BOCHNER-SCHOENBERG-EBERLEIN-TYPE INEQUALITY OF THE DIRECT SUM, IDEALS AND QUOTIENT OF FRÉCHET ALGEBRAS

M. AMIRI AND A. REJALI

Abstract. Let \(A \) and \(B \) be two commutative semisimple Fréchet algebras. We first give a characterization of the multiplier algebra of the direct sum of \(A \) and \(B \). We then prove that \(A \oplus B \) is a BSE-algebra if and only if \(A \) and \(B \) are BSE-algebras. Furthermore, for a closed ideal \(I \) of \(A \), we study multipliers of ideals and quotient algebras of \(A \) and show that \(I \) and \(A/I \) are BSE-algebras, under certain conditions.

1. Introduction and Preliminaries

BSE stands for the theorem Bochner-Schoenberg-Eberlein. This theorem proved for locally compact Abelian groups [3] and was generalized for commutative Banach algebras, by Takahasi and Hatori [9, 11]. Moreover, it developed by other authors such as Inoue and Takahasi [5] and later by Kaniuth and Ülger [7]. We studied the BSE property for the commutative Fréchet algebras; see [2].

Let \(A \) be a commutative Banach algebra without order and the space \(\Delta(A) \) denotes the set of all nonzero multiplicative linear functionals on \(A \) with respect to the Gelfand-topology. A bounded continuous function \(\sigma \) on \(\Delta(A) \) is called a BSE-function if there exists a positive real number \(\beta \) such that for every finite number of complex-numbers \(c_1, \cdots, c_n \) and the same number of \(\varphi_1, \cdots, \varphi_n \) in \(\Delta(A) \) the inequality

\[
\left| \sum_{i=1}^{n} c_i \sigma(\varphi_i) \right| \leq \beta \left\| \sum_{i=1}^{n} c_i \varphi_i \right\|_{A^*}
\]

holds. Following [12], the BSE norm of \(\sigma \), denoted by \(\left\| \sigma \right\|_{BSE} \), is defined to be the infimum of all such \(\beta \). The set of all BSE-functions is denoted by \(C_{BSE}(\Delta(A)) \) where it is a commutative semisimple Banach algebra, under \(\left\| \cdot \right\|_{BSE} \).

Let us recall from [8, 9] that a Fréchet space is a completely metrizable locally convex space where its topology is generated by a translation invariant metric. Furthermore, following [4], a complete topological algebra \(A \) is a Fréchet algebra if its topology is produced by a countable family of increasing submultiplicative seminorms \((p_k)_{k \in \mathbb{N}} \). The class of Fréchet algebras is an important class of locally convex algebras has been widely studied by many authors. Note that every Fréchet (algebra) space is not necessarily a Banach (algebra) space. Some differences between Banach and Fréchet (algebras) spaces introduced in the survey paper [1].

Let \((\mathcal{A}, p_k)_{k \in \mathbb{N}} \) be a Fréchet algebra. Consider \(\mathcal{A}^* \) the topological dual of \(\mathcal{A} \). The strong topology on \(\mathcal{A}^* \) is generated by seminorms \((P_M) \) where \(M \) is a

2010 Mathematics Subject Classification. 46J05, 46J20.
Key words and phrases. BSE-algebra, commutative Fréchet algebra, multiplier algebra.
bounded set in A; see [9] for more details. Following [2], a bounded complex-valued continuous function σ defined on $\Delta(A)$ is called a BSE-function, if there exist a bounded set M in A and a positive real number β_M such that for every finite number of complex-numbers c_1, \cdots, c_n and the same number of $\varphi_1, \cdots, \varphi_n$ in $\Delta(A)$ the inequality
\[
\left| \sum_{i=1}^{n} c_i \sigma(\varphi_i) \right| \leq \beta_M P_M \left(\sum_{i=1}^{n} c_i \varphi_i \right)
\]
holds. Moreover by [2, Theorem 3.3], $C_{\text{BSE}}(\Delta(A))$ is a commutative semisimple Fréchet algebra and
\[
C_{\text{BSE}}(\Delta(A)) = A^{**}|_{\Delta(A)} \cap C_b(\Delta(A)).
\]
Let now (A, p_T) be a commutative Fréchet algebra. A linear operator T on A is called a multiplier if it satisfies $a T(b) = T(ab)$, for all $a, b \in A$. The set $M(A)$ of all multipliers of A with the strong operator topology, is a commutative unital complete locally convex algebra and not necessarily Fréchet algebra; see [2, Proposition 4.1]. Analogous to the Banach case, for each $T \in M(A)$, there exists a unique continuous function \tilde{T} on $\Delta(A)$ such that $\varphi(T(a)) = \tilde{T}(\varphi) \varphi(a)$ for all $a \in A$ and $\varphi \in \Delta(A)$. The algebra A is called BSE algebra if $M(A) = C_{\text{BSE}}(\Delta(A))$, where $M(A) = \{ \tilde{T} : T \in M(A) \}$. A bounded net $(e_a)_{a \in A}$ in A is called a Δ-weak approximate identity for A if it satisfies $\varphi(e_a) \to a_1$ or equivalently $\varphi(e_a a) \to a \varphi(a)$ for every $a \in A$ and $\varphi \in \Delta(A)$. Moreover, A has a bounded Δ-weak approximate identity if and only if $M(A) \subseteq C_{\text{BSE}}(\Delta(A))$. In addition,
\[
\mathcal{M}(A) = \{ \Phi : \Delta(A) \to \mathbb{C} : \Phi \text{ is continuous and } \Phi \cdot \hat{A} \subseteq \hat{A} \}.
\]
This is another definition of the multiplier algebra of Fréchet algebras. If A is a commutative semisimple Fréchet algebra, then $\mathcal{M}(A) = M(A) = M(A)$. In the present paper, we show that $\mathcal{M}(A \oplus B) = M(A) \times M(B)$ and
\[
C_{\text{BSE}}(\Delta(A \oplus B)) = C_{\text{BSE}}(\Delta(A)) \times C_{\text{BSE}}(\Delta(B)).
\]
Additionally, we prove that $A \oplus B$ is a BSE-algebra if and only if A and B are BSE. We also offer conditions under which closed ideals and quotient algebras of BSE algebras are BSE-algebras.

2. THE MULTIPLIER ALGEBRA FOR THE DIRECT SUM OF FRÉCHET ALGEBRAS

The direct sum of Banach algebras studied in [6]. In the following, we generalized it for Fréchet algebras. Let (A, r_ℓ) and (B, s_ℓ) be two commutative Fréchet algebras. Then, $A \oplus B = A \times B$ defined by
\begin{enumerate}[(i)]
\item $(a_1, a_2) \cdot (b_1, b_2) = (a_1 b_1, a_2 b_2)$, for $a_1, a_2 \in A$, $b_1, b_2 \in B$;
\item $P_\ell(a, b) = r_\ell(a) + s_\ell(b)$, for $a \in A$, $b \in B$ and $\ell \in \mathbb{N}$;
\item $(a_1, a_2) + (b_1, b_2) = (a_1 + b_1, a_2 + b_2)$.
\end{enumerate}

By a standard argument, the following is straightforward.

Lemma 2.1. Let (A, r_ℓ) and (B, s_ℓ) be two Fréchet algebras. Then,
\begin{enumerate}[(i)]
\item $(A \oplus B, P_\ell)$ is a Fréchet algebra.
\item $(A \oplus B)^* = A^* \oplus B^*$ as homeomorphism.
\item $\Delta(A \oplus B) = (\Delta(A) \times \{0\}) \cup (\{0\} \times \Delta(B))$.
\item $A \oplus B$ is semisimple if and only if both A and B are semisimple.
\end{enumerate}
Lemma 2.2. Let \mathcal{A} and \mathcal{B} be two commutative Fréchet algebras. Then,
$$C_{\text{BSE}}(\Delta(\mathcal{A} \oplus \mathcal{B})) = C_{\text{BSE}}(\Delta(\mathcal{A})) \times C_{\text{BSE}}(\Delta(\mathcal{B})).$$

Proof. Let $\sigma \in C_{\text{BSE}}(\Delta(\mathcal{A} \oplus \mathcal{B}))$. Then, by [2, Proposition 3.5(iii)] we have
$$\sigma \in C_b(\Delta(\mathcal{A} \oplus \mathcal{B})) \cap (\mathcal{A}^{**} \oplus \mathcal{B}^{**})|_{\Delta(\mathcal{A} \oplus \mathcal{B})}.$$

Therefore, there exist $\sigma_1 \in \mathcal{A}^{**}$ and $\sigma_2 \in \mathcal{B}^{**}$ where $\sigma_1|_{\Delta(\mathcal{A})} \in \mathcal{A}^{**}|_{\Delta(\mathcal{A})}$, $\sigma_2|_{\Delta(\mathcal{B})} \in \mathcal{B}^{**}|_{\Delta(\mathcal{B})}$ and $\sigma = (\sigma_1, \sigma_2)$. In addition, there exist a bounded set M in $\mathcal{A} \oplus \mathcal{B}$ and a positive real number β_M such that for every finite number of $c_1, \cdots, c_n \in \mathbb{C}$ and $(\varphi_1, \psi_1, \cdots, \varphi_n, \psi_n) \in \Delta(\mathcal{A} \oplus \mathcal{B})$ the inequality
$$\left| \sum_{i=1}^{n} c_i \sigma(\varphi_i, \psi_i) \right| \leq \beta_M P_M \left(\sum_{i=1}^{n} c_i \varphi_i, \psi_i \right)$$
holds. In particular, for each $(\varphi_1, 0, \cdots, \varphi_n, 0) \in \Delta(\mathcal{A} \oplus \mathcal{B})$ and $c_1, \cdots, c_n \in \mathbb{C}$, there exist bounded sets $N_1 \subseteq \mathcal{A}$ and $N_2 \subseteq \mathcal{B}$ such that
$$\left| \sum_{i=1}^{n} c_i \sigma_1(\varphi_i) \right| = \left| \sum_{i=1}^{n} c_i \sigma(\varphi_i, 0) \right| \leq \beta_M P_M \left(\sum_{i=1}^{n} c_i(\varphi_i, 0) \right) = \beta_M \sup \left\{ \left| \sum_{i=1}^{n} c_i(\varphi_i, 0) (a, b) \right| : (a, b) \in M \right\} = \beta_M \sup \left\{ \left| \sum_{i=1}^{n} c_i \varphi_i(a) \right| : a \in N_1 \right\} = \beta_M P_{N_1} \left(\sum_{i=1}^{n} c_i \varphi_i \right),$$
and similarly
$$\left| \sum_{i=1}^{n} c_i \sigma_2(\psi_i) \right| = \left| \sum_{i=1}^{n} c_i \sigma(0, \psi_i) \right| \leq \beta_M P_{N_2} \left(\sum_{i=1}^{n} c_i \psi_i \right).$$

We recall from [9] that $N_1 = \pi_1(M)$ and $N_2 = \pi_2(M)$ where π_1 and π_1 are projection mappings on $\mathcal{A} \oplus \mathcal{B}$. Moreover, $M \subseteq N_1 \times N_2$. By above arguments, $\sigma_1 \in C_{\text{BSE}}(\Delta(\mathcal{A}))$ and $\sigma_2 \in C_{\text{BSE}}(\Delta(\mathcal{B}))$, where $\sigma_1(\varphi) = \sigma(\varphi, 0)$ and $\sigma_2(\psi) = \sigma(0, \psi)$ for each $\varphi \in \Delta(\mathcal{A})$ and $\psi \in \Delta(\mathcal{B})$. This implies that
$$C_{\text{BSE}}(\Delta(\mathcal{A} \oplus \mathcal{B})) \subseteq C_{\text{BSE}}(\Delta(\mathcal{A})) \times C_{\text{BSE}}(\Delta(\mathcal{B})).$$

For the reverse conclusion, let $\sigma_1 \in C_{\text{BSE}}(\Delta(\mathcal{A}))$ and $\sigma_2 \in C_{\text{BSE}}(\Delta(\mathcal{B}))$. If $\xi \in \Delta(\mathcal{A} \oplus \mathcal{B})$, then $\xi = (\varphi, 0)$ or $\xi = (0, \psi)$ for some $\varphi \in \Delta(\mathcal{A})$ or $\psi \in \Delta(\mathcal{B})$. We define
$$\sigma(\xi) := \begin{cases} \sigma_1(\varphi) & \text{if } \xi = (\varphi, 0), \\ \sigma_2(\psi) & \text{if } \xi = (0, \psi). \end{cases}$$

By assumption, there exist a bounded set N_1 of \mathcal{A} and a positive real number β_{N_1} such that for every finite number of complex-numbers c_1, \cdots, c_n and the same number of $\varphi_1, \cdots, \varphi_n$ in $\Delta(\mathcal{A})$ the inequality
$$\left| \sum_{i=1}^{n} c_i \sigma_1(\varphi_i) \right| \leq \beta_{N_1} P_{N_1} \left(\sum_{i=1}^{n} c_i \varphi_i \right)$$
holds. Also, there exist a bounded set N_2 of \mathcal{B} and a positive real number β_{N_2} such that for every finite number of complex-numbers c_1, \ldots, c_n and the same number of ψ_1, \ldots, ψ_n in $\Delta(\mathcal{B})$ the inequality
\[
|\sum_{i=1}^{n} c_i\sigma_2(\psi_i)| \leq \beta_{N_2}P_N\left(\sum_{i=1}^{n} c_i\psi_i\right)
\]
holds. Therefore,
\[
|\sum_{i=1}^{n} c_i\sigma(\xi)| \leq \beta_M P_M\left(\sum_{i=1}^{n} c_i(\xi)\right),
\]
where $M = N_1 \times N_2$ and $\beta_M = \max\{\beta_{N_1}, \beta_{N_2}\}$. Consequently,
\[
\sigma \in C_{\text{BSE}}(\Delta(\mathcal{A} \oplus \mathcal{B})),
\]
which completes the proof. \qed

Proposition 2.3. Let \mathcal{A} and \mathcal{B} be two commutative Fréchet algebras. Then,
\[
\mathcal{M}(\mathcal{A} \oplus \mathcal{B}) = \mathcal{M}(\mathcal{A}) \times \mathcal{M}(\mathcal{B}).
\]

Proof. Let $\Phi \in \mathcal{M}(\mathcal{A})$ and $\Psi \in \mathcal{M}(\mathcal{B})$. Since $\Phi \cdot \hat{\mathcal{A}} \subseteq \hat{\mathcal{A}}$ and $\Psi \cdot \hat{\mathcal{B}} \subseteq \hat{\mathcal{B}}$, for all $(a, b) \in \mathcal{A} \oplus \mathcal{B}$ there are elements $c \in \mathcal{A}$ and $d \in \mathcal{B}$ such that
\[
((\Phi, \Psi) \cdot (a, b))(\varphi, 0) = (\Phi, \Psi)(\varphi, 0)(a, b)(\varphi, 0) = \Phi(\varphi)\widehat{a}(\varphi) = \widehat{\sigma}(\varphi),
\]
where $(\Phi, \Psi)(\varphi, 0) = \Phi(\varphi)$ for each $(\varphi, 0) \in \Delta(\mathcal{A}) \times \{0\}$. Similarly,
\[
((\Phi, \Psi) \cdot (a, b))(0, \psi) = (\Phi, \Psi)(0, \psi)(a, b)(0, \psi) = \Psi(\psi)\widehat{b}(\psi) = \widehat{\alpha}(\psi),
\]
where $(\Phi, \Psi)(0, \psi) = \Psi(\psi)$ for each $(0, \psi) \in \{0\} \times \Delta(\mathcal{B})$. Hence,
\[
((\Phi, \Psi) \cdot (a, b))(\varphi, 0) = (\widehat{c}, d)(\varphi, 0),
\]
and
\[
((\Phi, \Psi) \cdot (a, b))(0, \psi) = (\widehat{c}, d)(0, \psi).
\]
Thus, $(\Phi, \Psi) \cdot (\hat{\mathcal{A}} \oplus \hat{\mathcal{B}}) \subseteq (\hat{\mathcal{A}} \oplus \hat{\mathcal{B}})$ and $(\Phi, \Psi) \in \mathcal{M}(\mathcal{A} \oplus \mathcal{B})$.

Now, suppose that $F \in \mathcal{M}(\mathcal{A} \oplus \mathcal{B})$. Define $\Phi(\varphi) = F(\varphi, 0)$ and $\Psi(\psi) = F(0, \psi)$ for all $\varphi \in \Delta(\mathcal{A})$ and $\psi \in \Delta(\mathcal{B})$. Therefore, $F = (\Phi, \Psi)$. It is enough to show that $\Phi \in \mathcal{M}(\mathcal{A})$ and $\Psi \in \mathcal{M}(\mathcal{B})$. For each $a \in \mathcal{A}$, there exists $(a', b') \in \mathcal{A} \oplus \mathcal{B}$ such that
\[
\Phi(\varphi)\widehat{a}(\varphi) = F(\varphi, 0)(\widehat{a}, 0)(\varphi, 0) = (a', b')(\varphi, 0) = \widehat{a'}(\varphi).
\]
Consequently, $\Phi \cdot \hat{\mathcal{A}} \subseteq \hat{\mathcal{A}}$ and $\Phi \in \mathcal{M}(\mathcal{A})$. Similarly, $\Psi \in \mathcal{M}(\mathcal{B})$. Hence,
\[
\mathcal{M}(\mathcal{A} \oplus \mathcal{B}) = \{(\Phi, \Psi) : \Phi \in \mathcal{M}(\mathcal{A}), \Psi \in \mathcal{M}(\mathcal{B})\},
\]
and completes the proof. \qed

Corollary 2.4. Let \mathcal{A} and \mathcal{B} be two commutative semisimple Fréchet algebras. Then,
\[
\mathcal{M}(\mathcal{A} \oplus \mathcal{B}) = \mathcal{M}(\mathcal{A}) \oplus \mathcal{M}(\mathcal{B}).
\]
We now state the main result of this paper.

Theorem 2.5. Let \((A, r_\ell)\) and \((B, s_\ell)\) be two commutative semisimple Fréchet algebras. Then, \(A \oplus B\) is a BSE-algebra if and only if \(A\) and \(B\) are BSE-algebras.

Proof. Let \(A\) and \(B\) be BSE-algebras. By applying [2, Theorem 4.5], \(A\) and \(B\) have bounded \(\Delta\)-weak approximate identities. Suppose that \((e_\alpha)_\alpha\) and \((f_\beta)_\beta\) are bounded \(\Delta\)-weak approximate identities of \(A\) and \(B\), respectively. Therefore, \(\{(e_\alpha, f_\beta)\}_{(\alpha, \beta)}\) is a bounded \(\Delta\)-weak approximate identity for \(A \oplus B\). Indeed, for all \(\xi \in \Delta(A \oplus B)\) there exists \(\varphi \in \Delta(A)\) or \(\psi \in \Delta(B)\), where \(\xi = (\varphi, 0)\) or \(\xi = (0, \psi)\). Thus,

\[
\lim_{(\alpha, \beta)} \xi(e_\alpha, f_\beta) = \lim_{(\alpha, \beta)} (\varphi, 0)(e_\alpha, f_\beta) = \lim_{\alpha} \varphi(e_\alpha) = 1,
\]
or

\[
\lim_{(\alpha, \beta)} \xi(e_\alpha, f_\beta) = \lim_{(\alpha, \beta)} (0, \psi)(e_\alpha, f_\beta) = \lim_{\beta} \psi(f_\beta) = 1.
\]

Moreover, for each \(\ell \in \mathbb{N}\) we have \(\sup_{\alpha} r_\ell(e_\alpha) < \infty\) and \(\sup_{\beta} s_\ell(f_\beta) < \infty\). Also, \((A \oplus B, P_\ell)\) is a Fréchet algebra, where \(P_\ell(a, b) = r_\ell(a) + s_\ell(b)\) for each \(\ell \in \mathbb{N}\). Therefore,

\[
\sup_{(\alpha, \beta)} P_\ell(e_\alpha, f_\beta) = \sup_{\alpha} r_\ell(e_\alpha) + \sup_{\beta} s_\ell(f_\beta) < \infty.
\]

Hence, for all \(\xi \in \Delta(A \oplus B)\) we have \(\lim_{(\alpha, \beta)} \xi(e_\alpha, f_\beta) = 1\) and \(\{(e_\alpha, f_\beta)\}_{(\alpha, \beta)}\) is a \(\Delta\)-weak approximate identity for \(A \oplus B\). Consequently,

\[
M(A \oplus B) \subseteq C_{\text{BSE}}(\Delta(A \oplus B)).
\]

For the reverse conclusion, let \(\sigma \in C_{\text{BSE}}(\Delta(A \oplus B))\). Hence, there exist \(\sigma_1 \in C_{\text{BSE}}(\Delta(A))\) and \(\sigma_2 \in C_{\text{BSE}}(\Delta(B))\) such that \(\sigma(\varphi, \psi) = \sigma_1(\varphi) + \sigma_2(\psi)\) for all \(\varphi \in \Delta(A)\) and \(\psi \in \Delta(B)\). Since \(A\) and \(B\) are BSE algebras, \(\sigma_1 \in M(A)\) and \(\sigma_2 \in M(B)\), by applying Proposition 2.3. Therefore, \(\sigma \in M(A) \times M(B)\). Thus, \(\sigma \in M(A \oplus B)\) and

\[
C_{\text{BSE}}(\Delta(A \oplus B)) \subseteq M(A \oplus B).
\]

Consequently, \(A \oplus B\) is a BSE-algebra.

Conversely, suppose that \(A \oplus B\) is a BSE-algebra. Then,

\[
M(A \oplus B) = M(A \oplus B) = C_{\text{BSE}}(\Delta(A \oplus B)).
\]

Let \(\sigma_1 \in C_{\text{BSE}}(\Delta(A))\) and \(\sigma_2 \in C_{\text{BSE}}(\Delta(B))\). Then \((\sigma_1, 0)\) and \((0, \sigma_2)\) belong to \(C_{\text{BSE}}(\Delta(A \oplus B))\). Also, \(\sigma_1 \in M(A)\) and \(\sigma_2 \in M(B)\) and so

\[
C_{\text{BSE}}(\Delta(A)) \subseteq M(A) \quad \text{and} \quad C_{\text{BSE}}(\Delta(B)) \subseteq M(B).
\]

Conversely, suppose that \(\sigma_1 \in M(A)\) and \(\sigma_2 \in M(B)\). Thus, \((0, \sigma_2)\) and \((\sigma_1, 0)\) belong to \(M(A) \times M(B)\), where

\[
M(A) \times M(B) = M(A \oplus B)
\]

\[
= C_{\text{BSE}}(\Delta(A \oplus B))
\]

\[
= C_{\text{BSE}}(\Delta(A)) \times C_{\text{BSE}}(\Delta(B)).
\]

Thus, \(\sigma_1 \in C_{\text{BSE}}(\Delta(A))\) and \(\sigma_2 \in C_{\text{BSE}}(\Delta(B))\). Hence, \(M(A) \subseteq C_{\text{BSE}}(\Delta(A))\) and \(M(B) \subseteq C_{\text{BSE}}(\Delta(B))\). Consequently, \(A\) and \(B\) are BSE algebras. \(\square\)
3. IDEALS AND QUOTIENT ALGEBRAS OF BSE-FRÉCHET ALGEBRAS

Let \((A, p_\ell)\) be a commutative Fréchet algebra and \(I\) be a closed ideal of \(A\). Then, \((I, p_\ell|_I)\) and \((\frac{A}{I}, s_\ell)\) are also Fréchet algebras where

\[s_\ell(x + I) := \inf \{ p_\ell(x + y) : y \in I \}. \]

In the sequel we will call \(I\) an essential ideal, when \(I\) equals the closed linear span of \(\{ax : a \in A, x \in I\}\). Moreover, we will give conditions under which \(I\) and \(\frac{A}{I}\) are BSE algebras.

Following [9, Corollary 26.25], if \(A\) is a Fréchet Schwartz space and \(I\) be a closed ideal of \(A\), then

\[I^* \cong \frac{A^*}{I^0} \quad \text{and} \quad (\frac{A}{I})^* \cong I^0, \]

where \(I^0 = \{ f \in A^* : |f(x)| \leq 1, \text{ for all } x \in I \}\) and equivalently

\[I^0 = \{ f \in A^* : f(x) = 0, \text{ for all } x \in I \}. \]

Analogous to the Banach case, if \(A\) is a BSE-algebra with discrete carrier space, then \(C_0(\Delta(A)) = \ell_\infty(\Delta(A))\). Hence, \(C_{\text{BSE}}(\Delta(A)) = A^{**}|_{\Delta(A)}\). Moreover, by similar arguments to the proof of [10, Theorem 3.1.18], if \(I\) is a closed ideal of \(A\), then \(\Delta(I)\) is discrete.

Lemma 3.1. If the Fréchet algebra \(A\) has a bounded \(\Delta\)-weak approximate identity and \(I\) is a closed essential ideal of \(A\), then \(\frac{A}{I}\) has a bounded \(\Delta\)-weak approximate identity.

Proof. Let \((e_\alpha)_\alpha\) be a bounded \(\Delta\)-weak approximate identity of \(A\). Then, for each \(\varphi \in \Delta(A)\), \(\varphi(e_\alpha) \to_\alpha 1\). For each \(\alpha\), we define \(f_\alpha := e_\alpha + I\) and show that the net \((f_\alpha)_\alpha\) is a bounded \(\Delta\)-weak approximate identity for \(\frac{A}{I}\). Suppose that \(\psi \in \Delta\left(\frac{A}{I}\right)\). Therefore, there exists \(\varphi \in \Delta(A)\) such that \(\varphi|_I = 0\) and \(\psi(a + I) := \varphi(a)\), for each \(a \in A\). Hence,

\[\psi(f_\alpha) = \varphi(e_\alpha) \to_\alpha 1. \]

Thus, \((f_\alpha)_\alpha\) is a bounded \(\Delta\)-weak approximate identity for \(\frac{A}{I}\). \(\square\)

Let \((A, p_\ell)\) be a Fréchet algebra. For each \(\ell \in \mathbb{N}\), consider

\[M_\ell = \{ a \in A : p_\ell(a) < 1 \}, \]

and

\[M^\ell_\ell = \{ f \in A^* : |f(a)| \leq 1 \text{ for all } a \in M_\ell \}. \]

As mentioned in section 3.3, by applying [2, Theorem 3.3], \((C_{\text{BSE}}(\Delta(A)), r_\ell)\) is a commutative semisimple Fréchet algebra such that for each \(\ell \in \mathbb{N}\) and \(\sigma \in \Delta(A)\) we have

\[r_\ell(\sigma) = \sup \{ |\sigma(f)| : f \in M^\ell_\ell \cap <\Delta(A)> \}. \]

Now, the following result is immediate.

Theorem 3.2. Let \(A\) be a BSE-Fréchet Schwartz algebra with discrete carrier space and \(I\) be an essential closed ideal of \(A\). Then,

(i) \(C_{\text{BSE}}(\Delta(I)) \subseteq \overline{M(I)}\).

(ii) \(M(\frac{A}{I}) = C_{\text{BSE}}(\Delta(\frac{A}{I}))\).
Proof. (i) Suppose that \(w \in C_{\text{BSE}}(\Delta(I)) \). Note that
\[
\Delta(I) = \{ \varphi | I : \varphi \in \Delta(A) \setminus I^\circ \}.
\]
We define \(\sigma \in \Delta(A) \) as follow
\[
\sigma(\varphi) := \begin{cases}
 w(\varphi | I) & \varphi \in \Delta(A) \setminus I^\circ, \\
 0 & \varphi \in \Delta(A) \cap I^\circ.
\end{cases}
\]
We show that \(\sigma \in C_{\text{BSE}}(\Delta(A)) \). In fact, there exists a bounded set \(M \) in \(I \) and a positive real number \(\beta_M \) such that for every finite number of complex-numbers \(c_1, \ldots, c_n \) and the same number of \(\varphi_1, \ldots, \varphi_n \in \Delta(A) \), we have
\[
\left| \sum_{i=1}^{n} c_i \sigma(\varphi_i) \right| = \left| \sum_{\varphi_i \in \Delta(A) \setminus I^\circ} c_i \sigma(\varphi_i) \right|
\leq \beta_M P_M \left(\sum_{\varphi_i \in \Delta(A) \setminus I^\circ} c_i |\varphi_i| \right)
\leq \beta_M P_M \left(\sum_{i=1}^{n} c_i |\varphi_i| \right)
\leq \beta_M P_M (\sum_{i=1}^{n} c_i |\varphi_i|).
\]
Thus, \(\sigma \in C_{\text{BSE}}(\Delta(A)) \). Since \(A \) is BSE-algebra, take \(T \in M(A) \) such that \(\widehat{T} = \sigma \) and put \(S = T | I \). Then, \(S \in M(I) \). Also, for any \(x \in I \) and \(\varphi \in \Delta(A) \setminus I^\circ \), we have
\[
\widehat{S}(\varphi | I) \widehat{x}(\varphi | I) = (\widehat{S}x)(\varphi | I) = (\widehat{T}x)(\varphi) = \widehat{T}(\varphi) \widehat{x}(\varphi)
= \sigma(\varphi) \widehat{x}(\varphi | I) = w(\varphi | I) \widehat{x}(\varphi | I).
\]
Since \(\varphi | I \in \Delta(A) \), there exists \(x \in I \) such that \(\varphi | I(x) \neq 0 \). Then, \(\widehat{x}(\varphi | I) \neq 0 \).
Therefore, \(\widehat{S}(\varphi | I) = w(\varphi | I) \). Consequently, \(w = \widehat{S} \), where \(\widehat{S} \in M(I) \). Hence, \(C_{\text{BSE}}(\Delta(I)) \subseteq M(I) \).

(ii) Since \(A \) is BSE algebra, it has a bounded \(\Delta \)-weak approximate identity and by Lemma 3.1, \(\frac{A}{I} \) also has an approximate identity. Thus, \(\widehat{M}(\frac{A}{I}) \subseteq C_{\text{BSE}}(\Delta(\frac{A}{I})) \).

To show the reverse inclusion, let \(\sigma' \in C_{\text{BSE}}(\Delta(\frac{A}{I})) \). Since both \(\Delta(A) \) and \(\Delta(\frac{A}{I}) \) are discrete,
\[
C_{\text{BSE}}(\Delta(A)) = A^{**}|_{\Delta(A)}
\]
and
\[
C_{\text{BSE}}(\Delta(\frac{A}{I})) = (\frac{A}{I})^{**}|_{\Delta(\frac{A}{I})}.
\]
Thus, we can take \(F' \in (\frac{A}{I})^{**} \) with \(F'|_{\Delta(\frac{A}{I})} = \sigma' \). Set \(I^\circ = \{ f \in A^*: f| I = 0 \} \).
For each \(f \in I^\circ \), define \(f' \) by the relation \(f'(a') = f(a) \) \((a' = a + I \in \frac{A}{I}) \). The map \(f \mapsto f' \) is an isometric isomorphism of \(I^\circ \) onto \((\frac{A}{I})^{*} \). We define \(F' \) by the relation \(F'(f) = F'(f') \) \((f \in I^\circ) \). Then, \(F' \in (I^\circ)^* \) and there exists \(F \in A^{**} \) such that \(r_F(F) = r_{F'}(F') \) and \(F|I^\circ = F' \) by using the general framework of the Hahn-Banach theorem [9, Proposition 22.12]. By the BSE property of \(A \), there exists \(T \in M(A) \) with \(\widehat{T} = F|_{\Delta(A)} \). Since \(I \) is essential and \(T(ab) = aTb \) for all
a, b ∈ A, we have T(I) ⊆ I. Then, T′ defined by $T′(a′) = (Ta)' (a ∈ A)$ belongs to $M(\hat{\mathcal{A}})$. In this case, $\hat{T}' = \sigma'$. Actually for any $a ∈ A$ and $\varphi ∈ \Delta(A) \cap I^0$, we have
\[
\hat{\alpha}(\varphi)\hat{T}'(\varphi)' = \hat{\alpha}'(\varphi)\hat{T}'(\varphi)' = \hat{(Ta)'}(\varphi)'
\]
\[
= (Ta)'(\varphi)' = (Ta)(\varphi) = \hat{\alpha}(\varphi)\hat{T}(\varphi),
\]
so that $\hat{T}' = \hat{T}(\varphi)$ and
\[
\sigma'(\varphi') = F'(\varphi') = F(\varphi) = \hat{T}(\varphi) = \hat{T}'(\varphi').
\]
Therefore, $\sigma' = \hat{T}$, since $\Delta(\hat{\mathcal{A}}) = \{\varphi' : \varphi ∈ \Delta(A) \cap I^0\}$. Thus, $\sigma' ∈ M(\hat{\mathcal{A}})$. Hence, $C_{\text{BSE}}(\Delta(\hat{\mathcal{A}})) ⊆ M(\hat{\mathcal{A}})$. Consequently, \mathcal{A} is BSE.

Corollary 3.3. In above Theorem, if I has a bounded Δ-weak approximate identity, then I is a BSE algebra.

References

[1] Z. Alimohammadi and A. Rejali, Fréchet algebras in abstract harmonic analysis, arXiv:1811.10987v1 [math.FA].
[2] M. Amiri and A. Rejali, The Bochner-Schoenberg-Eberlein Property for commutative Fréchet Algebras, submitted.
[3] S. Bochner, A theorem on Fourier-Stieltjes integrals, Bull. Amer. Math. Soc. 40(1934), 271-276.
[4] H. Goldmann, Uniform Fréchet algebras, North-Holland Mathematics Studies, 162. North-Holland (Amsterdam-New York, 1990).
[5] J. Inoue and S. E. Takahasi, On characterizations of the image of Gelfand transform of commutative Banach algebras. Math. Nachr. 280(2007), 105-126.
[6] Z. Kamali, M. Lashkarizadeh Bami, The multiplier algebra and bse property of the direct sum of banach algebras, Bull. Aust. Math. Soc. 88(2013), 250-258.
[7] E. Kaniuth and A. Ülger, The Bochner-Schoenberg-Eberlein property for commutative Banach algebras, especially Fourier-Stieltjes algebras, Trans. Amer. Math. Soc., 362(2010), 4331-4356.
[8] R. Larsen, An Introduction to the theory of multipliers, Springer-Verlag, New York-Heidelberg, (1971).
[9] R. Meise and D. Vogt, Introduction to functional analysis, Oxford Science Publications, (1997).
[10] C. E. Rickart, General theory of Banach algebras, Van Nostrand, Princeton, New Jersey.
[11] I. J. Schoenberg, A remark on the preceeding note by Bochner, Bull. Amer. Math. Soc. 40(1934), 277-278.
[12] S. E. Takahasi and O. Hatori, Commutative Banach algebras which satisfy a Bochner-Schoenberg-Eberlein-type theorem, Proc. Amer. Math. Soc. 110(1990), 149-158.

M. Amiri
Department of Pure Mathematics, University of Isfahan, Isfahan, Iran
mitra.amiri@sci.ui.ac.ir
mitra75amiri@gmail.com

A. Rejali
Department of Pure Mathematics, University of Isfahan, Isfahan, Iran
rejali@sci.ui.ac.ir