Evidence Based Selection of Housekeeping Genes

Hendrik J. M. de Jonge1,2, Rudolf S. N. Fehrmann2,3,4, Eveline S. J. M. de Bont3, Robert M. W. Hofstra2, Frans Gerbens2, Willem A. Kamps1, Elisabeth G. E. de Vries4, Ate G. J. van der Zee5, Gerard J. te Meerman2, Arja ter Elst1*4

1 Division of Pediatric Oncology/Hematology, Department of Pediatrics, Beatrix Children’s Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands, 2 Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands, 3 Department of Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands, 4 Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands

For accurate and reliable gene expression analysis, normalization of gene expression data against housekeeping genes (reference or internal control genes) is required. It is known that commonly used housekeeping genes (e.g. ACTB, GAPDH, HPRT1, and B2M) vary considerably under different experimental conditions and therefore their use for normalization is limited. We performed a meta-analysis of 13,629 human gene array samples in order to identify the most stable expressed genes. Here we show novel housekeeping genes seem to be the most appropriate choice for normalizing gene expression data.

RESULTS AND DISCUSSION

A candidate housekeeping gene was defined as a gene with the most stable expression, i.e. a gene with a small coefficient of variation (CV) and a maximum fold change <2 (MFC, the ratio of the maximum and minimum values observed within the dataset). In addition, a mean expression level lower than the maximum expression level subtracted with 2 standard deviation (SD) was a prerequisite for a candidate housekeeping gene. The expression levels of 13,037 unique genes in the set of 13,629 diverse samples were used. Table 1 shows the identified top 15 candidate housekeeping genes (Table S1 shows CVs of all 13,037 unique genes). All 15 genes had a CV beneath the 4% level and a standard deviation below 0.49. Moreover, the MFCs ranged from 1.41 (RPL27) to 1.99 (RPS12), reflecting the minor variation in expression of those candidate housekeeping genes within the large dataset. Thirteen of these top 15 genes encode for ribosomal proteins involved in protein biosynthesis. The distribution of the expression levels is given in Figure 1A.

Next, we studied the expression levels of commonly used housekeeping genes (e.g. ACTB, GAPDH, HPRT1 and B2M). The expression levels of those commonly used housekeeping genes vary considerably under different experimental conditions and therefore their use for normalization is limited. We performed a meta-analysis of 13,629 human gene array samples in order to identify the most stable expressed genes. Here we show novel
Our results clearly reveal novel candidate housekeeping genes. Using meta-analysis we were able to find candidate housekeeping genes with a much lower level of variance in expression across tissue types and experimental conditions than commonly used housekeeping genes. Our identified candidate housekeeping genes can be applied in (nearly) all future RT-PCR experiments without any restrictions.

Table 1. Top 15 candidate housekeeping genes identified in 13,629 samples.

Gene symbol	name	mean	SD	CV (%)	MFC rank
RPS13	ribosomal protein S13	12.82	0.33	2.59	1.61 1
RPL27	ribosomal protein L27	12.70	0.35	2.73	1.41 2
RPS20	ribosomal protein S20	12.81	0.37	2.90	1.67 3
RPL30	ribosomal protein L30	13.08	0.42	3.22	1.99 4
RPL13A	ribosomal protein L13A	13.01	0.43	3.29	1.83 5
RPL9	ribosomal protein L9	12.95	0.44	3.36	1.68 6
SRP14	signal recognition particle	11.45	0.40	3.46	1.48 7
RPL24	ribosomal protein L24	12.50	0.46	3.65	1.54 8
RPL22	ribosomal protein L22	11.94	0.44	3.68	1.91 9
RPS29	ribosomal protein S29	12.86	0.47	3.69	1.93 10
RPS16	ribosomal protein S16	12.48	0.47	3.73	1.62 11
RPL4	ribosomal protein L4	12.43	0.47	3.76	1.63 12
RPL6	ribosomal protein L6	12.22	0.46	3.76	1.65 13
OAZ1	ornithine decarboxylase	11.88	0.45	3.78	1.51 14
RPS12	ribosomal protein S12	12.90	0.49	3.82	1.99 15

CV, indicates the coefficient of variation and equals the standard deviation divided by the mean (expressed as a percentage). MFC, indicates the maximum fold change, i.e. the ratio of the maximum and minimum values observed within a dataset. The ranking is based upon three criteria: CV, a MFC < 2 and a mean value lower then the maximum value with 2 standard deviation (SD) subtracted.

doi:10.1371/journal.pone.0000898.t001

fluctuated dramatically (Table 2). The MFC ranged from 1.91 (ACTB) to 15.15 (ALDOA). Moreover, for only one of 12 commonly used housekeeping genes (ACTB) the CV was beneath the 5% level, reflecting the highly variable levels of those commonly used housekeeping genes within our large dataset. Remarkably, none of the classical housekeeping genes ranked among the top 50 identified candidate housekeeping genes. The distribution of expression levels of commonly used housekeeping genes is depicted in Figure 1B.

To demonstrate the feasibility of the use of these novel candidate housekeeping genes, we created for 5 of the top 15 candidate housekeeping genes primers (i.e. RPL27, RPL30, OAZ1, RPL22 and RPS29). We tested with PCR for desired product length and specificity; no pseudogenes were amplified (Figure 2 shows the PCR results).

To validate the enhanced stability of the identified novel candidate housekeeping genes we used another mammalian model system, i.e. the mouse. The expression levels of 21,377 unique genes in a set of 2,543 diverse mouse samples were used. The novel candidate housekeeping genes identified in the human data set also showed stability in expression in mouse arrays (Table 3). Also in mouse expression arrays genes encoding for ribosomal proteins are the most stable expressed ones. So, the stability in expression of the identified candidate housekeeping genes was confirmed in another species.

Our results clearly reveal novel candidate housekeeping genes with a more stable expression in different cellular and experimental contexts in comparison to frequently used housekeeping genes (e.g. ACTB, GAPDH and HPRT). On the basis of a definition of ubiquitous and stable expression, our results indicate however that no single gene qualifies as a ‘real’ housekeeping gene. GAPDH and ACTB were used as single control genes in more then 90% of the cases in high impact journals.[11] Commonly used control genes are historical carryovers and were considered good references for many years in techniques where a qualitative change was being measured, because these genes are expressed at relatively high levels in nearly all cells. However, the advent of RT-PCR placed the emphasis on quantitative change, and asks for a re-evaluation of the use of these historical housekeeping genes. Here we show for the first time a genome wide evaluation of candidate housekeeping genes by a meta-analysis of more then 13,000 samples. Interestingly, the identified candidate novel housekeeping genes do not vary much in terms of functionality; they are predominantly ribosomal proteins involved in protein biosynthesis. Therefore, experimenters that tinker with this specific cellular process would better use other candidate housekeeping genes of our analysis, for example OAZ1.

Using meta-analysis we were able to find candidate housekeeping genes with a much lower level of variance in expression across tissue types and experimental conditions than commonly used housekeeping genes. Our identified candidate housekeeping genes can be applied in (nearly) all future RT-PCR experiments without any restrictions.

MATERIALS AND METHODS

Microarray expression data of 13,629 publicly available samples hybridized to Affymetrix HG-U133A and HG-U133 Plus 2.0 GeneChips (Affymetrix, Santa Clara, Ca.) were downloaded from the Gene Expression Omnibus.[14] This set of samples comprises gene expression data of a wide variety of different tissues (e.g. primary patient material, cell lines, diseased as well as normal tissues, stem cells etc.) and varying experimental conditions (e.g. transfected/transduced cells, cytokine stimulated, cells under hypoxic conditions, ultraviolet treated cells, cells treated with chemotherapeutics or non cytotoxic drugs etc.). Probesets that were available on both platforms were converted to official gene symbols, averaging expression values of multiple probesets targeting the same gene. Next, quantile normalization was applied to the log2 transformed expression values.[15] For each gene the CV of the expression was calculated. The CV equals the standard deviation divided by the mean (expressed as a percentage). The CV is used as a statistic for comparing the degree of variation between genes, even if the mean expressions are drastically different from each other.[16] The calculated CVs for all genes were ranked. In addition, the MFC was calculated to reflect the minor variation in expression of those candidate housekeeping genes within the large dataset. For validation 2,543 publicly available mouse samples hybridized to Affymetrix Mouse Genome 430 2.0 GeneChips (Affymetrix) were downloaded from the Gene Expression Omnibus.[14] Again, this validation set comprises a wide variety of different mouse tissues and varying experimental conditions.

Total RNA was extracted with Absolutely RNA Miniprep Kit (Stratagene, Amsterdam, The Netherlands), and reverse-transcribed to cDNA with random hexamer and RevertAid™ M-MuLV Reverse Transcriptase (Fermentas, Burlington, Ontario, Canada) according to the manufacturer’s protocols.

Table 4 shows primer sequences for RPL27, RPL30, OAZ1, RPL22 and RPS29. The same annealing temperature (i.e. 60°C) and number of cycles (i.e. 25) was used for all primers. The PCR products were analyzed by electrophoresis in a 1.0% agarose gel.
Figure 1. Expression distribution of the top 15 candidate housekeeping genes (A) and of 12 commonly used housekeeping genes in 13,629 human samples (B).

doi:10.1371/journal.pone.0000898.g001
Table 2. Ranking of 12 commonly used housekeeping genes identified in 13,629 samples.

Gene symbol	Name	mean	SD	CV (%)	MFC	rank
ACTB	β-actin	13.00	0.63	4.88	1.91	57
GAPDH	glyceraldehyde-3 phosphate dehydrogenase	12.83	0.74	5.75	6.37	139
LDHA	lactate dehydrogenase A	12.09	0.72	5.92	2.21	168
B2M	β-2-microglobulin	12.75	0.76	5.97	4.01	176
PGAM1	phosphoglycerate mutase	11.14	0.76	6.87	2.03	413
ALDOA	aldolase A	11.94	0.92	7.74	15.15	767
PGK1	phosphoglycerate kinase	10.08	0.82	8.17	2.19	996
Hprt1	hypoxanthine phosphoribosyl-transferase	9.29	0.92	9.94	2.48	2193
TUBA1	α-tubulin	9.04	1.28	14.15	2.87	4921
VIM	vimentin	11.65	1.87	16.01	5.83	6016
PGK1	phosphoglycerate kinase	8.89	1.59	17.93	6.25	7019
G6PD	glucose-6 phosphate dehydrogenase	7.27	1.74	23.86	5.78	9707

CV, indicates the coefficient of variation and equals the standard deviation divided by the mean (expressed as a percentage). The ranking of these commonly used housekeeping genes among all 13,037 unique tested genes is based on the CV.

doi:10.1371/journal.pone.0000898.t002

Table 3. The variation in expression of the candidate housekeeping genes in mice.

gene symbol	SD	CV (%)	MFC
RPS29	0.26	1.92	1.26
RPL4	0.39	2.95	1.34
OAZ1	0.43	3.42	1.34
RPL13A	0.50	3.89	1.36
RPL6	0.50	3.90	1.30
SRP14	0.56	5.22	1.40
RPL24	0.63	6.10	1.59
RPL27	0.74	6.16	1.53
RPS13	0.73	6.34	1.50
RPL9	0.57	6.41	1.56
RPL22	0.76	6.42	1.46
RPS16	0.80	6.46	1.49
RPS12	0.83	7.01	1.49
RPS20	1.01	8.61	1.57
RPL30	0.87	8.97	3.80

CV, indicates the coefficient of variation and equals the standard deviation divided by the mean (expressed as a percentage). MFC, indicates the maximum fold change, i.e. the ratio of the maximum and minimum values observed within a dataset.

doi:10.1371/journal.pone.0000898.t003

Table 4. Primer sequences of 5 candidate housekeeping genes.

Gene symbol	Forward	Reverse	Base pairs	T
RPL27	ATCGGCAAGAGATCAAGATAA	TCTGAGACATCCCTATTGACG	123	60
RPL30	ACAGCATGGAGAAAATATGCA	AAAGGAAGAGTTGCAAGTTT	158	60
OAZ1	GAGATCCATGAGCCGAGGAC	TACGACGTGGAAAGAGACC	150	60
RPL22	TGGTCCGCACTCCCTTCTTCA	TCCACGGTGATCTGCTTGTG	250	60
RPS29	GCACCTGCTGAGACACAGATG	ATAGGGACGTGCAAGGAGAG	213	60

Forward and reverse indicate the specific primers; base pairs, the product length and T, the annealing temperature given as °C.

doi:10.1371/journal.pone.0000898.t004
SUPPORTING INFORMATION

Table S1 The CVs of all 13,037 unique genes in 13,629 samples. Found at: doi:10.1371/journal.pone.0000898.s001 (0.72 MB DOC)

REFERENCES

1. Bustin SA (2000) Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 25: 169–193.
2. Chuaqui RF, Bonner RF, Best CJ, Gillespie JW, Flaig MJ, et al. (2002) Post-analysis follow-up and validation of microarray experiments. Nat Genet 32 Suppl: 509–514.
3. Fink L, Seeger W, Ermert I, Hanze J, Stahl U, et al. (1996) Real-time quantitative RT-PCR after laser-assisted cell picking. Nat Med 4: 1329–1333.
4. Giulietti A, Overbergh L, Valcke D, Decallonne B, Bouillon R, et al. (2001) An overview of real-time quantitative PCR: applications to quantify cytokine gene expression. Methods 25: 396–401.
5. Heid CA, Stevens J, Livak KJ, Williams PM (1996) Real-time quantitative PCR. Genome Res 6: 986–994.
6. Higuchi R, Fockler C, Dollinger G, Watson R (1993) Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology (N.Y.) 11: 1026–1030.
7. Solanas M, Moral R, Escrich F (2003) Unsuitability of using ribosomal RNA as loading control for Northern blot analyses related to the imbalance between messenger and ribosomal RNA content in rat mammary tumors. Anal Biochem 308: 99–102.
8. Johnson ML, Redmer DA, Reynolds LP (1995) Quantification of lane-to-lane loading of poly(A) RNA using a biotinylated oligo(dT) probe and chemiluminescent detection. Biotechniques 19: 712–715.
9. Spanakis E (1993) Problems related to the interpretation of autoradiographic data on gene expression using common constitutive transcripts as controls. Nucleic Acids Res 21: 3809–3819.
10. Lee PD, Sladek R, Greenwood CM, Hudson TJ (2002) Control genes and variability: absence of ubiquitous reference transcripts in diverse mammalian expression studies. Genome Res 12: 292–297.
11. Suzuki T, Higgins PJ, Crawford DR (2000) Control selection for RNA quantitation. Biotechniques 29: 322–337.
12. Thellin O, Zorzi W, Lakaye B, De Borman BB, Coumans B, et al. (1999) Housekeeping genes as internal standards: use and limits. J Biotechnol 75: 291–295.
13. Vandesompele J, De Preter PK, Pattyn F, Poppe B, Van Roy N, et al. (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3: 1–11.
14. Edgar R, Domrachev M, Lash AE (2002) Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30: 207–210.
15. Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19: 185–193.
16. Novak JP, Sladek R, Hudson TJ (2002) Characterization of variability in large-scale gene expression data: implications for study design. Genomics 79: 104–113.

ACKNOWLEDGMENTS

Author Contributions

Conceived and designed the experiments: Ed At Hd RF Ed RH FG WK Av Gt.Performed the experiments: Hd RF. Analyzed the data: Ed At Hd RF Ed RH FG WK Av Gt. Contributed reagents/materials/analysis tools: At Hd RF Gt. Wrote the paper: Ed At Hd RF Ed RH FG WK Av Gt.