An inverse source problem in radiative transfer with partial data

Mark Hubenthal
Department of Mathematics, University of Washington, Seattle, WA 98195, USA
E-mail: hubenjm@math.washington.edu

Received 11 May 2011, in final form 27 October 2011
Published 24 November 2011
Online at stacks.iop.org/IP/27/125009

Abstract
The inverse source problem for the radiative transfer equation is considered, with partial data. Here it is shown that under certain smoothness conditions on the scattering and absorption coefficients, one can recover sources supported in a certain subset of the domain, which we call the visible set. Furthermore, it is shown for an open dense set of \(C^\infty\) absorption and scattering coefficients that one can recover the part of the wavefront set of the source that is supported in the microlocally visible set, modulo a function in the Sobolev space \(H^k\) for \(k\) arbitrarily large. This is an extension to the full data case, where the complete recovery of an arbitrary source has been shown.

(Some figures may appear in colour only in the online journal)

1. Introduction
We consider a problem relevant to optical molecular imaging (OMI), which is a fast-growing research area. In this application, biochemical markers can be used to detect the presence of specific molecules or genes, and suitably designed markers could potentially identify diseases before phenotypical symptoms even appear. The markers are typically light-emitting molecules, such as fluorophores or luminophores. In contrast to single positron emission computed tomography (SPECT), positron emission tomography (PET) or magnetic resonance imaging (MRI), optical markers emit low-energy near-infrared photons that are relatively harmless to human tissue. Further specifics can be found in the bioengineering literature such as [3, 6, 12].

The inverse problem we consider consists in reconstructing the spatial distribution of a radiation source from measurements of photon intensities at the boundary of the medium in specific outgoing directions. In many applications, the propagation of photons emitted can be modeled as inverse source problems of steady-state radiative transfer equations. Once we know the optical properties of the underlying medium, the problem of determining the source is feasible. It is shown in [22] that under mild assumptions on the scattering and absorption parameters of the medium, this is possible. However, in the partial data case, which will be
made more clear shortly, one can only hope to recover information about the singularities of the source. In particular, we seek to recover information about the wavefront set of the source function. We now describe more precisely the mathematical problem.

We assume Ω to be a bounded domain in \mathbb{R}^n with smooth boundary and outer unit normal vector $\nu(x)$. As in [22], we also assume that Ω is strictly convex. The authors of that paper note that this is not an essential assumption, since for the problem considered, one can always push the boundary away and make it strictly convex without losing generality. Moreover, we assume that the data are given on the boundary of a larger domain $\Omega_l \supset \Omega$. We remark that this condition is not needed for existence and uniqueness of the solution to the forward problem, but it is required for the stability result (2.4), which is adapted from the proof for the complete data case.

Consider the radiative transfer equation

$$ \theta \cdot \nabla_x u(x, \theta) + \sigma(x, \theta) u(x, \theta) - \int_{S^{n-1}} k(x, \theta, \theta') u(x, \theta') d\theta' = f(x), $$

where the absorption σ and the collision kernel k are functions with regularity specified later, the solution $u(x, \theta)$ gives the intensity of photons at x moving in the direction θ and $\partial_{\theta} S\Omega$ is the set of points $(x, \theta) \in \partial \Omega \times S^{n-1}$ such that $\pm \nu(x) \cdot \theta > 0$. That is, $\partial_{\theta} S\Omega$ is the set of points $(x, \theta) \in \partial \Omega \times S^{n-1}$ such that θ is pointing outward or inward. The source term f will be assumed to depend on x only for our purposes. We also remark that equation (1.1) is only applicable at a single frequency, as the parameters σ and k typically depend highly on frequency. In particular, for high-energy photons there is a coupling between energy and angle, whereas for photons with low-energy, scattering is not accompanied by an energy change.

In the case of full data, we have the boundary measurements

$$ X f(x, \theta) = u|_{\partial_{\theta} S\Omega}. $$

In [22], it is shown that for an open, dense set of absorption and scattering coefficients $(\sigma, k) \in C^2(\overline{\Omega} \times S^{n-1}) \times C^2(\overline{\Omega} \times S^{n-1} \times S^{n-1})$, one can recover $f \in L^2(\Omega)$ uniquely from the boundary measurements $X f$ on all of $\partial_{\theta} S\Omega$. To set up the case of partial data, first let $V \subset \partial_{\theta} S\Omega$ be open and let $\tilde{V} \Subset V$. Let $\chi_V \in C_0^\infty(\partial_{\theta} S\Omega)$ be a smooth cutoff function such that $\chi_V(x, \theta) \equiv 1$ for $(x, \theta) \in \tilde{V}$ and $\chi_V(x, \theta) \equiv 0$ for $(x, \theta) \notin V$. The boundary measurements are then given by

$$ X_V f(x, \theta) = \chi_V(x, \theta) u|_{\partial_{\theta} S\Omega}. $$

To make notation a bit simpler, if $V = \partial_{\theta} S\Omega$ (complete data), we will just write X, since in this case $X_V = X$.

In section 3 we will review the direct problem and some relevant results of use in the partial data case. We also establish some results about singular integrals that will be needed to prove the main theorem.

In section 4, we consider the inverse problem with partial data, which consists of determining the source term f from measuring $X_V f$. We also compute the normal operator $X_V^* X_V$ when the scattering coefficient $k = 0$. Note that when $\sigma = k = 0$, the operators X and X_V are the standard x-ray transforms with full and limited data, respectively. When $k = 0$, X_V is a weighted x-ray transform.

Following, in section 5 we establish an injectivity result for $f \in L^2(\Omega)$ supported in the visible set assuming analytic σ.

Finally, in section 6, we prove the main theorem that one can recover the visible singularities of f with respect to the chosen set V when $\sigma \in C^\infty(\Omega \times S^{n-1})$. Both results are
based on the microlocal approach used in [8]. Results needed pertaining to singular integral operators are located in the appendix.

2. Statement of main results

When dealing with the inverse problem, which we will describe in detail in section 4, we need to take a larger domain (strictly convex for convenience) that compactly contains Ω_1. That is, fix a strictly convex open set Ω_1 with smooth boundary such that $\Omega_1 \supset \Omega$. The strict convexity of Ω_1 ensures that the functions $\tau_{\pm}(x, \theta)$ are smooth, where $\tau_{\pm}(x, \theta)$ is the travel time from $x \in \Omega_1$ to $\partial \Omega_1$ in the direction $\pm \theta$. In other words,

$$(x + \tau_{\pm}(x, \theta) \theta, \theta) \in \partial \pm S \Omega_1_1.$$

(2.1)

We will extend σ and k to functions on Ω_1 with the same regularity. We choose and fix this extension as a continuous operator in those spaces. Now define $X_1 : L^2(\Omega_1) \rightarrow L^2(\partial \pm S \Omega_1)$ in the same way as for X. From this we can look at the restriction of X_1 applied to functions f supported in Ω_1. When dealing with the inverse problem, we will usually abuse notation and write X instead of X_1, with the understanding that we have already extended the domain Ω_1 to Ω_1.

The proof of theorem 2 in [22] shows that the operator X is injective for such an open, dense set of coefficients (σ, k) as in theorem 1 of [22] with $f \in L^2(\Omega)$, and a stability result is obtained for the normal operator $X^* X : L^2(\Omega) \rightarrow L^2(\Omega)$. Here the adjoint $X^* : L^2(\partial \pm S \Omega, d\Sigma) \rightarrow L^2(\Omega \times S^{n-1})$ is defined with respect to the measure $d\Sigma$, which we define shortly. More specifically, for an open and dense set of pairs $(\sigma, k) \in C^2(\Omega \times S^{n-1}) \times C^2(\Omega_1 \times S^{n-1}_1; C^{\infty+1}(S^{n-1}_1))$, including a neighborhood of $(0, 0)$, we have that the conclusions of theorem 1 in [22] hold in Ω_1, X_1 is injective on $L^2(\Omega)$ and the stability estimate $\|f\|_{L^2(\Omega)} \leq C\|X_1^* X_1^* f\|_{H^1(\Omega_1)}$ for a constant $C > 0$ locally uniform in (σ, k).

Before stating the main results of this paper, we need to define the set of points such that X_1 is injective when restricted to sources supported there. This set will clearly depend on V. We also denote by $l_{x, \theta}^\perp(t)$ the line starting at x with direction θ.

Definition 1. We define the visible set $\mathcal{M} \subset \Omega$ by

$$\mathcal{M} = \{x \in \Omega | \bar{V} \in S^{n-1}(x, \theta^\perp) \in V \text{ with } \theta^\perp \cdot \theta = 0 \text{ such that } l_{x, \theta^\perp}(t) \text{ intersects } x\}.$$

(2.2)
It is relatively straightforward to show since V is open, M is open as well. The proof is left to the reader. Now we can state the first main result, which is an injectivity condition adapted from results in [8].

Theorem 2.1. Let $V \in \partial_+ S\Omega_1$ be an open set and let M be as defined above. Let $W \subset M$. Then there exists an open and dense set of pairs $(\sigma, k) \in C^2(\overline{\Omega} \times S^{n-1}) \times C^2(\overline{\Omega}_e \times S^{n-1}, C^{n+1}(S^{n-1}))$, including a neighborhood of $(0, 0)$, such that for each (σ, k) in that set, the direct problem (1.1) has a unique solution $u \in L^2(\Omega_1 \times S^{n-1})$ for any $f \in L^2(\Omega \times S^{n-1})$, X_v extends to a bounded operator from $L^2(\partial_+ S\Omega_1, d\Sigma)$, and

1. the map X_v is injective on $L^2(W)$ and
2. the following stability estimate holds:

$$\|f\|_{L^2(\Omega)} \leq C\|X_v^* f\|_{H^1(\Omega_1)}, \quad \forall f \in L^2(W),$$

with a constant $C > 0$ locally uniform in (σ, k).

Remark 1. The proof of uniqueness and stability for the direct problem (1.1) as stated in theorem 2.1 is essentially the same as the one contained in [22], so we will focus on the subtle differences. Furthermore, the proof that X_v extends to a bounded operator from $L^2(\Omega_1)$ to $L^2(\partial_+ S\Omega_1, d\Sigma)$ follows from the proof in [22] that X is bounded and the fact that multiplication by χ_v is bounded on $L^2(\partial_+ S\Omega_1, d\Sigma)$.

For sources f with more general supports, we hope to be able to recover certain covectors in the wavefront set of f. Those covectors $(x, \xi) \in T^*\Omega$ that can be detected will depend on V in the following way:

Definition 2. The microlocally visible set corresponding to partial measurements on $\partial_+ S\Omega_1$ is given by

$$M' := \{(x, \xi) \in T^*\Omega \mid \exists \theta \in S^{n-1} \text{ such that } \theta \cdot \xi = 0 \text{ and } \chi_v^\theta(x, \theta) \neq 0 \}.$$

Here $\chi_v^\theta(x, \theta)$ is the extension of $\chi_v : \partial_+ S\Omega_1 \to \mathbb{R}$ to $\Omega_1 \times S^{n-1}$ defined by $\chi_v^\theta(x, \theta) = \chi_v(x + \tau_+ (x, \theta) \theta, \theta)$.

\[\text{Figure 2. An example where } (x, \xi) \text{ is in the microlocally visible set } M', \text{ given that the source } f \text{ is the characteristic function of the shaded set.} \]
Theorem 2.2. Let l be a positive integer. There exists an open dense set O_l of pairs $(\sigma, k) \in C^\infty(\overline{\Omega} \times \mathbb{S}^{n-1}) \times C^\infty(\overline{\Omega}, \mathbb{S}^{n-1} \times \mathbb{S}^{n-1})$ depending on l such that given $(\sigma, k) \in O_l$, if $(z, \xi) \in M'$, then there exists a function $v \in H^1(\Omega)$ such that
\[
(z, \xi) \notin WF(X_z^*X_{\nu}f) \implies (z, \xi) \notin WF(f + v). \tag{2.6}
\]

3. The direct problem

For notational convenience and to be consistent with convention, we set
\[
T_0 = \theta \cdot \nabla_x, \quad T_1 = T_0 + \sigma, \quad T = T_0 + \sigma - K,
\tag{3.1}
\]
where σ denotes the operation of multiplication by $\sigma(x, \theta)$ and K is defined by
\[
Kf(x, \theta) = \int_{\mathbb{S}^{n-1}} k(x, \theta, \theta') f(x, \theta') \, d\theta'.
\tag{3.2}
\]

If $k = 0$, we have that
\[
Xf(x, \theta) = I_n f(x, \theta) := \int_0^1 E(x + t\theta, \theta) f(x + t\theta) \, dt, \quad (x, \theta) \in \partial_A S\Omega,
\tag{3.3}
\]
where $\tau_\pm(x, \theta)$ is the arrival time defined by $(x + \tau_\pm(x, \theta) \theta, \theta) \in \partial_A S\Omega$ for $(x, \theta) \in \Omega \times \mathbb{S}^{n-1}$.

Here E is defined by
\[
E(x, \theta) = \exp \left(-\int_0^\infty \sigma (x + s\theta, \theta) \, ds \right). \tag{3.4}
\]

Note that if $\sigma > 0$ depends on x only, then I_n is just the attenuated x-ray transform along the line through x in the direction θ. Moreover, in this case it is injective and [14] gives an explicit inversion formula.

In the general case with $k \neq 0$, it is shown in theorem 1 of [22] that the direct problem (1.1) is well-posed even for f depending on x and θ. That is, for an open and dense set of pairs
\[
(\sigma, k) \in C^2(\overline{\Omega} \times \mathbb{S}^{n-1}) \times C^2(\overline{\Omega}, \mathbb{S}^{n-1} \times \mathbb{S}^{n-1}) \cap C^1(\overline{\Omega}, \mathbb{S}^{n-1}),
\]
including a neighborhood of $(0, 0)$, the direct problem $Tu = f$ with $u|_{\partial A S\Omega} = 0$ has a unique solution $u \in L^2(\Omega \times \mathbb{S}^{n-1})$ for any $f \in L^2(\Omega \times \mathbb{S}^{n-1})$ depending on both x and θ. Furthermore, the complete data operator X, which is only a priori bounded when restricted to sufficiently smooth f, extends to a bounded operator
\[
X : L^2(\Omega \times \mathbb{S}^{n-1}) \to L^2(\partial_A S\Omega, d\Sigma).
\]

The proof of this relies on using the fact that
\[
[T_1^{-1} f](x, \theta) = \int_{-\infty}^0 \exp \left(-\int_x^0 \sigma (x + \tau\theta, \theta) \, d\tau \right) f(x + s\theta, \theta) \, ds, \tag{3.5}
\]
as well as the Fredholm theory applied to the resolvent $(\text{Id} - T_1^{-1}K)^{-1}$.

In order to solve $Tu = f$, we observe that $Tu = T_1 u - Ku = f$, and so applying T_1^{-1} to both sides yields
\[
u = T_1^{-1}(Ku + f). \tag{3.6}
\]
This is equivalent to the integral equation
\[
(\text{Id} - T_1^{-1}K)u = T_1^{-1} f. \tag{3.7}
\]
Thus, if $\text{Id} - T_1^{-1}K$ is invertible, we can solve the forward problem uniquely for
\[
u = T^{-1} f = (\text{Id} - T_1^{-1}K)^{-1} T_1^{-1} f. \tag{3.8}
\]
To find k such that T^{-1} exists, we note that $(\Id - T_1^{-1}K)^{-1}T_1^{-1} = T_1^{-1}(\Id - KT_1^{-1})^{-1}$ and look at the operator

$$A(\lambda) = (\Id - (\lambda KT_1^{-1})^2)^{-1}. \quad (3.9)$$

It is shown in [22] that the operator $(KT_1^{-1})^2$ is compact, and for $\lambda = 0$ the resolvent (3.9) exists. By the analytic Fredholm theorem (theorem VI.14, [16]), we have that $A(\lambda)$ is a meromorphic family of bounded operators with poles contained in a discrete set. It can be shown that

$$(\Id - \lambda KT_1^{-1})^{-1} = (\Id + \lambda KT_1^{-1})A(\lambda). \quad (3.10)$$

In particular, the rhs above is easily seen to be a right inverse. To show that it is a left inverse as well, we can expand $A(\lambda)$ as a Neumann series for $\|KT_1^{-1}\| \ll 1$ and then use analytic continuation to show that it remains true for all λ that are not poles of $A(\lambda)$. These ideas will be useful later when proving theorem 2.1.

4. The inverse source problem with partial data

Let $V \subset \partial_s \Omega$ be some open subset. Then the boundary measurements for the problem (1.1) with partial data are modeled by

$$X_V f(x, \theta) := \chi_V(x, \theta)u|_{\partial_s \Omega}, \quad (x, \theta) \in \partial_s \Omega, \quad (4.1)$$

where $u(x, \theta)$ is a solution of (1.1) and $\chi_V : \partial_s \Omega \to [0, 1]$ is a smooth function equal to 0 for $(x, \theta) \notin V$ and $\chi_V(x, \theta) = 1$ for $(x, \theta) \in \bar{V} \subset V$ for some open \bar{V}. We also define the operator $J : L^2(\Omega) \to L^2(\Omega \times S^{n-1})$ by

$$Jf(x, \theta) = f(x).$$

If $k = 0$, we have that

$$X_V f(x, \theta) = I_{\sigma,V} f(x, \theta) := \chi_V(x, \theta)I_\sigma f(x, \theta). \quad (4.2)$$

We will proceed as in [22] by looking at X_V as a perturbation of $I_{\sigma,V}$. Wishful thinking suggests that $X_V^*X_V$ is a relatively compact perturbation of $I_{\sigma,V}^*I_{\sigma,V}$, the normal operator corresponding to $k = 0$. Here X_V^* is the adjoint of X_V with respect to the measure $d\Sigma$ on $\partial_s \Omega$ given by

$$d\Sigma = (|\theta \cdot v(x)|) d\Sigma_s,$$

where as stated earlier, $v(x)$ is the outward unit normal to the boundary $\partial \Omega$.

First let us consider the case when $k = 0$ and compute $I_{\sigma,V}^*$. Note that $I_{\sigma,V} : L^2(\Omega \times S^{n-1}) \to L^2(\partial_s \Omega \times \Sigma_0, d\Sigma)$, and hence $I_{\sigma,V}^* : L^2(\partial_s \Omega \times \Sigma_0, d\Sigma) \to L^2(\Omega \times S^{n-1})$. For now we will restrict ourselves to applying $I_{\sigma,V}$ to functions f that depend on x only. Given $h(x, \theta) \in L^2(\partial_s \Omega, d\Sigma)$ and $f(x) \in L^2(\Omega)$, one can show that

$$(I_{\sigma,V}^* h(x, \theta), f(x))_{L^2(\Omega \times S^{n-1})} = \int_{\Sigma_0} \int_{S^{n-1}} h^\theta(y, \theta) \chi_V^\theta(y, \theta) E(y, \theta) \bar{f}(y) d\theta dy,$$

where $g^\theta(x, \theta)$ is the extension of $g : \partial_s \Omega \to \mathbb{R}$ to $\Omega \times S^{n-1}$ defined by $g^\theta(x, \theta) = g(x + \tau_+^s(x, \theta) \theta, \theta)$. We also made use of the diffeomorphism $\phi : \partial_s \Omega \times \partial \Omega \to \Omega \times S^{n-1}$

where $\partial \Omega = \{(\tau_-(x, \theta), 0) | (x, \theta) \in \partial_s \Omega\}$. This map is defined by $\phi(x, \theta, t) = (x + t\theta, \theta)$. The Jacobian determinant of ϕ is $|v(x) \cdot \theta|$; see lemma 2.1 of [5]. Note that $\phi^{-1} : \Omega \times S^{n-1} \to \partial_s \Omega \times \partial \Omega$ is given by $\phi^{-1}(x, \theta) = (x + \tau_+(x, \theta) \theta, \theta, \tau_-(x, \theta))$. Hence, the adjoint in the no-scattering case has the equation

$$I_{\sigma,V}^* h(x, \theta) = \int_{S^{n-1}} \bar{E}(x, \theta) h^\theta(x, \theta) \chi_V^\theta(x, \theta) d\theta. \quad (4.4)$$
4.1. The normal operator $I_{σ, V}^* I_{σ, V}$

Similar to the way in which we derived the adjoint operator $I_{σ, V}^*$, we may compute the normal operator $I_{σ, V}^* I_{σ, V} : L^2(Ω) → L^2(Ω)$ as

$$(I_{σ, V}^* I_{σ, V} f(x), g(x))_{L^2(Ω)}$$

$$= \int_Ω \int_{S^{n−1}} \bar{E}(x, θ) \chi_ν^*(x, θ) (I_{σ, V} f(x, θ))^n dθ \overline{g(x)} dx$$

$$= \int_Ω \int_{S^{n−1}} \bar{E}(x, θ) \chi_ν^*(x, θ)$$

$$\times \left(\chi_ν(x, θ) \int_ℝ E(x + tθ, θ) f(x + tθ) dt \right)^n \overline{g(x)} dθ dx$$

$$= \int_Ω \int_{S^{n−1}} \bar{E}(x, \frac{x−y}{|x−y|}) |\chi_ν^*(x, \frac{x−y}{|x−y|})|^2 E(y, \frac{x−y}{|x−y|}) f(y) \overline{g(x)} dy dx. \tag{4.5}$$

In the last line we used the substitution $y = x + tθ$ to convert the integral over $𝕊^{n−1} × ℝ$ in $(θ, t)$ to an integral over $Ω$ in y. Thus,

$$I_{σ, V}^* I_{σ, V} f(x) = \int_Ω E(y, \frac{x−y}{|x−y|}) \bar{E}(x, \frac{x−y}{|x−y|}) |\chi_ν^*(x, \frac{x−y}{|x−y|})|^2 f(y) \overline{g(x)} dy. \tag{4.6}$$

In the case when $σ$ is $C^∞$, we would like to know where $I_{σ, V}^* I_{σ, V}$ is elliptic. One can show using theorem 3.4 of [9] that

$$I_{σ, V}^* I_{σ, V} f(x) = (2π)^−n \int e^{i(x−y)·ξ} b(x, ξ) f(y) dy dξ, \tag{4.7}$$

where

$$b(x, ξ) = (2π)^−n \int e^{−i(x−y)·ξ} \frac{E(y, \frac{x−y}{|x−y|}) \bar{E}(x, \frac{x−y}{|x−y|}) |\chi_ν^*(x, \frac{x−y}{|x−y|})|^2}{|y−x|^{n−1}} dy. \tag{4.8}$$

We can now see that for $σ ∈ C^∞(Ω × S^{n−1})$, $I_{σ, V}^* I_{σ, V}$ is a pseudodifferential operator of order $−1$, since its kernel is weakly singular. More specifically, proposition 1 of [22] gives that $I_{σ, V}^* I_{σ, V} : L^2(Ω) → H^1(Ω)$. See also [23].

Now, unfortunately equation (4.8) is not particularly useful when trying to determine where $b(x, ξ)$ is elliptic. But recall (4.5), which shows that

$$I_{σ, V}^* I_{σ, V} f(x) = \int_{S^{n−1}} \int_ℝ A(x, t, θ) f(x + tθ) dt dθ, \tag{4.9}$$

for a particular function A. By lemma 4.2 of [8], we have that if $A ∈ C^∞(Ω_1 × ℝ × S^{n−1})$ (which occurs if $σ ∈ C^∞(Ω_1 × S^{n−1})$), then $I_{σ, V}^* I_{σ, V}$ is a classical $ΨDO$ of order $−1$ with full symbol

$$b(x, ξ) \sim \sum_{m=0}^{∞} b_m(x, ξ), \tag{4.10}$$

where

$$b_m(x, ξ) = 2π \frac{π^m}{m!} \int_{S^{n−1}} \bar{E}_m(x, 0, θ) δ^{(m)}(θ · ξ) dθ. \tag{4.11}$$

To check for ellipticity, we need only look at the principal symbol corresponding to when $m = 0$. This is just

$$b_0(x, ξ) = 2π \int_{θ, ξ=0} |E(x, θ)|^2 |\chi_ν^*(x, θ)|^2 dS(θ). \tag{4.12}$$

Since E is nonvanishing, we immediately have by (4.12) that $b(x, ξ)$ is elliptic on the set M'. 7
5. Injectivity of X_I restricted to the visible set

5.1. Injectivity of $I_{a,V}$ and $I^*_{a,V}I_{a,V}$

Since we are only able to access some open subset V of $\partial_s\Sigma_1$, we cannot expect for the operator $I_{a,V}$ or the normal operator $I^*_{a,V}I_{a,V}$ to be injective. However, from [8] we can obtain injectivity for sources f supported in a particular subset of Ω. But first we must introduce the notion of a regular family of curves. We will use the notation $l_{x,\theta}$ to denote the line segment through $x \in \Omega$ in the direction $\theta \in S^{n-1}$ with endpoints on $\partial\Omega_1$. We can also assume that $l_{x,\theta}(0) = x$ and $l_{x,\theta}'(0) = \theta$. It is also clear that the lines $l_{x,\theta}$ depend smoothly on $(x, \theta) \in T\Omega$ in the sense that the function $l(x, \theta, t) = l_{x,\theta}(t)$ depends smoothly on x, θ and t separately. In fact, we have $l(x, \xi, t) = x + t\xi$ where $t \in (a(x, \xi), b(x, \xi))$, an interval containing 0, and $l(x, \xi, a(x, \xi))$, $l(x, \xi, b(x, \xi)) \in \partial\Omega_1$.

Definition 3. Let Γ be an open family of smooth (oriented) curves on Ω, with a fixed parametrization on each one of them, with endpoints on $\partial\Omega$, such that for each $(x, \xi) \in T\Omega \setminus 0$, there is at most one curve $\gamma_{x,\xi} \in \Gamma$ through x in the direction ξ, and the dependence on (x, ξ) is smooth. We say that Γ is a regular family of curves, if for any $(x, \xi) \in T^*\Omega$, there exists $\gamma \in \Gamma$ through x normal to ξ without conjugate points.

Remark 2. In our specific case, all curves taken are straight lines and have no conjugate points. Moreover, if we let $\Gamma_{\mathcal{M}}$ be the set of lines in Ω_1 which intersect \mathcal{M}, then it turns out (as is shown in the proof of theorem 5.1) that $\Gamma_{\mathcal{M}}$ is a regular family when restricted to \mathcal{M}. This is the motivation behind how \mathcal{M} was defined in the first place.

Theorem 5.1. Let σ be analytic on Ω. If $I_{a,V}f = 0$ for $f \in D'(\Omega_1)$ supported in $W \in \mathcal{M}^\text{int}$, then $f = 0$. In particular, $I_{a,V}$ is injective on $L^1(W)$.

Proof. It is clear that the collection Γ of lines in Ω_1 is an analytic regular family of curves (see [8]). Let $\Gamma_{\mathcal{M}}$ be only those lines which pass through \mathcal{M}. We claim that $\Gamma_{\mathcal{M}}$ is a regular family of curves when restricted to \mathcal{M}. To see this, let $x \in \mathcal{M}$ and $\theta \in S^{n-1}$. Then by definition of \mathcal{M}, there exists $z \in V$ and an angle θ^\perp normal to θ such that the line l_{z,θ^\perp} passes through x and $(z, \theta^\perp) \in \partial_s\Sigma_1$. By definition, we also have that $l_{z,\theta^\perp} \in \Gamma_{\mathcal{M}}$, which proves the claim. Now, by theorem 1 of [8], we have that f is analytic on \mathcal{M} with support properly contained in \mathcal{M}^int. In particular, $f = 0$ on an open subset of each component of \mathcal{M}. Therefore, $f = 0$.

Although the definition of \mathcal{M} is a bit cryptic and difficult to visualize, it is possible to easily visualize an important subset of \mathcal{M} when V has a certain form, as shown by lemma 5.2. Here we use the notation chA to denote the closed convex hull of a set $A \subset \mathbb{R}^n$.

Lemma 5.2. Suppose that $V = \pi^{-1}(W)$ where W consists of a countable collection of disjoint connected open sets of $\partial\Omega_1$, and $\pi : \partial_s\Sigma_1 \to \partial\Omega_1$ is the natural projection. Then

$$\bigcup_a (\text{ch}W_a)^\text{int} \subset \mathcal{M}$$

where W_j is a given component of W.

Proof. Suppose $W = \bigcup_a W_a$ where $W_a \subset \partial\Omega$ are disjoint connected open sets. Let $x \in \bigcup_a (\text{ch}W_a)^\text{int}$. Let $\theta \in S^{n-1}$ and let θ^\perp be any vector perpendicular to θ. If we consider

$$\text{ch}W_a \cap \{\text{hyperplanes} P \subset \mathbb{R}^n | P \cap W_a = \emptyset\},$$

then l_{z,θ^\perp} must intersect W_a at some point z. Changing the direction of θ^\perp if necessary and using the strict convexity of Ω_1, we have that $(z, \theta^\perp) \in \partial_s\Sigma_1$. This proves that $(\text{ch}W_a)^\text{int} \subset \mathcal{M}$ for all a.

8
5.2. Computing X_V as a perturbation of $I_{\sigma,V}$ for $k \neq 0$

In order to approach the case when $k \neq 0$, we will compute explicitly how X_V differs from $I_{\sigma,V}$. Note that

$$X f = \chi_V R_+ T^{-1} f = \chi_V R_+ (\text{Id} - T_1^{-1} K)^{-1} T_1^{-1} f,$$

(5.1)

where

$$R_+ h = h|_{\partial\Omega}. $$

If f depends on x only (the case we are primarily interested in), then

$$X_V f = \chi_V R_+ T^{-1} J f = \chi_V R_+ (\text{Id} - T_1^{-1} K)^{-1} T_1^{-1} J f. $$

(5.2)

Now consider the identity

$$(\text{Id} - T_1^{-1} K)^{-1} T_1^{-1} = T_1^{-1} (\text{Id} - KT_1^{-1})^{-1},$$

(5.3)

which implies that

$$X_V f = \chi_V R_+ T_1^{-1} (\text{Id} - KT_1^{-1})^{-1} J f. $$

(5.4)

Writing $X_V = I_{\sigma,V} + L_V$ and noting that

$$I_{\sigma,V} f = \chi_V R_+ T_1^{-1} J f,$$

we have that

$$X_V = I_{\sigma,V} + \chi V R_+ (-\text{Id} + (\text{Id} - T_1^{-1} K)^{-1}) T_1^{-1} J,$$

(5.5)

and so we have

$$L_V := \chi V R_+ (-\text{Id} + (\text{Id} - T_1^{-1} K)^{-1}) T_1^{-1} J. $$

(5.6)

Furthermore,

$$X_V^* X_V = I_{\sigma,V}^* I_{\sigma,V} + \mathcal{L}_V, \quad \mathcal{L}_V := I_{\sigma,V}^* L_V + L_V^* I_{\sigma,V} + L_V^* L_V. $$

(5.7)

Lemma 5.3. The operators

$$\partial_3 I_{\sigma,V}^* L_V, \quad \partial_3 L_V^* I_{\sigma,V}, \quad \partial_3 L_V^* L_V$$

are compact as operators mapping $L^2(\Omega_1)$ into $L^2(\Omega_1)$.

Proof. Following the steps of the proof of lemma 3 in [22], first note that

$$(-\text{Id} + (\text{Id} - T_1^{-1} K)^{-1}) T_1^{-1} = T_1^{-1} KT_1^{-1}(\text{Id} - KT_1^{-1})^{-1}. $$

(5.8)

To prove it, we note that

$$T_1^{-1} KT_1^{-1} = (-\text{Id} + (\text{Id} - T_1^{-1} K)^{-1}) T_1^{-1} (\text{Id} - KT_1^{-1}). $$

Thus, L_V can be written as

$$L_V = \chi V R_+ T_1^{-1} KT_1^{-1}(\text{Id} - KT_1^{-1})^{-1} J. $$

(5.9)

We note that multiplication by χV to obtain L_V from L is bounded and hence preserves compactness. First we need to analyze $I_{\sigma,V}^* L_V = I_{\sigma,V}^* \chi V R_+ T_1^{-1} KT_1^{-1} h$, where $h = h(x, \theta)$. Recall that

$$[I_{\sigma,V}^* h](x) = \int_{\partial\Omega_1} E(x, \theta) h^0(x, \theta) \chi_0^0(x, \theta) \, d\theta. $$
Again, as in [22] we note that $\chi_V R + T_1^{-1} g$ looks like $I_{\sigma, V}$, except that now the source depends on θ and x. Thus,

$$L_{\sigma, V}^* I_{\sigma, V} \chi_V R + T_1^{-1} g(x) = \int_{\mathbb{R}^n} E(x, \theta) \left[\chi_V(x, \theta) \int_0^{\theta} E(x, t \theta, \theta) g(x + t \theta, \theta) \, dt \right] \, d\theta$$

$$= 2 \int_{\Omega_1} \left[\frac{E(x, \frac{\theta}{\sqrt{\theta^2 - 1}}) \chi_V(y, \frac{\theta}{\sqrt{\theta^2 - 1}}) E(y, \frac{x - y}{|x - y|}) g(y, \frac{x - y}{|x - y|})}{|x - y|^{n-1}} \right]_{\text{even}} \, dy, \quad (5.10)$$

where $F_{\text{even}}(x, \theta)$ is the even part of F with respect to θ (i.e. $F_{\text{even}}(x, \theta) = \frac{1}{2}(F(x, \theta) + F(x, -\theta))$). To get back to $L_{\sigma, V}^* L_{\sigma, V}$, we can let $g = KT_1^{-1} h$.

To proceed, we will now make a slightly weaker assumption on k than stated in (2.3) (see [22]). We will assume that k can be written as the infinite sum

$$k(x, \theta, \theta') = \sum_{j=1}^{\infty} \Theta_j(\theta) \kappa_j(x, \theta'), \quad (5.11)$$

where Θ_j and κ_j are functions such that

$$\sum_{j=1}^{\infty} \|\Theta_j\|_{H^j(\mathbb{R}^{n-1})} \|\kappa_j\|_{L^\infty(\Omega_1 \times \mathbb{R}^{n-1})} < \infty. \quad (5.12)$$

In particular, we could take Θ_j to be the spherical harmonics Y_j, and then κ_j would be the corresponding Fourier coefficients in such a basis. As discussed in [22], uniform convergence of (5.11) is guaranteed if $k \in L^\infty(\Omega_1 \times \mathbb{R}^{n-1}; C_0^\infty(\mathbb{G}^{n-1}))$, which is indeed a weaker assumption.

Now let K_j be the integral operator with the kernel $\Theta_j \kappa_j$ and $B_j = \kappa_j T_1^{-1}$, where we regard κ_j as integration in θ' against the kernel κ_j. Thus,

$$[K_j T_1^{-1} h](x, \theta) = \Theta_j(\theta) [B_j h](x), \quad (5.13)$$

$$B_j h(x) = \int_{\Omega_1} \sum_{j=1}^{\infty} \Theta_j(\theta) \kappa_j(x, \theta) h(y, \frac{x - y}{|x - y|}) \, dy. \quad (5.14)$$

By the proof of lemma 1 in [22], we have that $B_j(\text{Id} - KT_1^{-1})^{-1} : L^2(\Omega_1) \rightarrow L^2(\Omega_1)$ is compact. Now observe that

$$\partial_s L_{\sigma, V}^* L_{\sigma, V} = \partial_s L_{\sigma, V}^* \chi_V R + T_1^{-1} KT_1^{-1} \text{Id} - KT_1^{-1})^{-1} J$$

$$= \sum_{j=1}^{\infty} \left[\partial_s L_{\sigma, V}^* \chi_V R + T_1^{-1} \Theta_j J \right] [B_j(\text{Id} - KT_1^{-1})^{-1} J]. \quad (5.15)$$

By (5.10) and proposition 1(b) of [22], we have that $\partial_s L_{\sigma, V}^* \chi_V R + T_1^{-1} \Theta_j J : L^2(\Omega_1) \rightarrow L^2(\Omega_1)$ is bounded with a norm bounded above by $C\|\sigma\|_{C_0^\infty(\mathbb{G}^{n-1})} \|\Theta_j\|_{H^j(\mathbb{R}^{n-1})}$. Thus, each summand of (5.15) is a compact operator with norm bounded above by $C\|\sigma\|_{H^j(\mathbb{R}^{n-1})} \|\kappa_j\|_{L^\infty},$ with C depending on σ. By condition (5.12), we have that $\partial_s L_{\sigma, V}^* L_{\sigma, V}$ is compact.

Now, the proof for $\partial_s L_{\sigma, V}^* L_{\sigma, V}$ is similar. In light of the fact that $B_j(\text{Id} - KT_1^{-1})^{-1} J$ is compact, it suffices to show that $\partial_s L_{\sigma, V}^* \chi_V R + T_1^{-1} J$ is bounded. Note that KT_1^{-1} commutes with $(\text{Id} - KT_1^{-1})^{-1}$, and hence

$$L_{\sigma, V}^* \chi_V R + T_1^{-1} \Theta_j J = (\chi_V R + T_1^{-1} KT_1^{-1} (\text{Id} - KT_1^{-1})^{-1} J)^* \chi_V R + T_1^{-1} \Theta_j J$$

$$= (KT_1^{-1} J)^* (\chi_V R + T_1^{-1} (\text{Id} - KT_1^{-1})^{-1} J)^* \chi_V R + T_1^{-1} J. \quad (5.16)$$

As proven in [22], by the boundedness of $\chi_V R + T_1^{-1}$, the compactness of $\partial_s L_{\sigma, V}^* \chi_V R + T_1^{-1} J$ relies on $\partial_s (KT_1^{-1} J)^*$, and indeed it is.
Finally, to show that $\partial L^*_V I_{e,V}$ is compact, we can proceed similar to the case of $\partial L^*_V L_V$. Observe that $\partial L^*_V I_{e,V} = L^*_V X_V R_1^{-1} J$, which is equivalent to (5.16) with $\Theta_j = 1$. □

Now we are ready to prove theorem 2.1 regarding the injectivity of X_V when restricted to the sources f supported compactly in the visible set M.

Proof of theorem 2.1. Our proof mostly parallels the proof of theorem 2 in [22]. By lemma 5.3, we have $X^*_V X_V$ is equal to $P^*_V I_{e,V} \text{ plus a relative compact operator } L_V$. First assume that σ and k are C^∞. In this case, $P^*_V I_{e,V}$ is elliptic on M, and thus there is a parametrix Q of order 1 which we view as an operator $Q : H^1(\Omega_1) \to L^2(\Omega)$ (we have restricted the image to Ω, though M would do based on our assumption on the support of f). Thus, for f supported in $W \subseteq M$, we have

$$Q P^*_V I_{e,V} f = f + K_1 f,$$

where K_1 is of order -1 near M. Now apply Q to $P^*_V X_V f$ to obtain

$$Q X^*_V X_V f = f + K_1 f + Q L_V f =: f + K_2 f.$$ \hspace{1cm} (5.18)

By lemma 5.3, we have that QL_V is compact. Furthermore, $K_1 : L^2(M) \to L^2(M)$ is compact by Rellich’s lemma since it is smoothing near M. This reduces the problem of inverting $P^*_V I_{e,V}$ to a Fredholm equation. By theorem 5.1, we have that σ real analytic on $\Omega \times (S^{n-1})$, $I_{e,V}$ is injective when restricted to f supported in $W \subseteq M$. From this point, the proof follows the same as that for theorem 2 of [22], and so we conclude.

6. A microlocal result

Although injectivity is a bit much to ask for in the partial data case, it is possible to analyze how singularities are propagated under the normal operator $P^*_V I_{e,V}$. Assuming suitable smoothness conditions on k, we will prove that one can partially recover the wavefront set of f. This is somewhat analogous to proposition 1 in [8], which allows one to partially recover the analytic wavefront set of f when $k = 0$.

To get more of an intuition for how to proceed, consider the case when $\|T_1^{-1} K\| < 1$. Since $X_V = \chi_V R_1 T_1^{-1} (\text{Id} - KT_1^{-1})^{-1} J$, we may use a Neumann series expansion to obtain

$$X_V = \chi_V R_1 T_1^{-1} \left(\sum_{j=0}^\infty (KT_1^{-1})^j \right) J.$$ \hspace{1cm} (6.1)

The term corresponding to $j = 0$ is exactly $I_{e,V}$, which does not account for scattering. Subsequent terms in the expansion incorporate scattering of higher and higher orders. So if we can show that KT_1^{-1} is smoothing, then the most singular part of the data will be captured in the ballistic term.

Before proceeding, we need to establish a bit of notation. We define the space $\mathcal{H}_I(\Omega \times S^{n-1})$ as the completion of $C^\infty(\Omega \times S^{n-1})$ with respect to the norm $\| \cdot \|_{\mathcal{H}_I(\Omega \times S^{n-1})}$ given by

$$\|g(x, \theta)\|_{\mathcal{H}_I(\Omega \times S^{n-1})} := \sum_{m=0}^\infty \sum_{k=1}^{k_m} \| a_m^{(k)} \|_{H^1(\Omega \times S^{n-1})} \| Y^{(k)}_{m,n} \|_{H^1(S^{n-1})},$$ \hspace{1cm} (6.2)

where $g(x, \theta) = \sum_{m=0}^\infty \sum_{k=1}^{k_m} a_m^{(k)}(x) Y^{(k)}_{m,n}(\theta)$ is the series representation of g with respect to the spherical harmonics $Y_{m,n}(\theta)$ (see the appendix). Similarly, we define the space $\mathcal{C}_I(\Omega \times S^{n-1})$ as the completion of $C^\infty(\Omega \times S^{n-1})$ with respect to the norm $\| \cdot \|_{\mathcal{C}_I(\Omega \times S^{n-1})}$ given by

$$\|g(x, \theta)\|_{\mathcal{C}_I(\Omega \times S^{n-1})} := \sum_{m=0}^\infty \sum_{k=1}^{k_m} \| a_m^{(k)} \|_{C^1(\Omega)} \| Y^{(k)}_{m,n} \|_{H^1(S^{n-1})}.$$ \hspace{1cm} (6.3)

The following lemma establishes the regularizing properties of the operator KT_1^{-1}.
Inverse Problems 27 (2011) A25009
M Hubenthal

Lemma 6.1. Let \(f \in \mathcal{H}_l(\Omega_1 \times S^{n-1}) \) with \(\text{supp}(f) \subseteq \Omega \times S^{n-1} \) and \(l \geq 1 \), and suppose that \(\sigma \in C^\infty(\overline{\Omega} \times S^{n-1}) \) and \(k \in C^\infty(\overline{\Omega}_1 \times S^{n-1} \times S^{n-1}) \). Then \(KT_{1}^{-1}f \in \mathcal{H}_{l+1}(\Omega_1 \times S^{n-1}) \).

Proof. First let us recall from the proof of lemma 1 in [22] that

\[
[KT_{1}^{-1}f](x, \theta) = \int_{\Omega} \frac{\sum(x, |x-y|, \frac{x-y}{|x-y|})k(x, \theta, \frac{x-y}{|x-y|})f(y, \frac{x-y}{|x-y|})}{|x-y|^{n-1}} dy,
\]

(6.4)

where \(\Sigma(x, s, s') = \exp\left(-\int_{0}^{s} \sigma(x + \tau s', \theta') d\tau \right) \). The characteristic \(\Sigma(x, |x - y|, \theta')k(x, \theta, \frac{x-y}{|x-y|}) \) satisfies the hypotheses of proposition A.1, and the result follows.

\[\square\]

Corollary 6.2. Suppose that \(\sigma \in C^\infty(\overline{\Omega} \times S^{n-1}) \) and \(k \in C^\infty(\overline{\Omega}_1 \times S^{n-1} \times S^{n-1}) \). Then \((KT_{1}^{-1})f : L^2(\Omega) \to \mathcal{H}_1(\Omega_1 \times S^{n-1}) \) for all \(f \geq 0 \).

From this result, we see that in the case when \(\|KT_{1}^{-1}\| < 1 \), \(X_{0}f \) is equal to \(I_{0}f \) plus a remainder consisting of a series of terms with successively higher regularity, corresponding to higher order scattering.

Lemma 6.3. Suppose that \(\sigma \in C^\infty(\overline{\Omega} \times S^{n-1}) \) and \(k \in C^\infty(\overline{\Omega}_1 \times S^{n-1} \times S^{n-1}) \). Then \(KT_{1}^{-1}K : H^l(\Omega_1 \times S^{n-1}) \to H^{l+1}(\Omega_1 \times S^{n-1}) \) is compact for all \(l \geq 0 \).

Proof. Recall from the proof of lemma 2 in [22] that

\[
[KT_{1}^{-1}Kf](x, \theta) = \int_{\Omega \times S^{n-1}} \frac{\alpha(x, y, |x-y|, \frac{x-y}{|x-y|}, \theta, \theta')f(y, \theta')}{|x-y|^{n-1}} dy d\theta',
\]

(6.5)

with some \(C^\infty \alpha \) compactly supported in \(x \) and \(y \). The integral in \(y \) is a weakly singular integral of the form in proposition A.1, and so by part (a) we gain a derivative in \(x \) for each fixed \(\theta' \).

Moreover, the smoothness in \(\theta \) of \(KT_{1}^{-1}Kf(x, \theta) \) is dependent only on the smoothness of \(\alpha \). Therefore, \(KT_{1}^{-1}K : H^l(\Omega_1 \times S^{n-1}) \to H^{l+1}(\Omega_1 \times S^{n-1}) \). By Rellich’s lemma, the inclusion \(H^{l+1}(\Omega_1 \times S^{n-1}) \hookrightarrow H^l(\Omega_1 \times S^{n-1}) \) is compact, which completes the proof.

\[\square\]

Again suppose that \(\sigma \) and \(k \) are \(C^\infty \). Since \(L_{V} = \chi_{V}R_{+}^{-1}KT_{1}^{-1}(I_{0} - KT_{1}^{-1})^{-1}J \), we have by lemma 6.1 that \(L_{V} : H^l(\Omega) \to \mathcal{H}_{l+1}(\Omega_1 \times S^{n-1}) \). Since \(X_{V}^{\alpha}X_{V} = I_{0}^{\alpha}L_{0} + L_{V} \) and for smooth \(\sigma \), \(I_{0}^{\alpha}L_{0} \) is a pseudodifferential operator of order \(-1 \), we would like to show that \(L_{V} \) maps \(H^l(\Omega) \) onto \(H^{l+2}(\Omega_1 \times S^{n-1}) \). We have the following proposition.

Proposition 6.1. Let \(l \) be a positive integer. There exists an open dense set \(\mathcal{O}_l \) of pairs \((\sigma, k) \in C^\infty(\overline{\Omega_1} \times S^{n-1}) \times C^\infty(\overline{\Omega}_1 \times S^{n-1} \times S^{n-1}) \) depending on \(l \) such that for all \(0 \leq l' \leq \frac{l}{2} \), the operator

\[
L_{V} = I_{0}^{\alpha}L_{V} + L_{V}^{*}I_{0}L_{V} + L_{V}^{*}L_{V} = I_{0}^{\alpha}L_{V} + L_{V}^{*}X_{V}
\]

(6.6)

maps \(H^l(\Omega) \) onto \(H^{l+2}(\Omega_1 \times S^{n-1}) \). Moreover, we can write \(L_{V} = F + R \) where \(F \) is a pseudodifferential operator of order \(-2\) and \(R : L^2(\Omega) \to H^l(\Omega) \).

Proof. First we write

\[
L_{V}f = I_{0}^{\alpha}L_{V}f + L_{V}^{*}X_{V}f
\]

\[
= (\chi_{V}R_{+}^{-1}J)^{*}\chi_{V}R_{+}T_{1}^{-1}(I_{0} - KT_{1}^{-1})^{-1}Jf
\]

\[
+ (\chi_{V}R_{+}T_{1}^{-1}(I_{0} - KT_{1}^{-1})^{-1}J)^{*}(\chi_{V}R_{+}T_{1}^{-1}(I_{0} - KT_{1}^{-1})^{-1}J)f
\]

\[
=: I_{1}f + I_{2}f.
\]

(6.7)
Given equation (5.10), by proposition A.1 we have that \((\chi_V R_+T_1^{-1} J)^* \chi_V R_+T_1^{-1}\) maps \(H_{r+1}(\Omega_1 \times \mathbb{S}^{n-1})\) onto \(H^{r+2}(\Omega_1)\) for all \(l' \geq 0\).

We claim that for an open dense set of \((\sigma, k) \in C^\infty \times C^\infty\), \((\Id - KT_1^{-1})^{-1} J\) maps
\(H^r(\Omega_1) \to H_r(\Omega_1 \times \mathbb{S}^{n-1})\) for all \(0 \leq l' \leq l + 1\). First note that by lemma 6.3 \(\lambda(KT_1^{-1})^2 : H^r(\Omega_1 \times \mathbb{S}^{n-1}) \to H^r(\Omega_1 \times \mathbb{S}^{n-1})\) is compact for all \(l' \geq 0\). Using the analytic Fredholm theorem on the resolvent \(A(\lambda)\) with (3.9) and (3.10), we conclude that \((\Id - \lambda KT_1^{-1})^{-1}\) exists and is bounded on \(H^r(\Omega_1 \times \mathbb{S}^{n-1})\) for all \(\lambda\) in some complex neighborhood of \([0, 1]\) except for possibly a discrete set, which depends on \(l'\). Taking the complement of the union of all such discrete sets for \(0 \leq l' \leq l + 1\), we obtain that \((\Id - KT_1^{-1})^{-1}\) is bounded on each \(H^r(\Omega_1 \times \mathbb{S}^{n-1})\) for all \(0 \leq l' \leq l + 1\) and for all but a discrete set of \(\lambda\). So the set of pairs \((\sigma, k) \in C^\infty \times C^\infty\) for which (1.1) has a unique solution and \((\Id - KT_1^{-1})^{-1} : H^r(\Omega_1 \times \mathbb{S}^{n-1}) \to H^r(\Omega_1 \times \mathbb{S}^{n-1})\) is bounded for \(0 \leq l' \leq l + 1\) is open and dense. Now, we just apply lemma 6.1 to the \(KT_1^{-1}\) factor in \(I_1\), which shows that \(I_1\) maps \(H^r(\Omega_1)\) onto \(H^{r+2}(\Omega_1)\) for \(0 \leq l' \leq l\).

To analyze \(I_2\), we will use the series expansion of \(k(x, \theta, \theta')\) previously defined in (5.11). Observe that
\[
I_2 f = \sum_{j=1}^{\infty} \left(\chi_V R_+T_1^{-1} K_j T_1^{-1} (\Id - KT_1^{-1})^{-1} J \right)^* \left(\chi_V R_+T_1^{-1} (\Id - KT_1^{-1})^{-1} J\right)
\]

\[
= \sum_{j=1}^{\infty} \left[\chi_V R_+T_1^{-1} (\Id - KT_1^{-1})^{-1} J\right]^* \left(B_j (\Id - KT_1^{-1})^{-1} J\right)
\]

\[
= \sum_{j=1}^{\infty} \left(B_j (\Id - KT_1^{-1})^{-1} J\right)^* \left(\chi_V R_+T_1^{-1} (\Id - KT_1^{-1})^{-1} J\right).
\]

(6.8)

Similar to (5.10), we can compute
\[
(\chi_V R_+T_1^{-1} \Theta J)^* \chi_V R_+T_1^{-1} g(x)
\]

\[
= 2 \int_{\Omega_1} \left[E \left(x, \frac{y-x}{|x-y|} \right) \chi_V^o \left(y, \frac{y-x}{|x-y|} \right) E \left(y, \frac{x-y}{|x-y|} \right) g \left(y, \frac{x-y}{|x-y|} \right) \right]_{\text{even}} dy.
\]

(6.9)

By proposition A.1, it is then evident that \((\chi_V R_+T_1^{-1} \Theta J)^* \chi_V R_+T_1^{-1}\) maps \(H^{r+1}(\Omega)\) onto \(H^r(\Omega)\) for any \(l' \geq 0\). Applying proposition A.1 to (5.14) gives that \(B_j (\Id - KT_1^{-1})^{-1} J\) maps \(H^{r+1}(\Omega_1)\) to \(H^{r+2}(\Omega_1)\) for \(0 \leq l' \leq l\). Therefore, so does its adjoint. Altogether, we have that \(I_2 f \in H^{r+2}(\Omega_1)\) for \(f \in H^r(\Omega)\) where \(0 \leq l' \leq l\).

For the next part of the proposition, note that for \(m \geq 1\),
\[
(\Id - KT_1^{-1}) \sum_{j=0}^{m} (KT_1^{-1})^j J = J - (KT_1^{-1})^{m+1} J.
\]

By lemma 6.1, each summand \((KT_1^{-1})^j J\) is a pseudodifferential operator of order \(-j\) with the symbol depending smoothly on the parameter \(\theta\). Therefore, we may construct a symbol
\[
\rho(x, \xi, \theta) \sim \sum_{j=0}^{\infty} \sigma_L((KT_1^{-1})^j J)(x, \xi, \theta),
\]

(6.10)
where \(\sigma_L : L_{1,0}^p(\Omega) \to S^{q}_{1,0}(\Omega \times \mathbb{R}^n) \) is the full left symbol map. Here we are using the notation \(L_p^m(\Omega) \) to refer to pseudodifferential operators with symbols in the class \(S^{m}_{p,0}(\Omega \times \mathbb{R}^n) \) (see [9]). The symbol \(\rho \) corresponds to a pseudodifferential operator \(\tilde{F} \) of order 0 with the smooth parameter \(\theta \), and we have

\[
(\text{Id} - KT_1^{-1}) \circ \tilde{F} = J + \tilde{R}_0, \quad \tilde{R}_0 \in (L^-\infty(\Omega); C^\infty(S^n-1))
\]

\[
\tilde{F} - \tilde{R} = (\text{Id} - KT_1^{-1})^{-1} J
\]

(6.11)

Substituting (6.11) into expression (6.7) for \(L_V \) gives that

\[
L_V = \left[(\chi_V R, T_1^{-1} F) \chi_R R + \left(\chi_V R, T_1^{-1} \tilde{F} \right) \left(\chi_V R, T_1^{-1} \tilde{F} \right) \right] + R
\]

\[
=: F + R,
\]

(6.12)

where \(R \) involves all the terms with \(\tilde{R} \). It is then immediate that \(F \) is a pseudodifferential operator of order \(-2\) while \(R \) maps \(L^2(\Omega) \to H^l(\Omega_1) \).

For reference, given an operator \(A \in L_{1,0}^p(\Omega) \), we define \(\text{WF}(A) \) as the smallest closed cone \(C \subset T^*\Omega \setminus \emptyset \) such that \(\sigma_A|_C \in S^{-\infty}(C^*) \), where \(\sigma_A \) is the symbol of \(A \). We are now ready to prove the main theorem.

Proof of theorem 2.2. Assume first that \((\sigma, k) \in C^\infty \times C^\infty\) is in the same open, dense set as in proposition 6.1. Since \(\sigma \in C^\infty(\overline{\Omega} \times S^n-1) \), we have that \(L_{\sigma,\nu}^p L_{\sigma,\nu} \) is a pseudodifferential operator of order \(-1\). Furthermore, it is elliptic on \(N^\nu l(x_0, \theta_0) \) by (2.5). Let \((z, \xi) \in N^\nu l(x_0, \theta_0) \). Then there exists a microlocal parametrix \(Q \in L_{1,0}^1(\Omega_1) \) elliptic at \((z, \xi) \) and \(S_1 \in L_{1,0}^1(\Omega) \) such that

\[
Q_{\sigma,\nu}^p L_{\sigma,\nu} = \text{Id} + S_1,
\]

and \((z, \xi) \notin \text{WF}(S_1) \). We will also restrict the image of \(Q \) so that \(Q : H^l(\Omega_1) \to L^2(\Omega) \). Since \(\text{WF}(S_1 f) \subset \text{WF}(S_1) \cap \text{WF}(f) \) (e.g. by lemma 7.2 of [9]), we have that \(S_1 f \) is microlocally smooth near \((z, \xi) \), i.e. \((z, \xi) \notin \text{WF}(S_1 f) \).

Now we apply \(Q \) to the normal operator \(X_\nu^* X_\nu = L_{\sigma,\nu}^p L_{\sigma,\nu} \) to obtain

\[
Q X_\nu^* X_\nu = \text{Id} + S_1 + Q L_V.
\]

By proposition 6.1, we have that \(L_V \in H^k(\Omega) \to H^{k+2}(\Omega_1) \) for \(0 \leq k \leq l \), and hence

\[
Q L_V : H^l(\Omega) \to H^{k+1}(\Omega).
\]

Moreover, from (6.12) we have that

\[
Q X_\nu^* X_\nu = \text{Id} + QF + S_1 + QR.
\]

We can then construct \((\text{Id} + QF)^{-1} \), which is an elliptic pseudodifferential operator of order 0 (its principal symbol is 1). Thus,

\[
(\text{Id} + QF)^{-1} Q X_\nu^* X_\nu = \text{Id} + (\text{Id} + QF)^{-1} S_1 + (\text{Id} + QF)^{-1} QR.
\]

We let

\[
u = (\text{Id} + QF)^{-1} QR f
\]

(6.13)

and note that \(\nu \in H^l(\Omega) \). The other term \((\text{Id} + QF)^{-1} S_1 f \) is microlocally smooth near \((z, \xi) \). Thus, \((z, \xi) \notin \text{WF}((\text{Id} + QF)^{-1} Q X_\nu^* X_\nu f) \implies (z, \xi) \notin \text{WF}(f + \nu) \). Since

\[
\text{WF}(\text{Id} + QF)^{-1} Q X_\nu^* X_\nu f) \subset \text{WF}((\text{Id} + QF)^{-1} Q) \cap \text{WF}(Q X_\nu^* X_\nu f),
\]

the result follows.

Remark 3. It is easy to see that the open dense sets of pairs \((\sigma, k)\) that are dependent on \(l \) form a nested sequence. Moreover, one can eliminate the remainder function \(v \) by taking the intersection of all such open dense subsets. By the Baire category theorem, this limiting set of pairs will still be dense, but it is not clear if it remains open.
Corollary 6.4. Suppose that $\|KT_1^{-1}\| < 1$. Then in theorem 2.2 we have $v = 0$.

Proof. In this case, the series $\sum_{j=0}^{\infty} (KT_1^{-1})^j$ converges to the identity plus a weakly singular integral operator F, which altogether is a pseudodifferential operator of order 0. In light of (6.11), this implies that $R_0 = 0$, and hence $R = 0$. By (6.12) and (6.13), we have $v = 0$. □

Remark 4. Here we make a brief mention of how one might utilize the above results to detect a source f when partial data are known. Given $z \in \Omega$, suppose that one can measure $X_V \phi_z$ where $\phi_z = \delta(x - z)$ is a point source centered at z.

From the data $X_V f$, we may then compute $X_V^* X_V f(z)$, since

$$X_V^* X_V f(z) = \langle X_V^* X_V f, \phi_z \rangle_{L^2(\Omega)} = \langle X_V f, X_V \phi_z \rangle_{L^2(\Omega, \Sigma)}.$$ \hspace{1cm} (6.14)

By theorem 2.2, the graph $\{(z, X_V^* X_V f(z)) \mid z \in \Omega\}$ provides an image which indicates, modulo a function v of some regularity depending on the regularity of σ and k, the part of the wavefront set of f contained in M.

However, in practice such a method of computing $X_V^* X_V$ might be too computationally expensive. So in the case when $\|T_1^{-1}K\|$ is suitably small, one could try using a Neumann series truncated to one or two terms to approximate X_V^*. The author intends to consider this further in future work.

Acknowledgments

This research was supported by NSF grant DMS-0838212. The results of this paper would not have been possible without some helpful and inspirational conversations with Gunther Uhlmann, and so for this the author expresses thanks. The author also thanks the journal’s referees for their helpful comments during the revision process.

Appendix. Relevant results on singular integral operators

Suppose that we have an integral operator of the form

$$K f(x) = a(x) f(x) + \int K(x, x - y) f(y) dy, \quad K(x, x - y) = r^{-\alpha} \phi(x, \theta),$$ \hspace{1cm} (A.1)

where $f \in H^s(\Omega)$, $\theta = \frac{x - y}{|x - y|}$ and $r = |x - y|$. The function $\phi(x, \theta)$ is called the characteristic of the singular integral operator. We formally define the symbol $\Phi(x, \xi)$ of K by

$$\Phi(x, \xi) = \int e^{i \xi \cdot \ell} K(x, z) dz.$$ \hspace{1cm} (A.2)

It is easy to see by a change of variables that Φ is homogeneous of degree 0 in ξ. Letting $\omega = \frac{\xi}{|\xi|}$, we will write $\Phi(x, \omega)$ from now on. It can be shown that if $K(x, x - y) = \phi(x, \theta) r^{-\alpha}$, then

$$\Phi(x, \omega) = \int_{S^{n-1}} \phi(x, \theta) \left[\ln \left(\frac{1}{|\cos \gamma|} \right) + \frac{i \pi}{2} \text{sign}(\cos \gamma) \right] d\theta,$$ \hspace{1cm} (A.3)

where γ is the angle between the vectors x and ω.

Consider the singular operator with a variable symbol,

$$(Af)(x) := a(x) f(x) + \int_{\mathbb{R}^n} \phi(x, \theta) f(y) dy = \int_{\mathbb{R}^n} e^{i \xi \cdot \ell} \Phi_a(x, \omega) f(\xi) d\xi, \quad \omega = \frac{\xi}{|\xi|}.$$ \hspace{1cm} (A.4)

We introduce the class $R_{\lambda, \chi}$ of those symbols that satisfy the condition

$$D^\alpha \Phi(x, \omega) \in H^{s-1}(S^{n-1}), \quad \forall \alpha : |\alpha| \leq l.$$ \hspace{1cm} (A.5)
Here the relation \(\beta(x, \omega) \in H^l(S^{n-1}) \) means that
\[
\int_{S^{n-1}} |D^a \beta(x, \omega)|^2 d\omega \leq C, \quad 0 \leq |a| \leq l.
\] (A.6)

In this case, we say that \(\beta(x, \omega) \) belongs to \(H^l(S^{n-1}) \) uniformly with respect to the parameter \(x \).

For symbols of singular integral operators that satisfy such a condition, we have the following useful theorem.

Theorem A.1 (Theorem XI.9.2, [13]). If \(\Phi_A(x, \omega) \in \mathcal{R}_{1,\lambda} \) where \(\lambda > \frac{n-1}{2} \), then the operator (A.4) is bounded in \(H^l(R^n) \).

For relating the characteristic \(\phi(x, \theta) \) to its symbol \(\Phi(x, \omega) \), we have the following theorem.

Theorem A.2 (Theorem X.7.1, [13]). The symbol of a singular integral operator satisfies the relation \(\Phi(x, \omega) \in H^l(S^{n-1}) \) if and only if the characteristic of this integral satisfies the condition \(\phi(x, \theta) \in H^l(S^{n-1}) \) where \(l = \lambda - \frac{n-1}{2} \).

We also recall that the derivative of a weakly singular integral operator ([13], IX §7) is given by
\[
\frac{\partial}{\partial x_k} \int_{\Omega} \phi(x, \theta) f(y) dy = \int_{\Omega} f(y) \frac{\partial}{\partial x_k} \left[\phi(x, \theta) \right] dy - f(x) \int_{S^{n-1}} \phi(x, \theta) \partial_{\theta} dS(y).
\] (A.7)

This formula holds for any \(f \in L^2(\Omega) \) and for \(\phi \in C^1(\Omega, S^{n-1}) \).

In dealing with weakly singular integral operators depending on a parameter \(\theta \) and acting on the functions \(f \) depending on \(x \) and \(\theta' \), it will be helpful to work with a particular type of space on which these operators work nicely. In particular, we will use expansions of functions in terms of spherical harmonics. Recall that any function \(g(x, \theta) \in C^\infty(R^n \times S^{n-1}) \) can be expanded as a series
\[
g(x, \theta) = \sum_{m=0}^{\infty} \sum_{k=1}^{k_{m,n}} a_{m,k}(x) Y_{m,n}^{(k)}(\theta),
\] (A.8)

where
\[
k_{m,n} = \frac{(2m + n - 2)(m + n - 3)!}{(n - 2)!m!}
\]
denotes the number of linearly independent spherical functions of order \(m \). Furthermore, if \(g \) has compact support, we claim that
\[
\sum_{m=0}^{\infty} \sum_{k=1}^{k_{m,n}} \| a_{m,k} \|_{H^l(R^n)} \| Y_{m,n}^{(k)} \|_{H^l(S^{n-1})} < \infty \quad \forall l \geq 0.
\] (A.9)

In [22], it is stated that for \(g \in L^\infty(R^n, C^{\alpha+1}(S^{n+1})) \) with compact support, we have that
\[
\sum_{m=0}^{\infty} \sum_{k=1}^{k_{m,n}} \| a_{m,k} \|_{L^\infty(R^n)} \| Y_{m,n}^{(k)} \|_{H^l(S^{n-1})} < \infty.
\] (A.10)

Under the assumption that \(g \) is compactly supported, we have that the \(L^\infty \) norm is comparable to the \(L^2 \) norm. Since all derivatives of \(g \) also satisfy (A.10) with \(\| a_{m,k} \|_{L^\infty(R^n)} \) replaced by \(\| a_{m,k} \|_{L^2(R^n)} \), we have that (A.9) holds.

Recall our definition of \(H_l(\Omega \times S^{n-1}) \) as the completion of \(C^\infty(\Omega \times S^{n-1}) \) with respect to the norm \(\| \cdot \|_{H_l(\Omega \times S^{n-1})} \), and \(C_l(\Omega \times S^{n-1}) \) as the completion of \(C^\infty(\Omega \times S^{n-1}) \) with respect to the norm \(\| \cdot \|_{C_l(\Omega \times S^{n-1})} \).

The following proposition related to weakly singular integral operators and its applications in context will prove useful.
Proposition A.1. Let A be the operator

$$[A f](x) = \int \alpha \left(x, y, \frac{x - y}{|x - y|^{n-1}} \right) F \left(x, y \right) \, dy$$

with $\alpha(x, y, r, \theta)$ compactly supported in x and y. Then for a constant $C > 0$ depending only on α and l,

(a) if $\alpha \in C^{2 l + 2} (\mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R} \times S^{n-1})$, then $A : H^l(\Omega) \to H^{l+1}(\mathbb{R}^n)$ is continuous with a norm not exceeding $C \| \alpha \|_{C^{2 l+2}}$;

(b) if $\alpha(x, y, r, \theta) = \alpha'(x, y, r, \theta) \phi(\theta)$ and also in $C^{2 l + 2}$, then

$$\| A \|_{H^l(\Omega) \to H^{l+1}(\mathbb{R}^n)} \leq C \| \alpha' \|_{C^{2 l+2}} \| \phi \|_{H^l(S^{n-1})};$$

(c) if $f \in \mathcal{H}_1(\Omega)$ and α is as in (a), then $A : \mathcal{H}_1(\Omega \times S^{n-1}) \to H^{l+1}(\Omega)$ is continuous with

$$\| A \|_{\mathcal{H}_1(\Omega \times S^{n-1}) \to H^{l+1}(\Omega)} \leq C \| \alpha \|_{C^{2 l+2}};$$

(d) if $\alpha = \alpha(x, y, r, \theta, \eta) \in C^\infty(\mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R} \times S^{n-1} \times S^{n-1})$ is compactly supported in x and y, then $A : \mathcal{H}_1(\Omega \times S^{n-1}) \to H^{l+1}(\mathbb{R}^n \times S^{n-1})$ is bounded with

$$\| A \|_{\mathcal{H}_1(\Omega \times S^{n-1}) \to H^{l+1}(\mathbb{R}^n \times S^{n-1})} \leq C \| \alpha \|_{C^{2 l+2}(\mathbb{R}^n \times S^{n-1})}.$$

Proof. First note that in all cases, since α is compactly supported in x and y, we can let $U \subseteq \mathbb{R}^n$ be such that $\alpha(x, y, r, \theta, \eta) = 0$ for $x, y \notin U$. We can then replace α by $\alpha \psi$ without affecting the integral, where $\psi \in C^\infty(\mathbb{R})$ satisfies $\psi(r) = 1$ for $r \in [0, \text{diam}(U)]$. Thus, we may also assume that α is compactly supported in all variables.

Consider the case when f is independent of θ and α only depends on x and θ. From the Calderón–Zygmund theory of singular operators, we know that for an integral operator K with the singular kernel $k(x, y) = \phi(x, \theta) r^{-n}$ where we recall $r = |x - y|$, if ϕ has the mean value 0 as a function of θ for each x, then K is a well-defined operator on test functions, where the integration has to be understood in the principal value sense. Moreover, K extends to a bounded operator on L^2 satisfying $\| K \| \leq C \sup_{\theta} \| \phi(x, \cdot) \|_{L^2(S^{n-1})}$ (theorem XI.3.1, [13]). As a remark, the extension can be considered as a convolution in the sense of distributions, and then ϕ need not have the mean value 0 in θ.

Let $(j_1, j_2, \ldots, j_{l+1})$ be a multi index. To make notation a bit more consistent, let $a_0 = \alpha$. Consider the derivative $\partial_{i_1} A$, which by (A.7) and proposition 1 of [22] consists of a bounded term $a_1(x) f(x)$ plus the integral operator with the kernel

$$\partial_{i_1} \alpha(x, \theta) = \frac{(1 - n) \partial_{i_1} \alpha + \partial_{i_1} \alpha}{r^{n-1}} + \frac{\partial_{i_1} \alpha(x, \theta)}{r^{n-1}}.$$ \hspace{1cm} (A.11)

Letting $\phi_1(x, \theta) := (1 - n) \partial_{i_1} \alpha(x, \theta) + \partial_{i_1} \alpha(x, \theta)$, since $\alpha \in C^{2 l + 2}$ and is compactly supported in x, we have that the symbol

$$\Phi_1(x, \omega) = \int e^{-i \xi \omega} \frac{\phi_1(x, \omega)}{|\xi|^n} \, d\xi$$

of Φ_1 belongs to $C^{2 l + 2}(\mathbb{R}^n \times S^{n-1})$. Since ϕ_1 is compactly supported in x,

$$\partial_{i_1} \phi_1 \in H^{2 l+1 - |\gamma|}(S^{n-1}) \subseteq H^{l+1 - \frac{1}{2}}(S^{n-1})$$

for all $0 \leq |\gamma| \leq l$ and for some fixed $\lambda > \frac{n-1}{2}$ (in particular, we could take $\lambda = \frac{n}{2}$). By theorem A.2, $\Phi_1(x, \omega) \in \mathcal{S}'(\mathbb{R}^n \times S^{n-1})$. By theorem A.1, we have that the integral kernel $\phi_1(x, \theta) r^{-n}$ corresponds to a singular integral operator that
is bounded on H^l. For the second term in (A.11), which is a weakly singular integral kernel, we have that $\alpha_i(x, \theta) := \partial_{\beta_i} \alpha(x, \theta) \in C^{l+1}$. Similarly as before, we compute $\partial_{\beta_i} \left(\frac{a_i(x, \theta)}{r^{1-\theta}} \right)$ which corresponds to an operator with a bounded multiplier $a_i(x)$, a singular integral operator and a weakly singular integral operator. It can be shown analogously that the symbol $\Phi_2(x, \xi)$ corresponding to the characteristic $\phi_2(x, \theta)$ of the singular integral term belongs to $\mathcal{B}_{l-1, \beta}$. Thus, modulo a weakly singular integral operator, the operator A_2 with the kernel $\phi_2(x, \theta)r^{-\alpha}$ is bounded on H^{l-1}. We then focus our attention on the weakly singular integral operator that remains.

After repeating this process a total of $l+1$ times, which involves $l+1$ differentiations, the remaining weakly singular integral operator has a kernel $\alpha_{l+1}(x, \theta)r^{-\alpha}$ with $\alpha_{l+1}(x, \theta) \in C^{l+1}$. We can then proceed as in the proof of proposition 1 in [22] to obtain that this term is bounded on $L^2(\Omega)$. In particular, we use the criterion from the Calderón–Zygmund theory which states that if K is an integral operator with the integral kernel $k(x, y)$ satisfying

$$\sup_x \int |k(x, y)| \, dy \leq M, \quad \sup_y \int |k(x, y)| \, dx \leq M,$$

then K is bounded in L^2 with a norm not exceeding M ([23], proposition A.5.1).

Now we want to bound the operator norm $\|A\|_{H^l(\Omega) \rightarrow H^{l+1}(\Omega)}$ in this simpler case. Let ϕ_i be the characteristic of the ith singular integral operator obtained by the above process with the symbol Φ_i and \tilde{A}_i the corresponding singular integral operator. Note that \tilde{A}_i is bounded on $H^{l-i+1}(\Omega)$. One can explicitly compute that

$$\alpha_i = \partial_{\beta_i} \phi_i \rho_{i-1} \alpha_i,$$

$$\phi_i = (1-n)\theta_i \alpha_{i-1} + \partial_{\beta_i} \alpha_{i-1},$$

$$\alpha_i(x) = \int \alpha_{i-1}(x, \theta) \partial_{\beta_i} \phi_i(x, \theta) \, dS(y), \quad \text{for } 1 \leq i \leq l+1.$$

Also define

$$\tilde{K}_i f(x) := \int \frac{\alpha_i(x, \theta)}{\rho_{i-1}} f(y) \, dy.$$

We have

$$\|\phi_i\|_{C^{l-i+1}} \leq C\|\alpha\|_{C^{l+1}},$$

$$\|\alpha_i\|_{C^{l-i+1}} \leq C\|\alpha\|_{C^{l+1}},$$

$$\|\tilde{K}_i f\|_{H^{l-i+1}(\Omega)} \leq C\|\alpha\|_{C^{l+1}},$$

where

$$\|\tilde{A}_i f\|_{H^{l-i+1}(\Omega)} = \sum_{|\beta| \leq l-i+1} \|D^\beta \tilde{A}_i f\|_{L^2(\Omega)} \leq \sum_{|\beta| \leq l-i+1} \sum_{|\gamma| \leq \beta-\rho} \frac{\beta!}{\gamma!(\beta - \gamma)!} \sup_x \|D^\beta - x \phi_i(x, \cdot)\|_{H^{l-i+1}(\Omega)} \|f\|_{H^\rho(\Omega)} \leq C\|\phi_i\|_{C^{l-i+1}} \|f\|_{L^2(\Omega)} \leq C\|\alpha\|_{C^{l+1}}.$$
Now we estimate $\|Af\|_{H^{l+1}}$ using (A.18) with the understanding that we sum over all indices j_1, j_2, \ldots. Again, assume that $\|f\|_{H^{l}(\Omega)} = 1$.

$$
\|Af\|_{H^{l+1}} = \|Af\|_{L^2} + \|\partial_{x_0} A f\|_{H^l} \\
\lesssim \|\alpha\|_{C^0} + \|\alpha f\|_{H^l} + \|\tilde{A}_1 f\|_{H^l} + \|\tilde{R}_1 f\|_{H^{l-1}} \\
\lesssim \|\alpha\|_{C^0} + \|\alpha f\|_{C^1} + \|\alpha f\|_{H^{l+1}} + \|\tilde{A}_2 f\|_{H^{l+1}} + \|\tilde{R}_2 f\|_{H^{l+1}} \\
\lesssim \|\alpha\|_{C^0} + \|\alpha f\|_{C^1} + \|\alpha f\|_{H^{l+1}} + \|\tilde{A}_i f\|_{H^{l+i-1}} + \|\tilde{R}_i f\|_{H^{l+i-1}} \\
\lesssim \|\alpha\|_{C^0} + \|\alpha f\|_{C^1} + \|\alpha f\|_{H^{l+1}} + \|\tilde{A}_i f\|_{H^{l+i-1}} + \|\tilde{R}_i f\|_{H^{l+i-1}} \\
\lesssim \|\alpha\|_{C^{l+1}}.
$$

Thus, in the simplified case where α only depends on x and θ and f is independent of θ, we have

$$
\|A\|_{H^{l}(\Omega) \to H^{l+1}(\mathbb{R}^n)} \lesssim C\|\alpha\|_{C^{l+1}}. \quad (A.19)
$$

To extend to $\alpha = \alpha_0$ depending also on y and r, we use a first-order Taylor expansion in y and r centered at $y = x$ and $r = 0$, similar to in [22] (proposition 1), to obtain

$$
\alpha_0(x, y, r, \theta) = \alpha_0(x, 0, \theta) + \sum_{|\beta|+|\gamma|=1} r^{|\beta|} (y-x)^{\gamma} \int_0^1 \frac{\partial^\beta}{\partial t^\gamma} \alpha_0(x, x+t(y-x), t, \theta) \, dt \\
= \alpha_0(x, 0, \theta) + \sum_{|\beta|+|\gamma|=1} r^{|\beta|} (-r\theta)^{\gamma} \int_0^1 \frac{\partial^\beta}{\partial t^\gamma} \alpha_0(x, x+t(y-x), t, \theta) \, dt \\
= \alpha_0(x, 0, \theta) + r \sum_{|\beta|+|\gamma|=1} (-1)^{|\gamma|} r^{|\gamma|} \int_0^1 \frac{\partial^\beta}{\partial t^\gamma} \alpha_0(x, x+t(y-x), t, \theta) \, dt.
$$

We can then write

$$
\alpha_0(x, y, r, \theta) = \alpha_0(x, 0, \theta) + r\gamma_1(x, y, r, \theta) \quad (A.20)
$$

where $\gamma_1 \in C^{2+l+1}$. After dividing by r^{n-1}, the first term in (A.20) maps H^l to H^{l+1} by the previous argument. The second term corresponds to an integral operator with the kernel $\gamma_l(x, y, r, \theta) r^{-n+2}$. If we differentiate this with respect to x, we obtain a weakly singular integral operator with the kernel $\alpha_1(x, y, r, \theta) r^{-n+1}$ where $\alpha_1 \in C^l$. Now repeat as before, write

$$
\alpha_1(x, y, r, \theta) = \alpha_1(x, 0, \theta) + r\gamma_2(x, y, r, \theta) \quad (A.21)
$$

where $\gamma_2 \in C^{2+l-1}$. The first term $\alpha_1(x, 0, \theta)$ corresponds to a bounded operator $A_1 : H^{l+1}(\Omega) \to H^l(\mathbb{R}^n)$. Moreover, $\gamma_2(x, y, r, \theta) r^{-n+2}$ can be differentiated with respect to x to obtain a weakly singular integral operator with the kernel $\alpha_2(x, y, r, \theta) r^{-n+1}$ where $\alpha_2 \in C^{2+l-2}$.

After repeating this process a total of l times, we have a remainder term that is a weakly singular integral operator with the kernel $\alpha_l(x, y, r, \theta) r^{-n+1}$ where $\alpha_l \in C^l$. Write

$$
\alpha_l(x, y, r, \theta) = \alpha_l(x, 0, \theta) + r\gamma_{l+1}(x, y, r, \theta)
$$

where $\gamma_{l+1} \in C^{3+l}$.
with \(\gamma_{n+1} \in C^1 \). Then \(\gamma_{n+1} \) corresponds to the operator \(\gamma_{n+1}(x, y, r, \theta)r^{-n+2} \), which we can differentiate with respect to \(x \) to obtain a weakly singular operator that is bounded on \(L^2 \) with a bound not exceeding \(\|\gamma_{n+1}\|_{C^1} \) by using the estimates in (A.12) and applying the Calderón–Zygmund theorem. Since each weakly singular integral operator with the kernel \(\alpha_i(x, x, 0, \theta)r^{-n+1} \) is a bounded map from \(H^{l-1}(\Omega) \to H^{l-1+j}(\mathbb{R}^n) \), we combine the remainder terms together to obtain \(A : H^l(\Omega) \to H^{l-1+j}(\mathbb{R}^n) \).

More explicitly, let \(A_i \) be the weakly singular integral operator with the kernel \(\alpha_i(x, 0, \theta)r^{-n+1} \) and \(R_i \) the integral operator with the kernel \(\gamma_{n+1}(x, y, r, \theta)r^{-n+2} \). In particular, \(A_i = \partial_{\theta_i} R_{n-1} \). We will also need the straightforward estimates

\[
\|\alpha_i\|_{C^{\alpha+1}} \lesssim \|\alpha\|_{C^{\alpha+1}}, \quad \|\gamma_l\|_{C^\alpha} \lesssim \|\alpha\|_{C^{\alpha+1}}. \tag{A.22}
\]

For \(\|f\|_H = 1 \), we have

\[
\|Af\|_{H^{l+1}} \lesssim \|A_0f\|_{H^{l+1}} + \|R_0f\|_{H^{l+1}} \\
\lesssim \|A_0\|_{C^{\alpha+1}} + \|R_0f\|_{L^2} + \|\partial_{\theta_i} R_0f\|_{H^{l}} \\
\lesssim \|\alpha_0\|_{C^{\alpha+1}} + \|\gamma_1\|_{C^\alpha} + \|A_1f\|_{H^{l}} + \|R_1f\|_{H^{l}} \\
\lesssim \|\alpha_0\|_{C^{\alpha+1}} + \|\gamma_1\|_{C^\alpha} + \|\alpha_1\|_{C^{\alpha+1}} + \|R_1f\|_{L^2} + \|\partial_{\theta_i} R_1f\|_{H^{l+1}} \\
\lesssim \|\alpha_0\|_{C^{\alpha+1}} + \|\alpha_1\|_{C^{\alpha+1}} + \|\gamma_1\|_{C^\alpha} + \|\gamma_2\|_{C^\alpha} + \|A_2f\|_{H^{l+1}} + \|R_2f\|_{H^{l+1}} \\
\vdots \\
\lesssim \|A_1f\|_{H^{l+1}} + \|R_1f\|_{H^{l+1}} + \sum_{i=0}^{l-1} \|\alpha_i\|_{C^{\alpha+1}} + \|\gamma_{n+1}\|_{C^\alpha} \\
\lesssim \|\alpha\|_{C^{\alpha+1}} + \|\alpha\|_{C^{\alpha+1}} + \|\alpha\|_{C^{\alpha+1}} + \|\gamma_{n+1}\|_{C^\alpha} \\
\lesssim \|\alpha\|_{C^{\alpha+1}} + \|\alpha\|_{C^{\alpha+1}} + \|\alpha\|_{C^{\alpha+1}} + \|\alpha\|_{C^{\alpha+1}} \\
\lesssim \|\alpha\|_{C^{\alpha+1}}.
\]

This proves (a).

Now consider if \(\alpha(x, y, r, \theta) = \alpha'(x, y, r, \theta)\phi(\theta) \). Then

\[
(1 - n)\theta_j \alpha + \partial_\theta \alpha = (1 - n)\theta_j \alpha'\phi + \alpha'\partial_\theta \phi + \phi \partial_\theta \alpha'. \tag{A.23}
\]

In short, for each term in the decomposition of \(A \) by differentiation, \(\phi \) is differentiated exactly once. Therefore,

\[
\|A\|_{H^l(\Omega) \to H^{l+1}(\mathbb{R}^n)} \lesssim \|\alpha\|_{C^{\alpha+1}} \|\phi\|_{H^{l+1}(\Theta)} \tag{A.24},
\]

which proves (b).

For \(f \in \mathcal{H}_l(\Omega \times S^{n-1}) \) depending on \(\theta \) as well, we expand \(f \) as a series

\[
f(x, \theta) = \sum_{m=0}^{\infty} \sum_{k=1}^{k_m} a^{(k)}_m(x) Y^{(k)}_{m,n}(\theta).
\]
Then
\[
\|A\|_{H^{\frac{1}{2}}(\mathbb{R}^n \times S^{n-1})} \leq \sum_{m=0}^{\infty} \sum_{k=0}^{k_{n,m}} \left\| \int_{\Omega} \alpha(x, y, r, \theta) \varphi_m(x) \varphi_n(y) \, dy \right\|_{H^{\frac{1}{2}}(\mathbb{R}^n \times S^{n-1})}.
\]
Hence,
\[
\|A\|_{H^{\frac{1}{2}}(\mathbb{R}^n \times S^{n-1})} \leq \sum_{m=0}^{\infty} \sum_{k=0}^{k_{n,m}} \|A_m\|_{H^s \to H^{s+\frac{1}{2}}} \|a_m\|_{L^2(\Omega)}.
\]
Here the operator \(A_m\) is given by \([A_m f](x) = \int_{\Omega} \alpha(x, y, r, \theta) y \varphi_m(x) \varphi_n(y) \, dy\). This proves (c).

Finally, if \(\alpha = \alpha(x, y, r, \theta, \eta)\) is \(C^\infty\) with compact support, we can expand it as a series
\[
\alpha(x, y, r, \theta, \eta) = \sum_{m=0}^{\infty} \sum_{k=0}^{k_{n,m}} b_m^{(k)}(x, y, r, \theta, \eta) \varphi_m(y) \varphi_n(x) \quad \text{(A.25)}
\]
Note that \(\alpha \in C^\infty_j(\mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R} \times S^{n-1} \times S^{n-1})\) for all \(j \geq 0\). Then for \(f \in \mathcal{H}_j(\Omega \times S^{n-1})\), we have
\[
\|A f\|_{\mathcal{H}_{j+1}^1(\mathbb{R}^n \times S^{n-1})} \leq \sum_{m=0}^{\infty} \sum_{k=0}^{k_{n,m}} \left\| \int_{\Omega} \alpha(x, y, r, \theta) \varphi_m(x) \varphi_n(y) \, dy \right\|_{H^{j+1}(\mathbb{R}^n \times S^{n-1})}.
\]

References

[1] Allmaras M, Darrow D, Hristova Y, Kanschat G and Kuchment P 2010 Detecting small low emission radiating sources arXiv:1012.3373v1

[2] Bal G and Tamasan A 2007 Inverse source problems in transport equations SIAM J. Math. Anal. 39 57–76
[3] Chang J, Barbour R L and Graber H 1997 Imaging of fluorescence in highly scattering media IEEE Trans. Biomed. Eng. 44 810–22
[4] Choulli M and Stefanov P 1996 Inverse scattering and inverse boundary value problems for the linear Boltzmann equation Commun. Partial Diff. Eqns. 21 763–85
[5] Choulli M and Stefanov P 1998 An inverse boundary value problem for the stationary transport equation Osaka J. Math. 36 87–104
[6] Contag P R, Olomu I N, Stevenson D K and Contag C H 1998 Bioluminescent indicators in living mammals Nature Med. 4 245–7
[7] Emamirad H 1985 On the Lax and Phillips scattering theory for transport equation J. Funct. Anal. 62 276–303
[8] Frigyik B, Stefanov P and Uhlmann G 2008 The x-ray transform for a generic family of curves and weights J. Geom. Anal. 18 81–97
[9] Grigis A and Sjöstrand J 1994 Microlocal Analysis for Differential Operators: An Introduction (London Mathematical Society Lecture Note Series vol 196) (New York: Cambridge University Press)
[10] Hejtmanek J 1975 Scattering theory of the linear Boltzmann operator Commun. Math. Phys. 43 109–20
[11] Hormander L 1983 The Analysis of Linear Partial Differential Operators vols 1–3 (New York: Springer)
[12] Jiang H, Ramesh S and Barlett M 2000 Combined optical and fluorescence imaging for breast cancer detection and diagnosis Crit. Rev. Biomed. Eng. 28 371–5
[13] Mikhlin S G and Prössdorf S 1986 Singular Integral Operators (Translated from the German by Albrecht Böttcher and Reinhard Lehmann) (Berlin: Springer)
[14] Novikov R G 2002 An inversion formula for the attenuated x-ray transformation Ark. Mat. 40 145–67
[15] Quinto E T 1993 Singularities of the x-ray transform and limited data tomography in \(\mathbb{R}^2 \) and \(\mathbb{R}^3 \) SIAM J. Math. Anal. 24 1215–25
[16] Reed M and Simon B 1972 Methods of Modern Mathematical Physics I: Functional Analysis (New York: Academic)
[17] Reed M and Simon B 1979 Methods of Modern Mathematical Physics III (New York: Academic)
[18] Simon B 1975 Existence of the scattering matrix for linearized Boltzmann equation Commun. Math. Phys. 41 99–108
[19] Stefanov P 2008 Microlocal approach to tensor tomography and boundary and lens rigidity Serdica Math. J. 34 67–112 (Course notes, Rio de Janeiro, Jan. 2007)
[20] Stefanov P and Uhlmann G 2004 Stability estimates for the x-ray transform of tensor fields and boundary rigidity Duke Math. J. 123 445–67
[21] Stefanov P and Uhlmann G 2005 Boundary rigidity and stability for generic simple metrics J. Am. Math. Soc. 18 975–1003
[22] Stefanov P and Uhlmann G 2008 An inverse source problem in optical molecular imaging Anal. PDE 1 115–26
[23] Stein E 1970 Singular Integrals and Differentiability Properties of Functions (Princeton, NJ: Princeton University Press)
[24] Taylor M E 1996 Partial Differential Equations I (Applied Mathematical Sciences vol 115) (New York: Springer)
[25] Trèves F 1980 Introduction to Pseudodifferential and Fourier Integral Operators vols 1 and 2 (The University Series in Mathematics) (Berlin: Springer)
[26] Umeda T 1984 Scattering and spectral theory for the linear Boltzmann operator J. Math. Kyoto Univ. 24 208–18