RATIONALLY ISOTROPIC EXCEPTIONAL PROJECTIVE HOMOGENEOUS VARIETIES ARE LOCALLY ISOTROPIC

I. PANIN AND V. PETROV

Abstract. Assume that R is a local regular ring containing an infinite perfect field, or that R is the local ring of a point on a smooth scheme over an infinite field. Let K be the field of fractions of R and $\text{char}(K) \neq 2$. Let X be an exceptional projective homogeneous scheme over R. We prove that in most cases the condition $X(K) \neq \emptyset$ implies $X(R) \neq \emptyset$.

1. Introduction

We prove the following theorem.

Theorem 1. Let R be local regular ring containing an infinite perfect field, or the local ring of a point on a smooth scheme over an infinite field, K be the fraction field of R and $\text{char}(K) \neq 2$. Let G be a split simple group of exceptional type (that is, E_6, E_7, E_8, F_4, or G_2), P be a parabolic subgroup of G, ξ be a class from $H^1(R, G)$, and $X = \xi(G/P)$ be the corresponding homogeneous space. Assume that $P \neq P_7$, P_8, $P_{7,8}$ in case $G = E_8$, $P \neq P_7$ in case $G = E_7$, and $P \neq P_1$ in case $G = E_7^{ad}$. Then the condition $X(K) \neq \emptyset$ implies $X(R) \neq \emptyset$.

2. Purity of some H^1 functors

Let A be a commutative noetherian domain of finite Krull dimension with a fraction field F. We say that a functor F from the category of commutative A-algebras to the category of sets satisfies purity for A if we have

$$\text{Im} [F(A) \to F(F)] = \bigcap_{ht p=1} \text{Im} [F(A_p) \to F(F)].$$

If \mathcal{H} is an étale group sheaf we write $H^1(-, \mathcal{H})$ for $H^1_{\text{ét}}(-, \mathcal{H})$ below through the text. The following theorem is proven in the characteristic zero case [Pa2, Theorem 4.0.3]. We extend it here to an arbitrary characteristic case.

Theorem 2. Let R be the regular local ring from Theorem 1 and $k \subset R$ be the subfield of R mentioned in that Theorem. Let

$$(*) \quad 1 \to Z \to G \to G' \to 1$$

be an exact sequence of algebraic k-groups, where G and G' are reductive and Z is a closed central subgroup scheme in G. If the functor $H^1(-, G')$ satisfies purity for R then the functor $H^1(-, G)$ satisfies purity for R as well.

Lemma 1. Consider the category of R-algebras. The functor

$$R' \mapsto F(R') = H^1_{\text{fppf}}(R', Z)/\text{Im} (\delta_{R'}),$$

where δ is the connecting homomorphism associated to sequence (*), satisfies purity for R.

Proof. Similar to the proof of [Pa2, Theorem 12.0.36]\hfill \Box

Lemma 2. The map

$$H^2_{\text{fppf}}(R, Z) \to H^2_{\text{fppf}}(K, Z)$$

is injective.

The authors are partially supported by RFBR 12-01-92695. The second author is partially supported by RFBR 12-01-31100.
Proof. Similar to the proof of [Pa] Theorem 13.0.38.

Proof of Theorem 2 Reproduce the diagram chase from the proof of [Pa2] Theorem 4.0.3. For that consider the commutative diagram

\[
\begin{array}{cccccc}
\{1\} & \longrightarrow & \mathcal{F}(K) & \overset{\delta_K}{\longrightarrow} & H^1(K, G) & \overset{\pi_K}{\longrightarrow} & H^1(K, G') \\
& & \alpha & \downarrow & & \downarrow & \gamma \\
\{1\} & \longrightarrow & \mathcal{F}(R) & \overset{\delta}{\longrightarrow} & H^1(R, G) & \overset{\pi}{\longrightarrow} & H^1(R, G') \\
& & & & \Delta & \downarrow & \Delta \\
& & & & H^2_{fppf}(K, Z) & \overset{\alpha_1}{\longrightarrow} & H^2_{fppf}(R, Z)
\end{array}
\]

Let \(\xi \in H^1(K, G) \) be an \(R \)-unramified class and let \(\tilde{\xi} = \pi_K(\xi) \). Clearly, \(\tilde{\xi} \in H^1(K, G') \) is \(R \)-unramified. Thus there exists an element \(\tilde{\xi}' \in H^1(R, G') \) such that \(\tilde{\xi}' = \tilde{\xi} \). The map \(\alpha_1 \) is injective by Lemma 2. One has \(\Delta(\tilde{\xi}') = 0 \), since \(\Delta_K(\tilde{\xi}) = 0 \). Thus there exists \(\xi' \in H^1(R, G) \) such that \(\pi(\xi') = \xi' \).

The group \(\mathcal{F}(K) \) acts on the set \(H^1(K, G) \), since \(Z \) is a central subgroup of the group \(G \). If \(a \in \mathcal{F}(K) \) and \(\xi \in H^1(K, G) \), then we will write \(a \cdot \xi \) for the resulting element in \(H^1(K, G) \).

Further, for any two elements \(\zeta_1, \zeta_2 \in H^1(K, G) \), having the same images in \(H^1(K, G) \) there exists a unique element \(a \in \mathcal{F}(K) \) such that \(a \cdot \zeta_1 = \zeta_2 \). These remarks hold for the cohomology of the ring \(R \), and for the cohomology of the rings \(R_p \), where \(p \) runs over all height 1 prime ideals of \(R \). Since the images of \(\xi_K \) and \(\xi \) coincide in \(H^1(K, G') \), there exists a unique element \(a \in \mathcal{F}(K) \) such that \(a \cdot \xi_K = \xi \) in \(H^1(K, G) \).

Lemma 3. The above constructed element \(a \in \mathcal{F}(K) \) is an \(R \)-unramified.

Assuming Lemma 3 complete the proof of the Theorem. By Lemma 1 the functor \(\mathcal{F} \) satisfies the purity for regular local rings containing the field \(k \). Thus there exists an element \(a' \in \mathcal{F}(R) \) with \(a'_K = a \). It’s clear that \(\xi'' = a' \cdot \xi \in H^1(R, G) \) satisfies the equality \(\xi'' = \xi \). It remains to prove Lemma 3.

For that consider a height 1 prime ideal \(p \) in \(R \). Since \(\xi \) is an \(R \)-unramified there exists its lift up to an element \(\tilde{\xi} \) in \(H^1(R_p, G) \). Set \(\xi'_p \) to be the image of the \(\xi' \) in \(H^1(R_p, G) \). The classes \(\pi_p(\xi), \pi_p(\xi'_p) \in H^1(R_p, G') \) being regarded in \(H^1(K, G') \) coincide.

The map

\[H^1(R_p, G') \to H^1(K, G') \]

is injective by Lemma 3 formulated and proven below. Thus \(\pi_p(\tilde{\xi}) = \pi_p(\xi'_p) \). Therefore there exists a unique class \(a_p \in \mathcal{F}(R_p) \) such that \(a_p \cdot \xi'_p = \xi \in H^1(R_p, G) \). So, \(a_{p, K} \cdot \xi_K = \xi \in H^1(K, G) \) and \(a_{p, K} \cdot \xi_K = \xi = a \cdot \xi_K \). Thus \(a = a_{p, K} \). Lemma 3 is proven.

To finish the proof of the theorem it remains to prove the following

Lemma 4. Let \(H \) be a reductive group scheme over a discrete valuation ring \(A \). Assume that for each \(A \)-algebra \(\Omega \) with an algebraically closed field \(\Omega \) the algebraic group \(H_\Omega \) is connected. Let \(K \) be the fraction field of \(A \). Then the map

\[H^1(R, H) \to H^1(K, H) \]

is injective.

Proof. Let \(\xi_0, \xi_1 \in H^1(A, H) \). Let \(H_0 \) be a principal homogeneous \(H \)-bundle representing the class \(\xi_0 \). Let \(H_0 \) be the inner form of the group scheme \(H \), corresponding to \(H_0 \). Let \(X = \text{Spec}(A) \). For each \(X \)-scheme \(S \) there is a well-known bijection \(\phi_S : H^1(S, H) \to H^1(S, H_0) \) of non-pointed sets. That bijection takes the principal homogeneous \(H \)-bundle \(H_0 \times_X S \) to the trivial principal homogeneous \(H_0 \)-bundle \(H_0 \times_X S \). That bijection respects to morphisms of \(X \)-schemes.

Assume that \(\xi_{0, K} = \xi_{1, K} \). Then one has \(* = \phi_K(\xi_{0, K}) = \phi_K(\xi_{1, K}) \in H^1(K, H_0) \). The kernel of the map \(H^1(A, H_0) \to H^1(K, H_0) \) is trivial by Nisnevich theorem [N]. Thus \(\phi_A(\xi_1) = * = \).

□
Theorem 3. The functor $H^1(-, \text{PGL}_n)$ satisfies purity.

Proof. Let $\xi \in H^1(-, \text{PGL}_n)$ be an R-unramified element. Let $\delta : H^1(-, \text{PGL}_n) \to H^2(-, G_m)$ be the boundary map corresponding to the short exact sequence of étale group sheaves

$$1 \to \mathbb{G}_m \to \text{GL}_n \to \text{PGL}_n \to 1.$$

Let D_ξ be a central simple K-algebra of degree n corresponding to ξ. If $D_\xi \cong M_l(D')$ for a skew-field D', then there exists $\xi' \in H^1(K, \text{PGL}_{n'})$ such that $D' = D_{\xi'}$. Then $\delta(\xi') = [D'] = [D] = \delta(\xi)$. Replacing ξ by ξ', we may assume that $D := D_\xi$ is a central skew-field over K of degree n and the class $[D]$ is R-unramified.

Clearly, the class $\delta(\xi)$ is R-unramified. Thus there exists an Azumaya R-algebra A and an integer d such that $A_K = M_d(D)$.

There exists a projective left A-module P of finite rank such that each projective left A-module Q of finite rank is isomorphic to the left A-module P^m for an appropriative integer m (see [?, Cor.2]). In particular, two projective left A-modules of finite rank are isomorphic if they have the same rank as R-modules. One has an isomorphism $A \cong P^s$ of left A-modules for an integer s. Thus one has R-algebra isomorphisms $A \cong \text{End}_A(P^s) \cong M_s(\text{End}_A(P))$. Set $B = \text{End}_A(P)$.

Observe, that $B_K = \text{End}_{A_K}(P_K)$, since P is a finitely generated projective left A-module.

The class $[P_K]$ is a free generator of the group $K_0(A_K) = K_0(M_d(D)) \cong \mathbb{Z}$, since $[P]$ is a free generator of the group $K_0(A)$ and $K_0(A) = K_0(A_K)$. The P_K is a simple A_K-module, since $[P_K]$ is a free generator of $K_0(A_K)$. Thus $\text{End}_{A_K}(P_K) = B_K$ is a skew-field.

We claim that the K-algebras B_K and D are isomorphic. In fact, $A_K = M_s(B_K)$ for an integer r, since P_K is a simple A_K-module. From the other side $A_K = M_d(D)$. As D, so B_K are skew-fields. Thus $r = d$ and D is isomorphic to B_K as K-algebras.

We claim further that B is an Azumaya R-algebra. That claim is local with respect to the étale topology on $\text{Spec}(R)$. Thus it suffices to check the claim assuming that $\text{Spec}(R)$ is stickly henselian local ring. In that case $A = M_l(R)$ and $P = (R^l)^m$ as an $M_l(R)$-module. Thus $B = \text{End}_A(P) = M_m(R)$, which proves the claim.

Since B_K is isomorphic to D, one has $m = n$. So, B is an Azumaya R-algebra, and the K-algebra B_K is isomorphic to D. Let $\zeta \in H^1(R, \text{PGL}_n)$ be class corresponding to B. Then $\zeta_K = \xi$, since $\delta(\zeta)_K = [B_K] = [D] = \delta(\xi) \in H^2(K, \mathbb{G}_m)$.

\[\square \]

Theorem 4. The functor $H^1(-, \text{Sim}_n)$ satisfies purity.

Proof. Let φ be a quadratic form over K whose similarity class represents $\xi \in H^1(K, \text{Sim}_n)$. Diagonalizing φ we may assume that $\varphi = \sum_{i=1}^n f_i \cdot t_i^2$ for certain non-zero elements $f_1, f_2, \ldots, f_n \in K$. For each i write f_i in the form $f_i = \frac{g_i}{h_i}$ with $g_i, h_i \in R$ and $h_i \neq 0$.

There are only finitely many height one prime ideals q in R such that there exists $0 \leq i \leq n$ with f_i not in R_q. Let q_1, q_2, \ldots, q_s be all height one prime ideals in R with that property and let $q_i \neq q_j$ for $i \neq j$.

For all other height one prime ideals p in R each f_i belongs to the group of units R_p^\times of the ring R_p.

If p is a height one prime ideal of R which is not from the list q_1, q_2, \ldots, q_s, then $\varphi = \sum_{i=1}^n f_i \cdot t_i^2$ may be regarded as a quadratic space over R_p. We will write $p \varphi$ for that quadratic space over R_p. Clearly, one has $(p \varphi) \otimes_{R_p} K = \varphi$ as quadratic spaces over K.

For each $j \in \{1, 2, \ldots, s\}$ choose and fix a quadratic space $j \varphi$ over R_{q_j} and a non-zero element $\lambda_j \in K$ such that the quadratic spaces $(j \varphi) \otimes_{R_{q_j}} K$ and $\lambda_j \cdot \varphi$ are isomorphic over K. The ring R is factorial since it is regular and local. Thus for each $j \in \{1, 2, \ldots, s\}$ we may choose an element $\pi_j \in R$ such that firstly π_j generates the only maximal ideal in R_{q_j} and secondly π_j is an invertible element in R_n for each height one prime ideal n different from the ideal q_j.

\[\square \]
Let \(v_j : K^\times \to \mathbb{Z} \) be the discrete valuation of \(K \) corresponding to the prime ideal \(q_j \). Set \(\lambda = \prod_{i=1}^s v_j(\lambda_j) \) and \(\varphi_{\text{new}} = \lambda \cdot \varphi \).

Claim. The quadratic space \(\varphi_{\text{new}} \) is \(R \)-unramified. In fact, if a high one prime ideal \(p \) is different from each of \(q_j \)'s, then \(v_p(\lambda) = 0 \). Thus, \(\lambda \in R_p^\times \). In that case \(\lambda \cdot (p \varphi) \) is a quadratic space over \(R_p \) and moreover one has isomorphisms of quadratic spaces \((\lambda \cdot (p \varphi)) \otimes_{R_p} K = \lambda \cdot \varphi = \varphi_{\text{new}} \). If we take one of \(q_j \)'s, then \(\frac{\lambda}{\lambda_j} \in R_{q_j}^\times \). Thus, \(\frac{\lambda}{\lambda_j} \cdot (j \varphi) \) is a quadratic space over \(R_{q_j} \). Moreover, one has
\[
\frac{\lambda}{\lambda_j} \cdot (j \varphi) \otimes_{R_{q_j}} K = \frac{\lambda}{\lambda_j} \cdot \lambda_j \cdot \varphi = \varphi_{\text{new}}.
\]
The Claim is proven.

By [PP Corollary 3.1] there exists a quadratic space \(\tilde{\varphi} \) over \(R \) such that the quadratic spaces \(\tilde{\varphi} \otimes_{R} K \) and \(\varphi_{\text{new}} \) are isomorphic over \(K \). This shows that the similarity classes of the quadratic spaces \(\tilde{\varphi} \otimes_{R} K \) and \(\varphi \) coincide. The theorem is proven.

Theorem 5. The functor \(H^1(-, \text{Sim}^+_{\mathcal{R}}) \) satisfies purity.

Proof. Consider an element \(\xi \in H^1(K, \text{Sim}^+_{\mathcal{R}}) \) such that for any \(p \) of height 1 \(\xi \) comes from \(\xi_p \in H^1(R_p, \text{Sim}^+_{\mathcal{R}}) \). Then the image of \(\xi \) in \(H^1(K, \text{Sim}^+_{\mathcal{R}}) \) by Theorem 4 comes from some \(\zeta \in H^1(R, \text{Sim}^+_{\mathcal{R}}) \). We have a short exact sequence
\[
1 \to \text{Sim}^+_{\mathcal{R}} \to \text{Sim}_{\mathcal{R}} \to \mu_2 \to 1,
\]
and \(R^\times/(R^\times)^2 \) injects into \(K^\times/(K^\times)^2 \). Thus the element \(\zeta \) comes actually from some \(\zeta' \in H^1(R, \text{Sim}_{\mathcal{R}}) \). It remains to show that the map
\[
H^1(K, \text{Sim}^+_{\mathcal{R}}) \to H^1(K, \text{Sim}_{\mathcal{R}})
\]
is injective, or, by twisting, that the map
\[
H^1(K, \text{Sim}^+_{\mathcal{R}}(q)) \to H^1(K, \text{Sim}(q))
\]
has the trivial kernel. The latter follows from the fact that the map
\[
\text{Sim}(q)(K) \to \mu_2(K)
\]
is surjective (indeed, any reflection goes to \(-1 \in \mu_2(K) \)).

3. Proof of the Main Theorem

Let \(\xi \) be a class from \(H^1(R, G) \), and \(X = \xi(G/P) \) be the corresponding homogeneous space. Denote by \(L \) a Levi subgroup of \(P \).

Lemma 5. Let \(L \) modulo its center be isomorphic to \(\text{PGO}_{2m}^\times \) (resp., \(\text{PGO}_{2m+1}^\times \times \text{PGL}_2 \)). Denote by \(\Psi \) the closed subset in \(X^\times(T) \) of type \(D_m \) (resp. \(B_m \) or \(D_m + A_1 \)) corresponding to \(L \), \(T \) stands for a maximal split torus in \(L \). Assume that there is an element \(\lambda \in X^\times(T) \) such that \(\Psi \) and \(\lambda \) generate a closed subset of type \(D_{m+1} \) (resp. \(B_{m+1} \) or \(D_{m+1} + A_1 \)), and \(\Psi \) forms the standard subsystem of type \(D_m \) (resp. \(B_m \) or \(D_m + A_1 \)) therein. Then there is a surjective map \(L \to \text{Sim}_{2m}^+(\text{resp. } L \to \text{Sim}_{2m+1}^+ \times \text{PGL}_2) \) whose kernel is a central closed subgroup scheme in \(L \). In particular, the functor \(H^1(-, L) \) satisfies purity.

Proof. It is easy to check that \(\text{Sim}_{2m}^+ \) (resp. \(\text{Sim}_{2m+1}^+ \)) is a Levi subgroup in the split adjoint group of type \(D_{m+1} \) (resp. \(B_{m+1} \)). Now the first claim follows from [SGA] Exp. XXIII, Thm. 4.1, and the rest follows from Theorem 5 and Theorem 3.

Lemma 6. For any \(R \)-algebra \(S \) the map
\[
H^1(S, L) \to H^1(S, G)
\]
is injective. Moreover, \(X(S) \neq \emptyset \) if and only if \(\xi_S \) comes from \(H^1(S, L) \).

Proof. See [SGA] Exp. XXVI, Cor. 5.10. \(\square \)
Lemma 7. Assume that the functor $H^{1}(-, L)$ satisfies purity. Then $X(K) \neq \emptyset$ implies $X(R) \neq \emptyset$.

Proof. By Lemma 6, ξ_K comes from some $\zeta \in H^{1}(K, L)$, which is uniquely determined. Since X is smooth projective, for any prime ideal p of height 1 we have $X(R_p) \neq \emptyset$. By Lemma 5, ξ_{R_p} comes from some $\zeta_p \in H^{1}(R_p, L)$. Now $(\zeta_p)_K = \zeta$, and so by the purity assumption there is $\zeta' \in H^{1}(R, L)$ such that $\zeta'_K = \zeta$.

Set ξ' to be the image of ζ' in $H^{1}(R, G)$. We claim that $\xi' = \xi$. To prove this recall that by the construction $\xi'_K = \xi_K$. Further, there are natural in R-algebras bijections $\alpha_S : H^{1}(S, G) \to H^{1}(R, \xi G)$, which takes the ξ' to the distinguished element $*_{R} \in H^{1}(R, \xi G)$. The R-group scheme ξG is isotropic and one has equalities

$$(\alpha_R(\xi))_K = \alpha_K(\xi_K) = \alpha_K(\xi'_K) = *_{K} \in H^{1}(K, \xi G).$$

Thus by [Pa, Theorem 1.0.1] one has

$$\alpha_R(\xi) = s' = \alpha_R(\xi') \in H^{1}(R, \xi G).$$

The α_R is a bijection, whence

$$\xi = \xi' \in H^{1}(R, G).$$

Lemma is proved. \hfill \Box

Lemma 8. Let $Q \leq P$ be another parabolic subgroup, $Y = \xi(G/Q)$. Assume that $X(K) \neq \emptyset$ implies $Y(K) \neq \emptyset$, and $Y(K) \neq \emptyset$ implies $Y(R) \neq \emptyset$. Then $X(K) \neq \emptyset$ implies $X(R) \neq \emptyset$.

Proof. Indeed, there is a map $Y \to X$, so $Y(R) \neq \emptyset$ implies $X(R) \neq \emptyset$. \hfill \Box

Proof of Theorem 7. By Lemma 8 we may assume that P corresponds to an item from the list of Tits [T, Table II]. We show case by case that $H^{1}(-, L)$ satisfies purity, hence we are in the situation of Lemma 7.

If $P = B$ is the Borel subgroup, obviously $H^{1}(-, L) = 1$. In the case of index $E^{9}_{7,4}$ (resp. $E^{16}_{6,2}$) L modulo its center is isomorphic to $PGL_{2} \times PGL_{2} \times PGL_{2}$ (resp. $PGL_{3} \times PGL_{3}$), and we may apply Theorem 2 and Theorem 3. In the all other cases we provide an element $\lambda \in X^{*}(T)$ such that the assumption of Lemma 5 holds ($\bar{\alpha}$ stands for the maximal root, enumeration follows [B]). The indices $E^{78}_{7,1}, E^{133}_{8,1}$ and $E^{78}_{8,2}$ are not in the list below since in those cases the L does not belong to one of the type $D_{m}, B_{m}, D_{m} \times A_{1}$. The index $E^{66}_{7,1}$ is not in the list below since in that case we need a weight λ which is not in the root lattice. So, the indices $E^{78}_{7,1}, E^{133}_{8,1}, E^{78}_{8,2}$ and $E^{66}_{7,1}$ are the exceptions in the statement of the Theorem.

Index	λ
$E^{28}_{6,2}$	α_1
$E^{66}_{7,1}$	$-\omega_7$
$E^{133}_{7,2}$	$-\bar{\alpha}$
$E^{78}_{8,1}$	α_1
$E^{78}_{8,2}$	α_8
$E^{78}_{8,3}$	α_1
$F^{4,1}_{7,1}$	$-\bar{\alpha}$

The authors heartily thank Anastasia Stavrova for discussion on the earlier version of this work.
Rationally isotropic exceptional projective homogeneous varieties are locally isotropic

References

[B] N. Bourbaki, Groupes et algèbres de Lie. Chapitres 4, 5 et 6, Masson, Paris, 1981.

[SGA] M. Demazure, A. Grothendieck, Schémas en groupes, Lecture Notes in Mathematics, Vol. 151–153, Springer-Verlag, Berlin-Heidelberg-New York, 1970.

[Ni] Y. Nisnevich, Rationally Trivial Principal Homogeneous Spaces and Arithmetic of Reductive Group Schemes Over Dedekind Rings, C. R. Acad. Sci. Paris, Série I, 299, no. 1, 5–8 (1984).

[Pa] I. Panin, On Grothendieck—Serre’s conjecture concerning principal G-bundles over reductive group schemes: II, Preprint (2009), http://www.math.uiuc.edu/K-theory/.

[PP] I. Panin, K. Pimenov, Rationally Isotropic Quadratic Spaces Are Locally Isotropic: II, Documenta Mathematica, Vol. Extra Volume: 5. Andrei A. Suslin’s Sixtieth Birthday, P. 515-523, 2010.

[T] J. Tits, Classification of algebraic semisimple groups, Algebraic groups and discontinuous subgroups, Proc. Sympos. Pure Math., 9, Amer. Math. Soc., Providence RI, 1966, 33–62.