Strongly order continuous operators on Riesz spaces

by

AKBAR BAHRAMNEZHAD AND KAZEM HAGHNEJAD AZAR

Department of Mathematic, University of Mohaghegh Ardabili, Ardabil, Iran
E-mail: bahrainmehad@uma.ac.ir

Abstract

In this paper we introduce two new classes of operators that we call strongly order continuous and strongly σ-order continuous operators. An operator $T : E \to F$ between two Riesz spaces is said to be strongly order continuous (resp. strongly σ-order continuous), if $x_{\alpha} \xrightarrow{uo} 0$ (resp. $x_{\alpha} \xrightarrow{\sigma} 0$) in E implies $Tx_{\alpha} \xrightarrow{\sigma} 0$ (resp. $Tx_{\alpha} \xrightarrow{uo} 0$) in F. We give some conditions under which order continuity will be equivalent to strongly order continuity of operators on Riesz spaces. We show that the collection of all so-continuous linear functionals on a Riesz space E is a band of E^\sim.

Key Words: Riesz space, order convergence, unbounded order convergence, strongly order continuous operator.

2010 Mathematics Subject Classification: Primary 46B42, 47B60.

1 Introduction

The concept of unbounded order convergence or uo-convergence was introduced in [8] and is proposed firstly in [3]. It has recently been intensively studied in several papers [4, 5, 6]. Recall that a net $(x_{\alpha})_{\alpha \in A}$ in a Riesz space E is order convergent (or, o-convergent for short) to $x \in E$, denoted by $x_{\alpha} \xrightarrow{o} x$ whenever there exists another net $(y_{\beta})_{\beta \in B}$ in E such that $y_{\beta} \downarrow 0$ and that for every $\beta \in B$, there exists $\alpha_0 \in A$ such that $|x_{\alpha} - x| \leq y_{\beta}$ for all $\alpha \geq \alpha_0$.

A net (x_{α}) in a Riesz space E is unbounded order convergent (or, uo-convergent for short) to $x \in E$ if $|x_{\alpha} - x| \land u \xrightarrow{o} 0$ for all $u \in E^+$. We denote this convergence by $x_{\alpha} \xrightarrow{uo} x$ and write that x_{α} uo-convergent to x. This is an analogue of pointwise convergence in function spaces.

Let \mathbb{R}^A be the Riesz space of all real-valued functions on a non-empty set A, equipped with the pointwise order. It is easily seen that a net (x_{α}) in \mathbb{R}^A uo-converges to $x \in \mathbb{R}^A$ if and only if it converges pointwise to x. For instance in c_0 and $\ell_p(1 \leq p < \infty)$, uo-convergence of nets is the same as coordinate-wise convergence. Assume that (Ω, Σ, μ) is a measure space and let $E = L_p(\mu)$ for some $1 \leq p < \infty$. Then uo-convergence of sequences in $L_p(\mu)$ is the same as almost everywhere convergence. In [9], Wickstead characterized the spaces in which uo-convergence of nets implies uo-convergence and vice versa. In [4], Gao characterized the space E such that in its dual space E^*, uo-convergence implies w^*-convergence and vice versa. He also characterized the spaces in whose dual space simultaneous uo- and w^*-convergence imply weak/norm convergence. We show that the collection of all order bounded strongly order continuous linear functionals on a Riesz space E is a band of E^\sim [Theorem 2.7]. For unexplained terminology and facts on Banach lattices and positive operators, we refer the reader to [11, 2]. Let us start with the definition.

Definition 1. An operator $T : E \to F$ between two Riesz spaces is said to be:
1. Strongly order continuous (or, so-continuous for short), if \(x_\alpha \xrightarrow{uo} 0 \) in \(E \) implies \(Tx_\alpha \xrightarrow{uo} 0 \) in \(F \).

2. Strongly \(\sigma \)-order continuous (or, \(s\sigma_o \)-continuous for short), if \(x_n \xrightarrow{uo} 0 \) in \(E \) implies \(Tx_n \xrightarrow{uo} 0 \) in \(F \).

The collection of all so-continuous operators of \(L_b(E, F) \) will be denoted by \(L_{so}(E, F) \), that is
\[
L_{so}(E, F) := \{ T \in L_b(E, F) : T \text{ is so-continuous} \}.
\]
Similarly, \(L_{s\sigma_o}(E, F) \) will denote the collection of all order bounded operators from \(E \) to \(F \) that are \(s\sigma_o \)-continuous. That is,
\[
L_{s\sigma_o}(E, F) := \{ T \in L_b(E, F) : T \text{ is } s\sigma_o \text{-continuous} \}.
\]
Clearly, we have \(L_{so}(E, F) \subset L_{s\sigma_o}(E, F) \) and \(L_{so}(E, F) \) and \(L_{s\sigma_o}(E, F) \) are both vector subspaces of \(L_b(E, F) \).

Recall that an operator \(T : E \to F \) between two Riesz spaces is said to be order continuous (resp. \(\sigma \)-order continuous) if \(x_\alpha \xrightarrow{uo} 0 \) (resp. \(x_n \xrightarrow{uo} 0 \)) in \(E \) implies \(Tx_\alpha \xrightarrow{uo} 0 \) (resp. \(Tx_n \xrightarrow{uo} 0 \)) in \(F \). The collection of all order continuous operators of \(L_b(E, F) \) will be denoted by \(L_o(E, F) \), that is
\[
L_o(E, F) := \{ T \in L_b(E, F) : T \text{ is order continuous} \}.
\]
Similarly, \(L_c(E, F) \) will denote the collection of all order bounded operators from \(E \) to \(F \) that are \(\sigma \)-order continuous. That is,
\[
L_c(E, F) := \{ T \in L_b(E, F) : T \text{ is } \sigma \text{-order continuous} \}.
\]
Note that every so-continuous (resp. \(s\sigma_o \)-continuous) operator is order (resp. \(\sigma \)-order) continuous. The converse is not true in general. For example the identity operator \(I : c_0 \to c_0 \) is order continuous but is not so-continuous. Indeed, the standard basis sequence of \(c_0 \) is \(uo \)-converges to 0 but is not order convergent.

2 Main Results

Lemma 1. (\cite{5} Lemma 3.1). In a Riesz space we have the following:

1. If \(x_\alpha \xrightarrow{uo} x \) and \(x_\alpha \xrightarrow{uo} y \), then \(x = y \). In other hands, unbounded order limits are uniquely determined.

2. If \(x_\alpha \xrightarrow{uo} x \), \(y_\alpha \xrightarrow{uo} y \) and \(k, r \) are real numbers, then \(kx_\alpha + ry_\alpha \xrightarrow{uo} kx + ry \). Furthermore if \(x_\alpha \xrightarrow{uo} x \) and \(y_\alpha \xrightarrow{uo} y \), then \(x_\alpha \lor y_\alpha \xrightarrow{uo} x \lor y \) and \(x_\alpha \land y_\alpha \xrightarrow{uo} x \land y \). In particular \(x^+_\alpha \xrightarrow{uo} x^+ \), \(x^-_\alpha \xrightarrow{uo} x^- \) and \(|x_\alpha| \xrightarrow{uo} |x| \).

3. If \(x_\alpha \xrightarrow{uo} x \) and \(x_\alpha \geq y \) holds for all \(\alpha \), then \(x \geq y \).
Note that the \(uo \)-convergence in a Riesz space \(E \) does not necessarily correspond to a topology on \(E \). For example, let \(E = c \), the Banach lattice of real valued convergent sequences. Put \(x_n = \sum_{k=1}^{n} e_k \), where \((e_n)\) is the standard basis. Then \((x_n)\) is \(uo \)-convergent to \(x = (1, 1, 1, ...) \), but it is not norm convergent.

Proposition 1. Let \(E, F \) be Riesz spaces such that \(E \) is finite-dimensional. Then \(L_{uo}(E, F) = L_n(E, F) \) and \(L_{s\sigma}(E, F) = L_c(E, F) \).

Proof. Follows immediately if we observe that in a finite-dimensional Riesz space order convergence is equivalent to \(uo \)-convergence. \(\square \)

Recall that a Riesz space is said to be \(\sigma \)-laterally complete if every disjoint sequence has a supremum. For a set \(A \), \(\mathbb{R}^A \) is an example of \(\sigma \)-laterally complete Riesz space.

Proposition 2. Let \(E, F, G \) be Riesz spaces. Then we have the following:

1. If \(T \in L_{uo}(E, F) \) and \(S \in L_n(F, G) \), then \(ST \in L_{uo}(E, G) \). As a consequence, \(L_{uo}(E) \) is a left ideal for \(L_n(E) \). Similarly, \(L_{uo}(E) \) is a left ideal for \(L_c(E) \).

2. If \(E \) is \(\sigma \)-Dedekind complete and \(\sigma \)-laterally complete and \(S \in L_\mathcal{D}(E, F) \) and \(T \in L_{s\sigma}(F, G) \), then \(TS \in L_{s\sigma}(E, G) \). In this case, \(L_{s\sigma}(E, F) = L_c(E, F) \).

Proof.

1. Let \((x_\alpha)\) be a net in \(E \) such that \(x_\alpha \xrightarrow{uo} 0 \). By assumption, \(Tx_\alpha \xrightarrow{o} 0 \). So, \(STx_\alpha \xrightarrow{uo} 0 \). Hence, \(ST \in L_{uo}(E, G) \).

2. Let \(E \) be a \(\sigma \)-Dedekind complete and \(\sigma \)-laterally complete Riesz space. By Theorem 3.9 of [6], we see that a sequence \((x_n)\) in \(E \) is \(uo \)-null if and only if it is order null. So, if \((x_n)\) be a sequence in \(E \) such that \(x_n \xrightarrow{uo} 0 \), then \(x_n \xrightarrow{o} 0 \). Thus, \(Sx_n \xrightarrow{o} 0 \) and then \(TSx_n \xrightarrow{o} 0 \). Hence, \(TS \in L_{s\sigma}(E, G) \). Clearly, we have \(L_{s\sigma}(E, F) = L_c(E, F) \). This ends the proof. \(\square \)

Let \(T : E \rightarrow F \) be a positive operator between Riesz spaces. We say that an operator \(S : E \rightarrow F \) is dominated by \(T \) (or that \(T \) dominates \(S \)) whenever \(|Sx| \leq T|x| \) holds for each \(x \in E \).

Proposition 3. If a positive \(so \)-continuous operator \(T : E \rightarrow F \) dominates \(S \), then \(S \) is \(so \)-continuous.

Proof. Let \(T : E \rightarrow F \) be a positive \(so \)-continuous operator between Riesz spaces such that \(T \) dominates \(S : E \rightarrow F \) and let \(x_\alpha \xrightarrow{uo} 0 \) in \(E \). By part (2) of Lemma 1, \(|x_\alpha| \xrightarrow{uo} 0 \). So, by assumption, \(T|x_\alpha| \xrightarrow{o} 0 \) and from the inequality \(|Sx| \leq T|x| \) and part (2) of Lemma 1 again, we have \(Sx_\alpha \xrightarrow{o} 0 \). Hence, \(S \) is \(so \)-continuous. \(\square \)
For an operator $T : E \to F$ between two Riesz spaces we shall say that its modulus $|T|$ exists (or that T possesses a modulus) whenever $|T| := T \lor (-T)$ exists in the sense that $|T|$ is the supremum of the set $\{-T, T\}$ in $L(E, F)$. If E and F are Riesz spaces with F Dedekind complete, then every order bounded operator $T : E \to F$ possesses a modulus [2 Theorem 1.18]. From this discussion it follows that when E and F are Riesz spaces with F Dedekind complete, then each order bounded operator $T : E \to F$ satisfies

$$T^+(x) = \sup \{Ty : 0 \leq y \leq x\}, \ 	ext{and}$$

$$T^-(x) = \sup \{-Ty : 0 \leq y \leq x\}$$

for each $x \in E^+$.

Theorem 1. For an order bounded linear functional f on a Riesz space E the following statements are equivalent.

1. f is so-continuous.
2. f^+ and f^- are both so-continuous.
3. $|f|$ is so-continuous.

Proof. (1) \Rightarrow (2) By Lemma 1, we may assume that $(x_\alpha) \subset E^+$. Let $x_\alpha \overset{\text{uo}}{\to} 0$ and let (r_α) be a net in \mathbb{R} such that $r_\alpha \downarrow 0$. In view of $f^+ x = \sup \{fy : 0 \leq y \leq x\}$, for each α there exists a net (y_α) in E with $0 \leq y_\alpha \leq x_\alpha$ such that $f^+ x_\alpha - r_\alpha \leq fy_\alpha$. So, $f^+ x_\alpha \leq fy_\alpha + r_\alpha$. Since $x_\alpha \overset{\text{uo}}{\to} 0$, we have $y_\alpha \overset{\text{uo}}{\to} 0$. Thus, by assumption, $fy_\alpha \overset{\alpha}{\to} 0$. It follows from $f^+ x_\alpha \leq (fy_\alpha + r_\alpha) \overset{\alpha}{\to} 0$ that $f^+ x_\alpha \overset{\alpha}{\to} 0$. Hence, f^+ is so-continuous. Now, as $f^- = (-f)^+$, we conclude that f^- is also so-continuous.

(2) \Rightarrow (3) Follows from the identity $|f| = f^+ + f^-$.

(3) \Rightarrow (1) Follows immediately from Proposition 3 by observing that $|f|$ dominates f. \hfill \Box

Remark 1. One can easily formulate by himself the analogue of Theorem 1 for so-continuous operators.

Recall that a subset A of a Riesz space is said to be order closed whenever $(x_\alpha) \subset A$ and $x_\alpha \overset{\alpha}{\to} x$ imply $x \in A$. An order closed ideal is referred to as a band. Thus, an ideal A is a band if and only if $(x_\alpha) \subset A$ and $0 \leq x_\alpha \uparrow x$ imply $x \in A$. In the next theorem we show that $L_{so}(E, \mathbb{R})$ and $L_{s\sigma o}(E, \mathbb{R})$ are both bands of E^\sim. The details follow.

Theorem 2. If E is a Riesz space, then $L_{so}(E, \mathbb{R})$ and $L_{s\sigma o}(E, \mathbb{R})$ are both bands of E^\sim.

Proof. We only show that $L_{so}(E, \mathbb{R})$ is a band of E^\sim. That $L_{s\sigma o}(E, \mathbb{R})$ is a band can be proven in a similar manner. Note first that if $|g| \leq |f|$ holds in E^\sim with $f \in L_{so}(E, \mathbb{R})$, then from Theorem 1 it follows that $g \in L_{so}(E, \mathbb{R})$. That is $L_{so}(E, \mathbb{R})$ is an ideal of E^\sim. To see that the ideal $L_{so}(E, \mathbb{R})$ is a band, let $0 \leq f_\lambda \uparrow f$ in E^\sim with $(f_\lambda) \subset L_{so}(E, \mathbb{R})$, and let $0 \leq x_\alpha \overset{\text{uo}}{\to} 0$ in E. Then for each fixed λ we have

$$0 \leq f(x_\alpha) = ((f - f_\lambda)(x_\alpha) + f_\lambda(x_\alpha)) \overset{\alpha}{\to} 0.$$

So, $f(x_\alpha) \overset{\alpha}{\to} 0$. Thus, $f \in L_{so}(E, \mathbb{R})$, and the proof is finished. \hfill \Box
Problem 1. Can we find a so-continuous operator $T : E \to F$ between Riesz spaces whose modulus is not so-continuous?

References

[1] Y. A. Abramovich, C. D. Aliprantis, An Invitation to Operator Theory, vol. 50, American Mathematical Society, Providence (2002).

[2] C.D. Aliprantis, and O. Burkinshaw, Positive Operators, Springer, Berlin, (2006).

[3] R. Demarr, Partially ordered linear spaces and locally convex linear topological spaces, Illinois J. Math., 8, 601-606 (1964).

[4] N. Gao, Unbounded order convergence in dual spaces, J. Math. Anal. Appl. 419(1), 347-354 (2014).

[5] N. Gao and F. Xanthos, Unbounded order convergence and application to martingales without probability, J. Math. Anal. Appl., 415, 931-947 (2014).

[6] N. Gao, V.G. Troitsky, and F. Xanthos, Uo-convergence and its applications to cesaro means in Banach lattices, Israel J. Math., appear. arXiv:1509.07914 [math.FA].

[7] S. Kaplan, On unbounded order convergence, Real Analysis exchange, 23 (1), 75-184 (1998-99).

[8] H. Nakano, Ergodic theorems in semi-ordered linear spaces, Ann. of Math. (2), 49, 538-556 (1948).

[9] A. W. Wickstead, Weak and unbounded order convergence in Banach lattices, J. Austral. Math. Soc. Ser. A 24, 312-319 (1977).