The multicomponent 2D Toda hierarchy: dispersionless limit

Manuel Mañas and Luis Martínez Alonso

Departamento de Física Teórica II, Universidad Complutense, 28040 Madrid, Spain

E-mail: manuel.manas@fis.ucm.es and luism@fis.ucm.es

Received 21 April 2009, in final form 6 October 2009
Published 5 November 2009
Online at stacks.iop.org/IP/25/115020

Abstract

The factorization problem of the multi-component 2D Toda hierarchy is used to analyze the dispersionless limit of this hierarchy. A dispersive version of the Whitham hierarchy defined in terms of scalar Lax and Orlov–Schulman operators is introduced and the corresponding additional symmetries and string equations are discussed. Then, it is shown how KP and Toda pictures of the dispersionless Whitham hierarchy emerge in the dispersionless limit. Moreover, the additional symmetries and string equations for the dispersive Whitham hierarchy are studied in this limit.

1. Introduction

In [1] the theory of the multi-component Toda hierarchy [2] was analyzed from the point of view of a factorization problem

\[g = W^{-1} \bar{W} \]

(1)

in an infinite-dimensional group and a natural formulation of the additional symmetries and the string equations of the hierarchy was given. This type of factorization problem was already used by Mulase in the KP context [3] and reformulated for the semi-infinite and infinite 2D toda lattice hierarchy in [4]. This last paper contains a discussion regarding the more appropriate construction of the Lie group, discarding the more usual ones in favor of one in which the Borel or Gauss factorization holds. In the semi-infinite case, this leads to matrices with all their principal minors different from zero, while for the infinite case the authors give a number of non-trivial constructions. These considerations extend naturally to our setting.

In the present work, we use this formulation to study the dispersionless limit of the solutions of (1). As it is known in the theory of random matrix models [5–7], the study of the large \(N \) limit can be performed in terms of the dispersionless limit of the string equations satisfied by the solution of the underlying integrable system. Note that in recent years the formalism of string equations [8] for dispersionless integrable systems [9] has been much developed [10–19]. Our present work is motivated by the applications of
multi-component integrable hierarchies [2, 20–24] to the study of the large N limit of the two-matrix model [25–28], as well as models of random matrices with external source and non-intersecting Brownian motions [30–38]. A common feature of these models is that they have an associated family of multiple orthogonal polynomials which is in turn characterized by a matrix Riemann–Hilbert (MRH) problem which is a basic ingredient to analyze the large N limit [38–41]. On the other hand, MRH problems also provide solutions of reductions of multi-component integrable hierarchies of KP or Toda type. These reductions correspond to solutions of factorization problems (1) constrained by certain types of string equations. These motivations fix the main objective of this paper; i.e., to obtain a clear understanding of how dispersive multicomponent integrable hierarchies and their string equations/additional symmetries behave when a dispersionless limit is considered. The outcome is the characterization of the dispersionless limit of the multicomponent 2D Toda hierarchy and its string equations/additional symmetries in terms of two different pictures of the dispersionless Whitham hierarchy and their corresponding dispersionless versions of string equations/additional symmetries.

In our analysis, we introduce matrix wavefunctions and scalar Lax and Orlov–Schulman operators [42] associated with the solutions to (1). We prove that the rows of the matrix wavefunctions satisfy auxiliary linear systems involving the scalar Lax operators, which constitute the dispersive versions of the genus zero dispersionless Whitham hierarchies [43]. In order to study the dispersionless limit, we assume the Takasaki–Takebe quasi-classical ansatz [44, 45] for the rows of the matrix wavefunctions. Thus, we prove that in the dispersionless limit the auxiliary linear systems reduce to systems of Hamilton–Jacobi equations that are shown to be equivalent to the dispersionless Whitham hierarchies. In particular, two natural pictures (KP and Toda types) of the dispersionless Whitham hierarchies emerge in our analysis.

An important advantage of our approach is that it yields a natural method for characterizing string equations and additional symmetries in the dispersionless limit. In particular, we characterize the dispersive analogues of the soluble string equations discussed in [46, 47].

The layout of the paper is as follows. In section 1.1, we present a summary of the relevant parts of [1] needed in the subsequent analysis. Then, in section 2 we discuss the dispersive Whitham hierarchies. We introduce a set of scalar Lax and Orlov–Schulman operators, and vector wavefunctions to deduce the corresponding auxiliary linear systems, as well as additional symmetries and string equations of dispersive type. Finally, in section 3, we discuss the aforementioned dispersionless limits. We find the Hamilton–Jacobi type equations, and then derive the KP and Toda pictures of the dispersionless Whitham hierarchy. We conclude the paper by considering the dispersionless counterparts of dispersive string equations.

1.1. Reminder

As in our previous work [1] we only consider formal series expansions in the Lie group theoretic set up without any assumption on their convergency and refer the reader to [4] for a more precise approach. Let us recall some notations and results from [1]. Given Lie algebras $g_1 \subset g_2$, and $X, Y \in g_2$ then $X = Y + g_1$ means $X - Y \in g_1$. For any Lie groups $G_1 \subset G_2$ and $a, b \in G_2$ then $a = G_1 \cdot b$ stands for $a \cdot b^{-1} \in G_1$.

Let $\mathbb{C}^{N \times N}$ denote the associative algebra of complex $N \times N$ complex matrices we will consider the linear space of sequences $f : \mathbb{Z} \to \mathbb{C}^{N \times N}$. The shift operator Λ acts on these sequences as $(\Lambda f)(n) := f(n + 1)$. A sequence $X : \mathbb{Z} \to \mathbb{C}^{N \times N}$ acts by left multiplication in this space of sequences, and therefore we may consider operators of the type $X \Lambda^j$, $(X \Lambda^j)(f)(n) := X(n) \cdot f(n + j)$. Moreover, defining the product $(X(n) \Lambda^i) \cdot (Y(n) \Lambda^j) := X(n)Y(n + i)\Lambda^{i+j}$ and extending it linearly we have that the set
\(\mathfrak{g} \) of Laurent series in \(\Lambda \) is an associative algebra, which under the standard commutator is a Lie algebra.

This Lie algebra has the following important splitting:

\[
g = g_+ + g_-. \tag{2}
\]

where

\[
g_+ = \left\{ \sum_{j \geq 0} X_j(n)\Lambda^j, X_j(n) \in \mathbb{C}^{N \times N} \right\}, \quad g_- = \left\{ \sum_{j < 0} X_j(n)\Lambda^j, X_j(n) \in \mathbb{C}^{N \times N} \right\},
\]

are Lie subalgebras of \(\mathfrak{g} \) with trivial intersection.

The group of linear invertible elements in \(\mathfrak{g} \) will be denoted by \(G \) and has \(g \) as its Lie algebra, then the splitting (2) leads us to consider the following factorization of \(g \in G \):

\[
g = g_-^{-1} \cdot g_+, \quad g_\pm \in G_\pm
\]

where \(G_\pm \) have \(g_\pm \) as their Lie algebras. Explicitly, \(G_+ \) is the set of invertible linear operators of the form \(\sum_{j \geq 0} g_j(n)\Lambda^j \), while \(G_- \) is the set of invertible linear operators of the form \(1 + \sum_{j < 0} g_j(n)\Lambda^j \). In [4] there is a discussion on the type of elements which admit this of Gaussian (or Borel) factorization.

Now we introduce two sets of indexes, \(S = \{1, \ldots, N\} \) and \(\bar{S} = \{1, \ldots, \bar{N}\} \), of the same cardinality \(N \). In what follows, we will use letters \(k, l \) and \(\bar{k}, \bar{l} \) to denote elements in \(S \) and \(\bar{S} \), respectively. Furthermore, we will use letters \(a, b, c \) to denote elements in \(S := S \cup \bar{S} \).

We define the following operators \(W_0, \bar{W}_0 \in G \):

\[
W_0 := \sum_{k=1}^{N} E_{\bar{k}k} \Lambda^t_j e^{\sum_{j=0}^{\infty} t_{\bar{j}j} \Lambda^j}, \tag{4}
\]

\[
\bar{W}_0 := \sum_{k=1}^{N} E_{\bar{k}k} \Lambda^{-t_j} e^{\sum_{j=0}^{\infty} t_{\bar{j}j} \Lambda^{-j}}. \tag{5}
\]

where \(\bar{s}_a \in \mathbb{Z}, t_{ij} \in \mathbb{C} \) are deformation parameters, that in the following will play the role of discrete and continuous times, respectively. Given an element \(g \in G \) and a set of deformation parameters \(s = (s_a)_{a \in S}, t = (t_{ij})_{i \in S, j \in \bar{S}} \) we will consider the factorization problem

\[
S(s, t) \cdot W_0 \cdot g = \bar{S}(s, t) \cdot \bar{W}_0, \quad S \in G_- \text{ and } \bar{S} \in G_+,
\]

and will confine ourselves to the zero charge sector \(|S| := \sum_{a \in S} s_a = 0 \). We define the dressing or Sato operators \(W, \bar{W} \) as follows:

\[
W := S \cdot W_0, \quad \bar{W} := \bar{S} \cdot \bar{W}_0, \tag{7}
\]

so that the factorization problem in \(G \) reads

\[
W \cdot g = \bar{W}.
\]

Observe that \(S, \bar{S} \) have expansions of the form

\[
S = I_N + \varphi_1(n)\Lambda^{-1} + \varphi_2(n)\Lambda^{-2} + \cdots \in G_-, \quad \bar{S} = \bar{\varphi}_1(n)\Lambda + \bar{\varphi}_2(n)\Lambda^2 + \cdots \in G_+.
\]

The Lax operators \(L, \bar{L}, C_{kk}, \bar{C}_{kk} \in \mathfrak{g} \) are defined by

\[
L := W \cdot \Lambda \cdot W^{-1}, \quad \bar{L} := \bar{W} \cdot \Lambda \cdot \bar{W}^{-1}, \tag{10}
\]

\[
C_{kk} := W \cdot E_{kk} \cdot W^{-1}, \quad \bar{C}_{kk} := \bar{W} \cdot E_{kk} \cdot \bar{W}^{-1} \tag{11}
\]

\[\text{Inverse Problems 25 (2009) 115020} \quad \text{M Mañas and L Martínez Alonso}\]
and have the following expansions:

\[
L = \Lambda + u_1(n) + u_2(n)\Lambda^{-1} + \cdots ,
\]

\[
\bar{L}^{-1} = \bar{u}_0(n)\Lambda^{-1} + \bar{u}_1(n) + \bar{u}_2(n)\Lambda + \cdots ,
\]

\[
C_{kk} = E_{kk} + C_{kk,1}(n)\Lambda^{-1} + C_{kk,2}(n)\Lambda^{-2} + \cdots ,
\]

\[
\bar{C}_{kk} = \bar{C}_{kk,0}(n) + \bar{C}_{kk,1}(n)\Lambda + \bar{C}_{kk,2}(n)\Lambda^2 + \cdots .
\]

Now we introduce some further notation

(i) \(\partial_{ja} := \frac{\partial}{\partial t^a} \), for \(a = S \) and \(j = 1, 2, \ldots \)

(ii) Given \(K = (a, b) \) the basic zero-charge shift operators \(T_K \) are defined as follows:

\[
(T_K f)(sa, sb) := f(sa + 1, sb - 1),
\]

remaining all the other discrete variables unchanged.

We define the Orlov–Schulman operators \([42]\) for the multi-component 2D Toda hierarchy by

\[
M := WnW^{-1}, \quad \bar{M} := \bar{Wn}\bar{W}^{-1}.
\]

One proves at once that

- The Orlov–Schulman operators satisfy the following commutation relations:

\[
[L, M] = L, \quad [L, C_{kk}] = 0, \quad [\bar{L}, \bar{M}] = \bar{L}, \quad [\bar{L}, \bar{C}_{kk}] = 0.
\]

- The following expansions hold

\[
M = M + \sum_{k=1}^{N} C_{kk} \left(s_k + \sum_{j=1}^{\infty} j t_{jk} L^j \right), \quad M = n + g -
\]

\[
\bar{M} = \bar{M} - \sum_{k=1}^{N} \bar{C}_{kk} \left(s_k + \sum_{j=1}^{\infty} j t_{jk} \bar{L}^{-j} \right), \quad \bar{M} = n + g +\.
\]

1.1.1. Additional symmetries

Suppose that the operator \(g \) in (8) depends on an additional parameter \(b \in \mathbb{C} \). Then, the basic objects of the multi-component Toda hierarchy inherit a dependence on \(b \). For convenience and for the time being we use the following equivalent factorization problem:

\[
W \cdot h = \bar{W} \cdot \bar{h},
\]

with

\[
g = h \cdot \bar{h}^{-1}.
\]

Observe that

\[
\partial_b W \cdot W^{-1} + W(\partial_b h \cdot h^{-1})W^{-1} = \partial_b \bar{S} \cdot S^{-1} + W(\partial_b \bar{h} \cdot \bar{h}^{-1})\bar{W}^{-1}
\]

\[
= \partial_b \bar{S} \cdot S^{-1} + W(\partial_b \bar{h} \cdot \bar{h}^{-1})\bar{W}^{-1} = \partial_b W \cdot \bar{W}^{-1} + W(\partial_b \bar{h} \cdot \bar{h}^{-1})\bar{W}^{-1}.
\]

Now, let us suppose that \(h \) and \(\bar{h} \) satisfy

\[
\partial h \cdot h^{-1} = F(0) = \sum_{l=1}^{N} F_l(n, \Lambda)E_{ll}, \quad \partial\bar{h} \cdot \bar{h}^{-1} = \bar{F}(0) = \sum_{l=1}^{N} \bar{F}_l(n, \Lambda)E_{ll}.
\]
then from (17) we get
\[\partial_b W \cdot W^{-1} = \partial_b S \cdot S^{-1} = -H_-, \quad \partial_b W \cdot W^{-1} = \partial_b S \cdot S^{-1} = H_+, \quad H_+ \in g_+ , \]
where
\[H := F - \bar{F}, \quad F := \sum_{l=1}^{N} F_l(M, L)C_{ll}, \quad \bar{F} := \sum_{l=1}^{N} \bar{F}_l(\bar{M}, \bar{L})\bar{C}_{ll} . \]

Hence it follows that

Proposition 1. Given a dependence on an additional parameter \(b \) according to (16), (18) and (19) then

(i) The dressing operators \(W \) and \(\bar{W} \) satisfy
\[\partial_b W = -H_- \cdot W, \quad \partial_b \bar{W} = H_+ \cdot \bar{W} . \]

(ii) The Lax and Orlov–Schulman operators satisfy
\[\partial_b L = [-H_-, L], \quad \partial_b M = [-H_-, M], \quad \partial_b C_{kk} = [-H_-, C_{kk}], \]
\[\partial_b \bar{L} = [H_+, \bar{L}], \quad \partial_b \bar{M} = [H_+, \bar{M}], \quad \partial_b \bar{C}_{kk} = [H_+, \bar{C}_{kk}] . \]

A key observation is

Proposition 2. Given operators \(R, \bar{R} \in g \) satisfying \(R \cdot g = \bar{R} \) and such that
\[RW^{-1}_0 \in g_-, \quad \bar{R}\bar{W}^{-1}_0 \in g_+. \]

Then \(R = \bar{R} = 0 \)

1.2. Wavefunctions

The wavefunctions of the multi-component 2D Toda hierarchy are defined by
\[\psi = W \cdot \chi, \quad \bar{\psi} = \bar{W} \cdot \chi . \]

where \(\chi(z) := \{z^n\}_{n \in \mathbb{Z}} \).

Note that \(\Lambda \chi = z\chi \). The following asymptotic expansions are a consequence of (9)
\[\psi = z^n(1 + \phi_1(n)z^{-1} + \cdots)\psi_0(z), \quad \psi_0 := \sum_{k=1}^{N} E_{kk}z^k e^{\sum_{j=1}^{\infty} f_j z^{-j}}, \quad z \to \infty , \]
\[\bar{\psi} = z^n(\bar{\phi}_0(n) + \bar{\phi}_1(n)z + \cdots)\bar{\psi}_0(z), \quad \bar{\psi}_0 := \sum_{k=1}^{N} \bar{E}_{kk}z^{-k} e^{\sum_{j=1}^{\infty} \bar{f}_j z^{-j}}, \quad z \to 0 . \]

Proposition 3.

(i) Given operators of the form
\[F := \sum_{k=1}^{N} F_k C_{kk}, \quad F_k := \sum_{l \geq 0, j \in \mathbb{Z}} F_{kj} M^l L^j \]
\[\bar{F} := \sum_{k=1}^{N} F_k \bar{C}_{kk}, \quad F_k := \sum_{l \geq 0, j \in \mathbb{Z}} F_{kj} \bar{M}^l \bar{L}^j , \]
with complex-valued scalar coefficients, we have

\[F(\psi) = \sum_{k=1}^{N} F_k \left(\frac{d}{dz}, z \right) E_{kk}, \quad \tilde{F}(\tilde{\psi}) = \sum_{k=1}^{N} \tilde{F}_k \left(\frac{d}{dz}, \tilde{z} \right) E_{kk}. \] (24)

where

\[(\psi) F_k \left(\frac{d}{dz}, z \right) := \sum_{i \geq 0, j \in \mathbb{Z}} F_{kij} z^i \left(\frac{d}{dz} \right)^j (\psi), \]

\[(\tilde{\psi}) \tilde{F}_k \left(\frac{d}{dz}, \tilde{z} \right) := \sum_{i \geq 0, j \in \mathbb{Z}} \tilde{F}_{kij} z^i \left(\frac{d}{dz} \right)^j (\tilde{\psi}). \]

(ii) Given operators

\[P := \sum_{k=1}^{N} P_k C_{kk}, \quad P_k := \sum_{i \geq 0, j \in \mathbb{Z}} P_{kij} M^i L^j, \]

\[Q := \sum_{k=1}^{N} Q_k C_{kk}, \quad Q_k := \sum_{i \geq 0, j \in \mathbb{Z}} Q_{kij} M^i L^j, \]

\[\tilde{P} := \sum_{k=1}^{N} \tilde{P}_k \tilde{C}_{kk}, \quad \tilde{P}_k := \sum_{i \geq 0, j \in \mathbb{Z}} \tilde{P}_{kij} \tilde{M}^i \tilde{L}^j, \]

\[\tilde{Q} := \sum_{k=1}^{N} \tilde{Q}_k \tilde{C}_{kk}, \quad \tilde{Q}_k := \sum_{i \geq 0, j \in \mathbb{Z}} \tilde{Q}_{kij} \tilde{M}^i \tilde{L}^j, \]

with complex-valued scalar coefficients, we have

\[PQ(\psi) = \sum_{k=1}^{N} \left((\psi) P_k \left(\frac{d}{dz}, z \right) \right) Q_k \left(\frac{d}{dz}, z \right), \]

\[\tilde{P} \tilde{Q}(\tilde{\psi}) = \sum_{k=1}^{N} \left((\tilde{\psi}) \tilde{P}_k \left(\frac{d}{dz}, \tilde{z} \right) \right) \tilde{Q}_k \left(\frac{d}{dz}, \tilde{z} \right). \]

Proof. See appendix B. \(\square\)

2. The dispersive Whitham hierarchies

As we will see certain families of equations of the multi-component 2D Toda hierarchy, associated with any given row of the dressing operators, become the Whitham hierarchies under appropriate dispersionless limits. Consequently, these families will be referred to as the dispersive Whitham hierarchies.

For simplicity and without loss of generality, we will work with the first row of the dressing operators. It will be useful to introduce the following shift operators:

\[T_a := \begin{cases} T_{(1,a)}, & a = 1, \\ T_{(a,1)}, & a \neq 1 \end{cases} \] (25)
with \(a_0 \in S - \{1\} \). These shift operators lead to an algebra of shift operators and to families of Hamilton–Jacobi equations, see (42). We also define the scalar dressing operators

\[
K_a := \begin{cases}
1 + \varphi_{1,1} T^{-1}_1 + \varphi_{2,1} T^{-2}_1 + \cdots, & a = 1 \\
\varphi_{1,k} + \varphi_{2,k} T^{-1}_k + \cdots, & a = k \neq 1, \\
\bar{\varphi}_{0,1} + \bar{\varphi}_{1,1} T^{-1}_k + \cdots, & a = \bar{k},
\end{cases}
\]

where \(\varphi_i, \bar{\varphi}_i \) are the matrix coefficients of (9).

Thus, we may now introduce the associated scalar Lax operators

\[
L_a := K_a \circ T_a \circ K_a^{-1} = \begin{cases}
T_1 + L_{1,0} T^{-1}_1 + \cdots, & a = 1, \\
L_{a,1} T_a + L_{a,0} + L_{a,-1} T^{-1}_a + \cdots, & a \neq 1
\end{cases}
\]

where

\[
W_a := K_a \circ W_{0,a}, \quad W_{0,a} := \exp(\mathcal{T}_a), \quad \mathcal{T}_a := \sum_{j=1}^{\infty} t_{ja} T^j_a.
\]

Similarly, we define the corresponding scalar Orlov–Schulman operators by

\[
\mathcal{M}_a := n - \nu_a + s g(a) W_a \circ S_a \circ W_a^{-1},
\]

where

\[
sg(a) := \begin{cases}
1, & a \in S, \\
-1, & a \in \bar{S}, \quad \nu_a := \begin{cases}
1, & a \in S - \{1\}, \\
0, & a \notin S - \{1\}.
\end{cases}
\end{cases}
\]

From the identities

\[
[T_a, sg(a) S_a] = sg(a) T_a,
\]

it follows that

\[
[\mathcal{L}_a, \mathcal{M}_a] = sg(a) \mathcal{L}_a,
\]

Proposition 4. The Orlov–Schulman operators satisfy

\[
\mathcal{M}_a = n - \nu_a + sg(a) \left(S_a + \sum_{j=1}^{\infty} m_{ja} L^j_a + \sum_{i=1}^{\infty} m_{ai} T^{-i}_a \right).
\]

Proof. See appendix B. \(\square \)

We further introduce the vector wavefunctions

\[
\Psi_a := \begin{cases}
\psi_{1k}, & a = k, \\
\bar{\psi}_{1k}, & a = \bar{k},
\end{cases}
\]

for which we have

Proposition 5. We have the identities

\[
[F_a(\mathcal{M}_a, \mathcal{L}_a)](\Psi_a) = (\Psi_a) F_a \left(\frac{d}{dz}, z^{sg(a)} \right) = \begin{cases}
E_{1k} F_k(M, L) C_{kk}(\psi), & a = k, \\
E_{1k} \bar{F}_k(M, L^{-1}) \bar{C}_{kk}(\bar{\psi}), & a = \bar{k}.
\end{cases}
\]
Proof. See appendix B.

2.1. Auxiliary linear systems

Our next analysis uses the following complex algebras:

\[t_a := \left\{ \sum_{j \in \mathbb{Z}} c_j T^j_a \right\}, \quad \text{(33)} \]

and their subalgebras

\[
\begin{align*}
& t_{a,+} = t_{a,>} := \left\{ \sum_{j>0} c_j T^j_a \right\}, \\
& t_{a,-} = t_{a,<} := \left\{ \sum_{j<0} c_j T^j_a \right\}, \quad a \neq 1 \\
& t_1,+ = t_{1,>} := \left\{ \sum_{j>0} c_j T^j_1 \right\}, \\
& t_1,- = t_{1,<} := \left\{ \sum_{j<0} c_j T^j_1 \right\}
\end{align*}
\]

We will denote by \((T_{a,+}, T_{a,-}, T_{a,\leq}, T_{a,\geq}) \) the projections of an operator \(T_a \) induced by the corresponding splittings.

The following important result links the operators \((M_k, L_k)\) with the operators \((M, L, \bar{M}, \bar{L})\). Here the splittings for each shift algebra \(t_a \) are those indicated by (34)

Proposition 6. The following relations hold

\[
\begin{align*}
& F(M_k, L_k) + (E_{11} W) = E_{11} (F(M, L)C_{kk}) + W, \\
& F(M_k, L_k) + (E_{11} \bar{W}) = E_{11} (F(M, L)C_{kk}) + \bar{W},
\end{align*}
\]

\[
\begin{align*}
& F(\bar{M}_k, \bar{L}_k) + (E_{11} W) = E_{11} (F(\bar{M}, L^{-1}) \bar{C}_{kk}) - W, \\
& F(\bar{M}_k, \bar{L}_k) + (E_{11} \bar{W}) = E_{11} (F(\bar{M}, L^{-1}) \bar{C}_{kk}) - \bar{W}.
\end{align*}
\]

Proof. See appendix B.

If we set \(F(x, y) = y^j \) in proposition 6 and recall that

\[\partial_{j,a} W = B_{j,a} W, \quad \partial_{j,a} \bar{W} = B_{j,a} \bar{W}, \]

with \(B_{jk} = (C_{kk} L^j)_+, \quad B_{jk} = (\bar{C}_{kk} L^{-j})_- \) [1] we deduce

Theorem 1. The following scalar linear systems hold

\[
\begin{align*}
& \partial_{j,a} (E_{11} W) = (\mathcal{L}^j_a) + (E_{11} W), \\
& \partial_{j,a} (E_{11} \bar{W}) = (\mathcal{L}^j_a) + (E_{11} \bar{W})
\end{align*}
\]

The linear system (37) determines a set of commuting flows for \((W, \bar{W})\) which, as we will show in the following section, leads to the Whitham hierarchy in the dispersionless limit. For that reason this system will be referred to as the dispersive Whitham hierarchy of flows.
2.2. Additional symmetries and string equations

Using proposition 1 we deduce the following results on the additional symmetries:

Proposition 7. Given an additional symmetry

\[
\partial_b E_{11} W = - E_{11} \left(\sum_{k=1}^{N} \left(F_k(M, L) C_{kk} - \bar{F}_k(\bar{M}, \bar{L}^{-1}) \bar{C}_{kk} \right) \right) \cdot W,
\]

\[
\partial_b E_{11} \bar{W} = E_{11} \left(\sum_{k=1}^{N} \left(F_k(M, L) C_{kk} - \bar{F}_k(\bar{M}, \bar{L}^{-1}) \bar{C}_{kk} \right) \right) \cdot \bar{W},
\]

then we have

\[
\partial_b (\Psi_a) = - F_a(\mathcal{M}_a, \mathcal{L}_a)(\Psi_a) + \left(\sum_{a' \in S} F_{a'}(\mathcal{M}_{a'}, \mathcal{L}_{a'}) \right) (\Psi_a).
\]

Proof. See appendix B. \(\Box\)

As a consequence we have

Proposition 8. If the string equation

\[
E_{11} \sum_{k=1}^{N} F_k(M, L) C_{kk} = E_{11} \sum_{k=1}^{N} \bar{F}_k(\bar{M}, \bar{L}^{-1}) \bar{C}_{kk}
\]

is satisfied, then

\[
F_a(\mathcal{M}_a, \mathcal{L}_a)(\Psi_a) = \left(\sum_{a' \in S} F_{a'}(\mathcal{M}_{a'}, \mathcal{L}_{a'}) \right) (\Psi_a),
\]

for all \(a \in S\).

Proof. The string equations (39) imply the invariance conditions

\[
\partial_b E_{11} W = \partial_b E_{11} \bar{W} = 0.
\]

Now, recalling proposition 7 we get the desired result. \(\Box\)

3. The dispersionless limit

We consider here the dispersionless limit of the multi-component 2D Toda hierarchy. For that aim we use the vector wavefunctions (31) at a given fixed value \(n_0\) of the discrete variable \(n\). Thus, from theorem 1 the following auxiliary linear system follows:

\[
\partial_{ja} (\Psi_a) = \left(L^j_a \right)_*(\Psi_b) \quad a \in S, \quad j = 1, 2, \ldots
\]

Let us now introduce slow variables by

\[
t_{ja} = \epsilon t_{ja}, \quad s_{ja} = \epsilon s_{ja},
\]

where \(\epsilon\) is a small real parameter and \(s_{ja}\) are assumed to be continuous variables. For the sake of simplicity, we will henceforth denote by \((t_{ja}, s_{ja})\) these slow variables. Moreover, we assume that the wavefunctions have the quasi-classical form

\[
\Psi_a = \exp \left(\frac{J_a}{\epsilon} \right), \quad J_a = J_{a,0} + \epsilon J_{a,1} + \cdots
\]
with
\[
\mathcal{L}_a = T_a + \begin{cases}
\epsilon \varphi_{111} z^{-1} + O(z^{-2}) & a = 1, \\
\epsilon \log \varphi_{1,k1} + O(z) & a = k \neq 1, \\
\epsilon \log \varphi_{0,11} + O(z) & a = \bar{k}.
\end{cases}
\]

From these expressions we deduce that as \(\epsilon \to 0 \)
\[
\varphi_{1,11} = O(\epsilon^{-1}), \\
\log \varphi_{1,k} = O(\epsilon^{-1}), \quad k \neq 1, \\
\log \varphi_{0,1} = O(\epsilon^{-1}).
\]

As a consequence the coefficients in the operators \(\mathcal{L}_a \) are Taylor series in \(\epsilon \), while those of
the Orlov–Schulman operators \(\mathcal{M}_a \) have at most a simple pole in \(\epsilon = 0 \).

We introduce some new variables
\[
\sigma_a := s_a, \quad a \neq 1, \\
\sigma_1 := \sum_{a \in S} s_a.
\]

Observe that
\[
\frac{\partial}{\partial \sigma_a} = \frac{\partial}{\partial s_a} - \frac{\partial}{\partial s_1}, \quad a \neq 1.
\]

The zero charge condition implies that \(\sigma_1 = 0 \). Then, we define
\[
\partial_a := \begin{cases}
\frac{\partial}{\partial \sigma_a}, & a \neq 1, \\
-\frac{\partial}{\partial \sigma_1}, & a = 1.
\end{cases}
\]

Note that

Proposition 9. *In the limit \(\epsilon \to 0 \) we have that*
\[
T_a^j \left(\exp \left(\mathcal{L}_a / \epsilon \right) \right) = \exp \left(T_a^j (\mathcal{L}_a) / \epsilon \right) = \exp \left(j \partial_a (\mathcal{L}_a,0) + O(\epsilon) \right) \exp (\mathcal{L}_a / \epsilon),
\]
\[
\partial_a \left(\exp (\mathcal{L}_a / \epsilon) \right) = (\partial_a (\mathcal{L}_a,0) + O(\epsilon)) \exp (\mathcal{L}_a / \epsilon).
\]

3.1. Hamilton–Jacobi equations and dispersionless Whitham hierarchies

As \(\epsilon \to 0 \) it follows that
\[
(\mathcal{L}_a)^j (\Psi_b) = (\mathcal{P}_a^j (\Psi_b) + O(\epsilon)) \Psi_b,
\]
where \(\mathcal{P}_a^j \) are polynomials
\[
\mathcal{P}_j^j(Z) = Z^j + P_{j1,j-1} Z^{j-1} + \cdots + P_{j1,0}, \\
\mathcal{P}_j^a(Z) = P_{ja,j} Z^j + \cdots + P_{ja,1} Z, \quad a \neq 1.
\]

Hence, as \(\epsilon \to 0 \) we get from (41) the following Hamilton–Jacobi-type equations.
Proposition 10. The following equations hold:
\[\partial s_j(\mathcal{Y}_{b,0}) = \mathcal{P}_{ja}(\psi_{a,b}). \] (42)

Next we show how these equations lead to the two pictures of the Whitham hierarchy described in appendix A.

3.1.1. KP and Toda dispersionless limits from the Hamilton–Jacobi equations. From the basic equation
\[\frac{\partial \Psi_b}{\partial t_{11}} = (\mathcal{L}_1)_{s_b}(\Psi_b), \]
we get the important formula
\[\partial t_{11}(\mathcal{Y}_{b,0}) = e^{(\partial s_1 - \partial s_0)(\mathcal{Y}_{b,0}) + q_a}, \quad a \neq 1, \] (43)
where \(q_a \) is an appropriate function defined in terms of derivatives of the leading coefficient of \(\psi_{11} \). Observe that a family of equations as (43) only occurs for the time \(t_{11} \) and not for the times \(t_{1a} \) with \(a \neq 1 \). This is a consequence of the fact that we have chosen the first row in the matrix wavefunctions, and we are dealing with the shifts of type \(T_a \).

The KP-picture dispersionless limit

Definition 1. We introduce the dispersionless Lax functions in the KP picture, \(z_a = z_a(s, t) \) by the implicit relations
\[p = \partial_s \mathcal{Y}_{a,0}(z_a), \quad x := t_{11}, \]
and the corresponding dispersionless Orlov–Schulman functions by
\[m_a := \frac{\partial \mathcal{Y}_{a,0}}{\partial z} \bigg|_{z = z_a}. \]

This definition implies
\[e^{\partial_s \mathcal{Y}_{a,0} |_{z = z_1}} = p - q_0, \quad e^{\partial_s \mathcal{Y}_{a,0} |_{z = z_a}} = \frac{1}{p - q_a}, \quad a \neq 1. \]
The next proposition exhibits the asymptotic form of these functions.

Proposition 11. The dispersionless Lax and Orlov–Schulman functions satisfy
\[z_a^{sg_a} = \begin{cases} p + \ell_{1,0} + O(p^{-1}), & p \to \infty, \ a = 1, \\ \ell_{a,1} p - q_a + O(p - q_a), & p \to q_a, \ a \neq 1, \end{cases} \]
\[m_a = (n_0 + s_g(a)s_a)z_a^{-1} + \sum_{j=1}^{\infty} j t_{ja} z_a^{-j-1} + z_a^{-1} \left(\sum_{j=1}^{\infty} \mu_{aj}(p - q_a)^{-j}, \ a = 1, \right) \left(\sum_{j=1}^{\infty} \mu_{aj}(p - q_a)^j, \ a \neq 1. \right) \]

Proof. Particular cases of (32) are
\[\mathcal{M}_a(\psi_a) = z \frac{d\psi_a}{dz}, \quad \mathcal{L}_a(\psi_a) = z^{sg_a} \psi_a. \]
which together with (27) and (30) imply

\[
\begin{align*}
z^{sg_a} &= \begin{cases}
e^\partial l S_1, & a = 1 \\
\ell_{a,1} e^{\partial l S_1} + \ell_{a,0} + \ell_{a,-1} e^{-\partial l S_1} + \ell_{a,-2} e^{-2\partial l S_1} + \cdots, & a \neq 1, \end{cases} \\
\end{align*}
\]

and the evaluation at \(z = z_a \) gives the desired result. □

Therefore for \(a \neq 1 \) we have

\[
\begin{align*}
(\partial_a (\mathcal{F}_{b,0}))_{z = z_a} &= -\log(p - q_a), & a \neq 1 \\
(\partial_{ja} (\mathcal{F}_{b,0}))_{z = z_a} &= \mathcal{P}_{ja} \left(\frac{1}{p - q_a} \right) =: \Omega_{ja}, & a \neq 1 \\
(\partial_{j1} (\mathcal{F}_{b,0}))_{z = z_a} &= \mathcal{P}_{j1}(p - q_a) =: \Omega_{j1}, & j > 1.
\end{align*}
\]

Then we have that

\[
d\mathcal{F}_{b,0} = m_b \, dz_b + p \, dx - \sum_{a \neq 1} \log(p - q_a) \, dx_a + \sum_{j,a}^{\Sigma'} \Omega_{ja} \, dt_{ja}
\]

where \(\Sigma' \) indicates the sum over the set of indexes \((j, a) \) where \(j = 1, 2, \ldots \) and \(a \in S \) excluding the case \(j = 1 \) and \(a = 1 \). Thus the functions \(d\mathcal{F}_{b,0} \) determine a solution of the zero-genus Whitham hierarchy with \(2N \) punctures in the KP picture (see appendix A).

The Toda-picture dispersionless limit. We again consider equation (43)

\[
\partial_{t1} (\mathcal{F}_{b,0}) = e^{(\partial_{t1} - \partial_{a0})(\mathcal{F}_{b,0})} + q_a,
\]

which implies

\[
e^{-\partial_{t1} \mathcal{F}_{b,0}} = e^{-\partial_{t0} \mathcal{F}_{b,0}} + Q_a, \quad a, a_0 \neq 1, \quad Q_a := q_a - q_{a_0}.
\]

Definition 2. In the Toda representation the dispersionless Lax function \(z_a = z_a(s, t) \) is given by the implicit relation

\[
p = e^{-\partial_{t0} \mathcal{F}_{b,0}} \bigg|_{z = z_a}, \quad x := -\sigma_{a_0},
\]

and the dispersionless Orlov–Schulman function by

\[
m_a := z \frac{\partial \mathcal{F}_{a0}}{\partial z} \bigg|_{z = z_a}.
\]

Observing that

\[
e^{\partial_{t0} \mathcal{F}_{b,0}} = \frac{1}{e^{-\partial_{t0} \mathcal{F}_{b,0}} - Q_a}
\]

we conclude

\[
e^{\partial_{t1} \mathcal{F}_{b,0}} \bigg|_{z = z_1} = p, \quad e^{\partial_{t0} \mathcal{F}_{b,0}} \bigg|_{z = z_a} = p^{-1}, \quad e^{\partial_{t0} \mathcal{F}_{b,0}} \bigg|_{z = z_a} = \frac{1}{p - Q_a}, \quad a_0 \neq 1 \quad a \neq 1, a_0.
\]

Hence, we deduce
Proposition 12. The dispersionless Lax and Orlov–Schulman functions in the Toda-picture dispersionless limit satisfy

\[
\begin{align*}
\z_{sg}^a &= \begin{cases}
p + \ell_1 a + O(p^{-1}), & p \to \infty, \quad a = 1, \\
\ell_2 a p^{-\frac{1}{2}} + O(1), & p \to 0, \quad a = a_0, \\
p - Q a + O(1), & p \to Q_a, \quad a \neq 1, a_0.
\end{cases}
\end{align*}
\]

\[
m_a = (a_0 + sg(a) s_a) + \sum_{j=1}^{\infty} j t_{ja} \z_{j}^a + \begin{cases}
\sum_{j=1}^{\infty} \mu_{1j} p^{-j}, & a = 1, \\
\sum_{j=1}^{\infty} \mu_{aj} p^j, & a = a_0, \\
\sum_{j=1}^{\infty} \mu_{aj} (p - Q a)^j, & a \neq 1, a_0.
\end{cases}
\]

Proof. Proceed as in the proof of proposition 11 and use (44). □

As in the KP case we get now

\[
\begin{align*}
(\partial a (S_{0,0}))_{|z_{sg}^a} &= -\log(p - Q a), \quad a \neq 1, a_0, \\
(\partial_{ja} (S_{0,0}))_{|z_{sg}^a} &= \mathcal{P}_{ja} \left(\frac{1}{p - Q a} \right) =: \Omega_{ja}, \quad a \neq 1, a_0, \\
(\partial_{j1} (S_{0,0}))_{|z_{sg}^a} &= \mathcal{P}_{j1} (p) =: \Omega_{j1}, \\
(\partial_{ja0} (S_{0,0}))_{|z_{sg}^a} &= \mathcal{P}_{ja0} (p^{-1}) =: \Omega_{ja0}.
\end{align*}
\]

Hence we have that

\[
d S_{0,0} = m_b \log z_b + \log p \, dx - \sum_{a \neq 1, a'} \log(p - Q a) \, ds_a + \sum_{j \geq 1, a \in S} \Omega_{ja} \, dt_j,
\]

and therefore the functions \(S_{0,0} \) determine a solution of the zero-genus Whitham hierarchy with \(2N \) punctures in the Toda picture (see appendix A).

3.2. The dispersionless limits of the string equations

Let us consider operators of the form

\[
F_a (M a, L a) = \sum_{i \geq 0, j \in \mathbb{Z}} F_{aij} M^i a L^j a.
\]

In order to formulate their dispersionless limits it is convenient to assume that the coefficients satisfy as \(\epsilon \to 0 \) that

\[
F_{aij} = F_{aij,0} \epsilon^i + O(\epsilon^{i+1}).
\]

Recalling (32) and observing that

\[
\begin{align*}
\left(\frac{d}{dz} \right)^i &= z^i \frac{d}{dz} + \sum_{i' = 2}^{i} \binom{i}{2} z^{i'-1} \frac{d^{i'-1}}{dz^{i'-1}}, \\
\frac{\partial \Psi_a}{\partial z^i} &= \left(\epsilon^{-i} \left(\frac{\partial S_{0,0}}{\partial z} \right)^j + O(\epsilon^{-i+1}) \right) \Psi_a
\end{align*}
\]

we get

\[
(\Psi_a) F_a \left(z^i \frac{d}{dz}, z_{sg}^a \right) = \left[\sum_{i \geq 0, j \in \mathbb{Z}} F_{aij,0} z_{sg(a)}^j \left(\partial S_{0,0} \right)^j \right] + O(\epsilon) \Psi_a.
\]

Hence,

\[
F_{a,0} (z_a, m_a) := \lim_{\epsilon \to 0} (\Psi_a) F_a \left(z^i \frac{d}{dz}, z_{sg}^a \right) \Psi_a^{-1} = \left[\sum_{i \geq 0, j \in \mathbb{Z}} F_{aij,0} z_{sg(a)}^j m_a^i \right], \quad \text{KP},
\]

\[
\left[\sum_{i \geq 0, j \in \mathbb{Z}} F_{aij,0} z_{sg(a)}^j m_a^i \right], \quad \text{Toda}.
\]
We define

\[F_{a,0+} := \left[\lim_{\epsilon \to 0} F_a(M_a, L_a) \Psi_a \right]_{z=za}. \]

Proposition 13. Given

\[F_a(M_a, L_a) = \sum_{j \in \mathbb{Z}} f_{aj} T^j_a, \]

with \(f_{ai} = f_{ai0} + O(\epsilon) \) as \(\epsilon \to 0 \), their dispersionless limits are

\[F_{a,0} = \begin{cases} \sum_{j \in \mathbb{Z}} f_{aj} e^{j(\frac{p-a}{2})}, & a \neq 1, \\
\sum_{j \in \mathbb{Z}} f_{1j0}(p - q_a)^j, & a = 1, \end{cases} \]

\[\begin{aligned} &\text{KP}, \\
&\text{Toda}. \]

Moreover,

\[F_{a,0+} = \begin{cases} \sum_{j > 0} f_{aj} e^{j(\frac{p-a}{2})}, & a \neq 1, \\
\sum_{j \geq 0} f_{1j0}(p - q_a)^j, & a = 1, \end{cases} \]

\[\begin{aligned} &\text{KP}, \\
&\text{Toda}. \]

In particular

\[\Omega_{ja} = \left(\frac{z g^{(a)/j}}{z} \right). \]

Proof. The formulae follow from the identity:

\[(\Psi_a) F_a z \left(\frac{d}{dz}, z^{g_a} \right) = F_a(M_a, L_a)(\Psi_a) = \sum_{j \in \mathbb{Z}} f_{aj} e^{j(\frac{p-a}{2}) + O(\epsilon)} \Psi_a \]

\[= F_a(M_a, L_a)(\Psi_a) = \sum_{j \in \mathbb{Z}} f_{aj} e^{j(\frac{p-a}{2}) + O(\epsilon)} \Psi_a. \]

As a consequence

Proposition 14. If the string equations (39) hold, their corresponding dispersionless limits

\[F_{a,0}(za, ma) = \sum_{b \in \mathcal{S}} F_{b,0+}, \quad \forall a \in \mathcal{S} \]

(45)

are satisfied.

Proof. It follows from proposition 8. \(\square \)

Dispersionless string equations (45) are of the type considered in \([15, 16]\) for the dispersionless Whitham hierarchy. Moreover, given a decomposition \(\mathcal{S} = \mathcal{I} \cup \mathcal{J} \) into two disjoint subsets, we may take

\[P_{a,0} = \begin{cases} z^{\ell_a}, & a \in \mathcal{I}, \\
-m_a, & a \in \mathcal{J}, \end{cases} \]

\[Q_{a,0} = \begin{cases} m_a z^{\ell_a - 1}, & a \in \mathcal{I}, \\
\ell_a z^{-\ell_a - 1}, & a \in \mathcal{J}. \end{cases} \]
The corresponding dispersive string equations are
\[
E_{11} \left(\sum_{k \in (\mathbb{Z}^*)^2} L^{-i_k} C_{kk} - \sum_{k \in (\mathbb{Z}^*)^2} \epsilon_k^{-1} M L^{-\epsilon_k} C_{kk} \right)
= E_{11} \left(\sum_{k \in (\mathbb{Z}^*)^2} L^{-i_k} C_{kk} - \sum_{k \in (\mathbb{Z}^*)^2} \epsilon_k^{-1} M L^{-\epsilon_k} C_{kk} \right),
\]

\[
E_{11} \left(\sum_{k \in (\mathbb{Z}^*)^2} \epsilon_k^{-1} M L^{-\epsilon_k} C_{kk} + \sum_{k \in (\mathbb{Z}^*)^2} L^{i_k} C_{kk} \right)
= E_{11} \left(\sum_{k \in (\mathbb{Z}^*)^2} \epsilon_k^{-1} M L^{-\epsilon_k} C_{kk} + \sum_{k \in (\mathbb{Z}^*)^2} L^{i_k} C_{kk} \right).
\]

If \(\mathcal{J} = \emptyset \) we get
\[
E_{11} \sum_{k=1}^N L^{i_k} C_{kk} = E_{11} \sum_{k=1}^N L^{-i_k} \tilde{C}_{kk},
\]
\[
E_{11} \sum_{k=1}^N \epsilon_k^{-1} M L^{-\epsilon_k} C_{kk} = E_{11} \sum_{k=1}^N \epsilon_k^{-1} M L^{-\epsilon_k} \tilde{C}_{kk}.
\]

For positive integers \(\ell_a \) the dispersionless limits of these dispersive string equations describe the algebraic orbits of the genus 0 Whitham hierarchy \([43]\). The first of these dispersive string equations gives the multigraded reduction as discussed in \([1]\).

Given operators \(P_a \) and \(Q_a \) as in proposition 3 we get for the commutator
\[
(\Psi_a)^{(\frac{d}{dz}, z)} = (\Psi_a)^{(\frac{d}{dz}, z)}
\]
\[
\left[\sum_{i,j=0}^{\ell_a} P_{ia} Q_{ai} \epsilon^{sg(a)}(i_2, j_2) - i_1 j_1) \right] \left[\frac{\partial}{\partial x_{a,0}} \right] E + O(\epsilon^2)
\]
so that for the KP picture we find
\[
\lim_{\epsilon \to 0} (\Psi_a)^{(\frac{d}{dz}, z)} = \left[P_{a,0} Q_{a,0} \right]
\]
\[
= \sum_{i,j=0}^{\ell_a} P_{ai} Q_{ai} \epsilon^{sg(a)}(i_2, j_2) - i_1 j_1) \left[m_a^{i_1+j_1-1} \right]
\]
\[
= \{ P_{a,0}, Q_{a,0} \}.
\]

while for the Toda picture we have
\[
\lim_{\epsilon \to 0} (\Psi_a)^{(\frac{d}{dz}, z)} = \left[P_{a,0} Q_{a,0} \right]
\]
\[
= \sum_{i,j=0}^{\ell_a} P_{ai} Q_{ai} \epsilon^{sg(a)}(i_2, j_2) - i_1 j_1) \left[m_a^{i_1+j_1-1} \right]
\]
\[
= \{ P_{a,0}, Q_{a,0} \}.
\]

Thus,
\[
[P_{a}, Q_{a}] = \epsilon \implies \{ P_{a,0}, Q_{a,0} \} = 1 \text{ or } \{ P_{a,0}, Q_{a,0} \} = 1.
\]
Acknowledgments

The authors would like to thank the Spanish Ministerio de Ciencia e Innovación, research project FIS2008-00200, and acknowledge the support received from the European Science Foundation (ESF) and the activity entitled Methods of Integrable Systems, Geometry, Applied Mathematics (MISGAM). MM thanks Professor van Moerbeke and Professor Dubrovin for their warm hospitality, acknowledge economical support from MISGAM and SISSA and reckons different conversations with P van Moerbeke, T Grava, G Carlet and M Cafasso. MM also acknowledges to Professor Liu for his invitation to visit the China Mining and Technology University at Beijing.

Appendix A. Whitham hierarchies in the zero-genus case

The zero-genus Whitham hierarchies [43] are systems of flows on a phase space \(\hat{M}_0 \) of data associated with algebraic Riemann surfaces of genus 0. The points of \(\hat{M}_0 \) are given \((\Gamma, Q_a, z_a^{-1})\), where \(\Gamma \) is an algebraic Riemann surface of genus 0, \(Q_a \) are \(N \) points (punctures) of \(\Gamma \) and \(z_a^{-1} \) denote local coordinates around each \(Q_a \) such that \(z_a^{-1}(Q_a) = 0 \). In order to formulate Whitham flows on \(\hat{M}_0 \) it is convenient to introduce a meromorphic function \(p = p(Q) \) on \(\Gamma \) such that the local coordinates have asymptotic expansions of the form

\[
\begin{align*}
 z_a &= \left\{ \begin{array}{ll}
 p + \ell_{1,0} + \sum_{n=1}^{\infty} \frac{\ell_{1,n}}{p^n}, & a = 1, \\
 \ell_{a,0} + \sum_{n=0}^{\infty} \ell_{a,-n}(p - q_a)^n, & a = 2, \ldots, N,
 \end{array} \right. \\
 \end{align*}
\]
(A.1)

where \(p(Q_a) = q_a \) with \(q_1 = \infty \). In general, the points of the phase space \(\hat{M}_0 \) are characterized by an infinite number of parameters \(w = (w_i) \) of the set \((q_a, \ell_{a,n}) \). However, under appropriate reduction conditions on the form of \(\Gamma \) only a finite number of these parameters are independent and constitute a coordinate system for \(\hat{M}_0 \).

A.1. Example: algebraic orbits

If we restrict to zero-genus Riemann surfaces \(\Gamma \) of the form

\[
\lambda = p^n + \sum_{n=1}^{N} u_n p^n + \sum_{i=2}^{N} \sum_{n=1}^{n_e} \frac{u_{in}}{(p - q_i)^n},
\]
(A.2)

we may take \(Q_a = (\lambda_a, p_a) = (\infty, q_a) \) (\(a = 1, \ldots, q \)), with corresponding local coordinates given by

\[z_a = \lambda^{1/n_a}. \]

The function \(p(\lambda, p) = p \) is meromorphic on \(\Gamma \) and the local coordinates have asymptotic expansions of the form (A.1). In this case, the points of the phase space \(\hat{M}_0 \) are characterized by the parameters \(w = (q_a)^N_{a=2}, \{u_{in}\}_{i=0}^{n_1}, \ldots, \{u_{Nn}\}_{N=1}^{p_n} \).

The Whitham flows \(w(t) = (w_i(t)) \) are introduced through sets \(\Omega := \{\Omega_A(w, p)\} \) of functions, with meromorphic differentials \(\partial_p \Omega_A(w, p) \) satisfying the conditions:

(i) One of the functions \(\Omega_A \) is independent of the data \(w \).
(ii) There exist local functions \(S_a(t, z_a) \) around the punctures satisfying

\[
\partial_A S_a(t, z_a) = \Omega_A(w(t), p(t, z_a)).
\]
(A.3)

Here \(\partial_A := \partial/\partial t_A \) and \(t \) denotes the set of flow parameters \(t_A \).
The first condition only demands to include a function of the form \(\Omega(p) \) in \(\Omega_1 \). On the other hand, it is obvious that the second condition is satisfied if and only if the following Zakharov–Shabat equations are satisfied
\[
\partial_t \Omega_A - \partial_A \Omega_B + [\Omega_A, \Omega_B] = 0,
\]
where \(\partial_t := \sum \partial_t w_i \partial_{w_i} \) for \(t = t_A, t_B \), and \([\ , \] \) denotes the Poisson bracket
\[
\{ F, G \} := \omega(p)(\partial_p F \partial_q G - \partial_q F \partial_p G), \quad \omega(p) := (\partial_p \Omega_{A_0}(p))^{-1}, \quad x := t_{A_0}.
\]
We may write (A.3) as
\[
dS_a = m_a \, d\Omega_{A_0}(z_a) + \sum_A \Omega_A \, dt_A, \quad m_a := \omega(z_a)^{-1} \frac{\partial S_a}{\partial z_a}, \tag{A.5}
\]
which implies
\[
d\Omega_{A_0}(z_a) \wedge dm_a = \sum_A d\Omega_A \wedge dt_A. \tag{A.6}
\]
and by equating the coefficients of \(dp \wedge dx \) in both members of (A.6) yields
\[
[z_a, m_a] = \omega(z_a). \tag{A.7}
\]
Moreover, if we identify the coefficients of \(dp \wedge dt_A \) and \(dx \wedge dt_A \) in (A.6) we get
\[
\begin{align*}
\partial_p z_a \partial_A m_a - \partial_A z_a \partial_p m_a &= \omega(z_a) \partial_p \Omega_A, \\
\partial_x z_a \partial_A m_a - \partial_A z_a \partial_x m_a &= \omega(z_a) \partial_x \Omega_A,
\end{align*}
\]
so that taking (A.7) into account we deduce the system of Lax equations
\[
\partial_A z_a = \{ \Omega_A, z_a \}, \quad \partial_A m_a = \{ \Omega_A, m_a \}. \tag{A.8}
\]

As it was shown in [46, 47] important classes of solutions of the zero-genus Whitham hierarchy can be obtained from systems of canonical pairs of constrains (string equations) of the form
\[
\begin{align*}
P_1(z_1, m_1) &= P_2(z_2, m_2) = \cdots = P_N(z_N, m_N), \\
Q_1(z_1, m_1) &= Q_2(z_2, m_2) = \cdots = Q_N(z_N, m_N),
\end{align*}
\]
where \((P_a, Q_a) \) are \(N \) pairs of canonically conjugate functions
\[
\{ P_a(p, x), Q_a(p, q) \} = \omega(p). \tag{A.10}
\]
In particular, this type of methods applies for finding solutions for algebraic orbits. Indeed these solutions are associated with string equations generated by
\[
\begin{align*}
P_a(p, x) &= p^{n_a}, \\
Q_a(p, x) &= \frac{x}{n_a \, p^{n_a-1}} + f_a(p).
\end{align*}
\]

A.2. The KP picture

The KP picture of the zero-genus Whitham hierarchy with \(N \) punctures [43] is formulated by assuming \(\ell_{1,0} \equiv 0 \) in the asymptotic expansions (A.1) and by taking the following functions \(\Omega_A \):
\[
\Omega_{\alpha A} := \begin{cases}
(z_a)^{\omega_{\alpha} +}, & n \geq 1, \\
-\log(p - q_a), & n = 0, \quad a = 2, \ldots, N.
\end{cases} \tag{A.12}
\]
Here \((\ , \)_{\omega, +} \) stand for the projectors on the subspaces generated by \(\{p^n\}_{n=0}^\infty \) (case \(a = 1 \)) and \(\{(p - q_a)^{-n}\}_{n=1}^\infty \) (cases \(a \geq 2 \)). In this case
\[
A_0 = (1, 1), \quad x = t_{1,1}, \quad \Omega_{A_0} = p,
\]
\[
\Omega_A = p,
\]
\[
\Omega_{A_0} = p,
\]
and the Poisson bracket is given by
\[\{F, G\} := \partial_p F \partial_x G - \partial_x F \partial_p G. \]

The functions \(\Omega_A \) satisfy the compatibility conditions (A.4) so that there exist functions \(S_a \) such that
\[dS_a = m_a \log z_a + \log p \, dx - \sum_{a \neq 1} \log(p - q_a) \, dt_{a0} + \sum_{a=1}^N \sum_{n \geq 1} \Omega_{na} \, dt_{na}. \]
(A.13)

A.3. The Toda picture

A simple redefinition of the meromorphic function \(p(Q) \) used to define the KP flows of the Whitham hierarchy with \(N \) punctures supplies a different picture (the Toda picture) of the hierarchy. Indeed if we set
\[p_{\text{Toda}} = p_{\text{KP}} - q_{a_0}, \]
for a given index \(a_0 \), then now \(u_{1,1} = q_{a_0} \) and we may take
\[A_0 := (0, a_0), \quad x := -t_{0,a_0}, \quad \Omega_{h_0} := -\log p. \]

Thus the Poisson bracket is given by
\[\{F, G\} := p(\partial_p F \partial_x G - \partial_x F \partial_p G), \]
and the functions \(S_a \) satisfy
\[dS_a = m_a \log z_a + \log p \, dx - \sum_{a \neq 1, a_0} \log(p - q_a) \, dt_{a0} + \sum_{a=1}^N \sum_{n \geq 1} \Omega_{na} \, dt_{na}. \]
(A.14)

Appendix B. Proofs of propositions

B.1. Proposition 3

Proof.

(i) It is easy to find from (10) and (15) that
\[M' L^j C_{kk} (\psi) = W n^j A^j E_{kk} (\chi) = W (n^j z^{n+j} I_N) E_{kk}, \]
\[\bar{M}' L^j \bar{C}_{kk} (\bar{\psi}) = W n^j A^j E_{kk} (\bar{\chi}) = \bar{W} (n^j z^{n+j} I_N) E_{kk}. \]

Now observe that the action of \(X = \sum_{j' \in \mathbb{Z}} X_{j'} A^j \) on \((n^j z^{n+j})_{n \in \mathbb{Z}} \) is
\[X (|n^j z^{n+j}|_{n \in \mathbb{Z}}) = \left\{ \sum_{j' \in \mathbb{Z}} X_{j'} (n+j')^j z^{n+j'} \right\}_{n \in \mathbb{Z}} \]
or equivalently
\[z^j \left(\frac{d}{dz} \right)^j (X \cdot \chi) = \left. z^j \left(\frac{d}{dz} \right)^j \left(\sum_{j' \in \mathbb{Z}} X_{j'} (n) z^{n+j'} \right) \right|_{n \in \mathbb{Z}}. \]

Thus, the formulae
\[M' L^j C_{kk} (\psi) = z^j \left(\frac{d}{dz} \right)^j (\psi) E_{kk}, \quad \bar{M}' L^j \bar{C}_{kk} (\bar{\psi}) = z^j \left(\frac{d}{dz} \right)^j (\bar{\psi}) E_{kk}, \] hold.
(ii) It is a consequence of the identities
\[M^{i_1} L^{j_1} M^{i_2} L^{j_2} = M^{i_1}(M + j_1)^{i_2} L^{j_1 + j_2}, \]
\[\bar{M}^{i_1} \bar{L}^{j_1} \bar{M}^{i_2} \bar{L}^{j_2} = \bar{M}^{i_1}(\bar{M} + j_1)^{i_2} \bar{L}^{j_1 + j_2}, \]
for any \(i_1, i_2 \geq 0 \) and \(j_1, j_2 \in \mathbb{Z} \). Therefore,
\[\left((\psi) \left(-\frac{d}{dz} \right)^{i_1} z \right) \left(-\frac{d}{dz} \right)^{i_2} z = (\psi) \left(-\frac{d}{dz} \right)^{i_1} \left(-\frac{d}{dz} + j_1 \right)^{i_2} z^{j_1 + j_2} = M^{i_1} L^{j_1} M^{i_2} L^{j_2} (\psi). \]

B.2. Proposition 4

Proof. These formulae follow from
\[W_{0} = s_{a} + \left[T_{a}, s_{a} \right] = s_{a} + \sum_{j=1}^{\infty} j T_{a}^{j}, \]
and the fact that there are expansions of the form
\[\mathcal{K}_{a} s_{a} \mathcal{K}_{a}^{-1} = s_{a} + \sum_{i=1}^{\infty} m_{ai} T_{a}^{i}. \]

B.3. Proposition 5

Proof. From definitions (4), (5) and (7)
\[W_{1} n^{i} \Lambda^{j} = S_{1k} W_{0,k} n^{i} \Lambda^{j} = S_{1k} (W_{0,k} n W_{0,k}^{-1})^{j} \Lambda^{j} W_{0,k}, \]
\[= S_{1k} \left(n + s_{k} + \sum_{j'=1}^{\infty} j' t_{j'k} \Lambda^{j'} \right)^{j} \Lambda^{j} W_{0,k}, \]
\[\bar{W}_{1} n^{i} \Lambda^{j} = \bar{S}_{1k} \bar{W}_{0,k} n^{i} \Lambda^{j} = \bar{S}_{1k} (\bar{W}_{0,k} n \bar{W}_{0,k}^{-1})^{j} \Lambda^{j} \bar{W}_{0,k} \]
\[= \bar{S}_{1k} \left(n - s_{k} - \sum_{j'=1}^{\infty} j' t_{j'k} \Lambda^{j'} \right)^{j} \Lambda^{j} \bar{W}_{0,k}, \]
Now, observe that
\[\Lambda^{-1} (n + s_{k}) W_{0,k} = T_{k}^{-1} ((n + s_{k}) W_{0,k}), \]
\[\Lambda (n - s_{k}) \bar{W}_{0,k} = T_{k}^{-1} ((n - s_{k}) \bar{W}_{0,k}), \]
together with proposition 3 imply the result.

B.4. Proposition 6

We need the following Lemma.

Lemma 1.

(i) Given \(T = \sum_{j \in \mathbb{Z}} c_{j} T_{a}^{j} \in t_{a}, a \neq 1 \), then
\[\begin{cases} T(E_{11} W) = T_{a}(W_{1k}) E_{1k} + T_{k}(W_{11}) E_{1} + g_{-} W_{0}, \\ T(E_{11} \bar{W}) = g_{a} \bar{W}_{0}, \end{cases} \]
\[a = k \neq 1, \quad (B.2) \]
\[
T(E_{11}W) = T_{<}(W_{11})E_{11} + g_{-}W_{0}, \\
T(E_{11}W) = T_{>}(W_{1k})E_{1k} + g_{+}W_{0}, \quad a = \bar{k}.
\]
(B.3)

(ii) Given \(T = \sum_{j \leq i} c_{j}T_{j}^{k} \in t_{i} \), then
\[
\begin{align*}
T(E_{11}W) &= T_{>}(W_{11})E_{11} + T_{<}(W_{1k})E_{1k} + g_{-}W_{0}, & a_{0} = l_{0} \neq 1, \\
T(E_{11}W) &= g_{+}W_{0}, \\
T(E_{11}W) &= T_{>}(W_{1k})E_{1k} + g_{+}W_{0}, & a_{0} = l_{0}.
\end{align*}
\]
(B.4)

Proof. We only prove (1) since the others relations are proven similarly. From (B.2) observe that
\[
\begin{align*}
T_{1}^{k}(E_{11}W) &= T_{1}^{k}(E_{11}S)T_{1}^{k}(W_{0}) = T_{1}^{k}(E_{11}S)(E_{kk}\Lambda^{j} + \|N - E_{kk} - E_{11} + E_{11}\Lambda^{-j})W_{0} \\
&= (T_{1}^{k}(S_{kk})E_{kk}\Lambda^{j} + E_{11}T_{1}^{k}(S)(\|N - E_{kk} - E_{11} + E_{11}) + T_{1}^{k}(S_{kk}E_{kk}\Lambda^{-j})W_{0}, \\
T_{1}^{k}(E_{11}W) &= T_{1}^{k}(E_{11}S)\bar{W}_{0}
\end{align*}
\]
and therefore
\[
\begin{align*}
T_{1}^{k}(E_{11}W)E_{k'k} &= g_{-}W_{0}, & k' \neq k, 1, \\
T_{1}^{k}(E_{11}W)E_{kk} &= T_{1}^{k}(S_{kk})E_{kk}\Lambda^{j}W_{0} \in g_{-}W_{0} & \text{if } j \leq 0, \\
T_{1}^{k}(E_{11}W)E_{11} &= T_{1}^{k}(S_{kk})E_{kk}\Lambda^{-j}W_{0} \in g_{-}W_{0} & \text{if } j > 0, \\
T_{1}^{k}(E_{11}W) &= g_{+}W_{0}.
\end{align*}
\]

Now, we check (B.3). Note that
\[
\begin{align*}
T_{1}^{k}(E_{11}W) &= T_{1}^{k}(E_{11}S)T_{1}^{k}(W_{0}) = T_{1}^{k}(E_{11}S)(\|N - E_{kk} - E_{11} + E_{11}\Lambda^{-j})W_{0} \\
&= (E_{11}T_{1}^{k}(S)(\|N - E_{kk} - E_{11} + E_{11}) + T_{1}^{k}(S_{kk}E_{kk}\Lambda^{-j})W_{0}, \\
T_{1}^{k}(E_{11}W) &= T_{1}^{k}(E_{11}S)\bar{W}_{0} = T_{1}^{k}(E_{11}S)(E_{kk}\Lambda^{-j} + \|N - E_{kk})\bar{W}_{0} \\
&= (E_{11}T_{1}^{k}(S)(\|N - E_{kk} + T_{1}^{k}(S_{kk})E_{kk}\Lambda^{-j})\bar{W}_{0},
\end{align*}
\]
and therefore
\[
\begin{align*}
T_{1}^{k}(E_{11}W)E_{k'k} &= g_{-}W_{0}, & k' \neq 1, \\
T_{1}^{k}(E_{11}W)E_{kk} &= T_{1}^{k}(S_{kk})E_{kk}\Lambda^{-j}W_{0} \in g_{-}W_{0} & \text{if } j > 0, \\
T_{1}^{k}(E_{11}W)E_{kk} &= g_{+}\bar{W}_{0}, & k' \neq k, \\
T_{1}^{k}(E_{11}W)E_{kk} &= T_{1}^{k}(S_{kk})\Lambda^{-j}\bar{W}_{0} \in g_{+}\bar{W}_{0}, & \text{if } j \leq 0.
\end{align*}
\]

Proof of proposition 6. The proof of these results relies on the previous lemma 1 and propositions 2 and 5. Let us go into details. We first consider (35). From (B.2) we find for \(k \neq 1 \)
\[
F(\mathcal{M}, \mathcal{L})_{>}(E_{11}W) = F(\mathcal{M}, \mathcal{L})(W_{1k})E_{1k} + g_{-}W_{0},
\]
so that, as we prove in proposition 5, we deduce
\[
F(\mathcal{M}, \mathcal{L})_{>}(E_{11}W) = E_{11}(F(M, L)C_{kk})W + g_{-}W_{0} = E_{11}(F(M, L)C_{kk})W + g_{-}W_{0}.
\]
Therefore,
\[
R := F(\mathcal{M}, \mathcal{L})_{>}(E_{11}W) - E_{11}(F(M, L)C_{kk})W \in g_{-}W_{0}
\]
and from (8) and (B.2) we get
\[
Rg = F(M, L)_{\mu k}(E_{11}\mathbb{W}) - E_{11}(F)(M, L)C_{kk}\mathbb{W} \in g_{\mu k}\mathbb{W}.
\]
so that proposition 2 implies (35).

The proof of (36) follows similarly. □

B.5. Proposition 7

Proof. From (38) we get
\[
\partial_{\bar{k}}E_{11}W = -\sum_{k=1}^{N}E_{11}F_{\bar{k}}(M, L)C_{kk} \cdot W
\]
\[
+ E_{11} \left[\left(\sum_{k=1}^{N} F_{\bar{k}}(M, L)C_{kk} \right) \right] \cdot W,
\]
\[
\partial_{\bar{k}}E_{11}\mathbb{W} = -\sum_{k=1}^{N}E_{11}\tilde{F}_{\bar{k}}(\tilde{M}, \tilde{L}^{-1})\tilde{C}_{kk} \cdot \mathbb{W}
\]
\[
+ E_{11} \left[\left(\sum_{k=1}^{N} F_{\bar{k}}(M, L)C_{kk} \right) \right] \cdot \mathbb{W}.
\]

Now, from propositions 5 and 6 we conclude that
\[
\partial_{\bar{k}}(E_{11}W) = -\sum_{k=1}^{N} F_{\bar{k}}(\mathcal{M}_k, \mathcal{L}_k)(W_{1k})E_{1k} + \left(\sum_{k=1}^{N} (F_{\bar{k}}(\mathcal{M}_k, \mathcal{L}_k) + F_{\bar{k}}(\mathcal{M}_k, \mathcal{L}_k)^{\ast}) \right) (E_{11}W),
\]
\[
\partial_{\bar{k}}(E_{11}\mathbb{W}) = -\sum_{k=1}^{N} \tilde{F}_{\bar{k}}(\mathcal{M}_k, \mathcal{L}_k)(\tilde{W}_{1k})E_{1k} + \left(\sum_{k=1}^{N} (F_{\bar{k}}(\mathcal{M}_k, \mathcal{L}_k) + F_{\bar{k}}(\mathcal{M}_k, \mathcal{L}_k)^{\ast}) \right) (E_{11}\mathbb{W}),
\]
and the result follows. □

References

[1] Mañas M, Martínez Alonso L and Álvarez-Fernández C 2009 Inverse Problems 25 065007
[2] Ueno K and Takasaki K 1984 Adv. Stud. Pure Math. 4 1
[3] Mulase M 1984 Adv. Math. 54 57
[4] Felipe R and Onjay F 2001 Linear Algebra. Appl. 338 1
[5] Di Francesco P, Ginsparg P and Zinn-Justin Z 1995 Phys. Rep. 254 1
[6] Eynard B 2000 An introduction to random matrices Lectures given at Saclay, October (http://www-spht.cea.fr/articles/t01/014/)
[7] Bonora L and Xiong C S 1995 Phys. Lett. B 347 41
[8] Takasaki K 1996 Commun. Math. Phys. 181 131
[9] Takasaki K and Takebe T 1995 Rev. Math. Phys. 7 743
[10] Wiegmann P B and Zabrodin A 2000 Commun. Math. Phys. 213 523
[11] Mineev-Weinstein M, Wiegmann P B and Zahrodin A 2000 Phys. Rev. Lett. 84 5106
[12] Krichever I M, Mineev-Weinstein M, Wiegmann P B and Zahrodin A 2004 Physica D 198 1
[13] Krichever I M, Marshakov A and Zabrodin A 2005 Commun. Math. Phys. 259 1
[14] Mañas M, Martínez Alonso L and Medina E 2002 J. Phys. A: Math. Gen. 35 401
[15] Guíl F, Mañas M and Martínez Alonso L 2003 J. Phys. A: Math. Gen. 36 4047
[16] Guíl F, Mañas M and Martínez Alonso L 2003 J. Phys. A: Math. Gen. 36 6457
[17] Martínez Alonso L and Mañas M 2003 J. Math. Phys. 44 3294
[18] Mañas M 2004 J. Phys. A: Math. Gen. 37 9195
[19] Mañas M 2004 J. Phys. A: Math. Gen. 37 11191
[20] Date E, Jimbo M, Kashiwara M and Miwa T 1981 J. Phys. Soc. Japun 40 3806
[21] Bergvelt M J and ten Kroode A P E 1995 Pac. J. Math. 171 23–88
[22] Mañas M, Martínez Alonso L and Medina E 2000 J. Phys. A: Math. Gen. 33 2871
[23] Mañas M, Martínez Alonso L and Medina E 2000 J. Phys. A: Math. Gen. 33 7181
[24] Kac V G and van de Leur J W 2003 J. Math. Phys. 44 3245
[25] Bertola M, Eynard B and Harnad J 2002 Commun. Math. Phys. 229 73
[26] Bertola M, Eynard B and Harnad J 2003 Commun. Math. Phys. 243 193
[27] Kuijlaars A B J and McLaughlin K T-R 2005 J. Comput. Appl. Math. 178 313
[28] Adler M and Van Moerbeke P 1997 Commun. Pure Appl. Math. 50 241
[29] Adler M and Van Moerbeke P 1999 Ann. Math. 149 921
[30] Adler M, van Moerbeke P and Vanhaecke P 2009 Commun. Math. Phys. 286 1
[31] Adler M, Delépine J and van Moerbeke P 2009 Commun. Pure Appl. Math. 62 334
[32] Bleher P M and Kuijlaars A B J 2004 Int. Math. Res. Not. 2004 109
[33] Bleher P M and Kuijlaars A B J 2004 Commun. Math. Phys. 252 43
[34] Bleher P M and Kuijlaars A B J 2007 Commun. Math. Phys. 270 481
[35] Martínez Alonso L and Medina E 2009 J. Phys. A: Math. Theor. 42 205204
[36] Asche W Van, Geronimo J S and Kuijlaars A B J 2001 Riemann–Hilbert problems for multiple orthogonal polynomials Special Functions 2000: Current Perspectives and Future Directions ed J Bustoz et al (Dordrecht: Kluwer) p 23
[37] Daems E and Kuijlaars A B J 2007 J. Approx. Theory 146 91
[38] Daems E 2006 Asymptotics for non-intersecting Brownian motions using multiple orthogonal polynomials PhD Thesis K U leuven (http://hdl.handle.net/1979/324)
[39] Fokas A S, Its A R and Kitaev A V 1992 Commun. Math. Phys. 147 395
[40] Deift P 1999 Orthogonal Polynomials and Random Matrices: A Riemann–Hilbert Approach (Courant Lecture Notes in Mathematics vol 3) (Providence RI: American Mathematical Society)
[41] Deift P and Zhou X 1993 Ann. Math. 2 137
[42] Yu Orlov A and Schulman E I 1986 Lett. Math. Phys. 12 171
[43] Kirchhefer I M 1994 Commun. Pure. Appl. Math. 47 437
[44] Takasaki K 2005 Dispersionless integrable hierarchies revisited Talk delivered at SISSA at September (MISGAM program)
[45] Takasaki K and Takebe T 2007 Physica D 235 109
[46] Martínez Alonso L, Medina E and Mañas M 2006 J. Math. Phys. 47 083512
[47] Mañas M, Medina E and Martínez Alonso L 2006 J. Phys. A: Math. Gen. 39 2349