TOPICAL REVIEW

Review of superconducting properties of MgB₂

Cristina Buzea ¹, ² and Tsutomu Yamashita ², ³

¹ Research Institute of Electrical Communication, Tohoku University, Sendai 980-8577, Japan
² New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579, Japan
³ CREST Japan Science and Technology Corporation (JST)

Received 15 August 2001

Abstract
This review paper illustrates the main normal and superconducting state properties of magnesium diboride, a material known since early 1950’s, but recently discovered to be superconductive at a remarkably high critical temperature $T_c=40$K for a binary compound. What makes MgB₂ so special? Its high T_c, simple crystal structure, large coherence lengths, high critical current densities and fields, transparency of grain boundaries to current promises that MgB₂ will be a good material for both large scale applications and electronic devices. During the last seven month, MgB₂ has been fabricated in various forms, bulk, single crystals, thin films, tapes and wires. The largest critical current densities >10MA/cm² and critical fields 40T are achieved for thin films. The anisotropy ratio inferred from upper critical field measurements is still to be resolved, a wide range of values being reported, $\gamma = 1.2 \div 9$. Also there is no consensus about the existence of a single anisotropic or double energy gap. One central issue is whether or not MgB₂ represents a new class of superconductors, being the tip of an iceberg who awaits to be discovered. Up to date MgB₂ holds the record of the highest T_c among simple binary compounds. However, the discovery of superconductivity in MgB₂ revived the interest in non-oxides and initiated a search for superconductivity in related materials, several compounds being already announced to become superconductive: TaB₂, BeB₂.₇₅, C-S composites, and the elemental B under pressure.

(Some figures in this article are in colour only in the electronic version; see www.iop.org)
1. Introduction

MgB₂ is an "old" material, known since early 1950's, but only recently discovered to be superconductor [Akimitsu], [Nagamatsu] at a remarkably high critical temperature - about 40K - for its simple hexagonal structure (Fig. 1).

Since 1994 there has been a renewed interest in intermetallic superconductors which incorporate light elements, such as boron, due to the discovery of the new class of borocarbides RE-TM₂B₂C, where RE = Y, Lu, Er, Dy or other rare earths, and TM = Ni or Pd [Nagarajan], [Cava]. The main characteristics of these compounds are very high Tc among intermetalics (Tc = 23K in YPd₂B₂C), the anisotropic layered structure (unique for intermetallics) and a strong interplay between magnetism and superconductivity [Eisaki].

In the framework of BCS theory [Bardeen] the low mass elements result in higher frequency phonon modes which may lead to enhanced transition temperatures. The highest superconducting temperature is predicted for the lightest element, hydrogen [Ascroft], [Richardson] under high pressure. In 1986 investigations of the electrical resistance of Li under pressure up to 410 Kbar showed a sudden electrical resistance drop at around 7 K between 220 and 230Kbar, suggesting a possible superconducting transition [Lin]. Extremely pure beryllium superconductors at ordinary pressure with a Tc of 0.026 K [Falge]. Its critical temperature can be increased to about 9-10K for amorphous films [Lazarev], [Takei]. The recent discovery of superconductivity in MgB₂ confirms the predictions of higher Tc in compounds containing light elements, being believed that the metallic B layers play a crucial role in the superconductivity of MgB₂ [Kortus].

The discovery of superconductivity in MgB₂ certainly revived the interest in the field of superconductivity, especially non-oxides, and initiated a search for superconductivity in related boron compounds [Felner], [Young], [Gasparov], [Kaczorowski (a)], [Strukova]. Its high critical temperature gives hopes for obtaining even higher Tc's for simple compounds.

MgB₂ superconductivity announcement was the catalyst for the discovery of several superconductors, some related to magnesium diboride, TaB₂ with Tc = 9.5 K [Kaczorowski (a)], BeB₂.75 Tc = 0.7 K [Young], graphite-sulphur composites Tc = 35 K [da Silva], and another not related, but "inspired" by it, MgCNi₃ with Tc = 8 K [He]. Probably the most impressive is the recent report related to superconductivity under pressure of B, with a very high critical temperature for a simple element of Tc = 11.2 K [Eremets]. One have to mention that graphite-sulfur composites, C-S, are similar materials with MgB₂ electronically and crystallographically.

Its critical temperature of about 40K is close to or above the theoretical value predicted from the BCS theory [McMillan]. This may be a strong argument to consider MgB₂ as a non-conventional superconductor.

Akimitsu’s group reported the superconductivity of MgB₂ on January 10th 2001 at a Conference inSendai, Japan [Akimitsu]. Since then until the end of July 2001, have appeared more than 260 studies about this superconductor, i. e. in average of 1.3 papers/day. From this 260 studies, 80 have already appeared in Journals (as of the end of July 2001). Most of the 260 studies related to MgB₂ have been posted in electronic format on e-print archives of Los Alamos server at http://xxx.lanl.gov/.

In Fig.2 are shown the number of papers posted in electronic format since January until July, with a maximum of 58 in March and April. This coincided with the 12th March American Physical Society Meeting from Seattle, where more than 50 post-deadline contributions have been presented in a late-night session.

After April, the number of studies about MgB₂ decrease to 43 in May, 29 June and 22 in July. Anyway, the decrease in the number of MgB₂ studies does not reflect the lost of interest in this compound, but the proximity of summer holidays and the attendance of summer conferences.

The topics of these 260 studies cover a wide area of subjects, such as: preparation in the form of bulk, thin films, wires, tapes; the effect of substitution with various...
elements on T_c, isotope and Hall effect measurements, thermodynamic studies, critical currents and fields dependencies, to microwave and tunneling properties.

Since January of this year a considerable amount of effort has expended in order to understand the origin of superconductivity in this compound. Several theories have been already proposed [Baskaran], [Hirsch (a)], [Hirsch (b)], [Hirsch (c)], [Imada], [Voelker], [Haas], [Alexandrov], [Furukawa], [Cappelluti]. However, the superconductivity mechanism in MgB$_2$ is still to be decided. Recent calculations try to theoretically forecast the electronic properties of this material or similar compounds [An], [Antropov], [Bascones], [Bohnen], [Haas], [Kortus], [Kobayashi], [Kohimoto], [Lampakis], [Manske], [Medvedeva (a)], [Medvedeva (b)], [Medvedeva (c)], [Mehl], [Papaconstantopoulos], [Park], [Ravindran], [Satta], [Singh (a)], [Singh (b)], [Vajeeston], [Wan], [Yamaji], [Yildirim].

Why such a large interest in MgB$_2$ from the physics community one may ask? After all its critical temperature is only 40 K, more than three times lower than 134 K attained by the mercury-based high-T_c superconducting (HTSC) cuprates. Besides, we already have wires made of high-T_c copper oxides which operate above liquid nitrogen temperature (77 K). One important reason is the cost - HTSC wires are 70% silver [Grant], therefore expensive. Unlike the cuprates, MgB$_2$ has a lower anisotropy, larger coherence lengths, transparency of the grain boundaries to current flow, which makes it a good candidate for applications. MgB$_2$ promises a higher operating temperature and higher device speed than the present electronics based on Nb. Moreover, high critical current densities, J_c, can be achieved in magnetic fields by oxygen alloying [Eom], and irradiation shows an increase of J_c values [Bugoslavski (b)]. MgB$_2$ possesses the simple hexagonal AlB$_2$-type structure (space group P6/mmm), which is common among borides. The MgB$_2$ structure is shown in Figs. 1, 3. It contains graphite-type boron layers which are separated by hexagonal close-packed layers of magnesium. The magnesium atoms are located at the center of hexagons formed by borons and donate their electrons to the boron planes. Similar to graphite, MgB$_2$ exhibits a strong anisotropy in the B-B lengths: the distance between the boron planes is significantly longer than in-plane B-B distance. Its transition temperature is almost twice as high as the highest T_c in binary superconductors, Nb$_3$Ge, $T_c=23$K. Making a comparison to other types of superconductors (Fig. 3), one can see that MgB$_2$ may be the “ultimate” low-T_c superconductor with the highest critical temperature.

According to initial findings, MgB$_2$ seemed to be a low-T_c superconductor with a remarkably high critical temperature, its properties resembling that of conventional superconductors rather than of high-T_c cuprates. This include isotope effect [Hinks], [Bud’ko (b)], a linear T-dependence of the upper critical field with a positive curvature near T_c (similar to borocarbides) [Bud’ko (a)], a shift to lower temperatures of both T_c(onset) and T_c(end) at increasing magnetic fields as observed in resistivity $R(T)$ measurements [Lee (a)], [Xu].

On the other hand, the quadratic T-dependence of the penetration depth $\lambda(T)$ [Panagopoulos], [Pronin], [Klein], as well as the sign reversal of the Hall coefficient near T_c [Jin (a)] indicates unconventional superconductivity similar to cuprates. One should also pay more attention to the layered structure of MgB$_2$, which may be the key of a higher T_c, as in cuprates and borocarbides.
2. Other diborides

After the announcement of MgB\(_2\) superconductivity everybody hoped that this material will be the tip of a much hotter “iceberg”, being the first in a series of diborides with much higher \(T_c\). However, up to date MgB\(_2\) holds the record of \(T_c\) among borides, as can be seen in Table 1.

The search for superconductivity in borides dates long time ago, in 1949 Kiessling founding a \(T_c\) of 4K in TaB\(_2\) [Kiessling]. In 1970 Cooper et al. and in 1979 Leyaroska and Leyarovski looked for superconductivity in various borides (see Table 1).

Since the discovery of superconductivity in MgB\(_2\) [Nagamatsu] there have been several theoretical studies to search for the potential high \(T_c\) binary and ternary borides in isoelectronic systems such as BeB\(_2\), CaB\(_2\), transition metal (TM) diborides TMB\(_2\), hole doped systems Mg\(_x\)Li\(_{1-x}\)B\(_2\), Mg\(_{1-x}\)Na\(_x\)B\(_2\), Mg\(_{1-x}\)Cu\(_x\)B\(_2\), noble metal diborides AgB\(_2\) and AuB\(_2\), CuB\(_2\) and related compounds [Satta], [Neaton], [Medvedeva (a)], [Medvedeva (b)], [Medvedeva (c)], [Ravindran], [Kwon], [Mehl].

Also there are further attempts to prepare new superconducting borides. The reports are still controversial, some authors reporting superconductivity in one compound and other authors finding the material normal. This is the case of TaB\(_2\) found non-superconducting in earlier experiments [Leyaroska] and recently discovered to have a transition temperature of \(T_c=9.5\) K [Kaczorowski (a)]. Similar situations apply for ZrB\(_2\) found non-superconductive in earlier experiments [Kowalczyk] and other authors finding the material normal. This is the case of MgB\(_2\) thin films: SiC [Blank]; Si [Brinkman (a)], [Blank], [Zhao (a)], [Zhao (b)], [Plecenik (b)]; LaAlO\(_3\) [Christen], [Zhao (b)]; SrTiO\(_3\) [Eom], [Blank]; MgO [Grassano], [Moon], [Blank], [Ferdeghini]; Al\(_2\)O\(_3\) [Grassano], [Christen], [Kang (d)], [Paranthaman (a)], [Wang (a)], [Zeng], [Zhao (b)], [Plecenik (b)], [Kim (a)], [Berenov], [Ferdeghini]; stainless steel (SS) [Li (a)].

In Table 2, 3, 4 are shown the preparation conditions together with the critical temperatures of films prepared on various substrates by pulsed laser deposition, co-deposition, and Mg diffusion, respectively.

In the case of film fabrication, Mg volatility reflects the need for unheated substrates and Mg enriched targets. Due to magnesium volatility, an essential problem is to establish the minimum deposition and growth temperature at which the film crystallizes into the hexagonal structure, but at which Mg is not lost from the film. A recent report has used thermodynamics to predict the conditions under which MgB\(_2\) synthesis would be possible under vacuum conditions [Liu (d)]. Important information on thermal stability of MgB\(_2\) can be found in an experimental study which measures the MgB\(_2\) decomposition rate [Fan].

In Fig. 6 is presented the critical temperature of films prepared by different methods on different substrates: Al\(_2\)O\(_3\), SrTiO\(_3\), Si, SiC, MgO and stainless steel (SS). The reports using sapphire show the highest \(T_c\)’s and sharpest transitions by Mg diffusion method [Zhai (b)], [Kim (a)], [Paranthaman (a)], [Kang (d)], [Plecenik (b)], [Wang (a)], [Zhao (b)].

For the same substrate, Al\(_2\)O\(_3\), the thin films prepared by PLD have lower \(T_c\) and usually wider transitions [Zeng], [Grassano], [Christen], [Zhao (b)] than the films prepared by Mg diffusion method. In order to prepare better quality films by PLD, the fabrication procedure must be optimised.
PERIODIC TABLE OF SUPERCONDUCTING ELEMENTS

from Yamashita T, Nakajima K, Chen J, Buza C, *Superconductors - Scientific Basics and Engineering Applications* (Springer-Verlag, Heidelberg) 2002 to appear

Element	Atomic Number	Symbol	Superconducting at normal pressure	Superconducting at certain conditions (pressure, film form or charge injected)				
H	1	H	Sodium	Superman conduccting only under pressure or in thin film form				
Li	3	Li	Magnesium	Superman conduccting only under pressure or in thin film form				
Be	4	Be						
Na	11	Na	Magnesium	Superman conduccting only under pressure or in thin film form				
Mg	12	Mg						
K	19	K	Potassium	Superman conduccting only under pressure or in thin film form				
Ca	20	Ca						
Sc	21	Sc						
Ti	22	Ti						
V	23	V						
Cr	24	Cr						
Mn	25	Mn						
Fe	26	Fe						
Co	27	Co						
Ni	28	Ni						
Cu	29	Cu						
Zn	30	Zn						
Ga	31	Ga						
Ge	32	Ge						
As	33	As						
Se	34	Se						
Br	35	Br						
Rb	37	Rb						
Sr	36	Sr						
Y	39	Y						
Zr	40	Zr						
Nb	41	Nb						
Mo	42	Mo						
Tc	43	Tc						
Ru	44	Ru						
Rh	45	Rh						
Pd	46	Pd						
Ag	47	Ag						
Cd	48	Cd						
In	49	In						
Sn	50	Sn						
Sb	51	Sb						
Te	52	Te						
I	53	I						
Xe	54	Xe						
Cs	55	Cs						
Ba	56	Ba						
La	57	La						
Ce	58	Ce						
Pr	59	Pr						
Nd	60	Nd						
Pm	61	Pm						
Sm	62	Sm						
Eu	63	Eu						
Gd	64	Gd						
Tb	65	Tb						
Dy	66	Dy						
Ho	67	Ho						
Er	68	Er						
Tm	69	Tm						
Yb	70	Yb						
Lu	71	Lu						
Ac	89	Ac						
Th	90	Th						
Pa	91	Pa						
U	92	U						
Np	93	Np						
Pu	94	Pu						
Am	95	Am						
Cm	96	Cm						
Bk	97	Bk						
Cf	98	Cf						
Es	99	Es						
Fm	100	Fm						
Md	101	Md						
No	102	No						
Lr	103	Lr						
Compound	Tc (K)	Structure	Ref.	Compound	Tc (K)	Structure	Ref.	
----------	--------	-----------	------	----------	--------	-----------	------	
TaB		αTlI	1, 2, 3	YB₄C₂	3.6	YB₄C₂	22	
NbB₂	8.25	αTlI	4, 5, 3	Lu₆B₂C₂	2.4	YB₄C₂	22	
ZrB	2.8-3.4		3	C₆₀₀₇Pt₂B₂	1.57	B₃₀₀₀₇Pt₂B₂	23	
HfB	3.1		3	Si₆₀₀₇Pt₂B₂	2.78	B₃₀₀₀₇Pt₂B₂	23	
MoB	0.5		3	Ba₆₀₀₇Pt₂B₂	5.6	Ba₃₀₀₀₇Pt₂B₂	23	
MgB₂	40	AlB₂	6	LaRh₆B₂	2.82	CeCoB₂	24	
NbB₂₂	-	AlB₂	7, 8	LaIr₆B₂	1.65	CeCoB₂	24	
NbB₂₂.₅	0.62		9	LuOs₆B₂	4.67	CeCoB₂	24	
Nb₆₀₅₇T₈₆B₂₂₅	6.4	AlB₂	7	ThRu₆B₂	1.79	CeCoB₂	24	
Nb₃₀₅₇Th₆B₂₂₅	7	AlB₂	7	Th₁₁₁₆B₂	2.09	CeCoB₂	24	
Mo₂B₇	-	AlB₂	7, 9	YRh₆B₄	11.34	CeCoB₄	25	
MoB₃.₅	8.1	AlB₂	7	NdRh₆B₄	5.36	CeCoB₄	25	
Mo₆₀₅₇Co₆B₂₂₅	9	AlB₂	7	SmRh₆B₄	2.51	CeCoB₄	25	
Mo₆₀₅₇Y₆₀₅₇B₂₂₅	8.6	AlB₂	7	ErRh₆B₄	8.55	CeCoB₄	25	
Mo₆₀₅₇H₂₆₀₅₇B₂₂₅	11.2	AlB₂	7	TmRh₆B₄	9.86	CeCoB₄	25	
Mo₆₀₅₇H₈₀₅₇B₂₂₅	8.7	AlB₂	7	LuRh₆B₄	11.76	CeCoB₄	25	
Mo₆₀₅₇N₆₀₇B₂₂₅	8.5	AlB₂	7	Th₁₁₁₆B₂	4.34	CeCoB₂	25	
Tb₂B₂	-	-	8, 9	DyRh₁₁₁₆B₄	4.64	CeCoB₄	26	
BeB₂	9.5		10	Ho₁₁₁₆Rh₄B₄	6.41	CeCoB₄	26	
BeB₂₅	0.7		not AlB₂	12	Ho₁₁₁₆Ir₉B₄	2.12	CeCoB₄	26
ZrB₂	-	-	9, 10	Er₁₁₁₆B₄	2.34	CeCoB₄	26	
CrB₂	-	-	9	Mn₁₁₁₆B₄	1.75	CeCoB₄	26	
MoB₂	5.07	θ-CuAl₂	14	Lu₁₁₁₆B₄	2.06	Lu₁₁₁₆B₄	29	
W₆B₂	3.22	θ-CuAl₂	14	Y₁₁₁₆Rh₄B₄	10	Lu₁₁₁₆B₄	29	
Ta₀.₇₂B₂	3.1		3	Pr₁₁₁₆Rh₄B₄	2.41	Lu₁₁₁₆B₄	29	
Re₀.₇₂B₂	3.12		3	Eu₁₁₁₆Rh₄B₄	2.41	Lu₁₁₁₆B₄	29	
Ru₀.₇₂B₂	4.7		13	Dy₁₁₁₆Rh₄B₄	4.08	Lu₁₁₁₆B₄	29	
Ru₀.₇₂B₂	2.58		3	Er₁₁₁₆Rh₄B₄	6.45	Lu₁₁₁₆B₄	29	
Y₄B₂₆	7.1	CaB₁₂	16	Er₁₁₁₆Rh₄B₄	8.02	Lu₁₁₁₆B₄	29	
LaB₆	5.7	CaB₁₂	16	Th₁₁₁₆Rh₄B₄	8.38	Lu₁₁₁₆B₄	29	
ThB₆	0.74	CaB₁₂	16	Lu₁₁₁₆Rh₁₁₁₆B₄	9.16	Lu₁₁₁₆B₄	29	
NbB₆	3		3	Y₁₁₁₆Ru₂B₂	9.7	Lu₁₁₁₆B₄	31	
ScB₁₂	0.39	UB₁₂	16	Dy₁₁₁₆Ni₂B₂	6.2	Lu₁₁₁₆B₄	32	
Y₂B₁₂	4.7	UB₁₂	16	Ho₁₁₁₆Ni₂B₂	8.7	Lu₁₁₁₆B₄	32	
LuB₁₂	0.48	UB₁₂	16	Er₁₁₁₆Ni₂B₂	10.5	Lu₁₁₁₆B₄	32	
ZrB₁₂	5.82	UB₁₂	16	Mn₁₁₁₆Ni₂B₂	11	Lu₁₁₁₆B₄	32	
YRuB₂₆	7.8	LuRuB₂	17, 18	Lu₁₁₁₆B₂	16.1	Lu₁₁₁₆B₄	32	
Y₂₀.₇₂Ru₀.₂₄B₂₆	8.1	LuRuB₂	17	Y₁₁₁₆Ni₂B₂	15.6	Lu₁₁₁₆B₄	32	
LuRuB₂₆	9.99	Lu₁₁₁₆B₂	17, 18	Sc₁₁₁₆Ni₂B₂	15.6	Lu₁₁₁₆B₄	32	
Sc₀.₇₂Os₀.₂₄B₂₆	1.34	Lu₁₁₁₆B₂	17, 18	Th₁₁₁₆Ni₂B₂	8	Lu₁₁₁₆B₄	32	
YoB₂₆	2.22	Lu₁₁₁₆B₂	17, 18	Y₁₁₁₆Pd₂B₂	23	Lu₁₁₁₆B₄	32	
LuO₂B₂₆	2.66	Lu₁₁₁₆B₂	17, 18	Y₁₁₁₆Pt₂B₂	14.5	Lu₁₁₁₆B₄	32	
Mo₃B₇	7.5	Mo₂B	19	Y₁₁₁₆Pd₂B₂	23	Lu₁₁₁₆B₄	32	
Mo₀.₇₂Ru₀.₂₄B₂₆	9	Mo₂B	20	La₁₁₁₆Pt₂B₂	10	Lu₁₁₁₆B₄	32	
Nb₀.₇₂B₆₈	2.₅	Mo₂B	21	Th₁₁₁₆Pt₂B₂	6.5	Lu₁₁₁₆B₄	32	
Y₂₀.₇₂Pd₀.₂₄B₂₆	1.₃₄	Lu₁₁₁₆B₂	17, 18	Y₁₁₁₆Pd₂B₂	23	Lu₁₁₁₆B₄	32	
A recent report on PLD shows that the temperature of the film varies during pulsed laser deposition, the variation depending on the deposition parameters: substrate temperature, pressure in the ablation chamber, deposition rate [Buzea]. This may be an important factor due to Mg volatility.

In addition to sapphire, good quality films can be prepared on SrTiO$_3$ [Eom], Si [Plecenik (b)], and SS [Li (a)]. However, the films prepared on SS have poor adhesion on the substrate [Li (a)].

What is important to note from Fig. 6 is that the most important factor is the deposition method and not the type of substrate. The best method for MgB$_2$ thin film fabrication has proven to be Mg diffusion method. Why the type of substrate is not so important? Probably because the hexagonal structure of MgB$_2$ can accommodate substrates with different lattice parameters. However, we expect that further experiments to show a dependence of the critical temperature of MgB$_2$ with the type of substrate.

For electronic applications it is desirable that films with a high T_c of 39K be made by a single step in-situ process. Usually, the magnesium diboride films with high superconducting temperatures made up to date are fabricated in a two-step process, film deposition followed by annealing.

What is interesting to note is that the Mg diffusion method is used not only for the fabrication of thin films, but also bulk, powders, wires and tapes. This method consists in Mg diffusion into B with different geometries. Due to the fact that Mg is highly volatile, Mg together with B are sealed in Nb or Ta tubes and heated up to 800-900 C. During this procedure, magnesium diffuses into the boron, increasing the size of the final reacted material.

For practical applications of MgB$_2$ (such as magnets and cables) it is necessary to develop tapes and wires. Various research groups have already reported the fabrication of tapes and wires. Several critical issues relevant for practical fabrication of bulk wires remain unresolved. One of them is that MgB$_2$ is mechanically hard and brittle, therefore the drawing into fine-wire geometry is not possible. The wire and tape fabrication is achieved by two methods: the Mg diffusion and powder-in-tube (PIT) method.

Mg diffusion into B wires is a relatively easy method which can rapidly convert already commercially existent B wires into superconductive MgB$_2$ wires [Canfield], [Cunningham]. The magnesium diffusion has also attempted for fabricating tapes [Che].

However, the powder-in-tube (PIT) method is the most popular for achieving good quality wires [Glowacki], [Goldacker], [Jin (b)], [Wang (b)] and tapes [Grasso], [Sumption], [Liu (b)], [Song], [Kumakura], [Soltanian].
Table 2: Critical temperature and preparation conditions of films deposited by pulsed laser ablation PLD on SiC, Si, MgO, SrTiO3 and Al2O3 substrates.

Reference	Substrate	T_{c0} (K)	Preparation conditions	post annealing	Obs.
Blank	SiC	25	Mg enrich target, 0.17mbar Ar, preabloration of Mg, 4J/cm², 10Hz, RT	in-situ annealing, 0.2mbar in Ar at 600°C in Mg-plasma	target sintered in N-flow for 3h at 640°C, 10h at 500°C
Brinkman	Si	27	MgB2 un-sintered target, KrF laser, 248nm, 0.17 mbar Ar, 10Hz,	ex-situ annealing in 0.2mbar Ar, increase of T to 600°C in 4 min, cooling to RT at a rate of 50°C/min	
(a)	(100)	15.5	MgB2 un-sintered target, KrF laser, 248nm, 0.17 mbar Ar, 10Hz,	in-situ annealing in 0.2mbar Ar, increase of T to 600°C in 4 min, cooling to RT at a rate of 50°C/min	
Brinkman	Si	27	stoichiometric targets, 0.1mTorr Ar, 248nm, 1.7-3.3J/cm², 15Hz	in-situ annealed in 0.2mTorr Ar/4%H2, heated to 630°C at a rate of 100°C/min, held 20 min, cooled below 200°C at 50°C/min in 1atm Ar/4%H2	films contained micron-size PLD droplets
(a)	(100)	11	MgB2 target at 0.2 mTorr Ar/H2, heated to 630°C at 600°C for 20 min	in-situ annealing in vacuum at 630°C for 20 min	
Zhai (a)	Si	25	stoichiometric targets, 0.1mTorr Ar, 248nm, 1.7-3.3J/cm², 15Hz	in-situ annealed in 0.2mTorr Ar/4%H2, heated to 600°C at a rate of 100°C/min, held 20 min, cooled below 200°C at 50°C/min in 1atm Ar/4%H2	
(b)	(100)	21.4	Mg enrich target, 0.17mbar Ar, preabloration of Mg, 4J/cm², 10Hz, RT	in-situ annealing, 0.2mbar in Ar at 600°C	target sintered in N-flow for 3h at 640°C, 10h at 500°C
Blank	MgO	25	Mg enrich target, 0.17mbar Ar, preabloration of Mg, 4J/cm², 10Hz, RT	in-situ annealing, 0.2mbar in Ar at 600°C in Mg-plasma	target sintered in N-flow for 3h at 640°C, 10h at 500°C
Eom	SrTiO3	36	sintered MgB2 targets, deposition at RT with a KrF laser, 248nm, 4J/cm², at 10Hz, in 0.3 Pa Ar	ex-situ annealing of films with Mg pellets in an evacuated small Nb tube at 850°C for 15 min, quenched to RT	Mg:B:O ratio 1.0:1.0:0.4;
(111)		34	sintered MgB2 targets, deposition at RT with a KrF laser, 248nm, 4J/cm², at 10Hz, in 0.3 Pa Ar	ex-situ annealing of films with Mg pellets in an evacuated small Nb tube at 750°C for 30 min, quenched to RT	Mg:B:O ratio 1.0:1.2:0.3; Ic(4.2K,1T) =3×10⁶ A/cm², large amount of O in the film due to large volume of quartz tube; Mg:B:O ratio 1.0:0.9:0.7; large Jc
Eom	SrTiO3	34	sintered MgB2 targets, deposition at RT with a KrF laser, 248nm, 4J/cm², at 10Hz, in 0.3 Pa Ar	ex-situ annealing of films with Mg pellets in an evacuated large quartz tube at 750°C for 30 min, quenched to RT	
(111)		29	Mg enrich target, 0.17mbar Ar, preabloration of Mg, 4J/cm², 10Hz, RT	in-situ annealing, 0.2mbar in Ar at 600°C in Mg-plasma	target sintered in N-flow for 3h at 640°C, 10h at 500°C
Zeng	Al2O3	38	films deposited in 120mTorr Ar at 250-300°C from unsintered targets of Mg:MgB2 molar ratio of 4:1; 5J/cm², 5Hz	in-situ annealed, heated to 600°C at a rate of 40°C/min, held 10 min, cooled to RT in 20Torr Ar	large Jc; in the annealing step the film thickness decreases indicating evaporation of Mg
Grassano	Al2O3	28.6	MgB2 sintered target, 10^5-10^9 mbar vacuum, deposition at RT	ex-situ annealing in Mg vapors at 650°C, in an evacuated quartz tube for 30 min, quenched to RT	
(0001)		23.4	MgB2 target at 0.2 mTorr Ar/H2	C ex-situ annealed for 1h at 900°C in excess Mg	
Zhai (b)	Al2O3	26.5	MgB2/Mg segmented target, deposition at RT, 10^4 Torr Ar/4%H2, 1.7-3.3J/cm², 15Hz	in-situ annealed of Mg rich MgB2 films with Mg cap layer at 0.7 atm Ar/4%H2, heated to 550-600°C at a rate of 100°C/min, held 20 min, quenched to RT	
Christen	Al2O3	22.5	MgB2/Mg segmented target, deposition at RT, 10^4 Torr Ar/4%H2, 1.7-3.3J/cm², 15Hz	in-situ annealed of Mg rich MgB2 films with Mg cap layer at 0.7 atm Ar/4%H2, heated to 550-600°C at a rate of 100°C/min, held 20 min, quenched to RT	
Zhai (b)	Al2O3	25	MgB2 target at 0.2 mTorr Ar/H2	in-situ annealing in vacuum at 600°C for 20 min	
Grassano	Al2O3	25	Mg rich targets, non-sintered, 0.02mbar Ar, 450°C, 30Hz	ex-situ annealing in Mg vapors at 650°C, in an evacuated quartz tube for 30 min, quenched to RT	
Grassano	Al2O3	9.4	MgB2 sintered target, 10^5-10^9 mbar vacuum, deposition at T=RT and T<750°C	ex-situ annealing in Mg vapors at 650°C, in an evacuated quartz tube for 30 min, quenched to RT	
Table 3. Critical temperature and preparation conditions of films deposited by co-deposition (CD) on Si and Al2O3 substrates.

Reference	Substrate	Tc0 (K)	Preparation conditions	post annealing	Obs.
Plecenik	Si (100)	35	evaporation of Mg and B from two separate resistive heaters on unheated substrates	in-situ annealed in vacuum, at 900°C for 30s, quenched to RT	the Tc dependence on ex-situ annealing time was studied
		27		ex-situ annealing in 1 atm Ar, for 15 min at 600°C	films contained cracks
Plecenik	Si (100)	27	evaporation of Mg and B from two separate resistive heaters on unheated substrates	ex-situ annealing in Ar, at 600°C for 15 min, quenched to RT	smooth surface
	Al2O3	33.3	evaporation of Mg and B from two separate resistive heaters on unheated substrates	in-situ annealing in vacuum, at 900°C for 30s, quenched to RT	smooth surface

Table 4. Critical temperature and preparation conditions of films deposited by Mg diffusion method on Al2O3 substrates.

Reference	Substrate	Tc0 (K)	Preparation conditions	Post annealing	Obs.
Zhai (b)	Al2O3	39	e-beam evaporated B, reacted with MgB2 and Mg at 900°C in a Ta tube	B ex-situ annealed for 1 h at 900°C	highly c-axis oriented structure with no impurity phase, RRR=2.3; Jc(5K,0T)=4x10^7 A/cm², Jc(15K,5T)=10^6 A/cm²
Kim (a)	Al2O3	39	B film deposited by PLD at RT, sealed with Mg in a Nb tube in Ar, 900°C for 10-30 min in an evacuated quartz tube, quenched to RT		c-axis and random grains are observed, Jc(20K,0T)=2x10^6 A/cm², Jc(20K,1T)=2.5x10^5 A/cm²
Paranthaman (a)	Al2O3 (102)	39.3	e-beam evaporated B films at RT in 10^-6 Torr; B films with MgB2 pellets and excess Mg sealed in a Ta tube, heated in an evacuated quartz tube to 600°C, held 5 min, T increased to 890°C, held for 10-20 min, cooled to RT		
Kang (d)	Al2O3	39	B film deposited by PLD at RT, sealed with Mg in a Ta tube in Ar, heated in an evacuated quartz tube to 900°C in 5 min, held for 10-30 min, quenched to RT		c-axis oriented films, Jc(5K,0T)=6x10^5 A/cm², Jc(35K,0T)=3x10^5 A/cm²
Plecenik	Al2O3	39	B films thermally evaporated, sealed in Nb tube with Mg, 3kPa Ar, RT to 800°C in 60 min, kept 30 min, and quenched to RT		most grains have c-axis orientation
Wang (a)	Al2O3	39	PLD deposition of B at 900°C at 6x10^-4 Pa with a XeCl excimer laser; after deposition B films dipped in alcohol to remove B2O3	B films with MgB2 pellets wrapped in Ta foil, annealed in evacuated quartz tube, at 900°C for 60 min, cooled slowly to RT	
Zhai (b)	Al2O3	38.3	e-beam evaporated B, reacted with MgB2 and Mg at 900°C in a Ta tube	B ex-situ annealed for 20 min at 900°C	

PIT approach has been used to fabricate metal-clad MgB2 wires/ribbons using various metals, such as: stainless steel SS [Song], [Kumakura], Cu [Glowacki], Ag [Glowacki], Ag/SS [Glowacki], Ni [Suo], Cu-Ni [Kumakura], Nb, Ta/Cu/SS [Goldacker], Fe [Jin (b)], [Wang (b)], [Soltanian], [Suo].

Usually, the PIT method consists in the following procedure. MgB2 reacted powder or a mixture of Mg and B powders with stoichiometric composition is packed in various metal tubes or sheaths. These tubes are drawn into wires, cold-worked into ribbons, followed optionally by a heat treatment at 900-1000 °C.

For fabricating metal-clad MgB2 wires/ribbons, hard but ductile and malleable metals are essential. These metals have to play a role of diffusion barrier for the volatile and reactive Mg. Also, it is important to find a suitable sheath material which does not degrade the superconductivity. Mg and MgB2 tends to react and combine with many metals, such as Cu, Ag, forming solid solutions or intermetallics with low melting points, which renders the metal cladding useless during sintering of MgB2 at 900-1000°C. One can see that there are only a small number of metals which are not soluble or do not form intermetallic compounds with Mg [Jin (b)]. These are Fe, Mo, Nb, V, Ta, Hf, W. Of these,
Figure 6. Critical temperature and critical temperature width for MgB$_2$ films deposited on different substrates. The data were taken from the references: Al$_2$O$_3$ - 1 [Zhai (b)], [Kim (a)], 2 [Paranthaman (a)], 3 [Kang (d)], 4, 8, 12 [Plecenik (b)], 5 [Wang (a)], 6, 10, 13 [Zhai (b)], 7 [Zeng], 9, 14 [Grassano], 11 [Christen], 14 [Ermolov]; SrTiO$_3$ - 1, 2, 3 [Eom], 4 [Blank]; Si - 1, 2 [Plecenik (b)], 3, 4 [Brinkman (b)], 5, 6, 7 [Zhai (b)], 8 [Blank]; MgO - [Blank]; SiC - [Blank]; Stainless Steel (SS) - [Li (a)].

the refractory metals (Mo, Nb, V, Ta, Hf, W) have inferior ductility compared to Fe, which makes iron the best candidate material as a practical cladding metal or diffusion barrier for MgB$_2$ wire and tape fabrication which includes annealing.

If the annealing process is skipped, more metals could be used as sheaths, their reactivity with Mg being on a secondary plane. A fabrication process with no heat treatment would also reduce the fabrication costs.

In order to improve the superconducting properties of bulk MgB$_2$, two methods have been used: hot deformation [Handstein], [Frederick], [Indrakanti], [Shields], and high-pressure sintering [Jung (b)], [Takano], [Tsvyashchenko], [Jung (a)].

Single crystals are currently obtained by solid-liquid reaction method from Mg-rich precursor [Jung (c)], under high pressure in Mg-B-N system [Lee (a)], and vapor transport method [Xu].

4. Hall coefficient

There are only three reports about Hall effect in MgB$_2$ until now. These are for polycrystals [Kang (a)], c-axis oriented films [Kang (b)], and films without preferential orientation [Jin (a)]. All reports agree with the fact that the normal state Hall coefficient R_H is positive (Fig. 7), therefore the charge carriers in magnesium diboride are holes with a density at $300K$ of between $1.7 \div 2.8 \times 10^{23}$ holes/cm2, about two orders of magnitude higher than the charge carrier density for Nb$_3$Sn and YBCO [Kang (a)]. The three reports disagree weather the Hall coefficient in normal state increases or decreases in temperature. For the Hall coefficient measured on the c-axis oriented film [Kang (b)] one can notice a peak just above the transition. In the case of the non-oriented film [Jin (a)] one can notice a sign reversal of R_H in the mixed state.

Figure 7. Hall coefficient versus temperature.
5. Pressure dependent properties

5.1. Critical temperature versus pressure

The response of MgB$_2$ crystal structure to pressure is important for testing the predictions of competing theoretical models, but it also might give valuable clues for guiding chemical substitutions. For example, in simple metals BSC-like superconductors, as Aluminium, critical temperature T_c decreases under pressure due to the reduced electron-phonon coupling energy from lattice stiffening [Gubser]. Also, a large magnitude of the pressure derivative dT_c/dP is a good indication that higher values of T_c may be obtained through chemical means.

The pressure effect on the superconducting transition of MgB$_2$ is negative to the highest pressure studied. Fig. 8 shows the evolution of the critical temperature with pressure from several references [Bordet], [Deemyad], [Goncharov (b)], [Lorenz (a)], [Lorenz (c)], [Monteverde], [Saito], [Schlachter], [Tissen], [Tomita]. All reports agree with the fact that the critical temperature of MgB$_2$ is shifted to lower values, giving different rates of decrease $-dT_c/dP$.

T_c follows a quadratic or linear dependence on applied pressure, decreasing monotonically. Despite the fact that $T_c(P)$ data from different authors differs considerably, Fig. 8 one can notice a pattern. Samples with lower T_c at zero pressure have a much steeper $T_c(P)$ dependence than the samples with higher T_c. More exactly, the initial slope rate of the samples with lower T_c is about -2 K/GPa, while that of samples with higher T_c is about -0.2 K/GPa, as can be seen in Fig. 9 inset.

The initial rate of the derivative $-dT_c/dP$ is invers proportional to pressure, most of the data falling in the quadratic dependence depicted in Fig. 9 inset, in the shadowed region. Several data do not fit this dependence [Monteverde], but taking into account the solid pressure medium (steatite) they used, the quasi-hydrostatic nature of their experiment makes this explainable.

Also, from Fig. 8 can be seen that samples with higher T_c have a negative curvature of $T_c(P)$ dependence, changing to positive for samples with lower T_c. The change in the sign of curvature is illustrated by the derivative $-dT_c/dP(P)$ from Fig. 9.

Taking into account the strong compressibility anisotropy [Bordet], [Prassides], [Goncharov (b)], [Vogt], [Schlachter] which will be described in the next paragraph, it is likely that shear stress of sufficient magnitude will cause important changes in the $T_c(P)$ dependence.

Large shear stresses are generated by changing the pressure on a solid medium, such as steatite [Tomita]. The shear stresses generated in cooling Fluorinert or other liquids with similar melting curve are much smaller, depending on the experimental procedure (cooling rate, change in applied force).

One report shows the existence of a cusp in the $T_c(P)$ dependence at about 9 GPa, the authors attributing it to a pressure-induced electronic transition [Tissen]. However, the data from other reports do not show any cusp.

![Figure 8. The critical temperature of MgB2 versus applied pressure. The legends indicates the pressure medium used by each author.](image-url)
Schlachter et al. noticed that the pressure effect is fully reversible in a He gas pressure cell while in the diamond-anvil cell (DAC) the application of pressure leads to a stronger T_c-decrease than in the He pressure cell, and after the release of pressure a degradation effect with lower T_c and a broader transition compared to the first measurement at ambient pressure occurs [Schlachter]. Such degradation may be explained by shear stresses and uniaxial pressure components, which cannot be avoided in a DAC at low temperatures.

The discrepancy in the T_c dependence by various groups may arise partially due to different pressure transmitting media used in experiments, pointed out in the legend of Figs. 8 and 9. Considering its anisotropic structure, MgB$_2$ may be sensitive to non-hydrostatic pressure components, which would explain the spread of dT_c/dp values reported in the literature.

But more interesting, several authors report different $T_c(p)$ dependencies for different MgB$_2$ samples measured in the same experimental setup (see for example [Monteverde], [Bordet]), which points toward the Mg nonstoichiometry as an important factor in determining the pressure dependent behavior of the critical temperature.

The reduction of T_c under pressure is consistent with a BCS-type pairing interaction mediated by high-frequency boron phonon modes. This indicates that the reduction of the density of states at the Fermi energy, due to the contraction of B-B and B-Mg bonds, dominates the hardening phonon frequencies that could cause increase of T_c as an external pressure is applied.

A hole-based theoretical scenario for explaining the superconductivity of MgB$_2$ predicted a positive pressure coefficient on T_c, as a result of decreasing in-plane B-B distance with increasing pressure [Hirsch (a)], [Hirsch (b)], [Hirsch (c)]. This contradicts all experimental data. However, the situation is more complex if pressure also affects the charge transfer between Mg-B, resulting in different responses of the system in the underdoped and overdoped regimes.

5.2. Anisotropic compressibility

Diffraction studies at room temperature under pressure have been performed by a series of authors. Most of the reports study the lattice compression up to 6 GPa [Prassides], [Goncharov (a)], [Vogt], [Schlachter], while there is a report which goes up to 30 GPa [Bordet]. MgB$_2$ remains strictly hexagonal until the highest pressure, no sign of structural transition being seen. This is illustrated in the pressure variation of the normalized hexagonal lattice constants a and c from Fig. 10. One notice a clear anisotropy in the bonding of the MgB$_2$ structure. All reports show that the lattice parameter along c-axis decreases faster with pressure than along a-axis (Fig. 10), demonstrating that the out-of-plane Mg-B bonds are much weaker than in-plane Mg-Mg bonds. This fact is emphasized also by the lattice parameters variation versus temperature (Fig. 13).
Figure 10. The normalized lattice parameters to the zero pressure value versus applied pressure. Inset shows the same data at lower pressures at an enlarged scale. The legend indicates the pressure medium used by each author.

Figure 11. The ratio between the lattice parameters along c- and a-axis versus pressure. Inset shows the same data at lower P. The legend indicates the pressure medium used by each author.

Figure 12. The critical temperature of MgB$_2$ versus the volume of the unit cell. The data were calculated from Figs. 8 and 10. The legend indicates the pressure medium used by each author.

The difference in compressibility values obtained in different reports may arise from the fact of using different pressure-transmitting media: helium [Lorenz (c)], [Tomita], [Goncharov (b)], [Deemyad]; Fluorinert [Lorenz (a)], [Saito]; methanol-ethanol [Tissen]; methanol-ethanol-water [Vogt]; solid pressure medium steatite [Monteverde]; NaF [Schlachter]; silicon oil [Prassides]; and nitrogen [Bordet].

The compressibility anisotropy decreases linearly with pressure, as illustrated in Fig. 11.

From the critical temperature dependence on applied pressure corroborated with the data of compressibility we calculated the dependence of T_c on the unit cell volume. We plotted $T_c(V)$ in Fig. 12.
Figure 13. The normalized thermal expansion along a and c-axis. Inset shows the boron-boron and magnesium-boron bonds. The data thermal expansion data are taken from [Jorgensen].

The large value of critical temperature variation with small modification in the unit cell volume demonstrate that Mg-B and B-B bonding distances are crucial in the superconductivity of MgB$_2$ at such a high T_c compared to other materials. The reduction of critical temperature with 1 K is achieved by lowering the unit cell volume with only 0.17 Å3 deduced from the data of [Bordet] and [Goncharov (b)]. This implies a very sensitive dependence of the superconducting properties to the interatomic distances.

6. Thermal expansion

Thermal expansion, analogous to compressibility, exhibits a pronounced anisotropy, with the c-axis responses substantially higher than a-axis, as illustrated in Fig. 13. The lattice parameter along c-axis increases twice compared to the lattice parameter along a-axis at the same temperature [Jorgensen].

This fact demonstrates that the out-of-plane Mg-B bonds are much weaker than in-plane Mg-Mg bonds.

Band structure calculations clearly reveal that, while strong B-B covalent bonding is retained, Mg is ionized and its two electrons are fully donated to the B-derived conduction band [Kortus]. Then it may be assumed that the superconductivity in MgB$_2$ is essentially due to the metallic nature of the 2D sheets of boron and high vibrational frequencies of the light boron atoms lead to the high T_c of this compound.

7. Effect of substitutions on critical temperature

The substitutions are important from several points of view. First, it may increase the critical temperature of one compound. Secondly, it may suggest the existence of a related compound with higher T_c. And last but not least, the doped elements which do not lower the T_c considerably may act as pinning centers and increase the critical current density.

In the case of MgB$_2$, several substitutions have been tried up to date: carbon [Ahn], [Mehl], [Paranthaman (b)], [Takenobu], [Zhang (a)]; aluminium [Bianconi (b)], [Cimberle], [Li (b)], [Lorenz (b)], [Slusky], [Xiang], [Ogita], [Postorino]; lithium, silicon [Cimberle], [Zhao (a)]; beryllium [Felner], [Mehl]; zinc [Kazakov], [Moritomo]; copper [Mehl], [Kazakov]; manganese [Ogita], [Moritomo]; niobium, titanium [Ogita]; iron, cobalt, nickel [Moritomo].

In Fig. 14 is shown T_c versus the doping content, 0<x<0.2, for substitutions with Al, C, Co, Fe, Li, Mn, Ni, Si, and Zn.

The critical temperature decreases at various rates for different substitutions, as can be seen in Figs. 14 and 15. The largest reduction is given by Mn [Moritomo], followed by Co [Moritomo], C [Takenobu], Al [Li (b)], Ni, Fe [Moritomo]. The elements which do not reduce the critical temperature of MgB$_2$ considerably are Si and Li [Cimberle].

Up to date, all the substitutions alter the critical temperature of magnesium diboride with an exception: Zn, which increases T_c slightly, with less than one degree [Moritomo], [Kazakov]. There are only two reports regarding Zn doping. Both agree with the fact that at a
certain doping level T_c increases, but disagree with the doping level for which this fact occur. This may be due to the incorporation of a smaller amount of Zn than the doping content. Anyway, Zn doping deserves further attention.

In Fig. 15 is shown T_c versus doping level $0<x<0.82$ for substitutions with C [Zhang], [Takenobu] and Al [Bianconi], [Xiang], [Slusky], [Lorenz (b)], [Li (b)], [Cimberle]. The critical temperature variation versus x for Al reflects the existence of structural transitions at different doping levels, the slopes dT_c/dx from different reports being in agreement with each other.

The investigation of T_c and lattice parameters with Al substitution in Mg$_{1-x}$Al$_x$B$_2$, lead to the conclusion that MgB$_2$ is near a structural instability that can destroy superconductivity [Slusky]. Critical temperature decreases smoothly with increasing x from $0<x<0.1$, accompanied by a slight decrease of the c-axis parameter. At $x \approx 0.1$ there is an abrupt transition to a non-superconducting isostructural compound which has a c-axis shortened by about 0.1 Å. The loss of superconductivity associated with decreasing the c-axis length with no change in the cell symmetry suggests that the structure parameters of MgB$_2$ are particularly important in its superconductivity at high T_c.

In the case of C doping the two reports [Zhang], [Takenobu] disagree with the value of the critical temperature at different doping levels. This may be due to the fact that carbon was not completely incorporated into the MgB$_2$ structure in the report of Zhang [Zhang (a)].

Also, the existence of different critical temperatures for the starting MgB$_2$ at zero doping levels may give different $T_c(x)$ behaviours. As it was pointed out previously, we believe Mg nonstoichiometry leads to different critical temperature dependencies versus the applied pressure, therefore we may expect different $T_c(x)$ behaviours as a function of small Mg nonstoichiometry.

However, in order to have a clear picture about the effect of substitutions on MgB$_2$, more data in a wider range of doping levels are necessary.

8. Total isotope effect

In Fig. 16 is illustrated the critical temperature of MgB$_2$ at isotopic substitutions of Mg and B. The large value of the partial boron isotope exponent, α_B, of 0.26 [Bud'ko (b)], 0.3 [Hinks] shows that phonons associated with B vibration play a significant role in MgB$_2$ superconductivity.

On the other hand, the magnesium isotope effect, α_Mg, is very small, 0.02 [Hinks], as can be seen in Fig. 16 inset. This means that the vibrational frequencies of Mg have a low contribution on T_c. The B isotope substitution shifts T_c with about 1K, while the Mg isotope substitution changes T_c ten times less. Overall, the presence of an isotope effect clearly indicates a phonon coupling contribution to T_c. The difference between the value of the total isotope effect $\alpha_T = \alpha_Mg + \alpha_B$ = 0.3 in MgB$_2$ and the 0.5 BCS-value may be related to the high T_c of this material.
9. Testardi correlation between T_c and RR

One more proof in favour of a dominant phonon mechanism in MgB$_2$ superconductivity is the correlation between T_c and the ratio of resistivity at room temperature and near T_c, $RR=R(300K)/R(T_c)$, also known as the Testardi correlation [Testardi (a)], [Testardi (b)], [Poate], [Park].

In 1975 Testardi showed that disorder decreases both λ - the McMillan electron-phonon coupling constant and λ_{tr} - in phonon-limited resistivity of normal transport phenomena, leading to the universal correlation between T_c and RR [Testardi (a)]. Decreasing T_c, no matter how is achieved, is accompanied by the loss of thermal resistivity (electron-phonon interaction) [Testardi (b)]. The Testardi correlation translates into: samples with metallic behavior will have higher T_c than samples with higher resistivity near T_c.

In Fig. 17 is shown the critical temperature of zero resistivity normalized to the onset critical temperature versus the ratio of resistance at 300K to the resistance near T_c, i.e. the Testardi correlation, for A15 compounds [Testardi (b)] and for MgB$_2$.
10. Critical fields

10.1. \(H_{c2}(T) \) highest values

Measurements of the upper critical field in temperature show a wide range of values for the \(H_{c2}(0) \), from 2.5T up to 32T, as depicted in Fig. 18. However, even higher upper critical fields (40T) may be obtained for films with oxygen incorporated [Patnaik]. Unfortunately, due to oxygen alloying, these films have a lower \(T_c \) of about 31K. Although, shortening the coherence length of MgB\(_2\) (Table 1) is the basis of improving high field performances, the ability to maintain high \(\xi \) is very advantageous for electronic applications. Understanding and controlling the superconducting properties of MgB\(_2\) by alloying will be crucial in the future applications of this material.

In Fig. 19 are shown the curves \(H_{c2}(T) \) with the highest values at low temperatures for MgB\(_2\) in different configurations. The highest values of the upper critical field are achieved for films. The films with the usual critical temperature of 39K have upper critical fields of \(H_{c2}(0) = 32 \) T [Jung (f)]. However, films with lower \(T_c \)'s can reach higher upper critical fields up to 40 T [Patnaik]. The second best values for the upper critical fieldsw are attained by single crystals with \(H_{c2}(0) = 25 \) T [Xu], followed by bulk with \(H_{c2}(0) = 19 \) T [Takano], [Fuchs] and wires 16 T [Bud'ko (a)].

In Figs. 20-23 are the temperature dependencies of the upper critical field obtained for MgB\(_2\) in different configurations: bulk, wires, films and single crystals, respectively.

In the plot from Fig. 21 can be easily observed that the \(H_{c2}(T) \) dependence is linear in a large T-range, saturating at low temperatures.

A particular feature of \(H_{c2}(T) \) curve for MgB\(_2\) is the pronounced positive curvature near \(T_c \), similar to the one observed in borocarbides YNi\(_2\)B\(_2\)C and LuNi\(_2\)B\(_2\)C, considered superconductors in the clean limit [Shulga (b)].

10.2. \(H_{c2}(T) \) anisotropy

Anisotropy is very important both for basic understanding of this material and practical applications, strongly affecting the pinning and critical currents. The question related to the anisotropy degree of MgB\(_2\) is still unresolved, reports giving values ranging between 1.1 and 9.
For textured bulk and partially oriented crystallites, the anisotropy ratio $\gamma = H_{c2}/H_{c2}$ is reported to be between 1.1 and 1.7 [Handstein], [de Lima (a)], [de Lima (b)]; for c-axis oriented films $1.2 \div 2$ [Jung (f)], [Ferdeghini], [Patnaik]; in single crystals slightly larger values than in aligned powders or films, between $1.7 \div 2.7$ [Jung (a)], [Xu], [Lee (a)]; and finally for powders unexpectedly large values, ranging from 5 to 9 [Bud'ko (c)], [Simon].

Generally, the anisotropy of one material can be estimated on aligned powders, epitaxial films or single crystals. The method using aligned powders consists in mixing the superconducting powders with epoxy, followed by the alignment in magnetic fields made permanent by curing the epoxy. In order this method to give reliable results, the powders must consist of single crystalline grains with a considerable normal state magnetic anisotropy. Regularly, this method gives underestimates of anisotropy coefficient γ due to uncertainties in the degree of alignment. The c-axis oriented films may also have a certain degree of misorientation, therefore the anisotropy coefficient will be smaller than the real value. Usually, the most reliable values are for single crystals.

Recently, Bud'ko et al. proposed a method of extracting the anisotropy parameter $\gamma = H_{c2,max}/H_{c2,min}$ from the magnetization $M(H,T)$ of randomly oriented powders [Buk'ko (c)]. Their method is based on two features in $\partial M/\partial T$. The maxim upper critical field $H_{c2,max}$ is associated with the onset of diamagnetism at $T_{c,max}$ and the minimum upper critical field $H_{c2,min}$ is associated with a kink $\partial M/\partial T$ at lower temperatures, $T_{c,min}$. In order to prove this method is reliable, they measured the anisotropy coefficient γ due to uncertainties in the degree of alignment. The c-axis oriented films may also have a certain degree of misorientation, therefore the anisotropy coefficient will be smaller than the real value. Usually, the most reliable values are for single crystals.

One can notice that the values for bulk are situated between the anisotropic upper critical field curves for H/ab and H/c. The anisotropic upper critical field value $H_{c2,ab}$ for both single crystals and powders is closer to the highest values for bulk, suggesting the upper limit of H_{c2} determined from anisotropy measurements may be closer to the real value for MgB$_2$.

On the other side, the upper critical field for fields parallel to c-axis $H_{c2,c}$ inferred from non-aligned powders by the new method of Bud'ko et al. [Bud'ko (c)] is much lower than the lowest values obtained for bulk and single crystals, implying an underestimation of $H_{c2,c}$. In order to determine with certainty the anisotropy of MgB$_2$, more experiments on larger single crystals are necessary.

10.3. Coherence lengths

A comparison between the values of the coherence lengths, the anisotropy parameter γ, and upper critical field determined from experiments performed on aligned powders, thin films, single crystals and randomly aligned powders can be seen in Table 5. In order to deduce the values of the anisotropic coherence lengths from the upper critical fields we used the anisotropic Ginzburg-Landau theory equations: for the magnetic field applied along c-axis $H_{c2,c}=\phi_0/2\pi\xi_{c}$, and for the magnetic field applied in the ab-plane $H_{c2,ab}=\phi_0/2\pi\xi_{ab}$, where ϕ_0 is the flux quantum, ξ_{ab}, ξ_{c} are the coherence lengths along ab plane and c-axis. The previous formulae are in CGS system.

Overall, the coherence lengths values along the ab-plane range between $\xi_{ab}(0)=3.7+12.8$ nm and along c-axis between $\xi_{c}(0)=1.6+5.0$ nm.

Probably the most reliable data are for single crystals, with $\xi_{ab}(0)=6.1+6.5$ nm and $\xi_{c}(0)=2.5+3.7$ nm.
Figure 24. Upper critical field anisotropy versus temperature for MgB$_2$ single crystals, wire, powders. Notice that the $H_{c2}(T)$ data for MgB$_2$ bulk falls between the anisotropic dependencies of $H_{c2}(T)$ for $H//c$ and $H//ab$.

Figure 25. Lower critical field versus temperature.

Figure 26. Irreversibility field versus temperature for different geometries of MgB$_2$ (bulk, film, wire and powder).

Table 5. Anisotropy of the upper critical field and coherence lengths inferred from experiments on aligned powders, thin films, single crystals and randomly aligned powders.

Form	Reference	$H_{c2}^{ab}(0)$ [T]	$H_{c2}^{c}(0)$ [T]	$\xi_{ab}(0)$ [nm]	$\xi_{c}(0)$ [nm]	γ
textured	[Handstein]	12	11	5.5	5.0	1.1
aligned	[de Lima (a)]	11	6.5	7.0	4.1	1.7
crystallites	[de Lima (b)]	12.5	7.8	6.5	4.0	1.6
films	[Jung (f)]	30	24	3.7	3.0	1.25
	[Ferdeghini]	26.4	14.6	4.7	2.6	1.8
	[Patnaik]	22.5	12.5	5.0	2.8	1.8
	[Patnaik]	24.1	12.7	5.0	2.6	1.9
	[Patnaik]	39	19.5	4.0	2.0	2
single	[Jung (a)]	14.5	8.6	6.1	3.7	1.7
crystals	[Xu]	25.5	9.2	6.5	2.5	2.6
	[Lee (a)]					2.7
powders	[Bud'ko (c)]	20	2.5	11.4	1.7	5±0.8
	[Simon] ESR	16	2	12.8	1.6	6±0.9
Figure 27. Critical current densities versus magnetic field for MgB₂ bulk samples [Suo], [Kim (b)], [Finnemore], [Joshi (a)], [Kambara], [Dhalle], [Wen (b)], [Bugoslavski (c)], [Takano]. The data for Nb-Ti [Heussner] and Nb₃Sn [Kim (e)] at 4.2 K are shown for comparison.

10.4. Lower critical field \(H_{c1}(T)\)

The lower critical field data versus temperature is shown in Fig. 24. Most of the values are situated between 25 and 48 mT.

The data of anisotropic \(H_{c1}^{ab}\) and \(H_{c1}^{c}\) measured using single crystals [Xu] does not encompass the values for bulk [Joshi (a)], [Li (d)], [Takano], [Sharoni (b)], suggesting that the data for single crystal is not accurate.

The values of the penetration depth deduced from the lower critical field data range between 85 and 203 nm.

10.5. Irreversibility field \(H_{irr}(T)\)

The knowledge of the irreversibility line is important in potential applications, as non-zero critical currents are confined to magnetic fields below this line.

The irreversibility fields extrapolated at zero temperature range between 6 and 12 T for MgB₂ bulk, films, wires, tapes and powders, as illustrated in Fig. 26. A substantial enhancement of the irreversibility line accompanied by a significantly large \(J_c\) between \(10^6\) to \(10^7\) A/cm² at 4.2 K and 1 T and have been reported in MgB₂ thin films with lower \(T_c\) [Patnaik], [Eom], [Ferdeghini]. These results give further encouragement to the development of MgB₂ for high current applications.

11. Critical current density versus applied magnetic field \(J_c(H)\)

11.1. \(J_c(H)\) in bulk

Many groups have measured the critical current density and its temperature and magnetic field dependence for different geometrical configurations of MgB₂: powders [Bugoslavsky (b)], [Dhalle], - bulk [Bugoslavsky (c)], [Dhalle], [Finnemore], [Frederick], [Joshi (a)], [Kambara], [Takano], [Wen (b)], - films [Eom], [Johansen], [Kim (a)], [Kim (b)], [Li (a)], [Moon], [Paranthaman (a)], - tapes [Che], [Grasso], [Kumakura], [Soltanian], [Song], [Sumption], - wires [Canfield], [Glowacki], [Goldacker], [Jin (b)], [Wang (b)].

The consensus which seems to emerge is that, unlike in HTSC, \(J_c(T,H)\) in MgB₂ is determined by its pinning properties and not by weak link effects. These pinning properties are strongly field dependent, becoming rather poor in modest magnetic fields. The inductive measurements indicate that in dense bulk samples, the microscopic current density is practically identical to the intra-granular \(J_c\) measured in dispersed powders [Dhalle], therefore the current is not limited by grain boundaries [Kawano].

In Fig. 27 are shown data of critical current versus applied magnetic field, \(J_c(H)\), for bulk MgB₂ samples, taken at different temperatures, 5, 10, 15, 20, 25 and 30K. We have to mention that most of the \(J_c\) data we will present in the followings were inferred from magnetization measurements.
Figure 28. Critical current densities versus magnetic field for MgB₂ powders [Dhalle], [Takano], [Bugoslavski (b)]. The data for Nb-Ti [Heussner] and Nb₃Sn [Kim (e)] at 4.2 K are shown for comparison.

For comparison are shown the \(J_c(H) \) data for Nb-Ti [Heussner] and Nb₃Sn [Kim (e)] at 4.2 K. In self fields bulk MgB₂ achieve moderate values of critical current density, up to \(10^6 \) A/cm². In applied magnetic fields of 6 T \(J_c \) maintains above \(10^4 \) A/cm², while in 10 T \(J_c \) is about \(10^2 \) A/cm².

11.2. \(J_c(H) \) in powders

Fig. 28 illustrates the critical current density versus field for MgB₂ powders [Dhalle], [Takano], [Bugoslavski (b)]. Very high current densities can be achieved in low fields, of up to \(3 \times 10^6 \) A/cm². However, magnetic fields of 7 T quenches the current density to low values - \(10^3 \) A/cm², \(J_c(H) \) having a steeper dependence in field than bulk MgB₂.

11.3. \(J_c(H) \) in wires and tapes

In Figs. 29 and 30 are shown the critical current density dependence in magnetic field for MgB₂ wires and tapes, respectively. The data for are taken from references [Canfield], [Che], [Goldacker], [Glowacki], [Jin (b)], [Kumakura], [Soltanian], [Song], [Suo], [Wang (b)].

Compared to bulk and powders MgB₂, the wires and tapes have lower values of \(J_c \) in low fields, of about \(6 \times 10^5 \) A/cm². However, the \(J_c(H) \) dependence becomes more gradual in field, allowing larger current density values in higher fields, \(J_c(5T) > 10^3 \) A/cm². Due to geometrical shielding properties, the tapes can achieve superior currents in relatively high magnetic fields than the wires.

Suo et al. found that annealing of the tapes increases core density and sharpened the superconducting transition, raising \(J_c \) by more than a factor of 10 [Suo].

Wang et al. studied the effect of sintering time on the critical current density of MgB₂ wires [Wang (b)]. They found that there is no need for prolonged heat treatment in the fabrication of Fe-clad wires. Several minutes sintering gives the same performances as longer sintering time. Therefore, these findings substantially simplify the fabrication process and reduce the cost for large-scale production of MgB₂ wires.

Jin et al. showed that alloying MgB₂ with Ti, Ag, Cu, Mo, Y, has an important effect upon \(J_c \), despite the fact that \(T_c \) remains unaffected or slightly reduced by these elements [Jin (b)]. Iron addition seems to be least damaging, whereas Cu addition causes \(J_c \) to be significantly reduced by 2-3 orders of magnitude.

Iron is also beneficial as metal-clad, as it shields the core from external fields, the shielding being less effective for fields parallel to the tape plane [Soltanian]. When there is no external field, the transport current will generate a self-field surrounding the tape. Because Fe is ferromagnetic, the flux lines will suck into the Fe sheath, particularly at the edges of the tape. Therefore, the sheath will reduce the effect of self-field on \(I_c \). When external fields are applied, the Fe sheath acts as a shield, reducing the effect of external field. Therefore, using Fe-clad tapes may be beneficial for power transmission lines.

In order to increase \(J_c \) in wires and tapes, the fabrication process must be optimised by using finer starting powders or by incorporating nanoscale chemically inert particles that would inhibit the grain growth.
Figure 29. Critical current densities versus magnetic field for MgB$_2$ wires [Goldacker], [Jin (b)], [Canfield], [Golwacki], [Wang (b)]. The data for Nb-Ti [Heussner] and Nb$_3$Sn [Kim (e)] at 4.2 K are shown for comparison.

Figure 30. Critical current densities versus magnetic field for MgB$_2$ tapes [Song], [Che], [Suo], [Kumakura], [Soltanian]. The data for Nb-Ti [Heussner] and Nb$_3$Sn [Kim (e)] at 4.2 K are shown for comparison.
11.4. \(J_c(H) \) in thin films

In Fig. 31 are shown the values of critical current density versus magnetic field in MgB\(_2\) films [Kim (a)], [Eom], [Paranthaman (a)]. To our great surprise, the data for thin films have given us the proof that the performances of MgB\(_2\) can rival and perhaps eventually exceed that of existing superconducting wires. One can see in Fig. 31 that in low fields, the current density in MgB\(_2\) is higher [kim (a)], [Eom] than the current in Nb\(_3\)Sn films [Kim (e)] and Nb-Ti [Heussner]. In larger magnetic fields \(J_c \) in MgB\(_2\) decreases faster than for Nb-Sn and Nb-Ti superconductors. However, a \(J_c \) of 10\(^4\) A/cm\(^2\) can be attained in 14T for films with oxygen and MgO incorporated [Eom].

These high current densities, exceeding 1 MA/cm\(^2\), measured in films [Kim (a)], [Eom], demonstrate the potential for further improving the current carrying capabilities of wires and tapes.

11.5. Highest \(J_c(H) \) at different temperatures

As we can see in Figs. 27-31, MgB\(_2\) has a great potential for high-current and high-field applications, as well as microelectronics. Josephson junctions may be much easier to fabricate that those made from HTSC, having the performances of conventional superconductors (Nb, NbN), but operate at much higher temperatures.

In particular, as illustrated in Fig. 32, MgB\(_2\) has similar performances regarding critical current density in low temperatures with best existing superconductors.

Up to date several authors succeeded in improving \(J_c \) of MgB\(_2\) by: oxygen alloying [Eom], proton irradiation [Bugoslavsky (b)], while other studied the influence of doping [Jin (b)] or sample preparation [Dhalee] on \(J_c \).

To take advantage of the relatively high \(T_c \) of 39 K of MgB\(_2\), it is important to have high \(J_c \) values at temperatures above 20 K. The boiling point of H at atmospheric pressure is 20.13 K, so that is possible to use liquid hydrogen as cryogen for cooling MgB\(_2\). In Fig. 33 are shown the best values of \(J_c(H) \) for temperatures of 25 K and 30 K, respectively. For applications at above 20 K it is necessary to improve the flux-pinning properties through structural and microstructural modifications. For example, chemical doping, introduction of precipitates, atomic-scale control of defects such as vacancies, dislocations, grain boundaries.

11.6. Absence of weak links

Many magnetization and transport measurements show that MgB\(_2\) does not exhibit weak-link electromagnetic behavior at grain boundaries [Larbalestier] or fast flux creep [Thompson], phenomena which limit the performances of high-T\(_c\) superconducting cuprates.

As stated previously, high critical current densities have been observed in bulk samples, regardless of the degree of grain alignment [Kim (b)], [Suo]. This would be an advantage for making wires or tapes with no degradation of \(J_c \), in contrast to the degradation due to grain boundary induced weak-links which is a common and serious problem in cuprate high temperature superconductors.
Figure 32. Highest critical current densities versus magnetic field for MgB$_2$ at 4.2K and 10 K. Data at 4.2 K are taken from [Goldacker], [Song], [Che], [Suo], [Kim (a)], [Eom], [Kim (b)]; data at 10K are taken from [Wang (b)], [Kim (a)], [Kim (b)], [Dhalle]. The data for Nb-Ti [Heussner] and Nb$_3$Sn [Kim (e)] at 4.2 K are shown for comparison.

In Fig. 34 is illustrated the absence of weak links in MgB$_2$. The transport measurements in high magnetic fields of dense bulk samples yields very similar J_c values as the inductive measurements [Dhalle], [Kim (b)]. This confirms that the inductive current flows coherently throughout the sample, unaffected by grain boundaries. Therefore the flux motion will determine J_c dependence in field and temperature.

Jin et al. [Jin (b)] found that some materials used as tubes or sheaths in the PIT method dramatically reduce the critical current of MgB$_2$. Although magnesium diboride itself does not show the weak-link effect, contamination does result in weak-link-like behaviour.

Figure 33. Highest critical current densities versus magnetic field for MgB$_2$ at 25K and 30K. Data at 25K are taken from [Canfield], [Dhalle], [Song], [Kim (a)], [Kim (b)]; data at 30K are taken from [Wang (b)], [Dhalle], [Che], [Kim (b)]. The data for Nb-Ti [Heussner] and Nb$_3$Sn [Kim (e)] at 4.2 K are shown for comparison.

Figure 34. Critical current density dependence in magnetic field. data taken from resistive and magnetic measurements [Kim (b)].
12. Energy gap

There is no consensus yet about the gap values in MgB$_2$ and whether or not this material has a single anisotropic gap or a double gap, as shown in Fig. 34.

Energy gap values have been inferred by using tunneling spectroscopy [Karapetrov], [Sharoni (b)], [Sharoni (a)], [Chen (a)], [Giubileo (a)], [Giubileo (b)], [Rubio-Bollinger], point contact tunneling [Schmidt], [Szabo], [Laube], [Zhang (b)], [Gonnelli (b)], specific heat studies [Kremer], [Walti], [Wang (c)], [Bauer], [Junod], [Fisher], [Bouquet (b)], high-resolution photoemission spectroscopy (HRPS) [Takahashi], [Tsuda], far-infrared transmission studies (FIRT) [Gorshunov], [Jung (d)], [Kaindl], Raman spectroscopy [Chen (c)], [Quilty], tunneling junctions [Plecenik (a)]. Energy gaps in superconductors are usually investigated by spectroscopic techniques, which are subject to errors associated with surface impurities or non-uniformity. In the case of MgB$_2$ the gap structure is so pronounced that specific heat measurements can be used to infer its values.

As shown in Fig. 35, several experiments measured a single gap, with values between 2.5±5 meV, while latest experiments claim to have brought some clarification about the gap features in MgB$_2$. According to initial findings, MgB$_2$ seemed to be a low-T$_c$ superconductor with a remarkably high critical temperature, its properties resembling that of conventional superconductors rather than of high-T$_c$ cuprates. This include isotope effect, a linear T-dependence of the upper critical field with a positive curvature near T$_c$ (similar to borocarbides), a shift to lower temperatures of both T$_c$(onset) and T$_c$(end) at increasing magnetic fields as observed in resistivity R(T) measurements. On the other hand, microwave measurements results can be explain by the existence of an anisotropic superconducting gap or the presence of a secondary phase, with lower gap width, in some of the MgB$_2$ samples [Zhukov (c)].

13. Conclusions

To summarise, in this article we presented a review of the main normal and superconducting properties of magnesium diboride. MgB$_2$ has an unusual high critical temperature of about 40K among binary compounds, with an AlB$_2$-type structure with graphite-type boron layers separated by hexagonal close-packed layers of Mg. The presence of the light boron as well as its layered structure may be important factors which contribute to superconductivity at such a high temperature for a binary compound.

According to initial findings, MgB$_2$ seemed to be a low-T$_c$ superconductor with a remarkably high critical temperature, its properties resembling that of conventional superconductors rather than of high-T$_c$ cuprates. This include isotope effect, a linear T-dependence of the upper critical field with a positive curvature near T$_c$ (similar to borocarbides), a shift to lower temperatures of both T$_c$(onset) and T$_c$(end) at increasing magnetic fields as observed in resistivity R(T) measurements. On the other hand, microwave measurements results can be explain by the existence of an anisotropic superconducting gap or the presence of a secondary phase, with lower gap width, in some of the MgB$_2$ samples [Zhukov (c)].
hand, the quadratic T-dependence of the penetration depth $\lambda(T)$, as well as the sign reversal of the Hall coefficient near T_c, indicates unconventional superconductivity similar to cuprates.

Several other related materials are known to be superconductive, but MgB$_2$ holds the record of T_c in its class. The hope that the critical temperature could be raised above 40K initiated a search for superconductivity in similar compounds, up to now several materials being discovered to superconduct: TaB$_2$ (T_c=9.5K), BeB$_2$:6:3:75 (T_c=0.7K), C-S composites (T_c=35K), and the elemental boron under pressure (T_c=11.2K).

As a guide in the search for new related superconducting materials, we suggest several issues to be taken into account. First, one should try several compositions, as the superconductivity may arise only in nonstoichiometric compounds. Secondly, the contamination by non-reacted simple elements or other phases has to be taken into account. First, one should try several superconducting materials, we suggest several issues to be

In Table 6 is presented a list with the most important parameters of MgB$_2$. In the followings we will summarise this review. Up to date, MgB$_2$ has been synthesised as bulk, single crystals, thin films, tapes and wires. Thin films are fabricated by PLD, co-evaporation, deposition from suspension, magnetron sputtering and Mg diffusion. The highest critical temperatures and sharpest transitions are achieved by Mg diffusion method. This method is also used for fabrication of powders, wires and tapes. The most popular method for wires and tapes fabrication is the powder-in-tube PIT method. Several metal-cladding have been tried, the best results being achieved by iron. Other metals are reacting with Mg during a post-annealing process. High enough current densities can be achieved by skipping the sintering, which makes cheaper the fabrication process and expands the range of metals used in cladding. Single crystals are currently obtained by solid-liquid method, under high pressure, and by vapor-transport method. The charge carriers in MgB$_2$ are holes with a hole density at 300K between $1.7 \div 2.8 \times 10^{23}$ holes/cm3. The critical temperature of MgB$_2$ decreases under pressure, the compound remaining hexagonal until the highest pressure studied. $T_c(P)$ data differs considerably for different authors. However, a pattern emerges in the $T_c(P)$ dependence: samples with lower T_c at zero pressure have a positive curvature and a much steeper dependence than samples with higher T_c, which show a negative curvature. The initial rate of the critical temperature derivative in pressure dT_c/dp range between -1.1 and -2, being inverse proportional to pressure. The observed $T_c(P)$ may correlate with Mg nonstoichiometry in this compound. In order to clarify this subject, data which specify the correlation between T_c and the Mg nonstoichiometry are necessary. MgB$_2$ shows anisotropic compressibility and thermal expansion, with the c-axis responses substantially higher than a-axis. This fact demonstrates that out-of-plane Mg-B bonds are much weaker than in-plane bonds.

Parameter	Values
critical temperature	$T_c = 39 \pm 40 K$
hexagonal lattice	$a = 0.3086 \text{ nm}$,
parameters	$b = 0.3524 \text{ nm}$,
theoretical density	$\rho = 2.55 \text{ g/cm}^3$
pressure coefficient	$dT_c/dp = -1.1 \pm 2 \text{ K/GPa}$
carrier density	$n_c = 1.7 \pm 2.8 \times 10^{23} \text{ holes/cm}^3$
isotropic effect α_f	$\alpha_f = \alpha_b + \alpha_M = 0.3 \pm 0.02$
resistivity ratio $\rho(40K)/\rho(300K)$	$= 1 \pm 27$
upper critical field	$H_{c2}(ab(0)) = 14 \div 39 \text{ T}$
lower critical field	$H_{c1}(ab(0)) = 2 \div 24 \text{ T}$
irreversibility field	$H_{c1}(c(0)) = 6 \div 35 \text{ T}$
coexistence lengths	$\xi_1(0) = 3.7 \div 12 \text{ nm}$
penetration depths	$\lambda(0) = 85 \div 180 \text{ nm}$
energy gap	$\Delta(0) = 1.8 \div 7.5 \text{ meV}$
Debye temperature	$\Theta_B = 750 \pm 880 \text{ K}$
critical current $J_c(4.2K,0T)$	$> 10^7 \text{ A/cm}^2$
densities	$J_c(4.2K,4T) = 10^5 \text{ A/cm}^2$
	$J_c(4.2K,10T) = 10^4 \text{ A/cm}^2$
	$J_c(25K,0T) = 5 \times 10^6 \text{ A/cm}^2$
	$J_c(25K,2T) > 10^5 \text{ A/cm}^2$

Critical temperature decreases at various rates for substitutions with Si, Li, Ni, Fe, Co, Mn, while Zn doping seems to slightly increase T_c at a certain doping level (less than 1K). The total isotope effect $\alpha = 0.32$ and Testardi correlation between T_c and resistivity ratio RR seems to point out towards a phonon-mediated mechanism. High upper critical fields values of $H_{c2}(0) = 39T$ may be attained for films with lower T_c (31K). Single crystals give second best values for the upper critical fields $H_{c2}(0) = 25T$, followed by bulk $H_{c2}(0) = 19T$ and wires $H_{c2}(0) = 16T$. For textured bulk and partially oriented crystallites, the anisotropy ratio $\gamma = H_{c2}(ab)/H_{c2}(c)$ is reported to be between 1.1 and 1.7; thin films give values of $1.2 \div 2$; single crystals show slightly higher values than in aligned powders or films, between $1.7 \div 2.7$; while measurements on non-aligned powders give unexpectedly large values, ranging from 5 to 9. Lower critical field data range between 25 and 48 mT, with penetration depths in the range 85-203 nm. The highest values of current density are obtained in MgB$_2$.

Parameter	Values
α_f	$\alpha_f = \alpha_b + \alpha_M = 0.3 \pm 0.02$
$\rho(40K)/\rho(300K)$	$= 1 \pm 27$
$H_{c2}(ab(0))$	$14 \div 39 \text{ T}$
$H_{c1}(ab(0))$	$2 \div 24 \text{ T}$
$H_{c1}(c(0))$	$6 \div 35 \text{ T}$
$\xi_1(0)$	$3.7 \div 12 \text{ nm}$
$\lambda(0)$	$85 \div 180 \text{ nm}$
$\Delta(0)$	$1.8 \div 7.5 \text{ meV}$
Θ_B	$750 \pm 880 \text{ K}$
$J_c(4.2K,0T)$	$> 10^7 \text{ A/cm}^2$
$J_c(4.2K,4T)$	10^5 A/cm^2
$J_c(4.2K,10T)$	10^4 A/cm^2
$J_c(25K,0T)$	$5 \times 10^6 \text{ A/cm}^2$
$J_c(25K,2T)$	$> 10^5 \text{ A/cm}^2$
thin films with incorporated impurities (O, MgO), showing similar or higher performances than the best existing superconducting wires. The high critical current densities attained in thin films give hopes for improving the current carrying capabilities of wires and tapes.

Altogether, relative low costs of fabrication, high critical currents and fields, large coherence lengths, its high critical temperature of 39 K, absence of weak-links, makes MgB₂ a promising material for applications at above 20.13 K, the temperature of boiling hydrogen at normal pressure.

In conclusion, in this article we have presented a review on MgB₂ normal and superconducting properties from studies appeared during the last seven month, from January until July. Since the progress in this field has been so wide and fast, it is possible that we may have unintentionally omitted some of the data. Also, despite the fact some issues have been studied in the literature, we did not cover it in this review, from special reasons. This may include microwave properties [Hakim], [Joshi (b)], [Lee (b)], [Zukov (a)], [Nefyodorov], [Klein], irradiation-induced properties [Karkin], [Bugoslavsky (b)], Josephson properties [Brinkman (b)], [Gonnelli (a)], [Burnell], [Zhang (b)]. These issues will be discussed in a later review to be included as a special chapter in our book [Yamashita]. Nevertheless, we tried to update this review with the latest information in the field, hoping the reader will be provided with the current situation and trends that are to be pursued in the near future. For orientation purpose, in the reference list we cite all the MgB₂ studies appeared to our knowledge in printed or electronic format.

Acknowledgments

This work was supported by CREST (Core Research for Evolutional Science and Technology) of Japan Science and Technology Corporation (JST) and JSPS (Japan Society for the Promotion of Science).

References

Ahn J S and Choi E J 2001 Preprint, Carbon substitution effect in MgB₂, cond-mat/0103169
Akimitsu J 2001 Symposium on Transition Metal Oxides, 10 January 2001, Sendai, Japan
Alexandrov A S 2001 Preprint, Nonadiabatic superconductivity in MgB₂ and cuprates, cond-mat/0104413
An J M and Pickett W E 2001, Superconductivity of MgB₂: Covalent Bonds Driven Metallic, Phys. Rev. Lett. 86 4366
Antropov V P, Belashchenko K D, van Schilfgaarde M and Rashkeev S N 2001 Preprint, Electronic Structure, Bonding and Optical Spectrum of MgB₂, cond-mat/0107123
Ascroft N W 1968, Ascroft N W 1968 Phys. Rev. Lett. 21 1748
Bardeen J, Cooper LN and Schrieffer J R 1957 Phys. Rev. 108 1175
Bascones E and Guinea F 2001 Preprint, Surface effects in multiband superconductors, Application to MgB₂, cond-mat/0103190, to appear in Phys. Rev. B
Baskaran G 2001 Preprint, RVB contribution to superconductivity in MgB₂, cond-mat/0103308
Bauer E, Paul Ch, Berger St, Majumdar S, Michor H, Giovannini M, Saccone A and Bianconi A 2001, Thermal conductivity of superconducting MgB₂, J. Phys. Cond. Matter. 13 L487
Belashchenko K D, Antropov V P and Rashkeev S N 2001, Anisotropy of p states and 11B nuclear spin-lattice relaxation in (Mg,Al)B₂, Phys. Rev. B 64 132506
Berenov A, Lockman Z, Qi X, Bugoslavsky V, Cohen L F, Jo M H, Stelmashenko N A, Tsaneva V N, Kambara M, Hari Babu N, Cardwell D A, Blamire M G and MacManus-Driscoll J L 2001 Preprint, Growth of Strongly Biaxially Aligned MgB₂ Thin Films on Sapphire by Post-annealing of Amorphous Precursors, cond-mat/0106278
Bester G and Fahnle M 2001 Preprint, Ab-initio investigation of the covalent bond energies in the metallic covalent superconductor MgB₂ and in AlB₂, cond-mat/0105107
Bhide M K, Kadam R M, Sastry M D, Singh A, Sen S, Aswal D K, Gupta S K and Sahni V C 2001 Magnetic field dependent microwave absorption of films on a MgB₂ superconductor, Supercond., Sci & Technol. 14 L72
Bianconi (a) A, Saini N L, Di Castro D, Agrestini S, Campi G, Saccone A, De Negri S, Giovannini M and Colapietro M 2001 Preprint, High T, superconductivity at a critical strain and charge density in diborides, cond-mat/0102410
Bianconi (b) A, Di Castro D, Agrestini S, Campi G, Saini N L, Saccone A, De Negri S and Giovannini M 2001 Preprint, A Superconductor Made by a Metal Heterostructure at the Atomic Limit Tuned at the “Shape Resonance”: MgB₂, cond-mat/0103211
Blank D H A, Hilgenkamp H, Brinkman A, Mijatovic D, Rijnders G and Rogalla H 2001, Superconducting Mg-B films by pulsed laser deposition in an in-situ two-step process using multi-component targets, Appl. Phys. Lett. 79 394
Bohnen K P, Heid R and Renker B 2001, Phonon dispersion and electron-phonon coupling in MgB₂ and AlB₂, Phys. Rev. Lett. 86 5771
Bordet P, Mezouar M, Nunez-Regueiro M, Monteverde M, Nunez-Regueiro M D, Rogado N, Regan K A, Hayward M A, He T, Loureiro S M and Cava R J 2001 Preprint, Absence of a structural transition up to 40 Gpa in MgB₂ and the relevance of magnesium non-stoichiometry, cond-mat/0106585, to appear in Phys. Rev. B
Bouquet (a) F, Fisher R A, Phillips N E, Hinks D G and Jorgensen J D 2001 Preprint, Specific Heat of MgB₂, cond-mat/0104206
Bouquet (b) F, Wang Y, Fisher R A, Hinks D G, Jorgensen J D, Junod A and Phillips N E 2001 Preprint, Phenomenological two-gap model for the specific heat of MgB₂, cond-mat/0107196
Brinkman (a) A, Mijatovic D, Rijnders G, Leca V, Smilde H J H, Oomen I, Golubov A A, Roesthuys F, Harmans S, Hilgenkamp H, Blanket D H A and Rogalla H 2001, Superconducting thin films of MgB₂ on Si by pulsed laser deposition, Physica C 324 15
Brinkman (b) A, Veldhuis D, Mijatovic D, Rijnders G, Blanket D H A, Hilgenkamp H and Rogalla H 2001 Preprint, Superconducting Quantum Interference Device based on MgB₂ nanoribbons, cond-mat/0105535
Bud’ko (a) S L, Petrovic C, Lapertot G, Cunningham C E, Canfield P C, Jung M H and Lacerda A H 2001, Magnetoresistivity and Hc2(T) in MgB₂, Phys. Rev. B 63 220503
Bud’ko (b) S L, Lapertot G, Petrovic C, Cunningham C E, Anderson N and Canfield P C 2001, Boron isotope effect in superconducting MgB₂, Phys. Rev. Lett. 86 1877
Bud’ko (c) S L, Kogan V G and Canfield P C 2001 Preprint, Determination of superconducting anisotropy from magnetization data on random powders as applied to...
2001 Preprint, Identification and Characterization of Two Energy Gaps in Superconducting MgB$_2$ by Specific-Heat Measurements, cond-mat/0107027

Frederick N A, Li S, Maple M B, Nesterenko V F and Indrakanti S S 2001 Preprint, Improved superconducting properties of MgB$_2$, cond-mat/0106518

Fuchs G, Muller K H, Handstein A, Nenkov K, Narozhnyi V N, Eckert D, Wolf M and Schultz L 2001, Upper critical field and irreversibility line in superconducting MgB$_2$, Solid State Commun. 118 497

Furukawa N 2001 Preprint, Antiferromagnetism of the Hubbard Model on a Layered Honeycomb Lattice - Is MgB$_2$ a Nearly-Antiferromagnetic Metal? cond-mat/0103184

Gasparov V A, Sidorov N S, Zver'kova I I and Kulakov M P 2001, Electron Transport in Diborides: Observation of Superconductivity in ZrB$_2$, JETP Lett. 73 532

Gerashenko A, Mikhail K, Vekhovskii S, Dyachkova T, Tyutyunnik A, Zubkov V 2001 Preprint, Electronic states on grain in superconducting MgB$_2$ studied by 11B NMR, cond-mat/0102421

Giubileo (a) F, Roditchev D, Sacks W, Lamy R and Klein J 2001 Preprint, Strong Coupling and Double Gap Density of States in Superconducting MgB$_2$, cond-mat/0105146

Giubileo (b) F, Roditchev D, Sacks W, Lamy R, Thanh D X, Klein J, Miraglia S, Frucht D and Monod Ph 2001 Preprint, Two Gap State Density in MgB$_2$: A True Bulk Property or A Proximity Effect?, cond-mat/0105592, to appear in Phys. Rev. Lett.

Glowacki B A, Majoros M, Vickers M, Evvets J E, Shi Y, McDougall I 2001, Superconductivity of powder-in-tube MgB$_2$ wires, Supercond. Sci. Technol. 14 193

Goldacker W, Schlachter S I, Zimmer S, Reiner H 2001, High transport currents in mechanically reinforced MgB$_2$ wires, Supercond. Sci. & Technol. 14 787

Goncharov (a) A F, Struzhkin V V, Gregorzyan E, Hu J, Hemley R J, Mao H K, Lapertot G, Bud'ko S L and Canfield P C 2001, Raman spectrum and lattice parameters of MgB$_2$ as a function of pressure, Phys. Rev. B 64 100509

Goncharov (b) A F, Struzhkin V V, Gregorzyan E, Mao H K, Hemley R J, Lapertot G, Bud'ko S L, Canfield P C and Mazin I I 2001 Preprint, Pressure Dependence of the Raman Spectrum, Lattice Parameters and Superconducting Critical Temperature of MgB$_2$, cond-mat/0106258

Gonnelli (a) R S, Calzolari A, Daghero D, Ummarino G A, Stepanov V A, Giunci G, Ceresara S and Ripamonti G 2001, Josephson effect in MgB$_2$ break junctions, Phys. Rev. Lett. 87 097001

Gonnelli (b) R S, Calzolari A, Daghero D, Ummarino G A, Stepanov V A, Fino P, Giunci G, Ceresara S and Ripamonti G 2001 Preprint, Temperature and junction-type dependence of Andreev reflection in MgB$_2$, cond-mat/0107239

Gosshuni G, Kummer C A, Haas P, Dressel M, Mena F P, Kuiz/menko A B, van Marel D, Murenaka T and Akimitsu J 2001 Preprint, Optical measurements of the superconducting gap in MgB$_2$, cond-mat/0103164

Gozzellino L, Laviano F, Botta D, Chiodoni A, Gerbaldo R, Ghigo G, Mezzetti E, Giunci G, Ceresara S, Ripamonti G and Poyer M 2001 Preprint, Critical state analysis in MgB$_2$ bulk by means of quantitative MO technique, cond-mat/0104069

Grant P 2001, Rehearsals for prime time, Nature 411 532

Grassano G, Ramadan W, Ferrando V, Bellingeri E, Marre D, Ferdeghini C, Grasso G, Putti M, Siri A S, Manfrinetti P, Palenzona A and Chincarini A 2001 Preprint, In-situ Magnesium Diboride Superconducting Thin Films grown by Pulsed Laser Deposition, cond-mat/0103572

Grasso G, Malagoli A, Ferdeghini C, Roncallo S, Braccini V, Cimberle M R and Siri A S 2001, Large transport critical currents in unsintered MgB$_2$ superconducting tapes, Appl. Phys. Lett. 79 230

Gubser D U and Webb A W 1975 Phys. Rev. Lett. 35 104

Haas S and Maki K 2001 Preprint, Anisotropic s-wave superconductivity in MgB$_2$, cond-mat/0104207

Hakim N, Parimi P V, Kusko C, Srithar S, Canfield P C, Bud'ko S L and Finnimore D K 2001, Microwave properties of superconducting MgB$_2$, Appl. Phys. Lett. 17 4160

Handstein A, Hinz D, Fuchs G, Muller K H, Nenkov K, Gutfleisch O, Narozhnyi V N and Schultz L 2001 Preprint, Fully dense MgB$_2$ superconductor textured by hot deformation, cond-mat/0103408

Hase I and Yamaji K 2001 Preprint, Nesting properties and anomalous band effect in MgB$_2$, cond-mat/0106620

Havinga E E, Damsma H, and Kanis J M 1972 J. Less-Common Met. 27 281

He T, Huang Q, Ramirez A, Wang Y, Regan K A, Rogado N, Hayward M A, Haas M K, Slusky J S, Inamaru K, Zandbergen H W, Ong N P and Cava R J 2001 Preprint, Superconductivity in the non-oxide perovskite MgCNi$_2$, cond-mat/0103296

Heussner R W, Marquardt J D, Lee P J, and Larbalestier D C 1997, Increased critical current density in Nb-Ti wires having Nb artificial pinning centers, Appl. Phys. Lett. 70 17

Hinks D G, Clauss H and Jorgensen J D 2001, The complex nature of superconductivity in MgB$_2$: as revealed by the reduced total isotope effect, Nature 411 457

Hirsch (a) J E 2001, Hole superconductivity in MgB$_2$: a high T$_c$ cuprate without Ca, Phys. Lett. A 282 392

Hirsch (b) J E 2001 Preprint, Hole Superconductivity in MgB$_2$, Cuprates, and Other Materials, cond-mat/0106310

Hirsch (c) J E and Marsiglio F 2001 Preprint, Electron-Phonon or Hole Superconductivity in MgB$_2$?, cond-mat/0102479, to appear in Phys. Rev. B

Hlinka J, Gregora I, Pokorný J, Plecenik A, Kus P, Satrapinsky L and Benacka S 2001 Preprint, Phonons in MgB$_2$ by Polarized Raman Scattering on Single Crystals, cond-mat/0105275, to appear in Phys. Rev. B

Hsu Y Y, Chang H C and Ku H C 1998 Appl. Phys. 83 6789.

Hulm J K 1955 Phys. Rev. 98 1539.

Imada M 2001 Preprint, Superconductivity driven by the interband Coulomb interaction and implications for the superconducting mechanism of MgB$_2$, cond-mat/0103006

Indrakanti S S, Nesterenko V F, Maple M B, Frederick N A, Yuhasz W M and Li S 2001 Preprint, Hot isostatic pressing of bulk magnesium diboride: superconducting properties, cond-mat/0105485

Islam A K M A, Islam F N and Kabir S 2001, Ab initio investigation of mechanical behaviour of MgB$_2$, superconductor under pressure, J. Phys. Cond. Matter 13 L641

Jin (a) R, Paranathanam M, Zhai H Y, Christen H M, Christen D K and Mandrus D 2001 Preprint, Unusual Hall Effect in Superconducting MgB$_2$: Films: Analog to High-Tc Cuprates, cond-mat/0104411

Jin (b) S, Mavoori H and van Dover R B 2001, High critical currents in iron-clad superconducting MgB$_2$ wires, Nature 411 563

Johansen T H, Baziljevich M, Shantsev D V, Gao P E, Galperin Y M, Kang W N, Kim H J, Choi E M, Kim M S, Lee S I 2001 Preprint, Complex flux dynamics in MgB$_2$ films, cond-mat/0104113

Johnston D C 1977 Solid State Commun. 24 699
Jorgensen J D, Hinks D G and Short S 2001, Lattice Properties of MgB$_2$ versus Temperature and Pressure, Phys. Rev. B 63 224522

Joshi (a) A G, Pillai C G S, Raj P and Malik S K 2001, Magnetization studies on superconducting MgB$_2$ - lower and upper critical fields and critical current density, Solid State Commun. 118 445

Joshi (b) J P, Sarangi S, Sood A K, Bhat S V and Pal D 2001 Preprint, Non-resonant microwave absorption studies of superconducting MgB$_2$, cond-mat/0103369

Jung (a) C U, Park M S, Kang W N, Kim M S, Lee S Y and Lee S I 2001, Temperature- and magnetic-field-dependences of normal state resistivity of MgB$_2$ prepared at high temperature and high pressure condition, Physica C 353 162

Jung (b) C U, Park M S, Kang W N, Kim M S, Kim K H P, Lee S Y, Lee S I 2001, Effect of sintering temperature under high pressure in the superconductivity for MgB$_2$, Appl. Phys. Lett. 79 2152

Jung (c) C U, Choi J H, Chowdhury P, Kim K H P, Park M S, Kim H J, Kim J Y, Du Z, Kim M S, Kang W N, Lee S I, Sung G Y and Lee J Y 2001 Preprint, Growth and physical properties of single crystalline MgB$_2$, cond-mat/0105330; changed to ref. (f)

Jung (d) J H, Kim K W, Lee H J, Kim M W, Noh T W, Kang W N, Kim H J, Choi E M, Jung C U, Lee S I 2001 Preprint, Far-infrared transmission studies of c-axis oriented superconducting MgB$_2$ thin film, cond-mat/0105180

Jung (e) J K, Baek S H, Borsa F, Budko S L, Lapertot G and Canfield P C 2001, Temperature- and magnetic-field-dependences of normal state resistivity of MgB$_2$ prepared at high temperature and high pressure condition, Physica C 353 162

Kaczorowski (a) D, Zaleski A J, Zaleski A J and Klamut J 2001 Preprint, Incipient superconductivity in TaB$_2$, cond-mat/0103571

Kaczorowski (b) D, Klamut J and Zaleski A J 2001 Preprint, Some comments on superconductivity in diborides, cond-mat/0104479

Kaindl R A, Carnahan M A, Orenstein J, Chemla D S, Christen H M, Zhai H, Paranthaman M, Lowndes D H 2001 Preprint, Far-infrared optical conductivity gap in superconducting MgB$_2$ films, cond-mat/0105330

Karapetrov G, Javaron M, Kwok W K, Crabtree G W and Hinks D G 2001, Scanning Tunneling Spectroscopy in MgB$_2$, Phys. Rev. Lett. 86 4374

Karkin A E, Voronin V I, Dyachkova T V, Tutyunnik A P, Zubkov V G, Zainulin Y G and Goshchitskii B N 2001, Superconducting properties of the atomically disordered MgB$_2$ compounds, JETP Lett. 73 570

Kawano K, Abe S, Kambly M, Hari Babu N and Cardwell D A 2001 Preprint, Evidence for high inter-granular current flow in single-phase polycrystalline MgB$_2$ superconductor, cond-mat/0104114

Kazakov S M, Angst M and Karpinski J 2001 Preprint, Substitution effect of Zn and Cu in MgB$_2$ on Tc and structure, cond-mat/0103350

Kiesling R 1949 Acta Chem. Scand. 3 603

Kim (a) H J, Kang W N, Choi E M, Kim M S, Kim K H P, Lee S I 2001, High current-carrying capability in c-axis-oriented superconducting MgB$_2$ thin films, Phys. Rev. Lett. 87 087002

Kim (b) K H P, Kang W N, Kim M S, Jung C U, Kim H J, Choi E M, Park M S and Lee S I 2001 Preprint, Origin of the high DC transport critical current density for the MgB$_2$ superconductor, cond-mat/0103176

Kim (c) M S, Jung C U, Park M S, Lee S Y, Kim K H P, Kang W N and Lee S I 2001, Prominent bulk pinning effect in the newly discovered MgB$_2$ superconductor, Phys. Rev. B 64 012511

Kim (d) I G, Lee J I, Min B I and Freeman A J 2001, Surface electronic structures of superconducting thin film MgB$_2$(0001), Phys. Rev. B 64 020508

Kim (e) Y B and Stephen M J 1969 Flux flow and irreversible effects, in Superconductivity, Vol. 2, Ed. Parks R D (Marcel Dekker, New York) pp. 1107-1165

Kim (f) K H P, Choi J H, Jung C U, Chowdhury P, Park M S, Kim H J, Du Z, Choi E M, Kim M S, Kang W N, Lee S Y, Sung G Y, Lee J Y 2001 Preprint, Superconducting properties of well-shaped MgB$_2$ single crystal, cond-mat/0105330

Kitaguchi H, Kumakura H and Togano K 2001 Preprint, Strain Effect in MgB$_2$/Stainless Steel Superconducting Tape, cond-mat/0106388

Klein N, Jin B B, Schubert J, Schuster M, Yi H R, Pimenov A, Loidl A and Krasnosvobodtsev S I 2001 Preprint, Energy gap and London penetration depth of MgB$_2$ films determined by microwave resonator measurement, cond-mat/0107259

Klie R F, Idrobo J C and Browning N D 2001 Preprint, Direct observation of nm-scale Mg- and B-oxide phases at grain boundaries in MgB$_2$, cond-mat/0107324

Knigavko A and Marsiglio F 2001 Preprint, Constraints from T$_c$ and the isotope effect for MgB$_2$, cond-mat/0105512, to appear in Phys. Rev. B

Kobayashi K and Yamamoto K 2001 Preprint, Electronic Structures of MgB$_2$ under Uniaxial and Hydrostatic Compression, cond-mat/0105231

Kohen A and Deutscher G 2001, Symmetry and Temperature dependence of the Order parameter in MgB$_2$ from point contact measurements, Phys. Rev. B 64 060506

Kohmoto M, Chang I and Friedel J 2001 Preprint, Enhancement of superconductive critical temperatures in almost empty or full bands in two dimensions: possible relevance to β-HfNCl, C$_{60}$ and MgB$_2$, cond-mat/0103352

Kolesnikov N N and Kulakov M P 2001 Preprint, Synthesis of MgB$_2$ from elements, cond-mat/0107164

Kong Y, Dolgov O V, Jepsen O and Andersen O K 2001, Electron-phonon interaction in the normal and superconducting states of MgB$_2$, Phys. Rev. B 64 020501(R)
Kortus J, Mazin I L, Belashchenko K D, Antropov V P and Boyer L L 2001, *Superconductivity of metallic boron in MgB2*, *Phys. Rev. Lett.* 86 4656

Kotegawa H, Ishida K, Kitaoka Y, Muranaka T, Akimitsu J 2001, *Evidence for Strong-coupling S-wave Superconductivity in MgB2*, *B NMR Study*, *Phys. Rev. Lett.* 87 127001

Kremer R K, Gibson B J and Ahn K 2001 *Preprint*, *Heat capacity of MgB2*: evidence for moderately strong coupling behaviour, cond-mat/0102432

Ku (a) H C, and Shelton R N 1980 *Mater. Res. Bull.* 15 1441

Ku (b) H C, Johnston D C, Matthias B T, Barz H, Burri G, and Rinderer L 1979 *Mater. Res. Bull.* 14 1592

Ku (c) H C, Matthias B T, and Barz H 1979 *Solid State Commun.* 32 937

Ku (d) H C, Meissner G P, Ackner F, and Johnston D C 1980 *Solid State Commun.* 35 91

Kumakura H, Matsumoto A, Fuji H and Togano K 2001 *Preprint*, *High transport critical current density obtained for Powder-In-Tube-processed MgB2 tapes and wires using stainless steel and Cu-Ni tubes*, cond-mat/0106902

Kunc K, Loa I, Syassen K, Kremer R K and Ahn K 2001 *Preprint*, *MgB2* under pressure: phonon calculations, Raman spectroscopy, and optical reflectance, cond-mat/0105402

Kurmaev E Z, Lyakhovskaya I I, Kortus J, Miyata N, Demeter M, Neumann M, Yanagihara M, Watanabe M, Muranaka T and Akimitsu J 2001 *Preprint*, *Electronic structure of MgB2*: X-ray emission and absorption studies, cond-mat/0103487

Kuz'menko A B, Men'a F P, Molegraaf H J A, van der Marel D, Kunc K, Loa I, Syassen K, Kremer R K and Ahn K 2001 *Preprint*, *Manifestation of multiband optical properties of MgB2*, cond-mat/0107092

Kwon S K, Youn S J, Kim K S, Min B I 2001 *Preprint*, *High Temperature Diboride Superconductors: AgB2 and AuB2*, cond-mat/0106483

Lampakis D, Tatsi A, Liòropakis E, Varelogiannis G, Oppeneer P M, Pissas M, Nishizaki T 2001 *Preprint*, *Strong-coupling superconductivity due to soft boson modes in MgB2*, cuprates, borohydrides and some heavy fermions, cond-mat/0105447

Larbalestier D C, Cooley L D, Rikel M O, Polyanskiy A A, Jiang J, Gornushov B, Dressel M, Mazin I I, Kortus J, Dolgov O V, x T Muranaka O V and Akimitsu J 2001 *Preprint*, *Manifestation of multiband optical properties of MgB2*, cond-mat/0107092

Li (a) A H, Wang X L, Jonescu M, Soltanian S, Horvat J, Silver T, Liu H K and Dou S X 2001, *Fast formation and superconductivity of MgB2* thick films grown on stainless steel substrate, *Physica C* 361 73

Li (b) J Q, Li L, Liu F M, Dong C, Xiang J Y and Zhao Z X 2001 *Preprint*, *Superconductivity and Aluminum Ordering in Mg1-xAlxB2*, cond-mat/0104320

Li (c) J Q, Li L, Zhou Y Q, Ren Z A, Che G C, Zhao Z X 2001 *Preprint*, *Structural features, stacking faults, and grain boundaries in MgB2 superconducting materials*, cond-mat/0104350

Li (d) S L, Wen H, Zhao Z W, Ni Y M, Ren Z A, Che G C, Yang H P, Liu Z Y and Zhao Z X 2001, *Lower Critical Field at Odds with A S-Wave Superconductivity in The New Superconductor MgB2*, *Phys. Rev.* B 64 094522

Li (e) Z, Yang J, Hou J G and Zhu Q 2001 *Preprint*, *A first-principles study of MgB2* (0001) surfaces, cond-mat/0106590

Lin T H and Dunin K J 1986 *Phys. Rev.* B 33 807

Liu (a) A Y, Mazin I I and Kortus J 2001, *Beyond Eliashberg superconductivity in MgB2*: anharmonicity, two-photon scattering, and multiple gaps, *Phys. Rev. Lett.* 87 070055

Liu (b) C F, Du S J, Yan G, Feng Y, Wu X, Wang J R, Liu X H, Zhang P X, Wu X Z, Zhou L, Cao L I, Ruan K Q, Wang C Y, Li X G, Zhou G E and Zhang Y H 2001 *Preprint*, *Preparation of 18-filament Cu/Nb/Ag/MgB2 tape with high transport critical current density*, cond-mat/0106061

Liu (c) W, Huang J, Wang Y, Wang X, Feng Q and Yan S 2001, *Thermoelectric power in normal state of superconductor MgB2*, *Solid State Comm.* 118 575

Liu (d) Z K, Scholm D G, Li Q and Xi X 2001, *Thermodynamics of the Mg-B system: implications for the deposition of MgB2 thin films*, Appl. Phys. Lett. 78 3678

Loa I and Syassen K 2001, *Calculated elastic and electronic properties of MgB2* at high pressures, *Solid State Comm.* 118 279

Lorenz (a) B, Meng R L and Chu C W 2001, *High Pressure Study on MgB2*, *Phys. Rev.* B 64 012507

Lorenz (b) B, Meng R L, Xue Y Y and Chu C W 2001 *Preprint*, *Thermoelectric power and transport properties of pure and Al-doped MgB2*, cond-mat/0104041

Lorenz (c) B, Meng R L and Chu F 2001 *Preprint*, *Hydrostatic Pressure Effect on the Superconducting Transition Temperature of MgB2*, cond-mat/0104303

Manske D, Joas C, Eremin I and Bennemann K H 2001 *Preprint*, *Eliashberg-like theory for superconductivity in MgB2*, cond-mat/0105507, to appear in *Phys. Rev.* B

Manzano F and Carrington A 2001 *Preprint*, *Exponential Temperature Dependence of Penetration Depth in MgB2*, cond-mat/0106166

Mao Z Q, Rosario M M, Nelson K, Wu K, Deac I G, Schiffer P, Liu Y, He T, Regan K A and Cava R J 2001 *Preprint*, *Tunneling Spectrum and upper critical field of the intermetallic perovskite superconductor MgCNi3*, cond-mat/0105280

Marsiglio F 2001 *Preprint*, *Implications of reflectance measurements on the mechanism for superconductivity in MgB2*, cond-mat/0107486

Martinho H, Martin A A, Rettori C, de Lima O F, Ribeiro R A, Avila M A, Pagliuso P G, Moreno N O, Sarrao J L 2001 *Preprint*, *Evidence for resonant behavior of the E2g phonon in MgB2*, cond-mat/0105204

Matthias (a) B T, Geballe T H, and Compton V B 1963 *Rev. Mod. Phys.* 35 1

Matthias (b) B T, Geballe T H, Andres K, Corenzwit E, Hull G W, and Maita J P 1968 *Science* 159 530

McMillan W L 1968 *Phys. Rev.* 167 331
Medvedeva (a) N I, Ivanovskii A L, Medvedeva J E and Freeman A J 2001, Band structure of superconducting MgB2 compound and modeling of related ternary systems, JETP Lett. 73 336

Medvedeva (b) N I, Ivanovskii A L, Medvedeva J E and Freeman A J 2001, Electronic structure of superconducting MgB2 and related binary and ternary borides, Phys. Rev. B 64 020502R

Medvedeva (c) N I, Ivanovskii A L, Medvedeva J E, Freeman A J and Novikov D I 2001 Preprint, Electronic structure and electric field gradient in MgB2 and related s-, p- and d-metal diborides: possible correlation with superconductivity, cond-mat/0104346

Mehl M J, Papavassiliou G, Pissas M, Fardis M, Karayanni M and Christides C 2001, Preprint, 11B NMR detection of the magnetic field distribution in the mixed superconducting state of MgB2, cond-mat/0107511

Paranthaman (a) M, Cantoni C, Zhai H Y, Christen H M, Ay tug T, Sathyamurthy S, Specht E D, Thompson J R, Lowndes D H, Kerchner H R and Christen D K 2001, Superconducting MgB2 films via precursor post-processing approach, Appl. Phys. Lett. 78 3669

Paranthaman (b) M, Thompson J R and Christen D K 2001, Effect of Carbon-Doping in Bulk Superconducting MgB2 Samples, Physica C 355 5

Park M A, Savran K and Kim Y J 2001, A new method of probing the phonon mechanism in superconductors, including MgB2, Supercond. Sci. Technol. 14 L31

Pattnaik S, Cooley L D, Gurevich A, Polyaniskii A A, Jiang J, Cai X Y, Squitieri A A, Naus M T, Lee M K, Choi J H, Belenky L, Bu S D, Letteri J, Song X, Schlom D G, Babcock S E, Eom C B, Hellstrom E E and Larbalestier D C 2001, Electronic anisotropy, magnetic field-temperature phase diagram and their dependence on resistivity in c-axis oriented MgB2 thin films, Supercond. Sci. Technol. 14 315

Pavarini E and Mazin I I 2001 Preprint, NMR relaxation rates and Knight shifts in MgB2, cond-mat/0105350, to appear in Phys. Rev. B

Plecnik (a) B, Benacka S, Kus P and Grajar M 2001 Preprint, Superconducting gap parameters of MgB2 obtained on MgB2/Ag and MgB2/in junctions, cond-mat/0104038

Plecnik (b) B, Satrapinsky L, Kus P, Gazi S, Benacka S, Vavra I and Kostic I 2001 Preprint, MgB2 superconductor thin films on Si and Al2O3 substrates, cond-mat/0105612

Poate J M, Testardi R L, Storm A R, and Augustyniak W M 1975 4He-Induced damage in superconducting Nb-Ge films, Phys. Rev. Lett. 35 1290

Polyaniskii A A, Gurevich A, Jiang J, Larbalestier D C, Bud’ko S L, Finne nmore D K, Laperott G and Canfield P C 2001, Magneto-optical studies of the uniform critical state in bulk MgB2, Supercond. Sci. Technol. 14 811

Poole C P Jr, Canfield P C and Ramirez A P 2000, Superconductor types, in Handbook of superconductivity, Ed. Poole C P Jr, Academic Press, San Diego, pp. 71

Postorino P, Congeduti A, Dore P, Nucara A, Bianconi A, Di Castro D, De Negri S, Saccone A 2001 Preprint, Effect of Al doping on the optical phonon spectrum in Mg1-xAlxB2, cond-mat/0107956

Prassides K, Iwasa Y, Ito T, Chi D H, Uehara K, Nishibori E, Takata M, Sakata S, Ohishi Y, Shimomura O, Muranaka T and Akimitsu J 2001 Preprint, Bonding Nature in MgB2, cond-mat/0105555

Nowotny H, Benesovsky F, and Kieffer R 1959 Z. Metallk. 50 417

Ogita N, Kariya T, Hiraoka K, Nagamatsu J, Muranaka T, Takag iwa H, Akimitsu J and Udagawa M 2001 Preprint, Micro-Raman scattering investigation of MgB2 and RB2 (R=Al, Mn, Nb and Ti), cond-mat/0106147

Oettle A, Tepfer H and Uhlmann H F 2001, Effects of a 20 K operation on the bit-error rates of a prospective MgB2 based digital circuit, Supercond. Sci. Technol. 14 L37

Osborn R, Goremychkin E A, Kolesnikov A I and Hinks D G 2001, Phonon Density-of-States in MgB2, Phys. Rev. Lett. 87 017005

Papavassiliou G, Pissas M, Fardis M, Karayanni M and Christides C 2001, Preprint, 11B NMR detection of the magnetic field distribution in the mixed superconducting state of MgB2, cond-mat/0107511

Paranthaman (a) M, Cantoni C, Zhai H Y, Christen H M, Aytug T, Sathyamurthy S, Specht E D, Thompson J R, Lowndes D H, Kerchner H R and Christen D K 2001, Superconducting MgB2 films via precursor post-processing approach, Appl. Phys. Lett. 78 3669

Paranthaman (b) M, Thompson J R and Christen D K 2001, Effect of Carbon-Doping in Bulk Superconducting MgB2 Samples, Physica C 355 5

Park M A, Savran K and Kim Y J 2001, A new method of probing the phonon mechanism in superconductors, including MgB2, Supercond. Sci. Technol. 14 L31

Pattnaik S, Cooley L D, Gurevich A, Polyaniskii A A, Jiang J, Cai X Y, Squitieri A A, Naus M T, Lee M K, Choi J H, Belenky L, Bu S D, Letteri J, Song X, Schlom D G, Babcock S E, Eom C B, Hellstrom E E and Larbalestier D C 2001, Electronic anisotropy, magnetic field-temperature phase diagram and their dependence on resistivity in c-axis oriented MgB2 thin films, Supercond. Sci. Technol. 14 315

Pavarini E and Mazin I I 2001 Preprint, NMR relaxation rates and Knight shifts in MgB2, cond-mat/0105350, to appear in Phys. Rev. B

Plecnik (a) B, Benacka S, Kus P and Grajar M 2001 Preprint, Superconducting gap parameters of MgB2 obtained on MgB2/Ag and MgB2/in junctions, cond-mat/0104038

Plecnik (b) B, Satrapinsky L, Kus P, Gazi S, Benacka S, Vavra I and Kostic I 2001 Preprint, MgB2 superconductor thin films on Si and Al2O3 substrates, cond-mat/0105612

Poate J M, Testardi R L, Storm A R, and Augustyniak W M 1975 4He-Induced damage in superconducting Nb-Ge films, Phys. Rev. Lett. 35 1290

Polyaniskii A A, Gurevich A, Jiang J, Larbalestier D C, Bud’ko S L, Finne nmore D K, Laperott G and Canfield P C 2001, Magneto-optical studies of the uniform critical state in bulk MgB2, Supercond. Sci. Technol. 14 811

Poole C P Jr, Canfield P C and Ramirez A P 2000, Superconductor types, in Handbook of superconductivity, Ed. Poole C P Jr, Academic Press, San Diego, pp. 71

Postorino P, Congeduti A, Dore P, Nucara A, Bianconi A, Di Castro D, De Negri S, Saccone A 2001 Preprint, Effect of Al doping on the optical phonon spectrum in Mg1-xAlxB2, cond-mat/0107956

Prassides K, Iwasa Y, Ito T, Chi D H, Uehara K, Nishibori E, Takata M, Sakata S, Ohishi Y, Shimomura O, Muranaka T and Akimitsu J 2001, Compressibility of the MgB2 Superconductor, Phys. Rev. B 64 012509

Pronin A V, Pimenov A, Loidl A and Krasnosvobodtsev S I 2001, Optical conductivity and penetration depth in MgB2, Phys. Rev. Lett. 87 097003

Putti M, Galilean d’Agliano E, Marr D, Napoli F, Tassisto M, Manfrineti P, Palenzona A, Rizzuto C and Massidda S 2001 Preprint, Electron transport properties of MgB2 in the normal state, cond-mat/0106344

Qin M J, Wang X L, Liu H K and Dou S X 2001, Dependence of the flux creep activation energy on current density and magnetic field for MgB2 superconductor, Phys. Rev. B 64 060505

Quilty J W, Lee S, Yamamoto A and Tajima S 2001 Preprint, The Superconducting Gap in MgB2: Electronic Raman Scattering Measurements of Single Crystals, cond-mat/0107216

Ravindran P, Vajeeston P, Vidya R, Kjekshus A and Fjellvig H 2001 Preprint, Detailed electronic structure studies on...
supercconducting MgB₂ and related compounds, cond-mat/0104553, to appear in Phys. Rev. B

Reich S, Leitus G and Felner I 2001 Preprint, On the Magnetism of the Normal State in MgB₂, cond-mat/0107169

Richardson C F and Ascroft N W 1997 Phys. Rev. Lett. 78 118.

Rogado N, Hayward M A, Regan K A, Wang Y, Ong N P, Rowell J M, Cava R J, Low Temperature Fabrication of MgB₂, submitted to Journal of Applied Physics, cond-mat/0107534

Rogl P, Klessner H, and Fischer P 1988 J. Am. Ceram. Soc. 71 C450

Rosner H, Pickett W E, Drechsler S L, Handstein A, Behr G, Fuchs G, Kenkow K, Muller K H and Eschrig H 2001 Preprint, Electronic structure and weak electron-phonon coupling in TaB₂, cond-mat/0106092

Rubio-Bollinger G, Suderow H and Vieira S 2001, Superconducting MgB₂ thin films by pulsed laser deposition, Phys. Rev. B 63 5382

Saito E, Takenobu T, Ito T, Iwasa Y, Prassides K and Arima T 1999, Ba₃Ca₂B₁₀: Evidence for a weakly coupled superconductor as probed by resistivity measurements, J. Phys. Cond. Mat. 13 L267

Sakai T, Adachi G Y, and Shiokawa J 1982 J. Less-Common Met. 107 140

Sampathkumaran E V and Majumdar S 2001 Preprint, Observation of superconductivity in Y-PdGe₃, structurally same as MgB₂, cond-mat/0102110

Sato T J, Shibata K and Takano Y 2001 Preprint, Vibrational density of states in superconducting MgB₂, cond-mat/0102468

Satta G, Profeta G, Bernardini F, Continenza A and Massidda S 2001, Electronic and structural properties of superconducting MgB₂, Cu₃Si and related compounds, Phys. Rev. 64 104507

Savitskii E M, Baron V V, Efimov Y V, Bychkova M I, and Myzenkova L F 1973 Superconducting materials, Plenum Press, New York

Schlachter S I, Fietz W H, Grube K and Goldacker W 2001 Preprint, High Pressure Studies of Tₘ and Lattice Parameters of MgB₂, cond-mat/0107205

Schmidt H, Zasadzinskij J F, Gray K E and Hinks D G 2001, Energy Gap from Tunneling and Metallic Sharvin Contacts onto MgB₂: Evidence for a Weakened Surface Layer, Phys. Rev. B 63 220504

Schneider M, Lipp D, Gladun A, Zahn P, Handstein A, Fuchs G, Drechsler S L, Richter M, Mueller K H and Rosner H 2001 Preprint, Heat and Charge Transport Properties of MgB₂, cond-mat/0105429

Sharoni (a) A, Millo O, Leitus G and Reich S 2001, Spatial variations of the superconductor gap structure in MgB₂/Al composite, J. Phys. Cond. Matter 13 L503 [58]

Sharoni (b) A, Felner I and Millo O 2001, Tunneling spectroscopy measurement of the superconducting properties of MgB₂, Phys. Rev. B 64 30205(R)

Shelton (a) R N 1978 J. Less-Common Met. 62 191

Shelton (b) R N, Karcher B A, Powell R D, Jacobson R A and Ku H C 1980 Mater. Res. Bull. 15 1445

Shields T C, Kawano K, Holdom D and Abell J S 2001 Preprint, Microstructure and superconducting properties of hot isostatically pressed MgB₂, cond-mat/0107034

Shinde S R, Ogale S B, Greene R L, Venkatesan T, Canfield P C, Budko S L, Lapertot G and Petrovic C 2001, Superconducting MgB₂ thin films by pulsed laser deposition, Appl. Phys. Lett. 79 227

Shulga (a) S V, Drechsler S L, Eschrig H, Rosner H and Pickett W E 2001 Preprint, The upper critical field problem in MgB₂, cond-mat/0103154

Shulga (b) S V, Drechsler S L, Fucks G, Muller K H, Winzer K, Heinecke M, and Krug K 1998 Phys. Rev. Lett. 80 1730

Shulishova O I and Shcherbakov I A 1967 Inorg. Mater. 3 1304

Silkin V M, Chulkov E V and Echenique P M 2001 preprint, Surface and Image-Potential States on the MgB₂(0001) Surfaces, cond-mat/0105628, to appear in Phys. Rev. B

Simon F, Janossy A, Feher T, Muranyi F, Garaj S, Forro L, Petrovic C, Bud'ko S L, Lapertot G, Kogan V G and Canfield P C 2001, Anisotropy of superconducting MgB₂ as seen in electron spin resonance and magnetization data, Phys. Rev. Lett. 87 047002

Singh (a) P 2001, Role of Boron p-Magnets and Thin Films in Superconducting MgB₂, and other Diborides: A Fully-Relaxed, Full-Potential Electronic Structure Study, Phys. Rev. Lett. 87 087001

Singh (b) P 2001 Preprint, Superconductivity in MgB₂ and Ta₂B₄: A Full-Potential Electronic Structure Comparison, cond-mat/0104580

Slusky S J, Rogado N, Regan K A, Hayward M A, Khalilfah P, He T, Inamara K, Loureiro S M, Haas M K, Zandbergen H W and Cava R J 2001, Loss of superconductivity with the addition of Al to MgB₂ and a structural transition in M₁,Al₁,B₂, Nature 410 343

Soltanian S, Wang X L, Kusevic I, Bacic E, Li A H, Liu H K, Collings E W and Dou S X 2001, High temperature current density above 30 K in pure Fe-clad MgB₂ tape, Physica C 361 84

Song K J, Lee N J, Jung H M, Ha H S, Ha D W, Oh S S, Sohn M H, Kwon Y K and Ryu K S 2001 Preprint, Single-filament Composite MgB₂/SUS Ribbons by Powder-In-Tube Process, cond-mat/0106124

Strukova G K, Degtjareva V F, Shvedov D V, Zverev V N, Kiiko M, Ionov A M and Chaika A N 2001 Preprint, Superconductivity in the Re-B system, cond-mat/0105293

Struzhkin V V, Goncharov A F, Hemley R J, Mao H K, Lapertot G, Bud'ko S L, Canfield P C 2001 Preprint, Phonon-assisted electronic topological transition in MgB₂ under pressure, cond-mat/0106576

Sumption M D, Peng X, Lee E, Tomsic M and Collings E W 2001 Preprint, Transport Current in MgB₂ based Superconducting Strand at 4 K and Self-Field, cond-mat/0102441

Sundar C S, Bharrathi A, Premila M, Sairam T N, Kalavathi S, Reddy G I N, Sastry V S, Hariharan Y and Radhakrishnan T S 2001 Preprint, Infrared absorption in superconducting MgB₂, cond-mat/0104354

Sung Y K, Kim S H, Kim J H, Yoo D C, Lee J W, Lee J Y, Jung C U, Park M S, Kang W N, Zhonglian D and Lee S I 2001 Preprint, Microstructure of the highly dense MgB₂ Superconductor by transmission electron microscope, cond-mat/0102498

Suoh H L, Beneduce C, Dhalle M, Musolino N, Genoud J Y and Flükiger R 2001 Preprint, Large transport currents in dense Fe- and Ni-clad MgB₂ superconducting tapes, cond-mat/0106341

Suzuki S, Higasi S and Nakao K 2001 Preprint, Two-Dimensional Sigma-Hole Systems in Boron Layers: A First-Principles Study on Mg₇₉Na₂₅B₂₉, cond-mat/0102484

Szabo P, Samuely P, Kacmarcik J, Klein Th, Marcus J, Fruchart D, Miraglia S, Marcenat C and Jansen A G M 2001 Preprint, Evidence for two superconducting energy gaps in MgB₂, cond-mat/0105598, to appear in Phys. Rev. Lett.
Kito H and Ihara H 2001, Superconducting Properties of MgB2 Bulk Materials Prepared by High Pressure Sintering, Appl. Phys. Lett. 78 2914

Takei K, Nakamura K and Maeda Y 1985 J. Appl. Phys. 57 5093

Takenobu T, Itoh T, Chi D H, Prassides K and Iwasa Y 2001 Preprint, Interlayer Carbon substitution in the MgB2 superconductor, cond-mat/0103241, to appear in Phys. Rev. B

Testardi (a) R L, Meek R L, Poate J M, Royer W A, Storm A R, and Wernick J H 1975 Preparation and analysis of superconducting Nb-Se films, Phys. Rev. B11 4303

Testardi (b) R L, Poate J M and Levinstein H L 1977 Anomalous electrical resistivity and defects in A-15 compounds, Phys. Rev. B15 2570

Thompson J R, Paranthaman M, Christen D K, Sorge K D, Kim H J and Ossandon J G 2001, High temporal stability of supercurrents in MgB2 materials, Supercond. Sci. Technol. 14 L17

Tissen T, Hamlin J J, Schilling J S, Hinks D G and Jorgensen J D 2001, Dependence of Tc on Hydrostatic Pressure in Superconducting MgB2, Phys. Rev. B 64 092505

Tsindelikti M I and Felner I 2001 Preprint, Linear and Nonlinear Ac Response of MgB2 Superconductors, cond-mat/0104565

Tsuda S, Yokoya T, Kiss T, Takano Y, Togano K, Kitou H, Ihara H and Shin S 2001 Preprint, Direct evidence for a multiple superconducting gap in MgB2 from high-resolution photoemission spectroscopy, cond-mat/0104489

Tsyvashchenko A V, Fomicheva L N, Magnitskaya M V, Shirani E N, Brudanin V B, Filossofov D V, Kochetov O I, Lebedev N A, Novgorodov A F, Salamatin A V, Korolev N A, Velichkov A I, Timkin V V, Menushenko A P, Kuznetsov A V, Shabanov V M and Akselrod Z Z 2001 Preprint, Electric field gradients in MgB2 synthesized at high pressure: 119Cd TDPAC study and ab initio calculation, cond-mat/0104560

Tu J J, Carr G L, Perebeinos V, Homes C C, Strongin M, Allen P B, Kang W N, Choi E M, Kim H J and Lee S I 2001 Preprint, Optical studies of charge dynamics in c-axis oriented superconducting MgB2 films, cond-mat/01037349

Vajeeston P, Ravindran P, Ravi C and Asokamani R 2001, Electronic structure, bonding, and ground-state properties of AlB2-type transition-metal diborides, Phys. Rev. B 63 045115

Vandenberg J M and Matthias B T 1977 Proc. Natl. Acad. Sci. USA 74 1336

Vasquez R P, Jung C U, Park M S, Kim H J, Kim J Y and Lee S I 2001, X-ray Photoemission Study of MgB2, Phys. Rev. B 64 52510

Voelker K, Anisimov V I and Rice T M 2001 Preprint, Acoustic Plasmons in MgB2, cond-mat/0103082

Vogt T, Schneider H, Hirajac J A, Yang G and Abell J S 2001, Compressibility and Electronic Structure of MgB2 up to 8 GPa, Phys. Rev. B 63 220505

Wali Ch, Felder E, Dengen C, Wigger G, Monnier R, Delley B and Ott H R 2001 Preprint, Strong electron-phonon coupling in superconducting MgB2: a specific heat study, cond-mat/0102322, to appear in Phys. Rev. B

Wan X, Dong J, Weng H and Xing D Y 2001 Preprint, The band structure of MgB2 with different lattice constants, cond-mat/0104216

Wang (a) S F, Dai S Y, Zhou Y L, Chen Z H, Cui D F, Yu J D, He M, Lu H B and Yang G Z 2001, Superconducting MgB2 Thin Films with Tc of about 39K Grown by Pulsed Laser Deposition, Chin. Phys. Lett. 18 967, cond-mat/0104555

Wang (b) X L, Soltanian S, Horvat J, Qin M J, Liu H K and Dou S X 2001 Preprint, Very fast formation of superconducting MgB2/Fe wires with high Jc, cond-mat/0106148

Wang (c) Y, Plackowski T and Junod A 2001, Specific heat in the superconducting and normal state (2-300 K, 0-16 Teslas), and magnetic susceptibility of the 38-K superconductor MgB2: evidence for a multicomponent gap, Physica C 355 179

Watanabe Y, Iwasaki H, and Muto Y 1986 Acta Crystallogr. C42 1469

Wen (a) H H, Li S L, Zhao Z W, Ni Y M, Ren Z A, Che G C, Yang H P, Liu Z Y and Zhao Z X 2001 Preprint, Strong quantum fluctuation of vortices in the new superconductor MgB2, Chin. Phys. Lett. 18 816, cond-mat/0102436

Wen (b) H H, Li S L, Zhao Z W, Ni Y M, Ren Z A, Che G C and Zhao Z X 2001, Magnetic relaxation and critical current density of MgB2 films, Phys. Rev. B 64 134505

Xiang J Y, Zheng D N, Li J Q, Li L, Lang P L, Chen H, Dong C, Che G C, Ren Z A, Qi H H, Tian H Y, Ni Y M and Zhao Z X 2001 Preprint, Study of superconducting properties and observation of c-axis superstructure in MgB2, cond-mat/0104366

Xu M, Kitarazawa H, Takano Y, Ye J, Nishida K, Abe H, Matsuishi A and Kido G 2001 Preprint, Single crystal MgB2 with anisotropic superconducting properties, cond-mat/0105271

Xue Y Y, Meng R L, Lorenz B, Meen J K, Sun Y Y and Chu C W 2001 Preprint, Nonstoichiometry, Defects and Transport Properties in MgB2, cond-mat/0105478

Yamaji K 2001, Two-Band-Type Superconducting Instability in MgB2, J. Phys. Soc. Jpn. 70 to appear, cond-mat/0103431

Yamashita T, Nakajima K, Chen J, and Buzea C 2002 Superconductors - Scientific basics and engineering applications, Springer-Verlag, Heidelberg, to appear

Yang H D, Lin J Y, Li H H, Hsu F H, Liu C J and Jin C 2001 Preprint, Order parameter of MgB2: a fully gapped superconductor, cond-mat/0104574, to appear in Phys. Rev. Lett.

Yildirim T, Gulseren O, Lynn J W, Brown C M, Udovic T J, Qing H Z, Rogado N, Regan K A, Hayward M A, Slusky J S, He T, Haas M K, Khalifah P, Inumaru K and Cava R J 2001, Giant anharmonicity and non-linear electron-phonon coupling in MgB2, cond-mat/0103588

Zhai (a) H Y, Christen H M, Zhang L, Cantoni C, Paranthaman M, Sales B C, Christen D K and Lowndes D H 2001 Preprint, Superconducting magnesium diboride films on Silicon with Tc about 24K grown via vacuum annealing from stoichiometric precursors, cond-mat/0103588

Zhai (b) H Y, Christen H M, Zhang L, Paranthamas M, Cantoni C, Sales B C, Fleming P H, Christen D K and Lowndes D H 2001 Preprint, Growth mechanism of superconducting MgB2 films prepared by various methods, cond-mat/0103618
Zhai (c) H Y, Christen H M, Zhang L, Paranthaman M, Fleming P H and Lowndes D H 2001, Degradation of superconducting properties in MgB2 films by exposure to water, Supercond. Sci. Technol. 14 425

Zhang (a) S Y, Zhang J, Zhao T Y, Rong C B, Shen B G and Cheng Z H 2001 Preprint, Structure and superconductivity of Mg(B1-xCx)2 compounds, cond-mat/0103203

Zhang (b) Y, Kinion D, Chen J, Hinks D G, Crabtree G W and Clarke J 2001 Preprint, MgB2 tunnel junctions and 19 K low-noise dc superconducting quantum interference devices, cond-mat/0107478

Zhao (a) Y G, Zhang X P, Qiao P T, Zhang H T, Jia S L, Cao B S, Zhu M H, Han Z H, Wang X L and Gu B L 2001, Effect of Li doping on structure and superconducting transition temperature of MgB1-xLiBx, Phys. C 361 91

Zhao (b) Y G, Zhang X P, Qiao P T, Zhang H T, Jia S L, Cao B S, Zhu M H, Han Z H, Wang X L and Gu B L 2001 Preprint, Influence of the starting composition on the structural and superconducting properties of MgB2 phase, cond-mat/0105053

Zhao (c) Z W, Wen H H, Li S L, Ni Y M, Yang H P, Kang W N, Kim H J, Choi E M and Lee S I 2001 Preprint, Smearing of Superconducting Critical Current Density by Dense and Small Flux Jumps in MgB2 Thin Films, cond-mat/0104249

Zhao (d) Y, Feng Y, Cheng C H, Zhou L, Wu Y, Machi T, Fudamoto Y, Koshizuka N, and Murakami M 2001 High critical current density of MgB2 bulk superconductor doped with Ti and sintered at ambient pressure, Appl. Phys. Lett 79 1154

Zhu Y, Wu L, Volkov V, Li Q, Gu G, Moodenbaugh A R, Malac M, Suenaga M and Tranquada J 2001 Preprint, Microstructure and Structural Defects in MgB2 Superconductor, cond-mat/0105311

Zhukov (a) A A, Yates K, Perkins G K, Bugoslavsky Y, Polichetti M, Berenov A, Driscoll J, Caplin A D, Cohen L F, Hao L and Gallop J 2001, Microwave Surface Resistance in MgB2, Supercond. Sci. Technol. 14 L13

Zhukov (b) V P, Silkin V M, Chulkov E V and Echenique P M 2001 Preprint, Dielectric functions and collective excitations in MgB2, cond-mat/0105461, to appear in Phys. Rev. B

Zhukov (c) A A, Cohen L F, Purnell A, Bugoslavsky Y, Berenov A, MacManus-Driscoll J L, Zhai H Y, Christen H M, Paranthaman M P, Lowndes D H, Jo M A, Blamire M C, Hao L and Gallop J 2001 Preprint, Temperature dependence of the microwave surface impedance measured on different kinds of MgB2 samples, cond-mat/0107240