EIGENFUNCTION EXPANSIONS FOR THE SCHRÖDINGER EQUATION WITH AN INVERSE-SQUARE POTENTIAL

A.G. SMIRNOV

Dedicated to Professor I.V. Tyutin on the occasion of his 75th birthday

Abstract. We consider the one-dimensional Schrödinger equation $-f'' + \frac{\kappa^2 - 1/4}{r^2}f = Ef$ on the positive half-axis with the potential $q_\kappa(r) = (\kappa^2 - 1/4)r^{-2}$. For each complex number ϑ, we construct a solution $u_{\kappa, \vartheta}(E)$ of this equation that is analytic in κ in a complex neighborhood of the interval $(-1, 1)$ and, in particular, at the “singular” point $\kappa = 0$. For $-1 < \kappa < 1$ and real ϑ, the solutions $u_{\kappa, \vartheta}(E)$ determine a unitary eigenfunction expansion operator $U_{\kappa, \vartheta} : L_2(0, \infty) \to L_2(\mathbb{R}, \mathcal{V}_{\kappa, \vartheta})$, where $\mathcal{V}_{\kappa, \vartheta}$ is a positive measure on \mathbb{R}. We show that every self-adjoint realization of the formal differential expression $-\partial_r^2 + q_\kappa(r)$ for the Hamiltonian is diagonalized by the operator $U_{\kappa, \vartheta}$ for some $\vartheta \in \mathbb{R}$. Using suitable singular Titchmarsh-Weyl m-functions, we explicitly find the measures $\mathcal{V}_{\kappa, \vartheta}$ and prove their continuity in κ and ϑ.

1. Introduction

This paper is devoted to eigenfunction expansions connected with the one-dimensional Schrödinger equation

$$-\partial_r^2 f(r) + \frac{\kappa^2 - 1/4}{r^2}f(r) = Ef(r), \quad r > 0,$$

where κ and E are real parameters. It is easy to see that the function $f(r) = r^{1/2} J_\kappa(E^{1/2}r)$, where J_κ is the Bessel function of the first kind of order κ, is a solution of (1) for every $E > 0$ and $\kappa \in \mathbb{R}$ (this follows immediately from the fact that J_κ satisfies the Bessel equation). These solutions can be used to expand square-integrable functions on the positive half-axis $\mathbb{R}^+ = (0, \infty)$. More precisely, given $\kappa > -1$ and a square-integrable complex function ψ on \mathbb{R}^+ that vanishes for large r, we can define the function $\hat{\psi}$ on \mathbb{R}^+ by setting

$$\hat{\psi}(E) = \frac{1}{\sqrt{2}} \int_0^\infty \sqrt{r} J_\kappa(\sqrt{Er}) \psi(r) \, dr, \quad E > 0.$$

The map $\psi \to \hat{\psi}$ up to a change of variables then coincides with the well-known Hankel transformation \mathbb{T} and induces a uniquely determined unitary operator in $L_2(\mathbb{R}^+)$. Since the development of a general theory of singular Sturm-Liouville problems by Weyl [2], this transformation has been used by many authors to illustrate various approaches to eigenfunction expansions for this kind of problem [3, 4, 9].

If $\kappa \geq 1$, then transformation \mathbb{T} is the unique eigenfunction expansion associated with \mathbb{T} up to normalization of eigenfunctions. On the other hand, for $|\kappa| < 1$,
A.G. SMIRNOV

a one-parametric family of different expansions can be constructed using solutions of (1) (see Chap. 4 in [4]). The reason for this ambiguity is that the formal differential expression for the Hamiltonian

\[-\frac{\partial^2}{\partial r^2} + \frac{\kappa^2 - 1/4}{r^2} \]

does not uniquely determine the quantum-mechanical problem for \(|\kappa| < 1\) and admits various self-adjoint realizations in \(L_2(\mathbb{R}_+)\) that yield different eigenfunction expansions. In [9], all self-adjoint realizations of (3) were characterized using suitable asymptotic boundary conditions and the corresponding eigenfunction expansions were explicitly found.

In both [4] and [9], the cases \(0 < |\kappa| < 1\) and \(\kappa = 0\) were treated separately and eigenfunction expansions for \(\kappa = 0\) could not be obtained from those for \(0 < |\kappa| < 1\) by taking the limit \(\kappa \to 0\). This situation is not quite satisfactory from the physical standpoint. In particular, self-adjoint operators associated with (3) can be used to construct self-adjoint realizations of Aharonov-Bohm Hamiltonian [10], in which case zero and nonzero \(\kappa\) correspond to integer and noninteger values of the dimensionless magnetic flux through the solenoid. Hence, the existence of a well-defined limit \(\kappa \to 0\) is necessary to ensure the continuous transition between integer and noninteger values of the flux in the Aharonov-Bohm model. Here, we propose a parametrization of self-adjoint realizations of (3) and corresponding eigenfunction expansions that is continuous in \(\kappa\) on the interval \((-1, 1)\) (and, in particular, at \(\kappa = 0\)).

We now formulate our main results. Let \(\lambda\) denote the Lebesgue measure on \(\mathbb{R}\) and \(C_0^\infty(\mathbb{R}_+)\) be the space of all smooth functions on \(\mathbb{R}_+\) with compact support. Given a \(\lambda\)-a.e. defined function \(f\) on \(\mathbb{R}_+\), we let \([f]\) denote the equivalence class of \(f\) with respect to the Lebesgue measure on \(\mathbb{R}_+\) (i.e., the restriction of the measure \(\lambda\) to \(\mathbb{R}_+\)). For every \(\kappa \in \mathbb{R}\), differential expression (3) naturally determines the operator \(\hat{h}_\kappa\) in \(L_2(\mathbb{R}_+)\) whose domain \(D_{\hat{h}_\kappa}\) consists of all elements \([f]\) with \(f \in C_0^\infty(\mathbb{R}_+)\):

\[D_{\hat{h}_\kappa} = \{ [f] : f \in C_0^\infty(\mathbb{R}_+) \} , \]

\[\hat{h}_\kappa [f] = [-f'' + q_\kappa f] , \quad f \in C_0^\infty(\mathbb{R}_+) . \]

Here, \(q_\kappa\) denotes the potential term in (3).

\[q_\kappa(r) = \frac{\kappa^2 - 1/4}{r^2} , \quad r \in \mathbb{R}_+ . \]

The operator \(\hat{h}_\kappa\) is obviously symmetric and hence closable. The closure of \(\hat{h}_\kappa\) is denoted by \(\tilde{h}_\kappa\),

\[\tilde{h}_\kappa = \overline{\hat{h}_\kappa} . \]

The self-adjoint extensions of \(\hat{h}_\kappa\) (or, equivalently, of \(\tilde{h}_\kappa\)) can be naturally interpreted as self-adjoint realizations of formal expression (3) (cf. Remark 5 below).

For any \(z, \kappa \in \mathbb{C}\), we define the function \(u^\kappa(z)\) on \(\mathbb{R}_+\) by the relation:

\[u^\kappa(z) = r^{1/2+\kappa} X_\kappa(r^2 z) , \quad r \in \mathbb{R}_+ , \]

1Throughout the paper, a.e. means either “almost every” or “almost everywhere.”
2For brevity, we let \(u^\kappa(z|r)\) denote the value of the function \(u^\kappa(z)\) at a point \(r\): \(u^\kappa(z|r) = (u^\kappa(z))(r)\).
where the entire function \mathcal{X}_κ is given by

$$
\mathcal{X}_\kappa(\zeta) = \frac{1}{2\kappa} \sum_{n=0}^{\infty} \frac{(-1)^n\zeta^n}{\Gamma(\kappa + n + 1)n!2^n}, \quad \zeta \in \mathbb{C}.
$$

The function \mathcal{X}_κ is closely related to Bessel functions: for $z \neq 0$, we have

$$
\mathcal{X}_\kappa(\zeta) = \zeta^{-\kappa/2} J_\kappa(\zeta^{1/2}).
$$

Because J_κ satisfies the Bessel equation, it follows that

$$
-\partial_r^2 u^{\pm\kappa}(z|r) + q_\kappa(r)u^{\pm\kappa}(z|r) = zu^{\pm\kappa}(z|r), \quad r \in \mathbb{R}_+,
$$

for every $\kappa \in \mathbb{C}$ and $z \neq 0$. By continuity, this also holds for $z = 0$. In particular, $u^{\pm\kappa}(E)$ are solutions of spectral problem (11) for every $\kappa, E \in \mathbb{R}$.

Given a positive Borel measure σ on \mathbb{R} and a σ-measurable complex function g, we let T^σ_g denote the operator of multiplication by g in $L_2(\mathbb{R}, \sigma)$.

It is well known (see, e.g., [5, 6, 9]) that the operator h_κ is self-adjoint and can be diagonalized by Hankel transformation (2) for $\kappa \geq 1$. In terms of functions $u^\kappa(z)$, this result can be formulated as follows.

Theorem 1. Let $\kappa > -1$ and the measure \mathcal{V}_κ on \mathbb{R} be defined by (11). Then there is a unique unitary operator $U_\kappa: L_2(\mathbb{R}_+) \rightarrow L_2(\mathbb{R}, \mathcal{V}_\kappa)$ such that

$$
(U_\kappa \psi)(E) = \int_0^\infty u^\kappa(E|r)\psi(r) dr, \quad \psi \in L_2^0(\mathbb{R}_+),
$$

for \mathcal{V}_κ-a.e. E. The operator $U_\kappa^{-1}T^\kappa_\psi U_\kappa$, where ι is the identity function on \mathbb{R} (i.e., $\iota(E) = E$ for all $E \in \mathbb{R}$), is a self-adjoint extension of h_κ that coincides with h_κ for $\kappa \geq 1$.

By (7) and (9), we have $u^\kappa(E|r) = E^{-\kappa/2}r^{1/2} J_\kappa(E^{1/2}r)$, $r \in \mathbb{R}_+$, for every $E > 0$. The operator U_κ hence coincides with transformation (2) up to normalization of eigenfunctions. We note that $h_\kappa = h_{|\kappa|}$ for all $\kappa \in \mathbb{R}$ and h_κ is therefore diagonalized by $U_{|\kappa|}$ for all real κ such that $|\kappa| \geq 1$. If $0 \leq \kappa < 1$, then $U_\kappa^{-1}T^\kappa_\psi U_\kappa$ is the Friedrichs extension of h_κ (see [11]).

We now turn to parametrizing all self-adjoint extensions of h_κ in the case $-1 < \kappa < 1$. Let

$$
\mathcal{O} = \{ \kappa \in \mathbb{C} : \kappa \neq \pm 1, \pm 2, \ldots \}.
$$

For $\kappa \in \mathcal{O}$ and $\vartheta, z \in \mathbb{C}$, we define the function $u^\kappa_\vartheta(z)$ on \mathbb{R}_+ by setting

$$
u^\kappa_\vartheta(z) = \frac{u^\kappa(z) \sin(\vartheta + \vartheta_\kappa) - u^{-\kappa}(z) \sin(\vartheta - \vartheta_\kappa)}{\sin \pi \kappa}, \quad \kappa \in \mathcal{O} \setminus \{0\},
$$

Here and hereafter, we assume that the function q_κ on \mathbb{R}_+ is defined by [5] for all $\kappa \in \mathbb{C}$.

More precisely, T^σ_g is the operator in $L_2(\mathbb{R}, \sigma)$ whose graph consists of all pairs (φ_1, φ_2) such that $\varphi_1, \varphi_2 \in L_2(\mathbb{R}, \sigma)$ and $\varphi_2(E) = g(E)\varphi_1(E)$ for σ-a.e. E.

We recall that a Borel measure σ on \mathbb{R} is called a Radon measure on \mathbb{R} if $\sigma(K) < \infty$ for every compact set $K \subset \mathbb{R}$.
The equality
\[\pi Y \quad \text{and} \quad \delta (18) \]
and
\[\Gamma \quad \text{and} \quad \gamma (13) \]
the entire function \(Y \) and
4th A.G. SMIRNOV

the Bessel equation.

\[(14) \]
\[\vartheta \]

\[(15) \]
\[C \]
\[\{ \}

\[(17) \]
\[d\bar{V}_{\kappa,\vartheta}(E) = \frac{\Gamma(E) \sin^2 \pi \kappa}{2 E^{-\kappa} \sin^2(\vartheta + \vartheta_\kappa) - 2 \cos \pi \kappa \sin(\vartheta + \vartheta_\kappa) \sin(\vartheta - \vartheta_\kappa) + E^\kappa \sin^2(\vartheta - \vartheta_\kappa)} dE \]
and \(\delta_{E_{\kappa,\vartheta}} \) is the Dirac measure at the point

\[(18) \]
\[E_{\kappa,\vartheta} = - \left(\frac{\sin(\vartheta + \vartheta_\kappa)}{\sin(\vartheta - \vartheta_\kappa)} \right)^{1/\kappa}. \]

To compute the limit of \(u_0^\kappa(z|r) \) as \(\kappa \to 0 \), we must apply L'Hôpital's rule and use the equality
\[\Gamma'(1 + n)/\Gamma(1 + n) = c_n - \gamma \quad \text{(see formula (9) in Sec. 1.7.1 in [12])}. \]

Alternatively, we can express \(u_0^\kappa(z|r) \) in terms of the Bessel functions \(J_0 \) and \(Y_0 \) by means of the equality
\[\kappa \gamma(\zeta) = 2 \left(\gamma + \log \frac{2}{\zeta} \right) J_0(\zeta) - 2 Y(\zeta^2) \quad \text{(see formula (33) in Sec. 7.2.4 in [12]) and use the Bessel equation.} \]
For $\kappa = 0$, the measure $\mathcal{V}_{\kappa, \vartheta}$ is defined by taking the limit $\kappa \to 0$ in formulas (16)–(18). This yields

$$\mathcal{V}_{0, \vartheta} = \begin{cases} \tilde{\mathcal{V}}_{0, \vartheta}, & \vartheta \in \pi \mathbb{Z}, \\ \frac{\pi |E_{0, \vartheta}|}{2 \sin^2 \vartheta} \delta_{E_{0, \vartheta}} + \tilde{\mathcal{V}}_{0, \vartheta}, & \vartheta \notin \pi \mathbb{Z}, \end{cases}$$

where

$$E_{0, \vartheta} = -e^{\pi \cot \vartheta}$$

and the positive Radon measure $\tilde{\mathcal{V}}_{0, \vartheta}$ on \mathbb{R} is given by

$$d\tilde{\mathcal{V}}_{0, \vartheta}(E) = \frac{1}{2} \left(\Theta(E) \right) \frac{\Theta(E)}{(\cos \vartheta - \pi^{-1} \log E \sin \vartheta)^2 + \sin^2 \vartheta} dE.$$

The next theorem describes self-adjoint extensions of h_κ for $-1 < \kappa < 1$ in terms of their eigenfunction expansions.

Theorem 3. Let $-1 < \kappa < 1$. For every $\vartheta \in \mathbb{R}$, there is a unique unitary operator $U_{\kappa, \vartheta} : L_2(\mathbb{R}^+) \to L_2(\mathbb{R}, \mathcal{V}_{\kappa, \vartheta})$ such that

$$(U_{\kappa, \vartheta} \psi)(E) = \int_0^\infty u^\kappa_{\vartheta}(E|r) \psi(r) \, dr, \quad \psi \in L_2^c(\mathbb{R}^+),$$

for $\mathcal{V}_{\kappa, \vartheta}$-a.e. E. The operator

$$h_{\kappa, \vartheta} = U_{\kappa, \vartheta}^{-1} T_i^{\mathcal{V}_{\kappa, \vartheta}} U_{\kappa, \vartheta},$$

where i is the identity function on \mathbb{R}, is a self-adjoint extension of h_κ. Conversely, every self-adjoint extension of h_κ is equal to $h_{\kappa, \vartheta}$ for some $\vartheta \in \mathbb{R}$. Given $\vartheta, \vartheta' \in \mathbb{R}$, we have $h_{\kappa, \vartheta} = h_{\kappa, \vartheta'}$ if and only if $\vartheta - \vartheta' \in \pi \mathbb{Z}$.

For $\vartheta = \vartheta_0$, we have $\mathcal{V}_{\kappa, \vartheta_0} = \mathcal{V}_\kappa$ and $u^\kappa(z) = u^\kappa_0(z)$ for all $z \in \mathbb{C}$, and the operator $U_{\kappa, \vartheta}$ therefore coincides with the Hankel transformation U_κ.

The expansions described by Theorem 3 have the advantage that neither the eigenfunctions $u^\kappa_{\vartheta}(E)$ nor the spectral measures $\mathcal{V}_{\kappa, \vartheta}$ have any discontinuities at $\kappa = 0$. This follows from Lemma 2 and the next theorem.

Theorem 4. Let φ be a continuous function or a bounded Borel function on \mathbb{R} with compact support. Then $(\kappa, \vartheta) \to \int \varphi(E) d\mathcal{V}_{\kappa, \vartheta}(E)$ is respectively a continuous function or a Borel function on $(-1, 1) \times \mathbb{R}$ that is bounded on $[-\alpha, \alpha] \times \mathbb{R}$ for every $0 \leq \alpha < 1$.

Our main results are Theorems 3 and 4. We also give a new proof of Theorem 1 based on locally defined singular m-functions (see below).

To prove Theorems 1 and 3 we use a recently developed variant of the Titchmarsh-Weyl-Kodaira theory [6, 8]. In those papers, a generalization of the notion of the Titchmarsh-Weyl m-function was proposed that is applicable not only to problems with a regular endpoint but also to a broad class of Schrödinger operators with two singular endpoints. Using such singular m-functions leads to a notable simplification in the treatment of eigenfunction expansions in comparison with the general theory [13, 5] based on matrix-valued measures (but we note that the results

8In this paper, the term “spectral measure” always refers to a certain positive measure on \mathbb{R} whose precise definition is given in Proposition 14. This usage differs from that adopted in [10], where this term was applied to projection-valued measures in a Hilbert space.
in [6] [8] for eigenfunction expansions can be easily derived from Kodaira’s general approach [13]; see Remark [16] below).

The paper is organized as follows. In Sec. 2, we give the general theory concerning self-adjoint extensions of one-dimensional Schrödinger operators and their eigenfunction expansions. The main statement in that section, Proposition 13, is similar to Theorem 3.4 in [8], but unlike the latter gives a local version of the formula for the spectral measures. This allows using different m-functions for different regions of the spectral parameter. In Sec. 3 we give a proof of Theorem 1 illustrating this local approach to finding spectral measures and establish Theorem 5. Section 4 is devoted to the proof of Theorem 3.

2. ONE-DIMENSIONAL SCHRODINGER OPERATORS

In this section, we recall basic facts [5] [14] [15] concerning self-adjoint extensions of one-dimensional Schrödinger operators and briefly describe the approach to eigenfunction expansions developed in [6] [8]. A distinctive feature of the subsequent exposition is that it uses the notion of a boundary space (see Definition 6 below) that can be viewed as a formalization of the concept of a self-adjoint boundary condition. Using boundary spaces allows treating the limit point and limit circle cases on equal footing whenever possible, which makes the presentation of results clearer.

Let $-\infty \leq a < b \leq \infty$, $\lambda_{a,b}$ be the restriction to (a,b) of the Lebesgue measure λ on \mathbb{R}, and D be the space of all complex continuously differentiable functions on (a,b) whose derivative is absolutely continuous on (a,b) (i.e., absolutely continuous on every segment $[c,d]$ with $a < c \leq d < b$). Let q be a complex locally integrable function on (a,b). Given $z \in \mathbb{C}$, we let $l_{q,z}$ denote the linear operator from D to the space of complex $\lambda_{a,b}$-equivalence classes such that

$$
(l_{q,z}f)(r) = -f''(r) + q(r)f(r) - zf(r)
$$

for λ-a.e. $r \in (a,b)$ and set

$$
l_q = l_{q,0}.
$$

For every $f \in D$ and $z \in \mathbb{C}$, we have $l_{q,z}f = l_qf - z[f]$, where $[f] = [f]_{\lambda_{a,b}}$ is the $\lambda_{a,b}$-equivalence class of f. For every $c \in (a,b)$ and all complex numbers z, ζ_1, and ζ_2, there is a unique solution f of the equation $l_{q,z}f = 0$ such that $f(c) = \zeta_1$ and $f'(c) = \zeta_2$. This implies that solutions of $l_{q,z}f = 0$ constitute a two-dimensional subspace of D. The Wronskian $W_r(f,g)$ at a point $r \in (a,b)$ of any functions $f,g \in D$ is defined by the relation

$$
W_r(f,g) = f(r)g'(r) - f'(r)g(r).
$$

Clearly, $r \rightarrow W_r(f,g)$ is an absolutely continuous function on (a,b). If f and g are such that $r \rightarrow W_r(f,g)$ is a constant function on (a,b) (in particular, this is the case when f and g are solutions of $l_{q,z}f = l_{q,z}g = 0$ for some $z \in \mathbb{C}$), then its value is denoted by $W(f,g)$. It follows immediately from (23) that the identities

$$
W_r(f_1, f_2)W_r(f_3, f_4) + W_r(f_1, f_3)W_r(f_4, f_2) + W_r(f_2, f_3)W_r(f_1, f_4) = 0,
$$

$$
W_r(f_1, f_2, f_3, f_4) = f_1(r)f_2(r)W_r(f_3, f_4) + W_r(f_1, f_3)f_2(r)f_4(r) + W_r(f_1, f_4)f_2(r)f_3(r)
$$

hold for any $f_1, f_2, f_3, f_4 \in D$ and $r \in (a,b)$.

In the rest of this section, we assume that q is real. Let

$$
D_q = \{f \in D : f \text{ and } l_qf \text{ are both square-integrable on } (a,b)\}.
A \(\lambda_{a,b} \)-measurable complex function \(f \) is said to be left or right square-integrable on \((a, b) \) if respectively \(\int_{a}^{c} |f(r)|^2 \, dr < \infty \) or \(\int_{c}^{b} |f(r)|^2 \, dx < \infty \) for any \(c \in (a, b) \). The subspace of \(D \) consisting of left or right square-integrable on \((a, b) \) functions \(f \) such that \(l_q f \) is also respectively left or right square-integrable on \((a, b) \) is denoted by \(D^q_L \) or \(D^q_R \). We obviously have \(D_q = D^q_L \cap D^q_R \). It follows from (22) by integrating by parts that

\[
\int_{c}^{d} ((l_q z f)(r)g(r) - f(r)(l_q z g)(r)) \, dr = W_q(f, g) - W_q(f, g)
\]

for every \(f, g \in D, z \in \mathbb{C} \), and \(c, d \in (a, b) \). This implies the existence of limits \(W_a(f, g) = \lim_{d \to a} W_q(f, g) \) and \(W_b(f, g) = \lim_{c \to b} W_q(f, g) \) respectively for every \(f, g \in D_q \) and \(f, g \in D_q^r \). Moreover, it follows that

\[
\langle l_q f, [g] \rangle - \langle [f], l_q g \rangle = W_b(\bar{f}, g) - W_a(\bar{f}, g)
\]

for any \(f, g \in D_q \), where \(\langle \cdot, \cdot \rangle \) is the scalar product in \(L_2(a, b) \).

For any linear subspace \(Z \) of \(D_q \), let \(L_q(Z) \) be the linear operator in \(L_2(a, b) \) defined by the relations

\[
D_{L_q(Z)} = \{ [f] : f \in Z \},
L_q(Z)[f] = l_q f, \quad f \in Z.
\]

We define the minimal operator \(L_q \) by setting

\[
L_q = L_q(D_q^0)
\]

where

\[
D_q^0 = \{ f \in D_q : W_q(f, g) = W_b(f, g) = 0 \text{ for any } g \in D_q \}.
\]

By (23), the operator \(L_q(Z) \) is symmetric if and only if \(W_a(\bar{f}, g) = W_b(\bar{f}, g) \) for any \(f, g \in Z \). In particular, \(L_q \) is a symmetric operator. Moreover, \(L_q \) is closed and densely defined, and its adjoint \(L_q^* \) is given by

\[
L_q^* = L_q(D_q)
\]

(see Lemma 9.4 in [14]). If \(T \) is a symmetric extension of \(L_q \), then \(L_q^* \) is an extension of \(T^* \) and hence of \(T \). In view of (30), this implies that \(T \) is of the form \(L_q(Z) \) for some subspace \(Z \) of \(D_q \).

Remark 5. Self-adjoint operators of the form \(L_q(Z) \) can be naturally viewed as self-adjoint realizations of the differential expression \(-d^2/dr^2 + q\). If \(L_q(Z) \) is self-adjoint, then equality (30) and the closedness of \(L_q \) imply that \(L_q(Z) \) is an extension of \(L_q \) because \(L_q(D_q^0) \) is an extension of \(L_q(Z) \). Therefore, the self-adjoint realizations of the expression \(-d^2/dr^2 + q\) are precisely the self-adjoint extensions of the minimal operator \(L_q \).

Definition 6. We say that a linear subspace \(X \) of \(D_q^0 \) is a left boundary space if

1. if \(W_a(\bar{f}, g) = 0 \) for any \(f, g \in X \) and
2. if \(g \in X \) whenever \(g \in D_q^0 \) satisfies the equality \(W_a(\bar{f}, g) = 0 \) for all \(f \in X \).

Replacing \(D_q^0 \) with \(D_q^r \) and \(a \) with \(b \), we obtain the definition of a right boundary space.
Definition 7. If \(W_a(f, g) = 0 \) for any \(f, g \in D_q^l \), then \(q \) is said to be in the limit point case (l.p.c.) at \(a \). Otherwise \(q \) is said to be in the limit circle case (l.c.c.) at \(a \). Similarly, \(q \) is said to be in the l.p.c. at \(b \) if \(W_b(f, g) = 0 \) for any \(f, g \in D_q^r \) and to be in the l.c.c. at \(b \) otherwise.

Clearly, \(q \) is in the l.p.c. at \(a \) or \(b \) if and only if \(D_q^l \) or \(D_q^r \) is the respective unique left or right boundary space. Given \(f \in D_q^l \) or \(f \in D_q^r \), we set
\[
D_{q,f}^l = \{ g \in D_q^l : W_a(\bar{f}, g) = 0 \}, \quad D_{q,f}^r = \{ g \in D_q^r : W_b(\bar{f}, g) = 0 \}.
\]

For every \(E \in \mathbb{R} \), we let \(S_{q,E}^l \) and \(S_{q,E}^r \) denote the respective sets of all nontrivial real elements \(f \) of \(D_q^l \) and \(D_q^r \) such that \(l_{q,E} f = 0 \).

The next proposition reformulates well-known results concerning self-adjoint extensions of \(L_q \) (see, e.g., Sec. 9.2 in [13]) in the language of boundary spaces.

Proposition 8. Let \(q \) be a real locally integrable function on \((a, b)\). Then the following statements hold:

1. Let \(X \) and \(Y \) respectively be left and right boundary spaces. Then the operator \(L_q(X \cap Y) \) is a self-adjoint extension of \(L_q \).
2. Let \(L_q(X \cap Y) = L_q(\bar{X} \cap \bar{Y}) \) for some left boundary spaces \(X \) and \(\bar{X} \) and right boundary spaces \(Y \) and \(\bar{Y} \). Then we have \(X = \bar{X} \) and \(Y = \bar{Y} \).
3. Let \(E \in \mathbb{R} \) and \(f \in S_{q,E}^l \) or \(f \in S_{q,E}^r \). Then \(D_{q,f}^l \) or \(D_{q,f}^r \) is respectively a left or right boundary space.
4. Let \(z \in \mathbb{C} \). Then \(q \) is in l.c.c. at \(a \) or at \(b \) if and only if every \(f \in D \) such that \(l_{q,z} f = 0 \) is respectively left or right square-integrable on \((a, b)\).
5. If \(q \) is in l.p.c. either at \(a \) or at \(b \), then every self-adjoint extension of \(L_q \) is equal to \(L_q(X \cap Y) \) for some left boundary space \(X \) and right boundary space \(Y \).
6. Let \(q \) be in l.c.c. at \(a \) or \(b \) \(E \in \mathbb{R} \). Then every left or right boundary space is respectively equal to \(D_{q,f}^l \) or \(D_{q,f}^r \) for some \(f \in S_{q,E}^l \) or \(f \in S_{q,E}^r \).

The operators of the form \(L_q(X \cap Y) \), where \(X \) and \(Y \) are left and right boundary spaces, are called self-adjoint extensions of \(L_q \) with separated boundary conditions.

Remark 9. As mentioned above, boundary spaces can be thought of as self-adjoint boundary conditions. In this sense, the domain of \(L_q(X \cap Y) \) consists of (the \(\lambda_{a,b} \)-equivalence classes of) all elements of \(D_q \) satisfying the self-adjoint boundary conditions \(X \) and \(Y \) on the respective left and right.

Remark 10. Let \(f \) and \(g \) be linear independent solutions of \(l_{q,z} f = l_{q,z} g = 0 \), where \(\text{Im} \ z \neq 0 \). Suppose \(f \) satisfies a self-adjoint boundary condition at \(a \) (i.e., belongs to some left boundary space). Let \(A \) denote the set of all \(\zeta \in \mathbb{C} \) such that \(q + \zeta f \) belongs to some right boundary space. Then \(A \) is either a one-point set or a circle depending on whether \(q \) is in the l.p.c. or l.c.c. at \(b \). Moreover, \(A \) is the limit of the circles \(A_\alpha \) obtained by replacing \(b \) with a regular endpoint \(c \in (a, b) \) in the definition of \(A \). Such a limit procedure was originally used by Weyl [2] to distinguish between the l.p.c. and l.c.c.

If \(q \) is in the l.p.c. at both \(a \) and \(b \), then statement 1 in Proposition 8 implies that the operator \(L_q(D_q) \) is self-adjoint. In view of (30), it follows that \(L_q \) is self-adjoint.

For every \(f \in D_q^l \), we set
\[
L_q^l = L_q(D_q^l \cap D_q^r).
\]
Lemma 11. Let $E \in \mathbb{R}$ and q be in the l.c.c. at a and in the l.p.c. at b. Then the self-adjoint extensions of L_q^f, where $f \in S_{q,E}^1$, are precisely the operators L_q^g, where $g \in S_{q,E}^1$. For $f, g \in S_{q,E}^1$, the equality $L_q^f = L_q^g$ holds if and only if $g = cf$ for some real $c \neq 0$.

Proof. The first statement follows immediately from statements 1, 3, 5, and 6 in Proposition 8. Let $f, g \in S_{q,E}^1$. If $g = cf$, then we have

$$D_{q,f}^l = D_{q,g}^l$$

by (31) and therefore $L_q^f = L_q^g$. Conversely, if $L_q^f = L_q^g$, then statements 2 and 3 in Proposition 8 imply equality (33). Because $f \in D_{q,f}^l$ by (31), we conclude that $f \in D_{q,g}^l$ and hence $W_a(f,g) = 0$. Because $l_{q,z}f = l_{q,z}g = 0$, it follows that $W(g,f) = 0$, whence $g = cf$. \hfill \Box

We now consider the eigenfunction expansions associated with L_q.

Let $O \subset \mathbb{C}$ be an open set. We say that a map $u : O \to \mathcal{D}$ is a q-solution in O if $l_{q,z}u(z) = 0$ for every $z \in O$. A q-solution u in O is said to be analytic if the functions $z \rightarrow u(z|r)$ and $z \rightarrow \partial_z u(z|r)$ are analytic in O for any $r \in (a,b)$. A q-solution u in O is said to be nonvanishing if $u(z) \neq 0$ for every $z \in O$ and is said to be real if $u(E)$ is real for every $E \in O \cap \mathbb{R}$.

Definition 12. A triple (q,Y,u) is called an expansion triple if q is a real locally integrable function on (a,b), Y is a right boundary space, and u is a real nonvanishing analytic q-solution in \mathbb{C} satisfying the following conditions:

1. $u(z) \in D_{q}^l$ for all $z \in \mathbb{C}$ and
2. there exists $E \in \mathbb{R}$ such that $W_a(u(E),u(z)) = 0$ for all $z \in \mathbb{C}$.

Lemma 13. Let $t = (q,Y,u)$ be an expansion triple. Then there is a unique left boundary space X^t such that $u(z) \in X^t$ for all $z \in \mathbb{C}$. For every $E \in \mathbb{R}$, we have $X^t = D_{q,u(E)}^l$.

Proof. Let $E \in \mathbb{R}$ and X be a left boundary space containing $u(E)$. By (31) and condition (1) in Definition 6 we have $X \subset D_{q,u(E)}^l$. On the other hand, if $g \in D_{q,u(E)}^l$, then we have $W_a(f,g) = 0$ for every $f \in X$ because $D_{q,u(E)}^l$ is a left boundary space by statement 3 in Proposition 8. In view of condition (2) in Definition 6 we conclude that $g \in X$ and hence $X = D_{q,u(E)}^l$. This implies that X^t (if it exists) is unique and equal to $D_{q,u(E)}^l$ for all $E \in \mathbb{R}$. By (31) and Definition 12 there exists $E \in \mathbb{R}$ such that $u(z) \in D_{q,u(E)}^l$ for all $z \in \mathbb{C}$. This proves the existence of X^t. \hfill \Box

Let $t = (q,Y,u)$ be an expansion triple, \tilde{u} be a real analytic q-solution in \mathbb{C} such that $W(u(z),\tilde{u}(z)) \neq 0$ for every $z \in \mathbb{C}$, and v be a nonvanishing analytic q-solution in \mathbb{C}_+ such that $v(z) \in Y$ for all $z \in \mathbb{C}_+$ (such \tilde{u} and v always exist; see Lemma 2.4 in 8 and Lemma 9.8 in 14). Then $W(v(z),u(z)) \neq 0$ for every $z \in \mathbb{C}_+$ because we would otherwise have $u(z) \in X^t \cap Y$ and hence the self-adjoint operator $L_q(X^t \cap Y)$ would have an eigenvalue in \mathbb{C}_+. We define the analytic function M_{g}^t in \mathbb{C}_+ by the relation

$$M_{g}^t(z) = \frac{1}{\pi} \frac{W(v(z),\tilde{u}(z))}{W(v(z),u(z))W(u(z),\tilde{u}(z))}$$

As usual, \mathbb{C}_+ denotes the open upper half-plane of the complex plane: $\mathbb{C}_+ = \{ z \in \mathbb{C} : \text{Im } z > 0 \}$.
(this definition is obviously independent of the choice of v). Following [8], we call such functions singular Titchmarsh-Weyl m-functions. Below, we see that it is sometimes useful to consider q-solutions \tilde{u} that are defined on an open set $O \subset \mathbb{C}$ other than the entire complex plane. In that case, we assume that \mathcal{M}_0^q is defined on $O \cap \mathbb{C}_+$. Let $L_2^q(a, b)$ denote the subspace of $L_2(a, b)$ consisting of all its elements vanishing λ-a.e. outside some compact subset of (a, b). The next proposition gives a way of constructing eigenfunction expansions for self-adjoint extensions of L_q with separated boundary conditions.

Proposition 14. Let $t = (q, Y, u)$ be an expansion triple. Then the following statements hold:

1. There exists a unique positive Radon measure σ on \mathbb{R} (called the spectral measure for t) such that
 \[
 \int \varphi(E) \text{Im} \mathcal{M}_0^q(E + i\eta) \, dE \to \int \varphi(E) \, d\sigma(E) \quad (\eta \downarrow 0)
 \]
 for every continuous function φ on \mathbb{R} with compact support and every real analytic q-solution \tilde{u} in \mathbb{C} such that $W(u(z), \tilde{u}(z)) \neq 0$ for every $z \in \mathbb{C}$.

2. Let σ be the spectral measure for t. There is a unique unitary operator $U : L_2(a, b) \to L_2(\mathbb{R}, \sigma)$ (called the spectral transformation for t) such that
 \[
 (U\psi)(E) = \int_a^b u(E|r)\psi(r) \, dr, \quad \psi \in L_2^q(a, b),
 \]
 for σ-a.e. E.

3. Let σ and U be the spectral measure and transformation for t, and let the left boundary space X^\downarrow be as in Lemma [13]. Then we have
 \[
 L_q(X^\downarrow \cap Y) = U^{-1}T^\downarrow U,
 \]
 where ι is the identity function on \mathbb{R}.

4. Let σ be the spectral measure for t, $O \subset \mathbb{C}$ be an open set, and \tilde{u} be a real analytic q-solution in O such that $W(u(z), \tilde{u}(z)) \neq 0$ for every $z \in O$. Then we have
 \[
 \int_{\text{supp} \varphi} \varphi(E) \text{Im} \mathcal{M}_0^q(E + i\eta) \, dE \to \int_{O \cap \mathbb{R}} \varphi(E) \, d\sigma(E) \quad (\eta \downarrow 0)
 \]
 for every continuous function φ on $O \cap \mathbb{R}$ with compact support (supp φ denotes the support of φ).

Proof. Statements 1–3 are a straightforward reformulation of the corresponding results in [8] in the language of boundary spaces. Let O and \tilde{u} satisfy the conditions in statement 4 and θ be a real analytic q-solution in \mathbb{C} such that $W(u(z), \theta(z)) \neq 0$ for every $z \in \mathbb{C}$. Substituting $f_1 = u(z)$, $f_2 = v(z)$, $f_3 = \tilde{u}(z)$, and $f_4 = \theta(z)$ in (24) and dividing the result by $\pi W(u(z), \theta(z))W(u(z), \tilde{u}(z))$ yields
\[
\mathcal{M}_0^q(z) = \mathcal{M}_0^q(z) + \frac{1}{\pi W(u(z), \theta(z))W(u(z), \tilde{u}(z))} \frac{W(u(z), \theta(z))}{W(u(z), \tilde{u}(z))}
\]
for any $z \in O \cap \mathbb{C}_+$. Statement 4 now follows from statement 1 because the last term in the right-hand side is analytic in O and real on $O \cap \mathbb{R}$. \qed
Corollary 15. Let σ and U be the spectral measure and transformation for an expansion triple $t = (q, Y, u)$. Then we have

$$
(U^{-1}\varphi)(r) = \int u(E|r)\varphi(E) \, d\sigma(E), \quad \varphi \in L_2^\circ(\mathbb{R}, \sigma),
$$

for λ-a.e. $r \in (a, b)$. If $\sigma\{E\} \neq 0$ for some $E \in \mathbb{R}$, then $[u(E)]$ is an eigenfunction of $L_q(X^j \cap Y)$. If $\sigma\{E\} = 0$ we have $U^{-1}[\chi(E)] = \sigma\{E\}[u(E)]$, where $\chi(E)$ is the characteristic function of the one-point set $\{E\}$.

Proof. Given $\varphi \in L_2^\circ(\mathbb{R}, \sigma)$ and $r \in (a, b)$, let $\tilde{\varphi}(r)$ denote the right-hand side of (35). By statement 2 in Proposition 14, we have

$$
\langle \psi, U^{-1}\varphi \rangle = \langle U\psi, \varphi \rangle = \int d\sigma(E)\varphi(E) \int_a^b \overline{\psi(r)}u(E|r) \, dr = \int_a^b \overline{\psi(r)}\tilde{\varphi}(r) \, dr
$$

for any $\psi \in L_2^\circ(a, b)$, whence (35) follows. In particular, we have $U^{-1}[\chi(E)] = \sigma\{E\}[u(E)]$, where $\chi(E)$ is the characteristic function of the one-point set $\{E\}$. By statement 3 in Proposition 14 this implies that $[u(E)]$ is an eigenfunction of $L_q(X^j \cap Y)$ if $\sigma\{E\} \neq 0$. \□

Remark 16. While the above proof of Proposition 14 refers to [8], this result can also be easily derived using Kodaira’s general approach [13] based on matrix-valued measures. Indeed, if we set $s_1(z) = \tilde{u}(z)/W(u(z), \tilde{u}(z))$ and $s_2(z) = u(z)$ for $z \in \mathbb{C}$, then the only non-real entry $M_{22}(z)$ of the characteristic matrix M defined by formula (1.13) in [13] is equal to $\pi M_2^\circ(\bar{z})$ and statements 1–3 in Proposition 14 hence essentially coincide with Theorem 1.3 in [13] in this case. The simple direct proof given in [8] employs a single m-function and does not involve matrix-valued measures. It essentially relies on the technique developed in [6], where potentials in the l.p.c. at both endpoints were considered (a treatment in the same spirit for the l.c.c. at one of the endpoints can be found in [16]). A similar approach to finding spectral measures was also proposed in [9] in the context of the Schrödinger equation with the inverse-square potential.

If q is locally square-integrable on (a, b), then formulas (28) and (29) imply that the space $C_0^\infty(a, b)$, of smooth functions on (a, b) with compact support is contained in D_q^0 and L_q is an extension of $L_q(C_0^\infty(a, b))$. The proof of the next lemma is given in Appendix B.

Lemma 17. Let q be a real locally square-integrable function on (a, b). Then L_q is the closure of $L_q(C_0^\infty(a, b))$.

3. Eigenfunction expansions for inverse-square potential

We now assume that $a = 0$ and $b = \infty$ and apply the above general theory to the potential q_κ given by (34). It follows immediately from (4) and (27) that $h_\kappa = L_{q_\kappa}(C_0^\infty(\mathbb{R}^+))$. In view of (6) and Lemma 17 this implies that

$$
h_\kappa = L_{q_\kappa}, \quad \kappa \in \mathbb{R}.
$$

The equation $l_{q_\kappa} f = 0$ has linearly independent solutions $r^{1/2 \pm \kappa}$ for $\kappa \neq 0$ and $r^{1/2}$ for $\kappa = 0$. We conclude that by statement 4 in Proposition 8

1. q_κ is in the l.p.c. at both 0 and ∞ for real κ such that $|\kappa| \geq 1$
2. q_κ is in the l.p.c. at ∞ and in the l.c.c. at 0 for $-1 < \kappa < 1$.

Hence, the operator \(h_\kappa \) is self-adjoint for \(|\kappa| \geq 1\) and has multiple self-adjoint extensions for \(-1 < \kappa < 1\).

For any \(\kappa \in \mathbb{C} \), let the map \(u^{\kappa} : \mathbb{C} \to \mathcal{D} \) be defined by (7). By (10), we have
\[
l_{q_\kappa, z} u^{\pm \kappa}(z) = 0, \quad z, \kappa \in \mathbb{C}.
\]

In what follows, we systematically use notation (15) for the complex plane with a cut along a ray. We let \(\log \) denote the branch of the logarithm in \(\mathbb{C}_{3\pi/2} \) satisfying the condition \(\log 1 = 0 \) and set \(z^\rho = e^{\rho \log z} \) for all \(z \in \mathbb{C}_{3\pi/2} \) and \(\rho \in \mathbb{C} \).

For any \(\kappa \in \mathbb{C} \), we define the map \(v^{\kappa} : \mathbb{C}_{3\pi/2} \to \mathcal{D} \) by the relation
\[
v^{\kappa}(z|r) = \frac{i\pi}{2} e^{i\pi \kappa/2 r^{1/2}} H^{(1)}_\kappa(r^{3/2}), \quad r \in \mathbb{R}_+, \ z \in \mathbb{C}_{3\pi/2},
\]
where \(H^{(1)}_\kappa \) is the first Hankel function of order \(\kappa \). Because \(H^{(1)}_\kappa \) is a solution of the Bessel equation, we have
\[
l_{q_\kappa, z} v^{\kappa}(z) = 0
\]
for every \(z \in \mathbb{C}_{3\pi/2} \) and \(\kappa \in \mathbb{C} \). It follows from the relation \(H^{(1)}_{-\kappa} = e^{i\pi \kappa} H^{(1)}_\kappa \) (formula (9) in Sec. 7.2.1 in [12]) that
\[
v^{-\kappa}(z) = v^{\kappa}(z), \quad \kappa \in \mathbb{C}, \ z \in \mathbb{C}_{3\pi/2}.
\]

The well-known asymptotic form of \(H^{(1)}_\kappa(\zeta) \) for \(\zeta \to \infty \) (see formula (1) in Sec. 7.13.1 in [12]) implies that
\[
v^{\kappa}(z|r) \sim 2^{-1} \sqrt{\pi(i + 1)z^{-1/4} e^{i\pi z^{1/2}}}, \quad r \to \infty,
\]
for every \(\kappa \in \mathbb{C} \) and \(z \in \mathbb{C}_{3\pi/2} \) and hence \(v^{\kappa}(z) \) is right square-integrable for all \(\kappa \in \mathbb{C} \) and \(z \in \mathbb{C}_+ \). Using the expression for the Wronskian of Bessel functions (formula (29) in Sec. 7.11 in [12]),
\[
W_z(J_\kappa, H^{(1)}_\kappa) = \frac{2i}{\pi z},
\]
and taking (10) into account, from (7), (9), and (38), we derive that
\[
W(u^{\kappa}(z), u^{\kappa}(z)) = z^{-\kappa/2} e^{i\pi \kappa/2}, \quad W(v^{\kappa}(z), u^{-\kappa}(z)) = z^{\kappa/2} e^{-i\pi \kappa/2}
\]
for any \(\kappa \in \mathbb{C} \) and \(z \in \mathbb{C}_{3\pi/2} \).

Lemma 18. Let \(\kappa > -1 \). Then \(u^{\kappa}(z) \) is a nontrivial element of \(\mathcal{D}^{\kappa}_{q_\kappa} \) for every \(z \in \mathbb{C} \), and we have \(W_0(u^{\kappa}(z), u^{\kappa}(z')) = 0 \) for all \(z, z' \in \mathbb{C} \).

Proof. Because \(\kappa > -1 \), it follows from (7) that \(u^{\kappa}(z) \) is left square-integrable for all \(z \in \mathbb{C} \). In view of (37), this implies that \(u^{\kappa}(z) \in \mathcal{D}^{\kappa}_{q_\kappa} \) for all \(z \in \mathbb{C} \). By (7), \(u^{\kappa}(z) \) is nontrivial for \(z \neq 0 \) because otherwise \(\lambda^{\kappa}_r \) would be identically zero. Because \(u^{\kappa}(0)r = 2^{-\kappa r^{1/2} + \pi \kappa}/\Gamma(\kappa + 1) \) by (7) and (8), we conclude that \(u^{\kappa}(0) \) is nontrivial for \(\kappa > -1 \). By (7) and (25), we have
\[
W_r(u^{\kappa}(z), u^{\kappa}(z')) = 2r^{2+2\kappa}(z' \lambda^{\kappa}_r(r^{2} z) \lambda^{\kappa}_r(r^{2} z) - z \lambda^{\kappa}_r(r^{2} z) \lambda^{\kappa}_r(r^{2} z'))
\]
and hence \(W_0(u^{\kappa}(z), u^{\kappa}(z')) = 0 \) for all \(z, z' \in \mathbb{C} \).

By (37), \(u^{\kappa} \) is a real analytic \(q_\kappa \)-solution in \(\mathbb{C} \) for every \(\kappa \in \mathbb{R} \). Because \(q_\kappa \) is in the l.p.c. at \(\infty \), \(\mathcal{D}^{\kappa}_{q_\kappa} \) is a right boundary space for all \(\kappa \in \mathbb{R} \). Definition [12] and Lemma [13] therefore imply that \(t_\kappa = (q_\kappa, \mathcal{D}^{\kappa}_{q_\kappa}, u^{\kappa}) \) is an expansion triple for every \(\kappa > -1 \). Let \(\sigma_\kappa \) denote the spectral measure for \(t_\kappa \).
Lemma 19. Let \(\kappa > -1 \). Then \(\sigma_\kappa = \nu_\kappa \), where \(\nu_\kappa \) is the measure on \(\mathbb{R} \) defined by (11).

Proof. By (38), (39), and (41), \(v^\kappa \) is a nonvanishing analytic \(q_\kappa \)-solution in \(\mathbb{C}_{3\pi/2} \) such that \(v^\kappa(z) \in D^\kappa_q \) for every \(z \in \mathbb{C}_\kappa \). Let \(\tilde{u}_1 \) be the restriction \(v^\kappa|_O \) of \(v^\kappa \) to the domain \(O = \{ z \in \mathbb{C} : \text{Re} z < 0 \} \). In view of (38), we have \(\tilde{u}_1(E) = r^{1/2}K_\kappa(r\sqrt{E}) \) for \(E < 0 \), where \(K_\kappa \) is the modified Bessel function of the second kind of order \(\kappa \) (formula (15) in Sec. 7.2.2 in [12]). Hence, \(\tilde{u}_1(E) \) is real for \(E < 0 \). By (42), we have \(W(\tilde{u}_1(z), v^\kappa(z)) \neq 0 \) for all \(z \in O \). Substituting \(t = t_\kappa, v = v^\kappa|_C \), and \(\tilde{u} = \tilde{u}_1 \) in (34) yields \(M_{\tilde{u}_1}(z) = 0 \) for all \(z \in O \cap C_+ \). By statement 4 in Proposition 14, we conclude that \(\sigma_\kappa \) vanishes and hence coincides with \(\nu_\kappa \) on \((-\infty, 0) \). Let the map \(\tilde{u}_2 : C_\kappa \to D \) be given by \(\tilde{u}_2(z|r) = r^{1/2}Y_\kappa(rz^{1/2}) \), where \(Y_\kappa \) is the Bessel function of the second kind of order \(\kappa \). We have \(l_{q_\kappa, z}\tilde{u}_2(z) = 0 \) for any \(z \in C_\kappa \) because \(Y_\kappa \) satisfies the Bessel equation, and \(\tilde{u}_2 \) is therefore an analytic \(q_\kappa \)-solution in \(C_\kappa \). Because \(Y_\kappa \) is real for positive real arguments, \(\tilde{u}_2(E) \) is real for \(E > 0 \). Because \(H^{(1)}_{\kappa} = J_{\kappa} + i\nu_\kappa \), if follows from (12) that

\[
W_z(J_\kappa, \nu_\kappa) = W_z(H^{(1)}_{\kappa}, \nu_\kappa) = -iW_z(J_\kappa, H^{(1)}_{\kappa}) = \frac{2}{\pi z}.
\]

By (7), (9), and (38), we obtain \(W(u^\kappa(z), \tilde{u}_2(z)) = 2z^{-\kappa/2/\pi} \neq 0 \) for \(z \in C_\kappa \) and \(W(v^\kappa(z), \tilde{u}_2(z)) = i\pi \kappa z^{\kappa/2} \) for \(z \in C_+ \). In view of (43), substituting \(t = t_\kappa, v = v^\kappa|_C \), and \(\tilde{u} = \tilde{u}_2 \) in (34) yields

\[
M_{\tilde{u}_2}(z) = \frac{i\pi \kappa z^{\kappa/2}}{2}, \quad z \in C_+.
\]

Statement 4 in Proposition 14 therefore ensures that \(\sigma_\kappa \) coincides with \(\nu_\kappa \) on \((0, \infty) \). It remains to note that \(\sigma_\kappa(\{0\}) = 0 \) because otherwise \(u^\kappa(0) \) would be square-integrable by Corollary 15.

Proof of Theorem 1. It follows from statement 2 in Proposition 14 and Lemma 19 that the operator \(U_\kappa \) exists and is equal to the spectral transformation for \(t_\kappa \). Statement 1 in Proposition 8, statement 3 in Proposition 14, formula (36), and Lemma 19 therefore imply that \(U_{\kappa}^{-1}T^{V_\kappa}U_\kappa \) is a self-adjoint extension of \(h_\kappa \). For \(\kappa \geq 1, h_\kappa \) is self-adjoint and hence coincides with its self-adjoint extension \(U_{\kappa}^{-1}T^{V_\kappa}U_\kappa \).

Remark 20. As mentioned in Sec. 4, the operator \(U_\kappa \) essentially coincides with the Hankel transformation. In [6, 8], where this transformation was treated similarly, the second solution \(\hat{u} \) used to calculate the spectral measure was required to be globally defined. This required distinguishing between integer and noninteger values of \(\kappa \). Using a locally defined \(\hat{u} \) in the proof of Lemma 19 allows treating all values of \(\kappa \) uniformly.

Given \(\kappa \in \mathcal{O} \) and \(\vartheta \in \mathbb{C} \), let the map \(u^\kappa_0 : \mathbb{C} \to D \) be defined by (12) and (13). Because (10) is satisfied for \(u^\kappa_0(z) \) in place of \(u^\pm\kappa(z) \) (see Sec. 1), we have

\[
l_{q_\kappa, z}u^\kappa_0(z) = 0, \quad \kappa \in \mathcal{O}, \quad \vartheta, z \in \mathbb{C}.
\]

By (12) and (13), we have

\[
W(u^\kappa(z), u^\kappa_0(z)) = \frac{z^{-\kappa/2}e^{i\pi \kappa/2}}{\sin \pi \kappa} (\sin(\vartheta + \vartheta_\kappa) - e^{-i\pi \kappa}z^\kappa \sin(\vartheta - \vartheta_\kappa))
\]
for all $\kappa \in \mathcal{O} \setminus \{0\}$, $\vartheta \in \mathbb{C}$, and $z \in \mathbb{C}_{3\pi/2}$. By Lemma \ref{lemma:analytic} \(\kappa \to W(v^\kappa(z), u^\kappa_\vartheta(z)) \) is an analytic function in \mathcal{O} for fixed ϑ and z and we can therefore find $W(v^0(z), u^0_\vartheta(z))$ by taking the limit $\kappa \to 0$ in (45). As a result, we obtain

1. \[W(v^0(z), u^0_\vartheta(z)) = \cos \vartheta + (i - \pi^{-1} \log z) \sin \vartheta, \quad \vartheta \in \mathbb{C}, \ z \in \mathbb{C}_{3\pi/2}. \]

For every $\kappa \in \mathcal{O}$ and $z \in \mathbb{C}$, we set

2. \[w^\kappa(z) = u^\kappa_{\vartheta+\vartheta,\kappa}(z), \]

where ϑ, κ is given by (14). It follows from (12) and (13) that

3. \[w^\kappa(z) = \frac{u^\kappa(z) \cos \pi \kappa - u^{-\kappa}(z)}{\sin \pi \kappa}, \quad \kappa \in \mathcal{O} \setminus \{0\}, \]

4. \[w^0(z|r) = \frac{2}{\pi} \left[\left(\log \frac{r}{2} + \gamma \right) w_0^0(z|r) - \sqrt{r} Y(r^2 z) \right], \quad r \in \mathbb{R}_+, \]

for every $z \in \mathbb{C}$ and

5. \[u^\kappa_{\vartheta,\kappa}(z) = u^\kappa(z) \cos(\vartheta - \vartheta, \kappa) + w^\kappa(z) \sin(\vartheta - \vartheta, \kappa) \]

for all $\kappa \in \mathcal{O}$ and $\vartheta, z \in \mathbb{C}$. By (14) and (17), we have

6. \[l_{\kappa, z} w^\kappa(z) = 0, \quad \kappa \in \mathcal{O}, \ z \in \mathbb{C}. \]

Lemma 21. Let $-1 < \kappa < 1$. Then $u^\kappa(z), w^\kappa(z) \in \mathcal{D}^I_{\kappa, z}$ for every $z \in \mathbb{C}$, and

7. \[W_0(u^\kappa(z), w^\kappa(z')) = 0, \quad W_0(u^\kappa(z), w^\kappa(z')) = \frac{2}{\pi} \]

for every $z, z' \in \mathbb{C}$.

Proof. Because q_k is in the l.c.c. at 0 for $-1 < \kappa < 1$, statement 4 in Proposition \ref{proposition} and equalities (57) and (51) imply that $u^\kappa(z), w^\kappa(z) \in \mathcal{D}^I_{q_k}$ for every $z \in \mathbb{C}$. Given $z \in \mathbb{C}$ and $-1 < \kappa < 1$, we define a smooth function $a^\kappa_{\vartheta}(z)$ by setting $a^\kappa_{\vartheta}(r) = X_{\kappa}(r^2 z)$, where X_{κ} is given by (68). For $r \in \mathbb{R}_+$, we have $u^\kappa(z|r) = r^{1/2 \pi \kappa} a^\kappa_{\vartheta}(r)$. In view of (25), it follows that

8. \[W_r(u^\kappa(z), u^{-\kappa}(z')) = r W_r(a^\kappa_{\vartheta}, a^{-\kappa}_{\vartheta}) - 2 \kappa a^\kappa_{\vartheta}(r) a^{-\kappa}_{\vartheta}(r) \]

for every $r \in \mathbb{R}_+$ and $z, z' \in \mathbb{C}$. Because $a^\kappa_{\vartheta}(0) = 2^{-\kappa}/\Gamma(1 + \kappa)$ for any $z \in \mathbb{C}$, we obtain $W_0(u^\kappa(z), u^{-\kappa}(z')) = -2 \sin \pi \kappa(z)/\pi$. The statement of the lemma for $0 < |z| < 1$ now follows from (18) and Lemma 18. Given $z \in \mathbb{C}$, we define the smooth function b_z on \mathbb{R} by setting

9. \[b_z(r) = (\gamma - \log 2) X_0(r^2 z) - Y(r^2 z). \]

By (49), we have

10. \[\pi w^0(z|r)/2 = r^{1/2} \log r a^0_\vartheta(r) + r^{1/2} b_z(r) \]

for every $r \in \mathbb{R}_+$. In view of (25), it follows that

11. \[\frac{\pi^2}{2} W_r(w^0(z), w^0(z')) = r W_r(a^0_\vartheta, b_z) + r \log r W_r(a^0_\vartheta, a^0_\vartheta) + a^0_\vartheta(r) a^0_\vartheta(r), \]

12. \[\frac{\pi^2}{4} W_r(w^0(z), w^0(z')) = r \log^2 r W_r(a^0_\vartheta, a^0_\vartheta) + r \log r (W_r(a^0_\vartheta, b_z) + W_r(b_z, a^0_\vartheta)) + r W_r(b_z, b_z) + b_z(r) a^0_\vartheta(r) - a^0_\vartheta(r) b_z(r) \]

for every $r \in \mathbb{R}_+$ and $z, z' \in \mathbb{C}$. Because $a^0_\vartheta(0) = 1$ and $b_z(0) = \gamma - \log 2$ for any $z \in \mathbb{C}$, these equalities imply the required statement for $\kappa = 0$. \qed
In view of (37) and (51), Lemma 21 implies that
\[W(u^\kappa(z), w^\kappa(z)) = \frac{2}{\pi} \]
for every \(z \in \mathbb{C} \) and \(-1 < \kappa < 1 \) (and hence for all \(z \in \mathbb{C} \) and \(\kappa \in \mathcal{O} \)), and it follows from (50) that
\[W(u^\kappa_\vartheta(z), u^\kappa_{\vartheta-\pi/2}(z)) = -\frac{2}{\pi}, \quad \vartheta, z \in \mathbb{C}, \ \kappa \in \mathcal{O}. \]

Let \(-1 < \kappa < 1 \) and \(\vartheta \in \mathbb{R} \). By (44) and (53), \(u^\kappa_\vartheta \) is a real nonvanishing analytic \(q_\kappa \)-solution in \(\mathbb{C} \). In view of (51), Lemma 18 and Lemma 21, we have \(u^\kappa_\vartheta(z) \in \mathcal{D}_{q^\kappa}^\kappa \) for all \(z \in \mathbb{C} \) and \(W_0(u^\kappa_\vartheta(z), u^\kappa_\vartheta(z')) = 0 \) for all \(z, z' \in \mathbb{C} \). Because \(\mathcal{D}_{q^\kappa}^\kappa \) is a right boundary space, it follows from Definition 12 that \(t_{\kappa,\vartheta} = (q_\kappa, \mathcal{D}_{q^\kappa}^\kappa, u^\kappa_\vartheta) \) is an expansion triple. Let \(\sigma_{\kappa,\vartheta} \) denote the spectral measure for \(t_{\kappa,\vartheta} \).

Lemma 22. Let \(-1 < \kappa < 1 \) and \(\vartheta \in \mathbb{R} \). Then \(\sigma_{\kappa,\vartheta} = \mathcal{V}_{\kappa,\vartheta} \), where \(\mathcal{V}_{\kappa,\vartheta} \) is the measure on \(\mathbb{R} \) defined by formulas (16) - (21).

Proof. By (49), (50), and (41), \(v^\kappa \) is a nonvanishing analytic \(q_\kappa \)-solution in \(\mathbb{C}_{3\pi/2}^\kappa \) such that \(v^\kappa(z) \in \mathcal{D}_{q^\kappa}^\kappa \) for every \(z \in \mathbb{C}_+ \). Let the meromorphic function \(\mathcal{M}_{\kappa,\vartheta} \) in \(\mathbb{C}_{3\pi/2}^\kappa \) be defined by the relation
\[\mathcal{M}_{\kappa,\vartheta}(z) = -\frac{1}{2} \frac{W(v^\kappa(z), u^\kappa_{\vartheta-\pi/2}(z))}{W(v^\kappa(z), u^\kappa_\vartheta(z))}, \quad z \in \mathbb{C}_{3\pi/2}^\kappa. \]

Substituting \(t = t_{\kappa,\vartheta} \) and \(v = v^\kappa|_{\mathbb{C}_+} \) in (54) and taking (53) into account, we conclude that \(\mathcal{M}_{\kappa,\vartheta} \) coincides on \(\mathbb{C}_+ \) with the singular Titchmarsh-Weyl \(m \)-function \(\mathcal{M}_{\kappa,\vartheta}^{t,\kappa} \) for \(\bar{u} = u^\kappa_{\vartheta-\pi/2} \). By statement 1 in Proposition 14, we have
\[\int \varphi(E) \, d\sigma_{\kappa,\vartheta}(E) = \lim_{\eta \to 0} \int \varphi(E) \, \text{Im} \, \mathcal{M}_{\kappa,\vartheta}(E+i\eta) \, dE \]
for any continuous function \(\varphi \) on \(\mathbb{R} \) with compact support. We note that \(\sigma_{\kappa,\vartheta}(\{0\}) = 0 \) because otherwise \(u^\kappa_\vartheta(0) \) would be square-integrable by Corollary 15. It therefore suffices to show that \(\sigma_{\kappa,\vartheta} \) and \(\mathcal{V}_{\kappa,\vartheta} \) coincide on the intervals \((-\infty, 0)\) and \((0, \infty)\). This can be easily done using representation (55) for \(\sigma_{\kappa,\vartheta} \). Because the explicit expressions for \(\sigma_{\kappa,\vartheta} \) differ for \(0 < |\kappa| < 1 \) and \(\kappa = 0 \), we consider these cases separately.

1. The case \(0 < |\kappa| < 1 \): In view of (49) and (54), we have
\[\mathcal{M}_{\kappa,\vartheta}(z) = \frac{1}{2} \frac{\cos(\vartheta + \vartheta_\kappa) - e^{-i\pi \kappa z^\kappa} \cos(\vartheta - \vartheta_\kappa)}{2 \sin(\vartheta + \vartheta_\kappa) - e^{-i\pi \kappa z^\kappa} \sin(\vartheta - \vartheta_\kappa)}. \]

It is easy to see that \(\mathcal{M}_{\kappa,\vartheta} \) has no singularities on \((0, \infty)\) and
\[\text{Im} \, \mathcal{M}_{\kappa,\vartheta}(E) = \frac{\sin^2 \pi \kappa}{2 E^{-\kappa} \sin^2 \vartheta_+ - 2 \cos \pi \kappa \sin \vartheta_+ \sin \vartheta_- + E^\kappa \sin^2 \vartheta_-}, \quad E > 0, \]
where \(\vartheta_\pm = \vartheta \pm \vartheta_\kappa \). By (16), (17), and (55), we conclude that \(\sigma_{\kappa,\vartheta} \) coincides with \(\mathcal{V}_{\kappa,\vartheta} \) on \((0, \infty)\). For \(\vartheta \in [-|\vartheta_\kappa|, |\vartheta_\kappa|] + \pi \mathbb{Z} \), \(\mathcal{M}_{\kappa,\vartheta} \) is real on \((-\infty, 0)\) and has no singularities on this set. Formula (55) therefore implies that \(\sigma_{\kappa,\vartheta} \) is zero on \((-\infty, 0)\) for such \(\vartheta \). If \(\vartheta \in ([|\vartheta_\kappa|, |\vartheta_\kappa|] + \pi \mathbb{Z}) \), then \(\mathcal{M}_{\kappa,\vartheta} \) has a simple pole at the point \(E_{\kappa,\vartheta} \) given by (18) and, hence, is representable in the form
\[\mathcal{M}_{\kappa,\vartheta}(z) = g(z) + \frac{A}{E_{\kappa,\vartheta} - z}. \]
where \(g \) is a function analytic in \(\mathbb{C}_{3\pi/2} \) and real on \((-\infty, 0)\) and

\[
A = \lim_{z \to E_{\kappa, \vartheta}} (E_{\kappa, \vartheta} - z) \mathcal{M}_{\kappa, \vartheta}(z) = \frac{\sin \pi\kappa |E_{\kappa, \vartheta}|}{2\sin(\vartheta + \pi\kappa) \sin(\vartheta - \pi\kappa)}.
\]

It therefore follows from (55) that \(\sigma_{\kappa, \vartheta} \) is equal to \(\pi A \delta_{E_{\kappa, \vartheta}} \) on \((-\infty, 0)\). Hence, \(\sigma_{\kappa, \vartheta} \) coincides with \(\nu_{\kappa, \vartheta} \) on \((-\infty, 0)\) for all \(\vartheta \).

2. The case \(\kappa = 0 \): In view of (46) and (54), we have

\[
\mathcal{M}_{0, \vartheta}(z) = \frac{1}{2} \left(i - \pi^{-1} \log z \right) \cos \vartheta - \sin \vartheta,
\]

It is easy to see that \(\mathcal{M}_{0, \vartheta} \) has no singularities on \((0, \infty)\) and

\[
\text{Im} \mathcal{M}_{0, \vartheta}(E) = \frac{1}{2} \frac{1}{(\cos \vartheta - \log E \sin \vartheta/\pi)^2 + \sin^2 \vartheta}, \quad E > 0.
\]

By (12), (21), and (49), we conclude that \(\sigma_{0, \vartheta} \) coincides with \(\nu_{0, \vartheta} \) on \((0, \infty)\). For \(\vartheta \in \pi \mathbb{Z} \), \(\mathcal{M}_{0, \vartheta} \) is real on \((-\infty, 0)\) and has no singularities on this set. Formula (55) therefore implies that \(\sigma_{0, \vartheta} \) is zero on \((-\infty, 0)\) for such \(\vartheta \). If \(\vartheta \notin \pi \mathbb{Z} \), then \(\mathcal{M}_{0, \vartheta} \) has a simple pole at the point \(E_{0, \vartheta} \) given by (21) and is hence representable in the form

\[
\mathcal{M}_{0, \vartheta}(z) = g(z) + \frac{A}{E_{0, \vartheta} - z},
\]

where \(g \) is a function analytic in \(\mathbb{C}_{3\pi/2} \) and real on \((-\infty, 0)\) and

\[
A = \lim_{z \to E_{0, \vartheta}} (E_{0, \vartheta} - z) \mathcal{M}_{0, \vartheta}(z) = \frac{\pi |E_{0, \vartheta}|}{2\sin^2 \vartheta}.
\]

It therefore follows from (55) that \(\sigma_{0, \vartheta} \) is equal to \(\pi A \delta_{E_{0, \vartheta}} \) on \((-\infty, 0)\). Therefore, \(\sigma_{0, \vartheta} \) coincides with \(\nu_{0, \vartheta} \) on \((-\infty, 0)\) for all \(\vartheta \).

Proof of Theorem 3. It follows from statement 2 in Proposition 14 and Lemma 22 that the operator \(U_{\kappa, \vartheta} \) exists and is equal to the spectral transformation for \(t_{\kappa, \vartheta} \). Statement 3 in Proposition 14 and Lemma 22 therefore imply that \(h_{\kappa, \vartheta} \) is equal to \(L_q(X^{r_{\kappa, \vartheta}} \cap \mathcal{D}_q^\dagger) \). By statement 1 in Proposition 8 and formula (56), we conclude that \(h_{\kappa, \vartheta} \) is a self-adjoint extension of \(h_{\kappa} \). In view of Lemma 13 and (52), we have

\[
h_{\kappa, \vartheta} = L_{q_n}^{u_{\vartheta}(0)}.
\]

By (51) and (52), every real \(f \in \mathcal{D} \) satisfying \(l_q f = 0 \) is proportional to \(u_{\vartheta}(0) \) for some \(\vartheta \in \mathbb{R} \). By Lemma 11 and formulas (50) and (57), it follows that every self-adjoint extension of \(h_{\kappa} \) is equal to \(h_{\kappa, \vartheta} \) for some \(\vartheta \in \mathbb{R} \). Let \(\vartheta, \vartheta' \in \mathbb{R} \). By Lemma 11 and (57), we have \(h_{\kappa, \vartheta} = h_{\kappa, \vartheta'} \) if and only if \(u_{\vartheta}(0) = c u_{\vartheta'}(0) \) for some real \(c \neq 0 \). In view of (51) and (52), the last condition holds if and only if \(\vartheta - \vartheta' \in \pi \mathbb{Z} \).

Remark 23. We note that the function \(q_{\kappa} \) given by (5) is real not only for real \(\kappa \) but also for imaginary \(\kappa \). A complete description of eigenfunction expansions in this case can be found in [9]. It is easy to see that \(t_{\kappa, \vartheta} = (q_{\kappa}, \mathcal{D}_q^{r_{\kappa}}, u_{\vartheta}) \) remains an expansion triple for imaginary \(\kappa \) and the spectral measure for \(t_{\kappa, \vartheta} \) can again be calculated using formulas (55) and (56). An analogue of Theorem 3 for imaginary \(\kappa \) can thus be obtained.
4. Continuity of spectral expansions

In this section, we prove Theorem 4.1

Let the continuous function \(\Phi \) on \((-1, 1) \times \mathbb{R}_+\) be defined by setting

\[
(58) \quad \Phi(\kappa, E) = -\frac{\log E}{\pi \sin(\pi \kappa)} \sin \left(\frac{i \kappa}{2} \log E \right),
\]

where the entire function sinc is defined by the equality

\[
sinc \zeta = \begin{cases}
\zeta^{-1} \sin \zeta, & \zeta \in \mathbb{C} \setminus \{0\}, \\
1, & \zeta = 0.
\end{cases}
\]

It follows that

\[
(59) \quad \Phi(\kappa, E) = \begin{cases}
-\log E/\pi, & \kappa = 0, \\
((\sin \pi \kappa)^{-1})(E^{-\kappa/2} - E^{\kappa/2}), & 0 < |\kappa| < 1.
\end{cases}
\]

For every \(\vartheta \in \mathbb{R} \) and \(-1 < \kappa < 1\), we define the function \(t_{\kappa, \vartheta} \) on \(\mathbb{R}_+ \) by the formula

\[
(60) \quad t_{\kappa, \vartheta}(E) = 2 + \Phi(\kappa, E)^2(1 - \cos 2\vartheta \cos \pi \kappa) + \Phi(\kappa, E)(E^{-\kappa/2} + E^{\kappa/2}) \sin 2\vartheta.
\]

It follows from (17), (21), and (59) by a straightforward calculation that

\[
(61) \quad d\tilde{\nu}_{\kappa, \vartheta}(E) = t_{\kappa, \vartheta}(E)^{-1} \Theta(E) dE
\]

for all \(\vartheta \in \mathbb{R} \) and \(-1 < \kappa < 1\). By the Cauchy–Bunyakovsky inequality, we have

\[
| -c \cos 2\vartheta + d \sin 2\vartheta | \leq \sqrt{c^2 + d^2}
\]

for any \(c, d \in \mathbb{R} \). Applying this bound to \(c = \Phi(\kappa, E)^2 \cos \pi \kappa \) and

\[
d = \Phi(\kappa, E)(E^{-\kappa/2} + E^{\kappa/2}) = \Phi(\kappa, E)\sqrt{\Phi(\kappa, E)^2 \sin^2 \pi \kappa + 4},
\]

from (60), we deduce that \(t_{\kappa, \vartheta}(E) \geq f(\Phi(\kappa, E)^2) \), where \(f(y) = 2 + y - \sqrt{y^2 + 4y} \), \(y \geq 0 \). Because

\[
f(y) = \frac{4}{2 + y + \sqrt{y^2 + 4y}} \geq \frac{2}{2 + y}, \quad y \geq 0,
\]

we conclude that \(t_{\kappa, \vartheta}(E)^{-1} \leq 1 + \Phi(\kappa, E)^2/2 \) for all \(E > 0 \), \(-1 < \kappa < 1\), and \(\vartheta \in \mathbb{R} \).

By (55), the function \(\kappa \to \Phi(\kappa, E)^2 \) is even and increases on \([0, 1)\) for every \(E > 0 \). Let \(0 < \alpha < 1 \). In view of (59), it follows that

\[
(62) \quad t_{\kappa, \vartheta}(E)^{-1} \leq 1 + \frac{1}{2} \Phi(\alpha, E)^2 \leq \frac{1}{2 \sin^2 \pi \alpha} (E^\alpha + E^{-\alpha})
\]

for all \(E > 0 \), \(\vartheta \in \mathbb{R} \), and \(-\alpha \leq \kappa \leq \alpha \). Let \(\varphi \) be a bounded Borel function on \(\mathbb{R} \) with compact support and \(B = (-1, 1) \times \mathbb{R} \). Because the function \((\kappa, \vartheta) \to t_{\kappa, \vartheta}(E)^{-1} \varphi(E)\) is continuous on \(B \) for every \(E > 0 \), relations (61) and (62) and the dominated convergence theorem imply that \((\kappa, \vartheta) \to \int \varphi(E) d\tilde{\nu}_{\kappa, \vartheta}(E)\) is a continuous function on \(B \) that is bounded on \([-\alpha, \alpha] \times \mathbb{R} \) for every \(0 \leq \alpha < 1 \). Let \(B' = \{(\kappa, \vartheta) \in B : \vartheta \in (|\vartheta_{\kappa}|, \pi - |\vartheta_{\kappa}|) + \pi \mathbb{Z}\} \).

It follows from (16) and (19) that

\[
\int \varphi(E) d\tilde{\nu}_{\kappa, \vartheta}(E) = \int \varphi(E) d\tilde{\nu}_{\kappa, \vartheta}(E) + b_{\varphi}(\kappa, \vartheta),
\]

where \(b_{\varphi}(\kappa, \vartheta) \) is a bounded Borel function on \(\mathbb{R} \).
where the function b_{φ} on B is defined by the relation
\begin{equation}
(63) \quad b_{\varphi}(\kappa, \vartheta) = \begin{cases} \Phi(\kappa, |E_{\kappa, \vartheta}|)\varphi(E_{\kappa, \vartheta}), & (\kappa, \vartheta) \in B', \\ 0, & (\kappa, \vartheta) \in B \setminus B', \end{cases}
\end{equation}
and the continuous function Φ on $(-1, 1) \times \mathbb{R}_+$ is given by
\[
\Phi(\kappa, E) = \frac{1}{2}E\pi^2 \text{sinc}(\pi\kappa) \left(\Phi(\kappa, E) + \frac{1}{\cos^2 \vartheta_\kappa} \right).
\]
For every $(\kappa, \vartheta) \in B'$, we have $|\cot \vartheta \tan \vartheta_\kappa| < 1$, and it follows from (18) and (20) that
\[
E_{\kappa, \vartheta} = -\exp \left[\pi \cot \vartheta \frac{\text{sinc}(\vartheta_\kappa)}{2 \cos \vartheta_\kappa} (\cot \vartheta \tan \vartheta_\kappa) \right],
\]
where g is a continuous function on $(-1, 1)$ such that $g(y) = y^{-1} \log(1+y)(1-y)^{-1}$ for $y \neq 0$ and $g(0) = 2$. Hence, $(\kappa, \vartheta) \rightarrow E_{\kappa, \vartheta}$ is a continuous function on B', and b_{φ} is therefore a Borel function on B. Estimating $\Phi(\kappa, E)^2$ as above, we obtain
\begin{equation}
(64) \quad \Phi(\kappa, E) \leq \frac{\pi^2 E}{2 \sin^2 \pi\alpha} (E^\alpha + E^{-\alpha}), \quad (\kappa, E) \in [-\alpha, \alpha] \times \mathbb{R}_+,
\end{equation}
for every $0 < \alpha < 1$. In view of (63), this implies that b_{φ} is bounded on $[-\alpha, \alpha] \times \mathbb{R}$ for every $0 \leq \alpha < 1$. To complete the proof, it remains to show that b_{φ} is continuous on B if φ is continuous. Let $-1 < \kappa < 1$. It follows from (18) and (20) that $|E_{\kappa, \vartheta}|$ strictly decreases from ∞ to 0 as ϑ varies from $|\vartheta_\kappa|$ to $\pi - |\vartheta_\kappa|$. Hence, for every $E > 0$, there is a unique $\tau_E(\kappa) \in (|\vartheta_\kappa|, \pi - |\vartheta_\kappa|)$ such that $|E_{\kappa, \tau_E(\kappa)}| = E$. The continuity of $E_{\kappa, \vartheta}$ in (κ, ϑ) implies that τ_E is a continuous function on $(-1, 1)$ for every $E > 0$. Let $\beta > 0$ be such that $\varphi(E) = 0$ for every $E \leq -\beta$. Given $0 < \alpha < 1$ and $0 < \delta$, we define the open subset $B_{\alpha, \delta}$ of B by setting
\[
B_{\alpha, \delta} = \{ (\kappa, \vartheta) \in (-\alpha, \alpha) \times \mathbb{R} : \vartheta \in (\tau_\delta(\kappa) - \pi, \tau_\beta(\kappa)) + \pi\mathbb{Z} \}.
\]
If $\delta < 1$, then it follows from (63) and (64) that
\[
|b_{\varphi}(\kappa, \vartheta)| \leq \frac{\pi^2 \delta^{1-\alpha}}{2 \sin^2 \pi\alpha \sup_{E \in \mathbb{R}} |\varphi(E)|}, \quad (\kappa, \vartheta) \in B_{\alpha, \delta}.
\]
Given $(\kappa, \vartheta) \in B \setminus B'$ and $\varepsilon > 0$, we pick an arbitrary $\alpha \in (|\kappa|, 1)$ and choose $\delta > 0$ so small that the right-hand side of the last inequality is less than ε. Then $B_{\alpha, \delta}$ is a neighborhood of (κ, ϑ) where the absolute value of b_{φ} is less than ε. This proves that b_{φ} is continuous at every point of $B \setminus B'$. Because b_{φ} is obviously continuous on B', the theorem is proved.

Appendix A. Proof of Lemma 2

Let Log be the branch of the logarithm in \mathbb{C}_π satisfying $\text{Log} 1 = 0$ and p be the analytic function in $\mathbb{C} \times \mathbb{C}_\pi$ defined by the relation $p(\kappa, r) = e^{\kappa \text{Log} r}$ (hence $p(\kappa, r) = r^\kappa$ for $r \in \mathbb{R}_+$). Let G be the analytic function in $\mathbb{C} \times \mathbb{C} \times \mathbb{C}_\pi$ such that
\[G(\kappa, z, r) = p(1/2 + \kappa, r) \chi_{\kappa}(r^2 z) \quad \text{for all} \quad \kappa, z \in \mathbb{C} \quad \text{and} \quad r \in \mathbb{C}_\pi.\]
We then have $G(\kappa, z, r) = u^\kappa(z|r)$ for all $\kappa, z \in \mathbb{C}$ and $r \in \mathbb{C}_\pi$. We define the function F on $\Theta \times \mathbb{C} \times \mathbb{C} \times \mathbb{C}_\pi$ by setting
\[
F(\kappa, \vartheta, z, r) = \frac{G(\kappa, z, r) \sin(\vartheta + \vartheta_\kappa) - G(-\kappa, z, r) \sin(\vartheta - \vartheta_\kappa)}{\sin \pi \kappa}, \quad \kappa \in \Theta \setminus \{0\},
\]
\[
F(0, \vartheta, z, r) = G(0, z, r) \cos \vartheta + \frac{2}{\pi} \left[\left(\log \frac{r}{2} + \gamma \right) G(0, z, r) - p(1/2, r) \mathcal{V}(z r^2) \right] \sin \vartheta
\]
\[
\int_{\Theta} F(\kappa, \vartheta, z, r) d\kappa = 2 \pi \left(\log \frac{r}{2} + \gamma \right) G(0, z, r) - \int_{\Theta} p(1/2, r) \mathcal{V}(z r^2) d\kappa,
\]
for every \(z, \vartheta \in \mathbb{C} \) and \(r \in \mathbb{C}_\pi \). It follows immediately from (12), (13), and the definition of \(F \) that \(F(\kappa, \vartheta, z, r) = w_0^2(z|r) \) for every \(\vartheta, z \in \mathbb{C}, \kappa \in \mathcal{O}, \) and \(r \in \mathbb{R}_+ \). The function \((\vartheta, z, r) \rightarrow F(\kappa, \vartheta, z, r) \) is obviously analytic in \(\mathbb{C} \times \mathbb{C} \times \mathbb{C}_\pi \) for every fixed \(\kappa \in \mathcal{O} \). The function \(\kappa \rightarrow F(\kappa, \vartheta, z, r) \) is analytic in \(\mathcal{O} \setminus \{0\} \) and continuous at \(\kappa = 0 \) (this is ensured by the same calculation as used to find the limit in (13)) and is therefore analytic in \(\mathcal{O} \) for every fixed \(\vartheta, z \in \mathbb{C} \) and \(r \in \mathbb{C}_\pi \). Hence, \(F \) is analytic in \(\mathcal{O} \times \mathbb{C} \times \mathbb{C} \times \mathbb{C}_\pi \) by the Hartogs theorem.

Appendix B. Proof of Lemma 17

Let \(T = L_q(C^\infty_0(a, b)) \). Because \(L_q \) is closed, it suffices to show that \(T^* = L^*_q \). For this, we only need to prove that \(D_{T^*} \subset D_{L^*_q} \) because \(L_q \) is an extension of \(T \) and \(T^* \) is hence an extension of \(L^*_q \). By (30), \(D_{L^*_q} \) consists of all elements \([g]\) with \(g \in D_q \). Therefore, for every \(\phi \in D_{T^*} \), we must find \(g \in D_q \) such that \(\phi = [g] \). Let \(\psi = T^*\phi \). We then have

\[
\langle T[f], \phi \rangle = \langle [f], \psi \rangle, \quad f \in C^\infty_0(a, b).
\]

Because \((T[f])(r) = -f''(r) + q(r)f(r) \) for \(\lambda \)-a.e. \(r \in (a, b) \), we obtain

\[
- \int_a^b f''(r)\phi(r) \, dr = \int_a^b f(r)(\psi(r) - q(r)\phi(r)) \, dr, \quad f \in C^\infty_0(a, b).
\]

Because both \(q \) and \(\phi \) are locally square-integrable on \((a, b) \), the function \(q\phi \) is locally integrable on \((a, b) \). We choose \(c \in (a, b) \) and define \(h \in D \) by setting

\[
h(r) = \int_c^r \rho \int_c^\rho (\psi(t) - q(t)\phi(t)) \, dt.
\]

We obviously have \(h''(r) = \psi(r) - q(r)\phi(r) \) for \(\lambda \)-a.e. \(r \in (a, b) \). Integrating by parts, we obtain

\[
\int_a^b f(r)(\psi(r) - q(r)\phi(r)) \, dr = \int_a^b f''(r)h(r) \, dr
\]

and therefore

\[
\int_a^b f''(r)(\phi(r) + h(r)) \, dr = 0, \quad f \in C^\infty_0(a, b).
\]

This means that the second derivative of \(\phi + h \) in the sense of generalized functions is equal to zero. Hence, there are \(A, B \in \mathbb{C} \) such that \(\phi(r) + h(r) = Ar + B \) for \(\lambda \)-a.e. \(r \in (a, b) \). Let \(g \in D \) be defined by the relation \(g(r) = Ar + B - h(r), r \in (a, b) \). Then we obviously have \([g] = \phi \). Because \(g''(r) = -\psi(r) + q(r)\phi(r) \), we have \(l_qg)(r) = \psi(r) - q(r)\phi(r) + q(r)g(r) = \psi(r) \) for \(\lambda \)-a.e. \(r \in (a, b) \) and therefore \(l_qg = \psi \). This implies that both \(g \) and \(l_qg \) are square-integrable and hence \(g \in D_q \).

Acknowledgments

The author is grateful to I.V. Tyutin and B.L. Voronov for the useful discussions.
References

[1] Herrmann Hankel. Die Fourier’schen Reihen und Integrale für Cylinderfunctionen. Math. Ann., 8(4):471–494, 1875.
[2] Herrmann Weyl. Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen. Math. Ann., 68(2):220–269, 1910.
[3] Herrmann Weyl. Über gewöhnliche lineare Differentialgleichungen mit singulären Stellen und ihre Eigenfunktionen (2. note). Gött. Nachr., pages 442–467, 1910.
[4] E. C. Titchmarsh. Eigenfunction expansions associated with second-order differential equations. Part I. Second Edition. Clarendon Press, Oxford, 1962.
[5] M. A. Naimark. Linear differential operators. Part II: Linear differential operators in Hilbert space. Frederick Ungar Publishing Co., New York, 1968.
[6] Fritz Gesztesy and Maxim Zinchenko. On spectral theory for Schrödinger operators with strongly singular potentials. Math. Nachr., 279(9-10):1041–1082, 2006.
[7] Charles Fulton. Titchmarsh-Weyl m-functions for second-order Sturm-Liouville problems with two singular endpoints. Math. Nachr., 281(10):1418–1475, 2008.
[8] Aleksey Kostenko, Alexander Sakhnovich, and Gerald Teschl. Weyl-Titchmarsh theory for Schrödinger operators with strongly singular potentials. Int. Math. Res. Not., 2012:1699–1747, 2012.
[9] D. M. Gitman, I. V. Tyutin, and B. L. Voronov. Self-adjoint extensions and spectral analysis in the Calogero problem. J. Phys. A, 43(14):145205 (34pp), 2010.
[10] A. G. Smirnov. Reduction by symmetries in singular quantum-mechanical problems: General scheme and application to Aharonov-Bohm model. J. Math. Phys., 56:122101, 2015.
[11] W. Norrie Everitt and Hubert Kalf. The Bessel differential equation and the Hankel transform. J. Comput. Appl. Math., 208(1):3–19, 2007.
[12] Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger, and Francesco G. Tricomi. Higher transcendental functions. Vols. I, II. McGraw-Hill Book Company, Inc., New York-Toronto-London, 1953. Based, in part, on notes left by Harry Bateman.
[13] Kunihiko Kodaira. The eigenvalue problem for ordinary differential equations of the second order and Heisenberg’s theory of S-matrices. Amer. J. Math., 71:921–945, 1949.
[14] Gerald Teschl. Mathematical methods in quantum mechanics, volume 99 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2009.
[15] Joachim Weidmann. Spectral theory of ordinary differential operators, volume 1258 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1987.
[16] Christer Bennewitz and W. Norrie Everitt. The Titchmarsh-Weyl eigenfunction expansion theorem for Sturm-Liouville differential equations. In Sturm-Liouville theory, pages 137–171. Birkhäuser, Basel, 2005.

I. E. TAMM THEORY DEPARTMENT, P. N. LEBEDEV PHYSICAL INSTITUTE, LENINSKY PROSPECT 53, MOSCOW 119991, RUSSIA

E-mail address: smirnov@lpi.ru