Electronic Supplementary Information

First-principles calculations on Ni,Fe-containing carbon monoxide dehydrogenases reveal key stereoelectronic features for binding and release of CO$_2$ to/from the C-cluster

Raffaella Breglia,§ Federica Arrigoni,† Matteo Sensi,‡§ Claudio Greco,§,* Piercarlo Fantucci,‡
Luca De Gioia,‡,* Maurizio Bruschi§,†

† Department of Earth and Environmental Science, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milan, Italy.

‡ Department of Biotechnology and Biosciences, University of Milano Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.

‡ Present address: Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy.

† Deceased

Corresponding Authors: Claudio Greco (claudio.greco@unimib.it), Luca De Gioia (luca.degioia@unimib.it)
Table S1 Detailed information of the atoms included in the LM model of the active site. H atoms are not explicitly reported in the list. C, O and N are backbone carbonylic C and O, and amidic N, respectively. Atoms belonging also to the SM model are indicated with bold labels.

Residue	Atoms included in the model	Basis set	Atoms constrained at the X-ray position
NiFeS₄ core	all	def-TZVP	none
Ala91	C, O, C_α	def-SVP	Ca (terminal atom), O (carbonyl oxygen atom forms an H-bond with the amidic hydrogen of Gly95 in a α-helix)
Gly92	all	def-SVP	O, H₈ (carbonyl oxygen forms an H-bond with the amidic hydrogen of His96 and the hydrogen atom on N_ε of Gln332, whereas H₈ forms an H-bond with the carbonyl oxygen atom of Ala88 in a α-helix. H₈ has been added at 1.02 Å from N in the C-N-C_α plane, and constrained at that position)
His93	all	def-SVP	O, H₈ (carbonyl oxygen forms an H-bond with the amidic hydrogen of Ala97, whereas H₈ forms an H-bond with the carbonyl oxygen atom of Gly89 in a α-helix. H₈ has been added at 1.02 Å from N in the C-N-C_α plane, and constrained at that position)
Ser94	N, C_α	def-SVP	Ca (terminal atom), H₈ (H₈ forms an H-bond with the carbonyl oxygen atom of Ala90 in a α-helix. H₈ has been added at 1.02 Å from N in the C-N-C_α plane, and constrained at that position)
His96	side chain, C_α	def-SVP	Ca (terminal atom)
Asp219	side chain, C_α	def-SVP	Ca (terminal atom)
Cys223	side chain, C_α	def-SVP	Cα, Cβ (terminal atoms)
Asp231	side chain	def-SVP	Cγ, Cβ (terminal atoms)
Hys261	side chain, C_α	def-TZVP	Ca (terminal atom)
Cys295	side chain, C_α	def-TZVP	Ca (terminal atom)
Glu299	side chain, C_α	def-SVP	Ca (terminal atom)
Arg303	side chain terminated at C_γ	def-SVP	Cγ, Cδ, Nε (three terminal atoms of the Arg303 sidechain are constrained to the X-ray positions to avoid unrealistic distortions at the boundary of the model)
Gln332	side chain, C_α	def-SVP	Ca (terminal atom)
Cys333	side chain, C_α	def-SVP	Ca (terminal atom)
Cys446	side chain, C_α	def-TZVP	Ca (terminal atom)
Cys476	side chain, C_α	def-TZVP	Ca (terminal atom)
Ser525	side chain, C, O, C_α	def-SVP	Ca (terminal atom)
Cys526	all	def-TZVP (side chain); SVP (other atoms)	none
Val527	N, C_α	def-SVP	Ca (terminal atom)
Ile567	side chain, C_α	def-SVP	all C atoms (all carbon atoms are constrained to the X-ray positions to avoid an unrealistic large rotation of the sidechain during geometry optimization)
Trp570	side chain, C_α	def-SVP	Cα, Cβ, Cγ (three terminal atoms of the Trp570 sidechain are constrained to the X-ray positions to avoid unrealistic distortions at the boundary of the model)
Table S2 Binding energies (in kcal/mol) of CO₂ to the terminal position of the Ni atom of the unbound form of the C-cluster for C_{red2} and C_{int} (ΔE tCO₂) and the OH-bound form of C-cluster for C_{red1} (ΔE CO₂-OH) calculated, using LM^{H+K+} model, with BP86, B3LYP, PBE0 and M06 functionals with and without D3 and D3(BJ) dispersion-corrections. The tCO₂ → μCO₂ isomerization reaction energies are also shown for C_{red2} and C_{int} (ΔE tCO₂ → μCO₂). In all calculations solvation effects are added using the conductor-like screening model (COSMO) with a polarizable continuum medium at ε = 4.

	ΔE tCO₂	ΔE CO₂-OH	ΔE tCO₂ → μCO₂		
	C_{red2}	C_{int}	C_{red1}	C_{red2}	C_{int}
BP86	-24.5	-8.8	5.3	-10.9	-10.8
B3LYP	-23.6	-4.9	7.7	-15.9	-18.0
PBE0	-28.0	-9.4	5.6	-13.3	-16.3
M06	-36.3	-19.0	2.3	-12.1	-14.9
BP86-D3	-54.0	-38.1	-17.2	-5.9	-5.4
B3LYP-D3	-48.5	-29.4	-10.8	-11.3	-13.2
PBE0-D3	-43.8	-25.2	-6.1	-10.3	-13.3
M06-D3	-43.8	-25.9	-2.8	-11.2	-14.1
BP86-D3(BJ)	-55.4	-39.5	-16.3	-5.5	-5.4
B3LYP-D3(BJ)	-53.1	-34.2	-12.9	-10.4	-12.7
PBE0-D3(BJ)	-45.0	-26.5	-6.3	-10.2	-13.1

Table S3 Reaction energies (ΔE), zero-point energies corrections (ΔZPE) and zero-point corrected energies (ΔE + ΔZPE) for CO₂ binding and tCO₂ → μCO₂ isomerization, in kcal/mol, in the C_{red2}, C_{int} and C_{red1} redox-states.

	C_{red2}	C_{int}	C_{red1}	
CO₂ binding	ΔE_{LM}	-24.5	-8.8	5.3
	ΔZPE_{MM}	2.50	2.98	2.03
	ΔE_{LM} + ΔZPE_{MM}	-22.0	-5.8	7.4
tCO₂ → μCO₂ isomerization	ΔE_{LM}	-10.9	-10.8	-
	ΔZPE_{MM}	-0.24	0.00	-
	ΔE_{LM} + ΔZPE_{MM}	-11.1	-10.8	-
Scheme S1 Schematic representation of all possible non-equivalent spin coupling schemes for the C-cluster, in which two pairs of Fe atoms are coupled antiferromagnetically.
Table S4 Relative energies (in kcal/mol) for all possible spin coupling schemes of all species investigated in this work, optimized at the RI-BP86/def-TZVP level in COSMO with $\varepsilon=4$, using the SM model in the $C_{\text{red}1}$, C_{int} and $C_{\text{red}2}$ redox states of the C-cluster. NBO atomic charges and Mulliken spin densities (in parenthesis) of selected atoms of the C-cluster and of the layers L1 and L2 (corresponding respectively to the blue and red layers of the BS coupling schemes shown in Scheme S1) are also indicated.

a) unbound forms of the C-cluster
BS	ΔE	Ni	Fe\textsubscript{u}	Fe\textsubscript{1}	Fe\textsubscript{2}	Fe\textsubscript{3}	L1	L2
C\textsubscript{red}								
1	12.74	0.56(0.40)	0.88(-3.12)	0.78(3.20)	0.77(3.14)	0.72(-3.03)	-1.13(7.03)	-0.87(-6.05)
2	14.76	0.53(0.31)	0.91(-3.19)	0.78(3.24)	0.68(-2.91)	0.75(3.14)	-1.20(7.11)	-0.80(-6.10)
3	0.00	0.54(0.27)	0.96(3.40)	0.73(3.12)	0.71(-3.00)	0.71(-3.02)	-0.77(7.31)	-1.23(-6.32)
4	8.04	0.53(0.42)	0.96(3.38)	0.70(-3.01)	0.74(3.09)	0.75(3.16)	-1.09(-6.64)	-0.91(7.61)
5	12.48	0.54(0.52)	0.87(3.26)	0.72(-3.06)	0.76(3.12)	0.67(-3.02)	-1.15(-6.54)	-0.85(7.51)
6	9.25	0.50(0.39)	0.96(-3.36)	0.53(-2.44)	0.74(3.06)	0.74(3.11)	-0.86(-5.59)	-1.14(-6.60)
C\textsubscript{int}								
1	1.59	0.54(-0.16)	0.91(-3.28)	0.78(3.22)	0.80(3.20)	0.78(-3.20)	-1.50(7.06)	-1.50(-7.05)
2	5.45	0.53(-0.18)	0.92(-3.30)	0.79(3.24)	0.78(-3.17)	0.79(3.23)	-1.63(7.14)	-1.37(-7.15)
3	0.00	0.53(-0.01)	0.91(3.27)	0.74(3.11)	0.76(-3.14)	0.76(-3.16)	-1.39(6.67)	-1.61(-6.66)
4	6.18	0.53(0.22)	0.90(3.26)	0.77(-3.21)	0.79(-3.21)	0.77(3.11)	-1.49(-7.06)	-1.51(7.04)
5	10.29	0.52(0.36)	0.84(3.18)	0.77(-3.18)	0.72(2.95)	0.73(-3.15)	-1.50(-6.80)	-1.50(6.79)
6	0.04	0.53(-0.01)	0.91(-3.27)	0.74(-3.11)	0.76(3.14)	0.76(3.16)	-1.39(-6.67)	-1.61(6.66)
C\textsubscript{red2}								
1	2.05	0.53(0.03)	0.86(-3.19)	0.82(3.31)	0.84(3.30)	0.74(-3.03)	-1.90(7.40)	-2.10(-6.43)
2	4.67	0.48(0.11)	0.90(-3.22)	0.81(3.31)	0.76(-2.99)	0.81(3.28)	-1.96(7.21)	-2.04(-6.25)
3	7.72	0.43(0.27)	0.93(3.27)	0.81(3.29)	0.75(-3.04)	0.76(-3.12)	-2.00(7.24)	-2.00(-6.30)
4	12.46	0.47(0.47)	0.90(3.35)	0.78(-3.22)	0.69(-2.77)	0.67(2.97)	-1.90(-6.35)	-2.10(7.34)
5	11.14	0.47(-0.33)	0.92(3.34)	0.80(-3.25)	0.83(3.26)	0.68(-2.78)	-2.04(-6.37)	-1.96(7.38)
6	0.00	0.52(0.09)	0.87(-3.21)	0.70(-2.84)	0.81(3.24)	0.80(3.25)	-2.08(-5.90)	-1.92(6.87)
b) μCO$_2$-adducts of the C-cluster

BS	ΔE	Ni	Fe6	Fe7	Fe8	Fe9	L1	L2	CO$_2$
C$_{red1}$									
0	1.56	0.52(0.03)	0.76(2.13)	0.73(-3.12)	0.72(3.00)	0.75(3.09)	-0.30(-5.53)	-0.90(6.50)	-0.81(0.00)
1	7.00	0.55(-0.17)	0.79(-2.25)	0.75(3.15)	0.73(3.01)	0.76(-3.15)	-0.98(6.81)	-0.22(-5.81)	-0.80(0.01)
2	8.44	0.56(-0.20)	0.80(-2.25)	0.79(3.22)	0.77(-3.15)	0.75(3.03)	-0.96(6.87)	-0.24(-5.83)	-0.80(0.00)
3	0.00	0.51(0.15)	1.16(3.60)	0.72(3.10)	0.75(-3.05)	0.76(-3.12)	-0.24(7.51)	-0.91(-6.56)	-0.82(0.05)
4	7.04	0.54(0.23)	1.18(3.64)	0.75(-3.14)	0.73(-2.99)	0.76(3.15)	-0.89(-6.82)	-0.28(7.73)	-0.82(0.07)
5	9.07	0.54(0.23)	1.21(3.68)	0.78(-3.19)	0.78(3.17)	0.77(-3.10)	-0.90(-6.93)	-0.28(-7.80)	-0.82(0.06)
6	1.56	0.52(-0.03)	0.76(-2.13)	0.73(-3.12)	0.72(3.00)	0.75(3.09)	-0.30(-5.53)	-0.90(6.50)	-0.81(0.00)

c) tCO$_2$-adducts of the C-cluster

SM	BS	ΔE	Ni	Fe6	Fe7	L1	L2	CO$_2$	
C$_{int1}$		1.14	0.97(-3.32)	0.66(-2.77)	0.88(3.33)	0.85(3.29)	-1.45(-6.22)	-1.57(7.26)	-0.98(-0.04)
0	16.88	0.57(0.30)	0.88(-2.89)	0.76(3.14)	0.81(3.16)	0.75(-3.12)	-0.98(6.99)	-0.38(-5.97)	-0.64(0.00)
1	10.61	0.55(0.23)	0.91(-3.11)	0.77(3.17)	0.69(-2.91)	0.78(3.18)	-1.02(7.14)	-0.44(-6.18)	-0.55(0.05)
2	8.85	0.49(0.12)	1.14(-3.52)	0.84(3.36)	0.73(-2.89)	0.87(3.35)	-1.57(7.42)	-1.43(-6.34)	-1.00(-0.07)
3	3.26	0.49(0.15)	1.15(3.54)	0.76(3.16)	0.84(-3.20)	0.75(-3.01)	-1.28(7.32)	-1.70(-6.43)	-1.02(0.09)
4	6.51	0.52(0.21)	1.17(3.57)	0.77(3.16)	0.77(-2.96)	0.84(3.29)	-1.71(-6.59)	-1.27(7.52)	-1.01(0.06)
5	6.35	0.49(0.11)	1.16(3.58)	0.79(-3.18)	0.88(3.33)	0.75(-2.98)	-1.71(-6.56)	-1.27(7.48)	-1.01(0.06)
6	0.00	0.48(0.09)	1.11(-3.45)	0.66(-2.79)	0.90(3.38)	0.85(3.32)	-1.45(-6.22)	-1.57(7.26)	-0.98(-0.04)

C$_{red2}$

SM	BS	ΔE	Ni	Fe6	Fe7	Fe8	Fe9	L1	L2	CO$_2$
0	1.56	0.52(-0.14)	1.00(-3.36)	0.71(-3.06)	0.82(3.23)	0.81(3.21)	-0.96(6.97)	-1.27(6.94)	-0.54(-0.02)	
1	5.58	0.56(0.02)	0.95(-3.29)	0.80(3.27)	0.87(3.32)	0.72(-2.94)	-1.62(7.34)	-1.51(-6.33)	-0.87(0.00)	
2	1.02	0.52(0.12)	0.96(-3.28)	0.83(3.31)	0.77(-3.03)	0.86(3.34)	-1.60(7.35)	-1.52(-6.34)	-0.88(-0.01)	
3	3.37	0.53(0.21)	0.95(3.27)	0.81(3.27)	0.79(-3.10)	0.74(-2.93)	-1.46(7.29)	-1.65(-6.29)	-0.89(-0.01)	
4	7.46	0.56(0.23)	1.03(3.47)	0.78(-3.13)	0.76(-2.91)	0.85(3.28)	-1.71(-6.47)	-1.37(7.45)	-0.92(0.01)	
5	6.66	0.52(0.25)	1.02(3.45)	0.75(-3.08)	0.80(3.18)	0.75(-3.01)	-1.76(-6.47)	-1.36(7.44)	-0.88(0.01)	
6	0.00	0.49(0.02)	0.97(-3.32)	0.66(-2.77)	0.88(3.33)	0.85(3.29)	-1.55(-6.15)	-1.55(7.12)	-0.89(0.00)	
d) OH-adducts of the C-cluster

BS	ΔE	Ni	Fe⁰	Fe¹	Fe²	Fe³	L1	L2	OH
C₀₅₁		1	9.46	0.64(0.65)	1.17(-3.60)	0.80(3.27)	0.80(3.27)	0.75(-3.09)	-1.40(7.35) -0.94(-16.16) -0.66(-0.18)
		2	11.01	0.60(0.08)	1.09(-3.33)	0.82(3.30)	0.62(-2.65)	0.81(3.27)	-1.39(7.26) -0.99(-6.08) -0.62(-0.15)
		3	0.00	0.58(0.31)	1.16(3.59)	0.71(3.06)	0.75(-3.11)	0.75(-3.10)	-0.94(7.35) -1.41(-6.53) -0.65(-0.17)
		4	7.18	0.60(0.61)	1.17(3.60)	0.75(-3.16)	0.80(-3.24)	0.74(3.10)	-1.33(-7.06) -1.00(7.86) -0.66(-0.16)
		5	10.38	0.63(0.63)	1.14(3.53)	0.80(-3.26)	0.78(3.18)	0.82(-3.27)	-1.34(-7.07) -0.99(7.89) -0.67(-0.15)
		6	5.02	0.64(0.68)	1.13(-3.50)	0.70(-2.98)	0.76(3.13)	0.80(3.21)	-0.94(-5.73) -1.40(6.88) -0.66(-0.16)

e) CO₂-OH adducts of the C-cluster

BS	ΔE	Ni	Fe⁰	Fe¹	Fe²	Fe³	L1	L2	CO₂	OH
C₀₅₂		1	4.96	0.53(0.07)	1.06(-3.42)	0.81(3.28)	0.84(3.33)	0.71(-2.90)	-2.06(7.33) -2.18(-6.27) -0.76(-0.08)	
		2	6.79	0.56(0.37)	1.09(-3.48)	0.83(3.32)	0.76(-3.05)	0.82(3.30)	-2.10(7.26) -2.15(-6.17) -0.75(-0.10)	
		3	6.96	0.55(0.42)	1.05(3.40)	0.80(3.21)	0.74(-3.00)	0.76(-3.11)	-2.13(7.25) -2.11(-6.33) -0.76(0.08)	
		4	7.00	0.56(0.47)	1.08(3.44)	0.78(-3.19)	0.77(-3.10)	0.83(3.29)	-2.19(-6.71) -2.06(7.61) -0.75(-0.10)	
		5	10.05	0.60(0.70)	1.08(3.48)	0.80(-3.20)	0.79(3.15)	0.78(-3.15)	-2.11(-6.67) -2.14(7.58) -0.76(0.09)	
		6	0.00	0.54(0.36)	1.06(-3.37)	0.71(-2.91)	0.81(3.26)	0.79(3.22)	-2.19(-5.77) -2.08(6.86) -0.74(-0.10)	
Table S5 Energies (in Hartree) and relative energies (in kcal/mol) for \(S = 0 \), \(S = 1 \) and \(S = 2 \) spin states of the more relevant species in the \(C \text{int} \) redox state discussed in this work, optimized at the RI-BP86/def-TZVP-SVP level in COSMO with \(\varepsilon = 4 \), using the \(\text{LM}^{\text{H},\text{K}^+} \) and the \(\text{LM}^{\text{H}^0,\text{K}^+} \) models.

Structure	\(S = 0 \)	\(S = 1 \)	\(S = 2 \)
\(\text{C}_{\text{int}}\text{LM}^{\text{H},\text{K}^+} \)	-15589.90172 (0.0)	-15589.893000 (5.5)	-15589.88408 (11.1)
\(\text{C}_{\text{int}}\text{tCO}_2\text{LM}^{\text{H},\text{K}^+} \)	-15778.59541 (0.6)	-15778.59640 (0.0)	converges to \(\text{C}_{\text{int}}\text{μCO}_2\text{LM}^{\text{H},\text{K}^+} \)
\(\text{C}_{\text{int}}\text{μCO}_2\text{LM}^{\text{H},\text{K}^+} \)	-15778.61256 (0.0)	-15778.61087 (1.1)	-15778.59111 (13.5)
\(\text{C}_{\text{int}}\text{OH}\text{LM}^{\text{H},\text{K}^+} \)	-15665.84848 (0.0)	-15665.83984 (5.4)	-15665.82156 (16.9)
\(\text{C}_{\text{int}}\text{CO}_2\text{OH}\text{LM}^{\text{H},\text{K}^+} \)	-15854.51395 (0.0)	-15854.50489 (5.7)	-15854.49818 (9.9)
\(\text{C}_{\text{int}}\text{LM}^{\text{H}^0,\text{K}^+} \)	-15589.34172 (0.0)	-15589.34068 (0.7)	-15589.32323 (11.6)
\(\text{C}_{\text{int}}\text{tCO}_2\text{LM}^{\text{H}^0,\text{K}^+} \)	-15778.01578 (0.0)	-15778.01442 (1.1)	-15778.0095 (12.1)
\(\text{C}_{\text{int}}\text{μCO}_2\text{H}_2\text{O}\text{LM}^{\text{H}^0,\text{K}^+} \)	-15854.51737 (0.0)	-15854.50512 (7.7)	-15854.4952 (13.9)
\(\text{C}_{\text{int}}\text{μCO}_2\text{H}_2\text{O}\text{LM}^{\text{H}^0,\text{K}^+} \)	-15854.52845 (0.0)	-15854.51245 (10.0)	-15854.5073 (13.3)

Table S6 Energies (in Hartree) of all structures investigated in this work, optimized at the RI-BP86/def-TZVP-SVP level in COSMO with \(\varepsilon = 4 \), using the a) SM, b) \(\text{LM}^{\text{H},\text{K}^+} \), c) \(\text{LM}^{\text{H}^0,\text{K}^+} \) and d) \(\text{LM}^{\text{H}^+,\text{K}^0} \) DFT models.

a) SM model

\(\text{C}_{\text{red}1} \)	charge	multiplicity	BS state	E	\(\Delta E \)
	-2	2	BS-1	-10850.70496516	12.74
			BS-2	-10850.70174919	14.76
			BS-3	-10850.72526804	0.00
			BS-4	-10850.71245146	8.04
			BS-5	-10850.70538738	12.48
			BS-6	-10850.71053395	9.25

\(\text{C}_{\text{int}} \)	charge	multiplicity	BS state	E	\(\Delta E \)
	-3	1	BS-1	-10850.74059174	5.19
			BS-2	-10850.74016559	5.45
			BS-3	-10850.74885795	0.00
			BS-4	-10850.73901312	6.18
			BS-5	-10850.73245202	10.29
			BS-6	-10850.74879664	0.04

\(\text{C}_{\text{red}2} \)	charge	multiplicity	BS state	E	\(\Delta E \)			
	-4	2	BS-1	-10850.71198545	2.05			
			BS-2	-10850.70781231	4.67			
			BS-3	-10850.70294196	7.72			
			BS-4	-10850.69538835	12.46			
			BS-5	-10850.69750347	11.14			
			BS-1	BS-2	BS-3	BS-4	BS-5	BS-6
-------	-------	-------	----------	----------	----------	----------	----------	---------
$C_{\text{red1}-\text{OH}}$	-3	2						
			-10926.60243105	-10926.59997131	-10926.61751139	-10926.60607055	-10926.60096684	-10926.60950723
$C_{\text{int}-\text{OH}}$	-4	1						
			-10926.58941386	-10926.58485503	-10926.59367579	-10926.58944438	-10926.58506162	-10926.58914696
$C_{\text{red2}-\text{OH}}$	-5	2						
			-10926.51815717	-10926.51524727	-10926.51496907	-10926.51490133	-10926.51004464	-10926.52606314
$C_{\text{red1}-\mu\text{CO}_2}$	-2	2						
			-11039.38354099	-11039.38123894	-11039.39469143	-11039.38347495	-11039.38023284	-11039.39220625
$C_{\text{int}-\mu\text{CO}_2}$	-3	1						
			-11039.41941177	-11039.42126966	-11039.42621751	-11039.42232471	-11039.42112889	-11039.42617502
$C_{\text{red2}-\mu\text{CO}_2}$	-4	2						
			-11039.40492823	-11039.40697637	-11039.40312525	-11039.3979460	-11039.39819926	-11039.40832457
$C_{\text{red1}-\text{tCO}_2}$	-2	2						
			-11039.37021021	-11039.38020187	-10850.71524969	-10926.60243105	-10926.59997131	-10926.61751139
								0.00
								9.46
								11.01
								0.00
								7.18
								10.38
								5.02
								2.67
								5.54
								0.00
								9.46
								5.41
								0.00
								9.07
								1.56
								2.13
								3.10
								0.00
								2.44
								3.19
								0.03
								2.13
								0.85
								3.26
								6.51
								6.35
								0.00
								16.88
								10.61
	BS-3	BS-4	BS-5	BS-6				
-------	--------------	--------------	--------------	--------------				
\(C_{\text{int}} - \text{tCO}_2\)	-11039.39710996	-11039.38291466	-11039.38610109	-11039.38717377				
	0.00	8.91	6.91	6.24				

	BS-1	BS-2	BS-3	BS-4
\(C_{\text{red}} - \text{tCO}_2\)	-11039.42633709	-11039.42908675	-11039.43304589	-11039.42633693
	4.21	2.48	0.00	4.21

	BS-1	BS-2	BS-3	BS-4
\(C_{\text{red}} - \text{CO}_2 - \text{OH}\)	-11115.3006146	-11115.4144398	-11115.3050474	-11115.29738888
	3.13	1.02	3.37	7.46

	BS-1	BS-2	BS-3	BS-4
\(C_{\text{int}} - \text{CO}_2 - \text{OH}\)	-11115.29223557	-11115.29295667	-11115.3050474	-11115.29619362
	2.48	2.03	0.25	0.00

	BS-1	BS-2	BS-3	BS-4
\(C_{\text{red}} - \text{CO}_2 - \text{OH}\)	-11115.23661335	-11115.23538578	-11115.23643082	-11115.23696922
	0.22	0.99	0.34	0.00
b) \(\text{LM}^{\text{He,K}+} \text{model} \)

Charge \(\text{C}_{\text{red1}} \)	Multiplicity	BS State	\(E \)	\(\Delta E \)
-2	2	BS-3	-15589.84905936	0.00
		BS-6	-15589.84031942	5.48
-3	1	BS-3	-15589.90165629	0.04
		BS-6	-15589.90172268	0.00
-4	2	BS-3	-15589.95557115	1.81
		BS-6	-15589.89845975	0.00
-3	2	BS-3	-15665.81630659	0.00
		BS-6	-15665.80491832	7.15
-4	1	BS-3	-15665.8484392*	0.00
		BS-6	-15665.8483119*	0.08
-5	2	BS-3	-15665.81935415*	1.90
		BS-6	-15665.82237958*	0.00
-2	2	BS-3	-15778.54194728	0.00
		BS-6	-15778.53406558	4.95
-3	1	BS-3	-15778.61255969	0.00
		BS-6	-15778.61247282	0.05
-4	2	BS-3	-15778.63091730	2.23
		BS-6	-15778.63445048	0.00
-2	2	BS-3	unstable	
		BS-6	unstable	
-3	1	BS-3	-15778.59541465	0.00
		BS-6	unstable	
-4	2	BS-3	-15778.61713245	0.00
		BS-6	-15778.61628150	0.53
-3	2	BS-3	-15854.48744800	0.00
		BS-6	-15854.47423537	8.29
-4	1	BS-3	-15854.51296608	0.62
		BS-6	-15854.51395426	0.00
-5	2	BS-3	-15854.49549139	0.00
		BS-6	-15854.49160506	1.87
c) LM$^{H_{0},K_{+}}$ model

	charge	multiplicity	BS state	E	ΔE
C_{red1}	-3	2	BS-3	-15589.32185204	0.00
C			BS-6	-15589.31888675	1.86
C_{int}	-4	1	BS-3	-15589.34172213	0.00
C			BS-6	-15589.34135562	0.23
C_{red2}	-5	2	BS-3	-15589.3135096	1.34
C			BS-6	-15589.31565012	0.00
$C_{\text{red1}-\text{OH}}$	-4	2	BS-3	-15665.2654694	0.00
C			BS-6	-15665.2537088	7.38
$C_{\text{int}-\text{OH}}$	-5	1	BS-3	-15665.25490477	0.00
C			BS-6	-15665.2549083	0.00
$C_{\text{red2}-\text{OH}}$	-6	2	BS-3	-15665.19272796	2.55
C			BS-6	-15665.19678426	0.00
$C_{\text{red1}-\mu\text{CO}_2}$	-3	2	BS-3	-15777.98333022	0.00
C			BS-6	-15777.96786353	9.71
$C_{\text{int}-\mu\text{CO}_2}$	-4	1	BS-3	-15778.02882304	0.00
C			BS-6	-15778.02814652	0.42
$C_{\text{red2}-\mu\text{CO}_2}$	-5	2	BS-3	-15778.02313132	2.08
C			BS-6	-15778.02644899	0.00
$C_{\text{red1}-\text{tCO}_2}$	-3	2	BS-3	-15777.98061617	0.00
C			BS-6	-15777.96916736	7.18
$C_{\text{int}-\text{tCO}_2}$	-4	1	BS-3	-15778.0267356	1.95
C			BS-6	-15778.01578077	0.00
$C_{\text{red2}-\text{tCO}_2}$	-5	2	BS-3	-15778.0053658	0.00
C			BS-6	-15777.99836502	1.36
$C_{\text{red1}-\text{CO}_2-\text{OH}}$	-4	2	BS-3	-15853.90997976	0.00
C			BS-6	-15853.89785817	7.61
$C_{\text{int}-\text{CO}_2-\text{OH}}$	-5	1	BS-3	-15853.90673860	0.00
C			BS-6	-15853.90480643	1.21
$C_{\text{red2}-\text{CO}_2-\text{OH}}$	-6	2	BS-3	-15853.86445580	0.33
C			BS-6	-15853.86498952	0.00
d) LMH_2O_0 model

Charge	Multiplicity	BS state	Energy	ΔE	
C_{red1}	-3	2	BS-3	-15589.31671105	0.00
			BS-6	-15589.31085238	3.68
C_{int}	-4	1	BS-3	-15589.33900594	0.00
			BS-6	-15589.33877147	0.15
C_{red2}	-5	2	BS-3	-15589.30186535	2.91
			BS-6	-15589.30650957	0.00
C_{red1}-OH	-4	2	BS-3	unstable	
			BS-6	unstable	
C_{int}-OH	-5	1	BS-3	unstable	
			BS-6	unstable	
C_{red2}-OH	-6	2	BS-3	unstable	
			BS-6	unstable	
C_{red1}-μCO_2	-3	2	BS-3	-15777.00042472	0.00
			BS-6	-15777.98944869	6.89
C_{int}-μCO_2	-4	1	BS-3	-15778.04647603	0.00
			BS-6	-15778.04613268	0.22
C_{red2}-μCO_2	-5	2	BS-3	-15778.03384183	2.64
			BS-6	-15778.03986665	0.00
C_{red1}-tCO_2	-3	2	BS-3	unstable	
			BS-6	unstable	
C_{int}-tCO_2	-4	1	BS-3	unstable	
			BS-6	unstable	
C_{red2}-tCO_2	-5	2	BS-3	unstable	
			BS-6	unstable	
C_{red1}-CO$_2$-OH	-4	2	BS-3	15853.90394311	0.00
			BS-6	15853.89130811	7.93
C_{int}-CO$_2$-OH	-5	1	BS-3	15853.89552282	0.00
			BS-6	15853.89553072	0.00
C_{red2}-CO$_2$-OH	-6	2	BS-3	15853.84325325	1.38
			BS-6	15853.84545353	0.00

* During geometry optimization, a proton is transferred from His93 to the OH ligand to form a H$_2$O molecule that dissociates from the C-cluster.

* During geometry optimization, a proton is transferred from Lys563 to the OH ligand to form a H$_2$O molecule.

* During geometry optimization, a proton is transferred from Lys563 to the OH ligand to form a H$_2$O molecule that dissociates from the C-cluster.
Table S7 Selected distances (Å) and angles (°) for small and large models (SM, LM^{H+,K+}, LM^{H+,K+}, LM^{H+,K0}) of the μCO₂-bound C-cluster in the C_{red2}, C_{int} and C_{red1} redox states (in their most stable BS state), optimized at the RI-BP86/def-TZVP-SVP level in COSMO with ε=4, and for the 3B52 and 4UDX x-ray structures.

	X-ray 3B52	X-ray 4UDX	SM C_{red2} C_{int} C_{red1}	LM^{H+,K+} C_{red2} C_{int} C_{red1}	LM^{H+,K+} C_{red2} C_{int} C_{red1}	LM^{H+,K0} C_{red2} C_{int} C_{red1}
Ni-Fe_u	2.76	2.83	2.78 2.73 2.73	2.65 2.67 2.63	2.62 2.66 2.60	2.70 2.73 2.60
Ni-S_{Cys526}	2.10	2.11	2.24 2.24 2.24	2.23 2.22 2.23	2.23 2.23 2.23	2.24 2.24 2.23
Ni-S₄	3.59	3.73	3.40 3.28 3.19	3.59 3.53 3.27	3.62 3.56 3.27	3.61 3.57 3.48
S₂-Ni-S_{Cys526}	168.3	166.2	176.5 175.0 173.0	168.6 169.1 169.0	168.7 168.4 168.8	167.0 166.8 165.6
S₁-Ni-C	171.3	174.9	169.4 167.4 165.0	175.1 173.2 167.2	175.4 173.7 167.3	175.4 174.7 172.5
Fe₇-S₄	2.19	2.33	2.30 2.26 2.23	2.26 2.25 2.22	2.27 2.26 2.23	2.26 2.25 2.21
Fe₇-S_{Cys295}	2.34	2.29	2.42 2.41 2.36	2.34 2.31 2.31	2.35 2.31 2.32	2.36 2.33 2.31
Fe₇-N_{His261}	2.03	2.15	2.24 2.25 2.22	2.16 2.16 2.21	2.16 2.15 2.21	2.17 2.15 2.15
Fe₇-S_{Cys526}	3.33	3.34	2.79 2.58 2.52	3.48 3.38 2.65	3.44 3.40 2.65	3.62 3.59 3.52
Ni-Fe_u-S₄	92.3	92.1	83.4 81.5 79.4	93.7 91.1 84.2	95.3 92.2 85.0	93.1 91.1 92.2
Ni-C	1.96	1.81	1.91 1.91 1.94	1.86 1.88 1.89	1.89 1.91 1.93	1.87 1.88 1.90
Fe₇-O₁	2.05	2.03	2.10 2.12 2.13	2.14 2.11 2.15	2.09 2.07 2.12	2.08 2.07 2.07
C-O₁	1.25	1.32	1.30 1.29 1.29	1.32 1.32 1.31	1.34 1.33 1.31	1.30 1.30 1.29
C-O₂	1.26	1.30	1.25 1.24 1.23	1.26 1.24 1.24	1.22 1.22 1.21	1.26 1.25 1.24
O₁-C-O₂	132.6	117.2	124.8 126.7 128.9	122.2 123.8 126.3	123.5 125.7 129.3	123.5 125.0 127.4
Ni-Fe_u-O₁	69.5	64.6	64.9 65.6 65.9	68.1 68.0 68.4	68.7 68.3 69.1	67.2 66.7 68.7
Ni-C-O₁	119.4	119.8	112.1 1115.1113.1	116.1 115.0 114.8	111.8 111.6 111.9	115.5 114.4 112.4
Ni-C-O₂	108.0	124.5	123.1 121.7 119.8	121.8 121.2 118.9	124.7 122.6 118.9	121.0 120.6 120.2
O₁-N_{His563}	2.64	2.72	- - -	2.82 2.86 2.86	2.74 2.79 2.82	3.18 3.21 3.21
O₁-H_{His563}	- - -	- - -	1.81 1.82	1.67 1.74 1.77	- - -	- - -
O₂-εN_{His93}	2.88	2.70	- - -	2.56 2.64 2.70	3.52 3.37 3.25	2.54 2.60 2.66
O₂-εH_{His93}	- - -	- - -	1.47 1.58 1.66	- - -	1.42 1.52 1.60	- - -
O₁-εN_{His93}	3.93	3.92	- - -	3.78 3.86 3.82	5.29 5.05 4.75	3.76 3.83 3.87
O₁-εH_{His93}	- - -	- - -	2.88 2.98 2.98	- - -	2.84 2.93 3.00	- - -
Figure S1 Superimposition of the optimized geometry of a) C_{red2-μCO2}, b) C_{red2-tCO2} and c) C_{red2-CO2-OH} optimized using the LM^{H+,K+} (red), LM^{H0,K+} (blue) and LM^{H+,K0} (white) models of the active site.
Table S8 RMSD values calculated for the structures of the μCO$_2$-bound metallic cluster, the [NiFe$_4$S$_4$] core and the CO$_2$ ligand extracted by the theoretical geometries, compared to the 3B52 and 4UDX crystal structures.

	SM	LM$^{H+,K^+}$	LM$^{H^0,K^+}$	LM$^{H^+,K^0}$												
	C$_{\text{red2}}$	C$_{\text{int}}$	C$_{\text{red1}}$													
3B52																
[NiFe$_4$S$_4$]-CO$_2$	0.219	0.220	0.230	0.140	0.131	0.167	0.151	0.132	0.161	0.132	0.118	0.108				
[NiFe$_4$S$_4$]	0.239	0.247	0.260	0.145	0.138	0.181	0.153	0.140	0.176	0.145	0.129	0.117				
CO$_2$	0.047	0.037	0.027	0.062	0.054	0.041	0.061	0.050	0.035	0.053	0.045	0.034				
4UDX																
[NiFe$_4$S$_4$]-CO$_2$	0.215	0.223	0.239	0.125	0.117	0.174	0.134	0.119	0.169	0.119	0.113	0.118				
[NiFe$_4$S$_4$]	0.217	0.233	0.253	0.127	0.120	0.175	0.134	0.122	0.169	0.119	0.109	0.113				
CO$_2$	0.061	0.072	0.084	0.048	0.058	0.071	0.061	0.071	0.089	0.052	0.062	0.076				

Figure S2 RMSD values and superimposition of the optimized geometry of a) C_{red2}-μCO$_2$-LM^{H^+,K^+}, b) C_{red2}-μCO$_2$-LM^{H^0,K^+} and c) C_{red2}-μCO$_2$-LM^{H^+,K^0} (white) with the 4UDX X-ray structure (blue). The indicated RMSD values have been calculated on the [NiFe$_4$S$_4$] cluster, the CO$_2$ ligand and the side chains and Cα atoms of the His93 and Lys563 residues, extracted from the theoretical and experimental geometries. For the sake of clarity, only the hydrogens of the N atom of Lys563 and of the εN atom of His93 are shown.
Table S9 RMSD values calculated among the structures extracted by the LMH+,K+, LMH0,K+ and LMH+,K0 theoretical geometries of the [NiFe\textsubscript{4}S\textsubscript{4}] core and bounded ligands, [NiFe\textsubscript{4}S\textsubscript{4}] core, bounded ligands and the side chains and \textit{C}\textalpha{} atoms of the His93 and Lys563 residues, and all (non-hydrogen) atoms of the models.

	LMH+,K+-LMH0,K+	LMH+,K+-LMH+,K0	LMH0,K+-LMH+,K0	LMH+,K+-LMH+,K0
\textit{C}\textsubscript{red2}-\textit{μCO}\textsubscript{2}				
[NiFe\textsubscript{4}S\textsubscript{4}]-CO\textsubscript{2}	0.039	0.056	0.070	
[NiFe\textsubscript{4}S\textsubscript{4}]-CO-His93-Lys563	0.547	0.321	0.504	
all (non-hydrogen) atoms	0.377	0.382	0.506	
\textit{C}\textsubscript{red2}-tCO\textsubscript{2}				
[NiFe\textsubscript{4}S\textsubscript{4}]-CO\textsubscript{2}	0.583	-	-	
[NiFe\textsubscript{4}S\textsubscript{4}]-CO-His93-Lys563	0.780	-	-	
all (non-hydrogen) atoms	0.392	-	-	
\textit{C}\textsubscript{red2}-CO\textsubscript{2}-OH				
[NiFe\textsubscript{4}S\textsubscript{4}]-CO\textsubscript{2}-OH	0.169	0.176	0.136	
[NiFe\textsubscript{4}S\textsubscript{4}]-CO\textsubscript{2}-OH-His93-Lys563	0.444	0.357	0.575	
all (non-hydrogen) atoms	0.325	0.366	0.506	

Table S10 Computed NBO charges and, in parenthesis, Mulliken spin population for the CO\textsubscript{2} molecule bound to the C-cluster in \textit{μCO}, \textit{tCO} and CO\textsubscript{2}-OH calculated using the SM, LMH+,K+, LMH0,K+ and LMH+,K0 models of the active site.

a) SM model

	C	O1	O2	CO\textsubscript{2}
\textit{C}\textsubscript{red1}-\textit{μCO}\textsubscript{2}	0.55(0.00)	-0.73(0.05)	-0.63(0.00)	-0.82(0.05)
\textit{C}\textsubscript{red1}-tCO\textsubscript{2}	0.63(-0.02)	-0.63(0.00)	-0.62(0.00)	-0.63(-0.02)
\textit{C}\textsubscript{red1}-CO\textsubscript{2}-OH	0.61(-0.02)	-0.68(0.00)	-0.64(0.00)	-0.71(-0.02)
\textit{C}\textsubscript{int}-\textit{μCO}\textsubscript{2}	0.53(0.00)	-0.76(0.05)	-0.68(0.00)	-0.91(0.05)
\textit{C}\textsubscript{int}-tCO\textsubscript{2}	0.59(-0.01)	-0.68(0.00)	-0.68(0.00)	-0.78(-0.01)
\textit{C}\textsubscript{int}-CO\textsubscript{2}-OH	0.56(0.02)	-0.73(0.00)	-0.70(0.01)	-0.86(0.04)
\textit{C}\textsubscript{red2}-\textit{μCO}\textsubscript{2}	0.52(0.00)	-0.79(-0.04)	-0.72(0.00)	-0.98(-0.04)
\textit{C}\textsubscript{red2}-tCO\textsubscript{2}	0.56(0.00)	-0.72(0.00)	-0.73(0.00)	-0.89(0.00)
\textit{C}\textsubscript{red2}-CO\textsubscript{2}-OH	0.54(0.03)	-0.76(0.00)	-0.75(0.01)	-0.97(0.04)
b) $\text{LM}^{\text{H}^+,\text{K}^+}$ model

	C	O1	O2	CO₂
$C_{\text{red1}-\mu CO₂}$	0.55(0.00)	-0.82(0.04)	-0.64(0.00)	-0.91(0.04)
$C_{\text{red1}-tCO₂}$	-	-	-	-
$C_{\text{red1}-CO₂-OH}$	0.64(-0.03)	-0.73(0.00)	-0.58(0.00)	-0.67(-0.03)
$C_{\text{int}-\mu CO₂}$	0.54(0.00)	-0.84(-0.02)	-0.68(0.00)	-0.98(-0.02)
$C_{\text{int}-tCO₂}$	0.57(-0.01)	-0.82(0.00)	-0.65(-0.01)	-0.92(-0.02)
$C_{\text{int}-CO₂-OH}$	0.60(0.02)	-0.77(0.00)	-0.63(0.02)	-0.80(0.04)
$C_{\text{red2}-\mu CO₂}$	0.53(0.00)	-0.85(-0.02)	-0.71(0.00)	-1.03(-0.02)
$C_{\text{red2}-tCO₂}$	0.53(0.00)	-0.84(0.00)	-0.69(0.00)	-1.00(0.00)
$C_{\text{red2}-CO₂-OH}$	0.55(0.01)	-0.80(0.00)	-0.68(0.00)	-0.94(0.01)

c) $\text{LM}^{\text{H},\text{K}^+}$ model

	C	O1	O2	CO₂
$C_{\text{red1}-\mu CO₂}$	0.56(0.00)	-0.82(0.04)	-0.53(0.00)	-0.79(0.04)
$C_{\text{red1}-tCO₂}$	0.73(-0.02)	-0.56(0.00)	-0.54(0.00)	-0.37(-0.02)
$C_{\text{red1}-CO₂-OH}$	0.67(-0.02)	-0.59(0.00)	-0.58(0.00)	-0.49(-0.02)
$C_{\text{int}-\mu CO₂}$	0.54(0.00)	-0.85(0.03)	-0.57(0.00)	-0.88(0.03)
$C_{\text{int}-tCO₂}$	0.66(0.01)	-0.62(0.01)	-0.60(0.00)	-0.56(0.02)
$C_{\text{int}-CO₂-OH}$	0.64(-0.03)	-0.62(-0.02)	-0.63(-0.01)	-0.61(-0.06)
$C_{\text{red2}-\mu CO₂}$	0.53(0.00)	-0.87(-0.03)	-0.61(0.00)	-0.95(-0.03)
$C_{\text{red2}-tCO₂}$	0.61(0.00)	-0.68(0.00)	-0.66(0.00)	-0.73(0.00)
$C_{\text{red2}-CO₂-OH}$	0.61(0.02)	-0.67(0.00)	-0.66(0.01)	-0.71(0.04)

d) $\text{LM}^{\text{H}^+,\text{K}₀}$ model

	C	O1	O2	CO₂
$C_{\text{red1}-\mu CO₂}$	0.56(0.00)	-0.75(0.03)	-0.65(0.00)	-0.84(0.03)
$C_{\text{red1}-tCO₂}$	-	-	-	-
$C_{\text{red1}-CO₂-OH}$	0.63(-0.01)	-0.77(0.00)	-0.60(0.00)	-0.69(-0.01)
$C_{\text{int}-\mu CO₂}$	0.56(0.00)	-0.78(0.03)	-0.69(0.00)	-0.91(0.03)
$C_{\text{int}-tCO₂}$	-	-	-	-
$C_{\text{int}-CO₂-OH}$	0.60(0.02)	-0.77(0.00)	-0.65(0.00)	-0.81(0.02)
$C_{\text{red2}-\mu CO₂}$	0.54(0.00)	-0.79(-0.02)	-0.71(0.00)	-0.96(-0.02)
$C_{\text{red2}-tCO₂}$	-	-	-	-
$C_{\text{red2}-CO₂-OH}$	0.58(0.02)	-0.78(0.00)	-0.67(0.00)	-0.87(0.02)
Table S11 NBO atomic charges and Mulliken spin densities (in parenthesis) of selected atoms of the C-cluster and of the layers L1 and L2 (corresponding respectively to the blue and red layers of the BS coupling schemes shown in Scheme S1) for the unbound form of the C-cluster and μCO2 and tCO2 adducts in the C_red1, C_int and C_red2 redox states (in the most stable spin coupling scheme) optimized using the SM, LM^H+K+, LM^B0,K+ and LM^H+K0 DFT models.

a) SM model

Redox state	BS state	Ni	Fe₄	Fe₁	Fe₂	Fe₃	L1	L2	CO₂
C_red1	3	0.54(0.27)	0.96(3.40)	0.73(3.12)	0.71(-3.00)	0.71(-3.02)	-0.77(7.31)	-1.23(-6.32)	-
C_red1-μCO₂	3	0.51(0.15)	1.16(3.60)	0.72(3.10)	0.75(-3.05)	0.76(-3.12)	-0.24(7.51)	-0.91(-6.56)	-0.82(0.05)
C_red1-tCO₂	3	0.53(0.35)	1.04(3.50)	0.71(3.08)	0.76(-3.10)	0.77(-3.11)	-0.48(7.62)	-0.89(-6.63)	-0.63(-0.02)
C_int	3	0.53(0.01)	0.91(3.27)	0.74(3.11)	0.76(-3.14)	0.76(-3.16)	-1.39(6.67)	-1.61(-6.66)	-
C_int-μCO₂	3	0.51(0.09)	1.17(3.58)	0.68(2.93)	0.85(-3.28)	0.80(-3.23)	-0.83(6.93)	-1.26(-6.98)	-0.91(0.05)
C_int-tCO₂	3	0.52(0.14)	1.00(3.36)	0.71(3.06)	0.82(-3.23)	0.81(-3.21)	-0.96(6.97)	-1.27(-6.94)	-0.78(-0.01)
C_red2	6	0.52(0.09)	0.87(-3.21)	0.70(-2.84)	0.81(3.24)	0.80(3.25)	-2.08(-5.90)	-1.92(6.87)	-
C_red2-μCO₂	6	0.48(0.09)	1.11(-3.45)	0.66(-2.79)	0.90(3.38)	0.85(3.32)	-1.45(-6.22)	-1.57(7.26)	-0.98(-0.04)
C_red2-tCO₂	6	0.49(0.02)	0.97(-3.32)	0.66(-2.77)	0.88(3.33)	0.85(3.29)	-1.55(-6.15)	-1.55(7.12)	-0.89(0.00)

b) LM^H+K+ model

Redox state	BS state	Ni	Fe₄	Fe₁	Fe₂	Fe₃	L1	L2	CO₂
C_red1	3	0.52(0.22)	0.96(3.37)	0.71(3.08)	0.67(-2.91)	0.70(-3.00)	-0.82(7.14)	-1.04(-6.16)	-
C_red1-μCO₂	3	0.54(0.17)	1.14(3.55)	0.69(3.04)	0.73(-3.02)	0.74(-3.08)	-0.17(7.45)	-0.73(-6.51)	-0.91(0.04)
C_red1-tCO₂	3	0.53(0.17)	1.09(3.45)	0.69(3.04)	0.74(-3.02)	0.75(-3.08)	-0.24(7.51)	-0.91(-6.56)	-0.82(0.05)
C_int	6	0.50(0.00)	0.88(-3.17)	0.75(-3.15)	0.73(3.07)	0.77(3.19)	-1.40(-6.62)	-1.37(6.63)	-
C_int-μCO₂	6	0.51(-0.02)	1.06(-3.37)	0.70(-3.06)	0.81(3.22)	0.77(3.17)	-0.74(-6.90)	-1.05(-6.92)	-0.98(-0.02)
C_int-tCO₂	6	0.50(0.06)	1.02(3.40)	0.66(2.92)	0.80(-3.19)	0.78(-3.17)	-0.79(6.83)	-1.06(-6.80)	-0.92(-0.02)
C_red2	6	0.47(0.05)	0.86(-3.17)	0.68(-2.85)	0.81(3.23)	0.79(3.25)	-1.95(-5.98)	-1.64(6.88)	-
C_red2-μCO₂	6	0.51(-0.05)	1.04(-3.35)	0.63(-2.68)	0.86(3.32)	0.80(3.24)	-1.26(-5.99)	-1.36(7.08)	-1.03(-0.02)
C_red2-tCO₂	3	0.49(-0.15)	1.00(3.36)	0.74(3.14)	0.79(-3.15)	0.67(-2.83)	-1.17(7.17)	-1.50(-6.21)	-1.00(0.00)
c) \(\text{LM}^{10, K^+} \) model

Redox state	BS state	Ni	Fe_α	Fe_1	Fe_2	Fe_3	L1	L2	CO_2
C_{red1}	3	0.51(0.31)	0.96(3.40)	0.70(3.05)	0.69(-2.97)	0.72(-3.05)	-0.83(7.27)	-1.12(-6.30)	-
C_{red1}μCO_2	3	0.54(0.22)	1.15(3.56)	0.69(3.05)	0.76(-3.10)	0.75(-3.05)	-0.28(7.50)	-0.84(-6.56)	-0.79(0.04)
C_{red1}tCO_2	3	0.51(0.29)	1.01(3.45)	0.66(2.94)	0.71(-2.95)	0.71(-2.98)	-0.61(7.20)	-1.04(-3.23)	-0.37(-0.02)
C_{int}	3	0.49(0.08)	0.86(3.17)	0.72(3.10)	0.75(-3.10)	0.76(-3.18)	-1.38(6.63)	-1.45(-6.66)	-
C_{int}μCO_2	3	0.50(0.00)	1.05(3.35)	0.72(3.10)	0.78(-3.16)	0.82(-3.22)	-0.82(6.88)	-1.16(-6.91)	-0.88(0.03)
C_{int}tCO_2	6	0.53(-0.16)	0.95(-3.29)	0.67(-2.96)	0.78(3.15)	0.77(3.14)	-1.07(-6.71)	-1.34(-6.71)	-0.56(0.02)
C_{red2}	6	0.46(-0.02)	0.85(-3.17)	0.66(-2.79)	0.83(3.26)	0.77(3.22)	-1.92(-6.00)	-1.73(6.89)	-
C_{red2}μCO_2	6	0.50(0.05)	1.05(-3.36)	0.63(-2.69)	0.81(3.26)	0.87(3.33)	-1.36(-6.05)	-1.47(7.09)	-0.95(-0.03)
C_{red2}tCO_2	3	0.54(0.29)	0.94(3.27)	0.75(3.14)	0.79(-3.13)	0.68(-2.86)	-1.40(7.11)	-1.77(-6.20)	-0.73(0.00)

d) \(\text{LM}^{11+, K^0} \) model

Redox state	BS state	Ni	Fe_α	Fe_1	Fe_2	Fe_3	L1	L2	CO_2
C_{red1}	3	0.53(0.24)	0.95(3.34)	0.71(3.08)	0.67(-2.91)	0.68(-2.96)	-0.83(7.10)	-1.16(-6.13)	-
C_{red1}μCO_2	3	0.54(0.24)	1.14(3.55)	0.69(3.05)	0.76(-3.06)	0.70(-3.01)	-0.28(7.46)	-0.80(-6.49)	-0.84(0.03)
C_{red1}tCO_2	-	-	-	-	-	-	-	-	-
C_{int}	3	0.52(0.00)	0.86(3.15)	0.73(3.14)	0.73(-3.05)	0.77(-3.16)	-1.40(6.55)	-1.54(-6.58)	-
C_{int}μCO_2	3	0.51(0.00)	1.08(3.41)	0.71(3.08)	0.83(-3.24)	0.77(-3.17)	-0.79(6.91)	-1.14(-6.94)	-0.91(0.03)
C_{int}tCO_2	-	-	-	-	-	-	-	-	-
C_{red2}	6	0.47(-0.03)	0.87(-3.17)	0.69(-2.93)	0.81(3.23)	0.79(3.25)	-1.87(-6.17)	-1.77(6.90)	-
C_{red2}μCO_2	6	0.51(0.03)	1.06(-3.36)	0.63(-2.70)	0.88(3.34)	0.80(3.25)	-1.34(-6.11)	-1.46(7.12)	-0.96(-0.02)
C_{red2}tCO_2	-	-	-	-	-	-	-	-	-
Table S12 Energies (in eV) of LUMO and HOMO orbitals of selected species of the C-cluster optimized using the LM$^{H+,K+}$ and the LM$^{H0,K+}$ models of the active site.

	LM$^{H+,K+}$		LM$^{H0,K+}$	
	LUMO	HOMO	LUMO	HOMO
$C_{\text{red}1}$	-2.086	-2.548	-1.421	-1.915
$C_{\text{red}1}$-μCO_2	-2.476	-3.049	-1.782	-2.579
$C_{\text{red}1}$-$t CO_2$	-	-	-1.509	-2.004
$C_{\text{red}1}$-OH	-0.998	-1.518	-0.162	-0.678
$C_{\text{red}1}$-CO_2-OH	-1.258	-1.933	-0.451	-1.070
$C_{\text{red}1}$-CO_2	-0.553	-0.670	0.070	-0.082
C_{int}-μCO_2	-1.238	-1.247	-0.565	-0.594
$C_{\text{red}2}$-$t CO_2$	-1.225	-1.251	-0.231	-0.233
$C_{\text{red}2}$	0.669	0.669	1.283	1.281
$C_{\text{red}2}$-μCO_2	0.229	0.122	0.921	0.781
$C_{\text{red}2}$-$t CO_2$	0.182	0.115	1.199	1.019

Table S13 Energy differences (in eV) between reduced and oxidized species ($E_{\text{red}} - E_{\text{ox}}$) calculated for unbound, μCO_2 and $t CO_2$ forms of the C-cluster optimized using the LM$^{H+,K+}$, LM$^{H0,K+}$ and LM$^{H+,K0}$ models of the active site. Such values are expected to follow the same trend as the experimental reduction potentials.

	SM	LM$^{H+,K+}$	LM$^{H0,K+}$	LM$^{H+,K0}$
$C_{\text{red}1}$-C_{int}	-0.64	-1.43	-0.54	-0.61
$C_{\text{red}1}$-μCO_2-C_{int}-μCO_2	-0.86	-1.92	-1.24	-1.24
$C_{\text{red}1}$-$t CO_2$-C_{int}-$t CO_2$	-0.98	-1.92	-0.96	-2.24
C_{int}-$C_{\text{red}2}$	+0.91	+0.09	+0.71	+0.88
C_{int}-μCO_2-$C_{\text{red}2}$-μCO_2	+0.49	-0.60	+0.06	+0.33
C_{int}-$t CO_2$-$C_{\text{red}2}$-$t CO_2$	+0.46	-0.59	+0.41	-2.24
Table S14 Selected distances (Å) and angles (°) for small and large models (SM, LM^{H+,K+}, LM^{H0,K+}, LM^{H+,K0}) of the tCO2-bound C-cluster in the C_{red2}, C_{int} and C_{red1} redox states (in their most stable BS state), optimized at the RI-BP86/def-TZVP-SVP level in COSMO with ε=4.

	SM	LM^{H+,K+}	LM^{H0,K+}	LM^{H+,K0}					
	C_{red2}	C_{int}	C_{red1}	C_{red2}	C_{int}	C_{red1}	C_{red2}	C_{int}	C_{red1}
Ni-Fe_u	2.97	3.01	2.69	2.65	2.66	-	2.90	2.86	2.69
Ni-S{Cys526}	2.24	2.24	2.22	2.23	2.22	-	2.24	2.22	2.22
Ni-S{4}	3.57	3.49	3.33	3.69	3.55	-	3.72	3.60	3.26
S2-Ni-{S{Cys526}}	171.9	165.4	165.7	166.6	167.2	-	148.7	149.6	156.6
S1-Ni-C	151.7	147.6	142.3	158.1	159.4	-	117.0	117.6	108.9
Fe_{u}-{S{4}}	2.26	2.36	2.33	2.24	2.23	-	2.25	2.24	2.21
Fe_{u}-{S{Cys295}}	2.39	2.25	2.20	2.34	2.31	-	2.39	2.36	2.32
Fe_{u}-N{His261}	2.14	2.13	2.11	2.19	2.19	-	2.18	2.18	2.18
Fe_{u}-{S{Cys526}}	2.34	2.33	2.37	2.65	2.55	-	2.40	2.39	2.40
Ni-Fe_{u}-S{4}	85.0	81.8	85.1	97.6	92.5	-	91.7	89.1	82.9
Ni-C	1.95	1.99	2.04	1.89	1.90	-	1.98	2.02	2.18
Fe_{u}-O{1}	4.12	4.12	3.90	3.19	3.05	-	4.62	4.56	4.46
C-O{1}	1.25	1.24	1.23	1.32	1.31	-	1.24	1.23	1.21
C-O{2}	1.26	1.25	1.23	1.24	1.24	-	1.24	1.23	1.21
O1-C-O{2}	130.3	134.0	138.9	122.4	125.6	-	134.5	140.0	147.7
Ni-C-O{1}	120.2	119.0	118.5	120.6	120.6	-	115.5	114.0	107.9
Ni-C-O{2}	109.4	107.0	102.6	117.0	113.8	-	110.0	106.0	104.4
O1-N{lys563}	-	-	-	2.78	2.80	-	4.07	4.08	4.05
O1-H{lys563}	-	-	-	1.72	1.74	-	3.20	3.29	3.24
O2-r{N{His93}}	-	-	-	3.03	3.07	-	5.54	5.59	5.59
O2-r{H{His93}}	-	-	-	2.37	2.40	-	-	-	-
O1-e{N{His93}}	-	-	-	2.62	2.69	-	3.27	3.31	3.28
O1-e{H{His93}}	-	-	-	1.52	1.62	-	-	-	-
Table S15 Selected distances (Å) and angles (°) for small and large models (SM, LM^{H+,K+}, LM^{H0,K+}, LM^{H+,K0}) of the CO2-OH-bound C-cluster in the C_red2, C_int and C_red1 redox states (in their most stable BS state), optimized at the RI-BP86/def-TZVP-SVP level in COSMO with ε=4, and for the 2YIV x-ray structure.

	X-ray	SM	LM^{H+,K+}	LM^{H0,K+}	LM^{H+,K0}
	2YIV C_red2	C_int C_red1	C_red2 C_int	C_red1 C_red2	C_int C_red1
Ni-Fe_u	3.10	3.34 3.28 2.98	3.04 3.03 2.80	2.79 3.04 2.72	2.90 2.92 2.76
Ni-S_{Cys526}	2.09	2.25 2.25 2.25	2.26 2.23 2.23	2.25 2.26 2.25	2.21 2.22 2.22
Ni-S_{4}	3.99	3.52 3.41 2.94	3.70 3.61 3.25	3.60 3.70 3.05	3.62 3.52 3.15
S2-Ni-S_{Cys526}	161.0	153.3 153.9 165.2	157.4 149.7 156.6	153.6 151.6 153.2	147.8 144.6 152.1
S1-Ni-C	147.8	141.3 137.6 118.6	141.0 140.3 128.1	133.5 141.0 112.8	138.7 134.9 122.5
Fe_u-S_{4}	2.32	2.39 2.33 2.28	2.32 2.30 2.25	2.32 2.32 2.26	2.34 2.32 2.26
Fe_u-S_{Cys295}	2.30	2.51 2.46 2.45	2.38 2.36 2.37	2.39 2.38 2.38	2.45 2.48 2.45
Fe_u-N_{His261}	2.05	2.34 2.34 2.28	2.25 2.28 2.27	2.20 2.25 2.26	2.25 2.26 2.23
Fe_u-S_{Cys526}	3.44	2.54 2.52 2.49	2.71 2.65 2.58	2.78 2.71 2.54	2.77 2.62 2.55
Ni-Fe_{4},S_{4}	93.7	73.8 72.5 66.6	86.3 84.2 79.4	89.1 86.3 75.0	86.8 83.6 77.1
Ni-C	1.95	1.93 1.94 1.99	1.92 1.92 1.95	1.94 1.92 2.05	1.91 1.92 1.96
Fe_{4}-O_{1}	4.06	4.04 4.00 3.96	4.00 3.99 3.93	3.98 4.00 4.03	3.91 3.93 3.89
C-O_{1}	1.34	1.27 1.26 1.25	1.30 1.28 1.26	1.25 1.30 1.23	1.28 1.27 1.26
C-O_{2}	1.24	1.26 1.25 1.24	1.24 1.24 1.23	1.24 1.24 1.22	1.24 1.24 1.23
O_{1}-C-O_{2}	121.1	127.7 130.6 134.5	125.8 130.4 135.0	133.1 125.8 142.0	127.6 129.5 133.4
Ni-Fe_{4},O_{1}	43.0	43.6 44.0 43.8	43.8 44.3 44.9	43.8 43.8 41.9	45.5 45.4 45.7
Ni-C-O_{1}	113.0	122.3 121.2 113.9	116.3 120.5 118.0	118.0 117.9 108.9	120.6 121.0 118.2
Ni-C-O_{2}	125.9	110.0 108.2 111.6	117.9 109.1 107.0	109.0 116.3 109.1	111.9 109.4 108.4
Fe_{4}-O_{OH}	1.96	1.94 1.92 1.90	2.03 2.00 1.97	2.17 2.03 1.99	1.93 1.93 1.92
O_{1}-O_{OH}	2.51	2.91 2.88 2.87	2.66 2.69 2.72	2.62 2.66 2.93	2.71 2.73 2.74
O_{1}-O_{HOH}	-	1.93 1.90 1.89	1.66 1.70 1.73	1.60 1.66 1.95	1.73 1.75 1.76
Fe_{4},O_{OH}-H_{OHH}	-	108.8 110.3 112.2	110.9 111.1 110.9	111.4 110.9 114.3	112.1 1112.8 113.3
S_{4},Fe_{4},O_{OH}	148.4	140.0 140.7 134.8	143.7 140.9 134.2	147.4 143.7 136.3	157.8 150.2 141.9
O_{1}-N_{Lys563}	3.94	- - -	3.97 4.08 4.22	4.23 3.97 4.45	4.24 4.21 4.22
O_{1}-H_{Lys563}	-	- - -	3.15 3.26 3.39	3.11 3.15 3.63	- - -
O_{2},eN_{His93}	4.39	- - -	4.14 4.42 4.63	5.10 4.14 5.35	4.25 4.36 4.59
O_{2},eH_{His93}	-	- - -	3.18 3.48 3.70	- - -	3.32 3.44 3.68
O_{1},eN_{His93}	2.85	- - -	2.59 2.68 2.77	3.54 2.59 3.26	2.64 2.68 2.80
O_{1},eH_{His93}	-	- - -	1.49 1.62 1.75	- - -	1.56 1.62 1.78
O_{OH}^{+}N_{Lys563}	-	- - -	2.55 2.60 2.63	2.63 2.55 2.61	3.38 3.28 3.14
O_{OH}^{+}H_{Lys563}	-	- - -	1.40 1.47 1.53	1.08 1.40 1.50	- - -
Scheme S2 Schematic representation of the a) $C_{\text{red2}}/C_{\text{int}}-\text{CO}_2-\text{OH} - \text{LM}^{\text{Hi},K^+}$, b) $C_{\text{red2}}-\text{CO}_2-\text{OH} - \text{LM}^{\text{Hi},K^+}$, c) $C_{\text{int}}-\text{CO}_2-\text{OH} - \text{LM}^{\text{Hi},K^+}$ and d) $C_{\text{red2}}/C_{\text{int}}-\text{CO}_2-\text{OH} - \text{LM}^{\text{Hi},K^0}$ formation process from the naked C-cluster, CO$_2$ and H$_2$O. The proton that is transferred from His93 and Lys563 to the OH-bound C-cluster to form a H$_2$O-adduct, is depicted in red and blue, respectively.

Table S16 NBO atomic charges and Mulliken spin densities (in parenthesis) of selected atoms of the C-cluster and of the layers L1 and L2 (corresponding respectively to the blue and red layers of the BS coupling schemes shown in Scheme S1) for the OH-bound form of the C-cluster and CO$_2$-OH adducts in the C_{red2}, C_{int} and C_{red1} redox states (in the most stable spin coupling scheme) optimized using the SM, LM$^{\text{Hi},K^+}$, LM$^{\text{Hi},K^+}$ and LM$^{\text{Hi},K^0}$ DFT models.

a) SM model

Redox state	BS state	Ni	Fe1	Fe2	Fe3	L1	L2	CO$_2$	OH
C_{red2}-OH	3	0.58(0.31)	1.16(3.59)	0.71(3.06)	0.75(-3.11)	-0.94(7.35)	-1.41(-6.53)	-0.65(-0.17)	
C_{red2}-CO$_2$-OH	3	0.57(0.15)	1.24(3.65)	0.73(3.11)	0.73(-3.01)	-0.45(7.42)	-1.20(-6.63)	-0.71(-0.01)	
C_{int}-OH	3	0.56(0.03)	1.09(3.45)	0.72(3.05)	0.80(-3.21)	-1.55(6.67)	-1.73(-6.77)	-0.73(0.10)	
C_{int}-CO$_2$-OH	6	0.56(-0.03)	1.25(-3.64)	0.70(-2.98)	0.82(3.25)	-0.98(-6.94)	-1.48(7.09)	-0.86(0.04)	
C_{red1}-OH	6	0.54(0.36)	1.06(-3.37)	0.71(-2.91)	0.81(3.26)	-2.19(-5.77)	-2.08(6.86)	-0.74(-0.10)	
C_{red2}-CO$_2$-OH	6	0.55(0.10)	1.19(-3.51)	0.67(-2.79)	0.90(3.38)	-1.53(-6.27)	-1.77(7.36)	-0.97(0.04)	

S25
b) $\text{LM}^{\text{H}+,\text{K}+}$ model

Redox state	BS state	Ni	Fe0	Fe1	Fe2	Fe3	L1	L2	CO2	OH
C_rred=OH	3	0.53(0.12)	1.12(3.52)	0.73(3.13)	0.70(-2.99)	0.73(-3.07)	-0.83(7.26)	-1.21(-6.34)	-	-0.72(0.05)
C_rred=CO2-OH	3	0.57(0.27)	1.22(3.62)	0.68(3.02)	0.74(-3.05)	0.77(-3.12)	-0.40(7.48)	-0.99(-6.58)	-0.67(-0.03)	-0.64(0.11)
C_rred=OH	3	0.49(0.04)	0.87(3.17)	0.75(3.13)	0.74(-3.07)	0.78(-3.18)	-1.40(-6.63)	-1.48(-6.63)	-	-0.55(-0.02)
C_rred=CO2-OH	6	0.57(+0.12)	1.18(-3.53)	0.65(-2.92)	0.82(3.23)	0.81(3.22)	-0.87(-6.93)	-1.27(-6.98)	-0.80(0.04)	-0.65(-0.08)
C_rred=OH	6	0.43(-0.03)	0.87(-3.19)	0.67(-2.82)	0.83(3.26)	0.80(3.25)	-1.94(-6.05)	-1.75(-6.92)	-	-0.56(0.02)
C_rred=CO2-OH	3	0.56(0.19)	1.15(3.47)	0.74(3.15)	0.82(-3.20)	0.72(-2.94)	-1.16(-7.30)	-1.68(-6.45)	-0.94(0.01)	-0.64(0.06)

c) $\text{LM}^{\text{H}0,\text{K}+}$ model

Redox state	BS state	Ni	Fe0	Fe1	Fe2	Fe3	L1	L2	CO2	OH
C_rred=OH	3	0.56(0.13)	1.13(3.51)	0.73(3.13)	0.70(-2.98)	0.72(-3.05)	-0.80(7.24)	-1.29(-6.31)	-	-0.56(0.03)
C_rred=CO2-OH	3	0.57(0.28)	1.20(3.60)	0.68(3.00)	0.74(-3.04)	0.75(-3.09)	-0.51(7.40)	-1.16(-6.52)	-0.49(-0.02)	-0.62(0.10)
C_rred=OH	6	0.55(0.05)	1.06(-3.38)	0.72(-3.06)	0.76(3.12)	0.76(3.14)	-1.40(-6.57)	-1.62(6.62)	-	-0.55(-0.02)
C_rred=CO2-OH	3	0.55(0.15)	1.17(3.52)	0.66(2.92)	0.81(-3.20)	0.81(-3.21)	-1.00(6.90)	-1.45(-6.91)	-0.61(-0.06)	-0.63(0.07)
C_rred=OH	6	0.54(0.12)	1.02(-3.31)	0.71(-2.98)	0.80(3.22)	0.78(3.21)	-1.77(-6.17)	-1.84(6.84)	-	-0.54(0.00)
C_rred=CO2-OH	6	0.52(-0.02)	1.12(-3.46)	0.63(-2.74)	0.85(3.29)	0.82(3.27)	-1.39(-6.31)	-1.61(7.05)	-0.71(0.04)	-0.57(-0.03)

d) $\text{LM}^{\text{H}+,\text{K}0}$ model

Redox state	BS state	Ni	Fe0	Fe1	Fe2	Fe3	L1	L2	CO2	OH
C_rred=OH	3	0.56(0.13)	1.13(3.51)	0.73(3.13)	0.70(-2.98)	0.72(-3.05)	-0.80(7.24)	-1.29(-6.31)	-	-0.56(0.03)
C_rred=CO2-OH	3	0.58(0.29)	1.23(3.61)	0.72(3.11)	0.76(-3.12)	0.81(-3.21)	-0.55(7.59)	-1.04(-6.80)	-0.69(-0.01)	-0.61(0.17)
C_rred=OH	6	0.55(0.05)	1.06(-3.38)	0.72(-3.06)	0.76(3.12)	0.76(3.14)	-1.40(-6.57)	-1.62(6.62)	-	-0.55(-0.02)
C_rred=CO2-OH	6	0.58(-0.16)	1.23(-3.57)	0.68(-2.96)	0.82(3.26)	0.86(3.32)	-1.01(-7.00)	-0.70(7.16)	-0.81(0.02)	-0.63(-0.14)
C_rred=OH	6	0.54(0.12)	1.02(-3.31)	0.71(-2.98)	0.80(3.22)	0.78(3.21)	-1.77(-6.17)	-1.84(6.84)	-	-0.54(0.00)
C_rred=CO2-OH	6	0.56(-0.05)	1.22(-3.54)	0.65(-2.78)	0.84(3.30)	0.88(3.37)	-1.32(-6.51)	-0.85(7.16)	-0.87(0.02)	-0.63(-0.12)
Element	Mass	Standard Deviation	Percent of Total							
---------	----------	--------------------	------------------							
Ni	54.7224059	7.276434	47.9303434							
Fe	54.6607500	10.2740919	49.6756594							
Fe	53.4327793		49.6756594							
H	53.3715548	15.1901962	45.9651564							
S	53.3300379	12.276434	47.9303434							
N	49.7098285	17.9873034	47.9303434							
H	54.6486700	17.9873034	47.9303434							
C	56.0621870	17.9873034	47.9303434							
H	55.2345670	17.9873034	47.9303434							
O	55.8927850	17.9873034	47.9303434							
C	55.2536890	17.9873034	47.9303434							
H	54.7890120	17.9873034	47.9303434							
S	55.2267890	17.9873034	47.9303434							
N	50.0493750	17.9873034	47.9303434							
H	53.7245670	17.9873034	47.9303434							
C	53.8627850	17.9873034	47.9303434							
C	53.2267890	17.9873034	47.9303434							
O	52.8972850	17.9873034	47.9303434							
C	52.4637890	17.9873034	47.9303434							
H	51.9245670	17.9873034	47.9303434							
S	51.3857890	17.9873034	47.9303434							
C	51.0923456	17.9873034	47.9303434							
H	50.5923456	17.9873034	47.9303434							
C	50.0923456	17.9873034	47.9303434							
O	49.5923456	17.9873034	47.9303434							

Table continued...
