Association between coffee consumption and periodontal diseases: a systematic review and meta-analysis

Yeonjae Rhee1†, Yongjun Choi1†, Jeongmin Park1, Hae Ryoun Park2,3,4, Kihun Kim5* and Yun Hak Kim6,7*

Abstract

Background: Several studies have demonstrated association between coffee consumption and periodontal diseases. However, no systematic review and meta-analysis was performed. Therefore, we performed a systematic review and meta-analysis to evaluate the association between coffee intake and periodontitis.

Methods: We defined PICO statement as "Do coffee drinkers have a higher association of periodontitis or tooth loss than non-coffee drinkers?". We searched for articles using the Embase and Medline databases. The odds ratio was used as an effect measure to evaluate the association between coffee and periodontitis. We divided coffee intake doses into three groups: no intake (≤ 0.03 cups/day), low intake (0.03 < x < 1 cups/day), and high intake (≥ 1 cup/day). Cohort and cross-sectional studies were eligible for inclusion in this study. The Newcastle–Ottawa scale was used to qualitatively assess the risk of bias. The degree of heterogeneity between studies was quantified using I² statistics.

Results: Six articles were analysed, including two cohort studies and four cross-sectional studies. The pooled unadjusted odds ratios of periodontitis were 1.14 (0.93–1.39), 1.05 (0.73–1.52), 1.03 (0.91–1.16) and 1.10 (0.84–1.45) in the 4 meta-analyses (coffee drinker vs. non-coffee drinker, high intake vs. low intake, low intake vs. no intake, high intake vs. no intake), respectively.

Conclusion: This is the first meta-analysis to investigate the relationship between coffee consumption and periodontitis. There was no relationship between coffee consumption and periodontitis. Further studies are required to assess whether a relationship between coffee consumption and periodontitis exists or not.

PROSPERO registration number: CRD42022301341.

Keywords: Coffee, Periodontitis, tooth loss, Observational study, Systematic review, Meta-analysis

Introduction

Coffee is one of the most consumed beverages in the world. Its consumption is second in the beverage market after water consumption [1]. It has been reported to have many positive effects on human health [2]. Caffeine, a component of coffee, exerts antioxidant and anti-inflammatory effects. Furthermore, one study has suggested that chlorogenic acid from coffee has potent chemopreventive effects [3].

Many studies have investigated the relationship between coffee consumption and systemic diseases.

†Yeonjae Rhee and Yongjun Choi contributed equally to this work as first authors.
*Correspondence: kihun7603@naver.com; yunhak10510@pusan.ac.kr
1 Department of Occupational and Environmental Medicine, Kosin University Gospel Hospital, Busan, Republic of Korea
2 Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan 50610, Republic of Korea
Full list of author information is available at the end of the article

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
Coffee has been proven to lower the risk of Alzheimer’s disease, Parkinson’s disease, type 2 diabetes, liver cancer, and heart attack [4]. In contrast, it has been reported that coffee can also be harmful since it causes insomnia, restlessness, and high blood pressure [5–7].

Periodontal disease is an chronic oral inflammation and infection that damages the supporting tissues around the teeth [8]. Cytokines produced during periodontitis may enter the systemic circulation and can lead to other health complications [9]. It is highly prevalent worldwide and is one of two major oral diseases [10]. Periodontitis is closely associated with lifestyle, especially intake of medications and alcohol [11–13]. It has also been linked to systemic disease such as cancer and respiratory infections [14, 15]. Severe periodontitis also caused oral diseases and tooth loss [16, 17]. Hence, we decided to investigate the influence of coffee on the periodontitis.

Several papers have been published containing information on the association between coffee and periodontitis [18–27]. According to Han et al. (2016), the consumption of two or more cups of coffee each day may be considered as risk factor for periodontitis [22]. Meanwhile, Hong et al. (2021) reported no statistically significant association between coffee and periodontitis [19]. There is no currently systematic review and meta-analysis that comprehensively analysed association between coffee consumption and periodontal diseases. Therefore, we performed a systematic review and meta-analysis to evaluate this association.

Material and methods

Eligibility criteria

We defined PICO statement as “Do coffee drinkers have a higher association of periodontitis or tooth loss than non-coffee drinkers?”. All observational studies with detailed information on coffee consumption and periodontal diseases were eligible for inclusion in this study. Only articles published in English were included; however, publication year was not restricted. We also excluded non-human articles and non-articles type papers from the search.

Information sources and search strategy

This meta-analysis was conducted in accordance with the PRISMA guidelines [28]. We searched for articles using the Embase and Medline databases published until January 3, 2022. The search strategy was as follows: (coffee:ab,ti OR caffeine:ab,ti OR caffeinated:ab,ti) AND (periodontitis:ab,ti OR periodontal disease:ab,ti OR periodontal inflammation:ab,ti OR gum disease:ab,ti OR gum inflammation:ab,ti OR gingivitis:ab,ti OR periodontitis:ab,ti OR paradentitis:ab,ti OR oral health:ab,ti OR oral disease:ab,ti OR oral hygiene:ab,ti OR tooth loss:ab,ti OR missing teeth:ab,ti) AND (risk:ab,ti OR ratio:ab,ti OR prevalence:ab,ti OR incidence:ab,ti OR outcome:ab,ti OR prognosis:ab,ti OR hazard:ab,ti OR odds:ab,ti OR morbidity:ab,ti) AND ([article]/lim OR [article in press]/lim) AND (English)/lim AND [humans]/lim.

Selection process

Two authors (YR and YC) independently selected suitable papers from the screened records and evaluated the eligibility of the papers. The same authors searched grey literatures by combining words included in the search strategy using Google and Google Scalar. In evaluating the papers’ eligibility, disagreements were resolved through discussion by the authors.

Data collection process and data items

We extracted the following data during the screening phase: title, abstract, author name, publication year, publication type, article language, and summary language. Through a full-text assessment, the name of the disease, study year and region, number of samples, age, sex ratio, and effect sizes were added. We included studies that presented the number of samples or effect sizes according to our dose criteria. Papers containing unavailable data were excluded if they did not match the dose criteria set in this study.

Study risk of bias assessment

The Newcastle–Ottawa scale was used to qualitatively assess the risk of bias in the cohort studies [29]. For cross-sectional studies, the adapted version of the Newcastle–Ottawa scale presented by Herzog et al. was used [30]. The assessment tools are presented in the Additional file 1: Tables. We assessed the risk of bias in the included studies and verified the quality of evidence.

Effect measure

The odds ratio and 95% confidence intervals (CIs) were used to evaluate the association between coffee and periodontal diseases. For articles that did not represent the odds ratio, we calculated the odds ratio using the number of samples. The odds ratio was followed by unadjusted values and 95% CIs.

Synthesis methods

Data were shown as crude odds ratios (ORs) with 95% CIs. The overall degree of heterogeneity between studies was quantified using I² statistics [31]. We used the random effect model because the heterogeneity of all results was more than 50%. Review Manager 5.4 software was used to synthesize the results. First, we compared coffee drinkers with non-coffee drinkers. Second, we compared
high- and low-intake drinkers. Third, we compared low-intake drinkers with non-coffee drinkers. Fourth, we compared high-intake drinkers to non-coffee drinkers. Additionally, we analysed the relationship between coffee consumption and tooth loss. In the case of tooth loss, we compared coffee drinkers with non-coffee drinkers.

Certainty assessment
The GRADE method was used to assess the quality of evidence for the main outcome as high, moderate, low, or very low based on five required domain and three additional domains [32, 33].

Results
Study selection and characteristics
A total of 46 records were identified based on the search terms, and 2 hand searching articles were additionally identified. Nineteen non-human subjects and non-article type papers were excluded. First, 29 studies were screened based on their titles and abstracts. Second, 16 articles that were unrelated to our study topic were excluded. Third, a full-text review was conducted on the remaining 13 articles. We excluded five articles based on the following criteria: no original article (systematic or narrative review), no control group articles, and no quantitative data. Finally, six articles were included (Fig. 1). These included two cohort studies and four cross-sectional studies. The characteristics of the included studies are shown in Table 1.

Synthesis of the results
4 studies were used to evaluate the association between coffee and periodontitis. The pooled unadjusted odds ratios of periodontitis were 1.14 (95% CI 0.93–1.39; I², 88%) (Fig. 2), 1.05 (95% CI 0.73–1.52; I², 97%), 1.03 (95% CI 0.91–1.16; I², 72%) and 1.10 (95% CI 0.84–1.45; I², 96%) in the 4 meta-analyses (coffee drinker vs non-coffee drinker, high intake vs low intake, low intake vs no intake, high intake vs no intake), respectively (Table 2).

2 studies were used to evaluate the association between coffee and periodontitis. As severe periodontitis often leads to tooth loss, we also analysed two studies that included information on tooth loss cases depending on the consumption of coffee (Table 3). The odds ratio was 1.17 (95% CI 0.75–1.83; I², 88%) (Fig. 3). Similar to the above results, the association between tooth loss and coffee intake was not statistically significant.

Risk of bias in studies
Risk of bias was evaluated for 2 cohort studies and 4 cross-sectional studies. The risk of bias of 2 cohort studies and 3 cross-sectional studies was rated as ‘good’, and 1 cross-sectional study was evaluated as ‘satisfactory’ (Additional file 1).
References	Study design	Country	Year of study	No. of participants	Male/female	Definition of Coffee intake	Definition of periodontal disease	Comments	
Hong et al. [19]	Cohort	Korea	2004–2016	134,855	47,123/87,732	No drink mild drink (one time a month through six times a week) Heavy drink (one or more times a day)	Periodontitis—Yes or no (based-on questionnaire)	Coffee intake and periodontitis are not significant	
Abbas et al. [20]	Cross-sectional	Egypt	2018	343	139/204	≤2 times/week 3–6 times/week 1–6 times/day	Periodontitis—Clinical and radiographic case identification was performed by trained examiners according to the latest classification of periodontal diseases	Caffeinated drinks were shown to have a positive correlation with periodontitis	
Han et al. [22]	Cross-sectional	Korea	2008–2010	16,730	6,716/10,014	≤ Once per month Once per month < x ≤ 3 times per week Three times per week < x ≤ 6 times per week Once per day Twice per day Three or more per day	Periodontitis—Yes or no based-on community periodontal index score	Consumption of coffee may be considered an independent risk indicator of periodontal disease in Korean male adults	
Zuccarello et al. [23]	Cohort	Italy	–	206	98/108	Yes or no information obtained by participants	Chronic periodontitis—The diagnosis was based on the guidelines of the International Workshop for the Classification of Periodontal Disease and Conditions	No association was found between chronic periodontitis and lifestyles (coffee). Only familiarity showed a strong correlation	
Koyama et al. [40]	Cross-sectional	Japan	2006	25,078	12,019/13,059	<1 cups/day 1–2 cups/day 3–4 cups/day 5+ cups/day	Tooth loss—Yes (< 20 teeth) / no (≥ 20 teeth)	People who consumed more cups of coffee had a lower number of teeth	
Tanaka et al. [41]	Cross-sectional	Japan	2002–2003	1,002	0/1,002	<1 time/week 1–6 times/week 1 + time/day	Tooth loss—Yes (+1 extraction teeth) / no (no extraction teeth)	Coffee consumption was independently associated with an increased prevalence of tooth loss	
Certainty assessment

The quality of evidence was evaluated for the main outcome. The quality of evidence was assessed to be very low, based on the GRADE method (Table 4).
Coffee intake was not found to be associated with periodontitis or tooth loss. This is the first meta-analysis to investigate the association between coffee consumption and periodontal diseases.

The effect of coffee on chronic inflammatory diseases remains controversial. C-reactive protein (CRP) is a known biomarker for inflammation [34]. One study found no association between coffee consumption and CRP [35]. On the contrary, some studies have suggested that coffee is beneficial for chronic inflammation [36]. Periodontitis is induced by an imbalance between the oral microbiota and the immune system, and coffee enhances the richness of the oral microbiome [9, 37]. Previous studies have shown that coffee consumption is not related to periodontitis; however, it is necessary to further analyse this relationship through a large-scale cohort study.

Periodontitis is an inflammatory condition where immune cells produce cytokines, such as IL-1 and IL-6. These factors activate osteoclasts, which destroy the alveolar bone, and inhibit bone forming osteoblasts. In addition, periodontal pathogenic bacteria directly inhibit osteoblasts and cause alveolar bone destruction, leading to tooth loss [38, 39]. According to our result, odds ratio for coffee intake and tooth loss was 1.17. Although we analysed only two cross-sectional studies, one of them had a significant result. Therefore, further large-scale cohort studies are required.

Our study had several limitations. First, the number of included studies was small. In addition, the criteria for dividing the dose levels varied in each study included in the analysis. Therefore, we had to create a new standard that could be applied to all six studies to categorise coffee doses. During this process, we assumed ‘less than 1 time per month (= less than 0.03 times per day)’ as ‘no coffee intake’. In addition, the exact quantity of coffee intake measured in these studies was not clear. The unit for the dose measurement was often indicated as ‘times’ or ‘cups’, and the exact amount of coffee or espresso shots included in each ‘time’ or ‘cup’ was not mentioned. Finally, there was

Table 4 GRADE method for the primary outcome

Outcome	Quality assessment	Additional domains	Grade										
	Required domains												
	Study limitations	Consistency	Directness of evidence	Precision	Reporting bias	Dose-response association	Plausible confounding that would decrease observed effect	Strength of association (magnitude of effect)					
Periodontitis	High^a	Inconsistent^b	Indirect	Precise^c	Unevaluable^d	Undetected	Present^a	Weak^f	⬤				Very low
Tooth loss	High^a	Inconsistent^b	Indirect	Precise^c	Unevaluable^d	Undetected	Present^a	Weak^f	⬤				Very low

^a All-included studies are observational design
^b Considerable heterogeneity (I² > 50%)
^c Sample size over 4000
^d Due to small number of included studies
^e All-included studies are observational design, and all analyses were based on unadjusted estimates
^f OR < 2.0
variability among the definitions of periodontitis (e.g., clinical-based, self-reported questionnaire).

Despite these limitations, our study has several strengths. Our analysis was not on coffee consumption only, but was also done by the level of doses (low or high). Our odds ratios were consistent across all circumstances. Finally, as shown in the Additional file 1: Tables, most of included studies in our analysis were high quality.

Conclusion
In conclusion, there was no association between coffee consumption and periodontal diseases according to our study. There is a lack of research on coffee and periodontal disease, and each paper defines coffee consumption and periodontal disease differently. Thus, it is important to interpret the results carefully. Future research needs to be conducted with a large number of subjects, including a more detailed definition of coffee consumption and periodontal disease.

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s12903-022-02310-2.

Additional file 1 We assessed the risk of bias in the included studies and verified the quality of evidence.

Acknowledgements
Not applicable.

Author contributions
KK, and YHK conceptualised and designed the study; YR and YC collected, selected the data; YR, YC, and JP analysed the data; YR, YC, and JP drafted the manuscript; KK, YHK, and HRP revised the manuscript. All authors read and approved the final manuscript.

Funding
This work was supported by the Medical Research Center (MRC) program [Grant Number NRF-2018R1A5A2023879] and the Basic Science Research Program [Grant Number NRF-2020R1C1C1003741] through a National Research Foundation of Korea grant funded by the Korean government. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Availability of data and materials
All data generated or analysed during this study are included in this published article.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
None of the authors had any conflict of interest.
19. Hong SJ, Kwon B, Yang BE, Choi HG, Byun SH. Evaluation of the relationship between drink intake and periodontitis using KoGES data. BioMed Res Int. 2021, 2021.

20. Abbass MM, Rady D, Radwan IA, El Moshy S, AbuBakr N, Ramadan M, Yusof N, Al Jawaldeh A. The occurrence of periodontal diseases and its correlation with different risk factors among a convenient sample of adult Egyptian population: a cross-sectional study. F1000Research 2019, 8.

21. Nani H, Yamada Y, Itoi A, Yamagata E, Watanabe Y, Yoshida T, Miyake M, Ishikawa-Takata K, Yoshida M, Kikutani T. Consumption of green tea but not coffee is associated with the oral health-related quality of life among an older Japanese population: Kyoto-Kameoka cross-sectional study. Eur J Clin Nutr. 2019;73(4):577–84.

22. Han K, Hwang E, Park J-B. Association between consumption of coffee and the prevalence of periodontitis: The 2008–2010 Korea National Health and Nutrition Examination Survey. PLoS ONE. 2016;11(7):e0158845.

23. Zuccarello D, Bazzato MF, Ferlin A, Pengo M, Frigo AC, Favero G, Foresta C, Stellini E. Role of familiarity versus interleukin-1 genes cluster polymorphisms in chronic periodontitis. Gene. 2014;535(2):286–9.

24. Kim Y-R, Nam S-H. Comparison of periodontal status according to the additives of coffee: evidence from Korean National Health and Nutrition Examination Survey (2013–2015). Int J Environ Res Public Health. 2019;16(21):4219.

25. Machida T, Tomofuji T, Okuni D, Azuma T, Takeuchi N, Murayama T, Mizutani S, Kataoka K, Kawabata Y, Monta M. Severe periodontitis is inversely associated with coffee consumption in the maintenance phase of periodontal treatment. Nutrients. 2014;6(10):4476–90.

26. Elnaggar WA, Taha TH, El-Deeb NM, Arafat HH. Efficacy of non-cytotoxic doses of some medicinal plant extracts as antibacterial and anti-biofilm agents against cariogenic bacterium Streptococcus mutans. Biosci, Biotechnol Res Asia. 2016;13(2):1279–84.

27. Ng N, Kaye EK, Garcia RI. Coffee consumption and periodontal disease in males. J Periodontol. 2014;85(8):1042–9.

28. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mullrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021 n71.

29. Wells GA, Shea B, O’Connell D. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses.

30. Herzog R, Álvarez-Pasquin MJ, Díaz C, Del Barrio JL, Estrada JM, Gil A. Are healthcare workers’ intentions to vaccinate related to their knowledge, beliefs and attitudes? a systematic review. BMC Public Health. 2013;13(1):154.

31. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–60.

32. Berkman ND, Kohl KN, Ansari M, McDonagh M, Balk E, Whitlock E, Reston J, Bess E, Butler M, Gattlehner G. Grading the strength of a body of evidence when assessing health care interventions for the effective health care program of the Agency for Healthcare Research and Quality: an update. 2014.

33. Schünemann H, Brozek J, Guyatt G, Oxman A, editors: Handbook for grading the quality of evidence and the strength of recommendations using the GRADE approach. Updated October 2013, 2013.

34. Ansari W, Ghosh S. C-reactive protein and the biology of disease. Immunol Res. 2013;56:131–42.

35. Moua ED, Hu C, Day N, Hord NG, Takata Y. Coffee consumption and c-reactive protein levels: a systematic review and meta-analysis. Nutrients. 2020;12(5):1349.

36. Hang D, Kvarner AS, Ma W, Hu Y, Tabung FK, Nan H, Hu Z, Shen H, Mucci LA, Chan AT. Coffee consumption and plasma biomarkers of metabolic and inflammatory pathways in US health professionals. Am J Clin Nutr. 2019;109(3):635–47.

37. Peters BA, McCullough ML, Purdue MP, Freedman ND, Whorton C, Gapsizer SM, Hayes RB, Ahn J. Association of coffee and tea intake with the oral microbiome: results from a large cross-sectional study. Cancer Epidemiol Prev Biomark. 2018;27(7):814–21.

38. Schwartz Z, Goultschin J, Dean DD, Boyan BD. Mechanisms of alveolar bone destruction in periodontitis. Periodontol 2000. 1997;14(1):158–72.

39. Usui M, Onizuka S, Sato T, Kokabu S, Ariyoshi W, Nakashima K. Mechanism of alveolar bone destruction in periodontitis—periodontal bacteria and inflammation. Jpn Dental Sci Rev. 2021;57:201–8.

40. Koyama Y, Kuriyama S, Aida J, Sone T, Nakaya N, Ohmori-Matsuda K, Hozawa A, Tsuji I. Association between green tea consumption and tooth loss: cross-sectional results from the Ohsaki Cohort 2006 Study. Prev Med. 2010;50(4):173–9.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.