Research Article

In Silico Identification and Comparative Genomics of Candidate Genes Involved in Biosynthesis and Accumulation of Seed Oil in Plants

Arti Sharma and Rajinder Singh Chauhan

Department of Biotechnology & Bioinformatics, Jaypee University of Information Technology, Waknaghat, P.O. Dumehar Bani, Kandaghat, Solan 173 215, India

Correspondence should be addressed to Rajinder Singh Chauhan, rajinder.chauhan@rediffmail.com

Received 5 August 2011; Revised 27 September 2011; Accepted 14 October 2011

Academic Editor: Jinfu Zhang

Copyright © 2012 A. Sharma and R. S. Chauhan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Genes involved in fatty acids biosynthesis, modification and oil body formation are expected to be conserved in structure and function in different plant species. However, significant differences in the composition of fatty acids and total oil contents in seeds have been observed in different plant species. Comparative genomics was performed on 261 genes involved in fatty acids biosynthesis, TAG synthesis, and oil bodies formation in Arabidopsis, Brassica rapa, castor bean and soybean. In silico expression analysis revealed that stearoyl desaturase, FatB, FAD2, oleosin and DGAT are highly abundant in seeds, thereby considered as ideal candidates for mining of favorable alleles in natural population. Gene structure analysis for major genes, ACCase, FatA, FatB, FAD2, FAD3 and DGAT, which are known to play crucial role in oil synthesis revealed that there are uncommon variations (SNPs and INDELs) which lead to varying content and composition of fatty acids in seed oil. The predicted variations can provide good targets for seed oil QTL identification, understanding the molecular mechanism of seed oil accumulation, and genetic modification to enhance seed oil yield in plants.

1. Introduction

A major challenge mankind is facing in this century is the gradual exhaustion of the fossil energy resources. The combustion of those fossil fuels used in transportation is one of the key factors responsible for global warming and environment pollution due to large-scale carbon dioxide emissions. Thus, alternative energy sources based on sustainable and ecologically friendly processes are urgently required. At present gasoline or diesel are being largely substituted by two biofuels, bioethanol and biodiesel, capturing ~90% of the market [1]. Biodiesel is made from renewable biomass mainly by alkali-catalysed transesterification of triacylglycerols (TAGs) from plant oils [2]. Manipulation of biosynthetic pathways offers a number of exciting opportunities for plant biologists to redesign plant metabolism toward production of specific TAGs.

The biosynthesis of fatty acids in plants begins with the formation of acetyl Co-A from pyruvate. The acetyl CoA produced in plastids is activated to malonyl CoA; the malonyl group is subsequently transferred to acyl carrier protein (ACP) giving rise to malonyl ACP, the primary substrate of the fatty acid synthase complex. The formation of malonyl CoA is the committed step in fatty acid synthesis and is catalyzed by the highly regulated plastidic acetyl CoA carboxylase complex [3]. De novo fatty acid synthesis in the plastids occurs through a repeated series of condensation, reduction, and dehydration reactions that add two carbon units derived from malonyl ACP to the elongating fatty acid chain. A series of condensation reactions proceed with acetyl-CoA and malonyl-ACP, then acyl-ACP acceptors. Three separate condensing enzymes, or 3-ketoacyl-ACP synthases (KAS I–III) are necessary for the production of an 18-carbon fatty acid. Three additional condensation reactions...
are required; each condensation step to obtain a saturated fatty acid that is two carbons longer than at the start of the cycle. These reactions are catalysed by 3-ketoacyl-ACP reductase (KAR), 3-hydroxyacyl-ACP dehydratase (HD), and enoyl-ACP reductase (ENR). The first desaturation step also occurs in the plastid; while the acyl chain is still conjugated to ACP, a Δ 9-desaturase converts stearoyl ACP to oleoyl ACP. Termination of fatty acid elongation is catalyzed by acyl ACP thioesterases, which are two main types in plants. The FatA class removes oleate from ACP, whereas FatB thioesterases are involved in saturated and unsaturated acyl ACPs, and, in some species, with shorter-chain-length acyl ACPs [4–6]. After release from ACP, the free fatty acids are exported from the plastid and converted to acyl CoAs. Nascent fatty acids can be incorporated into TAGs in developing seeds [4]. Oleic acid can be further desaturated to oleate acids by FAD2 [7] and FAD6 [8] in the cytosol and the plastid, respectively. Cytosolic and plastid ω-3 desaturations that result in the production of linolenic acids are catalyzed by FAD3 [9] and FAD7 [10], respectively. Fatty acids can be incorporated into TAGs in developing seeds in a number of ways. For example, a series of reactions known as the Kennedy pathway results in the esterification of two acyl chains from acyl CoA to glycerol-3-phosphate to form phosphatidic acid (PA) and, following phosphate removal, diacylglycerol (DAG). A diacylglycerol acyltransferase (DGAT), using acyl CoA as an acyl donor, converts DAG to TAG. Two classes of DGAT enzymes have been isolated [11, 12], and orthologs have been identified in numerous plant species. DAG and phosphatidylcholine (PC) are interchangeable via the action of cholinephosphotransferase, suggesting a route for the flux of fatty acids into and out of PC. Acyl chains from PC can be incorporated into TAGs, either via conversion back to DAG or by the action of a phospholipid diacylglycerol acyltransferase (PDAT) that uses PC as an acyl donor to convert DAG to TAG. There are two predominant seed oil storage proteins in plants: caleosin and oleosin. TAG assembled in these storage proteins form oil bodies in seeds.

The fatty acid composition of seed oil varies considerably both between species and within species. The variation of fatty acids occurs both in chain length and degrees of desaturation. Consequently, the fuel properties of biodiesel derived from a mixture of fatty acids are dependent on the composition of fatty acids in seed oil. Altering the fatty acid profile can, therefore, improve fuel properties of biodiesel such as cold-temperature flow characteristics, oxidative stability, and NOx emissions [13].

Fatty acid biosynthetic pathway is highly conserved in plants, but there are significant variations in fatty acid contents and composition in plants (Table 1). What determines differences in the contents and composition of fatty acids and subsequently the total oil yield in the seeds is not understood. The availability of whole genome sequences, ESTs, and individual gene sequences from different oil rich plant species provide an opportunity to investigate what differences in the structure and sequences of genes determine variation in contents and composition so as to identify distinguishing gene signatures to assist in genetic improvement of crop plants either through marker-assisted breeding or by metabolic engineering [32]. Tanhuanpää et al. [33] developed an allele-specific PCR marker for oleic acid by comparing the wild-type and high-oleic allele of the FAD 2 gene locus in spring turnip rape (Brassica rapa ssp. oleifera). The accumulation of ricinoleic acid in transgenic Arabidopsis seeds was doubled by expressing the castor FAH12 hydroxylase in a FAD 2/FAE1 mutant [34]. The FatA and FatB genes of castor bean were heterologously expressed in Escherichia coli for biochemical characterization after purification, resulting in high catalytic efficiency of RcFatA on oleoyl-ACP and palmitoleoyl-ACP and high efficiencies of RcFatB for oleoyl-ACP and palmitoyl-ACP.

The expression profile of these genes displayed the highest levels in expanding tissues that typically are very active in lipid biosynthesis such as developing seed endosperm and young expanding leaves [35]. Arabidopsis thaliana gene diacylglycerol acyltransferase (DGAT) coding for a key enzyme in TAG biosynthesis was expressed in tobacco under the control of a strong ribulose-biphosphate carboxylase small subunit promoter. This modification led up to a 20-fold increase in TAG accumulation in tobacco leaves and translated into an overall twofold increase in extracted fatty acids up to 5.8% of dry biomass in Nicotiana tabacum [36]. Dimov and Mollers [37] tested genetic variation for saturated fatty acid content in two sets of modern winter oilseed rape cultivars (Brassica napus L.) in field experiments under typical German growing conditions. They observed highly significant genetic differences among the cultivars for total saturated fatty acid content, which ranged from 6.8% to 8.1%. Singh et al. [38] constructed genetic map using AFLP, RFLP, and SSR markers for oil palm. They detected quantitative trait loci (QTLs) controlling oil quality (measured in terms of iodine value and fatty acid composition) and identified significant QTLs associated with iodine value (IV), myristic acid (C14:0), palmitic acid (C16:0), palmitoleic acid (C16:1), stearic acid (C18:0), oleic acid (C18:1), and linoleic acid (C18:2) content. The Brassica napus mutant line DMS100 carrying a G-to-A base substitution at the 5′ splice site of intron 6 in FAD 3 had reduced C18:3 content in oil seeds [39]. These studies suggest that the comparative analysis of oil biosynthesis and accumulation genes is a suitable strategy to investigate the molecular basis of oil content and composition variation in seed oils of different plant species. Additionally, these variations can be used to develop functional markers for increasing selection efficiency by marker-assisted selection in plant breeding.

In the present study, four plant species, Arabidopsis, Brassica, soybeans, and castor bean were considered for comprehensive analysis of fatty acid biosynthesis genes due to the availability of their genome sequences and several ESTs collections. Moreover, soybeans and brassicas are the biggest source of plant oil in the world, whereas castor bean contains unusual fatty acid ricinoleate that have chemical properties useful for industrial applications. The total seed oil contents of Arabidopsis, castor bean Brassica, and soybean are 30–37%, 40–45%, 30–40%, and 15–20%, respectively (Table 2) [28–31]. Plant oils are mostly composed of five common fatty acids, namely, palmitate (16:0), stearate (18:0), oleate (18:1), linoleate (18:2) and linolenate (18:3), although,
Table 1: Variations for fatty acids and TAG biosynthesis pathway genes associated with high oil content in different plant species.

Targeted Genes	Descriptions of variations	Gene regions harboring variations	Plant/organism	References
FAD 2, FAD 3	SNP for high oleic acid and low linolenic acid	Exon	Brassica	Hu et al., 2006 [14]
Stearoyl—ACP desaturase	SNP for high stearic acid	Exon	Soybean	Zhang et al., 2008 [15]
FAD 2	SNPs for high oleic acid	Exon	Peanut	López et al., 2000 [16]
FAD 3	SNP for low linolenic acid	Intron-Exon junction	Soybean	Bilyeu et al., 2005 [17]
KAS I	SNPs and Indel associated with oleic acid content	5′ UTR, Exon, Intron	Soybean	Ha et al., 2010 [18]
KAS III, ACCase, Stearoyl—ACP desaturase, DGAT	Indels, SNPs and SSRs associated with variation in composition and concentration of oil	—	Maize	Yang et al., 2010 [19]
FAD 2	3 base pair variation leads to change in amino acid which contribute to high oleate content in oil	Exon	Peanut	Bruner et al., 2001 [20]
DGAT1	3 bp Insertion leads to high oleic acid content	Exon	Maize	Zheng et al., 2008 [21]
FAD 2	SSR linked to oleic acid content	Soybean	Bachlava et al., 2008 [22]	
FAD 3	Deletion in soybean FAD 3 leads to reduced linolenate	Exon	Soybean	Anai et al., 2005 [23]
KAS III	SNP associated with high palmitic acid content	Exon	Soybean	Aghoram et al., 2006 [24]
Stearoyl—ACP desaturase	SSRs associated with high stearic acid	—	Soybean	Spencer et al., 2003 [25]
Stearoyl—ACP desaturase	SSRs and INDELs associated with high stearic acid	—	Sunflower	Pérez-Vich et al., 2006 [26]
FatB	Deletions associated with low palmitic acid content	Exons and Introns	Soybean	Cardinal et al., 2007 [27]

Table 2: Fatty acid composition of four plant species.

Fatty acid composition (%)	Arabidopsis [28]	Castor bean [29]	Brassica [30]	Soybean [31]
Palmitic acid	8.7	2.0	1.5	7–11
Stearic acid	3.6	1.0	0.4	2–6
Oleic acid	15.0	7.0	22.0	22–34
Linolenic acid	29.0	—	6.8	5–11
Linoleic acid	19.2	5.0	14.2	43–56
Ricinoleic acid	—	86–90	—	—
Others	24.5	—	47 (Erucic)	—
Total oil content	30–37	45–50	33–40	15–20

depending on the particular species, longer or shorter fatty acids may also be major constituents. These fatty acids differ from each other in terms of acyl chain length and number of double bonds, leading to different physical properties. Here we put forward the questions (1) whether there are common variations in genes, if any, which contribute to increased seed oil content in plants? (2) Which are the major genes responsible for the higher amounts of five fatty acids mentioned above in different plant species? For answering these questions the present study aimed at (1) the identification of candidate genes for fatty acid biosynthesis, TAG synthesis and oil body formation proteins in plant species under study, (2) the comparative structure analysis of these candidate genes, (3) the in silico identification of sequence variations in fatty acid biosynthesis genes, and (4) the in silico association of sequence variations in candidate genes for oil content and composition.

2. Materials and Methods

2.1. Retrieval of Sequences. Thirty-two genes involved in the biosynthesis and storage of fatty acids were retrieved from
Arabidopsis database (http://lipids.plantbiology.msu.edu/) by referring to the comprehensive lipid gene catalog provided by Beisson et al. [40]. The selected genes covered all the major biochemical events in the biosynthesis and storage of fatty acids [41, 42]. The protein sequences of these genes were used as query against castor bean database in TIGR (http://blast.jcvi.org/er-blast/index.cgi?project=rc1) and soybean database in soybase (http://soybase.org/). Full-length coding sequences of Brassica were downloaded from GenBank (http://www.ncbi.nlm.nih.gov/). Arabidopsis, castor bean, Brassica, and soybean sequences were further annotated for gene models (open reading frames, including the 5′UTRs and 3′UTRs) using gene prediction algorithms of FGenesH (http://linux1.softberry.com/berry.phtml?topic=fgenesh&group=programs&subgroup=gfind) [43–45] (see Table 1 of the Supplementary Material available online at doi:10.1155/2012/914843). Sequence identity among Brassica rapa, castor bean, soybean, and Arabidopsis genes was confirmed using ClustalW in MegAlign in DNASTAR (DNASTAR Inc., Madison, WI, USA). The in silico expression status of candidate genes belonging to different families was searched with an e-value cutoff 0.0 in the ESTdb of NCBI (National Centre for Biotechnology Information) at http://www.ncbi.nlm.nih.gov/BLAST/ and TIGR (The Institute of Genomic Research) at http://blast.jcvi.org/er-blast/index.cgi?project=rc1.

2.2. Prediction of Gene Structures. Gene models for castor bean and soybean genomes were downloaded from Phytozone (http://www.phytozone.net/). The Arabidopsis gene models were downloaded from TAIR (http://www.arabidopsis.org/). Arabidopsis, castor bean, Brassica, and soybean sequences were further annotated for gene models (open reading frames, including the 5′UTRs and 3′UTRs) using gene prediction algorithms of FGenesH (http://linux1.softberry.com/berry.phtml?topic=fgenesh&group=programs&subgroup=gfind) [43–45] (see Table 1 of the Supplementary Material available online at doi:10.1155/2012/914843). Sequence identity among Brassica rapa, castor bean, soybean, and Arabidopsis genes was confirmed using ClustalW in MegAlign in DNASTAR (DNASTAR Inc., Madison, WI, USA). The in silico expression status of candidate genes belonging to different families was searched with an e-value cutoff 0.0 in the ESTdb of NCBI (National Centre for Biotechnology Information) at http://www.ncbi.nlm.nih.gov/BLAST/ and TIGR (The Institute of Genomic Research) at http://blast.jcvi.org/er-blast/index.cgi?project=rc1.

3. Results

3.1. Comparative Genomics of Fatty Acid Biosynthesis Genes in Major Oil Seed Plant Species. The fatty acid biosynthesis pathway includes 32 gene families involved in the conversion of acetyl Co-A into different fatty acids and their storage in oil bodies. A total of 68 protein sequences were retrieved for 32 gene families from the comprehensive lipid gene catalog of Arabidopsis [40] and functional domains were identified for each gene family. The 68 protein sequences from Arabidopsis were queried for fatty acid biosynthesis genes in Brassica rapa, soybean, and castor bean databases. A total of 261 genes belonging to 32 gene families were identified and retrieved from four plant species, out of which, 68 were from Arabidopsis, 62 from Brassica rapa, 55 from castor bean, and 76 from soybean (Table 3). Detailed gene structures, exon-intron coordinates of each gene are given in Supplementary Table 1.

3.2. Expression Status of Fatty Acid Biosynthesis Genes. In silico expression analysis revealed that for 32 gene families, ESTs were detected for 68 genes in Arabidopsis, 62 genes in

![Figure 1: In silico transcript abundance (based on matching ESTs available in the database) of oil biosynthesis and accumulation genes in different tissues.](http://example.com/figure1)

Brassica, 49 genes in castor bean, and 76 genes in soybean (Figure 1). Thirteen genes of Arabidopsis, 15 from castor bean, 8 from soybean, and 2 from Brassica showed tissue preferential expression patterns as per their identities to ESTs from tissue-specific libraries. Twenty-two genes from four plant species were expressed in seeds, 4 in leaves, 3 in flower, and 1 in roots (Table 4). FAD 2 and one homolog of Stearoyl desaturase gene had maximum seed ESTs in castor bean.

3.3. Comparative Analysis of Gene Structures in Different Plant Species. Comparative genomics of fatty acid biosynthesis genes was done to understand as what determines differences, if any, for variations in contents and compositions of fatty acids in different plant species. The gene structure analysis revealed that the exon-intron structure of fatty acid biosynthesis genes in castor bean and soybean gene homologs shared more structure similarity in comparison to Arabidopsis fatty acid biosynthesis genes. However, insertion, deletion, and intron size variations were found in castor bean and soybean genes with reference to Arabidopsis. Fatty acid biosynthesis genes of Brassica rapa were not analyzed for gene structure because for most of the Brassica genes only coding DNA sequences were available in the GeneBank.

Conversion of acetyl Co-A to malonyl Co-A by acetyl carboxylase (ACCase) is the most committed step in fatty acid biosynthesis. Exon/intron number and CDS length for ACCase gene was almost same between castor bean (31 exons) and soybean (33 exons), whereas slightly less in Arabidopsis (26 exons). Comparative structural analysis revealed that homomeric ACCase gene from Arabidopsis (1–26 exons) showed microsynteny with castor bean (6–31 exons) and soybean (6–33 exons), with a 3 bp deletion in 8th and 26th exons of castor bean, 3 bp deletion and 3 bp insertion in 29th and 31st exons of soybean, and a 12 bp insertion in 24th and 26th exons of castor bean and soybean, respectively. First five exons of homomeric
Category	Gene name	Accession number	Coding DNA sequence length (bp)						
ACCase	ACCase	At1g36180	Arabidopsis	5997	Soybean	6834			
	Alpha-carboxyl transferase	At2g38040	Brassica rapa	2195	Castor bean	2130			
	Beta-carboxyl transferase	ATCG00500	Castor bean	528	Soybean	1731			
	Biotin carboxylase	At5g35360	Glyma05g36450	1935	Gma18g01280	1611			
	Biotin carrier	At5g15530	Glyma08g03120	783	Glyma11g37320	1113			
Malonyl Co-A transacylase	Malonyl Co-A transacylase	At2g30200	Glyma18g06500	987	1113				
	Beta-Ketoacyl ACP synthase I	At5g6290	Glyma10g04680	1437	1452				
	Beta-Ketoacyl ACP synthase II	At1g74960	Glyma13g19010	2013	1305				
	Beta-Ketoacyl ACP synthase III	At1g62640	Glyma09g41480	1194	831				
	3-Ketoacyl-Co-A dehydrase	At2g30200	Glyma18g01280	1233	1254				
Elongase	3-Ketoacyl-Co-A dehydrase	At1g24360	Glyma11g37320	924	963				
	3-Ketoacyl-Co-A reductase (KAR)	At1g24360	Glyma11g37320	927	963				
	Enoyl-ACP reductase (ENR)	At2g05990	Glyma11g37320	1158	1176				
	Hydroyacyl ACP Dehydrase (HD)	At2g22230	Glyma11g37320	1161	1203				
	Plastidial 1 acylglycerol phosphate acyltransferase	At4g30580	Glyma06g28540	1083	1533				
	Plastidial Glycerol phosphate acyltransferase	At1g32200	Glyma09g34110	1380	1413				
Category	Gene name	Accession number	Soybean	Coding DNA sequence length (bp)					
----------------------------------	----------------------------------	------------------	----------	---------------------------------					
			Soybean	Arabidopsis	Castor bean	Castor bean	Soybean	Castor bean	Soybean
Monogalactosylacylglycerol desaturase (FAD 5)	At3g15850	29841.m002863	Glyma07g03370	1116	1161	1173			
	At1g43800		Glyma08g22730	1176	1120	1176			
	At2g43710		Glyma07g32850	984	1200	1176			
	At3g02610	X63364	Glyma1g08970	1191	1206	1185			
	At3g02630	X74782	Glyma1g08970	984	1200	1176			
	At3g02620	AY642537	Glyma1g08970	984	1200	1176			
	At5g16230	30020.m000203	Glyma1g08970	1206	1191	1014			
	At5g16240		Glyma1g08970	1185	1185	1185			
Stearoyl-ACP desaturase			Glyma02g15600	1176	1206	1176			
	Oleate desaturase (FAD 6)	AY642535	Glyma02g36460	1347	1293	1287			
		AY642540	Glyma02g36460	1320	1152	1359			
	Desaturase	AY592974	Glyma03g07570	1467	1134	1362			
	Linoleate desaturase (FAD 7)	AY599884	Glyma03g07570	1299	1131	1359			
		FJ985690	Glyma03g07570	1335	1383	1362			
		FJ985691	Glyma07g18350	1152	1114	1359			
		L01418	Glyma07g18350	1308	1152	1362			
		L22962	Glyma07g18350	1335	1383	1362			
	Linoleate desaturase (FAD 8)	AY592974	Glyma01g29630	1308	1320	1359			
		AY599884	Glyma01g29630	1320	1152	1359			
		FJ985691	Glyma01g29630	1320	1152	1359			
		AY577313	Glyma01g29630	1320	1152	1359			
		DQ518276	Glyma01g29630	1155	780	1155			
		DQ518277	Glyma01g29630	780	780	1155			
		DQ518278	Glyma01g29630	780	780	1155			
		FJ907397	Glyma01g29630	780	780	1155			
		FJ907398	Glyma10g42470	1155	1155	1155			
		FJ907399	Glyma10g42470	1155	1155	1155			
		FJ907400	Glyma10g42470	1155	1155	1155			
		FJ907401	Glyma10g42470	1155	1155	1155			
		FJ952144	Glyma10g42470	1155	1155	1155			
		AY592974	Glyma03g30070	28035	1152	1164			
		AY599884	Glyma03g30070	1152	1164	1152			
		FJ985689	Glyma03g30070	1152	1164	1152			
		01418	Glyma03g30070	1152	1164	1152			
		L22962	Glyma03g30070	1152	1164	1152			
			Glyma07g18350	1161	1131	1359			
	Oleate desaturase (FAD 2)	AY599884	Glyma07g18350	1161	1131	1359			
		FJ985689	Glyma07g18350	1161	1131	1359			
		01418	Glyma07g18350	1161	1131	1359			
		L22962	Glyma07g18350	1161	1131	1359			
			Glyma07g18350	1161	1131	1359			
Table 3: Continued.

Category	Gene name	Accession number	Coding DNA sequence length (bp)									
	Arabidopsis Brassica rapa Castor bean Soybean	Arabidopsis	Arabidopsis Brassica rapa Castor bean Soybean									
Thioesterase												
Acyl-ACP thioesterase (FatA)	At3g25110 At4g13050	X87842	1089	1104	1176	1269	1191					
		30217.m000262	Glyma08g46360	1132	1125							
		29842.m002075	Glyma18g36130	1321	1251							
			Glyma04g21910	1422	1251							
			Glyma05g08060	1347	1251							
			Glyma06g23560	1620	1251							
			Glyma17g12940	1620	1251							
Palmitoyl-ACP thioesterase (FatB)	At1g08510	DQ847275 FJ715952	1239	1245	1239	1260	1251					
TAG synthesis												
Diacylglycerol Acyltransferase (DGAT 1)	At2g19450	AF164434	1593	1512	1830	1347						
Diacylglycerol Acyltransferase (DGAT 2)	At3g51520	AF155224	945	1056	768	987						
	At1g01610 At1g51260		1512	1119	1188	1536						
	At1g78690		873	1140	1035	1050						
	At1g09580		1140	1173	852	858						
	At2g72090		2232	1173	738	678						
	At2g38110		1506	1173	738	678						
	At3g05510		1347	1515	1491							
Lysoosphosphatidic acid acyltransferase (LPAAT)	At3g11670		2359	1539	1428							
	At3g18830		1146	1188	594	1620						
	At3g57650		1170	1506								
	At5g0400		1503									
	At5g06090		1503									
Diacylglycerol cholinephosphotransferase	At3g25585	AY179560	1170	1449	1449	771						
Digalactosyldiacylglycerol synthase (DGD1)	At3g11670		2388	2534	2352							
		2986.m000620	Glyma03g30605	2361								
		2966.m000760	Glyma19g38720									
		2966.m000759	Glyma09g18450		954	957						
		2966.m000759	Glyma10g41580		564	969						
		2966.m000759	Glyma20g25650		930	909						
ER Phosphatidate Phosphatase	At1g15080		813	954	957	969						
Category	Gene name	Accession number	Coding DNA sequence length (bp)									
-------------------------	---------------	---------------------------	--------------------------------									
		Arabidopsis	Brassica rapa	Castor bean	Soybean	Arabidopsis	Brassica rapa	Castor bean	Soybean			
	At1g223240	At1g223250	At1g70670	At1g70680	At2g33380	At5g55240						
Oil body protein	At1g48990	At2g25890	At3g01570	At3g01570	At3g18570	At5g40420						
	At3g27660	At4g25140	At5g40420	At5g51210								
	Glyma3g41030	Glyma0g22310	Glyma0g22330	Glyma0g22580	Glyma0g25350							
	Glyma0g22330	Glyma0g22580	Glyma0g22580	Glyma1g943680	Glyma20g34300							
	DQ328612	S37032	29794.m003372	30147.m013891	Glyma0g507880	29673.m000932	50008.m000820	30147.m014333	Glyma1g415020	699	564	492
			Glyma1g415020	Glyma17g13120	Glyma17g13120							
			Glyma17g13120	Glyma17g13120	Glyma17g13120							
			Glyma17g13120	Glyma17g13120	Glyma17g13120							
Table 4: *In silico* expression status of fatty acids biosynthesis and accumulation genes.

Tissue	Gene	Accession no.	Arabidopsis	B. rapa	Soybean	Castor bean
Seeds	Alpha carboxyltransferase	X74782	27798.m000585	27843.m000160	27985.m000877	
	Enoyl ACP reductase					
	Stearoyl desaturase	Glyma13g08970		29660.m000760		
	FAD-2	Glyma10g42470			28035.m000362	
	ER Phosphatidate Phosphatase					
	DGAT 2	Glyma17g06120		29682.m000581		
	FatB	Glyma17g12940		29842.m003515		
	Oleosin	S37032		30147.m014333		
	Oleosin	Glyma14g15020		30147.m013891		
	Oleosin	Glyma17g13120		29794.m003372		
	Hydroxyacyl ACP dehydrase	At5g40420		30200.m000354		
	Caleosin	Glyma20g34300				
Leaves	FatB			29848.m004677		
	LPAAT	Glyma07g07580				
	3-Ketoacyl-ACP-dehydrase	At3g55290				
		At3g55310				
Flowers	DGD1			28726.m000069		
	Beta-carboxyl transferase			28890.m000006		
	ACCase			29908.m005991		
Roots	Stearoyl desaturase	At3g02620				
Roots + flowers	Stearoyl desaturase	At3g02610				
Seed + flowers	Oleosin	At1g48990				
Leaves + flowers	FAD 7	At3g11170				
	Oleosin	At2g25890				
		At3g18570				
	Caleosin	At1g23240				
		At1g23250				
		At4g26740				

Figure 2: Structure of ACCase gene in Arabidopsis (26 exons), castor bean (31 exons), and soybean (33 exons); thick arrows and thin lines represented exons and introns, respectively. Arabidopsis 1–26 exons showed identity to 6 to 31st and 6 to 33rd exons of castor bean and soybean, respectively; 16th exon of castor bean showed identity to three exons of soybean (16th, 17th, and 18th). A 3 bp deletion (del) in the 8th and 26th exons of castor bean, 3 bp deletion and 3 bp insertion (in) in the 31st and 29th exons of soybean, and a 12 bp insertion in the 24th and 26th exons of castor bean and soybean, respectively. At1g36180: Arabidopsis ACCase gene; 29908.m005991: Castor bean ACCase gene; Glyma04g11550: Soybean ACCase gene.
ACC case in castor bean and soybean (missing in Arabidopsis) showed colinearity for exon size, with the exception of a 3 bp insertion in the first exon of castor bean gene. Sixteenth exon of ACC case in castor bean showed sequence identity to 3 exons (16th, 17th, and 18th) of soybean (Figure 2).

Two distinct classes of thioesterases, FatA and FatB, are responsible for release of fatty acids from ACP by thioesterases. FatA gene structure was diverse with respect to exons number (varying from 5 to 11) among four plant species. Two homologs of FatA gene were present in Arabidopsis, castor bean, and soybean, whereas FatB gene had 4 homologs in soybean. The first exon of FatB gene had an insertion of 3 bp in castor bean and 27 bp insertion in one of soybean homologs (Glyma0421910) and other three homologs of soybean (Glyma05g08060, Glyma17g12940, and Glyma06g23560) had 6 bp deletion compared to Arabidopsis (Figure 3). An 69 bp insertion of one exon was present in FatB genes of castor bean and soybean but was absent in Arabidopsis. The last exon of FatB (5th exon) in Arabidopsis showed homology to the last exon (6th exon) of one of the homologs of soybean (Glyma04g21910) and last two exons (6th and 7th) of another homolog of soybean (Glyma06g23560), whereas last exon of castor bean showed homology to the last exon of other two homologs of soybean (Glyma05g08060 and Glyma17g12940).

Stearoyl ACP desaturase gene had maximum number of homologs (6 in Arabidopsis, 3 in Brassica, 4 in soybean, and 4 in castor bean) in fatty acid desaturase category of enzymes. Oleoyl desaturase (Fad2) and Linoleate desaturase (Fad3) genes showed more relatedness in relation to number and sizes of exons and introns in each homolog among four plant species. Oleoyl desaturase (FAD 2) had only one exon in Arabidopsis, castor bean, and soybean with an insertion of 12 bp in the exon of castor bean and 9 bp insertion in the exon of one homolog of soybean (Glyma09g17170). FAD 3 gene structure was conserved with respect to exon-intron number and size between Arabidopsis, castor bean, and soybean except for first and last exons. A 21 bp deletion in the first exon of castor bean (29681.m001360) and an insertion of 210 and 213 bp was observed in two homologs of soybean (Glyma01g29630 and Glyma07g18350) respectively. Two deletions of 3 and 12 bp were observed in the last exon (8th exon) of castor bean and soybean, respectively. A deletion of 6 bp was observed in the 3rd exon of FAD 3 of castor bean. An SNP (G → A) was also identified at the exon-intron junction of FAD 3 gene in the 3rd exon of one homolog of soybean (Glyma01g29630) with respect to the last exon of castor bean, Arabidopsis, and other homologs of soybean (Figure 4).

The DGAT gene involved in TAG (Tri-acyl Glyceride) synthesis has two isoforms, DGAT-1 and DGAT-2. These two genes showed variation in number and sizes of exons and introns. DGAT-1 gene had 15 exons in Arabidopsis, 13 exons in castor bean, and 16 exons in soybean. DGAT-2 had 8 exons in Arabidopsis and castor bean and 7 exons in soybean. The detailed comparative genomics of fatty acid biosynthesis genes in 4 oil seed plant species provided insights to undertake identification and utilization of castor bean fatty acid biosynthesis genes and sequence variation for the development of candidate gene markers in Jatropha.

Fatty acid biosynthesis genes showed evolutionary relatedness but there is no synteny in gene order and position of genes on the chromosomes. Location of genes on chromosomes in Arabidopsis and soybean is given in Supplementary Table 2.

4. Discussion

In general, plant oil biosynthesis mostly follows the common biosynthetic pathways for fatty acids in the plastid as well as TAG in the endoplasmic reticulum (ER) and the oil further accumulates in oil bodies. However, there are significant differences for content and composition of seed oil in
different plant species. Using comparative genomics, we tried to infer the effect of change in gene structure differences on oil content in different plant species. In this study, 261 genes involved in biosynthesis and accumulation of seed oil were identified in four oil seed plant species, Arabidopsis, Brassica, castor bean, and soybean. The genes corresponded to six different categories (ACCase, desturase, elongase, thioesterase, TAG synthesis and oil body proteins). Gene families corresponding to these six categories of enzymes had multiple copies in plant species with the exception of homomeric ACCase.

In higher plants, many proteins and enzymes are encoded by gene families, and in Arabidopsis, it has been estimated that 20% of genes are members of gene families [46]. The existence of gene families can sometimes reflect additional levels of genetic control or isoforms of proteins with specific functions. Therefore, it is of interest to detect potential gene families involved in the fatty acid biosynthesis pathway. There is a possibility that different copies of fatty acid biosynthesis genes are present in low oil content genotypes which gives leaky phenotypes as in the case of starch biosynthesis pathway where different copies of genes were responsible for low, medium, and high amylase contents in rice [47].

The oil biosynthesis may be limited by the production of fatty acids [48], which is regulated by acetyl CoA carboxylase (ACCase). Reduction of ACCase activity lowered (1.5–16%) the fatty acid content in transgenic seeds [49]. Conversion of acetyl Co-A to malonyl Co-A by acetyl carboxylase (ACCase) is the most committed step in fatty acid biosynthesis. ACCase of castor bean and soybean showed microsynteny to Arabidopsis, with a 3 bp deletion in 8th and 26th exons in castor bean, 3 bp deletion and 3 bp insertion in 29th and 31st exons in soybean and a 12 bp insertion in 24th, and 26th exons of castor bean and soybean, respectively with respect to Arabidopsis. These sequence variations in ACCase genes may be possibly influencing the variations in fatty acid composition and content in seed oil among Arabidopsis, castor bean, and soybean, as fatty acid content and composition was altered in many plant species with the variations in sequences or expression of ACCase gene [19, 50]. Yang et al. [19] identified two SNPs (T → G, G → A) in ACCase gene which lead to increase (1.3%) in oleic acid, lenolenic acid, and lenoleic acid content in maize. Addition of a plastid transit sequence targeted the introduced ACCase protein to chloroplasts, ultimately resulting in a 5% increase in seed oil of rapeseed [50]. The insertion or deletion identified in our analysis between Arabidopsis, castor bean, and soybean might be responsible for reduction or enhancement of ACCase activity, which is associated with the variations in total fatty acid composition in seed oil among these plant species.

Studies in transgenic plants have demonstrated that thioesterases contribute to the regulation of fatty acid chain length [51]. Typically, FatB accepts saturated acyl-ACP substrates of varying length, while FatA is specific to unsaturated fatty acids and acts on C18:1, oleic, acyl-ACPs [51]. In Brassica napus and Arabidopsis, genetic engineering of Acyl-ACP thioesterase (FatB) resulted in maximum increase of 58% in palmitic acid content [52, 53]. Preventing the release of saturated fatty acids from ACP by downregulating FatB, which encodes a palmitoyl ACP thioesterase, lowered the levels of saturated fatty acids [54]. Variations in palmitate content in seed oil in plant species can be related to the variations in FatB gene [27, 52, 53]. Cardinal et al. [27] identified deletion in exon-intron junction in one homolog of FatB gene which was associated with low palmitic acid content in soybean cultivar Century (N79-2077 and N93-2008). Palmitate content was ~8% in Arabidopsis [55], ~2% in castor bean [56] and 7~11% in soybean [57]. Variations in the amount of palmitic acid in the seeds of Arabidopsis, castor bean, and soybean might be due to deletions in first exon of FatB gene, which can be further utilized for identification of markers associated with high level of palmitate (saturated fatty acid) in total seed oil in plant species desired for biodiesel purpose.

Soybean lines with high levels of oleic acid (85%) and low levels of saturated fatty acids (6%) have been developed using a transgenic strategy that results in downregulation of two genes, FAD 2, and FatB involved in fatty acid synthesis. Downregulation of the FAD 2 gene, encoding a A12 fatty acid desaturase, prevented the conversion of oleic acid to polyunsaturated fatty acids, resulting in increased levels of oleic acid. Additionally, preventing the release of saturated fatty acids from acyl carrier protein (ACP) by downregulating FatB gene, which encodes a palmitoyl ACP (acyl carrier protein) thioesterase, lowered the levels of saturated fatty acids [54]. Hu et al. [14] sequenced the FAD 2 gene fragment from the mutant line DMS100 and wild-type line Quantum of Brassica napus, and identified a single nucleotide mutation (C → T) in the FAD 2 gene. This particular mutation created a stop codon (TAG) leading to premature termination of the peptide chain during translation which leads to high oleic acid content in mutant line DMS100. B. napus mutant line DMS100 carrying a G-to-A substitution at the 5’ splice site of intron 6 in FAD 3 had reduced lenolenic acid content in seed oil [39]. In our analysis insertions or deletions in FAD 2 and FAD 3 genes of soybean might be the possible causes of higher oleate and linoleate content in high oil yielding soybean genotypes. Higher amount of ricinoleic acid in castor bean can be due to an insertion in the FAD 2 gene resulting in higher level of oleic acid because oleic acid is further utilized as a substrate by fatty acid hydroxylase (FAH) to convert oleate to ricinoleate. Low level of linoleate in castor bean oil may be due to a deletion in the 3rd exon of FAD 3 gene because each copy of FAD 3 in Arabidopsis and soybean is conserved.

In our analysis, the acyl-CoA:diacylglycerol acyltransferases (DGAT) gene was highly diverse, which might be involved in the overall variation in triacylglycerols in the oil among the plant species as it is a key enzyme in determining the levels of triacylglycerols in seed oils [58, 59]. Burgal et al. [58] demonstrated that coexpressing the castor bean DGAT2 gene with the castor FA 12 hydroxylase resulted in almost double the levels of hydroxylated fatty acids in neutral lipids (up to 30% of total, compared with 17% in the absence of DGAT2). In our study, most of the variations observed in the coding regions are either insertion or deletion of
3 bp or multiple of three that represent codon usage which either leads to shift in reading frame or functional mutation that are expected to be related to oil content. Thus, the sequence variations identified in fatty acid biosynthesis genes in this study can be tested for their functional role in altering content and composition of seed oil in Jatropha.

5. Conclusion

Comparative genomics, for gene structures and coding sequence variations, was performed on 261 genes involved in fatty acids biosynthesis, TAG synthesis, and oil bodies formation in four oil seed plant species, Arabidopsis, Brassica rapa, castor bean, and soybean to understand whether differences in gene structures or coding sequence determine preferential biosynthesis of higher amounts of particular fatty acids and their contents in the seeds of different plant species. Overall comparative gene structure of fatty acid biosynthesis related genes provided an insight to improve oil quality for biodiesel by exploiting the variations for biosynthesis related genes provided an insight to improve oil quality for biodiesel by exploiting the variations of fatty acid biosynthesis, TAG synthesis, and oil bodies formation in four oil seed plant species, Arabidopsis, Brassica rapa, castor bean, and soybean to understand whether differences in gene structures or coding sequence determine preferential biosynthesis of higher amounts of particular fatty acids and their contents in the seeds of different plant species. Overall comparative gene structure of fatty acid biosynthesis related genes provided an insight to improve oil quality for biodiesel by exploiting the variations for biosynthesis related genes provided an insight to improve oil quality for biodiesel by exploiting the variations for biosynthesis related genes provided an insight to improve oil quality for biodiesel by exploiting the variations for biosynthesis related genes.

References

[1] D. Antoni, V. V. Zverlov, and W. H. Schwarz, “Biofuels from microbes,” Applied Microbiology and Biotechnology, vol. 77, no. 1, pp. 23–35, 2007.
[2] F. Ma and M. A. Hanna, “Biodiesel production: a review,” Bioresource Technology, vol. 70, no. 1, pp. 1–15, 1999.
[3] B. J. Nikolau, J. B. Ohlrogge, and E. S. Wurtele, “Plant biotin-containing carboxylases,” Archives of Biochemistry and Biophysics, vol. 414, no. 2, pp. 211–222, 2003.
[4] K. M. Mayer and J. Shanklin, “Identification of amino acid residues involved in substrate specificity of plant acyl-ACP thioesterases using a bioinformatics-guided approach,” BMC Plant Biology, vol. 7, article 1, 2007.
[5] M. R. Pollard, L. Anderson, C. Fan, D. J. Hawkins, and H. M. Davies, “A specific acyl-ACP thioesterase implicated in medium-chain fatty acid production in immature cotyledons of Umbellularia californica,” Archives of Biochemistry and Biophysics, vol. 284, no. 2, pp. 306–312, 1991.
[6] J. J. Salas and J. B. Ohlrogge, “Characterization of substrate specificity of plant FatA and FatB acyl-ACP thioesterases,” Archives of Biochemistry and Biophysics, vol. 403, no. 1, pp. 25–34, 2002.
[7] J. Okuley, J. Lightner, K. Feldmann, N. Yadav, E. Lark, and J. Browse, “Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis,” Plant Cell, vol. 6, no. 1, pp. 147–158, 1994.
[8] W. D. Hitz, T. J. Carlson, J. R. Booth, A. J. Kinney, K. L. Stecca, and N. S. Yadav, “Cloning of a higher-plant plastid omega-6 fatty acid desaturase cDNA and its expression in a cyanobacterium,” Plant Physiology, vol. 105, no. 2, pp. 635–641, 1994.
[9] D. W. Reed, U. A. Schafer, and P. S. Covello, “Characterization of the Brassica napus extraplastidal linoleate desaturase by expression in Saccharomyces cerevisiae,” Plant Physiology, vol. 122, no. 3, pp. 715–720, 2000.
[10] K. Iba, S. Gibson, T. Nishiuchi et al., “A gene encoding a chloroplast ω-3 fatty acid desaturase complements alterations in fatty acid desaturation and chloroplast copy number of the fad7 mutant of Arabidopsis thaliana,” Journal of Biological Chemistry, vol. 268, no. 32, pp. 24099–24105, 1993.
[11] S. Cases, S. J. Smith, Y. W. Zheng et al., “Identification of a gene encoding an acyl CoA:diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 22, pp. 13018–13023, 1998.
[12] K. D. Lardizabal, J. T. Mai, N. W. Wagner, A. Wyrick, T. Voelker, and D. J. Hawkins, “DGAT2 is a new diacylglycerol acyltransferase gene family. Purification, cloning, and expression in insect cells of two polypeptides from Mortierella ramanniana with diacylglycerol acyltransferase activity,” Journal of Biological Chemistry, vol. 276, no. 42, pp. 38862–38869, 2001.
[13] A. Serdari, E. Lois, and S. Stournas, “Impact of esters of monocarboxylic and dicarboxylic acids on diesel fuel quality,” Industrial and Engineering Chemistry Research, vol. 38, no. 9, pp. 3543–3548, 1999.
[14] X. Hu, M. S. Gilbert, M. Gupta, and S. A. Thompson, “Mapping of the loci controlling oleic and linolenic acid contents and development of fad2 and fad3 allele-specific markers in canola (Brassica napus L.),” Theoretical and Applied Genetics, vol. 113, no. 3, pp. 497–507, 2006.
[15] P. Zhang, J. W. Burton, R. G. Upchurch, E. Whittle, J. Shanklin, and R. E. Dewey, “Mutations in a ω-3:acyl-ACP-desaturase gene are associated with enhanced stearic acid levels in soybean seeds,” Crop Science, vol. 48, no. 6, pp. 2305–2313, 2008.
[16] Y. López, H. L. Nadaf, O. D. Smith, J. P. Connell, A. S. Reddy, and A. K. Fritz, “Isolation and characterization of the Δ12-fatty acid desaturase in peanut (Arachis hypogaea L.) and search for polymorphisms for the high oleate trait in Spanish market-type lines,” Theoretical and Applied Genetics, vol. 101, no. 7, pp. 1131–1138, 2000.
[17] K. D. Biljeu, L. Palavalli, D. A. Sleper, and P. R. Beuselinck, “Mutations in soybean microsomal omega-3 fatty acid desaturase genes reduce linolenic acid concentration in soybean seeds,” Crop Science, vol. 45, no. 5, pp. 1830–1836, 2005.
[18] B. K. Ha, M. J. Monteros, and H. R. Boerma, “Development of SNP assays associated with oleic acid QTLs in N00-3350 soybean,” Euphytica, vol. 176, no. 3, pp. 403–415, 2010.
[19] X. Yang, Y. Guo, J. Yan et al., “Major and minor QTL and epistasis contribute to fatty acid compositions and oil concentration in high-olea maize,” Theoretical and Applied Genetics, vol. 120, no. 3, pp. 665–678, 2010.
[20] A. C. Bruner, S. Jung, A. G. Abbott, and G. L. Powell, “The naturally occurring high oleate oil character in some peanut varieties results from reduced oleoyl-PC desaturase activity from mutation of aspartate 150 to asparagine,” Crop Science, vol. 41, no. 2, pp. 522–526, 2001.
[21] P. Zhang, W. B. Allen, K. Roesler et al., “A phenylalanine in DGAT is a key determinant of oil content and composition in maize,” Nature Genetics, vol. 40, no. 3, pp. 367–372, 2008.
[22] E. Bachlava, R. E. Dewey, J. Auclair, S. Wang, J. W. Burton, and A. J. Cardinal, “Mapping genes encoding microsomal ω-6 desaturase enzymes and their cosegregation with QTL.
affecting oleate content in soybean,” *Crop Science*, vol. 48, no. 2, pp. 640–650, 2008.

[23] T. Anai, T. Yamada, T. Kinoshita, S. M. Rahman, and Y. Takagi, “Identification of corresponding genes for three low-α-linolenic acid mutants and elucidation of their contribution to fatty acid biosynthesis in soybean seed,” *Plant Science*, vol. 168, no. 6, pp. 1615–1623, 2005.

[24] K. Aghoram, R. F. Wilson, J. W. Burton, and R. E. Dewey, “A mutation in a 3-keto-acyl-ACP synthase II gene is associated with elevated palmitic acid levels in soybean seeds,” *Crop Science*, vol. 46, no. 6, pp. 2453–2459, 2006.

[25] M. M. Spencer, V. R. Pantalone, E. J. Meyer, D. Landau-Ellis, and D. L. Hyten Jr., “Mapping the Fas locus controlling stearic acid content in soybean,” *Theoretical and Applied Genetics*, vol. 106, no. 4, pp. 615–619, 2003.

[26] B. Pérez-Vich, A. J. Leon, M. Grondona, L. Velasco, and J. M. Fernández-Martínez, “Molecular analysis of the high stearic acid content in sunflower mutant CAS-14,” *Theoretical and Applied Genetics*, vol. 112, no. 5, pp. 867–875, 2006.

[27] A. J. Cardinal, J. W. Burton, A. M. Camacho-Roger, J. H. Yang, R. F. Wilson, and R. E. Dewey, “Molecular analysis of soybean lines with low palmitic acid content in the seed oil,” *Crop Science*, vol. 47, no. 1, pp. 304–310, 2007.

[28] Y. Li, F. Beisson, M. Pollard, and J. Ohlrogge, “Oil content of Arabidopsis seeds: the influence of seed anatomy, light and plant-to-plant variation,” *Phytochemistry*, vol. 67, no. 9, pp. 904–915, 2006.

[29] L. Velasco and H. C. Becker, “Estimating the fatty acid composition of the oil in intact-seed rapeseed (*Brassica napus L.*) by near-infrared reflectance spectroscopy,” *Euphytica*, vol. 101, no. 2, pp. 221–230, 1998.

[30] L. C. D. S. Ramos, J. S. Tango, A. Savi, and N. R. Leal, “Variability for oil and fatty acid composition in castorbean varieties,” *Journal of the American Oil Chemists’ Society*, vol. 61, no. 12, pp. 1841–1843, 1984.

[31] N. K. Sangwan, K. Gupta, and K. S. Dhinda, “Fatty acid composition of developing soybeans,” *Journal of Agricultural and Food Chemistry*, vol. 34, no. 3, pp. 415–417, 1986.

[32] G. M. Rubin, M. D. Yandell, J. R. Wortman et al., “Comparative genomics of the eukaryotes,” *Science*, vol. 287, no. 5461, pp. 2204–2215, 2000.

[33] P. Tanhuanpää, J. Vilkkä, and M. Vihinen, “Mapping and cloning of FAD2 gene to develop allelic-specific PCR for oleic acid in spring turnip rape (*Brassica rapa ssp. oleifera)*,” *Molecular Breeding*, vol. 4, no. 6, pp. 543–550, 1998.

[34] M. A. Smith, H. Moon, G. Chowrira, and L. Kunst, “Heterologous expression of a fatty acid hydroxylase gene in developing seeds of *Arabidopsis thaliana*,” *Planta*, vol. 217, no. 3, pp. 507–516, 2003.

[35] A. Sánchez-García, A. J. Moreno-Pérez, A. M. Muro-Pastor, J. J. Salas, R. Garcés, and E. Martínez-Force, “Acyl-ACP thioesterases from castor (*Ricinus communis L.*): an enzymatic system appropriate for high rates of oil synthesis and accumulation,” *Phytochemistry*, vol. 71, no. 8–9, pp. 860–869, 2010.

[36] V. Avdriyanov, N. Borisjuk, N. Pogrebnyak et al., “Tobacco as a production platform for biofuel: overexpression of arabidopsis DGAT and LEC2 genes increases accumulation and shifts the composition of lipids in green biomass,” *Plant Biotechnology Journal*, vol. 8, no. 3, pp. 277–287, 2010.

[37] Z. Dimov and C. Mollers, “Genetic variation for saturated fatty acid content in a collection of European winter oilseed rape material (*Brassica napus*),” *Plant Breeding*, vol. 129, no. 1, pp. 82–86, 2010.

[38] R. Singh, S. G. Tan, J. M. Panandam et al., “Mapping quantitative trait loci (QTLs) for fatty acid composition in an interspecific cross of oil palm,” *BMC Plant Biology*, vol. 9, pp. 114–133, 2009.

[39] X. Hu, M. Sullivan-Gilbert, M. Gupta, and S. A. Thompson, “G-to-A mutation at a 5' splice site of *fad3* caused impaired splicing in a low linolenic mutant of canola (*Brassica napus L.*),” *Plant Biotechnology*, vol. 24, no. 4, pp. 397–400, 2007.

[40] F. Beisson, A. Koo, S. Ruuska et al., “Arabidopsis genes involved in acyl lipid metabolism. A 2003 census of the candidates, a study of the distribution of expressed sequence tags in organs, and a web-based database,” *Plant Physiology*, vol. 132, no. 2, pp. 681–697, 2003.

[41] S. Mekhedov, I. O. De de, and J. Ohlrogge, “Toward a functional catalog of the plant genome. A survey of genes for lipid biosynthesis,” *Plant Physiology*, vol. 122, no. 2, pp. 389–401, 2000.

[42] J. Ohlrogge and J. Browse, “Lipid biosynthesis,” *Plant Cell*, vol. 7, no. 7, pp. 957–970, 1995.

[43] J. Yu, S. Hu, J. Wang et al., “A draft sequence of the rice genome (*Oryza sativa L. ssp. indica*),” *Science*, vol. 296, no. 5565, pp. 79–92, 2002.

[44] S. A. Goff, D. Ricke, T. H. Lan et al., “A draft sequence of the rice genome (*Oryza sativa L. ssp. japonica*),” *Science*, vol. 296, no. 5565, pp. 92–100, 2002.

[45] A. M. Krill, M. Kirst, L. V. Kochian, E. S. Buckler, and O. A. Hoekenga, “Association and linkage analysis of aluminum tolerance genes in maize,” *PLoS One*, vol. 5, no. 4, Article ID 9958, 2010.

[46] M. Bevan, I. Bancroft, E. Bent et al., “Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of *Arabidopsis thaliana*,” *Nature*, vol. 391, no. 6666, pp. 485–488, 1998.

[47] Z. Tian, Q. Qian, Q. Liu et al., “Allelic diversities in rice starch traits in organs, and a web-based database,” *Proceedings of the National Academy of Sciences of the United States of America*, vol. 106, no. 51, pp. 21760–21765, 2009.

[48] X. M. Bao and J. Ohlrogge, “Supply of fatty acid is one limiting factor in the accumulation of triacylglycerol in developing embryos,” *Plant Physiology*, vol. 120, no. 4, pp. 1057–1062, 1999.

[49] J. J. Thelen and J. B. Ohlrogge, “Metabolic engineering of fatty acid biosynthesis in plants,” *Metabolic Engineering*, vol. 4, no. 1, pp. 12–21, 2002.

[50] K. Roessler, D. Shintani, L. Savage, S. Boddupalli, and J. Ohlrogge, “Targeting of the Arabidopsis homomeric acetyl-coenzyme A carboxylase to plastids of rapeseeds,” *Plant Physiology*, vol. 113, no. 1, pp. 75–81, 1997.

[51] A. Jones, H. M. Davies, and T. A. Voelker, “Palmitoyl-acyl carrier protein (ACP) thioesterase and the evolutionary origin of plant acyl-ACP thioesterases,” *The Plant Cell*, vol. 7, no. 3, pp. 359–371, 1995.

[52] T. A. Voelker, T. R. Hayes, A. M. Cranmer, J. C. Turner, and H. M. Davies, “Genetic engineering of a quantitative trait: metabolic and genetic parameters influencing the accumulation of laurate in rapeseed,” *Plant Journal*, vol. 9, no. 2, pp. 229–241, 1996.

[53] P. Dormann, T. A. Voelker, and J. B. Ohlrogge, “Accumulation of palmitate in Arabidopsis mediated by the acyl-acyl carrier protein thioesterase FATB1,” *Plant Physiology*, vol. 123, no. 2, pp. 637–643, 2000.
[54] T. Buhr, S. Sato, F. Ebrahim et al., “Ribozyme termination of RNA transcripts down-regulate seed fatty acid genes in transgenic soybean,” *Plant Journal*, vol. 30, no. 2, pp. 155–163, 2002.

[55] G. Bonaventure, J. J. Salas, M. R. Pollard, and J. B. Ohlrogge, “Disruption of the FATB gene in Arabidopsis demonstrates an essential role of saturated fatty acids in plant growth,” *Plant Cell*, vol. 15, no. 4, pp. 1020–1033, 2003.

[56] E. Akbar, Z. Yaakob, S. K. Kamarudin, M. Ismail, and J. Salimon, “Characteristic and composition of *Jatropha curcas* oil seed from Malaysia and its potential as biodiesel feedstock feedstock,” *European Journal of Scientific Research*, vol. 29, no. 3, pp. 396–403, 2009.

[57] A. J. Kinney, “Genetic engineering of oilseeds for desired traits,” in *Genetic Engineering*, J. K. Setlow, Ed., vol. 19, pp. 149–166, Plenum Press, New York, NY, USA, 1997.

[58] J. Burgal, J. Shockey, C. Lu et al., “Metabolic engineering of hydroxy fatty acid production in plants: RcDGAT2 drives dramatic increases in ricinoleate levels in seed oil,” *Plant Biotechnology Journal*, vol. 6, no. 8, pp. 819–831, 2008.

[59] M. Venegas-Calérón, O. Sayanova, and J. A. Napier, “An alternative to fish oils: metabolic engineering of oil-seed crops to produce omega-3 long chain polyunsaturated fatty acids,” *Progress in Lipid Research*, vol. 49, no. 2, pp. 108–119, 2010.