In the face of the increasing worldwide problem of antimicrobial resistance, many classes of antimicrobial agents have become less useful for therapy (1). Fluoroquinolones continued to be used for the treatment of various infections, because they are active against both Gram-positive and Gram-negative bacteria (2-4). However, resistance to the second-generation fluoroquinolones has increased against many bacterial species. Gemifloxacin is a new fluoroquinolone under development with enhanced affinity for topoisomerase IV, and DNA gyrase, and has the lowest minimum inhibitory concentrations (MICs) against clinical isolates of \textit{Streptococcus pneumoniae} (5-7). In Korea, resistant bacteria are relatively more prevalent than in other industrialized countries. In this study, we studied the in vitro activities of gemifloxacin, gatifloxacin, moxifloxacin, levofloxacin, ciprofloxacin, and other commonly used antimicrobial agents against 1,689 bacterial strains isolated at four Korean university hospitals during 1999-2000. Minimum inhibitory concentrations (MICs) were determined using the agar dilution method of National Committee for Clinical Laboratory Standards. Gemifloxacin had the lowest MICs for the respiratory pathogens: 90% of \textit{Streptococcus pneumoniae}, \textit{Moraxella catarrhalis}, and \textit{Haemophilus influenzae} were inhibited by 0.06, 0.03, and 0.03 mg/L, respectively. Gemifloxacin was more active than the other fluoroquinolones against methicillin-susceptible \textit{Staphylococcus aureus}, coagulase-negative staphylococci, streptococci, and \textit{Enterococcus faecalis}. The MICs of gemifloxacin for \textit{Klebsiella oxytoca}, \textit{Proteus vulgaris}, and non-typhoidal \textit{Salmonella} spp. were 0.25, 1.0, and 0.12 mg/L, respectively, while those for other Gram-negative bacilli were 4-64 mg/L. In conclusion, gemifloxacin was the most active among the comparative agents against Gram-positive species, including respiratory pathogens isolated in Korea.

Key Words: Fluoroquinolone; Gemifloxacin; Korea; \textit{Streptococcus pneumoniae}; \textit{Haemophilus influenzae}

INTRODUCTION

In the face of the increasing worldwide problem of antimicrobial resistance, many classes of antimicrobial agents have become less useful for therapy (1). Fluoroquinolones continued to be used for the treatment of various infections, because they are active against both Gram-positive, and Gram-negative bacteria (2-4). However, resistance to the second-generation fluoroquinolones has increased against many bacterial species. Gemifloxacin is a new fluoroquinolone under development with enhanced affinity for topoisomerase IV, and DNA gyrase, and has the lowest minimum inhibitory concentrations (MICs) against clinical isolates of \textit{Streptococcus pneumoniae} (5-7). In Korea, resistant bacteria are relatively more prevalent than in other industrialized countries, and are a serious problem currently (8). In this study, we tested the in vitro activity of gemifloxacin, and comparative agents against recent Korean bacterial isolates.

MATERIALS AND METHODS

A total of 1,689 clinical bacterial isolates were collected from four Korean university hospitals during 1999-2000. \textit{Neisseria gonorrhoeae} isolates were obtained, mostly from female patients. Identifications of species were performed by conventional methods or through the usage of commercial kits. MICs of gemifloxacin and other fluoroquinolones against \textit{Klebsiella oxytoca}, \textit{Proteus vulgaris}, \textit{Salmonella} spp., \textit{Staphylococcus aureus}, \textit{Haemophilus influenzae}, and \textit{Methicillin-resistant Staphylococcus aureus} (MRSA) were determined using the agar dilution method of National Committee for Clinical Laboratory Standards (NCCLS) agar dilution method (9) with Mueller-Hinton agar (BBL, Cockeysville, MD, U.S.A.), except for \textit{streptococci}, \textit{N. gonorrhoeae}, and \textit{Haemophilus influenzae}, for which 5% lysed sheep blood-supplemented Mueller-Hinton agar, IsoVitaleX (BBL)-supplemented GC agar, and \textit{Haemophilus} Test Medium, respectively, were used. The antimicrobial agents used were: gemifloxacin (LGCI, Seoul, Korea), gatifloxacin (Bristol-Myers Squibb, Princeton, New Jersey, U.S.A.), moxifloxacin (AstraZeneca, Chalfont St. Giles, U.K.), levofloxacin (Pharmacia & Upjohn, Skokie, IL, U.S.A.), and ciprofloxacin (Janssen Research Foundation, Spring House, PA, U.S.A.).\n
Acknowledgement

This study was supported by a grant from the Korean Ministry of Science and Technology in the Korean National Research Laboratory Program (KRF-2001-102-001-001). The National Committee for Clinical Laboratory Standards (NCCLS) is acknowledged for supplying the agar dilution susceptibility test plates. The authors wish to thank EUCARe (European Committee for Antimicrobial Resistance Surveillance) for their support and assistance in the collection of bacterial isolates.\n
Address for correspondence

Moon Won Kang, M.D.\nDepartment of Internal Medicine\nThe Catholic University of Korea, 505 Banpo-dong, Seocho-gu, Seoul 137-701, Korea\nTel : +82-2-590-1402, Fax : +82-2-590-1409\nE-mail : infect@cmc.cuk.ac.kr
Table 1. In vitro activity of gemifloxacin, and other antimicrobial agents against recent clinical isolates of Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis

Organism (no. of isolates tested), and antimicrobial agent	MIC (mg/L)	50%	90%
Streptococcus pneumoniae, all (103)			
Gemifloxacin	0.015-2	0.03	0.06
Moxifloxacin	0.12-8	0.25	0.25
Gatifloxacin	0.03-8	0.5	0.5
Levofloxacin	0.5-32	1	2
Ciprofloxacin	0.5-64	2	4
Penicillin	≤0.008-8	2	4
Ceftriaxone	0.015-4	1	2
ERYTHROMYCIN	0.03->128	128	>128
S. pneumoniae, Penicillin susceptible (9)			
Gemifloxacin	0.03-0.06	0.03	
Moxifloxacin	0.12-0.25	0.25	
Gatifloxacin	0.5		
Levofloxacin	1-2		
Ciprofloxacin	1-4		
Penicillin	≤0.008-0.06	0.015	
Ceftriaxone	0.015-1	0.03	
ERYTHROMYCIN	0.03->128	0.06	
S. pneumoniae, Penicillin intermediate (16)			
Gemifloxacin	0.015-0.12	0.03	0.06
Moxifloxacin	0.12-0.25	0.25	0.25
Gatifloxacin	0.06-0.5	0.25	0.5
Levofloxacin	1-2	1	2
Ciprofloxacin	0.5-4	1	4
Penicillin	0.12-1	0.5	1
Ceftriaxone	0.015-4	0.25	1
ERYTHROMYCIN	0.03->128	64	>128
S. pneumoniae, Penicillin resistant (78)			
Gemifloxacin	0.015-2	0.03	0.06
Moxifloxacin	0.12-8	0.25	0.25
Gatifloxacin	0.03-8	0.5	0.5
Levofloxacin	0.5-32	1	2
Ciprofloxacin	1-64	2	4
Penicillin	2-8	4	4
Ceftriaxone	0.12-4	1	2
ERYTHROMYCIN	0.03->128	128	>128
Haemophilus influenzae, all (73)			
Gemifloxacin	≤0.008-0.12		

RESULTS AND DISCUSSION

The activities of gemifloxacin, and the other antimicrobial agents against common respiratory pathogens are shown in Table 1. All isolates of S. pneumoniae, except one, were inhibited by ≤0.25 mg/L of gemifloxacin. One S. pneumoniae isolate with a gemifloxacin MIC of 2 mg/L was inhibited by 32 mg/L of levofloxacin, 64 mg/L of ciprofloxacin, 8 mg/L of moxi-
Gemifloxacin Against Korean Bacterial Isolates

Floxacin, and 8 mg/L of gatifloxacin. Gemifloxacin (MIC₉₀ 0.06 mg/L) was 4 to 64-fold more potent than the other quinolones (MIC₉₀ 0.25-4 mg/L), and ≥ 32-fold more potent than the non-quinolone comparators (MIC₉₀ 2->128 mg/L) for <i>S. pneumoniae</i>. The percentage of strains with a ciprofloxacin MICs of ≥ 4 mg/L was 14%, and those with a levofloxacin MICs of ≥ 8 mg/L was 1.5%. These results indicate that the resistance rates were higher than in the United States (11), and in Japan (12).

Ninety-one percent of <i>S. pneumoniae</i> (94/103) were penicillin non-susceptible, but 90% of the isolates were inhibited by ≤ 0.06 mg/L of gemifloxacin. These results were similar to those from other reports (6, 7), although two studies from North America showed a statistically significant association between resistance to penicillin, and fluoroquinolone (13, 14).

In this study, the rates of -lactamase-producing <i>H. influenzae</i>, and <i>Moraxella catarrhalis</i> were found to be higher than those reported in other countries, 66%, and 95%, respectively.

Table 2. In vitro activity of gemifloxacin, and other antimicrobial agents against other Gram-positive aerobes

Organism (no. of isolates tested), and antimicrobial agent	MIC (mg/L) Range	50%	90%
Methicillin-susceptible <i>Staphylococcus aureus</i> (86)			
Gemifloxacin	0.015-0.5	0.06	0.12
Moxifloxacin	0.03-32	0.12	0.25
Gatifloxacin	0.03-4	0.12	0.25
Levofloxacin	0.015-4	0.25	0.5
Gatifloxacin	1-32	0.5	1
Oxacillin	≤ 0.12-2	0.5	1
Erythromycin	≤ 0.12->128	0.5	>128
Gentamicin	≤ 0.12->128	1	64
Vancomycin	≤ 0.12-2	1	1
Methicillin-resistant <i>S. aureus</i> (88)			
Gemifloxacin	0.03->128	4	>128
Moxifloxacin	0.015->128	16	128
Gatifloxacin	0.06->128	8	>128
Levofloxacin	0.25->128	32	>128
Ciprofloxacin	0.25->128	64	>128
Oxacillin	4->128	>128	>128
Erythromycin	0.25->128	>128	>128
Gentamicin	≤ 0.12-128	1	2
Vancomycin	≤ 0.12-2	1	2
Methicillin-susceptible coagulase-negative <i>staphylococci</i> (60)			
Gemifloxacin	≤ 0.008-1	0.03	0.12
Moxifloxacin	0.015-4	0.12	0.25
Gatifloxacin	0.015-4	0.12	0.25
Levofloxacin	0.03-8	0.25	0.25
Ciprofloxacin	0.015-8	0.25	0.5
Oxacillin	≤ 0.12-0.25	0.25	0.25
Erythromycin	≤ 0.12->128	0.25	>128
Gentamicin	≤ 0.12-128	0.5	16
Vancomycin	≤ 0.12-2	1	2
Methicillin-resistant coagulase-negative <i>staphylococci</i> (63)			
Gemifloxacin	≤ 0.008-8	0.12	1
Moxifloxacin	0.015-8	0.25	4
Gatifloxacin	0.03-8	0.25	4
Levofloxacin	0.12-32	0.25	8
Ciprofloxacin	0.015->128	0.25	128
Oxacillin	0.5->128	4	128
Erythromycin	≤ 0.12->128	64	>128
Gentamicin	0.25->128	64	>128
Vancomycin	≤ 0.12-2	1	2
<i>Enterococcus faecalis</i> (78)			
Gemifloxacin	≤ 0.008-8	0.25	8
Moxifloxacin	0.06-32	0.5	16

Ninety-one percent of <i>S. pneumoniae</i> (94/103) were penicillin non-susceptible, but 90% of the isolates were inhibited by ≤ 0.06 mg/L of gemifloxacin. These results were similar to those from other reports (6, 7), although two studies from North America showed a statistically significant association between resistance to penicillin, and fluoroquinolone (13, 14).

In this study, the rates of β-lactamase-producing <i>H. influenzae</i>, and <i>Moraxella catarrhalis</i> were found to be higher than those reported in other countries, 66%, and 95%, respectively.
Table 3. In vitro activity of gemifloxacin, and other antimicrobial agents against Enterobacteriaceae, glucose-nonfermenters, and Neisseria gonorrhoeae (Table 3. Continued next)

Organism (no. of isolates tested), and antimicrobial agent	MIC (mg/L)	Organism (no. of isolates tested), and antimicrobial agent	MIC (mg/L)
Escherichia coli (81)			
Gemifloxacin	≤ 0.008-128	0.12 64	
Moxifloxacin	≤ 0.008-128	0.25 64	
Gatifloxacin	≤ 0.008-64	0.06 8	
Levofloxacin	≤ 0.008-128	0.25 16	
Ciprofloxacin	≤ 0.008-128	0.12 >128	
Ampicillin	2-128 >128	>128 >128	
Cefuroxime	1-128 4	32	
Ceftriaxone	≤ 0.008-128	0.06 16	
Imipenem	0.03-1	0.25 0.25	
Amoxicillin-clavulanic acid	2-128 32	64	
Gentamicin	0.25-128 1	>128 >128	
Klebsiella pneumoniae (81)			
Gemifloxacin	0.03-128	0.06 4	
Moxifloxacin	0.06-128	0.25 4	
Gatifloxacin	0.015-128	0.06 2	
Levofloxacin	0.03-128	0.06 4	
Ciprofloxacin	≤ 0.008-128	0.03 2	
Ampicillin	4-128 >128	>128 >128	
Cefuroxime	0.5-128 4	>128 >128	
Ceftriaxone	0.015-128	0.06 128	
Imipenem	0.03-4	0.25 4	
Amoxicillin-clavulanic acid	0.5-128 8	64	
Gentamicin	0.25-128 0.5	>128 >128	
Klebsiella oxytoca (55)			
Gemifloxacin	≤ 0.008-8	0.06 0.25	
Moxifloxacin	0.03-8	0.12 1	
Gatifloxacin	0.015-2	0.06 0.12	
Levofloxacin	0.03-2	0.06 0.12	
Ciprofloxacin	≤ 0.008-2	0.015 0.06	
Ampicillin	32-128 64	>128 >128	
Cefuroxime	1-128 4	64	
Ceftriaxone	0.03-128	0.12 32	
Imipenem	0.12-1	0.25 0.5	
Amoxicillin-clavulanic acid	1-128 8	32	
Gentamicin	0.25-128 0.5	>128 >128	
Proteus vulgaris (42)			
Gemifloxacin	0.015-16	0.25 1	
Moxifloxacin	0.12-16	0.5 4	
Gatifloxacin	0.015-2	0.12 0.5	
Levofloxacin	0.015-1	0.06 0.25	
Ciprofloxacin	0.015-1	0.03 0.25	
Ampicillin	2-128 >128	>128 >128	
Cefuroxime	1-128 >128	>128 >128	
Ceftriaxone	≤ 0.008-4	0.12 1	
Imipenem	0.03-8	2 4	
Amoxicillin-clavulanic acid	0.12-128 8	64	
Gentamicin	0.25-16 0.5	>128 >128	
P. mirabilis (63)			
Gemifloxacin	0.03-16	0.25 8	
Moxifloxacin	0.06-64	1 8	
Gatifloxacin	0.03-16	0.25 2	
Levofloxacin	0.03-8	0.12 2	
Ciprofloxacin	0.015-4	0.06 1	
Ampicillin	1-128 128	>128 >128	

(Continued next page)
Table 3. (Continued from the previous page) In vitro activity of gemifloxacin, and other antimicrobial agents against Enterobacteriaceae, glucose-nonfermenters, and Neisseria gonorrhoeae

Organism (no. of isolates tested), and antimicrobial agent	MIC (mg/L)	Range	50%	90%
Serratia marcescens (61)				
Gemifloxacin	0.03-128	2	16	
Moxifloxacin	0.12-128	1	32	
Gentamicin	0.25-128	8	128	
Amoxicillin-clavulanic acid	0.25-128	64	>128	
Ceftriaxone	≤0.008-128	0.03	0.5	
Cefuroxime	≤0.06-128	2	64	
Imipenem	0.5-8	1	4	
Gentamicin	0.25-128	8	128	
Amoxicillin-clavulanic acid	0.25-128	16	>128	
Pseudomonas aeruginosa (83)				
Gemifloxacin	0.25-128	4	128	
Moxifloxacin	0.5-128	16	>128	
Gentamicin	0.25-128	2	16	
Ceftriaxone	>128	>128		
Gentamicin	1-128	16	>128	
Acinetobacter baumannii (84)				
Gemifloxacin	0.015-64	8	64	
Ceftriaxone	0.25-128	8	>128	
Gentamicin	0.5-128	2	16	

(15). Although all of the isolates were inhibited by ≤1 mg/L of all of the fluoroquinolones tested, gemifloxacin had the lowest MIC₉₀ and MIC₅₀, regardless of β-lactamase production. This finding is consistent with other reports (5-7, 16, 17).

The MIC₉₀ of gemifloxacin for methicillin-susceptible *S. aureus* (MSSA), and methicillin-susceptible, and -resistant coagulase-negative staphylococci were 0.12, 0.12, and 1 mg/L, respectively (Table 2). In the present study, gemifloxacin was 2 to 128-fold more potent than the other quinolones (MIC₉₀ 0.25-128 mg/L), and 2 to >128-fold more potent than the non-quinolone comparators (MIC₉₀ 0.25-128 mg/L) for these isolates. Most of the methicillin-resistant *S. aureus* (MRSA) isolates were less susceptible than MSSA to all of the fluoroquinolones.

None of the *E. faecalis* isolates in this study were resistant to vancomycin, while 20% of the *Enterococcus faecium* isolates were vancomycin resistant (Table 2). The MIC₉₀ (0.25 mg/L), and MIC₅₀ (8 mg/L) of gemifloxacin were 2 to 8-fold lower than the other quinolones for *E. faecalis*. Gemifloxacin was the most potent of the fluoroquinolones studied against *E. faecalis*; however, strains with reduced gemifloxacin susceptibilities were noted, particularly in *E. faecium*. For streptococci other than *S. pneumoniae*, the MIC₉₀ of gemifloxacin was 0.25 mg/L, which was 1- to 16-fold lower than that of the other quinolones.

The in vitro activity of fluoroquinolones against Gram-negative bacilli was found to vary significantly, depending on species. In general, the MICs of ciprofloxacin were lower than those of the other quinolones for Gram-negative bacilli, except for *E. coli*, Providencia spp., *Acinetobacter baumannii*, and *Stenotrophomonas maltophilia*. The MIC₉₀ of gemifloxacin for *K. oxytoca*, *Proteus vulgaris*, and non-typhoidal Salmonella were 0.25, 1.0, and 0.12 mg/L, respectively, while those for other Enterobacteriaceae were 4-64 mg/L, which were similar to or slightly higher than those of ciprofloxacin (Table 3). None of the *N. gonorrhoeae* isolates tested were susceptible to penicillin. The MIC₉₀ of ciprofloxacin was 0.5 mg/L, and 92% of *N. gonorrhoeae* were non-susceptible to ciprofloxacin. This rate was higher than that of other reports. Ciprofloxacin-non-sus-
ceptible N. gonorrhoeae also showed reduced susceptibility to other fluoroquinolones, but the MIC_{50} of gemifloxacin, and gatifloxacin were 4-fold lower than that of ciprofloxacin.

The quinolones are absorbed quickly, attaining maximum plasma concentration within 1-2 hr of oral administration. The maximum plasma concentrations (bronchial mucosa: plasma ratios) were 1.2 mg/L (7.2), 1.2 mg/L (2.1), 3.9 mg/L (1.7), 5.1 mg/L (1.6), and 2.3 mg/L (1.7) with a single oral administration of 520 mg gemifloxacin, 200 mg moxifloxacin, 400 mg gatifloxacin, 500 mg levofloxacin, and 500 mg ciprofloxacin, respectively (18, unpublished data). Therefore, it was considered those concentrations of fluoroquinolones in bronchial mucosa were 8.6, 2.5, 6.6, 8.2, 3.9 mg/L, respectively.

In conclusion, gemifloxacin was most active in vitro against Gram-positive species, including respiratory pathogens isolated in Korea. Therefore, gemifloxacin should be useful for the treatment of the majority of respiratory, and other infections, especially those due to Gram-positive cocci.

ACKNOWLEDGMENT

This study was supported by the research funds from LGCI/Life Science, Seoul, Korea.

REFERENCES

1. Kunin CM. Antibiotic Armageddon. Clin Infect Dis 1997; 25: 240-1.
2. Cormican MG, Jones RN. Antimicrobial activity and spectrum of LB20304, a novel fluoronaphthyridone. Antimicrob Agents Chemother 1997; 41: 204-11.
3. Hannan PC, Woodnutt G. In vitro activity of gemifloxacin (SB 265805; LB20304a) against human mycoplasmas. J Antimicrob Chemother 2000; 45: 367-9.
4. Oh JI, Paek KS, Ahn MJ, Kim MY, Hong CY, Kim IC, Kwak JH. In vitro and in vivo evaluation of LB20304, a new fluoronaphthyridone. Antimicrob Agents Chemother 1996; 40: 1564-8.
5. Deshpande LM, Jones RN. Antimicrobial activity of advanced-spectrum fluoroquinolones tested against more than 2000 contemporary bacterial isolates of species causing community-acquired respiratory tract infections in the United States. Diag Microbiol Infect Dis 2000; 37: 139-42.
6. King A, May J, French G, Phillips I. Comparative in vitro activity of gemifloxacin. J Antimicrob Chemother 2000; 45(Suppl 1): 1-12.
7. Wise R, Andrews JM. The in-vitro activity and tentative breakpoint of gemifloxacin, a new fluoroquinolone. J Antimicrob Chemother 1999; 44: 679-88.
8. Lee K, Chang CL, Lee NY, Kim HS, Hong KS, Cho HC. Korean Nationwide Surveillance of Antimicrobial Resistance Group. Korean nationwide surveillance of antimicrobial resistance of bacteria in 1998. Yonsei Med J 2000; 41: 497-506.
9. National Committee for Clinical Laboratory Standards. Performance Standards for Antimicrobial Susceptibility Testing-Tenth Informational Supplement (Aerobic Dilution): M100-S10 (M7). Wayne, PA: NCCLS, 2000.
10. Doern GV, Heilmann KP, Huyhn HK, Rhomberg PR, Coffman SL, Brueggemann AB. Antimicrobial resistance among clinical isolates of Streptococcus pneumoniae in the United States during 1999-2000, including a comparison of resistance rates since 1994-1995. Antimicrob Agents Chemother 2001; 45: 1721-9.
11. Sahm DF, Peterson DE, Critchley IA, Thornsberry CA. Analysis of ciprofloxacin activity against Streptococcus pneumoniae after 10 year of use in the United States. Antimicrob Agents Chemother 2000; 44: 2512-4.
12. Yamaguchi K, Miyazaki S, Kashitani F, Iwata M, Kanda M, Tsujio Y, Okada J, Tazawa Y, Watanabe N, Uehara N. Activities of antimicrobial agents against 5,180 clinical isolates obtained from 26 medical institutions during 1998 in Japan. Jpn J Antimicrob Chemother 2000; 53: 387-408.
13. Chen DK, McGeer A, de Azavedo JC, Low DE. Decreased susceptibility of Streptococcus pneumoniae to fluoroquinolones in Canada. N Engl J Med 1999; 341: 233-9.
14. Whitney CG, Farley MM, Hadler J, Harrison LH, Lexau C, Reingold A, Lefkowitz L, Cieslak PR, Cetron M, Zell ER, Jorgensen JH, Schuchat A. Increasing prevalence of multidrug-resistant Streptococcus pneumoniae in the United States. N Engl J Med 2000; 343: 1917-24.
15. Doern GV, Jones RN, Pfaller MA, Kreugler K. Haemophilus influenzae and Moraxella catarrhalis from patients with community-acquired respiratory tract infections: antimicrobial susceptibility patterns from the SENTRY Antimicrobial Surveillance Program (United States and Canada, 1997). Antimicrob Agents Chemother 1999; 43: 385-9.
16. McCloskey L, Moore T, Niconovich N, Donald B, Broskey J, jakielaszek C, Rittenhouse S, Coleman K. In vitro activity of gemifloxacin against a broad range of recent clinical isolates from the USA. J Antimicrob Chemother 2000; 45(Suppl 1): 13-21.
17. Rittenhouse S, McCloskey L, Broskey J, Niconovich N, jakielaszek C, Poupard J, Coleman K. In vitro antibacterial activity of gemifloxacin and comparator compounds against common respiratory pathogens. J Antimicrob Chemother 2000; 45(Suppl 1): 23-7.
18. Zhanel GG, Noreddin AM. Pharmacokinetics and pharmacodynamics of the new fluoroquinolones: focus on respiratory infections. Curr Opin Pharmacol 2001; 1: 459-63.