Durability of recycled lime-fly ash treated aggregates as pavement base materials: Chinese experience

Guoqiang Zhao¹, Zheng Sun ², Donglan Su ² and Junan Shen ²,³,⁴

¹ CCDI (Suzhou) GROUP, Jiangsu 215011, China;
² Department of Civil Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215001, China;
³ Department of Civil Engineering and Construction, Georgia Southern University, Statesboro, GA, USA
⁴ Email: jshen@georgiasouthern.edu

Abstract. This study investigated the durability of recycled lime-fly ash treated aggregates (RTA) as pavement base and sub-base layers. First, the both the physical and chemical properties of the waste lime-fly ash treated aggregate (WTA) materials were tested. Then, RTA were designed according to the specifications and further examined for its long-term durability properties including shrinkage, freeze-thaw, fatigue and permeability. The RTA investigated were actually cement-stabilized RTA, a stabilized blend of 70% WTA and 30% virgin aggregates for base layer, and a stabilized 100% WTA for sub-base layer, respectively. Test results were as follows: 1) WTA particle surfaces were becoming rougher as the size of the particles decreased, which was closely related to the degree of shrinkages of the RTA. 2) Both the value of moisture shrinkage and the weight of water loss of RTA increased as the curing time of RTA increased, indicating the contribution of the weight loss to the shrinkage of the RTA. 3) The total thermal shrinkage increased as temperature decreased although its rate of increase decreased for every temperature increment. 4) Overall, the fatigue life of RTA was short, indicating its structure was closer to that of suspension dense type.

1. Introduction
Lime-fly ash stabilized aggregates have been widely used as either a road base or a sub-base layer materials in China since early 1970. Some of these roads built with the lime-fly ash stabilized aggregates needs to maintain or to reconstruct, resulting in a large number of waste lime-fly ash stabilized aggregates (WTA) [1-3]. The huge amount of WTA will take up a landfill, consequently, pollute the environment. How to deal with these WTA becomes a problem faced to road engineers [4,5]. The use of WTA can reduce the cost of road construction, and the pollution on environment. Studies showed that cost reduction was observed by stabilizing unsuitable roadway materials with high carbon fly ash [6,7]. WTA is better than these unsuitable roadway materials in engineering properties. It will be expected more economical when WTA is recycled effectively [8]. WTA proved to contain some clay and fly ash [9], which can effectively improve the frost resistance of the stabilized WTA [10].

Researches available on disposal of the WTA showed that the surface of WTA was covered with a layer of lime-fly ash (stabilizer) mortar. The mortar appears mostly rough surfaces with a high water absorption, and makes it difficult in compacting recycled lime-fly ash treated aggregates with a stabilizer (RTA) as a base and sub-base layer materials. On the other hand, the mortar may contain
some active chemical compounds that will benefit to the strength of the RTA. The presence of surface mortar on the waste aggregates will negatively affect the performance of the RTA [11-13]. Removal of the surface mortar will not only greatly increase the cost, but also cause second pollution to the environment. The properties of the RTA have uncertainty, depending on the properties of the WTA, and then concerned for their long term performance. The properties of RTA were affected by the aggregate size and gradation. The compacting condition of aggregate was the main reason for the performance of RTA. Under the same compaction conditions, the coarse aggregate with continuous gradation can form a better skeleton structure [14-16].

When used for road base or sub-base layer materials, both the thermal and moisture shrinkages of the RTA come up as a difficult problem. Studies have shown that each decrease in temperature will lead to a temperature-caused shrinkage. Even if the shrinkage does not produce a direct crack to the material, the material will be subject to a stress causing fatigue [17,18]. The key factors to make RTA materials by cement as a road base lies in the durability such as the thermal crack resistance. Several studies proved that the cement dose, and the gradation of aggregates were the two crucial factors to the shrinkage cracks [19, 20]. A cement dose of 3 to 4% will generate a minimum dry shrinkage strain and coefficient that increased linearly with its dosage. The denser the RTA and the coarser the gradation, the smaller the dry shrinkage strain of RTA.

The objective of this study was to investigate the long-term durability of using WTA stabilized by cement as both a road base and a sub-base material, and how the performance of the RTA was affected by the physical and chemical properties of the WTA. To this end, cement-stabilized RTAs were first designed meeting with the Specifications of base and sub-base. Second, durability of the RTAs were evaluated in terms of a series of laboratory experiment tests including thermal and moisture shrinkage, freeze-thaw, and fatigue and permeability. The physical and mechanical properties of WTA (density and water absorption, LA abrasion, crush-resistance) were explored their effects on the durability of the RTA materials.

2. Materials and test methods

2.1. Materials

Waste lime-fly ash stabilized aggregates (WTA) used for the study came from Route 328, Taicang, Jiangsu, China. Figure 1 presented the outlook of the WTA in different three different size: coarse (>4.75mm), fine (4.75~0.075mm) and filler (<0.075mm). The WTA was divided into the three size ranges to design a combined gradation for RTA meeting with the specifications as base materials.

a) >4.75mm b) 4.75~0.075mm c) <0.075mm

Figure 1. The outlook of the WTA in different size range.

2.1.1. Gradation. In order to accurately measure the gradation of the WTA, WTAs were sieved by following a wet sieving method, and virgin aggregates by following a dry sieving method. Virgin aggregates of two size range, i.e., NO.1 (31.5 ~ 19 mm) and NO.2 (19 ~ 9.5 mm), were used considering the requirement of the combined gradation. The grading results of both WTA and the virgin aggregates were shown in Table 1.

A blend of 70% of WTA, 20% NO.1 (virgin aggregates) and 10% NO.2 (virgin aggregates) was finally designed, as for base materials, meeting with the specifications of JTG/E51-2009[21]. A 100%
of WTA, used for sub-base materials and also meeting with the Indirection of JTG/E51-2009[21] was directly used. All the gradations were showed in Table 1.

Table 1. The gradations of base and sub-base materials.

Size(mm)	Passing (%)	Category
31.5	100% WTA for sub-base	
26.5	99	
19	96.9	
9.5	89.7	
4.75	74.7	
2.36	55.1	
0.6	37.6	
0.075	19.3	
0	9.5	

Sub-base upper limits

NO.1 (virgin aggregates)

Size(mm)	Passing (%)
31.5	91.6
26.5	59.4
19	15.7
9.5	5.2
4.75	1.1
2.36	0.5
0.6	0.2

Sub-base lower limits

NO.2 (virgin aggregates)

Size(mm)	Passing (%)
31.5	100
26.5	100
19	66.4
9.5	33.6
4.75	6.3
2.36	0.2
0.6	0.1

Combined blend for base

Size(mm)	Passing (%)
31.5	97.7
26.5	89.7
19	72.6
9.5	52
4.75	38.7
2.36	26.4
0.6	13.6
0.075	6.7

Table 2. Indirect gravity and water absorption of WTA and virgin aggregates.

Aggregate category	Apparent Indirect gravity	Bulk Indirect gravity	Water absorption
CA of WTA	2.63	2.08	10.17
FA of WTA	2.54	1.91	11.58
NO.1 (virgin aggregates)	2.73	2.70	0.46
NO.2 (virgin aggregates)	2.73	2.68	0.59

2.1.2. Indirect gravity and Water Absorption. The WTA was divided into coarse aggregate CA (retained on 2.36mm sieve) and fine aggregate FA (passing 2.36mm sieve). The values of both apparent Indirect gravity and bulk Indirect gravity and water absorption of the WTA and virgin aggregates obtained from the tests were summarized in Table 2.

Table 2. Indirect gravity and water absorption of WTA and virgin aggregates.

2.1.3. Mechanical Properties WTA: The crushing strength value (an index of aggregate resistance to crushing) and LA Abrasion value of WTA were 25.8% and 37.7%, respectively. Both of them met the Specifications of JTG/T F20-2015[22].

VIRGIN AGGREGATE: The crushing value and LA Abrasion values were 14% and 14.8%, both of them met the Specifications of JTG/T F20-2015.

2.1.4. Cement Composite Portland cement was, coded P.C.32.5 by Chinese classification, used in this study, i.e., the compressive strength of (Cement mortar strength) is 32.5 MPa. It was a commercial available and provided by Hai Luo Pavement Construction Co. Ltd, Suzhou, China.

2.1.5. Proctor compaction test The maximum dry density and the optimum moisture content (OMC) were determined by proctor compaction test. Standard heavy-duty compaction specified by Chinese code was used in this study, i.e., a 4.5kg hammer with a drop height of 450mm compacted 98 blows for each of the three layers. The weight of the sample was 5100g. The proctor compaction results were listed in Table 3. The OMCs were used to make samples for all the performance tests in this study.

Table 3. OMC and maximum dry density.

Cement content (%)	Base	Sub-base
3	9.4	11.6
4	9.5	11.8
5	9.7	12.1

Maximum dry density (g/cm³)

	Base	Sub-base
3	2.026	1.905
4	2.034	1.921
5	2.047	1.929

2.2. Test methods

2.2.1. X-ray Diffraction (XRD) The X-ray diffraction spectrum is obtained by the Indirect diffraction direction and intensity of the solid crystalline powder to the X-ray. The test device can effectively identify and analyze common phases. The test specimen size of RTA was 100 mm × 100 mm × 400
mm in the middle beam, cured for 7 days in an environment chamber with a temperature of 20 °C and humidity over 95% before the test. The specimen was ground into powder of less than 0.075 mm. The curing condition for the samples were selected the same as that for strength tests to understand the formation mechanism of the strengths.

2.2.2. Scanning Electron Microscope (SEM) SEM is used to acquire various physical and chemical properties of the test samples of RTA, such as morphology, composition, crystal structure, electronic structure and internal electric or magnetic field and the like. RTA samples were ground into powders with a particle size of less than 0.075 mm.

2.2.3. Unconfined compression and splitting tensile strength The cylinder specimens with size of Φ150mm × 150mm were cured for 7 days in a curing box of constant temperature of 20 °C and humidity of 95% before testing according to Specifications (JTG/E51-2009). The loading rate for both the splitting and unconfined compression tests was at 1mm/min. The maximum pressure P was recorded and the unconfined compressive strength was calculated according to formula (1)

\[R_c = \frac{P}{A} \]

In the formula:
- \(R_c \) – specimen unconfined compressive strength (MPa)
- \(P \) – Maximum pressure load (N)
- \(A \) – Specimen cross-sectional area (mm²)

In the split test, a bar was placed on the press table of the press. Place the specimen horizontally on the bar and place a layer on the top surface of the specimen. The maximum pressure P was recorded, and the splitting strength of the specimen was calculated according to formula (2)

\[R_t = 0.004178 \frac{P}{h} \]

In the formula:
- \(R_t \) – The splitting strength (MPa)
- \(P \) – Test the maximum force value when the failure (N)
- \(h \) – Specimen height (mm)

2.2.4. Dry shrinkage. The test specimen size was a beam of 100 mm × 100 mm × 400 mm and cured for 7 days in the same environment as used for the unconfined compression specimens. The dry box temperature was set at 20 °C and the humidity was set to 60%. To allow the specimen to move freely by shrinking, the specimens were placed on glass bars. The deformation was measured by a dial indicator, following the Specifications (JTG/E51-2009)

Take the readings on the four dial indicators on the sample at the i-th step, \(X_{i1}, X_{i2}, X_{i3} \) and \(X_{i4} \). Weigh the weight of each specimen \(m_i \). The specimens were dried to a constant weight of \(m_p \).

The rate of water loss was calculated according to formula (3)

\[W_i = \frac{(m_i - m_{i+1})}{m_p} \]

Where:
- \(W_i \) – The i-th water loss rate (%)
- \(m_i \) – The i-th weighing weight of specimen (g)
- \(m_p \) – Specimen weight at dry condition (g)

The dry shrinkage according to the formula (4) calculation

\[\delta_i = \frac{1}{f_i} \left(\Sigma_{j=1}^{4} X_{i,j} - \Sigma_{j=1}^{4} X_{i+1,j} \right) / 2 \]

Where:
- \(\delta_i \) – The i-th dry shrinkage observed (µm)
- \(X_{i,j} \) – Reading of the j-th dial gauge for the i-th test (µm)

Calculation of dry shrinkage strain according to formula (5)

\[\varepsilon_i = \frac{\delta_i}{f_i} \]
Where: ε_i – the dry shrinkage strain of i (%)
δ_i – the dry shrinkage measured by i (μm)
I – the length of the standard specimen (mm)

2.2.5. Temperature shrinkage The size, curing time and conditions of the specimens were the same as those for the dry shrinkage test. After curing, the samples were placed in the oven of 105 °C and dried for 10~12 hours until the weight was constant, which the thermal shrinkage measured can exclude the moisture effect. The temperature range chosen for the test was 40 °C ~ -10 °C. Starting with the up limit of 40 °C, the temperature was then reduced by an interval of 10 °C for every three hours. The calculation formula (4) and (5) were used for temperature shrinkage also.

2.2.6. Frost Resistance The size and curing conditions of the specimens for frost were the same as those of unconfined compressive strength specimens, except that a curing date of 28 days was used.

Nine specimens were used for 5 freeze-thaw cycles, nine specimens for no freeze-thaw. Each cycle specimens need to be frozen for 18 hours at a temperature of -18 °C, and then be placed in 20 °C of water for 8 hours. The weight of the specimen after each freeze-thaw cycle was measured during the test. After 5 freeze-thaw cycles, the samples were tested for compressive strength R_{DC}. Frost resistance performance according to formula (6) (7)

$$BDR = \frac{R_{DC}}{R_C} \times 100$$

(6)

$$W_n = \frac{m_n - m_0}{m_0} \times 100$$

(7)

Where: BDR – Loss of compressive strength after n cycles of freeze-thaw (%)
R_{DC} – Compressive Strength after n cycles of freeze-thaw of the specimen (MPa)
R_C – The compressive strength of test pieces for control (no freeze-thaw) (MPa)

W_n – Weight change rate of specimen after n cycle of freeze-thaw (%)
m_0 – Weight of the specimen before freeze-thaw cycle (g)
m_n – Specimen weight after n cycle of freeze-thaw (g)

2.2.7. Fatigue Performance The size and curing conditions of the specimens for fatigue performance were the same as those for dry shrinkage, except that a curing duration of 90 days was adopted. MTS810 test machine, see Figure 2, was selected for the study. The type of loading is sine wave with the frequency of 10Hz. Preload pressure of 20% of the maximum flexural tensile strength was applied for 2 minutes. The number of parallel test groups was 5, and the final fatigue life value was taken as an arithmetic mean of the five samples.

3. Results and discussion

3.1. Microscopic analysis

Prior to the test, samples with a particle size larger than 4.75mm and between 0.075~4.75mm were ground into powders for microscopic examination. Presented in the section included those of WAT sieved in three different size and one without sieving. The differences in sharp and chemical element were discussed.

Figure 3 was the original WTA (without sieving) taken from SEM.

In general, as showed in Figures 3 a), the WTA particles were mostly crystals in an irregular shape, most importantly, some crystals were covered with a layer of gel. Two randomly-selected points 1 and 2 on the crystals were presented on Figures 3, b) and c), in a large scale, indicating clearer edges and angles, and flatter surfaces for point 1 than point 2. Point 2 particle, however, attached with a thicker layer of gel obviously than that attached on Point 1.
Elements of Si and O as the main elements for the crystals that might be mainly from quartz. Point 2 contained more elements of Mg, K, Ca, Fe and other elements than Point 1, see Figures 3, d) and e). The difference in the elements between the two points of 1 and 2 could result from that in the thickness of the surface gels, mostly from hydrated calcium silicate gel. In addition, an H element was
not found in the elemental analysis spectrum, indicating that hydrated calcium silicate was highly carbonized [23].

Figures 4 were the SEM results taken from coarse WTA (>4.75mm). As can be seen from the Figure 4 a), clouds of crushed particles and crystal particles were presented closely. The small particles have no flat surfaces and angles. The big particles have clear surfaces. Figures 4, b) and c) were, again for a close look at the Points 3 and 4 selected from Figure a). Point 3 particle has a clear outline, and has a more regular shape than Point 4 which was regarded as the crushed gel. Figures 4, d) and e), indicated that the main chemical elements were Si, O, Al for both the points discussed. There were no big differences in the types of elements, but there were differences in density observed. Point 3 had much more elements of Ca and C than Point 4 because it contained more calcium carbonate.

Figures 5 were the SEM results for middle WTA (0.075 mm ~ 4.75 mm). As can be seen from the Figure 5 a), the crystals were completely cemented to form a gel structure, appeared on aggregates as a denser layer. The particles were highly carbonated calcium silicate hydrated material as compared to coarse WTA (> 4.75mm). This showed that calcium silicate hydration was much more completed. Figures 5 c) and d) were SEM taken for a close look at the Points 5 and 6, indicating that Points 5 and 6 were gel and all with rough surfaces. Figures 5 e) and f) showed that elements of Points 5 and 6 were no difference. The content of Si in Point 5 was remarkably higher than that in Point 6. But the contents of Al, O and Fe in Point 5 were lower than those in Point 6. This was mainly due to the fact that Point 6 contained more fly ash. Also, compared with Figures, there were many other elements that comes from fly ash.

Figures 6 were SEM results from fine WTA (< 0.075 mm). It can be seen from the Figure 6 a), the shape of the WTA was not the kind of polygonal edges with rough corners, but more like a ball shape. The substances with corner polygons were predominantly silicon oxide. The spherical shapes observed in the Figure conform to those of fly ash, inferring that the ball like particles were fly ash left from hydration. Further, compared with WTA (0.075 mm~4.75 mm), the WTA (< 0.075 mm) has gels mainly attached to a single particle rather than cemented with the various particles, and has much more content of gel. Figures 6 b) and c) showed Point 7 particle was irregular shape, clustered together into irregular "cloud" materials. Point 8 particle surface was relatively smother, separately dispersed. As can be seen from the Figures 6 d) and e), there was no obvious difference in elements found.

![Figure 5. The SEM results of middle WTA (0.075mm ~ 4.75mm).](image1)

![Figure 6. The SEM results of fine WTA (< 0.075 mm).](image2)
between Points 7 and 8, but Point 7 contained more Al and O than Point 8. This showed that Point 7 contained more alumina than Point 8.

![SEM images of WTA and points](image)

Figure 6. The SEM results of fine WTA (<0.075mm).

![Elemental composition](image)

- a) WTA (in 10μm)
- b) Point 7 (in 5μm)
- c) Point 8 (in 5μm)
- d) Elemental composition of Point 7
- e) Elemental composition of Point 8

Figure 6. The SEM results of fine WTA (<0.075mm).

![Strength vs. Cement ratio](image)

Figure 7. The unconfined compressive and splitting indirect tensile strength. (After 7 days curing).

![XRD patterns](image)

Figure 8. The XRD patterns of sub-base layer with different cement contents. (After 7 days curing).

As conclusions, WTA was mainly composed of irregular crystals and irregular gels regardless of the size. The crystals were mainly quartz, and the gels mainly highly carbonated calcium silicate hydrate, though, the compositions of WTA were somewhat size-dependent. Fine WTA (<0.075 mm) also contained fly ash. Middle WTA (0.075 mm ~ 4.75 mm) contained the most gel, and the coarse WTA (>4.75 mm) the least gel. Besides, the roughness of the particles increased as the particle size decreased.

3.2. **Strength characteristics**
The unconfined compressive strength and splitting indirect tensile strength of Portland cement stabilized RTAs cured for 7 days were presented in Figure 7.
It can be seen from Figure 7 that the unconfined compressive strength, splitting indirect tensile strength of base layer were larger than those of the sub-base layer as expected. This was partially because the base largely used some new aggregates and a better gradation. As the cement content increased, the unconfined compressive strength and splitting direct tensile strength of the RTA obviously increased at a similar rate, again, as expected.

In order to analyze the mechanism of the strength change with the cement content, XRD test was carried out on the sub-base layer with different cement used. The experimental XRD patterns were summarized in Figure 8 and the height of the peaks associated with the intensity in the graph was summarized in Table 4.

Table 4. The height of the peaks.

Substance type	Cement content (%)		
	3	4	5
Ettringite	470	560	566
Quartz	100	11304	11101
Calcium carbonate	3246	5032	4600

Ettringite improves the early strength of concrete or cementitious materials, or produces shrinkage compensation for concrete, while the delayed ettringite formation causes concrete cracking damage [24, 25]. The height of ettringite peak increased and the strength of specimen increased accordingly with the increase of cement content, see Table 4. Height of calcium carbonate and quartz also played a positive role in strength, as in general. The contents of both calcium carbonate and silica increased as the cement content increased.

According to JTG/T F20-2015, the 7th day unconfined compressive strength of cement stabilized base material should be greater than 2 MPa, and that of the sub-base layer should be greater than 1 MPa. The unconfined compressive strength of base and sub-base with 3% cement content was slightly higher than the Indirectation requirements. For the sake of engineering economy, this study selected 4% cement content.

3.3. Dry shrinkage

The relationship between the measuring time and the water loss was shown in Figure 9.

From figure 9, the water loss was increased with the increase of the days for OMC and base / sub-base RTAs, while the water loss of the RTAs were higher than that of OMC, mainly because RTAs contained WTA, and the water absorption of WTA was higher than that of virgin aggregate. In addition, both the RTAs and OMC had a quicker water loss rate in early period of bout 10 days than later.

Detailed analysis on the water loss was made in the following. On the 30th day, the water loss rate of the sub-base RTA was 10%, the water loss rate of base RTA was 7.7%, and the water loss rate of OMC was 3.7%, accounting for about 86%, 83% and 95% of the water absorption, respectively. On the 7th day, the water loss of the base / sub-base RTAs and OMC were 5.4%, 7% and 2.3% accounting for 57.5, 57.7% and 62.2% of the water absorption, respectively. The findings indicated that the water losses were closely correlated with the water contents absorbed, and was very fast in the early stage.
Empirical regressions between the water loss and the measuring time were made for base/sub-base RTAs and OMC. The water loss and the curing time were in logarithmic relation with high R^2, see Figure 9. By regression formula, the number of days needed for RTAs and OMC to complete dry was 54 for sub-base RTA, 85 for base RTA and 35 for OMC. Again, it indicated that the water loss will take 2-3 months for RTAs and 1-2 months for OMC, but the first 7 days will lose about 60% of all the water loss.

Similarly, regressions between the day of measuring and the shrinkage were shown in Figure 10. The total dry shrinkage strain of the base/sub-base RTAs and OMC in 30 days were 275×10^{-6}, 452×10^{-6} and 192×10^{-6}, while in 7th day were 156×10^{-6} and 246×10^{-6} and 97.5×10^{-6} respectively. The ratio of the 7 days shrinkage accounted for 57%, 54% and 50% of those of 30 days for the base/sub-base RTAs and OMC, respectively, see Figure 10. The results showed that the dry shrinkage performance of sub-base RTA was larger than the base RTA, and the dry shrinkage performance of RTAs were larger than OMC. The fast shrinkage speed was attributed from the water loss in the early stage, i.e., original from the high percentage of WTA used for base/sub-base RTAs.

The equation obtained by regression showed that the shrinkage and the curing time were in logarithmic relation. The shrinkage limits of the base/sub-base RTAs and OMC were 367×10^{-6}, 539×10^{-6}, and 195×10^{-6} estimated by using the days at which the water loss was complete.

The relationship between water loss and dry shrinkage was shown in Figure 11.

Figure 11. The relationship between water loss and dry shrinkage strain.

Figure 12. Freeze-thaw cycles and the weight of the test pieces.

Figure 11 indicated that the relationship of dry shrinkage strain with the water loss was very close for both base RTA and sub-base RTA, which were a liner line with high values of R^2. Again, the results indicated the nature of the dry shrinkage strain, i.e., the loss of water contents added in the RTA. Using the OMCs the RTAs were made with, the base and sub-base RTAs shrinkage strain limit were calculated to be 365×10^{-6} and 657×10^{-6}, respectively.

Sub-base RTA’s water loss was higher than that of base RTA’s, and base RTA’s water loss was higher than that of OMC’s, the dry shrinkage strain also shows the same rule, which was mainly due to the water absorption of WTA higher than that of virgin aggregate. The surface of RTA (<4.75mm) was relatively smooth, see SEM pictures, the other RTA surface were rougher. These rough surfaces greatly increased the difficulty of RTA for compaction. The coarser the particle surfaces, the greater the dry shrinkage strain.

3.4. Temperature shrinkage

The cement-stabilized RTA temperature shrinkages were summarized in Table 5. It can be seen from Table 5 that the total temperature shrinkage increased as temperature decreased. The total temperature shrinkage strain were 466×10^{-6}, and 404×10^{-6} for sub-base and base RTAs, respectively. As the temperature decreased, the temperature shrinkage strain decreased in each temperature range. When the temperature of the base layer was reduced from 40 °C to 20 °C (taking into account the actual probability of occurrence of the higher and most unfavorable), the amount of shrinkage of 201×10^{-6} and 6 days before the sample shrinkage strain corresponding to the base layer was 184×10^{-6} equivalent to the specimen 10 days before the amount of shrinkage strain, which showed that the change of temperature was also a key factor leading to the occurrence of cracks.
Table 5. Results of temperature shrinkage strain.

Temperature (℃)	40 to 30	30 to 20	20 to 10	10 to 0	0 to -10
Base RTA Net	95	88	81	74	66
× 10⁻⁶ Total	95	184	265	338	404
Sub-base RTA Net	103	98	92	88	84
× 10⁻⁶ Total	103	201	294	381	466

3.5. Frost resistance

The average change in the weight of the RTA blends was shown in Figure 12.

It can be seen from Figure 12 that the mass change rate \(W_n \) after 5 times of the freeze-thaw cycle were 2.97% and 2.52% for base and sub-base RTAs respectively. The required \(W_n \) was 5% higher than base and sub-base, so that the unconfined compressive strength test can be carried out.

The strengths of the specimen after \(n \) freeze-thaw cycles \((R_{DC}) \) were 2.624 MPa and 2.289 MPa, and the strength of specimen before freeze-thaw \((R_C) \) were 3.716 MPa and 2.589 MPa, for base and sub-base RTAs, respectively. Generally, the weight loss of the two RTAs did not show big difference even the sub-base RTA contained a high WTA than the base RTA.

The compressive strength loss (BDR) of the base RTA was 70.6% and that of the sub-base RTAs was 88.4%. Existing studies have shown that in severe frozen areas, the BDR of 28 day’s semi rigid base after 5 freeze-thaw cycles should be greater than 50%. In this study, both the base and sub-base RTAs’ BDR were greater than 50%, so the cement stabilized RTAs have a good frost resistance.

3.6. Fatigue performance

The ratios of the loading stress to the flexural-tensile strength used in this study were 0.55 and 0.7. The specimen was placed and loaded on the mold with the four-point pressure method. The fatigue test results were summarized in Table 6.

Table 6. Summary of fatigue test results

Type of specimen	Flexural-tensile strength (MPa)	Stress Ratio	Fatigue life (cycles)
Base RTA	0.456	0.55	401174
		0.7	8109
Sub-base RTA	0.312	0.55	104757
		0.7	3249

It can be seen from the Table 6 that the fatigue performance of the base RTA was better than that of the sub-base RTA under the two stress ratios as expected. The RTA with a high WTA would decrease a lot of the fatigue life. When the stress ratio increased from 0.55 to 0.7, the life of both the base and sub-base RTA decreased sharply at a similar decreasing rate of about 97%. Studies have shown that the fatigue life of semi-rigid base was different in different gradation types. Among them, the skeleton compact type has the longest fatigue life, the suspended dense type is the shortest, and the skeleton void type is slightly worse than the skeleton dense type. The fatigue life of cement stabilized RTA was closer to that of suspension dense type (the fatigue life was 200 thousands ~ 600 thousands cycles in the 0.55 stress ratio and 2 thousand ~7 thousand cycles in the 0.7 stress ratio).

4. Summaries and conclusions

This study investigated the feasibility of using recycled Lime-flyash stabilized aggregated (RTA) as either base or sub-base layer of a pavement. Durability of Portland cement stabilized RTA were examined in terms of shrinkage, freeze-thaw, fatigue properties. Based on the test results, following conclusions can be drawn:

1) As the particle size decreases, the roughness of the RTA particles increases. The roughness of particles was closely related to OMC obtained from the compaction and to the dry shrinkage strain. The coarser the particles, the greater the dry shrinkage strain.
2) The total dry shrinkage strain was increased as the water loss increased. The water content was in logarithmic relationship with the curing time, which was a similar way between to the shrinkage and the curing time.

3) The RTA blends exhibited a linear relationship between the temperature shrinkage and temperature decrease at each interval. So the maximum temperature should be avoided to reduce the formation of temperature cracks in hot weather.

4) The fatigue performance of the base RTA was better than that of the sub-base RTA under all the two stress ratios used in the study.

References

[1] XU Yue-zhou, SHI Jian-guang 2006 Concrete 201 7 (in Chinese)
[2] Juan Li 2005Master Thesis, Ho Hai University (in Chinese)
[3] Nataatmadja A, Tan Y 2001 Journal of Transportation Engineering 127 450-453
[4] Bestgen Janile O, Hatipoglu Mustafa, Cetin Bora 2016 Journal of Materials in Civil Engineering 28(9) 1535-1543
[5] Hotineanu A,B M 2015 Cold Regions Science and Technology 116-117 281-288
[6] Xue Y, Hou H, Zhu S, Zha J 2009 Constr Build Mater 23 989-996
[7] Goswami R K, Mahanta C 2007 Waste Manage 27(4) 466-481 (in Chinese)
[8] TENG Xu-qiu, CHEN Zhong-da, JIANG Wan-min 2006 Journal of Chang'an University (Natural Science Edition) 26(1)
[9] SUN Yong-hong, SHA Ai-min 2013 Journal of Highway and Transportation Research and Development 30(6)
[10] Khogali W E, Mohamed E H H 2004 Transportation Research Records 1874, Transportation Research Board, Washington, DC
[11] Lekarp F, Isacsson U, Dawson A 2000 J Transp Eng 101061/(ASCE)0733-947X1261(66)66-75
[12] Yuan D, Hoyos L R, Puppala A J 2011 90th Annual Meeting of the Transportation Research Board, Washington, DC
[13] MDSHA (Maryland State Highway Administration) 2015 Maryland roadway design manual <http://wwwroadsmarylandgov/m/indexaspx?PageId=453> Nov 20
[14] Cetin B, Aydilek A H, Li L 2012 Waste Manage 32(5) 965–978
[15] Komonweerakett K, Cetin B, Aydilek A H, Benson C H, Edil T B 2015 Fuel 140 788–802
[16] Berthelot C, Podborochynski D, Marjerison B, Gerbrandt R 2009 J Transp Eng, 101061/(ASCE) TE1943-54360000054 907–914
[17] Thom N H, Brown S F 1987 Transportation Research, Records 1121, Transportation Research Board, Washington, DC
[18] WANG Yan , NI Fu-jian , LI Zai-xin 2007 Journal of Highway and Transportation Research and Development 24(10) (in Chinese)
[19] Khogali W E, Mohamed E H H 2004 Transportation Research Records 1874, Transportation Research Board, Washington, DC
[20] Dempsey B J 1988 Transportation Research Records 1159, Transportation Research Board, Washington, DC
[21] JTG/E51-2009, Test methods of materials stabilized with inorganic binders for highway engineering, [S]
[22] JTG/T F20-2015, Technical guidelines for construction of highway roadbases, [S]
[23] Feng Xiaoxin, Zheng Wei 2013 SEM study of high alkali silicate cement clinker [J] Cement Engineering (05) 21-23 [2017-09-16] DOI: 1013697 / j cnki232-1449 / tu201305012
[24] Yang Jiansen 2003 Ettringite duality of the role of the concrete conditions of its occurrence [J] Civil Engineering Journal (02) 100-103 [2017-09-16] DOI1015951 / j tmgcbx 200302020
[25] ZHANG Zhao-peng, CHU Zhong-xin, LI Ying-kun 2016 [J] Ocean Science 40(12) 107-113 [2017-09-16]