Lessons From COVID-19 in Children: Key Hypotheses to Guide Preventative and Therapeutic Strategies

Tulika Singh,1,2 Sarah M. Heston,4 Stephanie N. Langel,1,4 Maria Blasi,1,5 Jillian H. Hurst,3,4 Genevieve G. Fouda,1,4 Matthew S. Kelly,4 and Sallie R. Permar1,2,3,4

1Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA, 2Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA, 3Duke Children’s Health and Discovery Initiative, Duke University School of Medicine, Durham, North Carolina, USA, 4Division of Pediatric Infectious Diseases, Duke University Medical Center, Durham, North Carolina, USA, and 5Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA

The current pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), reveals a peculiar trend of milder disease and lower case fatality in children compared with adults. Consistent epidemiologic evidence of reduced severity of infection in children across different populations and countries suggests there are underlying biological differences between children and adults that mediate differential disease pathogenesis. This presents a unique opportunity to learn about disease-modifying host factors from pediatric populations. Our review summarizes the current knowledge of pediatric clinical disease, role in transmission, risks for severe disease, protective immunity, as well as novel therapies and vaccines trials for children. We then define key hypotheses and areas for future research that can use the pediatric model of disease, transmission, and immunity to develop preventive and therapeutic strategies for people of all age groups.

Keywords. COVID-19; SARS-CoV-2; children; pediatrics; vaccines.

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) originated in Wuhan, China, in December 2019, and was deemed a public health emergency of international concern by the World Health Organization [1]. SARS-CoV-2 is the etiological agent of the disease known as coronavirus disease 2019 (COVID-19), which is characterized by fever, cough, dyspnea, and progression to acute respiratory distress syndrome (ARDS). In the 4 months since its identification, SARS-CoV-2 has led to more than 3 million cases and 228,000 deaths globally [2]. Sustained community-based spread is constraining healthcare resources, shutting down economies, and leading to unprecedented governmental recommendations for quarantining and social distancing to limit transmission. While these measures are necessary to slow the rate of new infections, they have been highly disruptive to society and other preventative and therapeutic approaches are urgently needed.

Surprisingly, epidemiological evidence across countries consistently reveals that children experience less severe disease and lower case fatality from COVID-19 than adults [1, 3, 4]. This trend suggests that there are underlying biological differences between children and adults that could inform the development of therapeutics and preventative measures. Recent cohort studies indicate that only up to 6% of infected children experience severe disease, whereas up to 26% of adult cases progress to severe illness requiring intensive care unit admission [5, 6]. Notably, a similar trend of mild disease and low mortality rate in children was observed during the severe acute respiratory syndrome (SARS-CoV-1) outbreak in 2003 and the Middle East respiratory syndrome (MERS) coronavirus (CoV) outbreak in 2012, indicating that this pattern is driven by common virologic features across CoVs [7, 8]. Also, varicella disease is similarly known to be milder in young children compared with infants and adults [9]. In contrast, most other respiratory viruses, such as influenza and respiratory syncytial virus, cause more severe disease in young children compared with middle-aged adults [10]. This presents a unique opportunity to learn about disease-modifying host factors to inform our understanding of CoV pathogenesis across age groups. Understanding differences in children’s immunity, host cellular factors required for virus replication, and physiology can provide insights into the correlates of protection from SARS-CoV-2 and other CoVs. In this review, we summarize current pediatric-specific knowledge on clinical disease, transmission, risks for severe disease, protective immunity, and novel therapies and vaccines in trial. Importantly, we identify key unanswered questions in translating this evidence towards the development of preventive and therapeutic interventions for all ages (Table 1).

EPIDEMIOLOGY AND CLINICAL DISEASE

Currently available clinical descriptions of COVID-19 consistently describe milder symptoms in children than in adults.
Clinical Risk factors for Therapies and human papilloma virus; SARS-CoV-1, severe acute respiratory syndrome; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.

Abbreviations: ACE2, angiotensin-converting enzyme 2; BCG, bacille Calmette-Guérin; COVID-19, coronavirus disease 2019; FDA, Food and Drug Administration; HepB, hepatitis B; HPV ,
tested for the virus in the setting of limited diagnostic capacity.

children appear to be less symptomatic, and thus less likely to be to 18 years can be infected with SARS-CoV-2 [6 , 12]. Infected

studies have become available, it is clear that children from birth consistent with estimates from China [11]. Y et, as more pediatric

While children constitute 22% of the US population, they only represent 1.7% of SARS-CoV-2 infections identified to date, consistent with estimates from China [11]. Yet, as more pediatric studies have become available, it is clear that children from birth to 18 years can be infected with SARS-CoV-2 [6, 12]. Infected children appear to be less symptomatic, and thus less likely to be tested for the virus in the setting of limited diagnostic capacity.

Lessons From Mild COVID-19 in Children • CID 2020:71 (15 October) • 2007

Table 1. Characteristics of Pediatric COVID-19 Infections and Key Questions To Inform Prevention and Treatment Across all Age Groups
Clinical presentation
Transmission
Risk factors for severe disease
Protective immunity
Therapies and vaccines

Abbreviations: ACE2, angiotensin-converting enzyme 2; BCG, bacille Calmette-Guérin; COVID-19, coronavirus disease 2019; FDA, Food and Drug Administration; HepB, hepatitis B; HPV, human papilloma virus; SARS-CoV-1, severe acute respiratory syndrome; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.
to 19% and 26% of adult cases reported in China and Italy, respectively, and occur mostly in people older than 60 years of age [1, 4].

The most common symptoms of COVID-19 include fever and cough, with fewer patients experiencing shortness of breath, upper respiratory symptoms, vomiting, diarrhea, myalgia, and fatigue [11, 12]. Interestingly, only 56% of symptomatic children had fever and 54% had cough, while fever and cough were identified in 71% and 80% of adults, respectively [11]. Laboratory and radiographic abnormalities are also less common in children. While lymphopenia, elevated C-reactive protein, and abnormal coagulation tests are common in adults and correlate with disease severity, there are no consistent laboratory abnormalities across pediatric studies [14]. However, laboratory abnormalities that more closely reflect those of adults have been reported in children older than 5 years of age and adolescents [13, 15]. In both adults and children, ground-glass opacities and “patchy shadows” were the most common abnormalities on chest computed tomography [16]. Altogether, the differences in symptoms and disease severity between children and adults with COVID-19 imply that there are potential immunological or host factors that modulate disease in children.

TRANSMISSION

Children less than 15 years of age are primarily exposed to SARS-CoV-2 through close contact with a sick family or household member, although exposure may also occur with travel to an endemic area or contact with other infected individuals [11]. While transmission primarily occurs through aerosolized droplets and fomite contact, there is concern that fecal-oral transmission may also occur, particularly in children. In epidemiological investigations, viral RNA was detected in the stool of 8 of 10 children who tested positive for the virus via nasopharyngeal swab [17]. Moreover, virus was detected in stool samples up to 27 days after admission, compared with up to 15 days via nasopharyngeal swab, and at a higher magnitude of viral RNA detected in stool as compared with nasopharyngeal samples; however, more studies are needed to determine if detection of viral RNA correlates to infectious virus in stool [17]. Notably, recent reports identified viable virus in fecal samples from adult patients [18]. Given the large proportions of asymptomatic pediatric infections, lower severity of disease, and potential risk of fecal-oral transmission, it is highly likely that children have a distinct role in population transmission. Development of reliable and specific serological tests for SARS-CoV-2, such as those based on binding of serum antibodies to the viral spike protein, is important for accurate detection of rates of infection in children [19].

The possibility of vertical transmission remains of concern for maternal and neonatal health. In a case series of 33 neonates born to mothers with COVID-19 pneumonia, 3 presented with early onset of neonatal infection identified by detection of the virus by polymerase chain reaction (PCR) in nasopharyngeal samples and are suspected cases of perinatal transmission [20]. Also, among other cohorts, 17 infants born to SARS-CoV-2–positive mothers did not demonstrate evidence of vertical transmission [21, 22]. However, elevated SARS-CoV-2 immunoglobulin (Ig) M (IgM) antibodies detected in serum taken within 2 hours of birth from 3 newborns, despite negative testing of nasopharyngeal samples by PCR [21, 23, 24], are also suggestive of in utero SARS-CoV-2 exposure [21, 23, 24]. Nevertheless, these cases could represent false-positive IgM testing, as has been reported frequently with serological testing for other viruses [25]. Thus far, there is no report of detection of SARS-CoV-2 in amniotic fluid or breast milk, and it is unclear if vertical transmission occurs when pregnant women become infected during the first or second trimester of gestation [21]. Maternal infection can also lead to severe symptoms in the mother, which can result in birth asphyxia or premature birth [21]. In SARS-CoV-1, there was a higher case fatality among pregnant women and reported cases of miscarriage, spontaneous abortion, preterm birth, and intrauterine growth restriction [26]. Further research is needed to understand the impact of SARS-CoV-2 infection on maternal and fetal health.

RISK FACTORS FOR SEVERE DISEASE

While children represent a minority of severe COVID-19 cases, one-third of the reported severe cases and more than half of the critical cases were among children less than 1 year of age [6]. Children less than 1 year old also had the lowest percentage of asymptomatic cases as compared with older children [6]. An interesting observation in adults is that slightly higher rates of severe disease have been reported in men than in women [27]. Similarly, of the more than 4000 pediatric cases reported in the United States and China, 57% were male; however, there are currently no reports of sex differences related to disease severity in children [6, 11]. Further analysis is required to determine whether a sex bias exists in severe pediatric SARS-CoV-2 infections. Future studies will need to continue examining sex- and age-related differences in COVID-19 severity as this might provide insights into host factors that mitigate severe disease outcomes. Moreover, studies should consider whether physiologic changes during puberty underlie age-dependent disease-modifying factors in children [28].

The presence of medical comorbidities, such as hypertension, diabetes, chronic pulmonary disease, and cardiovascular disease, is another risk factor for severe disease in adults [29], and the relative lack of comorbidities in children may contribute to the disparate COVID-19 severity between the age groups. Of the few reports of severe COVID-19 disease in children, all 3 critical cases had a significant underlying or concurrent medical condition, including acute lymphoblastic leukemia.
(ALL), hydronephrosis, and intussusception [30]. However, it should be noted that none of the 5 severe cases had significant comorbidities [30]. Given the low prevalence of severe and critical disease in children, it is difficult to determine the contribution of preexisting comorbidities to COVID-19 severity. Specifically, underlying medical issues, such as prematurity, chronic lung disease, congenital heart disease, asthma, and even lung injury from vaping and smoking, may result in an increase in the risk for severe COVID-19 disease.

Intriguingly, there are few reports of severe disease in immunocompromised patients with COVID-19 despite receipt of immunosuppressive agents and chemotherapies. While data are limited to small-cohort studies, adult renal transplant recipients tended to have a typical COVID-19 course, while adults with malignancy had more severe disease if they had recently received chemotherapy or underwent surgery [31, 32]. Of immunocompromised children with SARS-CoV-2, the aforementioned child with ALL developed critical disease, but only mild to moderate disease has been observed in pediatric liver transplant recipients [30, 33]. The surprisingly mild course of COVID-19 in immunocompromised patients could allude to the substantial role that the host immune system plays in the development of severe disease.

DISEASE-MITIGATING CHARACTERISTICS OF CHILDREN

Protection from severe disease in children may be related to lower expression of host factors required for viral replication and to differences in the magnitude and timing of innate or adaptive immune responses.

Host Factors

SARS-CoV-2 uses the angiotensin-converting enzyme 2 (ACE2) as a cell entry receptor and the cellular transmembrane protease serine 2 (TMPRSS2) to activate the spike (S) viral protein for membrane fusion [34]. ACE2 modulates vasoconstriction to maintain homeostasis and is expressed in the oral mucosa, respiratory tract, and intestine [35, 36]. Lower ACE2 expression in the lungs of children compared with adults could contribute to the observed differences in disease pathogenesis across these groups [37]. However, given the large variability in human ACE2 expression profiles, further studies are required to confirm differences across age groups [37]. There are also age-dependent differences as lungs develop throughout childhood [38]. In particular, processes that impact the course of lung pathology and respiratory distress, such as inflammation, apoptotic activation, surfactant secretion, alveolar fluid clearance, and tissue repair mechanisms, differ in children compared with adults [38]. For example, a regulator of lung morphogenesis that is lower in childhood, nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB), plays a pathologic role in inflammatory diseases and should be evaluated as a protective host factor in pediatric versus adult SARS-CoV-2 infections [38, 39]. Indeed, even outside the context of SARS-CoV-2 infections, rates of ARDS are lowest in children and increase with age, suggesting a role for protective host factors in the lungs of children [40, 41].

Innate and Adaptive Immunity

T-helper (Th) 1 responses are thought to be important for immune protection against SARS-CoV-1 since increased Th2 cytokines were identified in patients with fatal disease [42]. However, excess Th1 proinflammatory cytokine responses and circulating neutrophil levels are also associated with increased disease severity and delays in regulatory and repair responses [43, 44]. In fact, overexpression of serum interleukin (IL) 6 is associated with severe disease and mortality due to SARS-CoV-2 infection, suggesting that aging-related inflammation may contribute to disease severity in elderly individuals [45]. whereas children who recovered from SARS-CoV-1 infection demonstrated elevated plasma IL-1β but not tumor necrosis factor α (TNF-α) or IL-6 early in infection, suggesting a less destructive disease pathology [46]. Descriptions of lung pathology from SARS-CoV-1 and SARS-CoV-2 fatalities reveal that macrophages are the predominant leukocyte infiltrate in the alveoli [43, 47]. Higher prevalence of macrophages in the alveoli may be due to prolonged IL-6 inflammation, in combination with monocyte chemoattractant protein-1 (MCP-1) expression, which induces a transition from neutrophil activation to early inflammation to monocyte accumulation in late inflammation [48]. Interestingly, lower levels of IL-6 and MCP-1 are observed in the lungs of children who survive ARDS compared with adults [37]. Although neutrophils are associated with lung pathology during ARDS, the role of lung neutrophils in COVID-19 severity remains unclear [49]. Neutrophil depletion in rodent models of respiratory viral infections such as SARS-CoV-1, influenza, and respiratory syncytial virus leads to worse clinical outcomes and higher levels of viral replication, suggesting that neutrophils may serve a protective function during these infections [38, 50–53]. Thus, the role of neutrophils and macrophages in SARS-CoV-2 infections needs to be evaluated further and compared between children and adults. Effective immune responses to CoVs require regulated Th1 immunity for viral control and infected cell killing, followed by regulatory signaling that mediates tissue repair [54]. Intriguingly, children experience less leukopenia during SARS-CoV-2 infection than adults and have a relatively higher level of circulating lymphocytes compared with neutrophils, which may contribute to better viral control during acute infection [5, 12, 55]. Thus, milder SARS-CoV-2 infection in children may be driven by intrinsically lower levels of inflammation, higher lymphocyte to neutrophil ratio in blood, and less predominantly monocytic infiltration than that in adults.

Recent reports have demonstrated that neonates less than 1 year of age are more susceptible to severe COVID-19

Lessons From Mild COVID-19 in Children • CID 2020:71 (15 October) • 2009
Dynamics of T-cell–mediated immunity may contribute to the increased COVID-19 severity in adults and neonates (<1 year) compared with the milder disease observed in children (18 years). For example, virus-specific CD8+ T cells play an important role in viral clearance by directly killing infected cells, but excess cytolytic activity can also mediate lung pathology [56]. The observed increase in lung pathology in both infants younger than 1 year and older adults may be due to inappropriate levels of T-cell activity. Indeed, in infants younger than 1 year, T-cell activation is decreased and effector responses are characterized by Th2 cytokine secretion as infants transition from tolerogenic fetal immunity [57]. In contrast, higher inflammation associated with aging can lead to T-cell exhaustion, which is linked to severe COVID-19 disease [58]. In comparison, children between 1 and 18 years may experience an intermediate level of T-cell activation, leading to milder SARS-CoV-2 disease [59]. Also, an age-dependent increase in lung prostaglandin production may play a role in SARS-CoV-2 pathogenesis. For example, in mice, lung prostaglandin concentrations correlated with decreased dendritic cell migration and T-cell responses and greater SARS-CoV-1–induced lung pathology with age [60]. Further examination of children’s T-cell immunity during SARS-CoV-2 infection compared with adult responses is required.

Our understanding of protective humoral responses to CoV infections comes from prior studies of SARS-CoV-1 and ongoing studies on the current SARS-CoV-2 pandemic. Typically, neutralizing antibody responses against the immunodominant S viral protein are elicited after 2 weeks of infection and can protect from challenge in animal models [61]. Yet, high magnitude and early (<2 weeks) peak neutralizing antibody responses were associated with more severe disease in SARS-CoV-1 infection, indicating antibody responses may also be related to disease pathology [62]. Moreover, the SARS-CoV-2 S protein contains neutralizing and nonneutralizing epitopes and is 76% identical to SARS-CoV-1 S at the amino acid level [63, 64]. Further studies should evaluate whether this homology leads to cross-protective CoV antibody responses that can be leveraged to design vaccines that target multiple CoVs for the development of a universal CoV vaccine. It is known that infants can elicit immune responses of greater breadth compared with adults and develop higher-magnitude antibody responses to some protein vaccine antigens such as human papillomavirus virus–like particle, human immunodeficiency virus, and hepatitis B [65–69]. Investigating the diversity and potency of pediatric antibody responses may help to define immune correlates of protection against COVID-19 and cross-protective epitopes on S to guide long-term CoV vaccine strategies.

VACCINE AND THERAPEUTIC DEVELOPMENT

Globally, 8 SARS-CoV-2 vaccine candidate platforms have entered into phase 1 clinical trials: (1) a nonreplicating lipid nanoparticle mRNA candidate encoding prefusion SARS-CoV-2 S protein (mRNA-1273; Moderna Inc and US National Institutes of Health; trial ID NCT04283461), (2) a replication-defective human adenovirus type-5 vectored SARS-CoV-2 candidate (Ad5-nCoV; CanSino), (3) a nonreplicating chimpanzee adenoviral vectored SARS-CoV-2 S protein (ChAdOx1 nCoV-19; University of Oxford Jenner Institute), (4) a double-stranded DNA plasma encoding spike protein that is delivered via electroporation (INO 4800; Inovio Pharmaceuticals; trial ID: NCT04336410), (5) an inactivated SARS-CoV-2 candidate with multiple strains (PiCoVacc; Sinovac Biotech), (6) a probiotic with live *Bifidobacterium longum* that contains DNA plasmids for the SARS-CoV-2 spike protein (bacTRL-Spike; Symvivo; trial ID: NCT04334980), (7) 4 lipid nanoparticle-based mRNA candidates encoding the viral spike protein or receptor binding domain nucleoside modifications (BNT162; BioNTech and Pfizer), and (8) 2 lentiviral vector candidates expressing viral proteins and immunomodulatory genes (Shenzhen Geno-Immune Medical Institute; trial IDs: NCT04299724 and NCT04276896) [70–75]. Launching clinical trials within 4 months from SARS-CoV-2 discovery represents an incredible achievement for vaccine developers, with the mRNA vaccine being injected into an adult volunteer only 65 days after genomic elucidation [70]. This feat was made possible by advances in vaccine technology, including the development of mRNA and vectored-based platforms that were tested in other emerging virus vaccines. Yet, all except for the inactivated virus vaccine candidate represent vaccine platforms that are not among licensed pediatric vaccines, with minimal data available for safety in children from clinical trials. In nonhuman primates and mice, delivery of double-inactivated SARS-CoV-1 vaccine candidates, followed by challenge with homologous or heterologous strains, has led to eosinophilic lung immunopathology [76, 77]. Intriguingly, young mice showed less immunopathology compared with aged mice, indicating that age of vaccination may impact safety profile. Although it is unclear whether lung immunopathology reflects enhanced disease in humans, whole virus vaccine platforms must be carefully evaluated for safety. Lack of vaccine candidates with a proven safety and/or immunogenicity profile represents a gap in translating these technologies to pediatric populations during a pandemic. While rapidly testing candidates, it will be crucial to consider the earliest possible stage for inclusion of children in vaccine trials.

A key question for vaccine development in the current pandemic is the possibility of reinfection with SARS-CoV-2. Prior studies indicate that reinfection may be possible after several years, since SARS-CoV-1 neutralizing antibody titers decreased substantially 3 years after exposure and virus-specific
memory B cells were undetectable 6 years after infection [78, 79]. Further, virus-specific memory T cells were undetectable by 6 years postinfection in 40% of patients who recovered from SARS-CoV-1 infection [79]. Therefore, it will be important to assess if SARS-CoV-2 immunity in children lasts longer than that of adults, which would indicate that childhood represents an opportune period for vaccination to elicit life-long protection. Also, differential waning of vaccine immunity in adults and children should be evaluated to optimize age of vaccination and to develop boosting strategies to provide long-term protective immune responses.

Two leading antivirals are currently being tested in patients with COVID-19. Remdesivir is an intravenously delivered investigational antiviral that is being tested in several randomized controlled clinical trials globally, largely in adults with moderate or severe COVID-19 [80]. Remdesivir is a nucleoside analog that inhibits CoV replication by terminating the RNA genome transcription [81]. Assessments in children are underway to determine optimal pediatric dosing. Another option being tested is hydroxychloroquine, an approved oral antimalarial drug that is also used for rheumatoid arthritis and systemic lupus. While hydroxychloroquine demonstrates high antiviral activity in vitro, underpowered clinical trials have indicated virologic control but no significant effect on clinical outcomes in patients with severe disease [82].

In addition to antivirals, passive immunization strategies using convalescent plasma and purified immunoglobulins to limit virus replication and abrogate disease progression are under investigation. Reports of successfully treating critically ill patients with COVID-19 with convalescent plasma from recovered individuals have enabled approval for emergency use in the United States for cases of serious and life-threatening COVID-19 [83]. Meta-analysis of this therapy for SARS-CoV-1 suggests that this intervention appears to be safe and reduces mortality [84]. However, since the antiviral potency of plasma may vary by donor, it is important to determine the characteristics of plasma that support efficacy and optimal prognosis. For example, poor treatment outcomes for patients with SARS-CoV-1 were observed when convalescent plasma intervention was administered during PCR positivity and before the 14th day of illness [85]. These observations allude to the relationship between viral dynamics and IgG-mediated pathology that may differ between adults and children.

CONCLUSIONS

The current COVID-19 pandemic has resulted in more than 3 million cases worldwide, and the lack of protective vaccines and specific antiviral therapies to prevent severe disease has resulted in more than 228,000 deaths [2]. A pattern of milder COVID-19 in children than in adults offers a unique opportunity to identify protective host and immunologic factors within pediatric populations and apply findings to the design of interventions for all ages. In this review, we evaluated recent reports on the pathology and immunity to SARS-CoV-2 infection and offered several hypotheses for how these features may differ in children versus adults, and how they may differentially modulate disease in these populations. Further understanding of the pathogenesis of SARS-CoV-2 infection in children may provide important insights and guide development of therapeutic strategies and vaccines as we collectively strive to generate approaches to reduce the public health burden of the SARS-CoV-2 pandemic.

Notes

Financial support. This work was supported by funding from Translating Duke Health, Children’s Health and Discovery Initiative (to S. R. P. and J. H. H.). M. S. K is supported by a National Institutes of Health Career Development Award (grant number K23-AI135090).

Potential conflicts of interest. S. R. P consults for Merck, Sanofi, Moderna, and Pfizer vaccine programs; has a sponsored program with Moderna and Merck; and reports grants from the Gates Foundation. All other authors report no potential conflicts. All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Conflicts that the editors consider relevant to the content of the manuscript have been disclosed.

References

1. Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72,314 cases from the Chinese Center for Disease Control and Prevention. JAMA 2020; 323:1239–42. doi: 10.1001/jama.2020.2648.
2. Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis 2020; 20:533–4. doi: 10.1016/S1473-3099(20)30120–1
3. Bialek S, Boundary E, Bowen V, et al. Severe outcomes among patients with coronavirus disease 2019 (COVID-19)—United States, February 12–March 16, 2020. MMWR Morb Mortal Wkly Rep 2020; 69:343–6.
4. Istituto Superiore di Sanità. Sorveglianza Integrata COVID-19 in Italia. Vol. 6801. 2020. Available at: https://www.epicentro.iss.it/coronavirus/bollettino/covid-19-infografica_ita.pdf. Accessed 28 March 2020.
5. Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020; 323:1061–9.
6. Dong Y, Mo X, Hu Y, et al. Epidemiological characteristics of 2143 pediatric patients with 2019 coronavirus disease in China. Pediatrics 2020; 145: doi: 10.1542/peds.2020-0702.
7. Denison MR. Severe acute respiratory syndrome coronavirus pathogenesis, disease and vaccines: an update. Pediatr Infect Dis J 2004; 23:S207–14.
8. Memish ZA, Al-Tawfiq JA, Assiri A, et al. Middle East respiratory syndrome coronavirus in children. Pediatr Infect Dis J 2014; 33:904–6.
9. Centers for Disease Control and Prevention; Hamborsky J, Kroger A, Wolfe S, eds. Varicella, epidemiology and prevention of vaccine-preventable diseases. 13th ed. Washington, DC: Public Health Foundation, 2015. Available at: https://www.cdc.gov/vaccines/pubs/pinkbook/downloads/varicella.pdf. Accessed 29 April 2020.
10. Thompson WW, Shay DK, Weintraub E, et al. Mortality associated with influenza and respiratory syncytial virus in the United States. JAMA 2003; 289:179–86.
11. Bialek S, Gierke R, Hughes M, McNamara LA, Pilishvili T, Skoff T. Coronavirus disease 2019 in children—United States, February 12–April 2, 2020. MMWR Morb Mortal Wkly Rep 2020; 69:422–6. doi: 10.15585/mmwr.mm6006a4.
12. Lu X, Zhang L, Du H, et al. SARS-CoV-2 infection in children. N Engl J Med 2020;NEJMc2005073. doi: 10.1056/NEJMc2005073.
13. Qiu H, Wu J, Hong L, Luo Y, Song Q, Chen D. Clinical and epidemiological features of 36 children with coronavirus disease 2019 (COVID-19) in Zhejiang, China: an observational cohort study. Lancet Infect Dis 2020; 20:191–8.
14. Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020; 382:1377–89. doi: 10.1056/NEJMoa2002032.
15. Henry BM, Lippi G, Plebani M. Laboratory abnormalities in children with novel coronavirus disease 2019. Clin Chem Lab Med 2020; 58:1169–74. doi: 10.1002/cclm.204718.
17. Xu Y, Li X, Zbo R, et al. Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fetal viral shedding. Nat Med 2020;26:502–5.
18. Gu J, Han B, Wang J. COVID-19: gastrointestinal manifestations and potential fecal-oral transmission. Gastroenterology 2020;158:1518–9.
19. Amanat F, Stadlbauer D, Strohmeier S, et al. A serological assay to detect SARS-CoV-2 seroconversion in humans. Nat Med 2020. doi: 10.1038/s41591-020-0913-5. Available at: https://www.nature.com/articles/s41591-020-0913-5. Accessed 12 May 2020.
20. Zou L, Zhang S, Ye W, et al. Neonatal early-onset infection with SARS-CoV-2 in 33 neonates born to mothers with COVID-19 in Wuhan, China. JAMA Pediatr 2020. doi: 10.1001/jamapediatrics.2020.0878. Available at: https://jamanetwork.com/journals/jamapediatrics/fullarticle/2763787. Accessed 26 March 2020.
21. Chen H, Guo J, Wang C, et al. Clinical characteristics and intratracheal vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet 2020; 395:809–15.
22. Zhu H, Wang L, Fan J, et al. Clinical analysis of 10 neonates born to mothers with 2019-nCoV pneumonia. Transl Pediatr 2020; 9:51–60.
23. Zeng H, Xu C, Fan J, et al. Antibodies in infants born to mothers with COVID-19 pneumonia. JAMA 2020;323:1848–9. doi: 10.1001/jama.2020.4861.
24. Dong L, Tian J, He S, et al. Possible vertical transmission of SARS-CoV-2 from an infected mother to her newborn. JAMA 2020;2–4. doi: 10.1001/jama.2020.4621.
25. Landry ML. Immunoglobulin M for acute infection: true or false? Clin Vaccine Immunol 2016; 23:540–5.
26. Wong SE, Chow KM, Leung TN, et al. Pregnancy and perinatal outcomes of women with severe acute respiratory syndrome. Am J Obstet Gynecol 2004; 191:292–7.
27. Chen J, Qi T, Liu L, et al. Clinical progression of patients with COVID-19 in Shanghai, China. J Infect 2020; 80:e1–6.
28. Muennhoff M, Goulder PJR. Sex differences in pediatric infectious diseases. J Infect Dis 2014; 200(suppl 1):S11–6. doi: 10.1093/infdis/jiu232.
29. Yang J, Zheng Y, Gou X, et al. Prevalence of comorbidities in the novel Wuhan coronavirus (COVID-19) infection: a systematic review and meta-analysis. Int J Infect Dis 2020; 94:91–5. doi: 10.1016/j.ijid.2020.03.017.
30. Sun D, Li H, Lu X-Y, et al. Clinical features of severe pediatric patients with coronavirus disease 2019 in Wuhan: a single center’s observational study. World J Pediatr 2020;1–9. doi: 10.1007/s12618-020-00354-4.
31. Liang W, Guan W, Chen R, et al. Cancer patients in SARS-CoV-2 infection: a nationwide analysis in China. Lancet Oncol 2020; 21:335–7.
32. Gandolfini I, Delsante M, Fiaccadori E, et al. COVID-19 in kidney transplant recipients: a single center’s experience. Transplantation 2020; 104:2111–6. doi: 10.1097/TP.0000000000002894.
33. Coronaviruses and immunosuppressed patients. The facts during the third epidemic–D’Antiga—Liver transplantation. Wiley Online Library. Available at: https://aasldpubs.onlinelibrary.wiley.com/doi/abs/10.1002/lt.25756. Accessed 24 March 2020.
34. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 183:271–80, e8.
35. Xu Y, Li X, Yuan W, et al. Neonatal early-onset infection with SARS-CoV-2 in 33 neonates born to mothers with COVID-19 in Wuhan, China. JAMA 2020. doi: 10.1001/jamapediatrics.2020.0878. Available at: https://jamanetwork.com/journals/jamapediatrics/fullarticle/2763787. Accessed 26 March 2020.
36. Ng PC, Lam CW, Li AM, et al. Inflammatory cytokine profile in children with 2019-nCoV pneumonia. Transl Pediatr 2020;9:51–60.
37. Chan KH, Cheng VC, Woo PC, et al. Serological responses in patients with severe acute respiratory syndrome coronavirus infection and cross-reactivity with human coronaviruses 229E, OC43, and NL63. Clin Diagn Lab Immunol 2005; 12:1317–21.
38. Smith LS, Zimmerman J, Martin TR. Mechanisms of acute respiratory distress syndrome in children and adults: a review and suggestions for future research. Pediatr Crit Care Med 2013;14:631–43.
39. Bektas A, Zhang Y, Lehmann E, et al. Age-associated changes in basal NF-κB function in human CD4+ T lymphocytes via dysregulation of PI3 kinase. Aging Cell 2013; 12:631–43.
40. Rubenfeld GD, Caldwell E, Peabody E, et al. Incidence and outcomes of acute lung injury. JAMA 2005; 294:1615–22.
41. Tian S, Hu W, Niu L, Liu H, Xu H, Xiao SY. Pulmonary pathology of early-phase syndrome in children and adults: a review and suggestions for future research. Ann Intensive Care 2014; 4:361–76.
42. Chan KH, Cheng VC, Woo PC, et al. Serological responses in patients with severe acute respiratory syndrome coronavirus infection and cross-reactivity with human coronaviruses 229E, OC43, and NL63. Clin Diagn Lab Immunol 2005; 12:1317–21.
43. Ho MS, Chen WJ, Chen HY, et al. Neutralizing antibody response and SARS severity. Emerg Infect Dis 2005; 11:1730–7.
44. Wang Q, Zhang L, Kuwahara K, et al. Immune-dominant SARS coronavirus epitopes elicit both enhancing and neutralizing effects on infection in non-human primates. ACS Infect Dis 2016; 2:361–76.
45. Ou X, Liu Y, Lei X, et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun 2020; 11:1620.
46. Ota MO, Yekemans J, Schlegel-Haeter SE, et al. Hepatitis B immunisation duuces higher antibody and memory Th2 responses in new-borns than in adults. Vaccine 2004; 22:511–9.
47. Giuliano AR, Lazcano-Ponce E, Villa L, et al. Impact of baseline covariates on the immunogenicity of a quadrivalent (types 6, 11, 16, and 18) human papillomavirus virus-like-particle vaccine. J Infect Dis 2007; 196:1153–62.
48. Goo L, Chohan V, Nduati R, Overbaugh J. Age-dependent down regulation of the innate immune response. J Clin Immunol 2004; 24:471–80.
49. Grommes J, Soehnlein O. Contribution of neutrophils to acute lung injury. Mol Med 2008; 14:631–43.
72. Gao Q, Bao L, Mao H, et al. Development of an inactivated vaccine candidate for SARS-CoV-2. Science (80-) 2020; 368(6493): 1018-22. doi: 10.1126/science.abc1932.
73. Lurie N, Saville M, Hatchett R, Halton J. Developing COVID-19 vaccines at pandemic speed. N Engl J Med 2020. doi: 10.1056/NEJMp2005630. Available at: https://www.nejm.org/doi/pdf/10.1056/NEJMp2005630?articleTools=true. Accessed 14 May 2020.
74. Thanh Le T, Andreadakis Z, Kumar A, et al. The COVID-19 vaccine development landscape. Nat Rev Drug Discov 2020; 19:305–6.
75. Amanat F, Krammer F. SARS-CoV-2 vaccines: status report. Immunity 2020; 52:583–9.
76. Bolles M, Deming D, Long K, et al. A double-inactivated severe acute respiratory syndrome coronavirus vaccine provides incomplete protection in mice and induces increased eosinophilic proinflammatory pulmonary response upon challenge. J Virol 2011; 85:12201–15.
77. Tseng CT, Sbrana E, Iwata-Yoshikawa N, et al. Immunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virus. PLoS One 2012; 7:e35421.
78. Wu LP, Wang NC, Chang YH, et al. Duration of antibody responses after severe acute respiratory syndrome. Emerg Infect Dis 2007; 13:1562–4.
79. Tang F, Quan Y, Xin ZT, et al. Lack of peripheral memory B cell responses in recovered patients with severe acute respiratory syndrome: a six-year follow-up study. J Immunol 2011; 186:7264–8.
80. Gilead. Remdesivir clinical trials. Available at: https://www.gilead.com/purpose/advancing-global-health/covid-19/remdesivir-clinical-trials. Published 2020. Accessed 4 April 2020.
81. Sheahan TP, Sims AC, Leist SR, et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun 2020; 11:222.
82. Gautret P, Lagier J-C, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents 2020. doi: 10.1016/j.ijantimicag.2020.105949. Available at: https://www.sciencedirect.com/science/article/pii/S0924857920300966?via%3Dihub. Accessed 4 April 2020.
83. Shen C, Wang Z, Zhao F, et al. Treatment of 5 critically ill patients with COVID-19 with convalescent plasma. JAMA 2020. doi: 10.1001/jama.2020.4783.
84. Mair-Jenkins J, Saavedra-Campos M, Baille JK, et al; Convalescent Plasma Study Group. The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: a systematic review and exploratory meta-analysis. J Infect Dis 2015; 211:80–90.
85. Cheng Y, Wong R, Soo YO, et al. Use of convalescent plasma therapy in SARS patients in Hong Kong. Eur J Clin Microbiol Infect Dis 2005; 24:44–6.