SUNYAEV-ZELDOVICH EFFECT IMAGING OF MASSIVE CLUSTERS OF GALAXIES AT REDSHIFT z > 0.8

Marshall Joy, Samuel LaRoque, Laura Grego, John E. Carlstrom, Kyle Dawson, Harald Ebeling, William L. Holzapfel, Daisuke Nagai, and Erik D. Reese

ABSTRACT

We present Sunyaev-Zeldovich effect (SZE) imaging observations of three distant (z > 0.8) and highly X-ray luminous clusters of galaxies, Cl J1226.9+3332, Cl J0152.7−1357, and MS 1054.4−0321. Two of the clusters, Cl J1226.9+3332 and Cl J0152.7−1357, were recently discovered in deep ROSAT X-ray images. Their high X-ray luminosity suggests that they are massive systems, which, if confirmed, would provide strong constraints on the cosmological parameters of structure formation models. Our SZE data provide confirmation that they are massive clusters similar to the well-studied cluster MS 1054.4−0321. Assuming the clusters have the same gas mass fraction as that derived from SZE measurements of 18 known massive clusters, we are able to infer their mass and electron temperature from the SZE data. The derived electron temperatures are 9.8±4.7, 8.7±4.1, and 10.4±5.0 keV, respectively, and we infer total masses of ~2 × 10^{14} h_{100}^{-1} M_\odot within a radius of 65″ (340 h_{100}^{-1} kpc) for all three clusters. For Cl J0152.7−1357 and MS 1054.4−0321, we find good agreement between our SZE-derived temperatures and those inferred from X-ray spectroscopy. No X-ray–derived temperatures are available for Cl J1226.9+3332, and thus the SZE data provide the first confirmation that it is indeed a massive system. The demonstrated ability to determine cluster temperatures and masses from SZE observations without access to X-ray data illustrates the power of using deep SZE surveys to probe the distant universe.

Subject headings: cosmic microwave background — cosmology: observations — galaxies: clusters: individual (Cl J0152.7−1357, Cl J1226.9+3332, MS 1054.4−0321) — techniques: interferometric

On-line material: color figure

1. INTRODUCTION

The existence of galaxy clusters at high redshift can place powerful constraints on the physical and cosmological parameters of structure formation models (Bahcall & Cen 1992; Luppino & Gioia 1995; Oukbir & Blanchard 1997; Donahue et al. 1998; Eke et al. 1998; Haiman, Mohr, & Holder 2001). The greatest leverage is provided by the most massive and distant clusters (e.g., Viana & Liddle 1996). Two distant and highly X-ray luminous clusters were recently discovered in deep ROSAT X-ray images: Cl J1226.9+3332, a cluster at redshift z = 0.89, was discovered in the Wide-Angle ROSAT Pointed Survey (WARPS; Ebeling et al. 2001; Scharf et al. 1997). Cl J0152.7−1357, at redshift z = 0.83, was detected in the ROSAT Deep Cluster Survey, the Serendipitous High-Redshift Archival ROSAT Cluster survey, and WARPS (Della Ceca et al. 2000; Romer et al. 2000; Ebeling et al. 2000). Based on their X-ray luminosities [L_X (0.5–2 keV) ≥ 2 × 10^{44} h_{100}^{2} ergs s^{-1}], these clusters are thought to be highly massive, which, if confirmed, will provide significant constraints on cosmological models (Bahcall & Fan 1998).

In this Letter, we present interferometric imaging of the Sunyaev-Zeldovich effect (SZE) in these clusters, which provides a measure of the gas pressure integrated along the line of sight (Sunyaev & Zeldovich 1972; Birkinshaw 1999). The change in the observed brightness temperature of the cosmic microwave background (CMB) radiation that results from passage through the thermally ionized gas permeating a galaxy cluster is given by

$$\frac{\Delta T_{\text{thermal}}}{T_{\text{CMB}}} = \frac{\kappa_B \sigma_T}{m_e c^2} \int n_e T_e dl,$$

where T_{CMB} is the microwave background temperature (2.7 K), \sigma_T is the Thomson scattering cross section, and m_e, n_e, and T_e are the electron mass, density, and temperature. The frequency dependence of the SZE is represented by f(\nu); in the Rayleigh-Jeans limit, f(\nu) = \nu^{-2}. We use the SZE to determine the mass of Cl J1226.9+3332 and Cl J0152.7−1357 using the methods developed by Grego et al. 2001; in addition, we present interferometric SZE data on MS 1054.4−0321, a cluster of known temperature and mass at z = 0.83 (Gioia & Luppino 1994; Donahue et al. 1998; Hoekstra, Franx, & Kuijken 2000), which provides a standard against which the newly discovered clusters can be compared.

The SZE observations and data analysis are described in § 2, and the conclusions drawn from these data will be found in § 3. Throughout this Letter, we parameterize the Hubble constant in terms of h_{100}, where H_0 = 100 h_{100} km s^{-1} Mpc^{-1}, and we use the cosmological parameters \Omega_m = 0.3 and \Omega_\Lambda = 0.7 unless otherwise stated. Uncertainties are reported at the 68% confidence level.

2. INTERFEROMETRIC IMAGING OF THE SUNYAEV-ZELDOVICH EFFECT

2.1. Observations

To image the SZE in these distant clusters, we outfitted the Owens Valley Radio Observatory (OVRO) and Berkeley-Illinois-Maryland Association (BIMA) millimeter interferometric
ters with sensitive centimeter-wave receivers optimized for SZE measurements (Carlstrom, Joy, & Grego 1996). Our receivers use cryogenically cooled 26–36 GHz high electron mobility transistor amplifiers (Pospieszalski et al. 1995), with characteristic receiver temperatures of $T_{e} \sim 11–20$ K at the 28.5 GHz frequency used for these observations. The cluster pointing centers and on-source integration times are given in Table 1.

The interferometric measurements of Cl J1226.9+3332 and Cl J0152.7–1357 were made at the BIMA interferometer in 1998 and 2000 with nine 6.1 m antennas in a closely packed configuration to maximize sensitivity to the SZE, with a 6/6 FWHM primary beam and baselines ranging from 1.0 to 14.3 kλ (6–140 m). Typical system temperatures, scaled to above the atmosphere, are \(\sim 40–45 \) K in an 800 MHz band centered at 28.5 GHz. Observations of a bright phase calibrator were interleaved with cluster measurements every 25 minutes, and Mars was used for amplitude calibration (Rudy 1987; Grego et al. 2000). The MIRIAD software package (Sault, Teuben, & Wright 1995) was used to calibrate and edit the visibility data and to output the reduced data in UVFITS format for subsequent analysis.

The interferometric measurements of MS 1054.4–0321 were made at the OVRO millimeter array in 1996 June with six 10.4 m antennas in a closely packed configuration, with a 4/2 FWHM primary beam and baselines ranging from 1.0 to 12.0 kλ (10–120 m). Typical system temperatures, scaled to above the atmosphere, are \(\sim 45 \) K in two 1 GHz channels centered at 28.5 and 30.0 GHz (2 GHz total bandwidth). Observations of a bright phase calibrator were interleaved with cluster measurements every 24 minutes. The MMA software package (Sco-ville et al. 1993) was used to calibrate and edit the visibility data and to output the reduced data in UVFITS format for subsequent analysis.

We flagged data from baselines when one of the telescopes was shadowed by another telescope in the array, cluster data that were not bracketed in time by phase calibrator data (mainly at the beginning or end of a track), data for which the phase calibrator indicated poor atmospheric coherence, and, rarely, data with spurious correlations.

2.2. Data Analysis

In order to properly model the cluster, we must account for any point sources in the field. To identify these point sources, we used DIFMAP (Pearson et al. 1994) to produce a high-resolution image, using only data from baselines longer than 20 m. The resulting synthesized beam sizes, rms noise levels, and point-source detections are given in Table 2.

We perform a quantitative analysis of the observed SZE profiles by fitting isothermal β models (Cavaliere & Fusco-Femiano 1976, 1981) and point-source profiles to the interferometric data directly in the Fourier (u, v)-plane, where the noise characteristics and the spatial filtering of the interferometer are well understood.

The spherical isothermal β model density is described by

$$n_e(r) = n_{eo} \left(1 + \frac{r^2}{r_c^2}\right)^{-(3\beta/2)},$$

(1)

where the core radius r_c and β are shape parameters, and n_{eo} is the central electron number density. With this model, the SZE temperature decrement is

$$\Delta T(\theta) = \Delta T_0 \left(1 + \frac{\theta^2}{\theta_c^2}\right)^{1/2 - 3\beta/2},$$

(2)

where $\theta = r/D_\alpha$, $\theta_c = r_c/D_\alpha$, D_α is the angular diameter distance, and ΔT_0 is the temperature decrement at zero projected radius.

We determine the best-fit point-source positions and fluxes, as well as the cluster centroid, using a simplex algorithm that minimizes the χ^2 statistic (Reese et al. 2000). We fix the cluster

TABLE 1

Cluster Name	Redshift	(α, δ)	On-Source Integration Time	
Cl J1226.9+3332 ……	0.89	12 26 58.0	33 32 45	41.6
Cl J0152.7–1357 ……	0.83	01 52 43.0	−13 57 29	27.8
MS 1054.4–0321 ……	0.83	10 56 59.5	−03 37 28	43.0

| \(|\alpha|, |\delta|\) | HR 11001 | HR 11002 | HR 11002 |
|----------------|----------|----------|----------|
| MS 1054.4–0321 | 14.3 | 10.4 | 11.4 |

TABLE 2

Cluster Name	Synthesized Beam ($r_c > 2$ kλ) (arcsec)	$\Delta \alpha$ (arcsec)	$\Delta \delta$ (arcsec)	Observed Flux (mJy)	rms Noise (mJy beam$^{-1}$)
Cl J1226.9+3332 ……	14.1 × 16.1	260.0	−39.3	1.73	0.152
Cl J0152.7–1357 ……	13.7 × 23.1	…	…	…	0.221
MS 1054.4–0321 ……	17.4 × 23.3	0.1	1.4	0.98	0.092
	17.4 × 23.3	−161.0	1.9	0.63	0.092
	17.4 × 23.3	−25.5	−86.9	0.35	0.092

* Uncorrected for primary-beam attenuation.
centroïd and the point-source positions and fluxes at their best-fit values and calculate the χ² statistic over a large range of θ-1, β-1, and ΔT-r values. For a given electron temperature T_e, the β model then yields the gas density profile n_e(θ) at each (θ, β, ΔT_r) point. The gas mass and the total cluster mass can be calculated directly from n_e(θ), assuming that the intracluster medium is in hydrostatic equilibrium with the cluster potential. Following the methods outlined in Grego et al. (2001), we calculate the gas mass, total mass, and gas mass fraction over the (θ, β, ΔT_r)-grid and report the total mass values for which the χ² statistic is within the 68% confidence interval (Δχ² = 1). We evaluate these quantities at an angular radius of 65", where our observational techniques best constrain the cluster gas mass fraction (Grego et al. 2001). For clusters at z ~ 0.8, this angular radius corresponds to a physical radius of 340 h_100⁻¹ kpc for an Ω_m = 0.3, Ω_L = 0.7 cosmology.

We can estimate the electron temperature directly from the SZE data by finding the range of T_r-values that yield a cluster gas mass fraction, f_g, consistent with the mean value measured by Grego et al. (2001) for a sample of 18 clusters. To determine the gas mass fraction at r_500 for Cl J1226.9+3332, Cl J0152.7−1357, and MS 1054.4−0321, we scale the gas mass fractions measured at 65" to r_500 using relations derived from numerical simulations (Evrard, Metzler, & Navarro 1996; Evrard 1997), as discussed in Grego et al. (2001). This calculation is repeated for a number of different temperatures ranging from 4–18 keV, and we report the T_rSZ-values that are consistent with a mean value of f_g(r_500) = 0.081 (Grego et al. 2001) within the sample standard deviation of 0.04. To determine how sensitive the derived mass and temperature are to the adopted cosmological model, we repeated the calculations above for Ω_m = 0.3 and Ω_L = 0.0. The SZE derived mass and temperature are reduced by ~3%; the overall change is small because the effects of decreased distance are offset by a compensating change in the f_g scaling relation.

3. RESULTS AND CONCLUSIONS

Synthesized images of the SZE toward Cl J1226.9+3332, Cl J0152.7−1357, and MS 1054.4−0321 are shown in Figure 1. The SZE decrement is detected with high significance in all of these distant clusters, and the locations of the SZE and X-ray centroids are consistent (Tables 1 and 3). Using the SZE data and the analysis techniques described in § 2.2, we determine the temperature and mass of each cluster (Table 3). X-ray temperature measurements for Cl J0152.7−1357 (Della Ceca et al. 2000) and MS 1054.4−0321 (Donahue et al. 1998) are also shown in Table 3, and we find that these X-ray temperature measurements are consistent with the values inferred from the SZE data within the stated uncertainties.

From the SZE data, we infer a total mass of ~2 × 10¹⁴ h_100⁻¹ M_☉ within a radius of 65" (340 h_100⁻¹ kpc) for each of the clusters shown in Table 3. These mass calculations can be checked against values derived from gravitational lensing, X-ray, and optical observations of MS 1054.4−0321 (Donahue et al. 1998; van Dokkum et al. 2000; Hoekstra et al. 2000). Hoekstra et al. (2000) infer a total mass of (5.4 ± 0.6) × 10¹⁴ h_100⁻¹ M_☉ within an aperture of radius 94". To compare the SZE and gravitational lensing results, we calculate the gas mass within a 94" radius aperture, for an electron temperature of 10.4 keV: M_SZE(<94") = (3.7 ± 0.6) × 10¹³ h_100⁻¹ M_☉, where the uncertainties reflect the statistical 68% confidence interval in modeling the SZE data. The total mass is estimated by scaling this value by the mean gas mass fraction (§ 2.2), from which

Table 3

Cluster Properties Derived from SZE Measurements

Cluster Name	Δσ (arcsec)	Δδ (arcsec)	T_e (keV)	T_rSZ (keV)	M_SZE (<65") (10¹⁴ h_100⁻¹ M_☉)
Cl J1226.9+3332	0.2	12.3	...	9.8±13	2.7 ± 0.5
Cl J0152.7−1357	−1.8	−9.2	6.5±12	8.7±13	2.1 ± 0.7
MS 1054.4−0321	−7.8	−5.3	12.3±12	10.4±13	2.3 ± 0.3

* Offsets from radio pointing center (Table 1).
we obtain an SZE estimate of the total mass within a 94'' radius: $M_{\text{tot}}^{\text{SZE}}(<94'') = (4.6 \pm 0.8) \times 10^{14} h_{100}^{3} M_{\odot}$. We find that the total mass estimated from the SZE data is consistent with the lensing measurements of Hoekstra et al. (2000).

Based on the SZE data, we conclude that the newly discovered clusters Cl J1226.9+3332 and Cl J0152.7−1357 are highly massive, with a total mass of $M_{\text{tot}}^{\text{SZ}} \approx 2 \times 10^{14} h_{100}^{3} M_{\odot}$ within a radius of 65'' (340 h_{100} kpc). These values are comparable to the mass inferred from SZE imaging of the $z = 0.83$ cluster MS 1054.4−0321, which has been confirmed by X-ray, optical, and gravitational lensing studies. These results demonstrate the ability to determine cluster temperatures and masses from SZE data without access to X-ray data and illustrate the power of using deep SZE surveys to probe the distant universe. More precise measures of the temperature and mass of Cl J1226.9+3332 and Cl J0152.7−1357 will be possible with deep X-ray imaging and spectroscopy, which will be obtained within the coming year by the Chandra and XMM X-ray observatories; with these data in hand, the SZE measurements can be used to measure the distance to each cluster (Reese et al. 2000) and to further constrain their density, mass, and gas mass fraction (Grego et al. 2001). Additional, independent constraints on the mass distribution in Cl J1226.9+3332 will be obtained from a weak-lensing analysis of wide-field imaging data taken with the Hubble Space Telescope and the Subaru 8.3 m telescope.

We dedicate this Letter to the memory of our friend and colleague Mark Warnock, who freely gave of his expertise and time and made great contributions to the interferometric SZE imaging experiment. We also thank Cheryl Alexander, Rick Forster, Steve Padin, Dick Plambeck, Steve Scott, David Woody, and the staff of the BIMA and OVRO observatories for their outstanding support and Laurence Jones, Eric Perlman, and Caleb Scharf for providing data on Cl J1226.9+3332 prior to publication. E. D. R. gratefully acknowledges support from NASA GSRP Fellowship NGT5-50173. This work is supported by NASA LTSA grants NAG5-7986 (J. E. C., M. J., W. L. H.) and NAG5-8253 (H. E.). Radio astronomy at the BIMA millimeter array is supported by NSF grant AST 96-13998. The OVRO millimeter array is supported by NSF grant AST 96-13717. The funds for the additional hardware for the SZE experiment were from a NASA CDDF grant, an NSF-YI Award, and the David and Lucile Packard Foundation.

REFERENCES

Bahcall, N. A., & Cen, R. 1992, ApJ, 398, L81
Bahcall, N. A., & Fan. X. 1998, ApJ, 504, 1
Birkinshaw, M. 1999, Phys. Rep., 310, 97
Carlstrom, J. E., Joy, M., & Grego, L. 1996, ApJ, 456, L75
Cavaliere, A., & Fusco-Femiano, R. 1976, A&A, 49, 137
———. 1981, A&A, 100, 194
Della Ceca, R., Scaramella, R., Gioia, I. M., Rosati, P., Fiore, F., & Squires, G. 2000, A&A, 353, 498
Donahue, M., Voit, G. M., Gioia, I., Lupino, G., Hughes, J. P., & Stocke, J. T. 1998, ApJ, 502, 550
Ebeling, H., Jones, L. R., Fairley, B. W., Perlman, E., Scharf, C., & Horner, D. 2001, ApJ, 548, L23
Ebeling, H., et al. 2000, ApJ, 534, 133
Eke, V. R., Cole, S., Frenk, C. S., & Henry, J. P. 1998, MNRAS, 298, 1145
Evard, A. E. 1997, MNRAS, 292, 289
Evard, A. E., Metzler, C. A., & Navarro, J. F. 1996, ApJ, 469, 494
Gioia, I. M., & Luppino, G. A. 1994, ApJ, 90, 583
Grego, L., Carlstrom, J. E., Joy, M. K., Reese, E. D., Holder, G. P., Patel, S., Cooray, A. R., & Holzapfel, G. A. 2000, ApJ, 539, 39
Grego, L., Carlstrom, J. E., Reese, E. D., Holder, G. P., Holzapfel, W. L., Joy, M. K., Mohr, J., & Patel, S. 2001, ApJ, in press
Haiman, Z., Mohr, J. J., & Holder, G. P. 2001, ApJ, in press
Hoekstra, H., Franx, M., & Kuijken, K. 2000, ApJ, 532, 88
Luppino, G. A., & Gioia, I. M. 1995, ApJ, 445, L77
Neumann, D. M., & Arnaud, M. 2000, ApJ, 542, 35
Oukbir, J., & Blanchard, A. 1997, A&A, 317, 1
Pearson, T. J., Shepherd, M. C., Taylor, G. B., & Myers, S. T. 1994, BAAS, 185, 0.88
Pospieszalski, M. W., Lakatosh, W. J., Nguyen, L. D., Lui, M., Liu, T., Le, M., Thompson, M. A., & Delaney, M. J. 1995, IEEE MTT-S Digest, 3, 1121
Reese, E. D., et al. 2000, ApJ, 533, 38
Romer, A. K., et al. 2000, ApJS, 126, 209
Rudy, D. J. 1987, Ph.D. thesis, Caltech
Sault, R. J., Teuben, P. J., & Wright, M. C. H. 1995, in ASP Conf. Ser. 77, Astronomical Data Analysis Software and Systems IV, ed. R. A. Shaw, H. E. Payne, & J. J. E. Hayes (San Francisco: ASP), 433
Scharf, C. A., Jones, L. R., Ebeling, H., Perlman, E., Malkan, M., & Wegner, G. 1997, ApJ, 477, 79
Scoville, N. Z., Carlstrom, J. E., Chandler, C. J., Phillips, J. A., Scott, S. L., Tilanus, R. P. J., & Wang, Z. 1993, PASP, 105, 1482
Sunyaev, R. A., & Zeldovich, Y. B. 1972, Comments Astrophys. Space Phys., 4, 173
van Dokkum, P. G., Franx, M., Fabricant, D., Illingworth, G. D., & Kelson, D. D. 2000, ApJ, 541, 95
Viana, P. T. P., & Liddle, A. R. 1996, MNRAS, 281, 323