Research Paper

The Efficiency of *Acinetobacter Radioresistens* Strain KA2 Isolated From Oily Sludge for Degradation of Crude Oil

Mohammad Saeed Poorsoleiman, Seyed Ahmad Hosseini, Alireza Etminan, Hamid Abtahi, *Ali Koolivand

1. Department of Natural Resources and Environment, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran.
2. Department of Biotechnology and Plant Breeding, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran.
3. Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran.
4. Department of Environmental Health Engineering, Faculty of Health, Arak University of Medical Sciences, Arak, Iran.

Citation: Poorsoleiman SM, Hosseini SA, Etminan A, Abtahi H, Koolivand A. [The Efficiency of *Acinetobacter Radioresistens* Strain KA2 Isolated From Oily Sludge for Degrading of Crude Oil(Persian)]. Journal of Arak University of Medical Sciences (JAMS). 2019; 22(5):78-89. https://doi.org/10.32598/JAMS.22.5.78

Extended Abstract

Introduction

The widespread use of crude oil and its products has caused numerous environmental pollutions. One of such admixtures is the sludge found at the bottom of the crude oil storage tanks, i.e. a sticky and relatively solid compound. This sludge is formed by crude oil storage in refinery tanks. The discharge of this oily sludge into the soil poses great risks to the environment and human health; it enters volatile hydrocarbons into the air and leaks pollutants into groundwater and soil. Various biochemical technologies, such as heat treatment, stabilization, and incineration, are used to remove this pollutant from regions with the relatively low area; however, these methods are not economical for eliminating widespread pollution. As a result,
more efficient economical methods, like bioremediation, are required. The bioremediation of petroleum-contaminated environments is a modern approach to clean these areas and reduce environmental pollution.

Due to the different resistance of crude oil compounds to biodegradation, the isolation and screening of resistant and high yielding microbial strains are essential. If the selected strain is capable of consuming and decomposing petroleum compounds, petroleum hydrocarbons are used as a source of carbon and energy along with the mineral nutrients required to make their biomass. Thus, as the microbes grow, the contamination is gradually removed from the environment. Microorganisms living in petroleum-contaminated environments are more capable of decomposing hydrocarbons; therefore, to remove oil contamination, selecting microorganisms from natural environments, i.e. more enzymatic than other microorganisms, is highly cost-effective. This study aimed to isolate, identify, and determine the metabolic properties of a native resistant bacteria capable of degrading oil sludge.

Materials and Methods

Bushnell-Haas medium was used for the isolation and screening of oil-degrading bacteria. After the initial isolation of 24 bacteria from the oil sludge, Acinetobacter radioresistens strain KA2 with the highest growth and degradation ability was selected. To ensure the concentration and quality of the extracted bacterial DNA, the absorbance ratio of the samples at a wavelength of 260 and 280 nm was measured by a UV spectrophotometer. The 16s rRNA sequences were used for the identification of the molecular form of bacteria; thus, the DNA extracted from this bacterium was applied for Polymerase Chain Reaction (PCR) analysis. Then, the degradation of various concentrations of crude oil at different PHs (5, 6, 7, 8, & 9), bacterial adherence to hydrocarbons (BATH), and the emulsification index of the selected strain were measured.

Results

Isolated strain characteristics for crude oil degradation were determined by 16S rRNA gene sequencing. Sequence-similarity search in NCBI Genbank suggested that the isolated bacterium was Acinetobacter radioresistens strain KA2. The reported number for the isolated bacterium was MK127544. The obtained results revealed that the degradation efficiency of the isolated strain for the crude oil at the concentrations of 1%, 2%, 3%, 4%, and 5%, after 7 days of incubation were 65.24, 76.14, 53.81, 31.84, and 25.21%, respectively; therefore, the decomposition of petroleum hydrocarbons was affected by its initial concentration, where the high concentrations of crude oil decreased the decomposition rate. We also observed that the initial crude oil concentration of 2% was the most appropriate concentration for bacterial growth in consuming petroleum hydrocarbons efficiently. Crude oil degradation at pH values of 5, 6, 7, 8, and 9 was equal to 42.4, 69.16, 65.24, 59.41, and 48.24%, respectively. Crude oil degradation and bacterial growth rates significantly reduced at pH values of 5 and 9, respectively. The emulsification index was calculated to investigate the potential of the strain in biosurfactant production. The obtained emulsification index for the study strain was equal to 59.14%. The biosurfactant reduces the surface tension between the liquid and solid phases and increases the amount of emulsification; therefore, the intracellular absorption and degradation of petroleum hydrocarbons improve. The BATH of the isolated strain was also calculated to evaluate the bacterial affinity to petroleum hydrocarbons. The obtained BATH was equal to 13.69%. Therefore, the bacterial tendency to attach to petroleum compounds improved the decomposition of petroleum hydrocarbons.

Conclusion

Oil sludge in the petrochemical industries could be efficiently treated by biodegradation as an economical and environmental-friendly method; Acinetobacter radioresistens strain KA2 could be used in this regard.

Ethical Considerations

Compliance with ethical guidelines

This study has been approved by the Research Ethics Committee of the Islamic Azad University of Kermanshah Branch (Code: 19250587962001).

Funding

This study was extracted from a PhD. thesis of Mohammad Saeed Poorsoleiman in Department of Natural Resources and Environment, Kermanshah Branch, Islamic Azad University, Kermanshah, and received financial support from the Islamic Azad University of Kermanshah Branch.

Authors’ contributions

Investigation, analysis, and initial draft preparation: Mohammad Saeed Poorsoleiman; Conceptualization, methodology, validation, formal analysis, investigation, resources, original draft preparation, writing-review & editing, visualization, supervision: Seyed Ahmad Hosseini, Alireza Etminan, Hamid Abtahi, and Ali Koolivand.
Conflicts of interest

The authors declare no conflict of interest.

Acknowledgements

The authors would like to thank the personnel of Arak University of Medical Sciences and Islamic Azad University of Kermanshah Branch for their valuable cooperation.
شناسایی و بررسی کارایی باکتری بومی Acinetobacter radioresistens strain KA2

چندگانی می‌شود از لجن‌های نفتی جهت تجزیه نفت خام، فیده‌شده به وسیله باکتری بومی، گونه Acinetobacter radioresistens strain KA2، سطح و فناوری‌های مختلفی از جمله نیاز به ارزیابی کارایی و توانایی تجزیه نفت خام توسط این گونه باکتری است. نتایج آزمایشات سطح نفت خام توسط گونه Acinetobacter radioresistens strain KA2 نشان داد که این گونه با ۷۰ درصد بهترین کارایی تجزیه نفت خام را نشان داد.

در این آزمایشات، به‌منظور بررسی کارایی گونه Acinetobacter radioresistens strain KA2 در تجزیه نفت خام، از نفت خام اکتبر با میزان ۶۴٪ کربن و ۳۶٪ هیدروژن استفاده شد. نتایج نشان داد که گونه Acinetobacter radioresistens strain KA2 با ۷۰ درصد بهترین کارایی در تجزیه نفت خام نشان داد.

در نهایت، نتایج این آزمایشات نشان داد که گونه Acinetobacter radioresistens strain KA2 با ۷۰ درصد بهترین کارایی در تجزیه نفت خام نشان داد. این گونه باکتری می‌تواند به عنوان یک روش جلوگیری از آلودگی محیط زیست از نظر مهندسی و اقتصادی باشگاه آب و هوا، کاربرد داشته باشد.

مقدمه
باکتری Acinetobacter radioresistens strain KA2 به‌عنوان یک گونه باکتری بومی، می‌تواند در محیط‌های آلوده به نفت خام کاربرد داشته باشد. این باکتری قادر به تجزیه نفت خام است و می‌تواند به‌عنوان یک روش جلوگیری از آلودگی محیط زیست از نظر مهندسی و اقتصادی باشگاه آب و هوا، کاربرد داشته باشد.

در این آزمایشات، به‌منظور بررسی کارایی گونه Acinetobacter radioresistens strain KA2 در تجزیه نفت خام، از نفت خام اکتبر با میزان ۶۴٪ کربن و ۳۶٪ هیدروژن استفاده شد. نتایج نشان داد که گونه Acinetobacter radioresistens strain KA2 با ۷۰ درصد بهترین کارایی در تجزیه نفت خام نشان داد.

در نهایت، نتایج این آزمایشات نشان داد که گونه Acinetobacter radioresistens strain KA2 با ۷۰ درصد بهترین کارایی در تجزیه نفت خام نشان داد. این گونه باکتری می‌تواند به عنوان یک روش جلوگیری از آلودگی محیط زیست از نظر مهندسی و اقتصادی باشگاه آب و هوا، کاربرد داشته باشد.

مقدمه
باکتری Acinetobacter radioresistens strain KA2 به‌عنوان یک گونه باکتری بومی، می‌تواند در محیط‌های آلوده به نفت خام کاربرد داشته باشد. این باکتری قادر به تجزیه نفت خام است و می‌تواند به‌عنوان یک روش جلوگیری از آلودگی محیط زیست از نظر مهندسی و اقتصادی باشگاه آب و هوا، کاربرد داشته باشد.

در این آزمایشات، به‌منظور بررسی کارایی گونه Acinetobacter radioresistens strain KA2 در تجزیه نفت خام، از نفت خام اکتبر با میزان ۶۴٪ کربن و ۳۶٪ هیدروژن استفاده شد. نتایج نشان داد که گونه Acinetobacter radioresistens strain KA2 با ۷۰ درصد بهترین کارایی در تجزیه نفت خام نشان داد.

در نهایت، نتایج این آزمایشات نشان داد که گونه Acinetobacter radioresistens strain KA2 با ۷۰ درصد بهترین کارایی در تجزیه نفت خام نشان داد. این گونه باکتری می‌تواند به عنوان یک روش جلوگیری از آلودگی محیط زیست از نظر مهندسی و اقتصادی باشگاه آب و هوا، کاربرد داشته باشد.

مقدمه
باکتری Acinetobacter radioresistens strain KA2 به‌عنوان یک گونه باکتری بومی، می‌تواند در محیط‌های آلوده به نفت خام کاربرد داشته باشد. این باکتری قادر به تجزیه نفت خام است و می‌تواند به‌عنوان یک روش جلوگیری از آلودگی محیط زیست از نظر مهندسی و اقتصادی باشگاه آب و هوا، کاربرد داشته باشد.

در این آزمایشات، به‌منظور بررسی کارایی گونه Acinetobacter radioresistens strain KA2 در تجزیه نفت خام، از نفت خام اکتبر با میزان ۶۴٪ کربن و ۳۶٪ هیدروژن استفاده شد. نتایج نشان داد که گونه Acinetobacter radioresistens strain KA2 با ۷۰ درصد بهترین کارایی در تجزیه نفت خام نشان داد.

در نهایت، نتایج این آزمایشات نشان داد که گونه Acinetobacter radioresistens strain KA2 با ۷۰ درصد بهترین کارایی در تجزیه نفت خام نشان داد. این گونه باکتری می‌تواند به عنوان یک روش جلوگیری از آلودگی محیط زیست از نظر مهندسی و اقتصادی باشگاه آب و هوا، کاربرد داشته باشد.
روش‌های زیست‌پایایی است [16] باید انباری در سالانه بیش از 105 تا درصد برای بهبود کنسانتراتیون بی‌پردازه شده‌های زیست‌پایایی فراهم انجام شود. در این سه روش، می‌تواند انسان در مدت یک هفته برای شناسایی باکتری جدا شده از آزمایشات اولیه تجزیه نفت را داشته باشد برای ادامه تحقیق، مورد استفاده اندازه‌گیری شد. سویه‌ای که بیشترین کیفیت نوری از هر کدام از محیط‌ها در طول موج درصد نفت، جدا و تلقیح شدند نمونه‌های رشد یافته به محیط رشد باکتری‌ها برای تأیید قابلیت میکروارگانیسم‌های جدا شده جهت خالص سازی، از هر کلنی متفاوت یک کشت ایزوله قرار داده شدند.

روش‌های زیست‌پایایی از محیط‌های کشت واجد باکتری در میکروتیوب‌های ساعت آنکوبه شد. سپس یک درجه سلسیوس و باکتری، در ابتدا برای شناسایی باکتری جدا شده از آزمایشات اولیه تجزیه نفت را داشته باشد برای ادامه تحقیق، مورد استفاده اندازه‌گیری شد.

روش‌های زیست‌پایایی از محیط‌های کشت واجد باکتری در میکروتیوب‌های ساعت آنکوبه شد. سپس یک درجه سلسیوس و باکتری، در ابتدا برای شناسایی باکتری جدا شده از آزمایشات اولیه تجزیه نفت را داشته باشد برای ادامه تحقیق، مورد استفاده اندازه‌گیری شد.

روش‌های زیست‌پایایی است [16] باید انباری در سالانه بیش از 105 تا درصد برای بهبود کنسانتراتیون بی‌پردازه شده‌های زیست‌پایایی فراهم انجام شود. در این سه روش، می‌تواند انسان در مدت یک هفته برای شناسایی باکتری جدا شده از آزمایشات اولیه تجزیه نفت را داشته باشد برای ادامه تحقیق، مورد استفاده اندازه‌گیری شد.

روش‌های زیست‌پایایی است [16] باید انباری در سالانه بیش از 105 تا درصد برای بهبود کنسانتراتیون بی‌پردازه شده‌های زیست‌پایایی فراهم انجام شود. در این سه روش، می‌تواند انسان در مدت یک هفته برای شناسایی باکتری جدا شده از آزمایشات اولیه تجزیه نفت را داشته باشد برای ادامه تحقیق، مورد استفاده اندازه‌گیری شد.
نگهداری شد. با توجه به اینکه هدف، شناسایی مولکولی باکتری، استخراج شده DNA با استفاده از توالی PCR به کار رفت. برای انجام PCR از این باکتری جهت استخراج DNA از محصولات شرکت سیناژن استفاده شد. پرایمرها به سفارش شرکت سیناژن برای شناسایی ژن 16s rRNA در محصولات، تهیه شدند. پرایمرها به شرح زیر بودند:

1. 5′-AGAGTTTGATCCTGGCTCAG-3′
2. 5′-TACGGYTACCTTGTTACGACT-3′

برای انجام PCR از این باکتری جهت استخراج DNA از محصولات شرکت سیناژن استفاده شد. پرایمرها به سفارش شرکت سیناژن برای شناسایی ژن 16s rRNA در محصولات، تهیه شدند. پرایمرها به شرح زیر بودند:

1. 5′-AGAGTTTGATCCTGGCTCAG-3′
2. 5′-TACGGYTACCTTGTTACGACT-3′

برای انجام PCR از این باکتری جهت استخراج DNA از محصولات شرکت سیناژن استفاده شد. پرایمرها به سفارش شرکت سیناژن برای شناسایی ژن 16s rRNA در محصولات، تهیه شدند. پرایمرها به شرح زیر بودند:

1. 5′-AGAGTTTGATCCTGGCTCAG-3′
2. 5′-TACGGYTACCTTGTTACGACT-3′

برای انجام PCR از این باکتری جهت استخراج DNA از محصولات شرکت سیناژن استفاده شد. پرایمرها به سفارش شرکت سیناژن برای شناسایی ژن 16s rRNA در محصولات، تهیه شدند. پرایمرها به شرح زیر بودند:

1. 5′-AGAGTTTGATCCTGGCTCAG-3′
2. 5′-TACGGYTACCTTGTTACGACT-3′

برای انجام PCR از این باکتری جهت استخراج DNA از محصولات شرکت سیناژن استفاده شد. پرایمرها به سفارش شرکت سیناژن برای شناسایی ژن 16s rRNA در محصولات، تهیه شدند. پرایمرها به شرح زیر بودند:

1. 5′-AGAGTTTGATCCTGGCTCAG-3′
2. 5′-TACGGYTACCTTGTTACGACT-3′

برای انجام PCR از این باکتری جهت استخراج DNA از محصولات شرکت سیناژن استفاده شد. پرایمرها به سفارش شرکت سیناژن برای شناسایی ژن 16s rRNA در محصولات، تهیه شدند. پرایمرها به شرح زیر بودند:

1. 5′-AGAGTTTGATCCTGGCTCAG-3′
2. 5′-TACGGYTACCTTGTTACGACT-3′

برای انجام PCR از این باکتری جهت استخراج DNA از محصولات شرکت سیناژن استفاده شد. پرایمرها به سفارش شرکت سیناژن برای شناسایی ژن 16s rRNA در محصولات، تهیه شدند. پرایمرها به شرح زیر بودند:

1. 5′-AGAGTTTGATCCTGGCTCAG-3′
2. 5′-TACGGYTACCTTGTTACGACT-3′

برای انجام PCR از این باکتری جهت استخراج DNA از محصولات شرکت سیناژن استفاده شد. پرایمرها به سفارش شرکت سیناژن برای شناسایی ژن 16s rRNA در محصولات، تهیه شدند. پرایمرها به شرح زیر بودند:

1. 5′-AGAGTTTGATCCTGGCTCAG-3′
2. 5′-TACGGYTACCTTGTTACGACT-3′

برای انجام PCR از این باکتری جهت استخراج DNA از محصولات شرکت سیناژن استفاده شد. پرایمرها به سفارش شرکت سیناژن برای شناسایی ژن 16s rRNA در محصولات، تهیه شدند. پرایمرها به شرح زیر بودند:

1. 5′-AGAGTTTGATCCTGGCTCAG-3′
2. 5′-TACGGYTACCTTGTTACGACT-3′
کلون قارچی از لجنس نفتی مربوطه صالبهای نش دارای حامل از میزان رشد و حذف توسط سایه چندانه در حالت مختلف (5، 6، 7، 8، 9) پس از از هفته روز اکتوپسیون در حالت م liberties سلیسوس و 10 در هفته تیغه در حالت شماره 3 نشان داده شد. با توجه به حالت از میزان رشد و حذف توسط سویه چندانه در حالتهدایت نمایندگی نتایج کشتکار باکتری در محیت pH به دلیل اینکه به میزان زمان لزر و میزان تغذیه نتایج تعیین شد. در کلیه آزمایشات میزان رشد باکتری به همراه رشد نفت تعیین شد. در کلیه آزمایشات محیط بدون تلقیح باکتری به عنوان تست شاهد استفاده شد و کلیه نتایج ارائه شده به نسبت نمونه های شاهد محاسبه شده است.

سنجش حذف نفت خام به روش گاز کروماتوگرافی به قیف جداکننده جهت پس از دوره انکوباسیون، محیط کشت باکتری شاهد است. سپس فاز آلی که حاوی جداکننده فاز آلی از فاز آبی منتقل شد و نفت حل شده در دی کلرو متان بود، درون ارلن ریخته شد و سه گرم سولفات سدیم جهت جذب آب باقی مانده به ارلن اضافه شد و به مدت یک شب در دمای اتاق نگهداری شد. سپس محتوای ارلن از کاغذ واتمن شماره یک عبور داده شد و در محیط pH به همین روش پس از هفت روز انکوباسیون در دمای (7، 8، 9) نشان داده شده است. نتایج حاصل از میزان رشد و حذف نفت برابر pH درصد نفت با 5 تا 1 بوشنل هاس براث حاوی غلظت درجه سلسیوس روز انکوباسیون در دمای 7 تلقیح شد. پس از 12 برابر با دور در دقیقه، رشد باکتری از طریق خواندن جذب لزر و میزان تغذیه نتایج تعیین شد. در کلیه آزمایشات میزان رشد باکتری به همراه رشد نفت تعیین شد. در کلیه آزمایشات محیط بدون تلقیح باکتری به عنوان تست شاهد استفاده شد و کلیه نتایج ارائه شده به نسبت نمونه های شاهد محاسبه شده است.

جستجوی تشابه در بانک ژن 16S rRNA توسط TBLASTX نشان داد که باکتری جداسازی شده NCBI 16SrRNA است. عدد دسترسی ژن diioresistens strain KA2 گزارش شده در این مقاله، برای باکتری جدا شده NCBI بانک ژن است. قابلیت این سویه در تجزیه بیولوژیکی نفت به ترتیب MK127544، MK127545 و MK127546 مرحله‌های 1، 2 و 3 نشان داده شده است. نتایج نشان داده شده در تجزیه MK127544، MK127545 و MK127546 نشان داد میزان کدورت باکتری جدا شده در غلظت اولیه یک تا پنج درصد را دارد. بنابراین، منبع مجزای کربن می‌تواند هیدروکربن نفتی را به عنوان ترکیبات نفتی در تجزیه Acinetobacter باکتری را کننده می‌کند. توانایی جنس Acinetobacter که بعد از یک هفته انکوباسیون در حالت خام نشان داده که باکتری جداسازی شده، برای سایه چندانه جهت جذب چندانه حذف نفت خام شرایط دمایی و بهره برداری از دستگاه GC به تفصیل توضیح داده شده است.

یافته‌ها
بخشی از مراحل کشت جهت جداسازی 2 باکتری را از لجن نفتی نشان می‌دهد. در این مطالعه هیچ گونه قارچی از لجن نفتی مربوطه شناسایی نشد. نتایج حاصل از میزان رشد و حذف نفت توسط سایه چندانه در حالت مختلف (5، 6، 7، 8، 9) پس از هفته روز اکتوپسیون در حالت م liberties سلیسوس و 10 در هفته تیغه در حالت شماره 3 نشان داده شد. با توجه به حالت از میزان رشد و حذف توسط سویه چندانه در حالتهدایت نمایندگی نتایج کشتکار باکتری در محیت pH به دلیل اینکه به میزان زمان لزر و میزان تغذیه نتایج تعیین شد. در کلیه آزمایشات میزان رشد باکتری به همراه رشد نفت تعیین شد. در کلیه آزمایشات محیط بدون تلقیح باکتری به عنوان تست شاهد استفاده شد و کلیه نتایج ارائه شده به نسبت نمونه های شاهد محاسبه شده است.
گزارشات متعددی در به این غلظت مطلوب رسید و به طور عملی و کاربردی در مقیاس نتیجه گیری شد که مقادیر بهینه غلظت نفت خام برای پشتیبانی که به علت سمیت هیدروکربن های نفتی بود. آوشتی (درصد) هم میزان رشد و تجزیه نفت کاهش گزارش کردند که غلظت های بسیار پایین نفت خام می تواند تجزیه زیستی نیز گزارش کردند که سویه از آنجایی که pH معادل در مقادیر از خود نشان داد (تصویر شماره ۳)، همانطور که در این شکل مشاهده می شود، باکتری جداسازی شده pH باید باید بر میزان رشد و حذف نفت خام توسط باکتری جدا شده اثر داشته باشد. این نتایج محاسبه از pH معادل و pH باید که در حالی که باکتری های مختلف توسط pH کاهش یابد. این نتایج محاسبه از pH معادل و pH باید که درحالی که باکتری های مختلف توسط pH کاهش یابد. این نتایج محاسبه از pH معادل و pH باید که درحالی که باکتری های مختلف توسط pH کاهش یابد. این نتایج محاسبه از pH معادل و pH باید که درحالی که باکتری های مختلف توسط pH کاهش یابد. این نتایج محاسبه از pH معادل و pH باید که درحالی که باکتری های مختلف توسط pH کاهش یابد. این نتایج محاسبه از pH معادل و pH باید که درحالی که باکتری های مختلف توسط pH کاهش یابد. این نتایج محاسبه از pH معادل و pH باید که درحالی که باکتری های مختلف توسط pH کاهش یابد. این نتایج محاسبه از pH معادل و pH باید که درحالی که باکتری های مختلف توسط pH کاهش یابد. این نتایج محاسبه از pH معادل و pH باید که درحالی که باکتری های مختلف توسط pH کاهش یابد. این نتایج محاسبه از pH معادل و pH باید که درحالی که باکتری های مختلف توسط pH کاهش یابد. این نتایج محاسبه از pH معادل و pH باید که درحالی که باکتری های مختلف توسط pH کاهش یابد. این نتایج محاسبه از pH معادل و pH باید که درحالی که باکتری های مختلف توسط pH کاهش یابد. این نتایج محاسبه از pH معادل و pH باید که درحالی که باکتری های مختلف توسط pH کاهش یابد. این نتایج محاسبه از pH معادل و pH باید که درحالی که باکتری های مختلف توسط pH کاهش یابد. این نتایج محاسبه از pH معادل و pH باید که درحالی که باکتری های مختلف توسط pH کاهش یابد. این نتایج محاسبه از pH معادل و pH باید که درحالی که باکتری های مختلف توسط pH کاهش یابد. این نتایج محاسبه از pH معادل و pH باید که درحالی که باکتری های مختلف توسط pH کاهش یابد. این نتایج محاسبه از pH معادل و pH باید که درحالی که باکتری های مختلف توسط pH کاهش یابد. این نتایج محاسبه از pH معادل و pH باید که درحالی که باکتری های مختلف توسط pH کاهش یابد. این نتایج محاسبه از pH معادل و pH باید که درحالی که باکتری های مختلف توسط pH کاهش یابد. این نتایج محاسبه از pH معادل و pH باید که درحالی که باکتری های مختلف توسط pH کاهش یابد. این نتایج محاسبه از pH معادل و pH باید که درحالی که باکتری های مختلف توسط pH کاهش یابد. این نتایج محاسبه از pH معادل و pH باید که درحالی که باکتری های مختلف توسط pH کاهش یابد. این نتایج محاسبه از pH معادل و pH باید که درحالی که باکتری های مختلف توسط pH کاهش یابد. این نتایج محاسبه از pH معادل و pH BATH
خصوص موفقیت آمیزبودن تصفیه و اصلاح زیستی لجن های نفتی در مقیاس کامل و با استفاده از باکتریهای بومی جداسازی شده وجود دارد.

ت ا م ا ر ا ن ت ا ف ع

پیدانگل که هیچگونه تضاد منافعی در صورت این پروژه محترم و وجود ندارد.
References

[1] Varjani SJ. Microbial degradation of petroleum hydrocarbons. Biore sour Technol. 2017; 223:277-86. [DOI:10.1016/j.biortech.2016.10.037] [PMID]

[2] Koolivand A, Naddafi K, Nabizadeh R, Saeedi R. Optimization of combined in-vessel composting process and chemical oxidation for remediation of bottom sludge of crude oil storage tanks. Environ Technol. 2018; 39(20):2597-603. [DOI:10.1080/09593330.2017.1362037] [PMID]

[3] Zhang C, Qi J, Cao Y. Synergistic effect of yeast-bacterial co-culture on bioremediation of oil-contaminated soil. Bioremed J. 2014; 18(2):136-46. [DOI:10.1080/10889868.2013.847402]

[4] Thion C, Cébron A, Beguiristain T, Levial C. PAH biotransformation and sorption by Fusarium solani and Arthrobacter oxydans isolated from a polluted soil in axenic cultures and mixed co-cultures. Int Biodeterior Biodegradation. 2012; 68:29-35. [DOI:10.1016/j.ibiod.2011.10.012]

[5] Muangchinda C, Rungsiharunat A, Prombutara P, Songlerdsongpa S, Pinyakong O. 165 metagenomic analysis reveals adaptability of a mixed-PAH-degrading consortium isolated from crude oil-contaminated seawater to changing environmental conditions. J Hazardous Mater. 2018; 357:119-27. [DOI:10.1016/j.jhazmat.2018.05.062] [PMID]

[6] Zhang Y, Zhao Q, Jiang J, Wang K, Wei L, Ding J, et al. Acceleration of organic removal and electricity generation from dewatered oil sludge in a bioelectrochemical system by rhamnolipid addition. Biore sour Technol. 2017; 243:820-7. [DOI:10.1016/j.biortech.2017.07.038] [PMID]

[7] Ninf I, Ninf S, Sahounou R, Maktouf S, Ayedi Y, Elooue-Chaabouni S, et al. Biodegradation of diesel oil by a novel microbial consortium: Comparison between co-inoculation with biosurfactant-producing strain and exogenously added biosurfactants. Environ Sci Pollut Res Int. 2015; 22(19):14852-61. [DOI:10.1007/s11356-015-4488-5] [PMID]

[8] Koolivand A, Godini K, Saeedi R, Abtahi H, Ghanadzadeh MJ, Saeedi R, Rajaei MS, Parhamfar K. Bioremediation of oil-contaminated tank bottom sludge by using a two-stage composting process: Effect of mixing ratio and nutrients addition. Bioresour Technol. 2017; 235:240-9. [DOI:10.1016/j.biortech.2017.03.010] [PMID]

[9] Chen W, Li J, Sun X, Min J, Hu X. High efficiency degradation of alkanes and crude oil by a salt-tolerant bacterium Dietzia species ON-3. Int Biodeterior Biodegradation. 2017; 118:110-8. [DOI:10.1016/j.ibiod.2017.01.029]

[10] Poorsoleiman M, et al. Identify and Performance Review of a Native Bacteria Acinetobacter Radioresistens Strain KA2. JAMS. 2019; 22(5):78-89.

[11] Zhao Y, Bai Y, Guo Q, Li Z, Qi M, Ma X, et al. Bioremediation of contaminated urban river sediment with methanol stimulation: Metabolic processes accompanied with microbial community changes. Sci Total Environ. 2019; 653:649-57. [DOI:10.1016/j.scitotenv.2018.10.396] [PMID]

[12] Demicheli F, Pleissner D, Fiore S, Mariano S, Navarro Gutierrez IM, Schneider R, et al. Investigation of food waste valorization through sequential lactic acid fermentation and anaerobic digestion of fermentation residues. Biore sour Technol. 2017; 241:508-16. [DOI:10.1016/j.biortech.2017.05.174] [PMID]

[13] Wallace T, Gibbons D, O’Dwyer M, Curran TP. International evolution of Fat, Oil and Grease (FOG) waste management-A review. Envr Manage. 2017; 187:424-35. [DOI:10.1016/j.jenvman.2016.11.003]

[14] Khan S, Afzal M, Iqbal S, Khan QM. Plant-bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere. 2013; 90(4):1317-32. [DOI:10.1016/j.chemosphere.2012.09.045] [PMID]

[15] Roy A, Dutta A, Pal S, Gupta A, Sarkar J, Chatterjee A, et al. Biotostimulation and bioaugmentation of native microbial community accelerated bioremediation of oil refinery sludge. Biore sour Technol. 2018; 253:22-32. [DOI:10.1016/j.biortech.2018.01.004] [PMID]

[16] Koolivand A, Rajaei MS, Ghandzadeh MJ, Saeedi R, Abtahi H, Godini K. Bioremediation of storage tank bottom sludge by using a two-stage composting system: Effect of mixing ratio and nutrients addition. Biore sour Technol. 2017; 235:240-9. [DOI:10.1016/j.biortech.2017.03.010] [PMID]

[17] Chen W, Li J, Sun X, Min J, Hu X. High efficiency degradation of alkanes and crude oil by a salt-tolerant bacterium Dietzia species ON-3. Int Biodeterior Biodegradation. 2017; 118:110-8. [DOI:10.1016/j.ibiod.2017.01.029]

[18] Patowary K, Patowary R, Kalita MC, Deka S. Characterization of biosurfactant produced during degradation of hydrocarbons using crude oil as sole source of carbon. Front Microbiol. 2017; 8:1-14. [DOI:10.3389/fmicb.2017.00279] [PMID] [PMCID]

[19] Poorsoleiman M, et al. Identify and Performance Review of a Native Bacteria Acinetobacter Radioresistens Strain KA2. JAMS. 2019; 22(5):78-89.
[28] Awasthi MK, Selvam A, Chan MT, Wong JWC. Bio-degradation of oily food waste employing thermophilic bacterial strains. Bioreour Technol (Part A). 2018; 248:141-7. [DOI:10.1016/j.biortech.2017.06.115] [PMID]

[29] Koolivand A, Abtahi H, Parhamfar M, Didehdar M, Saeedi R, Fahimirad S. Biodegradation of high concentrations of petroleum compounds by using indigenous bacteria isolated from petroleum hydrocarbons-rich sludge: Effective scale-up from liquid medium to composting process. J Envir Manage. 2019; 248:109228. [DOI:10.1016/j.jenvman.2019.06.129] [PMID]

[30] Ma XK, Ding N, Peterson EC. Bioaugmentation of soil contaminated with high-level crude oil through inoculation with mixed cultures including Acremonium sp. Biodegradation. 2015; 26(3):259-69. [DOI:10.1007/s10532-015-9732-7] [PMID]
This Page Intentionally Left Blank