CO and Dust in PSS 2322+1944 at a redshift of 4.12

P. Cox¹, A. Omont², S.G. Djorgovski³, F. Bertoldi⁴, J. Pety⁵, C.L. Carilli⁶, K.G. Isaak⁷, A. Beelen⁸, R.G. McMahon⁹, and S. Castro³⁹

1 Institut d’Astrophysique Spatiale, Université de Paris XI, 91405 Orsay, France
2 Institut d’Astrophysique de Paris, CNRS, 98bis boulevard Arago, F-75014 Paris, France
3 Astronomy Department, California Institute of Technology, Pasadena, CA 91125
4 Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn, Germany
5 IRAM, 300 rue de la Piscine, F-38406 St-Martin-d’Hères, France
6 National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801, USA
7 Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE, UK
8 Institute of Astronomy, Madingley Road, Cambridge CB3 0HA, UK
9 Infrared Processing and Analysis Center 100-22, Caltech, Pasadena, CA 91125

Received 11 January 2002 / Accepted 8 March 2002

Abstract. Using the IRAM interferometer we have detected J=4→3 and 5→4 CO line emission toward the radio quiet quasar PSS 2322+1944. At a redshift of zCO = 4.1199 this is the fourth and strongest detection of CO at z > 4. The velocity-integrated CO J=4→3 and J=5→4 line fluxes are 4.21 ± 0.40 and 3.74 ± 0.56 Jy km s⁻¹, and the linewidth is ≈ 300 km s⁻¹. The CO J=10→9 was searched for but not detected with an upper intensity limit of 30 mJy. The 1.35 mm (250 μm rest wavelength) continuum flux density is 7.5±1.3 mJy, in agreement with previous bolometer measurements at 1.2 mm with the 30-m IRAM telescope. The 3 mm (580 μm rest wavelength) continuum is not detected with α at an upper limit of 0.7 mJy. We also report observations of the 450 μm continuum in PSS 2322+1944 using the SCUBA array at the JCMT. The quasar was detected with a 450 μm flux density of 79 ± 19 mJy. At the angular resolution of 4′′ × 2′′ at 1.3 mm and 6′′ × 4′′ at 3.2 mm, the interferometer observations do not show evidence of spatial extension in the continuum or CO line emission. Assuming no gravitational magnification, we estimate a molecular gas mass of ≈ 2.5 × 10¹¹ M⊙. The molecular gas is warm (40 – 100 K) and dense (10³ – 10⁴ cm⁻³). The infrared-to-CO luminosity ratio is ≈ 185 L⊙ (K km s⁻¹ pc²)⁻¹, comparable to the values found for ultraluminous infrared galaxies. The detection of CO emission in this high redshift quasar provides further evidence that the radio emission and the millimeter to submillimeter continuum emission are predominantly powered by a starburst which is coeval with the AGN activity.

Key words. Galaxies: formation – Quasars: emission lines – Quasars: individual: PSS 2322+1944 – Cosmology: observations – Cosmology: early Universe – Radio lines: galaxies

1. Introduction

The study of dust and molecular gas in sources at high redshift has opened up new ways to probe the physical conditions during the early evolution of galaxies and to study the star formation history in the early universe. Spatially resolved observations of the molecular gas content in the host galaxies of high-z quasars are a key for understanding the relationship between black hole formation and spheroidal galaxy formation. At redshifts 0.04 < z < 0.27, the CO J=1→0 line has been detected in 14 QSOs (Evans et al. 2001; Casoli & Loinard 2002) indicating large masses of molecular gas (a few 10⁹ M⊙) fueling both the AGN and star formation in the QSO host galaxies. At higher redshifts, although the lines are broad and weak and precise redshifts are difficult to predict, in the last decade ¹²CO emission was detected in 15 galaxies at 1.44 < z < 4.69 (see Guilloteau 2002 and reference therein; Andreani et al. 2000; Barvainis et al. 2002). Most of the detections were obtained for high rotational transitions of CO (J=3→2 to 9→8) lines which are redshifted to millimeter wavelengths. In a few cases, the J=2→1 and 1→0 lines were detected at centimeter wavelengths (Carilli et al. 1999, 2002; Papadopoulos et al. 2001). These CO observations imply that the high redshift galaxies contain large amounts, a few 10¹⁰ M⊙, of molecular gas which are predominantly excited by giant starbursts with star formation rates ≈ 10² M⊙ yr⁻¹ (see, e.g., Guilloteau et al. 1997, 1999).

In recent years we have concentrated our search for high-z CO emission to QSOs with strong (sub)millimeter...
Continuum emission was detected toward 35 new high-redshift quasars by Omont et al. (2001) and Isaak et al. (2002), with flux densities of 9 ± 2, 22 ± 5 mJy at 250 and 350 GHz, respectively. The luminosity and implied dust mass are estimated to be \(\sim 2.7 \times 10^{13} L_\odot \) and \(\sim 1.6 \times 10^9 M_\odot \) (see Sect. 3). Under the assumption that the far-infrared luminosity arises exclusively from young stars, the implied star formation rate is a few \(10^3 M_\odot yr^{-1} \). PSS 2322+1944 was also detected with the VLA at 1.4 GHz with a total flux density of 98 ± 20 mJy being spatially extended on a scale of 1.5″. (Carilli et al. 2001b). The ratio of radio to millimeter flux agrees with the radio-to-far infrared correlation for star-forming galaxies. PSS 2322+1944 is also an exceptional optical source as described by Djorgovski et al. (in prep.). From a Keck optical spectrum a redshift was derived from multiple, associated narrow absorption lines, yielding \(z_{\text{opt}} = 4.11075 \pm 0.0005 \).

2. Observations and Results

Observations were made with the IRAM Plateau de Bure interferometer during 5 nights in June 2001. We used the standard CD configuration (4 antennas) which results in a beam of 4″8\times2″1 at 1.3 mm and 6″2\times4″9 at 3.2 mm. Dual frequency receivers were used to search simultaneously for CO J=4\rightarrow3 and dust emission at 3 and 1.3 mm, respectively, at the date of the observations. Phase noise was stable on all baselines both at 3 mm (rms 5″−17″) and at 1.3 mm (rms 13″−45″). During the observations, the water vapour varied between 3 and 6 mm and the seeing conditions varied between 0″8 and 1″3, i.e. much smaller than the synthesized beams at 3 mm and 1 mm. The total integration time was about 18 hours for the CO J=4\rightarrow3 line, and 12 hours for the CO J=5\rightarrow4, the CO=10\rightarrow9 and the 1.35 mm continuum. The data were reduced, calibrated and analyzed using the standard IRAM programs CLIC and MAPPING. The final spectra are shown in Fig. 1. Error bars are ±1σ.

Fig. 1. Spectra of the CO J=4\rightarrow3 and J=5\rightarrow4 lines toward PSS 2322+1944. Error bars are ±1σ. The velocity scale corresponds to frequencies of 90.05 and 112.55 GHz, or a redshift \(z_{\text{CO}} = 4.1199 \pm 0.0008 \). The redshift derived from multiple, associated narrow absorption lines in a Keck optical spectrum is \(z_{\text{opt}} = 4.11075 \), which is indicated by an arrow. The weak continuum was not subtracted.

1 for a Λ cosmology (\(H_0 = 65 \text{ km s}^{-1} \text{ Mpc}^{-1} \), \(\Omega_\Lambda = 0.7 \), \(\Omega_m = 0.3 \)) adopted throughout this paper, the luminosity distance \(D_L \) is 3.99 × 10^8 Mpc.
The lower right panel shows the 1.35 mm continuum map. Contour steps are 2 mJy beam$^{-1}$. The zero velocity corresponds to 90.05 GHz, i.e., $z = 4.1199$. The beam of 6.25×4.98 arcsec2 is shown in the lower left panel. (b) The lower right panel shows the 1.35 mm continuum map. Contour steps are 2 mJy beam$^{-1}$, and the r.m.s. noise 1.5 mJy beam$^{-1}$. The beam of 4.85×2.14 arcsec2 is shown in the lower left corner. Offsets are relative to the optical (and radio) position (indicated by a cross), R.A. 23:22:07.25, Dec. 19:44:22.08 (J2000.0).

are shown in Fig. 1 and, for the CO $J=4\rightarrow 3$ emission, Fig. 2a also shows the velocity channel maps.

PSS 2322+1944 was detected in the continuum at 1.35 mm with a flux density of 7.5 ± 1.3 mJy, as derived from the image sideband measurements. This value is consistent with the flux density measured at 1.20 mm with MAMBO at the 30-meter (9.6±0.5 mJy) when the spectral index of dust emission is taken into account. Within the astrometric uncertainties ($\pm 0''3$), the continuum source corresponds to the optical (and radio) position, RA 23:22:07.25, Dec 19:44:22.08 (J2000.0) from Carilli et al. (2001b). At the angular resolution of our observations, the source is not resolved (Fig. 2b). PSS 2322+1944 is not detected in the continuum at 3 mm with a flux density of 0.40 ± 0.25 mJy as derived from the line-free channels. Using a dust spectral index of 3.5, this is consistent with the 3 mm continuum value of ≈ 0.3 mJy expected from the 1.35 mm flux density (Fig. 3).

PSS 2322+1944 was also observed with the wide-band 450 μm and 850 μm filters on SCUBA at the JCMT in December 2001 under good and stable weather conditions with $7_{\text{850,}\mu\text{m}} \sim 0.06$. The observations, calibration and data reduction were done as explained in Isaak et al. (2002). The source was detected in the continuum at 450 μm (corresponding to a rest wavelength of 88 μm) with a flux density of 75 ± 19 mJy. At 850 μm, the flux density of PSS 2322+1944 is 24 ± 6 mJy, which is entirely consistent with the 22.5 ± 2.5 mJy value reported in Isaak et al. (2002). Fig. 3 presents the spectral energy distribution of PSS 2322+1944 with all the currently available photometric data.

Both the CO $J=4\rightarrow 3$ ($\nu_{\text{rest}} = 461.0408$ GHz) and $J=5\rightarrow 4$ ($\nu_{\text{rest}} = 576.2679$ GHz) are clearly detected toward the position of the continuum emission. The $J=4\rightarrow 3$ and $5\rightarrow 4$ lines are found at frequencies of 90.05 and 112.55 GHz (Table 1) corresponding to a redshift of $z_{\text{CO}} = 4.1199 \pm 0.0008$, close to the redshift derived from the optical spectrum ($z_{\text{opt}} = 4.11075$). The difference corresponds to a velocity difference of 530 km s$^{-1}$ (Fig. 1). The CO $J=10\rightarrow 9$ emission line was not detected with a 3σ upper intensity limit of 30 mJy (Table 1). The integrated line fluxes of the CO $J=4\rightarrow 3$ and $J=5\rightarrow 4$ lines are 4.24 ± 0.33 Jy km s$^{-1}$ and 3.74 ± 0.56, respectively. PSS 2322+1944 is the strongest CO emitter at high z, even stronger than the lensed quasar APM 08279+5255 (Downes et al. 1999) – see Table 2. From Gaussian fits, the line widths are found to be ≈ 300 km s$^{-1}$ (Table 1) which is comparable to the width in the three $z > 4$ CO sources detected so far (Table 2).

The channel maps in the CO $J=4\rightarrow 3$ emission line (Fig. 2a) (as well as the $J=5\rightarrow 4$ channel maps not shown) do not show evidence for extension and/or position shifts with velocity. The 3.2 mm CO data are limited by the angular resolution of the observations ($6''2 \times 4''9$) and other array configurations will be needed to probe further whether the emission of PSS 2322+1944 is extended.
Table 1. Observed Properties of CO Lines in PSS 2322+1944

Line	\(v_{\text{obs}}\) [GHz]	Peak Int. [mJy]	\(\Delta V_{\text{FWHM}}\) [km/s]	\(I_{\text{CO}}\) [Jy km s\(^{-1}\)]	Continuum [mJy]	\(L_{\text{CO}}\) \([10^{11} \text{ K km s}^{-1} \text{ pc}^2]\)	\(L_{\text{CO}}\) \([10^8 L_\odot]\)
CO(4\(\rightarrow\)3)	90.05	10.5	375\(\pm\)41	4.21\(\pm\)0.40	0.40\(\pm\)0.25	2.0	6.3
CO(5\(\rightarrow\)4)	112.55	12.0	273\(\pm\)50	3.74\(\pm\)0.56	-	1.1	7.0
CO(10\(\rightarrow\)9)	225.00	< 30	-	<5.2\(\dagger\)	7.5 \(\pm\) 1.3	<0.4	<19

Note. - \(\dagger\) Adopting a line width of 300 km/s

Table 2. Comparison of the CO Results of PSS 2322+1944 with other \(z > 3.5\) Sources

Source	\(z\)	\(I_{\text{CO}}\) [Jy km s\(^{-1}\)]	\(\Delta V_{\text{FWHM}}\) [km/s]	\(I_{\text{CO}}\) [Jy km s\(^{-1}\)]	\(\Delta V_{\text{FWHM}}\) [km/s]	Ref.
PSS 2322+1944	4.12	4.21\(\pm\)0.40	375\(\pm\)41	3.74\(\pm\)0.56	273\(\pm\)50	[1]
BRI 1335–0415	4.41	2.80\(\pm\)0.30	420\(\pm\)60	[2]		
BRI 0952–0115	4.43	0.91\(\pm\)0.11	230\(\pm\)30	[3]		
BR 1202–0725	4.69	1.50\(\pm\)0.30	280\(\pm\)30	2.40\(\pm\)0.30	320\(\pm\)35	[4, 5]
APM 08279+5255	3.87	3.70\(\pm\)0.50	480\(\pm\)35	[6]		
4C 60.07	3.79	2.50\(\pm\)0.43	\(\geq\) 1000	[7]		
6C 1900+722	3.53	1.62\(\pm\)0.30	530\(\pm\)70	[7]		

Note. - \[1\] This paper \[2\] Guilloteau et al. (1997) \[3\] Guilloteau et al. (1999) \[4\] Ohta et al. 1996 \[5\] Omont et al. (1996b) \[6\] Downes et al. (1999) \[7\] Papadopoulos et al. (2000)

3. Discussion

The observed CO J=4\(\rightarrow\)3 and 5\(\rightarrow\)4 line fluxes imply intrinsic CO line luminosities, \(L'_{\text{CO}} = 2.0 \times 10^{11} \text{K km s}^{-1} \text{ pc}^2\), respectively, or expressed in solar luminosities, \(L_{\text{CO}} = 6.3 \times 7.0 \times 10^8 L_\odot\) (Table 1). \(L'_{\text{CO}}\) is proportional to line brightness (Rayleigh-Jeans) temperature integrated over the area of the source: the ratio of luminosities in two CO transitions originating from the same area is a measure of the line brightness ratio and therefore an indicator of the physical conditions in the molecular gas (see Solomon et al. [1997] for a discussion of \(L'_{\text{CO}}\) and \(L_{\text{CO}}\)).

From the \(L'_{\text{CO}}\) we derive brightness (Rayleigh-Jeans) temperature ratios \(T_b[\text{CO}(4\(\rightarrow\)3)]/T_b[\text{CO}(5\(\rightarrow\)4)] = 1.76 \pm 0.25\) and \(T_b[\text{CO}(10\(\rightarrow\)9)]/T_b[\text{CO}(5\(\rightarrow\)4)]<0.34. The former ratio is comparable to the values of 1.38 derived for the \(z = 2.56\) quasar H 1413 (the Cloverleaf) - see Barvainis et al. (1997) - and of 1.02 found for the \(z = 4.69\) quasar BR 1202–0725 (Omont et al. 1996a). These ratios indicate that the molecular gas in PSS 2322+1944 must be warm and dense. Using the results of a Large Velocity Gradient model for high \(z\) galaxies (Sakamoto 1999), we used the brightness temperature ratios to constrain the molecular gas density in PSS 2322+1944. For a gas kinetic temperature of \(\approx 40 \times 100\) K, in accordance with the temperature derived from the thermal dust emission spectrum (see below), and adopting a value of \(10^{-6} \text{ pc}/(\text{km s}^{-1})\) for the CO abundance per unit velocity gradient of the molecular gas (\(X(\text{CO})/dv/dr\)), the \(T_b[\text{CO}(4\(\rightarrow\)3)]/T_b[\text{CO}(5\(\rightarrow\)4)]\) ratio constrains the density of the molecular gas to be of the order of \(10^{3.5} - 10^{4.1}\) cm\(^{-3}\). These values for the gas temperature and density are also consistent with the line brightness ratio \(T_b[\text{CO}(4\(\rightarrow\)3)]/T_b[\text{CO}(1\(\rightarrow\)0)]\) \(\approx 1.4\) derived from the CO(1\(\rightarrow\)0) line flux measured with the VLA in PSS 2322+1044 (Carilli et al. [in prep.] - a more detailed analysis of the excitation conditions will be given in this paper). The gas density in PSS 2322+1944 is comparable to the high densities (\(\approx 10^4\) cm\(^{-3}\)) found in the highly excited gas in the nuclear region of the starburst galaxy M 82 (Güsten et al. 1993; Mao et al. 2000) and in nearby ultraluminous infrared galaxies (e.g., Solomon et al. [1992]).

Assuming a standard Galactic value of \(4.6 M_\odot (\text{K km s}^{-1} \text{ pc}^2)^{-1}\) for the conversion factor of molecular mass to \(L'_{\text{CO(1\(\rightarrow\)0)}}\) and using the above line brightness ratio \(T_b[\text{CO}(4\(\rightarrow\)3)]/T_b[\text{CO}(1\(\rightarrow\)0)]\), we infer a molecular gas mass of \(\approx 6 \times 10^{14} M_\odot\). Based on a study of ultraluminous infrared galaxies (ULIRGs), Solomon et al. (1997) showed that the molecular gas mass to CO luminosity conversion factor is likely to be lower (by a factor \(\approx 3\) in the extreme environments of luminous infrared galaxies where the molecular clouds are expected to be hotter and denser than in the Galaxy (see also Combes et al. 1999). In the case of Arp 220, Scoville et al. (1997) derived a conversion factor \(\approx 0.45\) times the Galactic value. The above gas mass is therefore likely to be overestimated by a factor 2 to 3. In the following we will adopt a conversion factor of \(1.8 M_\odot (\text{K km s}^{-1} \text{ pc}^2)^{-1}\) (i.e., a factor of 2.5 times smaller than the Galactic conversion factor), which translates into a molecular gas mass of \(M_{\text{H}_2} \approx 2.5 \times 10^{11} M_\odot\) for PSS 2322+1944.

Compared with the dust mass \(M_{\text{dust}} \approx 1.6 \times 10^9 M_\odot\) derived from the 1.35 mm continuum flux density (see
Triangles: 850 µm (Isaak et al. 2001); 1.2 mm (Omont et al. 2001); 1.4 and upper limit at 5 GHz (Carilli et al. 2001b); squares: 450 µm, 1.35 mm and the 3σ upper limit at 3 mm (this paper). For comparison, the radio-to-infrared spectral energy distribution of the starburst galaxy M 82 is shown, red-shifted to $z = 4.12$ and normalized to the flux density of PSS 2322+1944 at the observed wavelength of 850 µm: the crosses show all the currently available photometric data, and the continuous line represents the ISO LWS spectrum (from Colbert et al. 1999). The left- and right-hand flux density scale are adapted for PSS 2322+1944 and M 82, respectively.

Fig. 3. Spectral energy distribution of PSS 2322+1944. The exceptional brightness of PSS 2322+1944 makes it a good target for further observations of other CO transitions, in particular those from lower levels which will constrain the physical conditions of the bulk of the molecular gas. Higher spatial resolution measurements are also needed to see whether the line or continuum emission is extended, as it was seen for the radio and optical emission (Carilli et al. 2001b; Djorgovski et al., in prep.).

The detection of CO in another strong (sub)millimeter continuum high-z quasar confirms a frequent correlation between the 3 mm CO peak intensity and the 1.3 mm continuum flux, with a typical ratio of about unity. This relation shows that systematic searches for CO emission in strong thermal dust continuum quasars are promising with current instrumentation, provided that the redshift is known with high enough accuracy. Systematic (sub)millimeter continuum surveys of high redshift, radio-quiet quasars are therefore needed to find strong continuum sources towards which CO emission can be searched.

4. Conclusions

With an apparent CO luminosity greater than that of the strongly lensed quasar APM 08279+5255, the $z = 4.12$ quasar PSS 2322+1944 is the strongest CO emitter detected to date at redshifts larger than 3.5. Assuming no gravitational magnification, we estimate a molecular gas mass of $\approx 2.5 \times 10^{11} M_\odot$, and a far-infrared luminosity of $\approx 2.7 \times 10^{12} L_\odot$. The spectral energy distribution and large luminosity suggest that a massive starburst takes place in PSS 2322+1944, which may be related to the formation of the core of an elliptical galaxy.
Such studies promise to further our understanding of the physical and chemical properties of the most energetic sources in the early Universe. Interferometric observations, especially with ALMA and EVLA, will eventually be able to show the spatial distribution of the molecular gas and its relation to the stars and ionized gas.

Acknowledgements. R. Neri and M. Grewing are gratefully acknowledged for their support of this program, and D. Downes for useful discussions. We also thank R. Lucas for help with the data reduction and the referee, A.S. Evans, for comments which improved the contents of this paper. The IRAM Plateau de Bure staff is kindly acknowledged for its efficient assistance. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain). The JCMT is operated by JAC, Hilo, on behalf of the parent organisations of the Particle Physics and Astronomy Research Council in the UK, the National Research Council in Canada and the Scientific Research Organisation of the Netherlands. The National Radio Astronomy Observatory (NRAO) is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. SGD and SMC acknowledge a partial support from the Bressler Foundation.

References

Andreatta, P., Cimatti, A., Loinard, L., & Röttgering, H.J.A. 2000, A&A, 354, L1
Barvainis, R., Maloney, P., Antonucci, R., & Alloin, D. 1997, ApJ, 484, 695
Barvainis, R., Alloin, D., & Bremer, M. 2002, A&A (letters), in press
Carilli, C.L., Menten, K.M., & Yun, M.S. 1999, ApJ, 521, L25
Carilli, C.L., Bertoldi, F., Menten, K.M., et al. 2001a, ApJ, 555, 625
Carilli, C.L., Bertoldi F., Omont, A. et al. 2001b, AJ, 122, 1679
Carilli, C.L., Kohno, K., Kawabe, K. et al. 2002, AJ, in press
Casoli, F., & Loinard, L. 2002, in ASP Conf. Ser. 235, Science with the Atacama Millimeter Array (ALMA), ed. A. Wootten (San Francisco: ASP), 305
Colbert, J.W., Malkan, M.A., Clegg, P.E. et al. 1999, ApJ, 511, 721
Combes, F., Maoli, R., & Omont, A. 1999, A&A, 345, 369
Downes, D., Neri, R., Wiklind, T., Wilner, D.J., & Shaver, P.A. 1999, ApJ, 513, L1
Dunne, L., Eales, S., Edmunds, M. et al. 2000, MNRAS, 315, 115
Evans, A.S., Frayer, D.T., Surace, J.A., & Sanders, D.B. 2001, AJ, 121, 3286
Guilloteau, S., Omont, A., McMahon, R.G., Cox, P., & Petitjean, P. 1997, A&A, 328, L1
Guilloteau, S., Omont, A., Cox, P., McMahon, R.G., & Petitjean, P. 1999, A&A, 349, 363
Guilloteau, S. 2002, in ASP Conf. Ser. 235, Science with the Atacama Millimeter Array (ALMA), ed. A. Wootten (San Francisco: ASP), 271
Güsten, R., Serabyn, E., Kasen, C. et al. 1993, ApJ, 402, 537
Isaak, K.G., Priddle, R.S., Serabyn, E., Kasen, C. et al. 1993, ApJ, 402, 537
Kim, Y., Kim, M., & Park, S. 2002, ApJ, 573, 192
Kohno, K., Carilli, C.L., & Yun, M.S. 2000, MNRAS, 315, 115
McMahon, R.G., Omont, A., Bergeron, J., Kreyssig, E. & Haslam, C.G.T. 1994, MNRAS, 267, L9
Ohta, K., Yamada, T., Nakanishi, K. et al. 1996, Nature, 382, 426
Omont, A., McMahon, R.G., Cox, P., et al. 1996a, A&A, 315, 1
Omont, A., Petitjean, P., Guilloteau, S. et al. 1996, Nature, 382, 428
Omont, A., Cox, P., Bertoldi, F., et al. 2001, A&A, 374, 371
Mao, R.Q., Henkel, C., Schulz, A. et al. 2000, A&A, 358, 433
Papadopoulos, P.P., Röttgering, H.J.A., van der Werf, P.P. et al. 2000, ApJ, 528, 626
Papadopoulos, P.P., Ivison, R., Carilli, C.L., & Lewis, G. 2001, Nature, 409, 58
Sakamoto, S. 1999, ApJ, 523, 701
Solomon, P.M., Downes, D., & Radford, S.J.E. 1992, ApJ, 387, L55
Solomon, P.M., Downes, D., Radford, S.J.E., & Barrett, J.W. 1997, ApJ, 478, 14
Yun, M.S., Carilli, C.L., Kawabe, R. et al. 2000, ApJ, 528, 171