Early maturity of Sandfish *Holothuria scabra* offers more prospective broodstock supply of a commercially important aquaculture species

J Tresnati1,3, I Yasir2,3, Syafiuddin2,3, R Aprianto3, A Yanti3, A D Bestari1,3, and A Tuwo2,3

1Fisheries Department, Faculty of Marine Science and Fisheries, Hasanuddin University, Makassar, Indonesia

2Marine Science Department, Faculty of Marine Science and Fisheries, Hasanuddin University, Makassar, Indonesia

3Multitrophic Research Group, Faculty of Marine Science and Fisheries, Hasanuddin University, Makassar, Indonesia

E-mail: ambotuwo62@gmail.com

Abstract. The supply of broodstock is a critical limitation on aquaculture of the commercially important sea cucumber *Holothuria scabra*. Previous research reported that *H. scabra* mature at a size of more than 450 g. This size is questionable because biologically primitive organisms such as *H. scabra* mature relatively early. This study aimed to analyze the size at first maturity of *H. scabra*. The first sexual maturity was analysed by dividing the *H. scabra* by weight with 25 g weight class intervals, resulting in 12 weight groups. The size at first sexual maturity was determined using mature *H. scabra* (Stages III, IV, and V). The first maturity of *H. scabra* was reached at a smaller size than previously reported, from 178 *H. scabra* that were observed, the first sexual maturity is achieved at 42 g gutted body weight. Small *H. scabra* potentially used as broodstock, which will produce *H. scabra* seeds in hatcheries. Although small in size, *H. scabra* mature can reproduce, of course, with a smaller reproductive capacity. Small size at the first sexual maturity offers the potential for dramatic improvements in the procurement of broodstock stock, by providing a much more accessible supply of *H. scabra* prospective broodstock.

1. Introduction

Sea cucumbers in the Southeast region of Asia, including Indonesia, have a significant economic value, especially for coastal communities [1-5]. Indonesia is the largest sea cucumber producer in the world [2, 6, 7]. However, sea cucumber production is still reliant on catches from the wild [8]. This wild catch is causing over-exploitation [9-12]. Moreover, in some areas sea cucumber populations have decreased to the point where they can be regarded as a rare species [13]. Several attempts have been made to increase sea cucumber production through the cultivation of the *H. scabra* in coastal ponds [14] and coastal areas [3, 8], but these efforts have not yielded the anticipated results [15]. *H. scabra* species was chosen to be cultivated because of its ability to tolerate a wide range of salinity [16]. Furthermore, it is one of the 16 main holothurians harvested commercially in Indonesian coastal waters [17].

Seed availability is one of the problems for culture and restocking of wild stocks of the sea cucumber [18]. The numbers of *H. scabra* juveniles caught from the wild is insufficient to meet the
needs of seeds. Meanwhile, *H. scabra* can be reproduced under hatchery conditions in millions but the number is not enough for their use in aquaculture. Seed production in hatcheries is limited by the availability of broodstock that can spawn in the hatchery [1]. There are two reasons that caused the limitation of broodstocks. Firstly, the number of *H. scabra* broodstock catches from nature is unpredictable. Secondly, large brooders are preferred for use in a hatchery, and the quantity available does not meet the demand [14, 19]. It means that the number of eligible broodstock is limited.

H. scabra is one of the most abundant and widely distributed tropical sea cucumbers [11, 20-27]. Over this broad distribution, *H. scabra* exhibits two main basic reproductive patterns, which are seasonally predictable spawning at high latitude [28, 29]; and year-round spawning, with seasonal spawning peaks, at low latitudes [30-32]. Previous research has also reported that *H. scabra* mature at a weight of 450-500 g [33]or 16.8 cm in length [23]. This size is questionable because biologically primitive organisms, such as *H. scabra*, generally tend to mature relatively early [32]. This size is also in contradiction with the reality observed in nature, where smaller sized sea cucumber with mature gonads have been encountered [32].

This uncertainty regarding the life history characteristics of *H. scabra* indicated the need for a study to determine the first maturity of *H. scabra*. It is hoped that the results of this study could help to overcome one of the problems experienced by *H. scabra* hatcheries, i.e., the availability of viable broodstock.

2. Materials and methods

H. scabra were collected at night during low tide, from the waters of Liukang Tupabbiring Utara Village, Pangkep Regency, South Sulawesi, Indonesia (4°42’13” S, 119°37’04” E), from March to June 2017. Total length (TL), gutted body weight (BW), and gonad wet weight (GW) of each individual was measured. Distribution of gonad maturity stage, gonad indices, and the bodyweight at first sexual maturity were analyzed by grouping the *H. scabra* into 12, based on their weight, with intervals of 25 g. The twelve groups were: <25 g, 25 to <50 g, 50 to <75 g, 75 to <100 g, 100 to <125 g, 125 to <150 g, 150 to <175 g, 175 to <200 g, 200 to <225 g, 225 to <250 g, 250 to <725 g, and 725 to <750 g.

Gonad maturity stages were determined by referring to the five stages of gonadal maturity for *H. scabra* described by Tuwo [32], which are the immature stage (Stage I), resting (Stage II), maturation (Stage III), mature (Stage IV), and post-spawning (Stage V). The level of gonad maturity of each sample for each group was determined and then calculated. The data was then presented as a percentage.

Gonad index (GI) was calculated from gutted body weight (BW) and gonad wet weight (GW) for each weight class using the equation described by [29]. \(GI = \left(\frac{GW}{BW} \right) \times 100 \). The length-weight relationship [24] was analysed using the exponential regression equation [34].

The size and weight at first maturity were defined from the percentage of sexually mature *H. scabra* [24], with gonad stage of III, IV, and V [28]. The size and weight at 50% of *H. scabra* attained sexually mature [23, 35] was estimated using the logarithmic regression equation [34].

3. Results

3.1. Holothuria scabra size

During the study, 178 *H. scabra* was observed. The length range of the sampled *H. scabra* was 3.0–23.0 cm with a mean of 12.60±4.03 cm, while the weight range was 7.80–363.51 g with a mean of 84.17±57.29 g. The regression equation for the length-weight relationship is \(Y = 8.635e^{0.159X} \), with \(R^2 = 0.645 \) (Figure 1).
3.2. Gonad maturity
During the study, all five maturity levels/stages were observed. Each stage occurred over a given weight range, characterized by the mean weight and standard deviation. Individuals in maturity Stage I ranged from 7.80-76.70 g (29.49±17.09 g); those in maturity Stage II ranged from 10.83-344.34 g (113.49±72.79 g), while maturity Stage III individuals ranged from 15.09-363.51 g (99.12±59.92 g), maturity Stage IV individuals ranged from 18.44-354.15 g (131.05±77.22 g), and maturity Stage V individuals ranged from 126.34-187.87 g (161.44±24.03 g). Maturity Stage I was found up to class 75-100 g. Maturity Stage II found from size 75 g upwards. Maturity stage III and IV were found in all gutted body weight groups. Maturity Stage V was found in both small and large-sized *H. scabra* (Figure 2).

3.3. Gonad index
The gonad index of *H. scabra* found in this study ranged from 0.03–59.48% (mean of 5.41±7.48%). The standard deviation range quite large for both overall and in each size class, especially for size classes above 275 g (Figure 3).
3.4. First maturity
Male and female H. scabra were observed to mature at a relatively small size (Figure 4). First maturity was 42 g gutted body weight (Figure 5).

Figure 3. Gonad Index of Sandfish Holothuria scabra by gutted bodyweight class.

Figure 4. Sandfish Holothuria scabra at the mature gonads (A: Male Stage IV; B: Female Stage IV).

4. Discussion
4.1. Holothuria scabra
Changes in the size of the average individual in a population can describe harvesting effort that occurs in a population [36]. During this study, the largest size class that collected was 275-300 g. The relatively small size of the individuals observed and collected during this study could be due to the effects of overfishing [11, 23], especially as there is anecdotal evidence that larger H. scabra used to be common at this site around 20 years ago [37]. As a comparison in the Sudanese Red Sea, even in poor habitat conditions, it has been reported that the gutted bodyweight of H. Scabra can reach 833-3000 g [33].
4.2. Gonad maturity
Gonad maturity represents the phase of reproductive organ development for both male and female organisms. Macroscopically, the structure of the sandfish gonads is the same as that of other sea cucumber gonads [28], and fish that have gonads resemble bags [38-40]. Previous studies indicate that the development of gonad maturity for both males and females H. scabra was synchronous [28, 32]; therefore, in this study, the distribution of gonad maturity was described using the combined gonad maturity of male and female. The size of mature H. scabra (Stages III, IV, and V) found in this study is much smaller than those found in previous studies for this species [32], as well as for other species of sea cucumbers [29, 41, 42]. Harvesting effort can lead to a negative impact on the size and age of organisms maturity. Therefore, it is necessary to search for ways to minimize harvesting impact on the reproductive biology of H. scabra [36]. Biologically, there are two types of reproductive strategies in organisms, strategies ‘r’ and ‘K’. The ‘r’ strategy is found in organisms that are dominantly controlled by their environmental factors and tend to reach physical maturation faster, while the ‘K’ strategy is controlled more by biological factors, such as the presence of competitors. Organisms that carry out the ‘K’ strategy are generally slow to achieve physical maturity compared to the other strategy [43]. The results of present study indicating that, H. scabra is an organism that uses the ‘r’ strategy and classified as total spawners, where each gonad tube only spawns once [32].

4.3. Gonad index
Gonad index portray the proportion of the weight of the gonad relative to the weight of the organism [44]. The gonad index value will increase, along with the development of gonad maturity [28]. The gonad index values found in the present study (Figure 5) were similar to those previously found in larger H. scabra from the same spot [32], and also relatively not different from the species found in the Indo Pacific region [28, 29], which shows that small H. scabra has reached maturity and ability to reproduce.

Naturally, H. scabra has many predators [45] and relatively easy to prey on because of its slow movements. Naturally, H. scabra is also prone to evisceration if disturbed [46]. Therefore, early maturity is thought to be a reproductive strategy for H. scabra to speed up its reproductive process so that it can reproduce at least once before being eaten by predators. On the other side, if it looks at the gonad index value, H. scabra seems to allocate more energy for reproduction than reef fish [39, 40] or large pelagic fish [47]. It is also thought to be a reproductive strategy for H. scabra to produce more eggs to increase the success of the reproductive process. These indicate that small H. scabra could be used as broodstock at a young age. The young H. scabra can be collected easily in a low tide zone without suffering from evisceration, so that it is more suitable for hatcheries conditions compared to

![Figure 5. Size at first maturity of Holothuria scabra related to gutted body weight.](image-url)
the larger *H. scabra*, which usually inhabit deeper water that it is usually more prone to eviction when they are moved from deep waters.

4.4. First maturity

The first maturity is not only an important parameter in the management of fisheries resources [35], but also important for broodstock management [48]. The average size at first maturity for *H. scabra* found in this study is smaller than that reported elsewhere. *H. scabra* from the lagoon of New Caledonia had an average size at first maturity of 140 g gutted body weight [29], while *H. scabra* from the Sudanese Red Sea Coast had an average size of 450-500 g at first maturity [33]. Two closely related species have also been reported as having higher weights at first maturity compared to the result found. *Holothuria atra* found in Sudanese waters [33], and from the lagoon of New Caledonia [29] had a gutted body weight at first maturity of 101 to 110 g and 110 g respectively, while *H. grisea* in Brazil had an average weight at first maturity of about 90 g [49]. Size at first maturity is generally used as a biological parameter in maximizing the yield per recruit [50, 51].

The ability of *H. scabra* to reproduce quickly could be an advantage in the context of aquaculture. This study indicates that, on average, from 178 *H. scabra* that were observed, the first sexual maturity is achieved at 42 g gutted body weight. This result offers the potential for dramatic improvements in the procurement of broodstock stock by providing a much more accessible supply of *H. scabra* prospective broodstock. Although small in size, *H. scabra* mature can reproduce, of course, with a smaller reproductive capacity. This smaller reproductive capacity can be solved by spawning large numbers of small broodstock through mass spawning.

5. Conclusion

The first maturity of *H. scabra* was reached at a smaller size than previously reported, from 178 *H. scabra* that were observed, the first sexual maturity is achieved at 42 g gutted body weight. Small *H. scabra* potentially used as broodstock, which will produce *H. scabra* seeds in hatcheries. Although small in size, *H. scabra* mature can reproduce, of course, with a smaller reproductive capacity. Small size at the first sexual maturity offers the potential for dramatic improvements in the procurement of broodstock stock, by providing a much more accessible supply of *H. scabra* prospective broodstock.

Acknowledgment

We would like to thank Universitas Hasanuddin for providing research funding (contract number 123/SP2H/LT/DPRM/III/2016; 005/SP2H/LT/DPRM/IV/2017; and 123/SP2H/PTNBH/DPRM/2018); and to Australia Awards Fellowship under Grant R170570. We wish to thank also to the James Cook University Team of Dr Naomi Gardiner and Dr Laurence McCook for their valuable advice. We would also like to thank Abigail Moore for proofreading the manuscript.

References

[1] Tuwo A and Tresnati J 2015 Sea cucumber farming in southeast Asia (Malaysia, Philippines, Indonesia, Vietnam). In Echinoderm Aquaculture. ed. N. P. Brown and S. D. Eddy, 331-352. New York, John Wiley & Sons. doi: 10.1002/9781119005810.

[2] Choo P-S 2008 Population status, fisheries and trade of sea cucumbers in Asia. In Sea cucumbers. A global review of fisheries and trade. ed. V. Toral-G randa, A. Lovatelli and M. Vasconcellos. FA O Fisheries and Aquaculture Technical Paper. No. 516. Rome, FAO. 81-118.

[3] Tuwo A 2005 Status of sea cucumber fisheries and farming in Indonesia FAO fisheries Technical Paper 49-56.

[4] Aprianto R, Amir N, Tresnati J, Tuwo A and Nakajima M 2019 Economically important sea cucumber processing techniques in South Sulawesi, Indonesia. In: IOP Conference Series: Earth and Environmental Science: 370 012082 IOP Publishing.
[5] Aprianto R, Amir N, Kasmiati, Matusalach, Fahrul, Syahrul, Tresnati J and Tuwo A 2020 Bycatch sea cucumber Holothuria scabra: processing and the quality characteristics. In: IOP Conference Series: Earth and Environmental Science: 473 012001 IOP Publishing
[6] Yusuf S, A. Tuwo, J. Tresnati, A.M. Moore and C. Conand 2017 Teripang fishing activities at Barang Lompo Island, Sulawesi, Indonesia: An update 20 years after a visit in 1996 SPC Beche-de-mer Information Bulletin 37 99-102.
[7] Purcell S W, Mercier A, Conand C, Hamel J F, Toral-Granda M V, Lovatelli A and Uthicke S 2013 Sea cucumber fisheries: global analysis of stocks, management measures and drivers of overfishing Fish and fisheries 14 34-59.
[8] Purcell S W, Hair C A and Mills D J 2012 Sea cucumber culture, farming and sea ranching in the tropics: progress, problems and opportunities Aquaculture 368 68-81.
[9] Massin C 1999 Reef-dwelling Holothuroidea (Echinodermata) of the Spermonde archipelago (south-west Sulawesi, Indonesia) Zool Verh 329 143.
[10] Battaglene S 1999 Culture of tropical sea cucumbers for stock restoration and enhancement Naga, The ICLARM Quarterly 22 4-11.
[11] Hasan M H 2005 Destruction of a Holothuria scabra population by overfishing at Abu Rahamada Island in the Red Sea Marine Environmental Research 60 489-511.
[12] Yanti A, Tresnati J, Yasir I, Syafiuddin, Rahmani P Y, Aprianto R and Tuwo A 2020 Size at the maturity of sea cucumber Holothuria scabra. Is it an overfishing sign in Wallacea Region? In: IOP Conference Series: Earth and Environmental Science: 473 012056 IOP Publishing.
[13] Uthicke S and Conand C 2005 Local examples of beche-de-mer overfishing: An initial summary and request for information SPC beche-de-mer Information Bulletin 21 9-14.
[14] Hair C, Pickering T, Meo S, Vereivalu T, Hunter J and Cavakiqali L 2011 Sandfish culture in Fiji Islands SPC Beche-de-mer Information Bulletin 31 3-11.
[15] Pitt R and Duy N 2003 How to produce 100 tonnes of sandfish SPC beche-de-mer Information Bulletin 18 15-7.
[16]asha P, Rajagopalan M and Diwakar K 2011 Influence of salinity on hatching rate, larval and early juvenile rearing of sea cucumber Holothuria scabra Jaeger Journal of the Marine Biological Association of India 53 218-24.
[17] Conand C and Tuwo. A 1996 Commercial holothurians in South Sulawesi, Indonesia: fisheries and mariculture SPC Beche-de-mer Information Bulletin 8 17-44.
[18] Eriksson H, Robinson G, Slater M J and Troell M 2012 Sea cucumber aquaculture in the Western Indian Ocean: challenges for sustainable livelihood and stock improvement Ambio 41 109-21.
[19] James D 1994 Seed production in sea cucumbers Aqua International 1 15-26.
[20] Al-Rashdi K M, Claereboudt M R and Al-Busaidi S S 2007 Density and size distribution of the sea cucumber, Holothuria scabra (Jaeger, 1935) at six exploited sites in Mahout Bay, Sultanate of Oman Journal of Agricultural and Marine Sciences [JAMS] 12 43-51.
[21] Conand C 2004 Present status of world sea cucumber resources and utilization: an international overview Advances in sea cucumber aquaculture and management 13-23.
[22] Conand C and Bryne M 1993 A review of recent developments in the world sea cucumber fisheries Marine fisheries review 55 1-13.
[23] Kithakeni T and Ndaro S 2002 Some aspects of sea cucumber, Holothuria scabra (Jaeger, 1935), along the coast of Dar es Salaam Western Indian Ocean J. Mar. Sci 1 163-8.
[24] Pitt R and Duy N D Q 2004 Length–weight relationship for sandfish, Holothuria scabra SPC Beche-de-mer Information Bulletin 19 39-40.
[25] Aziz A 1997 Status penelitian teripang komersial di Indonesia Oseana 22 9-19.
[26] Elfidasari D, Noriko N, Wulandari N and Perdana A T 2012 Identifikasi jenis teripang genus Holothuria asal perairan sekitar Kepulauan Seribu berdasarkan perbedaan morfologi Jurnal Al-azhar Indonesia seri sains dan teknologi 1 140-6.
[27] Yusron E and Widianwari P 2010 Struktur komunitas teripang (Holothuroidea) di beberapa perairan pantai Kai Besar, Maluku Tenggara Makara Journal of Science 8 15-20.
[28] Conand C 1993 Reproductive biology of the holothurians from the major communities of the New Caledonia lagoon Mar. Biol 116 439-50.
[29] Conand C 1989 Les holothuries Aspidochirotes do lagon de Nouvelle-Caledonie (Paris: Orstom).
[30] Ramofafia C, Byrne M and Battaglene C 2003 Reproduction of the commercial sea cucumber Holothuria scabra (Echinodermata: Holothuroidea) in the Solomon Islands Marine Biology 142 281-8.
[31] Che R O and Gomez E D 1985 Reproductive periodicity of Holothuria scabra jaeger at Calatagan, Batangas, Philippines Asian Marine Biology 2 21-30.
[32] Tuwo A 1999 Reproductive cycle of the holothurian Holothuria scabra in Saugi Island, Spermonde archipelago, southwest Sulawesi, Indonesia SPC Beche-de mer Information Bulletin 11 9-12.
[33] Ali I M Y, S. Mohamed, A. Gedeiri and Babikir. Y 2015 Some aspects of reproductive biology of the sea cucumbers Holothuria scabra and Holothuria atrta (Echinodermata: Holothuroidea) from the Sudanese Red Sea Coast Research Journal of Fisheries and Hydrobiology 10 6.
[34] Scherrer B 1984 Biostatistique (Boucherville, Quebec, Canada: Gaeten Morin Editeur).
[35] Sparre P 1998 Introduction to tropical fish. stock assessment. Part 1. Manual vol 306 (Rome: FAO)
[36] Ernande B, Dieckmann U and Heino M 2004 Adaptive changes in harvested populations: plasticity and evolution of age and size at maturation Proceedings of the Royal Society of London B: Biological Sciences 271 415-23.
[37] Rohani A 1998 Sebaran ukuran dan kematangan gonad teripang pasir (Holothuria scabra, Jaeger) pada berbagai kedalaman perairan. Mester Thesis. Institut Pertanian Bogor. https://repository.ipb.ac.id/handle/123456789/22257.
[38] Irnawati, Tresnati J, Nadiarti and Fachruddin L 2019 Sex Differentiation and Gonadal Development of striped snakehead (Channa striata Bloch, 1793). In: IOP Conference Series: Earth and Environmental Science: 253 012007 IOP Publishing.
[39] Tresnati J, Yasir I, Yanti A, Aprianto R, Rahmani P and Tuwo A 2019 Maturity stages of the redbreasted wrasse Cheilinus fasciatus. In: IOP Conference Series: Earth and Environmental Science: 370 012016 IOP Publishing.
[40] Yanti A, Yasir I, Rahmani P, Aprianto R, Tuwo A and Tresnati J 2019 Macroscopic characteristics of the gonad maturity stages of dusky parrotfish Scarus niger. In: IOP Conference Series: Earth and Environmental Science: 370 012051 IOP Publishing.
[41] Tuwo A and Conand C 1992 Reproductive biology of the holothurian Holothuria forskali (Echinodermata) J. Mar. Biol. Assoc. U. K. 72 745-58.
[42] Tuwo A and Conand C 1993 Fécondité de trois holothuries tempérées un développement péalique. In Echinoderm trough Time, ed B. David et al, 561-568, Rotterdam: A. A. Balkema. ISBN: 90 5410 514 3 .
[43] Sorokin Y I 1989 Coral reef ecology (Berlin: Springer-Verlag).
[44] West G 1990 Methods of assessing ovarian development in fishes: a review Marine and Freshwater Research 41 199-222.
[45] Tresnati J, Yasir I, Aprianto R, Yanti A, Bestari A and Tuwo A 2019 Predators effects on mortality of sandfish Holothuria scabra cultured in multitrophic system. J. Phys.: Conf. Ser. 1341 022026 IOP Publishing.
[46] Tuwo A, Yasir I, Tresnati J, Aprianto R, Yanti A, Bestari A and Nakajima M 2019 Evisceration rate of sandfish Holothuria scabra during transportation. In: IOP Conference Series: Earth and Environmental Science: 370 012039 IOP Publishing.
[47] Kantun W, Mallawa A and Tuwo A 2018 Reproductive pattern of yellowfin tuna Thunnus albacares in deep and shallow sea FAD in Makassar Strait AACL Bioflux 11 884-93.
[48] Mercier A and Hamel J-F 2013 Sea cucumber aquaculture: hatchery production, juvenile growth and industry challenges. In Advances in aquaculture hatchery technology. Elsevier. 431-454. DOI: 10.1533/9780857097460.2.431.
[49] Leite-Castro L V, Junior J d S, Salmito-Vanderley C S B, Nunes J F, Hamel J-F and Mercier A 2016 Reproductive biology of the sea cucumber Holothuria grisea in Brazil: importance of social and environmental factors in breeding coordination *Mar Biol* **163** 67.

[50] Navarro P G, García-Sanz S and Tuya F 2012 Reproductive biology of the sea cucumber Holothuria sanctori (Echinodermata: Holothuroidea) *Scientia Marina* **76** 741-52.

[51] Froese R and Binohlan C 2000 Empirical relationships to estimate asymptotic length, length at first maturity and length at maximum yield per recruit in fishes, with a simple method to evaluate length frequency data *Journal of Fish Biology* **56** 758-73.