Use of the fiberglass reinforcement method in thermoplastic mouthguard materials to improve flexural properties for enhancement of functionality

Hiroshi CHUREI1, Ruman Uddin CHOWDHURY2, Yuriko YOSHIDA1,3, Gen TANABE1, Shintaro FUKASAWA1, Takahiro SHIRAKO1, Takahiro WADA4, Motohiro UO4, Hidekazu TAKAHASHI5 and Toshiaki UENO1

Corresponding author, Toshiaki UENO; E-mail: t.ueno.spmd@tmd.ac.jp

The purpose of this study was to evaluate the application of fiberglass reinforcement method in thermoplastic mouthguard materials to improve flexural properties and adhesive strength. Commonly used two types of commercial mouthguard materials (ethylene-vinyl acetate copolymer-based and polyolefin-based) were reinforced with glass fiber clothes by two-step hot press. Flexural strength and adhesive strength with each base material were examine via three-point bending test and delamination test, respectively. Ethylene-vinyl acetate copolymer-based fiberglass-reinforced material has significantly greater adhesive strength with base material and improvement of flexural properties compared with polyolefin-based material. These results suggest that flexural properties of both conventional commercial mouthguard materials were improved when the glass-fiber-reinforced method was applied to reinforce mouthguard materials, and more, ethylene-vinyl acetate copolymer was more desirable for the base material.

Keywords: Mouthguard, Fiberglass reinforcement method, Flexural properties, Enhancement of functionality

INTRODUCTION

The mouthguard helps prevent oral injuries and preserve the oral structures of athletes during contact and non-contact sports. Among the three basic types: stock (ready-made), mouth-formed or boil-and-bite, and custom-made, the World Dental Federation (FDI: Fédération Dentaire Internationale) has recommended the use of custom-made mouthguards for players. Custom-made mouthguards, besides preventing orofacial injuries, provide athletes with better comfort and wearability and can be processed for end-use applications. Ethylene-vinyl acetate copolymer (EVA) is the most commonly used material for commercial and custom mouthguards due to its widespread availability and adequate physical and mechanical properties. In Japan, polyolefin (PO) is another popular mouthguard material with satisfactory physical properties, and has both higher adhesive strength and lower water absorption than EVA.

The thickness of a mouthguard has a vital role in absorbing the impact energy and dispersing it throughout the mouthguard material. According to Westerman et al., the force transmitted through the mouthguard material is inversely related to the thickness of the material up to 4 mm. Therefore, the thicker the mouthguard, the better its ability to absorb impact energy. However, wearing an excessively thick mouthguard could be uncomfortable for the athletes during sports activity. The double-layered mouthguard has shown less thinning (34%) than the single-layered (38%) mouthguard during the fabrication process. In addition, the double-layered mouthguard has more longitudinal dimensional stability than the single-layered mouthguard because of smaller residual stress accumulation during the forming process. Enhancing the shock absorption ability of mouthguard material while minimizing its thickness has been a recent focus of research. To that end, the inclusion of air cells, an intermediate layer of sorbothane between two layers of EVA, a sponge insert, the insertion of an acrylic layer with or without buffering space, and the labial insertion of polyethylene terephthalate glycol-modified with buffering space showed higher shock absorption ability than the conventional laminated custom-made mouthguard. Reinforcing thermoplastic material with fiberglass is a frequently used and unique technique to increase the shock absorption ability of protective sports equipment such as face guards. Reinforcing face guard thermoplastic material with fiberglass already has proved very effective at improving shock absorption ability and decreasing the total thickness and weight of the material. A first, this study evaluated the effect of fiberglass reinforcement of conventional mouthguard.
materials (EVA and PO) on their flexural properties to
develop a high functionality for mouthguards.

Adhesive strength, flexural properties, and the
ability of the material to follow the curvature of the
dental arch shape are factors of concern when athletes
use such mouthguards over long periods of time. Takeda et al. described how EVA in a bilaminated mouthguard had enough adhesive strength for long term usage20. Suzuki et al. studied how PO mouthguard material exhibits satisfactory bonding, allowing good adhesion without any bonding agent8. In another study, Ihara et al. performed a delamination test on PO and EVA materials, which showed that both materials had good adhesive strength21. Shock absorption ability and flexural properties of fiberglass-reinforced thermoplastic material for face guards have already been evaluated18,19,22. However, adding different materials like fiberglass cloth to the thermoplastic material used for fabrication of mouthguards, then testing its flexural properties and adhesive strength, has not yet been investigated. Thus, we investigated the adhesive strength of fiberglass-reinforced materials laminated to each base of conventional mouthguard material (EVA and PO) and evaluated their functional efficacy, since it was assumed that mouthguards are created by laminating fiber-reinforced material with a base material.

The null hypotheses of the present study were that glass fiber reinforcement method were not affected for adhesive strength of fiberglass-reinforced materials laminated to each base of conventional mouthguard material (EVA and PO) and flexural strength of fiberglass-reinforced materials.

MATERIALS AND METHODS

Materials
Two types of 3 mm-thick thermoplastic commercial
mouthguard materials were chosen for the experiment:
an EVA (Erkoflex®; Ev; Erkodent Erich Kopp,
Fhalgrafenweiler, Germany) and a PO (MG21TM; Po;
CGK, Hiroshima, Japan) (Table 1). Ten sheets of plain-
woven E-fiberglass cloth (M100X 104H; density: 100 g/m²,
Unitika, Osaka, Japan) were used to reinforce each
mouthguard thermoplastic material using the hot-press
method (Fig. 1).

Preparation of fiber-reinforced thermoplastics
The two-step hot-press technique was used to impregnate
fiberglass into the thermoplastic materials. Five sheets of
the fiberglass were placed on the top and five sheets of

Table 1 Physical and mechanical properties8

Shore A hardness	Tensile strength (KPa)	Elongation (%)	Water absorption (%)	Tear strength (N/mm)	
EVA	81	1.8	800	0.012	48
PO	76	1.2	850	0.222	44

Ethylene-vinyl acetate copolymer (EVA) and polyolefin (PO)
a vacuum pump (MINIVAC PD-52; Yamato Scientific, Tokyo, Japan) to maintain a decompression environment for 20 min. To avoid poor impregnation of fiberglass into the mouthguard material, the process was repeated for the final compression, reducing the material thickness to 1.0 mm. The same procedure was followed to prepare Po with fiberglass (Po-Gf).

Three-point bending test

For the three-point bending test, hot-pressed 1.0 mm-thick sheets of Ev with fiberglass (Ev-Gf) and Po-Gf were cut by an ultrasonic cutter (Labo Sonic Cutter NE87; Nakanishi, Tochigi, Japan) into rectangular shapes 102 mm in length and 17 mm in width. Five specimens of each type were prepared and then ground smooth with waterproof SiC abrasive paper (#400 and #1000) to the proper dimension for the experiment (100×15 mm). A digital micrometer (Digimatic 293421-20, Minimum reading: 0.001 mm, Mitutoyo, Kanagawa, Japan) was used to measure the specimen’s dimensions. The three-point bending test was configured according to Japanese Industrial Standards (JIS) K7171-2008 and K7074-1988[23,24]. It was therefore run with a 40 mm width support span and a crosshead speed of 1.0 mm/min using a universal test machine (EZ-LX, Shimadzu, Tokyo, Japan) (Fig. 3). The flexural strength and modulus data from the test were stored on a personal computer, and calculated using analysis software (TRAPEZIUM X ver. 1.4.0; Shimadzu). Five specimens of Ev-Gf and five specimens of Po-Gf were examined. All the tests were carried out in a dry environment in room temperature at 20–25°C under atmospheric pressure.

Delamination test

A standard T-peel test was used as the delamination test[20,21]. For each test, two sheets of same base materials, one unaltered and one reinforced with fiberglass cloth (e.g., Ev-Gf and Ev, or Po-Gf and Po), were laminated together. First, an adhesive film sheet for separation (Molteno Separate Film, Molten, Hiroshima, Japan) was placed across the reinforced sheet material (Ev-Gf or Po-Gf) with its centerline at the center (50 mm position) of the reinforced sheet, to create an adhesive area at the center of the sheet 15 mm wide. Next, the base mouthguard material sheet (Ev or Po) was heated and placed on the reinforced sheet material so their edges aligned, then the materials were pressed in a vacuum at 0.012 MPa using a vacuum thermoforming machine (Vacuum Forming Machine, Keystone Industries, Cherry Hill, NJ, USA). The resulting laminated sheet was cut with a dumbbell-shaped cutter according to JIS K6251:2004 so that the adhesive area would be at the center of the isthmus, then was sectioned at the center to create two bottle-shaped specimens (Fig. 4). The final specimens with an adhesive area of 4.0×7.5 mm were then prepared for the delamination test (Fig. 4). Five specimens of Ev-Gf with Ev and five specimens of Po-Gf with Po were tested using the T-peel test (Fig. 4). Five specimens of Ev-Gf with Ev and five specimens of Po-Gf with Po were tested using the T-peel test to observe the adhesive strength. The size of each specimen was measured and confirmed by digital micrometer (Digimatic 293421-20) before the delamination test.

For each of the ten specimens, we proceeded with the T-peel delamination test by fixing the specimen to a universal test machine (1123, Instron, Canton, MI, USA) with a special jig to grip it firmly. During the delamination test, the crosshead speed was kept at 50 mm/min. Thus, the load on the adhesive bond rapidly increased when delamination started. The adhesive strength at the start of delamination was measured as the maximum load divided by the width of each specimen (approximately 4.0 mm). The displacement at the start of delamination, changes in the load and displacement before specimen fracture or break, and the displacement at fracture were recorded using material testing software (Series IX, Instron).

Statistical analysis

Flexural test results for Ev-Gf and Po-Gf samples, and

Fig. 3 Three-point bending test.
Left: Universal test machine (EZ-LX, Shimadzu) in 3-point bending test, Right: Specimens after test (Upper Right: Ev-Gf, Lower Right: Po-Gf).

![Three-point bending test](image)

Fig. 4 Delamination test (T-peel test).
Left: Specimen before test (Dimensions of the specimen for the delamination test are illustrated (mm). The only right parallel portion of 7.5 mm (□) was laminated. Right: Universal test machine (1123, Instron) with a special jig in test.

![Delamination test](image)
DISCUSSION

There is a wide range of materials suitable for making mouthguards. EVA material is commonly used for making commercial, ready-made, or custom-made mouthguards because of its widespread availability as well as good mechanical and physical properties. PO is an emerging mouthguard material that has gained wide usage, exhibiting better shock absorption capability with lower water absorption and higher adhesive strength, comparable to EVA. Functional and mechanical properties are important factors in selecting such materials for mouthguards, particularly when mouthguards are used for longer periods of time inside the oral cavity. Impregnating the base material like Ev or Po with another reinforcing material could be a useful way to change the effect of such properties.

As proved in the study of Kismet, changing mechanical properties by using reinforced hydrolyzed polyester-epoxy system electrostatic powder in a polyolefin base comparatively improved the physical bonding mechanism. That study clearly showed that the physical bonding mechanism and bending strength were enhanced; however, the study used gamma-radiated specimens. Other studies stated that reinforcing thermoplastic denture base resin by impregnating it with fiberglass is a useful method to improve overall mechanical properties, yielding higher elastic modulus and improved flexural properties with satisfactory reinforcing effects. Studies by both Abe and improved flexural properties and better shock absorption capabilities. Using such a procedure also might lead to a decrease in the total thickness and weight of the faceguard to lower values than for one that is commercially or conventionally custom-made. Thus, this research work was structured to investigate reinforcing mouthguard material with fiberglass to observe the mechanical and functional behavior of its adhesive strength and flexural properties.

For a multilayered laminated impregnate fabrication (base material and sheets of reinforcement material) using a one-step hot-press technique under certain conditions, interfacial adhesive strength usually significantly decreases as the thickness or number of the sheets increases because poorly impregnated areas remain due to the material's significant impregnation resistance gradient in the direction of its thickness. Because impregnation resistance gradient (base material and reinforcement material) is also influenced by the temperature gradient and thermal conductivity, even slightly inappropriate the temperature, pressure, and holding time would lead to displace and spread fibers from their initial position in the base material. Therefore, it is not appropriate to fabricate multilayered laminates using a one-step hot-press technique because of difficulties both in impregnation, and in establishing correct fiber position of each layer homogeneously with fine orientation. In contrast, the two-step hot-press technique for multilayered thermoplastic proved useful.
for the matrix base to hold the fibers in a desired position homogeneously without exposing the fibers on the surface of finished specimens. In the process of adding reinforcing fiberglass cloth to mouthguard materials in our study, impregnation was followed by a two-step hot-press technique to avoid poor impregnation of fiberglass cloth. Temperature was continuously maintained by a hot-press heater regulator, thermal conductivity was maintained by an induction motor, and the vacuum machine was used to prevent insertion of any bubbles during impregnation with fiberglass. There are many types of fiberglass cloth that can be used for reinforcement in thermoplastic materials. For example, continuous unidirectional S-fiberglass, continuous unidirectional E-fiberglass, and short-rod fiberglass have shown good results in several studies. In those studies, it was found that continuous unidirectional E-fiberglass showed the most effective and satisfactory adhesive strength with higher flexural strength and flexural modulus values. This is possibly attributable to the fact that the unidirectional E-fiberglass has better density, composition, thickness, and mesh size compared to other types of fiberglass. The selected glass cloth was epoxy silane-treated, plain weave, thickness 0.12 mm, density 100 g/m², and weaving density (threads/25 mm): 19 (vertical)-19 (horizontal) according to the relevant Japanese Industrial Standards (JIS R 3413), tensile strength is estimated to be 392 (N/25 mm) or more in both the vertical and horizontal directions. Plain weave is the simplest type of weave, made by alternately crossing one warp thread and one weft thread. The warp and weft yarns appear evenly on both sides of the fabric, and since there are many points where the yarns intersect. It is considered strong and durable against friction. During final preparation of the specimens for the delamination test and three-point bending test, specimens were re-shaped to the required dimensions using an ultrasonic cutter, and then the edges were refined with waterproof abrasive paper.

The fiberglass reinforcement method was effective for improving the properties of conventional mouthguard materials. The bending strength of Ev-Gf was ten times higher and Po-Gf was seven times higher than that of each base material, which was reported by Abe et al. In the same study, the authors also reported the flexural strength of conventional thermoplastic materials used for face guards (3 types: 21.6 MPa, 31.5 MPa, 44.8 MPa) and that of denture base resin (101.4 MPa), which shows that the flexural strength of Ev-Gf was closer to that of face guard material. Based on the flexural strength of poly ethylene terephthalate-glycol used in the previous study, it is required 30 MPa or higher as flexural strength.

The functional and mechanical properties of mouthguards should be evaluated by testing adhesive strength, using the tensile test and tear test, which evaluate the durability of a laminated mouthguard material. Several test methods such as T-peel, 180° peel, 90° peel, or floating roller have been useful for examining such behavior. Delamination testing using a T-peel test is one of the most effective methods to investigate adhesive strength, and has been adopted by most standards bodies (e.g. ISO 11339, ASTM D 1876). Therefore, the T-peel test was conducted in this study to evaluate adhesive strength. During the procedure, delamination started when the load was rapidly increased. It was important to observe the initial load at the start of delamination, which was more important than the final load, which resulted in interfacial fracture both for Ev-Gf and for Po-Gf in our study. According to Ihara et al., the adhesive strength of EVA at the start of the delamination was significantly greater than that of PO in a dry environment. In that study, the fracture pattern observed during the delamination test showed that EVA had interfacial fractures and PO had cohesive fractures, suggesting that EVA adhesive strength can be improved by changing the laminating condition or pattern. Our study results support the results reported by Ihara et al. Therefore, specimens in our research contained reinforcing fiberglass in Ev and Po, where testing results showed Ev-Gf (1.90 N/mm) had significant higher adhesive strength than did Po-Gf (0.33 N/mm). The same types of material as EVA and PO used in this study are both conventionally used as materials for so-called hot-melt adhesives, which exhibit adhesive functions when heated to melt and then cooled to solidify. EVA is known to have higher viscosity than PO. Therefore, it was thought that the properties were improved by the EVA penetrating more into the fiber cloth used in this study. The adhesive strength of the bond between Ev-Gf and Ev in our study was approximately one-third of the adhesive strength between EVA and EVA when bonded to each other at 120°C or higher. On the other hand, another study showed that the adhesive strength between EVA and EVA when bonded to each other at about 100°C was almost the same as the adhesive strength between Ev-Gf and Ev in our study. A sagging distance of 15 mm below the clamp was considered the most suitable configuration for the forming process when the center of the softened sheet sagged as for the mouthguard vacuum forming procedure. The test specimens for the delamination test were prepared according to the procedures in their report because the method was successful. Their report inferred that the temperature of the adhesive surface was approximately 110°C just before forming. However, some studies showed that higher adhesive strengths could be obtained using solvents and by adjusting the heating conditions. This could be attributed to the fact that although the preparation of the specimens was different, their results were comparable. The present study was conducted under normal atmospheric pressure in dry conditions without using any resin modifier or any processing agent. The bond strength is considered to be clinically more than 4 N/mm. The bond strength might be improved by examining the surface treatment method of the glass fiber. From the results of the present study, it was also thought that molding in a way that the material is sandwiched by the base material is preferable from the biochemical safety point of view to compensate.
for the lack of adhesive strength. It showed the possibility of using this fiber-reinforced material in this study as like poly ethylene terephthalate-glycol in the report from Takesa et al. It is assumed that the glass fibers will not come into contact with the actual oral tissues (teeth, mucosa, etc.). In the future, it needs to evaluate the biocompatibility of the material in a strict sense.

Additional functional and mechanical properties of mouthguards could be evaluated by determining flexural strength and flexural modulus using a three-point bending test. The basic methodological approach in the present study used the three-point bending strength and flexural modulus to compare values and evaluate differences between Ev-Gf and Po-Gf. Moreover, it is appropriate to evaluate the mechanical and functional properties of such experimental reinforced thermoplastic material using a bending test to observe the deformity of the specimens. In addition, these properties determine the degree to which deformation of new reinforced thermoplastic material is minimized during occlusion. Therefore, such materials used for mouthguards must possess sufficient flexural strength and an appropriate elastic modulus. Our research found that the flexural strength of Ev-Gf (29.7 MPa) was significantly higher than that of Po-Gf (14.8 MPa). Perpendicular force should be applied to the specimen’s cross-section in a three-point bending test, and the filler material should be dispersed throughout the sample materials, which was accomplished in the present study experiment. Thus, the energy generated by the force must either break the filler particles or be dissipated throughout the specimen, showing more resiliency. Therefore, in the present study, it was more difficult to break the reinforced Ev-Gf sample, demonstrating a more resilient structure.

One limitation of the present study is related to the testing of dry specimens only. Further studies are needed in the future under different environmental conditions. The peel durability of the adhesive surface between each mouthguard material and glass fiber cloth was great concern due to the effect of water absorption over time. However, Ibara et al. had to reject the hypothesis that adhesive strength of PO and EVA will change with time. However, Ihara et al. had to reject the hypothesis that adhesive strength of PO and EVA will change with time. However, Ihara et al. had to reject the hypothesis that adhesive strength of PO and EVA will change with time. Therefore, in the present study it was more difficult to break the reinforced Ev-Gf sample, demonstrating a more resilient structure.

CONCLUSION

This pioneer study on reinforced fiberglass mouthguard materials compared the functional and mechanical properties of the two most commonly used materials to determine the gold standard for reinforced thermoplastic mouthguard materials. The fiberglass-reinforced Ev-Gf has the better functional properties for fabricating mouthguards, and these properties will help to reduce the thickness of the mouthguard for single-layer, laminated, or hard insertion type objects. When the fiberglass reinforcement method was applied for advancement of mouthguard materials, EVA proved to be the more desirable base material.

ACKNOWLEDGMENTS

This research was supported by the Japan Society for the Promotion of Science KAKENHI (Grant no. 26462948 and 17K11774). We would also like to thank Editage (www.editage.jp) for English language editing.

CONFLICT OF INTEREST

The authors declare no conflicts of interest.

REFERENCES

1) Wehner PJ, Henderson D. Maximum prevention and preservation: an achievement of intraoral mouth protectors. Dent Clin North Am 1965; 9: 493-498
2) Ueno T, Kondo G, Sasaki Y, Taniguchi H, Ohyama T. Recommendation of custom-made mouthguards to high school boxers. Jpn J Sports Dent 2001; 4: 1-6.
3) Low D. Mouthguard protection and sports-related dental trauma. Aust R Australas Coll Dent Surg 2002; 16: 153-155.
4) Lieger O, von Arx T. Orofacial/cerebral injuries and the use of mouthguards by professional athletes in Switzerland. Dent Traumatol 2006; 2: 1-6.
5) FDI World Dental Federation. FDI policy statement; sport mouthguards (2008). Available at: http://www.fdiworldental.org/media/11369/Sports-mouthguards-2008.pdf.
6) DeYoung AK, Robinson E, Godwin WC. Comparing comfort and wearability: custom-made vs. self-adapted mouthguards. J Am Dent Assoc 1994; 125: 1112-1118.
7) Gould TE, Piland SG, Shin J, McNair O, Hoyle CE, Nazarenko S. Characterization of mouthguard materials: Physical and mechanical properties of commercialized products. Dent Mater 2009; 25: 1593-1602.
8) Suzuki H, Harashima T, Asano T, Komiyama O, Kuroki T, Kusaka K, et al. Use of polyolefin materials as compared to ethylene vinyl acetate. Int J Oral Med Sci 2007; 6: 14-18.
9) Westerman B, Stringfellow PM, Eccleston JA. Forces transmitted through EVA mouthguard materials of different types and thickness. J Am Dent Assoc 1995; 40: 389-391.
10) Miura J, Maeda Y, Machi H, Matsuda S. Mouthguards: difference in longitudinal dimensional stability between single and double-laminated fabrication techniques. Dent Traumatol 2007; 23: 9-13.
11) Tunc ES, Ozdemir TE, Arici S. Postfabrication thickness of single-and double-layered pressure-formed mouthguards. Dent Traumatol 2012; 29: 378-382.
12) Westerman B, Stringfellow PM, Eccleston JA. An improved mouthguard material. Aust Dent J 1997; 42: 189-191.
13) Bulsara YR, Matthew IR. Forces transmitted through a laminated mouthguard material with a Sorbothane insert. Endod Dent Traumatol 1998; 14: 45-47.
14) De Wet FA, Heyns M, Pretorius J. Shock absorption potential of different mouth guard materials. J Prosthet Dent 1999; 82: 301-306.
15) Takesa T, Ishigami K, Mishima O, Karasawa K, Kurokawa K, Kajima T, et al. Easy fabrication of a new type of mouthguard incorporating a hard insert and space and offering improved
shock absorption ability. Dent Traumatol 2011; 27: 489-495.

16) Takeda T, Ishigami K, Handa J, Naitoh K, Kurokawa K, Shibusawa M, et al. Does hard insertion and space improve shock absorption ability of mouthguard? Dent Traumatol 2006; 22: 77-82.

17) Boching MS, Oh MJ, Nagel T, Ziegler F, Jost-Brinkmann PG. Comparison of the shock absorption capacities of different mouthguards. Dent Traumatol 2017; 33: 205-213.

18) Abe K, Takahashi H, Churei H, Iwasaki N, Ueno T. Flexural properties and shock-absorbing capabilities of new face guard materials reinforced with fiberglass cloth. Dent Traumatol 2013; 29: 23-28.

19) Wada T, Churei H, Takayanagi H, Iwasaki N, Ueno T, Takahashi H, et al. Improvement of shock absorption ability of a face guard by incorporating glass-fiber-reinforced thermoplastic and buffering space. Biomed Res Int 2018; 8: 1-8.

20) Takeda T, Ishigami K, Kawamura S, Nakajima K, Shimada A, Sumii T, et al. Adhesive strength and its improvement referring to the laminated-type mouthguard. Dent Traumatol 2006; 22: 205-214.

21) Ihara C, Takahashi H, Matsui R, Yamanaka T, Ueno T. Bonding durability of custom-made mouthpiece for scuba diving after water storage under pressure. Dent Mater J 2009; 28: 487-492.

22) Abe K, Churei H, Takahashi H, Ueno T. Flexural properties of a faceguard core material measured by three-point bending test. J Sports Dent 2011; 15: 17-22.

23) JIS K7171: 2009, Plastics —Determination of flexural property.

24) JIS K7074: 1988, The method of bending test of carbon fiber reinforced plastics.

25) Kismet Y. Change of mechanical properties of powder recyc late reinforced polyolefin based on gamma radiation. Polymers (Basel) 2017; 9: 384.

26) Bertassoni LE, Marshall GW, de Souza EM, Rached RN. Effect of pre- and postpolymerization on flexural strength and elastic modulus of impregnated, fiber-reinforced denture base acrylic resins. J Prosthet Dent 2008; 100: 449-457.

27) Sasaki H, Hamanaka I, Takahashi Y, Kawaguchi T. Effect of reinforcement on the flexural properties of injection-molded thermoplastic denture base resins. J Prosthodont 2017; 26: 302-308.

28) Yang BB, Lu LS, Liu XK, Xie YX, Li JW, Tang Y. Uniaxial tensile and impact investigation of carbon-fabric/polycarbonate composites with different weave tows widths. Mater Des 2017; 131: 470-480.

29) Liu X, Yang B, Lu L, Wan Z, Tang Y. A thermoplastic multilayered carbon-fabric/polycarbonate laminate prepared by a two-step hot-press technique. Polymers (Basel) 2018; 10: 720.

30) Narva KK, Lassila LV, Vallittu PK. The static strength and modulus of fiber reinforced denture base polymer. Dent Mater 2005; 21: 421-428.

31) JIS R 3414: 2006, Textile glass fabrics.

32) Takamata T, Hashii K, Yanaki T, Nakamura T, Katou Y, Anzai M, et al. Study of viscoelastic properties and shock absorption characteristics of sports mouthguard materials. J Sports Dent 2010; 13: 60-69.

33) ISO 11339:2010, Adhesives —T-peel test for flexible-to-flexible bonded assemblies.

34) Takahashi M, Koide K, Suzuki H, Iwasaki S. Optimal heating condition of ethylene-vinyl acetate co-polymer mouthguard sheet in vacuum-pressure formation. Dent Traumatol 2015; 32: 311-315.

35) Tanabe G, Churei H, Wada T, Takahashi H, Uo M, Ueno T. The influence of temperature on sheet lamination process when fabricating mouthguard on dental thermoforming machine. J Oral Sci 2020; 62: 23-27.