Preparation and evaluation of gelatin and pectin-based *Moringa oleifera* chewable-gummy tablets

To cite this article: K C Rani et al 2021 IOP Conf. Ser.: Earth Environ. Sci. 913 012082

View the article online for updates and enhancements.
Preparation and evaluation of gelatin and pectin-based Moringa oleifera chewable-gummy tablets

K C Rani¹, N I E Jayani², F Feneke³, S Melanda³

¹Department of Pharmaceutics, Faculty of Pharmacy, University of Surabaya, Surabaya, Indonesia
²Departement of Pharmaceutical Biology, Faculty of Pharmacy, University of Surabaya, Surabaya, Indonesia
³Faculty of Pharmacy, University of Surabaya, Surabaya, Indonesia

E-mail: karinacitrarani@staff.ubaya.ac.id

Abstract. Chewable gummy tablets consist of sugar and a gelling agent. Adding Moringa oleifera leaf powder to this dosage form provides health benefits since it contains high antioxidants and nutrients. This study developed chewable gummy tablets containing moringa leaf powder using two types of gelling agents, each prepared with three different concentrations. Gelatin was made in 5.0%, 7.5%, and 10.0% concentrations, while pectin was 1.0%, 1.5%, and 2.0%. This study aimed to analyze the effect of the type of gelling agent and concentration on the physical characteristics of the chewable gummy tablets produced, including visual appearances, weight variation, tablet dimension, swelling ratio, dispersion time, syneresis, and texture profile (hardness, chewiness, and gumminess). The chewable gummy tablets were prepared by heating and congealing, and then their physical characteristics were analyzed using a completely randomized design (α=0.05). The results showed that the type and concentration of the gelling agent and the interaction between the two factors significantly affected the dispersion time, syneresis, hardness, gumminess, and chewiness (p<0.05). Among the prepared formulations, chewable gummy tablets developed using 10% gelatin and 1.5% pectin are considered optimal because these fulfill all the physical characteristics requirement, show no syneresis, and provide the best texture.

Keywords: Chewable gummy tablets, Moringa oleifera, gelatin, pectin

1. Introduction
Chewable gummy tablets (CGTs), also known as a gummy confection or confectionery gel, consist of sucrose or syrup combined with a gelling agent such as gelatin, gum, or pectin. Other excipients can be added to this formulation, including coloring agent, flavor, and acidulant [1]. Nowadays, CGTs have been developed as nutraceutical products since these are easier to swallow or chew compared to other dosage forms like tablets or capsules. Therefore, they are widely used in pediatric, geriatric, and patients with swallowing problems [2]. CGTs are formulated using a gelling agent as the vehicle of this product. Several hydrocolloid substances serve as gelling agents, such as gelatin, pectin, sodium alginate, and gum. The selection of a gelling agent is a pivotal part of CGTs formulation because it significantly affects the physicochemical properties of these products [3].

Gelatin is a protein-based gelling agent extracted from animal collagen such as beef, pork, fish, and poultry. Gelatin is most widely used to manufacture CGTs because it easily forms a stable gel texture and can act as an emulsifier [2]. The viscosity and texture of this preparation strongly depend on the concentration of gelatin used. A previous study showed that the texture profile of gelatin-based CGTs, expressed as hardness, cohesiveness, gumminess, and chewiness, improved with increasing gelation concentration [4]. Other hydrocolloids extensively used in food products include pectin, sodium alginate, xanthan gum, and carrageenan. Pectin is the most promising substitute for gelatin as a gelling agent in CGTs.
Pectin is classified as Hydroxy Methoxyl Pectin (HMP) with a degree of esterification (DE) > 50 and Low Methoxyl Pectin (LMP) with DE < 50. DE affects the environments and procedures that each type of pectin needs to form gels. When added with sucrose or glucose, HMP will form a gel in an acidic environment. Pectin is a cation that contains sugar and is sensitive to pH change. Pectin gel is thermoreversible, clear, transparent, dispersed in cold water, dissolvable in cold and hot water, insoluble if the sugar content is more than 25%, acidic (pH 2.5–4), stable at 40-85°C, and synergistic; also, it has low viscosity and is generally used in the range of 0.15–6.3% [5]. The suitable ratio of HMP and sucrose needs to be optimized to obtain the desired physicochemical properties, especially the hardness and elasticity of CGTs [6].

CGT formulation using natural products as active constituents requires further development. A previous study successfully developed CGTs of *Elaeagnus latifolia* using gelatin, resulting in three optimal concentrations of gelatin for this purpose, i.e., 8, 9, and 10%. These results imply that the pH value, solubility, acidity, and gumminess increase with the concentrations of added gelatin [4]. Gelatin is also used as a gelling agent in 10% concentration to produce CGTs containing 5% lemon extract that fulfills the predetermined specifications [7]. In another study formulating CGTs with gelatin and moringa leaf puree as active ingredients, an increase in moringa puree concentration affected the organoleptic properties and consumer acceptance, with CGTs made of 20% moringa leaf puree being the most acceptable [8]. However, CGT formulation with pectin as the gelling agent has not been widely developed. One of the pectin-based CGT studies used *Paullinia cupana* Kunth powder as the active ingredient, and the results showed that although the formula can produce the expected preparation, further optimization remains necessary [9].

The development of CGTs supplemented by herbal ingredients is promising. *Moringa oleifera* L is a natural source of herbal ingredient potential to be developed into CGTs since it contains high antioxidant capacity. In addition, *M. oleifera* leaves are rich in nutrients and polyphenols, making this part of the plant promising to further develop as a natural source of antioxidants [10]. *M. oleifera* leaf powder also proves beneficial to modulate immune systems [11] and is, therefore, potentially developed into CGTS by heating and congealing [12]. In this study, CGTs added with *M. oleifera* leaf powder have been developed using two different types of gelling agents with three different concentrations: gelatin made in 5.0%, 7.5%, and 10.0% concentrations and pectin in 1.0%, 1.5%, and 2.0%. This study aimed to analyze the effects of the type and concentration of gelling agents on the physical characteristics of CGTs, consisting of visual appearances, weight variation, tablet dimension, swelling ratio, dispersion time, syneresis, and texture profile (hardness, chewiness, and gumminess). As such, it also provided the optimal formulation for *M. oleifera* leaf powder-based CGTS.

2. Method

2.1 Material

The main material used in this study was *Moringa oleifera* leaf powder which passed through a 500-mesh screen (PT. Moringa Organik, Blora, Indonesia). The other excipients used were pharmaceutical grade (p.g) or food-grade (f.g), namely gelatin (Planet Kimia, Indonesia), high methoxyl pectin (Wei Food, China), mannitol (Planet Kimia, Indonesia), sucrose (PT. Sugar Group Companies, Indonesia), propylene glycol (Planet Kimia, Indonesia), citric acid (Planet Kimia, Indonesia), sodium benzoate (Planet Kimia, Indonesia), corn oil (Planet Kimia, Indonesia), melon flavor (PT. Anggana Catur Prima, Indonesia), and the coloring agent (PT. Anggana Catur Prima, Indonesia). The tools and instruments used were digital analytics (Mettler Toledo), mixing pan, thermometer, jelly mold, vernier caliper, Agrosta texturometer v. 2.

2.2 Preparation of gelatin and pectin-based *Moringa oleifera* chewable-gummy tablets

Gelatin and pectin-based CGTs made of *M. oleifera* leaf powder were prepared by heating and congealing [12]. Six formulas were developed in this study, as presented in Table 1. Formulas 1–3 used gelatin as a gelling agent with three different concentrations: 5%, 7.5%, and 10%, while formulas 4–6 used pectin made in 1%, 1.5%, and 2% concentrations. Gelatin and pectin as gelling agents play a pivotal
role in the formula. Sucrose served as a sweetening agent and enhanced the 3D gel structure with gelling agent and water. Mannitol has a role, not only to increase acceptability but also as a firming agent. A firming agent was used in chewable gummy tablets to increase the hardness of the tablet. Citric acid was used in this formula as an acidulant to increase the acceptability of this product. Sodium benzoate serves as preservatives, hence propylene glycol has a function to increase the elasticity of the chewable gummy. Melon flavor and coloring agents were also used in this study to increase customer perception and preference. To prevent the chewable gummy stuck in the mold, corn oil was utilized in this study.

Table 1. Gelatin and pectin-based *Moringa oleifera* chewable-gummy tablet formulas.

Ingredients	Compositions (%)	Formula 1	Formula 2	Formula 3	Formula 4	Formula 5	Formula 6
M. oleifera leaf powder		2	2	2	2	2	2
Gelatin		5	7.5	10	-	-	-
Pectin		-	-	-	1	1.5	2
Mannitol		10	10	10	15	15	15
Sucrose		35	35	35	35	35	35
Citric acid		1	1	1	1	1	1
Sodium benzoate		0.5	0.5	0.5	0.5	0.5	0.5
Propylene glycol		4	4	4	4	4	4
Melon flavor		4	4	4	4	4	4
Coloring agent (yellow)		0.001	0.001	0.001	0.001	0.001	0.001
Corn oil		4	4	4	5	5	5
Purified water		34.499	31.999	29.499	32.499	31.999	31.499
Total		**100**	**100**	**100**	**100**	**100**	**100**

The step started with moistening *M. oleifera* leaf powder with propylene glycol in a 1:5 ratio (w/w), followed by dispersing the moistened powder in 4 ml of purified water. An accurate amount of sucrose was dissolved in hot purified water (80°C) and continuously stirred in a mixing pan. Mannitol was mixed with corn oil, then this mixture was added to the sucrose solution. Gelling agent (gelatin or pectin) was added to the mixture gradually and uniformly while stirred continuously until homogenous dispersions were observed. Subsequently, propylene glycol was added to the mixture while stirred continuously. Citric acid, sodium benzoate, melon flavor, and coloring agent were dissolved separately in hot water, and then the resulted solutions were first mixed before being added to the previous mixture with continuous stirring at 80°C. When the temperature of the mixture reached 60°C, the dispersed *M. oleifera* leaf powder was poured gradually into the mixture then stirred homogeneously for 10 minutes. The mixture obtained was then poured into the jelly mold and stored in an airtight container at room temperature (25–30°C) for 24 hours to harden to CGTs. These CGTs were then packed individually in aluminum foil paper and stored in an airtight jar for further analyses, including physical characteristics evaluation.

2.3 Physical Characteristics Evaluation
2.3.1 Organoletic Observations
The prepared *Moringa oleifera* CGTs were observed organoleptically for color, taste, shape, texture, and clarity. The texture observation was conducted by mildly rubbing the surface and rubbing the tablets between two fingers [13].

2.3.2 Weight Variation Test
Weight variation of the CGTs was measured to determine the content homogeneity of each tablet. In the initial stage, not less than 20 individual tablets were weighed, and then the average weight was calculated. The tablet is concluded as meeting the predefined requirement if its weight does not deviate more than 7.5% from the average. If one tablet fell outside this range, the test continued to the second stage with an additional set of not less than 20 CGTs. The test continued to the second stage with an additional set of not less than 20 CGTs, in which the tablet is concluded as meeting the requirement if its weight does not deviate more than 10% from the average weight [14].

2.3.3 Tablet Dimension Test
The dimension of the CGTs was measured to determine the size homogeneity and the necessary dimension of primary packaging to protect the tablets from the environment. For this reason, the length, width, and thickness of ten CGTs were measured using a vernier caliper. The tablet meets the requirement if the standard deviation of its dimension is not higher than 5%.[15].

2.3.4 Swelling Ratio Test
A swelling ratio test is a simple method of determining the water absorption capacity of a gel structure. The CGT from each formulation was first weighed then immersed in 100 ml of purified water. Before the second weighing, the remaining water on the tablet’s surface was removed using filter paper. The swelling ratio was calculated by dividing the weight difference between before and after immersion by the initial tablet’s weight [16].

2.3.5 Dispersion Time Test
The dispersion test was performed using a flask that contained 100 ml of purified water at 37°C. The CGT from each formulation was placed in the flask and constantly stirred using a magnetic stirrer. The time it took for it to disperse completely was observed [3]. The standard requires a dispersion time of 10–30 minutes for CGTs [12].

2.3.6 Syneresis Test
Syneresis occurs when water drains from a contracting or shrinking structure by extraction or expulsion [12], potentially reducing the CGT quality. This test was performed at room temperature (25 ± 5°C) by weighing the samples. First, an absorbent paper was attached to the surface of each tablet, then the final weights of the preparations were observed [13]. A significant difference between the initial and final weights indicates syneresis.

2.3.7 Texture Analysis
The texture analysis was performed using an Agrosta texturometer v. 2. First, the CGT was placed in the sample testing area, then the probe, fitted within the area, was lowered to the sample with a load of 100 grams. The speed of the probe compressing and penetrating the sample was 100 mm/s, and the probe returned to its initial position at 10 mm/s. It was left at this distance for 60 seconds before being withdrawn from the sample to its initial position [3]. The texture profile of the CGT, comprising hardness, chewiness, and gumminess, was recorded during the analysis.

2.4 Data Analysis
The weight variation and tablet dimension were compared to the United States Pharmacopeia for CGTs to determine whether or not the formulated CGTs in this study fulfilled the requirements. The evaluated physical characteristics, namely swelling ratio, dispersion time, syneresis, hardness, chewiness, and gumminess, were analyzed using a completely randomized factorial design (α=0.05).

3. Results and Discussion
This study prepared CGTs containing Moringa oleifera leaf powder using two different gelling agents, namely gelatin and pectin. Organoleptically, all CGTs had a square shape, transparent dark green color,
melon aroma, and sweet taste. This homogenous appearance shows a positive impact on consumer perception and acceptance [17]. The texture was non-sticky, elastic, and chewy, with adequate gel strength. A higher gelling agent concentration means higher mechanical strength and, as a result, less elastic texture. This condition was observed not only in the gelatin-based CGTs but also in the pectin-based. Figure 1 shows the physical appearances of the prepared gelatin and pectin-based CGTs.

![Physical appearances of gelatin-based and pectin-based Moringa oleifera chewable-gummy tablets.](image)

Figure 1. The physical appearances of (A) gelatin-based and (B) pectin-based *Moringa oleifera* chewable-gummy tablets.

All of the prepared CGTs in this study weighed between 2.84 and 2.93 grams. The results showed that no individual tablet exceeded the weight in the pharmacopoeial requirement, implying that all the prepared tablets contained a homogenous amount of *Moringa oleifera* leaf powder [13] and that gelatin and pectin performed the desired function as gelling agents to produce homogeneity. Also, a further physical evaluation revealed that the dimensions of the prepared formulations deviated within the specified range. Table 2 presents the observed physical characteristics of the developed gelatin and pectin-based CGTs.

The swelling ratio is defined as the fractional weight increase of the gel system due to water absorption [18]. The swelling ratio test was intended to evaluate the ability of the CGTs to absorb water molecules inside their structure. The higher the swelling ratio, the higher the tablet’s ability to entrap water molecules. Differences in the gelling agent’s type and concentration significantly influenced the swelling ratio of all prepared formulas (p<0.05). Gelatin formed a new hydrogen bond or stabilized existing hydrogen bond with water molecules, creating three stabilized structural dimensions [19]. The same case applies to pectin hydrogels in that they also have excellent swelling properties [16]. Pectin produced *M. oleifera*-based CGTs with a higher swelling ratio compared to gelatin. The higher amount of hydrophilic groups such as -OH and -COOH in pectin’s structure enables a hydrogen bond with water molecules to form; thereby, a higher swelling ratio was observed [20]. When added in higher concentrations to the formulations, both gelling agents increased the polymer network and, thus, produced CGTs with higher swelling ratios. The polymer network expands during the absorption of water [16].

A dispersion time test was conducted to estimate how quickly the CGTs dissolved in aqueous media to ensure dissolution upon contact with saliva. Faster dispersion time indicates faster release of the active ingredients from a dosage form [21] and a quicker absorption process starting from the point of contact with aqueous media. A previous study described that a pharmaceutically acceptable CGT should disintegrate within 15 minutes [12]. In line with this specification, the water dispersion times of all prepared CGTs were between 5.26 and 12.33 minutes. The statistical analysis results indicate that the type of gelling agent, concentration, and interaction between these two factors significantly influenced the water dispersion time (p<0.05). There was a strong interaction between the type of gelling agent and concentration to the water dispersion time. high methoxyl pectin in this study showed a higher dispersion time because of dimerization and large chain size. Gel formation may involve hydrogen bonding (coordinate bonding of pectin structure with Ca$^{2+}$ ions) and hydrophobic interaction [22]. Meanwhile,
gelatin is hygroscopic, meaning that it readily absorbs and retains water in a gel structure. The thickening process also involves the non-specific conformation of polymeric chains, which are conformationally disordered in the solvent [2]. Because gelatin produced a hard-structured yet soft and more chewable gummy tablet, rapid dispersion and release of moringa leaf powder were observed during the research [2]. Gelling agent’s concentration plays an essential role in the tablet’s dispersion time in liquid media: higher gelatin and pectin concentration would create a more robust gel matrix, thus increasing and strengthening the cross-links between polymers. The stronger the gel structure, the longer it takes for a CGT to dissolve [23].

Table 2. Physical characteristics of the prepared *Moringa oleifera* chewable-gummy tablets.

Parameters	Gelatin	Pectin				
	F1 (5%)	F2 (7.5%)	F3 (10%)	F4 (1%)	F5 (1.5%)	F6 (2%)
Scents	Melon	Melon	Melon	Melon	Melon	Melon
Color	Green	Green	Green	Green	Green	Green
Flavor	Sweet	Sweet	Sweet	Sweet	Sweet	Sweet
Shape	Square	Square	Square	Square	Square	Square
Texture	Non-sticky,	Non-sticky,	Non-sticky,	Non-sticky,	Non-sticky,	Non-sticky,
	elastic	less elastic	elastic	elastic	elastic	hard texture
Swelling ratio (%)	0.68±0.01	1.02±0.01	1.35±0.02	2.03±0.20	1.90±0.54	2.24±0.20
Dispersion Time (minutes)	5.35±0.09	9.42±0.05	11.46±0.07	9.96±0.46	11.34±0.09	12.26±0.11
Syneresis (%)	0.34±0.00	0	0	0	0	0
Average weight (g)	2.92±0.00	2.93±0.00	2.93±0.00	2.84±0.00	2.84±0.00	2.85±0.01
Length (cm)	1.50 ± 0.00	1.50 ± 0.00	1.50 ± 0.00	1.49± 0.01	1.49± 0.01	1.49± 0.01
Width (cm)	1.50 ± 0.00	1.50 ± 0.00	1.50 ± 0.00	1.49± 0.00	1.49± 0.00	1.49± 0.00
Thickness (cm)	0.92 ± 0.01	0.92 ± 0.01	0.93 ± 0.01	0.94 ± 0.01	0.93 ± 0.01	0.93 ± 0.01
Hardness (N x mm)	354.33 ± 24.38	674.33 ± 73.49	893.67 ± 25.15	250.67±46.52	612±79.57	579.33±21.73
Gumminess (N x mm)	32.70 ± 3.18	64.49 ± 7.91	67.75 ± 5.67	30.86±10.57	198.19±4.4	223.12±22.50
Chewiness (N x mm)	98.10 ± 9.55	193.45 ± 23.73	101.62 ± 8.49	92.59±31.69	594.59±13.20	669.38±67.49

The other parameter to estimate the stability of CGTs was syneresis, which describes the simultaneous gel shrinking and water separation from the gel structure during storage [12]. A higher syneresis percentage indicates that the texture of the CGT is softened, hence reducing its quality [13]. The type of gelling agent, concentration, and interaction between these factors affected the syneresis potency of the CGT (p<0.05). The pectin-based gummy tablets did not show syneresis, whereas the CGTs containing 5% gelatin experienced syneresis. From these results, it can be concluded that the gel’s structural strength significantly influences the ability of the gummy tablets to bind free water. A reduction in the system’s free energy directly affects the amount of water retained in a gel preparation [13]. Furthermore, increasing the concentration of the added gelling agent also increases the number of polymer networks, entrapping a higher number of water molecules in the structure [12]. In this research, the number of free water molecules decreased in the pectin-based CGTs, hence no syneresis was observed.

A texture is described as the sensory and functional evaluation of the food product’s structural, mechanical, and surface properties [19]. Texture profile analysis is an approach to determine textural properties by applying controlled force to the product and recording the response over time. This analysis is crucial in predicting palatability and user acceptance [2]. Texture profile analysis in this study
evaluated three parameters related to physical characteristics, namely hardness, gumminess, and chewiness. In the case of CGTs, hardness correlates with the strength of gel structure under compression. Hardness is identified as the peak force during the first compression cycle in the texture profile [19]. In terms of sensory qualities, it translates to the maximum force required to compress food between molar teeth. Gumminess is the correlation between the hardness and cohesiveness of a food product. Gumminess is a characteristic of semisolid preparation with low hardness and a high degree of cohesiveness [19]. It is the energy required to disintegrate a CGT to a steady state for swallowing. Meanwhile, chewiness measures the extent to which the gummy tablet’s springy texture is chewable and describes the sensation of masticating it, which inevitably involves elastic hindrance. Also, it measures the amount of energy needed to chew a food product before it can be swallowed [3].

Figure 2 depicts the texture profiles of all prepared formulas. The texture analysis results showed that increasing gelatin concentration resulted in higher hardness values because it potentially increases the hydrogen bonds formed between the gelatin molecules. The same results were observed in the pectin-based CGTs in which higher gelling agent concentration produced stronger cross-link between polymers [23].

![Figure 2. The texture profiles of the prepared Moringa oleifera chewable-gummy tablets.](image)

The gumminess evaluation results implied that higher gumminess contributes to a higher hardness value [19]. Gelatin is a viscoelastic substance exhibiting gumminess properties, and pectin also exhibits viscoelastic properties with predominant elastic characteristics. A previous study confirmed that high methoxyl pectin created a higher gumminess value in the range of 0.69–2.13 N [24]. Therefore, based on the chewiness values, the pectin-based CGTs in this study were expected to have a higher gumminess value than the gelatin-based. Furthermore, a previous study demonstrated that the chewiness of pectin-based gels was two to three-fold higher than those made with gelling agents with lower molecular weight [24]. In conclusion, gelling agent concentration also plays an essential role in texture characteristics: when added in higher concentrations, it will produce CGTs with higher hardness, gumminess, and chewiness values. These findings correspond to the statistical analysis results, i.e., the type and concentration of gelling agents and interaction between the two influenced the texture of the prepared CGTs.
4. Conclusion

The type and concentration of gelling agents and interaction between these two factors significantly affect the dispersion time, syneresis, hardness, gumminess, and chewiness of *Moringa oleifera* chewable-gummy tablets (CGTs). As the gelling agent, pectin can produce CGTs with a more robust gel structure than gelatin; hence, the pectin-based CGTs have higher dispersion time and gumminess and chewiness values. CGTs developed using 10% gelatin and 1.5% pectin are considered optimal formulations because these fulfill all the required physical characteristics for CGTs, show no syneresis during storage, and provide a better texture than the other formulations.

5. Acknowledgement

The authors would like to thank the Faculty of Pharmacy and LPPM (Research institutions and community service) of the University of Surabaya for supporting this research and the Government of Bogo Village for participating in this study.

6. References

[1] Suman, Kaushal M, Gupta A, Vaidya D, Ranjan K. Standardization of formulation for the preparation of ginger supplemented jelly candies. Pharma Innov J 2021;10:608–13.

[2] Dille MJ, Hattrem MN, Draget KI. Soft, chewable gelatin-based pharmaceutical oral formulations: a technical approach. Pharm Dev Technol 2018;23:504–11. https://doi.org/10.1080/10837450.2017.1332642.

[3] Čižauskaite U, Jakubaityte G, Žitkevičius V, Kasparavičiene G. Natural ingredients-based gummy bear composition designed according to texture analysis and sensory evaluation in vivo. Molecules 2019;24. https://doi.org/10.3390/molecules24071442.

[4] Banjonginsiri P, Donrung N, Pasakawee K. Effect of Gelation Addition on Physico - Chemical Characteristics of Bastard Oleoaster Gummy Jelly. ICoFAB 2020:1–7.

[5] Reichembach LH, Lúcia de Oliveira Petkowicz C. Pectins from alternative sources and uses beyond sweets and jellies: An overview. Food Hydrocoll 2021;118:106824. https://doi.org/10.1016/j.foodhyd.2021.106824.

[6] Burey P, Bhandari BR, Rutgers RPG, Halley PJ, Torley PJ. Confectionery gels: A review on formulation, rheological and structural aspects. vol. 12. 2009. https://doi.org/10.1080/10942910802223404.

[7] Fauzi MF, Aryani R, Cahya G, Darma E. Formulasi sediaan gummy candy ekstrak buah jeruk nipis (Citus aurantifolia (christm) swingle) dan uji aktivitas terhadap streptococcus mutans penyebab karies giga. Pros Farm 2015;1:821–8.

[8] Nurjanah N, Hidayati L, Kiranawati TM, Fatimah N, Susanto H. The characteristics and organoleptic qualities of Moringa oleifera jelly candy post kelor leave puree supplementation. AIP Conf Proc 2021;2353. https://doi.org/10.1063/5.0052679.

[9] Plants M, Hateganu PI. Gelled Confectionery Product Supplemented With Guarana (Paullinia Cupana Kunth) Powder. Development and Characterization. Hop Med Plants 2020;28:202–10.

[10] Sohaimy SA El, Hamad GM, Mohamed SE, Amar MH, Al-hindi RR. Biochemical and functional properties of Moringa oleifera leaves and their potential as a functional food 2015;4:188–99.

[11] Mehwish HM, Riaz Rajoka MS, Xiong Y, Zheng K, Xiao H, Anjin T, et al. Moringa oleifera--A Functional Food and Its Potential Immunomodulatory Effects. Food Rev Int 2020;00:1–20. https://doi.org/10.1080/87559129.2020.1825479.

[12] Cadhim ZM, Ali WK. Preparation and evaluation of granisetron chewable pediatric oral jelly. Int J Drug Deliv Technol 2019;9:145–9. https://doi.org/10.25258/ijdtt.v9i3.4.

[13] Prakash K, Satyanarayana VM, NagiAT HT, Fathi AH, Shanta AK, Prameela AR. Formulation development and evaluation of novel oral jellies of carbamazepine using pectin, guar gum, and gellan gum. Asian J Pharm 2014;8:241–9. https://doi.org/10.4103/0973-8398.143937.

[14] Davydova N. USP Chewable Gels Monographs. USP Diet Suppl Stakehold Forum 2018:1–20.

[15] Augsburger LL, Hoag SW. Pharmaceutical Dosage Forms - Tablets. Pharm. Dos. Forms Tablets,
[16] Kowalski G, Kijowska K, Witeczak M, Kuterasiński L, Lukasiewicz M. Synthesis and effect of structure on swelling properties of hydrogels based on high methylated pectin and acrylic polymers. Polymers (Basel) 2019;11:1–16. https://doi.org/10.3390/polym11010114.

[17] Yuliana M, Rivero S, García MA, García MA. Functional Jelly Beans Based On Hydrocolloids And Citrus Cremogenates. J Multidiscip Eng Sci Technol 2017;4:2458–9403.

[18] Park H, Guo X, Temenoff JS, Tabata Y, Caplan AI, Kasper FK, et al. NIH Public Access 2010;10:541–6. https://doi.org/10.1021/bm801197m.Effect.

[19] Chandra M V., Shamasundar BA. Texture profile analysis and functional properties of gelatin from the skin of three species of fresh water fish. Int J Food Prop 2015;18:572–84. https://doi.org/10.1080/10942912.2013.845787.

[20] Hashemi M, Ramezani V, Seyedabadi M, Ranjbar AM, Jafari H, Honarvar M, et al. Formulation and optimization of oral mucoadhesive patches of myrtus communis by box behnken design. Adv Pharm Bull 2017;7:441–50. https://doi.org/10.15171/apb.2017.053.

[21] Matulyte I, Marksa M, Bernatoniene J. Development of Innovative Chewable Gel Tablets Containing Nutmeg Essential Oil Microcapsules and Their Physical Properties Evaluation. Pharmaceutics 2021;13:873. https://doi.org/10.3390/pharmaceutics13060873.

[22] Bagal-Kestwal DR, Pan MH, Chiang BH. Properties and applications of gelatin, pectin, and carrageenan gels. Bio Monomers Green Polym Compos Mater 2019;117–40. https://doi.org/10.1002/9781119301714.ch6.

[23] Kaya AOW, Suryani A, Santos J, Rusli MS. Karakteristik Dan Struktur Mikro Gel Campuran. J Kim Dan Kemasan 2015;37:19–28.

[24] Linares-García JA, Ramos-Ramírez EG, Salazar-Montoja JA. Viscoelastic properties and textural characterisation of high methoxyl pectin of hawthorn (Crataegus pubescens) in a gelling system. Int J Food Sci Technol 2015;50:1484–93. https://doi.org/10.1111/ijfs.12792.
The open access IOP Conference Series: Earth and Environmental Science (EES) provides a fast, versatile and cost-effective proceedings publication service.

If you would like more information regarding IOP Conference Series: Earth and Environmental Science please visit conferenceseries.iop.org, and if you are interested in publishing a proceedings with IOP Conference Series please visit our page for conference organizers.

Conference organizers can use our online form and we will get in touch with a quote and further details.

Most read
Most cited

Latest articles

This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
Table of contents

Volume 913

2021

Previous issue Next issue

4th International Conference on Bioscience and Biotechnology 16-18 August 2021, Indonesia (Virtual)
Accepted papers received: 01 November 2021
Published online: 02 December 2021

Open all abstracts

Preface

OPEN ACCESS
Preface: Proceedings of the 4th International Conference on Bioscience and Biotechnology (4th ICBB 2021), 21st-23rd September 2021.

Open abstract View article PDF

OPEN ACCESS
Peer review declaration

Open abstract View article PDF

Natural Resources in Agriculture

OPEN ACCESS
Application of manures reduces inorganic fertilizers requirement for maize grown in a sandy soil

This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
G A A P Krishnadhi, I K D Jaya, B B Santoso, W Wangiyana and H Suheri

OPEN ACCESS
Soil chemical characteristics and yield of red rice under aerobic irrigation system as affected by intercropping with peanut and application of organic wastes on permanent raised-beds
I G M Kusnarta, D Rahmadianti, N W D Dulur and W Wangiyana

OPEN ACCESS
The effect of organic waste application on some soil physical properties, growth and yield of red rice between conventional and aerobic irrigation system on raised-beds
I G M Kusnarta, A Mawaddah, N W D Dulur and W Wangiyana

OPEN ACCESS
Optimization of curcumin temulawak (Curcuma xanthorrhiza Roxb.) on calcareous marginal land under teak
P K Sholihah, E Nihayati and A S Karyawati

OPEN ACCESS
Yield performance of several promising lines of black rice as affected by application of mycorrhiza biofertilizer and additive intercropping with soybean under aerobic irrigation system on raised-beds
W Wangiyana, N Farida and I G P M Aryana

OPEN ACCESS
Enhancement of antioxidant activity of kencur rhizome in the shade by potassium fertilizer
This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
Analysis on rhizome shrinkage of two expected kencur (Kaempferia galanga) accessions from east java using MgSO4 fertilizer under shading
R. Kurniawan, A.R. Daliah, M.D. Ridwan, A. Saitama, A.H. Zaini, E. Widaryanto and K.P. Wicaksomo

Effect of Intercropping on Mycorrhizal Populations, Growth, and Yield on Several Varieties of Maize (Zea mays L.) and Soybeans [Glycine max (L.) Merr.] in Dryland North Lombok, Indonesia
W. Astiko, N.M. L. Ermawati and I.P. Silawibawa

Attack intensity of pest in the vegetative phase of Atlantic potato variety in three different altitudes
M. Sarjan, Kisman, Anikmatullah, M. Windarningsih, A. Jihadi, P. D. Pernana and T. Chitra

Solar-powered IoT based smart hydroponic nutrition management system using FARM
W. Wodashwara, A. H. Jatnika, A. Zubaidi and I. W. A. Arimbawa

The Rhizobium and calcium fertilizer application to peanut plant in dry land
A. Fadil Heron and Sereqan
Development stages of soybean varieties against pod sucking pest *Riptortus linearis* F. (Hemiptera: Alydidae) under two different cultivation technologies
Tantawizal, M Sarjan, B Supeno, B A Patu and B N Hidayah

The relationship of the morphological characteristics of some varieties of soybean on the attack intensity of the pod borer (*Etiella zincenella* Treitschke) in two different cultivation techniques
B A Patu, M Sarjan, Tarmizi and Tantawizal

The effect of method and dosage application of biofungicide extract of Legundi leaf fermented with *Trichoderma harzianum* fungus for control of Fusarium wilt disease on shallots
I M Sudantha, Sudirman and N M L Earnwati

Economic and environmental studies of conservation agriculture on dryland in Central Lombok, Indonesia
E Lastariningstih, T Sjah and I G L P Tanaya

Growth response of diploid and tetraploid taro (*Colocasia esculenta* (L.) Schott) shoot culture to drought stress using polyethylene glycol
A Wahabarti, A Putrih, T Suhina and I M Earnwati
OPEN ACCESS
Crop selection in dryland of North Lombok Regency: farmers search for more money and less risk
T Sjah, I Budastra, I G L P Tanaya and Halil

OPEN ACCESS
Utilization of oil palm empty fruit bunches biomass through slow pyrolysis process
D E Rahayu, N Kamanningroem, A Altway and A Slamet

OPEN ACCESS
Foliar Organic Fertilizer Enhanced Growth, Yield and Carotenoid Content of Carrot Plants (Daucus carota L.) Cultivated in the Lowland
A Nikmatullah, G G Samudra, K Zawani, K Muslim, I Nairfana and M Sarjan

OPEN ACCESS
Agronomic response of kangkung plants typical of Lombok Island with a hydroponic system treated with Trichoderma biounitrients
I M Sudantra, Suwardji and N L P N Sriwarthini

OPEN ACCESS
Effectiveness of snap traps on capturing rodent and small mammals in rural area of two provinces (Yogyakarta and West Java) in Indonesia
N A Herawati and T Purnawan
OPEN ACCESS
Screening of plant growth-promoting bacterial endophytes and rhizobacteria isolated from Curcuma xanthorrhiza
N A Saryanah, Y P Roswanjaya, S Himawati, Sulastri, I S Bidara and D Iskandar

OPEN ACCESS
Intensity of pest attack and yield of potato plant during offseason in Sajang Village, Sembulan District, West Lombok
M Sarjan, A Jihadi, Kisman and A Nikmatullah

OPEN ACCESS
Analyses of organic matter and heavy metal composition in formulated macroalgae-based organic fertilizer
S Widayastuti, A Jupri, A Nikmatullah, N S H Kurniawan, I A P Kirana, A S Abidin, A Hernawan, H Sunarpi and E S Prasedya

OPEN ACCESS
Analysis of leaf chlorophyll content of paddy plants during vegetative stage grown in soil media containing macroalgae organic fertilizer
N S H Kurniawan, I A P Kirana, A S Abidin, A Jupri, S Widayastuti, A Hernawan, A Nikmatullah, H Sunarpi and E S Prasedya

Natural Resources Utilization in Food

OPEN ACCESS
Effect of Saccharomyces cerevisiae ATCC 9763 concentration and fermentation time on bioethanol content from corn stover crude cellulose substrate
A M M Napitupulu, L Subendra and I B W Gunam
Production of bioethanol from wild cassava crude starch (*Manihot glaziovii* Muell. Arg) using different microbial types and fermentation times
S V Melicha, I B W Gunam, N S Antara and I W Arnata

OPEN ACCESS
Quality Profiles of the Traditional Shrimp Paste of Lombok
B R Handayani, Zainuri, M D Ariyana, T I Rahayu, M Amaro and L R Ulfa

OPEN ACCESS
Analysis of supply chain and added value of rice in west Lombok regency
Wuryantoro, T Sjah, I Budasra, C Ayu, N L S Supartiningsih and S Maryati

OPEN ACCESS
Yogurt As A Functional Drink Development From Various Local Raw Materials Using *Eucheuma Spinosum* As Natural Stabilizer
M Amaro, M D Ariyana, B R Handayani, Nazaruddin, S Widyastuti and T I Rahayu

OPEN ACCESS
Analysis of heat energy in the drying process of *Moringa Oleifera leaves* using a greenhouse effect dryer (ERK)
Sukmawaty, Murad, Anasar, H Kurniawan and Z Firi

OPEN ACCESS
Optimization Process to Increase the Quality of Lombok Porang Flour
Zainuri, Sukmawaty, E Basuki, B R Handayani, Y Sulastri, D N A Paramartha, Y Sayuna and I M D Anggraini
OPEN ACCESS
Analysis of Heat Energy on the Drying Process of Paddy Using Fluidized Beds Dryer
S Syahrul, S Sukmawaty, A Priyati, J Sari and M Mirman

OPEN ACCESS
Heat transfer analysis in fluidized bed dryer with heat exchanger pipe for corn material
Sukmawaty, G M D Putra, I Asnoro, S Syahrul and M Mirman

OPEN ACCESS
A generalization SPARQL federated query: An initial step towards machine-readable web of data for halal food products
A Hornawan, AL Sunarwidi, ES Prasedya and S Widyastuti

OPEN ACCESS
Isolation and selection of amylase-producing microbes isolated from *ragi tape* and cassava *tape* available on the markets
I B W Gunam, I G A Sujana, I M M Wijaya, Y Setiyo, I W W P Putra and I Suriati

OPEN ACCESS
Evaluation antioxidative capacity and proximate composition in brown seaweed *S. crassifolium* found in Lombok coast, Indonesia
N Ardiana, A S Abidin, B T K Ilhami, A L Sunarwidi, S Widyastuti, H Sunarpi and E S Prasedya

OPEN ACCESS
The effect of fermentation with lactic acid bacteria on chemical and sensory characteristics of Sundanese buffalo derby.
Natural Resources Conservation and Management

OPEN ACCESS
Rat and Mice Species (Sub Family : Murinae) Diversity from East Lombok Indonesia
I Hadi, Y Zamroni, G Tresnani, Y M Afrizal and I W Suana

OPEN ACCESS
Dietary niche breadth of endemic and introduced anurans (Amphibia: Anura) in Lombok, Lesser Sunda Islands—Indonesia
Y Zamroni, IGN Septian, NT Artiningrum and I Hadi

OPEN ACCESS
The improvement of molluscs population: as a parameter of success of local scale mangrove conservation on the south coast of Lombok
Agil Al Idrus, Baiq Nunung Hidayati, Erna Ajizah, Wahyu Bintang Ilahi and Abdul Syukur

OPEN ACCESS
Translation analysis of leaching to find heavy metal on groundwater and surfactant water quality

G N De Side, A Widiyanti, G T Rancak, R Aprianto, I A Widhiantari and I B Sutawijaya

OPEN ACCESS
The future of Wallace region in Lombok: the pristine natural resource under climatic and anthropogenic threat
Mahrup, M Ma'shum, MH Idris and Fahradin

OPEN ACCESS
The effectiveness of the new PLN mobile application in improving service quality, customer satisfaction, and electrifying lifestyle during the new normal period in Tanjung pandan city
M H Kusuma and S E Rahim

OPEN ACCESS
The Evidence of Seagrass Environmental Support for Local People's Economic on the South Coast of Lombok Island
A Syukur, A A Idrus, K R Dewi, N Juniati and Irmayani

OPEN ACCESS
Local scale climate change mitigation through mangrove revegetation on the south coast of Lombok island
A A Idrus, A Syukur, L H N Zohri, Zulhilifah and J Aulia

OPEN ACCESS
The sustainability of the diversity of marine macrofauna associated with seagrass through ecotourism in The Mandalika Exclusive Economic Zone Lombok Island, Indonesia
I Zulkifli, I R Putra, A Letari, E Ekihartana, A A Idrus and A Syukur
OPEN ACCESS
Analysis of water condition in Dodokan watershed, Lombok, Indonesia
D D Bandrang, H Sa'diyah, Suparmin and T Sjah
+ Open abstract View article PDF

OPEN ACCESS
Optimization of physical characteristics of bioplastics from agricultural waste using response surface methodology (RSM)
I A Widhiantari and G N De Side
+ Open abstract View article PDF

OPEN ACCESS
Limits of acceptable change for sustainable management of the Pelawan Biodiversity Park, Bangka Belitung Islands
M R B Boentoro, Kisworo and T Wherrett
+ Open abstract View article PDF

OPEN ACCESS
Identification and Abundance of Macroalgae at Batu Layar Coast, West Lombok, Indonesia
I A P Kirana, N S H Kurniawan, A S Abidin, A Nikmatullah, A I. Sunarwidhi, A Jupri, A Hernawan, S Widyastuti, H Sunarpi and F S Prasedya
+ Open abstract View article PDF

OPEN ACCESS
Species diversity of birds as bioindicators for mangroves damage at Special Economic Zones (SEZ) Mandalika in Central of Lombok, Indonesia
M A A Salahuddin, I S Robayani and D A Candri
+ Open abstract View article PDF

This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
Natural Resources Utilization in Bioscience and Microbiology

OPEN ACCESS
Optimization of annealing temperature for amplification of *EhosenOla* locus in *pranajiwa* (*Euchresta horsfieldii*) plant collected from mountains, urban and coastal areas in Bali
D Silalahi, I G P Wirawan and M M V Sasadara

OPEN ACCESS
Bioethanol-Producing Yeast Isolated from Fermented Cocoa
A. Thontowi, A.P. Ramadhan, H. Saputra, L.N. Kholida, Fahirurrozi, A.P.D. Nurhayati and S. Nurhatika

OPEN ACCESS
Radio-sensitivity of irradiated seed, plantlets, callus, and *in vitro* leaves from *Indigofera zollingeriana* Miq by gamma rays
J I Royani, Sudarsono, L Abdullah and S I Aisyah

OPEN ACCESS
Evaluation of *Apium graveolens* from different geographical origins based on TLC-fingerprint and chemometrics
K Kartini, M Jannah, F Wulandari, N D Oktaviyanti, F Setiawan and N I E Jayani

OPEN ACCESS
Isolation of trymriatin from *Myristica fragrans* for natural product chemistry laboratory
A Hakim, Jamaluddin and S W Al Idras

This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
Pipette Tip Solid-Phase Extraction Combined with Fluorescence Spectroscopy for Determination of Selenium in Green Tea Samples
S R Kamali, C H Tsai and C N Chen

Potential and phylogenetic of superior bacterial isolates in biogas sludge from anaerobic digestion of palm oil mill effluent
N E Mustamu, Z Nasution, Irvan and M Sembiring

In vitro culture of Dendrobium lineale Rolfe orchid for plant breeding and propagation
Nureni Dhuha Mustika and Endang Semiarti

Microalgae Isolation found in Kedonganan beach, Badung Bali, Indonesia
A A M D Anggreni, I W Arnata and I B W Gunam

Tannin Concentration of Gyroinops Tea Taken Form Different Agarwood Plantation and Different Processing Method
I G A S Wangiyana, Supriadi, A Nikmatallah, Sunarpi and L Mulyaningsih

Optimization of primer and polymerase chain reaction conditions to amplify COI locus for identification of Purnajiwa (Euchresta fimbriata (Leach.) Byers) collected from Bedugul, Bali
OPEN ACCESS
Long-term Storage of Bacterial Isolates by Using Tryptic Soy Broth with 15% Glycerol in The Deep Freezer (-70 to -80 °C)
Sunarno, S Nursofiah, Y Hartoyo, N Amalia, T Febrianti, D Fehriyana, R D Saraswati, N Puspandari, K Suriadji, Khairi et al
+
View article
PDF

OPEN ACCESS
Effect of medium type, light intensity, and photoperiod on the growth rate of microalgae Chlorococcum sp. local isolate
D S Putri, D A Sari, Mariah, S P Astuti and I G A S Wangiyana
+
View abstract
View article
PDF

OPEN ACCESS
In Vitro screening of ammonia and nitrite-degrading bacteria isolated from broiler chicken (Gallus gallus domesticus) intestines and pond sediment of nile tilapia (Oreochromis niloticus): A preliminary study
K Anwar, R Safitri, N Fajriani, Z A Ginari, I W Wariata, A Rosydi, M Amin and M Ali
+
View abstract
View article
PDF

OPEN ACCESS
Optimization of chlorophyll extraction solvent of bulung sangu (Gracilaria sp.) seaweed
M M V Sasadara, N M D M W Nasya, P E S K Yuda, N L K A A Dewi, E Cahyaningsih, I G P Wirawan and D Silalahi
+
View abstract
View article
PDF

OPEN ACCESS
Analysis of bioactive compounds present in Kaempferia galanga rhizome collected from different regions of East Java, Indonesia
O R Adiartingsih, E Widaryanto, A Saitama and A H Zaini
+
View abstract
View article
PDF
Bioactivity of Neem Seed Oil mixed with Pyroligneous Acid from Rice Husks against *Spodoptera litura*
A H Prianto, Budiaswan, Y Yulizar and P Simanjuntak

OPEN ACCESS
012075

Exploring the phytochemical and antioxidant potential of *Hylocereus polyrhizus* peel extract using biochemical approach
Y D Muksin, Mahrus and S Bahri

OPEN ACCESS
012076

Measurement of macroalgae total carbohydrate content found in Lendang Luar coast, Lombok, Indonesia for potential sources of bioethanol
B T K Ilhami, A S Abidin, N W R Martyasari, N S H Kurniawan, H Padmi, A L Sunarwidhi, S Widyastuti, H Sunarpi and E S Prasedya

OPEN ACCESS
012077

Microplastics evaluation in edible tissues of flying fish (*Parexocoetus mento*) from the Bintaro fish market, Lombok, Indonesia
A S Abidin, B T K Ilhami, N W R Martyasari, I A P Kirana, S Widyastuti, D A Candri, A Jupri, A Hernawan, H Sunarpi and E S Prasedya

OPEN ACCESS
012078

Newborn calf serum supplemented by tellurite as alternative transport medium for *Corynebacterium diphtheriae*
R D Saraswati, S Nursofiah, N Amalia, Y Hartoyo, N Puspandari and Sunarno

OPEN ACCESS
012079

This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
The administration's effect of domestic soybean, lablab bean and lima bean content of genistein to improve the productivity of Bali cattle
A Fitriyah, Isyaturriyah, Y Mariani, NMA Kartika, R Harmayani and A Jamili
OPEN ACCESS

The Potential of Central Kalimantan’s Local Orchid as Material Source for Genetic Improvement
R Y Galingging, T Liana and L Nuraini
OPEN ACCESS

Natural Resources Utilization in Medical and Pharmaceutical Science
OPEN ACCESS

Preparation and evaluation of gelatin and pectin-based Moringa oleifera chewable gummy tablets
K C Rani, NIE Jayani, F Feneke and S Melanda
OPEN ACCESS

Humoral and cellular immunity in mice immunized with whole recombinant yeast expressing complex NS2B/NS3 protein of dengue serotype 3
S Pambudi, A Sulistiani, T Widayanti, A Prihanto, F Juniarti, K Wahyunisa, A Gill, Tarwadi, I Efendi, I N Djarot et al
OPEN ACCESS

Cytotoxicity of Begonia medicinalis aqueous extract in three cancer cell line
B Prihardina and S Fatmawati
OPEN ACCESS
The study of sex steroid hormone compound in green algae (*Chlorophyta*) for female fertility: A literature review
L A Arini

OPEN ACCESS

The potential of jamu to relieve clinical symptoms and reduce the tumor size of patients with Fibro Adenoma Mammæ (FAM) at Rumah Riset Jamu (RRJ) Hortus Medicus Tawangmangu: a pilot study
Z Zulkarnain, PRW Astana, A Triyono, D Ardiyanto, F Novianto, U Fitriani, U Nisa and Saryanto

OPEN ACCESS

Antioxidative Activity of *Tithonia Diversifolia* Extract in Streptozotocin-Induced Diabetic Rats.
R Solfaire, I S Hamid and L Muniroh

OPEN ACCESS

The effect of herbal formula consisting of *Curcuma xanthorrhiza*, *Curcuma longa* and *Phyllanthus niruri* on quality of life: Randomized controlled trial
F Novianto, Z Zulkarnain, D Ardiyanto, A Triyono, U Nisa, P R W Astana and U Fitriani

OPEN ACCESS

Efficacy of hepatoprotector jamu formula (combination of *Curcuma longa*, *Curcuma xanthorrhiza*, and *Taraxacum officinale*) compared to *Fructus schizandraceae* extract in mild liver injury: a randomized controlled trial
D Ardiyanto, Z Zulkarnain, P R W Astana, A Triyono, F Novianto, U Fitriani, U Nisa and T A Mana

OPEN ACCESS

This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
In vitro analysis of human immune response (IgG) against salivary gland extract of dengue vector from dengue hemorrhagic fever (DHF) endemic area in Jember, Indonesia
R. Oktariani, D. R. Damara, S. U. R. Qudsiyah, S. Wathon and K. Senjarini
OPEN ACCESS
The effect of ethanol extract of pasak bumi (Eurycoma longifolia Jack.) on neurogenesis and neuroinflammation of rat post protein malnutrition
D. D. Sanyoto, Triawanti and M. S. Noor
OPEN ACCESS
The effectivites of anti-diabetic of Chromolaena odorata L. in lowering blood sugar level: A systematic review
Annisa Salsabila, Ema Harfiani and Yudhi Nugraha
OPEN ACCESS
In vitro antioxidant activity of meniran (Phyllanthus urinaria) functional drink in human low density lipoprotein (LDL)
U. Fitrotin, N. Hilmiati, Mardiana, Y. Triguna, A. Surahman and A. Hipi
OPEN ACCESS
Factors associated with the attitude of herbs utilization among diabetes mellitus patients
A. Triyono, Z. Zulkarnain, W. Astana, D. Ardiyanto, F. Novianto, U. Fitriani, U. Nisa and S. Saryanto
OPEN ACCESS
Species shifting composition of the Aedes aegypti vector in Wongsoorejo district - Banjarmasin, Indonesia
This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
K Senjarini, R Setiawan, S Wathon and R Oktarianti

OPEN ACCESS
Anthelmintic activity assay of *Starchytarpea jamaicensis L. V* PAL tea against Fasciola sp
M R Fahlevi, I S Pratama and M Sriasih

OPEN ACCESS
Medicinal plants used by traditional healers for hemorrhoid treatment in Borneo island: Ethnopharmacological study RISTOA
P R W Astana, U Nisa, A Triono, D Ardijanto, U Fitriani, Z Zulkarnain, K P Adwita and F Novianto

OPEN ACCESS
Enteric pathogen among children under five years old with diarrheal diseases in Indonesia
N Puspandari, N Amalia, Y Hartoyo, S Nursofiah, S Sunarno, K Sariadjji, T Soekarso, T Febrian, K Khariri, F Muna et al

OPEN ACCESS
Advantages of yeast-based recombinant protein technology as vaccine products against infectious diseases
C S W Lestari and G Novientri

OPEN ACCESS
Extensive anterior myocardial infarction of an older non diabetic patient has better prognosis compared to a younger patient: a case report
A Tanti, N N Humaera, A Raflq and Y Pintaningrum
OPEN ACCESS
Estimation of The Main Effect and Total Effect of a PBPK Model Based on The Uncertainty of Individual Parameter for Treatment Planning in PSMA Therapy
A. D. Widyansyafri, N. Atikah and D. Hardiansyah
+ Open abstract View article PDF

OPEN ACCESS
Phytochemical profiles and ethnomedicine preliminary studies on seagrass species in the Southern Coast of Lombok Island Indonesia
L Zulkifli, Y D Maksin, P Hartanto, Y Desimarlina, A A Idrus and A Syukur
+ Open abstract View article PDF

OPEN ACCESS
The correlation between total protein content and antioxidant activity of collagen isolated from a marine sponge Stylissa flabelliformis collected from North Lombok Indonesia coast
A I Sunarwidi, A Rosyantari, E S Prasetya, N Ardiana, B T K Ilhami, A S Abidin, Y Ambana, I A P Kirana, D G Wirasitya, W Anugrah et al
+ Open abstract View article PDF

OPEN ACCESS
Characteristics of Indonesian Society in Utilizing Herbs for Covid Prevention during the Covid-19 Pandemic
Erna Harfiani, Ratna Pasinta and Isnani Ramadhan
+ Open abstract View article PDF

OPEN ACCESS
The effect of extraction solvent polarity on cytotoxic properties of Sargassum crassifolium against B16-F10 melanoma cancer cell model
N W R Martyasari, N Ardiana, B T K Ilhami, H Padmi, A S Abidin, A L Sunarwidi, H Sunarpi, A Nikmatullah, S Widjastuti and E S Prasetya
+ Open abstract View article PDF

This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy.
Anti-inflammatory potential of β-carrageenan by inhibition of IL-6 receptor: \textit{in silico} study
H Padmi, A N M Anzori, R T Probojati, A A A Murtadlo, A L Sunarwidi, A Hernawan, H Sunarpi, S Widyastuti, A Nikmatullah and E S Prasedya

The effect of Java Plum Fruit (\textit{Zyzygium cumini}) extract on leucocyte and lung histopathology of mouse exposed cigarette smoke
A A S A Sukmaningsih, N M R Suarni, I Wiratmini, C N Primiani and N W Sudari

Investigation of ginger (\textit{Zingiber officinale}) aqueous extract as an anti-diabetic in vitro
P Pakan, K Lidia and M Riwu

Total Phenolic Content (TPC), Total Flavonoid Content (TFC) and Antioxidants Activity of Marine Sponge \textit{Stylissa flabelliformis} Ethanol Extract
A Rosyantari, ES Prasedya, BTK Ilhami, NWR Martyasari, H Padmi, AS Abidin, Y Ambana, IAP Kirana and AL Sunarwidi

Larvicide effectiveness of Papaya leaf extract (\textit{Carica papaya}) on the mortality of larvae vector of Dengue hemorrhagic fever caused by \textit{Aedes aegypti}
N F Dheng, P Pakan and K Lidia
