RESEARCH ARTICLE

A G-Protein β Subunit, AGB1, Negatively Regulates the ABA Response and Drought Tolerance by Down-Regulating AtMPK6-Related Pathway in Arabidopsis

Dong-bei Xu1,2‡, Ming Chen2‡, Ya-nan Ma1,2, Zhao-shi Xu2, Lian-cheng Li2
Yao-feng Chen1*, You-zhi Ma2*

1 College of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China, 2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China

‡ These authors contributed equally to this work.
* chenf3828@126.com (YC); mayouzhi@caas.cn (YZM)

Abstract

Heterotrimeric G-proteins are versatile regulators involved in diverse cellular processes in eukaryotes. In plants, the function of G-proteins is primarily associated with ABA signaling. However, the downstream effectors and the molecular mechanisms in the ABA pathway remain largely unknown. In this study, an AGB1 mutant (agb1-2) was found to show enhanced drought tolerance, indicating that AGB1 might negatively regulate drought tolerance in Arabidopsis. Data showed that AGB1 interacted with protein kinase AtMPK6 that was previously shown to phosphorylate AtVIP1, a transcription factor responding to ABA signaling. Our study found that transcript levels of three ABA responsive genes, AtMPK6, AtVIP1 and AtMYB44 (downstream gene of AtVIP1), were significantly up-regulated in agb1-2 lines after ABA or drought treatments. Other ABA-responsive and drought-inducible genes, such as RD29A (downstream gene of AtMYB44), were also up-regulated in agb1-2 lines. Furthermore, overexpression of AtVIP1 resulted in hypersensitivity to ABA at seed germination and seedling stages, and significantly enhanced drought tolerance in transgenic plants. These results suggest that AGB1 was involved in the ABA signaling pathway and drought tolerance in Arabidopsis through down-regulating the AtMPK6, AtVIP1 and AtMYB44 cascade.

Introduction

Heterotrimeric GTP-binding proteins (G-proteins) are evolutionarily conserved plasma membrane-bound proteins that regulate a number of fundamental processes in eukaryotic organisms. G-proteins consist of three subunits, Gα, Gβ, and Gγ. In contrast to humans, which have 23 Gα, 5 Gβ and 14 Gγ genes [1], Arabidopsis has only one Gα (GPA1) [2], one Gβ (AGB1) [3]
and three Gγ (AGG1-AGG3) genes [4,5]. Upon perception of a cognate ligand by its transmembrane G protein coupled receptor (GPCR) on the cell surface, the heterotrimeric G-protein complex dissociates to form an activated Ga-subunit and an obligate dimer Gβγ, which further transmits signaling into the cytoplasm by interaction with various downstream effector proteins [6]. Loss-of-function mutants and gain-of-function lines overexpressing G-protein sub-units and signaling components showed that G-proteins play a vital role in regulating diverse growth and developmental processes, hormonal and stress responses [6,7]. AGB1 functions in many facets of development and signal transduction in Arabidopsis, for example, agb1 mutants display diverse phenotypes with highly branched root systems, rounder leaves as well as shorter siliques [8], and have altered sensitivity to brassinosteroid (BR) and ABA during seed germination, and altered sugar sensing and stomate closure [9–13].

G proteins are involved in signal transduction through interaction with their effector proteins and regulate their activities [14]. Many G protein effectors have been functionally identified in animals, but few effectors for canonical G proteins were characterized, especially for AGB1 in plants. Currently, some genes involved in physical and genetic AGB1-interaction have been identified, such as ARD1 (ACI-reductone dioxygenase-like protein), a protein interacting with Gβ exhibited higher enzymatic activity by the involvement of Gβγ [15], NDL1 (N-MYC DOWNREGULATED-LIKE1), a protein physically interacting with AGB1 that regulates auxin distribution in roots [16], and a Golgi-localized hexose transporter, SGB1 [17], and an AGB1-interactome have been reported in Arabidopsis [18]. However, these studies have not explained the divergent functions of AGB1 in plants, and the molecular mechanisms underlying G protein-mediated ABA signaling remain to be investigated.

ABA is a crucial mediator in plant response to both biotic [19] and abiotic stresses, such as dehydration, salinity, low temperature [20,21], and in plant developmental processes such as seed development, dormancy, germination, and seedling growth [22]. Components of the heterotrimeric G-protein complex are involved in the ABA signaling pathway and play an important role in seed germination, early seedling development, stomate opening and closure in Arabidopsis [9,10,13,23,24]. In addition, ABA was shown to bind to GTG1 and GTG2 on the plasma membrane [25], and a quantitative proteomics-based analysis showed that many ABA-responsive proteins depend on the presence of functional GTG1/GTG2 proteins. This indicates the importance of G proteins in ABA signaling [26]. On the other hand, agb1-2 mutant has greater ABA sensitivity than gpa1-4 or gcr1-2 mutants during seed germination and post-germination development, indicating that AGB1 is a primary regulator of the G-protein complex in ABA signaling [7,11]. However, the putative downstream effectors of AGB1 have not been assessed, therefore, the putative molecular mechanism underlying the involvement of AGB1 in ABA signaling pathway remains unclear.

In this research, the role of AGB1 in the ABA-related signaling pathway and its interaction proteins and/or downstream genes was investigated using yeast two-hybrids, and ABA-treated Arabidopsis cDNA library was screened using AGB1 as bait. AtMPK6 (mitogen-activated protein kinase 6) was found to interact with AGB1 [27]. Furthermore, the expression profiles of downstream genes in agb1-2 mutant lines upon ABA and drought treatments were investigated. The results showed that a subset of genes involved in the ABA signaling pathway and in drought tolerance were up-regulated in agb1-2 lines. Finally, the performance of transgenic Arabidopsis plants overexpressing AtVIP1 (VirE2-interacting protein1), a gene encoding a bZIP transcription factor protein (a downstream target of AtMPK6), was investigated. Our results demonstrated that AGB1 interacts with AtMPK6 and may negatively regulate the ABA signaling pathway and drought tolerance by down-regulating the AtMPK6, AtVIP1, and AtMYB44 cascade in Arabidopsis.
Materials and Methods

Plant materials and growth conditions

The mutants agb1-1 and agb1-2 in the Col-0 background have been described previously [8,9]. agb1-2 (At4g34460) homozygous mutants were confirmed by genomic PCR using gene-specific primers P1: 5’-TCATTAGATGGACACCGGAG- 3’; P3: 5’-TGTAATCCTGCTGTAAAT CCC- 3’ and T-DNA border primer P2 (LBb1.3): 5’-ATTTTGCGATTTCCGGAAC- 3’ (S1B Fig.). RT-PCR was performed using primers P1 and P3 (S1C Fig. and S2 Table). Homozygous mutant and wild-type seeds kept at identical conditions were surface sterilized with 30% bleach for 10 min and washed five times with sterile water. Seeds were plated on MS medium plates containing 3% sucrose in darkness for 3 d at 4°C, and then transferred to a growth chamber with a 16-h-light (20°C)/8-h-darkness (22°C) cycle.

Yeast two-hybrid screening

For screening of proteins interacting with AGB1, the full coding region of AGB1 was amplified using primers AtAGB1-BD-FULL-NdeI-F and AtAGB1-BD-FULL-EcoRI-R (S2 Table), and digested/ligated into the C-terminal of the Gal4 DNA binding domain in pGBKT7. The recombined vectors were co-transformed along with the ABA-treated Arabidopsis cDNA library into the yeast strain AH109 as described by the manufacturer (Clontech, USA; http://www.clontech.com/). To confirm interaction between AGB1 and AtMPK6, the full-length coding sequences of AtMPK6 and AGB1 were amplified with primers AtMPK6-BD-FULL-NdeI-F and AtMPK6-BD-FULL-SalI-R, and AtAGB1-AD-FULL-NdeI-F and AtAGB1-AD-FULL-EcoRI-R (S2 Table). AtMPK6 and AGB1 were inserted into pGBK7 and pGADT7 respectively. The two recombined vectors were co-transformed into the yeast strain AH109. Transformed yeast was cultivated in liquid SD/-Leu/-Trp to OD600 = 0.6, and then 5 μl of yeast suspension was added to each of the control SD/-Leu/-Trp and screening SD/-Leu/-Trp/-His/-Ade medium. The growth of yeast cells was photographed after 3 d of incubation at 30°C.

Bimolecular fluorescence complementation (BiFC) assay

Full-length coding sequences of AGB1 and AtMPK6 were amplified from a cDNA library of Arabidopsis using gene-specific primers AtAGB1-YFPN-FULL-BamHI-F and AtAGB1-YFPN-FULL-SalI-R, and primers AtMPK6-YFP-C-FULL-BamHI-F and AtMPK6-YFP-C-FULL-SalI-R (S2 Table). AGB1 sequence was inserted into the pSPYNE vector (fusing AGB1 to the N-terminal side of YFP) and the AtMPK6 to the pSPYCE vector (fusing MPK6 to the C-terminal side of YFP) [28]. The empty vectors pSPYNE and pSPYCE, expressing split YFP domains were used as a negative controls, and the combination of bZIP63-YFPN and bZIP63-YFPC was used for a positive controls [28]. Both pSPYNE-AGB1 and pSPYCE-MPK6 were mixed, and co-transformed into protoplasts of Arabidopsis ecotype Col-0. Samples were incubated at 23°C for 16–20 h before observation. YFP fluorescence was recorded using a confocal laser-scanning microscope (Zeiss LSM700) and the nuclei of protoplasts were stained with 4’,6-diamidino-2-phenylindole (DAPI, Sigma).

GST pull-down assay in vitro

The GST-AGB1 and His-MPK6 constructs were introduced into E. coli strain BL21 (DE3), inducing the expression of the fusion proteins by adding 1 mM of isopropylthio-β-galactoside (IPTG) at 37°C. The GST-AGB1 and His-MPK6 fusion proteins were purified using glutathione-agarose 4B (GE Healthcare) beads and Ni-agarose, respectively, according to the manufacturer’s instructions (GE Healthcare). For protein pull-down assays, the GST fusion proteins
were bound to a glutathione sepharose 4B column and the loaded matrix was then incubated with purified His fusion protein in binding buffer [20 mM HEPES, pH 7.4, 1 mM EDTA, 5 mM MgCl₂, 1 mM DTT, 0.1% Triton X-100, 1 mg ml⁻¹ BSA and 1 mM PMSF] for 4 h at 4°C. The beads were then centrifuged at 2000 g for 1 min at 4°C and washed four times with protein pull-down wash buffer (1 × PBS: 137 mM NaCl, 8.1 mM Na₂HPO₄·12H₂O, 2.68 mM KCl, 1.47 mM KH₂PO₄, 1 mM PMSF, pH 7.4). Bound proteins were eluted, and then fractionated by 10% SDS-PAGE, and analyzed by Western blotting using antibodies of HisProbe-HRP (Invitrogen).

Co-immunoprecipitation (Co-IP) assay in vivo

AGB1, fused to Flag-tag (AtAGB1-Flag-FULL-F and AtAGB1-Flag-FULL-R, containing SalI and SpeI restriction sites respectively), and the AtMPK6, fused to Myc-tag (AtMPK6-Myc-FULL-F and AtMPK6-Myc-FULL-R, containing SalI and SpeI restriction sites respectively) were digested/ligated into pCAMBIA1300 vector (S2 Table). CsCl gradient centrifugation was used to purify the plasmids and the plasmids were transformed transiently into Arabidopsis mesophyll protoplasts (Col-0). The protoplasts were homogenized overnight in buffer (10 mM Tris-HCl [pH 7.6], 150 mM NaCl, 2 mM EDTA, 0.5% [v/v] Nonidet P-40, 2 × protease inhibitor [Roche]) and then were centrifuged at 13,000 g for 15 min at 4°C. A 30 µl volume of anti-Myc agarose beads (Sigma-Aldrich) for immunoprecipitation of Myc-tag were incubated with the extraction supernatant for 3 h at 4°C. After the samples were washed five times with 1 ml of 1 × PBS buffer, the immunoprecipitated products were analyzed by Western blot. Antibodies of Anti-Myc (Sigma-Aldrich) or anti-Flag (Sigma-Aldrich) were used, and the chemiluminescence signal was detected by autoradiography.

Subcellular localization analysis of proteins

Full-length cDNA fragments coding AtMPK6 and AGB1 were PCR-amplified with gene-specific primers AtMPK6-GFP-FULL-SalI-F and AtMPK6-GFP-FULL-BamHI-R, and AtAGB1-GFP-FULL-SalI-F and AtAGB1-GFP-FULL-BamHI-R (S2 Table), and inserted into the N-terminal side of 163h-GFP vector, respectively. Subcellular localization analysis of two fused proteins was completed in protoplasts of Arabidopsis ecotype Col-0 [29] and agb1-2.

Generation of 35S::AtVIP1 transgenic Arabidopsis

The full-length coding sequence of AtVIP1 was amplified with gene-specific primers AtVIP1-FULL-Smal-F and AtVIP1-FULL-SpeI-R (S2 Table), and inserted into the binary vector pBI121 under control of the Cauliflower Mosaic Virus (CaMV) 35S promoter. The construct was confirmed by sequencing, and transformed into Agrobacterium tumefaciens strain (GV3101), and then transformed into wild-type Arabidopsis (Columbia-0 ecotype) by the floral dip method [30]. The seeds collected were then selected on MS medium containing 50 mg l⁻¹kanamycin for three generations. Transgenic lines (T3 generation) with different expression levels of AtVIP1 were used for further analysis.

Stress tolerance analyses of Arabidopsis plants

Germination assay was performed using 60 seeds of the WT and OE-VIP1-4, 5, 6 lines (identical storage condition). Seeds were surface sterilized and plated on 0.8% agar (Sigma) containing
MS salts (Sigma) and 3% (w/v) sucrose with or without ABA. Plated seeds were then chilled at 4°C in darkness for 3 d, and finally germinated at 22°C in 16 h light/8 h darkness. After 4 days, germination rates were scored based on emergence of the radical through the seed coat. This experiment was repeated three times.

For ABA sensitivity and PEG tolerance analyses, seeds of WT and OE-VIP1–4, 5, 6 lines were germinated on MS medium for 3 d, and then transferred to normal medium or medium contained ABA or PEG. Root lengths of seedlings grown in 16 h light/8 h darkness were recorded after 14 d. For drought tolerance analyses, three-week-old plants in soil were withheld from watering for 21 d and then were re-watered at the 21st day of drought. Observations were recorded after 3 d or 5 d of re-watering.

RNA extraction and gene expression analyses
21-d-old Arabidopsis plants (Col-0) and agb1-2 mutant were removed from the soil and treated with 200 μM ABA (stock solution in ethanol) and intact plants were harvested 0.5, 1, 2, 4, 6, 8, 12, 16, and 24 h later. For dehydration stress, 21-d-old Arabidopsis plants and agb1-2 mutant were removed from the soil, and placed on filter paper at room temperature, and intact plants were harvested 0.5, 1, 2, 4, 6, 8, 12, 16, and 24 h later. Total RNA was isolated and 2 μg of total RNA was used for first strand cDNA synthesis with a PrimeScript 1st Strand cDNA Synthesis kit (Takara). Quantitative expression assays were performed with the SYBR Premix Ex Taq (Takara) and an ABI 7300 according to the manufacturer’s protocols (Applied Biosystem). The PCR program was 95°C for 2 min followed by 40 cycles of denaturation for 15 s at 95°C and annealing/extension at 60°C for 1 min. Expressions of all genes were assayed for triplicated. Gene expression was calculated using the Delta-Delta cycle threshold method [31]. Relative quantitative results were calculated by normalization to ACT2 (GenBank accession number: AT3G18780). The primer pairs used for real-time PCR are listed in S2 Table.

Determination of proline content
The proline contents of wild type and agb1-2 plants were determined as previously described [32,33].

Results
AGB1 negatively regulates ABA sensitivity and drought tolerance in Arabidopsis
Loss of function of AGB1 increased ABA sensitivity either at seed germination and post-germination growth stages [11]. In the present study, the effects of ABA on the G-protein β subunit mutants agb1-1 and agb1-2 were examined. Under normal conditions without ABA treatment, the mutant agb1-1, agb1-2 and WT lines showed 86–97% germination rates at 48 h (S2A Fig.) with no significant difference. Compared to the 72% germination rate of wild-type plants at 48 h, lower germination rates were observed in the agb1-1 and agb1-2 mutants, approximately 45% (for agb1-1) and 49% (for agb1-2), respectively, in the presence of 1.0 μM ABA (S2B Fig.). The cotyledon greening rates of WT, agb1-1 and agb1-2 seedlings were likewise similar under normal conditions, but those of WT were significantly higher than those in agb1-1 and agb1-2 seedlings growing on the medium supplemented with 1.0 μM ABA (+P<0.05) (S2 Fig. C and D), indicating that AGB1 plays a negative role in ABA signaling, similar to what was found previously [11,34]. Meantime, it was clear that the root lengths of agb1 mutants were significantly shorter than that of wild-type under 2.0 μM ABA (+P<0.05) (S3 Fig. A, D and F), indicating that AGB1 may have a negative role in the ABA-mediated response. On the other hand, AGB1
transcript was significantly decreased after treatment with 200 μM ABA (Fig. 1A) and also was drastically decreased after drought treatment with a slightly recovery at later stages (8 h and 12 h) (Fig. 1A), suggesting that AGB1 was down-regulated under ABA and drought treatments.

To evaluate drought stress tolerance of G-protein β subunit mutant lines, we selected a knockout mutant agb1-2, and drought treated by withholding water from 3-week-old plants in pots for 3 weeks; 54.76% of WT plants survived for 5 d after re-watering, significantly lower than the 76.19% survival rate of agb1-2 plants (*P < 0.01) (Fig. 1B and C). Additionally, analysis showed that there were no differences in root length between wild-type (ecotype, Col-0) and agb1 mutants on MS medium, however, in wild-type seedlings, roots length was significantly shorter than that of agb1-1 and agb1-2 mutant lines when the MS medium contained 4% and 8% PEG (*P < 0.05) (S3 Fig. A, B, C and E). Physiological measurements showed that, under normal conditions, there was no significant difference in proline contents between WT and agb1-2 (Fig. 1D). However, the proline contents in agb1-2 plants were significantly higher at 1 h (31% higher) and 3 h (47% higher) than those in WT under dehydration at the same time point (*P < 0.01) (Fig. 1D). Moreover, the expression levels of two key regulators of proline biosynthesis, AtProDH and AtP5CS2, were increased in agb1-2 in comparison to WT plants after drought treatment (Fig. 1E and F), leading to proline accumulation and enhancement of drought resistance in agb1-2 lines.

Figure 1. Expression pattern analysis of AGB1 in Arabidopsis and drought tolerance assay of agb1. (A) Expression patterns of AGB1 were identified after treatments with 200 μM ABA and drought stress for 0, 0.5, 1, 2, 4, 6, 8, 12, and 24 h. The expression value of AGB1 at 0 h was normalized as 1; expression values at other time points were relative to the value at 0 h. Values represent means ± SD with three biological replicates. (B) Drought tolerance assay of WT (Col-0) and agb1-2 plants. WT and agb1-2 plants (before drought) were subjected to water stress by withholding water for 21 days (drought) and were then re-watered for 5 days (5 d after re-watering). (C) Survival rates of the WT and agb1-2 in (B) after drought stress. Data represent means ± SD (n = 60) from three independent experiments. Asterisks indicate significant differences (Student’s t test, **P < 0.01) between WT and agb1-2. (D) Proline contents of WT and agb1-2 plants after dehydration treatments. For the proline assay, 14-day-old seedlings were subjected to drought treatment for 0, 1 and 3 h. Proline contents of WT and agb1-2 plants at the same time points were significantly different at 1 and 3 h. Data represent means ± SD from three independent experiments. Asterisks indicate significant differences (Student’s t test, **P < 0.01) between WT and agb1-2. (E) and (F) Expression analysis of the proline biosynthesis genes ProDH (E) and P5CS2 (F) in WT and agb1-2 seedlings after drought treatment for 0, 0.5 and 1 h. All results are means ± SD for three independent experiments.
AtMPK6 interacts with AGB1 in Y2H, pull-down, BiFC and CO-IP assays

To identify proteins interacting with AGB1 in regulating the ABA signaling pathway, we performed a yeast two-hybrid (Y2H) screening of the ABA-treated Arabidopsis cDNA library by using the full-length AGB1 as bait. Yeast cells with both AtMPK6 (GenBank accession: AEC10325; AT2G43790) and AGB1 grew on the selection medium, but not when either was absent, indicating that AtMPK6 interacts with AGB1 in yeast cells (Fig. 2A). The interaction between these two proteins was further confirmed using a BiFC assay based on split YFP [28]. The N- and C-terminal domains of YFP were fused to AGB1 and AtMPK6, respectively, and transiently co-expressed in protoplasts of Arabidopsis ecotype Col-0. Fluorescence from reconstituted YFP indicated that interaction between AGB1 and AtMPK6 occurred in the nucleus (Fig. 2B). Interaction of these two proteins was also identified by GST pull down assays. Recombinant GST-AGB1 and His-AtMPK6 fusion proteins were purified and co-incubated with GST-binding beads. Western blot analysis further confirmed the interaction between AGB1 and AtMPK6 in vitro (Fig. 2C).

Figure 2. AtMPK6 interacted with AGB1 in Y2H, Pull-down, BiFC and Co-IP assays. (A) Interaction tests using yeast two-hybrid assays between AGB1 and AtMPK6. Yeast cells with AGB1 (AD-AGB1) and AtMPK6 (BD-MPK6) were placed in different liquid concentrations on control medium SD/-Trp/-Leu (SD/LT) and selection medium SD/-Trp/-Leu/-His/-Ade (SD/LTHA). For negative controls, pGBK7 without insert (BD alone), pGADT7 without insert (AD alone), and the empty vectors AD and BD were used. Experiments were performed three times and a representative result is shown. (B) AGB1 interacted with AtMPK6 by BiFC assays in Arabidopsis protoplast. The recombinant constructs AGB1-YFP N-terminal (YFP N-terminal) and MPK6-YFP C-terminal (YFP C-terminal) were co-transformed into protoplast cells of Arabidopsis WT (Col-0). For negative controls, pSPYNE without insert AGB1 (YFP N-terminal) (iii) and pSPYCE without insert MPK6 (YFP C-terminal) (ii) were used. The combination of bZIP63-YFP N-terminal and bZIP63-YFP C-terminal was used as a positive control (iv). Fluorescence was recorded 20 h after transformation. Experiments were performed 10 times and a representative result is shown. Bars = 40 μm in (i), (iii), and (iv), and 20 μm in (ii). (C) Interaction assay using pull-down analysis. AGB1 and AtMPK6 fused with GST and His tags, respectively, were mixed and passed through a glutathione column (binding GST tag). After elution with pull-down binding buffer, samples were separated by SDS-PAGE, and His-MPK6 was detected by immunoblotting with anti-His antibody. GST alone was used as the negative control. Experiments were performed three times and a representative result is shown. Bars = 40 μm in (i), (ii), and (iii), and 20 μm in (ii). (D) Co-IP assay of AGB1 with AtMPK6. AGB1-Flag and MPK6-Myc or AGB1-Flag and empty pCAMBIA1300 vector (contained Myc-tags) were transiently co-transformed into Arabidopsis protoplast. After 16 h, the total Arabidopsis cell lysates were prepared for Co-IP with anti-Myc agarose. The anti-Myc immunoprecipitates were subjected to Western blot analysis with anti-Flag antibody (top). Meanwhile, the total cell lysates were also subjected to Western blot analysis with anti-Myc antibody (middle), and anti-Myc antibody (bottom, for MPK6-Myc expression) antibodies. Experiments were performed three times and a representative result is shown.

doi:10.1371/journal.pone.0116385.g002
The interaction between AGB1 and AtMPK6 in vivo was also verified by the Co-IP assay in Arabidopsis protoplasts. Both MPK6-Myc and AGB1-Flag constructs were transiently co-expressed in Arabidopsis protoplasts. The anti-Myc agarose beads were used to immunoprecipitate Myc-tag from the Arabidopsis cell lysates when co-expressed with MPK6-Myc and AGB1-Flag. Antibodies for Flag-tag were used to detect the AGB1-Flag fusion protein in immunoprecipitation products. Western blot analysis indicated that AGB1-Flag fusion protein was detected in the immunoprecipitated samples, but not detected in the control samples co-expressing the empty vector pCAMBIA1300 (contained Myc-tag only) and the recombination vector AGB1-Flag (compare lanes 1 and 2, top panel, Fig. 2D). This suggest that AtMPK6 could interact with AGB1 in Arabidopsis cells.

ABA treatment and mutation of AGB1 did not affect the subcellular localization of AtMPK6

When transiently expressed in Arabidopsis protoplasts (ecotype Col-0), GFP-fused AtMPK6 (AtMPK6-GFP) was detected in the cytosol and nucleus. Similar results were obtained with agb1-2 (Fig. 3A). When the protoplasts of both the mutant and wild type lines were treated with ABA, the localization of AtMPK6-GFP showed no difference (Fig. 3B), indicating that subcellular localization of AtMPK6 was unaffected by ABA treatment or mutation in AGB1. Additionally, our observation showed that AGB1 is present in the plasma membrane and nucleus (Fig. 3C), and it is identical with previous reports [34–36], suggesting that AtMPK6 and AGB1 co-localization in the nucleus might provide a novel insight into the interaction shown above by BiFC (Fig. 2B).

Figure 3. Subcellular localization analysis of AtMPK6 and AtAGB1. 35S:AtMPK6-GFP was transiently expressed in protoplast cells of Arabidopsis strains WT (Col-0) and the agb1-2 mutant in (A) and (B). Subcellular localizations of AtMPK6-GFP were detected without ABA treatment (A) and with 10 μM ABA (B). Results were visualized by confocal microscopy. (C) Subcellular localization of AGB1. Each experiment was performed three times, and thirty cells were observed for each construct and a representative result is shown (Bars = 20 μm).

doi:10.1371/journal.pone.0116385.g003
AtVIP1, AtMYB44 and AtMPK6 were up-regulated in the agb1-2 mutant after ABA or drought treatments

Both AtVIP1 and AtMYB44 can be phosphorylated by AtMPK6 [37,38]. Moreover, AtVIP1 regulates expression of transcription factor AtMYB44 [39] and overexpression of AtMYB44 results in increased sensitivity of seed germination to ABA and enhances drought tolerance [40]. Therefore, expression of AtVIP1 and AtMYB44 were compared in agb1-2 and WT plants subjected to ABA or drought treatments. Transcript levels of AtVIP1 in agb1-2 lines were significantly higher than those in WT, and reached nearly 35-fold and 51-fold at 1 h and 8 h, respectively, and that of AtMYB44 reached nearly 5-fold and 4-fold at 0.5 h and 1 h in agb1-2 lines under ABA treatment compared with WT (Fig. 4A). Except at 12 h, transcripts of AtVIP1 in agb1-2 lines were also higher than those in WT, and reached 10-fold at 8 h in agb1-2 relative to WT, and transcripts of AtMYB44 in agb1-2 lines under drought treatment were 2.7-fold and 3.5-fold compared with that of WT at 16 h and 24 h, respectively (Fig. 4B). On the other hand, transcripts of AtMPK6 in agb1-2 lines were significantly increased at 0.5 h and 1 h after ABA treatment compared to those in WT (S4 Fig.). These results indicated that AGB1 might negatively regulate the ABA signaling pathway in Arabidopsis by down-regulating expression of AtMPK6, AtVIP1 and AtMYB44 under ABA or drought treatments.

A set of stress-responsive genes and ABA-biosynthesis genes were up-regulated in agb1-2 after drought treatment

Real-time PCR was performed to analyze the expression of RD29A, a downstream gene of AtMYB44 [40], and stress-responsive genes RAB18 and ERD10 [41,42] in agb1-2 and WT plants. When subjected to dehydration stress treatments, a set of stress-responsive genes, such as RD29A, RAB18 and ERD10 in WT and agb1-2 were induced. For example, the expression of RD29A in agb1-2 was higher than those in WT, reaching nearly 17-fold at 16 h after drought treatment compared with WT (Fig. 5A). Except at 12 h, the transcript levels of RAB18 and

![Figure 4](https://example.com/figure4.png)

Figure 4. Expression of AtVIP1 and AtMYB44 in WT and agb1-2 after ABA and drought treatments. (A) and (B) Expression analysis of AtVIP1 and AtMYB44 in WT and agb1-2 plants after ABA (A) and drought (B) treatments for 0, 0.5, 1, 2, 4, 6, 8, 12, 16, and 24 h. Results are means ± SD with three biological replicates.

doi:10.1371/journal.pone.0116385.g004
ERD10 in agb1-2 were higher than those in WT, and the transcript levels of RAB18 reached nearly 3-fold and that of ERD10 nearly 6.5-fold higher at 6 h in agb1-2 compared with WT (Fig. 5A). ABA-biosynthesis genes, such as ABA1 and ABA2, were also up-regulated in agb1-2 after drought treatment, and the expression of ABA1 in agb1-2 reached nearly 5.2-fold compared with that of WT at 1 h (Fig. 5B). These results indicated that AGB1 negatively regulated the expression of a subset of drought-responsive genes involved in ABA signaling pathway, including RD29A, RAB18, ERD10, ABA1 and ABA2.

Transgenic 35S:AtVIP1 plants were hypersensitive to ABA treatment and enhanced drought tolerance

ABA functions to inhibit seed germination and seedling growth. Under normal conditions without ABA treatment, the 35S:AtVIP1 and WT lines showed similar germination rates (80–88%)
at 72 h. However, the germination rates of 35S:AtVIP1 lines were 40–63% compared to 76% in WT at the same time point following treatment with 2.5 μM ABA (Fig. 6A, B and C). The root lengths of WT and 35S:AtVIP1 seedlings were likewise similar under normal conditions, but those of WT were significantly longer than 35S:AtVIP1 seedlings when grown on medium supplemented with 5 μM ABA (P<0.05) (Fig. 6D and E). Germination rate of transgenic lines OE-VIP1–4 (40%) and OE-VIP1–7 (45%) were lower than that of line OE-VIP1–5 (63%) (Fig. 6C) after treatment with 2.5 μM ABA and the phenotypes of the transgenic lines were related to the expression levels of AtVIP1 (Fig. 6F), indicating that the expression level of the AtVIP1 transgene was positively related with sensitivity to ABA treatment in transgenic plants during germination and early seedling growth. With regard to osmotic stress, there were no differences between WT and 35S:AtVIP1 lines on MS medium, but the root lengths of WT seedlings were significantly shorter than those of 35S:AtVIP1 lines OE-VIP1–5 (P<0.05) and OE-VIP1–7 (P<0.01) when grown on MS medium contained 4% PEG (Fig. 7A and B). For plants grown in soil, 35S:AtVIP1 lines OE-VIP1–5 (51.7% survival) and OE-VIP1–7 (68.3% survival) retained better appearance and higher survival rates than WT (18.3% survival) at 3 d after

Figure 6. Overexpression of AtVIP1 Inhibited seed germination and root length under ABA treatment. Identically stored seeds were surface sterilized and washed extensively with water and plated on MS0 medium plates containing 3% Suc in the absence or presence of 2.5 μM ABA. Plates were kept at 4°C in darkness for 3 d and then transferred to growth chambers (16 h light/8 h darkness regime) at 22°C. (A) Seed germination analysis of WT and 35S:AtVIP1 transgenic plants containing OE-VIP1–4, -5 and -7 under normal conditions (MS0) and ABA treatment (MS0 plus 2.5 μM ABA). (B) and (C) Seed germination rates of different 35S:AtVIP1 transgenic lines under normal conditions (B), and 2.5 μM ABA treatment (C) at different time points. 35S:AtVIP1 transgenic lines displayed lower germination rates than WT. Values for each time point are means of three experiments, and each experiment comprised 60 plants. (D) Root growth WT and 35S: AtVIP1 transgenic plants under normal conditions (MS0) and 5 μM ABA treatment for 14 d. (E) Primary root lengths (cm) shown in (D) were measured 14 days after treatment. Values are means ± SD (n = 30) from three independent experiments. Asterisk indicates significant differences (Student’s t test, *P<0.05) between the Col-0 and 35S:AtVIP1 transgenic lines. (F) Relative expression analysis (fold change) of AtVIP1 in WT and transgenic lines. Expression of VIP1 in WT was normalized as 1. Results are means ± SD from three independent experiments, and asterisks indicate significant differences (Student’s t test, **P<0.01) between Col-0 and transgenic lines.

doi:10.1371/journal.pone.0116385.g006
re-watering following 21 d of water deprivation (Fig. 7C), suggesting that overexpression of AtVIP1 conferred drought tolerance in transgenic plants.

Discussion

AGB1 negatively regulates the ABA response by down-regulating AtMPK6-AtVIP1-AtMYB44 pathway in *Arabidopsis*

The downstream effectors of G proteins and associated signaling pathways were not well-defined. AGB1 was previously considered to be a primary regulator of the G-protein complex in ABA signaling [7,11], whereas the regulatory mechanism of AGB1 in ABA responses in *Arabidopsis* remained unclear [11]. Recently, although several AGB1 interaction proteins in *Arabidopsis* have been identified in the G-signaling Interactome Database (AGIdb, http://bioinfolab.unl.edu/AGIdb), few protein kinases have been shown to interact with AGB1 [43,44]. In the present study, we used Y2H, Pull-down (*in vitro*), BiFC and Co-IP assay (*in vivo*) to demonstrate that AGB1 interacts with AtMPK6, a key protein kinase involved in stress responses (Fig. 2). These results established the link between G-proteins and the MAP-like kinase cascade. Protein kinases are major components in cellular signal transduction pathways, and mediate responses to various biotic and abiotic stresses, including hormone signaling pathways [45]. For example, *AtMPK6* was transiently activated after ABA application and overexpression of *AtMPK6* enhanced ABA response during germination. However, the *atmpk6* mutant was insensitive to ABA during germination and under drought stress condition [27,46,47], suggesting that the interaction between MPK6 and AGB1 may play a role in ABA signaling. In addition, both AtVIP1 and AtMYB44 can be phosphorylated by AtMPK6 [37,38]. *AtMYB44* is regulated by *AtVIP1* [39], and the dehydration-responsive gene, *RD29A*, is a downstream target gene of *AtMYB44* [40]. Furthermore, overexpression of *AtMYB44* also enhanced ABA sensitivity and drought tolerance in *Arabidopsis* [40]. The evidence suggested...
that a signaling cascade that involves \textit{AtMPK6}, \textit{AtVIP1}, \textit{AtMYB44}, and \textit{RD29A} might be involved in the ABA signaling pathway in \textit{Arabidopsis}. In this report, the \textit{agb1} mutants showed hypersensitivity to ABA (S2 Fig.), and enhanced drought tolerance (Fig. 1B and C). On the other hand, the target genes involved in this pathway were up-regulated in \textit{agb1-2} under ABA or drought treatments (Fig. 4, Fig. 5A and S4 Fig.). Overexpression of \textit{AtVIP1} enhanced the sensitivity of transgenic plants to ABA treatment (Fig. 6A-E). These results indicating that a novel role of AGB1 may be involved in transcriptional regulation through the \textit{AtMPK6}, \textit{AtVIP1}, \textit{AtMYB44}, and \textit{RD29A} cascade in \textit{Arabidopsis} in response to ABA or dehydration.

With respect to the mechanism of \textit{AtMPK6} regulation by AGB1, it was reported that the activity of the kinase was regulated by affecting trafficking in plant cells [48]. However, the results showed that the subcellular localization of \textit{AtMPK6} was not affected in \textit{agb1-2} (Fig. 3A), suggesting that trafficking changes were not involved in the regulation of \textit{AtMPK6} by AGB1. On the other hand, although the activity of \textit{AtMPK6} is reported to be independent of ABA [49], other studies have suggested that \textit{AtMPK6} was transiently activated after ABA treatment in a \textit{AtMKK1}-dependent manner in seedlings [27,46]. In the present study, the expression of \textit{AtMPK6} in the \textit{agb1-2} mutant was up-regulated after ABA application (S4 Fig.), implying that AGB1 might be involved in transcriptional regulation of \textit{AtMPK6} in response to ABA. Whilst, other components might be involved in response to ABA signaling through interaction between AGB1 and \textit{AtMPK6}. Recently, \textit{AtVIP1} was shown to interact with AGB1 in \textit{Arabidopsis} [50] and modulated the osmo-sensing of \textit{Arabidopsis} plants [51], and \textit{AtVIP1} or \textit{AtMYB44} acts as a downstream gene that can be regulated by \textit{AtMPK6} [37,38]. Thus, AGB1 probably mediates the interaction of \textit{AtMPK6} and other components existing in the signaling complex in plant cells. This was due to WD40 repeats are thought to mediate protein-protein interactions, and AGB1 is one of these interaction proteins (http://smart.embl-heidelberg.de/). Additionally, some WD40 proteins in \textit{Arabidopsis} are involved in protein degradation. Whilst, AGB1 interacts with an E3 ubiquitin ligase PUB20 and DDB1 [50,52,53]. So this does not rule out the possibility that the stability of AGB1 is one of these interaction proteins (http://smart.embl-heidelberg.de/).

In this study, we found that, except for \textit{RD29A}, some stress-responsive genes such as \textit{RAB18} and \textit{ERD10} (Fig. 5A), ABA-biosynthesis genes containing \textit{ABA1} and \textit{ABA2} (Fig. 5B), and proline-biosynthesis genes including \textit{AtProDH} and \textit{AtPSCS2} (Fig. 1E and F) in \textit{agb1-2} were significantly up-regulated after drought treatment, suggesting that in addition to the \textit{AtMPK6}, \textit{AtVIP1}, \textit{AtMYB44}, and \textit{RD29A} cascade, other factors might also be involved in ABA response and drought tolerance of plants regulated by AGB1. It was reported that G\textit{B} interacts with MAPK-like protein, PsMPK3, and responds to ABA treatment in \textit{Pisum sativum} [43]. As PsMPK3 is highly homologous with AtMPK3 and AtMPK6, two MAPKs that are key nodal and functionally redundant factors in the ABA signaling pathway [55], we hypothesized that AGB1 acts as a molecular switch in regulating the ABA signaling pathway in plants by interacting simultaneously with AtMPK3 and AtMPK6. However, further studies are necessary to confirm this hypothesis.

AGB1 negatively regulates a drought tolerance in \textit{Arabidopsis}

\textit{AGB1} not only affects the adaptability of plants to the environment, but also alters seed weight under water deficit [56]. However, the physiological and molecular mechanisms involved in the regulation of drought response are not completely understood. In this report, \textit{AGB1} was
demonstrated to negatively affect drought tolerance in *Arabidopsis* (Fig. 1B, C and S3E Fig.). Stress-responsive genes *RAB18* and *ERD10* (Fig. 5A), *ABA1* and *ABA2* (Fig. 5B), and *AtProDH* and *AtP5CS2* (Fig. 1E and 1F) in *agb1-2* were significantly up-regulated after drought, along with proline accumulation in the *agb1-2* mutant (Fig. 1D). It has been reported that overexpression of *AtMPK6* increased expression of the ABA biosynthesis genes *NCED3* and *ABA2* [47], and overexpression of stress-responsive genes, including *RD29A* and *RAB18*, which resulted in enhanced dehydration tolerance in transgenic plants [57,58]. Accumulation of proline is an important indicator in determining salt/drought tolerance, and overproduction of proline led to increased tolerance against abiotic stress in transgenic tobacco plants [59]. In this study, overexpression of *AtVIP1* enhanced drought tolerance of transgenic plants (Fig. 7A, B and C), indicating that inducible expression of stress-responsive genes contributed to enhanced drought tolerance in *agb1-2*. Moreover, we detected some cis-acting elements associated with abiotic stress responses, such as DRE (drought response element), LTRE (low temperature response element) and ABRE (ABA response element) in the promoter region of *AGB1* using the database PLACE Signal Scan Search (S1 Table) [60], suggesting that *AGB1* is indeed involved in drought responses in plants. Interestingly, *AGB1* expression was down-regulated by ABA and drought treatment (Fig. 1A). Therefore, it was hypothesized that *AGB1* negatively regulated expression of some ABA response and drought tolerance genes in wild type plants under normal conditions [40,61]. Whereas under stress conditions, expression of *AGB1* was inhibited (Fig. 1A), thereby expression of ABA response genes and drought tolerance genes were activated (Fig. 4A, B and Fig. 5A, B), thus contributing to enhanced stress tolerance and better survival under drought conditions. In brief, AGB1 interacts with AtMPK6 (Fig. 2A-D), and regulates ABA response and drought tolerance by down-regulating the ABA responsive transcriptional factor AtMPK6 in *Arabidopsis* (Fig. 8).

![Figure 8. A mode for AGB1 functions in ABA- and drought stress response through affecting AtMPK6-related pathway. AGB1 negatively modulates ABA and drought response in Arabidopsis by down-regulating AtMPK6, AtVIP1 and AtMYB44 cascades and suppresses ABA biosynthesis and proline accumulation through regulating expression of ABA1, ABA2, ProDH and P5CS2. Positive effects are indicated by arrows and bars indicate repression.](doi:10.1371/journal.pone.0116385.g008)
Conclusions

Suppression of AtAGB1 enhanced ABA sensitivity and conferred drought tolerance in Arabidopsis, and AGB1 interacted with ABA-response protein kinase AtMPK6 in vivo. Moreover, the expression of three ABA responsive genes, AtMPK6, AtVIP1 (downstream gene of AtMPK6) and AtMYB44 (downstream gene of AtVIP1) were up-regulated in agb1-2 mutant, and overexpression AtVIP1 enhanced drought tolerance. All of these indicated that AGB1 regulated the AtMPK6-related pathway, but further studies are needed to determine the roles of AtMPK6 in AGB1-mediated intracellular signaling.

Supporting Information

S1 Fig. Identification of AGB1 mutant. (A) Positions of T-DNA insertion in agb1-2 mutant. Black boxes represent exons. The positions of T-DNA insertions in agb1-2 is indicated by arrowheads. Primer pairs used in genomic PCR and primer pairs used in RT-PCR to assess AGB1 transcripts are indicated. Annealing sites of the primers used in (B) and (C) are indicated by arrows. (B) Genomic PCR analyses verified homozygosity for the T-DNA alleles. (C) RT-PCR analysis of AGB1 transcript levels in agb1-2 mutant. Actin was used as an internal control. (TIF)

S2 Fig. agb1 mutants showed increased sensitivity to ABA. Identically stored seeds were surface sterilized and washed extensively with water and plated on MS0 media plates containing 3% Suc in the absence or presence of 1.0 μM ABA. Plates were kept at 4°C in darkness for 3 d and then transferred to growth chambers (16 h light/8 h darkness regime) at 22°C. (A) and (B) Seed germination rates of wild-type (Col-0), agb1-1 and agb1-2 mutant lines under normal conditions (A), and 1.0 μM ABA treatment (B) at different time points. Values for each time point are means of three experiments, and each experiment comprised 80 plants. (C) Photographs of greening seedlings of the wild type and atagb1 grown on medium with or without 1.0 μM ABA after 21 d. (D) Cotyledon greening rates were calculated under normal condition and 1.0 μM ABA treatment for (C) experiment. Three experiments were performed with similar results. Values are means ± SD (n = 45). Asterisks indicate significant differences (Student’s t test, *P<0.05) between the Col-0 and atagb1 mutant lines. (TIF)

S3 Fig. agb1 mutants showed increased sensitivity to ABA and drought tolerance in seedling growth. Identically stored wild-type and agb1 mutants seeds were surface sterilized and washed extensively with water and plated on MS0 medium plates containing 3% Suc. Plates were kept at 4°C in darkness for 3 d and then transferred to grow chambers (16 h light/8 h darkness regime) at 22°C. Seeds were germinated on MS0 medium for 3 d, and then transferred to normal medium (A), MS0 medium plus 4% PEG (B) and 8% PEG (C), and MS0 medium plus 2.0 μM ABA (D) for 11 d. (E) The length of primary roots was measured at 11 d after transfer corresponding to (A, B, C). At least three experiments were done with similar results. Values presented are the mean ± SD (n = 20). Asterisks indicate a significant difference (Student’s t test, *p<0.05) between wild-type and agb1 mutants. (F) The length of primary roots was measured at 11 d after transfer corresponding to (D). Three experiments were done with similar results. Values presented are the mean ± SD (n = 20). Asterisks indicate a significant difference (Student’s t test, *p<0.05) between wild-type and agb1 mutants. (TIF)

S4 Fig. The expression patterns of AtMPK6. Expression patterns of AtMPK6 after 200 μM ABA treatment for 0, 0.5, and 1 h. The expression value of AtMPK6 at 0 h was normalized as 1
for WT and agb1-2. Results are means ± standard deviation (SD, n = 3) and asterisks indicate significant differences (Student’s t test, *P<0.05 or **P<0.01) between WT and agb1-2 at same time points.

TIF

S1 Table. Analysis of cis-acting elements in AGB1 promoter region.

DOC

S2 Table. Primers used in this study.

DOC

Acknowledgments

We are grateful to Dr R.A. McIntosh (Plant Breeding Institute, University of Sydney, Australia), Dr. Lan-Qin Xia (Institute of Crop Sciences, Chinese Academy of Agricultural Sciences), Dr. Jose Fernandez (Plants and Crop Sciences Division, School of Biosciences at University of Nottingham), and Dr. Malcolm J Hawkesford (Plant Biology and Crop Science, Rothamsted Research) for critical review of this manuscript.

Author Contributions

Conceived and designed the experiments: MC YZM DX. Performed the experiments: DX YM. Analyzed the data: DX MC YM YC. Contributed reagents/materials/analysis tools: YZM YC ZX LL. Wrote the paper: DX MC.

References

1. Temple BRS, Jones AM (2007) The plant heterotrimeric G-protein complex. Annu Rev Plant Biol 58: 249–266. doi: 10.1146/annurev.arplant.58.032806.103827 PMID: 17201690
2. Ma H, Yanofsky MF, Meyerowitz EM (1990) Molecular cloning and characterization of GPA1, a G protein alpha subunit gene from Arabidopsis thaliana. Proc Natl Acad Sci U S A 87: 3821–3825. doi: 10.1073/pnas.87.10.3821 PMID: 2111018
3. Weiss CA, Garnaat CW, Mukai K, Hu Y, Ma H (1994) Isolation of cDNAs encoding guanine nucleotide-binding protein beta-subunit homologues from maize (ZGB1) and Arabidopsis (AGB1). Proc Natl Acad Sci U S A 91: 9554–9558. doi: 10.1073/pnas.91.20.9554 PMID: 7937804
4. Mason MG, Botella JR (2000) Completing the heterotrimer: isolation and characterization of an Arabidopsis thaliana G protein γ-subunit cDNA. Proc Natl Acad Sci U S A 97: 14784–14788. doi: 10.1073/pnas.97.26.14784 PMID: 11121078
5. Chakravorty D, Trusov Y, Zhang W, Acharya BR, Sheahan MB, et al. (2011) An atypical heterotrimeric G-protein γ-subunit is involved in guard cell K⁺-channel regulation and morphological development in Arabidopsis thaliana. Plant J 67: 840–851. doi: 10.1111/j.1365-313X.2011.04638.x PMID: 21575088
6. Jones AM, Assmann SM (2004) Plants: the latest model system for G-protein research. EMBO Rep 5: 572–578. doi: 10.1038/sj.embor.7400174 PMID: 15170476
7. Chen J-G (2007) Heterotrimeric G-proteins in plant development. Frontiers in bioscience: a journal and virtual library 13: 3321–3333. doi: 10.2741/2928 PMID: 18509435
8. Ullah H, Chen J-G, Temple B, Boyes DC, Alonso JM, et al. (2003) The β-subunit of the Arabidopsis G protein negatively regulates auxin-induced cell division and affects multiple developmental processes. Plant Cell 15: 393–409. doi: 10.1105/tpc.006148 PMID: 12566580
9. Chen J-G, Pandey S, Huang J, Alonso JM, Ecker JR, et al. (2004) GCR1 can act independently of heterotrimeric G-protein in response to brassinosteroids and gibberellins in Arabidopsis seed germination. Plant Physiol 135: 907–915. doi: 10.1104/pp.104.038992 PMID: 15181210
10. Ullah H, Chen J-G, Wang S, Jones AM (2002) Role of a heterotrimeric G protein in regulation of Arabidopsis seed germination. Plant Physiol 129: 897–907. doi: 10.1104/pp.005017 PMID: 12068128
11. Pandey S, Chen J-G, Jones AM, Assmann SM (2006) G-protein complex mutants are hypersensitive to abscisic acid regulation of germination and postgermination development. Plant Physiol 141: 243–256. doi: 10.1104/pp.106.079038 PMID: 16581874
12. Booker KS, Schwarz J, Garrett MB, Jones AM (2010) Glucose attenuation of auxin-mediated bimodality in lateral root formation is partly coupled by the heterotrimeric G protein complex. PloS One 5: e12833. doi: 10.1371/journal.pone.0012833 PMID: 20862254

13. Wang X-Q, Ullah H, Jones AM, Assmann SM (2001) G protein regulation of ion channels and abscisic acid signaling in Arabidopsis guard cells. Science 292: 2070–2072. doi: 10.1126/science.1059046 PMID: 11408655

14. Pierce KL, Premont RT, Lefkowitz RJ (2002) Seven-transmembrane receptors. Nat Rev Mol Cell Biol 3: 639–650. doi: 10.1038/nrm908 PMID: 12209124

15. Friedman EJ, Wang HX, Jiang K, Perovic I, Deshpande A, et al. (2011) Acireductone dioxygenase 1 (ARD1) is an effector of the heterotrimeric G protein β subunit in Arabidopsis. J Biol Chem 286: 30107–30118. doi: 10.1074/jbc.M111.227256 PMID: 21712381

16. Mudgil Y, Uhrig JF, Zhou J, Temple B, Jiang K, et al. (2009) Arabidopsis N-MYC DOWNREGULATED-LIKE1, a positive regulator of auxin transport in a G protein–mediated pathway. Plant Cell 21: 3591–3609. doi: 10.1105/tpc.109.065557 PMID: 19948778

17. Wang HX, Weerasinghe RR, Perdue TD, Cakmakci NG, Taylor JP, et al. (2006) A Golgi-localized hexose transporter is involved in heterotrimeric G protein–mediated early development in Arabidopsis. Mol Biol Cell 17: 4257–4269. doi: 10.1091/mbc.E06-01-0046 PMID: 16855027

18. Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61: 651–679. doi: 10.1146/annurev-plant.042809.112122 PMID: 20192755

19. Finkelstein RR, Gampala SSL, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14: S15–S45. doi: 10.1105/tpc.010441 PMID: 12045268

20. Lapik YR, Kaufman LS (2003) The Arabidopsis cupin domain protein AtPirin1 interacts with the G protein α-subunit GPA1 and regulates seed germination and early seedling development. Plant Cell 15: 1578–1590. doi: 10.1105/tpc.011890 PMID: 12837948

21. Perfus-Barbeoch L, Jones AM, Assmann SM (2004) Plant heterotrimeric G protein function: insights from Arabidopsis and rice mutants. Curr Opin Plant Biol 7: 719–731. doi: 10.1016/j.pbi.2004.09.013 PMID: 15491922

22. Pandey S, Nelson DC, Assmann SM (2009) Two novel GPCR-type G proteins are abscisic acid receptors in Arabidopsis. Cell 136: 136–148. doi: 10.1016/j.cell.2008.12.026 PMID: 19135895

23. Alvarez S, Roy Choudhury S, Hicks LM, Pandey S (2013) Quantitative proteomics-based analysis supports a significant role of GTG proteins in regulation of ABA response in Arabidopsis roots. J Proteome Res 12: 1487–1501. doi: 10.1021/pr301159u PMID: 23365959

24. Ichimura K, Mizoguchi T, Yoshida R, Yuasa T, Shinozaki K (2000) Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6. Plant J 24: 655–665. doi: 10.1046/j.1365-313x.2000.00913.x PMID: 11123804

25. Walter M, Chaban C, Schütze K, Batistic O, Weckermann K, et al. (2004) Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J 40: 428–438. doi: 10.1111/j.1365-313X.2004.02219.x PMID: 15469500

26. Ludwig AA, Saitoh H, Felix G, Freymark G, Miersch O, et al. (2005) Ethylene-mediated cross-talk between calcium-dependent protein kinase and MAPK signaling controls stress responses in plants. Proc Natl Acad Sci U S A 102: 10736–10741. doi: 10.1073/pnas.0502954102 PMID: 16027389

27. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16: 735–743. doi: 10.1046/j.1365-313x.1998.00343.x PMID: 10069079

28. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25: 402–408. doi: 10.1006/meth.2001.1262 PMID: 11846609

29. Shi H, Wang Y, Cheng Z, Ye T, Chan Z (2012) Analysis of natural variation in bermudagrass (Cynodon dactylon) reveals physiological responses underlying drought tolerance. PLoS One 7: e53422. doi: 10.1371/journal.pone.0053422 PMID: 23285294
33. Shi H, Ye T, Chen F, Cheng Z, Wang Y, et al. (2013) Manipulation of arginase expression modulates abiotic stress tolerance in Arabidopsis: effect on arginine metabolism and ROS accumulation. J Exp Bot 64: 1367–1379. doi: 10.1093/jxb/ers400 PMID: 23378380

34. Kansup J, Tsugama D, Liu S, Takano T (2013) The Arabidopsis adaptor protein AP-3β interacts with the G-protein β subunit AGB1 and is involved in abscisic acid regulation of germination and post-germination development. J Exp Bot 64: 5611–5621. doi: 10.1093/jxb/ert337 PMID: 24098050

35. Anderson D, Botella J (2007) Expression analysis and subcellular localization of the Arabidopsis thaliana G-protein β-subunit AGB1. Plant Cell Rep 26: 1469–1480. doi: 10.1007/s00299-007-0356-1 PMID: 17492287

36. Tsugama D, Liu H, Liu S, Takano T (2012) Arabidopsis heterotrimeric G protein β subunit interacts with a plasma membrane 2C-type protein phosphatase, PP2C52. Biochem Biophys Acta 1823: 2254–2260. doi: 10.1016/j.bbamcr.2012.10.001 PMID: 23058975

37. Nguyen XC, Hoang MHT, Kim HS, Lee K, Liu X-M, et al. (2012) Phosphorylation of the transcriptional regulator MYB44 by mitogen activated protein kinase regulates Arabidopsis seed germination. Biochem Biophys Res Commun 423: 703–708. doi: 10.1016/j.bbrc.2012.06.019 PMID: 22704933

38. Pitzschke A, Djamai A, Teige M, Hirt H (2009) VIP1 response elements mediate mitogen-activated protein kinase 3-induced stress gene expression. Proc Natl Acad Sci U S A 106: 18414–18419. doi: 10.1073/pnas.0905599106 PMID: 19820165

39. Pitzschke A, Hirt H (2010) Mechanism of MAPK-targeted gene expression unraveled in plants. Cell Cycle 9: 18–19. doi: 10.4161/cc.9.1.10329 PMID: 20016264

40. Jung C, Seo JS, Han SW, Koo YJ, Kim CH, et al. (2008) Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis. Plant Physiol 146: 623–635. doi: 10.1105/tpc.6.2.251 PMID: 16806044

41. Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6: 251–264. doi: 10.1105/tpc.6.2.251 PMID: 18148648

42. Zhang JF, Yuan LJ, Shao Y, Du W, Yan DW, et al. (2008) The disturbance of small RNA pathways enhanced abscisic acid response and multiple stress responses in Arabidopsis. Plant Cell Environ 31: 562–574. doi: 10.1111/j.1365-3040.2008.01786.x PMID: 18208512

43. Bhardwaj D, Sheikh AH, Sinha AK, Tuteja N (2011) Stress induced β subunit of heterotrimeric G-proteins from Pisum sativum interacts with mitogen activated protein kinase. Plant Signal Behav 6: 287–292. doi: 10.4161/psb.6.2.14971 PMID: 21350337

44. Tsugama D, Liu S, Takano T (2013) Arabidopsis heterotrimeric G protein β subunit, AGB1, regulates brassinosteroid signalling independently of BZR1. J Exp Bot 64: 3213–3223. doi: 10.1093/jxb/ert159 PMID: 23814276

45. Mishra NS, Tuteja R, Tuteja N (2006) Signaling through MAP kinase networks in plants. Arch Biochem Biophys 452: 55–68. doi: 10.1016/j.abb.2006.05.001 PMID: 16806044

46. Xing Y, Jia W, Zhang J (2008) AtMKK1 mediates ABA-induced CAT1 expression and H2O2 production via AtMPK6-coupled signaling in Arabidopsis. Plant J 54: 440–451. doi: 10.1111/j.1365-313X.2008.03433.x PMID: 18248592

47. Xing Y, Jia W, Zhang J (2009) AtMKK1 and AtMPK6 are involved in abscisic acid and sugar signaling in Arabidopsis seed germination. Plant Mol Biol 70: 725–736. doi: 10.1007/s11103-009-9503-0 PMID: 19484493

48. Rodriguez M, Petersen M, Mundy J (2010) Mitogen-activated protein kinase signaling in plants. Annu Rev Plant Biol 61: 621–649. doi: 10.1146/annurev-arplant-042809-112252 PMID: 20441529

49. Tsugama D, Liu S, Takano T (2012) Drought-induced activation and rehydration-induced inactivation of MPK6 in Arabidopsis. Biochem Biophys Res Commun 426: 626–629. doi: 10.1016/j.bbrc.2012.08.141 PMID: 22975351

50. Tsugama D, Liu S, Takano T (2013) A bZIP protein, VIP1, interacts with Arabidopsis heterotrimeric G protein β subunit, AGB1. Plant Physiol Biochem 71: 240–246. doi: 10.1016/j.plaphy.2013.07.024 PMID: 23974356

51. Tsugama D, Liu S, Takano T (2012) A bZIP protein, VIP1, is a regulator of osmosensory signaling in Arabidopsis. Plant Physiol 159: 144–155. doi: 10.1104/pp.111.197020 PMID: 22452852

52. Kobayashi S, Tsugama D, Liu S, Takano T (2012) A U-Box E3 ubiquitin ligase, PUB20, interacts with the Arabidopsis G-protein β subunit, AGB1. PLoS One 7: e49207. doi: 10.1371/journal.pone.0049207 PMID: 21666112

53. Lee J-H, Terzaghi W, Gusmaroli G, Charron J-BF, Yoon H-J, et al. (2008) Characterization of Arabidopsis and Rice DWD proteins and their roles as substrate receptors for CUL4-RING E3 ubiquitin ligases. Plant Cell 20: 152–167. doi: 10.1105/tpc.107.055418 PMID: 18223036
54. Zhao J, Wang X (2004) Arabidopsis phospholipase Dα1 interacts with the heterotrimeric G-protein α-subunit through a motif analogous to the DRY motif in G-protein-coupled receptors. J Biol Chem 279: 1794–1800. doi: 10.1074/jbc.M309529200 PMID: 14594812

55. Wang H, Ngwenyama N, Liu Y, Walker JC, Zhang S (2007) Stomatal development and patterning are regulated by environmentally responsive mitogen-activated protein kinases in Arabidopsis. Plant Cell 19: 63–73. doi: 10.1105/tpc.106.048298 PMID: 17259259

56. Nilson SE, Assmann SM (2010) Heterotrimeric G proteins regulate reproductive trait plasticity in response to water availability. New Phytol 185: 734–746. doi: 10.1111/j.1469-8137.2009.03120.x PMID: 20028470

57. Lång V, Palva ET (1992) The expression of a rab-related gene, rab18, is induced by abscisic acid during the cold acclimation process of Arabidopsis thaliana (L.) Heynh. Plant Mol Biol. 20: 951–962. doi: 10.1007/BF00027165 PMID: 1463831

58. Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol. 57: 781–803. doi: 10.1146/annurev.arplant.57.032905.105444 PMID: 16669782

59. Kishor PK, Hong Z, Miao G-H, Hu C-AA, Verma DPS (1995) Overexpression of [delta]-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108: 1387–1394. PMID: 12228549

60. Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27: 297–300. doi: 10.1093/nar/27.1.297 PMID: 9847208

61. Mizoi J, Oho T, Moriwaki T, Kidokoro S, Todaka D, et al. (2013) GmDREB2A; 2, a canonical dehydration-responsive element-binding protein2-type transcription factor in soybean, is posttranslationally regulated and mediates dehydration-responsive element-dependent gene expression. Plant Physiol 161: 346–361. doi: 10.1104/pp.112.204875 PMID: 23151346