MULTIPLIERS OF DISPOSITION p-GROUPS

MAHBUBE ALIZADEH SANATI

Abstract. Let p be a prime number and c, d natural numbers. Up to isomorphism, there is a unique p-group G_{c}^{d} of least order with rank d and nilpotency class c named disposition group. This group plays an important role in the construction of Galois extensions over number fields with given p-group as Galois group. Also, it has a central series with all factors being elementary. Since G_{1}^{1} is abelian we consider $d \geq 2$. In this article, first, we determine the order of all its subgroups of lower central series and n-th center subgroups of G_{c}^{d}, $(n \in \mathbb{N})$. Then we deduce these groups are n-capable. Also, the structure of the m-nilpotent multiplier of G_{c}^{d} is determined in two cases $m \geq c$ and $m \leq c$. Finally, polynilpotent multiplier of disposition group of class row $(m_{1}, m_{2}, \ldots, m_{t})$, when $m_{1} \leq c$ is calculated.

1. Introduction

Several papers from the beginning of the twentieth century tried to find some structures for the notion of the Schur-multiplier. Undoubtedly, Karpilovsky’s book [8] is concluded with comprehensive information on this notion. Some results about its varietal generalization, Baer-invariant, of some well-known groups can be found in [11], [10]. Since the p-part of the multiplier of G is embedded into the multiplier of its Sylow p-subgroup, it is of interest to study the multiplier of p-groups. Also, by Schur’s literatures, one can use the Schur multiplier of a p-group for classifying p-groups.

Since the 1950s it has been known the Bake-Campbell-Hausdorff formula gives an isomorphism between the category of nilpotent Lie ring with order p^{n} and nilpotency class c and the category of finite p-groups with order p^{n} and nilpotency class c, provided $p > c$. This is known as the Lazard correspondence [9].

Among all finite p-groups of class c with d generators, our interest is disposition group G_{c}^{d}. A group G has Frattini class m if m is the length of a shortest central series of G with all factors being elementary abelian. There is up to isomorphism a unique largest p-group G_{c}^{d} with d generators and Frattini class c, and G is an epimorphic image of G_{c}^{d}.

Let F_{∞} be a free group on the infinite many countable set $X = \{x_{1}, x_{2}, \ldots \}$. Every element v has the form $x_{i_{1}}^{\alpha_{1}} \cdots x_{i_{k}}^{\alpha_{k}}$ in which, $\alpha_{j} = \pm 1$ for each $1 \leq j \leq k$, $k \in \mathbb{N}$ and $x_{i_{j}}$ s are distinct elements of X is called as word.

Now, suppose V is a set of words, G is a group, $v = x_{i_{1}}^{\alpha_{1}} \cdots x_{i_{k}}^{\alpha_{k}}$ a word in V and g_{1}, \ldots, g_{k} are arbitrary elements of G. The value of v with respect to (g_{1}, \ldots, g_{k}) is denoted by $v(g_{1}, \ldots, g_{k})$ and defined by $v(g_{1}, \ldots, g_{k}) = g_{1}^{\alpha_{1}} \cdots g_{k}^{\alpha_{k}}$. The subgroup generated by all values of the words V in G is called the verbal subgroup...
of G with respect to the set of words V and is denoted by $V(G)$. i.e. $V(G) = \langle v(g_1, \ldots, g_k) \mid v \in V, g_i \in G, 1 \leq i \leq k, k \in \mathbb{N} \rangle$. Let N be a normal subgroup of G. Then $V(N)$ is defined to be the subgroup of G generated by the following set \(\{ v(g_1, \ldots, g_n, \ldots, g_k) \mid v \in V; g_1, \ldots, g_k \in G; n \in \mathbb{N} \} \). The \textit{marginal} subgroup of G with respect to the set of words V, $V^*(G)$, is defined as
\[
\{ a \in G \mid v(g_1, \ldots, g_a, \ldots, g_k) = v(g_1, \ldots, g_k) \mid v \in V; g_j \in G, 1 \leq i, j \leq k, k \in \mathbb{N} \}.
\]

It is shown this set is a characteristic subgroup of G. A subgroup N of G is called \mathcal{V}-marginal, if $N \subseteq V^*(G)$. A class of all groups G such that $V(G) = 1$ is called the \textit{variety} \mathcal{V} determined by V and we say V is a \textit{set of laws} for the variety \mathcal{V}.

For two subsets X_1, X_2 of G, we let $[X_1, X_2] = \langle [x_1, x_2] \mid x_1 \in X_1, x_2 \in X_2 \rangle$ in which $[x_1, x_2] = x_1^{-1}x_2^{-1}x_1x_2$. Also, we consider expanding the commutator on the left hand side, $[x_1, \ldots, x_n, x_{n+1}] = [[x_1, \ldots, x_n], x_{n+1}], (n \geq 2)$. Hence the subgroups of the lower central series of G are defined recursively, $\gamma_1(G) = G$ and $\gamma_{n+1}(G) = [\gamma_n(G), G]$. Usually we write $\gamma_n(G) = G^n$. The subgroups of the upper central series are defined by $Z_1(G) = Z(G)$ and $Z_{n+1}(G)/Z_n(G) = Z(G/Z_n(G))$.

If $V = \{ [x_1, x_2] \}$, then $V(G) = G'$, $V^*(G) = Z(G)$ and $V(N, G) = [N, G]$. Also, $\mathcal{V} = \mathcal{A}$ is the variety of abelian groups. More generally, for each natural number $m, V = \{ [x_1, \ldots, x_{m+1}] \}$ implies $V(G) = \gamma_{m+1}(G)$, $V^*(G) = Z_m(G)$ and $V(N, G) = [N_m G]$. In this case, $\mathcal{V} = \mathcal{N}_m$ is the variety of nilpotent groups of class at most m. If $V = \{ [x_{c_1}, \ldots, x_{c_1+c_2+1}], \ldots, [x_{c_1+c_2+1}, \ldots, x_{c_1+c_2+1+c_2}] \}$, for some natural numbers c_1, c_2, then it is proved that $V(G) = \gamma_{c_1+c_2} (\gamma_{c_1+1}(G))$ and $V(N, G) = [N_{c_1, c_2} G, \gamma_{c_1+c_1+1}(G)]$. The related variety is denoted by \mathcal{N}_{c_1, c_2}.

The following lemma gives basically a summary of the known properties of the verbal and the marginal subgroups of a group G with respect to the variety \mathcal{V}, which is useful in our investigation, see [6].

\textbf{Lemma 1.1.} Let \mathcal{V} be a variety of groups and N be a normal subgroup of a group G. Then the following statements hold.

(i) $V(V^*(G)) = 1, V^*(G/V(G)) = G/V(G)$.

(ii) $V(G) = 1 \iff V^*(G) = G \iff G \in \mathcal{V}$.

(iii) $V(N, G) = 1 \iff N \subseteq V^*(G)$.

(iv) $V(G/N) = V(G)N/N, V^*(G)N/N \subseteq V^*(G/N)$.

(v) $[N, V(G)] \subseteq V(N, G) \subseteq N \cap V(G), V(G, G) = V(G)$.

(vi) If $N \cap V(G) = 1$, then $N \subseteq V^*(G)$ and $V^*(G/N) = V^*(G)/N$.

(vii) $V(N, G)$ is the smallest normal subgroup T of G contained in N, such that $N/T \subseteq V^*(G/T)$.

(viii) If H and K are subgroups of G, then $V(HK, G) = V(H, G)V(K, G)$.

A group G is said to be \mathcal{V}-\textit{nilpotent} if it has a normal series,
\[
1 = G_0 \leq G_1 \leq \cdots \leq G_n = G,
\]
such that each factor is marginal, i.e. $G_{i+1}/G_i \subseteq V^*(G/G_i)$ for all $0 \leq i \leq n-1$. Such a series is called a \mathcal{V}-\textit{marginal series}. The least integer c for such series, is called the \mathcal{V}-\textit{nilpotency class} of G.

It is obvious that each \mathcal{A}-nilpotent group is the usual nilpotent group. In the following we introduce a \mathcal{V}-marginal series.

\textbf{Definition 1.2.} Let \mathcal{V} be a variety of groups defined by a set of words V. The lower \mathcal{V}-marginal series of a group G is defined as
\[
G = V_0(G) \supseteq V_1(G) = V(G) \supseteq V_2(G) \supseteq \cdots \supseteq V_n(G) \supseteq \cdots,
\]
such that \(V_n(G) = V(V_{n-1}(G), G) \), for each \(n \in \mathbb{N} \).

Note that by Lemma 1.1(viii), we have \(V_i(G)/V_{i+1}(G) \leq V^*(G/V_{i+1}(G)) \), i.e. the above series is \(V \)-marginal.

If \(V = \{x_1, x_2\} \), then \(V_n(G) = \{V_{n-1}(G), G\} \) and so \(V_n(G) = \gamma_{n+1}(G), (n \in \mathbb{N}) \).
Thus the above series coincides with the lower central series of the group,
\[
G = \gamma_1(G) \triangleright \gamma_2(G) = G' \triangleright \gamma_3(G) \triangleright \cdots \triangleright \gamma_{n+1}(G) \triangleright \cdots
\]
The following theorem is vital in our main result.

Theorem 1.3. ([4]) Let \(F = \langle x_1, \cdots, x_d \rangle \) be a free group, then
\[
\frac{\gamma_i(F)}{\gamma_{i+1}(F)}
\]
is the free abelian group freely generated by \(\chi_n(d) \) elements is given by Witt’s formula
\[
\chi_n(d) = \frac{1}{n} \sum_{m|n} \mu(m)q^{n/m},
\]
where \(\mu(m) \) is the Mobiuous function and defined to be
\[
\mu(m) = \begin{cases}
1 & \text{if } m = 1, \\
0 & \text{if } m = p_1^{\alpha_1} \cdots p_k^{\alpha_k}, \exists \alpha_i > 1. \\
(-1)^s & \text{if } m = p_1 \cdots p_s,
\end{cases}
\]
Fix a prime number \(p \) and a group \(G \) in what follows. Write
\[
G^p^n = \langle g^p^n | g \in G \rangle \quad (n \in \mathbb{N}).
\]
For an arbitrary group \(G \), define
\[
\Lambda_n(G) = V_0(G)p^{n-1}V_1(G)p^{n-2} \cdots V_{n-1}(G).
\]
Trivially, \(\Lambda_1(G) = G \), \(\Lambda_2(G) = G^pV(G) \), \(\Lambda_3(G) = G^{p^2}V(G)pV_2(G) \) and so on. Also \(\Lambda_n(G) \) is a characteristic subgroup of \(G \) and we have
\[
G = \Lambda_1(G) \triangleright \Lambda_2(G) \triangleright \cdots \triangleright \Lambda_n(G) \triangleright \cdots
\]
Observe that if \(H \) and \(K \) are two subgroups of \(G \) with \(H \leq K \), then \(\Lambda_n(H) \leq \Lambda_n(K) \). In the case of normality of \(H \), we have \(\Lambda_n(G/H) \leq \Lambda_n(G)H/H \).

Also, by Lemma 1.1(viii)
\[
V(\Lambda_n(G), G) = V(V_0(G)p^{n-1}V_1(G)p^{n-2} \cdots V_{n-1}(G), G)
\]
\[
= V(V_0(G)p^{n-1}, G)V(V_1(G)p^{n-2}, G) \cdots V(V_{n-1}(G), G)
\]
\[
\subseteq V(V_0(G), G)p^{n-1}V_1(G, G)p^{n-2} \cdots V_{n-1}(G) = V_1(G)p^{n-1}V_2(G)p^{n-2} \cdots V_{n-1}(G)
\]
\[
\subseteq V_0(G)p^{n}V_1(G)p^{n-1}V_2(G)p^{n-2} \cdots V_{n-1}(G) = \Lambda_{n+1}(G).
\]
Hence \(\Lambda_n(G)/\Lambda_{n+1}(G) \) is a \(V \)-marginal group.

If \(V = A \) is the variety of abelian groups, then the above series is one of the many introduced in the fundamental paper of Lazard (1954) as follows, [9]
\[
\lambda_n(G) = \gamma_1(G)p^{n-1} \gamma_2(G)p^{n-2} \cdots \gamma_n(G).
\]
In 1979, Blackburn and Evens showed \(\lambda_n(G) = [\lambda_{n-1}(G), G], \lambda_{n-1}(G)p \) and \(G/\lambda_n(G) \) is a finite \(p \)-group if \(G \) is finitely generated, see [3] for more details. If \(G \neq 1 \) is a finite \(p \)-group, then \(\lambda_2(G) = \phi(G) \) is the Frattini subgroup. Blackburn and Evens proved the following useful lemma which will be required in the proof of our main theorems.

Theorem 1.4. ([3], Theorems 2.4. and 2.7.) Let \(G \) be an arbitrary group. Then for all \(c \geq 1 \)
(i) \([\gamma_{c-j+1}(G)p^{c-1} \cdots \gamma_c(G), G] = \gamma_{c-j+2}(G)p^{c-1} \cdots \gamma_{c+1}(G) \) (\(j \in \{1, 2, \cdots, c\} \)).
(ii) \([\lambda_c(G), G] = \gamma_2(G)p^{c-1} \cdots \gamma_{c+1}(G) \).
(iii) \(\lambda_c(G) \cap \gamma_j(G) = \gamma_j(G)p^{c-j} \cdots \gamma_c(G) \) (\(j \in \{1, 2, \cdots, c\} \)).

As a corollary of Theorem 1.4, we can inductively prove
\[[\lambda_c(G), m G] = \gamma_{m+c}(G)p^{c-1} \cdots \gamma_{c+m}(G) \] for each \(m \geq 2 \).

Lemma 1.5. ([3], Lemma 2.9) For each free group \(F \) and natural number \(n \) the quotient group
\[H_k = \frac{\gamma_k(F)p^{n-k} \cdots \gamma_n(F)}{\gamma_k(F)p^{n-k+1} \cdots \gamma_n+1(F)} = \frac{\lambda_n(F) \cap \gamma_k(F)}{\lambda_{n+1}(F) \cap \gamma_k(F)}, \quad (1 \leq k \leq n) \]
is elementary abelian of order \(p^s_k \), where \(s_k = \chi_k(d) + \cdots + \chi_n(d) \).

2. **Polynilpotent Multipliers of disposition groups**

Let \(1 \to R \to F \to G \to 1 \) be a free presentation for \(G \), in which \(F \) is a free group. In 1945, R. Baer [2] defined the notion of **Baer- invariant** as \(\mathcal{V}M(G) = R \cap V(F) \) and proved that this quotient group is abelian and independent from the choice of the free presentation of \(G \).

In the variety of abelian groups, the Baer- invariant of \(G \) will be \(R \cap F' \) which is called the **Schur-multiplier** of \(G \), and was defined by I. Schur [13] in 1904, for a finite group.

Also \(\mathcal{N}_m M(G) = \frac{R \cap \gamma_{m+1}(F)}{[R, F]} \), the **\(m \)-nilpotent multiplier** of \(G \), is the Baer-invariant of \(G \) with respect to the variety of nilpotent group of class at most \(m \).

Two nilpotent multiplier of \(G \) of class row \((m_1, m_2) \) is the Baer-invariant of \(G \) with respect to the word \(\{[[x_1, \cdots, x_{m_1+1}], \cdots, [x_{m_2+1}, \cdots, x_{m_1+m_2+1}]]\} \) and is denoted by \(\mathcal{N}_{m_1,m_2} M(G) \). A generalization of it, for \(t \geq 2 \), is the **polynilpotent multiplier** of \(G \) of class row \((m_1, \cdots, m_t) \) and denoted by \(\mathcal{N}_{m_1,\cdots,m_t} M(G) \) which Hekseter in [6] proved it is

\[\mathcal{N}_{m_1,\cdots,m_t} M(G) = \frac{R \cap \gamma_{m_t+1}(\cdots(\gamma_{m_{t+1}}(F))\cdots)}{[R, F_{m_1} \cap \gamma_{m_t+1}(\cdots(\gamma_{m_{t+1}}(F))\cdots)]}. \]

(for more details see [8]).

In 1973, M.R. Jones [7] by applying the exact sequence \(1 \to \frac{\gamma_{c+1}(F)}{[R, F] \cap \gamma_{c+1}(F)} \to M(G) \to M(G/\gamma_c(G)) \to \gamma_c(G) \to 1 \) for a nilpotent group \(G \) of class \(c \), gave inequalities for the order, number of generators and exponent of \(M(G) \). He concluded if \(G \) is a \(p \)-group of class \(c \) generated by \(d \) elements, \(d(M(G)) \leq \sum_{i=1}^{c} \chi_{i+1}(d) \). In 1979 Blackburn and Evans, by calculating the Schur-multiplier of disposition groups, proved that this bound is best possible.

Let \(F \) be a free group of rank \(d \geq 2 \). In 2016, P. Schmid called the group
\[G_d^c = F/\lambda_{c+1}(F) \] (\(c \geq 1 \)).
as **disposition group**. Trivially \(G_d^c \) is a finite \(p \)-group having Frattini class \(c \) and rank \(d \), nilpotency class \(c \) and exponent \(p^c \) having the center \(Z(G_d^c) = \lambda_c(G_d^c) \), for \(c \geq 2 \). Every \(p \)-group \(G \) with Frattini class at most \(c \) and rank \(d(G) \leq d \) is an
epimorphism image of G^c_d. Now, we present the upper central series and the order of each subgroup of lower its central series. For all $1 \leq i \leq c$, by the Lemma 1.5

$$
\gamma_i(G^c_d) = \gamma_i \left(\frac{F}{\lambda_{c+1}(F)} \right) = \frac{\gamma_i(F)\lambda_{c+1}(F)}{\lambda_{c+1}(F)} \simeq \frac{\gamma_i(F)}{\lambda_{c+1}(F) \cap \gamma_i(F)}.
$$

so

$$
|\gamma_i(G^c_d)| = \left| \frac{\lambda_i(F) \cap \gamma_i(F)}{\lambda_{i+1}(F) \cap \gamma_i(F)} \right| \cdot \left| \frac{\lambda_{i+1}(F) \cap \gamma_i(F)}{\lambda_{i+2}(F) \cap \gamma_i(F)} \right| \cdot \cdots \cdot \left| \frac{\lambda_{c}(F) \cap \gamma_i(F)}{\lambda_{c+1}(F) \cap \gamma_i(F)} \right| \cdot \lambda_i(F) \cap \gamma_i(F)
$$

where $i = 1, \ldots, c$. In particular,

$$
|\gamma_i(G^c_d)| = \prod_{i=1}^{c} \lambda_i(F) \cap \gamma_i(F) \simeq \prod_{i=1}^{c} \lambda_i(F) \cap \gamma_i(F).
$$

In particular, $G^1_d = \lambda_1(G^c_d)$. Hence the desired assertion is established in all cases.

Proposition 2.1. The upper central series of G^c_d is as follows ($c \geq 2$).

$$
1 = Z_0(G^c_d) \subseteq Z_1(G^c_d) = \lambda_c(G^c_d) \subseteq \cdots \subseteq Z_i(G^c_d) = \lambda_{c-i+1}(G^c_d) \subseteq \cdots \subseteq Z_c(G^c_d) = \lambda_1(G^c_d) = G^c_d.
$$

Proof. Schmid in [13] proved that $Z(G^c_d) = \lambda_c(G^c_d)$. By the definition we have always $\lambda_i(G^c_d) = \lambda_i(F)/\lambda_{c+1}(F)$. Suppose $1 \leq i < c$. Inductively, we can see

$$
\frac{Z_{i+1}(G^c_d)}{Z_i(G^c_d)} = Z \left(\frac{G^c_d}{\lambda_{c-i+1}(G^c_d)} \right) \simeq Z \left(\frac{\lambda_{c-i+1}(F) / \lambda_{c+1}(F)}{\lambda_{c-i+1}(F) / \lambda_{c+1}(F)} \right) = Z \left(\frac{\lambda_{c-i+1}(F)}{\lambda_{c-i+1}(F)} \right) = Z(G^c_{d-i}).
$$

Hence the desired assertion is established in all cases.

Baer in 1938 concentrated in his study on a group G which there is a group H such that $H/Z(H) \simeq G$, [1]. Hall and Senior are called this group **capable**, [5]. A generalization of this notion, n-capability, was simultaneously introduced by Burns and Ellis and also by Moghaddam and Kayvanfar, [12]; A group G is called **n-capable** if there is a group H such that $H/Z_n(H) \simeq G$. Trivially, 1-capability implies capability and also n-capability implies 1-capability for a group. The capability of abelian groups has been described by Baer [1] to be direct sums of cyclic groups. An interesting application of the Proposition 2.1 is the following fact which is the generalization of the main theorem of [13].

Corollary 2.2. Disposition p-groups are n-capable, for each $n \in \mathbb{N}$.

Proof. For each $c \geq 1$, by the Theorem 2.1, we have

$$
\frac{G^n_{d+c} \lambda_{c+1}(G^{n+c}_{d})}{Z_n(G^{n+c}_{d})} = \frac{\lambda_{c+1}(G^{n+c}_{d})}{Z_n(G^{n+c}_{d})} = \frac{F/\lambda_{n+c+1}(F)}{\lambda_{c+1}(F)/\lambda_{n+c+1}(F)} \simeq G^c_d.
$$

In the sequel, we compute the m–nilpotent multiplier of the disposition group.

Theorem 2.3. With the above notations, the m-nilpotent multiplier $\mathcal{N}_m(M(G^c_d))$ is elementary abelian of order p^s where

(i) $s = m \sum_{i=m}^{c} \chi_{i+1}(d) + m \sum_{i=1}^{m} (m-i+1) \chi_{c-i+1}(d)$, if $m \leq c$

(ii) $s = \sum_{i=1}^{(c-i+1) \chi_{m+i}(d)}$, if $m \geq c$.
Proof. By the definition of the m-nilpotent multiplier, $\mathcal{N}_m M(G_d^c) \simeq \frac{\lambda_{c+1}(F) \cap \gamma_{m+1}(F)}{\lambda_{c+1}(F) \cap \gamma_{m+1}(F)}$. We know $[\lambda_{c+1}(F),_m F] = \gamma_{m+1}(F)p^{c} \cdots \gamma_{c+m+1}(F) = \lambda_{c+m+1}(F) \cap \gamma_{m+1}(F)$. Hence

$$\mathcal{N}_m M(G_d^c) \simeq \frac{\lambda_{c+1}(F) \cap \gamma_{m+1}(F)}{\lambda_{c+m+1}(F) \cap \gamma_{m+1}(F)}.$$

(i) If $m \leq c$, by invoking Lemma 1.5

$$|\mathcal{N}_m M(G_d^c)| = |\frac{\lambda_{m+1}(F) \cap \gamma_{m+1}(F)}{\lambda_{m+1}(F) \cap \gamma_{m+1}(F)| = p^{t_1}p^{t_2} \cdots p^{t_m},$$

where, for each $i \in \{1, \ldots, m\}$, $t_i = \chi_{n+1}(d) + \cdots + \chi_{c+1}(d)$.

(ii) If $m \geq c$, then $\gamma_{m+1}(F) \subseteq \gamma_{c+1}(F) \subseteq \lambda_{c+1}(F)$ and so by Lemma 1.5 we can write

$$|\mathcal{N}_m M(G_d^c)| = |\frac{\gamma_{m+1}(F)}{\lambda_{m+1}(F) \cap \gamma_{m+1}(F)}| = p^{t_{m+1}(d)}p^{t_{m+1}(d) + \chi_{n+1}(d)} \cdots p^{t_{m+1}(d) + \chi_{n+1}(d)},$$

as required.

Note that in the case of $m = c$, the above values coincide.

An immediate result of the first part of the theorem when $m = 1$ is the following statement.

Corollary 2.4. ([3], Theorem 2.10) Let F be a free group of rank d and c a natural number. Then $\mathcal{M}(F/\lambda_{c+1}(F))$ is an elementary abelian group of order p^{s}, where $s = \sum_{i=1}^{c} \chi_{i+1}(d)$.

In 2019, Niroomand, Johari and Parvizi have proved that if G is a finite p-group of order p^{n} with $G' = p^{k}$ and $m \geq 2$ then

$$|\mathcal{N}_m M(G)| \leq p^{x_{m+1}(n-k)+x_{m+1}(2)+

But the order of m-nilpotent multiplier of G_d^c is very less than of the above bound. For example $|G_2^1| = p^{18}$, $|(G_2^2)'| = p^{10}$ and $|\mathcal{N}_2 M(G_2^c)| = p^{12}$ whereas the bound in (s) is p^{4608}.

Also, Burns and Ellis in 1998 proved if G is a d-generator p-group and $||\phi(G),_i-1 G|| = p^{k_{i}}$ ($i \geq 1$) then

$$|\mathcal{N}_m M(G)||\gamma_{m+1}(F)| \leq p^{x_{m+1}(d)+k_m d+k_{m-1} d^2+d \cdots + k_1 d^m}.$$

In disposition group by Theorem 1.4 (ii) we have

$$||\phi(G',_i-1 G')|| = |\lambda_{2}(G_d^c),_i-1 G_d^c| = |\gamma_{i}(G_d^c)'| = p^{(c-i)\chi_{i}(d)} \cdots \chi_{i+1}(d) \cdots \chi_{c}(d),$$

because Schmid in [14] proved that $|\gamma_{i}(G_d^c)'| = p^{c-i} \chi_{i}(d)$ and we know $|\gamma_{i}(G_d^c)'| = p^{\sum_{i=1}^{c-i} (c-i) \chi_{i}(d)}$. This shows our bound is very less than their result.

Mashayekhy, Homaibadi and Mohammazadeh in [11] proved that if G is a nilpotent group of class e, then polynilpotent multiplier of G of class row (m_1, m_2, \cdots, m_t) with condition $m_t \leq c$ satisfies in the following relation.

$$N_{m_1, m_2, \cdots, m_t} M(G) \simeq N_{m_1} M \left(\cdots N_{m_2} M \left(N_{m_1} M(G) \right) \cdots \right)$$
On the other hand as a corollary of the main result of [10] we have

\[N_{m_1,m_2,\ldots,m_t} M(\bigoplus_{i=1}^{k\text{-times}} \mathbb{Z}_p) \simeq \mathbb{Z}_p^{(f_k)} \]

in which \(f_k = \chi_{m_1+1}(\chi_{m_{t-1}+1}(\ldots(\chi_{m_2+1}(\chi_{m_1+1}(k)))\ldots)) \). Now we can conclude some of polynilpotent multiplier of \(G_d^c \).

Theorem 2.5. The polynilpotent multiplier of \(G_d^c \) of class row \((m_1,m_2,\ldots,m_t) \), when \(m_1 \leq c \), is as follows:

\[N_{m_1,m_2,\ldots,m_t} M(G_d^c) \simeq \mathbb{Z}_p^{(g_s)} \]

where \(g_s = \chi_{m_1+1}(\chi_{m_{t-1}+1}(\ldots(\chi_{m_2+1}(\chi_{m_1+1}(s)))\ldots)) \) and \(s = m_1 \sum_{i=m_1}^{c-1} \chi_{i+1}(d) + \sum_{i=1}^{m_1} (m_1 - i + 1) \chi_{c+i}(d) \).

References

[1] R. Baer, Groups with preassigned central and central quotient group, Trans. Amer. Math. Soc. 44, 387-412 (1938).
[2] R. Baer, Representations of groups as quotient groups I-II-III, Trans. Amer. Math. Soc. 58, 295-419 (1945).
[3] N. Blackburn and L. Evens, Schur multipliers of \(p \)-groups, J. Reine Angew. Math. 309, 100-113 (1979).
[4] M. Hall, The theory of groups, Mac Millan Company, New York, (1959).
[5] M. Hall and J. K. Senior, The groups of order \(2^n \) \((n \leq 6)\) (1964) (Macmillan: New York)
[6] N. S. Hekster, Varieties of groups and isologism, J. Aust. Math. Soc. (series A), 46, 22-60 (1998).
[7] M. R. Jones, Some inequalities for the multiplicator of a finite group. Proc. Amer. Math. Soc. (3) 39, 450-456 (1973). doi:10.2307/2039572
[8] G. Karpilovsky, The Schur Multiplier, London Math. Soc. Monographs, New Series no. 2, (1987).
[9] M. Lazard, Sur les groupes nilpotents et les anneaux de Lie, Ann. Ecole Normale Sup. 71, 101-190 (1954).
[10] B. Mashayekhy and M. Parvizi, Polynilpotent multiplier of finitely generated abelian groups. Int. J. Math. Game Theory Algebra 16(1), 93-102 (2006).
[11] B. Mashayekhy, A. Hokmabadi and F. Mohammadzadeh, Polynilpotent Multiplier of Some Nilpotent Products of Cyclic Groups. Int. J. Math. Game Theory Algebra, 17(5-6), 279-287 (2009). doi:10.1007/s13369-011-0041-0
[12] M. R. Moghaddam and S. Kayvanfar, A new notion derived from varieties of groups, Algebra Colloq. 4, 1-11 (1997).
[13] P. Schmid, On a class of finite capable \(p \)-groups. Arch. Math. 106, 301-304 (2016). doi:10.1007/s00013-016-0872-8.
[14] P. Schmid, Disposition \(p \)-groups. Arch. Math. 108, 113-121 (2017). doi:10.1007/S00013-016-0987-Y
[15] I. Schur, Uber die darstellung der endlichen gruppen durch gebrochene lineare substitutionen. J. Fur Math. 127, 20-50 (1904).