tub2* and combined data matrices contained 522, 541, 529, 520, 535 and 2659 characters with gaps, respectively. The alignment comprised of 142 strains together with *Diaporthella corylina* (culture CBS 121124) which was selected as the outgroup. The best nucleotide substitution model used for the analysis of ITS, *his3* and *tub2* was TrN+I+G, while HKY+I+G was used for *cal* and *tef1*. The topologies resulting from ML and BI analyses of the concatenated dataset were congruent (Fig. 1) and the sequences from the 24 *Diaporthe* isolates formed eight distinct clades as shown in Fig. 1, representing five undescribed species and three known species.

Taxonomy

Diaporthe apiculatum Y.H. Gao & L. Cai, in Gao, Liu & Cai, Syst. Biodiv. 14: 106. 2016.

Figure 2

Description. Conidiomata pycnidial, discoid, immersed in bark, scattered, slightly erumpent through bark surface, with a solitary undivided locule. Ectostromatic disc yellowish to grey, one ostiole per disc, (300–)305–357(–368) μm diam. Ostiole medium black, up to level of disc. Locule undivided, (338–)357–450(–464) μm diam. Conidiophores reduced to conidiogenous cells. Conidiogenous cells cylindrical, hyaline, densely aggregated, phialidic, unbranched, straight or slightly curved. Beta conidia hyaline, aseptate, filiform, hamate, eguttulate, base subtruncate, tapering towards one apex, (26.5–)30–39.5(–43) × 1.5–2 μm. Alpha conidia not observed.

Culture characters. Colony originally flat with white fluffy aerial mycelium, becoming yellowish to pale green mycelium with age, marginal area irregular, conidiomata absent.

Specimens examined. China. Jiangxi Province: Ganzhou City, Fengshan Forest Park, on branches of *Rhus chinensis*, 25°45’12”N, 115°00’41”E, 23 Jul 2018, Q. Yang, Y. Liu, Y.M. Liang & C.M. Tian (BJFC-S1680; living culture: CFCC 53068, CFCC 53069 and CFCC 53070).
Figure 1. Phylogram of *Diaporthe* from a Maximum Likelihood analysis based on combined ITS, *cal*, *his3*, *tef1* and *tub2*. Values above the branches indicate Maximum Likelihood bootstrap (left, ML BP ≥ 50%) and Bayesian probabilities (right, BI PP ≥ 0.90). The tree is rooted with *Diaporthella corylina*. Strains in current study are in blue font and the ex-type cultures are in bold font.
Figure 1. Continued.

Figure 2. *Diaporthe apiculatum* on *Rhus chinensis* (BJFC-S1680) **a**, **b** habit of conidiomata in wood **c** transverse section of conidiomata **d** longitudinal section through conidiomata **e** conidiogenous cells attached with beta conidia **f** the colony on PDA. Scale bars: 200 μm (**b–d**); 10 μm (**e**).
Notes. *Diaporthe apiculatum* was originally described as an endophyte from healthy leaves of *Camellia sinensis* in Jiangxi Province, China (Gao et al. 2015). In the present study, three isolates (CFCC 53068, CFCC 53069 and CFCC 53070) from symptomatic branches of *Rhus chinensis* were found congruent with *D. apiculatum*, based on DNA sequence and morphological data (Fig. 1). The clade was, therefore, confirmed to be *D. apiculatum* and was found to be both an endophyte and a pathogen.

Diaporthe bauhiniae C.M. Tian & Q. Yang, sp. nov.

MycoBank No: 829519

Figure 3

Diagnosis. Distinguished from the phylogenetically closely-related species *D. psoraleae-pinnatae* in alpha and beta conidia.

Etymology. Named after *Bauhinia*, the host genus where the fungus was isolated.

Description. Conidiomata pycnidial, immersed in bark, scattered, slightly erumpent through bark surface, nearly flat, discoid, with a solitary undivided locule. Ectostromatic disc grey to brown, one ostiole per disc. Locule circular, undivided, (180–)200–290(–300) μm diam. Conidiophores reduced to conidiogenous cells. Conidiogenous cells hyaline, cylindrical, unbranched, straight, tapering towards the apex. Alpha conidia hyaline, aseptate, ellipsoidal to fusiform, biguttulate to multi-guttulate, (7.5–)9–13(–14) × (1.5–)2–2.5(–3) μm. Beta conidia hyaline, aseptate, filiform, straight to sinuous, eguttulate, (25–)28.5–40(–43) × 1 μm.

Culture characters. Colony at first white, becoming wine-red in the centre with age. Aerial mycelium white, dense, fluffy, conidiomata absent.

Specimens examined. China. Jiangxi Province: Ganzhou City, on branches of *Bauhinia purpurea*, 25°52'21"N, 114°56'44"E, 11 May 2018, Q. Yang, Y. Liu & Y.M. Liang (holotype BJFC-S1621; ex-type living culture: CFCC 53071; living culture: CFCC 53072 and CFCC 53073).

Notes. Three isolates representing *D. bauhiniae* cluster in a well-supported clade and appear most closely related to *D. psoraleae-pinnatae*. *Diaporthe bauhiniae* can be distinguished from *D. psoraleae-pinnatae*, based on ITS and *tub2* (38/458 in ITS and 11/418 in *tub2*). Morphologically, *D. bauhiniae* differs from *D. psoraleae-pinnatae* in having narrower alpha conidia (2–2.5 vs. 2.5–3 μm) and the beta conidia of *D. psoraleae-pinnatae* were not observed (Crous et al. 2013).

Diaporthe citri (H.S. Fawc.) F.A. Wolf, J. Agric. Res., Washington 33(7): 625, 1926.

Figure 4

Description. Leaf spots subcircular to irregular, pale brown, with dark brown at margin. Pycnidia solitary, scattered on the leaf surface. Pycnidial conidiomata in culture, globose, erumpent, single or clustered in groups of 3–5 pycnidia, coated with hyphae, cream to yellowish translucent conidial droplets exuded from ostioles. Conidiophores
Figure 3. *Diaporthe bauhiniae* on *Bauhinia purpurea* (BJFC-S1621) **a** habit of conidiomata in wood **b** transverse section of conidiomata **c** longitudinal section through conidiomata **d** the colony on PDA **e** conidiogenous cells attached with alpha conidia **f** Alpha conidia **g** Beta conidia. Scale bars: 100 μm (**b, c**); 10 μm (**e–h**).

Figure 4. *Diaporthe citri* on *Citrus sinensis* (BJFC-S1658) **a, b** symptoms on leaves of host plant **c** culture on PDA (30d) **d** conidiomata **e** alpha conidia **f** conidiophores and alpha conidia. Scale bars: 10 μm (**e, f**).

Reduced to conidiogenous cells. Conidiogenous cells hyaline, unbranched, septate, straight, slightly tapering towards the apex, 14.5–25 × 2–3 μm. Alpha conidia hyaline, aseptate, rounded at one end, apex at the other end, usually with two large guttulate, (9.5–)10.5–12 × 3.5–4.5 μm. Beta conidia not observed.

Culture characters. Colony originally flat with white fluffy aerial mycelium, becoming greyish mycelium with age, with yellowish-cream conidial drops exuding from the ostioles.

Specimens examined. China. Jiangxi Province: Ganzhou City, on leaves of *Citrus sinensis*, 24°59′44″N, 115°31′01″E, 13 May 2018, Q. Yang, Y. Liu & Y.M.
Diaporthe species from cankered branches and leaves

Liang (BJFC-S1658; living culture: CFCC 53079 and CFCC 53080); 24°59’45”N, 115°31’02”E, 13 May 2018, Q. Yang, Y. Liu & Y.M. Liang (BJFC-S1659; living culture: CFCC 53081 and CFCC 53082).

Notes. *Diaporthe citri* is a widely distributed species in citrus-growing regions. In the present study, four isolates (CFCC 53079, CFCC 53080, CFCC 53081 and CFCC 53082) from symptomatic leaves of *Citrus sinensis* were congruent with *D. citri*, based on DNA sequence and morphological data (Fig. 1). The clade was, therefore, confirmed to be *D. citri*.

Diaporthe ganzhouensis C.M. Tian & Q. Yang, sp. nov.

MycoBank No: 829522

Figure 5

Diagnosis. Distinguished from the phylogenetically closely-related species *D. vawdreyi* in having longer conidiophores and wider alpha conidia.

Etymology. Named after Ganzhou City where the species was first collected.

Description. On PDA: Conidiomata pycnidial, subglobose, solitary, deeply embedded in the medium, erumpent, dark brown to black. Pale yellow conidial drops exuding from ostioles. Conidiophores (12–)15.5–21 × 1.5–2 μm, cylindrical, hyaline, phialidic, branched, straight or slightly curved. Alpha conidia 6.5–8.5(–9) × 2–2.5(–3) μm, aseptate, hyaline, ellipsoidal to fusiform, rounded at one end, slightly apex at the other end, biguttulate. Beta conidia hyaline, aseptate, filiform, sinuous at one end, eguttulate, (21.5–)25.5–31(–33) × 1 μm.

Culture characters. Colony at first white, becoming yellowish with age. Aerial mycelium white, dense, fluffy, with visible solitary conidiomata at maturity.

Specimens examined. China. Jiangxi Province: Ganzhou City, unknown dead wood, 25°45’17”N, 115°00’41”E, 23 Jul 2018, Q. Yang, Y. Liu, Y.M. Liang & C.M. Tian (holotype BJFC-C004; ex-type culture: CFCC 53087; living culture: CFCC 53088).

Notes. *Diaporthe ganzhouensis* comprises the isolates CFCC 53087 and CFCC 53088, revealed to be closely related to *D. vawdreyi* in the combined phylogenetic tree (Fig. 1). *Diaporthe ganzhouensis* can be distinguished, based on ITS, *tef1*-α and *tub2* loci from *D. vawdreyi* (6/456 in ITS, 63/357 in *tef1*-α and 40/469 in *tub2*). *Diaporthe ganzhouensis* differs morphologically from *D. vawdreyi* in having longer conidiophores (15.5–21 vs. 6–15 μm) and wider alpha conidia (2–2.5 vs. 1.5–2 μm) (Crous et al. 2015).

Diaporthe multiguttulata F. Huang, K.D. Hyde & Hong Y. Li, in Huang et al., *Fungal Biology* 119(5): 343. 2015.

Figure 6

Description. Conidiomata pycnidial, 692–750(–800) μm diam., solitary and with single necks erumpent through host bark. Tissue around neck is cylindrical. Locule circular, undivided, 450–565(–600) μm diam. Conidiophores reduced to conidiogenous cells. Con-
idiogenous cells unbranched, straight or slightly curved, apical or base sometimes swelling, (8.5–)9–10.5(–11) × 1.5–2 μm. Alpha conidia hyaline, aseptate, ellipsoidal, biguttulate or with one large guttulate, rounded at one end, slightly apex at the other end, occasionally submedian constriction, (7.5–)8–9(–10.5) × 4–5(–5.5) μm. Beta conidia not observed.
Cultured characters. Colony originally flat with white felty aerial mycelium, becoming pale green mycelium with age, margin area irregularly, with visible solitary conidiomata at maturity.

Specimens examined. China. Jiangxi Province: Ganzhou City, on branches of *Citrus maxima*, 25°51′28″N, 114°55′19″E, 11 May 2018, Q. Yang, Y. Liu & Y.M. Liang (BJFC-S1614; living culture: CFCC 53095, CFCC 53096 and CFCC 53097).

Notes. *Diaporthe multiguttulata* was originally described as an endophyte from a healthy branch of *Citrus grandis* in Fujian Province, China (Huang et al. 2015). In the present study, three isolates (CFCC 53095, CFCC 53096 and CFCC 53097) from symptomatic branches of *Citrus maxima* were congruent with *D. multiguttulata*, based on DNA sequence data and confirmed from the morphological analysis (Fig. 1). The clade, therefore, was verified as *D. multiguttulata* which could exist both as an endophyte and a pathogen.

Diaporthe schimae C.M. Tian & Q. Yang, sp. nov.

Mycobank No: 829526

Figure 7

Diagnosis. Distinguished from the phylogenetically closely-related species *D. sennae* in having larger alpha conidia and longer beta conidia.

Etymology. Named after the host genus *Schima* on which the fungus was isolated.

Description. Leaf spots subcircular to irregular, pale brown, with dark brown at margin. Pycnidia solitary, scattered on the leaf surface. Pycnidial conidiomata in culture, globose, (150–)173–357(–373) μm in its widest diam., erumpent, single or clustered in groups of 3–5 pycnidia, coated with hyphae, cream to yellowish translucent conidial droplets exuded from ostioles. Conidiophores reduced to conidiogenous cells. Conidiogenous cells hyaline, unbranched, septate, straight, slightly tapering towards the apex. Alpha conidia scarce, hyaline, aseptate, ellipsoidal to spindle-shaped, four small guttulate, (7.5–)8–8.5(–9) × 2.5–3 μm. Beta conidia abundant, hyaline, aseptate, filiform, straight to sinuous at one end, eguttulate, (25–)27.5–38.5(–40.5) × 1–1.5 μm.

Culture characters. Colony entirely white, with fluffy aerial mycelium, concentric zonation, margin fimbricate, reverse slightly yellowish.

Specimens examined. China. Jiangxi Province: Ganzhou City, Fengshan Forest Park, on leaves of *Schima superba*, 25°44′22″N, 114°59′40″E, 15 May 2018, Q. Yang, Y. Liu & Y.M. Liang (holotype BJFC-S1661; ex-type culture: CFCC 53103); 24°40′51″N, 115°34′36″E, 15 May 2018, Q. Yang, Y. Liu & Y.M. Liang (BJFC-S1662; living culture: CFCC 53104); 24°40′52″N, 115°34′54″E, 15 May 2018, Q. Yang, Y. Liu & Y.M. Liang (BJFC-S1663; living culture: CFCC 53105).

Notes. *Diaporthe schimae* occurs in an independent clade (Fig. 1) and was revealed to be phylogenetically distinct from *D. sennae*. *Diaporthe schimae* can be distinguished with *D. sennae* by 41 nucleotides in concatenated alignment, in which three were
distinct in the ITS region, 20 in the *tef1-a* region and 18 in the *tub2* region. *Diaporthe schimae* differs morphologically from *D. sennae* in having larger alpha conidia and longer beta conidia (8–8.5 × 2.5–3 vs. 5.5–6.3 × 1.5–1.7 μm in alpha conidia; 27.5–38.5 vs. 18.4–20 μm in beta conidia) (Yang et al. 2017a).

Diaporthe verniciicola C.M. Tian & Q. Yang, sp. nov.
MycoBank No: 832921
Figure 8

Diagnosis. Distinguished from the phylogenetically closely-related species *D. rostrata* in having smaller alpha conidia; and from *D. juglandicola* in having wider alpha conidia.

Etymology. Named after the host genus *Vernicia* on which the fungus was isolated.

Description. Conidiomata pycnidial, 825–1050 × 445–500 μm diam., solitary and with single necks erumpent through host bark. Tissue around neck is conical. Locule circular, undivided, 400–665 μm diam. Conidiophores reduced to conidiogenous cells. Conidiogenous cells unbranched, straight or sinuous, 14.5–21.5 × 1–1.5 μm. Alpha conidia hyaline, aseptate, ellipsoidal to fusiform, with 1–2-guttulate, 7–8.5 × 3–3.5 μm. Beta conidia not observed.

Culture characters. Colony white to yellowish, with dense and felted mycelium in the centre, lacking aerial mycelium, conidiomata absent.
Specimens examined. China, Jiangxi Province: Ganzhou City, on branches of Vernicia montana, 24°40′51″N, 115°34′52″E, 12 May 2018, Q. Yang, Y. Liu & Y.M. Liang (holotype BJFC-S1622; ex-type culture: CFCC 53109); 24°40′52″N, 115°34′50″E, 12 May 2018, Q. Yang, Y. Liu & Y.M. Liang (BJFC-S1623; living culture: CFCC 53110); 24°45′14″N, 115°34′00″E, 12 May 2018, Q. Yang, Y. Liu & Y.M. Liang (BJFC-S1624; living culture: CFCC 53111); 25°44′15″N, 114°59′32″E, 15 May 2018, Q. Yang, Y. Liu & Y.M. Liang (BJFC-S1624; living culture: CFCC 53112).

Notes. Two isolates of *D. verniciicola* clustered in a well-supported clade (ML/BI = 100/1) and appeared closely related to *D. rostrata* and *D. juglandicola* (Fig. 1). Morphologically, *D. verniciicola* is similar to *D. rostrata* characterised by conidiomata with single necks erumpent through the host bark. However, the new taxon can be distinguished from *D. rostrata* in having smaller alpha conidia (7–8.5 × 3–3.5 vs. 8.5–11.5 × 4–5 μm) (Fan et al. 2015) and *D. verniciicola* differs from *D. juglandicola* in having wider alpha conidia (3–3.5 vs. 2.5–3 μm) (Yang et al. 2017b). This is the first discovery of a *Diaporthe* species isolated from infected branches or twigs on *Vernicia montana* and was confirmed as a new species, based on phylogeny and morphology.

Diaporthe xunwuensis C.M. Tian & Q. Yang, sp. nov.
MycoBank No: 829521
Figure 9

Diagnosis. Distinguished from the phylogenetically closely-related species *D. oraccinii* in having longer conidiophores and larger alpha conidia.
Etymology. Named after the county (Xunwu) where the species was first collected.

Description. On PDA: Conidiomata pycnidial, globose, solitary or aggregated, deeply embedded in the medium, erumpent, dark brown to black. Hyaline conidial drops exuding from ostioles. Conidiophores (18.5–)21.5–30(–32.5) × 1–1.5(–2) μm, cylindrical, hyaline, phialidic, unbranched, straight to sinuous. Alpha conidia (6.5–)7–8.5 × 2–3 μm, aseptate, hyaline, ellipsoidal to fusiform, rounded at one end, slightly apex at the other end, usually with 2-guttulate. Beta conidia not observed.

Culture characters. Colony at first white, becoming dark brown in the centre with age. Aerial mycelium white, dense, fluffy, with black conidial drops exuding from the ostioles.

Specimens examined. China. Jiangxi Province: Ganzhou City, unknown dead wood, 25°45’17”N, 115°00’41”E, 23 Jul 2018, Q. Yang, Y. Liu, Y.M. Liang & C.M. Tian (holotype BJFC-C003; ex-type culture: CFCC 53085; living culture: CFCC 53086).

Notes. Two isolates representing Diaporthe xunwuensis clustered in a well-supported clade and appear most closely related to D. oraccinii. Diaporthe xunwuensis can be distinguished from D. oraccinii, based on ITS, his3 and tef1-α loci (5/471 in ITS, 5/432 in his3 and 5/325 in tef1-α). Morphologically, D. xunwuensis differs from D. oraccinii in having longer conidiopores (21.5–30 vs. 10.5–22.5 μm) and larger alpha conidia (7–8.5 × 2–3 vs. 5.5–7.5 × 0.5–2 μm) (Gao et al. 2016).

Discussion

The current study described eight Diaporthe species from 24 strains, based on a large set of freshly-collected specimens. It includes five new species and three known species, which were sampled from six host genera distributed in Jiangxi Province of China (Table 1). In this study, 142 reference sequences (including outgroup) were selected, based on BLAST searches of NCBI’s GenBank nucleotide database and included in the phylogenetic analyses (Table 1). Phylogenetic analyses, based on five combined loci (ITS, cal, his3, tef1 and rub2), as well as morphological characters, revealed the diversity of Diaporthe species in Jiangxi Province, mainly focusing on diebacks from major ecological or economic forest trees.
The identification and characterisation of novel taxa and new host records indicate the high potential of *Diaporthe* to evolve rapidly. In the present study, five species were first reported in China as pathogens. Amongst these species, *D. baubiniae* was characterised by having longer alpha conidia (9–13 × 2–2.5 μm). *Diaporthe ganzhouensis* and *D. xunwuensis* were isolated from unknown dead wood, but *D. ganzhouensis* can be distinguished from *D. xunwuensis* in having beta conidia and was supported by analysis of the sequence data. *Diaporthe schimae* was identified as the most widespread species from isolates collected in Jiangxi Province. *Diaporthe verniciicola* have conidiomata with single necks erumpent through the host bark. Furthermore, two new host records were described, *D. apiculatum* from *Rhus chinensis* and *D. multiguttulata* from *Citrus maxima*.

Recent plant pathological studies have revealed that several *Diaporthe* species cause disease, particularly to important plant hosts on a wide range of economically-significant agricultural crops, such as blueberries, citrus, grapes, oaks, sunflowers, soybeans, tea plants, tropical fruits, vegetables and various trees (van Rensburg et al. 2006; Santos and Phillips 2009; Santos et al. 2011; Thompson et al. 2011; Grasso et al. 2012; Lombard et al. 2014; Huang et al. 2015; Udayanga et al. 2015; Gao et al. 2016; Guarnaccia et al. 2018; Yang et al. 2020). For example, research conducted by Huang et al. (2015) revealed seven endophytic *Diaporthe* species on *Citrus*; Gao et al. (2016) demonstrated that *Diaporthe* isolates associated with *Camellia* spp. could be assigned to seven species and two species complexes; Guarnaccia et al. (2018) explored the occurrence, diversity and pathogenicity of *Diaporthe* species associated with *Vitis vinifera* and revealed four new *Diaporthe* species; Yang et al. (2018) provided the first molecular phylogenetic framework of *Diaporthe* diversity associated with dieback diseases in China. Following the adoption of DNA sequence-based methods, *Diaporthe* taxonomy is actively changing, with numerous species being described each year.

The present study is the first evaluation of *Diaporthe* species, associated with dieback diseases in Jiangxi Province using the combined morphology and molecular data and provided useful information for evaluating the pathogenicity of various species. Multiple strains from different locations should also be subjected to multi-locus phylogenetic analysis to determine intraspecific variation and redefine species boundaries. The descriptions and molecular data of *Diaporthe* species, provided in this study, represent a resource for plant pathologists, plant quarantine officials and taxonomists for identification of *Diaporthe*.

Acknowledgements

This study is financed by the National Natural Science Foundation of China (Project No.: 31670647). We are grateful to Chungen Piao and Minwei Guo (China Forestry Culture Collection Center (CFCC), Chinese Academy of Forestry, Beijing) for support of strain preservation during this study.
References

Carbone I, Kohn LM (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 3: 553–556. https://doi.org/10.1080/00275514.1999.1 2061051

Crous PW, Gams W, Stalpers JA, Robert V, Stegehuis G (2004) MycoBank: an online initiative to launch mycology into the 21st century. Studies in Mycology 50: 19–22.

Crous PW, Summerell BW, Shivis RG, Burgess TI, Decock CA, Dreyer LL, Granke LL, Guest DI, Hardy GESTJ, Hausbeck MK, Hübler D, Jung T, Koukol O, Lennox CL, Liew ECY, Lombard L, McTaggart AR, Pryke JS, Roets F, Saude C, Shuttleworth LA, Stukely MJC, Vánky K, Webster BJ, Windstam ST, Groenewald JZ (2012) Fungal Planet description sheets: 107–127. Persoonia 28: 138–182. https://doi.org/10.3767/003158512X652633

Crous PW, Wingfield MJ, Guarro J, Cheewangkoon, R, van der Bank, M, Swart WJ, Stchigel AM, Cano-Lira JF, Roux J, Madrid H, Damm U, Wood AR, Shuttleworth LA, Hodges CS, Munster, M de Jesús Yáñez-Morales M, Zúñiga-Estrada L, Cruywagen EM, De Hoog GS, Silvera C, Najařzadeh J, Davison EM, Davison PJN, Barrett MD, Barrett RL, Man-amgoda DS, Minnis AM, Kleczewski NM, Flory SL, Castlebury LA, Clay K, Hyde KD, Mausuß-Sitoe SND, Shuaiféi C, Lechat C, Hairaud M, Lejeune-Messens L, Pawlowska J, Wilk M, Śliwińska-Wyrzychowska A, Mętrak M, Wrzosek M, Pavlic-Zupanc D, Maleme HM, Slippers B, Mac Cormack WP, Archuby DI, Grünwald NJ, Telleria MT, Dueñas M, Martín MP, Marincowitz S, de Beer ZW, Perez CA, Gené J, Marin-Felix Y, Groenewald JZ (2013) Fungal Planet description sheets: 154–213. Persoonia 31: 188–296. https://doi. org/10.3767/003158513X675925

Crous PW, Wingfield MJ, Le Roux JJ, Richardson DM, Strasberg D, Shivis RG, Alvarado P, Edwards J, Moreno G, Sharma R, Sonawane MS, Tan YP, Alräs A, Barasubiye T, Barnes CW, Blanchette RA, Boertmann D, Bogo A, Carlavilla JR, Cheewangkoon R, Daniel R, de Beer ZW, Yáñez-Morales M de Jesús, Duong TA, Fernández-Vicente J, Geering ADW, Guest DI, Held BW, Heykoop M, Hubka V, Ismail AM, Kajale SC, Khemmuk W, Kolařík M, Kurli R, Lebeuf R, Lévesque CA, Lombard L, Magista D, Manjón JL, Marincowitz S, Mohedano JM, Novaková A, Oberlies NH, Otto EC, Paragyanid ND, Pascoe IG, Pérez-Butrón JL, Perrone G, Rahi P, Raja HA, Rintoul T, Sanhueza RMV, Scarlett K, Shouche YS, Shuttleworth LA, Taylor PWJ, Thorn RG, Vawdrey LL, Solano-Vidal R, Voitik A, Wong PTW, Wood AR, Zamora JC, Groenewald JZ (2015) Fungal Planet description sheets: 371–399. Persoonia 35: 264–327. https://doi.org/10.3767/003158515X690269

Dai DQ, Wijayawardene NN, Bhat DJ, Chukeatirote E, Bahkali AH, Zhao R-L, Xu J-C, Hyde KD (2014) Pustulomyces gen. nov. accommodated in Diaporthaceae, Diaporthales, as revealed by morphology and molecular analyses. Cryptogamie, Mycologie 35: 63–72. https://doi.org/10.7872/crym.v35.iss1.2014.63

Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9: e772. https://doi.org/10.1038/nmeth.2109

Desjardins P, Hansen JB, Allen M (2009) Microvolume protein concentration determination using the NanoDrop 2000c spectrophotometer. Journal of Visualized Experiments: JoVE 33: 1–3. https://doi.org/10.3791/1610
Diogo E, Santos JM, Phillips AJ (2010) Phylogeny, morphology and pathogenicity of Diaporthe and Phomopsis species on almond in Portugal. Fungal Diversity 44: 107–115. https://doi.org/10.1007/s13225-010-0057-x

Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12: 13–15. https://doi.org/10.2307/2419362

Fan XL, Hyde KD, Udayanga D, Wu XY, Tian CM (2015) Diaporthe rostrata, a novel ascomycete from Juglans mandshurica associated with walnut dieback. Mycological Progress 14: 1–8. https://doi.org/10.1007/s11557-015-1104-5

Fan XL, Yang Q, Bezerra JDP, Alvarez LV, Tian CM (2018) Diaporthe from walnut tree (Juglans regia) in China, with insight of Diaporthe eres complex. Mycological Progress 1–13. https://doi.org/10.1007/s11557-018-1395-4

Fu CH, Hsieh HM, Chen CY, Chang TT, Huang YM, Ju YM (2013) Ophiodiaporthe cyatheae gen. et sp. nov., a diaporthalean pathogen causing a devastating wilt disease of Cyathea lepifera in Taiwan. Mycologia 105: 861–872. https://doi.org/10.3852/12-346

Gao YH, Liu F, Cai L (2016) Unravelling Diaporthe species associated with Camellia. Systematics and Biodiversity 14: 102–117. https://doi.org/10.1080/14772000.2015.1101027

Gao YH, Liu F, Duan W, Crous PW, Cai L (2017) Diaporthe is paraphyletic. IMA Fungus 8: 153–187. https://doi.org/10.5598/imafungus.2017.08.01.11

Gao YH, Su YY, Sun W, Cai L (2015) Diaporthe species occurring on Lithocarpus glabra in China, with descriptions of five new species. Fungal Biology 115: 295–309. https://doi.org/10.1016/j.funbio.2014.06.006

Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology 61: 1323–1330. https://doi.org/10.1128/AEM.61.4.1323-1330.1995

Gomes RR, Glienke C, Videira SIR, Lombard L, Groenewald JZ, Crous PW (2013) Diaporthe: a genus of endophytic, saprobic and plant pathogenic fungi. Persoonia 31: 1–41. https://doi.org/10.3767/003158513X666844

Grasso FM, Marini M, Vitale A, Firrao G, Granata G (2012) Canker and dieback on Platanus × acerifolia caused by Diaporthe scabra. Forest Pathology 42: 510–513. https://doi.org/10.1111/j.1439-0329.2012.00785.x

Guarnaccia V, Crous PW (2017) Emerging citrus diseases in Europe caused by species of Diaporthe. IMA Fungus 8: 317–334. https://doi.org/10.5598/imafungus.2017.08.02.07

Guarnaccia V, Groenewald JZ, Woodhall J, Armengol J, Cinelli T, Eichmeier A, Ezra D, Fontaine F, Gramaje D, Gutiérrez-Aguirregabiria A, Kaliterna J, Kiss L, Larignon P, Luque J, Mugnai L, Naor V, Raposo R, Sándor E, Váczy KZ, Crous PW (2018) Diaporthe diversity and pathogenicity revealed from a broad survey of grapevine diseases in Europe. Persoonia 40: 135–153. https://doi.org/10.3767/persoonia.2018.40.06

Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59: 307–321. https://doi.org/10.1093/sysbio/syq010

Hall T (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98.
Huang F, Udayanga D, Wang X, Hou X, Mei X, Fu Y, Hyde KD, Li HY (2015) Endophytic Diaporthe associated with Citrus: A phylogenetic reassessment with seven new species from China. Fungal Biology 119: 331–347. https://doi.org/10.1016/j.funbio.2015.02.006

Hyde KD, Dong Y, Phookamsak R, Jeewon R, Jayarama Bhat D, Gareth Jones EB, Liu N-G, Abeywickrama PD, Mapook A, Wei D, Perera RH, Manawasinghe IS, Pem D, Bundhun D, Karunarathna A, Ekanayaka AH, Bao D-F, Li J, Samarakoon MC, Chaiwan N, Chuan-Gen Lin, Phuththacharoen K, Zhang S-N, Senanayake IC, Goonasekara ID, Thambugala KM, Phulhamsakda C, Tennakoon DS, Jiang H-B, Yang J, Zeng M, Huanraluek N, Liu J-K, Wijesinghe SN, Tian Q, Tibpromma S, Brahmage RS, Boonmee S, Huang S-K, Thiagajaran V, Lu Y-Z, Jayawardena RS, Dong W, Yang E-F, Singh SK, Singh MS, Rana S, Lad SS, Anand G, Devadatha B, Niranjana M, Sarma VV, Liimatainen K, Aguirre-Hudson B, Niskanen T, Overall A, Alvarenga LRM, Gibertoni BT, Pfieglwer WP, Horváth E, Imre A, Alves LA, da Silva Santos CA, Tiago VP, Bulgakov TS, Wansinghe DN, Bahkali AH, Doilm M, Elgorban AM, Maharachchikumbura SSN, Rajeshkumar KC, Haelewaters D, Mortimer PE, Zhao Q, Lumyong S, Xu J, Sheng J (2020) Fungal diversity notes 1151–1276: taxonomic and phylogenetic contributions on genera and species of fungal taxa. Fungal Diversity 100: 5–277. https://doi.org/10.1007/s13225-020-00439-5

Katoh K, Toh H (2010) Parallelization of the MAFFT multiple sequence alignment program. Bioinformatics 26: 1899–1900. https://doi.org/10.1093/bioinformatics/btp224

Lamprecht SC, Crous PW, Groenewald JZ, Tewoldemedhin YT, Marasas WFO (2011) Diaporthaceae associated with root and crown rot of maize. IMA Fungus 2: 13–24. https://doi.org/10.5598/imafungus.2011.02.01.03

Lombard L, Van Leeuwen GCM, Guarnaccia V, Polizzi G, Van Rijswick PC, Karin Rendahl KC, Gabler J, Crous PW (2014) Diaporthe species associated with Vaccinium, with specific reference to Europe. Phytopathologia Mediterranea 53: 287–299. https://doi.org/10.1016/phytopathol_Mediterr-14034

Manawasinghe IS, Dissanayake A, Liu M, Liu M, Wansinghe DN, Xu J, Zhao W, Zhang W, Zhou Y, Hyde KD, Brooks S, Yan J (2019) High genetic diversity and species complexity of Diaporthe associated with grapevine dieback in China. Frontiers in Microbiology 10: e1936. https://doi.org/10.3389/fmicb.2019.01936

Marin-Felix Y, Hernández-Restrepo M, Wingfield M J, Akulov A, Carnegie AJ, Cheewangkoon R, Gramade J, Groenewald JZ, Guarnaccia V, Halleen F, Lombard L, Luangsa-ard J, Marincowitz S, Moslemi A, Mostert L, Quaedvlieg W, Schumacher RK, Spies CFJ, Thangavel R, Taylor PWJ, Wilson AM, Wingfield BD, Wood AR, Crous PW (2019) Genera of phytopathogenic fungi: GOPHY 2. Studies in Mycology 92: 47–133. https://doi.org/10.1016/j.simyco.2018.04.002

Mostert L, Crous PW, Kang JC, Phillips AJ (2001) Species of Phomopsis and a Libertella sp. occurring on grapevines with specific reference to South Africa: morphological, cultural, molecular and pathological characterization. Mycologia 93: 146–167. https://doi.org/10.1080/00275514.2001.12061286

Muralli TS, Suryanarayanan TS, Geeta R (2006) Endophytic Phomopsis species: host range and implications for diversity estimates. Canadian Journal of Microbiology 52: 673–680. https://doi.org/10.1139/w06-020
Diaporthe species from cankered branches and leaves

O’Donnell K, Cigelnik E (1997) Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus *Fusarium* are nonorthologous. Molecular Phylogenetics and Evolution 7: 103–116. https://doi.org/10.1006/mpev.1996.0376

Rambaut A, Drummond A (2010) FigTree v.1.3.1. Institute of Evolutionary Biology, University of Edinburgh, Edinburgh.

Rayner RW (1970) A mycological colour chart. Commonwealth Mycological Institute, Kew, 34 pp.

Rehner SA, Uecker FA (1994) Nuclear ribosomal internal transcribed spacer phylogeny and host diversity in the coelomycete *Phomopsis*. Canadian Journal of Botany 72: 1666–1674. https://doi.org/10.1139/b94-204

Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574. https://doi.org/10.1093/bioinformatics/btg180

Rossman Ay, Farr DF, Castelbury LA (2007) A review of the phylogeny and biology of the Diaporthales. Mycoscience 48: 135–144. https://doi.org/10.1007/S10267-007-0347-7

Santos JM, Correia VG, Phillips AJL (2010) Primers for mating-type diagnosis in *Diaporthe* and *Phomopsis*, their use in teleomorph induction in vitro and biological species definition. Fungal Biology 114: 255–270. https://doi.org/10.1016/j.funbio.2010.01.007

Santos JM, Phillips AJL (2009) Resolving the complex of *Diaporthe* (*Phomopsis*) species occurring on *Foeniculum vulgare* in Portugal. Fungal Diversity 34: 111–125.

Santos JM, Vrandečić K, Ćosić J, Duvnjak T, Phillips AJL (2011) Resolving the *Diaporthe* species occurring on soybean in Croatia. Persoonia 27: 9–19. https://doi.org/10.3767/003158511X603719

Senanayake IC, Crous PW, Groenewald JZ, Senanayake IC, Crous PW, Groenewald JZ, Maharachchikumbura SSN, Jeewon R, Phillips AJL, Bhat JD, Perera RH, Li QR, Li WJ, Tangthirasunun N, Norphanphoun C, Karunarathna SC, Camporesi E, Manawasighe IS, Al-Sadi AM, Hyde KD (2017) Families of Diaporthales based on morphological and phylogenetic evidence. Studies in Mycology 86: 217–296. https://doi.org/10.1016/j.simyco.2017.07.003

Smith H, Wingfeld MJ, Coutinho TA, Crous PW (1996) *Sphaeropsis sapinea* and *Botryosphaeria dothidea* endophytic in *Pinus* spp. and *Eucalyptus* spp. in South Africa. South African Journal of Botany 62: 86–88. https://doi.org/10.1016/S0254-6299(15)30596-2

Thompson SM, Tăn YP, Young AJ, Neate SM, Aitken EAB, Shivas RG (2011) Stem cankers on sunflower (*Helianthus annuus*) in Australia reveal a complex of pathogenic *Diaporthe* (*Phomopsis*) species. Persoonia 27: 80–89. https://doi.org/10.3767/003158511X617110

Udayanga D, Castelbury LA, Rossman AY, Chukeatirote E, Hyde KD (2014) Insights into the genus *Diaporthe*: phylogenetic species delimitation in the *D. eres* species complex. Fungal Diversity 67: 203–229. https://doi.org/10.1007/s13225-014-0297-2

Udayanga D, Castelbury LA, Rossman AY, Chukeatirote E, Hyde KD (2015) The *Diaporthe sojae* species complex: Phylogenetic re-assessment of pathogens associated with soybean, cucurbits and other field crops. Fungal Biology 119: 383–407. https://doi.org/10.1016/j.funbio.2014.10.009

Udayanga D, Liu X, McKenzie EH, Chukeatirote E, Bahkali AH, Hyde KD (2011) The genus *Phomopsis*: biology, applications, species concepts and names of common phytopathogens. Fungal Diversity 50: 189–225. https://doi.org/10.1007/s13225-011-0126-9
Uecker FA (1988) A world list of Phomopsis names with notes on nomenclature, morphology and biology. Mycological Memoirs 13: 1–231.

van Rensburg JCJ, Lamprecht SC, Groenewald JZ, Castlebury LA, Crous PW (2006) Characterization of Phomopsis spp. associated with die-back of rooibos (Aspalathus linearis) in South Africa. Studies in Mycology 55: 65–74. https://doi.org/10.3114/sim.55.1.65

Wehmeyer LE (1926) A biologic and phylogenetic study of stromatic Sphaerales. American Journal of Botany 13: 575–645. https://doi.org/10.1002/j.1537-2197.1926.tb05903.x

White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: A Guide to Methods and Applications 18: 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1

Yang Q, Fan XL, Du Z, Tian CM (2017b) Diaporthe juglandicola sp. nov. (Diaporthales, Ascomycetes), evidenced by morphological characters and phylogenetic analysis. Mycosphere 8: 817–826. https://doi.org/10.5943/mycosphere/8/5/3

Yang Q, Fan XL, Guarnaccia V, Tian CM (2018) High diversity of Diaporthe species associated with dieback diseases in China, with twelve new species described. MycoKeys 39: 97–149. https://doi.org/10.3897/mycokeys.39.26914

Yang Q, Fan XL, Du Z, Tian CM (2017a) Diaporthe species occurring on Senna bicapsularis in southern China, with descriptions of two new species. Phytotaxa 302: 145–155. https://doi.org/10.11646/phytotaxa.302.2.4

Yang Q, Jiang N, Tian CM (2020) Three new Diaporthe species from Shaanxi Province, China. Mycokeys 67: 1–18. https://doi.org/10.3897/mycokeys.67.49483