Musculoskeletal disorders associated with depression and psychosocial risk factors among female teachers in Riyadh region, Saudi Arabia

Dhafer Mubarak Alajmi, Maha Saleh Bin Abdulaziz, Nehal Saad Bin Saeed, Abrar Sayer Almutairi

Residents, Family Medicine Academy, KSMC, Riyadh, Saudi Arabia

Abstract

Background: Teachers have the highest musculoskeletal disorders (MSD) rates worldwide because of stressful working conditions. MSD is likely to be linked to psychosocial elements such as need for social help, loss of job control, performance concerns, repetitive work, and feeling burdened and stressed. Objectives: To determine the prevalence and anatomical distribution of MSDs and the associated psychosocial risk factors, primarily depression, among female teachers in the Riyadh region of Saudi Arabia. Settings and Design: An observational, quantitative, cross-sectional study was done. Material and Methods: Data was collected from female teachers in Riyadh region, Saudi Arabia, via a questionnaire. All the participants completed the Patient Health Questionnaire (PHQ-9) and Nordic Musculoskeletal Questionnaire (NMQ). The data was analyzed using Statistical Package for the Social Sciences software. Results: Of the 372 questionnaire responses obtained from the teachers, the prevalence of depression was 65.6% and of MSD was 86%. The main site of pain was the neck (62.9%), followed by the lower back (53.8%). There was a significant relationship between the prevalence of MSD and the prevalence of depression. MSD occurred in 64.1% of participants without depression, in 95.9% of those with mild depression, and in 100% of those with more severe depression (P ≤ 0.001). Conclusions: A high prevalence of MSD pain was found among the female teachers, especially among older women, those teaching at elementary schools, and those with a higher number of pregnancies. The coexistence of MSD and depression affects the work ability of the teachers and reduces their efficiency.

Keywords: Depression, female, musculoskeletal disorder, pain, Riyadh, Saudi Arabia, school teachers

Introduction

Pain manifested by musculoskeletal disorders (MSDs) reflects musculoskeletal system damage from various causes, including physical and psychosocial stress. These disorders can be acute or chronic and cause disability, resulting in higher healthcare costs, especially for chronic pain. Occupations that expose individuals to increased physical and mental strain are associated with MSDs, and teachers have the highest MSD rates worldwide because of stressful working conditions, such as extensive classes, lack of educational facilities, and low pay. A close relationship exists between MSDs in teachers and years of teaching experience, age, sex, obesity, type of school and number of students, school infrastructure, working conditions, high stress, and psychosocial factors in both urban and rural settings. Research in both developed and developing countries shows a high frequency of MSDs in specific body parts: the lower back, neck, shoulders, and upper limbs. And psychosocial factors and depression were found to be significant predictors of MSD among teachers.
Limited information is available on the prevalence of MSDs in Riyadh region, Saudi Arabia[17,33]; only data from five regions of Saudi Arabia have been reported to date. According to the study, the most common MSDs among Saudi teachers are severe low back pain (38.1%), followed by knee pain (26.3%), heel pain (24.1%), shoulder pain (20.6%), upper back pain (17.7%), hip pain (16.5%), ankle pain (12.3%), and neck pain (11.3%). The least reported MSDs were acute pain in the elbow (5.6%) and in the wrist (7.4%). Pain affected work in 46.1% of teachers[32]; and data showed that approximately 46% of school teachers in Saudi Arabia had MSDs.[17] The severity depended on the education level,[28] age,[4] and comorbidity with a chronic illness.

Psychosocial factors, defined as psychological feelings or experiences related to an individual’s physical and social condition, have also been shown to influence the development and exacerbation of MSDs.[17,24,25] Among teachers, psychosocial factors such as feeling a burden, stress, need for social assistance, decreased work control, performance issues, and repetitive work are likely to be associated with MSDs.[13,26]

Depression is one of the most common mental health disorders. The World Health Organization (WHO) reported that depression is the fourth leading cause of disability globally.[27] Many studies have demonstrated an association between mental health and physical, especially in MSDs,[13,28] with poor mental health increasing the risk of developing MSDs.[28] Good mental health and physical health are important,[28] and mental health has a positive effect on dissatisfaction with work stress.[29] A study by Mukundan and Khandehroo[30] found that female teachers’ emotional fatigue was significantly higher among 120 English teachers in Malaysia, and English teachers with <26 years of teaching experience had significantly higher levels of emotional exhaustion. It has also been shown that a mental health indicator such as depression is associated with MSDs.

Among female teachers in the Riyadh region, significant gaps remain in evidence for work-related MSDs. These teachers may be exposed to unique cultural and social environments and psychosocial factors that can contribute to the development of MSDs.[18] Despite much research on MSDs, few studies have focused on the parameters and underlying psychosocial risk factors, mainly depression.

Little is known about the symptoms, scope, and severity of MSDs among female teachers and the implications of this disorder for those already affected.[31] Currently, there is a considerable lack of epidemiological studies on the prevalence and impact of MSD among female teachers and the associated psychosocial risk factors, mainly depression.[17] The study focuses exclusively on female teachers in the Riyadh region. In addition, no studies have tested and demonstrated concrete interventions for MSDs.

Primary prevention strategies that aim at minimizing the risks of the occurrence of symptoms of work-related musculoskeletal complaints and secondary prevention strategies that aim at reducing the comorbid health problems associated with work-related musculoskeletal disorders need to address different sets of risk factors.[32] In addition, a multifactorial approach to prevention of these disorders among teachers is more effective than addressing single risk factors, both in primary prevention and in rehabilitation.[33]

These risk factors should be considered by primary care physicians when attending to patients suffering from depression and musculoskeletal disorders. Recognizing the relationship between depression and MSDs will help in arranging, planning or actualizing preventive intervention programs for teachers with the hope of lessening the incidence of MSD.[34]

The present study aims to contribute to the wealth of knowledge regarding MSDs and serve as an influential authority for the implementation of reliable intervention mechanisms within a specific social and cultural setting.

Material and Methods

This study employed an observational, quantitative, cross-sectional research method to collect raw data by observation of female teachers in Riyadh region, Saudi Arabia. Female teachers outside Riyadh region were excluded. For reliability, the required sample size was ≥ 383 to obtain a 95% confidence interval (CI) with a real value within ± 5% of the measured value (based on calculations from calculator.net/sample-size-calculator).

Data were collected using a questionnaire that included the participants’ socio-demographic characteristics (age, educational level, occupation, and marital status), monthly income, weight and height, and medical history. All the participants completed the Patient Health Questionnaire (PHQ-9) and Nordic Musculoskeletal Questionnaire (NMQ), and the data (musculoskeletal and mental health symptoms) was analyzed. Standard NMQ was used to determine the prevalence of symptoms related to the musculoskeletal system, including the presence, severity, and frequency of MSDs related to the neck, shoulder, elbow, wrist, upper and lower back, hip, knee, and ankle in the past 12 months.[36] For clarity, the participants were given a diagram of the female back with the name and position of the organs. The questionnaire was divided into three sections to assess 1) prevalence and frequency, 2) severity of pain, and 3) impact of the pain on work.

The PHQ-9 is a nine-item depression scale. It is one of the most validated tools in mental health and is used to assist clinicians in diagnosing depression and monitoring the treatment response. The nine items of the PHQ-9 are directly based on the nine diagnostic criteria for major depressive disorder in the Diagnostic and Statistical Manual of Mental Disorders, fourth edition. For each response, the score options and ranges were: not at all (0), several days (1), more than half of the days (2), and nearly every day (3). The range of scores was 0–27, and scores of 0–4 indicated normal, 5–9 indicated mild depression, 10–14 indicated moderate...
depression, 15–19 indicated moderately severe depression, and >20 indicated severe depression.

The questionnaire was distributed among teachers using online social media. Microsoft Excel was used for data entry, and Statistical Package for the Social Sciences (SPSS) software was used for data analysis. Categorical variables were expressed as frequency and percent; continuous variables were expressed as mean and standard deviation. The Chi-squared test was used to determine the relationship between the prevalence of MSDs and demographic factors and the prevalence of depression. Significance was defined as $P \leq 0.05$.

The study was approved by the ethical committee and the procedures followed were in accordance with the ethical standards and with the Helsinki Declaration of 1975, as revised in 2000. The anonymity and confidentiality of the participants were preserved, ensured, and maintained and not used except for the study purpose.

Results

A total of 372 responses were collected. Most of the participants were aged 40–50 years (54.3%), and 28% were aged 30–40 years. Most (82.8%) had university education. Most of them (79.6%) were married, among whom 14% had no previous pregnancy, 45.2% had 4–6 previous pregnancies, and 14.5% had >6 pregnancies. Of the mothers, 44.1% reported 4–6 pregnancy deliveries. The monthly income ranged from 10,000–15,000 Saudi riyals for 43% of the participants. The school setting was intermediate for 49.5% and elementary for 41.4% of the participants. Most participants worked in the western Riyadh region (53.8%) and 23.1% worked in the southern region.

Regarding the participants’ body mass index (BMI), 37.2% had obesity, 41.0% were overweight, and 20.8% had normal weight. Moreover, 30.1% reported having a medical history of different diseases, including asthma and diabetes mellitus.

The PHQ-9 tool showed a depression prevalence of 65.6%; depression was mild in 39.8%, moderate in 17.2%, moderately severe in 4.8%, and severe in 3.8% [Figure 1]. In terms of depression symptoms affecting daily activities, 41.4% experienced no effect, 50.5% had some difficulty, and 8.1% had severe difficulty.

Regarding the prevalence of MSDs, MSDs were prevalent in at least one site in 86% of the participants with the neck being the main site of pain [Figure 2].

In Table 3, the frequency of pain at each site is presented. Most participants reported a frequency of pain of once or twice weekly (36.2%–59%). A high frequency of pain, defined as more than once daily, was present at the following sites: right knee (17.4%), lower back (14%), left arm (13.6%), left shoulder (13.5%), left foot (11.9%), right shoulder (11.1%), and neck (11.1%).

In terms of severity, most participants complained of slight pain at different sites: 79.2% in the right thigh and 79% in the left thigh and left wrist. Regarding low back pain, however, only 34.2% had slight pain, whereas 23.3% had severe pain. Other sites of severe pain were the hip (16.2%), left foot (16.1%), right foot (13.6%), left shoulder (13.1%), and right (11.3%) and

| Table 1: Sociodemographic characteristics of the participants (n=372) |
|--------------------------|-----------------|
| Education level | Number | Percent |
| Intermediate school | 2 | 0.5% |
| Secondary school | 24 | 6.5% |
| University | 308 | 82.8% |
| Postgraduate education | 38 | 10.2% |
| Marital status | | |
| Single | 44 | 11.8% |
| Married | 296 | 79.6% |
| Divorced | 28 | 7.5% |
| Widow | 4 | 1.1% |
| Number of pregnancies | | |
| None | 52 | 14.0% |
| 1-3 pregnancies | 98 | 26.3% |
| 4-6 pregnancies | 168 | 45.2% |
| >6 pregnancies | 54 | 14.5% |
| Number of labors | | |
| No previous delivery | 66 | 17.7% |
| 1-3 delivery | 112 | 30.1% |
| 4-6 delivery | 164 | 44.1% |
| >6 deliveries | 30 | 8.1% |
| Monthly income | | |
| 5000-10000 | 110 | 29.6% |
| 10,000-15,000 | 160 | 43.0% |
| 15,000-20,000 SR | 94 | 25.3% |
| >20,000 SR | 8 | 2.2% |
| Place of work | | |
| Elementary school | 154 | 41.4% |
| Intermediate school | 184 | 49.5% |
| Secondary school | 34 | 9.1% |
| Other | 0 | 0.0% |

| Table 2: Sociodemographic characteristics of the participants (n=372) |
|--------------------------|-----------------|
| Location of school | Number | Percent |
| North of Riyadh region | 48 | 12.9% |
| South of Riyadh region | 86 | 23.1% |
| East of Riyadh region | 38 | 10.2% |
| West of Riyadh region | 200 | 53.8% |
| Body mass index | | |
| Underweight | 4 | 1.1% |
| Normal | 76 | 20.8% |
| Overweight | 150 | 41.0% |
| Obese | 136 | 37.2% |
| Medical history | | |
| No | 260 | 69.9% |
| Yes | 112 | 30.1% |
MSDs are an important factor associated with a teacher’s mental and physical health. The aim of this study was to determine the prevalence of MSD among female teachers in Riyadh region, Saudi Arabia, as well as to determine if there is an association between the prevalence of MSD and the prevalence of depression. The prevalence of MSDs among the teachers was 86%, primarily at the neck, lower back, left shoulder, upper back, right shoulder, and left knee. These results are similar to those 30–40 years, 92.1% of those aged 40–50 years, and 100% of those aged > 50 years. Pregnancy increased the risk of MSDs: 100% of participants with > 6 pregnancies reported MSDs versus 53.8% of those with no previous pregnancy ($P = 0.000$). The prevalence and severity of MSDs were significantly higher in elementary school teachers compared with those in secondary and intermediate school teachers ($P = 0.036$), as well as among teachers in west and east Riyadh region than in those in north and south Riyadh region ($P = 0.038$). No significant difference was noted between the prevalence of MSDs and body mass index; however, participants with normal weight appeared to have the lowest prevalence of MSDs.

Finally, we found a significant relationship between the prevalence of MSDs and the prevalence of depression; MSDs occurred in 64.1% without depression, 95.9% with mild depression, and 100% with more severe depression ($P < 0.001$). An increase in the severity of MSDs increased the severity of depression; 20.9% of participants with mild depression had pain in >12 sites compared with 31.3%, 44.4%, and 57.1% of participants with moderate depression, moderately severe depression, and severe depression [Table 5]. Furthermore, any type of MSDs increased the risk of depression by 65 times (odds ratio = 65; 95% CI, 26.9–158.7; $P = 0.0001$).

Discussion

Table 5 shows the relationship between prevalence of MSDs and the prevalence of multi-site pain in the context of demographic factors and the prevalence of depression. The prevalence of MSDs was significantly associated with age ($P \leq 0.001$), that is, the prevalence increased with age, as follows: 47.4% of those aged 20–30 years had pain compared with 84.6% of those aged 30–40 years, 92.1% of those aged 40–50 years, and 100% of those aged > 50 years. Pregnancy increased the risk of MSDs: 100% of participants with > 6 pregnancies reported MSDs versus 53.8% of those with no previous pregnancy ($P = 0.000$). The prevalence and severity of MSDs were significantly higher in elementary school teachers compared with those in secondary and intermediate school teachers ($P = 0.036$), as well as among teachers in west and east Riyadh region than in those in north and south Riyadh region ($P = 0.038$). No significant difference was noted between the prevalence of MSDs and body mass index; however, participants with normal weight appeared to have the lowest prevalence of MSDs.
of a study by Ng et al.\cite{14} who reported a prevalence of MSDs in the previous six months of 80.1% among female teachers. In a study by Brulin et al.\cite{13} on female music teachers in Sweden, the prevalence of MSDs was 82%. A study by Darwish et al.\cite{17} on secondary school teachers (both government and private schools) in Al-Khobar, Saudi Arabia, reported that the prevalence of MSDs was 79.1%.

However, other studies reported much lower rates. Cardoso et al.\cite{40} reported that the overall prevalence of musculoskeletal pain was 55%; however, the sample included both women and men, and the study assessed the prevalence of MSD at three body segments: lower limbs (41.1%), upper limbs (23.7%), and back (41.1%). In addition, a study by Durmus et al.\cite{37} on teachers in Turkey, found a prevalence of MSD of 48% and work-related musculoskeletal pain (WRMSP) was present among 74.9% of the participants. The main affected parts were the shoulder (55.9%), neck (47.9%), upper back (42.7%), and knee (30.9%). In contrast, a study in China by Chong et al.\cite{38} reported a very high prevalence of MSD (95.1%) among primary and secondary school teachers.

In the present study, the prevalence of depression was 65.6% and 3.8% had severe depression. This prevalence was much higher than that reported by Silva et al.\cite{39} who reported a prevalence between 15.9% and 28.9%, and that by Desouky et al.\cite{18} who reported a prevalence of depression of 23.2% among Egyptian female teachers. Rodrigues et al.\cite{41} reported that the prevalence of depression among female teachers was 79.8%, which is similar to our results.

We found that age, number of pregnancies, and type of school were significant factors in determining the prevalence of MSD, with a higher prevalence and severity in those who were older, had more pregnancies, and worked in elementary schools. These results were also reported by other studies.\cite{14,15,40}

This study had several limitations. First, data were collected from a self-reported questionnaire regarding the diagnosis of depression and MSD, which, despite being a tool that was previously validated, the need for clinical examination was continuous. In addition, the need for participants to remember their symptoms during the past 12 months could have led to memory bias.

![Figure 3: Impact of musculoskeletal disorders on the participants' work](image)

Table 4: Severity of pain at each site
Slight
Neck
Right shoulder
Left shoulder
Upper back
Right humerus
Left humerus
Lower back
Right arm
Left arm
Right wrist
Left wrist
Hip
Right thigh
Left thigh
Right knee
Left knee
Right leg
Left leg
Right foot
Left foot

Table 5: Relationship between the prevalence of MSDs and demographic characteristics and prevalence of depression
Prevalence of any type of pain
P
None
of pain
Age (years)
20-30
30-40
40-50
>50
Number of pregnancies
None
1-3 pregnancies
4-6 pregnancies
>6 pregnancies
Place of work
Elementary school
Intermediate school
Secondary school
Location of school
North of Riyadh region
South of Riyadh region

We found a significant relationship between the prevalence of MSD and the prevalence of depression; the prevalence of MSD increased from 64.1% in those without depression to 95.9% in those with mild depression and 100% in those with a higher degree of depression. Importantly, having any type of MSD increased the risk of depression by 65 times. These results are consistent with those in the literature and indicate that MSD is a risk factor for mental disorders, psychological stress, and diminished biopsychosocial quality of life among teachers,
especially female teachers. Chronic pain and depression often occur simultaneously, that is, individuals who experience pain have a higher risk of depression, and individuals who experience depression have an increased risk of experiencing pain.

Conclusion

The prevalence of MSD pain among female teachers in Riyadh region, Saudi Arabia, was high, especially among older females, those with more pregnancies, and those teaching at elementary schools. There was a significant relationship between the prevalence of MSD and the prevalence of depression, which could affect the teachers’ work ability and reduce their efficiency.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References

1. Bao S, Howard N, Lin J-H. Are work-related musculoskeletal disorders claims related to risk factors in workplaces of the manufacturing industry? Ann Work Expo Heal 2020;64:152-64
2. Das B. Gender differences in prevalence of musculoskeletal disorders and physiological stress among the brick field workers of West Bengal, India. Work 2019;63:389-403.
3. Hossain MD, Aftab A, Al Imam MH, Mahmud I, Chowdhury IA, Kabir RI, et al. Prevalence of work related musculoskeletal disorders (WMSDs) and ergonomic risk assessment among readymade garment workers of Bangladesh: A cross sectional study. PLoS One 2018;13:e0200122.
4. Ng YM, Voo P, Maakip I. Psychosocial factors, depression, and musculoskeletal disorders among teachers. BMC Public Health 2019;19:234.
5. Coggon D, Ntani G, Palmer KT, Felli VE, Harari R, Barrero LH, et al. Disabling musculoskeletal pain in working populations: Is it the job, the person, or the culture? Pain 2013;154:856-63.
6. Shanahan EM. Work disability and musculoskeletal disease. Int J Rheum Dis 2019;22:965-6.
7. Lentz TA, Harman JS, Marlow NM, Beneciuk JM, Fillingim RB, George SZ. Factors associated with persistently high-cost health care utilization for musculoskeletal pain. PLoS One 2019;14:e0225125.
8. Vargas C, Bilbeny N, Balmaceda C, Rodriguez MF, Zitko P, Rojas R, et al. Costs and consequences of chronic pain due to musculoskeletal disorders from a health system perspective in Chile. Pain Rep 2018;3:e656.
9. Erick P, Smith D. Risk factors of musculoskeletal disorders among teachers: A critical review. OA Musculoskelet Med 2013;1:29.
10. Karakaya İÇ, Karakaya MG, Tunç E, Kihtir M. Musculoskeletal problems and quality of life of elementary school teachers. Int J Occup Saf Ergon 2015;21:344-50.
11. Cheng H-YK, Wong M-T, Yu Y-C, Ju Y-Y. Work-related musculoskeletal disorders and ergonomic risk factors in special education teachers and teacher’s aides. BMC Public Health 2016;16:137.
12. Cardoso JP, Ribeiro I QB, de Araújo TM, Carvalho FM, Reis EJF. Prevalência de dor musculoesquelética em professores. Rev Bras Epidemiol 2009;12:604-14.
13. Zamri EN, Moy FM, Hoe VCW. Association of psychological distress and work psychosocial factors with self-reported musculoskeletal pain among secondary school teachers in Malaysia. PLoS One 2017;12:e0172195.
14. Ojukwu CP, Anyanwu GE, Eze B, Chukuwu SC, Onuchukwu CL, Anekwu EM. Prevalence, pattern and correlates of work-related musculoskeletal disorders among school teachers in Enugu, Nigeria. Int J Occup Saf Ergon 2021;27:267-77.
15. Hoffmann SW, Tug S, Simon P. Obesity prevalence and unfavorable health risk behaviors among German kindergarten teachers: Cross-sectional results of the kindergarten teacher health study. BMC Public Health 2013;13:927.
16. Shiiri K, Karppinen J, Leino-Arjas P, Solovieva S, Viikari-Juntura E. The association between obesity and low back pain: A meta-analysis. Am J Epidemiol 2010;171:135-54.
17. Darwish MA, Al-Zuhair SZ. Musculoskeletal pain disorders among secondary school Saudi female teachers. Pain Res Treat 2013;2013:1-7.
18. Cardoso JP, Araújo TM, Carvalho FM, Oliveira NF, Reis EJFB. Aspectos psicossociais do trabalho e dor musculoesquelética em professores. Cad Saude Publica 2011;27:1498-506.
19. Cezár-Vaz MR, Verde De Almeida MC, Pereira Rocha L, Miritz Borges A, De Oliveira Severo L, Alves Bonow C. Trastornos musculoesqueléticos en profesores: Estudio de enfermería del trabajo. Cienc Enferm 2013;19:83-93.
20. Solis-Soto MT, Schön A, Solís-Soto A, Parra M, Radon K. Prevalence of musculoskeletal disorders among school teachers from urban and rural areas in Chuquisaca, Bolivia: A cross- sectional study. BMC Musculoskeletal Disord 2017;18:425.
21. Yue P, Liu F, Li L. Neck/shoulder pain and low back pain among school teachers in China, prevalence and risk factors. BMC Public Health 2012;12:789.
22. Alssiddiky A. The prevalence of musculoskeletal pain and its associated factors among female Saudi school teachers. Pakistan J Med Sci 1969;30. doi: 10.12669/pjms.306.5778.
23. Mengestu MY. Low back pain and associated factors among teachers in Gondar Town, North Gondar, Amhara Region, Ethiopia. Occup Med Heal Aff 2013;1:1-8. doi: 10.4172/2329-6879.1000127.
24. Erick PN, Smith DR. Low back pain among school teachers in Botswana, prevalence and risk factors. BMC Musculoskeletal Disord 2014;15:359.
25. Jaffar NA, Rahman MN. Review on risk factors related to lower back disorders at workplace. JOP Conf Ser Mater Sci Eng 2017;226:012035. doi: 10.1088/1757-899X/226/1/012035.
26. Samad NIA, Abdullah H, Moin S, Tamrin SMB, Hashim Z. Prevalence of low back pain and its risk factors among school teachers. Am J Appl Sci 2010;7:634-9.
27. World Health Organization. Depression and other common mental disorders: Global health estimates; 2017. Available from: https://apps.who.int/iris/bitstream/
28. Rahimi A, Alhani F, Anoosheh M. Relationship between low back pain with quality of life, depression, anxiety and stress among emergency medical technicians. Trauma Mon 2015;20. doi: 10.5812/traumamon. 18686.

29. Kidger J, Brockman R, Tilling K, Campbell R, Ford T, Araya R, et al. Teachers’ wellbeing and depressive symptoms, and associated risk factors: A large cross sectional study in English secondary schools. J Affect Disord 2016;192:76-82.

30. Mukundan J, Khandehroo K. Burnout in relation to gender, educational attainment, and experience among Malaysian ELT practitioners. J Hum Resour Adult Learn 2009;5:93-8.

31. Saleem M, Bashir MS, Noor R. Frequency of musculoskeletal pain in female teachers. Ann King Edward Med Univ 2014;20:245-51.

32. Baek JH, Kim YS, Yi KH. Relationship between comorbid health problems and musculoskeletal disorders resulting in musculoskeletal complaints and musculoskeletal sickness absence among employees in Korea. Saf Health Work 2015;6:128-33.

33. Zhang Y, ElGhaziri M, Nasuti S, Duffy JF. The comorbidity of musculoskeletal disorders and depression: Associations with working conditions among hospital nurses. Workplace Health Saf 2020;68:346-54.

34. Kuorinka I, Jonsson B, Kilbom A, Vinterberg H, Biering-Sørensen F, Andersson G, et al. Standardised Nordic questionnaires for the analysis of musculoskeletal symptoms. Appl Ergon 1987;18:233-7.

35. Brulin C, Gerdle B, Granlund B, Höög J, Knutson A, Sundelin G. Physical and psychosocial work-related risk factors associated with musculoskeletal symptoms among home care personnel. Scand J Caring Sci 1998;12:104-10.

36. Durmus D, Ilhani I. Are there work-related musculoskeletal problems among teachers in Samsun, Turkey? J Back Musculoskelet Rehabil 2012;25:5-12.

37. Chong EYL, Chan AHS. Subjective health complaints of teachers from primary and secondary schools in Hong Kong. Int J Occup Saf Ergon 2010;16:23-39.

38. Silva DFO, Cobucci RNO, Lima SCVC, Andrade FB de. Prevalence of anxiety, depression, and stress among teachers during the COVID-19 pandemic: Systematic review. medRxiv 2021;2. doi: 10.1101/2021.05.01.21256442.

39. Desouky D, Allam H. Occupational stress, anxiety and depression among Egyptian teachers. J Epidemiol Glob Health 2017;7:191. doi: 10.1016/j.jegh.2017.06.002.

40. Rodrigues LTM, Lago EC, Pinheiro Landim Almeida CA, Pires Ribeiro I, Vasconcelos Mesquita G. Estresse e depressão em docentes de uma instituição pública de ensino. Enfermieda Glob 2019;19:209-42.

41. Gureje O, Simon GE, Von Korff M. A cross-national study of the course of persistent pain in primary care. Pain 2001;92:195-200.