Human placental trophoblast invasion and differentiation: a particular focus on Wnt signaling

Martin Knöfler* and Jürgen Pollheimer
Department of Obstetrics and Fetal-Maternal Medicine, Reproductive Biology Unit, Medical University of Vienna, Austria

Wingless ligands, a family of secreted proteins, are critically involved in organ development and tissue homeostasis by ensuring balanced rates of stem cell proliferation, cell death and differentiation. Wnt signaling components also play crucial roles in murine placental development controlling trophoblast lineage determination, chorionallantoic fusion and placental branching morphogenesis. However, the role of the pathway in human placentation, trophoblast development and differentiation is only partly understood. Here, we summarize our present knowledge about Wnt signaling in the human placenta and its potential role in physiological and aberrant trophoblast invasion, gestational diseases and choriocarcinoma formation. Differentiation of proliferative first trimester cytotrophoblasts into invasive extravillous trophoblasts is associated with nuclear recruitment of β-catenin and induction of Wnt-dependent Tcl factor 4 suggesting that canonical Wnt signaling could be important for the formation and function of extravillous trophoblasts. Indeed, activation of the pathway was shown to promote trophoblast invasion in different in vitro trophoblast model systems as well as trophoblast cell fusion. Methylation-mediated silencing of inhibitors of Wnt signaling provided evidence for epigenetic activation of the pathway in placental tissues and choriocarcinoma cells. Similarly, abundant nuclear expression of β-catenin in invasive trophoblasts of complete hydatidiform moles suggested a role for hyper-activated Wnt signaling. In contrast, upregulation of Wnt inhibitors was noticed in placentae of women with preeclampsia, a disease characterized by shallow trophoblast invasion and incomplete spiral artery remodeling. Moreover, changes in Wnt signaling have been observed upon cyto- megalo virus infection and in recurrent abortions. In summary, the current literature suggests a critical role of Wnt signaling in physiological and abnormal trophoblast function.

Keywords: placenta, human, trophoblast, invasion, Wnt

DEVELOPMENT AND FUNCTION OF THE HUMAN PLACENTA

Development of the human placenta is critical for embryonic development and successful pregnancy outcome. Immediately after implantation, trophoblastic cells forming the outermost epithelial layer of the blastocyst give rise to diverse trophoblast cell types (Hamilton and Boyd, 1960; Cross et al., 1994). Cell fusion generates the primitive syncytiotrophoblast underneath the implanted embryo, which may represent the earliest invasive trophoblast cell type migrating into the maternal endometrium (Figure 1A). After formation of the lacuna system, the ancestor of the intervillous space, cytotrophoblasts (CTBs) emanating from the trophectoderm layer give rise to proliferative cell columns from which differentiated extravillous trophoblasts (EVTs) develop. The latter also secretes numerous hormones, such as human chorionic gonadotrophin, into the maternal circulation, which are required for maintenance and immunological adaptation of pregnancy (Raaij, et al., 2012). Fusion process and numbers of vCTBs decrease during pregnancy. Hence at term, syncytiotrophoblasts are in close contact with placental vessels allowing efficient nutrient uptake by the fetus.

Villi connected to the basal plate of the human placenta give rise to proliferative cell columns from which differentiated extravillous trophoblast cell types are generated. At early stages of pregnancy, invasive extravillous cytotrophoblasts (eCTBs) plug the maternal arterioles to prevent premature onset of blood flow into the intervillous space (Pijsenborg et al., 2006). Failures in this process were shown to be associated with pregnancy complications such as abortions likely due to the premature rise in oxygen levels which may provoke oxidative stress and damage of placental villi (Hustin et al., 1990; Burton et al., 2010). Besides endovascular invasion, interstitial cytotrophoblasts (iCTBs) migrate into the

www.frontiersin.org
September 2013 | Volume 4 | Article 190 | 1

fgene-04-00190 — 2013/9/24 — 16:36 — page 1 — #1
Knöfler and Pollheimer Wnt signaling in human trophoblast

FIGURE 1: Critical steps of human placental development. (A) After implantation, stem cells of the trophectoderm give rise to the primitive syncytium by cell fusion. In this region, lacunae, the ancestor of the intervillous space, are formed. Some of the lacunae erode uterine vessels. (B) At a subsequent stage, proliferative cytotrophoblasts (CTBs) emerge from the trophoblast, break through the primitive syncytium and contact the basal plate thereby forming primary villi. (C) Tertiary villi are built upon migration of extraembryonic mesodermal cells into the primary structures and vascularization. At distal sites, proliferative cell columns are formed which give rise to different invasive extravillous trophoblast subtypes. CTBs migrate into decidua stroma approach vessels from outside and eventually form giant cells as the end stage of the invasive differentiation pathway. Endovascular trophoblasts migrate into spiral arteries and contribute to uNK cell-initiated remodeling within the decidual matrix. iCTBs, interstitial cytotrophoblasts; GC, giant cell; ICM, inner cell mass; iTBs, interstitial trophoblasts; L, lacunae; pF, placental fibroblast; pV, placental vessel; SA, spiral artery; S, syncytium; TE, trophoderm; UG, uterine gland; uNK, uterine NK cell; UV, uterine vessel; vCTB, villous cytotrophoblast.

maternal decidua likely cross-talking to diverse uterine cell types, including uterine natural killer cells, macrophages, and decid- ual stromal cells (Bulmer et al., 2010; Oreshkova et al., 2012). These interactions are thought to be important for immunological acceptance of the placental/fetal allograft as well as for the timing and depth of trophoblast invasion (Redman and Sargent, 2010). In particular, interaction of paternal human leukocyte antigen (HLA)-C expressed on iCTBs with maternal killer cell immunoglobulin-like receptors (KIR) are thought to play a piv- ootal role in placentation and reproductive success (Hiby et al., 2004). In the absence of blood flow, trophoblast invasion might be controlled by factors secreted from uterine glands, such as...
epidermal growth factor (EGF) and vascular endothelial growth factor (VEGF), which are also thought to be crucial for placental and embryonic growth at this early stage of pregnancy (Burton et al., 2007). With the establishment of the maternal-placental circulation, the placenta switches from histotrophic to haemotrophic nutrition around the 12th week of gestation, and shedding of vessels occurs. Transformation of the maternal spiral arteries into large diameter vessels likely ensures adapted nutrient supply, reduced vessel contractility and constant oxygen delivery at low blood pressure to the developing fetus (Burton et al., 2010). Vessel remodeling might be initiated by uterine NK cells and both types of differentiated EVT are thought to play a crucial role in completing this process (Bobbon et al., 2012). Whereas cECTBs displace maternal endothelial cells and remodel decidua and superficial myometrial spiral arteries, iCTBs approach the vessels from outside and contribute to elastolysis and disruption of the vascular wall. This involves a series of events such as trophoblast-induced apoptosis of vascular smooth muscle cells (Harris, 2011). Failures in EVT invasion, remodeling and CTB gene expression were noticed in different pregnancy diseases such as preeclampsia or severe intrauterine growth restriction (Piönkenberg et al., 1991, 2006; Zhou et al., 2013). Abnormal contractility and pressure may provoke hypoxia re-oxygenation injuries of floating villi thereby inducing secretion of adverse cytokines and angiogenic molecules such as soluble Fms-like tyrosine kinase-1 (sFlt-1) and elevated shedding of syncytiotrophoblast microparticles (Burton et al., 2010; Redman et al., 2012; Tal, 2012). The latter are thought to contribute to maternal endothelial cell dysfunction as part of a global, systemic inflammatory response observed in preeclampsia.

DIFFERENTIATION AND INVASION OF HUMAN EXTRAVILLOUS TROPHOBLAST

Differentiation of proliferative cCTBs into growth-arrested EVTs, invading decidua tissue and vessels, is thought to involve a series of well-controlled molecular steps which, however, are poorly understood. This is partly due to the fact that EVT differentiation in vitro can only be studied upon access to first trimester placental samples, which in general is limited due to ethical considerations. Growth of the trophoblast cell column harboring progenitor cells for the invasive differentiation pathway may involve paracrine factors released from the underlying placental mesenchyme such as IGF molecules which also promote proliferation of cCTBs in vitro (Aplin et al., 2009; Forbes et al., 2008). Since spontaneous outgrowth and migration in villous explant cultures is achieved in the absence of serum, it is likely that the intrinsic molecular program of the placental villus is also sufficient for the particular differentiation process in vivo. However, the precise mechanisms controlling integrity and stability of cell columns allowing for balanced rates of growth and differentiation have not yet been elucidated. Adhesive interactions between L-selectin expressed in cell columns and its carbohydrate ligands could play a role (Peacock et al., 2006). Moreover, different transcription factors such as oxygen-dependent hypoxia-inducible factor 1α (HIF1α) and Stox1, discussed elsewhere in this issue, are critical for trophoblast cell proliferation and inhibit differentiation into EVTs (Caniggia et al., 2000b; van Dijk and Oudejans, 2011). In contrast, AP-2α, signal transducer and activator of transcription 3 (STAT3) or glial cells missing 1 (GCM1) promote trophoblast invasion and GCM1 was also shown to inhibit proliferation of cCTBs (Pochmann et al., 2005; Baczuk et al., 2009; Biadasiewicz et al., 2011). Hence, it is assumed that a set of key regulatory transcription factors controls the switch between trophoblast proliferation and EVT differentiation (Loregger et al., 2003; Knöfler and Pollheimer, 2012). EVT formation is accompanied by the expression of distinct integrins which are induced in a distance-dependent manner in vivo as well as in vitro (Damsky et al., 1994; Aplin et al., 1999). Again, the molecular basis for differentiation-dependent integrin switching remains unknown. Increasing oxygen concentrations during pregnancy and contact with the decidual matrix likely play major roles. Interestingly, accumulating evidence suggests that failures in EVT differentiation could contribute to the pathogenesis of pregnancy diseases with restricted trophoblast invasion and remodeling. Expression of inhibitor of DNA binding 2 (Idd2), blocking the binding activity of differentiation-promoting basic helix-loop-helix (bHLH) proteins through homodimerization, was shown to be downregulated in EVTs of normal pregnancy but maintained in preeclampsia placental tissue (Janatpour et al., 2000). Along these lines, inhibition of HIF1α-dependent TGFβ3, acting as a negative regulator of trophoblast invasion, restored migration in explant cultures of preeclamptic villi emphasizing the particular role of oxygen in EVT differentiation (Caniggia et al., 1999, 2000a). Moreover, upregulation of EVT-specific genes and invasion were impaired in trophoblasts isolated from preeclamptic placentae (Lal et al., 1997). Of importance, cCTBs express a characteristic pattern of vascular adhesion molecules which, however, is abnormal in preeclampsic tissues (Zhou et al., 1994a).

While the hierarchy and cross-talk of critical molecular events controlling EVT differentiation await further investigations, regulation of trophoblast invasion has been investigated in a vast number of studies using primary cells, choriocarcinoma cells and established non-tumorigenic trophoblast cell lines. The different invasive trophoblast cell types produce sets of proteases, i.e., matrix metalloproteinases (MMP), urokinase plasminogen activator (uPA) and cathepsins, which are thought to degrade decidual extracellular matrix proteins and thereby facilitate cell invasiveness. The respective inhibitors, tissue inhibitors of metalloproteinases (TIMPs) and plasminogen activator inhibitors (PAIs) are produced by EVTs as well as decidual cells to limit the extent of trophoblast invasion. Numerous soluble factors expressed at the fetal-maternal interface including chemokines, cytokines and angiogenic factors were shown to promote trophoblast motility in an autocrine or paracrine manner (Bischof et al., 2000; Lala and Chakraborty, 2003; Knöfler, 2010). As a common theme, the secreted proteins were shown to stimulate MMP expression and secretion, in particular the gelatinases MMP-2 and MMP-9. Inhibitory proteins such as TGFα, Nodal or TGFβ could restrain trophoblast motility by increasing expression of TIMPs and PAI (Lala and Graham, 1998; Haider and Knöfler, 2009; Nadeem et al., 2011). Although a complex interplay of growth factors likely controls trophoblast cell migration and invasion, it remains unclear whether all of the currently identified effects truly play a role in vivo. Tumorigenic and non-tumorigenic cell types as
Villous CTBs lack surface expression of classical HLA molecules, Abnormal Wnt signaling has been described in a variety of human diseases including different cancers, diabetes or neurodegenerative disorders (Polakis, 2000; Al-Harthi, 2012). Wnts comprise a family of palmitoylated, cysteine-rich glycoproteins, which due to their low solubility are secreted in a lipoprotein-bound form or through exosomes (Herr et al., 2012). The first described member of this family of secreted ligands was the Wnt1 proto-oncogene, which is homologous to the Drosophila gene Wingless. Originally, the gene has been named int-1 since it has been identified as an integration site for the murine mammary tumor virus which can provoke breast cancer (Nusse et al., 1991). In humans, 19 different Wnt ligands and 10 seven-transmembrane domain frizzled (Fzd) receptors have been identified (Wodarz and Nusse, 1998). The latter interact with low density lipoprotein receptor related proteins (LRP-5 or -6) forming a functional, heterodimeric receptor for canonical Wnt signaling. It is likely that the complex interplay of different Wnts with Fzds provokes specific Wnt responses depending on the receptor context and the particular cell type. Stabilization and nuclear recruitment of β-catenin is a hallmark of the canonical pathway. However, Wnt ligands also target non-canonical, β-catenin-independent signaling including the Wnt/Ca2+ and the Wnt/plaur cell polarity (PCP) pathway (Gordon and Nusse, 2006; Hendrickx and Leyns, 2008; van Amerongen and Nusse, 2009).

Wnt SIGNALING PATHWAYS

Besides Hippo, Hedgehog, Notch and TGFβ signaling, Wnt signaling represents one of the few conserved pathways critically involved in developmental processes. From Drosophila to human, the particular signal transduction cascade controls early axis formation, limb patterning and organogenesis (Logan and Nusse, 2004; Clevers, 2006). In adults, Wnt controls homeostasis of regenerating tissues such as by regulating stem cell maintenance, cell fate decisions and differentiation (Clevers, 2006; Herr et al., 2012). Abnormal Wnt signaling has been described in a variety of human diseases such as GSK-3β-mediated phosphorylation of LRP-5/6 (Mao et al., 2013). The latter interact with low density lipoprotein receptor related proteins (LRP-5 or -6) forming a functional, heterodimeric receptor for canonical Wnt signaling. It is likely that the complex interplay of different Wnts with Fzds provokes specific Wnt responses depending on the receptor context and the particular cell type. Stabilization and nuclear recruitment of β-catenin is a hallmark of the canonical pathway. However, Wnt ligands also target non-canonical, β-catenin-independent signaling including the Wnt/Ca2+ and the Wnt/plaur cell polarity (PCP) pathway (Gordon and Nusse, 2006; Hendrickx and Leyns, 2008; van Amerongen and Nusse, 2009).

CANONICAL Wnt SIGNALING

Canonical Wnt signaling involves a series of steps resulting in the stabilization and nuclear translocation of β-catenin (Gordon and Nusse, 2006). In unstimulated cells, β-catenin is predominantly found at adherens junctions where it binds to E-cadherin and α-catenin and thereby maintains epithelial structure and polarity. Cytosolic levels of β-catenin are low since it is degraded in a destruction complex consisting of adenosomatous polyposis coli (APC), Axin, casein kinase 1α (CK1α) and glycogen synthase kinase 3β (GSK-3β). The latter phosphorylates β-catenin at its N-terminus and thereby induces binding of β-truncus repeat-containing protein (β-TrCP) and its associated E3 ubiquitin ligase. This results in ubiquitination and proteasomal degradation of β-catenin (Stamos and Weis, 2013). In contrast, Wnt stimulation promotes Fzd-LRP heterodimerisation and cytosolic stabilization of β-catenin by disruption of the APC/Axin/GSK-3β/CK1α destruction complex. Upon binding of Wnt to the cytosine-rich domain of Fzd, the multifunctional protein Disheveled (Dvl) is recruited to the cytosolic portion of the heterodimeric receptor and thereby provokes binding of Axin and GSK-3β as well as GSK-3β-mediated phosphorylation of LRP-5/6 (Mao et al., 2001; Bilic et al., 2007). This event could either inhibit the catalytic activity of GSK-3β toward β-catenin promoting sequestration or induce internalization and lysosomal degradation of components of the destruction complex (Metcalf and Bienz, 2011). As a consequence cytoplasmic concentrations of β-catenin increase and active de-phosphorylated β-catenin translocates to the nucleus where it binds to transcription factors of the lymphoid enhancer factor-1 (LEF-1)/TCF family (Clevers, 2006; Gordon and Nusse, 2006). LEF/TCF proteins are high mobility group proteins lacking transcriptional activity and hence require co-activators or co-repressors for their function. Binding of β-catenin to LEF/TCF converts these proteins into transcriptional activators.
by displacing histone deacetylases (HDACs) and inhibitors of the Groucho protein family following by recruitment of the Legless family docking protein RhoB, CBP/p300 and histone acetylases (Gordon and Nusse, 2006; Archbold et al., 2012). Activation of LEF-1/TCF then provokes transcription of numerous genes controlling developmental processes, cell cycle, differentiation and cell invasion such as cyclin D1, c-myc, c-jun, MMPs, urokinase plasminogen activator receptor (uPAR), Notch signaling factors and many others depicted at the Wnt homepage1. Moreover, Wnt signaling components such as Axin, TCFs or Fzd are often controlled by a feedback loop upon Wnt activation. Accumulating evidence, however, suggests that our view of canonical Wnt signaling is still too simplistic. Proteins of the destruction complex can enter the nucleus and influence trafficking of Wnt signaling components as well as gene transcription. Numerous soluble negative regulators of Wnt signaling such as different Dickkopf (DKk) or secreted frizzled-related proteins (sFRPs) binding to Wnts and LRP, respectively, have been identified (Gordon and Nusse, 2006). TCFs interact with several other regulatory transcription factors, for example Smads, c-jun or Cdx proteins, likely determining specificity of binding to Wnt response elements (Archbold et al., 2012). Moreover, TCF/β-catenin transcriptional complexes can also repress transcription and β-catenin can be recruited to other transcription factors than LEF/TCF, e.g., steroid hormone receptors, in a Wnt-dependent manner (Beildeck et al., 2010).

Several alterations in Wnt signaling components have been detected in cancer cells provoking nuclear accumulation of β-catenin and aberrant Wnt signaling (Camilli and Werker, 2010). While mutations in Wnt ligands are rare, mutations in the APC tumor suppressor gene have been identified in the majority of sporadic colorectal cancers. Moreover, activating mutations in β-catenin inhibiting its GSK-3β-dependent degradation were detected in colon, prostate and other malign tumors. In addition, there is compelling evidence that epigenetic changes of the Wnt pathway was shown to promote metastasis of different cancer subtypes forming distinct functional villi in mice and men (Georgiades et al., 2002; Red-Horse et al., 2004). Likewise, the maternal uterus adapts to pregnancy by extensive tissue remodeling involving differentiation of stromal cells, angiogenesis and immunological alterations. These critical processes are initiated during the secretory phase of the menstrual cycle and upon implantation and early stages of placental development. Given the fact that Wnt signaling is important for organ development and tissue homeostasis, it may not be surprising that the pathway also has major roles in uterine formation, growth and differentiation. Gene targeting in mice revealed that β-catenin and different Wnts, such as Wnt4, Wnt5a, or Wnt7a, are critical for uterine development (Miller and Sassoon, 1996; Vainio et al., 1999; Mericskay et al., 2004; Arango et al., 2005). Wnt signaling components also play a role in stroma cell proliferation and differentiation for example Wnt4, Wnt6 (Li et al., 2013; Wang et al., 2013) or Dkk1, a progesterone-regulated gene which is induced in the endometrium upon decidualization (Tulac et al., 2006; Duncan et al., 2011). This review focuses on function of Wnt signaling in trophoblast and placental development and differentiation, whereas a number of different papers summarize the role of canonical and non-canonical Wnt signaling in female reproductive tract development and differentiation, uterine function and decidualization (Chen et al., 2009; Senderek et al., 2010b; van der Hoest et al., 2012; Wetendorf and DeMayo, 2012).

Wnt SIGNALING IN PLACENTA AND TROPHOBLAST

As outlined above and discussed elsewhere, early placental development is associated with rapid generation of several trophoblast subtypes forming distinct functional villi in mice and men (Georgiades et al., 2002; Red-Horse et al., 2004). Likewise, the maternal uterus adapts to pregnancy by extensive tissue remodeling involving differentiation of stromal cells, angiogenesis and immunological alterations. These critical processes are initiated during the secretory phase of the menstrual cycle and upon implantation and early stages of placental development. Given the fact that Wnt signaling is important for organ development and tissue homeostasis, it may not be surprising that the pathway also has major roles in uterine formation, growth and differentiation. Gene targeting in mice revealed that β-catenin and different Wnts, such as Wnt4, Wnt5a, or Wnt7a, are critical for uterine development (Miller and Sassoon, 1996; Vainio et al., 1999; Mericskay et al., 2004; Arango et al., 2005). Wnt signaling components also play a role in stroma cell proliferation and differentiation for example Wnt4, Wnt6 (Li et al., 2013; Wang et al., 2013) or Dkk1, a progesterone-regulated gene which is induced in the endometrium upon decidualization (Tulac et al., 2006; Duncan et al., 2011).

This review focuses on function of Wnt signaling in trophoblast and placental development and differentiation, whereas a number of different papers summarize the role of canonical and non-canonical Wnt signaling in female reproductive tract development and differentiation, uterine function and decidualization (Chen et al., 2009; Senderek et al., 2010b; van der Hoest et al., 2012; Wetendorf and DeMayo, 2012).

Wnt SIGNALING IN MURINE PLACENTAL DEVELOPMENT

Expression of several Wnt ligands, Fzds and Dvl proteins has been noticed in the developing murine blastocyst during the
Wnt signaling components control sequential steps of placental development. Embryos bearing homologous deletion of β-catenin develop to the blastocyst stage but are affected upon gastrulation (Hasegawa et al., 1993). However, maternal β-catenin may have compensated the lack of embryonic β-catenin. Therefore, mothers harboring a conditional deletion of the gene in oocytes were additionally used in β-catenin knock-out studies (De Vries et al., 2004). Again, development into blastocysts was observed suggesting that β-catenin is not required for early pre-implantation development. Also, treatment with Dkk1 did not impair blastocyst formation (Xie et al., 2008). Non-canonical signaling such as Fzd5 and GCM1 controls different steps of placental morphogenesis promoting branchpoint initiation, chorionic trophoblast-specific vEGF expression and trophoblast syncytialisation (Lu et al., 2013). Placental phenotypes of mice with homologous deletions of Wnt signaling genes are summarized in Table 1. Early stages of murine trophoblast invasion, however, might be negatively affected by canonical Wnt signal- ing since recombinant Dkk1 was shown to increase motility in co-cultivations of decidual cells with decidual cells (Peng et al., 2008).

Table 1 | Placental phenotypes of mice with homologous deletion of Wnt signaling components.

Gene knock-out	Phenotype	Reference
Wnt2	Defects in labyrinthine zone	Monkley et al. (1996)
	Decreased number of fetal capillaries	
	Oedema formation	
Wnt7b	Fibrinoid deposition	Parr et al. (2001)
	Defect in alpha4-mediated chorionic trophoblast fusion	
R-spondin3	Disorganization of chorionic plate	
	Decreased GCM1 expression	
Fzd5	Defects in chorionic trophoblast fusion, branching and labyrinth formation	Aoki et al. (2007)
	Reduced expression of Gcm1	
Btlp	Defective trophoblast cell fusion	
	Defective branching and labyrinth formation	
LEF-1/TCF-1	Defective chorionic trophoblast fusion	

Whereas the canonical Wnt pathway is dispensable for murine blastocyst development, it is critical for blastocyst activation, adhesion and implantation. Inhibition of the pathway through Dkk1 or small molecular inhibitors decreased implantation, which was also shown to be associated with induction of canonical β-catenin and downregulation of non-canonical Wnt-β-Ho signaling (Xie et al., 2008). Likewise, treatment with sFRP2 was shown to decrease implantation rates (Mohamed et al., 2005). Induction of the canonical pathway in the uterine epithelium and myometrial smooth muscle cells at the site of implantation through trophoderm-derived Wnt ligands seems to be important (Mohamed et al., 2005).

Wnt signaling could also play a key role during early trophoblast development in mice. Treatment of embryonic stem cells with Wnt3a induced formation of trophodermal stem cells with the capacity to differentiate into spongiotrophoblasts and giant cells which was mediated through LEF-1-dependent induction of Cdx2, a key regulator of early trophoblast lineage determination (Chawengsaksophak et al., 2004; He et al., 2008).

Table 1 | Placental phenotypes of mice with homologous deletion of Wnt signaling components.

pre-implantation period (Mohamed et al., 2004; Harwood et al., 2008). However, the canonical pathway does not seem to play a role in blastocyst formation. Embryos bearing homologous deletion of β-catenin develop to the blastocyst stage but are affected upon gastrulation (Hasegawa et al., 1993). However, maternal β-catenin may have compensated the lack of embryonic β-catenin. Therefore, mothers harboring a conditional deletion of the gene in oocytes were additionally used in β-catenin knock-out studies (De Vries et al., 2004). Again, development into blastocysts was observed suggesting that β-catenin is not required for early pre-implantation development. Also, treatment with Dkk1 did not impair blastocyst formation (Xie et al., 2008). Non-canonical signaling such as Wnt/Ca²⁺ pathway could be involved (Chen et al., 2009). On the other hand, there is evidence that the canonical Wnt pathway could regulate blastocyst development in other species for example in ruminants (Denicol et al., 2013).

The expression of mouse genes, and in particular β-catenin, is also essential for maintaining the integrity of the maternal decidua and myometrial smooth muscle cells at the site of implantation through trophoderm-derived Wnt ligands (Ishikawa et al., 2001). Moreover, placentae lacking Bcl-9, one of the co-activators of LEF-1/TCF, showed defective branchpoint initiation and function at later stages of embryogenesis (Galceran et al., 1999; Parr et al., 2001; Aoki et al., 2007). Similar to the above mentioned mutants, homologous deletion of Wnt2 and Fzd5 affected branching and labyrinth formation, however, without alterations in chorionic trophoblast fusion (Monkley et al., 1996; Shibata et al., 2001). Moreover, placental lacking Bcl-9, one of the co-activators of LEF-1/TCE, showed defective branchpoint initiation and a decrease in syncytiotrophoblast formation (Matsuura et al., 2011). GCM1, the key transcription factor in branching morphogenesis and trophoblast cell fusion (Anson-Cartwright et al., 2000), is probably the most critical Wnt target in mouse placental development since diminished expression of GCM1 was noticed in R-spondin3 and Bcl-9 mutant placentae (Aoki et al., 2007; Matsuura et al., 2011). Indeed, a recent study indicated that a positive feedback loop of Fzd5 and GCM1 controls different steps of placental morphogenesis promoting branchpoint initiation, chorionic trophoblast-specific vEGF expression and trophoblast syncytialisation (Lu et al., 2013). Placental phenotypes of mice with homologous deletions of Wnt signaling genes are summarized in Table 1. Early stages of murine trophoblast invasion, however, might be negatively affected by canonical Wnt signaling since recombinant Dkk1 was shown to increase motility in co-cultivations of decidual cells with decidual cells (Peng et al., 2008).
total placental extracts of first and third trimester, as well as in villi and EVTs obtained from first trimester villous explant cultures. Most of these mRNAs were detectable in the villous trophoblast epithelium. In particular, abundantly (Wnt1, Wnt2b, Wnt4, Wnt7b, Wnt10a, Wnt10b, Wnt11), moderately (Wnt2, Wnt3, Wnt5b, Wnt6, Wnt7a) -expressed Wnt ligands were present in first trimester CTBs as depicted (Figure 2). Hence, expression of canonical (for example Wnt1, Wnt2b, Wnt7b, Wnt10a, Wnt10b) as well as non-canonical Wnts (Wnt5, Wnt5a, Wnt11) suggests that different Wnt pathways may operate during human trophoblast development. Wnt1, Wnt7b, Wnt10a, and Wnt10b were downregulated from first trimester to term suggesting roles in trophoblasts of early pregnancy (Sonderegger et al., 2007). Whereas Fzd2 and Fzd4 are only produced in villous mesenchymal cells, Fzd1, Fzd3, Fzd5, Fzd6, Fzd7, and Fzd10 are expressed in CTBs. The latter was absent from villous fibroblasts suggesting a specific role in CTBs. Although none of the individual Wnts and Fzds have been studied in the context of human trophoblast invasion and differentiation so far, expression patterns and comparison to the situation in mouse placenta and other Wnt-dependent systems in reproduction allows to speculate about their potential roles.

Wnt4 is produced by CTBs as well as EVTs and could contribute to decidualization through the canonical pathway (Li et al., 2013). Wnt5a, secreted from trophoblast cell lines and primary cultures, may act through non-canonical pathways since it was unable to induce TCF/β-catenin-dependent transcription but antagonized the canonical pathway in trophoblasts (Sonderegger et al., 2007). Progesterone treatment of ovariectomized mice was shown to stimulate Wnt11 expression, another non-canonical Wnt ligand, whereas Wnt4 and Wnt1b are induced by estrogen which likely has implications for implantation (Hayashi et al., 2009) and decidualization as mentioned above. Interestingly, Wnt4, Wnt11 and Wnt7b are among the most abundantly produced Wnts in CTBs and Wnt7b expression decreased during EVT formation (Figure 2). Considering that Wnt7b is required for mouse placental development (Parr et al., 2001), the human homologue may also play a role in placenta formation and/or control critical functions during the first trimester of pregnancy such as trophoblast proliferation. Similarly, Wnt11a, Wnt10b, Fzd5, and Fzd10 were strongly expressed in CTBs but largely absent from EVTs or placental fibroblasts suggesting that these Wnt and Fzd members are also predominantly associated with early trophoblast cell growth. The principal Fzd receptor in EVTs is Fzd6, which operates through canonical as well as non-canonical pathways (Golan et al., 2004; Wu et al., 2009). Differential expression of Fzds between CTBs and EVTs is also detectable in our previously established gene expression profiles (Bilban et al., 2009) as shown in Figure 3. Whereas the role of Wnt10a, Wnt11b or Fzd10 in murine placental development is unknown, Fzd5 is critical for branching morphogenesis as mentioned before (Lu et al., 2013). Hence, Fzd5 could also play a crucial role in human placental development. Furthermore, another semi-quantitative RT-PCR study suggested that several of the above mentioned Wnt ligands are regulated in a gestation-dependent manner in first trimester placenta (Grisaru-Granovsky et al., 2009) suggesting that specific combinations of Wnts could eventually control sequential steps of human trophoblast function and/or development. Moreover, the endometrial Wnt ligands Wnt2, Wnt4, Wnt5a, Wnt7a, Wnt1b, and Wnt3, the latter being regulated during the menstrual cycle, could affect trophoblast function in a paracrine manner (Dulac et al., 2003).

Wnt SIGNALING IN HUMAN TROPHOBLAST FUNCTION AND DIFFERENTIATION

Studies in mice suggested that Wnt signaling is critical for activation and implantation of blastocysts (Mohamed et al., 2005). In vitro investigations with trophoblast cell lines and cultures also revealed a role of the particular signaling pathway in human trophoblast adhesion, invasion and differentiation.

Treatment of decidualized stromal cells with supernatants of trophoblasts provoked changes in the expression of some Wnt signaling components suggesting that soluble trophoblast-derived factors could influence endometrial function and differentiation through regulation of the Wnt pathway (Heus et al., 2007). Different Wnts secreted from EVTs could be the prime factors controlling expression of decidual Wnt signaling components since many of these genes are direct targets of TCF/β-catenin as summarized at the Wnt homepage. Along those lines, attachment of spheroids prepared from JAR choriocarcinoma cells to endometrial Ishikawa cells was inhibited in the presence of Dkk1 (Liu et al., 2010). Similarly, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a negative effector of implantation, decreased attachment of Jeg-3 or BeWo cell spheroids to different endometrial epithelial cell lines.
FIGURE 3 | Color-coded mRNA expression (GDS3523) in non-invasive CTBs (5 pools) and invasive EVTs (6 pools) analyzed by GEO DataSet Cluster Analysis online tool (http://www.ncbi.nlm.nih.gov/geo/). Markers of EVT differentiation, Fzd receptors, putative TCF-4/β-catenin target genes as well as biomarkers of EMT are depicted.

by suppressing β-catenin, which could be reverted upon treatment with a recombinant Wnt ligand (Tsang et al., 2012).

Moreover, expression analyses of TCFs in human first trimester placenta suggested that the canonical Wnt pathway is associated with the invasive differentiation process of trophoblasts (Pollheimer et al., 2006). Immunofluorescence of tissues revealed induction of TCF-4 protein in the nucleus of non-proliferating, p57/KIP2-positive EVTs as well as nuclear recruitment of β-catenin in a considerable number of these cells. Analyses of our expression profiles performed with total mRNA isolated from five and six different CTB and EVT cell preparations, respectively (Bilban et al., 2009), suggested induction of TCF-4 at the mRNA level (Figure 3). Moreover, stimulation with a Wnt ligand increased invasion of primary CTBs and trophoblastic SGHPL-5 cells in transwell assays and promoted migration in villoous explant cultures seeded on collagen I, which was inhibited upon treatment with recombinant Dkk1 (Pollheimer et al., 2006; Sonderegger et al., 2010a). In addition, basal migration and invasion of the different trophoblast models were reduced in the presence of Dkk1 suggesting that the aforementioned canonical Wnts expressed in EVTs exert autocrine effects. Wnt stimulation was also shown to activate non-canonical AKT signaling and AKT-dependent motility of trophoblasts (Sonderegger et al., 2010a).

Canonical LRP-5/6-FZD receptors were not involved since Wnt-dependent phosphorylation of AKT could not be inhibited upon supplementation of Dkk1. Also, cross-talk between the canonical Wnt pathway and AKT through AKT-induced phosphorylation and inactivation of GSK-3β as mentioned for other cells (Naito et al., 2005) has not been observed in trophoblasts since chemical AKT inhibitors did not change nuclear accumulation of β-catenin nor the activity of a canonical Wnt reporter (Sonderegger et al., 2010a). One of the putative targets increasing invasiveness in a Wnt-dependent manner could be MMP-2, which is elevated in trophoblast supernatants upon Wnt stimulation and also has been described as a direct target of TCF/β-catenin (Wu et al., 2007; Sonderegger et al., 2010a). Although MMP-2 mRNA expression is associated with EVT differentiation (Figure 3), transcript levels did not change upon Wnt stimulation suggesting that the pathway induces MMP-2 secretion or affects its stability (Sonderegger et al., 2010a).

Although canonical Wnt signaling is strongly elevated upon EVT formation, CTBs also respond to Wnt signals. Wnt-dependent activation of TCF/β-catenin provoked increased proliferation and expression of the cell cycle regulator cyclin D1 as well as induction of Wnt signaling components (Pollheimer et al., 2006). Although TCF-4 is absent from proliferative CTBs, the canonical pathway might be activated through TCF-3 which is present in both CTBs and EVTs (Figure 3).

Furthermore, epigenetic analyses provided evidence for a general activation of Wnt signaling in placental tissues and isolated trophoblasts. Genes encoding negative regulators of the pathway, i.e., APC, sFRP2 and engrailed-1 were shown to be hypermethylated in trophoblasts, whereas these changes were not observed in placental trophoblast or leukocytes (Novakovic et al., 2008; Wong et al., 2008). This suggests that specific activation of the pathway in trophoblasts could play a role in placentaion. In addition, other effectors than Wnt ligands likely contribute to stabilization of β-catenin and TCF/β-catenin-dependent trophoblast proliferation and invasion. Activation of protease activated receptor-1 (PAR1) provoked an increase in these processes whereas siRNA-mediated gene silencing of PAR1 or addition of soluble inhibitors downregulated TCF/β-catenin-induced proliferation and motility (Grisaru-Granovsky et al., 2009). Expression of StarD7, a member of the StAR1 lipid transfer proteins promoting proliferation and invasion of choriocarcinoma cells, was shown to be directly controlled by TCF/β-catenin (Rena et al., 2009; Flores-Martin et al., 2012).

In summary, the present literature implicates canonical Wnt signaling in human trophoblast proliferation and invasion.
However, the question of whether TCF molecules are indeed regulators of EVT formation, in other words control the switch from proliferation to cell cycle arrest and differentiation is still unknown and currently under investigation in our laboratory.

So far, canonical Wnt signaling has been identified as a regulator of trophoblast cell fusion. GCM1, the most critical factor in syncytialization control, directs expression of the tight junction proteins synctynin-1 and -2, harbors TCF binding sites in one of its introns and silencing of TCF-4 or β-catenin impaired cAMP-induced cell fusion of BeWo choriocarcinoma cells (Matsuzawa et al., 2011). Moreover, Wnt targets such as Axin, BMP and activin membrane-bound inhibitor (BAMBI), and LEF-1 increased upon elevation of cAMP. However, it has to be mentioned that LEF-1 is only expressed in stromal cells of human placenta and TCF-3 and -4 are absent from villous CTBs after the 6th week of gestation (Pollheimer et al., 2006). Since trophoblast fusion occurs until the end of pregnancy, Wnt-dependent GCM1 expression and syncytialization may only operate during very early stages of human gestation. Similar to mice, Wnt signaling might also play a role in early human trophoblast lineage determination since the pathway was found to be activated upon BMP4-mediated differentiation of embryonic stem cells into trophoblasts (Marchand et al., 2011).

Wnt TARGET GENES AND THE ROLE OF WNT-DEPENDENT TRANSCRIPTION FACTORS IN EPITHELIAL TO MESENCHYMAL TRANSITION

Numerous studies indicated that cancer cell invasion shares several features with trophoblast invasion although the latter is precisely controlled in time and space. Besides expression of proteases, EVTs produce critical integrins such as the fibronectin receptor integrin α5β1 and the collagen/dammin receptor integrin αβ1 promoting trophoblast adhesion and migration (Dansky et al., 1994; Aplin et al., 2006). Conversely, EGF receptor 1 (EGFR1), indicative for the proliferative capacity of trophoblasts as well as integrin α6 (ITGA6), a marker of the polarized epithelium, were downregulated during EVT differentiation (Jokhi et al., 1994). Changes in the mRNA expression pattern of genes involved in EVT invasion and differentiation can also be monitored in our published chip data (Bilbao et al., 2009) which are accessible via GEO profiles. ITGA6 and EGFR are highly expressed in the five different CTB cell pools but weakly present in the six EVT preparations since the pathway was found to be activated upon BMP4-mediated differentiation of embryonic stem cells to trophoblasts (Marchand et al., 2011).

Another molecular process critically involved in cancer cell invasion and metastasis is epithelial to mesenchymal transition (EMT), in which epithelial cells lose their polarity and gain fibroblast-like properties promoting invasion and migration (Zheng and Kang, 2013). Interestingly, EMT in cancer cells also provokes growth arrest and cells have to revert back to an epithelial phenotype (MET) allowing for cell growth and distant metastasis formation (Brabletz, 2012). Analyses of gene expression profiles suggest that EMT also occurs in invasive trophoblasts (Figure 3) which have stopped proliferation allowing for differentiation to take place. Although invasive trophoblasts do not induce mesenchymal vimentin, at least in vitro, and maintain expression of the epithelial marker cytokeratin 7, they upregulate typical EMT-associated mRNAs such as heat shock protein 47 (HSP47), Snail, ITGAS, ITGA1, fibroblast-specific protein 1 (FSP1), MMP-2, and secreted protein acidic and rich in cysteine (SPARC) and downregulate genes associated with cell-cell adhesion and epithelial polarity such as the tight junction proteins occludin (OCLN) and ZO1. Also, transient loss of adherens junction proteins, i.e., membrane-bound β-catenin and E-cadherin, has been detected in the proximal invasion zone of anchoring villi using immunofluorescence in first trimester placental tissues (Zhou et al., 1997b). Elevated Wnt signaling, expression of LEE/TCF and nuclear recruitment of β-catenin is also a typical feature of EMT (Moustakas and Heldin, 2007). Hence, similar to cancer cells, induction of TCF-4 upon invasive trophoblast differentiation could orchestrate an EMT-like program to promote cell motility. In this process, TCF-4 could act as master regulator since it may not only directly control expression of pro-migratory EMT genes but also activate other critical key regulatory transcription factors inducing EMT such as Snail, Slug or ZEB1 (Medecì et al., 2008; Sanchez-Tillo et al., 2011).

Wnt signaling in gestational diseases

Changes in gene expression as well as in epigenetic modifications of Wnt signaling components were shown to be associated with different gestational diseases. Compared to normal tissues, higher numbers of β-catenin-positive EVT nuclei were detected in placenta of complete hydatidiform mole (CHM) suggesting that aberrant Wnt signaling could contribute to abnormal invasion in this pregnancy disorder (Pollheimer et al., 2006). Genes encoding APC and sFRP2 were shown to be hypermethylated in choriocarcinoma cells, indicating that inactivation of negative regulators of Wnt signaling likely contributes to the formation and/or progression of trophoblastic cancer cells (Novakovic et al., 2008; Wong et al., 2008). Similarly, Dkk1 was found to be absent from choriocarcinoma cells and re-expression of the gene induced growth arrest and apoptosis suggesting that the loss of Dkk1 is critical for tumor cell proliferation (Peng et al., 2006). In contrast, Dkk1 and sFRP4 were increased whereas Wnt2 and β-catenin were decreased in tissues of preeclamptic patients (Zhang et al., 2013a,b). Therefore, downregulation of the pathway could contribute to failed placentation and shallow trophoblast invasion observed in these pregnancies. Along those lines, elevated recruitment of β-catenin and increased expression of TCF-4 in EVTs drives a set of genes promoting trophoblast invasion and migration.

Wnt signaling in human trophoblasts

Figure 3

"fgene-04-00190" — 2013/9/24 — 16:36 — page 9 — #9
levels of DKK1 were detected in women with recurrent abortions (Bao et al., 2013). Interestingly, cytomegalovirus (CMV) infection, a putative cause of spontaneous abortion and preterm delivery, was shown to decrease trophoblast proliferation and invasion involving inhibition of Wnt signaling. Infection of trophoblastic SGHPL-4 cells with the virus altered the localization of β-catenin and induced its degradation as well as downregulation of a canonical Wnt reporter (Angelova et al., 2012). Some of these effects might be exerted via peroxisome proliferator-activated receptor γ (PPAR-γ) a negative regulator of trophoblast invasion, which is β-catenin in other cells (Liu et al., 2006; Liu et al., 2008).

In conclusion, the present literature suggests that Wnt signaling is critical for physiological processes of human trophoblasts. The pathway could play a role in blastocyst adhesion, implantation and early trophoblast lineage decisions. Moreover, Wnt signaling could regulate trophoblast cell fusion as well as development of the anchoring villus controlling proliferation, invasion and differentiation. In first trimester placenta numerous canonical and non-canonical Wnt ligands are expressed in CTBs and likely regulate proliferation or other functions of these cells through the most abundant receptors, i.e., Fzd5 and Fzd10 (Figure 4). Differentiation of CTBs into growth-arrested invasive EVTs is associated with increased expression of TCF-4, nuclear recruitment of β-catenin and elevated canonical Wnt activity controlling trophoblast motility potentially through Fzd6. Furthermore, TCF-4/β-catenin could activate a set of genes promoting invasion as well as the EMT-like features of migratory trophoblasts. Hence, Wnt signaling likely contributes to the strong, intrinsic differentiation program of EVTs and their inherently invasive properties. Hyperactivation of autocrine Wnt signaling could play a role in trophoblast disorders with elevated proliferation and invasion such as CHM and choriocarcinomas whereas downregulation of the pathway could be a cause of impaired placenta and trophoblast invasion observed in preclampsia. Epigenetic changes such as methylation of negative regulators of Wnt signaling could contribute to the induction of Wnt signaling likely promoting normal placenta as well as trophoblast tumor progression. Besides autocrine control decidual Wnt ligands could modulate trophoblast function via canonical and/or non-canonical pathways. The fact that DKK1 is expressed in the decidua and increased upon progesterone treatment could suggest a mechanism to restrain the extent of trophoblast invasion. Further studies are needed to delineate specific Wnt-Fzd interactions in human trophoblasts and to define the role of non-canonical Wnt signaling in normal and aberrant trophoblast proliferation, invasion and differentiation.

ACKNOWLEDGMENTS

Research in the laboratory is supported by grants of the Austrian Science Fund (P-22687-B13 to Martin Knöfler and P-25187-B13 to Jürgen Pollheimer) as well as by grant AP00574OFF of the Herzfelder´sche Familienvittabung and by grant 14147 of the Austrian National Bank donated to Martin Knöfler and Jürgen Pollheimer, respectively. We thank V. Fock for critical reading of the manuscript.

REFERENCES

Al-Harthi, L. (2012). Wnt/beta-catenin and its diverse physiological cell signaling pathways in neurodegenerative and neuropsychiatric disorders. J. Neurochem. 7, 725–738. doi: 10.1007/s11481-012-1962-x

Angelova, M., Zwenzhalery, K., Ferrero, M., Shen, R., Mocris, C. A., and Sullivan, D. E. (2012). Human cytomegalovirus infection dysregulates the canonical Wnt/beta-catenin signaling pathway. PLoS Pathog. 8, e1002598. doi: 10.1371/journal.ppat.1002598

Aoki, M., Mieda, M., Ikeda, T., Hamada, Y., Nakamura, H., and Okamoto, H. (2007). R-spondin3 is required for branching morphogenesis in the chorioallantoic placenta. J. Clin. Investig. 117, 311–314. doi: 10.1172/JCI25770

Anson-Cartwright, L., Dawson, K., Knöfler, M., Hong, A., Mayhew, M., and Looijenga, L. H. (2010). Developmental and its diverse physiological cell signaling pathways in neurodegenerative and neuropsychiatric disorders. J. Neuroimmune Pharmacol. 7, 311–314. doi: 10.1038/jnpp.2010.72

Bao, W., Takeuchi, T., Nakajima, T., Hashida, T., Mori, R., Matsuda, Y., Ueda, T., Miyajima, H., Aoki, M., Mieda, M., Ikeda, T., and Okamoto, H. (2013). Cytomegalovirus infection of trophoblasts inhibits pregnancy establishment. J. Virol. 87, 11053–11062. doi: 10.1128/JVI.01204-13

Bertorello, A., and Sullivan, D. E. (2012). Fibronectin and integrin α5β1 role of fibronectin and integrin α5β1 in first-trimester human placental villi: current research problems. Int. J. Dev. Biol. 56, 837–847. doi: 10.1387/ijdb.082759ja

Apito, J. D. (2010). Developmental cell biology of human villous trophoblast: current research problems. Int. J. Dev. Biol. 54, 323–329. doi: 10.1387/ijdb.090279aj

Apito, J. D., Huhld, T., Jones, C. J., Church, H. J., and Vicovac, L. (1999). Development of cytotrophoblast columns from explanted first-trimester human placental villi role of thrombin and integrin alphabeta3. Biol. Reprod. 60, 828–838. doi: 10.1095/biolreprod60.4.428
antigen binds to characteristic allo-
type specificities of anti-HLA anti-
obodies. Immunity 127, 26–39. doi: 10.1016/j.immuni.2008.06.009
Armagno, A. S., Minski, P. P., Mar-
guerato, T. E., Oliffa, E., Donohue, P. K., and Zenina, J. (2003). Con-
trolative deletion of beta catenin in the mouse embryo of the developing mouse uterine results in a switch to adhesion in the myometrium. Dev. Biol. 268, 276–285. doi: 10.1016/j.ydbio.2003.09.045
Archbold, H. C., Yang, Y. X., Chen, L., and Cadigan, K. M. (2012). How do they do Wnt they do? regulation of transcription by the Wnt/beta-
catenin pathway. Acta Physiol. (Oxford) 204, 74–106. doi: 10.1111/j.1748-
1754.2012.02029.x
Baczyński, D., Dresow, S., Proctor, L., Dumb, C., Lye, S., and Kingdom, J. (2009). Glial cell line-derived transcription factor is required for the differ-
centiation of the human trophoblast. Cell Death Differ. 16, 719–727. doi: 10.1038/cdd.2009.14
Bassini, A. S., Sora, A., Sava, S., Smith, J. R., Johnson, M. R., and Thum, M. T. (2012). MicroRNA-155 in choriocarcinoma mediates immunomodulation in pregnancy. Expert Rev. Immunol. 7, 747–
753. doi: 10.1586/14740548.7.5.747
Becerra, H., Larue, L., Ohsugi, M., Haegel, H., et al. (2010). Immune cells in the placental bed. J. Reprod. Med. 54, 281–294. doi: 10.1587/jrsm.2878
Burton, G. J., Jausmus, E., and Charnock-Jones, D. S. (2005). Human early placental develop-
mant on human placental develop-
ment. Int. J. Dev. Biol. 49, 585–592. doi: 10.1371/journal.pone.0001050
Burman, J. N., Williams, P. J., and Leb, G. E. (2010). Immune cells in the placental bed. J. Reprod. Med. 54, 281–294. doi: 10.1587/jrsm.2878
Buttrick, T. (2012). To differentiate or not – routes towards metastasis Nat Rev Cancer 12, 623–636. doi: 10.1038/nrc3263
Bulmer, J., Williams, P. J., and Leb, G. E. (2010). Immune cells in the placental bed. J. Reprod. Med. 54, 281–294. doi: 10.1587/jrsm.2878
Caire, T., and Wessels, A. T. (2010). Striking the target in Wnt-
involved invasion: assessment of cellular mod-
ification of invasive mouse trophoblasts. J. Cell Biol. 21(Suppl. A), S55–
S60. doi: 10.1016/j.ydbio.2005.09.045
Campisi, J. C., Nakano, H., Natale, D. S., and Aplin, J. D. (2008). Insulin-like growth factor I and II regulate the life cycle of trophoblast in the develop-
ing human placenta. Am. J. Physiol. Cell Physiol. 294, C1315–C1322. doi: 10.1152/ajpcell.00465.2008
Frank, G. L., Dara, J. M., and Nor-
Clermont, J. N. (2010). Gβδ now partners for Wnts in the develop-
ing and regenerating nervous system. Trends Neurosci. 33, 84–92. doi: 10.1016/j.trendsneuro.2009.11.005
Fritzenmann, J., Mohelk, M., Bosser, D., Budczies, J., Kowal, F., Beumer, F. H., et al. (2009). A colorectal cancer expression profile that includes trans-
forming growth factor beta inhibitor Bamb1 promotes metastatic potential. Gastroenterology 137, 165–175. doi: 10.1053/j.gastro.2009.05.041
Gakuran, J., Fatima, L. J., Cloven, R., and Gross-
chek, R. (1999). Wnt7b— inhibited by phenotype and limb deficiency in Leth−/− mice. Genes Dev. 13, 700–717. doi: 10.1101/gad.13.6.709
Georgiadis, P., Ferguson-Smith, A. C., and Burton, G. J. (2002). Comparative developmental anatomy of the murine and human definitive placenta. Placenta 23, 5–18. doi: 10.1053/plac.2001.0738
Golen, T., Yame, A., Ballew, A., Lin, G., and Gati, S. A. (2000). The Wnt cwnt family member Fzd6 (WIF1) acts as a nega-
tive regulator of the canonical Wnt-
beta-catenin signaling cascade. J. Biol. Chem. 275, 14879–14886. doi: 10.1074/jbc.M300453200
Gordon, D. M., and Nuo, B. (2006). Wnt signaling regulates multiple pathways, multiple receptors, and multiple transcription factors. J. Biol. Chem. 281, 22429–22430. doi: 10.1074/jbc.M300312200
Grisaru-Granovsky, S., Maoz, M., Barzi-
lay, O., Yin, Y., Prus, D., and Bar-
Shani, R. (2004). Beta-catenin and c-myc mediates branching morphogene-
sis during development of placental villi. Differentiation 72, 352–357. doi: 10.1016/j.ydbio.2005.03.018
Gupta, S. K., Westwood, M., Baker, P. N., and Asplin, J. D. (2008). Insulin-like growth factor I and II regulate the life cycle of trophoblast in the develop-
ing human placenta. Am. J. Physiol. Cell Physiol. 294, C1315–C1322. doi: 10.1152/ajpcell.00465.2008
Haidar, S., and Knöfler, M. (2009). Human tumour necrosis factor

"fgene-04-00190" — 2013/9/24 — 16:36 — page 11 — #11

Knöfler and Pollheimer
Wnt signaling in human trophoblast
Harris, L. K. (2011). IFPA gabor

He, S., Pant, D., Schiffmacher, A., Meece, H., Harris, L. K., McCormick, J., Cartwright, Hiby, S. E., Walker, J. J., O’Shaughnessy, Hess, A. P., Hamilton, A. E., Talbi, S., Knöfler and Pollheimer Wnt signaling in human trophoblast

Wnt signaling promotes the initi-
tion of the spiral arteries in
than award lecture: transforma-
tion: an in vitro co-culture study.

Non-conventional Frizzled ligands

Stem Cells

Development of the human placenta

Physiological and pathological roles in placenta and endometrium. Placenta 30, 511–523. doi: 10.1016/j.placenta.2008.10.012

Development of the human placenta in the first three months of gestation. J. Reprod. Med. 49, 247–258.

J. E., Whiting, G. S., and Dub, P. R. (2008). S-introduction of proteins at the leading edge of migrating troph-

bophob enhancer factor 1-mediated

the first three months of gestation. Placenta 30, 511–523. doi: 10.1016/j.placenta.2008.10.012

N., et al. (2007). Decidual stromal
tors.

Development of the human placenta

Hiby, S. E., Walker, J. J., O’Shaughnessy, Hess, A. P., Hamilton, A. E., Talbi, S., Knöfler and Pollheimer Wnt signaling in human trophoblast

Wnt signaling promotes the initi-
tion of the spiral arteries in
than award lecture: transforma-
tion: an in vitro co-culture study.

Non-conventional Frizzled ligands

Stem Cells

Development of the human placenta

Physiological and pathological roles in placenta and endometrium. Placenta 30, 511–523. doi: 10.1016/j.placenta.2008.10.012

Development of the human placenta in the first three months of gestation. J. Reprod. Med. 49, 247–258.

J. E., Whiting, G. S., and Dub, P. R. (2008). S-introduction of proteins at the leading edge of migrating troph-

bophob enhancer factor 1-mediated

the first three months of gestation. Placenta 30, 511–523. doi: 10.1016/j.placenta.2008.10.012

Development of the human placenta in the first three months of gestation. J. Reprod. Med. 49, 247–258.
Knöfler and Pollheimer Wnt signaling in human trophoblast

Mohamed, O. A., Jonnaert, M., Labelle-Novakovic, B., Rakyan, V., Nishita, M., Enomoto, M., Yamato, T., Akazawa, H., Takano, H., Monkley, S. J., Delaney, S. J., Pommier, M., Moustakas, A., and Heldin, C. H. (1996). Targeted cell gene family. J. Biol. Chem. 271, 144–151. doi:10.1016/0022-2836(96)90241-9

Knöfler, F., Poehlmann, T. G., Fitzgerald, J. S., Pijnenborg, R., Verhulst, F. K., Manuelpillai, U., Dewi, C., Meissner, A., I., et al. (2011). Nodal signals express IGF-II-mediated signaling and invasion of human extravillous trophoblasts. J. Pathol. 224, 1177–1189. doi:10.1002/path.3502

Rashid, S., Stuckey, A. C., Mathur, A., Nasser, M., Prakobphol, A., Foulk, D., Bachev, O., Prakobphol, A., Faust, R., Menon, M., et al. (2012). Review: does size matter? Placental debris and the selectin adhesion system in mediating fetal-maternal interactions. Placenta 33(Suppl. A), S169–S174. doi:10.1016/j.placenta.2012.07.001

Sonmez, F. M., and Wei, W. N. (2011). The b-catenin destruction complex. Cold Spring Harb. Perspect. Biol. 3, a007898. doi:10.1101/cshperspect.a007898

Tak, E. (2012). The role of heparin and heparin-mimetic factor in placental pathology. Biol. Reprod. 87, 174–180. doi:10.1093/biolre谜/12.2.172

Fang, H., Chong, Y., T. K., Kindel, W. D., Shi, Y., Young, W. S., Wong, C. K., et al. (2012). 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) suppresses spheroids attachment on endometrial epithelial cells through down-regulation of the Wnt-signaling pathway. Toxicol. Lett. 205, 90–96. doi:10.1016/j.toxlet.2011.08.002

Talab, S., Nardal, N. K., Hoss, L. C., Van Weer, M., Huang, J., Lobo, S., et al. (2005). Identification, characterization, and regulation of the canonical Wnt signaling pathway in human placental epidermal cells. Endocrinology 146, 3860–3866. doi:10.1210/en.2005-05894

Talab, S., Ovsgard, M. T., Hamilton, A. E., Junme, N. L., Suchonka, E., Sanchez-Tills, E., De Barros, O., Siks, L., Castlesen, M., Castells, A., and Postigo, A. (2011). Beta-catenin/TCF complex induces the epithelial-to-mesenchymal transition (EMT) and activates ZEB1 to regulate tumor invasiveness. Proc. Natl. Acad. Sci. U.S.A. 108, 19129–19134. doi:10.1073/pnas.1107710108
Wnt signaling in human trophoblasts

Knöfler and Pollheimer

Wnt signaling is essential for stromal cell proliferation during decidualization. A strategy for successful endovascular invasion? J. Clin. Invest. 99, 2138–2151. doi: 10.1172/JCI9887

Zhao, Y., Gommeren, M. J., Haukipietro, N. M., Kapidzic, M., Stounen, F., Yeng, Y., et al. (2015). Reversal of gene dysregulation in cultured cytotrophoblasts reveals possible causes of preeclampsia. J. Clin. Invest. 125, 2662–2672. doi: 10.1172/JCI80948

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 28 June 2015; accepted: 06 September 2015; published online: 26 September 2015.

Citation: Knöfler M and Pollheimer J (2015) Human placental trophoblast invasion and differentiation: a particular focus on Wnt signaling. Front. Genet. 6:390. doi: 10.3389/fgene.2015.00390

This article was submitted to Epigenomics and Epigenetics, a section of the journal Frontiers in Genetics.

Copyright © 2015 Knöfler and Pollheimer. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction in any medium is permitted which does not comply with these terms.