Clustering in Nuclei
from *ab initio* nuclear lattice simulations

Ulf-G. Meißner, Univ. Bonn & FZ Jülich

Supported by DFG, SFB/TR-16
and by DFG, SFB/TR-110
and by EU, I3HP EPOS
and by BMBF 05P12PDFTE
and by HGF VIQCD VH-VI-417
CONTENTS

• Short introduction
• Basics of nuclear lattice simulations
• Results from nuclear lattice simulations
• Summary & outlook
Short introduction
CLUSTERING in NUCLEI

- Introduced theoretically by Wheeler already in 1937:

 John Archibald Wheeler, “Molecular Viewpoints in Nuclear Structure,” Physical Review **52** (1937) 1083

- many works since then...

 ⇒ can we understand this phenomenon from *ab initio* calculations?

 Bijker, Iachello (2014)

 Ikeda, Horiuchi, Freer, Schuck, Zhou, Khan, . . .

 Ebran, Khan, Niksic, Vretenar (2014)

 α-clusters
Basics of nuclear lattice simulations

for an easy intro, see: UGM, Nucl. Phys. News 24 (2014) 11
NUCLEAR LATTICE SIMULATIONS

Frank, Brockmann (1992), Koonin, Müller, Seki, van Kolck (2000), Lee, Schäfer (2004), . . .

Borasoy, Krebs, Lee, UGM, Nucl. Phys. A768 (2006) 179; Borasoy, Epelbaum, Krebs, Lee, UGM, Eur. Phys. J. A31 (2007) 105

• new method to tackle the nuclear many-body problem

• discretize space-time \(V = L_s \times L_s \times L_s \times L_t \):
 nucleons are point-like particles on the sites

• discretized chiral potential w/ pion exchanges
 and contact interactions + Coulomb

 \(\rightarrow \) Epelbaum’s talk

• typical lattice parameters

 \(\Lambda = \frac{\pi}{a} \approx 300 \text{ MeV} \) [UV cutoff]

• strong suppression of sign oscillations due to approximate Wigner SU(4) symmetry

 J. W. Chen, D. Lee and T. Schäfer, Phys. Rev. Lett. 93 (2004) 242302, T. Lähde et al., arXiv:1502.06787

• hybrid Monte Carlo & transfer matrix (similar to LQCD)

 – Ulf-G. Meißner, Clustering in nuclei . . . – Chiral Dynamics 2015, July 2015
all possible configurations are sampled
⇒ clustering emerges *naturally*

[NB: smearing necessary → outlook]
NUCLEAR WAVE FUNCTIONS

• General wave function:

\[\psi_j(\vec{n}) \, , \, j = 1, \ldots, A \]

• States with well-defined momentum (anti-symm.):

\[\frac{L^{-3/2}}{2} \sum_{\vec{m}} \psi_j(\vec{n} + \vec{m}) \exp(i\vec{P} \cdot \vec{m}) \, , \, j = 1, \ldots, A \]

• Insert clusters of nucleons at initial/final states (spread over some time interval)

\[\rightarrow \text{allows for all type of wave functions (shell model, clusters, \ldots)} \]
\[\rightarrow \text{removes directional bias} \]

shell-model type

\[\psi_j(\vec{n}) = \exp[-c\vec{n}^2] \]
\[\psi'_j(\vec{n}) = n_x \exp[-c\vec{n}^2] \]
\[\psi''_j(\vec{n}) = n_y \exp[-c\vec{n}^2] \]
\[\psi'''_j(\vec{n}) = n_z \exp[-c\vec{n}^2] \]

cluster type

\[\psi_j(\vec{n}) = \exp[-c(\vec{n} - \vec{m})^2] \]
\[\psi'_j(\vec{n}) = \exp[-c(\vec{n} - \vec{m}')^2] \]
\[\psi''_j(\vec{n}) = \exp[-c(\vec{n} - \vec{m}'')^2] \]
\[\psi'''_j(\vec{n}) = \exp[-c(\vec{n} - \vec{m}''')^2] \]

• shell-model w.f.s do not have enough 4N correlations \(\sim \langle (N\dagger N)^2 \rangle \)
COMPUTATIONAL EQUIPMENT

- Present = JUQUEEN (BlueGene/Q)

6 Pflops

– Ulf-G. Meißner, Clustering in nuclei ... – Chiral Dynamics 2015, July 2015
Lattice: new results

Epelbaum, Krebs, Lähde, Lee, Luu, UGM, Rupak + post-docs + students
RESULTS from LATTICE NUCLEAR EFT

- Hoyle state in 12C
 - Structure of the Hoyle state
 - Fate of carbon-based life

- Spectrum of 16O
 - Going up the α-chain
 - Rot. symmetry breaking

\[E \text{ [MeV]} \]

$^{2+}$
- $^{2+}$
 - $^{2+}$
- $^{0+}$
 - $^{0+}$
- $^{0+}$
 - $^{0+}$

$^{2+}$
- $^{2+}$
 - $^{2+}$
- $^{0+}$
 - $^{0+}$

$^{0+}$
- $^{0+}$
 - $^{0+}$
- $^{0+}$
 - $^{0+}$

E_{exp}
- E_{exp}
 - E_{exp}
- E_{exp}
 - E_{exp}

E_{Th}
- E_{Th}
 - E_{Th}
- E_{Th}
 - E_{Th}

$\delta m_{1}/m_{1}$
- $\delta m_{1}/m_{1}$
 - $\delta m_{1}/m_{1}$
- $\delta m_{1}/m_{1}$
 - $\delta m_{1}/m_{1}$

- Ulf-G. Meißner, Clustering in nuclei ... – Chiral Dynamics 2015, July 2015
GOING up the ALPHA CHAIN

- Consider the α ladder ^{12}C, ^{16}O, ^{20}Ne, ^{24}Mg, ^{28}Si as $t_{\text{CPU}} \sim A^2$

- Improved “multi-state” technique to extract ground state energies
 - \Rightarrow higher A, better accuracy
 - \Rightarrow overbinding at LO beyond $A = 12$ persists up to NNLO

\[
E = -131.3(5) \quad E = -165.9(9) \quad E = -232(2) \quad E = -308(3)
\]

\[
[-127.62] \quad [-160.64] \quad [-198.26] \quad [-236.54]
\]
REMOVING the OVERBINDING

Lähde, Epelbaum, Krebs, Lee, UGM, Rupak, Phys. Lett. B 732 (2014) 110

- Overbinding is due to four α clusters in close proximity

 \Rightarrow remove this by an effective 4N operator [long term: N3LO]

 \[V^{(4N_{\text{eff}})} = D^{(4N_{\text{eff}})} \sum_{1 \leq (\vec{n}_i - \vec{n}_j)^2 \leq 2} \rho(\vec{n}_1)\rho(\vec{n}_2)\rho(\vec{n}_3)\rho(\vec{n}_4) \]

- fix the coefficient $D^{(4N_{\text{eff}})}$ from the BE of ^{24}Mg

 \Rightarrow excellent description of the ground state energies

A	12	16	20	24	28
Th	$-90.3(2)$	$-131.3(5)$	$-165.9(9)$	$-198(2)$	$-233(3)$
Exp	-92.16	-127.62	-160.64	-198.26	-236.54

\rightarrow ultimately, reduce lattice spacing [interaction more repulsive] & N3LO
GROUND STATE ENERGIES

The graph shows the ground state energies of various isotopes, including 4He, 8Be, 12C, 16O, 20Ne, 24Mg, and 28Si, as a function of energy (E in MeV). The graph includes data from various theoretical models and experimental measurements.

- **Experiment**: Data points for experimental measurements.
- **NNLO**: Data points for the NNLO model.
- **NNLO + 4N_eff**: Data points for the NNLO + 4N_eff model.

The graph highlights the comparison between theoretical predictions and experimental results, with a focus on the energy levels of the isotopes mentioned.

- Ulf-G. Mei\ss\,ner, Clustering in nuclei ... – Chiral Dynamics 2015, July 2015
STRUCTURE of 16O

- Mysterious nucleus, despite modern ab initio calcs

 Hagen et al. (2010), Roth et al. (2011), Hergert et al. (2013)

- Alpha-cluster models since decades, some exp. evidence

 Wheeler (1937), Dennison (1954), Robson (1979), . . ., Freer et al. (2005)

- Spectrum very close to tetrahedral symmetry group

 Bijker & Iachello (2014)

- Relevant configurations in lattice simulations:

 Tetrahedron (A) Square (narrow (B) and wide (C))
DECODING the STRUCTURE of 16O

Epelbaum, Krebs, Lähde, Lee, UGM, Rupak, Phys. Rev. Lett. 112 (2014) 102501

- measure the 4N density, where each of the nucleons is placed at adjacent points

 $\Rightarrow 0^+_1$ ground state: mostly tetrahedral config

 $\Rightarrow 0^+_2$ excited state: mostly square configs

 2^+_1 excited state: rotational excitation of the 0^+_2

 overlap w/ tetrahedral config.

 overlap w/ square configs.
RESULTS for ^{16}O

- **Spectrum:**

	LO	NNLO(2N)	NNLO(3N)	$4N_{\text{eff}}$	Exp.
0_1^+	-147.3(5)	-121.4(5)	-138.8(5)	-131.3(5)	-127.62
0_2^+	-145(2)	-116(2)	-136(2)	-123(2)	-121.57
2_1^+	-145(2)	-116(2)	-136(2)	-123(2)	-120.70

- **LO charge radius:** $r(0_1^+) = 2.3(1)$ fm \(\text{Exp.} \ r(0_1^+) = 2.710(15) \text{ fm}\)

 \Rightarrow compensate for this by rescaling with appropriate units of r/r_{LO}

- **LO EM properties:**

	LO	LO(r-scaled)	Exp.
$Q(2_1^+) \ [e \text{ fm}^2]$	10(2)	15(3)	—
$B(E2, 2_1^+ \to 0_2^+) \ [e^2 \text{ fm}^4]$	22(4)	46(8)	65(7)
$B(E2, 2_1^+ \to 0_1^+) \ [e^2 \text{ fm}^4]$	3.0(7)	6.2(1.6)	7.4(2)
$M(E0, 0_2^+ \to 0_2^+) \ [e \text{ fm}^2]$	2.1(7)	3.0(1.4)	3.6(2)

\Rightarrow gives credit to the interpretation of the 2_1^+ as rotational excitation

- Ulf-G. Meißner, Clustering in nuclei ... – Chiral Dynamics 2015, July 2015
so far: nuclei with $N = Z$, and $A = 4 \times \text{int}$ as these have the least sign problem due to the approximate SU(4) symmetry

$$\langle \text{sign} \rangle = \langle \exp(i\theta) \rangle = \frac{\det M(t_o, t_i, \ldots)}{|\det M(t_o, t_i, \ldots)|}$$

$M(t_o, t_i, \ldots)$ is the transition matrix

- Symmetry-sign extrapolation (SSE) method: control the sign oscillations

$$H_{d_h} = d_h \cdot H_{\text{phys}} + (1 - d_h) \cdot H_{\text{SU}(4)}$$

$$H_{\text{SU}(4)} = \frac{1}{2} C_{\text{SU}(4)} (N^\dagger N)^2$$

\hookrightarrow family of solutions for different SU(4) couplings $C_{\text{SU}(4)}$ that converge on the physical value for $d_h = 1$
RESULTS for 12C

- generate a few more MC data at large N_t using SSE

E_{12} (LO) [MeV]	N_t
-7.0e-5 + SSE	0
-7.0e-5	2
-7.0e-5	4
-7.0e-5	6
-7.0e-5	8
-7.0e-5	10
-7.0e-5	12
-7.0e-5	14
-7.0e-5	16

E_{12} (NLO) [MeV]	N_t
-7.0e-5 + SSE	0
-7.0e-5	2
-7.0e-5	4
-7.0e-5	6
-7.0e-5	8
-7.0e-5	10
-7.0e-5	12
-7.0e-5	14
-7.0e-5	16

E_{12} (EMIB) [MeV]	N_t
-7.0e-5 + SSE	0
-7.0e-5	2
-7.0e-5	4
-7.0e-5	6
-7.0e-5	8
-7.0e-5	10
-7.0e-5	12
-7.0e-5	14
-7.0e-5	16

E_{12} (3NF) [MeV]	N_t
-7.0e-5 + SSE	0
-7.0e-5	2
-7.0e-5	4
-7.0e-5	6
-7.0e-5	8
-7.0e-5	10
-7.0e-5	12
-7.0e-5	14
-7.0e-5	16

- promising results \rightarrow no more exponential deterioration of the MC data
- results w/ small uncertainties for $d_h \geq 0.8$
RESULTS for $A = 6$

- Simulations for ^{6}He and ^{6}Be

⇒ methods works for nuclei with $A \neq Z$

⇒ neutron-rich nuclei can now be systematically explored (larger volumes)
SUMMARY & OUTLOOK

• Nuclear lattice simulations as a new quantum many-body approach
 → clustering emerges naturally, α-cluster nuclei
 → symmetry-sign extrapolation method allows to go to the drip lines
 → holy grail of nuclear astrophysics ($\alpha+^{12}\text{C} \rightarrow ^{16}\text{O}+\gamma$) in reach

• Some on-going activities:
 → improving the forces (N3LO, sph. harmonics) ← Alarcon’s talk
 → systematic studies of α-independence
 ← Klein, Lee, Liu, UGM, PLB747 (2015) 511
 → finite size effects/averaging procedures
 ← Lu, Lähde, Lee, UGM, arXiv:1504.01685
 → scattering cluster wave functions ← Rokash’s talk
 → $ab\ initio$ alpha-alpha scattering ← Elhatisari’s talk
 → and much more ...
