The Structure Properties of Even-Even $^{216-226}$Ra Isotopes

Nabaa N. Abdullah *Imad M. Ahmed
Department of Physics/ College of Education for Pure Science/ University of Mosul
*E-mail: Imad_mamdouh07@yahoo.com

(Received 4 / 6/ 2018 ; Accepted 17 / 9 / 2018)

ABSTRACT

The properties of even-even $^{216-226}$Ra isotopes were studied and its energy states calculated. To identify the properties of each isotope, the values of the first excited state E_{1}^{π} and the ratio of the second to the first excited state $R_{2/1} = E_{2}^{\pi}/E_{1}^{\pi}$ were adopted. The phenomenon of back (or up)-bending, the E-GOS curve, the relationship between successive excited states to those preceding them and the odd-even staggering were studied. The appropriate limit in the interacting boson model IBM-1, the IVBM model and the Bohr and Mottelson (BM) model were used to calculate the energy states for each isotope and compared the results with the experimental values. Due to the inaccuracy of some calculations in the models IVBM and BM, an adjustment term was added for each model and recalculated the energy states and the results were improved.

Keywords: BM, IBM band IVBM, $^{220-230}$Ra even-even isotopes.

INTRODUCTION

The even-even nuclei are characterized by certain energy states (Bohr and Mottelson, 1998). The first of these is the ground states band GSB, with even-angular momenta and positive parity states; ($J^{\pi} = 0, 2, 4, 6, \ldots$). These nuclei show other bands, such as the beta-vibrational band which exhibit similar energy states to the GSB and the gamma-vibrational-band which has positive parity and successive even and odd angular moment; ($J^{\pi} = 2, 3, 4, 5, \ldots$). Other states occur in these nuclei, such as negative parity states NPB with an odd-angular momentum; ($J^{\pi} = 1, 3, 5, \ldots$).
The first excited state $E2^+_1$ and the ratio of the second to the first excited state $R_{2/1} = E4^+_2/E2^+_1$ of the even-even nuclei provide an initial indication of the characteristics of the nucleus (Nomura, 2013), (Bonatsos and Skouras, 1991). The vibrational nuclei are characterized by $E2^+_1 \approx 500$ keV and $2 \leq R_{2/1} \leq 2.4$, while the gamma-soft nuclei are characterized by $E2^+_1 \approx 300$ keV and $2.4 < R_{2/1} \leq 3$, and the rotational nuclei are characterized by $E2^+_1 \approx 100$ keV and $3 < R_{2/1} \leq 3.3$.

Several methods were introduced to identify the characteristics of even-even nuclei at higher excited states. The appearance of a back or up-bending is appropriate to determine the phase change of the nucleus (Wong, 1990). The relationship between the gamma-energy over spin ($E_r/\hbar \omega$) as a function of the spin I presented a method to identify the characteristics of the nucleus (Regan et al., 2003). Another method was introduced to identify the characteristics of the nucleus in its various excited states by the ratio between the energy of the various excited states to the one that proceeds it $r(I+2/I)$ (Bonatsos and Skouras, 1991). By applying this relationship to a set of different nuclei, the characteristics of each nucleus were determined by the limits; $0.1 \leq r \leq 0.35$ for the vibrational nuclei, and $0.4 \leq r \leq 0.6$ for the transitional nuclei, while $0.6 \leq r \leq 1.0$ for the rotational nuclei.

Due to the absence of a uniform theory suitable for the study of different nuclei, different models were introduced to study these nuclei. Bohr and Mottelson introduced the collective model. The microscopic interacting bosons model IBM-1 calculation (Bonatsos et al., 2013), (Kumar and Gunye, 1985) is somehow in between the phenomenological and microscopic approaches. As a widely used model, the IBM-1 (Iachello and Arima, 1987) describes the quadrupole collective states of the medium and heavy nuclei and provides a unified description of collective nuclear states in terms of a system of interacting bosons. Different reductions of unitary group U(6) give three dynamical symmetry limits known as harmonic oscillator, deformed rotor and gamma-soft rotor, which are labeled as U(5), SU(3), and O(6), respectively (Arima and Iachello, 1976), (Arima and Iachello, 1978), (Arima and Iachello, 1979).

In the present study different methods were used to investigate the properties of the Radium isotopes 216,220Ra. These methods were the back (or up)-bending, the E-GOS, the ratios of the successive states to those proceeding them and the staggering phenomenon. The models, IBM-1, IVBM and BM, were used to calculate the GSB and NPB by fitting the parameters of the equations of each model to the experimental values which are then used to calculate many excited states of these isotopes and compared with the measured ones. Modified equations of IVBM and BM were suggested to improve the results for these two models.

CALCULATIONS

It was noted that for some nuclei, a dramatic change in the moment of inertia Θ may occur by increasing the angular momentum I, causing a drop in the rotational energy of the γ-transition from a state with I to a state with $I-2$. This behavior causes back or up-bending in the value of the energy $\hbar \omega_0$ which is given by (Sorenson, 1973):

$$\hbar \omega_0 = \frac{E_r}{\sqrt{I(I+1)} - \sqrt{(I-2)(I-1)}}$$

and the moment of inertia is given by (Wong, 1990):

$$2\Theta/R^2 = \frac{4I-2}{E(I) - E(I-2)} = \frac{4I-2}{E_y}$$
It is important to plot the ratio $\frac{E_{1/2}}{E_1}$ as a function of I (E-GOS) to identify the characteristics of the nucleus along its excited states (Regan et al., 2003). The relation between $R = \frac{E_{1/2}}{E_1}$ and the angular momentum I for the three limits are given by (Bohr and Mottelson, 1953), (Scharff-Goldhaber and Weneser, 1955) as:

$$U(5): R = \frac{\hbar \omega}{I} \rightarrow 0 \text{ when } I \rightarrow \infty$$ \hspace{1cm} (3)

$$O(6): R = \frac{E_{2^+}}{4} \left(1 + \frac{2}{I}\right) - \frac{E_{2^+}}{4} \text{ when } I \rightarrow \infty$$ \hspace{1cm} (4)

$$SU(3): R = \frac{\hbar^2}{2I} \left(4 - \frac{2}{I}\right) - \frac{4\hbar^2}{2I} \text{ when } I \rightarrow \infty$$ \hspace{1cm} (5)

For a given GSB of a spin I, the following ratio was constructed to define the characteristics of the even-even nucleus at its excited states (Bonatsos and Skouras, 1991):

$$r \left(\frac{I + 2}{I}\right) = \left(\frac{\hbar^2}{2I} \left(4 - \frac{2}{I}\right) - \frac{E_{1/2}}{2(I + 1)}\right)$$ \hspace{1cm} (6)

where $R \left(\frac{I + 2}{I}\right)$ is the measured energy ratio between the two states $I + 2$ and I.

Odd-even staggering patterns between GSB and NPB have been investigated (Bonatsos et al., 2000):

$$\Delta E_{1/2}(I) = \frac{1}{16} \left(6E_{1/2}(I) - 4E_{1/2}(I - 1) - 4E_{1/2}(I + 1) + E_{1/2}(I - 2)\right)$$ \hspace{1cm} (7)

where $E_{1/2}(I) = E(I + 1) - E(I)$. All the levels are raised (or lowered) by an amount of energy with respect to the even levels. In other words, $\Delta I = 1$ staggering takes alternatively positive and negative of zigzag values and may reach zero, followed by other increases again.

To calculate the energy states of the used nuclei, the Bohr-Mottelson model (BM), interacting bosons model (IBM-1) and interacting vector bosons model (IVBM) were used. The BM model introduced an energy expansion of GSB and NPB in powers of $I(I + 1)$ for the deformed nuclei, which are given by (Bohr and Mottelson, 1998), (Bonatsos et al., 2000):

$$E(I) = A_0(I + 1) + B(I + 1)^2 + C(I + 1)^3$$ \hspace{1cm} (8)

$$E(I) = E_0 + A_0(I + 1) + B(I + 1)^2 + C(I + 1)^3$$ \hspace{1cm} (9)

where E_0 is the band head energy of the NPB, and the coefficients A, B and C can be determined by fitting their equations with the available measured energy levels of GSB and NPB. In IBM-1, the general Hamiltonian is given by (Scholten et al., 1978):

$$H = \sum_{i=1}^{N} \epsilon_i + \sum_{i>j}^{N} V_{ij}$$ \hspace{1cm} (10)
where \(e_i \) is the intrinsic boson energy and \(V_{ij} \) is the interaction strength between bosons \(i \) and \(j \); the multipole form of the Hamiltonian is (Casten and Warner, 1988):

\[
H = e_1 + a_0 P.P + a_2 Q.Q + a_3 T_3T_3 + a_4 T_4T_4 \tag{11}
\]

where \(a_0, a_1, a_2, a_3 \) and \(a_4 \) are the strengths of pairing, angular momentum, quadrupole, octupole and hexadecupole interactions of each terms in the equation (11).

The Hamiltonian in terms of multipole expansion tends to reduce three forms to meet the requirements of the three symmetry limits; the vibrational \(U(5) \), the rotational \(SU(3) \) and the \(\gamma \) —soft \(O(6) \). In the \(U(5) \) limit, the effective parameter is \(a_0 \), in the \(SU(3) \) limit, the dominating parameter is \(a_2 \) and in the \(O(6) \) limit, the predominating parameter is \(a_0 \). The eigenvalues of these three limits are (Casten and Warner, 1988):

\[
\begin{align*}
U(5): & \quad E = e_1 + K_2(N(N + 4) - \sigma(\sigma + 4)) + K_4(T(T + 3) + K_5L(L + 1) \\
SU(3): & \quad E = K_2(\lambda^2 + \mu^2) + 3(\lambda + \mu) + 4\mu + K_3L(L + 1) \\
O(6): & \quad E = K_2(N(N + 4) - \sigma(\sigma + 4)) + K_4(T(T + 3) + K_5L(L + 1)
\end{align*}
\]

where \(K_1, K_2, K_3, K_4, K_5 \) are other forms of the strength parameters and \(N \) is the total boson number. Many nuclei have a transition property of two or three of the above limits.

The eigenvalues in IVBM model for the GSB and NPB states are given by (Georgieva et al., 1982):

\[
\begin{align*}
E(I) &= \beta I(I + 1) + \gamma I + \frac{\eta}{I + 1} \\
E(I) &= \beta I(I + 1) + (\gamma + \zeta) I + \frac{\eta}{I + 1}
\end{align*}
\]

The values of \(\beta \) and \(\gamma \) can be determined from a fit to the positive GSB while \(\eta \) and \(\zeta \) are estimated from the NPB.

RESULTS AND DISCUSSION

Radium nucleus has 88 protons, with 6 protons above the magic number 82 that gives close properties to the vibrational characteristics. The isotopes studied in this paper are \(^{216-226}\)Ra with 128 neutrons for \(^{216}\)Ra which has 2 neutrons above the magic number (126) giving the magic properties for this isotope. The number of neutrons for \(^{218}\)Ra is 130 which is still close to the magic number (126) and gives it the vibrational properties. The number of neutrons exceeds continously by 2 for the rest \(^{220-226}\)Ra isotopes which give them an alternate properties from gamma-soft to the rotational.

The number of protons and neutrons is not enough to indicate properly the properties of nuclei along their excited states, so several methods were used to ensure these properties. It was found that the values of the first measured excited states \(\frac{E2^+_1}{E2^+_2} \) were equal to 688.2, 388.9, 178.4, 111.1, 84.3 and 67.6 keV, and the ratios of the second to the first measured excited states \(\frac{E4^+_1}{E2^+_1} \) were 1.69, 1.9, 2.29, 2.7, 2.97 and 3.1 for \(^{216-226}\)Ra isotopes respectively. These values indicate that the \(^{216-218}\)Ra have magic properties and \(^{220}\)Ra has vibrational-gamma-soft properties. While the other isotopes \(^{222-226}\)Ra are close to the gamma-soft-rotational characteristics.

The back or up-bending curves, the E-GOS curves, the ratios of successive excited states to that proceeding it and the staggering phenomena are used to confirm the properties of these isotopes along their GSB. The relation between the moment of inertia \(I \) and the rotational frequency \(\omega \) of the photons emitted during the transition between the different states of \(^{216-226}\)Ra isotopes
The Structure Properties of…………..

was plotted in Fig. (1) which shows that there is a back-bending curvature that occurred in the 216Ra value of the both isotope 216Ra and 218Ra, while no bending appeared in $^{220-226}$Ra isotopes.

Fig. (2) shows the E-GOS curves, where the 216Ra curve shows a magic shape curve, and the shape of 218Ra curve was very close to the standard vibrational curve, while the 220Ra curve close to the standard gamma-soft nuclei, and the shape of the $^{222-226}$Ra curves were close to the rotational-gamma-soft characteristic.

Fig. (3) shows the relationship between the ratio r and the spin I. Some negative values of r occurred for 216Ra which ensure the magic properties of this isotope. The relationship between r and I of the 218Ra isotope showed values which coincide with the r values of the vibration limit U(5) with a single negative value that perturbed this properties. The r values for 220Ra coincide with the r values of the vibrational nuclei, the values of r for 222Ra are coincide with the gamma-soft nuclei and finally the values of r for 224,226Ra are coincide with the r values of the gamma-soft-rotational nuclei.

Fig. (4) shows the apparent staggering in the differences between the energies of GSB and NPB of $^{218-226}$Ra, but not for 216Ra due to the poor information of NPB for this isotope. The staggering approximated to zero at one point for 218Ra but many points close to zero for the other isotopes $^{220-226}$Ra.

Fig. 1: The Back (or Up)-Bending of $^{216-226}$Ra Even-Even Isotopes

Fig. 2: The E-GOS of $^{216-226}$Ra Even-Even Isotopes
The IBM-1, IVBM, and BM models were used to calculate the energy states in the ground states band (GSB), while IVBM and BM models were used to calculate the energy states in the negative parity band (NPB) of the $^{216-226}$Ra isotopes. The BM model is perfect for calculating the energy states of rotational nuclei but it fails to calculate the energy states in other nuclei. To make the BM model successful for not rotational nuclei, a vibrational limit term was added to improve the calculations. A significant improvement was observed in the calculations for non-rotational nuclei, and the modified equation of BM is given by:

$$I(h)$$

Fig. 3: The ratio $r(I+2)/I$ as a function of I for $^{216-226}$Ra Even-Even Isotopes

Fig. 4: The staggering of $^{216-226}$Ra Even-Even Isotopes

The IBM-1, IVBM, and BM models were used to calculate the energy states in the ground states band (GSB), while IVBM and BM models were used to calculate the energy states in the negative parity band (NPB) of the $^{216-226}$Ra isotopes. The BM model is perfect for calculating the energy states of rotational nuclei but it fails to calculate the energy states in other nuclei. To make the BM model successful for not rotational nuclei, a vibrational limit term was added to improve the calculations. A significant improvement was observed in the calculations for non-rotational nuclei, and the modified equation of BM is given by:
\[E(I) = A^* I(I+1) + B^* I^2(I+1) + C^* I^3(I+1) + D^* I \]

There are two terms in the IVBM model; one represents the rotational movement and the other represents the vibrational movement of the nuclei. Because of the perturbation which is caused by the effects of the gamma-soft characteristics, a third term was added for the isotopes which are affected by this characteristic, and the following equation illustrates this.

\[E(I) = \beta I(I+1) + \gamma I + \delta \frac{(I^2 + 1)}{4} \]

Computing programs were written using MATLAB 6.5 (Imad and Al-Jubbori, 2009), to calculate the energy levels of GSB and NPB for $^{216-226}$Ra isotopes using BM, IBM-1, and IVBM models. The number of bosons and the best values of the parameters which give the best fitting between theoretical and experimental energy levels of the above isotopes are shown in (Table 1). It is clear from (Table 1), that the $^{216-220}$Ra have the U(5) parameters ε which decreases with increasing neutron number, while the other isotopes $^{222-226}$Ra have no ε value, since they are far from the vibrational properties. The A value of BM model decreases from 32.76 for 216Ra to 10.59 for 226Ra, and its value for 216Ra is very far from the value of $\frac{h^2}{2\eta}$ which is equal 114.7 for this isotope. But the values of A close to the $\frac{h^2}{2\eta}$ by increasing neutron number (n) and its value for 226Ra is equal 10.95 which is very close to $\frac{h^2}{2\eta}$ which is equal 11.3 for this isotope, and this is because the increasing the rotational properties for these isotopes by increasing (n).

(Table 1) shows that there are modification parameters for both the BM and IVBM, due to the lack of the vibration parameter in the BM model and there is a lack of gamma-soft parameter in IVBM model. It is noticed from (Table 1) the negative value of A^* for 216Ra and the small values of this parameter for 218,220Ra due to the pure vibrational properties for these isotopes, while the A^* for $^{222-224}$Ra close from $\frac{h^2}{2\eta}$ specially for 224Ra which refers to the rotational properties for these isotopes. The BM.M not use for 226Ra since this nucleus is a pure rotational one. The D^* parameter of 216Ra is equal 436.6 keV which is big, because the magic properties of this nucleus. The D^* parameters for other isotopes decreases continuously by increasing neutron numbers. The IVBM.M was used for 216Ra where the B^* parameter is deleted and a big value of δ^* are proper for the magic properties, but the negative values of δ^* for $^{222-226}$Ra refer to the reduction of the vibrational properties for these isotopes.

(Table 2) shows the measured (Wu, 2007; Askor and Balraj, 2006; Brown and Tuli, 2011, Sukhjeet et al., 2011; Sukhjeet and Balraj, 2015; Akovali, 1996) and the calculated energy levels in the GSB for $^{216-226}$Ra, which show that the calculations of IBM-1 are the best compared with IVBM and BM for $^{216-224}$Ra. The error in the BM calculations are equal to 72.1%, 57.3%, 39.7%, 24.1% and 13.7% of the first excited states for $^{216-224}$Ra respectively and less error for the other states. The calculations were improved well by using the modified BM.M, while the BM calculations of 226Ra was the best since this isotope is a pure rotational nucleus. The error in IVBM calculations of $^{216,222-226}$Ra equal to 28.4, -12.9, 17.1 and -27 of the first excited states respectively and less error for the other states. Howe ever these calculations were improved well using the IVBM.M, while the IVBM calculations are good and equal to IBM-1 calculations for 218,220Ra.
Table 1: IBM-1, BM, BM.M, IVBM and IVBM.M parameters of GSB in keV for 216-226Ra isotopes

Isotopes	IBM-1	BM	BM.M	IVBM	IVBM.M								
	N	ε	K1	K2	K4	K5	A	B(10^{-2})	C(10^{-5})	A*	B* (10^{-2})	C* (10^{-5})	D*
216Ra	4	323.64	5.543	4.016	3.39	-1.26	32.76	-12.07	16.75				
218Ra	5	315.92	7.986	------	5.52	-1.83	28.29	-10.38	15.65				
220Ra	6	110.57	7.472	------	7.25	1.53	18.34	-6.54	11.88				
222Ra	7	------	------	-0.177	46.56	-5.86	14.28	-3.84	6.59				
224Ra	8	------	------	-0.142	35.29	-2.70	12.29	-2.73	4.32				
226Ra	9	------	------	-0.135	32.18	-2.57	10.59	-1.96	2.79				

Table 2: The measured (Wu, 2007; Askor and Balraj, 2006; Brown and Tuli, 2011, Sukhjeet et al., 2011; Sukhjeet and Balraj, 2015; Akovali, 1996) and calculated energy levels in keV of GSB 216-226Ra isotopes

Isotopes	E_exp.(keV)	E_cal.-keV	2	4	6	8	10	12	14	16	18
216Ra	688.2	1507.6	1711.14	2026.04	2600	3292.7	3491.65	3712.15			
BM	192.3	1175.5	1795.8	2366.6	2810.2	3109.9	3354.9	3791.9			
BM.M	682.4	1469.4	1755.1	2103.3	2574.2	3141.4	3635	3674.6			
IBM-1	710.8	1448.8	1829.4	2217.9	2614	3018	3429.7	3849.1			
IVBM	492.5	1422.8	1860.6	2280.2	2681.6	3064.8	3429.7	3776.4			
IVBM.M	674.6	1459.1	1851.4	2243.7	2636	3028.3	3420.6	3812.9			
218Ra	1.98	3.2	-8.2	-10.7	-1.4	8.0	2.0	-2.7			

Isotopes	E_exp.(keV)	E_cal.-keV	2	4	6	8	10	12	14	16	18
220Ra	388.9	1122.04	1546.7	1961.7	2390.8	2825.5	3285.1	3756			
BM	166.1	1017.2	1558.1	2065.8	2483.9	2816.7	3170.7	3803.4			
BM.M	367.6	1138.7	1541.4	1957.5	2386.9	2829.6	3285.9	3755.2			
IBM-1	366.9	1137.9	1542	1958.4	2387.2	2828.4	3282	3747.9			
IVBM	366.9	1137.9	1542	1958.4	2387.2	2828.4	3282	3747.9			
222Ra	5.7	-0.7	-1.4	0.3	0.2	-0.1	0.1	0.2			

Isotopes	E_exp.(keV)	E_cal.-keV	2	4	6	8	10	12	14	16	18
224Ra	388.9	1122.04	1546.7	1961.7	2390.8	2825.5	3285.1	3756			
BM	166.1	1017.2	1558.1	2065.8	2483.9	2816.7	3170.7	3803.4			
BM.M	367.6	1138.7	1541.4	1957.5	2386.9	2829.6	3285.9	3755.2			
IBM-1	366.9	1137.9	1542	1958.4	2387.2	2828.4	3282	3747.9			
IVBM	366.9	1137.9	1542	1958.4	2387.2	2828.4	3282	3747.9			
226Ra	5.7	-0.7	-1.4	0.3	0.2	-0.1	0.1	0.2			
I^+_3	2	4	6	8	10	12	14	16	18		
--------	---	---	---	---	----	----	----	----	----		
$E_{\text{exp.}}$(keV)	178.47	410.07	688.1	1001.2	1342.7	1711.2	2105.7	2523.5	2961.9		
BM	107.7	341.5	663.5	1025.4	1383.5	1719.2	2065.4	2537.5	3370.4		
Δ%	-39.7	16.7	3.6	-2.4	-3.0	-0.5	1.9	-0.6	-13.8		
BM.M	180.1	410.6	686.4	1000.1	1344.1	1712.6	2103.9	2524.9	2990.2		
Δ%	-0.9	0.1	0.3	-0.1	0.0	0.1	0.1	-0.2	-0.9		
IBM-1	186.1	413.9	683.5	994.7	1347.6	1742.2	2178.6	2656.6	3176.3		
Δ%	-4.3	-0.9	0.7	0.7	-0.4	-1.8	-3.5	-5.3	-7.2		
IVBM	186.1	413.9	683.5	994.7	1347.6	1742.2	2178.6	2656.6	3176.3		
Δ%	-4.3	-0.9	0.7	0.7	-0.4	-1.8	-3.5	-5.3	-7.2		

I^+_4	2	4	6	8	10	12	14	16	18
$E_{\text{exp.}}$(keV)	111.12	301.39	550.3	843.3	1173.3	1537.2	1933.2	2358.7	2811.0
BM	84.3	270.7	536.7	853.3	1193.2	1542.1	1913.4	2365.5	3022.2
Δ%	-24.1	10.2	2.5	-1.2	-1.7	-0.3	1.0	-0.3	-7.5
BM.M	112.5	291	541.7	845.3	1182.3	1540.7	1924	2361.7	2921.8
Δ%	-1.2	3.5	1.6	-0.8	-0.7	-0.2	0.5	-0.1	-3.9
IBM-1	108.8	306.1	549.7	839.4	1175.4	1557.5	1985.9	2460.6	2981.4
Δ%	2.1	-1.6	0.1	0.5	-0.2	-1.3	-2.7	-4.3	-6.1
IVBM	125.4	306.1	542.3	833.9	1180.9	1583.2	2041	2554.2	3122.8
Δ%	-12.9	-1.6	1.5	1.1	-0.7	-2.9	-5.6	-8.3	-11.1
IVBM.M	108.8	306.1	549.7	839.4	1175.4	1557.5	1985.9	2460.6	2981.4
Δ%	2.1	-1.6	0.1	0.5	-0.2	-1.3	-2.7	-4.3	-6.1

I^+_5	2	4	6	8	10	12	14	16	18
$E_{\text{exp.}}$(keV)	84.37	250.78	479.12	754.88	1068.9	1413.7	1787.5	2187.7	2612.1
BM	72.8	235.3	471.4	759.7	1079.3	1416.9	1776.7	2191.3	2735.6
Δ%	13.7	6.2	1.6	-0.9	-0.6	-0.2	0.6	-0.2	-4.7
BM.M	86.5	245.1	473.7	755.6	1073.9	1416.2	1781.8	2189.5	2686.8
Δ%	-2.5	2.3	1.1	-0.1	0.5	-0.2	0.3	-0.1	-2.9
IBM-1	81.9	255.9	478.7	750.5	1071.2	1440.9	1859.5	2327.1	2843.6
Δ%	2.9	-2.0	0.1	0.6	-0.2	-1.9	-4.0	-6.4	-8.9
IVBM	98.8	255.8	471.2	744.8	1076.8	1467.1	1915.6	2422.5	2987.6
Δ%	-17.1	-2.0	1.7	1.3	-0.7	-3.8	-7.2	-10.7	-14.4
IVBM.M	81.9	255.9	478.7	750.5	1071.2	1440.9	1859.5	2327.1	2843.6
Δ%	2.9	-2.0	0.1	0.6	-0.2	-1.9	-4.0	-6.4	-8.9

I^+_6	2	4	6	8	10	12	14	16	18
$E_{\text{exp.}}$(keV)	67.67	211.54	416.5	669.4	959.9	1280.5	1625	1993	2382
BM	62.8	204.2	412.3	671.5	965.4	1282	1619.7	1994.8	2450
Δ%	7.2	3.5	1.0	-0.3	-0.6	-0.1	0.3	-0.1	-2.9
IBM-1	62.3	219.4	420.2	664.9	953.3	1285.5	1661.4	2081.2	2544.7
Δ%	7.9	-3.7	-0.9	0.7	0.7	-0.4	-2.2	-4.4	-6.8
IVBM	86.2	224.2	413.9	655.3	948.5	1293.4	1690.1	2138.5	2638.7
Δ%	-27.4	-5.9	0.6	2.1	1.2	-1.0	-4.0	-7.3	-10.8
IVBM.M	62.3	219.4	420.2	664.9	953.3	1285.5	1661.4	2081.2	2544.7
Δ%	7.9	-3.7	-0.9	0.7	0.7	-0.4	-2.2	-4.4	-6.8
(Table 3) shows the best fitting parameters of IVBM, IVBM.M, BM and BM.M equations with the measured values of NPB. New parameters of BM and BM.M were used for 218-226Ra in this band, but the same GSB parameters of IVBM and IVBM.M were used since an additional two parameters were used to calculate the NPB states. (Table 4) shows the measured and calculated energy states of NPB for 218-226Ra, using BM, BM.M, IVBM and IVBM.M. There are no calculations for 216Ra due to the poor information of NPB for this isotope. Reasonable results were obtained with low errors for all calculated states of the isotopes.

Table 3: BM, BM.M, IVBM and IVBM. M parameters of NPB in keV for 216-226Ra isotopes

Isotopes	Models	E_0	A_N	$B_N(10^{-5})$	$C_N(10^{-5})$	D_N
218Ra	BM.M	793.21	20.27	-3.982	4.562	-69.493
220Ra	BM.M	412.98	12.54	-1.795	2.066	-27.596
222Ra	BM.M	242.11	9.99	-0.783	0.558	-33.365
224Ra	BM.M	215.98	8.96	-0.596	0.377	-25.855
226Ra	BM	253.73	6.66	0.044	-0.582	-------

Table 4: The measured (Wu, 2007; Askor and Balraj, 2006; Brown and Tuli, 2011, Sukhjeet et al., 2011; Sukhjeet and Balraj, 2015; Akovali, 1996) and calculated energy levels in keV of NPB for 216-226Ra isotopes
CONCLUSIONS

Knowing the number of protons and neutrons and their distribution on different shells and subshells as well as the positions of their first excited states and the ratio of the second to the first excited states of $^{216-226}$Ra isotopes are not enough to determine their properties among all their excited states. The back or up-bending, the E-GOS, the ratio of different successive states to those states proceeding them and the staggering of the difference between GSB and NPB states are helpful to determine the properties of the nuclei among their many excited states. From Tables (1-4), one can recognize that 216Ra has a magic properties while 218,220Ra have vibrational properties and 222,224Ra have the O(6)-SU(3) properties, where 226Ra has a pure rotational properties. Using different models, the IBM-1, the IVBM and Bohr-Mottelson to calculate the GSB and NPB show different accuracy. The IBM-1 calculations were the best one, since using suitable limits of IBM-1 for the $^{216-226}$Ra isotopes; where the general form of IBM-1 was suitable for 216Ra. On the other hand the U(5) limit was found for 218,220Ra, while the SU(3)-O(6) was convenient for 222,224Ra and the pure SU(3) appropriate for 226Ra. A modification term was added to improve the calculations of IVBM and BM, where a gamma-soft term was added to the IVBM and a vibrational term was added to the BM model. An obvious improvement was observed which supports the modification used for each model.

REFERENCES

Akovali, Y.A. (1996). NDS 77,433.
Arima, A.; Iachello, F. (1976). Interacting boson model of collective states I. The vibrational limit. Ann. Phys. (N.Y.) 99, 253.
Arima, A.; Iachello, F. (1978). Interacting boson model of collective states II. The rotational limit. Ann. Phys. (N.Y.) 111.
Arima, A.; Iachello, F. (1979). Interacting boson model of collective states IV. The O(6) limit. Ann. Phys. (N.Y.) 123, 468.
Ashok, K.J.; Balraj, S. (2006). NDS 107, 1027.
Bohr, A.; Mottelson, B.R. (1953). Physics of N=Z and N=Z+1 nuclei in the A=80-100 region. Mat. Fys. Med., 27.
Bohr, A.; Mottelson, B.R. (1998). "Nuclear Structure". (Singapore: Word Scientific). Vol. II, 748 p.
Bonatsos, D.; Skouras, L.D. (1991). Successive energy ratios in medium and heavy mass nuclei as indicators of different kinds of collectivity. Phys. Rev. C,43, 952R.
Bonatsos, D.C.; Daskaloyannis, S.B.; Drensk, N.; Karoussos, N.; Minkov, P.P.; Raychev, R.P.; Roussev (2000). $\Delta I=1$ staggering in octupole bands of light actinides: “Beat” patterns, Phys. Rev. C, 62, 024301.
Browne, E.; Tuli, J.K. (2011). NDS. 112, 1115.
Casten, R.F.; Warner, D.D. (1988). The interacting boson approximation. Rev. Mod. Phys. 60, 389.
Georgieva, A.; Raychev, P.; Roussev, R.J. (1982). Interacting two-vector-boson model of collective motions in nuclei, J. Phys. G: Nucl. Phys. 8, 1377.
Nuclei Using the Interacting Vector Boson Model", Chinese Physical Society and IOP Publishing Ltd Communications in Theoretical Physics, 64, 1.
Iachello, F.; Arima, A. (1987). "The Interacting Boson Model". Cambridge University Press, Cambridge, England.
Imad, M.; Mushtaq, A. (2009). Computer new simulation of the interacting boson model (IBM-1) to determine the properties of $^{120-126}$Xe even-even isotopes. *Rafidain J. Sci.*, **20**, 4.

Kumar, A.; Gunye, M.R. (1985). Nuclear structure of Sr, Zr, and Mo isotopes. *Physical Review C*, **32**, 2116.

Nomura, K. (2013). "Interacting Boson Model from Energy Density Fuctionals". Springthesis, DOI: 10.1007/978-4-313-54234-6_1, Spring Japan.

Regan, P.H.; Beausang, C.W.; Zamfir, N.V.; Casten, R.F.; Jing-ye Zhang, A.D.; Yamamoto, M.A.; Caprio, G.; Gürdal, A.A.; Hecht, C.; Hutter, R.; Krücken, S.D.; Langdown, D.A.; Meyer; Ressler, J.J. (2003). Signature for vibrational to rotational evolution along the yrast line. *Phys. Rev. Lett.* **90**, 152502.

Scharff-Goldhaber; Weneser, J. (1955). System of even-even nuclei. *Phys. Rev.*, **98**, 212.

Scholten, O.; Iachello, F.; Arima, A. (1978). Interacting boson model of collective nuclear states III. The transition from SU(5) to SU(3). *Ann. Phys.* **115**, 325.

Sorenson, R.A. (1973). Nuclear moment of inertia at high spin. *Rev. Mod. Phys.* **45**, 353.

Sukhjeet, S.; Jain, A.K.; Jagdish, K.; Tuli (2011). *NDS* **112**, 2851.

Sukhjeet, S., Balraj, S. (2015). *NDS* **130**, 127.

Wong, S.M. (1990). Introductory Nuclear Physics. (Prentice Hall International).

Wu, S.C. (2007). *NDS* **108**, 1057.