On certain Opial-type results in Cesàro spaces of vector-valued functions

Jan-David Hardtke

Abstract. Given a Banach space X, we consider Cesàro spaces $\text{Ces}_p(X)$ of X-valued functions over the interval $[0,1]$, where $1 \leq p < \infty$. We prove that if X has the Opial/uniform Opial property, then certain analogous properties also hold for $\text{Ces}_p(X)$. We also prove a result on the Opial/uniform Opial property of Cesàro spaces of vector-valued sequences.

1 Introduction

Let us begin by recalling the definitions of Cesàro sequence and function spaces. For $1 \leq p < \infty$, the Cesàro sequence space ces_p is defined as the space of all sequences $a = (a_n)_{n \in \mathbb{N}}$ of real numbers such that

$$\|a\|_{\text{ces}_p} := \left(\sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{i=1}^{n} |a_i| \right)^p \right)^{1/p} < \infty.$$

$\|\cdot\|_{\text{ces}_p}$ defines a norm on ces_p. Leibowitz [13] and Jagers [11] proved that $\text{ces}_1 = \{0\}$ and ces_p is separable and reflexive for $1 < p < \infty$. In [5] it was proved that for any $p \in (1, \infty)$, the space ces_p is not isomorphic to ℓ^q for any $q \in [1, \infty]$.

The Cesàro function space Ces_p on $[0,1]$ is defined in an analogous way as the space of all measurable functions $f : [0,1] \to \mathbb{R}$ such that

$$\|f\|_{\text{Ces}_p} := \left(\int_{0}^{1} \left(\frac{1}{t} \int_{0}^{t} |f(s)| \, ds \right)^p \, dt \right)^{1/p} < \infty,$$

where, as usual, two functions are identified if they agree a.e. $\|\cdot\|_{\text{Ces}_p}$ defines a norm on Ces_p.

Here are some basic results on Cesàro function spaces:

Keywords: Cesàro function spaces; vector-valued functions; Cesàro sequence spaces; Opial property

AMS Subject Classification (2010): 46E40 46E30 46B20

This work, as well as the paper [10], are parts of the author’s PhD thesis, which is available under http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000099968.
1. Introduction

(1) Ces$_1$ is the weighted Lebesgue space $L^1_w[0,1]$, where $w(t) := \log(1/t)$.

(2) Ces$_p$ is a subspace of $L^p[0,a]$ for every $p \in [1,\infty)$ and every $a \in (0,1)$, but not for $a = 1$.

(3) Ces$_p$ is separable and nonreflexive for every $p \in [1,\infty)$.

(4) For $1 < p < \infty$ one has $L^p[0,1] \subseteq$ Ces$_p$ and $\|f\|_{\text{Ces}_p} \leq q\|f\|_p$ for all $f \in L^p[0,1]$, where q is the conjugated exponent to p.

These and further results are collected in [3, Theorem 1]. Also, by [3, Theorem 7], for $p \in (1,\infty)$ the space Ces$_p$ is not isomorphic to $L^q[0,1]$ for any $q \in [1,\infty]$. For further information on Cesàro function spaces see [2–4] and references therein. For more information on Cesàro sequence spaces see, for example, the introduction of [3] and references therein. Results on more general types of Cesàro function spaces, where the space L^p appearing implicitly in the definition of Ces$_p$ is replaced by a more general function space, can be found for example in [14,15].

Now consider a real Banach space X. X is said to have the fixed point property (resp. weak fixed point property) if for every closed and bounded (resp. weakly compact) convex subset $C \subset X$, every nonexpansive mapping $F : C \to C$ has a fixed point (where F is called nonexpansive if $\|F(x) - F(y)\| \leq \|x - y\|$ for all $x, y \in C$).

A bounded, closed, convex subset $C \subseteq X$ is said to have normal structure provided that for each subset $B \subseteq C$ which contains at least two elements there exists a point $x \in B$ such that

$$\sup_{y \in B} \|x - y\| < \text{diam}(B),$$

where diam(B) denotes the diameter of B. The space X itself is said to have normal structure if every bounded, closed, convex subset of X has normal structure. It is well known that if C is weakly compact and has normal structure, then every nonexpansive mapping $F : C \to C$ has a fixed point (see e.g. [8, Theorem 2.1]), thus spaces with normal structure have the weak fixed point property. For example, every compact, convex set has normal structure (see e.g. [20, p.119]) and hence all finite-dimensional spaces possess normal structure. Also, every space which is uniformly convex in every direction has normal structure (see e.g. [20, Corollary 5.6]). An example of a Banach space which fails the weak fixed point property is $L^1[0,1]$ (see [1]).

The space X is said to have the Opial property if

$$\limsup_{n \to \infty} \|x_n\| < \limsup_{n \to \infty} \|x_n - x\|$$

holds for every weakly null sequence $(x_n)_{n \in \mathbb{N}}$ in X and every $x \in X \setminus \{0\}$ (one could as well use lim inf instead of lim sup or assume from the beginning that both limits exist).
1. Introduction

This property was first considered by Opial in [18] (starting from the Hilbert spaces as canonical example) to provide a result on iterative approximations of fixed points of nonexpansive mappings. It is shown in [18] that the spaces \(\ell^p \) for \(1 \leq p < \infty \) enjoy the Opial property, whereas \(L^p[0,1] \) for \(1 < p < \infty, p \neq 2 \) fails to have it. Note further that every Banach space with the Schur property (i.e. weak and norm convergence of sequences coincide) trivially has the Opial property. Also, \(X \) is said to have the nonstrict Opial property if it fulfils the definition of the Opial property with “\(\leq \)” instead of “\(< \)” ([22], in [7] it is called weak Opial property). It is known that every weakly compact convex set in a Banach space with the Opial property has normal structure (see e.g. [20, Theorem 5.4]) and thus the Opial property implies the weak fixed point property.

The notion of uniform Opial property was introduced by Prus in [19]: \(X \) is said to have the uniform Opial property if for every \(c > 0 \) there is some \(r > 0 \) such that

\[
1 + r \leq \liminf_{n \to \infty} \|x_n - x\|
\]

holds for every \(x \in X \) with \(\|x\| \geq c \) and every weakly null sequence \((x_n)_{n \in \mathbb{N}} \) in \(X \) with \(\liminf\|x_n\| \geq 1 \). In [19] it was proved that a Banach space is reflexive and has the uniform Opial property if and only if it has the so-called property \((L)\) (see [19] for the definition), and that \(X \) has the fixed point property whenever \(X^* \) has property \((L)\).

A modulus corresponding to the uniform Opial property was defined in [16]:

\[
r_X(c) := \inf \left\{ \liminf_{n \to \infty} \|x_n - x\| - 1 \right\} \quad \forall c > 0,
\]

where the infimum is taken over all \(x \in X \) with \(\|x\| \geq c \) and all weakly null sequences \((x_n)_{n \in \mathbb{N}} \) in \(X \) with \(\liminf\|x_n\| \geq 1 \) (if \(X \) has the Schur property, we agree to set \(r_X(c) := 1 \) for all \(c > 0 \)). Then \(X \) has the uniform Opial property if and only if \(r_X(c) > 0 \) for every \(c > 0 \).

Here we will use instead the following equivalent formulation of the uniform Opial property ([12, Definition 3.1]): \(X \) has the uniform Opial property if and only if for every \(\varepsilon > 0 \) and every \(R > 0 \) there is some \(\eta > 0 \) such that

\[
\eta + \liminf_{n \to \infty} \|x_n\| \leq \liminf_{n \to \infty} \|x_n - x\|
\]

holds for all \(x \in X \) with \(\|x\| \geq \varepsilon \) and every weakly null sequence \((x_n)_{n \in \mathbb{N}} \) in \(X \) with \(\limsup\|x_n\| \leq R \).

Note that one always has \(\limsup\|x_n\| \leq \limsup\|x_n - x\| + \|x\| \leq 2\limsup\|x_n - x\| \) if \((x_n)_{n \in \mathbb{N}} \) converges weakly to zero, since the norm is weakly lower semicontinuous. In general, the constant 2 is the best possible. Consider, for example, in the space \(c \) of all convergent sequences (with sup-norm) the weak null sequence \((2e_n)_{n \in \mathbb{N}}\) (where \(e_n \) is the sequence whose \(n \)-th entry is 1 and all other entries are 0) and \(x = (1,1,1,\ldots) \).
2. Opial properties in Cesàro sums

In [10] the author defined a modulus for this formulation in the following way:

$$\eta_X(\varepsilon, R) := \inf \left\{ \liminf_{n \to \infty} \|x_n - x\| - \liminf_{n \to \infty} \|x_n\| \right\} \quad \forall \varepsilon, R > 0,$$

where the infimum is taken over all $x \in X$ with $\|x\| \geq \varepsilon$ and all weakly null sequences $(x_n)_{n \in \mathbb{N}}$ in X with $\limsup_{n \to \infty} \|x_n\| \leq R$. Thus X has the uniform Opial property if and only if $\eta_X(\varepsilon, R) > 0$ for all $\varepsilon, R > 0$ (see also [10, Lemma 1.1] for a more precise connection between the moduli r_X and η_X).

In [10] the author studied Opial properties in infinite ℓ^p-sums and also some analogous results for Lebesgue-Bochner spaces of vector-valued functions (these spaces cannot have the usual Opial property, as even $L^p[0,1]$ for $1 < p < \infty$, $p \neq 2$ does not enjoy this property, but if one replaces weak convergence by pointwise weak convergence (almost everywhere), then some “Opial-like” results for Lebesgue-Bochner spaces can be established, see [10] for the detailed formulations and proofs).

The purpose of this paper is to prove some results analogous to those of [10] for Cesàro spaces of vector-valued functions and Cesàro sums. We will start with the latter.

2 Opial properties in Cesàro sums

Given a sequence $(X_n)_{n \in \mathbb{N}}$ of Banach spaces and $p \in (1, \infty)$, we define the p-Cesàro sum $\left[\bigoplus_{n \in \mathbb{N}} X_n \right]_{ces_p}$ of $(X_n)_{n \in \mathbb{N}}$ as the space of all sequences $x = (x_n)_{n \in \mathbb{N}}$ with $x_n \in X_n$ for each n such that $(\|x_n\|)_{n \in \mathbb{N}} \in ces_p$, equipped with the norm

$$\|x\|_{ces_p} := \|((\|x_n\|)_{n \in \mathbb{N}})\|_{ces_p} = \left(\sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{i=1}^{n} \|x_i\| \right)^p \right)^{1/p}.$$

In [6] it was proved that ces_p has the uniform Opial property for every $p \in (1, \infty)$. In [21, Theorem 1] Saejung proved that ces_p can be regarded as a subspace of the ℓ^p-sum $X_p := \left[\bigoplus_{n \in \mathbb{N}} \ell^1(n) \right]_p$ (where $\ell^1(n)$ denotes the n-dimensional space with ℓ^1-norm) via the isometric embedding $T : ces_p \to X_p$ defined by

$$(Ta)(n) := \frac{1}{n} (a_1, \ldots, a_n) \quad \forall n \in \mathbb{N}, \forall a \in ces_p.$$

In [21, Theorem 7] it is proved that the ℓ^p-sum of any sequence of finite-dimensional spaces has the uniform Opial property (see also [20, Example 4.23 (2.)] and Corollary 3.14 in [10]). Thus Saejung obtains a new proof that ces_p has the uniform Opial property ([21, Corollary 9]).

Saejung’s embedding idea directly generalises to ces_p-sums. For a given sequence $(X_n)_{n \in \mathbb{N}}$ of Banach spaces we consider the mapping S from the
3. Opial-type properties in Cesàro spaces of vector-valued functions

Cesàro sum \(\left(\bigoplus_{n \in \mathbb{N}} X_n \right)_{ces} \) to \(\left(\bigoplus_{n \in \mathbb{N}} (X_1 \oplus_1 \cdots \oplus_1 X_n) \right)_p \) defined by

\[
(Sx)(n) := \frac{1}{n}(x_1, \ldots, x_n) \quad \forall n \in \mathbb{N}, \forall x \in \left(\bigoplus_{n \in \mathbb{N}} X_n \right)_{ces}.
\]

Then \(S \) is an isometric embedding.

In [10, Proposition 3.11] the author proved that for any \(1 \leq p < \infty \) the \(\ell^p \)-sum of any family of Banach spaces with the Opial property/nonstrict Opial property has again the Opial property/nonstrict Opial property. Thus, via the above embedding, we obtain the following result.

Proposition 2.1. Let \(p \in (1, \infty) \). If \((X_n)_{n \in \mathbb{N}} \) is a sequence of Banach spaces such that each \(X_n \) has the Opial property (nonstrict Opial property), then \(\left(\bigoplus_{n \in \mathbb{N}} X_n \right)_{ces} \) also has the Opial property (nonstrict Opial property).

It was also proved in [10, Theorem 3.13] that, for any family \((X_i)_{i \in I} \) of Banach spaces and every \(1 \leq p < \infty \), the sum \(\left(\bigoplus_{i \in I} X_i \right)_p \) has the uniform Opial property if

\[
\inf_{\eta_{X_J}} \{ \eta_{X_J}(\varepsilon, R) : J \subseteq I \text{ finite} \} > 0 \quad \forall \varepsilon, R > 0,
\]

where \(X_J := \left(\bigoplus_{i \in J} X_i \right)_p \) for \(J \subseteq I \).

Using this together with the above embedding, we obtain the following result.

Proposition 2.2. Let \(p \in (1, \infty) \) and \((X_n)_{n \in \mathbb{N}} \) be a sequence of Banach spaces. Put \(Y_m := \left(\bigoplus_{n=1}^m (X_1 \oplus_1 \cdots \oplus_1 X_n) \right)_p \) for each \(m \in \mathbb{N} \). If

\[
\inf_{\eta_{Y_m}} \{ \eta_{Y_m}(\varepsilon, R) : \varepsilon, R > 0 \},
\]

then \(\left(\bigoplus_{n \in \mathbb{N}} X_n \right)_{ces} \) has the uniform Opial property.

Note that this implies in particular that \(\left(\bigoplus_{n \in \mathbb{N}} X_n \right)_{ces} \) has the uniform Opial property if each \(X_n \) has the Schur property.

3 Opial-type properties in Cesàro spaces of vector-valued functions

Now we consider Cesàro spaces of vector-valued functions on \([0, 1]\). Usually, for a given Banach space \(X \) and a Köthe function space \(E \) (see for instance [17] for the definition), one considers the Köthe-Bochner space \(E(X) \) of all (equivalence classes of) \(X \)-valued Bochner-measurable functions \(f \) such that \(\|f(\cdot)\| \in E \), endowed with the norm \(\|f\|_{E(X)} := \|f(\cdot)\|_E \) (this includes the Lebesgue-Bochner spaces for \(E = L^p \)). Such spaces have been intensively studied (see for example the collection of results in [17]). However, Cesàro
function spaces are not Köthe spaces in the usual sense, since they are not contained in L^1 (see point (2) in the introduction). But the Cesàro spaces, like Köthe spaces, satisfy the important monotonicity property: if $f \in \text{Ces}_p$ and $g : [0,1] \rightarrow \mathbb{R}$ is measurable with $|g(t)| \leq |f(t)|$ a.e., then $g \in \text{Ces}_p$ and \(\|g\|_{\text{Ces}_p} \leq \|f\|_{\text{Ces}_p} \).

Therefore, given a Banach space X, we can still define the space $\text{Ces}_p(X)$ of all (equivalence classes of) Bochner-measurable functions $f : [0,1] \rightarrow X$ such that $f(\cdot) \in \text{Ces}_p$, equipped with the norm $\|f\|_{\text{Ces}_p(X)} := \|\|f(\cdot)\||_{\text{Ces}_p}$.

We will now prove a result for sequences of functions in $\text{Ces}_p(X)$ which are pointwise a.e. convergent to zero with respect to the weak topology of X, where X is assumed to have the nonstrict Opial property. The result is similar to the one obtained in [10, Proposition 4.1] for Lebesgue-Bochner spaces. The proof also makes use of similar techniques.

Theorem 3.1. Let $1 \leq p < \infty$ and let X be a Banach space with the nonstrict Opial property. Let $(f_n)_{n \in \mathbb{N}}$ be a bounded sequence in $\text{Ces}_p(X)$ such that $(f_n(t))_{n \in \mathbb{N}}$ converges weakly to zero for almost every $t \in [0,1]$. Suppose further that there exists a $g \in \text{Ces}_p$ such that $\|f_n(t)\| \rightarrow g(t)$ a.e. Let $f \in \text{Ces}_p(X)$ and $\varphi(t) := \lim inf_{n \rightarrow \infty} \|f_n(t) - f(t)\|$ for $t \in [0,1]$. Then

\[
2^{p-1} \int_0^1 \frac{1}{t^p} \left(\left(\int_0^t \varphi(s) \, ds \right)^p - \left(\int_0^t g(s) \, ds \right)^p \right) \, dt \leq 2^{p-1} \limsup_{n \rightarrow \infty} \|f_n - f\|_{\text{Ces}_p(X)} - \limsup_{n \rightarrow \infty} \|f_n\|_{\text{Ces}_p(X)}. \tag{3.1}
\]

In particular,

\[
\limsup_{n \rightarrow \infty} \|f_n\|_{\text{Ces}_p(X)} \leq 2^{1-1/p} \limsup_{n \rightarrow \infty} \|f_n - f\|_{\text{Ces}_p(X)} \quad \forall f \in \text{Ces}_p(X). \tag{3.2}
\]

Proof. Using the identification of Ces_1 with $L^1_w[0,1]$ from [3, Theorem 1] (where $w(t) = \log(1/t)$) the assertion for $p = 1$ easily follows from [10, Proposition 4.1]. We will therefore assume $p > 1$.

So let $f \in \text{Ces}_p(X)$. Without loss of generality, we may assume that $\lim_{n \rightarrow \infty} \|f_n\|_{\text{Ces}_p(X)}$ and $\lim_{n \rightarrow \infty} \|f_n - f\|_{\text{Ces}_p(X)}$ exist and also that $\|f_n(t)\| \rightarrow g(t)$ and $f_n(t) \rightarrow 0$ weakly for every $t \in [0,1]$.

Since $M := \sup_{n \in \mathbb{N}} \|f_n\|_{\text{Ces}_p(X)} < \infty$ it follows from Fatou’s Lemma that $\varphi \in \text{Ces}_p$.

Let us put

\[
a := \|\varphi\|_{\text{Ces}_p} - \|g\|_{\text{Ces}_p} = \int_0^1 \frac{1}{t^p} \left(\left(\int_0^t \varphi(s) \, ds \right)^p - \left(\int_0^t g(s) \, ds \right)^p \right) \, dt.
\]

Since X has the nonstrict Opial property we have $\varphi(t) \geq g(t)$ for every $t \in [0,1]$. Hence $a \geq 0$.

Let $0 < \varepsilon < 1$. Denote by λ the Lebesgue measure on $[0,1]$. 6
3. Opial-type properties in Cesàro spaces of vector-valued functions

The equi-integrability of finite subsets of L^1 enables us to find a $0 < \tau < \varepsilon$ such that for every measurable set $A \subseteq [0, 1]$ one has

$$\lambda(A) \leq \tau \Rightarrow \int_A \left(\frac{1}{t} \int_0^t F(s) \, ds \right)^p \, dt \leq \varepsilon \quad \forall F \in \{ \| f(\cdot) \|, \varphi, g \}.$$ \hfill (3.3)

Next we choose $0 < \theta < \tau$ such that

$$\frac{n\theta}{1-p} \left(\left(1 - \frac{\tau}{3} \right) \left(1 - \frac{\tau}{3} \right) \right)^{p-1} \left(\int_0^{1-\frac{\tau}{3}} F(s) \, ds \right)^{p-1} \leq \varepsilon \quad \hfill (3.4)$$

for $F \in \{ \varphi, g \}$ and then, again by equi-integrability, we find $\delta > 0$ such that for every measurable subset $D \subseteq [0, 1 - \frac{\tau}{3}]$ one has

$$\lambda(D) \leq \delta \Rightarrow \int_D F(s) \, ds \leq \theta \quad \forall F \in \{ \| f(\cdot) \|, \varphi, g \} \quad \hfill (3.5)$$

(remember that $\text{Ces}_p|_{[0,b]} \subseteq L^1[0,b]$ for every $b \in (0,1)$).

Now we apply Egorov’s theorem (cf. [9, Theorem A, p.88]) to find a measurable set $C \subseteq [0, 1]$ with $\lambda(\{0,1\} \setminus C) \leq \delta$ such that $\| f_n(t) \| \to g(t)$ uniformly in $t \in C$. It follows that

$$\lim_{n \to \infty} \int_{\{0,1\} \cap C} \| f_n(s) \| \, ds = \int_{\{0,1\} \cap C} g(s) \, ds \quad \forall t \in [0, 1].$$

Thus we can apply Egorov’s theorem once more to deduce that there exists a measurable set $F \subseteq [0, 1)$ with $\lambda([0,1] \setminus F) \leq \tau/3$ such that

$$\lim_{n \to \infty} \int_{\{0,1\} \cap C} \| f_n(s) \| \, ds = \int_{\{0,1\} \cap C} g(s) \, ds \quad \text{uniformly in } t \in F.$$

Put $B := F \cap \left[\frac{\tau}{3}, 1 - \frac{\tau}{3} \right]$. Then $\lambda(\{0,1\} \setminus B) \leq \lambda([0,1] \setminus F) + 2\tau/3 \leq \tau$ and

$$\lim_{n \to \infty} \int_B \left(\frac{1}{t} \int_{\{0,1\} \cap C} \| f_n(s) \| \, ds \right)^p \, dt = \int_B \left(\frac{1}{t} \int_{\{0,1\} \cap C} g(s) \, ds \right)^p \, dt. \quad \hfill (3.6)$$

Since $M = \sup_{n \in \mathbb{N}} \| f_n \|_{\text{Ces}_p(X)} < \infty$, we can find a subsequence $(n_k)_{k \in \mathbb{N}}$ of indices such that all the limits involved in the following calculations exist. We have

$$\lim_{n \to \infty} \| f_n \|_{\text{Ces}_p(X)}^p = \lim_{k \to \infty} \left(\int_B \left(\frac{1}{t} \int_0^t \| f_{n_k}(s) \| \, ds \right)^p \, dt + \int_{\{0,1\} \setminus B} \left(\frac{1}{t} \int_0^t \| f_{n_k}(s) \| \, ds \right)^p \, dt \right)$$

$$\leq \sum_{k \to \infty} \left(\int_B \left(\frac{1}{t} \int_{\{0,1\} \cap C} \| f_{n_k}(s) \| \, ds \right)^p \, dt + \int_{\{0,1\} \setminus B} \left(\frac{1}{t} \int_{\{0,1\} \cap C} \| f_{n_k}(s) \| \, ds \right)^p \, dt \right)$$

$$+ \lim_{k \to \infty} \int_{\{0,1\} \setminus B} \left(\frac{1}{t} \int_0^t \| f_{n_k}(s) \| \, ds \right)^p \, dt.$$
3. Opial-type properties in Cesàro spaces of vector-valued functions

where we have used the inequality \((a + b)^p \leq 2^{p-1}(a^p + b^p)\) for \(a, b \geq 0\), which is due to the convexity of the function \(t \mapsto t^p\).

From (3.6) it now follows that

\[
\lim_{n \to \infty} \left\| f_n \right\|_{\text{Ces}^p(X)}^p \leq 2^{p-1} \left(\int_B \left(\frac{1}{t} \int_{[0,t]\cap C} g(s) \, ds \right)^p \, dt \right) + \lim_{k \to \infty} \left(\frac{1}{t} \int_0^t \left\| f_{n_k}(s) \right\| \, ds \right)^p \, dt \right) + \lim_{k \to \infty} \int_{[0,1] \setminus B} \left(\frac{1}{t} \int_0^t \left\| f_{n_k}(s) \right\| \, ds \right)^p \, dt .
\] (3.7)

Because of \(\lambda([0, 1] \setminus B) \leq \tau\) and (3.3) we have

\[
\int_{[0,1] \setminus B} \left(\frac{1}{t} \int_0^t \left\| f(s) \right\| \, ds \right)^p \, dt \leq \varepsilon .
\]

Thus by the triangle inequality for \(L^p\) we get

\[
\lim_{k \to \infty} \left(\int_{[0,1] \setminus B} \left(\frac{1}{t} \int_0^t \left\| f_{n_k}(s) \right\| \, ds \right)^p \, dt \right)^{1/p} \leq \lim_{k \to \infty} \left(\int_{[0,1] \setminus B} \left(\frac{1}{t} \int_0^t \left\| f_{n_k}(s) - f(s) \right\| \, ds \right)^p \, dt \right)^{1/p} + \varepsilon^{1/p} .
\]

It follows that

\[
\lim_{k \to \infty} \int_{[0,1] \setminus B} \left(\frac{1}{t} \int_0^t \left\| f_{n_k}(s) \right\| \, ds \right)^p \, dt \leq \lim_{k \to \infty} \int_{[0,1] \setminus B} \left(\frac{1}{t} \int_0^t \left\| f_{n_k}(s) - f(s) \right\| \, ds \right)^p \, dt
\]

\[
+ \lim_{k \to \infty} \left(\int_{[0,1] \setminus B} \left(\frac{1}{t} \int_0^t \left\| f_{n_k}(s) - f(s) \right\| \, ds \right)^p \, dt \right)^{1/p} + \varepsilon^{1/p} \right)^p
\]

\[
- \int_{[0,1] \setminus B} \left(\frac{1}{t} \int_0^t \left\| f_{n_k}(s) - f(s) \right\| \, ds \right)^p \, dt .
\]

Put \(L := M + \|f\|_{\text{Ces}^p(X)} + 1\). Since \(|a^p - b^p| \leq pL^{p-1}|a - b|\) for all \(a, b \in [0, L]\) (mean-value theorem) we obtain

\[
\lim_{k \to \infty} \int_{[0,1] \setminus B} \left(\frac{1}{t} \int_0^t \left\| f_{n_k}(s) \right\| \, ds \right)^p \, dt \leq \lim_{k \to \infty} \int_{[0,1] \setminus B} \left(\frac{1}{t} \int_0^t \left\| f_{n_k}(s) - f(s) \right\| \, ds \right)^p \, dt + pL^{p-1} \varepsilon^{1/p} .
\] (3.8)
3. Opial-type properties in Cesàro spaces of vector-valued functions

Next we define \(h(s) := (1 - p)^{-1}(s^n - s/3^{1-p}) \) for \(s \geq 0 \).

Recall that \(B \subseteq [\frac{\tau}{3}, 1 - \frac{\tau}{3}] \), \(\lambda([0, 1] \setminus C) \leq \delta \) and \(\theta < \tau \). Thus it follows from (3.5) that

\[
\int_B \left(\frac{1}{t} \int_{[0,t]} \|f(s)\| \, ds \right)^p \, dt \leq \tau^p \int_B \frac{1}{t^p} \, dt \leq \tau^p \int_{\frac{\tau}{3}}^1 \frac{1}{t^p} \, dt = h(\tau).
\]

Hence

\[
\lim_{k \to \infty} \left(\int_B \left(\frac{1}{t} \int_{[0,t]} \|f_{n_k}(s)\| \, ds \right)^p \, dt \right)^{1/p}
\leq \lim_{k \to \infty} \left(\int_B \left(\frac{1}{t} \int_{[0,t]} \|f_{n_k}(s) - f(s)\| \, ds \right)^p \, dt \right)^{1/p} + h(\tau)^{1/p}.
\]

Using the same trick as before we now obtain

\[
\lim_{k \to \infty} \int_B \left(\frac{1}{t} \int_{[0,t]} \|f_{n_k}(s)\| \, ds \right)^p \, dt
\leq \lim_{k \to \infty} \int_B \left(\frac{1}{t} \int_{[0,t]} \|f_{n_k}(s) - f(s)\| \, ds \right)^p \, dt + ph(\tau)^{1/p} A^{p-1},
\]

where \(A := M + \|f\|_{Ces^p} + K^{1/p} \) and \(K := \sup_{s \in [0,1]} h(s) \).

From (3.7) and Fatou’s Lemma it follows that

\[
\lim_{n \to \infty} \left\| f_n \right\|_{Ces^p(X)}^p
\leq 2^{p-1} \lim_{k \to \infty} \int_B \left(\frac{1}{t} \int_{[0,t] \cap C} \|f_{n_k}(s) - f(s)\| \, ds \right)^p \, dt
+ 2^{p-1} \lim_{k \to \infty} \int_B \left(\frac{1}{t} \int_{[0,t] \cap C} \|f_{n_k}(s)\| \, ds \right)^p \, dt + 2^{p-1} \int_B \left(\frac{1}{t} \int_{[0,t] \cap C} g(s) \, ds \right)^p \, dt
- 2^{p-1} \int_B \left(\frac{1}{t} \int_{[0,t] \cap C} \liminf_{k \to \infty} \|f_{n_k}(s) - f(s)\| \, ds \right)^p \, dt
+ \lim_{k \to \infty} \int_{[0,1] \setminus B} \left(\frac{1}{t} \int_0^t \|f_{n_k}(s)\| \, ds \right)^p \, dt.
\]

Combining this with (3.8) and (3.9) we obtain (by using \(x^p + y^p \leq (x + y)^p \)
3. Opial-type properties in Cesàro spaces of vector-valued functions

for \(x, y \geq 0 \)

\[
\lim_{n \to \infty} \|f_n\|_{\text{Ces}_p(X)}^p \leq 2^{p-1} \lim_{k \to \infty} \|f_n - f\|_{\text{Ces}_p(X)}^p + 2^{p-1} p\theta \tau^1 A^{p-1} + p L^{p-1} \varepsilon^{1/p} + 2^{p-1} \int_B \left(\frac{1}{t} \int_{[0,t] \cap C} g(s) \, ds \right)^p \, dt \\
- 2^{p-1} \int_B \left(\frac{1}{t} \int_{[0,t] \cap C} \liminf_{k \to \infty} \|f_n(k) - f(s)\| \, ds \right)^p \, dt,
\]

thus

\[
\lim_{n \to \infty} \|f_n\|_{\text{Ces}_p(X)}^p \leq 2^{p-1} \lim_{n \to \infty} \|f_n - f\|_{\text{Ces}_p(X)}^p + 2^{p-1} p\theta \tau^1 A^{p-1} + p L^{p-1} \varepsilon^{1/p} + 2^{p-1} \int_B \left(\frac{1}{t} \int_{[0,t] \cap C} g(s) \, ds \right)^p \, dt.
\]

(3.10)

Since \(\lambda([0, 1] \setminus C) \leq \delta \) it follows from (3.5) that for \(F \in \{g, \varphi\} \) and \(t \in (0, 1 - \frac{7}{12}) \) we have

\[
\left| \frac{1}{t} \int_0^t F(s) \, ds - \frac{1}{t} \int_{[0,t] \cap C} F(s) \, ds \right| \leq \frac{\theta}{t}
\]

and hence

\[
\left| \left(\frac{1}{t} \int_0^t F(s) \, ds \right)^p - \left(\frac{1}{t} \int_{[0,t] \cap C} F(s) \, ds \right)^p \right| \leq \frac{\theta}{t^p} \left(\frac{1}{t} \int_0^t F(s) \, ds \right)^{p-1}.
\]

Since \(B \subseteq \left[\frac{7}{12}, 1 - \frac{7}{12} \right] \) it follows that

\[
\left| \int_B \left(\frac{1}{t} \int_0^t F(s) \, ds \right)^p \, dt - \int_B \left(\frac{1}{t} \int_{[0,t] \cap C} F(s) \, ds \right)^p \, dt \right| \\
\leq \int_B \frac{\theta}{t^p} \left(\int_0^t F(s) \, ds \right)^{p-1} \, dt \\
\leq p\theta \left(\int_0^{1-\frac{7}{12}} F(s) \, ds \right)^{p-1} \left(1 - \frac{7}{3} \right)^{1-p} - \left(\frac{7}{3} \right)^{1-p} \right) \\
= p\theta \left(\int_0^{1-\frac{7}{12}} F(s) \, ds \right)^{p-1} \frac{1}{1-p} \left((1-\frac{7}{3})^{1-p} - \left(\frac{7}{3} \right)^{1-p} \right).
\]

Thus it follows from (3.4) that for \(F \in \{g, \varphi\} \) one has

\[
\left| \int_B \left(\frac{1}{t} \int_0^t F(s) \, ds \right)^p \, dt - \int_B \left(\frac{1}{t} \int_{[0,t] \cap C} F(s) \, ds \right)^p \, dt \right| \leq \varepsilon.
\]

(3.11)
Since \(\lambda([0,1] \setminus B) \leq \tau \) we also have
\[
\left| \int_B \left(\frac{1}{t} \int_0^t F(s) \, ds \right)^p \, dt - \int_0^1 \left(\frac{1}{t} \int_0^t F(s) \, ds \right)^p \, dt \right| \leq \varepsilon \quad (3.12)
\]
for \(F \in \{g, \varphi\} \), by (3.3).

From (3.11) and (3.12) we obtain
\[
\left| \int_B \left(\frac{1}{t} \int_{[0,t] \cap C} F(s) \, ds \right)^p \, dt - \int_0^1 \left(\frac{1}{t} \int_0^t F(s) \, ds \right)^p \, dt \right| \leq 2\varepsilon
\]
for \(F \in \{g, \varphi\} \).

Together with (3.10) this implies
\[
\lim_{n \to \infty} \|f_n\|_{\text{Ces}_p(X)}^p \\
\leq 2^{p-1} \lim_{n \to \infty} \|f_n - f\|_{\text{Ces}_p(X)}^p + 2^{p-1} p h(\tau)^{1/p} A^{p-1} + p L^{p-1} \varepsilon^{1/p} \\
+ 2^{p-1} \int_0^1 \left(\left(\frac{1}{t} \int_0^t g(s) \, ds \right)^p - \left(\frac{1}{t} \int_0^t \varphi(s) \, ds \right)^p \right) \, dt + 2^{p-1} 4\varepsilon.
\]
Hence by definition of \(a \) we have
\[
\lim_{n \to \infty} \|f_n\|_{\text{Ces}_p(X)}^p \\
\leq 2^{p-1} \lim_{n \to \infty} \|f_n - f\|_{\text{Ces}_p(X)}^p \\
+ 2^{p-1} p h(\tau)^{1/p} A^{p-1} + p L^{p-1} \varepsilon^{1/p} - 2^{p-1} a + 2^{p-1} \varepsilon.
\]
Since \(h(\tau) \to 0 \) for \(\tau \to 0 \) and \(\tau < \varepsilon \), we obtain for \(\varepsilon \to 0 \)
\[
\lim_{n \to \infty} \|f_n\|_{\text{Ces}_p(X)}^p \\
\leq 2^{p-1} \lim_{n \to \infty} \|f_n - f\|_{\text{Ces}_p(X)}^p - 2^{p-1} a
\]
and we are done. \(\square \)

Note that the assumptions that \(X \) has the nonstrict Opial property and that \((f_n(t))_{n \in \mathbb{N}} \) converges weakly to zero a.e. were only used to ensure that \(a \geq 0 \), which is only needed to conclude (3.2) from (3.1). In other words, (3.1) is also valid without these two assumptions.

We have the following Corollary in the case that \(X \) even has the Opial property (compare with [10, Corollary 4.2]).

Corollary 3.2. Let \(1 \leq p < \infty \) and let \(X \) be a Banach space with the Opial property. Let \((f_n)_{n \in \mathbb{N}} \) be a bounded sequence in \(\text{Ces}_p(X) \) such that \((f_n(t))_{n \in \mathbb{N}} \) converges weakly to zero for almost every \(t \in [0,1] \). Suppose further that there exists a \(g \in \text{Ces}_p \) such that \(\|f_n(t)\| \to g(t) \) a.e. Then
\[
\limsup_{n \to \infty} \|f_n\|_{\text{Ces}_p(X)} < 2^{1-1/p} \limsup_{n \to \infty} \|f_n - f\|_{\text{Ces}_p(X)} \quad \forall f \in \text{Ces}_p(X) \setminus \{0\}.
\]
3. Opial-type properties in Cesàro spaces of vector-valued functions

Proof. Let a be defined as in the previous proof. Since X has the Opial property we have \(\varphi(t) \geq g(t) \) for every \(t \in [0, 1] \) and even “\(> \)” if \(f(t) \neq 0 \), which by assumption happens on a set of positive measure. Thus \(a > 0 \) and hence the desired inequality follows from Theorem 3.1.

Concerning the uniform Opial property, we also have the following analogue of [10, Theorem 4.3] for Cesàro function spaces (the proof also uses similar techniques).

Theorem 3.3. Let \(1 \leq p < \infty \) and let \(X \) be a Banach space with the uniform Opial property. Let \(M, R > 0 \) and \(f \in \text{Ces}_p(X) \setminus \{0\} \). Then there exists \(\eta > 0 \) such that the following holds: whenever \((f_n)_{n \in \mathbb{N}} \) is a sequence in \(\text{Ces}_p(X) \) with \(\sup_{n \in \mathbb{N}} \|f_n\|_{\text{Ces}_p(X)} \leq R \) such that \((f_n(t))_{n \in \mathbb{N}} \) converges weakly to zero and \(\lim_{n \to \infty} \|f_n(t)\| \leq M \) for almost every \(t \in [0, 1] \), then

\[
\limsup_{n \to \infty} \|f_n\|_{\text{Ces}_p(X)} + \eta \leq 2^{1-1/p} \limsup_{n \to \infty} \|f_n - f\|_{\text{Ces}_p(X)}.
\]

Proof. Fix \(0 < \tau < \|f\|_{\text{Ces}_p(X)} \) and put \(A := \{s \in [0, 1] : \|f(s)\| \geq \tau\} \). If \(\lambda(A) = 0 \), then we would obtain \(\|f\|_{C_p(X)} \leq \int_0^1 \|f\|_{C_p(X)} \, dt = \tau \). Thus we must have \(\lambda(A) > 0 \). Let \(w := \eta_X(\tau, M) \).

Define \(A_t := A \cap [0, t] \) for \(t \in [0, 1] \). Then \(\lambda(A_t) \rightarrow \lambda(A) \) for \(t \rightarrow 1 \) and hence we can find \(t_0 \in (0, 1) \) such that \(\lambda(A_{t_0}) \geq \lambda(A)/2 \) for \(t \in [t_0, 1] \).

Put \(\theta := \int_{t_0}^1 \|f\|_{C_p(X)} \, dt \) and \(\nu := \min\{(w^p\lambda(A)\theta/2)^{1/p}, 2^{1-1/p}(3R + 1)\} \).

Next we define \(\omega := 2^{1-1/p}(3R + 1) - (2^{p-1}(3R + 1)^p - \nu^p)^{1/p} \) and finally \(\eta := \min\{\omega, 1\} \).

Now let \((f_n)_{n \in \mathbb{N}} \) be as above. Without loss of generality we may assume that \(g(t) := \lim_{n \to \infty} \|f_n(t)\| \leq M \) and \(f_n(t) \rightarrow 0 \) weakly for every \(t \in [0, 1] \).

Let \(\varphi(t) := \liminf_{n \to \infty} \|f_n(t) - f(t)\| \) for all \(t \in [0, 1] \). Then we have \(\varphi \geq g \) and the definition of \(\eta_X \) implies that even \(\varphi(s) - g(s) \geq \eta_X(\tau, M) = w \) for all \(s \in A \).

Using the relation \((a - b)^p \leq a^p - b^p \) for \(a \geq b \geq 0 \) we obtain

\[
\left(\int_0^t \varphi(s) \, ds \right)^p - \left(\int_0^t g(s) \, ds \right)^p \geq \left(\int_0^t (\varphi(s) - g(s)) \, ds \right)^p \geq w^p \lambda(A_t)^p
\]

for every \(t \in [0, 1] \).

Theorem 3.1 now implies that

\[
2^{p-1} \limsup_{n \to \infty} \|f_n\|_{\text{Ces}_p(X)} - \limsup_{n \to \infty} \|f_n\|_{\text{Ces}_p(X)}^p \\
\geq 2^{p-1} \int_0^1 \frac{\lambda(A_t)^p}{\nu^p} \, dt \geq 2^{p-1} w^p \int_{t_0}^1 \frac{\lambda(A_t)^p}{\nu^p} \, dt \geq w^p \frac{\lambda(A)^p}{2} \theta \geq \nu^p, \quad (3.13)
\]
Proof. We also put \(\theta := \int_{t_0}^1 t^p \, dt \) and \(\nu := \min\{(\omega p^2\theta/2)^{1/p}, 2^{1-1/p}(3R+1)\} \), as well as \(\omega := 2^{1-1/p}(3R+1) - (2^{p-1}(3R+1)^p - \nu^p)^{1/p} \) and finally \(\eta := \min\{\omega, 1\} \).

Now let \((f_n)_{n \in \mathbb{N}} \in \text{Ces}_p(X) \) and \(f \in L'(\{0, 1\}, X) \) be as above. We assume without loss of generality that \(g(t) := \lim_{n \to \infty} \|f_n(t)\| \leq M \) and \(f_n(t) \to 0 \) weakly for every \(t \in [0, 1] \).

Finally, we have the following analogue of \cite[Theorem 4.4]{10} (we denote by \(L^p([0, 1], X) \) the \(L^p \)-Bochner space).

Theorem 3.4. Let \(1 < p < \infty \) and let \(X \) be a Banach space with the uniform Opial property. Let \(p < r \leq \infty \) and \(\varepsilon, M, K, R > 0 \). Then there exists \(\eta > 0 \) such that the following holds: whenever \((f_n)_{n \in \mathbb{N}} \) is a sequence in \(\text{Ces}_p(X) \) with \(\sup_{n \in \mathbb{N}} \|f_n\|_{\text{Ces}_p(X)} \leq R \) such that \((f_n(t))_{n \in \mathbb{N}} \) converges weakly to zero and \(\lim_{n \to \infty} \|f_n(t)\| \leq M \) for almost every \(t \in [0, 1] \) and \(f \in L'(\{0, 1\}, X) \subseteq L^p([0, 1], X) \subseteq \text{Ces}_p(X) \) is such that \(\|f\|_r \leq K \) and \(\|f\|_{\text{Ces}_p(X)} \geq \varepsilon \), then

\[
\limsup_{n \to \infty} \|f_n\|_{\text{Ces}_p(X)} + \eta \leq 2^{1-1/p} \limsup_{n \to \infty} \|f_n - f\|_{\text{Ces}_p(X)}.
\]
Let $A := \{ s \in [0,1] : \| f(s) \| \geq \tau \}$. Since $\varepsilon \leq \| f \|_{\text{Ces}_p(X)} \leq q \| f \|_p$ (see (4) on page 2) we can proceed analogously to the proof of [10, Theorem 4.4] to show that $\lambda(A) \geq Q$. Let $A_t := A \cap [0,t]$ for $t \in [0,1]$. We have $\lambda(A) - \lambda(A_{t_0}) = \lambda(A \cap [t_0,1]) \leq 1 - t_0 = Q/2$ and hence $\lambda(A_t) \geq \lambda(A_{t_0}) \geq Q/2$ for $t \in [t_0,1]$.

As in the previous proof we can now use Theorem 3.1 to conclude

$$2^{p-1} \limsup_{n \to \infty} \| f_n - f \|_{\text{Ces}_p(X)}^p - \limsup_{n \to \infty} \| f_n \|_{\text{Ces}_p(X)}^p \geq \nu^p$$

and from this obtain, also as in the previous proof, that

$$\limsup_{n \to \infty} \| f_n \|_{\text{Ces}_p(X)} \leq 2^{1-1/p} \limsup_{n \to \infty} \| f_n - f \|_{\text{Ces}_p(X)} - \eta.$$
[14] K. Leśnik and L. Maligranda, *Abstract Cesàro spaces. Optimal range*, Integr. Equ. Oper. Theory 81 (2015), 227–235.

[15] , *Abstract Cesàro spaces. Duality*, J. Math. Anal. Appl. 424 (2015), 932–951.

[16] P. K. Lin, K. K. Tan, and H. K. Xu, *Demiclosedness principle and asymptotic behavior for asymptotically nonexpansive mappings*, J. Nonlinear Anal. Theory, Methods Appl. 24 (1995), no. 6, 929–946.

[17] P. K. Lin, *Köthe-Bochner function spaces*, Birkhäuser, Boston-Basel-Berlin, 2004.

[18] Z. Opial, *Weak convergence of the sequence of successive approximations for nonexpansive mappings*, Bull. Amer. Math. Soc. 73 (1967), no. 4, 591–597.

[19] S. Prus, *Banach spaces with the uniform Opial property*, Nonlinear Anal. Theory, Methods Appl. 18 (1992), no. 6, 697–704.

[20] , *Geometrical background of metric fixed point theory*, Handbook of Metric Fixed Point Theory (W. A. Kirk and B. Sims, eds.), Kluwer Academic Publishers, Dordrecht–Boston–London, 2001, pp. 93–132.

[21] S. Saejung, *Another look at Cesàro sequence spaces*, J. Math. Anal. Appl. 366 (2010), 530–537.

[22] B. A. Sims, *A class of spaces with weak normal structure*, Bull. Austral. Math. Soc. 50 (1994), 523–528.

Department of Mathematics
Freie Universität Berlin
Arnimallee 6, 14195 Berlin
Germany
E-mail address: hardtke@math.fu-berlin.de