Investigating Applicability of Evaporative Cooling Systems for Thermal Comfort of Poultry Birds in Pakistan

Hafiz M. U. Raza 1, Hadeed Ashraf 1, Khawar Shahzad 1, Muhammad Sultan 1,*, Takahiko Miyazaki 2,3, Muhammad Usman 4,*, Redmond R. Shamshiri 5,*, Yuguang Zhou 6 and Riaz Ahmad 6

1 Department of Agricultural Engineering, Bahauddin Zakariya University, Bosan Road, Multan 60800, Pakistan; engr.mumarraza@gmail.com (H.M.U.R.); hadeedashraf15@gmail.com (H.A.); khawarshahzad04@gmail.com (K.S.)
2 Faculty of Engineering Sciences, Kyushu University, Kasuga-koen 6-1, Kasuga-shi, Fukuoka 816-8580, Japan; miyazaki.takahiko.735@m.kyushu-u.ac.jp
3 International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
4 Institute for Water Resources and Water Supply, Hamburg University of Technology, Am Schwarzenberg-Campus 3, 20173 Hamburg, Germany
5 Leibniz Institute for Agricultural Engineering and Bioeconomy, Max-Eyth-Allee 100, 14469 Potsdam-Bornim, Germany; rshamshiri@atb-potsdam.de
6 Bioenergy and Environment Science & Technology Laboratory, College of Engineering, China Agricultural University, Beijing 100083, China; zhouyg@cau.edu.cn (Y.Z.); riaz@cau.edu.cn (R.A.)
* Correspondence: muhammad.sultan@bzu.edu.pk (M.S.); muhammad.usman@tuhh.de (M.U.);
Tel.: +92-333-610-8888 (M.S.); Fax: +92-61-9210298 (M.S.)

Received: 4 June 2020; Accepted: 24 June 2020; Published: 28 June 2020

Abstract: In the 21st century, the poultry sector is a vital concern for the developing economies including Pakistan. The summer conditions of the city of Multan (Pakistan) are not comfortable for poultry birds. Conventionally, swamp coolers are used in the poultry sheds/houses of the city, which are not efficient enough, whereas compressor-based systems are not economical. Therefore, this study is aimed to explore a low-cost air-conditioning (AC) option from the viewpoint of heat stress in poultry birds. In this regard, the study investigates the applicability of three evaporative cooling (EC) options, i.e., direct EC (DEC), indirect EC (IEC), and Maisotsenko-cycle EC (MEC). Performance of the EC systems is investigated using wet-bulb effectiveness (WBE) for the climatic conditions of Multan. Heat stress is investigated as a function of poultry weight. Thermal comfort of the poultry birds is calculated in terms of temperature-humidity index (THI) corresponding to the ambient and output conditions. The heat production from the poultry birds is calculated using the Pederson model (available in the literature) at various temperatures. The results indicate a maximum temperature gradient of 10.2 °C (MEC system), 9 °C (DEC system), and 6.5 °C (IEC systems) is achieved. However, in the monsoon/rainfall season, the performance of the EC systems is significantly reduced due to higher relative humidity in ambient air.

Keywords: evaporative cooling; poultry birds; heat production; temperature-humidity-index; Pakistan

1. Introduction

Air-conditioning (AC) is the process of controlling temperature and humidity of ambient air to achieve thermal comfort for a range of occupants [1,2]. It involves various processes to condition the
ambient air, which includes cooling, heating, humidification, dehumidification, and ventilation [3]. Applications of the AC are not only limited to humans’ thermal comfort but also to agricultural products’ storage and livestock applications [4]. Livestock sector as a part of agriculture sector is of prime importance for any growing economy [5]. It includes animal farming for meat and milk production as well as poultry farming for meat and egg production [6]. According to Pakistan Statistical Yearbook [7], the poultry sector under the agriculture sector contributed 1.4% in overall gross domestic product (GDP) of the country during economical year 2017–2018 [7]. Out of total meat production (i.e., 4.3 million tons), 1.47 million tons poultry meat is produced in the country, which highlighted the significance of the poultry sector in the economy [7].

In a poultry farm, cooling and ventilation of surrounding air are necessary for optimum growth of poultry birds [8]. These birds are highly susceptible to slight fluctuation in temperature and humidity of the surrounding air [8]. The poultry birds require an optimum temperature-humidity index (THI) throughout their growth up to the meat harvest stage. To achieve the required THI for the poultry birds, ambient air is conditioned. Several types of cooling systems are being used to attain thermal comfort of the poultry birds [3]. In Pakistan, pad type direct evaporative cooling (DEC) system is commonly preferred for cooling of air in poultry farms [9].

Typical hot and dry conditions of the country move to hot and humid conditions in the monsoon (i.e., heavy rainfall) season, which result in higher relative humidity in ambient air. This, therefore, limits the performance of a standalone DEC system [10]. Consequently, advanced evaporative cooling (EC) systems, namely the indirect evaporative cooling (IEC) system and the Maisotsenko-cycle based cooling (MEC) system, can be a better option for poultry farming in Pakistan [11]. EC systems are power-efficient when compared to conventional vapor compression air-conditioning systems in hot and dry climatic conditions [1,12]. The EC systems are simple in design (structure), energy efficient, and environmentally-friendly as compared to traditional vapor compression air-conditioning (VCAC) systems. The AC systems being traditionally used across the world consume a major share of primary energy and exhaust hydrochlorofluorocarbon-carbons (HCFCs)/hydro-fluorocarbons (HFCs)/chlorofluorocarbons (CFCs) [13–16]. Alternatively, HCFC, HFC, and CFC free refrigerants and desiccant unit based AC systems are also being studied [17,18]. Whereas, the EC systems have a very low carbon footprint when compared to the VCAC systems [19,20]. Objectives of this study include performance evaluation of three types of EC systems for the climatic conditions of Multan (Pakistan) and feasibility analysis of these EC systems for thermal comfort based on THI of poultry birds in poultry houses across Multan.

2. Thermal Comfort for Poultry Birds

Temperature and humidity control are necessary for every human and non-human’s thermal comfort [4]. Additionally, the poultry birds also require an optimum temperature and relative humidity conditions for healthy growth [21]. Hence, seasonal variation in weather demands the need for AC. Figure 1 shows thermoneutral zones for poultry birds and represents the physical effect of heat stress on the poultry (broiler) birds [22]. Three different temperature zones are mentioned as thermoneutral, upper, and lower critical temperature zones. Optimum physiological growth in the birds increases with the optimum range of temperature and humidity inside the poultry house. Compared to the human body, the poultry birds lack sweat glands to dissipate body heat in a heat-stressed environment [21]. The birds transfer excess heat from their body into the environment by panting (i.e., heavy breathing) once the thermoneutral zone is crossed [21]. During the panting process, the birds transfer additional moisture into the environment, which leads to their suffocating conditions. Once the environment reaches a maximum heat point (i.e., dry-bulb temperature ≥ 47 °C [23]), the birds expire due to extreme stress heat. Figure 2 shows psychrometric representation of the required optimum temperature and relative humidity conditions for the birds (i.e., broilers) of varying age, and hourly climatic distribution of Multan. One-day-old chicks need relatively more temperature as compared to the elder chickens, as dictated by local practice of using heaters for one week. The optimum temperature slides down
from 34 to 32 °C, 32 to 28 °C, 28 to 26 °C, 26 to 24 °C, and 24 to 20 °C for one, two, three, four, and five week-old chickens, respectively [24,25]. At the same time, the relative humidity (RH) is maintained at 50–70% throughout the growth period [24,25]. In the poultry house, heat load is contributed by metabolism and respiration of the broiler, structure of the building (through convection), air change through doors, and sunlight through windows [26]. To satisfy the thermal comfort needs for poultry birds, a comprehensive AC system is needed to be installed in the poultry house, which has the potential to achieve the required heat loads. In this study, the working principle of different EC systems is explained and their respective performance for poultry air-conditioning is investigated including the effect of temperature, relative humidity, and velocity on the growth of poultry birds.

![Thermoneutral zone of poultry birds](image1.png)

Figure 1. A simplified scheme showing thermoneutral zone of poultry birds.

![Psychrometric distribution](image2.png)

Figure 2. Psychrometric distribution of climatic conditions (hourly basis) of Multan associated with thermal comfort zones of poultry birds.

In order to achieve required temperature and humidity level inside poultry houses, the ventilation rate and air velocity are of paramount importance [27]. Ventilation generally mitigates the respiratory and humidity-related issues and replaces foul gases to increase the productivity of broilers. Factors to mark the productivity are feed intake, feed conversion ratio, and body weight gain [28]. Any slight variation in temperature, humidity, and air velocity results in poultry (health) welfare issues [29].
3. Materials and Methods

3.1. Evaporative Cooling (EC) Systems

Three kinds of lab-scale experimental EC systems were developed as shown in Figure 3. There was a similar housing assembly used for different heat mass exchangers (i.e., IEC and MEC channels) for experimentation. The direct (DEC), indirect (IEC), and M-cycle (MEC) evaporative cooling systems were operated for different conditions and the experimental data of temperature and relative humidity for the climatic conditions of Multan (Pakistan) was collected. Performance of the systems was evaluated in terms of the temperature gradient (i.e., difference between ambient and supply air temperature) and relative humidity (RH) level (of the ambient and supply air) to investigate the thermal comfort of poultry birds. In Figure 3, pictorial representations of the developed experimental systems along with MEC and IEC channels are presented. It consists of a fan, moisture sensor, temperature sensor, velocity sensor, and water storage tank. Additionally, experiments of the DEC system with cellulose cooling pads (or more commonly known as honeycomb pads) was used for this experiment instead of aspen wood fiber contained in a net (local name “khas”). The detailed scientific concept and thermodynamic fundamentals of these developed EC systems are described in the coming subheadings.

![Figure 3](image-url)
Figure 3. A pictorial representation of the experimental apparatus for MEC and IEC EC systems.

3.1.1. Direct EC (DEC) System

Direct evaporative cooling (DEC) system is the simplest and old type of EC system in which air comes directly in contact with the water surface to reduce its temperature [30,31]. Continuous evaporation of water (adiabatic process) vapors causes a cooling effect up to a saturation point of air [1,3,32]. Enthalpy (kJ/kg) of air at inlet and outlet conditions remains the same, whereas the humidity ratio (gram of water per kg of dry air i.e., g/kgDA) increases. The DEC system can potentially reduce the temperature of the inlet air up to its wet-bulb temperature with wet-bulb effectiveness (WBE) of 75–95% [3,33]. Schematic and psychometric representation of the DEC system is shown in Figure 4a.
Cooling effect in the DEC system is produced by utilizing latent heat of evaporation governed by Equation (1) given in the literature [3].

$$h_{outlet} = 1.006 T_{db} + w(2501 + 1.86T_{db})$$ \hspace{1cm} (1)

where h_{outlet} represents enthalpy of the outlet air (kJ/kg), T_{db} denotes dry-bulb temperature of the air (°C), and w represents the humidity ratio of the outlet air (kg/kg). For further study on DEC, Equations (2) and (3) provide more insight [3].

$$\text{(DBT)}_{outlet} \geq \text{(WBT)}_{inlet}$$ \hspace{1cm} (2)

$$\text{(RH)}_{outlet} > \text{(RH)}_{inlet}$$ \hspace{1cm} (3)

where DBT denotes dry-bulb temperature air (°C), RH denotes relative humidity of air (%), and subscripts outlet and inlet represent outlet and inlet air conditions, respectively.

3.1.2. Indirect EC (IEC) System

Indirect evaporative cooling (IEC) system is a system in which heat and mass transfer take place to reduce the temperature of primary/ambient air without the addition of moisture. It works on the basis of sensible cooling [1]. It consists of two channels named wet and dry channels [34]. Primary air passes through a dry channel and secondary/process air passes through a wet channel. In the IEC system, a cooling effect is produced by a two-way thermodynamic process: (1) isenthalpic cooling in the wet channel by water evaporation, and (2) sensible heat transfer in the dry channel [1,35]. It can reduce the temperature up to the wet-bulb temperature. Therefore, its WBE range is 50–65% [36,37]. In the IEC system, humidity (g/kg of dry air DA) of inlet air and outlet air remains the same. However, enthalpy (kJ/kg of dry air DA) of outlet air is decreased [1]. Schematic and psychrometric representation
of the IEC system is shown in Figure 4b. Further insights into the IEC system are governed by Equations (4)–(7) given in the literature [3].

\[
(DBT)_{\text{outlet}} \geq (WBT)_{\text{inlet}} \quad (4)
\]

\[
(RH)_{\text{outlet}} > (RH)_{\text{inlet}} \quad (5)
\]

\[
w_{\text{outlet}} = w_{\text{inlet}} \quad (6)
\]

\[
h_{\text{outlet}} < h_{\text{inlet}} \quad (7)
\]

where \(w\) and \(h\) represent the humidity ratio (kg/kg) and enthalpy of air (kJ/kg), and subscripts outlet and inlet represent outlet and inlet air conditions, respectively.

3.1.3. Maisotsenko-Cycle EC (MEC) System

Maisotsenko-cycle evaporative cooling (MEC) is the system in which ambient air undergoes a thermodynamic process in which psychrometric renewable energy available from the air is utilized to reduce the temperature of ambient air [1,38,39]. It is also called an advanced IEC system or regenerative evaporative cooling system [40]. In the MEC system, the cooling effect is produced by two thermodynamic processes: evaporative cooling and heat transfer [1,41] in which temperature of ambient air nearly reaches the dewpoint temperature instead of wet-bulb temperature [16,39,42]. It consists of three channels: one wet channel and two dry channels. The wet channel is sandwiched between two dry channels. When ambient air passes through the dry channel, it becomes cool due to convective heat transfer between wet and dry channels. In the MEC system, humidity (g/kg of dry air DA) of inlet air and outlet air remains the same. However, enthalpy (kJ/kg of dry air DA) of outlet air decreases [33,36]. Schematic and psychrometric representation of the MEC system is shown in Figure 4c. Further insights into the MEC system are governed by Equations (8)–(11) given in the literature [3].

\[
(DPT)_{\text{inlet}} \leq (DBT)_{\text{outlet}} \leq (WBT)_{\text{inlet}} \quad (8)
\]

\[
(RH)_{\text{outlet}} > (RH)_{\text{inlet}} \quad (9)
\]

\[
w_{\text{outlet}} = w_{\text{inlet}} \quad (10)
\]

\[
h_{\text{outlet}} < h_{\text{inlet}} \quad (11)
\]

where DPT, DBT, and WBT represent dewpoint, dry-bulb, and wet-bulb temperatures (°C), respectively, RH represents relative humidity (%), \(w\) and \(h\) represent the humidity ratio of air (kg/kg) and enthalpy of air (kJ/kg), respectively, and subscripts outlet and inlet represent outlet and inlet air conditions, respectively.

Performance of the EC systems can be assessed in terms of their effectiveness, i.e., wet-bulb effectiveness (WBE), given by Equation (12).

\[
E_{\text{WB}} = \frac{DBT_{\text{inlet}} - DBT_{\text{outlet}}}{DBT_{\text{inlet}} - WBT_{\text{inlet}}} \quad (12)
\]

where \(E_{\text{WB}}\), DBT, and WBT represent wet-bulb effectiveness (-), dry-bulb and wet-bulb temperatures of air (°C), respectively, and the subscripts inlet and outlet represent inlet and outlet air conditions, respectively.

3.2. Research Methodology

To determine the design cooling load for the AC system, heat produced (HP) by the birds and their THI is required. Pedersen (2000) [43,44] model is used to calculate the HP (sensible and latent) per bird for climatic conditions of Multan. Figure 5 represents an illustration of integration of EC systems into a poultry house and sensible and latent heat load generated by a poultry bird. Heat production in birds...
changes with respect to their body weight [45]. The birds grow muscles over time due to consuming more energy produced from feed intake [46]. As a result, more heat is released. Heat production (HP) in poultry birds is governed by Equation (13) given in the literature [26].

\[
HP = 60.64 + 0.04LW
\]

(13)

where HP represents heat production from poultry birds (W/kg) and LW represents the live weight of poultry birds (g).

\[Q_s = 0.83Q_t(0.8 - 1.85e^{-7}(T_{db} + 10)^4)\]

(15)

where \(Q_t\) and \(Q_s\) represent total and sensible heat productions (J/s), respectively, and \(m_a\) represents the mass of live birds (kg) and \(T_{db}\) represents dry-bulb temperature (°C).

The temperature-humidity index (THI) is a linear combination of dry-bulb temperature and wet-bulb temperature. THI has been established to evaluate the effect of the thermal environment on thermoregulatory status of poultry birds [47]. Equation (16) governs THI for broilers [47].

\[
THI = 0.85T_{db} + 0.15T_{wb}
\]

(16)

where THI represents temperature-humidity index (°C), and \(T_{wb}\) represents wet-bulb temperature of air (°C). The wet-bulb temperature for poultry birds is calculated by Equation (17) [48,49].

\[
T_{wb} = T_{db}tan^{-1}\left[\frac{0.151977 + (RH + 8.313659)^{\frac{1}{2}} + tan^{-1}(T_{db} + RH)}{-tan^{-1}(RH - 1.676331) + 0.00391838 RH^{\frac{3}{2}} tan^{-1}(0.023101 RH)}\right] - 4.686035
\]

(17)

where RH represents relative humidity of air (%).

THI has been developed based on body temperature responses instead of production responses [47]. Based on physiological parameters such as: body temperature, respiration rate, or pulse rate, heat production, or production performance, THI equations describe the importance of \(T_{db}\) and \(T_{wb}\) for a...
range of animals including poultry birds and cattle [50]. However, THI fails to integrate the effect of air velocity \((V)\) on animal thermal comfort [50]. Effects of air velocity on body temperature of poultry birds is accounted for by integrating \(V\) into THI [27]. Due to the nonlinear nature of \(V\), the asymptotical function is considered [50]. Consequently, the temperature-humidity-velocity index (THVI) is used in this study for homeostasis (i.e., ability of an animal to maintain constant internal conditions in the face of fluctuating external conditions) of birds [27]. With increase in velocity up to a certain point (i.e., 1.2 m/s), optimum thermal comfort for poultry birds inside a poultry can be achieved [50]. THVI is calculated by Equation (18) given in the literature [27].

\[
THVI = V^{-0.058} THI
\]

(18)

4. Results and Discussion

The results from the developed EC systems are obtained for the climatic conditions of Multan (Pakistan), which are presented in Figure 6. Ambient air temperature ranges from 12.3 °C to 42.1 °C. The DEC system resulted in a temperature range of 10 °C to 32.3 °C, which created a temperature gradient of 10.9 °C. The IEC system resulted in a temperature range of 10.8 °C to 35.5 °C, which led to a temperature gradient (i.e., difference between ambient and supply air temperature) of 7.4 °C. The MEC system resulted in a temperature range of 13.2 °C to 31.6 °C, which created the maximum temperature gradient of 14.4 °C. From these results, the MEC system performs better when compared to the DEC and IEC systems in terms of the temperature gradient. The trend of relative humidity (%) of ambient air, DEC, IEC, and MEC systems is also presented in Figure 6. The DEC, IEC, and MEC systems resulted in relative humidity ranging from 72% to 98%, 51% to 78.5%, and 66.7% to 93.6%, respectively. A maximum increase in relative humidity is observed in case of the DEC system as compared to IEC and MEC systems. Additionally, Figure 6 shows that April to June are hot and dry months whereas July to October are hot and humid months, which indicated a need for AC in both. Figure 7 shows performance of the EC systems based on wet-bulb effectiveness for DEC, IEC, and MEC systems. The DEC and MEC systems resulted in relatively higher effectiveness when compared to the IEC system. MEC system achieved maximum effectiveness of 0.98 in November. Additionally, DEC and IEC systems achieved maximum wet-bulb effectiveness of 0.96 and 0.57 in September and May, respectively.

![Figure 6. The annual profiles of temperature and relative humidity for ambient conditions of Multan and output conditions of the DEC, IEC, and MEC systems.](image-url)
Figure 7. The achieved wet-bulb effectiveness of the EC systems against the results presented in Figure 6 for climatic conditions of Multan.

Figure 8 represents the relationship of heat production (HP) and temperature-humidity index (THI) with live weight of poultry birds. HP of poultry birds increases in linear function with respect to LW. In the early stage of poultry growth, higher THI is tolerated while justifying the earlier statement about use of heaters for one-week old chicks. Heat production is at peak when poultry birds achieve harvest mass. Poultry birds ready for harvest generate the highest heat (i.e., 171 W/m²) against THI of 18.2 °C at 2.75-kg live weight.

Figure 8. The variations of heat production and THI with respect to weight of poultry birds.
Figure 9 shows the relation of relative humidity and THI with reference to T_{db}. Increase in humidity up to the optimal value of dry-bulb temperature works accordingly to overcome heat stress. Figure 10 represents the effect of T_{db} on THVI with respect to varying air velocity. It is noticed that, at a fixed value of T_{db}, THVI decreases slightly with an increase in the velocity of air. Moreover, Figure 11 shows THI with a varying temperature and relative humidity. THI ranges from 28 °C to 30 °C, which indicates an alarming situation for the poultry birds. It turns into a dangerous situation when THI surpasses 30 °C. An emergency action is required if the THI value surpasses 31 °C. Poultry birds grow healthier at 18 °C to 29 °C and 50% RH [47].
The numerical values of THI corresponding to various temperature and relative humidity levels. The green color presents relatively better THI whereas a red color reflects the worst scenario of THI.

Figure 11. Sensible and latent HP per bird directly affects their mortality rate. It also explains the complex situation of heat stress gained by poultry birds. As the ambient temperature starts increasing, HP per bird gets increased. Moreover, there remains a widening gap between the values of sensible and latent heat production per bird. Once this gap gets shrieked under any abnormal condition of ambient temperature, there comes an end to the welfare of poultry birds. Figure 12 represents the variations in heat production against the weight of poultry birds at different temperatures.

Figure 12a shows an increase in total HP by poultry birds since they gain weight at 18 °C. At an early stage, sensible HP increases comparatively higher than that of latent HP. This trend continues to grow. It is seen that, at 3 kg weight of poultry bird, sensible HP (i.e., 14.8 W/kg) is roughly double the value of latent HP (i.e., 7.5 W/kg). Similarly, Figure 12b–d shows the trend of total HP by poultry birds of different live weights at 30 °C, 40 °C, and 45 °C, respectively. Sensible (13.7 W/kg) and latent (7.7 W/kg) HP is observed at 30 °C. Sensible and latent HP of 6.9 W/kg and 8.1 W/kg as well as 3.4 W/kg and 4.5 W/kg at 40 °C and 45 °C, respectively. Additionally, Figure 12d indicates a higher latent HP compared to sensible HP indicating that the bird is suffocating due to an increase in the humidity ratio in the surrounding air. Moreover, at 40 °C, the difference between sensible and latent HP is at the lowest, which indicates that the bird is about to expire due to heat stress and suffocation. With increasing THI, poultry birds start losing their strength to fight against heat stress. Impact of T_{db} and T_{wb} on THI is further explored in Appendix A, as given by Figure A1.

Figure 13 shows yearly THI analysis of ambient air under DEC, IEC, and MEC systems. Permissible limit of THI denotes 30 °C T_{db} and 50% RH. THI of ambient air from November to March (winter) is within the permissible limit, which indicates no need of AC for poultry birds. Figure 14 shows a psychrometric representation of performance variation of EC systems from April to October for the climatic conditions of Multan against thermal comfort zones of poultry birds of different ages.
The detailed psychrometric representation of the EC systems performance for the months of April to October is provided in Appendix A, as given by Figure A2a–g, respectively. Results indicate that MEC, DEC, and IEC systems somewhat achieve required thermal comfort conditions of different ages of the poultry for some of the months (April to October). Moreover, applicability of the EC systems for poultry AC and ventilation from the viewpoint of THI is summarized in Table 1.

Figure 12. The sensible and latent heat production per poultry bird for (a) 18 °C, (b) 30 °C, (c) 40 °C, and (d) 45 °C.

Figure 13. Annual profile of THI resulting from the EC systems for climatic conditions of Multan. The red dotted line shows the optimum level of THI i.e., 30.
Figure 13 shows yearly THI analysis of ambient air under DEC, IEC, and MEC systems. Permissible limit of THI denotes 30 °C T_{db} and 50% RH. THI of ambient air from November to March (winter) is within the permissible limit, which indicates no need of AC for poultry birds. Figure 14 shows a psychrometric representation of performance variation of EC systems from April to October for the climatic conditions of Multan against thermal comfort zones of poultry birds of different ages.

The detailed psychrometric representation of the EC systems performance for the months of April to October is provided in Appendix A, as given by Figure A2 (a)-(g), respectively. Results indicate that MEC, DEC, and IEC systems somewhat achieve required thermal comfort conditions of different ages of the poultry for some of the months (April to October). Moreover, applicability of the EC systems for poultry AC and ventilation from the viewpoint of THI is summarized in Table 1.

![Figure 13. Annual profile of THI resulting from the EC systems for climatic conditions of Multan. The red dotted line shows the optimum level of THI i.e., 30.](image1.png)

![Figure 14. Psychrometric representation of the performances of EC systems for the months of April to October.](image2.png)

5. Conclusions

This study is aimed to analyze the performance of low-cost evaporative cooling (EC) options for climatic conditions of Multan (Pakistan). The hot and dry summer of Multan demands an efficient air-conditioning (AC) system for poultry birds. In this regard, the EC systems can provide cost-effective and an environmentally-friendly solution. Therefore, three kinds of EC systems, i.e., direct EC (DEC), indirect EC (IEC), and Maisotsenko-cycle EC (MEC) are investigated for thermal comfort of poultry birds. Thermal comfort of poultry birds in each case of the EC systems was assessed in terms of temperature-humidity (THI) and temperature-humidity-velocity (THVI) indices. Heat production against age and weight of poultry birds was also investigated. Weight of poultry birds with growing age increases. Consequently, heat production is also increased. This increased value of heat production (HP) gives birth to heat stress for growing birds. Young birds with less weight can survive a slightly higher range of THI compared to older birds, which show immense signs of heat stress with increasing weight. At ambient temperature higher than or equal to the normal poultry body temperature, latent

Months	Ambient Conditions	DEC	IEC	MEC
January	√			
February	√			
March	√			
April	×			
May	×			
June	×			
July	×			
August	×			
September	×			
October	×			
November	√			
December	√			

Table 1. Applicability/feasibility of the EC systems for the climatic conditions of Multan. The results are based on numerical values of THI.
HP surpasses sensible HP, which causes suffocation due to an increased latent load in the ambient air. DEC, IEC, and MEC systems achieve the required thermal comfort sensation for poultry birds. However, the DEC system increases relative humidity up to such an extent that it causes suffocation for the birds. It is concluded that, in summer conditions (with $T_{db} > 40^\circ C$) when poultry birds attain harvest mass, their heat production results in a higher latent load into the ambient air. Since the EC systems also contribute latent load into the supply air, poultry birds face suffocation due to excessive humidity in the air, which can be controlled by developing hybrid combinations of VCAC-EC systems. Additionally, MEC coupled with a desiccant air-conditioning unit (M-DAC) could potentially achieve thermal comfort of poultry birds for all months across Pakistan.

Author Contributions: Conceptualization, H.M.U.R. and M.S. Methodology, H.M.U.R. and H.A. Software, H.M.U.R. and H.A. Validation, M.S. and T.M. Formal analysis, H.M.U.R., H.A., and K.S. Investigation, M.S. and T.M. Resources, M.S. and M.U. Data curation, H.M.U.R., H.A., K.S., and R.R.S. Writing—original draft preparation, H.M.U.R. Writing—review and editing, M.S., T.M., M.U., R.R.S., Y.Z., and R.A. Visualization, M.S., M.U., R.R.S., Y.Z., and R.A. Supervision, M.S. and T.M. Project administration, M.S. Funding acquisition, M.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: All this work is part of the Ph.D. research of Hafiz Muhammad Umar Raza (1st Author). This research work has been carried out in the Department of Agricultural Engineering, Bahauddin Zakariya University, Multan-Pakistan. The Bahauddin Zakariya University, Multan-Pakistan under the Director Research/ORIC grant titled “Development and performance evaluation of prototypes of direct and indirect evaporative cooling-based air-conditioning systems”, awarded to Principal Investigator Muhammad Sultan, funded this research. We acknowledge support for the Open Access fees by the Hamburg University of Technology (TUHH) in the funding programme Open Access Publishing.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Figure A1. Impact of T_{db} and T_{wb} on THI for the EC systems represented on contour plots.
Figure A2. Psychrometric representation of the performances of EC systems for the months of (a) April, (b) May, (c) June, (d) July, (e) August, (f) September, and (g) October.

References

1. Mahmood, M.H.; Sultan, M.; Miyazaki, T.; Koyama, S.; Maisotsenko, V.S. Overview of the Maisotsenko cycle—A way towards dew point evaporative cooling. Renew. Sustain. Energy Rev. 2016, 66, 537–555.
References

1. Mahmood, M.H.; Sultan, M.; Miyazaki, T.; Koyama, S.; Maisotsenko, V.S. Overview of the Maisotsenko cycle—A way towards dew point evaporative cooling. *Renew. Sustain. Energy Rev.* 2016, 66, 537–555. [CrossRef]

2. Sultan, M.; El-Sharkawy, I.I.; Miyazaki, T.; Saha, B.B.; Koyama, S. An overview of solid desiccant dehumidification and air conditioning systems. *Renew. Sustain. Energy Rev.* 2015, 46, 16–29. [CrossRef]

3. Sultan, M.; Miyazaki, T. Energy-Efficient Air-Conditioning Systems for Nonhuman Applications. In *Refrigeration*; Ekren, O., Ed.; InTech Open: London, UK, 2017; Volume 9, pp. 97–117. [CrossRef]

4. Sultan, M.; Miyazaki, T.; Koyama, S.; Khan, Z.M. Performance evaluation of hydrophilic organic polymer sorbents for desiccant air-conditioning applications. *Adsorpt. Sci. Technol.* 2017, 36, 311–326. [CrossRef]

5. Hanif, S.; Sultan, M.; Miyazaki, T. Effect of relative humidity on thermal conductivity of zeolite-based adsorbents: Theory and experiments. *Appl. Therm. Eng.* 2019, 150, 11–18. [CrossRef]

6. Timmons, M.B.; Gates, R. Temperature Dependent Efficacy of Evaporative Cooling for Broilers. *Appl. Eng. Agric.* 1989, 5, 215–224. [CrossRef]

7. Pakistan Statistical Yearbook. Available online: http://www.pbs.gov.pk/content/pakistan-statistical-yearbook-2017 (accessed on 1 June 2020).

8. Xin, H.; Berry, I.L.; Tabler, G.T.; Barton, T.L. Temperature and Humidity Profiles of Broiler Houses with Experimental Conventional and Tunnel Ventilation Systems. *Appl. Eng. Agric.* 1994, 10, 535–542. [CrossRef]

9. Raza, H.M.U. Investigation of Evaporative Cooling Based Low-Cost Air-Conditioning Technologies for Pakistan. Master’s Thesis, Agricultural Engineering, Bahauddin Zakariya University, Multan, Pakistan, 2018.

10. Kashif, M.; Sultan, M.; Khan, Z.M. Alternative Air-Conditioning Options for Developing Countries. *Eur. J. Eng. Res. Sci.* 2017, 2, 76–79. [CrossRef]

11. Usman, M.; Niaz, H.; Sultan, M.; Miyazaki, T.; Feng, Y.; Usman, M.; Shahzad, M.W.; Niaz, Y.; Waqas, M.M.; Ali, I. Study on Desiccant and Evaporative Cooling Systems for Livestock Thermal Comfort: Theory and Experiments. *Energies* 2020, 13, 2675. [CrossRef]

12. Camargo, J.R.; Ebinuma, C.D.; Silveira, J.L. Experimental performance of a direct evaporative cooler operating during summer in a Brazilian city. *Int. J. Refrig.* 2005, 28, 1124–1132. [CrossRef]

13. Dizaji, H.S.; Hu, E.; Chen, L.; Pourheidayat, S. Development and validation of an analytical model for perforated (multi-stage) regenerative M-cycle air cooler. *Appl. Energy* 2018, 228, 2176–2194. [CrossRef]

14. Khalid, O.; Ali, M.; Sheikh, N.A.; Ali, H.M.; Shehryar, M. Experimental analysis of an improved Maisotsenko cycle design under low velocity conditions. *Appl. Therm. Eng.* 2016, 95, 288–295. [CrossRef]

15. Al Horr, Y.; Tashtoush, B.; Chilengwe, N.; Musthafa, M.; Alhorr, Y.; Bourhan, T.; Nelson, C.; Mohamed, M. Operational mode optimization of indirect evaporative cooling in hot climates. *Case Stud. Therm. Eng.* 2020, 18, 100574. [CrossRef]

16. Arun, B.; Mariappan, V.; Maisotsenko, V. Experimental study on combined low temperature regeneration of liquid desiccant and evaporative cooling by ultrasonic atomization. *Int. J. Refrig.* 2020, 112, 100–109. [CrossRef]

17. Noor, S.; Ashraf, H.; Sultan, M.; Khan, Z.M. Evaporative Cooling Options for Building Air-Conditioning: A Comprehensive Study for Climatic Conditions of Multan (Pakistan). *Energies* 2020, 13, 3061. [CrossRef]

18. Sultan, M.; Miyazaki, T.; Koyama, S. Optimization of adsorption isotherm types for desiccant air-conditioning applications. *Renew. Energy* 2012, 111, 441–450. [CrossRef]

19. Miyazaki, T.; Akisawa, A.; Nikai, I. The cooling performance of a building integrated evaporative cooling system driven by solar energy. *Energy Build.* 2011, 43, 2211–2218. [CrossRef]

20. Dong, H.-W.; Jeong, J.-W. Energy benefits of organic Rankine cycle in a liquid desiccant and evaporative cooling-assisted air conditioning system. *Renew. Energy* 2020, 147, 2358–2373. [CrossRef]

21. Heat Stress in Poultry—Solving the Problem. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/69373/pb10543-heat-stress-050330.pdf (accessed on 1 June 2020).

22. Yanagi, T.; Jr.; Xin, H.; Gates, R. A research facility for studying poultry responses to heat stress and its relief. *Appl. Eng. Agric.* 2002, 18, 255. [CrossRef]

23. Moreng, R.E.; Shaffner, C.S. Lethal Internal Temperatures for the Chicken, from Fertile Egg to Mature Bird. *Poult. Sci.* 1951, 30, 255–266. [CrossRef]
24. Cassuce, D.C.; Ferreira-Tinóco, I.D.F.; Baeta, F.C.; Zolnier, S.; Cecon, P.R.; Vieira, M.D.F.A. Thermal comfort temperature update for broiler chickens up to 21 days of age. *Eng. Agric.* **2013**, *33*, 28–36. [CrossRef]

25. Cândido, M.; Tinóco, I.D.F.F.; Pinto, F.D.A.D.C.; Santos, N.T.; Roberti, R.P. Determination of thermal comfort zone for early-stage broilers. *Eng. Agric.* **2016**, *36*, 760–767. [CrossRef]

26. Nascimento, S.T.; Maia, A.S.C.; Gebremedhin, K.G.; Nascimento, C.C. Metabolic heat production and evaporation of poultry. *Poult. Sci.* **2017**, *96*, 2691–2698. [CrossRef] [PubMed]

27. Tao, X.; Xin, H. Temperature-humidity-velocity-index for market size broilers, Nevada, USA. In *Proceedings of the ASAE Annual International Meeting*; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2003; p. 34037. [CrossRef]

28. Li, X.; Hoff, S.; Bundy, D.; Harmon, J.; Xin, H.; Zhu, J. Biofilter-a malodor control technology for livestock industry. *J. Environ. Sci. Heal. Part A Environ. Sci. Eng. Toxicol.* **1996**, *31*, 2275–2285. [CrossRef]

29. Yahav, S.; Straschnow, A.; Luger, D.; Shinder, D.; Tanny, J.; Cohen, S. Ventilation, sensible heat loss, broiler energy, and water balance under harsh environmental conditions. *Poult. Sci.* **2004**, *83*, 253–258. [CrossRef]

30. Xuan, Y.; Xiao, F.; Niu, X.; Huang, X.; Wang, S. Research, and application of evaporative cooling in China: A review (I)—Research. *Renew. Sustain. Energy Rev.* **2012**, *16*, 3535–3546. [CrossRef]

31. Mehere, S.V.; Mudafale, K.P.; Prayagi, S.V. Review of direct evaporative cooling system with its applications. *Int. J. Eng. Res. Gen. Sci.* **2014**, *2*, 995–999.

32. Cuce, P.M.; Riffat, S. A state of the art review of evaporative cooling systems for building applications. *Renew. Sustain. Energy Rev.* **2016**, *54*, 1240–1249. [CrossRef]

33. Mahmood, M.H.; Sultan, M.; Miyazaki, T. Significance of Temperature and Humidity Control for Agricultural Products Storage: Overview of Conventional and Advanced Options. *Int. J. Food Eng.* **2019**, *15*, 13. [CrossRef]

34. Matsui, K.; Thu, K.; Miyazaki, T. A hybrid power cycle using an inverted Brayton cycle with an indirect evaporative device for waste-heat recovery. *Appl. Therm. Eng.* **2020**, *170*, 115029. [CrossRef]

35. Anisimov, S.; Pandelidis, D. Theoretical study of the basic cycles for indirect evaporative air cooling. *Int. J. Heat Mass Transf.* **2015**, *84*, 974–989. [CrossRef]

36. Sultan, M.; Niaz, H.; Miyazaki, T. Investigation of Desiccant and Evaporative Cooling Systems for Animal Air-Conditioning. In *Low-Temperature Technologies*; IntechOpen: London, UK, 2020; pp. 21–37. [CrossRef]

37. Ambiente e Agua—An Interdisciplinary Journal of Applied Science. *Ambient. Agua Interdiscip.* *J. Appl. Sci.* **2020**. [CrossRef]

38. Anisimov, S.; Pandelidis, D.; Maisotsenko, V. Numerical study of heat and mass transfer process in the Maisotsenko cycle for indirect evaporative air cooling. *Heat Transf. Eng.* **2016**, *37*, 1–40. [CrossRef]

39. Pandelidis, D.; Anisimov, S.; Worek, W.M. Comparison study of the counter-flow regenerative evaporative heat exchangers with numerical methods. *Appl. Therm. Eng.* **2015**, *84*, 211–224. [CrossRef]

40. Bellermo, L.; Elmegaard, B.; Reinholdt, L.O.; Karm, M.R. Modeling of a regenerative indirect evaporative cooler for a desiccant cooling system. In Proceedings of the 4th IIR Conference on Thermophysical Properties and Transfer Processes of Refrigerants, Delft, The Netherlands, 17–19 June 2013.

41. Rogdakis, E.D.; Koronaki, I.; Tertipis, D.N. Experimental and computational evaluation of a Maisotsenko evaporative cooler at Greek climate. *Energy Build.* **2014**, *70*, 497–506. [CrossRef]

42. Lin, J.; Wang, R.; Li, C.; Wang, S.; Long, J.; Chua, K.J. Towards a thermodynamically favorable dew point evaporative cooler via optimization. *Energy Convers. Manag.* **2020**, *203*, 112224. [CrossRef]

43. Pedersen, S.; Thomsen, M.G. Heat and Moisture Production of Broilers kept on Straw Bedding. *J. Agric. Eng. Res.* **2000**, *75*, 177–187. [CrossRef]

44. Silva, M.P.; Baêta, F.C.; Ferreira-Tinóco, I.D.F.; Zolnier, S.; Ribeiro, A. Evaluation of a simplified model for estimating energy balance in broilers production housing. *Rev. Brasil. Eng. Agric. Ambient.* **2007**, *11*, 532–536. [CrossRef]

45. Chepete, H.J.; Xin, H. Heat and Moisture Production of Poultry and Their Housing Systems—A Literature Review. In *Proceedings of the Livestock Environment VI, Proceedings of the 6th International Symposium 2001*; American Society of Agricultural and Biological Engineers (ASABE): Saint Joseph, MI, USA, 2013; p. 319.

46. Gates, R.S.; Xin, H. Comparative analysis of measurement techniques of feeding behavior of individual poultry. In *Proceedings of the 2001 ASAE Annual Meeting*; American Society of Agricultural and Biological Engineers: Saint Joseph, MI, USA, 1998; p. 1.
47. Purswell, J.L.; Dozier, W.A., III; Olanrewaju, H.A.; Davis, J.D.; Xin, H.; Gates, R.S. Effect of temperature-humidity index on live performance in broiler chickens grown from 49 to 63 days of age. In Proceedings of the 2012 IX International Livestock Environment Symposium (ILES IX); American Society of Agricultural and Biological Engineers: Saint Joseph, MI, USA, 2012; p. 3.

48. Bruno, F. On-site experimental testing of a novel dew points evaporative cooler. Energy Build. 2011, 43, 3475–3483. [CrossRef]

49. Doğramacı, P.A.; Aydın, D. Comparative experimental investigation of novel organic materials for direct evaporative cooling applications in hot-dry climate. J. Build. Eng. 2020, 30, 101240. [CrossRef]

50. Tao, X.; Xin, H. Acute synergistic effects of air temperature, humidity, and velocity on homeostasis of market–size broilers. Trans. ASAE 2003, 46, 491. [CrossRef]