Development of successful formulations for oral drug delivery concepts of iridium nanoparticles in human gum cancer cells, tissues and tumors treatment under synchrotron radiation

Alireza Heidari1,2*, Katrina Schmitt1, Maria Henderson1 and Elizabeth Besana1

1Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA
2American International Standards Institute, Irvine, CA 3800, USA

Abstract

In the current study, thermoplasmonic characteristics of Iridium nanoparticles with spherical, core–shell and rod shapes are investigated. In order to investigate these characteristics, interaction of synchrotron radiation emission as a function of the beam energy and Iridium nanoparticles were simulated using 3D finite element method. Firstly, absorption and extinction cross sections were calculated. Then, increases in temperature due to synchrotron radiation emission as a function of the beam energy absorption were calculated in Iridium nanoparticles by solving heat equation. The obtained results show that Iridium nanorods are more appropriate option for using in optothermal human cancer cells, tissues and tumors treatment method.

Introduction

In recent decade, metallic nanoparticles have been widely interested due to their interesting optical characteristics [1-8]. Resonances of surface Plasmon in these nanoparticles lead to increase in synchrotron radiation emission as a function of the beam energy scattering and absorption in related frequency [9, 10]. Synchrotron radiation emission as a function of the beam energy absorption and induced produced heat in nanoparticles has been considered as a side effect in plasmonic applications for a long time [11-15]. Recently, scientists find that thermoplasmonic characteristic can be used for various optothermal applications.
applications in cancer, nanoflows and photonic [16-22]. In optothermal human cancer cells, tissues and tumors treatment, the descendent laser light stimulate resonance of surface Plasmon of metallic nanoparticles and as a result of this process, the absorbed energy of descendent light converse to heat in nanoparticles [23-25]. The produced heat devastates tumor tissue adjacent to nanoparticles without any hurt to sound tissues [26,27]. Regarding the simplicity of ligands connection to Iridium nanoparticles for targeting cancer cells, these nanoparticles are more appropriate to use in optothermal human cancer cells, tissues and tumors treatment [28-74]. In the current paper, thermoplasmonic characteristics of spherical, core-shell and rod Iridium nanoparticles are investigated.

Heat generation in synchrotron radiation emission as a function of the beam energy- iridium nanoparticles interaction

When Iridium nanoparticles are subjected to descendent light, a part of light scattered (emission process) and the other part absorbed (non-emission process). The amount of energy dissipation in non-emission process mainly depends on material and volume of nanoparticles and it can be identified by absorption cross section. At the other hand, emission process which its characteristics are depend on volume, shape and surface characteristics of nanoparticles explains by scattering cross section. Sum of absorption and scattering processes which lead to light dissipation is called extinction cross section [75-123].

Iridium nanoparticles absorb energy of descendent light and generate some heat in the particle. The generated heat transferred to the surrounding environment and leads to increase in temperature of adjacent points to nanoparticles. Heat variations can be obtained by heat transfer equation [124-202].

Simulation

To calculate the generated heat in Iridium nanoparticles, COMSOL software which works by Finite Element Method (FEM) was used. All simulations were made in 3D. Firstly, absorption and scattering cross section areas were calculated by optical module of software. Then, using heat module, temperature variations of nanoparticles and its surrounding environment were calculated by data from optical module [203-283]. In all cases, Iridium nanoparticles are presented in water environment with dispersion coefficient of 1.84 and are subjected to flat wave emission with linear polarization. Intensity of descendent light is 1 mW/μm². Dielectric constant of Iridium is dependent on particle size [284-442].

Firstly, calculations were made for Iridium nanospheres with radius of 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50 nanometers. The results show that by increase in nanoparticles size, extinction cross section area increases and maximum wavelength slightly shifts toward longer wavelengths. The maximum increase in temperature of nanospheres in surface Plasmon frequency is shown in Figure 1.

According to the graph, it can be seen that the generated heat is increased by increase in nanoparticles size. For 100 (nm) nanoparticles (sphere with 50 (nm) radius), the maximum increase in temperature is 83 (K). When nanoparticles size reaches to 150 (nm), increase in temperature is increased in spite of increase in extinction coefficient. In order to find the reason of this fact, ratio of absorption to extinction for various nanospheres in Plasmon frequency is shown in Figure 2.

Figure 2 shows that increasing the size of nanospheres leads to decrease in ratio of light absorption to total energy of descendent light so that for 150 (nm) nanosphere, scattering is larger than absorption. It seems that although increase in nanoparticles size leads to more dissipation of descendent light, the dissipation is in the form of scattering and hence, it cannot be effective on heat generation.

Heat distribution (Figure 3) shows that temperature is uniformly distributed throughout the nanoparticles which are due to high thermal conductivity of Iridium.

In this section, core-shell structure of Iridium and silica is chosen. The core of a nanosphere with 45 (nm) radius and silica layer thickness of 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50 nanometers are considered. The results show that increase in silica thickness leads to increase in extinction coefficient and shift in Plasmon wavelength of nanoparticles, to some extent.

According to Figure 4, silica shell causes to considerable increase in temperature of Iridium nanoparticles but by more increase in silica thickness, its effects are decreased. Heat distribution (Figure 5) shows that temperature is uniformly distributed throughout metallic core as well as silica shell. However, silica temperature is considerably lower than core temperature due to its lower thermal conductivity. In fact, silica layer prohibits heat transfer from metal to the surrounding aqueous environment due to low thermal conductivity and hence, temperature of nanoparticles has more increase in temperature. Increasing the thickness of silica shell leads to increase in its thermal conductivity and hence, leads to attenuate in increase in nanoparticles temperature.

Figure 6 is drawn. This graph shows that variation of nanorod dimension ratio leads to considerable shift in Plasmon wavelength. This fact allows regulating the Plasmon frequency to place in near IR zone. Light absorption by body tissues is lower in this zone of spectrum and hence, nanorods are more appropriate for optothermal human cancer cells, tissues and tumors treatment methods.

Variations of temperature in Iridium nanorods with two effective radius and various dimension ratios are shown in Figure 7. By increase in length (a) to radius (b) of nanorod, temperature is increased.
Figure 2. Variations of absorption to extinction ratio and scattering to extinction ratio for Iridium nanospheres with various radiiues.

Figure 3. Maximum increase in temperature for spherical nanoparticles with radius of 45 (nm) at Plasmon wavelength of 685 (nm).
Heidari A (2019) Development of successful formulations for oral drug delivery concepts of iridium nanoparticles in human gum cancer cells, tissues and tumors treatment under synchrotron radiation

Figure 4. Maximum increase in temperature for core–shell Iridium nanospheres with various thicknesses of silica shell

Figure 5. Maximum increase in temperature for core–shell nanoparticles with radius of 45 (nm) and silica thickness of 10 (nm) at Plasmon wavelength of 701 (nm)
Heidari A (2019) Development of successful formulations for oral drug delivery concepts of iridium nanoparticles in human gum cancer cells, tissues and tumors treatment under synchrotron radiation

Figure 6. Extinction cross section area for Iridium nanorods with effective radius of 45 (nm) and various dimension ratios

Figure 7. Maximum increase in temperature for nanorods with effective radius of 20 and 45 (nm) and various dimension ratios
Conclusion and summary
The calculations showed that in Iridium nanoparticles, light absorption in Plasmon frequency causes to increase in temperature of the surrounding environment of nanoparticles. In addition, it showed that adding a thin silica layer around the Iridium nanoparticles increases their temperatures. Calculations of nanorods showed that due to ability for shifting surface Plasmon frequency toward longer wavelength as well as more increase in temperature, this nanostructure is more appropriate for medical applications such as optothermal human cancer cells, tissues and tumors treatments.

Acknowledgements
Authors are supported by an American International Standards Institute (AISI) Future Fellowship Grant FT12010093734714. We acknowledge Ms. Isabelle Villena for instrumental support and Dr. Michael N. Cocchi for constructing graphical abstract figures. We gratefully acknowledge Prof. Dr. Christopher Brown for proof reading the manuscript. Synchrotron beam time was awarded by the National Synchrotron Light Source (NSLS-II) under the merit-based proposal.

References
1. Yu, P; Wu, W; Liu, S; Xiong, J; Jagadish, C; Wang, Z. Design and Fabrication of Silicon Nanowires towards Efficient Solar Cells Nano Today 2016, 11, 704–737, 101016/jnantod201610001
2. Sandhu, S; Fan, S. Current-Voltage Enhancement of a Single Coaxial Nanowire Solar Cell ACS Photonics 2015, 2, 1698–1704, 101021/acspscinometrics06263
3. van Dam, D; Van Hoof, N; J; Cui, Y; van Veldhoven, P J; Bakkers, E P M; Gómez Rivas, J; Haverkort, J E. High-Efficiency Nanowire Solar Cells with Omnidirectionally Enhanced Absorption Due to Self-Induced Indium-Tin-Oxide Mie Scatterers ACS Nano 2016, 10, 11414–11419, 101021/acsnano20160209
4. Luo, S; Yu, W; He, Y; Ouyang, G. Si-based Dependent Optical Absorption Modulation of SiGe and Ge/Si Core/shell Nanowires with Different Cross-Sectional Geometries Nanotechnology 2015, 26, 085702, 101016/jnanton2015085702
5. Yu, P; Yao, Y; J; Niu, X; Rogach, L; Wang, Z. Effect of Plasmonic Metal Core-Dielectric Shell Nanoparticles on the Broadband Light Absorption Enhancement in Thin Film Solar Cells Sci Rep 2017, 7, 7609, 101016/s41598-017-08077-9
6. Gouda, M; Alham, N K; Swillam, M. Efficient Fabrication Methodology of Wide Angle Black Silicon for Energy Harvesting Applications RSC Adv 2016, 6, 26974–26982, 101039/C7RA03568C
7. Branz, H M; Yost, V E; Ward, S; Jones, K M; To, B; Stradins, P. Nanostructured Black Silicon and the Optical Reflectance of Graded-Density Surfaces Appl Phys Lett 2009, 94, 231121, 101063/11352244
8. Fazio, B; Artoni, P; Antonia Iatí, M; D’Andrea, C; Lo Faro, M J; Del Sorbo, S; Pirotta, S; Giuseppe Gucciardi, P; Musumeci, P; Salvatore Vasi, C; Saija, R; Galli, M; Priolo, F; Irrera, Strongly Enhanced Light Trapping in a Two-Dimensional Silicon Nanowire Random Fractal Array Light: Sci Appl 2016, 5, e16062, 101038/ls201662
9. Ko, M-D; Rim, T; Kim, K; Meyyappan, M; Baek, C-K. High Efficiency Silicon Solar Cells Sci Rep 2017, 7, 23111, 101032/17020044
10. Oh, J; Yuan, H C; Branz, H M. 18%-Efficient Black-Silicon Solar Cell Achieved through Control of Carrier Recombination in Nanostructures Nat Nanotechnol 2012, 7, 743–748, 101038/nnan2012166
11. Lin, H; Xiu, F; Fang, M; Yip, S; Cheung, H Y; Wang, F; Han, N; Chan, K S; Wong, C Y; Ho, J. Design of Inverted Nanopencil Arrays for Cost-Effective, Broadband, and Omnidirectional Light Harvesting ACS Nano 2014, 8, 3752–3760, 101021/acsnano20140448
12. Garnett, E; Yang, PLight Trapping in Silicon Nanowire Solar Cells Nano Lett 2010, 10, 1082–1087, 101021/nl100161z
13. Misra, S; Yu, L; Foldyna, M; Roca I Cabarrocas, P. High Efficiency and Stable Hydrogenated Amorphous Silicon Junction Solar Cells Built on VLS-Grown Silicon Nanowires Sol Energy Mater Sol Cells 2013, 118, 90–95, 101016/jsolmat201367036
93. Chun, Y-J; Park, J-N; Oh, G-M; Hong, S-I; Kim, Y-J Synthesis of
90. Campbell, V E; Tonelli, M; Cimatti, I; Moussy, J B; Tortech, L; Dappe, Y J; Riviere,
88.
87.
85. Brodard-Severac, F; Guerrero, G; Maquet, J; Florian, P; Gervais, C; Mutin, P H High-
82. Quinones, R; Shoup, D; Behnke, G; Peck, C; Agarwal, S; Gupta, R K; Fagan, J W;
81.
80.
79.
76.
77.
78. Sahoo, Y; Pizem, H; Fried, T; Golodnitsky, D; Burstein, L; Sukenik, C N; Markovich,
GAlkyl Phosphonate/Phosphate Coating on Metallic Nanoparticles: A Comparison with Fatty Acids Langmuir2001, 17, 7907–7911, 101021/la010703+
97. Heidari, “Manufacturing Process of Solar Cells Using Cadmium Oxide (CdO) and Rhodium (III) Oxide (Rh2O3) Nanoparticles as Anti– Cancer Therapy”, Arch Cancer Res 4: 1, 2016
96. Heidari, “Numerical Study on Multi–Component Reactions (MCRs) in Two A–Type and B–Type Conformations of Nucleic Acids to Determine Ligand Binding Modes, Binding Constant and Stability of Nucleic Acids in Cadmium Oxide (CdO) Nanoparticles–Nucleic Acids Complexes as Anti–Cancer Drugs”, Arch Cancer Res 4: 2, 2016
95. Heidari, “Simulation of Temperature Distribution of DNA/RNA of Human Cancer Cells Using Time–Dependent Bio–Heat Equation and Nd: YAG Lasers”, Arch Cancer Res 4: 1, 2016
94. Heidari, C Brown, “Study of Composition and Morphology of Cadmium Oxide (CdO) Nanoparticles for Eliminating Cancer Cells”, J Nanomed Res, Volume 2, Issue 5, 20 Pages, 2015
93. Heidari, C Brown, “Study of Surface Morphological, Phytochemical and Structural Characteristics of Rhodium (III) Oxide (Rh2O3) Nanoparticles”, International Journal of Pharmacology, Phytochemistry and Ethnomedicine, Volume 1, Issue 1, Pages 15–19, 2015
92. Heidari, “An Experimental Biospectroscopic Study on Seminal Plasma in Determination of Semen Quality for Evaluation of Male Infertility”, Int J Adv Technol 7: e007, 2016
91. Heidari, “Extraction and Preconcentration of N–Toly–Sulfonyl–Phosphoramid– Saeure–Dichlör as an Anti–Cancer Drug from Plants: A Pharmacogносmy Study”, J Pharmacogn Nat Prod 2: e103, 2016
90. Heidari, “Thermodynamic Study on Hydration and Dehydration of DNA and RNA– Amphiphile Complexes”, J Bioeng Biochem Sci S: 006, 2016
89. Heidari, “Computational Studies on Molecular Structures and Carbonyl and Ketene Groups’ Effects of Singlet and Triplet Energies of Azidoketene O=C=CH–NNN and Isocyanoketene O=C–CH=N–O”, J Appl Comput Math 5: e42, 2016
88. Heidari, “Study of Irradiations to Enhance the Induces the Dissociation of Hydrogen Bonds between Peptide Chains and Transition from Helix Structure to Random Coil Structure Using ATR–FTIR, Raman and 1HNMR Spectroscopies”, J Biomol Res Ther 5: e146, 2016
87. Heidari, “Future Prospects of Point Fluorescence Spectroscopy, Fluorescence Imaging and Fluorescence Endoscopy in Photodynamic Therapy (PDT) for Cancer Cells”, J Bioanal Biomater 6: e135, 2016
86. Heidari, “Bio–Spectroscopic Study of DNA Density and Color Role as Determining Factor for Absorbed Irradiation in Cancer Cells”, Adv Cancer Prev 1: e102, 2016
85. Heidari, “Manufacturing Process of Solar Cells Using Cadmium Oxide (CdO) and Rhodium (III) Oxide (Rh2O3) Nanoparticles”, J Biotechnol Biomater 6: e125, 2016
84. Heidari, “A Novel Experimental and Computational Approach to Photosensitization of Telomeric DNA/RNA: A Biospectroscopic and Photobiological Study”, J Res Development 4: 144, 2016
83. Heidari, “Biophysical and Pharmacodynamic Study of Microporous Moleculary Imprinted Polymer Selective for Vancomycin, Teicoplanin, Ortivancin, Telavancin and Deltavancin Binding”, Biochem Physiol 5: e146, 2016
82. Heidari, “Anti–Cancer Effect of UV Irradiation at Presence of Cadmium Oxide (CdO) Nanoparticles on DNA of Cancer Cells: A Photodynamic Therapy Study”, Arch Cancer Res 4: 1, 2016
81. Heidari, “Biospectroscopic Study on Multi–Component Reactions (MCRs) in Two A–Type and B–Type Conformations of Nucleic Acids to Determine Ligand Binding Modes, Binding Constant and Stability of Nucleic Acids in Cadmium Oxide (CdO) Nanoparticles–Nucleic Acids Complexes as Anti–Cancer Drugs”, Arch Cancer Res 4: 2, 2016
80. Heidari, “Simulation of Temperature Distribution of DNA/RNA of Human Cancer Cells Using Time–Dependent Bio–Heat Equation and Nd: YAG Lasers”, Arch Cancer Res 4: 2, 2016
79. Heidari, “Quantitative Structure–Activity Relationship (QSAR) Approximation for Cadmium Oxide (CdO) and Rhodium (III) Oxide (Rh2O3) Nanoparticles as Anti–Cancer Drugs for the Catalytic Formation of Provil DNA from Viral RNA Using Multiple Linear and Non–Linear Correlation Approach”, Ann Clin Lab Res 4: 1, 2016
78. Heidari, “Biomedical Study of Cancer Cells DNA Therapy Using Laser Irradiations at Presence of Intelligent Nanoparticles”, J Biomedical Sci 5: 2, 2016
77. Heidari, “Measurement the Amount of Vitamin D2 (Ergocalciferol), Vitamin D3 (Cholecalciferol) and Absorbable Calcium (Ca2+), Iron (II) (Fe2+), Magnesium (Mg2+), Phosphate (PO4–) and Zinc (Zn2+) in Apricot Using High–Performance Liquid Chromatography (HPLC) and Spectroscopic Techniques”, J Biomost Batch 2: 292, 2016
76. Heidari, “Spectroscopy and Quantum Mechanics of the Helium Dimer (He2+) and Neon Dimer (Ne2+), Argon Dimer (Ar2+), Krypton Dimer (Kr2+), Xenon Dimer (Xe2+), Radon Dimer(Rn2+) and Ununoctium Dimer (Uuo2+) Molecular Cations”, Chem Sci J 7: e121, 2016
75. Heidari, “Human Toxicity Photodynamic Therapy Studies on DNA/RNA Complexes as a Promising New Sensitizer for the Treatment of Malignant Tumors Using Bio– Spectroscopic Techniques”, J Drug Metab Toxicol 7: e129, 2016

Dent Oral Maxillofac Res, 2019 doi: 10.15761/DOMR.1000326 Volume 5: 8-19
Heidari A (2019) Development of successful formulations for oral drug delivery concepts of iridium nanoparticles in human gum cancer cells, tissues and tumors treatment under synchrotron radiation

114. Heidari, “Novel and Stable Modifications of Intelligent Cadmium Oxide (CdO) Nanoparticles as Anti-Cancer Drug in Formation of Nucleic Acids Complexes for Human Cancer Cells’ Treatment”, Biochem Pharmacol (Los Angel) 5: 207, 2016

115. Heidari, “A Combined Computational and QM/MM Molecular Dynamics Study on Boron Nitride Nanotubes (BNNTs), Amorphous Boron Nitride Nanotubes (a-BNNTs) and Hexagonal Boron Nitride Nanotubes (h-BNNTs) as Hydrogen Storage”, Struct Chem Crystallogr Comman 2: 1, 2016

116. Heidari, “Pharmaceutical and Analytical Chemistry Study of Cadmium Oxide (CdO) Nanoparticles Synthesis Methods and Properties as Anti-Cancer Drug and its Effect on Human Cancer Cells”, Pharm Anal Chem Open Access 5: e129, 2016

117. Heidari, “A Chemotherapeutic and Bio spectroscopic Interaction of the Investigation of Double-Standard DNA/RNA-Binding Molecules with Cadmium Oxide (CdO) and Rhodium (II) Oxide (RuO2) Nanoparticles as Anti-Cancer Drugs for Cancer Cells’ Treatment”, Chemo Open Access 5: e129, 2016

118. Heidari, “Pharmacokinetics and Experimental Therapeutic Study of DNA and Other Biomolecules Using Lasers: Advantages and Applications”, J Pharmacokin Exp Ther 1: e005, 2016

119. Heidari, “Determination of Ratio and Stability Constant of DNA/RNA in Human Cancer Cells and Cadmium Oxide (CdO) Nanoparticles Complexes Using Analytical Electrochemical and Spectroscopic Techniques”, Insights Anal Electrochem 2: 1, 2016

120. Heidari, “Discriminate between Antibacterial and Non-Antibacterial Drugs Artificial Neuronal Networks of Multilayer Perceptron (MLP) Type Using a Set of Topological Descriptors”, J Heavy Met Toxicity Dis 1: 2, 2016

121. Heidari, “Combined Theoretical and Computational Study of the Belousov–Zhabotinsky Chaotic Reaction and Curius Rearrangement for Synthesis of Methylanthrene, Cisplatin, Streptozotocin, Cycliclophosphamide, Melphalan, Busulphan and BCNU as Anti-Cancer Drugs”, Insights Med Phys 1: 2, 2016

122. Heidari, “A Translational Biomedical Approach to Structural Arrangement of Amino Acids’ Complexes: A Combined Theoretical and Computational Study”, Transl Biomed 7: 2, 2016

123. Heidari, “Ab Initio and Density Functional Theory (DFT) Studies of Dynamic NMR Shielding Tensors and Vibrational Frequencies of DNA/RNA and Cadmium Oxide (CdO) Nanoparticles Complexes in Human Cancer Cells”, J Nanomedine Biotherapeutic Discuss 6: e144, 2016

124. Heidari, “Molecular Dynamics and Monte-Carlo Simulations for Replacement Sugars in Insulin Resistance, Obesity, LDL Cholesterol, Triglycerides, Metabolic Syndrome, Type 2 Diabetes and Cardiovascular Disease: A Glycobiological Study”, J Glycolibid 3: e111, 2016

125. Heidari, “Synthesis and Study of 5-[(Phenylisilyloxy)Aminino]–1,3,4-Thiadiazole–2-Sulfonamide as Potential Anti-Pertussis Drug Using Chromatography and Spectroscopy Techniques”, Transl Med (Sunnyvale) 6: e138, 2016

126. Heidari, “Nitrogen, Oxygen, Phosphorus and Sulphur Heteroacetic Anti-Cancer Nano Drugs Separation in the Supercritical Fluid of Oxygen (O3) Using Soave–Redlich–Kwong (SRK) and Pang–Robin (PR) Equations”, Electronic J Biol 12: 4, 2016

127. Heidari, “An Analytical and Computational Infrared Spectroscopic Review of Vibrational Modes in Nucleic Acids”, Austin J Anal Pharm Chem 3 (1): 1058, 2016

128. Heidari, C Brown, “Phase, Composition and Morphology Study and Analysis of Os-Pd-HC Nanoocomposites”, Nano Res Appl 2: 1, 2016

129. Heidari, C Brown, “Vibrational Spectroscopic Study of Intensities and Shifts of Symmetric Vibration Modes of Oxygen Dithiol by Cumeone”, International Journal of Advanced Chemistry, 4 (1) 5–9, 2016

130. Heidari, “Study of the Role of Anti-Cancer Molecules with Different Sizes for Decreasing Corresponding Bulk Tumor Multiple Organs or Tissues”, Arch Can Res 4: 2, 2016

131. Heidari, “Genomics and Proteomics Studies of Zolpidem, Necopidem, Alpidem, Saripidem, Miroprofen, Zolimidine, Olprinone and Abafungin as Anti-Tumor, Anti-Viral, Anti-Tumor and Anti-Microbial Drugs: A Clinical Approach”, Transl Biomed 7: 2, 2016

132. Heidari, “Biotranslational Medical and Bio spectroscopic Studies of Cadmium Oxide (CdO) Nanoparticles-DNA/RNA Straight and Cycle Chain Complexes as Potential Anti-Viral, Anti-Tumor and Anti-Microbial Drugs: A Clinical Approach”, Transl Biomed 7: 2, 2016

133. Heidari, “A Comparative Study on Simultaneous Determination and Separation of Adscded Cadmium Oxide (CdO) Nanoparticles on DNA/RNA of Human Cancer Cells Using Biospectroscopic Techniques and Dielectrophoresis (DEP) Method”, Arch Can Res 4: 2, 2016

134. Heidari, “Cheminformatics and System Chemistry of Cisplatin, Carboplatin, Nedaplatin, Oxaliplatin, Heptaplatin and Lohaplatin as Anti-Cancer Nano Drugs: A Combined Computational and Experimental Study”, J Inform Data Min 4: 5, 2016

135. Heidari, “Linear and Non-Linear Quantitative Structure–Anti-Cancer–Activity Relationship (QSACAR) Study of Hydrous Ruthenium (IV) Oxide (RuO2) Nanoparticles as Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs) and Anti-Cancer Nano Drugs", J Integr Oncol 5: e110, 2016

136. Heidari, “Synthesis, Characterization and Biospectroscopic Studies of Cadmium Oxide (CdO) Nanoparticles–Nucleic Acids Complexes Absence of Soluble Polymer as a Protective Agent Using Nucleic Acids Condensation and Solution Reduction Method”, J Nanosci Curr Res 1: e01, 2016

137. Heidari, “Copolylation and Collinearity of 4–Dimino–2,2-Bithiazole in One Domain of Chromyxin and Primycinic to be Responsible for Binding of Cadmium Oxide (CdO) Nanoparticles to DNA/RNA Bidentate Ligands as Anti-Tumor Nano Drug”, Int J Drug Dev & Res 8: 007–008, 2016

138. Heidari, “A Pharmacovigilance Study on Linear and Non-Linear Quantitative Structure (Chromatographic) Retention Relationships (QSRR) Models for the Prediction of Retention Time of Anti-Cancer Nano Drugs under Synchrotron Radiations”, J Pharmcovicgil 4: e161, 2016

139. Heidari, “Novel and Stable Modifications of Intelligent Cadmium Oxide (CdO) Nanoparticles–Nucleic Acids Complexes Absence of Soluble Polymer as a Protective Agent Using Nucleic Acids Condensation and Solution Reduction Method”, J Nanosci Curr Res 1: e01, 2016

140. Heidari, “Pharmacokinetics and Experimental Therapeutic Study of DNA and Other Biomolecules Using Lasers: Advantages and Applications”, J Pharmacokin Exp Ther 1: e005, 2016

141. Heidari, “A Translational Biomedical Approach to Structural Arrangement of Amino Acids’ Complexes: A Combined Theoretical and Computational Study”, Transl Biomed 7: 2, 2016

142. Heidari, “Ab Initio and Density Functional Theory (DFT) Studies of Dynamic NMR Shielding Tensors and Vibrational Frequencies of DNA/RNA and Cadmium Oxide (CdO) Nanoparticles Complexes in Human Cancer Cells”, J Nanomedine Biotherapeutic Discuss 6: e144, 2016

143. Heidari, “Molecular Dynamics and Monte-Carlo Simulations for Replacement Sugars in Insulin Resistance, Obesity, LDL Cholesterol, Triglycerides, Metabolic Syndrome, Type 2 Diabetes and Cardiovascular Disease: A Glycobiological Study”, J Glycolibid 3: e111, 2016

144. Heidari, “Synthesis and Study of 5-[(Phenylisilyloxy)Aminino]–1,3,4-Thiadiazole–2-Sulfonamide as Potential Anti-Pertussis Drug Using Chromatography and Spectroscopy Techniques”, Transl Med (Sunnyvale) 6: e138, 2016

145. Heidari, “Nitrogen, Oxygen, Phosphorus and Sulphur Heteroacetic Anti-Cancer Nano Drugs Separation in the Supercritical Fluid of Oxygen (O3) Using Soave–Redlich–Kwong (SRK) and Pang–Robin (PR) Equations”, Electronic J Biol 12: 4, 2016

146. Heidari, “An Analytical and Computational Infrared Spectroscopic Review of Vibrational Modes in Nucleic Acids”, Austin J Anal Pharm Chem 3 (1): 1058, 2016

147. Heidari, C Brown, “Phase, Composition and Morphology Study and Analysis of Os-Pd-HC Nanoocomposites”, Nano Res Appl 2: 1, 2016

148. Heidari, C Brown, “Vibrational Spectroscopic Study of Intensities and Shifts of Symmetric Vibration Modes of Oxygen Dithiol by Cumeone”, International Journal of Advanced Chemistry, 4 (1) 5–9, 2016

149. Heidari, “Study of the Role of Anti-Cancer Molecules with Different Sizes for Decreasing Corresponding Bulk Tumor Multiple Organs or Tissues”, Arch Can Res 4: 2, 2016

150. Heidari, “Genomics and Proteomics Studies of Zolpidem, Necopidem, Alpidem, Saripidem, Miroprofen, Zolimidine, Olprinone and Abafungin as Anti-Tumor, Peptide Antibiotics, Antiviral and Central Nervous System (CNS) Drugs”, J Data Mining Genomics & Proteomics 7: e125, 2016

151. Heidari, “Pharmacogenomics and Pharmacoproteomics Studies of Phosphodiesterase-5 (PDE5) Inhibitors and Pacilxel Albumin-Stabilized Nanoparticles as Sandwiched Anti-Cancer Nano Drugs between Two DNA/RNA Molecules of Human Cancer Cells’, J Pharmacogenomics Pharmacoproteomics 7: e153, 2016
216. Heidari, “Fluorescence Spectroscopy, Phosphorescence Spectroscopy and Luminescence Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time”, SM J Clin Med Imaging, 4 (1): 1018–1018, 2018

217. Heidari, “Nuclear Inelastic Scattering Spectroscopy (NIS) and Nuclear Inelastic Absorption Spectroscopy (NIAS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, Int J Pharm Sci, 2 (1): 1–14, 2018

218. Heidari, “X-Ray Diffraction (XRD), Powder X-Ray Diffraction (PXRD) and Energy-Dispersive X-Ray Diffraction (EDXRD) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, J Oncol Res, 2 (1): 1–14, 2018

219. Heidari, “Correlation Two-Dimensional Nuclear Magnetic Resonance (NMR) (2D-NMR) (COSY) Imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, EMS Can Sci, 1:1–1001, 2018

220. Heidari, “Thermal Spectroscopy, Photothermal Spectroscopy, Thermal Microspectroscopy, Photothermal Microspectroscopy, Thermal Macroscopic Spectroscopy and Photothermal Macroscopic Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, SM J Biometrics Biostat, 3 (1): 1024, 2018

221. Heidari, “A Modern and Comprehensive Experimental Biospectroscopic Comparative Study on Human Common Cancers’ Cells, Tissues and Tumors before and after Synchrotron Radiation Therapy”, Open Acc J Oncol Med 1 (1), 2018

222. Heidari, “Heteronuclear Correlation Experiments such as Heteronuclear Single-Quantum Correlation Spectroscopy (HSQC), Heteronuclear Multiple-Quantum Correlation Spectroscopy (HMQC) and Heteronuclear Multiple-Bond Correlation Spectroscopy (HMBC) Comparative Study on Malignant and Benign Human Endocrinology and Thyroid Cancer Cells and Tissues under Synchrotron Radiation”, J Endocrinol Thyroid Res, 3 (1): 555603, 2018

223. Heidari, “Nuclear Resonance Vibrational Spectroscopy (NIRVS), Nuclear Inelastic Scattering Spectroscopy (NIS), Nuclear Inelastic Absorption Spectroscopy (NIAS) and Nuclear Resonant Inelastic X-Ray Scattering Spectroscopy (NRIXSS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, Int J Bioorg Chem Mol Biol 6 (1): 1–5, 2018

224. Heidari, “A Novel and Modern Experimental Approach to Vibrational Circular Dichroism Spectroscopy and Video Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under White and Monochromatic Synchrotron Radiation”, Glob J Endocrinol Metab 1 (3) GJEM 000514-006519, 2018

225. Heidari, “Pros and Cons Controversy on Heteronuclear Single-Quantum Correlation Spectroscopy (HSQC), Heteronuclear Multiple-Quantum Correlation Spectroscopy (HMQC) and Heteronuclear Multiple-Bond Correlation Spectroscopy (HMBC) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, J Analit Molecul Tech 3 (1): 8, 2018

226. Heidari, “Investigation of Cyst Types Using Synchrotron Technology for Proton Beam Therapy: An Experimental Biospectroscopic Comparative Study”, European Modern Studies Journal, Vol 2, No 1, 13–29, 2018

227. Heidari, “Saturated Spectroscopy and Unsaturated Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, Imaging J Clin Medical Sci 5 (1): 001–007, 2018

228. Heidari, “Small-Angle Neutron Scattering (SANS) and Wide-Angle X-Ray Diffraction (WAXD) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, Int J Bioorg Chem Mol Biol 6 (2): 1–6, 2018

229. Heidari, “Investigation of Bladder Cancer, Breast Cancer, Colorectal Cancer, Endometrial Cancer, Kidney Cancer, Leukemia, Liver, Lung Cancer, Melanoma, Non-Hodgkin Lymphoma, Pancreatic Cancer, Prostate Cancer, Thyroid Cancer and Non-Melanoma Skin Cancer Using Synchrotron Technology for Proton Beam Therapy: An Experimental Biospectroscopic Comparative Study”, Ther Res Skin Dis 1 (1), 2018

230. Heidari, “Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) Spectroscopy, Micro-Attenuated Total Reflectance Fourier Transform Infrared (Micro-ATR-FTIR) Spectroscopy and Macro-Attenuated Total Reflectance Fourier Transform Infrared (Macro-ATR-FTIR) Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time”, International Journal of Chemistry Papers, 2 (1): 1–12, 2018

231. Heidari, “Iridium Nanoparticles Spectroscopy, Iridium Emission Spectroscopy and 57Fe Iridium Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, Acta Scientific Cancer Biology 23: 17–20, 2018

232. Heidari, “Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time”, Organic & Medicinal Chem J 6 (1): 555676, 2018

233. Heidari, “Correlation Spectroscopy, Exclusive Correlation Spectroscopy and Total Correlation Spectroscopy Comparative Study on Malignant and Benign Human AIDS-Related Cancers and Tissues with the Passage of Time under Synchrotron Radiation”, Int J Bioanal Biomol 2 (1): 001–007, 2018

234. Heidari, “Biomedical Instrumentation and Applications of Biospectroscopic Methods and Techniques in Malignant and Benign Human Cancer Cells and Tissues Studies under Synchrotron Radiation and Anti-Cancer Nano Drugs Delivery”, Am J Nanotechnol Nanomed 1 (1): 001–009, 2018

235. Heidari, “Vivo 1H or Proton NMR, 13C NMR, 15N NMR and 31P NMR Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, Ann J Biochem Biophys 4 (1): 001, 2018

236. Heidari, “Heteronuclear Correlation Experiments such as Heteronuclear Single-Quantum Correlation Spectroscopy (HSQC), Heteronuclear Multiple-Quantum Correlation Spectroscopy (HMQC) and Heteronuclear Multiple-Bond Correlation Spectroscopy (HMBC), Heteronuclear Multiple-Bond Correlation Spectroscopy (HMBC), Nuclear Overhauser Effect Spectroscopy (NOESY) and Rotating Frame Nuclear Overhauser Effect Spectroscopy (ROESY) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, Acta Scientific Pharmaceutical Sciences 25: 30–35, 2018

237. Heidari, “Small-Angle X-Ray Scattering (SAXS), Ultra-Small Angle X-Ray Scattering (USAXS), Fluctuation X-Ray Scattering (FXS), Wide-Angle X-Ray Scattering (WAXS), Grazing-Incidence Small-Angle X-Ray Scattering (GISAXS), Grazing-Incidence Wide-Angle X-Ray Scattering (GIWAXS), Small-Angle Neutron Scattering (SANS), Grazing-Incidence Small-Angle Neutron Scattering (GISANS), X-Ray Diffraction (XRD), Powder X-Ray Diffraction (PXRD), Wide-Angle X-Ray Diffraction (WAXD), Grazing-Incidence X-Ray Diffraction (GIAD) and Energy-Dispersive X-Ray Diffraction (EDXRD) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, Oncol Res Rev, Volume 1 (1): 1–10, 2018

238. Heidari, “Pump-Probe Spectroscopy and Transient Grating Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, Adv Material Sci Engg, Volume 2, Issue 1, Pages 1–7, 2018

239. Heidari, “Grazing-Incidence Small-Angle X-Ray Scattering (GISAXS) and Grazing-Incidence Wide-Angle X-Ray Scattering (GIWAXS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, Insights Pharmacol Pharm Sci 1 (1): 1–8, 2018

240. Heidari, “Acoustic Spectroscopy, Acoustic Resonance Spectroscopy and Auger Spectroscopy Comparative Study on Anti-Cancer Nano Drugs Delivery in Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, Nanosci Technol 5 (1): 1–9, 2018

241. Heidari, “Niosium, Technetium, Ruthenium, Rhodium, Hafnium, Iridium, Osmium and Iridium Ions Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocylotron Radiations”, Nanomed Nanotechnol, 3 (2): 000138, 2018
245. Heidari, “Homonuclear Correlation Experiments such as Homonuclear Single-Quantum Correlation Spectroscopy (HSQC), Homonuclear Multiple-Quantum Coherence Spectroscopy (HMQC) and Homonuclear Multiple-Bond Correlation Spectroscopy (HMBC) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, Journal of Proteomics Bioinform & Genomics 5 (1): 1024, 2018.

246. Heidari, “Atomic Force Microscopy Based Infrared (AFM-IR) Spectroscopy and Nuclear Resonance Vibrational Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time”, Journal of Biotechnol Bioeng 5 (3): 142–148, 2018.

247. Heidari, “Time-Dependent Vibrational Spectral Analysis of Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, Journal of Cancer Oncol, 2 (2): 000124, 2018.

248. Heidari, “Palaunamine and Olympiadane Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations”, Acta Ogn Inorg Chem Sci 3 (1), 2018.

249. R Gobato, Heidari, “Infrared Spectrum and Sites of Action of Sanguinarine by Molecular Mechanics and ab initio Methods”, International Journal of Atmospheric and Oceanic Sciences Vol 2, No 1, pp 1–9, 2018.

250. Heidari, “Angelic Acid, Diabolic Acids, Draculin and Miraculin Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations”, Medicin & Anal Chem Int J, 2 (1): 000111, 2018.

251. Heidari, “Gamma Linolenic Methyl Ester, 5-Heptadeca-5,8,11- Trienyl 3,4-Oxadiol–2-Thiol, Squalene–1,2,5,6,9-Octadiol 2–Ethyl Hexyl Glycerol, Ruscogenin, Nocturnoside B, Protodioscine B, Parquoside-B, Leicarploside, Narangerin, 7-Methoxy Hesperitin, Luteol, Rosemariquine, Rosumanol and Rosmarinol Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations”, Int J Pharma Anal Acta, 2 (1): 007–014, 2018.

252. Heidari, “Fourier Transform Infrared (FTIR) Spectroscopy, Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) Spectroscopy, Macro-Attenuated Total Reflectance Fourier Transform Infrared (Macro-ATR-FTIR) Spectroscopy, Infrared Photodissociation Spectroscopy, Two-Dimensional Infrared Correlation Spectroscopy, Linear Two-Dimensional Infrared Spectroscopy, Non-Linear Two-Dimensional Infrared Spectroscopy, Infrared Nuclear Magnetic Resonance Vibrational Spectroscopy, Thermal Infrared Spectroscopy, Photothermal Infrared Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time”, Glob Imaging Insights, Volume 3 (2): 1–14, 2018.

253. Heidari, “Heteronuclear Single-Quantum Correlation Spectroscopy (HSQC) and Heteronuclear Multiple-Bond Correlation Spectroscopy (HMBC) Comparative Study on Malignant and Benign Human Cancer Cells, Tissues and Tumors under Synchrotron and Synchrocyclotron Radiations”, Chronic l of Medicine and Surgery 23: 144–156, 2018.

254. Heidari, “Tetrakis [3, 5-bis (Trifluoromethyl) Phenyl] Borate (BARF)-Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules”, Medical Research and Clinical Case Reports 23: 144–156, 2018.

255. Heidari, “Syndone, Mchnchone, Montrealdone, Mogone, Montelukast, Quebecol and Palau'amine-Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules”, Sur Cas Stud Op Acc J 1 (2): 000124, 2018.

256. Heidari, “Fornacite, Orotic Acid, Rhamnetin, Sodium Ethyl Xanthate (SEX) and Spermine (Spermidine or Polyamine) Nanomolecules Incorporation into the Nanopolymeric Matrix (NPM)”, International Journal of Biochemistry and Biophysics, Vol 4: Issue 1, Pages 1–19, 2018.

257. Heidari, R Gobato, “Putrescine, Cadaverine, Spermine and Spermidine-Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules”, Panar Journal of Science and Education (PISE)-v4, n5, (1–14) July 1, 2018.

258. Heidari, R Gobato, “Putrescine, Cadaverine, Spermine and Spermidine-Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules”, Parana Journal of Science and Education (PISE)-v4, n5, (1–14) July 1, 2018.

259. Heidari, “Improving the Performance of Nano-Endofullerenes in Polyimine Nanoparticle-Based Biosensors by Covering Califerium Colloidial Nanoparticles with Multi-Walled Carbon Nanotubes”, Journal of Advances in Nanomaterials, Vol 3, No 1, Pages 1–28, 2018.

260. R Gobato, Heidari, “Molecular Mechanics and Quantum Chemical Study on Sites of Action of Sanguinarine Using Vibrational Spectroscopy Based on Molecular Mechanics and Quantum Chemical Calculations”, Malaysian Journal of Chemistry, Vol 20 (1), 1–23, 2018.

261. Heidari, “Vibrational Biospectroscopic Studies on Anti–cancer Nanopharmaceuticals (Part II)”, Malaysian Journal of Chemistry, Vol 20 (1), 33–73, 2018.

262. Heidari, “Vibrational Biospectroscopic Studies on Anti–cancer Nanopharmaceuticals (Part II)”, Malaysian Journal of Chemistry, Vol 20 (1), 74–117, 2018.

263. Heidari, “Uranocene (U(C8H8)2) and Bis(Cyclooctatetraene)Iron (Fe(C8H8)2 or Fe(COT2))-Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules”, Chemistry Reports, Vol 1, Iss 2, Pages 1–16, 2018.

264. Heidari, “Biomedical Systematic and Emerging Technological Study on Human Malignant and Benign Cancer Cells and Tissues Biospectroscopic Analysis under Synchrotron Radiation”, Glob Imaging Insights, Volume 3 (3): 1–7, 2018.

265. Heidari, “Deep-Level Transient Spectroscopy and X-Ray Photoelectron Spectroscopy (XPS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, Res Dev Mater Sci 7(2) RDMS000659, 2018.

266. Heidari, “C70-Carboxylfullerenes Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations”, Glob Imaging Insights, Volume 3 (3): 1–7, 2018.

267. Heidari, “The Effect of Temperature on Cadmium Oxide (CdO) Nanoparticles Produced by Synchrotron Radiation in the Human Cancer Cells, Tissues and Tumors”, International Journal of Advanced Chemistry, 6 (2): 140–156, 2018.

268. Heidari, “A Clinical and Molecular Pathology Investigation of Correlation Spectroscopy (COSY), Exclusive Correlation Spectroscopy (ECSY), Total Correlation Spectroscopy (TOCSY), Heteronuclear Single-Quantum Correlation Spectroscopy (HSQC) and Heteronuclear Multiple-Bond Correlation Spectroscopy (HMBC) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron and Synchrocyclotron Radiations”, J Oncol Res; 1 (1): 1–20, 2018.

269. Heidari, “Use of Molecular Enzymes in the Treatment of Chronic Disorders”, Canc Oncol Open Access J 1 (1): 12–15, 2018.

270. Heidari, “Vibrational Biospectroscopic Study and Chemical Structure Analysis of Unsaturated Polyamides Nanoparticles as Anti-Cancer Polymeric Nanomedicines Using Synchrotron Radiation”, International Journal of Advanced Chemistry, 6 (2), 167–189, 2018.

271. Heidari, “Adamantane, Irene, Nafaxone and Pyridine-Enhanced Precatalyst Preparation Stabilization and Initiation (PEPPSI) Nano Molecules”, Madridge J Nove Drug Res 2 (1): 61–67, 2018.

272. Heidari, “Heteronuclear Single-Quantum Correlation Spectroscopy (HSQC) and Heteronuclear Multiple-Bond Correlation Spectroscopy (HMBC) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron and Synchrocyclotron Radiations”, J Oncol Res; 1 (1): 61–67, 2018.

273. Heidari, R Gobato, “A Novel Approach to Reduce Toxicities and to Improve Bioavailability of DNA/RNA of Human Cancer Cells-Containing Coccine (Coke), Lysergide (Lysergic Acid Diethyl Amide or LSD), Δ⁹-Tetrahydrocannabinol (THC) (C–trans–Δ⁹-Tetrahydrocannabinol), Theobromine (Theanthe), Caffeine, Aspartame (APM) (Nutrasweet) and Zsidovine (ZDV) (Azidothymidine (AZT)) as Anti-Cancer Drugs by Coassembly of Dual Anti-Cancer Nano Drugs to Inhibit DNA/RNA of Human Cancer Cells Drug Resistance”, Parana Journal of Science and Education, v 4, n 6, pp 1–17, 2018.
Heidari A (2019) Development of successful formulations for oral drug delivery concepts of iridium nanoparticles in human gum cancer cells, tissues and tumors treatment under synchrotron radiation.
Development of successful formulations for oral drug delivery concepts of iridium nanoparticles in human gum cancer cells, tissues and tumors treatment under synchrotron radiation

434. Heidari, J Esposito, Caissutti, “Ciguatoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Glob Imaging Insights 4 (2), 1–14, 2019

435. Heidari, J Esposito, Caissutti, “Brevetoxin (a) and (b) Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis: A Spectroscopic Study on an Anti-HIV Drug”, Cientific Drug Delivery Research 1 (2), 11–16, 2019

436. Heidari, J Esposito, Caissutti, “Cobrotoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Trends in Res 3 (1), 1–13, 2019

437. Heidari, J Esposito, Caissutti, “Cylindrospermopsin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Trends in Res 3 (1), 1–14, 2019

438. Heidari, J Esposito, Caissutti, “Anthrax Toxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Trends in Res 3 (1), 1–14, 2019

439. Heidari, K Schmitt, M Henderson, E Besana, “Investigation of Moscovium Nanoparticles as Anti-Cancer Nano Drugs for Human Cancer Cells, Tissues and Tumors Treatment”, Elixir Appl Chem 137A, 53943–53963, 2019

440. Heidari, K Schmitt, M Henderson, E Besana, “Study of Function of the Beam Energy and Holmium Nanoparticles Using 3D Finite Element Method (FEM) as an Optothermal Human Cancer Cells, Tissues and Tumors Treatment”, European Journal of Advances in Engineering and Technology, 6 (12): 34–62, 2019

441. Heidari, K Schmitt, M Henderson, E Besana, “Human Cancer Cells, Tissues and Tumors Treatment Using Dysprosium Nanoparticles”, Asian J Mat Chem 4 (3–4), pp 47–51, 2019

442. Heidari, K Schmitt, M Henderson, E Besana, “Simulation of Interaction of Synchrotron Radiation Emission as a Function of the Beam Energy and Plutonium Nanoparticles Using 3D Finite Element Method (FEM) as an Optothermal Human Cancer Cells, Tissues and Tumors Treatment”, J Cancer Research and Cellular Therapeutics, Volume 2 (4), Pages 1–19, 2019.

Copyright: ©2019 Heidari A. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.