Vitamin D levels and mortality with SARS-COV-2 infection: a retrospective two-centre cohort study

Mansoor Zafar,1 Mangala Karkhanis,2 Muhammad Shahbaz,2 Alisha Khanna,2 Lucinda Barry,2 Saba Alam,2 Kamal Lawrence,2 Bipin Pun,2 Reem Eldeebri,2 Opeyemi Makanjuola,2 Dana Safarova,2 Mariya Farrowq,2 Hesam Nooredinavand,2 Frederic Cuison,2 Karuna Subba,2 Ratan Singh Randhawa,2 Johannes Hegner,2 Ojoefitemi Oluwamayowa,2 Amr Elyasaky,4 Bolurin Adekunle,2 Manivannan Periasamy,2 Mohamed Abdelbagi,2 Zahra Maryam,2 Bao Khuu,5 Andreia Esteves Morete,2 Giulio Ciroi,5 Steve Moran,6 William O’Neill,7 Maaryah J Zafar,8 Nadiyah Zafar,8 Mirej Patel,9 Raphael Golez,4 Abubakr Hadid,10 Tila Muhammad,11 Philip Mayhead,12 Mark Whitehead,13 Umesh Dashora14

ABSTRACT

Background The role of vitamin D in increased mortality with SARS-COV-2 virus, namely, COVID-19, remains uncertain. We analysed all the patients who were treated as COVID-19-positive with or without a positive swab and were tested for vitamin D levels.

Methods This was a retrospective, study involving 1226 patients swabbed for SARS-CoV-2 between the 10 February 2020 and 1 May 2020 at two hospitals of East Sussex Healthcare NHS Trust. Patients who were swab-positive for COVID-19 or treated as COVID-19-positive on clinical grounds even though swab results were negative were included in this study. We analysed the association of vitamin D levels and mortality, assessing linear and non-linear associations.

Results A total of 1226 patients had SARS-CoV-2 RNA swabs in this period with age range from 1 to 101 years. A cohort of 433 of these patients had swabs and recent vitamin D levels anytime in the previous 3 months. Mortality rates were not found to be associated with vitamin D levels (OR=1.04, 95% CI 0.96 to 1.12).

Conclusion Our findings suggest similar mortality risk from COVID-19 irrespective of the levels of vitamin D. Larger prospective studies will be needed to confirm these findings.

INTRODUCTION

Vitamin D has an important role in maintaining healthy teeth, bones and immunity. Sunlight remains the most important source of vitamin D in nature.1 2 Although vitamin D is available in certain foods like oily fish, eggs, fortified margarines and some others, the amount of available vitamin D is not enough even with increased consumption to meet the daily vitamin D requirement. Vitamin D is biologically inert and must undergo two successive hydroxylation in the liver and kidney to become the biologically active 1,25-dihydroxy vitamin D3.3 The two most important forms are vitamin D3 (cholecalciferol) and vitamin D2 (ergocalciferol). In contrast to vitamin D3, vitamin D2 is available as fortified food or given by the supplements. Both are bound to the vitamin D binding protein (VDBP) and transported to the liver and converted to 25-hydroxyvitamin D and are commonly agreed to be the metabolite as the major storage form of vitamin D in the body. The half-life of circulating 25-hydroxyvitamin D is 2–3 weeks. 25-Hydroxyvitamin D is converted to 24,25-dihydroxyvitamin D, which is the most abundant product of 25-hydroxyvitamin D catabolism with half-life of approximately 7 days, with serum concentrations up to approximately 10 nmol/L.4 Most of the 25-hydroxyvitamin D measured in the serum is 25-hydroxyvitamin D3. It has been linked to diabetes, different forms of cancers, cardiovascular disease, autoimmunity diseases, innate immunity and expression of over 200 different genes.3 The lockdowns and self-isolation implemented by the governments in the UK and other places in the world have raised concerns about further deficiency in vitamin D levels. The prognosis of patients infected with SARS-COV-2 remains poorly understood. Some studies have suggested association of vitamin D deficiency with COVID-19-related mortality and morbidity. Vitamin D has been stated to be protective in patients with SARS-COV-2 infection.6

The challenges during this study include the sensitivity of swab testing to accurately diagnose COVID-19, being only 70%. With a pretest probability of 50%, the post-test probability, with a negative test appearing to be 23%, would be far too high to assume someone is not infected.8 Many patients therefore were treated on clinical grounds even though the swab is negative as ‘treat as positive’ (TAP). All patients were managed as per NHS England guidelines (publications approval reference: 001559) as of 16 March 2020.10

We aimed to investigate any relationship of vitamin D level with 30-day mortality with COVID-19.

MATERIALS AND METHODS

This was a retrospective study involving 1226 patients swabbed for SARS-CoV-2 between 10
February 2020 and 1 May 2020 at Conquest Hospital and Eastbourne District General Hospital.

Demographic data, medical history, blood test results and final outcomes were analysed. A total of 433 patients were included in this study. These patients presented to accident and emergency (A & E) and were swabbed for COVID-19 and had vitamin D levels available either from the time of presentation (n=161) or within 3 months prior to the visit (n=262).

Vitamin D levels were analysed via Elecsys’ Vitamin D Total II using Cobas e411, e601 and e602 analysers by Roche Diagnostics. This assay is intended for the quantitative determination of total 25-hydroxyvitamin D in serum and plasma. The Elecsys Vitamin D Total II assay employs a VDBP labelled with a ruthenium complex as capture protein to bind 25-hydroxyvitamin D, and D₃. Cross reactivity to 24,25 dihydroxy vitamin D is blocked by a specific monoclonal antibody. Calibration is standardised using internal standards which are traceable to the ID-LC-MS/MS-25-hydroxyvitamin D reference measurement procedure.¹¹

Linear and non-linear associations of vitamin D levels with mortality were assessed. In addition, patients with vitamin D levels less than 25 nmol/L were compared with those with vitamin D levels of ≥25 nmol/L. All patients who were treated as COVID-19-positive by the attending teams due to clinical picture, for example, diarrhoea or bilateral chest X-ray infiltrates, were included in the analysis (TAP), although some of these were swab-negative. In addition, the analysis was repeated using only COVID-19-positive patients to rule out bias due to inclusion of patients without COVID-19. Furthermore, vitamin D levels were also analysed by comorbidity.

Statistical analyses
Categorical variables were expressed in terms of frequency and percentages and were compared using Z² test or Fisher’s exact test. Continuous variables were described as mean (SD) or median (IQR) and were compared between groups using two-sample t-tests or Mann-Whitney U tests. For vitamin D levels, descriptive statistics have been shown on both the original and loge-scale and include mean (SD), median (IQR) and range. Estimates of the difference in medians between groups and confidence levels have been calculated using quantile regression. Mortality was assessed using logistic regression models. Vitamin D was log-transformed to give a normal distribution before inclusion in the models. Results are presented as OR associated with a 20% increase in vitamin D. Adjustment was made for patient characteristics and comorbidities by including them as covariates. As the prevalence for some covariates was low, we used a penalised model (Firth logistic regression) to deal with any possible bias due to sparse data. A p value of <0.05 was taken to be significant. Non-linearity was assessed using restricted cubic splines. All available data over the study period were used in the analysis. A retrospective power calculation shows that the study was powered to detect an 11 nmol/L difference (or 18% decrease) in those who died compared with survivors with 80% power at the 5% significance level based on an SD of 30 nmol/L. The data were analysed using Stata V.16.

RESULTS
A total of 433 patients were tested for SARS-CoV-2 RNA swab test and had blood tests for evaluating vitamin D levels within last 3 months. The median age was 68 years, with an age range from 1 year to 101 years. There were 52 swab-positive and 381 swab-negative patients. Swab-positive patients were significantly more likely to have malignancy (11.8% vs 4.0%) and diarrhoea (26.0% vs 8.4%) comorbidities (table 1). Vitamin D levels did not differ significantly between swab-negative and swab-positive patients (table 1) with a difference between medians of −1 (95% CI −1.5 to 0.5, p=0.31).

Among the total of 433 patients, 364 (84.1%) survived, while 69 (15.9%) died within 30 days. Those who died were significantly older, more likely to be ever smokers and to have comorbidities (table 2). Those who died were also more likely to be swab-positive than survivors (20.3% vs 10.4%, p=0.02) (table 2).

Age, ever smoking and comorbidities were associated with mortality (table 2). Vitamin D levels did not differ significantly between survivors and those who died (table 2 and figure 1), with a difference between medians of 6 (95% CI −5.2 to 17.2, p=0.35).

Vitamin D levels by comorbidity are shown in figure 2. After adjustment for age, sex, ever smoking and comorbidities, no significant association was seen for vitamin D with mortality (table 3). In addition, we found no non-linear association between vitamin D and mortality (figures 3 and 4; p=0.88 and p=0.31 for the model with restricted cubic splines vs the linear model, before and after inclusion of comorbidities). In the sensitivity analysis restricting the analysis sample to those with vitamin D levels measured at presentation (n=161 patients), we found a non-significant decrease in mortality as vitamin D levels increased (table 4).

DISCUSSION
We analysed patients who were treated as COVID-19-positive with or without positive swab at two hospitals and found no difference in the mortality in people with vitamin D deficiency

Table 1	Patient characteristics and comorbidities		
Variable	Swab-negative N=381	Swab-positive N=52	Total
Age (years)	62.5 (23.5)	67.0 (18.9)	63.9 (23.0)
Sex, % male (N)	48.6 (185)	61.5 (32)	50.1 (217)
Ever smoker, % (N)	5.6 (21)	11.8 (6)	6.3 (27)
Comorbidities			
Diabetes, % (N)			
Type 1	0.8 (3)	2.0 (1)	0.9 (4)
Type 2	3.5 (13)	5.9 (3)	3.8 (16)
Diarrhoea, % (N)	8.4 (30)	26.0 (13)	10.6 (43)
IHD, % (N)	19.2 (72)	25.5 (13)	19.9 (85)
Asthma, % (N)	12.0 (45)	15.7 (8)	12.4 (53)
Hypertension, % (N)	11.4 (43)	19.6 (10)	12.4 (53)
Dementia, % (N)	9.6 (36)	11.8 (6)	9.8 (42)
Frailty, % (N)	13.3 (50)	17.7 (9)	13.8 (59)
ALD-CLD, % (N)	1.3 (5)	3.9 (2)	1.6 (7)
Malignancy, % (N)	4.0 (15)	11.8 (6)	4.9 (21)
PE, % (N)	1.1 (4)	2.0% (1)	1.2 (5)
Vitamin D, nmol/L	52.1 (30.3)	51.9 (27.8)	52.1 (30.0)
Mean (SD)	9 (195)	9.132	8-195
Median (IQR) range	3.77 (0.64)	3.79 (0.60)	3.77 (0.64)
Mean (SD)	3.93 (3.26–4.28)	3.90 (3.44–4.22)	3.93 (3.30–4.28)
Median (IQR) range	2.0–5.27	2.08–4.88	2.05–5.27
Vitamin D <25 nmol/L	23.4 (89)	19.2 (10)	22.9 (99)
ALD, alcoholic liver disease; CLD, chronic liver disease; IHD, ischaemic heart disease; PE, pulmonary embolism.			
compared with those with normal vitamin D levels after adjusting for comorbidities.

There was increased overall mortality irrespective of vitamin D levels among patients with positive COVID-19 swab tests, older patients, smokers and those with comorbidities.

We did not find an association between vitamin D levels and mortality. We have conducted a comprehensive analysis which investigated the possibility of both linear and non-linear associations.

One study has reported increased mortality with low vitamin D levels; however, the results were not adjusted for comorbidities and frailty.12 Another study found a protective role of vitamin D in patients with parkinsonism as compared with their healthy relatives as controls towards COVID-19 infection. These findings were in a specific group and may not be generalisable.13

Some previous studies have found an association between low vitamin D levels and COVID-19 infections,14 but the other studies have failed to find an association.15 Mortality data were not included in these studies.

A letter to the editor of the British Medical Journal reports increased mortality with COVID-19 in Nordic countries, Spain and Italy; however, younger people were not represented. The studies referenced looked only at the elderly population and recommended vitamin D supplements and dosing with assumption for association with other respiratory viruses in the past; therefore, findings may not be generalisable.15 This letter to the

Table 2 Patient characteristics and comorbidities by mortality

Variable	All patients	Positive patients
	Alive N=364	Deceased N=69
	Alive N=38	Deceased N=14
Age (years)	61.3 (23.5)	77.5 (13.2)
Sex, % male	48.4 (176)	59.4 (41)
Ever smoker, %	3.1 (11)	23.5 (16)
Comorbidities		
Diabetes, %		
Type 1	0.6 (2)	2.9 (2)
Type 2	0.8 (3)	19.1 (13)
Diarrhoea, %	10.7 (36)	10.1 (7)
IHD, %	13.4 (48)	54.4 (37)
Asthma, %	6.1 (22)	45.6 (31)
Hypertension, %	7.5 (27)	38.2 (26)
Dementia, %	7.8 (28)	20.6 (14)
Frailty, %	9.8 (35)	35.3 (24)
ALD-CLD, %	0.3 (1)	8.8 (6)
Malignancy, %	2.2 (8)	19.1 (13)
PE, %	0 (0)	7.4 (5)
Vitamin D (nmol/L)		
Mean (SD)	51.8 (30.6)	53.9 (26.9)
Median (IQR)	49 (26–71)	55 (28–73)
Range	8–195	10–132
Loge vitamin D		
Mean (SD)	3.76 (0.64)	3.83 (0.60)
Median (IQR)	3.89 (3.26–4.26)	4.01 (3.31–4.29)
Range	2.08–5.27	2.30–4.88
Vitamin D <25 nmol/L	23.6 (86)	18.8 (13)
COVID-19 swab-positive	10.4 (38)	20.3 (14)

Frailty: Dalhousie Frailty (Rockwood) score of 4 or more classified as frail.

ALD, alcohol liver disease; CLD, chronic liver disease; COPD, chronic obstructive pulmonary disease; IHD, ischaemic heart disease; ILD, interstitial lung disease; PE, pulmonary embolism.

Figure 1 Box plot for distribution of vitamin D levels by mortality.

Figure 2 Median vitamin D by comorbidities.
levels >10

ciency compared with 5% mortality in people with vitamin D
deficiency. One study has shown 50% mortality in people with vitamin D
deficiency compared with those with levels of >10 nmol/L. The study, however, does not comment on
comorbidity adjustment.17

Perhaps it would be more appropriate for clinicians to take
into account the overall comorbidities a patient may present
with as opposed to solely looking at vitamin D levels to assess
for COVID-19 risk, along with optimising management plan.

There were challenges during this study. This relates to
sensitivity of the swab results and clinical dilemma towards patients
presenting with symptoms and signs of COVID-19, with nega-
tive swab results, who were treated on clinical grounds as TAP.
Grädé et al performed a systematic review and summarised the
evidence from observational and randomised controlled studies
on the influence of vitamin D deficiency and its treatment on
patient outcomes. They concluded no available evidence of
general vitamin D screening in the acute setting, and hence,
vitamin D levels are not routinely done.19

In our sample of study, there were patients with vitamin D
levels less than 25 nmol/L who were compared with those
with >25 nmol/L as inclusion criteria. This was done on all
patients who had these levels done any time from admission
going back to 3 months’ time prior to admission. This may raise
the question of patients who had low vitamin D levels prior to
presentation to the hospital and perhaps were on vitamin D
supplements already towards correcting the levels. However,
there are three debatable issues. Firstly, it is suggested that it
takes 6–12 weeks for levels to normalise, and additionally, it
may require higher doses for longer periods of time to maintain
optimal blood levels of vitamin D.20 Pinzon et al have done a
study and found prevalence of vitamin D deficiency to be 90% (vitamin D levels <20 ng/mL) and 10% of insufficiency (vitamin D levels <30 ng/mL), while the incidence of diarrhoea reported
is 10%.21 Secondly, the association of diarrhoeal illness to defi-
ciency of fat-soluble vitamins including vitamin D, and the role
of diarrhoea as one of the major common symptoms of COVID-19
infection, towards malabsorption of vitamin D supplements
even if they were previously on the vitamin D supplements.22 23
Thirdly, the concerns for patients managed with intravenous
fluid resuscitation, non-invasive ventilation and intubation make it
questionable how efficient oral intake was in the face of very
limited oral intake of food or medications. For this confounding
variability, we decided to include all patients who had vitamin D
levels screened from the time of presentation to going back
to 3 months’ time, and hence, the contribution of diarrhoea and
associated malabsorption leading to persisting vitamin D
deficiency towards COVID-19 symptoms with or without the
COVID-19 swab results was included. This leaves the clinical
dilemma whether the patients who previously had low vitamin D
levels and were on supplement should they be assumed to have
corrected or near-corrected vitamin D levels, when one of the
symptoms of COVID-19 is diarrhoea with significant decreased
positive predictive value of the COVID-19 swab itself.

Our study does has several limitations. The number of events
in our study was small (n=69), raising the possibility of a false-
negative result. Our study was powered to detect an 11 nmol/L

Table 3	Firth logistic regression models for mortality by vitamin D level				
level	All patients	Swab-positive patients			
	OR (95% CI)	P value	OR (95% CI)	P value	
Unadjusted	1.04 (0.96 to 1.12)	0.37	1.05 (0.87 to 1.28)	0.60	
Model 2	1.06 (0.97 to 1.16)	0.19	1.00 (0.79 to 1.26)	0.99	
Model 3	1.09 (0.97 to 1.20)	0.09	0.94 (0.71 to 1.24)	0.66	
Model 2: adjusted for age, sex, ever smoking and swab positivity.					
Model 3: adjusted for age, sex, ever smoking, swab positivity and comorbidities.					

Figure 3 Restricted cubic splines for non-linear association of vitamin
D levels with mortality. Adjusted for age, sex, smoking and COVID-19
positivity.

Figure 4 Restricted cubic splines for non-linear association of vitamin
D levels with mortality. Adjusted for age, sex, smoking, COVID-19 positivity and comorbidities. ALD, alcoholic liver disease; CLD, chronic liver disease; COPD, chronic obstructive pulmonary disease; DMx1, diabetes mellitus type 1; DMx2, diabetes mellitus type 2; IHD, ischaemic heart disease; PE, pulmonary embolism.
difference in vitamin D levels for those who died compared with survivors, compared with a clinically important difference of 15 nmol/L defined using the distribution method (0.5 SD). Our observed difference was small (6 nmol/L, Cohen effect size d=0.2) and so unlikely to be clinically meaningful. It was an observational study with no standardisation for ethnicity, type of presentation or other factors. Patients who had swab tests done and did not require further hospital management were not tested for vitamin D levels and hence were excluded from the study. As the analysis is restricted to this group of patients, there is the possibility of selection bias (collider bias), which could bias associations with outcome. We included only patients who had vitamin D levels measured within the previous 3 months, and therefore, the results may not be generalisable for the whole population of patients. In addition, it is possible that the effect of vitamin D on mortality may be diluted if some patients took vitamin D supplementation following low results measured prior to presentation. For this reason, we repeated the analysis including only those patients with measures made at presentation and found no significant effect. In addition, the inclusion of TAP patients may have led to bias in the overall effect due to the inclusion of patients who were COVID-19-negative. While we have addressed this by also looking within swab-positive patients, this has significantly reduced the numbers, and the power is low within this group. There are similar studies towards this has significantly reduced the numbers, and the power is low within this group. There are similar studies towards comorbidities that highlight the risks of COVID-19-associated mortality, and morbidity, including vaccination for prevention of COVID-19 infection.

CONCLUSION
In conclusion, we did not find a significant relationship between vitamin D levels and mortality among COVID-19 tested or COVID-19-positive patients. The most vulnerable group was one with multiple comorbidities such as ischaemic heart disease, hypertension, chronic obstructive pulmonary disease, interstitial lung diseases, asthma, alcoholic liver disease, chronic liver diseases, dementia, frailty, current smoker, ex-smoker, diabetes mellitus type 1 and type 2.

There was increased mortality among swab-positive patients versus patients with negative TAP COVID-19 swab results (p<0.05).

Author affiliations
1Gastroenterology, GIM, Conquest Hospital, Saint Leonards on Sea, UK
2Conquest Hospital, Saint Leonards on Sea, UK
3Medicine, Conquest Hospital, Cardiff, UK
4Geriatric, Conquest Hospital, Saint Leonards on Sea, UK
5General Internal Medicine, Conquest Hospital, East Sussex healthcare NHS Trust, St. Leonards-on-sea, UK
6Microbiology, Eastbourne District General Hospital, East Sussex Healthcare NHS Trust, Eastbourne, UK
7Microbiology, Eastbourne District General Hospital, Eastbourne, UK
8Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
9Medical School and Health Science Center, University of Debrecen, Debrecen, Hungary
10General Internal Medicine, Conquest Hospital, Saint Leonards on Sea, UK
11Gastroenterology, East Sussex Hospitals NHS Trust, Saint Leonards-on-Sea, UK
12Gastroenterology, Eastbourne District General Hospital, East Sussex Healthcare NHS Trust, Eastbourne, UK
13Consultant Physician and Gastroenterologist, Conquest Hospital, Saint Leonards on Sea, UK
14Diabetes and Endocrinology and General Internal Medicine, Conquest Hospital, Saint Leonards on Sea, UK

Twitter Opeyemi Makanjuola @makanjuola and Karuna Subba @sayleeahS

Acknowledgements We thank Ms Jackie Cooper for assistance in the statistical analysis of the study. The authors also acknowledge the contribution of the Microbiology Laboratory at East Sussex Healthcare NHS Trust. We are also thankful to the ethics committee at East Sussex Healthcare NHS Trust.

Collaborators Information is entered in the paper as coauthors in the main paper as previously advised by the journal.

Contributors MZ designed the study and formed the steering group, which was responsible for ongoing evaluation for study design development, and led the methodological data collection from hospital electronic system towards comorbidities and access to blood test results. SM and WO assisted with electronic record for COVID-19 swab results for all patients from Conquest Hospital and Eastbourne District General Hospital. MZ, MK, MS, AK, LB, SA, KL, BP, RE, OM, DS, MF, HH, VC, RS, JH, FO, AE, BA, MP, MA, ZM, BK, AEM, GC, MIZ, NZ, MP, RG, AH and TM contributed with data acquisition and data entry. MZ, MK, MS, RS, RE, SA and BP were responsible for the ongoing evaluation for study design development. SA, JH, DS, BP, ZM, BK, MK, JH and MP assisted with data assimilation, assisted by all other contributors. MIZ and NZ proofread the entire data for any errors. MZ and SA verified the data. MZ acted as guarantor. Statistical analysis was led by MZ, with intellectual review and support by Ms Jackie Cooper. MZ wrote the manuscript, which was reviewed by UD, MW and PM. All authors and UD approved the final version of the manuscript.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Patient consent for publication Not required.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement Data are available upon reasonable request. All data relevant to the study are included in the article or uploaded as supplementary information. The authors have attached a supplementary Microsoft Excel (2019) file with complete data used towards statistical analysis. The data are completely anonymised.

This article is made freely available for personal use in accordance with BMJ’s website terms and conditions for the duration of the covid-19 pandemic or until otherwise determined by BMJ. You may download and print the article for any lawful,
non-commercial purpose (including text and data mining) provided that all copyright notices and trade marks are retained.

ORCID iD
Mansoor Zafar http://orcid.org/0000-0001-8220-1014

REFERENCES
1 Palacios C, Gonzalez L. Is vitamin D deficiency a major global public health problem? J Steroid Biochem Mol Biol 2014;144 Pt A:138–45.
2 MacLaughlin J, Holick MF. Aging decreases the capacity of human skin to produce vitamin D3. J Clin Invest 1985;76:1536–8.
3 Holick MF. Vitamin D: the underappreciated D-lightful hormone that is important for skeletal and cellular health. Curr Opin Endocrinol Diabetes 2002;9:87–98.
4 Bosworth CR, Levin G, Robinson-Cohen C, et al. The serum 24,25-dihydroxyvitamin D concentration, a marker of vitamin D catabolism, is reduced in chronic kidney disease. Kidney Int 2012;82:693–700.
5 Holick MF. Vitamin D deficiency. N Engl J Med 2007;357:266–81.
6 D’Avolio A, Avataneo V, Manca A, et al. 25-Hydroxyvitamin D concentrations are lower in patients with positive PCR for SARS-CoV-2. Nutrients 2020;12. doi:10.3390/nu12051359. [Epub ahead of print: 09 May 2020].
7 Hastie CE, Pell JF, Sattar N. Vitamin D and COVID-19 infection and mortality in UK Biobank. Eur J Nutr 2021;60:545–8.
8 Laird E, Rhodes J, Kenny RA. Vitamin D and inflammation: potential implications for severity of Covid-19. Ir Med J 2020;113:81.
9 Woloshin S, Patel N, Kesselheim AS. False Negative Tests for SARS-CoV-19: a retrospective observational study. University of Toronto Medical Journal 2021;13:e15490.
10 NHS England. Guidance and standard operating procedure. COVID-19 virus testing in NHS laboratories, 2020. Available: https://www.rcpath.org/uploads/assets/90111431-Raca-4614-b06633d07e2a3d91/Guidance-and-SOP-COVID-19-Testing-NHS-Laboratories.pdf
11 Roche Diagnostics. Elecsys® vitamin D total II, 2021. Available: https://diagnostics.roche.com/gb/en/products/params/elecsys-vitamin-d-total-ii.html
12 Ile PC, Stefanescu S, Smith L. The role of vitamin D in the prevention of coronavirus disease 2019 infection and mortality. Aging Clin Exp Res 2020;32:1195–8.
13 Fasano A, Cereda E, Barichella M, et al. COVID-19 in Parkinson’s disease patients living in Lombardy, Italy. Mov Disord 2020;35:1089–93.
14 Cui C, Xu P, Li G, et al. Vitamin D receptor activation regulates microglia polarization and oxidative stress in spontaneously hypertensive rats and angiotensin II-exposed microglial cells: role of renin-angiotensin system. Redox Biol 2019;26:101295.
15 Torjesen I. Covid-19: public health agencies review whether vitamin D supplements could reduce risk. BMJ 2020;369:m2475.
16 Isaia G, Giorgino R, Rini GB, et al. Prevalence of hypovitaminosis D in elderly women in Italy: clinical consequences and risk factors. Osteoporos Int 2003;14:577–82.
17 Caragnano GE, Di Lecce V, Quaranta VN, et al. Vitamin D deficiency as a predictor of poor prognosis in patients with acute respiratory failure due to COVID-19. J Endocrinol Invest 2021;44:765–71.
18 Baktash V, Hosack T, Patel N, et al. Vitamin D status and outcomes for hospitalised older patients with COVID-19. Postgrad Med J 2021;97:442–447.
19 Grädel L, Merker M, Mueller B, Schuetz P, et al. Screening and treatment of vitamin D deficiency on hospital admission: is there a benefit for medical inpatients? Am J Med 2016;129:116.e1–116.e34.
20 Webmd. Vitamin D: overview, uses, side effects, precautions, interactions, dosing and reviews, 2021. Available: https://www.webmd.com/vitamins/ai/ingredientmono-929/vitamin-d.
21 Pinzon RT, Pradana AW. Vitamin D deficiency among patients with COVID-19: case series and recent literature review. Trop Med Health 2020;48:102.
22 Bucak IH, Ozturk AB, Almis H, et al. Is there a relationship between low vitamin D and rotaviral diarrhea? Pediatr Int 2016;58:270–3.
23 Gastrointestinal Society. Vitamin D might play a role in the prevention of disease, 2021. Available: https://badgut.org/information-centre/health-nutrition/vitamin-d/.
24 Draak TPH, de Greef BTA, Faber CG, et al. The minimum clinically important difference: which direction to take. Eur J Neurol 2019;26:850–5.
25 Zafar M, Shabaz M, Karkhanis M, et al. A retrospective observational study: is absolute lymphocyte count a prognostic marker in COVID-19? Cureus 2021;13:e16554.
26 Zafar M, Randhawa RS, Hegner J. Can HbA1c levels be used as an independent marker of mortality and morbidity risk in patients with COVID-19 positive swabs? - a retrospective observational study. University of Toronto Medical Journal 2021;98:45–9 https://www.utmj.org/index.php/UTMJ/article/view/1494.
27 Zafar M, Evnetu B, Ahmed S, et al. COVID-19 vaccination-induced rash: does the choice of vaccine matter? Cureus 2021;13:e15490.