Investigating Atomic Details of the CaF$_2$(111) Surface with a qPlus Sensor

Franz J. Giessibl

Universität Augsburg, Experimentalphysik 6, EKM, Institut für Physik, 86135 Augsburg, Germany

Michael Reichling

Fachbereich Physik, Universität Osnabrück,
Barbarastraße 7, 49076 Osnabrück, Germany

Abstract

The (111) surface of CaF$_2$ has been intensively studied with large-amplitude frequency-modulation atomic force microscopy and atomic contrast formation is now well understood. It has been shown that the apparent contrast patterns obtained with a polar tip strongly depend on the tip terminating ion and three sub-lattices of anions and cations can be imaged. Here, we study the details of atomic contrast formation on CaF$_2$(111) with small-amplitude force microscopy utilizing the qPlus sensor that has been shown to provide utmost resolution at high scanning stability. Step edges resulting from cleaving crystals in-situ in the ultra-high vacuum appear as very sharp structures and on flat terraces, the atomic corrugation is seen in high clarity even for large area scans. The atomic structure is also not lost when scanning across triple layer step edges. High resolution scans of small surface areas yield contrast features of anion- and cation sub-lattices with unprecedented resolution. These contrast patterns are related to previously reported theoretical results.

Submitted to Nanotechnology (Proceedings of NCAFM 2004)
I. INTRODUCTION

CaF$_2$ is an important material for science and technology, e.g. as a lens material for 157 nm lithography [1] or as a high-bandgap insulating layer with almost perfect lattice match for epitaxial insulating layers on silicon [2]. A detailed knowledge of its surface structure and defects is important. While thin CaF$_2$ layers can be imaged by scanning tunneling microscopy [3], an atomic force microscope (AFM) [4] is required for imaging thicker layers [5] or bulk materials [6]. Crystalline CaF$_2$ has a face-centered cubic lattice (see Fig. 1). The natural cleavage planes are the \{111\} planes [7], the corresponding surface layers are trigonal arrangements of F$^-$-ions spaced by $a_0/\sqrt{2} = 386.2$ pm. Electrostatic energy considerations lead to the conclusion that the CaF$_2$ (111) surface must be terminated by a complete triple layer F$^-$-Ca$^{++}$-F$^-$ with a F$^-$-layer at the surface [7]. In contrast to the (001) cleavage planes of alkali-halides, the CaF$_2$ (111) surface offers a reference sample where the atomic contrast in experimental images is tightly connected to the signature of the electric charge on the tip [8]. AFM studies of the CaF$_2$ surface are available on the atomic scale [6, 9, 10] as well as on a larger scale [11]. While a consistent understanding of the atomic contrast has been achieved, step structures have so far proven hard to be imaged with traditional large-amplitude AFM at atomic resolution, and theoretical considerations that predict a change in contrast pattern when imaging in the repulsive regime [8, 12] have so far not been verified experimentally. The use of small amplitudes helps to attenuate the disturbing long-range interaction forces [13] and enables non-destructive atomic imaging in the repulsive regime [14]. The qPlus sensor can be operated with high stability at sub-nm amplitudes [15], motivating to revisit CaF$_2$ (111).

II. CHALLENGE OF LONG RANGE FORCES ON STEPS

In an ideal (hypothetical) AFM, the probe would consist of a single atom. In reality, the front atom needs to be supported by other atoms, forming a mesoscopic tip that is connected to a cantilever. The tip-sample forces in AFM are a sum of long- and short range contributions. While chemical bonding forces between single atoms decay exponentially with increasing distance, van-der-Waals (vdW)- and electrostatic forces decay only at an inverse power law and therefore have a much longer range. While chemical bonding forces
for two atoms at close distance can be much greater than the vdW forces between two atoms, the total vdW force between tip and sample is typically significantly greater than the chemical bonding force between front atom and sample. The long-range contribution is often modelled by a vdW interaction of a spherical tip with radius R, yielding a long-range force given by

$$F_{vdW}(z) = -\frac{A_H R}{6z^2}$$ \hspace{1cm} (1)

where A_H is the Hamaker constant. In frequency modulation AFM \[17\], the tip-sample force is not measured directly. Instead, the averaged gradient of the tip-sample force with respect to the surface normal leads to a frequency shift Δf of a cantilever with an unperturbed eigenfrequency f_0, spring constant k and oscillation amplitude A. A vdW-force as in Eq. 1 leads to a normalized frequency shift $\gamma = (\Delta f/f_0)kA^{3/2}$ given by

$$\gamma_{vdW}(z) = -A_H R \frac{A^{3/2}}{6(z^2 + 2Az)^{3/2}}$$ \hspace{1cm} (2)

\[18\]. The long-range force is proportional to the tip radius R, and thus sharp tips minimize the long-range contribution to the normalized frequency shift. This long-range force is a challenge for high-resolution AFM, in particular when scanning across steps where the long-range force changes as a function of the lateral sample position. Guggisberg et al. \[19\] have investigated the frequency shift difference on upper and lower terraces (FREDUL) in Si(111) and found a voltage dependent variation corresponding to $5 \text{fNm}^{0.5}$ when compensating the contact potential difference and $30 \text{fNm}^{0.5}$ for a bias voltage of 2V. As short range contributions to γ are on the order of $1 \text{fNm}^{0.5}$, this clearly stresses the challenges faced when attempting AFM at atomic resolution across steps. While sporadic reports of atomic resolution across step edges by large amplitude FM-AFM have been reported (e.g. \[20, 21\]), it requires a cantilever with an exceptionally sharp tip. Here we show that when using small amplitudes, atomic resolution across step edges is even possible with relatively blunt tips.

In the beginning of an AFM experiment, the tip often collects a cluster consisting of sample material with a height Δ, which also reduces the long-range force. Figure 2 (a) shows the calculated dependence of the long-range component of γ as a function of tip cluster height Δ and amplitude A after Eq. 2. It is clearly evident that the long-range contribution of γ is greatly reduced when using small amplitudes and having a high tip cluster.
For short range forces caused by covalent bonding, a Morse potential

\[V_{ts}(z) = E_{bond}(-2\exp^{-\kappa(z-\sigma)} + \exp^{-2\kappa(z-\sigma)}) \] (3)

is a fair approximation for the short-range part of the tip-sample interaction \[22\], where \(E_{bond}\) is the bonding energy, \(\kappa\) is the inverse interaction range and \(\sigma\) is the equilibrium distance. When imaging ionic crystals, the dominant short-range force is electrostatic in origin \[12\], but due to the periodic arrangement of positive and negative charges, the net electrostatic force decays roughly exponential with a decay constant of \(\kappa = 2\pi/a_S\) \[23\] where \(a_S\) is the length of the surface unit vector. If the tip atom is not a single charged atom, but a cluster of the sample material, the decay rate of the electrostatic force is estimated at \(\kappa = 4\pi/a_S\).

The short-range part of the normalized frequency shift is given by

\[\gamma_{sr}(z) = F_0\sqrt{1/\kappa(-2\exp^{-\kappa(z-\sigma)} + \sqrt{2}\exp^{-2\kappa(z-\sigma)})} \] (4)

where \(F_0\) is the tip-sample force at \(z = \sigma\) for amplitudes larger than \(1/\kappa\) \[24\]. It is noted, that this model for the short-range force is only qualitative but serves well to discuss the challenges of atomic imaging. A detailed study of the short-range forces in AFM on CaF\(_2\) can be found in references \[8, 12\]. Figure 2 (b) shows the dependence of the normalized frequency shift \(\gamma(z)\) for a tip-sample force composed of long- and short-range contributions as described by Eqs. 1 and 3.

Rather than using \(\Delta f\) directly as a feedback signal, in our experiment we routed \(\Delta f\) through a rectifier and a logarithmic filter before using it for feedback. Rectifying \(\Delta f\) prevents catastrophic tip crashes due to inadvertent jumps into the repulsive imaging regime as previously described by Ueyama et al. \[25\]. The use of a logarithmic filter improves tracking on steps and other sharply inclined topography features, because it provides a feedback signal that is more linear with distance (see Fig. 2 (c)). A disadvantage of rectifying \(\Delta f\) is that for small magnitudes of \(\gamma\) (|\(\gamma| < 55\) fNm\(^{0.5}\) in Fig. 2 (c)), a one-to-one relation between \(\gamma\) and \(z\) is not present and two \(z\) values with \(\partial\gamma/\partial z < 0\) exist, thus the \(z\)-feedback can find two \(z\)-values \(z_i\) where the stable-feedback-conditions \(\gamma(z_i) = \gamma_{setpoint}\) and \(\partial\gamma/\partial z < 0\) for a distance regime \(z = z_i + \epsilon\). Figure 2 (b) and (c) show that for a setpoint of |\(\gamma| = 20\) fNm\(^{0.5}\), two distances are possible (\(z_1 \approx 0.2\) nm and \(z_2 \approx 0.4\) nm). The \(z\)-intervals \([z_1 - \epsilon, z_1 + \epsilon]\) and \([z_2 - \epsilon, z_2 + \epsilon]\) where stable operation is possible can have a width \(2\epsilon\) reaching a few hundred pm. In some experiments we experienced jumps in topographic data where stable
topographic imaging was possible for two z-values separated by approximately 0.2 nm. A switch from z_2 to z_1 can be triggered intentionally when scanning rapidly across a rising step, while a reverse switch is triggered by scanning across a falling step (not shown here).

Figure 3 is a schematic view of a tip over a step edge. The attractive interaction is greater over the lower terrace than over the higher terrace. This causes a challenge when attempting to image step edges with atomic resolution. As noted above, a reduction of the disturbing long-range force can be achieved by using small oscillation amplitudes, high tip clusters and sharp tips.

III. EXPERIMENTAL

The sample used in this study was a CaF$_2$ crystal with a size of approximately $2 \times 5 \times 10$ mm3 (Karl Korth, Kiel, Germany), glued onto a 11×14 mm2 large sample holder plate. The sample was cleaved along a predetermined breaking line in situ in the (111) plane at a pressure of 5×10^{-7} Pa and within one minute transferred to the microscope where it was kept a pressure of 5×10^{-8} Pa. As CaF$_2$ (111) is not very reactive, we obtained atomic resolution on this single cleave until five days after cleaving and collected approximately 4000 images within that period.

The microscope (AutoProbe VP by Park Scientific Instruments, Sunnyvale, USA) was modified for qPlus sensor operation. The force sensor is a standard qPlus sensor with a base frequency of $f_0 = 16740$ Hz, a Q-factor of 1700 and a stiffness of $k = 1800$ N/m. An etched tungsten tip with an estimated tip radius of 100 nm was used as a tip. Frequency-to-voltage conversion was done with a commercial phase-locked-loop detector (EasyPLL by Nanosurf AG, Liestal, Switzerland). Images were recorded in the topographic mode at constant frequency shift, supplemented by constant-height measurements of small sample sections that allow us to estimate the long- and short-range contributions. Drift correction of the acquired data was performed using a commercial software package (SPIP Scanning Probe Image Processor Version 2.21 by Image Metrology, Lyngby, Denmark).
IV. RESULTS

We started the scan by slowly decreasing the setpoint of Δf while monitoring the contrast. When performing AFM on CaF\textsubscript{2} with soft cantilevers ($k \approx 10 \text{ N/m}$), surface charges usually cause unstable feedback conditions and often the crystal is heated for a few hours to remove these charges. Surprisingly, we did not have to heat the sample for obtaining stable imaging. Whether this is caused by the large stiffness of the qPlus sensor or the metallic tip is not yet determined. A large area scan shown in Fig. 4 shows flat terraces, separated by steps with heights of integer multiples (1–4) of 320 pm ± 15 pm, in excellent agreement with the expected triple-layer height of 315 pm. The data shown in Fig. 4 is taken from a single topographic measurement with an image size of 160 × 160 nm2 (512 by 512 pixels). Figure 4 (a) shows the full image, (b) and (c) are magnifications of areas indicated by the frames. Figures 4 (b) and (c) show the center of a screw dislocation. The step height at the left edge is 314 pm. The image was recorded with a positive frequency shift, i.e. at repulsive forces. Figure 4 (d) shows the same data as (a) with five-fold z-contrast. The small patches on otherwise flat terraces are probably caused by local surface- or sub-surface charges.

Figure 5 (a) shows the center of a different screw dislocation located 1.22 \(\mu \text{m} \) to the left of the screw dislocation shown in Fig. 4 (b). The profile in Fig. 5 (b) shows that the step height is initially only approximately 240 pm, followed by another step with a height of only 80 pm. The unusual step heights cannot be explained by the commonly accepted crystallography of CaF\textsubscript{2} (111). A reduced step height of 240 pm could possibly be explained by the long-range force contributions explained in the text describing Fig. 3 (further below, we find an experimental step height of only 275 pm for a step imaged in the attractive mode, see Fig. 8). However, a step with a height of 80 nm could not be explained by such an effect. Other explanations, like a double tip effect, appear unlikely because of the large lateral step distance of more than 40 nm.

A possibly obvious explanation appears to contradict Tasker’s theorem: a region with a width of 40 nm could be stripped of the F- ions. In equilibrium, a (111) face exposing Ca++ ions is forbidden. On the other hand, cleaving a crystal is not an equilibrium process, and our crystal was not annealed after cleaving (Figure 5 (a) was taken about 30 min after cleaving). Furthermore, the large strain fields in the vicinity of a screw dislocation may help to violate the charge-neutrality principle. The large number of adsorbants on the 40 nm
wide odd-stacked terrace points to a highly reactive surface region, possibly caused by a large surface charge density. We note, that Ca$^{++}$ terminated surfaces of CaF$_2$ (111) have not been reported in the literature so far to our knowledge, but neither have atomic images of screw dislocations. So far, we have seen this unusual step height in one out of two screw dislocation centers (incidentally, the second screw dislocation center shown in Fig. 4 was recorded 5 days after cleaving), and further studies to elucidate the dislocation morphology of CaF$_2$ are planned.

Figure 6 (a) shows a large scan showing approximately 12,000 atoms. There is a double triple-layer step in the right bottom corner, but otherwise the terrace is flat. The μ-shaped structure is possibly caused by surface charges. Repp et al. [28] have recently shown that charged Au-adatoms on NaCl can cause a significant relaxation of the underlying NaCl lattice that remains stable even when electrons tunnel through this adatom. Discharging of this adatom and thus switching its state is only possible when a voltage pulse with sufficient pulse height is applied. From Repp et al.‘s experiment, it is conceivable that charged in-plane surface atoms on insulators may also be stabilized by lattice distortions that could cause slight deviations of an otherwise flat sample.

The magnified view in Fig. 6 (b) shows a structural defect, and Fig. 6 (c) images the same area after 34 min. The μ-shaped structure has disappeared in 6 (c), but the magnified view in 6 (d) shows that the structural defect is still there. The fast scan (0.25 lines/s, starting at the bottom in (a) and at the top in (c)) was horizontal, the slow scan vertical. Thus, the step at the right bottom in Fig. 6 (c) was imaged 68 min after the step in Fig. 6 (a). Because of thermal drift, the steps appear shifted in (a) and (c), and the magnified view of the structural defect also shifts between Figs. 6 (b) and (d).

Figure 7 (a) is a high-resolution image imaged in the attractive mode which, according to previous calculations [8, 12], is produced by a positively terminated tip. The orientation of the maxima, minima and saddle points in the image shows that the sample is oriented as indicated in Fig. 1 (b) and (c). The maxima are attributed to the surface F$^-$-layer, the minima to the Ca$^{++}$-layer that are 79 pm lower and the saddle points to the second F$^-$-layer that is 158 pm lower than the surface layer (see Fig. 1b). Figure 7 (b) shows the same area imaged in a repulsive mode. As predicted by Foster et al. [12], the contrast changes – while the absolute minima in Fig. 7 (a) are adjacent to the right of the absolute maxima, they are left of the absolute maxima in the repulsive data shown in Fig. 7 (b). The magnitude
of the γ-contrast in Fig. 7 (a) of ± 1.4 fNm$^{0.5}$ agrees very well with the calculated value of $\approx \pm 1$ fNm$^{0.5}$ (Foster et al. find a contrast of up to 8 Hz using a cantilever with $k = 6$ N/m, $f_0 = 84$ kHz and $A = 23$ nm, see p. 327 and 333 in [12]). The absolute value for γ according to theory is -38.6 fNm$^{0.5}$ (see p. 328 in [12]), while we find almost twice that value in Fig. 7 (b). This deviation is most likely due to the fairly large radius of our tip. In large-amplitude FM-AFM, experimental values for γ range from approximately -250 fNm$^{0.5}$ [6] to -85 fNm$^{0.5}$ [5]. In the small amplitude experiments presented here, we observed atomic resolution in the attractive mode in a range from -100 fNm$^{0.5}$ to -25 fNm$^{0.5}$. The agreement of the parameter range for γ in large- and small amplitude regimes, where the basic imaging parameters k, A, f_0 and Δf differ by orders of magnitude underlines the validity of γ as a universal figure describing tip-sample interaction in FM-AFM.

Figure 8 (a) is a topographic image across a monostep with a height of 315 pm recorded in the attractive mode. Due to the lateral variation of the vdW force, the apparent step height is only 275 pm, but atomic resolution is present on both the higher and the lower terrace. The setpoint of the normalized frequency shift was $\gamma = -16$ fNm$^{0.5}$ in this image, but due to finite feedback speed, the actual frequency shift has shown small variations as shown in Fig. 8 (b). The line analysis in Fig. 8 (c) of the error signal along the black line in Fig. 8 (b) shows that the F^- ions are shifted by approximately 223 pm to the right as expected from Fig. 1 (c).

Figure 9 demonstrates that the front atom of the tip is not a metal atom from the original tip but consists of an ion or ionic cluster picked up from the surface. The top section shows contrast as expected from a negative tip termination, and the bottom shows inverted contrast as if the charge of the front atom is inverted. Such a contrast change could be caused by a CaF$_2$ tip cluster that is shifted or flipped during the scan, exposing a F^- ion initially and a Ca$^{++}$ tip ion in the lower section of the image.

V. CONCLUSION AND SUMMARY

In conclusion, we have shown that the use of stiff cantilevers such as the qPlus sensor operated with small amplitudes even allows the imaging of steps on CaF$_2$ (111) with atomic resolution both in attractive and repulsive mode. Large terraces with up to 12,000 atoms have been imaged. The theoretical prediction about a shift in contrast when switching from
attractive to repulsive imaging [8, 12] has been verified. The centers of screw dislocations have been imaged for the first time, and we found that small sample areas can exist that are not terminated by complete triple layers. Further improvements are expected when using qPlus sensors with sharp tips [14], because that would allow the further attenuation of the disturbing long-range contributions.

Acknowledgments

This work is supported by the Bundesministerium für Bildung und Forschung (project EKM13N6918). We thank Ch. Schiller for the preparation of the qPlus sensor used in this study and J. Mannhart for support. M.R. gratefully acknowledges support from the Deutsche Forschungsgemeinschaft.

[1] M. Letz, Physik Journal 3, 43 (2004).
[2] T. P. Smith, J. M. Phillips, W. M. Augustyniak, and P. J. Stiles, Appl. Phys. Lett. 45, 907 (1984).
[3] P. Avouris and R. Wolkow, Appl. Phys. Lett. 55, 1074 (1989).
[4] G. Binnig, C. F. Quate, and C. Gerber, Phys. Rev. Lett. 56, 930 (1986).
[5] A. Klust, T. Ohta, A. A. Bostwick, Q. Yu, F. S. Ohuchi, and M. A. Olmstead, Phys. Rev. B 69, 035405 (2004).
[6] M. Reichling and C. Barth, Phys. Rev. Lett. 83, 768 (1999).
[7] P. W. Tasker, J. Phys. C: Solid State Phys. 12, 4977 (1979).
[8] A. S. Foster, C. Barth, A. L. Shluger, R. M. Nieminen, and M. Reichling, Phys. Rev. B 66, 235417 (2002).
[9] C. Barth, A. Foster, M. Reichling, and A. L. Shluger, J. Phys.: Condens. Matter 13, 2061 (2001).
[10] M. Reichling and C. Barth, in Noncontact Atomic Force Microscopy, edited by S. Morita, R. Wiesendanger, and E. Meyer (Springer Berlin Heidelberg New York, 2002), chap. 6, pp. 109–124.
[11] M. Schick, H. Dabringhaus, and K. Wandelt, J. Phys.: Condens. Matter 16, L33 (2004).
[12] A. Foster, A. Shluger, C. Barth, and M. Reichling, in Noncontact Atomic Force Microscopy, edited by S. Morita, R. Wiesendanger, and E. Meyer (Springer Berlin Heidelberg New York, 2002), chap. 17, pp. 305–348.

[13] F. J. Giessibl, Rev. Mod. Phys. 75, 949 (2003).

[14] F. J. Giessibl, S. Hembacher, H. Bielefeldt, and J. Mannhart, Applied Physics A 72, 15 (2001).

[15] F. J. Giessibl, S. Hembacher, M. Herz, C. Schiller, and J. Mannhart, Nanotechnology 15, S79 (2004).

[16] J. Israelachvili, Intermolecular and Surface Forces, 2nd ed. (Academic Press, London, 1991).

[17] T. R. Albrecht, P. Grutter, H. K. Horne, and D. Rugar, J. Appl. Phys. 69, 668 (1991).

[18] H. Hölscher, W. Allers, U. D. Schwarz, A. Schwarz, and R. Wiesendanger, Appl. Surf. Sci. 140, 344 (1999).

[19] M. Guggisberg, M. Bammerlin, A. Baratoff, R. Lüthi, C. Loppacher, F. Battiston, J. Lü, R. Bennewitz, E. Meyer, and H.-J. Güntherodt, Surf. Sci. 461, 255 (2000).

[20] R. Bennewitz, S. Schär, V. Barwich, O. Pfeiffer, E. Meyer, F. Krok, B. Such, J. Kolodziej, and M. Szymonski, Surf. Sci. 474, L197 (2001).

[21] W. Allers, A. Schwarz, and U. D. Schwarz, in Noncontact Atomic Force Microscopy, edited by S. Morita, R. Wiesendanger, and E. Meyer (Springer Berlin Heidelberg New York, 2002), chap. 14, pp. 233–256.

[22] R. Perez, I. Stich, M. C. Payne, and K. Terakura, Phys. Rev. B 58, 10835 (1998).

[23] F. J. Giessibl, Phys. Rev. B (RC) 45, 13815 (1992).

[24] F. J. Giessibl, Phys. Rev. B 56, 16010 (1997).

[25] H. Ueyama, Y. Sugawara, and S. Morita, Appl. Phys. A 66, S295 (1998).

[26] F. J. Giessibl and B. M. Trafas, Rev. Sci. Instrum. 65, 1923 (1994).

[27] F. J. Giessibl, Appl. Phys. Lett. 76, 1470 (2000).

[28] J. Repp, G. Meyer, F. E. Olsson, and M. Persson, Science 305, 493 (2004).
FIG. 1: Crystal structure of CaF$_2$, forming a face-centered cubic lattice with a lattice constant of $a_0 = 546.2$ pm. The Ca$^{++}$-ions are represented by green spheres, the F$^-$-ions by blue spheres. The basis of the lattice consists of three atoms with a Ca$^{++}$-ion located at the origin of the fcc-lattice and two F$^-$-ions located at $(x, y, z) = \pm(a_0/4, a_0/4, a_0/4)$ with an interionic distance of $\sqrt{3}/4$ $a_0 = 237$ pm. (a) Perspective view of the cubic unit cell. (b) Top view of a CaF$_2$ (111) surface with a surface layer consisting of F$^-$-ions. The surface layer is a trigonal arrangement of F$^-$-ions spaced by $a_0/\sqrt{2} = 386.2$ pm, the angle between the surface lattice vectors is 60°. (c) View parallel to the surface along the [110] direction, showing the electrically neutral triple layers of F$^-$.Ca$^{++}$.F$^-$ ions spaced by $a_0/\sqrt{3} = 315.35$ pm. Because the surface should be terminated by complete triple layers (see text), step heights should be integer multiples of 315.35 pm. The Ca$^+$-layer is 79 pm below the surface F$^-$-layer, and the second F$^-$-layer 158 pm lower than the surface layer.
FIG. 2: (a) Simulated normalized frequency shift γ as a function of tip cluster height Δ and amplitude A. (b) Simulated normalized frequency shift γ and $|\gamma|$ as a function of distance z for an amplitude of $A = 1$ nm and the tip-sample forces described in Eqs. 1 and 3 with $A_H = 1$ eV, $R = 100$ nm, $\Delta = 1$ nm, $F_0 = 12.15$ nN, $\kappa = 16.3$ nm$^{-1}$. (c) Logarithmic display of $|\gamma|$, showing that a logarithmic filter provides a feedback signal that is roughly linear with z for z-values outside of ≈ 0.21 nm.
FIG. 3: Schematic true-to-scale representation of the lower section of a spherical tip with a radius of 100 nm and a micro-asperity with a height of 2 nm close to a sample with a 315 pm step.

FIG. 4: Overview AFM image and magnified views of a CaF$_2$ (111) surface. Imaging parameters: Scanning speed 96 nm/s, $A = 625$ pm, $\Delta f = +7.32$ Hz, $\gamma = +12.3$ fNm$^{0.5}$. (a) Image size 160 x 160 nm2, with four different terrace heights spaced by integer multiples (1–4) of 315 pm. (b) Image size 28.85 x 28.85 nm2, showing a screw dislocation with a height of 315 pm. (c) Zoom into the step at the screw dislocations, image size 8 x 8 nm2 showing atomic contrast. (d) Same image as (a) with 5-fold increased contrast, showing patched and linear structures on single terraces.
FIG. 5: AFM image of a screw dislocation on a CaF$_2$ (111) surface. Imaging parameters: Scanning speed 400 nm/s, image size 150 × 150 nm2, $A = 1.25$ nm, $\Delta f = -0.74$ Hz, $\gamma = -3.5$ fNm$^{0.5}$.
FIG. 6: High-resolution topographic images of CaF₂ (111). Imaging parameters: Scanning speed 20 nm/s, image size 40 × 40 nm² (a,c), 6.1 × 6.1 nm² (b,d), $A = 625$ pm, $\Delta f = +3.66$ Hz, $\gamma = 6.15 \text{ fN m}^{0.5}$. Acquisition time for (a) and (c) is 34 min, (c) was taken right after (a).
FIG. 7: High-resolution constant height images of CaF\textsubscript{2} (111) in the attractive (a) and repulsive mode (b). Imaging parameters: Image size 1.36 × 1.36 nm2, (a) scanning speed 4 nm/s, $A = 1.25$ nm, $\Delta f = -13.3 \pm 0.3$ Hz, $\gamma = -63 \pm 1.4$ fNm0.5 (b) scanning speed 16 nm/s, $A = 625$ pm, $\Delta f = +4.4 \pm 0.3$ Hz, $\gamma = +7.4 \pm 1$ fNm0.5.
FIG. 8: High-resolution topographic image (a) and frequency shift image (b) of CaF$_2$ (111) across a single step. The measured step height is 275 pm, 13% smaller than the expected step height of 315 pm (see text). Imaging parameters: Scanning speed 8.7 nm/s, image size 8.6 × 4.5 nm2, $A = 625$ pm, $\Delta f = -9.5$ Hz, $\gamma = -16 \pm 0.9$ fNm$^{0.5}$. (c) Contour line along the black trace indicated in (b). A filtered version of (b) was used to produce the contour.
FIG. 9: Topographic image of CaF$_2$ (111) during which a tip change occurs. Imaging parameters: Scanning speed 4.8 nm/s, image size 2.9 \times 2.9 nm2, $A = 625$ pm, $\Delta f = -8.8$ Hz, $\gamma = -14.8 \text{fNm}^{0.5}$.