Detecting the structure of haplotypes, local ancestry and excessive local European ancestry in Mexicans

Yongtao Guan
Baylor College of Medicine

Abstract

We present a two-layer hidden Markov model to detect structure of haplotypes for unrelated individuals. This allows modeling two scales of linkage disequilibrium (one within a group of haplotypes and one between groups), thereby taking advantage of rich haplotype information to infer local ancestry for admixed individuals. Our method outperforms competing state-of-art methods, particularly for regions of small ancestral track lengths. Applying our method to Mexican samples in HapMap3, we found five coding regions, ranging from 0.3–1.3 megabase (Mb) in lengths, that exhibit excessive European ancestry (average dosage > 1.6). A particular interesting region of 1.1Mb (with average dosage 1.95) locates on Chromosome 2p23 that harbors two genes, PXDN and MYT1L, both of which are associated with autism and schizophrenia. In light of the low prevalence of autism in Hispanics, this region warrants special attention. We confirmed our findings using Mexican samples from the 1000 genomes project. A software package implementing methods described in the paper is freely available at http://bcm.edu/cnrc/mcmcmc.

1 Introduction

Haplotype variation is central to statistical and population genetics. Studies have revealed that considerable sharing of haplotypes exists across populations [1], as well as significant variation among populations [2]. Polymorphic markers are linked on a haplotype; thus, differences in haplotype abundance cause linkage disequilibrium (LD, the nonindependence of marginal allele frequencies) between markers. Therefore, modeling LD helps to understand haplotype variations. Many statistical models exist to model LD; however, a model to detect the structure of haplotypes is missing.

The most elegant model for LD is the coalescent with recombination [3–4], or ancestral recombination graph (ARG). However, despite successful efforts on small-scale datasets [5], ARG remains notoriously hard to compute. Considerable efforts have been made to approximate ARG to allow computation on a large scale [6–10]. Among them, the most successful is the PAC model of Li and Stephens [8], which models a new haplotype as an imperfect mosaic of observed haplotypes to produce a conditional likelihood; the joint likelihood of all haplotypes is then approximated by the product of those conditionals. Along these lines, Paul and Song [10] made formal derivation using diffusion approximation. A somewhat related approach is the clustering model [9], which summarizes observed haplotypes into a small number of (ancestral) haplotypes and models the observed haplotypes as imperfect mosaics of those haplotypes.

These models assume that haplotypes are sampled from a single source population and become ineffective when haplotypes are admixed. Admixed haplotypes have two scales of LD: the admixture
LD that formed between alleles in different source populations and typically spans a few to tens of centimorgans (cM) \[11\]; and the LD between alleles within each source population that typically spans a few tenths of a cM. The HAPMIX \[12\] model is among the first to model LD of admixed individuals, extending the PAC model to two source populations. This model is very effective for inferring local ancestry for two-way admixtures (e.g., African Americans), but it is not yet applicable to three-way admixtures such as Latinos (in principle, however, HAPMIX should work with three-way admixtures). Two recent examples of progress include LAMP-LD \[13\] and MULTIMIX \[14\], both of which achieve similar performance with HAPMIX in inferring the local ancestry of two-way admixtures, and can deal with three-way admixtures. However, HAPMIX and LAMP-LD both require haplotypes from source populations, and LAMP-LD and MULTIMIX both assume that ancestries are fixed within a window of loci and only switch between windows. These methods often perform well for recent admixture but underperform for distant admixture, which implies limited ability to detect local ancestries of short track lengths. In addition, distantly admixed individuals, such as Uyghurs whose admixture occurred more than 100 generations ago, are valuable for disease association \[15\] and human genetic landscape studies \[16\].

A different perspective of two scales of LD in admixture is *structure on local haplotypes*. Taking two-way admixture as an example, haplotypes from two source populations are separated into two groups, and a new haplotype is assigned probabilistically to a group based on its similarity with haplotypes in the group. Grouping source haplotypes is equivalent to putting a structure on haplotypes. In fact, the structure of local haplotypes is an ubiquitous phenomenon in genetic data, and the admixture is just a more apparent example. Even among individuals sampled from a single source population, a set of local haplotypes might be enriched in one subset of individuals and a different set of local haplotypes enriched in another. For example, individuals of European descents may be separated according to whether they have different two-digits human leukocyte antigen (HLA)-A allele classes. Compared to differences in local ancestry, the difference in two-digits HLA allele classes is more subtle. However, from the perspective of statistical modeling, these two scenarios are the same – both require detecting the structure of local haplotypes based on their similarities. None of the current methods is designed to handle this more delicate scenario.

In this study, we present a novel two-layer hidden Markov model (HMM) designed to learn the structure of local haplotypes. The new model uses two layers of latent clusters. In each layer, clusters are labeled to represent ancestry alleles, and multiple clusters of the same label over adjacent loci represent an ancestral haplotype. In a nonrecombined region, the upper layer aims to capture structure near the root of a coalescent tree, whereas the lower layer aims to capture haplotype variation near the tip. Recombination is approximated by cluster switching within each layer. The lower layer clusters are fuzzy mosaics of the upper layer clusters, and haplotypes in the observed data are fuzzy mosaics of the lower layer clusters. The fuzzy mosaic represents the mode of inheritance for haplotypes: mosaic implies historic recombinations and fuzziness implies mutations and uncertainty of inheritance. Existing cluster-based models use single-layer clusters. For example, fastPHASE \[9\] and Beagle \[17\] use, equivalently, the lower layer clusters to model ancestral haplotypes; and the STRUCTURE \[18\] equivalently use the upper-layer clusters to model ancestry populations. Although seemingly incremental, the two-layer model has an attractive feature that is not available in a single-layer model – detecting *structure of haplotypes*. The upper-layer clusters represent different groups (populations) and the lower-layer clusters represent group-specific haplotypes. This allows us to 1) summarize local haplotypes into different groups and 2) assign a local haplotype probabilistically into groups, which are two main ingredients for local
Figure 1: Structure of haplotypes. Each row denotes a SNP, and each column denotes a lower-layer haplotype in our model. We choose two typical regions that each contain 100 SNPs. The plot shows the lower clusters dosage conditional on one upper cluster (conditional dosage). Brighter pixels indicate higher dosages. The solid edge in the diagram indicates that the conditional dosage of a haplotype is either > 80% (connecting to the left upper cluster) or < 20% (connecting to the right upper cluster). Otherwise, we draw a dashed line indicating edge uncertainty.

Local ancestries of admixed individuals provide important information for disease association mapping [11] and demographic history [19]. It is an important subject that has attracted much recent attention [12–14, 20–22]. One way to infer local ancestry is to use ancestry informative markers (AIMs) – loci in which the allele frequencies have large differences among populations [23]. Inferences based on AIMs usually have low resolutions because AIMs are relatively scarce. On the other hand, haplotypes provide richer information that is complementary to the AIMs. Taking an extreme example, if population 1 has 50% A-T and 50% T-A haplotypes whereas population 2 has 50% A-A and 50% T-T haplotypes, there would be no difference in the marginal allele frequencies between two populations. However, the two-marker haplotypes are very informative. The two-layer model uses local haplotypes in source populations to define population features for each small genomic region, and based on which admixed haplotypes are assigned probabilistically to different populations. These genomic regions are not prespecified; instead, they are learned from data. Compared to methods that group markers in windows and only allow ancestral switches between windows [13, 14], our method has better performance because prespecified windows may conflict with actual ancestral switches.

2 Results

The model and its computation are described in details in the Methods section. Briefly, each haplotype associates with latent states of S upper clusters and K lower clusters at each marker. We fit the model using the Expectation Maximization (EM) and compute the cluster dosages conditional on data to infer local ancestry. Let γ denotes the admixture generation, and let $\lambda = 100/\gamma$ denotes the average ancestral track length (in cM).
2.1 Structure of haplotypes

The two-layer model can detect the structure of haplotypes. To illustrate this, we took the Chromosome 2 of unrelated CEU and YRI individuals from HapMap2 \[24\] and fit the two-layer model with $S = 2$, $K = 10$ and $\gamma = 100$, ignoring their population labels. Then, we computed the lower cluster dosage conditional on an upper-layer cluster (conditional dosage) for each individual and averaged the conditional dosages over all individuals. The conditional dosages for two typical regions (100 SNPs each) were plotted in Figure 1. In one region, the lower clusters are split rather cleanly (but not evenly) between two upper-layer clusters; in the other, the lower-layer clusters are split but less cleanly with some lower clusters shared between two upper clusters. This example illustrates that the two-layer model can indeed detect the structure of haplotypes. Moreover, Figure 1 demonstrates that some local haplotypes are population-specific whereas others are shared between populations. This local haplotype sharing is an intrinsic feature of genetic data \[1\]. The two-layer model can learn this feature, which is of particular importance in local ancestry inference. As a comparison, local haplotype sharing is not a natural part of the HAPMIX \[12\] model, and a miscopy parameter is introduced and (somewhat) arbitrarily specified to adapt to the local haplotype sharing feature of the data.

2.2 Local ancestry inference

We first illustrate that our method can achieve exceptional accuracy in local ancestry inference. We simulated a three-way admixed individual ($\gamma = 20$, Supplementary Note) and fit the two-layer model ($S = 3$, $K = 15$) using this individual and individuals from source populations, excluding haplotypes used to simulate the admixed individual. Figure 2 demonstrates the comparison between the true and inferred local ancestries. The two-layer model can infer the local ancestry for a three-way admixed individual with exceptional accuracy. The loci to which inferred ancestral allele dosages do not match well with the truth tend to have large uncertainties. This suggests that when combining results over multiple EM runs, the estimates may be weighted by their uncertainty, e.g., inverse of variance. Note that for a diploid individual, our method can compute the probabilistic assignment to all possible pairs of ancestries at each marker, allowing us to quantify the mean and variance of the estimated ancestry dosages. The admixture proportions were also accurately inferred (Supplementary Fig. S1).

Comparison with HAPMIX and LAMP-LD. Next, we compared our method with two state-of-art methods used in local ancestry inference: HAPMIX (for two-way admixture) and LAMP-LD (for three-way admixture). We used two metrics in our comparison – mean deviation and Pearson’s correlation between the inferred and actual local ancestries for each simulated admixed individual.

For comparison with HAPMIX, we simulated three sets (10 individuals in each set) of two-way admixed individuals with $\gamma = 10, 20$ and 100 (corresponding to $\lambda = 10, 5$ and 1cM respectively). The difficulty in inferring local ancestry increases as the admixture generation increases. The results of our method were obtained with $S = 2$ and $K = 10$ and averaged over 10 independent EM runs. The results of HAPMIX were obtained using its default parameters. For easier problems ($\gamma = 10, 20$), when both methods perform well, HAPMIX performs slightly but not significantly better (two sample t-test $p = 0.52, 0.63$ for deviation, and $p = 0.20, 0.09$ for correlation), whereas for harder problems ($\gamma = 100$), our method outperforms HAPMIX ($p = 5 \times 10^{-4}$ for deviation and...
Figure 2: Inference of local ancestry. The plot shows the results of a typical EM run for local ancestry inference of a three-way admixed individual. In each panel, x-axis denotes SNPs along the chromosome, and y-axis denotes ancestry allele dosage. The black lines in each panel are the actual values, and the blue lines are inferred mean dosages. The gray bars on top of blue lines reflect ±2 standard deviations of the estimated mean dosages. At each locus, the y-values on lines of same color sum to 2.

Figure 3: Comparison with HAPMIX and LAMP-LD. The left panel is for two-way admixture (HAPMIX) and the right panel is for three-way admixture (LAMP-LD). Results of our method are on the x-axis, and results of other methods are presented on the y-axis. Each point in the plot represents a simulated admixed individual whose local ancestry track lengths are 10, 5 and 1cM as shown in the legend. Black points denote mean deviation, and blue points denote Pearson’s correlation between the inferred and actual local ancestries.
Our method has some practical advantages over HAPMIX: 1) it cleanly handles missing data, whereas HAPMIX does not allow missing data; and 2) it can directly work with genotype data, whereas HAPMIX requires haplotypes from source populations. When the phasing of individuals from source populations is imperfect (e.g., statistical phasing without the help of transmission), our method has an advantage.

We compared our method with LAMP-LD for three-way admixed individuals. Similar to the comparison with HAPMIX, we simulated three sets (10 individuals in each set) of three-way admixed individuals with $\gamma = 10, 20$ and 100. The results of our method were obtained with $S = 3$ and $K = 15$ and averaged over 10 independent EM runs. The results of LAMP-LD were obtained with default parameters. Similar to the comparison with HAPMIX, for harder problems ($\gamma = 100$), our method outperforms LAMP-LD (deviation $p = 6 \times 10^{-4}$ and correlation $p = 2 \times 10^{-8}$). For easier problems ($\gamma = 10$ or 20), both methods perform similarly if measured by deviation ($p = 0.69$ or 0.67). There is a marked difference in performance if measured by Pearson’s correlation – our method outperforms LAMP-LD ($p = 0.01$ for $\gamma = 10$ and $p = 3 \times 10^{-3}$ for $\gamma = 20$) (Figure 3). A closer look revealed that LAMP-LD tends to make more mistakes on small regions of a few hundred SNPs (Supplementary Fig. S2). We suspect that this has to do with grouping markers into windows, even though the recommended window size (50–100 SNPs [13]) is smaller than the size of often misidentified regions. In addition, LAMP-LD appears to be very certain everywhere, which can be misleading.

2.3 Excessive local European ancestry in Mexicans

We applied our method to infer the local ancestries of Mexican samples in both HapMap3 [25] and 1000 genomes (1000G) projects [26].

HapMap3 Samples. We used 112 individuals from CEU and 147 individuals from YRI in HapMap3 and 35 individuals from Mayan and Pima in the Human Genetic Diversity Panel (HGDP) [27] as three source populations (denote as SP1) to infer the local ancestry of 58 Mexican samples from HapMap3 (all genotypes are diploid). We fit the model with $S = 3, K = 15$ and $\gamma = 10, 20$ or 50 on Chromosome 2. The mean ancestry proportions for CEU, YRI and Native Americans are 0.517, 0.048 and 0.435, respectively, in line with what has been reported by others [14, 19]. In examining local ancestral allele dosages, we found a 1.1Mb region that contains excessive European ancestry (Figure 4). Note that because 1.1 Mb is roughly equal to 1.1cM, the result obtained using $\gamma = 50$ has the strongest signal. Interestingly, this region harbors two genes, PXDN and MYT1L, both of which are associated with autism and schizophrenia [28, 29]. Given that the prevalence of autism is lower in Hispanic children compare to other ethnic groups [30, 31], further studies are warranted to clarify whether and how this region contributes to the lower prevalence of autism in this population.

Encouraged by this finding, we further analyzed all autosomes and identified four additional genetic regions (Supplementary Fig. S3) that exhibit excessive European ancestry dosages (EAD). We chose EAD of 1.60 as a cutoff because it represents roughly 6 standard deviations away from the mean based on a conservative estimate assuming binomial sampling. Noticeably, 1) all five regions are short, ranging from 0.30 to 1.26Mb; 2) all are coding regions, many genes in these regions are immune related; and 3) these regions contain multiple hits from genome-wide association studies – undoubtedly, our findings will help to interpret results and to design follow-up studies. It is worthwhile to note that because these regions are short, only a method with high resolution can
Figure 4: Excessive local European ancestry in Mexicans. The y-axis is the average European ancestry allele dosages over 58 Mexican samples. Black segments indicate SNPs. The inlet is a close-up of the peak. The peak region is in 2p25.3, ranging from 1.59Mb to 2.70Mb; the average European allele dosage is 1.95.
detect them. (This might explain why this interesting phenomenon has never been reported before.)

1000G Samples. To double check our findings, we analyzed Mexican samples in the 1000G. Using identity by state, we identified that 29 of the total 66 samples overlap with HapMap3 Mexican samples. For SNPs that are typed in both projects, there is a high genotype concordance for all 29 samples (average Hamming distance < 0.002). We inferred the local ancestries of these 66 samples, using haplotypes of CEU and YRI in 1000G and genotypes of Maya and Pima in HGDP as three source populations (denoted as SP2). We found that: 1) four among five regions were also discovered using these 66 samples; the EAD of the region on chromosome 12 dropped from 1.72 to 1.49, and EAD of a region on chromosome 18 increased from previously 1.50 to 1.60 (see Supplementary Fig. S3 for the region); 2) among 29 overlapping individuals, the inferred admixture proportions have a high concordance between two choices of source populations SP1 and SP2 (Figure 5). Because we used unphased CEU and YRI in HapMap3 as source populations (SP1) for HapMap3 Mexican samples and used phased CEU and YRI in 1000G as source populations (SP2) for 1000G Mexican samples, this high concordance suggests that the phasing of CEU and YRI in 1000G is reliable; and 3) the 37 non-overlapping individuals in 1000G have an average smaller European ancestry proportion of 41.9% compared to 56.6% of those 29 overlapping individuals (Figure 5), and this difference is unlikely caused by random sampling (permutation test $p < 0.004$).

![Figure 5](image_url)

Figure 5: Admixture proportions of 1000G Mexican samples (Chromosome 2). The left plot shows the concordance of 29 overlapping individuals genotyped in HapMap3 and 1000G. Two points that belong to a same individual are connected by a short segment. The right plot shows the remaining 37 Mexican samples in 1000G. Each individual has inferred admixture proportions, a triplet (x, y, z) with $x + y + z = 1$. An unique point can be determined when each component represents distance to an edge of an equilateral triangle.

Since 1000G provides phased haplotypes for Mexicans, we therefore inferred the local ancestries of these haplotypes, using three source populations SP2. We found that the inferred local ancestries have excessive ancestry switches compared to those using unphased genotype data (Figure 6). These excessive switches are likely caused by imperfect phasing – when using diploid genotypes our method integrates out phase uncertainties. Phasing admixed individuals is a hard problem. Our results
Figure 6: Comparison between phased and unphased 1000G data. The plot shows the inferred European ancestry allele dosages (y-axis) of a typical Mexican individual. The x-axis denotes SNPs. The blue (pink) line denotes inferred values using unphased (phased) 1000G data. The excessive ancestry switches of pink line indicates imperfect phasing.

suggest, from an indirect angle, that there is room for improvement in this area and we anticipate the two-layer model to make meaningful contributions.

3 Discussion

We have presented a two-layer HMM to detect structure of local haplotypes, and demonstrated its utilities in local ancestry inference. Our method can directly work with diploid data and thus eliminates phase uncertainty that often plagues other methods. The prevailing model for admixture is one pulse model, meaning haplotypes from two source populations mixed once some generations ago and continue to admix afterwards without influx of additional haplotypes from source populations. In reality, however, this assumption is overly simplified. Treating the mixing generation as a parameter, the two-layer model can average results over multiple choices of mixing generations. This makes our method applicable to the scenario of continuously mixing, which is perhaps a more realistic model for admixture. More importantly, our method has a high resolution – owning to flexible choices of mixing generation, it is able to detect ancestry segments of 1cM or smaller as demonstrated in the Mexicans data analysis.

Because structure of haplotypes is an ubiquitous phenomenon in genetic data, the two-layer model has many other potential applications. 1) Using lower cluster dosages we can compute pairwise local haplotype sharing (LHS), defined as the probability of two haplotypes descent from a same lower cluster, which reflects genetic relatedness among haplotypes. Preliminary studies suggest that LHS can be used to impute HLA alleles and detect genetic associations. 2) As the two-layer model can infer the local ancestry with high accuracy, it is reasonable to speculate that it will also be effective in genotype imputation and phasing for admixed individuals. 3) Our method
can directly estimate cluster-switch rates between adjacent markers, and this permits the inference of recombination rates and hotspots, which will be particularly useful for admixed individuals. 4) Aggregating is an effective method for detecting rare variants associations [32]. For admixed individuals, it would be helpful to aggregate rare variants of the same local ancestries.

Last, because a diploid individual has two sets of latent states (one for each haplotype), our EM algorithm is quadratic in both S and K, and linear in numbers of individuals and markers. This potentially limits the two-layer model’s applicability. For local ancestry inference, when one can use phased data in source populations, the computation is fast because for a haploid individual, our EM algorithm is linear in S and K. Finding an appropriate linear approximation to fit our model for diploid individuals is a challenge and we are actively investigating this problem. The recent progress concerning linear algorithms to fit the PAC model [33] is extremely encouraging. Note that this quadratic computational challenge might disappear in the near future due to the recent development of methods such as phase-seq [34], which produces genomic sequences completely phased across the entire chromosome.

4 Acknowledgments

The author would like to thank P. Scheet for helpful discussions regarding the θ update used in [9] and A. Renwick for results of HAPMIX. M. Stephens and J. Belmont read and commented an early version of the paper.

References

[1] Donald F Conrad, Mattias Jakobsson, Graham Coop, Xiaoquan Wen, Jeffrey D Wall, Noah A Rosenberg, and Jonathan K Pritchard. A worldwide survey of haplotype variation and linkage disequilibrium in the human genome. *Nat Genet*, 38(11):1251–1260, 11 2006. URL http://dx.doi.org/10.1038/ng1911.

[2] Nianjun Liu, Sarah L. Sawyer, Namita Mukherjee, Andrew J. Pakstis, Judith R. Kidd, Kenneth K. Kidd, Anthony J. Brookes, and Hongyu Zhao. Haplotype block structures show significant variation among populations. *Genetic Epidemiology*, 27(4):385–400, 2004. ISSN 1098-2272. doi: 10.1002/gepi.20026. URL http://dx.doi.org/10.1002/gepi.20026.

[3] J. F. C. Kingman. On the genealogy of large populations. journal of applied probability. *Journal of Applied Probability*, 19(A):27–43, 1982.

[4] Richard R. Hudson. Properties of a neutral allele model with intragenic recombination. *Theoretical Population Biology*, 23:183–201, 1983.

[5] Ying Wang and Bruce Rannala. Population genomic inference of recombination rates and hotspots. *Proceedings of the National Academy of Sciences*, 106(15):6215–6219, 2009. doi: 10.1073/pnas.0900418106. URL http://www.pnas.org/content/106/15/6215.abstract.

[6] M. Stephens and P. Donnelly. Inference in molecular population genetics. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 62(4):605–635, 2000. doi: 10.1111/1467-9868.00254. URL http://www.jstor.org/stable/10.2307/2246341.

10
[7] P. Fearnhead and P. Donnelly. Approximate likelihood methods for estimating local recombination rates. *J. Royal Statist. Soc. B*, 64:657–680, 2002. doi: 10.1111/1467-9868.00355. URL http://onlinelibrary.wiley.com/doi/10.1111/1467-9868.00355

[8] N. Li and M. Stephens. Modelling linkage disequilibrium, and identifying recombination hotspots using sup data. *Genetics*, 165:2213–2233, 2003.

[9] P. Scheet and M. Stephens. A fast and flexible statistical model for large-scale population genotype data: Applications to inferring missing genotypes and haplotypic phase. *Am J Hum Genet*, 78:629–644, 2006.

[10] Joshua S. Paul and Yun S. Song. A principled approach to deriving approximate conditional sampling distributions in population genetics models with recombination. *Genetics*, 186(1):321–338, 2010. doi: 10.1534/genetics.110.117986. URL http://www.genetics.org/content/186/1/321.abstract

[11] Michael W. Smith and Stephen J. O’Brien. Mapping by admixture linkage disequilibrium: advances, limitations and guidelines. *Nat Rev Genet*, 6(8):623–632, 08 2005. URL http://dx.doi.org/10.1038/nrg1657

[12] Alkes L. Price, Arti Tandon, Nick Patterson, Kathleen C. Barnes, Nicholas Rafaels, Ingo Ruczinski, Terri H. Beaty, Rasika Mathias, David Reich, and Simon Myers. Sensitive detection of chromosomal segments of distinct ancestry in admixed populations. *PLoS Genet*, 5(6):e1000519, 06 2009. doi: 10.1371/journal.pgen.1000519. URL http://dx.doi.org/10.1371%2Fjournal.pgen.1000519

[13] Yael Baran, Bogdan Pasaniuc, Sriram Sankararaman, Dara G. Torgerson, Christopher Gignoux, Celeste Eng, William Rodriguez-Cintron, Rocío Chapela, Jean G. Ford, Pedro C. Avila, Jose Rodriguez-Santana, Esteban González Burchard, and Eran Halperin. Fast and accurate inference of local ancestry in latino populations. *Bioinformatics*, 28(10):1359–1367, 2012. doi: 10.1093/bioinformatics/bts144. URL http://bioinformatics.oxfordjournals.org/content/28/10/1359.abstract

[14] Claire Churchhouse and Jonathan Marchini. Multiway admixture deconvolution using phased or unphased ancestral panels. *Genetic Epidemiology*, 37(1):1–12, 2013. ISSN 1098-2272. doi: 10.1002/gepi.21692. URL http://dx.doi.org/10.1002/gepi.21692

[15] Shuhua Xu and Li Jin. A genome-wide analysis of admixture in uyghurs and a high-density admixture map for disease-gene discovery. *American journal of human genetics*, 83(3):322–336, 09 2008. URL http://linkinghub.elsevier.com/retrieve/pii/S0002929708004394

[16] Hui Li, Kelly Cho, Judith R. Kidd, and Kenneth Kidd. Genetic landscape of eurasia and admixture in uyghurs. *Am J Hum Genet*, 85:934 – 937, 2009. doi: 10.1016/j.ajhg.2009.10.024.

[17] Sharon R. Browning and Brian L. Browning. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. *American journal of human genetics*, 81(5):1084–1097, 11 2007. URL http://linkinghub.elsevier.com/retrieve/pii/S0002929707638828
[18] Jonathan K. Pritchard, Matthew Stephens, and Peter Donnelly. Inference of population structure using multilocus genotype data. *Genetics*, 155(2):945–959, 2000. URL http://www.genetics.org/cgi/content/abstract/155/2/945.

[19] Nicholas A. Johnson, Marc A. Coram, Mark D. Shriver, Isabelle Romieu, Gregory S. Barsh, Stephanie J. London, and Hua Tang. Ancestral components of admixed genomes in a mexican cohort. *PLoS Genet*, 7(12):e1002410, 12 2011. doi: 10.1371/journal.pgen.1002410. URL http://dx.doi.org/10.1371%2Fjournal.pgen.1002410.

[20] Nick Patterson, Neil Hattangadi, Barton Lane, Kirk E. Lohmueller, David A. Hafler, Jorge R. Oksenberg, Stephen L. Hauser, Michael W. Smith, Stephen J. O'Brien, David Altshuler, Mark J. Daly, and David Reich. Methods for high-density admixture mapping of disease genes. *American journal of human genetics*, 74(5):979–1000, 05 2004. URL http://linkinghub.elsevier.com/retrieve/pii/S0002929707643638.

[21] Hua Tang, Marc Coram, Pei Wang, Xiaofeng Zhu, and Neil Risch. Reconstructing genetic ancestry blocks in admixed individuals. *American journal of human genetics*, 79(1):1–12, 07 2006. URL http://linkinghub.elsevier.com/retrieve/pii/S0002929707600135.

[22] Andreas Sundquist, Eugene Fratkin, Chuong B. Do, and Serafin Batzoglou. Effect of genetic divergence in identifying ancestral origin using hapaa. *Genome Research*, 18(4):676–682, 2008. doi: 10.1101/gr.072850.107. URL http://genome.cshlp.org/content/18/4/676.abstract.

[23] Michael W. Smith, Nick Patterson, James A. Lautenberger, Ann L. Truelove, Gavin J. McDonald, Alicja Waliszewska, Bailey D. Kessing, Michael J. Malasky, Charles Scafe, Ernest Le, Philip L. De Jager, Andre A. Mignault, Zeng Yi, Guy de Th?, Myron Essex, Jean Sankal?, Jason H. Moore, Kwabena Poku, John P. Phair, James J. Goedert, David Vlahov, Scott M. Williams, Sarah A. Tishkoff, Cheryl A. Winkler, Francisco M. De La Vega, Trevor Woodage, John J. Sninsky, Philip A. Hafler, David Altshuler, Dennis A. Gilbert, Stephen J. O'Brien, and David Reich. A high-density admixture map for disease gene discovery in african americans. *American journal of human genetics*, 74:1001–1013, 2004. URL http://linkinghub.elsevier.com/retrieve/pii/S000292970764364X.

[24] The International HapMap Consortium. A second generation human haplotype map of over 3.1 million snps. *Nature*, 449:7164:851–861, 2007.

[25] The International HapMap Consortium. Integrating common and rare genetic variation in diverse human populations. *Nature*, 467(7311):52–58, 09 2010. URL http://dx.doi.org/10.1038/nature09298.

[26] The 1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing. *Nature*, 467(7319):1061–1073, 10 2010. URL http://dx.doi.org/10.1038/nature09534.

[27] J. Z. Li, D. M. Absher, H. Tang, A. M. Southwick, A. M. Casto, S. Ramachandran, H. M. Cann, and G. S. et al. Barsh. Worldwide human relationships inferred from genome-wide patterns of variation. *Science*, 319(5866):1100–4, 2008. URL http://dx.doi.org/10.1126/science.1153717.
[28] Kacie J. Meyer, Michael S. Axelsen, Val C. Sheffield, Shivanand R. Patil, and Thomas H. Wassink. Germline mosaic transmission of a novel duplication of pxdn and myt1l to two male half-siblings with autism. *Psychiatr Genet.*, 22(3):137–140, 2012. URL http://dx.doi.org/10.1097/YPG.0b013e32834dc3f5.

[29] Yohan Lee, Anand Mattai, Robert Long, Judith L. Rapoport, Nitin Gogtay, and Anjene M. Addington. Microduplications disrupting the myt1l gene (2p25.3) are associated with schizophrenia. *Psychiatr Genet.*, 22:206–209, 2012. URL http://dx.doi.org/10.1097/YPG.0b013e32835ae3d.

[30] Raymond F. Palmer, Tatjana Walker, David Mandell, Bryan Bayles, and Claudia S. Miller. Explaining low rates of autism among hispanic schoolchildren in texas. *Am J Public Health*, 100(2):270 – 272, 2010. URL http://dx.doi.org/10.2105/AJPH.2008.150565.

[31] J. Baio. *Prevalence of Autism Spectrum Disorders Autism and Developmental Disabilities Monitoring Network, 14 Sites, United States, 2008.* Centers for Disease Control and Prevention: Atlanta, GA, 2012.

[32] Bingshan Li and Suzanne M. Leal. Methods for detecting associations with rare variants for common diseases: Application to analysis of sequence data. *American journal of human genetics*, 83(3):311–321, 09 2008. URL http://linkinghub.elsevier.com/retrieve/pii/S0002929708004084.

[33] O. Delaneau, J. Marchini, and J.F. Zagury. A linear complexity phasing method for thousands of genomes. *Nat Meth*, 9(1):179–181, 2012. doi: 10.1038/nmeth.1785. URL http://www.nature.com/nmeth/journal/v9/n2/abs/nmeth.1785.html.

[34] Hong Yang, Xi Chen, and Wing Hung Wong. Completely phased genome sequencing through chromosome sorting. *Proceedings of the National Academy of Sciences*, 108(1):12–17, 2011. doi: 10.1073/pnas.1016725108. URL http://www.pnas.org/content/108/1/12.abstract.

[35] D. J. Balding and R. A. Nichols. A method for quantifying differentiation between populations at multi-allelic loci and its implications for investigating identity and paternity. *Genetica*, 96:3–12, 1995.

[36] Yongtao Guan and Matthew Stephens. Practical issues in imputation-based association mapping. *PLoS Genet*, 4(12):e1000279, 12 2008. doi: 10.1371/journal.pgen.1000279. URL http://dx.doi.org/10.1371%2Fjournal.pgen.1000279.
Methods

For ease of presentation, we assume that haploid individuals are being observed. Treating a diploid individual as having two random haploids subject to genotype constraint, our model applies directly to diploid individuals (Supplementary Note).

The two-layer HMM

We assume the numbers of clusters in upper and lower layers, S and K, respectively, are fixed and the number of haplotypes is N and number of markers is M. For each individual i, let $X_m^{(i)}, Y_m^{(i)}$ be the latent state of the upper and lower clusters at locus m. Here $X_m^{(i)}$ and $Y_m^{(i)}$ take integer values to denote different clusters; each lower (upper) cluster associates with a parameter θ_m (η_m), representing ancestral allele dosages. We may drop the superscript when referring to an arbitrary individual.

The main HMM. The emission of an observed haplotype marker from a lower layer cluster is modeled as

$$p(h_m^{(i)}|X_m^{(i)}, Y_m^{(i)}, \xi) = \begin{cases}
\theta_m Y_m^{(i)} & \text{if } h_m = 1 \\
1 - \theta_m Y_m^{(i)} & \text{if } h_m = 0 \\
1 & \text{if } h_m \text{ is missing}
\end{cases}. \quad (1)$$

The complete data likelihood has the form

$$p(h^{(1)}, \ldots, h^{(N)}, X^{(1)}, Y^{(1)}, \ldots, X^{(N)}, Y^{(N)}|\xi) = \prod_{i=1}^N \prod_{m=1}^M p(h_m^{(i)}|Y_m^{(i)}, \xi) p(X_m^{(i)}, Y_m^{(i)}|\xi). \quad (2)$$

The transition of the Markov chain on latent states is modeled as

$$P(X_m = s, Y_m = k|X_{m-1} = s', Y_{m-1} = k') = \begin{cases}
j_m \alpha_s \beta_{msk} + (1 - j_m) r_m \beta_{msk} I(s = s') + (1 - j_m)(1 - r_m) I(s = s') I(k = k') \end{cases} \quad (3)$$

where $I(a = b)$ is an indicator function and j and r are cluster-switch probabilities for the upper and lower layers respectively; and

$$p(X_1 = s, Y_1 = k) = p(Y_1 = k|X_1 = s)p(X_1 = s) = \alpha_s \beta_{1sk}, \quad (4)$$

where α_s is an individual specific S-vector to denote the admixture proportion, and β_{msk} is an $S \times K$ matrix shared by all individuals.

We made three assumptions on the transition matrix of the hidden states. First, conditional on switch, the cluster to land at locus m is independent of cluster at locus $m - 1$. This assumption, used by previous models [8, 9], reduces the number of parameters and simplifies computation compare to specifying a whole transition matrix. Second, conditional on switch, the cluster to land is homogenous across loci and individual specific at the upper layer but heterogeneous across loci and shared among individuals at the lower layer. The assumption on the upper layer makes α_s naturally admixture proportions; the assumption on lower layer accommodates two facts: 1) LD patterns are heterogeneous across loci and 2) LD is a group property. Third, we assume that if
the upper layer switches, then the lower layer must switch, and the lower layer might switch if the upper layer stays. This encourages upper layer-specific LD patterns.

In the context of the local ancestry inference, the aforementioned transition explains how the two-layer model captures two scales of LD. A haplotype copies mosaically from (ancestral) haplotypes in one source population, and then may switch to another source population and copies mosaically from its haplotypes. The upper-layer switch probabilities j_m determine how frequently switches occur between different source populations and the lower layer switch probabilities r_m determine how frequently switches occur between ancestral haplotypes within each source population. Thus, the model can accommodate the two scales of LD observed in admixed individuals.

In the main HMM, the upper layer latent state X_m only contributes to transitions of latent states (through β), not to emitting a marker or θ estimates (likelihood involves no η). This works well when K is not too large, but it works less well for large values of K. To stabilize the estimates of θ for large values of K, we use an ancillary HMM to model η emitting θ.

The ancillary HMM. We model emission of θ_mk from an upper-layer cluster $W_m^{(k)}$ as

$$p(\theta_mk|W_m^{(k)},\xi) = \text{Beta}(\theta_mk; F\eta_m W_m^{(k)}, F(1 - \eta_m W_m^{(k)})),$$

where $\text{Beta}(x;a,b)$ denotes a Beta density with parameters a,b. This emission is adapted from the Balding-Nicols model [35]. The original model is designed to model population divergence, and hence, F is specified through Fst values between different populations. In this situation, we use it as a “random effect model” to stabilize θ estimates. For computational convenience, we set $F = 1$ (Supplementary Note). We treat θ_mk as observed, and the complete data likelihood has the form

$$p(\theta_1, \ldots, \theta_K, W^{(1)}, \ldots, W^{(K)}|\xi) = \prod_{k=1}^{K} \prod_{m=1}^{M} p(\theta_mk|W_m^{(k)},\xi) p(W_m^{(k)}|\xi).$$

The transition of the latent states is modeled as

$$p(W_1^{(k)} = s) = a_s^{(k)}$$
$$p(W_m^{(k)} = s|W_{m-1}^{(k)} = s') = \rho_m a_s^{(k)} + (1 - \rho_m) I(s = s').$$

We assume the jump probabilities ρ_m are unrelated to the jump probabilities of j and r_m.

Model fitting

In the main HMM, the collection of parameters ξ contains θ (an $M \times K$ matrix), β (an $M \times S \times K$ matrix), α (an $N \times S$ matrix), and j and r (both M vectors). In the ancillary HMM, the set of parameters contain η (an $M \times S$ matrix), a (a $K \times S$ matrix) and ρ (an M vector). We briefly discuss how to estimate these parameters using Expectation Maximization (EM), focusing on the main HMM. For details, please refer to the Supplementary Note.

For an arbitrary individual i, we write the forward probability $\phi(m,s,k) = p(h_{1:m}, X_m = s, Y_m = k|\xi)$ and backward probability $\psi(m,s,k) = p(h_{m+1:M}|X_m = s, Y_m = k|\xi)$. Both the forward and backward probabilities can be computed analytically. Then we obtain the posterior probability of latent states at each marker $p(X_m = s, Y_m = k|h, \xi) = \phi(m,s,k)\psi(m,s,k)/p(h|\xi)$ for each individual. This allows us to compute quantities to update each parameter. Similarly, we can
also update parameters in the ancillary HMM. Note that both h and η contribute to θ updates. Upon convergence of EM, we have ξ^*.

Constraint on cluster switches. Estimating switch probabilities j and r is trickier than others for two reasons. First, their updates are sticky, as a large j_m (or r_m) estimate in a previous iteration often results in a large estimate in the current iteration. Because of this stickiness, the choice of initial values of j and r heavily affects the point at which they converge. Second, j and r are not completely identifiable. If $\alpha_s\beta_{msk}$ concentrates on a particular cluster pair (s, k), then a large probability in either j_m or r_m results in a similar likelihood. We overcome these difficulties by putting constraints on j and r – the coalescent intuition behind the two-layer model come to assist.

Let $r_m = 1 - \exp(-t_m^{(l)})$, where $t_m^{(l)} = 4N_ec_m\delta_l$ is the lower-layer cluster switch rate, where N_e is the effective population size and c_m is the genetic distance between markers $(m - 1)$ and m. We assume that c_m is known. In practice, we approximate it using 1megabase(Mb) per cM. Recalling that $T_k = 1/(\frac{1}{2})$ is the mean coalescent time for k lineages, we have $\delta_l = T_k + \cdots + T_N = \frac{1}{K} - \frac{1}{N}$. Assume $N >> K$, and we have $\delta_l \approx 1/K$. This leads to a natural choice for constraint on $t_m^{(l)}$ (and hence r). For example, if $N_e = 10, 000, \sum c_m = 5\text{cM}$ and $K = 10$, then we may apply constraint $\sum t_m^{(l)} = 500$. In practice, we directly estimate r_m and compute $t_m^{(l)}$, and then we rescale $t_m^{(l)}$ to match the constraint and reestimate r_m.

Let $j_m = \exp(-t_m^{(u)})$, where $t_m^{(u)} = 4N_ec_m\delta_u$. We are tempted to follow a similar coalescent argument to specify δ_u. However, unlike δ_l, which is robust to recent demographic history because it pertains to an “ideal” ancestral population, δ_u is heavily influenced by demographic histories (for example, admixture generations) and the coalescent argument becomes ineffective. To work around this issue, we constrain j through the *admixture generation* γ. In practice, we first estimate j_m and compute $t_m^{(u)}$, and then we use $\sum t_m^{(u)} = \gamma \sum c_m$ to rescale $t_m^{(u)}$ to reestimate j_m. Define *ancestry track length* $\lambda = M/\sum t_m$, then λ and γ follow a simple relationship $\gamma \lambda = 100$.

Inference and computation. We are interested in the *upper cluster dosage* $P(X_m^{(i)}|h^{(i)}, \xi^*)$ for each individual i, which represents the local ancestry; its average represents the *admixture proportion*. After trial and error, we arrived at the following model-fitting tricks that improve performances: 1) Because the dimension of ξ is high and standard EM procedures tend to converge to a local mode instead of the global mode, it is useful to average inferences over multiple EM runs. 2) It is helpful to initialize parameters with values that best preserves symmetry, e.g., $\theta_{msk} \approx 0.5$, $\alpha^{(i)} \approx 1/S$, and $\beta_{msk} \approx 1/K$ for all values of m, s and k, respectively. The initial values can be simulated from symmetric Beta or Dirichlet distributions with large rates. 3) The training data from source populations can be either phased or unphased. The difference is small when phasing is accurate and the computation with phased data is faster (linear vs. quadratic in terms of S and K). However, when phasing is less accurate, for example, pure statistical phasing without help of transmission, using unphased data is preferred. 4) The common practice used in imputation [36], for which one first fits the model to the training data from source populations and then runs forward-backward algorithm once on the admixed individuals, tends to produce spurious ancestry switches in spikes. Performing additional EM steps using both training data from source populations and admixed individuals (joint model fitting) reduces spurious ancestry switches. We recommend joint model fitting.
5 Supplementary Note

5.1 Model Motivation

Suppose we observe N haplotypes $h^{(1)}, \ldots, h^{(N)}$. For a nonrecombined region, these N haplotypes relate to one another through coalescent trees (Fig. N1 for a typical τ). We are interested in computing a joint likelihood $p(h^{(1)}, \ldots, h^{(N)}|\xi)$, where ξ is a collection of parameters to be specified later. Traditionally this is done by first sampling a set of τ and then conditional on each τ integrating out ancestral state θ using a “peeling algorithm” [c.f. ?]. This computation involves sampling trees and this process can be extremely slow (and becomes much slower when considering recombinations). To make the joint likelihood computable for modern genetic data (e.g., genetic data from genome-wide association studies), we approximate the coalescent tree with a simpler structure – two layers of clusters (not counting the root and leaf layers, Fig. N1). We make two cuts on a tree and group nodes according to subtrees to form clusters. The first cut is near the tip and individual haplotypes are grouped into lower clusters; the second cut is near the root and the lower clusters are grouped into upper clusters. Because a coalescent tree is a random tree, we allow each lower cluster to have positive probabilities of connecting to any upper clusters, and each individual haplotype to have positive probabilities of connecting to any lower clusters. Thus, κ can represent not just one but many realizations of coalescent trees. We learn those probabilities from the data. Cutting at different places will result in different numbers of clusters. In our HMM model, we prespecify the number of clusters in each layer and then cut the tree at places to match the number of clusters.

Approximating τ with κ allows us to condition on ancestral states integrate out κ, and then integrate out the ancestral states. Because κ is more regular, it can be represented by latent states and recombination can be conveniently approximated by cluster switching within each layer. These give us a two-layer HMM that greatly simplifies computation.

5.2 Choice of parameters

The companion software is easy to use – users only need to specify three parameters: S, K and γ. For local ancestry inference, S usually is clear a priori. We used $K = 5S$ in our study, but the method is robust to a wide range of K values. We demonstrate this through examples. For a set of simulated two-way admixed individuals, we used $S = 2$ and $K = 5, 10$ or 20 to fit the model.
Figure N2: Comparisons for different K. The plot shows comparisons between $K = 5$ (on the x-axis) and $K = 10$ or 20 (on the y-axis). Black color denotes deviation and the red color denotes correlation between inferred and value and the truth along a chromosome.

The results indicate that $K = 10$ or 20 outperforms $K = 5$, especially when using correlation as a metric. However, the difference between $K = 10$ and $K = 20$ is small (Fig. N2).

As a rule, we recommend averaging results over multiple choices of γ. However, in general, $\gamma = 10$ for African American samples, $\gamma = 20$ for Latinos, and $\gamma = 100$ for Uyghurs appear to be good choices. In our simulation studies, the local ancestry inference is robust to γ up to a multiple of 2. However, γ affects the smoothness of the local ancestry inference. This can be best demonstrated through examples. We simulated two-way admixed individuals with admixture generation $\gamma = 100$ and fit the model using $\gamma = 50, 100$ and 200 respectively (Fig. N3). For all individuals, we found that small values of γ produces smoother local ancestry estimates than large values of γ. Nonetheless, for all three choice of γ, the main ancestry blocks are well inferred. Taking one individual as an example, the three deviations for three choices of γ are 0.067, 0.062, and 0.092, respectively, with $\gamma = 100$ performing the best and $\gamma = 200$ performing much worse than the other two, presumably because the metric is more sensitive to smoothness. In fact, if measured by Pearson’s correlation, we obtain 0.934, 0.947, and 0.932 respectively. As a comparison, the deviation for HAPMIX is 0.067 and the correlation is 0.939. Although similar quantitatively to our method, HAPMIX does miss a major ancestry block in the middle (Fig. N3).

5.3 Simulate admixed individuals

The procedure we used to simulate three-way admixed individuals is similar to what is used in HAPMIX [12] for two-way admixture. For a given admixture generation γ, we compute the average ancestral track length $\lambda = 100/\gamma$ and then compute $t = 1000\lambda$ (a region of 1Mb contains approximately 1000 HapMap SNPs). We randomly choose three haplotypes, h_c, h_y and h_a, from CEU, YRI, and CHB+JPT, respectively, and then copy from the three haplotypes to form a new admixed haplotype by repeating the following three steps: (1) let s be the current position and generate a
Figure N3: Comparison for different g. The x-axis denotes genetic markers along a chromosome, the y-axis is inferred allele counts at each marker of an arbitrarily chosen ancestral population. The black lines are the simulated truth; the red lines are inferred values with different choice of mixing generations; the blue line are the results of the HapMix as a comparison. Each column denotes an individual, $\gamma = 50, 100, 200$ from top to bottom panels. The individual on the left is explained in the main text. For the individual on the right, the deviation error are 0.053, 0.054, 0.077, and correlations are 0.941, 0.946, 0.939 respectively. As an comparison, HAPMIX has deviation 0.086 and correlation 0.866.
number w according to an exponential distribution with mean t; (2) copy SNPs $(s, s + w]$ from h_a with probability δ_1, from h_g with probability δ_2, and from h_t with probability $\delta_3 = 1 - \delta_1 - \delta_2$; (3) increase s by w, finish if s exceeds the total number of SNPs. Two admixed haplotypes are paired randomly to form a diploid individual. The markers are then thinned to match the Illumina 650K SNP chip. The two-way admixture can be simulated accordingly. We chose $(0.8, 0.2)$ as the target two-way admixture proportions and $(0.6, 0.2, 0.2)$ for three-way admixture proportions. Note that the simulated admixture proportions varies due to a finite number of SNPs.

5.4 Expectation Maximization

First outline the EM algorithm. Make an initial guess of parameters ξ^*, and write down the complete data likelihood, denoting $Z_m^{(i)} = (X_m^{(i)}, Y_m^{(i)})$,

$$p(h^{(1)}, \ldots, h^{(n)}, Z^{(1)}, \ldots, Z^{(n)}|\xi^*) = \prod_{i=1}^{n} \prod_{m=2}^{M} p(h_m^{(i)}|Z_m^{(i)}, \xi^*) p(Z_m^{(i)}|Z_{m-1}, \xi^*) p(h_1^{(i)}|Z_1^{(i)}, \xi^*) p(Z_1^{(i)}|\xi^*).$$

Then estimate a new ξ by

$$\arg\max_{\xi} E_{Z|h^{(1)}, \ldots, h^{(n)}, \xi^*} \log p(h^{(1)}, \ldots, h^{(n)}, Z^{(1)}, \ldots, Z^{(n)}|\xi).$$

Set $\xi^* = \xi$ and iterate the procedure until ξ^* converges.

To elaborate on the EM algorithm: conditioning on ξ^*, the posterior distribution of $p(Z^{(i)}|h^{(i)}, \xi^*)$ can be computed for each i. To estimate ξ, one can either sample many paths from $p(Z^{(i)}|h^{(i)}, \xi^*)$ (hard EM), or one can integrate out $p(Z^{(i)}|h^{(i)}, \xi^*)$ analytically (soft EM). Intuitively, soft EM will perform better because it does not introduce sampling variation. However, with hard EM only forward probabilities need to be computed in order to sample from $p(Z^{(i)}|h^{(i)}, \xi^*)$. More importantly, computational tricks may be applied on the sampled paths to avoid possible traps of local optimum. In the paper we use soft EM for model fitting and report possible computational improvement elsewhere.

A diploid individual has two sets of latent states at each marker $Z_m^1 = (X_m^1, Y_m^1), Z_m^2 = (X_m^2, Y_m^2)$ to indicate the upper and lower layer cluster membership (we drop the super script for individual and this should cause no confusion). The conditional likelihood for i-th individual is $p(g^{(i)}|Z^1, Z^2, \xi) = \prod_{m=1}^{M} p(g_m^{(i)}|Y_m^1, Y_m^2, \xi)$ with “emission”

$$p(g_m^{(i)}|Y_m^1 = j, Y_m^2 = k, \xi) = \begin{cases} t_j t_k & \text{if } g_m^{(i)} = 2 \\ t_j(1-t_k) + (1-t_j)t_k & \text{if } g_m^{(i)} = 1 \\ (1-t_j)(1-t_k) & \text{if } g_m^{(i)} = 0 \\ 1 & \text{if } g_m^{(i)} \text{ is missing,} \end{cases}$$

where

$$t_j = \theta_{mj}(1-\mu) + (1-\theta_{mj})\mu$$
$$t_k = \theta_{mk}(1-\mu) + (1-\theta_{mk})\mu$$

and $\mu = 4N\nu$ is the scaled mutation rate. In the implementation we used $\mu = 0.001$. Note the one-to-one correspondence between t. and θ_m, and that we implicitly assumed Hardy-Weinberg equilibrium in the emission.
5.4.1 Forward and backward recursion

In what follows, every probability statement is conditional on ξ^*. We assume there are M biallelic SNPs. The forward recursion:

$$
\phi(m + 1, s_1, k_1, s_2, k_2) = p\left(g^{(i)}_{m+1, 1}, Z^1_{m+1} = (s_1, k_1), Z^2_{m+1} = (s_2, k_2) | \xi^* \right)
= p(g^{(i)}_{m+1} | Z_{m+1}) \sum_{s'_1, s'_2} \phi(m, s'_1, k'_1, s'_2, k'_2)p\left(Z^1_{m+1} | Z_m = (s'_1, k'_1)\right) p\left(Z^2_{m+1} | Z_m = (s'_2, k'_2)\right)
= p(g^{(i)}_{m+1} | Z_{m+1}) \left(j^2_{m+1} p_{11} + j_{m+1}(1-j_{m+1})(p_{10} + p_{01}) + (1-j_{m+1})^2 p_{00}\right),
$$

where $\phi(1, s_1, k_1, s_2, k_2) = \alpha^{(i)}_{s_1, k_1, k_1} \beta_{s_1, s_2, k_1} \alpha^{(i)}_{s_2, s_2, k_2} p(g^{(i)}_{1} | s_1, k_1, s_2, k_2)$ and

$$
p_{00} = (1 - r_{m+1})^2 \phi(m, s_1, k_1, s_2, k_2) + r_{m+1}^2 \sum_{k'_1, k'_2} \phi(m, s_1, k'_1, s_2, k'_2)\beta_{m+1, s_1, k_1, k'_1} \beta_{m+1, s_2, k_2} + \sum_{k'_1, k'_2} \phi(m, s_1, k'_1, s_2, k'_2)\beta_{m+1, s_1, k_1, k'_1} \beta_{m+1, s_2, k_2},
$$

$$
p_{10} = \alpha^{(i)}_{s_1, s_1, k_1} (r_{m+1} \sum_{s'_1, k'_1, k'_2} \phi(m, s'_1, k'_1, s'_2, k'_2)\beta_{m+1, s_2, k_2} + (1 - r_{m+1}) \sum_{s'_1, k'_1} \phi(m, s'_1, k'_1, s_2, k_2))
$$

$$
p_{01} = \alpha^{(i)}_{s_2, s_1, s_1, k_1} (r_{m+1} \sum_{s'_2, k'_1, k'_2} \phi(m, s'_1, k'_1, s'_2, k'_2)\beta_{m+1, s_1, k_1} + (1 - r_{m+1}) \sum_{s'_2, k'_1} \phi(m, s'_1, k'_1, s_2, k_2))
$$

$$
p_{11} = \alpha^{(i)}_{s_2, s_1, s_1, k_1} \alpha^{(i)}_{s_2, s_2, k_2} \sum_{s'_1, s'_2, k'_1, k'_2} \phi(m, s'_1, k'_1, s'_2, k'_2).
$$

All summation with dummy variables s'_i, t'_i only needs to be done once. This is the benefit of the parameterization for Markov transition described in the paper. The overall complexity of the forward and backward recursion is $O(MS^2K^2)$ for diploid individuals and $O(MSK)$ for haploid individuals.

The backward recursion. Note $p(g^{(i)}_{m,M} | s_1, k_1, s_2, k_2) = \psi(m, s_1, k_1, s_2, k_2) p(g^{(i)}_{m} | s_1, k_1, s_2, k_2)$.

$$
\psi(m - 1, s_1, k_1, s_2, k_2) = p\left(g^{(i)}_{m,M} | Z^1_{m-1} = (s_1, k_1), Z^2_{m-1} = (s_2, k_2) | \xi^* \right)
= \sum_{s'_1, k'_1, s'_2, k'_2} \psi(m, s'_1, k'_1, s'_2, k'_2)p(g^{(i)}_{m} | s'_1, k'_1, s'_2, k'_2)p\left(Z^1_{m-1} = (s'_1, k'_1) | Z^1_m = (s_1, k_1)\right) p\left(Z^2_{m-1} = (s'_2, k'_2) | Z^2_m = (s_2, k_2)\right)
= \left(j^2_{m} \psi_{11} + j_{m}(1-j_{m})(\psi_{10} + \psi_{01}) + (1-j_{m})^2 \psi_{00}\right),
$$

where $\psi(M, s_1, k_1, s_2, k_2) = 1$ and

$$
\psi_{00} = r_{m}^2 \sum_{k'_1, k'_2} \beta_{m,s_1,k_1} \beta_{m,s_2,k_2} p(g^{(i)}_{m,M} | s_1, k'_1, s_2, k'_2) + (1 - r_{m})^2 p(g^{(i)}_{m,M} | m, s_1, k_1, s_2, k_2)
$$

$$
+ r_{m}(1-r_{m}) \times \left[\sum_{k'_1} \beta_{m,s_1,k_1} p(g^{(i)}_{m,M} | s_1, k'_1, s_2, k_2) + \sum_{k'_2} \beta_{m,s_2,k_2} p(g^{(i)}_{m,M} | s_1, k_1, s_2, k'_2) \right]
$$

(18)
\[q_{10} = r_m \sum_{s_1', k_1', k_2'} \alpha^{(i)}_{s_1'} \beta_{m, s_1', k_1'} \beta_{m, s_2, k_2'} p(g_{m, M} | s_1', k_1', s_2, k_2') + (1-r_m) \sum_{s_1'} \alpha^{(i)}_{s_1'} \beta_{m, s_1', k_1'} p(g_{m, M} | s_1', k_1', s_2, k_2) \]

\[q_{01} = r_m \sum_{s_2', k_1', k_2'} \alpha^{(i)}_{s_2'} \beta_{m, s_2, k_2'} \beta_{m, s_1, k_1'} p(g_{m, M} | s_1, k_1', s_2', k_2') + (1-r_m) \sum_{s_2'} \alpha^{(i)}_{s_2'} \beta_{m, s_2, k_2'} p(g_{m, M} | s_1, k_1', s_2', k_2') \]

(19)

\[q_{11} = \sum_{s_1', k_1', k_2'} \alpha^{(i)}_{s_1'} \beta_{m, s_1', k_1'} \alpha^{(i)}_{s_2'} \beta_{m, s_2, k_2'} p(g_{m, M} | s_1', k_1', s_2', k_2'). \]

(20)

The posterior of latent states at each locus for each individual can be computed via

\[p \left(Z_m^1 = (s_1, k_1), Z_m^2 = (s_2, k_2) | g^{(i)}, \xi^* \right) \propto \phi(m, s_1, k_1, s_2, k_2) \psi(m, s_1, k_1, s_2, k_2) \]

(22)

and renormalize to have \(\sum_{s_1, k_1, s_2, k_2} p \left(Z_m^1 = (s_1, k_1), Z_m^2 = (s_2, k_2) | g^{(i)}, \xi^* \right) = 1. \)

5.4.2 Update \(\theta \)

To update parameters in each EM step, we solve for each component \(x \) of \(\xi \),

\[\frac{d}{dx} E_{Z|h, g, \xi^*} \left[\log p(h, g, Z^{(1)}, \ldots, Z^{(n)} | \xi) \right] = 0. \]

(23)

Assume we have both diploid \(g \) and haploid \(h \) individuals in our data. For diploid individuals, at locus \(m \), write \(p_{ijk} = \sum_{s_1, s_2} p \left(Z_m = (s_1, k), Z_m = (s_2, k) | g^{(i)}, \xi^* \right) \). Let \(S_k = \{ i : g^{(i)} = k \} \) for \(k = 0, 1, 2 \). Similarly, for haploid individuals, at locus \(m \), write \(q_{ij} = \sum_s p \left(Z_m = (s, j) | h^{(i)}, \xi^* \right) \). Let \(T_k = \{ i : h^{(i)} = k \} \) for \(k = 0, 1 \). Let

\[a_{0j} = \sum_{i \in S_0, k \neq j} p_{ijk}, \quad a_{0jj} = \sum_{i \in S_0} p_{ijj}, \]

\[a_{2j} = \sum_{i \in S_2, k \neq j} p_{ijk}, \quad a_{2jj} = \sum_{i \in S_2} p_{ijj}, \]

\[a_{1jk} = \sum_{i \in S_1} p_{ijk}, \quad a_{1jj} = \sum_{i \in S_1} p_{ijj}, \]

\[b_{0j} = \sum_{i \in T_0} q_{ij}, \quad b_{1j} = \sum_{i \in T_1} q_{ij}. \]

(24)

Take derivative with respect to \(\theta_{mj} \) and sum over \(k \) for diploid individual to get

\[F_j(t.) = \frac{-1}{1 - t_j} (a_{0j} + 2a_{0jj} + a_{1jj} + b_{0j}) + \frac{1}{t_j} (a_{2j} + 2a_{2jj} + a_{1jj} + b_{1j}) + \sum_{k \neq j} \frac{1 - 2t_k}{t_j + t_k - 2t_jt_k} a_{1jk} = 0 \]

for each \(j = 1, \ldots, K \) (recall \(K \) is the number of lower-layer clusters). We have \(K \) equations with \(K \) unknowns and we can solve numerically for \(t_j \) and hence \(\theta_{mj} \). To do so, we need the Jacobian \(J(t.) = (d_{jk}) \) where

\[d_{jk} = \frac{dF_j}{dt_k} = -\frac{1}{(t_j + t_k - 2t_jt_k)^2} a_{1jk} \quad \text{for } k \neq j, \]

(26)
and
\[d_{jj} = \frac{-1}{(1 - t_j)^2} (a_{0j\circ} + 2a_{0jj} + a_{1jj} + b_{0j}) + \frac{1}{t_j^2} (a_{2j\circ} + 2a_{2jj} + a_{1jj} + b_{1j}) + \sum_{k \neq j} \frac{(1 - t_k)^2}{t_j + t_k - 2t_j t_k} a_{1jk}. \]
(27)

We can solve \(J(t^{(n)}) (t^{(n+1)} - t^{(n)}) = -F(t^{(n)}) \) for the unknown \(t^{(n+1)} - t^{(n)} \).

Compare to the update used in [9], this update for \(\theta \) does not directly involve its previous value. Perhaps unwilling to solve a linear system repetitively, Scheet and Stephens [9] used approximation to the last terms of Equation (25).

\[\sum_{k \neq j} \frac{1 - 2t_k}{t_j + t_k - 2t_j t_k} a_{1jk} = \sum_{k \neq j} \left(\frac{1}{t_j} a'_{1jk} - \frac{1}{1 - t_j} a''_{1jk} \right), \]
(28)
where
\[a'_{1jk} = \frac{t_j (1 - t_k)}{t_j + t_k - 2t_j t_k} a_{1jk}, \quad a''_{1jk} = \frac{t_k (1 - t_j)}{t_j + t_k - 2t_j t_k} a_{1jk}, \]
(29)

which can be computed by approximating \(t_j \) and \(t_k \) with values in the previous iteration. Denote
\[a'_{1j\circ} = \sum_{k \neq j} a'_{1jk}, \quad a''_{1j\circ} = \sum_{k \neq j} a''_{1jk}, \]
(30)
and we have,
\[F_j (t_{\circ}) = \frac{-1}{1 - t_j} (a_{0j\circ} + 2a_{0jj} + a_{1jj} + b_{0j} + a''_{1j\circ}) + \frac{1}{t_j} (a_{2j\circ} + 2a_{2jj} + a_{1jj} + b_{1j} + a'_{1j\circ}) = 0 \]
(31)
and solve to get
\[t_j = \frac{(a_{2j\circ} + 2a_{2jj} + a'_{1j\circ} + a_{1jj} + b_{1j})}{(a_{0j\circ} + 2a_{0jj} + a_{1jj} + a''_{1j\circ} + 2a_{2jj} + b_{0j} + b_{1j})}. \]
(32)

With (32) as a starting point only a few iterations are needed to estimate \(\theta \) using numerical method described earlier. Note however, solving the linear system has complexity \(O(K^3) \), which makes the complexity of model fitting to be \(O(\max (MS^2 K^2, MK^3)) \).

5.4.3 Update Markov transition parameters

To estimate Markov transition parameters, following [9], we introduce latent state transitions (jumps) \(J_{ims} \) and \(R_{ims} \) occurred between locus \(m - 1 \) and \(m \) at upper and lower layers for individual \(i \). Denote \(J_{ims} \) the number of upper layer jumps to \(X_m = s \), and \(R_{ims} \) the number of lower layer jumps to \(X_m^{(i)} = s \) and \(Y_m^{(i)} = k \). Recognize that \(J_{ims} \) and \(R_{ims} \) are sufficient for \(\alpha, \beta, j \) and \(r \), we have

\[\alpha_s^{(i)} = \frac{\sum_{m=2}^{M} E[J_{ims} | g^{(i)}, \xi^*]}{\sum_{m=2}^{M} \sum_s E[J_{ims} | g^{(i)}, \xi^*]} \]
\[\beta_{msk} = \frac{\sum_i E[R_{ims} | g^{(i)}, \xi^*]}{\sum_{i,k} E[R_{imsk} | g^{(i)}, \xi^*]} \]
\[j_m = \frac{\sum_i E[J_{ims} | g^{(i)}, \xi^*]}{\text{Number of haploids}} \]
\[r_m = \frac{\sum_{i,s,k} E[R_{imsk} | g^{(i)}, \xi^*]}{\text{Number of haploids} \times S} \]
(33)
where recall that S is the number of upper-layer clusters.

In what follows, when a state in forward or backward probabilities was substitute by a dot, it means that component was summed over. Note that $p(g^{(i)}|\xi^*) = \phi(M, \cdot, \cdot, \cdot)$ and

$$p(g^{(i)}_{m:M}|s, k_1, s_2, k_2, \xi^*) = p(g^{(i)}_m|s_1, k_1, s_2, k_2, \xi^*) \psi(m, s_1, k_1, s_2, k_2).$$

First $E[J_{im\alpha}|g^{(i)}, \xi^*] = 2p(J_{im\alpha} = 2|g^{(i)}, \xi^*) + p(J_{im\alpha} = 1|g^{(i)}, \xi^*)$ with

$$2p(J_{im\alpha} = 2|g^{(i)}, \xi^*) = 2(\alpha_s^{(i)} j_m)|/p(g^{(i)}|\xi^*) \times \phi(m-1, \cdot, \cdot, \cdot) \sum_{k_1, k_2} \beta_{msk_1} \beta_{msk_2} p(g^{(i)}_{m:M}|s, k_1, s_2, k_2, \xi^*),$$

and

$$p(J_{im\alpha} = 1|g^{(i)}, \xi^*) = j_m (1 - j_m) \alpha_s^{(i)} /p(g^{(i)}|\xi^*) \times \left[(1 - r_m) \sum_{s_2, k_2} \phi(m-1, \cdot, s_2, k_2) \sum_{k_1} \beta_{msk_1} p(g^{(i)}_{m:M}|s, k_1, s_2, k_2, \xi^*) + \right.$$

$$r_m \sum_{s_2} \phi(m-1, \cdot, s_2, \cdot) \sum_{k_1, k_2} \beta_{msk_2} \beta_{msk_1} p(g^{(i)}_{m:M}|s, k_1, s_2, k_2, \xi^*) +$$

$$(1 - r_m) \sum_{s_1, k_1} \phi(m-1, s_1, k_1, \cdot) \sum_{k_2} \beta_{msk_2} p(g^{(i)}_{m:M}|s_1, k_1, s, k_2, \xi^*) +$$

$$r_m \sum_{s_1} \phi(m-1, s_1, \cdot, \cdot) \sum_{k_1, k_2} \beta_{msk_1} \beta_{msk_2} p(g^{(i)}_{m:M}|s_1, k_1, s_2, k_2, \xi^*) \right].$$

Second,

$$E[R_{ims\kappa}|g^{(i)}, \xi^*] = 2p(R_{ims\kappa} = 2, J_{ims} = 0|g^{(i)}, \xi^*) + p(R_{ims\kappa} = 1, J_{ims} = 0|g^{(i)}, \xi^*) +$$

$$p(R_{ims\kappa} = 1, J_{ims} = 1|g^{(i)}, \xi^*),$$

with each component being

$$2p(R_{ims\kappa} = 2, J_{ims} = 0|g^{(i)}, \xi^*) = 2(1 - j_m)^2 r_m^2 \beta_{msk}^2 /p(g^{(i)}|\xi^*) \times$$

$$\phi(m - 1, s, \cdot, s) p(g^{(i)}_{m:M}|s, k, s, k, \xi^*),$$

$$p(R_{ims\kappa} = 1, J_{ims} = 0|g^{(i)}, \xi^*) = (1 - j_m)^2 r_m (1 - r_m) \beta_{msk} /p(g^{(i)}|\xi^*) \times$$

$$\sum_{s_2, k_2} \phi(m-1, s, s_2, k_2) p(g^{(i)}_{m:M}|s, k, s, k_2, \xi^*) +$$

$$\sum_{s_1, k_1} \phi(m-1, s_1, k_1, s) p(g^{(i)}_{m:M}|s_1, k_1, k, \xi^*),$$

$$p(R_{ims\kappa} = 1, J_{ims} = 1|g^{(i)}, \xi^*) = j_m (1 - j_m) r_m \beta_{msk} /p(g^{(i)}|\xi^*) \times$$

$$\phi(m - 1, s_1, s_2, s) \sum_{s_2, k_2} \alpha_s^{(i)} \beta_{msk_2} p(g^{(i)}_{m:M}|s, k, s_2, k_2, \xi^*) +$$

$$\phi(m - 1, s_1, \cdot) \sum_{s_1, k_1} \alpha_s^{(i)} \beta_{msk_1} p(g^{(i)}_{m:M}|s_1, k_1, s, k, \xi^*).$$
Finally, special treatment is needed at marker \(m = 1 \). For each \(s, k \) set

\[
E[R_{1sk}|g^{(i)}, \xi^*] = \alpha_s \beta_{1sk} p(g^{(i)}_{1,Aj}|s, k, \cdot, \cdot, \xi^*)
\]

and renormalize such that \(\sum_{s,k} E[R_{1sk}|g^{(i)}, \xi^*] = d \), where \(d = 2, 1 \) for diploid and haploid individuals respectively. Set \(E[J_{1s}|g^{(i)}, \xi^*] = \sum_k E[R_{1sk}|g^{(i)}, \xi^*] \).

5.4.4 Ancillary HMM

The expected complete data log-likelihood is given below.

\[
E_{W|\eta, g, \xi^*} \left[\sum_{j=1}^{K} \sum_{m=1}^{M} \log p(\theta_{mj}, W_{mj}^{(j)}|\eta_{ms}, \xi^*) \right] = \sum_{m=1}^{M} \sum_{j=1}^{K} \log p(\theta_{mj}|\eta_{ms}, \xi^*) \eta_{ms} p_{mjs}
\]

where \(p_{mjs} \) is the \(s \)-th upper cluster dosage of \(j \)-th haplotype at marker \(m \). From Balding-Nichols model \([35]\), we have

\[
p(\theta_{mj}|\eta_{ms}) = \frac{1}{B(\eta_{ms}, F(1 - \eta_{ms}))} \theta_{mj}^{\eta_{ms} - 1} (1 - \theta_{mj})^{F(1 - \eta_{ms}) - 1}.
\]

Combine above two equations and drop the \(m \) in notation, we have for an arbitrary marker

\[
f(\theta_j, \eta_s) = \sum_{j=1}^{K} [-\log B(\eta_{rs}, F(1 - \eta_s)) + (\eta_{rs} - 1) \log \theta_j + (F(1 - \eta_s) - 1) \log(1 - \theta_j)] p_{j_s}.
\]

\[
\frac{d}{d\theta_j} f(\theta_j, \eta_s) = \left[\frac{\eta_{rs} - 1}{\theta_j} - \frac{F(1 - \eta_s) - 1}{(1 - \theta_j)} \right] p_{j_s}
\]

This suggests that we add \((F\eta_s - 1)p_{j_s}\) to the top and \((F - 2)p_{j_s}\) to the bottom of \([32]\) to estimate \(\theta_j \).

\[
\frac{d}{d\eta_s} f(\theta_j, \eta_s) = \sum_{j=1}^{K} \left[-\frac{1}{B(\eta_{rs}, F(1 - \eta_s))} \frac{d}{d\eta_s} B(\eta_{rs}, F(1 - \eta_s)) + F \log \frac{\theta_j}{1 - \theta_j} \right] p_{j_s}
\]

\[
= -F \sum_{j=1}^{K} p_{j_s} \left[\Gamma(\eta_{rs}) - \Gamma(F(1 - \eta_s)) \right] + F \sum_{j=1}^{K} \log \frac{\theta_j}{1 - \theta_j} p_{j_s}
\]

where \(\Gamma \) is a digamma function. When \(F > 1 \), we use recurrence relation \(\Gamma(x + 1) = 1/x + \Gamma(x) \) twice to get

\[
\Gamma(F\eta_s) = \Gamma(F\eta_s + 2) - \frac{1}{F\eta_s + 1} \frac{1}{F\eta_s}
\]

\[
\Gamma(F(1 - \eta_s)) = \Gamma(F(1 - \eta_s) + 2) - \frac{1}{F(1 - \eta_s) + 1} - \frac{1}{F(1 - \eta_s)}
\]

Because \(\eta \in [0, 1] \), we may use \(\exp(1/x) = \frac{1}{x} + \frac{1}{2x^2} + \frac{5}{4x^3} + \frac{3}{8x^4} + \frac{27}{16x^5} + \frac{47}{32x^6} \) at \(x = F\eta_s + 2 \) and \(x = F(1 - \eta_s) + 2 \) to solve for \(\eta_s \) numerically. When \(F = 1 \), however, we may use the reflection formula \(\Gamma(1 - \eta_s) - \Gamma(\eta_s) = \pi \cot(\pi\eta_s) \) to solve for \(\eta_s \) analytically.

The forward and backward probabilities of the ancillary HMM and other parameter estimates are simply special cases of the main HMM.
6 Supplementary Figures

Figure S1: Inference of admixture proportion. The x-axis denotes the truth of admixture proportions, and the y-axis denotes inferred values. The gray line indicates $x = y$. For a three-way admixed individual there are three numbers (that sum to 1) to denote admixture proportions. For admixture events that happened recently ($\gamma = 10, 20$), the inference of admixture proportions is very accurate; for remote admixture events ($\gamma = 100$), our method slightly over-estimates large admixture proportions and slightly under-estimates the small ones.
Figure S2: Detailed comparison with LAMP-LD. The plots show the comparison for a typical simulated individual using $g = 20$. Each panel denotes an ancestry, on which we plot the local ancestry of the actual (black line), our inference (blue line), and LAMP-LD inference (pink line). Compare to our method, LAMP-LD makes more mistakes on regions of a few hundred SNPs.
Figure S3: Regions that exhibit excessive European ancestry in Mexicans. The y-axis is the average European ancestry allele dosages (over 58 Mexican samples). The \(g \) in legends means \(\gamma \) in main text. The inlets are close-ups of top peak(s) in each panel. The top panel contains two peaks, one is in 1p36.31 from 6.25Mb to 6.55Mb with average dosage of 1.63, and the other is in 1q44 from 246.00Mb to 246.40Mb with average dosage of 1.65; The middle panel contains one peak in 12p13.32 from 8.66Mb to 9.92Mb with average dosage of 1.72; the bottom panel contains one peak in 18q21.1 from 44.18Mb to 44.51Mb with average dosage of 1.78.