Miniversal deformations of matrices of sesquilinear forms

Andrii R. Dmytryshyn∗ Vyacheslav Futorny† Vladimir V. Sergeichuk‡

Abstract

V.I. Arnold [Russian Math. Surveys 26 (2) (1971) 29–43] constructed a miniversal deformation of matrices under similarity; that is, a simple normal form to which not only a given square matrix A but all matrices B close to it can be reduced by similarity transformations that smoothly depend on the entries of B. A miniversal deformation of matrices under congruence was constructed by V. Futorny and V.V. Sergeichuk [Miniversal deformations of matrices of bilinear forms, Preprint RT-MAT 2007-04, Universidade de São Paulo, 2007, 34 p. (arXiv:1004.3584v1)]. We similarly construct miniversal deformation of matrices under *congruence.

AMS classification: 15A21

Keywords: Sesquilinear form; Classification; Miniversal deformation

∗Faculty of Mechanics and Mathematics, Kiev National Taras Shevchenko University, Volodymyrska 64, Kiev, Ukraine. Email: AndriiDmytryshyn@gmail.com.
†Department of Mathematics, University of São Paulo, Brazil. Email: futorny@ime.usp.br. Supported in part by the CNPq grant (301743/2007-0) and by the Fapesp grant (2010/50347-9).
‡Institute of Mathematics, Tereshchenkivska 3, Kiev, Ukraine. Email: sergeich@imath.kiev.ua. Supported in part by the Fapesp grant (2010/07278-6). The work was done while this author was visiting the University of São Paulo, whose hospitality is gratefully acknowledged.
1 Introduction

The reduction of a matrix to its Jordan form is an unstable operation: both the Jordan form and the reduction transformations depend discontinuously on the entries of the original matrix. Therefore, if the entries of a matrix are known only approximately, then it is unwise to reduce it to Jordan form. Furthermore, when investigating a family of matrices smoothly depending on parameters, then although each individual matrix can be reduced to a Jordan form, it is unwise to do so since in such an operation the smoothness relative to the parameters is lost.

For these reasons V. I. Arnold [1] (see also [2, 3]) constructed miniversal deformations of matrices under similarity; that is, a simple normal form to which not only a given square matrix \(A \) but all matrices \(B \) close to it can be reduced by similarity transformations that smoothly depend on the entries of \(B \). Miniversal deformations were also constructed for:

(a) real matrices with respect to similarity by Galin [11] (see also [2, 3]); his normal form was simplified in [13];

(b) complex matrix pencils by Edelman, Elmroth, and Kågström [8]; a simpler normal form of complex and real matrix pencils was constructed in [13];

(c) complex and real contragredient matrix pencils (i.e., matrices of pairs of counter linear operators \(U \rightleftarrows V \)) in [13];

(d) matrices of linear operators on a unitary space by Benedetti and Crag-nolini [4]; and

(e) matrices of selfadjoint operators on a complex or real vector space with scalar product given by a skew-symmetric, or symmetric, or Hermitian nonsingular form in [12, 7, 21, 23].

Futorny and Sergeichuk [9] constructed a miniversal deformation of matrices of complex bilinear forms; that is, of matrices under congruence transformations

\[A \mapsto S^T A S, \quad S \text{ is nonsingular} \]

(and also miniversal deformations of pairs consisting of symmetric and skew-symmetric matrices since each square matrix is their sum).

2
In this paper, we construct an analogous miniversal deformation of matrices of complex sesquilinear forms; that is, of matrices under *congruence transformations

\[A \mapsto S^* AS, \quad S \text{ is nonsingular} \]

(and also miniversal deformations of pairs \((\mathcal{H}, \mathcal{K})\) of Hermitian matrices since each square matrix is uniquely represented in the form \(\mathcal{H} + i\mathcal{K}\); see Remark 3.1).

All matrices that we consider are complex matrices. In Sections 2 and 3 we give miniversal deformations of matrices of bilinear forms. In Sections 4–7 we prove that these deformations are miniversal.

2 The main theorem in terms of holomorphic functions

Define the \(n\)-by-\(n\) matrices:

\[
J_n(\lambda) := \begin{bmatrix} \lambda & 1 & 0 \\ 1 & \ddots & 1 \\ 0 & \ddots & \ddots & \ddots \\ \end{bmatrix}, \quad \Delta_n = \begin{bmatrix} 0 & \cdots & 1 \\ \cdots & \ddots & \ddots & \ddots \\ 1 & \cdots & i & 0 \\ \end{bmatrix}.
\]

The most important property of the symmetric matrices \(\Delta_n\) is that \(\Delta_n^* \Delta_n = \bar{\Delta}_n^{-1} \Delta_n\) is similar to \(J_n(1)\).

We use the following canonical form of complex matrices for *congruence.

Theorem 2.1. Each square complex matrix is *congruent to a direct sum, uniquely determined up to permutation of summands, of canonical matrices of the three types

\[
H_m(\lambda) := \begin{bmatrix} 0 & I_m \\ J_m(\lambda) & 0 \end{bmatrix} (|\lambda| > 1), \quad \mu \Delta_n (|\mu| = 1), \quad J_k(0) \quad (1)
\]

in which \(\lambda, \mu \in \mathbb{C}\).

This canonical form was obtained in [15] basing on [24, Theorem 3] and generalized to other fields in [18]; a direct proof that this form is canonical is given in [16, 17].
Let A be a given n-by-n matrix, and let

$$A_{\text{can}} = \bigoplus_i H_{\mu_i}(\lambda_i) \oplus \bigoplus_j \mu_j \Delta_{ij} \oplus \bigoplus_l J_{r_l}(0), \quad r_1 \geq r_2 \geq \ldots,$$

be its canonical form for congruence. All matrices that are close to A are represented in the form $A + E$ in which $E \in \mathbb{C}^{n \times n}$ is close to 0. Let $S(E)$ be a holomorphic $n \times n$ matrix function in some neighborhood of 0 (this means that each of its entries is a power series in the entries of E that is convergent in this neighborhood of 0). Define $D(E)$ by

$$A_{\text{can}} + D(E) = S(E)^*(A + E)S(E), \quad S(0) = S.$$

(3)

Then $D(E)$ is holomorphic at 0 and $D(0) = 0$. In the next theorem we obtain $D(E)$ with the minimal number of nonzero entries that can be attained by using transformations (3). By a $(0,*,\circ,\bullet)$ matrix we mean a matrix whose entries are of the form 0, \ast, \circ, and \bullet. The theorem involves the following $(0,*,\circ,\bullet)$ matrices:

- The $m \times n$ matrices

$$0^\leftarrow := \begin{bmatrix} * & \vdots & 0 \\ * & \ddots & \ast \\ \vdots & \ddots & \ast \end{bmatrix} \text{ if } m \leq n \text{ or } \begin{bmatrix} 0 \\ \ast \ldots \ast \end{bmatrix} \text{ if } m \geq n,$$

$$0^\rightarrow := \begin{bmatrix} \vdots \\ 0 & \ast & 0 \\ 0 & \ast \\ \ast \\ \ast & \ast & \ast \end{bmatrix} \text{ if } m \leq n \text{ or } \begin{bmatrix} 0 \\ \ast & \ast & \ast \ast \ast \end{bmatrix} \text{ if } m \geq n,$$

(choosing among the left and right matrices in these equalities, we take a matrix with the minimal number of stars; we can take any of them if $m = n$).

- The matrices

$$0^\leftarrow, \quad 0^\rightarrow, \quad 0^\leftrightarrow$$

that are obtained from 0^\leftarrow by the clockwise rotation through 90°, 180°, and 270°.

- The $n \times n$ matrices
\[
0^\searrow := \begin{cases}
\text{diag}(\ast, \ldots, \ast, 0, \ldots, 0) & \text{if } n = 2k, \\
\text{diag}(\ast, \ldots, \ast, 0, \ldots, 0) & \text{if } n = 2k + 1,
\end{cases}
\]

(4)

\[
0^\nw := \begin{cases}
\text{diag}(\ast, \ldots, \ast, 0, \ldots, 0) & \text{if } n = 2k, \\
\text{diag}(\ast, \ldots, \ast, 0, \ldots, 0) & \text{if } n = 2k + 1.
\end{cases}
\]

(5)

in which the number of \(*'s\) is equal to \(k\).

• The \(m \times n\) matrices

\[
0^i := \begin{bmatrix} \ast & \cdots & \ast \\ 0 & & \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} 0 \\ \ast & \cdots & \ast \end{bmatrix}
\]

(0\(^i\) can be taken in any of these forms), and

\[
P_{mn} := \begin{bmatrix} 0 & \ldots & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \ldots & 0 & 0 \ast \ldots \ast \end{bmatrix} \quad \text{with } m \leq n \quad \text{and } n - m - 1 \text{ stars.}
\]

(6)

Let \(A_{\text{can}} = A_1 \oplus A_2 \oplus \cdots \oplus A_t\) be the decomposition (2). Partition \(D\) in (3) conformably to the partition of \(A_{\text{can}}\):

\[
D = D(E) = \begin{bmatrix} D_{11} & \ldots & D_{1t} \\
\vdots & \ddots & \vdots \\
D_{t1} & \ldots & D_{tt} \end{bmatrix},
\]

(7)

and write

\[
D(A_i) := D_{ii}, \quad D(A_i, A_j) := (D_{ji}, D_{ij}) \quad \text{if } i < j.
\]

(8)

Our main result is the following theorem, which we reformulate in a more abstract form in Theorem 3.1.

Theorem 2.2. Let \(A\) be a square complex matrix and let (2) be its canonical matrix for congruence. All matrices \(A + E\) that are sufficiently close to \(A\) can be simultaneously reduced by transformations

\[
A + E \mapsto S(E)^*(A + E)S(E), \quad S(E) \text{ is nonsingular and holomorphic at zero,}
\]

(9)
to the form $A_{can} + \mathcal{D}$ in which \mathcal{D} is a $(0, *, \circ, \bullet)$ matrix such that the number of zero entries in \mathcal{D} is maximal that can be achieved by transformations (9), the symbols \ast, \circ, and \bullet in \mathcal{D} represent complex, real, and pure imaginary entries that depend holomorphically on the entries of E, and the blocks of \mathcal{D} with respect to the partition (7) are defined in the notation (8) by the following equalities in which $|\lambda| > 1$, $|\lambda'| > 1$, and $|\mu| = |\mu'| = 1$:

(i) The diagonal blocks of \mathcal{D} are defined by

\[
\mathcal{D}(H_m(\lambda)) = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix};
\]

\[
\mathcal{D}(\mu \Delta_n) = \begin{cases} 0^{-} & \text{if } \mu \notin \mathbb{R}, \\ 0^{+} & \text{if } \mu \notin i\mathbb{R} \end{cases}
\]

(if $\mu \notin \mathbb{R} \cup i\mathbb{R}$ then we can use both 0^{-} and 0^{+});

\[
\mathcal{D}(J_n(0)) = 0^{+}.
\]

(ii) The off-diagonal blocks of \mathcal{D} whose horizontal and vertical strips contain summands of A_{can} of the same type are defined by

\[
\mathcal{D}(H_m(\lambda), H_n(\lambda')) = \begin{cases} (0, 0) & \text{if } \lambda \neq \lambda', \\ \begin{bmatrix} 0 & 0^{-} \\ 0^{+} & 0 \end{bmatrix}, 0 & \text{if } \lambda = \lambda' \end{cases}
\]

\[
\mathcal{D}(\mu \Delta_m, \mu' \Delta_n) = \begin{cases} (0, 0) & \text{if } \mu \neq \pm \mu', \\ (0^{-}, 0) & \text{if } \mu = \pm \mu' \end{cases}
\]

\[
\mathcal{D}(J_m(0), J_n(0)) = \begin{cases} (0^{+}, 0^{+}) & \text{if } m \geq n \text{ and } n \text{ is even}, \\ (0^{+} + \mathcal{P}_{nm}, 0^{+}) & \text{if } m \geq n \text{ and } n \text{ is odd}. \end{cases}
\]

(iii) The off-diagonal blocks of \mathcal{D} whose horizontal and vertical strips contain summands of A_{can} of different types are defined by

\[
\mathcal{D}(H_m(\lambda), \mu \Delta_n) = (0, 0);
\]

\[
\mathcal{D}(H_m(\lambda), J_n(0)) = \mathcal{D}(\mu \Delta_m, J_n(0)) = \begin{cases} (0, 0) & \text{if } n \text{ is even}, \\ (0^{+}, 0) & \text{if } n \text{ is odd}. \end{cases}
\]
For each \(A \in \mathbb{C}^{n \times n} \), the set
\[
T(A) := \{ C^*A + AC \mid C \in \mathbb{C}^{n \times n} \}
\] (18)
is a vector space over \(\mathbb{R} \), which is the tangent space to the congruence class of \(A \) at the point \(A \) since
\[
(I + \varepsilon C)^*A(I + \varepsilon C) = A + \varepsilon(C^*A + AC) + \varepsilon^2C^*AC
\] (19)
for all \(C \in \mathbb{C}^{n \times n} \) and \(\varepsilon \in \mathbb{R} \).

The matrix \(D \) from Theorem 2.2 was constructed such that
\[
\mathbb{C}^{n \times n} = T(A_{\text{can}}) \oplus D(\mathbb{C})
\] (20)
in which \(D(\mathbb{C}) \) is the vector space of all matrices obtained from \(D \) by replacing its entries \(*, \circ, \) and \(\bullet \) in \(D \) by complex, real, and pure imaginary numbers. Thus, the double number of stars plus the number of circles plus the number of bullets in \(D \) is the codimension over \(\mathbb{R} \) of the *congruence class of \(A_{\text{can}} \); it was independently calculated in \[6\]. Simplest miniversal deformations of matrix pencils and contagredient matrix pencils and of matrices under congruence were constructed in \[13, 9\] by an analogous method.

Theorem 2.2 will be proved in Sections 4–7 as follows: we first prove in Lemma 4.2 that each \((0, *, \circ, \bullet)\) matrix that satisfies (20) can be taken as \(D \) in Theorem 2.2 and then verify that \(D \) from Theorem 2.2 satisfies (20).

3 The main theorem in terms of miniversal deformations

The notion of a miniversal deformation of a matrix with respect similarity was given by V. I. Arnold \[1\] (see also \[3, \S 30B\]) and can be extended to matrices with respect to *congruence as follows.

A deformation of a matrix \(A \in \mathbb{C}^{n \times n} \) is a holomorphic map \(\mathcal{A} : \Lambda \to \mathbb{C}^{n \times n} \) in which \(\Lambda \subset \mathbb{R}^k \) is a neighborhood of \(\tilde{0} = (0, \ldots, 0) \) and \(\mathcal{A}(\tilde{0}) = A \).

Let \(\mathcal{A} \) and \(\mathcal{B} \) be two deformations of \(A \) with the same parameter space \(\mathbb{R}^k \). \(\mathcal{A} \) and \(\mathcal{B} \) are considered as equal if they coincide on some neighborhood of \(\tilde{0} \) (this means that each deformation is a germ). We say that \(\mathcal{A} \) and \(\mathcal{B} \) are equivalent if the identity matrix \(I_a \) possesses a deformation \(\mathcal{I} \) such that
\[
\mathcal{B}(\tilde{\lambda}) = \mathcal{I}(\tilde{\lambda})^*A(\tilde{\lambda})\mathcal{I}(\tilde{\lambda})
\] (21)
for all \(\tilde{\lambda} = (\lambda_1, \ldots, \lambda_k) \) in some neighborhood of \(\tilde{0} \).

7
Definition 3.1. A deformation \(A(\lambda_1, \ldots, \lambda_k) \) of a matrix \(A \) is called **versal** if every deformation \(B(\mu_1, \ldots, \mu_l) \) of \(A \) is equivalent to a deformation of the form \(A(\varphi_1(\mu_1), \ldots, \varphi_k(\mu_k)) \), in which all \(\varphi_i : \mathbb{R} \to \mathbb{R} \) are power series that are convergent in a neighborhood of \(0 \) and \(\varphi_i(0) = 0 \). A versal deformation \(A(\lambda_1, \ldots, \lambda_k) \) of \(A \) is called **miniversal** if there is no versal deformation having less than \(k \) parameters.

For each \((0,*,o,\bullet)\) matrix \(D \), we denote by \(D(\mathbb{C}) \) the real space of all matrices obtained from \(D \) by replacing its entries \(*, o, \) and \(\bullet \) by complex, real, and pure imaginary numbers (as in (20)) and by \(D(\vec{\varepsilon}) \) the parameter matrix obtained from \(D \) by replacing each \((i,j)\) star with \(\varepsilon_{ij} + i\varepsilon'_{ij} \), each \((i,j)\) circle with \(\varepsilon_{ij} \), and each \((i,j)\) bullet with \(i\varepsilon'_{ij} \). This means that

\[
D(\mathbb{C}) := \bigoplus_{(i,j) \in \mathcal{I}_*(D)} \mathbb{C}E_{ij} \oplus \bigoplus_{(i,j) \in \mathcal{I}_o(D)} \mathbb{R}E_{ij} \oplus \bigoplus_{(i,j) \in \mathcal{I}_\bullet(D)} i\mathbb{R}E_{ij},
\]

\[
D(\vec{\varepsilon}) := \left(\sum_{(i,j) \in \mathcal{I}_*(D)} (\varepsilon_{ij} + i\varepsilon'_{ij})E_{ij} \right) + \left(\sum_{(i,j) \in \mathcal{I}_o(D)} \varepsilon_{ij}E_{ij} \right) + \left(\sum_{(i,j) \in \mathcal{I}_\bullet(D)} i\varepsilon'_{ij}E_{ij} \right),
\]

where

\[
\mathcal{I}_*(D), \mathcal{I}_o(D), \mathcal{I}_\bullet(D) \subseteq \{1, \ldots, n\} \times \{1, \ldots, n\}
\]

are the sets of indices of the stars of the circles, and of the bullets in \(D \), and \(E_{ij} \) is the elementary matrix whose \((i,j)\) entry is 1 and the others are 0.

We say that a miniversal deformation of \(A \) is **simplest** if it has the form \(A + D(\vec{\varepsilon}) \), where \(D \) is a \((0,*,o,\bullet)\) matrix. If all entries of \(D \) are stars, then it defines the deformation

\[
U(\vec{\varepsilon}) := A + \sum_{i,j=1}^{n} (\varepsilon_{ij} + i\varepsilon'_{ij})E_{ij}.
\]

Since each square matrix is *congruent to its canonical matrix, it suffices to construct miniversal deformations of canonical matrices (2). These deformations are given in the following theorem, which is a stronger form of Theorem 2.2.

Theorem 3.1. Let \(A_{\text{can}} \) be a canonical matrix \((2)\) for congruence. A simplest miniversal deformation of \(A_{\text{can}} \) can be taken in the form \(A_{\text{can}} + D(\vec{\varepsilon}) \), where \(D \) is the \((0,*,o,\bullet)\) matrix partitioned into blocks \(D_{ij} \) (as in (7)) that are defined by (10) – (17) in the notation (8).
Remark 3.1. Theorem 3.1 also gives a miniversal deformation of a canonical pair for *congruence of Hermitian matrices \((H_{\text{can}}, K_{\text{can}})\) of the same size; that is, a normal form with minimal number of parameters to which all pairs of Hermitian matrices \((H, K)\) that are close to \((H_{\text{can}}, K_{\text{can}})\) can be reduced by *congruence transformations\
\[
(H, K) \mapsto (S^* H S, S^* K S), \quad S \text{ is nonsingular,}
\]
in which \(S\) smoothly depends on the entries of \(H\) and \(K\). All one has to do is to express \(A_{\text{can}} + D(\tilde{\epsilon})\) as the sum \(\mathcal{H}(\tilde{\epsilon}) + i \mathcal{K}(\tilde{\epsilon})\) in which \(\mathcal{H}(\tilde{\epsilon})\) and \(\mathcal{K}(\tilde{\epsilon})\) are Hermitian matrices. The canonical pair \((H_{\text{can}}, K_{\text{can}})\) such that \(H_{\text{can}} + i K_{\text{can}} = A_{\text{can}}\) was described in [17, Theorem 1.2(b)].

4 Beginning of the proof of Theorem 3.1

Let us give a method of constructing simplest miniversal deformations, which is used in the proof of Theorem 3.1.

The deformation (25) is universal in the sense that every deformation \(B(\mu_1, \ldots, \mu_l)\) of \(A\) has the form \(U(\varphi_1(\mu_1, \ldots, \mu_l), \ldots, \varphi_k(\mu_1, \ldots, \mu_l))\), where \(\varphi_{ij} : \mathbb{R} \to \mathbb{R}\) are power series that are convergent in a neighborhood of 0 and \(\varphi_{ij}(0) = 0\). Hence every deformation \(B(\mu_1, \ldots, \mu_l)\) in Definition 3.1 can be replaced by \(U(\tilde{\epsilon})\), which gives the following lemma.

Lemma 4.1. The following two conditions are equivalent for any deformation \(A(\lambda_1, \ldots, \lambda_k)\) of a matrix \(A\):

(i) The deformation \(A(\lambda_1, \ldots, \lambda_k)\) is versal.

(ii) The deformation (25) is equivalent to \(A(\varphi_1(\tilde{\epsilon}), \ldots, \varphi_k(\tilde{\epsilon}))\) for some power series \(\varphi_i : \mathbb{R} \to \mathbb{R}\) that are convergent in a neighborhood of 0 and such that \(\varphi_i(0) = 0\).

If \(U\) is a subspace of a vector space \(V\), then each set \(v + U\) with \(v \in V\) is called an affine subspace parallel to \(U\).

The proof of Theorem 3.1 is based on the following lemma, which gives a method of constructing miniversal deformations. A constructive proof of this lemma is given in Section ??.

Lemma 4.2. Let \(A \in \mathbb{C}^{n \times n}\) and let \(D\) be a \((0, *, o, \bullet)\) matrix of size \(n \times n\). The following three statements are equivalent:
(i) The deformation $A + D(\varepsilon)$ defined in (23) is miniversal.

(ii) The vector space $\mathbb{C}^{n \times n}$ decomposes into the direct sum

$$\mathbb{C}^{n \times n} = T(A) \oplus_{\mathbb{R}} D(\varepsilon)$$

in which $T(A)$ is the vector space over \mathbb{R} defined in (18).

(iii) Each affine \mathbb{R}-subspace in $\mathbb{C}^{n \times n}$ parallel to $T(A)$ intersects $D(\varepsilon)$ at exactly one point.

Proof. Define the action of the group $GL_n(\mathbb{C})$ of nonsingular n-by-n matrices on the space $\mathbb{C}^{n \times n}$ by

$$A^S := S^* AS, \quad A \in \mathbb{C}^{n \times n}, \quad S \in GL_n(\mathbb{C}).$$

The orbit A^{GL_n} of A under this action consists of all matrices that are *congruent to A.

By (19), the space $T(A)$ is the tangent space to the orbit A^{GL_n} at the point A. Hence $D(\varepsilon)$ is transversal to the orbit A^{GL_n} at the point A if

$$\mathbb{C}^{n \times n} = T(A) + D(\varepsilon)$$

(see definitions in [3, §29E]; two subspaces of a vector space are called *transversal if their sum is equal to the whole space).

This proves the equivalence of (i) and (ii) since a transversal (of the minimal dimension) to the orbit is a (mini)versal deformation [2, Section 1.6]. The equivalence of (ii) and (iii) is obvious.

Recall that the orbits of canonical matrices [2] under the action (27) were also studied in [3].

Due to Lemma 4.2, a simplest miniversal deformation of $A \in \mathbb{C}^{n \times n}$ can be constructed as follows. Let T_1, \ldots, T_r be a basis of the space $T(A)$, and let $E_1, \ldots, E_{n^2}, iE_1, \ldots, iE_{n^2}$, be the basis of $\mathbb{C}^{n \times n}$ over \mathbb{R}, in which E_1, \ldots, E_{n^2} are all elementary matrices E_{ij}. Removing from the sequence $T_1, \ldots, T_r, E_1, \ldots, E_{n^2}, iE_1, \ldots, iE_{n^2}$ every matrix that is a linear combination of the preceding matrices, we obtain a new basis $T_1, \ldots, T_r, E_{i_1}, \ldots, E_{i_k}, E_{j_1}, \ldots, E_{j_\ell}$ of the space $\mathbb{C}^{n \times n}$ over \mathbb{R}. By Lemma 4.2, the deformation

$$A(\varepsilon_1, \ldots, \varepsilon_k, \varepsilon'_1, \ldots, \varepsilon'_\ell) = A + \varepsilon_1 E_{i_1} + \cdots + \varepsilon_k E_{i_k} + \varepsilon'_1 E_{j_1} + \cdots + \varepsilon'_\ell E_{j_\ell}$$

10
is miniversal.

For each $M \in \mathbb{C}^{m \times m}$ and $N \in \mathbb{C}^{n \times n}$, define the real vector space

$$T(M, N) := \{(S^* M + NR, R^* N + MS) | S \in \mathbb{C}^{m \times n}, R \in \mathbb{C}^{n \times m}\}.$$ \hspace{1cm} (28)

Lemma 4.3. Let $A = A_1 \oplus \cdots \oplus A_t$ be a block-diagonal matrix in which every A_i is $n_i \times n_i$. Let $[D_{ij}]$ be a $(0, *, \odot, \bullet)$ matrix of the same size and partitioned into blocks conformably to the partition of A. Then $A + D(\varepsilon)$ is a simplest miniversal deformation of A for congruence if and only if

(i) each affine \mathbb{R}-subspace in $\mathbb{C}^{n_i \times n_i}$ parallel to $T(A_i)$ (defined in (18))

intersects $D_{ii}(\mathbb{C})$ at exactly one point, and

(ii) each affine \mathbb{R}-subspace in $\mathbb{C}^{n_j \times n_i} \oplus \mathbb{C}^{n_i \times n_j}$ parallel to $T(A_i, A_j)$

intersects $D_{ji}(\mathbb{C}) \oplus D_{ij}(\mathbb{C})$ at exactly one point.

Proof. By Lemma 4.2(iii), $A + D(\varepsilon)$ is a simplest miniversal deformation of A if and only if for each $C \in \mathbb{C}^{n \times n}$ the affine \mathbb{R}-subspace $C + T(A)$ contains exactly one $D \in D(\mathbb{C})$; that is, exactly one

$$D = C + S^* A + A S \in D(\mathbb{C}) \quad \text{with} \quad S \in \mathbb{C}^{n \times n}.$$ \hspace{1cm} (29)

Partition D, C, and S into blocks conformably to the partition of A. By (29), for each i we have

$$D_{ii} = C_{ii} + S_{ii}^* A_i + A_i S_{ii},$$

and for all i and j such that $i < j$ we have

$$D_{ij} = C_{ij} + S_{ij}^* A_i + A_j S_{ij}, \quad D_{ji} = C_{ji} + S_{ji}^* A_j + A_i S_{ji}.$$ \hspace{1cm} (30)

Thus, (29) is equivalent to the conditions

$$D_{ii} = C_{ii} + S_{ii}^* A_i + A_i S_{ii} \in D_{ii}(\mathbb{C}) \quad \text{for} \quad 1 \leq i \leq t$$

and

$$(D_{ji}, D_{ij}) = (C_{ji}, C_{ij}) + (S_{ij}^* A_i + A_j S_{ji}, S_{ji}^* A_j + A_i S_{ij}) \in D_{ji}(\mathbb{C}) \oplus D_{ij}(\mathbb{C})$$ \hspace{1cm} (31)

for $1 \leq i < j \leq t$. Hence for each $C \in \mathbb{C}^{n \times n}$ there exists exactly one $D \in D$ of the form (29) if and only if

(i') for each $C_{ii} \in \mathbb{C}^{n_i \times n_i}$ there exists exactly one $D_{ii} \in D_{ii}$ of the form (30), and
(ii') for each $(C_{ji}, C_{ij}) \in \mathbb{C}^{n_i \times n_j} \oplus \mathbb{C}^{n_j \times n_i}$ there exists exactly one $(D_{ji}, D_{ij}) \in D_{ji}(\mathbb{C}) \oplus D_{ij}(\mathbb{C})$ of the form (31).

This proves the lemma.

\[\Box \]

Corollary 4.1. In the notation of Lemma 4.3 $A + D(\varepsilon)$ is a miniversal deformation of A if and only if each submatrix of the form

\[
\begin{bmatrix}
A_i + D_{ii}(\varepsilon) & D_{ij}(\varepsilon) \\
D_{ji}(\varepsilon) & A_j + D_{jj}(\varepsilon)
\end{bmatrix}
\]

with $i < j$

is a miniversal deformation of $A_i \oplus A_j$. A similar reduction to the case of canonical forms for congruence with two direct summands was used in [6] for the solution of the equation $XA + AX^* = 0$.

Let us start to prove Theorem 2.2. Let $A_{\text{can}} = A_1 \oplus A_2 \oplus \cdots \oplus A_t$ be the canonical matrix (2), and let $D = [D_{ij}]_{i,j=1}^t$ be the $(0,*,\circ,\bullet)$ matrix that has been constructed in Theorem 3.1. Each A_i has the form $H_n(\lambda)$, or $\mu \Delta_n$, or $J_n(0)$, and so there are 9 types of diagonal blocks $D(A_i) = D_{ii}$ and pairs of off-diagonal blocks $D(A_i, A_j) = (D_{ji}, D_{ij})$, $i < j$; they have been given in Theorem 2.2. It suffices to prove that (10)–(17) satisfy the conditions (i) and (ii) from Lemma 4.3.

5 Diagonal blocks of D

First we verify that the diagonal blocks of D defined in part (i) of Theorem 2.2 satisfy the condition (i) of Lemma 4.3.

5.1 Diagonal blocks $D(H_n(\lambda))$ with $|\lambda| > 1$

Due to Lemma 4.3(i), it suffices to prove that each 2n-by-2n matrix $A = [A_{ij}]_{i,j=1}^2$ can be reduced to exactly one matrix of the form (10) by adding

\[
\begin{bmatrix}
S_{11}^* & S_{21}^* \\
S_{12}^* & S_{22}^*
\end{bmatrix}
\begin{bmatrix}
0 & I_n \\
J_n(\lambda) & 0
\end{bmatrix}
+ \begin{bmatrix}
0 & I_n \\
J_n(\lambda) & 0
\end{bmatrix}
\begin{bmatrix}
S_{11} & S_{12} \\
S_{21} & S_{22}
\end{bmatrix}
= \begin{bmatrix}
S_{21}^*J_n(\lambda) + S_{21} & S_{11}^* + S_{22} \\
S_{22}^*J_n(\lambda) + J_n(\lambda)S_{11} & S_{12}^* + J_n(\lambda)S_{12}
\end{bmatrix}
\]

(32)
in which $S = [S_{ij}]_{i,j=1}^2$ is an arbitrary $2n$-by-$2n$ matrix. Taking $S_{22} = -A_{12}$ and the other $S_{ij} = 0$, we obtain a new matrix A with $A_{12} = 0$. To preserve A_{12}, we hereafter must take S with $S_{11} + S_{22} = 0$. Therefore, we can add $S_{21}J_n(\lambda) + S_{21}$ to (the new) A_{11}, $S_{12} + J_n(\lambda)S_{12}$ to A_{22}, and $S_{11}J_n(\lambda) + J_n(\lambda)S_{11}$ to A_{21}. Using these additions, we can reduce A to the form (10) due to the following 3 lemmas.

Lemma 5.1. Adding $SJ_n(\lambda) + S^*$, in which λ is a fixed complex number, $|\lambda| \neq 1$, and S is arbitrary, we can reduce each n-by-n matrix to the zero matrix.

Proof. Let $A = [a_{ij}]$ be an arbitrary n-by-n matrix. We will reduce it along its skew diagonals starting from the upper left hand corner:

$$a_{11}, \ (a_{21}, a_{12}), \ (a_{31}, a_{22}, a_{13}), \ \ldots, \ a_{nn}, \quad (33)$$

by adding $\Delta A := SJ_n(\lambda) + S^*$ in which $S = [s_{ij}]$ is any n-by-n matrix. For instance, if $n = 4$ then ΔA is

$$\begin{bmatrix}
\lambda s_{11} + 0 + \bar{s}_{11} & \lambda s_{12} + s_{11} + \bar{s}_{21} & \lambda s_{13} + s_{12} + \bar{s}_{31} & \lambda s_{14} + s_{13} + \bar{s}_{41} \\
\lambda s_{21} + 0 + \bar{s}_{12} & \lambda s_{22} + s_{21} + \bar{s}_{22} & \lambda s_{23} + s_{22} + \bar{s}_{32} & \lambda s_{24} + s_{23} + \bar{s}_{42} \\
\lambda s_{31} + 0 + \bar{s}_{13} & \lambda s_{32} + s_{31} + \bar{s}_{23} & \lambda s_{33} + s_{32} + \bar{s}_{33} & \lambda s_{34} + s_{33} + \bar{s}_{43} \\
\lambda s_{41} + 0 + \bar{s}_{14} & \lambda s_{42} + s_{41} + \bar{s}_{24} & \lambda s_{43} + s_{42} + \bar{s}_{34} & \lambda s_{44} + s_{43} + \bar{s}_{44}
\end{bmatrix}$$

We reduce A to 0 by induction: Assume that the first $t - 1$ skew diagonals of A are zero. To preserve them, we take the first $t - 1$ skew diagonals of S equalling zero. If the t^{th} skew diagonal of S is (x_1, \ldots, x_r), then we can add

$$(\lambda x_1 + \bar{x}_r, \ \lambda x_2 + \bar{x}_{r-1}, \ \lambda x_3 + \bar{x}_{r-2}, \ \ldots, \ \lambda x_r + \bar{x}_1) \quad (34)$$

to the t^{th} skew diagonal of A. Let us show that each vector $(c_1, \ldots, c_r) \in \mathbb{C}^r$ is represented in the form (34); that is, the corresponding system of linear equations

$$\lambda x_1 + \bar{x}_r = c_1, \ \ldots, \ \lambda x_j + \bar{x}_{r-j+1} = c_j, \ \ldots, \ \lambda x_r + \bar{x}_1 = c_r \quad (35)$$

has a solution. This is clear if $\lambda = 0$. Suppose that $\lambda \neq 0$.

Let $r = 2k + 1$. By (35), $x_j = \lambda^{-1}(c_j - \bar{x}_{r-j+1})$. Replace j by $r - j + 1$:

$$x_{r-j+1} = \lambda^{-1}(c_{r-j+1} - \bar{x}_j). \quad (36)$$
Substituting (36) into the first \(k + 1 \) equations of (35), we obtain
\[
\lambda x_j + \tilde{\lambda}^{-1}(\tilde{c}_{r-j+1} - x_j) = (\lambda - \tilde{\lambda}^{-1})x_j + \tilde{\lambda}^{-1}\tilde{c}_{r-j+1} = c_j, \quad j = 1, \ldots, k + 1.
\]
Since \(|\lambda| \neq 1\), \(\lambda - \tilde{\lambda}^{-1} \neq 0 \) and we have
\[
x_j = \frac{c_j - \tilde{\lambda}^{-1}\tilde{c}_{r-j+1}}{\lambda - \tilde{\lambda}^{-1}} = \frac{\tilde{\lambda}c_j - \tilde{c}_{r-j+1}}{\lambda\lambda - 1}, \quad j = 1, \ldots, k + 1. \tag{37}
\]
The equalities (36) and (37) give a solution of (35).

If \(r = 2k \), then (35) is solved in the same way, but we take \(j = 1, \ldots, k \) in (37).

Lemma 5.2. Adding \(J_n(\lambda)R + R^* \), in which \(\lambda \) is a fixed complex number, \(|\lambda| \neq 1\), and \(R \) is arbitrary, we can reduce each \(n \times n \) matrix to the zero matrix.

Proof. By Lemma 5.1 for each \(n \times n \) matrix \(B \) there exists \(S \) such that
\[
B^* + J_n(\lambda)^*S^* + S = 0.
\]
Write
\[
Z := \begin{bmatrix} 0 & \cdots & 1 \\ 1 & \cdots & 0 \end{bmatrix}.
\]
Because \(Z J_n(\lambda)^*Z = J_n(\tilde{\lambda}) \), we have
\[
ZB^*Z + J_n(\tilde{\lambda})(ZSZ)^* + ZSZ = 0.
\]
This ensures Lemma 5.2 since \(ZB^*Z \) is arbitrary. \(\square \)

Lemma 5.3. Adding \(SJ_n(\lambda) + J_n(\lambda)S \), we can reduce each \(n \times n \) matrix to exactly one matrix of the form \(0^* \).

Proof. Let \(A = [a_{ij}] \) be an arbitrary \(n \times n \) matrix. Adding
\[
SJ_n(\lambda) - J_n(\lambda)S = SJ_n(0) - J_n(0)S
\]

\[
= \begin{bmatrix}
 s_{21} - 0 & s_{22} - s_{11} & s_{23} - s_{12} & \cdots & s_{2n} - s_{1,n-1} \\
 \vdots & \ddots & \ddots & \ddots & \ddots \\
 s_{n-1,1} - 0 & s_{n-1,2} - s_{n-2,1} & s_{n-1,3} - s_{n-2,2} & \cdots & s_{n-1,n} - s_{n-2,n-1} \\
 s_{n1} - 0 & s_{n2} - s_{n-1,1} & s_{n3} - s_{n-1,2} & \cdots & s_{nn} - s_{n-1,n-1} \\
 0 - 0 & 0 - s_{n1} & 0 - s_{n2} & \cdots & 0 - s_{n,n-1}
\end{bmatrix},
\]

14
we reduce A along the diagonals
\[
a_{n1}, \ (a_{n-1,1}, a_{n2}), \ (a_{n-2,1}, a_{n-1,2}, a_{n3}), \ldots, \ a_{1n}
\]
to the form 0^ω.

\[\square\]

5.2 Diagonal blocks $\mathcal{D}(\mu \Delta_n)$ with $|\mu| = 1$

Due to Lemma 4.3(i), it suffices to prove that each $n \times n$ matrix A can be reduced to exactly one matrix of the form 0^ω if $\mu \not\in \mathbb{R}$ or 0^ω if $\mu \not\in i\mathbb{R}$ by adding $\Delta A := \mu(S^* \Delta_n + \Delta_n S)$ in which $S = [s_{ij}]$ is any n-by-n matrix.

For example, if $n = 4$ then ΔA is
\[
\mu \begin{bmatrix}
\bar{s}_{41} + s_{41} + i(0 + 0) & \bar{s}_{31} + s_{32} + i(\bar{s}_{41} + 0) & \ldots & \bar{s}_{11} + s_{44} + i(\bar{s}_{21} + 0) \\
\bar{s}_{42} + s_{31} + i(0 + s_{11}) & \bar{s}_{32} + s_{32} + i(\bar{s}_{42} + s_{22}) & \ldots & \bar{s}_{12} + s_{44} + i(\bar{s}_{22} + s_{44}) \\
\bar{s}_{43} + s_{31} + i(0 + s_{31}) & \bar{s}_{33} + s_{32} + i(\bar{s}_{43} + s_{33}) & \ldots & \bar{s}_{13} + s_{44} + i(\bar{s}_{23} + s_{34}) \\
\bar{s}_{44} + s_{31} + i(0 + s_{21}) & \bar{s}_{34} + s_{32} + i(\bar{s}_{44} + s_{22}) & \ldots & \bar{s}_{14} + s_{44} + i(\bar{s}_{24} + s_{44})
\end{bmatrix}.
\]

Let $\Delta A = \mu[\delta_{ij}]$. Write
\[
s_{n+1,i} := 0 \quad \text{for} \ j = 1, \ldots, n. \quad (38)
\]

Then
\[
\delta_{ij} = \bar{s}_{n+1-i,j} + s_{n+1-i,j} + i(\bar{s}_{n+2-j,i} + s_{n+2-i,j}). \quad (39)
\]

Step 1: Let us prove that
\[
\exists S : \ A + \Delta A \text{ is a diagonal matrix.} \quad (40)
\]

Let $A = \mu[a_{ij}]$. We need to prove that the system of equations
\[
\delta_{ij} = -a_{ij}, \quad i, j = 1, \ldots, n, \quad i \neq j \quad (41)
\]

with unknowns s_{ij} is consistent for all a_{ij}.

Since
\[
\bar{s}_{ij} = \bar{s}_{n+2-j,i} + s_{n+2-i,j} - i(\bar{s}_{n+2-j,i} + s_{n+2-i,j}) = -\bar{a}_{ij}
\]
we have
\[
\bar{s}_{n+1-i,j} + s_{n+1-i,j} = (\delta_{ij} + \bar{s}_{ij})/2 = (-a_{ij} - \bar{a}_{ij})/2
\]
\[
\bar{s}_{n+2-j,i} + s_{n+2-i,j} = (\delta_{ij} - \bar{s}_{ij})/(2i) = (-a_{ij} + \bar{a}_{ij})/(2i)
\]

\[15\]
Thus, the system of equations (41) is equivalent to the system

\begin{align*}
\bar{s}_{n+1-j,i} + s_{n+1-i,j} &= b_{ij} \quad i, j = 1, \ldots, n, \quad i < j. \\
\bar{s}_{n+2-j,i} + s_{n+2-i,j} &= c_{ij}
\end{align*}

(42)

in which

\[b_{ij} := (-a_{ij} - \bar{a}_{ji})/2, \quad c_{ij} := (-a_{ij} + \bar{a}_{ji})/(2i). \]

For \(k, l = 1, \ldots, n \), write

\[u_{kl} := \begin{cases}
-s_{kl} & \text{if } k + l \geq n + 2, \\
\bar{s}_{kl} & \text{if } k + l \leq n + 1.
\end{cases} \]

(43)

Then the system (42) takes the form

\begin{align*}
 u_{n+1-j,i} - u_{n+1-i,j} &= b_{ij} \\
u_{n+2-j,i} - u_{n+2-i,j} &= c_{ij} \quad i, j = 1, \ldots, n, \quad i < j.
\end{align*}

(44)

Rewrite it as follows

\begin{align*}
u_{kl} - u_{pq} &= b'_{kl}, \quad &k + q = l + p = n + 1, & k < p, \\
u_{kl} - u_{p'q'} &= c'_{kl}, \quad &k + q' = l + p' = n + 2, & k < p'.
\end{align*}

(45)

Since \(k-l = p-q = p'-q' \), the system (45) is partitioned into subsystems with unknowns \(u_{ij}, i-j = \text{const} \). Each of these subsystems has the form

\[\ldots, u_{kl} - u_{p+1,q+1} = c'_{kl}, \quad u_{kl} - u_{pq} = b'_{kl}, \quad u_{k+1,l+1} - u_{pq} = c'_{k+1,l+1}, \quad \ldots \]

(46)

and is consistent. This proves (40).

Step 2: Let us prove that for each diagonal matrix \(A \)

\[\exists S: \quad A + \Delta A \text{ has the form } 0 \text{ if } \mu \notin \mathbb{R} \text{ or } 0 \text{ if } \mu \notin i\mathbb{R}. \]

(47)

Since \(A \), \(0 \), and \(0 \) are diagonal, the matrix \(\Delta A \) must be diagonal too. Thus, the entries of \(S \) must satisfy the system (41) with \(a_{ij} = 0 \). Reasoning as in Step 1, we obtain the system (45) with \(b'_{kl} = c'_{kl} = 0 \), which is partitioned into subsystems (46). Each of these subsystems is represented in the form

\[u_{1,r+1} = u_{2,r+2} = \cdots = u_{n-r,n} \]

(48)

in which \(r \geq 0 \), or

\[u_{r+1,1} = u_{r+2,2} = \cdots = u_{n,n-r} = u_{n+1,n-r+1} = 0 \quad (\text{see (38)}) \]

(49)
in which \(r \geq 1 \). By (13), \(S \) is upper triangular and

\[
s_{1,r+1} = \cdots = s_{z,r+z} = -s_{z+1,r+z+1} = \cdots = -s_{n-r,n}
\]

in which \(z \) is the integer part of \((n + 1 - r)/2\) and \(r = 0, 1, \ldots, n - 2\).

Let \(n = 2m \) or \(2m + 1 \). By (39), the first \(m \) entries of the main diagonal of \(\mu^{-1}\Delta A \) are

\[
\tilde{s}_{n1} + s_{n1} \\
s_{n-1,2} + s_{n-1,2} + i(\tilde{s}_{n2} + s_{n2}) \\
\hspace{1cm} \cdots \\
\tilde{s}_{n1-m,m} + s_{n1-m,m} + i(\tilde{s}_{n2-m,m} + s_{n2-m,m}).
\]

They are zero and so we cannot change the first \(m \) diagonal entries of \(A \).

The last \(m \) entries of the main diagonal of \(\mu^{-1}\Delta A \) are

\[
\tilde{s}_{m,n-m+1} + s_{m,n-m+1} + i(\tilde{s}_{m1,n-m+1} + s_{m1,n-m+1}) \\
\hspace{1cm} \cdots \\
\tilde{s}_{2,n-1} + s_{2,n-1} + i(\tilde{s}_{3,n-1} + s_{3,n-1}) \\
\tilde{s}_{1n} + s_{1n} + i(\tilde{s}_{2n} + s_{2n}).
\]

They are arbitrary and we make zero the last \(m \) entries of the main diagonal of \(A \). This proves (47) for \(n = 2m \).

Let \(n = 2m + 1 \). Since \(s_{m+2,m+1} = 0 \), the \((m + 1)\)st entry of \(\mu^{-1}\Delta A \) is

\[
\tilde{\delta}_{m+1,m+1} = \tilde{s}_{m+1,m+1} + s_{m+1,m+1},
\]

which is an arbitrary real number. Thus, we can add \(\mu r \) with an arbitrary \(r \in \mathbb{R} \) to the \((m + 1)\)st entry of \(A \). This proves (47) for \(n = 2m + 1 \).

5.3 Diagonal blocks \(\mathcal{D}(J_n(0)) \)

Due to Lemma 4.3(i), it suffices to prove that each \(n \)-by-\(n \) matrix \(A \) can be reduced to exactly one matrix of the form \(0^\cdot \) by adding

\[
\Delta A := S^*J_n(0) + J_n(0)S
\]

where

\[
\begin{bmatrix}
0 + s_{21} & \tilde{s}_{11} + s_{22} & \tilde{s}_{21} + s_{23} & \ldots & \tilde{s}_{n-1,1} + s_{2n} \\
0 + s_{31} & \tilde{s}_{12} + s_{32} & \tilde{s}_{22} + s_{33} & \ldots & \tilde{s}_{n-1,2} + s_{3n} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 + s_{1n} & \tilde{s}_{1,n-1} + s_{2n} & \tilde{s}_{2,n-1} + s_{3n} & \ldots & \tilde{s}_{n-1,n-1} + s_{nn} \\
0 + 0 & \tilde{s}_{1n} + 0 & \tilde{s}_{2n} + 0 & \ldots & \tilde{s}_{n-1,n} + 0
\end{bmatrix}, \quad (50)
\]
We call the entries (52) and (53) the main entries; the pairs of indices in (52) and in (53) are equivalent: all entries of ΔA have the form $s_{kl} + s_{l+1,k+1}$. The transitive closure of $(k, l) \sim (l+1, k+1)$ is an equivalence relation on the set $\{1, \ldots, n\} \times \{1, \ldots, n\}$. Decompose ΔA into the sum of matrices

$$\Delta A = B_{n1} + B_{n-1,1} + \cdots + B_{i1} + B_{12} + \cdots + B_{1,n-1}$$

that correspond to the equivalence classes and are defined as follows. Each B_{ij} ($j = 1, 2, \ldots, n$) is obtained from ΔA by replacing with 0 all of its entries except for

$$\bar{s}_{ij} + s_{j+1,2}, \bar{s}_{j+1,2} + s_{3,j+2}, \bar{s}_{3,j+2} + s_{j+3,4}, \ldots \quad (52)$$

and each B_{ij} ($i = 2, 3, \ldots, n$) is obtained from ΔA by replacing with 0 all of its entries except for

$$0 + s_{i1}, \bar{s}_{i1} + s_{2,i+1}, \bar{s}_{2,i+1} + s_{i+2,3}, \bar{s}_{i+2,3} + s_{i+3,4}, \bar{s}_{i+3,4} + s_{i+4,5}, \ldots \quad (53)$$

the pairs of indices in (52) and in (53) are equivalent:

$$(1, j) \sim (j + 1, 2) \sim (3, j + 2) \sim (j + 3, 4) \sim \ldots$$

and

$$(i, 1) \sim (2, i + 1) \sim (i + 2, 3) \sim (4, i + 3) \sim (i + 4, 5) \sim \ldots$$

We call the entries (52) and (53) the main entries of B_{ij} and B_{ij} ($i > 1$). The matrices $B_{n1}, \ldots, B_{11}, B_{12}, \ldots, B_{1n}$ have no common s_{ij}, and so we can add to A each of these matrices separately.

The entries of the sequence (52) are independent: an arbitrary sequence of complex numbers can be represented in the form (52). The entries (53) are dependent only if the last entry in this sequence has the form $s_{kn} + 0$ (see (50)); then $(k, n) = (2p, i - 1 + 2p)$ for some p, and so $i = n + 1 - 2p$. Thus the following sequences (53) are dependent:

$$0 + s_{n-1,1}, \bar{s}_{n-1,1} + s_{2n}, \bar{s}_{2n} + 0;$$

$$0 + s_{n-3,1}, \bar{s}_{n-3,1} + s_{2n-2}, \bar{s}_{2n-2} + s_{n-1,3}, \bar{s}_{n-1,3} + s_{4n}, \bar{s}_{4n} + 0; \ldots$$

One of the main entries of each of the matrices $B_{n-1,1}, B_{n-3,1}, B_{n-5,1}, \ldots$ is expressed through the other main entries of this matrix, which are arbitrary. The main entries of the other matrices B_{i1} and B_{1j} are arbitrary. Adding B_{i1} and B_{1j}, we reduce A to the form 0^\ast.

18
6 Off-diagonal blocks of \mathcal{D} that correspond to summands of A_{can} of the same type

Now we verify the condition (ii) of Lemma 4.3 for those off-diagonal blocks of \mathcal{D} (defined in Theorem 2.2(ii)) whose horizontal and vertical strips contain summands of A_{can} of the same type.

6.1 Pairs of blocks $\mathcal{D}(H_m(\lambda), H_n(\mu))$ with $|\lambda|, |\mu| > 1$

Due to Lemma 4.3(ii), it suffices to prove that each pair (B, A) of $2n \times 2m$ and $2m \times 2n$ matrices can be reduced to exactly one pair of the form (13) by adding

$$(S^* H_m(\lambda) + H_n(\mu) R, R^* H_n(\mu) + H_m(\lambda) S), \quad S \in \mathbb{C}^{m \times n}, \quad R \in \mathbb{C}^{n \times m}.$$

Putting $R = 0$ and $S = -H_m(\lambda)^{-1} A$, we reduce A to 0. To preserve $A = 0$ we hereafter must take S and R such that $R^* H_n(\mu) + H_m(\lambda) S = 0$; that is,

$$S = -H_m(\lambda)^{-1} R^* H_n(\mu),$$

and so we can add

$$\Delta B := -H_n(\mu)^* R H_m(\lambda)^{-*} H_m(\lambda) + H_n(\mu) R$$

to B.

Write $P := -H_n(\mu)^* R$, then $R = -H_n(\mu)^{-*} P$ and

$$\Delta B = P \begin{bmatrix} J_m(\lambda) & 0 \\ 0 & J_m(\lambda)^{-T} \end{bmatrix} - \begin{bmatrix} J_n(\mu)^{-T} & 0 \\ 0 & J_n(\mu) \end{bmatrix} P$$

(54)

Partition B, ΔB, and P into $n \times m$ blocks:

$$B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}, \quad \Delta B = \begin{bmatrix} \Delta B_{11} & \Delta B_{12} \\ \Delta B_{21} & \Delta B_{22} \end{bmatrix}, \quad P = \begin{bmatrix} X & Y \\ Z & T \end{bmatrix}.$$

By (54),

$$\Delta B_{11} = X J_m(\lambda) - J_n(\mu)^{-T} X, \quad \Delta B_{12} = Y J_m(\lambda)^{-T} - J_n(\mu)^{-T} Y, \quad \Delta B_{21} = Z J_m(\lambda) - J_n(\mu) Z, \quad \Delta B_{22} = T J_m(\lambda)^{-T} - J_n(\mu) T.$$
These equalities ensure that we can reduce each block B_{ij} separately by adding ΔB_{ij}.

(i) First we reduce B_{11} by adding $\Delta B_{11} = X J_m(\lambda) - J_n(\bar{\mu})^{-T}X$.
Since $|\lambda| > 1$ and $|\mu| > 1$, we have that $J_m(\lambda)$ and $J_n(\bar{\mu})^{-T}$ have no common eigenvalues and so ΔB_{11} is an arbitrary matrix. We make $B_{11} = 0$.

(ii) Let us reduce B_{12} by adding $\Delta B_{12} = Y J_m(\bar{\lambda})^{-T} - J_n(\bar{\mu})^{-T}Y$.
If $\lambda \neq \mu$, then ΔB_{12} is arbitrary; we make $B_{12} = 0$.
Let $\lambda = \mu$. Write $F := J_n(0)$. Since

$$
J_n(\bar{\lambda})^{-1} = (\lambda I_n + F)^{-1} = \bar{\lambda}^{-1}I_n - \bar{\lambda}^{-2}F + \bar{\lambda}^{-3}F^2 - \ldots,
$$

we have

$$
\Delta B_{12} = Y (J_m(\bar{\lambda})^{-T} - \bar{\lambda}^{-1}I_m) - (J_n(\bar{\lambda})^{-T} - \bar{\lambda}^{-1}I_n)Y
$$

$$
= -\bar{\lambda}^{-2} \begin{bmatrix}
y_{12} & \cdots & y_{1m} & 0 \\
y_{22} & \cdots & y_{2m} & 0 \\
y_{32} & \cdots & y_{3m} & 0 \\
\cdots & \cdots & \cdots & \cdots
\end{bmatrix} + \bar{\lambda}^{-2} \begin{bmatrix}
y_{11} & \cdots & y_{1m} & 0 \\
y_{21} & \cdots & y_{2m} & 0 \\
\cdots & \cdots & \cdots & \cdots
\end{bmatrix} + \ldots
$$

We reduce B_{12} to the form 0^\ast along its diagonals starting from the upper right hand corner.

(iii) Let us reduce B_{21} by adding $\Delta B_{21} = Z J_m(\lambda) - J_n(\mu)Z$.
If $\lambda \neq \mu$, then ΔB_{21} is arbitrary; we make $B_{21} = 0$.
If $\lambda = \mu$, then

$$
\Delta B_{21} = Z (J_m(\lambda) - \lambda I_m) - (J_n(\lambda) - \lambda I_n)Z
$$

$$
= \begin{bmatrix}
0 & z_{11} & \cdots & z_{1,m-1} \\
& \cdots & \cdots & \cdots \\
0 & z_{n-1,1} & \cdots & z_{n-1,m-1} \\
0 & z_{n1} & \cdots & z_{nm}
\end{bmatrix} - \begin{bmatrix}
z_{21} & \cdots & z_{2m} \\
& \cdots & \cdots & \cdots \\
z_{n1} & \cdots & z_{nm} \\
0 & \cdots & 0
\end{bmatrix}.
$$

we reduce B_{12} to the form 0^\ast along its diagonals starting from the lower left hand corner.

(iv) Finally, reduce B_{22} by adding $\Delta B_{22} = T J_m(\bar{\lambda})^{-T} - J_n(\mu)T$.
Since $|\lambda| > 1$ and $|\mu| > 1$, ΔB_{22} is arbitrary; we make $B_{22} = 0$.

20
6.2 Pairs of blocks $\mathcal{D}(\mu \Delta_m, \nu \Delta_n)$ with $|\mu| = |\nu| = 1$

Due to Lemma 4.3(ii), it suffices to prove that each pair (B, A) of $n \times m$ and $m \times n$ matrices can be reduced to exactly one pair of the form $(0, 0)$ if $\mu \neq \pm \nu$ and $(0^\top, 0)$ if $\mu = \pm \nu$ by adding

$$(\mu S^* \Delta_m + \nu \Delta_n R, \nu R^* \Delta_n + \mu \Delta_m S), \quad S \in \mathbb{C}^{m \times n}, \quad R \in \mathbb{C}^{n \times m}.$$

We put $R = 0$ and $S = -\mu \Delta_m^{-1} A$, which reduces A to 0. To preserve $A = 0$ we hereafter must take S and R such that $\nu R^* \Delta_n + \mu \Delta_m S = 0$; that is, $S = -\mu \nu \Delta_m^{-1} R^* \Delta_n$, and so we can add

$$\Delta B := \nu \Delta_n R - \mu^2 \bar{\nu} \Delta_n^* R \Delta_m^{-1} \Delta_m$$

to B.

Write $P := \Delta_n^* R$, then

$$\Delta B = \bar{\nu}[\nu^2 (\Delta_n \Delta_n^*) P - \mu^2 P (\Delta_m^{-1} \Delta_m)]. \quad (55)$$

Since

$$\Delta_n^* = \begin{bmatrix} * & i & \cdots & 1 \\ \vdots & \ddots & \ddots & \vdots \\ i & 1 & \cdots & 0 \end{bmatrix},$$

we have

$$\Delta_n \Delta_n^* = \begin{bmatrix} 1 & 0 \\ 2i & 1 & \cdots & \cdots \\ \cdots & \ddots & \ddots & \ddots \\ * & 2i & 1 \end{bmatrix} \quad (56)$$

and

$$\Delta_m^{-1} \Delta_m = (\Delta_n \Delta_n^*)^T = \begin{bmatrix} 1 & 2i & \cdots & * \\ \vdots & 1 & \ddots & \ddots \\ \cdots & \ddots & 2i & \cdots \\ 0 & \cdots & \cdots & 1 \end{bmatrix}. \quad (57)$$

If $\mu \neq \pm \nu$, then $\mu^2 \neq \nu^2$, the matrices $\nu^2 (\Delta_n \Delta_n^*)$ and $\mu^2 (\Delta_m^{-1} \Delta_m)$ have distinct eigenvalues, and so ΔB can be made arbitrary. We make $B = 0$.

If $\mu = \pm \nu$, then

$$\frac{1}{2i \nu} \Delta B = \begin{bmatrix} 0 & 0 & \cdots & \cdots \\ 1 & 0 & \ddots & \cdots \\ \cdots & \ddots & \ddots & \ddots \\ * & \cdots & 1 & 0 \end{bmatrix} P - \begin{bmatrix} 0 & 1 & \cdots & * \\ \vdots & \ddots & \ddots & \ddots \\ \cdots & \ddots & 1 & \cdots \\ 0 & \cdots & \cdots & 1 \end{bmatrix},$$
and we reduce \(B \) to the form \(0^\ast \) along its skew diagonals starting from the upper left hand corner.

6.3 Pairs of blocks \(\mathcal{D}(J_m(0), J_n(0)) \) with \(m \geq n \)

Due to Lemma \[13\] (ii), it suffices to prove that each pair \((B, A)\) of \(n \times m \) and \(m \times n \) matrices with \(m \geq n \) can be reduced to exactly one pair of the form \((0^\ast, 0^\ast)\) if \(n \) is even and of the form \((0^\ast + \mathcal{P}_{nm}, 0^\ast)\) if \(n \) is odd by adding the matrices

\[
\Delta A = R^* J_n(0) + J_m(0)S, \quad \Delta B^* = J_m(0)^T S + R^* J_n(0)^T
\]

(58)

to \(A \) and \(B^* \) (we prefer to reduce \(B^* \) instead of \(B \)).

Write \(S = [s_{ij}] \) and \(R^* = [-r_{ij}] \) (they are \(m \)-by-\(n \)). Then

\[
\Delta A = \begin{bmatrix}
s_{21} - 0 & s_{22} - r_{11} & s_{23} - r_{12} & \cdots & s_{2n} - r_{1,n-1} \\
s_{m-1,1} - 0 & s_{m-1,2} - r_{m-2,1} & s_{m-1,3} - r_{m-2,2} & \cdots & s_{m-1,n} - r_{m-2,n-1} \\
s_{m1} - 0 & s_{m2} - r_{m-1,1} & s_{m3} - r_{m-1,2} & \cdots & s_{mn} - r_{m-1,n-1} \\
0 - 0 & 0 - r_{m1} & 0 - r_{m2} & \cdots & 0 - r_{m,n-1}
\end{bmatrix}
\]

and

\[
\Delta B^* = \begin{bmatrix}
0 - r_{12} & 0 - r_{13} & \cdots & 0 - r_{1n} & 0 - 0 \\
s_{11} - r_{22} & s_{12} - r_{23} & \cdots & s_{1,n-1} - r_{2n} & s_{1n} - 0 \\
s_{m-1,1} - r_{m-2,2} & s_{m-1,2} - r_{m-2,3} & \cdots & s_{m-2,n-1} - r_{m-2,n} & s_{m-2,n} - 0 \\
s_{m-1,1} - r_{m2} & s_{m-1,2} - r_{m3} & \cdots & s_{m-1,n-1} - r_{mn} & s_{m-1,n} - 0
\end{bmatrix}
\]

Adding \(\Delta A \), we reduce \(A \) to the form

\[
0^\dagger := \begin{bmatrix} 0_{m-1,n} \end{bmatrix}.
\]

(59)

To preserve this form, we hereafter must take

\[
s_{21} = \cdots = s_{m1} = 0, \quad s_{ij} = r_{i-1,j-1} \quad (2 \leq i \leq m, \ 2 \leq j \leq n).
\]

(60)

Write

\[
(r_{00}, r_{01}, \ldots, r_{0,n-1}) := (s_{11}, s_{12}, \ldots, s_{1n}),
\]

Write
then
\[
\Delta B^* = \begin{bmatrix}
0 - r_{12} & 0 - r_{13} & \ldots & 0 - r_{1n} & 0 - 0 \\
r_{00} - r_{22} & r_{01} - r_{23} & \ldots & r_{0,n-2} - r_{2n} & r_{0,n-1} - 0 \\
0 - r_{32} & r_{11} - r_{33} & \ldots & r_{1,n-2} - r_{3n} & r_{1,n-1} - 0 \\
0 - r_{42} & r_{21} - r_{43} & \ldots & r_{2,n-2} - r_{4n} & r_{2,n-1} - 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 - r_{m2} & r_{m-2,1} - r_{m3} & \ldots & r_{m-2,n-2} - r_{mn} & r_{m-2,n-1} - 0
\end{bmatrix}
\] . (61)

If \(r_{ij}\) and \(r_{i'j'}\) are parameters of the same diagonal of \(\Delta B^*\), then \(i - j = i' - j'\). Hence, the diagonals of \(\Delta B^*\) have no common parameters, and so we can reduce the diagonals of \(B^*\) independently.

The first \(n\) diagonals of \(\Delta B^*\) starting from the upper right hand corner are

\[
0, \; (-r_{1n}, r_{0,n-1}), \; (-r_{1,n-1}, r_{0,n-2} - r_{2n}, r_{1,n-1}),
\]

\[
(-r_{1,n-2}, r_{0,n-3} - r_{2,n-1}, r_{1,n-2} - r_{3n}, r_{2,n-1}),
\]

\[
(-r_{1,n-3}, r_{0,n-4} - r_{2,n-2}, r_{1,n-3} - r_{3,n-1} r_{2,n-2} - r_{4n}, r_{3,n-1}), \ldots
\]

(we underline linearly dependent entries), adding them we reduce the first \(n\) diagonals of \(B^*\) to the form \(0^\times\).

The \((n + 1)^{st}\) diagonal of \(\Delta B^*\) is

\[
\begin{cases}
(r_{00} - r_{22}, r_{11} - r_{33}, \ldots, r_{n-2,n-2} - r_{nn}) & \text{if } m = n,
(r_{00} - r_{22}, r_{11} - r_{33}, \ldots, r_{n-2,n-2} - r_{nn}, r_{n-1,n-1}) & \text{if } m > n.
\end{cases}
\]

Adding it, we make the \((n + 1)^{st}\) diagonal of \(B^*\) zero.

If \(m > n + 1\), then the \((n + 2)^{nd}, \ldots, m^{th}\) diagonals of \(\Delta B^*\) are

\[
(-r_{32}, r_{21} - r_{43}, r_{32} - r_{54}, \ldots, r_{n,n-1}),
\]

\[
(-r_{m-n+1,2}, r_{m-n,1} - r_{m-n+2,3}, r_{m-n+1,2} - r_{m-n+3,4}, \ldots, r_{m-2,n-1}).
\]

Each of these diagonals contains \(n\) elements. If \(n\) is even, then the length of each diagonal is even and its elements are linearly independent; we make the corresponding diagonals of \(B^*\) equal to zero. If \(n\) is odd, then the length of each diagonal is odd and the set of its odd-numbered elements is linearly dependent; we make all elements of the corresponding diagonals of \(B^*\) equal
to zero except for their last elements (they correspond to the stars of P_{nm}, which is defined in (6)).

It remains to reduce the last $n-1$ diagonals of B^* (the last $n-2$ diagonals if $m = n$). The corresponding diagonals of ΔB^* are

$$-r_{m2},$$

$$(-r_{m-1,2}, r_{m-2,1} - r_{m3}),$$

$$(-r_{m-2,2}, r_{m-3,1} - r_{m-1,3}, r_{m-2,2} - r_{m4}),$$

$$(-r_{m-3,2}, r_{m-4,1} - r_{m-2,3}, r_{m-3,2} - r_{m-1,4}, r_{m-2,3} - r_{m5}),$$

$$\cdots$$

$$(-r_{m-n+3,2}, r_{m-n+2,1} - r_{m-n+4,3}, \cdots, r_{m-2,n-3} - r_{m,n-1}),$$

and, only if $m > n$,

$$(-r_{m-n+2,2}, r_{m-n+1,1} - r_{m-n+3,3}, \cdots, r_{m-2,n-2} - r_{mn}).$$

Adding these diagonals, we make the corresponding diagonals of B^* zero. To preserve the zero diagonals, we hereafter must take $r_{m2} = r_{m4} = r_{m6} = \cdots = 0$ and arbitrary $r_{m1}, r_{m3}, r_{m5}, \cdots$.

Recall that A has the form 0^\dagger (see (59)). Since $r_{m1}, r_{m3}, r_{m5}, \cdots$ are arbitrary, we can reduce A to the form

$$\begin{bmatrix}
0_{m-1,n} \\
* & 0 & \ast & 0 & \cdots
\end{bmatrix}$$

by adding ΔA; these additions preserve B.

If $m = n$, then we may alternatively reduce A to the form

$$\begin{bmatrix}
\cdots \\
0 & 0 & \cdots & 0 \\
* & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
* & 0 & \cdots & 0
\end{bmatrix}$$

preserving the form 0^{\ast} of B.

7 Off-diagonal blocks of \mathcal{D} that correspond to summands of A_{can} of distinct types

Finally, we verify the condition (ii) of Lemma 4.3 [1] for those off-diagonal blocks of \mathcal{D} (defined in Theorem 2.2(iii)) whose horizontal and vertical strips contain summands of A_{can} of different types.
7.1 Pairs of blocks \(D(H_m(\lambda), \mu \Delta_n) \) with \(|\lambda| > 1 \) and \(|\mu| = 1 \)

Due to Lemma 4.3(ii), it suffices to prove that each pair \((B, A)\) of \(n \times 2m \)
and \(2m \times n\) matrices can be reduced to the pair \((0, 0)\) by adding

\[
(S^* H_m(\lambda) + \mu \Delta_n R, R^* \mu \Delta_n + H_m(\lambda) S), \quad S \in \mathbb{C}^{2m \times n}, \quad R \in \mathbb{C}^{n \times 2m}.
\]

Reduce \(A \) to 0 by putting \(R = 0 \) and \(S = -H_m(\lambda)^{-1} A \). To preserve \(A = 0 \),
we hereafter must take \(S \) and \(R \) such that \(R^* \mu \Delta_n + H_m(\lambda) S = 0 \); that is,

\[S = -H_m(\lambda)^{-1} R^* \mu \Delta_n. \]

Hence, we can add

\[
\Delta B := \mu \Delta_n R - \bar{\mu} \Delta_n^* R H_m(\lambda)^{-*} H_m(\lambda)
\]

to \(B \). Write \(P = \bar{\mu} \Delta_n^* R \), then

\[
\Delta B = \mu \bar{\mu}^{-1} \Delta_n \Delta_n^* P - P \left(J_m(\lambda) \oplus J_m(\bar{\lambda})^{-T} \right).
\]

By \((56) \), \(\mu \bar{\mu}^{-1} \Delta_n \Delta_n^* \) has the single eigenvalue \(\mu \bar{\mu}^{-1} \), which is of modulus 1.
Since \(|\lambda| > 1 \), \(\mu \bar{\mu}^{-1} \Delta_n \Delta_n^* \) and \(J_m(\lambda) \oplus J_m(\bar{\lambda})^{-T} \) have no common eigenvalues.
Thus, \(\Delta B \) is an arbitrary matrix and we make \(B = 0 \).

7.2 Pairs of blocks \(D(H_m(\lambda), J_n(0)) \) with \(|\lambda| > 1 \)

Due to Lemma 4.3(ii), it suffices to prove that each pair \((B, A)\) of \(n \times 2m \)
and \(2m \times n\) matrices can be reduced to exactly one pair of the form \((0, 0)\) if \(n \) is even and to
the form \((0^T, 0)\) if \(n \) is odd by adding

\[
(S^* H_m(\lambda) + J_n(0) R, R^* J_n(0) + H_m(\lambda) S), \quad S \in \mathbb{C}^{2m \times n}, \quad R \in \mathbb{C}^{n \times 2m}.
\]

Putting \(R = 0 \) and \(S = -H_m(\lambda)^{-1} A \), we reduce \(A \) to 0. To preserve \(A = 0 \)
we hereafter must take \(S \) and \(R \) such that \(R^* J_n(0) + H_m(\lambda) S = 0 \); that is,

\[S = -H_m(\lambda)^{-1} R^* J_n(0). \]

Hence we can add

\[
\Delta B := J_n(0) R - J_n(0)^T R H_m(\lambda)^{-*} H_m(\lambda)
\]

\[
= J_n(0) R - J_n(0)^T R \left(J_m(\lambda) \oplus J_m(\bar{\lambda})^{-T} \right)
\]
to \(B \).

Divide \(B \) and \(R \) into two blocks of size \(n \times m \):

\[
B = [M \; N], \quad R = [U \; V].
\]

We can add to \(M \) and \(N \) the matrices

\[
\Delta M := J_n(0) U - J_n(0)^T U J_m(\lambda), \quad \Delta N := J_n(0) V - J_n(0)^T V J_m(\bar{\lambda})^{-T}.
\]

We reduce \(M \) as follows. Let \((u_1, u_2, \ldots, u_n)^T\) be the first column of \(U \). Then we can add to the first column \(\vec{b}_1 \) of \(M \) the vector

\[
\Delta \vec{b}_1 := (u_2, \ldots, u_n, 0)^T - \lambda(0, u_1, \ldots, u_{n-1})^T = \begin{cases} 0 & \text{if } n = 1, \\ (u_2, u_3 - \lambda u_1, u_4 - \lambda u_2, \ldots, u_n - \lambda u_{n-2}, -\lambda u_{n-1})^T & \text{if } n > 1. \end{cases}
\]

The elements of this vector are linearly independent if \(n \) is even, and they are linearly dependent if \(n \) is odd. We reduce \(\vec{b}_1 \) to zero if \(n \) is even, and to the form \((*, 0, \ldots, 0)^T \) or \((0, \ldots, 0, *)^T \) if \(n \) is odd. Then we successively reduce the other columns transforming \(M \) to 0 if \(n \) is even, and to the form \(0^\top_{n,m} \) if \(n \) is odd.

We reduce \(N \) in the same way starting from the last column.

7.3 Pairs of blocks \(\mathcal{D}(\lambda \Delta_m, J_n(0)) \) with \(|\lambda| = 1 \)

Due to Lemma 4.3(ii), it suffices to prove that each pair \((B, A)\) of \(n \times m \) and \(m \times n \) matrices can be reduced to exactly one pair of the form \((0, 0)\) if \(n \) is even and to the form \((0^4, 0)\) if \(n \) is odd by adding

\[
(S^* \lambda \Delta_m + J_n(0) R, R^* J_n(0) + \lambda \Delta_m S), \quad S \in \mathbb{C}^{m \times n}, \quad R \in \mathbb{C}^{n \times m}.
\]

Putting \(R = 0 \) and \(S = -\lambda \Delta_m^{-1} A \), we reduce \(A \) to 0. To preserve \(A = 0 \) we hereafter must take \(S \) and \(R \) such that \(R^* J_n(0) + \lambda \Delta_m S = 0 \); that is, \(S = -\lambda \Delta_m^{-1} R^* J_n(0) \). By (57), we can add

\[
\Delta B := J_n(0) R - \lambda^2 J_n(0)^T R \Delta_m^{+} \Delta_m
\]

to \(B \). We reduce \(B \) to 0 if \(n \) is even and to \(0^4 \) if \(n \) is odd along its columns starting from the first column.
References

[1] V.I. Arnold, On matrices depending on parameters, Russian Math. Surveys 26 (2) (1971) 29–43.

[2] V. Arnold, Lectures on bifurcations and versal deformations, Russian Math Surveys 27 (5) (1972) 54–123.

[3] V.I. Arnold, Geometrical methods in the theory of ordinary differential equations. Springer-Verlag, New York, 1988.

[4] R. Benedetti, P. Cragnolini, Versal families of matrices with respect to unitary conjugation, Advances in Math. 54 (1984) 314–335.

[5] F. De Terán, F.M. Dopico, The solution of the equation $XA + AX^T = 0$ and its application to the theory of orbits, Linear Algebra Appl. 434 (2011) 44–67.

[6] F. De Terán, F.M. Dopico, The equation $XA + AX^* = 0$ and the dimension of *congruence orbits, Electr. J. Linear Algebra, 2011 (to appear).

[7] D.Z. Djokovic, J. Patera, P. Winternitz, H. Zassenhaus, Normal forms of elements of classical real and complex Lie and Jordan algebras, J. Math. Phys. 24 (6) (1983) 1363–1374.

[8] A. Edelman, E. Elmroth, B. Kågström, A geometric approach to perturbation theory of matrices and matrix pencils. Part I: Versal deformations, Siam J. Matrix Anal. Appl. 18 (3) (1997) 653–692.

[9] V. Futorny, V.V. Sergeichuk, Miniversal deformations of matrices of bilinear forms, Preprint RT-MAT 2007-04, Universidade de São Paulo, 2007, 34 p. [arXiv:1004.3584v1].

[10] V. Futorny, V.V. Sergeichuk, Change of the congruence canonical form of 2×2 and 3×3 matrices under perturbations, Preprint RT-MAT 2007-02, Universidade de São Paulo, 2007, 18 p. [arXiv:1004.3590v1].

[11] D.M. Galin, On real matrices depending on parameters, Uspehi Mat. Nauk 27 (1) (1972) 241–242.

[12] D.M. Galin, Versal deformations of linear Hamiltonian systems, Trudy Semin. I. G. Petrovsky 1 (1975) 63–73 (in Russian).
[13] M.I. Garcia-Planas, V.V. Sergeichuk, Simplest miniversal deformations of matrices, matrix pencils, and contragredient matrix pencils, *Linear Algebra Appl.* 302–303 (1999) 45–61.

[14] R.A. Horn, C.R. Johnson, *Matrix Analysis*, Cambridge U. P., Cambridge, 1985.

[15] R.A. Horn, V.V. Sergeichuk, Congruence of a square matrix and its transpose, *Linear Algebra Appl.* 389 (2004) 347–353.

[16] R.A. Horn, V.V. Sergeichuk, A regularization algorithm for matrices of bilinear and sesquilinear forms, *Linear Algebra Appl.* 412 (2006) 380–395.

[17] R.A. Horn, V.V. Sergeichuk, Canonical forms for complex matrix congruence and *congruence*, *Linear Algebra Appl.* 416 (2006) 1010–1032.

[18] R.A. Horn, V.V. Sergeichuk, Canonical matrices of bilinear and sesquilinear forms, *Linear Algebra Appl.* 428 (2008) 193–223.

[19] H. Kraft, *Geometrische Methoden in der Invariantentheorie*, Friedr. Vieweg & Sohn, Braunschweig, 1985.

[20] A.I. Markushevich, *Theory of Functions of a Complex Variable*. Vol. I, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1965.

[21] J. Patera, C. Rousseau, Complex orthogonal and symmetric matrices depending on parameters, *J. Math. Phys.* 23 (5) (1983) 705–714.

[22] J. Patera, C. Rousseau, D. Schlomiuk, Versal deformations of elements of real classical Lie algebras, *J. Phys. A: Math. Gen* 15 (1982) 1063–1086. (pochtat’ kak soslat’sja)

[23] J. Patera, C. Rousseau, Versal deformations of elements of classical Jordan algebras, *J. Math. Phys.* 24 (6) (1983) 1375–1380.

[24] V.V. Sergeichuk, Classification problems for system of forms and linear mappings, *Math. USSR, Izvestiya* 31 (3) (1988) 481–501.