Detection of genetic variations of five MMAF-related genes and their associations with litter size in goat

CURRENT STATUS: POSTED

Zhen Wang
Northwest Agriculture and Forestry University

Yun Pan
Northwest Agriculture and Forestry University

Libang He
Northwest Agriculture and Forestry University

Hong Chen
Northwest Agriculture and Forestry University

Chuanying Pan
Northwest Agriculture and Forestry University

Lei Qu
Yulin University

Xiaoyue Song
Yulin University

Xianyong Lan lanxianyong79@126.com
Corresponding Author
ORCiD: 0000-0003-2254-5805

DOI:
10.21203/rs.2.14419/v1

SUBJECT AREAS
Molecular Genetics

KEYWORDS
goats; insertion/deletion (indel); MMAF; DNAH1; litter sizes; correlation analysis
Abstract

Background: Multiple morphological abnormalities of the sperm flagella (MMAF) makes an assignable contribution to male infertility, including QRICH2, CFAP43, CFAP44, CFAP69, CCDC39, AKAP4 and DNAH1 gene. This work studied 28 putative indel mutations of MMAF related genes including QRICH2, CFAP69, CFAP43, CCDC39 and DNAH1 gene and their correlation with the first-born litter sizes of 769 Shaanbei white cashmere (SBWC) goats.

Results: Electrophoresis and DNA sequencing analysis showed the 11-bp indel within QRICH2 (QRICH2-P4), the three indel variations in CFAP69 (CFAP69-P4, CFAP69-P6 and CFAP69-P7) and the 27-bp indel of DNAH1 (DNAH1-P1) were found to be polymorphic. The 27-bp indel variation within DNAH1 was not in consistent with HWE and the other four indel of QRICH2 and CFAP69 were in consistent with HWE. The linkage disequilibrium (LD) analysis showed the 8-bp indel (CFAP69-P4) and the 6-bp indel (CFAP69-P6) within CFAP69 were in complete LD with each other (D'=0.99, r^2=1.00). The 27-bp indel mutation within DNAH1 was strongly significantly associated with first-born litter sizes of SBWC goats (P<0.01) and the average litter size of ll genotype was significantly greater than ID and DD genotypes (P = 0.003). In single-lamb and multi-lamb of goat groups, the genotype distributions of the 27-bp indel was significantly different (P = 0.002). While the 11-bp indel variation of QRICH2 and three indel mutations (P4, P6 and P7) of CFAP69 identified were not (P>0.05). Conclusions: These findings suggest the 27-bp indels in the goat DNAH1 can be used as an effective molecular marker for marker-assisted selection of goats reproduction breeding in the future.

Background

In a lot of countries, especially in China, poor reproduction performance of native breed still impedes the escalation of goat industry (Cui et al., 2018; Kang et al., 2019a). Hence,
finding effective and practical measures to improve goat reproduction traits is extremely urgent. Because most traits associated with reproduction are quantitative traits with low heritability, it is difficult to improve these traits by traditional breeding selection methods (Shaat et al., 2009). On the contrary, marker-assisted selection (MAS) can breed high yields and superior quality breeding quickly to enhance economic traits (Collard et al., 2008; Kang et al., 2019b; Knorst et al., 2019). Now, natural genetic variations were divided into insertion/deletion (indel), single nucleotide polymorphism (SNP) and larger structural variants (SV) (Cui et al., 2018). Among them, indels can be directly and easily detected by PCR technology making it convenient and practical. So indel detecting technique for reproduction related candidate genes has been developed and widely used in many studies (Ren et al., 2017; Wang et al., 2018; Zhang et al., 2018).

Multiple morphological abnormalities of the sperm flagella (MMAF) makes an assignable contribution to male infertility, characterized by a mosaic of morphological abnormalities of the flagellum including coiled, bent, irregular, short or/and absent flagella (Amiri-Yekta et al., 2016; Shen et al., 2019). According to Shen's report (Shen et al., 2019), to date, mutations in only seven genes have been determined in humans related to MMAF: **QRICH2** (*Glutamine Rich 2*), **CFAP43** (*Cilia And Flagella Associated Protein 43*), **CFAP44** (*Cilia And Flagella Associated Protein 44*), **CFAP69** (*Cilia And Flagella Associated Protein 69*), **CCDC39** (*Coiled-Coil Domain Containing 39*), **AKAP4** (*A-Kinase Anchoring Protein 4*), and **DNAH1** (*Dynein Axonemal Heavy Chain 1*) (Baccetti et al., 2005; Merveille et al., 2011; Ben Khelifa et al., 2014; Coutton et al., 2015; Tang et al., 2017; Coutton et al., 2018; Dong et al., 2018; Shen et al., 2019). Recent studies have also certified some male related genes also expressed in female reproductive structure and might were able to affect female reproduction (Zariwala et al., 2011; Kang et al., 2019a; Kang et al., 2019b). Meanwhile, there were studies confirmed **QRICH2**, **CFAP44**, **CFAP69**, **CCDC39** and **DNAH1** were broad
spectrum expression including in testis, ovaries and placentas (Fagerberg et al., 2014). These findings suggest that MMAF related genes might play a crucial role in female reproduction, but there was no paper reported these genes were related to goat reproduction performance yet.

Based on the above-mentioned studies, we hypothesized that MMAF-related genes were linked to goat reproduction traits. Therefore, the objectives of this study were to identify genetic polymorphisms in the MMAF related genes in 769 SBWC goats by high-efficiency and simple indel method, to determine the relationship between allele variation of MMAF related genes and goat reproduction traits, as well as provide some scientific basis for the efficient and rapid development of goat industry.

Methods

Ear tissue samples and DNA isolation

A total of 769 adult female SBWC goats were physical maturity and were selected randomly from a large population. They all were raised in SBWC goat farm of Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats of Yulin University. These goats received the same diets and kept under same environment. Their first-born litter sizes were recorded by husbandry station recorders. These goat individuals were randomly selected from goat farm, in order to make sure that these goats were unrelated with each other. All ear tissue samples were collected before slaughter and were frozen so as to prevent sample from degradation. Genomic DNA was isolated using High salt-extraction method from ear tissues and was assayed by College of Animal Science and Technology of Northwest A&F University (Aljanabi et al., 1997). The goat DNA samples were diluted for further experiment (Lan et al., 2013).

Primer design and PCR amplification

By Ensembl online database (http://asia.ensembl.org/), putative indel mutations of seven
MMAF related genes were studied but only QRICH2, CFAP69, CFAP43, CCDC39 and DNAH1 gene exist indel mutations which could be used as indel typing detection. According to these putative indel variations, a total of 28 pairs of primers were designed for amplifying indel loci of QRICH2, CFAP69, CFAP43, CCDC39 and DNAH1 based on the goat sequence (NC_030829.1, NC_030826.1, NC_030811.1, NC_030833.1 and NC_030808.1) using Primer software 5.0 (Canada, Premier). The traditional PCR program was performed in 13 µL of reaction mixture containing 24 µg genomic DNA; the multiplex PCR program were performed in 20 µL of reaction mixture containing 48 µg genomic DNA. PCR products were detected by electrophoresis in 3.5% agarose gel stained with ethidium bromide.

Detection of five indel mutations of MMAF-related gene

Among MMAF-related genes, for QRICH2 and CCDC39 gene, four putative indel mutations were verified by traditional PCR program respectively; for CFAP43 and CFAP69 gene, seven pairs of primers were designed to amplify product fragments severally; for DNAH1 gene, six pairs of primers were designed for amplifying indel fragments. All primers designed were shown in Table S1. These indels were all amplified by PCR program in order to identify polymorphisms of MMAF-related genes in SBWC goats. For CFAP69-P4 and CFAP69-P6 loci, because fragment lengths of them were different and these two indels both were located in CFAP69 gene, these two indel loci were amplified using multiplex PCR method and identified genotypes (Henegariu et al., 1997; de Cássia-Pires et al., 2017).

Statistical Analysis

Correlation between different genotypes and goat litter sizes were all performed by Statistical program for social sciences 23.0 software by single-factor analysis of variance procedure. Associations of the these indel loci with goat litter sizes of 769 individuals were determined using a mixed linear model. A least-squares mean test was used to determine the correlation of litter sizes with different indel genotypes according to the
formula parameters:

\[Y_{ij} = \mu + S_i + HYS_j + G_i + e_{ij} \]

Here, \(Y_{ij} \) stands for the phenotypic value of each litter sizes; \(\mu \) represents the overall population mean; \(S_i \) stands for the kidding year; \(HYS_j \) represents the population’ mean; \(G_i \) stands for the fixed effect of genotype; and \(e_{ij} \) stands for random error (Zhao et al., 2013).

All data were expressed as mean ± standard error and \(P < 0.05 \) was considered to be significant. Population indexes (Ho, homozygosity; He, heterozygosity; PIC, polymorphism information content) were calculated following Nei’s methods (Nei, 1973). The chi-square \((\chi^2)\) test and hardy-Weinberg equilibrium (HWE) were performed using SHEsis (http://analysis.bio-x.cn) and Linkage disequilibrium (LD) structure was evaluated across these five indel mutations (Wang et al., 2019). The \(r^2 \) value was known as a pairwise measure of LD. The case of \(r^2 \leq 0.33 \) is known as not strong LD, \(r^2 > 0.33 \) regarded as sufficiently strong LD, and \(r^2 = 1 \) known as complete LD (Reich et al., 2001).

Results

Identification of indel polymorphisms within MMAF-related genes

According to Ensembl online database, only QRICH2, CFAP43, CFAP69, CCDC39 and DNAH1 genes exist putative indel mutations in goat and this Results identified only five indel loci within DNAH1 (P1), QRICH2 (P4), CFAP69 (P4, P6, P7) were polymorphic. The information of five indel mutations are as follows: the 11-bp indel (NC_030826: rs65182110; g.54660931_54660942delCCCCACCGCACC) within QRICH2 was confirmed by primer 4; the 8-bp indel (NC_030811: rs646423399; g.45735111_45735118delCTTAGATC), the 6-bp indel (NC_030811: rs654691768; g.45748633_45748638delGTGAAA) and the 8-bp indel (NC_030811: rs658907780; g.45775640_45775647delTCCCATTA) within CFAP69 was authenticated by primer 4, 6 and 7 respectively; the 27-bp indel
(NC_030829:rs636295440;g.48594103_48594129delAAGAGAATGTCCAGGCGGCGGGGT) within DNAH1 was identified by primer 1. The results of PCR products of these five indels by agarose gel electrophoresis were all verified by sequence diagrams Fig.S1.

Genotyping and genetic parameters of genetic variations of MMAF-related genes

The results of agarose gel eletrophoresis showed these five indel mutations including QRICH2 (P4), CFAP69 (P4, P6, P7) and DNAH1 (P1) all generated three genotypes: homozygotic insertion type (II, insertion/insertion), heterozygote type (ID, insertion/deletion) and homozygotic deletion type (DD, deletion/deletion); for these five indels, the “D” allele presented a lower frequency compared with “I” allele, suggesting that the “I” allele occupied the dominant hierarchy in 769 individuals. For QRICH2-P4, CFAP69-4, CFAP69-6 and CFAP69-7 indel mutations, the χ^2 test indicated genotype distributions were in consistent with HWE ($P < 0.05$), Meanwhile, for the 27-bp indel variation within DNAH1 gene, in 632 SBWC goat samples, the genotype distribution was not in consistent with HWE ($P = 2.37E-05$) (Table 1). This study analyzed the haplotypic frequencies of these five indel mutations in 769 SBWC goats. In the order of QRICH2-P4, CFAP69-P4, CFAP69-P6, CFAP69-P7 and DNAH1-P1, the analyzed results showed the haplotype (Hap1, $I_{11}I_8I_6I_8I_{27}$) had the highest haplotypic frequency (0.432) (Table 2).

Result of linkage disequilibrium analysis of indels within CFAP69 gene

According to the result of genotypes of CFAP69-P4 and CFAP69-P6 indel variations (Fig.S1) and linkage disequilibrium (LD) analysis (Fig.1), this study found CFAP69-P7 this indel locus was not strong LD with CFAP69-P4 or CFAP69-P6 indel loci ($r^2 \leq 0.33$), but CFAP69-P4, CFAP69-P6 indels were in complete LD with each other ($D' = 0.99$, $r^2 = 1.00$), suggesting that there was certain combination between these two loci. Because the other indel loci were not located in the same Chromosome with CFAP69 gene, this study did not
analyze the LD between them with CFAP69 gene.

Correlation analysis between indels of MMAF-related gene and goat litter size

Correlations between different genotypes of QRICH2, CFAP69 and DNAH1 indel loci with goat litter size were analyzed. For the QRICH2-P4, CFAP69-P4 and CFAP69-P6 and CFAP69-P7 indel mutations, the relationship between different genotypes of them were all not significant associated with goat litter size \((P \geq 0.05)\) (Table 3). According to \(\chi^2\) test, the relationship between different genotypes with goat litter size was also not significant as well \((P \geq 0.05)\) (Table 4). But for the DNAH1-P1 locus, mean values of goat litter size with II, ID and DD genotypes in litter sizes were significantly different. The II carriers had the highest values of litter sizes compared with ID or DD carries \((P = 0.003)\) (Table 3).

Meanwhile, \(\chi^2\) test result showed that different genotypes of the DNAH1-P1 indel locus in single-lamb and multi-lamb of goat samples were also significantly different \((P = 0.002)\) (Table 4).

Discussion

MMAF, characterized by a mosaic of morphological abnormalities of the flagellum, was an important factor leading to male infertility and has been widely reported and there were some genes have been reported associating with this symptom (Amiri-Yekta et al., 2016; Shen et al., 2019). What does the MMAF-related genes have to do with female goat fertility, which has not been studied. As an MMAF related gene, DNAH1, also known as HL11, HDHC7, CILD37, DNAHC1, HSRF-1, SPGF18 and XLHSRF-1, encodes an inner arm heavy chain of axonemal dynein. DNAH1 appears as a reproduction candidate gene and belongs to broad spectrum expression including in testis, trachea, ovaries and placentas (Maiti et al., 2000; Fagerberg et al., 2014). DNAH1 has been reported to be associated with MMAF and Primary ciliary dyskinesia (PCD) et al (Zariwala et al., 2011; Ben Khelifa et
MMAF makes an assignable contribution to male infertility and recent studies have also certified some male related genes also expressed in female reproductive structure and might were able to affect female reproduction (Zariwala et al., 2011; Kang et al., 2019a; Kang et al., 2019b). Similarly, PCD is a clinically and genetically heterogeneous disorder of motile cilia dysfunction typically caused by an autosomal recessive mode of inheritance. Clinically, males can be infertile due to immotile sperm flagella and female patients can also present with sub-fertility due to defective oviduct cilia (Zariwala et al., 2011; Imtiaz et al., 2015). Taken together, DNAH1 gene could affect both male and female reproduction performance and whether affect goat reproductive trait deserved to be studied.

In this study, results showed the 27-bp indel polymorphism within DNAH1 was significantly correlated with goat litter sizes \((P = 0.003)\) and different genotypes of this indel locus in single-lamb and multi-lamb of goat samples were also significantly different \((P = 0.002)\). For the other indel variations within QRICH2 and CFAP69, there were no significant correlation with goat first litter size \((P \geq 0.05)\) \((\text{Table 3})\). Genetic parameters of these indel mutations of QRICH2 and CFAP69 gene were in consistent with HWE \((P \geq 0.05)\), only the 27-bp indel genotype distribution in DNAH1 was not in consistent with HWE \((P = 2.37E-05)\) \((\text{Table 4})\). Those showed with long period of artificial traditional selection, as a reproduction related site, this indel of DNAH1 probably has been selected and the 27-bp indel within DNAH1 gene played an important role in first-born litter sizes of SBWC goats.

Compared with exon mutations within candidate genes, variations in introns tend to more common and easier appear and deserved to be studied. Some studies have reported that polymorphisms within intron region had positive effects on gene expression and affected many economic traits of livestock by various ways (Kalkan et al., 2013; Kanzi et al., 2016; Vaz-Drago et al., 2017). The representative example is a nucleotide substitution in intron
3 of porcine *IGF2* significantly affecting skeletal muscle by transcription factor called ZBED6 (Van Laere et al., 2003; Xiang et al., 2018). Meanwhile, some reports showed transcription factors might gene expression (Cartharius et al., 2005; Kang et al., 2019a). By online website (http://www.genomatix.de/), we found there was no any differential transcription factor appearing in the 27-bp indel region of *DNAH1* gene, so how the 27-bp indel mutation within *DNAH1* gene significantly affects goat reproduction traits still deserves to be further studied.

Many reports have proved different gene mutation sites could regulate phenotypes of organism through LD (Gibson et al., 2013; Lynch et al., 2014; Wang et al., 2019). Based on multiplex PCR method and LD analysis, this study first discovered *CFAP69*-P4 and *CFAP69*-P6 were in complete LD ($D' = 0.999$, $r^2 = 1.000$) (Fig. 1), suggesting there was certain combination of these two loci in the process of SBWC goat evolutionary selection. These two indel mutations probably played an important role in regulating goat other phenotypes.

Conclusions

This study found the 27-bp indel within *DNAH1* intron was strongly significantly affecting goat litter sizes and could be provided as a useful DNA marker in order to selecting superior individual for goat reproduction breeding.

Declarations

Ethics approval and consent to participate

All experiments involving animals in this study were approved by the animal policy and welfare committee of Northwest Agriculture and Forestry University (Protocol Number NWAFAC1008). In addition, the use and care of laboratory animals fully complied with local animal welfare guidelines, laws and policies.
Consent for publication

Not applicable.

Availability of data and materials

Relevant data are available from the corresponding author.

Competing interest

There was no conflict of interest between the authors.

Funding

This work was financially supported by the National Natural Science Foundation of China (No.31172184), the Scientific Research Foundation of the Education Department of Shaanxi Province (No.19JK1004), Young Talent Fund of University Association for Science and Technology in Shaanxi (No.20190208) and Research Foundation for High-Level Talents of Yulin University (No. 17GK22). The funders had no role in the study design, data collection and analysis, decision to publish or preparation of the manuscript.

Authors’ contributions

XL and XS raised thought and designed the project. HC, CP and LQ all contributed by collecting samples and recorded reproduction data. ZW, YP and LH conducted this experiment. ZW wrote the manuscript and all authors agreed with the final manuscript.

Acknowledgements

We appreciate College of Animal Science and Technology of Northwest A&F University, Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, and Life Science Research Center of Yulin University, for providing the first-born litter size data and ear samples of Shaanbei white cashmere goat.

Abbreviations

MMAF, Multiple Morphological Abnormalities of the Sperm Flagella; QRICH2, Glutamine Rich 2; CFAP69, Cilia And Flagella Associated Protein 69; CFAP44, Cilia And Flagella
Associated Protein 44; CFAP43, Cilia And Flagella Associated Protein 43; CCDC39, Coiled-Coil Domain Containing 39; AKAP4, A-Kinase Anchoring Protein 4; DNAH1, Dynein Axonemal Heavy Chain 1; SBWC, Shaanbei white cashmere goat; MAS, marker assisted selection; indel, insertion/deletion; PCR, polymerase chain reaction; bp, base pair; II, insertion/insertion; DD, deletion/deletion; ID, insertion/deletion; LD, linkage disequilibrium; Ho, homozygosity; He, heterozygosity; PIC, polymorphism information content; HWE, Hardy-Weinberg equilibrium.

References

Aljanabi SM, Martinez I. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res. 1999;25:4692-3.

Amiri-Yekta A, Coutton C, Kherraf ZE, Karaouzène T, Le Tanno P, Sanati MH, Sabbaghian M, Almadani N, Sadighi Gilani MA, Hosseini SH, et al. Whole-exome sequencing of familial cases of multiple morphological abnormalities of the sperm flagella (MMAF) reveals new DNAH1 mutations. Hum Reprod. 2016;31:2872-80.

Baccetti B, Collodel G, Estenoz M, Manca D, Moretti E, Piomboni P. Gene deletions in an infertile man with sperm fibrous sheath dysplasia. Hum Reprod. 2005;20:2790-4.

Ben Khelifa M, Coutton C, Zouari R, Karaouzène T, Rendu J, Bidart M. Mutations in DNAH1, which encodes an inner arm heavy chain dynein, lead to male infertility from multiple morphological abnormalities of the sperm flagella. Am J Hum Genet. 2014;94:95-104.

Cartharius K, Frech K, Grote K, Klocke B, Haltmeier M, Klingenhoff A, Frisch M, Bayerlein M, Werner T. MatInspector and beyond: promoter analysis based on transcription factor binding sites. Bioinformatics. 2005;21:2933-42.

Collard BC, Mackill DJ. Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc Lond B Biol Sci. 2008;363:557-72.

Coutton C, Escoffier J, Martinez G, Arnoult C, Ray PF. Teratozoospermia: spotlight on the
main genetic actors in the human. Hum. Reprod. 2015;21:455-85.

Coutton C, Vargas AS, Amiri-Yekta A, Kherraf ZE, Ben Mustapha SF, Le Tanno P, Wambere-Legrand C, Karaouzène T, Martinez G, Crouzy S, et al. Mutations in CFAP43 and CFAP44 cause male infertility and flagellum defects in Trypanosoma and human Nat Commun. 2018;9:686.

Cui Y, Yan H, Wang K, Xu H, Zhang X, Zhu H, Liu J, Qu L, Lan X, Pan C, et al. Insertion/deletion within the KDM6A gene is significantly associated with litter size in goat. Front Genet. 2018;9:91.

de Cássia-Pires R, de Melo MF, Barbosa RD, Roque AL. Multiplex PCR as a tool for the diagnosis of Leishmania spp. kDNA and the gapdh housekeeping gene of mammal hosts. PLoS One. 2017;12:e0173922.

Dong FN, Amiri-Yekta A, Martinez G, Saut A, Tek J, Stouvenel L. Absence of CFAP69 Causes Male Infertility due to Multiple Morphological Abnormalities of the Flagella in Human and Mouse. Am J Hum Genet. 2018;102:636-48.

Fagerberg L, Hallström BM, Oksvold P, Kampf C, Djureinovic D, Odeberg J, Habuka M, Tahmasebpoor S, Danielsson A, Edlund K, et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteomics. 2014;13:397-406.

Gibson J, Tapper W, Ennis S, Collins A. Exome-based linkage disequilibrium maps of individual genes: functional clustering and relationship to disease. 2013. Hum Genet. 2013;132:233-43.

Henegariu O, Heerema NA, Dlouhy SR, Vance GH, Vogt PH. Multiplex PCR: critical parameters and step-by-step protocol. Biotechniques. 1997;23:504-11.

Imtiaz F, Allam R, Ramzan K, Al-Sayed M. Variation in DNAH1 may contribute to primary ciliary dyskinesia. BMC Med Genet. 2015;16:14.
Kang Z, Jiang E, Wang K, Pan C, Chen H, Yan H, Zhu H, Liu J, Qu L, Lan X, et al. Goat membrane associated ring-CH-type finger 1 (MARCH1) mRNA expression and association with litter size. Theriogenology. 2019a;128:8-16.

Kang Z, Zhang S, He L, Zhu H, Wang Z, Yan H, Huang Y, Dang R, Lei C, Chen H, et al. A 14-bp functional deletion within the CMTM2 gene is significantly associated with litter size in goat. Theriogenology. 2019b:139:49-57.

Kalkan G, Karakus N, Baş Y, Takçi Z, Ozuğuz P, Ateş O, Yigit S. The association between Interleukin (IL)-4 gene intron 3 VNTR polymorphism and alopecia areata (AA) in Turkish population. Gene. 2013;527:565-9.

Kanzi AM, Wingfield BD, Steenkamp ET, Naidoo S, van der Merwe NA. Intron Derived Size Polymorphism in the Mitochondrial Genomes of Closely Related Chrysoporthe Species. PLoS One. 2016;11:e0156104.

Knorst V, Byrne S, Yates S, Asp T, Widmer F, Studer B, Kölliker R. Pooled DNA sequencing to identify SNPs associated with a major QTL for bacterial wilt resistance in Italian ryegrass (Lolium multiflorum Lam.). Theor Appl Genet. 2019;132:947-58.

Lan XY, Peñagaricano F, DeJung L, Weigel KA, Khatib H. A missense mutation in the PROP1 (prophet of Pit 1) gene affects male fertility and milk production traits in the US Holstein population. J Dairy Sci. 2013;96:1255-7.

Lynch M, Xu S, Maruki T, Jiang X, Pfaffelhuber P, Haubold B. Genome-wide linkage-disequilibrium profiles from single individuals. Genetics. 2014;198:269-81.

Maiti AK, Mattéi MG, Jorissen M, Volz A, Zeigler A, Bouvagnet P. Identification, tissue specific expression, and chromosomal localisation of several human dynein heavy chain genes. Eur J Hum Genet. 2000;8:923-32.

Merveille AC, Davis EE, Becker-Heck A, Legendre M, Amirav I, Bataille G. CCDC39 is required for assembly of inner dynein arms and the dynein regulatory complex and for
normal ciliary motility in humans and dogs. Nat Genet. 2011;43:72-8.

Nei M. Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci U S A. 1973;70:3321-3.

Reich DE, Cargill M, Bolk S, Ireland J, Sabeti PC, Richter DJ. Linkage disequilibrium in the human genome. Nature. 2001;411:199-204.

Ren F, Yu S, Chen R, Lv X, Pan C. Identification of a 12-bp insertion/deletion (indel) of iPS-related Oct4 gene and its association with reproductive traits in male piglets. Anim Reprod Sci. 2017;178:55-60.

Shaat I, Mäki-Tanila A. Variation in direct and maternal genetic effects for meat production traits in Egyptian Zaraibi goats. J Anim Breed Genet. 2009;126:198-208.

Shen Y, Zhang F, Li F, Jiang X, Yang Y, Li X. Loss-of-function mutations in QRICH2 cause male infertility with multiple morphological abnormalities of the sperm flagella. Nat Commun. 2019;10:433.

Tang S, Wang X, Li W, Yang X, Li Z, Liu W, Li C, Zhu Z, Wang L, Wang J, et al. Biallelic mutations in CFAP43 and CFAP44 cause male infertility with multiple morphological abnormalities of the sperm flagella. Am J Hum Genet. 2017;100:854-64.

Van Laere AS, Nguyen M, Braunschweig M, Nezer C, Collette C, Moreau L. A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature. 2003;425:832-6.

Vaz-Drago R, Custódio N, Carmo-Fonseca M. Deep intronic mutations and human disease. Hum Genet. 2017;136:1093-1111.

Wang K, Yan H, Xu H, Yang Q, Zhang S, Pan C, Chen H, Zhu H, Liu J, Qu L, et al. A indel within goat casein alpha S1 gene is significantly associated with litter size. Gene. 2018;671:161-9.

Wang X, Yang Q, Wang K, Yan H, Pan C, Chen H. Two strongly linked single nucleotide
polymorphisms (Q320P and V397I) in GDF9 gene are associated with litter size in cashmere goats. Theriogenology. 2019;125:115-21.

Xiang G, Ren J, Hai T, Fu R, Yu D, Wang J, Li W, Wang H, Zhou Q, et al. Editing porcine IGF2 regulatory element improved meat production in Chinese Bama pigs. Cell Mol Life Sci. 2018;75:4619-28.

Zariwala MA, Omran H, Ferkol TW. The emerging genetics of primary ciliary dyskinesia. Proc Am Thorac Soc. 2011;8:430-3.

Zhang Y, Cui Y, Zhang X, Wang Y, Gao J, Yu T, Lv X, Pan C. Pig StAR: mRNA expression and alternative splicing in testis and Leydig cells, and association analyses with testicular morphology traits. Theriogenology. 2018;118:46-56.

Zhao H, Wu X, Cai H, Pan C, Lei C, Chen H. Genetic variants and effects on milk traits of the caprine paired-like homeodomain transcription factor 2 (PITX2) gene in dairy goats. Gene. 2013;532:203-10.

Tables

Table 1 Genotypic and allelic frequencies and population indexes for five indel mutations of MMAF-related genes
Gene	Primer	Loci	Genotypes	Frequency	Ho	He	PIC	\(\chi^2 \) (p-value)		
QRICH2	P4	11 bp	II (n=130)	0.433	0.650 (I)	0.35	0.35	0.35	0.680 (P = 0.409)	
				0.433	0.350 (D)	0.133				
			(n=300)							
			(n=130)							
			DD (n=40)	0.133						
CFAP69	P4	8 bp	II (n=208)	0.759	0.874 (I)	0.78	0.22	0.19	0.544 (P = 0.461)	
			(n=274)		0.230	0.126 (D)				
			ID (n=63)		0.111					
			DD (n=3)							
P6	P6	6 bp	II (n=208)	0.759	0.874 (I)	0.78	0.22	0.19	0.544 (P = 0.461)	
			(n=274)		0.230	0.126 (D)				
			ID (n=63)		0.111					
			DD (n=3)							
P7	P7	8 bp	II (n=212)	0.707	0.843 (I)	0.73	0.26	0.22	0.355 (P = 0.551)	
			(n=300)		0.273	0.157 (D)				
			ID (n=82)		0.111					
			DD (n=6)							
DNAH1	P1	27 bp	II (n=288)	0.960	0.978 (I)	0.95	0.04	0.04	5.476 (P = 0.020)	
			(n=300)		0.037	0.022 (D)				
			ID (n=11)		0.037					
			DD (n=1)		0.003					
			27 bp		0.941	0.968 (I)				17.867 (P = 2.37E-05)
			(n=632)		0.052	0.032 (D)				
			ID (n=33)		0.052					
			DD (n=4)		0.007					

Note: indel mutations of *CFAP43* and *CCDC39* gene not exist polymorphisms; n represents individual number. The same below.

Table 2 Haplotypic frequencies within these five indels of MMAF-related gene in Shaanbei white cashmere goat
Haplotypes arrangements frequencies

Hap1	I₁₁I₈I₆I₈D₂₇	0.432
Hap2	I₂₇D₁₁I₈I₆I₈D₂₇	0.233
Hap3	I₁₁I₈I₆D₈D₂₇	0.103
Hap4	I₁₁D₈D₆D₈D₂₇	0.076
Hap5	D₁₁I₈I₆D₈D₂₇	0.056
Hap6	D₁₁D₈D₆D₈D₂₇	0.041
Hap7	I₁₁D₈D₆D₈D₂₇	0.018
Hap8	I₁₁I₈I₆I₈D₂₇	0.014
Hap9	D₁₁D₈D₆D₈D₂₇	0.010
Hap10	D₁₁I₈I₆I₈D₂₇	0.007
Hap11	I₁₁I₈I₆I₈D₂₇	0.003
Hap12	I₁₁D₈D₆I₆D₂₇	0.002
Hap13	D₁₁I₈I₆I₆D₂₇	0.002
Hap14	D₁₁D₈D₆I₆D₂₇	0.001
Hap15	I₁₁D₈D₆I₆D₂₇	0.001
Hap16	D₁₁D₈D₆I₆D₂₇	0.001

Note: the order of haplotype of different loci was as follow: the 11-bp indel of *QRICH2* gene; the 8-bp indel (P4), the 6-bp indel (P6) and the 8-bp indel (P7) within *CFAP69*; the 27-bp indel in *DNAH1* gene.

Table 3

Associations of indel mutations of MMAF-related genes and litter size of Shaanbei white cashmere goat (mean ± standard error)

Gene	Primers	Sizes	II	ID	DD	p-values
QRICH2	P4	300	1.52±0.05 (n=130)	1.55±0.05 (n=130)	1.60±0.09 (n=40)	0.436
CFAP69	P4	274	1.45±0.04 (n=208)	1.54±0.06 (n=63)	1.67±0.33 (n=3)	0.206
	P6	274	1.45±0.04 (n=208)	1.54±0.06 (n=63)	1.67±0.33 (n=3)	0.206
	P7	300	1.56±0.04 (n=212)	1.67±0.06 (n=82)	1.83±0.31 (n=6)	0.098
DNAH1	P1	300	1.95±0.02^a (n=288)	1.55±0.16^b (n=11)	--	0.029
		632	1.53±0.02^a (n=595)	1.24±0.08^b (n=33)	1.00±0.00^c (n=4)	0.003

Note: ‘--’ stands for n<3.

Table 4

Genotype distribution of MMAF-related gene indel mutations between mothers of
single-lamb and multi-lamb in Shaanbei white cashmere goat

Gene	Primers	Sizes	MSL genotypes (frequencies)	MML genotypes (frequencies)	p-values					
			II	ID	DD	II	ID	DD		
QRICH2	P4	300	65	62	17	65	68	23	0.705	
CFAP69	P4	274	116	29	1	92	34	2	0.312	
	P6	274	116	29	1	92	34	2	0.312	
	P7	300	97	29	2	115	53	4	0.239	
DNAH1	P1	632	298	25	4	297	8	0	0.002	

Note: MSL, mothers of single lamb; MML, mothers of multi-lamb (≥2).

Figures

Figure 1

Linkage disequilibrium plot of three indel mutations within CFAP69 (CFAP69-P4, CFAP69-P6 and CFAP69-P7) in Shaanbei white cashmere goats

Supplementary Files

This is a list of supplementary files associated with the primary manuscript. Click to download.

Additional files.docx