Search for heavy resonances decaying to a top quark and a bottom quark in the lepton+jets final state in proton-proton collisions at 13 TeV

The CMS Collaboration

Abstract

A search is presented for narrow heavy resonances decaying to a top quark and a bottom quark using data collected by the CMS experiment at $\sqrt{s} = 13$ TeV in 2016. The data set analyzed corresponds to an integrated luminosity of 35.9 fb$^{-1}$. Final states that include a single lepton (e, μ), multiple jets, and missing transverse momentum are analyzed. No evidence is found for the production of a W' boson, and the production of right-handed W' bosons is excluded at 95% confidence level for masses up to 3.6 TeV depending on the scenario considered. Exclusion limits for W' bosons are also presented as a function of their coupling strength to left- and right-handed fermions. These limits on a W' boson decaying via a top and a bottom quark are the most stringent published to date.

Submitted to Physics Letters B
1 Introduction

Despite the broad success of the standard model (SM), the absence of answers to the hierarchy problem, among other shortcomings, has led to the development of many theories for new physics that lies beyond the SM. A common prediction of many of these theories is the existence of new heavy gauge bosons [1–5]. These particles typically arise from additional symmetries in the theories, and it is common to generically refer to charged instances of these resonances as W′ bosons. In scenarios where the W′ boson is sufficiently heavy, the decay W′ → tb has several features that make it an appealing search channel. Searches in this channel directly probe the W′ boson coupling to third generation quarks, which, in some models [6, 7], can be enhanced with respect to that to lighter quarks. Additionally, the large continuum multijet background has less impact on searches for W′ → tb decay than on searches for the decay to light quarks (W′ → q̄q′). The W′ → tb search is complementary to searches for W′ → ℓν and W′ → WZ, where ℓ denotes a charged lepton and ν denotes a neutrino. Unlike searches for W′ → ℓν, the search for W′ → tb → bbℓν decay allows the W′ boson mass to be fully reconstructed, up to a quadratic ambiguity.

Searches for W′ bosons in the top and bottom quark (tb) decay channel have been performed at the Fermilab Tevatron [8–10] and at the CERN LHC by both CMS [11–13] and ATLAS [14, 15] Collaborations. The most stringent limits to date on the production of W′ bosons come from the CMS search performed at √s = 13 TeV [13], using 2.2 fb⁻¹ of data collected in 2015.

This Letter presents a search for W′ bosons decaying via the tb channel using proton-proton collision data at √s = 13 TeV, collected by the CMS experiment in 2016. The analyzed data correspond to an integrated luminosity of 35.9 fb⁻¹. Events with exactly one electron or muon, significant missing transverse momentum, and multiple jets in the final state are selected. This search focuses on W′ bosons with widths that are narrow compared to their masses. In addition to searching for W′ bosons with purely right- or left-handed couplings, we also search for W′ bosons with varying combinations of these couplings. This analysis is sensitive to W′ bosons with masses between 1 and 4 TeV.

2 The CMS detector

The central feature of the CMS apparatus [16] is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and two endcap sections. Forward calorimeters extend the pseudorapidity (η) coverage provided by the barrel and endcap detectors. Muons are measured in gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid.

In the barrel section of the ECAL, an energy resolution of about 1% is achieved for unconverted or late-converting photons in the tens of GeV energy range. The resolution for photons not belonging to this category is about 1.3% up to |η| = 1, rising to about 2.5% at |η| = 1.4. In the endcaps, the resolution of unconverted or late-converting photons is about 2.5%, while the remaining photons have a resolution between 3 and 4% [17]. When combining information from the entire detector, the jet energy resolution amounts typically to 15% at 10 GeV, 8% at 100 GeV, and 4% at 1 TeV, to be compared to about 40, 12, and 5% obtained when the ECAL and HCAL calorimeters alone are used [18].

The electron momentum is estimated by combining the energy measurement in the ECAL with
the momentum measurement in the tracker. The momentum resolution for electrons with transverse momentum \(p_T \approx 45 \text{ GeV} \) from \(Z \to ee \) decays ranges from 1.7\% for nonshowering electrons in the barrel region to 4.5\% for showering electrons in the endcaps [19].

Muons are measured in the range \(|\eta| < 2.4\), with detection planes made using three technologies: drift tubes, cathode strip chambers, and resistive-plate chambers. Matching muons to tracks measured in the silicon tracker results in a relative transverse momentum resolution for muons with \(20 < p_T < 100 \text{ GeV} \) of 1.3–2.0\% in the barrel, and better than 6\% in the endcaps. The \(p_T \) resolution in the barrel is better than 10\% for muons with \(p_T \) up to 1 TeV [20].

The particle-flow (PF) algorithm [21] reconstructs and identifies individual particle candidates with an optimized combination of information from relevant elements of the CMS detector. The energy of photons is measured using the ECAL and corrected for zero-suppression effects. The energy of electrons is determined from a combination of the electron momentum at the primary interaction vertex as determined by the tracker, the energy of the corresponding ECAL cluster, and the energy sum of all bremsstrahlung photons spatially compatible with originating from the electron track. The primary interaction vertex is defined as the vertex with the largest sum of \(p_T^2 \) of associated tracks. The energy of muons is obtained from the curvature of the corresponding track. The energy of charged hadrons is determined from a combination of their momentum measured in the tracker and the matching ECAL and HCAL energy deposits. This measurement is then corrected for zero-suppression effects and for the response function of the calorimeters to hadronic showers. Finally, the energy of neutral hadrons is obtained from the corresponding corrected ECAL and HCAL energy.

The missing transverse momentum vector \(\vec{p}_T^{\text{miss}} \) is defined as the projection on the plane perpendicular to the beams of the negative vector sum of the momenta of all reconstructed particles in an event.

A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [16].

3 Signal and background modeling

3.1 Signal modeling

Signal samples are generated at leading order and their cross sections are scaled to next-to-leading order with a K-factor of 1.25 [22, 23] appropriate for our signal mass range of interest. All signal samples are generated using the COMPILEP [24] 4.5.2 package according to the following model-independent, lowest-order effective Lagrangian [22]:

\[
\mathcal{L} = \frac{V_{f,f_i}}{2\sqrt{2}} g_W f_i \gamma_\mu \left[a_R (1 + \gamma^5) + a_L (1 - \gamma^5) \right] W'^\mu f_j + \text{h.c.,}
\]

where \(V_{f,f_i} \) is the Cabibbo–Kobayashi–Maskawa matrix if \(f \) is a quark and \(V_{f,f_i} = \delta_{ij} \) if \(f \) is a lepton, \(g_W \) is the SM weak coupling constant, and \(a_R \) and \(a_L \) are the coupling strengths of the \(W' \) to right- and left-handed fermions, respectively. For any signal with \(a_L > 0 \) we take into account interference with the SM W boson. The signal simulation includes decays involving a \(\tau \) lepton, and no distinction is made in the analysis selection or strategy between an electron or muon produced directly from the W boson decay, and an electron or muon from a subsequent \(\tau \) lepton decay. We use \(W' \) boson width values computed in COMPILEP for each mass point, and use a narrow-width approximation for the generation of \(W' \) bosons that have both left- and right-handed couplings. The typical width is approximately 3\% of the signal resonance mass. The widths of all generated samples are significantly smaller than the detector
and reconstruction resolutions, and therefore the precise values of the width do not affect our results.

For W'_R bosons we consider two scenarios for the mass of the hypothetical right-handed neutrinos. If the right-handed neutrinos are lighter than the W'_R boson ($M_{\nu_R} < M_{W'_R}$), then both $W'_R \rightarrow \ell \nu_R$ and $W'_R \rightarrow q\bar{q}'$ decays are allowed. However, if the right-handed neutrinos are heavier than the W'_R boson ($M_{\nu_R} > M_{W'_R}$), then the $W'_R \rightarrow \ell \nu_R$ decay is forbidden, resulting in an enhancement of the branching fraction for $W' \rightarrow tb$. This branching fraction varies slightly with mass and ranges from 0.32 to 0.33 if $M_{\nu_R} > M_{W'_R}$ and from 0.24 to 0.25 if $M_{\nu_R} < M_{W'_R}$ for W'_R boson masses between 1 and 4 TeV. For the purposes of signal generation all neutrinos are assumed to be massless. When calculating the number of expected signal events (in Table 1) or showing expected signal distributions (in Figs. 1 and 2), it is always assumed that the masses of hypothetical right-handed neutrinos are much lighter than that of the W'_R boson. Both scenarios are considered when presenting results for W'_R (in Figs. 3 and 4).

3.2 Background modeling

The most significant contributions to the background come from W+jets and $t\bar{t}$ production. Smaller contributions to the total background, from s- and t-channel single top quark production, associated production of a top quark and a W boson, Z/γ^*+jets, and diboson production (VV), are also included. Predictions for all background processes are taken from simulation with corrections applied in cases where initial modeling is found to be inaccurate. Further details on the background modeling can be found in Section 5. The contribution to the total background from the multijet background is found to be negligible after the full selection and is therefore not included.

Simulated samples for Z/γ^*+jets, s- and t-channel single-top quark, and W+jets events are produced using MadGraph5_aMC@NLO [25–27] v2.2.2, $t\bar{t}$ and associated production of a top quark and a W boson, Z/γ^*+jets, and diboson production (VV), are also included. Predictions for all background processes are taken from simulation with corrections applied in cases where initial modeling is found to be inaccurate. Further details on the background modeling can be found in Section 5. The contribution to the total background from the multijet background is found to be negligible after the full selection and is therefore not included.

All simulated signal and background samples are processed through PYTHIA for parton fragmentation and hadronization. The simulation of the CMS detector is performed by GEANT 4 [35,36]. The NNPDF 3.0 parton distribution function (PDF) set is used for sample generation [37]. All simulated samples include additional proton-proton interactions (pileup) and are weighted such that the distribution of the number of interactions in each event agrees with that in the data.

4 Event selection

All leptons, jets, and p_T^{miss} used in this search are reconstructed using the particle-flow algorithm. Jets are clustered using the anti-k_T algorithm [38,39] with a size parameter of 0.4 (AK4), and dedicated jet energy corrections [18,40] are then applied. Any charged hadrons that are not associated with the leading vertex are removed from the event, using the charged hadron subtraction method [41]. The leading vertex is defined as the primary vertex with the largest squared sum of the transverse momenta of its associated tracks. The neutral-hadron contribution to jets from pileup is also subtracted, using the jet area method [42]. Charged hadron
subtraction is applied before any jet clustering, while area-based subtractions are applied after clustering but before the final level of jet energy corrections.

Jet momentum is determined as the vectorial sum of all particle momenta in the jet, and is found from simulation to be within 5 to 10% of the true momentum over the whole p_T spectrum and detector acceptance [16]. An offset correction is applied to jet energies to take into account the contribution from pileup. Jet energy corrections are derived from simulation, and are confirmed with in situ measurements of the energy balance in dijet, multijet, photon+jet, and leptonically decaying Z+jets events. Additional selection criteria are applied to each event to remove spurious jet-like features originating from isolated noise patterns in certain HCAL regions.

The combined secondary vertex version 2 algorithm [43, 44] is used to identify jets that have originated from a b quark. The algorithm combines secondary vertex and track based lifetime information to discriminate b jets from light quark and gluon jets. The operating point used has a b jet identification (b tagging) efficiency of 80% and a light-flavor jet misidentification (mistag) probability of 10%. Our signal selection requires at least one of the two leading p_T jets to be b-tagged. This requirement is critical in reducing the contributions from some SM background processes like W+jets. Scale factors to account for observed differences between data and simulation are applied as a function of p_T.

The event selection, which is optimized separately for the electron and muon channels, results in different requirements for the two channels. Most notably, the multijet background, through misidentification of showers, is significantly larger in the electron channel than in the muon channel. For electron events we therefore require higher $|\vec{p}_T^{\text{miss}}|$ and correspondingly lower leading jet p_T than for muon events, in order to keep acceptance high for signal events.

Events are required to have at least 2 jets with $p_T > 30$ GeV and $|\eta| < 2.4$, and the leading p_T jet must have $p_T > 350$ (450) GeV in the electron (muon) channel.

One lepton in each event is required to have fired a single-lepton trigger that has no isolation requirement, be within the detector acceptance ($|\eta| < 2.5$ for electrons, excluding the barrel endcap transition region, $1.444 < |\eta| < 1.566$, and $|\eta| < 2.4$ for muons) and be associated with a reconstructed primary vertex. For heavy W’ resonance masses, the top quark from the W’ decay is highly boosted, causing the b-jet and lepton to be close to each other. For this reason, leptons are not required to be isolated. Electrons and muons are required to have $p_T > 180$ GeV and to fulfill several identification criteria. Electron candidates are selected using a boosted decision tree based on the shower shape information, the quality of the track, the match between the track and electromagnetic cluster, the fraction of total cluster energy in the hadronic calorimeter, the amount of activity in the surrounding regions of the tracker and calorimeters, and the probability of the electron originating from a converted photon. The track associated with a muon candidate is required to have hits in the pixel and muon detectors, a good-quality fit, and be consistent with originating from the primary vertex. To reduce the multijet background, the candidate lepton is required to satisfy either $\Delta R(\text{lepton, nearest jet}) > 0.4$ or $p_T^{\text{miss}}(\text{lepton, nearest jet}) > 60$ (50) GeV for electrons (muons), where $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$ and p_T^{miss} is defined as the magnitude of the lepton momentum orthogonal to the jet axis. Events with additional charged leptons with $p_T > 35$ GeV and $|\eta| < 2.5$ for electrons and $|\eta| < 2.4$ for muons are vetoed.

The 4-vectors of identified lepton candidate particles are subtracted from those of jets containing them. This procedure helps to ensure the reconstructed jets are not contaminated by nearby high-energy leptons as is common in the characteristic boosted signal topology. Scale factors
resulting from small differences between lepton identification and trigger efficiencies in data and simulation are derived in a \(Z \rightarrow \ell\ell \) sample as a function of \(|\eta|\) and \(p_T \) and applied as a correction to simulated events.

Events are required to have at least \(|\vec{p}_T^{\text{miss}}| > 120 \) (50) GeV in the electron (muon) channel. Additionally, events in the electron channel must have \(|\Delta\phi(e, \vec{p}_T^{\text{miss}})| < 2\) radians. These requirements are responsible for differences between the two channels in yields from some background processes. This selection, along with the other requirements, also helps reject nearly all multijet background events.

4.1 Mass reconstruction

The \(t\bar{b} \) invariant mass is reconstructed from the momenta of the charged lepton and two jets in the event, together with the \(\vec{p}_T^{\text{miss}} \). The transverse components of the neutrino momentum are set to the \(\vec{p}_T^{\text{miss}} \) and the longitudinal component \(p^\nu_z \) is calculated by constraining the invariant mass of the lepton and neutrino to the W boson mass. This method leads to a quadratic equation in \(p^\nu_z \). In the case that the two solutions are real numbers, both solutions are used to reconstruct W boson candidates. If both solutions contain imaginary parts, then \(p^\nu_z \) is set to the real part of the solutions, and then recompute \(p^\nu_T \), which yields another quadratic ambiguity. In this case, we use only the solution with the mass closest to 80.4 GeV. Once all the components of the neutrino momentum have been assigned, the viable solutions for the neutrino are combined with the charged lepton to define W boson candidate(s). The top quark candidate is then reconstructed by combining the four-momenta of each W boson candidate with each jet with \(p_T > 25 \) GeV and \(|\eta| < 2.4\). The jet that yields a top quark mass closest to the nominal top quark mass is used to reconstruct the top quark candidate. In the case of two W candidates, only the candidate that yields the best top quark mass is used. Finally, the top quark candidate is combined with the highest \(p_T \) jet remaining in the event, yielding the reconstructed W' candidate. The mass of the W' candidate is referred to as \(M_{tb} \).

Additional requirements are placed on the combinations of objects involved in the mass reconstruction, which helps reject background events. The top quark candidate is required to have \(p_T > 250 \) GeV and \(100 < m_t < 250 \) GeV, and \(p_T^{j1+j2} > 350 \) GeV, where \(p_T^{j1+j2} \) is the \(p_T \) of the four-vector sum of the two leading \(p_T \) jets.

Two event categories based on \(p_T \) and \(p_T^{j1+j2} \) are used when setting cross section limits. All events satisfying the above criteria are classified as Type A except for those with \(p_T > 650 \) GeV and \(p_T^{j1+j2} > 700 \) GeV, which are labeled Type B events. This categorization improves the sensitivity to high signal masses without sacrificing the performance for lower masses.

Finally, events are also separated into two categories based on whether both (2 b tags) or only one (1 b tag) of the two leading \(p_T \) jets is b-tagged.

Event yields in all these categories after the event selection are shown in Table 1.

5 Backgrounds

5.1 The W+jets background

For the W+jets background, the relative fractions of the heavy and light flavor components in simulation are known to differ from those in data [45]. The validity of the modeling of the flavor content is tested and two scale factors are derived for W+jets heavy and light flavor events using two samples that differ from the signal selection only in b tagging. The pre tag
Table 1: Observed and expected event yields from all the background processes and W'_R bosons with three different masses. HF and LF indicate heavy flavor and light flavor events, respectively. Yields are separated into 8 event categories by the lepton type (e or μ), number of b tags (1 or 2), and p_T^T and $p_T^{j_1+j_2}$ (Type A or B). The uncertainty in the total expected background includes both the systematic and statistical sources.

Process	Electron channel	Muon channel							
	Type A	Type B	Type A	Type B	Type A	Type B			
	1 b tag 2 b tags								
Background									
$t\bar{t}$	760	249	69	22	731	263	75	30	
t_{qb}	14	6	1	0	14	6	1	0	
tW	117	50	15	5	116	44	22	5	
tb	2	2	0	0	3	1	0	0	
$W(\to \ell\nu)+$jets (LF)	189	17	16	2	177	16	15	1	
$W(\to \ell\nu)+$jets (HF)	581	98	52	7	631	107	51	8	
$Z(\to \ell\ell)+$jets	19	11	0	0	64	1	20	0	
VV	35	9	2	0	33	1	5	4	
	Total background	1717±62	**442±34**	155±23	36±7	1769±70	439±30	189±22	48±9

Data | 1750 | 437 | 133 | 40 | 1754 | 482 | 164 | 44 |

Signal | $M_{W_R} = 2000$ GeV | 53 | 43 | 41 | 25 | 79 | 75 | 57 | 35 |
| $M_{W_R} = 2600$ GeV | 8 | 6 | 16 | 10 | 14 | 12 | 24 | 15 |
| $M_{W_R} = 3200$ GeV | 2 | 1 | 4 | 3 | 3 | 2 | 8 | 5 |

The scale factors are found to be $2.10^{\pm0.18}$ and $0.49^{\pm0.10}$ for W+jets heavy and light flavor events, respectively. The corresponding scale factor is then applied to all simulated W+jets events. Uncertainties are determined from repeating the calculation after varying the b tagging efficiencies and mistag rates within their uncertainties.

5.2 The top quark pair production background

For the $t\bar{t}$ background, we verify normalization as well as the modeling of the top quark p_T. This check is performed in two signal-depleted $t\bar{t}$-enriched regions: one that requires $450 < M_{tb} < 750$ GeV and at least two b tags, and another that removes the second-lepton veto and instead requires an additional electron or muon with a p_T of at least 35 GeV. These comparisons motivate a reweighting of the $t\bar{t}$ background using a correction factor obtained from measurements of the differential top quark p_T distribution. This correction factor is applied to the $t\bar{t}$ simulation, as a function of the generator-level top quark p_T. The $t\bar{t}$ simulation without the correction factor applied is used as an estimate of the systematic uncertainty in the reweighting procedure.

6 Systematic uncertainties

The systematic uncertainties in this analysis can be grouped into two categories: uncertainties in the overall normalization and in the shape of the M_{tb} distribution.
Table 2: List of systematic uncertainties taken into account in the analysis. For sources that affect the shape of the $M_{b\bar{b}}$ distribution the given rate uncertainty is approximate. The pileup, top quark p_T reweighting, and W+jets heavy/light flavor systematic uncertainties are described in more detail in the text. A check mark in the “Signal” column indicates that the uncertainty is also applied to the signal samples. For the PDF uncertainty, only its shape component is included for signal samples.

Source	Rate uncertainty	Signal
Integrated luminosity	2.5%	✓
$t\bar{t}$ cross section	8%	—
W+jets cross section	10%	—
Trigger eff. (e/μ)	2%/2%	✓
Lepton id. eff. (e/μ)	2%/2%	✓
Jet energy scale	3%	✓
Jet energy resolution	1%	✓
b/c tagging	2%	✓
Light quark mistagging	2%	✓
Pileup	1%	✓
PDF	6%	✓
Top quark p_T reweighting	15%	—
W+jets heavy/light flavor	1%	—
μ_R and μ_F scales	15%	—

The normalization uncertainties include the uncertainty in the integrated luminosity (2.5%) [46], the $t\bar{t}$ and W+jets cross sections (8 and 10%, respectively), the lepton identification (2%), and the trigger efficiencies (2%).

The uncertainty due to variations in the renormalization and factorization scales (μ_R and μ_F, respectively) is evaluated at the matrix element level using event weights from varying the scales by 0.5 and 2 while restricting to $0.5 \leq \mu_R/\mu_F \leq 2$ [47, 48].

Uncertainties resulting from ±1 standard deviation (s.d.) variations in the b tagging efficiency and mistagging rate scale factors, jet energy scale, and jet energy resolution are also included.

A correction is applied to all simulated samples to better match the distribution of pileup interactions observed in data. This procedure uses a total inelastic cross section of 69.2 mb, and an uncertainty is calculated by varying the cross section by ±5% [49].

To estimate the uncertainty arising from the choice of PDF, we evaluate the root-mean-square of the distribution of 100 NNPDF 3.0 replicas as the ±1 s.d. uncertainties according to the guidelines in Ref. [50]. When considering signal samples only the shape component of the uncertainty due to PDFs is included.

The uncertainty in the W+jets heavy and light flavor scale factors is included as a variation in the W+jets background. The $t\bar{t}$ background with an uncorrected top quark p_T spectrum is included as a one-sided +1 s.d. variation.

All uncertainties are listed in Table 2. The uncertainties with the largest effect on the overall background normalization are those associated with the top quark p_T reweighting, μ_R and μ_F scales, and PDFs, which have effects of approximately 15, 15, and 6%, respectively.
7 Results

Distributions of M_{tb} are shown in Figs. 1 and 2. The binning is chosen to reduce uncertainties due to the size of the simulated event samples and is one bin from 0 to 500 GeV, eight bins of 200 GeV width from 500 to 2100 GeV, one bin from 2100 to 2400 GeV, one bin from 2400 to 3000 GeV, and one bin above 3000 GeV. Having observed that data agree with the predicted SM background processes, we set 95% confidence level (CL) upper limits on the W' boson production cross section for masses between 1 and 4 TeV.

The analysis separates events into eight independent categories in order to improve the signal sensitivity. Categories are created according to lepton type (electron or muon), the number of b-tagged jets among the first two leading p_T jets (1 or 2), and p_T^j and p_T^{j+b} (Type A or B). Categorization according to the number of b tags allows the analysis to maintain acceptance because of the lack of interference, the effective Lagrangian in Eq. (1) allows us to analyze the interference between the SM models with arbitrary combinations of left- and right-handed couplings [12]. In order to accomplish this the interference between the SM s-channel tb production and the tb production via an intermediate left-handed W' boson must be accounted for since these processes initial and final states are identical.

The cross section for single top quark production given a W' and final states are identical. via an intermediate left-handed W' boson must be accounted for since these processes initial and final states are identical. The four simulated signals are calculated using a Bayesian method with a prior uniform in the signal cross section, as implemented with the THETA package [51]. The Bayesian approach uses a binned likelihood in order to calculate the 95% CL upper limits on the product of the signal production and the branching fraction $\sigma(pp \rightarrow W')B(W' \rightarrow tb)$. Statistical uncertainties related to the background prediction are treated using the “Barlow–Beeston lite” method [52]. All uncertainties given in Section 6 are included as nuisance parameters. Uncertainties in the shape of the M_{tb} distribution are treated using template interpolation and all rate uncertainties are included with log-normal priors.

Results for right-handed W' bosons are shown in Figs. 3 and 4. W'_R bosons with masses below 3.4 TeV are excluded at 95% CL.

Although models with a W' boson that couples exclusively to right-handed fermions is simpler because of the lack of interference, the effective Lagrangian in Eq. (1) allows us to analyze models with arbitrary combinations of left- and right-handed couplings [12]. In order to accomplish this the interference between the SM s-channel tb production and the tb production via an intermediate left-handed W' boson must be accounted for since these processes initial and final states are identical.

The cross section for single top quark production given a W' boson can be written for any set of a_L and a_R coupling values in terms of the cross sections of four simulated signal samples. It is assumed that the couplings to fermions are independent of generation, such that each signal can be described by a single value of a_L and a single value of a_R. The four simulated signals are then σ_L for purely left-handed couplings $(a_L, a_R) = (1, 0)$, σ_R for purely right-handed couplings $(a_L, a_R) = (0, 1)$, σ_{LR} for mixed couplings $(a_L, a_R) = (1/\sqrt{2}, 1/\sqrt{2})$, and σ_{SM} for SM couplings $(a_L, a_R) = (0, 0)$, and the cross section for single top quark production is

$$\sigma = (1 - a_L^2)\sigma_{SM} + \frac{1}{a_L^2 + a_R^2}\left[a_L^2(a_L^2 - a_R^2)\sigma_L + a_R^2(a_R^2 - a_L^2)\sigma_R + 4a_L^2a_R^2\sigma_{LR} - 2a_L^2a_R^2\sigma_{SM}\right].$$

By combination four signal samples according to this equation we are able to produce invariant mass distributions for a W' boson with arbitrary a_L and a_R couplings.

It should be noted that in the case that the W' boson couples exclusively to right-handed fermions, this equation reduces to the sum of SM s-channel tb production and W'_R production, as expected. For pure W'_L or W'_{LR} boson production, the equation reduces to the cross section

$$\sigma = (1 - a_L^2)\sigma_{SM} + \frac{1}{a_L^2 + a_R^2}\left[a_L^2(a_L^2 - a_R^2)\sigma_L + a_R^2(a_R^2 - a_L^2)\sigma_R + 4a_L^2a_R^2\sigma_{LR} - 2a_L^2a_R^2\sigma_{SM}\right].$$
Figure 1: The reconstructed M_{tb} distributions in the 1 b tag (upper) and 2 b tags (lower) categories, for the electron (left) and muon (right) channels, for Type A events. Distributions for W'_R bosons with masses of 2, 2.5, and 3 TeV are shown. The distribution is shown after the application of all selections. The background uncertainty includes both statistical and systematic components, while “Tot. unc.” in the lower panels corresponds to the combined uncertainty of the background prediction and data.
Figure 2: The reconstructed M_{tb} distributions in the 1 b tag (upper) and 2 b tags (lower) categories, for the electron (left) and muon (right) channels, for Type B events. Distributions for W'_R bosons with masses of 2, 2.5, and 3 TeV are shown. The distribution is shown after the application of all selections. The background uncertainty includes both statistical and systematic components, while “Tot. unc.” in the lower panels corresponds to the combined uncertainty of the background prediction and data.
Figure 3: Upper limit at 95% CL on the \(W'_R \) boson production cross section separately in the electron (left) and muon (right) channels. Signal masses for which the theoretical cross section (in red and blue for \(M_{VR} \ll M_{W'} \) and \(M_{VR} > M_{W'} \) respectively) exceeds the observed upper limit (in solid black) are excluded at 95% CL. The green and yellow bands represent the ±1 and 2 s.d. uncertainties in the expected limit, respectively.

Figure 4: Upper limit at 95% CL on the \(W'_R \) boson production cross section for the combined electron and muon channels. Signal masses for which the theoretical cross section (in red and blue for \(M_{VR} \ll M_{W'} \) and \(M_{VR} > M_{W'} \), respectively) exceeds the observed upper limit (in solid black) are excluded at 95% CL. The green and yellow bands represent the ±1 and 2 s.d. uncertainties in the expected limit, respectively.

of the respective sample, which is generated already including SM s-channel tb production and interference with \(W' \) production.

A scan is performed over the \(a_L \) and \(a_R \) plane in 0.1 steps from 0 to 1 to produce cross section limits for arbitrary combinations of \(a_L \) and \(a_R \). For each point in the scan the expected and observed 95% CL upper limits on the cross section are calculated using the same method described above. Figure 5 shows the excluded \(W' \) boson mass for each \((a_L, a_R)\) point, in addition to an interpolation between points to create smooth contours of equivalent signal mass limits.
Summary

A search for a narrow heavy W' boson resonance decaying to a top quark and a bottom quark has been performed in lepton+jets final states using data collected at $\sqrt{s} = 13$ TeV by the CMS detector in 2016, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. No evidence is observed for the production of a W' boson, and 95% CL upper limits on the product of the right-handed W' (W'_R) boson production cross section and its branching fraction to a top and a bottom quark are calculated as a function of the W'_R boson mass. The observed (expected) 95% CL upper limit is 3.4 (3.3) TeV if $M_{W'_R} \gg M_{\nu_R}$ and 3.6 (3.5) TeV if $M_{W'_R} < M_{\nu_R}$, where M_{ν_R} is the mass of the right-handed neutrino. Exclusion limits are also presented for W' bosons with varied left- and right-handed couplings to fermions, for the first time at $\sqrt{s} = 13$ TeV. These results are the most stringent limits to date on the production of W' bosons that decay to a top and a bottom quark.

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM
(Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR and RAEP (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI and FEDER (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

Individuals have received support from the Marie-Curie programme and the European Research Council and Horizon 2020 Grant, contract No. 675440 (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS programme of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus programme of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406; the National Priorities Research Program by Qatar National Research Fund; the Programa Clarín-COFUND del Principado de Asturias; the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); and the Welch Foundation, contract C-1845.
References

[1] M. Schmaltz and D. Tucker-Smith, “Little Higgs review”, *Ann. Rev. Nucl. Part. Sci.* 55 (2005) 229, doi:10.1146/annurev.nucl.55.090704.151502, arXiv:hep-ph/0502182.

[2] T. Appelquist, H.-C. Cheng, and B. A. Dobrescu, “Bounds on universal extra dimensions”, *Phys. Rev. D* 64 (2001) 035002, doi:10.1103/PhysRevD.64.035002, arXiv:hep-ph/0012100.

[3] H.-C. Cheng, C. T. Hill, S. Pokorski, and J. Wang, “Standard model in the latticized bulk”, *Phys. Rev. D* 64 (2001) 065007, doi:10.1103/PhysRevD.64.065007, arXiv:hep-ph/0104179.

[4] R. S. Chivukula, E. H. Simmons, and J. Terning, “Limits on noncommuting extended technicolor”, *Phys. Rev. D* 53 (1996) 5258, doi:10.1103/PhysRevD.53.5258, arXiv:hep-ph/9506427.

[5] R. N. Mohapatra and J. C. Pati, “Left-right gauge symmetry and an ‘isoconjugate’ model of CP violation”, *Phys. Rev. D* 11 (1975) 566, doi:10.1103/PhysRevD.11.566.

[6] D. J. Muller and S. Nandi, “Topflavor: a separate SU(2) for the third family”, *Phys. Lett. B* 383 (1996) 345, doi:10.1016/0370-2693(96)00745-9, arXiv:hep-ph/9607328.

[7] E. Malkawi, T. Tait, and C.-P. Yuan, “A model of strong flavor dynamics for the top quark”, *Phys. Lett. B* 385 (1996) 304, doi:10.1016/0370-2693(96)00859-3, arXiv:hep-ph/9603349.

[8] D0 Collaboration, “Search for W′ boson resonances decaying to a top quark and a bottom quark”, *Phys. Rev. Lett.* 100 (2008) 211803, doi:10.1103/PhysRevLett.100.211803, arXiv:0803.3256.

[9] D0 Collaboration, “Search for W′ → tb resonances with left- and right-handed couplings to fermions”, *Phys. Lett. B* 699 (2011) 145, doi:10.1016/j.physletb.2011.03.066, arXiv:1101.0806.

[10] CDF Collaboration, “Search for resonances decaying to top and bottom quarks with the CDF experiment”, *Phys. Rev. Lett.* 115 (2015) 061801, doi:10.1103/PhysRevLett.115.061801, arXiv:1504.01536.

[11] CMS Collaboration, “Search for W′ → tb decays in the lepton+jets final state in pp collisions at √s = 8 TeV”, *JHEP* 05 (2014) 108, doi:10.1007/JHEP05(2014)108, arXiv:1402.2176.

[12] CMS Collaboration, “Search for W′ → tb decays in proton-proton collisions at √s = 8 TeV”, *JHEP* 02 (2016) 122, doi:10.1007/JHEP02(2016)122, arXiv:1509.06051.

[13] CMS Collaboration, “Searches for W′ bosons decaying to a top quark and a bottom quark in proton-proton collisions at 13 TeV”, (2017). arXiv:1706.04260 Submitted to *JHEP*.

[14] ATLAS Collaboration, “Search for W′ → tb → qqqb decays in pp collisions at √s = 8 TeV with the ATLAS detector”, *Eur. Phys. J. C* 75 (2015) 165, doi:10.1140/epjc/s10052-015-3372-2, arXiv:1408.0886.
[15] ATLAS Collaboration, “Search for W' → $t\bar{t}$ in the lepton plus jets final state in proton-proton collisions at a centre-of-mass energy of $\sqrt{s} = 8$ TeV with the ATLAS detector”, Phys. Lett. B 743 (2015) 235, doi:10.1016/j.physletb.2015.02.051, arXiv:1410.4103

[16] CMS Collaboration, “The CMS experiment at the CERN LHC”, JINST 3 (2008) S08004, doi:10.1088/1748-0221/3/08/S08004.

[17] CMS Collaboration, “Performance of photon reconstruction and identification with the CMS detector in proton-proton collisions at $\sqrt{s} = 8$ TeV”, JINST 10 (2015) P08010, doi:10.1088/1748-0221/10/08/P08010, arXiv:1502.02702.

[18] CMS Collaboration, “Determination of jet energy calibration and transverse momentum resolution in CMS”, JINST 6 (2011) P11002, doi:10.1088/1748-0221/6/11/P11002, arXiv:1107.4277.

[19] CMS Collaboration, “Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at $\sqrt{s} = 8$ TeV”, JINST 10 (2015) P06005, doi:10.1088/1748-0221/10/06/P06005, arXiv:1502.02701.

[20] CMS Collaboration, “Performance of CMS muon reconstruction in pp collision events at $\sqrt{s} = 7$ TeV”, JINST 7 (2012) P10002, doi:10.1088/1748-0221/7/10/P10002, arXiv:1206.4071.

[21] CMS Collaboration, “Particle-flow reconstruction and global event description with the CMS detector”, (2017), arXiv:1706.04965 Submitted to JINST.

[22] Z. Sullivan, “Fully differential W' production and decay at next-to-leading order in QCD”, Phys. Rev. D 66 (2002) 075011, doi:10.1103/PhysRevD.66.075011, arXiv:hep-ph/0207290.

[23] D. Duffy and Z. Sullivan, “Model independent reach for W-prime bosons at the LHC”, Phys. Rev. D 86 (2012) 075018, doi:10.1103/PhysRevD.86.075018, arXiv:1208.4858.

[24] CompHEP Collaboration, “CompHEP 4.4: Automatic computations from Lagrangians to events”, Nucl. Instrum. Meth. A 534 (2004) 250, doi:10.1016/j.nima.2004.07.096, arXiv:hep-ph/0403113.

[25] J. Alwall et al., “The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations”, JHEP 07 (2014) 079, doi:10.1007/JHEP07(2014)079, arXiv:1405.0301.

[26] R. Frederix and S. Frixione, “Merging meets matching in MC@NLO”, JHEP 12 (2012) 061, doi:10.1007/JHEP12(2012)061, arXiv:1209.6215.

[27] J. Alwall et al., “Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions”, Eur. Phys. J. C 53 (2008) 473, doi:10.1140/epjc/s10052-007-0490-5, arXiv:0706.2559.

[28] P. Nason, “A new method for combining NLO QCD with shower Monte Carlo algorithms”, JHEP 11 (2004) 040, doi:10.1088/1126-6708/2004/11/040, arXiv:hep-ph/0409146.
[29] S. Frixione, P. Nason, and C. Oleari, “Matching NLO QCD computations with Parton Shower simulations: the POWHEG method”, JHEP 11 (2007) 070, doi:10.1088/1126-6708/2007/11/070.

[30] S. Alioli, P. Nason, C. Oleari, and E. Re, “A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX”, JHEP 06 (2010) 043, doi:10.1007/JHEP06(2010)043, arXiv:1002.2581.

[31] S. Frixione, P. Nason, and G. Ridolfi, “A positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction”, JHEP 09 (2007) 126, doi:10.1088/1126-6708/2007/09/126, arXiv:0707.3088.

[32] E. Re, “Single-top Wt-channel-channel production matched with parton showers using the POWHEG method”, Eur. Phys. J. C 71 (2011) 1547, doi:10.1140/epjc/s10052-011-1547-z, arXiv:1009.2450.

[33] T. Sjöstrand et al., “An introduction to PYTHIA 8.2”, Comput. Phys. Commun. 191 (2015) 159, doi:10.1016/j.cpc.2015.01.024, arXiv:1410.3012.

[34] CMS Collaboration, “Measurement of differential cross sections for top quark pair production using the lepton+jets final state in proton-proton collisions at 13 TeV”, Phys. Rev. D 95 (2017) 092001, doi:10.1103/PhysRevD.95.092001, arXiv:1610.04191.

[35] GEANT4 Collaboration, “GEANT4: A simulation toolkit”, Nucl. Instrum. Meth. A 506 (2003) 250, doi:10.1016/S0168-9002(03)01388-8.

[36] J. Allison et al., “GEANT4 developments and applications”, IEEE Trans. Nucl. Sci. 53 (2006) 270, doi:10.1109/TNS.2006.869826.

[37] NNPDF Collaboration, “Parton distributions for the LHC Run II”, JHEP 04 (2015) 040, doi:10.1007/JHEP04(2015)040, arXiv:1410.8849.

[38] M. Cacciari, G. P. Salam, and G. Soyez, “The anti-kt jet clustering algorithm”, JHEP 04 (2008) 063, doi:10.1088/1126-6708/2008/04/063, arXiv:0802.1189.

[39] M. Cacciari, G. P. Salam, and G. Soyez, “FastJet user manual”, Eur. Phys. J. C 72 (2012) 1896, doi:10.1140/epjc/s10052-012-1896-2, arXiv:1111.6097.

[40] CMS Collaboration, “Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV”, JINST 12 (2017) P02014, doi:10.1088/1748-0221/12/02/P02014, arXiv:1607.03663.

[41] D. Krohn, M. D. Schwartz, M. Low, and L.-T. Wang, “Jet cleansing: pileup removal at high luminosity”, Phys. Rev. D 90 (2014) 065020, doi:10.1103/PhysRevD.90.065020, arXiv:1309.4777.

[42] M. Cacciari and G. P. Salam, “Pileup subtraction using jet areas”, Phys. Lett. B 659 (2008) 119, doi:10.1016/j.physletb.2007.09.077, arXiv:0707.1378.

[43] CMS Collaboration, “Identification of b-quark jets with the CMS experiment”, JINST 8 (2013) P04013, doi:10.1088/1748-0221/8/04/P04013, arXiv:1211.4462.

[44] CMS Collaboration, “Identification of b quark jets at the CMS Experiment in the LHC Run 2”, CMS Physics Analysis Summary CMS-PAS-BTV-15-001, 2016.
[45] CMS Collaboration, “Measurement of the $t\bar{t}$ production cross section in pp collisions at 7 TeV in lepton+jets events using b-quark jet identification”, *Phys. Rev. D* **84** (2011) 092004, doi:10.1103/PhysRevD.84.092004, arXiv:1108.3773.

[46] CMS Collaboration, “CMS luminosity measurements for the 2016 data taking period”, CMS Physics Analysis Summary CMS-PAS-LUM-17-001, 2017.

[47] M. Cacciari et al., “The $t\bar{t}$ cross-section at 1.8 TeV and 1.96 TeV: a study of the systematics due to parton densities and scale dependence”, *JHEP* **04** (2004) 068, doi:10.1088/1126-6708/2004/04/068, arXiv:hep-ph/0303085.

[48] S. Catani, D. de Florian, M. Grazzini, and P. Nason, “Soft gluon resummation for Higgs boson production at hadron colliders”, *JHEP* **07** (2003) 028, doi:10.1088/1126-6708/2003/07/028, arXiv:hep-ph/0306211.

[49] ATLAS Collaboration, “Measurement of the inelastic proton-proton cross section at $\sqrt{s} = 13$ TeV with the ATLAS detector at the LHC”, *Phys. Rev. Lett.* **117** (2016) 182002, doi:10.1103/PhysRevLett.117.182002, arXiv:1606.02625.

[50] J. Butterworth et al., “PDF4LHC recommendations for LHC Run II”, *J. Phys. G* **43** (2016) 023001, doi:10.1088/0954-3899/43/2/023001, arXiv:1510.03865.

[51] T. Müller, J. Ott, and J. Wagner-Kuhr, “theta — a framework for template-based modeling and inference”, 2010.

[52] R. Barlow and C. Beeston, “Fitting using finite Monte Carlo samples”, *Comp. Phys. Commun.* **77** (1993) 219, doi:10.1016/0010-4655(93)90005-W.
A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik, Wien, Austria
W. Adam, F. Ambrogi, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Erö, M. Flechl, M. Friedl, R. Frühwirth, V.M. Ghete, J. Grossmann, J. Hrubec, M. Jeitler, A. König, N. Krammer, I. Krätschmer, D. Liko, T. Madlener, I. Mikulec, E. Pree, D. Rabady, N. Rad, H. Rohringer, J. Schieck, R. Schöfbeck, M. Spanring, D. Spitzbart, W. Waltenberger, J. Wittmann, C.-E. Wulz, M. Zarucki

Institute for Nuclear Problems, Minsk, Belarus
V. Chekhovsky, V. Moosolov, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium
E.A. De Wolf, D. Di Croce, X. Janssen, J. Lauwers, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel

Vrije Universiteit Brussel, Brussel, Belgium
S. Abu Zeid, F. Blekman, J. D’Hondt, I. De Bruyn, J. De Clercq, K. Deroover, G. Flouris, D. Lontkovskyi, S. Lovette, S. Moortgat, L. Moreels, Q. Python, K. Skovpen, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs

Université Libre de Bruxelles, Bruxelles, Belgium
H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, G. Fasanella, L. Favart, R. Goldouzian, A. Grebenyuk, G. Karapostoli, T. Lenzi, J. Luetic, T. Maerschalk, A. Marinov, A. Randle-conde, T. Seva, C. Vander Velde, P. Vanlaer, D. Vannerom, R. Yonamine, F. Zenoni, F. Zhang

Ghent University, Gent, Belgium
A. Cimmino, T. Cornelis, D. Doeb, A. Fagu, M. Gut, I. Khtastov, D. Poyraz, C. Roskas, S. Salva, M. Tytgat, W. Verbeke, N. Zaganidis

Université Catholique de Louvain, Louvain-la-Neuve, Belgium
H. Bakhshiansohi, O. Bondou, S. Brochet, G. Bruno, C. Caputo, A. Caudron, S. De Visscher, C. Delaere, M. Delcourt, B. Francois, A. Giammanco, A. Jafari, M. Komm, G. Krintiras, V. Lemaitre, A. Magitteri, A. Mertens, M. Musich, K. Piotrzkowski, L. Quertenmont, M. Vidal Marono, S. Wertz

Université de Mons, Mons, Belgium
N. Belty

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
W.L. Aldá Junior, F.L. Alves, G.A. Alves, L. Brito, M. Correa Martins Junior, C. Hensel, A. Moraes, M.E.P. Pol, P. Rebello Teles

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato, A. Custódio, E.M. Da Costa, G.G. Da Silveira, D. De Jesus Damiao, S. Fonseca De Souza, L.M. Huertas Guativa, H. Malbouisson, M. Melo De Almeida, C. Mora Herrera, L. Mundim, H. Nogima, A. Santoro, A. Sznaider, E.J. Tonelli Manganote, F. Torres Da Silva De Araujo, A. Vilela Pereira

Universidade Estadual Paulista a, Universidade Federal do ABC b, São Paulo, Brazil
S. Ahuja a, C.A. Bernardes a, T.R. Fernandez Perez Tomei a, E.M. Gregores b, P.G. Mercadante b, S.F. Novaes a, Sandra S. Padula d, D. Romero Abad b, J.C. Ruiz Vargas a
Institute for Nuclear Research and Nuclear Energy of Bulgaria Academy of Sciences
A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, M. Misheva, M. Rodozov, M. Shopova, S. Stoykova, G. Sultanov

University of Sofia, Sofia, Bulgaria
A. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov

Beihang University, Beijing, China
W. Fang, X. Gao

Institute of High Energy Physics, Beijing, China
M. Ahmad, J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, Y. Chen, C.H. Jiang, D. Leggat, H. Liao, Z. Liu, F. Romeo, S.M. Shaheen, A. Spiezia, J. Tao, C. Wang, Z. Wang, E. Yazgan, H. Zhang, S. Zhang, J. Zhao

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
Y. Ban, G. Chen, Q. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, Z. Xu

Universidad de Los Andes, Bogota, Colombia
C. Avila, A. Cabrera, L.F. Chaparro Sierra, C. Florez, C.F. González Hernández, J.D. Ruiz Alvarez

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
B. Courbon, N. Godinovic, D. Lelas, I. Puljak, P.M. Ribeiro Cipriano, T. Sculac

University of Split, Faculty of Science, Split, Croatia
Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, D. Ferencek, K. Kadija, B. Mesic, A. Starodumov, T. Susa

University of Cyprus, Nicosia, Cyprus
M.W. Ather, A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski

Charles University, Prague, Czech Republic
M. Finger, M. Finger Jr.

Universidad San Francisco de Quito, Quito, Ecuador
E. Carrera Jarrin

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
Y. Assran, S. Elgammal, A. Mahrous

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
R.K. Dewanjee, M. Kadastik, L. Perrini, M. Raidal, A. Tiko, C. Veelken

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, J. Pekkanen, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland
J. Härkönen, T. Järvinen, V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukkanen, E. Tuumi, E. Tuominen
Lappeenranta University of Technology, Lappeenranta, Finland
J. Talvitie, T. Tuuva

IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
M. Besancon, F. Couderc, M. Dejardin, D. Denegri, J.L. Faure, F. Ferri, S. Ganjour, S. Ghosh, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, I. Kucher, E. Locci, M. Machet, J. Malcles, G. Negro, J. Rander, A. Rosowsky, M.O. Sahin, M. Titov

Laboratoire Leprince-Ringuet, École polytechnique, CNRS/IN2P3, Université Paris-Saclay, Palaiseau, France
A. Abdulsalam, I. Antropov, S. Baffioni, F. Beaudette, P. Busson, L. Cadamuro, C. Charlot, R. Granier de Cassagnac, M. Jo, S. Lisniak, A. Lobanov, J. Martin Blanco, M. Nguyen, C. Ochando, G. Ortona, P. Pagani, P. Pigard, S. Regnard, R. Salerno, J.B. Sauvan, Y. Sirois, A.G. Stahl Leiton, T. Strebler, Y. Yilmaz, A. Zabi, A. Zghiche

Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
J.-L. Agram, J. Andrea, D. Bloch, J.-M. Brom, M. Buttignol, E.C. Chabert, N. Chanon, C. Collard, E. Conte, X. Coubez, J.-C. Fontaine, D. Gelé, U. Goerlach, M. Jansová, A.-C. Le Bihan, N. Tonon, P. Van Hove

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
S. Gadrat

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
S. Beauceron, C. Bernet, G. Boudoul, R. Chierici, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, L. Finco, S. Gascon, M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I.B. Laktineh, M. Lethuillier, L. Mirabito, A.L. Pequegnot, S. Perries, A. Popov, V. Sordini, M. Vander Donckt, S. Viret

Georgian Technical University, Tbilisi, Georgia
T. Toriashvili

Tbilisi State University, Tbilisi, Georgia
D. Lomidze

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
C. Autermann, S. Beranek, L. Feld, M.K. Kiesel, K. Klein, M. Lipinski, M. Preuten, C. Schomakers, J. Schulz, T. Verlage, V. Zhukov

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
A. Albert, E. Dietz-Laursonn, D. Duchardt, M. Endres, M. Erdmann, S. Erdweg, T. Esch, R. Fischer, A. Güth, M. Hamer, T. Hebbeker, C. Heidemann, K. Hoepfner, S. Knutzen, M. Merschmeyer, A. Meyer, P. Millet, S. Mukherjee, M. Olschewski, K. Padeken, T. Pook, M. Radziej, H. Reithler, M. Rieger, F. Scheuch, D. Teyssier, S. Thüer

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
G. Flügge, B. Kargoll, T. Kress, A. Künsken, J. Lingemann, T. Müller, A. Nehrkorn, A. Nowack, C. Pistone, O. Pooth, A. Stahl

Deutsches Elektronen-Synchrotron, Hamburg, Germany
M. Aldaya Martin, T. Arndt, C. Asawatangtrakuldee, K. Beernaert, O. Behnke, U. Behrens, A. Bermúdez Martínez, A.A. Bin Anuar, K. Borras, V. Botta, A. Campbell, P. Connor, C. Contreras-Campana, F. Costanza, C. Diez Pardos, G. Eckerlin, D. Eckstein, T. Eichhorn,
National Institute of Science Education and Research, Bhubaneswar, India
S. Bahinipati, S. Bhowmik, P. Mal, K. Mandal, A. Nayak, D.K. Sahoo, N. Sahoo, S.K. Swain

Panjab University, Chandigarh, India
S. Bansal, S.B. Beri, V. Bhatnagar, R. Chawla, N. Dhingra, A.K. Kalsi, A. Kaur, M. Kaur, R. Kumar, P. Kumari, A. Mehta, J.B. Singh, G. Walia

University of Delhi, Delhi, India
Ashok Kumar, Aashaq Shah, A. Bhardwaj, S. Chauhan, B.C. Choudhary, R.B. Garg, S. Keshri, A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, R. Sharma

Saha Institute of Nuclear Physics, HBNI, Kolkata, India
R. Bhardwaj, R. Bhattacharya, S. Bhattacharya, U. Bhawandeep, S. Dey, S. Dutt, S. Dutta, S. Ghosh, N. Majumdar, A. Modak, K. Mondal, S. Mukhopadhyay, S. Nandan, A. Purohit, A. Roy, D. Roy, S. Roy Chowdhury, S. Sarkar, M. Sharan, S. Thakur

Indian Institute of Technology Madras, Madras, India
P.K. Behera

Bhabha Atomic Research Centre, Mumbai, India
R. Chudasama, D. Dutta, V. Jha, V. Kumar, A.K. Mohanty, P.K. Netrakanti, L.M. Pant, P. Shukla, A. Topkar

Tata Institute of Fundamental Research-A, Mumbai, India
T. Aziz, S. Dugad, B. Mahakud, S. Mitra, G.B. Mohanty, N. Sur, B. Sutar

Tata Institute of Fundamental Research-B, Mumbai, India
S. Banerjee, S. Bhattacharya, S. Chatterjee, P. Das, M. Guchait, Sa. Jain, S. Kumar, M. Maity, G. Majumder, K. Mazumdar, T. Sarkar, N. Wickramage

Indian Institute of Science Education and Research (IISER), Pune, India
S. Chauhan, S. Dube, V. Hegde, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, S. Sharma

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
S. Chenarani, E. Eskandari Tadavani, S.M. Etesami, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi, F. Rezaei Hosseinabadi, B. Safarzadeh, M. Zeinali

University College Dublin, Dublin, Ireland
M. Felcini, M. Grunewald

INFN Sezione di Bari a, Università di Bari b, Politecnico di Bari c, Bari, Italy
M. Abbrescia, C. Calabria, A. Colaleo, D. Creanza, L. Cristella, N. De Filippis, M. De Palma, F. Errico, L. Fiore, G. Iaselli, S. Lezki, G. Maggi, M. Maggi, G. Miniello, S. My, S. Nuzzo, A. Pompili, G. Pugliese, R. Radogna, A. Ranieri, G. Selvaggi, A. Sharma, L. Silvestris, R. Venditti, P. Verwilligen

INFN Sezione di Bologna a, Università di Bologna b, Bologna, Italy
G. Abbiendi, C. Battilana, A. Bonacorsi, S. Braibant-Giacomelli, R. Campanini, P. Capiluppi, A. Castro, F.R. Cavallo, S.S. Chhibra, G. Codispoti, M. Cuffiani, G.M. Dallavalle, F. Fabbri, A. Fanfani, D. Fasanella, P. Giacomelli, G. Guiducci, S. Marcellini, G. Masetti, A. Montanari, F.L. Navarria, A. Perrotta, A.M. Rossi, T. Rovelli, G.P. Siroli, N. Tosi

INFN Sezione di Catania a, Università di Catania b, Catania, Italy
S. Albergo, S. Costa, A. Di Mattia, F. Giordano, R. Potenza, A. Tricomi, C. Tuve
INFIN Sezione di Firenze, Firenze, Italy
G. Barbagalia, K. Chatterjeea,b, V. Ciullia,b, C. Civininia, R. D’Alessandroa,b, E. Focardia,b, P. Lenzia,b, M. Meschinia, S. Paolettia, L. Russoa,28, G. Giguazzonea, D. Stroma, L. Viliania,b,14

INFIN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benussi, S. Bianco, F. Fabbr, D. Piccolo, F. Primavera14

INFIN Sezione di Genova, Genova, Italy
V. Calvellia,b, F. Ferroa, E. Robuttia, S. Tosia,b

INFIN Sezione di Milano-Bicocca, Università di Milano-Bicocca, Milano, Italy
A. Benagliaa, L. Brianzaa,b, F. Brivioa,b, V. Cirioloa,b, M.E. Dinardoa,b, S. Fiorendia,b, S. Gennaia, A. Ghezzia,b, P. Govonia,b, M. Malbertia,b, S. Malvezzia, R.A. Manzonia,b, D. Menascea, L. Moronia, M. Paganonia,b, K. Pauwelsa,b, D. Pedrinia, S. Pigazzinia,b,29, S. Ragazzia,b, T. Tabarelli de Fatisa,b

INFIN Sezione di Napoli, Università di Napoli ‘Federico II’, Napoli, Italy, Università della Basilicata, Potenza, Italy, Università G. Marconi, Roma, Italy
S. Buontempoa, N. Cavalloa,c, S. Di Guidaa,d,14, F. Fabozzia,c, F. Fiengaa,b, A.O.M. Iorioa,b, W.A. Khana, L. Listaa, S. Meolaa,d,14, P. Paoluccia,14, C. Sciaccaa,b, F. Thyssena

INFIN Sezione di Padova, Padova, Italy, Università di Trento, Trento, Italy
P. Azziia,14, N. Bacchettaa, L. Benata,b, D. Biselloa,b, A. Bolettia,b, R. Carlina,b, A. Carvalho Antunes De Oliveiraa,b, M. Dall’Ossoa,b, P. De Castro Manzanoa, T. Dorigoa, F. Gasparinia,b, U. Gasparinia,b, A. Gozzelinoa, S. Lacapraraa, M. Margonia,b, A.T. Meneguzzoa,b, F. Montecassianoa, M. Passaseoa, N. Pozzobona,b, P. Ronchesea,b, R. Rossina,b, F. Simonettoa,b, E. Torassaa,b, M. Zanettia,b, P. Zottoa,b, G. Zumerlea,b

INFIN Sezione di Pavia, Università di Pavia, Pavia, Italy
A. Braghieria, A. Magnania,b, P. Montagnaa,b, S.P. Rattia,b, V. Rea, M. Ressegotti, C. Riccardia,b, P. Salvinia, I. Vaia,b, P. Vitulloa,b

INFIN Sezione di Perugia, Università di Perugia, Perugia, Italy
L. Alunni Solestizia,b, M. Biasinia,b, G.M. Bileia, C. Cecchinia,b, D. Ciangottinia,b, L. Fana,b, P. Laricciaa,b, R. Leonardia,b, E. Manonia, G. Mantovania,b, V. Maria,b, M. Menichellia, A. Rossia,b, A. Santochia,b, D. Spigaa

INFIN Sezione di Pisa, Università di Pisa, Scuola Normale Superiore di Pisa, Pisa, Italy
K. Androsova, P. Azzurria,14, G. Bagliesia, J. Bernardinia, T. Boccalia, L. Borrello, R. Castaldia, M.A. Cioccia,b, R. Dell’Orsoa, G. Fedia, L. Gianninia,c, A. Giassia,b, M.T. Grippoa,28, F. Ligabuea,c, T. Lomtadzea, E. Mancaa,c, G. Mandorlia,c, L. Martinia,b, A. Messineoa,b, F. Pallaa, A. Rizzia,b, A. Savoy-Navarroa,30, P. Spagnoloa, R. Tenchinia, G. Tonellia,b, A. Venturia, P.G. Verdiria

INFIN Sezione di Roma, Sapienza Università di Roma, Rome, Italy
L. Baronea,b, F. Cavallaria, M. Cipriania,b, D. Del Rea,14, E. Di Marcoa,b, M. Diemoza, S. Gellia,b, E. Longoa,b, F. Margarolia,b, B. Marzocchia,b, P. Meridiania,b, G. Organtinia,b, R. Paramattia,b, F. Preiatoa,b, S. Rahatloua,b, C. Rovellia, F. Santanastasioa,b

INFIN Sezione di Torino, Università di Torino, Torino, Italy, Università del Piemonte Orientale, Novara, Italy
N. Amapanea,b, R. Arcidiaconoa,c, S. Argiroa,b, M. Arneodoa,c, N. Bartosika, R. Bellana,b, C. Biinoa, N. Cartigliaa, F. Cennaa,b, M. Costaa,b, R. Covarellia,b, A. Deganoa,b, N. Demariaa, B. Kiania,b, C. Mariottia, S. Masellia, E. Migliorea,b, V. Monacoa,b, E. Montella,b, M. Montenoa,b
M.M. Obertinoa,b, L. Pachera,b, N. Pastronea, M. Pelliccionia, G.L. Pinna Angionia,b, F. Raveraa,b, A. Romeroa,b, M. Ruspaa,c, R. Sacchia,b, K. Shchelinaa,b, V. Solaa, A. Solanoa,b, A. Staianoa, P. Traczyka,b

\textbf{INFN Sezione di Trieste} a, Università di Trieste b, Trieste, Italy
S. Belfortea, M. Casarsaa, F. Cossuttia, G. Della Riccaa,b, A. Zanettia

\textbf{Kyungpook National University}, Daegu, Korea
D.H. Kim, G.N. Kim, M.S. Kim, J. Lee, S. Lee, S.W. Lee, C.S. Moon, Y.D. Oh, S. Sekmen, D.C. Son, Y.C. Yang

\textbf{Chonbuk National University}, Jeonju, Korea
A. Lee

\textbf{Chonnam National University}, Institute for Universe and Elementary Particles, Kwangju, Korea
H. Kim, D.H. Moon, G. Oh

\textbf{Hanyang University}, Seoul, Korea
J.A. Brochero Cifuentes, J. Goh, T.J. Kim

\textbf{Korea University}, Seoul, Korea
S. Cho, S. Choi, Y. Go, D. Gyun, S. Ha, B. Hong, Y. Jo, Y. Kim, K. Lee, K.S. Lee, S. Lee, J. Lim, S.K. Park, Y. Roh

\textbf{Seoul National University}, Seoul, Korea
J. Almond, J. Kim, J.S. Kim, H. Lee, K. Lee, K. Nam, S.B. Oh, B.C. Radburn-Smith, S.h. Seo, U.K. Yang, H.D. Yoo, G.B. Yu

\textbf{University of Seoul}, Seoul, Korea
M. Choi, H. Kim, J.H. Kim, J.S.H. Lee, I.C. Park

\textbf{Sungkyunkwan University}, Suwon, Korea
Y. Choi, C. Hwang, J. Lee, I. Yu

\textbf{Vilnius University}, Vilnius, Lithuania
V. Dudenas, A. Juodagalvis, J. Vaitkus

\textbf{National Centre for Particle Physics}, Universiti Malaya, Kuala Lumpur, Malaysia
I. Ahmed, Z.A. Ibrahim, M.A.B. Md Ali31, F. Mohamad Idris32, W.A.T. Wan Abdullah, M.N. Yusli, Z. Zolkapli

\textbf{Centro de Investigacion y de Estudios Avanzados del IPN}, Mexico City, Mexico
Reyes-Almanza, R, Ramirez-Sanchez, G., Duran-Osuna, M. C., H. Castillo-Valdez, E. De La Cruz-Burelo, I. Heredia-De La Cruz33, Rabanado-Trejo, R. I., R. Lopez-Fernandez, J. Mejia Guisao, A. Sanchez-Hernandez

\textbf{Universidad Iberoamericana}, Mexico City, Mexico
S. Carrillo Moreno, C. Oropeza Barrera, F. Vazquez Valencia

\textbf{Benemerita Universidad Autonoma de Puebla}, Puebla, Mexico
I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada

\textbf{Universidad Autónoma de San Luis Potosí}, San Luis Potosí, Mexico
A. Morelos Pineda
University of Auckland, Auckland, New Zealand
D. Krofcheck

University of Canterbury, Christchurch, New Zealand
P.H. Butler

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, A. Saddique, M.A. Shah, M. Shoaib, M. Waqas

National Centre for Nuclear Research, Swierk, Poland
H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Górski, M. Kazana, K. Nawrocki, M. Szleper, P. Zalewski

Institute of Nuclear Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
K. Bunkowski, A. Byszuk34, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski, A. Pyskir, M. Walczak

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
P. Bargassa, C. Beirão Da Cruz E Silva, A. Di Francesco, P. Faccioli, B. Galinhas, M. Gallinaro, J. Hollar, N. Leonardo, L. Lloret Iglesias, M.V. Nemallapudi, J. Seixas, G. Strong, O. Toldaiev, D. Vadrucchio, J. Varela

Joint Institute for Nuclear Research, Dubna, Russia
S. Afanasiyev, P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavin, A. Lanev, A. Malakhov, V. Matveev35,36, V. Palichik, V. Perelygin, S. Shmatov, S. Shulha, N. Skatchkov, V. Smirnov, N. Voytishin, A. Zarubin

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
Y. Ivanov, V. Kim37, E. Kuznetsova38, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev

Institute for Nuclear Research, Moscow, Russia
Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin

Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epšteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, A. Stepennov, M. Toms, E. Vlasov, A. Zhokin

Moscow Institute of Physics and Technology, Moscow, Russia
T. Aushev, A. Bylinkin36

National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
R. Chistov39, M. Danilov39, P. Parygin, D. Philippov, S. Polikarpov, E. Tarkovskii

P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin36, I. Dremin36, M. Kirakosyan36, A. Terkulov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Baskakov, A. Belyaev, E. Boos, V. Bunichev, M. Dubinin40, L. Dudko, V. Klyukhin, N. Korneeva, I. Lokhtin, I. Miagkov, S. Obraztsov, M. Perfilov, V. Savrin, A. Snigirev, P. Volkov

Novosibirsk State University (NSU), Novosibirsk, Russia
V. Blinov41, Y. Skovpen41, D. Shtol41
State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia
I. Azhgirey, I. Bayshev, S. Bitioukov, D. Elumakhov, V. Kachanov, A. Kalinin, D. Konstantinov, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic, P. Cirkovic, D. Devetak, M. Dordevic, J. Milosevic, V. Rekovic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
J. Alcaraz Maestre, M. Barrio Luna, M. Cerrada, N. Colino, B. De La Cruz, A. Delgado Peris, A. Escalante Del Valle, C. Fernandez Bedoya, J.P. Fernández Ramos, J. Flix, M.C. Fouz, P. Garcia-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, A. Perez-Calero Yzquierdo, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero, M.S. Soares, A. Alvarez Fernández

Universidad Autónoma de Madrid, Madrid, Spain
J.F. de Trocóniz, M. Missiroli, D. Moran

Universidad de Oviedo, Oviedo, Spain
J. Cuevas, C. Erice, J. Fernandez Menendez, I. Gonzalez Caballero, J.R. González Fernández, E. Palencia Corteza, S. Sanchez Cruz, P. Vischia, J.M. Vizan Garcia

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
I.J. Cabrillo, A. Calderon, B. Chazin Quero, E. Currias, J. Duarte Campderros, M. Fernandez, J. Garcia-Ferrero, G. Gomez, A. Lopez Virto, J. Marco, C. Martinez Rivero, P. Martinez Ruiz del Arbol, F. Matorras, J. Piedra Gomez, T. Rodrigo, A. Ruiz-Jimeno, L. Scodellaro, N. Trevisani, I. Vila, R. Vilar Cortabitarte

CERN, European Organization for Nuclear Research, Geneva, Switzerland
D. Abbaneo, E. Auffray, P. Baillon, A.H. Ball, D. Barney, M. Bianco, P. Bloch, A. Bocci, C. Botta, T. Camporesi, R. Castello, M. Cepeda, G. Cerminara, E. Chapon, Y. Chen, D. d’Enterria, A. Dabrowski, V. Daponte, A. David, M. De Gruttola, A. De Roeck, M. Dobson, B. Dorney, T. du Pree, M. Dünser, N. Dupont, A. Elliott-Peisert, P. Everaerts, F. Fallavollita, G. Franzoni, J. Fulcher, W. Funk, D. Gigi, K. Gill, F. Glege, D. Gulhan, P. Harris, J. Hegeman, V. Innocente, P. Janot, O. Karacheban, J. Kieseler, H. Kirschenmann, V. Knünz, A. Kornmayer, M.J. Kortelainen, C. Lange, P. Lecoq, C. Lourenço, M.T. Luchini, L. Malgeri, M. Mannelli, A. Martelli, F. Meijers, J.A. Merlin, S. Mersi, E. Meschi, P. Milenovic, F. Moortgat, M. Mulders, H. Neugebauer, S. Orfanelli, L. Orsini, L. Pape, E. Perez, M. Peruzzi, A. Petrilli, G. Petrucciani, A. Pfeiffer, M. Pierini, A. Racz, T. Reis, G. Rolandi, M. Rovere, H. Sakulin, C. Schäfer, C. Schwick, M. Seidel, M. Selvaggi, A. Sharma, P. Silva, P. Sphicas, A. Stakia, J. Steggemann, M. Stoye, M. Tosi, D. Treille, A. Triossi, A. Tsirou, V. Veckalns, M. Verweij, W.D. Zeuner

Paul Scherrer Institut, Villigen, Switzerland
W. Bertl, L. Caminada, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski, U. Langenegger, T. Rohe, S.A. Wiederkehr

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland
F. Bachmair, L. Bäni, P. Berger, L. Bianchini, B. Casal, G. Dissertori, M. Dittmar, M. Donegà, C. Grab, C. Heidegger, D. Hits, J. Hoss, G. Kasieczka, T. Klijnsma, W. Lustermann, B. Mangano, M. Marionneau, M.T. Meinhard, D. Meister, F. Micheli, P. Musella, F. Nessi-Tedaldi, F. Pandolfi,
J. Pata, F. Pauss, G. Perrin, L. Perrozzi, M. Quittnat, M. Reichmann, M. Schönenberger, L. Shchutska, V.R. Tavolato, K. Theofilatos, M.L. Vesterbacka Olsson, R. Wallny, D.H. Zhu

Universität Zürich, Zurich, Switzerland
T.K. Aarrestad, C. Amsler, M.F. Canelli, A. De Cosa, R. Del Burgo, S. Donato, C. Galloni, T. Hreus, B. Kilminster, J. Ngadiuba, D. Pinna, G. Rauco, P. Robmann, D. Salerno, C. Seitz, Y. Takahashi, A. Zucchetta

National Central University, Chung-Li, Taiwan
V. Candelise, T.H. Doan, Sh. Jain, R. Khurana, C.M. Kuo, W. Lin, A. Pozdnyakov, S.S. Yu

National Taiwan University (NTU), Taipei, Taiwan
Arun Kumar, P. Chang, Y. Chao, K.F. Chen, P.H. Chen, F. Fiori, W.-S. Hou, Y. Hsiung, Y.F. Liu, R.-S. Lu, E. Paganis, A. Psallidas, A. Steen, J.f. Tsai

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
B. Asavapibhop, K. Kovicanggoon, G. Singh, N. Srimanobhas

Çukurova University, Physics Department, Science and Art Faculty, Adana, Turkey
F. Boran, S. Cerci, S. Damarseckin, Z.S. Demiroglu, C. Dozen, I. Dumanoglu, S. Girgis, G. Gokbulut, Y. Guler, I. Hos, E.E. Kangal, O. Kara, A. Kayis Topaksu, U. Kiminsu, M. Oglakci, G. Onengut, K. Ozdemir, D. Sunar Cerci, B. Tali, S. Turkcapar, I.S. Zorbakir, C. Zorbilmez

Middle East Technical University, Physics Department, Ankara, Turkey
B. Bilin, G. Karapinar, K. Ocalan, M. Yalvac, M. Zeyrek

Bogazici University, Istanbul, Turkey
E. Gülmez, M. Kaya, O. Kaya, S. Tekten, E.A. Yetkin

Istanbul Technical University, Istanbul, Turkey
M.N. Agaras, S. Atay, A. Cakir, K. Cankocak

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine
B. Grynyov

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk, P. Sorokin

University of Bristol, Bristol, United Kingdom
R. Aggleton, F. Ball, L. Beck, J.J. Brooke, D. Burns, E. Clement, D. Cussans, O. Davignon, H. Flacher, J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath, J. Jacob, L. Kreczko, C. Lucas, D.M. Newbold, S. Paramesvaran, A. Poll, T. Sakuma, S. Seif El Nasr-storey, D. Smith, V.J. Smith

Rutherford Appleton Laboratory, Didcot, United Kingdom
K.W. Bell, A. Belyaev, C. Brew, R.M. Brown, L. Calligaris, D. Cieri, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, E. Olaiya, D. Petyt, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, T. Williams

Imperial College, London, United Kingdom
G. Auzinger, R. Bainbridge, S. Breeze, O. Buchmuller, A. Bundock, S. Casasso, M. Citron, D. Colling, L. Corpe, P. Dauncey, G. Davies, A. De Wit, M. Della Negra, R. Di Maria, A. Elwood, Y. Haddad, G. Hall, G. Iles, T. James, R. Lane, C. Laner, L. Lyons, A.-M. Magnan, S. Malik, L. Mastrolorenzo, T. Matsushita, J. Nash, A. Nikitenko, V. Palladino, M. Pesaresi,
D.M. Raymond, A. Richards, A. Rose, E. Scott, C. Seez, A. Shtipliyski, S. Summers, A. Tapper, K. Uchida, M. Vazquez Acosta, T. Virdee, N. Wardle, D. Winterbottom, J. Wright, S.C. Zenz

Brunel University, Uxbridge, United Kingdom
J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner

Baylor University, Waco, USA
A. Borzou, K. Call, J. Dittmann, K. Hatakeyama, H. Liu, N. Pastika, C. Smith

Catholic University of America, Washington DC, USA
R. Bartek, A. Domínguez

The University of Alabama, Tuscaloosa, USA
A. Buccilli, S.I. Cooper, C. Henderson, P. Rumerio, C. West

Boston University, Boston, USA
D. Arcaro, A. Avetisyan, T. Bose, D. Gastler, D. Rankin, C. Richardson, J. Rohlf, L. Sulak, D. Zou

Brown University, Providence, USA
G. Benelli, D. Cutts, A. Garabedian, J. Hakala, U. Heintz, J.M. Hogan, K.H.M. Kwok, E. Laird, G. Landsberg, Z. Mao, M. Narain, J. Pazzini, S. Piperov, S. Sagir, R. Syarif, D. Yu

University of California, Davis, Davis, USA
R. Band, C. Brainerd, D. Burns, M. Calderon De La Barca Sanchez, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, C. Flores, G. Funk, M. Gardner, W. Ko, R. Lander, C. Mclean, M. Mulhearn, D. Pellett, J. Pilot, S. Shalhout, M. Shi, J. Smith, M. Squires, D. Stolp, K. Tos, M. Tripathi, Z. Wang

University of California, Los Angeles, USA
M. Bachtis, C. Bravo, R. Cousins, A. Dasgupta, A. Florent, J. Hauser, M. Ignatenko, N. Mccoll, D. Saltzberg, C. Schnaible, V. Valuev

University of California, Riverside, Riverside, USA
E. Bouvier, K. Burt, R. Clare, J. Ellison, J.W. Gary, S.M.A. Ghiasi Shirazi, G. Hanson, J. Heilman, P. Jandir, E. Kennedy, F. Lacroix, O.R. Long, M. Olmedo Negrete, M.I. Paneva, A. Shrinivas, W. Si, L. Wang, H. Wei, S. Wimpenny, B. R. Yates

University of California, San Diego, La Jolla, USA
J.G. Branson, S. Cittolin, M. Derdzinski, B. Hashemi, A. Holzner, D. Klein, G. Kole, V. Krutelyov, J. Letts, I. Macneill, M. Masciovecchio, D. Olivito, S. Padhi, M. Pieri, M. Sani, V. Sharma, S. Simon, M. Tadel, A. Vartak, S. Waterbaech, J. Wood, F. Würthwein, A. Yagil, G. Zevi Della Porta

University of California, Santa Barbara - Department of Physics, Santa Barbara, USA
N. Amin, R. Bhandari, J. Bradmiller-Feld, C. Campagnari, A. Dishaw, V. Dutta, M. Franco Sevilla, C. George, F. Golf, L. Gouskos, J. Gran, R. Heller, J. Incandela, S.D. Mullin, A. Ovcharova, H. Qu, J. Richman, D. Stuart, I. Suarez, J. Yoo

California Institute of Technology, Pasadena, USA
D. Anderson, J. Bendavid, A. Bornheim, J.M. Lawhorn, H.B. Newman, T. Nguyen, C. Pena, M. Spiropulu, J.R. Vlimant, S. Xie, Z. Zhang, R.Y. Zhu

Carnegie Mellon University, Pittsburgh, USA
M.B. Andrews, T. Ferguson, T. Mudholkar, M. Paulini, J. Russ, M. Sun, H. Vogel, I. Vorobiev, M. Weinberg
University of Colorado Boulder, Boulder, USA
J.P. Cumalat, W.T. Ford, F. Jensen, A. Johnson, M. Krohn, S. Leontsinis, T. Mulholland, K. Stenson, S.R. Wagner

Cornell University, Ithaca, USA
J. Alexander, J. Chaves, J. Chu, S. Dittmer, K. Mcdermott, N. Mirman, J.R. Patterson, A. Rinkevicius, A. Ryd, L. Skinnari, L. Soffi, S.M. Tan, Z. Tao, J. Thom, J. Tucker, P. Wittich, M. Zientek

Fermi National Accelerator Laboratory, Batavia, USA
S. Abdullin, M. Albrow, G. Apollinari, A. Apresyan, A. Apyan, S. Banerjee, L.A.T. Bauerdick, A. Beretvas, J. Berryhill, P.C. Bhat, G. Bolla†, K. Burkett, J.N. Butler, A. Canepa, G.B. Cerati, H.W.K. Cheung, F. Chlebana, M. Cremonesi, J. Duarte, V.D. Elvira, J. Freeman, Z. Gecse, E. Gottschalk, L. Gray, D. Green, S. Grünendahl, O. Gutsche, R.M. Harris, S. Hasegawa, J. Hirschauer, Z. Hu, B. Jayatilaka, S. Jindariani, M. Johnson, U. Joshi, B. Klima, B. Kreis, S. Lammel, D. Lincoln, R. Lipton, M. Liu, T. Liu, R. Lopes De Sá, J. Lykken, K. Maeshima, N. Magini, J.M. Marraffino, S. Maruyama, D. Mason, P. McBride, P. Merkel, S. Mrenna, S. Nahn, V. O’Dell, K. Pedro, O. Prokofyev, G. Rakness, L. Ristori, B. Schneider, E. Sexton-Kennedy, A. Soha, W.J. Spalding, L. Spiegel, S. Strobbe, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, C. Vernieri, M. Verzocchi, R. Vidal, M. Wang, H.A. Weber, A. Whitbeck

University of Florida, Gainesville, USA
D. Acosta, P. Avery, P. Bortignon, D. Bourilkov, A. Brinkerhoff, A. Carnes, M. Carver, D. Curry, R.D. Field, I.K. Furic, J. Konigsberg, A. Korytov, K. Kotov, P. Ma, K. Matchev, H. Mei, G. Mitselmakher, D. Rank, D. Sperka, N. Terentyev, L. Thomas, J. Wang, S. Wang, J. Yelton

Florida International University, Miami, USA
Y.R. Joshi, S. Linn, P. Markowitz, J.L. Rodriguez

Florida State University, Tallahassee, USA
A. Ackert, T. Adams, A. Askew, S. Hagopian, V. Hagopian, K.F. Johnson, T. Kolberg, G. Martinez, T. Perry, H. Prosper, A. Saha, A. Santra, V. Sharma, R. Yohay

Florida Institute of Technology, Melbourne, USA
M.M. Baarmand, V. Bhopatkar, S. Colafranceschi, M. Hohlmann, D. Noonan, T. Roy, F. Yumiceva

University of Illinois at Chicago (UIC), Chicago, USA
M.R. Adams, L. Apanasevich, D. Berry, R.R. Betts, R. Cavanaugh, X. Chen, O. Evdokimov, C.E. Gerber, D.A. Hangal, D.J. Hofman, K. Jung, J. Kamin, I.D. Sandoval Gonzalez, M.B. Tonjes, H. Trauger, N. Varelas, H. Wang, Z. Wu, J. Zhang

The University of Iowa, Iowa City, USA
B. Bilki⁶³, W. Clarida, K. Dilsiz⁶⁴, S. Durgut, R.P. Gandraju, M. Haytmyradov, V. Khristenko, J.-P. Merlo, H. Mermerkaya⁶⁵, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Oguı⁶⁶, Y. Onel, F. Ozok⁶⁷, A. Penzo, C. Snyder, E. Tiras, J. Wetzel, K. Yi

Johns Hopkins University, Baltimore, USA
B. Blumenfeld, A. Cocoros, N. Eminizer, D. Fehling, L. Feng, A.V. Gritsan, P. Maksimovic, J. Roskes, U. Sarica, M. Swartz, M. Xiao, C. You

The University of Kansas, Lawrence, USA
A. Al-bataineh, P. Baringer, A. Bean, S. Boren, J. Bowen, J. Castle, S. Khalil, A. Kropivnitskaya,
University of Puerto Rico, Mayaguez, USA
S. Malik, S. Norberg

Purdue University, West Lafayette, USA
A. Barker, V.E. Barnes, S. Das, S. Folgueras, L. Gutay, M.K. Jha, M. Jones, A.W. Jung, A. Khatiwada, D.H. Miller, N. Neumeister, C.C. Peng, J.E. Schulte, J. Sun, F. Wang, W. Xie

Purdue University Northwest, Hammond, USA
T. Cheng, N. Parashar, J. Stupak

Rice University, Houston, USA
A. Adair, B. Akgun, Z. Chen, K.M. Ecklund, F.J.M. Geurts, M. Guilbaud, W. Li, B. Michlin, M. Northup, B.P. Padley, J. Roberts, J. Rorie, Z. Tu, J. Zabel

University of Rochester, Rochester, USA
A. Bodek, P. de Barbaro, R. Demina, Y.t. Duh, T. Ferbel, M. Galanti, A. Garcia-Bellido, J. Han, O. Hindrichs, A. Khukhunaishvili, K.H. Lo, P. Tan, M. Verzetti

The Rockefeller University, New York, USA
R. Ciesielski, K. Goulianos, C. Mesropian

Rutgers, The State University of New Jersey, Piscataway, USA
A. Agapitos, J.P. Chou, Y. Gerststein, T.A. Gómez Espinosa, E. Halkiadakis, M. Heindl, E. Hughes, S. Kaplan, R. Kunnawalkam Elayavalli, S. Kyriacou, A. Lath, R. Montalvo, K. Nash, M. Osherson, H. Saka, S. Salur, S. Schnetzer, D. Sheffield, S. Somalwar, R. Stone, S. Thomas, P. Thomassen, M. Walker

University of Tennessee, Knoxville, USA
A.G. Delannoy, M. Foerster, J. Heideman, G. Riley, K. Rose, S. Spanier, K. Thapa

Texas A&M University, College Station, USA
O. Bouhali68, A. Castaneda Hernandez68, A. Celik, M. Dalchenko, M. De Mattia, A. Delgado, S. Dildick, R. Euzebi, J. Gilmore, T. Huang, T. Kamon69, R. Mueller, Y. Pakhotin, R. Patel, A. Perloff, L. Perniè, D. Rathjens, A. Safonov, A. Tatarinov, K.A. Ulmer

Texas Tech University, Lubbock, USA
N. Akchurin, J. Damgov, F. De Guio, P.R. Dudero, J. Faulkner, E. Gurpinar, S. Kunori, K. Lamichhane, S.W. Lee, T. Libeiro, T. Peltola, S. Undleeb, I. Volobouev, Z. Wang

Vanderbilt University, Nashville, USA
S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, A. Melo, H. Ni, P. Sheldon, S. Tuo, J. Velkovska, Q. Xu

University of Virginia, Charlottesville, USA
M.W. Arenton, P. Barria, B. Cox, R. Hirosky, M. Joyce, A. Ledovskoy, H. Li, C. Neu, T. Sinthuprasith, Y. Wang, E. Wolfe, F. Xia

Wayne State University, Detroit, USA
R. Harr, P.E. Karchin, J. Sturdy, S. Zaleski

University of Wisconsin - Madison, Madison, WI, USA
M. Brodski, J. Buchanan, C. Caillol, S. Dasu, L. Dodd, S. Duric, B. Gomber, M. Grothe, M. Herndon, A. Hervé, U. Hussain, P. Klabbers, A. Lanaro, A. Levine, K. Long, R. Loveless, G.A. Pierro, G. Polese, T. Ruggles, A. Savin, N. Smith, W.H. Smith, D. Taylor, N. Woods
†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
3: Also at Universidade Estadual de Campinas, Campinas, Brazil
4: Also at Universidade Federal de Pelotas, Pelotas, Brazil
5: Also at Université Libre de Bruxelles, Bruxelles, Belgium
6: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
7: Also at Joint Institute for Nuclear Research, Dubna, Russia
8: Also at Suez University, Suez, Egypt
9: Now at British University in Egypt, Cairo, Egypt
10: Now at Helwan University, Cairo, Egypt
11: Also at Université de Haute Alsace, Mulhouse, France
12: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
13: Also at Tbilisi State University, Tbilisi, Georgia
14: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
15: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
16: Also at University of Hamburg, Hamburg, Germany
17: Also at Brandenburg University of Technology, Cottbus, Germany
18: Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
19: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
20: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary
21: Also at Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
22: Also at Institute of Physics, Bhubaneswar, India
23: Also at University of Visva-Bharati, Santiniketan, India
24: Also at University of Ruhuna, Matara, Sri Lanka
25: Also at Isfahan University of Technology, Isfahan, Iran
26: Also at Yazd University, Yazd, Iran
27: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
28: Also at Università degli Studi di Siena, Siena, Italy
29: Also at INFN Sezione di Milano-Bicocca; Università di Milano-Bicocca, Milano, Italy
30: Also at Purdue University, West Lafayette, USA
31: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia
32: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia
33: Also at Consejo Nacional de Ciencia y Tecnología, Mexico city, Mexico
34: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
35: Also at Institute for Nuclear Research, Moscow, Russia
36: Now at National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia
37: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
38: Also at University of Florida, Gainesville, USA
39: Also at P.N. Lebedev Physical Institute, Moscow, Russia
40: Also at California Institute of Technology, Pasadena, USA
41: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia
42: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
43: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences,
Belgrade, Serbia
44: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy
45: Also at National and Kapodistrian University of Athens, Athens, Greece
46: Also at Riga Technical University, Riga, Latvia
47: Also at Universität Zürich, Zurich, Switzerland
48: Also at Stefan Meyer Institute for Subatomic Physics (SMI), Vienna, Austria
49: Also at Adiyaman University, Adiyaman, Turkey
50: Also at Istanbul Aydin University, Istanbul, Turkey
51: Also at Mersin University, Mersin, Turkey
52: Also at Cag University, Mersin, Turkey
53: Also at Piri Reis University, Istanbul, Turkey
54: Also at Izmir Institute of Technology, Izmir, Turkey
55: Also at Necmettin Erbakan University, Konya, Turkey
56: Also at Marmara University, Istanbul, Turkey
57: Also at Kafkas University, Kars, Turkey
58: Also at Istanbul Bilgi University, Istanbul, Turkey
59: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
60: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
61: Also at Instituto de Astrofísica de Canarias, La Laguna, Spain
62: Also at Utah Valley University, Orem, USA
63: Also at Beykent University, Istanbul, Turkey
64: Also at Bingol University, Bingol, Turkey
65: Also at Erzincan University, Erzincan, Turkey
66: Also at Sinop University, Sinop, Turkey
67: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
68: Also at Texas A&M University at Qatar, Doha, Qatar
69: Also at Kyungpook National University, Daegu, Korea