Inflammatory myofibroblastic tumor of the pituitary: A case report

Saurabh Sharma1*, Laila Sivanandapanicker Jyothish1, Raja Kutty1, Anil Kumar Peethambaran1, Milesh Nagar1, Sourab Jain1

ABSTRACT

Introduction: Inflammatory myofibroblastic tumor (IMT), a subtype of inflammatory pseudotumor, is a rare cause of non-neoplastic sellar mass. IMTs have been reported in various anatomical locations of the body, but their presence in the Central Nervous System (CNS), especially in the pituitary gland, is rare. The objective of our case report is to analyze the basis of their mimicry, discuss their differential diagnosis, and review the literature related to inflammatory pseudotumors of the pituitary.

Case presentation: A 45-year-old male presented in our hospital with chief complaints of severe headache since two months ago and blurring of vision since two weeks ago. On investigation, Magnetic Resonance Imaging (MRI) revealed a pituitary macroadenoma, which was compressing the optic chiasma and encasing the left internal carotid artery. The patient underwent endonasal endoscopic transsphenoidal excision of the pituitary lesion and became asymptomatic in the postoperative period. Histopathology reported the presence of spindle-shaped cells, inflammatory cells, respiratory epithelium lined tissue, and areas of necrosis suggestive of an inflammatory myofibroblastic tumor.

Conclusion: In the following communication, we discuss this esoteric pseudotumor of the pituitary and its peculiarities in diagnosis and management as it can easily disguise itself as a pituitary macroadenoma on radiological investigations, thus hoodwinking the physician of its actual pathology. We also review the literature to perceive the best management protocols and prognostic factors by drawing parallels with IMT in other parts of the CNS. The differential diagnosis of inflammatory myofibroblastic tumors of the CNS is difficult and relies mainly on histological analysis.

Keywords: Inflammatory myofibroblastic tumor, pituitary neoplasm, plasma cell granuloma, pseudotumor

Cite This Article: Sharma, S., Jyothish, L.S., Kutty, R., Peethambaran, A.K., Nagar, M., Jain, S. 2020. Inflammatory myofibroblastic tumor of the pituitary: A case report. Indonesian Journal of Neurosurgery 3(1): 24-28. DOI: 10.15562/ijn.v3i1.77

INTRODUCTION

Inflammatory Myofibroblastic Tumors of Central Nervous System (IMT–CNS), have been reported in literature sporadically over the last few decades, but their presence in the pituitary gland was first reported in 2001. Although the pulmonary system is the most frequently involved site, the CNS, gastrointestinal tract, tonsils, urogenital tract, heart, and orbit may also be affected. Concomitant involvement, such as that of the lung and CNS, might be encountered as well. Only a few cases of Inflammatory Myofibroblastic Tumors of the pituitary gland (IMT–Sella) have been reported.

We discuss a case of pituitary IMT that mimicked pituitary macroadenoma but was later diagnosed on histopathology. The objective of our case report is to analyze the basis of their mimicry, discuss their differential diagnosis and review the literature for their behaviour, management protocols and prognosis by searching PubMed using the keywords such as “inflammatory myofibroblastic tumor”, “plasma cell granuloma”, “inflammatory pseudotumor”, “pituitary” and references cited in identified PubMed articles.

CASE PRESENTATION

A 45-year-old male presented with complaints of moderate to severe intensity, bifrontal headache for two months and blurring of vision in the temporal side of visual filed since two weeks ago. Neurological examination revealed bitemporal hemianopsia. His blood work was suggestive of panhypopituitarism. The patient was evaluated radiologically, and MRI revealed a large well-defined T1 hyperintense lesion involving sella extending to the suprasellar region. The lesion measured 2 x 2.1 x 1.6 cm. It appeared hyperintense in T1W1 and hyperintense in STIR with small hypointense areas. The lesion had multiple CSF signal intensity areas suggestive of cystic change. The T2W1 lesion had well-defined peripheral hyperintense rim. The lesion extended into the suprasellar region. The optic chiasma appeared compressed by the mass lesion. Laterally, on the left side of the lesion was seen encasing the

Received: 2019-08-04
Accepted: 2020-02-13
Published: 2020-04-09

*Corresponding author:
Sharma S; Department of Neurosurgery, Trivandrum Medical College, Trivandrum, Kerala, India; ashu20030000@gmail.com
A working diagnosis of pituitary adenoma was made, and the patient was taken up for endonasal endoscopic transsphenoidal total excision of pituitary adenoma. Intraoperatively, the tumor was firm to hard in consistency, grey-white in color and moderately vascular. In the post-op period, there were no complications such as CSF leak, bleeding, diabetes insipidus, and neurological deficit. It was uneventful, and the patient was relieved of his symptoms.

The histopathology revealed neoplasm composed of spindle-shaped cells arranged in short bundles. Individual cells were found to be spindly with a moderate amount of eosinophilic cytoplasm and elongated nuclei with tapered edges. Sprinkled in between these were epithelioid cells and lymphocytes. RBC’s along with hemosiderin-laden macrophages, respiratory epithelium lined tissue, and few areas of necrosis were also noted (Figure 2).

Immunohistochemistry of spindle cells was positive for Smooth Muscle Actin (SMA), Vimentin, negative for Anaplastic Lymphoma Kinase (ALK), CD1(a) and S100 (Figure 3 and 4).

Histological diagnosis of IMT was made. On discharge, the patient was given a course of corticosteroids. Six months post-surgery, repeat MRI revealed no residual/recurrent tumor.
DISCUSSION

IMT is an arcane inflammatory pseudotumor first described by Bahadori and Leibow in 1973. Eventually it was found to be ubiquitous occurring commonly in the lung, omentum, mesentery and urinary bladder of children and young adults. IMT-CNS is a rare entity, with only 100 cases being reported so far. Most tumors arise from meningeal structures, though intracerebral and intraventricular lesions have been known to occur. From our literature search, only 7 cases of intrasellar IMT have been reported until now (Table 1).

The scarcity of literature available on intrasellar IMT compelled us to extrapolate data from the cases, occurring in other areas of the central nervous system. Average age, median age and age range of IMT–CNS varies in different reports but that of IMT–Sella is found to be 44.8 years, 36 years and 18 – 62 years respectively. No gender predominance was seen in our review for IMT–Sella, which is incongruent with a male predominance of IMT–CNS (Table 2).

Etiopathogenesis of IMT remains unascertained with the ongoing debate between infective and autoimmune pathology. Clinically, IMT–Sella presents with features of headache, vision problems and hypopituitarism. Differential diagnoses of pituitary IMT are pituitary adenomas, inflammatory and granulomatous lesions of pituitary, meningioma and lymphomas. Radiologically, IMT–Sella appears hyperattenuated.

Table 1. Summary of cases of inflammatory myofibroblastic tumors of the pituitary in the literature

Study	Sex/Age	Complaints	Therapy	Histology	Follow up	Outcome
Hansen et al.⁵ (2001)	F/40	Headache, left-sided loss of vision, secondary amenorrhea, asthenia	Biopsy + corticosteroids + azathioprine + methotrexate	No type predominance indicated	2 years and 6 months	1st recurrence on 16 months, 2nd recurrence on 25 months, asymptomatic at the end of 2.5 years.
Murakami et al.⁷ (2001)	F/34	Left-sided ptosis	Total gross resection	PCG	NM	Uneventful postoperative period
Al-Shraim et al.⁴ (2004)	M/32	Polyuria, polydipsia, anorexia	Total gross resection + corticosteroids	FHC	NM	Patient responded well
Jochum et al.⁴ (2004)	F/19	Headache, secondary amenorrhea	Biopsy + partial resection + stereotactic radiotherapy	FHC	NM	Tumor size kept increasing
Yamagami et al.¹⁰ (2008)	M/18	Headache, nasal discharge, polyuria, polydipsia, short stature	Biopsy + corticosteroids	FHC	2 months	Headache and nasal discharge improved, no improvement in pituitary dysfunction
Kim et al.⁵ (2011)	M/38	Anorexia, sexual dysfunction, ophthalmoplegia, diplopia	Partial resection + corticosteroids	FHC	3 years	MRI showed shrinkage of sellar mass
Gautam et al.¹¹ (2017)	F/62	Right focal motor seizures	Total gross resection	NM	1 year	No residual or recurrent tumor, patient asymptomatic
Present study (2016)	M/45	Headache, blurred vision	Total gross resection + corticosteroids	FHC	1 year	No residual or recurrent tumor, patient asymptomatic

⁴NM: not mentioned; PCG: Plasma cell granuloma type; FHC: Fibrohistiocytic type
on CT and homogenous hypointense lesions on T2 weighted images because of the lack of mobile protons in the fibrotic background.9

On histopathology, IMT is a unique lesion composed of myofibroblastic spindle cells accompanied by inflammatory cells.15 IMTs were classified into three histological patterns by Coffin et al. based on pulmonary and extra-pulmonary location.2 However, a classification relevant to IMT–CNS was proposed by Jeon et al. in 2005. They described a two-tiered classification system of Plasma Cell Granuloma (PCG) variant and fibrohistiocytic (FHC) variant.12 The FHC variant is characterized by myofibroblastic proliferation with slight inflammatory cell component and the PCG like variant is the exact opposite, with distinct inflammatory cell component and limited myofibroblastic proliferation. In their study, Jeon et al. noticed, both variants presented equally, though in our review, FHC variant was predominant (Table 1). This clearly highlights the histopathological differences between the two entities, though its impact on disease progression cannot be stated, without carrying out further long term studies.

Immunohistochemically, these tumors are positive for SMA, muscle-specific actin, vimentin in up to 90% cases, desmin in up to 70% cases and negative for myogenin, S100 and Homatropine Methylbromide 45 (HMB45). In situ hybridization of FHC variant may often show clonal rearrangement in chromosome 2p23 leading to activation of the ALK gene. It has been reported that those IMT–CNS, which express ALK, have an aggressive course and are associated with high recurrence rates.16

Treatment modalities considered for IMT–CNS are surgical resection, corticosteroid therapy, radiotherapy and immunosuppressive therapy with ALK inhibitors. Treatment patterns mentioned in the literature and the present review are elaborated in Table 3. According to all of these studies, total surgical excision if achieved without much morbidity is the best modality. Corticosteroid therapy can be considered to avoid considerable surgical risk, especially in PCG like variants, which respond better to corticosteroid therapy than FHC variants.9

One recurrence and no cases of malignant transformation were noted in our study, although the average follow-up time was just 20 months, and maximum follow-up was carried out only for 3 years. Recurrence rates of 12.5% to 40% in IMT–CNS cases have been noted in the literature.17 (Table 3)

Gallago et al. studied all cases of recurrence in IMT–CNS and found 19 such instances in over 100 cases reviewed.3 Going through their data, we noted that the PCG variants had higher chances of recurrence than the FHC variants, and 11 out of 19 (57.8%) patients were females. Twelve of the cases (63%) who showed recurrence had not undergone gross total resection as their primary modality of management. The average time until recurrence for

Table 2. Demographic data of inflammatory myofibroblastic tumors of CNS and sella, as mentioned in literature.

Study	Average age (years)	Median age (years)	Range (years)	Sex ratio (M:F)
IMT–CNS				
Greiner et al.13 (2003)	34.1	-	-	11:8
Buccolieri et al.14 (2003)	-	32	5 – 76	7:3
Jeon et al.12 (2005)	43.7	42.5	24 – 65	3:2
IMT–Sella				
Present study	44.8	36	18 – 62	1:1

Table 3. Various treatment patterns and recurrence rates in inflammatory myofibroblastic tumors of CNS as described in the literature.

Study	TGR (%)	STR (%)	Biopsy (%)	Irradiation (+/- surgery) (%)	Corticosteroids (+/- surgery) (%)	Chemotherapy (+/- surgery) (%)	Recurrence rates (%)
Hauser et al.1 (2003) (n=43)	65	25.5	37	30	25.5	0	25.5
Greiner et al.13 (2003) (n=38)	60.5	24	16	24	0	0	-
Jeon et al.12 (2005) (n=10)	60	30	10	10	10	0	20
Present review (n=8)	50	12.5	37.5	12.5	62.5	12.5	12.5

TGR: Total gross resection; STR: Stereotactic radiotherapy
patients who underwent complete resection was 37 months, while the average time until progression/recurrence for the rest of the cases was 29 months. Hauser et al. also noted that the female gender and incomplete resection were independent risk factors for recurrence. Similarly, in our review, the only recurrence noted was in a female patient with incomplete resection.

CONCLUSION

IMT–Sella is a rare neoplasm at a rare location. Histopathologically, these are FHC variant predominant lesions as compared to other CNS locations. Total surgical resection should be the target goals for treatment of all IMT. In case of difficult surgical access and contraindication to surgical procedures, treatment with corticosteroids can bring good results. The presence of PCG variant, female gender and incomplete resection are poor prognostic factors. It is important to differentiate the histopathological variant, so an early assessment can be made regarding the aggressiveness and malignant potential of the tumor and appropriate further management.

FUNDING

No funding accepted.

CONFLICT OF INTEREST

No conflicts of interest arose.

AUTHORS’ CONTRIBUTIONS

Sharma S is the corresponding author and was in charge of reviewing and editing the manuscript. Jyothish LS, Kutty R, and Peethambaran AK did the conception of the idea, reviewed and edited the manuscript. Nagar M and Jain S performed the literature search, reviewed and edited the manuscript.

REFERENCES:

1. Bahadori M, Liebow AA. Plasma cell granulomas of the lung. Cancer. 1973; 31(1): 191 – 208. DOI: 10.1002/1097-0142(19730131:1<191:aaid-cncr2820310273.0.co;2-d.
2. Coffin CM, Watterson J, Priest JR, Dehner LP. Extrapulmonary inflammatory myofibroblastic tumor (inflammatory pseudotumor). A clinicopathologic and immunohistochemical study of 84 cases. Am J Surg Pathol. 1995; 19(8): 859 – 72. DOI: 10.1097/00000478-199508000-00001.
3. Pascual-Gallego M, Yus-Fuertes M, Jorquera M, Gonzalez-Mate A, Ortega I, Martinez-Martinez A, et al. Recurrent meningeal inflammatory myofibroblastic tumor: A case report and literature review. Neurol India. 2013; 61(6): 644 – 9. DOI: 10.4103/0028-3886.125273.
4. Hauser M, Schaade L, Ramaekers VT, Doenges M, Heimann G, Sellhaus B. Inflammatory pseudotumors of the central nervous system: Report of 3 cases and literature review. Hum Pathol. 2003; 34(3): 253 – 62. DOI: 10.1016/s0046-8177(03)00023-2.
5. Al-Shraim M, Syro LV, Kovacs K, Estrada H, Uribe H, Al-Galtany M. Inflammatory pseudotumor of the pituitary: Case report. Surg Neurol. 2004; 62(3): 264 – 7. DOI: 10.1016/j.surneu.2003.09.037.
6. Hansen I, Petrossians P, Thiry A, Flandry P, Gaillard RC, Kovacs K, et al. Extensive inflammatory pseudotumor of the pituitary. J Clin Endocrinol Metab. 2001; 86(10): 4603 – 10. DOI: 10.1210/jcem.86.10.7954.
7. Murakami K, Muraishi K, Ikeda H, Yoshimoto T. Plasma cell granuloma of the pituitary gland. Case report. Surg Neurol. 2001; 56(4): 247 – 51. DOI: 10.1016/s0003-9985(01)00599-7.
8. Jochem W, Hanggi D, Bruder E, Jek T, Novotny H, Probst A, et al. Inflammatory myofibroblastic tumor of the sella turcica. Neuropathol Appl Neurobiol. 2004; 30(6): 692 – 5. DOI: 10.1111/j.1365-2990.2004.00611.x.
9. Kim DM, Yu JK, Kim HK, Son HJ. Inflammatory pseudotumor of the pituitary gland mimicking a pituitary adenoma: A case report. J Korean Soc Radiol. 2011; 64: 303 – 7.
10. Yamagami K, Yoshioka K, Isaka Y, Inoue T, Hosoi M, Shakudo M, et al. A case of hypopituitarism due to inflammatory myofibroblastic tumor of the sella turcica. Endocr J. 2008; 55(2): 339 – 44. DOI: 10.1093/endocr/jip015.
11. Gautam S, Ramesh VG, Karthikeyan KV, Krishnakumar M. Intracranial inflammatory pseudotumor presenting as an en plaque mass. Neurol India. 2017; 65(5): 1169 – 70. DOI: 10.4103/neuroindia.NI_395_17.
12. Imou YK, Chang KH, Suh YL, Jung HW, Park SH. Inflammatory myofibroblastic tumor of the central nervous system: clinicopathological analysis of 10 cases. J Neuropathol Exp Neurol. 2005; 64(3): 254 – 9. DOI: 10.1093/jnepsi/64.3.254.
13. Greiner C, Rickert CH, Mollmann ET, Rieger B, Semik M, Heindel W, et al. Plasma cell granuloma involving the brain and the lung. Acta Neurochir (Wien). 2003; 145(12): 1127 – 31. DOI: 10.1007/s00701-003-0109-z.
14. Buccoliero AM, Caldarella A, Santucci M, Ammanati F, Mennonna P, Taddei A, et al. Plasma cell granuloma of the pituitary gland: A clinicopathological survey. J Neurooncol. 2003; 64(1): 127 – 32. DOI: 10.1023/A:1021578701720.
15. Coffin CM, Humphrey PA, Dehner LP. Extrapulmonary inflammatory myofibroblastic tumor: A clinical and pathological survey. Semin Diagn Pathol. 1998; 15(2): 85 – 101.
16. Denis DJ, Elayoubi K, Weil AG, Berthelet F, Bojanowski A, Heindel W, et al. Inflammatory myofibroblastic tumors of the central nervous system that express anaplastic lymphoma kinase (inflammatory pseudotumor). A clinicopathologic and immunohistochemical study of 84 cases. Am J Surg Pathol. 2003; 27(4): 422 – 33. DOI: 10.1097/01.pts.0000073239.02298.f3.
17. Tresser N, Rolf C, Cohen M. Plasma cell granulomas of the brain: Pediatric case presentation and review of the literature. Childs Nerv Syst. 1996; 12(1): 52 – 7. DOI: 10.1007/bf00573857.