LOG-HYPERCONVEXITY INDEX AND BERGMAN KERNEL

BO-YONG CHEN AND ZHIYUAN ZHENG

ABSTRACT. We obtain a quantitative estimate of Bergman distance when $\Omega \subset \mathbb{C}^n$ is a bounded domain with log-hyperconvexity index $\alpha(\Omega) > \frac{n-1+\sqrt{(n-1)(n+3)}}{2}$, as well as the $A^2(\log A)^{q}$-integrability of the Bergman kernel $K_\Omega(\cdot, w)$ when $\alpha(\Omega) > 0$.

MATHEMATICS SUBJECT CLASSIFICATION (2020): 32A25, 32T35, 32U35.

KEYWORDS: Bergman kernel, Bergman distance, log-hyperconvexity index.

1. INTRODUCTION

We say a domain $\Omega \subset \mathbb{C}^n$ is hyperconvex if there exists a continuous negative plurisubharmonic (psh) exhaustion function ρ on Ω, i.e., $\{ \rho < c \} \Subset \Omega$ for every $c < 0$. It is one of the core concepts in the function theory of several complex variables, which can be traced back to 1974, when Stehlé [33] first proposed it in order to study the Serre problem. Clearly, hyperconvexity implies pseudoconvexity, but the converse fails. Thus it is interesting to ask when a pseudoconvex domain is hyperconvex. A large literature of positive results exists (see, e.g., [11, 15, 16, 17, 22, 23, 26, 29]). Among them, the weakest regularity assumption on the boundary is that the boundary can be written locally as the graph of a Hölder continuous function (cf. [11]).

The quantitative characterization of hyperconvexity starts from the seminal work of Diederich-Fornaess [17], that for every bounded pseudoconvex domain Ω with C^2-boundary one has

$$\eta(\Omega) := \sup\{ \eta \geq 0; \exists \rho \in C(\Omega) \cap PSH^-(\Omega) \text{ s.t. } -\rho \asymp \delta^\eta \} > 0,$$

where δ denotes the boundary distance and $PSH^-(\Omega)$ denotes the set of negative psh functions on Ω. The quantity $\eta(\Omega)$ is also called the Diederich-Fornaess index (D-F index) of Ω, and it has been studied by a number of authors (see, e.g., [3, 17, 19, 20, 22, 27, 29, 31]). In 2017, the first author [12] introduced a related concept, the so-called hyperconvexity index of a bounded domain Ω, defined as

$$\alpha(\Omega) := \sup\{ \alpha \geq 0; \exists \rho \in C(\Omega) \cap PSH^-(\Omega) \text{ s.t. } -\rho \asymp \delta^\alpha \}.$$

Obviously, $\alpha(\Omega) \geq \eta(\Omega)$. These concepts have numerous applications in the study of the Bergman kernel and metric.

In this spirit, we introduce the following
Definition 1.1. For a bounded domain $\Omega \subset \mathbb{C}^n$, we define
\[
\alpha_l(\Omega) := \sup \{ \alpha \geq 0; \exists \rho \in C(\Omega) \cap PSH^-(\Omega) \ s.t. \ -\rho \lesssim (-\log \delta)^{-\alpha} \text{ near } \partial \Omega \}
\]
as the log-hyperconvexity index of Ω.

This concept is motivated by the recent result of the first author [12] that every bounded pseudoconvex Hölder domain locally has a positive log-hyperconvexity index. It remains open whether every bounded pseudoconvex Hölder domain has a (global) positive log-hyperconvexity index (see [13] for some partial results). Note that there are various examples with $\alpha_l(\Omega) = 0$ while $\alpha_l(\Omega) > 0$ (see Appendix).

It is well-known that the growth of negative psh exhaustion functions relates closely to the estimate of the Bergman distance $d_B(z_0, z)$ from a fixed point z_0 to z. If Ω is hyperconvex, then $\lim_{z \to \partial \Omega} d_B(z_0, z) = \infty$ (cf. [6] or [24]). Diederich-Ohsawa [18] obtained the quantitative estimate
\[
d_B(z_0, z) \gtrsim |\log \delta(z)|
\]
for all z sufficiently close to $\partial \Omega$ when there exists $\rho \in C(\Omega) \cap PSH^-(\Omega) \ s.t. \ \delta^{\beta} \lesssim -\rho \lesssim \delta^{\alpha}$, where $\beta \geq \alpha > 0$. In case $\alpha = \beta$, i.e., $\eta(\Omega) > 0$, Blocki [5] improved the previous estimate to
\[
d_B(z_0, z) \gtrsim |\log \delta(z)|/|\log |\log \delta(z)||.
\]

In [12], the first author showed that Blocki’s estimate remains valid under the weaker condition $\alpha_l(\Omega) > 0$. Here we shall prove the following

Theorem 1.1. Let Ω be a bounded pseudoconvex domain in \mathbb{C}^n. If for every $p \in \partial \Omega$ there is an open neighborhood D of p such that
\[
\alpha_l(\Omega \cap D) > \frac{n - 1 + \sqrt{(n - 1)(n + 3)}}{2},
\]
then
\[
d_B(z_0, z) \gtrsim \log \log |\log \delta(z)|
\]
for all z sufficiently close to $\partial \Omega$.

Problem 1. Does the condition $\alpha_l(\Omega) > 0$ imply (1.1)?

Remark. Theorem 1.1 shows that the answer to this problem is affirmative when $n = 1$.

Theorem 1.1 combined with the main result (and its proof) in [11] gives

Corollary 1.2. Let Ω be a bounded pseudoconvex domain in \mathbb{C}^n such that $\partial \Omega$ can be written locally as the graph of a Hölder continuous function of order $\gamma \geq \sqrt{(n-1)(n+3)-n+1}/2$. Then (1.1) holds.

Note that positivity of $\alpha(\Omega)$ can be used to obtain the L^p-integrability of $K_\Omega(\cdot, w)$ for fixed w when $2 < p < 2 + \frac{2\alpha(\Omega)}{2n-\alpha(\Omega)}$ (cf. [12]). Analogously, we have
Theorem 1.3. Let Ω be a pseudoconvex domain in \mathbb{C}^n with $\alpha_l(\Omega) > 0$. For fixed $w \in \Omega$, we have
$$K_{\Omega}(\cdot, w) \in A^2(\log A)^q(\Omega) := \left\{ f \in \mathcal{O}(\Omega); \int_{\Omega} |f|^2(\log + |f|)^q d\lambda < \infty \right\}$$
for all $0 < q < \alpha_l(\Omega)$, where $\log + t = \max\{\log t, 0\}$ and $d\lambda$ denotes the Lebesgue measure.

Note that $A^p(\log A)^q(\Omega)$ is a natural analogue of the $L^\log L$ space, which plays an important role in harmonic analysis and has been studied by many authors (cf. [2, 8, 9, 21, 32] etc).

As an application, we obtain the following

Corollary 1.4. If Ω is a bounded pseudoconvex domain in \mathbb{C}^n with $\alpha_l(\Omega) > 0$, then $A^2(\log A)^q(\Omega)$ lies dense in $A^2(\Omega)$ for every $0 < q < \alpha_l(\Omega)$.

Barrett [1] found for each $k \in \mathbb{Z}^+$ a smooth bounded (non-pseudoconvex) domain $\Omega_k \subset \mathbb{C}^2$, such that the Bergman space $A^p(\Omega_k)$ is not dense in $A^2(\Omega_k)$ when $p \geq 2 + 1/k$. A mimic of his construction gives

Theorem 1.5. For every $s \in (0, 1)$ and $q \geq 1 - s$, there exists a smooth bounded (non-pseudoconvex) domain $\Omega(s) \subset \mathbb{C}^2$ such that the following properties hold:

1. $A^2(\log A)^q(\Omega(s))$ is not dense in $A^2(\Omega(s))$;
2. $K_{\Omega(s)}(\cdot, w) \notin A^2(\log A)^q(\Omega(s))$ for some $w \in \Omega(s)$.

Remark. Note that if $\Omega \subset \mathbb{C}^n$ is bounded, $p > 2$ and $q > 0$, then
$$A^p(\Omega) \subset A^2(\log A)^q(\Omega) \subset A^2(\Omega).$$

Thus Theorem 1.5 implies that there exists a smooth bounded domain $\Omega \subset \mathbb{C}^2$ such that $\bigcup_{p>2} A^p(\Omega)$ is not dense in $A^2(\Omega)$.

2. The proof of Theorem 1.1

The classical method of estimating the Bergman metric is to use the pluricomplex Green function (see, e.g., [5, 12, 25]). By the well-known localization principle for the Bergman metric, we only need to deal with the case
$$\alpha_l(\Omega) > \frac{n - 1 + \sqrt{(n - 1)(n + 3)}}{2}.$$

Let $\varrho = \varrho_{\Omega} := \sup\{u \in PSH^{-}(\Omega); u|_{\partial^{\Omega}} < -1\}$ be the relative extremal function of a fixed closed ball $B \subset \Omega$. By the extremal property of ϱ there is a constant $C_\alpha > 0$ for each $\alpha \in (0, \alpha_l(\Omega))$, such that
$$-\varrho(z) \leq C_\alpha (-\log \delta(z))^{-\alpha}$$
for all z sufficiently close to ∂^{Ω}.

Lemma 2.1. For every $r > 1$ there exists a constant $\varepsilon_r \ll 1$ such that
$$\varrho(z_2) \geq r \varrho(z_1) - C_\alpha (-\log |z_1 - z_2|)^{-\alpha}$$
for all $z_1, z_2 \in \Omega$ with $|z_1 - z_2| \leq \varepsilon_r$.
Proof. Set \(\varepsilon := |z_1 - z_2|, \Omega' = \Omega - (z_1 - z_2) \) and

\[
u(z) = \begin{cases} \varrho(z) \\ \max\{\varrho(z), r\varrho(z + z_1 - z_2) - C_\alpha(-\log \varepsilon)^{-\alpha}\} \end{cases} \quad z \in \Omega \setminus \Omega'.
\]

For every \(z \in \Omega \cap \partial \Omega' \) we have \(\delta(z) \leq \varepsilon \), so that

\[
\varrho(z) \geq -C_\alpha(-\log \varepsilon)^{-\alpha} \geq r\varrho(z + z_1 - z_2) - C_\alpha(-\log \varepsilon)^{-\alpha}.
\]

Thus \(u \in \text{PSH}^{-}(\Omega) \). On the other hand, for \(\varepsilon \leq \varepsilon, \ll 1 \) we have

\[
\varrho(z + z_1 - z_2) \leq -1/r, \forall z \in \overline{B},
\]

in view of the continuity of \(\varrho \). Thus \(u|_{\overline{B}} \leq -1 \). Since \(z_2 = z_1 - (z_1 - z_2) \in \Omega \cap \Omega' \), we infer from the extremal property of \(\varrho \) that

\[
\varrho(z_2) \geq u(z_2) \geq r\varrho(z_1) - C_\alpha(-\log \varepsilon)^{-\alpha}.
\]

\(\square \)

Let \(g_{\Omega}(z, w) \) be the pluricomplex Green function of \(\Omega \). For \(c > 0 \) we define

\[
A_{\Omega}(w, -c) := \{ z \in \Omega; g_{\Omega}(z, w) \leq -c \}
\]

Lemma 2.2. There exists a constant \(C \gg 1 \) such that for any \(w \in \Omega \)

\[
A_{\Omega}(w, -1) \subset \{ z \in \Omega; \varrho(z) < -C^{-1}\mu(w) \},
\]

where \(\mu(w) := (-\varrho(w))^{1+\frac{1}{\alpha}} \).

Proof. Apply Lemma 2.1 with \(r = \frac{3}{2} \), we conclude that if \(\varrho(z) = \varrho(w)/2 \) and \(|z - w| < \varepsilon_{1/2} \), then for suitable \(C_1 \gg 1 \)

\[
C_1(-\log |z - w|)^{-\alpha} \geq \frac{3}{2}\varrho(z) - \varrho(w) = -\varrho(w)/4.
\]

When \(|z - w| \geq \varepsilon_{1/2} \), it is also easy to see that

\[
C_1(-\log |z - w|)^{-\alpha} \geq -\varrho(w)/4
\]

if \(C_1 \) is large enough. Thus for all \(z \) with \(\varrho(z) = \varrho(w)/2 \) we have

\[
\log \frac{|z - w|}{R} \geq -C_2(-\varrho(w))^{-1/\alpha}
\]

for suitable \(C_2 > 0 \), where \(R \) denotes the diameter of \(\Omega \). It follows that

\[
\psi(z) = \begin{cases} \log\{|z - w|/R\} \\ \max\{\log\{|z - w|/R\}, 2C_2(-\varrho(w))^{-1-1/\alpha}\varrho(z)\} \end{cases} \quad \text{if } \varrho(z) \leq \varrho(w)/2
\]

otherwise

is a negative psh function on \(\Omega \) which has a logarithmic pole at \(w \). Thus for \(\varrho(z) \geq \varrho(w)/2 \) we have

\[
g_{\Omega}(z, w) \geq \psi(z) \geq 2C_2(-\varrho(w))^{-1-1/\alpha}\varrho(z),
\]

so that

\[
A_{\Omega}(w, -1) \cap \{ \varrho \geq \varrho(w)/2 \} \subset \{ \varrho < -C^{-1}\mu(w) \}
\]
whenever $C \gg 1$. Since
\[\{ \varrho < \varrho(w)/2 \} \subset \{ \varrho < -C^{-1} \mu(w) \} \]
for $C \gg 1$, we conclude the proof. \qed

Proposition 2.3. Let $\alpha > \frac{n-1+\sqrt{(n-1)(n+3)}}{2}$ and $n-1 < \beta < \frac{\alpha^2}{\alpha+1}$. Then there exists a constant $C \gg 1$ such that
\[A_{n}(w,-1) \subset \{ z \in \Omega; -C \nu(w) < \varrho(z) < -C^{-1} \mu(w) \}, \]
where $\nu(w) := \left(-\varrho(w) \right) \left(\frac{1}{\alpha} - \frac{1}{\beta} (1-\frac{1}{\beta}) \right)^{\frac{\alpha}{\beta}}$.

Remark. Note that $\alpha > \frac{n-1+\sqrt{(n-1)(n+3)}}{2}$ implies $\frac{\alpha^2}{\alpha+1} > n-1$, and $\beta > n-1$ implies that the exponent in ν is positive.

The proof of Proposition 2.3 is based on the following

Lemma 2.4 (cf. [5]). Let $\Omega \subset \mathbb{C}^n$ be a bounded hyperconvex domain. Suppose ζ, w are two points in Ω such that the closed balls $\overline{B}(\zeta, \varepsilon), \overline{B}(w, \varepsilon) \subset \Omega$ and $\overline{B}(\zeta, \varepsilon) \cap \overline{B}(w, \varepsilon) = \emptyset$. Then there exists $\tilde{\zeta} \in \overline{B}(\zeta, \varepsilon)$ such that
\[|g_{\zeta}(\tilde{\zeta}, w)|^n \leq n! (\log R/\varepsilon)^{n-1} |g_{\zeta}(w, \zeta)|. \]

Proof of Proposition 2.3 For fixed $w \in \Omega$ which is sufficiently close to $\partial \Omega$, we set
\[\varepsilon := \exp \left(-(-\varrho(w))^{-1/\beta} \right), \]
i.e., $-\varrho(w) = \left(-\log \varepsilon \right)^{-\beta}$. Since $-\varrho(w) \leq C_0 \left(-\log \delta(w)\right)^{-\alpha}$ and $\beta < \alpha$, it follows that if $\delta(w)$ is sufficiently small then
\[2^\alpha C_0 \left(-\log \varepsilon\right)^{-\alpha} \leq \left(-\log \varepsilon\right)^{-\beta} \leq C_0 \left(-\log \delta(w)\right)^{-\alpha}, \]
so that $\delta(w) \geq \sqrt{\varepsilon}$ and we have $B(w, \varepsilon) \subset \subset \Omega$. If $\delta(z) \leq \varepsilon$, then
\[-\varrho(z) \leq C_0 \left(-\log \delta(z)\right)^{-\alpha} \leq C_0 \left(-\log \varepsilon\right)^{-\alpha} = C_0 (-\varrho(w))^{\alpha/\beta} \leq -\varrho(w)/2. \]

By the proof of Proposition 2.2, we have
\[g_{\zeta}(z, w) \geq C_1 (-\varrho(w))^{-1-1/\alpha} \varrho(z) \]
for some constant $C_1 \gg 1$. This combined with (2.2) gives
\[\sup_{\delta \leq \varepsilon} |g_{\zeta}(\cdot, w)| \leq C_0 C_1 (-\varrho(w))^{\alpha/\beta - 1-1/\alpha}. \]

By Lemma 2.1, we see that if $\varrho(\zeta) \leq 2 \varrho(w)$ then for suitable $C_2 > 0$,
\[C_2 \left(-\log |\zeta - w|\right)^{-\alpha} \geq \frac{3}{2} \varrho(w) - \varrho(\zeta) \geq -\varrho(w)/2 = \left(-\log \varepsilon\right)^{-\beta}/2 > 2^\alpha C_2 \left(-\log \varepsilon\right)^{-\alpha} \]
whenever $\delta(w) \ll 1$, so that $|\zeta - w| > \sqrt{\varepsilon}$ and
\[\overline{B}(\zeta, \varepsilon) \cap \overline{B}(w, \varepsilon) = \emptyset. \]
It follows from Lemma 2.4 that there exists \(\tilde{\zeta} \in \overline{B}(\zeta, \varepsilon) \) such that (2.1) holds. We also need the following known inequalities (cf. [4], Proposition 3.3.3)

\[
(2.5) \quad g_\Omega(z, w) \geq (\log R/\varepsilon) \cdot \vartheta_{\Omega(w, \varepsilon)}, \quad \forall z \in \Omega \setminus B(w, \varepsilon)
\]

\[
(2.6) \quad g_\Omega(z, w) \leq (\log \delta(w)/\varepsilon) \cdot \vartheta_{\Omega(w, \varepsilon)}, \quad \forall z \in \Omega.
\]

By (2.4) and (2.6), we have

\[
(2.7) \quad \sup_{\delta \leq \varepsilon} |\vartheta_{\Omega(w, \varepsilon)}| \leq C_0 C_1 (\log \delta(w)/\varepsilon)^{-1} (-\varrho(w))^{\alpha/\beta - 1 - 1/\alpha} =: \tau_\varepsilon(w).
\]

Set \(\tilde{\Omega} := \Omega - (\tilde{\zeta} - \zeta) \) and

\[
v(z) = \begin{cases}
\vartheta_{\Omega(w, \varepsilon)}(z) & \text{if } z \in \Omega \setminus \tilde{\Omega} \\
\max\{\vartheta_{\Omega(w, \varepsilon)}(z), \vartheta_{\Omega(w, \varepsilon)}(z + \tilde{\zeta} - \zeta - \tau_\varepsilon(w))\} & \text{if } z \in \Omega \cap \tilde{\Omega}.
\end{cases}
\]

By (2.7), we see that \(v \) is a well-defined negative psh function on \(\Omega \). On the other hand, since

\[
\vartheta_{\Omega(w, \varepsilon)}(z) \leq \frac{\log |z-w|/\delta(w)}{\log R/\varepsilon}, \quad z \in \Omega \setminus B(w, \varepsilon),
\]

in view of (2.5), and \(z + \tilde{\zeta} - \zeta \in \overline{B}(w, 2\varepsilon) \) if \(z \in \overline{B}(w, \varepsilon) \), we have

\[
v|_{\overline{B}(w, \varepsilon)} \leq -\frac{\log(\delta(w)/(2\varepsilon))}{\log R/\varepsilon}
\]

so that

\[
\vartheta_{\overline{B}(w, \varepsilon)}(\tilde{\zeta}) - \tau_\varepsilon(w) \leq v(\zeta) \leq -\frac{\log(\delta(w)/(2\varepsilon))}{\log R/\varepsilon} \cdot \vartheta_{\overline{B}(w, \varepsilon)}(\zeta).
\]

This combined with (2.5) and (2.6) gives

\[
\begin{align*}
g_\Omega(\zeta, w) & \geq \frac{(\log R/\varepsilon)^2}{(\log \delta(w)/\varepsilon) \cdot (\log \delta(w)/(2\varepsilon))} \left(g_\Omega(\tilde{\zeta}, w) - C_0 C_1 (-\varrho(w))^{\alpha/\beta - 1 - 1/\alpha} \right) \\
& \geq C_3 \left(g_\Omega(\tilde{\zeta}, w) - C_0 C_1 (-\varrho(w))^{\alpha/\beta - 1 - 1/\alpha} \right) \\
& \geq -C_3(n!)^{1/n} (\log R/\varepsilon)^{-1-1/n} |g_\Omega(w, \zeta)|^{1/n} - C_0 C_1 C_3 (-\varrho(w))^{\alpha/\beta - 1 - 1/\alpha} \\
& \geq -C_4 (-\varrho(w))^{1/\alpha - (1-\frac{n}{\alpha})/\beta} (-\varrho(\zeta))^{-1/\alpha - (1+\frac{n}{\alpha})/\beta} - C_0 C_1 C_3 (-\varrho(w))^{\alpha/\beta - 1 - 1/\alpha}
\end{align*}
\]

(2.8)

for some constants \(C_1 \gg C_3 > 0 \), in view of (2.3). Since \(\alpha/\beta - 1 - 1/\alpha > 0 \), we see that if \(\delta(w) \ll 1 \) then \(C_0 C_1 C_2 (-\varrho(w))^{\alpha/\beta - 1 - 1/\alpha} \leq 1/2 \), so that

\[
A_\Omega(w, -1) \cap \{\varrho \leq 2\varrho(w)\} \subset \{\varrho > -C\nu(\varrho)\}
\]

for some \(C \gg 1 \). On the other hand, we have \(\{\varrho > 2\varrho(w)\} \subset \{\varrho > -C\nu(\varrho)\} \) for \(C \gg 1 \) since the exponent in \(\nu \) is less than one. Thus the proof is complete.

\[\square \]

Proof of Theorem 1.1. Let \(z \in \Omega \) be sufficiently close to \(\partial \Omega \). We may choose a Bergman geodesic jointing \(z_0 \) to \(z \), and a finite number of points \(\{z_k\}_{k=1}^m \) on this geodesic with the following order

\[
\begin{align*}
z_0 & \to z_1 \to z_2 \to \cdots \to z_m \to z
\end{align*}
\]
where
\[C^{-1} \mu(z_k) = C \nu(z_{k+1}) \quad \text{and} \quad C^{-1} \mu(z_m) \leq -\varrho(z) \leq C \nu(z_m) \]
for some \(C \gg 1 \) so that Proposition \([2,3]\) hold. Thus we have
\[\{ g \Omega (\cdot, z_k) \leq -1 \} \cap \{ g \Omega (\cdot, z_{k+1}) \leq -1 \} = \emptyset \]
so that \(d_B(z_k, z_{k+1}) \geq c_1 > 0 \) for all \(k \) in view of Theorem 1.1 in \([5]\).

Set \(\gamma := \left(\frac{1}{n} - \frac{1}{\beta} (1 - \frac{1}{n}) \right) \frac{p_0}{1+\alpha} \). Note that
\[
\log(-\varrho(z_0)) = \frac{\gamma \alpha}{1+\alpha} \log(-\varrho(z_1)) + \frac{2\alpha}{\alpha+1} \log C = \cdots
\]
\[= \left(\frac{\gamma \alpha}{1+\alpha} \right)^m \log(-\varrho(z_m)) + \frac{1 - \left(\frac{\gamma \alpha}{1+\alpha} \right)^m}{1 - \frac{\gamma \alpha}{1+\alpha}} \frac{2\alpha}{\alpha+1} \log C \]
Thus we have
\[m \asymp \log |\log(-\varrho(z_m))| \asymp \log |\log(-\varrho(z))| \gtrsim \log \log |\log \delta(z)|, \]
so that
\[d_B(z_0, z) \geq \sum_{k=1}^{m-1} d_B(z_k, z_{k+1}) \geq c_1 (m - 1) \gtrsim \log \log |\log \delta(z)|. \]

\[\square \]

3. BERGMAN KERNEL AND \(A^p(\log A)^q \)

We first introduce some basic facts about the \(A^p(\log A)^q \) space. For \(p, q > 0 \), let \(L^p(\log L)^q(\Omega) \) be the set of measurable complex-valued functions \(f \) on \(\Omega \) such that
\[\int_{\Omega} |f|^p (\log^+ |f|)^q d\lambda < \infty. \]
Set
\[\| f \|_{L^p(\log L)^q(\Omega)} = \inf \left\{ s > 0; \int_{\Omega} \left(\frac{|f|}{s} \right)^p \left(\log^+ \frac{|f|}{s} \right)^q d\lambda \leq 1 \right\} \]
and
\[A^p(\log A)^q(\Omega) := L^p(\log L)^q(\Omega) \cap \mathcal{O}(\Omega). \]
When \(q = 0 \), \(\| \cdot \|_{L^p(\log L)^q(\Omega)} \) is the usual \(L^p \) norm.

Proposition 3.1. If \(\Omega \subset \mathbb{C}^n \) is a bounded domain, then the following properties hold:
\begin{enumerate}
 \item \(L^p(\log L)^q(\Omega) \) is a linear space;
 \item \(L^p(\log L)^q(\Omega) \subset L^p(\Omega) \) and \(\| \cdot \|_{L^p(\Omega)} \lesssim \| \cdot \|_{L^p(\log L)^q(\Omega)} \);
 \item If \(p, q \geq 1 \), then \(L^p(\log L)^q(\Omega) \) is a Banach space with norm \(\| \cdot \|_{L^p(\log L)^q(\Omega)} \);
 \item If \(p, q \geq 1 \), then \(A^p(\log A)^q \) is a closed subspace of \(L^p(\log L)^q(\Omega) \).
\end{enumerate}

The arguments are standard, and we include the proof for the sake of completeness.
Proof. (1) Given \(f, g \in L^p(\log L)^q(\Omega) \) and \(\varepsilon \in \mathbb{C} - \{0\} \), we have

\[
\int_{\Omega} |c|^p (\log^+ |cf|)^q \, d\lambda = \left(\int_{\{ |f| \leq |c| \}} + \int_{\{ |f| > |c| \}} \right) |c|^p (\log^+ |cf|)^q \, d\lambda \\
\leq \text{const.} + \int_{\{ |f| > |c| \}} |c|^p |f|^p (\log^+ |c| + \log^+ |f|)^q \, d\lambda \\
\leq \text{const.} + \int_{\Omega} |c|^p |f|^p (2 \log^+ |f|)^q \, d\lambda \\
= \text{const.} + 2^q |c|^p \int_{\Omega} |f|^p (\log^+ |f|)^q \, d\lambda \\
< +\infty,
\]

and

\[
\int_{\Omega} \left| \frac{f + g}{2} \right|^p \left(\log^+ \left| \frac{f + g}{2} \right| \right)^q \, d\lambda \\
\leq \int_{\Omega} \left(\frac{|f| + |g|}{2} \right)^p \left(\log^+ \left(\frac{|f| + |g|}{2} \right) \right)^q \, d\lambda \\
\leq \left(\int_{\{ |f| \leq |g| \}} + \int_{\{ |f| > |g| \}} \right) \left(\frac{|f| + |g|}{2} \right)^p \left(\log^+ \left(\frac{|f| + |g|}{2} \right) \right)^q \, d\lambda \\
\leq \int_{\Omega} |f|^p (\log^+ |f|)^q \, d\lambda + \int_{\Omega} |g|^p (\log^+ |g|)^q \, d\lambda \\
< \infty.
\]

Hence \(A^p(\log A)^q(\Omega) \) is closed under scalar multiplication and addition, which implies (1).

(2) If \(\|f\|_{L^p(\log L)^q(\Omega)} = 0 \), then for every \(\varepsilon > 0 \) we have

\[
\int_{\Omega} |f|^p \left(\log^+ \left| \frac{f}{\varepsilon} \right| \right)^q \, d\lambda \leq \varepsilon^p,
\]

since \(h(t) = \int_{\Omega} \left(\frac{|f|}{t} \right)^p (\log^+ |f|/t)^q \) is nonincreasing for \(t > 0 \). In particular, we have \(\|f\|_{L^p(\Omega \cap \{ |f| > \varepsilon \})} \leq \varepsilon \). Letting \(\varepsilon \to 0 \), we get \(\|f\|_{L^p(\Omega)} = 0 \). Now suppose

\[
\|f\|_{L^p(\log L)^q(\Omega)} = \tau > 0.
\]

It follows again from the monotonicity of \(h(t) \) that

\[
\int_{\Omega} \left(\frac{|f|}{\tau + \varepsilon} \right)^p \left(\log^+ \frac{|f|}{\tau + \varepsilon} \right)^q \, d\lambda \leq 1, \quad \forall \varepsilon > 0.
\]

Hence

\[
\int_{\Omega} |f|^p \, d\lambda \leq \int_{\{ |f| \leq (\tau + \varepsilon) \}} |f|^p \, d\lambda + \int_{\{ |f| > (\tau + \varepsilon) \}} |f|^p \left(\log^+ \frac{|f|}{\tau + \varepsilon} \right)^q \, d\lambda \\
\leq (|\Omega| e^p + 1) (\tau + \varepsilon)^p, \quad \forall \varepsilon > 0,
\]

from which (2) immediately follows.
(3) The assertion follows directly from (1) and Theorem 10 in Chapter 3 of [30] with \(g(t) = \left| t \right|^p (\log^+ |t|)^q \) as a Young function.

(4) Let \(\{h_n\} \) be a Cauchy sequence in \(A^p(log A)^q(\Omega) \). By (2) and (3) there is an \(h \in L^p(log L)^q(\Omega) \) such that \(h_n \to h \) under \(\| \cdot \|_{L^p(\Omega)} \) and \(\| \cdot \|_{L^p(log L)^q(\Omega)} \). Since \(A^p(\Omega) \) is complete, we have

\[h \in A^p(\Omega) \cap L^p(log L)^q(\Omega) = A^p(log A)^q(\Omega). \]

Thus \(A^p(log A)^q(\Omega) \) is a closed subspace of \(L^p(log L)^q(\Omega) \). \(\square \)

Remark. Note that for \(p \geq 1, q \geq 0, g(t) = t^p (\log^+ t)^q \) is convex on \([x_0, +\infty) \) for some \(x_0 > 0 \).

Thus \(h(t) := \max\{0, g(t) - g(t_0)\} \)

is convex on \(\mathbb{R}^+ \) and satisfies

\[\int_{\Omega} g(|f|)d\lambda < \infty \Leftrightarrow \int_{\Omega} h(|f|)d\lambda < \infty, \]

since \(\Omega \) is bounded. So if we choose \(h \) as a Young function, then \(A^p(log A)^q(\Omega) \) is still a Banach space.

In order to prove Theorem 1.3, we need the following result from [12].

Proposition 3.2. Let \(\Omega \subset \mathbb{C}^n \) be a pseudoconvex domain. Let \(\rho \) be a continuous negative plurisubharmonic function on \(\Omega \). Set

\[\Omega_t = \{z \in \Omega; -\rho(z) > t\}, \]

where \(t > 0 \). Let \(a > 0 \) be given. For every \(r \in (0, 1) \), there exist constants \(\varepsilon_r, C_r > 0 \), such that

\[\int_{\{\rho \leq \varepsilon\}} |K_{\Omega}(\cdot, w)|^2d\lambda \leq C_r K_{\Omega_a}(w) \left(\frac{\varepsilon}{a} \right)^r \]

for all \(w \in \Omega_a \) and \(\varepsilon < \varepsilon_r a \).

Proof of Theorem 1.3. For every \(\alpha \in (0, \alpha_l(\Omega)) \), there exists a constant \(C_\alpha > 0 \) such that

\[-\rho \leq C_\alpha (-\log \delta)^{-\alpha}, \]

where \(\rho = \rho_{\overline{B}} \) is the relative extremal function of a fixed closed ball \(\overline{B} \subset \Omega \). From Proposition 3.2, we have

\[\int_{\{\rho \leq \varepsilon\}} |K_{\Omega}(\cdot, w)|^2d\lambda \leq C\varepsilon^r \]

for all \(0 < r < 1 \), where \(w \in \Omega \) is fixed. Here and what in follows we use \(C \) to denote all constants depending only on \(\alpha, r, w \) and \(\Omega \). By (3.1), we have

\[\{(-\log \delta)^{-\alpha} \leq \varepsilon\} \subset \{-\rho \leq C_\alpha \varepsilon\}, \]

so that

\[\int_{\{(-\log \delta)^{-\alpha} \leq \varepsilon\}} |K_{\Omega}(\cdot, w)|^2d\lambda \leq C\varepsilon^r. \]
Since \(B(z, \delta(z)) \subset \{ \delta \leq 2\delta(z) \} = \{ (\log \delta)^{-\alpha} \leq (\log (2\delta(z)))^{-\alpha} \} \), we infer from the mean value inequality that
\[
|K_\Omega(z, w)|^2 \leq C\delta(z)^{-2n} \int_{\{ (\log \delta)^{-\alpha} \leq (\log (2\delta(z)))^{-\alpha} \}} |K_\Omega(\cdot, w)|^2 d\lambda
\]
(3.3)
\[
\leq C\delta(z)^{-2n} (2 \log(2\delta(z)))^{-\alpha r},
\]
which implies
\[
\log^+ |K_\Omega(\cdot, w)| \leq \max \left\{ 0, C - n \log \delta(\cdot) - \frac{\alpha r}{2} \log(-\log 2\delta(\cdot)) \right\}.
\]
When \(2^{-k-1} \leq (\log \delta(z))^{-\alpha} < 2^{-k} \) (here \(k \geq k_0 \) for some \(k_0 \)), we have
(3.4)
\[
\log^+ |K_\Omega(z, w)| \leq C \cdot 2^{k/\alpha}.
\]
Hence
\[
\int_\Omega |K_\Omega(\cdot, w)|^2 (\log^+ |K_\Omega(\cdot, w)|)^q d\lambda
\]
\[
\leq \left(\int_{\{ (\log \delta)^{-\alpha} > 2^{-k_0} \}} + \sum_{k=k_0}^{\infty} \int_{\{ 2^{-k-1} \leq (\log \delta)^{-\alpha} < 2^{-k} \}} \right) |K_\Omega(\cdot, w)|^2 (\log^+ |K_\Omega(\cdot, w)|)^q d\lambda
\]
\[
\leq \sum_{k=k_0}^{\infty} C \cdot 2^{kq} \int_{\{ (\log \delta)^{-\alpha} < 2^{-k} \}} |K_\Omega(\cdot, w)|^2 d\lambda
\]
\[
\leq \sum_{k=k_0}^{\infty} C \cdot 2^{kq} \cdot 2^{-kr}
\]
\[
\leq (3.2) C + \sum_{k=k_0}^{\infty} C \cdot 2^{(\frac{q}{\alpha} - r)k}.
\]
Thus \(\int_\Omega |K_\Omega(\cdot, w)|^2 (\log^+ |K_\Omega(\cdot, w)|)^q d\lambda < +\infty \) when \(q < \alpha r\). Since \(\alpha < \alpha(\Omega)\) and \(r \in (0, 1)\) can be chosen arbitrarily, we have
\[K_\Omega(\cdot, w) \in A^2(\log A)^q(\Omega), \forall 0 < q < \alpha_l(\Omega).\]

\[\square\]

Proof of Corollary 1.4 We infer from Theorem 1.3 that
\(\Lambda := \{ K_\Omega(\cdot, w); w \in \Omega \} \subset A^2(\log A)^q(\Omega)\).
Since \(A^2(\log A)^q(\Omega)\) is a linear space, we have
\(\text{Span}\{\Lambda\} \subset A^2(\log A)^q(\Omega)\).
If \(f \in A^2(\Omega)\) and \(f \perp \overline{\text{Span}\{\Lambda\}}\), then
\[
f(w) = \int_\Omega f(\zeta)K_\Omega(\zeta, w)d\lambda(\zeta) = 0.
\]
for every \(w \in \Omega \), i.e., \(f \equiv 0 \). In other words, \(\text{Span}\{A\} = A^2(\Omega) \). So \(A^2(\log A)^q(\Omega) \) lies dense in \(A^2(\Omega) \).

4. **Proof of Theorem 1.5**

Set \(\Omega^{(s)} = \{(z, w) \in \mathbb{C}^2; |z| < r_2(|w|), |z - c(|w|)| > r_1(|w|)\} \), where \(r_1, r_2 \) and \(c_s \) are smooth functions on \([1, 6]\) such that

\[
\begin{align*}
 r_1(x) &= \begin{cases}
 3 - \sqrt{x - 1}, & \text{as } x \to 1^+ \\
 1, & \text{for } x \in [1, 2] \\
 \text{decreasing} & \text{for } x \in [2, 5] \\
 \text{increasing} & \text{for } x \in [5, 6] \\
 3 - \sqrt{6 - x}, & \text{as } x \to 6^-
 \end{cases} \\
 r_2(x) &= \begin{cases}
 3 + \sqrt{x - 1}, & \text{as } x \to 1^+ \\
 4, & \text{for } x \in [1, 2] \\
 \text{increasing} & \text{for } x \in [2, 5] \\
 \text{decreasing} & \text{for } x \in [5, 6] \\
 3 + \sqrt{6 - x}, & \text{as } x \to 6^-
 \end{cases}
\end{align*}
\]

and

\[
\begin{align*}
c_s(x) &= \begin{cases}
 0, & \text{for } x \in [1, 2] \\
 \text{decreasing} & \text{for } x \in [2, 3] \\
 \frac{1}{2}e^{-2|x-3|^s} - 1, & \text{for } x \text{ in a small neighborhood of } 3 \\
 \text{increasing} & \text{for } x \in [3, 4] \\
 1 - \frac{1}{2}e^{-2|x-4|^s}, & \text{for } x \text{ in a small neighborhood of } 4 \\
 \text{decreasing} & \text{for } x \in [4, 5] \\
 0, & \text{for } x \in [5, 6].
 \end{cases}
\end{align*}
\]

Clearly, \(g(x) := x^2(\log^+ x)^q \) is increasing on \(\mathbb{R}_+ \) and convex when \(x > x_0 \) for some \(x_0 \in \mathbb{R}_+ \). Define a convex increasing function on \(\mathbb{R}_+ \) as follows

\[
h(x) = \begin{cases}
 g(x_0), & 0 \leq x \leq x_0 \\
 g(x), & x > x_0.
\end{cases}
\]

Lemma 4.1. If \(s \in (0, 1) \) and \(q \geq \frac{1}{s} - 1 \), then \(\frac{1}{z} \in A^2(\Omega^{(s)}) \) while \(\frac{1}{z} \notin A^2(\log A)^q(\Omega^{(s)}) \).

Proof. Define \(\Omega_w^{(s)} := \{z \in \mathbb{C}; (z, w) \in \Omega^{(s)}\} \). Clearly, \(\Omega_w^{(s)} = \Omega^{(s)}_{|w|} \).

First of all, we have

\[
\begin{align*}
 \int_{\Omega^{(s)}} \frac{1}{|z|^2} d\lambda(z, w) &= \int_{\{1 \leq |w| \leq 6\}} d\lambda(w) \int_{\Omega_w^{(s)}} \frac{1}{|z|^2} d\lambda(z) \\
 &= 2\pi \int_1^6 t dt \int_{\Omega_w^{(s)}} \frac{1}{|z|^2} d\lambda(z)
\end{align*}
\]
\[2\pi \left(\int_{ \{ t \in [1,6], |t-3|>\varepsilon, |t-4|<\varepsilon \} } + \int_{3-\varepsilon}^{3+\varepsilon} + \int_{4-\varepsilon}^{4+\varepsilon} \right) dt \int_{\Omega(t)} \frac{1}{|z|^2} d\lambda(z) \]
\[\leq C\varepsilon + 2\pi \int_{-\varepsilon}^{\varepsilon} (3 + t) dt \int_{\Omega_{3+t}^{(s)}} \frac{1}{|z|^2} d\lambda + 2\pi \int_{-\varepsilon}^{\varepsilon} (4 + t) dt \int_{\Omega_{4+t}^{(s)}} \frac{1}{|z|^2} d\lambda(z) \]
\[\leq C\varepsilon + 4\pi \int_{-\varepsilon}^{\varepsilon} (4 + t) dt \int_{\Omega_{3+t}^{(s)} \cup \Omega_{4+t}^{(s)}} \frac{1}{|z|^2} d\lambda(z) \]
\[\leq C\varepsilon + 4\pi \int_{-\varepsilon}^{\varepsilon} (4 + t) dt \int_{\Omega_{3+t}^{(s)} \cup \Omega_{4+t}^{(s)}} \frac{1}{|z|^2} d\lambda(z) \]
\[\leq C\varepsilon + 8\pi^2 \int_{-\varepsilon}^{\varepsilon} (4 + t) (\log 8 + 2|t|^{-s}) dt \]
\[< +\infty. \]

On the other hand, since \(\Omega_{3+t}^{(s)} \cup \Omega_{4+t}^{(s)} \supset \{ z \in \mathbb{C}; e^{-|t|^{-s}} < |z| < 1 \} \), we have
\[\int_{\Omega(s)} \frac{1}{|z|^2} \left(\log + \frac{1}{|z|} \right)^q d\lambda(z, w) \geq 2\pi \int_{1}^{6} t dt \int_{\Omega(t)} \frac{1}{|z|^2} \left(\log + \frac{1}{|z|} \right)^q d\lambda(z) \]
\[\geq 2\pi \left(\int_{3-\varepsilon}^{3+\varepsilon} + \int_{4-\varepsilon}^{4+\varepsilon} \right) dt \int_{\Omega(t)} \frac{1}{|z|^2} \left(\log + \frac{1}{|z|} \right)^q d\lambda(z) \]
\[\geq 2\pi \int_{-\varepsilon}^{\varepsilon} dt \int_{\Omega_{3+t}^{(s)} \cup \Omega_{4+t}^{(s)}} \frac{1}{|z|^2} \left(\log + \frac{1}{|z|} \right)^q d\lambda(z) \]
\[\geq 2\pi \int_{-\varepsilon}^{\varepsilon} dt \int_{\{ e^{-|t|^{-s}} < |z| < 1 \}} \frac{1}{|z|^2} \left(\log + \frac{1}{|z|} \right)^q d\lambda(z) \]
\[= 4\pi^2 \int_{-\varepsilon}^{\varepsilon} \frac{1}{q+1} (|t|^{-s})^{q+1} dt \]
\[= +\infty. \]

\[\square \]

Proof of Theorem 1.5. (1) Suppose on the contrary that \(A^2(\log A)^q(\Omega^{(s)}) \) lies dense in \(A^2(\Omega^{(s)}) \),
then there exists a sequence \(\{ f_n \} \subset A^2(\log A)^q(\Omega^{(s)}) \) such that \(\| f_n - \frac{1}{z} \|_{L^2(\Omega^{(s)})} \to 0 \) \((n \to \infty) \).
Set
\[f_n(z, w) = \frac{1}{2\pi} \int_{0}^{2\pi} \tilde{f}_n(z, e^{i\theta} w) d\theta. \]

Step 1. We shall verify that \(f_n \in A^2(\log A)^q(\Omega^{(s)}) \) and \(\| f_n - \frac{1}{z} \|_{L^2(\Omega^{(s)})} \to 0 \).
First of all, we have
\[\int_{\Omega(s)} |f_n|^2 (\log + |f_n|)^q d\lambda(z, w) = \int_{\Omega(s)} g \left(\left\| \frac{1}{2\pi} \int_{0}^{2\pi} \tilde{f}_n(z, e^{i\theta} w) d\theta \right\| \right) d\lambda(z, w) \]
\[\leq \int_{\Omega(s)} g \left(\left\| \frac{1}{2\pi} \int_{0}^{2\pi} |\tilde{f}_n(z, e^{i\theta} w)| d\theta \right\| \right) d\lambda(z, w) \]
where the second inequality follows from Schwarz's inequality. So

\[\left\| \tilde{f}_n(z, e^{i \theta} w) - \frac{1}{z} \right\|_{L^2(\Omega(t))}^2 \rightarrow 0 \quad (n \to \infty), \]

where the second inequality follows from Schwarz's inequality. So \(f_n \in A^2(\log A)^q(\Omega(t)) \).

Next, we have

\[
\int_{\Omega(t)} \left| f_n - \frac{1}{z} \right|^2 d\lambda(z, w) = \int_{\Omega(t)} \frac{1}{2 \pi} \int_0^{2 \pi} \left(\tilde{f}_n(z, e^{i \theta} w) - \frac{1}{z} \right)^2 d\theta d\lambda(z, w)
\]

\[
\leq \frac{1}{2 \pi} \int_{\Omega(t)} \int_0^{2 \pi} \left| \tilde{f}_n(z, e^{i \theta} w) - \frac{1}{z} \right|^2 d\theta d\lambda(z, w)
\]

\[
= \frac{1}{2 \pi} \int_0^{2 \pi} \left| \tilde{f}_n(z, e^{i \theta} w) - \frac{1}{z} \right|^2 d\lambda(z, w) d\theta
\]

\[
= \frac{1}{2 \pi} \int_0^{2 \pi} \left| \tilde{f}_n(z, e^{i \theta} w) - \frac{1}{z} \right|^2_{L^2(\Omega(t))} d\theta
\]

where the second inequality follows from Schwarz's inequality. So \(f_n \to \frac{1}{z} \) in \(L^2(\Omega(t)) \).

Step 2. We claim that each \(f_n \) is independent of \(w \), and can be extended to a holomorphic function on \(\{|z| < 4\} \).

In fact, for every \(z \in \mathbb{C} \) with \(|z| = 3 \), we conclude that

\[
f_n(z, w) = \frac{1}{2 \pi} \int_0^{2 \pi} \tilde{f}_n(z, e^{i \theta} w) d\theta
\]

\[
= \frac{1}{2 \pi} \int_{\{|z| = 1\}} \frac{\tilde{f}_n(z, w \zeta)}{\zeta} d\zeta
\]
is independent of \(w \) when \(1 < |w| < 6 \), in view of Cauchy’s theorem. Now for any \(w_1, w_2 \in \{ 1 < |w| < 6 \} \), the function \(f_n(\cdot, w_1) - f_n(\cdot, w_2) \) is holomorphic, and vanishes on \(\{|z| = 3\} \), we infer from the identity theorem that \(f_n(\cdot, w_1) - f_n(\cdot, w_2) \equiv 0 \), i.e., \(f_n \) is independent of \(w \), thus we have

\[
 f_n \in \mathcal{O}(\{0 < |z| < 4\}).
\]

Write \(f_n(z) = \sum_{m=-\infty}^{+\infty} a_m^{(n)} z^m \). Since \(f_n \in A^2(\log A)^q(\Omega^{(s)}) \subset A^2(\Omega^{(s)}) \), we have

\[
 +\infty > \int_{\Omega^{(s)}} |f_n(z)|^2 d\lambda(z, w)
 = 2\pi \int_{1}^{6} t dt \int_{\Omega_t^{(s)}} |f_n(z)|^2 d\lambda(z)
 \geq 2\pi \int_{-\varepsilon}^{\varepsilon} dt \int_{\Omega_{4+t}^{(s)} \setminus \Omega_{4-t}^{(s)}} |f_n(z)|^2 d\lambda(z)
 \geq 2\pi \int_{-\varepsilon}^{\varepsilon} dt \int_{|e^{-|t|} - \frac{1}{2} < |z| < 4} \sum_{m=-\infty}^{+\infty} |a_m^{(n)}|^2 |z|^{2m} d\lambda(z)
 = 4\pi^2 \int_{-\varepsilon}^{\varepsilon} dt \int_{e^{-|t|} - \frac{1}{2}}^{4} \sum_{m=-\infty}^{+\infty} |a_m^{(n)}|^2 \cdot |z|^{2m+1} d\lambda(z)
 = 4\pi^2 \sum_{m \neq -1} \int_{-\varepsilon}^{\varepsilon} \frac{|a_m^{(n)}|^2 (4^{2m+2} - e^{-(2m+2)|t| - \frac{1}{2}})}{2m + 2} dt + 4\pi^2 \int_{-\varepsilon}^{\varepsilon} |a_{-1}^{(n)}|^2 (\log 4 + |t|^{-\frac{1}{2}}) dt.
\]

When \(m \leq -2, e^{-(2m+2)|t| - \frac{1}{2}} \) is not integrable, so \(a_m^{(n)} = 0 \). Thus we may write

\[
 f_n(z) = \frac{a_{-1}^{(n)}}{z} + g_n(z),
\]

where \(g_n \) is holomorphic on \(\{|z| < 4\} \). Notice that \(\frac{1}{z} \) is bounded on \(\{|z| \geq \varepsilon\} \), so

\[
 \frac{a_{-1}^{(n)}}{z} \in A^2(\log A)^q(\Omega^{(s)} \cap \{|z| \geq \varepsilon\}).
\]

Also, since \(f_n \in A^2(\log A)^q(\Omega^{(s)}) \) and \(g_n \) is bounded on \(\{|z| < \varepsilon\} \), it follows from Proposition 3.1(1) we have

\[
 \frac{a_{-1}^{(n)}}{z} \in A^2(\log A)^q(\Omega^{(s)} \cap \{|z| < \varepsilon\}).
\]

So \(\frac{a_{-1}^{(n)}}{z} \) lies in \(A^2(\log A)^q(\Omega^{(s)}) \). But we have already known that \(\frac{1}{z} \) is not in \(A^2(\log A)^q(\Omega^{(s)}) \), thus \(a_{-1}^{(n)} \) must be zero, and \(f_n \) is in fact a holomorphic function on \(\{|z| < 4\} \), which concludes the proof of the claim.
Since \(f_n \to \frac{1}{2} \) in \(L^2(\Omega(s)) \), the convergence holds uniformly on \(\{(z, w_0); |z| = 3\} \), where \(w_0 \) is a fixed point in \(\{1 < |w| < 6\} \). So we have

\[
0 = \int_{\{(z, w_0); |z| = 3\}} f_n(z)dz \to \int_{\{(z, w_0); |z| = 3\}} \frac{1}{z}dz = 2\pi i,
\]

which is absurd. Thus \(A^2(\log A)^q(\Omega(s)) \) is not dense in \(A^2(\Omega(s)) \).

(2) Suppose on the contrary that \(K_{\Omega(s)}(\cdot, w) \in A^2(\log A)^q(\Omega(s)) \) for every \(w \in \Omega(s) \). Then an analogous argument as the proof of Corollary 1.4 shows that \(A^2(\log A)^q(\Omega(s)) \) is dense in \(A^2(\Omega(s)) \), a contradiction to (1). \(\square \)

5. Appendix

We shall construct a bounded planar domain \(\Omega \) with \(\alpha(\Omega) = 0 \) while \(\alpha_l(\Omega) > 0 \), using Corollary 3.4 of [14] and Theorem 1.1 of [7]. Set \(D(a, r) = \{|z - a| < r\} \), and \(E_r(a) = \overline{D}(a, r) - \Omega \). We denote by \(C_l(E) \) the logarithmic capacity of a compact set \(E \subset \mathbb{C} \).

Definition 5.1 ([7]). For a compact set \(E \subset \mathbb{R}, a \in E \) and \(\varepsilon > 0 \), set

\[
\mathcal{N}_E(a, \varepsilon) = \{n \in \mathbb{N}; C_l(E_{2^{-n}}(a) - \overline{D}(a, 2^{-n-1})) \geq \varepsilon \cdot 2^{-n}\},
\]

and we say that \(\mathcal{N}_E(a, \varepsilon) \) is of positive lower density if

\[
\liminf_{N \to \infty} \frac{\mathcal{N}_E(\varepsilon) \cap \{1, 2, \ldots, N\}}{N + 1} > 0.
\]

Theorem 5.1 ([7], Theorem 1.1). For a compact set \(E \subset \mathbb{R} \) the Green's function \(g_{0-E}(\cdot, \infty) \) is Hölder continuous at 0 if and only if \(\mathcal{N}_E(0, \varepsilon) \) is of positive lower density for some \(\varepsilon > 0 \).

Definition 5.2 ([14]). For \(\varepsilon > 0, 0 < \lambda < 1 \) and \(\gamma > 1 \) we set

\[
\mathcal{N}_a(\varepsilon, \lambda, \gamma) := \{n \in \mathbb{Z}^+; C_l(E_{\lambda^n}(a)) \geq \varepsilon \lambda^n\}
\]

\[
\mathcal{N}_a^n(\varepsilon, \lambda, \gamma) := \mathcal{N}_a(\varepsilon, \lambda, \gamma) \cap \{1, 2, \ldots, n\}.
\]

We define the \(\gamma \)-capacity density of \(\partial \Omega \) at \(a \) by

\[
\mathcal{D}_a(\varepsilon, \lambda, \gamma) = \liminf_{n \to \infty} \frac{\sum_{k \in \mathcal{N}_a^n(\varepsilon, \lambda, \gamma)} k^{-1}}{\log n},
\]

and the \(\gamma \)-capacity density of \(\partial \Omega \) by

\[
\mathcal{D}_W(\varepsilon, \lambda, \gamma) = \liminf_{n \to \infty} \frac{\inf_{a \in \partial \Omega} \sum_{k \in \mathcal{N}_a^n(\varepsilon, \lambda, \gamma)} k^{-1}}{\log n}.
\]

Theorem 5.2 ([14], Corollary 3.4). If \(\mathcal{D}_W(\varepsilon, \lambda, \gamma) > 0 \) for some \(\varepsilon, \lambda, \gamma \), then there exists \(\beta > 0 \) such that

\[
\phi_K(z) \leq (-\log \delta(z))^{-\beta}
\]

for all \(z \) sufficiently close to \(\partial \Omega \), where \(\phi_K \) denotes the capacity potential of a compact subset \(K \) relative to \(\Omega \).

Example. Let \(\Omega = D(0, 3) - E \), where \(E = \bigcup_{n=0}^{\infty} [2^{-n}, 2^{-n} + 2^{-2n}] \cup \{0\} \). Then \(\alpha(\Omega) = 0 \) and \(\alpha_l(\Omega) > 0 \).
Proof. We first calculate $N^n_a(\frac{1}{16}, \frac{1}{2}, 2)$:

The case $a = 0$ is simple, for

$$C_l(E_{2^{-n}}(0)) \geq C_l([2^{-n-1}, 2^{-n-1} + 2^{-2(n+1)}]) = \frac{1}{4} \cdot 2^{-2(n+1)} = \frac{1}{16} \cdot 2^{-2n}.$$

The case $a \in [2^{-n_0}, 2^{-n_0} + 2^{-2n_0}]$ is divided into three parts:

(i) If $n \leq n_0 - 1$, then $0 \in \overline{D}(a, 2^{-n})$. It is easy to see that $E_{2^{-n}}(0) \subset E_{2^{-n}}(a)$. Thus

$$C_l(E_{2^{-n}}(a)) \geq C_l(E_{2^{-n}}(0)) \geq \frac{1}{16} \cdot 2^{-2n}.$$

(ii) If $n_0 \leq n \leq 2n_0$, then $[2^{-n_0}, 2^{-n_0} + 2^{-2n_0}] \subset \overline{D}(a, 2^{-n})$, so

$$C_l(E_{2^{-n}}(a)) \geq \frac{1}{4} \cdot 2^{-2n_0} \geq \frac{1}{4} \cdot 2^{-2n} \geq \frac{1}{16} \cdot 2^{-2n}.$$

(iii) If $n \geq 2n_0 + 1$, then $\overline{D}(a, 2^{-n}) \cap [2^{-n_0}, 2^{-n_0} + 2^{-2n_0}]$ contains an interval with length 2^{-n}, so

$$C_l(E_{2^{-n}}(a)) \geq \frac{1}{4} \cdot 2^{-n} \geq \frac{1}{16} \cdot 2^{-2n}.$$

If $a \in \partial D(0, 3)$, then $E_{2^{-n}}(a)$ contains an interval with length 2^{-n+1}. Thus

$$C_l(E_{2^{-n}}(a)) \geq \frac{1}{4} \cdot 2^{-n+1} \geq \frac{1}{16} \cdot 2^{-2n}.$$

Hence $N^n_a(\frac{1}{16}, \frac{1}{2}, 2) = \{1, 2, \ldots, n\}$ for all $a \in \partial \Omega$, which implies $D_W(\frac{1}{16}, \frac{1}{2}, 2) > 0$. By Theorem 5.2, we have $\alpha_l(\Omega) > 0$.

On the other hand, we have

$$C_l(E_{2^{-n}}(0) - \overline{D}(0, 2^{-n-1})) = \frac{1}{4} \cdot 2^{-2(n+1)}.$$

Hence for any $\varepsilon > 0$, there exists an integer n_0 such that

$$C_l(E_{2^{-n}}(0) - \overline{D}(0, 2^{-n-1})) < \varepsilon \cdot 2^{-n}$$

for every $n > n_0$. From Theorem 5.1, we know that $g_{\overline{D}}(z, \infty)$ is not Hölder continuous at 0. Suppose on the contrary that there exists a function $\phi \in SH^+(\Omega) \cap C(\Omega)$ such that $-\phi \lesssim \delta^\beta$ for some $\beta > 0$. It is easy to see from the maximum principle that

$$g_{\overline{D}}(z, \infty) \lesssim -\phi(z) \lesssim \delta^\beta(z) \leq |z - 0|^\beta$$

in a neighborhood of 0, which is a contradiction. \hfill \Box

References

[1] D. E. Barrett, Irregularity of the Bergman projection on a smooth bounded domain in \mathbb{C}^2, Ann. of Math. 119 (1984), no. 2, 431–436.
[2] D. L. Burkholder, Successive conditional expectation of an integrable function, Ann. Math. Statist. 33 (1962), 887–893.
[3] B. Berndtsson and P. Charpentier, A Sobolev mapping property of the Bergman kernel, Math. Z. 235 (2000), no. 1, 1–10.
[4] Z. Blocki, The complex Monge-Ampère operator in pluripotential theory, lecture notes available from the author's website, http://www.im.uj.edu.pl/blocki/publ
[5] Z. Blocki, *The Bergman metric and the pluricomplex Green function*, Trans. Amer. Math. Soc. 357 (2005), no. 7, 2613–2625.

[6] Z. Blocki and P. Pflug, *Hyperconvexity and Bergman completeness*, Nagoya Math. J. 151 (1998), 221–225.

[7] L. Carleson and V. Totik, *Hölder continuity of Green’s functions*. Acta Sci. Math. (Szeged) 70 (2004), no. 3-4, 557–608.

[8] A. P. Calderon and A. Zygmund, *On the existence of certain singular integrals*, Acta Math. 88 (1952), 85–139.

[9] A. P. Calderon and A. Zygmund, *Singular integrals and periodic functions*, Studia Math. 14 (1954), 249–271.

[10] B. Y. Chen, *Boundary behavior of the Bergman metric*, Nagoya Math. J. 168 (2002), 27–40.

[11] B. Y. Chen, *Every bounded pseudoconvex domain with Hölder boundary is hyperconvex*, Bull. London Math. Soc. 53 (2021), 1009–1015.

[12] B. Y. Chen, *Bergman kernel and hyperconvexity index*, Anal. PDE, 10 (2017), no. 6, 1429–1454.

[13] B. Y. Chen and Y. P. Xiong, *A psh Hopf lemma for domains with cusp conditions*, arXiv: 2112.09480.

[14] B. Y. Chen, *Bergman metric and capacity densities on planar domains*, arXiv: 2102.12650.

[15] J.P. Demailly, *Mesures de Monge-Ampere et mesures pluriharmoniques*, Math. Z., 194 (1987), no. 4, 519–564.

[16] K. Diederich and J.E. Fornæss, *Exhaustion functions and Stein neighborhoods for smooth pseudoconvex domains*, Proc. Nat. Acad. Sci. U.S.A. 72 (1975), no. 9, 3279–3280.

[17] K. Diederich and J.E. Fornæss, *Pseudoconvex domains: Bounded strictly plurisubharmonic exhaustion functions*, Invent. Math. 39 (1977), no. 2, 129–141.

[18] K. Diederich and T. Ohsawa, *An estimate for the Bergman distance on pseudoconvex domains*, Ann. of Math. 141 (1995), 181–190.

[19] K. Diederich and T. Ohsawa, *An estimate for the Bergman distance on pseudoconvex domains*, Ann. of Math. 141 (1995), 181–190.

[20] G. Herbort, *The Bergman metric on hyperconvex domains*, Math. Z. 232 (1999), no. 1, 183–196.

[21] G. Herbort, *On the Green function on a certain class of hyperconvex domains*, Ann. Polon. Math. 94 (2008), no. 2, 149–185.

[22] N. Kerzman and J.P. Rosay, *Fonctions plurisousharmoniques d’exhaustion bornées et domaines taut*, Math. Ann. 257 (1981), no. 2, 171–184.

[23] B. Liu, *The Diederich-Fornaess index I: For domains of non-trivial index*, Adv. Math. 353 (2019), 776–801.

[24] T. Ohsawa, *On the Bergman kernel of hyperconvex domains*, Nagoya Math. J. 129 (1993), 43–52.

[25] T. Ohsawa and N. Sibony, *Bounded p.s.h. functions and pseudoconvexity in Kähler manifold*, Nagoya Math. J. 149 (1998), 1-8.

[26] M.M. Rao and Z.D. Ren, Theory of Orlicz spaces, Marcel Dekker, Inc., New York, 1991.

[27] N. Sibony, *Une classe de domaines pseudoconvexes*, Duke Math. J. 55 (1987), no. 2, 299-319.

[28] E. M. Stein, *Note on the class LlogL*, Studia Math. 32 (1969), 305–310.

[29] L. Hed, B. Avelin and H. Persson, *A note on the hyperconvexity of pseudoconvex domains beyond Lipschitz regularity*, Potential anal. 43 (2015), no. 3, 531–545.

[30] G. Herbort, *The Bergman metric on hyperconvex domains*, Math. Z. 232 (1999), no. 1, 183–196.

[31] G. Herbort, *On the Green function on a certain class of hyperconvex domains*, Ann. Polon. Math. 94 (2008), no. 2, 149–185.

[32] N. Kerzman and J.P. Rosay, *Fonctions plurisousharmoniques d’exhaustion bornées et domaines taut*, Math. Ann. 257 (1981), no. 2, 171–184.

[33] B. Liu, *The Diederich-Fornaess index I: For domains of non-trivial index*, Adv. Math. 353 (2019), 776–801.