Progress Made in Developing New High Yielding Potato Varieties for the Kenyan Highlands at KALRO-Tigoni

Jane Muthoni and Hussein Shimelis

Kenya Agricultural and Livestock Research Organization (KALRO), Kenya
African Centre for Crop Improvement, University of KwaZulu-Natal, College of Agriculture, Engineering and Science, School of Agricultural, Earth and Environmental Sciences, Private Bag X01, Scottsville 3209, Pietermaritzburg, South Africa

Abstract: Breeding has been going on at Kenya Agricultural and Livestock Research Institute (KALRO), Tigoni in Kenya to develop high yielding potato varieties that have good processing qualities. The objective was to develop high yielding potato varieties that are adapted to the Kenyan climatic and environmental conditions and that are suitable for processing. After initial crossing, the resultant families were evaluated for yield as well as crisping and chipping quality for three consecutive generations at KALRO-Tigoni; this resulted in selection of 112 candidate clones. The 112 selected clones (52 potentially for crisping) were then evaluated under Advanced Yield Trials (AYT) during the 2015 short rains season and 2016 long rains season at three sites (Tigoni, Molo and Meru). Yield data was analysed using the lattice procedure of Statistical Analysis Systems (SAS 9.1) statistical package. Genotype x Environment Interaction (GEI) as well as stability and adaptability of potato clones across sites was analysed using additive main effects and multiplicative interaction (AMMI) and genotype main effect and Genotype x Environment Interaction (GGE) biplot analysis. In the AYT, significant Genotype x Environment Interaction (GEI) were observed. Clone G6 (2E87) was closest to the ideal genotype; it was the highest yielding and most stable while environment 2 (long rains season 2016 at KALRO-Tigoni) was the closest to ideal environment and therefore the most desirable of the six environments. From AYT, 18 clones were selected, 11 of them good for crisping. These clones were recommended for the National Performance Trials (NPT) before release of new varieties.

Introduction

Background

In Kenya, potato is an important food crop, second after maize in volumes produced (MoA, 1998; FAO, 2013; 2014). The crop is grown mainly as a cash and food crop by small-scale farmers, although some large-scale growers specialize in commercial production (FAO, 2014). Potato therefore plays an important role in food security (MoA, 2005; 2008; FAO, 2014) and is grown by about 800 000 farmers, on 158 000 ha per season, with an annual production of about 1.2 million tonnes in two growing seasons (Riungu, 2011; FAO, 2013; 2014; NPCK, 2014). The annual potato crop is valued at KES 13 billion (USD 150 million) at farm gate level and KES 40 billion (USD 362 million) at the consumer level (FAO, 2013; ANN, 2009). Potato farming in Kenya employs 3.3 million people at all levels of the value chain. Potato therefore plays an important role in national food security and could ease pressure off the main cereal, maize. However, there has been a decline in potato production in Kenya (Gregory et al., 2013) because of a number of production constraints. These include low soil fertility, an inadequate supply of certified seeds, pests and diseases, low and erratic rainfall patterns as result of climate change and, the use of low yielding varieties (FAO, 2013).

There has been a long tradition of potato breeding in Kenya; screening and evaluation of imported European varieties and advanced clones from the International Potato Center (CIP) have been the most important
sources of new varieties. Work done on potato breeding in Kenya in the sixties and seventies concentrated on major gene resistance to late blight; the varieties were meant for production in the high altitude areas of Kenya (MoALF, 2016). From these efforts, fourteen potato varieties from Western Europe were released in Kenya through the national potato research programme. However, these varieties were not well adapted to the local agro-climatic conditions mainly because they were the long-day *Solanum tuberosum subsp. tuberosum* (MoALF, 2016). In addition, these varieties had little resistance to late blight caused by *Phytophthora infestans*; the disease is a very serious production constraint throughout all the potato growing regions in Kenya. Furthermore, these potato varieties were very susceptible to bacterial wilt caused by *Ralstonia solanacearum*; the disease is becoming increasingly important not only in the low and medium potential areas but also in the high potential areas (Muthoni et al., 2013; MoA, 2005).

Between 1986 and 1997, adaptive research work was conducted at various stations in Kenya as a collaborative project between Kenya Agricultural Research Institute (KARI) and CIP. The main aim of these collaborative activities was to develop potato varieties with durable resistance to late blight, some level of tolerance to bacterial wilt and acceptable agronomic and post-harvest qualities (FAO, 2013). These activities were carried out at the highland stations of KARI Tigoni and Mau Narok, at the mid-altitude stations of KARI Embu, KARI Kakamega and KARI Kabete and at low-altitude stations of KARI Mtwapa, Shimba Hills and KARI Katumani. The collaborative work resulted in the release of varieties Tigoni (for processing) and, Kenya Furaha and Asante (for domestic consumption). Subsequent collaboration with CIP resulted in release of 7 more varieties by 2010 (MoALF, 2016). Interestingly, a farmer variety, Shangi, which was formally released in Kenya in 2015, is the most popular and is grown by over 70% of potato farmers (Muthoni et al., 2013). Although the variety is fast maturing, it may not be best suited for processing industry.

Availability of suitable potato varieties for processing is important for the expansion of the processing sector in Kenya. The physical tuber quality, dry matter content and harvest maturity of potatoes are the determinants of the processing quality. The tuber shape, size and eye depth are important with regard to the appearance of the tubers and they determine the wastage that occurs during peeling (PSDA, 2009). Round tubers are preferred for crisping (chipping) while for making French fries, oval-shaped tubers are preferred. Currently, there is only one variety for making chips (French fries) (Tigoni) and one for making crisps (chips) (Dutch robyjn). However, Dutch robyjn is very susceptible to late blight, it is low yielding and has deep eyes leading to losses during peeling (PSDA, 2009). For the open air markets, white varieties are not preferred as they green easily.

Despite previous breeding efforts and import of seed potatoes from European countries, the impact of over 50 officially registered potato varieties in Kenya has not been realized. Imported varieties may not be well adapted to local conditions and may need high input levels for production. This may not be tenable especially with poor small scale farmers in Kenya. In addition, some of the imported varieties have been developed by private breeders and as such, issues of plant breeders’ rights might hinder small scale farmers from engaging in commercial production of seeds of such varieties. There is need for continuous development of more locally adapted potato varieties that are high yielding and/or early maturing (for food security) and also to cater for the various processing industries. Consequently, development of new potato varieties was reinitiated with the reintroduction of cross-breeding activities in the national potato programme at KALRO-Tigoni (FAO, 2013). The objective of this research activity was to develop high yielding potato varieties that are adapted to the Kenyan climatic and environmental conditions and that are suitable for processing. The main focus is high yields, suitability for crisping and chipping and early maturity. Selection criteria are tuber yields (number and sizes), tuber shape, eye depth, skin colour and processing quality. Reported here are strides that have been made towards releasing new varieties.

Methodology

Study Site

The production of F1 potato seeds and the seedling multiplication were done at the Kenya Agricultural and Livestock Research Organization, Tigoni (KALRO-Tigoni) [The organization was formerly Kenya Agricultural and Research Institute, KARI]. The KALRO-Tigoni station is located 40 km north-west of Nairobi city centre, at an altitude of 2051 m above sea level (masl) latitude of 10°9’7.22” South and longitude 36°41’8.72” East (Jaetzold et al., 2006). The average annual rainfall is 1096 mm with a bimodal distribution. The long rainy season occurs between March and May, while the short rainy season is between October and December (Jaetzold et al., 2006). The mean annual air temperature is 18°C and ranges between 12 and 24°C. The soil type is humic-nitosol (alfisol) derived from quartz trachyte (Jaetzold et al., 2006). The soil is very deep and well drained with a pH range of 5.5 to 6.5. The soil is of medium inherent fertility with organic carbon content of 1.65%. Exchangeable bases of potassium, calcium and magnesium are moderate to high with available potassium being about 21.2 ppm (Jaetzold et al., 2006).
Table 1: Name and source of the 14 potato parents used in the study

Parent	Germplasm maintainer	Male/Female
Shangi	KALRO-Tigoni	Male
Kenya Karibu	KALRO-Tigoni	Male
Tigoni	KALRO-Tigoni	Male
Sherkeea	KALRO-Tigoni	Male
Meru Mugaruro	KALRO-Tigoni	Male
Kihoro	KALRO-Tigoni	Male
Ingabire	KALRO-Tigoni	Male
Bishop Gitonga	KALRO-Tigoni	Male
391919.3	CIP	Female
394904.9	CIP	Female
394905.8	CIP	Female
392278.19	CIP	Female
394895.7	CIP	Female
394903.5	CIP	Female

CIP = International Potato Center, KALRO-Tigoni = Kenya Agricultural and Livestock Research Organization, Tigoni

Plant Materials

The study used 48 potato families developed as follows: Eight potato varieties selected previously from a bacterial wilt screening trial (Muthoni et al., 2014) were used as males. The eight varieties are high yielding and are popularly grown by Kenyan farmers but are highly susceptible to bacterial wilt (Muthoni et al., 2014). These males were crossed to a set of six female clones sourced from the International Potato Center (CIP) in Peru using a North Carolina mating design II (Table 1). Crossing was done to generate 48 families. Crossing was done in the field during the short rains season of 2012.

Generation of True Potato Seed and F1 Seedlings

A few days after crossing, berries started forming on successful crosses and about 40 days later, they were harvested. The harvested berries were stored in khaki paper bags for three weeks to soften before processing. The ripened berries were processed by cutting them with a knife and emptying the seeds into a basin containing clean water. The seeds were washed and then spread on filter papers and placed on a table in the laboratory to air-dry overnight. The following day, all the seeds from each cross family were soaked in 1500 ppm GA3 solution for 24 h to break dormancy. Thereafter they were rinsed and immediately sown in plastic trays containing sterilized sand. Watering was done using a can and the seedlings were sprayed against pests and diseases as required. Four weeks later, all the seedlings were transplanted from the plastic trays into the field at KALRO-Tigoni during the long rains season of 2013. Transplanting was done on 3rd April 2013.

Field Management of the Seedling Generation

The seedlings were transplanted in furrows at spacing of 75×30 cm. At transplanting, diammonium phosphate (DAP) (18% N: 46% P2O5) was applied at the recommended rate of 500 kg ha⁻¹. Weeding, ridging and pests and late blight control were carried out as per recommendations for potato production in Kenya (KARI, 2008). When the crop was mature, it was harvested, each plant separately. From each cross family, 240 plants were randomly selected and from each selected plant, one tuber was retained. To break tuber dormancy, the tubers were treated by dipping them in a big container containing GA3 at 5 ppm for ten minutes. Thereafter, they were air-dried and covered with a black polythene sheet for one month. They were then uncovered until sprouting.

Field Management and Selection of Clonal Generations

The sprouted tubers were planted out in the field at KALRO-Tigoni during the 2013 short rains season so as to give the first clonal generation crop. The experimental materials consisted of the 48 families. These were planted in a 6×8 alpha lattice design replicated three times. Each plot consisted of 80 plants i.e., 8 rows each consisting of 10 plants. The tubers were planted in furrows at a spacing of 75×30 cm. During planting, DAP (18% N: 46% P2O5) was applied at the recommended rate of 500 kg ha⁻¹. Weeding, ridging and pests and late blight control were carried out as per recommendations for potato production in Kenya (KARI, 2008). Supplemental irrigation was carried out when rainfall was not enough. When the crop was mature, it was harvested, each plant separately. At harvest, data collected were number of tubers per plant i.e. ware (>45 mm in diameter) and seed (<45 mm in diameter) and weight of different tuber sizes i.e., ware (>45 mm in diameter) and seed (<45 mm in diameter). These were taken on the 20 middle plants per plot. Other features considered in the selection were tuber shape, tuber skin colour, number of eyes per tuber, tuber eye depth and general visual appearance of the tubers. This data collection and selection was carried out by a team consisting of two breeders, two socioeconomists, a food scientist, an agronomist and three field technical officers in charge of basic seed potato production. These people, all working at KALRO Tigoni, are well informed on potato production systems in Kenya and the needs of various ware potato markets. Based on the above agreed selection criteria, entire cross families that were inferior were rejected; 18 families were rejected. Of the accepted 30 families, 50 superior plants were selected from each family; these translated to 50 clones per selected family.

The selected families were planted out in the field at KALRO-Tigoni during the 2014 long rains season to generate second clonal generation. Each family was represented by the 50 selected clones. Each plot consisted of 50 rows i.e., clones and there was no
replication. During harvesting, promising clones were selected. Selection of the promising clones was done in a participatory manner by stakeholders who were invited to undertake this exercise. The 40 stakeholders included the local farmers, traders from the local Limuru open air market, agricultural extension officers from Limuru sub county and local small-scale processors of chips and crisp. Selection criteria were from Limuru sub county and local small-scale processors of chips and crisp. Selection criteria were:

- tuber yields (numbers of different tuber sizes were counted),
- tuber shape, tuber eye depth, number of eyes per tuber and skin colour.

Data was collected on the three middle rows per plot. These stakeholders selected a total of 542 clones across all the families.

In the following 2014 short rains season, the 542 clones were planted in the field at KALRO-Tigoni to give third clonal generation. All tubers in each of the clone selected in the second clonal generation were planted as one plot without replication. Field management of the crop was as in the previous generations. Supplementation irrigation was carried out when rainfall was not enough. Upon maturity, the crop was harvested. Yield data was taken i.e., total yield and the clones were later processed and tested for suitability for processing (crisps and chips) and fresh cooking (suitability for mashing). For crisping, chipping and fresh cooking evaluation, 5 kg of tubers from each clone made into crisps, another 5 kg into chips and another 5 kg boiled. Once ready, the samples were set out on trays for organoleptic testing. A panel of 50 people conducted the sensory evaluation. The panel consisted of some members of staff at KALRO-Tigoni, some casual field labourers and some students who were on practical training at KALRO-Tigoni. Based on yield (over 35 ton/ha), processing quality (crisps and chips) and fresh cooking (mashing quality), 112 clones were selected (52 potentially for crisping) (Table 4). These 112 clones were then multiplied at KALRO-Tigoni for one season during the 2015 long rains season to increase potato tuber quantities (fourth clonal generation). Field management of the crop was as in the previous generations. Upon crop maturity, yields were taken (Table 4).

After multiplication, the 112 clones were planted out for Advanced Yield Trials (AYT) and stability studies during the 2015 short rains season and 2016 long rains season at three sites (Tigoni, Molo and Meru). The three sites differed in seasonality (Table 2). The three sites and two seasons formed six environments in which the AYT and stability studies were undertaken (Table 3). At each site and each season, each clone was planted in one ten-meter row consisting of ten plants. Field management of the crop was as in the previous generations but there was no supplemental irrigation. Upon crop maturity in each site and each season, the clones were harvested and yield data collected.

Genotype x Environment Interaction (GEI) Analysis AMMI Model

After harvesting advanced yield trials, yield data was subjected to Analysis of Variance (ANOVA) using the lattice procedure of Statistical Analysis Systems (SAS) statistical package (SAS, 2003) to determine the effects of environments, genotypes and Genotype x Environment Interaction (GEI) on potato tuber yields. Genotype stability was described using the Additive Main effects and Multiplicative Interaction (AMMI) model that combines into a single model analysis of variance (ANOVA) for genotype and environment main effects with Principal Component Analysis (PCA) for the GEI. The complete AMMI model is shown below (Crossa, 1990):

\[Y_{ij} = \mu + g_i + e_j + \sum_{t=1}^{K} \lambda_t \alpha_i \gamma_j + \epsilon_{ij} \]

where, \(Y_{ij} \) is the mean yield (t ha\(^{-1}\)) of the \(j^{th} \) genotype in the \(i^{th} \) environment, \(\mu \) is the overall mean, \(g_i \) and \(e_j \) are the main effects of the genotype and environment respectively, \(t \) is the number of PCA axes considered, \(\lambda_t \) is the singular value of the \(t^{th} \) PCA axis, \(\alpha_i \) and \(\gamma_j \) are scores for the \(i^{th} \) genotype and \(j^{th} \) environment on the \(t^{th} \) PCA axis and \(\epsilon_{ij} \) is the residual term which includes experimental error.

Table 2: Seasonality at Tigoni, Meru and Molo sites

Site	Long Rains (LR) season	Short rains (SR) season
Tigoni	March-May	October-December
Marimba (Meru)	October-December	March-May
Marindas (Molo)	May-August	October-December

Table 3: Test environments in which advanced yield trials were conducted

Tigoni SR 2015	Tigoni LR 2016	Meru LR 2015	Meru SR 2016	Molo SR 2015	Molo LR 2016
ENVI 1	ENVI 2	ENVI 3	ENVI 4	ENVI 5	ENVI 6

SR = short rains season, LR = long rains season, ENVI 1 = short rains season 2015 at Tigoni, ENVI 2 = long rains season 2016 at Tigoni, ENVI 3 = long rains season 2015 at Meru, ENVI 4 = short rains season 2016 at Meru, ENVI 5 = short rains season 2015 at Molo, ENVI 6 = long rains season 2016 at Molo

53
Table 4: Potato clones selected in the third clonal generation based on mean yields and crisping, chipping and fresh cooking quality and their performance during fourth clonal generation

Third clonal generation	Fourth clonal generation							
Rank	Clone	Yields (ton ha$^{-1}$)	Crisping	Chipping	Mashing	Rank	Clone	Yields (ton ha$^{-1}$)
1	2E87	78.1				1	2E87	87.1
2	2C20	61.6				2	2C20	76.7
3	6GA	52.6				3	1EU	53.9
4	1EU	47.8				4	6GA	52.6
5	6CB	45.7				5	5E17	50.2
6	1EY	45.4				6	6CB	50.1
7	1HD1	44.3				7	1B5	48.8
8	5E17	44.2				8	6B17	48.2
9	2C56	44.2				9	2C56	48.0
10	1B5	44.1				10	1G45	46.7
11	6H17	43.9				11	4C19	45.9
12	1G45	43.9				12	5E08	45.5
13	2E68	43.6				13	1EY	45.4
14	5F38	42.7				14	1HD1	45.4
15	2HH	42.5				15	6H22	44.8
16	1EX	42.4				16	6D45	44.5
17	5E08	42.3				17	1EX	44.4
18	6B17	42.2				18	2B11	43.4
19	2B11	42.1				19	1B73A	43.1
20	1C7	42.0				20	1F9	43.0
21	5B26	41.6				21	2E68	43.0
22	UK 5	41.5				22	5B17	42.9
23	2H21	40.6				23	1B14	42.9
24	6H22	40.5				24	5C39	42.7
25	1B73A	40.1				25	2GC	42.6
26	1B14	39.9				26	1C7	42.4
27	2GC	39.6				27	6H49	42.3
28	1HC	39.6				28	5F38	41.7
29	1B67	39.5				29	2H21	41.6
30	1E02	39.5				30	5B26	41.6
31	1HG	39.4				31	5C5	41.6
32	6H49	39.2				32	2HH	41.5
33	2AB	39.1				33	UK5	41.5
34	1F9	39.0				34	1HG	41.4
35	1HB1	38.7				35	1EY	41.1
36	6BA	38.6				36	6B170	41.1
37	6C11	38.5				37	1E02	40.5
38	6C38	38.3				38	6H17	40.4
39	2F40	38.3				39	KE22	40.3
40	1B87	38.1				40	1B87	39.7
41	5B17	37.9				41	6D10	39.7
42	5C5	37.6				42	1HC	39.5
43	6D45	37.5				43	2C21	39.3
44	2C21	37.3				44	1B67	38.9
45	6C32	37.2				45	1HB1	38.9
46	5H61	36.9				46	2AB	38.8
47	6D12	35.8				47	6BA	38.7
48	6B90	35.3				48	3C22	38.6
49	5C44	35.3				49	2F40	38.4
50	1EV	35.1				50	1F15	38.4
51	5E07	35.0				51	5C44	37.8
52	6C25	34.9				52	6C11	37.7
53	5A2	34.8				53	3C21	37.6
54	5C21	33.3				54	UK4	37.5
55	3F29	33.2				55	6C32	37.2
56	1B96	33.1				56	3E03	37.1
Table 4: Continue

	57	3.29	X	X	57	5H61	36.9										
3GA	58	3.26	X	X	58	6D47	36.9										
2F35	59	3.26	X	59	5C21	36.8											
UK	60	3.25	X	60	6C38	36.5											
5E30	61	3.24	X	61	6H72	36.5											
KE22	62	3.23	X	62	1HB	36.5											
4DA	63	3.20	X	63	5E30	36.4											
6D47	64	3.19	X	64	6B90	33.3											
1G35	65	3.18	X	65	6D12	34.8											
3H1	66	3.16	X	66	5A2	34.8											
1F15	67	3.14	X	67	5C15	34.4											
6C30	68	3.12	X	68	5E07	34.4											
3C22	69	3.11	X	69	1H1	33.9											
6D10	70	3.07	X	70	6C25	33.9											
5C15	71	3.04	X	71	6GC	33.8											
1H1H	72	3.00	X	72	1B96	33.1											
4C19	73	2.99	X	73	3F29	32.2											
1HB	74	2.97	X	74	3C48	31.7											
1C48	75	2.96	X	75	6C30	31.2											
6H78	76	2.96	X	76	3GA	31.2											
5C39	77	2.85	X	77	2F35	30.6											
1G31	78	2.84	X	78	1H1H	30.0											
3E03	79	2.81	X	79	1C48	29.6											
1G53	80	2.80	X	80	6H78	29.6											
6C29	81	2.72	X	81	4DA	29.0											
3C21	82	2.66	X	82	1G31	28.4											
3F3	83	2.66	X	83	1F4	27.7											
6GD	84	2.65	X	84	1G53	27.6											
2F19	85	2.65	X	85	6C29	27.2											
1HA1	86	2.64	X	86	1G35	26.8											
3H17	87	2.59	X	87	3F3	26.6											
6H58	88	2.59	X	88	6GD	26.5											
6D43	89	2.58	X	89	2F19	26.5											
1F6	90	2.58	X	90	1H1A	26.4											
1F77	91	2.58	X	91	3H17	25.9											
6GC	92	2.58	X	92	6H58	25.9											
2C57	93	2.54	X	93	6D43	25.8											
4E05	94	2.39	X	94	1F77	25.8											
6D44	95	2.36	X	95	5F58	25.6											
5F58	96	2.16	X	96	3H1	25.6											
1F11	97	2.03	X	97	2C57	25.4											
2H4	98	2.00	X	98	4E05	23.9											
6B170	99	1.91	X	99	1F6	22.8											
2C24	100	1.87	X	100	6D44	22.6											
1F57	101	1.87	X	101	2C24	22.4											
3C48	102	1.78	X	102	5E07	21.3											
5H1	103	1.76	X	103	1F11	20.3											
1F4	104	1.75	X	104	2H4	20.0											
6B55	105	1.74	X	105	1F57	18.7											
6B37	106	1.62	X	106	5H1	17.6											
1C47	107	1.59	X	107	6B55	17.4											
6H72	108	1.43	X	108	1H11	16.7											
3C20	109	1.42	X	109	3C20	16.2											
1HK	110	1.30	X	110	6B37	16.2											
5E87	111	1.13	X	111	1C47	15.9											
1HH	112	1.01	X	112	1HK	12.1											
Mean	113	33.1	X	113	Mean	35.7											

From this model, AMMI Analysis of Variance (ANOVA) that showed significance of genotypes, environments and GEI was presented to interpret the results; also presented was the ranking of potato
clones depending on their performance in different environments. The AMMI 2 showing the first and second Interaction Principal Components Axes (IPCA 1 and IPCA 2) was also presented to assess the interaction of the potato clones with the test environments.

GGE Biplot

Performance of potato clones across the environments was also explained using genotype main effect (G) and Genotype x Environment interaction (GGE) biplot analysis based on the principal component analysis (PCA) of environment-centred data (Yan et al., 2000; Yan, 2002). The GGE biplots display both Genotype (G) and Genotype x Environment (GE) interactions which are the two main sources of variation that are relevant for genotype evaluation (Kang, 1993; Yan et al., 2007). The GGE biplot analysis was done using Genstat statistical package (14th Edition) (Payne et al., 2011). The GGE mathematical model based on PCA of environment-centred data (which contains G and GE as the main sources of variation) subjected to Singular Value Decomposition (SVD) was used to visualize the relationship among potato clones and the environments. The basic model for a GGE biplot as described by Yan (2002) is:

\[
Y_{ij} - \mu - \beta_j + \sum_{l=1}^{k} \gamma_{il} \eta_l + e_{ij}
\]

Where:

- \(Y_{ij}\) = Mean tuber yield (t ha\(^{-1}\)) of the \(i^{th}\) genotype in the \(j^{th}\) environment
- \(\mu\) = Overall mean
- \(\beta_j\) = Main effect of the environment
- \(\gamma_{il}\) = Eigen value associated with IPCA \(l\)
- \(\eta_l\) = The eigenvector of genotype \(i\) for PC \(l\)
- \(e_{ij}\) = Error term associated with potato genotype \(i\) in environment \(j\).

Interrelationships among the test environments (Cooper et al., 1997) and potato clones (Yan et al., 2001) were visualised using various GGE biplot graphs. A GGE polygon was used to identify high yielding clones in specific environments through analysis of the “which-won-where-pattern” (Yan et al., 2000; Yan, 2002). The GGE biplots based on Average Environment Coordination (AEC) and drawn on the genotype-focused biplot (Yan and Kang, 2003) was used to determine yield performance and stability of the 112 potato clones. Environment-focused scaling was used to test the relationship of the test environments.

Results

Selection of Potato Clones in Clonal Generations

Of the clones selected in the third clonal generation 50 clones (44.6%) had yields more than 35 ton ha\(^{-1}\) (Table 4). During the fourth clonal generation, 64 clones (57.1%) yielded more than 35 ton ha\(^{-1}\) (Table 4). The fourth clonal generation had higher mean yield (35.7 ton ha\(^{-1}\)) than the third clonal generation possibly due to the higher rainfall which were experienced during the fourth clonal generation. As far as the yields were concerned, some clones ranked differently between the two clonal generations. For example 6D45, 1EU and 4C19 ranked differently between the two generations.

Stability Analysis of Clones in Advanced Yield Trials

AMMI Analysis of Variance

The AMMI analysis of variance showed significant (p≤0.001) effects of the genotypes (G), environments (E) and the G x E interaction (Table 5). Of the AMMI model (treatment) sum of squares, the genotypes contributed 41.52%, the environments 27.91% and the G x E interaction 30.56%. The IPCA1 was significant (p≤0.001) and it explained 10.76% of the treatment sum of squares which is 35.21% of the G x E interaction sum of squares. The IPCA 2 was also significant (p≤0.001) and it explained 7.77% of the treatment sum of squares which is 25.41% of the G x E interaction sum of squares. Combined, the IPCA 1 and IPCA 2 explained 60.62% of the total G x E interaction. Therefore AMMI 2 was used to describe the G x E interaction. The AMMI 2 utilizes the genotypic and environmental main effects to describe additive variation and two interaction principal component axes (IPCA 1 and IPCA 2) for the non-additive variation.

Ranking of the Best Four AMMI Selections Per Environment

There were differences in the ranking of potato clones for tuber yields across the six test environments (Table 6); this indicates crossover interactions. Environments 4, 1, 6 and 2 ranked clone G6 (clone 2E87) first. Clone G6 (2E87) gave the highest mean yields across the six test environments (Table 7). Eight clones yielded more than 40 t ha\(^{-1}\).

AMMI Biplots: Classification of Clones and Environments

Clone G20 was the winner in ENV1 1, ENV4 4 and ENV6 6 while clone G6 was the winner in the ENV1 2 (Fig. 1). Clone G6 showed a high and positive interaction with ENV1 2 whereas G47, G24, G52, G70 and G32 interacted positively with ENV1 3. Most potato clones had
IPCA values between +1.0 and -1.0 indicating low interaction with the test environments. The ENVI 1, ENVI 4 and ENVI 6 clustered together indicating similar performance of genotypes in these environments. In addition, the three environments showed low interactive behaviour with the test genotypes.

![AMMI 2 biplot of yields of 112 potato clones (G1-G112) across the six environments (ENVI 1-ENVI 6)](image)

Fig. 1: AMMI 2 biplot of yields of 112 potato clones (G1-G112) across the six environments (ENVI 1-ENVI 6)

Table 5: Analysis of variance for potato tuber yields (t ha$^{-1}$) for 112 potato clones grown in six test environments

Source	d.f.	s.s.	m.s.	% treatment SS explained	% G x E interaction SS explained
Treatments	671	59464	88.62		
Genotypes (G)	111	24692	222.5***	41.52	
Environments (E)	5	16597	3319.4***	27.91	
Interactions (G x E)	555	18175	32.75***	30.56	
IPCA 1	115	6400	55.6***	(10.76)	35.21
IPCA 2	113	4619	40.9***	(7.77)	25.41
Interactions residuals	327	7156	21.9	(17.33)	39.37

df = Degrees of freedom; *** = Significant at p≤0.001; ns = Non significant; SS = Sum of Squares, MS = Mean Squares

Table 6: The best four potato clones from AMMI per environment

Environment	Mean yields (t ha$^{-1}$)	Rank
ENVI 1	23.96	1
ENVI 2	27.53	2
ENVI 3	30.48	3
ENVI 4	35.41	4
ENVI 5	38.25	5
ENVI 6	35.27	6
ENVI 1	23.96	7
ENVI 2	27.53	8
ENVI 3	30.48	9
ENVI 4	35.41	10
ENVI 5	38.25	11
ENVI 6	35.27	12
ENVI 1	23.96	13
ENVI 2	27.53	14
ENVI 3	30.48	15
ENVI 4	35.41	16
ENVI 5	38.25	17
ENVI 6	35.27	18
Table 7: Performance of potato clones across the six environments

Genotype code	Mean yields (t ha\(^{-1}\))	Rank
G6	51.81	1
G47	48.1	2
G3	45.49	3
G2	42.98	4
G24	42.74	5
G52	40.84	6
G12	40.08	7
G4	39.47	8
G1	39.38	9
G35	39.31	10
G61	38.99	11
G70	38.73	12
G50	38.62	13
G32	38.58	14
G9	37.38	15
G25	37.02	16
G14	36.98	17
G18	36.90	18
G15	36.84	19
G51	36.79	20
G42	36.48	21
G13	36.42	22
G43	36.36	23
G69	36.25	24
G5	36.19	25
G10	35.80	26
G38	35.70	27
G31	35.54	28
G11	35.26	29
G77	35.24	30
G17	34.95	31
G46	34.95	32
G36	34.61	33
G33	34.35	34
G44	34.08	35
G75	34.03	36
G62	34.02	37
G39	33.61	38
G30	33.46	39
G80	33.38	40
G45	33.28	41
G65	33.21	42
G74	33.00	43
G27	32.85	44
G49	32.78	45
G26	32.58	46
G28	32.42	47
G23	32.31	48
G67	32.17	49
G55	32.15	50
G29	32.06	51
G21	31.85	52

Table 7: Continue

Genotype code	Mean yields (t ha\(^{-1}\))	Rank
G78	31.76	56
G34	31.39	57
G40	31.37	58
G71	31.26	59
G57	31.22	60
G53	31.19	61
G16	31.01	62
G86	30.88	63
G66	30.81	64
G81	30.79	65
G59	30.76	66
G64	30.67	67
G73	30.67	68
G79	30.29	69
G68	30.20	70
G56	30.12	71
G54	29.94	72
G58	29.05	73
G60	28.91	74
G76	28.90	75
G83	28.37	76
G92	28.31	77
G20	28.27	78
G72	28.25	79
G85	28.08	80
G41	27.61	81
G82	27.26	82
G63	27.14	83
G19	27.10	84
G91	26.97	85
G89	26.86	86
G96	26.71	87
G37	26.67	88
G84	26.61	89
G87	26.50	90
G97	26.44	91
G90	26.04	92
G93	25.81	93
G100	25.60	94
G88	25.41	95
G102	25.24	96
G101	24.60	97
G103	24.48	98
G106	24.46	99
G107	24.06	100
G98	24.05	101
G99	23.45	102
G111	23.10	103
G95	22.10	104
G109	21.73	105
G94	21.70	106
G108	21.17	107
G110	20.50	108
G104	19.29	109
GGE Biplot Analysis: Winning Genotypes and Mega-Environments

In the GGE analysis, IPCA 1 contributed 66.37% while IPCA 2 accounted for 11.07% of the total variation. The GGE biplot therefore explained 77.45% of the G and G x E interaction variation (Fig. 2). Based on biplot analysis, two mega-environments are suggested. The first mega environment contains environments ENV1 1, ENV1 2, ENV1 4 and ENV1 6 while the second mega environment contains environments ENV1 3 and ENV1 5. Potato clone G6 was the winner in the first mega environment while clones G47 and G52 were the winners in the second mega environment. This means that clone G6 (6CB) is the most specifically suited to the first mega environment while clones G47 and G52 are specifically suited to the second mega environment. Other clones that are specifically suited to the second mega environment are G3, G70, G32, G24 and G48.

The most discriminating environments were ENV1 3 and ENV1 2 (Fig. 3). ENV1 5 was the least discriminating and hence least informative; genotypic differences in ENV1 5 may not be reliable for selection purposes. In addition, ENV1 4, ENV1 6 and ENV1 2 are quite similar; with limited funds, ENV1 4 and ENV1 6 could be dropped.

The ENV1 2 was the closest to ideal environment and therefore the most desirable of the six environments (Fig. 4). It had great discriminating power and was representative of the test environments. ENV1 5 was the least informative. The ENV1 3 did not appear representative of other environments. However, since it had the longest vector, it had the most discriminating power; it was also a unique environment.

Clone G6 (2E87) was closest to the ideal genotype; it was the highest yielding and most stable (Fig. 5). It was followed by clones G47, G3, G48, G24, G70 and G52.

Based on the yield data across the test environments and the suitability for crisping and chipping, 18 potato clones were selected (Table 8). These clones will be subjected to National Performance Trials (NPT) before release of new varieties.

Fig. 2: The which-won-where || view of the GGE biplot under each mega-environment constructed based on environment-centred and symmetrical singular-value partitioning
Fig. 3: Vector view of the GGE biplot showing the discriminating power and representativeness of the test environments

Fig. 4: Biplot for comparison of all environments with the ideal environment constructed based on environment-centred and environment-focused singular-value partitioning
Discussion

The paper reports the progress made by the Kenya Agricultural and Livestock Research Organization (KALRO) potato breeding programme at Tigoni, Limuru in re-introducing cross breeding activities to develop new potato varieties. Though new varieties have not been released, promising results have been received so far. The fourth clonal generation had higher mean yield (35.7 ton ha$^{-1}$) than the third clonal generation (33.1 ton ha$^{-1}$) possibly due to the higher rainfall which were experienced during the fourth clonal generation or the cooler temperatures or both. Generally, long rains seasons in the Kenyan highlands have higher rainfall and cooler temperatures than the short rains seasons; the trend is also evidenced in the advanced yield trials (Table 6). Consequently, potato being a C$_3$ cool season crop is likely to benefit more from the cool temperatures (Haverkort et al., 1990). Alternatively, it could be due to increase in size of seed tuber planted as clonal generations progressed. Studies have shown an association between the weight of tuber planted and the resulting yield (Brown and Caligari, 1986). Among the five high yielding clones, four of them had CIP clone 394895.7 (E) as the female parent (Table 8). It appears this clone had a high general combining ability for yield. In the stability studies, the clones were ranked differently which indicated crossover GEI (Table 6). This inconsistency in ranking could be due to clone x site, clone x season and clone x site x season interactions. The GEI makes it difficult to recommend a given clone to a specific area. Consequently, more dependable information will be generated when the National Performance Trials (NPT) are done on selected clones. This is because a high yielding generally adapted potato variety would be desirable for production in the major potato growing regions. From the AMMI analysis (Table 5), the first two IPCA’s were significant (p≤0.001) and they accounted for 60.62% of the G x E interaction. This corroborates with previous findings that G x E data sets are best described by AMMI models with one or two multiplicative terms (Gauch and Zobel, 1988).
Table 8: Potato clones selected after advanced yield trials

Clone	Mean yield (t ha$^{-1}$)	Fresh cooking	Crisping	Chipping
2E87	51.81			
4C19	48.1			
1EY	45.49	X	X	X
1EX	42.98		X	
2E68	42.61		X	
1F15	42.15			
1EU	40.84			
6B170	40.08			
3E03	39.38	X		
1HG	39.38		X	
5C39	39.31			
5E17	39.26			
6D47	38.99			
6D10	38.62			X
3C22	38.58		X	
1G53	37.02		X	
6D45	36.19			
6CB	39.47			

Based on the yield data across the test environments (AYT) and the suitability for crisping and chipping, 18 potato clones were selected (Table 8). Among them, 11 (61.11%) have good crisping quality. These 18 clones were recommended for the National Performance Trials (NPT) before release of new varieties.

Conclusion

From the foregoing, it is likely that KALRO-Tigoni will release high yielding potato varieties soon. In addition, release of new crisping and chipping varieties will be a boost to the local processing sector which is expanding fast.

Acknowledgement

The authors thank the Alliance for a Green Revolution in Africa (AGRA) for funding these breeding activities and the former Centre Director, KARI-Tigoni for technical assistance and constructive criticism that made this work a success.

Author’s Contributions

Jane Muthoni: She designed the project, did all the field work and data collection. She wrote the paper.

Hussein Shimelis: He did data analysis and critically reviewed the paper. He approved the paper to be submitted in the current form.

Ethics

The authors hereby confirm that this manuscript is original work and do not contain any conflict of interest.

References

ANN, 2009. Kenya to give renewed attention to potato cultivation. Africa News Network, Nairobi, Kenya.

Brown, J. and P.D.S. Caligari, 1986. The efficiency of seedling selection for yield and yield components in a potato breeding programme. Pflanzenzucht.

Cooper, M., R.M. Stuker, I.H. Delacy and B.D. Harch, 1997. Wheat breeding nurseries, target environments and indirect selection for grain yield. Crop Sci., 37: 1168-1176.

Crossa, J., 1990. Statistical analyses of multilocation trials. Adv. Agronomy, 44: 55-85.

FAO, 2013. A policymakers’guide to crop diversification: The case of the potato in Kenya. Food and Agriculture Organisation of the United Nations, Rome, Italy.

FAO, 2014. The potato sector. Food and Agriculture Organisation of the United Nations, Rome, Italy.

Gauch, H.G. and R.W. Zobel, 1988. Predictive and postdicitve success of statistical analyses of yield trials. Theoretical Applied Genet., 76: 1-10.

Gregory, J.S., L. Ricardo and, V. Suarez, 2013. Booms, busts and emerging markets for potatoes in East and Central Africa 1961-2010. Potato Res., 56: 205-236

Haverkort, A.J., M. van de Waart and K.B.A. Bodlaender, 1990. The effect of early drought stress on numbers of tubers and stolons of potato in controlled and field conditions. Potato Res., 33: 89-96.
Jaetzold, R., H. Schmidt, B. Hornetz and C. Shisanya, 2006. Farm Management Handbook of Kenya: Natural Conditions and Farm Management Information. 2nd Edn., Ministry of Agriculture, Nairobi, Kenya.

Kang, M.S., 1993. Simultaneous selection for yield and stability in crop performance trials: Consequences for growers. Agronomy J., 85: 754-757. DOI: 10.2134/agronj1993.0002196200850030042x

KARI, 2008. Production of food (ware) potatoes. KARI information brochure. Kenya Agricultural Research Institute, Nairobi, Kenya.

MoALF, 2016. The national potato strategy. Ministry of Agriculture, Livestock and Fisheries, Nairobi, Kenya.

MoA, 1998. Postharvest systems of potato and sweet potato in Kenya. Final Report. Ministry of Agriculture, Nairobi, Kenya.

MoA, 2005. National policy on potato industry. Policy and reforms in the industry to improve production, research, marketing and regulatory framework. Ministry of Agriculture, Nairobi, Kenya.

MoA, 2008. National policy on potato industry. Policy reforms to revitalize the potato industry Ministry of Agriculture, Nairobi, Kenya.

Muthoni, J., H. Shimelis and R. Melis, 2013. Potato production in Kenya: Farming systems and production constraints. J. Agric. Sci., 5: 182-197. DOI: 10.5539/jas.v5n5p182

Muthoni, J., H. Shimelis, R. Melis and Z.M. Kinyua, 2014. Response of potato genotypes to bacterial wilt caused by Ralstonia solanacearum (Smith) (Yabuuchi et al.) in the tropical highlands. Am. J. Potato Res., 91: 215-232. DOI 10.1007/s12230-013-9340-1

NPCK, 2014. The potato crop. National Potato Council of Kenya, Nairobi, Kenya.

Payne, R.W., D.A. Murray, S.A. Harding, D.B. Baird and D.M. Soutar, 2011. GenStat for Windows. 14th Edn., VSN International, Hemel Hempstead, UK.

PSDA, 2009. National potato taskforce report. Final Report. Promotion of Private Sector Development in Agriculture Programme. Ministry of Agriculture and Deutsche Gesellschaft fur Technische Zusammenarbeit, Nairobi, Kenya.

Riungu, C., 2011. No easy walk for potatoes. Horticultural News. East African Fresh Produce J., 19: 16-17.

SAS, I., 2003. SAS user’s guide. In Statistics. Cary, NC, USA.

Yan, W., L.A. Hunt, Q. Sheng and Z. Szlavnics, 2000. Cultivar evaluation and mega-environment investigation based on the GGE Biplot. Crop Sci., 40: 597-605. DOI: 10.2135/cropsci2000.403597x

Yan, W., 2002. Singular-value partitioning in biplot analysis of multi-environment trial data. Agronomy J., 94: 990-996. DOI: 10.2134/agronj2002.0990

Yan, W. and M.S. Kang, 2003. GGE Biplot Analysis: A Graphical Tool for Breeders, Geneticists and Agronomists. 1st Edn., CRC Press, New York, ISBN-10: 1420040375, pp: 288.

Yan, W., P.L. Cornelius, J. Crossa and L.A. Hunt, 2001. Two types of GGE Biplots for analyzing multi-environment trial data. Crop Sci., 41: 656-663. DOI: 10.2135/cropsci2001.413656x

Yan, W., B.M. Kang, S. Woods and P.L. Cornelius, 2007. GGE biplot Vs AMMI analysis of genotype-by-genotype environment data. Crop Sci., 47: 643-655. DOI: 10.2135/cropsci2006.06.0374