Inclination-Induced Polarization of Scattered Millimeter Radiation from Protoplanetary Disks: The Case of HL Tau

Haifeng Yang, Zhi-Yun Li, Leslie Looney and Ian Stephens

Astronomy Department, University of Virginia, Charlottesville, VA 22904, USA
Department of Astronomy, University of Illinois, Urbana, Illinois 61801, USA
Institute for Astrophysical Research, Boston University, Boston, MA 02215, USA

Accepted XXX. Received YYY; in original form ZZZ

ABSTRACT

Spatially resolved polarized millimeter/submillimeter emission has been observed in the disk of HL Tau and two other young stellar objects. It is usually interpreted as coming from magnetically aligned grains, but can also be produced by dust scattering, as demonstrated explicitly by Kataoka et al. for face-on disks. We extend their work by including the polarization induced by disk inclination with respect to the line of sight. Using a physically motivated, semi-analytic model, we show that the polarization fraction of the scattered light increases with the inclination angle \(i \), reaching \(1/3 \) for edge-on disks. The inclination-induced polarization can easily dominate that intrinsic to the disk in the face-on view. It provides a natural explanation for the two main features of the polarization pattern observed in the tilted disk of HL Tau (\(i \approx 45^\circ \)): the polarized intensity concentrating in a region elongated more or less along the major axis, and polarization in this region roughly parallel to the minor axis. This broad agreement provides support to dust scattering as a viable mechanism for producing, at least in part, polarized millimeter radiation. In order to produce polarization at the observed level (\(\sim 1\% \)), the scattering grains must have grown to a maximum size of tens of microns. However, such grains may be too small to produce the opacity spectral index of \(\beta \lesssim 1 \) observed in HL Tau and other sources; another population of larger, millimeter/centimeter-sized, grains may be needed to explain the bulk of the unpolarized continuum emission.

Key words: dust - polarization - protoplanetary disks

1 INTRODUCTION

Polarized millimeter/sub-millimeter emission has been observed in the disks around 3 young stellar objects: IRAS 16293-2422B (Rao et al. 2014), HL Tau (Stephens et al. 2014) and L1527 (Segura-Cox et al. 2015). It is usually interpreted as coming from magnetically aligned dust grains (e.g., Cho & Lazarian 2007). This interpretation appears consistent with the data on IRAS 16293-2422B and L1527, where the observed polarization patterns are broadly similar to those expected from grains aligned by a predominantly toroidal magnetic field (Rao et al. 2014; Segura-Cox et al. 2015; see § 5 for more discussion). In contrast, the polarization vectors in the disk of HL Tau (which is inclined with respect to the line of sight by \(\sim 45^\circ \), ALMA Partnership: Brogan et al. 2015; Kwon et al. 2011) are all roughly parallel to the minor axis (see Fig.1), which is not compatible with the pattern expected of grains aligned by a toroidal disk field, although more complicated field configurations cannot be ruled out (Stephens et al. 2014). Another drawback of the toroidal field-aligned grain model is that it predicts a lower polarization fraction along the major axis than along the minor axis (see Cho & Lazarian 2007, Fig. 10), which is the opposite of what is observed (Fig. 1). A much better fit is provided by a unidirectional magnetic field approximately (within \(\sim 10^\circ \)) along the disk major axis. However, such a field configuration would be difficult to maintain against the disk differential rotation. Furthermore, there is growing evidence for grain growth in protoplanetary disks, up to millimeter or even centimeter sizes (e.g., Pérez et al. 2012; Alecian 2013; Testi et al. 2014). It is unclear whether such large grains would be aligned with respect to the magnetic field through the currently favored mechanism of radiative torque because their magnetic moments may not be large enough to provide the fast precession needed (Lazarian 2007) and their slow internal relaxation makes the alignment less efficient (Hoang & Lazarian 2009). These difficulties provide a motivation to investigate other potential mechanisms for producing, at least in part, the polarized mm emission from the HL Tau disk.

One possibility, first investigated in detail by Kataoka et al. (2015a), is that the polarized millimeter disk emission comes from scattering of large dust grains. Kataoka et al. stressed the need for anisotropic radiation field for this mechanism to work effi-
Figure 1. Observed 1.3 mm polarization pattern of the HL Tau disk. Plotted are total intensity (contours), polarized intensity (color map, > 2σ), and polarization vectors (> 3σ), with length proportional to the polarization fraction. Adapted from Stephens et al. (2014). The major axis determined from the ALMA data (ALMA Partnership: Brogan et al. 2015) is tilted by 10° clockwise with respect to the vertical direction.

1 Grains aligned by a toroidal magnetic field can explain the orientations of the polarization vectors near the center, but not at larger distances (see the left panel of Fig. 2 of Stephens et al. 2014).

2 POLARIZED RADIATION FROM DUST SCATTERING

In this section, we develop a semi-analytic model for polarization from dust scattering under the simplifying assumptions that the dust emission is optically thin and that the dust disk is geometrically thin, with a local scale height much less than the radius. The latter would be a particularly good approximation if the relatively large grains responsible for the emission and scattering of millimeter radiation are settled toward the disk mid-plane. To isolate the polarization due to dust scattering from that caused by grain alignment, we further assume that the grains are not aligned, so that the radiation directly emitted by dust is unpolarized. Under these assumptions, the incoming radiation field seen by the scattering dust grains at a given point inside the disk can be decomposed into two components: a local, roughly isotropic, component emitted by the (non-aligned) grains in a region of size comparable to the (dust) scale height surrounding the point, and an anisotropic component coming from the grains in the rest of the disk beyond the local region. The former does not lead to significant polarization after scattering because scattering of isotropic radiation by non-aligned grains does not have any preferred direction. It is the latter that is mainly responsible for the polarized radiation after scattering. The computation of this component will be drastically simplified by the thin-disk approximation, as we show below.

2.1 Formulation of the Problem

To facilitate the computation of the scattered light from dust grains at a location \(r \) inside a disk with axis inclined by an angle \(i \) with respect to the line of sight, we define two coordinate systems, both centered on the scatterer’s location \(r \). The first is fixed in the observer’s frame, with horizontal \(\chi’ \)- and vertical \(\gamma’ \)-axes in the plane of the sky, and \(z’ \)-axis pointing toward the observer. The second is fixed on the disk, with the \(\gamma \)-axis coinciding with the \(\gamma’ \)-axis, and the \(z’ \)- and \(x’ \)-axis rotating around the \(\gamma’ \)-axis counter-clockwise (viewed along the minus \(\gamma’ \)-axis) from the \(z’ \)- and \(x’ \)-axis, respectively, by the inclination angle \(i \). We align the major axis of the disk in the plane of the sky along the \(\gamma’ \)- (and \(y’ \)) axis (see Fig. 2 below for an illustration), and the disk normal direction along the \(z’ \)-axis.

Since the scattered radiation is linearly polarized, we will compute the three Stokes parameters \(I, Q \) and \(U \) defined in the observer’s frame \((x’, y’, z’)\) separately, starting with the intensity \(I \) (we drop the subscript \(s \) for \(Q \) and \(U \) since, in our model, they are assumed to be produced only by the scattered radiation, without any contribution from the direct radiation, unlike the total intensity \(I \)). In the optically thin limit, the intensity of the scattered radiation along the line of sight \(I \) is given by an integration of the
source function of the scattered radiation, $S_{\nu,\nu'}$, along the z'-axis. The source function $S_{\nu,\nu'}$ at any location \mathbf{r} inside the disk is given by

$$S_{\nu,\nu'}(\mathbf{r}) = \frac{1}{c_\nu} \int \frac{d\nu'}{d\Omega} I(\mathbf{r}, \theta, \phi) d\Omega$$

where $I(\mathbf{r}, \theta, \phi)$ is the intensity of the unpolarized incoming radiation seen by the scattering dust grains at the location \mathbf{r} along the direction of polar angle θ (measured from the z-axis or the disk normal direction) and azimuthal angle ϕ (measured counter-clockwise from the x-axis on the disk), σ is the solid angle Ω-integrated (total) scattering cross section, and $d\sigma/d\Omega$ is the differential cross section for scattering the radiation $I(\mathbf{r}, \theta, \phi)$ into the line of sight (i.e., along the z'-axis).

The intensity $I(\mathbf{r}, \theta, \phi)$ is given by an integration of the source function for thermal dust emission, the Planck function $B_\nu(T)$, over the optical depth $\delta r_{abs} = \kappa_{abs} \rho d\mathbf{l}$ (where κ_{abs} is the thermal dust absorption opacity and ρ the mass density at a source location \mathbf{r}_1) along a line in the direction (θ, ϕ) up to the scatterer at \mathbf{r} (the quantity l is the distance between \mathbf{r}_1 and \mathbf{r}):

$$I(\mathbf{r}, \theta, \phi) = \int_{\kappa_{abs}(\mathbf{r}_1)}^{\infty} \frac{2\nu^2 k T(\mathbf{r})}{c^2} \rho(\mathbf{r}_1) d\mathbf{l},$$

where we have assumed that the photon energy $h\nu$ is substantially less than kT so that the Rayleigh-jeans law $B_\nu(T) \approx 2\nu^2 k T / c^2$ is applicable; we have checked that, for the HL Tau model to be discussed below in § 2.3, the results will not change significantly if the Planck function is used instead.

Substituting the above expression for $I(\mathbf{r}, \theta, \phi)$ into Eq. (1) and reordering the integrals, we can rewrite the source function for the scattered radiation into:

$$S_{\nu,\nu'} = \frac{2\nu^2 k}{c^2} \int_0^{\pi/2} d\phi \int_0^\pi d\theta \int_0^{2\pi} d\phi' \frac{d\sigma}{d\Omega} \kappa_{abs}(\mathbf{r}_1) \rho(\mathbf{r}_1) T(\mathbf{r}_1) \sin \theta$$

$$= S_o + S_{\nu,\nu'},$$

where

$$S_o \approx \frac{2\nu^2 k}{c^2} \int_0^{\pi/2} d\phi \int_0^\pi d\theta \int_0^{2\pi} d\phi' \kappa_{abs}(\mathbf{r}_1) \rho(\mathbf{r}_1) T(\mathbf{r}_1) \sin \theta,$$

and

$$S_{\nu,\nu'} \approx \frac{2\nu^2 k}{c^2} \int_0^{\pi/2} d\phi \int_0^\pi d\theta \int_0^{2\pi} d\phi' \frac{d\sigma}{d\Omega} \kappa_{abs}(\mathbf{r}_1) \rho(\mathbf{r}_1) T(\mathbf{r}_1) \sin \theta.$$

The two quantities, S_o and $S_{\nu,\nu'}$, denote the contributions to the unpolarized incoming radiation to be scattered at the location \mathbf{r} from two conceptually distinct regions respectively. For a geometrically thin dust disk, the unpolarized radiation coming from a region within a distance on the order of the local (dust) scale height H is expected to be more or less isotropic. This near-field contribution, denoted by S_o, produces little polarized radiation after scattering; it will be discussed in the next section, together with the unpolarized direct dust emission. In contrast, the thermal dust emission coming from well outside this local region (i.e., $l >> H$) is mostly confined close to the disk plane. This far-field contribution, denoted by $S_{\nu,\nu'}$, is highly anisotropic, with the bulk of the radiation beamed into a narrow range of polar angle near $\theta = \pi/2$ along any azimuthal direction ϕ. Specifically, the vertical column of disk material passing through the source location \mathbf{r}_1 at a distance l from the scatterer contributes radiation only within a range of polar angle $d\theta / 2H(\mathbf{r}_1) << 1$, where $H(\mathbf{r}_1)$ is the (dust) scale height at \mathbf{r}_1. Replacing the integral over angle θ in the expression for $S_{\nu,\nu'}$ (eq. (5)) by this rough estimate and making use of $\theta \approx \pi/2$, we have approximately

$$S_{\nu,\nu'} \approx \frac{2\nu^2 k\kappa_{abs}}{c^2 \sigma} \int_0^{2\pi} d\phi \int_0^{2\pi} d\phi' \frac{d\sigma}{d\Omega} \Lambda(\mathbf{r}, \phi) \rho(\mathbf{r}_1) T(\mathbf{r}_1),$$

where we have assumed a spatially constant absorption opacity κ_{abs} for simplicity. The auxiliary quantity $\Lambda(\mathbf{r}, \phi)$ is a line integral along the direction of constant ϕ in the disk plane defined as

$$\Lambda(\mathbf{r}, \phi) = \int_{\phi} \frac{d\Sigma(\mathbf{r})}{dl} d\Omega,$$

where $\Sigma(\mathbf{r}) = 2\rho(\mathbf{r}) H(\mathbf{r})$ is the column density at the source location \mathbf{r}_1.

One can determine the distance between the source location \mathbf{r}_1 and the center of the disk through

$$r_l = \sqrt{r_l^2 + F - 2r_0 l^2 \cos(\phi - \phi_s)},$$

where r and ϕ_s are the radius and azimuthal angle of the scatterer in an (x, y, z) coordinate system that centers on the star (rather than the scatterer at \mathbf{r}). For the axisymmetric disk that we will consider below, the radius r_l uniquely determines the column density Σ and temperature T that appear in eq.(7).

Once the integral $\Lambda(\mathbf{r}, \phi)$ is computed, the only term that is left to determine in eq.(6) is the differential cross section for scattering $d\sigma/d\Omega$. For illustrative purposes, we will consider the dust scattering under the Rayleigh approximation, which is valid when the grain sizes are smaller than the wavelength divided by $2r$ (see, e.g., Fig. 10 of Canovas et al. 2013 and Fig. 6 below); we will check in § 4.1 that this condition is satisfied for the HL Tau model to be discussed in the next section. In this limit, the differential cross section is given by

$$\frac{d\sigma}{d\Omega} = \frac{3r_0}{16\pi}(1 + \cos^2 \theta_s),$$

where θ_s is the scattering angle between the incoming radiation along the direction (θ, ϕ) and the outgoing radiation along the line of sight (i.e., the z'-axis), given by

$$\cos \theta_s = \sin \iota \cos \phi.$$

After scattering, a fraction of the initially unpolarized incoming radiation becomes polarized. The polarization fraction is

$$p = \frac{1 - \cos^2 \theta_s}{1 + \cos^2 \theta_s},$$

which peaks at $\theta_s = \pi/2$.

The polarization direction is perpendicular to the scattering plane formed by the incoming direction (θ, ϕ) and the z'-axis. It lies in the $x''\rightarrow y'$ plane of the sky, at an angle $\theta' + \pi/2$ measured counter-clockwise from the x''-axis, with the angle θ' given by

$$\cos \theta' = \frac{\cos \iota \cos \phi}{\sqrt{\sin^2 \iota + \cos^2 \iota \cos^2 \phi}}.$$

This linearly polarized radiation is the source of the observed polarized radiation in the plane of the sky, through the source functions for the Stokes parameter Q and U:

$$S_{Q,\nu,\nu'} \approx \frac{2\nu^2 k\kappa_{abs}}{c^2 \sigma} \int_0^{2\pi} d\phi \int_0^{2\pi} d\phi' \frac{d\sigma}{d\Omega} \Lambda(\mathbf{r}, \phi) \rho(\mathbf{r}_1) \cos(2\theta'),$$

and

$$S_{U,\nu,\nu'} \approx \frac{2\nu^2 k\kappa_{abs}}{c^2 \sigma} \int_0^{2\pi} d\phi \int_0^{2\pi} d\phi' \frac{d\sigma}{d\Omega} \Lambda(\mathbf{r}, \phi) \rho(\mathbf{r}_1) \sin(2\theta').$$
For the optically thin radiation that we are considering, Q and U along the line of sight passing through any location r in the disk is simply given by their respective source functions, multiplied by the optical depth for scattering $\Delta \tau_r = \kappa_{\text{sc}} \Sigma(r)/c \cos \iota$ (where κ_{sc} is the scattering opacity) through the disk: $Q = S_{Q,\infty} \Delta \tau_r$ and $U = S_{U,\infty} \Delta \tau_r$.

2.2 Inclination-Induced Polarization

As a simple illustration of polarization from scattered light induced by disk inclination, we consider the limiting case where the incoming radiation field seen by the scatterer at the location r is confined to an infinitely thin disk plane (so that the near-field contribution to the scattering source function, S_{∞}, can be ignored compared to the far-field contribution S_{∞}) and is isotropic in the azimuthal (ϕ) direction (but highly anisotropic in polar angle θ). In this case, the integral $\Delta \tau_r \phi$ defined in eq. (7) is independent of ϕ and can be moved outside the integral over ϕ in the source functions for the total scattered intensity I (eq. (6)), Q (eq. (13)) and U (eq. (14)), so that

$$
S_{\infty} = \frac{2\nu^2 \kappa_{\text{sc}} \Lambda}{c^2} \int_{0}^{2\pi} d\phi \frac{3}{16\pi} (1 + \sin^2 \phi \cos^2 \phi)
$$

$$
S_{\infty} = C \int_{0}^{2\pi} d\phi (1 + \sin^2 \phi \cos^2 \phi) = \pi C (2 + \sin^2 \phi),
$$

where $C = 3\nu^2 \kappa_{\text{sc}} \Lambda/(8\pi c^2)$ is a constant independent of the angles i and ϕ, and

$$
S_{Q,\infty} = -C \int_{0}^{2\pi} d\phi (1 - \sin^2 \phi \cos^2 \phi) \cos \phi \cos^2 \phi \sin \phi + \sin^2 \phi = \pi C \sin^2 \phi.
$$

The fact that $S_{Q,\infty}$ is zero and $S_{Q,\infty}$ is positive (for $i \neq 0$) means that the inclination-induced polarization is always along the x'-axis (or the minor axis of the disk) in the plane of the sky for Rayleigh scattering (see Fig. 2 for the x'-y' coordinates, and eq. (23) below for the relation between the Stokes parameters Q and U, and polarization angle ϕ). This is expected physically because, in a tilted disk, the light coming from different directions in the disk plane will be scattered by different angles toward the observer. In particular, the light coming from a direction along the major axis will always be scattered by $\pi/2$. In the Rayleigh limit, this part of the light will be fully polarized along the minor axis of the disk. In contrast, the light coming from a direction along the minor axis will be scattered by either $\pi/2 - i$ or $\pi/2 + i$. This part of the light will be partially polarized along the major axis, with a polarization fraction of $\cos^2 i/(1 + \sin^2 i)$. The difference in the fraction of polarization leads to more scattered light polarized along the minor axis than along the major axis, despite the fact that the scattering cross section is less for the former than for the latter (see eq. (9)). This generic tendency for the inclination-induced polarization to align with the minor axis provides a natural explanation for the polarization directions observed in HL Tau (see Fig. 1).

It is easy to determine the fraction of the total scattered light that is polarized along the minor axis:

$$
p_{s,i} \equiv \frac{\sqrt{Q^2 + U^2}}{I_s} = \frac{\sqrt{S_{Q,\infty}^2 + S_{U,\infty}^2}}{S_{\infty}} = \frac{\sin^2 i}{2 + \sin^2 i},
$$

This same expression can be obtained if one considers only the radiation coming from directions along the major and minor axes. Note that the maximum degree of polarization reaches $1/3$ when the disk is viewed edge-on ($i = 90^\circ$). For the inclination angle $i = 0^\circ, 30^\circ, 45^\circ$ and 60° to be considered in the next subsection, the fractional polarization is $p_s \approx 0, 1/9, 1/5, 3/11$, respectively. The analytically obtained polarization fraction in this simple limiting case will be used to interpret the results obtained numerically in more general cases.

2.3 Intrinsic Polarization from Azimuthally Anisotropic Radiation: An Example

As emphasized by Kataoka et al. (2015a), the radiation field in the disk plane is not isotropic in general, and the anisotropy in the azimuthal (ϕ) direction leads to polarized scattered light even in the face-on case. In a tilted disk, the observed polarization pattern is expected to be shaped by the interplay between those produced by anisotropy in ϕ-direction and disk inclination (which relies on strong anisotropy in θ direction). To illustrate this interplay, we adopt Kwon et al. (2011) model of the HL Tau disk, where the distributions of temperature and column density as a function of the cylindrical radius R are parametrized as

$$
T = T_0 \left(\frac{R}{R_c} \right)^{-q},
$$

$$
\Sigma = \Sigma_0 \left(\frac{R}{R_c} \right)^{-3/2-q/2} \exp \left[-\left(\frac{R}{R_c} \right)^{7/2-p/2} \right],
$$

where R_c is a characteristic disk radius beyond which the column density drops off exponentially, and p is an exponent that, together with the exponent q, controls the column density distribution; it is not to be confused with the polarization fraction. The temperature profile yields a thermal scale height for the gas $H = H_0 \left(\frac{R}{R_c} \right)^{-3/2-q/2}$.

Although higher resolution ALMA observations have revealed substructures (rings) on the disk (ALMA Partnership: Brogan et al. 2015), the above is still the best model at the CARMA resolution that was used to detect the polarization in HL Tau. Adopting $q = 0.43$, Kwon et al. found a set of parameters that best fit their CARMA observations at 1.3 and 2.7 mm: $R_c \approx 79$ AU, $p = 1$, and a scale height for gas at R_c of $H_0 \approx 16.8$ AU (see also Kwon et al. 2015). Since the relatively large grains responsible for the scattered radiation may settle toward the midplane, the scaling factor H_0 in eq.(21) may need to be reduced by some (potentially large) factor (Kwon et al. 2011). We have experimented with reduction factors of 1, 10, 50 and 100, and found very similar results. In what follows, we will focus on the case where the scale height is the same for the dust and gas.

With the disk structure specified, we can now compute the Stokes parameters Q, U and I_s, from their source functions given by eqs. (13), (14) and (6). In this section, we consider the contribution $I_{s,\infty}$ to the total observed intensity from the far-field scattering source function S_{∞} only, in order to facilitate comparison with the analytic results obtained in the preceding subsection; the contributions from S and direct dust emission would lower the polarization fraction, and will be considered in the next section. From these three Stokes parameters, we can determine the total intensity of the
polarized radiation
\[I_p = \sqrt{Q^2 + U^2}, \]
the polarization angle \(\alpha \) (measured counter-clockwise from the \(x' \)-axis in the plane of the sky)
\[\alpha = \frac{1}{2} \text{atan2} \left(\frac{U}{Q} \right), \]
where the function atan2 returns the appropriate quadrant of the computed angle based on the signs of \(Q \) and \(U \), and the polarization fraction
\[p_{i,\text{in}} = \frac{I_p}{I_{i,\text{in}}}, \]
which can be compared directly with that given analytically in eq. (18).

In Fig. 2, we show the polarization vectors and the spatial distribution of the polarized intensity \(I_p \) for \(i = 0^\circ, 30^\circ, 45^\circ, \) and \(60^\circ \). The intensity is measured in units of \(2\Sigma_0k_{\text{abs}}k_{\text{scat}}\pi^2s^2K_0/s^2 \), where \(\Sigma_0 \) and \(T_0 \) are the characteristic column density and temperature of the disk, and \(k_{\text{abs}} \) and \(k_{\text{scat}} \) the absorption and scattering opacity. In the face-on (\(i = 0^\circ \)) case, the fraction of polarization of the scattered light is zero at the center because the light to be scattered there comes isotropically along all azimuthal directions for the prescribed axisymmetric disk. The radiation seen by the scatterer becomes more and more beamed in the radial direction as the radius increases, because of the drop in temperature and column density. As a result, the light is polarized in the azimuthal direction and the polarization degree increases outward. We will refer to the polarization induced by anisotropic radiation in the azimuthal direction in the face-on case as the “intrinsic” polarization. Note that although the polarization fraction \(p_{i,\text{in}} \) can reach a value as high as 50% or more near the outer edge, the total scattered polarized intensity \(I_p \) is rather low. As a result, the intrinsic polarization from dust scattering can be easily modified, indeed dominated, by the inclination-induced polarization.

When the disk is tilted away from the line of sight, both the polarized intensity and orientations of the polarization vectors change drastically compared to the face-on case. As Fig. 2 shows, the polarized intensity peaks at a ring in the face-on case, with the inward decrease caused by radiation becoming more isotropic in the azimuthal direction and the outward decrease from the exponential drop-off in column density. In contrast, the polarized intensity in the \(i = 30^\circ \) case peaks in the central region, as a result of the inclination-induced polarization. The polarization vectors in this (central) region (within ~ 0.5\(R_* \) of the origin) lie more or less along the minor axis, consistent with the analytic results for the inclination-induced polarization derived in the last subsection. Outside the central region, the polarization directions are broadly similar to those in the face-on case, indicating that the intrinsic polarization remains important there. A difference is that the axisymmetric polarization pattern in the face-on case becomes highly non-axisymmetric in this moderately tilted case, with both the polarized intensity and the polarization fraction significantly higher along the major axis than along the minor axis.

As the disk tilt angle increases further, the polarization pattern becomes more dominated by that induced by inclination. Going from \(i = 30^\circ \) to \(45^\circ \) to \(60^\circ \), we see a clear trend for increasing polarized intensity in the central region, a larger fraction of the polarization vectors parallel to the minor axis, and more elongation of the polarized intensity along the major axis (see Fig. 2). The elongation is a generic feature of the interplay between the intrinsic polarization and inclination-induced polarization. It provides a natural explanation for the distribution of polarized intensity observed in HL Tau\(^2\), which has an inclination angle of \(i \sim 45^\circ \) (ALMA Partnership: Brogan et al. 2015; Kwon et al. 2011).

2.4 Interplay Between Intrinsic and Inclination-Induced Polarization

To understand the interplay between the intrinsic polarization and inclination-induced polarization more quantitatively, we plot in Figure 3 the distribution of a dimensionless quantity
\[p_Q \equiv \frac{Q}{I_{i,\text{in}}}, \]
along the major and minor axes for the \(i = 45^\circ \) case. Since \(U = 0 \) along the major and minor axes, this quantity is essentially the polarization fraction \(p_{i,\text{in}} \) defined in eq. (24), except that it retains the sign of the Stokes parameter \(Q \). A positive (negative) \(p_Q \) means that the polarization is along the \(x' \)-axis (\(y' \)-axis) in the plane of the sky.

In the face-on case (\(i = 0^\circ \)), the intrinsic polarization fraction increases monotonically from zero to a large value approaching unity as the distance from the origin increases along the major (or \(y' \)-) axis, with the polarization vectors parallel to the \(x' \)-axis in the plane of the sky. The quantity \(p_Q \) is thus positive, as shown in Fig. 3 (solid black line). Along the minor axis, the fractional polarization is the same, but the polarization direction is along the \(y' \)-axis, with a negative \(p_Q \) (dashed black line). For comparison, we plot in the same figure the numerically computed distribution of \(p_Q \) along the major and minor axes as a function of the (de-projected) distance from the origin for the \(i = 45^\circ \) case. Clearly, the inclination has shifted the curves for the intrinsic (\(i = 0^\circ \)) \(p_Q \) along both major and minor axes upward, which is not surprising since inclination tends to produce polarization along the \(x' \)-direction (corresponding to a positive \(Q \), see eq. 16). The amount of upward shift is different at different locations, however. In the central region where the intrinsic polarization fraction is relatively low (within about 0.5\(R_* \)), the shift is by ~ 0.2 along both the major and minor axes; it is the value expected from the analytic results for an azimuthally isotropic radiation field given in eq. (18). The behavior in the central region where the intrinsic polarization is weak is therefore easy to understand; it is dominated by the inclination-induced polarization.

The behavior outside the central region where the intrinsic polarization fraction is higher is more complicated. It can be reproduced exactly, however, by the formula
\[p_Q = \frac{\sin^2 i}{2 + \sin^2 i} + \frac{P_{Q,\text{in}}(1 - P_{Q,\text{in}})\sin^2 i/2}{1 + (1 - P_{Q,\text{in}})\sin^2 i/2}, \]
along both the major and minor axes. Note that the first term on the right hand side is simply the inclination-induced polarization given by eq. (18), and the second term is the intrinsic polarization fraction \(p_{Q,\text{in}} \) (the face-on case) modified by the inclination. This formula can be derived heuristically under the assumption that the radiation seen by the scatterer comes from only two directions: the \(x' \) and \(y' \)-axes in the disk plane.

\(^2\) The observed direction of elongation does not lie exactly along the major axis, but is offset by a small angle of ~ 10° (see Stephens et al. 2014 and Fig. 1). This offset is not explained in our model under thin-disk approximation, and may require full 3D models and/or additional physics, such as grain alignment.
Figure 2. Effects of disk inclination on the polarization of scattered millimeter radiation. Shown are the intensity of the polarized radiation (color map, in units of $2\Sigma_{\kappa}\kappa_{\text{obs}}\kappa_{\text{sca}}\kappa_{\nu}kT_{0}/c^{2}$) and polarization vectors (line segments, with length proportional to the polarization fraction $p_{\nu,\infty}$ defined in eq.(24)), for $i = 0^\circ$, 30°, 45° and 60°. As the disk becomes more tilted, both the polarized intensity and polarization directions become more dominated by those induced by inclination. The elongation of the polarized intensity along the major axis and orientations of the polarization vectors along the minor axis in the high intensity region in the inclined cases are broadly consistent with the observed pattern in HL Tau (see Fig. 1). The numbers 0.5, 1.0, 1.5 and 2.0 in each panel measure the de-projected distances from the center in units of the characteristic radius R_{c}. The x'-axis and y'-axis defined in the plane of the sky are shown in the lower-right panel for reference.

In the limit where the intrinsic polarization fraction $|p_{Q,\infty}| \to 0$, we have

$$p_{Q} \to \frac{\sin^{2}i}{2 + \sin^{2}i}. \quad (27)$$

In the opposite limit where the intrinsic polarization fraction $|p_{Q,\infty}| \to 1$, we need to consider the major and minor axes separately. Along the major axis where p_{Q} is positive, we have $p_{Q,\infty} \to 1$, which yields

$$p_{Q} \to 1. \quad (28)$$

Along the minor axis where p_{Q} is negative, we have $p_{Q,\infty} \to -1$, so that

$$p_{Q} \to \frac{1 - \sin^{2}i}{1 + \sin^{2}i}. \quad (29)$$

which, for $i = 45^\circ$ shown in Fig. 3, approaches $-1/3$. The difference in the asymptotic behavior of p_{Q}, particularly the polarization fraction $|p_{Q}|$, highlights one of the major differences between the polarization patterns along the major and minor axes. It becomes more extreme as the inclination angle i approaches 90°.

Another difference is that there exists a point of zero polarization on the minor axis across which p_{Q} changes sign (or the polarization direction changes by 90°). This null point occurs at a location where

$$p_{Q,\infty} = \frac{\sin^{2}i}{2 - \sin^{2}i}, \quad (30)$$

which has a value of $-1/3$ for $i = 45^\circ$. Indeed, if the inclination angle i is known independently, one can in principle deduce the intrinsic value of p_{Q} along the major and minor axes from the value of p_{Q} through

$$p_{Q,\infty} = \frac{p_{Q} - \sin^{2}i(2 + \sin^{2}i)}{[(2 - \sin^{2}i) + p_{Q}\sin^{2}i]/(2 + \sin^{2}i)}. \quad (31)$$

However, it is difficult to infer the value of p_{Q} from observation directly because it is the observed Stokes Q parameter normalized by the scattered intensity from the far-field, $I_{s,\infty}$, which cannot be mea-
where the incoming radiation for the near-field source function S_0 comes from relative to that for the far-field source function S_w. In any case, the polarization fraction of the scattered radiation remains high, of order 10% or more, after both the near- and far-field contributions are taken into account. It is much higher than observed in HL Tau (of order 1%), and needs to be further reduced, by the unpolarized direct dust emission3. The source function for the direct emission is simply the Planck function $B_\nu(T) \approx 2\nu^3kT/c^2$. The optical depth for dust absorption along the line of sight passing through a location r in the disk is $\Delta \tau_s \approx \kappa_{abs}\Sigma(r)/\cos i$ under the thin disk approximation. Together, they yield the intensity for the direct emission

$$I_d \approx \frac{2\nu^2k_{B}B_\nu(T)\Sigma(r)T(r)}{c^2\cos i}.$$

This estimate allows us to evaluate the ratio of the intensities of the scattered and direct emission:

$$\frac{I_s}{I_d} = \frac{I_{s,0} + I_{s,w}}{I_d} = \frac{k_{abs}\Sigma_0}{\Sigma_0} \sum_{\phi} \left[\frac{1}{2} + \frac{3}{16\pi} \int_0^{2\pi} d\phi (1 + \sin^2 i \cos^2 \phi) \int_H \frac{dl}{l} \frac{\Sigma(r)}{\Sigma(r)} T(r) \right].$$

Note that the ratio $\Sigma(r)/\Sigma_0$ and the second term inside the square bracket are dimensionless quantities that depend only on the shape of the column density and temperature profiles. The overall scaling is set by the characteristic scattering optical depth $\Delta \tau_{sc} \approx \kappa_{sc}\Sigma_0$. In order to reduce the high polarization fraction of the scattered radiation at 1.3 mm to the observed value of about 1%, we need a rather small value of $\Delta \tau_{sc} \approx 0.07$, so that the scattered radiation is heavily diluted by the unpolarized direct emission.

We stress that the inclusion of the unpolarized radiation $I_{s,0}$ and I_d changes neither the polarized intensity nor the polarization direction shown in Fig. 2 (the lower-left panel). What is changed is the polarization fraction. In Fig. 5, we plot the distribution of the

3 Direct emission can be polarized, due to, for example, grain alignment. Polarized direct emission needs to be included in a more complete model (as discussed in § 5).
polarized intensity for the $i = 45^\circ$ case, as in the lower-left panel of Fig. 2, but with the length of the overlaid polarization vectors scaled by the new polarization fraction relative to the total intensity. This figure represents our final model for the HL Tau disk. It has three features that are broadly consistent with observations: (1) the region of high polarized intensity is elongated along the major axis, (2) the polarization vectors in this region are nearly parallel to the minor axis, and (3) the polarization fraction in the region is about 1%. Along the ridge of detectable polarized intensity, the observed polarization fraction appears to be somewhat higher toward the edge of the disk (at a distance of ~ $R_C \approx 80$ AU) than near the center, although it is unclear how significant the trend is in view of the low polarized intensity near the edge. This trend was present in our model when only the scattered radiation was considered (see Fig. 2 and 3), but was washed out by the total intensity in Fig. 5.

The semi-analytic theory that we have developed so far under the assumption of geometrically thin disk, optically thin emission, and only Rayleigh scattering is independent of the detailed properties of dust grains. This independence makes the broad agreement between our model and the main polarization features observed in HL Tau rather robust. In the next section, we will try to put constraints on the grain size distribution in the HL Tau disk, which is much more uncertain.

4 IMPLICATIONS ON GRAIN SIZE

4.1 Scattering Opacity and the Need for Large Grains

The main free parameter of the final model for the HL Tau disk polarization discussed in § 3 is the characteristic scattering optical depth ΔT_{sc}, which controls the polarization fraction. In order to produce the observed polarization fraction of ~ 1%, a value of $\Delta T_{\text{sc}} \approx 0.07$ is required. This value yields a scattering opacity $\kappa_{\text{sc}} \approx 10^{-11} \text{ cm}^2 \text{ g}^{-1}$ (cross section per unit total, rather than dust, mass) at 1.3 mm (the wavelength of the HL Tau disk polarization observation), using the characteristic column density $\Sigma = 68 \text{ g cm}^{-2}$ from the best-fit disk mass of 0.13 M_\odot of Kwon et al. (2011). This scattering opacity can put constraints on the grain size distribution, although they depend on the dust composition, which is uncertain. As an illustration, we consider the model of dust grains adopted by Kataoka et al. (2015a), which are spheres with a mixture of silicate (8%), water ice (62%) and organics (30%). All fractional abundances are in volume and are taken from Pollack et al. (1994). We assume a canonical gas-to-dust mass ratio of 100, and use the Mie theory to calculate the absorption and scattering opacities (Bohren & Huffman 1983). The inferred scattering opacity corresponds to a grain radius $a = 37 \mu$m for grains of a single size. For the MRN-type power-law distribution $n(a) \propto a^{-3.5}$ (Mathis et al. 1977), we obtain a maximum grain size of $a_{\text{max}} = 72 \mu$m. The increase of this maximum over the single size case comes from averaging over the grain size. In both cases, the dimensionless parameter $x = 2\pi a/\lambda \ll 1$, so that the Rayleigh limit used for treating the scattering in the previous sections is self-consistent (see Fig. 6 below). The maximum size inferred for the grains responsible for the scattered dust emission in the HL Tau disk is much larger than that of the grains in the diffuse interstellar medium. This is consistent with other lines of evidence for grain growth in disk environments (e.g., Pérez et al. 2012; Alecian 2013; Testi et al. 2014).

We note that Kataoka et al. (2015b) independently modeled the HL Tau disk polarization using dust scattering through Monte Carlo radiative transfer simulations. They obtained dust polarization patterns that are very similar to ours. They inferred a maximum grain size that ranges from 70 μm to 350 μm, which is broadly consistent with our value of 72 μm.

In summary, to reproduce the ~ 1% polarization fraction observed in the disk of HL Tau through dust scattering, the grains must have grown to tens of microns (the exact value depends on the assumed grain size distribution and composition). However, this picture is complicated by the opacity spectral index β inferred for HL Tau, as we discuss next.

4.2 Opacity Spectral Index β and the Need for Larger Grains?

Kwon et al. (2011) obtained a best-fit value 0.73 for the spectral index β of the dust opacity $\kappa_{\text{obs}} \propto \nu^\beta$ for the HL Tau disk based mostly on CARMA observations at 1.3 and 2.7 mm. It is in agreement with the spatially averaged value obtained from ALMA observations of 0.87 to 2.9 mm (ALMA Partnership: Brogan et al. 2015). This value is significantly lower than the typical ISM value of $\beta \sim 1.5 - 2$. The difference is usually taken as evidence for grain growth to millimeter size or larger (Testi et al. 2014), although other interpretations are possible. For example, Ricci et al. (2012) showed that a value of $\beta \sim 1$ or lower can be obtained without mm/cm sized grains if part of the disk is optically thick. Some support for this possibility is provided by the spatially resolved solution of β derived from the ALMA data, which shows $\beta \sim 0$ indicative of optically thick emission at the central continuum peak and two rings (B1 and B6, ALMA Partnership: Brogan et al. 2015, see their Fig. 3). Another possibility is that the index β is sensitive to not only the size but also the shape of the grains. Indeed, Verhoeef et al. (2011) was able to reproduce the spectral energy distribution (SED) of the disk of HD 142527 (with $\beta \sim 1$ in the millimeter regime) with irregular grains of sizes up to only 2.5 μm; the grain shape was treated with the distribution of hollow spheres Min et al. (2005). The grains inferred in our model of dust scattering-induced polarization for the HL Tau disk have a signif-

Figure 5. Model for the polarization of HL Tau disk. Plotted are the polarized intensity (color map, in units of $2 \Sigma p_{\text{obs}} a_{\text{obs}} r^2 k T_{\text{eff}} (\nu^2)$ and polarization vectors (line segments, with length proportional to the polarization fraction of the total intensity) for $i = 45^\circ$. A characteristic scattering optical depth $\Delta T_{\text{sc}} = 0.07$ is needed to bring the high polarization fraction of tens of percent relative to the scattered intensity (shown in the lower-left panel of Fig. 2) down to the observed level of ~ 1% relative to the total intensity.
The maximum grain size is chosen such that using the dust model of Kataoka et al. (2015a) and Mie theory, the polarization degree (defined as the ratio of the two elements in the scattering matrix, $-Z_{12}/Z_{11}$, which is essentially the polarization fraction but can be either positive or negative) is nearly zero at $0.87 \mu m$ for all scattering angles except around 135°, where it reaches a (negative) “peak” value of ~ -0.2 for $a_{\text{max}} = 1 \text{ mm}$ and 1 cm (see the right panel of their Fig. 2). The negative value is known as the polarization reversal (e.g., Murakawa 2010; Kirchschlager & Wolf 2014) which, together with the shift of the polarization “peak” away from 90°, is expected to produce a polarization pattern very different from the Rayleigh scattering case.

As an illustration, we repeat the computation of the scattering-induced polarization at $\lambda = 1.3 \text{ mm}$ in § 3, but with an MRN-type power-law size distribution up to $a_{\text{max}} = 4 \text{ mm}$ (instead of $72 \mu m$), using the dust model of Kataoka et al. (2015a) and Mie theory. The maximum grain size is chosen such that $a_{\text{max}} = 3 \lambda$, which is roughly the minimum value required to yield an opacity spectral index of $\beta \sim 1$ according to Draine (2006). The distribution of the polarization degree with scattering angle in this case is shown in Fig. 6. It is very similar to that obtained by Kataoka et al. at $0.87 \mu m$, except that the “peak” is slightly lower (-0.17) and is shifted to a slightly smaller angle of $\sim 130^\circ$.

In Fig. 7, we plot the distribution of the polarized intensity together with polarization vectors for the large grain case of $a_{\text{max}} = 4 \text{ mm}$. There are several features that are worth noting. First, unlike the Rayleigh scattering case, the polarized intensity is no longer symmetric with respect to the major axis. This is because large, mm/cm sized, grains preferentially scatter light in the forward direction (e.g., Bohren & Huffman 1983), making the side of the disk closer to the observer (the right half) brighter. The polarization fraction is, however, higher on the far side (especially toward the outer part of the disk) because the polarization degree of the scattered light is higher for backward scattering than for forward scattering (see Fig. 6). The most striking difference between this case and the Rayleigh scattering case shown in Fig. 3 lies in the polarization direction. The difference comes from the polarization reversal in the large grain case, which yields an intrinsic (or face-on) polarization direction in the radial (as opposed to azimuthal) direction and an inclination-induced polarization along the major (rather than minor) axis. The interplay between the intrinsic and inclination-induced polarization leads to polarization directions in the region of high polarized intensity (the most easily observable part) completely different from those observed in HL Tau (see Fig. 1).

We are therefore left with an interesting conundrum. The polarization pattern in the HL Tau disk is suggestive of Rayleigh scattering by relatively small dust grains (although still much larger than the typical ISM grains), but such grains may have difficulty reproducing the observed opacity spectral index $\beta (\lesssim 1)$. The index can be reproduced more easily with larger, mm/cm sized, grains, but it is difficult to generate the observed polarization pattern with such grains through scattering. It is conceivable that there are two populations of dust grains, with one responsible for polarization, the other for β. The two populations do not have to be located co-spatially in the disk; for example, large grains responsible for the bulk of the unpolarized continuum (and thus β) may have set-
tled close to the midplane, whereas smaller grains that dominate the polarized millimeter radiation may remain floating higher up above the midplane (e.g., Dullemont & Dominik 2004; Tanaka et al. 2005; Balsara et al. 2009). If this speculation turns out correct, polarized emission in millimeter would provide a powerful probe of not only grain growth, but also the expected vertical stratification of grain sizes, especially in conjunction with observations of optical/IR polarization, which probe even smaller, micron-sized, grains that are higher up still above the disk midplane.

5 OTHER SOURCES AND FUTURE DIRECTIONS

As mentioned in § 1, spatially resolved polarized sub-mm/mm emission was observed in other two sources besides HL Tau: IRAS 16293-2422B (Rao et al. 2014) and L1527 (Segura-Cox et al. 2015), using SMA and CARMA respectively. We discuss whether the polarization in these two sources is compatible with an origin in dust scattering.

The L1527 disk is nearly edge-on, with an inclination angle $i \approx 90^\circ$. Its 1.3 mm dust emission was observed to be polarized at $\sim 2.5\%$ level, with a direction roughly perpendicular to the disk (i.e., along the minor axis). This pattern is consistent with that expected from dust grains aligned by a predominantly toroidal magnetic field (Segura-Cox et al. 2015). It is also the pattern expected of scattering by relatively small dust grains in the Rayleigh limit because the polarization induced by disk inclination is along the minor axis (as illustrated vividly in the lower right panel of Fig. 2). Indeed, the fraction of the scattered radiation that is polarized due to disk inclination increases with the inclination angle, reaching a maximum value of 1/3 for edge-on disks, as we showed analytically in § 2.2 (see eq. (18)). This trend makes it more likely for L1527-like disks to show scattering-induced polarization than face-on disks. Indeed, the median polarization fraction of L1527 is the highest among the three sources with spatially resolved sub-mm/mm polarized emission so far. However, whether such polarization can actually be observed or not depends on the polarized intensity, which in turn depends on the total intensity and the polarization fraction (relative to the total intensity). The latter is sensitive to the scattering opacity κ_σ, which depends on the dust properties, especially the grain size, which can vary greatly from one source to another. To produce the observed polarization fraction of $\sim 2.5\%$ in L1527 throughout scattering, the grains must have grown well beyond μm size; otherwise, the scattering opacity would be too small. The scattering cannot be dominated by large, mm/cm sized grains either. Such grains would produce polarization along, rather than perpendicular to, the edge-on disk because of polarization reversal (see § 4.2 and Figs. 6 and 7). Large cm-sized grains are inferred in the L1527 disk from the small opacity spectral index $\beta \sim 0$ (Tobin et al. 2013). If the observed polarization is due to scattering by sub-mm sized grains, then two grain populations may again be needed, as in the HL Tau case discussed in § 4.2.

The disk in IRAS 16293-2422B appears to be nearly face-on (Rodriguez et al. 2005; Zapata et al. 2013). Its 0.88 mm emission was observed to be polarized at $\sim 1.5\%$ level, with the polarization directions showing a swirling pattern that is neither strictly radial nor purely azimuthal (Rao et al. 2014). Rao et al. showed that the pattern is broadly consistent with the polarized emission expected from grains aligned by a magnetic field that is warped into a spiral configuration by disk rotation, although the rotation is hard to measure directly because of the face-on orientation. It is inconsistent with the simplest dust scattering model for axisymmetric face-on disks, where the polarization directions are expected to be perfectly azimuthal, as illustrated in the upper left panel of Fig. 2. However, the observed polarization intensity is arc-shaped which, for face-on systems, requires intrinsically non-axisymmetric disk models, such as those constructed by Kataoka et al. (2015a). Indeed, the observed intensity distribution is reminiscent of the lopsided ring models of Kataoka et al. (see their Fig. 6 and 7), although the polarization direction in the models changes sharply from radial in the inner part of the ring to azimuthal in the outer part. It is conceivable that dust scattering models with more complicated disk structures, such as spiral arms, may match the observation better, but this remains to be demonstrated. One worry is that the dust emission in this source may be optically thick at sub-mm wavelengths (Zapata et al. 2013), which would reduce the degree of anisotropy in the unpolarized radiation to be scattered, and thus the degree of polarization in the scattered radiation (Kataoka et al. 2015a). Another is that the polarized emission detected in this deeply embedded source may be contaminated by the protostellar envelope. Higher resolution ALMA polarization observations should become available in the near future. They will provide more stringent tests of the dust scattering model of polarized mm/sub-mm emission.

As stressed by Kataoka et al. (2015a), polarized radiation at mm/sub-mm wavelengths provides a powerful probe of grain growth, if it is produced by dust scattering. A robust prediction of the scattering model is that large, mm/cm-sized, grains should produce millimeter polarization along the major axis of an inclined disk due to polarization reversal, especially in the central region where the intrinsic (face-on) polarization is expected to be weak and the observed polarization pattern is more easily dominated by that induced by disk inclination (see Fig. 7 for an illustration). This effect should be searched for with high resolution ALMA observations, especially in high-inclination systems. Another way to probe large grains is to observe polarization at longer, centimeter, wavelengths using, for example, Jvla and the future SKA. At such wavelengths, the scattering by mm-sized grains would still be in the Rayleigh regime, with a high degree of polarization of the scattered light. Given the sensitive dependence of the scattering opacity κ_σ (which controls the polarization fraction of the total intensity) on the grain size relative to the wavelength, it is important to carry out high-resolution polarization observations at multiple wavelengths to determine whether the polarization is indeed due to dust scattering and, if yes, to constrain the grain size distribution. With the polarization capability of Jvla, and that of ALMA coming online soon, the prospect for using sub-mm/mm/cm polarization to probe grain properties in disks is bright on the observational side.

On the theoretical side, much work remains to be done. In this paper, we have limited our treatment to the simplest case of optically and geometrically thin disk, to bring out the essential features of the disk inclination-induced polarization transparently through a semi-analytic model. As noted earlier, there is indication from the spatial distribution of the opacity spectral index β that part of the HL Tau disk is optically thick at sub-mm/mm wavelength, including the central continuum peak, B1 and B6 rings, at radii of $\sim 0, 20,$ and 81 AU, respectively (ALMA Partnership: Brogan et al. 2015). Since the B6 ring is rather narrow, and the bulk of polarized emission is detected interior to it, it should not affect our HL Tau model much. The continuum peak and B1 ring are not resolved by the polarization observation, but they can potentially lower the polarization fraction in the central pixel relative to the outer part, which is expected to bring the dust scattering model presented in...
The polarization fraction of millimeter emission in the central region can also be lowered if the grains grow to centimeter sizes, which can contribute significantly to the total but little to the polarized intensity.

ACKNOWLEDGEMENTS

We thank Phil Arras, Dom Pesce, Scott Suriano, and Laura Pérez for helpful discussion. LWL acknowledges support by NSF AST-1139950. HFY and ZYL are supported in part by NSF AST-1313083 and NASA NNX14AB38G.

REFERENCES

Alecan E. 2013, Environments of the Sun and the stars, Lecture Notes in Physics, Springer-Verlag Berlin Heidelberg, 857, 183
ALMA Partnership, Brogan, C. L., Pérez, L., et al. 2015, ApJ, 808, L3
