Analyticity of off-shell Green's functions in superstring field theory

Ratul Mahanta
Harish-Chandra Research Institute, Allahabad, India

Based on arXiv:2009:03375 (accepted in JHEP)
Collaborator: Ritabrata Bhattacharyya (CMI)

DAE-BRNS HEP Symposium 2020
Outline

1. Green’s functions in Local QFTs some old results

2. de Lacroix-Erbin-Sen (LES) result in closed SFT

3. Generalization of the LES result

4. Discussions/remaining questions
Green's functions in Local QFTs

1. Commutator of local operators vanishes outside lightcone,
2. Existence of a complete system of (physical) states with +ve energy

Constraints on position space correlators

Primitive analyticity of off-shell momentum space Green’s functions

(Off-shell momentum space Green’s functions are defined as the Fourier Transforms of position space correlators)
Analyticity of $G(p_1, \ldots, p_n)$ on primitive domain in complex external momenta variables

Define $P_I = \sum_{a \in I} p_a$, $I \subset \{1, \ldots, n\} \setminus \emptyset$

A collection of points (p_1, \ldots, p_n) satisfying

C1. $p_1 + \cdots + p_n = 0$

C2. If $\text{Im } P_I \neq 0$ then $\text{Im } P_I$ must be timelike,
 If $\text{Im } P_I = 0$ then $-P_I^2$ must be below the threshold mass for producing multi-particle states

— Primitive domain, PD $\subset \mathbb{C}^{(n-1)D}$
For S-matrix, need to evaluate \(G(p_1, \ldots, p_n) \mid -p_a^2 = m_a^2 \) connected, amputated

C2. implies that within PD one cannot satisfy \(-p_a^2 = m_a^2 \)

PD \(\not\Rightarrow \) on-shell external momenta. We are interested in scattering amplitudes. Rescue?

\(G(p_1, \ldots, p_n) \) is a function of several complex variables
In several complex variables, sometimes the "shape" of a domain forces holomorphic extension of it to a larger domain — property of the domain, irrespective of the functions that are analytic on it

Holomorphic extension of Primitive domain includes on-shell external momenta \(\implies\) We can compute amplitudes

Properties of a subregion of PD \(\implies\) crossing symmetry of amplitudes for 2 \(\to\) 2 scattering

Bros, Epstein, Glaser (1965)
LES result in closed SFT

- Action directly written in momentum space. Has non-local vertices. No position space construction known.

- Work with perturbative expansion of $G(p_1, \ldots, p_n)$.
 Consider each Feynman diagram $F(p_1, \ldots, p_n)$.

- $F(p)$ is analytic on the domain defined by

 $\text{C1.}, \text{ C2.}, \text{ C3.}: \text{ Each } \text{Im } p_a \text{ lies on the two plane } p^0 - p^1$, if \(\text{Im } p_a \neq 0 \).

 \cite{de Lacroix, Erbin, Sen (2018)}

- Primitive domain \supset LES domain \longrightarrow crossing symmetry
Complex matrix \(\tilde{\Lambda} \), s.t. \(\tilde{\Lambda}^T \eta \tilde{\Lambda} = \eta = \) Minkowski metric in \(\mathbb{R}^D \)

Define its action on \(p \) as \(\tilde{\Lambda} p \equiv (\tilde{\Lambda} p_1, \ldots, \tilde{\Lambda} p_n) \)

Two corollaries from the LES paper

Cor1. \(F(p) \) remains analytic at \(\tilde{\Lambda} p \), if \(p \in \) LES domain

Cor2. At each \(p \in \) LES domain, we can allow a small open neighbourhood where \(F(p) \) remains analytic
Generalization of the LES result

Are \(F(p) \) analytic on the full primitive domain?

to answer this our starting point will be:
\(F(p) \) is analytic on extended LES domain (LESD+Cor1.+Cor2.)

We have not used any further input from closed SFT

Use fact — \(F(p) \) is a function of several complex variables

Show — the "shape" of the (LESD+Cor1.+Cor2.) forces a holomorphic extension to a larger subset of primitive domain
This forced holomorphic extension yields the full PD for 2-, 3- and 4-point functions.

Higher-point functions: How much of PD is recovered by this?

In general difficult to determine analytically.

5-point function: we analytically show at least a recovery of a large part of PD is guaranteed by our extension.
Primitive domain \bigcup union of a family of mutually disjoint tube domains \mathcal{T}_λ

Indexed family some index

Primitive tube, $\mathcal{T}_\lambda = \mathbb{R}^{(n-1)D} + iC_\lambda$; $C_\lambda :$ cone in $\mathbb{R}^{(n-1)D}$

typically specifying various $\text{Im } P_I$ in specific lightcone (forward/backward) determines a C_λ

For 3-point function, # primitive tubes = 6
For 4-point function, # primitive tubes = 32
For 5-point function, # primitive tubes = 370 etc.

Araki, Burgoyne ‘60; Bros, Epstein, Glaser ‘64; Lassalle ‘74; Bros, Lassalle ‘75
Identify — an open tube from (LESD+Cor1.+Cor2.) inside each primitive tube

Prove — this LES tube is (path-)connected

— also non-convex for $n \geq 3$, convex for $n = 2$

Apply — Bochner’s tube theorem on the LES tube:

Any open connected tube $\mathbb{R}^m + iA$ has a holomorphic extension to the domain $\mathbb{R}^m + i\text{Ch}(A)$

$\text{Ch}(A)$: smallest convex set containing A, called the convex hull of A
Certainly non-trivial extension for \(n \geq 3 \)

For 3-point function, \# primitive tubes = 6
For 4-point function, \# primitive tubes = 32
For 5-point function, \# primitive tubes = 370

For remaining 20 LES tubes, analytically determining their convex hulls appears to be difficult

Similar feature occurs for higher-point functions as well
Certain known sign-valued map $\lambda(I)$, $I \subsetneq \{1, \ldots, n\} \setminus \emptyset$

\mathcal{T}_λ determined by $\lambda(I) \cdot \text{Im } P_I \in$ Forward lightcone

Given any $p \in \mathcal{T}_\lambda$ can be written as a convex combination of m points taken from the LES tube that resides in \mathcal{T}_λ?

$m \leq (n - 1)D + 1$ (due to a theorem by Carathéodory)

For the cases mentioned in previous slide, we explicitly give points whose convex combination produce p.
Certain known sign-valued map $\lambda(I)$, $I \subseteq \{1, \ldots, n\} \setminus \emptyset$

\mathcal{T}_λ determined by $\lambda(I) \cdot \text{Im } P_I \in \text{Forward lightcone}$

Given any $p \in \mathcal{T}_\lambda$ can be written as a convex combination of m points taken from the LES tube that resides in \mathcal{T}_λ?

$m \leq (n - 1)D + 1$ (due to a theorem by Carathéodory)

In case of the 5-point function, for the remaining 20 tubes can we solve for points numerically? Here $n = 5$
Discussions/remaining questions

LES results are valid for ANY Feynman diagram that has NO mass-less internal propagators. Hence ours too.

Our analysis is perturbative in contrast to available analysis in Local QFT. Potential singularities from non-perturbative effect?

Green’s functions in Local QFTs and in Closed SFT are analytic on PD. Their large momentum behaviours are likely to differ.

Are higher-point functions in closed SFT analytic on full PD?

Thank you