Superintermolecular orbitals in the C₆₀/pentacene complex

G. P. Zhang, A. Gardner, T. Latta, K. Drake and Y. H. Bai

1Department of Physics, Indiana State University, Terre Haute, Indiana 47809, USA and
2Office of Information Technology, Indiana State University, Terre Haute, IN 47809, USA

(Dated: October 2, 2018)

We report a group of unusually big molecular orbitals in the C₆₀/pentacene complex. Our first-principles density functional calculation shows that these orbitals are very delocalized and cover both C₆₀ and pentacene, which we call superintermolecular orbitals or SIMOs. Their spatial extension can reach 1 nm or larger. Optically, SIMOs are dark. Different from ordinary unoccupied molecular orbitals, SIMOs have a very weak Coulomb and exchange interaction. Their energy levels are very similar to the native superatomic molecular orbitals in C₆₀, and can be approximately characterized by orbital angular momentum quantum numbers. They have a distinctive spatial preference. These features fit the key characters of charge-generation states that channel initially-bound electrons and holes into free charge carriers. Thus, our finding is important for C₆₀/pentacene photovoltaics.

I. INTRODUCTION

Organic solar cells are flexible, stretchable and possibly wearable. If they could be integrated into our clothing, they would power our portable phones and computers. C₆₀/pentacene solar cells are a prime example in organic photovoltaics [1], where pentacene (Pc) serves as an electron donor and C₆₀ as an electron acceptor. When light strikes on pentacene, a complex singlet is formed and subsequently is split into two optically inactive triplets, or singlet fission [2–6]. Such a unique feature, where one single photon creates two triplets, greatly improves the quantum efficiency of charge photogeneration [7]. What is more important for the photovoltaic cell [7] is the states that channel initially-bound electrons and holes into free charge carriers. Bakulin et al. [8] showed that charge photogeneration occurs predominantly via those channel states in C₆₀, and can be approximately characterized by orbital angular momentum quantum numbers. They have a distinctive spatial preference. These features fit the key characters of charge-generation states that channel initially-bound electrons and holes into free charge carriers. Thus, our finding is important for C₆₀/pentacene photovoltaics.

But the high quantum efficiency is only the first step for the photovoltaic cell [2]. What is more important is the states that channel initially-bound electrons and holes into free charge carriers. Bakulin et al. [8] showed that the formation of delocalized states facilitates photovoltaics. In 2014, Gelinas et al. [9] suggested that a rapid (40 fs) charge separation proceeds through delocalized π-electron states in ordered regions of the fullerene and acceptor material. Chen et al. [10] also found that charge photogeneration occurs predominantly via those delocalized hot exciton states. Paraecatti and Banerji [11] more directly pointed out that exciton delocalization provides an efficient charge separation pathway. These prior studies established beyond any doubt the important of delocalized states, but what are these delocalized channel states [12, 13]? To this end, there has been no obvious answer. This is the focus of our study.

In this paper, we carry out an extensive first-principles density functional calculation to show that there are a group of unusually larger superintermolecular orbitals (SIMOs) in C₆₀/Pc complex that bridge both C₆₀ and pentacene. We employ a real grid mesh method so we can treat both ordinary molecular orbitals and SIMOs on an equal footing. We find that energetically, SIMOS are close to native superatom molecular orbitals in C₆₀, but spatially SIMOs are much larger, with spatial extension over 1 nm. They are optically silent. By computing over 3000 Coulomb and exchange integrals, we find that both Coulomb and exchange interactions among SIMOS are in general much smaller than those among ordinary molecular orbitals, a necessary condition to allow initially bound electrons and holes to dissociate into free charge carriers. Interestingly, regardless of edge-on and face-on geometries, SIMOs retain their original shapes. These features strongly suggest that they are good candidates for those channel states in C₆₀/Pc solar cells.

The rest of the paper is arranged as follows. In Sec. II, we present our theoretical formalism and the details of our first-principles calculation. Section III is devoted to the results and discussion. We conclude this paper in Sec. IV. An appendix at end provides additional details about our hybrid MPI/OpenMP parallel implementation.

II. METHOD

Our calculation is based on the first-principles density functional code Octopus [14], which employs the pseudopotential method and the real grid mesh in real space, and has an important advantage that it treats localized and delocalized states on an equal footing. To start with, we solve the Kohn-Sham (KS) equation in atomic units,

$$\left[-\frac{1}{2} \nabla^2 + V_{eff}(\mathbf{r}) \right] \phi_i(\mathbf{r}) = E_i \phi_i(\mathbf{r}) \quad (1)$$

where $\phi_i(\mathbf{r})$ is the Kohn-Sham wavefunction and E_i is the eigenvalue of state i. The first term on the left hand side of Eq. (1) is the kinetic energy operator. The effective potential (V_{eff}) consists of the electron-nuclei interaction, the Hartree potential (due to the electron-electron Coulomb interaction), and exchange-correlation interactions,

$$V_{eff}(\mathbf{r}) = v(\mathbf{r}) + \int d\mathbf{r'} \frac{\rho(\mathbf{r'})}{|\mathbf{r} - \mathbf{r'}|} + V_{xc}(\mathbf{r}) \quad (2)$$

where the exchange-correlation potential V_{xc} is $\delta E_{xc}[\rho]/\delta \rho(\mathbf{r})$, taking the form of the local density approximation (LDA). We find that LDA is sufficient for our purpose, and using GGA raises the energy by 0.5 eV.
The new charge density is computed by summing over all the occupied orbitals (N_{occ}).

$$\rho(r) = \sum_{i=1}^{N_{occ}} |\phi_i(r)|^2.$$ \hfill (3)

The next iteration starts. This process repeats itself until the charge density converges. With the converged wavefunction, we then compute the Coulomb and exchange integrals using National Energy Research Scientific Computing Center machines. However, these integrals over six degrees of freedom are extremely time consuming, with so many mesh grid points (see the appendix for details). We employ the submatrix technique where we compute the action of the Coulomb term on the states n and m and then multiply two additional wavefunctions on the above results. We develop a hybrid MPI/OpenMP code that breaks the integral into segments and distribute them to processors and nodes. And finally, the master node sums all the results up. This speeds up our calculation greatly.

We use the normal conserving pseudopotential developed by Troullier and Martins [10]. Our simulation box is a cylinder. The radius of the cylinder is $r = 30$ Å and the length is 80 Å. The grid mesh is $m = 0.22$ Å and the total number of grid mesh points is 2281431. We have checked the convergence with the grid mesh and find that our results converge well. C$_{60}$/pentacene complex has 342 valence electrons, so 171 orbitals are doubly occupied. To obtain those unoccupied states, we add 129 extra states (in Octopus, the command is ExtraStates=129), so we have eigenstates all the way up to 300. This covers the entire spectrum that is of interest to us. The threshold for the charge density convergence is set to 10^{-4}, and the threshold for the absolute energy convergence is set to 5×10^{-7} eV. All the Octopus calculations are run on our university Silicon cluster, where each computing node has dual Intel Xeon E5-2680 v2 CPUs with 2.80GHZ. Each CPU has 10 cores and cache size of 25 MB. The total memory for each node is 132 GB. The entire calculation needs 80 GB memory and takes nearly two months to finish. After the calculation is finished, we export the wavefunctions from state number 97 up to 300 in two different formats, one for Xcrysden rendering of orbital images and the other in the Cartesian format. The latter is the actual wavefunctions in the three-dimensional space $\phi(x,y,z)$. These wavefunctions are extremely convenient for calculating other properties of interest.

III. RESULTS: SUPERINTERMOLECULAR ORBITALS

Photovoltaic effects depend on an efficient charge transfer from a donor (D) to an acceptor (A) [17]. Figure 1 schematically illustrates that light first strikes C$_{60}$/pentacene complex and creates a singlet, followed by singlet fission into triplets. But electrons and holes have to dissociate from each other to become free charge carriers. The central question is what the channel states are for charge generation in organic solar cells. We show that the superintermolecular orbitals may offer an answer. While there is no detail study of these channel states, several studies have estimated the size of channel states to be around 3-4 nm [5, 16, 22]. This distance corresponds to a binding energy of 0.1 eV, which can be reasonably approximated as $E_B = q^2 / 4 \pi \varepsilon r_{CT}$. Here q is the charge, r_{CT} is the separation between average electrons and holes in the parent charge-transfer (CT) state. However, no ordinary molecular orbitals can be as big as 4 nm. Being unaware of possible relevance to photovoltaics in C$_{60}$/Pc, Feng and her coworkers [23] reported some very peculiar molecular orbitals in C$_{60}$, resembling the atomic orbitals, but with a much larger radius. They are not localized around the atoms of the cluster, but rather they belong to the entire cluster, for which they called superatomic molecular orbitals, or SAMOs. They detected these SAMOs using the scanning tunneling microscope (STM), where the voltage bias is gradually tuned. Their appearance is due to the partial delocality of outer shells of carbon atoms which jointly create a potential. Such a potential allows electrons to partially delocalize around the entire molecule. These orbitals have a distinctive shell structure from 1s up to 1d and are optically dark states. When we were investigating SAMO[15], we were keenly aware of the large size of those SAMOs. We notice that the 1s orbital has a size close to C$_{60}$[14].

To begin with, we employ Gaussian09 [24] to separately optimize C$_{60}$, pentacene and C$_{60}$/Pc structures. We use the Becke, 3-parameter, Lee-Yang-Parr (B3LYP) method and a correlation-consistent polarized valence double-zeta (cc-pVDZ) basis. The results are fully consistent with our and other previous calculations [25, 26] in both the eigenenergies and wavefunctions. The optimized coordinates in Gaussian09, without further optimization, are used as an input for Octopus [14]. The reason is that Octopus uses grid mesh and slightly breaks the symmetry of degenerate eigenstates. Although the change in energy is small, we worry that the introduced force may be too great if we use it to optimize our C$_{60}$/Pc complex.

As done by many researchers [27, 30], we consider both...
edge-on and face-on configurations. In the edge-on configuration one end of Pc aims at the hexagons/pentagons on C$_{60}$, while in the face-on configuration, the plane of Pc faces the hexagons/pentagons on C$_{60}$.

A. Edge-on

We start with the edge-on geometry. The distance between the frontier carbon atoms of Pc and the hexagons on C$_{60}$ is 7.1 Å, larger than previous investigations [27, 31]. The distance between the far-left carbon atoms on Pc and the far-right carbon atoms on C$_{60}$ is 19.3 Å. The left figure of Fig. 2 shows one example for the edge-on configuration. This is the wave function $\psi_{205}(r)$ for orbital 205 plotted at isovalue of 0.005 $\sqrt{\text{Å}}$. The color difference denotes the sign of $\psi_{205}(r)$. Different from SAMOs, this superorbital covers both Pc and C$_{60}$ molecules, or superintermolecular orbital, SIMO for short. In the language of SAMO, this could be 1p SIMO, but for SIMOs, the orbital character is approximate due to the symmetry reduction. We find that in general SIMOs have special orientations just as an ordinary molecular orbital. In some cases, SIMOs are more like SAMOs on an isolated C$_{60}$. This spatial preference is crucial since it allows the electrons to transfer from Pc to C$_{60}$ unidirectionally. One special feature, which is inherent from SAMOs, is that the dipole transition matrix elements between SIMOs and ordinary molecular orbitals are very small. For this reason, we do not expect that an optically induced charge transfer occurs from ordinary molecular orbitals to SIMOs. Instead, the initial bound exciton must dissociate into SIMOs through tunneling. We recall that Feng et al. [28] detected SAMOs using STM. The quantum tunneling is also closer to what happens in solar cells.

However, in photovoltaics, electrons are first excited into those low lying lowest unoccupied molecular orbitals (LUMOs), which have been the focus of recent investigations. For free charge generation, majority of theoretical studies start from an initial state $\phi_i^m(r)$ localized on D, where m is the multiplicity of state i and r is the electron coordinate. One hopes that this initial state ends up to a final state $\phi_f^j(r)$ localized on A. In the many-body picture [32], one often starts from configurations like

$$|\Psi\rangle = a|\phi_i^m(r_1)\phi_f^j(r_2)\rangle + \text{high - order terms}. \quad (4)$$

If $|\phi_i^m(r_1)\phi_f^j(r_2)\rangle$ takes a significant weight on the many-body wavefunction, so CT is realized. This idea is simple and attractive, but faces a dilemma. To have a large contribution from configuration $|\phi_i^m(r_1)\phi_f^j(r_2)\rangle$, the Coulomb and exchange interaction matrix elements must be large, but this leads to a large binding energy, detrimental to free charge carrier generation [33]. On the other hand, if the above elements are small, then the coupling is weak and the transition to CT states is less likely. We compute all the Coulomb and exchange integrals from the lowest unoccupied molecular orbital (LUMO) up to LUMO+1; there are in total four orbitals since LUMOs are nearly degenerate. Table I shows all the Coulomb and exchange interaction matrix elements must be large to free charge carrier generation [33]. We show one representative 1p SIMO for each configuration. 1p SIMO has orbital number 205.

TABLE I: Coulomb and exchange matrix elements (in units of eV) among LUMO (from 172 to 174) and LUMO+1 (175).

$n \backslash m$	172	173	174	175				
	$J(n	m)$ (eV)	$K(n	m)$ (eV)	$J(n	m)$ (eV)	$K(n	m)$ (eV)
172	0.107	0.107	0.555×10^{-6}					
173	0.108	0.169×10^{-5}						
174	0.916×10^{-6}							
175	0.169×10^{-5}							

FIG. 2: Superintermolecular orbitals in C$_{60}$/pentacene for the edge-on configuration (left) and face-on configuration (right). We show one representative 1p SIMO for each configuration. 1p SIMO has orbital number 205.
FIG. 3: Coulomb and exchange matrix elements between pairs of states in native C\textsubscript{60}. There are 3081 elements. The magnitude of matrix elements is proportional to the radius of circles, and all the Coulomb elements are rescaled by multiplying 0.15. Since the matrix is symmetric, the upper triangle shows the Coulomb integral, while the lower triangle shows the exchange integral.

a high binding energy for excitons, thus it is detrimental to free charge carrier generation. This simple estimate highlights that initially excited states by the light are unlikely the same states that are responsible for final charge transfer and charge separation. A different group of states engage the final step of charge generations.

The above calculation is only limited to four unoccupied orbitals. Before we present results for C\textsubscript{60}/Pc, we decide to completely map out all the matrix elements for all the states from the highest occupied molecular orbital (HOMO)-4 through 1g SAMOs in native C\textsubscript{60}. There are 3081 Coulomb and exchange integrals. All the calculations are carried out at Berkeley National Laboratory’s National Energy Research Computing Center. Figure 3 shows a complete list of those matrix elements. Since these matrix elements are symmetric with respect to the state permutation (other combinations have a much small amplitude, thus not shown), we only show the upper triangle for the Coulomb integral and the lower triangle for the exchange integral. Both the horizontal and vertical axes denote the states. The SAMOs state labels are slightly off the axis for clarity. Along the horizontal axis, the second \(H_u \) state from the left is our HOMO, and the first \(T_{1u} \) is our LUMO. The radii of the circles are proportional to the magnitude of integral. The Coulomb integrals are in general much larger, so when we plot them, we reduce their size by multiplying them by 0.15. A general pattern emerges. For ordinary molecular orbitals, the Coulomb and exchange integrals are much larger. The exchange integrals are much less uniform than the Coulomb integral, since the former greatly depends on the phases of the wavefunctions. SAMOs’ integrals are also sizable, in particular for 1s SAMO, but once we are above 1p SAMO, both Coulomb and exchange integrals drop very quickly. This opens a door for delocalized and weak-interacting SAMOs to participate charge generating process.

To build a case for SIMOs, we also compute the Coulomb and exchange integrals and we find that similar to SAMOs, their values are an order of magnitude smaller. Figure 4 compares the Coulomb (upper triangle) and exchange (lower triangle) integrals for LUMOs and SIMOs. The largest circle represents 4.51 eV (which is between LUMO+1). The Coulomb interaction drops quickly once we are above the 1s SIMO. The smallest Coulomb interaction is for 1f SIMOs, only 0.43 eV. If we consider the dielectric constant of the medium about 3, this interaction is reduced to 0.14 eV, very close to the disorder energy. These small Coulomb and exchange integrals are also reflected in the small transfer integral used by Smith and Chin. They concluded that the transfer integrals are no larger than 8 meV, extremely tiny in comparison to those in C\textsubscript{60}.

In 2016, in poly(3-hexylthiophene)/fullerene blends, D’Avino et al. argued that the bound localized charge-transfer (LCT) states coexist with delocalized space-separated states because LCT states hybridize with singlets. In a later study, they also suggested that both C\textsubscript{60} and its derivative may sustain high-energy states that spread over a few tens of molecules by pointing out sizable intermolecular delocalization of the electron wavefunction. Here our SIMOs present an alternative.
By contrast, other orbitals do not change too much. This lowers the orbital energy significantly. The lobes of the orbital over-
Appendix A: Calculation of Coulomb and exchange integrals

In this appendix, we explain how the Coulomb and Exchange integrals are done using combination of MPI and OpenMP parallelization. The Coulomb integral is

\[K(nm|mn) = \frac{1}{4\pi\epsilon_0} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dr_1 dr_2 \psi_n^\dagger(r_1) \psi_n(r_1) \psi_m^\dagger(r_2) \psi_m(r_2) e^2 r_{12}, \quad (A1) \]

and exchange integral

\[J(nm|mn) = \frac{1}{4\pi\epsilon_0} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dr_1 dr_2 \psi_n^\dagger(r_1) \psi_n(r_1) \psi_m^\dagger(r_2) \psi_m(r_2) e^2 r_{12}, \quad (A2) \]

where \(\psi_n \) and \(\psi_m \) are the respective wavefunctions for state \(n \) and \(m \), \(r_{12} \) is the distance between two electrons situated at positions \(r_1 \) and \(r_2 \), and \(e \) is the charge unit. Although we may use the medium permittivity in the above two equations, we decide to use the permittivity in vacuum \(\epsilon_0 \) so the reader can verify our results easily. Note that we only consider the paired states, since other forms have a much smaller integral. The integral over \(r_2 \) is parallelized using OpenMP, and distributed evenly to processors in each MPI task. The integral over \(r_1 \) is parallelized using MPI. The final results in each MPI task is summed up using MPI reduction. The only serial part of the implementation is the file IO and input of the wavefunctions. Since the Coulomb and exchange integrals have singularity, the treatment needs some caution although their overall contributions are small. Around the singularity, we replace the cube (grid mesh used in Octopus) by a sphere. The spherical coordinate allows an analytic integration. Then we rescale the volume of the sphere to that of a cube. Finally, we add the integral back to the final sum. This method is very accurate.

The above implementation is post-processed in our own code, not in Octopus. The hybrid MPI/OpenMP calculation is set up according to the computing system hardware structure. The supercomputer system Cori at National Energy Research and Scientific Computing Center (NERSC) at Berkeley National Laboratory has dual CPUs with a total of 32 cores per node. With this system we run 4 MPI tasks and 8 OpenMP threads on each node to obtain optimal performance.

[1] J.-L. Bredas, J. E. Norton, J. Cornil and V. Coropceanu, Molecular understanding of organic solar cells: The challenges, Acc. Chem. Res. 42, 1691 (2009).
[2] W.-L. Chan, M. Ligges, A. Jailaubekov, L. Kaake, L. Miaja-Avila and X.-Y. Zhu, Observing the multie exciton state in singlet fission and ensuing ultrafast multielectron transfer, Science 334, 1541 (2011).
[3] V. K. Thorsmolle, R. D. Averitt, J. Densar, D. L. Smith, S. Tretiak, R. L. Martin, X. Chi, B. K. Crone, A. P. Ramirez, and A. J. Taylor, Morphology Effectively Controls Singlet-Triplet Exciton Relaxation and Charge Transport in Organic Semiconductors, Phys. Rev. Lett. 102, 017401 (2009).
[4] P. M. Zimmerman, Z. Zhang and C. B. Musgrave, Singlet fission in pentacene through multi-exciton quantum states, Nat. Chem. 2, 648 (2010).
[5] M. W. B. Wilson, A. Rao, J. Clark, R. S. S. Kumar, D. Brida, G. Cerullo, and R. H. Friend, Ultrafast Dynamics of Exciton Fission in Polycrystalline Pentacene, J. Am. Chem. Soc. 133, 11830 (2011).
[6] S. N. Sanders, E. Kumarasamy, A. B. Pun, K. Appavoo, M. L. Steigerwald, L. M. Campos, and M. Y. Sfeir, Exciton Correlations in Intramolecular Singlet Fission, J. Am. Chem. Soc. 138, 7289 (2016).
[7] D. N. Congreve, J. Lee, N. J. Thompson, E. Hontz, S. R. Yost, P. D. Reusswig, M. E. Bahlke, S. Reineke, T. Van Voorhis, and M. A. Baldo, External Quantum Efficiency Above 100% in a Singlet-Exciton-Fission-Based Organic Photovoltaic Cell, Science 340, 334 (2013).
[1] van Loosdrecht, M. S. Pshenichnikov, D. Niedzialek, J. Cornil, D. Beljonne and R. H. Friend, The role of driving energy and delocalized states for charge separation in organic semiconductors, Science 335, 1340 (2012).

[2] S. Gellinas, A. Rao, A. Kumar, S. L. Smith, A. W. Chin, J. Clark, T. S. van der Poll, G. C. Bazan and R. H. Friend, Ultrafast Long-Range Charge Separation in Organic Semiconductor Photovoltaic Diodes, Science 343, 512 (2014).

[3] K. Chen, A. J. Barker, M. E. Reish, K. C. Cordon and J. M. Hodgkiss, Broadband ultrafast photoluminescence spectroscopy resolves charge photogeneration via delocalized hot excitons in polymer:fullerene photovoltaic blends, J. Am. Chem. Soc. 135, 18502 (2013).

[4] A. A. Paraccattil and N. Banerji, Charge separation pathways in a highly efficient polymer: Fullerene solar cell material, J. Amer. Chem. Soc. 136, 1472 (2014).

[5] B. M. Savoie, A. Rao, A. A. Bakulin, S. Gellinas, B. Movaghar, R. H. Friend, T. J. Marks, and M. A. Ratner, Unequal Partnership: Asymmetric Roles of Polymeric Donor and Fullerene Acceptor in Generating Free Charge J. Am. Chem. Soc. 136, 2876 (2014).

[6] B. M. Savoie, N. E. Jackson, L. X. Chen, T. J. Marks and M. A. Ratner, Mesoscopic features of charge generation in organic semiconductors Acc. Chem. Rev. 47, 3385 (2014).

[7] X. Andrade, J. Alberdi-Rodriguez, D. A. Strubbe, M. J. T. Oliveira, F. Nogueira, A. Castro, J. Muguerza, A. Arribabreana, S. G. Louie, A. Aspuru-Guzik, A. Rubio, and M. A. L. Marques, TDDFT in massively parallel computer architectures: the OCTOPUS project, J. Phys.: Cond. Matt. 24, 233202 (2012).

[8] G. P. Zhang, H. P. Zhu, Y. H. Bai, J. Bonacum, X. S. Wu and T. F. George, Imaging superatomic molecular orbitals in a C60 molecule through four 800-nm photons, Inter. J. Modern Phys. B 29, 1550115 (2015).

[9] N. Troullier and J. L. Martins, Efficient pseudopotentials for plane-wave calculations, Phys. Rev. B 43, 1993 (1991).

[10] G. P. Zhang, R. T. Fu, X. Sun, K. H. Lee and T. Y. Park, Photoinduced charge transfer in excited C60, J. Phys. Chem. 99, 12301 (1995).

[11] B. Bernardo, D. Cheyns, B. Verreet, R. D. Schaller, B. P. Rand and N. C. Giebink, Delocalization and dielectric screening of charge transfer states in organic photovoltaic cells, Nature Cond. Matt. 5, 3245 (2014).

[12] A. J. Barker, K. Chen and J. M. Hodgkiss, Distance distributions of photogenerated charge pairs in organic photovoltaic cells, J. Am. Chem. Soc. 136, 12018 (2014).

[13] M. C. Heiber and A. Dhinojwala, Estimating the magnitude of exciton delocalization in regioregular P3HT, J. Phys. Chem. C 117, 21627 (2013).

[14] G. J. Dutton and S. W. Robey, Distance dependence of exciton dissociation at a phthalocyanine-C60 interface, J. Phys. Chem. C 117, 25414 (2013).

[15] G. D’Avino, L. Muccioli, Y. Olivier and D. Beljonne, Charge separation and recombination at polymer-fullerene heterojunctions: Delocalization and hybridization effects J. Phys. Chem. 7, 536 (2016).

[16] M. Feng, J. Zhao and H. Petek, Atomlike, Hollow-Core-Bound Molecular Orbitals of C60, Science 320, 359 (2008).

[17] M. J. Frisch et al., Gaussian09, Gaussian Inc. (Pittsburgh, PA, 2009).

[18] G. P. Zhang, D. A. Strubbe, S. G. Louie and T. F. George, First-principles prediction of optical second-order harmonic generation in the endohedral N@C60 compound, Phys. Rev. A 84, 023837 (2011).

[19] J. O. Johansson, G. G. Henderson, F. Remacle, and E. E. Campbell, Angular-resolved Photoselective Spectroscopy of Superatom Orbitals of Fullerenes, Phys. Rev. Lett. 108, 173401 (2012).

[20] Y. Yi, V. Coropceanu and J.-L. Bredas, Exciton-Dissociation and Charge-Recombination Processes in Pentacene/C60 Solar Cells: Theoretical Insight into the Impact of Interface Geometry, J. Am. Chem. Soc. 131, 15777 (2009).

[21] B. R. Yang, Y. Yi, C.-R. Zhang, S. G. Aziz, V. Coropceanu, and J.-L. Bredas, Impact of Electron Delocalization on the Nature of the Charge-Transfer States in Model Pentacene/C60 Interfaces: A Density Functional Theory Study, J. Phys. Chem. C 118, 27648 (2014).

[22] L.-H. Li, O. Y. Kontsevoi and A. J. Freeman, Orientation-dependent electronic structures and optical properties of the P3HT:PCBM interface: A First-principles GW-BSE study, J. Phys. Chem. C 118, 10263 (2014).

[23] S. M. Ryno, Y.-T. Fu, C. Risko and J.-L. Bredas, Polarization energies at organic-organic interfaces: Impact on the charge separation barrier at donor-acceptor interfaces in organic solar cells, ACS Appl. Mater. Interfaces 8, 15524 (2016).

[24] T. Minami, M. Nakano and F. Castet, Nonempirically Tuned long-range corrected density functional theory study on local and charge-transfer excitation energies in a pentacene/C60 model complex, J. Phys. Chem. Letters 2, 1725 (2011).

[25] A. V. Akimov and O. V. Prezhdo, Nonadiabatic dynamics of charge transfer and singlet fission at the pentacene/C60 interface, J. Amer. Chem. Soc. 136, 1599 (2014).

[26] A. E. Jallalubekov, A. P. Willard, J. R. Tittsch, W.-L. Chan, N. Sai, R. Gearba, L. G. Kaake, K. J. Williams, K. Leung, P. J. Rossky and X. Y. Zhu, Hot charge-transfer excitons set the time limit for charge separation at donor/acceptor interfaces in organic photovoltaics, Nat. Mater. 12, 66 (2013).

[27] T. M. Clarke and J. R. Durrant, Charge photogeneration in organic solar cells, Chem. Rev. 110, 6736 (2010).

[28] S. L. Smith and A. W. Chin, Phonon-assisted ultrafast charge separation in the PCBM band structure Phys. Rev. B 91, 201302 (2015).

[29] G. P. Zhang, R. T. Fu, X. Sun, D. L. Lin and T. F. George, Relaxation process of charge transfer in C60, Phys. Rev. B 50, 11976 (1994).

[30] G. D’Avino, Y. Olivier, L. Muccioli and D. Beljonne, Do charges delocalize over multiple molecules in fullerene derivatives? J. Mater. Chem. C 4, 3747 (2016).

[31] Y. Pavlyukha and J. Berakdar, Communication: Superatom molecular orbitals: New types of long-lived electronic states, J. Chem. Phys. 105, 201103 (2011).

[32] A. D. Chepelianskii, J. Wang, and R. H. Friend, Low-Temperature Transport Properties of Photogenerated Charges in Organic Materials, Phys. Rev. Lett. 112, 126802 (2014).

[33] A. Rao, P. C. Y. Chow, S. Gelina, C. W. Schlenker, C.-Z. Li, H.-L. Yip, A. K.-Y. Jen, D. S. Ginger and R. H. Friend, The role of spin in the kinetic control of recombination in organic photovoltaics, Nature 500, 435 (2013).
[41] F. E. Osterloh, M. A. Holmes, J. Zhao, L. Chang, S. Kawula, J. D. Roehling and A. J. Moule, P3HT:PCBM bulk-heterojunctions: Observing interfacial and charge transfer states with surface photovoltage spectroscopy, J. Phys. Chem. C 118, 14723 (2014).

[42] G. Nan, X. Zhang and G. Lu, Do ’hot’ charge-transfer excitons promote free carrier generation in organic photovoltaics? J. Phys. Chem. 119, 15208 (2015).

[43] X. Shen, G. Han, D. Fan, Y. Xie and Y. Yi, Hot charge-transfer states determine exciton dissociation in the DTDCTB/C60 complex for organic solar cells: A theoretical insight, J. Phys. Chem. 119, 11320 (2015).