USE OF TOMATO POMACE, MANGO SEEDS KERNEL AND POMEGRANATE PEELS POWDERS FOR THE PRODUCTION OF FUNCTIONAL BISCUITS

Basma R. Salem 1*, K.M. El-Sahy 2, A.M. Sulieman 2 and M.R. Gouda 1

1. Food Technol. Res. Inst., ARC, Egypt
2. Food Sci. Dept., Fac. Agric., Zagazig Univ., Egypt

Received: 08/07/2020 ; Accepted: 21/07/2020

ABSTRACT: This study was carried out to evaluate the chemical and phenolic contents of some by-products tomato pomace powders (TPP), mango seeds kernel powder (MSKP), and pomegranate peels powder (PPP), Also the effect of substitution of wheat flour with 2.5, 5.0, 7.5 and 10% of (TPP), (MSKP), and (PPP) on chemical, phenolic contents and sensory characteristics of biscuits was studied. Results showed that, wheat flour showed higher moisture and total carbohydrate contents. Tomato pomace powder showed high crude protein, and crude fiber contents. Mango seeds kernel powder had the highest lipids content and pomegranate peels powder had the highest ash and crude fiber contents. For total phenolic and flavonoid content, TPP contain the highest total phenolic and flavonoid content followed by PPP and finally MSKP. Also, the partial replacement of wheat flour with TPP, MSKP and PPP increased chemical composition percentage (moisture, crude protein, lipids, ash, and crude fiber), minerals content (i.e., K, Ca, Mg, Na, Mn, Fe, and Zn) and dietary fiber content (i.e., total, soluble and insoluble dietary fibers) of biscuit samples. However, total carbohydrates were decreased in parallel with increasing the level of substitution compared with control biscuit samples. Biscuit treatments containing TPP, MSKP and PPP had recorded the same minerals dietary fiber content. The partial replacement of wheat flour with TPP, MSKP and PPP increased total phenolic and flavonoid contents of biscuit samples compared with control sample in parallel with increasing the level of substitution. Biscuit treatments containing TPP had the highest total phenolic and flavonoid contents followed by PPP and finally MSKP treatments. The sensory evaluation characters, taste, colour, appearance, crispness, and overall acceptability, have no significant difference between the control sample and biscuit samples which substituted with 2.5, 5, and 7.5% of MSKP and TPP.

Key words: Tomato pomace, mango seeds kernel, pomegranate peels, Biscuits, total phenolic contents, sensory evaluation.

INTRODUCTION

Fruits and vegetables are essential for human nutrition, delivering a substantial proportion of vitamins, minerals, and fibers in our daily diet. Unfortunately, half the fruits and vegetables produced worldwide end up as wastes, generating environmental issues caused mainly by microbial degradation. Most wastes are generated by industrial processing, the so-called by-products. These by-products still contain many bioactive compounds post-processing, such as macronutrients (proteins and carbohydrates) and phytochemicals (polyphenols and carotenoids) (Ain et al., 2020).

As a result of the food insecurity associated with malnutrition and the possibility of infectious diseases, the consumer has taken great interest in the health and nutritional components of diets and has identified good strategies to tackle malnutrition and alleviate the various health disorders associated with it (Akhtar et al., 2013a, b; Sagare et al., 2018).
Tomato wastes have no commercial value; they are a rich source of nutrients and highly biologically active compounds. The skins of tomatoes have been found to be rich source of lycopene and polyphenolic compounds than the pulp (Toor and Savage, 2005). Tomato seeds have been shown to contain 20% oil of high nutritional quality, carotenoids, polyphenols, phytosterols, proteins, minerals and fibers (Nour et al., 2018).

After the processing of mango fruits, a large amount of seeds are disposed of as waste. Fruit seeds are the most important part because they act as a storage location for nutrients. Mango seed, kernel is obtained by breaking the hard seed coat of mango. The kernel of mango seeds accounts for approximately 20 per cent of the total fruit weight (Bisht et al., 2020). Starch, fats and protein are the main ingredients of mango seed kernels as they contain a high amount of iron, potassium, calcium and magnesium and are a good source of natural antioxidants (Kittiphoom, 2012; Kaur and Brar, 2017).

Pomegranate peel, a by-product of juice processing industries was reported to contain high phenolic compounds in addition to its properties as good source of crude fiber and inorganic residues that embrace wide health primitive features like prevention from the development of cardiovascular disorders, anti-inflammatory, hypoglycemic, apoptotic, anti-parasitic and as prebiotic (Abdel-Rahim et al., 2013).

Supplementation of bakery products like biscuit, which are very popular among children and are a rich source of energy and protein, with tomato pomace powders, mango seed kernel powder, and pomegranate peels powder will further help in improving the nutritional and chemical qualities of developed biscuit (Tharshini et al., 2018). Keeping in view that development of value added products from diverse raw ingredients is receiving the prime focus of food processing industries and researchers therefore. The present study was planned to exploit the feasibility of development of antioxidant rich biscuit from different ratios of wheat flour, tomato pomace powders, mango seeds kernel powder, and pomegranate peels powder.

**MATERIALS AND METHODS**

**Materials**

**Wheat flour and by-products**

Wheat flour (72% extraction rate) was obtained from the local market in Zagazig City, Egypt. Tomato pomace (peel and seeds) was obtained from Kaha Company for Preservative Foods Kaha, Kalyobia, Egypt. Mango seed kernels were obtained from Misr-Italy Company for Concentrates and Food Industries, New Damietta, Egypt. Mangoes that used in pulp production are mixture varieties of Succary, Zebda, Balady, Mabroka, and Al Owaisi. Fresh pomegranate fruit was obtained from the local market in Zagazig, Egypt.

**Baking ingredients**

Fresh whole egg, dry milk, shortening, sugar, vanilla, salt, and all other materials used in baking were obtained from the local market in Zagazig, Egypt.

**Chemicals**

All chemicals used in this study for analysis were of analytical grade and were obtained from Al Gomhouria Chemical Company, Egypt.

**Methods**

**Preparation of tomato pomace (peel and seeds) powder**

Tomato pomace was separated manually after drying in air. Then it was dried in air circulated oven at 50°C for 12 hr., milled to a fine powder, sieved on 110 mesh sieves, and kept in polyethylene bags and stored at -18°C until used.

**Preparation mango seed kernels powders**

Mango seeds were dried in air circulated oven and kernels were removed by manual dehiscing from the hard coat. Afterward, the kernels were chopped and then dried in air circulated oven at 40°C for 12 hr. The dried kernels were milled to a fine powder, sieved on the 110-mesh sieve, and kept in polyethylene bags and stored at -18°C until used.

**Preparation of pomegranate peels powder**

Pomegranate peels were collected, removed, washed with water, cut into small pieces (approx. 1×1 cm) and tray dried in air circulated oven.
oven at 40˚C for 5 - 6 hr. The dried peel was coarsely powdered in a blender, passed through a 110-mesh sieve, and kept in polyethylene bags and stored at -18˚C until used.

**Preparation of composite flour blends**

Different composite flour samples were prepared by partially substituting wheat flour with 2.5, 5.0, 7.5, and 10% of tomatopomace (peel and seeds), mango seed kernels, and pomegranate peel powders.

**Processing of biscuits**

Biscuit treatments were prepared using the ingredients shown in Table 1 according to the formula reported by Kaur and Brar (2017).

The processing of biscuit samples was carried out by partially replacing the 72% extraction wheat flour by four levels of tomato pomace (peel and seeds), mango seed kernels, and pomegranate peels powder 2.5, 5.0, 7.5, and 10%. The standardized recipe for the biscuits had the ingredients as 100 g flour, 20 g sugar, 50 g fat, 2 g salt, and 1.2 g baking powder. Fat was rubbed on a clean surface till it became light. Wheat flour, tomato pomace (peel and seeds), mango seed kernels, pomegranate peels flour and baking powder were sieved together and gradually added into rubbed fat. Salt and sugar were dissolved in water and made smooth dough with it. The dough was rolled out with a rolling pin and cut into the desired shape with cutter. The cuted pieces were placed over a perforated tray and baked at 150˚C for 20 minutes. After baking, biscuits were left for cooling at room temperature, wrapped in polyethylene bags, and then the bags were stored at room temperature (25±2˚C).

**Analytical Methods**

**Chemical analyses**

**Chemical composition**

Moisture, ash, protein, crude lipids and crude fiber contents (%) were determined according to the methods described by AOAC (2010). Carbohydrate was calculated by difference as follows:

\[
\text{Total carbohydrate} = 100 - \% \left( \text{ash} + \text{protein} + \text{fat} + \text{moisture} \right)
\]

**Determination of some mineral contents**

Mineral contents (Na, K, Ca, Mg, Fe, P, Mn, and Zn) were determined according to the methods of AOAC (2010) using atomic absorption spectrophotometry (ICAP 6500 Duo, England Multi-element certified standard solutions 100 mg/l Merk, Germany) at the Central Laboratory, Faculty of Agriculture, Zagazig University, Egypt.

**Determination of dietary fibers**

Total dietary fibers of samples were measured according to the method described by AOAC (2010). Soluble and insoluble dietary fibers were determined according to the method described by Prosky et al. (1988).

**Determination of total phenolic content**

Total phenolic compounds were determined using Folin-Ciocalteau reagent according to the method described by Atawodi et al. (2011).

**Fractionation and identification of phenolic and flavonoid compounds**

A high-performance liquid chromatography system equipped with a variable wavelength detector (Agilent Technologies, Germany) 1200 series was used. Also, the high-performance liquid chromatography (HPLC) was equipped with auto-sampler, quaternary pump degasser and column compartment set at 35˚C. The analysis was performed on a C18 reverse-phase (BDS 5 μm, Labio, Czech Republic) packed stainless-steel column (4×250 mm. i.d.). To determine phenolic acids and flavonoids, samples were prepared according to the method described by Atawodi et al. (2011).

**Sensory evaluation biscuits**

Biscuits samples were evaluated according to the method described by Larmond (1977), using ten panelists from the Food Science Department, Faculty of Agriculture, Zagazig University. The biscuits were evaluated for their taste, colour, appearance, crispness and overall acceptability.
Table 1. Biscuit formula prepared and used in the current study

| Level of substitution | Wheat flour (72% ext.) (g) | Sugar (g) | Fat (g) | Salt (g) | baking powder (g) |
|-----------------------|-----------------------------|-----------|---------|----------|------------------|
| Control sample        | 100                         | 20        | 50      | 2        | 1.2              |
| Tomato pomace powder  |                             |           |         |          |                  |
| 2.5%                  | 97.5                        | 20        | 50      | 2        | 1.2              |
| 5.0%                  | 95.0                        | 20        | 50      | 2        | 1.2              |
| 7.5%                  | 92.5                        | 20        | 50      | 2        | 1.2              |
| 10.0%                 | 90.0                        | 20        | 50      | 2        | 1.2              |
| Mango seed kernel powder (MSKP) |                   |           |         |          |                  |
| 2.5%                  | 97.5                        | 20        | 50      | 2        | 1.2              |
| 5.0%                  | 95.0                        | 20        | 50      | 2        | 1.2              |
| 7.5%                  | 92.5                        | 20        | 50      | 2        | 1.2              |
| 10.0%                 | 90.0                        | 20        | 50      | 2        | 1.2              |
| Pomegranate peels powder (PPP) |                |           |         |          |                  |
| 2.5%                  | 97.5                        | 20        | 50      | 2        | 1.2              |
| 5.0%                  | 95.0                        | 20        | 50      | 2        | 1.2              |
| 7.5%                  | 92.5                        | 20        | 50      | 2        | 1.2              |
| 10.0%                 | 90.0                        | 20        | 50      | 2        | 1.2              |

Statistical Analysis

Data were analyzed by Analysis of Variance using the General Linear Model (GLM) procedure according to the procedure reported by Snedecor and Cochran (1980). Means were separated using Duncan's test at a degree of significance (P≤ 0.05). Statistical analyses were made using the producer of the SAS software system program (SAS, 1997).

RESULTS AND DISCUSSION

Chemical Composition of Used Materials

Table 2 revealed that wheat flour (72% ext.) recorded the highest moisture content being 12.58%, while tomato pomace powder had the lowest moisture content being 6.65%.

Furthermore, the highest value of crude protein was recorded for TPP followed by PPP and MSKP samples being 30.69, 16.22 and 10.16%, respectively. Meanwhile, wheat flour (72% ext.) had the lowest crude protein value being 9.99%. On the other side, MSKP had the highest lipid content followed by TPP and PPP being 33.06, 8.67 and 3.51%, respectively.

Minerals Content of Used Materials

Results presented in Table 2, show the mineral content of wheat flour (72% ext.), TPP, MSKP and PPP. PPP had contained high content of Magnesium (Mg), Sodium (Na), and Iron (Fe) compared with TPP, MSKP, and wheat flour. It was recorded 40.58, 130.48, and 4.30 mg/100g, respectively.
Table 2. Chemical composition, minerals content, dietary fiber and antioxidant properties of wheat flour, tomato pomace powder, mango seeds kernel powder, and pomegranate peels powder

| Component                        | Wheat flour (WF) | Tomato pomace powder (TPP) | Mango seeds kernel powder (MSKP) | Pomegranate peels powder (PPP) |
|----------------------------------|------------------|-----------------------------|---------------------------------|-------------------------------|
| Chemical composition (g/100g on a dry weight basis) |                  |                             |                                 |                               |
| Moisture                         | 12.58            | 6.65                        | 7.31                            | 9.06                          |
| Crude protein                    | 9.99             | 30.69                       | 10.16                           | 16.22                         |
| Crude fat                        | 1.23             | 8.67                        | 33.06                           | 3.51                          |
| Ash                              | 0.47             | 3.12                        | 2.77                            | 4.72                          |
| Crude fiber                      | 0.61             | 8.51                        | 2.36                            | 7.36                          |
| Carbohydrate                     | 87.70            | 49.01                       | 51.65                           | 68.19                         |
| Minerals content (mg/100g on a dry weight basis) |                  |                             |                                 |                               |
| Ca                               | 35.69            | 37.65                       | 115.16                          | 41.61                         |
| Zn                               | 0.18             | 1.67                        | 1.35                            | 1.57                          |
| Fe                               | 0.87             | 3.08                        | 1.27                            | 4.30                          |
| Mg                               | 15.76            | 38.08                       | 20.32                           | 40.58                         |
| K                                | 27.33            | 56.50                       | 280.71                          | 205.38                        |
| Na                               | 35.88            | 79.45                       | 60.32                           | 130.48                        |
| Mn                               | 1.46             | 21.96                       | 2.03                            | 18.16                         |
| Dietary fiber (g/100g on a dry weight basis) |                  |                             |                                 |                               |
| Total dietary fiber              | 3.42             | 36.28                       | 25.17                           | 54.39                         |
| Soluble dietary fiber            | 1.29             | 4.75                        | 7.45                            | 13.63                         |
| Insoluble dietary fiber          | 2.13             | 31.53                       | 17.72                           | 40.76                         |
| Antioxidant activity             |                  |                             |                                 |                               |
| Total phenolic content (mg/g)TP  | 34.05            | 848.52                      | 247.18                          | 386.47                        |
| Total flavonoids content (mg/g)TF| 25.30            | 437.97                      | 134.15                          | 252.26                        |

Also, MSKP contained higher amount of potassium and calcium being 280.71, 115.16, respectively compared to TPP which recorded 56.50, 37.65 mg/100g for Potassium (K), Calcium (Ca). Additionally, the highest content of Mn and Zn were observed in TPP with a concentration of 21.96, 1.67 mg/100g, respectively.

Wheat flour (72% ext.) had the mean lowest mineral content being 27.33, 35.69, 15.76, 35.88, 1.46, 0.87, and 0.18 mg/100g for K, Ca, Mg, Na, Mn, Fe, and Zn, respectively. Such results are in line with those obtained by Khedr et al. (2016), Romelle et al. (2016), Nour et al. (2018) and Abd-Elaziz (2018).

**Total, Soluble, and Insoluble Dietary Fiber of Used Materials**

Table 2 shows that PPP and TPP contain the highest percentage of total dietary fiber (TDF), which amounted to 54.39 and 36.28%, respectively. These results are following those obtained by Thannoun and Younis (2013); Mosa and Kalil (2015) and Khedr et al. (2016).

Wheat flour (72% ext.) contained 3.42% TDF, 1.29% SDF, and 2.13% IDF. Gill and Johnson (2002) reported that, wheat flour (72% ext.) contained 4.19% TDF, 2.28% SDF, and 1.91% IDF (on dry weight basis).
Total Phenolic and Flavonoid Compounds of Used Materials

According to the results presented in Table 2, TPP contain higher Total phenolic (TP) and Total flavonoid (TF) with 848.52 (mg of Gallic acid/g) and 437.97 (mg of quercetin/g), respectively. These results agree with that previously reported by Szabo et al. (2019), followed by PPP with 386.47 (mg of Gallic acid/g) and 252.26 (mg of quercetin/g), respectively. These results agree with that previously reported by Ali et al. (2014), MSKP contained 247.18 mg of Gallic acid/g and 134.15 mg of quercetin/g, respectively. These results are in agreement with that previously reported (Abdalla et al., 2007; Ribeiro and Schieber, 2010; Sogi et al., 2013; Dorta et al., 2014; Abdel-Aty et al., 2018). WF contained 34.05 mg of Gallic acid/g and 25.30 mg of quercetin/g, respectively. These results are similar with that previously reported by Yu and Beta (2015).

Identification of Phenolic Compounds Content of Used Materials

According to the results presented in Table 3, the phenolic compounds in wheat flour (WF) ranged from 1.00 to 199.64 µg/g dry matter. The predominant compound in WF was Naringenin (199.64 µg/g). These results are similar to those reported by Yu and Beta (2015). They indicated that the ethanol extraction of WF had high content of Naringenin. The phenolic compounds in TPP ranged from 3.22 to 296.48 µg/g dry matter. The predominant compound in TPP was Kaempferol (296.48 µg/g). These results are similar to those reported by Szabo et al. (2019), who indicated that the ethanol extraction of TPP had high content of Kaempferol.

The phenolic compounds in MSKP ranged from 33.67 to 7595.92 µg/g dry matter. The predominant compound in MSKP was Naringenin (7595.92 µg/g). These results are agreed with to those reported by Abdel-Aty et al. (2018), who indicated that the ethanol extraction of MSKP had high content of Naringenin.

The phenolic compounds in PPP ranged from 10.42 to 8671.04 µg/g dry matter. The predominant compound in PPP was Catechin (8671.04 µg/g). These results are similar to those reported by Ali et al. (2014), who indicated that the ethanol extraction of PPP had high content of Catechin.
Table 3. Identification of phenolic compounds content of wheat flour, tomato pomace powder, mango seeds kernel powder, and pomegranate peels powder by HPLC (µg/g dry matter)

| Phenolic compound | Materials                      | Wheat flour (72% ext.) | Tomato pomace powder (TPP) | Mango seeds kernel powder (MSKP) | Pomegranate peels powder (PPP) |
|-------------------|--------------------------------|------------------------|---------------------------|---------------------------------|--------------------------------|
| Gallic acid       | WF                             | 15.22                  | 42.03                     | 0.00                            | 1248.00                        |
| Chlorogenic acid  | TPP                            | 0.00                   | 0.00                      | 426.76                          | 0.00                           |
| Catechin          |                                | 3.00                   | 41.84                     | 0.00                            | 8671.04                        |
| Methyl gallate    |                                | 0.00                   | 4.75                      | 57.72                           | 14.80                          |
| Coffeic acid      |                                | 1.30                   | 10.88                     | 276.89                          | 62.87                          |
| Syringic acid     |                                | 0.00                   | 0.00                      | 406.72                          | 0.00                           |
| Pyro catechol     |                                | 0.00                   | 46.47                     | 0.00                            | 0.00                           |
| Rutin             |                                | 0.00                   | 0.00                      | 600.10                          | 0.00                           |
| Ellagic acid      |                                | 23.00                  | 72.60                     | 313.73                          | 1698.35                        |
| Coumaric acid     |                                | 6.00                   | 43.03                     | 0.00                            | 66.10                          |
| Vanillin          |                                | 7.54                   | 3.22                      | 2886.36                         | 10.42                          |
| Ferulic acid      |                                | 2.00                   | 12.70                     | 802.94                          | 184.89                         |
| Naringenin        |                                | 199.64                 | 36.71                     | 7595.92                         | 59.81                          |
| Taxifolin         |                                | 0.00                   | 25.46                     | 33.76                           | 0.00                           |
| Cinnamic acid     |                                | 1.00                   | 17.00                     | 0.00                            | 58.00                          |
| Kaempferol        |                                | 0.00                   | 296.48                    | 0.00                            | 0.00                           |

Table 4. Proximate chemical composition of produced biscuit samples (% on dry matter basis)

| Biscuit sample                     | Substitution level (%) | Moisture | Crude protein | Lipids | Ash | Crude fiber | ** Total carbohydrate rates |
|------------------------------------|------------------------|----------|---------------|--------|-----|-------------|-----------------------------|
| *Control sample                    |                        | 3.69     | 19.19         | 30.10  | 0.89| 3.60        | 46.22                       |
| Tomato pomace powder (TPP)         | 2.5                    | 4.51     | 19.71         | 30.29  | 0.96| 3.80        | 45.24                       |
|                                   | 5.0                    | 5.30     | 20.23         | 30.47  | 1.02| 4.00        | 44.28                       |
|                                   | 7.5                    | 6.14     | 20.75         | 30.66  | 1.09| 4.19        | 43.31                       |
|                                   | 10.0                   | 6.97     | 21.27         | 30.84  | 1.15| 4.39        | 42.35                       |
|                                   | 2.5                    | 4.23     | 19.19         | 30.89  | 0.95| 3.64        | 45.33                       |
| Mango seeds kernel powder (MSKP)   | 5.0                    | 4.78     | 19.20         | 31.70  | 1.00| 3.69        | 44.41                       |
|                                   | 7.5                    | 5.32     | 19.20         | 32.48  | 1.06| 3.73        | 43.53                       |
|                                   | 10.0                   | 5.86     | 19.21         | 33.26  | 1.12| 3.78        | 42.63                       |
|                                   | 2.5                    | 4.96     | 19.35         | 30.16  | 1.00| 3.77        | 45.72                       |
| Pomegranate peels powder (PPP)     | 5.0                    | 6.24     | 19.51         | 30.21  | 1.10| 3.94        | 45.24                       |
|                                   | 7.5                    | 7.50     | 19.67         | 30.27  | 1.21| 4.11        | 44.74                       |
|                                   | 10.0                   | 8.78     | 19.83         | 30.33  | 1.34| 4.28        | 44.22                       |

* 100% wheat flour (72% extraction rate). ** Calculated by difference.
Table 5. Minerals content of produced biscuit samples (mg/100g on dry matter basis)

| Biscuit sample                      | Substitution level (%) | Mineral content |  |  |  |  |  |  |  |
|-------------------------------------|------------------------|-----------------|---|---|---|---|---|---|
|                                     |                        | K              | Ca | Mg | Na | Mn | Fe | Zn |
| *Control sample                     |                        | 16.36          | 24.44 | 22.50 | 38.87 | 0.53 | 1.43 | 0.57 |
| Tomato pomace powder (TPP)          | 2.5                    | 17.09          | 24.49 | 23.06 | 39.96 | 1.04 | 1.49 | 0.61 |
|                                     | 5.0                    | 17.82          | 24.53 | 23.62 | 41.05 | 1.55 | 1.54 | 0.65 |
|                                     | 7.5                    | 18.55          | 24.64 | 24.17 | 42.14 | 2.07 | 1.60 | 0.68 |
|                                     | 10.0                   | 19.28          | 24.87 | 24.73 | 43.23 | 2.58 | 1.65 | 0.72 |
| Mango seeds kernel powder (MSKP)    | 2.5                    | 22.70          | 26.43 | 22.61 | 39.48 | 0.54 | 1.44 | 0.60 |
|                                     | 5.0                    | 29.03          | 28.41 | 22.73 | 40.09 | 0.56 | 1.45 | 0.63 |
|                                     | 7.5                    | 35.37          | 30.29 | 22.84 | 40.70 | 0.57 | 1.46 | 0.66 |
|                                     | 10.0                   | 41.69          | 32.38 | 22.96 | 41.31 | 0.59 | 1.47 | 0.69 |
| Pomegranate peels powder (PPP)      | 2.5                    | 20.81          | 24.59 | 23.12 | 41.24 | 0.95 | 1.52 | 0.61 |
|                                     | 5.0                    | 25.26          | 24.74 | 23.74 | 43.60 | 1.36 | 1.60 | 0.64 |
|                                     | 7.5                    | 29.72          | 24.88 | 24.36 | 45.97 | 1.78 | 1.69 | 0.67 |
|                                     | 10.0                   | 34.17          | 25.03 | 24.98 | 48.33 | 2.20 | 1.77 | 0.72 |

Table 6. Total, soluble and insoluble dietary fiber of produced biscuit samples (g/100g dry matter)

| Biscuit sample                      | Substitution level (%) | Dietary fiber |  |  |  |  |  |  |
|-------------------------------------|------------------------|---------------|---|---|---|---|---|---|
|                                     |                        | Total dietary fiber | Soluble dietary fiber | Insoluble dietary fiber |
| *Control sample                     |                        | 1.84          | 0.70 | 1.14 |
|                                     | 2.5                    | 2.66          | 0.79 | 1.87 |
| Tomato pomace powder (TPP)          | 5.0                    | 3.48          | 0.87 | 2.61 |
|                                     | 7.5                    | 4.31          | 0.96 | 3.35 |
|                                     | 10.0                   | 5.14          | 1.05 | 4.09 |
| Mango seeds kernel powder (MSKP)    | 2.5                    | 2.38          | 0.85 | 1.53 |
|                                     | 5.0                    | 2.93          | 1.01 | 1.92 |
|                                     | 7.5                    | 3.47          | 1.16 | 2.31 |
|                                     | 10.0                   | 4.02          | 1.32 | 2.70 |
| Pomegranate peels powder (PPP)      | 2.5                    | 3.12          | 1.00 | 2.12 |
|                                     | 5.0                    | 4.39          | 1.32 | 3.07 |
|                                     | 7.5                    | 5.66          | 1.63 | 4.03 |
|                                     | 10.0                   | 6.94          | 1.94 | 5.00 |

* 100% wheat flour (72% extraction rate).
Table 7. Total phenolic and flavonoid compounds of biscuit prepared by substituted of wheat flour with tomato pomace powder, mango seeds kernel powder, and pomegranate peels powder

| Biscuit sample                  | Substitution level (%) | Total phenolic | Total flavonoid |
|---------------------------------|------------------------|----------------|-----------------|
| *Control sample                 |                        | 36.52          | 28.45           |
|                                 | 2.5                    | 56.88          | 38.76           |
| Tomato pomace powder (TPP)      | 5.0                    | 77.25          | 49.08           |
|                                 | 7.5                    | 96.84          | 60.02           |
|                                 | 10.0                   | 117.96         | 68.45           |
|                                 | 2.5                    | 41.85          | 31.17           |
| Mango seeds kernel powder (MSKP)| 5.0                    | 47.18          | 33.89           |
|                                 | 7.5                    | 52.51          | 36.62           |
|                                 | 10.0                   | 57.84          | 39.33           |
|                                 | 2.5                    | 45.33          | 34.12           |
| Pomegranate peels powder (PPP)  | 5.0                    | 54.14          | 39.80           |
|                                 | 7.5                    | 62.95          | 45.47           |
|                                 | 10.0                   | 71.78          | 51.13           |

* 100% wheat flour (72% extraction rate).

MSKP and PPP increased total phenolic and flavonoid content of biscuit samples compared with control biscuit sample in parallel with increasing the level of substitution.

Biscuit treatments containing TPP had the highest total phenolic and flavonoid contents followed by PPP and finally MSKP. These results are in line with those obtained by Srivastava et al. (2014), Isik and Topkaya (2016) and Kaur and Brar (2017).

Sensory Evaluation of Produced Biscuit

Table 8 revealed the substitution with TPP, and MSKP. All the sensory evaluation characters; taste, colour, appearance, crispness, and overall acceptability, had significant difference between the control sample and biscuit samples which substituted with 2.5, 5, and 7.5% of MSKP and TPP. These results are in agreement with Sharoba et al. (2013).

Srivastava et al. (2014), Isik and Topkaya (2016) and Kaur and Brar (2017).

Conclusion

From this study, it can be concluded that a biscuit with acceptable sensory properties can be produced from wheat flour, tomato pomace powder, and mango seed powder blends. Hence, it is recommended that value-added products be developed from wheat flour, tomato pomace and mango seed kernel powders, which are rich in protein, minerals, nutritional fibers and phenolic compounds. The development and use of wheat flour, tomato seeds, and mango seed kernel powder products will increase the alternative uses of grains and pulses, and will enhance the use of peel which is usually discarded. Wheat flour could be replaced by 2.5 to 7.0% of tomato pomace and mango seed kernel powders with good properties and high nutritional value.
**Table 8. Sensory evaluation of biscuit samples**

| Biscuit sample                  | Substitution level (%) | Taste (10) | Color (10) | Appearance (10) | Crispness (10) | Overall acceptability (10) |
|--------------------------------|------------------------|------------|------------|-----------------|----------------|--------------------------|
| **Control sample**             |                        | 9.70^A     | 9.60^A     | 9.60^A          | 9.60^A         | 9.80^A                   |
| **Tomato pomace powder**       |                        | 9.40^B     | 8.40^BC    | 8.40^BCDE       | 8.30^BC        | 8.75^BCD                 |
| (TPP)                          | 2.5                    | 9.20^AB    | 8.20^BCDE  | 8.35^BCDE       | 8.25^BC        | 8.60^BCD                 |
|                                | 7.5                    | 9.20^AB    | 7.30^DEF   | 7.60^EF         | 7.80^CD        | 7.80^DE                  |
|                                | 10.0                   | 8.20^CD    | 7.20^EF    | 7.50^EF         | 7.60^CD        | 7.20^EF                  |
|                                | 2.5                    | 8.65^BCD   | 9.50^A     | 9.20^AB         | 9.20^A         | 9.25^AB                  |
| **Mango seeds kernel powder**  |                        | 8.50^BCD   | 8.35^BCD   | 8.80^ABC        | 9.00^AB        | 9.20^AB                  |
| (MSKP)                         | 5.0                    | 7.70^DE    | 8.20^BCDE  | 8.30^BCDE       | 8.30^BC        | 8.20^CD                  |
|                                | 7.5                    | 7.50^EF    | 7.90^CDEF  | 7.90^DEF        | 8.10^BC        | 8.20^CD                  |
|                                | 10.0                   | 9.20^AB    | 9.00^AB    | 9.00^ABC        | 9.40^A         | 8.90^ABC                 |
|                                | 2.5                    | 8.40^BCD   | 8.60^ABC   | 8.40^BCDE       | 8.30^BC        | 8.40^BCD                 |
| **Pomegranate peels powder**   |                        | 7.40^EF    | 7.80^CDEF  | 8.10^CDEF       | 7.80^CD        | 8.00^CDE                 |
| (PPP)                          | 5.0                    | 7.00^F     | 6.90^F     | 7.20^F          | 7.00^D         | 6.80^F                   |
|                                | 7.5                    | 7.00^F     | 6.90^F     | 7.20^F          | 7.00^D         | 6.80^F                   |
|                                | 10.0                   | 7.00^F     | 6.90^F     | 7.20^F          | 7.00^D         | 6.80^F                   |

* Means followed by different letters in the same column are significantly different by Duncan's multiple tests (p< 0.05).

** 100% wheat flour (72% extraction rate).

REFERENCES

Abdalla, A., S. Darwah, E. Ayad and R. El-Hamahmy (2007). Egyptian mango by-product 2: Antioxidant and antimicrobial activities of extract and oil from mango seed kernel. Food Chem., 103 (4): 1141-1152.

Abdel-Aty, A.M., W.H. Salama, M.B. Hamed, A.S. Fahmy and S.A. Mohamed (2018). Phenolic-antioxidant capacity of mango seed kernels: therapeutic effect against viper venoms. Revista Brasileira de Farmacognosia, 28(5): 594-601.

Abd-Elaziz, S.A. (2018). Physico chemical characteristics of mango kernel oil and meal. Mid. East J. Appl. Sci., 8 (1): 1-6.

Abdel-Rahim, E.A., H.S. El-Beltagi and R.M. Romela (2013). White bean seeds and pomegranate peel and fruit seeds as hypercholesterolic and hypolipidemic agents in albino rats. Grasas Y. Aceites, 64 (1): 50-58.

Ain, H.B.U., F. Saeed C.J. Barrow, F.R. Dunshea and H.A.R. Suleria (2020). Food Processing Waste: A Potential Source for Bioactive Compounds. Bioactive Compounds in Underutilized Fruits and Nuts, 625-649.

Akhtar, S., T. Ismail and M. Riaz (2013b). Flaxseed-miraculous defense against some critical maladies. Pak. J. Pharm. Sci., 26: 199-208.

Akhtar, S., T. Ismail, S. Atukorala and N. Arlappa (2013a). Micronutrients deficiencies
in South Asia-current status and strategies. Trends Food Sci. Technol., 31: 55-62.

Ali, S.I., F.K. El-Baz, A.E. Gehan, E.A. El-Emary and A.A. Mohamed (2014). HPLC-analysis of polyphenolic compounds and free radical scavenging activity of pomegranate fruit (*Punica granatum* L.). Int. J. Pharmac. Clin. Res., 6 (4): 1-8.

AOAC (2010). Official Methods of Analysis, 17th Ed., Ass. Official Anal. Chem. Int. Gaithersburg, Maryland, USA.

Atawodi, S.E., J.C. Atawodi, B. Pfundstein, B. Spiegelhalder, H. Bartsch and R. Owen (2011). Assessment of the polyphenol components and in vitro antioxidant properties of *Syzygium aromaticum* (L.) Merr. and Perry. EJECA Che., 10:1970-1978.

Bisht, T.S., S. K. Sharma, L. Rawat, B. Chakraborty and V. Yadav (2020). A novel approach towards the fruit specific waste minimization and utilization: A Rev. J. Pharm. and Phytochem., 9 (1): 712-722.

Dorta, E., M. González, M.G. Lobo, C. Sanchez-Moreno and B. de-Ancos (2014). Screening of phenolic compounds in by-product extracts from mangoes (*Mangifera indica* L.) by HPLC-ESI-QTOF-MS and multivariate analysis for use as a food ingredient. Food Res. Int., 57: 51-60.

El-badrawy, E. and A. Sello (2016). Evaluation of nutritional value and antioxidant activity of tomato peel extracts. Arab. J. Chem., 9, S1010-S1018.

Gill, J. and P. Johnson (2002). Research Methods for Managers. Sage, London.

Ifesan, B.O.T. (2017). Chemical properties of mango kernel and seed and production of biscuit from wheat-mango kernel flour blends. Int. J. Food Nutr. Res. (ISSN: 2572-8784). IJFNR, 1:5.

Isik, F. and C. Topkaya (2016). Effects of tomato pomace supplementation on chemical and nutritional properties of crackers. Ital. J. Food Sci., 28 (3): 525-535.

Jia, Z., M. Tang and J. Wu (1998). The determination of flavonoid contents in mulberry and their scavenging effects on superoxides radicals. Food Chem., 64: 555-559.

Kaur, A. and J.K. Brar (2017). Use of mango seed kernels for the development of antioxidant rich biscuits. Int. J. Sci. and Res., (IJSR), 78 (96): 2319 - 7064.

Khedr, M.A., M.A. Abdelgaleel, B.A. Bessar, and A.A. Salama (2016). Effect of using tomato peels as a fat replacer on the sensory, Nutritional and physical properties of beef burger and sausages. J. Agric. Res. Kafr El-Sheikh Univ., 42 (1): 469-490.

Kittiphoom, S. (2012). Utilization of mango seed. J. Int. Food Res., 19 (4): 1325.

Larmond, E. (1977). Laboratory Methods for Sensory Evaluation of Food. Res. Branch, Canada Dept. Agric.

Mosa, Z.M. and A.F. Kalil (2015). Comparative study between the effects of mango and orange peels preparations on the total dietary fiber. J. Environ. Sci., Toxicol. and Food Technol., 9 (11): 129-136.

Nour, V., T.D. Panaiteb, M. Ropota, R. Turcu, I. Trandafir and A.R. Corbu (2018). Nutritional and bioactive compounds in dried tomato processing waste. CYTA J. Food, 16 (1): 222-229.

Prosky, L., N.A. Georg, T.F. Schweizer, J.W. Devries and I. Furda (1988). Determinaion of insoluble, soluble, and total dietary fiber in foods and food products: inter laboratory study. J. Assoc. Off. Anal. Chem., 71 (5): 1017-1023.

Ribeiro, S. and A. Schieber (2010). Bioactive compounds in mango (*Mangifera indica* L.). Bioactive Foods in Promoting Health, 34: 507 - 523.

Romelle, F.D., R.P. Ashwini and M. Ragu Sai (2016). Chemical composition of some selected peels. Europ. J. Food Sci. and Technol., 4 (4): 12-21.

Sagar, N.A., S. Pareek, S. Sharma, E.M. Yahia, and M.G. Lobo (2018). Fruit and Vegetable Waste: Bioactive Compounds, Their Extraction, and Possible Utilization. comprehensive Reviews in Food Sci. and Food Safety, 17 (3): 512-531.
Sakr, A.M., H.A. Hussien and E.M. Salem (2012). Physicochemical and sensory properties of instant noodles fortified with pomegranate peel. J. Food and Dairy Sci., Mansoura Univ., 3 (11): 587-597.

SAS (1997). Statistical Analysis System. User's Guide: Statistics, SAS Inst. Inc., Gary, Nc., USA.

Sharoba, A.M., M.A. Farrag and A.M. Abd El-Salam (2013). Utilization of some fruits and vegetables waste as a source of dietary fiber and its effect on the biscuit making and its quality attributes. J. Agroalimentary Proc. and Technol., 19 (4): 429-444.

Snedecor, W.G. and W.G. Cochran (1980). Statistical methods, 17th ED Iowa State Univ. press Ames., Iowa, USA.

Sogi, D.S., M. Siddiq, I. Greiby and K.D. Dolan (2013). Total phenolics, antioxidant activity, and functional properties of ‘Tommy Atkins’ mango peel and kernel as affected by drying methods. Food Chem., 141: 2649-2655.

Srivastava, P., D. Indrani and R.P. Singh (2014). Effect of dried pomegranate (Punica granatum) peel powder (DPPP) on textural, organoleptic and nutritional characteristics of biscuits. Int. J. Food Sci. and Nutr., 65 (7): 1-8.

Szabo, K., Z. Diaconeasa, A.F. Cătoi and D.C. Vodnar (2019). Screening of ten tomato varieties processing waste for bioactive components and their related antioxidant and antimicrobial activities. Antioxidants, 8 (8): 292.

Szydłowska-Czerniak, A., C. Dianoczki, K. Recseg, G. Karlovits and E. Szłyk (2008). Determination of antioxidant capacities of vegetable oils by ferric-ion spectrophotometric methods. Talanta, 76 (4): 899-905.

Thannoun, A.M. and K.W. Younis (2013). Extraction and evaluation of total dietary fibers from some vegetables. Mesopotamia J. Agric., 41(4):318 -327.

Tharshini, G., V. Sangwan and M. Suman (2018). Organoleptic and chemical characteristics of soybean and pomegranate peel powder supplemented biscuits. J. Pharm. and Phytochem., 7 (2): 35-39.

Toor, R.K. and G.P. Savage (2005). Antioxidant activity in different fractions of tomatoes. Food Res. Int., 38 (5): 487 - 494.

Yu, L. and T. Beta (2015). Identification and antioxidant properties of phenolic compounds during production of bread from Purple Wheat Grains. Molec., 20 (9): 15525-15549.
استخدام مساحيق تقل الطماطم، بذور المانجو وقشور الرمان لإنتاج البسكويت الورقي

بسمة راش سالم 1 - كمال محفوظ الصاحبي 2 - عادل رحمان محمد سليمان 3 - محمد رشاد جودة 4
1 - معهد بحث تكنولوجيا الأغذية - مركز البحوث الزراعية - مصر
2 - قسم علم الأغذية - كلية الزراعة - جامعة الزقازيق - مصر

أجريت هذه الدراسة لتقييم التركيب الكيميائي ومحوبي الفينولات الكلية لبعض النواتج الثانية لمنتجات مساحيق تقل الطماطم (MSKP)، ومساحيق قشور الرمان (TPP)، وكذلك تحت دراسة تأثير استبدال PPC (PP) وGH (TPP) على التركيب الكيميائي ومحوبي الفينولات الكلية والخصائص الصحية للبسكويت، وأظهرت النتائج أن مساحيق قشور الرمان أظهرت أعلى محويت من الرطوبة وإجمالي الكربوهيدرات الكلية، وأظهر مساحيق تقل الطماطم أعلى محويت من البروتينات الخام، والألياف الخام، وأعطي مساحيق بذور المانجو أعلى محويت في نسبة الدهن وأظهر مساحيق قشور الرمان أعلى محويت من نسبة الدهن والألياف الخام.

بالنسبة لمحوبي الفينولات والفلافونويد، أظهر مساحيق تقل الطماطم أعلى محويت لإجمالي الفينولات والفلافونويد الكلية بليه مساحيق قشور الرمان وأخيرا مساحيق بذور المانجو، أيضا، لدى الاستدلال الجزيئي لدقق الفحص لمتاح تقل الطماطم (MSKP)، وقشور الرمان (TPP)، بذور المانجو (PP)، ومستوى الاستدلال (الذاتي) لمساحيق تقل الطماطم (MSKP)، وقشور الرمان (TPP)، بذور المانجو (PP)، ومستوى الاستدلال (الذاتي) لمساحيق تقل الطماطم (MSKP)، وقشور الرمان (TPP)، بذور المانجو (PP)، ومستوى الاستدلال (الذاتي) لمساحيق تقل الطماطم (MSKP)، وقشور الرمان (TPP)، بذور المانجو (PP)، ومستوى الاستدلال (الذاتي) لمساحيق تقل الطماطم (MSKP)، وقشور الرمان (TPP)، بذور المانجو (PP)