Morphological and genetic characteristics of the novel entomopathogenic fungus *Ophiocordyceps langbianensis* (Ophiocordycipitaceae, Hypocreales) from Lang Biang Biosphere Reserve, Vietnam

Thuan Duc Lao¹, Thuy Ai Huyen Le¹ & Nguyen Binh Truong²*

An entomopathogenic fungus newly named *Ophiocordyceps langbianensis* was collected from Lang Biang Biosphere Reserve, located in Lam Dong Province, Vietnam. It is characterized as a species of *Ophiocordyceps* (Ophiocordycipitaceae, Hypocreales) having the unique characteristics of a cylindrical fertile part and several branched apical appendices. Each ascospore develops as two swollen, constricted part-spores. A phylogenetic analysis of multiple genes, including *nrLSU*, *nrSSU*, *Rpb1*, *ITS* and *Tef*, supported its systematic position in the genus of *Ophiocordyceps*; it is related to *O. brunneipunctata*. Based on morphological and phylogenetic analyses, *O. langbianensis* was confirmed as a new species from Vietnam.

The genus *Ophiocordyceps*, first established by Petch in 1931, belongs to the family Ophiocordycipitaceae, order Hypocreales, comprising approximately 250 species¹.². Originally, *Ophiocordyceps* was classified as a subgenus of *Cordyceps* by Kobayasi (1941, 1982) and Mains (1958)³–⁵. In 2007, Sung et al. established a new called family Ophiocordycipitaceae, comprising *Ophiocordyceps*, based on morphological and phylogenetic analyses⁶–⁷. The distinction of the genus *Ophiocordyceps* from *Cordyceps* was done due to the darkly pigmented stromata of *Ophiocordyceps*, which are pliant, wiry or fibrous and tough in texture, compared to the brightly pigmented stromata of *Cordyceps*⁷. Species of *Ophiocordyceps* are entomopathogenic on a wide range of insects. The hosts of species of *Ophiocordyceps* are the larvae of Coleoptera and Lepidoptera as well as the adults of Araneae, Diptera, Hemiptera, Hymenoptera, Odonata and Orthoptera⁶–⁷. Although *Ophiocordyceps* has worldwide distribution, the tropics and subtropics are where the highest numbers of the species are recorded. Moreover, it is considered that there is an underestimation of the number of *Ophiocordyceps* species.

Vietnam is located in a tropical region with terrestrial ecosystems. The forests feature a rich biodiversity of both flora and fauna due to the tropical monsoon climate with high temperature and rainfall. This is a favorable environment for the development of entomopathogenic fungi. Lang Biang Biosphere Reserve is located in Lam Dong Province and comprises a vast primitive jungle with the Lang Bian Mountain at its core, one of Vietnam’s four biodiversity centers. During our expedition to discover the diversity of entomopathogenic fungi, we collected the sample DL0017. In this study, we introduce this specimen as a new species of *Ophiocordyceps* that parasitizes the larva of *Coleoptera*. We present a morphological description and phylogenetic analysis based on the phylogenetic construction of nuclear large ribosomal subunit (nrLSU), nuclear small ribosomal subunit (nrSSU) and RNA Polymerase II Subunit B1(rpb1) of species of *Ophiocordyceps*, including this new species.

¹Faculty of Biotechnology, Ho Chi Minh City Open University, Ho Chi Minh City, Vietnam. ²Faculty of Biology, Dalat University, Dalat, Lam Dong, Vietnam. ³email: nguyentb@dlu.edu.vn
Materials and methods

Fungal specimen collection. The specimen, DL0017, used for this study was collected from Lang Biang Biosphere Reserve (N 12°2′19.0″, E108°26′04.7″, elevation 1680 m) in 9th August, 2016. The specimen, including the host, was extracted carefully, noted, and photographed in the field using a digital camera. The specimen was immediately wrapped in wax paper, placed in a collection bag, and taken to the laboratory.

Cultivation techniques. According to the identification of conidia, phialides and colony coloration, the isolate cultures were grown on YMG media, composed of 4 g/l yeast extract (Sigma-Aldrich, Germany), 10 g/l malt extract (Sigma-Aldrich, Germany), 4 g/l glucose (Sigma-Aldrich, Germany), and incubated at 20 °C for a period of 20 days with PDA media (potato extract 4 g/l, dextrose 20 g/l, agar 15 g/l; Merck, Germany).

For fruit body induction, cultures were grown on millet substrate (millet/silkworm pupae powder = 20:1 (w/w)) and brown rice substrate (brown rice/silkworm pupae powder = 20:1 (w/w)) at 20 °C under 12 h light and 12 h darkness with relative humidity of over 90%.

Morphological study: macro- and micro-morphological analysis. Morphological observations were carried out and recorded according to the guidelines of Kobayasi and Sung et al.3,4,7. The macroscopic characteristics of the fresh fruit body were carefully observed, including the stipe, stroma, etc. Moreover, the color was noted according to Kornerup and Wanscher8. Additionally, the host insect was identified based on morphological characteristics, such as mandibulate mouthparts, antennae, shape of head and thorax. For the micro-morphological analysis, one or two perithecia were removed from the stroma and placed on a microscope slide in lactophenol-cotton blue to measure the sizes and shapes of the perithecia, asci and ascospores. Finally, the nomenclatural novelty and descriptions were deposited in MycoBank.

DNA extraction, PCR amplification, target gene sequencing. Genomic DNA was isolated by using the phenol/chloroform method (pH = 8)11. The fruiting body was incubated in a lysis buffer (2.0% SDS, Tris–HCl pH 8.0, 150 mM NaCl, 10 mM EDTA, 0.1 mg/ml Proteinase K) at 65 °C overnight. The supernatant was collected by centrifugation, and a volume of 700 μL of phenol/chloroform/isoamyl alcohol (25:24:1) was supplemented and centrifuged. The supernatant was collected and precipitated with absolute isopropanol. Finally, the isolated genomic DNA was stored in Tris–EDTA buffer at − 20 °C for further studies.

The primer pairs used to amplify nrLSU, nrSSU, rpbl, ITS and Tef regions are shown in Table 1. The final volume of PCR was done in a total of 15 μL with the thermal program: 1 cycle at 95 °C for 5 min, 40 cycles at 95 °C for 30 s, X °C for 30 s, 72 °C for 2 min, 1 cycle at 72 °C for 5 min (Note: X °C is the annealing temperatures for each target gene shown in Table 1); 5 μL aliquots of amplification product were electrophoresed on a 2.0% agarose gel and visualized in a UV transilluminator. The amplified product was sequenced at Nam Khoa (Vietnam) company.

Taxa and nrLSU, nrSSU, rpbl, ITS and tef sequences collection, DNA proofreading and phylogeny analysis. The data set of nrLSU, nrSSU, rpbl, ITS and tef sequences were established by sequences downloaded from Genbank (NCBI) and based on the previous data published by Sung et al.7. The nrLSU, nrSSU, rpbl, ITS and tef were noted with accession number, name of taxon and locality. The amplified DNA sequences were proofread to remove ambiguous signals at both ends by different software, including Seaview 4.2.12 and Chromas Lite 2.1.1. The phylogenetic tree was constructed based on neighbor-joining (NJ), maximum parsimony (MP), and maximum likelihood (ML), using Molecular Evolutionary Genetics Analysis (MEGA) version 5. Additionally, the best evolution model was predicted using jModelTest.

Results

Taxonomy. Ophiocordyceps langbianensis T. D. Lao, T. A. H. Le & N. B. Truong, sp. nov. Mycobank MB836716 Figs. 1, 2, 3.
Figure 1. Overview of *Ophiocordyceps langbianensis*. (A–D) Ecology of collected plots; (E) Stroma developing from the head of hosts; (F) Immature stromata of fungus emerging from the larva of Coleoptera; (G) Stromata in moist soil surrounded by dried leaves.

Figure 2. *Ophiocordyceps langbianensis*. (A) Stroma on host; (B–D) Fertile part and apical appendix, surface of fertile part with perithecium ostioles, cortex; (E) Host; (F) Mycelium on the host; (G) Perithecia; (H, I) Asci with thick cap; (J, K) Ascospores.
Typification. VIETNAM. Lam Dong Province, Lang Bian Biosphere Reserve, Lang Bian mountain: N12°02′19.0″, E108°26′04.7″; elevation 1680 m; humidity: over 85%; temperature: day 20 °C–22 °C, night: 14 °C–16 °C; collected between 9h00–15h00 of the day on 9 August, 2016, from the larva of a beetle of Coleoptera in moist soil surrounded by dried leaves. Truong B.N. DL0017 (Holotype DLU; Iso VNMN, DLU).

Distribution. Vietnam, only known from Lang Bian Mountain.

Etymology. “Langbianensis” refers to Lang Bian Mountain, Lam Dong province, Vietnam.

Host. On the larva of a beetle of Coleoptera. Larva: 28–32 mm long, hard-body, shiny, smooth, dark brownish yellow; body composed of 13 segments with black edges; larva with three pairs of jointed legs attached to thorax.

Habitat. Individuals of associated species appeared at the type locality, including pioneer species such as Acer laurinum (Aceraceae), Baccaurea harmandii (Euphorbiaceae), Castanopsis chinensis (Fagaceae), Eriobotrya poilanei (Rosaceae), Jasminum longisepalum (Oleaceae), Phoebe petelotii (Lauraceae) and Tetrastigma lanceolarium (Vitaceae).

Sexual morph. Stroma arising from the head of the host larva, solitary, rarely branched, 40–100 mm long; host covered with thin, tough layer of mycelium. Stipe filiform, cylindrical, 30–67 mm × 0.7–1.0 mm, pale yellow. Fertile portion, cylindrical, 7.0–14.0 mm × 1.5–2.0 mm, brownish yellow with dark brown ostiolar dots of perithecia. Apical appendices, pale yellow, 2–10 primary or secondary branches, 4.0–10.0 × 0.5 mm. Perithecia immersed, ovate or pyriform, 260–400 μm × 100–190 μm. Asci, cylindrical, 200–250 μm × 5.0–6.0 μm, with thickened cap. Ascospores filiform, multiseptate, articulated in long-chain after discharging, sometimes breaking into 1-celled part spores, cylindrical, swollen, two waist-like constrictions, 5–7.5 μm × 1.3–2 μm.

Asexual morph. Germination of ascospores after 48 h on PDA; white colony, slow growing on YMG and PDA media, 25.00 mm and 24.58 mm after 40 days (respectively); septate hyphae, branched, chlamydospores developing in intercalary or terminal cells. Aerial hyphae with divergent phialides; elliptical conidia in chains after release from the phialide. Stromata without fertile part forming on cereal substrates. Minor differences in morphological characteristics of stromata developing from different substrates. Stromata, white, branched when developing on millet substrate; brownish yellow, solitary, rarely branched, when developing on brown rice substrate.

Amplification of nrLSU, nrSSU, rpb1, ITS and tef genes. Target genes, including nrLSU, nrSSU, rpb1, ITS and tef, were successfully amplified with corresponding primers (Table 1). The bands of 950-bp, 1102-bp, 803-bps, 700-bps, and 1030-bps corresponding to the amplified nrLSU, nrSSU, rpb1, ITS and tef were observed.
in the electrophoresis on 2.0% agarose gel. The PCR products were sequenced with the signal of the peaks in both strands of target genes; the sequence was significant, unique and good for reading.

The systematic concatenated **nrLSU, **nrSSU, **rpb1, **ITS and **tef **gene dataset. To construct a phylogeny of major lineages, representative taxa were chosen based on previous study. The data set of **nrLSU, **nrSSU, **rpb1, **ITS and **tef consisted of 50, 50, 46, 39 and 42 taxa representing the morphological and ecological diversity of genera in Ophiocordycipitaceae, Clavicipitaceae, and Cordycipitaceae, including the outgroup taxon *Glomerella cingulata* (Glomerellaceae, Glomerellales) (Table 2). A combined concatenated dataset consisting of 30 representative taxa was constructed based on the list of individual target genes.

Molecular phylogeny analysis. The sequences of **nrLSU, **nrSSU, **rpb1, **ITS and **tef of DL0017 were similar to the representative sequence of *Cordyceps brunnipeunctata* (similarity > 90%), with accession numbers of DQ518756, DQ522542, DQ522369, GU723777 and DQ522324. Sequences were aligned and edited using the MEGA 5.2. Gaps were excluded from the phylogenetic analysis. The dataset of representative taxa and DL0017 target gene sequence consisted of 451 bp for **nrLSU, 674 bp for **nrSSU, 392 bp for **rpb1, 158 bp for **ITS and 790 bp for **tef. The evolution model that was most fixed with **nrLSU, **nrSSU, **rpb1, **ITS and **tef was TN93 + G, K2 + G + I, T92 + G + I, K2 + G, and TN93 + G + I respectively. The phylogenetic trees were generated with Neighbor Joining (NJ), Maximum Parsimony (MP), and Maximum Likelihood (ML) methods with replication of 1000. Based on the NJ, MP, and ML phylogenetic trees, individual **nrLSU, **nrSSU, **rpb1, **ITS, and **tef of DL0017 clustered together with *Ophiocordyces brunnipeunctata* within separate branches with credible bootstrap (> 50%), suggesting that these species are related (Table 3).

Information from molecular phylogenetic analysis based on separate genes is not enough to reconstruct trees for higher classification compared to multigene analysis. Therefore, a combined data set, including 2,319 bp of five target genes, **nrLSU-nrSSU-Rpb1-ITS-tef, was analyzed. The evolution model that was most fixed with the combined dataset was TN93 + G + I, as determined by MEGA 5.2. The phylogenetic trees, based on analysis of the combined data, could be broadly separated into three groups, which corresponded to the families of Clavicipitaceae, Ophiocordycipitaceae and Cordycipitaceae. In the phylogenetic tree, DL0017 clustered with *Ophiocordyces brunnipeunctata* with bootstrap of 100/100/100 (NJ/MP/ML phylogenetic tree) and formed a separate, monophyletic branch. Within this monophyletic branch, DL0017 and *O. brunnipeunctata* clustered together closely, suggesting that these species were truly associated (Fig. 4). The molecular phylogenetic analysis confirmed that there were differences between DL0017 and other related species.

To confirm the authenticity of DL0017 as the most closely associated with *Ophiocordyces brunnipeunctata*, the reconstruction of Neighbor-Net network of DL0017 and its allies was performed. The Neighbor-Net analysis supported the results from the phylogenetic analysis (Fig. 5). The network presented three complex groups, corresponding to three families: Clavicipitaceae, Ophiocordycipitaceae and Cordycipitaceae. The DL0017 closely clustered with Ophiocordycipitaceae complex. Additionally, speciation was observed between the cluster of DL0017 and *O. brunnipeunctata*.

Comparison of Ophiocordyces langbianensis with close species. In the phylogenetic analysis, the *Ophiocordyces langbianensis* clustered with *Ophiocordyces brunnipeunctata* with high bootstrap support, suggesting a close relationship. To confirm the authenticity of DL0017 as a new species, we compared DL0017 and its close species, *O. brunnipeunctata*. It differed from *O. brunnipeunctata* by the morphological characteristics described in Table 4. Therefore, DL0017 was confirmed as a new species, namely *O. langbianensis*.

Discussion

Lang Biang Biosphere Reserve, located in Lam Dong Province, is classified as Vietnam’s biodiversity center and considered a hotspot of fungal biodiversity, including entomopathogenic fungi. During our expedition to validate the diversity of entomopathogenic fungi in Lang Biang Biosphere Reserve, the sample DL0017 was collected.

Morphological analysis indicated that DL0017, named *Ophiocordyces langbianensis*, is a new taxon. Species belonging to the family Ophiocordycipitaceae have stromata that are darkly pigmented or rarely brightly colored), tough, fibrous, pliant, and rarely fleshy. Additionally, ascii are usually cylindrical with thickened ascus apex. Ascospores are usually cylindrical, multisepitate, and disarticulate into part-spores or non-disarticulating. Our specimen shares these common characteristics.

Based on the phylogenetic analysis, the specimen DL0017 clustered with *Ophiocordyces brunnipeunctata* in Ophiocordycipitaceae. However, the morphologies of these two species are different in many characteristics, including color, size of stroma, stipe, and dots in the fertile portion. The apical appendix of *O. brunnipeunctata* lacks branching, while *O. langbianensis* has 2–10 branches. Additionally, the ascospores of *O. brunnipeunctata* break into part-spores, while the ascospores of *O. langbianensis* stick together to form a multisepitate chain, which could only be ruptured into unicellular part-spores by a strong force, while ascospores of *Cordyceps furcicaodata* often break into unicellular part-spores.
Taxon	Genus	nrLSU	nrSSU	rpb1	ITS	Tef
Claviceps fusiformis	Claviceps	U17402	U32401	-	JN049817	DQ522320
Claviceps paspali	Claviceps	U47826		-	JN049818	DQ522321
Claviceps purpurea	Claviceps	AF543789	AF543765	AY489648	KI529004	AF543778
Claviceps purpurea	Claviceps	EF469075	EF469122	EFE469087	KX977396	EFE469058
Metacordyceps chlamydosporia	Metacordyceps	DQ518758	DQ522544	DQ522372	-	EFE469069
Metacordyceps taitai	Metacordyceps	DQ543787	AF543763	DQ522383	-	AF543775
Metacordyceps langshanensis	Metacordyceps	EF468815	EF468962	-	EF468756	
Metacordyceps langshanensis	Metacordyceps	EF468814	EF468961	-	EF468755	
Conioideocrella luteostratata	Conioideocrella	EF468830	EF468995	EF489060	JN049859	EFE468801
Conioideocrella luteostratata	Conioideocrella	EF468849	EF489094	EF488905	JN049860	EFE468800
Ophiocordyceps acicularis	Ophiocordyceps	EF468805	EF468950	EF488852	JN049820	EFE468744
Ophiocordyceps acicularis	Ophiocordyceps	EF468804	EF488951	EF488853	GU723772	EFE468745
Ophiocordyceps aphyllus	Ophiocordyceps	DQ518755	DQ522541	-	-	-
Ophiocordyceps brauneipunctata	Ophiocordyceps	DQ518756	DQ522542	DQ522369	GU723777	DQ522324
Ophiocordyceps sinensis	Ophiocordyceps	EF468827	MF403011	EF488874	JN049854	EFE468767
Ophiocordyceps stylophora	Ophiocordyceps	EF468837	EF488982	EF488882	-	EFE468777
Ophiocordyceps stylophora	Ophiocordyceps	DQ521766	DQ522552	DQ522382	JN049828	DQ522337
Ophiocordyceps australis	Ophiocordyceps	DQ518768	DQ222554	DQ522385	-	-
Ophiocordyceps variabilis	Ophiocordyceps	EF468839	EF488985	EF488885	-	EFE468779
Ophiocordyceps entomohirra	Ophiocordyceps	EF468809	EF488954	EF488875	JN049850	EFE468749
Ophiocordyceps gracilis	Ophiocordyceps	EF468810	EF488955	EF488858	AJ786563	EFE468750
Ophiocordyceps gracilis	Ophiocordyceps	EF468811	EF488956	EF488959	AJ786564	EFE468751
Ophiocordyceps heteropoda	Ophiocordyceps	AYA89722	AYA89690	AYA89651	FJ76028	AYA89617
Ophiocordyceps heteropoda	Ophiocordyceps	EF468812	EF488957	EF488860	JN049852	EFE468752
Ophiocordyceps nigrella	Ophiocordyceps	EF468818	EF488963	EF488866	JN049853	EFE468758
Ophiocordyceps rhizoida	Ophiocordyceps	EF468825	EF488970	EF488873	JN049857	EFE468764
Ophiocordyceps rhizoida	Ophiocordyceps	EF468824	EF488969	EF488872	MH175420	EFE468765
Beauveria caledonica	Beauveria	AF339520	AF339570	EF490064	HQ880017	EFE469057
Cordyceps cf. pruinosa	Cordyceps	EF468820	EF488965	EF488868	-	DQ522351
Cordyceps cf. pruinosa	Cordyceps	EF468821	EF488966	EF488869	-	-
Cordyceps cf. pruinosa	Cordyceps	EF468823	EF488968	EF488871	-	EFE468761
Cordyceps cicadae	Cordyceps	MH879588	MH879636	MH885438	MH93774	-
Cordyceps cicadae	Cordyceps	MK761212	MK761207	MF416553	MH937742	-
Cordyceps kyusyuensis	Cordyceps	EF468813	EF488960	EF488863	-	-
Cordyceps militaris	Cordyceps	AYA184966	AYA184977	DQ522377	-	DQ522332
Cordyceps pruinosa	Cordyceps	AYA184968	AYA184979	DQ522397	-	EFE468763
Cordyceps scarabaeicola	Cordyceps	AF339524	AF339574	DQ522380	JN049827	DQ522335
Cordyceps staphylinidicola	Beauveria	EF468836	EF488981	EF488881	-	EFE468776
Lecanicillium antillanum	Lecanicillium	AF339536	AF339585	DQ522396	MH861888	DQ522350
Lecanicillium fusciporum	Lecanicillium	AF339549	AF339598	EF488889	-	EFE468776
Lecanicillium psalliota	Lecanicillium	AF339599	AF339608	EF488909	-	-
Lecanicillium tenuipes	Lecanicillium	AF339526	AF339576	DQ522387	JN036556	DQ522341
Cordyceps ninchikispora	Cordyceps	EF468846	EF488991	EF489000	-	EFE468795
Cordyceps ninchikispora	Cordyceps	EF468847	EF488992	EF489001	-	EFE468794
Simplicillium lamellicola	Simplicillium	AF339552	AF339601	DQ522404	MH854806	DQ522356
Simplicillium lazosonivum	Simplicillium	AF339554	AF339603	DQ522405	-	-
Simplicillium lazosonivum	Simplicillium	AF339553	AF339602	DQ522406	-	DQ522357
Simplicillium obclavatum	Simplicillium	AF339517	AF339567	-	MH860859	DQ522358
Glomerella cingulate	Colletotrichum	AF543786	AF543762	AY489659	FJ904831	AF543773
Glomerella cingulata	Colletotrichum	U48428	U48427	DQ858454	EU520087	AF543772

Table 2. Representative taxon information and GenBank accession numbers for sequences used in current study. -: no accession number recorded. *Outgroup.
The asexual morph of *O. langbianensis* consists of long and divergent phialides, elliptical conidia usually in chains considered paecilomyces-like or purpureocillium-like. Conversely, *O. bruneipunctata* produced a mononematous hirsutella-like asexual morph from colonies after 3–4 weeks.

Conclusion

We successfully applied morphological characterization in combination with phylogenetic analysis of multiple genes, including *nrLSU*, *nrSSU*, *Rpb*, *ITS*, and *Tef*, to delimit sample DL0017, collected from Lang Biang Biosphere Reserve located in Lam Dong Province, Vietnam, as a new species named *Ophiocordyceps langbianensis*, belonging to the genus of *Ophiocordyceps* (Ophiocordycipitaceae, Hypocreales).

Gene	Bootstrap value (NJ/MP/ML)	DL0017_nrlSU	Ophiocordyceps_brunneipunctata_nrlSU_DQ518756
nrLSU	90/87/91	Ophiocordyceps_brunneipunctata_nrlSU_DQ518756	
nrSSU	75/74/72	DL0017_nrSSU	Ophiocordyceps_brunneipunctata_nrSSU_DQ522542
Rpb1	100/99/98	DL0017_RPB	Ophiocordyceps_brunneipunctata_RPB_DQ522369
ITS	50/50/79	DL0017_ITS	Ophiocordyceps_brunneipunctata_ITS_DQ723777
Tef	90/90/85	DL0017_TEF	Ophiocordyceps_brunneipunctata_tef_DQ522324

Table 3. DL0017 clustered together with *Ophiocordyceps brunneipunctata* with bootstrap support.

Figure 4. Phylogenetic relationship between *O. langbianensis* and its allies based on five regions, *nrLSU*- *nrSSU*- *Rpb*- *ITS*- *Tef* data. Bootstrap values (1,000 replicates) are indicated above the nodes.
References

1. Petch, T. Notes on entomogenous fungi. Trans. Br. Mycol. Soc. 21, 34–67 (1973).
2. Spatafora, J. W. et al. New 1F1N species combinations in Ophiocordycipitaceae (Hypocreales). IMA Fungus. 6, 357–362. https://doi.org/10.5598/imafungus.2015.06.02.07 (2015).
3. Kobayasi, Y. The genus Cordyceps and its allies. Sci. Rep. Tokyo Bunrika Daigaku Sect. B 5, 53–260 (1941).
4. Kobayasi, Y. Keys to the taxa of the genera Cordyceps and Torrubiella. Trans. Mycol. Soc. Jpn. 23, 329–364 (1982).
5. Mains, E. B. North American entomogenous species of Cordyceps. Mycologia 50, 69–222 (1958).
6. Castlebury, L. A., Rossman, A. Y., Sung, G. H., Hyten, A. S. & Spatafora, J. W. Multigene phylogeny reveals new lineage for Stachybotrys chartarum, the indoor air fungus. Mycol. Res. 108, 864–872. https://doi.org/10.1017/s0953756204000607 (2004).
7. Sung, G. H. et al. Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Stud. Mycol. 57, 5–59. https://doi.org/10.3111/sim.2007.57.01 (2007).
8. Kornerup, A. & Wanscher, J. H. Methuen Handbook of Colour (Eyre Methuen, London, 1981).
9. Vilgalys, R. & Sun, B. L. Ancient and recent patterns of geographic speciation in the oyster mushroom Pleurotus revealed by phylogenetic analysis of ribosomal DNA sequences. Proc. Natl. Acad. Sci. USA 91, 4599–4603. https://doi.org/10.1073/pnas.91.10.4599 (1994).
10. White, T. J., Bruns, T., Lee, S. & Taylor, J. In PCR Protocols: A Guide to Methods and Applications 315–322 (Academic Press, London, 1990).
11. Chomczynski, P. A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques 15, 532–537 (1993).
12. Liang, Z.-Q., Liu, A. Y., Liu, M. H., Kang, J. C. The genus Cordyceps and its allies from the Kuankuoshui Reserve in Guizhou III. Fungal Divers. 14, 95–101 (2003).
13. Hywel-Jones, N. L. Cordyceps brunneipunctata sp. nov. infecting larvae in Thailand. Mycol. Res. 99, 1195–1189 (1995).
14. Samson, R. A., Mahmood, T. The genus acrophialophora (fungi, moniliales). Acta. Bot. Neerl. 19(6), 804–808 (1970).
15. Luzanga-ard, J. et al. Purpureocillium, a new genus for the medically important Paecilomyces lilacinus. FEMS Microbiol. Lett. 321(2), 141–149 (2011).

Figure 5. Reconstruction of Neighbor-Net network of DL0017 and its allies.

Table 4. Comparison between Ophiocordyceps langbianensis và Ophiocordyceps brunneipunctata. *Reference from Ophiocordyceps brunneipunctata (Hywel-Jones) G.H. Sung, J.M. Sung, Hywel-Jones & Spatafora.

	Ophiocordyceps langbianensis	Ophiocordyceps brunneipunctata*
Stromata	Arising from the head of host larva	Arising from one end of the insect larva
	Solitary, rarely branch, 40–100 mm long	Solitary, rarely up to 3, simple, 25–90 mm long
Stipe	Fibrous, cylindrical 30–67 mm × 0.7–1.0 mm, light yellow	Simple, cylindrical, 5–15 mm × 1–1.8 mm, base reddish-brown
Fertile portion	Cylindrical 7.0–14.0 mm × 1.5–2.0 mm, brownish yellow with dark brown dots, that present in the ostiole of the perithecia	Subterminal, cinnamon in color, with brown ostioles apparent, 5–15 × 1–1.8 mm
Perithecia	Embedded, ovate or pyriform, 260–400 µm × 100–190 µm	Immersed, ovate to pyriform, brown, 270–335 µm × 110–160 µm
Asci	Cylindrical, 200–250 µm × 5.0–6.0 µm, with thick cap	Hyaline, cylindrical, 280–295 µm × 6–7 µm, with prominent apical cap
Ascospores	Filiform, multiseptate, disarticulating into unicellular partspores	Filiform, filiform, flexuous, breaking into partspores
	Partspores: cylindrical, swollen, two waist-like constriction, 5.0–7.5 µm × 1.25–2.0 µm	Partspores truncate, 4–6 µm × 1–1.5 µm
Acknowledgements
We express our special thanks to National Foundation for Science and Technology Development (NAFOSTED) under the grant number 106-NN.06.2015.44, Vietnam; Ho Chi Minh City Open University for the genuine support throughout this research work under the grant number E2019.06.3. We also thank Dr. Hiep Minh Dinh, Son Kim Hoang, Hanh Van Trinh, Mai Hoang Nguyen, and Dr. Tien Van Tran for their assistance.

Author contributions
N.B.T. collected the sample DL0017. T.D.L., T.A.H.L. conceived, planned and carried out the experiments and contributed to the interpretation of the results; T.D.L. took the lead in writing the manuscript. All authors provided critical feedback and revised the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to N.B.T.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021