Single-cell RNA-seq reveals that glioblastoma recapitulates a normal neurodevelopmental hierarchy

Charles P. Couturier1, Shamini Ayyadhury1, Phuong U. Le1, Javad Nada1,2,3, Jean Monlong2, Gabriele Riva1, Redouane Allache1, Salma Baig1, Xiaohua Yan1, Mathieu Bourgey2,3,4, Changseok Lee1, Yu Chang David Wang2,3, V. Wee Yong5, Marie-Christine Guiot6, Hamed Najafabadi2,3, Bratislav Misic1, Jack Antel1, Guillaume Bourque2,3,4, Jiannis Ragoussis2,3,7 & Kevin Petrecca1

Cancer stem cells are critical for cancer initiation, development, and treatment resistance. Our understanding of these processes, and how they relate to glioblastoma heterogeneity, is limited. To overcome these limitations, we performed single-cell RNA sequencing on 53586 adult glioblastoma cells and 22637 normal human fetal brain cells, and compared the lineage hierarchy of the developing human brain to the transcriptome of cancer cells. We find a conserved neural tri-lineage cancer hierarchy centered around glial progenitor-like cells. We also find that this progenitor population contains the majority of the cancer’s cycling cells, and, using RNA velocity, is often the originator of the other cell types. Finally, we show that this hierarchal map can be used to identify therapeutic targets specific to progenitor cancer stem cells. Our analyses show that normal brain development reconciles glioblastoma development, suggests a possible origin for glioblastoma hierarchy, and helps to identify cancer stem cell-specific targets.
Significant obstacles hampering the development of effective cancer therapeutics include tumor heterogeneity1–3, and the persistence of incompletely understood cancer stem cells (CSCs) that give rise to cancer recurrence6,2.

IDH wild-type (IDHwt) glioblastoma, the most common adult primary brain cancer5, exemplifies these obstacles. Following radiotherapy and temozolomide (TMZ) chemotherapy, the median time to recurrence is 7 months, with patients succumbing to the disease 7 months thereafter9,10. This cancer is composed of two main cell compartments: a larger differentiated cell compartment that forms the basis of our understanding of the genomic and molecular underpinnings of the disease11,12, and a smaller, less well-characterized compartment of cells with stem-like capabilities13–15. The molecular and genomic heterogeneity, and the persistence of a subpopulation of cancer cells with stem-like properties following radiotherapy and chemotherapy, are believed to be the main causes of resistance to treatment and the associated extremely poor outcomes6,17,18.

Intertumor heterogeneity was established through genomic and transcriptomic analyses by The Cancer Genome Atlas (TCGA) research network11. Analysis of whole-tumor transcriptomic data extracted from predominantly differentiated cells showed that glioblastoma clustered into four main subtypes: proneural; neural; classical; and mesenchymal19. The more recent classification now excludes the neural subtype20. Despite very different transcriptomic profiles and associated genomic alterations, no differences in survival exist between these subtypes. More recently, it has been shown that multiple subtypes coexist in different regions21,22 and different cells12,20 within the same tumor. This interpatient and intratumoral heterogeneity poses a daunting challenge for research programs aimed at developing targeted therapeutic approaches23 and may explain the failures of such approaches in this disease. Although a neurodevelopmental bi-lineage hierarchy has been shown to explain a portion of this heterogeneity in IDH mutant glioma24,25 and high-grade pediatric glioma26, this has not been possible in adult IDHwt glioblastoma.

Another layer of complexity was uncovered by the discovery of a small subpopulation of glioblastoma cells that have stem-like properties13,14. The CSC theory is derived from our understanding of normal stem cells15 and posits that such cells must exhibit properties of self-renewal and the ability to produce differentiated progeny. Consistently, glioblastoma stem cells (GSCs) do possess these properties. GSCs can propagate tumors from one host to another14, and can expand and develop to form brain cancers in orthotopic xenograft models that recapitulate the tumor from which they were extracted14,27. Importantly, stem cells isolated from different tumors show variability with respect to marker expression28–30, suggesting that some degree of interpatient and/or intratumoral heterogeneity exists within the stem cell compartment as well. Although the GSC compartment is small in comparison with the differentiated compartment, it is relevant clinically. Studies have shown that GSCs resist radiotherapy6 and TMZ chemotherapy16,31. These data suggest that GSCs may have a role in cancer development and recurrence. There are presently no treatments targeting GSCs.

Our understanding of glioblastoma heterogeneity, and the relevance of GSCs in this process, is limited. Here, using massively parallel single-cell RNA-sequencing (scRNAseq) of glioblastoma and the normal developing human brain, we discovered a conserved trilineage cancer hierarchy with progenitor cancer cells at the apex. We found that this progenitor population contains the majority of the cancer’s cycling cells, corresponds to the apex of the hierarchy using RNA velocity, and functionally resemble GSCs. Clinically relevant, we show that this hierarchical map can be used to identify therapeutic targets specific to GSCs.

Results

ScRNAseq highlights genomic heterogeneity in glioblastoma. We used droplet-based scRNAseq5–34 to obtain the transcriptome of cells isolated from freshly excised IDHwt glioblastoma and freshly derived enriched GSCs from IDHwt glioblastoma. In total, 53,586 cells from 16 patients (mean age: 62.3 years (95% CI: 57.0, 67.5); 25% female, Table 1) were sequenced: 30,205 whole-tumor cells and 23,381 enriched GSCs.

To distinguish cancer cells from normal brain cells, we determined the main copy number aberration (CNA) events in each cell from its transcriptomic profile (Supplementary Fig. 1b, c). Two clusters devoid of known recurrent CNAs, and containing cells from almost all tumors, were identified (Fig. 1a and Supplementary Fig. 1d). Cells in these clusters expressed genes found exclusively in myeloid cells, oligodendrocytes, or endothelial cells (Supplementary Fig. 1e) and were thus classified as normal cells. All other clusters were formed by cells originating mainly from one to three tumors and contained multiple CNAs. We defined these as cancer cells.

When enriched GSCs and whole-tumor cells were sequenced from the same patient, these samples clustered together (Fig. 1a and Supplementary Fig. 1f).

Occasionally, cells from a given patient generated two or three cancer groupings by t-distributed stochastic neighbor embedding (tSNE), likely indicating different clones within a tumor (Fig. 1a). To better characterize these clones, we pooled cells from the cancer clusters of each tumor and reclustered them with our location-averaged data. We determined the correct number of clusters by finding the most-stable solution (Supplementary Fig. 1g). We detected one to three clones for each tumor. These clusters differed by a limited number of CNAs (Supplementary Fig. 1h).

Conserved neurodevelopmental lineages in glioblastoma. We then assessed intratumoral heterogeneity in the whole-tumor and GSC samples based on single-cell transcriptomic data. We performed principal component analysis (PCA) for GSC samples, and PCA and clustered non-negative matrix factorization (cNMF)35 for whole-tumor samples to better understand the signatures observed.

PCA was first performed on GSC samples, one sample at a time to highlight intratumoral heterogeneity. A cycling-free PCA strategy (Supplementary Fig. 2a) was used since not all cells were cycling (Supplementary Fig. 2b).

For each GSC-enriched tumor sample, we found that the first principal component (PC) separated cells into neural developmental lineages. GSCs expressing neuronal genes such as CD24, SOX11, and DCX were mutually exclusive from cells expressing astrocytic (including astro-mesenchymal) genes such as GFAP, APOE, AQP4, CD44, CD9, and VIM (Fig. 1b). To assess the conservation of these gene programs across patients, we ranked genes by strength of influence on PC1 and found a strong correlation of these ranks between samples (R² = 0.72, Fig. 1c).

GSCs with intermediate PC1 values express progenitor genes such as SOX4, OLIG2, and ASCL1 (Fig. 1b). In some samples, these cells had high PC2 values; however, this was not apparent in all samples and the rank correlation was lower (R² = 0.37, Supplementary Fig. 2c). We also compared the signature of each cell within the GSC-enriched samples to determine their TCGA subtype (Fig. 1b). For each patient sample, cells matching the proneural, classical, and mesenchymal signatures were present. We validated the differential gene expression profiles of enriched GSCs and whole-tumor cell populations using flow cytometry. In general, cells do not coexpress neuronal (e.g., CD24) and astrocytic (e.g., CD44) markers (Fig. 1d). Together,
Sample	Location	IDH mutational status	1p19q codetection	ATRX	MGMT methylation	Sorting post-dissociation	Total no. of cells (after QC)	No. of tumor cells	% Tumor	Median genes per cells	Median UMIs per cell
Whole tumor	BT333	Right, temporal, corpus callosum	WT	No	WT	Unmethylated	Yes	852	614	72.1%	2561
BT338	Right frontal-temporal	WT	No	NA	Methylated	Yes	2131	1404	65.9%	4227	14,060
BT346	Right fronto-insular	WT	No	WT	Methylated	Yes	2180	1902	87.2%	3472	11,332
BT363	Left frontal-left parieto-occipital	WT	No	WT	Unmethylated	Yes	10137	8726	86.1%	2143	4999
BT364	Left temporal-left parieto-insular	WT	No	NA	Methylated	Yes	2180	1902	87.2%	3472	11,332
BT368	Left temporal	WT	No	NA	Methylated	Yes	2647	2400	90.7%	2904	8251
BT389	Left temporal	WT	No	WT	Methylated	No	4636	1049	22.6%	1751	3732
BT390	Right temporo-occipital	WT	No	WT	Methylated	No	3695	1124	30.4%	2005	4718
BT397	Left frontal-temporal	WT	No	WT	Unmethylated	No	6469	586	91.1%	2471	5539
BT400	Left mesio-temporal	WT	No	WT	Unmethylated	No	6469	586	91.1%	2471	5539
BT402	Right fronto-parietal	WT	No	WT	Methylated	No	4953	1110	22.4%	2598	6891
BT407	Right fronto-temporal	WT	No	WT	Unmethylated	No	3884	115	3.0%	2245	5017
BT409	Right temporo-parieto-occipital	WT	No	WT	Methylated	No	2470	979	39.6%	2169	5016
GSC	BT322	Right temporal	WT	No	WT	Methylated	NA	3451	3440	99.7%	3882
BT324	Left temporal	WT	No	WT	Unmethylated	NA	5683	4843	85.2%	2529	6445
BT326	Right frontal	WT	No	WT	Unmethylated	NA	2702	2692	99.6%	5125	23,788
BT333	Right, temporal, corpus callosum	WT	No	WT	Unmethylated	NA	5072	4930	97.2%	3493	11,207
BT363	Left frontal	WT	No	WT	Unmethylated	NA	4919	4050	82.3%	3410	9782
BT368	Left temporal	WT	No	NA	Methylated	NA	3470	3426	98.7%	3099	8208
these data suggest that GSCs are organized into progenitor, neuronal, and astrocytic gene expression programs, resembling a developing brain.

We applied the same strategy to the whole-tumor samples. Once the cell cycle effect was removed (see Methods), variability in gene expression profiles remained apparent within tumors and between tumors. We identified multiple TCGA subtypes in each tumor, as previously shown. Importantly, cells with different TCGA subtypes were often separated by the first of second PCs, indicating that these subtypes accurately describe a portion of the intrinsic heterogeneity of each tumor. Also, in each tumor, cells with different TCGA subtypes did not necessarily belong to different CNA clones (Supplementary Fig. 2e); however, different proportions of TCGA subtypes were observed between some clones within individual tumors. This is consistent with results from the TCGA,
indicates that genomic aberrations do not perfectly predict a subtype.

To better characterize sample heterogeneity in whole-tumor samples, we implemented a sample-wise cNMF algorithm. We found five to nine signatures per sample. These clustered into seven groups (Fig. 1e and Supplementary Fig. 2f). Through identification of the most characteristic genes of each group of signatures, we found that the first and second groups expressed genes important for the G1S and G2M cell cycle programs with some stem cell genes like EZH2, whereas the seventh group expressed genes important for hypoxia response (Fig. 1e). The third and fourth groups were more closely related and expressed genes associated with oligo-progenitor and neuronal cells, respectively (Fig. 1e). The fifth and sixth groups expressed genes associated with astrocytic differentiation. Critically, each patient sample yielded signatures, which belonged to three to seven different groups (Fig. 1f).

We compared each of these signatures with those obtained in the TCGA (Fig. 1e). The cell cycle, oligo-progenitor, and neuronal signatures were associated with the proneural subtype and the hyoxia signature was more associated with the mesenchymal subtype. One of the two astrocytic signature groups matched the classical subtype, whereas the other matched the mesenchymal subtype. That the classical and mesenchymal signatures clustered together and expressed astrocytic genes corroborates their resemblance to astrocytes and cultured astrocytes, respectively. Finally, as was previously found by Wang et al., none of the signatures matched the neural subtype.

scRNAseq of the normal developing brain. If glioblastoma is organized into programs reflecting normal brain development, then a direct comparison with the developing brain at a single-cell level should provide additional insight. We performed scRNAseq on freshly isolated cells from the telencephalon of four human fetuses ranging from 13 to 21 weeks of gestation. Fluorescence- assisted cell sorting (FACS) was used to remove most microglia (CD45-positive) and endothelial cells (CD31-positive) from the samples, and to select CD133-positive cells in order to improve the resolution of progenitor and neural stem cell populations. By sequencing both the total and the CD133-positive cell populations, we aimed to maintain cellular representation of development. We sequenced 12,544 cells from the total unsorted population, and 10,093 cells from the CD133-positive population.

Total and CD133-positive data sets from all fetal brains were combined in silico (Supplementary Fig. 3a) after excluding ependymal cells, and the Louvain community detection algorithm was used to group cells into cell types (Fig. 2a,b). By varying the resolution parameter of the algorithm, we chose the most stable clustering solution (Fig. 2b and Supplementary Fig. 3b). This generated a total of 10 cell clusters (Fig. 2a). Differential gene expression analysis of these clusters (Supplementary Data 1) identified important genes per cluster. Cluster names were given based on their correlation with cell types described by Nowakowski et al. (Supplementary Fig. 3c, d). CD133-positive cells were found in all clusters/cell types, but were enriched in the radial glia, neuronal progenitors, and committed glial cell clusters (Fig. 2d and Supplementary Fig. 3e).

Two CD133-positive cell types did not fit with previously identified gene signatures. The first was detected mainly in the 17- and 19-week brains and highly expressed genes such as VIM, GFAP, OLIG1, GLI3, and EOMES (Fig. 2a, uRG). It was found to be most similar to certain types of radial glia in the Nowakowski et al. data set (Supplementary Fig. 3c, d). The second cell type, an unidentified glial cell cluster, was detected at all gestational ages and strongly expressed oligodendrocyte lineage genes (e.g., OLIG1, OLIG2, and PDGFRA), glial/astrocytic lineage genes (e.g., GFAP, SOX9, HOPX, HEPACAM, and VIM), and progenitor genes (e.g., ASCL1, MKI67, and HES6) (Fig. 2c). Dotted line encircles the glial cluster as well as oligodendrocytic and astrocytes for comparison, and Supplementary Data 1). Accordingly, high correlation was observed with astrocytes and oligodendrocyte progenitor cells in the Nowakowski et al. data set (Supplementary Fig. 3c). However, it did not express differentiation markers found in astrocytes or oligo-lineage cells (OLCs) such as APOE and APOD, respectively (Fig. 2c). It also lacked the high gene complexity and UMI counts seen in doublets (Supplementary Fig. 3f). This mixed gene signature is compatible with that of a bipotential glial progenitor cell (GPC). Notably, this GPC signature was almost exclusively identified in CD133-sorted cells (Fig. 2a, d and Supplementary Fig. 3e), which likely explains why it was not previously detected. The existence of cells expressing these GPC markers was confirmed in first passage culture of fetal brain cells derived from one of the fetal brains sequenced (Fig. 2e), and in the subventricular zone of the adult human brain (Fig. 2f).

Creation of a fetal brain roadmap. We next aimed to find a parallel for each cancer cell to a fetal brain cell type. To do so, we developed a roadmap technique that enables the projection of every cancer cell onto the fetal data set. We first selected the appropriate fetal cell types to build the roadmap. This was accomplished by determining which fetal brain cell type was nearest to, or captured, each cancer cell. Ninety-four percent of whole-tumor cells were captured by five fetal brain cell types: neurons; astrocytes; OLCs; truncated radial glia (tRG); and GPCs (Supplementary Fig. 4a). Surprisingly, interneurons captured more cells than excitatory neurons. Consequently, the five cell types used to construct the roadmap were astrocytes; tRG; GPCs; OLCs; and interneurons.

We used PCA on an equal number of fetal astrocytes, GPCs, OLCs, interneurons, and tRG. This fetal PC space acts as the roadmap. We then used diffusion embedding to better represent the differentiation process in 3D. In this diffusion roadmap, GPCs are found at the junction of the oligodendrocytic, astrocytic, tRG, and neuronal lineages (Fig. 3a).

Fetal brain roadmap reveals glioblastoma trilineage hierarchy. We projected an equal number of cancer cells from each patient onto this roadmap and used the first three components of diffusion embedding which most effectively separated the cell types as each cell’s coordinate in the hierarchy (Fig. 3b), with the exception of one tumor from which we obtained too few cells (BT407-W). GSCs and whole-tumor cells overlapped (Fig. 3c) despite significant variations in lineage proportions between patients in the whole-tumor samples (Supplementary Fig. 4c). Mirroring the TCGA analysis performed above (Supplementary Fig. 2e), different cell types did not necessarily belong to different CNA clones (Supplementary Fig. 4c). The GPC signature was the only one robustly expressed in all patients. To visualize gene signatures, we ordered cancer cells according to all three diffusion components (DCs) individually and found genes that correlated most with this order (Fig. 3d and Supplementary Data 2). Cancer cells expressing an OLC signature (e.g., OLIG1, APOD; Supplementary Fig. 4d) or astro-mesenchymal signatures (e.g., CD44, GFAP, AQP4) were found at either end of DC2; cancer cells expressing a neuronal signature (e.g., STMN2, DLX2) were found at the end of DC1; and cancer cells expressing a GPC signature (e.g., OLIG2, NES ASCL1, HES6) were found at the end of DC3 and mid-DC2. We therefore defined DC3 as the glial progenitor.
score. This organization reveals a glial progenitor-centered trilineage organization of whole-tumor and enriched GSCs.

When comparing enriched GSCs and whole-tumor cells, we found a significant shift of GSCs toward higher values on the glial progenitor score (p < 1E-21), and a shift toward intermediate values of DC2 (Fig. 3c and Supplementary Fig. 4e). These data show that glial progenitor cancer cells are enriched in GSC culture conditions, and a shift away from the astrocytic, mesenchymal, and oligodendrocytic cancer cell types occurs after 7 days in stem cell culture conditions.

Lastly, cancer cells from whole tumor were classified into cell types using a LDA with the fetal cells as a training set (Fig. 3a, b). Cells that could not be classified with a probability of error <0.01% were left unclassified (Fig. 3b); these correspond to cells with intermediate signatures. The gene expression profile of the roadmap cell types closely matched those obtained by cNMF (Supplementary Fig. 4f). We also found a close agreement between these cell type signatures and the signatures described by Neftel et al., highlighting the fundamental nature of these lineages in IDHwt glioblastoma (Supplementary Fig. 4f).
Fig. 3 Fetal brain roadmap reveals a glioblastoma triligneage hierarchy centered on progenitor cancer cells. a Diffusion plot of the projection of selected fetal cell types onto the roadmap. Cells are colored by the cell type they were attributed in Fig. 2a. b Diffusion plot of the projection of an equal number of whole-tumor cancer cells from each patient onto the roadmap. Cells are colored based on their classification by linear discriminant analysis (LDA). Unclassified cells were colored gray. c Diffusion plot showing the location of glioma stem cells (GSCs) relative to whole-tumor cells (left) and histogram of glial progenitor score for GSCs and whole-tumor cells (right). An increase in proportion of cells with higher glial progenitor scores is seen in GSCs ($p < 1 \times 10^{-21}$, two-sample Kolmogorov–Smirnov test). Only samples with paired GSC and whole-tumor data were used here. d Heatmaps showing relative gene expression (raw data) for cells ordered by each of the diffusion components of the roadmap. Genes are ordered from most correlated to least correlated with the diffusion component. The 200 most and 200 least correlated genes are shown. Top color bar indicates cell type classification from the LDA. Each color corresponds to the same classification as in b. e Pie chart for TCGA subtype by cell type for a subset of 1000 cells. Cell types are based on the LDA classification for all whole-tumor cells, and TCGA subtype was obtained using Gliovis (see Methods).
We compared the TCGA subtype of each cell (see TCGA analysis above) with its classified cell type (Fig. 3e). As predicted by previous work19,42, neuronal and oligo-lineage cancer cells were almost exclusively proneural; astrocytic cancer cells were strongly mesenchymal. Glial progenitor cancer cells were mostly proneural (Fig. 3e), but similarities to the classical and mesenchymal subtypes were also found. We then used our signatures to score the TCGA samples19 according to these cell type signatures (Supplementary Fig. 4g). The proportion of cell types by TCGA subtype is in close agreement to that described by Neftel et al.42

Progenitor cancer cells are the most proliferative cancer cells. Based on the expression of cell cycle genes, we defined a cycling cell as one with a G1/S or G2/M score >1.5, as was done previously25. We then calculated the proportion of cycling cells as a function of their glial progenitor score. We found almost all cycling cancer cells had high glial progenitor scores (Fig. 4a, b).

We then aimed to validate this result using single-cell proteomic analysis. To do so, we generated protein marker panels representative of each cancer cell type. We created a simplified roadmap (see methods) with progenitor and lineage scores (Fig. 4c). We projected GSCs onto this modified roadmap and selected genes encoding cell surface protein markers which most strongly correlated with the lineage scores (Fig. 4d) and Supplementary Data 3). Interestingly, this projection highlighted the relative absence of HLA gene expression in neuronal cancer cells (Fig. 4d), analogous to normal neurons43. This may have implications in the immune responsiveness of these cells. For the purposes of cytometry assays and sorting, we defined CD133−/CD44+/CD133− as astro-mesenchymal cancer cells, CD9+/CD44+/CD133− as astro-mesenchymal cancer cells, and CD9+/CD133+ as progenitor cancer cells. For the mass

Fig. 4 Progenitor cancer cells are the most proliferative cancer cells. a Diffusion plot of the roadmap of whole-tumor cancer cells showing that cycling cells are predominantly glial progenitor cancer cells. Cycling cells are defined as >1.5 in either the G1/S or G2/M scores. b Bar chart showing that the proportion of cycling cells increases with increasing glial progenitor score. c Simplified roadmap in principal component space with select fetal brain cell types. Projected OLCs and GPCs overlap and are high for progenitor score, whereas interneurons, and TRG/astrocytes are lower in progenitor score, but occupy opposite ends of the lineage score. d Projection of glioma stem cells (GSCs) on the simplified roadmap highlights the location of CD24 and HLA within the hierarchy. For each gene, the simplified roadmap projection shows the expression of this gene in GSCs, and the histograms show the proportion of cells where CD24, HLA, and PROM1 (CD133) were detected at differing positions in the hierarchy. e Mass cytometry pseudo-color dot-plots showing the proportion of whole-tumor cancer cells, progenitor cancer cells, and non-progenitor cells that are in S-phase. The progenitor cancer cell population has the highest proportion of cells in S-phase (box). f Mass cytometry showing that progenitor cancer cells are the main cycling cell population in the tumor. Pie charts showing the proportion of progenitor cells (CD133+, OLIG2+, PDGFRA+) in the tumor (left) and the cycling population (right).
cytometry assay, PDGFRA and OLIG2 were included as markers for progenitor cancer cells.

Using the progenitor cancer cell marker panel, and a validated cell cycle marker panel, we used mass cytometry to analyze 42,983 cancer cells, and found 840 cells in S-phase (1.95%) (Fig. 4e). We found that 12.6% of the progenitor cancer cell population was in the S-phase. These progenitor cancer cells made up only 12.2% of the total tumor population yet accounted for 78.9% of all S-phase cells (Fig. 4f). Interestingly, much of the remaining S-phase cells expressed a subset of the progenitor signature (Fig. 4e), highlighting the continuous nature of differentiation. In contrast, only 0.25% of cells without progenitor markers were found in S-phase (Fig. 4e). Together, these non-progenitor cells made up 87.8% of the total population but only 21.1% of all cells in S-phase (Fig. 4f). Similarly, tumor immunolabeling, using Ki67 as a marker of cell proliferation, showed that the percentage of cycling cells in the CD133-positive population is significantly higher than that of CD133-negative population in two patients (Supplementary Fig. 4h).

Progenitor cancer cells at apex of glioblastoma hierarchy. We found that all samples had high intron rates similar to those observed in mouse brain development (Supplementary Fig. 5a). Therefore, we used RNA velocity to measure transcriptional dynamics and characterize the differentiation process in glioblastoma.

To find patterns in velocities, we labeled cells with the cell type classification they were given in the LDA described above. Progenitor cells and unclassified cells were colored according to a greyscale, which indicated the magnitude of their progenitor score (Fig. 5a), highlighting the spectrum of differentiation seen in the roadmap. Notably, cells with the same cell type aggregated together and were at the periphery of the UMAP (Fig. 5b), suggesting once again these cell types are intrinsic to the glioblastoma samples.

Directional flow was noticed in every patient sample (Fig. 5b). We confirmed this was not owing to random chance (representative example in Supplementary Fig. 5b). In general, the vector field points from cells with high glial progenitor scores to cells classified to a specific lineage (Fig. 5b). We also performed velocity with PCA embedding, a mathematically simpler representation than UMAP. These data also show that the main direction of flow is from progenitor cells to differentiated cell types (Supplementary Fig. 5c).

![Fig. 5 RNA velocity supports conserved hierarchical dynamics in glioblastoma. a Diffusion roadmap schematic for all whole-tumor samples where progenitor cells and unclassified cells were colored according to a grayscale: cells scoring higher on the progenitor axis are darker. b Velocity field superimposed to the UMAP embedding of cells by sample. Cells are colored by cell type according to a. UMAP uniform manifold approximation and projection.](https://doi.org/10.1038/s41467-020-17186-5)
Although in a few patients no clear path could be found leading to astrocytic and/or neuronal lineages, we found no clear vector paths between lineages. An exception to this is the mesenchymal cell type, which appeared downstream of astrocytic cancer cells in most patient samples (Fig. 5b), or appeared to be intermediate between progenitors and other lineages in one patient sample (BT346). Interestingly, in samples containing multiple cell types (e.g., BT389, BT400, and BT409), cells often did not completely segregate by lineage until the terminus of their respective lineage velocity field.

Together, these analyses suggest that astrocytic, mesenchymal, oligodendrocytic, and neuronal cancer cells are more differentiated than progenitor cancer cells, and that the latter are most often the originator of the hierarchy in glioblastoma.

Progenitor cancer cells drive chemoresistance and growth. Resistance to conventional chemotherapies and tumorigenicity are hallmarks of GSCs. These data, however, are derived from studies that have considered the CSC compartment to be uniform, not one displaying heterogeneity driven by a hierarchical developmental organization. To evaluate GSC chemoresistance and tumorigenicity considering hierarchy and lineage, we sorted them into following three types: progenitor, neuronal, and astro-mesenchymal, based on the protein expression panel described above.

Three patient-derived GSC lines were separated into these types and treated with TMZ. Variable doses were required to achieve responses in different cell lines, correlating with the methylguanine methyltransferase status of the tumor. We found that progenitor GSCs either did not respond or responded less to TMZ than the more-differentiated GSCs (Fig. 6a and Supplementary Fig. 6a).

We then assessed the influence of hierarchy and lineage on tumor forming capacity. Forty-seven mice were orthotopically xenografted with progenitor, neuronal, astrocytic, or total GSCs from three different patients in near-limiting dilution. We observed earlier tumor formation, and a more rapid increase in tumor signal, for all mice implanted with progenitor or total GSCs. In mice implanted with astro-mesenchymal or neuronal GSCs the tumor formation and signal increase was either absent or significantly delayed by up to 3 months (Fig. 6b–d). Consistently, mice implanted with progenitor GSCs had a significantly lower survival time than those implanted with neuronal (OR 0.26, p < 0.01) or astro-mesenchymal (OR 0.05, p < 0.001) GSCs (Fig. 6e).

We also analyzed the xenografts to determine the progeny of each implanted GSC cell type (Fig. 6d). At 12 weeks, progenitor GSCs gave rise to tumors expressing mainly the progenitor marker ASCL1 and small populations of cancer cells expressing the neuronal marker DCX or the astro-mesenchymal marker CD44. Neuronal GSCs gave rise to tumors expressing mainly DCX, and smaller populations of cells expressing ASCL1. No CD44-expressing cells were found in these tumors. Finally, the very small tumors stemming from astro-mesenchymal GSCs expressed mainly ASCL1 and a small population of CD44-expressing cancer cells. The low proportion of CD44-expressing cells may be due to the lack of immune micro-environment in NSG mice.

Together, these results identify a lineage hierarchy of tumorigenicity and chemoresistance in GSCs, with progenitor cancer cells being the most chemoresistant and tumorigenic. Our findings also indicate that lineage specificity and plasticity exist within the GSC pool.

Progenitor pathways expose therapeutic opportunities. As progenitor GSCs are the most chemoresistant and tumorigenic cancer cell population, we aimed to leverage our hierarchy and transcriptomic data to find targets relevant to this cancer cell population.

We used the LDA classification of whole-tumor cells described above to separate cells into cell types. We selected the GPC and astro-mesenchymal groups for the analysis to specifically compare the progenitor population to the most abundant cell types in the cancer. We performed gene set enrichment analysis (GSEA) in a manner similar to previously described methodologies. We identified pathways with a significant enrichment in progenitor cancer cells (Supplementary Data 4). Hits with significant and strong correlations were found in pathways such as E2F4, FOXM1, and Wnt, previously established pathways relevant to CSC self-renewal and tumorigenicity.

Pathways of previously unknown significance in GSCs were also detected. Of these, the E2F4 pathway was the most significant, and it was thus selected to test our target identification method. The E2F gene family regulates cell cycle and is important for progenitor cell survival. The E2F4 gene set involves many of the regulating targets of the transcription factor E2F4; therefore, E2F4 inhibition was selected to target this pathway. HLM006474 is a small molecule inhibitor that prevents E2F4 binding to DNA. It has been shown to cause senescence of gastric cancer cells and to reduce proliferation and survival of melanocytic cells and lung cancer cells in vitro. E2F4 expression in glioblastoma tissue has been shown. To our knowledge, our work provides the first description of its importance in GSCs.

We tested the effect of E2F4 inhibition in progenitor, neuronal, and astro-mesenchymal GSCs following HLM006474 treatment. Proliferation and survival of progenitor GSCs was significantly reduced compared with neuronal and astro-mesenchymal GSCs (Fig. 7a). This differential sensitivity was also observed in a sphere forming capacity assay (Fig. 7b, c) and serum-free vs serum-differentiated GSCs (Supplementary Fig. 6b). On target E2F4 inhibition was confirmed (Supplementary Fig. 6c, d). Together, these data show that targeting E2F4 preferentially affects progenitor GSC proliferation.

We tested the effects of E2F4 inhibition in vivo. Pooled GSCs, treated with HLM006474 or vehicle for 3 days, were orthotopically xenografted. A significant reduction in tumor growth (Fig. 7d, e), and improved survival (Fig. 7f, p value = 0.03, Cox proportional hazard) in the HLM006474-treated mice was observed.

As E2F4 inhibition is effective in progenitor GSCs, and TMZ chemotherapy is more effective in more-differentiated GSCs, we reasoned that HLM006474 combined with TMZ would be a more-effective treatment for the total GSC compartment than each individually. We sequentially treated GSCs with HLM006474 followed by TMZ chemotherapy at TMZ doses that are ineffective as monotherapy. We observed a further decrease in proliferation and cell survival using this combination therapy compared with monotherapy (Fig. 7g). We performed an isobolographic analysis of this combination therapy to assess for synergism or antagonism. We found no significant difference between the measured isoboles and the control additive isobole (Supplementary Fig. 6e, p value = 0.74, Student's t). Therefore, no synergism or antagonistic effect was found between the two compounds, but their additive properties suggest they could be used in combination to treat both progenitor and more-differentiated GSCs within the total GSC population.

Discussion

Intratumoral and interpatient heterogeneity are hallmarks of many cancers. Here, we show that the normal developing human brain can be used as a roadmap to elucidate brain cancer development, and, in conjunction with RNA velocity, reveal that...
glioblastoma develops along conserved neurodevelopmental gene programs and contains a rapidly dividing progenitor population. These data shed new light on IDHwt glioblastoma CSC hierarchy and the origins of heterogeneity.

Recently, scRNAseq characterization of human fetal brain cells described the transcriptomic signature of many cell types within the developing brain. By increasing the number of cells sequenced, and enriching for neural stem cells, we uncovered a cell type with a transcriptomic signature suggestive of a GPC. Additional work such as fate mapping will be necessary to uncover the exact position of these cells within the developmental hierarchy of the brain.

Fig. 6 Progenitor cancer cells are drivers of chemoresistance and tumor growth. a Box-whisker plots showing the proportion of viable glioma stem cells (GSCs, n = 1 patient: BT390-GSC) sorted by type and followed by 5 days of temozolomide (TMZ) treatment, normalized to corresponding vehicle control. See Supplementary Fig. 5e for additional patients. Three technical replicates and three biological replicates were performed per condition. Box plot represents the first quartile, median, and third quartile with whiskers corresponding to 1.5 times the interquartile range. The overlaid dot-plots represent the mean value per biological replicate per group. A one-tailed, two-sample equal variance t-test was used. b Select bioluminescence images from mice implanted with GSCs sorted by type. Mice implanted with progenitor GSCs exhibit a more rapid tumor growth compared with those implanted with neuronal or astrocytic GSCs. c Average bioluminescence intensity over time for mice xenografts injected with different GSC types sorted from BT333-GSC (n = 24). Data are represented as mean ± SE. p values obtained with two-tailed, two-sample t tests. d Mice from each GSC group was killed at 12 weeks and the corresponding H&E and immunofluorescence images for cell type markers are shown. Expression of cell type-specific markers was quantified from ~1000 to ~3000 human nucleoli (hNu)-positive cells per mouse model group. Each graph represents n = 2 biologically independent mouse brain sections. Scale bars: whole mount images: 1 mm; immunofluorescence images: 50 μM. e Kaplan–Meier survival curves for mice implanted with different GSC types (n = 47). Univariate Cox proportional Hazard Model (two-sided) shows a significant difference in survival between progenitor GSC and neuronal (p value = 0.0025) or astrocytic GSC (p value = 5.7e-6) xenografts, and also between neuronal and astrocytic GSC xenografts (p value = 0.0059). For all plots, ***p < 0.001, **p < 0.01, *p < 0.05.
We showed that IDHwt glioblastoma is hierarchically organized into three cell lineages that correspond to all three normal neural lineages: astrocytic; neuronal; and oligodendrocytic. Interestingly, the neuronal lineage is devoid of HLA expression, suggesting a potential source of resistance to immunotherapy. We identified a fourth cell type by cNMF, mesenchymal, which most closely resembles tRG in our roadmap. Although this resemblance served the purpose of separately separating cancer cell types, mesenchymal cancer cells lack expression of important tRG genes such as AQP4, FAM107A, SOX9, and GLI3, and tRG lack the expression of mesenchymal genes such as CD44 and TIMP1. Therefore, tRG may not be a perfect parallel for mesenchymal cancer cells, and this parallel may not exist in the normal brain. These four cancer cell lineages closely resemble the signatures recently described by Neftel et al.42, showing their fundamental importance in describing cancer heterogeneity.

Critically, we found a fifth cell type, which exists at the intersection of these lineages and corresponds transcriptomically to progenitors and functionally to apical glioma stem cells. The closest transcriptomic parallel of this cell cluster in the normal developing brain stem cell hierarchy, also possesses such pluripotency. A genetic mouse model studying glioma origin suggested that OPCs are candidate cells of origin58. These cells expressed Pdgfr\(_\alpha\), Olig2, and occasionally nestin. In our data set, both GPCs and OPCs were found only two lineages, astrocytic and oligodendrocytic24,25. This suggests a different cell of origin in these pathologies than in adult IDHwt glioblastoma and may underlie the disparate natural histories and treatment responses between these cancer types.
Our data also show that progenitor cancer cells are the cancer cell type with the highest rates of proliferation, more so than cancer cells undergoing lineage differentiation. The identification of highly proliferative apical CSCs here is in contrast to the work of Patel et al. and Neftel et al., where such a progenitor cell population was not identified. As genetic anomalies are most often acquired during the cell cycle, it is likely that new clones arise within this progenitor population and propagate down the lineages as their progeny differentiate. We suspect that specific genomic anomalies skew differentiation towards one lineage or another, giving rise to the observed TGCA subtypes. In support of this hypothesis, Neftel et al. recently showed how some anomalies are associated with particular cancer cell types, and, in a model system, that these anomalies can influence the differentiation of normal neural stem cells.

These results also provide insight into hierarchy and plasticity within glioblastoma. With our high cell numbers, we estimated RNA velocity in the cancer, as was previously done in the developing mouse brain. This analysis suggests progenitor cancer cells have the potential to differentiate into all cancer cell lineages identified. Although the velocity data demonstrate the main flow of differentiation, from progenitor cancer cells to the more-differentiated cell lineages, the apparent proximity of some lineages close to the progenitor population suggests that plasticity can occur, particularly in the GSC population. In support, our GSC cell-type-specific xenograft models show evidence of both lineage commitment and plasticity within the GSC population. In a similar type of experiment, Neftel et al. recently used barcoded glioma cells grown in serum-free media supplemented with EGF and FGF to show that many of these cells can differentiate into progenitor GSCs versus GSCs that have differentiated towards the neuronal or astrocytic-mesenchymal lineages as their progeny differentiate. We suspect that specific signaling pathway alterations between the early samples (Table 1), endothelial and myeloid cells were removed before capture. Later samples (Table 1) were captured and sequenced immediately after dissociation since normal cells were removed in silico. The isolated cells were resuspended at a concentration of 1:6/mL in PBS. After removing 50 μL as unstained control, the live/dead dye, Aqua (Molecular Probes) was added at a concentration of 1:1000. Cells were incubated for 25 min on ice, protected from light. Cells were washed once with PBS and resuspended in 100 μL of PBS with 1% bovine serum albumin (BSA). FcR block (Miltenyi) was added and incubated for 15 min. CD31 conjugated to BV421 (Biolegend), and CD45 (Biolegend) conjugated to PE were added to the suspension at pre-titrated values and mixed well by resuspension and incubated for 25 min on ice, protected from light before washing twice with PBS. Compensation controls for all antibodies and live/dead used. The sample was then resuspended in PBS with 5% BSA with 20 μL HEPEPS and 2 μL EDTA at a final volume of 300–500 μL and sorted on the FACS Aria III. Sorted cells were collected in polypropylene tubes with 1 mL of ice-cold FACS buffer with a temperature maintained at 4 °C throughout sorting. We selected cells that were negative for CD31 and CD45 (Supplementary Fig. 7a). Cells were resuspended in PBS with 0.04% BSA for single-cell capture (Supplementary Fig. 1a).

For GSC-enriched samples, whole-tumor sorted cells were expanded as neurospheres in complete neurocult-proliferation media (Neurocult basal medium containing: neurocult NS–A proliferation supplement at a concentration of 1:100 dilution, 20 ng/mL recombinant epidermal growth factor, 20 ng/mL recombinant basic fibroblast growth factor, and 2 μg/mL Heparin) from Stem Cells Technologies. After 7 days of NCC culture, the neurospheres were collected in a tube and spun at 1200 rpm for 3 min. To dissociate the spheres, Accumax (Millipore) was added to the cell pellet and incubated for 5 min at 37 °C, they were then washed with PBS, centrifuged and resuspended in PBS with 0.04% BSA for single-cell capture (Supplementary Fig. 1a). GSC lines were proven to be tumorigenic by xenotransplantation.

Human fetal brains. Human fetal brain tissue samples (13–21 gestational weeks) were obtained from the University of Washington Birth Defects Research Laboratory (Seattle, Washington, USA). The Human Fetal Tissue Program at the University of Calgary (Calgary, Alberta, Canada). These tissues were obtained at legal abortions. The use of these samples following parental consent was approved by The Conjoint Health Research Ethics Board at the University of Calgary and studies were carried out with guidelines approved by McGill University and the Canadian Institutes for Health Research (CIHR). Cells were freshly isolated. In brief, fetal brain tissue was minced and treated with DNase (Roche, Nutley, NJ) and trypsin (Invitrogen, Carlsbad, CA, USA) before being passed through a nylon mesh. The flow cells were collected in PBS for sorting followed by sequencing (see below).

Human adult brain. Human autopsy brain specimens were obtained from de-identified excess diagnostic brain tissue that had been slated for incineration. Brains were cut in the coronal plane and immersed in 3% paraformaldehyde (PFA) for 1200 rpm for 3 min. To dissociate the spheres, Accumax (Millipore) was added to the cell pellet and incubated for 5 min at 37 °C, they were then washed with PBS, centrifuged and resuspended in PBS with 0.04% BSA for single-cell capture (Supplementary Fig. 1a). GSC lines were proven to be tumorigenic by xenotransplantation.

Methods

Glioblastoma samples. Glioblastoma samples were harvested under a protocol approved by the Montreal Neurological Hospital’s research ethics board. Consent was given by all patients. Surgeries were performed at the Montreal Neurological Hospital. Pre-operative magnetic resonance imaging was performed for surgical planning. Tumor samples were obtained at the junction of the contrast-enhancing portion of the tumor and brain invasion. In our experience, this location maximizes cell viability, reduces the confounding effects of hypoxia and necrosis, and increases the number of cells, which can be extracted from the sample. A certified neuropathologist confirmed all tumor histopathological diagnoses and IDH mutation status by DNA sequencing.

Cells were dissociated from the whole tumor, and cDNA libraries were prepared on the operative day (Supplementary Fig. 1a). Whole-tumor specimens were washed with Ringer’s solution prior to RNA isolation. Subsequently, RNA was subjected to DNase treatment and was reverse transcribed using the PowerScript reverse transcriptase (BD Biosciences), CD45-PerCP/Cy5.5, and CD31-PerCP/Cy5.5 were added at a concentration of 1:200 for 1–2 h at 37 °C. The digested specimens were washed three times with sterile PBS, and RBC debris were removed with a 70-μm strainer. Residual RBCs were removed using a density gradient in a 1:1 volume ratio with the sample (Lymphoprep, Axis-Shield). Samples were washed five more times in sterile PBS.

Preparation of the whole tumor and GSC samples. The isolated cells were divided into two parts: one for whole-tumor analysis; and one for glioma stem cell enrichment.

Whole-tumor cells were prepared for single-cell capture and sequencing. For the early samples (Table 1), endothelial and myeloid cells were removed before capture. Later samples (Table 1) were captured and sequenced immediately after dissociation since normal cells were removed in silico. The isolated cells were resuspended at a concentration of 1:6/mL in PBS. After removing 50 μL as unstained control, the live/dead dye, Aqua (Molecular Probes) was added at a concentration of 1:1000. Cells were incubated for 25 min on ice, protected from light. Cells were washed once with PBS and resuspended in 100 μL of PBS with 1% bovine serum albumin (BSA). FcR block (Miltenyi) was added and incubated for 15 min. CD31 conjugated to BV421 (Biolegend), and CD45 (Biolegend) conjugated to PE were added to the suspension at pre-titrated values and mixed well by resuspension and incubated for 25 min on ice, protected from light before washing twice with PBS. Compensation controls for all antibodies and live/dead used. The sample was then resuspended in PBS with 5% BSA with 20 μL HEPEPS and 2 μL EDTA at a final volume of 300–500 μL and sorted on the FACS Aria III. Sorted cells were collected in polypropylene tubes with 1 mL of ice-cold FACS buffer with a temperature maintained at 4 °C throughout sorting. We selected cells that were negative for CD31 and CD45 (Supplementary Fig. 7a). Cells were resuspended in PBS with 0.04% BSA for single-cell capture (Supplementary Fig. 1a).

For GSC-enriched samples, whole-tumor sorted cells were expanded as neurospheres in complete neurocult-proliferation media (Neurocult basal medium containing: neurocult NS–A proliferation supplement at a concentration of 1:100 dilution, 20 ng/mL recombinant epidermal growth factor, 20 ng/mL recombinant basic fibroblast growth factor, and 2 μg/mL Heparin) from Stem Cells Technologies. After 7 days of NCC culture, the neurospheres were collected in a tube and spun at 1200 rpm for 3 min. To dissociate the spheres, Accumax (Millipore) was added to the cell pellet and incubated for 5 min at 37 °C, they were then washed with PBS, centrifuged and resuspended in PBS with 0.04% BSA for single-cell capture (Supplementary Fig. 1a). GSC lines were proven to be tumorigenic by xenotransplantation.
ice for 25 min. A total of 1×5 cells were kept aside as unstained control and 5×5 cells were kept aside for fluorescence minus-one gating for CD133 only (FMO-PE).

All cells were “washed twice with excess PBS and were spun down at 1400 rpm for 5–10 min. Cells were resuspended in ice-cold FACS buffer (5% BSA in PBS with 1% penicillin–streptomycin) before sorting. Sorted cells were collected into polypropylene tubes with 1 mL of ice-cold FACS buffer with a temperature maintained at 4 °C throughout sorting. All samples were acquired on the BD FACS Aria Fusion II.

Compensation beads (Invitrogen) was used to prepare compensation controls for all antibodies and live/dead stains used. A minimum of 5000 events were acquired for compensation calculation matrix and a minimum of 50e4 total events were collected for fetal samples and analyzed using Flowjos version Flowjo LLC.

Single-cell RNA sequencing. For each sample, fetal or cancer, an aliquot of cells was taken and stained for viability with calcein-AM and ethidium-homodimer1 (P/N L3224 Thermo Fisher Scientific).

Following the Single Cell 3’ Reagent Kits v2 User Guide (CG0052 10x Genomics), a single-cell RNA library was generated using the GemCode Single-Cell Instrument (10x Genomics, Pleasanton, CA, USA) and Single Cell 3’ Library & Gel Binding Kit v2 and P/N 10004. The sequencing ready library was purified with SPRIselect, quality controlled for sized distribution and yield (LabChip GX Perkin Elmer), and quantified using qPCR (KAPA Biosystems Library Quantitation Kit for Illumina platforms P/N KK4824). Finally, the sequencing was done using Illumina HiSeq4000 or HiSeq3000 (instrumentation, Illumina) using the following parameter: 26 bp Read1, 8 bp I7 Index, 0 bp I5 Index, and 98 bp Read2.

Cell barcodes and UMI (unique molecular identifiers) barcodes were demultiplexed and single-end reads aligned to the reference genome, GRCh38, using the CellRanger pipeline (10x Genomics). The resulting cell-genome matrix contains UMI counts by gene and by cell barcode.

Analysis of CNAs and identification of non-cancerous cells. Cells from all samples were pooled in sico. The raw counts of each cell were first normalized using a trimmed mean of M-values (TMM) normalization approach61. This normalization approach is resistant to outliers and is widely used in gene expression analysis.

For each region and each cell, a Z score was then computed by subtracting the average expression across cells and dividing by the standard deviation. These Z scores were winzorized at ~3 and 3, minimizing the effect of outliers. To focus on the effect of CNAs, we minimized expression patterns that are specific to a single cell by applying a moving median. Using a sliding window of seven regions, this moving median approach replaced the expression of a region by the median over the surrounding seven regions (three upstream and three downstream).

A PCA was performed on the smoothed Z scores using non-cycling cells (see “Cell death and principal components analysis”). Because of the genome tiling and moving median, this PCA focuses on expression variability affecting large regions, hence driven by CNA. Louvain clustering was then performed on the K-nearest neighbour graph built using K = 100. The similarity between nodes was computed as D(D + 1)/D with D the Euclidean distance on the first 20 principal components.

“KNN” was set to the median of “graph” paper parameters. To control for the effects of each cell in the left and right samples, we combined the normalized expression matrices on the basis of the intersection of their significant genes. Z-score across all cells and samples was applied by gene thereafter.

Filtering the fetal brain and cancer samples. We removed ependymal cells and microglia from later fetal analyses. These were seen as separate clusters in PC1 and PC2 in most samples. Microglia had high expression of genes such as P2RY12 and CX3CR167,68, whereas ependymal cells had high expression of SPAG6, FOLR1, and FOXI19,70. BT34 contained many cells with a signature not seen in other samples. These clustered separately in tSNE and PCA. We used k-means (k = 2) to separate them from other samples. A GSEA (see “Quantification and Statistical Analysis for microarray data”) showed that the most significant gene sets linked to hypoxia (e.g., HALLMARK_HYPOXIA, MENSE_HYPOXIA_UP). This tumor was unique in that the magnetic resonance imaging region of contrast enhancement was very thin. It is thus likely that some cells from the necrotic core were isolated. We excluded the hypoxic cells in BT346 from later analyses and did not include them in the total cancer cell number reported.

Cell cycle and principal components analysis. We positioned all cells within the cell cycle according to the method presented by Tirosh et al.34. In brief, each cell obtained a score for the G1/S phases and a score for the G2/M phases (Supplementary Fig. 7). A list of genes deemed characteristic of those cell cycle states was used34. Each score was defined as the sum of the expression of all genes within its corresponding gene set, then z scored across cells. As most cells are not cycling (Supplementary Fig. 7), we defined non-cycling cells as those with both G1/S and G2/M phases below their respective lower and upper bounds, respectively.

Cycling-free PCA was performed for each sample individually as follows. The PCs, or eigenvectors of the covariance matrix, were obtained from the non-cycling cells only (as defined above). We then use these cell cycle-independent eigenvectors to project the complete data set into the non-cycling space (Supplementary Fig. 2a).

The first PC of every GSC sample was highly conserved (see Results). To quantify this, we compared the ranking of genes by PCI loadings across samples. The actual ranking of each gene was obtained in all samples. To obtain the mean ranking, the actual rankings were averaged by gene, and these averaged values were then ranked. For each gene, we thus obtained five actual rankings (one per sample) and one mean ranking. R2 was obtained by least-square linear regression in PCI and PC2 separately (Matlab, fitlm).

Classifying cells by TCGA subtype. TCGA subtype for each whole-tumor cell was obtained by scoring each cell for its proximity to each TCGA centroid19. The highest score obtained by a given cell defined the subtype of the cell. We used this
method on the original TCGA data set and found we could correctly classify 89.7% of all tumors.

Proximity is calculated as follows. The position of a cell in the TCGA transcriptomic space (X_c) is obtained from the expression of the genes present in the TCGA signature (S). The unit vector of this cell’s position is then projected onto the unit vector of the signature of interest using a dot product.

$$P_i = \frac{X_c \cdot S}{|S||S|}$$

where P is the projection score and S is the signature of interest.

We also subtype cells using the more recent TCGA signatures and classifier. We randomly selected 1000 cells from our data set and entered their data for all non-zero genes in the Gliovis data portal.

Clustered non-negative matrix factorization. The cNMF algorithm was applied individually to each whole-tumor sample, with some modifications. In brief, non-negative matrix factorization was run (mnf, Matlab, multiplcity algorithm, replicates = 20, maximum iterations = 1e6) 100 times for k from 2 to 15 signatures. For each k, the 100 repetitions are clustered in k groups. We expect a stable clustering solution would produce tight clusters with one signature per cluster for each of the 100 repetitions. The proportion of repetitions with one signature per cluster was calculated reproducibility. Clustering of the signatures was done by k means (Matlab, using correlation) with a constraint of uniform cluster sizes, prioritizing higher correlations. The largest k with a reproducibility above 0.9 was chosen (Supplementary Fig. 7g, left plot). For a chosen k, we confirmed the clustering solution was appropriate by running tSNE on the signatures it generated (Supplementary Fig. 7g, right plot). The final signatures for a given sample was obtained by averaging the signature repetitions within a cluster, excluding repetitions with poor reproducibility (the ones which did not produce a signature per cluster).

We obtained between five and nine final signatures per sample, 79 signatures in total. From the inter-signature Pearson correlations, we used hierarchical clustering to find trends of signatures (Fig. 1e, hierarchical tree). Six main groups emerged. In one of these groups, important variations in gene weights were observed: signatures characterized by OLG2 and ASC1L1, for example, had less DCC and STMN1, and vice versa.

We identified the most characteristic genes of each signature group by ranking genes according to their relative signal to noise ratio (SNR) and chose the top 40 for the heatmap.

$SNR = \frac{\mu_{isp}}{\sigma_{isp}}$ for each gene g, where μ_{isp} is the expected connection weight between nodes i and p, and σ_{isp} is the standard deviation of expected connection weights across runs.

We scored each signature according to the TCGA matrix described above (Classifying cells by TCGA subtype). A given signature was labeled with the subtype yielding the highest score (Fig. 1e).

Community detection in fetal samples. To properly cluster fetal cells in cell types, the modular structure of the gene coexpression network was estimated using community detection. Data from all fetal samples were merged as explained above. Each fetal cell type was the modular structure of the gene coexpression network was estimated using community detection. Data from all fetal samples were merged as explained above. Each fetal cell type was

The importance of null model configurations model, such that:

$$P_i = s_i \cdot \frac{X_c \cdot S}{|S||S|}$$

where s_i is the strength of node i and $m = \sum_{j=1}^{n} w_j$ is total weight of connections. Under this null model, communities are considered to be of high connection weight between nodes i and j, and assigned to the same community ($c_i = c_j$) and zero otherwise ($c_i \neq c_j$), ensuring that modularity is only computed for pairs of nodes belonging to the same community. The resolution parameter γ scales the importance of null model p_{ij}, potentiating the discovery of larger ($\gamma < 1$) or smaller communities ($\gamma > 1$).

In the present study, the expected connection weight between pairs of nodes was defined according to a standard configuration model, such that:

$$p_{ij} = s_j / 2m$$

Community Detection. The modularity of the modular structure of the gene coexpression network was estimated using community detection. Data from all fetal samples were merged as explained above. Each fetal cell type was merged as described above. Each fetal cell type was

created a fetal roadmap, or a trans-

Community Detection. The modularity of the modular structure of the gene coexpression network was estimated using community detection. Data from all fetal samples were merged as explained above. Each fetal cell type was

created a fetal roadmap, or a trans-

Community Detection. The modularity of the modular structure of the gene coexpression network was estimated using community detection. Data from all fetal samples were merged as explained above. Each fetal cell type was

created a fetal roadmap, or a trans-

Community Detection. The modularity of the modular structure of the gene coexpression network was estimated using community detection. Data from all fetal samples were merged as explained above. Each fetal cell type was

created a fetal roadmap, or a trans-

Community Detection. The modularity of the modular structure of the gene coexpression network was estimated using community detection. Data from all fetal samples were merged as explained above. Each fetal cell type was
roadmap we calculated a transition matrix (diffusionmap.T.mm.m, k = 50, nssg = 10). The top five eigenvectors were obtained and normalized (eig Decompose normalized.m). The first eigenvector was dropped as the steady state of the transition matrix. Eigenvectors 2 to 5 were studied for their ability to resolve all cell types. Eigenvectors 2, 3, and 5 were defined as DC1, DC2, and DC3, respectively. The glial progenitor score was defined as DC3.

Mapping of cancer cells to the fetal roadmap. The aim of the roadmap was to highlight the underlying hierarchical organisation while de-emphasising inter-patient variability. Hence, we projected cancer cells (whole tumor, GSCs, or both) onto the 10-dimensional fetal PC space of the roadmap. This represents the mapping of cancer cells onto fetal PC space. We used these results to obtain the diffusion and the simplified PC mapping of cancer, as we will explain below.

To illustrate how this was obtained, we first obtained the transition matrix of the fetal roadmap as described above. From the PC cancer mapping, a separate transition matrix was obtained for cancer soley as a function of the fetal brain cells (diffusionmap.T.mm.m, k = 50, nssg = 10). The transition matrix (T_steady) was then projected onto the roadmap DCs (\(\phi_{\text{cancer}} \)) defined above.

The resulting DC vectors (\(\phi_{\text{cancer}} \)) represented the mapping of cancer cells in the roadmap diffusion space.

To rule out the possibility that this hierarchical distribution could be the product of chance, we created control cells by randomly swapping the genes in our whole-tumor cells. These control cells would have had the same depth of sequencing as cancer cells. Using a Kolmogorov–Smirnov statistic, we found that our cancer cells and control cells had a very significantly different distribution when projected on the roadmap, both in diffusion space and PC space (\(p < 1 \times 10^{-22} \) for both).

Next, we sought to create a simplified PC roadmap, in an effort to better capture biological relevance. This is because both GPC and OLC populations contain progenitor cells that are difficult to distinguish in the roadmap. We performed this analysis as described by La Manno et al. Using a PCA (Principal Component Analysis) of the resulting DC vectors, we found that the cancer cells and control cells had a very significantly different distribution when projected on the roadmap, both in diffusion space and PC space (\(p < 1 \times 10^{-22} \) for both).

Pathway enrichment for progenitors in whole tumor. Whole-tumor cells classifications were obtained using the LDA method described above. Progenitor and astrocytic/mesenchymal classifications were used. As had been described previously, each gene was ordered according to its signal to noise ratio (SNR) for the progenitor vs the astro-mesenchymal cell types

\[\text{SNR} = \frac{\text{mean}}{\text{std}} \]

where \(\text{mean} \) is the estimated mean log expression of gene \(j \) for progenitor (P) and astrocytic (A) cancer cells and \(\text{std} \) is the estimated standard deviation of log expression for gene \(j \). A Mann–Whitney U test (Python, scipy.stats.mannwhitneyu) was used to determine if the SNR values for genes in a given gene set were significantly different than the SNR not in this gene set (Supplementary Fig. 7i for an example). All gene sets in the c2.all.v6.0 data set from the Broad Institute were tested, using the genes present in our combined whole-tumor data set (n = 9700, see Supplementary Data 2 for list of genes). P values were adjusted for multiple testing using the approach described by Storey and reported as \(q \) value.

Mass cytometry. Metal tagged mass cytometry antibodies were purchased from Fluidigm. Where tagged antibodies were not available, purified antibodies lacking carrier proteins were labeled with heavy metal loaded maleimide conjugated DN3 MAXPAR chelating polymers (Fluidigm) according to the recommendations provided by Fluidigm.

Cells were stained into a well-established protocol for cell cycle staining. In brief, cells were incubated with IDU at 50 \(\mu \)M final concentration for 30 min at 37°C and 5% CO2 in stem cell media. A live/dead stain was performed by incubating cells with 5 \(\mu \)M cisplatin (Fluidigm) at room temperature for 5 min. Cells were washed twice with cell staining buffer (CSB), composed of standard PBS with 0.5% BSA and 0.02% sodium azide, twice. Before cell surface antibody labeling, Fc-receptors were blocked using human BD Fc block (BD biosciences). Cells were then labeled with a surface antibody panel which included CD9, CD24, CD44, CD133, PDGFRA, HLA-ABC, Olig2 and CD45, and CD31 and incubated on ice for 25 min. Cells were then washed fixed using Fix 1 buffer (Fluidigm) for 15 min. This was followed by two more washes with CSB and ice-cold methanol fixation for 15 min on ice. Intracellular labeling was carried out for 25 min on ice. A final two more washes with CSB were carried out followed by an overnight incubation in Fix and Perm buffer (Fluidigm) with 125 nM of iodinated intercalating dye (Fluorigen).

Mass cytometry data were analyzed using Flowjo (v.10, Flowjo LLC) and a hyperbolic arc sine transformation on all parameters after filtering out dead cells and CD45 or CD31 positive cells.

Gliona stem cell sorting. Multiparametric flow cytometry was carried out by labeling cells with CD9 preconjugated with BV421 (BD Pharmingen), CD24 preconjugated with APC or APC-H7 (Miltenyi), CD133 preconjugated with PE or PE/Vio770 (eBCIsence and Miltenyi). After leaving aside 1e5 cells as unsorted control, cells were resuspended in PBS at a concentration of 1e6/L. Aquatic live/dead dye (Molecular Probes) was added at 1:1000 and incubated for 25 min on ice, protected from light. Cells were washed and 1e7 cells were kept aside for fluorescence minus one (FMO) controls and 1e6 cells were used for complete staining with antibodies. FMO controls were prepared for all colors except aqua (live/dead). All cells were completely stained with antibodies at a final dilution of 0:1:20. FMO controls were used to identify for positive/negative staining.

For sample preparation post-staining and data acquisition was carried out as described above. Gating strategies are shown in Supplementary Fig. 7b. c.

Luciferase vector. The Red Firely Luciferase sequence was amplified from the pCMV-RedFluc (Targeting Systems, CA, USA) and cloned into the bidirectional

ARTICLE

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-17186-5

Supplementary Information

EFl/PGK promoter lentiviral vector (System Biosciences, Palo Alto, USA). The final construct was named PEGF-PEG-LUC. Lentivirus was produced as per the protocol described by Ritter et al.5. Expression of the construct was validated by luciferase assay and fluorescence microscope.

Mouse xenotransplantation. All animal procedures were approved by the Institution’s Animal Care Committee and performed according to the guidelines of the Canadian Council of Animal Care. We orthotopically injected 100k (for general tumorigenicity and E2F inhibition) or 3k (cluster tumorigenicity) GFP+ /Luciferin+ GSCs into female NOD-SCID gamma mice (Charles River, Wilmington, USA)14. In brief, mice were anesthetized at 5 weeks of age using isoflurane (Fresenius Kabi, Bad Homburg, Germany) and placed on a stereotactic apparatus. A midline scalp incision was made and a burr-hole (3 mm) was created 2.2 mm lateral to the bregma using a high-powered drill. The injection needle of a Hamilton syringe (Hamilton, Reno, USA) was then lowered into the burr-hole to a depth of 2.5 mm and cells were transplanted into the striatum. Animals were frequently monitored and then killed at the appearance of distress signs and/or 10% weight decrease. These animals were perfused with PBS and their brain collected. Kaplan–Meier curves were created according to the survival results. A Cox proportional hazard ratio model was used to identify significant patient cell line and cell type (Fig. 6e) or treatment group (Fig. 7f) as covariates. This analysis was performed in R using the packages splines and survival. For the treatment experiment (Fig. 7f), cells were treated in vitro with drug or vehicle, and 100k live cells were injected on the third day of treatment for each treatment group.

Hematoxylin–eosin (H&E) stained brain sections were placed in 10% neutral buffered formalin for 72 h at room temperature. After formalin fixation, specimens were processed and paraffin-embedded. Five μm tissue sections were prepared and mounted on a poly-1-lysine-coated glass slides for subsequent analysis.

In vivo imaging. To monitor tumor growth, we imaged each mouse every 2 weeks using the In Vivo Imaging System Spectrument (Perkin Elmer, Waltham, USA) according to the manufacturer’s instructions. In brief, we intraperitoneally injected a solution (15 mg/ml) of luciferin (Perkin Elmer) at the dose of 150 μg/kg, and after 3 min, mice were anesthetized using isoflurane. At 10 min from luciferin injection, we positioned the mouse in the imaging system and began image acquisition. The exposure time was automatically determined by Living Image 4.5.2 software (Perkin Elmer). Results are reported as number of photons emitted, and a two-sample student’s t test was performed, two-sided.

Immunofluorescence. GSCs were grown on laminin (10 μg/ml) coated coverslips, and fetal neural stem cells were grown on Matrigel in the supplemented mTeSR1 basal medium (STEMCELL Technologies). Both were fixed with 3% PFA and permeabilized with 0.5% Triton X-100 before being immunolabeled with indicated antibodies followed by secondary antibodies. Cover slips were mounted on glass slides using ProLong Diamond Antifade Mountant with DAPI (Invitrogen) to counterstain cell nuclei. Fluorescent images were acquired using ZEISS ISM 700 laser scanning confocal microscope with a ×20 or ×63 objective. For the GSC assays, the total number of Ki67+ cells relative to total cell number were quantified from fields for each patient cell line (n = 3). For tissue sections (brain and tumor) immunohistochemistry, samples were baked overnight in a standard laboratory oven at 60 °C, then deparaffinized and rehydrated using a graded series of xylene and ethanol, respectively. Antigen retrieval was done using citrate buffer (pH 6.0) for 10 or 20 min at 120 °C in a decalco chamber (Biocare Medical). The slides were then blocked for 20 min with a commercial protein block (Spring Bioscience), incubated overnight at 4 °C with indicated antibodies, then slides were washed with IF buffer (PBS+0.05% tween20+0.2% triton X-100), following by incubation (1 h at room temperature) with according secondary antibodies (Invitrogen). Cover slips were mounted on glass slides using ProLong Diamond Antifade Mountant with DAPI (Invitrogen) to counterstain cell nuclei. Fluorescent images were acquired using ZEISS ISM 700 laser scanning confocal microscope with a ×63 objective. For tumors, total number of CD133+ or Ki67+ or both CD133+ and Ki67+ cells relative to total cell number were quantified from at least 10 images from each patient. A χ² test was performed to obtain the level of significance. A significant association of Ki67 and CD133 was found in all patients. For xenografts, quantification was based on capturing 20–100 high-powered images per slide from multiple slides from each mouse per GSC type implanted from the 12-week cohort. For the apical GSC mice 1261 cells were counted, for the neuronal GSC mice 1261 cells were counted, and for the astro-mesenchymal GSC mice 2720 cells were counted. Error bars were measured as the standard error between HFP for each GSC cell type.

Primary antibodies used; anti-GFAP (Abcam); anti-Olig2 (EMD Millipore), anti-Ki-67 (Invitrogen and Abcam), and anti-CD133 (Miltenyi Biotec), anti-ASCL1 (Abcam), anti-CD44 (EMD Millipore), anti-DX2 (Abcam).

Chemotherapy and targeted therapy assays. TMZ–GSCs from each cluster type were seeded on laminin (10 μg/ml, Sigma) at a concentration of 10,000 cells/well in a 96-well plate and were subsequently treated for 5 days with varying concentrations of TMZ (Sigma Aldrich) ranging from 1 μM to 750 μM. In all, 50 μL of XTT was prepared according to the manufacturer’s instructions (Life Technologies), and the XTT mix solution was added to the cells and further incubated for 3 h at 37 °C. The absorbance at 450 nm was measured on an Epoch Microplate Spectrophotometer (Biotek Instruments, USA).

HLM006474–GSCs from each cluster type were plated on laminin (10 μg/ml, Sigma) at 5000 cells/well in 96-well overnight in culture media. The following day, HLM006474 (or DMSO) was added to a 10 μM final concentration in a final volume of 200 μL. Following 7 days of incubation at 37 °C, an XTT assay was performed as described above. Combination therapies–GSCs (BT326-GSC) were plated on laminin (10 μg/ml, Sigma) at a concentration of 7000 cells/well in a 96-well plate and treated with either TMZ (50–450 μM) for 6 days, HLM (2.5–10 μM) for 6 days, or HLM006474 for 3 days followed by TMZ for 3 days. After these 6 days of treatment at 37 °C, an XTT assay was performed as described above. For the isobolographic analysis, 40% efficiency isoboles were found for all biological replicates (n = 3). A curved reference isobole was used because the maximum efficiency of HLM006474 is significantly higher than that of TMZ5. P value was calculated using a Student’s t test.

Sphere forming assay–GSCs from each cluster type were plated at 150,000 cells/well in six well plates with 20 μM HLM006474 in a final volume of 3 ml. After 7 days, cells were imaged with ×10 objective with Invitrugen EVOS FL/F color microscope. Sphere diameter measurements were made with Imaged J. 6502 spheres were measured in two different patient GSC cell lines. An arbitrary cutoff for big and small spheres was set at 65 μm. A multivariate logistic regression was used to assess the likelihood of finding big spheres in each of the different GSC cell types treated, using patient cell line and cell type as variables. There was no significant difference between patient cell line (p = 0.69). An analysis of odds ratio is depicted as a forest plot in Fig. 7c.

All assays were performed in three different patient cell lines in three or more different cell passages and five technical replicates. P values describe differences in cell types and were calculated using a two-sample t test, two-sided. Stock solutions of TMZ (Sigma Aldrich), HLM006474 (Tocris-Bioscience) were prepared in dimethyl sulfoxide (DMSO; Sigma Aldrich), and were added to cells for a final DMSO concentration of <0.1%.

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability

The single-cell sequencing data will be available on the European Genome-Phenome Archive: EGAS00001048422. Full western blots are provided as a source data file. All other data are available in the Article file, Supplementary Information or available from the authors upon reasonable request. Source data are provided with this paper.

Code availability

All computations and quantifications were performed using Matlab, R, and Python programming languages. Scripts can be found at: https://github.com/mnborjeur/scRNA_GBM. The single-cell CNV analysis package created in the course of this work can be found at https://github.com/mjonlong/scNAutis. Source data are provided with this paper.

Received: 12 February 2020; Accepted: 17 June 2020; Published online: 08 July 2020

References

1. Meacham, C. E. & Morrison, S. J. Tumour heterogeneity and cancer cell plasticity. Nature 501, 328–337 (2013).
2. Burrell, R. A., McGranahan, N., Bartek, J. & Swanton, C. The causes and consequences of genetic heterogeneity in cancer evolution. Nature 513, 31–35 (2013).
3. Jamal-Hanjani, M. et al. Tracking the evolution of non–small-cell lung cancer. N. Engl. J. Med. 376, 2109–2121 (2017).
4. Hunter, K.W., Amin, R., Deasy, S, Ha, N.-H. & Wakefield, L. Genetic insights into the morass of metastatic heterogeneity. Nat. Rev. Cancer 18, 211–223 (2018).
5. Cavalli, F. M. G. et al. Intertumoral heterogeneity within medulloblastoma subgroups. Cancer Cell 31, 737–754, e6 (2017).
6. Bao, S. et al. Glial stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444, 756–760 (2006).
7. Dagogo-Jack, I. & Shaw, A. T. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol. 15, 81–94 (2018).
8. Louis, D. N. et al. The 2016 World Health Organization Classification of Tumors of the central nervous system: a summary. Acta Neuropathologica 131, 803–820 (2016).
Zhong, S. et al. A single-cell RNA-seq survey of the developmental landscape in primary glioblastoma. Science 344, 1396–1401 (2014).

Galli, R. et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res. 64, 7011–7021 (2004).

Singh, S. K. et al. Identification of a cancer stem cell in human brain tumours. Nature 432, 69–74 (2004).

Stupp, R. et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352, 1048–1055 (2005).

Kotliar, D. et al. Identifying gene expression programs of cell-type identity and cellular activity with single-cell RNA-seq. Proc. Natl Acad. Sci. USA 113, 930–935 (2016).

Johnson, B. E. et al. Mutation analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science 343, 189–193 (2014).

Chen, J. et al. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 488, 522–526 (2012).

Verhaak, R. G. W. et al. An integrated genomic analysis identifies clinically relevant drivers of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 19, 391–403 (2011).

Kang, M.-K. & Kang, S.-K. Tumorigenesis of chemotherapeutic drug-resistant human oligodendroglioma. Nature 463, 837–847 (2010).

Behbehani, G. K. Cell cycle analysis by mass cytometry. Methods Mol. Biol. 1666, 105–124 (2018).

Haghverdi, L. & Theis, F. J. Diffusion pseudotime robustly reconstructs lineage branching. Nat. Methods 13, 845–848 (2016).

42. Neffel, C. et al. An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell 178, 835–849, e21 (2019).

43. Neumann, H. et al. Molecular predictors of progression-free and overall survival in patients with newly diagnosed glioblastoma: a prospective translational study of the German Glioma Network. J. Clin. Oncol. 27, 5743–5750 (2009).

44. Behbehani, G. K. Cell cycle analysis by mass cytometry. Methods Mol. Biol. 1666, 105–124 (2018).

45. Haghverdi, L., Büttner, M., Wolf, A. F., Theis, F. J. Diffusion maps for high-dimensional single-cell analysis of differentiation data. Bioinformatics 31, 2989–2998 (2015).

46. Haghverdi, L., Büttner, M., Wolf, A. F., Büttner, F. & Theis, F. J. Diffusion pseudotime robustly reconstructs lineage branching. Nat. Methods 13, 845–848 (2016).
Acknowledgements

We would like to thank Carmen Sabau for her contribution to the administrative work of the project, as well as Rozica Bolovan and Maryam Safisamghabadi for technical support. We are grateful to Sara Baig for the design of the schematic in Supplementary Fig. 1a, Greg Chang for supplying reagent for mass cytometry experiments, Jason Kar-achamandani for help accessing and formatting the TCGA data, Adrian Veres for advice with the initial phase of scRNAseq data processing, and Stefano Stefani for advice with interpretation of the fetal data sets. We also thank the McGill University and Genome Quebec Innovation Centre sequencing platforms, the bioinformatics platform at the Center for Computational Genomics, the Cell Vision Core Facility for Flow Cytometry and Single Cell Analysis, the Imaging Facility, the Histology Facility of the Life Science Complex of McGill University, the Flow Cytometry and Cell Sorting Facility of the Department of Microbiology and Immunology of McGill University, the Flow Cytometry Facility of the Institut de Recherches Cliniques De Montréal, the Flow Cytometry Facility of the C-BIGR of the Montreal Neurological Institute, the Mass Cytometry Core Facility of the Life Science Complex of McGill University, the Immunophenotyping platform of the RI-MUHC of McGill University, Funding provided by Compute Canada Resource Allocation Project wst-164 (to J.R.), CFI Leaders Opportunity Fund, Genome Canada Science Technology Innovation Centre, and Genome Innovation Node (all to G.B. and J.R.), the Cancer Research Society, Canadian Cancer Research Institute, Brain Tumor Foundation of Canada, and the Canadian Institute of Health Research (all to K.P.). We wish to thank the TARGiT Foundation, the Al Brilliant Night Foundation, and the Argento Family Group Ercole for supporting this work. CPC is supported by the Fonds de Recherche du Québec–Santé Resident Physician Research Career Training Program Phase I. SA is supported by a George H. Harris Fellowship and a MNI-Fisher Brain Tumor Award. G.B. is supported by a Fonds de Recherche du Québec–Santé Junior 2 Award. K.P. is supported by a clinician–scientist salary award from the Fonds de Recherche du Québec–Santé and the William Feindel Chair in Neuro-Oncology.

Author contributions

C.P.C. and K.P. conceived the project, designed the study, and interpreted the results. K.P. performed the surgeries, and P.L. and X.Y. collected the single cells. Y.C.D.W. generated the single-cell sequencing libraries. C.P.C. performed scRNAseq-related computational analyses. J.M. performed CNA-related computational analyses. J.N. performed the fetal data set comparison to Nowakowsky et al., the signature comparison to Neftel et al., and the analysis of the TCGA data set. S.A. performed flow and mass cytometry. P.L., S.B., and C.L. performed immunofluorescence imaging. P.L., X.Y., R.A., and S.B. performed the drug and chemotherapy assays. R.A. performed the cloning of the luciferase vector and produced the lentivirus. X.Y., G.R., S.A., and C.P.C. performed the in vivo experiments. J.A. and V.W.Y. provided access to fetal brain samples. M.B., M.C.G., G.B., B.M., H.N., and J.R. provided analytical and experimental support. C.P.C., S.A., and K.P. wrote the manuscript with feedback from all other authors.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s41467-020-17186-5.

Correspondence and requests for materials should be addressed to K.P.

Peer review information Nature Communications thanks Aaron Diaz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020