Anti-hyperlipidemia of garlic by reducing the level of total cholesterol and low-density lipoprotein
A meta-analysis
Yue-E Sun, PhD, Weidong Wang, PhD*, Jie Qin, MS

Abstract
Background: This study aimed to understand the impact of garlic on improving blood lipids using a meta-analysis.

Methods: A literature search of the PubMed, EMBASE, and Cochrane Library databases was performed using keywords such as “garlic” and “hypercholesterolemia,” and the deadline “July 14 (th), 2017.” After extracting relevant details, each selected literature was evaluated for quality according to the quality evaluation criteria of bias risk recommended by Cochrane Collaboration recommendations and heterogeneity tests were performed. Standardized mean difference (SMD) and 95% confidence interval (CI) were evaluated using R 3.12 software. The publication bias was assessed using Egger method.

Results: A total of 14 eligible papers published from 1981 to 2016 were included. The quality of the literatures was of moderate to high qualities. The values of TC (SMD = −1.26, 95% CI, −1.86 to −0.66), low-density lipoprotein (LDL) (SMD = −1.07, 95% CI, −1.67 to −0.47), and high-density lipoprotein (HDL) (SMD = 0.50, 95% CI, 0.06–0.94) after taking garlic in the experimental group and the control group have statistical significance, while there was no significant difference of TG in the 2 groups (SMD = −0.16, 95% CI, −0.87–0.55). However, the result of HDL was reversed when removed some of the literatures. No significant publication bias among the eligible studies with values of TC (P = .0625), LDL (P = .0770), HDL (P = .2293), and TG (P = .3436).

Conclusion: Garlic can reduce the level of TC and LDL instead of HDL and TG, indicating the ability of anti-hyperlipidemia.

Abbreviations: BG = aged black garlic, BMI = body mass index, CI = confidence interval, CVD = cardiovascular disease, GO = garlic oil, GP = garlic powder, HDL = high-density lipoprotein, HMG-CoA = 3-hydroxy-3-methylglutaryl-coenzyme A, LDL = low-density lipoprotein, PRISMA = Preferred Reporting Items for Systematic Reviews and Meta-Analyses, SMD = standardized mean difference, TC = total cholesterol, TG = triglyceride.

Keywords: cardiovascular disease, garlic, high-density lipoprotein, hypercholesterolemia, low-density lipoprotein, total cholesterol, triglyceride

High Lights
1. Garlic had anti-hyperlipidemia ability.
2. Intake of garlic induced the level of TC and LDL.
3. The level of TG in serum had no obvious difference with and without garlic treatment.

1. Introduction
Recently, cardiovascular disease (CVD), a complex and multifactorial disease, remains one of the serious diseases that threaten human health worldwide with increasing incidence and mortality year by year.[1]Unfortunately, 17 million people die to CVD each year and it is estimated to reach 24.8 million in 2030 in the world.[2] The most important risk factors of CVD are hypertension, high cholesterol, alcohol intake, and tobacco usage, etc. according to the World Health Organization.
participants in the experimental group was hyperlipidemia.

2.1. Data sources

The related clinical researches were obtained from the electronic databases PubMed (http://www.ncbi.nlm.nih.gov/pubmed/), Embase (http://www.embase.com), and Cochrane Library (http://www.cochranelibrary.com) with garlic (“ALLIUM SATIVUM” OR “Garlic”) and hypercholesterolemia (“Hypercholesterolemia” OR “Hypercholesterolemia” OR “Hypercholesterolemic” OR “Hyperlipidemic” OR “Hyperlipidaemia” OR “Hyperlipidemia” OR “Dyslipidemia” OR “Dyslipidemias”) as searched keywords; and a deadline of “July 14 (th); 2017.”

2.2. Eligibility criteria

Articles meeting the following criteria were selected (based on the PICOS principle): published English literatures to study the efficacy of garlic in the treatment of hypercholesterolemia (P); participants in the experimental group was hyperlipidemia patients treated with garlic (I) and that in the control group was hyperlipidemia patients with placebo (C) treatment; the outcomes of the study included the initial values as well as the values after treatment of TC (serum total cholesterol), LDL (low density lipoprotein), HDL (high density lipoprotein), and TG (triglyceride), and the amount of changes was included (O); the study type was randomized parallel study (study design: parallel; crossover study: excluded) (S). The following articles were removed: studies with incomplete data or can't be used for statistical analysis; literatures such as reviews, reports, comments, and letters. Besides, if multiple literatures were repeatedly published or multiple literatures studied based on the same population data, only the latest research or the research with complete information was included.

2.3. Data extraction and quality evaluation of literature

Data were independently extracted from the included literatures by 2 reviewers and included details such as: first author, published year, area of study, year of study, the type and dose of garlic, follow-up time, number as well as general demographic data (e.g., sex ratio, age composition, body mass index [BMI], etc.) of inclusion in the garlic group and the control group; the initial values as well as the values after treatment of TC, LDL, HDL, and TG in the garlic group and the control group.

The aggregate quality of the included studies was evaluated according to the quality evaluation criteria of bias risk, recommended by Cochrane Collaboration recommendations.[18] A third reviewer should join in and discuss with the other 2 reviewers to get an agreement if there was disagreement in the process of data extraction and quality evaluation.

2.4. Statistical analysis

The meta-analysis of direct comparison was conducted using R 3.12 software (R Foundation for Statistical Computing, Beijing, China, “meta” package), SMD (standardized mean difference), and 95% confidence interval (CI) were used to show the effect index of quantitative data. The heterogeneity test between studies was assessed based on the Q test[19] and the I² statistic, and P < 0.05 or I² > 50% was used as the heterogeneity threshold. The random effect model was chosen when they had significant heterogeneity; otherwise, the fixed-effect model was chosen to pool the data.[20] The publication bias was assessed using Egger method. Finally, the sensitivity analysis was performed by examining the effect of this document on the overall SMD value by ignoring a document each time.

3. Results

3.1. Characteristics of the selected literature

A total of 956 articles (243 articles came from PubMed database, 645 articles came from Embase database, 68 ones came from Cochrane Library) were identified based on the literature search criteria. Among them, 207 articles were repeated, and 618 articles were irrelevant after reading title and abstract. In addition, 117 articles (including 15 letters, 11 case series/report, 28 reviews, 31 animal study, 13 descriptive studies, 12 non-RCT, and 7 reduplicative studies) of the remaining 131 articles were removed by reviewing full text. Finally, 14 eligible papers which were published from 1981 to 2016 were included (Fig. 1).[5,6,16,21–31]
Table 1 Characteristics of the included literatures.

Author	Year	Study location	Type	Dose	Duration	Group	N	Sex (M/F)	Age	BMI/Body weight
Adler AJ	1997	Canada	GP	900mg/d	12 w	Garlic	12	12 (M)	45.9±12.6	27.2±3.0
Ahmad Alobaidi AH	2014	Iraq	GO	500mg/d	4 w	Garlic	150	66/84	56.9±5.25	25.1±5.9
Ashraf R	2005	Pakistan	GP	300mg/d	12 w	Garlic	35	15/20	60.5±0.4	62.2±10.45kg
Aslani N	2016	Iran	Garlic	20 g/d	8 w	Garlic	27	14/13	50.5±4.8	63.9±80kg
Bordia A	1981	India	GO	15mg/d	10m	Garlic	28	16/12	43.2±6.2	27.2±3.2
Gardner CDa	2007	USA	Others	4g/d	6 m	Raw garlic	49	22/27	49±9	25±3
Jain AK	1993	USA	GP	900mg/d	12 w	Garlic	20	11/9	48±15	78±17kg
Jung ES	2014	Korea	ABG	6g/d	12 w	Garlic	30	8/22	50.5±9.9	63.5±9.96kg
Kannar D	2001	Australia	GP	880mg/d	12 w	Garlic	22	12/10	50.2±6.4	25.4±2.6
Peleg A	2003	Israel	GP	22.4mg/d	16 w	Garlic	18	8/10	52.4±7.5	69.3±11.8kg
Satthivapree P	2003	Thailand	Others	333mg/d	12 w	Garlic	70	23/47	47.6±6.6	24.3±3.3
Sobrenin LA	2008	Russia	GP	600mg/d	12 w	Garlic	23	42 (M)	57.2±2.0	26.6±0.6
Sobrenin LA	2010	Russia	GP	300mg/d	12 m	Garlic	26	14/12	56.7±1.8	27.0±0.9
Superko HR	2000	USA	GP	900mg/d	12 w	Garlic	29	NA	53±107	163±30lbs

Garlic type: a = raw garlic group, ABG = aged black garlic, BMI = body mass index, GO = garlic oil, GP = garlic powder, M/F = Male/Female.
Author	Year	Group	N	TC	LDL	HDL	Triglyceride		
				Base, mg/dL	Posttreatment, mg/dL	Base, mg/dL	Posttreatment, mg/dL	Base, mg/dL	Posttreatment, mg/dL
Adler AJ	1997	Garlic	12	6.54 ± 0.25a	5.79 ± 0.23a	3.31 ± 0.25a	3.17 ± 0.04a	1.26 ± 0.06a	1.29 ± 0.08a
		Placebo	11	6.46 ± 0.26a	6.49 ± 0.31a	3.19 ± 0.28a	3.15 ± 0.10a	1.20 ± 0.01a	1.26 ± 0.06a
Ahmad in Hobaidi A H	2014	Garlic	150	217 ± 46	170 ± 34.7	134 ± 32.6	110 ± 35.4	38 ± 13.5	42 ± 13.7
		Placebo	150	213 ± 41.5	196 ± 35.4	134 ± 33.6	111 ± 35.4	38 ± 13.5	42 ± 13.7
Ashraf R	2005	Garlic	35	228.23 ± 4.54	200.77 ± 5.07	163.57 ± 4.66	133.42 ± 6.41	38 ± 1.73	41.35 ± 1.31
		Placebo	33	220.45 ± 2.25	218.34 ± 3.05	167 ± 3.37	164.32 ± 3.56	36.58 ± 3.45	37.25 ± 3.86
Astani N	2016	Garlic	27	234.4 ± 26.5	215.3 ± 23	119.7 ± 19.0	127.2 ± 22.1	41.4 ± 6.5	41.3 ± 7.8
		Placebo	28	239 ± 18.8	243 ± 14.2	119.2 ± 19.0	127.2 ± 22.1	41.4 ± 6.5	41.3 ± 7.8
Bordia A	1981	Garlic	20	238.4 ± 22.7	228.0 ± 13.5	NA	NA	17.0 ± 1.1	30.0 ± 2.6
		Placebo	62	260.1 ± 25.1	262.4 ± 19.0	NA	NA	17.0 ± 1.1	30.0 ± 2.6
Gardner CDa	2007	Raw garlic	49	236 ± 18	NA	151 ± 15	142 ± 22	58 ± 15	58 ± 14
		Placebo	48	228 ± 21	NA	150 ± 14	133 ± 21	54 ± 14	52 ± 13
Jain AK	1993	Garlic	20	262 ± 35	247 ± 40	188 ± 37	168 ± 43	47 ± 12	46 ± 13
		Placebo	22	276 ± 34	274 ± 29	191 ± 34	185 ± 25	49 ± 14	50 ± 17
Jung ES	2014	Garlic	30	241.07 ± 23.97	233.50 ± 24.63	150.64 ± 14.12	155.75 ± 21.94	46.86 ± 9.40	50.36 ± 8.85
		Placebo	30	228.93 ± 23.17	227.33 ± 22.51	150.11 ± 15.65	156.33 ± 22.83	50.81 ± 9.19	50.46 ± 9.76
Kannar D	2001	Garlic	22	7.5 ± 0.8a	7.4 ± 1.1a	5.3 ± 0.9a	5.4 ± 1.1a	1.34 ± 0.34a	1.33 ± 0.39a
		Placebo	24	7.6 ± 0.9a	7.1 ± 0.9a	5.3 ± 0.9a	4.9 ± 0.9a	1.35 ± 0.49a	1.26 ± 0.47a
Pelig A	2003	Garlic	18	262.6 ± 25.3	259.6 ± 36.8	172.7 ± 18.8	171.0 ± 28.3	54.0 ± 11.9	49.8 ± 13.3
		Placebo	21	275.4 ± 23.6	267 ± 29.6	186.6 ± 16.8	182.0 ± 23.5	54.9 ± 15.8	54.0 ± 11.9
Sathipawee P	2003	Garlic	70	6.65 ± 0.89a	6.59 ± 0.93a	4.52 ± 0.86a	4.52 ± 0.77a	1.50 ± 0.37a	1.45 ± 0.26a
		Placebo	66	6.85 ± 0.83a	6.80 ± 0.90a	4.60 ± 0.90a	4.65 ± 0.83a	1.55 ± 0.26a	1.47 ± 0.26a
Sobinina LA	2008	Garlic	23	6.9 ± 0.20a	6.41 ± 0.22a	5.00 ± 0.17a	4.37 ± 0.20a	1.06 ± 0.07a	1.17 ± 0.09a
		Placebo	19	7.04 ± 0.18a	7.24 ± 0.18a	4.93 ± 0.18a	5.07 ± 0.18a	1.20 ± 0.09a	1.16 ± 0.10a
Sobinina LA	2010	Garlic	26	269.2 ± 11.5	235.7 ± 8.4	185.9 ± 9.3	156.8 ± 7.8	50.9 ± 3.6	51.5 ± 3.1
		Placebo	25	252.5 ± 9.1	242.0 ± 6.9	173 ± 9.1	169.9 ± 7.2	48.7 ± 2.5	50.7 ± 2.2
Superko HR	2000	Garlic	25	250 ± 29	246 ± 23	169 ± 25	167 ± 25	51.3 ± 11.5	51.2 ± 10.1
		Placebo	25	239 ± 23	246 ± 22	162 ± 18	159 ± 19	51.9 ± 12.3	52.1 ± 11.0

a = mmol/L, HDL = high density lipoprotein, LDL = low density lipoprotein, TC = serum total cholesterol, TG = triglyceride.
3.4. Sensitivity analysis

The sensitivity analysis results revealed that any of the literature can’t change the results of TC, LDL, and TG, indicating that the results of TC, LDL, and TG were stable. However, the result of HDL was reversed when removed some of the literatures (Ashraf[23] and Bordia[24]).

4. Discussion

In order to evaluate the reliability of previous studies, a meta-analysis evaluating the hypolipidemic effect of garlic was conducted in this study. Our finding revealed that the values of TC, LDL, and HDL after taking garlic in the experimental group and the control group have statistical significance. However, there was no significant difference of TG in the 2 groups.

Garlic is gained substantial interest by many researchers because of the its impact on lipid levels.[32,33] Garlic is discovered has multiple useful cardiovascular effects including reduction in cholesterol and TG, lowering of blood pressure, and enhancement of fibrinolytic activity.[34] Many studies have demonstrated that different extracts of garlic can alone lower the level of serum TC, LDL, and TG in humans and rodents.[35,36] Similarly, Maha et al[37] have revealed that the level of plasma TC and LDL-C can be decreased by adding 8% raw garlic into the diet of rats. In 1993, Warshafsky et al[38] have proved that intake of garlic can reduce the cholesterol level by about 10%. Besides, combination of lemon juice and garlic obviously decreased serum TC, LDL-C, and blood pressure.[6] Nevertheless, someone have indicated that garlic powder doesn’t reduce cholesterol levels, which may due to the loss of active compound(s) during processing.[39] Garlic may decrease the absorption of cholesterol, and the synthesis of cholesterol and fatty acid, and thereby reduces the level of cholesterol.[40] The human enzymes required in cholesterol biosynthesis such as squalene monooxygenase and HMG-CoA (3-hydroxy-3-methylglutaryl-coenzyme A) reductase can be inhibited by garlic and various constituents.[41–45] Garlic may decrease the level of LDL-C by reduction of hepatic cholesterol 7α-hydroxylase, HMG-CoA reductase, pentose-phosphate pathway activities,[46] enhancement of bile acid excretion, microsomal triglyceride transfer protein,[47] cholesteryl ester transfer protein activity,[48] bile acid excretion,[38] and prohibiting hepatic fatty acid synthesis,[49] which was conducted by allicin and/or other components in garlic.[51] Our finding showed the significant differences of TC, LDL, and HDL between the experimental group and the control group, nevertheless, the level of LG was not obviously different. Our results might suggest that the ability of garlic to lower cholesterol and LDL was better than that to lower TG.

Based on the heterogeneity test results, all results including TC, LDL, HDL, and TG were pooled using random model indicating the exist of significant heterogeneity. The appearance of heterogeneity may be due to the following reasons: garlic types were different between different articles, the patients in studies published by Ahmad Alobaidi[16] and Bordia[24] were treated via garlic oil, and that in the study of Jung et al[5] were given via aged black garlic; the dose and duration were dissimilar between different articles, indicating the dose and duration can affect the result of anti-hyperlipidemia; altered detected method might be the influencing factor; the unit of BMI/body weight was dissimilar, Ashraf,[23] Jain et al,[21] Jung et al,[5] and Peleg et al[28] evaluated the physical quality via body weight, while others evaluated that by BMI, thus, it is difficult to compare the physical quality, suggesting physical quality might also affect the results. Besides, in the present study, when removed the literatures published by Ashraf[23] and Bordia,[24] the result of HDL was reversed. The reason might be that garlic increased the level of HDL, and the participants with type 2 diabetes and coronary heart disease were enrolled in the two studies.

Figure 2. Quality assessments of the included studies. A. Sensitivity and specificity of the included studies. B. Bias risk of the included studies. “+”: low risk of bias; “-”: high risk of bias, and “?”: unclear risk of bias.
Figure 3. Comparison of TC value after garlic treatment between the experimental group and the control group. TC = serum total cholesterol.

Study	Experimental Total Mean SD	Control Total Mean SD	Standardised mean difference SMD 95%-CI (W[fixed]) W(random)
Adler AJ 1997	12 5.79 0.23	11 6.49 0.31	-2.49 [-3.63; -1.35] 1.5% 6.5%
Ahmad Aloabaidi AH 2014	150 176.00 34.70	150 196.60 35.40	-0.64 [-0.86; -0.41] 34.8% 8.4%
Ashraf R 2005	35 200.77 5.07	33 218.34 3.05	-4.12 [-4.96; -3.26] 2.6% 7.3%
Aslam N 2016	27 215.30 23.00	28 243.10 14.20	-1.44 [-2.04; -0.84] 5.3% 7.9%
Bordia A 1987	20 228.00 13.50	62 282.40 18.00	-3.16 [-3.97; -2.36] 3.8% 7.8%
Jan AK 1993	20 247.00 40.00	22 274.00 29.00	-0.76 [-1.39; -0.13] 4.7% 7.8%
Jung ES 2014	30 233.50 24.63	30 227.33 32.51	0.21 [-0.30; 0.72] 7.3% 8.0%
Kannar D 2001	22 7.40 1.10	24 7.10 0.90	-0.29 [-0.26; 0.68] 5.5% 7.9%
Peleg A 2003	18 259.60 38.60	21 267.70 29.60	-0.23 [-0.87; 0.40] 4.7% 7.8%
Sathippawee P 2003	70 6.50 0.93	66 6.80 0.90	-0.23 [-0.57; 0.11] 16.5% 8.3%
Sobenin LA 2006	23 6.41 0.22	19 7.24 0.18	-4.01 [-5.10; -2.92] 1.6% 6.7%
Sobenin LA 2010	26 235.70 6.40	25 242.00 6.50	-0.81 [-1.36; -0.23] 5.7% 7.9%
Superko HR 2000	25 248.00 23.00	25 248.00 22.00	0.00 [-0.55; 0.55] 6.1% 7.9%

Fixed effect model 478 516 -0.72 [-0.86; -0.59] 100% --
Random effects model -1.26 [-1.86; -0.66] -- 100%

Heterogeneity: I² [squared]=64.0%, tsq [squared]=1.192, p=0.0001

Figure 4. Comparison of LDL value after garlic treatment between the experimental group and the control group. LDL = low density lipoprotein.

Study	Experimental Total Mean SD	Control Total Mean SD	Standardised mean difference SMD 95%-CI (W[fixed]) W(random)
Adler AJ 1997	12 3.77 0.24	11 4.26 0.31	-1.71 [-2.70; -0.73] 1.8% 7.0%
Ahmad Aloabaidi AH 2014	150 98.30 30.13	150 119.10 35.40	-0.63 [-0.86; -0.40] 32.8% 8.5%
Ashraf R 2005	35 133.42 4.61	33 164.30 3.56	-7.38 [-8.75; -6.02] 0.9% 5.9%
Aslam N 2016	27 105.10 23.00	28 127.20 22.20	-0.97 [-1.53; -0.41] 5.6% 8.0%
Gardiner CDA 2007	49 142.00 22.00	48 133.00 21.00	0.42 [0.01; 0.82] 10.9% 8.2%
Jan AK 1993	20 166.00 43.00	22 185.00 25.00	-0.46 [-1.10; 0.13] 4.7% 7.9%
Jung ES 2014	30 155.75 21.84	30 163.33 29.83	-0.02 [-0.53; 0.48] 6.9% 8.1%
Kannar D 2001	22 5.40 1.10	24 4.90 0.90	-0.49 [-0.10; 1.08] 5.1% 7.9%
Peleg A 2003	18 171.00 28.30	21 182.00 23.50	-0.42 [-1.05; 0.22] 4.4% 7.8%
Sathippawee P 2003	70 4.52 0.77	66 4.65 0.63	-0.16 [-0.90; 0.63] 15.6% 8.3%
Sobenin LA 2008	23 4.37 0.20	19 5.07 0.16	-3.75 [-4.70; -2.71] 1.6% 6.8%
Sobenin LA 2010	28 155.60 7.80	25 159.00 7.20	-1.87 [-2.54; -1.21] 4.0% 7.7%
Superko HR 2000	25 157.00 25.00	25 159.00 19.00	0.35 [-0.20; 0.91] 5.7% 8.0%

Fixed effect model 507 502 -0.48 [-0.61; -0.34] 100% --
Random effects model -1.07 [-1.67; -0.47] -- 100%

Heterogeneity: I² [squared]=64.2%, tsq [squared]=1.081, p=0.0001

Figure 5. Comparison of HDL value after garlic treatment between the experimental group and the control group. HDL = high density lipoprotein.
However, this research had some limitations as following: this study did not adjust for covariates, and no further conduct subgroup analysis due to the incomplete data of some studies; the reason why specific heterogeneity exit was not determined; the results of HDL value were unstable due to the reverse finding after removed some of the articles.

In conclusion, this study using a meta-analysis demonstrated that garlic can reduce the level of TC and LDL instead of HDL after removed some of the articles.

```latex
\begin{table}
\centering
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline
\textbf{Variable} & \textbf{Sample size} & \textbf{Test of association} & \textbf{Test of heterogeneity} & \textbf{Egger's test}\tabularnewline
& & \textbf{K} & \textbf{Cases} & \textbf{Control} & \textbf{SMD (95\% CI)} & \textbf{Z} & \textbf{P} & \textbf{Q} & \textbf{P} & \textbf{t} & \textbf{P}\tabularnewline
\hline
TC & 13 & 13 & 20 & -1.2575 [-1.8582; -0.6568] & <.0001 & Random & 198.43 & <.001 & 94.0 & 2.0722 & .0625\tabularnewline
LDL & 13 & 507 & 502 & -1.0705 [-1.6669; -0.4741] & -3.5178 & .0004 & Random & 208.50 & <.001 & 94.2 & 1.9511 & .0770\tabularnewline
HDL & 14 & 527 & 564 & 0.4986 [0.0579; 0.9394] & 2.2172 & .0266 & Random & 146.16 & <.001 & 91.1 & 1.2666 & .2293\tabularnewline
TG & 13 & 507 & 502 & -0.1616 [-0.8708; 0.5477] & -0.4465 & .6553 & Random & 295.84 & <.001 & 95.9 & 0.8989 & .3436\tabularnewline
\hline
\end{tabular}
\caption{Results of meta-analysis.}
\end{table}
```

P < .05 is considered statistically significant; OR = odds ratio; CI = confidence interval; K = number of studies combined.

1 Random-effects model was used when the P for heterogeneity test < .05, otherwise the fixed-effect model was used.

2 P < .05 is considered statistically significant for Q statistics.

3 Egger’s test to evaluate publication bias.

Author contributions

Conceptualization: Weidong Wang, Yue-E Sun.
Data curation: Jie Qin.
Formal analysis: Jie Qin.
Writing – original draft: Yue-E Sun.
Writing – review and editing: Weidong Wang.

References

[1] Meves H, Nagy K. Cardiovascular disease in Europe 2014: epidemiological update. Eur Heart J 2014;35:2940–9.
[2] Eastrich R, Ros E, Salas-Salvado J, et al. Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med 2013;368:1279–90.
[3] Wood D, Joint European Societies Task F. Established and emerging cardiovascular risk factors. Am Heart J 2001;141(2 Suppl):S49–57.
[4] Miller M. Niacin as a component of combination therapy for dyslipidemia. Mayo Clin Proc 2003;78:73–42.
[5] Jung ES, Park SH, Choi EK, et al. Reduction of blood lipid parameters by a 12-wk supplementation of aged black garlic: a randomized controlled trial. Nutrition 2014;30:1034–9.
[6] Negar A, Hasan EM, Ghomareza A, et al. Effect of garlic and lemon juice mixture on lipid profile and some cardiovascular risk factors in people 30–60 years old with moderate hyperlipidemia: a randomized clinical trial. Int J Prev Med 2016;7:95.
[7] Bayan L, Koulivand PH, Gorji A. Garlic: a review of potential therapeutic effects. Avicenna J Phytotherapy 2014;4:1–4.
[8] Colín AL. The antioxidant mechanisms underlying the aged garlic extract- and S-allylcysteine-induced protection. Oxid Med Cell Longevity 2012;2012:907162.
[9] Aviello G, Abenavoli L, Borrelli F, et al. Garlic: empiricism or science? Nat Prod Commun 2009;4:1763–6.
[10] Karstouli T, Hirata K, Ishikawa H, et al. Significance of garlic and its constituents in cancer and cardiovascular disease. J Am Acad Dermatol 2006;56:S1–2.
[11] Gardner CD, Chatterjee LM, Carlson JJ. The effect of a garlic preparation on plasma lipid levels in moderately hypercholesterolemic adults. Atherosclerosis 2001;154:213–20.
[12] Ziaei S, Hantoshzadeh S, Rezasoltani P, et al. The effect of garlic tablet on plasma lipids and platelet aggregation in nulliparous pregnant at high risk of preeclampsia. Eur J Obstet Gynecol Reprod Biol 2001;99:201–6.
[13] Iciek M, Kwiecien N, Wlodek L. Biological properties of garlic and garlic containing sulfur and selenium compounds. Environ Mol Mutagen 2010;50:42–65.
[14] Elbayoumy K, Sinha R, Pinto JT, et al. Cancer chemoprevention by garlic and garlic-containing sulfur and selenium compounds. J Nutr 2006;136 (3 Suppl):864S–95.
[15] Ried K, Tobi N, Falck P. Effect of garlic on serum lipids: an updated meta-analysis. Nutrition reviews 2013;71:282–99.
[16] Ahmad Alboadi AH. Effect of Nigella sativa and Allium sativum coadministered with simvastatin in dyslipidemia patients: a prospective,
randomized, double-blind trial. Antinflamm Antiallery Agents Med Chem 2014;13:68–74.

[17] Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med 2009;6(6):e1000100.

[18] Higgins JP, Green S. Cochrane Handbook for Systematic Reviews of Interventions. UK: Wiley Online Library, John Wiley & Sons, Ltd; 2008.

[19] Lau J, Ioannidis JP, Schmid CH. Quantitative synthesis in systematic reviews. Ann Intern Med 1997;127:820–6.

[20] Feng R-N, Zhao C, Sun C-H, et al. Meta-analysis of TNF 308 G/A polymorphism and type 2 diabetes mellitus. PLoS One 2011;6:e18480.

[21] Jain AK, Vargas R, Gotzowsky S, et al. Can garlic reduce levels of serum lipids? A controlled clinical study. Am J Med 1993;94:632–5.

[22] Adler AJ, Holub BJ. Effect of garlic on blood lipids in patients with coronary heart disease. J Am Coll Nutr 1997;16:445–50.

[23] Ashraf R, Aamir K, Shaikh AR, et al. Effects of garlic on dyslipidemia in patients with type 2 diabetes mellitus. J Ayub Med Coll Abbottabad 2005;17:60–4.

[24] Bordia A. Effect of garlic on blood lipids in patients with coronary heart disease. Am J Clin Nutr 1981;34:2100–3.

[25] Gardner CD, Lawson LD, Block E, et al. Effect of raw garlic vs commercial garlic supplements on plasma lipid concentrations in adults with moderate hypercholesterolemia: a randomized clinical trial. Arch Intern Med 2007;167:346–53.

[26] Sobenin IA, Demidova ON, Lipa R, et al. Effect of garlic on lipid profile and psychophathologic parameters in people with mild to moderate hypercholesterolemia. Isr Med Assoc J 2003;5:637–40.

[27] Batsis JA, Lopez-Jimenez F. Cardiovascular risk assessment - From individual risk prediction to estimation of global risk and change in risk in the population. BMC Med 2010;8:29.

[28] Rahman K. Garlic and aging: new insights into an old remedy. Ageing Res Rev 2003;2:39–56.

[29] Elmahdi B, Maha MK, Afaf IA. The effect of fresh crushed garlic bulbs (Allium sativum) on plasma lipids in hypercholesterolemic rats. Res J Anim Vet Sci 2008;3:15–9.

[30] Warshafsky S, Kamer RS, Sivak SL. Effect of garlic on total serum cholesterol. A meta-analysis. Ann Intern Med 1993;119(7 Pt 1):599–605.

[31] Qureshi AA, Din ZZ, Abuirmeileh N, et al. Suppression of avian hepatic tumorigenesis by inhibiting pathways driving hepatic lipogenesis. Cancer Prev Res (Phila) 2012;5:544–52.

[32] Augusti KT. Therapeutic values of onion (Allium cepa L.) and garlic (Allium sativum L). Indian J Exp Biol 1996;34:634–40.

[33] Bodoff MJ, Ahmad N, Guil KM, et al. Aged garlic extract supplemented with B vitamins, folic acid and L-arginine retards the progression of subclinical atherosclerosis: a randomized clinical trial. Prev Med 2009;49:101–7.

[34] Yeh YY. Antioxidant and anti-inflammatory effects of garlic.Curr Med Chem 2014;21:68–76.

[35] Augusti KT, Chackery J, Jacob J, et al. Beneficial effects of a polar fraction of garlic (Allium sativum Linn) oil in rats fed with two different high fat diets. Indian J Exp Biol 2005;43:76–83.

[36] Rahman K. Garlic and aging: new insights into an old remedy. Ageing Res Rev 2003;2:39–56.

[37] Gemma PH, Brevetti P, Owusu-Bempah K, et al. Effect of garlic on serum lipids and lipoprotein subclass distribution in hypercholesterolemic men. J Clin Nutr 1997;65:445–50.

[38] Augusti KT. Therapeutic values of onion (Allium cepa L.) and garlic (Allium sativum L). Indian J Exp Biol 1996;34:634–40.

[39] Ratts US, Lopez-Jimenez F. Cardiovascular risk assessment - From individual risk prediction to estimation of global risk and change in risk in the population. BMC Med 2010;8:29.