‘Harmonie’ Strawberry

Shahrokh Khanizadeh, Martine Deschênes, Audrey Levasseur, Odile Carisse, Marie Thérèse Charles, and Djamila Rekika
Agriculture and Agri-Food Canada, Horticultural Research and Development Centre, 430 Gouin Boulevard, St-Jean-sur-Richelieu, QC, Canada J3B 3E6

Rong Tsao and Raymond Yang
Agriculture and Agri-Food Canada, Food Research Centre, 93 Stone Road West, Guelph, Ontario, Canada N1G 5C9

Jennifer DeEll
Ontario Ministry of Agriculture and Food, Box 587, 1283 Blueline Road and Highway #3, Simcoe, ON, Canada N3Y 4N5

Patrice Thibeault
L’Association des producteurs de fraises et framboises du Québec, 555 Boulevard Roland-Therrien, Longueuil, QC, Canada J4H 3Y9

Jean-Pierre Privé
Agriculture and Agri-Food Canada, Food and Horticulture Research Centre, Senator Hervé J. Michaud Research Farm, 1045 St. Joseph Road Bouctouche, NB, Canada

Campbell Davidson
Agriculture and Agri-Food Canada, Cereal Research Centre, Unit 100-101 Route 100 Morden, MB, Canada R6M 1Y5

Bob Bors
University of Saskatchewan, Plant Sciences, 51 Campus Drive, Saskatoon Saskatchewan, Canada S7N 5A8

Additional index words. Fragaria ×ananassa, fruit breeding, storage, shelf life, red stele

‘Harmonie’ is a new June-bearing strawberry cultivar (Fragaria ×ananassa Duch.), developed for Eastern Central Canada and other similar cold climates. ‘Harmonie’ has very attractive light red glossy fruit, which is very firm and have a shelf life of several days. ‘Harmonie’ is suitable for pick your own, fresh market and shipping (Fig. 1).

Description and Performance

Plants of ‘Harmonie’ are of medium vigor, have a flat growing habit, and produce approximately five inflorescences per crown. Flowers are perfect. Plants can tolerate winter air temperatures of up to –30 °C with 10 cm straw mulch cover. Petioles are short with three, medium green, cupped and obtuse leaflets, with slightly acute teeth. The terminal leaflets have a 1.25 length to width ratio.

‘Harmonie’ is moderately susceptible to leaf spot (Mycosphaerella fragariae (Tul.) Lindau) and physiological leaf scorch (Diplocarpon earlina Ell. & Ev.). No symptoms of powdery mildew (Sphaerotheca macularis (Wallr.:Fr.) Lind.) or gray mold (Botrytis cinerea Pers.: Fr.) have been noted since 1999.

‘Harmonie’ produces attractive large, red, shiny fruit (Fig. 1). The fruit shape is globose-conic. The flesh is orange-red almost throughout and is firm. Fresh fruit store well for up to 3 to 4 days at room temperature and longer under refrigerated storage conditions (Table 2).

Annual crop yields of ‘Harmonie’ are similar to ‘Kent’, ‘Bounty’ and ‘Chambly’, but lower than ‘Joliette’, ‘Jewel’, ‘Veestar’, ‘Jewel’...

Fig. 1. Fruit of ‘Harmonie’ strawberry.

Fig. 2. Pedigree of ‘Harmonie’ strawberry.
Table I. Total yield, fruit weight and ripening season of ‘Harmonie’ strawberries vs. selected commercial genotypes at the L’Acadie experimental site, Quebec.

Genotype	Total yield (g m⁻²)	Wt/fruit (g)	Ripening season¹
Yamaska	1644.4	13.2	L
Kent	2073.2	6.9	M
Bounty	2230.5	7.6	M
Harmonie	2320.1	13.1	L
Chambly	2379.5	7.3	EM
Joliette	2892.2	9.9	M
Jewel	2957.0	10.9	M
Veestar	3099.0	7.3	E
Glooscap	3460.2	7.4	M
LSD	410.0	1.6	

¹Averaged over 4 years from 2nd year plantings (1999–2002), minimum of four replications per year, data taken from a 1-m-long representative portion of a 2-m matted row (width 50 cm).

Table II. Sugar, acidity, firmness, flavor, skin color, leaf disease susceptibility, and shelf life of ‘Harmonie’ strawberries vs. selected commercial genotypes at the L’Acadie experimental site, Quebec.

Genotype	Firmness²	Flavor²	Skin color²	Leaf disease susceptibility²	Shelf life²
Bounty	2.4	3.0	3.0	3.0	1.0
Glooscap	2.8	3.1	3.8	2.8	1.0
Kent	3.1	3.0	2.8	1.3	2.0
Harmonie	3.3	3.0	2.5	3.8	5.0
LSD	0.4	0.7	0.3	0.7	2.1

²Averaged over 4 years from second year plantings (1999–2002), minimum of four replications per year, data taken from a 1-m-long representative portion of a 2-m matted row (width 50 cm).

Table III. Antioxidant capacity and total phenolic content of ‘Harmonie’ strawberries compared with ‘Kent’ one of the most popular genotype grown at the L’Acadie experimental site, Quebec.

Genotype	Total antioxidant capacity	Content of Total phenols³ (ppm)			
	TEAC (µmol·mg⁻¹)	CRUDE	LIPOPHILIC	FRAP (µM)	CRUDE
Harmonie	239.8	224.4	26.0	2752.2	142.8
Kent	198.8	228.6	29.6	2131.5	106.1
LSD	23.1	45.7	2.34	318.7	35.8

³µmol Trolox equivalent per mg dry weight.
⁴µM FRAP.
⁵ppm Gallic acid equivalent.

Areas of Adaptation and Uses
‘Harmonie’ is recommended for Eastern Central Canada, especially in areas where the climate is similar to that in the strawberry production areas of Quebec. Typically, strawberry production in Quebec occurs in areas with winter temperatures down to ~30 °C and warm and humid summers with unpredictable mixture of sun and rain (drought some seasons, constant rain in other seasons).

Availability
A Canadian Plant Breeder’s Right application is pending for ‘Harmonie’ and plants are available from licensed nurseries in Quebec. Nonexclusive multiplication licenses can be obtained from Agriculture and Agri-Food Canada. European nurseries can obtain a multiplication license from Meiosis Limited (Bradbourne House, Stable Block, East Malling, Kent ME19 6DZ). A limited number of plants are available for research purposes from the author (SK).

Literature Cited
Baldwin E.A., M.O. Nisperos-Carriedo, and R.A. Baker. 1995. Use of edible coatings to preserve quality of lightly processed products. Crit. Rev. Food Sci. Nutr. 35:509–24.
Gao, X., M. Ohlander, N. Jeppsson, L. Bjork, and V. Tjarkovski. 2000. Changes in antioxidants effects and their relationship to phytonutrients of sea buckthorn (Hippophae rhamnoides) L during maturation. J. Agr. Food Chem. 48:1485–1490.
Halliwel, B. 1997. Antioxidants and human disease: A general introduction. Nutr. Rev. 55:44–52.
Kalt, W., C.F. Forney, A. Martin, and R.L. Prior. 1999. Antioxidant capacity, vitamin C, phenolics, and anthocyanins after fresh storage of small fruit. J. Agr. Food Chem. 47:4638–4644.
Khanizadeh, S., J. Fortin, M.J. Lareau, and D. Buszard. 1994. Sensory evaluation of six strawberry cultivars after machine harvest, p.249–254.
In: H. Schmidt and M. Kellerhals (eds.). Progress in temperate fruit breeding. Kluwer Academic, The Netherlands. 1994, p. 91.
L. Pedersen. 2003. http://www.darcof.dk/research/darcofi/i1.html.
Maas, J.L., G.L. Galletta, and G.D. Stoner. 1991. Ellagic acid an anticarcinogen in fruit, especially in strawberries: A review. HortScience 26 (1):10–14.
SAS Institute. 1988. Statistical analysis system. SAS/STAT, SAS/BASIC guide for personal computers. version 6.04 (ed.). SAS Inst., Cary, N.C.
Slinkard, K. and V.L. Singleton. 1977. Total phenol analysis: automation and comparison with manual methods. Amer. J. Enol. Viticult. 28:49–55.
Steel, R.G.D. and J.H. Torrie. 1960. Principles and procedures of statistics. 2nd ed. McGraw-Hill, New York.
Tsoa, R. and R. Yang. 2003. Optimization of a new mobile phase to know the complex and real polyphenolic composition: Towards a total phenolic index using high-performance liquid chromatography. J. Chromatogr. A. 1018:29–40.
Tsoa, R., R. Yang, and J.C. Yang. 2003. Antioxidant isoflavones in Osage Orange, Maclura pomifera (Raf.) Schneider. J. Agr. Food Chem. 51:6445–6451.