Solving Intuitionistic Fuzzy Multi-Objective Nonlinear Programming Problem

D Anuradha, V E Sobana
Department of Mathematics, VIT University, Vellore-632014, TN, India
Email: anuradhadhanapal1981@gmail.com

Abstract. This paper presents intuitionistic fuzzy multi-objective nonlinear programming problem (IFMONLPP). All the coefficients of the multi-objective nonlinear programming problem (MONLPP) and the constraints are taken to be intuitionistic fuzzy numbers (IFN). The IFMONLPP has been transformed into crisp one and solved by using Kuhn-Tucker condition. A numerical example is provided to illustrate the approach.

1. Introduction
Nonlinear programming problem (NLPP) is the problem of optimization in which either the objective function is nonlinear, or one or more constraints have a nonlinear relationship or both. Fuzzy NLPP is helpful in solving problems which are challenging and it is impractical to solve the uncertain, subjective nature of the formation of the problem or have an exact solution. Zimmermann [20] introduced the concept of fuzzy NLPP. Bellman and Zadeh [3] discussed the concept of fuzzy decision making and also they discussed fuzzy quantities. Maleki et al. [11] applied the ranking technique for solving LPP with imprecise data in constraints. Tanaka et al. [18] used the technique of ranking for solving mathematical programming problems. Pandian and Jayalakshmi [14] discussed a new procedure for solving fully FLPP with fuzzy variables. Zimmermann [19] proposed a fuzzy programming technique to solve crisp multi-objective LPP. Kiruthiga and Loganathan [5] used the ranking function for solving a fuzzy multi-objective nonlinear fractional programming problem. Loganathan and Kiruthiga [7] proposed a solution procedure for solving fuzzy nonlinear programming problem using the ranking function. Loganathan and Lalitha [8] presented a procedure for finding the solution of fuzzy multi-objective NLPP using alpha-cut. Kirtiwant Ghadle et al. [6] discussed a new algorithm for finding an optimal solution to FNLP. An IFS is one of the generalizations of fuzzy set theory. Out of various higher order fuzzy sets, IFS [1, 2] have been found to be helpful to deal with imprecise information. There are cases where due to lack of available information, the assessment of membership values is not always applicable and consequently there remains an indeterministic part on which hesitation remains. Certainly, fuzzy sets theory is not applicable to deal with such problems; rather intuitionistic fuzzy sets theory is more appropriate. Atanassov [1] in 1986 introduced the concept of IFS. In the uncertain multi-objective decision-making problems, the degree of satisfiability and the degree of unsatisfiability of each alternative with respect to a set of criteria is often expressed as an IFN. By means of a literature survey, we have found out that many authors [10, 12, 13, 17, 9, 15] have discussed LPP under intuitionistic fuzzy environment. Using Taylor series, Irene Hepzibah et al. [4] proposed a procedure for solving IFMONLPP. In this paper, we propose a new method using the concept of a ranking technique for finding an optimal solution to an...
IFMONLPP. The problem is solved by using the Kuhn-Tucker condition and the same is explained with a numerical example.

2. Preliminaries

We need the following basics of IFS, triangular IFN, membership and non-membership function of an intuitionistic fuzzy set/number which can be found in Atanassov [1].

2.1. Definition

Let Y is a nonempty set. An IFN B in Y is given by a set of ordered triples, $B = \{ < y, \mu_B(y), \nu_B(y) ; y \in Y \}$ where $\mu_B(y), \nu_B(y) : Y \to [0,1]$ define respectively, the degree of membership and degree of non-membership of the element $y \in Y$ to the set B, which is a subset of Y, and for every element $0 \leq \mu_B(y) + \nu_B(y) \leq 1$.

2.2. Definition

A triangular IFN I_B is denoted by $I_B = (b_1, b_2, b_3)(b_1', b_2', b_3')$ where $b_1 \leq b_1' \leq b_2 \leq b_2' \leq b_3 \leq b_3'$ with the following membership function $\mu_{I_B}(y)$ and non-membership function $\nu_{I_B}(y)$ is given as:

$$
\mu_{I_B}(y) = \begin{cases}
\frac{y-b_1}{b_2-b_1} & \text{if } b_1 \leq y \leq b_2 \\
\frac{b_2-y}{b_3-b_2} & \text{if } b_2 \leq y \leq b_3 \\
0 & \text{otherwise}
\end{cases}
$$

$$
\nu_{I_B}(y) = \begin{cases}
\frac{b_2-y}{b_3-b_2} & \text{if } b_1 \leq y \leq b_2 \\
\frac{y-b_2}{b_3-b_2} & \text{if } b_2 \leq y \leq b_3 \\
1 & \text{otherwise}
\end{cases}
$$

2.3. Definition

Let $C_I = (c_1, c_2, c_3)(c_1', c_2, c_3')$ and $D_I = (d_1, d_2, d_3)(d_1', d_2, d_3')$ be any two triangular IFNs then the arithmetic operations as follows:

(i) $C_I + D_I = (c_1+d_1, c_2+d_2, c_3+d_3)(c_1'+d_1', c_2+d_2, c_3'+d_3')$

(ii) $C_I - D_I = (c_1-d_1, c_2-d_2, c_3-d_3)(c_1'-d_1', c_2-d_2, c_3'+d_3')$

(iii) $C_I \otimes D_I = (c_1d_1, c_2d_2, c_3d_3)(c_1'd_1', c_2d_2, c_3'd_3')$

(iv) $kC_I = (kc_1, kc_2, kc_3)(kc_1', kc_2, kc_3')$ for $k \geq 0$

(v) $kC_I = (kc_1, kc_2, kc_3)(kc_1', kc_2, kc_3')$ for $k < 0$

(vi) $\frac{C_I}{D_I} = \left(\frac{c_1}{c_3}, \frac{c_2}{c_2'}, \frac{c_3}{c_1'} \right) \left(\frac{c_1'}{c_3'}, \frac{c_2'}{c_2}, \frac{c_3'}{c_1} \right)$

2.4. Definition

The ranking of a triangular IFNs $I_B = (b_1, b_2, b_3)(b_1', b_2, b_3')$ is defined as
\[R(\tilde{B}^I) = \frac{1}{3} \left[\frac{(b_3 - b'_1)(b_2 - 2b'_3 - 2b'_1) + (b_3 - b'_1)(b_1 + b_2) + 3(b'_3 - b'_1)^2}{b_3 - b'_1 + b_3 - b'_1} \right] \]

2.5. Definition
Let \(\tilde{C}^I \) and \(\tilde{D}^I \) be two triangular IFNs. The ranking of \(\tilde{C}^I \) and \(\tilde{D}^I \) by the \(R(.) \) on \(E \), the set of triangular IFNs is defined as follows:

(i) \(R(\tilde{C}^I) > R(\tilde{D}^I) \) if and only if \(\tilde{C}^I > \tilde{D}^I \)
(ii) \(R(\tilde{C}^I) < R(\tilde{D}^I) \) if and only if \(\tilde{C}^I < \tilde{D}^I \)
(iii) \(R(\tilde{C}^I) = R(\tilde{D}^I) \) if and only if \(\tilde{C}^I \approx \tilde{D}^I \)
(iv) \(R(\tilde{C}^I + \tilde{D}^I) = R(\tilde{C}^I) + R(\tilde{D}^I) \)
(v) \(R(\tilde{C}^I - \tilde{D}^I) = R(\tilde{C}^I) - R(\tilde{D}^I) \)

2.6. Definition
The Kuhn-Tucker (KT) conditions are both necessary and sufficient if the objective is concave and each constraint is linear or each constraint function is concave, that is, the problems called as convex programming problems.

2.6.1. General formula of Kuhn-Tucker Condition for Minimization case with \(\leq \) type constraints

Minimize \(g(x) \)
Subject to
\(h_j(x) \leq 0 \)

(i) \(\frac{\partial g}{\partial x_i} + \sum_{j=1}^{m} \lambda_j \frac{\partial h_j}{\partial x_i} = 0 \)
(ii) \(\lambda_j h_j = 0 \)
(iii) \(h_j \leq 0 \)
(iv) \(\lambda_j \geq 0 \)

2.6.2. General formula of Kuhn-Tucker Condition for Maximization case with \(\leq \) type constraints

Maximize \(g(x) \)
Subject to
\(h_j(x) \leq 0 \)

(i) \(\frac{\partial g}{\partial x_i} + \sum_{j=1}^{m} \lambda_j \frac{\partial h_j}{\partial x_i} = 0 \)
(ii) \(\lambda_j h_j = 0 \)
(iii) \(h_j \leq 0 \)
(iv) \(\lambda_j \leq 0 \)

3. Intuitionistic Fuzzy Multi-Objective Nonlinear Programming Problem (IFMONLPP)
Now, the mathematical model of an IFMONLPP is given as follows

(P) \[\text{Maximize (or) Minimize } \bar{Z}^l = \sum_{j} \bar{c}_{ij}^l x_{ij}^l \]

Subject to the constraints

\[\sum_{i=1}^{m} \bar{a}_{ij}^l x_{ij}^l \leq \bar{b}_{ij}^l, \quad i = 1, 2, \ldots, m \]

\[\bar{x}_{ij}^l \geq 0, \quad j = 1, 2, \ldots, n \]

where \(\bar{A}^l = \bar{a}_{ij}^l, \bar{b}_{ij}^l, \bar{x}_{ij}^l \) are triangular IFNs.

The proposed algorithm for IFMONLPP proceeds as follows:

Step 1: Compute the ranking index for each parameter of the given problem (P) by the definition 2.4.

Step 2: Replace the intuitionistic fuzzy parameters by their respective ranking indices obtained from Step 1.

Step 3: Solve the reduced problem obtained from Step 2 using the Kuhn-Tucker condition to find the optimal solution.

The solution procedure for obtaining an optimal solution to IFMONLPP using the proposed algorithm is illustrated by the following example.

3.1. Example
Consider the following IFMONLPP problem

Minimum \(\bar{z} = (26, 28, 30)(24, 28, 32) \bar{x}_1 + (10, 12, 14)(8, 12, 16) \bar{x}_2 \) (1)

Maximum \(\bar{z} = (30, 32, 34)(28, 32, 36) \bar{x}_1 + (20, 24, 28)(18, 24, 30) \bar{x}_2 \) (2)

Subject to the constraints

\((6, 8, 10)\bar{x}_1 + (4, 8, 12)\bar{x}_2 \leq (38, 40, 42)(36, 40, 44) \) (3)

\((4, 8, 12)(2, 8, 14)\bar{x}_1 + (14, 16, 18)(12, 16, 20)\bar{x}_2 \leq (28, 32, 36)(24, 32, 40) \)

Now using step1 and step 2 the ranking indices for the parameters corresponding to the given IFMONLPP is given below

Minimum \(\bar{z} = 28 \bar{x}_1 + 12 \bar{x}_2 \) (4)

Maximum \(\bar{z} = 32 \bar{x}_1 + 24 \bar{x}_2 \) (5)

Subject to the constraints

\(8 \bar{x}_1 + 12 \bar{x}_2 \leq 40 \)

\(8 \bar{x}_1 + 16 \bar{x}_2 \leq 32 \) (6)

\(\bar{x}_1, \bar{x}_2 \geq 0 \)

Now, by solving the reduced problem (4) with (6) and (5) with (6) using Kuhn-Tucker conditions (2.6.1 and 2.6.2), we obtain the following optimal solutions:

\(\bar{x}_1 = 0.4, \bar{x}_2 = 1.8 \) and Minimize \(\bar{Z} = 48 \)

\(\bar{x}_1 = 1, \bar{x}_2 = 2.67 \) and Maximize \(\bar{Z} = 114 \)

4. Conclusion
In this paper, we introduced a new method for solving IFMONLPP. In the proposed algorithm, IFMONLPP is reduced to MONLPP using the ranking function. The problem is solved by using the Kuhn-Tucker condition and the same is explained with a numerical example.

References
[1] Atanassov K T 1986 Fuzzy Set Sys. 20 87-96
[2] Atanassov K T 1989 Fuzzy Set Sys. 33 37-46
[3] Bellman R E and Zadeh L A 1970 Management Science 141-164
[4] Irene Hepzibah R, Nagoor Gani A and Vidhya R 2014 Inter. J. of Inno. Res. Sci. Engin. and Tech. 314105-14112
[5] Kiruthiga M and Loganathan C 2015 Inter. J. of Con. Res. Computer Sci. and Tech. 1 208-212
[6] Kirtiwant Ghadle P and TanajiPawar S 2015 Inter. J. of Res. Engin.and Tech. 4 371-376
[7] Loganathan C and Kiruthiga M 2016 Inter. J. of Recent Trends in Engin. Res. 2 512-520
[8] Loganathan C and Lalitha M 2016 Inter. J. of Statistics and App. Math. 1 21-25
[9] Luhandjula M 1988 Fuzzy Set Sys. 30 257-288
[10] Mahapatra G S and Mitra M, Roy T K 2010 Inter. J. of Fuzzy Sys. 12 259- 266
[11] Maleki H R and Tata Mashinchi M 2000 Fuzzy Set Sys. 21-33
[12] Nachammari and Thangaraj 2013 Researcher 5 65-70
[13] Nagoorgani and Ponnalagu 2012 App. Math. Sci. 6 3467-3474
[14] Pandian P and Jyalakskmi M 2010 App. Math. Sci. 997-1004
[15] Sakawa M and Yano H 1989 Fuzzy Set Sys. 30 221-238
[16] Taha H A Introduction Prentice Hall of India(PVT) New Delhi
[17] Tanaka H and Asai K 1984 Fuzzy Set Sys. 139 1-10
[18] Tanaka H, Okuda T and Asai K 1973 J. of Cybernetics and Sys. 37-46
[19] Zimmermann H J 1976 Inter. J. general sys. 214 209-215
[20] Zimmermann H J 1978 Fuzzy Set Sys. 1 45-55