ORIGINAL RESEARCH

Association Between Intensive Care Unit Usage and Long-Term Medication Adherence, Mortality, and Readmission Among Initially Stable Patients With Non–ST-Segment–Elevation Myocardial Infarction

Alexander C. Fanaroff MD, MHS; Anita Y. Chen, MS; Sean van Diepen, MD; Eric D. Peterson, MD, MPH; Tracy Y. Wang, MD, MHS, MSc

BACKGROUND: Hospitals in the United States vary in their use of intensive care units (ICUs) for hemodynamically stable patients with non–ST-segment–elevation myocardial infarction (NSTEMI). The association between ICU use and long-term outcomes after NSTEMI is unknown.

METHODS AND RESULTS: Using data from the National Cardiovascular Data Registry linked to Medicare claims, we identified 65,256 NSTEMI patients aged ≥ 65 years without cardiogenic shock or cardiac arrest on presentation between 2011 and 2014. We compared 1-year medication non-adherence, cardiovascular readmission, and mortality across hospitals by ICU use using multivariable regression models. Among 520 hospitals, 154 (29.6%) were high ICU users (>70% of stable NSTEMI patients admitted to ICU), 270 (51.9%) were intermediate (30%–70%), and 196 (37.7%) were low (<30%). Compared with low ICU usage hospitals, no differences were observed in the risks of 1-year medication non-adherence (adjusted odds ratio 1.08, 95% CI, 0.97–1.21), mortality (adjusted hazard ratio 1.06, 95% CI, 0.98–1.15), and cardiovascular readmission (adjusted hazard ratio 0.99, 95% CI, 0.95–1.04) at high usage hospitals. Patients hospitalized at intermediate ICU usage hospitals had lower rates of evidence-based therapy and diagnostic catheterization within 24 hours of hospital arrival, and higher risks of 1-year mortality (adjusted hazard ratio 1.07, 95% CI, 1.02–1.12) and medication non-adherence (adjusted odds ratio 1.09, 95% CI, 1.02–1.15) compared with low ICU usage hospitals.

CONCLUSIONS: Routine ICU use is unlikely to be beneficial for hemodynamically stable NSTEMI patients; medication adherence, long-term mortality, and cardiovascular readmission did not differ for high ICU usage hospitals compared with hospitals with low ICU usage rates.

Key Words: acute coronary syndrome ■ healthcare quality ■ hospital readmission ■ intensive care unit ■ medication adherence ■ non–ST-segment–elevation myocardial infarction

Considerable inter-hospital variability in intensive care unit (ICU) usage has been observed for patients with non–ST-segment–elevation myocardial infarction (NSTEMI).1–4 Severity of illness on presentation is similar for NSTEMI patients treated and not treated in the ICU, suggesting that...
ICU admission decisions are largely based on hospital policies and local provider preferences rather than severity of illness. As a result, a number of NSTEMI patients without a compelling indication for ICU care are admitted to the ICU. Among such non-critically ill patients, higher hospital-level ICU usage has not been associated with lower short-term mortality; however, there may be other benefits and risks to higher intensity care in the ICU.

Hospital processes of care may affect patients’ post-discharge medication adherence, and via this mechanism, their long-term outcomes. The ICU environment’s lower ratio of nurses to patients may facilitate detailed education on the benefits of secondary prevention medications, which, along with reinforcement of severity of illness through continuous monitoring and intensive nursing care, could increase post-discharge medication adherence. Adherence to secondary prevention medications is low among post-MI patients, if ICU usage effectively increases medication adherence, it has the potential to improve long-term outcomes. Conversely, ICU admission for non-critically ill patients with NSTEMI can lead to multiple care transitions during a short hospital stay and divert resources allocated to optimizing transition of care such that long-term medication adherence and outcomes are adversely impacted.

The NCDR (National Cardiovascular Data Registry) includes consecutive patients with acute myocardial infarction (MI) presenting to participating hospitals. By linking this registry to Medicare claims, we examined the association of hospital-level ICU usage rates with long-term medication adherence and clinical outcomes.

METHODS
The data, analytic methods, and study materials used in this article will not be made available to other researchers.

Patient Population
The NCDR CPMI (Chest Pain Myocardial Infarction) Registry captures consecutive patients admitted to participating hospitals with ST-segment–elevation myocardial infarction and NSTEMI. Trained data abstractors at each hospital collect detailed information on medical history, clinical presentation, and in-hospital treatment via retrospective chart review. Real-time data quality feedback and annual audits ensure data accuracy. Patients aged ≥65 years in this registry have previously been linked to their Medicare claims data using indirect identifiers (date of birth, sex, hospital identifier, date of admission, and date of discharge). We used this linked data source to determine ICU usage, medication adherence, and post-discharge outcomes.

Between April 2011 and December 2014, 106,801 patients aged ≥65 years with MI were admitted with NSTEMI to 689 hospitals and included in the linked database. We excluded patients who were transferred
into (n=29,425) or out of (n=3947) a CPMI hospital, since patient experience and post-discharge outcomes in these cases cannot be ascribed only to the NCDR hospital. Patients who had cardiac arrest or cardiogenic shock on first medical contact as identified on the registry’s case report form (n=2384) were also excluded, since these patients have a compelling indication for ICU care other than NSTEMI. To avoid double counting of patients with multiple MI admissions during the study period, we started follow-up after the first admission (3939 subsequent NCDR records for MI readmission were excluded). Because analyses were conducted on the hospital level, we excluded hospitals admitting <25 patients during the study period (169 hospitals treating 1850 patients). Our final study population included 65,256 initially hemodynamically stable NSTEMI patients treated at 520 hospitals (Figure 1). For analyses of post-discharge outcomes, we further excluded 3004 patients who died while hospitalized. For analyses of medication non-adherence, we included only patients with Part D Medicare prescription coverage (n=28,185).

Definitions and Outcomes

Patients with revenue center codes for ICU or cardiac ICU usage during the index MI hospitalization were classified as having been treated in an ICU. Patients without these revenue center codes were classified as not having been treated in an ICU. We prospectively defined hospitals as having: high ICU usage (>70% of all initially stable patients with NSTEMI treated in the ICU), intermediate ICU usage (30%–70%), and low ICU usage (≤30%) groups. Definitions of abstracted NCDR data variables are available online (https://www.ncdr.com/webncdr/action/home/datacollection). Community socioeconomic variables were drawn from the Area Health Resource File, which is collected at the county level, and matched to patients by zip code.

In the subgroup of patients with Medicare Part D, medication adherence was assessed using Part D prescription filling data with non-adherence defined as the proportion of days covered of medications <80%. We assessed adherence to 4 classes of medications: beta blocker, statin, P2Y12 inhibitor, and angiotensin-converting enzyme inhibitor/angiotensin II receptor blocker among patients prescribed each medication at discharge.

One-year mortality was assessed from Medicare denominator files. Cardiovascular readmission was defined as time to any readmissions for recurrent MI, heart failure, or stroke; these were identified from the first...
models with generalized estimating equations to ac -
test, and then used multivariable logistic regression
intermediate, and low ICU usage hospitals. We com-
pared the unadjusted proportion of patients adherent
to all 4 classes of medication at high, intermediate,
low ICU usage hospitals. Of 65 256 hemody-
amic stable NSTEMI patients, 23 658 (35.3%) were
admitted to low ICU usage hospitals, 35 293 (54.1%)
and 6305 (9.7%) were admitted to high ICU usage hospitals as the reference standard. As a
sensitivity analysis, we examined the association
between ICU usage, as a continuous variable, and
1-year death and cardiovascular readmission risks.
As the associations between ICU usage and these
outcomes were non-linear, we fit a model using 3
spline terms with knots at 30% and 60% ICU usage;
spline knots were selected based on visual inspec-
tion of plots of mortality and cardiovascular readmis-
sion by hospital-level ICU usage.21 We report HR for
a 5% increase in hospital-level ICU usage. As a sen-
sitivity analysis, we repeated these analyses among
patients who never developed an indication for ICU-
level care during their hospitalization, as defined
previously.4 Because hospital characteristics may
modify associations between ICU usage and long-
term outcomes, we tested the interaction between
temporary care during their hospitalization, as defined
previously.4 Because hospital characteristics may
modify associations between ICU usage and long-
term outcomes, we tested the interaction between
temporary care during their hospitalization, as defined
previously.4 Because hospital characteristics may
modify associations between ICU usage and long-
term outcomes, we tested the interaction between
temporary care during their hospitalization, as defined
previously.4 Because hospital characteristics may
modify associations between ICU usage and long-
term outcomes, we tested the interaction between
temporary care during their hospitalization, as defined
previously.4 Because hospital characteristics may
modify associations between ICU usage and long-
term outcomes, we tested the interaction between
temporary care during their hospitalization, as defined
previously.4 Because hospital characteristics may
modify associations between ICU usage and long-
term outcomes, we tested the interaction between
temporary care during their hospitalization, as defined
previously.4 Because hospital characteristics may
modify associations between ICU usage and long-
term outcomes, we tested the interaction between
temporary care during their hospitalization, as defined
previously.4 Because hospital characteristics may
modify associations between ICU usage and long-
term outcomes, we tested the interaction between
temporary care during their hospitalization, as defined
previously.4 Because hospital characteristics may
modify associations between ICU usage and long-
term outcomes, we tested the interaction between
temporary care during their hospitalization, as defined
previously.4 Because hospital characteristics may
modify associations between ICU usage and long-
term outcomes, we tested the interaction between
temporary care during their hospitalization, as defined
previously.4 Because hospital characteristics may
modify associations between ICU usage and long-
term outcomes, we tested the interaction between
temporary care during their hospitalization, as defined
previously.4 Because hospital characteristics may
modify associations between ICU usage and long-
term outcomes, we tested the interaction between
temporary care during their hospitalization, as defined
previously.4 Because hospital characteristics may
modify associations between ICU usage and long-
term outcomes, we tested the interaction between
temporary care during their hospitalization, as defined
previously.4 Because hospital characteristics may
modify associations between ICU usage and long-
term outcomes, we tested the interaction between
temporary care during their hospitalization, as defined
previously.4 Because hospital characteristics may
modify associations between ICU usage and long-
term outcomes, we tested the interaction between
temporary care during their hospitalization, as defined
previously.4 Because hospital characteristics may
modify associations between ICU usage and long-
term outcomes, we tested the interaction between
temporary care during their hospitalization, as defined
previously.4 Because hospital characteristics may
modify associations between ICU usage and long-
term outcomes, we tested the interaction between
temporary care during their hospitalization, as defined
previously.4 Because hospital characteristics may
modify associations between ICU usage and long-
term outcomes, we tested the interaction between
temporary care during their hospitalization, as defined
previously.4 Because hospital characteristics may
modify associations between ICU usage and long-
term outcomes, we tested the interaction between
temporary care during their hospitalization, as defined
previously.4 Because hospital characteristics may
modify associations between ICU usage and long-
term outcomes, we tested the interaction between
temporary care during their hospitalization, as defined
previously.4 Because hospital characteristics may
modify associations between ICU usage and long-
term outcomes, we tested the interaction between
temporary care during their hospitalization, as defined
previously.4 Because hospital characteristics may
modify associations between ICU usage and long-
term outcomes, we tested the interaction between

patients admitted to all 3 types of hospitals was 77 and 46% were women. The prevalence of medical comorbidities was similar for patients treated at low, intermediate, and high ICU usage hospitals. The ACTION (Acute Coronary Treatment and Intervention Outcomes Network) inhospital mortality risk score was also similar for patients admitted to the 3 groups of hospitals. Initial serum troponin values were also similar at the 3 groups. Findings were similar in the cohort of patients discharged alive from the index MI admission (Table S2).

Patients admitted to intermediate ICU usage hospitals were less likely to undergo diagnostic catheterization within 24 hours of admission (37.5% versus 34.7% versus 37.5% at low versus intermediate versus high ICU usage hospitals, \(P<0.001\)) (Table 2). Likelihood of revascularization during the hospitalization and prescription of evidence-based secondary prevention medications at discharge was similar at all 3 types of hospitals. Patients at intermediate and high ICU usage hospitals had significantly higher but clinically similar rates of cardiac arrest and major bleeding while hospitalized, but no significant differences in cardiogenic shock or stroke. Overall, 3004 patients died while hospitalized (4.6%): 970 at low ICU usage hospitals (4.1%), 1727 at intermediate ICU usage hospitals (4.9%), and 307 at high ICU usage hospitals (4.9%).

Medication Non-Adherence
At 90 days, 36.6% of patients were non-adherent to beta blockers, 39.8% to statins, 37.8% to P2Y12 inhibitors, and 43.8% to angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers. For all medications, rates of non-adherence were modestly higher for patients discharged from

Table 1. Baseline Patient Characteristics and Details of the Index Myocardial Infarction at Low, Intermediate, and High Intensive Care Unit Usage Hospitals
Demographics
Age, y
Female sex
Non-white race
Median household income ($)
Medical history
Prior MI
Prior PCI
Prior CABG
Cerebrovascular disease
Peripheral artery disease
Prior heart failure
Atrial fibrillation
Hypertension
Dyslipidemia
Diabetes mellitus
Dialysis
Current/recent smoker
Chronic lung disease
Details of index presentation
Ischemia on ECG
Signs of heart failure
Initial systolic blood pressure
Initial serum creatinine
Initial troponin (× ULN)
ACTION in-hospital mortality risk score

ACTION indicates Acute Coronary Treatment and Intervention Outcomes Network; CABG, coronary artery bypass graft surgery; ECG, electrocardiogram; ICU, intensive care unit; MI, myocardial infarction; PCI, percutaneous coronary intervention; and ULN, upper limit of normal.

Low ICU usage hospitals admitted <30% of non–ST-segment–elevation myocardial infarction patients to the ICU; intermediate, 30% to 70%; high, >70%.
hospitals admitting 30% to 70% of NSTEMI patients to the ICU (Figure 2A). Overall, 61.8% of patients discharged from low ICU usage hospitals, 63.4% of patients discharged from intermediate ICU usage hospitals, and 61.8% of patients discharged from high ICU usage hospitals were non-adherent to at least 1 class of medication that was prescribed at discharge ($P=0.001$). After adjustment for patient and hospital characteristics, hospital ICU usage remained significantly associated with 90-day medication non-adherence ($P=0.001$). There was no significant difference in the odds of non-adherence for patients discharged from high ICU usage hospitals compared with low on adjusted or unadjusted analyses (unadjusted OR 1.00, 95% CI, 0.91–1.10; adjusted OR 0.98, 95% CI, 0.91–1.06); patients discharged from intermediate ICU usage hospitals had an unadjusted OR of 1.09 (95% CI, 1.02–1.19) and an adjusted OR of 1.07 (95% CI, 1.02–1.12) for non-adherence compared with patients discharged from low ICU usage hospitals (Table 3).

Similar results were seen at 1 year (Figure 2B). Overall, 66.3% of patients discharged from low ICU usage hospitals were non-adherent to at least 1 class of medication by 1 year, compared with 67.9% of patients discharged from intermediate ICU usage hospitals and 68.0% of patients discharged from high ICU usage hospitals ($P=0.01$). After multivariable adjustment, hospital ICU usage remained significantly associated with 1-year medication non-adherence ($P=0.02$). There was no significant difference in risk of medication non-adherence between patients discharged from high- versus low-ICU usage hospitals (unadjusted OR 1.08, 95% CI, 0.96–1.19; adjusted OR 1.06, 95% CI, 0.97–1.16); the unadjusted OR was 1.10 (95% CI, 1.03–1.18) and adjusted OR was 1.09 (95% CI, 1.02–1.15) for patients discharged from intermediate- versus low-ICU usage hospitals.

One-Year Mortality and Cardiovascular Readmission

Over 1-year follow-up, 13 197 (21.2%) patients died: 20.3% of those discharged from low ICU usage hospitals, 22.0% from intermediate ICU usage hospitals, and 20.9% from high ICU usage hospitals ($P=0.06$; Figure 3A). After adjusting for baseline characteristics and details of the index admission, hospital level ICU usage was associated with 1-year mortality ($P=0.03$). No difference in 1-year mortality was observed when comparing hospitals with high and low ICU usage rates on both unadjusted and adjusted analyses (unadjusted HR 1.04, 95% CI, 0.93–1.17; adjusted HR 1.06, 95% CI, 0.98–1.15); however, discharge from an intermediate ICU usage hospital was associated with a higher adjusted risk of mortality at 1 year on both adjusted and unadjusted analyses (unadjusted HR 1.10, 95% CI, 1.02–1.19; adjusted HR 1.07, 95% CI, 1.02–1.12). Results were similar in the subset of patients who did not develop complications requiring ICU care (high versus low: adjusted HR 1.09, 95% CI, 1.00–1.18; intermediate versus low: adjusted HR 1.07, 95% CI, 1.02–1.13). There was no association between ICU usage, expressed continuously, and 1-year mortality in the full cohort (Table 4), or the subset that did not develop complications requiring ICU-level care (Table S3). There was no interaction between ICU usage, 1-year mortality, and either hospital size or teaching status (Table S4).

The cumulative incidence of cardiovascular readmission over 1 year was 48.4%: 47.6% at low ICU
usage hospitals, 49.0% at intermediate ICU usage hospitals, and 48.5% at high ICU usage hospitals (P=0.10; Figure 3B). After adjustment, there remained no significant association between hospital-level ICU usage and 1-year cardiovascular readmission (P=0.24). No difference in 1-year cardiovascular readmission was observed when comparing hospitals with high and low ICU usage rates on both unadjusted and adjusted analyses (unadjusted HR 1.02, 95% CI, 0.96–1.09; adjusted HR 1.00, 95% CI, 0.95–1.04), or comparing hospitals with intermediate and low ICU usage rates (unadjusted HR 1.05, 95% CI, 1.00–1.15; adjusted HR 1.02, 95% CI, 0.99–1.06) (Table 3). Results were similar in the subset of patients who did not develop complications requiring ICU care (high versus low: adjusted HR 1.00, 95% CI, 0.95–1.05; intermediate versus low: adjusted HR 1.02, 95% CI, 0.99–1.06). Comparisons of individual components of cardiovascular readmission (MI, stroke, heart failure) are shown in Table S5; there were no significant differences in unadjusted or risk-adjusted outcomes between high versus low and intermediate versus low ICU-usage hospitals. When ICU usage was expressed continuously, there was no association between ICU usage and 1-year cardiovascular readmission in both the full cohort (Table 4) and the subset that did not develop complications requiring ICU-level care (Table S3). There was no interaction between ICU usage, 1-year cardiovascular readmission, and either hospital size or teaching status (Table S4).

DISCUSSION

In this nationwide study, we found that patients with initially stable NSTEMI hospitalized at high ICU usage hospitals had no significant differences in 1-year mortality or cardiovascular readmission compared with those admitted to low ICU usage hospitals.

Figure 2. Non-adherence at 90 days (A) and 1-year (B) by intensive care unit (ICU) usage rate at discharging hospital.

There was no difference in rates of adherence to evidence-based medicine at 90 days for patients discharged from low and high ICU usage hospitals; patients discharged from intermediate ICU usage hospitals had a significantly lower rate of adherence to all classes of evidence-based medication at 90 days (A, P<0.05 for all comparisons). By 1 year, differences in medication adherence between patients discharged from high, intermediate, and low ICU usage hospitals were largely attenuated and non-significant (B, P>0.05 for all comparisons except statin and overall). ACE indicates angiotensin-converting enzyme; and ARB, angiotensin II receptor blocker.
Similarly, there were no differences between high and low ICU usage hospitals in 90-day or 1-year medication adherence. When comparing low and intermediate ICU usage hospitals, there were small but statistically significant differences: patients discharged from intermediate ICU usage hospitals had a higher rate of 1-year mortality, cardiovascular readmission, and medication non-adherence. Together, these data suggest that selective, rather than routine ICU usage, may be appropriate for hemodynamically stable NSTEMI patients.

ICU usage for initially stable patients with NSTEMI is highly variable between hospitals, and is only minimally correlated with severity of illness. As a result, many low-risk patients with NSTEMI are treated in the ICU: In one study, 41% of NSTEMI patients with a predicted risk of in-hospital mortality <1% were treated in the ICU. In this study, we again found no difference in case mix at hospitals with low, intermediate, and high ICU usage hospitals, highlighting the arbitrary nature of ICU usage in initially stable NSTEMI patients. Given lack of alignment between severity of illness and ICU usage, it is perhaps not surprising that prior studies have failed to demonstrate an association between hospital-level ICU usage for patients with MI and in-hospital or 30-day outcomes. This study’s results demonstrate that the lack of mortality difference between high and low ICU usage hospitals remains constant at 1 year, and that there is also no difference in cardiovascular readmission over this time frame.

Though routine admission to the ICU for hemodynamically stable NSTEMI patients has no association with short-term outcomes, routine ICU admission could affect long-term outcomes via an effect on medication adherence. The reasons for non-adherence are complex, but are governed in part by a patient’s perception of illness severity, evaluation of the efficaciousness of medication adherence, and external cues to action. Admission to an ICU, with the attendant enhanced monitoring, may make patients believe their illness is more severe. On the other hand, stable NSTEMI patients in the ICU may be relatively ignored by providers and nurses focused on critically ill patients, reducing opportunities for education and leading to lower medication adherence. At hospitals with closed ICUs, ICU providers may be appropriately distracted by truly critically ill patients and may focus less on providing timely care for stable NSTEMI patients. At hospitals with open ICUs, stable NSTEMI patients in the ICU are geographically isolated from other patients on the inpatient cardiology or hospitalist service, potentially interrupting communication and delaying care. Furthermore, stable patients admitted to the ICU will almost always be transferred from the ICU to a non-ICU setting before discharge. In the context of a short hospital stay, this transfer may disrupt continuity of care. Hospital patterns of care delivery have the potential to affect downstream adherence to medications, with educational efforts from providers on medication side effects and use of team-based care models particularly effective. Caring for stable NSTEMI patients in the ICU may disrupt these efforts and reduce downstream medication adherence.

The lack of differences in 1-year mortality and medication adherence for initially stable NSTEMI patients admitted to high versus low ICU admission hospitals

Table 3. Association Between High, Intermediate, and Low Hospital-Level ICU Usage, Medication Non-Adherence and Cardiovascular Outcomes

	Unadjusted	Adjusted		
	OR (95% CI)	Global P	OR (95% CI)	Global P
90-d medication non-adherence		0.001		0.03
High vs low	1.00 (0.91–1.10)	0.98 (0.91–1.06)		
Intermediate vs low	1.09 (1.04–1.16)	1.05 (1.01–1.11)		
1-y medication non-adherence		0.01		0.02
High vs low	1.08 (0.96–1.19)	1.06 (0.97–1.16)		
Intermediate vs low	1.10 (1.03–1.18)	1.09 (1.02–1.15)		
1-y mortality		0.06		0.03
High vs low	1.04 (0.93–1.17)	1.06 (0.98–1.15)		
Intermediate vs low	1.10 (1.02–1.19)	1.07 (1.02–1.12)		
1-y cardiovascular readmission		0.10		0.24
High vs low	1.02 (0.96–1.09)	1.00 (0.96–1.04)		
Intermediate vs low	1.05 (1.00–1.10)	1.03 (0.99–1.06)		

Low ICU usage hospitals admitted <30% of non-ST-segment-elevation myocardial infarction patients to the ICU; intermediate, 30% to 70%; high, >70%. HR indicates hazard ratio; and OR, odds ratio.
suggests that ICU admission may not affect patient beliefs on the severity of their illness or the educational efforts of the healthcare team to a degree sufficient to affect outcomes. However, there were small differences in long-term outcomes and medication adherence between low and intermediate ICU usage hospitals, and a lower rate of evidence-based therapy and diagnostic catheterization within 24 hours of hospital arrival at intermediate ICU usage hospitals than at high or low ICU usage hospitals. This difficulty with care coordination and timely delivery of care at intermediate ICU usage hospitals may extend to education about secondary prevention medications. Similar difficulties with care coordination and timely delivery of care were not observed at high ICU usage hospitals, nor were in-hospital or post-discharge outcomes different. At high ICU usage hospitals, nearly all initially stable NSTEMI patients are admitted to the ICU, and these hospitals may have developed care processes for ICU-treated NSTEMI patients that reduce the likelihood of these patients receiving disrupted and suboptimal care.

Figure 3. One-year mortality and readmission by intensive care unit (ICU) usage rate at discharging hospital.

There were no differences in 1-year mortality for patients admitted to high and low ICU usage hospitals; patients admitted to intermediate ICU usage hospitals had a mildly but significantly higher rate of death at 1-year than those admitted to high and low ICU usage hospitals (A), even after adjusting for patient characteristics and in-hospital processes of care. There were no significant differences in the rates of readmission for cardiovascular causes by hospital-level ICU admission group (B). HR indicates hazard ratio.
Together with prior data showing similar short-term outcomes for patients admitted to high and low ICU usage hospitals, and the high cost of routine ICU care, the lack of difference in long-term outcomes and medication adherence suggests that routine ICU admission for initially stable NSTEMI patients is unlikely to be beneficial. If anything, higher rates of long-term mortality, hospital readmission, and medication non-adherence at intermediate compared with low ICU usage hospitals, along with lower levels of timely revascularization, suggests that higher hospital-level ICU usage may disrupt continuity of care. However, though most initially stable NSTEMI patients will remain stable throughout their course, ≈1 in 6 will deteriorate and develop a condition requiring ICU care, and outcomes are worse when patients are transferred to the ICU after deteriorating clinically than if they are initially admitted there on admission. A strategy of selective ICU admission for initially stable NSTEMI patients at highest risk of clinical deterioration requiring ICU care may be ideal to maintain patient safety while reducing ICU capacity strain and controlling costs. The level of risk of clinical deterioration tolerated outside of the ICU at a given hospital will be determined by local resources and different hospitals are likely to have different thresholds.

Several limitations should be acknowledged. This is an observational analysis and is subject to unmeasured confounding. Though baseline characteristics and severity of illness were similar for patients admitted to low, intermediate, and high ICU usage hospitals, patients admitted to these hospitals may differ in unmeasured ways, contributing to hospitals’ admitting of more or fewer patients to the ICU, as well as to processes of care and patient outcomes. This may be especially relevant when considering long-term outcomes, as unmeasured differences in social determinants of health and quality of outpatient care may affect patient outcomes. In addition, we did not adjust for multiplicity, increasing risk of type 1 error. Furthermore, observed differences in outcomes are small, and statistically significant findings may not be clinically relevant. The Chest Pain—MI Registry does not capture clinical variables, such as persistent chest pain, dynamic ECG changes, electrical instability, or refractory hypoxemia, that hospitals may use to make clinical decisions about ICU admission. We cannot distinguish whether patients were admitted electively to the ICU or transferred after clinical deterioration. However, we have previously shown similar rates of in-hospital complications requiring ICU care at high, intermediate, and low ICU usage hospitals. Lastly, our study population includes only patients aged ≥65 years; however, this group comprises a large and growing cohort of patients with MI, and it is unlikely that any effects of the ICU on outcomes among initially stable NSTEMI patients would be mediated by age.

CONCLUSIONS

Hospitals with high ICU usage had no significant differences in medication adherence, long-term mortality, and cardiovascular readmission compared with hospitals with low ICU usage rates. Selective, rather than routine ICU usage, may be appropriate for hemodynamically stable NSTEMI patients.

ARTICLE INFORMATION

Received December 5, 2019; accepted February 12, 2020.

Affiliations

From the Penn Cardiovascular Outcomes, Quality and Evaluative Research Center, Leonard Davis Institute of Health Economics, and Cardiovascular Medicine Division, University of Pennsylvania, Philadelphia, PA (A.C.F.); Department of Biostatistics and Computations Biology, University of Rochester, NY (A.Y.C.); Divisions of Critical Care and Cardiology, University of Alberta, Edmonton, Alberta, Canada (S.v.D.); Division of Cardiology and Duke Clinical Research Institute, Duke University, Durham, NC (E.D.P., T.Y.W.).

Acknowledgments

The authors thank Shuang Li, MS, for assistance with statistical programming for a portion of the analyses.

Sources of Funding

This manuscript was supported by a career development grant from the American Heart Association to Dr Fanaroff, and by internal grants to Dr Fanaroff from the Duke Clinical Research Institute.

Disclosures

Dr Fanaroff reported a career development grant from the American Heart Association (17TF33661087), research grant support to the Duke Clinical Research Institute.
Research from Boston Scientific, and consulting fees from the American Heart Association. Dr Peterson reported receiving grants and/or personal fees from Bayer Pharmaceuticals, Janssen Pharmaceuticals, AstraZeneca, Genentech, and the American Heart Association Get With The Guidelines—Stroke Analytic and has served as a consultant/advisory board member for Janssen, Boehringer Ingelheim, Sanofi, Bayer, Merck, AstraZeneca, Signal Path, and Livongo. Dr Wang reported receiving research grant support to the Duke Clinical Research Institute from Amgen, AstraZeneca, Bristol-Myers Squibb, CryoLife, Novartis, Pfizer, Portola, and Regeneron and receiving consulting honoraria from Grifols and Gilead. The remaining authors have no disclosures to report.

Supplementary Materials

Data S1
Tables S1–S5

REFERENCES

1. Chen R, Strait KM, Dharmarajan K, Li S-X, Ranasinghe I, Martin J, Fazel R, Masoudi FA, Cooke CR, Nallamothu BK. Hospital variation in admission to intensive care units for patients with acute myocardial infarction. Am Heart J. 2015;170:1161–1169.

2. van Diepen S, Lin M, Bakal JA, McAlister FA, Kaul P, Katz JN, Fordyce CB, Southern DA, Graham MM, Wilton SB, et al. Do stable non-ST-segment elevation acute coronary syndromes require admission to coronary care units? Am Heart J. 2016;175:194–192.

3. Insam C, Paccaud F, Marques-Vidal P. The region makes the difference: disparities in management of acute myocardial infarction within Switzerland. Eur J Prev Cardiol. 2014;21:541–548.

4. Fanaroff AC, Peterson ED, Chen AY, Thomas L, Doll JA, Fordyce CB, Newby LK, Amsterdam EA, Kosiborod MN, de Lemos JA, et al. Intensive care unit utilization and mortality among Medicare patients hospitalized with non-ST-segment elevation myocardial infarction. JAMA Cardiol. 2017;2:36–44.

5. Mathews R, Wang W, Kaltenbach LA, Thomas L, Shah RU, Ali M, Peterson ED, Wang TY. Hospital variation in adherence rates to secondary prevention medications and the implications on quality. Circulation. 2018;137:2128–2138.

6. Becker MH, Mainan LA. Sociobehavioral determinants of compliance with health and medical care recommendations. Med Care. 1975;13:10–24.

7. Kumbhani DJ, Steg PG, Cannon CP, Eagle KA, Smith SC, Hoffman E, Goto S, Ohman EM, Bhatt DL; REDuction of Atherothrombosis for Continued Health Registry Investigators. Adherence to secondary prevention medications and four-year outcomes in outpatients with atherosclerosis. Am J Med. 2013;126:693–700.

8. Bansilal S, Castellano JM, Garrido E, Wei HG, Freeman A, Spettell C, Garcia-Alonso F, Lizano I, Arnold RJ, Rajda J. Assessing the impact of medication adherence on long-term cardiovascular outcomes. J Am Coll Cardiol. 2016;68:789–801.

9. Newby LK, LaPointe NMA, Chen AY, Kramer JM, Hammill BG, DeLong ER, Muhlbaier LH, Califf RM. Long-term adherence to evidence-based secondary prevention therapies in coronary artery disease. Circulation. 2006;113:203–212.

10. Kotseva K, Wood D, De Backer G, De Bacquer D, Pyörälä K, Kell U; EUROASPIRE III: a survey on the lifestyle, risk factors and use of cardioprotective drug therapies in coronary patients from 22 European countries. Eur J Cardiovasc Prev Rehabil. 2009;16:121–137.

11. Montalescot G, Sechtem U, Achenbach S, Andreotti F, Ardissoli M, Budaj A, Bugiardini R, Crea F, Culset T, Di Mario C. 2013 ESC guidelines on the management of stable coronary artery disease. Eur Heart J. 2013;34:2949–3003.

12. Peterson ED, Roe MT, Chen AY, Fonarow GC, Lytle BL, Cannon CP, Rumsfeld JS. The NCDR ACTION Registry–GWTF: transforming contemporary acute myocardial infarction clinical care. Heart. 2010;96:1998–1992.

13. Peterson ED, Roe MT, Rumsfeld JS, Shaw RE, Brindis RG, Fonarow GC, Cannon CP. A call to ACTION (Acute Coronary Treatment and Intervention Outcomes Network) a national effort to promote timely clinical feedback and support continuous quality improvement for acute myocardial infarction. Circ Cardiovasc Qual Outcomes. 2009;2:491–499.

14. Shah RU, de Lemos JA, Wang TY, Chen AY, Thomas L, Sutton NR, Fang JC, Scirica BM, Henry TD, Granger CB. Post-hospital outcomes of patients with acute myocardial infarction with cardiogenic shock: findings from the NCDR. J Am Coll Cardiol. 2016;67:739–747.

15. Pokorney SD, Miller AL, Chen AY, Thomas L, Fonarow GC, de Lemos JA, Al-Khatib SM, Peterson ED, Wang TY. Implantable cardioverter-defibrillator use among Medicare patients with low ejection fraction after acute myocardial infarction. JAMA. 2015;313:2433–2440.

16. Hammill BG, Hernandez AF, Peterson ED, Fonarow GC, Schulman KA, Curtis LH. Linking inpatient clinical registry data to Medicare claims data using indirect identifiers. Am Heart J. 2009;157:995–1000.

17. Dool JA, Hellekant AS, Goyal A, Sutton NP, Peterson ED, Wang TY. Treatment, outcomes, and adherence to medication regimens among dual Medicare-Medicare-eligible adults with myocardial infarction. JAMA Cardiol. 2016;1:787–794.

18. Andrade SE, Kahler KH, Frich F, Chan KA. Methods for evaluation of medication adherence and persistence using automated databases. Pharmacoeconomics. 2006;26:565–574; discussion 575–7.

19. Kronsigh IM, Ross JS, Zhao H, Muntner P. Impact of hospitalization for acute myocardial infarction on adherence to statins among older adults. Circ Cardiovasc Qual Outcomes. 2016;9:364–371.

20. Zeger SL, Liang KY. Longitudinal data analysis for discrete and continuous outcomes. Biometrics. 1986;42:121–130.

21. Harrell FE. Regression Modeling Strategies: With Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis. New York, NY: Springer; 2015.

22. O’Malley RG, Olenchock B, Bohula-May E, Barnett C, Fintel DJ, Granger CB, Katz JN, Kontos MC, Kuvitn JN, Murphy SA, et al. Organization and staffing practices in US cardiac intensive care units: a survey on behalf of the American Heart Association Writing Group on the Evolution of Critical Care Cardiology. Eur Heart J Acute Cardiovasc Care. 2013;2:3–8.

23. Pronovost PJ, Angus DC, Dornan T, Robinson KA, Dremisov TT, Young TL. Physician staffing patterns and clinical outcomes in critically ill patients: a systematic review. JAMA. 2002;288:2151–2162.

24. Mathews R, Peterson ED, Honeycutt E, Chin CT, Effron MB, Zettler M, Fonarow GC, Henry TD, Wang TY. Early medication nonadherence after acute myocardial infarction: insights into actionable opportunities from the TRTement with ADP receptor inhibitorS: Longitudinal Assessment of Treatment Patterns and Events after Acute Coronary Syndrome (TRANSLATE-ACS) Study. Circ Cardiovasc Qual Outcomes. 2015;8:347–356.

25. Bradley EH, Curry L, Horwitz LI, Sipisma H, Thompson J, Elma M, Walsh MN, KrumhoHM. Contemporary evidence about hospital strategies for reducing 30-day readmissions: a national study. J Am Coll Cardiol. 2012;60:607–614.

26. van Diepen S, Tran DT, Ezekowitz JA, Zygun DA, Katz JN, Lopes RD, Newby LK, Micalister FA, Kaul P. The high cost of critical care unit overutilization for patients with NSTE ACS. Am Heart J. 2018;202:84–88.

27. Molina JAD, Seow E, Heng BH, Chong WF, Ho B. Outcomes of direct and indirect medical intensive care unit admissions from the emergency department of a acute care hospital: a retrospective cohort study. BJM Open. 2014;4:e005553.

28. Chonel O, Ambrosy AP, Filipecsu B, Bubenek S, Vinereanu D, Petris CH, Collins SP, Macarie C, Gheorghieade M. Patterns of intensive care unit admissions in patients hospitalized for heart failure: insights from the RO-AHFS registry. J Cardiovasc Med (Hagerstown). 2015;16:331–340.

29. Liu V, Kipnis P, Rizk NW, Escobar GJ. Adverse outcomes associated with delayed intensive care unit transfers in an integrated healthcare system. J Hosp Med. 2012;7:224–230.

30. Young TL, Gooder VJ, Bride K, James B, Fisher ES. Inpatient transfers of patients with acute myocardial infarction with cardiogenic shock: findings from the NCDR. J Gen Intern Med. 2014;4:e005553.

31. Fanaroff AC, Chen AY, Thomas LE, Pieper KS, Garratt KN, Peterson EB, Wang TY. Utilization and outcomes of critical care unit transfers in patients with acute myocardial infarction. J Am Coll Cardiol. 2016;67:739–747.
SUPPLEMENTAL MATERIALS
Data S1 (Supplemental Methods): Covariates included in the multivariable models for long-term death and readmission and medication adherence

Table S1: Characteristics of low, intermediate, and high ICU utilization hospitals

Table S2: Baseline patient characteristics and details of the index MI at low, intermediate, and high ICU utilization hospitals among patients discharged alive

Table S3: Association between hospital-level ICU utilization and cardiovascular outcomes among patients who did not develop an indication for ICU-level care

Table S4: Interaction between ICU utilization, cardiovascular outcomes, and hospital size or teaching status

Table S5: 1-year cause-specific readmission by ICU utilization rate at discharging hospital
Data S1: Covariates included in the multivariable models for long-term death and readmission and medication adherence

Demographics: age, race, sex, median household income in patient’s zip code

Medical history: hypertension, dyslipidemia, current/recent smoker, diabetes mellitus, prior stroke, prior myocardial infarction, prior heart failure, prior percutaneous coronary intervention, prior coronary artery bypass graft surgery, prior peripheral arterial disease, atrial fibrillation, chronic lung disease

Presentation details: body mass index, signs or symptoms of heart failure on presentation

In-hospital procedures and discharge status: diagnostic catheterization, percutaneous coronary intervention, coronary artery bypass graft surgery, drug-eluting stent (among patients undergoing percutaneous coronary intervention), left ventricular ejection fraction, lowest hemoglobin, lowest creatinine clearance (calculated by Cockcroft-Gault formula), peak troponin (as a ratio of the upper limit of normal), cardiac rehabilitation referral at discharge, discharge location

Hospital characteristics: region, procedural facilities (diagnostic catheterization only, percutaneous coronary intervention only, cardiac surgery capabilities, none), teaching hospital, total hospital beds, rural (vs. urban) location
Table S1: Characteristics of low, intermediate, and high ICU utilization hospitals

	Low ICU utilization (n = 196 hospitals)	Intermediate ICU utilization (n = 270 hospitals)	High ICU utilization (n = 54 hospitals)	P-value
Region				
West	41 (20.9)	29 (10.7)	11 (20.4)	0.06
Northeast	15 (7.7)	19 (7.0)	2 (3.7)	
Midwest	50 (25.5)	84 (31.1)	18 (33.3)	
South	90 (45.9)	138 (51.1)	23 (42.6)	
Procedural services				0.86
No procedural services	1 (0.5)	1 (0.4)	0 (0.0)	
Diagnostic cath only	3 (1.5)	4 (1.5)	0 (0.0)	
PCI only	46 (23.5)	51 (18.9)	12 (22.2)	
Cardiac surgery	146 (74.5)	214 (79.3)	42 (77.8)	
Teaching hospital	31 (15.8)	44 (16.3)	8 (14.8)	0.96
Total beds	290 (183, 421)	320 (209, 477)	260 (189, 394)	0.11
Rural hospital	37 (18.9)	41 (15.2)	13 (24.1)	0.24
Table S2: Baseline patient characteristics and details of the index MI at low, intermediate, and high ICU utilization hospitals among patients discharged alive

Demographics	Low ICU utilization (n = 22,688 patients at 196 hospitals)	Intermediate ICU utilization (n = 33,566 patients at 270 hospitals)	High ICU utilization (n = 5,998 patients at 54 hospitals)
Age	77 (70, 84)	77 (70, 84)	77 (70, 84)
Female sex	10,207 (45.0%)	15,493 (46.2%)	2,800 (46.7%)
Non-white race	3,052 (13.5%)	5,202 (15.5%)	1,093 (18.2%)
Median household income ($)	50,817 (43,428, 60,134)	49,778 (43,047, 56,659)	49,380 (41,895, 56,326)
Medical history			
Prior MI	7,301 (32.2%)	9,626 (28.7%)	1,824 (30.4%)
Prior PCI	7,086 (31.2%)	9,791 (29.2%)	1,813 (30.2%)
Prior CABG	5,614 (24.7%)	7,931 (23.6%)	1,403 (23.4%)
Cerebrovascular disease	4,866 (21.4%)	6,743 (20.1%)	1,250 (20.8%)
Peripheral arterial disease	3,812 (16.8%)	4,936 (14.7%)	850 (14.2%)
Condition	Low ICU utilization	Intermediate ICU utilization	High ICU utilization
-----------------------------------	--------------------	------------------------------	----------------------
	(n = 22,688 patients at 196 hospitals)	(n = 33,566 patients at 270 hospitals)	(n = 5,998 patients at 54 hospitals)
Prior heart failure	5,198 (22.9%)	7,567 (22.5%)	1,384 (23.1%)
Atrial fibrillation	3,476 (15.3%)	4,923 (14.7%)	887 (14.8%)
Hypertension	19,604 (86.4%)	28,863 (86.0%)	5,234 (87.3%)
Dyslipidemia	16,428 (72.4%)	23,680 (70.6%)	4,346 (72.5%)
Diabetes mellitus	9,021 (39.8%)	13,544 (40.4%)	2,429 (40.5%)
Dialysis	777 (3.4%)	1,289 (3.8%)	244 (4.1%)
Current/recent smoker	2,882 (12.7%)	4,353 (13.0%)	775 (12.9%)
Chronic lung disease	4,560 (20.1%)	6,831 (20.4%)	1,220 (20.3%)
Details of index presentation			
Ischemia on ECG	7,951 (35.0%)	10,104 (30.1%)	1,896 (31.6%)
Signs of heart failure	4,953 (21.8%)	7,859 (23.4%)	1,311 (21.9%)
Initial systolic blood pressure	148 (128, 170)	148 (127, 170)	148 (128, 171)
Initial serum creatinine	1.1 (0.9, 1.4)	1.1 (0.9, 1.4)	1.1 (0.9, 1.4)
	Low ICU utilization (n = 22,688 patients at 196 hospitals)	Intermediate ICU utilization (n = 33,566 patients at 270 hospitals)	High ICU utilization (n = 5,998 patients at 54 hospitals)
------------------------	---	--	---
Initial troponin (× ULN)	2.6 (0.7, 12.3)	2.7 (0.7, 12.4)	2.8 (0.8, 13.7)
ACTION in-hospital mortality risk score	36 (29, 44)	36 (29, 44)	36 (29, 44)
Discharge medications			
Aspirin	20,170 (97.7%)	29,361 (96.9%)	5,269 (97.6%)
P2Y₁₂ inhibitor	14,557 (68.7%)	20,730 (66.2%)	3,798 (68.6%)
Beta blocker	19,474 (96.6%)	28,451 (96.0%)	5,055 (95.5%)
ACE inhibitor or ARB*	2,890 (86.4%)	4,438 (85.7%)	866 (84.9%)

MI, myocardial infarction; PCI, percutaneous coronary intervention; CABG, coronary artery bypass graft surgery; ECG, electrocardiogram; ULN, upper limit of normal; LV, left ventricular; ACE, angiotensin converting enzyme; ARB, angiotensin II receptor blocker. *, among eligible patients (n = 9,490). Low ICU utilization hospitals admitted < 30% of NSTEMI patients to the ICU; intermediate, 30-70%; high, > 70%.
Table S3: Association between hospital-level ICU utilization and cardiovascular outcomes among patients who did not develop an indication for ICU-level care

	ICU utilization	Unadjusted HR (95% CI)	Adjusted HR (95% CI)
1-year mortality			
Every 5% increase ≤ 30%	1.00 (0.95-1.05)	1.00 (0.98-1.03)	
Every 5% increase 30-60%	1.02 (1.00-1.05)	1.01 (1.00-1.03)	
Every 5% increase > 60%	0.95 (0.91-1.00)	0.98 (0.96-1.01)	
1-year cardiovascular readmission			
Every 5% increase ≤ 30%	1.01 (0.99-1.04)	1.00 (0.98-1.02)	
Every 5% increase 30-60%	1.01 (1.00-1.02)	1.01 (1.00-1.02)	
Every 5% increase > 60%	0.98 (0.95-1.00)	0.98 (0.96-1.00)	
Table S4: Interaction between ICU utilization, cardiovascular outcomes, and hospital size or teaching status

	ICU utilization	P interaction (hospital size)	P interaction (teaching status)
1-year mortality	Every 5% increase ≤ 30%	0.18	0.51
	Every 5% increase 30-60%	0.98	0.32
	Every 5% increase > 60%	0.86	0.48
1-year cardiovascular readmission	Every 5% increase ≤ 30%	0.10	0.09
	Every 5% increase 30-60%	0.94	0.64
	Every 5% increase > 60%	0.63	0.18
Table S5: 1-year cause-specific readmission by ICU utilization rate at discharging hospital

	Cumulative incidence rate	Risk-adjusted HR (95% CI)			
	Low ICU utilization	Intermediate ICU utilization	High ICU utilization	Intermediate vs. low	High vs. low
MI	11.5%	11.5%	10.8%	1.01 (0.95-1.08)	0.94 (0.82-1.06)
Stroke	2.8%	3.0%	2.9%	1.10 (0.98-1.22)	1.03 (0.89-1.20)
Heart failure	28.6%	30.1%	27.9%	1.04 (0.99-1.08)	0.93 (0.87-1.00)