Entropy production in high-energy heavy-ion collisions and the correlation of shear viscosity and thermalization time

A. Dumitru, E. Molnár, and Y. Nara

1 Institut für Theoretische Physik, Johann Wolfgang Goethe Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany
2 Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany
3 Akita International University 193-2 Okutsukidai, Yuwa-Tsubakigawa, Akita 010-1211, Japan

We study entropy production in the early stage of high-energy heavy-ion collisions due to shear viscosity. We employ the second-order theory of Israel-Stewart with two different stress relaxation times, as appropriate for strong coupling or for a Boltzmann gas, respectively, and compare the hydrodynamic evolution. Based on present knowledge of initial particle production, we argue that entropy production is tightly constrained. We derive new limits on the shear viscosity to entropy density ratio \(\eta/s \), independent from elliptic flow effects, and determine the corresponding Reynolds number. Furthermore, we show that for a given entropy production bound, that the initial time \(\tau_0 \) for hydrodynamics is correlated to the viscosity. The conjectured lower bound for \(\eta/s \) provides a lower limit for \(\tau_0 \).

PACS numbers: 25.75.-q, 12.38.Mh, 24.10.Nz

I. INTRODUCTION

Experiments with colliding beams of gold ions at the Relativistic Heavy-Ion Collider (RHIC) have confirmed that dense QCD matter exhibits hydrodynamic flow effects\(^1\). Their magnitude matches approximately predictions based on ideal Euler (inviscid) hydrodynamics\(^1\). More precisely, the transverse momentum and centrality dependence of the azimuthally asymmetric flow, \(\nu_2 \), requires a shear viscosity to entropy density ratio as low as \(\eta/s \leq 0.2 \)\(^2\), this is much lower than perturbative extrapolations to temperatures \(T \approx 200 \) MeV\(^3\). However, it is comparable to recent results for SU(3) pure gauge theory from the lattice\(^4\), and to the conjectured lower bound for strongly coupled systems \(\eta/s \geq 1/(4\pi) \)\(^5\). Similar constraints on \(\eta/s \) have been derived from transverse momentum correlations\(^6\) and from elliptic flow\(^7\) and from energy loss and flow of heavy quarks at RHIC\(^8\).

The purpose of this paper is to obtain an independent upper bound on \(\eta/s \) by analyzing entropy production in the early stages of the hydrodynamic evolution (the plasma phase), where the expansion rate and hence the entropy production rate is largest. Entropy production in heavy-ion collisions due to viscous effects has been measured directly. Our analysis therefore necessarily relies on a calculation of the initial conditions (presented in section III). Specifically, we employ here a \(k_T \)-factorized form of the “Color Glass Condensate” (CGC) approach which includes perturbative gluon saturation at small light-cone momentum fractions \(x \)\(^9\). However, different approaches for initial particle production, such as the HIJING model which relies on collinear factorization supplemented with an additional model for the soft regime, also predicts multiplicities close to experiment\(^10\). The same is true when the heavy-ion collision is modeled as a collision of two classical Yang-Mills fields\(^11\). It is important to test these models for small systems, such as peripheral \(A + A \) (or even \(p + p \)) collisions, in order to constrain the entropy increase via final-state effects (thermalization and viscosity).

Section IV contains our main results. We show how the entropy production bound correlates \(\eta/s \) to the initial time for hydrodynamic evolution, \(\tau_0 \). The entropy production rate grows with the expansion rate (i.e., how rapidly flow lines diverge from each other), and the total amount of produced entropy is therefore rather sensitive to the early stages of the expansion. The bound on the viscosity depends also on the initial condition for the stress, which in the second-order theory is an independent variable and is not fixed by the viscosity and

\(^1\) Numerical solutions of Euler hydrodynamics on finite grids always involve some amount of numerical viscosity for stability. Reliable algorithms such as flux-corrected transport keep this numerical viscosity and the associated entropy production at a minimum\(^12\).
the shear (unless the stress relaxation time is extremely short, as predicted recently from the AdS/CFT correspondence at strong coupling [20]).

In a recent paper, Lublinsky and Shuryak point out that if the initial time \(\tau_0 \) is assumed to be very small, that a resummation of the viscous corrections to all orders in gradients of the velocity field is required [21]. Here, we explore only the regime where \(\tau_0 \) is several times larger than the sound attenuation length \(\Gamma_s \), and so the standard approach to viscous hydrodynamics should apply. Quantitatively, we find that an entropy bound of \(\eta/s \) restricts \(\eta/s \) to be at most a few times the lower bound \((\eta/s = 1/(4\pi)) \) conjectured from the correspondence [10].

On the other hand, somewhat surprisingly, we find that if the initial time \(\tau_0 \) is constant. This does not hold over \(\tau_0 \), for the parton density and the stress at initial time \(\tau_0 \), for the parton density and the stress at initial time \(\tau_0 \). Present constraints from initial and final multiplicities are not easily reconciled with such extremely short initial times [22].

We restrict ourselves here to 1+1D Bjorken expansion. Given its (numerical) simplicity and the fact that the entropy production rate is largest at early times, this should provide a reasonable starting point. Estimates for the initial condition, the hydrodynamic theory can at best provide qualitative results for heavy-ion collisions.

We neglect any other possible source of entropy but shear viscosity at early times\(^2\). Even within this simplified setting, there could be additional entropy production due to a viscous “hadronic corona” surrounding the fireball [22], which we do not account for. Clearly, any additional contribution would further tighten the (upper) bound on \(\eta/s \) and the (lower) bound on \(\tau_0 \). We also assume that \(\eta/s \) is constant. This does not hold over a very broad range of temperature [8] but should be a reasonable first approximation for \(T \approx 200\text{-}400 \) MeV.

We employ natural units throughout the paper: \(\hbar = c = k_B = 1 \).

II. DISSIPATIVE FLUID DYNAMICS

A. Second-order formalism

In this section we briefly review some general expressions for viscous hydrodynamics which will be useful in the following. More extensive discussions are given in refs. [14, 24, 25, 26, 27, 28, 29, 30], for example.

A single-component fluid is generally characterized by a conserved current (possibly more), \(\mathcal{N}^\mu \), the energy-momentum tensor \(T^{\mu\nu} \), and the entropy current \(S^\mu \). The conserved quantities satisfy continuity equations,

\[
\partial_\mu N^\mu = 0, \quad \partial_\mu T^{\mu\nu} = 0. \tag{1}
\]

In addition, the divergence of the entropy current has to be positive by the second law of thermodynamics,

\[
\partial_\mu S^\mu \geq 0. \tag{2}
\]

For a perfect fluid, a well-defined initial-value problem requires the knowledge of \(T^{\mu\nu} \) and of \(\mathcal{N}^\mu \) on a space-like surface in 3+1D Minkowski space-time. This is equivalent to specifying the initial flow field \(u^\mu \), the proper charge density \(n \equiv u_\mu u^\mu T^{\mu\nu} \), and the proper energy density \(e \equiv u_\mu u_\nu T^{\mu\nu} \); the pressure is determined via an algebraic relation to \(e \) and \(n \), the equation of state (EoS).

In dissipative fluids, irreversible viscous and heat conduction processes occur. These quantities can be expressed explicitly if the charge and entropy currents and the energy-momentum tensor are decomposed (projected) into their components parallel and perpendicular to the flow of matter [31]; the latter describe the dissipative currents. The transverse projector is given by \(\Delta^{\mu\nu} = g^{\mu\nu} - u^\mu u^\nu \), with \(g^{\mu\nu} = \text{diag}(1,-1,-1,-1) \) the metric of flat space-time. In the following, we focus on locally charge-neutral systems where all conserved currents vanish identically.

The energy-momentum tensor can be decomposed in the following way:

\[
T^{\mu\nu} = eu^\mu u^\nu - (p + \Pi) \Delta^{\mu\nu} + W^\mu u^\nu + W^\nu u^\mu + \pi^{\mu\nu}. \tag{3}
\]

Here, \(W^\mu = q^\mu + hv^\mu \equiv u_\alpha T^{\alpha\mu} \Delta^\mu_\nu \) is the energy flow, with \(h = (e+p)/n \) the enthalpy per particle, and \(q^\mu \) is the heat flow; we shall define the local rest-frame via \(W^\mu = 0 \) (the “Landau frame”). Furthermore, \(\Pi \) denotes the bulk pressure such that \(p + \Pi = -\frac{1}{3} \Delta^{\mu\nu} T^{\mu\nu} \), while the symmetric and traceless part of the energy-momentum tensor defines the stress tensor, \(\pi^{\mu\nu} = \frac{1}{2} (\Delta^\mu_\alpha \Delta^\nu_\beta + \Delta^\nu_\alpha \Delta^\mu_\beta - \frac{1}{3} \Delta^{\mu\nu} \Delta_\alpha_\beta) T^{\alpha\beta} \).

The entropy current is decomposed as

\[
S^\mu = su^\mu + \Phi^\mu. \tag{4}
\]

In the standard first order theory due to Eckart [31] and Landau and Lifshitz [32], only linear corrections are taken into account, i.e., \(\Phi^\mu = q^\mu/T \). On the other hand, the second order theory of relativistic dissipative fluid dynamics includes terms to second order in the irreversible flows and in the stress tensor [15]:

\[
S^\mu = su^\mu + \frac{q^\mu}{T} - \left(\beta_0 \Pi^\mu - \beta_1 q^\mu q^\nu + \beta_2 \pi_{\alpha\nu} \pi^{\alpha\mu} \right) \frac{u^\mu}{2T} - \frac{\alpha_0 \Pi q^\mu}{T} + \frac{\alpha_1 \pi^{\mu\nu} q_{\nu}}{T}, \tag{5}
\]

where the coefficients \(\beta_0, \beta_1, \beta_2 \) and \(\alpha_0, \alpha_1 \) represent thermodynamic integrals which (near equilibrium) are valid...
related to the relaxation times of the dissipative corrections. Furthermore, from (2), one can find linear relationships between the thermodynamic forces and fluxes, leading to the transport equations describing the evolution of dissipative flows [13]. In what follows, we will focus on shear effects and neglect heat flow and bulk viscosity, hence (3) simplifies to

\[T^\mu\nu = eu^\mu u^\nu - p \Delta^\mu\nu + \pi^\mu\nu. \]

(6)

The stress tensor satisfies a relaxation equation,

\[\tau_\pi u^\lambda \partial_\lambda \pi^\mu\nu + \sigma^\mu\nu = 2\eta \sigma^\mu\nu, \]

(7)

where \(\eta \) denotes the shear viscosity, and the shear tensor \(\sigma^\mu\nu \) is a purely “geometrical” quantity, determined by the flow field:

\[\sigma^\mu\nu = \frac{1}{3} (\nabla^\mu u_\nu + \nabla^\nu u_\mu) - \frac{1}{3} \Delta^\mu\nu \nabla_\lambda u^\lambda, \]

(8)

with \(\nabla^\mu = \Delta^\mu\nu \partial_\nu \). The relaxation time \(\tau_\pi \) determines how rapidly the stress tensor \(\pi^\mu\nu \) relaxes to the shear tensor \(\sigma^\mu\nu \); in particular, in the limit \(\tau_\pi \to 0 \),

\[\pi^\mu\nu = 2\eta \sigma^\mu\nu \]

(9)

satisfy the same algebraic relation as in the first-order theory. The limit \(\tau_\pi \to 0 \) is formal, however, since the deviation of the stress \(\pi^\mu\nu \) from \(2\eta \sigma^\mu\nu \) at any given time, as obtained by solving eq. (7), depends also on its initial value. If \(\eta \) is approximately valid at the initial time then the first-order theory may provide a reasonable approximation for the entire evolution (see below).

By analyzing the correlation functions of the stress that lead to the definitions (7), respectively, of the shear viscosity, Koide argues that in the second-order theory of Israel and Stewart \(\eta \) may represent a different quantity than in the first-order approach [33]. Nevertheless, here we assume that the conjectured lower bound for \(\eta/s \) applies even to the causal (second-order) approach.

B. Dissipative Bjorken scaling fluid dynamics

In this section we recall the 1+1D Bjorken solution \(\text{10} \) in 3+1D space-time including stress [14]. By assumption, the fluid in the central region of a heavy-ion collision expands along the longitudinal \(z \)-direction only, with a flow velocity \(v \) equal to \(z/t \). This is appropriate for times less than the transverse diameter \(R \) of the collision zone divided by the speed of sound \(c_s = \sqrt{\partial p/\partial e} \) (possibly longer for very viscous fluids). After that transverse expansion is fully developed and we expect that entropy production due to shear decreases. In fact, it is straightforward to check that for three-dimensional scaling flow\(^3\) \(u_\mu \partial_\mu \sigma^\mu\nu = 0 \); hence, within the first-order theory at least, the shear viscosity does not enter the evolution equation of the energy density anymore.

Formulations of the Israel-Stewart second-order theory for Bjorken plus transverse expansion have been published \(\text{23, 24, 25, 26, 27, 28, 29} \) but require large-scale numerical computations. A relatively straightforward 1+1D analysis is warranted as a first step to provide an estimate for entropy production.

It is convenient to transform from \((t, z)\) to new \((\tau, \eta)\) coordinates, where \(\tau = \sqrt{t^2 - z^2} \) denotes proper time and \(\eta = \frac{1}{2} \log((t + z)/(t - z)) \) is the space-time rapidity; for the Bjorken model, it is equal to the rapidity of the flow, \(\eta = \frac{1}{2} \log((1 + v)/(1 - v)) \). In other words, the four-velocity of the fluid is \(u^\mu = (\delta^00 + \delta^z z)/\tau \).

The longitudinal projection of the continuity equation for the stress-energy tensor then yields

\[\frac{de}{d\tau} + \frac{e + p}{\tau} - \frac{\Phi}{\tau} + \Pi = 0. \]

(10)

Here, \(e \) is the energy density of the fluid in the local rest-frame, while \(p \) denotes the pressure. These quantities are related through the equation of state (EoS). We focus here on entropy production during the early stages of the evolution where the temperature is larger than the QCD cross-over temperature \(T_c \approx 170 \text{ MeV} \), and so assume a simple ideal-gas EoS, \(p = e/3 \).

In what follows, we will neglect the bulk pressure \(\Pi \) which would otherwise tend to increase entropy production further. Well above \(T_c \), this contribution is expected to be much smaller than that due to shear [34]. In the transition region, the bulk viscosity could be significant [35]. Also, for 1+1D expansion considered here, the stress \(\Phi \equiv \pi^00 - \pi^zz \) acts in the same way as the bulk pressure \(\Pi \); only the combination \(\Phi - \Pi \) appears in (10).

The time evolution of the stress is determined by

\[\frac{d\Phi}{d\tau} + \frac{\Phi}{\tau_\pi} = \frac{1}{2} \left[\frac{1}{\tau} + \frac{T}{\tau_2} \frac{d}{d\tau} \left(\beta_2 \frac{2}{T} \right) - \frac{2}{3\beta_2 \tau} \right] = 0. \]

(11)

\(\tau_\pi \) sets the time scale for relaxation to the first-order theory where \(\Phi_{1st - O} = 4\eta/3\tau \) (not to the ideal-fluid limit \(\Phi = 0 \)). It is related to \(\eta \) and \(\beta_2 \) via \(\tau_\pi = 2\eta/\beta_2 \). For a classical Boltzmann gas of massless particles \(\beta_2 = 3/(4p) \) and so

\[\tau_\pi = \frac{6}{T_s} \frac{\eta}{T}. \]

(12)

At infinite coupling, from the AdS/CFT correspondence \(\eta/s = 1/(4\pi) \) \(\text{10} \) and \(\tau_\pi = (1 - \log 2)/(6\pi T) \) \(\text{20} \). For large but finite coupling, we assume that \(\eta/2 \beta_2 \) and thus \(\tau_\pi \) are proportional to \(\eta/s \), i.e. that \(\beta_2 = (3\tau)/(Ts) \) with \(r = (1 - \log 2)/9 \); then

\[\tau_\pi = \frac{6}{T_s} \frac{\eta}{T}. \]

(13)

Note that the numerical prefactor \(r \) is about 30 times smaller than for a Boltzmann gas, implying much faster
relaxation of the dissipative fluxes to the first-order theory.

One can also define a Reynolds number via the ratio of non-dissipative to dissipative quantities \(R = (e + p)/\Phi \). Eq. (10) can then be written as

\[
\frac{d\varepsilon}{d\log \tau} = (R^{-1} - 1)(e + p),
\]

where we have neglected the bulk pressure. For stability, the effective enthalpy \((e + p)(1 - 1/R)\) should be positive, i.e. \(R > 1 \). The energy density then decreases monotonically with time.

The equations of second-order dissipative fluid dynamics, (10) or (14) and (11) together with (12) or (13) and (16) form a closed set of equations for a fluid with vanishing currents, if augmented by an EoS. Furthermore, the initial energy density \(\varepsilon_0 \equiv e(\tau_0) \) and the initial shear \(\Phi_0 \equiv \Phi(\tau_0) \) have to be given. In the second-order theory one has to specify the initial condition for the viscous stress \(\Phi_0 \) independently from the initial energy or particle density. We are presently unable to compute \(\Phi_0 \). Below, we shall therefore present results for various values of \(\Phi_0 \).

Alternatively, a physically motivated initial value \(\Phi_0^\ast \) for the stress can be obtained from the condition that \(dR/d\tau = 0 \) at \(\tau = \tau_0 \). This is the “tipping point” between a system that is already approaching perfect fluidity at \(\tau_0 \) \((dR^{-1}/d\tau < 0 \) if \(\Phi_0 > \Phi_0^\ast \) \) and one that is unable to compete with the expansion and is in fact departing from equilibrium \((dR^{-1}/d\tau > 0 \) if \(\Phi_0 < \Phi_0^\ast \) \) for at least some time after \(\tau_0 \).

For an EoS with constant speed of sound, say \(p = c/3 \), the condition that \(R = 0 \) is equivalent to \(\dot{\varepsilon}/\varepsilon = \dot{\Phi}/\Phi \). Eqs. (10) and (11) then yield

\[
\frac{\Phi_0^\ast}{\varepsilon_0} = \frac{4}{3} \frac{\tau_0}{\tau_0^\ast} \left(1 + \frac{4}{9} \frac{\tau^2}{\tau_0^\ast} - 1 \right)
\]

\[
\approx \frac{8}{27} \frac{\tau_0^\ast}{\tau_0} \left(\frac{\tau_0}{\tau_0^\ast} \ll \sqrt{\tau} \right),
\]

\[
= \frac{16}{9} \frac{1}{T_0 \tau_0^s} \frac{1}{\eta} \left(\text{1st-order theory} \right).
\]

The second line applies in the limit of short relaxation time; since \(\tau_0^\ast \) is proportional to \(\tau_0 \), this is always satisfied in the limit \(\tau_0 \rightarrow 0 \). For typical initial conditions relevant for heavy-ion collisions, it is a reasonable approximation even in the Boltzmann limit \((r = 1) \). In \(\tau_0^\ast \) we have indicated that (10) is in fact nothing but the stress in the first-order theory (divided by the initial energy density). While it is clear that \(\Phi \) relaxes to \(\Phi_{1st-\cdots} \) over time-scales on the order of \(\tau_0^\ast \), eq. (17) is actually a statement about the initial value of \(\Phi \); in a fluid with reasonably short relaxation time and stationary initial Reynolds number, \(\dot{\Phi}(\tau_0) = 0 \), even the initial value of the stress is given by the first-order approach.

The condition \(R(\tau_0) > 1 \) for applicability of hydrodynamics together with eq. (10) then provides the following lower bound on \(\tau_0 \):

\[
\tau_0 > \frac{4}{3} \frac{\eta}{T_0 s} \equiv \Gamma_s(\tau_0),
\]

where \(\Gamma_s \) denotes the sound attenuation length; within the first-order approach, \(R = \tau/\Gamma_s \). The factor of \(\eta/s \) on the right-hand-side illustrates the extended range of applicability of hydrodynamics as compared to a Boltzmann equation: a classical Boltzmann description requires that the thermal de-Broglie wave length, \(\sim 1/T \), is smaller than the (longitudinal) size of the system, \(\tau \). For very small viscosity, though, hydrodynamics is applicable (since \(R \gg 1 \)) even when \(\Gamma_s \ll \tau \ll 1/T \). In this point we differ somewhat from Lubiczsky and Shuryak [21], who argue that the theory needs to be resummed to all orders in the gradients of the velocity field already when \(\tau \sim 1/T \). From our argument above, this should be necessary only when \(\tau_0 \sim \Gamma_s(\tau_0) \), which is much smaller than \(1/T_0 \) if \(\eta/s \ll 1 \).

The purpose of this paper is to motivate, however, that a much stronger constraint than \(\tau_0 > \Gamma_s(\tau_0) \) may anyhow result from a bound on entropy production (which follows from the centrality dependence of the multiplicity), cf. section IV.

In the Bjorken model, the entropy per unit rapidity and transverse area at time \(\tau \) is given by

\[
\frac{1}{A_{\perp}} \frac{dS(\tau)}{d\eta} = \tau \tilde{s}(\tau),
\]

where \(A_{\perp} \) is the transverse area while \(\tilde{s} \equiv S^\mu u_\mu \) denotes the longitudinal projection of the entropy current. Neglecting heat flow \(\left(\dot{q}^\mu = 0 \right) \) and bulk pressure \((\Pi = 0) \) one obtains from (5):

\[
\tilde{s} = s \left(1 - \frac{3}{4} \frac{\beta_2}{T s} \Phi^2 \right).
\]

\(\tilde{s} \) can be determined, for any \(\tau \geq \tau_0 \), from the solution of eqs. (10) and (11). Note that the second term in (20) is of order \((\Phi/e)^2 \). For nearly perfect fluids with \(\eta/s \ll 1 \) and \(R(\tau_0) = 0 \) it is rather small.

III. THE CGC INITIAL CONDITION

Before we can present solutions of the hydrodynamic equations, we need to determine suitable initial conditions. To this date, the most successful description of the centrality dependence of the multiplicity is provided by the Kharzeev-Levin-Nardi (KLN) k⊥-factorization approach [17]. The KLN ansatz for the unintegrated gluon distribution functions (uGDF) of the colliding nuclei incorporates perturbative gluon saturation at high energies and determines the p⊥-integrated multiplicity from weak-coupling QCD without additional models for soft particle production.
Specifically, the number of gluons that are released from the wavefunctions of the colliding nuclei is given by

\[
\frac{dN_g}{d^2 p_{⊥} dy} = \mathcal{N} \frac{N_c}{N_c^2 - 1} \int \frac{d^2 p_{⊥}}{p_{⊥}^2} \int_{p_{⊥}}^{P_s} d^2 k_{⊥} \alpha_s(k_{⊥}) \times \phi_A(x_1, (p_{⊥} + k_{⊥})^2/4; r_{⊥}) \\
\times \phi_B(x_2, (p_{⊥} - k_{⊥})^2/4; r_{⊥}), \tag{21}
\]

where \(N_c = 3\) is the number of colors, and \(p_{⊥}, y\) are the transverse momentum and the rapidity of the produced gluons, respectively. \(x_{1, 2} = p_{⊥} \exp(\pm y)/\sqrt{s_{NN}}\) denote the light-cone momentum fractions of the colliding gluon ladders, and \(\sqrt{s_{NN}} = 200\) GeV is the collision energy.

The normalization factor \(\mathcal{N}\) can be fixed from peripheral collisions, where final-state interactions should be suppressed. (Ideally, the normalization could be fixed from \(p+p\) collisions; however, this is possible only at sufficiently high energies, when the proton saturation scale is at least a few times \(\Lambda_{QCD}\).) \(\mathcal{N}\) also absorbs NLO corrections; when we compare to measured multiplicities of charged hadrons, it includes as well a factor for the average charged hadron multiplicity per gluon, and a Jacobian for the conversion from rapidity to pseudo-rapidity.

The uGDFs are written as follows \[\cite{17, 37, 38}\]:

\[
\phi(x, k_{⊥}^2; r_{⊥}) = \frac{1}{\alpha_s(Q_s^2)} \frac{Q_s^2}{\max(Q_s^2, k_{⊥}^2)} P(r_{⊥})(1-x)^{4}. \tag{22}
\]

\(P(r_{⊥})\) denotes the probability of finding at least one nucleon at \(r_{⊥}\) \[\cite{37, 38}\]. This factor arises because configurations without a nucleon at \(r_{⊥}\) do not contribute to particle production. Note that the perturbative \(\sim 1/k_{⊥}^2\) growth of the gluon density towards small transverse momentum saturates at \(k_{⊥} = Q_s\). Therefore, the \(p_{⊥}\)-integrated gluon multiplicity obtained from \[21\] is finite.

We should emphasize that the ansatz \[22\] is too simple for an accurate description of high-\(p_{⊥}\) particle production. For example, it does not incorporate the so-called “extended geometric scaling” regime above \(Q_s\), which plays an important role in our understanding of the evolution of high-\(p_{⊥}\) spectra from mid- to forward rapidity in \(d+Au\) collisions \[39\]. However, high-\(p_{⊥}\) particles contribute little to the total multiplicity, and more sophisticated models for the uGDF do not change the centrality dependence of \(dN/dy\) significantly \[37\].

\(Q_s(x, r_{⊥})\) denotes the saturation momentum at a given momentum fraction \(x\) and transverse coordinate \(r_{⊥}\). It is parameterized as \[37, 38\]:

\[
Q_s^2(x, r_{⊥}) = 2 \text{GeV}^2 \left(\frac{T(r_{⊥})/P(r_{⊥})}{1.53} \right)^{0.01} x^\lambda. \tag{23}
\]

The \(\sim 1/x^\lambda\) growth at small \(x\) is expected from BFKL evolution and has been verified both in deep inelastic scattering at HERA \[40\] and in high-\(p_{⊥}\) particle production from \(d+Au\) collisions at RHIC \[39\]; the growth speed is approximately \(\lambda \approx 0.28\). Note that the saturation momentum, as defined in \[23\], is “universal” in that it doesn’t depend on the thickness of the collision partner at \(r_{⊥}\) \[41\].

The centrality dependence of \(Q_s\) is determined by the thickness function \(T(r_{⊥})\), which is simply the density distribution of a nucleus, integrated over the longitudinal coordinate \(z\). Note that the standard Woods-Saxon density distribution is averaged over all nucleon configurations, including those without any nucleon at \(r_{⊥}\). For this reason, a factor of \(1/P(r_{⊥})\) arises in \(Q_s^2\) \[37, 38\]. It prevents \(Q_s\) from dropping to arbitrarily small values at the surface of a nucleus (since at least one nucleon must be present at \(r_{⊥}\) or else no gluon is produced at that point). The fact that \(Q_s\) is bound from below prevents infrared sensitive contributions from the surface of the nucleus and also makes the uGDF \[22\] less dependent on “freezing” of the one-loop running coupling.

Fig. 1 shows the centrality dependence of the charged particle multiplicity at midrapidity from the \(k_{⊥}\)-factorization approach with perturbative gluon saturation at small-\(x\), for \(Cu+Cu\) and \(Au+Au\) collisions at full RHIC energy, \(\sqrt{s_{NN}} = 200\) GeV. PHOBOS data from ref. \[42\]; the errors are systematic, not statistical.
within the bottom-up thermalization scenario one does expect, parametrically, that gluon splittings increase the multiplicity by a factor \(\sim 1/\alpha^{2/3} \) before the system thermalizes at \(\tau_0 \) and the hydrodynamic evolution begins. If the scale for running of the coupling is set by \(Q_s \), this would lead to an increase of the multiplicity for the most central Au+Au collisions by roughly 20%. However, such a contribution does not seem to be visible in the RHIC data, perhaps because the bottom-up scenario, which considered asymptotic energies, does not apply quantitatively at RHIC energy. It is also thinkable that the model \(\) overpredicts the growth of the particle multiplicity per participant with centrality somewhat.

It is noteworthy that from the most peripheral Cu+Cu to the most central Au+Au bin, that \((dN/d\eta)/N_{\text{part}} \) grows by only \(\sim 50\% \) while \(N_{\text{part}}^{1/3} \) increases by a factor of 2.6. Clearly, any particle production model that includes a substantial contribution from perturbative QCD processes will cover most of the growth. This implies that rather little entropy production appears to occur after the initial radiation field decoheres. If so, this allows us to correlate the thermalization time \(\tau_0 \) and the viscosity to entropy density ratio \(\eta/s \). We shall assume that about 10\% entropy production may be allowed for central Au+Au collisions.

The density of gluons at \(\tau_s = 1/Q_s \) is given by
\[
dN/d\eta \big/ N_{\text{part}}
\]
from eq. (21), divided by \(\tau_s \). For a central collision of Au nuclei at full RHIC energy, the average \(Q_s \approx 1.4 \text{ GeV at midrapidity; hence } \tau_s \approx 0.14 \text{ fm/c}. \) The parton density at this time is approximately \(\sim 40 \text{ fm}^{-3}. \) If their number is effectively conserved until thermalization at \(\tau_0 \)

\[
n(\tau_0) = \frac{\tau_s}{\tau_0} n(\tau_s). \tag{24}
\]

The initial energy density \(e(\tau_0) \) can now be obtained from the density via standard thermodynamic relations. We assume that the energy density corresponds to 16 gluons and 3 massless quark flavors in chemical equilibrium,

\[
e(T) = \frac{47.5}{30} \pi^2 T^4, \quad n(T) = \frac{43\zeta(3)}{\pi^2} T^3. \tag{25}
\]

Fig. 2 shows the parton number and energy densities at \(\tau_0 \).

\footnote{We repeat that \textit{centrality-independent} gluon multiplication processes and the contribution from quarks are already accounted for via the normalization factor \(N \).}
The result of the calculation is shown in Fig. 3. As expected, if the hydrodynamic expansion starts later (larger \(\tau_0 \)) then less entropy is produced for a given value of \(\eta/s \); conversely, for fixed entropy increase, larger values of \(\eta/s \) are possible. This is due to two reasons: the total time interval for one-dimensional hydrodynamic expansion as well as the entropy production rate decrease. In fact, the figure shows that for very small initial time the \(\Delta S/S_{ini} = 10\% \) bound can not be satisfied with \(\eta/s \geq 1/(4\pi) \approx 0.08 \).

![Figure 4](image-url)

Figure 4: (Color online) Time evolution of the inverse Reynolds number (using the Boltzmann relaxation time) for different initial values of the viscous stress, \(\Phi_0 \), and of the viscosity to entropy density ratio \(\eta/s \). The initial time is \(\tau_0 = 1 \) fm/c for all curves. The short-dashed line corresponds to the initial condition \(R(\tau_0) = 0 \), cf. eq. (15). The long-dashed line corresponds to the first-order theory.

In Fig. 4 we show the behavior of the inverse Reynolds number for different initial values of the stress. Again, for each curve \(\eta/s \) is fixed such that \(\Delta S/S_{ini} = 10\% \) at \(\tau_{fin} = 5 \) fm/c. As already indicated above, if \(\Phi_0 < \Phi_0^* \) defined in eq. (15), the fluid can not compete with the expansion and departs from equilibrium. On the other hand, if \(\Phi_0 > \Phi_0^* \), there is already a rapid approach towards the perfect-fluid limit at \(\tau_0 \). In either case, the interpretation of \(\tau_0 \) as the earliest possible starting time for hydrodynamic evolution does not appear sensible. The initial condition corresponding to \(R(\tau_0) = 0 \) in turn corresponds to the situation where the fluid has just reached the ability to approach equilibrium. It is clear from the figure that the evolution is close to that predicted by the first-order theory.

![Figure 5](image-url)

Figure 5: (Color online) Same as Fig. 4 but for the generalized AdS/CFT relaxation time [13].

B. \(\eta/s \) versus \(\tau_0 \)

From the previous results it is evident that fixing the amount of produced entropy, \(\Delta S/S_{ini} \), correlates \(\eta/s \) with \(\tau_0 \). In this section we show the upper limit of \(\eta/s \) as a function of \(\tau_0 \).

![Figure 6](image-url)

Figure 6: (Color online) Bound on \(\eta/s \) as a function of \(\tau_0 \), for \(\Delta S/S_{ini} = 10\% \) entropy production, for a Boltzmann gas.

We begin with the Boltzmann gas with fixed \(\Phi_0 \) (independent of \(\tau_0 \)) in Fig. 6. One observes that the maximal viscosity depends rather strongly on the initial value of the stress. For any given \(\Phi_0 \), \((\eta/s)_{max} \) first grows approximately linearly with \(\tau_0 \). For large initial time, however, the expansion and entropy production rates drop so much that the bound on viscosity eventually disappears. Furthermore, it is interesting to observe that the conjectured lower bound \(\eta/s = 1/(4\pi) \) excludes too rapid thermalization: even if the fluid is initially perfectly equilibrated \((\Phi_0 = 0) \), a thermalization time well below \(\sim 1 \) fm/c is possible only if either \(\eta/s < 1/(4\pi) \) or \(\Delta S/S_{ini} > 10\% \). With 10% corrections to perfect fluidity at \(\tau_0 \), shown
by the long-dashed line in Fig. 6, the minimal τ_0 compatible with both $\eta/s \geq 1/(4\pi)$ and $\Delta S/S_{\text{ini}} = 10\%$ is about 1.2 fm/c. If $\eta/s \simeq 0.1 - 0.2$, as deduced from the centrality dependence of elliptic flow at RHIC [6], then $\tau_0 \simeq 1.5$ fm/c.

In Fig. 7 we perform a similar analysis for our ansatz (13) for the strong-coupling case. Due to the much smaller relaxation time of the viscous stress, we observe that the viscosity bound is now rather insensitive to the magnitude of the initial correction to equilibrium. We obtain a lower bound on the thermalization time of $\tau_0 \simeq 1$ fm/c for the minimal viscosity, increasing to about 1.2 - 2.2 fm/c if $\eta/s \simeq 0.1 - 0.2$.

In Fig. 8 we return to the Boltzmann gas with initial value for the stress as given in eq. (15), corresponding to $\dot{R}(\tau_0) = 0$. Comparing to Fig. 6, we observe that the viscosity bound is affected mostly for large τ_0: with this initial condition, a high viscosity $\eta/s \sim 1$ is excluded even if the initial time is as big as 2 fm/c. The reason why the upper bound on the viscosity does not disappear at large τ_0 for this initial stress is that Φ_0^*/e_0 grows with η/s, cf. eq. (13). A lot of entropy would then be produced, even for large τ_0.

We performed similar calculations for the strong-coupling limit as shown in Fig. 9. The curves are rather close to those for a Boltzmann gas from Fig. 8, which is expected. With this initial condition, i.e. $\Phi_0 = \Phi_0^*$, the hydrodynamic evolution is close to the first-order theory for both cases. Entropy production is sensitive only to τ_0 and η/s but is nearly independent of the stress relaxation time τ_π.

Fig. 10 shows the ratio of the final to the initial entropy for two different values of η/s, and two different relaxation times corresponding to weak and strong coupling.

Fig. 10 also gives an impression of the sensitivity to the entropy production bound. For $\eta/s = 0.15$, for example, τ_0 decreases from $\simeq 1.8$ fm/c, if the entropy is allowed to increase by 10%, to $\simeq 1.5$ fm/c if the bound is relaxed to $\Delta S/S_{\text{ini}} = 15\%$. Entropy production is sensitive only to τ_0 and η/s but is nearly independent of the stress relaxation time τ_π.

Fig. 10 shows the ratio of the final to the initial entropy
as a function of \(\tau_0 \) for two different values of \(\eta/s \), and the two different relaxation times discussed above in eqs. \(12 \) \cite{13}. Here, \(S_{\text{fin}} \) has been fixed to the value appropriate for central Au+Au collisions while \(S_{\text{ini}} \) is varied accordingly. For example, for \(\tau_0 = 0.6 \text{ fm}/c \) and \(\eta/s = 1/(2\pi) \), almost 30\% entropy production occurs. This would account for the entire growth of \((dN/d\eta)/N_{\text{part}} \) from \(N_{\text{part}} \simeq 60 \) to \(N_{\text{part}} \simeq 360 \) observed in Fig. \(1 \) That is, for these parameters the initial parton multiplicity per participant would have to be completely independent of centrality. For the same viscosity, \(\tau_0 = 0.3 \text{ fm}/c \) would imply that nearly half of the final-state entropy was produced during the hydrodynamic stage, i.e. that the initial multiplicity per participant should actually \textit{decrease} with centrality. Such a scenario appears unlikely to us. Note that even for \(\tau_0 = 0.3 \text{ fm}/c \) and \(\eta/s = 1/(4\pi) \), with \(T = 400 \text{ MeV} \) one finds that \(\Gamma_s(\tau_0)/\tau_0 \simeq 0.17 \) is quite small. Romatschke obtained similar numbers for the initial to final entropy ratio, albeit only for \(\tau_0 = 1 \text{ fm}/c \), in a computation that included cylindrically symmetric transverse flow \cite{13}.

\section{V. SUMMARY, DISCUSSION AND OUTLOOK}

In this paper, we have analyzed entropy production due to non-zero shear viscosity in central Au+Au collisions at RHIC. We point out that a good knowledge of the initial conditions, and of the final state, of course, can provide useful constraints for hydrodynamics of high-energy collisions, specifically on transport coefficients, on the equation of state (not discussed here, cf. \cite{6}), on the initial/thermalization time and so on.

Our main results are as follows. Assuming that hydrodynamics applies at \(\tau > \Gamma_s \), then due to the rather restrictive bound on entropy production, it follows that the shear viscosity to entropy density ratio of the QCD matter produced at central rapidity should be small, at most a few times the lower bound \(\eta/s = 1/(4\pi) \) conjectured from the AdS/CFT correspondence at infinite coupling. This represents a consistency-check with similar numbers \((\eta/s \lesssim 0.2) \) extracted from azimuthally asymmetric elliptic flow \cite{4, 5, 6, 7}. We have neglected several other possible sources of entropy production, such as bulk viscosity near the transition region \cite{28} or hadronic corona effects \cite{23}; such additional contributions might tighten the constraints even further.

Furthermore, the entropy production bound correlates the maximal allowed viscosity to the initial time \(\tau_0 \) for hydrodynamic evolution. This is due to the fact that the expansion rate is equal to the inverse of the expansion time, which makes entropy production from viscous effects rather sensitive to the value of \(\tau_0 \). We have found that for \(\Delta S/S_{\text{ini}} \simeq 10\% \), that the initial time for hydrodynamics should be around \(1 \text{ fm}/c \), possibly a little larger. Significantly smaller thermalization times would either require \(\eta/s < 0.15 - 0.2 \) (or even smaller than \(1/(4\pi) \)). Alternatively, they would require a particle production mechanism that yields significantly lower initial multiplicities than the KLN-CGC approach. Given the very good description of the centrality dependence of the multiplicity, however, to us it appears reasonable to assume that this approach provides an adequate initial condition in that the initial parton multiplicity per participant increases with centrality.

A significant problem with viscous hydrodynamics, in particular with the second-order approach of Israel-Stewart, is the fact that the number of initial parameters increases. Even within the most simple framework followed here \((1+1\text{D Bjorken expansion combined with neglect of conserved currents, of bulk viscosity, and of heat flow}) \), a unique solution requires us to specify, in addition to the ideal-fluid parameters, the shear viscosity and the initial value for the stress. The latter, in particular, is not a general property of near-equilibrium QCD but depends on the parton liberation and thermalization process. We have, however, introduced a physically motivated initial condition for the stress: if \(\tau_0 \) is defined as the earliest possible initial time for hydrodynamics, it is plausible that the initial Reynolds number should be stationary, \(R(\tau_0) = 0 \). Otherwise the fluid either still departs from equilibrium \((R(\tau_0) < 0) \); or is already approaching it \((R(\tau_0) > 0) \).

For small relaxation times of the stress, the condition that \(R(\tau_0) = 0 \) implies that its initial value already be close to that given by the first-order theory of Eckart, Landau and Lifshitz (the relativistic generalization of Navier-Stokes hydrodynamics). We therefore expect that in general the two approaches will provide rather similar results for heavy-ion collisions. One should keep in mind, however, that in the second-order theory the entropy current includes a term quadratic in the stress, which is of course absent from the first-order theory, and which reduces entropy production slightly.

Perhaps most importantly, with \(R(\tau_0) = 0 \), the hydrodynamic evolution is largely independent of the stress relaxation time \(\tau_{\sigma} \); and therefore similar for both a Boltzmann gas at weak coupling (with low viscosity, however) and a strongly coupled plasma. The latter relaxes very rapidly to the first-order theory, regardless of the initial condition. The former, on the other hand, is forced by the initial condition to start close to relativistic Navier-Stokes, and the relaxation time is still sufficiently small to prevent a significant departure from the first-order theory.

The initial condition \(R(\tau_0) = 0 \) also guarantees that \(R(\tau) \gg 1 \) for all \(\tau \geq \tau_0 \), as long as the initial time is not extremely short \((\tau_0 T_0 \gg \eta/s) \). The effective enthalpy \((1 - 1/R)(e + p) \) is therefore always positive. On the other hand, our numerical results indicate that the Reynolds number does not exceed \(\sim 100 \) during the QGP phase. This is well below the regime where Navier-Stokes turbulence occurs in incompressible, non-relativistic fluids \((R \gtrsim 1000) \). Indeed, turbulence during the hydrodynamic stage would probably cause large fluctuations of the elliptic flow \(v_2 \) \cite{44}, which are not seen \cite{45}.

A quantitative interpretation of hydrodynamic flow effects in heavy-ion collisions at RHIC and LHC will of course require 2+1D and 3+1D solutions \[7, 24, 25, 26\]. The results obtained here should prove useful for constraining the initial conditions (in particular τ_0 and Φ_0) for such large-scale numerical efforts. In particular, as we pointed out here, the entropy production bound correlates τ_0 with η/s. In turn, we expect that elliptic flow will provide an anti-correlation since later times and larger shear viscosity should both reduce its magnitude. The intersection of those curves could then provide an estimate of the initial time for hydrodynamics at RHIC.

ACKNOWLEDGMENTS

The authors would like to thank L. P. Csernai, H. J. Drescher, M. Gyulassy, D. H. Rischke, D. Schiff, and H. Stöcker for useful discussions. E. M. gratefully acknowledges support by the Alexander von Humboldt foundation.
B. Alver et al. [PHOBOS Collaboration]. [arXiv:nucl-ex/0702036]