Water enables mild oxidation of methane to methanol on gold single-atom catalysts

Laihao Luo1,2, Jie Luo1,2, Hongliang Li1✉, Fangning Ren1, Yifei Zhang1, Andong Liu1, Wei-Xue Li1✉ & Jie Zeng1✉

As a 100% atom-economy process, direct oxidation of methane into methanol remains as a grand challenge due to the dilemma between activation of methane and over-oxidation of methanol. Here, we report that water enabled mild oxidation of methane into methanol with >99% selectivity over Au single atoms on black phosphorus (Au/BP) nanosheets under light irradiation. The mass activity of Au/BP nanosheets reached 113.5 μmol gcat−1 in water pressured with 33 bar of mixed gas (CH4:O2 = 10:1) at 90 °C under light irradiation (1.2 W), while the activation energy was 43.4 kJ mol−1. Mechanistic studies revealed that water assisted the activation of O2 to generate reactive hydroxyl groups and •OH radicals under light irradiation. Hydroxyl groups reacted with methane at Au single atoms to form water and CH3* species, followed by oxidation of CH3* via •OH radicals into methanol. Considering the recycling of water during the whole process, we can also regard water as a catalyst.

1Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, P. R. China. 2These authors contributed equally: Laihao Luo, Jie Luo.

✉Email: lihl@ustc.edu.cn; wxli70@ustc.edu.cn; zengj@ustc.edu.cn
Advances in hydraulic fracturing technology have enabled ongoing discovery of large reserves of natural gas, which primarily contains methane. At present, most of produced methane is burned for heating, transport, and electricity-generation purposes. Meanwhile, methane is the second most relevant greenhouse gas emitted from anthropogenic activities, as global warming potential of methane is 25 times higher than that of CO₂. In this case, it is highly desired to develop efficient techniques for upgrading of methane. The current industrial route is via steam or dry reforming to generate syngas (a mixture of CO and H₂), followed by Fischer–Tropsch synthesis or methanol synthesis. Such route operated at high temperature (>700 °C) not only needs huge energy input, but also leads to the deactivation of catalysts because of coking. Direct conversion of methane into chemicals or liquid fuels has been achieved under mild conditions. For instance, aqueous Au-Pd colloids achieved selective oxidation of methane into methanol with H₂O₂ as an oxidant under 30 bar of CH₄ at 50 °C. Methane was reported to be oxidized into methanesulfonic acid by SO₃ over an electrophilic initiator at 50 °C. However, these processes generally involve corrosive oxidant or expensive media, such as aqueous HAuCl₄ solution, which is not suitable for commercialization.

Among direct processes, aerobic oxidation of methane into methanol is an ideal reaction with 100% atom economy (Eq. 1). The dilemma lies in activation of methane and over-oxidation of methanol. Methane takes a non-polar tetrahedral structure with high dissociation energy of C–H bond (439.3 kJ mol⁻¹), rendering great difficulties for activation. As methane and O₂ are in singlet and triplet ground states, respectively, the direct reaction of methane with O₂ in ground states is spin-forbidden, which should be overcome. Once methane is activated, the produced methanol tends to be over-oxidized into CO or CO₂ from a thermodynamic perspective. Therefore, it is important but challenging to achieve selective oxidation of methane with O₂ to methanol under ambient conditions.

\[
\begin{align*}
\text{CH}_4 + 0.5\text{O}_2 & = \text{CH}_3\text{OH} \quad \Delta H_{\text{298K}} = -126.4 \text{kJ mol}^{-1} \\
\text{CH}_4 + 1.5\text{O}_2 & = \text{CO} + 2\text{H}_2\text{O} \quad \Delta H_{\text{298K}} = -519.6 \text{kJ mol}^{-1} \\
\text{CH}_4 + 2\text{O}_2 & = \text{CO}_2 + 2\text{H}_2\text{O} \quad \Delta H_{\text{298K}} = -802.6 \text{kJ mol}^{-1}
\end{align*}
\]

Herein, we achieved mild oxidation of methane into methanol over Au single atoms on black phosphorus (Au/BP) nanosheets with the help of water under light irradiation. Photocatalysis offers an efficient approach to drive thermodynamically non-spontaneous reactions under mild conditions. We applied black phosphorus (BP) nanosheets as the support that affords broadband solar absorption for photocatalysis. During methane oxidation, the mass activity of Au/BP nanosheets was 113.5 μmol g⁻¹cat⁻¹ in water pressured with 33 bar of mixed gas (CH₄:O₂ = 10:1) at 90 °C under light irradiation (1.2 W). The selectivity for methanol reached as high as >99%. Based on mechanistic studies, water and O₂ were activated on Au/BP nanosheets to form reactive hydroxyl groups and •OH radicals under light irradiation. The reactive hydroxyl groups enabled mild oxidation of methane into CH₃• species, followed by oxidation of CH₃• via •OH radicals into methanol. As water is consumed to form hydroxyl groups and produced via reaction of hydroxyl groups with methane, water is completely recycled and thus can also be regarded as a catalyst.

Results and discussion

Synthesis and characterizations of Au₁/BP nanosheets. To prepare Au₁/BP nanosheets, we first synthesized bulk BP through a low-pressure transport route according to the reported literature. BP nanosheets were prepared by liquid exfoliation of bulk BP. The diameter of free-standing BP nanosheets was several hundred nanometers (Supplementary Fig. 1). As measured by atomic force microscopy, the thickness of the as-obtained nanosheet was ca. 3.0 nm (Supplementary Fig. 2). We prepared Au₁/BP nanosheets by injecting HAuCl₄ solution into a mixture containing ethanol and BP nanosheets with the use of a syringe pump under nitrogen protection. Figure 1a shows a high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) image of Au₁/BP nanosheets, where the Au mass loading was determined as 0.2 wt%. The magnified HAADF-STEM image and its corresponding color-coded intensity map were shown in Fig. 1b, indicating the isolated distribution of Au atoms in the absence of Au nanoparticles (NPs). This point was further verified by HAADF-STEM images with lower magnifications (Supplementary Fig. 3). By increasing the concentration of HAuCl₄ solution, we obtained Au NPs on BP nanosheets (denoted as Au NPs/BP nanosheets). As shown in Supplementary Figure 4, Au NPs with an average size of 6 nm were uniformly dispersed on BP nanosheets with a mass loading of 1.0 wt%.

We further characterized the global structure of Au₁/BP nanosheets. X-ray diffraction (XRD) patterns revealed that both BP and Au₁/BP nanosheets were well indexed to the orthorhombic phase of BP (Supplementary Fig. 5). Especially, two intense diffraction peaks at 34.2° and 52.3° corresponded to (040) and (060) facets of orthorhombic BP, respectively, which are representative layered planes of BP. No patterns corresponding to Au phase were observed, in concert with the isolated dispersion of Au atoms. Raman spectra of BP and Au₁/BP nanosheets show similar peaks located at 361, 438, and 466 cm⁻¹, which were assigned to A₁g (out-of-plane), B₃g (in-plane), and A₂g (in-plane) vibration modes of BP, respectively (Supplementary Fig. 6).

To further determine the local environment in Au₁/BP nanosheets, we measured X-ray absorption near-edge spectroscopy (XANES) and extended X-ray absorption fine structure (EXAFS). The Au L₃-edge XANES profiles indicated that the Au species in Au₁/BP nanosheets were in a mediate oxidation state (Fig. 1c), according to the mediate intensity for white line compared with Au foil and Au₂O₃. As shown in EXAFS in R space (Fig. 1d), the spectrum of Au₁/BP nanosheets exhibited a prominent peak at 2.33 Å from the Au–P shell with a coordination number (CN) of 2.0 (Supplementary Table 1). No other typical peaks for Au–Au contribution at longer distances (>2.5 Å) or for Au–O contributions at shorter distance (<1.9 Å) were observed, revealing the isolated dispersion of Au atoms. The peak from the Au–Cl shell was not observed in XAFS spectra, indicating that residual Cl from the synthesis was absent on Au₁/BP nanosheets. This result was also supported by the high-resolution X-ray photoelectron spectroscopy (XPS) spectrum which showed no signals for Cl (Supplementary Fig. 7). Further density functional theory (DFT) calculations were performed to establish the atomic model of Au₁/BP nanosheets. To simulate Au₁/BP nanosheets, we situated the Au single atom at the bridge P sites (inset of Fig. 1d), considering thermodynamic stability and two Au–P bonds as revealed by EXAFS.

To explore the band structure of BP and Au₁/BP nanosheets, we conducted measurements of ultraviolet-visible-near infrared (UV-vis-NIR) absorption and valence spectra. From UV-vis-NIR spectra and the corresponding Tauc plots, the bandgaps of BP and Au₁/BP nanosheets were 1.45 eV (Supplementary Fig. 8a, b). Mott–Schottky plots showed that the flat band potentials of BP and Au₁/BP nanosheets were both ~0.35 V (vs RHE) (Supplementary Fig. 8c). According to valence spectra, the valence band energy levels of BP and Au₁/BP nanosheets were estimated as 1.35 and 1.31 eV below the Fermi level, respectively (Supplementary Fig. 8d). Based on UV-vis-NIR absorption and
valence XPS spectra, the complete band structure of Au/1/BP nanosheets was obtained, similar to that of BP nanosheets (Supplementary Fig. 8e). Therefore, the deposition of Au atoms on BP nanosheets led to negligible variation in the band structures of BP nanosheets. For comparison, we prepared Pt, Pd, and Rh single atoms/NPs on BP nanosheets, which were denoted as Pt1/BP, Pd1/BP, Rh1/BP, Pt NPs/BP, Pd NPs/BP, Rh NPs/BP nanosheets, respectively (Supplementary Figs. 9 and 10). The loading amounts of metal single atoms and NPs were controlled as 0.2 wt% and 1.0 wt%, respectively. The dispersion of metal species in these samples was further verified by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) experiments using CO as a probe molecule. Especially, DRIFTS spectra of M1/BP (M = Pt, Pd, and Rh) nanosheets only showed the peaks for the linear adsorption of CO, whereas, besides the peaks for the linear adsorption, the peaks for the bridge adsorption were also observed for M NPs/BP nanosheets (Supplementary Fig. 11 and Table 2).

Catalytic properties of Au1/BP nanosheets towards partial oxidation of methane. The catalytic tests were conducted in a slurry reactor with a sapphire window, which allowed the incidence of light from Xe lamp into the reactor to participate in the reaction (Supplementary Fig. 12). For a standard condition, the reaction was operated in 20 mL of water pressured with 33 bar of mixed gas (CH4:O2 = 10:1) at 90 °C under light irradiation with a light power of 1.2 W and irradiation area of 3.14 cm². For BP nanosheets, the product after 2 h was below detection limit. As for Au1/BP nanosheets, 22.7 μmol of methanol was generated without any by-products after 2 h (Fig. 2a). Under the standard condition, the mass activity of Au1/BP nanosheets was 113.5 μmol gcat⁻¹, whereas the turnover frequency (TOF) number was 5.6 h⁻¹. Notably, the TOF number of Au1/BP nanosheets was higher than those of Au NPs/ BP, M1/ BP, and M NPs/BP (M = Pt, Rh, and Pd) nanosheets (Supplementary Fig. 13). The TOF number of Au1/BP nanosheets was comparable to that of the state-of-the-art catalysts under similar reaction conditions (Supplementary Table 3). When we removed light irradiation from the standard condition, the product was below detection limit (Fig. 2a). As such, light irradiation helped drive the formation of methanol.

To further investigate the influence of light irradiation, we varied the light powers from 0.4 to 1.2 W. As shown in Fig. 2b and Supplementary Figure 14, the activity of Au1/BP nanosheets increased with the rise of light intensity at the same temperature. Notably, the activation energy (Ea) of Au1/BP nanosheets was almost independent of light intensity (Fig. 2c). Especially, Ea of Au1/BP nanosheets at the power of 1.2 W was 43.4 kJ mol⁻¹, approaching to that (43.7 kJ mol⁻¹) at 0.8 W and that (43.1 kJ mol⁻¹) at 0.4 W (Fig. 2c). In addition, the reaction was determined as heterogeneous instead of homogeneous, because the use of the supernate after the reaction, HAuCl4-H3PO4, and Au(OH)3-H3PO4 as the catalysts gave rise to trace amounts of products (Supplementary Fig. 15). Moreover, we evaluated the wavelength-dependent apparent quantum yields (AQYs) of methanol. A high AQY of 17.4% was obtained under the irradiation of monochromatic light at 350 nm (Supplementary Fig. 16).

We further explored the influence of the solvent and reactants during partial oxidation of methane. Substitution of water with acetonitrile as the solvent from the standard condition gave rise to no products (Fig. 2a). In this case, water enables mild oxidation of methane under light irradiation. When O2 was replaced by N2 from the standard condition, leaving water as the oxidant, no detectable product was observed (Fig. 2a). As such, O2 was an indispensable oxidant, whereas only water was unable to oxidize methane under such mild reaction. In order to investigate the dependence of catalytic performance on reactants, we varied the partial pressures of CH4 and O2 at 90 °C under light irradiation.
Increasing CH$_4$ partial pressure led to the rise of conversion while keeping the selectivity for methanol above 99% (Supplementary Fig. 17a). Increasing O$_2$ partial pressure also increased the conversion and lowered the selectivity for methanol with the production of CO$_2$ (Supplementary Fig. 17b). To determine whether the reaction was limited by mass transfer, we varied the stirring rates and the volumes of water. Despite the varied stirring rates and the volumes of water, the mass activity still kept almost unchanged, indicating that the reaction kinetics was not determined by diffusion (Supplementary Fig. 18). When we used methanol as the reactants over Au$_1$/BP nanosheets under light irradiation and 33 bar (N$_2$:O$_2$ = 10:1) at 90 °C, the conversion of methanol was below detection limit. In this case, Au$_1$/BP nanosheets were unable to catalyze the oxidation of methanol under such reaction conditions, indicating the high intrinsic selectivity for methanol.

To investigate stability of the catalysts, we tested Au$_1$/BP nanosheets for successive in situ cycles of reaction, where catalysts were not removed from the reaction during the whole test. For each cycle, the catalytic reaction proceeded under standard conditions for 2 h. After 10 in situ cycles (20 h in total), about 205.2 μmol of methanol was generated in total with the fluctuation of TOF below 7% (Fig. 2d). Moreover, the atomic dispersion of Au was still maintained after 10 in situ cycles, where only Au–P bonds were observed in the absence of Au–Au bonds or Au–O bonds (Supplementary Fig. 21a). Whenever Au$_1$/BP nanosheets were purged by O$_2$ under light irradiation (1.2 W) at 90 °C (Fig. 3b). To simulate the reaction condition in the presence of water, N$_2$ was allowed to bubble in deionized water, followed by flowing into the cell, in order to bring the saturated water vapor into the cell, denoted as the treatment of N$_2$/H$_2$O. Under the atmosphere of N$_2$/H$_2$O, no peaks were observed, whenever in the dark or under light irradiation (Fig. 3a, b). As such, O$_2$ enabled the oxidation of BP nanosheets, whereas only H$_2$O interacted weakly with the catalyst. Compared with the circumstances of O$_2$, the mixture of O$_2$/H$_2$O made negligible differences in the dark, but gave rise to a new peak at 3350 cm$^{-1}$ for the stretching vibration of hydroxyl groups under light irradiation (Fig. 3a, b). In this case, water reacted with O$_2$ over Au$_1$/BP nanosheets under light irradiation, resulting in the formation of hydroxyl groups.

Mechanistic insights into the activation of O$_2$. In order to investigate how water promotes methane oxidation under light irradiation, we conducted in situ DRIFTS measurements. Background spectra were acquired after flowing with 1 bar of N$_2$ at 150 °C for 0.5 h, followed by cooling to 90 °C. In situ DRIFTS spectrum of Au$_1$/BP nanosheets after the treatment with O$_2$ in the dark at 90 °C showed two peaks at 1246 and 911 cm$^{-1}$, which were assigned to the stretching vibrations of P=O and P–O–P bonds, respectively (Fig. 3a). The assignment of the peaks was supported by DFT calculations, reported literature, and isotope-labeling DRIFTS measurements (Supplementary Table 4 and Fig. 20). The peaks for P=O and P–O–P bonds were also observed when Au$_1$/BP nanosheets were purged by O$_2$ under light irradiation (1.2 W) at 90 °C (Fig. 3b). To simulate the reaction condition in the presence of water, N$_2$ was allowed to bubble in deionized water, followed by flowing into the cell, in order to bring the saturated water vapor into the cell, denoted as the treatment of N$_2$/H$_2$O. Under the atmosphere of N$_2$/H$_2$O, no peaks were observed, whenever in the dark or under light irradiation (Fig. 3a, b). As such, O$_2$ enabled the oxidation of BP nanosheets, whereas only H$_2$O interacted weakly with the catalyst. Compared with the circumstances of O$_2$, the mixture of O$_2$/H$_2$O made negligible differences in the dark, but gave rise to a new peak at 3350 cm$^{-1}$ for the stretching vibration of hydroxyl groups under light irradiation (Fig. 3a, b). In this case, water reacted with O$_2$ over Au$_1$/BP nanosheets under light irradiation, resulting in the formation of hydroxyl groups.

We further explored whether hydroxyl groups were bonded with P atoms or Au atoms. We conducted quasi situ XPS measurements after the treatment of Au$_1$/BP nanosheets with O$_2$/H$_2$O mixed gas in the dark or under light irradiation at 90 °C. O 1s spectra confirmed that P–O–P and P=O bonds were formed in the dark, whereas P=OH bonds were generated under light irradiation (Supplementary Fig. 21a). Whenever Au$_1$/BP nanosheets were tested, the samples were exposed to high-energy light irradiation in order to activate the catalysts. In this case, we observed P=O bonds, indicating the high intrinsic selectivity for methanol.
nanosheets were treated with O2/H2O in the dark or under light irradiation, Au 4f spectra showed negligible difference compared with that without any treatment (Supplementary Fig. 21b). In this case, Au atoms were not further oxidized by O2/H2O in terms of the coordination with oxygen-containing groups such as O atoms or hydroxyl groups. To further verify this point, we conducted 1H solid nuclear magnetic resonance (NMR) measurements with the reference of Au(OH)3. After the treatment of Au/BP nanosheets with O2/H2O under light irradiation, magic angle spinning (MAS) NMR spectrum showed no detectable signals (Supplementary Fig. 22), excluding the possibility of the adsorption of hydroxyl groups on Au atoms. Therefore, hydroxyl groups were adsorbed on P atoms, generating P–OH ensembles.

Considering the short lifetime of photo-induced radicals that cannot be detected by in situ DRIFTS or quasi situ XPS, we conducted measurements of in situ electron spin resonance (ESR) spectroscopy using different trapping agents. 2,2,6,6-tetramethylpiperidine (TEMP) was selected to detect singlet O2 (1O2), while...
5,5-dimethyl-1-pyrroline-N-oxide (DMPO) was selected for the detection of superoxide ions (O$_2^-$) and hydroxyl radicals (•OH). As illustrated in Figure 3c, d, signals for 1O$_2$, O$_2^-$, and •OH were all observed for both BP and Au$_1$/BP nanosheets under light irradiation. Collectively, the water-promoted activation of O$_2$ under light irradiation involves the formation of 1O$_2$, O$_2^-$, •OH, and P–OH species.

We carried out DFT calculations to determine the adsorption configurations of dissociated O atoms or hydroxyl groups on Au$_1$/BP nanosheets. The optimized configurations were obtained according to thermodynamic consideration. Supplementary Figure 23 shows the optimized adsorption configuration of two O atoms on Au$_1$/BP nanosheets. Especially, one O atom (O1) is located at the top P atom to form a P–O ensemble. The other O atom (O2) at the groove site is linked to two P atoms to form a P–O–P ensemble. These two ensembles were both observed in situ DRIFTS spectrum (Fig. 3a). As such, the activation of O$_2$ in the dark follows Eq. 4.

$$O_2 + 3P \rightarrow P = O + P - O - P$$ (4)

Figure 4a shows the activation of O$_2$ under light irradiation (Supplementary Fig. 24). Especially, the electrons from the valence band of BP are excited by light irradiation to react with O$_2$ at the triplet ground states (3O$_2$), resulting in the formation of O$_2^-$ (Eq. 5). O$_2^-$ recombines the photo-generated holes to form the excited O$_2$ at the singlet states, 1O$_2$ (Eq. 6). 1O$_2$ reacts with H$_2$O to yield OH$^+$ and HOO$^-$ which can be split into •OH radicals (Eqs. 7 and 8).

$$^3O_2 + e^- \rightarrow O_2^-$$ (5)

$$O_2^- + h^+ \rightarrow ^1O_2$$ (6)

$$^1O_2 + H_2O \rightarrow HOO^- + OH^+$$ (7)

$$HOO^- \rightarrow •OH + O^*$$ (8)

Mechanistic insights into the oxidation of CH$_4$. To reveal the role played by P–OH ensembles, we carried out in situ DRIFTS measurements of Au$_1$/BP nanosheets under CH$_4$ after forming hydroxyl groups or not. Especially, the catalyst was purged by 1 bar of O$_2$/H$_2$O at 90 °C for 0.5 h in the dark to generate P=O and P–O–P ensembles, or under light irradiation to yield P=O, P–O–P, and P–OH ensembles. Afterwards, the catalyst was purged by 1 bar of CH$_4$ at 25 °C for 0.5 h to obtain background spectra. In situ DRIFTS spectra were recorded with CH$_4$ flow at 90 °C in the dark or under light irradiation. Notably, in situ DRIFTS spectra, upward peaks correspond to newly appeared species, whereas downward peaks correspond to the loss of existed species.

When both the pre-treatment and in situ DRIFTS measurements were conducted in the dark, both upward and downward peaks were observed (Fig. 3e). Upward peaks included that at 3350 cm$^{-1}$ for P–OH ensembles and that at 1456 cm$^{-1}$ for CH$_3^*$. Downward peaks included those at 3015 and 1304 cm$^{-1}$ for CH$_4^*$, and that at 1246 cm$^{-1}$ for P=O ensembles. As such, P–OH and CH$_3^*$ was generated, whereas P=O ensembles and CH$_4$ were consumed. We propose that the reaction occurred as Eq. 9.

$$CH_4 + P = O \rightarrow CH_3^* + P – OH$$ (9)

Considering the absence of products in the dark, CH$_3^*$ was unable to be further oxidized into methanol under mild condition in the dark. In other words, partial dehydrogenation of methane yielded inert P=OH ensembles.

When both the pre-treatment and in situ DRIFTS measurements were conducted under light irradiation, the downward peaks comprised those for P–OH ensembles, P=O ensembles, and CH$_4^*$, whereas the upward peak only contained that for CH$_3^*$ (Fig. 3f). Considering methanol production under light irradiation, such reactive P–OH ensembles allowed mild oxidation of methane into CH$_3^*$ and methanol in sequence. In addition, the in situ DRIFTS spectrum recorded in the dark after the pre-treatment under light irradiation was similar to Fig. 3f (Supplementary Fig. 25). To further identify how P–OH ensembles participated in the reaction, we combined temperature-programmed surface reaction with mass spectroscopy (TPSR-MS) using an isotope label. Especially, we used 18O-labeled water (H$_2$O) and routine O$_2$.
(\(\text{O}_2\)) to pre-treat the catalyst in the dark or under light irradiation. TPSR-MS measurements were operated in the dark under CH\(_4\) when the temperature rose from 50 to 300 °C. For pre-treatment in the dark, all the products were below the detection limit (Supplementary Fig. 26a, b). With regard to pre-treatment under light irradiation, four types of products were detected, including CH\(_3\)OH, CH\(_3\)O, H\(_2\)O, and H\(_2\)O\(_2\) (Supplementary Fig. 26c).

Moreover, no peaks for CO\(_2\) were observed, indicating the high selectivity for methanol (Supplementary Fig. 26d). Notably, the temperature (above 200 °C) for methanol production was much higher than that (90 °C) during catalytic tests under light irradiation, because TPSR was conducted in the dark. In other words, methane oxidation under light irradiation follows a different path from that in the dark, despite O\(_2\) activation under light irradiation.

To investigate the mechanisms of methane oxidation under different conditions, we conducted DFT calculations. When both O\(_2\) activation and CH\(_4\) oxidation proceed in the dark, CH\(_4\) dissociates into CH\(_2^*\) bonded to an Au atom and H\(^*\) stabilized by a P–O ensemble to form a P–OH ensemble (Supplementary Fig. 27). The reaction of P–OH with CH\(_2^*\) exhibits an energy difference between configurations II and TS2 of 2.18 eV, which is much higher than that (0.42 eV, configurations II → TS1) of the recombination of CH\(_2^*\) and H\(^*\) into CH\(_3\) (Supplementary Fig. 27).

The apparent energy barrier is defined as the energy difference between the initial state and the transition state with the highest energy. In this case, the apparent energy barrier (configurations I → TS3) is 2.62 eV for the conversion of CH\(_3\) into CH\(_2\)OH. Therefore, in the dark, P–OH ensembles cannot afford further oxidation of CH\(_2^*\) into methanol over Au\(_{1}/BP\) nanosheets, though both O\(_2\) and CH\(_4\) can be activated.

After the activation of O\(_2\) under light irradiation, we consider the oxidation of CH\(_2\) in the dark. The lack of continuous light leads to the adsorption of •OH into hydroxyl groups. Once two reactive hydroxyl groups are formed, one hydroxyl group reacts with CH\(_3\) to generate CH\(_3^*\) and water. This step is the most thermodynamically favorable among different routes of CH\(_4\) activation, exhibiting an energy barrier of 0.58 eV (Supplementary Table 5 and Fig. 28, configurations I → TS1). Afterwards, the other hydroxyl group migrates from P atom to Au atom for further oxidation of CH\(_3^*\) (Supplementary Fig. 28, configurations III → TS2 → IV). The last step is the integration of hydroxyl groups and CH\(_3^*\) to form methanol (Supplementary Fig. 28, configurations IV → TS3 → V). The barrier of this step is 1.15 eV, thus determined as the rate-limiting step. Notably, the energy difference between configurations III and TS3 is as large as 1.67 eV (Supplementary Fig. 28). The apparent energy barrier (configurations I → TS3) is 1.03 eV for the conversion of CH\(_4\) into CH\(_2\)OH (Supplementary Fig. 28).

We further focused on the reaction channel when both O\(_2\) activation and CH\(_4\) oxidation proceed under light irradiation. Upon the activation of O\(_2\), the generated hydroxyl group reacts with CH\(_4\) to form water and CH\(_3^*\) stabilized by an Au atom (Fig. 4b). The breakage of O–O bond in HOO\(^*\) generates •OH which further co-adsorbs and reacts with CH\(_3\) on the Au atom, exhibiting an energy barrier as low as 0.25 eV (Fig. 4b, configurations III → TS2). Methanol is produced by the combination of OH\(^*\) and CH\(_3^*\) on the Au atom with the energy barrier of 1.10 eV, which is determined as the rate-limiting step (Fig. 4b, configurations IV → TS3 → V). Notably, the remaining oxygen atoms on Au\(_{1}/BP\) nanosheets are also able to activate CH\(_4\) at 90 °C with the energy barrier of 1.19 eV, so as to complete the reaction cycle (Supplementary Fig. 29). Moreover, the apparent energy barrier for CH\(_4\) conversion into CH\(_2\)OH under light irradiation (Fig. 4b, configurations I → TS1) is only 0.58 eV, much lower than that (1.03 eV) in the dark. These results explain that 90 °C enables the oxidation of methane into methanol during catalytic tests under light irradiation, whereas methanol was produced above 200 °C during TPSR-MS experiments after the pre-treatment under light irradiation.

To explain the high selectivity for methanol, we investigated the processes of CH\(_4\) dehydrogenation and methanol oxidation. Except for CH\(_4\) dehydrogenation into CH\(_3^*\), the other dehydrogenation steps (CH\(_2^*\) → CH\(_2\) + H\(^*\), x = 1, 2, 3) are all highly endothermic (Supplementary Fig. 30). In this case, the Au atom stabilizes CH\(_3^*\) to prevent deeper dehydrogenation. Moreover, we weighed the energy barriers for methanol oxidation, methanol desorption, and methane activation. Especially, the energy barrier for methanol oxidation by P–OH species is 1.31 eV, which is higher than that (apparent energy barrier, 0.58 eV) for methane activation and that (0.90 eV) for methanol desorption (Supplementary Fig. 31). Similar case also applies to P–O species where the energy barriers for methanol oxidation and desorption are 1.82 and 0.83 eV, respectively (Supplementary Fig. 31). As such, the produced methanol tends to desorb from the catalyst surface and dissolve in water instead of further oxidation under mild conditions such as 90 °C and 3 bar of O\(_2\) partial pressure. Moreover, considering the low concentration of the produced methanol and the stabilization of methanol by the polar solvent of water, the dissolved methanol is unlikely to re-adsorb on the catalyst surface for further oxidation.

In conclusion, we demonstrated that water enabled mild oxidation of methane into methanol with >99% selectivity over Au\(_{1}/BP\) nanosheets under light irradiation. We found that water and O\(_2\) reacted under light irradiation to generate reactive hydroxyl groups and •OH radicals. Hydroxyl groups reacted with methane at Au single atoms to form water and CH\(_3^*\) species. CH\(_3^*\) species were further oxidized by •OH radicals to generate methanol. As water is completely recycled during the whole process, it can also be regarded as a catalyst. Our findings shed light on insights into the role played by water during methane oxidation. Moreover, this work offers an effective strategy for upgrading methane at ambient condition suitable for local, on-site applications.

Methods

Catalyst preparation. In all, 500 mg of red phosphorus, 20 mg of Sn, and 10 mg of SnCl\(_2\) were sealed in an evacuated Pyrex tube. The tube was heated to 650 °C with a rate of 1.4 °C min\(^{-1}\) and kept at 650 °C for 5 h, followed by cooling down to 500 °C with a rate of 0.3 °C min\(^{-1}\). After the sample, was naturally cooled down to room temperature, the product was washed with hot toluene and acetone for three times to remove the residual mineralizer. Finally, the product was dried under vacuum for further analysis. BP nanosheets were prepared by liquid exfoliation of bulk BP. In detail, 200 mg of bulk BP was dispersed in 500 mL of NMP. The mixture solution was then sonicated in ice water for 8 h. Ice water was used to keep the system at relatively low temperature. Afterwards, the resultant brown suspension was centrifuged at 150 × g for 10 min to remove the residual unexfoliated particles. The supernatant was collected by centrifugation at 11,242 × g for 10 min and washed by a mixture of hexane, chloroform, and ethanol. After being washed for three times, BP nanosheets were dried under vacuum for further use. In a typical synthesis of Au\(_{1}/BP\) nanosheets, 400 mg of BP nanosheets was finely dispersed in 500 mL of ethanol under N\(_2\) protection. Then, 20 mL of HAuCl\(_4\) aqueous solution (0.203 mM) was injected into the solution containing BP nanosheets through a two-channel syringe pump at room temperature for 4 h under N\(_2\) protection. The product was collected by centrifugation, washed three times with ethanol, and then dried under vacuum. Further ICP-AES result determined that the mass loading of Au was 0.2 wt%. The syntheses of Pt\(_{1}/BP\), Rh\(_{1}/BP\), and Pd\(_{1}/BP\) nanosheets with metal loading of 0.2 wt% followed the same method as that of Au\(_{1}/BP\) nanosheets, despite that H\(_2\)PtCl\(_4\), RhCl\(_3\), and Na\(_2\)PdCl\(_4\) were used as precursors, respectively. The syntheses of Au NPs/BP, Pt NPs/BP, Rh NPs/BP, and Pd NPs/BP nanosheets with metal loading of 1.0 wt% followed the method of Na\(_2\)B\(_4\)H\(_6\) reduction. In all, 400 mg of Au NPs/BP nanosheets were finely dispersed in 500 mL of ethanol under N\(_2\) protection. Then, 20 mL of HAuCl\(_4\) (1.02 mM), H\(_2\)PtCl\(_4\) (1.03 mM), RhCl\(_3\) (1.94 mM), or Na\(_2\)PdCl\(_4\) (1.88 mM) aqueous solution was added into BP nanosheets
in situ DRIFTS measurements were conducted in a DRIFTS cell that was equipped with a thermal conductivity detector (TCD) and a flame ionization detector (FID). The liquid phase of the reaction mixture was collected by centrifugation at 14,962 rpm, 5 min. 20 µL of DME was introduced into 0.4 mL of the reaction mixture as an internal standard. In all, 100 µL of the mixture was dissolved in 0.4 mL of DMSO-d6 to determine the product yields by 1H NMR spectroscopy.

In situ cycles. For each cycle, the catalytic reaction was operated under CH4 (30 bar) and O2 (3 bar) at 90 °C for 2 h. After cooling down, the product in gas phase was determined by a gas chromatograph (Xe lamp (PLS-SXE300, PerfectLight, China) to the reactor to participate in the photocatalysis. Full-spectrum light was adopted for catalytic tests. The intensity of irradiation light was determined by a spectroradiometer (Shimadzu GC-2414) equipped with a thermal conductivity detector (TCD) and a flame ionization detector (FID). The liquid phase of the reaction mixture was collected by centrifugation at 14,962 x g for 5 min. 20 µL of DME was introduced into 0.4 mL of the reaction mixture as an internal standard. In all, 100 µL of the mixture was dissolved in 0.4 mL of DMSO-d6 to determine the product yields by 1H NMR spectroscopy.

In situ DRIFTS measurements. In situ DRIFTS experiments were conducted in a DRIFTS cell that was equipped with a thermal conductivity detector (TCD) and a flame ionization detector (FID). The liquid phase of the reaction mixture was collected by centrifugation at 14,962 x g for 5 min. 20 µL of DME was introduced into 0.4 mL of the reaction mixture as an internal standard. In all, 100 µL of the mixture was dissolved in 0.4 mL of DMSO-d6 to determine the product yields by 1H NMR spectroscopy.

In situ ESR measurements. Au1/BP nanosheets were dispersed in water pre-treated with CH4 and O2 to detect possible radicals (4 g L−1). As for the 1O2 trapping-ESR tests, 50 µL of aqueous suspension of samples was mixed with 500 µL of 2,2,6,6-tetramethylpiperidine (50 mM) solution. After being illuminated for 1 min, the mixture was characterized using an ESR spectrometer (JEOL, JES-FA200) at room temperature. As for the O2− and •OH trapping-ESR tests, similar procedures were adopted except the use of 5.5-dimethyl-1-pyrroline-N-oxide (DMPO) as the spin-trapping agent.

TOF calculation. The TOF numbers were calculated based following equation (equation 10):

\[
\text{TOF} = \frac{\left(n_{\text{CH}_3\text{OH}} + n_{\text{CO}_2} \right)}{\left(t \times n_{\text{surface}} \right)} = \frac{\left(n_{\text{CH}_3\text{OH}} + n_{\text{CO}_2} \right)}{\left(t \times \delta \times n_{\text{metal}} \right)} = \frac{\left(n_{\text{CH}_3\text{OH}} + n_{\text{CO}_2} \right)}{\left(t \times \delta \times m_\text{metal} \times \alpha \right)}
\]

where, N_{\text{CH}_3\text{OH}} represents the mole of produced CH3OH molecules. \(\delta \) is the reaction time. \(n_{\text{surface}} \) is the mole of surface metal atoms. \(n_{\text{metal}} \) is the mole of total metal atoms. \(m_\text{metal} \) is the mass of the catalysts. \(\alpha \) is the atomic mass. For single atoms, \(\delta = 100\% \). For NPs, \(\delta \) was calculated using the following equations (equations 11–13) given by Vannice:

\[
\delta = 6 \times 10^7 \times \left(V_{\text{metal}} / A_{\text{metal}} \right) \times \left(1 / d_{\text{metal}} \right) \times 100\%
\]

\[
V_{\text{metal}} = \frac{m_{\text{metal}}}{f_{\text{metal}}} \times N_a
\]

\[
A_{\text{metal}} = 1 / n_i
\]

where, \(V_{\text{metal}} \) is the bulk atomic volume of the metals (cm³), \(f_{\text{metal}} \) is the area of an atom (cm²), and \(d_{\text{metal}} \) is the metal particle size in nm. \(m_{\text{metal}} \) is the atomic mass, \(n_i \) is the bulk density, and \(N_a \) is Avogadro’s number. \(n_i \) is the average site density. The \(n_i \) of Au, Pt, Rh, Pd = 1.2 × 10²³, 1.3 × 10²³, 1.3 × 10²³, and 1.3 × 10²³ cm⁻², respectively. The \(m_{\text{metal}} \) of the catalysts. \(f_{\text{metal}} \) is the atomic mass. For single atoms, \(\delta = 100\% \). For NPs, \(\delta \) was calculated using the following equations (equations 11–13) given by Vannice:

Conversion. The conversion was calculated based following equation (equation 14):

\[
\text{Conversion} = \left(\frac{n_{\text{CH}_3\text{OH}} + n_{\text{CO}_2}}{n_\text{CH}_4} \right) \times 100\%
\]

The amount of CH4 charged into the reactor is calculated from 30 bar of CH4 at room temperature. The volume of gas is 160 mL, which corresponds to 193.6 mmol CH3OH and CH3COOH. The irradiation area was 3.14 cm². The intensities of irradiation light were determined to be 2.1, 4.2, 21.9, 15.6, 19.3, 23.9, 26.0, and 23.9 mW · cm⁻² for 350, 380, 450, 500, 550, 600, 650, and 765 nm, respectively. The formation of one methanol molecule only consumes one photo-generated electron because the temperature, pressure, and concentrations can be regarded as constant during the reaction time. TOF, and F_e, because the temperature, pressure, and concentrations can be regarded as constant throughout the reactor.

AQY measurements. The apparent quantum yields (AQY) were measured under the irradiation of monochromatic lights at 350, 380, 450, 500, 550, 600, 650, and 765 nm using a monochromatic light source and band-pass filters. The irradiation area was 3.14 cm². The intensities of irradiation light were determined to be 2.1, 4.2, 21.9, 15.6, 19.3, 23.9, 26.0, and 23.9 mW · cm⁻² for 350, 380, 450, 500, 550, 600, 650, and 765 nm, respectively. The formation of one methanol molecule only consumes one photo-generated electron during the generation of reactive hydroxyl groups and •OH radicals. The AQY was calculated according to the following equation (equation 15):

\[
\text{AQY} = \frac{1}{h} \times \frac{N_{\text{CH}_3\text{OH}}}{N_{\text{PHOTONS}} \times 100\%}
\]

\[
N_{\text{CH}_3\text{OH}} \quad \text{and} \quad N_{\text{PHOTONS}} \quad \text{represent} \quad \text{the} \quad \text{number} \quad \text{of} \quad \text{formed} \quad \text{CH}_3\text{OH} \quad \text{and} \quad \text{the} \quad \text{number} \quad \text{of} \quad \text{incident} \quad \text{photons}.
\]

TPRS-MS measurements. In all, 100 mg of Au1/BP nanosheets were pre-treated by being immersed in 5 mL 18O-labeled water (H₂18O) under O2 (30 bar) flow in
the dark or under light irradiation (1.2 W) at 90 °C for 0.5 h. The treated samples were dried under vacuum, followed by being loaded into the quartz tube for further measurement. For TPSR-MS measurements, the pre-treated samples were heated in helium with a gas-flow rate of 20 mL min⁻¹ at 200 °C for 1 h. After cooling down to 50 °C, the gas was switched to 10% CH₄/Ar (v/v) with a gas-flow rate of 20 mL min⁻¹. Mass spectral responses were collected from 50 to 300 °C at 5 °C min⁻¹. We detected the mass numbers (m/z) of 33 for CH₃OH, 31 for CH₃⁺, 19 for H₂O, 17 for H₂O²⁺, 48 for C₂O₂⁺, 46 for C₂O₃⁺, and 44 for C₃O₂⁺.

DFT calculations. Spin-polarized DFT calculations were performed through Vienna ab initio simulation package32,33. The electron-ion interaction was described via the projector augmented wave method34. The exchange-correlation interaction was described via the optB86b-vdW functional35. The plane-wave basis set was used to solve the Kohn–Sham equations, whereas the kinetic energy cutoff was 400 eV. In our calculations, a 12 Å vacuum layer and a single layer of BP with (3 x 3) supercells were constructed to simulate Au/BP nanosheets. All the atoms were relaxed during the structure optimization until the maximum force on any ion was less than 0.02 eV Å⁻¹. The (4 x 3 x 1) k-point mesh was used to sample the Brillouin zone. The climbing-image nudged elastic band method was used to identify the transition states until the maximum force on any ion was less than 0.05 eV Å⁻¹36.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

The code is available from the corresponding author upon reasonable request.

Received: 28 June 2020; Accepted: 12 January 2021;
Published online: 22 February 2021

References

1. McFarland, E. Unconventional chemistry for unconventional natural gas. Science 338, 341–342 (2012).
2. Nisbet, E. G., Dlugopolsky, E. J. & Bouquet, P. Methane on the rise-again. Science 343, 493–495 (2014).
3. Schüth, F. Making more from methane. Science 363, 1282–1283 (2019).
4. Tang, P., Zhu, Q., Wu, Z. & Ma, D. Methane activation: the past and future. Science 343, 1282–1283 (2019).
5. Muehlhofer, M., Strassner, T. & Herrmann, W. A. New catalyst systems for methane oxidation to methanol or acetic acid on supported isolated rhodium catalysts. Science 360, 513–517 (2020).
6. Ikuno, T. et al. Methane oxidation to methanol catalyzed by Cu-Oxo clusters. Science 368, 513–517 (2020).
7. Schuch, P., Pan, X. & Rao, X. Direct conversion of methane to value-added chemicals over heterogeneous catalysts: challenges and prospects. Chem. Rev. 117, 8497–8520 (2017).
8. Liu, Z. et al. Water-promoted interfacial pathways in methane oxidation to methanol on a CeO₂–Cu₂O catalyst. Science 368, 513–517 (2020).
9. Zhang, C. J. & Hu, P. The possibility of single C-H bond activation in CH₄ on a MoO₃-supported Pt catalyst: a density functional theory study. J. Chem. Phys. 116, 4281–4285 (2002).
10. Akri, M. et al. Atomically dispersed nickel as coke-resistant active sites for methane dry reforming. Nat. Commun. 10, 5181 (2019).
11. Montemore, M. M., van Sprosen, M. A., Madix, R. J. & Friend, C. M. O₂ activation by metal surfaces: implications for bonding and reactivity on heterogeneous catalysts. Chem. Rev. 118, 2816–2862 (2018).
12. Haynes, W. M. CRC Handbook of Chemistry and Physics. 91st edn (CRC, 2010).
13. Zhou, Y., Zhang, L. & Wang, W. Direct functionalization of methane into ethanol over copper modified polymeric carbon nitride via photocatalysis. Nat. Commun. 10, 506 (2019).
14. Mueila, J. L. et al. Controlled photocatalytic oxidation of methane to methanol through surface modification of beta zeolites. ACS Catal. 7, 2878–2885 (2017).
15. Guito, R., Sofer, Z. & Pumera, M. Black phosphorus rediscovered: from bulk material to monolayers. Angew. Chem. Int. Ed. 56, 8052–8072 (2017).
16. Carvalho, A. et al. Phosphorene from theory to applications. Nat. Rev. Mater. 1, 16061 (2016).
17. Luo, Z. et al. Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus. Nat. Commun. 6, 8572 (2015).
18. Vannice, M. A. Kinetics of Catalytic Reactions, 23–33 (Springer, 2005).
19. Bergeret, G. & Galiezot, P. Handbook of Heterogeneous Catalysis. G. Ertl, H. Knözinger and J. Weitkamp, (Wiley-VCH, 1997).
20. Zhang, M., Wang, M., Xu, B. & Ma, D. How to measure the reaction performance of heterogeneous catalytic reactions reliably. Joule 3, 2876–2883 (2019).
21. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B: Condens. Matter Mater. Phys. 54, 11169–11186 (1996).
22. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).
23. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B: Condens. Matter Mater. Phys. 59, 1758–1775 (1999).
24. Klein, J., Bowler, D. R. & Michaelides, A. Van der Waals density functionals applied to solids. Phys. Rev. B 83, 195131 (2011).
25. Henkelman, G. & Jonsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978–9985 (2000).

Acknowledgements

This work was supported by National Key Research and Development Program of China (2019YFA0405600), National Science Fund for Distinguished Young Scholars (2010000204), NSFC (519A2015, 91645202, and 91845302), Key Technologies R&D Program of China (2017YFB0602205, 2018YFA0208603), Key Research Program of Frontier Sciences of the CAS (QYZDB-SSW-SLH017), China Postdoctoral Science Foundation (2020M682007), China Postdoctoral Program for Innovative Talents (BX20200323), Fundamental Research Funds for the Central Universities, USTC Research Funds of the Double First-Class Initiative (YD234000202), and Provincial Key Research and Development Program of Anhui (20200040520074). This work was partially carried out at the USTC Center for Micro and Nanoscale Research and Fabrication, The Supercomputing Center of University of Science and Technology of China is acknowledged for numerical calculations.

Author contributions

L.L. and J.L. equally contributed to this work. L.L., H.L., and J.Z. designed the studies and wrote the paper. L.L., H.L., and F.R. synthesized catalysts. L.L. H.L., and Y.Z. performed catalytic tests. J.L. and W.L. performed DFT calculations. L.L., H.L., Y.Z., and A.L. performed DRIFTS and XPS measurements. L.L. and L.L. conducted XAFS measurements. L.L. and A.L. conducted TPSR-MS experiments. All authors discussed the results and commented on the manuscript.
Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-021-21482-z.

Correspondence and requests for materials should be addressed to H.L., W.-X.L. or J.Z.

Peer review information Nature Communications thanks Botao Qiao, Hai Xiao, and other, anonymous, reviewers for their contributions to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.