The human genome and the clinic: impact of clinical genomics to patient’s bedside

Keywords: next-generation sequencing, personalized medicine, whole genome and exome sequencing

Editorial

Sequencing of the individual genome provides valuable opportunities to better diagnose and treat many human diseases. Over 3,000 genes are listed in the Online Mendelian Inheritance in Man (OMIM) database as disease causing. Medicines based on genomics are making inroads in the fields of oncology, infection, pharmacology, and rare and undiagnosed diseases. The genetic variants in the human genome, both at the whole genome and at the exome level, if identifiable, provide a rational approach to diagnosis, therapy, and personalized medicine. The clinical applications of the genome sequencing, termed as clinical genome exome sequencing (CGES) have already entered the clinic. In the past, bidirectional Sanger sequencing was used to detect gene-specific mutations and small variants. With the lower cost of the whole genome sequencing technique, the CGES could readily become a tool for genetic analysis involving a large number of patients. Such a high throughput approach can help identify targets or candidate genes for Sanger sequencing verification in the future.

Among many diseases, the CGES is well developed for cancer indications and therapy. The clinical oncologists benefit from the high-throughput sequencing efforts for diagnosis, identification of patient cohort for targeted therapy, and in early identification of mutations for resistance to ongoing therapy. The US Federal Drug Administration (FDA) approves mutations or gene expression analysis of genes such as EGFR, KRAS, HER2/NEU, C-KIT, BRCA and BRAF for therapy of diverse cancer types. The CGES results in oncology have helped establish a new paradigm in drug development in industry whereby a co-development of a diagnostic test kit and a drug for treatment is becoming common for simultaneous submission to the FDA. The extensive experience gained with the oncology indications further provides a framework to expand the utility of CGES for non-oncology indications. Increasingly, FDA approved drugs incorporate pharmacogenomics information in their labels in diverse therapeutic areas such as analgesics, antiviral, cardiovascular drugs, and anti-cancer therapeutics.

The Next Generation Sequencing (NGS), a widely used high-throughput sequencing technology, offers powerful solutions to the CGES. The whole exome sequencing (WES) and the whole genome sequencing (WGS) provides distinct advantages for the clinicians. The WES approach focuses on the coding region of the genome, is less expensive, and is currently offered by many testing laboratories. The WGS approach on the other hand, focuses on the entire genome and is more sensitive than the WES in detecting the structural variations. Furthermore, the WGS can help identify non-exonic regulatory regions encoded by the genome. This non-coding intronic and intergenic region of the genome encodes the most common complex disease risk variants and pharmacogenomics variants. The WGS, however, is not currently offered by the testing laboratories, but is likely to become an integral part of clinical testing in the next decade.

The CGES does not detect a wide variety of variations and deletions such as repetitive DNA including tri-nucleotide repeats (Fragile X syndrome, Huntington’s disease), copy-number variants (DiGeorge syndrome, Charcot-Marie-Tooth disease type 1A), long insertion-deletion variants (resistance to HIV infections), structural variants (chromosomal translocations), aneuploidy associated (Down’s syndrome, Turner syndrome) and many epigenetic changes (Beckwith-Wiedermann syndrome). In these instances, the Sanger sequencing and the Polymerase Chain Reaction provides valuable alternatives.

Global measurement of the variations among the 22,000 genes can provide an attractive starting point for novel diagnosis and prediction of risk of disease development. The variants are classified according to the American College of Medical Geneticists into 1) Disease causing, 2) likely disease causing, 3) possibly disease causing and 4) variants of unknown clinical significance. Numerous databases are emerging to facilitate analysis of these variants including ClinGen, Clinical Genomics Database-CGD, ClinVar, Decipher, and Electronic Medical Records and Genomics-eMERGE.

Challenges

Despite the promise of the CGES in improving the quality of healthcare, the healthcare providers are not yet rapidly incorporating CGES into clinical practice. Various reasons including lack of knowledge and training, interpretations of big data, cost and some degree of skepticism about the validity of the tests contribute to this. A curriculum based on the clinical genomics for the next generation of clinicians would be necessary to overcome these challenges.

Interpreting the clinical significance of mutations is complex. Over one-fourth of the mutations reported in the literature may be incorrect. Clinical-quality databases of disease-associated mutations currently do not exist. Efforts are underway to establish such a database by the human variole project.

The genome sequencing by CGES is likely to raise some ethical challenges including identification of variants relevant to long term medical care such as cancer, Alzheimer’s disease, stroke and neurological disorders as well as risk for development for other

The human genome and the clinic: impact of clinical genomics to patient’s bedside

amy.makler@fau.edu	rnarayan@fau.edu
November 24, 2016	November 28, 2016
diseases. There are no effective guidelines to tell the clinicians as to when or whether to inform the patients of such a discovery. Issues of privacy and insurance discrimination provide another layer of challenges for the benefits of clinical genomics to reach the patient’s bedside.

The future of clinical genomics

Despite these challenges, integration of the genome medicine into the clinical setting is likely to become a reality in the coming decade. Most patients entering the clinic in the future are likely to have their genome sequenced prior to the clinical evaluation. An initial focus on the Mendelome sequencing might help transfer the research findings to the patient’s bedside rapidly. The UK Genomics England’s efforts to sequence 100,000 patients with rare genetic diseases and cancer are expected to establish a sound framework for translational medicine. Clinical genomics promises to change current approaches to therapeutics development, delivery of quality healthcare and medicine. Clinical genomics promises to change current approaches to therapeutics development, delivery of quality healthcare and medicine. Clinical genomics promises to change current approaches to therapeutics development, delivery of quality healthcare and medicine. Clinical genomics promises to change current approaches to therapeutics development, delivery of quality healthcare and medicine. Clinical genomics promises to change current approaches to therapeutics development, delivery of quality healthcare and medicine. Clinical genomics promises to change current approaches to therapeutics development, delivery of quality healthcare and medicine. Clinical genomics promises to change current approaches to therapeutics development, delivery of quality healthcare and medicine.

Acknowledgements

None.

Conflict of interest

The author declares no conflict of interest.

References

1. Biesecker LG, Green RC. Diagnostic clinical genome and exome sequencing. N Engl J Med. 2014;370(25):2418–2425.
2. Hamosh A, Scott AF, Amberger JS, et al. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res. 2005;33(Database issue):D514–D517.
3. Krier JB, Kalia SS, Green RC. Genomic sequencing in clinical practice: applications, challenges, and opportunities. Dialogues Clin Neurosci. 2016;18(3):299–312.
4. de Ligt J, Willemsen MH, van Bon BW, et al. Diagnostic exome sequencing in persons with severe intellectual disability. N Engl J Med. 2012;367(20):1921–1929.
5. Saunders CJ, Miller NA, Soden SE, et al. Rapid whole-genome sequencing for genetic disease diagnosis in neonatal intensive care units. Sci Transl Med. 2012;4(154):154ra35.
6. Fan Z, Greenwood R, Felix AC, et al. GCH1 heterozygous mutation identified by whole-exome sequencing as a treatable condition in a patient presenting with progressive spastic paraplegia. J Neurol. 2014;261(3):622–624.
7. Bakker E. Is the DNA sequence the gold standard in genetic testing? Quality of molecular genetic tests assessed. Clin Chem. 2006;52(4):557–558.
8. Katsanis SH, Katsanis N. Molecular genetic testing and the future of clinical genomics. Nat Rev Genet. 2013;14(6):415–426.
9. Delaney SK, Hultner ML, Jacob HJ, et al. Toward clinical genomics in everyday medicine: perspectives and recommendations. Expert Rev Mol Diagn. 2016;16(5):521–532.
10. Gaggen J, Van Allen EM. Next-generation sequencing to guide cancer therapy. Genome Med. 2015;7(1):80.
11. Gonzaga-Jauregui C, Lupski JR, Gibbs RA. Human genome sequencing in health and disease. Annu Rev Med. 2012;63:35–61.
12. Blue C, Blue Shield A. Special report: exome sequencing for clinical diagnosis of patients with suspected genetic disorders. Technol Eval Cent Assess Program Exec Summ. 2013;28(3):1–4.
13. Richards CS, Bale S, Bellissimo DB, et al. ACMG recommendations for standards for interpretation and reporting of sequence variations: Revisions 2007. Genet Med. 2008;10(4):294–300.
14. Rehm HL, Berg JS, Brooks LD, et al. ClinGen—the Clinical Genome Resource. N Engl J Med. 2015;372(23):2235–2242.
15. Solomon BD, Nguyen AD, Bear KA, et al. Clinical genomic database. Proc Natl Acad Sci U S A. 2013;110(24):9851–9855.
16. Landrum MJ, Lee JM, Benson M, et al. ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res. 2016;44(D1):D862–D868.
17. Firth HV, Richards SM, Bevan AP, et al. DECIPHER: Database of Chromosomal Imbalance and Phenotype in Humans Using Ensembl Resources. Am J Hum Genet. 2009;84(4):524–533.
18. Gottesman O, Kuivaniemi H, Tromp G, et al. The Electronic Medical Records and Genomics (eMERGE) Network: past, present, and future. Genet Med. 2013;15(10):761–771.
19. Manolio TA, Chisholm RL, Ozenberger B, et al. Implementing genomic medicine in the clinic: the future is here. Genet Med. 2013;15(4):258–267.
20. Haga SB, Carrig MM, O’Daniel JM, et al. Genomic risk profiling: attitudes and use in personal and clinical care of primary care physicians who offer risk profiling. J Gen Intern Med. 2011;26(8):834–840.
21. Bell CJ, Dinwiddie DL, Miller NA, et al. Carrier testing for severe childhood recessive diseases by next-generation sequencing. Sci Transl Med. 2011;3(65):65ra4.
22. Smith TD, Vihinen M, Human Variome P. Standard development at the Human Variome Project. Database (Oxford). 2015;2015:bav024.

Citation: Makler A, Narayanan R. The human genome and the clinic: impact of clinical genomics to patient’s bedside. MOJ Proteomics Bioinform. 2016;4(4):291–292. DOI: 10.15406/mojpb.2016.04.00131