Reducing myocardial infarct size: challenges and future opportunities

Heerajnarain Bulluck,1,2 Derek M Yellon,1,2 Derek J Hausenloy1,2,3,4

ABSTRACT
Despite prompt reperfusion by primary percutaneous coronary intervention (PPCI), the mortality and morbidity of patients presenting with an acute ST-segment elevation myocardial infarction (STEMI) remain significant with 9% death and 10% heart failure at 1 year. In these patients, one important neglected therapeutic target is ‘myocardial reperfusion injury’, a term given to the cardiomyocyte death and microvascular dysfunction which occurs on reperfusing ischaemic myocardium. A number of cardioprotective therapies (both mechanical and pharmacological), which are known to target myocardial reperfusion injury, have been shown to reduce myocardial infarct (MI) size in small proof-of-concept clinical studies—however, being able to demonstrate improved clinical outcomes has been elusive. In this article, we review the challenges facing clinical cardioprotection research, and highlight future therapies for reducing MI size and preventing heart failure in patients presenting with STEMI at risk of myocardial reperfusion injury.

INTRODUCTION
For patients presenting with an acute ST-segment elevation myocardial infarction (STEMI), the most effective therapy for reducing myocardial infarct (MI) size, preserving LV systolic function and preventing the onset of heart failure, is timely reperfusion by primary percutaneous coronary intervention (PPCI). Although, myocardial reperfusion is a pre-requisite to salvaging viable myocardium, the process of restoring coronary blood flow can paradoxically induce myocardial injury and cardiomyocyte death, thereby mitigating the full benefits of reperfusion in terms of MI size reduction—a phenomenon which has been termed ‘myocardial reperfusion injury’. The fact that a therapeutic intervention administered solely at the time of myocardial reperfusion can reduce MI size by up to half suggests that myocardial reperfusion injury may account for up to 50% of the final MI size. Although, the process of myocardial reperfusion has been optimised by advances in stent technology, new antiplatelet drugs (eg, prasugrel, ticagrelor and abximab) and novel antithrombotic agents (eg, bivalirudin therapy), the latter being provided to maintain the rheology of blood flow, there is still no effective therapy for preventing myocardial reperfusion injury in PPCI patients. Following a STEMI, the size of the resultant myocardial infarct has been strongly linked with the development of adverse LV remodelling and heart failure, and subsequent prognosis following PPCI. Larose et al have shown that an MI size of ≥23% LV volume was associated with a HR of 6 for major adverse cardiac events.

CHALLENGES FACING CLINICAL CARDIOPROTECTION RESEARCH
There are a number of challenges facing clinical cardioprotection research. First, the translation of novel cardioprotective therapies into the clinical setting for patient benefit has been extremely difficult. Extensive literature exists on the complex array of prosurvival signalling pathways which underlie cardioprotection, and the readers are referred to a number of recent reviews—in figure 1, a simplified overview is provided which illustrates some of the major prosurvival pathways that mediate cardioprotection at the time of reperfusion. These have provided researchers with a number of molecular targets for pharmacological targeting of myocardial reperfusion injury. Over the past 30–40 years, a vast number of therapies with proven efficacy for preventing myocardial reperfusion injury and reducing MI size in experimental animal studies (eg, antioxidants, magnesium, calcium-channel blockers, anti-inflammatory agents, erythropoietin, atorvastatin, glucose-insulin-potassium therapy, adenosine) have produced disappointing results when investigated in the clinical setting as adjunctive therapy to reperfusion (reviewed in Ref. 9). More recently, a number of attempts to reduce MI size in patients presenting with STEMI have also failed to meet their primary endpoint of cardioprotection—these have included studies investigating therapeutic hypothermia, targeting mitochondrial function, and modulation of nitric oxide signalling as adjuncts to myocardial reperfusion (table 1 and figure 1).

The reasons for this failure to translate cardioprotection into the clinical setting have been attributed to a number of factors including the use of inappropriate animal MI models and poorly designed clinical studies—a topic which has been discussed extensively in the literature and is highlighted in a following section.

A second challenge facing clinical cardioprotection research is that clinical outcomes of patients presenting with STEMI following PPCI continue to improve, making it increasingly difficult to demonstrate a reduction in MI size and improvement in clinical outcomes with a novel cardioprotective therapy. However, although mortality following
STEMI is in decline, the number of patients surviving STEMI and going on to develop heart failure is increasing. There remains, therefore, an unmet need to discover novel therapeutic strategies capable of preventing myocardial reperfusion injury and reducing MI size, so as to preserve LV systolic function and prevent the onset of heart failure in patients presenting with reperfused STEMI. In the next section and in tables 2 and 3 we highlight a number of therapeutic strategies, which hold promise for reducing MI size and improving clinical outcomes in patients presenting with reperfused STEMI.

POTENTIAL THERAPIES FOR REDUCING MI SIZE

Ischaemic postconditioning: interrupting myocardial reperfusion to limit MI size

Interrupting myocardial reperfusion with several short-lived episodes of myocardial ischaemia has been demonstrated in experimental animal studies to prevent myocardial reperfusion injury and reduce MI size—a phenomenon which has been termed ‘ischaemic postconditioning’ (IPost). This therapeutic approach was rapidly translated into the clinical setting by Staet et al., who demonstrated that IPost (using four 1-min low-pressure inflations and deflations of the angioplasty balloon following direct stenting of the culprit lesion) led to a 36% reduction in MI size in PPCI-treated patients presenting with STEMI. Although a number of subsequent studies have reported similar beneficial findings with IPost, there have been a substantial number of neutral studies (table 3). The reasons for this are unclear but it appears that most benefit is obtained in patients with anterior STEMI presenting with a completely occluded artery (TIMI 0).

Furthermore, the IPost protocol is best delivered following direct stenting and upstream of the stent rather than within it. Whether IPost can improve long-term clinical outcomes is not known, and is currently being investigated in the ongoing Danish Study of Optimal Acute Treatment of Patients with ST-Elevation Myocardial Infarction (DANAMI-3) trial.

Natriuretic peptide

Experimental animal studies have found that administering atrial natriuretic peptide (ANP) prior to myocardial reperfusion can reduce MI size through the activation of known prosurvival signalling pathways. Kitakaze et al. translated this therapeutic approach in a large clinical study comprising 569 patients presenting with STEMI, in which administering Carperitide (an ANP analogue) at the time of PPCI was associated with a 14.7% reduction in enzymatic MI size (table 2). Further studies are required to confirm these findings and investigate whether this therapeutic approach can improve clinical outcomes in patients presenting with reperfused STEMI.

Ciclosporin-A: targeting the mitochondrial permeability transition pore

The opening of the mitochondrial permeability transition pore (MPTP) in the first minutes of reperfusion is a critical mediator of reperfusion-induced cardiomyocyte death, and preventing its opening using pharmacological inhibitors of the MPTP such as ciclosporin-A (CsA) has been reported in experimental studies to limit MI size. The first study to translate this therapeutic approach into the clinical setting was by Piot et al. who found...
Table 1: Recent attempts to reduce MI size in reperfused patients presenting with STEMI

Clinical study	Therapeutic intervention (patient population)	N	Main outcomes	Mechanism of cardioprotection potential reasons for neutral results
Therapeutic hypothermia				
Erlinge et al\(^{10}\) **CHILL-MI**	IV 600 to 2000 mL cold saline and endovascular cooling prior to PPCI for 1h to cool to 34.7°C	120	No effect on primary end point of MI size (CMR at 4 days) Delays reperfusion by 9 min	Experimental studies show that mild hypothermia, induced before reperfusion reduced MI size. The reasons for the neutral study are unclear but may relate to: 20%–27% of patients had TIMI flow of > 0 before PPCI Only 76% of patients had a temperature of <35°C at reperfusion Interestingly, post-hoc sub-group analysis revealed that patients presenting early (<4 h) with anterior STEMI had a smaller MI/AAR
Nichol et al\(^{11}\) **VELOCITY**	Peritoneal hypothermia to cool to 34.7°C	57	No effect on primary end point of MI size (CMR at 3–5 days) Delays reperfusion by 15 min Increase in stent thrombosis	The reasons for the neutral study may relate to: 1) The study being underpowered. 2) Out of 26 patients in the hypothermia arm, 6 had TIMI flow of >1 prior to PPCI and <50% achieved a temperature of <34.9°C at the time of PPCI
Targeting mitochondrial function				
Lincoff et al\(^{12}\) **PROTECTION-AMI**	IV delcaserib infusion for 2.5 h (LAD/RCA STEMI)	1010	No effect on primary end point of AUC CK-MB	Peptide inhibitor of delta-protein kinase C a major mediator of the mitochondrial apoptotic pathway which has been reported in animal studies to reduce MI size when administered prior to reperfusion. The reasons for the neutral study is unclear but may relate to: 1) 30%–40% of patients had TIMI flow of >1 before PPCI. 2) Intravenous delcaserib may take up to 30 min to reach steady state and therefore may not have been effective at reperfusion. 3) Lack of signs of toxicity raised the question of whether the dose used was sufficient
Atar et al\(^{13}\) **MITOCARE**	IV bolus of TRO40303 prior to angioplasty (All-comer STEMI, TIMI <1)	163	No effect on primary end point of 72 h AUC CK-MB/Troponin-T	This drug is an indirect inhibitor of the mitochondrial permeability transition pore which has been reported in animal studies to reduce MI size when administered prior to reperfusion. The reason for the neutral study is unclear but may relate to: 1) Relatively small MI size compared with previous studies 2) Groups were not well balanced (higher initial mean CK, less patients with TIMI 0 pre-PPCI and more patients with TIMI 0/1 post PPCI, older age by 4 years in the TRO40303 group) 3) Concerns that the dose used may not have been correct
Chakrabarti et al\(^{14}\) **EMBRACE-STEMI**	IV infusion (75 min) of Bendavia started 15 min before reperfusion (LAD STEMI, TIMI 0)	118	No effect on the primary end point of 72 h AUC CK-MB	A mitochondria-targeting peptide which has been reported in animal studies to reduce MI size when administered prior to reperfusion. The reason for the neutral study is unclear but may be because the study was underpowered. Full study results are awaited
Nitric oxide signalling				
Siddiqui et al\(^{15}\) (NIAMI)	IV sodium nitrite (70 μmol) over 5 min prior to PPCI (All-comer STEMI, TIMI <1)	229	No effect on the primary end point of 72 h AUC CK-MB	The reason for the neutral study is unclear but may relate to the route of drug administration and the fact that >90% of patient had received GTN prior to reperfusion
Jones et al\(^{16}\) **NITRITE**	IC sodium nitrite (1.8 μmol) bolus prior to angioplasty (All-comer STEMI)	80	No effect on the primary end point of MI size (as % LV mass) (on 6–8 days CMR)	The reason for the neutral study is unclear but may relate to patient selection as post-hoc subgroup analysis revealed reduced MI size in patients with LAD STEMI
NOMI NCT01398384	Inhaled nitric oxide at 80 ppm for 4 h initiated prior to PPCI	248	No effect on the primary end point of MI size (as % of LV mass) on CMR (48–72 h)	The reason for the neutral study is unclear but may relate to patient selection (post-hoc subgroup analysis revealed reduced MI size in patients with LAD STEMI) and prior dosing with IC/IV GTN as patients who were GTN-naive, there was a reduction in MI size with data on the primary end point), which investigated the effect of CsA as an adjunct to PPCI on long-term clinical outcomes, failed to show any beneficial effect on the primary combined end point of all-cause mortality, hospitalisation for heart failure and adverse LV remodelling at 1 year\(^{21}\) (table 2). The reason for this neutral result is not clear—whether it relates to the Ciclomulsion preparation used in the study or failure of the drug to reach its target is not clear.\(^{3}\) Should MPTP inhibition ever be implemented as a therapeutic approach into the clinical setting, novel, more specific MPTP inhibitors will be needed, given the potential side effects and off-target effects of CsA.

AUC, area under curve; CK-MB, creatine kinase myocardial band; CMR, cardiovascular MRI; GTN, glyceryl trinitrate; IC, intra coronary; IV, intravenous; LAD, left anterior descending artery; MI, myocardial infarct; PPCI, primary percutaneous coronary intervention; RCA, right coronary artery; STEMI, ST-segment elevation myocardial infarction; TIMI, Thrombolysis in MI.
Exenatide: lizard saliva and cardioprotection

Exenatide (Byetta), a synthetic version of exendin-4 (a peptide isolated from the saliva of the Gila lizard), is a long-acting analogue of glucagon-like peptide-1 (GLP-1), a hormone which lowers blood glucose by stimulating insulin secretion.\(^{43}\) Interestingly, GLP-1 and its analogues such as exenatide have been reported in experimental animal studies to reduce MI size through the activation of prosurvival intracellular signalling pathways when administered prior to reperfusion.\(^{44, 45}\)

Lonborg et al\(^{23}\) showed that initiating a 6 h infusion of exenatide prior to PPCI reduced MI size by 30% as measured by cardiovascular magnetic resonance (CMR) in patients presenting with STEMI, and most benefit was seen in those patients presenting <132 min from first medical contact.\(^{44}\) Woo et al\(^{44}\) also showed a significant reduction in MI size by CMR (26.4 ± 11.6 g in the placebo arm vs 12.8 ± 11.7 g in the exenatide arm: p < 0.01) in 58 patients with subcutaneous exenatide (table 2). Whether this effect of exenatide portends to improved clinical outcomes in patients presenting with reperfused STEMI is not known and remains to be determined in a large randomised clinical trial.

Remote ischaemic conditioning: transient limb ischaemia/reperfusion

Inducing brief non-lethal episodes of ischaemia and reperfusion in the arm or leg, using serial inflations and deflations (three to four 5 min cycles) of a standard blood pressure cuff placed on the upper arm or thigh, has been shown to protect the
heart against acute ischaemia-reperfusion injury (IRI)—a phenomenon known as ‘remote ischaemic conditioning’ (RIC).46–48 It has been suggested that a blood-borne factor, of as yet unknown identity, is generated in response to the limb RIC stimulus, and this then transfers the cardioprotective stimulus from the limb to the heart where prosurvival heart rhythms are regained.

Table 3 Potential mechanical strategies for reducing MI size and improving clinical outcomes in patients presenting with reperfused STEMI

Clinical study	Therapeutic intervention/patient characteristics	N	Main outcomes	Comments
Ischaemic postconditioning (major studies only)				
Staat et al47	4×1 min angioplasty balloon inflations/deflations (All comor STEMI, TIMI 0)	30	36% reduction in MI size (72 h AUC Total CK)	First study to demonstrate reduction in MI size with IPost
Thibault et al48	4×1 min angioplasty balloon inflations/deflations (All comor STEMI, TIMI 0)	38	39% reduction in MI size (6 months SPECT)	First study to demonstrate long-term cardioprotection with IPost
Sorensson et al49	4×1 min angioplasty balloon inflations/deflations (All comor STEMI, TIMI 0)	76	No difference in MI size overall	Largest neutral study with IPost. IPost performed at site of culprit lesion and MI size not measured.
Hahn et al50	4×1 min angioplasty balloon inflations/deflations (All comor STEMI, TIMI 0)	700	No difference in the primary end point of complete ST-segment resolution at 30 min post-PPCI	Recruitment complete and follow-up in process.
Hofsten et al51	4×0.5 min angioplasty balloon inflations/deflations (All comor STEMI, TIMI 0)	2000	Ongoing study	First study to investigate the effect of IPost on long-term clinical outcomes
Remote ischaemic conditioning				
Botker et al52	4×5 min arm cuff inflations/deflations in the ambulance prior to PPCI (All comor STEMI)	142	Increase in myocardial salvage index at 30 days	First study to test effect of RIC in PPCI-treated patients presenting with STEMI. Reduced MI size in LAD STEMI.
Rentoukas et al53	4×4 min arm cuff inflations/deflations at the hospital prior to PPCI (All comor STEMI)	93	Better ST segment resolution and lower peak Trop-I. Synergistic effects with morphine	
Crimi et al54	3×5-min thigh cuff inflations/deflations at onset of reperfusion by PPCI (LAD STEMI)	100	20% reduction in MI size (72 h AUC CK-MB)	First study to show benefit with RIC started at onset of reperfusion
White et al55	4×5 min arm cuff inflations/deflations at the hospital prior to PPCI (All comor STEMI)	197	27% reduction in MI size (acute CMR)	
Sloth et al56	4×5 min upper arm cuff inflations/deflations in the ambulance prior to PPCI (All comor STEMI)	251	51% reduction in composite end point of all-cause mortality, non-fatal MI, TIA or stroke, HHF at 3.8 years	First study to show an effect of RIC on long-term outcomes following PPCI (secondary end point)
Prunier et al57	4×5 min arm cuff inflations/deflations at hospital prior to PPCI with or without IPost (All comor STEMI)	151	No difference in reduction in enzymatic MI size (CK-MB) with RIC vs RIC+IPost (31% vs 19%)	First study to test the effect of a combined therapeutic approach with RIC and IPost.
Yellon et al58	4×5 min arm cuff inflations/deflations at hospital prior to thrombolysis (All comor STEMI)	519	19% reduction in enzymatic MI size (CK-MB)	First study to test the effect of RIC in patients presenting with thrombolysed STEMI
Eitel et al59	3×5 min arm cuff inflations/deflations at hospital prior to PPCI with IPost (All comor STEMI)	696	Increased myocardial salvage index (CMR at 3 days) with RIC+IPost when compared with control (49 (IQR 30–72) vs 40 (IQR 16–68), p=0.02)	Largest study to test the effect of a combined therapeutic approach with RIC and IPost. No beneficial effect with IPost alone
RIC-STEMI				
RIC-STEMI	3×5 min arm cuff inflations/deflations prior to PPCI (All comor STEMI)	492	Ongoing study	First study to investigate effect of RIC on long-term outcomes following PPCI
COND1-2/ERIC-PPCI (NCT02342522) (NCT01857414)	4×5 min arm cuff inflations/deflations prior to PPCI (All comor STEMI)	4300	Ongoing study	First study to investigate effect of RIC on long-term outcomes following PPCI

AAR, area-at-risk; AUC, area under curve; CK, creatine kinase; CK-MB, creatine kinase MB isoenzyme; CMR, cardiovascular magnetic resonance; HHF, hospitalisation for heart failure; IPost, Ischaemic postconditioning; LAD, left anterior descending artery; LVEF, left ventricular ejection fraction; MI, myocardial infarct; PPCI, primary percutaneous coronary intervention; RIC, remote ischaemic conditioning; SPECT, single-photon emission CT; STEMI, ST-segment elevation myocardial infarction; TIA, transient ischaemic attack; TIMI, Thrombolysis in Myocardial infarction; Trop, Troponin.
intracellular signalling pathways are then activated and confer cardioprotection.38

A number of proof-of-concept clinical studies have demonstrated MI size reduction using limb RIC in patients presenting with STEMI treated by either PPCI12-34 37 39 49 50 and by thrombolysis38 (table 3). Whether this simple, non-invasive, low-cost, non-pharmacological intervention can improve long-term clinical outcomes in this patient group is currently being investigated in the Effect of RIC on Clinical Outcomes in STEMI Patients Undergoing PPCI and the Effect of Remote Ischaemic Conditioning on Clinical Outcomes in STEMI Patients Undergoing PPCI (COND12/ERIC-PPCI) trial. This European multicentre (Denmark, UK and Spain) randomised clinical trial of 4300 patients presenting with STEMI will determine whether upper limb RIC applied prior to PPCI can reduce the rate of cardiac death and heart failure hospitalisation at 1 year (ClinicalTrials.gov Identifiers: NCT02342522 and NCT01857414).

Repeated RIC post MI has attracted attention as a potential chronic cardioprotective therapy. Wei et al51 demonstrated in the rat heart that daily limb RIC for 28 days prevented adverse post-MI LV remodelling. The Chronic Remote Ischemic Conditioning to Modify Post-MI Remodelling (CRIC-RCT, NCT01817114) study and the Daily Remote Ischaemic Conditioning following Acute Myocardial Infarction (DREAM, NCT01664611) study are currently investigating this therapeutic strategy (daily RIC for 1 month) on post-MI LV remodelling following PPCI.

Metoprolol: β-blockers and MI size reduction

Whether early β-blocker therapy is beneficial in patients presenting with reperfused STEMI is controversial and had not previously been investigated in the PPCI era. Using a porcine model of acute myocardial IRI, Ibáñez et al52 demonstrated that IV metoprolol administered prior to reperfusion resulted in a five-fold increase in myocardial salvage. The same researchers went on to apply this therapeutic strategy in the clinical setting by demonstrating that IV metoprolol administered in the ambulance prior to PPCI reduced MI size by 20% (assessed by CMR)32 and improved clinical outcomes in patients presenting with STEMI (as a secondary end point)25 26 (table 2). Whether this pharmacological approach to reducing MI size can improve clinical outcomes will need to be tested in a large prospectively powered randomised controlled clinical trial.

Combination reperfusion therapy: a novel therapeutic strategy

Prior attempts to reduce MI size in patients presenting with STEMI have relied on targeting one single component of myocardial reperfusion injury with a single agent. Whether, using combination reperfusion therapy can provide more effective cardioprotection against myocardial reperfusion injury remains to be investigated. In this regard, Alburquerque-Bejar et al53 have recently demonstrated an additive 26% reduction in MI size when combining RIC with insulin-like therapies (such as glucose-insulin-potassium and exenatide) in a porcine acute MI model. The Combination Therapy in Myocardial Infarction (COMBAT-MI) study (ClinicalTrials.gov Identifier: NCT02404376) will investigate the potential benefits of combined reperfusion therapy using RIC with exenatide on MI size reduction in patients presenting with STEMI treated by PPCI. Although an initial clinical study of 54 patients in patients presenting with reperfused STEMI failed to show an additive cardioprotective effect with RIC and IPost administered in combination,37 a recently published larger study of 696 patients found increased myocardial salvage in those patients administered RIC in combination with IPost when compared with controls (49 (IQR 30–72) vs 40 (IQR 16–68), p=0.02)39 (table 3).

Optimising the Clinical Translation of Cardioprotection

There are number of factors which need to be taken into consideration when designing clinical cardioprotection studies for reducing MI size in patients presenting with reperfused STEMI, as this may help facilitate the translation of novel cardioprotective therapies into the clinical setting for patient benefit.9

▸ Patient selection—where possible, consider selecting those patients presenting with STEMI who are most likely to benefit from the novel cardioprotective therapy—those presenting: early (<2–3 h as shown by Lønborg et al22 and García-Dorado et al54); with a large area-at-risk (>30% of the LV volume)39 and an occluded artery prior to PCI (TIMI <1) may be more likely to benefit from adjunctive therapy for reducing MI size. However, restricting patient selection has to be balanced with confining the testing of the novel cardioprotective therapy to a smaller selected group of patients.

▸ The cardioprotective therapy—consider only testing those novel therapies which have shown conclusive cardioprotection in a number of experimental small and large animal MI studies. In this regard, the NIH CESAR network in the USA offers the opportunity to test the cardioprotective efficacy of novel therapies in a multicentre small and large animal model setting akin to a multicentre clinical trial.55 Similarly, where possible it is important to demonstrate that the novel cardioprotective therapy is efficacious in several different clinical studies before proceeding to testing it in clinical outcomes studies.

▸ Confounders of cardioprotection—the presence of certain comorbidities (such as age, diabetes, pre-existing coronary artery disease, heart failure, hypertension, dyslipidaemia) and concomitant medication (nitrites, morphine, nicorandil, sulfonylureas, platelet inhibitors) may interfere with the efficacy of the novel cardioprotective therapy.56 Where possible this should be taken into consideration when designing experimental or clinical cardioprotection studies.

▸ Timing of the cardioprotective therapy—as myocardial reperfusion injury manifests in the first minutes of reperfusion, it is essential that the novel cardioprotective therapy is administered prior to myocardial reperfusion if it is to be effective. A number of neutral clinical studies were due to administer the cardioprotective therapy after reperfusion had already taken place.

▸ Study end points—consider selecting study end points which are most likely to be affected by the novel cardioprotective therapy—these include surrogate end points such as MI size (enzymatic, myocardial single-photon emission CT or CMR), myocardial salvage index (which is more sensitive than MI size reduction but requires the assessment of the AAR); microvascular obstruction (coronary no-reflow; index of microcirculatory resistance, or CMR), LV size and function and hard clinical end point such as heart failure hospitalisation, and cardiac death.

Future Perspectives

Clinical cardioprotection research remains a challenge—mortality rates following a PPCI-treated STEMI are in decline, which makes demonstrating a further reduction in MI size and...
improved clinical outcomes increasingly more difficult. However, an increasing number of patients are developing heart failure—as such, novel cardioprotective therapies which target myocardial reperfusion injury and reduce MI size provide the opportunity to preserve LV systolic function and prevent the onset of heart failure. The failure to translate a large number of infarct-limiting therapies into the clinical setting should not be taken as evidence that myocardial reperfusion injury does not exist in humans. Rather, it should provide the impetus to optimise the design of our experimental animal and clinical studies, and improve how we select which novel cardioprotective therapy to test in the clinical setting—this may hopefully facilitate the discovery of new effective therapies for reducing MI size and preventing heart failure in patients presenting with reperfused STEMI. Initial data suggest that using a combination of therapies to target myocardial reperfusion injury may be more beneficial than using a single therapy approach, and using this approach may result in improved clinical outcomes in this patient group.

Contributors All authors contributed to writing paper.

Funding DHJ is supported by the Rosetrees Trust, the NIHR University College London Hospitals Biomedical Research Centre and a BHF Senior Clinical Research Fellowship (FS/101039292/29). This work was undertaken at UCLH/UCL who received a proportion of funding from the Department of Health’s NIHR Biomedical Research Centres funding scheme of which DMY is a senior investigator.

Competing interests None declared.

Provenance and peer review Commissioned; externally peer reviewed.

Open Access This is an Open Access article distributed in accordance with the terms of the Creative Commons Attribution (CC BY 4.0) license, which permits others to distribute, remix, adapt and build upon this work, for commercial use, provided the original work is properly cited. See: http://creativecommons.org/licenses/by/4.0/

REFERENCES

1 Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med 2007;357:1121–35.
2 Hausenloy DJ, Yellon DM. Targeting myocardial reperfusion injury—the search continues. N Engl J Med 2015;373:1073–5.
3 Heusch G, Libby P, Gerb B, et al. Cardiovascular remodelling in coronary artery disease and heart failure. Lancet 2014;383:1933–43.
4 Bums RJ, Gibbons RJ, Qi Y, et al. The relationships of left ventricular ejection fraction, end-systolic volume index and infarct size to six-month mortality after hospital discharge following myocardial infarction treated by thrombolysis. J Am Coll Cardiol 2002;39:30–6.
5 Larose E, Rodes-Cabau J, Pibarot P, et al. Predicting late myocardial recovery and outcomes in the early hours of ST-segment elevation myocardial infarction traditional measures compared with microvascular obstruction, salvaged myocardium, and necrosis characteristics by cardiovascular magnetic resonance. J Am Coll Cardiol 2010;55:2459–69.
6 Hausenloy DJ. Cardioprotection techniques: preconditioning, postconditioning and remote conditioning (basic science). Curr Pharm Des 2013;19:4544–63.
7 Heusch G. Molecular basis of cardioprotection: signal transduction in ischemic preconditioning, post-, and remote conditioning. Circ Res 2015;116:674–99.
8 Ong SB, Dongworth RK, Cabrera-Fuentes HA, et al. Role of the MPTP in conditioning the heart—translatability and mechanism. Br J Pharmacol 2015;172:2074–84.
9 Hausenloy DJ, Erik BH, Condorelli G, et al. Translating cardioprotection for patient benefit: position paper from the Working Group of Cellular Biology of the Heart of the European Society of Cardiology. Cardiovasc Res 2013;98:7–27.
10 Erfinge D, Gobbing M, Lang I, et al. Rapid endovascular catheter core cooling combined with cold saline as an adjunct to percutaneous coronary intervention for the treatment of acute myocardial infarction. The CHILL-MI trial: a randomized controlled study of the use of central venous catheter core cooling combined with cold saline as an adjunct to percutaneous coronary intervention for the treatment of acute myocardial infarction. J Am Coll Cardiol 2014;63:1857–65.
11 Nichol G, Stockland W, Shavelle D, et al. Prospective, multicenter, randomized, controlled pilot trial of patients with ST-segment-elevation myocardial infarction. Circ Cardiovasc Interv 2015;8:e001965.
12 Lincott AM, Roe M, Aylward P, et al. Inhibition of delta-protein kinase C by desacetilser as an adjunct to primary percutaneous coronary intervention for acute anterior ST-segment elevation myocardial infarction: results of the PROTECTION AMI Randomized Controlled Trial. Eur Heart J 2014;35:2516–23.
13 Atar D, Arheden H, Berdeaux A, et al. Effect of intravenous TRO40303 as an adjunct to primary percutaneous coronary intervention for acute ST-elevation myocardial infarction: MITOCARE study results. Eur Heart J 2015;36:112–19.
14 Chakrabarti AK, Feeney K, Abzug C, et al. Rationale and design of the EMBRACE STEMI study: a phase 2a, randomized, double-blind, placebo-controlled trial to evaluate the safety, tolerability and efficacy of intravenous Bendavia on reperfusion injury in patients treated with standard therapy including primary percutaneous coronary intervention and stenting for ST-segment elevation myocardial infarction. Am Heart J 2013;165:509–14.
15 Siddiqi N, Neil C, Bruce M, et al. Intravenous sodium nitrite in acute ST-elevation myocardial infarction: a randomized controlled trial (NIAMI). Eur Heart J 2014;35:1255–62.
16 Jones DA, Pellaton C, Velmurugan S, et al. Randomized phase 2 trial of intracoronary nitrite during acute myocardial infarction. Circ Res 2015;116:437–47.
17 Lecour S, Botker HE, Condorelli G, et al. ESC working group cellular biology of the heart: position paper: improving the preclinical assessment of novel cardioprotective therapies. Cardiovasc Res 2014;104:399–411.
18 Kitakaze M, Asakura M, Kim J, et al. Human atrial natriuretic peptide and nicorandil as adjuncts to reperfusion treatment for acute myocardial infarction (J-WIND): two randomized trials. Lancet 2007;370:1483–93.
19 Piot C, Croisille P, Staat P, et al. Effect of cyclosporine on reperfusion injury in acute myocardial infarction. N Engl J Med 2008;359:473–81.
20 Mewton N, Croisille P, Gahide G, et al. Effect of cyclosporine on left ventricular remodeling after reperfused myocardial infarction. J Am Coll Cardiol 2010;55:1200–5.
21 Cung TT, Morel O, Cayla G, et al. Cyclosporine before PCI in Patients with Acute Myocardial Infarction. N Engl J Med 2015;373:1021–31.
22 Lonborg J, Vejstrup N, Kelbaek H, et al. Exenatide reduces reperfusion injury in patients with ST-segment elevation myocardial infarction. Eur Heart J 2012;33:1491–9.
23 Lonborg J, Kelbaek H, Vejstrup N, et al. Exenatide reduces final infarct size in patients with ST-segment-elevation myocardial infarction and short-duration of ischaemia. Circ Cardiovasc Des 2015;1:228–95.
24 Woo JS, Kim W, Ha SJ, et al. Cardioprotective effects of exenatide in patients with ST-segment-elevation myocardial infarction undergoing primary percutaneous coronary intervention: results of exenatide myocardial protection in revascularization study. ArtensioseklThromb Vasc Biol 2013;33:2522–60.
25 Ibáñez B, Macaya C, Sanchez-Brunete V, et al. Effect of early metoloprol on infant size in ST-segment-elevation myocardial infarction patients undergoing primary percutaneous coronary intervention: the effect of metoprolol in cardioprotection during an acute myocardial infarction (METOCARD-CNIC) Trial. Circulation 2013;128:1495–503.
26 Pizarro G, Fernandez-Friera L, Fuster V, et al. Long-term benefit of early pre-reperfusion metroprolol administration in patients with acute myocardial infarction: results from the METOCARD-CNIC trial (Effect of Metroprol in Cardioprotection During an Acute Myocardial Infarction). J Am Coll Cardiol 2014;63:2356–62.
27 Staat P, Rioufol G, Piot C, et al. Postconditioning the human heart. Circulation 2005;112:2143–8.
28 Thibault H, Piot C, Staat P, et al. Long-term benefit of postconditioning. Circulation 2008;117:1037–44.
29 Sorensen P, Saleh N, Bouvier F, et al. Effect of postconditioning on infant size in patients with ST elevation myocardial infarction. Heart 2010;96:1710–5.
30 Hahn JY, Song YB, Kim EK, et al. Ischemic preconditioning during primary percutaneous coronary intervention: the effects of postconditioning on myocardial reperfusion in patients with ST-segment elevation myocardial infarction (POST randomized trial. Circulation 2015;128:1889–96.
31 Hofsten DE, Kelbaek H, Helqvist S, et al. The Third DANISH Study of Optimal Acute Treatment of Patients with ST-segment Elevation Myocardial Infarction: Ischemic postconditioning or deferred stent implantation versus conventional primary angioplasty and complete revascularisation versus treatment of culprit lesion only: rationale and design of the DANAMI 3 trial program. Am Heart J 2015;169:613–21.
32 Botker HE, Khambata R, Schmidt MR, et al. Remote ischaemic conditioning before hospital admission, as a complement to angioplasty, and effect on myocardial salvage in patients with acute myocardial infarction: a randomised trial. Lancet 2010;375:727–34.
33 Rentoukas I, Giannopoulos G, Kaoukis A, et al. Cardioprotective role of remote ischemic preconditioning in primary percutaneous coronary intervention: enhancement by opioid action. JACC Cardiovasc Interv 2010;3:49–55.
34 Crimi G, Pica S, Raineri C, et al. Remote ischemic post-conditioning of the lower limb during primary percutaneous coronary intervention safely reduces enzymatic

Heart: first published as 10.1136/heartjnl-2015-307655 on 16 December 2015. Downloaded from http://heart.bmj.com/ on July 16, 2023 by guest. Protected by copyright.
infarct size in anterior myocardial infarction: a randomized controlled trial. JACC Cardiovasc Interv 2013;6:1055–63.
35 White SK, Frolich GM, Sado DM, et al. Remote ischemic conditioning reduces myocardial infarct size and edema in patients with ST-segment elevation myocardial infarction. JACC Cardiovasc Interv 2015;8(1 Pt B):178–88.
36 Sloth AD, Schmidt MR, Munk K et al. Improved long-term clinical outcomes in patients with ST-elevation myocardial infarction undergoing remote ischemic conditioning as an adjunct to primary percutaneous coronary intervention. Eur Heart J 2014;35:168–75.
37 Prunier F, Angoulvant D, Saint EC, et al. The RIPOST-MI study, assessing remote ischemic preconditioning alone or in combination with local ischemic postconditioning in ST-segment elevation myocardial infarction. Basic Res Cardiol 2014;109:400.
38 Yellon DM, Akbarthian AK, Balgobin V, et al. Remote ischemic conditioning reduces myocardial infarct size in STEMI patients treated by thrombolysis. J Am Coll Cardiol 2015;65:2764–5.
39 Eitel I, Stiermaier T, Rommel KP, et al. Cardioprotection by combined intrahospital remote ischemic preconditioning and postconditioning in ST-elevation myocardial infarction: the randomized LIPSIA CONDITIONING trial. Eur Heart J Published Online First: Sept 17th 2015.
40 Zhao ZQ, Morris CD, Budde JM, et al. Inhibition of myocardial apoptosis reduces infarct size and improves regional contractile dysfunction during reperfusion. Cardiovasc Res 2003;59:132–42.
41 Yang XM, Philipp S, Downey JM, et al. Atrial natriuretic peptide administered just prior to reperfusion limits infarction in rabbit hearts. Basic Res Cardiol 2006;101:311–18.
42 Ong SB, Samangouei P, Kalkhoran SB, et al. The mitochondrial permeability transition pore and its role in myocardial ischemia reperfusion injury. J Mol Cell Cardiol 2015;78C:23–34.
43 Hausenloy DJ, Yellon DM. GLP-1 Therapy: beyond glucose control. Circ Heart Fail 2008;1:147–9.
44 Bose AK, Mocanu MM, Carr RD, et al. Glucagon-like peptide 1 can directly protect the heart against ischemia/reperfusion injury. Diabetes 2005;54:146–51.
45 Timmers L, Henriques JP, de Kleijn DP, et al. Exenatide reduces infarct size and improves cardiac function in a porcine model of ischemia and reperfusion injury. J Am Coll Cardiol 2009;53:501–10.
46 Przyklenk K, Bauer B, Ovize M, et al. Regional ischemic ‘preconditioning’ protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation 1993;87:893–9.
47 Kharbanda RK, Mortensen UM, White PA, et al. Transient limb ischemia induces remote ischemic preconditioning in vivo. Circulation 2002;106:2881–3.
48 Sivaraman V, Pickard JM, Hauserly DJ. Remote ischemic conditioning: cardiac protection from afar. Anaesthesia 2015;70:732–48.
49 Munk K, Andersen NH, Schmidt MR, et al. Remote ischemic conditioning in patients with myocardial infarction treated with primary angioplasty: impact on left ventricular function assessed by comprehensive echocardiography and gated single-photon emission CT. Circ Cardiovasc Imaging 2010;3:656–62.
50 White HD, Bhutti DL, Gibson CM, et al. Outcomes with cangrelor versus clopidogrel on a background of bivalirudin: insights from the CHAMPION PHOENIX (A Clinical Trial Comparing Cangrelor to Clopidogrel Standard Therapy in Subjects Who Require Percutaneous Coronary Intervention [PCI]). JACC Cardiovasc Interv 2015;8:424–33.
51 Wei M, Xin P, Li S, et al. Repeated remote ischemic postconditioning protects against adverse left ventricular remodeling and improves survival in a rat model of myocardial infarction. JACC Cardiovasc Imaging 2010;3:656–62.
52 Ibanez B, Prat-Gonzalez S, Speidl WS, et al. Early metoprolol administration before coronary reperfusion results in increased myocardial salvage: analysis of ischemic myocardium at risk using cardiac magnetic resonance. Circulation 2007;115:2909–16.
53 Albuanque-Bejar JJ, Barba I, Inserte J, et al. Combination therapy with remote ischemic conditioning and insulin or exenatide enhances infarct size limitation in pigs. Cardiovasc Res 2015;107:246–54.
54 Garcia-Dorado D, Garcia-del-Blanco B, Dasegui J, et al. Intracoronary injection of adenosine before reperfusion in patients with ST-segment elevation myocardial infarction: a randomized controlled clinical trial. Int J Cardiol 2014;177:395–41.
55 Schwartz LL, Kloner RA, Arai AE, et al. New horizons in cardioprotection: recommendations from the 2010 national heart, lung, and blood institute workshop. Circulation 2011;124:1172–9.
56 Ferdinandy P, Hausenloy DJ, Heusch G, et al. Interaction of risk factors, comorbidities, and comedication with ischemia/reperfusion injury and cardioprotection by preconditioning, postconditioning, and remote conditioning. Pharmacol Rev 2014;66:1142–74.