RINGS WITH AN ELEMENTARY ABELIAN p-GROUP OF UNITS

SUNIL CHEBOLU, JEREMY CORRY, ELIZABETH GRIMM, AND ANDREW HATFIELD

Abstract. What are all rings R for which R^\times (the group of invertible elements of R under multiplication) is an elementary abelian p-group? We answer this question for finite-dimensional commutative k-algebras, finite commutative rings, modular group algebras, and path algebras. Two interesting byproducts of this work are a characterization of Mersenne primes and a connection to Dedekind's problem.

1. Introduction

Robert Gilmer [7] classified all finite commutative rings R with identity such that R^\times, the group of units of R, is cyclic. He showed that these rings are isomorphic to a finite product of rings R_i from the list below such that for $i \neq j$, $\gcd(|R_i^\times|, |R_j^\times|) = 1$:

- The finite field \mathbb{F}_{p^k},
- \mathbb{Z}/p^m where p is an odd prime and $m > 1$,
- $\mathbb{Z}/4$,
- $\mathbb{F}_p[x]/(x^2)$ where p is any prime,
- $\mathbb{F}_2[x]/(x^3)$, and
- $\mathbb{Z}[x]/(4, 2x, x^2 - 2)$.

The unit groups of the above rings are well-known. Therefore, given any positive integer m, using Gilmer’s theorem, one can write down all finite commutative rings whose unit group is C_m, the cyclic group of order m.

After cyclic groups, an important family of finite groups is the class of elementary abelian p-groups - a direct sum of copies of the cyclic group C_p, where p is a fixed prime. These groups feature in many areas, including topology, group cohomology, and representation theory. This paper parallels Gilmer’s result by classifying all finite commutative rings whose unit group is an elementary abelian p-group. In addition, we also obtain a classification of all finite-dimensional k-algebras, modular group algebras, and path algebras for which the unit group is an elementary abelian p-group.

The first author studied this problem for the families \mathbb{Z}_n [3], $\mathbb{Z}_n[x_1, x_2, \ldots, x_m]$ [6], and group algebras over fields [5] under the name of diagonal property. A ring R is said to have the diagonal property if 1’s in the multiplication table for R fall only on the main diagonal. For any prime p, a ring R is said to be a Δ_p-ring if all units u in R satisfy $u^p = 1$. It is easy to see that R has the diagonal property if and only if it is a Δ_2-ring. Furthermore, these conditions are equivalent to R^\times being an elementary abelian 2-group; see Proposition 2.1.

We now state our main results.

Theorem 1.1. Classifying rings whose unit group is an elementary abelian 2-group.

Date: January 2, 2023.

2000 Mathematics Subject Classification. Primary — 11T06, 16U60.

Key words and phrases. Commutative rings, group of units, group algebras, Wedderburn-Artin, local rings.

The first author is supported by Simons Foundation: Collaboration Grant for Mathematicians (516354).
(1) Let R be a finite-dimensional commutative k-algebra where k is a field. R is a Δ_2-ring if and only if R is isomorphic to a finite product of rings that are either \mathbb{F}_3 or a quotient of a truncated polynomial ring of the form $\mathbb{F}_2[x_1, x_2, \ldots, x_l]/(x_1^2, x_2^2, \ldots, x_l^2)$, $l \geq 1$.

(2) Let R be a finite commutative ring. R is a Δ_2-ring if and only if R is isomorphic to any quotient of a finite product of rings R_i, where each R_i is any of the following rings:

- $\mathbb{F}_2[x_1, x_2, \ldots, x_l]/(x_1^2, x_2^2, \ldots, x_l^2)$, $l \geq 1$.
- \mathbb{F}_3
- $\mathbb{Z}_4[x_1, x_2, \ldots, x_l]/(r(r+2): r \in \mathcal{P})$ where $\mathcal{P} = (2, x_1 - 1, x_2 - 1, \ldots, x_l - 1) \subseteq \mathbb{Z}_4[x_1, x_2, \ldots, x_l]$.
- $\mathbb{Z}_8[x_1, x_2, \ldots, x_l]/(r(r+2): r \in \mathcal{P})$ where $\mathcal{P} = (2, x_1 - 1, x_2 - 1, \ldots, x_l - 1) \subseteq \mathbb{Z}_8[x_1, x_2, \ldots, x_l]$.

(3) Let n be a positive integer and G be a finite group. \mathbb{Z}_nG is a Δ_2-ring if and only if $n = 2, 3, 6$ and G is an elementary abelian 2-group or $n = 4, 12$ and $G = C_2$.

(4) Let Q be a finite and acyclic quiver. The path algebra kQ is a Δ_2-ring if and only if $k = \mathbb{F}_3$ and Q is trivial or $k = \mathbb{F}_2$ and Q has no directed path of length 2.

Analyzing the quotients mentioned in the above classification led us to Dedekind’s problem, which is wide open; see Remark 3.2. Also, note that the so-called exceptional primes (2 and 3) feature in parts 1 and 4 of the above theorem. These primes play a special role in many places. For instance, they appear in work on generating hypothesis for the stable module categories. Combining this theorem with earlier work done in Tate cohomology [2, Theorem 1.1] gives the following intriguing characterization of these exceptional primes.

Corollary 1.2. Let p be a prime number. Then the following are equivalent.

1. $p = 2$ or 3
2. There is a finite-dimensional \mathbb{F}_p-algebra whose unit group is an elementary abelian 2-group.
3. The Tate cohomology functor $\hat{H}(C_p, -)$ is faithful on the stable module category of finitely generated \mathbb{F}_pC_p-modules.

When looking for rings whose unit group is an elementary abelian p-group, with p odd, it is natural to ask which elementary abelian p-groups occur as unit groups of rings. That is Fuchs’ problem for elementary abelian p-groups and was answered in [4]. An abelian p-group occurs as a unit group of a ring if and only if $p = 2$ or a Mersenne prime (a prime of the form $2^m - 1$ for some m). That is the reason why Mersenne primes feature in the following theorem.

Moreover, for odd primes p, the Δ_p condition and R^\times being an elementary abelian p-group are equivalent for commutative rings; see Proposition 2.1.

Theorem 1.3. Classifying rings whose unit group is an elementary abelian p-group, where p is an odd prime.

1. Let R be a finite-dimensional commutative k-algebra. R is a Δ_p-ring if and only if p is a Mersenne prime and $R = (\mathbb{F}_2)^a \times (\mathbb{F}_{p^2})^b$ for some nonnegative integers a and b.
2. A finite commutative ring R is a Δ_p-ring if and only if p is Mersenne prime and R is isomorphic to $R = (\mathbb{F}_2)^a \times (\mathbb{F}_{p^2})^b$ for some nonnegative integers a and b.
3. \mathbb{Z}_pG (G abelian) is a Δ_p-ring if and only if $n = 2$, G is an elementary abelian p-group, and p is some Mersenne prime.
Let Q be a finite acyclic quiver. The path algebra kQ is Δ_p if and only if $k = \mathbb{F}_2$ or \mathbb{F}_{p+1} where p is a Mersenne prime and Q is trivial.

It is worth noting that the above theorem gives some characterizations of Mersenne primes; see Theorem 1.1 [5] for similar characterizations.

Corollary 1.4. Let p be an odd prime. Then the following are equivalent.

1. p is a Mersenne prime.
2. There exists a finite-dimensional commutative k-algebra that is Δ_p.
3. There exists a finite commutative Δ_p-ring.
4. There exists a finite acyclic quiver Q and a field k such that the path algebra kQ is Δ_p-ring.

We see from the above results that Δ_p-rings are rare. For instance, working over a field k, it is easy to see that for $n > 1$, $M_n(k)$ is never a Δ_p-ring.

The paper is organized as follows. We begin in Section 2 with some preliminaries. We then classify the Δ_p-rings for finite-dimensional commutative k-algebras (Section 3), finite commutative rings (Section 4), modular group algebras (Section 5), and path algebras of quivers (Section 6).

Acknowledgements: We thank Dave Benson, Jon Carlson, Srikanth Iyengar, and Richard Stanley for the discussions related to this paper. This led to a better understanding of the lattice of ideals in truncated polynomial rings and its relation to the Dedekind problem; see Remark 3.2. We also thank an anonymous referee for several comments that improved the exposition.

2. Preliminaries

This section collects some background material and lemmas we need to prove our main results. We begin with the relationship between Δ_p and R^\times being an elementary abelian p-group.

Proposition 2.1. Let R be a unital ring. Consider the following statements.

1. R is a Δ_p-ring.
2. R is a ring such that R^\times is an elementary abelian p-group.

When $p = 2$ the above two statements are equivalent. When $p > 2$, 2 implies 1, and 1 implies 2 provided R^\times is commutative.

Proof. (2) \implies (1) with $p = 2$ is the only non-trivial part, and that follows from an exercise in group theory: any group G such that $g^2 = e$ for all g in G is abelian. If G is abelian such that $g^2 = e$ for all g in G, then G is a vector space over \mathbb{F}_2. If we let r be the dimension of G/\mathbb{F}_2, then we see that $G \cong \mathbb{F}_2^r \cong C_2^r$, so G is an elementary abelian 2-group.

We now summarize results from [3, 6, 5] related to the Δ_p condition.

Theorem 2.2. Examples of Δ_2 and Δ_p rings.

1. [3] \mathbb{Z}_n is a Δ_2 ring if and only if n divides 24.
2. [6] $\mathbb{Z}_n[x_1, \ldots, x_m]$ is a Δ_2 ring if and only if n divides 12 and $m \geq 1$.
3. [5] For a field k and group G, kG is Δ_2 if and only if $k = \mathbb{F}_2$ or \mathbb{F}_3 and G is an elementary abelian 2-group of possibly infinite rank.
4. [5] Let p be an odd prime and let k be a field, and G be an abelian group. kG is Δ_p if and only if p is Mersenne and kG is either $\mathbb{F}_2C_p^r$ or $\mathbb{F}_{p+1}C_p^r$ where $0 < r \leq \infty$.

Lemma 2.3. A subring of a Δ_p-ring is again a Δ_p-ring. A direct product of rings is Δ_p if and only if each factor is a Δ_p-ring.

Lemma 2.4. Let R be a ring of characteristic n (>1). If R is a Δ_2-ring, then n divides 24.

Proof. For a Δ_2-ring R with characteristic n, \mathbb{Z}_n is a subring of R, and therefore a Δ_2-ring. It was shown in [3] that \mathbb{Z}_n is a Δ_2-ring if and only if n divides 24.

Lemma 2.5. [5] Let p be a prime. A field k is Δ_p if and only if $k = \mathbb{F}_2$ or $k = \mathbb{F}_3$ with $p = 2$, or $k = \mathbb{F}_2$ or \mathbb{F}_{p+1} with p a Mersenne prime. In particular, these conditions on k hold for any k-algebra that is Δ_p.

An Artinian ring is a ring that satisfies the descending chain condition on its ideals. That is, for every descending chain of ideals $I_1 \supseteq I_2 \supseteq \ldots \supseteq I_k \supseteq \ldots$, in R, there is an integer k such that $I_n = I_{n+1}$ for all $n > k$. Recall that finite commutative rings and finite-dimensional k-algebras are Artinian. Artinian rings have the following Artin decomposition [1]: every Artinian ring R is a direct product of Artin local rings R_i,

$$R = R_1 \times R_2 \times \ldots \times R_n.$$

Moreover, an Artinian local ring has a unique prime ideal. The following lemma will be used in our analysis.

Lemma 2.6. Let R be an Artinian ring with a unique prime ideal P. Then P is the set of all nilpotent elements, and $R \setminus P$ is the set of all units. Moreover, R is generated as a ring by its units. In particular, when R^{\times} is an elementary abelian p-group of rank t, R is a quotient of the group ring $\mathbb{Z}_n[C_p^t]$, where n is the characteristic of R.

Proof. The first statement is well-known. To see that $R \setminus P$ generates R, note that for every nilpotent η, the element $u := 1 + \eta$ is a unit. This shows that $\eta = u - 1$, proving that the units generate all elements of the ring. Let $n (\geq 0)$ be the characteristic of R. When $R^{\times} = R \setminus P \cong C_p^t$ generates R, there is a surjective ring homomorphism

$$\mathbb{Z}_n[C_p^t] \rightarrow R.$$

This shows that R is a quotient of the group ring $\mathbb{Z}_n[C_p^t]$.

Theorem 2.7 (Artin-Wedderburn). Any semisimple ring R is isomorphic to a product of finitely many matrix rings over division rings D_i for some dimension n_i, both of which are uniquely determined by permutation of i, i.e.

$$R = \prod M_{n_i}(D_i).$$

An important family of semisimple rings comes from Maschke’s theorem, which states that the group algebra kG is semisimple when the characteristic of the field k is relatively prime to the order of the finite group G.

Corollary 2.8. Every finite commutative semisimple ring is a direct product of finite fields. In particular, any quotient $\mathbb{F}_p G/\sim$ of a group algebra kG, where G is a group whose order is relatively prime to p, is a finite product of finite fields of characteristic p.

Proof. By the Artin-Wedderburn theorem, every semisimple ring R is a direct product of matrix rings over division rings. If R is commutative, these matrix rings have order 1×1. That is, R is a product of division rings. Furthermore, by Wedderburn’s little theorem, we know that finite division rings are fields. This shows that R is a product of finite fields. When p and G are as given, Maschke’s theorem implies that $\mathbb{F}_p G$ is a product of finite fields.
of characteristic p. Since a quotient of a product of fields is again a product (with possibly fewer factors), the second statement follows. ■

3. Finite dimensional commutative k-algebras

We want to classify all finite-dimensional k-algebras that are Δ_p. We begin with case $p = 2$. For any ring, A, A/\sim will denote an arbitrary quotient of A, and $\prod R_i$ denotes a finite product of rings of the form R_i.

Theorem 3.1. Let R be a finite-dimensional commutative k-algebra. Then R is Δ_2 if and only if $R \cong \prod \mathbb{F}_3$ or a quotient of $\prod \mathbb{F}_2[x_1, \ldots, x_l]/(x_1^2, \ldots, x_l^2)$.

Proof. Let R be as given and assume that it is Δ_2. Then R has an Artin decomposition:

$$R = R_1 \times \ldots \times R_l,$$

where each R_i is a local ring. By Lemma 2.3, we know that R is Δ_2 if and only if each R_i is Δ_2. So, we assume that R is a finite-dimensional local k-algebra. Moreover, by Lemma 2.5, it is enough to assume that $k = \mathbb{F}_2$ or \mathbb{F}_3. Artin local rings have a unique prime ideal. Therefore, Lemma 2.6 implies that $R \cong \mathbb{F}_2[C_2^r]/\sim$ or $R \cong \mathbb{F}_3[C_3^r]/\sim$.

Let us first consider the case $R \cong \mathbb{F}_2[C_2^r]/\sim$. Note that

$$\mathbb{F}_2[C_2^r] \cong \mathbb{F}_2[x_1, \ldots, x_r]/(x_1^2 - 1, \ldots, x_r^2 - 1) \cong \mathbb{F}_2[x_1, \ldots, x_r]/(t_1^2, \ldots, t_r^2),$$

The first isomorphism sends a generator in the ith factor in C_2^r to x_i. The second isomorphism is obtained using a change of variables: $t_i = x_i - 1$. Note that $t_i^2 = (x_i - 1)^2 = x_i^2 - 2x_i + 1 = x_i^2 - 1$ in a field with characteristic 2. Because R is isomorphic to a quotient of $\mathbb{F}_2[C_2^r]$, we see that $R \cong \mathbb{F}_2[t_1, \ldots, t_r]/I$, where $(t_1^2, \ldots, t_r^2) \subseteq I$. Now let x be a unit in R. Using Lemma 2.6, we can write x as $1 + \eta$ for some η in (t_1, t_2, \ldots, t_r). Then $x^2 = 1^2 + \eta^2 = 1$ because characteristic of R is 2 and $\eta^2 = 0$ in R. This shows that R is a Δ_2-ring.

The second case is $R \cong \mathbb{F}_3[C_3^r]/\sim$. In this case, Corollary 2.8 implies that $R \cong \prod \mathbb{F}_3^{r_i}$. Taking units, we see that

$$R^\times \cong \prod (\mathbb{F}_3^{r_i})^\times \cong \prod C_3^{r_i - 1}.$$

This is an elementary abelian 2-group if and only if $3^{r_i} - 1 = 2$, or $r_i = 1$ for all i. This shows that $R \cong \prod \mathbb{F}_3$, which is clearly Δ_2. ■

Remark 3.2. Note that in the above theorem, we classified the finite-dimensional \mathbb{F}_2-algebras that are Δ_2 in terms of the quotients of the ring $\mathbb{F}_2[x_1, \ldots, x_l]/(x_1^2, \ldots, x_l^2)$. So, a natural question is: what are all quotients of this ring?

The quotients of this ring correspond to the ideals of the polynomial ring $\mathbb{F}_2[x_1, \ldots, x_l]$ that contain the ideal (x_1^2, \ldots, x_l^2). These ideals form a partially ordered set under inclusion. A complete description of this lattice seems hopeless. Even the sublattice of ideals generated by sets of monomials in $\mathbb{F}_2[x_1, \ldots, x_l]$ is not well-understood. The latter is the free distributive lattice $\mathbb{F}_2[l]$ (l generators, and computing its cardinality is the Dedekind problem, which is open. The exact values are known only for $1 \leq l \leq 8$: 3, 6, 20, 168, 7581, 782834, 2414682040998, 56130437228687557907788 (sequence A000372 in the OEIS).

Here are the Hasse diagrams for the poset of ideals for $l = 2$. The left diagram corresponds to the lattice of all ideals of the quotient ring $\mathbb{F}_2[x_1, x_2]/(x_1^2, x_2^2)$, the right one to those ideals that are generated by monomials.
The actual number of quotients of the ring $\mathbb{F}_2[x_1, ..., x_l]/(x_{1}^{2}, ..., x_{l}^{2})$ is at least as big as $|\text{FD}(l)|$ and it can be computed using GAP for small values of l. This gave 3, 7, 47, 4979 for $1 \leq l \leq 4$.

Theorem 3.3. Let R be a finite-dimensional commutative k-algebra, and let p be an odd prime. R is a Δ_p-ring if and only if p is a Mersenne prime and $R = (\mathbb{F}_2)^a \times (\mathbb{F}_{p+1})^b$ for some nonnegative integers a and b.

Proof. Let R be as stated in the theorem and assume that R is Δ_p for some odd prime p. As argued in the proof of the above theorem, we may assume that R is a local Artin k-algebra. Then by Lemma 2.5, k is either \mathbb{F}_2 or \mathbb{F}_{p+1} where p is a Mersenne prime. Then Lemma 2.6 implies that $R \cong \mathbb{F}_2[C_p^n]/\sim$ or $R \cong \mathbb{F}_{p+1}[C_p^n]/\sim$. Taking products of local algebras and using Lemma 2.8 we get the classification stated in the theorem because the only finite fields that are Δ_p are \mathbb{F}_2 and \mathbb{F}_{p+1} with p Mersenne.

Corollary 3.4. An odd prime p is Mersenne if and only if there exists a finite-dimensional commutative k-algebra that is a Δ_p-ring.

4. Finite commutative rings

Let R be a finite commutative ring. Note that R is Artinian, and therefore it can be written as a product of Artin local rings: $R = R_1 \times R_2 \cdots \times R_l$. Recall that R is Δ_2 if and only if R_i is Δ_2 for all i. So, we may assume that R is finite and has only one prime ideal. Let n be the characteristic of R. Then Lemma 2.4 implies that n divides 24.

If $n = 2$ or 3, then R is a finite-dimensional \mathbb{F}_2 or \mathbb{F}_3-algebra. By the previous section, we know that R is either a product of \mathbb{F}_3’s or a quotient of a product of rings of the form $\mathbb{F}_2[x_1, x_2, \ldots, x_l]$. By the Chinese Remainder Theorem, every ring of characteristic 6 is a product of two rings, one of characteristic 2 and one of characteristic 3. So this also takes care of rings of characteristic 6.

It is enough to consider rings of characteristics 4 and 8. The Δ_2 rings in these two cases, when combined with products of \mathbb{F}_3, will complete the cases of characteristics 12 and 24 using the Chinese Remainder Theorem.

By Lemma 2.6, any local Artin ring of characteristic 4 that is Δ_2 must be a quotient of $\mathbb{Z}_4[C_2] \cong [x_1, x_2, \ldots, x_l]/(x_1^2 - 1, x_2^2 - 1, \ldots, x_l^2 - 1)$.
So, what are all the Δ_2-quotients? We begin by determining the unique prime ideal of this ring.

Lemma 4.1. The ring $R = \mathbb{Z}_4[x_1, x_2, \ldots, x_l]/(x_1^2 - 1, x_2^2 - 1, \ldots, x_l^2 - 1)$ has only one prime ideal, and that corresponds to $\mathcal{P} := (2, x_1 - 1, x_2 - 1, \ldots, x_l - 1)$ in $\mathbb{Z}_4[x_1, x_2, \ldots, x_l]$.

Proof. Let \mathcal{I} be any prime ideal of $\mathbb{Z}_4[x_1, x_2, \ldots, x_l]$ that contains $(x_1^2 - 1, x_2^2 - 1, \ldots, x_l^2 - 1)$. Since we are working in characteristic 4, we have $2^2 = 4 = 0 \in \mathcal{I}$. Hence \mathcal{I} is a prime ideal, 2 belongs to \mathcal{I}. For all i, we have $x_i^2 - 1$ and 2 belong to \mathcal{I}. This means $(x_i^2 - 1)^2 + 2 = x_i^4 + 1$, and hence $x_i^4 + 1 - 2x_i = (x_i - 1)^2$ belong to \mathcal{I}. This shows that $x_i - 1$ is in \mathcal{I} for all i. The ideal generated by $(2, x_1 - 1, \ldots, x_l - 1)$ is maximal in $\mathbb{Z}_4[x_1, x_2, \ldots, x_l]$ because the quotient is the residue field \mathbb{F}_2. This shows that $\mathcal{I} = \mathcal{P} = (2, x_1 - 1, \ldots, x_l - 1)$. ■

The next proposition characterizes the quotients of $\mathbb{Z}_4[x_1, x_2, \ldots, x_l]/(x_1^2 - 1, x_2^2 - 1, \ldots, x_l^2 - 1)$ that are Δ_2.

Proposition 4.2. Let $R = \mathbb{Z}_4[x_1, x_2, \ldots, x_l]/(x_1^2 - 1, x_2^2 - 1, \ldots, x_l^2 - 1)$ and let $\mathcal{P} = (2, x_1 - 1, x_2 - 1, \ldots, x_l - 1)$. A quotient ring S of R, is a Δ_2-ring if and only if $S = \mathbb{Z}_4[x_1, x_2, \ldots, x_l]/\mathcal{J}$ where \mathcal{J} contains $(\eta(\eta + 2): \eta \in \mathcal{P})$.

Proof. We begin by noting that any quotient ring of R is of the form

$$S = \mathbb{Z}_4[x_1, x_2, \ldots, x_l]/\mathcal{J},$$

where $(x_1^2 - 1, \ldots, x_l^2 - 1) \subseteq \mathcal{J} \subseteq \mathcal{P}$. (Recall that $\mathcal{P} = (2, x_1 - 1, \ldots, x_l - 1)$ is a maximal ideal in $\mathbb{Z}_4[x_1, x_2, \ldots, x_l]$ with residue field \mathbb{F}_2.) By Lemma 4.1, the ring R is a local ring, and therefore its quotient S is also a local ring whose maximal ideal corresponds to \mathcal{P}/\mathcal{J} with residue field \mathbb{F}_2. This gives a short exact sequence:

$$0 \rightarrow \mathcal{P}/\mathcal{J} \rightarrow S \rightarrow \mathbb{F}_2 \rightarrow 0.$$

Since $\mathbb{F}_2^\times = \{1\}$, and units in a local ring are the elements that are in the complement of the maximal ideal (see Lemma 2.6), it is clear from the above short exact sequence that any unit in S is of the form $\overline{1 + \eta}$ where η belongs to \mathcal{P}. With this characterization of the units at hand, we are now ready to characterize the Δ_2 quotients of R.

Suppose that a quotient S of R is a Δ_2-ring. Consider any η in \mathcal{P}. Since S is Δ_2-ring, the unit $\overline{1 + \eta}$ in S must square to 1. Note that $(1 + \eta)^2 = 1 + \eta^2 + 2\eta = 1 + \eta(\eta + 2)$. This element is equal to \overline{T} in S if and only if $\eta(\eta + 2)$ belongs to \mathcal{J}, showing that $(\eta(\eta + 2): \eta \in \mathcal{P}) \subseteq \mathcal{J}$.

Conversely, suppose \mathcal{J} contains $(\eta(\eta + 2): \eta \in \mathcal{P})$. Pick any unit in S. By the above discussion, the chosen unit has to be of the form $\overline{1 + \eta}$, where η belongs to \mathcal{P}. We have, $(1 + \eta)^2 = 1 + \eta^2 + 2\eta = 1 + \eta(\eta + 2)$. This last expression is \overline{T} in S because $\eta(\eta + 2)$ belongs to \mathcal{J}. This shows that S is a Δ_2-ring. ■

In characteristic 8, we have the following result similar to the previous one with almost identical proof. We use the fact that $2^3 = 0$ in \mathbb{Z}_8.

Proposition 4.3. Let $R = \mathbb{Z}_8[x_1, x_2, \ldots, x_l]/(x_1^2 - 1, x_2^2 - 1, \ldots, x_l^2 - 1)$ and let $\mathcal{P} = (2, x_1 - 1, x_2 - 1, \ldots, x_l - 1)$ be the maximal ideal of R. The ring S, a quotient of R, is a Δ_2-ring if and only if $S = R/\mathcal{J}$ where \mathcal{J} contains $(\eta(\eta + 2): \eta \in \mathcal{P})$. (Note: \mathcal{P} is the unique prime ideal of R.)

Packing all the above lemmas and propositions, we get the following theorem that gives a complete characterization of finite commutative rings that are Δ_2.

RINGS WITH AN ELEMENTARY ABELIAN p-GROUP OF UNITS
Theorem 4.4. Let R be a finite commutative ring that is Δ_2. Then the characteristic of R is a divisor of 24. In each characteristic n that divides 24, the finite commutative rings that are Δ_2 are all quotients (with characteristic n) of the rings shown in Table 1.

char(R)	R
2	$\prod \mathbb{F}_2[x_1, x_2, \ldots, x_l]/(x_1^2, x_2^2, \ldots, x_l^2)$
3	$\prod \mathbb{F}_3$
6	$\prod \mathbb{F}_3 \times \prod (\mathbb{F}_2[x_1, x_2, \ldots, x_l]/(x_1^2, x_2^2, \ldots, x_l^2))$
4	$\prod \mathbb{Z}_4[x_1, x_2, \ldots, x_l]/(r(r+2): r \in \mathcal{P})$
8	$\prod \mathbb{Z}_8[x_1, x_2, \ldots, x_l]/(r(r+2): r \in \mathcal{P})$
12	$\prod \mathbb{F}_3 \times \prod \mathbb{Z}_4[x_1, x_2, \ldots, x_l]/(r(r+2): r \in \mathcal{P})$
24	$\prod \mathbb{F}_3 \times \prod \mathbb{Z}_8[x_1, x_2, \ldots, x_l]/(r(r+2): r \in \mathcal{P})$

Table 1. Classification of finite commutative Δ_2-rings

Note: In the above table, \mathcal{P} is the prime ideal $(2, x_1 - 1, x_2 - 1, \ldots, x_l - 1)$ in the corresponding polynomial ring.

Theorem 4.5. Let R be a finite commutative ring, and let p be an odd prime. Then, R is a Δ_p-ring if and only if p is a Mersenne prime and R is isomorphic to $(\mathbb{F}_2)^a \times (\mathbb{F}_{p+1})^b$ for some a and $b \geq 0$.

Proof. First, note that Δ_p, for p odd, can occur only when p is a Mersenne prime. So, let $p = 2^l - 1$ for some l. As before, we may assume without loss of generality that R is a local Artin ring. Let n be the characteristic of R. Then \mathbb{Z}_n is a Δ_p-ring. That is $u^p = 1$ for all u in \mathbb{Z}_n^\times. If $n \neq 2$, \mathbb{Z}_n^\times will have an element of order 2, which is impossible in a Δ_p-ring. This shows that $n = 2$. By Lemma 2.6, R then has to be to be a quotient of $\mathbb{F}_2[C_p^l]$. By 2.8, a quotient of $\mathbb{F}_2[C_p^l]$ must be a product of fields of characteristic 2. Since the multiplicative group must be a elementary abelian p-group, the finite fields can be either \mathbb{F}_2 or \mathbb{F}_{p+1} with p Mersenne. This shows that R must have the form stated in the theorem. Conversely, it is easy to see that these rings have elementary abelian 2-groups as their unit groups. ■

5. Modular Group Algebras: \mathbb{Z}_nG

Theorem 5.1. The group algebra \mathbb{Z}_nG is Δ_2 if and only if $n \in \{2, 3, 6\}$ and $G = C_2^r$ or $n \in \{4, 12\}$ and $G = C_2$.

Proof. Let \mathbb{Z}_nG be a Δ_2-ring. Then \mathbb{Z}_n must be Δ_2, as it is a subring of \mathbb{Z}_nG. Then by Lemma 2.4, we know that n divides 24. Note that every element of G is a unit of \mathbb{Z}_nG, thus we have $g^2 = e$ for any $g \in G$. Proposition 2.1 implies that $G \cong C_2^r$, an elementary abelian 2-group.
Let $C_2 = \{e, \sigma\}$, and denote the ith generator of C_2^t by σ_i. We proceed by checking each divisor of 24. We use the fact that the sum of a unit and a nilpotent element in any commutative ring is a unit.

- $\mathbb{Z}_2C_2^t$ and $\mathbb{Z}_3C_2^t$ are Δ_2-rings from [5, Theorem 2.3].
- Note that $\mathbb{Z}_8C_2^t$ is not Δ_2, as $u = e + 2\sigma$ is a unit, but $u^2 = 5e + 4\sigma \neq e$.
- Similarly, $\mathbb{Z}_{24}C_2^t$ is not Δ_2, as $u = e + 6\sigma$ is a unit, but $u^2 = 13e + 12\sigma \neq e$.
- $\mathbb{Z}_6C_2^t$ is isomorphic to $\mathbb{Z}_2C_2^t \times \mathbb{Z}_3C_2^t$ via the Chinese Remainder Theorem, thus because each of $\mathbb{Z}_2C_2^t$ and $\mathbb{Z}_3C_2^t$ are Δ_2, we know that $\mathbb{Z}_6C_2^t$ is Δ_2.
- To show that \mathbb{Z}_4C_2 is Δ_2, consider the augmentation map $\epsilon : \mathbb{Z}_4C_2 \to \mathbb{Z}_4$ defined by $\sum \alpha_gg \mapsto \sum \alpha_g$. Then ϵ is a ring homomorphism, so it must map unit elements of \mathbb{Z}_4C_2 to unit elements of \mathbb{Z}_4. The only unit elements of \mathbb{Z}_4 are ± 1, and it can be verified that each of the elements in $\{e, \sigma, 3\sigma, e + 2\sigma, 2e + \sigma, 2e + 3\sigma, 3e, 3e + 2\sigma\}$ are units of \mathbb{Z}_4C_2 satisfying $u^2 = e$. However, for $\mathbb{Z}_4C_2^t$ where $r > 1$, note that $\sigma_1 + \sigma_2$ is a nilpotent as $(\sigma_1 + \sigma_2)^4 = 0$. Then $u = e + \sigma_1 + \sigma_2$ is a unit in $\mathbb{Z}_4C_2^t$, but $u^2 = 3e + 2\sigma_1 + 2\sigma_2 + 2\sigma_1\sigma_2 \neq e$.
- We know by the Chinese Remainder Theorem that for all $r \geq 1$, $\mathbb{Z}_{12}C_2^t \cong \mathbb{Z}_2C_2^t \times \mathbb{Z}_3C_2^t$ (because 4 and 3 are relatively prime). When $r = 1$, we know from previous cases that both \mathbb{Z}_4C_2 and \mathbb{Z}_3C_2 are Δ_2. It follows that that $\mathbb{Z}_{12}C_2$ is Δ_2 as well. However, when $r > 1$, $\mathbb{Z}_4C_2^t$ was shown to be not Δ_2. Therefore, $\mathbb{Z}_{12}C_2^t$ also can’t be Δ_2.

Theorem 5.2. Let p be an odd prime. The group ring \mathbb{Z}_nG (G abelian) is a Δ_p-ring if and only if $n = 2$, G is an elementary abelian p-group, and p is some Mersenne prime.

Proof. Let \mathbb{Z}_nG with G abelian be a Δ_p-ring. Since G is abelian and \mathbb{Z}_nG is Δ_p, every non-trivial element in G has order p. This means G has to be an elementary abelian p-group. Since the subring \mathbb{Z}_n must also be a Δ_p-ring, the characteristic n must be 2, because otherwise, we will have $-1(\neq 1)$, a unit element in the ring of order 2, impossible in a Δ_p-ring with p odd. So our group ring is $\mathbb{F}_2C_p^n$. This is Δ_p if and only if p is Mersenne; [5].

The next proposition gives an ideal-theoretic explanation for why $\mathbb{Z}_4[C_2]$ is Δ_2, but $\mathbb{Z}_4[C_2^t]$ is not Δ_2 when $l > 1$. In the ring $\mathbb{Z}_4[x_1, \ldots, x_l]$, consider the following ideals.

- $P_l := (2, x_1 - 1, x_2 - 1, \ldots, x_l - 1)$
- $J_l := (n(n + 2) : n \in P_l)$
- $I_l := (x_1^2 - 1, \ldots, x_l^2 - 1)$

Proposition 5.3. Let l be a positive integer. The following are equivalent.

1. $l = 1$.
2. $\mathbb{Z}_4[C_2]$ is a Δ_2-ring.
3. $I_l = J_l$.

Proof. We have already seen the equivalence of (1) and (2). We will show that (1) and (3) are equivalent. To this end, we have to show that, in the ring $\mathbb{Z}_4[x]$, $(x^2 - 1) = (n(n + 2) : n \in P)$ where $P = (2, x - 1)$. The inclusion $(x^2 - 1) \subseteq (n(n + 2) : n \in P)$ is obvious because $x^2 - 1 = (x - 1)(x + 1) = (x - 1)((x - 1) + 2)$. For the other inclusion, it is enough to show that for all n in P, the element $n(n + 2)$ is 0 in the quotient ring $\mathbb{Z}_4[x]/(x^2 - 1)$. Note that all multiples of 4 will be 0 and $x^2 = 1$ in the quotient ring. Keeping this in mind, consider an arbitrary element $n(n + 2)$ in this quotient ring, where $n = 2(c + bx) + (x - 1)(a + bx)$ is
in P. Then we have the following equations.

$$n(n + 2) = n^2 + 2n$$

$$= (2(c + dx) + (x - 1)(a + bx))^2 + 2(2(c + dx) + (x - 1)(a + bx))$$

$$= (x - 1)^2(a + bx)^2 + 2(x - 1)(a + bx)$$

$$= 2(1 - x)(a^2 + b^2) + 2(x - 1)(a + bx)$$

$$= 2(1 - x)(a^2 + b^2 - a - bx)$$

The last expression is directly seen to be zero in our quotient ring for any choice of a and b in \mathbb{Z}_4. For $l > 1$, we claim that $I_l \subseteq J_l$. It is clear that $I_l \subseteq J_l$. To see that the inclusion is strict, note that, for $l > 1$, from the above results we have $\mathbb{Z}_4[x_1, \ldots, x_l]/J_l$ is a Δ_2-ring but $\mathbb{Z}_4[x_1, \ldots, x_l]/I_l$ is not a Δ_2-ring. This shows that $I_l \subseteq J_l$ for $l > 1$.

6. Path algebras: kQ

Let Q be a quiver (a directed, not necessarily simple graph), and k be a field. We define the path algebra kQ to be a vector space over k with basis given by paths in Q, including the trivial paths of length 0 starting and ending at the same vertex (we will denote the trivial path of length 0 starting and ending at a vertex i by e_i). For any two paths p, q, we define the multiplication pq to be the concatenation of p and q if $t(q) = s(p)$, and 0 otherwise; here $t(q)$ is the tail of q and $s(p)$ is the head of p.

The existence of an identity element is guaranteed in any finite quiver. Moreover, the path algebra kQ of a quiver Q will be finite-dimensional if and only if Q is acyclic. So, we will assume that our quivers are finite and acyclic.

Lemma 6.1 (Karthika-Viji [9]). Let k be a field, and Q be a finite acyclic quiver. Then the identity element of the path algebra kQ is given by $\sum_{i \in V(Q)} e_i$. We denote this element by e.

The following theorem gives a useful characterization of units in path algebras.

Theorem 6.2 (Karthika-Viji [9]). Let k be a field, and Q be a finite acyclic quiver. Then an element $a \in kQ$ is a unit if and only if the coefficient of e_i is nonzero for all vertices $i \in Q$.

The following two results complete the classification of all Δ_p-path algebras.

Theorem 6.3. Let k be a field, and Q be a finite acyclic quiver. Then kQ is Δ_2 if and only if $k = \mathbb{F}_3$ and Q contains no edges, or $k = \mathbb{F}_2$ and Q has no directed paths of length 2.

Proof. Let $k = \mathbb{F}_3$ and Q be a quiver containing no nontrivial path. Then by Theorem 6.2, the only unit in kQ is the identity $e = \sum e_i$. Then we see that $e^2 = e$, as e is the identity.

Let $k = \mathbb{F}_3$ and Q be a quiver containing a directed edge p. By Theorem 6.2, $e + p$ is a unit, but $(e + p)^2 = e^2 + ep + pe + p^2 = e + p + p + 0 = e + 2p \neq e$. Thus kQ is not Δ_p.

Let $k = \mathbb{F}_2$ and Q be a quiver containing a directed path $\beta \alpha$ comprised of edges α, β. Then by Theorem 6.2, $e + \alpha + \beta$ is a unit, but $(e + \alpha + \beta)^2 = e^2 + 2\alpha + 2\beta + \beta \alpha \neq e$.

If $k = \mathbb{F}_2$ and Q is a quiver with no directed paths of length two, then for any two paths α, β, we have $\alpha \beta = 0$. Let p be the sum of any paths. Then $e + p$ is a unit, but $(e + p)^2 = e + 2p = e$ as desired.

Example 6.4. Here is an example of a quiver on 5 vertices for which the path algebra over \mathbb{F}_2 or \mathbb{F}_3 is a Δ_2-ring.

\[
\bullet \quad \bullet \quad \bullet \quad \bullet \quad \bullet \quad \bullet
\]

Note that this quiver has no directed path of length 2 or more.
Theorem 6.5. Let p be an odd prime, k be a field, and Q be a finite acyclic quiver. The path algebra kQ is Δ_p if and only if Q is trivial and $k = \mathbb{F}_2$ or $k = \mathbb{F}_{p+1}$ where p is a Mersenne prime.

Proof. Let kQ be a Δ_p-ring for some odd prime p. Note that kQ is a k-algebra. Then by Corollary 2.5, k must be \mathbb{F}_2 or $k = \mathbb{F}_{p+1}$ where p is Mersenne. We claim that Q cannot have any directed edges. Suppose to the contrary, Q has some directed edge α. Consider the element $u = e + \alpha$. Then u is a unit by Lemma 6.2, and $u^2 = (e + \alpha)^2 = e + 2\alpha$. Since the characteristic of k is 2, $2\alpha = 0$, thus $u^2 = e$ and we see that u has order 2. This contradicts the fact that $kQ^\times = C_p^r$, as every element of kQ^\times should have order p. This proves one direction. The other direction is obvious because the path algebra kQ of a trivial quiver is a product of copies of k, and the direct product of fields stated in the theorem is a Δ_p-ring. ■

References

[1] M. F. Atiyah and I. G. Macdonald. Introduction to commutative algebra. Addison-Wesley Series in Mathematics. Westview Press, Boulder, CO, economy edition, 2016.
[2] Jon F. Carlson, Sunil K. Chebolu, and Ján Mináč. Freyd’s generating hypothesis with almost split sequences. Proc. Amer. Math. Soc., 137(8):2575–2580, 2009.
[3] Sunil K. Chebolu. What is special about the divisors of 24? Math. Mag., 85(5):366–372, 2012.
[4] Sunil K. Chebolu and Keir Lockridge. How many units can a commutative ring have? Amer. Math. Monthly, 124(10):960–965, 2017.
[5] Sunil K. Chebolu, Keir Lockridge, and Gaywalee Yamskulna. Characterizations of Mersenne and 2-rooted primes. Finite Fields Appl., 35:330–351, 2015.
[6] Sunil K. Chebolu and Michael Mayers. What is special about the divisors of 12? Math. Mag., (2), 2013.
[7] Robert W. Gilmer, Jr. Finite rings having a cyclic multiplicative group of units. Amer. J. Math., 85:447–452, 1963.
[8] George Grätzer. Lattice theory: foundation. Birkhäuser/Springer Basel AG, Basel, 2011.
[9] S. Karthika and M. Viji. Unit elements in the path algebra of an acyclic quiver. Indian J. Pure Appl. Math., 52(1):138–140, 2021.

Department of Mathematics, Illinois State University, Normal, IL 61790, USA
Email address: schebol@ilstu.edu, jacorry@ilstu.edu, evgrimm@ilstu.edu, abhatfi@ilstu.edu