Review Article

A report on older-age bipolar disorder from the International Society for Bipolar Disorders Task Force

Sajatovic M, Strejilevich SA, Gildengers AG, Dols A, Al Jurdi RK, Forester BP, Kessing LV, Beyer J, Manes F, Rej S, Rosa AR, Schouws SNTM, Tsai S-Y, Young RC, Shulman KI. A report on older-age bipolar disorder from the International Society for Bipolar Disorders Task Force.

Bipolar Disord 2015: 17: 689–704. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

Objectives: In the coming generation, older adults with bipolar disorder (BD) will increase in absolute numbers as well as proportion of the general population. This is the first report of the International Society for Bipolar Disorder (ISBD) Task Force on Older-Age Bipolar Disorder (OABD).

Methods: This task force report addresses the unique aspects of OABD including epidemiology and clinical features, neuropathology and biomarkers, physical health, cognition, and care approaches.

Results: The report describes an expert consensus summary on OABD that is intended to advance the care of patients, and shed light on issues of relevance to BD research across the lifespan. Although there is still a dearth of research and health efforts focused on older adults with BD, emerging data have brought some answers, innovative questions, and novel perspectives related to the notion of late onset, medical comorbidity, and the vexing issue of cognitive impairment and decline.

Conclusions: Improving our understanding of the biological, clinical, and social underpinnings relevant to OABD is an indispensable step in building a complete map of BD across the lifespan.

Growth in the world’s older population has reached unprecedented levels (1). By 2025–2030, the population over age 60 years will grow 3.5 times more rapidly than the general population (1). Planning for medical care that meets the health needs of this growing population of older adults is critical.

Although topics related to older-age bipolar disorder (OABD) have been relegated to a minor place in research and professional training, the growth of the elderly population means that we can no longer conceptualize OABD as a ‘special population’ for whom understanding of the disorder and recommended management can simply be extrapolated from experience in mixed age groups. The study of OABD is a research opportunity where answers to important questions that have widespread implications for all people with bipolar disorder (BD) may be found (e.g., the long-term effects of medications on general health, cognitive function, and brain integrity).

OABD, defined by many reports as BD in individuals aged ≥60 years, represents as much as 25% of the population with BD (2). Furthermore, OABD represents a heterogeneous group, including those with early-onset BD (EOBD) as well as...
late-onset BD (LOBD), with a potential difference in pathogenesis, clinical course, and care needs (3). Despite the lack of therapeutic data, OABD presents an opportunity to evaluate the neuropathology and pathogenesis of BD and the overall effectiveness of treatments.

This is the first report of the International Society for Bipolar Disorders (ISBD) Task Force on Older-Age Bipolar Disorder. Improving the understanding of the biological, clinical, and social underpinnings in OABD is an indispensable step in building a complete map of BD across the lifespan. Although there is still a significant deficit in data, emerging research has brought some answers, innovative questions, and novel perspectives.

Methods

The initiative for forming an OABD task force stemmed from ISBD leadership with expertise in aging (SAS), co-chaired by clinical researchers with a longstanding interest in OABD (MS and KIS). Leading international experts were recruited and participated in a series of teleconferences and an in-person meeting at the 10th International Conference on Bipolar Disorders (ICBD), held in Miami, FL, USA in June 2013, to review, discuss, and arrive at a consensus on topics most relevant to OABD.

Five foci were identified: (i) epidemiology and clinical features of OABD, (ii) neuropathology and biomarkers, (iii) physical health, (iv) cognition, and (v) care approaches. Each topic focus was assigned a subgroup chair (LVK, BPF, AD, AGG, and RKA, respectively) who worked with other subgroup members to: (i) conduct a selective topic review of the literature, (ii) summarize the present state of knowledge unique to OABD in the topic, and (iii) highlight opportunities and practical recommendations for further research. Expert clinical experience supported by published and unpublished data was used by each subgroup to summarize key take-home points specific to OABD. This expert consensus summary is intended to be a resource for researchers as well as clinicians.

Results and discussion

Epidemiology and clinical features

Some individuals develop new-onset mania later in life, often associated with vascular changes or other brain pathology; some experience their first manic episode after previous depressive episodes;
while others, diagnosed with BD in early life, survive into old age (3, 4). Figure 1 illustrates a proposed hierarchical terminology for OABD that considers age at onset and course of illness in OABD. The task force recommended that consideration be given to defining OABD as BD occurring in individuals aged ≥ 50 years. Although many studies have used age ≥ 60 years to define OABD, emerging data on medical comorbidity and reduced lifespan, discussed later in the present review, suggest that in order to understand OABD we need to study it across the lifespan, not just in the healthy cohort who survive into what our society generally considers elderly age (60+ and beyond).

Epidemiological studies report that types I and II BD affect 0.5–1.0% of older adults (5–7). This conservative estimate does not include all individuals within the BD spectrum (4). Epidemiological and large-scale treatment studies suggest that BD becomes less common with age, and, similar to schizophrenia patterns, BD in the geriatric population is approximately one-third as common as in younger populations (3).

In contrast to low rates in the community, OABD accounts for 6% of geriatric psychiatry outpatient visits and 8–10% of geriatric inpatient admissions (3), with an overall prevalence of late-life mania of 6.0% in older psychiatric inpatients (8). Studies in North America report that 3% of nursing home residents and 17% of the elderly in psychiatric emergency rooms have BD (3, 9). Approximately 70% with OABD are women (3). Demographic changes and greater awareness of BD may be causing a rise in the number of OABD seeking care. An Australian study noted that the proportion of individuals over age 65 with BD increased from 2% in 1980 to 10% in 1998 (10).

Age at onset. It is estimated that 5–10% of individuals with BD will be aged ≥ 50 at the time of the first manic or hypomanic episode (3, 5, 11, 12). There is no firmly established cut-off for EOBD versus LOBD, but consensus in previous reviews consistently used age ≥ 50 years as a demarcation (3, 13). It is appropriate to acknowledge this cut-off point, while at the same time recognizing additional and recent research that considers age at onset from a broader lifespan perspective (14–16). Azorin and colleagues (14) and Leboyer and colleagues (15) have conducted analyses of BD subgroups based upon age at onset, and note some distinct differences in phenomenological characteristics among these subgroups. Onset ages in early-, intermediate-, and late-onset BD in the review by Leboyer and colleagues (15) were ages 17, 27, and 46 years, respectively. In a separate investigation of OABD, Nivoli and colleagues (16) noted that elderly patients with BD (aged ≥ 65 years) were more likely to have a first affective onset after the age of 40 compared to younger people with BD (≤ 65 years).

Deppe and Jeste (3) identified 13 OABD studies (defined as age ≥ 50 years) that reported the age at onset of any psychiatric disorder (mostly affective) and eight studies that reported the age at first onset of mania. The sample-weighted mean age was 68.2 years [standard deviation (SD) = 3.9, range: 60–72]. However, a limitation of the estimate is that age 72 was the highest mean age at onset across study samples and some patients had an older age at onset. The weighted mean age at onset of any affective disorder was 48.0 years (SD = 6.4, range: 28–65) and age at onset of mania was 56.4 years (SD = 7.3, range: 38–70). Affective symptoms were present for 20 years, on average, in OABD.

In spite of methodological limitations in the extant literature that preclude a definitive conclusion regarding the cut-off age for EOBD versus LOBD, the task force felt that it was important to make a recommendation that might help to move the field forward in further investigation and a future broad consensus. As illustrated in Figure 1, the age of 50 years appears to be a reasonable cut-off, with at least some consensus for EOBD versus LOBD. Given the emerging data on subgroups with differential age at onset across the lifespan, the OABD task force suggested further study and possible consideration of age 40 as a cut-off that might capture a fuller picture of later-onset BD. Future research studies should aggressively attempt to recruit and enroll individuals above the age of 50 years in order better to understand how BD may present and evolve across the lifespan.

EOBD and LOBD may be different forms of BD, as EOBD is more closely associated with a family history of affective disorder (17) whereas LOBD is associated with brain (i.e., cerebrovascular) disease (18–20). Although some individuals with LOBD may have a particularly poor response to treatment and a high risk of cognitive deterioration (21), other reports (22–25) note that LOBD may recover faster or more robustly with treatment compared to EOBD.

Clinical presentation and missed diagnosis. Only minor differences have been found in the phenomenology of older versus younger patients with BD (10, 26) and of EOBD versus LOBD (3).
ferences are most pronounced among hospitalized patients (26). Most (17, 26–28), but not all, studies (25, 29, 30) have found psychotic features to be less frequent in OABD, whereas the prevalence of depressive episodes in OABD may be increased (26).

For BD in general, the prevalence of misdiagnosis is high, ranging from 48% (31) to 69% (32). One study (33) found that, although diagnostic misclassification seemed to decrease with age, among OABD the prevalence of misclassification is still substantial.

Course of illness. Limited data on the clinical course in OABD have been published. Although some patients have a progressive course of illness with an increasing risk of recurrence for every new episode (34), overall, relapse leading to psychiatric hospitalization seems to decrease with age (35). This may reflect an attenuation of symptom severity over time. However, data from a prospective long-term study conducted in Zurich, Switzerland, suggested that the recurrence risk following any affective episode seems to be increased among the elderly (36).

Recovery rates appear relatively constant across affective episodes in modern treatment settings for OABD (37). It is unclear whether the rate of functional recovery varies with age or whether the prevalence and presentation of rapid cycling differ between elderly and younger persons (3).

The risk of completed suicide in BD is highest for patients under the age of 35 years (38), suggesting that OABD is associated with a decreased rate of suicide. This is presumably because individuals included in samples of OABD may represent a survivor cohort (3). The rate of suicide among older patients with LOBD has not been specifically investigated, but no cases of suicide were identified in a retrospective cohort study of hospitalized elderly manic patients over a six-year follow-up (39). Nevertheless, a recent systematic review and meta-analysis on correlates of suicide attempts and suicide deaths in BD found that earlier age at illness onset correlated significantly with suicide attempts (40).

Take-home points

- Previous literature suggested age > 50 years as the cut-off for LOBD (age at first manic or hypomanic episode) but, based upon more recent evidence, the OABD task force proposes that ≥40 years be considered as the age cut-off.
- There are only minor differences in the phenomenology of EOBD versus LOBD. Based on only limited data, in LOBD, the course of illness may be progressive, with an increasing risk of recurrence.
- Unique opportunities in OABD epidemiological research include studying the interaction of age and age at illness onset on outcomes.

Neuropathology and biomarkers

Neuroimaging is used in clinical practice to help to identify structural brain abnormalities such as stroke, tumor, or hydrocephalus that may be associated with the clinical manifestation of OABD. Neuroimaging provides the opportunity to examine the relationship between structural, biochemical, and functional biomarkers and clinical symptoms of OABD such as mood instability and cognitive impairment. Historically, the majority of magnetic resonance imaging (MRI) studies in BD have demonstrated neuroanatomical abnormalities in gray matter (41). The role of cerebrovascular disease in the pathophysiology of mood and cognitive symptoms in OABD has been an increasing focal point. However, the literature on OABD is limited to small numbers of structural MRI studies, including volumetric analyses of white matter hyperintensities and gray matter volume, and two diffusion tensor imaging (DTI) studies. No functional MRI (fMRI) studies have focused specifically on OABD.

Of particular relevance to OABD, markers of inflammation, oxidative stress, and mitochondrial dysfunction could potentially help to characterize pathways supporting a model of progressive deterioration as individuals with BD age (neuroprogression). Confounding variables that must be considered when studying OABD with neuroimaging include phenotypic heterogeneity, age of illness onset, medical comorbidity, cognitive impairment, and concomitant medication.

Structural findings. The majority of MRI studies in BD have demonstrated regional gray matter abnormalities, including frontal and subcortical structures. Studies focused on OABD have noted reduced volume in the caudate, in contrast to younger patients with BD (41). DTI measures the diffusion patterns of water molecules, thereby...
providing evidence for microstructural alterations of white matter. Fractional anisotropy (FA) refers to the coherence of white matter tracts, with higher FA associated with greater white matter structural integrity and representing better brain health (42). DTI studies in OABD demonstrate altered white matter diffusivity in the orbitomedial prefrontal cortex, potentially affecting prefrontal corticolimbic connectivity and mood regulation (43). However, DTI studies in OABD are limited. A recent report investigated gray matter concentration changes and microstructural alterations in white matter in neocortical regions and the corpus callosum in OABD compared to controls (44). Gray matter concentration was reduced in the right anterior insula, head of the caudate nucleus, nucleus accumbens, ventral putamen, and frontal orbital cortex, while an analysis of DTI parameters demonstrated reduced FA in the ventral corpus callosum in OABD compared to controls.

Magnetic resonance spectroscopy (MRS) markers of brain biochemistry in OABD. MRS is a non-invasive neuroimaging technique that measures brain biochemical alterations. Such alterations may eventually serve as biomarkers for OABD, assisting diagnostic efforts and clarifying the neurobiological etiologies of disease state and trait characteristics.

Neuroimaging as a window on the neuroprogression hypothesis. Neurochemical dysregulation, neuroinflammation, oxidative stress, and mitochondrial dysfunction have been speculated to play a role in the etiology and longer-term course of BD (45, 46). Other putative mechanisms include excessive dopamine and glutamate neurotransmission, a decrease in brain neurotrophins such as brain-derived neurotrophic factor (BDNF), and the possible role of epigenetics. These mechanisms might explain the toxic effects of recurrent mood episodes that can become particularly evident in OABD as neuroprogression characterized by functional and cognitive decline. Studies that demonstrate volumetric differences as a function of age are used to assess the hypothesis that increased activity of the stress hormone cortisol during episodes of BD depression may drive cumulative excitotoxicity in specific brain regions (47). Although neuroimaging studies demonstrate a reduction in regional gray matter volume and microstructural alterations in OABD (48), there are inconsistent data to support a neurodegenerative/neuroprogressive BD model. However, studies examining longitudinal volumetric and white matter microstructural changes are limited to follow-up measured over a few years rather than decades. Future studies examining structural MRI changes over the lifespan (which also identify individuals who die early owing to medical causes) may be a more fruitful approach to determining evidence for BD as a neuroprogressive disorder.

Neuroimaging techniques to identify the neurobiological and clinical effects of lithium. Given the concern regarding the cumulative effects of BD over time, there is an interest in using neuroimaging to help to assess the possible ameliorative effects of treatment, particularly lithium therapy, but also other novel neuroprotective strategies such as the use of N-acetyl cysteine (NAC), omega-3 fatty acids, anti-inflammatory medications, and statins (46). Long-term lithium treatment is associated with increased total gray matter (49), increased hippocampal volume (50, 51), and decreased white matter microstructural abnormalities (52). The effect of lithium on hippocampal and gray matter volume is more pronounced than that of other mood stabilizers (53, 54).

Findings using lithium-7 MRS hold promise for a clinical application of MRS to help to regulate lithium dosing more accurately in OABD. Examining the superior edge of the corpus callosum in a 4-Tesla MRS study of OABD treated with lithium, increased brain, but not serum, lithium levels were associated with increased depression symptoms as well as frontal executive dysfunction (55). In addition, brain lithium levels were associated with increased myoinositol (mI) and N-acetyl aspartate (NAA) levels (56). Increased NAA levels suggest that lithium treatment has neuroprotective and neurotrophic effects, whereas increased mI levels may reflect increased inositol monophosphatase activity with chronic lithium treatment.

Take-home points
- Structural neuroimaging studies in OABD show a regional gray matter volume reduction, white matter hyperintensities, and biochemical alterations.
- At the moment, multimodel neuroimaging techniques such as fMRI, DTI, and MRS do not clearly support a neuroprogression model in BD. However, additional studies that take a lifespan and longitudinal perspective are needed to address this area of controversy definitively.
- Neuroimaging techniques that can inform an understanding of brain neurobiology may potentially lead to the development of neuropathologically informed therapies that improve mood, functioning, and cognition in OABD.
Physical health

BD has been conceptualized as a multisystem rather than brain-specific disease (57, 58). Cardiovascular disease, diabetes, obesity, substance abuse, and other comorbidities complicate outcomes in people with BD, although a limited number of studies have focused specifically on OABD (59). Patients with OABD have an average of three to four comorbid medical conditions, including metabolic syndrome (up to 50%), hypertension (45–69%), diabetes mellitus (18–31%), cardiovascular disease (9–49%), respiratory illness (4–15%), arthritis (16–21%), endocrine abnormalities (17–22%), as well as atopic diseases such as allergic rhinitis and asthma (6–20%) (59, 60). Although patients with OABD have a greater burden of endocrine, metabolic, and respiratory diseases than unipolar depressed comparators (61), the overall prevalence of medical comorbidity in OABD appears to be similar to that in community-based geriatric samples (59).

There are no longitudinal studies and only five studies of medical comorbidity that have included 50 or more patients with OABD. In a register-based study, patients with BD had higher mortality due to cardiovascular and other physical illnesses and died an average of ten years earlier than the general population (62). In light of this premature mortality, patients with EOBBD who survive into old age almost certainly represent a healthy survivor BD sub-population, and studies that focus only on individuals in their 60s and beyond may not be truly representative of the larger BD population.

Cerebrovascular disease and OABD. Cerebrovascular disease appears to be related to symptom expression in OABD, although the literature is limited (63–66). Steffens and Krishnan (64) proposed criteria for vascular mania as a subtype when mania occurs in the context of cerebrovascular disease or neuropsychological impairment. Some (67–69), but not all (65), reports suggest that LOBD is associated with significant cognitive impairment. One study noted that those with LOBD had a greater prevalence of white matter hyperintensities in the deep parietal region and basal ganglia compared to patients with EOBBD and healthy controls (66). Silent cerebral infarctions may be present in over one-half of patients with OABD, regardless of age at onset (63). Metabolic abnormalities and systemic inflammation may also be critical risk factors for cerebrovascular disease in OABD (70). Although a recent sample of OABD found that the self-reported prevalence of cerebrovascular disease was 3% (8), it is possible that future studies that focus specifically on cerebrovascular risk and age at onset in OABD may help to differentiate a different course of illness (Fig. 1).

Implications for clinical care and research. Although LOBD is generally associated with a higher burden of cerebrovascular disease than EOBBD, the majority of patients with OABD have radiological evidence of cerebrovascular disease, regardless of age at onset. Clinicians should address vascular risk factors and be sensitive to early signs of disease, using laboratory testing, imaging, and additional evaluations as necessary. Given that lifestyle factors such as exercise and avoidance of smoking are potentially modifiable and affect outcomes in people with bipolar disorder (71), preventative strategies to address cardiovascular and other medical risk factors are an important component of care. Longitudinal studies in OABD need to address the role of cerebrovascular burden and investigate how preventative measures may mitigate risk.

Physical comorbidity and OABD psychopharmacology. A recent ISBD report on safety monitoring with the use of BD pharmacotherapies (72) is particularly relevant to OABD, given that older patients are susceptible to age-related changes in mood-stabilizer pharmacodynamics, pharmacokinetics, metabolism, and excretion (73). There are few high-quality data in OABD examining the medical effects of pharmacotherapy, with the majority of studies being cross-sectional and using small samples. The relationship of long-term lithium use with renal dysfunction remains to be confirmed in geriatric populations (74). In older patients using lithium, potential correlates of renal disease include the use of diuretics and angiotensin-converting enzyme (ACE) inhibitors, and higher lithium levels in the context of inadequate lithium monitoring (73). The most robust renal risk factors in older adults are diabetes, hypertension (75), and age-related renal decline (76). Other long-term effects of mood stabilizers remain understudied. Older lithium users have an elevated incidence (6%/person-year) and prevalence rate (32%) of hypothyroidism (77, 78). The incidence of hospitalization due to delirium is similar in older patients treated with lithium and with valproate (78). Antipsychotic agent use in older patients is associated with higher rates of hyperglycemia (79) as well as an increased mortality and risk for cerebrovascular accidents (80, 81).

Take-home points

- OABD is associated with extensive medical comorbidity. Death occurs an average of ten years earlier than in the general population.
• The majority of patients with OABD have cerebrovascular disease, regardless of age at onset.
• OABD should be screened regularly for medical comorbidity. Preventative care should address modifiable lifestyle factors such as exercise and smoking. Close collaboration between mental health, primary care, and specialty clinicians is essential.
• Medical comorbidity can limit the treatment options for OABD because of drug tolerability, drug–drug interactions, and altered drug metabolism. Clinicians must choose treatments accounting for medical burden, while minimizing side effects.
• Prospective multicenter longitudinal and population-based administrative data studies are needed to evaluate the burden, risk factors, and consequences of medical comorbidity in OABD. These ideally should include non-psychiatric comparators and patients with BD across the lifespan.

Cognition
Cognitive dysfunction, reflecting static and dynamic brain abnormalities (82), is found in ≥30% of patients with OABD (83). The cognitive reserve hypothesis posits that those with a higher intelligence quotient, educational level, or occupational attainment have lower risks of developing dementia (84). BD might reduce cognitive reserve or act synergistically with other neuropathological mechanisms (e.g., vascular diseases) to accelerate aging and cognitive deterioration (35, 85–90).

As noted previously, whether BD causes neuroprogression or even eventual dementia is controversial. Existing studies on cognition in OABD do not resolve this issue. Early cross-sectional (91) and longitudinal studies (92) on cognition in OABD found pronounced neuropsychological deficits. However, these early studies had methodological limitations. The seven studies reviewed by Young and colleagues (91) included only two studies that evaluated euthymic patients, and no study discriminated between EOBD and LOBD. Some newer studies with better methodology confirmed the presence of significant cognitive dysfunction in euthymic OABD, but did not support worsening of previous cognitive dysfunction (93–96) or faster cognitive decline in old age (93, 96, 97). However, it should be emphasized that these were relatively short-term studies, with a follow-up period of 1–3 years. A recent meta-analysis (68) that included euthymic OABD patients, using comprehensive cognitive batteries and control groups, found effect sizes of impairment for ten cognitive variables analyzed in the medium range, except for phonemic fluency and cognitive flexibility (d = 0.80–0.88). Differences in the magnitude of cognitive impairments were not found in younger versus older adult patients, but findings pointed to greater impairment associated with LOBD (68).

Few long-term studies on the association between BD and cognitive functioning have been published. Out of four older studies (85, 98–100), the three population-based studies (85, 98, 99) found a positive association between BD and cognitive progression, and pooling all these data in a meta-analysis confirmed the association (86). One study specifically found that the risk of developing dementia increased with each new affective episode (101). An additional population-based study further confirmed the association when adjusted for important covariates, including cerebrovascular disease, diabetes mellitus, hypertension, head injury, chronic pulmonary disease, alcohol-related disorder, substance-related disorder, outpatient visits, and inpatient visits (90). A recent report by Gildengers et al. (48) noted that longer duration of illness is associated with lower gray matter volume. Additional studies that control for confounding factors (including treatments that may be neuroprotective), use longitudinal designs of reasonable duration (decades rather than <10 years), and start in early adulthood are needed definitively to clarify this important and yet-to-be-resolved issue.

Cognitive function in LOBD. Recent reports using an extensive cognitive battery have compared LOBD versus EOBD. Patients with LOBD had more extensive neurocognitive impairments in spite of the differences in chronicity, including neurocognitive domains such as the Boston Naming Test (69, 95, 102). The worse cognitive outcomes observed for LOBD versus EOBD support the view that different etiological mechanisms might be involved. Additionally, some neurodegenerative diseases (e.g., frontotemporal dementia) have clinical overlap with OABD symptomatology, which can result in misdiagnosis in some cases (88, 103). New imaging techniques, such as amyloid imaging or positron emission tomography imaging, may be helpful in the diagnostic evaluation of older individuals with behavioral symptoms.

Treatments for cognitive dysfunction in BD. There are no accepted treatments for cognitive dysfunc-
tion in BD. Conventional and novel treatments have been examined but to date no clear treatments have been found to be effective and there is evidence that some treatments, such as cholinesterase inhibitors, may cause destabilization (104). Functional remediation is a new and promising intervention that trains patients in the use of neurocognitive skills but cognitive performance may not necessarily improve, and there are no data in OABD (105). Large population-based studies have suggested that lithium might potentially ameliorate the risk of dementia or Alzheimer’s disease (106–109) but the methodological limitations of observational data do not provide a sufficient basis for treatment recommendations specific to cognition in OABD.

Take-home points
- Cognitive dysfunction is prevalent in OABD and adversely affects overall functionality.
- Cognitive functioning is more impaired in LOBD versus EOBD and supports different mechanistic models of pathophysiology.
- Data on cognition in OABD does not provide sufficient evidence to reject or accept a BD neuroprogression model. Future studies need to control for possible confounders, have longer follow-up periods, use healthy controls, and consider medication status and attrition.
- Clinicians need to consider cognitive dysfunction in the overall treatment of OABD, and should try to avoid medications that may worsen cognitive function (e.g., medications with a high anticholinergic burden).

Care approaches

Pharmacologic treatment. Excluding a single randomized controlled trial (RCT) that has not yet been published (110), no large-scale, prospective, controlled pharmacological studies have been conducted in OABD. The limited literature consists of uncontrolled, retrospective, open label, or secondary analyses of larger mixed-age studies.

Bipolar depression studies in OABD. In a multisite, 12-week, open-label trial, 57 type I and II patients with OABD (mean age 66.5 years, range: 60–90) received add-on lamotrigine (111). Response and remission rates were 64.8% and 57.4%, respectively, with a mean lamotrigine dose of 150.90 mg/day. A post hoc secondary analysis of two eight-week, double-blind, randomized, placebo-controlled studies in bipolar depression (112) compared quetiapine with placebo in mixed-age patients. In a subgroup of 72 patients aged 55–65 years, remission occurred more often with quetiapine (300 mg/day and 600 mg/day) than placebo at 45%, 48%, and 28%, respectively. A post hoc data analysis of monotherapy and adjunctive therapy mixed-age studies with lurasidone examined response in older adults (≥55 years) with bipolar I depression randomized to six weeks of lurasidone 20–60 mg/day or 80–120 mg/day, or placebo in the monotherapy study; or lurasidone 20–120 mg/day or placebo with either lithium or valproate in the adjunctive therapy study (113). The proportion of older adults was 83/485 (17.1%) in the monotherapy study, and 53/340 (15.6%) in the adjunctive therapy study. Mean change on the Montgomery–Asberg Depression Rating Scale (MADRS) in OABD was significantly greater for the lurasidone 20–60 mg (−15.4, p < 0.01, effect size (ES) = 0.86) and 80–120 mg (−14.1, p < 0.02, ES = 0.74) groups versus placebo (−7.1). Adjunctive therapy with lurasidone (versus placebo) in OABD was associated with a numerically greater but not statistically significant improvement in MADRS (−13.9 versus −11.1, not significant, ES = 0.26). Uncontrolled studies have noted an improvement in OABD with aripiprazole (mean dose 10.3 mg/day) (114), and with asenapine (115). Older adults can be generally expected to have reduced tolerability and relatively more drug-related adverse effects than younger individuals, and in the case of antipsychotic drugs this may be manifested in particular by tremor or other extrapyramidal symptoms (4).

Data on lithium and valproate in OABD with acute depression are derived from a few mixed-age retrospective studies (116–118). Sharma et al. (119) reported an improvement in depression in 12 patients with OABD (≥50 years of age) with rapid cycling with the addition of lithium to valproate. Data on treatment with lithium or anticonvulsants in mixed-age BD populations are strongly suggestive for the prevention of suicide attempts and deaths but additional randomized data are required before conclusions about relative antisuicide effects can be determined (120). The relevance of these data to OABD remains to be established.

Patients with OABD are more prone to acute lithium toxicity due to reduced renal clearance, vulnerability to medical comorbidity, and drug–drug interactions with ACE inhibitors, calcium antagonists, thiazide and loop diuretics, and non-steroidal anti-inflammatory drugs (NSAIDs) (121). Valproate levels should be checked regularly, and clinicians should monitor for drug–drug interactions, especially in patients with co-administration of aspirin, warfarin, digoxin, phenytoin, and lam-
octrigine (2, 122). Ammonia levels can become elevated, even with normal valproate levels (123). Remarkably, lithium use has decreased in spite of the absence of any data showing better tolerability or efficacy of one medication over the other (124).

There are few systematic data on the use of electroconvulsive therapies (ECT) in OABD. Data are restricted to case reports, case series, expert consensus, and extrapolation from mixed-age patient populations. A review of the literature suggests that ECT is a safe and effective treatment for older adults, including those suffering from severe or intractable mania (125). Special attention to baseline cognitive function is necessary, with particular concern for bilateral ECT treatment. ECT remains an important option in the treatment of OABD when safety is a concern (suicide and medical risk) or when adequate pharmacological trials have proven ineffective.

Acute bipolar mania. One completed RCT and several open-label and retrospective small studies have supported the efficacy of lithium in the treatment of acute mania in OABD. However, in a retrospective study of 12 patients with OABD (age range 60–74 years) only four (33%) showed an improvement after two weeks of lithium therapy (126). The efficacy and tolerability of valproate in OABD mania as monotherapy or adjunct have been suggested by several non-controlled studies (119, 127–133). In a retrospective report, Chen et al. (134) found comparable efficacy between lithium (blood levels: 0.8–1.3 mmol/L) and valproate (blood levels 65–90 µg/mL), with response rates of 82% and 75%, respectively. The findings from the National Institute of Mental Health-funded multisite RCT of lithium versus valproate for the acute treatment of mania in type I OABD (age ≥60 years) is awaiting publication. The results will address questions on the tolerability and efficacy of lithium versus valproate in the treatment of OABD in acute mania, hypomania, or mixed episodes (135).

A post hoc analysis of a mixed-age olanzapine study (136) reported on the within-group treatment response of older adults (>50 years of age) with acute mania treated with either olanzapine or divalproate. The efficacy of quetiapine has been reported in a pooled analysis of two 12-week, randomized trials comparing quetiapine to placebo in a mixed-age BD sample (137). In a subgroup of 59 older patients, symptoms improved significantly more with quetiapine (modal dose 550 mg/day) than placebo. Recently, Baruch et al. (138) reported a 63% remission rate in 11 elderly manic patients receiving asenapine. Finally, there are case reports and case series with carbamazepine (139, 140), gabapentin (141, 142), and clozapine (143).

BD maintenance treatment. In a secondary analysis of 86 patients with OABD, lamotrigine was more effective in delaying relapse of depression, whereas lithium was more effective in delaying manic symptoms (2). In a prospective, National Institutes of Health (NIH)-funded, mixed-age BD treatment trial, 79% of patients with OABD achieved a recovered status of at least eight symptom-free weeks (144). While patients took, on average, 2.05 psychoactive medications, 42% of patients with OABD who achieved a recovered status were on lithium monotherapy. In a prospective study of OABD, Murray and colleagues (145) found that the response to lithium is independent of age. Finally, a randomized, open-label study comparing lithium to divalproex for BD maintenance in a mixed-age BD sample showed that lithium monotherapy or lithium in combination with valproate was superior to valproate alone (146) and that the response and tolerability in OABD did not appear to differ from that of younger patients.

Psychosocial interventions. Most literature on psychosocial interventions in OABD is extrapolated from mixed-age studies or based on reports of elderly patients with serious mental illness more broadly. In a two-year randomized trial comparing the effectiveness of the Helping Older People Experience Success (HOPES) and treatment-as-usual (TAU) in OABD programs, Mueser and colleagues (147) found that HOPES, which combines skills training and a health management intervention (148), improved social skills, community functioning, self-efficacy, leisure, and recreation. Another focus of psychosocial intervention is medication adherence. A small study of medication adherence skills training for OABD (MAST-BD) showed feasibility, acceptability, and improvement in medication adherence, depression, and some indices of health-related quality of life (149). Other psychosocial interventions hold promise for improving health and functioning in older adults with serious mental illnesses (150). Given the known cognitive impairment seen in OABD (151), specific strategies to improve cognitive performance (e.g., cognitive rehabilitations) are greatly needed.

Factors associated with functional outcomes. A key component in assessing medication response is the assumption that the right medication dose has been used. The lack of evidence specific to OABD limits prognostic projections and data-driven formulation of treatment guidelines. However, the lit-
erature is fairly consistent that poor medication adherence, concomitant substance use, and comorbid neurological illnesses decrease the response to treatment in OABD (152). Additional factors affecting functional outcomes in OABD include premorbid levels of psychosocial, residential, and occupational status (153).

Novel treatment approaches and targets. Novel BD treatments that may target biological mechanisms such as inflammatory dysregulation, oxidative stress, and mitochondrial dysfunction (45) have drawn interest. Novel agents include antioxidants (e.g., NAC), mitochondrial modulators (e.g., Coenzyme Q10), or inflammatory modulators (e.g., NSAIDs) (45). To date, there have been few specific studies of novel agents in OABD (154).

Take-home points
- Excluding a single randomized trial not yet published, no large-scale, prospective, controlled studies have been conducted in OABD.
- Emerging data support the potential usefulness of lithium in OABD. More limited data provide information on the use of lamotrigine and several of the atypical antipsychotic medications – in particular, quetiapine and lurasidone.
- There are no controlled psychosocial studies specific to OABD, although studies in serious mental illness more broadly suggest the potential for positive effects on health and functioning.
- There is a need for well-designed and adequately powered treatment studies in OABD.

Conclusions and future directions

The number of individuals with OABD will increase and already-overburdened healthcare systems will need to adapt to this demographic change. BD can be a devastating illness that reduces lifespan by a decade or more, as well as causing substantial psychiatric and medical comorbidity. Accumulating research on OABD underscores the importance of a lifespan perspective in research and clinical care. Comorbidities associated with OABD are also evident throughout the lifespan, including in youth and younger adults with BD (155, 156).

The hierarchical terminology proposed by the ISBD task force on OABD (Fig. 1) considers cumulative medical burden and shortened lifespan and proposes defining (and studying) individuals aged ≥50 years as OABD. There is a need to improve our understanding of mechanistic factors explaining EOBD versus LOBD; the ISBD task force suggests that future research should include greater numbers of individuals aged 50 years and older to gain a better appreciation of potential etiological variables and processes that affect health outcome in the second half of life for individuals with BD.

As noted in both Tables 1 and 2, critical questions about BD across the lifespan could find their answers in the research of OABD. For example, do cognitive findings support LOBD as a distinct subtype? Additionally, what is the expected trajectory and prognosis for OABD? Can we verify the posulated neuroprotective effect of some treatments such as lithium? Do lifestyle factors such as activity/exercise affect long-term outcomes for people with BD?

The field of BD research needs a model that describes long-term illness evolution (157, 158), and the debated BD staging model (157) is particularly relevant to OABD. A core issue is whether BD causes neuroprogression (45). This was the most contested issue within the OABD task force. If cognitive impairment and associated biomarkers increase with chronicity, one could expect greater deficits among OABD. However, research findings are mixed, depending on study methodology. Short-term clinical studies have generally not found a significant age-related impact on cognition but long-term population-based studies have found a progressive risk of cognitive impairment among patients with BD. An important caveat is that patients with OABD in research samples represent a survivor cohort. Assessment across the lifespan is essential to fairly test a BD neuroprogression hypothesis and resolve the continued controversy.

The treatment evidence base for OABD is limited. Given the recent withdrawal of pharmaceutical companies and some national research programs from clinical trials research, it is unlikely that we will see the types of prospective and head-to-head trials in OABD that have long been a ‘gold-standard’ in guiding treatment recommendations. Alternative approaches such as the mining of case registries and other large databases that include reasonable samples of OABD may help in understanding the effects of existing therapies. However, even analysis techniques that attempt to control for confounding variables may not allow researchers to answer questions about the brain health effects of commonly used treatments. Technological advances in neuroimaging may help to clarify the biological and clinical effects of pharmacological treatment. These techniques applied to OABD
Use of registries and large administrative health data—Study of OABD can help identify neurocircuitry of mood

OABD research can help to identify factors associated with resilience and survival into late life.

Use of registries and large administrative health databases to provide epidemiological input when there are limited data from randomized, controlled trials in older adults. This can be especially fruitful in jurisdictions where there are available data on prescription drugs for older adults. These data can then be linked to other administrative data, including hospitalizations, diagnosis, and mortality.

Table 1. Important research questions and recommendations for older-age BD 2015–2025

Research questions	Recommendations
Is there a significant difference in age at onset for neurophysiology (possibly identified on brain magnetic resonance imaging or computerized tomography scan), treatment response, or genetic associations? Is LOBD a unique subtype?	Aggressively enroll/recruit individuals aged 50 years and older into future research studies in order to inform a better understanding of the presentation and evolution of BD in the second half of life. Investigate integrated care models that manage both physical and mental health. Specifically attempt to prove or refute the issue of neuroprogression in BD. Develop a network of associated centers that will follow subjects with OABD using similar initial assessment and longitudinal protocols. Develop an anonymized clinical database that can be used for basic research questions. Develop an anonymized genetic bank. Include an assessment of age at onset in BD pedigrees. Develop a network of associated centers that will follow subjects with OABD using similar initial assessment and longitudinal protocols. Establish a consensus on common cognitive assessments that are most relevant to OABD. Develop recommendations of minimum standards for neuroimaging techniques.
Is BD associated with cognitive decline or eventual dementia (neuroprogression)?	For medications measured by blood level (lithium, valproate), what is the optimal dose and serum range for OABD compared to younger patients with BD? Can lower dose or lower serum levels of lithium be as effective as higher dose or levels in OABD? Does lithium’s effect on renal function outweigh its impact on mood stabilization and quality of life? Given the mortality (U.S. Food and Drug Administration black box) warnings for atypical antipsychotic drug use in geriatric patients with dementia, can they be safely used in OABD? Can lithium and other mood stabilizers be protective against cognitive decline? What are the long-term side effects of medication treatments in BD? Are specific psychosocial treatments effective in acute and maintenance treatment? How might preventative care approaches that integrate lifestyle and physical health affect health outcomes in OABD?
What is the longitudinal course of patients with a manic episode in late life? Does previous pattern predict late-life pattern? Does BD ‘burn out’? Does episode type or frequency predict functional declines?	How might preventative care approaches that integrate lifestyle and physical health affect health outcomes in OABD? Aggressively enroll/recruit individuals aged 50 years and older into future research studies in order to inform a better understanding of the presentation and evolution of BD in the second half of life. Investigate integrated care models that manage both physical and mental health. Specifically attempt to prove or refute the issue of neuroprogression in BD. Develop a network of associated centers that will follow subjects with OABD using similar initial assessment and longitudinal protocols.
How may medical (especially vascular) comorbidity affect the expression and outcome of OABD?	Develop an anonymized clinical database that can be used for basic research questions. Develop an anonymized genetic bank. Include an assessment of age at onset in BD pedigrees. Develop an anonymized cognitive assessment database that includes an annual assessment protocol. Establish a consensus on common cognitive assessments that are most relevant to OABD. Develop recommendations of minimum standards for neuroimaging techniques.
For medications measured by blood level (lithium, valproate), what is the optimal dose and serum range for OABD compared to younger patients with BD? Can lower dose or lower serum levels of lithium be as effective as higher dose or levels in OABD? Does lithium’s effect on renal function outweigh its impact on mood stabilization and quality of life? Given the mortality (U.S. Food and Drug Administration black box) warnings for atypical antipsychotic drug use in geriatric patients with dementia, can they be safely used in OABD? Can lithium and other mood stabilizers be protective against cognitive decline? What are the long-term side effects of medication treatments in BD? Are specific psychosocial treatments effective in acute and maintenance treatment? How might preventative care approaches that integrate lifestyle and physical health affect health outcomes in OABD?	

BD = bipolar disorder; LOBD = late-onset bipolar disorder.

Table 2. Unique opportunities afforded by the study of OABD

- OABD research can help to elucidate the relationship between mood regulation and cognition, given the intersection of BD and cognitive decline.
- Researchers can longitudinally follow the BD clinical course throughout the lifespan and, in particular, test the Neuroprogression hypothesis.
- OABD research can help to identify factors associated with resilience and survival into late life.
- Study of OABD can help identify neurocircuitry of mood regulation by examining changes in brain functioning and structure associated with aging and medical/neurological conditions such as stroke and hypertension (volumetric and neuroconnectivity changes). Newer imaging modalities carry great potential in characterizing the nature and location of neuropathology in older adults. The increased prevalence of neuropathology in OABD can help to shed light on the pathogenesis of BD in younger adults.
- Use of registries and large administrative health databases to provide epidemiological input when there are limited data from randomized, controlled trials in older adults. This can be especially fruitful in jurisdictions where there are available data on prescription drugs for older adults. These data can then be linked to other administrative data, including hospitalizations, diagnosis, and mortality.

BD = bipolar disorder; OABD, older-age bipolar disorder.

May help to identify the underlying pathophysiology and pathology relevant to BD across the lifespan.

Finally, conceptualizing BD as a multisystem condition allows clinicians and researchers to address the challenges of comorbidity. Integrated care models that manage both physical and mental health (159) are particularly relevant for OABD. It is our hope that increased interest in BD as it affects individuals in their later years, healthcare systems, and society will advance care for all individuals with BD.

Affiliations

aDepartment of Psychiatry, Case Western Reserve University School of Medicine, University Hospitals Case Medical Center, Cleveland OH USA. bBipolar Disorder Program, Neurosciences Institute, Favaloro University, Buenos Aires, Argentina. cDepartment of Psychiatry, University of Pittsburgh School of Medicine, Western Psychiatric Institute and Clinic, Pittsburgh PA USA. dDepartment of Old Age Psychiatry, GGZ inGeest, EMGO Institute of Care and Health Research, VU University Medical Center, Amsterdam, the Netherlands. eMichael E. DeBakey VA Medical Center, yMenninger Department of Psychiatry and Behavioral Sciences,
Disclosures

MS has received research grants from Pfizer, Merck, Ortho-McNeil Janssen, Reuter Foundation, Woodruff Foundation, Reinberger Foundation, National Institutes of Health (NIH), Centers for Disease Control and Prevention (CDC); has been a consultant to Bracket, Prophase, Otsuka, Sunovion, Pfizer, and Amgen; and has received royalties from Springer Press, Johns Hopkins University Press, Oxford Press, UpToDate, Lxicomp, and compensation for CME activities from American Physician's Institute, MCM Education, and CMEology. SAS has received research grants from Servier; and has served as consultant for Abbott, AstraZeneca, GlaxoSmithKline, and Teofarma. AGG has received funding from NIH. BPF has received grant funding from the Rogers Family Foundation; and has been a consultant to Sunovion, Inc. LVK has been a consultant for Lundbeck and AstraZeneca. JB has received research grants from AstraZeneca, Forest, Takeda, and NIH. FM has received grants from FONCyT-PICT 2012-2014, FONCyT-PICT 2012-1309, and the INECO Foundation. SR has received funding from the Canadian Institutes of Health Research (CIHR) and Fonds de Recherche Santé Québec (FRSQ). ARR has received grants from CNPq (Ciência sem Fronteiras, 40.00032/2012-0 and Universal 473515/2013-0). RCY is supported in part by NIMH K02 MH067028, and receives other research support from NIMH. AD, RKA, SNTMS, SYT, and KIS do not have any conflicts of interest to report. This publication was supported in part by NIMH KOZ MH0670 (RCY).

References

1. World Population Ageing: 1950–2050. Available from: http://www.un.org/esa/population/publications/worldageing19502050/pdf/80chapterii.pdf [accessed April 2014].
2. Sajatovic M, Gyuilai L, Calabrese JR et al. Maintenance treatment outcomes in older patients with bipolar I disorder. Am J Geriatr Psychiatry 2005; 13: 305–311.
3. Depp CA, Jeste DV. Bipolar disorder in older adults: a critical review. Bipolar Disord 2004; 6: 343–367.
4. Sajatovic M, Kessing L. Bipolar disorder in older adults: a critical review. In: Yatham LNM ed. Bipolar Disorder – Clinical and Neurobiological Foundations. Singapore: Markono Print Media, 2010: 488–498.
5. Hirschfeld RM, Calabrese JR, Weissman MM et al. Screening for bipolar disorder in the community. J Clin Psychiatry 2003; 64: 53–59.
6. Kessler RC, Berglund P, Demler O, Jin R, Merikangas KR, Walters EE. Prevalence of lifetime and age-of-onset distributions of DSM-IV disorders in the community. Arch Gen Psychiatry 2005; 62: 593–602.
7. Unutzer J, Simon G, Pabiniak C, Bond K, Katon W. The treated prevalence of bipolar disorder in a large staff-model HMO. Psychiatr Serv 1998; 49: 1072–1078.
8. Dols A, Kupka RW, van Lammeren A, Beekman AT, Sajatovic M, Stek ML. The prevalence of late-life mania: a review. Bipolar Disord 2014; 16: 113–118.
9. Depp CA, Lindamer LA, Folsom DP et al. Differences in clinical features and mental health service use in bipolar disorder across the lifespan. Am J Geriatr Psychiatry 2005; 13: 290–298.
10. Almeida OP, Fenner S. Bipolar disorder: similarities and differences between patients with illness onset before and after 65 years of age. Int Psychogeriatr 2002; 14: 311–322.
11. Prabhakar D, Balon R. Late-onset bipolar disorder: a case for careful appraisal. Psychiatry 2010; 7: 34–37.
12. Yassa R, Nair NP, Iskandar H. Late-onset bipolar disorder. Psychiatr Clin N Am 1998; 11: 117–131.
13. Vasudev A, Thomas A. ‘Bipolar disorder’ in the elderly: what’s in a name? Maturitas 2010; 66: 231–235.
14. Azorin JM, Bellivier F, Kalaldjian A et al. Characteristics and profiles of bipolar I patients according to age-at-onset: findings from an admixture analysis. J Affect Disord 2013; 150: 993–1000.
15. Leboyer M, Henry C, Pailleere-Martinoit ML, Bellivier F. Age at onset in bipolar affective disorders: a review. Bipolar Disord 2005; 7: 111–118.
16. Nivoli AM, Murra A, Pacciarrotti I et al. Bipolar disorder in the elderly: a cohort study comparing older and younger patients. Acta Psychiatr Scand 2014; 130: 364–373.
17. Schurhoff F, Bellivier F, Jouvent R et al. Early and late onset bipolar disorders: two different forms of manic-depressive illness? J Affect Disord 2000; 58: 215–221.
18. Cassidy F, Carroll BJ. Vascular risk factors in late onset mania. Psychol Med 2002; 32: 359–362.
19. Fujikawa T, Yamawaki S, Touhouda Y. Silent cerebral infarctions in patients with late-onset mania. Stroke 1995; 26: 946–949.
20. Hays JC, Krishnan KR, George LK, Blazer DG. Age of first onset of bipolar disorder: demographic, family history, and psychosocial correlates. Depress Anxiety 1998; 7: 76–82.
21. Bellivier F, Golmard JL, Rietschel M et al. Age at onset in bipolar I affective disorder: further evidence for three subgroups. Am J Psychiatry 2003; 160: 999–1001.
22. Oostervink F, Boomsma MM, Nolen WA, Board EA. Bipolar disorder in the elderly: different effects of age and of age of onset. J Affect Disord 2009; 116: 176–183.
23. Oostervink F, Nolen WA, Kok RM, Board EA. Two years’ outcome of acute mania in bipolar disorder: different effects of age and age of onset. Int J Geriatr Psychiatry 2015; 30: 201–209.
24. Sajatovic M, Blow FC, Ignacio RV, Kales HC. New-onset bipolar disorder in later life. Am J Geriatr Psychiatry 2005; 13: 282–289.
25. Wylie ME, Mulsant BH, Pollock BG et al. Age at onset in geriatric bipolar disorder. Effects on clinical presentation and treatment outcomes in an inpatient sample. Am J Geriatr Psychiatry 1999; 7: 77–83.
26. Kessing LV. Diagnostic subtypes of bipolar disorder in older versus younger adults. Bipolar Disord 2006; 8: 56–64.
27. McGlashan TH. Adolescent versus adult onset of mania. Am J Psychiatry 1988; 145: 221–223.
28. Rosen LN, Rosenthal NE, Van Dusen PH, Dunner DL, Fieve RR. Age at onset and number of psychotic symptoms in bipolar I and schizoaffective disorder. Am J Psychiatry 1983; 140: 1523–1524.
29. Depp CA, Jin H, Mohamed S, Kaskow J, Moore DJ, Jeste DV. Bipolar disorder in middle-aged and elderly adults: is age of onset important? J Nerv Ment Dis 2004; 192: 796–799.
30. Ernst CL, Goldberg JF. Clinical features related to age at onset in bipolar disorder. J Affect Disord 2004; 82: 21–27.
31. Lish JD, Dime-Meenan S, Whybrow PC, Price RA, Hirschfeld RM. The National Depressive and Manic-Depressive Association (DMDSA) survey of bipolar members. J Affect Disord 1994; 31: 281–294.
32. Hirschfeld RM, Lewis L, Vornik LA. Perceptions and impact of bipolar disorder; how far have we really come? Results of the national depressive and manic-depressive association 2000 survey of individuals with bipolar disorder. J Clin Psychiatry 2003; 64: 161–174.
33. Kessing LV. Diagnostic stability in bipolar disorder in clinical practise as according to ICD-10. J Affect Disord 2005; 85: 293–299.
34. Kessing LV. Recurrence in affective disorder. II. Effect of age and gender. Br J Psychiatry 1998; 172: 29–34.
35. Kessing LV, Hansen MG, Andersen PK. Course of illness in depressive and bipolar disorders. Naturalistic study, 1994-1999. Br J Psychiatry 2004; 185: 372–377.
36. Angst J, Preisig M. Course of a clinical cohort of unipolar, bipolar and schizoaffective patients. Results of a prospective study from 1959 to 1985. Schweiz Arch Neurol Psychiatr 1995; 146: 5–16.
37. Kessing LV, Mortensen PB. Recovery from episodes during the course of affective disorder: a case-register study. Acta Psychiatr Scand 1999; 100: 279–287.
38. Tsai SY, Kuo CJ, Chen CC, Lee HC. Risk factors for completed suicide in bipolar disorder. J Clin Psychiatry 2002; 63: 469–476.
39. Shulman K, Tohen M, Satlin A, Mallya G, Kalunian D. Mania compared to depression in old age. Am J Psychiatry 1992; 149: 341–345.
40. Schaller A, Isometsa ET, Tondo L et al. International Society for Bipolar Disorders Task Force on Suicide: meta-analyses and meta-regression of correlates of suicide attempts and suicide deaths in bipolar disorder. Bipolar Disord 2015; 17: 1–16.
41. Beyer JL, Kuchibhatla M, Payne M et al. Caudate volume measurement in older adults with bipolar disorder. Int J Geriatr Psychiatry 2004; 19: 109–114.
42. Vederine FE, Wessa M, Leboyer M, Houenou J. A meta-analysis of whole-brain diffusion tensor imaging studies in bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35: 1820–1826.
43. Versace A, Almeida JR, Hassel S et al. Elevated left and reduced right orbitomedial prefrontal fractional anisotropy in adults with bipolar disorder revealed by tract-based spatial statistics. Arch Gen Psychiatry 2008; 65: 1041–1052.
44. Haller S, Xekardaki A, Delaloye C et al. Combined analysis of grey matter voxel-based morphometry and white matter tract-based spatial statistics in late-life bipolar disorder. J Psychiatry Neurosci 2011; 36: 391–401.
45. Berk M, Kapczinski F, Andreazza AC et al. Pathways underlying neuroprogression in bipolar disorder: focus on inflammation, oxidative stress and neurotrophic factors. Neurosci Biobehav Rev 2011; 35: 804–817.
46. Yildiz-Yesiloglu A, Ankerst DP. Neurochemical alterations of the brain in bipolar disorder and their implications for pathophysiology: a systematic review of the in vivo proton magnetic resonance spectroscopy findings. Prog Neuropsychopharmacol Biol Psychiatry 2006; 30: 969–995.
47. Doty TJ, Payne ME, Steffens DC, Beyer JL, Krishnan KR, LaBar KS. Age-dependent reduction of amygdala volume in bipolar disorder. Psychiatry Res 2008; 163: 84–94.
48. Gildengers AG, Chung KH, Huang SH, Begley A, Aizenstein HJ, Tsai SY. Neuroprogressive effects of lifetime illness duration in older adults with bipolar disorder. Bipolar Disord 2014; 16: 617–623.
49. Moore GJ, Bebcuk JM, Wilds IB, Chen G, Manji HK. Lithium-induced increase in human brain grey matter. Lancet 2000; 356: 1241–1242.
50. Hajek T, Cullis J, Novak T et al. Hippocampal volumes in bipolar disorders: opposing effects of illness burden and lithium treatment. Bipolar Disord 2012; 14: 261–270.
51. Hajek T, Kopeczek M, Hoschl C, Alda M. Smaller hippocampal volumes in patients with bipolar disorder are masked by exposure to lithium: a meta-analysis. J Psychiatry Neurosci 2012; 37: 333–343.
52. Macritchie KA, Lloyd AJ, Bastin ME et al. White matter microstructural abnormalities in euthymic bipolar disorder. Br J Psychiatry 2010; 196: 52–58.
53. Folland LC, Alshuler LL, Sugar CA et al. Increased volume of the amygdala and hippocampus in bipolar patients treated with lithium. NeuroReport 2008; 19: 221–224.
54. Germana C, Kempston MJ, Sarnicola A et al. The effects of lithium and anticonvulsants on brain structure in bipolar disorder. Acta Psychiatr Scand 2010; 122: 481–487.
55. Forester BP, Streeter CC, Berlow YA et al. Brain lithium levels and effects on cognition and mood in geriatric bipolar disorder: a lithium-7 magnetic resonance spectroscopy study. Am J Geriatr Psychiatry 2009; 17: 13–23.
56. Forester BP, Finn CT, Berlow YA, Wardrop M, Renshaw PF, Moore CM. Brain lithium, N-acetyl aspartate and myo-inositol levels in older adults with bipolar disorder treated with lithium: a lithium-7 and proton magnetic resonance spectroscopy study. Bipolar Disord 2008; 10: 691–700.
57. Leboyer M, Kupfer DJ. Bipolar disorder: new perspectives in health care and prevention. J Clin Psychiatry 2010; 71: 1689–1695.
58. Leboyer M, Soreca I, Scott J et al. Can bipolar disorder be viewed as a multi-system inflammatory disease? J Affect Disord 2012; 141: 1–10.
Sajatovic et al.

59. Lala SV, Sajatovic M. Medical and psychiatric comorbidities among elderly individuals with bipolar disorder: a literature review. J Geriatr Psychiatry Neurol 2012; 25: 20–25.

60. Tsai SY, Kuo CJ, Chung KH, Huang YL, Lee HC, Chen CC. Cognitive dysfunction and medical morbidity in elderly outpatients with bipolar disorder. Am J Geriatr Psychiatry 2009; 17: 1004–1011.

61. Gildengers AG, Whyte EM, Drayer RA et al. Medical burden in late-life bipolar and major depressive disorders. Am J Geriatr Psychiatry 2008; 16: 194–200.

62. Westman J, Hallgren J, Wahlbeck K, Erlinge D, Alfredsson L, Osby U. Cardiovascular mortality in bipolar disorder: a population-based cohort study in Sweden. BMJ Open 2013; 3: e002373.

63. Huang SH, Chung KH, Hsu JL, Wu JY, Huang YL, Tsai SY. The risk factors for elderly patients with bipolar disorder having cerebral infarction. J Geriatr Psychiatry Neurol 2012; 25: 15–19.

64. Steffens DC, Krishnan KR. Structural neuroimaging and mood disorders: recent findings, implications for classification, and future directions. Biol Psychiatry 1998; 43: 705–712.

65. Subramaniam H, Dennis MS, Byrne EJ. The role of vascular risk factors in late onset bipolar disorder. Int J Geriatr Psychiatry 2007; 22: 733–737.

66. Tamashiro JH, Zung S, Zanetti MV et al. Increased rates of white matter hyperintensities in late-onset bipolar disorder. Bipolar Disord 2008; 10: 765–773.

67. Martino DJ, Strejilevich SA, Manes F. Neurocognitive functioning in early-onset and late-onset older patients with euthymic bipolar disorder. Int J Geriatr Psychiatry 2013; 28: 142–148.

68. Samame C, Martino DJ, Strejilevich SA. A quantitative review of neurocognition in euthymic late-life bipolar disorder. Bipolar Disord 2013; 15: 633–644.

69. Schouws SN, Comijs HC, Stek ML et al. Cognitive impairment in early and late bipolar disorder. Am J Geriatr Psychiatry 2009; 17: 508–515.

70. Berk M, Conus P, Kapczinski F et al. From neuroprogression to neuroprotection: implications for clinical care. Med J Aust 2010; 193: S36–S40.

71. Goldstein BI, Schaffer A, Wang S, Blanco C. Excessive and premature new-onset cardiovascular disease among adults with bipolar disorder in the US NESARC cohort. J Clin Psychiatry 2015; 76: 163–169.

72. Ng F, Mammen OK, Wilting I et al. The International Society for Bipolar Disorders (ISBD) consensus guidelines for the safety monitoring of bipolar disorder treatments. Bipolar Disord 2009; 11: 559–595.

73. Ghose K. The need for a review journal of drug use and the elderly. Drugs Aging 1991; 1: 2–5.

74. Rej S, Abitbol R, Looper K, Segal M. Chronic renal failure in lithium-using geriatric patients: effects of lithium continuation versus discontinuation–a 60-month retrospective study. Int J Geriatr Psychiatry 2013; 28: 450–453.

75. Coresh J, Selvin E, Stevens LA et al. Prevalence of chronic kidney disease in the United States. JAMA 2007; 298: 2038–2047.

76. Rej S, Herrmann N, Shulman K. The effects of lithium on renal function in older adults – a systematic review. J Geriatr Psychiatry Neurol 2012; 25: 51–61.

77. Head L, Dening T. Lithium in the over-65s: who is taking it and who is monitoring it? A survey of older adults on lithium in the Cambridge Mental Health Services catchment area. Int J Geriatr Psychiatry 1998; 13: 164–171.

78. Shulman KI, Sykora K, Gill S et al. Incidence of delirium in older adults newly prescribed lithium or valproate: a population-based cohort study. J Clin Psychiatry 2005; 66: 424–427.

79. Lipscombe LL, Levesque L, Grunew A et al. Antipsychotic drugs and hyperglycemia in older patients with diabetes. Arch Intern Med 2009; 169: 1282–1289.

80. Setoguchi S, Wang PS, Alan Brookhart M, Canning CF, Kaci L, Schneeweiss S. Potential causes of higher mortality in elderly users of conventional and atypical antipsychotic medications. J Am Geriatr Soc 2008; 56: 1644–1650.

81. Wang PS, Schneeweiss S, Avorn J et al. Risk of death in elderly users of conventional vs. atypical antipsychotic medications. New Engl J Med 2005; 353: 2333–2341.

82. Saviotz J, Drevets WC. Bipolar and major depressive disorder: neuroimaging the developmental-degenerative divide. Neurosci Biobehav Rev 2009; 33: 699–771.

83. Tsai SY, Lee HC, Chen CC, Huang YL. Cognitive impairment in later life in patients with early-onset bipolar disorder. Bipolar Disord 2007; 9: 868–875.

84. Stern Y. What is cognitive reserve? Theory and research application of the reserve concept. J Int Neuropsychol Soc 2002; 8: 448–460.

85. Cooper B, Holmes C. Previous psychiatric history as a risk factor for late-life dementia: a population-based case–control study. Age Ageing 1998; 27: 181–188.

86. da Silva J, Goncalves-Pereira M, Xavier M, Mukaetova-Ladinska EB. Affective disorders and risk of developing dementia: systematic review. Br J Psychiatry 2013; 202: 177–186.

87. Meng X, D’Arcy C. Education and dementia in the context of the cognitive reserve hypothesis: a systematic review with meta-analyses and qualitative analyses. PLoS ONE 2012; 7: e38268.

88. Ng B, Camacho A, Lara DR, Brunstein MG, Pinto OC, Akiskal HS. A case series on the hypothesized connection between dementia and bipolar spectrum disorders: bipolar type VI? J Affect Disord 2008; 107: 307–315.

89. Rizzo LB, Costa LG, Mansur RB et al. The theory of bipolar disorder as an illness of accelerated aging: implications for clinical care and research. Neurosci Biobehav Rev 2014; 42: 157–169.

90. Wu KY, Chang CM, Liang HY et al. Increased risk of developing dementia in patients with bipolar disorder: a nested matched case–control study. Bipolar Disord 2013; 15: 787–794.

91. Young RC, Murphy CF, Heo M, Schulberg HC, Alexopoulos GS. Cognitive impairment in bipolar disorder in old age: literature review and findings in manic patients. J Affect Disord 2006; 92: 125–131.

92. Dhingra U, Rabins PV. Mania in the elderly: a 5-7 year follow-up. J Am Geriatr Soc 1991; 39: 581–583.

93. Delaloye C, Moy G, de Bilbao F et al. Longitudinal analysis of cognitive performances and structural brain changes in late-life bipolar disorder. Int J Geriatr Psychiatry 2011; 26: 1309–1318.

94. Depp CA, Savla GN, Moore DJ et al. Short-term course of neuropsychological abilities in middle-aged and older adults with bipolar disorder. Bipolar Disord 2008; 10: 684–690.

95. Martino DJ, Strejilevich SA, Marengo E et al. Relationship between neurocognitive functioning and episode recurrences in bipolar disorder. J Affect Disord 2013; 147: 345–351.
Sajatovic et al.

130. Niedermier JA, Nasrallah HA. Clinical correlates of response to valproate in geriatric inpatients. Ann Clin Psychiatry 1998; 10: 165–168.

131. Noaghiul S, Narayan M, Nelson JC. Divalproex treatment of mania in elderly patients. Am J Geriatr Psychiatry 1998; 6: 257–262.

132. Puryear LJ, Kunik ME, Workman R Jr. Tolerability of divalproex sodium in elderly psychiatric patients with mixed diagnoses. J Geriatr Psychiatry Neurol 1995; 8: 234–237.

133. Risinger RC, Risby ED, Risch SC. Safety and efficacy of divalproex sodium in elderly bipolar patients. J Clin Psychiatry 1994; 55: 215.

134. Chen ST, Altshuler LL, Melnyk KA, Erhart SM, Miller E, Mintz J. Efficacy of lithium vs. valproate in the treatment of mania in the elderly: a retrospective study. J Clin Psychiatry 1999; 60: 181–186.

135. Young AH, McElroy SL, Bauer M et al. A double-blind, placebo-controlled study of quetiapine and lithium monotherapy in adults in the acute phase of bipolar depression (EMBOLDEN I). J Clin Psychiatry 2010; 71: 150–162.

136. Bayer JL, Siegal A, Kennedy JS. Olanzapine, divalproex and placebo treatment, non-head to head comparisons of older adults acute mania. 10th Congress of the International Psychogeriatric Association. Nice, France, 2001.

137. Sajatovic M. Treatment of bipolar disorder in older adults. Int J Geriatr Psychiatry 2002; 17: 865–873.

138. Baruch Y, Tadger S, Plopski I, Barak Y. Asenapine for elderly bipolar manic patients. J Affect Disord 2013; 145: 130–132.

139. Cullen M, Mitchell P, Brodaty H et al. Carbamazepine for treatment-resistant melancholia. J Clin Psychiatry 1991; 52: 472–476.

140. Sanderson DR. Use of mood stabilizers by hospitalized geriatric patients with bipolar disorder. Psychiatr Serv 1998; 49: 1145–1147.

141. Robillard M, Conn D. Gabapentin use in geriatric patients with depression and bipolar illness. Can J Psychiatry Rev 2001; 46: 764.

142. Sethi MA, Mehta R, Devanand DP. Gabapentin in geriatric mania. J Geriatr Psychiatry Neurol 2003; 16: 117–120.

143. Shulman R, Singh A, Shulman K. Treatment of elderly institutionalized bipolar patients with clozapine. Psychopharmacol Bull 1997; 33: 113–118.

144. Al Jurdi RK, Marangell LB, Petersen NJ, Martinez M, Gyulai L, Sajatovic M. Prescription patterns of psychotropic medications in elderly compared with younger participants who achieved a “recovered” status in the systematic treatment enhancement program for bipolar disorder. Am J Geriatr Psychiatry 2008; 16: 922–933.

145. Murray N, Hopwood S, Balfour DJ, Ogston S, Hewick DS. The influence of age on lithium efficacy and side-effects in out-patients. Psychol Med 1983; 13: 53–60.

146. Geddes JR, Goodwin GM, Rendell J et al. Lithium plus valproate combination therapy versus monotherapy for relapse prevention in bipolar I disorder (BALANCE): a randomised open-label trial. Lancet 2010; 375: 385–395.

147. Mueser KT, Pratt SI, Bartels SJ et al. Randomized trial of social rehabilitation and integrated health care for older people with severe mental illness. J Consult Clin Psychol 2010; 78: 561–573.

148. Bartels SJ, Pratt SI, Mueser KT et al. Long-term outcomes of a randomized trial of integrated skills training and preventive healthcare for older adults with serious mental illness. Am J Geriatr Psychiatry 2014; 22: 1251–1261.

149. Depp CA, Moore DJ, Sitzer D et al. Neurocognitive impairment in middle-aged and older adults with bipolar disorder: comparison to schizophrenia and normal comparison subjects. J Affect Disord 2007; 101: 201–209.

150. Bartels SJ, Pratt SI. Psychosocial rehabilitation and quality of life for older adults with serious mental illness: recent findings and future research directions. Curr Opin Psychiatry 2009; 22: 381–385.

151. Gildengers AG, Butters MA, Chisholm D et al. Cognition in older adults with bipolar disorder versus major depressive disorder. Bipolar Disord 2012; 14: 198–205.

152. Young RC. Evidence-based pharmacological treatment of geriatric bipolar disorder. Psychiatr Clin North Am 2005; 28: 837–869, viii.

153. Frank E, Soreca I, Swartz HA et al. The role of interpersonal and social rhythm therapy in improving occupational functioning in patients with bipolar I disorder. Am J Psychiatry 2008; 165: 1559–1565.

154. Forester BP, Zuo CS, Ravichandran C et al. Coenzyme Q10 effects on creatine kinase activity and mood in geriatric bipolar depression. J Geriatr Psychiatry Neurol 2012; 25: 43–50.

155. Goldstein BI, Fagiolini A, Houck P, Kupfer DJ. Cardiovascular disease and hypertension among adults with bipolar I disorder in the United States. Bipolar Disord 2009; 11: 657–662.

156. Hatch J, Collinger K, Moody A, Olowoyeeye O, Zhan JQ, Goldstein BI. Non-invasive vascular imaging is associated with cardiovascular risk factors among adolescents with bipolar disorder. Pediatri Cardiol 2015; 36: 158–164.

157. Berk M, Berk L, Dodd S et al. Stage managing bipolar disorder. Bipolar Disord 2014; 16: 471–477.

158. Salthouse TA. Selective review of cognitive aging. J Int Neuropsychol Soc 2010; 16: 754–760.

159. Wollmann E, Grogan-Kaylor A, Perron B, Georges H, Kilbourne AM, Bauer MS. Comparative effectiveness of collaborative chronic care models for mental health conditions across primary, specialty, and behavioral health care settings: systematic review and meta-analysis. Am J Psychiatry 2012; 169: 790–804.