Research on CNC machine tools reliability modeling based on weighted least squares method

Xiong Jianqiao1*, Xue Li1 and Yong Lu1
1School of Mechanical Engineering, Nanjing Institute of Technology, Nanjing, Jiangsu, China
*Corresponding author e-mail: jqxqj@njit.edu.cn

Abstract. Reliability test for a certain numerical control machine tool is carried out. Failure data is collected. On this basis, a reliability model is established. Inference is a Weibull distribution. The reliability model is also analyzed. The weighted least squares method is used to estimate the scale parameter alpha and the shape parameter beta of Weibull distribution. Research shows, this method can effectively establish the reliability model.

1. Introduction
The reliability modeling of CNC machine tools can be established by the probability distribution of its failure time [1]. When studying the failure time of a certain type of CNC machine tool, it will be found that there is a certain law in its distribution. Therefore, the reliability model of the CNC machine tool will be established, and the life performance of the machine tool will be mathematically expressed, and then some interesting performance parameters can be solved mathematically. Finally, the reliability level positioning and evaluation of this type of CNC machine tool can be performed. It has important guiding significance for the engineering management and application of CNC machine tools [2].

2. Establish the distribution model of CNC machine tool failure time
We checked the breakdown maintenance record of a certain type of CNC machining center which operated in the company. After screening, the man-made fault data was removed, and 52 experimental failure data were obtained. The experimental data were processed by the fixed time truncation method. The experimental data, i.e. interfault interval time, are arranged in order from small to large, and the interfault interval time is divided into 14 equal intervals according to the empirical formula [3]. The data after sorting is shown in Table 1---failure data frequency table.
Table 1. CNC Fault data frequency table

No.	\(t_i / h \)	\(t_r / h \)	\(t_m / h \)	\(m_r(i) / \text{time} \)	\(n_i / \text{time} \)	freq	grand total
1	64.6401	337.6538	201.1469	14	14	0.2692	0.2692
2	337.6538	610.6675	474.1606	24	10	0.1923	0.4615
3	610.6675	883.6812	747.1743	34	10	0.1923	0.6538
4	883.6812	1156.6949	1020.188	39	5	0.0962	0.75
5	1156.6949	1429.7086	1293.202	41	2	0.0385	0.7885
6	1429.7086	1702.7223	1566.215	43	2	0.0385	0.8269
7	1702.7223	1975.7360	1839.229	46	3	0.0577	0.8846
8	1975.7360	2248.7497	2112.243	46	0	0	0.8846
9	2248.7497	2521.7634	2385.257	49	3	0.0577	0.9423
10	2521.7634	2794.7771	2658.27	50	1	0.0192	0.9615
11	2794.7771	3067.7908	2931.284	50	0	0	0.9615
12	3067.7908	3340.8045	3204.298	50	0	0	0.9615
13	3340.8045	3613.8182	3477.311	51	1	0.0192	0.9808
14	3613.8182	3886.8321	3750.325	52	1	0.0192	1

The plane coordinate system is established. The abscissa of the coordinate system is the time median value of each interval, and the ordinate of the coordinate system is the probability density observation value \(\hat{f}(t) \) of each interval. The calculation process of \(\hat{f}(t) \) is as follows:

\[
\hat{f}(t) = \frac{n_i}{n \Delta t_{i}}
\]

Where \(n_i \): the frequency of failures in each group of fault intervals;
\(n \): total frequency of early failures, this test is 52 times;
\(\Delta t_i \): group distance, 273h.

From Table 1, the curve of the probability density function that can be fitted is shown in Figure 1.

It can be seen from Figure 1 that the probability density curve of the time interval of CNC machine tool does not have a single peak shape, and the probability density function \(f(t) \) of the fault interval time monotonously decreases, \(f'(t) < 0 \). Therefore, the distribution function \(F(t) \) should be convex, which may be an exponential distribution or a Weibull distribution [4],[5]. The empirical distribution function \(F(n)(t) = i/n \) is fitted, and the failure time distribution function curve is shown in Figure 2.

![Figure 1. Probability intensity function f (t) curve.](image1)

![Figure 2. Experience distribution function F (t) curve.](image2)

It can be seen from Fig. 2 that the curve trend graph is convex and has no inflection point. It can be seen that the distribution of the fault interval of the CNC machine tool may be an exponential distribution or a Weibull distribution [6]. The exponential distribution is a special case when the shape parameter \(\beta \) is equal to 1 in the Weibull distribution. Therefore, the fault time obeys the Weibull distribution.
For the convenience of research, the original time data is shown in Table 2.

Table 2. CNC data preparation of the time between failure

No.	t/h	F(t)	x	y	w
1	64.6401	0.0134	4.1689	-4.3089	0.0002
2	65.9736	0.0324	4.1883	-3.4118	0.0005
3	83.9963	0.0515	4.4308	-2.9393	0.0008
4	97.2660	0.0706	4.5774	-2.6142	0.0011
5	112.0853	0.0897	4.7193	-2.3647	0.0015
6	127.7783	0.1088	4.8503	-2.1614	0.0019
7	172.8452	0.1279	5.1524	-1.9892	0.0025
8	183.2456	0.1469	5.2108	-1.8393	0.0032
9	201.0289	0.1660	5.3034	-1.7062	0.0039
10	223.8819	0.1851	5.4111	-1.5862	0.0047
11	238.6965	0.2042	5.4752	-1.4766	0.0055
12	277.1630	0.2233	5.6246	-1.3756	0.0065
13	286.9000	0.2424	5.6591	-1.2817	0.0075
14	377.3666	0.2615	5.9332	-1.1938	0.0088
15	409.8423	0.2805	6.0158	-1.1109	0.0102
16	429.0539	0.2996	6.0616	-1.0325	0.0117
17	466.1987	0.3187	6.1446	-0.9577	0.0134
18	468.3603	0.3378	6.1492	-0.8863	0.0150
19	494.5240	0.3569	6.2036	-0.8178	0.0167
20	499.0165	0.3760	6.2126	-0.7518	0.0185
21	541.4939	0.3950	6.2943	-0.6880	0.0204
22	554.1994	0.4141	6.3175	-0.6262	0.0223
23	567.1557	0.4332	6.3406	-0.5661	0.0243
24	608.1875	0.4523	6.4105	-0.5075	0.0264
25	641.4046	0.4714	6.4637	-0.4502	0.0287
26	647.8827	0.4905	6.4737	-0.3942	0.0310
27	650.1414	0.5095	6.4772	-0.3391	0.0332
28	714.2768	0.5286	6.5713	-0.2849	0.0357
29	748.0857	0.5477	6.6175	-0.2314	0.0384
30	753.4073	0.5668	6.6246	-0.1785	0.0410
31	776.7845	0.5859	6.6552	-0.1260	0.0437
32	790.5871	0.6050	6.6728	-0.0739	0.0465
33	855.1085	0.6240	6.7512	-0.0220	0.0495
34	857.7482	0.6431	6.7543	0.0299	0.0525
35	904.5030	0.6622	6.8074	0.0819	0.0556
36	1020.2738	0.6813	6.9278	0.1341	0.0592
37	1024.1225	0.7004	6.9316	0.1867	0.0628
38	1056.3151	0.7195	6.9625	0.2399	0.0665
39	1056.4215	0.7385	6.9626	0.2938	0.0702
40	1312.0918	0.7576	7.1794	0.3488	0.0748
41	1376.8026	0.7767	7.2275	0.4050	0.0796
42	1480.8325	0.7958	7.3004	0.4629	0.0848
43	1690.2152	0.8149	7.4326	0.5228	0.0907
44	1837.1358	0.8340	7.5160	0.5853	0.0971
45	1882.0524	0.8531	7.5401	0.6511	0.1037
46	1933.0479	0.8721	7.5669	0.7212	0.1105
47	2307.5872	0.8912	7.7440	0.7968	0.1186
48	2313.9118	0.9103	7.7467	0.8802	0.1267
49	2440.6515	0.9294	7.8000	0.9748	0.1352
50	2756.3471	0.9485	7.9217	1.0871	0.1449
51	3525.1286	0.9676	8.1677	1.2321	0.1572
52	3886.8321	0.9866	8.2653	1.4622	0.1708
For the two parameter Weibull distribution, the probability distribution function is [6],[7]:

\[F(t) = 1 - e^{-\left(\frac{t}{\alpha}\right)^\beta} \] \hspace{1cm} (2)

Linear transformation of equation (2) yields:

The linear transformation of formula (2) can be obtained:

\[\ln \left[\ln \left(\frac{1}{1-F(t)} \right) \right] = \beta \ln t - \beta \ln \alpha \] \hspace{1cm} (3)

Assume that the equation of linear regression is \(y = A + Bx \).

Let \(y = \ln \left[\ln \left(\frac{1}{1-F(t)} \right) \right] \), \(x = \ln t \).

\[J(A, B) = \sum_{i=1}^{n} w_i \left(y_i - (A + Bx_i) \right)^2 \] \hspace{1cm} (4)

Where: \(w_i \) is the weight coefficient, which can be obtained by the following formula:

\[w_i = \frac{\sum_{j=1}^{n} x_j}{\sum_{j=1}^{n} (y_j - \bar{y})^2} \] \hspace{1cm} (5)

The \(r \) in the formula (5) is the number of failures occurring during the truncation time \(T \), and \(n \) is the total number of machine tools. Where \(t \) is the recorded equipment failure time. When \(J(\alpha, \beta) \) is the smallest, the estimated quantities \(\hat{\alpha} \) and \(\hat{\beta} \) of the two parameters of the corresponding Weibull distribution can be obtained.

3. Estimate the Parameters

The parameters \(A \) and \(B \) are estimated by the weighted least squares method [8],[9], and the formula is derived from formula (4):

\[\hat{A} = \frac{\sum_{i=1}^{n} (w_i x_i) \sum_{i=1}^{n} (w_i y_i) \sum_{i=1}^{n} (w_i x_i y_i) - (\sum_{i=1}^{n} (w_i x_i))^2 \sum_{i=1}^{n} (w_i y_i) - (\sum_{i=1}^{n} (w_i y_i))^2 \sum_{i=1}^{n} (w_i x_i)^2}{(\sum_{i=1}^{n} (w_i x_i)^2)^2} \] \hspace{1cm} (6)

\[\hat{B} = \frac{\sum_{i=1}^{n} (w_i x_i)^2 \sum_{i=1}^{n} (w_i y_i) - (\sum_{i=1}^{n} (w_i x_i))^2 \sum_{i=1}^{n} (w_i x_i y_i)}{(\sum_{i=1}^{n} (w_i x_i))^2 (\sum_{i=1}^{n} (w_i x_i)^2)} \] \hspace{1cm} (7)

Calculated by Table 2, we can get \(\hat{A} = -6.92437055 \), \(\hat{B} = 1.010024793 \)

The linear regression equation is \(y = -6.92437055 + 1.010024793x \)

Substituting formula (4), \(J(\hat{A}, \hat{B}) = 0.018253037 \)

Therefore, \(\hat{\beta} = 1.010024793 \), \(\alpha = e^{\frac{\hat{A}}{\hat{B}}} = 949.2233608 \)

Thus, the distribution function \(F(t) \) and the failure rate function \(\lambda(t) \) of the reliability model of the numerically controlled machine tool are:

\[F(t) = 1 - \exp \left[\left(\frac{t}{949.2233} \right)^{1.01} \right] \]

\[\lambda(t) = \frac{1.0100}{949.2233} \left(\frac{t}{949.2233} \right)^{0.01} \]

If the traditional least squares method and the weighted least squares method are used separately, the parameters are estimated. And the values \(A, B \) and \(J(\hat{A}, \hat{B}) \) can also be obtained. The two method compares the simulation results of MATLAB operation with figure 3. It can be seen from the diagram that the weighted least squares method is superior to the traditional least squares method.
Figure 3. Comparison of two algorithms.

The comparison of the specific values of the two algorithms is shown in Table 3.

algorithms	A	B	J (A, B)
the traditional least squares method	-8.09077047	1.176034385	2.104828858
the weighted least squares method	-6.92437055	1.010024793	0.018253037

The data in Table 3 are the results of computer operation of the two algorithms. The constraint function \(J(A, B)\) is the best when it is the weighted least squares method.

4. Conclusion

In this paper, the fault time data of a certain CNC machine tool is studied. The reliability model is established. The fault interval is inferred to the Weibull distribution, and the weighted least squares method is used to optimize the target constraint function. The parameters of the Weibull distribution model are obtained. Thereby, the reliability law of the time-varying variation of this kind of CNC machine tool is obtained. This paper provides a new method for reliability modeling and complex nonlinear optimization of model parameters, laying the foundation for reliability growth and maintenance allocation and estimation.

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (51775261), the Nanjing Institute of Technology Innovation Foundation Major Project (CKJA201402, CKJA201602) and Jiangsu Ocean Science and Technology Innovation Project (HY2017-3).

References

[1] Zhao-jun Yang, Xiao-bing Li, Bin-bin Xu, Fei Chen, Xiao-cui Zhu and Qing-bo Hao, Time Dynamic Reliability Modelling of Machining Center, Chinese Journal of mechanical engineering, 2012 (01):16-22.
[2] Zhao-jun Yang, Ying-nan Kan, Fei Chen, Bin-bin Xu, Chuan-hai Chen, Chuan-gui Yang, Bayesian, Reliability Modeling and Assessment Solution for NC Machine Tools under Small-sample Data, Chinese Journal of Mechanical Engineering, 2015(06):1229-1239.
[3] W Nelson, Applied life data analysis, New York: John Wiley&Sons, Inc, 1982.
[4] Wallace R B, Lischke D N, Prabhakar murthy, Reliability modeling prediction and optimization, New York: John Wiley&Sons, Inc, 2000.
[5] Zhang Yingzhi, Sheng Guixiang, Wu Su, Xue Yuxia, He Yu, 3-parameter Weibull distribution for random truncated NC machine tool fault data. Journal of Jilin University (Engineering and Technology Edition). 2009, 39(2):378-380.
[6] D.N. Prabhakar Murthy, Michael Bulmer, John A. Eccleston. Weibull model selection for reliability modelling [J]. Reliability engineering & system safety, 2004, 86(3):257-267.
[7] R. Jiang, D.N.P. Murthy. The exponentiated Weibull family: a graphical approach. IEEE Transactions on Reliability, 1999, 48(1):68-72.

[8] Andrea Malengo, Francesca Pennecchi, A weighted total least-squares algorithm for any fitting model with correlated variables. Metrologia, 2013 (6):654-662.

[9] A. Amiri-Simkooci, S. Jazaeri, Weighted total least squares formulated by standard least squares theory. Journal of Geodetic Science, 2012 (2):113-124.