RESEARCH ARTICLE

MICROBIOLOGICAL QUALITY CONTROL OF SOYMILK SOLD IN KOGI STATE

Moses O. Omale
Department of Biology, Kogi State College of Education, Ankpa.

Abstract

There is a growing public health concern about the increase of do-it-yourself soymilk commonly found in every part of our society. The purpose of the present research was to examine the microbiological implications of the soymilk sold in the Kogi state of Nigeria. Samples were collected from vendors in different locations. The analysis was conducted on the samples using established standard procedures. The result found certain microorganisms such as Micrococcus spp, Lactobacillus spp, Streptococcus spp, Enterobacter spp, Klebsiella spp, and other fungi which comprises Aspergillus spp and Saccharomyces. The study concludes that the soymilks sold in Kogi state are mostly contaminated due to the producers' unhygienic practices.
Soy milk is a popular beverage in Nigeria. It is widely sold along the streets and market places. There is currently an upsurge in the production and marketing of soymilk drinks across Nigeria's cities, occasioned by the increasing skill acquisition programs and entrepreneurial intentions. In Kogi state, the product is readily available in every corner. A closer observation of the vendors and environment raises health-related safety. However, there is a growing concern on the regular soymilk's production processes relating to microbiological quality (Fasoyiro et al., 2010). Indeed, soymilk consumption could threaten human health if harmful microorganisms are not adequately guided during the production, storage, and distribution. Thus, contamination is possible following an unhygienic preparation procedure. Therefore, this study intends to examine the microbiological quality control of soymilk sold in Kogi state.

Materials and Methods:
Materials and glassware were purchased from a reliable vendor and adequately sterilized and dried. The reagents used in the study include crystal violet, Lugol's iodine, Safranin, Kovac's reagent, Lactophenol cotton blue, Hydrogen peroxide. Soymilk beverages were purchased from local vendors from different locations in Kogi state. They were immediately transported to the microbiology laboratory for analysis. The study followed the standard procedures outlined in Stanley et al. (2014) and Agboke et al. (2012).

Result:

Table 1: Morphological Characteristics and Gram Reaction of Bacterial Isolate.

Code no	Morphological characteristics	Gram Reaction	Isolates
A	Creamy round colonies on nutrient agar	Gram-positive coccus in clusters	Micrococcus spp
B	Creamy and small round shape colonies in nutrient agar	Gram-positive cocci in chain	Streptococcus spp
C	Pale green and convex opaque colonies on cled agar	Gram position cocci in chain	Aerobacter spp
D	Pale green and creamy colonies on cled agar	Gram-negative cocci in chain	Klebsiella spp
E	Creamy and round in the shape on Mrs agar	Gram-positive rods in chain	Lactobacillus

Table 2: Biochemical character of Gram-positive bacteria present.

Sample code	Gram reaction	Catalase test	Oxidase	Indole	Sucrose	Glucose	Lactose	Motility	Presumptive organism
A	+	+	-	+	AG	A	AG	-	Micrococcus spp
B	+	+	-	+	A	AA		-	Streptococcus spp
C	+	+	-	+	A	AGAG		-	Aerobacter spp
D	-	+	-	+	AG	AG	AG	-	Klebsiella spp
D	+	+	-	+	AG	A	A	-	Lactobacillus spp

Key: - = Negative, + = Positive, A = Acid, AG = Acid & Gas
Table 3:- The Identification of Fungi Isolates based on their reactions with lactophenol cotton blue.

Characteristics	Identification
Presence of septate hyphae long and smooth conidiophores, long unbranded sporoging with large, round head Black and brownish at the edges with dark mycelium spores on the surface	Aspergillus spp
Creamy, oval shape budding cell with rounded shape the end resembling barrel shape	Saccharomyces spp

Table 4:- Percentage Distribution of Each Isolate.

Isolates	Numbers of organism	Percentage distribution
Micrococcus spp	96	36.5
Streptococcus spp	81	30.7
Aerobacters spp	28	10.6
Klebsiella spp	16	6.1
Lacto bacillus spp	24	9.11
Aspergillums spp	10	4.0
Saccharomyces spp	8	3.0
Total	263	100

Discussion:-

The current study was aimed to determine the microbiological quality soymilk beverage on sale in the Kogi state of Nigeria. The analysis conducted on the samples shows the presence of certain microorganisms such as Micrococcus spp, Lactobacillus spp, Streptococcus spp, Aerobacter spp, and Klebsiella spp, as shown in table 2. Table 1 shows the morphological characteristics and Gram reaction of the isolates. The result is consistent with studies that found similar microorganisms in soymilk (Agboke et al., 2012; Akinola et al., 2015; Brooks et al., 2004; Edet & Peter, 2017; Mbayei et al., 2013; Ozoh & Umeaku, 2016). Lactobacillus spp, as observed above, has been associated with soymilk spoilage and an increase in acid production (Stanley et al., 2014). These organisms thrive in fermentable substrates as sugar, which can be reduced by acid. The presence of Streptococcus spp indicates a high level of exposure and carelessness at any production level (Brooks et al., 2004). All the isolated organisms in the study have been associated with health implications. However, evidence has shown that microbial pathogens may find their way into food production, including soymilk processing, due to inadequate hygienic practices and insufficient decontamination and raw materials' mishandling.

Furthermore, table 3 shows Aspergillus spp and Saccharomyces spp as the fungi isolated based on their lactophenol cotton blue reactions. Aspergillus spp is a toxigenic mold with the capability of producing aflatoxin (Brooks et al., 2004). Thus, it is a public health concern. On the other hand, Saccharomyces spp has been shown to cause spoilage at the fermentation stage, probably due to high-sugar levels. However, the role of Saccharomyces spp in the spoilage of soymilk is unclear.

Conclusion:-

The microbiological quality control of soymilk commonly sold in every area in the Kogi state has been contaminated with varying bacteria. The study concludes that microorganisms present in the widely available soymilks in the study parameter are attributed to producers' poor hygiene, unsanitary conditions of processing equipment, and raw materials. Pathogenic bacteria in soymilk can be either infectious or toxin-producing. Although most pathogens that contaminate soymilk grow only slowly or not at all. Perhaps, soymilk provides a safe place for microorganisms to grow. Thus, it is recommended that adequate precaution in production and storage hygiene are critical for controlling the contamination of microorganisms in soymilks. The current study contributes to disease control literature by further affirming the prevalence of consuming contaminated soymilks in Nigeria.
References:
1. Adebayo – Tayo, B.C., Adegoke, A.A. and Akinjogunla, O.J. (2008). Microbial and Physicochemical Quality of Powdered Soy Milk samples. African Journal of Biotechnology. 8 (13): 3066-3071.
2. Agboke, A. O., Osonwa, U. E., Opurum, C. C., & Ibezim, E. C. (2012). Evaluation of Microbiology Quality of Some Soybean Milk Products Consumed in Nigeria. Pharmacologia, 3(10). https://doi.org/10.5567/pharmacologia.2012.513.518
3. Akinola, O. J., Obadina, A. O., Shittu, T. A., & Olotu, I. O. (2015). Chemical characterization and microbiological quality of naturally fermenting soy milk. Quality Assurance and Safety of Crops and Foods, 7(2). https://doi.org/10.3920/QAS2013.0286
4. Akpan, U.G., Mohammed, A. D. and Aminu, I. (2007). Effect of Preservative on the shelf life of yoghurt produced from soybeans milk. Leonardo Election Journal of Practices and Technologies. 8 (11): 131-142.
5. Brando, A.L.A., Costa, M.S.B., Viera, J.P., Neto, L.M., Poltronieri, F., & Silva, A.M. (2013). Soy-based processed food: A health risk? In Annals of Nutrition and Metabolism (Vol. 63).
6. Ali, B., Khan, K. Y., Majeed, H., Xu, L., Wu, F., Tao, H., & Xu, X. (2017). Imitation of soymilk–cow's milk mixed enzyme modified cheese: their composition, proteolysis, lipolysis and sensory properties. Journal of Food Science and Technology, 54(5). https://doi.org/10.1007/s13197-017-2534-7
7. Apostolidis, E., Kwon, Y. I., Ghaedian, R., & Shetty, K. (2007). Fermentation of milk and soymilk by Lactobacillus bulgaricus and Lactobacillus acidophilus enhances functionality for the potential dietary management of hyperglycemia and hypertension. Food Biotechnology, 21(3). https://doi.org/10.1080/08905430701534032
8. Brooks, A. A., Asamudo, N. U., & Udoukpo, F. C. (2004). Microbiological and Physico-chemical analysis of soymilk and soyflour sold in Uyo metropolis, Nigeria. Global Journal of Pure and Applied Sciences, 9(4). https://doi.org/10.4314/gjpas.v9i4.16052
9. Camps, S. G., Lim, J., Ishikado, A., Inaba, Y., Suwa, M., Matsumoto, M., & Henry, C. J. (2018). Co-ingestion of rice bran soymilk or plain soymilk with white bread: Effects on the glycemic and insulinemic response. Nutrients, 10(4). https://doi.org/10.3390/nu10040449
10. Cui, L., Chang, S. K. C., & Nannapaneni, R. (2021). Comparative studies on the effect of probiotic additions on the physicochemical and microbiological properties of yoghurt made from soymilk and cow's milk during refrigeration storage (R2). Food Control, 119. https://doi.org/10.1016/j.foodcont.2020.107474
11. Edet, A., & Peter, A. (2017). Microbiological and Biochemical Analysis of Soymilk Produced and Sold within Calabar Metropolis. Microbiology Research Journal International, 21(2). https://doi.org/10.9734/mrji/2017/29571
12. Fasoyiro, S. B., Obatolu, V. A., Ashaye, O. A., & Lawal, B. O. (2010). Knowledge assessment, improved storage techniques, and training of local processors and vendors of soy products on food safety practices in South West Nigeria. Journal of Agricultural and Food Information, 11(4). https://doi.org/10.1080/104966505.2010.512855
13. Fasoyiro, Subuola Bosede, Obatolu, V. A., Ashaye, O. A., Adegoke, G. O., & Farinde, E. O. (2010). Microbial hazards and critical control points of locally processed soy-cheese in Nigeria. Nutrition and Food Science, 40(6). https://doi.org/10.1108/0346651011090392
14. Fukuda, M., Kobayashi, M., & Honda, Y. (2017). Functional Components and Health Benefits of Fermented Soymilk. In Soft Chemistry and Food Fermentation. https://doi.org/10.1016/b978-0-12-811412-4.00006-0
15. Ge, G., Guo, W., Zheng, J., Zhao, M., & Sun, W. (2021). Effect of interaction between tea polyphenols with soymilk protein on inactivation of soybean trypsin inhibitor. Food Hydrocolloids, 111. https://doi.org/10.1016/j.foodhyd.2020.106177
16. Giri, S. K., & Mangaraj, S. (2012). Processing Influences on Composition and Quality Attributes of Soymilk and its Powder. Food Engineering Reviews, 4(3). https://doi.org/10.1007/s12393-012-9053-0
17. Itakura, Saito, Suzuki, Kondo, & Hosoi. (2019). Classification of Soymilk and Tofu with Diffuse Reflection Light Using a Deep Learning Technique. AgriEngineering, 1(2). https://doi.org/10.3393/agriengineering1020017
18. Iwe, M.O. (2003). Science and Technology of Soybean. Rejoint Communication Services Limited: New York pp 145-148.
19. Jimoh, K.O. and Kolapo, A.L. (2007). Effect of different stabilizers on acceptability and Shelf Stability of Soy-Yoghurt African Journal of Biotechnology (6): 1000-1003.
24. Kundu, P., Dhankhar, J., & Sharma, A. (2018). Development of nondairy milk alternative using soymilk and almond milk. Current Research in Nutrition and Food Science, 6(1). https://doi.org/10.12944/CRNFSJ.6.1.23

25. Li, Y. R., Yun, T. T., Liu, S., Qi, W. T., Zhao, L. Q., Liu, J. R., & Li, A. K. (2016). Analysis of water-soluble bioactive compounds in commonly consumed soymilk in China. Journal of Food Composition and Analysis, 46. https://doi.org/10.1016/j.jfca.2015.10.011

26. Mbaeyi, I., Ogbonna, J., & Onwuka, N. (2013). Microbiological Screening of a Starter Culture of Probiotic Status from Formulated Non-Dairy Yoghurt Analogue from Natural Fermentation of Soymilk-Achamilk Blends. Bio-Research, 9(2). https://doi.org/10.4314/br.v9i2.98444

27. Niyibituronsa, M., Onyango, A. N., Gaidashova, S., Imathiu, S., Boевre, M. de, Leenknecht, D., Neirnck, E., Saeger, S. de, Vermeir, P., & Raes, K. (2019). The Growth of Different Probiotic Microorganisms in Soymilk from Different Soybean Varieties and their Effects on Antioxidant Activity and Oligosaccharide Content. Journal of Food Research, 8(1). https://doi.org/10.5539/jfr.v8n1p41

28. Oboh, G. (2006). Coagulants modulate the hypocholesterolemic effect of tofu (coagulated soymilk). African Journal of Biotechnology, 5(3). https://doi.org/10.5897/AJB05.216

29. Ozoh CN, & Umeaku CN. (2016). Public Health Implication of Ready-To Drink Soymilk and Soymilk Yogurt Sold In Onitsha Urban Anambra State, Nigeria. Journal of Multidisciplinary Engineering Science and Technology (JMEST), 3(8).

30. Peng, X., Ren, C., & Guo, S. (2016). Particle formation and gelation of soymilk: Effect of heat. In Trends in Food Science and Technology (Vol. 54). https://doi.org/10.1016/j.tifs.2016.06.005

31. Stanley M. C. Ifeanyi O. E. Uzoma U. G (2014), Isolation and Identification of Microorganisms Involved in the Spoilage of Soymilk. Journal of Pharmacy and Biological Sciences. Volume 9, Issue 5, PP 29-36

32. Stojanovska, L., Ayyash, M., & Apostolopoulos, V. (2016). Calcium-fortified soymilk: Function and health benefits. In Food and Nutritional Components in Focus (Vols. 2016-January, Issue 10). https://doi.org/10.1039/9781782622130-00310

33. Vagadia, B. H., Vanga, S. K., Singh, A., Gariepy, Y., & Raghavan, V. (2018). Comparison of conventional and microwave treatment on soymilk for inactivation of trypsin inhibitors and in vitro protein digestibility. Foods, 7(1). https://doi.org/10.3390/foods7010006

34. Vanga, S. K., Wang, J., & Raghavan, V. (2020). Effect of ultrasound and microwave processing on the structure, in-vitro digestibility, and trypsin inhibitor activity of soymilk proteins. LWT, 131. https://doi.org/10.1016/j.lwt.2020.109708

35. Vij, S., Hati, S., & Yadav, D. (2011). Biofunctionality of Probiotic Soy Yoghurt. Food and Nutrition Sciences, 02(05). https://doi.org/10.4236/fns.2011.25073

36. Yamamoto, N., Shoji, M., Hoshigami, H., Watanabe, K., Watanabe, K., Takatsuzu, T., Yasuda, S., Igoshi, K., & Kinoshita, H. (2019). Antioxidant capacity of soymilk yogurt and exopolysaccharides produced by lactic acid bacteria. Bioscience of Microbiota, Food and Health, 38(3). https://doi.org/10.12938/bmfh.18-017

37. Zhu, Y. Y., Thakur, K., Feng, J. Y., Cai, J. S., Zhang, J. G., Hu, F., Russo, P., Spano, G., & Wei, Z. J. (2020). Riboflavin-overproducing lactobacilli for the enrichment of fermented soymilk: insights into improved nutritional and functional attributes. Applied Microbiology and Biotechnology, 104(13). https://doi.org/10.1007/s00253-020-10649-1.