Assessment of the antibacterial activity of goat milk kefir on *Escherichia coli* ATCC 8739 and *Salmonella enteric* subsp. *enterica serovar typhimurium* ATCC 14028 using a well diffusion method

Sulmiyati1, Nursaidah Said1, Deka Uli Fahrodi1, Ratmwati Malaka2 and Fatma Maruddin2

1Faculty of Animal Husbandry and Fisheries, Universitas Sulawesi Barat, Majene, Indonesia
Jl Prof. Dr. BaharuddinLopa, SH. Talumung, Majene 91413, Sulawesi Barat, Indonesia
2Faculty of Animal Science, Hasanuddin University, Makassar, Indonesia
Jl. Perintis Kemerdekaan KM. 10, Makassar 90245, Sulawesi Selatan, Indonesia

Email: sulmiyati@unsulbar.ac.id

Abstract. Kefir is a fermented dairy product that uses kefir grains, which contain lactic acid bacteria and yeast, as a starter. Kefir has various health-promoting properties as a prebiotic food product. The purpose of this research was to measure the antibacterial activity of goat milk kefir against the pathogenic bacteria *Escherichia coli* ATCC 8739 and *Salmonella enteric* subsp. *enterica serovar typhimurium* ATCC 14028 using a well diffusion method. A total of five treatments were tested: kefir grain, kefir curd, kefir whey, distilled water as a negative control, and tetracycline antibiotic as a positive control. The research used a Completely Randomized Design (CRD), and the data were analyzed by ANOVA if it showed significant effects by Least Significant Difference Test (LSD). The highest antibacterial activity against *E. coli* ATCC 8739 was seen with kefir curd, 2.98±0.65 mm, and the lowest with kefir grains, 2.82±0.83 mm. Similarly, antibacterial activity against *S. typhimurium* ATCC 14028 was lowest with kefir grains, 2.22±1.05 mm, and the highest with kefir curd, 2.34±1.65 mm. The results showed that kefir goat milk, both curds, whey and kefir grains have potential as antibacterial against pathogenic *E. coli* ATCC 8739 and *S. enteric* subsp. *enterica serovar typhimurium* ATCC 14028.

1. Introduction
Kefir is a fermented milk product that uses kefir grains as the starter culture. Kefir is characterized by distinctive smell and flavor, where smell and flavor of kefir like of yeast, and the effervescent effect in the mouth [1,2,3]. The major component contribution product of kefir such as lactic acid, ethanol and CO2, which desired its viscosity, sour taste and a low ethanol content, the minor components contributing to the flavor composition fermented products, such as diacetyl, acetaldehyde, ethyl and amino acids [2,3]. Kefir also contains live microflora derived from the kefir grains and mixed cultures contain of lactic acid bacteria (*Lactobacilli, Lactococci*, and *Leuconostoc* spp.), acetic acid
bacteria (*Acetobacteraceti*), and yeasts (*Saccharomyces cerevisiae*, *Candida kefir*, and *Kluyveromyces marxianus*) [4].

Various fermented products are known and recommended for consumption as probiotics and prebiotics. According to [5], probiotics are beneficial if consumed by humans and animals in amounts above 6 log cfu g\(^{-1}\) and recommended around 8–9 log cfu g\(^{-1}\). [6,7,8,9], there are kefir products in the world contain differences microbial. But, several research have showed the health benefits of this beverage, and the result of isolated from kefir grains have potential probiotic [10], [11,12].

The purpose of this research was to observe and measure the antibacterial activity of goat milk kefir against the pathogenic bacteria *Escherichia coli* ATCC 8739 and *Salmonella enterica* subsp. enterica serovar typhimurium ATCC 14028 using a well diffusion method.

2. Research methods

2.1. Research material

The materials used in this research were cultures of *E. coli* ATCC 8739, *S. enterica* subsp. *Enterica serovar typhimurium* ATCC 14028, McFarland 0.5, goat’s milk, water one [one lab], MRS agar [Cat No. 1043.00, Conda Pronadisa], Salmonella Shigella Agar [CM0099, Oxoid], Lactobacillus MRS broth [M369-1006, Himedia], EMB Levine agar [Liofilchem], Distilled water pro injection, Mac Conkey agar [CM0007, Oxoid], Mueller-Hinton Agar CM0337 [Oxoid], 1 ml eppendorf tubes, tetracycline 500 mg [Novapharin].

Tools used were: autoclave [Webecco], incubator [Memmert], centrifuge [k-centrifuge series], stirrer, oven, Vernier Caliper 0.05 [Cricle Brand], reaction tubes [Pyrex], Petri dishes [Herma], and a digital scale [Camry].

2.2. The process of making kefir goat milk

The method of [13] was used to make kefir goat milk. Goat milk is obtained from people's farms in Majene, West Sulawesi and Kefir grain are obtained from commercial grain Kefir. Briefly, goat milk was pasteurized at 105\(^\circ\)C for 5 minutes, then cooled to room temperature (37\(^\circ\)C); 2% kefir grain were added, and the milk incubated for 12 hours at 37\(^\circ\)C. The physiochemical characteristics of the goat milk kefir produced can be seen in table 1. The types of lactic acid bacteria and yeast found in the kefir grain used identified as the lactic acid bacteria *Lactococcus cremoris*, *Streptococcus cremoris*, *Lactobacillus plantarium* and the yeast *Saccharomyces cerevisiae* [14].

2.3. Growth and Purity test of E.coli ATCC 8739 and S.enterica subsp. enterica serovar typhimurium ATCC 14028.

The *E. coli* and *S. enterica* test bacteria were inoculated on nutrient agar (NA) media and incubated at room temperature for 24 hours. The purity of the *E. coli* cultures was tested via macroscopic observation and microscopic observation.

2.4. Testing of antibacterial substances using the well diffusion method

The activity of the antibacterial substances was tested using one of the two test *E. coli* or *S. enterica* suspensions, with a bacterial density of 1.5\times10^6 cells per ml, inoculated on a 10 ml media Mueller
Hinton agar in a petri dish. The inoculated cultures were left at 4°C for 1–1.5 hours, then a total of 5 wells were made, with a diameter of 9 mm in each plate. The first well contained sterile distilled water, the second well contained kefir curd, the third well kefir whey, the fourth well kefir grain and fifth well tetracycline at a 10% concentration. The plates were incubated at 37°C for 48 hours. The ability to inhibit fermented milk against pathogenic bacteria was shown by the presence of clear zones around the well, which were measured as the clear zone diameter minus the well diameter in mm [15].

2.5. Data analysis
The data obtained were analyzed by analysis of variance (ANOVA) and when there was a significant treatment effect, the differences between treatments were tested with the smallest real difference test (BNT) [16]. The data were processed using the software SPSS 19.0 for Windows and MS Office Excel 2007.

3. Result and discussions
3.1. Growth and test of purity of E. coli and S. enterica
The purity test was carried out to ensure the E. coli and S. enterica used in this study were pure and not contaminated by other bacteria or did not undergo mutations. E. coli bacteria were inoculated in Mac Conkey agar media and Levine-Agar EMB selective media; S. enterica were inoculated in salmonella shigella agar selective media and their growth and colony morphology assessed (fig. 1).

Figure 1. Observation of E. coli ATCC 8739 bacterial colonies and S. enterica in Salmonella Shigella Agar (SS-Agar) Media (Description: a. Growth of E. coli in Mac Conkey agar media, b. Growth of E. coli in Levine-agar EMB media, and c. Growth of S. enterica in SS-agar media)

Colonies of E. coli ATCC 8739 turned red grown in Mac Conkey medium and malachite green in EMB-Levine media as seen in fig. 1a and 1b. Fig. 1c shows that colonies of S. enterica ATCC 14028 grown on SS-agar media had a round shape with black and clear colored edges.
3.2. Antibacterial test of kefir curd, kefir whey and kefir grain against E. coli and S. enterica
Antibacterial activity of the treatments against E. coli is shown in fig. 2, and against S. enterica is
shown in fig. 3. The areas of clear zones caused by the kefir curd, kefir whey, kefir grain and controls
can be seen in table 2.

Table 2. The area of clear zones caused by Kefir curd, kefir whey and kefir grain (mm) against E. coli and S. enterica.

Observation type	Area of Inhibitory Zone (mm) *	
	E. coli	S. enterica
Kefir curd	2.98±0.65a	2.34±1.65a
Kefir whey	2.86±0.63b	2.32±0.90b
Kefir grain	2.82±0.83b	2.22±1.05b
Negative control (dd H2O)	0.00±0.00b	0.00±0.00b
Positive control (tetracycline)	33.64±1.58c	33.40±1.43c

*The diameter of the well is 10 mm
Description: Different superscript letters show significant differences (P <0.05).

Table 2 shows that the highest inhibitory zone area of pathogenic E. coli is from kefir curd, 2.98 ± 0.65 mm, and the lowest inhibition zone area is from kefir grain, 2.82 ± 0.83 mm, while the highest inhibitory zone for S. enterica is from kefir curd, 2.34 ± 1.65 mm, and the lowest activity from kefir grain, 2.22 ± 1.05 mm. These results showed that kefir curd had the highest antimicrobial activity compared to the other kefir treatments, but the BNT test results showed no significant differences (P> 0.05).

According to [17], the inhibition category of pathogenic bacteria consists of several criteria, namely, low inhibition if it has a barrier zone area <3 mm, moderate inhibition at 3–6 mm, and high inhibition, >6 mm. According to [18], antimicrobial activity has several criteria: moderate activity (6–9 mm), strong (10–14 mm) and very strong (15–18 mm).

4. Conclusions
The highest antibacterial activity against E. coli ATCC 8739 was 2.98 ± 0.65 mm, with kefir curd and the lowest with kefir grain, 2.82 ± 0.83 mm. Similarly, antibacterial activity against S. enterica ATCC 14028 was lowest on the kefir grain, 2.22 ± 1.05 mm, and highest on the kefir grain, 2.34 ± 1.65 mm. Overall, the results show that kefir goat milk curd, whey, and kefir grain have potential as antibacterial agents against pathogenic E. coli and S. enterica.
Figure 2. Antibacterial test against *E. coli* ATCC 8739 ATCC 14028 (Description: 1. Negative control, 2. Kefir curd, 3. Kefir whey, 4. Kefir grain, 5. Positive control (tetracycline).
Figure 3. Antibacterial test for *S. enterica* ATCC 14028 (Description: 1. Negative control, 2. Kefir curd, 3. Kefir whey, 4. Kefir grain, 5. Positive control (tetracycline).
5. Acknowledgment
This research was carried out by the financial support of the Directorate of Research and Community Service of the Ministry of Research, Technology and Higher Education Research Inter-Higher Education Research Scheme (PKPT) in 2018 based on the research contract number No. 044/UN55.C/LT.09/2018.

References

[1] Lopitz-Otsoa F, Rementeria A, Elquezabal N, and Garaizar J 2006 Kefir: a symbiotic yeasts-bacteria community with alleged healthy capabilities. Rev. Iberoam Micol. 23 67-74.
[2] Rattray FP, and O’Connell MJ 2011 Fermented Milks Kefir. In: Fukay JW (ed.) Encyclopedia of Dairy Sciences (2nd ed) (San Diego, USA: Academic Press) p518-524
[3] Leite AM de-O, Miguel MAL, Peixoto RS, Rosado AS, Silva JT, and Paschoalin VMF 2013 Microbiological, technological and therapeutic properties of Kefir: a natural probiotic beverage. Brazilian Journal of Microbiology. 44(2):341-349
[4] Karagozlu N, Karagozlu C, and Ergonul B 2007 Survival characteristics of E. coli 0157:H7, S. typhimurium and S. aureus during kefir fermentation. Czech J. Food Sci. 25(4):202-207.
[5] Araújo EA, Carvalho AF, Leandro ES, Furtado MM and Moraes CA 2013 Microbiological, technological and therapeutic properties of Kefir: a natural probiotic beverage. Brazilian Journal of Microbiology. 44(2)341-349
[6] Guven A, Guven A, and Gulmez M 2003 The effect of kefir on the activities of GSH-Px, GST, CAT, GSH and LPO levels in carbon tetrachloride-induced mice tissues J. Vet. Med. B 50 412-416
[7] Hertzler SR and Clancy SM 2003 Kefir improves lactose digestion and tolerance in adults with lactose maldigestion J. Am. Diet. Assoc. 103 582-587
[8] Vinderola G, Perdigon G, Duarte J, Farnworth E, and Matar C 2006 Effects of the oral administration of the products derived from milk fermentation by kefir microflora on immune stimulation, J. Dairy Res. 73 472-479
[9] De Moreno de Leblanc A, Matar C, Farnworth E, and Perdigon G 2007 Study of immune cells involved in the antitumor effect of kefir in a murine breast cancer model J. Dairy Sci. 90 1920-28
[10] Golowczyc M, Mobili P, Garrote GL, Abraham AG, and De Antoni DL 2007 Protective action of Lactobacillus kefir carrying S-layer protein against Salmonella enteric serovar enteritidis Int. J. Food Microbiol. 118 264-273
[11] Golowczyc MA, Gugliada MJ, Hollmann A, Delfrederico L, Garrote GL, Abraham AG, Semorile L, and De Antoni GL 2008 Characterization of homofermentative lactobacilli isolated from kefir grains: potential use as probiotic, J. Dairy Res. 75:211-217
[12] Sabir F, Beyatli Y, Cokmus C, and Darilmaz DO 2010 Assessment of potential probiotic properties of Lactobacillus spp., Lactococcus spp., and Pediococcus spp. strains isolated from kefir, J. Food Sci. 75 568-573
[13] Sulmiyati, Said NS, Fachrodi DU, Malaka R, and Maruddin F. 2017. Produksi dan Karakterisasi Starter Kefir Grain dari Kefir Komersial dan Uji Aktivitas Antibakterinya (Production and Characterization of Kefir Grain Starters from Kefir Commercial and Antibacterial Activity Test). Laporan Akhir Penelitian Kerjasama Antar Perguruan Tinggi (PKPT) Universitas Sulawesi Barat. 2017.
[14] Sulmiyati, N.S. Said., D.U. Fahrodi., R. Malaka., and Maruddin F s 2018 The characteristics of lactic acid bacteria isolated from Indonesian commercial kefir grain Malaysian J. Microbiol. 14(7)632-639
[15] Purwijantiningsih E 2011 Uji Antibakteri Yoghurt Sinbiotik terhadap Beberapa Bakteri Patogen Enterik (Test of Sinbiotic Yogurt Antibacterial for Some Enteric Pathogenic Bacteria). Biota.16(2)173-177
[16] Steel RGD, and Torrie JH 1993 *Prinsip dan Prosedur Statistika: Suatu Pendekatan Biometric* (Statistical Principles and Procedures: A Biometric Approach). Alih bahasa: B. Sumantri (Jakarta: Gramedia Pustaka Utama)

[17] Pan X, Chen F, Wu T, Tang H, and Zhao Z 2009 The Acid Bile Tolerance and Antimicrobial Property of *Lactobacillus acidophilus* IN. *Food Control, J.* 20 598-602

[18] Liasi SA, Azmi TI, and Hassan MD, Shuhaimi M, Rosfarizan M, and Ariff AB 2009 Antimicrobial activity and antibiotic sensitivity of three isolates of lactic acid bacteria from fermented fish product, Budu. *Malay Microbiol* 533-37