Fracture Toughness, Surface Roughness and Fluoride Release of Glass Ionomers after Immersion in Athletic Drinks

Ibrahim M. Hamouda¹,²*, Dina A. Ibrahim³, Essam E. Alwakeel¹

¹ Professor of Dental Biomaterials, Faculty of Dentistry, Mansoura University, Mansoura, Egypt.
² Head of Conservative Dentistry, Faculty of Dentistry, Umm Al Qura University, Makkah, Saudi Arabia.
³ Demonstrator in Dental Biomaterials, Faculty of Dentistry, Mansoura University, Mansoura, Egypt.

Abstract

Objectives: This study was conducted to evaluate the effect of sport and energy drinks on conventional and resin-modified glass ionomer restorative materials regarding fracture toughness, surface roughness and fluoride release.

Methods: The restorative materials used were conventional and resin-modified glass ionomers. Sport drinks used were Gatorade Perform 02 and Pocari sweat, while the energy drinks were Red Bull and Power Horse. Specimens were prepared and divided into five groups according to the immersion media (distilled water, two sport drinks and two energy drinks) for 1 and 7 days. The fracture toughness was determined using a three-point bending method. Surface roughness was measured using surface profilometer. Fluoride release was determined using a conventional ion chromatograph testing unit. The data were analyzed using three-way ANOVA and Least Significant Difference test. For comparison between the two materials under each condition, t-test was used.

Results: There was no significant difference in fracture toughness between sport, energy drinks and distilled water at the different time intervals except for conventional glass ionomer after 7 days. Resin-modified glass-ionomer exhibited smoother surfaces more than conventional one in sport and energy drinks after 1 day. After 7 days, both conventional and resin-modified glass ionomers showed greater surface roughness. Both conventional and resin-modified glass ionomers release more fluoride in acidic beverages than distilled water.

Conclusions: The effect of sport and energy drinks on the fracture toughness may depend on the composition and acidity of drink. Fluoride release increased with the consumption of sport and energy drinks.

Corresponding Author: Ibrahim M. Hamouda, Faculty of Dentistry, Mansoura University, Mansoura, Egypt. Faculty of Dentistry, Umm Al Qura University, Makkah, Saudi Arabia. Imh100@hotmail.com

Mobile: 966542812148

Keywords: sport drinks, energy drinks, conventional glass ionomer, resin-modified glass ionomer, restorative materials.

Received: Apr 14, 2014; Accepted: Aug 04, 2014; Published: Aug 08, 2014;
Introduction

Fluid replacement drinks or carbohydrate-electrolyte beverages may be one of the most researched sports nutrition topics ever and accompanying this high volume of research are continually evolving recommendation.¹

Sport drinks were developed in the United States in 1960s when the University of Florida Gators began drinking a formulation of carbohydrate and electrolytes to enhance their performance and prevent dehydration. Most marketing for these beverages is now aimed at the nonathletic.²

Sport drinks are popular worldwide, but the various products differ little in their composition. They contain 6% to 8% carbohydrates, with the principal carbohydrates being glucose, fructose, sucrose, and synthetic maltodextrins. All contain small amounts of electrolytes, including sodium, potassium and chloride, to improve palatability and help maintain the fluid/electrolyte balance. The purpose of sport drinks is to prevent dehydration, to provide carbohydrates to boost energy, to supply electrolytes that can replace those lost via perspiration.³

In 2006, nearly 500 new brands of energy drinks were introduced and more than 7 million adolescents reported that they have consumed an energy drink. The difference between sport and energy drinks that sport drinks tend to be caffeine free, but energy drinks are loaded with caffeine. Energy drinks also tend to have a higher carbohydrate content (9% to 10%) than do sport drinks.² The dental status of athletes who consume these acidic beverages is little considered. These beverages have an erosive effect and risks to dental health.⁴ Clinical performance of filling materials is affected by erosion as well.⁵

Glass ionomer restorative materials have a number of unique properties, including adhesion to tooth structure, biological compatibility, and anticariogenic properties due to their fluoride release.⁶ The ability of restorative dental materials to withstand the functional force and exposure to various media in the mouth is an important requirement for their clinical performance for considerable period of time. However, although these materials are tested for strength, they are rarely tested following storage in a kind of aqueous media found in the mouth. Instead, they are tested after being stored in deionized water of high purity.⁷ For ionic restorative materials, such as glass ionomer, this storage regime may be inappropriate. These restorative materials have recently been shown to interact with various aqueous media. For example; in saliva, they undergone a surface reaction that led to precipitation of calcium and phosphate ions into the outermost layer.⁷,⁸ In acidic conditions, matrix forming ions were found to be released into solution as part of a process of buffering the medium.⁹

It was found that glass ionomer in orange and apple juice underwent severe erosion and loss of strength. This was attributed to the presence of carboxylic acids such as citric and malic acids in these fruit juices, which are capable of chelating with cement-forming ions, such as calcium, to yield soluble products.⁷ Therefore, for
these materials, the nature of the storage medium is important. So, the null hypothesis of this study was that sport and energy drinks will negatively affect the properties of glass ionomer restorative materials.

Materials and Methods

The materials used in this study are listed in Tables 1. A conventional glass ionomer (Ionogem), a resin-modified glass ionomer (Ionogem LC), two types of sport drinks (Gatorade Perform 02 and Pocari Sweat), and two types of energy drinks (Red Bull and Power Horse) were used. The pH of each beverage was determined using a calibrated pH meter (HANNA instruments, HI 98150 Microprocessor Logging pH/ORP Meter, Romania) that was placed directly into each solution. The pH meter which has an accuracy of 0.1, was first calibrated according to manufacturer’s instructions, employing buffer standards of pH 7 and pH 4. The measurements were taken at a room temperature. Fifty mL of each beverage was placed in a beaker, the pH meter was inserted and the reading was recorded.\(^1\)

Table 1. Materials used.

Materials	Type and Composition	Manufacturers
Ionogem	Conventional glass ionomer restorative material (hand mixed)	Dental Composite Ltd. England
Ionogem LC	Resin-modified glass ionomer restorative material (hand mixed)	Dental Composite Ltd. England
Gatorade Perform 02	Sport drink, Water, sucrose, dextrose, citric acid, natural flavor, salt, sodium citrate, monopotassium phosphate, gum arabic, yellow 6, glycerol ester of rosin, brominated vegetable oil	Gatorade, Company, USA
Pocari Sweat	Sport drink, Water, sugar, Citrus flavor, citric acid, sodium citrate, sodium chloride, potassium chloride, malic acid, calcium lactate, glucono delta-lactone. Monosodium L-glutamate, magnesium carbonate, vitamin C	P.TAmerta, Indah Otsuka, Jakarta, Indonesia
Red Bull	Energy drink, Water, sucrose, glucose, sodium citrate, carbon dioxide, taurine 0.4%, glucuronolactone 0.24%, caffeine 0.03%, niacin, B-group vitamins, flavors	Red Bull, GmbH, Austria
Power Horse	Energy drink, Carbonated water, sucrose, glucose, citric acid, taurine, glucuronolactone, artificial flavor, caffeine, inositol, niacin, pantothenic acid, vitB6, B12, riboflavin	S.Spitz GmbH, Attnang-Puchheim, Austria
Three tests were performed; fracture toughness, surface roughness and fluoride release. Specimens prepared for each material were manipulated according to manufacturer’s instructions. They were divided into five groups according to the storage medium:

Group 1: Specimens were immersed in distilled water (control).

Group 2: Specimens were immersed in Gatorade Perform 02.

Group 3: Specimens were immersed in Pocari Sweat.

Group 4: Specimens were immersed in Red Bull.

Group 5: Specimens were immersed in Power Horse.

The pH of each storage medium was determined before immersion of the specimens.

Determination of Fracture Toughness:

A total number of hundred and forty notched specimens were prepared, seventy specimens for each glass ionomer. Specimens were prepared in a stainless-steel split mould (25 mm length × 2.5 mm thickness × 5 mm width). The mold was notched (0.5 mm width and 2.5 mm depth).\(^\text{11}\) The mixed cement was condensed into the mold, pressed between matrix strips and glass plates under load for 10 min. The light-cured glass ionomer, the specimens were light-cured at each surface using an overlapped technique for 40 s using a visible light curing unit at 320 mW/cm\(^2\) (Visilux II; 3M, St Paul, USA). After approximately one hour in a humidor, each specimen was removed from its mold.\(^\text{11,12}\) The specimens were divided as mentioned before (n = 7/group for each test period).

The specimens were immersed in 5 mL of the testing medium and stored at 37°C. Specimens were tested after 24 h and after one week from the start of immersion. The storage medium was changed daily. Fracture toughness was determined using three-point bending method according to the procedures outlined in ASTM E399-90.\(^\text{13}\) The test was done using a computer-controlled Universal Testing Machine (Model LRX-plus; Lloyd Instruments Ltd., Fareham, UK) with a load cell of 5 kN and data were recorded using computer software (Nexygen-MT; Lloyd Instruments). The specimens were loaded until fracture at a crosshead speed of 0.5 mm/min. Fracture toughness, \(K_{lc}\) (MPa. m \(^{1/2}\)), was calculated from the following equation:\(^\text{13}\)

\[
K_{lc} = \left(\frac{P_Q S}{B W^{3/2}} \right) f(a/W)
\]

Where: \(P_Q\) is the peak load (kN), \(B\) is the specimen thickness (cm), \(S\) is the span length (cm), \(W\) is the specimen width (cm), \(a\) is the crack length (cm) and \(f(a/W)\) is a function of \(a/W\).

Determination of Surface Roughness:

A total number of fifty disc-shaped specimens, twenty five for each restorative material, were fabricated in a split Teflon mould (10 mm diameter × 2 mm thickness. The cement paste was packed into the mold that was placed on a microscope slide. A second slide was placed over the mold and light hand pressure applied to enable the excess material to flow out of the mold through the slit. Resin-modified glass ionomer specimens were light
cured at each surface of the specimens. The specimens were divided into five equal groups (n = 5/group) according to the storage medium as mentioned before. The specimens were immersed in 5 mL of the testing medium and stored at 37\(^\circ\)C. Surface roughness was measured after 24 h and one week from the start of immersion. The storage medium was changed daily. Surface roughness was measured using surface Profilometer (Surf Test SJ 201, Japan). Five tracings at different locations on each specimen were made. Surface roughness (Ra) was determined in µm using a tracing length of 2 mm and a cutoff value of 0.25 mm to maximize filtration of surface waviness.

Measurement of Fluoride Release:

A total number of fifty disc-shaped specimens, twenty five specimens for each glass ionomer, were divided into five equal groups (n = 5/group), according to the storage medium as mentioned before. The specimens were fabricated in the split Teflon mold that was used for preparing specimens for surface roughness testing. The specimens were immersed in 5 mL of the storage medium and stored at 37\(^\circ\)C. The measurement of fluoride release from the specimens was carried out at the following time intervals: 24 h, 3 days, 5 days and 7 days from the start of immersion. At each test interval, the specimen was removed from the solution, quickly blotted dry with filter paper and immediately immersed in another 5 mL of the storage medium. An Ion Chromatograph (DX 500; Dionex, Camberley, UK) with suppressed conductivity was used for free fluoride ion determination.

The instrument was fitted with an ION PAC AS14 analytical column (Dionex) and ION PAC AG14 Guard column (Dionex). A half mL of each storage solution was injected onto the injection loop of the instrument. The loop was designed such that 250 µL was fed to the column for analysis. A flow rate of 1.2 mL/min was used. Free fluoride ions have a well-defined retention time and the peak corresponding to fluoride could readily be determined from the chromatogram. The peak area was used to determine fluoride concentrations by linear interpolation between standard solutions of concentration slightly higher and lower than the test solution. The determination of each solution was made three times and fluoride concentration determined to an accuracy of 0.001 ppm.\(^{14}\)

2.4. Statistical Analysis:

Means and standard deviations of fracture toughness, surface roughness and fluoride release were calculated for each group. The data were analyzed using three-way ANOVA and Least Significant Difference (LSD) tests. For comparison between the two materials under each condition, unpaired student’s t-test was used. The statistical analysis was performed by Statistical Package for Social Science (SPSS) version 15. All statistical analysis were performed at α = 0.05.

Results:

pH of Immersion Media:
The measured pH of different immersion media were as follow: pH of distilled water was 6.3, Gatorade Perform 02 was 2.9, Pocari Sweat was 3.3, Red Bull was 3.1 and Power Horse was 2.8.

Fracture Toughness:

Mean values and standard deviations of fracture toughness of the studied materials after immersion in different media for 1 and 7 days are shown in Table 2. After 1 day, for conventional glass ionomer, the lowest mean fracture toughness value was for specimens immersed in Gatorade, and the highest means were for specimens immersed in distilled water and Pocari Sweat. For resin-modified glass ionomer, the lowest mean fracture toughness value was for specimens immersed in Pocari Sweat and the highest mean was for specimens immersed in Power Horse.

After 7 days, for conventional glass ionomer, the lowest mean fracture toughness value was for specimens immersed in Power Horse and the highest means were for specimens immersed in distilled water. For resin-modified glass ionomer, the lowest mean fracture toughness value was for specimens immersed in Red Bull and the highest mean was for specimens immersed in Pocari Sweat. There was a significant effect of material, storage media and immersion time (P < 0.05). In addition there was a significant interaction between material, storage media and immersion time and with each other (P < 0.05). LSD test showed that there was no significant difference between different storage media after 1 day for both studied materials. In addition, after 7 days, there was no significant difference between different media for both studied materials except for conventional glass ionomer specimens immersed in Red Bull and Power Horse. The resin-modified glass ionomer exhibited significantly higher fracture toughness than conventional glass ionomer either after 1 day or 7 day of immersion. In addition, there was no significant difference between different storage media for both studied materials.

Product	Distilled water	Gatorade Perform 02	Pocari Sweat	Red Bull	Power Horse
IonoGem-1day	0.62 ± 0.086 A,a	0.54 ± 0.06 A,a	0.62 ± 0.09 A,a	0.6 ± 0.1 A,a	0.6 ± 0.06 A,a
IonoGem-7day	0.63 ± 0.1 A,a	0.53 ± 0.11 A,a	0.63 ± 0.07 A,a	0 ± 25.07 B,b	0.24 ± 0.09 B,b
IonoGem LC-1day	2.33 ± 0.14 B,a	2.36 ± 0.15 B,a	2.3 ± 0.11 B,a	2.4 ± 0.2 C,a	2.5 ± 0.2 C,a
IonoGem LC-7day	2.39 ±0.12 B,a	2.39 ± 0.09 B,a	2.42 ± 0.07 C,a	2.31 ± 0.09 C,a	2.33 ± 0.16 C,a

Means with same superscript letters are not significantly different (small letters for rows and capital letters for columns).
difference between 1 day and 7 days of immersion for both materials except conventional glass ionomer specimens immersed in Red Bull and Power Horse.

Surface Roughness:

Mean values and standard deviations of surface roughness of the studied materials after immersion in different media for 1 and 7 days are shown in Table 3. After 1 day, for conventional glass ionomer, the smoothest surfaces were for specimens immersed in distilled water, and the roughest surfaces were for specimens immersed in Power Horse. For resin-modified glass ionomer, the smoothest surfaces were for specimens immersed in distilled water, and the roughest surfaces were for specimens immersed in Power Horse.

After 7 days, for conventional glass ionomer, the smoothest surfaces were for specimens immersed in distilled water and the roughest surfaces were for specimens immersed in Red Bull. For resin-modified glass ionomer, the smoothest surfaces were for specimens immersed in distilled water and the roughest surfaces were for specimens immersed in Power Horse.

There was a significant effect of materials, media and immersion time ($P < 0.05$). In addition there was a significant interaction between material, storage media and immersion time and with each other ($P < 0.05$). LSD test showed that after 1 day, for conventional glass ionomer, there was a significant difference between distilled water and the other storage media. For resin-modified glass ionomer, there was no significant difference between distilled water and the other storage media. After 7 days, there was a significant difference between distilled water and the other storage media for both glass ionomers. The resin-modified glass ionomer exhibited smoother surfaces than conventional glass ionomer either after 1 or 7 days of immersion. In addition, there was a significant difference between 1 day and 7 days of immersion for both studied materials in different storage media except distilled water.

Fluoride Release:

Product	Distilled water	Gatorade Perform 02	Pocari Sweat	Red Bull	Power Horse
IonoGem-1day	0.7 ± 0.02b	1.07 ± 0.19a	1.02 ± 0.17a	1.34 ± 0.29a	1.4 ± 0.39a
IonoGem-7days	0.8 ± 0.11c	2.08 ± 0.5b	1.94 ± 0.48b	3.8 ± 0.2b	3.7 ± 0.3b
IonoGem LC-1day	0.52 ± 0.02b	0.68 ± 0.07c	0.692 ± 0.19a	0.84 ± 0.28c	0.87 ± 0.18c
IonoGem LC-7days	0.59 ± 0.05b	1.02 ± 0.02c	1.1 ± 0.01a	1.82 ± 0.5A	1.96 ± 0.12A

Table 3: Means, standard deviations, results of LSD of surface roughness (Ra, µm) of the studied materials in different media after 1 and 7 days. Means with same superscript letters are not significantly different (small letters for rows and capital letters for columns).
Mean values and standard deviations of fluoride release of the studied materials after 1, 3, 5 and 7 days are shown in Table 4. After 1 day, for conventional glass ionomer, the lowest mean fluoride release value was for specimens immersed in distilled water and the highest mean was for specimens immersed in Power Horse. For resin-modified glass ionomer, the lowest mean fluoride release value was for specimens immersed in distilled water and the highest mean was for specimens immersed in Power Horse. After 3 days, for conventional glass ionomer, the lowest mean fluoride release value was for specimens immersed in distilled water and the highest mean was for specimens immersed in Red Bull. For resin-modified glass ionomer, the lowest mean fluoride release value was for specimens immersed in distilled water and the highest mean was for specimens immersed in Power Horse. After 5 days, for conventional glass ionomer, the lowest mean fluoride release value was for specimens immersed in distilled water and the highest mean was for specimens immersed in Red Bull. For resin-modified glass ionomer, the lowest mean fluoride release value was for specimens immersed in distilled water and the highest mean was for specimens immersed in Power Horse. After 7 days, for conventional glass ionomer, the lowest mean fluoride release value was for specimens immersed in distilled water and the highest mean was for specimens immersed in Red Bull. For resin-modified glass ionomer, the lowest mean fluoride release value was for specimens immersed in distilled water and the highest mean was for specimens immersed in Power Horse.

Table 4: Means, standard deviations, results of LSD of fluoride release (ppm) of the studied materials in different media after 1, 3, 5 and 7 days. Means with same superscript letters are not significantly different (small letters for rows and capital letters for columns).

Product	Distilled water	Gatorade Perform 02	Pocari Sweat	Red Bull	Power Horse
IonoGem-1day	80.42 ± 1.8	367.2 ± 7.79	296 ± 10.5	428.2 ± 3.24	438.2 ± 3.34
IonoGem-3days	49.6 ± 1.01	266.52 ± 6.53	197.8 ± 16	283.02 ± 4.96	281.8 ± 4.49
IonoGem-5days	± 25.26 0.58	233.6 ± 5.5	188.2 ± 12.6	259.78 ± 3.75	264 ± 4.84
IonoGem-7days	± 15.82 1.0	171.8 ± 4.4	186.4 ± 4.5	193.7 ± 4.54	194.52 ± 3.1
IonoGem LC-1day	16.08 ± 1.96	94.88 ± 1.51	82.24 ± 3.4	106.74 ± 3	117.64 ± 3.03
IonoGem LC-3days	6.34 ± 0.35	70.4 ± 3.2	47.36 ± 1.9	85.94 ± 3.96	89 ± 3.3
IonoGem LC-5days	1.76 ± 0.16	59.88 ± 2.38	45.2 ± 4.74	58.92 ± 2.38	62.6 ± 3.3
IonoGem LC-7days	1.63 ± 0.13	49.12 ± 2.7	41.5 ± 3.22	48.38 ± 3.19	51.94 ± 2.9
fluoride release value was for specimens immersed in distilled water and the highest mean was for specimens immersed in Power Horse. After 5 days, for conventional glass ionomer, the lowest mean fluoride release value was for specimens immersed in distilled water and the highest mean was for specimens immersed in Power Horse. For resin-modified glass ionomer, the lowest mean fluoride release value was for specimens immersed in distilled water and the highest mean was for specimens immersed in Power Horse. After 7 days, for conventional glass ionomer, the lowest mean fluoride release value was for specimens immersed in distilled water and the highest mean was for specimens immersed in Power Horse. For resin-modified glass ionomer, the lowest mean fluoride release value was for specimens immersed in distilled water and the highest mean was for specimens immersed in Power Horse.

There was a significant effect of material, storage media and immersion time (P < 0.05). In addition, there was a significant interaction between material, storage media and immersion time with each other (P < 0.05). LSD test showed that after 1 day, there was a significant difference between different storage media for both studied materials. After 3 days, there was a significant difference between different storage media except Red Bull and Power Horse for both studied materials. After 5 days, for conventional glass ionomer, there was a significant difference between different storage media except Red Bull and Power Horse. For resin-modified glass ionomer, there was a significant difference between distilled water and all storage media and between Pocari Sweat and the other storage media.

After 7 days, for conventional glass ionomer, there was a significant difference between different storage media except Red Bull and Power Horse. For resin-modified glass ionomer, there was a significant difference between distilled water and all storage media and between Pocari Sweat and the other storage media. There were significant differences between conventional and resin-modified glass ionomers at different times. Results of LSD test showed that, for conventional glass ionomer, there was a significant difference of fluoride release among different immersion times for all storage media except Pocari Sweat, there was no significant difference between fifth day and seventh day of immersion. For resin-modified glass ionomer, there was a significant difference among different immersion times for all storage media except distilled water and Pocari Sweat, there was no significant difference between third, fifth and seventh days of immersion.

Discussion

It is well known that glass-ionomer cements (GICs) are clinically attractive dental restorative materials. These cements possess certain unique properties that make them useful as restorative and adhesive materials, including adhesion to tooth structure and base metals, anticariogenic properties due to release of fluoride, thermal compatibility with tooth enamel because of low coefficients of thermal expansion similar to those of tooth structure, biocompatibility and low cytotoxicity. Sport and energy drinks are popular worldwide. Sport drinks are typically formulated to prevent dehydration,
supply carbohydrates to augment available energy, provide electrolytes to replace losses due to perspiration, and be highly palatable.16 Energy drinks are designed to enhance alertness or provide a short-term energy boost. They derive their energy-boosting properties chiefly from sugar and caffeine.17

In the oral cavity, restorative materials are exposed to varying environments. These include changes in temperature and acidic-base conditions from food and drinks. Therefore, the restorative materials used in the mouth should resist or show minimal change in these situations. Therefore, a long immersion time was used as an alternative for presenting the extensive effect of acidic beverages on conventional and resin-modified glass ionomer restorative materials.18

Fracture toughness is a measurement of a material’s ability to resist catastrophic failure.19 Fracture toughness is independent of the size and geometry of the specimen and is a more reliable parameter to predict clinical performance.20

The results showed that there was no significant difference in fracture toughness between sport and energy drinks and distilled water after 1 day for both conventional and resin-modified glass ionomer. Whereas, after 7 days, there was a significant difference between conventional glass ionomer specimens immersed in Red Bull and Power Horse and the other storage media, they underwent severe erosion resulting in dissolution of specimens and loss of strength. This may be because both are carbonated drinks which may have more erosive effect on conventional glass ionomer cements with prolonging immersion time. For the other storage media, there was no significant difference between the first and seventh days of immersion. This may be due to the immersion time was not sufficient enough to affect the mechanical properties. Moreau and Xu21 found that solution pH had little effect on the mechanical properties of resin-modified glass ionomer.

Roughness refers to the surface texture of a material. There are two types: the smoothness resulting from a finishing process, referred to as applied or acquired smoothness, and the smoothness of an unpolished material, referred to as inherent smoothness. Inherent smoothness depends on the filler particle size of the material.22 Surface roughness assessment is important because it is well documented that surface micromorphology can play a role in bacterial colonization and maturation of plaque on restorative materials.23 These interactions may predispose a restoration to the development of secondary caries and may lead to periodontal inflammation.24,25

The results of the current study showed that conventional glass ionomer was rougher in sport and energy drinks than resin-modified glass ionomer. After 1 day of immersion, conventional glass ionomer specimens immersed in sport and energy drinks were more rough than those immersed in distilled water. Whereas, resin-modified glass ionomer specimens immersed in sport and energy drinks were not significantly different from those immersed in distilled water. This indicates that RMGI resist acid better than conventional glass ionomer.
cement. Hamouda IM, 2011 concluded that low pH beverages were the most aggressive media for glass ionomers and compomer, by contrast, composite resin was relatively less affected. Water and natural milk appeared relatively benign towards the tested materials.

Both conventional and resin-modified glass ionomer had more rough surfaces after 7 days. This was owed to these beverages contain citric acid which is carboxylic acid capable of chelating ions present in the cement, such as calcium and forming complexes of reasonable solubility in water. The specimens immersed in Red Bull (pH=3.1) and powerhorse (pH=2.8) showed more rough surfaces than the specimens immersed in Gatorade (pH=2.8) and Pocari Sweat (pH=3.3) for both conventional and resin-modified glass ionomer. These results showed that mere acidity of the storage medium is not responsible for degradation of the cements.

For the analysis of fluoride released from materials into aqueous solutions, an ion-selective electrode (ISE) or Ion Chromatograph (IC) can be used. Ion Chromatograph was chosen in the current study because this method is suitable for the measurement of not only free fluoride ions but also low concentration of fluoride ions that may not be detected by the ISE method. The results of the current study showed that both conventional and resin-modified glass ionomers release more fluoride in acidic beverages than distilled water. This high fluoride release suggests an increase in dissolution of the material and this was observed on the surface roughness. However, conventional glass ionomer released fluoride more than resin-modified glass ionomer. This indicates that RMGI resist acid better than conventional glass ionomer cement. In addition, for both GICs the F released in the first day’s immersion is greater than in the following storage days. The high level of F release on the first day may be caused by the initial superficial rinsing effect (independent of time), while the constant F release during the following days occurs because of the ability of fluoride to diffuse through cement pores and fractures.

Another explanation is that fluoride release has been attributed to acid-base setting reactions involving fluoride-containing glasses and a polyacid liquid leading to fluoride liberation. A progressive and gradual decrease in release rate of fluoride until the seventh storage day was found for both conventional and resin-modified glass ionomer.

The highest fluoride release among sport and energy drinks was recorded for Red Bull (pH=3.1) and powerhorse (pH=2.8) and the lowest fluoride release was recorded for Pocari Sweat (pH=3.3). These results are consistent with surface roughness results, that the specimens immersed in Red Bull and Power Horse showed more rough surfaces which indicates more degradation and hence more fluoride release.

Conclusions

Based on the results and within the limitation of this study, the following conclusions can be made:

1. The fracture toughness was not significantly changed after 1 day for both conventional and resin-
modified glass ionomer. Whereas, after 7 days, there was a reduction in fracture toughness of conventional glass ionomer in Red Bull and Power Horse.

2. Resin-modified glass ionomer showed better resistance to acidic sport and energy drinks but with prolonged consumption of these drinks, surface smoothness could be affected and thus would affect clinical performance of the filling material.

3. Fluoride release increased with the consumption of sport and energy drinks as the degradation of the glass ionomers increased according to the results of surface roughness.

4. The acidity of sport and energy drinks is not an indicator of the erosive potential. As indicated by the results carbonated energy drinks with similar pH to sport drinks had more erosive effects on glass ionomers. Hence, the erosive potential of drinks may depend on titratable acidity of individual drink or the composition of the drinks.

References

1. Ryan M. Sport drinks: Research asks for reevaluation of current recommendation. *Journal of American Diet Association* 1997; 97:197-8.

2. Oliver MM, Krause PR. Powering up with sports and energy drinks. *Journal of Pediatric Health Care* 2007; 21:413-6.

3. Coombes JS. Sports drinks and dental erosion. *American Journal of Dentistry* 2005; 18:101-4.

4. Hooper SM, Hughes JA, Newcombe RG, Addy M, West NX. A methodology for testing the erosive potential of sport drinks. *Journal of Dentistry* 2005; 33:343-8.

5. Wongkhantee S, Patenapiradej V, Maneenut C, Tantbirojn D. Effect of acidic food and drinks on surface hardness of enamel, dentin, and tooth-coloured filling materials. *Journal of Dentistry* 2006; 34:214-20.

6. Mclean JW. The clinical use of glass ionomer cements-future and current development. *Clinical Materials* 2004; 7: 283-8.

7. Mckenzie MA, Linden RWA, Nicholson JW. The physical properties of conventional and resin-modified glass ionomer dental cements stored in saliva, proprietary acidic beverages, saline and water. *Biomaterials* 2003; 24: 4063-69.

8. Okada K, Tokasi S, Hirota K, Hume WR. Surface hardness change of restorative filling materials stored in saliva. *Dental Materials* 2001; 17:34-9.

9. Czarnecka B, Nicholson Jw. Ion release by resin modified glass-ionomer cements into water and lactic acid solutions. *Journal of Dentistry* 2006; 34:539-43.
10. Seow WK, Thong KM. Erosive effects of common beverages on extracted premolar teeth. *Australian Dental Journal* 2005;**50**:173-8.

11. Lucas ME, Artia K, Nishino M. Toughness, bonding and fluoride release properties of hydroxyapatite-added glass ionomer cement. *Biomaterials* 2003;**24**:3787-94.

12. Gao W, Smales RJ. Fluoride release/uptake of conventional and resin-modified glass ionomers, and compomers. *Journal of Dentistry* 2001;**29**:301-6.

13. American Society for Testing and Materials. Standard test method for plain strain fracture toughness of metallic materials. *ASTM* E399-90, 1992; pp 664-6.

14. Itota T, Carrick TE., Rusby S, Al-Naimi OT, Yoshiyama M, McCabe JF. Determination of fluoride ions released from resin-based dental materials using ion-selective electrode and ion chromatograph. *Journal of Dentistry* 2004;**32**: 117-22.

15. Wilson AD. Resin-modified glass-ionomer cements. *International Journal of Prosthodontics* 1990;**3**:425-9.

16. Coombes JS. Sports drinks and dental erosion. *American Journal of Dentistry* 2005; **18**:101-4.

17. Malinauskas B, Aeby VG, Overton RF, Carpenter-Aeby T, Barber-Heidk A. A survey of energy drink consumption patterns among college students. *Nutrition Journal* 2007;**6**:35-41.

18. Chanothai Hengtrakool, Boonlert Kukiattrakool, Urepon Kedjarune-Leggat. Effect of naturally acidic agents on microhardness and surface micromorphology of restorative materials. *European Journal of Dentistry* 2011;**5**:89-100.

19. Fujishima A, Ferracane JL. Comparison of four modes of fracture toughness testing for dental composites. *Dental Materials* 1996;**12**:38-43.

20. Mitchell CA, Douglas WH, Chengb Y-S. Fracture toughness of conventional, resin-modified glass-ionomer and composite luting cements. *Dental Materials* 1999;**15**:7-13.

21. Moreau JL, XuHH. Fluoride releasing restorative materials: Effects of pH on mechanical properties and ionrelease. *Dental Materials* 2010;**26**:227-35.

22. Albers HF. Tooth-Colored Restoratives Principles and Techniques. BC Decker Inc Hamilton, Ontario 9thed, 2002, PP 10,11,45-9.

23. Quirynen M, Bollen CM. The influence of surface roughness and surface-free energy on supra- and subgingival plaque formation in man. *Journal of Clinical Periodontology* 1995;**22**:1-14.

24. Bollen CM, Lambrechts P, Quirynen M. Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque
25. Shabanian M, Richards LC. In vitro wear rates of materials under different loads and varying pH. *Journal of Prosthetic Dentistry* 2002; 87:650-6.

26. Hamouda IM. Effects of various beverages on hardness, roughness, and solubility of esthetic restorative materials. *Journal of Esthetic and Restorative Dentistry* 2011; 23:315-22.

27. Kennes C, Veiga MC, Dubourguier HC, Touzel JP, Albagnac G, Nyns EJ. Trophic relationships between Saccharomyces cerevisiae and Lactobacillus plantarum and their metabolism of glucose and citrate. *Applied Environ Microbiology* 1991; 57:1046-51.

28. McCabe JF, Carrick TE, Sidhu SK. Determining low levels of fluoride released from resin based dental materials. *European Journal of Oral Science* 2002; 110:380-4.

29. De Moor RJ, Verbeeck RM. Changes in surface hardness of conventional restorative glass ionomer cements. *Biomaterials* 1998; 24:2269-75.

30. Show L, Smith AJ. Dental erosion: the problem and practical solutions. *British Dental Journal* 1999; 3:115-8.