DNA polymerase ζ: new insight into eukaryotic mutagenesis and mammalian embryonic development

Feng Zhu, Ming Zhang

Feng Zhu, Department of Pathophysiology, Zhejiang University School of Medicine, Hangzhou 310031, Zhejiang Province, China
Ming Zhang, College of Life Science, Zhejiang University, Hangzhou 310012, Zhejiang Province, China

Correspondence to: Professor Ming Zhang, College of Life Science, Zhejiang University, Hangzhou 310012, Zhejiang Province, China. zhangming_ls@zju.edu.cn

Telephone: +86-571-88273423 Fax: +86-571-88273423
Received: 2003-01-04 Accepted: 2003-02-17

Abstract

Information about the mechanisms that generate mutations in eukaryotes is likely to be useful for understanding human health concerns, such as genotoxicity and cancer. Eukaryotic mutagenesis is largely the outcome of attacks by endogenous and environmental agents. Except for DNA repair, cell cycle checkpoints and DNA damage avoidance, cells have also evolved DNA damage tolerance mechanism, by which lesion-targeted mutation might occur in the genome during replication by specific DNA polymerases to bypass the lesions (translesion DNA synthesis, TLS), or mutation on undamaged DNA templates (untargeted mutation) might be induced. DNA polymerase ζ (pol ζ), which was found firstly in budding yeast Saccharomyces cerevisiae and consists of catalytic subunit scRev3 and stimulating subunit scRev7, has received more attention in recent years. Pol ζ is a member of DNA polymerase δ subfamily, which belongs to DNA polymerase B family, and exists in almost all eukaryotes. Human homolog of the scRev3 gene is located in chromosome region 6q21, and the mouse equivalent maps to chromosome 10, distal to the c-myc gene and close to the Macs gene. Alternative splicing, upstream out-of-frame ATG can be found in yeast scRev3, mouse and human homologs. Furthermore, the sequence from 253-323 immediate upstream of the AUG initiator codon has the potential to form a stem-loop hairpin secondary structure in REV3 mRNA, suggesting that human REV3 protein may be expressed at low levels in human cells under normal growth conditions. The functional domain analysis showed that yeast Rev3-980 tyrosine in conserved region II is at the polymerase active site. Human REV3 amino acid residues 1-776-2-195 provide a REV7 binding domain, and REV7 amino acid residues 1-211 provide a bind domain for REV1, REV3 and REV7 itself. More interestingly, REV7 interacts with hMAD2 and therefore might function in the cell cycle control by affecting the activation of APC (anaphase promoting complex). Currently it has been known that pol ζ is involved in most spontaneous mutation, lesion-targeted mutation via TLS, chemical carcinogen induced untargeted mutation and somatic hypermutation of antibody genes in mammalian. In TLS pathway, pol ζ acts as a “mismatch extender” with combination of other DNA polymerases, such as pol ι. Unlike in yeast, it was found that pol ζ also functioned in mouse embryonic development more recently. It was hypothesized that the roles of pol ζ in TLS and cell cycle control might contribute to mouse embryonic lethality.

Zhu F, Zhang M. DNA polymerase ζ: new insight into eukaryotic mutagenesis and mammalian embryonic development. World J Gastroenterol 2003; 9(6): 1165-1169
http://www.wjgnet.com/1007-9327/9/1165.asp

INTRODUCTION

The increase of environmental cancer has been received intensive attention in recent years[1-6]. An arresting example is that tobacco smoke significantly increases the risks for oral[7-10], esophageal[11-13], stomach[11, 6, 9, 16], bladder[14], pancreas[15], gastric[16], colorectal cancers[16]. To understand the relationship between environmental agents and cancer is a noteworthy hotspot, by which it is possible to establish a system to prevent and control environmental cancers.

Information about the mechanisms that generate mutations in eukaryotes is likely to be useful for understanding human health concerns, such as genotoxicity and cancer. Eukaryotic mutagenesis is largely the outcome of attacks by endogenous and environmental agents. However, the cells have evolved sophisticated systems in response to DNA damage, including DNA repair and cell cycle checkpoints. Even when DNA repair systems and cell cycle checkpoints are fully functional, some damage can still persist in the genome during replication under circumstances such as: (i) when cells sustain significant DNA damage; (ii) when a particular damage is poorly repaired; or (iii) when some genomic regions are inefficiently repaired. DNA damage frequently blocks replication. Such blockage can be overcome by error-free or error-prone translesion DNA synthesis (TLS) bypass, employing specialized DNA polymerases and proteins for promoting continuous nascent strand extension at forks blocked by the presence of unrepair DNA damage at the cost of increasing mutation frequency[17]. Alternatively, mutation can be avoided by DNA damage avoidance[18], or occur on undamaged DNA template and lead to untargeted mutation via damage tolerance[19].

DNA polymerase ζ (pol ζ), consisting of catalytic subunit scRev3 and stimulating scRev7 in budding yeast Saccharomyces cerevisiae, has received more attention in recent years. It is thought to be the major component of error-prone TLS pathway[20-21], although a number of other polymerases might be involved in this process[22]. In Saccharomyces cerevisiae, TLS pathway pasting many types of DNA damage in yeast depends on the activities of pol ζ and Rev1p, which is a major source of DNA-damage-induced substitutions and framshifts and of spontaneous mutations[21, 22, 26-30]. It has been speculated and demonstrated later that human pol ζ plays a major role in UV-induced mutagenesis and somatic hypermutation in antibody genes[31-34]. More recently, it was found that human pol ζ was also involved in mammalian untargeted mutagenesis, and the expression of human mutator REV3 could be upregulated at transcriptional level in response to chemical carcinogen N-methyl-N’-nitro-N-nitrosoguanidine (MNNG)[35], which could induce gastric cancer[36-39] and colorectal cancer[40, 41]. Evidences also suggested that pol ζ was concerned with cell cycle control and early
embryonic development[42-45]. The aim of this paper was to review the structural and functional features of pol ζ and its roles in mutagenesis and embryonic development as well.

PROPERTIES OF STRUCTURE AND FUNCTION DOMAIN OF POL ζ

In the budding yeast *Saccharomyces cerevisiae*, the scRev3-scRev7 complex is the sixth eukaryotic DNA polymerase to be described, and is therefore called DNA polymerase ζ[22]. The catalytic subunit Rev3 is a member of family B DNA polymerases, which contains six conserved motifs[46, 47]. Mutation analysis *in vivo* and the X-ray crystal structures of family B polymerases reveal that yeast scRev3-980 tyrosine in conserved region II is at the polymerase active site[48]. Investigation suggests that homologues of the yeast scRev3 gene are found in almost all eukaryotes, including *Arabidopsis thaliana*, *Drosophila melanogaster*, *Schizosaccharomyces pombe*, mouse and specifically humans[48, 51, 52].

Human homolog of the *Saccharomyces cerevisiae* scRev3 gene is located on chromosome region 6p21.3, and the mouse equivalent maps to chromosome 10q, distal to the c-myb gene, and close to the *Mac1* gene[49, 52]. The full-length cDNA of human REV3 consists of 10,919 nucleotides, with a putative open reading frame of 9,390 bp[51, 52]. Human REV3 gene contains 33 exons in about 200 kb of genomic DNA, in which an additional exon, alternative splicing event and an upstream out-of-frame ATG have been demonstrated[51, 52]. An upstream out-of-frame ATG with an ORF that terminates within the main ORF has also been found in the yeast gene[22], suggesting that it may be evolutionarily conserved in all pol ζ genes. The sequence context of the upstream gene performs a similar function to that of its yeast counterpart. Interestingly, three stretches of sequences, GGCAGTTGCGGCG, AGGGGAGGGGCGG and GCCGCCGGCCGCTGC, are duplicated in the 5′ untranslated region constituting 323 nucleotides. Furthermore, the sequence from 253-323 immediate upstream of the AUG initiator codon has the potential to form a stem-loop hairpin secondary structure in REV3 mRNA[49]. Such primary structural features and the secondary structure in the 5′ untranslated region are expected to reduce the translational efficiency of the message, suggesting that human REV3 protein may be expressed at low levels in human cells under normal growth conditions.

The predicted homogous proteins in human and mouse are a little over twice the length of the yeast scReve protein (1,504 residues), i.e., 3,130 amino acids with an expected mass of 353 kDa and a calculated pI of 8.7 in human, and 3,122 amino acids in mouse respectively. The homologous proteins of yeast scRev3 are highly conserved[31, 51, 52]. (i) in the N-terminal part, the overall homology between yeast scRev3/Drosophila DmRev3, yeast scRev3/human REV3 and *Drosophila* DmRev3/human REV3 amounts to respectively 33.3 %, 35.0 % and 50.5 % identical amino acids. (ii) in a region of 850 residues at the carboxyl terminus, the overall homology between yeast scRev3/human REV3 amounts to 39 % identical amino acids, and (iii) in a 55-residue region in the middle of both scRev3 and REV3 proteins, with 29 % identity. But little similarity can be found in the intervening region[51].

The carboxyl terminus region of yeast Rev3 homologue proteins in human, mouse and *Drosophila* contains the six conserved sequence motifs characterized by DNA polymerases in the right order, including the canonical hexapeptide motifs within regions 1 and 2, YGDNTS and SLYPSI, which are found jointly only in type B DNA polymerases[46, 47]. Further alignment shows that pol ζ is a member of DNA polymerase δ family with two specifically conserved motifs ζ1 and ζ2 in pol ζ, and in the N-terminal part, a conserved glycine repeat motif (G-x4-G-x2-G-x8-G-x3-YFY) in pol δ is also present in the homologues which have been implicated in nucleotide binding[49]. Outside the six DNA polymerase motifs in the C-terminal, both yeast scRev3 and human REV3 proteins contain a putative zinc finger DNA binding region, and the location of this putative zinc finger is also highly conserved from yeast to humans[51]. Such structural features are consistent with the notion that the C-terminal region of scRev3 homologue serves as the catalytic domain during nucleotide polymerization, while its N-terminal region may provide sites for protein-protein interactions with other factors such as a putative yeast scRev7 homologue during translesional DNA synthesis.

However, the existence of a much larger nonhomologous or species-specific region in the expected human protein suggests that pol ζ may perform a wider range of functions in the higher eukaryotes. In *Saccharomyces cerevisiae*, it was found that LexA-scRev3 and Gal4-scRev7 fusions interacted with each other[22]. More recently, studies showed that human REV3 amino acid residues 1,776-2,195 provided a REV7 binding domain, and REV7 amino acid residues 1,211 provided a bind domain for REV1, REV3 and REV7 itself[53, 54]. REV7, the stimulating subunit of pol ζ which is located on chromosome 1p, displays 23 % identity and 53 % similarity with scRev7, as well as 23 % identity and 54 % similarity with the human mitotic checkpoint protein hMAD2. And yeast two-hybrid assay suggests that REV7 may interact with hMAD2 but not with hMAD1[54]. It is possible that REV3, REV7, and hMAD2 might be capable of forming a stable triprotein complex.

CHARACTERISTICS AND ROLES OF POL ζ INVOLVED IN EUKARYOTIC MUTAGENESIS

DNA damage induced elevation of mutations during the course of translesion replication is likely to be an important contributory cause in the development of many cancers[55]. With *in vitro* and *in vivo* investigation, it has been clear that pol ζ plays a role in an error-prone way. Yeast pol ζ can bypass T-cyclobutane dimer, but not (6-4)-T-T photoproduct and abasic site, inserting an incorrect nucleotide with relatively low efficiency *in vitro* (finc values range from 4.1×10⁻¹ to 1.9×10⁻²)[55]. When combined with REV1 (transfers a dCMP residue from dCTP to the 3′ end of a DNA primer in a template-dependent reaction opposite abasic site), pol ζ (inserts a deoxynucleotide opposite the (6-4)-T-T photoproduct and abasic site) or pol η (bypasses T-T cyclobutane dimer with relative high accuracy and efficiency), pol ζ can bypass all three types of lesions with more efficiency (*finc values range from 10⁻¹ to 10⁻³*) at elongating from a mismatched terminus, which develops the TLS two-step model (Figure 1)[55, 56].

Mutation caused by TLS is usually designated targeted mutation. However, mutation can also occur on undamaged DNA template and therefore is called untargeted mutation (UTM), which has been described in SOS-induced mutagenesis in *E. coli*[59]. It has been known that untargeted and targeted mutations caused by SOS response in *E. coli* both result from the inhibition of DNA polymerase functions that normally maintain fidelity and the involvement of DNA polymerases with low fidelity, which include DNA pol III, pol IV (dinB), pol V (UmuD’2C) and other factors (RecA*, β-sliding clamp, γ-clamp loading complex and single-stranded binding protein)[60, 61]. Using mating experiments with excision deficient strains of Saccharomyces cerevisiae, Lawrence and Christensen found that up to 40 % of cycl-91 revertants induced by UV were untargeted, showing that a reduction in fidelity of DNA replication[63]. In mouse T-Lymphoma cells, stress response induced by DNA damage agents (8-methoxy-psoralen or UVA)
leads to specific, delayed and untargeted mutations. It has been found that low concentration \(N \)-methyl-\(N' \)-nitro-\(N \)-nitrosoguanidine (MNNG), a carcinogen which can induce gastric cancer, could induce mammalian UTM. However, it is not clear which factor capable of inhibiting fidelity can be induced or activated. More recently, it was found that \(\zeta \) might be involved in the mammalian UTM induced by MNNG. The transcriptional level of \(REV3 \) gene is upregulated when human cells are treated by low concentration MNNG. Furthermore, human cells, in which the function of \(\zeta \) is inhibited by antisense \(REV3 \) RNA, display characteristics of both anti UTM and targeted mutation.

\(\zeta \) also functions in somatic hypermutation. Accumulation of somatic mutations in the V(H) genes of memory B cells from transgenic mice which express antisense RNA to a portion of mouse \(REV3 \) is decreased, particularly among those that generate amino acid replacements enhancing RNA to a portion of mouse \(REV3 \). This differential expression seems likely to account for the predominant disorder and lack of integrity found mainly in mesenchymal tissues. Lack of proper development of the heart and large blood vessels might in itself be the immediate cause of death. Also, as mouse \(mRev3 \) is normally expressed within extraembryonic membranes, the absence of functional \(mRev3 \) in mouse \(mRev3^{-/-} \) embryos could be the cause of the pericardial sac edema, yolk sac fragility and weak attachment to the decidual implantation site. Yolk-sac malfunction can induce osmotic imbalance, leading to edema, whereas delayed and/or suboptimal chorioallantoic fusion can result in an implantation defect. Defects of the chorioallantoic placenta or yolk sac are a common cause of murine lethality in utero and could contribute to the embryonic lethality of mouse \(mRev3 \) disruption. Therefore, ES cells may have a special need for the activity of \(\zeta \) if certain types of DNA damage accumulate within them, and bypass of specific types of DNA lesions by \(\zeta \) is essential for cell viability during embryonic development in mammals.

It is noteworthy that mouse \(mRev3 \) is most highly expressed in mesodermal tissues and embryonic death coincides with the period of more widely distributed \(mRev3 \) expression. High-level expression of mouse \(mRev3 \) is developmentally regulated during embryogenesis, occurring first in early somatogenesis and then in other mesodermal tissues up to at least 11.5 days post coitum. This differential expression seems likely to account for the predominant disorder and lack of integrity found mainly in mesenchymal tissues. Lack of proper development of the heart and large blood vessels might in itself be the immediate cause of death. Also, as mouse \(mRev3 \) is normally expressed within extraembryonic membranes, the absence of functional \(mRev3 \) in mouse \(mRev3^{-/-} \) embryos could be the cause of the pericardial sac edema, yolk sac fragility and weak attachment to the decidual implantation site. Yolk-sac malfunction can induce osmotic imbalance, leading to edema, whereas delayed and/or suboptimal chorioallantoic fusion can result in an implantation defect. Defects of the chorioallantoic placenta or yolk sac are a common cause of murine lethality in utero and could contribute to the embryonic lethality of mouse \(mRev3 \) disruption. Therefore, ES cells may have a special need for the activity of \(\zeta \) if certain types of DNA damage accumulate within them, and bypass of specific types of DNA lesions by \(\zeta \) is essential for cell viability during embryonic development in mammals.

However, it is also possible that mouse \(mRev3 \) has an additional unknown function. In view of the fact that yeast \(scRev7 \) shares a region of homology, termed the HORMA (Hop1p, Rev7p and Mad2) domain with Mad2, which associates with unattached kinetochores and functions in the spindle assembly mitotic checkpoint. Mad2, Rev3 and Rev7 proteins might therefore have the potential to interact in this pathway. It has been demonstrated that human \(REV7 \) may interact with hMAF2. Interestingly, the tumor suppressor \(p33ING1 \), which has recently been demonstrated to have no synergistic effect with \(p53 \) in camptothecin-induced cell death in melanoma cells, strongly associates with \(mRev3 \) protein in a two-hybrid assay. It was observed that mouse \(mRev3^{-/-} \) embryonic death occurred in a \(p53 \)-independent pathway indicating \(mRev3 \) functions with no direct or indirect interaction with \(p53 \). Furthermore, it has been found that \(Saccharomyces cerevisiae \) lacking \(Snm1, scRev3 \) or \(Rad51 \) have a normal S-phase but arrest permanently in G2 after cisplatin treatment. Therefore, \(\zeta \) can play a central role in apoptosis, cell proliferation, and the control of cell cycle by protein-protein interaction, and thus affect the embryonic development.

Table 1: Characteristics of mRev3^{-/-} embryo

Characteristic	Reduced at day 10.5
Viability	Usually arrested around day 12.5
Inner cell mass (ICM)	Diminished expansion
Haematopoietic cells	No haematopoietic cells developed other than erythrocytes
Morphogenesis of embryo	1. Abnormalities in the development and maintenance of embryonic mesoderm
2. Predominant disorder and lack of integrity mainly in mesenchymal tissues, including heart and large blood vessels |
REFERENCES

1. Li Y, Su JJ, Qin LL, Yang C, Luo D, Ban KC, Kessler T, Roebuck B. Chemopreventive effect of oltipraz on AFB1-induced hepatocarcinogenesis in tree shrew model. World J Gastroenterol 2000; 6: 647-650

2. Bollschweiler E, Holscher AH. Carcinoma of the esophagus-actual epidemiology in Germany. Onkologie 2001; 24: 180-184

3. Bonnin-Sacon S, Lafon P, Chasseigne G, Mullet E, Sorum PC. Expression of cyclooxygenase-2 and clinicopathologic features in human gastric adenocarcinoma. World J Gastroenterol 2003; 9: 250-253

4. Wang AH, Sun CS, Li LS, Huang JY, Chen QS. Relationship of tobacco smoking CYPIA1 GSTM1 gene polymorphism and gastric cancer in Xi’an. World J Gastroenterol 2002; 8: 49-53

5. Balam PR, Sridhar H, Rajkumar T, Vacciarello S, Herrera R, Nakandakar A, Ravichandran K, Sankaranarayanan R, Gajalakshmi V, Munoz N, Franceschi S. Oral cancer in southern India: the influence of smoking, drinking, paan-chewing and oral hygiene. Int J Cancer 2002; 98: 440-445

6. Bartal M. Health effects of tobacco use and exposure. M onaldi Arch Chest Dis 2001; 56: 545-554

7. Boring CC, Squires TS, Tong T, Heath CW. Mortality trends for selected smoking-related cancers and breast cancer—United States, 1950-1990. Morb Mortal Wkly Rep 1993; 42: 857, 863-866

8. Bollschweiler E, Holscher AH. Carcinoma of the esophagus-actual epidemiology in Germany. Onkologie 2001; 24: 180-184

9. Badawi AF, Habib SL, Mohammed MA, Abadi AA, Michael MS. Influence of cigarette smoking on prostaglandin synthesis and cyclooxygenase-2 gene expression in human urinary bladder cancer. Cancer Invest 2002; 20: 651-666

10. Bernardini S, Adesli GS, Chey E, Billerey C, Bartllet JP, Bittard H. Influence of cigarette smoking on P53 gene mutations in bladder carcinomas. Anticancer Res 2001; 21: 3001-3004

11. Borras J, Borras JM, Galceran J, Sanchez V, Moreno V, Gonzalez JR. Trends in smoking-related cancer incidence in Tarragona, Spain, 1980-96. Cancer Causes Control 2001; 12: 903-908

12. Castelao JE, Yuan JM, Skipper PL, Tannenbaum SR, Gago-Dominguez M, Crowder JS, Ross RK, Yu MC. Gender- and smoking-related bladder cancer risk. J Natl Cancer Inst 2001; 93: 538-545

13. Chao A, Thun MJ, Henley SJ, Jacobs EJ, McCullough ML, Calle EE. Cigarette smoking, use of other tobacco products and stomach cancer mortality in US adults: The Cancer Prevention Study II. Int J Cancer 2002; 101: 380-389

14. Casimiro E. Etiopathogenic factors in colorectal cancer. Nutrition and life-style aspects. 2. Nutr Hosp 2002; 17: 128-138

15. Kunz BA, Straffon AF, Vonarx EJ. DNA damage-induced mutagenesis: tolerance vs translesion synthesis. M utat Res 2000; 451: 169-185

16. Li Z, Xiao W, McCormick J, Maher VM. Identification of a protein essential for a major pathway used by human cells to avoid UV-induced DNA damage. Proc Natl Acad Sci U S A 2002; 99: 4459-4464

17. Zhang X, Yu Y, Chen X. Evidence for nontargeted mutagenesis in a monkey kidney cell line and analysis of its sequence specificity using a shuttle-vector plasmid. M utat Res 1994; 323: 105-112

18. Quah SK, Jaiswal AS. Activation of adenomatous polyposis coli (APC) gene expression by the DNA-alkylating agent N-methyl-N’-nitro-N-nitrosoguanidine and Its role in mutagenesis. World J Gastroenterol 2003; 9: 889-913 (in press)

19. Sherenesheva N, Mashkovtsev IV. Electron microscopy study of experimental stomach cancer. E ksp Onkol 2001; 23: 7-29

20. Sasaki M. The effect of Nd:YAG laser irradiation on gastric cancer in rats induced by N-methyl-N’-nitro-N-nitrosoguanidine as a model of endoscopic laser treatment for early gastric cancers. Nippon Geka Gakkai Zassi 1985; 86: 443-454

21. Newberne PM, Charnley G, Adams K, Cantor M, Suphavak M, Roth D, Schrager TF. Gastric carcinogenesis: a model for the identification of risk factors. Cancer Let 1987; 38: 149-163

22. Yamashita S, Kikuzono T, Shiraiwa T. Profiling and selection of genes differentially expressed in the pylorus of rat strains with different proliferative responses and stomach cancer susceptibility. Carcinogenesis 2002; 23: 923-928

23. Amberg-B. Different autochthonous models of colorectal cancer in the rat. J Cancer Res Clin Oncol 1996; 111: 157-159

24. Narayan S, Jaiswal AS. Activation of adenomatous polyposis coli (APC) gene expression by the DNA-alkylating agent N-methyl-N’-nitro-N-nitrosoguanidine requires p53. J Biol Chem 1997; 272: 30619-30622

25. Grossmann KF, Ward AM, Moses RE. Saccharomyces cerevisiae lacking Smn1, Rev3 or Rad51 have a normal S-phase but arrest permanently in G2 after cisplatin treatment. M utat Res 2000; 461: 1-13

26. Benmokrane K, Khamlichi AA, Davies SL, Neuberger MS. Disruption of mouse polymerase zeta (Rev3) leads to embryonic lethality and impair brain development in vivo. Curr Biol 2000; 10: 1213-1216

27. Esposito G, Godindagger I, Klein U, Yaso ML, Cumano A,
Rajewsky K. Disruption of the Rev3-encoded catalytic subunit of polymerase zeta in mice results in early embryonic lethality. Curr Biol 2000; 10: 1221-1224

Wittschieben J, Shivi J, Lalani E, Jacobs MA, Marini F, Gearhart PJ, Rosewell I, Stamp G, Wood RD. Disruption of the developmentally regulated Rev3l gene causes embryonic lethality. Curr Biol 2000; 10: 1217-1220

Braithwaite DK, Ito J. Compilation, alignment, and phylogenetic relationships of DNA polymerases. Nucleic Acids Res 1993; 21: 787-802

Wong SW, Wahl AF, Yuan PM, Arai N, Pearson BE, Arai K, Korn D, Hunkapiller MW, Wang TS. Human DNA polymerase alpha gene expression is cell proliferation dependent and its primary structure is similar to both prokaryotic and eukaryotic replicative DNA polymerases. EMBO J 1988; 7: 37-47

Pavlov YI, Shcherbakova PV, Kunkel TA. Activity of yeast REV1 protein. EMBO J 2001; 20: 13792-13797

Lawrence CW, Christensen RB. The mechanism of untargeted mutagenesis in UV-irradiated yeast. Mol Gen Genet 1982; 186: 1-9

Kajiwara K, Nagawawa H, Shimizu-Nishikawa S, Ooki T, Kimura M, Sugaya E. Molecular characterization of seizure-related genes isolated by differential screening. Biochim Biophys Res Commun 1996; 219: 795-799

Morelli C, Mungall AJ, Negrini M, Barbanti-Brodano G, Croce CM. Alternative splicing, genomic structure, and fine chromosomal localization of REV3L. Cytogenet Cell Genet 1998; 83: 13-20

Lin W, Wu X, Wang Z. A full-length cDNA of hREV3 is predicted to encode DNA polymerase zeta for damage-induced mutagenesis in humans. Mutat Res 1999; 433: 89-98

Van Sloun PP, Romeijn Rj, Eeken JC. Molecular cloning, expression and chromosomal localisation of the mouse Rev3l gene, encoding the catalytic subunit of polymerase zeta. Mutat Res 1999; 433: 109-116

Eeken JC, Romeijn Rj, de Jong AW, Pastink A, Lohman PH. Isolation and genetic characterisation of the Drosophila homologue of (SCE) REV3, encoding the catalytic subunit of DNA polymerase zeta. Mutat Res 2001; 485: 237-253

Murakumo Y, Roth T, Ishii H, Rasio D, Numata S, Croce CM, Fishe R. A human REV7 homolog that interacts with the polymerase zeta catalytic subunit REV3 and the spindle assembly checkpoint protein hMAD2. J Biol Chem 2000; 275: 4391-4397

Murakumo Y, Ogura Y, Ishii H, Numata S, Ichihara M, Croce CM, Fishe R, Takahashi M. Interactions in the error-prone postreplication repair proteins hREV1, hREV3, and hREV7. J Biol Chem 2001; 276: 35642-35651

Johnson RE, Washington MT, Haracaska L, Prakash S, Prakash L. Eukaryotic polymerases iota and zeta act sequentially to bypass DNA lesions. Nature 2000; 406: 1015-1019

Nelson JR, Lawrence CW, Hinkle DC. Deoxycytidyl transferase activity of yeast REV1 protein. Nature 1996; 382: 729-731

Woodgate R. Evolution of the two-step model for UV-mutagenesis. Mutat Res 2001; 485: 83-92

Maenhaut-Michel G. Mechanism of SOS-induced targeted and untargeted mutagenesis in E. coli Biochimie 1985; 67: 365-369

Pham P, Bertram JG, O’Donnell M, Woodgate R, Goodman MF. A model for SOS-lesion-targeted mutations in Escherichia coli. Nature 2003; 420: 366-370

Otterlei M, Kavlis B, Standal R, Skjeldbend C, Bharati S, Krokkan HE. Repair of chromosomal abasic sites in vivo involves at least three different repair pathways. EMBO J 2000; 19: 5542-5551

Kim SR, Maenhaut-Michel G, Yamada M, Yamamoto Y, Matsui K, Sofuni T, Nohmi T, Ohmori H. Multiple pathways for SOS-induced mutagenesis in Escherichia coli: an overexpression of dinB' dinP results in strongly enhancing mutagenesis in the absence of any exogenous treatment to damage DNA. Proc Natl Acad Sci USA 1997; 94: 13792-13797

Tang M, Bruck I, Eritja R, Turner J, Frank EG, Woodgate R, O’Donnell M, Goodman MF. Biochemical basis of SOS-induced mutagenesis in Escherichia coli: reconstitution of in vitro lesion bypass dependent on the UmuD’2C mutagenic complex and RecA protein. Proc Natl Acad Sci USA 1998; 95: 9755-9760

Tang M, Pham P, Shen X, Taylor JS, O’Donnell M, Woodgate R, Goodman MF. Roles of E. coli DNA polymerases IV and V in lesion-targeted and untargeted SOS mutagenesis. Nature 2000; 404: 1014-1018

Lawrence CW, Christensen RB. The mechanism of untargeted mutagenesis in UV-irradiated yeast. Mol Gen Genet 1982; 186: 1-9

Boesen JJ, Stuivenberg S, Thyssens CH, Panneman H, Darroudi F, Lohman PH, Simons JW. Stress response induced by DNA damage leads to specific, delayed and untargeted mutations. Mol Gen Genet 1992; 234: 217-227

O-Wang J, Kajiwara K, Kawamura K, Kimura M, Miyagishima H, Koski H, Tagawa M. An essential role for REV3 in mammalian cell survival: absence of REV3 induces p53-independent embryonic death. Biochim Biophys Res Commun 2002; 293: 1132-1137

Lindahl T, Wood RD. Quality control by DNA repair. Science 1999; 286: 1897-1905

Van Sloun PP, Jansen JG, Weeda G, Mullenders LH, Van Zeeland AA, Lohman PH, Vrieeland H. The role of nucleotide excision repair in protecting embryonic stem cells from genotoxic effects of UV-induced DNA damage. Nucleic Acids Res 1999; 27: 3279-3282

Copp AJ. Death before birth: clues from gene knockouts and mutations. Trends Genet 1995; 11: 87-93

Aravind L, Koonin EV. The HORMA domain: a common structural denominator in mitotic checkpoints, chromosome synapsis and DNA repair. Trends Biochem Sci 1998; 23: 284-286

Cheung KJJr, Li G. The tumour suppressor p53ling1 does not enhance camptothecin-induced cell death in melanoma cells. Int J Oncol 2002; 20: 1319-1322

Edited by Wu XN and Wang XL