Genomic and Proteomic Profiling of Responses to Toxic Metals in Human Lung Cells

Angeline S. Andrew,1,2,3 Amy J. Warren,1 Aaron Barchowsky,1,2,3 Kaili A. Temple,1,2 Linda Klei,1 Nicole V. Soucy,1 Kimberly A. O’Hara,1 and Joshua W. Hamilton1,2,3

1Department of Pharmacology and Toxicology, Dartmouth Medical School, and 2Center for Environmental Health Sciences, Dartmouth College, Hanover, New Hampshire, USA; 3Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA

Examining global effects of toxic metals on gene expression can be useful for elucidating patterns of biological response, discovering underlying mechanisms of toxicity, and identifying candidate metal-specific genetic markers of exposure and response. Using a 1,200 gene nylon array, we examined changes in gene expression following low-dose, acute exposures of cadmium, chromium, arsenic, nickel, or mitomycin C (MMC) in BEAS-2B human bronchial epithelial cells. Total RNA was isolated from cells exposed to 3 µM Cd(II) (as cadmium chloride), 10 µM Cr(VI) (as sodium dichromate), 3 µg/cm2 Ni(II) (as nickel subsulfide), 5 µM or 50 µM As(III) (as sodium arsenite), or 1 µM MMC for 4 hr. Expression changes were verified at the protein level for several genes. Only a small subset of genes was differentially expressed in response to each agent: Cd, Cr, Ni, As (5 µM), As (50 µM), and MMC each differentially altered the expression of 25, 44, 31, 110, 65, and 16 individual genes, respectively. Few genes were commonly expressed among the various treatments. Only one gene was altered in response to all four metals (hp90), and no gene overlapped among all five treatments. We also compared low-dose (5 µM, noncytotoxic) and high-dose (50 µM, cytotoxic) arsenic treatments, which surprisingly, affected expression of almost completely nonoverlapping subsets of genes, suggesting a threshold switch from a survival-based biological response at low doses to a death response at high doses. Key words: arsenic, cadmium, chromium, nickel, toxicogenomics, toxicoproteomics. Environ Health Perspect 111:825–838 (2003). doi:10.1289/tex.6249 available via http://dx.doi.org/[Online 7 May 2003]

Eight of the top 50 substances on the 1997 Agency for Toxic Substances and Disease Registry (ATSDR) priority list (ATSDR 2001) are toxic metals, including arsenic, chromium, cadmium, and nickel. Exposure to these metals is associated with a variety of adverse health effects; however, the mechanisms that lead to the development of these diseases and the subcellular pathways modified in response to metal exposures are not well understood. Metal-specific biomarkers of exposure, effect, or susceptibility are needed for risk assessment and epidemiologic studies exploring the important health effects of exposure to these metals.

Arsenic exposure can occur through ingestion of contaminated drinking water, particularly in regions with geologic sources of arsenic, including Bangladesh, Taiwan, and Chile and parts of the United States such as New Hampshire, Michigan, Nevada, and California (Gebel 2000, 2001). Arsenic can also enter the body via inhalation, which is particularly important for certain occupational exposures (Abernathy et al. 1999; ATSDR 1999a; IARC 1980). Dermal exposure does not appear to lead to significant systemic uptake, although local dermal exposure such as with Fowler’s solution or arsenical pesticides has been associated with skin effects at the site of application (Baudouin et al. 2002). Chronic arsenic exposure has been associated with increased incidence of vascular and cardiovascular disease, diabetes, hyperkeratosis, and cancers of the skin, lung, liver, bladder, kidney, and colon (ATSDR 1999a; Byrd et al. 1996; Leonard and Lauwerys 1980).

The primary route of toxicologic concern for exposure to both nickel and chromium is inhalation, principally in occupational settings, although environmental exposures can also occur as a result of anthropogenic sources (IARC 1991; Leikauf 2002; Williams and Sandler 2001). It has been estimated that 1.5 million workers are exposed to nickel occupationally in the United States (IARC 1991). Particulate nickel is emitted into the atmosphere during oil and coal combustion, metal refining, nickel-alloy manufacturing and grinding, battery manufacturing, municipal incineration, electroplating, and stainless steel manufacturing, as well as from cigarette smoke and motor vehicle emissions, resulting in environmental inhalation exposure (Barceloux 1999; Laden et al. 2000; NiPERA 1999). Dermal exposure can occur through skin contact with soil, water, or metals, including stainless steel or coins containing nickel (ATSDR 1999b) and can be associated in allergic reactions. Occupational exposure to nickel via inhalation is associated with respiratory distress and lung and nasal cancer (ATSDR 1999b; Denkhaus and Salnikow 2002; Leikauf 2002).

Chromium(VI) enters the air principally as a result of coal and oil combustion, steel production, stainless steel welding, and chemical manufacturing (ATSDR 1998; Barnhart 1997; IARC 1991). Chromium exposure can also occur from cigarette smoke. Discharge from electroplating, leather tanning, textiles, and dye and pigment manufacturing can contaminate water sources. Occupational exposure to chromium(VI) through inhalation causes respiratory tract problems and lung cancer, whereas dermal contact can lead to allergic contact dermatitis and skin ulceration (Alcedo and Wetterhahn 1990; ATSDR 1998; Dayan and Painé 2001).

Cadmium inhalation can occur occupationally during battery manufacturing, metal soldering, or welding, as well as environmentally from burning fossil fuels, municipal waste, or cigarettes, and is associated with respiratory damage and cancer. Exposure can also occur through consumption of food or water containing cadmium, leading to gastrointestinal problems and kidney and bone disease, as well as increased body burdens of cadmium, which has a half-life of greater than 20 years in humans (ATSDR 2002; Beyersmann and Hechteng 1997; Jarup et al. 1998).

Identification of genes whose expression is specifically modified by toxic metal exposure would provide a better understanding of their mechanisms of action and allow development of sensitive and specific biomarkers of both exposure and susceptibility for use in both mechanistic laboratory and epidemiology studies. In the

Address correspondence to A.S. Andrew, Dept. of Pharmacology and Toxicology, Dartmouth Medical School, 7927 Rubin Bldg., 452M-3, One Medical Center Drive, Lebanon, NH 03756-6001. Telephone: (603) 650-8405. Fax: (603) 653-0578. E-mail: angeline.s.andrew@dartmouth.edu

We thank the technical staff at Clontech for assistance in analyzing the array data in these experiments. We also thank the Dartmouth Molecular Biology and Proteomics Core Facility and the Dartmouth Bioinformatics Group for their assistance and support.

This work was supported by the National Institute of Environmental Health Sciences Superfund Basic Research program grant P42 ES07373.

The authors state there is no conflict of interest. Received 31 January 2003; accepted 6 May 2003.
current work we used cDNA microarrays to compare the effects of the toxic metals arsenic, cadmium, chromium, and nickel on expression of 1,200 human genes in human bronchial BEAS-2B cells, as lung is a target for effects of all four of these metals. We also confirmed the expression of certain relevant genes at the protein level in both epithelial and vascular smooth muscle cell models.

Methods

Cell treatment and preparation. Human bronchial epithelial cells (BEAS-2B; ATCC, Rockville, MD) were grown to postconfluence in 75-cm² flasks (Corning Costar, Corning, NY) on a matrix of 0.01 mg/mL human fibronectin (Collaborative Biomedical Products, Bedford, MA), 0.03 mg/mL Vitrogen 100 (Collagen Biomaterials, Palo Alto, CA), and 0.01 mg/mL bovine serum albumin (Sigma Chemical Co., St. Louis, MO). The cultures were maintained in LHC-9 medium (Biofluids Inc., Rockville, MD) at 37°C under an atmosphere of 5% CO2/95% air, and medium was changed 24 hr before treatment.

Primary cultures of porcine smooth muscle cells (pSMC) were grown from medial explants of porcine aortas, using established methods (Ross 1971). Briefly, segments of thoracic aorta were cleaned of adventitia, opened longitudinally, and scraped to remove endothelial cells. Segments of the remaining intima and media were cut into 1-mm squares and allowed to adhere to scored plastic dishes. The squares were then cultured with complete Dulbecco’s modified Eagle’s medium (DMEM; Cellgro MediaTech Inc., Herndon, VA) containing 1 mmol/L glucose, 10% fetal bovine serum, and 1% penicillin/streptomycin under an atmosphere of 10% CO2/95% air, and medium was changed 24 hr before treatment.

For both cell types, treatments were chosen that did not cause overt signs of toxicity or changes in cell survival or replication as measured by long-term colony-forming assays. The exception was the 50-µM arsenic treatment used for dose–response comparisons. In all other cases, the doses of metals are relevant to those to which humans could be exposed. For example, levels of nickel found in the lungs of autopsied U.S. subjects with no known occupational exposure to nickel range between 1.8 and 2.1 mg Ni/cm² of lung surface area (Edelman and Roggli 1989). Nickel refinery workers had much higher levels of nickel in the lung (mean 15 mg Ni/cm²) (IARC 1991).

cDNA array analysis. One confluent flask of >10⁶ cells BEAS-2B cells per treatment group of control cells or cells exposed to 5 or 50 µM sodium arsenite, 3 µM cadmium chloride, 10 µM sodium dichromate (Aldrich, St. Louis, MO), 3 µg/cm² of cell culture flask nickel subsulfide (Sigma), or 1 µM miromycin C (MMC) for 4 hr was washed and scraped in ice-cold phosphate-buffered saline. Cells were then centrifuged, and the cell pellet was snap frozen in liquid nitrogen. The expression of 1,200 genes was assessed by cDNA microarray analysis using Clontech nylon membrane-based Human Broad Coverage 1.2 I arrays (Clontech Laboratories Inc., Palo Alto, CA). Densitometry was performed on the hybridized membranes using a phosphoimager and the data were analyzed using AtlasImage software (Clontech Laboratories). The presence of nine housekeeping genes per array allowed us to discard housekeeping genes that were induced or repressed by a particular treatment (typically one to two of nine included on the array). The expression of each gene was normalized to the average of the remaining housekeeping genes. The housekeeping genes included on the array were ubiquitin, phospholipase A2, hypoxanthine–guanine, phosphoribosyltransferase (HPRT), liver glycoldehyde 3-phosphate dehydrogenase (GAPDH), brain-specific tubulin alpha 1 subunit (TUBA1), HLA class I histocompatibility antigen C-4 alpha subunit (HLAC), cytoplasmic beta-actin (ACTB), 23-kDa highly basic protein, 60S ribosomal protein L13A (RP13L3A), and 40S ribosomal protein S9.

The normalized ratios (treated divided by control) and differences (treated minus control) in gene expression between treated and control samples were calculated for all genes. Microarray analyses were repeated using n = 7 independent cultures for the housekeeping genes as well as two untreated independent cultures for all 1,200 genes, and inter-array variability was estimated to be <22%. Within a single array, the variability of housekeeping gene expression was estimated to be between 8.4 and 20.9%. The housekeeping genes were used to calculate thresholds for each treatment. Thresholds were determined using fold changes 2 standard deviations outside of the average housekeeping gene value. The following threshold values were assigned on the basis of the underlying distribution of the data: 5 µM arsenic: ratio 1.69, difference 4; 50 µM arsenic: ratio 2.0, difference 13; chromium, cadmium, nickel, and MMC: ratio 1.49, difference 4. In addition to setting a threshold for the ratios, the difference between the treated samples and the control was used to examine genes with low expression levels in which a fold change would be less reliable (e.g., 400/200 units compared with 4/2 units).

Immunoblot. The effects of arsenic exposure on hypoxia inducible factor-1α (HIF-1α) or β-actin protein levels (used as a loading control) were determined by Western blotting using a polyclonal antibody to HIF-1α (Transduction Laboratories, Lexington, KY) or a monoclonal antibody to β-actin (Sigma). Immunoblotting was performed as described previously (Andrew et al. 2001; Barchowsky et al. 1997).

Kinase expression assay. For the kinase expression assay, the medium of 1-day postconfluent BEAS-2B cells was changed 12–18 hr prior to addition of 5 µM potassium dichromate (Aldrich) and the cells were treated for a time course of 1, 4, and 24 hr. pSMC were grown to 80–90% confluence in 75-cm² flasks (Corning Costar), and the medium was changed to a serum-free DMEM containing 1 mg/mL bovine serum albumin 20 hr prior to the addition of sodium arsenite. Cells were treated with 2.5 µM As for 1, 4, and 12 hr. A dose–response experiment using 1, 2.5, and 10 µM As was performed at 24 hr. Following treatment, cells were rinsed with Tris-buffered saline containing protease inhibitors, as described previously. The cells were then prepared as described (Kinexus Bioinformatics Corp. 2001). Briefly, the cells were lysed in 20 mM 3-(N-morpholino)propanesulfonic acid, pH 7.0; 2 mM EGTA; 5 mM EDTA; 30 mM sodium fluoride; 40 mM β-glycerophosphate, pH 7.2; 10 mM sodium pyrophosphate; 2 mM sodium orthovanadate; and 0.5% Nonidet P-40, supplemented with protease inhibitors. The cell lysates were sonicated twice for 15 sec and centrifuged for 2 hr at 19,000 rpm at 4°C. A protein assay was performed on the supernatant, and a cell lysate mixture was adjusted to a concentration of 1 µg/µL using a 4 x sample buffer (50% glycerol; 125 mM Tris–HCL, pH 6.8; 4% sodium dodecyl sulfate; 0.08% bromophenol blue; 5% β-mercaptoethanol). Samples were heated at 100°C for 4 min. The samples were analyzed via the Kinetworks’ Protein Kinase Screen 1.0, a multiplexed western blot service provided by Kinexus Bioinformatics Corp. (Vancouver, British Columbia, Canada). Kinexus loaded equal amounts of protein, quantified the blots by densitometry, and analyzed them using their proprietary software.
Results

BEAS-2B human lung bronchial epithelial cells were treated for 4 hr either with arsenic (as sodium arsenite, 5 or 50 µM), cadmium (as cadmium chloride, 3 µM), chromium (as sodium dichromate, 10 µM), nickel (as nickel subsulfide, 3 µg/cm²), or the genotoxic cancer chemotherapy drug MMC (1 µM). cDNA array analysis with 1,200 human genes (Clontech 1.2; Clontech) was performed with each treatment. The selected threshold fold change for each treatment was outside the 1.49- to 2.0-fold range in expression seen in the housekeeping genes (average plus 2 standard deviations).

The genes listed in Figure 1 showed increased or decreased expression following each treatment (see “Materials and Methods” for details). This Boolean schematic representation lists the genes uniquely changed by each exposure within the appropriate shape, with overlapping regions (or underlining for arsenic) indicating genes that were modified by more than one treatment. To summarize the data, low-dose cadmium altered the expression of 25 genes; chromium, 44; nickel, 31; and no gene’s expression was modified by treatment with all four of the metals tested, nickel (as cadmium chloride, 3 µM), chromium (as sodium dichromate, 10 µM), nickel (as nickel subsulfide, 3 µg/cm²), and mitomycin C (1.0 µM MMC) using cDNA microarray analysis. Genes with expression changes above a statistically derived threshold for an exposure (minimum 1.5-fold) are listed within each designated shape using the abbreviations defined in Table 1. Font color indicates an increase (red) or decrease (blue) in expression relative to control. Black font indicates a gene whose expression was induced by one treatment but suppressed by another. Genes with modified expression following exposure to more than one metal are found in the relevant overlapping areas. Genes modified by arsenic in addition to chromium, cadmium, nickel, or MMC are underlined.

As shown in Figure 1, although there was some overlap, each treatment modified expression of a largely unique set of genes. Only heat-shock protein 90A (HSP 90A) expression was modified by treatment with all four of the metals tested, and no gene’s expression was modified by all five treatments. Several genes were differentially regulated in response to three metals: cadmium, chromium, and nickel. Specifically, these three metals induced expression of erythrocyte glucose transporter 1 (GLUT1) and decreased transcriptional activator (DB1), collagen type 4 (COL4A2), glutathione peroxidase (GSHPX1), heptoma-derived growth factor (HDPF), and cytomegalo P450 1B1 (CYP1B1) (Figure 1, overlapping region). Interestingly, when two or more exposures affected expression of the same gene, the expression was usually altered in the same direction, that is, increased or decreased, with each exposure. The only exception was that treatment with the organic DNA-damaging agent MMC induced expression of early growth response protein 1 (hEGR1), whereas chromium, arsenic, and nickel all suppressed expression of this gene (Figure 1, black font).

To explore the effects of dose on the gene expression profile, we exposed cells for 4 hr to two different doses of arsenic: 5 µM, which caused little or no cytotoxicity, or 50 µM, which was highly cytotoxic as determined by a colony-forming assay.

Figure 1. Gene expression profiles for cells treated with cadmium, chromium, nickel, or MMC. Relative expression of 1,200 genes was assessed in human bronchial BEAS-2B cells exposed for 4 hr to cadmium (10 µM Cd²⁺ as cadmium chloride), chromium(VI) (10 µM Cr(VI) as sodium dichromate), nickel (3 µg/cm² Ni²⁺ as nickel subsulfide), and mitomycin C (1.0 µM MMC) using cDNA microarray analysis. Genes with expression changes above a statistically derived threshold for an exposure (minimum 1.5-fold) are listed within each designated shape using the abbreviations defined in Table 1. Font color indicates an increase (red) or decrease (blue) in expression relative to control. Black font indicates a gene whose expression was induced by one treatment but suppressed by another. Genes with modified expression following exposure to more than one metal are found in the relevant overlapping areas. Genes modified by arsenic in addition to chromium, cadmium, nickel, or MMC are underlined.

Figure 2. Gene expression profiles for cells treated with 5 or 50 µM arsenic. Ubiquitin (Ubiqu) was used as a housekeeping gene. Relative expression of 1,200 genes was assessed in human bronchial BEAS-2B cells exposed for 4 hr to arsenic [5 or 50 µM As(III) as sodium arsenite] as described in Figure 1. Font color indicates an increase (red) or decrease (blue) in expression relative to control. The overlapping region contains a list of genes affected by both 5 and 50 µM arsenic.
Of the 1,200 genes examined at both doses, only 16 of 158 affected genes were altered at both doses (Figure 2, overlapping region). All genes altered by 50 µM arsenic were increased in expression (red font) with the exception of monocyte chemotactic protein 1 precursor (MCP1) (blue font). In contrast, 5 µM arsenic increased (red font) or decreased (blue font) expression of genes in similar numbers. Interestingly, more total genes were affected by the lower dose than by the higher cytotoxic dose. As might be expected, at the higher dose, stress response and apoptotic genes predominated. Interestingly, most of these genes were unaffected at the lower dose.

Western immunoblot and kinase expression assays were performed for certain genes to determine whether the altered gene expression seen in the microarray assays was paralleled by a change in protein expression. Immunoblots (Figure 3) demonstrated increased in protein levels of the transcription factor HIF-1α, following exposure to arsenic for 4, 8, or 24 hr, which are consistent with the increased HIF-1α mRNA levels observed after 5-µM arsenic exposure (Figure 2). This level of arsenic exposure did not affect β-actin expression, which was used as a loading control.

Assays for kinase protein expression changes were performed on cells exposed to arsenic or chromium over a range of doses and time points in two separate cell types. The ratio of mRNA levels in exposed versus control cells (Figure 4) was compared with the ratio of protein levels observed in the kinase expression assay for each kinase (Figure 4). ERK3 gene and protein levels were increased at most arsenic doses and time points tested (Figure 4A), whereas RSK1, PKCα, and PKBα/akt1 all showed consistent decreases in expression following arsenic exposure in both assays (Figure 4B–D). Chromium exposure also decreased mRNA and protein levels of PKBα/akt1 (Figure 4E). Thus, for the genes and gene products examined, changes in mRNA expression were similar to changes in protein expression.

Figure 3. Effects of arsenic on HIF-1α protein expression. (A) Confluent BEAS-2B cells were exposed to 2.5 µM arsenic for 4, 8, or 24 hr. Cells were harvested for total protein and Western blotts were performed as described in “Materials and Methods,” using antibodies to HIF-1α or the loading control β-actin. (B) The band density ratio of HIF-1α to β-actin density of bands shown in A. Data represent protein collected from independent experiments. Values are means SD; n = 3. 8-hr arsenic, ***p < 0.001; 24-hr arsenic, **p < 0.05 vs. control.

Figure 4. Comparison of gene expression and protein kinase expression profiles for cells treated with chromium and arsenic. Changes in the kinases (A) ERK3, (B) RSK1, (C) PKCα, and (D) PKBα in response to arsenic exposure were measured at both the gene level by cDNA array analysis and at the protein level by a kinase assay as described in “Materials and Methods.” Data under the heading “Array” represent the normalized ratio of gene expression for arsenic-exposed cells compared with that of control, whereas data under the heading “Kinase expression assay” represent the ratio of protein levels for arsenic-exposed smooth muscle cells compared with that of control. (E) This graph shows the ratio of changes in PKBα gene and protein expression after chromium treatment, as described above for arsenic. Treatment time is indicated on the graph below each bar, and bar shading designates the dose of arsenic or chromium, as shown in the legend.

Discussion
Chronic exposure to the toxic metals arsenic, chromium, cadmium, and nickel has been associated with a wide variety of adverse health effects (ATSDR 1998, 1999a, 1999b, 2002). Previous studies of individual genes have demonstrated that these metals can each substantially alter gene expression in various cell and whole animal systems (Andrew and Barchowsky 2000; Hamilton and Wetterhahn 1989; Hamilton et al. 1998; Ihnat et al. 1997; McCaffrey et al. 1994). The development of gene array technology has provided a means for examination of alterations in gene expression on a more global level. The current study describes profiles of early changes in gene and protein expression that...
Table 1. Relative expression of genes for cells treated with arsenic, chromium, cadmium, nickel, or MMC.

Gene abbreviation*	Gene name#	Arsenic (5 μM) ratio	Arsenic (50 μM) ratio	Chromium ratio	Cadmium ratio	Nickel ratio	MMC ratio	GenBank*			
3pK	MAPKAP kinase (3pK)	2.00							U09578		
S-HT-3	5-Hydroxytryptamine 3 receptor precursor (S-HT-3); serotonin-gated ion channel receptor	2.00							D49394		
A1ATR	Alpha-1-antitrypsin precursor; alpha-1 protease inhibitor; alpha-1-antitrypsinase	1.54	1.65						X02920		
ABL2	Tyrosine-protein kinase ABL2; tyrosine kinase ARG (ABLL)	2.44							M35296		
ADA2	ADA2-like protein	2.33							AF069732		
AIM1	Aurora- & IPL1-like midbody-associated protein kinase 1 (AIM1); ARK2	2.00							AF008552		
ALG-2	ALG2 calcium-binding protein	2.40							AFO35606		
AP-1	Proto-oncogene c-jun, transcription factor AP-1	15.42							J04111		
APE1	DNA-(apurinic or apyrimidinic site) lyase; AP endonuclease 1; APEX nuclease (APEN; APE1); REF-1 protein	2.07							X59764;	X86133	
AREB6	Transcription factor AREB6	5.00							D15050		
ARH6	Transforming protein rhoB; ARH6	1.83							X06820		
ATF-3	Cyclic-AMP-dependent transcription factor ATP-3 (activating factor 3); sodium/potassium-transporting ATPase	6.33							L18871		
ATPB3	Beta 3 subunit (ATPB3); sodium/potassium-dependent ATPase	1.83							U51478		
B94	B94 protein	2.00	3.50	2.33					M02357		
BAG-1	BCL-2 binding anagene-1 (BAG-1); glucocorticoid receptor-associated protein RAP46	1.70							S83171;	Z35491	
BAX	Apoptosis regulator bax	2.11							L24744		
bcl-6	B-cell lymphoma 6 protein (bcl-6); zinc finger protein 51 (ZNF51); LAZ-3 protein	2.14							U00115		
BCL-X	Apoptosis regulator bcl-x	1.89							Z23115;	L20121;	L20122
BDNF	Brain-derived neurotrophic factor (BDNF)	6.33							M61176		
BMP4	Bone morphogenetic protein 4 (BMP4) + bone morphogenetic protein 2B (BMP2B)	2.00	3.00						D30751;	M22490	
BRCA1	BRCA1-associated ring domain protein	2.17							X82200		
BRCA2	Breast cancer type 2 susceptibility protein (BRCA2)	2.17							U43746		
BSP1	Transforming growth factor-beta signaling protein 1 (BSP1); mothers against dpp homolog (MAD); MADR1; MSMD1	3.50	2.44						U57456		
BTEB2	Basic transcription element-binding protein 2 (BTEB2); GC-box binding protein 2	2.26	2.59						D14520		
BTF2p44	Basic transcription factor 2 44-kDa subunit (BTF2p44)	1.90							Z30094		
CANP	Calpain 2 large (catalytic) subunit; M-type calcium-activated neutral proteinase (CANP)	1.82							M23254		
CAP2	Cytoplasmic antiproteinase 2 (CAP2); protease inhibitor B	2.00							L40377		
CASP2	Caspase-2 precursor (CASP2); ICH-1L protease + ICH-1S protease	4.00							U13021;	U13022	

(Continued on next page)
Gene abbreviation	Gene name	Arsenic (5 µM) ratio	Arsenic (50 µM) ratio	Chromium ratio	Cadmium ratio	Nickel ratio	MMC ratio	GenBank*
CASP4	Caspase-4 precursor (CASP4); ICH-2 protease; TX protease; ICE(REL)-II + caspase-5 precursor (CASP5); ICH-3 protease; TY protease; ICE(REL)-III	1.53						U28014 + U28015
CBF-B	CCAAT-binding transcription factor subunit B (CBF-B); NF-Y protein subunit A (NF-YA); Hap2; CAAT-box DNA-binding protein subunit A	1.50						M59079
CCNB1	G2/mitotic-specific cyclin B1 (CCNB1)	1.51						M25753
CD40-L	CD40 ligand (CD40-L); tumor necrosis factor (TNF)-related activation protein (TRAP); T-cell antigen GP39	2.80						L07414
C-ets-2	C-ets-2	3.33						J04102
CI-B18	NADH-ubiquinone oxidoreductase B18 subunit; complex I-B18 (CI-B18); cell adhesion protein SUM1	1.67						M33374
CIP1	Cyclin-dependent kinase inhibitor 1 (CDKN1A); melanoma differentiation-associated protein 6 (MDA6); CDK-interacting protein 1 (CIP1); WAF1	3.78						U09579; L25610; L28222
CLK1	CDC-like kinase 1 (CLK1)	2.78						M74816
CLU	Clusterin precursor (CLU); complement-associated protein SP-40,40; complement cytolsis inhibitor (CLU); apolipoprotein J (APO-J); TRPM-2; sulfated glycoprotein 2	2.79						
c-myc	c-myc oncogene	3.49	3.42	1.95				V00568
COLα2	Procollagen alpha 2(IV) subunit precursor	2.00	1.75	1.75				X05562
Cortactin	Cortactin; amplaxin; ems-1 oncogene	1.75						M98343
C/EBF1	CD40 receptor-associated factor 1 (CRAF1)	5.00						
CREB2	cAMP-dependent transcription factor ATF-4; DNA-binding protein TAXREB67; cAMP-response element binding protein (CREB2)	2.62	1.72	1.58				D90209
CTXN4A1	Alpha1 catenin (CTXNA1); cadherin-associated protein; alpha E-catenin	1.76						
Cycin k	Cyclin K	2.13	2.13					AF060515
CYP1	Cytochrome P450 reductase	3.00						S90469
CYP1B1	Dioxin-inducible cytochrome P450 1B1 (CYP1B1)	3.50	3.50	2.33				U03688
DAD1	Defender against cell death 1 (DAD1)	2.07						D15057
DAXX	DAXX	2.50						AF015956
DB1	Putative transcription activator DB1	2.33	1.75	1.75				D28118
DBP	DNA-binding protein TAXREB302; albumin D box-binding protein (DBP)	2.27						D28468
DBP-A	DNA-binding protein A	1.76						M24069
DFF4S	DNA fragmentation factor 45 (DFF45)	3.00						U91985
DIF-2	IEX-1L anti-death protein; PRG-1; DIF-2	3.09	2.60	1.80				AF039067; AF071596
DPD	DNA polymerase delta catalytic subunit	2.18						
DPP-1	Dipeptidyl-peptidase I precursor (DPP-1); cathepsin C; cathepsin J; dipeptidyl transferase	1.83						X87212
DRPLA	Atrophin-1; dentatorubral-pallidolysian atrophy protein (DRPLA)	3.00						D31840
E16	E16 amino acid transporter	2.63						AF077286
E2F-3	E2F-3	2.17						Y10479

(Continued on next page)
Gene abbreviation	Gene name	Arsenic (5 µM) ratio	Arsenic (50 µM) ratio	Chromium ratio	Cadmium ratio	Nickel ratio	MMC ratio	GenBank*		
		Up	Down	Up	Down	Up	Down	Up	Down	
EAR2	v-erbA-related protein (EAR2)			2.08						X17294
EB1	EB1 protein	2.20	2.04					1.53		U24166
ECK	Ephrin type-A receptor 2 precursor; epithelial cell kinase (ECK); tyrosine-protein kinase receptor ECK	2.54	2.00	1.80	1.50	M53971	M36395			
EFNA4	Ephrin A4 precursor (EFNA4); EPH-related receptor tyrosine kinase ligand 4 (EPLG4); LERK4	7.00						U14188		
EPH	Ephrin type-A receptor 1 precursor; tyrosine-protein kinase receptor eph	2.88						M18391		
ERF1	TIS11B protein; EGF response factor 1 (ERF-1)	3.37	2.00	2.00				X79067		
ERK3	Extracellular signal-regulated kinase 3 (ERK3); MAP kinase 3 (MAPK3; p97-MAPK); PRKMK5	1.70	3.92					X80692		
ETR101	Transcription factor ETR101	4.03	3.00					M62631		
ETS-1	Erythroleukemia virus oncogene homolog 1 (ETS-1); p54	3.21						J04101		
ETv6	eTS-related protein tel; eTS translation variant 6 (ETv6)	2.27						U11732		
FAST	fas-activated serine/threonine (FAST) kinase	2.75						X86779		
FGFR1	N-sam; fibroblast growth factor receptor1 precursor (FGFR1); basic fibroblast growth factor receptor precursor (bFGFR); fms-like tyrosine kinase-2 (FLT2) + heparin-binding growth factor receptor (HBGF-R-alpha-A1) + HBGF-R-alpha-A2 + HBGF-R-alpha-A3									
FRA1	fos-related antigen (FRA1)	8.59	1.80						X16707	
Fsa-1	fse-1; yeast mitochondrial protein import homolog; 40S ribosomal protein S3A (RPS3A)	1.50	1.52	1.55				M77234		
FX	Thymosin beta 4; FX	2.21	1.74						M17733	
GABP-α	GA-binding protein alpha subunit (GABP-α)	2.33						D13316		
GADD45	Growth arrest and DNA-damage-inducible protein 153 (GADD45); DNA-damage-inducible transcript 3 (DDIT3); C/EBP homologous protein (CHOP)	10.35						S40706		
GADD45β	Growth arrest and DNA-damage-inducible protein 45 beta (GADD45 beta)	2.60	13.88					M60974		
GALNR1	Galanin receptor type 1 (GALNR1; GALR1)									
GAP	GAP-associated protein	2.00						L34339		
GLUT1	Erythrocyte glucose transporter 1 (GLUT1)		1.86	1.64	1.93			K03195		
GNB1	Guanine nucleotide-binding protein G-i/G-s/G-t beta subunit 2, transducin beta 2 subunit 2		2.50					M06429		
GRRF1	Glucocorticoid receptor repression factor 1		2.00					M73077		
GSHPX1	Glutathione peroxidase (GSHPX1; GPX1)		2.00	1.68	1.62			Y00483		
GSR	Glutathione reductase (GRase; GSR, GR)							M21304		
H2TF1	Nuclear factor NF-kappa-B p100 subunit; nuclear factor NF-kappa-B p52 subunit; H2TF1; oncogene lyt-10	1.71						X61498		

(Continued on next page)
Table 1—Continued.

Gene abbreviation	Gene name	Arsenic (5 µM)	Arsenic (50 µM)	Chromium	Cadmium	Nickel	MMC			
		ratio	ratio	ratio	ratio	ratio	ratio			
HATB2	Histone acetyltransferase B subunit Z; retinoblastoma-binding protein p46; retinoblastoma-binding protein 7	1.80	1.80						U93143	
HBEGF	Heparin-binding EGF-like growth factor (HBEGF); diphtheria toxin receptor (DTR)	16.29							M66278	
HDGF	Hepatoma-derived growth factor (HDGF)			1.67	1.55	1.55			D16431	
HEGR1	Early growth response protein 1 (HGR1); transcription factor ETR103; KROX24; zinc finger protein Z25; AT2Z25	2.36	13.00			2.17	1.62		X52541; M662629	
HEIR-1	Helix-loop-helix protein HLH 1R2; DNA-binding protein inhibitor Id-3; HEIR-1						2.41		X69111	
HIF1-α	Hypoxia-inducible factor 1 alpha (HIF1 alpha); ARNT-interacting protein; member of PAS protein 1 (MOP1)								U22431	
HLAC	HLA class I histocompatibility antigen C-4 alpha subunit (HLAC)							1.52		M11886
HO1	Heme oxygenase 1 (HO1); HSOXYGR	50.93	54.95						X06985	
HOX-AS	Homeobox protein HOX-AS; HOX-IC	1.91							M36679	
hsMN	Survival of motor neuron (hsMN)	2.33							U18423	
HSP-27	Heat-shock 27-kDa protein (HSP27); stress-responsive protein 27 (SRP27); estrogen-regulated 24-kDa protein; HSPB1			4.28					X54079	
HSP-40	Heat-shock protein 40 (HSP40)	13.86							D49547	
HSP-60	Mitochondrial matrix protein P1 precursor; p50 lymphocyte protein; chaperonin homolog, HUCHA20; heat-shock protein 60 (HSP-60); HSP01	3.13							M34664	
HSP-70	Heat-shock 70-kDa protein 6 (heat-shock 70-kDa protein B)	108.50							X51757; M11236	
HSP70.1	70-kDa heat-shock protein 1 (HSP70.1; HSPA1)	5.48	45.83						M11717	
HSP-71	Heat-shock cognate 71-kDa protein			4.19						Y00371
HSP-90A	Heat-shock 90-kDa protein A (HSP90A; HSPCA); HSPB6	2.33	3.96	3.25	1.86	2.36			X07270	
HSR-70	Heat-shock-related 70-kDa protein 2	4.53								L26336
ICE-LAP3	Cysteine protease ICE-LAP3	2.33								U39613
Id-1H	DNA-binding protein inhibitor ID-1; Id-1H							5.00		D13889
IGFBP3	Insulin-like growth factor-binding protein 3 precursor (IGF-binding protein 3; IGFBP3; IGBP3)						2.00			M311159; M39579
IL-10	Interleukin-10 precursor (IL-10); cytokine synthesis inhibitory factor (CSIF)							1.54		M57627
IL-11	Interleukin-11 (IL-11); adipogenesis inhibitory factor (AGIF)							13.33		M57765
IL-12B	Interleukin-12 beta subunit precursor (IL-12B); cytotoxic lymphocyte maturation factor 40-kDa subunit (CLMF p40); NK cell stimulatory factor subunit 2 (NKSF2)	2.50	6.00						M65290	
IL-1R2	Interleukin-1 receptor type II precursor (IL-1R2); IL-1R-beta	2.40								X58770
IL-2	Interleukin-2 precursor (IL-2); T-cell growth factor (TCGF)	1.90								A14844
IL2RA	Interleukin-2 receptor alpha subunit precursor (IL-2 receptor alpha subunit; IL2RA); p55; TAC antigen; CD25	1.74								X01057; X01058; X01402
IL-5RA	Interleukin-5 receptor alpha subunit precursor (IL-5R-alpha; IL5RA); CD125 antigen	2.66								M75914

(Continued on next page)
Table 1—Continued.

Gene abbreviation	Gene name	Arsenic (5 µM) ratio	Arsenic (50 µM) ratio	Chromium ratio	Cadmium ratio	Nickel ratio	MMC ratio	GenBanka	
IL-6	Interleukin-6 precursor (IL-6); B-cell stimulatory factor 2 (BSF2); interferon beta-2 (IFNβ2); hybridoma growth factor	3.11	2.78	2.45				X04602; M14564	
IL-7	Interleukin-7 (IL-7)	1.73						J04156	
IL-8	Interleukin-8 precursor (IL-8); monocyte-derived neutrophil chemotactic factor (MDNCF); T-cell chemotactic factor; neutrophil-activating protein 1 (NAP1); lymphocyte-derived neutrophil-activating factor (LYNAP); protein 3-10C	2.95	4.46						
ITGA4	Integrin alpha 4 precursor (ITGA4); VLA4; CD49D antigen	2.54						L12002; X16983; X15396	
ITGB4	Integrin beta 4 (ITGB4); CD104 antigen	1.76	1.61					X53567; J52188; X51841	
JNK	c-jun N-terminal kinase 1 (JNKK); JNK activating kinase 1 (JNKK1); MAP kinase kinase 4 (MKK4)	3.00						L38870	
JUN	jun activation domain binding protein	2.43						U65928	
JUN-D	jun-D	5.67						X86681	
JUP,DP3	Junction plakoglobin (JUP); desmoplakin III (DF3)	2.33	1.60					M23410; Z00228	
JUN	Leukemia inhibitory factor precursor (LIF); differentiation-stimulating factor (D factor); melanoma-derived LIF inhibitor (MLPLI); HILDA	2.15	7.63					X13967; M53420	
LIG1	DNA ligase I; polydeoxyribonucleotide synthase (ATP) (DNL1) (LIG1)	2.94						M36067	
LUCA2	LUCA2; lysosomal hyaluronidase 2 (HYAL2); PH-20 homolog	2.11						U69577	
MAO	MAD protein, MAX dimerizer	14.00						L08895	
MAPKAPK2	MAP kinase-activated protein kinase 2 (MAPKAP kinase 2; MAPKAPK-2)	1.50	1.50					U12779	
MAPKK3	Dual specificity mitogen-activated protein kinase 3 (MAP kinase kinase 3; MAPKK3; MMK3); ERK activator kinase 3; MAPK/ERK kinase 3 (MEK3)	2.78						L36719	
MCL-1	Induced myeloid leukemia cell differentiation protein MCL-1	2.23	2.00					L08246	
MCM2	MCM2 DNA replication licensing factor; nuclear protein BM28; KIAA0030	2.24						D21063	
MCM5	MCM5 DNA replication licensing factor; CDC46 homolog	1.72						X74795	
MCM7	MCM7 DNA replication licensing factor; CDC47 homolog; p1.1-MCM3	2.24						D55716	
MCP1	Monocyte chemotactic protein 1 precursor (MCP1); monocyte chemotactic and activating factor (MCAF); monocyte secretory protein JC; monocyte chemoattractant protein 1; HC11; small inducible cytokine A2 (SCYA2)	2.21	7.00	2.33				M24545	
MCT1	Monocarboxylate transporter 1 (MCT1)	3.50						L31801	
MGT1	6-O-methylguanine-DNA methyltransferase (MGMT); methylated-DNA-protein-cysteine methyltransferase	1.83						M29971	
MIP2 α	Macrophage inflammatory protein 2 alpha (MIP2-alpha); growth-regulated protein beta (GRO-beta)	2.03	2.11					X53799	

(Continued on next page)
Table 1—Continued.

Gene abbreviation	Gene name	Arsenic (5 µM) ratio	Arsenic (50 µM) ratio	Chromium ratio	Cadmium ratio	Nickel ratio	MMC ratio	GenBank			
		Up	Down	Up	Down	Up	Down	Up	Down	GenBank	
MMP-14	Matrix metalloproteinase 14 precursor (MMP14); membrane-type matrix metalloproteinase 1 (MT-MMP1); MMP-X1	1.67	D26512; X83535	1.80	X70326	7.83	L13740	1.55	1.55	D00099	
MRP	macMARCKS; MARCKS-related protein (MRP); MLP	1.80	X70326	2.00	L19067	3.00	U15306	1.70	1.80	M81768	
NAK1	Early response protein NAK1; TR3 orphan receptor	7.83	L13740	1.55	1.55	2.00	L19067	3.00	3.00	U15306	
NaKATPase	Sodium/potassium-transporting ATPase alpha 1 subunit (Na+/K+-ATPase)	1.55	1.55	D00099	1.55	1.55	2.00	L19067	3.00	U15306	
NFKB3	NF-kappaB transcription factor p65 subunit; RELA; NFKB3	2.00	L19067	1.70	1.80	2.00	L19067	1.70	1.80	M81768	
NF-X1	Transcriptional repressor NF-X1	3.00	U15306	1.70	1.80	2.00	L19067	1.70	1.80	M81768	
NHE1	Sodium/hydrogen exchanger 1 (Na+/H+ exchanger 1; NHE1); amiloride-sensitive Na+/H+ antiporter	1.70	1.80	M81768	1.70	1.80	2.00	L19067	1.70	1.80	M81768
NIP3	NIP3 (NIP3)	2.40	U15174	2.40	U15174	2.00	U15174	2.00	U15174	M73482	
NMBR	Neuromedin B receptor (NMBR); neuromedin-B-prefering bombesin receptor	1.76	U15174	1.76	U15174	1.83	X55504	1.83	X55504	U15174	
NOL1	Proliferating cell nuclear antigen P120; NOL1	1.83	X55504	1.83	X55504	1.75	Y09689	1.75	Y09689	U12979	
NRGN	Neurogranin (NRGN); RC3	1.75	Y09689	1.75	Y09689	1.74	U12979	1.74	U12979	M80359	
p15; PC4	Activated RNA polymerase II transcriptional coactivator p15; PC4	1.74	U12979	1.74	U12979	2.36	M80359	2.36	M80359	M85456	
p78	p78 putative serine/threonine-protein kinase	2.36	M80359	2.36	M80359	2.00	M85456	2.00	M85456	M85456	
PAR-1	Thrombin receptor (TR); F2R; PAR1	2.40	M62424	2.40	M62424	2.00	M62424	2.00	M62424	M62424	
PBX1	Pre-B-cell leukemia transcription factor-1; homeobox protein pbx1; Homeobox protein prl	2.00	M85456	2.00	M85456	1.75	M62424	1.75	M62424	M62424	
PCNA	Proliferating cyclic nuclear antigen (PCNA); cyclin	1.75	M62424	1.75	M62424	2.52	M85456	2.52	M85456	M15796; J04718	
PDGFA	Platelet-derived growth factor A subunit precursor (PDGFA; PDGF-1)	2.52	M85456	2.52	M85456	3.00	X08374	3.00	X08374	L36151	
PI4K-α	Phosphatidylinositol 4-kinase alpha (PI4-kinase; PTINKS-4-kinase; PI4K-alpha)	3.00	X08374	3.00	X08374	2.86	L36151	2.86	L36151	U12979	
PI4PK	88-kDa type I phosphatidylinositol-4-phosphate 5-kinase alpha (PTINKS(4P)-5-kinase); 1-phosphatidylinositol-4-phosphate kinase; diphosphoinositide kinase	2.86	L36151	2.86	L36151	2.33	X07767	2.33	X07767	X07767	
PKAαx	cAMP-dependent protein kinase alpha-catalytic subunit (PKA C-alpha)	2.33	X07767	2.33	X07767	1.74	M63167	1.74	M63167	M63167	
PKB/akt	rac-alpha serine/threonine kinase (rac-PK-alpha); protein kinase B (PKB); c-akt; akt	1.74	M63167	1.74	M63167	1.53	M63167	1.53	M63167	M63167	
PLCG1	Phospholipase C gamma 1 (PLC-gamma 1; PLCG1); 1-phosphatidylinositol 4, 5-bisphosphate phosphodiesterase gamma 1; PLC-II; PLC-148	2.11	M63167	2.11	M63167	3.00	X98093	3.00	X98093	M34687	
PN-II	Alzheimer’s disease amyloid A4 protein precursor; protease nexin-II (PN-II); APP	1.74	Y00264	1.74	Y00264	1.86	Y00264	1.86	Y00264	X98093	
POLG	DNA polymerase gamma (POLG); mitochondrial DNA polymerase catalytic subunit (MDP1)	3.00	X98093	3.00	X98093	1.65	M63960	1.65	M63960	M63960	
PP-1A	Serine/threonine protein phosphatase PP1-alpha 1 catalytic subunit (PP-1A)	1.65	M63960	1.65	M63960	3.71	U48296	3.71	U48296	U48296	
PRL-1	PTPCAAX1 nuclear tyrosine phosphatase (PRL-1)	1.82	U48296	1.82	U48296	3.71	U48296	3.71	U48296	U48296	
Prot.c8	Proteasome component C8; macropain subunit C8; multicalytic endopeptidase complex subunit C8	1.80	D00762	1.80	D00762	1.80	D00762	1.80	D00762	D00762	

(Continued on next page)
Table 1—Continued.

Gene abbreviation	Gene name	Arsenic (5 µM)	Arsenic (50 µM)	Chromium	Cadmium	Nickel	MMC
		ratio Up	ratio Down	ratio Up	ratio Down	Up	Down
PRP	Major prion protein precursor (PRP); PRP27-30, PRP33-35C, ASCR	2.05	2.54	1.62	1.90	M13667	
PTMS	Parathyminosin	2.10				M24398	
RAP-1B	ras-Related protein RAP-1B; GTP-binding protein SMG p21B	2.25	X0B004				
RFC	Activator 1 140-kDa subunit (A1 140-kDa subunit); replication factor C large subunit; DNA-binding protein PO-QA	2.00	L14922				
RFC37	Activator 1 37-kDa subunit; replication factor C 37-kDa subunit (RFC37); RFC4	2.59	1.73	1.54	M87339		
RFC40	Activator 1 40-kDa subunit; replication factor C 40-kDa subunit (RFC40); RFC2	1.90	M87339				
Rho-GDI	rho GDP dissociation inhibitor 1 (RHO-GDI 1); RHO-GDI alpha (GDIA1); ARHGDIA	1.81	1.67	X69950			
RκB	R kappa B DNA-binding protein	1.62	U08191				
ROBO1	Roundabout 1 (ROBO1)	1.75	AF040990				
RP-A	Replication protein A 14-kDa subunit (RP-A) (RP-A); replication factor A protein 3	1.90	1.70	L07493			
RPL6	60S ribosomal protein L6 (RPL6); TAX-responsive enhancer element binding protein 107 (TAXREB107); neoplasms-related protein C140	2.10	X69391				
RPS19	40S ribosomal protein S19 (RPS19)	1.95	M81757				
RSK1	Ribosomal protein S6 kinase II alpha 1 (S6KII-alpha 1); ribosomal S6 kinase 1 (RSK1)	1.72	1.75	L07597			
SAP2	ets Domain protein elk-3; NET; SRF accessory protein 2 (SAP2)	1.91	Z36715				
SATT	Neutral amino acid transporter A (SATT); alanine/serine/cysteine/threonine transporter (ASCT1)	2.08	L14595				
Shb	shb proto-oncogene	3.01	1.62	X75342			
SMAD4	Mothers against dpp homolog 4 (SMAD4); MADR4; pancreatic carcinoma gene 4 (DPC4)	3.50	U44378				
SNK	Serum-inducible kinase (SNK)	2.75	AF059617				
Stratfin	14-3-3 Protein sigma; stratfin; epithelial cell marker protein 1	1.88	AF029082				
Synapsin	Synapsin IIIA	1.90	AF046873				
TAFAP-2	Transcription factor AP-2 (TAFAP-2; AP2Tf)	1.80	M36711				
TIF1	Transcription intermediary factor 1 (TIF1)	1.80	AF009353				
tsk1	Tyrosine kinase tsk1	1.78	1.78	U43408			
TOB	Transducer of ERBB2 (TOB)	2.31	D38305				
TOP2A	DNA topoisomerase II alpha (TOP2A)	3.50	J04088				
TR	Thioredoxin reductase	3.29	X91247				
TPRAP	TPRAP protein	2.00	1.75	AF076974			
TSC2	Tuberin; tuberous sclerosis 2 protein (TSC2)	2.22	X76521				
TST	Thiosulfate sulfurtransferase; rhodanese	5.00	D87292				
TTR	Transthyretin precursor (TTR); prealbumin; TBPA	1.89	K02091				
TUK2	tyk2 non-receptor protein tyrosine kinase	1.86	X56367				
Ubiquitin	Ubiquitin	2.03	7.94	2.16	1.82	M28880	
UNG1	Uracil-DNA glycosylase precursor (UNG1)	5.57	X15653				
UPAR	Urokinase-type plasminogen activator receptor GPI-anchored form precursor (UPAR); monocye activation antigen MO3; CD87 antigen	1.62	U08839; M83246; X51675				
are observed in response to toxic metal exposure. These early changes may provide further insight into mechanisms underlying development of metal-induced diseases. These early gene and protein responses are also candidate biomarkers of metal exposure and/or effect that could potentially be used diagnostically in molecular and epidemiologic studies.

Results of the cDNA microarray experiments indicate that exposure to these toxic metals modifies expression of only a small subset of the 1,200 total genes examined (Figures 1 and 2), which is consistent with the concept that these were low, relatively nontoxic doses that did not activate large numbers of nonspecific pathways of toxicity response (with the exception of 50 µM arsenic). Although there is some overlap in the genes modified between different metals, these data suggest that each metal modifies expression of a largely unique set of genes that may be characteristic of each treatment. Although this microarray does not contain all known metal-responsive genes, the results show metal-specific patterns of expression among the genes examined. No gene was modified by all five chemical treatments, and only a few genes were common to any two treatments. A similar unique pattern of gene expression has been observed in yeast exposed to equitoxic doses of several different alkylating agents (Jelinsky et al. 2000) as well as in rats treated with different classes of drugs (Hamadeh et al. 2002a, 2002b). Likewise, cadmium chloride, benzo[a]pyrene and trichloroethylene produced different patterns of gene expression in the livers of exposed mice (Bartosiewicz et al. 2001).

In this study the genes that were altered commonly by more than one treatment were all changed in the same direction, that is, either increased or decreased expression. This supports the idea that these represent biologically relevant responses to these treatments. Cadmium, chromium, and nickel exposures all increased expression of GLUT1 and decreased levels of transcription activator DB1 (DB1), procoagulation alpha 2(IV) subunit precursor (COLA4A2), glutathione peroxidase (GSHPX1), hepatoma-derived growth factor (HDGF), and cytochrome P450 1B1 (CYP1B1). Despite the known ability of Cr(VI) and MMC to cause both monoaadducts and cross-links in DNA, only 7 genes were modified in common by both of these agents. A previous 148-gene microarray experiment showed changes in expression of 12 genes in the liver following cadmium exposure (Bartosiewicz et al. 2001). Organ-specific effects as well as differences in the particular genes included in each microarray may explain the lack of overlap between these two studies. Previous studies indicate that 4-hr nickel exposure stabilizes HIF-1α protein resulting in transcriptional activation of hypoxia-inducible genes (Andrew et al. 2001; Salnikow et al. 2000). Consistent with these findings, HIF-1α–inducible genes, including the insulin-like growth factor binding protein (IGFBP3) and GLUT1, were up-regulated following nickel exposure (Figure 1) (Minet et al. 2001).

In addition to the metal-specific effects, we examined the effect of arsenic dose on gene expression. The lower-dose arsenic exposure (5 µM) modified expression of a wide variety of genes representing a diverse range of protein classes such as transcription factors, inflammatory cytokines, kinases, and DNA repair proteins, as shown previously in human fibroblasts (Yih et al. 2002) and keratinocytes (Bae et al. 2002). The literature supports the observed induction of heme oxygenase (HO1) (Menzel et al. 1998; Taketani et al. 1989; Yih et al. 2002) and the transcription factor junD (junD) (Liu et al. 2001). In addition, the immunoblot in Figure 3 confirmed that the HIF-1α gene expression changes were correlated with higher protein levels. We have also demonstrated dose-dependent increases in HIF-1α protein and mRNA levels in vascular smooth muscle cells (data not shown), suggesting that these effects of low-level arsenic are not confined to a single cell type. Further investigation will be needed to determine the downstream consequences of increases in levels HIF-1α and the other 11 transcription factors induced in response to 5-µM arsenic exposure. Arsenic exposure has also been associated with increased expression of the inflammatory cytokines, interleukin (IL)-6 and IL-8 via a mechanism that may also involve MAP kinase signaling pathways, as well as induction of other cytokines such as IL-12B, IL-7, and IL-2 (Wu et al. 1999).

The decreased expression of genes involved in DNA damage recognition and repair support the hypothesis that arsenic exposure may decrease the ability of exposed cells to recognize and repair DNA damage, potentially contributing to its carcinogenic and co-carcinogenic activity (Abernathy et al. 1999; Hartwig et al. 1997; Hartwig 1998; Rossman et al. 2001; Vogt and Rossman 2001). For example, the following DNA repair genes were altered after arsenic treatment: Xeroderma pigmentosum group D–complementing protein (XPD), DNA excision repair protein ERCC2), Xeroderma pigmentosum group C–complementing protein (XPC), AP endonuclease 1 (APE1), DNA ligase-1 (DNLI), DNA polymerase delta catalytic subunit (DPD), DNA topoisoaerase II alpha (TOP2A), DNA damage–inducible protein GADD45 (Chen et al. 2000; Liu et al. 2001), MCM DNA

Gene abbreviation	Gene name	Arsenic (5 µM)	Arsenic (50 µM)	Chromium	Cadmium	Nickel	MMC
VEGF	Vascular endothelial growth factor precursor (VEGF), vascular permeability factor (VPF)	5.86					
XPC	DNA-repair protein complementing XP-C cell line produced different complementing protein (p125)	5.00					
XPD	Xeroderma pigmentosum group D complementing protein (XPD); DNA excision repair protein ERCC2	2.33					
YWHA1	14-3-3 protein eta; protein AS1; YWHAH; YWHA1	2.89	1.50				
Zyxin + zyxin-2		2.25	3.00				

*Information from GenBank (http://www.ncbi.nlm.nih.gov/GenBank/index.html).
Overall, the number of genes modified in response to metal exposures was relatively small. Although a few genes were modified in response to more than one metal, each metal largely altered expression of a unique set of genes. The profile of genes induced by high arsenic exposure clearly indicated a stress response, whereas the other nonoverly toxic doses of metals led to more subtle modification of cell signaling pathways. Future work will focus on using these data to explore basic mechanisms of metal toxicity and to generate new hypotheses. We invite other researchers to consider our data (Table 1) from the perspective of their own specialized areas of expertise. These metal response patterns may shed new light on the mechanisms of toxic metal–induced human diseases and may also be useful for development of molecular biomarkers of exposure and/or effect in mechanistic, epidemiologic, and risk assessment studies.

REFERENCES

Abernathy CO, Liu YP, Longfellow D, Aposhian HV, Beck B, Fowler B, et al. 1999. Arsenic: health effects, mechanisms of actions, and research issues. Environ Health Perspect 107:593–597.

Alcedo JA, Wetterhahn KE. 1990. Chromium toxicity and carcinogenesis. Int Rev Exp Pathol 31:85–108.

Andrew A, Barchowsky A. 2000. Nickel-induced plasminogen activator inhibitor-1 expression inhibits the fibroblastic activity of human airway epithelial cells. Toxicol Appl Pharmacol 165:50–57.

Andrew AS, Karagas MR, Hamilton JW. 2003. Decreased DNA repair gene expression among individuals exposed to arsenic in United States drinking water. Int J Cancer 104:263–268.

Andrew AS, Klei LR, Barchowsky A. 2001. Nickel requires hypoxia-inducible factor-1 alpha, not redox signaling, to induce plasminogen activator inhibitor-1. Am J Physiol Lung Cell Mol Physiol 281:L607–L615.

ATSDR. 1998. Toxicological Profile for Chromium. Atlanta, GA:Agency for Toxic Substances and Disease Registry.

—. 1999a. Toxicological Profile for Arsenic. Atlanta, GA:Agency for Toxic Substances and Disease Registry.

—. 1999b. Toxicological Profile for Nickel. Atlanta, GA:Agency for Toxic Substances and Disease Registry.

—. 2001. CERCLA Priority List of Hazardous Substances. Available: www.atsdr.cdc.gov/97stlist.html [accessed 14 September 2002].

—. 2002. Toxicological Profile for Cadmium. Atlanta, GA:Agency for Toxic Substances and Disease Registry.

Bae DS, Hannigan WH, Yang RS, Campain JA. 2002. Characterization of gene expression changes associated with MNNG, arsenic, or metal mixture treatment in human keratinocytes: application of cDNA microarray technology. Environ Health Perspect 110(suppl 6):931–941.

Barceloux DG. 1999. Nickel. J Toxicol Clin Toxicol 37:239–258.

Barchowsky A, Lannon BM, Elmore LC, Treadwell MD. 1997. Increased focal adhesion kinase- and uokinase-type plasminogen activator receptor-associated cell signaling in endothelial cells exposed to asbestos. Environ Health Perspect 105:1131–1137.

Barnt J. 1997. Occurrences, uses, and properties of chromium. Regul Toxicol Pharmacol 26:S3–S7.

Bartosiewicz M, Penni S, Buckpitt A. 2001. Applications of gene arrays in environmental toxicology: fingerprints of gene regulation associated with cadmium chloride, benz(a)pyrene, and trichloroethylene. Environ Health Perspect 109:71–74.

Baudouin C, Charveron M, Tarroux R, Gail Y. 2002. Environmental pollutants and skin cancer. Cell Biol Toxicol 18:341–348.

Beyermann D, Hechtenberg S. 1997. Cadmium, gene regulation, and cellular signaling in mammalian cells. Toxicol Appl Pharmacol 144:247–261.

Byrd DM, Roegner ML, Griffiths JC, Lamm SH, Grumski KS, Wilson R, et al. 1996. Carcinogenic risks of inorganic arsenic in perspective. Int Arch Occup Environ Health 68:484–494.

Cavigelli M, Li WW, Lin A, Su B, Yoshioka K, Karin M. 1999. The tumor promoter arsenite stimulates AP-1 activity by inhibiting a JNK phosphatase. EMBO J 15:6269–6279.

Chen NY, Ma WY, Huang C, Ding M, Dong Z. 2000. Activation of PKC is required for arsenite-induced signal transduction. J Environ Pathol Toxicol Oncol 19:297–305.

Dayan AD, Paine AJ. 2001. Mechanisms of chromium toxicity, carcinogenicity and allergenicity: review of the literature from 1985 to 2000. Hum Exp Toxicol 20:439–451.

Denkhaus E, Salnikow K. 2002. Nickel essentiality, toxicity, and carcinogenicity. Crit Rev Oncol Hematol 42:95–96.

Edelman DA, Roggli VL. 1989. The accumulation of nickel in human lungs. Environ Health Perspect 81:221–224.

Gebeil T. 2000. Confounding variables in the environmental toxicology of arsenic. Toxicol Ind Health 16:155–162.

Gebeil TW. 2001. Genotoxicity of arsenical compounds. Int J Hyg Environ Health 203:249–262.

Hamadeh HK, Bushel PR, Jayaved S, DiSorbo O, Bennett L, Li J, et al. 2002a. Development of a compound signature using high density gene expression profiling. Toxicol Sci 67:222–240.

Hamadeh HK, Bushel PR, Jayaved S, Martin K, DiSorbo O, Sieber S, et al. 2002b. Gene expression analysis reveals chemical-specific profiles. Toxicol Sci 67:219–231.

Hamilton JW, Kaltreider RC, Bajenova OV, Ihat MA, McCaffrey J, Turpie BW, et al. 1998. Molecular basis for effects of carcinogenic heavy metals on inducible gene expression. Environ Health Perspect 106(suppl 4):1005–1015.

Hamilton JW, Wetterhahn KE. 1999. Differential effects of chromium(VI) on constitutive and inducible gene expression in chick embryo liver in vivo and correlation with chromium(VI)-induced DNA damage. Mol Carcinog 27:247–286.

Hartwig A, Baudouin C, Charveron M, Tarroux R, Gail Y. 2002. Environmental pollutants and skin cancer. Cell Biol Toxicol 18:341–348.

Hartwig A, Baudouin C, Charveron M, Tarroux R, Gail Y. 2002. Environmental pollutants and skin cancer. Cell Biol Toxicol 18:341–348.

Hartwig A, Baudouin C, Charveron M, Tarroux R, Gail Y. 2002. Environmental pollutants and skin cancer. Cell Biol Toxicol 18:341–348.
Ihnat MA, Lariviere JP, Warren AJ, La Ronde N, Blaxall JR, Pierre KM, et al. 1997. Suppression of P-glycoprotein expression and multidrug resistance by DNA cross-linking agents. Clin Cancer Res 3:1339–1346.

Jarup L, Berglund M, Elinder CG, Nordberg G, Vahter M. 1998. Health effects of cadmium exposure—a review of the literature and a risk estimate. Scandinavian J Work Environ Health 24(suppl 1):1–51.

Jelinsky SA, Estep P, Church GM, Samson LD. 2000. Regulatory networks revealed by transcriptional profiling of damaged Saccharomyces cerevisiae cells: Rpn4 links base excision repair with proteasomes. Mol Cell Biol 20:8157–8167.

Kinexus Bioinformatics Corp. 2002. Kinexus. Available: www.kinexus.ca [accessed 14 September 2002].

Laden F, Neas LM, Dockery DW, Schwartz J. 2000. Association of fine particulate matter from different sources with daily mortality in six U.S. cities. Environ Health Perspect 108:941–947.

Leikauf GD. 2002. Hazardous air pollutants and asthma. Environ Health Perspect 110(suppl 4):505–526.

Liu J, Kadiiska MB, Liu Y, Lu T, Qu W, Waalkes MP. 2001. Stress-related gene expression in mice treated with inorganic arsenicals. Toxicol Sci 61:314–320.

Liu Y, Gyoton KZ, Gorospe M, Xu Q, Lee JC, Holbrook NJ. 1996. Differential activation of ERK, JNK/SAPK and P38/CSBP/RK map kinase family members during the cellular response to arsenite. Free Radic Biol Med 21:771–781.

McCaffrey J, Wolf CM, Hamilton JA. 1994. Effects of the genotoxic carcinogen chromium(VI) on basal and hormone-inducible phosphoenolpyruvate carboxykinase gene expression in vivo: correlation with glucocorticoid- and developmentally regulated expression. Mol Carcinog 10:189–198.

Menzel DB, Rasmussen RE, Lee E, Meacher DM, Said B, Hamadeh H, et al. 1998. Human lymphocyte heme oxygenase 1 as a response biomarker to inorganic arsenic. Biochem Biophys Res Commun 250:653–656.

Minet E, Michel G, Mottet D, Raes M, Michiels C. 2001. Transduction pathways involved in hypoxia-inducible factor-1 phosphorylation and activation. Free Radic Biol Med 31:647–655.

Porter AC, Fanger GR, Vaillancourt RR. 1999. Signal transduction pathways regulated by arsenate and arsenite. Oncogene 18:7794–7802.

Rossman TG, Uddin AN, Burns FJ, Bozland MC. 2001. Arsenite is a cocarcinogen with solar ultraviolet radiation for mouse skin: an animal model for arsenic carcinogenesis. Toxicol Appl Pharmacol 176:64–71.

Salnikow K, Blagosklonny MV, Ryan H, Johnson R, Costa M. 2000. Carcinogenic nickel induces genes involved with hypoxic stress. Cancer Res 60:38–41.

Samet JM, Graves LM, Quay J, Dailey LA, Devlin RB, Ghio AJ, et al. 1998. Activation of MAPKs in human bronchial epithelial cells exposed to metals. Am J Physiol 275:L551–L558.

Williams MD, Sandler AB. 2001. The epidemiology of lung cancer. Cancer Treat Res 105:31–52.

Wu W, Graves LM, Jaspers I, Devlin RB, Reed W, Samet JM. 1999. Activation of the EGF receptor signaling pathway in human airway epithelial cells exposed to metals. Am J Physiol 277:L924–L931.

Yih LH, Peck K, Lee TC. 2002. Changes in gene expression profiles of human fibroblasts in response to sodium arsenite treatment. Carcinogenesis 23:867–876.