Enhanced wormhole optimizer algorithm for solving optimal reactive power problem

Kanagasabai Lenin
Department of EEE, Prasad V. Potluri Siddhartha Institute of Technology, India

ABSTRACT
In this paper Enhanced Wormhole Optimizer (EWO) algorithm is used to solve optimal reactive power problem. Proposed algorithm based on the Wormholes which exploits the exploration space. Between different universes objects are exchanged through white or black hole tunnels. Regardless of the inflation rate, through wormholes objects in all universes which possess high probability will shift to the most excellent universe. In the projected Enhanced Wormhole Optimizer (EWO) algorithm in order to avoid the solution to be get trapped into the local optimal solution Levy flight has been applied. Projected Enhanced Wormhole Optimizer (EWO) algorithm has been tested in standard IEEE 14, 30, 57,118,300 bus test systems and simulation results show that the EWO algorithm reduced the real power loss efficiently.

Keywords:
Enhanced wormhole optimizer
Optimal reactive power
Transmission loss

This is an open access article under the CC BY-SA license.

1. INTRODUCTION
For secure and economic operations of power system optimal reactive power problem plays vital role. Several types of techniques [1-6] have been utilized to solve the problem previously. Conversely many difficulties are found while solving problem due to inequality constraints. Evolutionary techniques [7-15] are applied to solve the reactive power problem. This paper proposes Enhanced Wormhole Optimizer (EWO) algorithm for solving optimal reactive power problem. Wormhole Optimizer Algorithm is based on the Wormholes which exploit the exploration space. Wormhole tunnel are built for local change in each universe m through most excellent universe then probability of refinement the inflation rate is done through wormholes. Objects are exchanged through tunnels and wormholes objects which possess high probability will shift to the most excellent universe. In the projected Enhanced Wormhole Optimizer (EWO) algorithm in order to avoid the solution to be get trapped into the local optimal solution Levy flight has been applied. Projected Enhanced Wormhole Optimizer (EWO) algorithm has been tested in standard IEEE 14, 30, 57,118,300 bus test systems and simulation results show that the projected algorithm reduced the real power loss effectively.

2. PROBLEM FORMULATION
Objective of the problem is to reduce the true power loss:

\[F = P_L = \sum_{k \in \text{Nbr}} g_k \left(V_i^2 + V_j^2 - 2V_iV_j\cos\theta_{ij}\right) \]

(1)
Voltage deviation given as follows:

\[F = P_L + o_v \times Voltage\ Deviation \]
\[Voltage\ Deviation = \sum_{i=1}^{Npq} |V_i - 1| \]

Constraint (Equality)

\[P_c = P_D + P_L \]

Constraints (Inequality)

\[p_{g_{\text{slack}}}^{\min} \leq p_{g_{\text{slack}}} \leq p_{g_{\text{slack}}}^{\max} \]
\[q_{\text{gi}}^{\min} \leq q_{\text{gi}} \leq q_{\text{gi}}^{\max}, i \in N_g \]
\[v_i^{\min} \leq v_i \leq v_i^{\max}, i \in N \]
\[t_i^{\min} \leq t_i \leq t_i^{\max}, i \in N_T \]
\[q_c^{\min} \leq q_c \leq q_c^{\max}, i \in N_c \]

3. Enhanced Wormhole Optimizer Algorithm

Wormhole Optimizer Algorithm is based on the Wormholes which exploit the exploration space. Through wormholes objects which has high probability will shift to the most excellent universe and it modeled by using roulette wheel selection methodology as follows,

\[U = \begin{bmatrix} y_{11} & \cdots & y_{1d} \\ \vdots & \ddots & \vdots \\ y_{n1} & \cdots & y_{nd} \end{bmatrix} \]

Number of the variables is indicated by “d” and number of universe which is considered as candidate solution is indicated by “n”.

\[y_{ij} = \begin{cases} y_{kj} \text{ random}_1 < NI(U_i) \\ y_{ij} \text{ random}_1 < NI(U_i) \end{cases} \]

Through roulette wheel selection \(y_{ij} \)'s “j”th parameter of the “k”th universe will be chosen, in the “i”th universe “j”th parameter is expressed by \(y_{kj} \), ith universe inflation rate indicated by \(NI(U_i) \), ith universe indicated by \(U_i, \text{ random}_1 \in [0,1] \).

In between two universes wormhole tunnel [16, 17] are built then the local change for each universe is done by most excellent universe and the elevated probability of refinement the inflation rate through wormholes is done by,

\[y_{ij} = \begin{cases} Y_j + \text{Tr.distance rate} \times \left((u_b - l_b) \times \text{rand}_4 + l_b \right) \text{ rand}_4 < 0.5 \\ Y_j - \text{Tr.distance rate} \times \left((u_b - l_b) \times \text{rand}_4 + l_b \right) \text{ rand}_4 \geq 0.5 \text{ rand}_2 < w \text{ e p} \\ y_{ij} \text{ rand}_2 \geq w \text{ e p} \end{cases} \]

Wormhole existence probability indicated by “w e p”, “tr.” Indicates the travelling and random denoted by “ rand”.

During the optimization procedure exploitation has been enhanced as follows,

\[\text{Wormhole existence probability} = w_{\text{minimum}} + \text{current iteration} \left(\frac{w_{\text{maximum}} - w_{\text{minimum}}}{\text{maximum iteration}} \right) \]
In order to improve the local search precisely travelling distance rate will be increased over the iterations as follows,

\[
Travelling \ distance \ rate = 1 - \frac{\text{current iteration}^{1/p}}{\text{maximum iteration}^{1/p}} \tag{14}
\]

In the projected Enhanced Wormhole Optimizer (EWO) algorithm in order to avoid the solution to be get trapped into the local optimal solution Levy flight has been applied. Levy flight is a rank of non-Gaussian random procedure whose capricious walks are haggard from Levy stable distribution. Allocation by \(L(s) \sim |s|^{-\beta} \) where \(0 < \beta < 2 \) is an index. Scientifically defined as,

\[
L(s,\gamma,\mu) = \begin{cases} \frac{\Gamma(\gamma)}{\sqrt{2\pi s^{\gamma}}} & \text{if } s \leq 0 \\ \exp\left[-\frac{\gamma}{\sin(\gamma\pi/2)} \frac{1}{(s-\mu)^{\gamma/2}} \right] & \text{if } 0 < \mu < s < \infty \end{cases} \tag{15}
\]

In terms of Fourier transform Levy distribution defined as

\[
F(k) = \exp[-\alpha|k|^\beta], 0 < \beta \leq 2, \tag{16}
\]

Fresh state is calculated as,

\[
Y_{t+1} = Y_t + \alpha \oplus \text{Levy} (\beta) \tag{17}
\]

\[
Y_{t+1} = y_t + \text{random} \times \text{Levy}(\beta) \tag{18}
\]

In the projected Enhanced Wormhole Optimizer (EWO) algorithm while generation of new solutions \(U_{i+1} \) Levy flight \(y \) will be applied,

\[
U_{i+1} = U_i + K(lb + (ub - lb) \times \text{levy}(y)) \times U_i \tag{19}
\]

Levy flight will be applied in the adaptive mode to balance the exploration and exploitation by applying large levy weight initially and final course the weight of the levy will be decreased,

\[
K = \left(\frac{\text{maximum iteration} - \text{current iteration}}{\text{maximum iteration}}\right) \tag{20}
\]

By using Mantegna's algorithm Non-trivial scheme of engendering step size by,

\[
s = \frac{u}{|v|^\beta} \tag{21}
\]

\[
Y_{t+1} = Y_t + \text{random} \times \text{Levy}(\beta) \sim 0.01 \frac{u}{|v|^{1/\beta}} (y_j^t - gb) \tag{22}
\]

\[
u \sim N(0, \sigma_u^2) \quad v \sim N(0, \sigma_v^2) \tag{23}
\]

with

\[
\sigma_u = \left\{ \frac{\Gamma(1+\beta)\sin(\pi\beta/2)}{\Gamma((1+\beta)/2)\beta^{1/2}\Gamma(1+1/\beta)} \right\}^{1/\beta}, \quad \sigma_v = 1 \tag{24}
\]

then,

\[
\text{Levy}(y) = 0.01 \times \frac{u \times \sigma_u}{|v|^{1/\beta}} \tag{25}
\]

Start

In put ; “d” & “n” ; Lower bound = \([Lb_1, Lb_2, \ldots, Lbd]\) ; Upper bound = \([Ub_1, Ub_2, \ldots, Ubd]\) ; Maximum number of iterations

Output: Optimal solution

Step a: Initialization of parameters

\textit{Enhanced wormhole optimizer algorithm for solving optimal reactive ... (Kanagasabai Lenin)}
Engender arbitrary universes “U” by $U^P = \{ U_1, U_2, ..., U_n \}$

Initialize Wormhole existence probability, travelling distance rate, objective function

$t = 0$

Step b: categorization and reorganize; arrange the universes; universe inflation rate (UI) will be reorganized

Step c: Iteration; while $t < \text{Maximum iteration}$

Compute universe inflation rate; UI (U^P_i : $i = 1, 2, ..., n$)

For every universe “U_i”; modernize Wormhole existence probability, travelling distance rate by

Wormhole existence probability = $w_{\text{minimum}} + \text{current iteration} \times \left(\frac{w_{\text{maximum}} - w_{\text{minimum}}}{\text{maximum iteration}} \right)$

Travelling distance rate = $1 - \left(\frac{\text{current iteration}}{\text{maximum iteration}} \right)^{1/3}$; Black hole index value = i

Modernize the value “U” by $U_{i+1} = U_i + K (l_b + (u_b - l_b) * \text{levy}(y)) \times U_i$

For every object y_{ij}: random $= \text{random} (0, 1)$;

If $\text{random}_1 < \text{UI}(U_i)$; white hole index = roulette wheel selection (-UI);

End if

End for

$t = t + 1$

End while

Step d: End; output the optimal solution

4. SIMULATION RESULTS

At first in standard IEEE 14 bus system [18] the validity of the proposed Enhanced Wormhole Optimizer (EWO) algorithm has been tested. Table 1 shows the constraints of control variables Table 2 shows the limits of reactive power generators and comparison results are presented in Table 3.

Table 1. Constraints of control variables

System	Variables	Minimum (PU)	Maximum (PU)
IEEE 14	Generator	0.95	1.1
	Voltage	0.9	1.1
	Transformer	0.9	1.1
	Tap	0	0.2
	VAR Source	0	0.2

Table 2. Constrains of reactive power generators

System	Variables	Q Minimum (PU)	Q Maximum (PU)
IEEE 14	Generator	1	10
	Tap	3	40
	VAR Source	6	24

Table 3. Simulation results of IEEE -14 system

Control variables	Base case	MPSO [19]	PSO [19]	EP [19]	SARGA [19]	EWO
V_G -1	1.060	1.100	1.100	NR*	NR*	1.013
V_G -2	1.045	1.085	1.086	1.029	1.060	1.014
V_G -3	1.010	1.055	1.056	1.016	1.036	1.002
V_G -8	1.090	1.074	1.060	1.053	1.078	1.021
Q_C -9	0.19	14.64	0.185	0.18	0.06	0.120
P_C	272.39	271.32	271.32	NR*	NR*	271.78
Q_G (Mvar)	82.44	75.79	76.79	NR*	NR*	75.79
Reduction in P_Loss (%)	0	9.2	9.1	1.5	2.5	25.85
Total P_Loss (Mw)	13.550	12.293	13.346	13.216	10.047	

NR* - Not reported.
Then Enhanced Wormhole Optimizer (EWO) algorithm has been tested, in IEEE 30 Bus system. Table 4 shows the constraints of control variables, Table 5 shows the limits of reactive power generators and comparison results are presented in Table 6.

Table 4. Constraints of control variables

System	Variables	Minimum (PU)	Maximum (PU)
IEEE 30 Bus	Generator	0.95	1.1
	Voltage		
	Transformer	0.9	1.1
	Tap		
	VAR Source	0	0.20

Table 5. Constrain of reactive power generators

System	Variables	Q Minimum (PU)	Q Maximum (PU)
IEEE 30 Bus	1	0	10
	2	-40	50
	5	-40	40
	8	-10	40
	11	-6	24
	13	-6	24

Table 6. Simulation results of IEEE −30 system

Control variables	Base case	MPSO [19]	PSO [19]	EP [19]	SARGA [19]	EWO
PG (MW)	300.9	299.54	299.54	NR*	NR*	297.68
QG (Mvar)	133.9	130.83	130.94	NR*	NR*	131.41
Reduction in PLoss (%)	0	8.4	7.4	6.6	8.3	19.37
Total PLoss (Mw)	17.55	16.07	16.25	16.38	16.09	14.149

Then the proposed Enhanced Wormhole Optimizer (EWO) algorithm has been tested, in IEEE 57 Bus system. Table 7 shows the constraints of control variables, Table 8 shows the limits of reactive power generators and comparison results are presented in Table 9.

Table 7. Constraints of control variables

System	Variables	Minimum (PU)	Maximum (PU)
IEEE 57 Bus	Generator	0.95	1.1
	Voltage		
	Transformer	0.9	1.1
	VAR Source	0	0.20

Table 8. Constrains of reactive power generators

System	Variables	Q Minimum (PU)	Q Maximum (PU)
IEEE 57 Bus	1	-140	200
	2	-17	50
	3	-10	60
	6	-8	25
	8	-140	200
	9	-3	9
	12	-150	155
Then the proposed Enhanced Wormhole Optimizer algorithm has been tested in IEEE 118 Bus system. Table 10 shows the constraints of control variables and comparison results are presented in Table 11.

Control variables	Base case	MPSO [19]	PSO [19]	CGA [19]	AGA [19]	EWO
VG 1	1.040	1.093	1.083	0.968	1.027	1.032
VG 2	1.010	1.086	1.071	1.049	1.011	1.010
VG 3	0.985	1.056	1.055	1.056	1.033	1.034
VG 6	0.980	1.038	1.036	0.987	1.001	1.012
VG 8	1.005	1.066	1.059	1.022	1.051	1.030
VG 9	0.980	1.054	1.048	0.991	1.051	1.011
VG 12	1.015	1.054	1.046	1.004	1.057	1.040
Tap 19	0.970	0.975	0.987	0.920	1.030	0.952
Tap 20	0.978	0.982	0.983	0.920	1.020	0.937
Tap 31	1.043	0.975	0.981	0.970	1.060	0.920
Tap 35	1.000	1.025	1.003	NR*	NR*	1.019
Tap 36	1.000	1.002	0.985	NR*	NR*	1.007
Tap 37	1.043	1.007	1.009	0.900	0.990	1.009
Tap 41	0.967	0.994	1.007	0.910	1.100	0.990
Tap 46	0.975	1.013	1.018	1.100	0.980	1.010
Tap 54	0.955	0.988	0.986	0.940	1.010	0.971
Tap 58	0.955	0.979	0.992	0.950	1.080	0.966
Tap 59	0.900	0.983	0.990	1.030	0.940	0.963
Tap 65	0.930	1.015	0.997	1.090	0.950	1.001
Tap 66	0.895	0.975	0.984	0.900	1.050	0.950
Tap 71	0.958	1.020	0.990	0.900	0.950	1.001
Tap 73	0.958	1.001	0.988	1.000	1.010	1.000
Tap 76	0.980	0.979	0.980	0.960	0.940	0.968
Tap 80	0.940	1.002	1.017	1.000	1.000	1.002
QC 18	0.1	0.179	0.131	0.084	0.016	0.174
QC 25	0.059	0.176	0.144	0.008	0.015	0.168
QC 53	0.063	0.141	0.162	0.053	0.038	0.140
PG (MW)	1278.6	1274.4	1274.8	1276	1275	1270.13
QG (Mvar)	321.08	272.27	276.58	309.1	304.4	272.34
Reduction in Ploss (%)	0	15.4	14.1	9.2	11.6	24.07
Total Ploss (Mw)	27.8	23.51	23.86	25.24	24.56	21.108

System Variables	Minimum (PU)	Maximum (PU)
IEEE 118 Bus	0.95	1.1
Transformer Tap	0.9	1.1
VAR Source	0	0.20

NR* - Not reported.

System Variables	Minimum (PU)	Maximum (PU)
IEEE 118 Bus	0.95	1.1
Transformer Tap	0.9	1.1
VAR Source	0	0.20
Then IEEE 300 bus system [18] is used as test system to validate the performance of Enhanced Wormhole Optimizer (EWO) algorithm. Table 12 shows the comparison of real power loss obtained after optimization.

Table 12. Comparison of Real Power Loss

Parameter	Method CSA [20]	Method EGA [21]	Method EEO [21]	EWO		
PLOSS (MW)	635.8942	646.2998	650.6027	612.1026		
PQ(MVAR)	795.6	604.3	653.5	* NR*		
Reduction in PLOSS (%)	0	11.7	10.1	6	1.3	14.15
Total PLOSS (Mw)	132.8	117.19	119.34	131.99	130.96	114.005

NR* - Not reported.
5. CONCLUSION

In this paper proposed Enhanced Wormhole Optimizer (EWO) algorithm successfully solved the optimal reactive power problems. Between different universes objects are exchanged through white or black hole tunnels. Regardless of the inflation rate, through wormholes objects in all universes which possess high probability will shift to the most excellent universe. In between two universes wormhole tunnel are built then the local change for each universe is done by most excellent universe and the elevated probability of refinement the inflation rate through wormholes. Levy flight has been applied effectively and it leads to the improvement of the quality of solution. Proposed Enhanced Wormhole Optimizer (EWO) algorithm has been tested in standard IEEE 14, 30, 57,118,300 bus test systems and simulation results show that the EWO algorithm reduced the real power loss efficiently. Percentage of real power loss reduction has been enhanced when compared to other standard algorithms.

REFERENCES

[1] K. Y. Lee, “Fuel-cost minimisation for both real and reactive-power dispatches,” Proceedings Generation, Transmission and Distribution Conference, vol. 131, no. 3, pp. 85-93, 1984.
[2] N. I. Deeb, “An efficient technique for reactive power dispatch using a revised linear programming approach,” Electric Power System Research, vol. 15, no. 2, pp. 121–134, 1998.
[3] M. R. Bjelogrlic, M. S. Calovic, B. S. Babic, “Application of Newton’s optimal power flow in voltage/reactive power control,” IEEE Trans Power System, vol. 5, no. 4, pp. 1447-1454, 1990.
[4] S. Granville, “Optimal reactive dispatch through interior point methods,” IEEE Transactions on Power System, vol. 9, no. 1, pp. 136–146, 1994.
[5] N. Grudinin, “Reactive power optimization using successive quadratic programming method,” IEEE Transactions on Power System, vol. 13, no. 4, pp. 1219–1225, 1998.
[6] Ng Shin Mei, R. Sulaiman, M.H. Mastaffa, Z. Danyal, H., “Optimal reactive power dispatch solution by loss minimization using moth-flame optimization technique,” Appl. Soft Comput., vol. 59, pp. 210–222, 2017.
[7] Chen, G., Liu, L., Zhang, Z., Huang, S., “Optimal reactive power dispatch by improved GSA-based algorithm with the novel strategies to handle constraints,” Appl. Soft Comput., vol. 50, pp. 58–70, 2017.
[8] Roy, Pravas Kumar and Susanta Dutta, “Economic load dispatch: Optimal power flow and optimal reactive power dispatch concept,” Optimal Power Flow Using Evolutionary Algorithms, IGI Global, pp. 46-64, 2019.
[9] Christian Bingane, Miguel F. Anjos, Sébastien Le Digabel, “Tight-and-cheap conic relaxation for the optimal reactive power dispatch problem,” IEEE Transactions on Power Systems, vol. 34, no. 6, 2019.
[10] Dharimbir Prasad & Vivekananda Mukherjee, “Solution of Optimal Reactive Power Dispatch by Symbiotic Organism Search Algorithm Incorporating FACTS Devices,” IETE Journal of Research, vol. 64, no. 1, pp. 149-160, 2018.
[11] TM Aljohani, et al, “Single and multiobjective optimal reactive power dispatch based on hybrid artificial physics–particle swarm optimization,” Energies, vol. 12, no. 12, p. 2333, 2019
[12] Ram Kishan Mahate, & Himmat Singh, “Multi-Objective Optimal Reactive Power Dispatch Using Differential Evolution,” International Journal of Engineering Technologies and Management Research, vol. 6, no. 2, pp. 27–38, 2019.
[13] Yağış, E., Taplamacıoğlu, M., Çam, E., “The Adaptive Chaotic Symbiotic Organisms Search Algorithm Proposal for Optimal Reactive Power Dispatch Problem in Power Systems,” Electrica, vol. 19, no. 1, pp. 37-47, 2019.
[14] Mouassa, S. and Bouktir, T., “Multi-objective ant lion optimization algorithm to solve large-scale multi-objective optimal reactive power dispatch problem,” COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 38, no. 1, pp. 304-324, 2019.
[15] Tawfiq M. Aljohani, Ahmed F. Ebrahim, Osama Mohammed, “Single and multiobjective optimal reactive power dispatch based on hybrid artificial physics–particle swarm optimization,” Energies, vol. 12, no. 12, pp. 2333, 2019.
[16] Abdechiri M. Meybodi MR and Bahrami H., “Gases Brownian motion optimization: An algorithm for optimization (GBMO),” Applied Soft Computing, vol. 13, no. 5, pp. 2932–2946, 2013.
[17] Mirjalili SM and Hatamlou A., “Multi-verse optimizer: A nature-inspired algorithm for global optimization,” Neural Computing and Applications, vol. 27, no. 2, pp. 495–513, 2016.
[18] IEEE, “The IEEE-test systems,” 1993. http://www.ee.washington.edu/research/pstca/.
[19] Ali Nasser Hussain, Ali Abdulabbas Abdullah and Omar Muhammed Neda, “Modified particle swarm optimization for solution of reactive power dispatch,” Research Journal of Applied Sciences, Engineering and Technology, vol. 15, no. 8, pp. 316-327, 2018.
[20] S. Surender Reddy, “Optimal reactive power scheduling using cuckoo search algorithm,” International Journal of Electrical and Computer Engineering (IJE CE), vol. 7, no. 5, pp. 2349-2356, 2017.
[21] S.S. Reddy, et al., “Faster evolutionary algorithm based optimal power flow using incremental variables,” Electrical Power and Energy Systems, vol. 54, pp. 198-210, 2014.