Radixin deficiency causes deafness associated with progressive degeneration of cochlear stereocilia

Shin-ichiro Kitajiri,1,2,3 Kanehisa Fukumoto,1,4 Masaki Hata,5 Hiroyuki Sasaki,5,6 Tatsuya Katsuno,1,7 Takayuki Nakagawa,3 Juichi Ito,3 Shoichiro Tsukita,1,2 and Sachiko Tsukita1,2,8

1Department of Cell Biology, Faculty of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
2Solution Oriented Research for Science and Technology, Japan Science and Technology Corporation, Sakyo-ku, Kyoto 606-8501, Japan
3Department of Otolaryngology Head and Neck Surgery, Faculty of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
4Department of Surgery, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
5KAN Research Institute, Kyoto Research Park, Shimogyo-ku, Kyoto 606-8317, Japan
6Department of Molecular Cell Biology, Institute of DNA Medicine, The Jikei University School of Medicine, Nishi-Shinbashii, Minato-ku, Tokyo 105-8461, Japan
7Department of Biological Sciences and Institute for Advanced Research, Nagoya University, Nagoya 464-8602, Japan
8School of Health Sciences, Faculty of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan

Ezrin/radixin/moesin (ERM) proteins cross-link actin filaments to plasma membranes to integrate the function of cortical layers, especially microvilli. We found that in cochlear and vestibular sensory hair cells of adult wild-type mice, ezrin was specifically enriched in stereocilia, specially developed giant microvilli, and that radixin-deficient (Rdx−/−) adult mice exhibited deafness but no obvious vestibular dysfunction. Before the age of hearing onset (~2 wk), in the cochlea and vestibule of Rdx−/− mice, stereocilia developed normally in which ezrin was concentrated. As these Rdx−/− mice grew, ezrin-based cochlear stereocilia progressively degenerated, causing deafness, whereas ezrin-based vestibular stereocilia were maintained normally in adult Rdx−/− mice. Thus, we concluded that radixin is indispensable for the hearing ability in mice through the maintenance of cochlear stereocilia, once developed. In Rdx−/− mice, ezrin appeared to compensate for radixin deficiency in terms of the development of cochlear stereocilia and the development/maintenance of vestibular stereocilia. These findings indicated the existence of complicate functional redundancy in situ among ERM proteins.

Introduction

Deafness is one of the most prevalent forms of sensory impairment in humans, and it affects ~1 in 1,000 children (for reviews see Morton, 1991; Fortnum and Davis, 1997). Various gene mutations are known to cause hereditary hearing loss in humans (for reviews see Holme and Steel, 1999; Petit et al., 2001; Tekin et al., 2001; Zuo, 2002). Hearing is achieved through a number of steps: first, acoustic stimuli reaching the cochlea deflect the stereocilia on the apical surface of the inner and outer hair cells in the organ of Corti, which in turn opens the mechanotransduction channels located at the tips of stereocilia. Potassium then floods through these open channels, resulting in plasma membrane depolarization, and an electrical signal is transmitted to the central nervous system (for reviews see Roberts et al., 1988; Hudspeth, 1989; Pickles and Corey, 1992). Thus, the stereocilia of cochlear hair cells are key elements in the transduction of acoustic stimuli into electrical signals. Stereocilia also occur in the hair cells of the vestibule to detect acceleration (Eatock et al., 1998; Corey, 2003). Deaf mouse models have provided crucial clues for understanding the molecular and cellular biology of cochlear sensory hair cells, and several forms of hearing loss are now understood to be caused by mutations of the cytoskeletal proteins of cochlear stereocilia (Probst and Camper, 1999; Gillespie and Walker, 2001; Steel and Kros, 2001; Call and Morton, 2002; Zuo, 2002; Belyantseva et al., 2003). In these mice, vestibular stereocilia were also defective, concomitantly causing imbalance.

Address correspondence to Sachiko Tsukita, Dept. of Cell Biology, Kyoto University Faculty of Medicine, Yoshida-Konoe, Sakyo-ku, Kyoto 606-8501, Japan. Tel.: (81) 75-753-4373. Fax: (81) 75-753-4660. email: atsukita@mfour.med.kyoto-u.ac.jp

Key words: ERM; radixin; stereocilia; cochlea; deafness

Abbreviations used in this paper: ABR, auditory-evoked brainstem response; dB, decibel; ERM, ezrin/radixin/moesin; SPL, sound pressure level; VOR, vestibulo-ocular reflex.

© The Rockefeller University Press, 0021-9525/2004/08/559/12 $8.00
The Journal of Cell Biology, Volume 166, Number 4, August 16, 2004 559–570
http://www.jcb.org/cgi/doi/10.1083/jcb.200402007
Stereocilia are specifically developed giant microvilli (finger-like projections of plasma membrane that are underlain by actin filaments). Microvilli show significant variations in morphology, diameter, and length depending on cell types; some are formed by densely packed rigid-looking actin filaments, whereas others are formed by loosely packed fragile-looking actin filaments (Furutkawa and Fehlheimer, 1997; Bartles, 2000; DeRosier and Tilney, 2000). Of these microvilli, the stereocilia of cochlear sensory hair cells are the most specialized with a characteristic morphology (DeRosier et al., 1980; Gillespie and Walker, 2001; Zuo, 2002). The stereocilia of vestibular sensory hair cells show a more fragile appearance (Sobin and Flock, 1983; Denman-Johnson and Forge, 1999). Besides the general microvilli cytoskeletal proteins such as actin, fimbrin, and myosin Ic, which were immunolocalized to stereocilia (Tilney et al., 1989; Drenckhahn et al., 1991; Skowron et al., 1998; Dumont et al., 2002), the positional cloning of deafness genes in humans and mice has enabled the identification of the novel cytoskeleton-associated constituents of stereocilia such as espin, harmonin, SANS, whirlin, unconventional myosins (VI/VIla/XV), and cadherins (cadherin 23 and protocadherin 15); these proteins are most likely implicated during stereocilia formation and/or maintenance (Avraham et al., 1995; Gibson et al., 1995; Probst et al., 1998; Liang et al., 1999; Littlewood Evans and Müller, 2000; Zheng et al., 2000; Alagramam et al., 2001; Di Palma et al., 2001; Wada et al., 2001; Boeda et al., 2002; Karolyi et al., 2003; Mburu et al., 2003; Weil et al., 2003). Despite these advances, we are still far from having a comprehensive view of how the stereocilia of hair cells are built during development and maintained throughout life.

Ezrin/radixin/moesin (ERM) proteins are three closely related proteins in the band 4.1 superfamily that are thought to function as cross-linkers between plasma membranes and actin filaments, thus integrating the actin cortical layer, especially the microvilli (Sato et al., 1992; Berryman et al., 1993; Mageat et al., 1999; Tsukita and Yonemura, 1999; Bretscher et al., 2002). The COOH-terminal domains of these ERM proteins bind to the actin filaments (Algrain et al., 1993; Turunen et al., 1994; Martin et al., 1995), and the NH2-terminal halves, the FERM domains (band 4.1/ezrin/radixin/moesin homology domains; Algrain et al., 1993; Henry et al., 1995; Bretschet al., 2002), associate directly with the cytoplasmic domains of several integral membrane proteins such as CD43, CD44, and ICAM-1/2/3 (Tsukita et al., 1994; Helander et al., 1996; Serrador et al., 1997; Yonemura et al., 1998, 1999; Shaw, 2001). These NH2-terminal halves are also indirectly associated with membrane transporters/CHANNELS such as the Na+/H+ exchanger 3, CFTR (cystic fibrosis transmembrane conductance regulator), β2-adrenergic receptor, and PDGF-receptor, via a cytoplasmic phosphoprotein, EBP50/NHE-RF (Recez et al., 1997; Yun et al., 1997; Murthy et al., 1998; Short et al., 1998; Maudsley et al., 2000; Bretscher et al., 2002). The cross-linking activity of ERM proteins between actin filaments and plasma membranes is thought to be regulated by PIP2 in the downstream of Rho (Hirao et al., 1996; Mackay et al., 1997; Heiska et al., 1998; Matsui et al., 1999; Yonemura et al., 2002).

The suppression of ERM protein expression in lymphocytes using antisense oligonucleotides results in the complete disappearance of microvilli, suggesting that they play an essential role in cortical microvilli formation (Takeuchi et al., 1994). To examine the physiological functions of ERM proteins at the entire body level (Ingraffea et al., 2002), moesin- and radixin-deficient mice have been generated (Doi et al., 1999; Kikuchi et al., 2002). Moesin-deficient mice showed no abnormalities when examined under laboratory conditions (Doi et al., 1999). By contrast, radixin deficiency caused congenital conjugated hyperbilirubinemia with losses of multidrug resistance protein 2, a bilirubin transporter, from the bile canalicular membranes of the hepatocytes with concomitant decrease of microvilli in number as well as in length (Kikuchi et al., 2002). In wild-type mice, radixin was the dominant ERM protein in the hepatocytes, and was not substituted by either ezrin or moesin in Rdx⁺⁻ mice.

Taking all of the above into consideration, it would seem important that the possible involvement of ERM proteins in the formation, maintenance, and functions of stereocilia on hair cells be examined. In this work, we found that radixin was the only detectable species of ERM protein in the stereocilia of the cochlea of adult wild-type mice, whereas vestibular stereocilia appeared to contain a detectable amount of ezrin in addition to radixin. Adult Rdx⁻⁻ mice exhibited profound deafness, but not imbalance; consistent with this, stereocilia were significantly defective in the outer and inner hair cells of the cochlea, but not in the hair cells of the vestibule. Furthermore, we found that in the cochlea of Rdx⁻⁻ mice, ezrin-based stereocilia appeared to develop normally from birth to postnatal day 14 (P14), the onset of hearing, after which they progressively degenerated. Thus, the radixin knockout provides a type of mouse deafness model caused by mutation in cytoskeletal components in stereocilia, which presents with progressive degeneration of cochlear (but not vestibular) stereocilia. The present paper provides a new insight into the ERM-based molecular mechanisms for the formation and maintenance of stereocilia, and the functional specificity/redundancy among ERM proteins in situ.

Results
Radixin is specifically enriched in stereocilia in the cochlear and vestibular sensory hair cells in adult wild-type mice

As a first step to examine the possible involvement of ERM proteins in the formation/maintenance of stereocilia on hair cells, the organ of Corti and the crista ampullaris of the vestibule were isolated from adult wild-type mice aged 5 wk, and then whole-mount stained with ezrin-, radixin-, and moesin-specific mAbs (Kondo et al., 1997; Doi et al., 1999). In the organ of Corti, only radixin was concentrated both in one row of the inner hair cell stereocilia and three rows of the outer hair cell stereocilia (Fig. 1, a–c): Individual stereocilia appeared resolved both by radixin staining in immunofluorescence microscopy (Fig. 1 d) and by scanning EM (Fig. 1 e). In addition to such intense signals, diffuse weak staining for ezrin and radixin was also detected in both hair and sup-
porting cells of the organ of Corti, whereas moesin was not detected in either; instead it was concentrated in the VE-cadherin–positive blood vessels (Berryman et al., 1993). In the crista ampullaris of the vestibule, radixin was concentrated in the stereocilia of the hair cells, but ezrin was also detectable in stereocilia, though faintly (Fig. 1, f–h). At higher magnification, individual long fragile vestibular stereocilia were also resolved both by radixin staining in immunofluorescence microscopy (Fig. 1 i) and by scanning EM (Fig. 1 j). Moesin was detected only in the blood vessels at a different focus plane from radixin/ezrin-positive stereocilia (inset), as judged by the double-staining images for moesin (moesin; green) and VE-cadherin (VE-cad; red, inset). Bar, 15 μm. (i and j) Comparison of the whole-mount radixin staining image with the scanning electron microscopic image of stereocilia on vestibular hair cells. Radixin appears to concentrate along the entire length of long fragile stereocilia. Bars, 3 μm.

Radixin deficiency causes deafness

Thus, it would be interesting to examine the physiological roles of radixin in hearing and balance in mice. First, we focused on the hearing ability of radixin-deficient \(Rdx^{-/-} \) mice. These mice showed a normal growth rate (Fig. 2 A) and were fertile, although they suffered from congenital conjugated hyperbilirubinemia (Kikuchi et al., 2002). Interestingly, when a sound stimulus was administrated in the form of a loud handclap, adult \(Rdx^{-/-} \) mice (5–10-wk-old) showed no reflexive reaction, so-called Preyer’s reflex, although \(Rdx^{+/+} \) and \(Rdx^{+/-} \) mice quickly moved their heads (Fig. 2 A). The auditory-evoked brainstem response (ABR) was then measured in two sets of heterogeneous \(Rdx^{+/+} \) intercross adult littermates aged 5 and 10 wk (12 littermates in total) in response to a stimuli with a sound pressure level (SPL) of 70 decibels (dB) (20 kHz; Fig. 2 B). Of the 12 littermates, three showed no ABR; the others all showed a typical ABR waveform. Afterwards, these mice were genotyped, and these three littermates showing no ABR were all found to be \(Rdx^{-/-} \) mice. This perfect correlation between the \(Rdx^{-/-} \) genotype and a lack of ABR was reproducibly obtained in different series of measurements. In Fig. 2 C, the hearing thresholds of 10-wk-old mice were measured at various sound frequencies. Wild-type and \(Rdx^{+/+} \) mice showed normal hearing thresholds (10–50 dB SPL), whereas \(Rdx^{-/-} \) mice showed profound deafness (hearing threshold, >70–90 dB SPL).

Then, we compared light microscopic images of toluidine blue–stained sections prepared from Epon-embedded tissues of the inner ear between \(Rdx^{+/+} \) and \(Rdx^{-/-} \) P60 mice (Fig. 1 A–C).
Radixin deficiency causes progressive degeneration of stereocilia of cochlear hair cells after the onset of hearing

The question then naturally arose as to what is the consequence of radixin deficiency in the cochlear stereocilia in Rdx−/− mice. Isolated cochleae of P40 Rdx+/+ and Rdx−/− littermates were examined by scanning EM (Fig. 3 A, a–f). When removing the lateral wall and tectorial membrane of the cochlea in P40 Rdx−/− mice to expose the organ of Corti, the cellular arrangement of the outer and inner hair cells as well as the supporting cells appeared normal, but very interestingly, the stereocilia in both outer and inner hair cells were significantly defective compared with those in Rdx+/+ organ of Corti. Instead of being regularly arranged in a “W” shape, stereocilia of the outer hair cells of Rdx−/− mice were deformed to 1–3 residual knoblike protrusions on the apical surfaces (Fig. 3 A, d). Inner hair cells had several shorter fused protrusions instead of stereocilia (Fig. 3 A, f). When the organ of Corti isolated from these Rdx−/− cochleae was whole-mount stained with ezrin-, radixin-, and moesin-specific mAbs, ezrin, radixin, or moesin was not detected in the residual structures of outer and inner stereocilia, i.e., knoblike protrusions and shorter fused protrusions, respectively (Fig. 3 A, g–j). Diffuse ezrin staining in the organ of Corti and intense moesin staining in blood vessels did not appear to be affected. Considering that stereocilia play a central role in transducing acoustic stimuli into electrical signals in the cochlea, it is likely that these defects in cochlear stereocilia are responsible for the hearing impairments observed in adult Rdx−/− mice.

Cochlear hair cells of mice were reported to continue to develop after birth, and to become functionally mature at the onset of hearing around the age of 14 d (Lim and Anniko, 1985; Erven et al., 2002; Zuo, 2002). Therefore, we next attempted to distinguish whether in Rdx−/− mice cochlear stereocilia are defective in their development or degenerate after they have developed normally. As previously reported (Lim and Anniko, 1985; Zuo, 2002), in the cochlea of wild-type P1 mice, scanning EM showed that both the inner and outer hair cells already bore well-developed stereocilia in a characteristic arrangement (Fig. 3 B, a, c, and e). The central tubulin-based kinocilium of the W-shaped array of stereocilia on inner hair cells were especially prominent at this early stage. In addition to stereocilia, at this stage hair cells as well as supporting cells were covered with a large
Deafness in radixin-null mice

Kitajiri et al. 563

number of short conventional microvilli that disappeared in adult mice (Fig. 3 A). To our surprise, the scanning electron microscopic images of the cochlea of P1 Rdx−/− mice were indistinguishable from those in the Rdx+/+ mice (Fig. 3 B, b, d, and f). The question is how stereocilia were developed normally in the absence of radixin in P1 Rdx−/− mice. Whole-mount immunostaining was then performed (Fig. 3 B, g–j). In P1 Rdx+/+ mice, radixin was highly enriched in stereocilia of inner and outer hair cells, but in contrast to adult mice, ezrin was also detected in stereocilia, weakly but clearly (Fig. 3 B, g and i). Furthermore, the P1 Rdx+/+ cochlea was characterized by punctate radixin and ezrin signals.
on the apical surface of hair cells and supporting cells, which may correspond to numerous conventional microvilli. Of course, in the organ of Corti in P1 Rdx^{−−} littermates, radixin was undetectable (Fig. 3 B, j), but instead of radixin, ezrin became weaker during P1 to P14, almost undetectable from stereocilia at P14, and radixin was only weakly detected at radixin-enriched stereocilia on inner hair cells (black arrow), and is not detected in outer hair cells (blue arrow) (g and i). In P14 Rdx⁺⁺ cochlea, ezrin was still highly concentrated at stereocilia in large amounts in outer and inner hair cells (h). Bars, 10 μm (a and b); 2 μm (c and d); 1 μm (e and f); 20 μm (g–j).

Figure 4. Postnatal degeneration of stereocilia on Rdx^{−−} cochlear hair cells. (A) Scanning electron micrographs (a–f) and whole-mount immunofluorescence micrographs for radixin and ezrin (g–j) of the organ of Corti isolated from Rdx⁺⁺ and Rdx^{−−} mice at 6 d of age (P6). The levels of outer hair cells (blue arrows) and inner hair cells (black arrows) are shown. Scanning EM does not detect any significant differences between Rdx⁺⁺ (a, c, and e) and Rdx^{−−} cochlea (b, d, and f). In contrast to P1 Rdx⁺⁺ cochlea, in P6 Rdx⁺⁺ cochlea, whole-mount immunostaining detects a weak signal of ezrin at radixin-enriched stereocilia on inner hair cells (black arrow), and a trace of ezrin in outer hair cells (blue arrow) (g and h). In Rdx^{−−} cochlea (h and j), ezrin is still highly concentrated at stereocilia on both inner hair cells (black arrow) and outer hair cells (blue arrow). Bars, 10 μm (a and b); 2 μm (c and d); 1 μm (e and f); 20 μm (g–j). (B) Scanning electron micrographs (a–f) and whole-mount immunofluorescence micrographs for radixin and ezrin (g–j) of the organ of Corti isolated from Rdx⁺⁺ and Rdx^{−−} mice at 14 d of age (P14). Scanning EM detects the initial sign for the degeneration of stereocilia on outer hair cells (blue arrow) (a–d). The central part of the W-shaped row of stereocilia is lost, leaving discontinuous and disorganized arrays of stereocilia in Rdx^{−−} cochlea. At this stage, no significant defects can be observed in stereocilia on the inner hair cells (black arrow) (b and f). In P14 Rdx⁺⁺ cochlea, ezrin is only weakly detected at radixin-enriched stereocilia on inner hair cells (black arrow), and is not detected in outer hair cells (blue arrow) (g and i). In Rdx^{−−} cochlea, ezrin was still concentrated in the degenerating stereocilia in large amounts in outer and inner hair cells (h). Bars, 10 μm (a and b); 2 μm (c and d); 1 μm (e and f); 20 μm (g–j).

Subsequently, these ezrin-based stereocilia degenerated postnatally.

We then pursued the possible postnatal degeneration process of stereocilia in Rdx^{−−} mice (Fig. 4). At P6, scanning EM did not detect any significant differences between Rdx⁺⁺ and Rdx^{−−} cochlea, indicating that there was still no sign for stereocilia degeneration (Fig. 4 A, a–f). However, in Rdx⁺⁺ cochlea, ezrin became weaker during P1 to P14, almost undetectable from stereocilia at P14, and radixin was...
dominantly detected among ERM proteins in stereocilia (Fig. 4 A, g and i). Supporting cells were intensely stained for ezrin and radixin. In P6 Rdx^{-/-} cochlea, ezrin was highly concentrated in stereocilia on both inner and outer hair cells (Fig. 4 A, h) with no radixin staining (Fig. 4 A, j). Around age P14 (onset of hearing in mice), in Rdx^{-/-} cochlea, the sign for stereocilia degeneration began to be detected on outer hair cells by scanning EM (Fig. 4 B, a–f): The central part of the W-shaped row of stereocilia was lost, leaving discontinuous and disorganized arrays of stereocilia. Ezrin was still concentrated in these degenerating stereocilia in large amounts, though in Rdx^{+/+} hair cells, radixin, but not ezrin, was enriched at stereocilia (Fig. 4 B, g–i). We concluded that in Rdx^{-/-} cochlea, ezrin can counterbalance radixin deficiency to normally develop stereocilia up to the onset of hearing, but not to maintain these once-developed stereocilia to transmit acoustic stimuli into electrical signals.

To clarify the interior structure of ezrin-based stereocilia in Rdx^{-/-} cochlea, the cochlea of Rdx^{-/-} mice aged 3 wk were examined by ultrathin-section EM (Fig. 5). In these mice, stereocilia at various stages of degeneration were observed. Ezrin-based stereocilia contained highly organized bundles of actin filaments as cores that were indistinguishable in appearance from those in wild-type radixin-based stereocilia, and during the process of degeneration these stereocilia as well as core bundles appeared to be fused to form abnormal thick and short protrusions.

Finally, a natural question is what are the membrane-binding partners for radixin/ezrin in cochlear stereocilia. To eluci-date an answer, we first performed immunoprecipitation experiments with anti-radixin or anti-ezrin mAb using isolated Rdx^{+/+} or Rdx^{-/-} cochlea; however, the results were inconclusive, probably due to the limitation of the material and the low insolubility of radixin and ezrin. We also performed a gel overlay blot with labeled radixin/ezrin, but again failed to detect any bands specifically associated with radixin/ezrin.

Ezrin compensates radixin deficiency in the development/maintenance of stereocilia in the vestibular hair cells

As shown in Fig. 1, in the vestibule of wild-type mice aged 5–10 wk, radixin was predominantly concentrated in stereocilia among ERM proteins, but distinct from cochlear stereocilia, these stereocilia contained detectable amounts of ezrin. The question then arose as to the structure and function of vestibular stereocilia in adult Rdx^{-/-} mice. Structurally, scanning EM identified no abnormality in the number/density and morphology of stereocilia at the crista ampullaris of the vestibule of adult Rdx^{-/-} mice (Fig. 6 A). Also, scanning EM identified no abnormality in the otolith organs (the utricle and saccule) of adult Rdx^{-/-} mice (unpublished data). Functionally, Rdx^{-/-} vestibular stereocilia appeared to be normal because adult Rdx^{-/-} mice showed no signs of imbalance in their behavior as far as we examined up to 100 d after birth. Then, their vestibulo-ocular reflex (VOR) was measured, in which the function of horizontal semicircular canals, but not otolith organs (the utricle and saccule), can be evaluated. Heads of Rdx^{+/+}, Rdx⁺, or Rdx^{-/-} mice aged...
The Journal of Cell Biology Volume 166, Number 4, 2004

Figure 6. The vestibule and the balance function of 5-wk-old Rdx−/− mice. (A) Scanning EM of the Rdx+/+ and Rdx−/− crista ampullaris of the vestibule. The appearance of stereocilia (arrows) was indistinguishable between Rdx+/+ and Rdx−/− mice. Bar, 5 μm. (B) VOR. A mouse head was rotated sinusoidally and the eye position recorded by a CCD camera (left). The eye velocity was calculated from the change of eye position, and was fitted with sinusoidal curves (red lines). The gain was obtained by dividing the peak eye velocity by the peak head velocity. No difference is detected in the VOR between eye position, and was fitted with sinusoidal curves (red lines). The gain was obtained by dividing the peak eye velocity by the peak head velocity. No difference is detected in the VOR between Rdx+/+ and Rdx−/− mice. The VOR gains of Rdx+/+ and Rdx−/− mice were normal at all head rotation frequencies. As shown in Fig. 6 B, the VOR gains of Rdx+/+ and Rdx−/− vestibules with anti-ERM pAb (TK89) that recognizes ezrin, radixin, and moesin with almost the same affinity. In Rdx+/+ vestibule, radixin (R) became undetectable without significant up-regulation of ezrin (E) or moesin (M). Silver-stained bands of actin (Ac) are presented on the right to show that equal amounts of cell lysate were applied in each lane. (D) Whole-mount immunostaining of the crista ampullaris isolated from adult Rdx+/+ and Rdx−/− vestibules with ezrin-, radixin- and moesin-specific antibodies. In the Rdx+/+ crista ampullaris, radixin is highly concentrated in the stereocilia where ezrin is detected weakly but reproducibly (inset, a frozen section stained with anti-ezrin antibody). Moesin is detected only in the blood vessels at a different focus plane from stereocilia (inset), as judged by the double staining images for moesin (moesin; green) and VE-cadherin (VE-cad; red) (inset). By contrast, in the Rdx−/− crista ampullaris, the concentration of ezrin in the stereocilia is significantly increased. All samples were treated under completely identical conditions, paying special attention to ensure that the signals were not saturated. Bar, 40 μm.

Discussion

The physiological functions of ERM proteins, ezrin, radixin, and moesin, have attracted increasing interest, but the relevance of the existence of these three closely related proteins in mammalian cells remains elusive (Berryman et al., 1993; Takeuchi et al., 1994; Doi et al., 1999; Tsukita and Yonemura, 1999; Ingraffea et al., 2002; Kikuchi et al., 2002). In most cultured mammalian cells, all ERM proteins are coexpressed and codistributed (Sato et al., 1992; Berryman et al., 1993). Using antisense oligonucleotides, ERM proteins were shown to be functionally redundant, without a quantitatively compensatory increase in their expression levels, in cell–cell/cell–substrate adhesion and the formation of microvilli in cultured cells (Takeuchi et al., 1994). At the whole-body level, the expression levels and combinations of ERM proteins varied significantly depending on cell type (Sato et al., 1992; Berryman et al., 1993; Franck et al., 1993; Doi et al., 1999; Ingraffea et al., 2002), and to date no clear example has been found to indicate the functional...
redundancy among ERM proteins. Radixin deficiency causes hyperbilirubinemia due to the loss of multidrug resistance protein 2 from the bile canalicular membranes, where microvilli were decreased in number as well as in length (Kikkuchi et al., 2002). Radixin was the dominant ERM protein in the liver of wild-type mice, but no compensatory up-regulation of expression level of ezrin or moesin was detected in the Rdx−/− liver.

To discuss the functions of ERM proteins and their possible redundancy in situ, the inner ear provides an advantageous system, as in it there are two distinct types of stereocilia, cochlear and vestibular stereocilia, which play central roles in transmitting acoustic and acceleration stimuli, respectively, into electrical signals. (Roberts et al., 1988; Hudspteth, 1989; Pickles and Corey, 1992; Eatock et al., 1998; Corey, 2003). In wild-type cochlea, before ~P14, ezrin was detectable in addition to large amounts of radixin in stereocilia, and then progressively disappeared, leaving purely radixin-based stereocilia. In the Rdx−/− cochlea, ezrin was significantly up-regulated, and purely ezrin-based stereocilia developed normally up to ~P14 and then progressively degenerated. By contrast, in the Rdx+/+ vestibule, stereocilia contained a small amount of ezrin in addition to large amounts of radixin throughout life, whereas in the Rdx−/− vestibule, stereocilia containing up-regulated ezrin developed and was maintained normally throughout the life. These findings would provide the first clear example that these members of the ERM family, ezrin and radixin, function redundantly in situ at the whole-body level: ezrin co-localizes with radixin in stereocilia progressively after the onset of hearing.

Since radixin- or ezrin-binding partners in stereocilia. To be successful, any future work will need to overcome several technical difficulties.
the elucidation of which will shed light on the pathogenesis of human deafness and imbalance.

Materials and methods

Antibodies

Rabbit anti-ERM pAb, TK89, recognized COOH-terminal domains of all ERM proteins almost equally (Kondo et al., 1997; Doi et al., 1999). We previously raised and characterized rat anti-ezrin (M11), anti-radixin (R21), and anti-moesin mAb (M22) (Kondo et al., 1997; Doi et al., 1999). Goat anti-VE-cadherin (C-19) was obtained from Santa Cruz Biotechnology, Inc.

Generation of Rdx−/− mice

Rdx−/− mice were generated as previously reported (Kikuchi et al., 2002). Two independent ES clones (129/Sv) in which the radixin gene was correctly disrupted were injected into C57BL/6 blastocysts, and the resulting chimeras were mated with C57BL/6 mice (Doi et al., 1999).

ABR measurements

ABR measurements were performed in a soundproof room (Zeng et al., 1999). In general, the ABR waveforms were recorded for 12.8 ms at a sampling rate of 40,000 Hz using 50-5,000-Hz filter settings; waveforms recorded from 1,024 stimuli at a frequency of 9 Hz were averaged. ABR waveforms were recorded in decreasing 5-dB SPL intervals from a maximum amplitude until no waveforms could be visualized.

VOR measurements

VOR was measured as described by Iwashita et al. (2001). Head movements were transduced to DC signals using a small angular velocity sensor (Gyrostar; Murata Corporation) that was fixed on the turntable. Eye movements were detected by LED and a CCD camera (C53500; Tokyo Electronic Industry), and eye velocities were calculated online by downloading them onto a computer through a video capture board. Both the head and eye velocity curves were fitted with sinusoidal curves using the least squares criterion, and the gain of eye velocity relative to the head velocity was obtained.

Immunofluorescence microscopy

Temporal bones were removed from 1-, 6-, 14-, or 40-d-old mice, and together with the small holes in the cochlear apical turn and superior semicircular canal, the round and oval windows were opened. The lymphatic space was gently perfused with 10% TCA through a round window (Hasyi et al., 1999; Kitajiri et al., 2004). Samples were then immersed in 100% Acetone at 4°C, washed three times with PBS, and dehydrated with 5% EDTA in PBS for 3 d at 4°C. The cochlea and vestibule were then carefully microdissected, treated with 0.2% Triton X-100 in PBS for 15 min, and soaked in 1% BSA in PBS at RT. They were then incubated with rat anti-ezrin (M11), anti-radixin (R11), or anti-moesin (M22) mAb for 30 min at RT. Samples were washed three times with PBS, followed by a 30-min incubation with Cy3- (Jackson ImmunoResearch Laboratories, Inc.) or Alexa Fluor® 488–conjugated secondary antibody (Molecular Probes, Inc.). After a wash with PBS, they were embedded in 0.1% paraphenylendiamine and 1% n-propylgalate. Fluorescence images were obtained with a confocal microscope (model LSM 510 META; Carl Zeiss MicroImaging, Inc.) or with a DeltaVision optical sectioning microscope (version 2.10; Applied Precision, Inc.), equipped with META; Carl Zeiss MicroImaging, Inc.) or IX70 (PlanApo 60×/1.40 NA oil immersion). Images were acquired using a 63×/1.4 NA objective (PlanApo 60×/1.40 NA oil immersion objective; Olympus) microscope, respectively.

Immunoblotting

The membranous labyrinths of 5-wk-old mice were dissected under a microscope. Whole organ of Corti and vestibules isolated from each mouse were sonicated in 100 μL SDS sample buffer (50 mM Tris-HCl, pH 6.8, 2% SDS, 20% glycerol, 2% 2-mercaptoethanol, and 0.01% bromophenol blue), applied to SDS-PAGE, and immunoblotted by a blotting detection kit with biotinylated Ig and streptavidin-conjugated alkaline phosphatase (Amersham Biosciences).

Scanning EM

Temporal bones obtained from 1-, 6-, 14-, or 40-d-old mice were fixed using perilymphatic perfusion as described above with 1% glutaraldehyde in 0.1 M phosphate buffer (pH 7.2). They were then washed with phosphate buffer and post-fixed in 1% OsO4 for 2 h, after which they were once again treated with perilymphatic perfusion. The organ of Corti or crista ampullaris was microdissected, dehydrated, critical-point dried, sputter coated, and observed by scanning EM (model S-800 microscope; Hitachi Co.).

Ultrathin-section EM

Samples were processed as previously described, using 2% formaldehyde, 2.5% glutaraldehyde, and 0.1 M sodium cacodylate buffer (pH 7.4) as a fixative (Yonemura et al., 2002).

References

Alagramam, K.N., C.L. Murcia, H.Y. Kwon, K.S. Pawlowski, C.G. Wright, and R.P. Woychik. 2001. The mouse Ames waltzer hearing-loss mutant is caused by mutation of Pdi15, a novel proteocadherin gene. Nat. Genet. 27:99–102.

Algrain, M., O. Turunen, A. Vaheri, D. Louvard, and M. Arpin. 1993. Ezrin contains cytoskeleton and membrane binding domains accounting for its proposed role as a membrane-cytoskeletal linker. J. Cell Biol. 120:129–140.

Avraham, K.B., T. Hasson, K.P. Steel, D.M. Kingsley, L.B. Russell, M.S. Moosiker, N.G. Copeland, and N.A. Jenkins. 1995. The mouse Snell’s waltzer deafness gene encodes an unconventional myosin required for structural integrity of inner ear hair cells. Nat. Genet. 11:369–375.

Bartles, J.R. 2000. Parallel actin bundles and their multiple actin-bundling proteins. Curr. Opin. Cell Biol. 12:72–78.

Belyantseva, I.A., V. Labay, E.T. Beger, A.J. Griffith, and T.B. Friedman. 2003. Stereocilia: the long and the short of it. Trends Mol. Med. 9:458–461.

Ben-Yosef, T., I.A. Belyantseva, T.L. Saunders, E.D. Hughes, K. Kawamoto, C.M. Van Itallie, L.A. Beyer, K. Halsey, D.J. Gardner, E.R. Wilcox, et al. 2003. Claudin 14 knockout mice, a model for autosomal recessive deafness DENB29, are deaf due to cochlear hair cell degeneration. Hum. Mol. Genet. 12:2049–2061.

Berrymann, M., Z. Franck, and A. Bretscher. 1993. Ezrin is concentrated in the apical microvilli of a wide variety of epithelial cells whereas moesin is found primarily in endothelial cells. J. Cell Sci. 105:1025–1043.

Bock, G.R., and K.P. Steel. 1983. Inner ear pathology in the deafness mutant mouse. Asia Otolaryngol. 28:39–47.

Boed, B., A. El-Ansourui, A. Balhoud, R. Goodyear, L. Daviet, S. Blanchard, I. Perfettini, K.R. Fath, S. Shone, J. Reiners, et al. 2002. Myosin Vlla, hormonin and cadherin 23, three Usher I gene products that cooperate to shape the sensory hair cell bundle. EMBO J. 21:6689–6699.

Bretschger, A., K. Edwards, and R.G. Fehon. 2002. ERM proteins and Merlin: integrators at the cell cortex. Nat. Rev. Mol. Cell Biol. 3:586–599.

Call, L.M., and C.C. Morton. 2002. Continuing to break the sound barrier: hearing loss in a new mouse model. Proc. Natl. Acad. Sci. USA. 101:2601–2606.
ing a new type of cadherin, cause stereocilia disorganization in waltzer, the mouse model for Usher syndrome type 1D. *Nat. Genet.* 27:103–107.

Doi, Y., M. Itoh, S. Yonemura, S. Ishihara, H. Takano, T. Noda, Sh. Tsukita, and Sa. Tsukita. 1999. Normal development of mice and unimpaired cell adhesion/cell motility/actin-based cytoskeleton without compensatory up-regulation of ezrin or radixin in mouse gene knockout. *J. Biol. Chem.* 274: 2315–2321.

Drechselhahn, D., K. Engel, D. Höfer, C. Merte, L. Tilney, and M. Tilney. 1991. Three different actin filament assemblies occur in every hair cell: each contains a specific actin crosslinking protein. *J. Cell Biol.* 112:641–651.

Dumont, R.A., Y.D. Zhao, J.R. Holt, M. Bahler, and P.G. Gillespie. 2002. Myo-1 isozymes in neonatal rodent auditory and vestibular epithelia. *J. Assoc. Res. Otorhynghol.* 3:375–389.

Eatock, R.A., A. Rusch, A. Lysakowski, and M. Saeki. 1998. Hair cells in mam-malian utricles. *Otolaryngol. Head Neck Surg.* 119:172–181.

Erven, A., M.J. Skynner, Ok. Okumura, Take. Takebayashi, S.D.M. Brown, K.P. Steel, and N.D. Allen. 2002. A novel stereocilia defect in sensory hair cells of the deaf mouse mutant Taosmanil devil. *Eur. J. Neurosci.* 16:1433–1441.

Fortnum, H., and A. Davis. 1997. Epidemiology of permanent childhood hearing impairment in Trent Region, 1985–1993. *Br. J. Audiol.* 31:409–446.

Franck, Z., R. Gary, and A. Bretscher. 1993. Moesin, like ezrin, colocalizes with actin in the cortical cytoskeleton in cultured cells, but its expression is more variable. *J. Cell Sci.* 105:219–231.

Furukawa, K., and M. Fechheimer. 1997. The structure, function, and assembly of actin filament bundles. *Int. Rev. Cytol.* 175:29–90.

Gibson, F., J. Reczek, and A. Bretscher. 2002. Distinct cell type-specific expression of scaffolding proteins EBP50 and E3KARP: EBP50 is generally expressed with ezrin in specific epithelia, whereas E3KARP is not. *Trends Cell Biol.* 12:279–285.

Holme, R.H., and K.P. Steel. 1999. Genes involved in deafness. *Hum. Mol. Genet.* 8:2797–2805.

Hudspeth, A.J. 1989. How the ear’s works work. *Annu. Rev. Neurosci.* 12:297–308.

Ingraffea, J., D. Reczek, and A. Bretscher. 2002. Distinct cell type-specific expression of scaffolding proteins EB5P0 and E5KARP: EB5P0 is generally expressed with ezrin in specific epithelia, whereas E5KARP is not. *Eur. J. Cell Biol.* 81:61–68.

Iwashita, M., R. Kanita, K. Funabiki, K. Matsuda, and T. Hirano. 2001. Dynamic behavior of phosphatidylinositol turnover and Rho-dependent signaling pathway. *J. Biol. Chem.* 276:562–566.

Kiihara, S., K. Alfthan, M. Gröholm, P. Vilja, A. Vaheri, and O. Carpén. 1998. Three different actin filament assemblies occur in every hair cell: each contains a specific actin crosslinking protein. *J. Cell Biol.* 112:641–651.

Kong, P., C. Bay, and M. Martin. 1999. ERM proteins in cell adhesion and membrane dynamics. *Trends Cell Biol.* 9:187–192.

Martin, M., C. Andréoli, A. Sahaquette, P. Moncourtier, M. Algrain, and P. Mangeat. 1995. Ezrin NH2-terminal domain inhibits the cell extension activity of the COOH-terminal domain. *J. Cell Biol.* 128:1081–1093.

Matsui, T., S. Yonemura, Sh. Tsukita, and Sa. Tsukita. 1999. Activation of ERM proteins in vivo by Rho involves phosphatidyl-inositol-4-phosphate 5-kinase and not ROCK kinases. *Curr. Biol.* 9:1259–1262.

Mausdley, S., A.M. Zambah, N. Rahman, J.T. Blitner, L.M. Luttrel, R.J. Leikeowski, and R.A. Hall. 2000. Phosphatidyl-inositol-4-phosphate 5-kinase gene regulation by compensatory up-regulation of ear/radixin/mo ezin proteins with their carboxyl-terminal threonine phosphorylated in cultured cells and tissues. *J. Cell Sci.* 112:1149–1158.

Heiska, L., K. Ablin, M. Gröholm, P. Vilja, A. Vaheri, and O. Carpén. 1998. Association of ezrin with intercellular adhesion molecule-1 and -2 (ICAM-1 and ICAM-2). Regulation by phosphatidylinositol 4,5-bisphosphate. *J. Biol. Chem.* 273:21893–21900.

Hedlund, P., E. Kovanen, A. Vaheri, and T. Tironen. 1996. ICAM-2 redistributed by ezrin as a target for killer cells. *Nature* 382:265–268.

Henry, M.D., C. Gonzalez Agosti, and F. Solomon. 1995. Molecular dissection of radixin: distinct and interdependent functions of the amino- and carboxy-terminal domains. *J. Cell Biol.* 129:1007–1022.

Hirao, M., N. Sato, Y. Yonemura, M. Monden, T. Sasaki, Y. Takah, Sh. Tsukita, and Sa. Tsukita. 1996. Regulation mechanism of ERMM (ezrin/radixin/mo ezin) protein/plasma membrane association: possible involvement of phosphatidylinositol turnover and Rho-dependent signaling pathway. *J. Cell Biol.* 135:37–51.

Holme, R.H., and K.P. Steel. 1999. Genes involved in deafness. *Curr. Opin. Genet.* Dev. 9:399–314.

Hudspeth, A.J. 1989. How the ear’s works work. *Nature* 341:397–404.

Ingraffea, J., D. Reczek, and A. Bretscher. 2002. Distinct cell type-specific expression of scaffolding proteins EB5P0 and E5KARP: EB5P0 is generally expressed with ezrin in specific epithelia, whereas E5KARP is not. *Eur. J. Cell Biol.* 81:61–68.

Iwashita, M., R. Kanita, K. Funabiki, K. Matsuda, and T. Hirano. 2001. Dynamic behavior of phosphatidylinositol turnover and Rho-dependent signaling pathway. *J. Cell Biol.* 153:653–661.

Kikuchi, S., M. Hata, K. Fukumoto, Y. Yamane, T. Matsui, A. Tamura, S. Yone-mura, H. Yamagishi, D. Keppler, Sh. Tsukita, and Sa. Tsukita. 2002. Ra-
Tsukita, S., K. Oishi, N. Sato, J. Sagara, A. Kawai, and Sh. Tsukita. 1994. ERM proteins interact with the cytoplasmic region of intercellular adhesion molecule-3 and is redistributed to the uropod of T lymphocytes during cell polarization. *J. Cell Biol.* 126:1371–1384.

Sjöström, B., and M. Anniko. 1992. Genetically induced inner ear degeneration. A structural and functional study. *Acta Otolaryngol. Suppl.* 493:141–146.

Skowron, J.F., W.M. Bement, and M.S. Mooseker. 1998. Human brush border myosin-I and myosin-Ic expression in human intestine and Caco-2BE cells. *Acta Otolaryngol.* 118:236–244.

Sobin, A., and A. Flock. 1983. Immunohistochemical identification and localization of actin and fimbrin in vestibular hair cells in the normal guinea pig and in a strain of the waltzing guinea pig. *Acta Otolaryngol.* 96:407–412.

Steel, K.P., and C.J. Kros. 2001. A genetic approach to understanding auditory function. *Nat. Genet.* 27:143–149.

Takeuchi, K., N. Sato, H. Kasahara, N. Funayama, A. Nagafuchi, S. Yonemura, S. Tsukita, and Sh. Tsukita. 1994. Perturbation of cell adhesion and microvilli formation by antisense oligonucleotides to ERM family members. *J. Cell Biol.* 125:1371–1384.

Tekin, M., K.S. Armos, and A. Pandya. 2001. Advances in hereditary deafness. *Lancet.* 358:1082–1090.

Tilney, L.G., T. Trotter, D. Reczek, S.M. Kreda, A. Bretscher, R.C. Boucher, J.R. Bartles, and E. Mugnaini. 1999. *Actin* functions in hair cell stereocilia and lacks espins. *J. Cell Biol.* 145:1497–1509.

Turunen, O., T. Wahlström, and A. Väheri. 1994. Ezrin has a COOH-terminal actin-binding site that is conserved in the ezrin protein family. *J. Cell Biol.* 126:1445–1453.

Vreugde, S., A. Erven, C.J. Kros, W. Marcotti, H. Fuchs, K. Kurima, E.R. Willems, T.B. Friedman, A.J. Griffith, R. Balling, et al. 2002. Beethoven, a mouse model for dominant, progressive hearing loss DFNA36. *Nat. Genet.* 30:257–258.

Wada, T., Y. Wakabayashi, S. Takahashi, T. Ushiki, Y. Kikkawa, H. Yoneyama, and R. Kominnami. 2001. A point mutation in a cadherin gene, Cdh23, causes deafness in a novel mutant, Walter mouse xipho. *Biochem. Biophys. Res. Commun.* 283:113–117.

Weil, D., A. El-Amraoui, S. Masmoudi, M. Mustapha, Y. Kikkawa, S. Laine, S. Delmaghani, A. Adamo, S. Nadifi, Z.B. Zina, et al. 2003. Usher syndrome type I G (USH1G) is caused by mutations in the gene encoding SANS, a protein that associates with the USH1C protein, harmonin. *Hum. Mol. Genet.* 12:463–471.

Yonemura, S., S. Tsukita, and Sh. Tsukita. 1995. Direct involvement of ezrin/radixin/moesin turnover: regulatory role for ezrin/radixin/moesin (ERM) proteins in the organization of microvilli in collaboration with activated ERM proteins. *J. Cell Biol.* 145:1497–1509.

Yonemura, S., T. Matsui, Sh. Tsukita, and Sa. Tsukita. 2002. Rho-dependent and -independent activation mechanisms of ezrin/radixin/moesin proteins: an essential role for polyphosphoinositides in vivo. *J. Cell Sci.* 115:2569–2580.

Yun, C.H.C., S. Oh, M. Zizak, D. Steplock, S. Tsao, C.-M. Tse, E.J. Weitman, and M. Donowitz. 1999. ERM proteins bind to a positively charged amino acid cluster in the juxta-membrane cytoplasmic domain of CD44, CD43, and ICAM-2. *J. Cell Biol.* 140:885–895.

Zhu, J. 2002. Transgenic and gene targeting studies of hair cell function in mouse inner ear. *J. Neurobiol.* 53:286–305.