Effect of physical parameters on the drain characteristics of Double gate MOSFET incorporating Quantum Mechanical Effects

Shankaranand Jha¹, Ritesh Kumar² and Santosh Kumar Choudhary³

¹Department of ECE, Malla Reddy Engineering College (A), Maisammaguda, Hyderabad-500100, India
²Department of EEE, SR University, Warangal-506371, India
³Department of ECE, VNR Vignana Jyothi Institute of Engineering and Technology, Hyderabad-500090, India
¹shankaranand_ism@yahoo.co.in

Abstract. Scaling of bulk MOSFETs in nanometre regime has several disadvantages. The electrical behaviour of the devices doesn’t show the anticipated characteristics if scaling is done beyond certain point. But in order to have smaller devices with higher density on chips, it is necessary to avoid short channel effects (SCE) which lead to unexpected electrical features. One of the methods to avoid SCE is to have multi-gate architecture of MOSFET. This paper investigates the behaviour of double-gate MOSFETs with respect to the variation of their physical dimensions. The analyses have been done taking into notice the quantum mechanical effects due to dimensions in nanometre scale. The results obtained highlight how subthreshold and above threshold regions are impacted due to the various physical quantities that have been varied.

1. Introduction

By reducing the dimensions of MOSFETs, more number of components can be incorporated on a VLSI [1, 2] chip to have diversified applications. Adjusting short-channel effects (SCE) is the major issue during scaling down of conventional MOSFETs. There are several ways through which SCE can be lessened while reducing the dimensions of a device. There are many prominent techniques to overcome these shortcomings. Use of strain as reported in [3-5] alleviates SCE and boosts electrical integrity. Similar advantages have been found through the use of junctionless transistors [6-8]. Use of multiple gates has been reported in [9-12]. The core theme of all these methods is to enable gate electric field to be more dominant in the channel region. Proper lithographic techniques are used to enable these methods.
In multi-gate MOSFETs, there is more than one gate and all gates are maintained at the same potential through the application of gate voltage. The role of gate is to govern the electrons in the channel. Due to multi-gate, the channel electrons are better controlled [13] and exhibit superior properties than single gate transistors.

In this work the electrical behaviour of Double-Gate (DG) MOSFET as shown in figure 1 has been examined by varying the physical parameters of the device. The subthreshold characteristics denote the region of MOSFET operation when gate voltage is smaller than the required turn-on voltage. Subthreshold region determines the power consumption of the device when it is supposedly in off state. In the nanometre range, the energy levels redistribute and it impacts the threshold voltage of the given device. In our calculations we have taken into this consideration which is known as quantum mechanical effect (QM) [14].

2. Theoretical details

The potential in the channel and its charges are related through the Poisson expression written as
\[\frac{d^2 \phi}{dx^2} = \frac{q}{\varepsilon_{Si}} n_i e^{\frac{\phi - V}{kT}} \]
where \(\phi \) is the potential in the channel, \(q \) is charge, \(\varepsilon_{Si} \) is the silicon permittivity, \(n_i \) is the doping concentration, \(V \) is the quasi-Fermi potential, and \(kT/q \) is the thermal potential. The solution of this equation can be found using boundary conditions [15]

\[\frac{q(V_g - \Delta \phi - V)}{2kT} - \ln \left(\frac{2}{t_{Si}} \sqrt{\frac{2e_{Si}kT}{q^2 n_i}} \right) = \ln \beta - \ln(\cos \beta) + \frac{2e_{Si} t_{ox}}{e_{ox} t_{Si}} \beta \tan \beta \]

(1)

The drain current expression is given as [16]

\[I_{ds} = \mu \frac{W}{L} \int_{0}^{V_d} Q(V) dV \]

(2)

The current in the linear, saturation and subthreshold regions are given as [15]

\[I_{ds, Lin} = 2\mu C_{ox} \frac{W}{L} \left(V_g - V_t - \frac{V_{ds}}{2} \right) V_{ds} \]

(3)

\[I_{ds, Sat} = \mu C_{ox} \frac{W}{L} \left(V_g - V_t \right)^2 - \frac{8r_k^2 T^2}{q^2} e^{\frac{V_{ds} - V_t - V_{th}}{kT}} \]

(4)
\[I_{ds,\text{Sub}} = \mu \frac{W}{L} kT n_i^* e^{q(V_g - \Delta \phi) / kT} \left(1 - e^{-q(V_g) / kT} \right) \]

(5)

where \(\mu \) is the mobility, \(C_{ox} \) gate oxide capacitance, \(W \) is channel width, \(L \) is channel length, \(V_g \) is applied gate voltage, \(V_{ds} \) is drain to source applied voltage and threshold voltage \(V_t \) is expressed as [15]

\[V_t = \Delta \phi + \frac{2kT}{q} \ln \left[\frac{2}{t_{Si}} \left(\frac{2e_S^0 kT}{q^2 n_i^*} \right) + \frac{2kT}{q} \ln \left(q \frac{(V_g - V_0)}{4rT} \right) \right] \]

(6)

where \(\Delta \phi = \phi_m - \phi_s \), the difference of metal and semiconductor work function, \(t_{Si} \) is channel thickness, and \(r = \varepsilon_{Si} t_{Si} / \varepsilon_{ox} t_{Si} \). Due to QM effect, the increase in threshold voltage is given as [17]

\[\Delta V_{th} = \left(\frac{h^2}{4q m^* t_{Si}^2} \right) \left(\Delta t_{Si} / t_{Si} \right) \]

where \(h \) denotes Planks constant and additional symbols have traditional implications.

3. Results and Discussion

The calculation results are presented in Fig. 2–7. The channel length used is 1 \(\mu \)m and oxide thickness as 1.5 nm for all calculations otherwise it has been stated.

Figure 2. Drain current versus gate to source voltage for different oxide thickness.

Fig. 2 shows the variations of current with respect to applied gate voltage for different gate oxide thickness. The oxide thickness has been varied from 1.5 nm to 4.5 nm. The effect of oxide thickness variation is negligible in subthreshold region while it considerably affects the above threshold region. In Fig. 3, silicon channel thickness has been changed to get the current variation. Here \(t_{Si} \) affects subthreshold characteristics more than above threshold and it is as per the observations in [15]. The channel thickness near 5 nm contributes more to the elevation in threshold voltage arising due to QM effect.
The effect of change of channel width on the drain current is shown in Fig. 4. Current increases with width W. In this case, W has relatively more effect on above threshold area. Drain current can be increased by increasing W, but then it increases the size of the device.

The outcome of altering the doping concentration can be seen from Fig. 5. Increase in doping raises the work function of silicon and in subthreshold region current increases.

By changing the metal work function, desired threshold voltage can be obtained and accordingly the drain current is also affected. It can be observed from figure 6 that metal work function affects both
the regions of MOSFET operation. Threshold voltage decreases if metal work function is decreased. But one of the disadvantages is that smaller metal work function increases subthreshold current and hence the leakage current. Leakage current must be kept at minimum level. From this graph the optimum value of metal work function can be inferred.

![Figure 6](image)

Figure 6. Drain current versus gate to source voltage for different metal work function.

The effect of mobility on current can be visualized from Fig. 7. Mobility shows more impact in the above threshold area. Therefore techniques that increase mobility may be incorporated in DG MOSFETs to increase drain current.

![Figure 7](image)

Figure 7. Drain current versus gate to source voltage for different mobility.

4. **Conclusion**

In this work the sensitivity of drain current of DG MOSFET for device dimension changes have been explored. It may be concluded that constraints exist for the selection of proper parameter so as to get maximum current and minimum dimension. Subthreshold current determines the off-state of the device and therefore it should be as low as possible. In the on-state, i.e., when the gate voltage is greater than the threshold voltage, larger current is expected. Selection of metal gate work function also plays very important role in the optimum performance of the device. As a future work, the effect of variation of channel length would be explored.

5. **References**

[1] Thota M and Gunda M 2018 Design of low power and area efficient 64 bits Shift Register using pulsed latches *Advances in Computational Sciences and Technology* **11** pp 555–60
[2] Ravichander J and Mounika G 2018 Enhanced VLSI Architecture of Partial Product Generator using Redundant Binary Modified Partial Product Generator Method International Journal of Emerging Technologies in Engineering Research 6 pp 102–7

[3] Kumar S, Kumari A and Das M K 2016 Development of a simulator for analyzing some performance parameters of nanoscale strained silicon MOSFET-based CMOS inverters Microelectronics Journal 55 pp 8-18

[4] Hayt J L, Nayfeh H M, Eguchi S, Aberg I, Xia G, Drake T, Fitzgerald E A and Antoniadis D A 2002 Strained silicon MOSFET technology IEEE International Electron Devices Meeting pp 23-26

[5] Muchahary D, Maity S, Metya S K and Basumatary B 2020 A simulation approach to improve photocurrent through a double-layer of the emitter in a-Si1-xCxsSi heterojunction solar cell Superlattices and Microstructures 146 106651

[6] Lee C W, Borne A, Ferain I, Afzalian A, Yan R, Akhavan N D, Razavi P and Colinge J P 2010 High-temperature performance of silicon junctionless MOSFETs IEEE Transactions on Electron Devices 57 pp 620-625

[7] Chanda M, De S and Sarkar C K 2015 Modeling of characteristic parameters for nano-scale junctionless double gate MOSFET considering quantum mechanical effect Journal of Computational Electronics 14 pp 262-269

[8] Saha J, Kumar S and Jha S 2015 A comparative analysis of some multi-gate junctionless transistors Proc. 6th International Conference on Computers and Devices for Communication pp. 1-4

[9] Colinge J P 2007 Multi-gate soi mosfets Microelectronic Engineering 84 pp.2071-76

[10] Kumar S and Jha S 2013 Impact of elliptical cross-section on the propagation delay of multi-channel gate-all-around MOSFET based inverters Microelectronics Journal 44 pp 844-851

[11] Jha S and Choudhary S K 2020 A comparative analysis of the short-channel effects of double-gate, tri-gate and gate-all-around MOSFETs International Journal of Nanoparticles 12 pp 112-121

[12] Jha S and Choudhary S K 2018 Impact of Device Parameters on the Threshold Voltage of Double-Gate, Tri-Gate and Gate-All-Around MOSFETs Proc. IEEE Electron Devices Kolkata Conference pp 596-599

[13] Ferain I, Colinge C A and Colinge J P 2011 Multigate transistors as the future of classical metal–oxide–semiconductor field-effect transistors Nature 479 pp 310-316

[14] Omura Y, Horiguchi S, Tabe M and Kishi K 1993 Quantum-mechanical effects on the threshold voltage of ultrathin-SOI nMOSFETs IEEE Electron Device Letters 14 pp 569-571

[15] Taur Y, Liang X, Wang W and Lu H 2004 A continuous, analytic drain-current model for DG MOSFETs IEEE Electron Device Letters 25 pp 107-109

[16] Pao H C and Sah C T 1966 Effects of diffusion current on characteristics of metal-oxide (insulator)-semiconductor transistors Solid-State Electronics 9 pp 927-937

[17] Chen Q, Harrell E M and Meindl J D 2003 A physical short-channel threshold voltage model for undoped symmetric double-gate MOSFETs IEEE Transactions on electron devices 50 pp 1631-37