Metabolomics of Major Depressive Disorder: A Systematic Review of Clinical Studies

Lívia N. F. Guerreiro Costa 1,2, Beatriz A. Carneiro 3,2, Gustavo S. Alves 4, Daniel H. Lins Silva 1,4, Daniela Faría Guimaraes 1,4, Lucía S. Souza 1,2, Igor D. Bandeira 1,2, Grazielle Beanes 1,2, Angela Miranda Scippa 1,2, Lucas C. Quarantini 1,2,5

1. Medicine, Laboratório de Neuropsicofarmacologia, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, BRA
2. Medicine, Programa de Pós-Graduação em Medicina e Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, BRA
3. Medicine, Laboratório de Neuropsicofarmacologia, Serviço de Psiquiatria do Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil, Salvador, BRA
4. Medicine, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, BRA
5. Medicine, Departamento de Neurociências e Saúde Mental, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, BRA

Corresponding author: Lívia N. F. Guerreiro Costa, lcq@ufba.br

Abstract

Although the understanding of the pathophysiology of major depressive disorder (MDD) has advanced greatly, this has not been translated into improved outcomes. To date, no biomarkers have been identified for the diagnosis, prognosis, and therapeutic management of MDD. Thus, we aim to review the biomarkers that are differentially expressed in MDD. A systematic review was conducted in January 2022 in the PubMed/MEDLINE, Scopus, Embase, PsycINFO, and Gale Academic OneFile databases for clinical studies published from January 2001 onward using the following terms: "Depression" OR "Depressive disorder" AND "Metabolomic." Multiple metabolites were found at altered levels in MDD, demonstrating the involvement of cellular signaling metabolites, components of the cell membrane, neurotransmitters, inflammatory and immunological mediators, hormone activators and precursors, and sleep controllers. Kynurenine and acylcarnitine were identified as consistent with depression and response to treatment. The most consistent evidence found was regarding kynurenine and acylcarnitine. Although the data obtained allow us to identify how metabolic pathways are affected in MDD, there is still not enough evidence to propose changes to current diagnostic and therapeutic actions. Some limitations are the heterogeneity of studies on metabolites, methods for detection, analyzed body fluids, and treatments used. The experiments contemplated in the review identified increased or reduced levels of metabolites, but not necessarily increased or reduced the activity of the associated pathways. The information acquired through metabolomic analyses does not specify whether the changes identified in the metabolites are a cause or a consequence of the pathology.

Introduction And Background

Major depressive disorder (MDD), one of the most common psychiatric conditions, has a major impact on health systems around the world, with a worldwide prevalence of 17% and an annual incidence of around 6% in the general population [1]. It is associated with an increased risk of cardiovascular disease, metabolic syndrome, obesity, stroke and increased global mortality correlated with metabolic changes [2].

However, biomarkers have not yet been identified for the diagnosis, prognosis and therapeutic management of MDD. Such biomarkers could be the metabolites of cells, tissues and body fluids, such as peptides, amino acids, saccharides, phospholipids, coenzymes and nucleotides [3]. The investigation of molecules through metabolomic analysis could assist in the discovery of biomarkers potentially related to the predisposition, development and prognosis of MDD and other mental illnesses [4].

The possible benefits to psychiatry range from a better understanding of the pathophysiology of MDD [5,6] to novel strategies for its management, such as tests that suggest the best treatment option for patients according to their metabolomic profile, or tests that are capable of monitoring the metabolic-specific response to treatment. Additionally, such tests might even improve the staging of MDD and reveal personal predispositions for the condition.

The current work provides a systematic review of clinical studies of metabolomics in MDD. We aimed to identify the main metabolites altered in the bodily fluids of patients with MDD, whether under treatment or not.

Review
Methods

A systematic review of the literature was conducted, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [7] and the recommendations of the Cochrane Handbook for Systematic Reviews of Interventions [8], where applicable, and was registered in the International Prospective Register of Systematic Reviews (PROSPERO) database (CRD42020205879).

A clinical question was defined: “Which metabolites are altered in patients with active depression, whether under treatment or not?” This question guided the eligibility criteria and the literature search in the databases.

Eligibility criteria

The criteria for inclusion of studies were as follows: original studies published from 2001 onward evaluating metabolites in the bodily fluids of subjects with a clinical diagnosis of MDD under treatment or not; aged between 18 and 71 years old and no diagnosis of bipolar depression or other psychiatric disorders. Due to the possibility of influencing metabolomic analysis, we excluded studies that evaluated patients under phytotherapeutic interventions, with comorbidities that may interfere with the metabolic analysis such as viral hepatitis and acquired immunodeficiency syndrome, or women in the pregnancy-puerperal cycle. Studies that did not report the instrument used for the assessment of depression were also excluded. Case reports, reviews, editorials, letters, poster abstracts, and guidelines were excluded. There were no language restrictions.

Literature search

The literature search was performed in January 2022. The last literature search was performed on January 31, 2022. For PubMed/MEDLINE, Scopus, Embase and Gale Academic OneFile, the following terms were used: "Depression" OR "Depressive disorder" AND "Metabolomic." For PsycINFO, studies were filtered for those conducted only in humans, and a different search strategy was used: ("Major depression" OR "Dysthymic disorder" OR "Endogenous depression" OR "Late life depression" OR "Recurrent depression" OR "Treatment resistant depression" OR "Depression" OR "Depressive disorder" OR "Major depressive disorder") AND "Metabolomic."

Study selection and data extraction

Duplicates were eliminated before selection. Afterward, the citations were independently screened by four reviewers (LG, BC, GA, LS) in terms of titles and abstracts. The four reviewers then independently assessed the full text of selected studies. For each study, we extracted the following in a standardized spreadsheet: i) first author and year of publication; ii) sample and treatment (if any); iii) instrument used for diagnosis and stratification of depression; iv) analyzed bodily fluid; v) method of metabolomic analysis; vi) differences in the metabolic profiles of patients with MDD and controls.

Risk of bias assessment

The quality of the included studies was evaluated by two reviewers (DF, DL) using the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) criteria [9]. Discrepancies between the two reviewers were resolved by consensus.

Results

During the initial search of databases, 4,752 articles were found. After reviewing the titles and abstracts, 167 were selected for full reading and 50 were included for analysis and data extraction (Figure 1).
Of the included studies, 19 were conducted in China, 14 in the United States, seven in Japan, two in Finland, two in the United Kingdom, and one each in Brazil, Germany, France, Romania, the Netherlands, and Taiwan. Most studies used data from cohorts or clinical trials.

The risk of bias of the included studies was low (Tables 1-5). The number of patients varied between different studies and groups (Table 6).
STROBE items	Kaddurah-Daouk et al., 2011 [10]	Kaddurah-Daouk et al., 2012 [11]	Zheng et al., 2013 [12]	Kaddurah-Daouk et al., 2013 [13]	Zhu et al., 2013 [14]	Zheng et al., 2013 [15]	Ding et al., 2014 [16]	Liu et al., 2015 [17]	Moaddel et al., 2015 [18]	Setoyama et al., 2016 [19]	Zheng et al., 2016 [20]
Title and abstract	X	X	X	X	X	X	X	X	X	X	X
Background/rationale	X	X	X	X	X	X	X	X	X	X	X
Objectives	X	X	X	X	X	X	X	X	X	X	X
Study design	X	X	X	X	X	X	X	X	X	X	X
Setting	X	X	X	X	X	X	X	X	X	X	X
Participants	X	X	X	X	X	X	X	X	X	X	X
Variables	X	X	X	X	X	X	X	X	X	X	X
Data source/measurement	X	X	X	X	X	X	X	X	X	X	X
Bias	X										
Study size	X	X	X	X	X	X	X	X	X	X	X
Quantitative variables	X	X	X	X	X	X	X	X	X	X	X
Statistical methods	X	X	X	X	X	X	X	X	X	X	X
Participants											
Descriptive data	X	X	X	X	X	X	X	X	X	X	X
Outcome data	X	X	X	X	X	X	X	X	X	X	X
Main results	X	X	X	X	X	X	X	X	X	X	X
Other analysis	X	X	X	X	X	X	X	X	X	X	X
Key results	X	X	X	X	X	X	X	X	X	X	X
Limitations											
Interpretation	X	X	X	X	X	X	X	X	X	X	X
Generalizability	X	X	X	X	X	X	X	X	X	X	X
Funding	X	X	X	X	X	X	X	X	X	X	X
Total	18	18	18	16	18	21	19	19	16	19	18

TABLE 1: Risk of bias assessment (1/5)
STROBE items	Rotroff et al., 2016 [21]	Liu et al., 2016 [22]	Ali-Sisto et al., 2016 [23]	Zheng et al., 2016 [24]	Chen et al., 2017 [25]	Kageyama et al., 2017 [26]	Zheng et al., 2017 [27]	Chen et al., 2018 [28]	Moaddel et al., 2018 [29]	Pan et al., 2018 [30]	Kawamura et al., 2018 [31]
Title and abstract	X	X	X	X	X	X	X	X	X	X	X
Background/rationale	X	X	X	X	X	X	X	X	X	X	X
Objectives	X	X	X	X	X	X	X	X	X	X	X
Study design	X	X	X	X	X	X	X	X	X	X	X
Setting	X	X	X	X	X	X	X	X	X	X	X
Participants	X	X	X	X	X	X	X	X	X	X	X
Variables	X	X	X	X	X	X	X	X	X	X	X
Data source/measurement	X	X	X	X	X	X	X	X	X	X	X
Bias	X	X									
Study size	X	X	X	X	X	X					
Quantitative variables	X	X	X	X	X	X	X	X	X	X	X
Statistical methods	X	X	X	X	X	X	X	X	X	X	X
Participants	X	X	X	X							
Descriptive data	X	X	X	X	X	X	X	X	X	X	X
Outcome data	X	X	X	X	X	X	X	X	X	X	X
Main results	X	X	X	X	X	X	X	X	X	X	X
Other analysis	X	X	X	X	X	X	X	X	X	X	X
Key results	X	X	X	X	X	X	X	X	X	X	X
Limitations	X	X	X	X	X	X	X	X	X	X	X
Interpretation	X	X	X	X	X	X	X	X	X	X	X
Generalizability	X	X	X	X	X	X	X	X	X	X	X
Funding	X	X	X	X	X	X	X	X	X	X	X
Total	18	19	20	19	19	20	19	20	16	19	21

TABLE 2: Risk of bias assessment (2/5)
Studies	Liu et al., 2018 [32]	Ali-Sisto et al., 2018 [33]	Liu et al., 2018 [34]	Gui et al., 2018 [36]	Caysz et al., 2019 [37]	Bhattacharyya et al., 2019 [38]	Bhattacharyya et al., 2019 [39]	Chen et al., 2019 [40]	Ahmed et al., 2020 [41]	Brunoni et al., 2020 [42]	Han et al., 2020 [42]
STROBE items	X	X	X	X	X	X	X	X	X	X	X
Title and abstract	X	X	X	X	X	X	X	X	X	X	X
Background/rationale	X	X	X	X	X	X	X	X	X	X	X
Objectives	X	X	X	X	X	X	X	X	X	X	X
Study design	X	X	X	X	X	X	X	X	X	X	X
Setting	X	X	X	X	X	X	X	X	X	X	X
Participants	X	X	X	X	X	X	X	X	X	X	X
Variables	X	X	X	X	X	X	X	X	X	X	X
Data source/measurement	X	X	X	X	X	X	X	X	X	X	X
Bias	X	X	X	X	X	X	X	X	X	X	X
Study size	X	X	X	X	X	X	X	X	X	X	X
Quantitative variables	X	X	X	X	X	X	X	X	X	X	X
Statistical methods	X	X	X	X	X	X	X	X	X	X	X
Participants	X	X	X	X	X	X	X	X	X	X	X
Descriptive data	X	X	X	X	X	X	X	X	X	X	X
Outcome data	X	X	X	X	X	X	X	X	X	X	X
Main results	X	X	X	X	X	X	X	X	X	X	X
Other analysis	X	X	X	X	X	X	X	X	X	X	X
Key results	X	X	X	X	X	X	X	X	X	X	X
Limitations	X	X	X	X	X	X	X	X	X	X	X
Interpretation	X	X	X	X	X	X	X	X	X	X	X
Generalizability	X	X	X	X	X	X	X	X	X	X	X
Funding	X	X	X	X	X	X	X	X	X	X	X
Total	17	20	21	21	22	18	19	17	17	22	21

TABLE 3: Risk of bias assessment (3/5)
STROBE items	Erabi et al., 2020	Zhao et al., 2020	Shen et al., 2020	Du et al., 2021	Gamradt et al., 2021	Homorogan et al., 2021	Tateishi et al., 2021	Caspari et al., 2021	Hung et al., 2021	Bai et al., 2021	Kageyama et al., 2021
Title and abstract	X	X	X	X	X	X	X	X	X	X	X
Background/rationale	X	X	X	X	X	X	X	X	X	X	X
Objectives	X	X	X	X	X	X	X	X	X	X	X
Study design	X	X	X	X	X	X	X	X	X	X	X
Setting				X							
Participants	X	X	X	X	X	X	X	X	X	X	X
Variables	X	X	X	X	X	X	X	X	X	X	X
Data source/measurement	X	X	X	X	X	X	X	X	X	X	X
Bias											
Study size	X										
Quantitative variables	X	X	X	X	X	X	X	X	X	X	X
Statistical methods	X	X	X	X	X	X	X	X	X	X	X
Participants				X							
Descriptive data	X	X	X	X	X	X	X	X	X	X	X
Outcome data	X	X	X	X	X	X	X	X	X	X	X
Main results	X	X	X	X	X	X	X	X	X	X	X
Other analysis	X	X	X	X	X	X	X	X	X	X	X
Key results	X	X	X	X	X	X	X	X	X	X	X
Limitations	X	X	X	X	X	X	X	X	X	X	X
Interpretation	X	X	X	X	X	X	X	X	X	X	X
Generalizability				X							
Funding	X	X	X	X	X	X	X	X	X	X	X
Total	20	17	16	18	17	18	18	22	18	16	18

TABLE 4: Risk of bias assessment (4/5)
First author/year	Population/treatment	Method for MDD diagnosis/symptoms assessment	Bodily fluid	Analysis technique	Relevant differences in metabolites
Kaddurah-Daouk et al., 2011 [10]	43 MDD patients treated with sertraline	DSM-IV and HAM-D	Serum	LC-MS	Responders in both groups: ↑ Dihydroxyphenylacetic acid, 4-hydroxyphenyllactic acid, serotonin and gamma tocopherol
	46 MDD patients treated with placebo		Electrochemistry	Recovered from MDD:	

TABLE 5: Risk of bias assessment (5/5)

Studies	Mocking et al., 2021 [54]	Brydges et al., 2021 [55]	Ciocan et al., 2021 [56]	Kurokawa et al., 2021 [57]	Hu et al., 2021 [58]	Joyce et al., 2021 [59]
STROBE items						
Title and abstract	X	X	X	X	X	X
Background/rationale	X	X		X	X	X
Objectives	X	X	X			
Study design	X	X	X			
Setting						
Participants	X	X	X			
Variables	X	X		X		
Data source/measurement	X	X	X			
Bias					X	
Study size					X	X
Quantitative variables						
Statistical methods					X	X
Participants					X	
Descriptive data					X	
Outcome data					X	X
Main results						
Other analysis					X	X
Key results					X	X
Limitations						
Interpretation						
Generalizability						
Funding					X	X
Total	17	21	19	20		20
Study	Patients	Diagnosis	Sample Type	Metabolomics Platform	Metabolites	
-------	----------	-----------	-------------	-----------------------	-------------	
Kaddurah-Daouk et al., 2012 [11]	14 MDD patients	DSM-IV and HAM-D	CSF	metabolomics platform	↑ methionine, ↓ 5-Hydroxyindoleacetic acid, 5-Hydroxyindoleacetic acid/tryptophan, 5-Hydroxyindoleacetic acid/tryptamine, homovanillic acid, homovanillic acid/tyrosine, glutathione/methionine	
	14 patients recovered from MDD					
	18 healthy controls					
Zheng et al., 2013 [12]	14 patients recovered from MDD	DSM-IV and HAM-D	Urine	NMR	↓ alanine, citrate, formate, glycine, isobutyrate, methylmalonate, nicotinate, succinate, taurine, and -ketoglutarate	
	82 MDD patients at the first episode					
	82 healthy controls					
Validation	44 MDD patients	DSM-IV and HAM-D	Urine	NMR	↓ 3,4-dihydroxymandelate, choline, creatinine, dimethylamine, dimethylglycine, glycerophosphocholine, hippurate, malonate, m-hydroxysphenylacetate, N-methylnicotinamide, phenylacetylglycine, p-hydroxysphenylacetate, and trimethylamine-N-oxide	
	52 healthy controls					
Kaddurah-Daouk et al., 2013 [13]	89 first episode MDD patients randomized	DSM-IV and HAM-D	Serum	MS	↑ Aconitic acid, cysteine	
	43 patients - sertraline 50-150 mg					
	46 patients - placebo					
Zhu et al., 2013 [14]	75 MDD patients randomized	HDRS-17	Serum	LC/MS	↑ Quinuene, 3-hydroxyquinuene	
	35 patients- sertraline 50-150 mg					
	40 patients - placebo					
	21 MDD patients with previous suicide attempt					
	35 MDD patients who never attempted suicide					
Zheng et al., 2013 [15]	35 healthy controls	DSM-IV and HAM-D	Plasma	NMR	MDD suicide attempters vs healthy controls:	
	23 MDD patients with early stress	Plasma	GC-MS		↑ galactose, sorbitol, glycine, alanine, serine, and butanediolic acid	
	23 MDD patients without early stress					
	25 healthy controls					
Liu et al., 2015 [17]	60 untreated patients on first episode of MDD	DSM-IV and HAM-D	Plasma	LC-MS	MDD:	
	59 healthy controls					

2022 F. Guerreiro Costa et al. Cureus 14(3): e23009. DOI 10.7759/cureus.23009
Study	Methodology	Measures	Outcomes			
Moaddel et al., 2015 [18]	Plasma LC-MS	DSM-IV and MADRS	Treatment-resistant MDD: ↑ D-serine, L-serine KET- non-responders > KET- responders > Healthy controls			
Setoyama et al., 2016 [19]	Plasma LC-MS	HAM-D and PHQ-9	↑ 3-hydroxybutyrate, betaine, citrate, creatinine and gamma-aminobutyrate - directly related to the severity of MDD			
Zheng et al., 2016 [20]	Urine NMR; LC-MS and GC-MS	DSM-IV and HAM-D	Women with MDD: ↑ m-hydroxyphenylacetic acid, malonate, isobutyrate, azelaic acid ↓ glycolate, hypoxanthine Men with MDD: ↑ citrate and succinate ↓ tyrosine, n-acetylgluosamine, n-methyl nicotinamide			
Rotroff et al., 2016 [21]	Plasma GC	DSM-IV and MINI	Metabolites associated with increased response to treatment with ketamine: Ornithine, citrulline, tryptophan/kynurenine			
Liu et al., 2016 [22]	Plasma GC-MS and LC-MS/MS	HAM-D and MINI	MDD: ↑ cortisol, androstenedione, corticosterone, dopamine, L-metanephrine, L-normetanephrine, triglycerides and fatty acids ↓ histamine, arachidonic acid, serotonin			
Ali-Sisto et al., 2016 [23]	Plasma UPLC-MS	DSM-IV	MDD: ↑ xanthine and adenosine ↓ inosine and guanosine			
Zheng et al., 2016 [24]	Plasma GC-MS	HDRS-17	MDD: ↑ octanoic acid, hydroxylamine, benzoic acid, γ-aminobutyric acid, homosorine ↓ malonic acid, isoleucine, lanosterol, valine, sorbitol, creatinine, ribulose 5-phosphate, ethanolamine, malic acid, fumaric acid, γ-tocopherol and dopamine Moderate MDD: ↑ fructose, nicotinate, citrate, isobutyrate, ribose, vanillic acid, sorbitol and azelaic acid ↓ trimethylamine n-oxide, n-methyl nicotinamide, acetone, choline, malonate and glycerophosphocholine Severe MDD: ↑ nicotinate, p-hydroxyphenylacetate, succrose, alanine, taurine, choline, citrate, hydroxylamine, myristic acid, formate, isobutyrate, palmitic acid,			
Study	Participants	Methods	Results			
-------	--------------	---------	---------			
Kageyama et al., 2017 [26]	Cohort 1: 9 MDD patients, 19 healthy controls	MINI, DSM-IV and HAM-D	Plasma GC-TOFMS	MDD: ↑ nervonic acid		
Zheng et al., 2017 [27]	Cohort 1: 9 MDD patients, 19 healthy controls	MINI, DSM-IV and HAM-D	Plasma GC-TOFMS	MDD: ↑ nervonic acid		
Chen et al., 2018 [28]	Cohort 1: 9 MDD patients, 19 healthy controls	MINI, DSM-IV and HAM-D	Plasma GC-TOFMS	MDD: ↑ nervonic acid		
Pan et al., 2018 [30]	Cohort 1: 50 MDD patients and 50 healthy controls; Cohort 2: 45 medicated MDD patients, 90 healthy controls	MINI, DSM-IV and HAM-D	Plasma GC-TOFMS	MDD: ↑ nervonic acid		
Kawamura et al., 2018 [31]	Cohort 1: 50 MDD patients and 50 healthy controls; Cohort 2: 45 medicated MDD patients, 90 healthy controls	MINI, DSM-IV and HAM-D	Plasma GC-TOFMS	MDD: ↑ nervonic acid		
Liu et al., 2018 [32]	Cohort 1: 50 MDD patients and 50 healthy controls; Cohort 2: 45 medicated MDD patients, 90 healthy controls	MINI, DSM-IV and HAM-D	Plasma GC-TOFMS	MDD: ↑ nervonic acid		
Ali-Sisto et al., 2018 [33]	Cohort 1: 50 MDD patients and 50 healthy controls; Cohort 2: 45 medicated MDD patients, 90 healthy controls	MINI, DSM-IV and HAM-D	Plasma GC-TOFMS	MDD: ↑ nervonic acid		
Moaddel et al., 2018 [29]	Cohort 1: 50 MDD patients and 50 healthy controls; Cohort 2: 45 medicated MDD patients, 90 healthy controls	MINI, DSM-IV and HAM-D	Plasma GC-TOFMS	MDD: ↑ nervonic acid		
Liu et al., 2018 [32]	Cohort 1: 50 MDD patients and 50 healthy controls; Cohort 2: 45 medicated MDD patients, 90 healthy controls	MINI, DSM-IV and HAM-D	Plasma GC-TOFMS	MDD: ↑ nervonic acid		
Ali-Sisto et al., 2018 [33]	Cohort 1: 50 MDD patients and 50 healthy controls; Cohort 2: 45 medicated MDD patients, 90 healthy controls	MINI, DSM-IV and HAM-D	Plasma GC-TOFMS	MDD: ↑ nervonic acid		
Kawamura et al., 2018 [31]	Cohort 1: 50 MDD patients and 50 healthy controls; Cohort 2: 45 medicated MDD patients, 90 healthy controls	MINI, DSM-IV and HAM-D	Plasma GC-TOFMS	MDD: ↑ nervonic acid		
Liu et al., 2018 [32]	Cohort 1: 50 MDD patients and 50 healthy controls; Cohort 2: 45 medicated MDD patients, 90 healthy controls	MINI, DSM-IV and HAM-D	Plasma GC-TOFMS	MDD: ↑ nervonic acid		
Ali-Sisto et al., 2018 [33]	Cohort 1: 50 MDD patients and 50 healthy controls; Cohort 2: 45 medicated MDD patients, 90 healthy controls	MINI, DSM-IV and HAM-D	Plasma GC-TOFMS	MDD: ↑ nervonic acid		
Study Authors	Sample Size	Diagnostic Criteria	Analytical Method	Main Findings		
-----------------------	-------------	---------------------	-------------------	--		
Liu et al., 2018 [34]	50 MDD patients	DSM-5 and HAM-D-24	Serum and urine	↑ l-valine, l-lysine, l-leucine		
	28 healthy controls			Urine: ↑ N-acetylglucosamine, stearic acid, threonic acid		
Gui et al., 2018 [35]	20 MDD patients	DSM-IV and HAM-D	Plasma	↑ LDL, lysophospholipid, IL-6, TNF		
	20 healthy controls			↓ Phospholipids, apolipoprotein E, haptoglobin, serum transferrin, apolipoprotein A-5, complement factor H and immunoglobulin gamma, HDL		
Czysz et al., 2019 [36]	159 MDD patients randomized to three groups (8-12 weeks)	HDRS-17	Plasma	↑ hydroxyphosphorylethanol / sphingomyelin were associated with better response to antidepressant treatment in the three groups		
	Escitalopram + Placebo X			Post-treatment: ↑ 5-Hydroxyindoleacetic acid / serotonin, Indole-3-acetic, Vanillylmandelic, 4-Hydroxyphenylethylacetic, 4-Hydroxyphenylethylacetic acid / Tyrosine, 4-hydroxybenzoic acid, Paraxanthine / Xanthine and Uric acid / Xanthine		
	Escitalopram + Bupropion X			↓ Serotonin, Methoxy-hydroxyphenyl glycol, Methoxy-hydroxyphenyl glycol /Tyrosine, Hypoxanthine, Xanthine, Xanthine / Xanthosine		
	Venlafaxine + Mirtazapine					
Bhattacharyya et al., 2019 [37]	290 MDD patients treated with citalopram, escitalopram or other SSRI	HAM-D	Plasma	↑ phosphatidylcholines		
	26 MDD patients randomized for CBT (subgroup analysis)	DSM-IV and HAM-D	Serum UPLC / MS / MS	Baseline: ↑ phosphatidylcholines Non-responders compared to remitters: ↑ Acylcarnitines, α-amino adipic acid, phenylalanine, tyrosine and tryptophan		
	Young (18-29 years): 44 MDD patients			Over the course of treatment: Remitters: ↑ phosphatidylcholines Non-responders: ↓ phosphatidylcholines		
	Middle age (30-59 years): 74 MDD patients					
	61 healthy controls					
Chen et al., 2019 [38]	56 healthy controls	DSM-IV and HAM-D	Urine NMR and GC-MS	↑ Hypoxanthine, indoxyl sulfate, pseudouridine, quinolinic acid, l-tyrosine, 1-methylinosine, uracil, ethanolamine		
	Young and middle aged MDD: 54 MDD patients					
	4364 patients	HDRS-17	Plasma UPLC/MS	Over the course of treatment: ↑ short-chain acylcarnitines, ↓ medium and long-chain acylcarnitines		
	No depression (n = 4024)			↑ GlycA levels were associated with persistent depression		
	Incident depression (n = 159,					
Study	Patients	Methodology	Platform	Findings		
-------	----------	-------------	----------	----------		
Brunoni et al., 2020 [41]	165 MDD patients	PHQ-9 and WEMWBS Plasma	CIS-R NMR profiler platform	↑ baseline GlycA levels were associated with worsening of depressive symptoms		
Han et al., 2020 [42]	130 subclinical low mood controls			Remitted depression (n = 133, 3.05%) Persistent depression (n = 48, 1.1%)		
Erabi et al., 2020 [43]	88 MDD patients	DSM-IV, MINI, and HAM-D Plasma	LC-MS	↑ α-1-acid glycoprotein 1, leucine-rich α-2-glycoprotein, apolipoprotein E, complement factor H	↓ retinal dehydrogenase 1	
Zhao et al., 2020 [44]	12 healthy female students	BDI-II and SDS Urine	LC-MS	↑ malonic acid, fumaric acid, 2-methylfumarate, L-malic acid, and palmitic acid	↓ 4-acetamidobutyric acid, α-ketoglutaric acid, tartaric acid, gluconic acid, sphingosine, and 21-hydroxyprogrenolone	
Shen et al., 2020 [45]	120 MDD patients analyzed pre and post treatment with fluoxetine for eight weeks	DSM-IV Serum	UPLC-Q-TOF/MS	↑ D-Aspartic acid, CoA, D-Glucose, ADP, Citric acid, Phenylpyruvic acid, Tyrosine, 5-Hydroxyindoleacetaldehyde, Oxoglutaric acid and N-Acetylneuraminic acid	↓ Lyso PC(O-18:0), Androsterone, Lyso PC(20:1(11Z)), Lyso PC(P-18:1(9Z)), Acetyl-CoA and Thromboxane B2	
Du et al., 2021 [46]	53 MDD patients	DSM-IV Plasma	LC-MS/MS	↑ gamma-glutamyl leucine, leucine-enkephalin, and valeric acid	↓ phosphatidylserine (16:0/16:1) and phosphatidic acid PA (18:1/18:0)	
Gamradt et al., 2021 [47]	28 MDD patients	DSM-5 and MINI Plasma	LC-MS and GC-MS	↑ D-Aspartic acid, CoA, D-Glucose, ADP, Citric acid, Phenylpyruvic acid, Tyrosine, 5-Hydroxyindoleacetaldehyde, Oxoglutaric acid and N-Acetylneuraminic acid	↓ phosphatidylserine (18:3/20:4)	
Homroogan et al., 2021 [48]	11 MDD patients treated with escitalopram for 12 weeks	DSM-IV-TR and HAM-D Plasma	UHPLC-Q-TOF-(ESI+)MS	↑ D-Aspartic acid, CoA, D-Glucose, ADP, Citric acid, Phenylpyruvic acid, Tyrosine, 5-Hydroxyindoleacetaldehyde, Oxoglutaric acid and N-Acetylneuraminic acid	↓ phosphatidylserine (16:0/16:1) and phosphatidic acid PA (18:1/18:0)	
Tateishi et al., 2021 [49]	13 patients with TRD subjected to high frequency rTMS	DSM-5,HAM-D and BDI Plasma	LC-MS	↑ tryptophan, ↓ serotonin	↑ 5-hydroxytryptophan	Increase in kynurenine correlated with increased BDI scores.
Study	Patient/Study Details	Methodology	Metabolites/Significance	Findings		
--	---	-------------	---	---		
Caspani et al., 2021	211 MDD patients treated with escitalopram, augmented with aripiprazole if non-responders (97)	Plasma NMR	LDL, triglycerides, cholesterol, free cholesterol, phospholipids, apolipoprotein B	Apolipoprotein A1, HDL Apolipoprotein A1 and HDL 3 free cholesterol presented a negative correlation with a reduction in MADRS score in phase I		
	112 healthy controls					
Hung et al., 2021	229 MDD patients	DSM-IV and HAM-D Plasma NMR	↑ histidine			
	67 healthy controls					
	After 10 years: DSM-IV and HAM-D		↓ succinic acid, proline, acetic acid, creatine, glutamine, glyoxal and pyruvic acid			
	137 attended follow-up					
	47 full remission					
Bai et al., 2021	60 MDD patients	DSM-IV and HAM-D Plasma LC-MS	↑ uridine triphosphate, benzoic acid, 1-heptadecanoyl			
	60 healthy controls		↓ Arachidonic acid, Chenodeoxycholic acid, Deoxycholic acid, Docosahexaenoic acid, 1, Taurocholonic acid, Taurochenodeoxycholic Acid, Taurocholic acid, Ethylmethylacetic acid, Deoxyglycocholic acid			
Kageyama et al., 2021	30 MDD patients	DSM-IV and HAM-D CSF GC-MS	Nervonic acid levels did not differ among the patients with MDD and healthy controls			
	30 healthy controls					
	Recurrent MDD in drug free remission:					
	45 females; 23 males					
	Recurrence: DSM-IV and HAM-D Plasma GC-MS	↓ methylcysteine, monohexosylceramide, glutamine, histidine, ceramides				
	24 Females; 11 Males					
	Never depressed controls:					
	40 females; 19 males					
	Monitored for 2.5 years					
	196 MDD patients					
	124 available at week 12					
	34 CBT					
	44 duloxetine					
Brydges et al., 2021	46 escitalopram	DSM-IV and HAM-D Plasma GC-MS	↑ indole metabolites			
			Medication-treated patients:			
			↑ IPA (indole-3-propionic acid) and ILA (indole-3-lactic acid)			
			↓ IAA (indole-3-acetic acid)/IS (Indoxyl sulfate) ratio and IAA/IPA ratio			
			CBT-treated patients:			
			↑ IAA/IPA ratio			
			Remitters to medication:			
			↑ IPA, ↓ ILA/IPA			
			Remitters to CBT:			
			↓ IPA/IS			

2022 F. Guerreiro Costa et al. Cureus 14(3): e23009. DOI 10.7759/cureus.23009
Of the studies evaluated in our review, 21 evaluated therapeutic approaches [10,13,14, 18-21,26,29,33,36-38,40,43,48-50,55,56,58]. One study assessed arms with bupropion, venlafaxine, and mirtazapine [36]. Three studies found differently expressed metabolites after treatment with ketamine or s-ketamine [18,21,29]. One study used cognitive behavioral therapy to compare the metabolomic profile at baseline and during treatment [37], while another evaluated the effects of repetitive transcranial magnetic stimulation [49].

The other studies compared MDD individuals with and without medication or MDD patients with healthy controls, but not all studies specified which drugs were used (Table 3) [11,16,19,20,26-28,33,39,51]. One study that used fecal samples did not find any difference in metabolomic profile after correction of statistical analyses [57]. The remaining studies did not assess the interference of a specific therapy on metabolomic profile. The variety of methodologic and metabolic profiles hinders a precise conclusion of the effects of treatment on metabolites. However, the studies suggest possible biomarkers as predictors for the treatment of depression.

Many metabolites were related to MDD in the analyzed studies, and the methods used for detection were heterogeneous, with emphasis on liquid chromatography and gas chromatography associated with mass spectrometry and nuclear magnetic resonance spectroscopy. The fluids evaluated were plasma, serum, urine and cerebrospinal fluid, and for purposes of description, the metabolites were classified according to the fluids in which they were evaluated and their molecular characteristics.

TABLE 6: Summary of 50 studies evaluating the metabolomics of MDD

Study	Patients	Metabolomics Method	Fluid	Detection	Findings	
Ciocan et al., 2021 [56]	56 healthy controls	DSM-IV-TR	Blood	LC-MS/MS	↑ L-serine	
Kurokawa et al., 2021 [57]	33 MDD patients: 11 responders to medication; 16 non-responders; 6 stable remitters	DSM-5	Fecal	CE-TOF-MS	No difference was observed post correction	
Hu et al., 2021 [58]	144 MDD patients randomized to ShenZhiLing (73) or fluoxetine (71) and treated for 8 weeks	DSM IV	Blood	Western blot	Fluoxetine group: ↓ ApoB/ApoA	
Joyce et al., 2021 [59]	298 MDD patients	Citalopram (112) Escitalopram (152) Escitalopram + Placebo (34)	HAM-D	Blood	MS	Baseline ratio of hydroxylated to non-hydroxylated sphingomyelins, as well as a larger change in this ratio by therapy, predicted greater reduction in depressive symptoms

Abbreviations: ↑ - high levels; ↓ - low levels; BCAA - branched chain amino acids; BD - bipolar depression; BDI - Beck Depression Inventory; CBT - cognitive behavioral therapy; CCMD-3 - Chinese Classification of Mental Disorders, Third Edition; CE - capillary electrophoresis; CES-D - Center for Epidemiologic Studies Depression Scale; CIS-R - Clinical Interview Schedule-Revised, CSF - cerebrospinal fluid; DFI - direct flow injection; DSM-IV - Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition; DSM-5 - Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition; EPDS - Edinburgh Postnatal Depression Scale; FIA - flow injection analysis; GC - gas chromatography; GlycA - glycoprotein acetylation; HAM-D - Hamilton Depression Rating Scale; HBV - hepatitis B virus; HDRI-17 - the original version of the HAM-D, with only 17 items; HILIC - hydrophilic interaction liquid chromatography; HIV - human immunodeficiency virus; LC - liquid chromatography; LCECA - liquid chromatography with electrochemical coulometric array; LDL - low density lipoprotein; MADRS - Montgomery-Asberg Depression Rating Scale; MDD - major depressive disorder; MINI - Mini International Neuropsychiatric Interview; MRM - multiple reaction monitoring; MS - mass spectrometry; NMR - nuclear magnetic resonance spectroscopy; PHQ-9 - Patient Health Questionnaire-9; QQQ - triple quadrupole; rTMS - repetitive transcranial magnetic stimulation; SCID-1 - Structured Clinical Interview for DSM-IV Axis I Disorders; SDS - Self-rating Depression Scale; SSRI - selective serotonin reuptake inhibitor; TRD - treatment-resistant depression; TOFMS - Time-of-flight mass spectrometry; UPLC - ultra performance liquid chromatography; UHPLC-Q-TOF-(ESI+)-MS - ultra-high-performance liquid chromatography coupled with electrospray ionization quadruple time-of-flight mass spectrometry; VLDL - very low density lipoprotein; WEMWBE - Warwick-Edinburgh Mental Well Being Scale.
Plasma/serum

Lipids

Sphingomyelin, a sphingolipid that has a structural and cellular signaling function and is abundant in nerve tissues (particularly in myelin), is a fundamental component of cell membranes, and a high hydroxysphingomyelin/sphingomyelin ratio has proven to be a predictor of a good response to antidepressant treatment [36,59]. Patients with depression treated with intravenous ketamine had a sphingomyelin serum level increase at the time-point of 230 minutes after infusion. On the third day after ketamine infusion, the sphingomyelin levels appeared to decrease [29].

Arachidonic acid is an essential fatty acid and a major component of the cell membrane. In MDD patients, arachidonic acid plasma levels appear to be lower than in healthy subjects [22,52]. Treatment with sertraline is implicated in the augmentation of arachidonic acid in MDD patients, which is associated with a reduction in depressive symptoms [15]. High levels of arachidonic acid were predictors of recurrence [54]. Additionally, one study showed lower levels of linoleic, oleic, and heptadecylic acid and cholesterol in MDD patients with early stress [14].

Additionally, valeric acid was also found to be reduced in MDD patients, which could be explained by dysregulation of the brain-gut-microbiota axis or increased N-methyl-d-aspartate (NMDA) receptor activity [46]. On the other hand, nervonic acid, a monoensaturated fatty acid important for myelin synthesis, has been elevated in patients with MDD [26] but cerebrospinal fluid nervous acid levels did not differ between MDD patients and healthy controls [53].

A higher LDL/HDL ratio was found in MDD patients along with a reduction in omega-3 fatty acids levels [47,60] and a positive correlation between the Montgomery-Åsberg Depression Rating Scale (MADRS) score and serum levels of LDL, triglycerides, cholesterol, free cholesterol, phospholipids and apolipoprotein B before treatment [50]. Furthermore, a study that compared eight weeks of treatment with fluoxetine found reduced ApoB (apolipoprotein B)/ApoA1 (apolipoprotein A1) [58]. Additionally, Zheng et al. compared patients untreated in their first episode of MDD with healthy controls and found higher levels of polysaturated fatty acids and VLDL/LDL ratio in the MDD group. Low levels of cholesterol were present in MDD patients [16].

Amines

Phosphoethanolamine is a precursor to cell membrane phospholipids and is related to stages of cell metabolism such as apoptosis, which is why it has been studied in oncology and other areas [61]. A study suggests phosphoethanolamine as a possible biomarker for depression, as lower levels were found in MDD patients compared to healthy controls. However, the small sample size limited the comparison between MDD individuals undergoing pharmacological treatment and drug-naïve MDD subjects [31].

Higher baseline levels of melatonin, a hormone produced in the pineal gland using tryptophan as a substrate and whose primary function is sleep control, correlated with better response to treatment, and in responders their levels increased more [14].

Neurotransmitters

The main inhibitory neurotransmitter in the central nervous system (CNS), gamma-aminobutyric acid (GABA), as well as dopamine, a CNS modulating neurotransmitter, showed elevated levels in depressed patients [20,22,30]. Differently, histamine, one of the main chemical mediators involved in the allergic inflammatory response, seems to be low in MDD [22]. Leucine-enkephalin, an endogenous opioid with a high affinity for the delta-opioid receptor, was also found to be reduced in MDD patients [46].

Amino Acids

Low levels of tryptophan and kynurenine have been observed in MDD [30,32,56]. Indoles (metabolites of tryptophan) are elevated in MDD patients [55]. An inverse relationship was also observed between serum kynurenine levels and the severity of MDD: the lower the levels, the greater the severity [32]. In responders to an antidepressant, the kynurenine/melatonin and 3-hydroxykynurenine/melatonin ratios decreased and the metabolite 3-hydroxykynurenine also contributed to distinguish responders and non-responders [10,14]. Furthermore, antidepressant treatment increased kynurenine levels [50], and increased kynurenine levels were also associated with increased Beck Depression Inventory (BDI) scores after repetitive transcranial magnetic stimulation (rTMS) in treatment-resistant depression [49].

During treatment with intravenous ketamine, there was a slight increase in kynurenine (a tryptophan metabolite necessary for the synthesis of vitamin B3) 230 minutes after treatment. There was also a small reduction in these levels on the third day after this intervention [29]. Ketamine non-responders showed higher levels of D-serine and L-serine when compared with ketamine responders and controls [18]. In
treatments with ketamine and esketamine, there was a reduction in metabolites of tryptophan and tyrosine [21].

Isoluecine, an essential amino acid that has direct effects on hypothalamic regulation by increasing satiety, has been linked to MDD when at low levels [15,20,37]. Low levels of gamma-glutamyl leucine were also associated with MDD, which may suggest abnormalities in the function of glutathione, an important antioxidant [46]. Arginine, which is an important amino acid for immune function and wound healing, has its lowest levels in MDD. Additionally, arginine levels increased significantly in recovered patients [33]. Treated patients showed higher levels of L-tyrosine, N-acetylornithine, kynurenine and lower levels of L-isoleucine [56].

Hung et al. showed that, in comparison to healthy controls, patients with MDD in complete remission presented significantly lower levels of metabolites related to pyruvate metabolism, via the tricarboxylic acid (TCA) cycle, linked to the metabolism of amino acids including alanine, aspartate, glutamate, arginine and proline and the metabolites of glycine, serine, and threonine. These findings corroborate those of Diang et al., who had previously reported lower levels of leucine and higher levels of alanine, serine, and proline in patients with MDD, pointing to an important involvement of amino acids in the pathophysiology and treatment response of MDD.

Genetic Products

Inosine, a nucleoside that has been studied as a neuroprotective in pathologies such as stroke, Parkinson’s disease, and multiple sclerosis, showed low levels in depressed patients. In contrast, the serum levels of xanthine and adenosine were high in MDD [23,33]. Xanthine is a purine base and many stimulants such as caffeine and theobromine are derived from it [62]. Adenosine, on the other hand, is an endogenous purine that performs some functions in the CNS such as inducing sleep and relieving anxiety symptoms.

Others

5-Hydroxyindoleacetic acid, a metabolite of serotonin, tended to increase with the treatment of MDD, and the reduction of serotonin in the body can trigger emotional instability, insomnia, anxiety, and increased appetite [37].

Acylcarnitine, a hormonal activator that has been studied in pathologies such as Alzheimer’s disease, showed low levels in subjects with MDD and elevated levels after treatment [17,40]. In contrast, dopamine, normetanephrine and metanephrine (metabolites of catecholamine) have shown high levels in MDD [22].

Glycoprotein acetylation (GlycA) is a novel inflammatory marker based on protein plasma glycosylation. There was a significant association between baseline GlycA levels and depression persistence. The role of high-sensitivity c-reactive protein (hsCRP), a traditional inflammatory marker, was also investigated, as well as the role of these inflammatory markers in the progression of depressive symptoms. GlycA levels predicted depression persistence. The association was robust and significant in fully adjusted models. Moreover, GlycA was superior to hsCRP in predicting depression persistence [41]. Other glycoproteins such as α-1-acid glycoprotein 1 and leucine-rich α-2-glycoprotein were higher in the MDD group [42]. These findings corroborate the involvement of this molecule in MDD.

Taurine, glycine, lysine, l-lysine, valine, l-valine, proline, l-proline, citrulline, citrate, creatinine, and phospholipids, among other metabolites, have also been associated with MDD or the antidepressant response [13,15,19,31,34,35].

Compared with controls, MDD patients with full remission had significantly lower expression of succinic acid, acetic acid, and pyruvic acid [51].

Urine

Amino Acids

Elevated levels of homocysteine, a sulfhydryl amino acid formed from methionine, are related to neurological and cerebrovascular diseases. Young and middle-aged MDD patients had low levels of l-tyrosine compared with healthy controls [39]. In a study with plasma samples, the results were concordant, with treated patients showing higher levels of l-tyrosine [56].

Acids

Malonate, which is an inhibitor of cellular respiration, has lower levels in MDD [12,25]. It also appeared as a differential metabolite between depressed women and men: while females with MDD presented lower levels of malonate in comparison to healthy subjects, the same was not observed for males. Of note, females with
MDD who responded or remitted after antidepressant treatment presented levels of urinary malonate concentration similar to those of healthy participants [20]. Using samples of young and middle-aged MDD patients, higher levels of citric acid and oxoglutaric acid and lower levels of quinolinic acid were found in this population compared to healthy individuals [59].

Others

After assessing college students, high concentrations of malonic acid, fumaric acid, 2-methylfumarate, L-malic acid, and palmitic acid and lower levels of 4-acetamidoobutyric acid, α-ketoglutaric acid, tartaric acid, gluconic acid, sphingosine, and 21-hydroxyprogrenolone were capable to differentiate depressed students from healthy students [44]. In a group of patients with MDD and anxiety higher levels of acid azelaic, aminomalonic, (S)-3-hydroxyisobutyric, L-lactic, adipic, (S)-3,4-hydroxyisobutyric and α-aminobutyric acid and low levels of methylmalonic and hippuric acid were capable of differentiated of healthy controls [28].

Cerebrospinal fluid

Amino Acids

MDD patients in remission presented differences in tryptophan and tyrosine metabolism compared to MDD patients without remission and controls. The group in remission also had higher methionine levels and higher methionine/glutathione ratios than the other MDD and control groups, suggesting the involvement of methylation pathways and oxidative stress [11].

Discussion

Metabolomics research is an area of learning that explores metabolic pathways associated with various health problems, helps in understanding the pathophysiology of diseases, including mental disorders, and enables the discovery of biomarkers. This systematic review aimed to identify metabolites that are differentially expressed in MDD. After analyzing the selected studies, we found many metabolites related to MDD diagnosis and/or treatment, acting with cell signalers, cell membrane components, neurotransmitters, inflammatory and immunological mediators, hormonal activators and precursors and sleep controllers. However, there was a wide variation in the analyzed fluids and assessment methods, possibly due to the heterogeneity of metabolites found.

As was expected, compounds from the tryptophan, tyrosine, and purine pathways were differently expressed in MDD patients in many of the reviewed studies, as metabolic factors in the kynurenine pathway are considered possible mechanisms involved in the pathophysiology of MDD. The kynurenine pathway begins with the conversion of tryptophan to kynurenine. For the first branch, kynurenine is transformed into 3-hydroxyanthranilic acid and quinolinic acid, which are N-methyl-d-aspartate (NMDA) receptor agonists that exert neurotoxic effects. For the second branch, kynurenine is transformed into kynurenic acid by kynurenine aminotransferases. Kynurenic acid is an NMDA receptor antagonist, which exerts a neuroprotective effect [45]. Tryptophan is an essential amino acid necessary for the production of serotonin and melatonin [63]. The two main metabolism pathways for tryptophan are 5-hydroxytryptophan and kynurenine.

Lower baseline plasma kynurenine is significantly associated with the severity of depressive symptoms and suicidal ideation. Kynureninebiosynthesis in the brain occurs primarily in astrocytes while tryptophan catabolism occurs mainly in glial cells. Kynurenine can cross the blood-brain barrier. Peripheral kynurenine, primarily generated in the liver, is the source of ∼60% of CNS kynurenine. However, the relationship of plasma kynurenine concentration to MDD symptom severity remains unclear and further investigations are necessary. A toxic kynurenine metabolite acts as an NMDA receptor agonist, which has been linked to depressive symptoms and other psychiatric manifestations [32].

Rotroff et al. also studied this metabolic pathway through a clinical trial with ketamine or esketamine in the treatment of MDD. Esketamine was the most potent enantiomer as an NMDA receptor antagonist. Metabolic changes have been demonstrated in relation to glutamate and tryptophan metabolism. Glutamic acid levels are increased 240 minutes after ketamine exposure. Ketamine is known to block the glutamatergic NMDA receptor; thus, the possible effect of increased glutamate levels could shift glutamatergic signaling from NMDA receptor to AMPA receptor to enhance the SHT1B receptor activity that is hypothesized to be required for antidepressant effects. Treatment with either ketamine or esketamine resulted in decreased tryptophan metabolites. It is clear that the glutamatergic system appears to contribute to the risk and severity of MDD, requiring further investigation in this regard through original studies.

Another metabolite that deserves to be highlighted in our review is acylcarnitine. Ahmed et al. identified that more severe forms of depression are associated with reductions in short-chain acylcarnitines after SSRI treatment. This finding, and the relationship of acylcarnitine levels with mitochondrial fatty acid β-oxidation and branched-chain amino acid catabolism, suggests that the pathology of MDD may manifest, in part, through metabolomic dysfunction. Further, these findings may reflect changes in mitochondrial function or ATP production in patients with MDD. Moaddel et al. found a decrease in acylcarnitine.
concentrations after ketamine treatment compared to placebo.

Previously published reviews brought together studies that evaluated metabolites in order to identify reliable biomarkers for MDD. In agreement with the present systematic review, Macdonald et al. found a diversity of analyzed fluids and methodologies used. Urine, cerebrospinal fluid, plasma, and serum were also identified as analyzed fluids. Analysis techniques such as the use of gas and liquid chromatography combined with mass spectrometry, capillary electrophoresis time of flight mass spectrometry (CE-TOF-MS), NMR and liquid chromatography with electrochemical coulometric array detection (LCECA) were observed [64]. These techniques are widely used because they allow the simultaneous detection of numerous metabolites [65].

Specific biomarkers were found to be related to MDD by Macdonald et al. (2019), with glycine, alanine, citrate and formate increasing and phenylalanine, valine, aminoaethanol, and hypurate is shown to be negatively regulated. Other metabolites were found to be only potentially consistent. Some metabolic pathways were found to be involved in the pathophysiology of MDD such as coenzyme Q biosynthesis, glycine-serine-threonine metabolism, tyrosine metabolism, pyrimidine metabolism, and steroid biosynthesis [44,45,56,66].

Our findings might be helpful to researchers in the field and to future research question formulations, by elucidating which metabolites seem to be associated with MDD pathophysiology, laboratory diagnosis and therapeutic approaches and which, therefore, should be investigated further. It is also important to discover specific molecular biomarkers for mental disorders, as an objective and complementary method to currently existing diagnoses, which use concepts that mostly have a subjective character. The metabolic profile can be used as a response predictor, thus assisting in making more targeted decisions [65].

The experiments considered in the review identified increased or reduced levels of metabolites, but not necessarily increased or reduced activity of the associated pathways. The information acquired through metabolic analyses does not specify whether the changes identified in the metabolites are a cause or a consequence of the pathology. It is not known, therefore, whether the affected pathways in different psychiatric conditions represent causal mechanisms of the diseases. Gadad et al. concluded that no biomarker has been translated into clinical practice for the diagnosis of depression or treatment definition. However, some recent studies have suggested the possibility of diagnostic metabolic panels for depressive disorders, such as phosphatidylserine (16:0/16:1) for MDD, with an AUC value of 0.876 [48].

Some limitations are the heterogeneity of studies on metabolites, methods for detection, analyzed body fluids, and treatments used. Not all studies had detailed assessment tools such as Hazard Ratio. Thus, it was not possible to carry out the synthesis with meta-analysis. To minimize the heterogeneity, we chose to include in this review only patients with unipolar depression, without associated health conditions, such as pregnancy and puerperium, hepatitis, and acquired immunodeficiency syndrome. However, prevalent health conditions such as diabetes mellitus, systemic arterial hypertension, obesity, and dyslipidemia were not detailed in the studies. MDD is not a phenotypically and genetically homogeneous disorder. Rather, MDD might be seen as a highly prevalent syndrome, with a wide polygenicity and present in people of different ages and ethnic backgrounds [67]. Likewise, several gene-environment interactions have been suggested as risk factors of MDD. Because of such heterogeneity, metabolite-mapping related to MDD is a challenge.

As seen in most of the studies cited in this review, MDD metabolite investigation protocols do not take into count that heterogeneity; therefore, their results might be influenced by samples with significantly different phenotypes, severity, ages or treatment approaches. The data obtained were not sufficient to distinguish changes directly related to disease or as a consequence of life habits, phenotypic characteristics and effects related to treatment. Therefore, it would be advantageous for metabolomic studies to investigate more homogeneous MDD subtypes.

Conclusions

The results presented in our review show that several metabolites are altered in MDD and change with treatment, and the most consistent evidence available relates to kynurenine and acylcarnitine. However, there is still not enough evidence to propose changes in the diagnosis or therapeutic management of MDD. In view of the limitations presented, we suggest the investigation of metabolites in MDD in more homogeneous conditions, taking into consideration both the MDD phenotype and the patient’s characteristics. Considering the benefits that biomarkers can bring to the pathophysiological understanding, diagnosis and treatment of MDD, further metabolomics research is a necessity.

Additional Information

Disclosures

Conflicts of interest: In compliance with the ICMJE uniform disclosure form, all authors declare the following: Payment/services info: All authors have declared that no financial support was received from any organization for the submitted work. Financial relationships: All authors have declared that they have
no financial relationships at present or within the previous three years with any organizations that might have an interest in the submitted work. **Other relationships:** All authors have declared that there are no other relationships or activities that could appear to have influenced the submitted work.

Acknowledgements

This work was supported by the Programa de Pesquisa para o SUS (PPSUS/BA research grant number 003/2017), a public research-funding program, and was financed in part by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001. Lívia N. F. Guerreiro-Costa and Beatriz A. Carneiro are coequal first authors. Taiana de A. Cardoso, Flavio Kapczinski, Acíoly L.T. Lacerda, Ingrid Dorea-Bandeira and Judah L. Barouht reviewed the manuscript and provided critical contributions.

References

1. Wang PS, Simon G, Kessler RC: The economic burden of depression and the cost-effectiveness of treatment . Int J Methods Psychiatr Res. 2003, 12:22-33. 10.1002/mpr.139
2. Bot M, Milanesci Y, Al-Shehri T, et al.: Metabolomics profile in depression: a pooled analysis of 230 metabolic markers in 5283 cases with depression and 10,145 controls. Biol Psychiatry. 2020, 87:409-18. 10.1016/j.biopsycho.2019.08.016
3. Humer E, Probst T, Piehl C: Metabolomics in psychiatric disorders: what we learn from animal models . Metabolites. 2020, 10:72. 10.3390/metabo10020072
4. Nedic Erjavec G, Konjnevod M, Nikolac Perkovic M, et al.: Short overview on metabolic approach and redox changes in psychiatric disorders. Redox Biol. 2018, 14:178-86. 10.1016/j.redox.2017.09.002
5. Nicholson JK, Lindon JC: Systems biology: metabolomics. Nature. 2008, 455:1054-106. 10.1038/4551054a
6. Schwarz E, Bahn S: The utility of biomarker discovery approaches for the detection of disease mechanisms in psychiatric disorders. Br J Pharmacol. 2008, 153 Suppl 1:Si133-6. 10.1038/bj.2007.598
7. Moher D, Liberati A, Tetzlaff J, Altman DG: Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009, 151:264-9, W64. 10.7326/0003-4819-151-4-20090818-00135
8. Cochrane Handbook for Systematic Reviews of Interventions . Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ (ed): John Wiley & Sons, Chichester; 2019.
9. von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP: The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. J Clin Epidemiol. 2008, 61:344-9. 10.1016/j.jclinepi.2007.11.008
10. Kaddurah-Daouk R, Boyle SH, Matson W, et al.: Pretreatment metabotype as a predictor of response to sertraline or placebo in depressed outpatients: a proof of concept. Transl Psychiatry. 2011, 1:e26. 10.1038/tp.2011.22
11. Kaddurah-Daouk R, Yuan P, Boyle SH, et al.: Cerebrospinal fluid metabolome in mood disorders-remission state has a unique metabolic profile. Sci Rep. 2012, 2:667. 10.1038/srep00667
12. Zheng P, Wang Y, Chen L, et al.: Identification and validation of urinary metabolite biomarkers for major depressive disorder. Mol Cell Proteomics. 2015, 12:207-14. 10.1074/mcp.M112.021816
13. Kaddurah-Daouk R, Bogdanov MB, Wikoff WR, et al.: Pharmacometabolomic mapping of early biochemical changes induced by sertraline and placebo. Transl Psychiatry. 2013, 3:e223. 10.1038/tp.2012.142
14. Zhou X, Bogdanov MB, Boyle SH, et al.: Pharmacometabolomics of response to sertraline and to placebo in major depressive disorder - possible role for methoxyindole pathway. PLoS One. 2013, 8:e61283. 10.1371/journal.pone.0061283
15. Zheng P, Gao H-C, Qi Z-G, et al.: Peripheral metabolic abnormalities of lipids and amino acids implicated in increased risk of suicidal behavior in major depressive disorder. Metabolomics. 2015, 9:688-96. 10.1007/s11306-012-0474-9
16. Ding X, Yang S, Li W, et al.: The potential biomarker panels for identification of Major Depressive Disorder (MDD) patients with and without early life stress (ELS) by metabolomic analysis. PLoS One. 2014, 9:e97479. 10.1371/journal.pone.0097479
17. Liu X, Zheng P, Zhao X, et al.: Discovery and validation of plasma biomarkers for major depressive disorder classification based on liquid chromatography-mass spectrometry. J Proteome Res. 2015, 14:2322-30. 10.1021/acs.jproteome.5b00144
18. Moaddel R, Luckenbaugh DA, Xie Y, et al.: D-serine plasma concentration is a potential biomarker of (R,S)-ketamine antidepressant response in subjects with treatment-resistant depression. Psychopharmacology (Berl). 2015, 232:599-409. 10.1007/s00211-014-3669-0
19. Setoyama D, Kato TA, Hashimoto R, et al.: Plasma metabolites predict severity of depression and suicidal ideation in psychiatric patients - multicenter pilot analysis. PLoS One. 2016, 11:e0165267. 10.1371/journal.pone.0165267
20. Zheng P, Chen JJ, Zhou C, et al.: Identification of sex-specific urinary biomarkers for major depressive disorder by combined application of NMR- and GC-MS-based metabolomics. Transl Psychiatry. 2016, 6:e6955. 10.1038/tp.2016.188
21. Rottroff DM, Corum DG, Motzinger-Reif A, et al.: Metabolomic signatures of drug response phenotypes for ketamine and esketamine in subjects with refractory major depressive disorder: new mechanistic insights for rapid acting antidepressants. Transl Psychiatry. 2016, 6:e894. 10.1038/tp.2016.145
22. Liu Y, Yieh L, Yang T, et al.: Metabolomic biosignature differentiates melancholic depressive patients from healthy controls. BMC Genomics. 2016, 17:669. 10.1186/s12864-016-2953-2
23. Ali-Sisto T, Tzoulmen T, Toffol E, et al.: Purine metabolism is dysregulated in patients with major depressive disorder. Psychoneuroendocrinology. 2016, 70:25-32. 10.1016/j.psyneuen.2016.04.017
24. Zheng P, Fang Z, Xu XJ, et al.: Metabolite signature for diagnosing major depressive disorder in peripheral blood mononuclear cells. J Affect Disord. 2016, 195:75-81. 10.1016/j.jad.2016.02.008

25. Chen J, Zhou CJ, Zheng P, et al.: Differential urinary metabolites related with the severity of major depressive disorder. Behav Brain Res. 2017, 322:280-7. 10.1016/j.bbr.2017.03.012

26. Kageyama Y, Kasahara T, Nakamura T, et al.: Plasma nervonic acid is a potential biomarker for major depressive disorder: a pilot study. Int J Neuropsychopharmacol. 2018, 21:207-15. 10.1093/ijnp/ppy089

27. Zheng H, Zheng P, Zhao L, et al.: Predictive diagnosis of major depression using NMR-based metabolomics and least-squares support vector machine. Clin Chim Acta. 2017, 464:223-7. 10.1016/j.cca.2016.11.039

28. Chen J, Bai SI, Li WW, et al.: Urinary biomarker panel for diagnosing patients with depression and anxiety disorders. Transl Psychiatry. 2018, 8:192. 10.1038/s41398-018-0245-9

29. Moaddel R, Shadzill Md Khadeer M, et al.: Plasma metabolic profiling of a ketamine and placebo crossover trial of major depressive disorder and healthy control subjects. Psychopharmacology (Berl). 2018, 235:3017-30. 10.1007/s00213-018-4992-7

30. Pan X, Xia JJ, Deng FL, et al.: Diagnosis of major depressive disorder based on changes in multiple plasma neurotransmitters: a targeted metabolomics study. Transl Psychiatry. 2018, 8:130. 10.1038/s41398-018-0185-x

31. Kawamura N, Shinoda K, Sato H, et al.: Plasma metabolome analysis of patients with major depressive disorder. Psychiatry Clin Neurosci. 2018, 72:549-61. 10.1111/prc.12638

32. Liu D, Ray B, Neavin DR, et al.: Beta-defensin 1, aryl hydrocarbon receptor and plasma kynurenine in major depressive disorder: metabolomics-informed genomics. Transl Psychiatry. 2018, 8:10. 10.1038/s41598-017-0056-8

33. Ali-Sisto T, Tolmunen T, Viinamäki H, et al.: Global arginine bioavailability ratio is decreased in patients with major depressive disorder. J Affect Disord. 2018, 229:145-51. 10.1016/j.jad.2017.12.050

34. Liu LV, Zhang HJ, Lund SY, et al.: Blood and urinary metabolic evidence validating traditional Chinese medicine diagnostic classification of major depressive disorder. Chin Med. 2018, 15:53. 10.1186/s13020-018-0211-z

35. Gui SW, Liu YY, Zhong XC, et al.: Plasma disturbance of phospholipid metabolism in major depressive disorder by integration of proteomics and metabolomics. Neuropsychiatr Dis Treat. 2018, 14:1451-61. 10.2147/NDT.S154354

36. Czyz AH, South C, Gadad BS, Arning E, Soyoomba A, Bottiglieri T, Trivedi MH: Can targeted metabolomics predict depression recovery? Results from the CO-MED trial. Transl Psychiatry. 2019, 9:11. 10.1038/s41598-018-0349-6

37. Bhattacharyya S, Ahmed AT, Arnold M, et al.: Metabolomic signature of exposure and response to citalopram/escitalopram in depressed outpatients. Transl Psychiatry. 2019, 9:173. 10.1038/s41598-019-0307-5

38. Bhattacharyya S, Dunlop BW, Mahmoudiandehkhordi S, et al.: Pilot study of metabolic clusters as state markers of major depression and outcomes to CBT treatment. Front Neurosci. 2019, 13:926. 10.3389/fnins.2019.00926

39. Chen J, Xie J, Li WW, Bai SI, Wang W, Zheng P, Xie P: Age-specific urinary metabolite signatures and functions in patients with major depressive disorder. Aging (Albany NY). 2019, 11:6626-37. 10.18632/aging.102133

40. Ahmed AT, Mahmoudiandehkhordi S, Bhattacharyya S, et al.: Acylcarnitine metabolite profiles inform clinically-defined major depressive phenotypes. J Affect Disord. 2020, 264:90-7. 10.1016/j.jad.2019.11.122

41. Brunoni AR, Salum GA, Hoffmann MS, et al.: Prospective associations between hsCRP and GlycA inflammatory biomarkers and depression: The Brazilian longitudinal study of adult health (ELSA-Brasil). J Affect Disord. 2020, 271:59-48. 10.1016/j.jad.2020.03.074

42. Han SY, Tomasik J, Rustogi N, et al.: Diagnostic prediction model development using data from dried blood spot proteomics and a digital mental health assessment to identify major depressive disorder among individuals presenting with low mood. Brain Behav Immun. 2020, 90:184-95. 10.1016/j.bbi.2020.08.011

43. Erabi H, Okada G, Shibasaki C, et al.: Kynurenic acid is a potential overlapped biomarker between diagnosis and treatment response for depression from metabolome analysis. Sci Rep. 2020, 10:16822. 10.1038/s41598-020-75918-z

44. Zhao S, Chi A, Yan J, Yao C: Feature of heart rate variability and metabolic mechanism in female college students with depression. Biomed Res Int. 2020, 2020:5246350. 10.1155/2020/5246350

45. Shen D, Zhao H, Gao S, et al.: Clinical serum metabolomics study on fluoxetine hydrochloride for depression. Neurol Sci. 2021, 44:35585. 10.1007/s11062-2020-05585

46. Du Y, Wei J, Yang X, et al.: Plasma metabolites were associated with spatial working memory in major depressive disorder. Medicine (Baltimore). 2021, 100:e24581. 10.1097/MD.0000000000024581

47. Gamradt S, Hasselmann H, Taezner A, et al.: Reduced mitochondrial respiration in T cells of patients with major depressive disorder. Science. 2021, 24:103512. 10.1126/sciadv.2021.103512

48. Homorogran C, Nitusca D, Enatescu V, Schubert P, Moraru C, Socaciu C, Marian C: Untargeted plasma metabolomic profiling in patients with major depressive disorder using ultra-high performance liquid chromatography coupled with mass spectrometry. Metabolites. 2021, 11:466. 10.3390/metabo11070466

49. Tateishi H, Setoyama D, Kang D, et al.: The changes in kynurenine metabolites induced by rTMS in treatment-resistant depression: a pilot study. J Psychiatr Res. 2021, 138:194-9. 10.1016/j.jpsychires.2021.04.009

50. Caspani G, Turecki G, Lam RW, et al.: Metabolomic signatures associated with depression and predictors of antidepressant response in humans: a CAN-BIND-1 report. Commun Biol. 2021, 4:905. 10.1038/s42003-021-02421-6

51. Hung CI, Lin G, Chiang MH, Chiu CY: Metabolomics-based discrimination of patients with remitted depression from healthy controls using 1H-NMR spectroscopy. Sci Rep. 2021, 11:15608. 10.1038/s41598-021-95221-1

52. Bai S, Xie J, Bai H, Tian T, Zou T, Chen J: Gut microbiota-derived inflammation-related serum metabolites as potential biomarkers for major depressive disorder. J Inflamm Res. 2021, 14:3755-66. 10.2147/JIR.S324922
53. Kageyama Y, Deguchi Y, Hattori K, Yoshida S, Goto YI, Inoue K, Kato T: Nervonic acid level in cerebrospinal fluid is a candidate biomarker for depressive and manic symptoms: a pilot study. Brain Behav. 2021, 11:e02075. 10.1002/brb3.2075

54. Mocking RJ, Navaux JC, Li K, et al.: Metabolic features of recurrent major depressive disorder in remission, and the risk of future recurrence. Transl Psychiatry. 2021, 11:57. 10.1038/s41598-020-01182-w

55. Brydges CR, Fiehn O, Mayberg HS, et al.: Indoxyl sulfate, a gut microbiome-derived uremic toxin, is associated with psychiatric anxiety and its functional magnetic resonance imaging-based neurologic signature. Sci Rep. 2021, 11:21011. 10.1038/s41598-021-99845-1

56. Ciocan D, Cassard AM, Becquemont L, et al.: Blood microbiota and metabolomic signature of major depression before and after antidepressant treatment: a prospective case-control study. J Psychiatry Neurosci. 2021, 46:E358-68. 10.1503/jpn.200159

57. Kurokawa S, Tomizawa Y, Miyahou K, et al.: Fecal microbial and metabolomic change during treatment course for depression: an observational study. J Psychiatr Res. 2021, 140:45-52. 10.1016/j.jpsychires.2021.05.009

58. Hu Y, Wang Y, Chen C, Yang W, Zhu W, Wang Y, Liu P: A randomized, placebo-controlled, double-blind study on the effects of SZL on patients with mild to moderate depressive disorder with comparison to fluoxetine. J Ethnopharmacol. 2021, 281:114549. 10.1016/j.jep.2021.114549

59. Joyce JB, Grant CW, Liu D, et al.: Multi-omics driven predictions of response to acute phase combination antidepressant therapy: a machine learning approach with cross-trial replication. Transl Psychiatry. 2021, 11:515. 10.1038/s41598-021-01632-z

60. de Kluiver H, Jansen R, Milaneschi Y, Bot M, Giltay EJ, Schoevers R, Penninx BW: Metabolic profiles discriminating anxiety from depression. Acta Psychiatr Scand. 2021, 144:178-93. 10.1111/acps.13510

61. Dhakshinamorthy S, Dinh NT, Skolnick J, Styczynski MP: Metabolomics identifies the intersection of phosphoethanolamine with menaquinone-triggered apoptosis in an in vitro model of leukemia. Mol Biosyst. 2015, 11:2406-16. 10.1039/c5mb00237k

62. Mello D, Kunzler D, Farah M: A cafeína e seu efeito ergogênico. Br J Sports Nutrition. 2007, 1:4.

63. Shaw K, Turner J, Del Mar C: Are tryptophan and 5-hydroxytryptophan effective treatments for depression? A meta-analysis. Aust N Z J Psychiatry. 2002, 36:488-91. 10.1046/j.1440-1614.2002.01046.x

64. MacDonald K, Krishnan A, Cervenka E, Hu G, Guadagno E, Trakadas Y: Biomarkers for major depressive and bipolar disorders using metabolomics: a systematic review. Am J Med Genet B Neuropsychiatr Genet. 2019, 180:122-37. 10.1002/ajmg.b.32680

65. Guest PC, Guest FL, Martins-de Souza D: Making sense of blood-based proteomics and metabolomics in psychiatric research. Int J Neuropsychopharmacol. 2016, 19:138. 10.1093/ijnp/pvy138

66. Zacharias HU, Hertel J, Johar H, et al.: A metabolome-wide association study in the general population reveals decreased levels of serum laurylcarnitine in people with depression. Mol Psychiatry. 2021, 26:7372-83. 10.1038/s41380-021-01176-0

67. Kendall KM, Van Assche E, Andlauer TF, Choi KW, Luykx JJ, Schulte EC, Lu Y: The genetic basis of major depression. Psychol Med. 2021, 51:2217-50. 10.1017/S00332917210003441