Research article

118 SNPs of folate-related genes and risks of spina bifida and conotruncal heart defects

Gary M Shaw*1,4,5, Wei Lu2, Huiping Zhu2, Wei Yang3, Farren BS Briggs4, Suzan L Carmichael3,5, Lisa F Barcellos4, Edward J Lammer5 and Richard H Finnell2

Address: 1Department of Pediatrics, Division of Neonatal & Developmental Medicine, Stanford University School of Medicine, Stanford, CA, USA, 2Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, USA, 3California Research Division, March of Dimes, California Research Division, Oakland, CA, USA, 4School of Public Health, University of California, Berkeley, School of Public Health, Berkeley, CA, USA and 5Children’s Hospital Oakland Research Institute, Oakland, CA, USA

Email: Gary M Shaw* - gmshaw@stanford.edu; Wei Lu - wlu@ibt.tamhsc.edu; Huiping Zhu - hzhu@ibt.tamsch.edu; Wei Yang - WYang@marchofdimes.com; Farren BS Briggs - fbriggs@genepi.berkeley.edu; Suzan L Carmichael - SCarmichael@marchofdimes.com; Lisa F Barcellos - barcello@genepi.berkeley.edu; Edward J Lammer - elammer@chori.org; Richard H Finnell - rfinnell@ibt.tamhsc.edu

* Corresponding author

Abstract

Background: Folic acid taken in early pregnancy reduces risks for delivering offspring with several congenital anomalies. The mechanism by which folic acid reduces risk is unknown. Investigations into genetic variation that influences transport and metabolism of folate will help fill this data gap. We focused on 118 SNPs involved in folate transport and metabolism.

Methods: Using data from a California population-based registry, we investigated whether risks of spina bifida or conotruncal heart defects were influenced by 118 single nucleotide polymorphisms (SNPs) associated with the complex folate pathway. This case-control study included 259 infants with spina bifida and a random sample of 359 nonmalformed control infants born during 1983–86 or 1994–95. It also included 214 infants with conotruncal heart defects born during 1983–86. Infant genotyping was performed blinded to case or control status using a designed SNPlex assay. We examined single SNP effects for each of the 118 SNPs, as well as haplotypes, for each of the two outcomes.

Results: Few odds ratios (ORs) revealed sizable departures from 1.0. With respect to spina bifida, we observed ORs with 95% confidence intervals that did not include 1.0 for the following SNPs (heterozygous or homozygous) relative to the reference genotype: BHMRT (rs3733890) OR = 1.8 (1.1–3.1), CBS (rs2851391) OR = 2.0 (1.2–3.1); CBS (rs234713) OR = 2.9 (1.3–6.7); MTHFD1 (rs2236224) OR = 1.7 (1.1–2.7); MTHFD2 (hcv11462908) OR = 0.2 (0–0.9); MTHFD2 (rs702465) OR = 0.6 (0.4–0.9); MTHFD2 (rs7571842) OR = 0.6 (0.4–0.9); MTHFR (rs1801133) OR = 2.0 (1.2–3.1); MTRR (rs162036) OR = 3.0 (1.5–5.9); MTRR (rs10380) OR = 3.4 (1.6–7.1); MTRR (rs1801394) OR = 0.7 (0.5–0.9); MTRR (rs9332) OR = 2.7 (1.3–5.3); TYMS (rs2847149) OR = 2.2 (1.4–3.5); TYMS (rs1001761) OR = 2.4 (1.5–3.8); and TYMS (rs502396) OR = 2.1 (1.3–3.3). However, multiple SNPs observed for a given gene showed evidence of linkage disequilibrium indicating that the observed SNPs were not individually contributing to risk. We did not observe any ORs with confidence intervals that did not include 1.0 for any of the studied SNPs with conotruncal heart defects. Haplotype reconstruction showed statistical evidence of nonrandom associations with TYMS, MTHFR, BHMRT and MTR for spina bifida.

Conclusion: Our observations do not implicate a particular folate transport or metabolism gene to be strongly associated with risks for spina bifida or conotruncal defects.
Background

Periconceptional vitamin supplementation with folic acid substantially reduces risks of women having neural tube defect-affected pregnancies [1, 2] and has been implicated in reducing risks of several other congenital anomalies, including orofacial clefts and selected heart defects [3-11]. Mechanisms underlying these reduced risks have not been elucidated, although it has been speculated that supplementation with vitamins containing folic acid restores some normal developmental function that is genetically compromised in selected infants.

Investigating genetic variation that influences cellular absorption, transport, and metabolism of folate may offer insight into this unknown developmentally protective mechanism. Indeed, numerous investigations of genes that are specifically involved with folate metabolism have yielded at least one gene, 5, 10-methylenetetrahydrofolate reductase (MTHFR), that has been associated with a modest increased risk of neural tube defects (e.g., [12-17]), and possibly heart defects [18, 19]. Observed risks with the two principal MTHFR variants, however, do not appear to account for a large proportion of the etiologic fraction of any of these defects, under the assumption that MTHFR variants have a causal role [17]. Thus, further investigation of other folate-related genes is necessary to reveal clues about mechanisms underlying the potential embryonic protective effects of folic acid supplementation.

We hypothesized that genetic susceptibility of fetal metabolism or transport of folate puts fetuses at risk for selected congenital anomalies. Using population-based data, we investigated 118 single nucleotide polymorphisms (SNPs) in 14 genes in the complex folate pathway as risk factors for spina bifida and conotruncal heart defects.

Methods

This population-based case-control study included infants with spina bifida or conotruncal heart defects diagnosed within 1 year after birth among infants and fetal deaths delivered to women residing in most California counties. Data were derived from the California Birth Defects Monitoring Program [20], a population-based active surveillance system for collecting information on infants and fetuses with congenital malformations. Diagnostic and demographic information was collected by program staff from multiple sources of medical records for all liveborn and stillborn fetuses (defined as >20 weeks gestation). Overall ascertainment for major malformations has been estimated as 97% complete [21]. Eligible were live born infants only because the source of DNA was from newborn screening cards.

Included were 259 infants with spina bifida and a random sample of 359 nonmalformed control infants born during 1983–86 and 1994–95 in selected counties in California. Also included for study were 214 infants with conotruncal heart defects, specifically d-transposition of the great arteries and tetralogy of Fallot. The random sample of 1983–86 controls for conotruncal heart defects included 220 of the overall 359. Newborn bloodspots were obtained from the State of California and their use in this study was consistent with the consent procedures at the time of sample collection. The protocol for this study was reviewed and approved by the State of California Health and Welfare Agency Committee for the Protection of Human Subjects.

Genomic DNA was extracted from dried blood spots on filter paper using the Puregene DNA Extraction Kit (Genta, Minneapolis, MN). Prior to genotyping, genomic DNA was amplified using a commercial multiple displacement amplification (MDA) kit, GenomePhi (GE Healthcare, Piscataway, NJ). The MDA method relies on isothermal amplification using the DNA polymerase of the bacteriophage phi29 and is a recently developed technique for high performance WGA. MDA has been demonstrated to be reliable for genotyping, with the most favorable call rates, best genomic coverage, and lowest amplification bias [22]. Studies indicate no discernable difference between WGA samples with GenomiPhi kit and the original DNA templates [23, 24]. The whole genome amplification (WGA) product was then quantified using RNase P method (AppliedBiosystems, Foster City, CA). 150 ng WGA product was then used for each SNPlex assay pool which contained about 48 SNPs.

Genotype analyses were performed using SNPlex assays (AppliedBiosystems, Foster City, CA). SNP markers were selected using the SNPBrowser™ program (version 3.0) provided by AppliedBiosystems Inc. This program allowed selection of SNP markers from the HapMap database. For each target gene, tagging SNPs were selected based on the pairwise r² > = 0.8. SNPs with minor allele frequencies lower than 10% in Caucasians were excluded. All validated non-synonymous SNPs were included. Successful rates for SNPlex assays were >96% for 75 SNPs, from 90% to 96% for 32 SNPs, from 70% to 90% for 7 SNPs. 15 SNPs suffered from more than 30% failure rates. In a subsequent effort to fill in the missing genotyping data and obtain higher call rate, we performed TaqMan SNP assays (Appliedbiosystems, Foster City, CA) for 22 of these SNPs on an ABI 7900 Genetic Analyzer.

All genotyping was performed blinded to subject’s case or control status. Case and control infants were genotyped for 129 SNPs. Failure to obtain unambiguous genotype data on >50% of the samples for 11 SNPs (CBS rs1801181 and rs12329790; MTHFR rs1537514 and rs7533315; MTR rs10925257, NOS3 rs1800780 and hcv11631000;
RFCI rs1051266, rs4819130, hcv16186310, and rs7278825) resulted in their elimination from further analyses. The remaining 118 SNPs are shown in Table 1. The percentage of control study subjects (percentages were similar for cases) for whom genotype could be assigned is also shown in Table 1.

Genotypes among controls were analyzed to verify that their distributions fit Hardy-Weinberg expectations. Genotypes for each SNP were statistically consistent with Hardy-Weinberg expectations. Odds ratios and 95% confidence intervals (CI) were used to estimate risks. These measures were calculated using SAS software (version 9.1). Information on maternal race/ethnicity was obtained for case and control infants from California birth certificates. Logistic regression was used to compute risk estimates adjusted for maternal race/ethnicity (white Hispanic; white nonHispanic, and other). Analyses estimated defect risks (spina bifida or conotruncal heart defects) for each SNP assuming a recessive model, i.e., homozygous variant genotype compared to homozygous reference genotype and heterozygous variant genotype compared to homozygous reference genotype. In addition to single SNP-at-a-time analyses, we explored haplotype block analyses. Haplotype analyses were performed using Haploview version 3.32. Identified blocks were assessed with odds ratios.

Results
Numbers of case and control infants stratified by race/ethnicity are shown in Table 2. These data show the expected greater frequency of Hispanics in the spina bifida case group.

We examined risks for each of the 118 SNPs and for each of the two birth defect outcome (Additional file 1). Few odds ratios (ORs) revealed sizable departures from 1.0. Given the large number of comparisons (n = 472) we expected more ORs to be substantially different from 1.0 by chance. With respect to spina bifida, we observed ORs with confidence intervals that did not include 1.0 for the reference genotype: BHMT (rs3733890) OR = 1.8 (1.1–3.1), CBS (rs2851391) OR = 2.0 (1.2–3.1), CBS (rs234713) OR = 2.9 (1.3–6.7), MTHFD1 (rs2236224) OR = 1.7 (1.1–2.7); MTHFD1 (hcv11462908) OR = 0.2 (0.0–0.9); MTHFD2 (rs702465) OR = 0.6 (0.4–0.9); MTHFD2 (rs7571842) OR = 0.6 (0.4–0.9); MTHFR (rs1801133) OR = 2.0 (1.2–3.1); MTRR (rs162036) OR = 3.0 (1.5–5.9); MTRR (rs10380) OR = 3.4 (1.6–7.1); MTRR (rs1801394) OR = 0.7 (0.5–0.9); MTRR (rs9332) OR = 2.7 (1.3–5.3); TYMS (rs2847149) OR = 2.2 (1.4–3.5); TYMS (rs1001761) OR = 2.4 (1.5–3.8); and TYMS (rs502396) OR = 2.1 (1.3–3.3). Each gene involving multiple SNP associations was investigated for linkage disequilibrium.

Modest to strong evidence for linkage disequilibrium was observed for SNPs in each gene, i.e., D’ ranged from 0.44 to 1.0 with all p values < 10^-4. With respect to conotruncal heart defects, we did not observe any OR with a confidence interval that did not include 1.0.

We did not observe evidence to indicate that risk patterns were confounded by race/ethnicity groupings, i.e., observed ORs were not substantially altered after adjusting for maternal race/ethnicity (not shown, available from authors upon request).

Haplotypes, reconstructed for each gene based on studied SNPs, were explored to assess risks for each case group. A total of 77 of the 118 studied SNPs formed 17 haplotype blocks. As shown in Table 3, blocks for TYMS, MTHFR, BHMT, and MTR showed some evidence of nonrandom effects for spina bifida. For each of these haplotypes we observed decreased risk associated with the lower frequency haplotype relative to the most frequent haplotype. Similar to SNP analyses, haplotype analyses for conotruncal heart defects did not reveal evidence of nonrandom effects, with the exception of one haplotype block for MTR (Table 4).

Haplotypes analyses were stratified by race/ethnic background (Hispanic white and nonHispanic white). We observed evidence of a nonrandom haplotype association with TYMS for spina bifida and conotruncal heart defects among nonHispanic whites. Lack of evidence for other haplotypes that were observed overall was likely the result of smaller sample sizes from stratification.

Discussion
In this California population we found only modest evidence that polymorphisms in 14 folate-related genes contributed to risk of spina bifida. SNPs contributing risks were in BHMT, CBS, MTHFD1, MTHFD2, MTHFR, MTRR, and TYMS. Haplotype association analyses further identified TYMS and MTHFR as potential contributors to spina bifida risk. In general, however, most of these folate-related genes showed little evidence for a gene-only effect on risk of spina bifida, and even less, on risks of conotruncal heart defects.

The 14 genes studied here have been implicated in the complex metabolic cycle involving folate (e.g., [25-27]). To our knowledge, this study contained the largest number of SNPs in folate-related genes interrogated as risk factors for human spina bifida or conotruncal heart defects. Previous studies have included some of the SNPs examined here. For example, Boyles and colleagues [28] studied 28 SNPs in 11 folate-related genes and found that only BHMT (rs3733890) was associated with increased
Table 1: Fourteen folate-related genes and 118 SNPs

Gene	Change	Chromosome	Base Position	SNP_ID	Type/Comment	Percent Genotyped	
BHMT	R (A/G)	5	78457715	rs3733890	exon, nonsynonymous R239Q	100	
BHMT	Y (C/T)	5	78471967	rs1915706	Intergenic/Unknown	96.4	
BHMT	(G/C)	5	78567093	rs1316753	Tag, BHMT	100	
BHMT	M (C/A)	5	78453350	rs617219	intergenic	96.4	
BHMT	Y (C/T)	5	78438303	rs645112	Intergenic/Unknown	96.9	
BHMT	W (A/T)	5	78462964	rs585800	untranslated region	94.2	
BHMT	S (C/G)	5	78559288	rs3829809	Tag, BHMT	100	
BHMT	Y (C/T)	5	78452172	rs567754	intron	95.8	
BHMT2	M (A/C)	5	78405657	rs626105	intron	96.1	
BHMT2	Y (C/T)	5	78409187	rs567754	intron	95.5	
BHMT2	M (A/C)	5	78387392	rs2253262	exon, nonsynonymous	96.4	
BHMT2	W (A/T)	5	78420828	rs670220	Validated	96.7	
BHMT2	M (A/C)	5	78404058	rs592052	intron	99.2	
CBS	Y (T/C)	21	43360473	rs2851391	intron	92.5	
CBS	R (A/G)	21	43359173	rs2298759	intron	72.4	
CBS	Y (T/C)	21	43361102	rs234714	intron	90	
CBS	S (C/G)	21	43346936	rs1051319	untranslated region	91.9	
CBS	Y (T/C)	21	43376503	rs234784	Tag, CBS	99.7	
CBS	N (A/G/C/T)	21	43346760	rs12613	untranslated region	92.5	
CBS	S (C/G)	21	43377074	rs234785	Tag, CBS	100	
CBS	R (A/G)	21	43360960	rs234713	intron	91.1	
CBS	Y (C/T)	21	43376312	rs234783	Tag, CBS	100	
DHFR	Y (C/T)	5	79986337	rs1650697	Validated nsSNP	92.6	
DHFR	W (A/T)	5	79957572	rs1210987	Validated	94.2	
DHFR	Y (C/T)	5	79987790	rs380691	Validated	95.5	
DHFR	M (A/C)	5	79985331	rs1478834	Validated	96.4	
DHFR	Y (C/T)	5	79966012	rs164368	Validated	92.8	
DHFR	M (A/C)	5	79961366	rs261372	Validated	96.9	
DHFR	R (A/G)	5	79980489	rs13161245	intron	96.1	
DHFR	Y (C/T)	5	79975899	rs1643650	intron	94.7	
DHFR	K (G/T)	5	79981467	rs836821	Validated	97.5	
FOLR1	Y (C/T)	11	73373406	rs1540087	untranslated region	95.8	
FOLR1	W (T/A)	11	73380857	rs11235462	Tag, FOLR1	100	
FOLR1	R (A/G)	11	73372879	rs2071010	untranslated region	91.9	
FOLR2	R (A/G)	11	7340256	rs2298444	intron	92.2	
FOLR2	R (A/G)	11	73402049	rs514933	intron	100	
FOLR2	W (A/T)	11	73401368	rs651646	untranslated region	100	
MTHFD1	Y (C/T)	14	63984935	rs2236222	intron	95.5	
MTHFD1	Y (C/T)	14	63978904	rs2236222	intron	97.8	
MTHFD1	Y (C/T)	14	63952133	rs1950920	exon, nonsynonymous	90.5	
MTHFD1	Y (C/T)	14	63978598	rs2236225	exon, nonsynonymous G1958A (R653Q)	100	
MTHFD1	(T/A)	14	63990040	hCV11462908	Tag, MTHFD1	100	
MTHFD1	R (A/G)	14	63957808	hCV1160794	intron	95.3	
MTHFD1	R (A/G)	14	63988165	rs11849530	intron	95.8	
MTHFD1	R (A/G)	14	63990418	rs1256146	intron	95	
MTHFD1	Y (C/T)	14	63985918	rs1037921	exon, nonsynonymous	96.4	
MTHFD1	Y (C/T)	14	63980547	rs1256142	intron	97.8	
MTHFD2	Y (T/C)	2	74304595	rs1126426	Intergenic, Tag	100	
MTHFD2	(T/A)	2	74280806	rs702465	Intergenic, Tag	96.7	
MTHFD2	R (A/G)	2	74313429	rs1667599	Intergenic, Tag	100	
MTHFD2	W (A/T)	2	74338849	rs828858	Intergenic, Tag	96.1	
MTHFD2	C (G)	2	74281605	rs702466	Intergenic, Tag	99.7	
MTHFD2	R (A/G)	2	74372559	rs7571842	Intergenic, Tag	100	
MTHFD2	R (A/G)	2	74348376	rs828903	Validated	94.4	
MTHFR	R (A/G)	1	11801310	rs3737964	Validated	95.8	
MTHFR	R (A/G)	1	11823734	rs535107	Intergenic, Tag	93.3	
MTHFR	K (G/T)	1	11798240	rs1931226	Validated	96.9	
Gene	Position	RefSNP ID	Genotype	rsID	Description	Validated	Genotype Percentage
------------	----------	-----------	----------	------------	----------------------------------	-----------	---------------------
MTHFR R(A/G)	1	11780518	rs4846048	Validated	89.7		
MTHFR Y(C/T)	1	11796598	rs7525338	Validated	97.5		
MTHFR R(A/G)	1	11785193	rs2274976	exon, nonsynonymous	93		
MTHFR Y(C/T)	1	11792217	rs4846052	intron	96.9		
MTHFR Y(C/T)	1	11790644	rs1801133	exon, nonsynonymous C677T	99.4		
MTHFR R(A/G)	1	11775209	rs1889292	Intergenic, Tag	100		
MTHFR Y(C/T)	1	11797323	rs2066470	exon, nonsynonymous	95.3		
MTHFR R(A/G)	1	11786566	rs4846051	exon, nonsynonymous	93		
MTHFR R(A/G)	1	11788723	rs4846051	intron	93.9		
MTHFR R(A/G)	1	11785193	rs2274976	exon, nonsynonymous C677T	99.7		
MTHFR Y(C/T)	1	11785193	rs2274976	exon, nonsynonymous C677T	99.7		
MTHFR R(A/G)	1	11786566	rs4846051	exon, nonsynonymous	93.9		
MTHFR Y(C/T)	1	11785193	rs2274976	exon, nonsynonymous C677T	99.7		
MTHFR R(A/G)	1	11786566	rs4846051	exon, nonsynonymous	93.9		
MTHFR Y(C/T)	1	11785193	rs2274976	exon, nonsynonymous C677T	99.7		
MTHFR R(A/G)	1	11786566	rs4846051	exon, nonsynonymous	93.9		
MTHFR Y(C/T)	1	11785193	rs2274976	exon, nonsynonymous C677T	99.7		
MTHFR R(A/G)	1	11786566	rs4846051	exon, nonsynonymous	93.9		
MTHFR Y(C/T)	1	11785193	rs2274976	exon, nonsynonymous C677T	99.7		

Percent of 359 controls genotyped for each SNP.

Abbreviations: BHMT = betaine homocysteine methyltransferase; BHMT2 betaine homocysteine methyltransferase-2; CBS = cystathionine beta synthase; DHFR = dihydrofolate reductase; FOLR1 folate receptor 1; FOLR2 folate receptor 2; MTHFD1 = methylenetetrahydrofolate dehydrogenase 1; MTHFD2 = methylenetetrahydrofolate dehydrogenase 2; MTHFR = methylenetetrahydrofolate reductase; MTR = methionine synthase; MTRR = methionine synthase reductase; NOS3 = nitric oxide synthase; RFC1 = reduced folate carrier 1; TYMS = thymidylate synthase.
spina bifida risk. This BHMT association is consistent with our findings that showed an odds ratio of 1.8 (1.1–3.1).

Many studies have explored MTHFR 677 (rs1801133) polymorphism. A range of risks, including no-effect, has been reported for this SNP relative to spina bifida. Botto and Yang [15] in a meta-analysis demonstrated a pooled odds ratio of 1.8 for spina bifida among infants homozygous for 677T. A few studies have also explored this 677 SNP in MTHFR as a risk factor for selected congenital heart defects, with most investigations finding no or little association [18,19,29–31]. We did observe a 2-fold increased risk of spina bifida associated with this SNP for homozygous infants. Further, haplotype analyses showed some association for the MTHFR gene as well.

Methionine synthase (MTR) is a vitamin B12 dependent enzyme that is essential for the remethylation of homocysteine to methionine. The enzyme is required by cells for the essential accumulation of folate [32]. One particular SNP (A2756G; rs1805087) has been considerably investigated, with increased risks of NTDs reported in some studies [33–35], but not in others [36,37]. We did not find an increased risk for spina bifida or conotruncal heart defects associated with this SNP or any other SNP of MTR.

Cystathione beta synthase (CBS) is critical to the degradation of homocysteine to cysteine. Regulation of this pyridoxal phosphate-dependent enzyme catalyzes the hydroxyl group of serine with the thiolate of homocysteine [38]. The polymorphism in the CBS gene that has received the most study is a 68 bp insertion (844ins68), with predominantly no associations observed for NTDs [27]. This polymorphism was not investigated in the current study. We did observe, however, two CBS SNPs (rs2851391 and rs234713) that showed increased risks for spina bifida. Boyles et al [28], albeit using a different study design than ours, observed that these two SNPs were not differentially transmitted from parents of infants with spina bifida.

MTRR gene polymorphisms (particularly rs1801394) have been investigated as a risk factor for both spina bifida and congenital heart defects. Polymorphisms in MTRR could alter homocysteine levels because methionine synthase reductase participates in maintaining the vitamin B12-dependent conversion of homocysteine to methionine [32]. The most frequently studied MTRR polymorphism has been the 66A>G (rs1801394). This polymorphism in infants was associated with a 2.6-fold increased risk of spina bifida in an earlier study by us [33], it was associated with increased risk for spina bifida in another study only when vitamin B12 levels were low [39], or in combination with MTHFR CC genotype [35]. The polymorphism in mothers of infants with neural tube defects has been associated with increased risk in one study [40], but not in another study [41]. Recent work from the Netherlands has shown a lack of association between this polymorphism and risk for conotruncal heart defects [42] as well as no increased risks for a broader phenotypic group of heart defects [43]. In this study, the 66A>G polymorphism was not associated with increased risks for either spina bifida or conotruncal heart defects. We did observe, however, approximately 3-fold elevated risks for spina bifida associated with three other MTRR SNPs (rs162036, rs10380, and rs9332). The significance of these observations will have to be explored in future studies.

With respect to MTHFD1 and MTHFD2, two studies have demonstrated an association with one polymorphism (rs2236225) in MTHFD1 and NTD risk. One study showed a 1.5-fold increase in risk of an NTD-affected pregnancy in Irish women who were homozygous AA [44], a finding that confirmed an earlier increased risk that was identified in Irish women. Another study showed a similar risk for Italian women as well as a 1.9-fold risk for infants with the AA genotype to have spina bifida [45]. For this particular SNP, we observed a similar magnitude of risk (OR = 1.6) for infants with the homozygous genotype, but the estimate was relatively imprecise. We did observe a modestly elevated spina bifida risk for individuals who were homozygous for another MTHFD1 SNP (rs2236224) and modestly lowered risks for three others (hcv11462908, rs702465, and rs7571842). These observations will need to be replicated in future studies.

Polymorphisms in the DHFR gene have not been well-studied for their role in risks of birth defects. Three studies have investigated a 19-bp deletion with mixed results [46–48]. That particular polymorphism was not interrogated in the current study.
Table 3: Haplotype associations with risks of spina bifida

Haplotype Block	Frequency	Odds Ratio (95% CI)
TYMS		
CGC	0.500	REF
TAT	0.373	0.7 (0.6–0.9)
TAC	0.115	0.5 (0.3–0.7)
MTRR		
ATTAGCAACAC	0.264	REF
ACTGGCAGTGT	0.213	1.4 (1.0–1.9)
ACTAGCAACGC	0.201	0.8 (0.6–1.1)
GCAGGGGGCGG	0.162	1.1 (0.7–1.5)
ACAAGAGGCGC	0.055	1.1 (0.7–1.9)
ACTAGCAGGCCG	0.034	0.6 (0.3–1.3)
ACTAAGAGGCGC	0.027	1.2 (0.6–2.6)
ACTGGCAGCGT	0.011	1.4 (0.5–4.1)
MTHFR		
GGG	0.656	REF
AGA	0.163	0.9 (0.6–1.2)
AGG	0.121	0.9 (0.6–1.2)
AAA	0.057	0.6 (0.3–1.0)
MTHFD1		
TCCCA	0.368	REF
CCCCA	0.231	0.7 (0.5–0.9)
CTTGG	0.180	0.8 (0.6–1.1)
CTCCG	0.099	0.6 (0.4–0.9)
CTCCG	0.063	0.7 (0.5–1.2)
CTCCA	0.037	1.0 (0.5–1.8)
CBS		
CG	0.889	REF
TC	0.055	1.2 (0.7–1.9)
CC	0.053	0.6 (0.3–1.0)
RFC1		
CG	0.856	REF
GG	0.079	1.1 (0.7–1.7)
GA	0.063	1.0 (0.6–1.6)
MTHFD2		
TG	0.486	REF
GA	0.463	0.9 (0.7–1.2)
GG	0.046	0.6 (0.3–1.0)
FOLR2		
TA	0.549	REF
AG	0.356	1.0 (0.8–1.3)
AA	0.093	1.0 (0.7–1.6)
BHMT2		
GGGTCA	0.466	REF
TAACTC	0.219	1.0 (0.7–1.3)
Our analyses did not show associations with SNPs in RFC1. Previous investigations of this gene have focused on a particular SNP, rs1051266, and have found mixed results [37,41,49-53]. This particular SNP was not analyzed here as a result of too many samples failing to be genotyped for this SNP using the SNPlex platform.

Recent studies have focused on the importance of TYMS in the folate metabolic pathway, including associations between TYMS polymorphisms and folate levels [54-56]. This folate-dependent enzyme catalyzes the reductive methylation of deoxyuridylate (dUMP) to thymidylate (dTMP), thereby playing a central role in DNA synthesis and repair by serving as the primary intracellular source of dTMP [54,57-59]. We previously [56] observed a 4-fold increased risk of spina bifida in non-Hispanic white infants who had a polymorphism for a 28 bp insertion in the promoter region. This observation, however, was not replicated in a population from the northern UK [55].

Block 19 (MTR)	Frequency	Odds Ratios (95% CI)
AATCTTTCTAGAGGCTTGG	0.373	REF
GTGCCCTCGAGAAGAGAT	0.262	1.0 (0.7–1.3)
GTGCCCTAGGACTTTGG	0.190	0.9 (0.7–1.3)
GTGCCCTGGAGAGAGAT	0.045	1.4 (0.8–2.5)
GTGCCCTCGAGAGAGAT	0.040	0.6 (0.3–1.2)
GTGCCCTCGAGAGAGAT	0.032	0.3 (0.1–0.6)

Block 19 included rs4659724, rs955516, rs4077829, rs12060570, rs1806505, rs6668344, rs3754255, rs10925252, rs3768139, rs3768142, rs1770449, rs7367859, rs1805087, rs2275565, rs1266164, rs2229276, rs10802569, rs4659743, rs3820571, rs1050993, and rs6676866.
current study. Three of the five TYMS SNPs (rs284179, rs1001761, and rs502396) investigated here showed elevated risks for spina bifida for both heterozygote and homozygote individuals. This finding and the corresponding haplotype finding (Table 3) will be important to explore in future studies.

The strengths of this study were: 1) it investigated the potential effects of a large number of folate pathway SNPs, as well as investigated haplotype associations; 2) it had population-based ascertainment of two case phenotypes and controls; and 3) it included cases and controls born before the US food supply was fortified with folic acid, thus we would expect a sizable proportion of cases to have been folate-responsive.

Conversely, our study was limited in its effect estimation owing to small sample sizes for some comparisons. For example, our study had 80% power to detect risks of 2.5 or more associated with genotypes that were observed in at least 4% of controls. Another potential limitation is the lack of information on maternal folate status. Our working hypothesis is that transient elevation in maternal serum folate from supplementation or dietary intake could prevent birth defects by overcoming metabolic inefficiencies or transport-related issues. Absence of information on low folate status would make it more difficult to find putative genotypes. It is also possible that the protective effect of folic acid relates to correction of a maternal metabolic defect, rather than the fetus. Our study was limited to infant genotype information. Thus, we were unable to investigate the potential effects of maternal genotype. As with any study that seeks to explore associations with a large number of genotypes, findings are subject to chance owing to multiple comparisons. As noted above, we conducted 472 analytic comparisons and thus expected more "statistically significant" findings to arise by chance alone. Further, our findings may have been influenced by uncontrolled confounding by population stratification undetectable in analyses stratified or adjusted by race/ethnicity [60,61]. Lastly, the selected SNPs represent only a fraction of the potential variation of the studied genes. Thus, full gene coverage was not achieved even though a large number of SNPs was studied.

Conclusion

Despite compelling evidence that folate intake by women in early pregnancy substantially reduces risks of selected birth defects, the underlying mechanisms have not been elucidated. Our study attempted to determine genetic mechanisms responsible for folic acid's preventive effects. Our observations do not implicate a particular folate transport or metabolism gene to be strongly associated with risks for spina bifida or conotruncal defects. Although we explored a sizable number of polymorphic areas in these genes, we clearly did not capture all the genetic variation. Thus, these genes may continue to be candidates for further inquiry. Alternatively, the preventive role of folate may be via other biological mechanisms such as methylation of nonfolate-related genes that participate in the closure of the neural tube or the development of the heart.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

GMS conceived of the study and participated in the statistical analysis. WL conducted the molecular genetic studies. HZ conducted the molecular genetic studies and participated in the statistical analysis. WY conducted the statistical analysis. SLC participated in the statistical analysis. LFB designed and participated in the statistical analysis. EJL conceived of the study and participated in the statistical analysis. RHF conceived of the study and directed the laboratory molecular genetic studies. All authors read and approved the final manuscript.

Additional material

Additional file 1

Appendix. Risks of spina bifida and conotruncal heart defects among California infants associated with 118 SNPs in 14 genes involved in folate metabolism or transport relative to nonmalformed population-based controls.

Click here for file [http://www.biomedcentral.com/content/supplementary/1471-2350-10-49-S1.doc]

Acknowledgements

This research was supported by funds from the Centers for Disease Control and Prevention, Center of Excellence Award U50/C8U913241, by NIH/NHLBI RO1 HL085859, and by NIH/NINDS RO1 NS050249. We thank the California Department of Public Health Maternal Child and Adolescent Health Division for providing data for these analyses. The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the California Department of Public Health.

References

1. Prevention of neural tube defects: results of the Medical Research Council vitamin study. MRC Vitamin Study Research Group. Lancet 1991; 338(8760):131-7.
2. Czeizel AE, Dudás I: Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation. N Engl J Med 1992, 327(24):1832-5.
3. Shaw GM, Lammer EJ, Wasserman CR, O’Malley CD, Tolarova MM: Risks of orofacial clefts in children born to women using multivitamins containing folic acid periconceptionally. Lancet 1995, 346:393-6.
4. Shaw GM, O’Malley CD, Wasserman CR, Tolarova MM, Lammer EJ: Maternal periconceptional use of multivitamins and reduced
risk for conotruncal heart defects and limb deficiencies among offspring. Am J Med Genet 1995, 59:536-45.

5. Bottino LD, Moore ML, Erickson JD: Occurrence of congenital heart defects in relation to maternal multivitamin use. Am J Epidemiol 2000, 151(9):878-84.

6. Czeizel AE, Tuth M, Rockenbauer M: Population-based case-control study of folic acid supplementation during pregnancy. Teratology 1999, 59(6):345-51.

7. Werler MM, Hayes C, Louik C, Shapiro S, Mitchell AA: Maternal multivitamin use and orofacial clefts in offspring. Teratology 2001, 63(2):79-86.

8. Loffredo LC, Souza JM, Freitas JA, Mossey PA: Neural tube defects. Cleft Palate Craniofac J 2001, 38(1):76-83.

9. Iulkala PR, Watkins ML, Mulineale J, Moore CA, Lai J: Maternal multivitamin use and orofacial clefts in offspring. Teratology 2001, 63(2):79-86.

10. Czeizel AE: Reduction of urinary tract and cardiovascular defects. Cleft Palate Craniofac J 2002, 40(2):1-6.

11. Put NM van der, Heuvel LP van den, Steegers-Theunissen RP, Trijbels JJ, Eskes TK, Mariman EC, den Heyer M, Blom HJ: Mutated methylenetetrahydrofolate reductase as a risk factor for spina bifida. Lancet 1995, 346(8982):1070-1.

12. Put NM van der, Heuvel LP van den, Steegers-Theunissen RP, Trijbels JJ, Eskes TK, Mariman EC, den Heyer M, Blom HJ: Decreased methylenetetrahydrofolate reductase activity due to the 677C→T mutation in families with spina bifida offspring. J Mol Med 1996, 74(1):89-41.

13. Junker R, Kothoff S, Vielnaber H, Halimine S, Kothch, A, Koch HG, Kas-selbohmer M, Goebel B, Nowak-Göttl U: Infant methylenetetrahydrofolate reductase mutations and congenital heart disease. Cardiov Res 2001, 51(2):251-4.

14. Winstrom KD, Johanning GL, Johnson KE, DuBard R: Association of the C677T methylenetetrahydrofolate reductase mutation and elevated homocysteine with congenital cardiac malformations. Am J Obstet Gynecol 2001, 184(5):806-17.

15. Croen LA, Shaw GM, Jensvold NJ, Harris JA: Birth defects monitoring in California: a resource for epidemiological research. Paediatr Perinat Epidemiol 1991, 5(4):423-7.

16. Schulman J, Hahn JA: Quality control of birth defects registry data: a case study. Publ Health Rep 1993, 108(1):91-8.

17. Lovmar L, Syvanen AC: Multiple displacement amplification to create a long-lasting source of DNA for genetic studies. Hum Mutat 2006, 27(1):603-14.

18. Lissowska J, Stabowicz-Dadowska D, Sol-Church K: Exploring whole genome amplification as a DNA recovery tool for molecular genetic studies. J Biotech Mol Tech 2005, 16(2):125-33.

19. Reddy AV, Qi Y, Haque KA, Welch RA, Chanock SJ: Effects of DNA mass on multiple displacement whole genome amplification and genotyping performance. BMC Biotechnol 2005, 5:24.

20. Fredickson A, Meyer K, Ueland PM, Vollset SE, Grotmol T, Schnede J: Large-scale population-based metabolic phenotyping of thirteen genetic polymorphisms related to one-carbon metabolism. Humana Press 2007, 38(9):855-65.

21. Pilbreahta JA, Oetma B, Bennett GD, van Wae J, Kamen BA, Richardo J, Lacey SW, Anderson RG, Finnh HJ: Mice lacking the foal acid binding protein Fpobpl are defective in early embryonic development. Nat Genet 1999, 23(2):228-32.

22. Lindon JJ van der, Afman LA, Heil SG, Blom HJ: Genetic variation in genes of folate metabolism and neural-tube defect risk. Nutr Nutr 2006, 45(3):198-211.

23. Whitehead AS, Molloy A, Scott JM, Put NM van der, Heuvel LP van den, Steegers-Theunissen RP, Trijbels JF, Eskes TK, Mariman EC, den Heyer M, Blom HJ: Mutated methylenetetrahydrofolate reductase as a risk factor for spina bifida. Lancet 1995, 346(8982):1070-1.

24. Bergen AW, Qi Y, Haque KA, Welch RA, Chanock SJ: Analysis of methylenetetrahydrofolate reductase in the population. J Hum Genet 2003, 48(1):1-8.

25. Shaw GM, Liovanissi SM, Yang W, Finne RH, Carmichael SL, Cheng S, Lamer EJ: Risks of human conotruncal heart defects associated with single nucleotide polymorphisms of selected cardiovascular disease-related genes. Am J Med Genet A 2005, 138(4):417-26.

26. Shinnick-Cruz LM, van der Kraak G, van der Meulen JC, Petropoulos J, Gearasimou E, Thygesen SK: Population-based metabolic phenotyping of nine synthase reductase deficiency results in adverse reproductive outcomes and congenital heart defects in mice. Mol Genet Metab 2008, 94(2):336-42.

27. Zhan H, Wicker N, Shaw GM, Lammer EJ, Hendricks K, Suarez L, Canfield M, Finnell RH: Homocysteine remethylation enzyme polymorphisms and increased risks for neural tube defects. Mol Genet Metabol 2003, 78(3):216-21.

28. Doqlin MT, Barrabas S, McDonnell M, Hoess K, Whitehead AS, Mitchell LE: Maternal genetic effects, exerted by genes involved in homocysteine remethylation, influence the risk of spina bifida. Am J Hum Genet 2002, 71(5):1222-6.

29. Guçanç-Rodriguez RM, Rendeli C, Namour B, Venuti L, Arano A, Angello G, Boschko P, Debad R, Girard P, Viola M, Salvaggio E, Guçanç JL: Transcobalamin and methionine synthase reductase mutated polymorphisms aggravate the risk of neural tube defects in humans. Neurosci Lett 2003, 344(3):189-92.

30. De Marco P, Calcio MG, Moroni A, Arata L, Merello E, Finnell RH, Zhu H, Andreussi L, Cama A: Study of MTHFR and MS polymorphisms as risk factors for NTD in the Italian population. J Hum Genet 2002, 47(6):319-24.

31. Lederer JB, Mills JL, Angello G, Boschko P, Debad R, Girard P, Viola M, Salvaggio E, Guçanç JL, Whitehead AS, Mitchell LE: Maternal genetic effects, exerted by genes involved in homocysteine remethylation, influence the risk of spina bifida. Am J Hum Genet 2002, 71(5):1222-6.

32. Guçanç-Rodriguez RM, Rendeli C, Namour B, Venuti L, Arano A, Angello G, Boschko P, Debad R, Girard P, Viola M, Salvaggio E, Guçanç JL: Transcobalamin and methionine synthase reductase mutated polymorphisms aggravate the risk of neural tube defects in humans. Neurassi Lett 2003, 344(3):189-92.

33. De Marco P, Calcio MG, Moroni A, Arata L, Merello E, Finnell RH, Zhu H, Andreussi L, Cama A: Study of MTHFR and MS polymorphisms as risk factors for NTD in the Italian population. J Hum Genet 2002, 47(6):319-24.

34. Barnerjee R, Zou CG: Redox regulation and reaction mechanism of human cystathionine-B-synthase: a PLP-dependent humensensor protein. Arch Biochem Biophys 2005, 431(1):144-56.

35. Wilson A, Platt R, Wuu Q, Leclerc D, Christensen B, Yang H, Gravel RA, Rozen R: A common variant in methionine synthase reductase combined with low cobalamin (vitamin B12) increases risk for spina bifida. Mol Genet Metabol 1999, 67(4):317-23.
43. Verkleij-Hagoort AC, van Driel LM, Lindemans J, Isaacs A, Steegers EA, Helbing WA, Uitterlinden AG, Steegers-Theunissen RP: Genetic lifestyle factors related to the periconception vitamin B12 status and congenital heart defects: a Dutch case-control study. *Mal Genet Metab* 2008, 94(1):112-9.

44. Parle-McDermott A, Kirke PN, Mills JL, Molloy AM, Cox C, O’Leary VB, Pangilinan F, Conley M, Cleary L, Brody LC, Scott JM: Confirmation of the R653Q polymorphism of the trifunctional CI-synthase enzyme as a maternal risk for neural tube defects in the Irish population. *Eur J Hum Genet* 2006, 14(6):768-72.

45. De Marco P, Merello E,CALEVO MG, Mascelli S, Raso A, Cama A, Capra V: Evaluation of a methyltetrahydrofolate-dehydrogenase 1958A polymorphism for neural tube defect risk. *J Hum Genet* 2006, 51(2):98-103.

46. Johnson WG, Stenroos ES, Sychratha JR, Chatkupt S, Ming SX, Buyske J: Evaluation of conclusions from epidemiological studies of common polymorphisms and cancer. *Cancer Epidemiol Biomarkers Prev* 2002, 11(6):513-20.

Pre-publication history

The pre-publication history for this paper can be accessed here:

http://www.biomedcentral.com/1471-2350/10/49/pre.pub