Abstract

Streaming of XML transformations is a challenging task and only a few existing systems support streaming. Research approaches generally define custom fragments of XQuery and XPath that are amenable to streaming, and then design custom algorithms for each fragment. These languages have several shortcomings. Here we take a more principled approach to the problem of streaming XQuery-based transformations. We start with an elegant transducer model for which many static analysis problems are well-understood: the Macro Forest Transducer (MFT). We show that a large fragment of XQuery can be translated into MFTs — indeed, a fragment of XQuery, that can express important features that are missing from other XQuery stream engines, such as GCX: our fragment of XQuery supports XPath predicates and let-statements. We then use an existing streaming engine for MFTs and apply a well-founded set of optimizations from functional programming such as strictness analysis and deforestation. Our prototype achieves time and memory efficiency comparable to the fastest known engine for XQuery streaming, GCX. This is surprising because our engine relies on the OCaml built in garbage collector and does not use any specialized buffer management, while GCX’s efficiency is due to clever and explicit buffer management.

1 Introduction

Data is often transmitted as a continuous stream; e.g., sensor readings such as weather data, or text messages such as news feeds. Streams are also used to transmit large data that does not fit into memory. Imagine now to query or transform streamed data, and, that the data is tree structured (e.g. in XML or JSON). Doing this within limited memory is a challenging task. Only a few systems support streaming of XML transformations. These systems work on a “best effort” basis and try to use as little memory as possible, but do not give guarantees on the amount of memory used. XML transformations are conveniently expressed in XQuery and XSLT. An example of a best-effort streaming engine for XSLT is Kay’s Saxon [17].

Research approaches generally proceed by defining custom fragments of XQuery and XPath that are amenable to streaming, and then design custom algorithms for each fragment. Examples are forward XPath of Olteanu’s Spex [31] and the XQuery fragment of Koch, Scherzinger, and Schmidt’s GCX [18]. GCX is the fastest XQuery streaming engine that we know. These languages have several shortcomings: they lack expressiveness needed for important transformations (for instance, they cannot express XPath predicates). Since these languages have been designed specifically for streamability they are difficult to analyze and less amenable to more general optimizations, other than those optimizations specifically engineered for the streaming problems. For instance, their properties with respect to sequential composition are not well-understood, hence they cannot easily be used in conjunction with other transformations and filters outside of the fragment.

In this paper, we take a different and more principled approach to the problem of streaming XQuery-based transformations. We start with an elegant transducer model that has been studied in the literature extensively, and for which many static analysis problems are well-understood, namely the Macro Forest Transducer of Perst and Seidl [32]. Known properties for this model include: effective exact type checking, composition closure with many known classes of transformations, decidable strictness analysis, decidable equivalence check for transformations of...
linear size increase, and the possibility to represent outputs succinctly using grammar-based compression. We show that a large fragment of XQuery can be translated into MFTs – indeed a fragment of XQuery, that can express the important features missing from the GCX language, such as XPath predicates and let-expressions. We rely on a streaming execution engine for MFTs implemented in OCaml by Nakano and Mu [30]. We use a well-founded set of MFT-optimizations that are common in functional programming. In particular, we apply deforestation [39] which has been heavily studied and applied in functional programming languages like Haskell. Thus, we have moved XQuery streaming from a “one off” problem to a well-understood problem within transducer programming. Further, we can exploit feature of MFTs not present in our XQuery fragment. For instance, MFTs naturally support recursive function definitions. It is thus possible to translate a given XQuery program into an MFT, and to then change the MFT by adding recursive definitions. Alternatively, it would be possible to write a recursive MFT program which uses small XQuery programs in the right-hand sides of its rules. Another convenient feature of MFTs is their ability to validate the input, during transformation. This allows to check a XML Schema or Relax NG in one pass during the streaming transformation.

Our contributions are summarized as:

• We formalize a translation from a fragment of XQuery into macro forest transducers. We implemented a prototype system of our translation.

• We demonstrate the efficiency of our system and compare it experimentally with GCX. In a nutshell, our system performs on par with GCX.

• We present three different optimizations: two forms of parameter removal, and the removal of stay moves. Together, they often induce a speedup of one order of magnitude.

• We prove bigO complexity of composition constructions for MFTs. In the literature these constructions have exponential time complexity. Using a particular feature of our MFTs (“stay moves”) we are able to prove a quadratic time complexity. Roughly speaking, stay moves allow to compress intermediate rule trees.

Let us now explain in more detail some of the useful known properties about macro forest transducers that we use. They can be applied to XQuery programs thanks to our translation of XQuery into MFT.

(1) Streaming: MFTs traverse an input forest by applying rules based on structural recursion. Nakano and Mu [30] show that any MFT-style program can be streamed thanks to the structural recursion restriction. Their streaming is based on the composition of an MFT and an XML parsing transducer in a way similar to that of a macro tree transducer and a top-down tree transducer. They illustrate that the obtained transducer can be naturally implemented as a pushdown machine which directly processes an input XML stream and produces the output XML stream. Their streaming approach has, however, an disadvantage that it is hard for programmers to write an MFT-style program for XML transformation. Our XQuery-to-MFT translation makes up for this shortcoming. Programmers can now write transformations in the user-friendly query language XQuery instead of MFT-style programs, to obtain an XML stream processors. Due to the expressiveness of MFTs, our XQuery streaming supports even complex queries which contain nested loops and multiple variable accesses.

(2) Composition: MFTs themselves are not closed under composition. Several important subclasses however are closed under composition. For instance, their restriction to linear size increase are MSO definable and therefore are closed under composition; this follows from Engelfriet and Maneth’s result that macro tree transducers of linear size increase are MSO definable [6] and Maneth’s result that the composition hierarchy of macro tree transducers collapses for linear size increase [28]. Note also that the linear size property is decidable for MFTs. If the MFT does not use context-parameters then it is called a “top-down forest transducer” (FTs). FTs are also not closed under composition, however, we show that the composition of two FTs can be realized by one MFT. We give an explicit construction for this result, and show that its time complexity is $O(|\Sigma||M_1||M_2|)$, where Σ is the size of the alphabet of element/attribute and text constants used by the transducers. This is possible in the presence of stay-moves (or by using DAG compressed right-hand sides); the classical constructions for composition of top-down tree transducers by Rounds [33] and Baker [1] are in fact exponential in the size of the first transducer M_1.

(3) Static Analyses: A powerful feature of MFTs is inverse type inference: regular tree languages are effectively preserved by inverses of MFT translations. This allows to perform exact type checking [24, 27]. It also allows to check the parameter strictness of the states of a transducer. We use a simple version of strictness analysis in this paper in order to reduce the number of context parameters of an MFT; this is similar to deaccumulation, see [15]. Parameter reduction allows to greatly improve the efficiency of the MFTs that are obtained via our translation.
from XQuery. Another important static analysis (not used here) is equivalence checking: if two MFTs are of linear size increase then their equivalence is decidable [7].

Related Work. Streaming of XPath has been studied extensively. The fundamental article of Green et al. [16] shows how to translate filter-less descendant/child-XPath queries into finite state word automata (DFAs). The DFAs are executed top-down through the tree, using memory proportional to the depth of the XML document tree. Several systems are based on finite automata, such as Xfilter, XTree, YFilter, PrefixFilter, AFilter, and the XPush machine. Streaming of XPath queries that include filters is difficult, because candidate nodes that depend on a filter need to be stored in memory. Recent work of Niehren et al. studies this in detail, see, e.g., [11, 13, 3]. Bar-Yossef, Fontoura, and Josifovski [2] study theoretical bounds as well as practical streaming algorithms for XPath. Shalem and Bar-Yossef [35] study twig-join algorithms over XML streams.

Early systems for XQuery streaming include the BEA processor [11], FluxQuery [19], and the Raindrop system [41]. Streaming of XQuery based on physical algebra operators is presented in [10]. There has been a transducer-based approach for streaming of XQuery [22], but, the transducers are more restrictive than our macro forest transducer. Streaming of XSLT has been considered by Dvorakova [4] using tree transducers. The transducers are similar to tree-walking tree transducers (see e.g., [28]) as they can use XPath expressions with forward and backward axes in the right-hand sides of their rules. For a given XSLT program, they present an analysis that attempts to find a smallest class of transducers that captures the given transformation. The classes are distinguished by the number of passes and the memory needed. No experimental evaluation of Dvorakova’s work is available. A mature commercial XSLT engine is SAXON by Kay [17]. Its performance is lower with respect to GCX and our engine, but, SAXON is not comparable to these systems because it implements the full W3C standard of XSLT while GCX and our engine are proof-of-concept prototypes supporting restricted subsets of XQuery. Note that the main purpose of the new XSLT 3.0 specification is to support streaming. For this, new primitives and modes are introduced for indicating the desire to stream. A set of rules determines if the given program can indeed be streamed. Their memory requirement is that “not all input and output nodes are held in memory”.

There are several works on streaming XML transformations based on programming language theoretic approaches. In a direction similar to streaming MFTs [9], Frisch and Nakano proposed stream processing for term rewriting systems (TRS) [12], which is more powerful than MFTs because of their Turing completeness. However, it is still hard to write an XML transformation in TRS and it requires careful programming for an efficient stream processing. Kodama, Suenaga, and Kobayashi applied type theories to obtain stream processing [20]. They employ an ordered linear type system for guaranteeing the possibility of streaming. In both approaches, the transformation must be written in their own programming languages instead of existing XML processing languages like XQuery and XSLT.

2 Preliminaries

An XML document represents an ordered unranked tree. The nodes of this tree are of different types: element nodes, text nodes, attribute nodes, processing instructions, etc. Here we distinguish three types: element nodes, attribute nodes, and text nodes. Our techniques easily extend to other types of nodes. Element nodes have an arbitrary number of children and are written in XML as

\[<\text{elementname} \ a_1=v_1 \ \ldots \ a_n=v_n>\ldots </elementname> \]

where \text{elementname} is the name of the element node, \(a_i \) are attribute names, \(v_i \) are text values (given as strings between double quotes), and “…” (possibly) contains further descendant nodes of this element node. In our unranked tree model, the first \(n \) children of an element node are attribute nodes labeled \(a_1, \ldots, a_n \); each attribute node has exactly one child which is a text node labeled \(v_i \). Text nodes have no children, i.e., they are leaves of the tree; they are labeled by a “text content” which is a character sequence appearing in the XML document. For instance, this XML snippet

\[
<\text{book} \ isbn="123" \ price="$99">\text{author}Knuth

</author><\text{title}Art \ of \ Programming</title>

</book>
\]

represents the unranked tree in Figure 1. It consists of a root node labeled “book” which has four children, labeled “isbn”, “price”, “author”, and “title”, respectively. Each of these children nodes has exactly one child that is a
text node (labeled “123”, “$99”, etc). Formally, each node has a type and a name. For us, both are part of the label, i.e., labels are of the form (type, name). We abstract from such pairs and assume that every node is labeled by a word in U^+. The set U is a fixed universal (finite) alphabet U of characters. For simplicity, we represent text nodes as special element nodes with empty child. We define XML forests as sequences of unranked trees.

Definition 1 An XML forest is a sequence $t_1 \cdots t_n$ where $n \geq 0$ and t_1, \ldots, t_n are unranked trees. An unranked tree consists of a root node labeled by a word in U^+ and a (possibly empty) sequence of subtrees. The set of all XML forests is denoted by \mathcal{F}. We often write a forest in term notation, i.e., generated by this EBNF:

$$
forest ::= \varepsilon | tree \\
tree ::= label(forest) \\
label ::= U^+.
$$

2.1 MinXQuery: XQuery Fragment

We consider a downward navigational fragment of XQuery, called MinXQuery. XPath expressions in our queries may use the child, descendant, and following-sibling axes. Filters may test the existence of a path, or may compare a text node or attribute value against a constant string value. We do not allow where-clauses, “ordered by”- statements, recursive function definitions, and joins. Thus, MinXQuery expressions consist of nested for-loops and let-statements. We do not discuss text predicates such as starts-with and contains; they are easy to support and are part of our prototype.

Figure 2 shows an EBNF of MinXQuery fragment. Additional to the syntax defined in that figure we impose the following restrictions on an XQuery program:

- The input document is bound to a special variable named \textit{input}.

- Every XPath expression starts with a variable which has been introduced in the nearest enclosing for clause, or, if no such for clause exists, with the variable \textit{input}.
Although the second restriction disables to define join queries, we can still write many practical queries by utilizing XPath predicates and nested loops. We do not define the semantics of XQuery programs here; see, e.g., [40]. As an example consider the following MinXQuery program:

```xml
for $v1 in $input/descendant::a return
  for $v2 in $v1/descendant::b return
    let $v3 := $v2/descendant::c return
    let $v4 := $v2/descendant::d return
    ($v1,$v2,$v3,$v4)
```

Consider the evaluation of this program on the following input document:

```xml
<doc><a><b><c><d/></b></c></d></a></doc>
```

Let us refer to the first b-node in the document by b_1, and to the second one (in preorder) by b_2, etc. The first sequence of subtrees that are output are those rooted at a_1, b_1, c_1, c_2, d_1, and d_2, respectively. Another sequence of subtrees is also output, whose roots are a_1, b_2, and d_3.

2.2 Macro Forest Transducers

A forest transducer is a finite state machine that takes as input an XML forest and produces as output an XML forest. Recall that each node of an XML forest is labeled by a non-empty word over U. In our transducers we abstract from U-characters forming the label of a node by fixing a finite set Σ of words in U^+ that are of interest to the transducer. We refer to elements of Σ as “symbols”. A rule for the state of a transducer tests if the current input node is labeled by a given symbol $\sigma \in \Sigma$. A state also has a “default rule” which is applicable if no other rule of that state applies; the default rule applies to any U^+-labeled node. The parsing of an input forest according to the EBNF given in Definition 1 also provides us with the information whether the empty forest ϵ is reached. For instance, the parsing of the forest $a(b())$ is parsed as $a(b(\epsilon)\epsilon)\epsilon$. Our transducers may use this information on occurrences of ϵ: for each state we require that the transducer has a rule for the input ϵ.

We define the fixed set $Y = \{y_1, y_2, \ldots\}$ of context parameters, also called accumulating parameters, or simply parameters. A ranked set is a set together with a mapping that associates to each element of the set a non-negative number, called the rank of that element. For a ranked set Q we denote by $Q^{(k)}$ the subset of symbols which have rank k.

Definition 2 Let $\Sigma \subseteq U^+$ be a finite set of symbols and let $\%t$ be a special symbol not in Σ. A macro forest transducer M over Σ is a tuple (Q,Σ,q_0,R) where Q is a finite ranked set of states, each of rank ≥ 1. The initial state q_0 is in $Q^{(1)}$. Let $q \in Q^{(m+1)}$ with $m \geq 0$. For every input symbol $\sigma \in \Sigma$ the set R contains at most one (q,σ)-rule of the form

$$q(\sigma(x_1)x_2,y_1,\ldots,y_m) \rightarrow r,$$

where r is a forest over $\Sigma \cup Q \cup X \cup Y$ with $X = \{x_0,x_1,x_2\}$, $Y = \{y_1,\ldots,y_m\}$, and the properties that a leaf has a label in X if and only if it is the first child of a Q-node, and parameters in Y may only appear at leaves. Variables x_0, x_1 and x_2 bind the current node with the rest of the stream, the children of the current node, and the rest of the stream, respectively. Additionally, R contains exactly one rule of each of the following two kinds: (1) a ϵ-rule of the form

$$q(\epsilon,y_1,\ldots,y_m) \rightarrow r,$$

where r is as for (q,σ)-rules, but with $X = \{x_0\}$; (2) a default rule of the form

$$q(\%t(x_1)x_2,y_1,\ldots,y_m) \rightarrow r,$$

where r is as for (q,σ)-rules but where binary nodes may be labeled $\%t$. □

Note that our transducers are deterministic by definition, i.e., for a state at a given input node, at most one rule is applicable. Note also that they are total and define an output for any arbitrary given input forest, due to the presence of the default rules.
Let $M = (Q, \Sigma, q_0, R)$ be an MFT. A call of the from $q'(x_0)$ in the right-hand side of a rule of M is called “stay move”. Note that stay moves can give rise to non-terminating computation. For instance, the rule $q(\varepsilon) \rightarrow q(x_0)$ if called on the leaf ε does not terminate. We do not further formalize termination but refer the reader to Section 5.2 of [5] where this is discussed for a formalism similar to MFTs, namely for deterministic pebble macro tree transducers. We only deal with terminating MFTs; all our constructions operate on terminating MFTs, and are guaranteed to construct terminating MFTs. Therefore, we always mean “terminating MFT” from now on, when we speak about MFT.

We define the semantics of the MFT M. For a given input XML forest f, M’s output denoted $[M](f)$ is defined as $[q_0](f)$. Every state $q \in Q^{m+1}$, $m \geq 0$ realizes the function $[q] : F^{m+1} \rightarrow F$ defined recursively for forests $g_0, f_1, \ldots, f_m \in F$ as

$[q](g_0, f_1, \ldots, f_m) = [r]$

where r is the right-hand side of the unique rule that is applicable: (i) if $g_0 = \varepsilon$ then r is the right-hand side of q’s ε-rule. (ii) If $g_0 = \sigma(q_1)g_2$ for forests q_1, q_2, then r is the right-hand side of the (q, σ)-rule of M, if it exists, and otherwise is the right-hand side of the default rule of q. The tree $[r]$ is defined inductively as: $[\varepsilon] = \varepsilon$, $[y_j] = f_j$ if $j \in \{1, \ldots, m\}$, and $[q'(x_i, u_1, \ldots, u_n)] = [q']([u_1], \ldots, [u_n])$ if $q' \in Q^{n+1}$, $i \in \{0, 1, 2\}$, and u_1, \ldots, u_n are subtrees in r.

Let us consider this example query P_{person}:

$$\langle \text{out}\rangle \{ \text{for } b \text{ in } \text{input/person[./p_id/text()] = "person0"} \}
\text{return let } r := b/\text{name/text()}
\text{return } r \langle/\text{out}\rangle$$

The query selects all text-node children of any name-node, that is child of a person node, and that person-node has a p_id-child with text node child of content “person0”. Here are the rules of the MFT M_{person} of this example; it outputs a root-node “out” where the children are the results of the above query.

$q_0(\%(x_1)x_2) \rightarrow \text{out}(q_1(x_0))$
$q_1(\text{person}(x_1)x_2) \rightarrow q_2(x_1, q_4(x_1))q_1(x_2)$
$q_1(\%t(x_1)x_2) \rightarrow q_1(x_1)q_1(x_2)$
$q_2(\text{p_id}(x_1)x_2, y_1) \rightarrow q_3(x_1, y_1, q_2(x_2, y_1))$
$q_2(\%t(x_1)x_2, y_1) \rightarrow q_2(x_2, y_1)$
$q_3(\text{person0}(x_1)x_2, y_1, y_2) \rightarrow y_1$
$q_3(\%t(x_1)x_2, y_1, y_2) \rightarrow q_3(x_2, y_1, y_2)$
$q_3(\varepsilon, y_1, y_2) \rightarrow y_2$
$q_4(\text{name}(x_1)x_2) \rightarrow q_5(x_1)q_4(x_2)$
$q_4(\%t(x_1)x_2) \rightarrow q_4(x_2)$
$q_5(\%t\text{text}(x_1)x_2) \rightarrow \%t(\varepsilon)q_5(x_2)$
$q_5(\%t(x_1)x_2) \rightarrow q_5(x_2)$
$q_i(\varepsilon) \rightarrow \varepsilon \text{ for } i \in \{1, 2, 4, 5\}$

where the pattern $\%t\text{text}(x_1)x_2$ matches only text nodes, thereby x_1 should bind ε for ‘normal’ inputs. Let us run the MFT M_{person} on the XML tree for this document:

$$\langle \text{person}\langle p_id\rangle\langle /p_id\rangle\langle /name\rangle\text{Jim} \langle/\text{name}\rangle\langle c/\rangle\langle /name\rangle\text{Li} \langle/\text{name}\rangle$$

We want to compute $[q_0](\text{person}(t_1 t_2 t_3 t_4 \varepsilon) \varepsilon)$ where t_1 is a tree with root-node labeled p_id, t_2, t_4 are name-nodes, and t_3 is a c-leaf. According to the first rule we obtain $out([q_1](\text{person}(f) \varepsilon))$, where f is the forest $t_1 t_2 t_3 t_4 \varepsilon$. We apply the (q_1, person)-rule to obtain

$[q_2](f, [q_4](f)) [q_1](\varepsilon)$.

We remove the q_1-call because it produces ε. Let $t_1 = \text{p_id}(f_1)$ and $f_2 = t_2 t_3 t_4 \varepsilon$. According to the $(q_2, \text{p_id})$-rule, we obtain $[q_3](f_1, [q_4](f), [q_2](f_2, [q_4](f)))$. Let $f_1 = a(\varepsilon)\text{person0}(\varepsilon)\varepsilon$, we apply the default rule for q_3 to obtain

$[q_3](\text{person0}(\varepsilon)\varepsilon, [q_4](f), [q_2](f_2, [q_4](f)))$.

6
Then we apply the \((q_3, \text{person}0)\)-rule to obtain \([q_3](f)\). Let \(t_2 = \text{name}(f_3)\) and \(t_4 = \text{name}(f_4)\). Since \(f = \text{p_id}(f_1)\text{name}(f_3)\text{c}(\varepsilon)\text{name}(f_4)\varepsilon\), we apply the \(q_4\)-rules to obtain \([q_4](f_3)\), \([q_4](f_4)\). The forest \(f_3\) only consists of the “Jim” text node, which is thus output by \(q_4\). Similarly, the \(q_5\)-call is applied to the other text in \(f_4\) and output it. Thereby our final output is out(Jim Li) where the empty forest \(\varepsilon\) is omitted. Note that in XML documents it is not possible to have two text nodes that are direct siblings of each other. Thus, our MFT processor for this example outputs out><Jim Li</out>.

It is interesting to observe why the state \(q_3\) of the transducer \(M_{\text{person}}\) uses two parameters \(y_1\) and \(y_2\). This is done to simulate the existential semantics of XPath filters (the two parameters are used as two branches of an if-then-else statement). To see this, consider the input

\[
<\text{person}><\text{p_id}><a/>\text{perso7}</\text{p_id}><\text{name}>Jim</\text{name}></\text{person}><\text{c}><\text{p_id}>\text{person0}</\text{p_id}></\text{person}>
\]

After some initial steps (as before) we obtain

\[
[q_3](\text{perso7}(\varepsilon), [q_4](f'), [q_2](f_2', [q_4](f')))\].

Since the filter is not true at this point (because “perso7” is not equal to “person0”), we need to check if further \(\text{p_id}\)-children of the person-node satisfy the filter. We carefully prepared for this event, by supplying \(q_3\)’s initial call with a second parameter that contains a \(q_2\)-call to the \(\text{p_id}\)-siblings. Thus, when \(q_2\) meets the \(\varepsilon\)-leaf of perso7 (viz. we know that the filter is false here) it selects its second parameter, thus, we obtain \([q_2](f_2', [q_4](f'))\) and proceed correctly.

Size of a Transducer. We define the size \(|M|\) of the MFT \(M\) as \(|\Sigma|\) plus the sum of sizes of all left-hand sides and right-hand sides of \(M\)’s rules. The size of a forest is defined as the number of its nodes.

3 From MinXQuery to MFT

We now discuss the compilation of a MinXQuery program \(P\) to the MFT \(M_P\). First, let us define a shorthand notation. For a forest \(f\) that is restricted as the default rule of an MFT, but with the additional restriction that \(x_1, x_2\) do not appear, we denote by \(q(\%, y_1, \ldots, y_m) \to f\) the two rules

\[
q(\%t(x_1)x_2, y_1, \ldots, y_m) \to f
q(\varepsilon, y_1, \ldots, y_m) \to f
\]

We define \(M_P = (Q, \Sigma, q_0, R)\) where \(\Sigma\) consists of all element labels and string constants that appear in \(P\). For instance, for our example program \(P_{\text{person}}\), \(\Sigma\) consists of person, \(\text{p_id}\), \(\text{person0}\), and name. The initial state \(q_0\) of the MFT has the two rules induced by:

\[
q_0(\%) \to q_0'(x_0, q_{\text{copy}}(x_0))
\]

where \(q_0', q_{\text{copy}}\) are states in \(Q\) of ranks 2 and 1, respectively. The state \(q_{\text{copy}}\) realizes the identity mapping on forests, via the rules

\[
q_{\text{copy}}(\%t(x_1)x_2) \to \%t(q_{\text{copy}}(x_1))q_{\text{copy}}(x_2)
q_{\text{copy}}(\varepsilon) \to \varepsilon.
\]

Our compilation functions are defined recursively on the structure of \(P\), and return sets of rules. The compilation of any (sub)-expression of \(P\) is done in the context of a mapping \(\rho\) and a state \(q \in Q\). The mapping \(\rho\) is of the form \(\rho = \{(v_1, 1), \ldots, (v_n, n)\}\), where \(v_i\) are variable names appearing in the MinXQuery program. The state \(q \in Q\) is the current state for which rules are defined by the compilation. We define \(\rho_0 = \{(%\$\text{input}, 1)\}\) and issue the call \(\mathcal{T}(P, \rho_0, q_0)\) as initial call to the compilation function \(\mathcal{T}\).

We define the compilation function \(\mathcal{T}\) recursively. Let \(e, e', e_1, \ldots, e_n\) be arbitrary MinXQuery expressions, \(\rho\) a mapping, \(q \in Q\) of rank \(m+1\), \(m \geq 0\), and \(p\) an XPath expression (as defined by the nonterminal \(\text{ordpath}\) in the EBNF of Figure 2).

If \(e = e_1 \cdots e_n\) then let \(q_1, \ldots, q_n\) be new states in \(Q\) of rank \(m+1\) and define \(\mathcal{T}(e, \rho, q) = \{r\} \cup \mathcal{T}(e_1, \rho, q_1) \cup \cdots \cup \mathcal{T}(e_n, \rho, q_n)\) where \(r\) is the rule \(q(\%, y_1, \ldots, y_m) \to q_1(x_0, y_1, \ldots, y_m) \cdots q_n(x_0, y_1, \ldots, y_m)\).

If \(e = \langle \sigma \rangle e'\langle /\sigma \rangle\) with \(\sigma \in \Sigma\) then let \(q'\) be a new state in \(Q\) of rank \(m+1\) and define \(\mathcal{T}(e, \rho, q) = \{r\} \cup \mathcal{T}(e', \rho, q')\) where \(r\) is the rule \(q(\%, y_1, \ldots, y_m) \to \sigma(q'(x_0, y_1, \ldots, y_m))\).

If \(e = \sigma\) (i.e., \(\sigma\) is a string constant) then define \(\mathcal{T}(e, \rho, q) = \{q(\%, y_1, \ldots, y_m) \to \sigma(\varepsilon)\}\).
If \(e = \$v \) where \(\$v \) is a variable name, then define \(\mathcal{T}(e, \rho, q) = \{ q(y, 1, \ldots, y_m) \rightarrow y_{\rho}(\$v) \} \).

If \(e = \text{for } \$v \text{ in } p \ e' \) then let \(q' \) be a new state in \(Q \) of rank \(m + 2 \) and define \(\mathcal{T}(e, \rho, q) = \mathcal{T}(e', \rho', q') \cup \mathcal{F}(p, q, q') \) where \(\rho' = \rho \cup \{ \{\$v, m + 1\} \} \) and \(\mathcal{F}(p, q, q') \) is defined below.

If \(e = \text{let } \$v; *e_v \text{ e}_v' \) then let \(q_v, q_v' \) be new states in \(Q \) of rank \(m + 1 \) and \(m + 2 \), respectively. Define \(\mathcal{T}(e, \rho, q) = \{ r \} \cup \mathcal{T}(e, \rho, q_v) \cup \mathcal{T}(e', \rho', q') \) where \(\rho' = \rho \cup \{ \{\$v, m + 1\} \} \) and \(r \) is the rule \(q(y, 1, \ldots, y_m) \rightarrow q'(x_0, y_1, \ldots, y_{m-1}) \), \(q_v(x_0, y_1, \ldots, y_m) \).

If \(e = p \) with an XPath expression \(p \), then let \(q' \) be a new state in \(Q \) of rank \(m + 2 \) and define \(\mathcal{T}(e, \rho, q) = \{ r \} \cup \mathcal{T}(p, q, q') \) where \(r \) is the rule \(q'(y, 1, \ldots, y_{m+1}) \rightarrow y_{m+1} \).

The rules in \(\mathcal{F}(p, q, q') \) are defined so that

\[
[q](t_1 s_1, u_1, \ldots, u_m) = \[q'](t_1 s_1, u_1, \ldots, u_m, t_1) \ldots [q'](t_n s_n, u_1, \ldots, u_m, t_n)
\]

where \(t_1, \ldots, t_n \) are all subtrees of \(p \) in pre-order, that satisfy the XPath \(p \) relative to the root of \(t \), and \(s_1, \ldots, s_n \) are the sequences of their following siblings.

Let us give a definition of \(\mathcal{F}(p, q, q') \) for an XPath \(p \), two states \(q \) and \(q' \) with rank \(m \) and \(m + 1 \), respectively, so that equation [1] holds. We first show the case where \(p \) contains no predicate. We obtain a total deterministic finite automaton (DFA) from the XPath \(p \) in the usual way. We only discuss child and descendant axes. This translation is described by Green et al [16]. The cases for sequences of following-sibling axes is similar. Without loss of generality, the initial state of the DFA has no incoming transition. The set \(\mathcal{F}(p, q, q') \) consists of rules each of which corresponds to a transition \(q_1 \xrightarrow{a} q_2 \) of the DFA. When \(q_1 \) is not initial and \(q_2 \) is not final, \(\mathcal{F}(p, q, q') \) contains a rule \(q_1(a(x_1) x_2, y_1, \ldots, y_m) \rightarrow q_2(x_1, y_1, \ldots, y_m) \). When \(q_1 \) is initial and \(q_2 \) is not final the set has a rule \(q_1(a(x_1) x_2, y_1, \ldots, y_m) \rightarrow q_2(x_1, y_1, \ldots, y_m) \). When \(q_1 \) is not initial and \(q_2 \) is final, the set has a rule \(q_1(a(x_1) x_2, y_1, \ldots, y_m) \rightarrow q'(x_0, y_1, \ldots, y_m, a(q_{\text{copy}}(x_1))) \).

Next we show the case where the XPath \(p \) contains predicates. We fist construct a set of rules in a way similar to the above ignoring all predicates. If a step in the XPath \(p \) has a predicate \(p' \), we modify rules corresponding to the step for the transition \(q_1 \xrightarrow{a} q_2 \) of the DFA using another DFA obtained from the predicate XPath \(p' \). Before the modification, we introduce a state \(q_{p'} \) in the translated MFT so that \([q_{p'}][t s_1, u_1, u_2] = u_1 \) if the predicate XPath \(p' \) is true for \(t \) relative to the root of \(t \), and \([q_{p'}][t s_1, u_1, u_2] = u_2 \) otherwise. The set of rules for \(q_{p'} \) is obtained in a way similar to regular lookahead removal in macro tree transducers [21]. We use this state \(q_{p'} \) for the modification of rules. For example, suppose that we obtain the following rules for \(q_1 \) by ignoring predicates:

\[
q_1(a(x_1) x_2, y_1, \ldots, y_m)
\rightarrow q_2(x_1, y_1, \ldots, y_m) q_3(x_2, y_1, \ldots, y_m)
\]

Then we modify the first rule as follows.

\[
q_1(a(x_1) x_2, y_1, \ldots, y_m) \rightarrow q_{p'}(x_1, q_2(x_1, y_1, \ldots, y_m), q_3(x_2, y_1, \ldots, y_m)) q_1(x_2, y_1, \ldots, y_m)
\]

Let us summarize our translation using the example program \(P_{\text{person}} \). First, an MFT rule \(q_0(\%) \rightarrow q_1(x_0, q_{\text{copy}}(x_0)) \) is generated for the initial state \(q_0 \), where \(q_1 \) corresponds to an expression \(e = \text{<out>}{e_{\text{input}}}</out> \). The accumulating parameter of \(q_1 \) is introduced for the \$input variable, which is not used as an output hence it will be eliminated in the further optimization. For the \(q_1 \) state, an MFT rule \(q_1(\%, y_1) \rightarrow q_2(x_0, y_1, y_2) \) is generated by \(\mathcal{T}(e, \rho, q_1) \) with \(\rho = \{ \{\$input, 1\} \} \). For more MFT rules, we compute \(\mathcal{T}(e_{\text{for}}, \rho, q_2) = \mathcal{T}(e_{\text{let}}, \rho', q_3) \cup \mathcal{F}(p, q, q_3) \) where \(e_{\text{let}} = \text{for } \$b \text{ in } p \text{ return } e_{\text{let}} \) and \(\rho' = \rho \cup \{ \{\$b, 2\} \} \). MFT rules for the \(q_3 \) state are obtained by the further computation so that the output of \(q_3 \) is the results of the \(e_{\text{let}} \) expression for the current node. The computation of \(\mathcal{F}(p, q, q_3) \) generates MFT rules for the \(q_3 \) state which collect a sequence of results of \(q_3 \) at the path \(p \). After the whole translation, an MFT with 14 states is finally generated. By the parameter reduction discussed in Section [4] the MFT \(M_{\text{person}} \) will be obtained.
The size $|P|$ of a MinXQuery program P is defined as the number of nodes in its parse tree (according to our EBNF in Figure 2).

Theorem 1 Given a MinXQuery program P, the MFT M_P is constructed in time $O(|P|)$. For every XML forest f it holds that $\|M_P\|(f) = \|P\|(f)$.

4 Optimizations

4.1 Parameter Reduction

Our translation generates a transducer which includes many redundant parameters in general. They should be eliminated as much as possible because the number of parameters has a serious effect on efficiency of streaming of the obtained transducers. In an extreme case, we can eliminate all parameters. This will also help us to apply composition laws discussed in Section 4.2. In this section, we suppose that the index position of arguments (or parameters) of states is starting with zero, e.g., the parameter y_2 in $q(x,y_1,y_2)$ is called the second parameter.

In our implementation, we eliminated two kinds of parameters: unused parameters and constant parameters. Additionally, we eliminated parameters by removing stay moves and unreachable states. Since the optimizations may interact, we apply them repeatedly.

Unused parameter reduction. An unused parameter is one that does not appear in the output, for any given input. For example, if we have five rules for the states q and $q’$

\[
\begin{align*}
q(\sigma(x_1)x_2,y_1,y_2) & \rightarrow \delta(q'(x_2,y_1,y_2)) \\
q(\%t(x_1)x_2,y_1,y_2) & \rightarrow \%t(q'(x_2,\delta(y_2),\sigma(y_2))) \\
q(\varepsilon,y_1,y_2) & \rightarrow \sigma(y_2) \\
q'(\%t(x_1)x_2,y_1,y_2) & \rightarrow q(x_1,\varepsilon,y_1) \\
q'(\varepsilon,y_1,y_2) & \rightarrow \varepsilon,
\end{align*}
\]

then the parameters y_1 of q and y_2 of q' are unused because they never contribute to outputs of the transducer. The second parameter y_2 of q is obviously used for output because of the third rule. From this fact, the parameter y_1 of q' may also be used because it will be passed to q as the second argument in the fourth rule. A set of unused parameters are obtained by finding all necessary parameters in the following algorithm. Let us call a bare occurrence of y_i in e when y_i occurs in e but not in an argument of a state call in e. The algorithm collects all necessary parameters as a set $S \subseteq U$ with $U = \{(q,i) \mid q \in Q, 1 \leq i \leq \text{rank}(q) - 1\}$ so that $(q,i) \in S$ implies that the i-th parameter of state q appears in outputs.

\[
S := \{(q,i) \mid y_i \text{ is a bare occurrence in the right-hand side of } q \text{ rule.}\}
\]

until S is no longer updated do

\[
S := S \cup \{(q,i) \mid (q',i') \in S, \\
e \text{ is the } i'\text{-th argument of a } q' \text{ call} \\
in the right-hand side of } q \text{ rule,} \\
y_i \text{ is a bare occurrence in } e
\]

end

This procedure always terminates because of finiteness of U. Obviously, $U \setminus S$ is a set of unused parameters. For each $(q,i) \in U \setminus S$, the parameter y_i can be eliminated from the left-hand side of the q rules. We also remove the i-th argument of the q-call in the right-hand sides of all rules.

Constant parameter reduction. A constant parameter is a parameter which is always instantiated by the same constant forest. This can be found by checking whether the parameter of the state in the right-hand sides of all rules is either the specific constant forest or the parameter of the same state in the left-hand side. For example, let f be an XML forest and consider rules

\[
\begin{align*}
q(\sigma(x_1)x_2,y_1,y_2) & \rightarrow q(x_1,\varepsilon,y_2) \delta(q'(x_2,y_2)) \\
q(\%t(x_1)x_2,y_1,y_2) & \rightarrow q(x_1,\varepsilon,y_2) \%t(q'(x_2,\delta(y_2)))) \\
q(\varepsilon,y_1,y_2) & \rightarrow y_1 \\
q'(\%t(x_1)x_2,y_1) & \rightarrow \delta(q(x_1,\varepsilon,x_2))
\end{align*}
\]
and no other rule contains \(q \) in its right-hand side. The parameter \(y_1 \) can be eliminated from the \(q \)-rules. We replace all occurrences of \(y_1 \) with the constant \(\epsilon \) in the right-hand side of the \(q \) rules, i.e., the third rule in the example above becomes \(q(\epsilon, y_2) \rightarrow \epsilon \).

Stay move removal. Removing stay moves also contributes to parameter reduction because it may remove states with parameters by inlining. For example, if we have a rule \(q(\%, y_1, y_2) \rightarrow q'(x_0) y_1 \), then all occurrences of \(q(x_1, e_1, e_2) \) in the right-hand sides of the rules can be replaced by \(q'(x_1) e_1 \). Since the state \(q \) is discarded, the number of parameters is consequently reduced. Note that our translation only introduces stay rule of the form of the \(q(\%, \ldots) \rightarrow f \) which are particularly easy to inline. A general procedure for stay-move removal of similar transducers is given in Theorem 31 of [5].

Unreachable state removal. Removing unreachable states can reduce the number of parameters for the same reason as the stay move removal. When we construct the state-call dependency graph according to all rules, it is obvious that unreachable states from the initial state are unused. In an extreme case, the translation of a given MinXQuery program introduces only redundant parameters, which can be reduced by the four procedures above. It is possible to detect whether the case happens or not from a MinXQuery program without translation. Let us classify occurrences of variables in the MinXQuery program into three: bound variables, path variables, and output variables. A bound variable occurs at the left-hand side of a \(\text{let} \) or \(\text{for} \) clause; a path variable occurs at the beginning of an XPath expression; an output variable occurs at the other parts. Our translation introduces parameters for two purposes: XPath predicates and output variables. Many parameters introduced for variable bindings can be removed because most variables in MinXQuery programs occur as path variables. These parameters are removed as unused parameters in the aforementioned way. Additionally, if an output variable occurrence in the program is only where it is introduced by the nearest enclosing \(\text{for} \) clause, the corresponding parameter can be removed by stay move removal. In summary, we easily obtain the following lemma from these observation.

An MFT where each state is of rank 1, i.e., in which no context parameters \(y_1, \ldots \) are used is called top-down forest transducers, abbreviated FT.

Theorem 2 Let \(P \) be a MinXQuery program. When \(P \) satisfies (1) every XPath expression contains no predicates, and (2) every output variable occurrence is not inside of a \(\text{for} \) clause except that the corresponding bound variable occurrence is in the \(\text{for} \) clause, there effectively exists an FT equivalent to \([P]\).

Proof. Suppose that a MinXQuery program \(P \) satisfies the conditions above. It suffices to show that all accumulating parameters of the translated MFT can be removed. From the first condition on XPath expressions, all parameters of the translated MFT are introduced in the following four cases of translation: the initial state, \(\text{for} \) clauses, \(\text{let} \) clauses, and XPath queries. For the initial state, our translation introduces a parameter for the \$input variable. From the second condition, it does not occur inside any \(\text{for} \) clause, hence the parameter can be eliminated in all states introduced for translating the inside expressions. For the other states which have the parameter, we can remove them by stay move removal. As for the \(\text{for} \) and \(\text{let} \) clauses, the present statement can be shown in a similar way. The state introduced for an XPath query translation can be immediately eliminated by stay move removal. \(\square \)

4.2 Composition

Composition of two XML transformations is to remove intermediate XML tree constructions like deforestation [39], which has been heavily studied in the context of functional programming. This can be a powerful optimization for XML processing. Koch chose for GCX a compositional fragment of XQuery. This means that two XQuery programs (where the second reads the output of the first) can be composed into one program. It can be shown that our fragment of XQuery can be composed as well. What is known on the forest/tree transducer side with respect to composition? It is easy to see that both MFT and MFT without parameters (FT) are not closed under composition. But, two FTs can be composed into one MFT. This can be obtained through known results; we give a direct construction and determine its worst-case time complexity. We consider further composition results, when one of the involved transducer is a tree transducer, and state the complexity in terms of bigO-notation. Our transducers are slightly different from those in the literature, plus, no complexity statements are known; therefore dwell on the theory and establish these results here. We denote \(f \circ g \) for a composition of two functions and \(F \circ G \) for a composition of two classes, that is, \(F \circ G = \{ f \circ g \mid f \in F, g \in G \} \).
Expressive Power. An XML forest can naturally be seen as a binary tree, using the well-known first-child next-sibling encoding (see, e.g., [37]). In this encoding, the first child of an unranked node becomes the left child in the binary tree, and the next sibling in the unranked tree becomes the right child in the binary tree. If an element node has no first child or no next sibling, then in the binary tree it has the empty tree ε as left (resp. right) child.

A binary XML tree is a binary tree with internal nodes of rank 2 labeled by elements in \(U^* \) and leaves labeled ε. The set of all binary XML trees is denoted by \(B \). For an XML forest \(f \in \mathcal{F} \) we denote by \(\text{fcns}(f) \) its first-child next-sibling encoded binary XML tree in \(B \); i.e., \(\text{fcns}(\varepsilon) = \varepsilon \) and for forests \(f_1, f_2 \) and \(\sigma \in U^+ \),

\[
\text{fcns}(\sigma(f_1), f_2) = \sigma(\text{fcns}(f_1), \text{fcns}(f_2)).
\]

Given an MFT \(M \), its binary tree translation \([M]_B \) is the function over \(B \) defined as

\[
[M]_B = \{(\text{fcns}(f), \text{fcns}(g)) \mid (f, g) \in [M]\}.
\]

We denote by \(\text{mft} \) the class of all binary tree translations realized by MFTs.

We can now compare the expressive power of MFTs to other well-known classes of tree translations. A macro tree transducer (top-down tree transducer), for short MTT (TT), is an MFT (FT) \(M \) such that the right-hand side of each rule is a tree in which \((\Sigma \cup \{\%t\}) \)-labeled nodes are binary. In this case the output is always a binary tree, and therefore we define the tree translation of \(M \) as \([M]_B = \{(\text{fcns}(f), g) \mid (f, g) \in [M]\} \). The classes of translations are denoted MTT and TT. Macro and top-down tree transducers are conventionally defined for ranked input and output alphabets (not necessarily binary), and do not have stay moves or default rules. These inclusions hold: \(\text{TT} \subseteq \text{FT} \subseteq \text{MTT} \subseteq \text{MFT} \).

It was shown in [32], for transducers without stay and default rules, that every macro forest transducer can be decomposed into a macro tree transducer, followed by an “evaluation mapping” \(\text{eval} \). The macro tree transducer is obtained from the macro forest transducer by replacing each occurrence of concatenation in the right-hand sides of the rules by a special binary symbol @. For instance, the MFT right-hand side \(q(x_1)y_1b(\varepsilon, \varepsilon) \) is replaced by the tree \(@q(x_1), @y_1, b(\varepsilon, \varepsilon)) \). The evaluation mapping interprets @-symbols by concatenation, i.e., \(\text{eval}(@t_1, t_2) = \text{eval}(t_1)\text{eval}(t_2) \), and for all other labels realizes the identity. It should be clear that this result also holds in the presence of stay and default rules. Thus, we have \(\text{mft} \subseteq \text{mtt} \cap \text{eval} \). It is not difficult to show that also the converse inclusion holds: given an MTT \(M \) and an evaluation mapping \(\text{eval}_2 \), we can construct an MFT \(N \) such that \([N] = [M] \cap \text{eval}_2 \) (we simply remove all @-symbols from the right-hand sides of \(M \)'s rules by interpreting them according to \(\text{eval}_2 \)). The constructions do not affect the presence of parameters, and thus the inclusions also hold for forest transducers (without context-parameters). It is shown in [32] that \(\text{eval} \subset \text{mft} \) can be realized by a macro tree transducer.

Lemma 1 The following relations hold (and one representation can be obtained from the other in linear time):

\[
\begin{align*}
(1) \quad \text{MFT} & = \text{MTT} \cap \text{eval} \\
(2) \quad \text{FT} & = \text{TT} \cap \text{eval} \\
(3) \quad \text{eval} & \subseteq \text{MTT}.
\end{align*}
\]

We want to derive new composition results for MFTs, using existing results about tree transducers. We are interested in complexity, and therefore must look carefully how stay rules and default rules behave under composition.

As it turns out, stay rules are quite useful for transducer composition: they allow to “compress” new right-hand sides (using the compression power of transducer rules). Without them, composing two top-down tree transducers takes exponential time, with them: quadratic time! This is easy to see: consider a transducer \(M_1 \) that translates every a-node into 4 b-nodes:

\[
\begin{align*}
q_0(a(x_1)) & \rightarrow b(b(b(q_0(x_1)))) \\
q_0(\varepsilon) & \rightarrow \varepsilon
\end{align*}
\]

The next transducer \(M_2 \) spawns two new copies for each b node, via a rule of the form

\[
\begin{align*}
p_0(b(x_1)) & \rightarrow c(p_0(x_1), p_0(x_1)) \\
p_0(\varepsilon) & \rightarrow \varepsilon
\end{align*}
\]

If we follow the natural product construction of translating via \(M_2 \) the right-hand sides of \(M_1 \)'s rules, then we obtain this deterministic top-down tree transducer (DT for short) rules

\[
\begin{align*}
\langle q_0, p_0 \rangle(a(x_1)) & \rightarrow c(c(c(q_0, p_0)(x_1), \ldots))) \\
\langle q_0, p_0 \rangle(\varepsilon) & \rightarrow \varepsilon
\end{align*}
\]
which contains a complete binary tree of height 5 in its right-hand side and thus is of exponential size. It is not difficult to see that there is no smaller equivalent DT. In the presence of stay rules we can avoid such blow-ups. A stay transducer for the example does not have a right-hand side of exponential size for the \((q_0, p_0, a)\)-rule, but instead breaks up that tree into many separate rules of the node-by-node \(M_2\)-translation of \(M_1\)'s \((q_0, a)\)-rule:

\[
\begin{align*}
(q_0, p_0)(a(x_1)) & \rightarrow c((q_0, p_0, 1)(x_1), (q_0, p_0, 1)(x_1)) \\
(q_0, p_0, 1)(a(x_1)) & \rightarrow c((q_0, p_0, 2)(x_0), (q_0, p_0, 2)(x_0)) \\
(q_0, p_0, 2)(a(x_1)) & \rightarrow c((q_0, p_0, 3)(x_0), (q_0, p_0, 3)(x_0)) \\
(q_0, p_0, 3)(a(x_1)) & \rightarrow c((q_0, p_0)(x_0), (q_0, p_0)(x_0))
\end{align*}
\]

Using stay rules we can construct in quadratic time a DT realizing the composition of two given DTs. In fact, this also works for two TTs, i.e., if the given transducers have stay rules and default rules. Recall that the size \(|M|\) of transducer \(M\) is defined as \(|\Sigma|\) plus the sum of sizes of \(M\)'s rules.

Lemma 2 Let \(M_1, M_2\) be TTs over \(\Sigma\). A TT \(M\) can be constructed in time \(O(|\Sigma||M_1||M_2|)\) such that \(|M| = [M_1]_{[M_2]}\).

Proof. Let \(M = (Q, \Sigma, q_1, Q_1)\). We first add some rules to \(M_1\): For every \(a \in \Sigma\) for which there is a \((p, a)\)-rule in \(R_2\) but no \((q, a)\)-rule in \(R_1\) we add the rule \(r_a\) to \(R_1\); the rule \(r_a\) is obtained from \(M_1\)'s binary default rule for state \(q\) by replacing every occurrence of \(\%t\) (in left and right-hand side) by \(a\). We define \(M = (Q, \Sigma, q_1, Q_2)\). For all states \(q \in Q_1\) and \(p \in Q_2\) let \((q, p)\) be a state in \(Q\). For every rule \(r \in R_1\), node \(u\) of the right-hand side of \(r\), and state \(p \in Q_2\), let \((r, u, p)\) be a state in \(Q\). Let \(r \rightarrow b\) be the rule \(q(b(x_1, \ldots, x_k)) \rightarrow t\) with \(k \in \{0, 1, 2\}\) and \(b \in \Sigma \cup \{%t\} \cup \{\varepsilon\}\) and let \(p \in R_2\). We let the rule \((q, p)(b(x_1, \ldots, x_k)) \rightarrow \langle r, \lambda, p\rangle(x_0)\) be in \(R\). Recall that \(\lambda\) denotes the root node of a tree. For every node \(u\) of \(t\) we let the rule \((r, u, p)(b(x_1, \ldots, x_k)) \rightarrow t'\) be in \(R\). If \(u\) is labeled by \(q'(x_i)\) for \(q' \in Q_2\) and \(0 \leq i \leq k\), then define \(t' = q'(p)(x_i)\). Otherwise, \(t'\) is obtained from the right-hand side of the unique \(p\)-rule that is applicable to node \(u\) of \(t\). We finally replace every \(p(x_i)\) by \((r, u, p')(s)\), where \(u\) denotes \(u\). The correctness of the construction follows from the fact that for every input \(t\): \([r, u, p](t) = [p](s)\) where \(s\) is the subtree at \(u\) of \([q](t)\) and \(r\) is the unique \(q\)-rule that is applicable to the root of \(t\). The statement can be proved by induction on the structure of \(t\). Let \(\text{maxrhs}(M_1)\) be the size of a largest right-hand side of \(M_1\)'s rules. In the first step we add at most \(|\Sigma|\)-many rules to \(R_1\). We thus obtain a transducer of size \(O(|\Sigma||M_1|)\). For each rule \(r \in M_2\) we construct in \(M\) at most \(O(|\Sigma||M_1|)\)-many versions of that rule (of same size as \(r\)). Thus \(M\) is constructed in time \(O(|\Sigma||M_1||M_2|)\). \(\square\)

Note that the effective composition closure of total deterministic top-down tree transducers (i.e., TT’s without stay moves and default rules) was proved in Theorem 2 of [33]; it is also shown there that non-total such transducers are not closed under composition. Baker shows how to restrict nondeterministic top-down tree transducers so that they can be composed into one transducer [1]. We are not aware of statements in the literature about the time complexity of tree transducer composition. Before we give results about composition of forest transducers, we lift two existing results about macro tree transducers to the presence of stay moves and default rules.

Lemma 3 Let \(M_1\) be an MTT and \(M_2\) a TT. Then MTTs \(M, M'\) can be constructed in time \(O(|\Sigma||M_1||M_2|)\) such that \(|M| = [M_1]_{[M_2]}\) and \(|M'| = [M_2]_{[M_1]}\).

Proof. The construction of \(M'\) is similar as in the proof of Lemma 2 so we omit the details. The construction of \(M\) is more complicated. Let \(p_1, \ldots, p_m\) be an ordering of the states of \(M_2\). Let \(q\) be a state of \(M_1\) of rank \(m + 1\), \(m \geq 0\), and let state \(p_i\) be a state of \(M_2\). Then define \((q, p_i)\) to be a state of \(M\) of rank \(m + 1\). For every \(q\)-rule \(r\) of \(M_1\) and node \(u\) in the right-hand side of \(r\) define \((r, u, p_i)\) to be a state of \(M\) of rank \(1 + mn\) with \(n = |Q_2|\). The idea is as before, state \((r, u, p_i)\) is obtained by translating the node \(u\) of the right-hand side \(t\) of \(r\) in state \(p_i\) of \(M_2\). The difference now is how to translate parameters \(y_j\): we must output the \(p_i\)-translation of the current parameter tree in \(y_j\). For this, we provide state \((q, p)\) with \(n\)-many copies of each parameter \(y_j\) (one for each state \(p_i\)). Details are omitted due to lack of space; they can be found in the full version of the present paper [?]. \(\square\)

Analogous results (without complexity statements) about transducers without stay moves and default rules are stated in Corollary 4.10 and Theorem 4.12 of [2], respectively.

Composition of Forest Transducers. We now consider the composition of two forest transducers (FTs), i.e., MFTs without accumulating parameters. It is easy to see that FTs are not closed under composition: (1) the output
forests of any FT (seen as binary trees via the first-child/next-sibling encoding) has height at most exponential in the height of the input tree. (2) the composition of the following FT with itself has double exponential height increase. It translates a forest of \(n \) many \(a \)-nodes into a forest of \(2^n \) many \(a \)-nodes:

\[
q(a(x_1, x_2)) \rightarrow q(x_2)q(x_2) \\
q(\varepsilon) \rightarrow a.
\]

We now show that two FTs can be composed into one MFT. In fact, we show a stronger result: the composition of an MTT and an FT can be realized by one MFT. Any FT can be turned in linear time into an equivalent MTT by turning each right-hand side into it binary tree encoding.

Theorem 3 Let \(M_1 \) be an MTT and \(M_2 \) an FT. An MFT \(M \) can be constructed in time \(O(|\Sigma||M_1||M_2|) \) such that \([M] = [M_1] ; [M_2] \).

Proof. By Lemma 1(2), \(M_2 \) can be decomposed into a TT \(M_2' \) and an eval mapping \(\text{eval}_\Sigma \). This takes time \(O(|M_2|) \). According to Lemma 3 we construct in time \(O(|\Sigma||M_1||M_2'|) \) an mtt \(M' \) with \([M'] = [M_1] ; [M_2'] \). Finally, we compose \(M' \) and the \(\text{eval}_\Sigma \) in time \(O(|M'|) \) into the MFT \(M \). □

Theorem 4 Let \(\Sigma \) be an alphabet, \(M_1 \) a TT over \(\Sigma \), and \(M_2 \) an FT over \(\Sigma \). An FT \(M \) can be constructed in time \(O(|\Sigma||M_1||M_2|) \) such that \([M] = [M_1] ; [M_2] \).

Proof. We decompose \(M_2 \) into \(\text{tt} \; \text{eval} \) in time \(O(|M_2|) \) according to Lemma 1(2). We compose \(M_1 \) with the obtain TT in time \(O(|\Sigma||M_1||M_2|) \). From the obtained mapping in \(\text{tt} \; \text{eval} \) we construct an FT again according to Lemma 1(2), in linear time. □

Theorem 5 Let \(M_1 \) be an FT and \(M_2 \) an TT. An MTT \(M \) can be constructed in time \(O(|\Sigma||M_1||M_2|) \) such that \([M] = [M_1] ; [M_2] \).

Proof. We decompose \(M_1 \) into \(\text{tt} \; \text{eval} \) in time \(O(|M_1|) \) according to Lemma 1(2). The eval-mapping can be turned into an MTT in linear time. We compose the first TT and this MTT into one MTT, according to Lemma 5. In this case we do not need to add extra rules to the first transducer, and therefore do not pay the \(\Sigma \)-factor. The reason is that the MTT for eval has no \(a \)-rules for \(a \in \Sigma \) whatsoever: it only consists of default and \(\varepsilon \)-rules. Finally, we compose the obtained MTT with \(M_2 \) to obtain the desired MTT in time \(O(|\Sigma||M_1||M_2|) \). □

5 Experiments

We have implemented in OCaml both our translation from MinXQuery programs into MFTs and MFT optimizations. In this section, we present experimental results of our implementation by connecting with the stream processor generators for MFTs by Nakano and Mu [30]. All experiments are conducted on an Apple XServe with 2.93 GHz 8-core Intel Xeon and 48 GB main memory. In the experiments, we compare our implementation with GCX [13, 35] and Saxon [34], both of which are stream processors for XQuery. GCX supports only a subset of XQuery like ours, while Saxon covers full features of XQuery. The experiments shot that our MFT-based approach achieves performance on a par with GCX. We only show the numbers of comparison between ours and GCX because Saxon is much slower than the two. The reason comes from the fact that the Saxon’s streaming is optimized for memory, not for speed. It is implemented in Java which has much overhead in loading the Java VM and warming up the hotspot compiler when run from the command line. A comparison with Saxon is not fair anyhow, because it supports the full standards, while GCX and our engine only implement a small subset of XQuery.

We run over XMark documents [35, 42] with sizes ranging from 100 MB to 100 GB for benchmarking. The GCX distribution comes with example queries for XMark which are adapted versions of the standard XMark XQuery benchmark queries. These 20 queries are of the following three different types:

1. queries with small output (at most 1% of the input size) realizing simple XPath selection (downward axes only)

We have implemented in OCaml both our translation from MinXQuery programs into MFTs and MFT optimizations. In this section, we present experimental results of our implementation by connecting with the stream processor generators for MFTs by Nakano and Mu [30]. All experiments are conducted on an Apple XServe with 2.93 GHz 8-core Intel Xeon and 48 GB main memory. In the experiments, we compare our implementation with GCX [13, 35] and Saxon [34], both of which are stream processors for XQuery. GCX supports only a subset of XQuery like ours, while Saxon covers full features of XQuery. The experiments shot that our MFT-based approach achieves performance on a par with GCX. We only show the numbers of comparison between ours and GCX because Saxon is much slower than the two. The reason comes from the fact that the Saxon’s streaming is optimized for memory, not for speed. It is implemented in Java which has much overhead in loading the Java VM and warming up the hotspot compiler when run from the command line. A comparison with Saxon is not fair anyhow, because it supports the full standards, while GCX and our engine only implement a small subset of XQuery.

We run over XMark documents [35, 42] with sizes ranging from 100 MB to 100 GB for benchmarking. The GCX distribution comes with example queries for XMark which are adapted versions of the standard XMark XQuery benchmark queries. These 20 queries are of the following three different types:

1. queries with small output (at most 1% of the input size) realizing simple XPath selection (downward axes only)
Figure 3: XQuery Benchmark Programs

(2) queries producing huge output of quadratic size

(3) queries that use data value joins

Out of the 20 queries, 16 are of type (1). From these we have picked the six most diverse queries: Q1, Q2, Q4, Q13, Q16, and Q17. Queries of type (2) might not be used in practice very often (they are not quadratic in their original form of the XMark benchmark). Since we do not support join yet, we do not test queries of type (3). It is not difficult to add standard join procedures to our tool, and we do not expect major time differences in comparison to GCX; this is left for future work.

Figure 4 shows results of the comparison between streaming MFT and GCX on total elapsed time and maximum memory consumption. We ran some queries in XMark and simple examples of XQuery with large-sized input XML data. Missing data in the graphs indicates a failure of execution because of out-of-memory except for Figure 4(c) in which GCX fails because of the lack of expressiveness. We also investigate performance of streaming MFTs translated from XQuery before and after applying the optimizations discussed in Section 4, which are referred by “MFT (no-opt)” and “MFT (opt)” in the graphs, respectively. As can be seen, the optimized MFT and GCX consume constant-sized memory, independent of the size of inputs. On the other hand, the unoptimized MFT consumes much more space and often fails to process large-sized inputs. This is because the MFTs translated from XQuery contain many redundant parameters for every variable which may not be used for a part of the output. Since an unoptimized MFT necessarily stores an entire input for the $input variable, it cannot benefit from streaming-style evaluation. Therefore, the optimization phases are indispensable for our MFT-translation and the used MFT stream processor.
Figure 4: Benchmark results
Table 1: Input XML files for benchmark

File	Size	Depth
XMark	any	13
TreeBank DB	86 MB	37
Medline DB	174 MB	8
Protein Sequence DB	684 MB	8

All attribute nodes are encoded as element nodes.

The memory consumptions differ by a factor of about three between the optimized MFT and GCX. This is because of differences of their implementation languages and the employed XML parsers. Our streaming engine is written in OCaml, while GCX is implemented in C++. The measured OCaml memory footprint (including the Expat XML parser) was about 4.5 MB, which was the major factor of the difference. Additionally, GCX could have advantages on memory usage since it employs its own XML parser which does not handle attributes, namespaces and character codes. This difference also affects the comparison results on elapsed time.

The XQuery programs we used are listed in Figure 3. Although the // step is not shown in the syntax of MinXQuery, it is supported in our implementation in a usual way. We modify every program for benchmark it on GCX by replacing XPath predicates with where-clauses.

Let us discuss the results for each query. Figure 4(a) shows the results of running XMark Q1 which requires a simple lookahead because of XPath predicates. Our implementation is about 18% slower than GCX. Figure 4(b) shows the results of running XMark Q2 which contains nested for-loops. Since this query contains neither XPath predicates nor let-clauses, all accumulating parameters can be removed, i.e., the optimized MFT is in FT. In this query, the elapsed times of our MFT-based approach are very close to GCX. Figure 4(c) shows the results of running XMark Q4 which requires selecting according to the sibling order. It is an interesting example in the sense that the query requires a nested XPath predicate like

```
/site/open_auctions/open_auction
[./bidder[./personref//text()="person111"]
/following-sibling::bidder
/personref//text()="person222"]
```

GCX fails to run because the following-sibling axis is not supported. Figure 4(d) shows the results of running XMark Q13 which requires reconstruction of XML data in the result. Since this query satisfies the condition of Theorem 2, all accumulating parameters can be removed, i.e., the optimized MFT is an FT. Our implementation is about 20% slower than GCX. Our implementation is about 23% slower than GCX. Figure 4(e) shows the results of running XMark Q16 which involves an XPath expression with a very long XPath predicate. In this query, we need to very deep lookahead in order to select nodes that may be harmful for stream processing. Although our MFT translation introduces many states with rank 3, the performance of our MFTs is still acceptable. Figure 4(f) shows the results of running XMark Q17 which involves a negative XPath predicate [empty(./homepage/text())]. The experiments show results similar to others. Our implementation is about 21% slower than GCX.

The last three queries test corner cases: the input doubling, the selection via the XPath query //*//*//*, and deep duplication with a nested for-loop. Here our MFT-based implementation shows better results than GCX. Figure 4(g) shows the results of the input doubling query that outputs the input XML twice, which requires the entire input to be stored in memory for the second output. This example shows the our implementation enables to run in streaming style even such an extreme case. GCX seems buggy on the input doubling query (even the identity mapping like <out>{$input/*}</out>), which fails to process when the size of an input is larger than 200 MB. Figure 4(h) shows the results of running the node selection with XPath //*//*//*/.*. Our implementation is 26% faster on average and 41% faster at the maximum than GCX. Figure 4(i) shows the results of the query which require a variable copying many times. Our implementation is 15% faster on average and 48% faster at the maximum than GCX. We tried various kinds of XML data shown in Table 1. Treebank DB has very deep tree structures even when the size is not so large. According to the results, the depth affects the performance of stream processing even when the total size is small. It is difficult to give a general statement on when our streaming has an advantage over GCX. We leave to future work more investigation.
We present a translation of XQuery fragments to MFTs. This fragment is larger than the one supported by GCX, the fastest XQuery streaming tool we know. The main difference to GCX is that we support XPath predicates and let-statements. Moreover, MFTs are more general and allow to easily program recursive function definitions. Many useful static analyses are known for tree transducers and can be applied to our MFTs. We applied three of them: stay-move removal, useless parameter removal, and constant parameter removal. The optimized MFTs are often faster by one order of magnitude in comparison to the unoptimized ones. We present several efficient composition constructions for subclasses of MFTs. These are useful so that intermediate stream results can be avoided. We believe that MFTs are a robust and appropriate intermediate compilation framework for streaming of XQuery. In the future we plan to apply further static analyses known for MFTs. We want to experiment with partial transducers that are obtained by composing with a domain check that corresponds to a DTD or XML Schema. We would like to minimize MFTs by using (a relaxed version of) the “earliest normal form”, similar to the one known for deterministic top-down tree transducers of Engelfriet, Maneth, and Seidl [5]. An earliest transducer produces its output as early as possible during translation. We would like to compress the output trees produced by a transducer: Macro forest transducers can have doubly exponential size increase. This means that the size of an output tree is \(O(2^{2^n}) \), where \(n \) is the size of the corresponding input tree. Their outputs can, however, be represented using grammar-based compression in \(\text{linear space} \) with respect to the input size [25]. Thus, the output stream is guaranteed to be of linear size. It is a challenging open question how to execute an MFT over an input stream that is grammar-compressed. It was recently shown by Maneth, Ordonez, and Seidl [26] that top-down tree transducers can execute in constant memory over DAG-compressed tree streams. Their DAG streams contain forward references to definitions that appear later in the stream. Alternatively, a tree can be shredded into small parallel streams, as considered by Labath and Niehren [21]. Last, we want to study parallel processing of streams by MFTs; parallel execution of MFTs has been considered by Morihata [29].

Acknowledgment

We thank Michael Benedikt and anonymous reviewers for their valuable comments. This work was partially supported by JSPS KAKENHI Grant Number 25730002. Sebastian Maneth was supported by the Engineering and Physical Sciences Research Council project “Enforcement of Constraints on XML streams” (EPSRC EP/G004021/1).

References

[1] B. S. Baker. Composition of top-down and bottom-up tree transductions. *Information and Control*, 41(2):186–213, 1979.
[2] Z. Bar-Yossef, M. Fontoura, and V. Josifovski. On the memory requirements of XPath evaluation over XML streams. *J. Comput. Syst. Sci.*, 73(3):391–441, 2007.
[3] D. Debarbieux, O. Gauwin, J. Niehren, T. Sebastian, and M. Zergaoui. Early nested word automata for XPath query answering on XML streams. In *CIAA*, pages 292–305, 2013.
[4] J. Dvoraková. Automatic streaming processing of XSLT transformations based on tree transducers. *Informatica (Slovenia)*, 32(4):373–382, 2008.
[5] J. Engelfriet and S. Maneth. A comparison of pebble tree transducers with macro tree transducers. *Acta Inf.*, 39(9):613–698, 2003.
[6] J. Engelfriet and S. Maneth. Macro tree translations of linear size increase are MSO definable. *SIAM J. Comput.*, 32(4):950–1006, 2003.
[7] J. Engelfriet and S. Maneth. The equivalence problem for deterministic MSO tree transducers is decidable. *Inf. Process. Lett.*, 100(5):206–212, 2006.
[8] J. Engelfriet, S. Maneth, and H. Seidl. Deciding equivalence of top-down XML transformations in polynomial time. *J. Comput. Syst. Sci.*, 75(5):271–286, 2009.

[9] J. Engelfriet and H. Vogler. Macro tree transducers. *J. Comput. Syst. Sci.*, 31(1):71–146, 1985.

[10] M. F. Fernández, P. Michiels, J. Siméon, and M. Stark. XQuery streaming à la carte. In *ICDE*, pages 256–265, 2007.

[11] D. Florescu, C. Hillery, D. Kossmann, P. Lucas, F. Riccardi, T. Westmann, M. J. Carey, and A. Sundararajan. The BEA streaming XQuery processor. *VLDB J.*, 13(3):294–315, 2004.

[12] A. Frisch and K. Nakano. Streaming XML transformation using term rewriting. In *PLAN-X*, pages 2–13, 2007.

[13] O. Gauwin and J. Niehren. Streamable fragments of forward XPath. In *CIAA*, pages 3–15, 2011.

[14] O. Gauwin, J. Niehren, and S. Tison. Queries on XML streams with bounded delay and concurrency. *Inf. Comput.*, 209(3):409–442, 2011.

[15] J. Giesl, A. Kühnemann, and J. Voigtländer. Deaccumulation techniques for improving provability. *J. Log. Algebr. Program.*, 71(2):79–113, 2007.

[16] T. J. Green, A. Gupta, G. Miklau, M. Onizuka, and D. Suciu. Processing XML streams with deterministic automata and stream indexes. *ACM Trans. Database Syst.*, 29(4):752–788, 2004.

[17] M. Kay. Ten reasons why Saxon XQuery is fast. *IEEE Data Eng. Bull.*, 31(4):65–74, 2008.

[18] C. Koch, S. Scherzinger, and M. Schmidt. The GCX system: Dynamic buffer minimization in streaming XQuery evaluation. In *VLDB*, pages 1378–1381, 2007.

[19] C. Koch, S. Scherzinger, N. Schweikardt, and B. Stegmaier. FluXQuery: An optimizing XQuery processor for streaming xml data. In *VLDB*, pages 1309–1312, 2004.

[20] K. Kodama, K. Suenaga, and N. Kobayashi. Translation of tree-processing programs into stream-processing programs based on ordered linear type. *J. Funct. Program.*, 18(3):333–371, 2008.

[21] P. Labath and J. Niehren. A functional language for hyperstreaming XSLT. Unpublished manuscript available at http://researchers.lille.inria.fr/~niehren/Papers/X-Fun/0.pdf, 2013.

[22] B. Lüdächer, P. Mukhopadhyay, and Y. Papakonstantinou. A transducer-based xml query processor. In *VLDB*, pages 227–238. Morgan Kaufmann, 2002.

[23] S. Maneth. The macro tree transducer hierarchy collapses for functions of linear size increase. In *FSTTCS*, pages 326–337, 2003.

[24] S. Maneth, A. Berlea, T. Perst, and H. Seidl. XML type checking with macro tree transducers. In *PODS*, pages 283–294, 2005.

[25] S. Maneth and G. Busatto. Tree transducers and tree compressions. In *FoSSaCS*, pages 363–377, 2004.

[26] S. Maneth, A. Ordones, and H. Seidl. Constant-memory streaming of XML transformations. In preparation., 2013.

[27] S. Maneth, T. Perst, and H. Seidl. Exact XML type checking in polynomial time. In *ICDT*, pages 254–268, 2007.

[28] S. Maneth, S. Pott, and H. Seidl. Type checking of tree walking transducers. In *Modern Applications of Automata Theory*, pages 325–372. World Scientific, 2012.

[29] A. Morihata. Macro tree transformations of linear size increase achieve cost-optimal parallelism. In *APLAS*, pages 204–219, 2011.
[30] K. Nakano and S.-C. Mu. A pushdown machine for recursive XML processing. In APLAS, pages 340–356, 2006.

[31] D. Olteanu. SPEX: Streamed and progressive evaluation of XPath. IEEE Trans. Knowl. Data Eng., 19(7):934–949, 2007.

[32] T. Perst and H. Seidl. Macro forest transducers. Inf. Process. Lett., 89(3):141–149, 2004.

[33] W. C. Rounds. Mappings and grammars on trees. Mathematical Systems Theory, 4(3):257–287, 1970.

[34] Saxon: The XSLT and XQuery processor. http://saxon.sourceforge.net/.

[35] A. Schmidt, F. Waas, M. L. Kersten, M. J. Carey, I. Manolescu, and R. Busse. XMark: A benchmark for XML data management. In VLDB, pages 974–985, 2002.

[36] M. Schmidt, S. Scherzinger, and C. Koch. Combined static and dynamic analysis for effective buffer minimization in streaming XQuery evaluation. In ICDE, pages 236–245, 2007.

[37] T. Schwentick. Automata for XML - a survey. J. Comput. Syst. Sci., 73(3):289–315, 2007.

[38] M. Shalem and Z. Bar-Yossef. The space complexity of processing XML twig queries over indexed documents. In ICDE, pages 824–832, 2008.

[39] P. Wadler. Deforestation: Transforming programs to eliminate trees. Theor. Comput. Sci., 73(2):231–248, 1990.

[40] P. Wadler. XQuery: A typed functional language for querying XML. In Advanced Functional Programming, pages 188–212, 2002.

[41] M. Wei, E. A. Rundensteiner, M. Mani, and M. Li. Processing recursive XQuery over XML streams: The raindrop approach. Data Knowl. Eng., 65(2):243–265, 2008.

[42] XMark: an XML benchmark project. http://www.xml-benchmark.org/