The Lifetimes of Plasma Structures at High Latitudes

Magnus F. Ivarsen1, Yaqi Jin1, Andres Spicher1, Wojciech Miloch1, and Lasse B. N. Clausen1

1Department of Physics, University of Oslo, Oslo, Norway

Abstract We present an investigation of polar cap plasma structure lifetimes. We analyze both simulated data from ionospheric models (International Reference Ionosphere model and Mass Spectrometer Incoherent Scatter model) and in situ data from the Swarm satellite mission (the 16 Hz Advanced Plasma Density dataset). We find that the theoretical prediction that E-region conductance is a predictor of F-region polar cap plasma structure lifetimes is indeed supported by both in situ-based observations and by ionospheric models. In situ plasma structure lifetimes correlate well with the ratio of F- to E-region conductance. We present explicit predictions of small scale (∼1 km) structure lifetimes, which range from less than 1 h during local summer to around 3 h during local winter. We highlight a large discrepancy between the observational and theoretical scale-dependency of decay due to diffusion.

1. Introduction

In the high-latitude ionosphere, the primary source regions for plasma structuring tend to be located in the dayside cusp and the nightside auroral oval, where electron precipitation is abundant (Kelley et al., 1982). The large-scale polar convection pattern then causes the structured plasma to travel anti-sunward through the polar cap (Cowley & Lockwood, 1992; Dungey, 1961). In fact, the transport of irregularities from particle precipitation-driven source regions into the polar cap proper is an essential reason for the observed polar cap plasma structures (Cowley, 2000), although alternative sources of structuring inside the polar cap proper exist, such as the gradient drift instability mechanism (e.g., Tsunoda, 1988). Without an irregularity production source, the lifetime of a given plasma structure entering the polar cap is an indicator of the effectiveness with which the plasma structures are diffusing into the surrounding plasma. Indeed, Jin et al. (2017) found that occurrence of plasma irregularities drops significantly when plasma leaves the cusp region.

The occurrence of plasma irregularities in the high-latitude regions is in general subject to strong seasonal dependencies (Ghezelbash et al., 2014; Heppner et al., 1993; Jin et al., 2018; Prikryl et al., 2015). In general, local winter is accompanied by an increase in observed plasma irregularities. Additionally, the occurrence rate for the large-scale polar cap patches is higher during local winter (Coley & Heelis, 1998; Foster, 1984; Schunk & Sojka, 1987; Spicher et al., 2017; Wood & Pryse, 2010), though conflicting evidence exists for the southern hemisphere (Chartier et al., 2018; Noja et al., 2013). Recently, Ivarsen et al. (2019) found clear evidence for the seasonal dependency plasma structure diffusion, on average for scales <5.8 km, concluding that local season is a powerful indicator for the existence of plasma irregularity dissipation.

Pressure gradients in plasma cause plasma density structures to diffuse into the surrounding plasma (Vickrey & Kelley, 1982). In radial structures, plasma distributed in a long column with an axial external magnetic field applied—assuming rotational symmetry—is only subject to radial, or perpendicular diffusion. Theoretically, in this plasma, ions and electrons diffuse individually (Moisan & Pelletier, 2012). This creates a charge-induced (ambipolar) electric field, which in turn serves to decelerate the diffusion of the faster-diffusing species, and accelerate the slower-diffusing species (Moisan & Pelletier, 2012). The value of the ambipolar electric field then controls the rate of diffusion of plasma structures in the F-region. In a seminal article, Vickrey and Kelley (1982) showed that, theoretically, the height-integrated ionospheric Pedersen conductivity controls the ambipolar electric field, and thus also the rate of F-region plasma diffusion. This mechanism gives rise to the observed seasonal dependency of plasma structure abundance. The equation expressing the height-integrated perpendicular diffusion coefficient in the F-region polar cap reads (Vickrey & Kelley, 1982),
\[D_\perp = \frac{\Sigma^E_i}{\Sigma^E_i + \Sigma^F_i} (D_{\perp,E} - D_{\perp,F}) + D_{\perp,I}, \]

where \(\Sigma^E_j \) is the height-integrated Pedersen conductivity for the regions \(k = E, F \), and \(D_{\perp,j} \) is the height-integrated perpendicular diffusion coefficient, both for species \(j = i, e \). In reality, the Pedersen current is primarily carried by ions, and so the height-integrated Pedersen conductivity can be defined in terms of the ion conductivity only, \(\Sigma^i \approx \Sigma^E_i \).

With this simplification, it is now instructional to write Equation 1 as,

\[D_\perp = \frac{\Sigma^E_i D_{\perp,E} + \Sigma^F_i D_{\perp,F}}{\Sigma^E_i + \Sigma^F_i}. \]

Since the diffusion coefficient of species \(j \) is proportional to mass of that species, \(D_{\perp,I} \gg D_{\perp,E} \). Given that the ratio of E-region to F-region conductance is substantially greater than \(D_{\perp,E}/D_{\perp,F} \), we can simplify further,

\[D_\perp = \frac{\Sigma^E_i}{\Sigma^E_i + \Sigma^F_i} D_{\perp,I}. \]

Physically, Equation 1 illustrates that a strengthening of Pedersen conductivity in the E-region as opposed to the F-region shorts out the ambipolar electric field, causing F-region plasma to diffuse at the high ion perpendicular diffusion rate instead of the balanced ambipolar diffusion rate (the applied magnetic field causes ion rates to be much higher than the electron rates, the reverse of the situation without such a magnetic field [Moisan & Pelletier, 2012]). As shown by Equation 3, as long as the ratio of E-region to F-region conductance is substantially greater than \(D_{\perp,E}/D_{\perp,F} \), we can simplify further,

\[D_\perp = \frac{\Sigma^E_i}{\Sigma^E_i + \Sigma^F_i} D_{\perp,I}. \]

Let us now turn to the subject of an observable quantity related to the perpendicular diffusion coefficient: structure lifetime. In general, the time scale associated with a diffusion process adheres to the following equation (Huba & Ossakow, 1981; Moisan & Pelletier, 2012),

\[\tau = \frac{\lambda^2}{D}, \]

where \(\lambda \) is a characteristic scale length, and \(D \) is the mentioned diffusion coefficient. Plugging Equation 3 into Equation 4, we can express an estimate for F-region polar cap perpendicular plasma structure lifetimes \(\tau_\perp \) as predicted by Vickrey and Kelley (1982),

\[\tau_\perp = \left(1 + \frac{\Sigma^E_i}{\Sigma^F_i} \right) \frac{\lambda^2}{D_{\perp,I}}. \]

Note that small-scale high latitude F-region plasma structures are believed to be generated through instability processes and be the result of the balance between production and decay (Tsunoda, 1988). Consequently, the growth of plasma structures may also effectively increase \(\tau \) in Equation 4.

Unfortunately, the subject of plasma structure lifetime is rarely explicitly addressed. However, the lifetimes of polar cap patches have been documented in the literature. Due to chemical recombination, the density of polar cap patches decay toward the ambient plasma density (Wood & Pryse, 2010). Through the application of ionospheric modeling, Schunk and Sojka (1987) likewise concluded that the lifetime of a typical polar cap patch during local summer is 4 h, while during local winter the lifetime is 11 h, with lifetime defined
as a decay of a patch from 10 times the ambient plasma density to a density 10% higher than the ambient plasma. Using all-sky imager data, Hosokawa et al. (2011) calculated the decay time of polar cap patches due to chemical recombination, in a case study of an equinox patch. They concluded that the lifetime of the patch in question was highly altitude-dependent, with the shortest lifetime being 1 h, at an altitude near the F-region peak of 250 km, where lifetime was defined as a reduction to 1/e times the original patch density.

The driving force behind polar cap patch decay, chemical recombination, is not dependent on plasma structure scale, and is a competing process to the ambipolar diffusion (Equation 3). The dominant ion is O+, and charge exchange collisions of O+ with neutral species, which result in N2+ and O2+, are the main processes through which ions diffuse vertically (Hosokawa et al., 2011; Johnsen & Biondi, 1980). At altitudes above the F-region peak at around 250 km, ambipolar diffusion will be faster than the decay time due to chemical recombination, but the latter will impact plasma densities at the topside F-region through vertical diffusion. In the case of competing decay times \(\tau_c \) (chemical) and \(\tau_\perp \) (diffusion), the combined decay time should be given by,

\[
\tau = \frac{\tau_c \tau_\perp}{\tau_c + \tau_\perp}.
\]

(6)

The present study is a follow-up investigation based on the findings in Ivarsen et al. (2019). In the previous study, we found through an automatic detection of breakpoints in the power spectral density analysis (PSD) of Swarm 16 Hz plasma density observations in the polar caps, that around 80% of sampled local summer polar cap plasma exhibited direct evidence of plasma structure dissipation due to plasma diffusion. The corresponding fraction for the local winter polar caps were around 20%. We found that this seasonal dependency is highly predictable, and is tightly connected to solar zenith angle, which in turn controls the amount of extreme ultraviolet photoionization due to solar radiation. In the present study, we intend to investigate high-latitude plasma structure lifetimes. By applying both state of the art ionospheric models, and by using data from in situ satellite missions, we find that the theoretical predictions put forth by Vickrey and Kelley (1982), namely that E-region conductance controls the F-region plasma structure lifetimes in the polar cap, is indeed supported by evidence.

2. Methodology

There are two aspects to the methodology developed in the present study. First, we make an estimate of plasma structure lifetimes in the polar caps based on in situ data from the Swarm mission. Second, we approach the perpendicular diffusion coefficient using ionospheric plasma models.

2.1. In situ Plasma Structure Lifetime Estimate

Ignoring irregularity production and chemical recombination, we can assume that a portion of plasma (e.g., a polar patch) is convecting anti-sunward through the polar cap, that it only undergoes diffusion, and that it diffuses at a constant rate. Our central assumption is then that a satellite orbiting through the F-region ionosphere plasma will, at any given point along the sun-midnight line, encounter plasma that has undergone convection with a constant velocity, and diffusion without further irregularity production.

Using high-resolution (16 Hz) in situ plasma density from the Swarm mission (Friis-Christensen et al., 2006; Knudsen et al., 2017), we can estimate small-scale plasma structuring using the observed PSD of the measured electron density. With a sampling frequency of 16 Hz, we can probe fluctuations for a range of scales down to about 1 km, assuming that the plasma velocity is much smaller than the satellite velocity. At high latitudes, Swarm orbit will be almost perpendicular to Earth’s magnetic field lines, and so an orbiting satellite will sample plasma structures perpendicular to the ambient magnetic field.

We consider all polar cap passes between noon and midnight made by Swarm A between October 15, 2014 and July 1, 2019, at an altitude of approximately 460 km. We use data from Swarm A in this study, but the following analysis can be applied to data from each of the three Swarm satellites with similar results. For
each overpass, we translate Swarm A travel time to the distance along a straight line connecting noon to midnight,

\[d = (t - t_0) v_S \cos \alpha, \]

(7)

where \(d \) is the distance traveled by the convecting plasma, \(v_S \) is the orbital velocity of Swarm A, \(\alpha \) is the angle made by the orbit with respect to the noon-midnight line, \(t \) is Swarm A time, and \(t_0 \) is the time at which Swarm A approaches the polar cap. We consider polar cap passes where \(\alpha \) < 30°, and where the satellite is located poleward of ±82° at some point during the pass.

Next, we analyze the measured electron density \(n \). In order to look at fluctuations irrespective of the background density, we consider the unitless relative density perturbations,

\[\hat{n} = \frac{n - \bar{n}_{im}}{\bar{n}_{im}}, \]

(8)

where \(\bar{n}_{im} \) is a running median filter with a window size of 1 min. We perform a PSD on \(\hat{n} \). Here, we use a variant of Welch’s PSD method, which consists of averaging modified periodograms over a logarithmically spaced spectral range (Trbs & Heinzel, 2006; Welch, 1967). We use an overlapping bin size of 60 s, with a temporal resolution of 1 s. For each bin, we integrate the PSD over 29 logarithmically spaced intervals, from 0.015 Hz down to the Nyquist frequency at 8 Hz. The integral of the PSD, given a stationary process, corresponds to the root-mean-square (RMS), the square root of which is referred to as the standard deviation, \(\sigma \). We define the scale-dependent \(\sigma_\lambda \) as,

\[\sigma_\lambda = \int S(\omega) d\omega, \]

(9)

where \(S(\omega) \) is the PSD, \(\omega \) being the frequency, and \(\lambda \) is the midpoint of the scale interval \(\Delta \lambda \). The integral is performed over the frequency interval \(\Delta \lambda \), where,

\[\Delta \lambda = \frac{v_S}{\Delta \omega}, \]

(10)

assuming that the plasma velocity is much smaller than the Swarm orbital velocity \(v_S \). In this framework, \(\sigma_\lambda \) represents the strength of fluctuations in the plasma density at the scale \(\lambda \). Some density fluctuation powerspectra made using Swarm 16 Hz plasma density exhibit noise in the highest frequencies (Ivarsen et al., 2019). As a precaution, we impose upon the computed RMS values the requirement that, \(\sigma_\lambda > 6 \times 10^{-4} \), a threshold found after extensive testing.

Following from the assumptions laid down so far, plasma containing fluctuations characterized by \(\sigma_\lambda \) will, once it enters the polar cap, diffuse at a constant rate \(D_\perp \). The time evolution of a diffusion process on \(\sigma_\lambda \) with the time scale \(\tau_S \) is characterized by the following differential equation (e.g., Moisan & Pelletier, 2012),

\[\frac{d\sigma_\lambda}{dt_c} = -\frac{1}{\tau_S} \sigma_\lambda, \]

(11)

which has the solution,

\[\sigma_\lambda(t_c) = \sigma_\lambda(0) \exp \left(-\frac{t_c}{\tau_S} \right). \]

(12)

In Equations 11 and 12, \(t_c \) is the plasma convection time and \(\sigma_\lambda(0) \) is the initial RMS value at the point of entry into the polar cap. Now, to convert Swarm orbital distance \(d \) along the noon-midnight line (Equation 7) to plasma convection time, we write \(t_c = d/v_c \), with \(v_c \) being the plasma convection velocity. In combination with Equation 7, we then have for the plasma convection time,

\[t_c = \frac{v_S}{v_c} (t - t_0) \cos \alpha. \]

(13)
For each Swarm A orbit between noon and midnight, we store the plasma convection time \(t_c \) and the relative density fluctuations \(\sigma_{\lambda} \) for all 29 frequency intervals.

Note that we use \(\tau_S \) to distinguish the structure lifetime from the theoretical decay time \(\tau \)—as we expect that structure lifetime as estimated in the present study will deviate from the theoretical decay time. Nevertheless, we can apply Equation 5 to express the theoretically predicted structure lifetimes. As dictated by the Fourier analysis we apply, the density gradients are associated with a wavevector \(k_\perp = \frac{2\pi}{\lambda} \), meaning that the scale \(\lambda \) in Equation 5 is in fact \(\lambda \) divided by \(2\pi \),

\[
\lambda = \frac{\lambda}{2\pi},
\]

and so,

\[
\tau_\perp = \left(1 + \frac{\Sigma F}{\Sigma E} \right) \frac{\lambda^2}{4\pi^2 D_{\perp}}.
\]

with the assumption that the convecting structures treated in the present section only undergo perpendicular diffusion, \(\tau_S \) in Equation 12 will approach \(\tau_\perp \) in Equation 15.

The precise location of the cusp is known to vary both in magnetic latitude (MLAT) and magnetic local time (MLT), based on conditions related to the ionosphere-magnetosphere connection and the orientation of the interplanetary magnetic field (IMF). On average, the cusp tends to be located at around ±75° MLAT, and slightly toward the pre-noon sector (Jin et al., 2019; Lotko et al., 2014). Though varying, with the methodology outlined here, Swarm A will nevertheless on average orbit through the cusp, given that we analyze a large number of orbits.

2.2. Modeling the Effective Perpendicular Diffusion Coefficient

Our goal is to evaluate Equation 1. To this end, we need expressions for the field-perpendicular diffusion coefficients and the Pedersen conductivity height profiles, both of which depend on the collision frequencies between the plasma species. First, we use expressions from Moisan and Pelletier (2012) for collisional plasma interactions (\(d_{\perp,j} \) and \(\sigma_{\perp,j} \)), which are given below. Second, we use values for the collision interaction terms between all charged particles associated with the ion species in the ionosphere, as presented in Schunk and Nagy (1980). Third, we use the International Reference Ionosphere model for the ionospheric ion species number densities and plasma temperatures (Bilitza & Reinisch, 2008; Bilitza et al., 2014), the Mass Spectrometer Incoherent Scatter model (MSIS) for the neutral number densities (Picone et al., 2002), and data from the International Geomagnetic Reference Field for the magnetic field strength (Thbault et al., 2015). These models are not meant to offer accurate descriptions of highly localized phenomena such as the cusp, which is sensitive to the ionosphere-magnetosphere coupling. We nevertheless find that when aggregated, the simulated data offer insight into the relationship between E- and F-region conductances.

The field-perpendicular diffusion coefficient (not height-integrated) from charged particle collisions is defined as (Moisan & Pelletier, 2012),

\[
d_{\perp,j} = \frac{d_0,j \nu_j^2}{\omega_j^2 + \nu_j^2},
\]

where, \(d_0,j = k_B T_j/m_j \nu_j \), with \(k_B \) the Boltzmann constant, \(T_j \) the temperature, \(\omega_j = eB/m_j \) the cyclotron frequency, and \(m_j \) is particle mass, all for species \(j \). \(\nu_j \) is the composite collision frequency,

\[
\nu_j = \nu_{in},
\]

\[
\nu_c = \nu_{ei} + \nu_{cr},
\]
where subscripts \(i, e, n \) denote ions, electrons, and neutrals respectively.

The ionospheric Pedersen conductivity is given by (Moisan & Pelletier, 2012),

\[
\sigma_{\perp j} = \frac{e^2 n_j v_j}{m_j \omega_j^2 + v_j^2}
\]

(19)

where \(m_j \) and \(n_j \) is the effective mass and number density for species \(j \) respectively.

Next, we need expressions for the height-integrations of Equations 16 and 19. The height-integrated perpendicular diffusion coefficient \(D_{\perp j} \) is defined as (Vickrey & Kelley, 1982),

\[
D_{\perp j} = \frac{1}{N} \int_{z_0}^{\infty} n_k(z) d\omega_{\perp j}(z),
\]

(20)

for species \(j \), and where \(z \) signifies the altitude dependency, \(z_0 \) is the lowest altitude of the F-region, and \(N \) is the height-integrated plasma density, \(N = \int_{z_0}^{\infty} n_k(z) \). Furthermore, the height integrated Pedersen conductivity, or conductance, \(\Sigma_{F, j} \), is defined as (Vickrey & Kelley, 1982),

\[
\Sigma_{F, j} = \int_k d\omega_{\perp j}(z),
\]

(21)

for species \(j \), and where \(k = E, F \) signifies the region, and \(\sigma_{\perp j}(z) \) is the altitude dependent ionospheric Pedersen conductivity (Equation 19).

Now we are in a position to evaluate Equation 1. First, we compute the Pedersen conductivity (Equation 19) for altitudes from 60 km to 600 km, with a 10 km interval. Second, we integrate the resulting height profiles, in addition to the electron density height profiles (from MSIS), and evaluate Equation 20. Third, using the height-integrals in Equations 19 and 20, we evaluate Equation 1. For each polar cap pass made by Swarm A, we then calculate and store the values of \(1 + \Sigma_{F}^{E}/\Sigma_{E} \) and \(D_{\perp} \) on a time grid covering the pass.

Figure 1 documents the data analysis applied to the Swarm 16 Hz plasma density data, along with the application of ionospheric models. Panels (a), (b) and (c) show an entire example polar cap pass, where the orbit, along with the value of \(\alpha \), is shown in panel (a), the relative density fluctuation (Equation 8) is shown in panel (b), and the 29 RMS timeseries resulting from integrating the PSD over a running 1-minute window are shown in panel (c). An example 1-minute segment of the relative density perturbations, and the corresponding PSD, are shown in panels (g) and (h). Panels (d) and (e) show height-profiles of the collision frequencies (Equations 17 and 18), and the Pedersen conductivity (Equation 19), with the values of \(1 + \Sigma_{F}^{E}/\Sigma_{E} \) and \(D_{\perp} \) indicated.

3. Results

We perform a superposed epoch analysis on the Swarm A polar cap passes. To distinguish between different seasons, we use a 131-day window centered on the December and June solstices, without specifying the year of the polar cap pass. During the period between October 14, 2014 and June 30, 2019, we registered a total of 3,366 passes in the northern hemisphere, and 1,698 passes in the southern hemisphere. The reason for the large number discrepancy is due to Swarm orbital dynamics: the polar orbit of Swarm A is inclined 2.6° from Earth’s geographic axis. Compared to the northern hemisphere, the geomagnetic south pole is further away from the geographic south pole, leading to fewer noon-midnight passes occurring in the southern polar cap. Additionally, we make a distinction between passes occurring during southward and northward orientation of the IMF. That is, we distinguish between a polar cap-crossing average value of \(B_z > 0 \) and \(B_z < 0 \), \(B_z \) being the \(z \) component of the IMF, where we use observations from the bow shock, time shifted by around 15 min, as provided by OMNI (King & Papitashvili, 2005). Whether \(B_z \) is positive or negative is known to have an impact on polar cap plasma convection (Grocott et al., 2004), and a negative \(B_z \) in particular is associated with stronger ionospheric plasma irregularities (Cowley & Lockwood, 1992; Kivanc & Heelis, 1998). We found that sorting by the value of \(B_z \) had minimal impact on the results.
In Figure 2, we show the result of the superposed epoch analysis for the northern hemisphere, for local winter (panels a and c) and local summer (panels b and d), and for B_z positive (panels a and b) and negative (panels c and d). The equivalent is shown in Figure 3 for the southern hemisphere. Each panel shows the superposed values of σ_λ for the 29 frequency intervals considered, with distance (Equation 7) and magnetic latitude on the x-axis. In all four panels, a prominent peak exists near the cusp regions, for all frequency intervals. This peak is located between 200 and 500 km after the average location of the cusp ($\pm 75^\circ$ MLAT).

The reason for this increase might be related to the time it takes for precipitation events to be felt at the altitude of Swarm A (460 km), and the plasma structures might be undergoing growth rather than decay.
To estimate structure lifetime as outlined in the Methodology section, we fit Equation 12 to each superposed σ_t curve. That is, we fit an exponential curve through the polar cap, starting from a point after the peak near the cusp region, extending 1,000 km into the central polar cap. Here, we assume a plasma convection velocity of 300 m/s for northward IMF, and 450 m/s for southward IMF, to account for the effect of IMF B_z orientation on polar cap flow patterns (Reiff & Burch, 1985), reasonable velocities for the central polar cap (Grant et al., 1995; Thomas et al., 2015). Although this estimate might not be valid at all times, and at different locations in the polar cap, the fairly long distance over which we fit Equation 12, 1,000 km, will serve to average out spatial and temporal variations in flow velocity. Cases where the coefficient of determination, or r^2, of the fit is less than 0.8 are discarded, which stops virtually all the

Figure 2. Plasma structure decay time estimates based on 16 Hz plasma density data from the Swarm A satellite. The left panels show the superposed epoch analysis for 506 (a) and 550 (c) local winter passes, and the right panels show the superposed epoch analysis for 647 (b) and 598 (d) local summer passes, through the northern polar cap. Both seasons are defined by a 131-day window centered on the relevant solstice. The curves for 29 frequency intervals are shown. The top panels (a) and (b) show passes made during northward IMF ($B_z > 0$), while the bottom panels (c) and (d) show passes made during southward IMF ($B_z < 0$). An exponential fit through 600 km of the assumed convection path of plasma through the polar cap is shown with dotted black lines (Equation 12). The x-axes show both the underlying data MLAT, and the plasma convection distance (Equation 7). The data used spans a time period from October 2, 2014 until June 30, 2019. IMF, interplanetary magnetic field; MLAT, magnetic latitude.
structure lifetimes from being evaluated in the southern hemisphere winter, where the superposed epoch analysis yields noisy curves. The characteristic time scale, τ_S, of the exponential fit reflects the expected structure lifetime of the fluctuations over the frequency interval in question, and is then the end-product of the superposed epoch analysis.

In Figure 4, for the northern (panels a and b) and southern (panels c and d) hemispheres, we plot the structure lifetimes τ_S against the scale length λ at which the lifetime estimate was calculated. Panels (a) and (c) show passes where average values of B_z were positive, while panels (b) and (d) show passes where B_z on average was negative. λ is calculated based on the assumption that the plasma convection velocity is negligible compared to the velocity of Swarm A (Equation 10). Local winter structure times are shown in blue, while local summer is shown in orange. The vertical error bars are constructed from a Bootstrap routine. That is, we performed 5,000 iterations of the analysis on a resampled dataset, where we sampled the entire dataset uniformly at random, with replacement. This provides 5,000 individual estimates of each calculated quantity. The error bars then represent 90% confidence intervals for the respective quantity, and represents a statistical uncertainty.

Figure 3. Equivalent to Figure 2. The left panels show the superposed epoch analysis for 153 (a) and 185 (c) local winter passes, and the right panels show the superposed epoch analysis for 173 (b) and 159 (d) local summer passes, through the southern polar cap.
We see that while the local summer structure times for the most part monotonically increase with increasing length scale λ, the local winter structure times do not. The very smallest scales additionally do not monotonically increase with increasing length scale. Also shown, in a dotted line, is what amounts to a fit of Equation 4. Here, we fit,

$$\tau_S = \tau_0 \left(\frac{\lambda}{\lambda_0} \right)^m,$$

where τ_0 and m are fitting parameters determined using linear regression, and λ_0 is a length scale equal to unity to ensure correct dimensionality in Equation 22. The values of the exponent m are given in the four panels of Figure 4, with error intervals given by the 90% confidence interval of the fitting procedure. We

Figure 4. The scaling of the structure lifetime estimates, for local summer (orange) and local winter (blue), for both the northern (panels a and b) and southern (panel c and d) hemispheres. The left panels (a) and (c) show passes made during northward IMF ($B_z > 0$), while the right panels (b) and (d) show passes made during southward IMF ($B_z < 0$). The structure lifetimes, shown on the y-axes, correspond to the exponential fits displayed in Figure 2. The vertical error bars are the result of a Bootstrap error analysis (see text). Fits of Equation 22 are shown in orange dotted lines, and the exponent m is indicated above (with error intervals corresponding to 90% confidence intervals of the fitting procedures). For illustration purposes, a fit of Equation 22 with exponent $m = 2$ is shown in dashed black lines in each panel. IMF, interplanetary magnetic field.
now make an important observation: the values of the exponent \(m \) reported here are far from the \(m = 2 \) in Equation 4. Since the scaling difference between \(\lambda \) of Equation 4 and \(\lambda \) of Equation 22 will not affect the exponent \(m \), the reported discrepancy is an unexpected result.

We see that the smallest scale, which corresponds to frequencies between 6.6 and 8 Hz and has a scale length of 1 km, exhibits the largest seasonal contrast. To better understand this contrast, we construct a variable we refer to as wrapped day-of-year, \(D_w \),

\[
D_w = \begin{cases}
365 - D & \text{if } D > 365 / 2 \\
D & \text{otherwise,}
\end{cases}
\]

where \(D \) is the number of days elapsed since January 1 in the relevant year (day-of-year). We then make nine overlapping bins with a window size of 65.5 days, from \(D_w = [0, 65.5] \) to \(D_w = [117, 182.5] \). For each bin, we repeat the superposed epoch analysis detailed above. Motivated by Equation 15, which shows that the theoretical value of \(\tau_S \) should be proportional to \(1 + \Sigma F / \Sigma E \), we calculate Equation 21 for points during the polar cap pass between \(\pm 78^\circ \) and \(\pm 90^\circ \) magnetic latitude. Then, for each \(D_w \)-bin we are left with an average value of \(1 + \Sigma F / \Sigma E \).

To make a general prediction of 1 km-structure lifetimes in the polar cap, we calculate \(D_\perp \) (Equation 1), using the procedure outlined in the Methodology section. To gather a consistent picture of the polar caps, we evaluate Equation 1 systematically for a geographic grid consisting of evenly spaced points poleward of \(\pm 77^\circ \) magnetic latitude, for 1,400 points in time distributed throughout the years of 2015 through 2018, roughly equivalent to the time period covered by the Swarm data used in the present study. All the resulting values of \(1 + \Sigma F / \Sigma E \) and \(D_\perp \) for each snapshot of the polar cap are then aggregated—a total of 154,000 (for the northern hemisphere) and 145,000 (for the southern hemisphere) simulated datapoints are aggregated this way. We find that the lowest ratio of E- to F-region conductance in this dataset is around 0.1, validating the assumptions leading to Equation 3.

To make a comparison with the structure lifetime estimates, we use Equation 4, with \(\lambda = 2\pi / k_{km} \), to express the theoretical decay time of 1 km-scaled structures,

\[
\tau_{km} = \frac{1}{k_{km} D_\perp},
\]

where \(D_\perp \) is the model-based field-perpendicular diffusion coefficient (Equation 1).

In panels (a) (northern hemisphere) and (b) (southern hemisphere) of Figure 5, we show the result of this joint analysis: In color coded two-dimensiona1l-histograms, we show the distribution of model-based \(D_\perp \) on the right \(y \)-axis, with the corresponding decay time (Equation 24) on the left \(y \)-axis, and the value of \(1 + \Sigma F / \Sigma E \) on the \(x \)-axis, in a log-log representation. The color scale refers to number of datapoints per pixel. In yellow circle markers \((B_z > 0) \) and green triangle markers \((B_z < 0) \), we show the in situ estimated 1 km-struc
ture lifetimes for nine bins between December and June solstice, with the calculated value of \(1 + \Sigma F / \Sigma E \) for each bin along the \(x \)-axis. The error bars along the \(x \)-axis are the lower and upper quartile distributions of \(1 + \Sigma F / \Sigma E \) in each bin, while the error bars along the \(y \)-axis are 90% confidence intervals from the Bootstrap error analysis described above, performed on each \(D_w \)-bin individually. An inset in the lower right corner of both panels expand a tightly clustered portion indicated by a red rectangle. The in situ based \(\tau_S \) estimates correlate well with the corresponding model-based \(1 + \Sigma F / \Sigma E \)-number, with a Pearson correlation coefficient of 0.99 \((B_z > 0) \) and 0.97 \((B_z < 0) \) for the northern hemisphere, and 0.86 \((B_z > 0) \) and 0.70 \((B_z < 0) \) for the southern hemisphere.

4. Discussion

In Figure 4, we make the following significant observation: The estimated structure lifetime \(\tau_S \) increases with structure scale for local summer, where a power law with exponent around one-fourth accurately describes the scale-dependency of \(\tau_S \). The exponent deviates strongly from that of the theoretically predicted exponent of 2 (Equation 4). As we shall now show, this result is wholly unexpected.
Chemical recombination of O_2^+ ions at the F-region peak will constitute a competing process to ambipolar diffusion by the decay of plasma density enhancements, and will impact plasma structures at Swarm altitude by vertical diffusion. The inverse of Equation 6 implies that,

$$\frac{1}{\tau_S} = \frac{4 \pi^2 D_L}{\lambda^2} + \frac{1}{\tau_c},$$

(25)

where we use Equation 4, again with $\tilde{j} = \lambda / 2\pi$, to express τ_S, and where we assume that the structure lifetime τ_S is a combination of diffusion and chemical decay times. Equation 25 provides a possible explanation for the missing exponent $m = 2$ in Equation 22; chemical recombination could form a plateau, where large-scale decay time due to diffusion would effectively be drowned out by the much faster scale-independent τ_c. However, no plateau is clearly visible for the large scales in Figure 4, where the $m \approx 1/4$-fit describe the data with sufficient accuracy for all scales. As a solution to this apparent discrepancy, recall that we are analyzing the relative density fluctuations \hat{n}, which are scaled by a 1-minute (460 km) average plasma density. Chemical recombination being scale-independent, n will decay at the same rate as \hat{n} (Equation 8), and so \hat{n} should be unaffected by chemical recombination. We can thus state that we do not observe molecular diffusion in our results.
Nevertheless, Equation 25 opens up an opportunity, as a plot of reciprocal observed structure lifetimes $1/\tau_S$ against reciprocal scale squares $1/\lambda^2$ should reveal both the ambipolar diffusion coefficient D_\perp and the constant chemical recombination decay time τ_c, from linear regression slope and intercept respectively. In Figure 6, we show the result of the analysis presented in Section 2.1 applied to the absolute density fluctuations n, using the local summer data, for the northern (panels a and b) and southern (panels c and d) hemispheres, and for positive (panels a and c) and negative (panels b and d) IMF. We show λ^{-2} along the upper x-axis and λ along the lower x-axis, and τ_c^{-1} along the y-axis. Orange diamonds are local summer structure lifetimes, with vertical error bars the result of a 5,000-iterations Bootstrap error analysis. The black dotted lines show a fit of Equation 25, and the dashed blue lines show a fit of Equation 22 fitted to the small-scale datapoint for comparison. The values of the parameters D_\perp and τ_c are given above the plots, with error margins given by 90% confidence intervals from the fits. IMF, interplanetary magnetic field.

![Figure 6](image)

Figure 6. The result of the analysis presented in Section 2.1 applied to the absolute density fluctuations n instead of relative density fluctuations δn, for the northern (panels a and b) and southern (panels c and d) hemispheres, and for positive (panels a and c) and negative (panels b and d) IMF. We show λ^{-2} along the upper x-axis and λ along the lower x-axis, and τ_c^{-1} along the y-axis. Orange diamonds are local summer structure lifetimes, with vertical error bars the result of a 5,000-iterations Bootstrap error analysis. The black dotted lines show a fit of Equation 25, and the dashed blue lines show a fit of Equation 22 fitted to the small-scale datapoint for comparison. The values of the parameters D_\perp and τ_c are given above the plots, with error margins given by 90% confidence intervals from the fits. IMF, interplanetary magnetic field.
dashed lines) on face value, the ambipolar diffusion coefficient is valued between 3 and 7 m²s⁻¹, and the chemical decay rate is valued between 2 and 3 h. Though the ambipolar diffusion coefficient is in excellent agreement with the values shown in Figure 5, we believe a more thorough exploration of the discrepancy between the exponents \(m = 1/4 \) in Equation 22 and \(m = 2 \) in Equation 4 should be prerequisite to interpreting the results in Figure 6.

Looking at Figures 2–4, we now make the observation that the local winter structure times for the most part do not make the data correlation criteria, and thus allude the analysis, with the exception of the larger scales in the northern hemisphere. A possible explanation for this is that plasma diffusion during local winter is significantly reduced, which can explain the reported increase in local winter plasma irregularities (Ghezelbash et al., 2014; Heppner et al., 1993; Jin et al., 2017, 2018; Prikryl et al., 2015). In the previous study (Ivarsen et al., 2019, where we similarly analyzed 60-second segments of Swarm 16 Hz plasma density), we found that sampled local winter polar cap plasma tend not to show a signature of structure dissipation due to diffusion. In fact, only 20% of local winter plasma density segments exhibited evidence of plasma diffusion, while, conversely, 80% of local summer spectra did so. It is then not surprising that most ensemble averages of winter polar cap pass in the present study failed the stated data correlation requirement that the coefficient of determination be less than 0.8. Another factor that complicates local winter diffusion is the degree to which a conducting E-region shorts out the ambipolar electric field (Vickrey & Kelley, 1982). In the absence of a conducting E-region, anomalous currents could exist above the F-region, which could in turn lead to the existence of anomalous, or Bohm, diffusion in the F-region (Braginskii, 1965).

In Figure 5, the model-based estimate for 1 km-decay times, \(\tau_{1km} \) (Equation 24), agree well with the in situ-based structure lifetime estimates, \(\tau_S \) (Equation 12), for both hemispheres. However, the in situ-based structure lifetimes are sensitive to the choice of plasma convection velocity, with higher velocities leading to a lowering of the value of \(\tau_S \). Nevertheless, the apparent dependencies visible in both \(\tau_{1km} \) and \(\tau_S \) of the \(1 + \Sigma_F/\Sigma_E \)-number show clear agreement: The in situ-estimated structure lifetimes \(\tau_S \) correlate well with the simultaneous model-based \(1 + \Sigma_F/\Sigma_E \)-number. They show correlation coefficients of up to 0.99 for the northern hemisphere, and up to 0.96 for the southern hemisphere. This is a strong indicator that the model first proposed by Vickrey and Kelley (1982) is suitable, and that the ratio of F-region to E-region conductance to a large degree predicts F-region diffusion rates, and thus the occurrence of plasma irregularities in the polar caps.

The reported agreement in how both the in situ based structure time and the model-based decay time respond to the \(1 + \Sigma_F/\Sigma_E \)-number is largely only valid for the smallest scales available to investigation using the Swarm 16 Hz plasma density data, after which the seasonal contrast is much less pronounced. However, Keskinen and Huba (1990) found that high-latitude plasma irregularities should transition to a fully collisional regime around scales of 2–3 km, meaning there could be multiple scale-dependent regimes in the observable plasma diffusion in the polar caps, with diffusion primarily being observed on scales smaller than a threshold. Moreover, simultaneous growth might impact structure lifetimes, a topic that was explored recently in a paper by Lamarche et al. (2020). We believe more careful attention to growth, in addition to the use of higher resolution plasma density data, is necessary to further our knowledge about ionospheric plasma structure lifetimes. In addition, the analysis presented here is sensitive to the assumed polar cap convection velocity. In future investigations of plasma structure lifetimes, special care should be taken in treating plasma convection velocity, for example, by using methods of observing plasma drift velocity (Park et al., 2015).

5. Conclusion

In this study, we have approached the subject of field-perpendicular plasma diffusion and field-perpendicular plasma structure lifetimes from two angles. By using almost 5 years of in situ data from Swarm A, and by applying ionospheric models, we have made several new observations regarding structure lifetimes, decay time, and their seasonal dependencies. Both the in situ data and the ionospheric models support the claim that perpendicular diffusion in the F-region polar caps is highly dependent on the relationship between E- and F-region conductances.
Our results indicate that we are able to observe the characteristics of local summer diffusion in both the northern and southern polar caps. This leads to, for the first time as far the authors are aware, a systematic prediction of small-scale structure lifetimes in the F-region polar caps. We find that for the smallest scale investigated, which corresponds to frequencies between 6.6 and 8 Hz, with a scale length of 1 km, structure lifetimes range from 1 h during local summer to around 3 h approaching local winter. Although the seasonal contrast in plasma structure time harmonizes with reported seasonal dependencies in polar cap plasma irregularities, more work is needed to estimate plasma structure times more accurately, for example, by using higher resolution plasma density data. There is a large discrepancy in the theoretical scale-dependency of decay time due to plasma diffusion and the in situ-estimated structure lifetimes, and future investigations into the matter is called for.

Data Availability Statement
The authors acknowledge ESA for the provision of the Swarm data, which was accessed from https://earth.esa.int/web/guest/swarm/data-access, and NASA/GSFC’s Space Physics Data Facility’s OMNIWeb service.

Acknowledgments
This work is a part of the 4DSpace initiative at the University of Oslo, and is supported in part by Research Council of Norway grants 275655, 275653, and 267408. The authors would like to extend thanks to D. I. Knudsen, J. K. Burchell, and S. C. Buchert for their work on the Swarm Thermal ion imager instrument, and the authors are grateful to I. Ivarsen for proofreading. Finally, MI would like to extend his warmest gratitude toward the reviewers who made extraordinarily thoughtful, constructive, and thorough reviews of this study.

References
Basu, S., MacKenzie, E., & Basu, S. (1988, May). Ionospheric constraints on VHF/UHF communications links during solar maximum and minimum periods. Radio Science, 23(3), 363–378. https://doi.org/10.1029/RS023i03p0363 Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/RS023i03p0363
Bilitza, D., Altadill, D., Zhang, Y., Mertens, C., Truhlik, V., Richards, P., et al. (2014). The International Reference Ionosphere 2012—A model of international collaboration. Journal of Space Weather and Space Climate, 4, A07. https://doi.org/10.1051/swsc/2014004 Retrieved from https://www.swsc-journal.org/articles/swsc/abs/2014/01/swsc130043/swsc130043.html
Bilitza, D., & Reinisch, B. W. (2008, August). International Reference Ionosphere 2007: Improvements and new parameters. Advances in Space Research, 42, 599–609. https://doi.org/10.1016/j.asr.2007.07.048 Retrieved from http://www.科学院direct.com/science/article/pij/S0273-1177(08)002288
Braginskii, S. I. (1965). Transport processes in a plasma. Reviews of plasma physics, 1, 205. Retrieved from http://adsabs.harvard.edu/abs/1965RvPP...1...205B
Chartier, A. T., Mitchell, C. N., & Miller, E. S. (2018, March). Annual occurrence rates of ionospheric polar cap patches observed using swarm. Journal of Geophysical Research: Space Physics, 123, 2327–2335. https://doi.org/10.1002/2017JA024811
Coley, W. R., & Heelis, R. A. (1998, February). Structure and occurrence of polar ionization patches. Journal of Geophysical Research, 103(A2), 2201–2208. https://doi.org/10.1029/97JA03435 Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/97JA03435
Cowley, S. W. H. (2000). TUTORIAL: Magnetosphere-Ionosphere interactions: A tutorial review, (Vol. 118, p. 91). Washington DC: American Geophysical Union Geophysical Monograph Series. https://doi.org/10.1029/GM118p0091 Retrieved from http://adsabs.harvard.edu/abs/2000GMS...118...91C
Cowley, S. W. H., & Lockwood, M. (1992, February). Excitation and decay of solar wind-driven flows in the magnetosphere-ionosphere system. Annales Geophysicae, 10, 103–115. Retrieved from http://adsabs.harvard.edu/abs/1992AnGeo..10..103C
Danskin, D. W., Kouost, A. V., Ogawa, T., Nishitani, N., Nozawa, S., Milan, S. E., et al. (2002, September). On the factors controlling occurrence of F-region coherent echoes. Annales Geophysicae, 20(9), 1385–1397. https://doi.org/10.5194/angeo-20-1385-2002 Retrieved from https://www.ann-geophys.net/20/1385/2002/
Dungey, J. W. (1961, January). Interplanetary Magnetic Field and the Auroral Zones. Physical Review Letters, 6, 47–48. https://doi.org/10.1103/PhysRevLett.6.47 Retrieved from http://adsabs.harvard.edu/abs/1961PhRvL...6...47D
Foster, J. C. (1964, February). Ionospheric signatures of magnetospheric convection. Journal of Geophysical Research, 69(A2), 855–865. https://doi.org/10.1029/IA069iA02p00855 Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/IA069iA02p00855
Fris-Christensen, E., Lühr, H., & Hultø, G. (2006, April). Swarm: A constellation to study the Earth’s magnetic field. Earth Planet. Space, 58, 351–358. https://doi.org/10.1186/BF03351933
Ghezelbash, M., Kouost, A. V., Themens, D. R., & Jayachandran, P. T. (2014, December). Seasonal and diurnal variations of PolarDARN F region echo occurrence in the polar cap and their causes. Journal of Geophysical Research: Space Physics, 119, 10426–10439. https://doi.org/10.1002/2014JA020726 Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2014JA020726
Grant, I. F., MacDougall, J. W., Roughonien, J. M., Bristow, W. A., Sofo, G. J., Koehler, J. A., et al. (1995). Comparison of plasma flow velocities determined by the ionosonde Doppler drift technique, SuperDARN radars, and patch motion. Radio Science, 30(5), 1537–1549. https://doi.org/10.1029/95RS00831 Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/95RS00831
Grocott, A., Badman, S. V., Cowley, S. W. H., Yeoman, T. K., & Cripps, P. J. (2004, April). The influence of IMF by on the nature of the nightside high-latitude ionospheric flow during intervals of positive IMF Bz. Annales Geophysicae, 22, 1755–1764. https://doi.org/10.5194/angeo-22-1755-2004 Retrieved from https://angeo.copernicus.org/articles/22/1755/2004/ Publisher: Copernicus GmbH.
Henderson, J. P., Liebrech, M. C., Maynard, N. C., & Pfaff, R. F. (1993, February). High-latitude distributions of plasma waves and spatial irregularities from DI 2 alternating current electric field observations. Journal of Geophysical Research, 98(A2), 1629–1652. https://doi.org/10.1029/92JA01836 Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/92JA01836
Hosokawa, K., Moom, J. I., Shiokawa, K., & Otsuka, Y. (2011). Decay of polar cap patch. Journal of Geophysical Research, 116, A05306. https://doi.org/10.1029/2010JA016297 Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2010JA016297
Jin, Y., Miloch, W. J., Moen, J. I., & Clausen, L. B. N. (2018). Solar cycle and seasonal variations of the GPS phase scintillation at high latitudes. *Journal of Space Weather and Space Climate, 8*, A48. https://doi.org/10.1051/swsc/2018034 Retrieved from https://articles.wsc.

Jin, Y., Moen, J. I., Oksavik, K., Spicher, A., Clausen, L. B. N., & Miloch, W. J. (2017). GPS scintillations associated with cusp dynamics and polar cap patches. *Journal of Space Weather and Space Climate, 7*, A23. https://doi.org/10.1051/swsc/2017022 Retrieved from https://www.swsc-journal.org/articles/swsc/abs/2017/swsc170040/swsc170040.html.

Jin, Y., Spicher, A., Xiong, C., Clausen, L. B. N., Kervellishvili, G., Stolle, C., et al. (2019). Ionospheric plasma irregularities characterized by the swarm satellites: Statistics at high latitudes. *Journal of Geophysical Research: Space Physics, 124*, 1262–1282. https://doi.org/10.1029/2018JA026063 Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018JA026063

Johnson, R., & Blondi, M. A. (1980). Laboratory measurements of the O+(D) + N2 and O+(D) + O, reaction rate coefficients and their ionospheric implications. *Geophysical Research Letters, 7*, 401–403. https://doi.org/10.1029/GL007i005p00401 Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/GL007i005p00401

Kelley, M. D., Vickrey, J. F., Carlson, C. W., & Torbert, R. (1992, June). On the origin and spatial extent of high-latitude F region irregularities. *Journal of Geophysical Research, 87*(A6), 4469–4475. https://doi.org/10.1029/JA087iA06p04469 Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JA087iA06p04469

Keskinen, M. J., & Huba, J. D. (1990, September). Nonlinear evolution of high-latitude ionospheric interchange instabilities with scale-size-dependent magnetospheric coupling. *Journal of Geophysical Research, 95*(A9), 15157–15166. https://doi.org/10.1029/JA095iA09p15157 Retrieved from http://onlinelibrary.wiley.com/doi/10.1029/JA095iA09p15157/abstract

King, J. H., & Papitashvili, N. E. (2005). Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data. *Journal of Geophysical Research, 110*, A022104. https://doi.org/10.1029/2004JA010649 Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2004JA010649

Kivanc, O., & Heelis, R. A. (1998, April). Spatial distribution of ionospheric plasma and field structures in the high-latitude F region. *Journal of Geophysical Research, 103*, 6955–6968. https://doi.org/10.1079/1998JGR...103.6955K

Knudsen, D. J., Burchill, J. J., Buchtet, S. C., Eriksson, A. I., Gill, R., Wahlund, J.-E., et al. (2017, February). Thermal ion imagers and Langmuir probes in the Swarm electric field instruments. *Journal of Geophysical Research: Space Physics, 122*, 2655–2673. https://doi.org/10.1002/2016JA022571 Retrieved from http://onlinelibrary.wiley.com/doi/10.1002/2016JA022571/abstract

Lamarche, L. J., Varney, R. H., & Siefring, C. L. (2020). Analysis of Plasma Irregularities on a Range of Scintillation-Scales Using the Resolute Bay Incoherent Scatter Radars. *Journal of Space Weather and Space Climate, 12*, A027112. https://doi.org/10.1051/swsc/201912A027112 Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1051/swsc/201912A027112

Lotko, W., Smith, R. H., Zhang, B., Ouellette, J. E., Brambles, O. J., & Lyon, J. G. (2014, July). Ionospheric control of magnetotail reconnection. *Science, 345*, 184–187. https://doi.org/10.1126/science.1252907 Retrieved from https://science.sciencemag.org/content/345/6193/184 (Publisher: American Association for the Advancement of Science Section).

Milan, S. E., Davies, J. A., & Lester, M. (1999). Coherent HF radar backscatter characteristics associated with auroral forms identified by incoherent radar techniques: a comparison of CUTLASS and EISCAT observations. *Journal of Geophysical Research, 104*(A10), 22591–22604. https://doi.org/10.1029/1999JA900277

Moisan, M., & Pelletier, J. (2012). Hydrodynamic description of a plasma. In M. Moisan, & J. Pelletier (Eds.), *Physics of collisional plasmas: Introduction to high-frequency discharges* (pp. 203–335). The Netherlands: Springer Netherlands. https://doi.org/10.1007/978-94-007-4558-2_3

Noja, M., Stolle, C., Park, J., & Lhr, H. (2013, May). Long-term analysis of ionospheric polar patches based on CHAMP TEC data. *Radio Science, 48*, 289–301. https://doi.org/10.1002/2012rsd..0333 Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/10.1002/rds.20033

Park, J., Lhr, H., Stolle, C., Malhotra, G., Baker, B. H. J., Buchtet, S., et al. (2015, July). Estimating along-track plasma drift speed from electron density measurements by the three Swarm satellites. *Annales Geophysicae, 33*, 829–835. https://doi.org/10.5194/angeo-33-829-2015 Retrieved from https://www.ann-geophys.net/33/531/2015/doi/10.5194/angeo-33-531-2015 Retrieved from https://www.ann-geophys.net/33/531/2015/doi/10.5194/angeo-33-531-2015

Reif, P. H., & Burch, J. L. (1985). IMF By-dependent plasma flow and Birkeland currents in the dayside magnetosphere: 2. A global model for northward and southward IMF. *Journal of Geophysical Research, 90*(A2), 1595–1609. https://doi.org/10.1029/JA090iA02p01595 Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JA090iA02p01595

Schunk, R. W., & Nagy, A. F. (1980). Ionospheres of the terrestrial planets. *Reviews of Geophysics, 18*(4), 813–852. https://doi.org/10.1029/RG018i004p00813 Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/RG018i004p00813

Schunk, R. W., & Sojka, J. J. (1987, November). A theoretical study of the lifetime and transport of large ionospheric density structures. *Journal of Geophysical Research, 92*(A11), 12343–12351. https://doi.org/10.1029/JA092iA11p12343 Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JA092iA11p12343

Spicher, A., Clausen, L. B. N., Miloch, W. J., Loftstad, V., Jin, Y., & Moen, J. I. (2017, March). Interhemispheric study of polar cap patch occurrence based on Swarm in situ data. *Journal of Geophysical Research: Space Physics, 122*, 3837–3851. https://doi.org/10.1002/2016JA023750 Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2016JA023750

Tibbaut, E., Finlay, C. C., Bergan, C. D., Alken, P., Aubert, J., Barrois, O., & Zvereva, T. (2015, May). International Geomagnetic Reference Field: The 12th generation. *Earth and Planets in Space, 67*, 79. https://doi.org/10.1186/s40623-015-0228-9 Retrieved from https://doi.org/10.1186/s40623-015-0228-9
Thomas, E. G., Hosokawa, K., Sakai, J., Baker, J. B. H., Ruohoniemi, J. M., Taguchi, S., et al. (2015). Multi-instrument, high-resolution imaging of polar cap patch transportation. *Radio Science, 50*, 904–915. https://doi.org/10.1002/2015RS005672 Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015RS005672

Trbs, M., & Heinzel, G. (2006, February). Improved spectrum estimation from digitized time series on a logarithmic frequency axis. *Measurement, 39*, 120–129. https://doi.org/10.1016/j.measurement.2005.10.010 Retrieved from http://www.sciencedirect.com/science/article/pii/S026322410500117X

Tsunoda, R. T. (1968, November). High-latitude F region irregularities: A review and synthesis. *Reviews of Geophysics, 26*(4), 719–760. https://doi.org/10.1029/RG026i004p00719 Retrieved from http://onlinelibrary.wiley.com/doi/10.1029/RG026i004p00719/abstract

Vickrey, J. F., & Kelley, M. C. (1982, June). The effects of a conducting E layer on classical F region cross-field plasma diffusion. *Journal of Geophysical Research, 87*(A6), 4461–4468. https://doi.org/10.1029/JA087iA06p04461 Retrieved from http://onlinelibrary.wiley.com/doi/10.1029/JA087iA06p04461/abstract

Welch, P. (1967, June). The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. *IEEE Transactions on Audio and Electroacoustics, 15*(2), 70–73. https://doi.org/10.1109/TAU.1967.1161901

Wood, A. G., & Pryse, S. E. (2010, July). Seasonal influence on polar cap patches in the high-latitude nightside ionosphere. *Journal of Geophysical Research, 115*, A25. https://doi.org/10.1029/2009JA014985 Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2009JA014985