Sinking particles promote vertical connectivity in the ocean microbiome

Mireia Mestre1,1, Clara Ruiz-González2, Ramiro Logares1,3, Carlos M. Duarte4,5, Josep M. Gasol6,7, and M. Montserrat Sala8,1

*Department of Marine Biology and Oceanography, Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas, E08023 Barcelona, Catalonia, Spain; 2Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, N0316 Oslo, Norway; 3Red Sea Research Center, King Abdullah University of Science and Technology, 23955-6900 Thuwal, Saudi Arabia; 4Department of Global Change Research, Instituto Mediterráneo de Estudios Avanzados-Université de les Illes Balears, Consejo Superior de Investigaciones Científicas, E07190 Esporles, Spain; and 5Centre for Ecosystem Research, School of Science, Edith Cowan University, Joondalup, WA 6027, Australia

Edited by David M. Karl, University of Hawaii, Honolulu, HI, and approved May 30, 2018 (received for review February 9, 2018)

The sinking of organic particles formed in the photic layer is a main vector of carbon export into the deep ocean. Although sinking particles are heavily colonized by microbes, so far it has not been explored whether this process plays a role in transferring prokaryotic diversity from surface to deep oceanic layers. Using Illumina sequencing of the 16S rRNA gene, we explore here the vertical connectivity of the ocean microbiome by characterizing marine prokaryotic communities associated with five different size fractions and examining their compositional variability from surface down to 4,000 m across eight stations sampled in the Atlantic, Pacific, and Indian Oceans during the Malaspina 2010 Expedition. Our results show that the most abundant prokaryotes in the deep ocean are also present in surface waters. This vertical community connectivity seems to occur predominantly through the largest particles because communities in the largest size fractions showed the highest taxonomic similarity throughout the water column, whereas free-living communities were more isolated vertically. Our results further suggest that particle colonization processes occurring in surface waters determine to some extent the composition and biogeochemistry of bathypelagic communities. Overall, we postulate that sinking particles function as vectors that inoculate viable particle-attached surface microbes into the deep-sea realm, determining to a considerable extent the structure, functioning, and biogeography of deep ocean communities.

Significance

Prokaryotes dominate the living biomass and the biological diversity of the ocean, one of the largest ecosystems on earth. The sinking of particles is a widespread mechanism that transports materials to the deep ocean, with a significant role in the global carbon cycle. Whether this process constitutes a global dispersal pathway for prokaryotic diversity connecting surface communities to those in the dark ocean has never been tested. Here we show that surface and deep-sea prokaryotic communities are strongly connected, constituting a vast oceanic metacommunity where local assemblages are linked through the transport of sinking particles. This vertical dispersal, mediated mainly by the largest sinking particles, emerges as a fundamental process shaping the assembly and biogeography of deep ocean prokaryotic communities.

Author contributions: M.M., C.M.D., J.M.G., and M.M.S. designed research; M.M. performed research; M.M. and C.R.-G. analyzed data; R.L. analyzed genomic sequences; M.M., C.R.-G., R.L., C.M.D., J.M.G., and M.M.S. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

Data deposition: Prokaryotic reads were deposited in the European Nucleotide Database (http://www.ebi.ac.uk/ena; accession nos. ERP109198, ERP525397-98, ERP52539903).

To whom correspondence may be addressed. Email: mireia@icm.csic.es or msala@icm.csic.es.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1802470115/-/DCSupplemental.

Published online July 2, 2018.
and are originated in the surface (30), whereas smaller particles tend to be older and more recalcitrant (31), originating from the degradation of larger particles (32).

Given that the origin and composition of particles in surface waters vary spatially (25, 33–35), it could be hypothesized that the microbial diversity patterns in the deep ocean mirror to some extent such surface heterogeneity. In fact, it was recently shown that deep-sea particle-attached communities present a much clearer biogeography than their free-living counterparts (36), but whether these patterns are established locally in the deep sea or transferred from surface via sinking particles remains unexplored. Although the importance of hydrologically mediated microbial dispersal for shaping local assemblages has been clearly demonstrated in freshwater ecosystems (37–39) and more recently also in oceanic waters through movement of water masses (20–22, 40), the role of particle-driven vertical dispersion in explaining the biogeographic patterns of deep-sea prokaryotes has not yet been assessed.

Here we explore whether sinking particles represent a dispersal vector of prokaryotes into the deep ocean, contributing to the vertical connectivity of the marine microbiome, and test the hypothesis that particle size influences vertical connectivity. We investigated the composition of free-living prokaryotic communities as well as that of those attached to particles of different sizes (ranging from 0.8 to 200 μm) in eight stations across the global tropical and subtropical ocean, assessing changes in their composition from surface (3 m) to bathypelagic waters (4,000 m). Specifically, we test the hypothesis that communities attached to the largest particles show a strong vertical similarity due to their assumed faster sinking rates (i.e., higher dispersal) and that free-living prokaryotic assemblages are more different across the water column than their vertically connected particle-attached counterparts. Moreover, if part of the sinking diversity were to detach from particles when reaching the bathypelagic layer, thus becoming part of the free-living community, a percentage of the prokaryotes attached to particles in surface waters should also be present as free-living in bathypelagic communities. Finally, we test the hypothesis that if vertical connectivity is a globally relevant phenomenon, then deep ocean biogeographic patterns should resemble those of the surface particle-attached communities.

Results

Taxonomic Composition of Prokaryotic Assemblages. We studied stations spanning a broad longitudinal gradient across the tropical and subtropical Pacific, Atlantic, and Indian Oceans (SI Appendix, Fig. S1A). The depths sampled within each station presented pronounced vertical physicochemical and biological variation (SI Appendix, Fig. S1B). Accordingly, the studied prokaryotic communities were clearly structured along the water column, differing mostly between the photic versus the aphotic realms, and presented also distinct biogeographic signatures (Fig. 1 A and B and SI Appendix, Table S1). Whereas communities from the largest particles (≥3.0 μm) clustered together regardless of depth, communities from the two smallest fractions differed greatly between surface and deeper layers (Fig. 1 A and B). Consequently, vertical community differences were higher for the smallest size fraction (PERMANOVA $R^2 = 0.37$, $P < 0.001$) than for the largest size fractions ($R^2 = 0.09$, $P = 0.597$) (SI Appendix, Table S2), whereas horizontal differences, i.e., between stations, were higher in the largest size fractions ($R^2 = 0.54$, $P < 0.001$) than in the smallest size fraction ($R^2 = 0.21$, $P < 0.753$) (SI Appendix, Table S2). As indicated by the $R_{C_{Bray}}$ (Raup-Crick metric based on Bray Curtis distances), the observed beta diversity patterns differed significantly from those expected by chance (i.e., ecological drift) in ∼92% of cases [following Stegen et al. (41)], and this suggests that other processes (like selection and limited or high dispersal) rather than random community assembly (drift) generated the observed beta diversity patterns.

Operational Taxonomic Units (OTUs) richness was highly variable among size fractions and depths (range 136–1,044 OTUs per sample, average 580), but in general, richness decreased toward larger size fractions in all depths (SI Appendix, Fig. S2). In terms of taxonomic composition at the phylum or class level, the three fractions larger than 3.0 μm were in general more similar among each other than they were to the smallest size fractions (SI Appendix, Fig. S3). The distribution of Particle-Association Niche Index (PAN-Index) values, used to identify preferences of OTUs for particular size fractions, showed two modes around values 1.5 and 3.5 (SI Appendix, Fig. S4). We, therefore, differentiated OTUs enriched in small size fractions (PAN-Index < 2.7) from those enriched in large size fractions (PAN-Index ≥ 2.7). We found that the preference for one lifestyle or the other seemed significantly from those expected by chance (i.e., ecological drift) in ∼92% of cases [following Stegen et al. (41)], and this suggests that other processes (like selection and limited or high dispersal) rather than random community assembly (drift) generated the observed beta diversity patterns.

Operational Taxonomic Units (OTUs) richness was highly variable among size fractions and depths (range 136–1,044 OTUs per sample, average 580), but in general, richness decreased toward larger size fractions in all depths (SI Appendix, Fig. S2). In terms of taxonomic composition at the phylum or class level, the three fractions larger than 3.0 μm were in general more similar among each other than they were to the smallest size fractions (SI Appendix, Fig. S3). The distribution of Particle-Association Niche Index (PAN-Index) values, used to identify preferences of OTUs for particular size fractions, showed two modes around values 1.5 and 3.5 (SI Appendix, Fig. S4). We, therefore, differentiated OTUs enriched in small size fractions (PAN-Index < 2.7) from those enriched in large size fractions (PAN-Index ≥ 2.7). We found that the preference for one lifestyle or the other seemed significantly from those expected by chance (i.e., ecological drift) in ∼92% of cases [following Stegen et al. (41)], and this suggests that other processes (like selection and limited or high dispersal) rather than random community assembly (drift) generated the observed beta diversity patterns.

Operational Taxonomic Units (OTUs) richness was highly variable among size fractions and depths (range 136–1,044 OTUs per sample, average 580), but in general, richness decreased toward larger size fractions in all depths (SI Appendix, Fig. S2). In terms of taxonomic composition at the phylum or class level, the three fractions larger than 3.0 μm were in general more similar among each other than they were to the smallest size fractions (SI Appendix, Fig. S3). The distribution of Particle-Association Niche Index (PAN-Index) values, used to identify preferences of OTUs for particular size fractions, showed two modes around values 1.5 and 3.5 (SI Appendix, Fig. S4). We, therefore, differentiated OTUs enriched in small size fractions (PAN-Index < 2.7) from those enriched in large size fractions (PAN-Index ≥ 2.7). We found that the preference for one lifestyle or the other seemed significantly from those expected by chance (i.e., ecological drift) in ∼92% of cases [following Stegen et al. (41)], and this suggests that other processes (like selection and limited or high dispersal) rather than random community assembly (drift) generated the observed beta diversity patterns.

Operational Taxonomic Units (OTUs) richness was highly variable among size fractions and depths (range 136–1,044 OTUs per sample, average 580), but in general, richness decreased toward larger size fractions in all depths (SI Appendix, Fig. S2). In terms of taxonomic composition at the phylum or class level, the three fractions larger than 3.0 μm were in general more similar among each other than they were to the smallest size fractions (SI Appendix, Fig. S3). The distribution of Particle-Association Niche Index (PAN-Index) values, used to identify preferences of OTUs for particular size fractions, showed two modes around values 1.5 and 3.5 (SI Appendix, Fig. S4). We, therefore, differentiated OTUs enriched in small size fractions (PAN-Index < 2.7) from those enriched in large size fractions (PAN-Index ≥ 2.7). We found that the preference for one lifestyle or the other seemed significantly from those expected by chance (i.e., ecological drift) in ∼92% of cases [following Stegen et al. (41)], and this suggests that other processes (like selection and limited or high dispersal) rather than random community assembly (drift) generated the observed beta diversity patterns.

Operational Taxonomic Units (OTUs) richness was highly variable among size fractions and depths (range 136–1,044 OTUs per sample, average 580), but in general, richness decreased toward larger size fractions in all depths (SI Appendix, Fig. S2). In terms of taxonomic composition at the phylum or class level, the three fractions larger than 3.0 μm were in general more similar among each other than they were to the smallest size fractions (SI Appendix, Fig. S3). The distribution of Particle-Association Niche Index (PAN-Index) values, used to identify preferences of OTUs for particular size fractions, showed two modes around values 1.5 and 3.5 (SI Appendix, Fig. S4). We, therefore, differentiated OTUs enriched in small size fractions (PAN-Index < 2.7) from those enriched in large size fractions (PAN-Index ≥ 2.7). We found that the preference for one lifestyle or the other seemed significantly from those expected by chance (i.e., ecological drift) in ∼92% of cases [following Stegen et al. (41)], and this suggests that other processes (like selection and limited or high dispersal) rather than random community assembly (drift) generated the observed beta diversity patterns.

Fig. 1. nMDS ordinations representing spatially the Bray–Curtis distances between the prokaryotic communities studied. Distances were calculated using the rarefied OTU table. Samples are color-coded depending on (A) size fraction, (B) depth, and (C) sampling station.
Vertical Connectivity Between Oceanic Prokaryotic Communities. To determine the vertical connectivity between prokaryotic communities, we explored whether OTUs present at one depth could be detected in the other depths. To do so, all OTUs were categorized into four depth groups: surface (SFC), deep-chlorophyll maximum (DCM), mesopelagic (MESO), and bathypelagic (BATHY), defined by the depth where they were first detected, assuming a directionality from surface to bathypelagic waters and considering all stations together. For example, if an OTU was detected in any of the surface samples, it was categorized as SFC, but if an OTU was first detected in mesopelagic waters but not in the previous depths (surface and DCM), it was categorized as MESO, and so on. For this categorization, the nonrefereed OTU table was used, so that we could detect the largest number of OTUs per sample. This analysis showed that even though new OTUs appeared continuously when moving from one depth to the next one (Fig. 2), communities from all depths and size fractions were largely dominated by OTUs present in surface waters (SFC OTUs). When this categorization of OTUs was done considering each station separately, we observed a similar pattern, but in some stations, there was a larger contribution of OTUs not present in surface waters in deep layers, particularly in the free-living fraction (SI Appendix, Fig. S6). This indicates that some of the DCM, MESO, or BATHY OTUs in some stations were not present at the surface of these particular stations but were present in surface waters at other sites. In any case, bathypelagic communities of all stations were still numerically dominated by surface sequences, pointing to a high vertical connectivity of the open ocean microbial communities. This implies that community changes across depths (Fig. 1B) are to a large extent due to shifts in the relative abundances of taxa present throughout the water column (e.g., rare surface taxa that become abundant in deeper layers).

The vertical differentiation among communities of a given size fraction varied gradually from the free-living prokaryotic communities toward those in the largest particles (Fig. 3), and differences from the small to the largest size fraction were statistically significant (Wilcoxon test, P value < 0.001). We found the highest beta diversity and OTU turnover among depths in the 0.2-0.8 μm fraction (Fig. 3A and B), indicating a higher replacement of OTUs within the free-living communities across depths compared with communities attached to the largest particles. Conversely, communities from the largest size fraction showed higher nestedness (Fig. 3C), and OTUs were present across more depths (Fig. 3D) compared with those in smaller size fractions, suggesting that communities attached to larger particles are more connected throughout the water column than those free-living or attached to small particles. We then divided the SFC OTUs (i.e., OTUs detected in any of the surface stations; see above) into those enriched in small size fractions (PAN-Index < 2.7) and those enriched in large size fractions (PAN-Index ≥ 2.7) and compared their distribution along the water column in small (and suspended, i.e., <3.0 μm) and large (and sinking, i.e., ≥3.0 μm) size fractions (Fig. 4). We found that surface OTUs present in the smallest surface size fractions (SFC OTUs with PAN-Index < 2.7) accounted for a decreasing proportion and those enriched in large size fractions (PAN-Index ≥ 2.7) and compared their distribution along the water column (Fig. 4B). Conversely, most bathypelagic communities were composed by OTUs present in the surface in association to large particles (SFC OTUs with PAN-Index ≥ 2.7), which composed about 80% of bathypelagic sequences in the largest size fractions (Fig. 4B) and more than 50% of bathypelagic sequences in the small suspended size fractions (Fig. 4C). This suggests that deep-sea communities are largely populated by surface microbes arriving via the largest particles and that this dispersal influences mostly the bathypelagic particle-attached communities (Fig. 4B) but also the deep-sea free-living assemblages (Fig. 4C). The colonization of the bathypelagic free-living communities by sinking particles is also supported by the observation that free-living communities from the bathypelagic are more similar to attached communities from the bathypelagic than to any other communities (Fig. 1). On the contrary, surface free-living communities contribute much less to the bathypelagic diversity likely due to their more limited vertical dispersal.

Transfer of Biogeographic Patterns from Surface to the Deep Sea. Given the higher vertical transport of the microbes associated to larger particles, we would expect that spatial differences (i.e., differences between stations) among communities from the largest particles are maintained vertically, whereas suspended communities are expected to be more vertically isolated, and thus, their surface biogeographic patterns are not expected to be
transferred across depths. We tested this inference by comparing, for each size fraction, spatial differences between surface communities and mesopelagic or bathypelagic communities using Mantel tests (Table 1). We found that the dissimilarities between suspended communities from the surface and the mesopelagic or bathypelagic waters were not significantly correlated. In contrast, the dissimilarities between particle-attached communities from the surface and the deep waters presented a high significant correlation (Table 1), suggesting that the compositional differences among stations of deep-sea particle-attached communities were caused at least partially by the biogeographic patterns of surface particle-attached assemblages.

The results presented support the hypothesis that the biogeography of surface particle-attached prokaryotes is transferred to deeper waters via particle sinking, but the fact that communities from the photic and aphotic realms were very different in terms of taxonomic composition (SI Appendix, Fig. S3) suggests that this vertical dispersal of particle-attached microbes must be accompanied by large changes in their abundances during sinking. For example, the growth of taxa that were rare (and perhaps dormant) in surface waters but can thrive in deeper depths could explain such compositional shifts. We identified at each station the OTUs that potentially grew during particle sinking by choosing the surface OTUs prevalent in the larger size fractions (SFC OTUs with PAN-Index ≥ 2.7) that increased in relative abundance (dominance) toward deeper waters, named here as “seed” OTUs (see details in Materials and Methods). We identified 90 seed OTUs in total, which contributed to ~6% of sequences at the surface, and showed clear increases in relative abundance toward deeper waters with up to 55% (average ~35%) of the total abundance in bathypelagic particle-attached communities (Fig. 5). The pool of taxa behaving as seeds differed between stations, and different dominant seed groups were found in each station (e.g., Oceanospirillales dominate at station 20, Sphingobacteriales at station 77, and Corynebacteriales at station 94) (Fig. 5). Moreover, when we inspected the community structure of only these seed OTUs, we observed that they clustered according to the eight stations (SI Appendix, Fig. S7). This geographic signature was less clear for the smallest size fractions (smaller symbols) in some cases, but still it points to the high relevance of the surface particle colonization processes in determining the structure of communities from deeper layers.

Discussion

Our results support the hypothesis of strong particle-mediated prokaryotic connectivity between the surface and the deep ocean, a hypothesis suggested earlier (e.g., refs. 42 and 43) and tested here. Most of the dominant prokaryotes from the deep-ocean can also be detected in surface waters, and this vertical connectivity is higher in communities associated with the larger size fractions (i.e., larger particles), likely due to their higher sinking rates. Our results demonstrate that particle sinking constitutes a dispersal vector of viable microbial diversity from surface waters to the bathypelagic zone that ultimately determines the biogeography of deep-sea prokaryotes. They also suggest that sinking particles may indeed be a relevant seed bank of viable taxa for the deep ocean, in line with previous studies suggesting the existence of an oceanic reservoir of dormant diversity (44–46).
Fig. 4. Vertical variation of the contribution (in percentage of sequences) of surface OTUs enriched in small size fractions (PAN-Index < 2.7) (light gray) and surface OTUs enriched in large size fractions (PAN-Index ≥ 2.7) (dark gray) to communities present in (A) fractions <3.0 μm and (B) fractions ≥3.0 μm and at each depth. The boxplots summarize the data from the eight stations. See Materials and Methods for further details.

Although the vertical differentiation of communities from photic to aphotic realms is well documented (e.g., refs. 47–49), we show here that this difference varies with particle size, being greatest among free-living assemblages and prokaryotic communities associated to the smallest size fractions (Fig. 1 and SI Appendix, Fig. S3 and Table S1). Our results also concur with previous studies indicating that prokaryotic communities strongly differ between the free-living (suspended) and attached fractions in epipelagic (29, 43, 50) and also in bathypelagic (10, 51, 52) waters, supporting that niches present on particles are distinct from the dissolved phase. Others have evidenced that the composition of the larger particles is different from that of the smaller particles (and also from the dissolved phase), with larger particles being younger and more labile and the smaller particles being older and more recalcitrant (31, 32).

The finding that all communities, including those inhabiting the bathypelagic layer, were numerically dominated by OTUs present in surface waters supports a strong vertical connection between surface and bathypelagic communities at the local (SI Appendix, Fig. S6) and the global (Fig. 2) scales. Given the variability across depths in the structure of the communities (Fig. 1 and SI Appendix, Fig. S3), the vertical changes in prokaryotic assemblages are likely driven by changes in the relative abundance of taxa present through several depths during sinking, i.e., rare surface taxa that become abundant in deeper waters. Only a few recent studies have assessed the vertical connectivity of marine prokaryotic communities along the water column, indicating that advection and convection of water masses can shape the structure of surface and deep microbial communities by promoting their transport and new habitat colonization (20–22). However, these studies have focused only on the free-living assemblages and vertical water mass transport processes as the driving mechanism. Here we provide evidence that the export of sinking particles represents an important dispersal pathway of diversity from surface to bathypelagic waters. Although this process could be considered as unidirectional from surface to deep waters, supported by evidence of rapid-sinking particles from surface to the deep ocean along the stations sampled by the Malaspina expedition (53), it is also possible that upwelling events of deep-water masses transport viable deep-sea prokaryotes back into surface waters. This possibility should be tested in future research in upwelling zones.

The hypothesis that vertical prokaryotic connectivity is due to the dispersion of taxa from surface to deeper waters driven by sinking particles is further supported by the observation that the connectivity throughout the vertical column is higher for communities associated to the largest particles than for those attached to the smaller ones, as expected from the faster sinking of larger particles (e.g., sinking rates of <1 m d⁻¹ for small particles and >1,000 m d⁻¹ for large aggregates, reviewed in ref. 3). For example, the community composition of the smaller size fractions was more variable between depths (i.e., higher beta diversity) than those of the largest size fractions (Fig. 3 and SI Appendix, Table S2). Also, the highest OTU replacement (turnover) across depths was found between communities from the smallest particles, and OTUs from communities associated with largest particles were the most ubiquitous across depths (Fig. 3C). Altogether, this points to a more intense vertical dispersal of taxa between communities from the largest size fractions, whereas prokaryotic communities from the smallest size fractions present more restricted depth distributions, i.e., are more isolated vertically, due to their more limited connectivity.

In addition, we observed that the OTUs with preference for large particles in surface waters also dominate the mesopelagic and bathypelagic communities (Fig. 4). The fact that the deep communities in the smallest size fraction is higher for a larger extent of surface particle-attached prokaryotes (Fig. 4A), and that free-living communities from the bathypelagic layer are more similar to attached communities from the bathypelagic layer than to any others (Fig. 1), suggests that large particles are indeed vectors transporting viable prokaryotes from the surface to the bathypelagic, some of which can thrive in the free-living fraction of the bathypelagic realm. Thus, the transport of prokaryotes from surface to deep waters occurs mostly via large particles, which act as a source of potential immigrants (or inoculum) to the suspended community living in the deep ocean. These results agree with a previous study indicating that particular taxa can change their preference from large particles to small particles through depth (51), probably responding to environmental conditions.

Table 1. Comparisons of community structure between depths

Size fraction	R	P value	Surface vs. mesopelagic	R	P value
0.2–0.8 μm	–0.18	0.752	–0.18	0.829	
0.8–3.0 μm	–0.14	0.675	0.29	0.11	
3.0–5.0 μm	0.58	**	0.73	**	
5.0–20 μm	0.82	**	0.73	**	
20–200 μm	0.87	***	0.64	**	

R coefficients of the Mantel correlations between the taxonomic dissimilarity matrices from surface and mesopelagic communities and surface and bathypelagic communities, for each of the five size fractions. Higher R values mean that the compositional differences between communities at a given depth were highly correlated (and thus were similar) to the differences between communities from a different depth. Significance of the correlations is stated as follows: *** P < 0.001, ** P < 0.01, and * P < 0.05.
of particle-dispersed taxa that sinks and has the potential to thrive when arriving to deeper layers will depend on local conditions and particle origin in surface waters and should differ across stations. We tested this hypothesis by identifying the pool of surface particle-attached prokaryotes that increased their relative abundances toward deeper waters, those acting as seed OTUs. These OTUs belonged to different taxonomic groups in the different stations examined, likely indicating the effect of the initial surface particle colonizers in determining deep ocean microbial communities locally. This implies that sinking particles transport diverse communities, yet some of these taxa [probably dormant or slowly growing (55)] have the potential to grow and dominate deep-ocean communities when the surrounding environmental conditions or the nature of the particles change as they are transported toward deeper waters. Additionally, other taxa can decrease their relative abundance with depth as they find unfavorable conditions when moving from the surface to the deep ocean (51). A similar process has also been observed in other ecosystems, such as the river-to-lake freshwater continuum, where the transport and growth of rare bacteria from terrestrial source environments was shown to strongly determine the structure of the receiving aquatic communities (39). These results concur in highlighting the need to take potential dispersal sources into account to understand observed biogeographic patterns. Focusing on free-living prokaryotes, Wilkins et al. (20) suggested that advection of seawater masses can shape microbial community structure by increasing opportunities for colonization. However, given the limited deep vertical water transport in the open ocean, sinking particles are likely to play a key role in determining and shaping the vertical connectivity of oceanic microbial communities across much of the global ocean by allowing continuous dispersal of viable organisms into the mesopelagic and bathypelagic realms.

of particle-dispersed taxa that sinks and has the potential to thrive when arriving to deeper layers will depend on local conditions and particle origin in surface waters and should differ across stations. We tested this hypothesis by identifying the pool of surface particle-attached prokaryotes that increased their relative abundances toward deeper waters, those acting as seed OTUs. These OTUs belonged to different taxonomic groups in the different stations examined, likely indicating the effect of the initial surface particle colonizers in determining deep ocean microbial communities locally. This implies that sinking particles transport diverse communities, yet some of these taxa [probably dormant or slowly growing (55)] have the potential to grow and dominate deep-ocean communities when the surrounding environmental conditions or the nature of the particles change as they are transported toward deeper waters. Additionally, other taxa can decrease their relative abundance with depth as they find unfavorable conditions when moving from the surface to the deep ocean (51). A similar process has also been observed in other ecosystems, such as the river-to-lake freshwater continuum, where the transport and growth of rare bacteria from terrestrial source environments was shown to strongly determine the structure of the receiving aquatic communities (39). These results concur in highlighting the need to take potential dispersal sources into account to understand observed biogeographic patterns. Focusing on free-living prokaryotes, Wilkins et al. (20) suggested that advection of seawater masses can shape microbial community structure by increasing opportunities for colonization. However, given the limited deep vertical water transport in the open ocean, sinking particles are likely to play a key role in determining and shaping the vertical connectivity of oceanic microbial communities across much of the global ocean by allowing continuous dispersal of viable organisms into the mesopelagic and bathypelagic realms.

Despite a general perception of a homogeneous dark ocean, genomic approaches have unveiled the enormous and dynamic genetic variability of the deep sea microbial communities (reviewed in ref. 3). Indeed, a recent global survey of prokaryotic communities in the bathypelagic realm showed that they differed between oceanic basins and that this biogeographic signal was stronger for the particle-attached members (0.8–20 μm size fraction) than for their free-living counterparts (0.2–0.8 μm size fraction) (36). This
agrees with our observation that at all depths, communities from the largest particles showed much clearer differences between stations than the free-living communities (SI Appendix, Table S2). However, we observed that the compositional differences between surface stations of the particle-attached communities were correlated with the compositional differences between deep-sea stations and that the strength of this correlation increased with increasing particle size, whereas no such pattern was observed for surface versus deep-layer free-living communities (Table 1). Altogether, this indicates that the biogeography of deep-sea communities mirrors that of the overlying surface communities as a consequence of particle-mediated dispersal and is thus partially determined by that of the attached prokaryotic community originating in the surface. Salazar et al. (36) suggested that submarine mountains that divide the deep ocean into basins might act as ecological barriers for prokaryotic communities, thus favoring their differentiation. However, this explained a limited fraction of the variance in community composition. Our results further suggest that taxonomic differences of the pool of taxa arriving via sinking particles may also be a major mechanism explaining the observed biogeographic patterns of deep-sea prokaryotes.

In our study design based on the comparison of prokaryotic community structure along vertical profiles, we described the variability of community composition along the water column, in a vertical gradient defined by the four depths sampled in each station. We are aware that the described processes are not directly connected along a vertical line, because horizontal transport velocities can be greater than sinking rates. Hence, the sampling points of each depth must be considered as representative samples of a wider area (i.e., they should not be interpreted as points located directly on top of each other but rather as vertical profiles with samples representative of a larger area). Still, similar patterns were observed when analyzing each station separately (SI Appendix, Fig. S6) and all stations together (Fig. 2). In addition, the observed similarity in biogeographic patterns between surface and deep particle-attached communities (Table 1), as well as the station-specific signature in the pool of taxa able to grow on sinking particles (SI Appendix, Fig. S7), seems to support that there is indeed vertical connectivity occurring within the area represented by each sampled station.

In summary, we show that the global ocean prokaryotic microbiome exhibits a strong vertical variability due to the permanent presence of microbial communities directly connected along a vertical line, because horizontal transport velocities can be greater than sinking rates. Hence, the sampling points of each depth must be considered as representative samples of a wider area (i.e., they should not be interpreted as points located directly on top of each other but rather as vertical profiles with samples representative of a larger area). Still, similar patterns were observed when analyzing each station separately (SI Appendix, Fig. S6) and all stations together (Fig. 2). In addition, the observed similarity in biogeographic patterns between surface and deep particle-attached communities (Table 1), as well as the station-specific signature in the pool of taxa able to grow on sinking particles (SI Appendix, Fig. S7), seems to support that there is indeed vertical connectivity occurring within the area represented by each sampled station.

In summary, we show that the global ocean prokaryotic microbiome exhibits a strong vertical variability due to the permanent presence of microbial communities directly connected along a vertical line, because horizontal transport velocities can be greater than sinking rates. Hence, the sampling points of each depth must be considered as representative samples of a wider area (i.e., they should not be interpreted as points located directly on top of each other but rather as vertical profiles with samples representative of a larger area). Still, similar patterns were observed when analyzing each station separately (SI Appendix, Fig. S6) and all stations together (Fig. 2). In addition, the observed similarity in biogeographic patterns between surface and deep particle-attached communities (Table 1), as well as the station-specific signature in the pool of taxa able to grow on sinking particles (SI Appendix, Fig. S7), seems to support that there is indeed vertical connectivity occurring within the area represented by each sampled station.

In summary, we show that the global ocean prokaryotic microbiome exhibits a strong vertical variability due to the permanent presence of microbial communities directly connected along a vertical line, because horizontal transport velocities can be greater than sinking rates. Hence, the sampling points of each depth must be considered as representative samples of a wider area (i.e., they should not be interpreted as points located directly on top of each other but rather as vertical profiles with samples representative of a larger area). Still, similar patterns were observed when analyzing each station separately (SI Appendix, Fig. S6) and all stations together (Fig. 2). In addition, the observed similarity in biogeographic patterns between surface and deep particle-attached communities (Table 1), as well as the station-specific signature in the pool of taxa able to grow on sinking particles (SI Appendix, Fig. S7), seems to support that there is indeed vertical connectivity occurring within the area represented by each sampled station.

In summary, we show that the global ocean prokaryotic microbiome exhibits a strong vertical variability due to the permanent presence of microbial communities directly connected along a vertical line, because horizontal transport velocities can be greater than sinking rates. Hence, the sampling points of each depth must be considered as representative samples of a wider area (i.e., they should not be interpreted as points located directly on top of each other but rather as vertical profiles with samples representative of a larger area). Still, similar patterns were observed when analyzing each station separately (SI Appendix, Fig. S6) and all stations together (Fig. 2). In addition, the observed similarity in biogeographic patterns between surface and deep particle-attached communities (Table 1), as well as the station-specific signature in the pool of taxa able to grow on sinking particles (SI Appendix, Fig. S7), seems to support that there is indeed vertical connectivity occurring within the area represented by each sampled station.

In summary, we show that the global ocean prokaryotic microbiome exhibits a strong vertical variability due to the permanent presence of microbial communities directly connected along a vertical line, because horizontal transport velocities can be greater than sinking rates. Hence, the sampling points of each depth must be considered as representative samples of a wider area (i.e., they should not be interpreted as points located directly on top of each other but rather as vertical profiles with samples representative of a larger area). Still, similar patterns were observed when analyzing each station separately (SI Appendix, Fig. S6) and all stations together (Fig. 2). In addition, the observed similarity in biogeographic patterns between surface and deep particle-attached communities (Table 1), as well as the station-specific signature in the pool of taxa able to grow on sinking particles (SI Appendix, Fig. S7), seems to support that there is indeed vertical connectivity occurring within the area represented by each sampled station.

In summary, we show that the global ocean prokaryotic microbiome exhibits a strong vertical variability due to the permanent presence of microbial communities directly connected along a vertical line, because horizontal transport velocities can be greater than sinking rates. Hence, the sampling points of each depth must be considered as representative samples of a wider area (i.e., they should not be interpreted as points located directly on top of each other but rather as vertical profiles with samples representative of a larger area). Still, similar patterns were observed when analyzing each station separately (SI Appendix, Fig. S6) and all stations together (Fig. 2). In addition, the observed similarity in biogeographic patterns between surface and deep particle-attached communities (Table 1), as well as the station-specific signature in the pool of taxa able to grow on sinking particles (SI Appendix, Fig. S7), seems to support that there is indeed vertical connectivity occurring within the area represented by each sampled station.

In summary, we show that the global ocean prokaryotic microbiome exhibits a strong vertical variability due to the permanent presence of microbial communities directly connected along a vertical line, because horizontal transport velocities can be greater than sinking rates. Hence, the sampling points of each depth must be considered as representative samples of a wider area (i.e., they should not be interpreted as points located directly on top of each other but rather as vertical profiles with samples representative of a larger area). Still, similar patterns were observed when analyzing each station separately (SI Appendix, Fig. S6) and all stations together (Fig. 2). In addition, the observed similarity in biogeographic patterns between surface and deep particle-attached communities (Table 1), as well as the station-specific signature in the pool of taxa able to grow on sinking particles (SI Appendix, Fig. S7), seems to support that there is indeed vertical connectivity occurring within the area represented by each sampled station.

In summary, we show that the global ocean prokaryotic microbiome exhibits a strong vertical variability due to the permanent presence of microbial communities directly connected along a vertical line, because horizontal transport velocities can be greater than sinking rates. Hence, the sampling points of each depth must be considered as representative samples of a wider area (i.e., they should not be interpreted as points located directly on top of each other but rather as vertical profiles with samples representative of a larger area). Still, similar patterns were observed when analyzing each station separately (SI Appendix, Fig. S6) and all stations together (Fig. 2). In addition, the observed similarity in biogeographic patterns between surface and deep particle-attached communities (Table 1), as well as the station-specific signature in the pool of taxa able to grow on sinking particles (SI Appendix, Fig. S7), seems to support that there is indeed vertical connectivity occurring within the area represented by each sampled station.
Data Analysis. Statistical analyses and plots were done in R (www.r-project.org) using the vegan (72), simba (73), spaq (74), betapart (75), and Bio diversityR (76) packages. The OTU richness of each size fraction and at each depth was calculated using the rarefied OTU table, and the Bray–Curtis metric was used as an estimator of community dissimilarity. To check if the communities were structured stochastically or not, the R Bray index was calculated. The index consists of the Raup–Crick metric (77) using Bray–Curtis dissimilarities (41). A total of 1,000, randomizations were performed for OTUs with >100 reads in the entire dataset. Communities were clustered using nonmetric multidimensional scaling (nMDS) analyses based on Bray–Curtis distances. Statistical differences among categories such as size fraction, station, and depth were explored with permutational multivariate analyses of variance (PERMANOVA) tests (adonis function, R vegan package).

To elucidate the connectivity between communities throughout the water column of a given size fraction, a set of parameters was calculated considering each station separately: Vertical beta diversity (i.e., community differentiation) was calculated using the trudi function from R package simba. Vertical OTU turnover (i.e., dissimilarity due to species replacement) and nestedness (i.e., dissimilarity due to species loss) were estimated using the betadiv biodiversity package based on the Sorensen index. The vertical niche breadth of each OTU was calculated using the niche width function in the R spaa package and applying the Levins (78) index. Niche breadth was defined as the number of different depths where an OTU appeared (i.e., OTUs with niche breadth values of 4 were present across the four depths, whereas OTUs with niche breadth values of 1 were present in only one depth), and an average of all of the niche breadth values of the OTUs of each size fraction was used to calculate the niche breadth for that size fraction. We thank the MarDiTS bioinformatics platform of the Institut de Ciències del Mar in Barcelona and especially Pablo Sánchez for computing support. M.M. was supported by a Consejo Superior de Investigaciones Científicas-Junta for the Ampliación de Estudios Grant (CSIC-JAE-Predoc Grant) and by the Ministry of Labor, Employment, and Social Security. R.L. was supported by a Ramón y Cajal fellowship (RYC-2013-12554, Ministerio de Economía y Competitividad (MINECO), Spain), and C.R.-G. was supported by a Juan de la Cierva fellowship (UJI-2013-23505). The funding contribution to the Malaspina 2010 Expedition, funded by the Spanish Ministry of Economy and Competitiveness through the Consolider- Ingenio program (Reference CSD2008-00007).

ACKNOWLEDGMENTS. We thank all the scientists and crew for their support during sample collection in the Malaspina 2010 cruise and especially E. Borrull, C. Diez-Vives, E. Lara, D. Vaqué, G. Salazar, and F. Cornejo-Castillo for DNA sampling. C. Antequera kindly provided laboratory assistance during DNA extraction. We are also grateful to G. Salazar for his help in identifying the OTUs. During DNA extraction, we are also grateful to M. Moeseneder for computing support. M.M. was supported by a Consejo Superior de Investigaciones Científicas-Junta for the Ampliación de Estudios Grant (CSIC-JAE-Predoc Grant) and by the Ministry of Labor, Employment, and Social Security. R.L. was supported by a Ramón y Cajal fellowship (RYC-2013-12554, Ministerio de Economía y Competitividad (MINECO), Spain), and C.R.-G. was supported by a Juan de la Cierva fellowship (UJI-2013-23505). The funding contribution to the Malaspina 2010 Expedition, funded by the Spanish Ministry of Economy and Competitiveness through the Consolider-Ingénio program (Reference CSD2008-00007).

1. McCave IN (1975) Vertical flux of particles in the ocean. Deep-Sea Res Oceanogr Abstr 22:491–502.
2. Ducklow HW, Steinberg DK, Buesseler KO (2001) Upper ocean carbon export and the biological pump. Oceanography 14:50–58.
3. Aristegui J, Gasol JM, Duarte CM, Herndl GJ (2009) Microbial oceanography of the dark ocean’s pelagic realm. Limnol Oceanogr 54:1501–1529.
4. Herndl GJ, Reinhardt T (2013) Microbial control of the dark end of the biological pump. Nat Geosci 6:718–724.
5. Miki T, Yodekkah T, Nagata T, Yamamura N (2008) Immigration of prokaryotes to local environments enhances remineralization efficiency of sinking particles: A metacommunity model. Mar Ecol Prog Ser 366:1–14.
6. Baltar F, Aristegui J, Gasol JM, Sintes E, Herndl GJ (2009) Evidence of prokaryotic metabolism on suspended particulate organic matter in the dark waters of the sub-tropical North Atlantic. Limnol Oceanogr 54:182–193.
7. Karner M, Herndl GJ (1992) Extracellular enzymatic activity and secondary production in free-living and marine snow-associated bacteria. Mar Biol 113:341–347.
8. Grossart HP, Hieteren S, Ploug H (2003) Microbial dominance on diatoms aggregates in Oresund, Denmark. Mar Ecol Prog Ser 249:69–78.
9. Grossart HP, Tang KW, Kierboe T, Ploug H (2007) Comparison of cell-specific activity between free-living and attached bacteria using isolates and natural assemblages. FEMS Microbiol Lett 266:194–200.
10. Elose E, et al. (2011) Compositional differences in particle-associated and free-living microbial assemblages from an extreme deep-ocean environment. Environ Microbiol Rep 3:449–458.
11. Ortega-Retuerta E, Jou F, Jeffrey W, Ghiglione JF (2013) Spatial variability of particle-associated and free-living bacterial diversity in surface waters from the Mackenzie River to the Beaufort Sea (Canadian Arctic). Biogeosciences 10:2274–2759.
12. Ganesh S, Parris DJ, DeLong EF, Stewart FJ (2014) Metagenomic analysis of size-fractionated picoplankton in a marine oxygen minimum zone. ISME J 8:187–217.
13. Acinas SG, Antón J, Rodríguez-Valera F (1999) Diversity of free-living and attached bacterial diversity at different locations in the Caribbean Sea. Appl Environ Microbiol 75:122–123.
14. Ruiz-González et al. (39). We then identified those that increased in relative abundances (dominance) toward deeper layers (i.e., showing higher mean relative abundances in mesopelagic and/or bathypelagic waters than in the surface and/or the DCM). This was done for each station, and these OTUs were named seed OTUs because they might represent taxa sending deeper communities.
31. Benner R, Amon RMW (2015) The size-reactivity continuum of major bioelements in the ocean. *Annu Rev Mar Sci* 7:185–205.

32. Walker BD, Beaupré SR, Guillemont TP, McCarthy MD, Druffel ER (2016) Pacific carbon cycling constrained by organic matter size, age and composition relationships. *Nat Geosci* 9:888–891.

33. Longhurst AR (1998) *Ecological Geography of the Sea* (Academic, London).

34. Guidi L, et al. (2009) Effects of phytoplankton community on production, size, and export of large aggregates: A world-ocean analysis. *Limnol Oceanogr* 54:1951–1963.

35. Bach LT, et al. (2016) Influence of plankton community structure on the sinking velocity of marine aggregates. *Global Biogeochem Cycles* 30:1145–1165.

36. Salazar G, et al. (2016) Global diversity and biogeography of deep-sea pelagic prokaryotes. *ISME J* 10:596–608.

37. Battin TJ, et al. (2007) Microbial landscapes: New paths to biofilm research. *Nat Rev Microbiol* 5:76–88.

38. Nelson CE, Sadro S, Melack JM (2009) Contrasting the influences of stream inputs and landscape position on bacterioplankton community structure and dissolved organic matter composition in high-elevation lake chains. *Limnol Oceanogr* 54:1292–1305.

39. Ruiz-González C, Niño-García JP, del Giorgio PA (2015) Terrestrial origin of bacterial communities in complex boreal freshwater networks. *Ecol Lett* 18:1198–1206.

40. Villarino E, et al. (2018) Large-scale ocean connectivity and planktonic body size. *Nat Commun* 9:142.

41. Stegen JC, et al. (2013) Quantifying community assembly processes and identifying features that impose them. *ISME J* 7:2069–2079.

42. Cram JA, et al. (2015) Cross-depth analysis of marine bacterial networks suggests downward propagation of temporal changes. *ISME J* 9:2573–2586.

43. Thiele S, Fuchs BM, Amann R, Iversen MH (2015) Colonization in the photic zone and subsequent changes during sinking determine bacterial community composition in marine snow. *Appl Environ Microbiol* 81:1463–1471.

44. Gibbons SM, et al. (2016) Evidence for a persistent microbial seed bank throughout the ocean. *Proc Natl Acad Sci USA* 110:4651–4655.

45. Gonnella G, et al. (2016) Endemic hydrothermal vent species identified in the open ocean seed bank. *Nat Microbiol* 1:16086.

46. Sebastián M, et al. (2018) Deep ocean prokaryotic communities are extremely mallable when facing long-term starvation. *Environ Microbiol* 20:713–723.

47. Brown MV, et al. (2009) Microbial community structure in the North Pacific Ocean. *ISME J* 3:1374–1386.

48. Agogué H, Lamy D, Neal PR, Sogin ML, Herndl GJ (2011) Water mass specificity of bacterial communities in the North Atlantic revealed by massively parallel sequencing. *Mol Ecol* 20:258–274.

49. Kemble SW, Eisen JA, Pollard KS, Green JL (2011) The phylogenetic diversity of prokaryotes. *ISME J* 5:76–81.

50. Milici M, et al. (2016) Co-occurrence analysis of microbial taxa in the Atlantic ocean reveals high connectivity in the free-living bacterioplankton. *Front Microbiol* 7:649.

51. Mestre M, et al. (2017) Spatial variability of marine bacterial and archaeal communities along the particulate matter continuum. *Mol Ecol* 26:6827–6840.

52. Salazar G, et al. (2015) Particle-association lifestyle is a phylogenetically conserved trait in bathypelagic prokaryotes. *Mol Ecol* 24:5692–5706.

53. Agustí S, et al. (2015) Ubiquitous healthy diatoms in the deep sea confirm deep bathypelagic habitat. *PLoS One* 2:e23214.

54. Simon M, Grossart HP, Schweitzer B, Ploug H (2002) Microbial ecology of organic carbon injection by the biological pump. *Global Biogeochem Cycles* 16:1051–1063.

55. Lennon JT, Jones SE (2011) Microbial seed banks: The ecological and evolutionary implications of dormancy. *Nat Rev Microbiol* 9:119–130.

56. Bochdansky AB, Clouse MA, Herndl GJ (2016) Dragon kings of the deep sea: Marine particles deviate markedly from the common number-size spectrum. *Sci Rep* 6:22633.

57. DeLong EF, et al. (2006) Community genomics among stratified microbial assemblages in the ocean’s interior. *Science* 311:496–503.

58. Martin-Cuadrado AB, et al. (2007) Metagenomics of the deep Mediterranean, a warm bathypelagic habitat. *PLoS One* 2:e914.

59. Lauro FM, Bartlett DH (2008) Prokaryotic lifestyles in deep sea habitats. *Extremophiles* 12:15–25.

60. Salazar G, et al. (2009) The genomic basis of trophic strategy in marine bacteria. *Proc Natl Acad Sci USA* 106:15527–15532.

61. Duarte CM (2015) Seafaring in the 21st century: The Malaspina 2010 circumnavigation expedition. *Limnol Oceanogr* Bull 24:11–14.

62. Catalá TS, et al. (2016) Drivers of fluorescent dissolved organic matter in the global epipelagic ocean. *Limnol Oceanogr* 61:1101–1119.

63. Kirchman D, Kanes E, Hudson R (1985) Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. *Appl Environ Microbiol* 49:599–607.

64. Moren XAG (2017) Temperature regulation of marine heterotrophic prokaryotes increases latitudinally as a breach between bottom-up and top-down controls. *Glob Chang Biol* 23:3956–3964.

65. Padilla CC, et al. (2015) Standard filtration practices may significantly distort planktonic microbial diversity estimates. *Front Microbiol* 6:547.

66. Massana R, Murray AE, Preston CM, DeLong EF (1997) Vertical distribution and phylogenetic characterization of marine planktonic Archaea in the Santa Barbara Channel. *Appl Environ Microbiol* 63:50–56.

67. Parada AE, Needham DM, Fuhrman JA (2016) Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. *Environ Microbiol* 18:1403–1414.

68. Logares R (2017) Workflow for analysing MiSeq Amplicons based on Uparse v1.5. Available at https://doi.org/10.5281/zenodo.269579. Accessed January 1, 2017.

69. Edgar RC (2013) **UPARSE**: Highly accurate OTU sequences from microbial amplicon reads. *Nat Methods* 10:996–998.

70. Zhang J, Robertson, K, Flouri T, Stamatakis A (2014) **PARE**: A fast and accurate Illumina paired-end read merger. *Bioinformatics* 30:614–620.

71. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. *Bioinformatics* 26:2460–2461.

72. Oksanen AJ, et al. (2017) **R Package “vegan”:** Community Ecology Package. Version 2.4-3. Available at https://cran.r-project.org/web/packages/vegan/index.html. Accessed February 1, 2017.

73. Jurasinski G, Retzer V (2015) **R Package “spaa”:** Species Association Analysis. Version 0.2.2. Available at https://cran.r-project.org/web/packages/spaa/index.html. Accessed February 1, 2017.

74. Zhang J (2016) **R Package “simba”:** A Collection of Functions for Similarity Analysis of Vegetation Data. Version 0.3-5. Available at https://cran.r-project.org/web/packages/simba/index.html. Accessed February 1, 2017.

75. Baselga A, Orme D, Villeger S, Bortoli J De, Leprieur F (2017) **R Package “betapart”:** Partitioning Beta Diversity into Turnover and Nestingness Components. Version 1.4-1. Available at https://cran.r-project.org/web/packages/betapart/index.html. Accessed February 1, 2017.

76. Kindt R (2017) **R Package “biodiversityR”:** Package for Community Ecology and Suitability Analysis. Version 2.3-0. Available at https://cran.r-project.org/web/packages/biodiversityR/index.html. Accessed February 1, 2017.

77. Chase JM, Kraft NJB, Smith KG, Vellend M, Inouye BD (2011) Using null models to disentangle variation in community dissimilarity from variation in alpha diversity. *Ecology* 92:24.