Essential oils of basil cultivars selectively affect the activity of antioxidant enzymes in glial cells

Naira Sahakyan

1Department of Biochemistry, Microbiology & Biotechnology, Faculty of Biology, Yerevan State University, 1 A. Manukyan Str., 0025 Yerevan, Armenia;

2Research Institute of Biology, Yerevan State University, 1 A. Manukyan Str., 0025 Yerevan, Armenia

*Correspondence: sahakyannaira@ysu.am; Tel.: +374-60710547
Abstract

The qualitative and quantitative composition of essential oils (EO) of Ocimum species, cultivated in high altitude Armenian landscape was quite different and the main components of *O. basilicum* var. *purpureum*; *O. basilicum* var. *thyrsiflora* and *O. x citriodorum* oils belong to the class of oxygenated monoterpenes. Investigated EOs possess remarkable antioxidant activity. They inhibit the tyrosinase activity, the enzyme responsible not only for the melanin production, but also for various aging-related metabolic processes. Investigated EOs had no any significant effect on catalase at the protein levels, but alter its activity in neuroglial BV-2 different cell lines. Treatment of the neuroglial cell lines with the sub-cytotoxic concentrations of three mentioned EOs influence also the activity of acetyl-CoA oxidase type 1.

Practical Applications

The microglial cells play a pivotal role as the neuroprotective agents against neuroinflammation. Different data included in the present article are stating that plant origin substances can play a role of regulators of enzymatic antioxidant capacity of cells. EOs extracted from the Ocimum different cultivars are able to trigger the activity of acetyl-CoA oxidase type 1 (or palmytoil-CoA oxidase type 1), which can serve as a basis of regulation of redox deviation in WT cells. So, it can be suggested them to be applied for the prevention of some processes, which can influence on the aging, as the process of ageing is commonly associated with mitochondrial dysfunction, oxidative stress caused by the increased level of free radical production, dysfunction of the microglia, high blood pressure and so on.

Key words: *Ocimum*; essential oil; oxygenated monoterpenes; microglia; palmytoil-CoA oxidase
1. Introduction

Plant species of Lamiaceae family are known for their application as spice and medicinal plants [1; 2]. The most common and widely used are aromatic plants of the *Ocimum* genus [3; 4]. They are rich source of essential oils (EO) and used to be applied since antiquity for different purposes, including for the prevention and treatment of various diseases [5; 6]. The resent studies state, that basil cultivars possess large spectrum of biological activity. Generally, the chemical composition and biological activity of basil may vary, depending on the ecological and soil conditions, cultivar, growing elevation, cultivation approaches and other parameters [7; 8]. Our previous studies state, that the chemical composition of EO extracted from the basil cultivars cultivated in high altitude of Armenian landscape varies from those, described in literature [7 - 11]. According to our recently published data *Ocimum basilicum* var. *purpureum* (purple basil) belongs to the methyl chavicol-rich chemotype (57.3%). The *O. basilicum* var. *thyroflora* (or thai basil) belongs to the linalool-rich chemotype (concentration of linalool was 68%). The *O. x citriodorum* produces two predominant components – citral (21%) and nerol (23%) and forms special chemotype. All of investigated basil cultivars possess expressed antimicrobial and antioxidant properties [3]. Focusing on these data, we aimed to reveal some mechanisms of influence of all three basil EO on the microglial cells, as recent-years research data state that these oils have anti-aging and neuroprotective action, and as it is supposed, against also some forms of neurodegenerations [12; 13]. The process of ageing is commonly associated with complex changes in the organism such as mitochondrial dysfunction, oxidative stress caused by the increased level of free radical production, dysfunction of the microglia, low levels of neurogenesis and so on [14; 15; 16; 17]. Sometimes aging is associated with different types of neurodegenerative disorders [18]. One of the mechanisms which underlie the neuroprotective
activity of any metabolite is the ability to inhibit the tyrosinase or tyrosine hydroxylase activity, which can prevent the high-blood pressure [19]. These enzymes catalyze the synthesis of dopamine in melanocytes which transports to the neuroglial and adrenal cells with blood flow, where a copper-dependant enzyme dopamine β-oxidase, in the presence of vitamin C, causes its hydroxilation to catecholamine transmitters (norepinephrine and epinephrine), which are able to increase the blood pressure [19; 20]. Some researchers mention, that various models of neurodegenerative disorders are useful for studying the neuroprotective activity of biologically active metabolites. The oxidative neuronal damage in the ageing brain is also associated with the decline in the production and functional activity of antioxidant enzymes [21].

So, we decided to evaluate the influence of the essential oils extracted from three basil cultivars (O. basilicum var. purpureum, O. basilicum var. thrysiflora, and O. x citriodorum), possessing remarkable antioxidant capacity on the activity of the main antioxidant enzymes in microglial BV-2 wild type (WT) and Acetyl-CoA oxidase deficient cell lines (Acox1−/
−).

2. Materials and Methods

Plant material

The basil cultivars (O. basilicum var. purpureum, O. basilicum var. thrysiflora, and O. x citriodorum) were grown in the Kotayk Region of Armenia as it was described previously (1600 m a.s.l.) [3]. Plant materials were collected during blossoming period (July–August, 2014) and were identified at the Institute of Botany, National Academy of Sciences of Armenia, Yerevan (Armenia) by Dr. M. Sargsyan. The samples of basil cultivars are also available at the Faculty of Biology, Yerevan State University, Yerevan, Armenia.

BV-2 microglia cell culture
Murine microglial BV-2 cell lines (BV-2, Acyl-CoA oxidase type 1 (ACOX1) deficient mutants (Acox1⁻/⁻) and WT cells) were grown in a 5% CO₂ incubator at 37 °C in Dulbecco’s modified Eagle medium (DMEM) supplemented with 10% (v/v) heat inactivated fetal bovine serum (FBS) and 1% antibiotics (penicillin, streptomycin); culture medium was changed every 2 days. BV-2 cells were seeded on 96-well microplates at 25 × 10⁴ cells per well for viability assay, 6-well microplates at 5 × 10⁵ cells per well - for enzymatic activity.

Essential oil extraction

Essential oils were extracted from air dried plant material (aerial parts only) by hydrodistillation, using a Clevenger-type apparatus, and the process lasted 3 h as described before [3].

Determination of essential oil chemical composition

The gas chromatography (GC) mass selective (MS) analysis of the essential oils was performed using a Hewlett–Packard 5890 Series II gas chromatograph, fitted with a fused silica HP – 5MS capillary column (30 m × 0.25 mm, in thickness 0.25 μm). Determination of chemical composition was carried out as described previously [3]. The oven temperature varied from 40–250 °C with the scanning rate of 3 °C/min. Helium (purity 5.6) was used as a carrier gas at a flow rate of 1 mL/min. The GC was equipped with Hewlett–Packard 5972 Series MS detector. The MS operating parameters were ionization voltage 70 eV and ion source temperature 250 °C. The diluted samples of essential oils (1/100, v/v in HPLC methanol) of 1 μL had been injected manually. To avoid overloading the GC column, the essential oils were diluted 1:100 (v/v) in methanol. The identification of peaks was tentatively carried out based on library search using National Institute of Standards and Technology (NIST)-2013. Relative Retention Index (RRI) was calculated for HP-5MS column. For RRI calculation a mixture of homologues n-alkanes
(C9-C18) was used under the same chromatographic conditions as for analysis of the essential oils.

3-(4,5-dimethyltrazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay

Cells, plated in 96-wells plates, were treated for 24-72 h with different concentrations of EO (50 – 5.10^{-4} \mu LmL^{-1} in dimethylsulfoxide). Cells were incubated for 2 h with MTT dye, followed by the absorbance (Abs) measurement at the 570 nm with a microplate reader and the sub-cytotoxic concentration was selected for further investigations [22].

Preparation of BV-2 cell lysate

After treatment of BV-2 microglia cells with EO, cells were washed with Phosphate-buffered saline (PBS) and were lysed in 50 µL of radioimmunoprecipitation (RIPA) buffer: 50 mM Tris-HCl, pH 7.4, 1% NP-40, 0.5% Na-deoxycholate, 0.1% sodium dodecylsulfate, 150 mM NaCl, 2 mM ethylenediamine tetraacetic acid (EDTA), 50 mM NaF. Cells were placed in ice for 30 min and the lysate was cleared by centrifugation at 20,000× g for 20 min (at -4°C). Protein content was assessed by a bicinchoninic acid assay [23]. The supernatant was stored at −80 °C until further use, if needed.

Enzymatic activity measurement

For catalase activity measurement, 10 µL of cell lysate was added to 190 µL of Tris-HCl buffer (pH 7.4) containing 20 mM H_{2}O_{2} and the decrease of the absorbance was monitored at 240 nm for 2 min [24]. The change in absorbance with time was proportional to the breakdown of H_{2}O_{2}. The catalase activity was expressed as units/mg of protein. ACOX1 activity measurement was performed, as described by Oaxaca-Castillo et al. (2007) [25] using fresh cell lysate. Total SOD activity was measured according to the Beauchamp and Fridovich (1971) [26].

Data processing
Experimental data were expressed as the mean ± SD of all repetitions. Values were normalized to the control and are given as average of the repetitions. A statistical analysis was done with the Student-t test for calculating the probability values; and data were considered statistically different at a p-value of 0.05 or less.

3. Results

According to the data, obtained from the quantitative and qualitative analysis of the investigated essential oils more than 40 compounds were isolated and most of them identified for each essential oil sample. All dominant components were determined as oxygenated monoterpenes (linalool, methyl chavicol, nerol and geranial) (Table 1).

Regarding to our investigations, the sub-cytotoxic concentrations of essential oils were identified which was 0.5 µL/mL for *O. basilicum* var. *purpureum* and *O. basilicum* var. *thyrsiflora* essential oils, but for the *O. x citriodorum* essential oil this parameter was higher twice (1 µL/mL) for both microglial cell lines ($p < 0.05$) (Fig 1 a-f). Further treatment of neuroglial cells was carried out with the mentioned concentrations of the investigated essential oils for excluding the toxic influence of investigated acting agent and considers only its activity on cellular enzymatic antioxidant system.

Under the treatment of BV-2 cells with the mentioned concentrations the viability of cells was not changed significantly approximately in all cases (Fig. 2) ($p \leq 0.05$).

Data showed that treatment of WT cells during the 24 hour with *O. basilicum* var. *thyrsiflora* brings to the significant decreasing in the catalase activity (up to 95 %) ($p < 0.005$). But in case of treatment with *O. basilicum* var. *purpureum* the tendency of the increasing was observed ($p < 0.05$), meanwhile the future treatment of WT cells did not show any significant changes in catalase activity ($p > 0.05$). Treatment of *Acox1* cells with essential oils did not affect the activity of catalase (Fig. 3).
According to the Saih et al. (2017) [27], the suppression of ACOX1 activity in microglia cells and its consequence on the peroxisomal capacity in the β-oxidation of VLCFA may have a deleterious effect on brain functions and must be associated to neuroinflammation and neurodegeneration in peroxisomal leukodystrophies, including ACOX1 deficiency. 48-hour treatment of BV-2 WT microglia cells with *O. basilicum* var. *thyrsiflora* increases the palmytoil-CoA oxidase type 1 activity up to 90 % without significant changes in cell viability under the same conditions. The activity of this enzyme increases around 69 % under the influence of the treatment with *O. basilicum* var. *purpureum* EO during the same period, but the EO of *O. x citriodorum* had not any significant effect. The activity of ACOX1 decreased during the further treatment with all studied EOs, despite in control samples, where some increasing was observed (Fig. 2, Fig. 4). The treatment with *O. basilicum* var. *purpureum* brings to the significant changes in the SOD activity of BV-2 WT cells (p < 0.05), but there were not any statistically significant data in other cases (Fig. 5).

4. Discussion

As described above, the oxygenated monoterpenes are the main substances in the composition of EO of all three Ocimum cultivars. There is not any direct evidence, which will be able to state whether the described biological activity is due to these substances or not. But one thing is clear, that even small deviations in the chemical composition of any EO can alter their activity [3; 28]. So, the aim of this work was not only the indication of the activity of these EOs, but also to find a common mechanism or feature of influence of these substances which can be considered in their practical application in the future. There is a huge number of literature data stating that EOs generally express the antibacterial and antioxidant action [3; 28; 29]. Our previous investigations also showed that basil EOs possess expressed antiradical capacity: the highest activity possesses *O. basilicum* var. *thyrsiflora* EO with the IC$_{50}$ value of 2.5 μL/mL, which was equal to the standardized Grapefruit Seed Extract. The same activity for other
investigated oils was approximately 8-10 times lower [3]. This data seem to be unexpected, since usually the oils with higher phenolic content are the ones exhibiting higher radical scavenging abilities, but it is also known that usually substances possessing high antimicrobial activity express low or moderate antiradical activity in different tests, depending on their action mechanisms [30]. Our previous investigations showed the high antibacterial activity of *O. basilicum* var. *purpureum*, and *O. x citriodorum* [3]. Having all the mentioned, as well as data concerning tyrosinase activity inhibition capacities of investigated EO (the values for tyrosinase inhibitory activity of *O. basilicum* var. *thyrsiflora*, *O. basilicum* var. *purpureum* and *O. x citriodorum* essential oils varied between the 12 and 20 %) [28], we decided to check the influence of all three basil EO on the microglia cell lines. The MTT test expresses the mitochondrial function and viability of BV-2 cells [27] under the influence of investigated essential oils. Several possible mechanisms of antimicrobial activity are discussed, but information on possible mechanisms of antioxidant action in living systems is quite scarce. Our previous data were evaluated as a basis for the further investigations which are stating that the components of the investigated EOs may alter the activity of different enzymes in microglia cells without any visible effect on protein level (see above). We are observing some decreasing in catalase activity in most cases, which speaks about the fact that there is not any redox misbalance during the treatment of microglia cells with the investigated EOs. Interestingly, the 48-hour treatment is bringing to the activation of palmytoil-CoA oxidase type 1 in approximately all cases. This feature as well as our data stating that in the same conditions the tyrosinase activity inhibition can be achieved, could serve as a basis for the statement that the investigated EOs have neuroprotective action.

As the microglial cells are the resident macrophages of the central nervous system, they play a pivotal role as the neuroprotective agents against neuroinflammation. Different data included in the present article are stating that plant origin substances can play a role of regulators of enzymatic
antioxidant capacity of cells. EOs extracted from the Ocimum different cultivars are able to trigger the activity of acetyl-CoA oxidase type 1 (or palmytoil-CoA oxidase type 1), which can serve as a basis of regulation of redox deviation in WT cells. So, it can be suggested them to be applied for the prevention of some processes, which can influence on the aging, as the process of ageing is commonly associated with mitochondrial dysfunction, oxidative stress caused by the increased level of free radical production, dysfunction of the microglia, high blood pressure and so on.

Declarations

Acknowledgements: Plants were cultivated in the fields belonging to the “Nairian” CJSC and chemical analysis of EO was performed in cooperation with the same company. Special gratitude to prof. A. Trchounian, Dr. M. Petrosyan, prof. M. Chercaoui-Malki and Dr. P. Androletti for their support in the formation of this article.

Availability of data and materials: The datasets and materials used and/or analyzed during the current study are available from the author on reasonable request.

Funding: This article is based upon work from COST Action NutRedOx-CA16112, as well as by Basic support from Committee of Science, Ministry of Education, Science, Culture and Sport of RA.

Conflicts of interest: Not applicable

Ethics approval: Not applicable

Availability of data and material: Data and materials are available upon request

References:

1. Carović-Stanko K, Petek M, Grdiša M, Pintar J, Bedeković D, Herak Ćustić M, Satovic Z. (2016). Medicinal plants of the family Lamiaceae as functional foods – a review. *Czech J Food Sci*, 2016;34:377-390. doi: 10.17221/504/2015-CJFS
2. Uritu CM, Mihai CT, Stanciu GD, Dodi G, Alexa-Stratulat T, Luca A, Leon-Constantin MM, Stefanescu R, Bild V, Melnic S, Tamba BI. Medicinal Plants of the Family Lamiaceae in Pain Therapy: A Review. *Pain Res Manag*, 2018;7801543. doi: 10.1155/2018/7801543.

3. Avetisyan A, Markosian A, Petrosyan M, Sahakyan N, Babayan A, Aloyan S, Trchounian A. Chemical composition and some biological activities of the essential oils from basil Ocimum different cultivars. *BMC Complement Altern Med*, 2017;17, 60(2017). https://doi.org/10.1186/s12906-017-1587-5.

4. Joshi RK. Chemical Composition, In Vitro Antimicrobial and Antioxidant Activities of the Essential Oils of Ocimum Gratissimum, O. Sanctum and their Major Constituents. *Indian J Pharm Sci*, 2013;75(4):457-462. doi: 10.4103/0250-474X.119834.

5. Pattanayak P, Behera P, Das D, Panda SK. Ocimum sanctum Linn. A reservoir plant for therapeutic applications: An overview. *Pharmacog Rev*, 2010;4(7):95-105. doi: 10.4103/0973-7847.65323.

6. Cohen MM. Tulsi - Ocimum sanctum: A herb for all reasons. *J Ayurveda Integr Med*, 2014;5(4):251-259. doi: 10.4103/0975-9476.146554.

7. Lawrence BM. A further examination of the variation of Ocimum basilicum. In: Lawrence BM, Mookerjee BD, Willis BJ, editors. Flavors and fragrances: A world perspective. Amsterdam: Elsevier Sci. Publ. B.V; 1988. p. 161–170.

8. Tsasi G, Mailis T, Daskalaki A, Sakadani E, Razis P, Samaras Y, Skaltsa H. The Effect of Harvesting on the Composition of Essential Oils from Five Varieties of Ocimum basilicum L. Cultivated in the Island of Kefalonia, Greece. *Plants*, 2017;6(3): 41. https://doi.org/10.3390/plants6030041.

9. Kruger H, Wetzel SB, Zeiger B. The chemical variability of Ocimum species. *J Herbs Spices Med Plants*, 2002;9:335–344. doi: 10.1300/J044v09n04_11
10. Klimankova E, Holadova K, Hajslova J, C’ ajka T, Poustka J, Koudela M. Aroma profile of five basil (Ocimum basilicum L.) cultivars grown under conventional and organic conditions. *Food Chem*, 2008;107:464–472. https://doi.org/10.1016/j.foodchem.2007.07.062

11. Joshi RK. Chemical composition and antimicrobial activity of the essential oil of Ocimum basilicum L. (sweet basil) from Western Ghats of North West Karnataka, India. *Anc Sci Life*, 2014;33:151–156. doi: 10.4103/0257-7941.144618

12. Ayaz M, Sadiq A, Junaid M, Farhat U, Fazal S, Jawad A. (2017) Neuroprotective and Anti-Aging Potentials of Essential Oils from Aromatic and Medicinal Plants. *Front Aging Neurosci*, 2017;9:168. doi:10.3389/fnagi.2017.00168

13. Zuo AR, Dong HH, Yu YY, Shu QL, Zheng LX, Yu XY, Cao SW. The antityrosinase and antioxidant activities of flavonoids dominated by the number and location of phenolic hydroxyl groups. *Chinese Med*, 2018;13:51. doi:10.1186/s13020-018-0206-9.

14. Hindle JV. Ageing, neurodegeneration and Parkinson's disease. *Age and Ageing*, 2010;39(2):156–161. doi: 10.1093/ageing/afp223.

15. Rubio-Perez JM, Morillas-Ruiz J. A review: inflammatory process in Alzheimer's disease, role of cytokines. *Sci World J*, 2012, 15. doi: 10.1100/2012/756357.756357

16. Migliore L, Coppedè F. Environmental-induced oxidative stress in neurodegenerative disorders and aging. *Mutat Res Genet Toxicol Environ Mutagen*, 2009;674(1-2): 73–84. doi: 10.1016/j.mrgentox.2008.09.013.

17. VanItallie TB. Parkinson disease: primacy of age as a risk factor for mitochondrial dysfunction. *Metab Clin Exp*, 2008;57(2):S50–S55. doi: 10.1016/j.metabol.2008.07.015.

18. Johnson IP. Age-related neurodegenerative disease research needs aging models. *Front. Aging Neurosci*, 2015;2(7):168. doi: 10.3389/fnagi.2015.00168.
19. Fernstrom JD, Fernstrom MH. Tyrosine, Phenylalanine, and Catecholamine Synthesis and Function in the Brain. *J Nutr*, 2007;137(6):1539S–1547S, https://doi.org/10.1093/jn/137.6.1539S

20. Rizvi TA, Huang Y, Sidani A, Atit R, Largaespada DA, Boissy RE, Ratner N. A novel cytokine pathway suppresses glial cell melanogenesis after injury to adult nerve. *J Neurosci*, 2002;22(22):9831-9840. doi: https://doi.org/10.1523/JNEUROSCI.22-22-09831.2002

21. Elufioye TO, Berida TI, Habtemariam S. Plants-Derived Neuroprotective Agents: Cutting the Cycle of Cell Death through Multiple Mechanisms. *Evid Based Complementary Altern Med*, 2017;3574012. doi:10.1155/2017/3574012

22. Abdel-Naim AB, Alghamdi AA, Algandaby MM, Al-Abassi FA, Al-Abd AM, Abdallah HM, El-Halawany AM, & Hattori M. Phenolics Isolated from Aframomum meleguta Enhance Proliferation and Ossification Markers in Bone Cells. *Molecules (Basel, Switzerland)*, 2017;22(9):1467. https://doi.org/10.3390/molecules22091467

23. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC. Measurement of protein using bicinchoninic acid. *Anal Biochem*, 1985;150:76–85. doi:10.1016/0003-2697(85)90442-7

24. Cherkaoui-Malki M, Bardo O, Lhuguenot JC, Latruffe N. Expression of liver peroxisomal proteins as compared to other organelle marker enzymes in rats treated with hypolipidemic agents. *Biology of the Cell*, 1990;69:83–92. doi: 10.1111/j.1768-322X.1990.tb00002.x.

25. Oaxaca-Castillo D, Andreoletti P, Vluggens A, Yu S, van Veldhoven PP, Reddy JK, & Cherkaoui-Malki M. Biochemical characterization of two functional human liver acyl-CoA oxidase isoforms 1a and 1b encoded by a single gene. *Biochem Biophys Res Commun*, 2007;360(2):314–319. doi: https://doi.org/10.1016/j.bbrc.2007.06.059
26. Beuchamp C, Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. *Anal Biochem*, 1971;44(1):276. https://doi.org/10.1016/0003-2697(71)90370-8

27. Saih FE, Andreoletti P, Mandard S, Latruffe N, El Kebaj MS, Lizard G, Nasser B, & Cheraouki-Malki M. Protective Effect of Cactus Cladode Extracts on Peroxisomal Functions in Microglial BV-2 Cells Activated by Different Lipopolysaccharides. *Molecules*, 2017;22(1):102. https://doi.org/10.3390/molecules22010102

28. Moghrovyan A, Sahakyan N, Babayan A, Chichoyan N, Petrosyan M, Trchounian A. “Essential oil and ethanol extract of oregano (*Origanum vulgare* L.) from Armenian flora as a natural source of terpenes, flavonoids and other phytochemicals with antiradical, antioxidant, metal chelating, tyrosinase inhibitory and antibacterial activity. *Curr pharm des*, 2019;25:1809-1816. doi: 10.2174/1381612825666190702095612.

29. Chouhan S, Sharma K, Guleria S. Antimicrobial Activity of Some Essential Oils-Present Status and Future Perspectives. *Medicines* (Basel), 2017;8:4(3):58. doi: 10.3390/medicines4030058. PMID: 28930272; PMCID: PMC5622393.

30. Bezmaternykh KV, Shirshova TI, Beshley IV, Beshlei I, Matistov N, Smirnova G, Oktyabr'skii O, Volodin V. Antioxidant activity of extracts from Allium schoenoprasum L. and Rubuschamaemorus L. growing in the Komi Republic. *Pharm Chem J*, 2014;51(3):200-204. https://doi.org/10.1007/s11094-017-1582-7

Class of compounds	Chemical component	*O. basilicum* var. purpureum,%	*O. basilicum* var. thyrsiflora,%	*O. x citriodorum*, %	
Monoterpane	(Z)-β-Ocimene	1058	-	0.2	
Type	Compound	Retention	Area %	Height %	Area %
------------------------------	----------------------	-----------	--------	----------	----------
hydrocarbons	γ-Terpinene	1078	-	-	0.2
Oxygenated monoterpenes	1,8-cineole	1035	1.4	3.5	-
	Fenchone	1089	-	-	0.3
	Linalool	1100	18.0	68.0	9.4
	Camphor	1146	1.3	1.4	-
	α-Terpineol	1181	-	-	0.6
	Methyl chavicol	1203	57.3	20.0	9.4
	Nerol	1231	-	-	23.0
	Neral	1244	-	-	4.9
	Geraniol	1259	-	-	5.2
	Geranial	1274	-	-	15.8
	Bornyl acetate	1291	0.1	-	-
Aromatic compounds	Neryl acetate	1321	-	-	0.7
	Methyl cinnamate	1338	-	-	0.5
Sesquiterpene hydrocarbons	β-Elemene	1387	3.6	0.7	0.5
	β-Caryophyllene	1419	1.7	-	7.8
	β-Copaene	1428	0.2	-	0.6
	α-((Z))-Bergamotene	1433	4.3	1.3	3.5
	α-humulene	1455	0.6	0.3	1.5
	cis-β-Farnesene	1472	0.3	-	0.5
	Germacrene-D	1482	0.7	0.2	-
	β-Cubebene	1497	-	0.8	2.3
	α-Bulnesene	1502	1.4	0.7	0.5
	α-Amorphene	1510	1.5	0.7	-
	δ-cadinene	1518	-	-	0.4
Table 1. Chemical composition of EOs of *O. basilicum* var. *purpureum*, *O. basilicum* var. *thyrsiflora* and *O. x citriodorum*

Compound	Retention Time	Area %	Height %	Area %
Aromadendrene	1529	1.7	0.3	-
iso-Caryophyllene oxide	1550	0.6	-	-
α-Bisabolene	1561	-	-	2.3
Sesquiterpene alcohol	Spathulenol	1544	0.7	-

*a*for HP-5 capillary column

Fig.1 Effects of *O. basilicum* var. *purpureum* and *O. basilicum* var. *thyrsiflora* and *O. x citriodorum* essential oils on viability of BV-2 WT and ACOX1 deficient microglial cells (MTT assay; a-c and d-f, respectively). Cells were treated for 24 h with EO at different concentrations (100 to 0.001 µL/mL). The significance is presented with the Student-t test: \(p < 0.05 \) for BV-2 both cell lines.

Fig.2 *Ocimum* species EO influence dynamics on viability of BV-2 WT and Acox1 deficient microglia cells (MTT assay; A and B, respectively). The results were normalized to the control and the significance is presented with the Student-t test: \(p \leq 0.05 \) for BV-2 both cell lines.

Fig. 3 EOs influence dynamics on catalase activity of BV-2 WT and Acox1 deficient microglial cells (A and B, respectively). In case of *O. basilicum* var. *thyrsiflora* \(p < 0.005; \ p > 0.05 \) for *, for ** and ***; in case of *O. basilicum* var. *purpureum* \(p < 0.05 \) for * for ** and *** \(p > 0.05 \); in case of *O. x citriodorum* \(p > 0.05 \) for all cases (for WT BV-2 cells); in case of *O. basilicum* var. *thyrsiflora* \(p < 0.05 \) for * and for **; in case of *O. basilicum* var. *purpureum* \(p > 0.05 \) for * and ; \(p < 0.05 \) for **; in case of *O. x citriodorum* \(p > 0.05 \) for all cases (for Acox1−/− BV-2).
Fig. 4 EOs influence dynamics on palmytoil-CoA oxidase type 1 activity of BV-2 WT cells, p < 0.05.

Fig. 5 EOs influence dynamics on SOD activity of BV-2 WT and Acox1 deficient microglial cells. In case of *O. basilicum* var. *thyrsiflora* p > 0.1 for *; p > 0.1 ** and p < 0.05 for ***; in case of *O. basilicum* var. *purpureum* p < 0.05 for *, for ** and ***; in case of *O. x citriodorum* p > 0.05 for all cases (WT cells). In case of *O. basilicum* var. *thyrsiflora* and *O. basilicum* var. *purpureum* p > 0.05 for *; p < 0.05 for ** and p = 0.1 for ***; in case of *O. x citriodorum* p < 0.05 for *; p = 0.1 for ** and p < 0.05 for *** (*Acox1^{−/−} cells*).
Fig. 1

- **O. basilicum var. thyrsiflora**
 - Absorbance vs. Concentration (μL/mL)
 - Bars indicate standard deviation

- **O. basilicum var. purpureum**
 - Absorbance vs. Concentration (μL/mL)
 - Bars indicate standard deviation

- **O. x citriodorum**
 - Absorbance vs. Concentration (μL/mL)
 - Bars indicate standard deviation

Fig. 2
Fig. 3
Fig. 4

Fig. 5