Diversity of fish fauna in the Sembakung river, North Kalimantan, Indonesia

S Sawestri1,2* and M Marini1

1Research Institute for Inland Fisheries and Extention, Ministry of Marine Affairs and Fisheries, Indonesia
2Inland Fishery Resources Development and Management Department, Southeast Asian Fisheries Development Center, Jl. Gubernur H.A Bastari No 08, Jakabaring Palembang 30252, Indonesia

*Corresponding author email: sawestri@yahoo.co.id

Abstract. Sembakung river is an important inland fishery in terms of fish production in North Kalimantan, Indonesia. This river is connected to the State of Malaysia, where the upstream part of this river is in the state of Malaysia. The present study was conducted to inform the diversity of fish fauna in the Sembakung river. Fish samples were collected from ten sampling stations of the Sembakung river at Tarakan district in North Kalimantan, Indonesia from March to November 2019. A total of 55 species of fish under 20 orders and 35 families were recorded. Cypriniformes were most leading order constituting 32.73% of the total fish population followed by Siluriformes (18.18%), Anabantiformes (10.91%), Gobiiformes (9.09%), Carangaria (5.45%), Eupercaria (3.64%), and 1.82% for others ordo. Fishes in this river are seriously affected by the various kinds of human development interventions and activities, especially in the areas of agriculture, forestry, fisheries, industries, and transport. Estimates from these indices were indications of low fish species composition and richness and unevenness in the population of fish in the Sembakung river. For sustainability of fishery resources, an adequate knowledge of species composition, diversity, and relative abundance of water bodies must be understood and vigorously pursued. Therefore, there is a need for the conservation and sustainable management of the fisheries resources of the Sembakung water body by relevant agencies.

1. Introduction

Freshwater ecosystems have been claimed the most endangered ecosystems in the world [1]. The particular vulnerability of freshwater fish to global changes reflects the fact that both fish and freshwater are resources humans need and that have been heavily impacted by human usage and regulation [2]. Asia supports over half of the global human population, with enormous consequent pressures on inland waters and freshwater fish biodiversity [3]. Freshwater fishes are important and valued resources for food, sport and ornament [2], and play a key role in economy of many nations [4], as they have been a staple item in the diet of many people. In many parts of the world, Inventories of freshwater biodiversity are incomplete [2], especially the tropics, and rates of species loss may be higher than currently estimated. Nowadays, hundreds of freshwater fish are close to extinction.
Indonesia is the centre of marine biodiversity [5, 6] and the second mega biodiversity country for freshwater fish after Brazil, which is estimated to have around hundreds of fish species in Indonesian territory that have not been discovered and described [7]. According to [8], estimate the number of freshwater fish species in Indonesia is around 1,300 species, which is the highest number in the Asian continent. Fishes are one of the most important biotic components in the aquatic environment [9]. They fill a very specific habitat by meeting a variety of waters substratum. Several studies have mentioned the importance of glittering fish communities in ecosystem processes through trophic relationships with other biotic components [10].

In Indonesia, the distribution of freshwater consists of three groups. Those are Sundaland, Wallacea, and Sahulland. One of the areas Sundaland is Kalimantan, which has the highest diversity of fishes. Several studies of diversity of fishes have been conducted. As like, 21 species in Unarang Reef, Nunukan [11]; 160 species in coral reefs and lagoon at the Maratua Island, East Kalimantan [9]; 95 species at Arut-Kumai, Kabupaten Kotawaringin Barat, Central Kalimantan [12]; 39 species in in Lake Sentarum, West Kalimantan [13].

Sembakung river is an important inland fishery in terms of fish production in North Kalimantan, Indonesia. North Kalimantan is the 34th new Province in Indonesia [14], as a new province, information related to fisheries, especially inland fisheries, in this region is almost non-existent. It is important to describe the diversity of fish in the Sembakung river, in order to develop conservation strategies. This study aimed to inform the fish diversity at the Sembakung river, North Kalimantan.

2. Materials and Methods

2.1. Study site

The method of this research was a survey method by collecting data in the field and analyzing it in the laboratory. This research was carried out from March to November 2019 which was carried out along the Sembakung river by placing 3 fish collection points. The first point representing the downstream part of the Sembakung river, namely in Tepian village; in the middle of the Sembakung river, namely in Atap village; while the upstream of the Sembakung river, namely in Binter village. In the downstream area of the Sembakung river, fish are collected from the villages of Tepian and Plaju. This area represents an area that is still affected by the tides. In the middle area of the Sembakung river, fish are collected from six oxbow lakes. This area represents floodplain waters. While the upstream of the Sembakung river, fish are collected from Masalong and Binter villages. This area has characteristic as a rocky area. The location of the research station could be seen in Table 1 and Figure 1.
Figure 1. Map of sampling sites.

Table 1. Coordinate of sampling sites.

Station	Coordinate
Desa Tepian	N:03°44'55.7" E=117°27'54.3"
Desa Plaju	N:03°49'13.5" E=117°15'19.8"
Danau 1	N:03°51'30.3" E=117°02'11.5"
Danau 2	N:03°51'06.0" E=117°02'49.5"
Danau 3	N:03°50'32.7" E=117°04'47.3"
Danau 4	N:03°50'32.7" E=117°04'47.3"
Sembakung 1	N:03°50'47.4" E=117°05'59.5"
Sembakung 2	N:03°50'15.9" E=117°06'07.9"
Masalong	N=03°45'25.1" E=116°45'02.7"
Binter	N= 03°46 ' 25.8" E:115°25 ' 32.8"
2.2. Fish collection
Fishing is carried out using various fishing gears such as experimental gill nets (jaring), traps (lukah, pekarang, and sempirai), nets (jala), hook and line, and longlines (rawai). Experimental gill nets measuring 1', 1.5', 2', 2.5' and 3', 20 m long and 2 m high were installed in the afternoon (06.00 pm) and then removed in the morning (06.00 am). The traps, especially the sempirai, were set for two days and two nights; while the wounds and yards are installed on the shores of lakes and rivers that enter the lakes and swamps for a day and night. Hook and line and longlines of 1’, 1.5’ and 2’ hook sizes with clover bait and fish pieces are especially used when fishing in flooded swamps and in the bottom area. The fish caught were immediately preserved in 10% formalin solution and grouped according to the fishing ground.

2.3. Fish identification
The fish samples were then identified by species at the Fish Laboratory of the Research Institute for Inland Fisheries and Extension, Palembang. The fish specimens were identified based on references [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, and 30].

3. Results
During the research, 55 fish species were collected, representing 17 orders, 35 families, and 44 genera. Inside 17 orders, Cypriniformes and Siluriformes are the most common orders found along the Sembakung river (17%; 20%, respectively) (Table 2; Figure 2).

![Figure 2. Percentage number of fish Sembakung river’s family in each ordo.](image_url)

However, based on the percentage number of species in each family, the family Cyprinidae is the highest number of species, namely 10 species (18%). Continued by Danionidae, Siluridae, Butidae, and Ospronemidae (9%; 7%; 7%; and 5%, respectively) (Figure 3).
Research on the diversity of fish species in the Sembakung river was carried out along the river by dividing into 3 parts, namely the downstream, middle stream, and upstream. The results showed that the highest diversity of fish families in the Sembakung river was shown in the downstream of the Sembakung river. Meanwhile, the highest diversity of fish species is shown in the middle of the Sembakung river (Figure 4).
3.1. Downstream of Sembakung river
Data collection on fish species in the downstream of the Sembakung river was carried out by placing one enumerator in the village of Tepian during the study. Tepian village is the first village we meet when we enter the waters of the Sembakung river. River waters in this area are still strongly influenced by the tides of sea water, so that most of the fishermen in this area are fishermen who fish in the mouth of the Sembakung river. This is illustrated by the types of fish collected in this area. Inside 25 species of fish collected, 10 of them are estuary fish species, namely: Arius oetik; Caranx sexfasciatus; Lates calcarifer; Paramugil parmatus; Eleotheronema tetradactylum; Ilisha elongate; Scatophagus argus; Johnius trachyccephalus; Dichotomyctere cretamensis; and Taxotes microlepis (table 2). In addition, from the results of the study, it was also identified that the downstream part of the Sembakung river was an area that produced the highest production of giant shrimp (Macrobrachium rosenbergii) compared to other areas in Sembakung river.

3.2. Middle stream of Sembakung river
Atap village is the middle part of the Sembakung river. Around 20 oxbow lakes are found in this area. In this study, two enumerators were assigned to collect fish species in this area. Throughout the research, 26 species of fish were found. 14 of them are types of flooded swamp fish, namely: Butis gymnopomus; Oxyeleotris marmorata; Channa Lucius; Channa striata; Clarias nieuhoii; Laubuka laubuca; Nematabramis steindachnerii; Glossogobius giuris; Helostoma temminckii; Macrognathus aculeatus; Megalops cyprinoides; Betta macrostoma; Trichopodus pectoralis; and Parachela oxygastroides. Others as like Arius oetik; Hemibagrus nemurus; Oreochromis niloticus; Barbonymus gonionotus; Barbonymus schwanenfeldii; Cyclocheilichthys heteronema; Anmatichthys repasson; Rasbora trifasciata; Pangastus djambal; Johnius trachyccephalus; Kryptopterus lais; and Ompok hypophthalmus (table 2) are fishes in the body of river. This area is the highest producer of inland fisheries in North Kalimantan, especially catfish Pangasius djambal and Hemibagrus nemurus.

3.3. Upstream of Sembakung river
The collection of fish to represent this area is carried out by placing enumerator in Binter village. The water conditions in this area are rocky and have swift currents. Collected as many as 17 species of fish from this area, namely: Pseudobagarius pseudobagarius; Anguilla sp; Butis humeralis; Hampala macrolepidota; Hemibagrus mumurus; Kryptopterus cryptopterus; Labiobarbus leptocheilus; Macrobrachium rosenbergii; Nematabramis everetti; Nematabramis steindachnerii; Oreochromis niloticus; Osphronemus gouramy; Osteochilus kahajanensis; Parachela hypophthalmus; Feather puntiopites; Rasbora chrysotaenia; and Tor tambroides (table 2). Almost all the types of fish collected are types of fast-flowing fish. The type of fish that has potential in this area is pelian or semah fish (Tor tambroides) or the surrounding community often also calls it “Dewa” fish.
No	Familia	Genus	Scientific name	Valid name	Upstream	Middle	Downstream	Threat to humans	IUCN Red List Status
1	Toxotidae	Taxotes	Taxetes microlepis	Taxotes microlepis	v			Harmless	Least Concern
2	Akysidae	Akysis	Pseudohagarius	Pseudohagarius pseuohagarius	v			Harmless	Data deficient
3	Anguillidae	Anguilla	Anguilla marmorata	Anguilla sp	v			Harmless	Least Concern
4	Ariidae	Arius	Arius oetik	Arius oetik	v	v		Traumatogenic	Not Evaluated
5	Cyprinidae	Barbodes	Barbodes balleroides	Barbonyumus balleroides	v			Harmless	Least Concern
6	Cyprinidae	Barbodes	Barbodes gonionotus	Barbonyumus gonionotus	v	v		Harmless	Least Concern
7	Cyprinidae	Barbodes	Barbodes schwennenfeldi	Barbonyumus schwennenfeldi	v			Harmless	Least Concern
8	Osphronemidae	Betta	Betta macrostoma	Betta macrostoma	v			Harmless	Vulnerable (VU)
9	Butidae	Butis	Butis gymnopomus	Butis gymnopomus	v			Harmless	Least Concern
10	Butidae	Butis	Butis kollomadon	Butis kollomadon	v			Harmless	Not Evaluated
11	Butidae	Butis	Butis kollomadon	Butis kollomadon	v			Harmless	Not Evaluated
12	Carangidae	Carank	Caranx sexfasciatus	Caranx sexfasciatus	v			Harmless	Least Concern
13	Channidae	Channa	Channa lucius	Channa lucius	v			Harmless	Least Concern
14	Channidae	Channa	Channa striata	Channa striata	v	v		Potential pest	Least Concern
15	Danionidae	Chella	Labroula labroula	Labroula labroula	v			Harmless	Least Concern
16	Claridae	Claris	Claris nieuhofii	Claris nieuhofii	v			Harmless	Least Concern
17	Cyprinidae	CyclocheilichthYS	CyclocheilichthYS heteronema	CyclocheilichthYS heteronema	v	v		Harmless	Least Concern
18	Cyprinidae	CyclocheilichthYS	CyclocheilichthYS repasson	CyclocheilichthYS repasson	v			Harmless	Least Concern
19	Polyomidae	Eleutheronema	Eleutheronema tetradactylum	Eleutheronema tetradactylum	v			Harmless	Not Evaluated
20	Gobiidae	Glossogobius	Glossogobius guris	Glossogobius guris	v	v		Harmless	Least Concern
21	Gyrinocheilidae	Gyrinocheilus	Gyrinocheilus pastulosus	Gyrinocheilus pastulosus	v			Harmless	Data deficient
22	Cyprinidae	Hampala	Hampala macrolepidotis	Hampala macrolepidotis	v			Harmless	Least Concern
23	Helostomatidae	Helostoma	Helostoma temminckii	Helostoma temminckii	v			Harmless	Least Concern
24	Bagridae	Hemibagus	Hemibagus nemurus	Hemibagus nemurus	v	v	v	Harmless	Least Concern
25	Pristigasteridae	Ilisha	Ilisha elongata	Ilisha elongata	v			Harmless	Least Concern
26	Sciaeniidae	Johnius	Johnius trachycetus	Johnius trachycetus	v			Harmless	Least Concern
27	Stiuridae	Kryptoperus	Kryptoperus cryptoperus	Kryptoperus cryptoperus	v			Harmless	Least Concern
28	Stiuridae	Kryptoperus	Kryptoperus kais	Kryptoperus kais	v			Harmless	Least Concern
29	Stiuridae	Kryptoperus	Kryptoperus limpok	Kryptoperus limpok	v			Harmless	Least Concern
30	Cyprinidae	Labiobarbus	Labiobarbus kuhlilii	Labiobarbus kuhlilii	v			Harmless	Least Concern
31	Latidae	Lates	Lates calcarifer	Lates calcarifer	v	Harmless	Least Concern		
32	Mugilidae	Liza	Liza paramutus	Paramugil paramutus	v	Harmless	Not Evaluated		
33	Palaemonidae	Macrobrachium	Macrobrachium rosenbergii	Macrobrachium rosenbergii	v	Harmless	Data deficient		
34	Mastacembelidae	Macrognathus	Macrignathus aculeatus	Macrignathus aculeatus	v	Harmless	Not Evaluated		
35	Megalopidae	Megalops	Megalops cyprinoides	Megalops cyprinoides	v	Harmless	Data deficient		
36	Danionidae	Nematabramis	Nematabramis everetti	Nematabramis everetti	v	Harmless	Not Evaluated		
37	Danionidae	Nematabramis steindachneri	Nematabramis steindachneri	Nematabramis steindachneri	v	Harmless	Not Evaluated		
38	Siluridae	Ompok	Ompok hypophthalmus	Ompok hypophthalmus	v	Harmless	Least Concern		
39	Cichlidae	Oreochromis	Oreochromis niloticus	Oreochromis niloticus	v	Harmless	Least Concern		
40	Osphronemidae	Osphronemus	Osphronemus goramy	Osphronemus goramy	v	Harmless	Least Concern		
41	Osphronemidae	Osphronemus kubachi	Osphronemus kubachi	Osphronemus kubachi	v	Harmless	Least Concern		
42	Butidae	Oxycetra	Oxycetra marmoratus	Oxycetra marmoratus	v	Harmless	Least Concern		
43	Pangasiidae	Pangasius	Pangasius djamal	Pangasius djamal	v	Harmless	Least Concern		
44	Xenocyprididae	Parachela	Parachela hypophthalmus	Parachela hypophthalmus	v	Harmless	Least Concern		
45	Xenocyprididae	Parachela	Parachela oxygastroides	Parachela oxygastroides	v	Harmless	Least Concern		
46	Ambassidae	Parambassis	Parambassis apogonoides	Parambassis apogonoides	v	Harmless	Least Concern		
47	Pseudechididae	Parapleurostomus	Parapleurostomus albolineatus	Parapleurostomus albolineatus	v	Venomous	Not Evaluated		
48	Haemulidae	Pomadoryx	Pomadoryx argenteus	Pomadoryx argenteus	v	Harmless	Least Concern		
49	Cyprinidae	Punoptilus	Punoptilus bulu	Punoptilus bulu	v	Harmless	Least Concern		
50	Danionidae	Rasbora	Rasbora chryseotilapia	Rasbora chryseotilapia	v	Harmless	Data deficient		
51	Danionidae	Rasbora	Rasbora triseriata	Rasbora triseriata	v	Harmless	Data deficient		
52	Scatophagidae	Scatophagus	Scatophagus argus	Scatophagus argus	v	Venomous	Least Concern		
53	Tetraodontidae	Tetraodon	Tetraodon kretamensis	Tetraodon kretamensis	v	Harmless	Not Evaluated		
54	Cyprinidae	Tor	Tor kretamensis	Tor kretamensis	v	Harmless	Data deficient		
55	Osphronemidae	Trichogaster	Trichogaster pectoralis	Trichogaster pectoralis	v	Potential pest	Least Concern		
4. Discussion

Sembakung river has high diversity of fish fauna. The high diversity of fish is related to the spatial heterogeneity of the habitat. The habitat heterogeneity is spatially indicated by the diversity of fish species in each part of the river in this study. Starting from the Tepian area (downstream), Atap area (in the middle), to the Binter area (upstream).

Generally, the dominant family that has found in Sembakung river is Cyprinidae. The large number of members of Cyprinidae family that inhabit waters is common because this family is the largest freshwater fish family in the whole world; except Australia, Madagascar, New Zealand, and South America [24]. The Cyprinidae family is the largest freshwater fish species in Southeast Asia [31] including on Sumatra Island [32].

The research in several rivers and their floodplain on Sumatra showed the same result. As in the waters of Bukit Tiga puluh Siberida, it was found that the family Cyprinidae was the largest population. Then the fish population was followed by catfish (Bagridae, Clarididae, and Pangasidae) [33]. Then in the Rangau river, Riau, found 70 fish species belonging to 44 genera and 21 families with the most caught families being Cyprinidae (17 species) followed by Siluridae (10 species) and Bagridae (8 species) [34]. Furthermore, in the Enim River, Sumatra, 28 species (11 families) of fish fauna were caught, dominated by the Cyprinidae (14 species), Cobiitidae (4 species) and Balitoridae (2 species) families [35]. Meanwhile, in the Tesso Nilo area, Riau, 31 genera of fish were collected from 16 families. The dominant families caught were Cyprinidae (18 species), followed by Bagridae (5 species), Belontiidae, and Siluridae (4 species each) [36].

The diversity of fish species in each representative of the river during the study described the characteristics of their habitat. The downstream of Sembakung river is at Atap village. The condition of this area is influenced by the tides so the results of the study show that 10 of the 25 species of fish caught are estuary fish. Based on the results of field observations and on-site interviews informed that this area has potential as a development area for giant shrimp (*Macrobrachium rosenbergii*). This shrimp has high economic value.

The middle stream of the Sembakung river is floodplain area. There are around 20 oxbow lakes found in this area. This area will increase in during the rainy season (flood season) when fish from the river migrate laterally to floodplain areas and after receding water returns to the main river or settle in oxbow lakes. According to [37] stated that the high diversity of fish fauna found in floodplain areas is a feature of ecological dynamics as a fish response to habitat heterogeneity and fluctuations in water level. Temporarily varying environmental parameters such as depth, current velocity, temperature, substrate and dissolved oxygen play a major role in supporting the diversity of fish groups in floodplain area of the Frazos River, Texas [38]. Several studies have stated that fish communities in tropical floodplain are stochastic assemblages with the main factor being changes in water level [39, 40, 41, and 42]. The results of field observations identified that this area is an area that has the potential as a reserve area to maintain the sustainability of fish resources in North Kalimantan.

The presence of *pelian* fish or *semah* fish in Binter village indicates that the area is part of the upper stream of Sembakung river. This is also supported by the types of fish caught which are the types of fish that live in rocky waters and have fast currents. This area has the potential for the development of rare and economically important fish such as the *pelian* fish (*Tor tambroides*).

Mostly, the fish species found at the study as category of consumption fish which are sold in the form of fresh fish, smoked or salted. The high demand of fish needed will encourage uncontrolled exploitation and it will reduce the fish population. The efforts on control the sustainability of Sembakung river are setting the fishing season and fishing gear [43], determining reserve areas, especially flood swamp areas; domestication and cultivation of fish species native to the Sembakung river [44, 45].

Sembakung river is connected to the State of Malaysia, where the upstream part of this river is in the state of Malaysia. Based on field observations and interviews with local fishers, informed that the condition of the waters of Sembakung river is strongly influenced by activities that
occur in upper stream, namely in Malaysia, especially during flooding or water delivery in Malaysia. Tockner and Stanford [46] stated that the decline on diversity of freshwater fish species is closely related to habitat destruction. The information of Sembakung fish resources is still limited. The results of this study are expected could be used as basic information for inland fisheries management in North Kalimantan, especially in Sembakung river.

5. Conclusion
The Sembakung river is one of the waters that has high diversity fish species, no less than 55 types of fish are found in this area. Each representative of the river has different fishery potential, i.e. the downstream has potential as a giant shrimp (Macrobrachium rosenbergii) development area; the middlestream as a reserve area on preserving fish resources to fish needs (consumption) in North Kalimantan; while the upstream of Sembakung river is a development area for economically important fish whose existence has started to become rare, such as pelian fish (Tor tambroides). Considering that this river is a cross-country river, it is necessary to conduct a more in-depth study related to the impacts arising from all activities sent from the upstream to this river. It is necessary to immediately undertake fisheries management efforts to maintain the preservation of fish fauna in the Sembakung river.

Acknowledgements
This research is part of the National project activity "Study of Fisheries Stocks and Potentials in the Sembakung river, North Kalimantan Province WPP-PUD 437" in 2019. Therefore, the authors would like to thank the Research Institute for Inland Fisheries and Extension, Palembang and all the staff involved in this activity.

References
[1] Sala OE, Chapin III FS, Armesto JJ, Berlow R, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge D, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M and Wall DH 2000 Science 287 1770
[2] Leveque C, Oberdorff T, Paugy D, Stiassny MLJ and Tedesco PA 2007 Hydrobiologia 595 545
[3] Dudgeon D, Arthington AH, Gessner MO, Kawabata ZI, Knowler DJ, Leveque C, Naiman RJ, Prieur AH, Richard, Soto D, Stiassny MLJ and Sullivan CA 2006 Biological Reviews 81 163
[4] Okyere I and W. Denis, 2011. Aheto and Joseph Aggrey-Fynn. Eur. J. Exp. Biol., 1:178-199
[5] Allen GR 2008 Aquatic Conservation: Marine and Freshwater Ecosystems 18 541
[6] Allen GR and Werner TB 2002 Environmental Biology of Fishes 65 209
[7] Prianto E, Puspasari R, Kartamihardja ES, Zulfia N, Rachmawati P and Oktaviani D 2015 Prosiding Seminar Nasional Ikan Ke 8 (Bogor: Masyarakat Iktiologi Indonesia)
[8] Kottelat, M., Whitten, AJ., Kartikasari, SN and Wirjoatmodjo, S. 1989. Freshwaterfishes of western Indonesia and Sulawesi. Periplus Editions Limited. Jakarta
[9] Madduppa HH, Syamsul B, Agus, Aulia R, Farhan, Dede S and Beger S 2012 Biodiversitas 13 145
[10] Carrasson M, Cartes JE. 2002. Trophic relationships in a Mediterranean deep-sea fish community: partition of food resources, dietary overlap and connections within the benthic boundary layer. Mar Ecol Prog Ser 241: 41-55
[11] Hidayat JW and Benny DM 2015 Proceeding of 5th International Seminar on ISSN: 978-602- 71169-7-9 New Paradigm and Innovation on Natural Sciences and Its Application (5th ISNIPSIA) (Semarang: Faculty of Sciences and Mathematics Diponegoro University)
[12] Santoso EL and Wahyudewantoro G 2019 Jurnal Iktiologi Indonesia 19 315
[13] Haryani GS, Hidayat and Samir O 2019 IOP Conf. Series: Earth and Environmental Science 535 (2020) 012037 (Bogor: LIPI Puslit Limnologi)
[14] Undang Undang no 20 Tahun 2012 Tentang Pembentukan Kalimantan Utara
[15] Weber M and de Beaufort LF 1913 The fishes of Indo-Australian Archipelago. II: Malacopterygi i, Myctophoidea, Ostariophysi: I. Siluroidea (Leiden: E. J. Brill Ltd.)
[16] Weber M and de Beaufort LF 1916 The fishes of Indo-Australian Archipelago. Vol. III: Ostariophys: II. Cyprinoidea, Apodes, Synbranchii (Leiden: E. J. Brill Ltd.)
[17] Weber M and de Beaufort LF 1922 The fishes of Indo-Australian Archipelago. Vol. IV: Heteromi, Solenichthyes, Synentognathi, Percesoces, Labyrinthici, Microcyprini (Leiden: E. J. Brill Ltd.)
[18] Weber M and de Beaufort LF 1936 The fishes of Indo-Australian Archipelago. Vol. VII: Perciformes (Leiden: E. J. Brill Ltd.)
[19] Axelrod HR, Emmens CW, Sculthorpe D, Vonderwinkler W, Pronek N, Burgess WE 1985 Exotic tropical fishes (USA: TFH Publications, lnc)
[20] Burgess WE 1989 An atlas of freshwater and marine catfishes: A preliminary surveys of Siluriformes (USA: TFH Publications, lnc)
[21] Roberts T 1989 The freshwater fishes of Western Borneo (Kalimantan Barat, Indonesia) (San Francisco: California Academic of Science)
[22] Inger RF and Chin PK 1990 Fieldiana Zoology Journal 45 1
[23] Ng PKL and Lim KP 1990 Snakeheads (Pisces:Channidae): natural history, biology and economic importance (Singapore: National University of Singapore) pp 127-152
[24] Kottelat M, Whitten AJ, Kartikasari SN and S Wirjoatmodjo 1993 Freshwater fishes of Western Indonesia and Sulawesi (Hongkong: Periplus Editions) p 221
[25] Tan THT and Ng HH 2000 Journal of Natural History 34 267
[26] Ng HH 2003 Journal of Fish Biology 62 1296
[27] Gustiano R, Teugels GG, and Pouyauds L 2003 Journal of Natural History 37 357
[28] Saanin H 1984 Kunci identifikasi ikan I dan II (Bandung: Bina Cipta)
[29] Froese R and Pauly D 2012 FishBase (Stockholm: World Wide Web Electronic Publication)
[30] FishBase 2017 Trichogaster pectoralis Regan http://www.fishbase.org/summary/499 (April 17, 2017)
[31] Zakaria M 1994 Hydrobiologia 285 41
[32] Wargasasmita S 2002 Jurnal Iktiologi Indonesia 2 41
[33] Siregar S, Putra RM and Sukendi 1993 Proceedings of the NORINDA (Rain Forest and Resource Management)
[34] Yustina 2001 Jurnal Natur Indonesia 4 1
[35] Hamidah A 2004 Jurnal Iktiologi Indonesia 4 51
[36] Rachmatika I, Munim A, and Dewantoro GW 2006 Treubia 34 59
[37] Agostinho AA, Thomaz, SM, Minte-Vera, CV and Winemiller KO 2000 Biodiversity in the high Parana river floodplain in Biodiversity in wetlands: assessment, function and conservation (Leiden: Backhuys Publishers) pp 89
[38] Li RY and Gelwick FP 2005 Ecology of Freshwater Fish 14 319
[39] Lowe-McConnell RH 1987 Ecological studies in tropical fish communities (Cambridge: Cambridge University Press)
[40] Jepsen DB 1997 Environmental Biology of Fishes 49 449
[41] Saint-Paul U, Zuanon J, Correa MAV, Garcia M, Fabre NN, Berger U and Junk WJ 2000 Environmental Biology of Fishes 57 235
[42] Hoeinghaus DJ, Layman CA, Arrington DA and Winemiller K 2003 Environmental Biology of Fishes 67 379
[43] Welcomme RL 1985 River fisheries (Rome: FAO) p262
[44] Nasution Z and Sunamo MTD 2005 Prosiding Forum Perairan Umum I. Pemanfaatan dan pengelolaan perairan umum secara terpadu bagi generasi sekarang dan mendatang
Pengelolaan perairan umum sungai dan rawa banjiran secara terpadu dan berkelanjutan (Palembang: Balai Riset Perikanan Perairan Umum)

[45] Utomo AD, Sunamo MTD and Adjie S 2005 Prosiding Forum Perairan Umum Pemanfaatan dan pengelolaan perairan umum secara terpadu bagi generasi sekarang dan mendatang (Palembang: Balai Riset Perikanan Perairan Umum)

[46] Tockner K and Stanford JA 2002 Environmental Conservation 29 308