Abstract

Heterotrimeric G proteins are ubiquitous signaling partners of seven transmembrane-domain G-protein-coupled receptors (GPCRs), the largest (and most important pharmacologically) receptor family in mammals. A number of scaffolding proteins have been identified that regulate various facets of GPCR signaling. In this review, we summarize current knowledge concerning those scaffolding proteins that are known to directly bind heterotrimeric G proteins, and discuss the composition of the protein complexes they assemble and their effects on signal transduction. Emerging evidence about possible ways of regulation of activity of these scaffolding proteins is also discussed.

Background

The concept of scaffolding (or scaffold) proteins, formulated more than a decade ago (see [1] for an early review), is now widely accepted in different areas of cellular signaling. Scaffolding proteins simultaneously associate with two or more partners, thus providing specificity of signaling and enhancing the interactions between components of a particular signaling module [2,3]. It should be mentioned that scaffolding proteins may not necessarily only function as "passive" anchoring platforms for "active" components of the signaling complex. Some scaffolding proteins may directly affect the activity of proteins they bind.

Heterotrimeric G proteins (recent reviews: [4,5]) are ubiquitous signaling partners of seven transmembrane-domain G-protein-coupled receptors (GPCRs), the largest (and most important pharmacologically) receptor family in mammals. In addition to their role in signal transduction from canonical GPCRs, heterotrimeric G proteins are also involved in signaling downstream of a number of "non-canonical" receptors [6] and signaling events that do not employ transmembrane receptors at all [7]. While the number of G protein-coupled receptors in mammalian cells exceeds 1000, the number of heterotrimeric G proteins is much smaller, even taking into account the number of possible combinations of \(\alpha\), \(\beta\) and \(\gamma\) subunits. In the recent years, it has become clear that scaffolding proteins may provide not only signaling efficiency, but also specificity to G protein-coupled signaling.

This review aims to address the variety of scaffolding proteins that interact with heterotrimeric G proteins and the diversity of the signaling complexes they assemble. Proteins that belong to the classes of regulators (RGS) and activators (AGS) of heterotrimeric G-protein signaling, many of which can also act as scaffolds, have been recently covered in other reviews, and the reader is referred to the respective recent publications (RGS proteins: [8,9]; AGS proteins: [10,11]).
AKAPs

A-Kinase Anchoring Proteins (AKAPs) are a family of scaffolding proteins that target PKA and other signaling enzymes to specified subcellular locations [12,13]. Each AKAP contains a conserved amphipathic helix responsible for high affinity binding to the dimer of the regulatory (R) subunits of PKA [14,15], and a targeting domain that directs the PKA-AKAP complex to specific subcellular compartments [16-20]. Due to their ability to interact with several signaling proteins, AKAPs bring PKA in a close proximity with a variety of signaling partners [21-25]. Several AKAPs play a role in various aspects of G protein-coupled receptor signaling [26], and at least two of them directly interact with heterotrimeric G proteins.

AKAP-Lbc was identified as a PKA-anchoring protein highly expressed in the heart that also has a Rho-specific guanine nucleotide exchange (GEF) activity ([27,28] reviewed by [29]). It was shown to interact with Rho in the inactive GDP-bound or nucleotide free form, but not with activated GTP-bound Rho. AKAP-Lbc was found to mediate activation of Rho by mutationally activated Gα12 and, to a lesser extent, by Gα13, but not several other tested Gα [28]. Moreover, AKAP-Lbc was shown to interact with Gα13 and to mediate Gα13-dependent Rho activation by lysophosphatidic acid (LPA) receptor ([28]; Fig. 1A) and by α1 adrenergic receptor, in the latter case mediating cardiomyocyte hypertrophy [30]. Anchored PKA phosphorylates AKAP-Lbc, thus allowing binding of 14-3-3, which in turn inhibits its RhoGEF activity by interfering with the interaction between AKAP-Lbc and RhoA [31,32]. Inhibition of RhoGEF activity by 14-3-3 requires AKAP-Lbc oligomerization [33]. These findings imply that cellular cAMP levels would regulate sensitivity of Gα13-dependent signaling via AKAP-Lbc. AKAP-Lbc may also anchor PKCa, which might phosphorylate Rho or Rho GDP dissociation inhibitor (RhoGDI) although its precise role in the AKAP-Lbc complex is unknown [24].

AKAP-Lbc also assembles an activation complex for the lipid-dependent enzyme protein kinase D (PKD) [24]. It contributes to PKD activation in two ways: it recruits the upstream kinase PKCθ and coordinates PKA phosphorylation events that release activated protein kinase D. Thus, AKAP-Lbc synchronizes PKA and PKC activities in a manner that leads to the activation of a third kinase, PKD [24].

Notably, in both cases (Gα12-Rho and PKA/PKC-PKD signaling) AKAP-Lbc receives signals from G protein-coupled receptors. It is not yet clear whether the same AKAP-Lbc complex may involve simultaneously Gα12/Rho and PKC/PKD and process these signals in parallel, or AKAP-Lbc/Gα13/Rho and AKAP-Lbc/PKC/PKD represent separate and independent signaling complexes.

AKAP110, expressed mainly in testis, was found to selectively interact with activated Gα13, but not Gα12 or other Gα [34]. Unlike AKAP-Lbc, AKAP110 does not affect GDP-GTP exchange by Rho (J. Niu and T. Voyno-Yasenetskaya, unpublished data). It also has no effect on GDP-GTP exchange and GTPase activity of Gα13 [34]. Gα13 binding to AKAP110 does not affect binding of the regulatory subunit of PKA, but leads to a release of the catalytic subunit (Fig. 1B). Thus, AKAP-110 appears to be a Gα13 effector that provides a cAMP-independent mechanism of PKA activation.

Interestingly, the PKA-binding site of AKAP110 is also able to bind ropporin [35]. Rropporin is known to bind rhophilin, which is a Rho binding protein and presumed Rho effector [36]. Thus, although activation of PKA by Gα13 via AKAP110 is Rho-independent, it cannot be excluded that AKAP110 may provide yet undefined additional link between Gα13 and Rho signaling.

AKAP120. Yet another PKA-anchoring protein, AKAP120, has been suggested to specifically interact with Gα13 but not several other Gα [37]. However the initial finding using the yeast two hybrid system has not been confirmed by other techniques, and no further studies of the Gα13-AKAP120 interaction have been reported. AKAP120 described in Ref. [37] is actually a fragment of one of the several alternatively spliced isoforms derived from the same gene, which include AKAPs 350, 450 and Yotiao. These proteins are located at centrosomes and/or Golgi apparatus and affect microtubule dynamics (AKAP350/450), or regulate cardiac potassium channel (Yotiao) [38,39]. It would be important to establish whether any of these isoforms are able to interact with Gα13.

Tetratricopeptide repeat (TPR)-containing scaffolding proteins

TPR1 was initially identified as a protein containing three TPR motifs, which interacts with the GAP domain of neu-
rofibromin (NF1) [40]. It also interacts with and is a co-chaperone of Hsp70 [41,42]. TPR1 was found to interact with Go₁₁₆ as well as Go₅₆, Go₅₂, and to a much lesser extent with Go₅ (but not Go₁₁₃ or Go₅₃), as well as with HA-Ras (but not Rho, Cdc42 and Rac) [43]. In the absence of Go₁₁₆, HA-Ras was found to bind to TPR1 preferentially in the activated conformation, however in the presence of Go₁₁₆ binding was similar for activated and inactive HA-Ras. Binding of Go₁₁₆ facilitated binding of HA-Ras to TPR1 and led to accumulation of the activated Ras (Fig. 2A), apparently by stabilizing the activated conformation, rather than by promoting GDP-GTP exchange. In contrast, binding of HA-Ras had no effect on the binding of Go₁₁₆. The physiological role of the formation of the Go₁₁₆-TPR1-Ras complex remains to be explored.

Mammalian AGS3 and LGN proteins and their Drosophila homologue Pins, which contain N-terminal TPR domains and C-terminal domains with GoLoco motifs, act as scaffolds for Go₅ and microtubule binding protein NuMA [44,45]. This signaling complex plays a role in regulation of cell polarity and has been considered in detail elsewhere [7,10,11].

Another TPR protein, protein Ser/Thr phosphatase PP5, is able to interact with Go₁₂ and Go₁₃ [46]. It remains to be seen whether the ternary complexes exist that include PP5, Go₁₂/₁₃ and other proteins, or binding of Go₁₂/₁₃ and other proteins to the TPR domain of PP5 is mutually exclusive, i.e. whether PP5 can be considered as a bona fide scaffolding protein.

WD40 repeat proteins

Go₇ belongs to the family of WD40 repeat proteins [47]. Go₇ acts as a scaffold itself by facilitating interaction between activated GPCRs and Go₅, and also by recruiting GRK2 (β-ARK) to those GPCR that are phosphorylated by this kinase [48]. It also initiates signal transduction by recruiting other scaffolding or adaptor proteins. In yeast, as discussed below, it recruits a scaffolding protein Ste5p from the cytosol to the cell membrane, where it assembles a signaling complex containing the components of the MAPK cascade.

In mammalian cells, Go₇ has been found to interact with other WD40 repeat proteins, namely RACK1 (Receptor for Activated C Kinase 1), dynein intermediate chain and an uncharacterized protein AAH20044 [49-51]. Of these three proteins, only Go₇-RACK1 interaction has been characterized in detail to date. RACK1 shares 57% amino acid similarity with Go₁ Unlike Go₇, RACK1 does not have an N-terminal extension for binding Go₇. Although RACK1 does bind Go₇, it does not interact with the Go β₇ heterotrimer (except that of transducin) or with Go₅.

Binding of RACK1 to Go₇ affects some but not all Go₇-mediated functions: while activation of phospholipase C β2 and adenylyl cyclase II are inhibited, Go₇-mediated chemotaxis and activation of MAP kinase cascade are not affected. RACK1 does not affect signal transduction through the Go subunits of Gi, Gs or Gq.

The association with Go₇ induces translocation of RACK1 from the cytosol to the plasma membrane. This has been suggested to be a mechanism to recruit PKC and other RACK1-binding proteins to the membrane [49,50]. In particular, Go₇-RACK1 mediated PKC recruitment to GPCRs could promote their efficient deactivation by this kinase, in a manner similar to the recruitment of GRK2 by Go₇ (see above). In addition, a number of Go₇ effectors,
such as Ca\(^{2+}\) channels, phospholipase C\(\beta\) and adenyllyl cyclase, as well as several \(\alpha\) and RGS proteins can be regulated by PKC. Whether regulation of these proteins is subject to fine tuning by the G\(\beta\gamma\)-RACK1 interaction has yet to be explored experimentally.

Another possibility is that the G\(\beta\gamma\)-RACK1 complex might build larger signaling complexes, employing scaffolding properties of both G\(\beta\gamma\) and RACK1. In this respect, it is of particular interest that some proteins bind to/are regulated by both G\(\beta\gamma\) and RACK1. These include dynamin-1, involved in GPCR internalization; Src, a tyrosine kinase involved in G\(\beta\gamma\)-mediated MAPK activation, and \(\beta\) integrin ([52] and references therein).

Importantly, RACK1 is able to homodimerize [53], a property that may further expand its ability to form signaling complexes as schematically depicted in Fig. 2B. A model suggested by the latter study implicates a RACK1-based signaling complex in regulation of NMDA receptor (which is an ion channel) by a GPCR PAC1. According to the model of [53], in the inactive state one molecule of RACK1 in the dimer would bind NMDA receptor and link it to PAC1 via G\(\alpha\)\(\beta\gamma\) trimer, while the other PACK1 molecule would bind to a kinase Fyn, keeping it in a proximity to NMDA receptor but nevertheless preventing it from phosphorylating NMDAR (Fig. 2B). Upon PAC1 activation, the signaling complex is postulated to dissociate and released Fyn to phosphorylate and thus activate NMDA receptor [53]. It should be noted however that this model requires the ability of RACK1 to associate with G protein heterotrimer, which in most cases is not supported by experimental evidence (see above).

Kelch repeat proteins, although unrelated in their primary structure to WD40 repeats, form similar \(\beta\)-propeller structures that also mediate protein-protein interactions [54]. Two "\(\beta\)-mimic" proteins, Gpb1 and Gpb2, containing kelch repeats rather than WD40 repeats, have been found to interact with a \(\alpha\) subunit Gpa2 in yeast [55,56]. Notably, there are no known canonical G\(\beta\gamma\) interacting with Gpa2. Unlike canonical G\(\beta\gamma\), Gpb1 and Gpb2 do not facilitate, but on the contrary inhibit coupling of Gpa2 with its cognate GPCR. Whether interaction of \(\alpha\) with Kelch repeat proteins is unique for yeast or similar interactions may exist in mammals remains to be explored.

Other scaffolding proteins

Radixin is a member of the ezrin-radixin-moesin (ERM) protein family that anchor actin filaments to the cell cortex and membrane proteins, and function in Rho signaling. ERM proteins are involved in such cytoskeleton-dependent processes as cell morphogenesis, migration and growth (reviewed [57,58]). Not surprisingly, ERM proteins may be involved in tumor metastasis [59,60]. ERM proteins are negatively regulated by an intramolecular interaction between the N- and C-terminal domains, and their ability to bind actin and other proteins is stimulated when this interaction is disrupted and the binding sites on radixin are unmasked [57].

Radixin was found to interact with activated (but not GDP-bound) \(\alpha_{13}\) via its N-terminal domain [61]. This interaction apparently disrupted the interaction between the N- and C-terminal domains, leading to radixin "conformational activation" and increased binding to F-actin [61]. Dominant-negative deletion mutants of radixin could block transformation induced by mutationally activated \(\alpha_{13}\), suggesting that radixin could act downstream of \(\alpha_{13}\) in this process [61]. A suggestion that radixin may mediate cellular effects of \(\alpha_{13}\) was further substantiated by a more recent study from our laboratory, which found that the C-terminal domain of radixin activates Rac1 and CAMKII, leading to stimulation of SRE (serum response element)-dependent gene transcription ([62]; Fig. 3).

EBP50 (ezrin-radixin-moesin-binding phosphoprotein 50, also termed NHERF1 for Na\(^{+}\)-H\(^{+}\) exchanger regulatory factor 1) is a PDZ domain-containing scaffolding protein known to bind to a variety of proteins, including ERM proteins, channels, receptors, cytoskeletal elements, and cytoplasmic proteins (for a recent review, see [63]). EBP50 was found to interact with \(\alpha_{q}\) via its PDZ domains [64]. The interaction was more efficient with activated than with inactive form of \(\alpha_{q}\), accordingly, stimulation of the thromboxane \(A_{2}\) receptor (which is coupled to \(G_{q}\)) enhanced the \(\alpha_{q}\)-EBP50 interaction. EBP50 was also able to interact with \(\alpha_{q}\) and stimulation of the \(\beta_{2}\)-adren-
ergic receptor (coupled to Gaq) was found to promote EBP50 binding to Ga. However, several other Ga tested (Gaq12/13, and Gaq16) did not interact with EBP50. Sequestration of Gaq by EBP50 was found to interfere with the Ga-receptor interaction and to inhibit Gaq-dependent stimulation of PLCβ ([64]; Fig. 4). EBP50 is known to bind directly and to mediate recycling of a number of receptors [65,66]; it was also found to inhibit internalization. Ste5 also binds to Gaq. The latter property allows the recruitment of the Ste5/MAPK signaling complex to the stimulus-sensing receptor/G protein module, enabling signal transduction from GPCR via Gaq to the MAPK cascade (Fig. 5A). Analogs of Ste5 act as scaffolds for other MAP kinase cascades in both yeast and mammalian cells [74,75], and some of them are also able to interact with subunits of heterotrimeric G proteins.

Scaffolding proteins that link heterotrimeric G proteins with MAP kinase cascades. The first such scaffolding protein, Ste5, was discovered in yeast (reviewed by [72,73]). Ste5 is able to bind all three kinases (MAPKK, MAPKK and MAPK) of the mating pathway, which promotes their mutual interactions and thereby facilitates signal transduction. Ste5 also binds to Gaq. The latter property allows the recruitment of the Ste5/MAPK signaling complex to the stimulus-sensing receptor/G protein module, enabling signal transduction from GPCR via Gaq to the MAPK cascade (Fig. 5A). Analogs of Ste5 act as scaffolds for other MAP kinase cascades in both yeast and mammalian cells [74,75], and some of them are also able to interact with subunits of heterotrimeric G proteins.

Mammalian KSR1 protein (which shares no sequence similarity with Ste5) assembles the kinases of the ERK pathway (Raf-1, MEK1/2, ERK1/2) (reviewed by [74,76]). KSR1 plays a role in ERK activation during inflammatory and stress responses and has been implicated in the onset of arthritis [77]. KSR1-facilitated ERK activation was also found to be essential for long-term memory formation and synaptic plasticity [78].

JNK-interacting leucine zipper protein (JLP) is a scaffolding protein (recently reviewed in [72]) involved in linking JNK with its substrate transcription factors (Myc and Max) and its upstream kinases (MKK4 and MEK3) [81]. JLP interacts with kinesin light chain 1, which is required for its interaction with JNK and affects localization of the complex [82]. JLP has recently been found to interact specifically with Ga12 and Ga13, but not Gaq, Ga or Gaq [83]. Although JLP binds both activated and inactive Ga13, the interaction is more pronounced with the activated form. Accordingly, JLP-Ga13 interaction is enhanced by lysophosphatidic acid (LPA) stimulation, which is known to activate Ga13. LPA-induced JNK activation in living cells is potentiated by overexpression of JLP. Thus, JLP appears to function in linking GPCR signaling to JNK activation by assembling a protein complex that involves Ga13 and the components of JNK signaling module (Fig. 5C). We have recently found that JLP can also assemble a complex containing Ga13 and apoptosis signal-regulating kinase 1 (ASK1), which is known to stimulate JNK and/or p38 in response to stress stimuli [84]. Although the functionality of this complex in terms of activation of downstream MAP kinases remains to be tested, this suggests

Figure 4
The role of EBP50 (NERF) in downregulation of G protein signaling.
that JLP may link $\alpha_{12/13}$ signaling with JNK through more than one kinase cascade. A physiological role for the α_{13}-JLP-JNK signaling complex in retinoic acid-induced differentiation has recently been suggested [85].

Two JLP-related alternative splicing products are known (JIP4 and SPAG9), which differ from JLP in their N-termini and appear to have different selectivity towards JNK vs. p38 [86,87]. Since $\alpha_{12/13}$-binding region in JLP is at the C-terminus and the C-terminal parts are conserved in all three isoforms, JIP4 and SPAG9 would also likely be able to interact with $\alpha_{12/13}$. Experimental confirmation of this interaction and its functional implications have not yet been reported.

Conclusion and perspectives

A number of scaffolding proteins for heterotrimeric G proteins have been identified in the recent years, and undoubtedly many more are still to be found. The knowledge of the composition of possible complexes formed by these scaffolds is essential for identification of the precise signaling pathways they may be involved in. This has been already achieved to some extent for a number of signaling complexes that involve heterotrimeric G proteins. Another layer of complexity is added by the events that determine when and at what levels these scaffolds are expressed in the cell and what are the fine tuning mechanisms that regulate their interactions with particular partners. In this respect, recent studies have highlighted some possible fine tuning mechanisms. First, the expression of scaffolding proteins may be regulated by relevant physiological stimuli, as evidenced by the work of Kashef et al. [85], who found that retinoic acid may induce expression of JLP, a scaffolding protein that assembles a complex transducing the signal from this ligand. Another example of regulation of a G protein-binding scaffold by a physiological stimulus, in this case growth factor stimulation [76], is Ras-dependent degradation of a protein IMP that controls KSR1 localization [88]. Another level of fine tuning may be achieved by posttranslational modifications of the proteins involved, and some cases of such regulation are beginning to emerge. It was suggested that binding of $\beta\gamma$ may Ste5 may induce conformational changes in the latter, which make activation of MAP kinases bound to Ste5 more efficient [89]. Regulation of several G protein-binding scaffolding proteins by phosphorylation has been reported, including Ste5 and KSR1 [76,89]. Sumoylation of the proteins of RGS-Rz subfamily was found to switch their function from stimulation of GTPase activity of α subunits to that of a scaffolding protein [90]. Clearly, detailed knowledge of not only composition of the complexes assembled by G protein-interacting scaffolding proteins, but although intricate regulation of the properties of all components of these complexes will be necessary for full understanding of their biological functions.

Competing interests

The author(s) declare that they have no competing interests.

Acknowledgements

This work was supported by grants from the National Institutes of Health GM56159 and HL06078 and by a grant from the American Heart Associa-
tion (to TVY). TVY is an Established Investigator of the American Heart Association.

References
1. Faux MC, Scott JD: Molecular glue: kinase anchoring and scaffold proteins. Cell 1996, 85:9-12.
2. Burack WR, Shaw AS: Signal transduction: hanging on a scaffold. Curr Opin Cell Biol 2000, 12(2):211-216.
3. Hall RA, Lefkowitz RJ: Regulation of G protein-coupled receptor signaling by scaffold proteins. Circ Res 2002, 91(8):672-680.
4. McCudden CR, Hains MD, Kimple RJ, Siderovski DP, Willard FS: G-protein signaling: back to the future. Cell Mol Life Sci 2005, 62(5):551-577.
5. Oldham WM, Hamm HE: Structural basis of function in heterotrimeric G proteins. Q Rev Biophys 2006, 39(2):117-166.
6. Patel TB: Single transmembrane spanning heterotrimeric G protein-coupled receptors and their signaling cascades. Pharmacol Rev 2004, 56(3):371-385.
7. Hampoelz B, Knoblich JA: Heterotrimeric G proteins: new tricks for an old dog. Cell 2004, 119(4):453-456.
8. Williams GB: Mammalian RGS proteins: multifunctional regulators of cellular signaling. Semin Cell Dev Biol 2006, 17(3):363-376.
9. Xie GX, Palmer PP: How regulators of G protein signaling achieve selective regulation. J Mol Biol 2007, 366(2):349-365.
10. Blumer JB, Smrcka AV, Lanier SM: Mechanistic pathways and biological roles for receptor-independent activators of G-protein signaling. J Biol Chem 2007, 111(3):348-506.
11. Cisowski MJ: Non-receptor activators of heterotrimeric G-protein signaling (AGS proteins). Semin Cell Dev Biol 2006, 17(3):334-344.

12. Collinge M, Scott JD: AKAPs: from structure to function. Trends Cell Biol 1999, 9(6):216-221.
13. Tasken KA, Collas P, Kammers WA, Wirtzak O, Conti M, Tasken K: Phosphodiesterase 4D and protein kinase A type II constitute a signaling unit in the centrosomal area. J Biol Chem 2001, 276(25):21999-22002.
14. Carnegie GK, Smith FD, McConnachie G, Langeberg JK, Scott JD: AKAP-Lbc nucleates a protein kinase D activation scaffold. Mol Cell 2004, 15(6):889-899.
15. Wong W, Scott JD: AKAP signalling complexes: focal points in space and time. Nat Rev Mol Cell Biol 2004, 5(12):959-970.
16. Appert-Collin A, Baisamy L, Diviani D: Regulation of G protein-coupled receptor signaling by A-kinase anchoring proteins. J Recept Signal Transduct Res 2006, 26(5-6):631-646.
17. Klussmann E, Pepperle B, Edemir B, Bouchala C, Maric K, Rosenthal W: The protein kinase A anchoring protein Ht31, the Rho GEF factor proto-Lbc and the breast cancer auxiliary protein Brx are encoded by a single gene. N-S Arch Pharmacol 2001, 363(4):R66-R66.
18. Diviani D, Soderling J, Scott JD: AKAP-Lbc anchors protein kinase A and nucleates G alpha(12)-selective Rho-mediated stress fiber formation. J Biol Chem 2001, 276(47):44247-44257.
19. Diviani D, Baisamy L, Appert-Collin A: AKAP-Lbc: a molecular scaffold for the integration of cyclic AMP and Rho transduction pathways. Eur J Cell Biol 2006.
20. Appert-Collin A, Coteccia S, Nenninger-Tosato M, Pedrazzini T, Diviani D: The A-kinase anchoring protein (AKAP)-Lbc-signaling complex mediates alpha1 adrenergic receptor-induced cardiomyocyte hypertrophy. Proc Natl Acad Sci U S A 2007, 104(24):10140-10145.
21. Baisamy L, Jurisch N, Diviani D: Leucine zipper-mediated homologimerization regulates the Rho-GEF activity of AKAP-Lbc. J Biol Chem 2005, 280(13):15405-15412.
22. Niu JX, Vaikunhtaite R, Suzuki N, Kozasa T, Carr DW, Dulin N, Voyono-Yasenetskaya TA: Interaction of heterotrimeric G13 protein with an A-kinase-anchoring protein 110 (AKAP110) mediates CAMP-independent PKA activation. Current Biology 2004, 14(16):1436-1450.
23. Fujita A, Nakamura K, Kato T, Watanabe N, Ishizaki T, Kimura M, Mizoguchi A, Narumiya S: Identification of sperm-specific proteins that interact with A-kinase anchoring proteins in a manner similar to the type II regulatory subunit of PKA. J Biol Chem 2001, 276(20):17332-17338.
24. Fujita A, Nakamura K, Kato T, Watanabe N, Ishizaki T, Kimura M, Mizoguchi A, Narumiya S, Ropporin, a sperm-specific binding protein of rhophilin, that is localized in the fibros sheet of sperm flagella. J Cell Sci 2000, 113(1):103-112.
25. Suzuki M, Furuuchi K, Tonoki H, Ozaki T, Iizuka K, Murakami T, Kita-batake A, Kawaguchi H: A novel A-kinase anchoring protein in the heart interacts with G alpha 13. Jpn Heart J 1999, 40(2):199-208.
26. Chen L, Kass RS: Dual roles of the A-kinase-anchoring protein Yotiao in the modulation of a cardiac potassium channel: a passive adaptor versus an active regulator. Eur J Cell Biol 2006, 85(7):623-626.
27. Larocca MC, Jin M, Goldenring JR: AKAP350 modulates microtubule dynamics. Eur J Cell Biol 2006, 85(7):611-619.
28. Murphy AE, Bernard A, Church D, Wasmuth J, Gusella JF: Identification and characterization of two novel trinitratopeptide repeat-containing genes. DNA Cell Biol 1996, 15(9):727-735.
29. Wu SJ, Liu FH, Hu SH, Wang C: Different combinations of the heat-shock cognate protein 70 (hsc70) C-terminal functional groups are utilized to interact with distinct trinitratopeptide repeat-containing proteins. Biochem J 2001, 359:419-426.
30. Oh WK, Song J: Cooperative interaction of Hsp40 and TPR1 with Hsp70 reverses Hsp70-HspB1 complex formation. Mol Cells 2003, 16(1):84-91.
31. Marty C, Browning DD, Ye RD: Identification of trinitratopeptide repeat I as an adaptor protein that interacts with heterotrimeric G proteins and the small GTPase Ras. Mol Cell Biol 2003, 23(11):3847-3858.
32. Du QS, Taylor L, Compton DA, Macara IG: LGN blocks the ability of NuMA to bind and stabilize microtubules: A mechanism for mitotic spindle assembly regulation. Current Biology 2002, 12(22):1928-1933.
45. Du QS, Macara IG: Mammalian Pins is a conformational switch that links NuMA to heterotrimeric G proteins. Cell 2004, 116(4):503-516.

46. Yamaguchi Y, Katoh H, Mori K, Negishi M: G alpha(12) and G alpha(13) interact with Ser/Thr protein phosphatase type 5 and stimulate its phosphatase activity. Current Biology 2002, 12(15):1335-1338.

47. Wall MA, Coleman DE, Lee E, Inguelytuliu JA, Posner BA, Gilman AG, Sprang SR: The Structure of the G-Protein Heterotrimer G(Alpha)-1Beta(1)Gamma(2). Cell, 1995, 83(6):1047-1058.

48. Pitcher JA, Inglese J, Higgins JB, Arriza JL, Casey PJ, Kim C, Benovic JL, Kwatra MM, Caron MG, Lekofkowski Rj: Role of Beta-Gamma-Subunit of G-Proteins in Targeting the Beta-Adrenergic-Receptor Kinase to Membrane-Bound Receptors. Science 1992, 257(5074):1264-1267.

49. Chen S, Dell Ej, Lin F, Sai J, Hamm HE: RACK1 regulates specific functions of Gbeta gamma. J Biol Chem 2004, 279(10):10808-10813.

50. Chen S, Spiegelberg BD, Lin F, Dell Ej, Hamm HE: Interaction of Gbeta gamma with RACK1 and other WD40 repeat proteins. J Mol Cell Cardiol 2004, 37(2):399-406.

51. Dell Ej, Connor J, Chen S, Stebbins EG, Skiba NP, Moehly-Rosen D, Hamm HE: The betagamma subunit of heterotrimeric G proteins interacts with RACK1 and two other WD repeat proteins. J Biol Chem 2002, 277(51):49888-49895.

52. Chen S, Lin F, Hamm HE: RACK1 binds to a signal transfer region of G betagamma and inhibits phospholipase C beta2 activation. J Biol Chem 2005, 280(39):33445-33452.

53. Thornton C, Tang KC, Phanluong K, Luong K, Vages A, Nikanjam D, Yaka R, Ron D: Spatial and temporal regulation of RACK1 function and N-methyl-D-aspartate receptor activity through WD40 motif-mediated dimerization. J Biol Chem 2008, 273(10):6351-6364.

54. Adams J, Kelso R, Cooley L: The kelch repeat superfamily of proteins: propellers of cell function. Trends Cell Biol 2000, 10(1):17-24.

55. Harashima T, Heitman J: The G alpha protein Gpa2 controls yeast differentiation by interacting with Kelch repeat proteins that mimic G beta subunits. Molecular Cell 2002, 10(1):163-173.

56. Harashima T, Heitman J: G alpha subunit Gpa2 recruits kelch repeat subunits that inhibit receptor-G protein coupling during cAMP-induced dimorphic transitions in Saccharomyces cerevisiae. Mol Biol Cell 2005, 16(10):4557-4571.

57. Brochier A, Edwards K, Fehon RG: The kelch repeat superfamily of proteins interacts with RACK1 and two other WD repeat proteins. J Biol Chem 2002, 277(24):20935-20942.

58. Polese S, Payne F: Small is beautiful: what flies tell us about cAMP signalling. J Mol Biol 2002, 314(3):313-318.

59. Khanna C, Wan XL, Bosc S, Cassaday R, Olomo O, Mendoza A, Yeung C, Gorlick R, Hewitt SM, Helman LJ: The membrane-cytoskeleton linker ezrin is necessary for osteosarcoma metastasis. Nat Med 2004, 10(2):182-186.

60. Yu TL, Khan J, Khanna C, Helman L, Meltzer PS, Merlino G: Expression profiling identifies the cytoskeletal organizer ezrin and the developmental homeoprotein Six-1 as key metastatic regulators. Nat Med 2004, 10(2):175-181.

61. Vasikunute R, Adarichev V, Furthmayr H, Kozaits T, Gudkov A, Vosoiu Y, Yasenetskaya TA: Conformational activation of radixin by G(13) alpha protein subunit. J Biol Chem 2000, 275(34):27586-27593.

62. Liu GQ, Vasoiu Y, Yasenetskaya TA: Radixin stimulates Rac1 and Ca2+/calmodulin-dependent kinase, CaMKII - Cross-talk with G alpha(13) signaling. J Biol Chem 2005, 280(47):37904-37910.

63. Weinman EJ, Hall RA, Friedman PA, Liu-Chen LY, Shenolikar S: The Association of NHERF Adaptor Proteins with G Protein-Coupled Receptors and Receptor Tyrosine Kinases. Annu Rev Physiol 2006, 68:491-505.

64. Rochdi MD, Watson V, La Madeleine C, Nakata H, Kozaits T, Parent JL: Regulation of GTP-binding protein alpha q (Galpha q) signaling by the ezrin-radixin-moesin-binding phosphoprotein-50 (EBP50). J Biol Chem 2002, 277(43):40751-40759.

65. Gage RM, Matveeva EA, Whiteheart SW, von Zastrow M: Type I PDZ ligands are sufficient to promote rapid recycling of G protein-coupled receptors independent of binding to N-ethylmaleimide-sensitive factor. J Biol Chem 2005, 280(30):30305-30313.
86. Jagadish N, Rana R, Selvi R, Mishra D, Garg M, Yadav S, Herr JC, Okumura K, Hasegawa A, Koyama K, Suri A: Characterization of a novel human sperm-associated antigen 9 (SPAG9) having structural homology with c-Jun N-terminal kinase-interacting protein. Biochem J 2005, 389(Pt 1):73-82.

87. Kelkar N, Standen CL, Davis RJ: Role of the JIP4 scaffold protein in the regulation of mitogen-activated protein kinase signaling pathways. Mol Cell Biol 2005, 25(7):2733-2743.

88. Matheny SA, Chen C, Kortum RL, Razidlo GL, Lewis RE, White MA: Ras regulates assembly of mitogenic signalling complexes through the effector protein IMP. Nature 2004, 427(6971):256-260.

89. Dard N, Peter M: Scaffold proteins in MAP kinase signaling: more than simple passive activating platforms. Bioessays 2006, 28(2):146-156.

90. Rodriguez-Munoz M, Bermudez D, Sanchez-Blazquez P, Garzon J: Sumoylated RGS-Rz proteins act as scaffolds for Mu-opioid receptors and G-protein complexes in mouse brain. Neuropsychopharmacology 2007, 32(4):842-850.