Supporting Information

Strategic Planning of the Integrated Urban Wastewater System using Adaptation Pathway Maps

Seyed M. K. Sadr\ast, Arturo Casal-Campos\ast, Guangtao Fu1, Raziyeh Farmani1, Sarah Ward1,2 and David Butler1

1Centre for Water Systems, College of Engineering, Mathematics and Physical Sciences, University of Exeter, North Park Road, Harrison Building, Exeter, EX4 4QF, UK

2Centre for Water, Communities & Resilience, Faculty of Environment and Technology, University of the West of England, Bristol, BS16 1QY, UK

This document consists of 37 pages, 25 Tables and 30 Figures.

\ast Corresponding Author: s.m.k.sadr@exeter.ac.uk and a.casal@mail.com
Contents

Contents ... 2

List of tables .. 3

List of figures .. 4

S1. The terms defined or used in this paper ... 5

S2. Parameters used to distinguish different future scenarios from each other 7

S3. Performance objectives and indicators ... 9

S4. Design considerations for hybrid strategies .. 10

S4.1 Attenuation volume of SCR and CST ... 10

S4.2 Design of hybrid strategies .. 10

S5. Results on different domains for single adaptation threshold .. 12

S5.1 Reliability domains for single adaptation threshold .. 12

S5.2 Resilience domains for single adaptation threshold .. 13

S5.3 Sustainability domains for single adaptation threshold .. 14

S5.4 Reliability-Resilience domains for single adaptation threshold .. 15

S5.5 Reliability-Sustainability domains for single adaptation threshold ... 17

S5.6 Resilience-Sustainability domains for single adaptation threshold ... 18

S5.7 Reliability-Resilience-Sustainability domains for single adaptation threshold 20

S6. Results on different domains for multiple adaptation thresholds ... 21

S6.1 Reliability domains for multiple adaptation thresholds ... 21

S6.2 Resilience domains for multiple adaptation thresholds ... 22

S6.3 Sustainability domains for multiple adaptation thresholds... 23

S6.4 Reliability-Resilience domains for multiple adaptation thresholds .. 24

S6.5 Reliability-Sustainability domains for multiple adaptation thresholds 25

S6.6 Resilience-Sustainability domains for three adaptation thresholds .. 26

S7. Detailed results on adaptation compliancy of the strategies (evaluation of the domain size) 27

S7.1 Results on compliancy of the strategies with respect to multiple adaptation thresholds and multiple domains (resilience-sustainability) .. 27

S7.2 Results on compliancy of the strategies with respect to multiple adaptation thresholds and multiple domains (reliability-resilience-sustainability) .. 30

S8. Detailed results on the assessment of strategies by the regret indices .. 34

S8.1 Results on regret levels in the multiple domains of resilience-sustainability 34

S8.2 Results on regret levels in the multiple domains of reliability-resilience-sustainability 35

S9. References .. 37
List of tables

Table S1 (Part 1): The terms on adaptation and adaptation pathways defined and/or used in this study ..5
Table S2: Parameter estimates affecting case conditions under each future scenario (adapted from Casal-Campos et al., 2018, 2015) ..8
Table S3: Performance objectives and indicators used to define impacts and consequences (adapted from Casal-Campos et al. (2018)) ..9
Table S4: Compliancy of the strategies with respect to the domains of resilience-sustainability and multiple adaptation thresholds in the epoch ending in 2020 ..27
Table S5: Compliancy of the strategies with respect to the domains of resilience-sustainability and multiple adaptation thresholds in the epoch ending in 2025 ..27
Table S6: Compliancy of the strategies with respect to the domains of resilience-sustainability and multiple adaptation thresholds in the epoch ending in 2030 ..28
Table S7: Compliancy of the strategies with respect to the domains of resilience-sustainability and multiple adaptation thresholds in the epoch ending in 2035 ..28
Table S8: Compliancy of the strategies with respect to the domains of resilience-sustainability and multiple adaptation thresholds in the epoch ending in 2040 ..29
Table S9: Compliancy of the strategies with respect to the domains of resilience-sustainability and multiple adaptation thresholds in the epoch ending in 2045 ..29
Table S10: Compliancy of the strategies with respect to the domains of resilience-sustainability and multiple adaptation thresholds in the epoch ending in 2050 ..30
Table S11: Compliancy of the strategies with respect to the domains of reliability-resilience-sustainability and multiple adaptation thresholds in the epoch ending in 2020 ..30
Table S12: Compliancy of the strategies with respect to the domains of reliability-resilience-sustainability and multiple adaptation thresholds in the epoch ending in 2025 ..31
Table S13: Compliancy of the strategies with respect to the domains of reliability-resilience-sustainability and multiple adaptation thresholds in the epoch ending in 2030 ..31
Table S14: Compliancy of the strategies with respect to the domains of reliability-resilience-sustainability and multiple adaptation thresholds in the epoch ending in 2035 ..32
Table S15: Compliancy of the strategies with respect to the domains of reliability-resilience-sustainability and multiple adaptation thresholds in the epoch ending in 2040 ..32
Table S16: Compliancy of the strategies with respect to the domains of reliability-resilience-sustainability and multiple adaptation thresholds in the epoch ending in 2045 ..33
Table S17: Compliancy of the strategies with respect to the domains of reliability-resilience-sustainability and multiple adaptation thresholds in the epoch ending in 2050 ..33
Table S18: Resilience-sustainability regret index in the epoch ending in 2020 and 2025 ..34
Table S19: Resilience-sustainability regret index in the epoch ending in 2030 and 2035 ..34
Table S20: Resilience-sustainability regret index in the epoch ending in 2040 and 2045 ..35
Table S21: Resilience-sustainability regret index in the epoch ending in 2050 ..35
Table S22: Reliability-resilience-sustainability regret index in the epoch ending in 2020 and 2025 ..35
Table S23: Reliability-resilience-sustainability regret index in the epoch ending in 2030 and 2035 ..36
Table S24: Reliability-resilience-sustainability regret index in the epoch ending in 2040 and 2045 ..36
Table S25: Reliability-resilience-sustainability regret index in the epoch ending in 2050 ..36
List of figures

Fig. S1: Reliability domains for the sewer flooding adaptation threshold. The compliant domain (coloured tiles) ranges from low (green) to high regret (red). Non-compliant and full-regret tiles are shown in grey. .. 12
Fig. S2: Reliability domains for the CSOs adaptation threshold. .. 12
Fig. S3: Reliability domains for the river flooding adaptation threshold .. 13
Fig. S4: Resilience domains for the river flooding adaptation threshold. ... 13
Fig. S5: Sustainability domains for the sewer flooding adaptation threshold. ... 14
Fig. S6: Sustainability domains for the CSOs adaptation threshold. .. 14
Fig. S7: Sustainability domains for the river flooding adaptation threshold. ... 15
Fig. S8: Reliability and resilience domains for the sewer flooding adaptation threshold. ... 15
Fig. S9: Reliability and resilience domains for the CSOs adaptation threshold. ... 16
Fig. S10: Reliability and resilience domains for the river flooding adaptation threshold. ... 16
Fig. S11: Reliability and sustainability domains for the sewer flooding adaptation threshold. 17
Fig. S12: Reliability and sustainability domains for the CSOs adaptation threshold. ... 17
Fig. S13: Reliability and sustainability domains for the river flooding adaptation threshold. 18
Fig. S14: Resilience and sustainability domains for the sewer flooding adaptation threshold. 18
Fig. S15: Resilience and sustainability domains for the CSOs adaptation threshold. ... 19
Fig. S16: Resilience and sustainability domains for the river flooding adaptation threshold. 19
Fig. S17: Reliability, resilience and sustainability domains for the sewer flooding adaptation threshold. 20
Fig. S18: Reliability, resilience and sustainability domains for the CSOs adaptation threshold. 20
Fig. S19: Reliability, resilience and sustainability domains for the river flooding adaptation threshold. 21
Fig. S20: Reliability domains for the sewer flooding and CSO adaptation thresholds. ... 21
Fig. S21: Reliability domains for the sewer flooding, CSO and river flooding adaptation thresholds. 22
Fig. S22: Reliability domains for the sewer flooding and CSO adaptation thresholds. .. 22
Fig. S23: Reliability domains for the sewer flooding, CSO and river flooding adaptation thresholds. 23
Fig. S24: Sustainability domains for the sewer flooding and CSO adaptation thresholds. ... 23
Fig. S25: Sustainability domains for the sewer flooding, CSO and river flooding adaptation thresholds. 24
Fig. S26: Reliability and resilience domains for the sewer flooding and CSO adaptation thresholds. 24
Fig. S27: Reliability and resilience domains for CSO and sewer and river flooding adaptation thresholds 25
Fig. S28: Reliability and sustainability domains for the sewer flooding and CSO adaptation thresholds. 25
Fig. S29: Reliability and sustainability domains for sewer flooding, CSO and river flooding thresholds. 26
Fig. S30: Resilient and sustainable domains for sewer flooding, CSO and river flooding adaptation thresholds. 26
S1. The terms defined or used in this paper

Terms	Definition/description	Reference
Adaptation	Adaptation here refers to carrying out improvements on the drainage infrastructure, i.e. the engineering assets that normally define this type of systems.	Butler et al. (2017)
Adaptation strategies	Adaptation interventions considered in this study. These may be conventional grey infrastructure (i.e. sewer pipes, pumps, storage tanks and treatment facilities) as well as alternative green infrastructure (i.e. SuDS, BMPs).	This study
Adaptation thresholds	1. The points where changing conditions oblige a normally stable state of a system into another state or facilitate adaptation of the system (called also tipping points)	van Veelen et al. (2015)
	2. The points where the magnitude of changes (e.g. due to climate change) is such that the current strategy will no longer be able to meet objectives under different future scenarios (also called tipping points)	Kwadijk et al. (2010) and Renaud et al. (2013)
	3. The points at which threats exceed the system’s ability to respond and recover (called recovery points)	van Veelen et al. (2015)
	4. The physical boundary conditions where acceptable technical, environmental, societal or economic standards may be compromised, requiring implementation of new actions to meet the specified objective (called also tipping points)	Manocha and Babovic, (2017)
	5. An adaptation limit as a point at which an action is no longer likely to be able to provide cost effective risk reduction, subject to social and environmental considerations (called also adaptation limit)	Kingsborough et al. (2016)
	6. The condition (or conditions) under which the current management strategy is no longer able to meet the clearly defined objective (or objectives) across a timeline; at this point, alternative adaptation strategies should be considered. Adaptation thresholds are used to evaluate the adaption domain size	This study
Adaptation domain	A set of possible future states or transient scenarios in which an adaptation strategy is compliance to the adaptation threshold or thresholds. The domain size of a strategy is identified using adaptation thresholds. The domain size is evaluated in two complementary ways: (i) the number of complying epochs across the scenarios and (ii) whether or not the pathways are uninterrupted (i.e. compliant) or interrupted (i.e. non-compliant) to one or more adaptation thresholds across the entire timeline	This study
Adaptation pathways	1. Alternative possible trajectories for knowledge, intervention and change, which prioritize different goals, values and functions	Leach et al. (2010)
	2. An analytical and foresight approach for exploring and sequencing a set of possible strategies along the planning timeline	Haasnoot et al. (2013)
	3. An approach that explores alternative sequences of investment decisions to achieve objectives over time in the context of uncertain future developments and environmental changes	Haasnoot et al. (2019)
	4. An approach that provides a visual representation of the potential sequencing and type of actions that may be implemented in the future.	(Kingsborough et al. 2016)
	5. A path (or series of paths) in which a strategy (or a combination of strategies) is compliant with the adaptation threshold(s).	This study
Table S1 (Part 2): The terms on adaptation and adaptation pathways defined and/or used in this study

Terms	Definition/description	Reference
Adaptation pathway map	This identifies possible pathways (or possible domain in different future states) along the planning timelines with respect to different adaptation thresholds	This study
Sell-by-date	1. The time when a strategy violates an adaptation threshold	Haasnoot et al. (2013)
	2. The period when a strategy option is expected to require adaptation or additional measures to be put in place due to an interruption of its satisfactory pathway of transient scenarios	van Veelen et al. (2015)
	3. The time epoch(s) when a strategy no longer achieves a set objective, when the compliant pathway of that specific strategy is interrupted	This study
Epochs or transient scenarios	Future scenarios at time intervals of every 5-years	This study
S2. Parameters used to distinguish different future scenarios from each other

The future scenarios differ from one another with respect to nine parameters (variables) indicative of various IUWWS uncertain conditions (Casal-Campos et al., 2018, 2015):

(1) Misconnections (L/s): the amount of misconnected foul sewers discharging into surface sewers was assumed to be related to existing regulations enforcing the identification of such misconnections as well as to the level of maintenance regimes required to undertake remedial reconnection work.

(2) Urban creep (ha): The level of urban creep happening in a scenario is a function of the level of regulations limiting the amount of uncontrolled re-surfacing of permeable areas as well as of the public willingness to implement decentralized surface water management measures that serve those new contributing areas. If both aspects were strong under a given scenario, the level of urban creep was therefore very low (Casal-Campos et al., 2015).

(3) Water use (L/head/day): Positive attitudes towards the decentralization of water management responsibilities had an influence in reducing domestic water use (e.g. facilitate demand-side measures), along with the role of regulations and water efficient technologies.

(4) Infiltration (L/s): infiltration of groundwater into sewers is assumed to be a consequence of both low sewer maintenance regimes and the unavailability of technological solutions to provide cost-effective maintenance.

(5) Siltation: As with infiltration, the degree of siltation is determined by the level of maintenance in the sewer infrastructure and the availability of technologies that facilitate such maintenance.

(6) Population (inhabitants): population growth as an external threat is assumed to be independent of the internal uncertainties, since it is outside of the control of the IUWWS management. This parameter is defined according to the socio-economic conditions described in Casal-Campos et al. (Casal-Campos et al., 2015).

(7) CC precipitation uplift (%): the effect of climate change in rainfall intensity was considered independent of scenario conditions, since it was assumed that the sensitivity of precipitation predictions to different scenarios up to the year 2050 is modest, according to UK guidance (Kirtman et al., 2013).
(8) Impervious area in new developments (ha): Permeability changes were represented by the rate of urban creep occurring in the baseline catchment (i.e. loss of permeable area to impervious area in the original catchment) and by the increase in impervious area occurring as a consequence of urbanization (i.e. new developments) (Casal-Campos et al., 2015).

(9) Acceptability preference: acceptability of interventions under each scenario is assessed in terms of the preference for either centralized or decentralized options). These parameters were mostly linked to variations in catchment permeability and to the changes in sewer inflows, which could deteriorate system capacity in the future (Casal Campos, 2016; Casal-Campos et al., 2018).

Table S2: Parameter estimates affecting case conditions under each future scenario (adapted from Casal-Campos et al., 2018, 2015)

Parameter	Baseline	Markets	Innovation	Austerity	Lifestyles
Misconnections (L/s)	0	7.8	0.9	4.1	1.7
Urban creep (ha)	0	87.7	58.4	70.1	29.2
Water use (L/head/day)	155	165	125	140	110
Infiltration¹ (L/s)	52.4	163.7	40.5	200.1	135.5
Siltation²	0.97	0.92	1	0.84	0.92
Population (inhabitants)	181,000	262,450	244,350	217,200	226,250
CC precipitation uplift (%)	0	10	10	10	10
Impervious area in new developments (ha)	0	290.0	226.0	129.0	161.0
Acceptability preference³	C	C	C/D	D	D

1. It refers to infiltration of groundwater into the sewer system.
2. The effect of siltation, which represented system capacity loss in sewer pipes due to deposited sediment, was modelled as the corresponding reduction in pipe diameter under each scenario (corresponding to full-pipe area reduction); 1: no reduction, 0: full reduction.
3. The acceptability of interventions under each scenario is assessed in terms of the preference for either Centralized (C) or Decentralized (D) options. The Innovation scenario shows a mixed preference for centralized interventions, where decentralization is also promoted.
S3. Performance objectives and indicators

Table S3: Performance objectives and indicators used to define impacts and consequences (adapted from Casal-Campos et al. (2018))

Objectives	Reliability Indicators	Resilience Indicators	Sustainability Indicators
Sewer Flowing	% time free of flood	Summation of duration-weighted flood volumes $[m^3]$	Total flood volume $[m^3]$
River DO	% time $DO > 4 \text{ mg/l}$	Summation of duration-weighted DO minima $[\text{mg/l}]$	6-hour minimum dissolved oxygen $[\text{mg/l}]$
River AMM	% time $AMM < 4 \text{ mg/l}$	Summation of duration-weighted AMM minima $[\text{mg/l}]$	99 percentile total ammonia $[\text{mg/l}]$
CSOs	% time not spilling	Summation of duration-weighted spill volumes $[m^3]$	Total spill volume $[m^3]$
River Flooding	% time free of flood	Summation of duration-weighted flood volumes $[m^3]$	Total flood volume $[m^3]$
GHG Emissions	-	-	Total operational emissions from pumping & treatment $[tCO_2]$
Costs	-	-	PV of whole-life costs $[\text{£}]$
Acceptability	-	-	Acceptability level of strategies $[\text{Low accept (L)} = 1; \text{Medium accept (M)} = 2; \text{High accept (H)} = 3]$

DO: Dissolved Oxygen; **AMM:** River Total Ammonia; **GHG:** Green House Gas
S4. Design considerations for hybrid strategies

S4.1 Attenuation volume of SCR and CST

Attenuation capacity of SCR (rain gardens):

Area removed is 34% of total area:\(^\text{A}\):

\[758.9 \times 0.34 = 258 \text{ ha} \]

Assuming 20 mm of attenuation storage for rain gardens:

\[258 \text{ ha} \times 10,000 \frac{\text{m}^2}{\text{ha}} \times 20 \times 10^{-3} \text{ m} = 51,600 \text{ m}^3 \]

This is comparable to the storage volume proposed for the CST strategy (50,000 m³).

S4.2 Design of hybrid strategies

50% of SCR strategy removes 17% of total area: \(758.9 \times 0.17 = 129 \text{ ha} \)

Annual rainfall in 2050: 683.4 mm

Annual volume managed by 50% of SCR:

\[129 \text{ ha} \times 10,000 \frac{\text{m}^2}{\text{ha}} \times 683.4 \times 10^{-3} \text{ m} = 881,586 \text{ m}^3/\text{year} \]

Fraction of OT (on-site wastewater treatment) to manage an equivalent volume:

Average population increase in 2050 (mean growth across scenarios): 56,563\(^\text{B}\)

Average population affected by OT in 2050: 28,282

Average water use in 2050: 135 L/h/day

Average wastewater volume managed by OT: 28,282 \times 135 \times 365 = 1,393,596 \text{ m}^3/\text{year}

Fraction of OT required for managing the volume of 50% SCR [881,586 m³/year]:

\[\frac{881,586}{1,393,596} = 0.63 \text{ (63% of OT)} \]

Fraction of SS to manage an equivalent volume:

Average separate area managed by SS across scenarios in 2050: 323 ha

Annual volume managed on average by SS:

\[\text{typical value in UK terraced residential developments (Ward et al., 2012)} \]

\[\text{Calculated in Casal-Campos et al. (2015)} \]
\[
323 \text{ ha} \times 10,000 \frac{\text{m}^2}{\text{ha}} \times 683.4 \times 10^{-3} \text{ m} = 2,206,382 \text{ m}^3/\text{year}
\]

Fraction of SS required for managing the volume of 50% SCR [881,586 m3/year]:

\[
\frac{881,586}{2,206,382} = 0.4 \text{ (40% of SS)}
\]
S5. Results on different domains for single adaptation threshold

S5.1 Reliability domains for single adaptation threshold

Scenarios	Strategies	Adaptation Threshold
M: Markets; A: Austerity; I: Innovation; L: Lifestyles	D-N: do-nothing; SCC: permeable pavement; SCR: bio-retention planters; CSOs: sewer separation; CST: improved sewer capacity & storage tank; CS: improved sewer capacity; OT: on-site treatment; H1: SCR+OT; H2: SCR+SS; H3: SS+OT; H4: SCR+CS	Single adaptation threshold

Fig. S1: Reliability domains for the sewer flooding adaptation threshold. The compliant domain (coloured tiles) ranges from low (green) to high regret (red). Non-compliant and full-regret tiles are shown in grey.

Fig. S2: Reliability domains for the CSOs adaptation threshold.
Fig. S3: Reliability domains for the river flooding adaptation threshold.

S5.2 Resilience domains for single adaptation threshold

Fig. S4: Resilience domains for the river flooding adaptation threshold.
S5.3 Sustainability domains for single adaptation threshold

Fig. S5: Sustainability domains for the sewer flooding adaptation threshold.

Fig. S6: Sustainability domains for the CSOs adaptation threshold.

S14
S5.4 Reliability-Resilience domains for single adaptation threshold

Fig. S7: Sustainability domains for the river flooding adaptation threshold.

Fig. S8: Reliability and resilience domains for the sewer flooding adaptation threshold.
Fig. S9: Reliability and resilience domains for the CSOs adaptation threshold.

Fig. S10: Reliability and resilience domains for the river flooding adaptation threshold.
S5.5 Reliability-Sustainability domains for single adaptation threshold

Fig. S11: Reliability and sustainability domains for the sewer flooding adaptation threshold.

Fig. S12: Reliability and sustainability domains for the CSOs adaptation threshold.
Fig. S13: Reliability and sustainability domains for the river flooding adaptation threshold.

S5.6 Resilience-Sustainability domains for single adaptation threshold

Fig. S14: Resilience and sustainability domains for the sewer flooding adaptation threshold.

S18
Fig. S15: Resilience and sustainability domains for the CSOs adaptation threshold.

Fig. S16: Resilience and sustainability domains for the river flooding adaptation threshold.
S5.7 Reliability-Resilience-Sustainability domains for single adaptation threshold

Fig. S17: Reliability, resilience and sustainability domains for the sewer flooding adaptation threshold.

Fig. S18: Reliability, resilience and sustainability domains for the CSOs adaptation threshold.
S6. Results on different domains for multiple adaptation thresholds

S6.1 Reliability domains for multiple adaptation thresholds

Fig. S20: Reliability domains for the sewer flooding and CSO adaptation thresholds.
Fig. S21: Reliability domains for the sewer flooding, CSO and river flooding adaptation thresholds.

S6.2 Resilience domains for multiple adaptation thresholds

Fig. S22: Resilience domains for the sewer flooding and CSO adaptation thresholds.
Fig. S23: Resilience domains for the sewer flooding, CSO and river flooding adaptation thresholds.

S6.3 Sustainability domains for multiple adaptation thresholds

Fig. S24: Sustainability domains for the sewer flooding and CSO adaptation thresholds.
S6.4 Reliability-Resilience domains for multiple adaptation thresholds

Fig. S25: Sustainability domains for the sewer flooding, CSO and river flooding adaptation thresholds.

Fig. S26: Reliability and resilience domains for the sewer flooding and CSO adaptation thresholds.
Fig. S27: Reliability and resilience domains for CSO and sewer and river flooding adaptation thresholds.

S6.5 Reliability-Sustainability domains for multiple adaptation thresholds

Fig. S28: Reliability and sustainability domains for the sewer flooding and CSO adaptation thresholds.
S6.6 Resilience-Sustainability domains for three adaptation thresholds

Fig. S29: Reliability and sustainability domains for sewer flooding, CSO and river flooding thresholds.

Fig. S30: Resilient and sustainable domains for sewer flooding, CSO and river flooding adaptation thresholds.
S7. Detailed results on adaptation compliancy of the strategies (evaluation of the domain size)

S7.1 Results on compliancy of the strategies with respect to multiple adaptation thresholds and multiple domains (resilience-sustainability)

Table S4: Compliancy of the strategies with respect to the domains of resilience-sustainability and multiple adaptation thresholds in the epoch ending in 2020

Scenarios	Markets 2020	Innovation 2020	Austerity 2020	Lifestyles 2020		
Objectives	CSO & Sewer flooding	CSO, Sewer, flooding & river flooding	CSO & Sewer flooding	CSO, Sewer, flooding & river flooding	CSO & Sewer flooding	CSO, Sewer, flooding & river flooding
DN	NC	NC	NC	NC	NC	NC
SCC	NC	NC	NC	NC	NC	NC
SCR	NC	NC	C	NC	NC	C
SCP	NC	NC	NC	NC	NC	NC
OT	NC	NC	NC	NC	NC	NC
SS	C	NC	C	NC	C	C
CST	C	NC	C	NC	C	C
CS	C	NC	C	NC	C	C
H1	NC	NC	NC	NC	NC	NC
H2	NC	NC	C	NC	C	C
H3	NC	NC	NC	NC	NC	NC
H4	C	NC	C	C	C	C

* C: Compliant
** NC: Non-Compliant (in grey colour)

Table S5: Compliancy of the strategies with respect to the domains of resilience-sustainability and multiple adaptation thresholds in the epoch ending in 2025

Scenarios	Markets 2025	Innovation 2025	Austerity 2025	Lifestyles 2025		
Objectives	CSO & Sewer flooding	CSO, Sewer, flooding & river flooding	CSO & Sewer flooding	CSO, Sewer, flooding & river flooding	CSO & Sewer flooding	CSO, Sewer, flooding & river flooding
DN	NC	NC	NC	NC	NC	NC
SCC	NC	NC	NC	NC	NC	NC
SCR	C	NC	C	C	C	C
SCP	NC	NC	C	NC	NC	C
OT	NC	NC	NC	NC	NC	NC
SS	C	NC	C	C	C	C
CST	C	NC	C	NC	C	C
CS	NC	NC	NC	NC	NC	NC
H1	NC	NC	C	NC	C	C
H2	NC	NC	NC	NC	NC	C
H3	NC	NC	C	NC	NC	NC
H4	C	NC	C	C	C	C

* C: Compliant
** NC: Non-Compliant (in grey colour)
Table S6: Compliancy of the strategies with respect to the domains of resilience-sustainability and multiple adaptation thresholds in the epoch ending in 2030

Scenarios	Markets 2030	Innovation 2030	Austerity 2030	Lifestyles 2030		
Objectives	CSO & Sewer flooding	CSO, Sewer, flooding & river flooding	CSO & Sewer flooding	CSO, Sewer, flooding & river flooding	CSO & Sewer flooding	CSO, Sewer, flooding & river flooding
DN	NC	NC	NC	NC	NC	NC
SCC	NC	NC	NC	NC	NC	NC
SCR	NC	NC	C	NC	NC	C
SCP	NC	NC	NC	NC	NC	NC
OT	NC	NC	NC	NC	NC	NC
SS	NC	NC	C	NC	NC	NC
CST	NC	NC	C	NC	NC	C
CS	NC	NC	NC	NC	NC	NC
H1	NC	NC	NC	NC	NC	NC
H2	NC	NC	C	NC	NC	C
H3	NC	NC	C	NC	NC	NC
H4	NC	NC	C	NC	NC	C

* * C: Compliant
** NC: Non-Compliant (in grey colour)

Table S7: Compliancy of the strategies with respect to the domains of resilience-sustainability and multiple adaptation thresholds in the epoch ending in 2035

Scenarios	Markets 2035	Innovation 2035	Austerity 2035	Lifestyles 2035		
Objectives	CSO & Sewer flooding	CSO, Sewer, flooding & river flooding	CSO & Sewer flooding	CSO, Sewer, flooding & river flooding	CSO & Sewer flooding	CSO, Sewer, flooding & river flooding
DN	NC	NC	NC	NC	NC	NC
SCC	NC	NC	NC	NC	NC	NC
SCR	NC	NC	C	NC	NC	C
SCP	NC	NC	C	NC	NC	NC
OT	NC	NC	NC	NC	NC	NC
SS	NC	NC	C	NC	NC	NC
CST	NC	NC	C	NC	NC	NC
CS	NC	NC	NC	NC	NC	NC
H1	NC	NC	NC	NC	NC	NC
H2	NC	NC	C	NC	NC	C
H3	NC	NC	C	NC	NC	C
H4	NC	NC	C	NC	NC	C

* * C: Compliant
** NC: Non-Compliant (in grey colour)
Table S8: Compliancy of the strategies with respect to the domains of resilience-sustainability and multiple adaptation thresholds in the epoch ending in 2040

Scenarios	Markets 2040	Innovation 2040	Austerity 2040	Lifestyles 2040		
Objectives	CSO & Sewer flooding	CSO, Sewer, flooding & river flooding	CSO & Sewer flooding	CSO, Sewer, flooding & river flooding	CSO & Sewer flooding	CSO, Sewer, flooding & river flooding
DN	NC	NC	NC	NC	NC	NC
SCC	NC	NC	NC	NC	NC	NC
SCR	NC	C	NC	C	NC	NC
SCP	NC	C	NC	C	NC	NC
OT	NC	NC	NC	NC	NC	NC
SS	C	NC	NC	C	NC	NC
CST	NC	C	NC	C	NC	NC
CS	NC	NC	NC	NC	NC	NC
H1	NC	C	NC	C	NC	NC
H2	NC	C	NC	C	NC	NC
H3	NC	NC	NC	NC	NC	NC
H4	C	NC	C	C	NC	NC

* C: Compliant
** NC: Non-Compliant (in grey colour)

Table S9: Compliancy of the strategies with respect to the domains of resilience-sustainability and multiple adaptation thresholds in the epoch ending in 2045

Scenarios	Markets 2045	Innovation 2045	Austerity 2045	Lifestyles 2045		
Objectives	CSO & Sewer flooding	CSO, Sewer, flooding & river flooding	CSO & Sewer flooding	CSO, Sewer, flooding & river flooding	CSO & Sewer flooding	CSO, Sewer, flooding & river flooding
DN	NC	NC	NC	NC	NC	NC
SCC	NC	NC	NC	NC	NC	NC
SCR	C	NC	C	NC	C	NC
SCP	NC	NC	NC	NC	NC	NC
OT	NC	NC	NC	NC	NC	NC
SS	C	NC	NC	C	NC	NC
CST	NC	C	NC	C	NC	NC
CS	NC	NC	NC	NC	NC	NC
H1	NC	NC	NC	NC	NC	NC
H2	C	NC	NC	C	NC	NC
H3	NC	NC	NC	NC	NC	NC
H4	C	NC	C	C	NC	NC

* C: Compliant
** NC: Non-Compliant (in grey colour)
Table S10: Compliancy of the strategies with respect to the domains of resilience-sustainability and multiple adaptation thresholds in the epoch ending in 2050

Scenarios	Markets 2050	Innovation 2050	Austerity 2050	Lifestyles 2050				
Objectives	CSO & Sewer flooding	CSO, Sewer, flooding & river flooding	CSO & Sewer flooding	CSO, Sewer, flooding & river flooding	CSO & Sewer flooding	CSO, Sewer, flooding & river flooding	CSO & Sewer flooding	CSO, Sewer, flooding & river flooding
DN	NC							
SCC	NC							
SCR	C	NC	C	NC	C	NC	C	NC
SCP	NC	NC	C	NC	NC	NC	C	NC
OT	NC							
SS	C	NC	C	NC	C	NC	C	NC
CST	NC	NC	C	NC	C	NC	C	NC
CS	NC							
H1	NC	NC	C	NC	NC	NC	NC	NC
H2	C	NC	C	NC	C	NC	C	NC
H3	NC	NC	C	NC	NC	NC	C	NC
H4	C	NC	C	NC	C	NC	C	C

* C: Compliant
** NC: Non-Compliant (in grey colour)

S7.2 Results on compliancy of the strategies with respect to multiple adaptation thresholds and multiple domains (reliability-resilience-sustainability)

Table S11: Compliancy of the strategies with respect to the domains of reliability-resilience-sustainability and multiple adaptation thresholds in the epoch ending in 2020

Scenarios	Markets 2020	Innovation 2050	Austerity 2050	Lifestyles 2050				
Objectives	CSO & Sewer flooding	CSO, Sewer, flooding & river flooding	CSO & Sewer flooding	CSO, Sewer, flooding & river flooding	CSO & Sewer flooding	CSO, Sewer, flooding & river flooding	CSO & Sewer flooding	CSO, Sewer, flooding & river flooding
DN	NC							
SCC	NC							
SCR	NC	NC	C	C	NC	NC	C	C
SCP	NC	NC	C	NC	NC	NC	C	C
OT	NC							
SS	C	NC	C	NC	C	NC	C	C
CST	C	NC	C	NC	C	NC	C	C
CS	C	NC	C	NC	C	NC	C	C
H1	NC							
H2	NC	NC	C	C	NC	NC	C	C
H3	NC							
H4	C	NC	C	C	C	C	C	C

* C: Compliant
** NC: Non-Compliant (in grey colour)
Table S12: Compliancy of the strategies with respect to the domains of reliability-resilience-sustainability and multiple adaptation thresholds in the epoch ending in 2025

Scenarios	Markets 2025	Innovation 2025	Austerity 2025	Lifestyles 2025		
Objectives	CSO & Sewer flooding	CSO, Sewer, flooding & river flooding	CSO & Sewer flooding	CSO, Sewer, flooding & river flooding	CSO & Sewer flooding	CSO, Sewer, flooding & river flooding
DN	NC	NC	NC	NC	NC	NC
SCC	NC	NC	NC	NC	NC	NC
SCR	C	NC	C	C	C	C
SCP	NC	NC	C	C	C	C
OT	NC	NC	NC	NC	NC	NC
SS	C	NC	C	NC	C	NC
CST	NC	NC	C	NC	C	NC
CS	NC	NC	C	NC	NC	NC
H1	NC	NC	C	NC	NC	NC
H2	NC	NC	C	NC	NC	C
H3	NC	NC	C	NC	NC	C
H4	C	NC	C	C	C	C

* C: Compliant
** NC: Non-Compliant (in grey colour)

Table S13: Compliancy of the strategies with respect to the domains of reliability-resilience-sustainability and multiple adaptation thresholds in the epoch ending in 2030

Scenarios	Markets 2030	Innovation 2030	Austerity 2030	Lifestyles 2030		
Objectives	CSO & Sewer flooding	CSO, Sewer, flooding & river flooding	CSO & Sewer flooding	CSO, Sewer, flooding & river flooding	CSO & Sewer flooding	CSO, Sewer, flooding & river flooding
DN	NC	NC	NC	NC	NC	NC
SCC	NC	NC	NC	NC	NC	NC
SCR	NC	NC	C	NC	NC	C
SCP	NC	NC	NC	NC	NC	NC
OT	NC	NC	C	NC	NC	C
SS	NC	NC	C	NC	NC	C
CST	NC	NC	C	NC	NC	C
CS	NC	NC	C	NC	NC	C
H1	NC	NC	C	NC	NC	C
H2	NC	NC	C	NC	NC	C
H3	NC	NC	C	NC	NC	C
H4	C	NC	C	C	C	C

* C: Compliant
** NC: Non-Compliant (in grey colour)
Table S14: Compliancy of the strategies with respect to the domains of reliability-resilience-sustainability and multiple adaptation thresholds in the epoch ending in 2035

Scenarios	Markets 2035	Innovation 2035	Austerity 2035	Lifestyles 2035			
Objectives	CSO & Sewer flooding	CSO, Sewer, flooding & river flooding	CSO, Sewer, flooding & river flooding	CSO & Sewer flooding	CSO, Sewer, flooding & river flooding		
DN	NC	NC	NC	NC	NC	NC	NC
SCC	NC	NC	NC	NC	NC	NC	NC
SCR	NC	C	NC	NC	NC	NC	C
SCP	NC	C	NC	NC	NC	NC	C
OT	NC	NC	NC	NC	NC	NC	C
SS	NC	C	NC	NC	NC	NC	C
CST	NC	NC	NC	NC	NC	NC	C
CS	NC	NC	NC	NC	NC	NC	C
H1	NC	NC	NC	NC	NC	NC	C
H2	NC	NC	NC	NC	NC	NC	C
H3	NC	NC	NC	NC	NC	NC	C
H4	NC	C	NC	NC	NC	NC	C

* C: Compliant
** NC: Non-Compliant (in grey colour)

Table S15: Compliancy of the strategies with respect to the domains of reliability-resilience-sustainability and multiple adaptation thresholds in the epoch ending in 2040

Scenarios	Markets 2040	Innovation 2040	Austerity 2040	Lifestyles 2040		
Objectives	CSO & Sewer flooding	CSO, Sewer, flooding & river flooding	CSO, Sewer, flooding & river flooding	CSO & Sewer flooding	CSO, Sewer, flooding & river flooding	
DN	NC	NC	NC	NC	NC	NC
SCC	NC	NC	NC	NC	NC	NC
SCR	NC	C	NC	NC	NC	NC
SCP	NC	C	NC	NC	NC	NC
OT	NC	NC	NC	NC	NC	NC
SS	NC	C	NC	NC	NC	NC
CST	NC	NC	NC	NC	NC	NC
CS	NC	NC	NC	NC	NC	NC
H1	NC	NC	NC	NC	NC	NC
H2	NC	NC	NC	NC	NC	NC
H3	NC	NC	NC	NC	NC	NC
H4	NC	C	NC	NC	NC	NC

* C: Compliant
** NC: Non-Compliant (in grey colour)
Table S16: Compliancy of the strategies with respect to the domains of reliability-resilience-sustainability and multiple adaptation thresholds in the epoch ending in 2045

Strategies	Markets 2045	Innovation 2045	Austerity 2045	Lifestyles 2045
DN	NC	NC	NC	NC
SCC	NC	NC	NC	NC
SCR	NC	C	NC	C
SCP	NC	C	NC	C
OT	NC	NC	NC	C
SS	NC	C	NC	C
CST	NC	NC	NC	NC
CS	NC	NC	NC	NC
H1	NC	C	NC	C
H2	NC	C	NC	C
H3	NC	C	NC	C
H4	NC	C	NC	C

* C: Compliant
** NC: Non-Compliant (in grey colour)

Table S17: Compliancy of the strategies with respect to the domains of reliability-resilience-sustainability and multiple adaptation thresholds in the epoch ending in 2050

Strategies	Markets 2050	Innovation 2050	Austerity 2050	Lifestyles 2050
DN	NC	NC	NC	NC
SCC	NC	NC	NC	NC
SCR	NC	C	NC	C
SCP	NC	C	NC	C
OT	NC	NC	NC	C
SS	NC	NC	NC	C
CST	NC	NC	NC	NC
CS	NC	NC	NC	NC
H1	NC	C	NC	C
H2	NC	C	NC	C
H3	NC	C	NC	C
H4	NC	C	NC	C

* C: Compliant
** NC: Non-Compliant (in grey colour)
S8. Detailed results on the assessment of strategies by the regret indices

S8.1 Results on regret levels in the multiple domains of resilience-sustainability

Table S18: Resilience-sustainability regret index in the epoch ending in 2020 and 2025

Strategies	Epoch ending in 2020	Epoch ending in 2025
DN	0.817 0.847 0.735 0.679 1.000	1.000 1.000 0.754 1.000
SCC	0.719 0.619 0.632 0.531 1.000	1.000 1.000 0.653 1.000
SCR	0.342 0.273 0.262 0.261 0.306	0.289 0.282 0.240 0.240
SCP	0.528 0.452 0.464 0.294 1.000	0.449 0.452 0.386 0.386
OT	0.615 0.744 0.702 0.482 1.000	1.000 1.000 0.638 0.611
SS	0.513 0.544 0.451 0.406 0.512	0.479 0.476 0.436 0.436
CST	0.475 0.441 0.374 0.389 0.441	0.481 0.399 0.405 0.405
CS	0.561 0.592 0.592 0.659 0.756	0.766 0.617 0.747 0.747
H1	0.474 0.440 0.428 0.331 1.000	1.000 1.000 0.414 0.290
H2	0.435 0.425 0.356 0.315 0.413	0.416 0.368 0.349 0.349
H3	0.572 0.576 0.529 0.437 1.000	1.000 1.000 0.484 0.389
H4	0.265 0.199 0.230 0.293 0.217	0.175 0.147 0.255 0.255

Table S19: Resilience-sustainability regret index in the epoch ending in 2030 and 2035

Strategies	Epoch ending in 2030	Epoch ending in 2035
DN	1.000 1.000 1.000 1.000	1.000 1.000 1.000 1.000
SCC	1.000 1.000 0.814 1.000	1.000 1.000 1.000 1.000
SCR	1.000 0.616 0.259 0.168	0.684 0.235 0.263 0.175
SCP	1.000 1.000 0.422 0.345	1.000 1.000 0.419 0.320
OT	1.000 1.000 1.000 1.000	1.000 1.000 1.000 1.000
SS	0.768 0.526 0.456 0.407	0.459 0.463 0.432 0.394
CST	0.604 0.469 0.391 0.387	0.601 0.455 0.385 0.376
CS	1.000 1.000 0.775 0.752	1.000 1.000 0.763 0.750
H1	1.000 1.000 0.396 1.000	1.000 1.000 0.354 0.285
H2	1.000 0.695 0.386 0.304	0.716 0.359 0.364 0.301
H3	1.000 1.000 0.508 1.000	1.000 1.000 0.495 0.721
H4	0.540 0.178 0.163 0.216	0.529 0.177 0.169 0.195
Table S20: Resilience-sustainability regret index in the epoch ending in 2040 and 2045

Strategies	Epoch ending in 2040	Epoch ending in 2045
DN	1.000	1.000
	1.000	1.000
SCC	1.000	1.000
	0.693	0.223
SCR	1.000	0.421
	0.239	0.297
SCP	1.000	0.165
	0.703	0.213
OT	1.000	0.468
	1.000	0.455
SS	0.436	0.468
	0.407	0.455
CST	1.000	0.466
	0.371	0.391
CS	1.000	0.450
	0.770	0.754
H1	1.000	0.366
	0.287	0.185
H2	0.724	0.157
	0.348	0.287
H3	1.000	0.491
	0.449	0.226
H4	0.205	0.188
	0.157	0.194
	0.157	0.142
	0.185	0.142

Table S21: Resilience-sustainability regret index in the epoch ending in 2050

Strategies	Epoch ending in 2050
DN	1.000
	1.000
SCC	1.000
	0.693
SCR	1.000
	0.275
SCP	1.000
	0.355
OT	1.000
	0.450
SS	1.000
	0.477
CST	1.000
	0.510
CS	1.000
	0.437
H1	1.000
	0.493
H2	1.000
	0.466
H3	1.000
	0.612
H4	1.000
	0.210
	0.157
	0.188
	0.157
	0.185
	0.226
	0.194
	0.142
	0.142

S8.2 Results on regret levels in the multiple domains of reliability-resilience-sustainability

Table S22: Reliability-resilience-sustainability regret index in the epoch ending in 2020 and 2025

Strategies	Epoch ending in 2020	Epoch ending in 2025
DN	0.809	0.875
	0.745	0.695
SCR	0.700	0.655
	0.572	0.492
SCP	0.355	0.265
	0.297	0.249
OT	0.532	0.520
	0.316	0.316
SS	0.608	0.755
	0.724	0.529
CST	0.510	0.537
	0.357	0.357
CS	0.459	0.571
	0.326	0.281
H1	0.531	0.554
	0.544	0.586
H2	0.468	0.493
	0.429	0.341
H3	0.437	0.466
	0.353	0.298
H4	0.573	0.612
	0.527	0.440
	0.210	0.149
	0.204	0.251
	0.187	0.139
	0.127	0.231
Table S23: Reliability-resilience-sustainability regret index in the epoch ending in 2030 and 2035

Strategies	Epoch ending in 2030	Epoch ending in 2035
DN	1.000	1.000
SCC	1.000	1.000
SCR	0.744	0.235
SCP	1.000	0.429
OT	1.000	0.875
SS	0.845	0.522
CST	0.736	0.646
CS	1.000	0.712
H1	1.000	0.395
H2	1.000	0.797
H3	1.000	0.531
H4	0.383	0.149

Table S24: Reliability-resilience-sustainability regret index in the epoch ending in 2040 and 2045

Strategies	Epoch ending in 2040	Epoch ending in 2045
DN	1.000	1.000
SCC	1.000	1.000
SCR	0.482	0.219
SCP	1.000	0.408
OT	1.000	0.872
SS	0.624	0.433
CST	1.000	0.581
CS	1.000	0.846
H1	1.000	0.353
H2	0.816	0.331
H3	1.000	0.503
H4	0.470	0.153

Table S25: Reliability-resilience-sustainability regret index in the epoch ending in 2050

Strategies	Epoch ending in 2050
DN	1.000
SCC	1.000
SCR	0.517
SCP	1.000
OT	1.000
SS	0.633
CST	1.000
CS	1.000
H1	1.000
H2	0.578
H3	1.000
H4	0.488

S36
S9. References

Butler, D., Ward, S., Sweetapple, C., Astaraie-Imani, M., Diao, K., Farmani, R., Fu, G., 2017. Reliable, resilient and sustainable water management: the Safe & SuRe approach. Glob. Chall. 1, 63–77. https://doi.org/10.1002/gch2.1010

Casal Campos, A., 2016. Integrated Management of Urban Wastewater Systems: Exploring Reliable, Resilient and Sustainable Strategies for an Uncertain Future (Doctor of Engineering in Water Engineering). University of Exeter, Exeter, UK.

Casal-Campos, A., Fu, G., Butler, D., Moore, A., 2015. An Integrated Environmental Assessment of Green and Gray Infrastructure Strategies for Robust Decision Making. Environ. Sci. Technol. 49, 8307–8314. https://doi.org/10.1021/es506144f

Casal-Campos, A., Sadr, S.M.K., Fu, G., Butler, D., 2018. Reliable, Resilient and Sustainable Urban Drainage Systems: An Analysis of Robustness under Deep Uncertainty. Environ. Sci. Technol. 52, 9008–9021. https://doi.org/10.1021/acs.est.8b01193

Haasnoot, M., Kwakkel, J.H., Walker, W.E., ter Maat, J., 2013. Dynamic adaptive policy pathways: A method for crafting robust decisions for a deeply uncertain world. Glob. Environ. Change 23, 485–498. https://doi.org/10.1016/j.gloenvcha.2012.12.006

Haasnoot, M., van Aalst, M., Rozenberg, J., Dominique, K., Matthews, J., Bouwer, L.M., Kind, J., Poff, N.L., 2019. Investments under non-stationarity: economic evaluation of adaptation pathways. Clim. Change. https://doi.org/10.1007/s10584-019-02409-6

Kingsborough, A., Borgeomeo, E., Hall, J.W., 2016. Adaptation pathways in practice: Mapping options and trade-offs for London’s water resources. Sustain. Cities Soc. 27, 386–397. https://doi.org/10.1016/j.scs.2016.08.013

Kirtman, B., Power, S.B., Adedoyin, A.J., Boer, G.J., Bojariu, R., Camilloni, I., Doblas-Reyes, F., Fiore, A.M., Kimoto, M., Meehl, G., Prather, M., Sarr, A., Schar, C., Sutton, R., van Oldenborgh, G.J., Vecchi, G., Wang, H.-J., 2013. Chapter 11 - Near-term climate change: Projections and predictability, in: IPCC (Ed.), Climate Change 2013: The Physical Science Basis. IPCC Working Group I Contribution to AR5. Cambridge University Press, Cambridge.

Kwadijk, J.C.J., Haasnoot, M., Mulder, J.P.M., Hoogvliet, M.M.C., Jeuken, A.B.M., van der Krogt, R.A.A., van Oostrom, N.G.C., Schelfhout, H.A., van Velzen, E.H., van Waveren, H., de Wit, M.J.M., 2010. Using adaptation tipping points to prepare for climate change and sea level rise: a case study in the Netherlands. Wiley Interdiscip. Rev. Clim. Change 1, 729–740. https://doi.org/10.1002/wcc.64

Leach, M., Stirling, A., Scoones, I., 2010. Dynamic Sustainabilities, First ed. Taylor & Francis, London: Routledge.

Manocha, N., Babovic, V., 2017. Development and valuation of adaptation pathways for storm water management infrastructure. Environ. Sci. Policy 77, 86–97. https://doi.org/10.1016/j.envsci.2017.08.001

Renaud, F.G., Syvitski, J.P., Sebesvari, Z., Werners, S.E., Kremer, H., Kuenzer, C., Ramesh, R., Jeuken, A., Friedrich, J., 2013. Tipping from the Holocene to the Anthropocene: How threatened are major world deltas? Curr. Opin. Environ. Sustain., Aquatic and marine systems 5, 644–654. https://doi.org/10.1016/j.cosust.2013.11.007

van Veelen, P.C., Stone, K., Jeuken, A., 2015. Planning resilient urban waterfronts using adaptive pathways. Proc. Inst. Civ. Eng. - Water Manag. 168, 49–56. https://doi.org/10.1680/wama.14.00062

Ward, S., Farmani, R., Atkinson, S., Butler, D., Hargreaves, A., Cheng, V., Denman, S., Echenique, M., 2012. Towards an integrated modelling framework for sustainable urban development. Presented at the 9th International Conference on Urban Drainage Modelling, Belgrade, pp. 1–12.