ORGANIC CHEMISTRY | RESEARCH ARTICLE

P$_2$O$_5$ supported on SiO$_2$ as an efficient and reusable catalyst for rapid one-pot synthesis of carbamatoalkyl naphthols under solvent-free conditions

Atefeh Ghasemi1, Abolghasem Davoodnia1*, Mehdi Pordel1 and Niloofar Tavakoli-Hoseini1

Abstract: Under mild conditions and without any additional organic solvent, synthesis of carbamatoalkyl naphthols by the one-pot three-component reaction of β-naphthol with a wide range of aromatic aldehydes and methyl carbamate could be carried out in the presence of P$_2$O$_5$ supported on SiO$_2$ (P$_2$O$_5$/SiO$_2$). The results showed that the catalyst has high activity and the desired products were obtained in high yields in short reaction times. Other beneficial features of this protocol include inexpensive and easily obtained catalyst, simple work-up, and the recyclability and reusability of the catalyst for up to five consecutive runs.

Subjects: Organic Chemistry; Environmental Chemistry; Inorganic Chemistry

Keywords: P$_2$O$_5$/SiO$_2$; carbamatoalkyl naphthols; solvent-free conditions

1. Introduction

Multi-component reactions (MCRs) have attracted much interest and are highly regarded in medicinal chemistry and discovery and synthesis of natural products because they are one-pot processes that bring together three or more components and show high atom economy and high selectivity (Brauch, van Berkel, & Westermann, 2013; Dömling, 2006; Slobbe, Ruijter, & Orru, 2012; Thompson, 2000; Touré & Hall, 2009). They consist of two or more steps which are carried out without isolation of any intermediate. They also provide a rapid and efficient approach to organic synthesis (Davoodnia, Tavakoli-Nishaburi, & Tavakoli-Hoseini, 2011; Gholipour, Davoodnia, & Nakhaei-Moghaddam, 2015; Meerakrishna, Periyaraja, & Shanmugam, 2016). Still, great efforts are being made to develop new

ABOUT THE AUTHOR

Abolghasem Davoodnia was born in 1971, Mashhad, Iran. He studied chemistry at Tehran University, Tehran, Iran, where he received BSc in 1994. He received his MSc degree in organic chemistry in 1997 from Ferdowsi University of Mashhad, Mashhad, Iran, under the supervision of Professor Majid M. Heravi and completed his PhD in organic chemistry in 2002 under the supervision of Prof. Mehdi Bakavoli at the same university. Currently, he is working as a professor at the Chemistry Department, Mashhad Branch, Islamic Azad University, Mashhad, Iran. He has published over 140 peer-reviewed articles in ISI journals. His current research interest is on heterocyclic chemistry, catalysis and new synthetic methodologies.

PUBLIC INTEREST STATEMENT

Synthesis of carbamatoalkyl naphthols which can be converted to important biologically active 1-aminomethyl-2-naphthol derivatives by carbamate hydrolysis is of great interest. Therefore, in this paper, a simple and efficient method for the synthesis of these compounds by the one-pot three-component reaction of β-naphthol, aromatic aldehydes, and methyl carbamate using P$_2$O$_5$/SiO$_2$ as catalyst has been reported. The method was fast and the desired products were obtained within a few minutes in high yields under solvent-free conditions. Other advantages of this protocol include inexpensive and easily obtained catalyst, simple work-up, and the recyclability and reusability of the catalyst.
MCRs and improve known ones such as the synthesis of carbamatoalkyl naphthols. These compounds can be converted to important biologically active 1-aminomethyl-2-naphthol derivatives by carbamate hydrolysis. The hypotensive and bradycardiac effects of later compounds have been evaluated (Dingermann, Steinhilber, & Folkers, 2004; Shen, Tsai, & Chen, 1999). A literature survey revealed that a number of methods were known about the synthesis of carbamatoalkyl naphthols via the one-pot three-component reaction of β-naphthol, an aldehyde, and a carbamate in the presence of a variety of catalysts such as cerium ammonium nitrate (CAN) (Wang, Liu, Song, & Zhao, 2013), Mg(HSO$_4$)$_2$ (Ghashang, 2014), zwitterionic salt (Kundu, Majee, & Hajra, 2010), TweeN 20 (Yang, Jiang, Dong, & Fang, 2013), ionic liquids (Shaterian & Hosseini, 2014; Zare, Yousofi, & Moosavi-Zare, 2012), PPA-SiO$_2$ (Shaterian, Hosseini, & Ghashang, 2009), CuCl$_2$-2H$_2$O (Song, Liu, Sun, & Cui, 2014), aluminum methanesulfonate (Al(MS)$_2$-4H$_2$O) (Song, Sun, Liu, & Cui, 2013), SnCl$_2$-5H$_2$O (Wang, Wang, Zhao, & Wan, 2013), and Mg(OOCF$_3$)$_2$ (Mohammad Shafiee, Moloudi, & Ghashang, 2011). Though each of these methods has its own advantage, the discovery of new and efficient catalysts with high catalytic activity, short reaction times, recyclability, and simple reaction work-up for the preparation of carbamatoalkyl naphthols is of great interest.

Phosphorus pentoxide supported on silica gel (P$_2$O$_5$/SiO$_2$) has received considerable attention as an efficient, heterogeneous, eco-friendly, highly reactive, stable, easy to handle, and non-toxic catalyst for various organic transformations including acetalization of carbonyl compounds (Mirjalili, Zolfigol, Bamoniri, Amrollahi, & Hazar, 2004), sulfonylation and nitration of aromatic compounds (Hajipour & Ruoho, 2005; Hajipour et al., 2005), N-acylation of sulfonamides (Massah et al., 2009), the Ritter and Schmidt Reactions (Eshghi & Hassankhani, 2006; Tamaddon, Khoobi, & Keshavarz, 2007), the Ritter and Schmidt Rearrangement (Eshghi & Ghadiri, 2003; Eshghi, Rafie, Gordi, & Bohloli, 2003), the cross-aldol condensation (Hasaninejad, Zare, Balooty, Mehregan, & Shekouhy, 2010), and also the preparation of bis(indolyl)methanes (Hasaninejad, Zare, Sharghi, Niknam, & Shekouhy, 2007), highly substituted imidazoles (Shaterian, Ranjbar, & Azizi, 2011), 4,4'-epoxydicoumarins (Wu & Wang, 2011), Schiff bases (Naeimi, Sharghi, Salimi, & Rabiei, 2008), 1-substituted 1H-1,2,3,4-tetrazoles (Hobibi, Nasrollahzadeh, Mehrabi, & Mostafaeey, 2013), and β-enaminones (Mohammadizadeh, Hasaninejad, Bahramzadeh, & Sardari Khanjarrlou, 2009), affording the corresponding products in excellent yields and high selectivity. Other applications of P$_2$O$_5$/SiO$_2$ in organic synthesis have been reviewed by Eshghi and Hassankhani (2012).

On the other hand, in recent years, considerable interest has been devoted to finding new methodologies for the synthesis of organic compounds in solvent-free condition (Davoodnia, Basafa, & Tavakoli-Hoseini, 2016; Kumar et al., 2016). The toxicity and volatile nature of many organic solvents have posed a serious threat to the environment. Thus, design of solvent-free catalytic reaction has received tremendous attention in recent times in the area of green synthesis (Bettanin, Botteselle, Godoi, & Braga, 2014).

Considering the above facts and also in extension of our previous studies on the development of new environmental friendly methodologies in the synthesis of organic compounds using reusable catalysts (Davoodnia, Allameh, Fazli, & Tavakoli-Hoseini, 2011; Davoodnia, Khashi, & Tavakoli-Hoseini, 2013; Davoodnia, Zare-Bidaki, & Behmadi, 2012; Dehghan, Davoodnia, Bozorgmehr, & Bamoharram, 2016; Khashi, Davoodnia, & Prasada Rao Lingam, 2015; Moghaddas, Davoodnia, Heravi, & Tavakoli-Hoseini, 2012; Nakhaei & Davoodnia, 2014; Nakhaei, Yadegarian, & Davoodnia, 2016; Taghavi-Khorasani & Davoodnia, 2015), we report here the first application of P$_2$O$_5$/SiO$_2$ as an efficient, low cost and reusable catalyst for the efficient solvent-free synthesis of carbamatoalkyl naphthols by the one-pot three-component reaction of β-naphthol (1) with aromatic aldehydes (2a-i) and methyl carbamate (3) (Scheme 1).

2. Results and discussion
To begin our study P$_2$O$_5$/SiO$_2$ was prepared according to the method reported by Eshghi (Eshghi, Rafei, & Karimi, 2001). Grinding of the mixture of P$_2$O$_5$ and SiO$_2$ in dry conditions for 30 min gave the P$_2$O$_5$/SiO$_2$ reagent as white powder. As shown in Scheme 2, the hydroxyl groups in silica gel can be
phosphorylated to give the relatively stable P_2O_5/SiO_2. This reagent that can act as an acid catalyst has less sensitivity to moisture than P_2O_5 (Eshghi & Hassankhani, 2012).

Different reaction parameters were optimized for the synthesis of compound 4c by the one-pot three-component reaction of β-naphthol (1) (1 mmol), 4-chlorobenzaldehyde (2c) (1 mmol), and methyl carbamate (3) (1.1 mmol) as a model reaction in the absence and presence of P_2O_5/SiO_2 as catalyst. The results are summarized in Table 1. Only trace amounts of the product 4c was formed in the absence of the catalyst in refluxing H_2O or EtOH and also under solvent-free conditions (Entries 1–3) indicating that the catalyst is necessary for the reaction. Several reactions were scrutinized using various solvents, such as H_2O, MeOH, EtOH, CH_3CN, CH_2Cl_2, and also under solvent-free conditions in the presence of P_2O_5/SiO_2 as catalyst. As shown in Table 1, the trial reaction gives the best yield in the presence of 0.05 g of P_2O_5/SiO_2 under solvent-free conditions and proceeds smoothly at 90°C to afford the desired product 4c in 2 min (entry 14). With tested solvents, the reaction gave low yields within comparable reaction times. Therefore, 0.05 g of the catalyst P_2O_5/SiO_2 under solvent-free condition at 90°C were found to be the optimized conditions. All subsequent reactions were carried out in these optimized conditions.

Under the optimized reaction conditions, we investigated the scope and the limitations of the reaction employing a variety of aromatic aldehydes. The results are summarized in Table 2. Almost all reactions worked well and the desired compounds were obtained in high yields within short reaction time. Under the same conditions however, low yields of the products were obtained using aliphatic aldehydes.

Because of importance of recyclability and reusability of catalysts in organic reactions, the recovery and catalytic activity of recycled P_2O_5/SiO_2 was explored. For this purpose, the synthesis of compound 4c was again studied under optimized conditions. The P_2O_5/SiO_2 catalyst was readily recovered from the reaction mixture using the procedure outlined in the experimental section. The separated catalyst was washed with hot ethanol and then dried at 50°C under vacuum for 1 h before being reused in a similar reaction. The catalyst could be used at least four times with only a slight reduction in activity.
which clearly demonstrates the practical reusability of this catalyst. This reusability demonstrates the high stability and turnover of P$_2$O$_5$/SiO$_2$ under the employed conditions. The stability of P$_2$O$_5$/SiO$_2$ has been also confirmed in several papers reviewed by Eshghi and Hassankhani (2012) and also two papers reported by Habibi et al. (2013) and Eshghi, Rahimizadeh, Ghadamyari, and Shiri (2012). While P$_2$O$_5$ is very sensitive to moisture, P$_2$O$_5$/SiO$_2$ is stable in various reaction mixtures containing water, amines and alcohols.

Table 1. Optimization of reaction conditions for synthesis of compound 4c catalyzed by P$_2$O$_5$/SiO$_2$.

Entry	Catalyst (g)	Solvent	T (°C)	Time (min)	Isolated yield (%)
1	–	–	90	90	Trace
2	–	H$_2$O	Reflux	90	Trace
3	–	EtOH	Reflux	90	Trace
4	0.01	–	70	8	48
5	0.01	–	90	7	59
6	0.01	–	110	8	59
7	0.02	–	70	8	68
8	0.02	–	90	7	73
9	0.02	–	110	6	74
10	0.04	–	70	8	80
11	0.04	–	90	5	84
12	0.04	–	110	6	83
13	0.05	–	70	6	88
14	0.05	–	90	2	94
15	0.05	–	110	4	93
16	0.07	–	90	4	92
17	0.07	–	110	2	92
18	0.05	H$_2$O	Reflux	20	16
19	0.05	MeOH	Reflux	20	22
20	0.05	EtOH	Reflux	20	30
21	0.05	CH$_3$CN	Reflux	20	15
22	0.05	CH$_2$Cl$_2$	Reflux	20	20

Table 2. Synthesis of carbamatoalkyl naphthols (4a-i) using P$_2$O$_5$/SiO$_2$.

Entry	R	Product	Time (min)	Isolated yield (%)	m.p. (°C)	
				Found	Reported	
1	2-CIC$_2$H$_4$	4a	4	91	180–182	181–183 (Ghashang, 2014)
2	3-CIC$_2$H$_4$	4b	2	93	202–204	200–202 (Ghashang, 2014)
3	4-CIC$_2$H$_4$	4c	2	94	203–205	200–205 (Ghashang, 2014)
4	2,4-CIC$_2$H$_4$	4d	2	92	191–193	189–195 (Ghashang, 2014)
5	4-BrC$_6$H$_4$	4e	3	89	196–199	197–199 (Ghashang, 2014)
6	4-FC$_6$H$_4$	4f	4	90	204–205	203–205 (Ghashang, 2014)
7	3-O$_2$NC$_6$H$_4$	4g	3	94	254–256	249–251 (Zare et al., 2012)
8	4-O$_2$NC$_6$H$_4$	4h	3	95	200–202	201–205 (Zare et al., 2012)
9	4-MeC$_6$H$_4$	4i	4	88	186–188	187–189 (Ghashang, 2014)

(94, 93, 92, 92, and 91% yields for first to fifth use, respectively) which clearly demonstrates the practical reusability of this catalyst. This reusability demonstrates the high stability and turnover of P$_2$O$_5$/SiO$_2$ under the employed conditions. The stability of P$_2$O$_5$/SiO$_2$ has been also confirmed in several papers reviewed by Eshghi and Hassankhani (2012) and also two papers reported by Habibi et al. (2013) and Eshghi, Rahimizadeh, Ghadamyari, and Shiri (2012). While P$_2$O$_5$ is very sensitive to moisture, P$_2$O$_5$/SiO$_2$ is stable in various reaction mixtures containing water, amines and alcohols.
3. Conclusion
In this paper, a simple, efficient, and eco-friendly method for the synthesis of carbamatoalkyl naphthols by the one-pot three-component reaction of β-naphthol with a wide range of aromatic aldehydes and methyl carbamate using P₂O₅/SiO₂ as catalyst has been successfully developed. The method was fast and the desired products were obtained within a few minutes in high yields under solvent-free conditions at 90°C. The catalyst can be recycled after a simple work-up, and used at least five times without substantial reduction in its catalytic activity. The procedure is also advantageous in the sense that it is a solvent-free reaction and therefore operates under environmentally friendly conditions.

4. Experimental
All chemicals were available commercially and used without additional purification. Melting points were recorded on a Stuart SMP3 melting point apparatus. The IR spectra were obtained using a Tensor 27 Bruker spectrophotometer as KBr disks. The ¹H NMR spectra were recorded with a Bruker 300 FT spectrometer.

4.1. Preparation of P₂O₅/SiO₂
A mixture of P₂O₅ (3 g) and SiO₂ (4 g, 230–400 mesh) was ground vigorously in a mortar for 30 min to give P₂O₅/SiO₂ as a white powder (Eshghi et al., 2001).

4.2. General procedure for the synthesis of carbamatoalkyl naphthols (4a-i) catalyzed by P₂O₅/SiO₂
A mixture of β-naphthol (1) (1 mmol), an aromatic aldehyde (2a-i) (1 mmol), methyl carbamate (3) (1.1 mmol), and P₂O₅/SiO₂ (0.05 g) was heated in the oil bath at 90°C for 2–4 min and monitored by TLC. On completion of the transformation, the reaction mixture was cooled to room temperature and hot ethanol was added. The catalyst was collected by filtration, and the filtrate was cooled to room temperature. The crude product was collected and recrystallized from ethanol to give compounds 4a-i in high yields.

4.3. Selected spectral data
Methyl (3-chlorophenyl)(2-hydroxynaphthalen-1-yl)methylcarbamate (4b): IR (KBr disc): ν 3417 (NH), 3293 (OH), 1690 (C=O) cm⁻¹; ¹H NMR (300 MHz, DMSO-d₆): δ 3.59 (s, 3H, OCH₃), 6.87 (d, 1H, J = 5.7 Hz, CH), 7.16 (d, 1H, J = 6.9 Hz, arom-H), 7.20–7.33 (m, 6H, arom-H and NH), 7.42 (t, 1H, J = 7.2 Hz, arom-H), 7.81 (t, 2H, J = 8.4 Hz, arom-H), 7.92 (d, 1H, J = 8.4 Hz, arom-H), 10.24 (br, 1H, OH).

Methyl (4-chlorophenyl)(2-hydroxynaphthalen-1-yl)methylcarbamate (4c): IR (KBr disc): ν 3421 (NH), 3212 (OH), 1686 (C=O) cm⁻¹; ¹H NMR (300 MHz, DMSO-d₆): δ 3.58 (s, 3H, OCH₃), 6.83 (broadened doublet, 1H, CH), 7.18–7.36 (m, 6H, arom-H), 7.41 (t, 1H, J = 7.0 Hz, arom-H), 7.71 (br, 1H, NH), 7.76–7.85 (m, 2H, arom-H), 7.90 (d, 1H, J = 9.0 Hz, arom-H), 10.20 (br, 1H, OH).

Methyl (2,4-dichlorophenyl)(2-hydroxynaphthalen-1-yl)methylcarbamate (4d): IR (KBr disc): ν 3402 (NH), 3259 (OH), 1678 (C=O) cm⁻¹; ¹H NMR (300 MHz, DMSO-d₆): δ 3.55 (s, 3H, OCH₃), 6.82 (broadened doublet, 1H, CH), 7.14 (d, 1H, J = 9.0 Hz, arom-H), 7.29 (t, 1H, J = 7.2 Hz, arom-H), 7.37–7.57 (m, 4H, arom-H), 7.77 (d, 1H, J = 8.7 Hz, arom-H), 7.82 (d, 1H, J = 7.5 Hz, arom-H), 7.95 (br, 1H, NH), 8.01 (d, 1H, J = 8.7 Hz, arom-H), 9.99 (br, 1H, OH).

Methyl (4-bromophenyl)(2-hydroxynaphthalen-1-yl)methylcarbamate (4e): IR (KBr disc): ν 3417 (NH), 3288 (OH), 1688 (C=O) cm⁻¹; ¹H NMR (300 MHz, DMSO-d₆): δ 3.58 (s, 3H, OCH₃), 6.82 (broadened doublet, 1H, CH), 7.18 (d, 2H, J = 8.4 Hz, arom-H), 7.23 (d, 1H, J = 9.0 Hz, arom-H), 7.45 (t, 1H, J = 8.4 Hz, arom-H), 7.37–7.50 (m, 3H, arom-H), 7.70–7.85 (m, 3H, arom-H and NH), 7.90 (d, 1H, J = 7.8 Hz, arom-H), 10.12 (br, 1H, OH).

Methyl (4-fluorophenyl)(2-hydroxynaphthalen-1-yl)methylcarbamate (4f): IR (KBr disc): ν 3422 (NH), 3224 (OH), 1685 (C=O) cm⁻¹; ¹H NMR (300 MHz, DMSO-d₆): δ 3.58 (s, 3H, OCH₃), 6.85 (d, 1H, J = 9.0 Hz, arom-H), 7.29 (t, 1H, J = 7.2 Hz, arom-H), 7.37–7.49 (m, 3H, arom-H), 7.69–7.88 (m, 3H, arom-H and NH), 7.90 (d, 1H, J = 7.8 Hz, arom-H), 10.11 (br, 1H, OH).
Methyl (2-hydroxynaphthalen-1-yl)(4-nitrophenoxy)methyl carbamate (4H): IR (KBr disc): ν 3422 (NH), 3268 (OH), 1683 (C=O), 1517 and 1345 (NO2) cm⁻¹; ¹H NMR (300 MHz, DMSO-d₆): δ 3.61 (s, 3H, OCH₃), 6.96 (1H, J = 7.5 Hz, CH), 7.23 (d, 1H, J = 9.0 Hz, arom-H), 7.30 (t, 1H, J = 7.5 Hz, arom-H), 7.36–7.52 (m, 3H, arom-H), 7.80–7.95 (m, 4H, arom-H and NH), 8.16 (d, 2H, J = 8.7 Hz, arom-H), 10.26 (br, 1H, OH).

Davoodnia, A., Zare-Bidaki, A., & Behmodi, H. (2012). A rapid and green method for solvent-free synthesis of 1,8-dioxoxygenhydroquinodimines using tetrabutylammonium hexatungstate as a reusable heterogeneous catalyst. *Chinese Journal of Catalysis*, 33, 1797–1801. doi:10.1016/S1872-2067(11)60449-X

Dehghan, M., Davoodnia, A., Bozorgmehr, M. R., & Barnoharam, F. F. (2016). Synthesis, characterization and application of two novel sulfonic acid functionalized ionic liquids as efficient catalysts in the synthesis of 1,8-dioxo-octahydroanthenes. *Heterocyclic Letters*, 6, 251–257.

Dingermann, T., Steinhilber, D., & Folkers, G. (2004). In molecular biology in medicinal chemistry. *Weinheim: Wiley-VCH.*

Dömling, A. (2006). Recent developments in isocyanide based multicomponent reactions in applied chemistry. *Chemical Preview*, 106, 17–89. doi:10.1021/or0505728

Eshghi, H., & Gordi, Z. (2003). An easy method for the generation of amidines from ketones by a beckmann-type rearrangement mediated by microwave. *Synthetic Communications*, 33, 2971–2978. doi:10.1081/SCC-120022469

Eshghi, H., & Hassankhani, A. (2006). P₂O₅/SiO₂-catalyzed one-pot synthesis of amidines from ketones via schmidt reaction under microwave irradiation in dry media. *Synthetic Communications*, 36, 2211–2216. doi:10.1080/00397910600638578

Eshghi, H., & Hassankhani, A. (2012). Phosphorus pentoxide supported on silica gel and alumina (P₂O₅/SiO₂, P₂O₅/Al₂O₃) as useful catalysts in organic synthesis. *Journal of the Iranian Chemical Society*, 9, 467–482. doi:10.1080/17551585.2012.655380

Eshghi, H., & Rafei, M., & Karimi, M. H. (2001). Document P₂O₅/SiO₂, as an efficient reagent for esterification of phenols in dry media. *Synthetic Communications*, 31, 771–774. doi:10.1081/SCC-100013268

Eshghi, H., Rafei, M., & Gordi, Z., & Bohlioli, M. (2003). Improvement of selectivity in the Fries rearrangement and direct acylation reactions by means of P₂O₅/SiO₂ under microwave irradiation in solvent-free media. *Journal of Chemical Research*, 763–764. doi:10.3181/038235305372913674

Eshghi, H., & Shokri, M., & Gholipour, S., & Davoodnia, A., & Nakhaei-Moghadam, M. (2015). Synthesis, characterization, and antibacterial evaluation of new alkyl 2-amino-4-aryl-4H-chromene-3-carboxylates. *Chemistry of Heterocyclic Compounds*, 51, 808–813. doi:10.1007/s10593-015-1779-1

Habibi, D., Nasehpour-Koshadeh, M., Mehvari, L., & Mostafoe, S. (2013). P₂O₅/SiO₂ as an efficient heterogeneous catalyst for the solvent-free synthesis of 1-substituted 1H-1,2,3,4-tetrazoles under conventional and ultrasound irradiation.
conditions. *Monatshefte für Chemie - Chemical Monthly*, 144, 725–728. doi:10.1007/s00706-012-0871-9

Hajipour, A. R., & Ruoho, A. E. (2005). Nitric acid in the presence of P2OS supported on silica gel—a useful reagent for nitration of aromatic compounds under solvent-free conditions. *Tetrahedron Letters*, 46, 8307–8310. doi:10.1016/j.tetlet.2005.09.178

Hajipour, A. R., Zarei, A., Khazdooz, L., Pourmousavi, S. A., Mirjali, B. F., & Ruoho, A. E. (2005). Direct sulfonation of aromatic rings with any or alkyl sulfonic acid using supported P2O5 AlO3 Phosphorus, Sulfur and Silicon and the Related Elements, 180, 2029–2034. doi:10.1080/1607404050902796

Hasaninejad, A., Zare, A., Balooty, L., Mehregan, H., & Shekouhy, M. (2010). Solvent-free, cross-aldol condensation reaction using silica-supported, phosphorus-containing reagents leading to α-α-Bis(arylidenes) cyclodiketones. *Synthetic Communications*, 40, 3488–3495. doi:10.1080/00397919090457282

Hasaninejad, A., Zare, A., Sharghi, H., Niknam, K., & Shekouhy, M. (2007). P2O5/SiO2 as an efficient, mild, and heterogeneous catalytic system for the condensation of indoles with carbonyl compounds under solvent-free conditions. *Arkivoc*, 14, 39–50.

Khashi, M., Davoodnia, A., & Prasada Rao Lingam, V. S. (2015). DMAp catalyzed synthesis of some new pyrimido[1,2-a][1,2,4]triazolo[1,5-c]pyrimidines. *Research on Chemical Intermediates*, 41, 5731–5742. doi:10.1007/s11164-014-1897-3

Kumar, S., Aggarwal, R., Kumar, V., Sadana, R., Patel, B., Kaushik, P., & Kaushik, D. (2012). Solvent-free synthesis of baccoumlide analogues as novel cytotoxic and anti-inflammatory agents. *European Journal of Medicinal Chemistry*, 123, 718–726. doi:10.1016/j.ejmech.2016.07.013

Kundi, D., Mojee, A., & Hajra, A. (2016). Twitterian-type molten salt: An efficient mild organocatalyst for synthesis of 2-amidomethyl and 2-carbamatoalkyl naphthols. *Catalysis Communications*, 11, 1157–1159. doi:10.1016/j.catcom.2010.06.001

Massah, A. R., Dabagh, M., Shahidi, S., Javaherian Naghsh, H., Momeni, A. R., & Aliyan, H. (2009). P2O5/SiO2, as an efficient and recyclable catalyst for N-Acylation of sulfonamides under heterogeneous and solvent-free conditions. *Journal of the Iranian Chemical Society*, 6, 405–411. doi:10.1007/BF03248581

Meerakrishna, R. S., Periyaraja, S., & Shanmugam, P. (2016). Copper-Catalyzed Multicomponent Synthesis of Fluorescent 2-[Phenyl-1-h-spiro[furoene-9,6-c-2,3-h]quinoline]-7,12-di-one Derivatives. *European Journal of Organic Chemistry*, 2016, 4516–4525. doi:10.1002/ewjc.201600647

Mirjali, B. F., Zolfigol, M. A., Barmoni, A., Arnollahi, M. A., & Hazzar, A. (2004). An efficient procedure for acetalization of carbonyl compounds with P2O5/SiO2 Phosphorus, Sulfur and Silicon and the Related Elements, 179, 1397–1401. doi:10.1080/1607404050902796

Moghaddas, M., Davoodnia, A., Heravi, M. M., & Tavakoli-Hoseini, N. (2012). Sulphonated carbon catalyzed bignelli reaction for one-pot synthesis of 3, 4-dihydropyrimidin-2(1H)-ones and -thiones. *Chinese Journal of Catalysis*, 33, 706–710. doi:10.1016/S1872-2067(06)63017-7

Mohammadzadeh, M. R., Hasaninejad, A., Bahramzadeh, M., & Sardari Khajariou, Z. (2009). P2O5/SiO2, as a new, efficient, and reusable catalyst for preparation of β-enaminoones under solvent-free conditions. *Synthetic Communications*, 39, 1152–1165. doi:10.1080/00397919080251302

Naeini, H., Sharghi, H., Salimfard, M., & Rabei, Kh. (2008). Facile and efficient method for preparation of Schiff bases catalyzed by P2O5/SiO2 under free solvent conditions. *Heterotatom Chemistry*, 19, 43–47. doi:10.1002/hc.20383

Nokhoei, A., & Davoodnia, A. (2014). Application of a Keplerate type giant nanoporous isofoxylobromolate as a reusable catalyst for the synthesis of 1,2,4,5-tetrasubstituted imidazoles. *Chinese Journal of Catalysis*, 35, 1761–1767. doi:10.1007/s11164-014-0744-1

Nokhoei, A., Yadegarian, S., & Davoodnia, A. (2016). Efficient and rapid hantzsch synthesis of 1,4-dihydropyridines using a nano isofoxylobromolate as a reusable catalyst under solvent-free condition. *Heterocyclic Letters*, 6, 429–439.

Shafiee, M. R. M., Moloudi, R., & Ghashang, M. (2011). Document Preparation of methyl (2-hydroxypropylnaphthalen-1-yl)(aryl)methyl benzylcarbomate derivatives using magnesium (II) 2,2,2-trifluoroacetate as an efficient catalyst. *Journal of Chemical Research*, 622–625. doi:10.1384/174751911X13182405888457

Shaterian, H. R., & Hosseini, A. (2014). Efficient synthesis of 1-carbamatoalkyl-2-naphthols using bransted acidic ionic liquid as reusable catalyst. *Research on Chemical Intermediates*, 40, 3011–3019. doi:10.1165/rci.2014.11.1174-7

Shaterian, H. R., Hosseini, A., & Ghashang, M. (2009). PPA-SiO2 catalyzed multi-component synthesis of n-[n-(1-hydroxy-α-naphthyl)(benzyl)] α-dikyl carbamate derivatives. *European Journal of Medicinal Chemistry*, 29, 821–824. doi:10.1016/j.ejmech.2009.09.037

Shen, A. Y., Tsai, C. T., & Chen, C. L. (1999). Synthesis and cardiovascular evaluation of N-substituted 1-aminoethyl-2-naphthols. *European Journal of Medicinal Chemistry*, 34, 877–882. doi:10.1016/S0223-5234(99)00204-4

Slobbe, R., Ruijter, E., & Orro, R. V. A. (2012). Recent applications of multicomponent reactions in medicinal chemistry. *MedChemComm*, 3, 1189–1218. doi:10.1039/c2md00899a

Song, Z., G., Sun, X. H., Liu, L. L., & Cui, Y. (2013). Efficient one-pot synthesis of 1-carbamatoalkyl-2-naphthols using aluminium methanesulphonate as a reusable catalyst. *Research on Chemical Intermediates*, 41, 2123–2131. doi:10.1007/s11164-012-0744-1

Song, Z., Liu, L., Sun, X., & Cui, Y. (2014). Copper chloride-catalyzed efficient three-component one-pot synthesis of carbamatoalkyl naphthols under solvent-free conditions. *Indian Journal of Chemistry - Section B Organic and Medicinal Chemistry*, 53B, 740–745.

Taghavi-Khorasani, F., & Davoodnia, A. (2015). A fast and green method for synthesis of tetrahydrobenzo[a]xanthene-11-ones using Ce(SO4)2·4H2O as a novel, reusable, heterogeneous catalyst. *Research on Chemical Intermediates*, 41, 2415–2425. doi:10.1007/s11164-013-1356-0

Tamaddon, F., Khoobi, M., & Keshavarz, E. (2007). (P2O5/SiO2): A useful heterogeneous alternative for the Ritter reaction. *Tetrahedron Letters*, 48, 3643–3646. doi:10.1016/j.tetlet.2007.03.134

Thompson, L. A. (2000). Recent applications of polymer-supported reagents and scavengers in combinatorial, parallel, or multistep synthesis. *Current Opinion in Chemical Biology*, 4, 324–337. doi:10.1016/S1367-5931(00)00096-X

Touré, B. B., & Hall, D. G. (2009). Natural product synthesis using multicomponent reaction strategies. *Chemical Reviews*, 109, 4439–4486. doi:10.1021/cr800296p

Wang, M., Liu, X., Song, Z., & Zhao, S. (2013). A convenient three-component synthesis of carbamatoalkyl naphthols catalyzed by cerium ammonium nitrate. *Bulletin of the Chemical Society of Ethiopia*, 27, 421–426. doi:10.4314/bcse.v27i3.11
Wang, M., Wang, Q. L., Zhao, S., & Wan, X. (2013). Solvent-free one-pot synthesis of 1-carbamatoalkyl-2-naphthols by a tin tetrachloride catalyzed multicomponent reaction. Monatshefte für Chemie - Chemical Monthly, 144, 975–980. doi:10.1007/s00706-013-0927-5

Wu, L., & Wang, X. (2011). P2O5/SiO2 as a new, efficient and reusable catalyst for preparation of 4,4'-epoxydiconurmarins under solvent-free conditions. E-Journal of Chemistry, 8, 1626–1631. doi:10.1155/2011/849795

Yang, J. M., Jiang, C. N., Dong, H., & Fang, D. (2013). Synthesis of 1-carbamatoalkyl-2-naphthols in Tween® 20 aqueous micelles. Journal of Chemical Research, 279–281. doi:10.3184/174751913X13647554585207

Zare, A., Yousofi, T., & Moosavi-Zare, A. R. (2012). Ionic liquid 1,3-disulfonic acid imidazolium hydrogen sulfate: A novel and highly efficient catalyst for the preparation of 1-carbamatoalkyl-2-naphthols and 1-amidoalkyl-2-naphthols. RSC Advances, 2, 7988–7991. doi:10.1039/c2ra20679j

© 2017 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license.

Cogent Chemistry (ISSN: 2331-2009) is published by Cogent OA, part of Taylor & Francis Group.

Publishing with Cogent OA ensures:

- Immediate, universal access to your article on publication
- High visibility and discoverability via the Cogent OA website as well as Taylor & Francis Online
- Download and citation statistics for your article
- Rapid online publication
- Input from, and dialog with, expert editors and editorial boards
- Retention of full copyright of your article
- Guaranteed legacy preservation of your article
- Discounts and waivers for authors in developing regions

Submit your manuscript to a Cogent OA journal at www.CogentOA.com