Effect of pressure on thermopower and resistivity of EuCo$_2$P$_2$

To cite this article: T Nakama et al 2010 J. Phys.: Conf. Ser. 200 032050

View the article online for updates and enhancements.

Related content
- Effect of pressure on thermopower of EuNi$_2$Ge$_2$
 A Nakamura, T Nakama, K Uchima et al.
- Transport properties of Heusler Compound Mn$_3$Si under high pressure
 Y Takaesu, K Uchima, S Nakamura et al.
- Transport properties of Y$_{1-x}$Nd$_x$Co$_2$ compounds
 K Uchima, M Takeda, C Zukeran et al.
Effect of pressure on thermopower and resistivity of EuCo$_2$P$_2$

T Nakama1, T Yoshida1, A Ohno1, D Nakamura1, Y Takaesu1, M Hedo1, K Yagasaki1, K Uchima2, T Fujiwara3 and T Shigeoka3

1Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
2General Education, Okinawa Christian Junior College, Nishihara, Okinawa 903-0207, Japan
3Faculty of Science, Yamaguchi University, Yamaguchi, Yamaguchi 753-8512, Japan
E-mail: nakama@sci.u-ryukyu.ac.jp

Abstract. The measurements of electrical resistivity ρ and thermopower S of the single-crystalline EuCo$_2$P$_2$ have been performed at temperatures from 2 K to 300 K under hydrostatic pressures up to 3 GPa. The temperature dependence of ρ and S show drastic changes at the critical pressure P_c, indicating a large modification of electronic structure around the Fermi level due to a pressure-induced structural and magnetic phase transition. The magnetic phase transition temperature increases linearly with increasing pressure, and shows a sudden increase at the critical pressure P_c, which correspond to the change of magnetic state from the localized Eu(4f) sub-lattice magnetism into the itinerant Co(3d) sub-lattice magnetism.

1. Introduction
The rare-earth (R) transition metal (T) phosphides, RT$_2$P$_2$, which crystallize in the ThCr$_2$Si$_2$-type body-centered tetragonal structure, have a rich variety of the magnetic ground states such as 4f sub-lattice magnetism, 3d sub-lattice magnetism or magnetism of both sub-lattices [1, 2, 3]. Additionally, superconductivity as well as intermediate valence behavior have been observed in this system [4, 5]. One possible reason for such a richness is that this crystal structure can adapt to several elements with various atomic sizes. In this series, EuCo$_2$P$_2$ is an antiferromagnet with a moment at Eu site of 6.9 μ_B and the Neel temperature of $T_N=66.5$ K at ambient pressure. It is reported that EuCo$_2$P$_2$ undergoes a structural and magnetic phase transition at a pressure of $P_c \approx 3$ GPa from a long P-P distance phase, with magnetic Eu$^{2+}$ and nonmagnetic Co, into a short P-P distance phase with nonmagnetic Eu$^{3+}$ and magnetic Co with an estimated moment of 0.6 μ_B at the Co site [6, 7].

The results of band structure calculation for EuCo$_2$P$_2$ reveal that the large electronic density of state (DOS) caused mainly by the Co 3d states lies near the Fermi level [6, 8]. Since the electron scattering is sensitive to the electronic state in the vicinity of the Fermi level, a large pressure effect on the transport properties, especially near the critical pressure P_c, can be expected. Some studies on the transport properties of the Eu-based system with a valence instability have been performed [9, 10]. However, as far as we know, no measurement of the transport properties of EuCo$_2$P$_2$ under pressure was reported in the literature. In order to investigate the effect of pressure on the transport properties of EuCo$_2$P$_2$, we have measured the electrical resistivity ρ and thermopower S at temperatures from 2 K to 300 K under hydrostatic pressures up to 3 GPa.
2. Measurement procedures

A single-crystalline sample of EuCo$_2$P$_2$ used for the present measurements of ρ and S was prepared by a Sn flux method. The detailed procedures for sample preparation have been described in Ref. [11]. The size of the sample was about $0.05 \times 1 \times 2 \text{ mm}^3$. The measurements of electrical resistivity ρ and thermopower S were carried out by using the differential method with seesaw heating procedure [12] and the standard four-probe dc method, respectively. ρ and S were measured simultaneously at temperatures from 2 K to 300 K on the process of applying pressure. A clamp-type hybrid piston cylinder pressure cell [13] with Daphne oil 7373 as the pressure transmitting medium was utilized for the measurements of ρ and S under pressures up to 3 GPa. Chromel-constantan thermocouples were used for measuring probes because of small temperature dependence of pressure effect [14]. The directions of the current and the temperature gradient were made perpendicular to the c-axis.

3. Results and Discussion

The temperature dependence of ρ of EuCo$_2$P$_2$ under pressures up to 2 GPa is shown in Fig. 1. With increasing temperature, ρ at ambient pressure rapidly increases and shows a kink around 66 K, indicated by an arrow in Fig. 1, which is in agreement with the Neel Temperature T_N reported in Refs. [6, 7]. ρ increases with increasing pressure, especially in the high temperature region. The Neel temperature T_N increases linearly with increasing pressure at the pressure range of $P < 0.0$ GPa. The temperature variation of ρ, however, shows almost the same feature. The inset of Fig. 1 depicts the temperature dependence of ρ at $P=2.5$ GPa and 3.0 GPa. For the sake of comparison, ρ at ambient pressure also shown in the inset of Fig. 1. The temperature dependence and the magnitude of ρ at $P=2.5$ GPa indicate drastic changes as compared to those at $P \leq 2.0$ GPa, indicating the pressure induced phase transition at the critical pressure P_c, $2.0 < P_c < 2.5$ GPa. In the high pressure phase at $P=2.5$ GPa, a kink in $\rho(T)$ at the magnetic phase transition temperature $T^*_N \approx 260$ K, indicated by an arrow in the inset of Fig. 1, is observed. T^*_N is in good agreement with the literature data [6].

Figure 2 shows the temperature dependence of S under pressures up to 2 GPa. At ambient
pressure, S increases with increasing temperature, having a maximum around 60 K. $S(T)$ also indicates an anomalous behavior in the form of abrupt break at $T_N \approx 66$ K. With increasing pressure, S deceases in the whole measuring temperature range and T_N increases in the pressure range of $P < 2.0$ GPa. The additional anomalous behavior in $S(T)$ is observed around $T_x=10$ K. No phase transition around T_x has been reported. The detailed investigation of this anomaly will be a subject of separate publication. Here we concentrate on the pressure-induced phase transition at P_c. The inset of Fig. 2 shows the temperature dependence of S at $P=2.5$ GPa and 3.0 GPa.

Figure 2. Temperature dependence of S of EuCo$_2$P$_2$ under pressures up to 2 GPa. The inset shows the temperature dependence of S at $P=2.5$ GPa and 3.0 GPa.

In summary, the electrical resistivity ρ and thermopower S of the single-crystalline EuCo$_2$P$_2$ have been measured at temperatures from 2 K to 300 K under pressures up to 3 GPa. The features of the temperature dependences of $\rho(T)$ and $S(T)$ show qualitative and quantitative changes at the critical pressure P_c, indicating a large modification of electronic state, consist mainly of the Co 3d electron states, around the Fermi level due to a pressure induced structural and magnetic phase transition accompanied by the valence change of Eu. The magnetic
transition temperature linearly increases with increasing pressure, and shows a sudden increase at the critical pressure P_c, which correspond to the change of magnetic state from the Eu(4f) sub-lattice magnetism to the Co(3d) sub-lattice magnetism.

Acknowledgements

Part of this work was supported by a Grant-in-Aid for Scientific Research (No. 21540340) from Ministry of Education, Culture, Sports, Science and Technology, Japan.

References

[1] Reehuis M, Jeitschko W, Moller M H and Brown P J 1992 *J. Phys. Chem. Solids* **53** 687–690
[2] Morsen E, Mosel B D, Muller-Warmuth W, Reehuis M and Jeitschko W 1988 *J. Phys. Chem. Solids* **49** 785–795
[3] Reehuis M, Brown P J, Jeitschko W, Moller M H and Vomhof T 1993 *J. Phys. Chem. Solids* **54** 469–475
[4] Jeitschko W, Glaum R and Boonk L 1987 *J. Solid State Chem.* **69** 93–100
[5] Nagarajan R, Sampathkumaran E, Gupta L and Vijayaraghavan R 1981 *Phys. Lett. A* **84A** 275–277
[6] Ni B, Abd-Elmeguid M M, Micklitz H, Sanchez J P, Vulliet P and Johrendt D 2001 *Phys. Rev. B* **63** 100102(R)
[7] Chefki M, Abd-Elmeguid M M, Micklitz H, Huhnt C, Schlabitz W, Reehuis M and Jeitschko W 1998 *Phys. Rev. Lett.* **80** 802–805
[8] Andersson P H, Nordstrom L, Mohn P and Eriksson O 2002 *Phys. Rev. B* **65** 174109
[9] Levin E M, Kuzhel B S, Bodak O I, Belan B D and Stets I S 1990 *Phys. Status Solidi B* **161** 783
[10] Hossain R, Geibel C, Senthilkumaran N, Deppe M, Baenitz M, Schiller F and Molodtsov S L 2004 *J. Solid State Chem.* **69** 014422
[11] Marchand R and Jeitschko W 1978 *Phys. Rev. B* **24** 351
[12] Resel R, Gratz E, Burkov A T, Nakama T, Higa M and Yagasaki K 1996 *Rev. Sci. Instrum.* **67** 1970–1975
[13] Uwatoko Y, Todo S, Ueda K, Uchida A, Kosaka M, Mori N and Matsumoto T 2002 *J. Phys.: Condens. Matter* **14** 11291–11296
[14] Choi E S, Kang H, Jo Y J and Kang W 2002 *Rev. Sci. Instrum.* **73** 2999–3002