HOMOTOPY ON SPATIAL GRAPHS AND THE SATO-LEVINE INVARIANT

THOMAS FLEMING AND RYO NIKKUNI

Abstract. Edge-homotopy and vertex-homotopy are equivalence relations on spatial graphs which are generalizations of Milnor’s link-homotopy. We introduce some edge (resp. vertex)-homotopy invariants of spatial graphs by applying the Sato-Levine invariant for the 2-component constituent algebraically split links and show examples of non-splitable spatial graphs up to edge (resp. vertex)-homotopy, all of whose constituent links are link-homotopically trivial.

1. Introduction

Throughout this paper we work in the piecewise linear category. Let G be a finite graph which does not have isolated vertices and free vertices. An embedding f of G into the 3-sphere S^3 is called a spatial embedding of G or simply a spatial graph. For a spatial embedding f and a subgraph H of G which is homeomorphic to the 1-sphere S^1 or a disjoint union of 1-spheres, we call $f(H)$ a constituent knot or a constituent link of f, respectively. A graph G is said to be planar if there exists an embedding of G into the 2-sphere S^2, and a spatial embedding of a planar graph is said to be trivial if it is ambient isotopic to an embedding of the graph into a 2-sphere in S^3. A spatial embedding f of a graph G is said to be split if there exists a 2-sphere S in S^3 such that $S \cap f(G) = \emptyset$ and each component of $S^3 - S$ has intersection with $f(G)$, and otherwise f is said to be non-splitable.

Two spatial embeddings of a graph G are said to be edge-homotopic if they are transformed into each other by self crossing changes and ambient isotopies, where a self crossing change is a crossing change on the same spatial edge, and vertex-homotopic if they are transformed into each other by crossing changes on two adjacent spatial edges and ambient isotopies\(^1\). These equivalence relations were introduced by Taniyama \cite{Taniyama} as generalizations of Milnor’s link-homotopy on links \cite{Milnor}, namely if G is homeomorphic to a disjoint union of 1-spheres, then these are none other than link-homotopy. There are many studies about link-homotopy. In particular, the link-homotopy classification was given for 2- and 3-component links by Milnor \cite{Milnor}, for 4-component links by Levine \cite{Levine} and for all links by Habegger and...
lin \[2\]. On the other hand, there are very few studies about edge (resp. vertex)-homotopy on spatial graphs \[18, 9, 13, 11\].

In \[18\], Taniyama defined an edge (resp. vertex)-homotopy invariant of spatial graphs called the \(\alpha\)-invariant by applying the Casson invariant (or equivalently the second coefficient of the Conway polynomial) of the constituent knots and showed that there exists a non-trivial spatial embedding \(f\) of a planar graph up to edge (resp. vertex)-homotopy, even in the case where \(f\) does not contain any constituent link. But the \(\alpha\)-invariant cannot detect a non-splittable spatial embedding of a disconnected graph up to edge (resp. vertex)-homotopy. As far as the authors know, an example of a non-splittable spatial embedding of a disconnected graph up to edge (resp. vertex)-homotopy, all of whose constituent links are link-homotopically trivial has not yet been demonstrated.

Our purpose in this paper is to study spatial embeddings of disconnected graphs up to edge (resp. vertex)-homotopy by applying the Sato-Levine invariant \[14\] (or equivalently the third coefficient of the Conway polynomial) for the constituent 2-component algebraically split links and show that there exist infinitely many non-splittable spatial embeddings of a certain disconnected graph up to edge (resp. vertex)-homotopy all of whose constituent links are link-homotopically trivial. These examples show that edge (resp. vertex)-homotopy on spatial graphs behaves quite differently than link-homotopy on links. In the next section we give the definitions of our invariants and state their invariance up to edge (resp. vertex)-homotopy.

2. Definitions of invariants

We call a subgraph of a graph \(G\) a cycle if it is homeomorphic to the 1-sphere, and a cycle is called a \(k\)-cycle if it contains exactly \(k\) edges. For a subgraph \(H\) of \(G\), we denote the set of all cycles of \(H\) by \(\Gamma(H)\). We set \(\mathbb{Z}_m = \{0, 1, \ldots, m - 1\}\) for a positive integer \(m\) and \(\mathbb{Z}_0 = \mathbb{Z}\). We regard \(\mathbb{Z}_m\) as an abelian group in the obvious way. We call a map \(\omega : \Gamma(H) \rightarrow \mathbb{Z}_m\) a weight on \(\Gamma(H)\) over \(\mathbb{Z}_m\). For an edge \(e\) of \(H\), we denote the set of all cycles of \(H\) which contain the edge \(e\) by \(\Gamma_e(H)\). For a pair of two adjacent edges \(e_1\) and \(e_2\) of \(H\), we denote the set of all cycles of \(H\) which contain the edges \(e_1\) and \(e_2\) by \(\Gamma_{e_1,e_2}(H)\). Then we say that a weight \(\omega\) on \(\Gamma(H)\) over \(\mathbb{Z}_m\) is weakly balanced\(^2\) on an edge \(e\) if

\[
\sum_{\gamma \in \Gamma_e(H)} \omega(\gamma) = 0
\]

in \(\mathbb{Z}_m\) \[10\], and weakly balanced on a pair of adjacent edges \(e_1\) and \(e_2\) if

\[
\sum_{\gamma \in \Gamma_{e_1,e_2}(H)} \omega(\gamma) = 0
\]

in \(\mathbb{Z}_m\). Let \(G = G_1 \cup G_2\) be a disjoint union of two connected graphs and \(\omega_i : \Gamma(G_i) \rightarrow \mathbb{Z}_m\) a weight on \(\Gamma(G_i)\) over \(\mathbb{Z}_m\) \((i = 1, 2)\). Let \(f\) be a spatial embedding of \(G\) such that

\[
\omega_1(\gamma)\omega_2(\gamma') \text{lk}(f(\gamma), f(\gamma')) = 0
\]

in \(\mathbb{Z}\) for any \(\gamma \in \Gamma(G_1)\) and \(\gamma' \in \Gamma(G_2)\), where \(\text{lk}(L) = \text{lk}(K_1, K_2)\) denotes the linking number of a 2-component oriented link \(L = K_1 \cup K_2\). Then we define

\[\text{balanced on an edge } e \text{ of } H \text{ if } \sum_{\gamma \in \Gamma_e(H)} \omega(\gamma) = 0 \text{ in } H_1(H; \mathbb{Z}_m), \]

where the orientation of \(\gamma\) is induced by the one of \(e\) \[18\].
\(\beta_{\omega_1, \omega_2}(f) \in \mathbb{Z}_m \) by
\[
\beta_{\omega_1, \omega_2}(f) \equiv \sum_{\gamma \in \Gamma(G_1)} \omega_1(\gamma) \omega_2(\gamma') a_3(f(\gamma), f(\gamma')) \pmod{m},
\]
where \(a_3(L) = a_3(K_1, K_2) \) denotes the third coefficient of the Conway polynomial of a 2-component oriented link \(L = K_1 \cup K_2 \). We remark here that \(a_3(L) \) coincides with the Sato-Levine invariant \(\beta(L) \) of \(L \) if \(L \) is algebraically split, namely \(\text{lk}(K_1, K_2) = 0 \) \cite{11, 17}. Thus our \(\beta_{\omega_1, \omega_2}(f) \) is also the modulo \(m \) reduction of the summation of Sato-Levine invariants for the constituent 2-component algebraically split links of \(f \).

Remark 2.1. For a 2-component algebraically split link \(L = K_1 \cup K_2 \),

1. The value of \(a_3(L) \) does not depend on the orientations of \(K_1 \) and \(K_2 \).
 Actually we can check it easily by the original definition of the Sato-Levine invariant.

2. The value of \(a_3(L) \) is not a link-homotopy invariant of \(L \) (see also Lemma \ref{thm:2.1}). For example, the Whitehead link \(L \) is link-homotopically trivial but \(a_3(L) = 1 \).

Now we state the invariance of \(\beta_{\omega_1, \omega_2} \) up to edge (resp. vertex)-homotopy under some conditions on the graphs.

Theorem 2.2. Let \(G = G_1 \cup G_2 \) be a disjoint union of two connected graphs and \(\omega_i \) a weight on \(\Gamma(G_i) \) over \(\mathbb{Z}_m \) \((i = 1, 2)\). Let \(f \) be a spatial embedding of \(G \) such that
\[
\omega_1(\gamma) \omega_2(\gamma') \text{lk}(f(\gamma), f(\gamma')) = 0
\]
in \(\mathbb{Z} \) for any \(\gamma \in \Gamma(G_1) \) and \(\gamma' \in \Gamma(G_2) \). Then we have the following:

1. If \(\omega_i \) is weakly balanced on any edge of \(G_i \) \((i = 1, 2)\), then \(\beta_{\omega_1, \omega_2}(f) \) is an edge-homotopy invariant of \(f \).

2. If \(\omega_i \) is weakly balanced on any pair of adjacent edges of \(G_i \) \((i = 1, 2)\), then \(\beta_{\omega_1, \omega_2}(f) \) is a vertex-homotopy invariant of \(f \).

We prove Theorem 2.2 in the next section. In addition, by using an integer-valued invariant (Theorem 2.1), we show that there exist infinitely many non-splittable spatial embeddings of a certain disconnected graph up to edge-homotopy all of whose constituent links are link-homotopically trivial (Example 4.3). We also exhibit an infinite family of non-splittable spatial embeddings of a certain disconnected graph up to vertex-homotopy which can be distinguished by our integer-valued invariant (Example 4.4).

We note that if a graph \(G \) contains a connected component which is homeomorphic to the 1-sphere, then our invariants in Theorem 2.2 are useless. For such cases, we can define edge (vertex)-homotopy invariants that take values in \(\mathbb{Z}_2 \) on weaker condition for weights than the one stated in Theorem 2.2. For a subgraph \(H \) of a graph \(G \), we say that a weight \(\omega \) on \(\Gamma(H) \) over \(\mathbb{Z}_2 \) is *totally balanced* if
\[
\sum_{\gamma \in \Gamma(H)} \omega(\gamma)[\gamma] = 0
\]
in \(H_1(H; \mathbb{Z}_2) \). We note that if a weight \(\omega \) on \(\Gamma(H) \) over \(\mathbb{Z}_2 \) is totally balanced, then it is weakly balanced on any edge \(e \) of \(H \) (Lemma 3.2), but not always weakly
balanced on any pair of adjacent edges of H (Remark 3.3). Then we have the following.

Theorem 2.3. Let $G = G_1 \cup G_2$ be a disjoint union of two connected graphs and \(\omega_i \) a weight on $\Gamma(G_i)$ over \mathbb{Z}_2 \((i = 1, 2)\). Let f be a spatial embedding of G such that

\[
\omega_1(\gamma) \omega_2(\gamma') \text{lk}(f(\gamma), f(\gamma')) = 0
\]

in \mathbb{Z} for any $\gamma \in \Gamma(G_1)$ and $\gamma' \in \Gamma(G_2)$. Then we have the following:

1. If either ω_1 is totally balanced on $\Gamma(G_1)$ or ω_2 is totally balanced on $\Gamma(G_2)$, then $\beta_{\omega_1, \omega_2}(f)$ is an edge-homotopy invariant of f.
2. If either ω_1 is totally balanced on $\Gamma(G_1)$ and weakly balanced on any pair of adjacent edges of G_1, or ω_2 is totally balanced on $\Gamma(G_2)$ and weakly balanced on any pair of adjacent edges of G_2, then $\beta_{\omega_1, \omega_2}(f)$ is a vertex-homotopy invariant of f.

We also prove Theorem 2.3 in the next section and give some examples in Section 5. In particular, we show that there exist infinitely many non-splittable spatial embeddings of a certain disconnected graph up to vertex-homotopy, all of whose constituent links are link-homotopically trivial (Example 5.4). We remark here that the \mathbb{Z}_2-valued invariant in Theorem 2.3 cannot always be extended to an integer-valued one (Remark 5.5).

Theorems 2.2 and 2.3 do not work for spatial graphs as illustrated in Figure 2.1, for instance. In Section 6, we state a method to detect such non-splittable spatial graphs up to edge-homotopy by using a planar surface having a graph as a spine (Theorem 6.1). Actually we show that each of the spatial graphs as illustrated in Figure 2.1 is non-splittable up to edge-homotopy (Example 6.2).

![Figure 2.1.](image)

Figure 2.1.

3. **Proofs of Theorems 2.2 and 2.3**

We first calculate the change in the third coefficient of the Conway polynomial of 2-component algebraically split links which differ by a single self crossing change.

Lemma 3.1. Let L_+ and L_- be two 2-component oriented links and $L_0 = J_1 \cup J_2 \cup K$ a 3-component oriented link which are identical except inside the depicted regions as illustrated in Figure 3.1. Suppose that $\text{lk}(L_+) = \text{lk}(L_-) = 0$. Then it holds that

\[
a_3(L_+) - a_3(L_-) = -\text{lk}(J_1, K)^2 = -\text{lk}(J_2, K)^2.
\]
Proof. By the skein relation of the Conway polynomial and a well-known formula for the second coefficient of the Conway polynomial of a 3-component oriented link (cf. [4], [3], [5]), we have that

\[a_3(L_+) - a_3(L_-) = \text{lk}(J_1, J_2)\text{lk}(J_2, K) + \text{lk}(J_2, K)\text{lk}(J_1, K) + \text{lk}(J_1, K)\text{lk}(J_1, J_2). \]

We note that

\[\text{lk}(J_1, K) + \text{lk}(J_2, K) = 0 \]

by the condition \(\text{lk}(L_+) = \text{lk}(L_-) = 0 \). Thus by (3.1) and (3.2), we have that

\[a_3(L_+) - a_3(L_-) = \text{lk}(J_2, K)\text{lk}(J_1, K). \]

Therefore by (3.2) we have the result.

Proof of Theorem 2.2. (1) Let \(f \) and \(g \) be two spatial embeddings of \(G \) such that

\[\omega_1(\gamma) \omega_2(\gamma') \text{lk}(f(\gamma), f(\gamma')) = 0 \]

in \(\mathbb{Z} \) for any \(\gamma \in \Gamma(G_1) \) and \(\gamma' \in \Gamma(G_2) \) and \(g \) is edge-homotopic to \(f \). Then it also holds that

\[\omega_1(\gamma) \omega_2(\gamma') \text{lk}(g(\gamma), g(\gamma')) = 0 \]

in \(\mathbb{Z} \) for any \(\gamma \in \Gamma(G_1) \) and \(\gamma' \in \Gamma(G_2) \) because the linking number of a 2-component constituent link of a spatial graph is an edge-homotopy invariant. First we show that if \(f \) is transformed into \(g \) by self crossing changes on \(f(G_1) \) and ambient isotopies, then \(\beta_{\omega_1, \omega_2}(f) = \beta_{\omega_1, \omega_2}(g) \). It is clear that any link invariant of a constituent link of a spatial graph is also an ambient isotopy invariant of the spatial graph. Thus we may assume that \(g \) is obtained from \(f \) by a single crossing change on \(f(e) \) for an edge \(e \) of \(G_1 \) as illustrated in Figure 3.2. Moreover, by smoothing this crossing point we can obtain the spatial embedding \(h \) of \(G \) and the knot \(J_h \) as illustrated in Figure 3.2. Then by (3.3), (3.4), Lemma 3.1 and the assumption for \(\omega_1 \) we have
that
\[\beta_{\omega_1, \omega_2}(f) - \beta_{\omega_1, \omega_2}(g) = \sum_{\gamma \in \Gamma(G_1)} \omega_1(\gamma) \omega_2(\gamma') \left\{ a_3(f(\gamma), f(\gamma')) - a_3(g(\gamma), g(\gamma')) \right\} \]
\[= \sum_{\gamma \in \Gamma_*(G_1)} \omega_1(\gamma) \omega_2(\gamma') \left\{ a_3(f(\gamma), f(\gamma')) - a_3(g(\gamma), g(\gamma')) \right\} \]
\[= - \sum_{\gamma \in \Gamma_*(G_1)} \omega_1(\gamma) \omega_2(\gamma') \text{lk}(h(\gamma'), J_h)^2 \]
\[= - \left(\sum_{\gamma \in \Gamma_*(G_1)} \omega_1(\gamma) \right) \sum_{\gamma' \in \Gamma(G_2)} \omega_2(\gamma') \text{lk}(h(\gamma'), J_h)^2 \]
\[= 0. \]
Therefore we have that \(\beta_{\omega_1, \omega_2}(f) = \beta_{\omega_1, \omega_2}(g) \). In the same way we can show that if \(f \) is transformed into \(g \) by self crossing changes on \(f(G_2) \) and ambient isotopies, then \(\beta_{\omega_1, \omega_2}(f) = \beta_{\omega_1, \omega_2}(g) \). Thus we have that \(\beta_{\omega_1, \omega_2} \) is an edge-homotopy invariant.

(2) By considering the triple of spatial embeddings as illustrated in Figure 3.3, we can prove (2) in a similar way as the proof of (1). We omit the details. \qed

Next we prove Theorem 2.3. For a subgraph \(H \) of a graph \(G \), we have the following.

Lemma 3.2. A totally balanced weight \(\omega \) on \(\Gamma(H) \) over \(\mathbb{Z}_2 \) is weakly balanced on any edge \(e \) of \(H \).

Proof. For an edge \(e \) of \(H \), we can represent any \(\gamma \in \Gamma_*(H) \) as \(e + c_\gamma \in \mathbb{Z}_1(H; \mathbb{Z}_2) \), where \(c_\gamma \) is a 1-chain in \(C_1(H \setminus e; \mathbb{Z}_2) \). Then we have that
\[0 = \sum_{\gamma \in \Gamma(H)} \omega(\gamma)[\gamma] \]
\[= \sum_{\gamma \in \Gamma_*(H)} \omega(\gamma)[e + c_\gamma] + \sum_{\gamma' \in \Gamma(H \setminus \Gamma_*(H))} \omega(\gamma')[\gamma'] \]
in $H_1(H;\mathbb{Z}_2)$. This implies that if ω is not weakly balanced on e, then ω is not totally balanced on $\Gamma(H)$ over \mathbb{Z}_2.

Remark 3.3. A totally balanced weight ω on $\Gamma(H)$ over \mathbb{Z}_2 is not always weakly balanced on any pair of adjacent edges of H. For example, let ω be a weight on Θ_3 (see Example 4.3) over \mathbb{Z}_2 defined by $\omega(\gamma) = 1$ for any cycle $\gamma \in \Gamma(\Theta_3)$. It is easy to see that ω is totally balanced, but not weakly balanced, on each pair of adjacent edges of Θ_3.

Proof of Theorem 2.3. (1) Let f and g be two spatial embeddings of G which are edge-homotopic such that

$$\omega_1(\gamma)\omega_2(\gamma') \text{lk}(f(\gamma), f(\gamma')) = \omega_1(\gamma)\omega_2(\gamma') \text{lk}(g(\gamma), g(\gamma')) = 0$$

in \mathbb{Z} for any $\gamma \in \Gamma(G_1)$ and $\gamma' \in \Gamma(G_2)$. First we show that if f is transformed into g by self crossing changes on $f(G_1)$ and ambient isotopies, then $\beta_{\omega_1,\omega_2}(f) = \beta_{\omega_1,\omega_2}(g)$. In the same way as the proof of Theorem 2.2, we may consider three spatial embeddings f, g and h of G and the knot J_h as illustrated in Figure 3.2. Then, by the same calculation in the proof of Theorem 2.2 we have that

$$\beta_{\omega_1,\omega_2}(f) - \beta_{\omega_1,\omega_2}(g) = \left(\sum_{\gamma \in \Gamma(G_1)} \omega_1(\gamma) \right) \left(\sum_{\gamma' \in \Gamma(G_2)} \omega_2(\gamma') \text{lk}(h(\gamma'), J_h) \right)^2$$

If ω_1 is totally balanced on $\Gamma(G_1)$, then by Lemma 3.2 it is weakly balanced on any edge e of G_1. This implies that $\beta_{\omega_1,\omega_2}(f) = \beta_{\omega_1,\omega_2}(g)$. If ω_2 is totally balanced on
\(\Gamma(G_1) \), then we have that
\[
\text{lk} \left(\sum_{\gamma' \in \Gamma(G_2)} \omega_2(\gamma') h(\gamma'), J_h \right) \equiv \text{lk} (0, J_h) = 0.
\]
Therefore this also implies that \(\beta_{\omega_1, \omega_2}(f) = \beta_{\omega_1, \omega_2}(g) \). In the same way we can show that if \(f \) is transformed into \(g \) by self crossing changes on \(f(G_2) \) and ambient isotopies, then \(\beta_{\omega_1, \omega_2}(f) = \beta_{\omega_1, \omega_2}(g) \). Thus we have that \(\beta_{\omega_1, \omega_2} \) is an edge-homotopy invariant.

(2) By considering the triple of spatial embeddings as illustrated in Figure 3.3, we can prove (2) in a similar way as the proof of (1). We also omit the details.

Since the Conway polynomial of a split link is zero, our invariants take the value zero for any split (2-component) spatial graph. Therefore if the value of our invariant of a spatial graph is not zero, then it is non-splittable up to edge (resp. vertex)-homotopy.

4. Integer-valued invariants

Let \(G \) be a planar graph. An embedding \(p : G \to S^2 \) is said to be cellular if the closure of each of the connected components of \(S^2 - p(G) \) is homeomorphic to the disk. Then we regard the set of the boundaries of all of the connected components of \(S^2 - p(G) \) as a subset of \(\Gamma(G) \) and denote it by \(\Gamma_p(G) \). We say that \(G \) admits a checkerboard coloring on \(S^2 \) if there exists a cellular embedding \(p : G \to S^2 \) such that we can color all of the connected components of \(S^2 - p(G) \) by two colors (black and white) so that any of the two components which are adjacent by an edge have distinct colors; see Figure 4.1. We denote the subset of \(\Gamma_p(G) \) which corresponds to the black (resp. white) colored components by \(\Gamma^b_p(G) \) (resp. \(\Gamma^w_p(G) \)).

Figure 4.1.

Proposition 4.1. Let \(G \) be a planar graph which is not homeomorphic to \(S^1 \) and admits a checkerboard coloring on \(S^2 \) with respect to a cellular embedding \(p : G \to S^2 \). Let \(\omega_p \) be a weight on \(\Gamma(G) \) over \(\mathbb{Z} \) defined by
\[
\omega_p(\gamma) = \begin{cases}
1 & (\gamma \in \Gamma^b_p(G)), \\
-1 & (\gamma \in \Gamma^w_p(G)), \\
0 & (\gamma \in \Gamma(G) \setminus \Gamma_p(G)).
\end{cases}
\]

Then \(\omega_p \) is weakly balanced on any edge of \(G \).

Proof. For any edge \(e \) of \(G \), there exist exactly two cycles \(\gamma \in \Gamma^b_p(G) \) and \(\gamma' \in \Gamma^w_p(G) \) such that \(e \subset \gamma \) and \(e \subset \gamma' \). Thus we have the result.
We call the weight ω_p in Proposition 4.1 a checkerboard weight. Thus by Proposition 4.1 and Theorem 2.2 (1), we can obtain an integer-valued edge-homotopy invariant as follows.

Theorem 4.2. Let $G = G_1 \cup G_2$ be a disjoint union of two connected planar graphs such that G_i is not homeomorphic to S^1 and admits a checkerboard coloring on S^2 with respect to a cellular embedding $p_i : G_i \rightarrow S^2$ $(i = 1, 2)$. Let ω_{p_i} be a checkerboard weight on $\Gamma(G_i)$ over \mathbb{Z} $(i = 1, 2)$ and f a spatial embedding of G such that

$$\omega_{p_1}(\gamma)\omega_{p_2}(\gamma')\text{lk}(f(\gamma), f(\gamma')) = 0$$

in \mathbb{Z} for any $\gamma \in \Gamma(G_1)$ and $\gamma' \in \Gamma(G_2)$. Then $\beta_{\omega_{p_1}, \omega_{p_2}}(f)$ is an integer-valued edge-homotopy invariant of f.\[\square\]

Example 4.3. Let Θ_n be a graph with two vertices u and v and n edges e_1, e_2, \ldots, e_n, each of which joins u and v. A spatial embedding of Θ_n is called a (spatial) theta n-curve or simply a theta curve if $n = 3$. For $n \geq 2$, we denote that a cycle of Θ_n consists of two edges e_i and e_j by γ_{ij} $(i < j)$. Then it is clear that Θ_n admits a cellular embedding $p : \Theta_n \rightarrow S^2$ so that

$$\Gamma_p(\Theta_n) = \{\gamma_{12}, \gamma_{23}, \ldots, \gamma_{n-1,n}, \gamma_{1n}\}.$$ Moreover, for $m \geq 1$, Θ_{2m} admits a checkerboard coloring on S^2 so that

$$\Gamma_p^c(\Theta_{2m}) = \{\gamma_{12}, \gamma_{24}, \ldots, \gamma_{2m-1,2m}\},$$

$$\Gamma_p^w(\Theta_{2m}) = \{\gamma_{23}, \gamma_{45}, \ldots, \gamma_{2m-2,2m-1}, \gamma_{1,2m}\}.$$ Now let G be a disjoint union of two copies of Θ_4, each of which admits a checkerboard coloring on S^2 with respect to the cellular embedding p as above. Let ω_p be a checkerboard weight on $\Gamma(\Theta_4)$ over \mathbb{Z} and g_1 a spatial embedding of G as illustrated in Figure 4.2. We can see that any of the 2-component constituent links of g_1 has a zero linking number. More precisely, g_1 contains exactly one non-trivial 2-component link $L = g_1(\gamma_{14}) \cup g_1(\gamma_{14}')$ whose linking number is zero. Thus by Theorem 1.2 we have that $\beta_{\omega_p, \omega_p}(g_1)$ is an integer-valued edge-homotopy invariant of g_1. Then, by a direct calculation we have that $a_3(L) = 2$, namely $\beta_{\omega_p, \omega_p}(g_1) = 2$. Note that a 2-component link is link-homotopically trivial if and only if its linking number is zero [8]. This implies that g_1 is non-splittable up to edge-homotopy despite the fact that any of the constituent links of g_1 is link-homotopically trivial.

\textbf{Figure 4.2.}
Moreover, for an integer \(m \), let \(g_m \) be a spatial embedding of \(G \) as illustrated in Figure 4.3. If \(m \neq 0 \), we can see that \(g_m \) contains exactly one non-trivial 2-component link \(L = g_m(\gamma_{14}) \cup g_m(\gamma'_{14}) \) whose linking number is zero. Thus we also have that \(\beta_{\omega_1, \omega_p}(g_m) \) is an integer-valued edge-homotopy invariant of \(g_m \). Then, by a calculation we have that \(a_3(L) = 2m \), namely \(\beta_{\omega_1, \omega_p}(g_m) = 2m \). This implies that there exist infinitely many non-splitting spatial embeddings of \(G \) up to edge-homotopy, all of whose constituent links are link-homotopically trivial.

![Figure 4.3](image)

Example 4.4. Let \(H \) be a graph as illustrated in Figure 4.4. We denote the cycle of \(H \) which contains \(e_i \) and \(e_j \) by \(\gamma_{ij} \) \((i < j)\). Let \(G \) be a disjoint union of two copies of \(H \) and \(g_1 \) a spatial embedding of \(G \) as illustrated in Figure 4.5. This spatial embedding \(g_1 \) contains exactly one 4-component constituent link \(L = g_1(\gamma_{12} \cup \gamma_{34} \cup \gamma'_{12} \cup \gamma'_{34}) \). Note that if \(g_1 \) is split up to vertex-homotopy, then \(L \) is split up to link-homotopy. Since \(|\mu_{1234}(L)| = 1 \), where \(\mu_{1234} \) denotes Milnor’s \(\mu \)-invariant of length 4 of 4-component links [8], we have that \(L \) is non-splittable up to link-homotopy. Therefore we have that \(g_1 \) is non-splittable up to vertex-homotopy.

We can also prove this fact by our integer-valued vertex-homotopy invariant as follows. Let \(\omega \) be a weight on \(\Gamma(H) \) over \(\mathbb{Z} \) defined by \(\omega(\gamma_{14}) = \omega(\gamma_{23}) = 1 \),
\(\omega(\gamma_{13}) = \omega(\gamma_{24}) = -1 \) and \(\omega(\gamma) = 0 \) if \(\gamma \) is a 2-cycle. Then it is easy to see that \(\omega \) is weakly balanced on any pair of adjacent edges of \(H \). We can see that \(g_1 \) contains exactly one non-trivial 2-component constituent link \(M = g_1(\gamma_{14} \cup \gamma'_{14}) \) with \(\text{lk}(M) = 0 \) and \(a_3(M) = 2 \). Thus by Theorem 2.2 (2) we have that \(\beta_{\omega,\omega}(g_1) \) is an integer-valued vertex-homotopy invariant of \(g_1 \) and \(\beta_{\omega,\omega}(g_1) = 2 \). This implies that \(g_1 \) is non-splittable up to vertex-homotopy.

\[\text{Figure 4.4.} \]

Moreover, let \(g_m \) be a spatial embedding of \(G \) as illustrated in Figure 4.5, which can be constructed in the same way as in Example 4.3. Then we can see that \(\beta_{\omega,\omega}(g_m) \) is an integer-valued vertex-homotopy invariant of \(g_m \) and \(\beta_{\omega,\omega}(g_m) = 2m \). This implies that \(g_m \) is non-splittable up to vertex-homotopy for any integer \(m \neq 0 \) and \(g_i \) and \(g_j \) are not vertex-homotopic for any \(i \neq j \).

5. Modulo Two Invariants

Proposition 5.1. Let \(G \) be a planar graph which is not homeomorphic to \(S^1 \) and \(p: G \to S^2 \) a cellular embedding. Let \(\omega_p : \Gamma(G) \to \mathbb{Z}_2 \) be a weight on \(\Gamma(G) \) over \(\mathbb{Z}_2 \) defined by

\[
\omega_p(\gamma) = \begin{cases}
1 & (\gamma \in \Gamma_p(G)), \\
0 & (\gamma \in \Gamma(G) \setminus \Gamma_p(G)).
\end{cases}
\]

Then \(\omega_p \) is totally balanced.

Proof. It holds that

\[
\sum_{\gamma \in \Gamma(G)} \omega_p(\gamma) [\gamma] = \sum_{\gamma \in \Gamma_p(G)} [\gamma] = 2 \left[\sum_{e \in E(G)} e \right] = 0
\]
in $H_1(G; \mathbb{Z}_2)$, where $E(G)$ denotes the set of all edges of G. Thus we have the result.

Thus by Proposition 5.1 and Theorem 2.3 (1), we can obtain an edge-homotopy invariant as follows.

Theorem 5.2. Let $G = G_1 \cup G_2$ be a disjoint union of two connected graphs such that G_1 is planar, not homeomorphic to S^1 and admits a cellular embedding $p_1 : G_1 \to S^2$. Let ω_{p_1} be a weight on $\Gamma(G_1)$ over \mathbb{Z}_2 as in Proposition 5.1, ω_2 a weight on $\Gamma(G_2)$ over \mathbb{Z}_2 and f a spatial embedding of G such that

$$\omega_{p_1}(\gamma)\omega_2(\gamma')\text{lk}(f(\gamma), f(\gamma')) = 0$$

in \mathbb{Z} for any $\gamma \in \Gamma(G_1)$ and $\gamma' \in \Gamma(G_2)$. Then $\beta_{\omega_{p_1}, \omega_2}(f)$ is an edge-homotopy invariant of f. \hfill \square

Example 5.3. Let G be a disjoint union of Θ_3 and a circle γ. Let ω_p be a weight on $\Gamma(\Theta_3)$ over \mathbb{Z}_2 as in Proposition 5.1 with respect to a cellular embedding $p : \Theta_3 \to S^2$ as in Example 4.3 and ω a weight on $\Gamma(\gamma)$ over \mathbb{Z}_2 defined by $\omega(\gamma) = 1$. Let g be a spatial embedding of G as illustrated in Figure 5.1 (1). We can see that g contains exactly one non-trivial 2-component link $L = g(\gamma_3) \cup g(\gamma)$ which is the Whitehead link, so $\text{lk}(L) = 0$ and $a_3(L) = 1$. Thus by Theorem 5.2 we have that $\beta_{\omega_p, \omega}(g)$ is an edge-homotopy invariant of g and $\beta_{\omega_p, \omega}(g) = 1$. Namely g is non-splittable up to edge-homotopy despite the fact that any of the constituent links of g is link-homotopically trivial.

Example 5.4. Let G be a disjoint union of the complete bipartite graph on $3 + 3$ vertices $K_{3,3}$ and a circle γ. Let $\omega_{3,3}$ be a weight on $K_{3,3}$ over \mathbb{Z}_2 defined by $\omega_{3,3}(\gamma') = 1$ if γ' is a 4-cycle and 0 if γ' is a 6-cycle. Let ω be a weight on $\Gamma(\gamma)$ over \mathbb{Z}_2 defined by $\omega(\gamma) = 1$. Then it is not hard to see that $\omega_{3,3}$ is totally balanced and weakly balanced on any pair of adjacent edges of $K_{3,3}$. For a positive integer m, let g_m be a spatial embedding of G as illustrated in Figure 5.1 (2). Note that $g_i(K_{3,3})$ and $g_j(K_{3,3})$ are not vertex-homotopic for any $i \neq j$ [9], namely g_i and g_j are not vertex-homotopic for any $i \neq j$. Since all of the 2-component constituent links of g_m are algebraically split, by Theorem 2.3 (2) we have that $\beta_{\omega_3, \omega}(g)$ is a vertex-homotopy invariant of g_m. Moreover we can see that there exists exactly one 4-cycle γ' of $K_{3,3}$ so that $L = g_m(\gamma \cup \gamma')$ is non-trivial. Since L is the Whitehead link, we have that $\beta_{\omega_3, \omega}(g_m) = 1$. Therefore g_m is non-splittable up to vertex-homotopy despite the fact that any of the constituent links of g is link-homotopically trivial.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig51}
\caption{Figure 5.1.}
\end{figure}
Remark 5.5. The \mathbb{Z}_2-valued invariant in Theorem 2.3 cannot always be extended to an integer-valued one. For example,

1. Let us consider the graph G and the invariant $\beta_{\omega_p, \omega}$ as in Example 5.3. Let f be a spatial embedding of G as illustrated in Figure 5.2. We can see that f is edge-homotopic to the trivial spatial embedding h of G. But by a calculation we have that $\sum_{1 \leq i < j \leq 3} a_3(f(\gamma_{ij}), f(\gamma)) = -2$.

![Figure 5.2.](#)

2. Let G be a disjoint union of Θ_4 and a circle γ. Let ω_p be a checkerboard weight on $\Gamma(\Theta_4)$ over \mathbb{Z} as in Example 4.3. Note that the modulo two reduction of a checkerboard weight is totally balanced. So by Theorem 2.3 (1), the modulo two reduction of $\sum_{\gamma_{ij} \in \Gamma(\Theta_4)} \omega_p(\gamma_{ij}) a_3(f(\gamma_{ij} \cup \gamma))$ is an edge-homotopy invariant of a spatial embedding f of G. Moreover, we can see that the integer-value $\sum_{\gamma_{ij} \in \Gamma(\Theta_4)} \omega_p(\gamma_{ij}) a_3(f(\gamma_{ij} \cup \gamma))$ is invariant under the self crossing change on $f(\Theta_4)$ in the same way as in the proof of Theorem 2.2 (1). But this value may change under a self crossing change on $f(\gamma)$. For example, let f and g be two spatial embeddings of G as illustrated in Figure 5.3. We can see that f is edge-homotopic to g. But by a calculation we have that

$$\sum_{\gamma_{ij} \in \Gamma(\Theta_4)} \omega_p(\gamma_{ij}) a_3(f(\gamma_{ij}), f(\gamma)) = -1,$$

$$\sum_{\gamma_{ij} \in \Gamma(\Theta_4)} \omega_p(\gamma_{ij}) a_3(g(\gamma_{ij}), g(\gamma)) = 1.$$
6. Applying the Boundary of a Planar Surface

Let X be a disjoint union of a graph G and a planar surface F with boundary. Let ω be a weight on $\Gamma(G)$ over \mathbb{Z}_2 and φ an embedding of X into S^3 such that

$$\omega(\gamma)\text{lk}(\varphi(\gamma), \varphi(\gamma')) = 0$$

in \mathbb{Z} for any $\gamma \in \Gamma(G)$ and $\gamma' \in \Gamma(\partial F)$. Then we define $\beta_\omega(\varphi) \in \mathbb{Z}_2$ by

$$\beta_\omega(\varphi) \equiv \sum_{\gamma \in \Gamma(G) \setminus \Gamma(\partial F)} \omega(\gamma)\text{a}_3(\varphi(\gamma), \varphi(\gamma')) \pmod{2}.$$

Let G be a disjoint union of a connected graph G_1 and a connected planar graph G_2. Let f be a spatial embedding of G and p an embedding of G_2 into S^2. We denote the regular neighborhood of $p(G_2)$ in S^2 by $F(G_2; p)$, which is a planar surface having $p(G_2)$ as a spine. Then the spatial embedding f induces an embedding \tilde{f}_p of the disjoint union $G_1 \cup F(G_2; p)$ into S^3, so that $\tilde{f}_p(G_1) = f(G_1)$ and $\tilde{f}_p(F(G_2; p))$ has $f(G_2)$ as a spine in the natural way. Note that such an induced embedding \tilde{f}_p is not unique up to ambient isotopy. Let ω be a weight on $\Gamma(G_1)$ over \mathbb{Z}_2 so that

$$\omega(\gamma)\text{lk}(\tilde{f}_p(\gamma), \tilde{f}_p(\gamma')) = 0$$

in \mathbb{Z} for any $\gamma \in \Gamma(G_1)$ and $\gamma' \in \Gamma(\partial F(G_2; p))$. Then we have the following.

Theorem 6.1. If f is split up to edge-homotopy, then $\beta_\omega(\tilde{f}_p) = 0$ for any induced embedding \tilde{f}_p of $G_1 \cup F(G_2; p)$.

Proof. By the assumption we have that f is transformed into a split spatial embedding u of G by self crossing changes and ambient isotopies. Then each of the self crossing changes induces a self crossing change on $\tilde{f}_p(G_1)$ or a band-pass move [6] (see Figure 6.1 on $\tilde{f}_p(F(G_2; p))$). Namely \tilde{f}_p can be transformed into an induced embedding \tilde{u}_p of $G_1 \cup F(G_2; p)$ by such moves and ambient isotopies. Let \tilde{g}_p be an embedding of $G_1 \cup F(G_2; p)$ into S^3 obtained from \tilde{f}_p by a single self crossing change on $\tilde{f}_p(G_1)$ or a single band-pass move on $\tilde{f}_p(F(G_2; p))$. Then it still holds that

$$\omega(\gamma)\text{lk}(\tilde{g}_p(\gamma), \tilde{g}_p(\gamma')) = 0$$

in \mathbb{Z} for any $\gamma \in \Gamma(G_1)$ and $\gamma' \in \Gamma(\partial F(G_2; p))$.

Claim. $\beta_\omega(\tilde{f}_p) = \beta_\omega(\tilde{g}_p)$.

Assume that \tilde{g}_p is obtained from \tilde{f}_p by a single self crossing change on $\tilde{f}_p(G_1)$. Since it holds that

$$\sum_{\gamma' \in \Gamma(\partial F(G_2; p))} [\gamma'] = 0$$

in $H_1(F(G_2; p); \mathbb{Z}_2)$, we can see that $\beta_\omega(\tilde{f}_p) = \beta_\omega(\tilde{g}_p)$ in a similar way as the proof of Theorem 2.3 (1). Next we assume that \tilde{g}_p is obtained from \tilde{f}_p by a single band-pass move on $\tilde{f}_p(F(G_2; p))$. Then $\tilde{g}_p|_{G_1 \cup \partial F(G_2; p)}$ is obtained from $\tilde{f}_p|_{G_1 \cup \partial F(G_2; p)}$ by a single pass move [6] (see Figure 6.1 on $\tilde{f}_p(\partial F(G_2; p))$). We divide our situation into the following two cases.

Case 1. Four strings in the pass move belong to $\tilde{f}_p(\gamma_1')$ and $\tilde{f}_p(\gamma_2')$ for exactly two cycles γ_1' and γ_2' in $\Gamma(\partial F(G_2; p))$.

This pass move causes a single self crossing change on \(\tilde{f}_p(\gamma'_1) \) and a single self crossing change on \(\tilde{f}_p(\gamma'_2) \). Then the separated components that result from smoothing each of the self crossings are orientation-reversing parallel knots; see Figure 6.2. So the difference between \(\beta_\omega(\tilde{f}_p) \) and \(\beta_\omega(\tilde{g}_p) \) is cancelled out in a similar way as in the proof of Theorem 2.2 (1). Thus we have that \(\beta_\omega(\tilde{f}_p) = \beta_\omega(\tilde{g}_p) \).

Case 2. Four strings in the pass move belong to \(\tilde{f}_p(\gamma') \) for a cycle \(\gamma' \) in \(\Gamma(\partial F(G_2; p)) \).

It is known that a pass move on the same component of a proper link \(L = J_1 \cup J_2 \cup \cdots \cup J_n \) preserves \(\overline{\operatorname{Arf}}(L) \equiv \operatorname{Arf}(L) - \sum_{i=1}^n \operatorname{Arf}(J_i) \in \mathbb{Z}_2 \) (cf. [16]).\(^3\) Especially, if \(n = 2 \) then \(a_3(L) \equiv \overline{\operatorname{Arf}}(L) \pmod{2} \) [12 Lemma 3.5 (ii)]. Therefore in this case the pass move preserves \(\omega(\gamma)a_3(\tilde{f}_p(\gamma), \tilde{f}_p(\gamma')) \) for any cycle \(\gamma \in \Gamma(G_1) \). This implies that \(\beta_\omega(\tilde{f}_p) = \beta_\omega(\tilde{g}_p) \).

Now by the argument above, we have that \(\beta_\omega(\tilde{f}_p) = \beta_\omega(\tilde{u}_p) \). Then, each 2-component link \(\tilde{u}_p(\gamma \cup \gamma') \) is split for any \(\gamma \in \Gamma(G_1) \) and \(\gamma' \in \Gamma(\partial F(G_2; p)) \) because \(u \) is split. Therefore we have that \(\beta_\omega(\tilde{f}_p) = \beta_\omega(\tilde{u}_p) = 0 \). This completes the proof.

\[\text{Figure 6.1.}\]

\[\text{Figure 6.2.}\]

\(^3\)The value of \(\overline{\operatorname{Arf}}(L) \) is called the reduced Arf invariant of \(L \) [15].
Example 6.2. Let G be a disjoint union of a circle γ and the \textit{handcuff graph} (resp. \textit{2-bouquet}) G_2. Let ω be a weight on $\Gamma(\gamma)$ over \mathbb{Z}_2 defined by $\omega(\gamma) = 1$. We fix an embedding $p : G_2 \to S^2$ and take a regular neighborhood $F(G_2; p)$ as illustrated in Figure 6.3 (1) (resp. (2)).

Let f be a spatial embedding of G as illustrated in Figure 6.1 (1) (resp. (2)). Let us take an induced embedding $\tilde{f}_p : \gamma \cup F(G_2; p) \to S^3$ as illustrated in Figure 6.4 (1) (resp. (2)). Note that $\text{lk}(\tilde{f}_p(\gamma), \tilde{f}_p(\gamma')) = 0$ for any $\gamma' \in \Gamma(\partial F(G_2; p))$. Then it can be calculated that $\beta_\omega(\tilde{f}_p) = 1$. Thus by Theorem 6.1 we have that f is non-splittable up to edge-homotopy.

Acknowledgment

The authors are very grateful to Professor Hitoshi Murakami for his hospitality at the Tokyo Institute of Technology where this work was conducted.

References

[1] T. D. Cochran, Concordance invariance of coefficients of Conway’s link polynomial, \textit{Invent. Math.} \textbf{82} (1985), 527–541. MR 87c:57002
[2] N. Habegger and X.-S. Lin, The classification of links up to link-homotopy, \textit{J. Amer. Math. Soc.} \textbf{3} (1990), 389–419. MR 91e:57015
[3] R. Hartley, The Conway potential function for links, \textit{Comment. Math. Helv.} \textbf{58} (1983), 365–378. MR 85h:57006
[4] F. Hosokawa, On ∇-polynomials of links, \textit{Osaka Math. J.} \textbf{10} (1958), 273–282. MR 21#1606
[5] J. Hoste, The first coefficient of the Conway polynomial, \textit{Proc. Amer. Math. Soc.} \textbf{95} (1985), 299–302. MR 86m:57009
[6] L. H. Kauffman, \textit{Formal knot theory}, Mathematical Notes, \textbf{30}, Princeton University Press, Princeton, NJ, 1983. MR 85b:57006
[7] J. P. Levine, An approach to homotopy classification of links, Trans. Amer. Math. Soc. 306 (1988), 361–387. MR 88m:57008
[8] J. Milnor, Link groups, Ann. of Math. (2) 59 (1954), 177–195. MR 17,70e
[9] T. Motohashi and K. Taniyama, Delta unknotting operation and vertex homotopy of graphs in R^3, Knots ‘96 (Tokyo), 185–200, World Sci. Publishing, River Edge, NJ, 1997. MR 99h:57021
[10] R. Nikkuni, Delta link-homotopy on spatial graphs, Rev. Mat. Complut. 15 (2002), 543–570. MR 2004d:57013
[11] R. Nikkuni, Edge-homotopy classification of spatial complete graphs on four vertices, J. Knot Theory Ramifications 13 (2004), 763–777. MR 2005f:57008
[12] R. Nikkuni, Sharp edge-homotopy on spatial graphs, Rev. Mat. Complut. 18 (2005), 181–207. MR2135538
[13] Y. Ohyama and K. Taniyama, Vassiliev invariants of knots in a spatial graph, Pacific J. Math. 200 (2001), 191–205. MR 2003a:57025
[14] N. Sato, Cobordisms of semiboundary links, Topology Appl. 18 (1984), 225–234. MR 86d:57010
[15] T. Shibuya, Self \sharp-unknotting operations of links, Mem. Osaka Inst. Tech. Ser. A 34 (1989), 9–17. MR 92a:57014
[16] T. Shibuya and A. Yasuhara, Classification of links up to self pass-move, J. Math. Soc. Japan 55 (2003), 939–946. MR 2004f:57016
[17] R. Sturman Beiss, The Arf and Sato link concordance invariants, Trans. Amer. Math. Soc. 322 (1990), 479–491. MR 91m:57006
[18] K. Taniyama, Link homotopy invariants of graphs in R^3, Rev. Mat. Univ. Complut. Madrid 7 (1994), 129–144. MR 95f:57023
[19] K. Taniyama, Cobordism, homotopy and homology of graphs in R^3, Topology 33 (1994), 509–523. MR 95h:57002

Department of Mathematics, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
E-mail address: tfleming@math.ucsd.edu

Institute of Human and Social Sciences, Faculty of Teacher Education, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan
E-mail address: nick@ed.kanazawa-u.ac.jp