Determination of UAV pre-flight Checklist for flight test purpose using qualitative failure analysis

Hendarko, T Indriyanto, Syardianto and F A Maulana
Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung, Indonesia
E-mail: hendarko@ae.itb.ac.id

Abstract. Safety aspects are of paramount importance in flight, especially in flight test phase. Before performing any flight tests of either manned or unmanned aircraft, one should include pre-flight checklists as a required safety document in the flight test plan. This paper reports on the development of a new approach for determination of pre-flight checklists for UAV flight test based on aircraft’s failure analysis. The Lapan’s LSA (Light Surveillance Aircraft) is used as a study case, assuming this aircraft has been transformed into the unmanned version. Failure analysis is performed on LSA using fault tree analysis (FTA) method. Analysis is focused on propulsion system and flight control system, which fail of these systems will lead to catastrophic events. Pre-flight checklist of the UAV is then constructed based on the basic causes obtained from failure analysis.

1. Introduction
The use of Unmanned Aerial Vehicle (UAV), either for military or civil applications, has been increasing rapidly in the last decades. Acceleration of technology developments, especially in electronics, has driven massive developments and productions of UAVs with a wide range of capabilities and relatively low cost. As a consequence of the increasing market, many enterprises which are designing, developing and manufacturing UAVs with wide variation of size, configuration, and mission have been significantly increasing as well.

In the process of designing, developing, and manufacturing UAV, flight testing will become an important phase which has to be performed. In practice, incidents and/or accidents occasionally occur in flight tests. The application and use of checklists during flight tests helps eliminate the errors that can be made in an intense high workload flight test environment. These checklists should be developed and presented in the flight test plan [1].

Meanwhile, failure analysis is a process of collecting and analysing data to determine the cause of a failure, often with the goal of determining corrective actions or liability. Failure analysis has been used in the development of new UAVs and for the improvement of existing ones, either for a specific subsystem such as flight control system [2] or for the whole UAV system [3][4].

In order to minimize the probability of incidents/accidents occur in flight test, a more detail pre-flight checklists should be determined. In this research, a new approach for determination of pre-flight checklist is developed by using qualitative failure analysis of the UAV.
2. Method of Analysis
The UAV evaluated in this study is the Lapan’s LSA (Light Surveillance Aircraft) manufactured by Stemme AG, a German aircraft manufacturer. In this analysis, the aircraft is assumed to have been transformed into the unmanned version. Failure analysis performed on the UAV in this study uses a deductive approach, namely Fault Tree Analysis (FTA) method.

2.1. Lapan’s LSA (Light Surveillance Aircraft)
The National Institute of Aeronautics and Space (Lapan) has an aircraft named LSA (Light Surveillance Aircraft). LSA is actually the Stemme ASP S15-1 aircraft. It is a two-seat single-engined, all composite construction, powered sailplane with the engine mounted in the center fuselage. The cockpit has room for two in side-by-side configuration. It has a shoulder wing, a conventional T-tail and a retractable nose wheel landing gear.

The aircraft received type certificate from European Aviation Safety Agency (EASA) in October 2013 [5]. The general specifications and 3-view drawing of the aircraft are shown in table 1 and figure 1, respectively [6].

Parameters	SI Unit	British Unit
Length	8.52 m	27 ft 11 in
Wingspan	18 m	59 ft 1 in
Height	2.45 m	8 ft 0 in
Wing area	17.4 m²	187 sq ft
MTOW	1,100 kg	2,425 lb
Powerplant: 1x Rotax914F2	84.5 kW	113.3 hp
Propellers diameter: 3-bladed Muhlbauer Type MTV-7-A/170/051	1.7 m	5 ft 7 in
Stall speed	107 km/h	58 kts
Take-off distance	833 m	2832 ft
Maximum rate of climb	3.0 m	591 ft/min
Maximum cruise speed	234 km/h	126 kts
Maximum endurance	6.22 h	6.22 h
Maximum range	1119.6 km	604.5 nm
2.2. **Fault Tree Analysis of LSA**

Fault Tree Analysis method is selected to be used in conducting failure analysis on the LSA. Fault Tree Analysis (FTA) is a deductive, failure-based approach. As a deductive approach, FTA starts with an undesired event, such as failure of the main engine, and then determines (deduces) its causes using a systematic, backward-stepping process. In determining the causes, a fault tree (FT) is constructed as a logical illustration of the events and their relationships that are necessary and sufficient to result in the undesired event, or top event. The FT is a qualitative model that provides extremely useful information on the causes of the undesired event. The FT can also be quantified to provide useful information on the probability of the top event occurring and the importance of all the causes and events modeled in the FT [7].

3. **Failure Analysis and Pre-flight Checklists Determination of LSA**

Failure analysis conducted on the LSA is focused on propulsion system and flight control system, which fail of these systems will lead to catastrophic events. In the case of LSA, the propulsion system is equipped with an engine and a propeller, which both are connected with drive section, to provide thrust to the UAV platform, as shown in figure 2.

![Figure 1. 3-view drawing of LSA [6].](image1)

![Figure 2. The propulsion system of LSA [6].](image2)
Figure 3. FT of the propulsion system.

It is considered Loss of Propulsion as a top event, which may be caused by either Engine Failure, Propeller Failure, or Drive Section Failure. The engine comprises four important subsystems, i.e. engine control system, ignition system, fuel system, and lubrication system. Failure of the engine is considered because of failure of either one of them. Meanwhile, the Propeller Failure may be caused by either structural damage of the propeller or failure of propeller pitch control. The drive section, which transfers power from the engine to propeller, can fail because of either the gear failure or the shaft failure. The Fault Tree of the propulsion system is shown in figure 3 and the Fault Tree of the ignition system, fuel system, and lubrication system are shown in figure 4 to figure 6, respectively.

Figure 4. FT of the ignition system.

Ignition System failure results from three derivative failures, i.e. spark plug failure that results in an ignition process does not occur, cable/wire failure that results in generator not working properly, and the battery as a power supply does not work well.

Fuel system failure may occur due to five derivative failures, i.e. failures/defects of the filter, fuel tank, pipes/hoses, pumps, and sensors. The defective filter may prevent the filter to screen out dirt and rust particles from the fuel, which in turn can defect other components or degrade the system performance. Defective fuel tanks such as leakage may cause running out fuel and hence engine stop. Blocked pipes/hoses usually affect the failure to start the engine. Failure of the fuel pump, commonly using an electric pump, gives rise to unconveyability of fuel to the engine. Failure of fuel sensors (pressure and temperature) can cause the fuel system not working properly.
The failure of the lubrication system has three derivative failures. Failure of this system is almost same as the failure of the fuel system, consisting of sensors failure, pumps failure, and defective or blocked pipes/hoses. These three failures can make the engine not get enough oil and cause the engine to be damaged.

Flight control system of LSA is mainly comprised the control surfaces (elevator, ailerons, rudder, trim tab, flaps, and airbrakes), the actuators which deflect the control surfaces through the linkages, and Flight Control Computer. Failure of either one of them will cause a failure of flight control system. Meanwhile, control surface failure results from structural damage or jammed linkages. Beside hardware or software failure, failure of sensors (air data sensors or deflection angle sensors) can lead to a failure of flight control computer. Figure 7 illustrates the Fault Tree of Flight Control System of LSA.

Figure 5. FT of the fuel system.

Figure 6. FT of the lubrication system.

Figure 7. FT of flight control system.
Based on the basic causes obtained from fault tree analysis of the LSA, one can determine pre-flight checklists to mitigate the likelihood of incident/accident occurrence. The developed checklist resulted from qualitative failure analysis of the LSA is shown in Appendix.

4. Concluding Remarks
In this report, qualitative failure analysis of a UAV has been performed using the Lapan’s LSA as a study case. Pre-flight checklist of the aircraft is then determined from the failure analysis. This concludes development of a new approach for determination of pre-flight checklist of UAV, i.e. based on qualitative failure analysis. In the future research, the developed checklist can be tested and implemented to the LSA aircraft.

References
[1] Stoliker F N 2005 Introduction to flight test engineering RTO AGARDograph 300 Flight Test Techniques Series 14
[2] Okafor E G and Eze I H 2016 Failure analysis of UAV flight control system using markov analysis NJOTECH 35 167-173
[3] Murtha J F Evidence theory and fault tree analysis to cost-effectively improve reliability in small UAV design
[4] Juliana B and Goes L C S 2007 Failure analysis methods in Unmanned Aerial Vehicle (UAV) applications Proc. 19th Int, Congress of Mechanical Engineering (Brasilia)
[5] European Aviation Safety Agency (EASA) 2013 Type Certificate Data Sheet, EASA TC No.A.612
[6] Stemme AG 2013 Flight Manual for the Aircraft ASP S15-1 Doc.-No.: K400-911.960
[7] Stamatelatos M, Vesely W, Dugan J, Fragola J, Minarick J and Railsback J 2002 Fault Tree Handbook with Aerospace Applications version 1.1
Appendix. Pre-flight checklist of the LSA resulted from qualitative failure analysis

Systems	Yes	No
engine (general)		
breather inlet clear		
engine exhaust clear		
all connections (bolts, nuts, etc) properly tightened		
fuel system		
amounts of fuel, oil, and coolant in proper level		
fuel lines connected and no leakage or blockage		
fuel filters clean and no defect		
fuel tanks have no cracks and leaks		
fuel sensors are well-functioned		
fuel pumps are well-functioned		
lubrication system		
amounts of oil in proper level		
oil sensors are well-functioned		
oil pumps are well-functioned		
oil tank has no cracks and leaks		
oil lines connected and no leakage or blockage		
ignition and electrical system		
spark plugs cleaned, undamaged, and properly torqued		
all wiring connected, undefect, and secured		
battery capacity is sufficient (min. 16Ah)		
propeller		
propeller blades free for cracks and damage		
propeller hub free for cracks, rusts and damage		
propeller pitch control well-functioned		
spinner has no cracks and mounted correctly		
drive connection		
shaft has no cracks and damage		
gear has no cracks and damage		
cowling has no cracks and mounted correctly		
flight control system		
control surfaces free from cracks and damage		
control rods and cables free from cracks, rusts and damage		
actuators well-functioned		
control surfaces movement has no jam and resistance		
no foreign object/contamination in pitot-static tube		
air data sensor well-functioned		
FCC well-functioned		
datalink well-functioned		
GPS signal available		
weight and c.g position within the limits		