A New Route to α-Carbolines Based on 6π-Electrocyclization of Indole-3-alkenyl Oximes

Sophie J. Markey, William Lewis, and Christopher J. Moody*

School of Chemistry, University of Nottingham, Nottingham NG7 2RD, U.K.
c.j.moody@nottingham.ac.uk

Received November 5, 2013

ABSTRACT

Indoles are converted into α-carbolines in four steps by acylation at C-3, Boc-protection, olefination of the resulting 3-indolyl aldehydes or ketones to give N-Boc-3-indolyl alkenyl oxime O-methyl ethers, which upon heating to 240 °C under microwave irradiation undergo loss of the Boc-group, and 6π-electrocyclization to α-carbolines, following aromatization by loss of methanol (11 examples, 30–90% yield).

In contrast to β-carbolines that are widely represented among natural products and synthetic bioactive compounds,1–3 α-carbolines (pyrido[2,3-b]indoles) are considerably less well investigated.4,5 Nevertheless there are some important examples such as the naturally occurring anticancer compounds grossularine-1 and -26 and the neuronal cell protective agent mescengricin (Figure 1).10 In the medicinal chemistry arena, α-carbolines such as the GABA modulator,11 and the inhibitor of microsomal triglyceride transport protein implitapide,12,13 have also been widely studied.

As a consequence, routes for the construction of the α-carboline nucleus are of interest, but unlike their β-carboline counterparts that are almost invariably prepared from tryptophan or tryptamine derivatives, there is no main synthetic access to the isomeric α-carbolines. Thus, α-carbolines have been obtained from 2-aminoindoles,14 by a variation of the Graebe Ullmann synthesis of

(1) Airaksinen, M. M.; Kari, I. Med. Biol. 1981, 59, 21–34.
(2) Peduto, A.; More, V.; de Capraris, P.; Festa, M.; Capasso, A.; Piacente, S.; De Martino, L.; De Feo, V.; Filosa, R. Mini-Rev. Med. Chem. 2011, 11, 486–491.
(3) Cao, R.; Peng, W.; Wang, Z.; Xu, A. Curr. Med. Chem. 2007, 14, 479–500.
(4) Smirnova, O. B.; Golovko, T. V.; Granik, V. G. Pharm. Chem. USSR 2011, 44, 654–678.
(5) Smirnova, O. B.; Golovko, T. V.; Granik, V. G. Pharm. Chem. USSR 2011, 45, 389–400.
(6) Choshi, T.; Yamada, S.; Sugino, E.; Kuwada, T.; Hibino, S. Synlett 1995, 147–148.
(7) Choshi, T.; Yamada, S.; Sugino, E.; Kuwada, T.; Hibino, S. J. Org. Chem. 1995, 60, 5899–5904.
(8) Achab, S.; Guyot, M.; Potier, P. Tetrahedron Lett. 1995, 36, 2615–2618.
(9) Miyake, F. Y.; Yakuishi, K.; Horne, D. A. Angew. Chem., Int. Ed. 2005, 44, 3260–3262.
(10) Kim, J. S.; Shin, K.; Furuha, K.; Hayakawa, Y.; Seto, H. Tetrahedron Lett. 1997, 38, 3431–3434.
carbazoles,\(^{17}\) by intramolecular Diels–Alder reaction of pyrazinones,\(^{18}\) from palladium-catalyzed reactions of anilines with 2,3-dihalopyridines,\(^{19,20}\) by cyclization of 2-isocyanato-indoles,\(^{6–8}\) and of iminyl radicals.\(^{21–24}\)

However, we were attracted by the possibility of developing a more general route based on a 6π-electrocyclic process, and we now report our initial results.

The projected precursors to α-carbolines were the 3-indolyl alkenyl oxime ethers 1, accessible from 3-acylindoles 2 (Scheme 1). 3-Acylindoles are readily available by exploiting the natural reactivity of indoles to undergo facile acylation at the 3-position. The participation of oxime ethers in 6π-electrocyclic processes is known from the work of Hibino,\(^{25}\) and the possible intermediacy of imines related to 1 has been implicated in other work\(^{23}\) and in a biomimetic synthesis of grossularine-1.\(^{9}\)

The precursors to the desired oxime ethers were 3-acylindoles 2 and phosphonates 3. The phosphonates were prepared by reaction of the corresponding carbonyl compound with O-methyl hydroxylamine, with the aldoxime precursor being prepared by acid hydrolysis of the commercially available diethyl (2,2-diethoxy)ethylphosphonate. The subsequent Horner–Wadsworth–Emmons reaction with N-Boc-protected 3-indolyl aldehydes or ketones gave the required alkenyl oxime ethers 4 generally as mixtures of E/Z-alkene isomers that could be readily separated and characterized, apart from alkene 4g which was formed as the E-alkene.

In general only one oxime isomer was observed which, on the basis of the chemical shift of the oxime RCH=NOMe proton in the \(^1\)H NMR spectrum, suggested that

Figure 1. Structures of naturally occurring and bioactive α-carbolines.

Figure 2. X-ray crystal structure of (E)-3-(1-methyl-1H-indol-3-yl)-propenal (Z)-methyl oxime.

Scheme 1. Projected Route to α-Carbolines by 6π-Electrocyclization of 3-Indoly Alkenyl Oxime Ethers

(17) Vera-Luque, P.; Alajarín, R.; Alvarez-Builla, J.; Vaquero, J. J. Org. Lett. 2006, 8, 415–418.
(18) Tahri, A.; Buyssens, K. J.; Van der Eycken, E. V.; Vandenberge, D. M.; Hoornaert, G. J. Tetrahedron 1998, 54, 13211–13226.
(19) Hostyn, S.; Van Baelen, G.; Lemiere, G. L. F.; Maes, B. U. W. Adv. Synth. Catal. 2008, 350, 2653–2660.
(20) Laha, J. K.; Petrou, P.; Cuny, G. D. J. Org. Chem. 2009, 74, 3152–3155.
(21) Tanaka, K.; Kitamura, M.; Narasaka, K. Bull. Chem. Soc. Jpn. 2005, 78, 1659–1664.
(22) Portela-Cubillo, F.; Scott, J. S.; Walton, J. C. Chem. Commun. 2007, 4041–4043.
(23) Portela-Cubillo, F.; Surgenor, B. A.; Aitken, R. A.; Walton, J. C. J. Org. Chem. 2008, 73, 8124–8127.
(24) Ono, A.; Narasaka, K. Chem. Lett. 2001, 146–147.
(25) Choshi, T.; Hibino, S. Heterocycles 2011, 83, 1205–1239.
the oximes have the \((Z)\)-geometry. In the case of oxime 4a, removal of the Boc-protecting group gave the crystalline \(E\)-alkene-\(Z\)-oxime (Figure 2), confirming the \(Z\)-stereochemistry of the oxime double bond. The olefination reaction was then extended to indole-3-carbaldehydes bearing chloro- and alkoxy-groups, and indolyl ketones with methyl or ester groups (Table 1).

Assumed that it would be cleaved under the high temperature conditions. In the event, heating 4a, as a mixture of geometric isomers, to 180°C in 1,2-dichlorobenzene gave a mixture of the desired \(\alpha\)-carboline 5a (12%) plus the Boc-deprotected starting material. Increasing the temperature to 240°C under microwave irradiation delivered the \(\alpha\)-carboline 5a in 73% yield. We assume that the reaction involves initial thermal removal of the Boc-group to give the NH indole in which isomerization of the alkene into the \(cis\)-isomer required for electrocyclization is facilitated. In support of this, prior removal of the Boc-group in 4a under hydrolytic conditions (82%) gave the corresponding NH indole that cyclized to \(\alpha\)-carboline 5a (54%) upon heating to 240°C. It would appear that the NH is essential for cyclization since the corresponding \(N\)-methyl compound does not give 9-methyl-\(\alpha\)-carboline under the same conditions. Electrocyclization of the indolyl alkenyl oxime ethers 4b–4k, starting with either \((Z)\)- or \((E)\)-alkene isomers, proceeded similarly to give a range of \(\alpha\)-carboline 5 in 30–90% yield (Table 1). The structures of the carbolines 5f and 5h were confirmed by X-ray crystallography (Figure 3).

In conclusion, we have developed a new general route to \(\alpha\)-carbolines that proceeds in just four steps from indoles.

Acknowledgment. We thank the EPSRC for DTA studentship support to S.J.M.

Supporting Information Available. All experimental procedures, copies of \(^1\)H and \(^{13}\)C NMR spectra, and cif files for X-ray structures. This material is available free of charge via the Internet at http://pubs.acs.org.

The authors declare no competing financial interest.

Table 1. Preparation of Indolyl Alkenyl Oxime Ethers 4 [Indoles, Phosphonates, 3a, \(R^2 = H\); 3b, \(R^2 = Me\)] and Their Conversion into \(\alpha\)-Carbolines 5 by \(6\pi\)-Electrocyclization

Entry	\(R^2\)	\(R^4\)	\(R^3\)	Entry	\(R^2\)	\(R^4\)	\(R^3\)	\(E\) Yield%	\(Z\) Yield%	Entry	\(R^2\)	\(R^4\)	\(R^3\)	Yield%
1	H	H	a	1	H	H	a	46	38	1	H	a	73	
2	5-OMe	H	a	2	H	b	37	25	6-OMe	36				
3	6-OMe	H	a	3	H	c	38	60	7-OMe	30				
4	5-Cl	H	a	4	H	d	49	42	6-Cl	55				
5	H	H	b	5	H	e	11	22	H	90				
6	6-OMe	H	b	6	H	f	28	62	7-OMe	77				
7	5-OMe	H	b	7	H	g	34	--	6-OMe	41				
8	H	CO\(_2\)Me	a	8	H	h	38	49	H	52				
9	H	Me	a	9	H	i	49	16\(\alpha\)	H	62				
10	H	Me	b	10	Me	j	45	23	H	65				
11	H	CO\(_2\)Me	b	11	Me	k	52	29	H	51				

\(^a\)Indole numbering. \(^b\)\(\alpha\)-Carboline numbering. \(^c\)Mixture of oxime geometric isomers.