The Dysferlin Domain-Only Protein, Spo73, Is Required for Prospore Membrane Extension in *Saccharomyces cerevisiae*

Yuuya Okumura, a Tsuyoshi S. Nakamura, a Takayuki Tanaka, a Ichiro Inoue, a Yasuyuki Suda, b Tetsuo Takahashi, c Hideki Nakanishi, d Shugo Nakamura, a Xiao-Dong Gao, d Hiroyuki Tachikawa a

Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan a; Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences and Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba, Japan b; Laboratory of Glycobiology and Glycotechnology, Department of Applied Biochemistry, School of Engineering, Tokai University, Hiratsuka City, Kanagawa, Japan c; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China d; Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan e

ABSTRACT
Sporulation of *Saccharomyces cerevisiae* is a developmental process in which an ascus containing four haploid spores forms from a diploid cell. During this process, newly formed membrane structures called prospore membranes extend along the nuclear envelope and engulf and package daughter nuclei along with cytosol and organelles to form precursors of spores. Proteins involved in prospore membrane extension, Vps13 and Spo71, have recently been reported; however, the overall mechanism of membrane extension remains unclear. Here, we identified Spo73 as an additional factor involved in prospore membrane extension. Analysis of a *spo73Δ* mutant revealed that it shows defects similar to those of a *spo71Δ* mutant during prospore membrane formation. Spo73 localizes to the prospore membrane, and this localization is independent of Spo71 and Vps13. In contrast, a Spo73 protein carrying mutations in a surface basic patch mislocalizes to the cytoplasm and overexpression of Spo71 can partially rescue localization to the prospore membrane. Similar to *spo71Δ* mutants, *spo73Δ* mutants display genetic interactions with the mutations in the *SMA2* and *SPO1* genes involved in prospore membrane bending. Further, our bioinformatic analysis revealed that Spo73 is a dysferlin domain-only protein. Thus, these results suggest that a dysferlin domain-only protein, Spo73, functions with a dual pleckstrin homology domain protein, Spo71, in prospore membrane extension. Analysis of Spo73 will provide insights into the conserved function of dysferlin domains, which is related to dysferlinopathy.

IMPORTANCE
Prospore membrane formation consists of *de novo* double-membrane formation, which occurs during the developmental process of sporulation in *Saccharomyces cerevisiae*. Membranes are formed into their proper size and shape, and thus, prospore membrane formation has been studied as a general model of membrane formation. We identified *SPO73*, previously shown to be required for spore wall formation, as an additional gene involved in prospore membrane extension. Genetic and cell biological analyses suggested that Spo73 functions on the prospore membrane with other factors in prospore membrane extension, counteracting the bending force of the prospore membrane. Spo73 is the first dysferlin domain-only protein ever analyzed. The dysferlin domain is conserved from yeast to mammals and is found in dysferlin proteins, which are involved in dysferlinopathy, although the precise function of the domain is unknown. Continued analysis of Spo73 will contribute to our understanding of the function of dysferlin domains and dysferlinopathy.

KEYWORDS: *Saccharomyces cerevisiae*, sporulation, prospore membrane, dysferlin domain
The yeast *Saccharomyces cerevisiae* initiates the developmental process of sporulation under conditions of nitrogen deprivation and the presence of a nonfermentable carbon source. Four spores are formed inside a diploid cell, which turns into an ascus. In this process, four new membranes called prospore membranes are formed in the cytosol of the diploid cell during meiosis II, encapsulate the four nuclei, respectively, and become plasma membranes of each spore (1–3).

A prospore membrane grows through a series of discrete morphological stages (Fig. 1A). (i) It appears as a small horseshoe-shaped structure at the cytoplasmic surface of the spindle pole body by fusion of post-Golgi vesicles; (ii) it expands into a small round shape; (iii) as meiosis II progresses, it extends along the nuclear envelope and is shaped into a tube-like or cashew nut-like structure engulfing the nucleus, cytoplasm, and organelles; and (iv) at the end of the meiotic process, it quickly turns into a round shape of mature size, just following or at the same time as the closure of its leading edge (4–6). Prospore membrane formation is a process of *de novo* membrane formation into a proper size and shape; thus, it is considered to be a model of biological membrane formation.

Previous studies have shown that *VPS13* and *SPO71* function in prospore membrane extension. *VPS13* was originally identified as a gene involved in trans-Golgi network-endosomal cycling of a subset of membrane proteins and was shown to be required for vacuolar protein sorting (7). *VPS13* also has a function in sporulation; *vps13Δ* mutant cells can only form small prospore membranes and are sporulation defective (8, 9). *SPO71*, which encodes a dual pleckstrin homology (PH) domain protein, was identified in screening for genes upregulated during and required for sporulation (10). *spo71Δ* mutant cells also form small prospore membranes, although the defect looks less severe than that in *vps13Δ* mutant cells (11). An analysis of the relationship between these proteins revealed that Spo71 interacts with Vps13 and recruits it to the prospore membrane, where both proteins colocalize (12). Further, Vps13 and Spo71 are suggested to have a function in regulating the levels of phosphatidylinositol 4-phosphate (PI4P) in prospore membranes; PI4P pools of prospore membranes are reduced in *vps13Δ* and *spo71Δ* mutants (12). PI4P has a variety of cellular roles, including the regulation of membrane traffic through the Golgi apparatus (13). Thus, decreased levels of PI4P in the prospore membrane of these mutant cells could cause some defect in prospore membrane extension. However, the overall mechanism of prospore membrane extension is still unknown.

The spore membrane-bending pathway and the leading-edge complex (LEC), both of which are important for the shape of the prospore membrane, could also contribute to proper prospore membrane extension. The spore membrane-bending pathway consists of a phospholipase B, Spo1; a membrane protein, Sma2; and glycoporphosphatidylinositol-anchored proteins, including Spo19 (14). These proteins are suggested to exert a bending force toward the nucleus during prospore membrane growth to facilitate its proper shaping; in *spo1Δ* and *sma2Δ* mutants, prospore membranes become wide and open. The LEC is a protein complex that localizes to the lip of each prospore membrane and consists of at least four proteins, including Don1 and an essential component, Ssp1 (15–17). Deletion of the *SSP1* gene causes the formation of unnaturally elongated prospore membranes that stick tightly to the nuclear envelope (15), suggesting that the LEC counteracts the bending force of the prospore membrane until it is removed at the onset of closure of the prospore membrane (4, 18).

In this study, we performed a screening for additional genes involved in prospore membrane extension and identified *SPO73*, which was previously suggested to be involved in spore wall formation (19). *spo73Δ* mutant cells show phenotypes similar to those of *spo71Δ* mutant cells. We also show that a Spo73 protein carrying mutations in a surface basic patch mislocalizes to the cytoplasm and overexpression of Spo71 can partially rescue localization to the prospore membrane. Additionally, we find that, as is the case with *SPO71* (11), *SPO73* genetically interacts with *SPO1* and *SMA2*; double mutants partially recover sporulation, suggesting that they have opposing functions in prospore membrane extension. Further, our bioinformatic analysis revealed that Spo73...
is a dysferlin domain-only protein. Dysferlin domains are found in a subset of ferlin family proteins, including dysferlin, which is associated with the plasma membrane, t-tubule network, and intracellular vesicles in skeletal muscle and is involved in Ca\(^{2+}\)-dependent plasma membrane repair (20). Mutations in this domain of the dysferlin protein cause dysferlinopathies, including limb girdle muscular dystrophy type 2B and Miyoshi myopathy (20–23), although the precise function of the domain is not known. Thus, analysis of Spo73 will help our understanding of the function of dysferlin domains and may contribute to understanding of the molecular basis of dysferlinopathies.

RESULTS

Screening for mutants defective in prospore membrane extension identified the spo73Δ mutant. Previous screening for mutants defective in prospore membrane formation identified eight mutants (8). One of them, the vps13Δ mutant, formed small round prospore membranes, indicating that VPS13 is required for proper prospore membrane extension. However, the overall mechanism of prospore membrane extension was almost unknown. To obtain additional mutants defective in prospore membrane extension, we expanded the screening to 293 mutants (for a list of corresponding genes, see Table S1 in the supplemental material) that were selected from the deletion collection based on previous reports of genome-wide analyses of sporulation defects (24–26). Mutants analyzed in previous screenings, mutants with changes in functionally characterized genes, and strains that did not grow well were excluded from this study, and the vps13Δ mutant was used as a control. A green fluorescent protein (GFP)-tagged Spo20 lipid-binding domain (27) was expressed as a prospore membrane marker in those mutants and observed under a microscope during sporulation, one by one. We
identified two mutants, the spo71Δ and spo73Δ mutants, that showed only a small prospore membrane pattern suggestive of a prospore membrane extension defect (Fig. 1B). During the course of our study, Spo71 was reported to be involved in prospore membrane extension (11). Therefore, we focused on Spo73. SPO73 encodes a 143-amino-acid protein with a dysferlin C-terminal domain in its C-terminal region (19). Analysis with HHpred revealed that the Spo73 protein also contains a dysferlin N-terminal domain in its N-terminal region; thus, Spo73 is a dysferlin domain-only protein. As all of the dysferlin domain-containing proteins characterized so far contain other domains (20, 28), such as transmembrane and/or c2 domains, Spo73 is the first example of a dysferlin domain-only protein. Spo73 was first identified in a genome-wide screening for genes upregulated during and involved in sporulation and has been shown to be required for spore wall formation (10, 19). No relatedness of Spo73 to prospore membrane formation has previously been reported.

The small prospore membrane phenotype of the spo73Δ mutant was confirmed by time-lapse video microscopy. To observe sporulation more precisely, fast-sporulating SK1 background strains were used. In wild-type cells, prospore membranes appeared as four horseshoe-shaped membrane structures, enlarged to form four small round shapes, extended to form tube-like shapes, and finally closed and quickly attained their spherical shapes (Fig. 1C; see Movie S1 in the supplemental material). In spo73Δ mutant cells, prospore membranes appeared and enlarged to form four small round membranes, as observed in wild-type cells (Fig. 1C; see Movie S2 in the supplemental material). However, prospore membrane extension stopped at this stage and extension to tube-like structures was never observed. This phenotype was similar to that of spo71Δ mutant cells (Fig. 1C; see Movie S3 in the supplemental material). These results indicated that a dysferlin domain-only protein, Spo73, is involved in prospore membrane extension.

Capture of the nuclei by prospore membranes is partially defective in spo73Δ mutant cells. Small prospore membranes in spo73Δ mutant cells sometimes failed to capture each nucleus, although it has been reported that small prospore membranes in spo71Δ mutant cells capture each nucleus efficiently (11). Capture of nuclei by prospore membranes was examined in wild-type and spo73Δ mutant cells. Histone 2B tagged with mCherry was used as a nuclear marker and observed with a prospore membrane marker during sporulation. In contrast to wild-type cells, in which the vast majority of the nuclei were captured by prospore membranes, 42% of the prospore membranes failed to capture nuclei in spo73Δ mutant cells (Fig. 2A). In addition, we found that, in contrast to a previous report, 40% of the prospore membranes failed to capture nuclei in spo71Δ mutant cells (Fig. 2A). To confirm that the spo73Δ mutant has a defect in nuclear capture, time-lapse analysis was performed. While nuclear capture occurred efficiently in wild-type cells (Fig. 2B; see Movie S4 in the supplemental material), in spo73Δ mutant cells, we easily found cells in which prospore membranes failed to capture nuclei (Fig. 2B; see Movie S5). In these cells, the nuclei, marked by Htb2-mCherry, stuck at the leading edge of the prospore membrane and could not be engulfed. Thus, spo73Δ mutant cells have a partial defect in nuclear capture by prospore membranes, and a similar phenotype is also seen in spo71Δ mutant cells.

Phenotype of the spo73Δ mutant is similar to that of spo71Δ and vps13Δ mutants. We saw similar defects in prospore membrane extension and nuclear capture in spo73Δ and spo71Δ mutant cells. spo71Δ mutant cells have been shown to form prospore membranes with bubbles or intraluminal vesicles between double membranes, have a partial defect in removal of the LEC, and form prospore membranes with decreased levels of PI4P (12). Thus, we examined spo73Δ mutant cells for these phenotypes. First, we performed electron microscopy (EM) analysis. Wild-type and spo73Δ mutant cells were sporulated and analyzed by EM. In wild-type cells, all of the prospore membranes looked to be closely apposed double membranes except for those in cells with apparent spore walls (Fig. 3A). In contrast, about 40% (68 in 167) of spo73Δ mutant prospore membranes showed bubbles or intraluminal vesicles (Fig. 3B
Next, we assessed the removal of the LEC, which is required for prospore membrane closure. Postmeiotic cells selected by 4',6-diamidino-2-phenylindole (DAPI) staining were observed to detect LECs by using Don1-GFP as a marker. While most LECs were removed in wild-type postmeiotic cells, the LECs of 30% of the prospore membranes were still present in postmeiotic spo73/H9004 mutant cells, suggesting a partial defect in prospore membrane closure (Fig. 3E). Finally, PI4P levels at the prospore membrane were examined by using GFP-PHOSH2 (29) as a PI4P biosensor and Dtr1 fused to red fluorescent protein (RFP) (9) as a prospore membrane marker. Although the original procedure was mostly reproducible, we revised the experimental procedure to observe sporulating cells at 7 to 9 h at 30°C to focus on cells around the time of prospore membrane formation. In all three strains, about 80% of the RFP-positive prospore membranes were GFP positive, indicating that PI4P levels were not changed in wild-type and spo73/H9004 and spo71/H9004 mutant cells (Fig. 3F). This is in contrast to an earlier report indicating that PI4P levels are reduced in spo71/H9004 mutant cells (12). The reason for this discrepancy is unclear; nonetheless, these results indicate that the spo73/H9004 mutant has prospore membrane extension defects similar to those of the spo71/H9004 and vps13/H9004 mutants.

Spo73 localizes to the prospore membrane independently of Spo71 and Vps13. Coluccio et al. have shown that hemagglutinin-tagged Spo73 localizes to dots on prospore membranes in fixed cells (19). Subcellular localization of Spo73 protein was observed in live cells by using N-terminally GFP-tagged Spo73 expressed from a low-copy-number vector. Although the plasmid rescued the sporulation defect of the spo73Δ mutant, no apparent localization pattern was observed (data not shown). Therefore, GFP-Spo73 was overexpressed during sporulation by using a multicopy vector. Upon overexpression, a clear prospore membrane pattern was observed (Fig. 4A). Colocalization with a prospore membrane marker confirmed that Spo73 localizes to prospore membranes (Fig. 4B).

Vps13 localization to prospore membranes is dependent on Spo71 (12). Thus, interdependency of localization among Spo73, Spo71, and Vps13 was analyzed. A
Phenotypic analysis of spo73Δ mutant. (A to D) AN120 (wild-type [WT], A) and TC545 (spo73Δ mutant, B to D) cells were sporulated for 7.5 h and subjected to EM analysis. Prospore membranes and intraluminal vesicles are indicated by arrowheads and arrows, respectively, N, nucleus; PrM, prospore membrane. A scale bar is shown in each panel. (E) YUY088 (DON1-GFP), YUY090 (DON1-GFP spo73Δ), and YUY089 (DON1-GFP spo71Δ) cells expressing mRFP-SPO2051-91 were sporulated for 9 to 11 h to analyze postmeiotic cells selected with DAPI staining. Representative cells are shown. Upper panels for each strain show cells in which Don1 was concentrated on the prospore membrane. Lower panels for each strain show cells in which Don1 was dispersed in the cytoplasm localization after removal from the leading edge. Scale bar, 5 μm. The percentage of cells showing each pattern is shown. More than 100 prospore membranes were examined for each strain. (F) AN120 (wild-type), TC545 (spo73Δ mutant), and TC581 (spo71Δ mutant) cells expressing DTR1-mRFP and GFP-PHOSH2 were sporulated for 7.5 to 9 h and observed. Representative cells are shown. Scale bar, 5 μm. The average percentage of GFP-PHOSH2-positive prospore membranes in Dtr1-mRFP-positive prospore membranes is shown with the standard deviation. More than 50 prospore membranes were scored in three separate experiments. n.s., not significant (Dunnett’s test).
GFP-tagged version of each gene was expressed in mutants with the other two genes deleted and examined during sporulation. Spo73-GFP localized to prospore membranes in spo71Δ and vps13Δ mutant cells (Fig. 4C), indicating that Spo73 localization to the prospore membrane is not dependent on Spo71 or Vps13. Similarly, prospore membrane localization of Spo71-GFP was not disturbed in spo73Δ and vps13Δ mutant cells (Fig. 4C), indicating that Spo71 localization to the prospore membrane is not dependent on Spo73 and Vps13. As to Vps13-GFP, although some cytosolic background fluorescence was observed, a prospore membrane pattern was observed in spo73Δ mutant cells (Fig. 4D). This indicates that localization of Vps13 to the prospore membrane is not dependent on Spo73, which is distinct from the dependence of Vps13 localization on Spo71.

Mutations in a surface patch of basic amino acid residues of Spo73 disrupt its localization to the prospore membrane. Our analysis revealed that Spo73 consists mostly of the dysferlin domain. The three-dimensional (3D) structure of Spo73 was modeled on the structure of the dysferlin domain of myoferlin (Protein Data Bank [PDB] code 2K2O A chain) (30) (Fig. 5A). A similar 3D model was obtained on the basis of the 3D structure of the dysferlin domain of dysferlin (PDB code 4CAH B chain; data not shown) (23). Besides the antiparallel β-sheet structure formed by the N- and C-terminal dysferlin domains, a surface basic loop was found in both dysferlin domains, which may be important for electrostatic interactions with acidic materials, such as protein surfaces or phospholipids. Thus, we mutated those amino acids in GFP-Spo73 to alanines (R119A, K121A, K123A) (Fig. 5B). The mutant version of GFP-Spo73 (GFP-Spo73AAA) was overexpressed in spo73Δ mutant cells and observed during sporulation. GFP-Spo73AAA-expressing cells did not show the prospore membrane pattern; instead, they showed a uniform cytosolic pattern (Fig. 5C). However, this strain sporu-
lated (61%) at a level only slightly lower than that of the spo73Δ mutant strain overexpressing GFP-Spo73 (78%), suggesting that the overall structure of Spo73 is not disrupted by the mutations and that overexpression may be masking a more severe sporulation defect. Therefore, we expressed GFP-Spo73AAA from a centromere (CEN)-based low-copy-number vector by using its own promoter. This strain sporulated to a significantly lesser extent (7%) than the strain expressing wild-type GFP-Spo73 from a low-copy-number vector (58%) (Fig. 5D). These results indicate that the basic loop of Spo73 is required for its localization to the prospore membrane and that spo73AAA is partially functional.

Overexpression of Spo71 can localize Spo73AAA to the prospore membrane. Taking advantage of spo73AAA, which is partially functional, we examined the
relationship between Spo73 and Spo71 or Vps13. Suppression of spo73AAA was tested by using cells expressing spo73AAA from a CEN-based low-copy-number vector. The Spo71 and VPS13 genes were each overexpressed by using a 2μm-based vector, and percent sporulation was examined. Also, the effect on the localization of Spo73AAA was tested by using cells overexpressing GFP-Spo73AAA and Spo71 or Vps13 from 2μm-based vectors. We could not detect apparent suppression of spo73AAA by overexpression of Spo71 or VPS13 (Fig. 5E). However, in contrast to the cytosolic pattern observed in cells overexpressing only GFP-Spo73AAA or both GFP-Spo73AAA and Vps13, an apparent prospore membrane pattern was observed in cells overexpressing both GFP-Spo73AAA and Spo71 (Fig. 5F). Considering a previous report showing that Spo71-GFP localizes to the prospore membrane, which was detectable only when overexpressed (12), the present observation suggests that overexpression of Spo71 can recruit detectable levels of mutant GFP-Spo73 to the prospore membrane. The results also imply that the function of Spo73 in prospore membrane extension is not necessarily dependent on its localization to the prospore membrane.

SPO73 has a genetic interaction with SPO1 and SMA2. Parodi et al. showed that Spo71 has a weak genetic interaction with SPO1 (11). Also, although no data were shown, a genetic interaction between SPO73 and SPO1 has been described (31). Therefore, we looked for a genetic interaction of SPO73 with SPO1 and SMA2, which code for proteins involved in the spore membrane-bending pathway, together with SSP1, which codes for the essential component of the LEC. While all of the single mutants, i.e., the spo1Δ, sma2Δ, and spo73Δ mutants, were completely sporulation defective, the spo1Δ spo73Δ and sma2Δ spo73Δ double mutants sporulated reproducibly (spo1Δ spo73Δ mutant, 9%; sma2Δ spo73Δ mutant, 5%) (Fig. 6A). No sporulation of the spo1Δ spo73Δ double mutant was observed.

To assess the mechanism of suppression, the phenotype of the spo1Δ spo73Δ double mutant was analyzed in comparison with that of single mutants. As reported by Parodi et al. (11), Htb2-mCherry and GFP-Spo2051-91 were expressed in the mutant cells during sporulation, and postmeiotic cells were classified into two classes. Cells without apparent prospore membranes were designated class I. Cells with at least one prospore membrane were designated class II. In addition, the capture of the nuclei by prospore membranes and prospore membrane perimeters was assessed. As is the case with the spo71Δ mutant, the spo73Δ mutant partially suppressed the defect of the spo1Δ mutant. The spo1Δ spo73Δ double mutant exhibited more cells in class II, indicating a defect less severe than that of the spo1Δ mutant (Fig. 6B). No apparent suppression of the nuclear capture rate was observed (Fig. 6C). As to prospore membrane size, the spo73Δ mutant cells showed a small prospore membrane phenotype; however, apparent suppression was not observed in the spo1Δ spo73Δ double mutant (Fig. 6D). But we found some prospore membranes in the double mutant larger than those in the spo73Δ mutant, consistent with the 9% sporulation of this mutant. Our results indicate that SPO73 genetically interacts with the genes involved in spore membrane bending, similar to SPO71.

DISCUSSION

Previous studies have shown the involvement of Vps13 and Spo71 in prospore membrane extension (9, 11, 12); however, the overall mechanism of the process has remained to be elucidated. Here, we identified Spo73 as an additional factor involved in this process.

The spo73Δ mutant showed phenotypes similar to those of the spo71Δ and vps13Δ mutants; it formed small prospore membranes with intraluminal vesicles, was partially defective in nuclear capture by prospore membranes, and was also partially defective in the removal of the LEC. All three proteins localized to the prospore membrane. Analyses of interaction and localization dependency in a previous study showed that Spo71 interacts with and recruits Vps13 to the prospore membrane (12). Our analysis showed that localization of Spo73 to the prospore membrane is not dependent on Spo71 and Vps13 and vice versa. However, a mutant Spo73 protein that showed a
cytosolic localization pattern was targeted to the prospore membrane when Spo71 was overexpressed. Although no genetic suppression was detected, this rescue of localization could be explained by interaction between Spo73 and Spo71. Further analysis is required to show a physical interaction between these proteins.

Membrane-bending pathway mutants form wide and aberrant prospore membranes (14), which are quite the opposite of the small prospore membranes formed by the spo73Δ mutant. A genetic interaction was observed between SPO73 and the genes involved in spore membrane bending, SPO1 and SMA2. Our analysis of prospore membranes showed that the spo1Δ mutant phenotype was partially suppressed by spo73Δ, although apparent suppression of the spo73Δ mutant phenotype by spo1Δ was not observed. SPO71 has a genetic interaction with SPO1 as well (11), although it is weaker than the interaction between SPO73 and SPO1 or SMA2. Thus, our results support the idea that Spo73 functions with Spo71 in prospore membrane extension and that this function somehow works to counteract the bending force exerted by the spore membrane-bending pathway.

In our results, the rate of prospore membrane capture in the mutants was somewhat lower than reported (11). This could be caused by a difference in the strain background or some experimental conditions.
It has been reported that PI4P levels on prospore membranes of vps13Δ and spo71Δ mutant cells are lower than on those of wild-type cells (9, 12). Thus, Vps13 and Spo71 are considered to have a role in regulating the PI4P levels on prospore membranes. This was based on the observation of a PI4P biosensor in cells that sporulated overnight at room temperature, which could contain cells at various stages during sporulation. To focus on cells just around meiosis, we changed the method to sporulating the cells at 30°C for 7 to 9 h. Using this new method, we could not detect any apparent difference in PI4P levels in spo71Δ and spo73Δ mutant cells from those in wild-type cells, suggesting that PI4P levels are not affected or are affected at undetectable levels in those mutants around meiosis II. The reasons for the discrepancy between the observations in this and previous studies are unclear, but one of the reasons could be that observing cells at later stages amplified the difference to detectable levels in the original procedure.

Bioinformatic analysis revealed that Spo73 is a dysferlin domain-only protein. Dysferlin domains are found in a subgroup of the ferlin family proteins (20). In humans, three out of the six ferlin family proteins contain dysferlin domains, including dysferlin and myoferlin. Dysferlin is a protein considered to function in Ca2⁺-dependent membrane repair in muscles, and mutations in its gene cause dysferlinopathies, including limb girdle muscular dystrophy type 2B and Miyoshi myopathy (21–23). Myoferlin is involved in myoblast fusion (32). In S. cerevisiae, dysferlin domains are found in a subset of peroxins, Pex30, Pex31, and Pex32, that function in the control of peroxisome size and number (33). All of the dysferlin domain-containing proteins analyzed so far are involved in membrane-related processes, although the precise role of this domain is still unknown. In this study, we revealed that dysferlin domain-only protein Spo73 is required for proper prospore membrane formation. Prospore membrane formation of S. cerevisiae is a process of dynamic reorganization of intracellular membrane structure and has been studied as a model of de novo membrane formation. Given that other dysferlin domain proteins contain specific domains in addition to this domain (28), dysferlin domain-only protein Spo73 is the most suitable protein to elucidate the conserved function of dysferlin domains.

Our analysis revealed that a mutant Spo73 protein that has mutations in a conserved basic loop cannot localize to the prospore membrane. Thus, Spo73 may interact with acidic materials such as phospholipids on the prospore membrane through its conserved basic loop. Although more analysis is required, interaction with membranes could be an important feature of the dysferlin domain. Interestingly, one of the mutations causing muscular dystrophy resides in the basic loop of the inner dysferlin domain of the dysferlin protein (R1022Q) (23), suggesting that this mutation could affect the interaction of the domain with the membrane, which could cause the disease phenotype. Further analysis of Spo73 could provide insights into the conserved function of dysferlin domains and the pathogenesis of dysferlinopathy.

MATERIALS AND METHODS

Yeast strains and media. Standard media and genetic techniques were used unless otherwise noted (34). The genes corresponding to the mutants selected for screening from the deletion collection in the BY4743 background (Invitrogen, San Diego, CA) are listed in Table S1 in the supplemental material. Other yeast strains used in this study are listed in Table 1. All of the strains in Table 1 were derived from the SK1 background. PCR-based gene alterations were performed as previously described (35). Strains were constructed with the primers and plasmids in Table S2. The primers used in this study are listed in Table S3. All PCR-based integrations and disruptions were confirmed by genomic PCR. All of the deletions constructed in this study were confirmed to be rescuable by expression of the genes deleted.

Plasmids. The plasmids used in this study are listed in Table S4 in the supplemental material. To generate 306-DON1-GFP, DON1-GFP was cut out of pSB8 (35) and cloned into pRS306. To construct pSB1 (pFA6a-His3MX6-Pspo20-GFP), the GAL1 promoter of pFA6a-His3MX6-PGAL1-GFP (36) was replaced with the SPO20 promoter (35). To generate 424-GFP-SPO73, the promoter region of a chromosomal copy of SPO73 was replaced with a PSPO20-GFP fusion by a PCR-based method with primers OK13 and OK14 by using pSB1 as a template. Pspo20-GFP-SPO73 was then amplified from genomic DNA by using HT369 and HT422. To construct 424-Pspo20-GFP-SPO73AAA, site-directed mutagenesis was performed by the QuikChange method with primers OK29 and OK30. To construct 314-Pspo20-GFP-SPO73 and 314-Pspo20-GFP-SPO73AAA, GFP-SPO73 and GFP-SPO73AAA without a promoter were cloned into pRS314 together with a SPO73 promoter fragment amplified with HT421 and HT422.
TABLE 1 Yeast strains used in this study

Strain	Genotype	Source or reference
AN117-4B	MATa ura3 leu2 his3ΔSK trp1::hisG arg4-Nspl lys2::haoΔ::LYS2 rme1Δ::LEU2	This study
AN117-16D	MATa ura3 leu2 his3ΔSK trp1::hisG lys2 haoΔ::LYS2	This study
AN120	MATa/MATa ura3 ura3 his3ΔSK/his3ΔSK trp1::hisG/trp1::hisG ARG4/arg4-Nspl lys2/lys2	This study
TC581	MATa/MATa ura3 ura3 his3ΔSK/his3ΔSK trp1::hisG/trp1::hisG ARG4/arg4-Nspl lys2/lys2	This study
TC545	MATa/MATa ura3 ura3 his3ΔSK/his3ΔSK trp1::hisG/trp1::hisG ARG4/arg4-Nspl lys2/lys2	This study
YUY088	MATa/MATa ura3 ura3 his3ΔSK/his3ΔSK trp1::hisG/trp1::hisG ARG4/arg4-Nspl lys2/lys2	This study
YUY089	MATa/MATa ura3 ura3 his3ΔSK/his3ΔSK trp1::hisG/trp1::hisG ARG4/arg4-Nspl lys2/lys2	This study
H129	MATa/MATa ura3 ura3 his3ΔSK/his3ΔSK trp1::hisG/trp1::hisG ARG4/arg4-Nspl lys2/lys2	This study
TC554	MATa/MATa ura3 ura3 his3ΔSK/his3ΔSK trp1::hisG/trp1::hisG ARG4/arg4-Nspl lys2/lys2	This study
TC555	MATa/MATa ura3 ura3 his3ΔSK/his3ΔSK trp1::hisG/trp1::hisG ARG4/arg4-Nspl lys2/lys2	This study
H412	MATa ura3 ura3 leu2 his3ΔSK trp1::hisG arg4-Nspl lys2 haoΔ::LYS2 rme1Δ::LEU2 sma2Δ::HIS3MX6	This study
H413	MATa ura3 ura3 leu2 his3ΔSK trp1::hisG arg4-Nspl lys2 haoΔ::LYS2 rme1Δ::LEU2 sma2Δ::HIS3MX6	This study
H414	MATa ura3 ura3 leu2 his3ΔSK trp1::hisG arg4-Nspl lys2 haoΔ::LYS2 rme1Δ::LEU2 sma2Δ::HIS3MX6	This study
TC568	MATa/MATa ura3 ura3 his3ΔSK/his3ΔSK trp1::hisG/trp1::hisG ARG4/arg4-Nspl lys2/lys2 haoΔ::LYS2 rme1Δ::LEU2 sma2Δ::HIS3MX6	This study
TC569	MATa/MATa ura3 ura3 his3ΔSK/his3ΔSK trp1::hisG/trp1::hisG ARG4/arg4-Nspl lys2/lys2 haoΔ::LYS2 rme1Δ::LEU2 sma2Δ::HIS3MX6	This study
NYS51H	MATa/MATa ura3 ura3 HIS3/his3ΔSK trp1::hisG/trp1::hisG ARG4/arg4-Nspl lys2/lys2 haoΔ::LYS2 rme1Δ::LEU2 sma2Δ::HIS3MX6	This study
TC562H	MATa/MATa ura3 ura3 HIS3/his3ΔSK trp1::hisG/trp1::hisG ARG4/arg4-Nspl lys2/lys2 haoΔ::LYS2 rme1Δ::LEU2 sma2Δ::HIS3MX6	This study
ICY10	MATa ura3 ura3 ura3 his3 ΔSK/his3ΔSK trp1::hisG/trp1::hisG ARG4/arg4-Nspl lys2/lys2 haoΔ::LYS2 rme1Δ::LEU2 sma2Δ::HIS3MX6	This study
TC577	MATa/MATa ura3 ura3 his3ΔSK/his3ΔSK trp1::hisG/trp1::hisG ARG4/arg4-Nspl lys2/lys2 haoΔ::LYS2 rme1Δ::LEU2 sma2Δ::HIS3MX6	This study
TC578	MATa/MATa ura3 ura3 his3ΔSK/his3ΔSK trp1::hisG/trp1::hisG ARG4/arg4-Nspl lys2/lys2 haoΔ::LYS2 rme1Δ::LEU2 sma2Δ::HIS3MX6	This study

426-SPO71 and 426-VP513, SPO71 and VPS13 were amplified from SK1 genomic DNA by PCR with primers OK11 and HT424 and primers TN194 and TN197, respectively, and cloned into pRS426. To generate 316-HTB2-mCherry, a chromosomal copy of HTB2 was fused to mCherry by PCR-mediated transformation. HTB2-mCherry was then amplified from genomic DNA with primers TN62 and HT66E and then cloned into pRS316. All amplified regions were sequenced.

Sporulation
Sporulation was performed as previously described (37). For sporulation on plates, cells grown on yeast extract-peptone-dextrose or synthetic dextrose medium plates were shifted to sporulation plates (1% potassium acetate) and incubated at 30°C.

Light microscopy
Differential interference contrast (DIC) images and fluorescence images were obtained with a BX71 microscope (Olympus, Tokyo, Japan), a Quantix 1400 camera (Photometrics, Tucson, AZ), and IPLab 3.7 software (Scanalytics, Fairfax, VA). Cells were fixed with 3.7% formaldehyde when required.

Nuclear capture and prospore membrane perimeter measurement were performed as previously described (11). Cells expressing both HTB2-mCherry and GFP-SPO2051-91 were sporulated for 9 h, and postmeiotic cells were identified by the pattern of Htb2-mCherry localization. The percentage of prospore membranes capturing nuclei is shown for each strain. Prospore membrane perimeters were measured by ImageJ (http://rsb.info.nih.gov/ij/).

MP4 levels at the prospore membrane were tested as previously described (12), except that sporulation was induced for 7 to 9 h at 30°C. Cells carrying both pRS426-P△HICL -GFP-PH[PHOSPHO] and pRS424-DTR1-RFP were observed under the microscope, and GFP-PH[PHOSPHO]/DTR1-mRFP colocalization was quantified.

Time-lapse imaging was performed as previously described (38). Images were captured on a Zeiss Axiovert 100 microscope equipped with a CoolSNAP HQ camera (Photometrics) at 2-min intervals with IPLab 3.6.5a software (Scanalytics). The temperature was held at 28°C during image collection. 3D stacks were performed with IPLab 3.6.5a.
EM. Sporulating cells were collected, fixed with 2% paraformaldehyde–2% glutaraldehyde in 0.1 M phosphate buffer (pH 7.4) at 4°C overnight, and washed three times with 0.1 M phosphate buffer. Cells were then treated with 4% KMnO₄ at room temperature for an hour, washed with distilled water, and embedded in 1.5% low-melting-point agarose. Samples were dehydrated with acetone and infiltrated with increasing concentrations of Spurr’s resin in propylene oxide and finally with 100% Spurr’s resin. After polymerization with dimethylaminoethanol, ultrathin sections were cut on a Leica Ultracut UCT microtome and stained with uranyl acetate and lead citrate. The sections were then viewed with a JEOL 2000EX electron microscope.

3D structure modeling. HHpred (http://toolkit.tuebingen.mpg.de/hhpred) (39) was used to identify related structures of Spo73. The 3D model of Spo73 was constructed on the basis of the structure of the internal dysferlin domain of myoferlin by using Modeller (http://toolkit.tuebingen.mpg.de/modeller) and shown by using Chimera (http://www.cgl.ucsf.edu/chimera).

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at http://dx.doi.org/10.1128/mSphere.00038-15.

 1. Movie S1, AVI file, 1.4 MB.
 2. Movie S2, AVI file, 1.7 MB.
 3. Movie S3, AVI file, 2 MB.
 4. Movie S4, AVI file, 4.5 MB.
 5. Movie S5, AVI file, 4.7 MB.
 6. Table S1, PDF file, 0.08 MB.
 7. Table S2, PDF file, 0.06 MB.
 8. Table S3, PDF file, 0.03 MB.
 9. Movie S4, PDF file, 0.06 MB.

ACKNOWLEDGMENTS

We thank Aaron Neiman for plasmids, strains, helpful discussions, and comments on the manuscript. We also thank Kazushige Touhara and Yoshito Niimura for helpful discussions. We thank Eita Fukuchi, Takahiho Ohira, and Junji Hidaka for technical assistance and Kenji Tomita in the Technology Advancement Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, for assistance with EM.

FUNDING INFORMATION

Japan Society for the Promotion of Science (JSPS) provided funding to Hiroyuki Tachikawa under grant number 25450094. Toujuro Iijima Foundation for Food Science and Technology provided funding to Hiroyuki Tachikawa.

REFERENCES

1. Moens PB. 1971. Fine structure of ascospore development in the yeast Saccharomyces cerevisiae. Can J Microbiol 17:507–510. http://dx.doi.org/10.1139/m71-084.
2. Neiman AM. 2005. Ascospore formation in the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev 69:565–584. http://dx.doi.org/10.1128/MMBR.69.4.565-584.2005.
3. Neiman AM. 2011. Sporulation in the budding yeast Saccharomyces cerevisiae. Genetics 189:737–765. http://dx.doi.org/10.1534/genetics.111.127126.
4. Diamond AE, Park J-, Inoue I, Tachikawa H, Neiman AM. 2009. The anaphase promoting complex targeting subunit Ama1 links meiotic exit to cytokinesis during sporulation in Saccharomyces cerevisiae. Mol Biol Cell 20:134–145. http://dx.doi.org/10.1091/mbc.E08-06-0615.
5. Nakanishi H, Morishita M, Schwartz CL, Coluccio A, Engebrecht J, Neiman AM. 2006. Phosphopase D and the SNARE Sso1p are necessary for vesicle fusion during sporulation in yeast. J Cell Sci 119:1406–1415. http://dx.doi.org/10.1242/jcs.02841.
6. Suda Y, Nakanishi H, Mathieson EM, Neiman AM. 2007. Alternative modes of organelle segregation during sporulation in Saccharomyces cerevisiae. Eukaryot Cell 6:2009–2017. http://dx.doi.org/10.1128/EC.00238-07.
7. Brickner JH, Fuller RS. 1997. SO1 encodes a novel, conserved protein that promotes TGN-endosomal cycling of Kex2p and other membrane proteins by modulating the function of two TGN localization signals. J Cell Biol 139:23–36. http://dx.doi.org/10.1083/jcb.139.1.23.
8. Nakanishi H, Suda Y, Neiman AM. 2007. Erv14 family cargo receptors are necessary for ER exit during sporulation in Saccharomyces cerevisiae. J Cell Sci 120:908–916. http://dx.doi.org/10.1242/jcs.03405.
9. Park J-, Neiman AM. 2012. VPS13 regulates membrane morphogenesis during sporulation in Saccharomyces cerevisiae. J Cell Sci 125:3004–3011. http://dx.doi.org/10.1242/jcs.105114.
10. Rabitsch KP, Tóth A, Gálová M, Schleiffer A, Schaffner G, Aigner E, Rupp C, Penkner AM, Moreno-Borchart AC, Primig M, Esposito RE, Klein F, Knop M, Nasmyth K. 2001. A screen for genes required for meiosis and spore formation based on whole-genome expression. Curr Biol 11:1001–1009. http://dx.doi.org/10.1016/S0960-9822(01)00274-3.
11. Parodi EM, Baker CS, Tetzlaff C, Villahermosa S, Huang LS. 2012. Spo71 mediates prospore membrane size and maturation in Saccharomyces cerevisiae. Eukaryot Cell 11:1191–1200. http://dx.doi.org/10.1128/EC.00076-12.
12. Park J-, Okumura Y, Tachikawa H, Neiman AM. 2013. Spo71 encodes a developmental stage-specific partner for Vps13 in Saccharomyces cerevisiae. Eukaryot Cell 12:1530–1537. http://dx.doi.org/10.1128/EC.00239-13.
13. De Matteis MA, Wilson C, D’Angelo G. 2013. Phosphatidylinositol-4-phosphate: the Golgi and beyond. BioEssays 35:612–622. http://dx.doi.org/10.1002/bies.201200180.
14. Maier P, Rathfelder N, Maeder CI, Colombelli J, Stelzer EH, Knop M. 2008. The SpomBe pathway drives membrane bending necessary for cytokinesis and spore formation in yeast meiosis. EMBO J 27:2363–2374. http://dx.doi.org/10.1038/emboj.2008.168.
15. Moreno-Borchart AC, Strasser K, Finkbeiner MG, Shevchenko A,
Lam C, Santore E, Lavoie E, Needleman L, Fiacco N, Kim C, Neiman L, 2004. Ady3p links spindle pole body function to spore wall synthesis in *Saccharomyces cerevisiae*. Genetics 160: 1439–1450.

Lam C, Santore E, Lavoie E, Needleman L, Fiacco N, Kim C, Neiman L, 2004. Ady3p links spindle pole body function to spore wall synthesis in *Saccharomyces cerevisiae*. Genetics 160: 1439–1450.

Maier P, Rathfelder N, Finkbeiner MG, Taxis C, Mazza M, Le Panse SJ, Haguenauer-Tsapis R, Knop M, 2007. Cytotokinesis in yeast meiosis depends on the regulated removal of Ssp1p from the prospore membrane. EMBJ J 26:1843–1852.

Coluccio A, Bogengruber E, Conrad MN, Dresser ME, Briza P, Neiman AM, 2004. Morphogenetic pathway of spore wall assembly in *Saccharomyces cerevisiae*. Eukaryot Cell 3:1464–1475. http://dx.doi.org/10.1186/1471-2148-10-231.

Lek A, Eveson FJ, Sutton RB, North KN, Cooper ST, 2012. Ferlins: regulators of vesicle fusion for auditory neurotransmission, receptor trafficking and membrane repair. Traffic 13:185–194. http://dx.doi.org/10.1111/j.1600-0851.2011.01267.x.

Bashir R, Britton S, Strachan T, Keers S, Vafiadaki E, Lako M, Richard I M, Bour N, Argov Z, Sadeh M, Mahjneh I, Marconi G, Passos-bueno MR, Moreira EDS, Zatz MR, Beckmann JS, Bushby K. 1998. A gene related to Caenorhabditis elegans spermatogenesis factor fer-1 is mutated in limb-girdle muscular dystrophy type 2B. Nat Genet 20: 37–42. http://dx.doi.org/10.1038/1689.

Liu J, Aoki M, Illa I, Wu C, Fardeau M, Angelini C, Serrano C, Ihara S, Neiman AM, Tachikawa H. 2009. Protein phosphatase type 2B. J Mol Biol 379: 981–990. http://dx.doi.org/10.1016/j.jmb.2008.04.046.

Tevodadze GG, Pierce JV, Esposito RE. 2007. Genetic evidence for a SPO1-dependent signaling pathway controlling meiotic progression in yeast. Genetics 175: 1213–1227. http://dx.doi.org/10.1534/genetics.106.069252.

Doherty KR, Cave A, Davis DB, Delmonte AJ, Posey A, Earley JU, Hadhazy M, McNally EM. 2005. Normal myoblast fusion requires myoferlin. Development 132: 5565–5575. http://dx.doi.org/10.1242/dev.02155.

Vizeacoumar FJ, Torres-Guzman JC, Bouard D, Aitchison JD, Rachubinski RA. 2004. Pex30p, Pex31p, and Pex32p form a family of peroxisomal integral membrane proteins regulating peroxisome size and number in *Saccharomyces cerevisiae*. Mol Biol Cell 15: 665–677. http://dx.doi.org/10.1091/mbc.E03-09-0081.

Adams AE, Gottshling DE, Kaiser CA, Sterns T. 1997. Methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

Tachikawa H, Bloecher A, Tatchell K, Neiman AM. 2001. A Gip1p-Glc7p phosphate complex regulates septin organization and spore wall formation. J Cell Biol 155: 797–808. http://dx.doi.org/10.1083/jcb.200107008.

Longtine MS, McKenzie A, Illi, Demarini DJ, Shah NG, Wach A, Brachat A, Philpssen P, Pringle JR. 1998. Additional modules for versatile and economical PCR-based gene deletion and modification in *Saccharomyces cerevisiae*. Yeast 14: 953–961. http://dx.doi.org/10.1002/(SICI)1097-0061(199807)14:8<953::AID-YEA293>3.0.CO;2-U.

Neiman AM. 1998. Sporose membrane formation defines a developmentally regulated branch of the secretory pathway in yeast. J Cell Biol 140: 29–37. http://dx.doi.org/10.1083/jcb.140.1.29.

Ishihara M, Suda Y, Inoue I, Tanaka T, Takahashi T, Gao X-, Fukui Y, Brachet A, Brachat P, Pringle JR, Neiman AM. 2009. Protein phosphatase type 1-interacting protein Ysw1 is involved in proper septin organization and spore membrane formation during sporulation. Eukaryot Cell 8:1027–1037. http://dx.doi.org/10.1128/EC.00095-09.

Söding J, Biegert A, Lupas AN. 2005. The HHpred interactive server for protein homology detection and structure prediction, Nucleic Acids Res 35(W1):W244–W248. http://dx.doi.org/10.1093/nar/gki408.