Expression pattern and regulation of head-to-head genes \textit{Vps36} and \textit{Ckap2} during chicken follicle development

Xinxing CUI1*, Chunhong YANG1*, Li KANG1, Guiyu ZHU2, Qingqing WEI1, Yunliang JIANG (✉)1

1 Laboratory of Animal Molecular Genetics, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China
2 Department of Biology Science and Technology, Taishan University, Taian 271021, China

Abstract Vacuolar protein sorting 36 (VPS36), a protein primarily known for its role in the Endosomal Sorting Complex Required for Transport pathway, has recently been shown to be linked to chicken reproduction. Previous research showed that \textit{Vps36} is significantly downregulated in sexually mature chicken ovaries compared to immature ones. In this study, using real-time quantitative RT-PCR, we investigated the expression pattern of \textit{Vps36} and its head-to-head gene \textit{Ckap2} mRNA in chicken follicles. Small white follicles were found to have significantly higher expression of \textit{Vps36} and \textit{Ckap2} mRNA than any other sized follicles (\(P < 0.05 \)). The expression of \textit{Vps36} and \textit{Ckap2} mRNA were detected in both granulosa and theca layers of pre-ovulatory follicles, the expression of \textit{Ckap2} in theca layers was slightly higher than in granulosa cells. Treatment of small yellow follicles with follicle-stimulating hormone and estradiol resulted in a marked decrease of both \textit{Vps36} and \textit{Ckap2} mRNA (\(P < 0.05 \)); however, progesterone, transforming growth factor-\(\beta \) 1 and luteinating hormone induced no significant changes in \textit{Vps36} and \textit{Ckap2} mRNA expression in these follicles. These results indicate that the head-to-head genes of \textit{Vps36} and \textit{Ckap2} exhibit similar expression in chicken follicles and are involved in chicken follicle development.

Keywords chicken, \textit{Vps36}, \textit{Ckap2}, mRNA, follicle

1 Introduction

Vacuolar protein sorting 36 (VPS36) is important in the ESCRT (Endosomal Sorting Complex Required for Transport) pathway. Fifteen class E vps (vacuolar protein sorting) genes encoding the components of four ESCRT protein complexes have been identified, including ESCRT 0 (Vps27, Hse1), I (Vps23, Vps28, Vps37, Mvb12), II (Vps22, Vps25, Vps36) and III (Vps2, Vps20, Vps24, Snf7/Vps32) [1]. Loss of class E vps function in yeast leads to accumulation of ubiquitinated proteins on the limiting membrane of enlarged endosomes [2]. Biochemical studies in mammalian cells also revealed a similar function for endosomal protein sorting [3,4]. The VPS36 protein contains Npl4 zinc finger (NZF) and GLUE (GRAM-like Ub binding) domains, a ‘hub’ that mediates interaction with ESCRT-I (Vps28) [5] and binds to PI(3)P (phosphatidylinositol-3-phosphate) on endosomes and to ubiquitinated cargo [6–9]. Genetic analysis of class E vps genes has mainly been performed in yeast [2,10]. In \textit{Drosophila}, the \textit{Vps36} mutant increases apoptotic resistance and shows neoplastic characteristics [11]. Mutants in all subunits of the ESCRT-II complex (Vps22, Vps25 and Vps36) abolish the final Staufen-dependent step in bcd RNA localization [12]. \textit{Ckap2} (cytoskeleton associated protein 2) is the head-to-head gene of \textit{Vps36} and shares a 247 bp promoter with the latter on chicken chromosome 1. \textit{Ckap2} is an important mitotic regulator [13–15], and has been shown to be upregulated in various human malignancies [16–18].

It is widely accepted that follicle growth and differentiation are mediated by endocrine, paracrine and autocrine factors, among which the most important are the gonadotropins and growth factors [19]. Follicle-stimulating hormone (FSH) is responsible for follicular recruitment and growth of the smaller follicles. Subsequent to selection, a follicle undergoes a transition from largely FSH-dependence to luteinizing hormone (LH)-dependence [20–22]. LH is the primary gonadotropin responsible for promoting progesterone production in pre-ovulatory follicles [19,23]. Our previous study showed that \textit{Vps36} is significantly downregulated in sexually mature ovaries compared to immature ones in chicken ovary [24],
suggested that \(Vps36 \) is likely to be involved in the process of ovarian follicular development. The objective of this study is to investigate the mRNA expression pattern of \(Vps36 \) and \(Ckap2 \) genes and the effect of gonadotrophins, steroid hormones and transforming growth factor-\(\beta \) (TGF-\(\beta \)) on their expression in chicken follicles. We demonstrated that the expression of the head-to-head genes \(Vps36 \) and \(Ckap2 \) is regulated by FSH and estradiol in chicken follicles.

2 Materials and methods

2.1 Birds, follicle collection, and separation of granulosa and theca layer cells

The Hy-Line Brown laying hens were housed under standard conditions with food and water. Sexually mature hens (23 weeks old, \(n = 4 \)) were slaughtered to collect follicles of various sizes, including pre-ovulatory follicles (F1, F2, F3 and F5) and pre-hierarchical follicles (small white follicles, SWF, 2–4 mm; and small yellow follicles, SYF, 4–8 mm). Then the yolk in follicles was removed and the separated follicles were immediately frozen in liquid nitrogen. All the tissues were stored at \(-80^\circ\text{C}\) until processed. The granulosa and theca cell layers from pre-ovulatory follicle (F1, F3 and F6) were separated using a dissection microscope following the method described previously [25].

2.2 Follicle culture and treatment

The SYF of the ovaries of egg-laying hens (35–48 weeks old) were collected, then individual follicles were washed with three dishes of \(1 \times \text{ PBS (pH 7.2) } \) and placed in M199 medium (1 mL) (HyClone, Logan, UT, USA) with 1% ITS (Sigma, St. Louis, MO, USA) and seeded in 24-well culture plates at a density of one per well according to the protocol. The cultured SYF were divided into four groups: one control group and three treatment groups. The cultured SYF in treatment groups were treated with 10, 50 and 100 ng mL\(^{-1}\) of porcine FSH (Sioux Biochemical, Sisoux, Israel) and equine LH (Sigma), and the SYF that were treated with human TGF-\(\beta \)1 (Prospectbio, Rehovot, Israel) were divided into three groups (control, 2.5 and 5 ng mL\(^{-1}\)). Each group had four repeats. Then all SYF were cultured at 39°C in a water-saturated atmosphere of 95% air and 5% \(\text{ CO}_2 \) for 16 h [27]. After 16 h, the yolk in SYF was removed and the remaining SYF were immediately frozen in liquid nitrogen for RNA isolation. Each treatment was repeated at least three times.

2.3 Total RNA isolation and cDNA synthesis

Total RNA from follicles of different levels was extracted using Trizol Reagent (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s instructions and treated with DNase I (Qiagen, Beijing, China) to remove DNA contamination. Total RNA from SYF cultured and treated as above was isolated using MicroEluteTM Total RNA Kit (OmegaBiotek, Norcross, GA, USA) according to the manufacturer’s instructions. One microgram of total RNA was reverse transcribed using oligo-d(T) primer (10 \(\mu \text{mol L}^{-1} \)) and 2 \(\text{ U reverse transcriptase (Roche Applied Science, Mannheim, Germany) according to manufacturer’s protocol. The amount and integrity of isolated total RNA were measured using a spectrophotometer (Eppendorf, Hamburg, Germany) and checked by loading total RNA onto a 1% agarose gel that was stained with ethidium bromide.

2.4 Real-time quantitative RT-PCR

Chicken \(Vps36 \) and \(Ckap2 \) mRNA were quantified using 3 \(\mu \text{L} \) of the reverse transcription reaction product (equivalent of 150 ng of single-stranded cDNA) as template in real-time quantitative RT-PCR (qRT-PCR) with \(\beta\text{-actin} \) as internal control. The qRT-PCR was performed in a 20 \(\mu \text{L} \) reaction volume consisting of SYBR® Premix Ex TaqTM (Takara Biotechnology, Dalian, China) and 0.2 \(\mu \text{mol L}^{-1} \) of forward and reverse primers (Table 1) on Mx3000 Real Time PCR-Cycler (Agilent Technologies, Reno, NV, USA) with the settings: 95°C for 30 s, followed by 40 cycles of 95°C for 5 s, 55°C for 30 s, and 72°C for 25 s. At the end of amplification, a melting curve analysis was performed to ensure the specificity of the amplification.

Table 1	Oligonucleotide primer sequences for real-time quantitative PCR		
Primer	GenBank accession number	Sequence	Product size/bp
\(Vps36 \) Sense	XM_417077	5’-TTGTAAGATGCTGGAGCCCG-3’	187
\(Vps36 \) Antisense		5’-TTAGAGAAACAGACATTCCCACC-3’	
\(Ckap2 \) Sense	NM_001006274	5’-CTGGATGCGCTTGAAACAGA-3’	168
\(Ckap2 \) Antisense		5’-TCTATCACAGCTCCCCCATC-3’	
\(\beta\text{-actin} \) Sense	NM_205518	5’-TGGATGATGATATTGCTGC-3’	253
\(\beta\text{-actin} \) Antisense		5’-ATCTTTCCTCATATCATCCC-3’	
confirm the presence of a single amplification product. Each sample was run in duplicate to obtain average log-linear threshold (CT) values for *Vps36* and *Ckap2* mRNA and β-actin mRNA. The efficiencies were close to 100%, allowing the use of the 2-ΔΔCT method for calculation of relative gene expression [28]. All qRT-PCR were performed at least in triplicate and with a negative control. The expression of chicken *Vps36* and *Ckap2* mRNA in different sized follicles and in cultured SYF was examined individually, except that for SWF, due to their small sizes, three to four were pooled for analysis.

2.5 Statistical analysis

For the quantitative measurement of the mRNA levels of *Vps36* and *Ckap2* genes in follicles, values are expressed as the means±SEM. Data from the experiments were analyzed by one-way analysis of variance (ANOVA) followed by the Duncan’s multiple range test. When *P* < 0.05, the difference was considered as significant.

3 Results

3.1 Expression of *Vps36* and *Ckap2* mRNA in follicles

The mRNA expression pattern of chicken *Vps36* and *Ckap2* genes were investigated in chicken follicles of various sizes, i.e. SWF, SYF and from F5 to F1. The mRNA expression of chicken *Vps36* gene was markedly reduced from SWF to SYF (*P* < 0.05), then remains stable from F5 to F1 follicles (Fig. 1a). The expression of chicken *Ckap2* mRNA was progressively reduced from SWF to F2 follicles (*P* < 0.05) and then slightly increased in F1 follicles (Fig. 1b). Both *Vps36* and *Ckap2* exhibited the highest mRNA expression levels in chicken SWF. The expression of *Vps36* and *Ckap2* mRNA were detected in both granulosa and theca layers of chicken pre-ovulatory follicles, and the expression of *Ckap2* in theca layers was slightly higher than in granulosa cells (Fig. 2).

3.2 Effect of FSH and LH on the expression of *Vps36* and *Ckap2* mRNA in SYF

The expression of chicken *Vps36* and *Ckap2* mRNA in SYF was significantly decreased in response to FSH treatment (*P* < 0.05, Fig. 3a). The effect of FSH on chicken *Vps36* and *Ckap2* mRNA expression was not significant by different concentrations (10, 50 and 100 ng·mL⁻¹). LH treatment in chicken SYF produced no significant effect on mRNA expression of *Vps36* and *Ckap2* genes (Fig. 3b).

3.3 Effect of E2 and P4 on *Vps36* and *Ckap2* mRNA expression in SYF

In SYF, E2 treatment for 16 h resulted in a significant decrease in the mRNA expression of chicken *Vps36* and *Ckap2* genes (*P* < 0.05, Fig. 4a). With the increasing concentration of E2, a gradual decrease in mRNA expression level of chicken *Vps36* was observed. Treatment of SYF with 10 ng·mL⁻¹ E2 did not affect chicken *Ckap2* mRNA expression, however, when the concentration of E2 was increased to 50 and 100 ng·mL⁻¹, *Ckap2* mRNA expression was remarkably decreased (*P* < 0.05, Fig. 4a). By contrast, P4 treatment produced no significant effect on chicken *Vps36* mRNA expression (*P* > 0.05, Fig. 4b). The same situation occurred with chicken *Ckap2* (Fig. 4b) except that *Ckap2* mRNA expression was significantly decreased after treatment with higher concentration of P4 (100 ng·mL⁻¹) compared to any other concentrations (Fig. 4b).

![Fig. 1](image_url) *Vps36* (a) and *Ckap2* (b) mRNA abundance in different sized follicles as measured by real-time quantitative RCR. The different letters above each bar indicate significant difference at *P* < 0.05. Data are means±standard error of the mean (*n* = 4). SWF (small white follicles, 2–4 mm); SYF (small yellow follicles, 4–8 mm); F5 (12–14 mm); F3 (22–24 mm); F2 (the second largest follicle); F1 (the largest follicle).
3.4 Effect of TGFβ1 on the expression of \(Vps36\) and \(Ckap2\) mRNA in SYF

In chicken SYF, the expression of \(Vps36\) mRNA levels was not significantly affected by TGFβ1 at the concentrations of 2.5 and 5.0 ng\(\cdot\)mL\(^{-1}\) (Fig. 5). When the concentration of TGFβ1 was increased, the chicken \(Ckap2\) mRNA expression level was gradually decreased, but the effect was not significant (Fig. 5).

4 Discussion

The process of ovarian follicle development in vertebrates is closely associated with the functional differentiation of granulosa cells. In the process of chicken follicular development, through selection from the pool of SYF, follicles successively become dominant. The functional differentiation of granulosa cell regulated by hormone and many paracrine/autocrine factors is coupled with changes in the expression level of many related genes. By cDNA-
investigated.

different sized follicles, as well as in cultured SYF, were expression pattern and regulation of these two genes in ovulation remains unknown. Therefore, in this study, the more active in SWF than any other sized follicles. be postulated that the cellular process, mentioned above, is involved in follicle recruitment, which is likely to be a previous study that the regulatory mechanism on the transcription of head-to-head genes is similar [30].

Follicle-stimulating hormone promotes the development of granulosa cells, and causes them to proliferate, subsequently differentiate, and finally to become steroidogenic via de novo synthesis of steroidogenic factors, steroidogenic enzymes, and transcription factors [31–35]. Transcription factors like AP-1, CBP, Egr-1, SF-1, and SP1 were suggested to be regulated through the ERK signaling pathway that is stimulated by FSH [36]. It is also reported that FSH promotes rapid activation of protein kinase A (PKA) [37]. The cAMP-response-element binding-protein (CREB) is the best-known transcription factor regulated by PKA [38,39] and was initially predicted to regulate expression of most, if not all, PKA-regulated target genes in granulosa cells. In this study, bioinformatics analysis revealed two CREB binding sites in Vps36 gene (data not shown), indicating a PKA-CREB pathway that FSH regulates Vps36 transcription. The biological actions of estrogens are mediated by estrogen binding to one of two specific estrogen receptors, ERα and ERβ, which belong to the nuclear receptor superfamily [40]. Bioinformatics analysis shows that both Vps36 and Ckap2 genes contain ERα binding sites. We postulate β-estradiol inhibits the mRNA expression of Vps36 and Ckap2 mainly through the ERα pathway, but this idea requires investigation.

5 Conclusions

In this study, we found that Vps36 and Ckap2 were highly expressed in pre-hierarchical follicles. The mRNA expression of Vps36 and Ckap2 in chicken SYF was strongly inhibited by FSH and estrogen treatment. In addition, the head-to-head genes of Vps36/Ckap2 exhibit similar expression and regulatory modes in chicken follicles. These results indicate that Vps36 and Ckap2 are important in follicle development.

Acknowledgements This work was funded by the National Natural Science Foundation of China (30871777), Platform Construction of Genetic Resources of Livestock and Poultry Breeds in China (2005DKA21101) and Agricultural Elite Breeds (Poultry) Project of Shandong Province (2009LZ09-03).

Compliance with ethics guidelines Xinxing Cui, Chunhong Yang, Li Kang, Guiyu Zhu, Qingqing Wei and Yunliang Jiang declare that they have no conflict of interest or financial conflicts to disclose.
References

1. Henne W M, Buchkovich N J, Emr S D. The ESCRT pathway. Developmental Cell, 2011, 21(1): 77–91
2. Katzmann D J, Odorizzi G, Emr S D. Receptor downregulation and multivesicular-body sorting. Nature Reviews-Molecular Cell Biology, 2002, 3(12): 893–905
3. Williams R L, Urbé S. The emerging shape of the ESCRT machinery. Nature Reviews-Molecular Cell Biology, 2007, 8(5): 355–368
4. Babst M. A protein’s final ESCRT. Traffic, 2005, 6(1): 2–9
5. Alam S L, Langelier C, Whitby F G, Koirala S, Robinson H, Hill C P, Sundquist W I. Ubiquitin interactions of NZF zinc fingers. The EMBO Journal, 2004, 23(7): 1411–1421
6. Alam S L, Langelier C, Whitty F G, Koirala S, Robinson H, Hill C P, Sundquist W I. Structural basis for ubiquitin recognition by the human ESCRT-II EAP45 GLUE domain. Nature Structural & Molecular Biology, 2006, 13(11): 1029–1030
7. Slaugsvold T, Aasland R, Hirano S, Bache K G, Raiborg C, Trambiolo D, Watsuki S, Stenmark H. Eap45 in mammalian ESCRT-II binds ubiquitin via a phosphoinositide-interacting GLUE domain. The Journal of Biological Chemistry, 2005, 280(20): 19600–19606
8. Hirano S, Suzuki N, Slaugsvold T, Kawasaki M, Trambiolo D, Kato R, Stenmark H, Watsuki S. Structural basis of ubiquitin recognition by mammalian Eap45 GLUE domain. Nature Structural & Molecular Biology, 2006, 13(11): 1031–1032
9. Raymond C K, Howald-Stevenson I, Vater C A, Stevens T H. Morphological classification of the yeast vacuolar protein sorting mutants: evidence for a prevacuolar compartment in class E vps mutants. Molecular Biology of the Cell, 1992, 3(12): 1389–1402
10. Herz H M, Woodfield S E, Chen Z, Bolduc C, Bergmann A. Common and distinct genetic properties of ESCRT-II components in Drosophila. PLoS ONE, 2009, 4(1): e4165
11. Irimi U, St Johnston D. bicoid RNA localization requires specific binding of an endosomal sorting complex. Nature, 2007, 445(7127): 554–558
12. Whitfield M L, Sherlock G, Saldanha A J, Murray J I, Ball C A, Alexander K E, Mataje J C, Perou C M, Hurt M M, Brown P O, Botstein D. Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Molecular Biology of the Cell, 2002, 13(6): 1977–2000
13. Jeon S M, Choi B, Hong K U, Kim E, Seong Y S, Bae C D, Park J. A cytoskeleton-associated protein, TMAP/Ckap2, is involved in the proliferation of human foreskin fibroblasts. Biochemical and Biophysical Research Communications, 2006, 348(1): 222–228
14. Hong K U, Park Y S, Seong Y S, Kang D, Bae C D, Park J. Functional importance of the anaphase-promoting complex-Cdh1-mediated degradation of TMAP/Ckap2 in regulation of spindle function and cytokinesis. Molecular and Cellular Biology, 2007, 27(10): 3667–3681
15. Eichmüller S, Usener D, Dummer R, Stein A, Thiel D, Schadendorf D. Serological detection of cutaneous T-cell lymphoma-associated antigens. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(2): 629–634
16. Bae C D, Sung Y S, Jeon S M, Suh Y, Yang H K, Kim Y I, Park K H, Choi J, Ahn G, Park J. Up-regulation of cytoskeletal-associated protein 2 in primary human gastric adenocarcinomas. Journal of Cancer Research and Clinical Oncology, 2003, 129(11): 621–630
17. Jin Y, Murakumo Y, Ueno K, Hashimoto M, Watanabe T, Shimoyama Y, Ichihara M, Takahashi M. Identification of a mouse cytoskeleton-associated protein, Ckap2, with microtubule-stabilizing properties. Cancer Science, 2004, 95(10): 815–821
18. Johnson A L. Regulation of follicle differentiation by gonadotropins and growth factors. Poultry Science, 1993, 72(5): 867–873
19. You S, Bridgham J T, Foster D N, Johnson A L. Characterization of the chicken follicle-stimulating hormone receptor (cFSH-R) complementary deoxyribonucleic acid, and expression of cFSH-R messenger ribonucleic acid in the ovary. Biology of Reproduction, 1996, 55(5): 1055–1062
20. Calvo F O, Bahr J M. Adenyl cyclase system of the small preovulatory follicles of the domestic hen: responsiveness to follicle-stimulating hormone and luteinizing hormone. Biology of Reproduction, 1983, 29(3): 542–547
21. Johnson A L, Bridgham J T, Wagner B. Characterization of a chicken luteinizing hormone receptor (cLH-R) cDNA, and expression of cLH-R mRNA in the ovary. Biology of Reproduction, 1996, 55(2): 304–309
22. Johnson A L, Bridgham J T. Regulation of steroidogenic acute regulatory protein and luteinizing hormone receptor messenger ribonucleic acid in hen granulosa cells. Endocrinology, 2001, 142(7): 3116–3124
23. Kang L, Zhang Y, Zhang N, Zang L, Wang M, Cui X, Jiang Y. Identification of differentially expressed genes in ovaries of chicken attaining sexual maturity at different ages. Molecular Biology Reports, 2012, 39(3): 3037–3045
24. Gilbert A B, Evans A J, Perry M M, Davidson M H. A method for separating the granulosa cells, the basal lamina and the theca of the preovulatory ovarian follicle of the domestic fowl (Gallus domesticus). Journal of Reproduction and Fertility, 1977, 50(1): 179–181
25. Diaz F J, Anthony K, Halfhill A N. Early avian follicular development is characterized by changes in transcripts involved in steroidogenesis, paracrine signaling and transcription. Molecular Reproduction and Development, 2011, 78(3): 212–223
26. Jia Y D, Yan F F, Zeng W D, Zhang C Q. Promoting effect of IGF-I on prehierarchical follicle development in laying chickens. Scientia Agricultura Sinica, 2011, 44(20): 4295–4301 (in Chinese)
27. Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 ΔΔCT Method. Methods, 2001, 25(4): 402–408
28. Raiborg C, Stenmark H. The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature, 2009,
30. Li Y Y, Yu H, Guo Z M, Guo T Q, Tu K, Li Y X. Systematic analysis of head-to-head gene organization: evolutionary conservation and potential biological relevance. *PLoS Computational Biology*, 2006, 2(7): e74

31. Amsterdam A, Selvaraj N. Control of differentiation, transformation, and apoptosis in granulosa cells by oncogenes, oncoviruses, and tumor suppressor genes. *Endocrine Reviews*, 1997, 18(4): 435–461

32. Richards J S. New signaling pathways for hormones and cyclic adenosine 3',5'-monophosphate action in endocrine cells. *Molecular Endocrinology*, 2001, 15(2): 209–218

33. Morohashi K I, Omura T. Ad4BP/SF-1, a transcription factor essential for the transcription of steroidogenic cytochrome P450 genes and for the establishment of the reproductive function. *The FASEB Journal*, 1996, 10(14): 1569–1577

34. Omura T, Morohashi K. Gene regulation of steroidogenesis. *The Journal of Steroid Biochemistry and Molecular Biology*, 1995, 53 (1–6): 19–25

35. Amsterdam A, Rotmensch S. Structure-function relationships during granulosa cell differentiation. *Endocrine Reviews*, 1987, 8(3): 309–337

36. Hunzicker-Dunn M, Maizels E T. FSH signaling pathways in immature granulosa cells that regulate target gene expression: branching out from protein kinase A. *Cellular Signalling*, 2006, 18(9): 1351–1359

37. DeManno D A, Cottom J E, Kline M P, Peters C A, Maizels E T, Hunzicker-Dunn M. Follicle-stimulating hormone promotes histone H3 phosphorylation on serine-10. *Molecular Endocrinology*, 1999, 13(1): 91–105

38. Hagiwara M, Brindle P, Harootunian A, Armstrong R, Rivier J, Vale W, Tsien R, Montminy M R. Coupling of hormonal stimulation and transcription via the cyclic AMP-responsive factor CREB is rate limited by nuclear entry of protein kinase A. *Molecular and Cellular Biology*, 1993, 13(8): 4852–4859

39. Mukherjee A, Park-Sarge O K, Mayo K E. Gonadotropins induce rapid phosphorylation of the 3',5'-cyclic adenosine monophosphate response element binding protein in ovarian granulosa cells. *Endocrinology*, 1996, 137(8): 3234–3245

40. Moggs J G, Orphanides G. Estrogen receptors: orchestrators of pleiotropic cellular responses. *EMBO Reports*, 2001, 2(9): 775–781