Use of Additives to Reduce Browning, Microbial Load and Quality Loss of Kinnow Juice under Ambient Storage

Anil Dhaka, Madhu Sharma and Shailesh Kumar Singh*

Department of Horticulture, School of Agriculture, Lovely Professional University, Phagwara - 144411, Punjab, India; shailesh.19105@lpu.co.in, dhakajaat3@gmail.com, madhu.16772@lpu.co.in

Abstract

Backgrounds/Objective: Preservation of Kinnow (*Citrus nobilis × Citrus deliciosa* L.) juice by using edible preservatives is needed to ensure nutritional security of common people. Suitability of preservation techniques to extent the storage life through maintenance of microbial load and nutritional strength up to desirable level is essential. **Methods/Statistical Analysis:** The study was conducted through analysis of TSS, acidity, Vitamin-C, and sugar while biological study was carried out through microbial load and browning. **Findings:** Kinnow fruit juice can be stored up to 30 days without loss of nutritional quality if 0.05% of Potassium metabisulphite or 0.05% sodium benzoate is used as preservatives whereas minimum and desirable browning (0.093) and microbial load (2.60 X 10^5) was reported when juice was treated with 0.1% KMS at 30 days of storage. **Application/Improvements:** The research outcome of present investigation suggests for storage of Kinnow fruit juice for 30 days with minimum quality loss by using 0.05% Potassium metabisulphite or sodium benzoate under ambient condition.

Keywords: Ambient Storage, Browning, Kinnow, Microbial Load, Preservatives, Shelf Life

1. Introduction

Kinnow (*Citrus nobilis × Citrus deliciosa* L.) is one of the important citrus fruits known not only for its beautiful appearance and pleasing flavor but also for its excellent food qualities, high nutritive value and high productivity. As per NHB (National Horticulture Board) database (2015) the mandarin cover largest area (3.3 x 10^5 ha) among all citrus species which is 4.6% of total area under fruit crops. The common mandarins that are under commercial cultivation include Kinnow, Nagpur, Khasi and Darjeeling. Among all mandarins, Kinnow accounts for highest production and productivity. In India, Punjab, Maharashtra, Karnataka, Tamil Nadu, M.P., Rajasthan, West Bengal, Himachal Pradesh and Haryana are commercial producers of Kinnow. Vitamin-C content of Kinnow juice is high with fair amounts of vitamins A and B and significant amount of minerals including calcium, phosphorus and iron. In^3^ has advocated that inclusion of citrus fruit juice in diet could prevent coronary diseases and asthma. In^1^ had reported the presence of antioxidant, anti-inflammatory, anti-tumor, anti-fungal and blood clot inhibition activity and many bioactive compounds like ferrulic acid, hydrocinnamic acid, cyanidinglucoside, hisperidine, vitamin-C, carotenoid and naringin in citrus fruit juice. This is also in accordance with^4^. In^5^ reported the first commercial production of citrus seed oil from grape fruit seeds. Application of citrus seed oil in the preparation of fatty acid derivatives make it suitable for use in leather and textile industries.

As reported by^6^ natural juices have short shelf life even under refrigeration. Technological inefficiencies in processing and storage results in change in the composition of fruit or fruit juices. The organic acids present in fruits

Author for correspondence
acts as natural preservatives for fruits and fruits juice. However, several disease outbreaks have been reported due to consumption of traditionally preserved juice. In reported that consumption of traditionally preserved apple cider resulted occurrence of hemolytic uremic syndrome in 1991 due to infection of Escherichia coli O157: H7 strain.

Fruit juice preservation is an economic business practice and the countries enriched with fruit resources are giving emphasis over establishment of storage and preservation systems to enhance shelf-life and quality of fruits so as to insure their availability during off-season. The advent of heat sterilization, refrigerated storage and drying has given a great impetus to modern method of food preservation. Although many preservatives have been recommended for use in foods, sulphur dioxide and benzoic acid dominate the scene, and find widespread applications. Due to these facts, the investigation was conducted out in order to determine the effect of preservatives and storage duration on the chemical constituents, non-enzymatic browning and microbial load of mandarin juice under ambient condition.

2. Materials and Methods

2.1 Site of Investigation

The study was conducted in Postharvest Laboratory of Department of Horticulture, Lovely Professional University, Phagwara, Punjab. The sub-region is characterized by hot dry sub-humid to semi-arid transition with dry summers and cool winters. The mean annual air temperature ranges from 24 to 26°C. The mean maximum summer (May to July) temperature ranges from 35 to 39.4°C rising to a maximum of 40°C in May to June. The mean winter (December to February) minimum temperature ranges from 4°C to 6°C dropping to a minimum of 3.7°C- 4.4°C during December and January. The sub-region receives annual mean rainfall ranging between 700-1000 mm covering 52-60 percent of mean annual PET (Potential Evapo Transpiration) ranging between 1300-1500 mm. The monsoon last from June end to September end covering 75-80 per cent of total annual rainfall.

2.2 Preparation of Fruit Samples

The Kinnow fruits of uniform size, disease free were picked randomly from all the four directions of the plants with the help of secateurs at physiological maturity. The fruits were collected in plastic crates and shifted to the Postharvest laboratory, where the fruits were sorted, washed and graded. Thereafter, fruits were divided into requisite lot for further handling.

2.3 Extraction of Juice and Bottling

The fruits were cut into two halves and juice was extracted by automatic citrus juice extractor. The whole of the juice was then filtered to obtain a clear juice. The treated juice was then poured into hot well sterilized crown glass bottles of 200 ml capacity and corked air tight. Where pasteurization was required, the filled bottles were pasteurized in boiling water bath for 30 minutes at 63°C temperature of the product. All the juice filled bottles were stored under ambient condition (8-29°C) and the different parameters were studied at 0, 15, 30 and 45 days of storage.

2.4 Experimental Details

The study was carried out by using different preservatives treatments. There were eight treatments, each having three replication. The treatments were: T1 (Control or untreated juice), T2 (Pasteurization at 63 °C for 30 minutes), T3 (Heating the juice to 85°C), T4 (Sodium benzoate @ 0.05%), T5 (Sodium benzoate @ 0.1%), T6 (Potassium meta-bi-sulphite @ 0.05%), T7 (Potassium meta-bi-sulphite @ 0.1%) and T8 (Potassium meta-bi-sulphite @ 0.05% and Sodium benzoate @ 0.05%).

2.5 Observations Recorded

The Total Soluble Solids (TSS) content of the juice was determined at ambient temperature with the help of hand refractometer and expressed in degree brix (°B). The ascorbic acid content of fruit juice was estimated with the help of 3% metaphosphoric acid and 2, 6-dichlorophenolindophenol dye and expressed in mg/100ml of fruit juice. The pH of the fruit juice was directly measured on the electronic pH meter. Total sugar and reducing sugar in all products were estimated by Lane and Eynon’s method as reported by. Browning was observed by taking transmittance of the solution in spectronic -20. The samples for browning were centrifuged for 15 minutes at 4000 rpm. After taking 10 ml of centrifuged, 15 ml of alcohol was added to make 60 per cent aqueous solution and kept for half an hour. The solution was filtered through Whatman (No.-1) filter paper to obtain a clear solution and the absorbance was measured at 440 nm.
The higher value of absorbance was considered as the extent of non-enzymatic browning. Microbial contamination was studied by a series of dilution and spread plate method as described by10.

2.6 Statistical Analysis

The analysis of data was carried out through CRD (Completely Randomized Design). The testing of significance of difference between the treatment means was done with the help of Critical Difference (CD) at 5% level of significance. The overall significant differences between the treatments were determined by F-test.

3. Results and Discussion

3.1 Total Soluble Solid (TSS)

The data pertaining to change in TSS of Kinnow juice stored under ambient condition has been represented through Figure 1. The TSS was reported to get increased with increase in storage duration and the maximum TSS was reported on 45 day of storage which may be due to greater hydrolysis of poly-saccharides in mono-saccharides and oligo-saccharides during storage. This trend of increasing TSS during storage has also been reported by11 in blended Kinnow juice under ambient storage condition according to12 in citrus juice and according to13 in blended mango juice. The highest and most significant increase in TSS was reported with T₆ [0.05% KMS (11.80 at 0 day to 13.27º brix at 45 day)] followed by T₈ [0.05% KMS+ 0.05% SB (11.47 at 0 day to 13.20º brix at 45 day)] and T₇ [0.1% KMS (11.67 at 0 day to 13.13º brix at 45 day)] in comparison to T₁ [control (11.53 at 0 day to 12.0º brix at 45 day)] under ambient storage condition. The addition of KMS had significantly improved TSS level of stored fruit juice which may be due to prevalence of acidic medium created by sulphurous acid, formed by release of SO₂ from KMS. This may have resulted in the acid hydrolysis of complex insoluble compounds into simple soluble ones. The effect of preservatives on increase in TSS is in conformity with14 in apple pulp storage and according to15 in orange juice. Interestingly, 0.1% KMS has resulted in short increase in TSS in comparison to 0.05% KMS and its combination with sodium benzoate which may be due to inhibitory effect of high concentration of KMS.

3.2 Ascorbic Acid

The vitamin C content has been reported to get significantly reduced during storage of Kinnow juice under ambient storage condition irrespective to the treatments (Figure 2). About 30-45% of ascorbic acid was found to be degraded for different treatments (Figure 3), which may be due to effect of light, interaction with metallic ions and prevailing temperature as reported by16 in blanched and

![Figure 1](image1). Variation in TSS of Kinnow juice as function of preservatives and storage duration.
unblanched aloe juice supplemented Kinnow nectar and confirmed by17 in citrus juice; according to18 in fruit juice; according to19 for different fruit beverages and according to20 in cashew apple juice. In21 has also reported 29-41% loss of vitamins in fruit juice after 4 month of storage and is in accordance with findings of22. Furthermore, the decomposition of vitamin C follows first order kinetics and so is significantly influenced by storage time as revealed by23. The addition of KMS in preserved Kinnow juice has resulted significant retention of ascorbic acid in comparison to the heat treated (T3), pasteurized (T2) and untreated (T1) Kinnow juice. Under ambient condition the significantly minimum (10.23, 19.32 and 27.25 %) loss of ascorbic acid was reported with T6 (0.05% KMS) followed by T8 [0.05% KMS + 0.05% SB (11.76, 21.18 and 29.41 %)] and by T7 [0.1% KMS (12.9, 21.51 and 31.18%)] at 15, 30 and 45 days of storage while the maximum (24.68, 37.39 and 44.6 %) loss was reported

![Figure 2](image-url)
Figure 2. Variation in ascorbic acid of Kinnow juice as function of preservatives and storage duration.

![Figure 3](image-url)
Figure 3. Ascorbic acid loss during ambient storage of Kinnow juice.
with T3 (heat processed Kinnow juice). The effectiveness of KMS to prevent the degradation of vitamin C is due to its potential to release SO2 which act as anti-microbial agent and stabilize ascorbic acid as confirmed by 23. The effect of KMS to preserve the vitamin C content of fruit juice has also been confirmed by 24,25 for storage of leafy vegetables, according to 19 for Kinnow juice and according to 26 in aonla juice storage. The heating and pasteurization significantly reduce vitamin C retention of Kinnow juice which can be confirmed by the finding of 26 in aonla juice, according to 12,27 for citrus juice.

3.3 Titrable Acidity

It has been observed that the total acidity of Kinnow juice decreased with the storage duration for all treatments (Figure 4). A significant fall in acidity level, measured in form of citric acid, have been reported for all treatments which was resulted due to interaction effect of organic components of the juice with temperature and enzymatic action. The finding is in conformity with 28 for six month storage of bael RTS, according to 29 for 74 day storage of Kinnow juice, according to 30 for storage of mosambi fruits and according to 31 for storage of Kinnow orange juice. The minimum loss of acidity and maximum acid content was observed in T6 (0.05% KMS) which was 0.78% under ambient condition at 45 days of storage. It was followed by T8 (0.05% KMS + 0.05% SB) which was 0.76% at 45 days of storage. The minimum total acidity was reported in T1 (control) which was 0.61% under ambient storage condition at 45 days of storage. The finding confirmed that there is a significant effect of using KMS 32 and SB 12 preservatives in reducing loss of acidity during storage which may be due to alteration in metabolism and enzymatic activity.

3.4 pH

The observation recorded on the impact of storage duration on pH content of Kinnow juice treated with different preservatives showed significant impact (Figure 5). It is revealed that the pH of Kinnow juice was significantly increased during all storage periods under ambient, refrigerator and incubator condition. The maximum pH was reported at 45 days. The increase in pH during storage was accompanied with decrease in acidity of juice and is in conformity with the findings of 33 who had mentioned the significant and high pH value of mango and peach juice concentrates at 30 days of storage. The possible reason for increase in pH with prolonged storage of Kinnow juice may be due to acid hydrolysis of the poly-saccharides into mono-saccharides and di-saccharides, which are responsible for increase in sweetness and decrease in sourness. The above findings are also justified with conclusion drawn by 34. The minimum and significant increase in pH was reported with T6 [0.05% KMS (3.38-3.61)] followed by T8 [0.05% KMS + 0.05% SB (3.38-3.62)] under ambient condition at 45 day of storage. The highest
increase in pH was reported with T₁ [control (3.37-3.81)], T₂ [pasteurized Kinnow juice (3.41-3.71)] and T₃ [heat treated (3.39-3.69) under ambient condition at 45 days of storage. Present findings are in conformity with the investigation of 35 who revealed that there is synergistic effect of pasteurization, acidification and treatment with preservatives to extend the shelf-life of soursop juice.

3.5 Reducing Sugar
The observations recorded on reducing sugar content of Kinnow juice revealed that the reducing sugar increased during storage for each treatment (Figure 6) which may be result of gradual conversion of non-reducing sugar, non-sugar carbohydrates and acids into reducing sugar. This is in conformity with the findings of 36 in cashew

![Figure 5](image)

Figure 5. Variation in pH of Kinnow juice as a function of preservatives and ambient storage.

![Figure 6](image)

Figure 6. Variation in reducing sugar of Kinnow juice as a function of preservatives and ambient storage.
apple juice, according to37 in gooseberry juice, according to36 in cashew apple juice blended with coconut and according to17. The significant increase in reducing sugar content was reported in T\textsubscript{6} (3.16-3.75\%) followed by T\textsubscript{8} (3.15-3.71\%) and T\textsubscript{7} (3.16-3.68\%) as compared to T\textsubscript{1} [control (3.16-3.56\%)] under ambient storage condition. The most significant increase, by addition of KMS, in reducing sugar during ambient storage can be attributed to the higher acidity caused by formation of sulphurous acid due to dissolution of SO\textsubscript{2} released from KMS in juice, which may have resulted in the rapid inversion of non-reducing sugar into the reducing sugar. However, an interesting fact was observed with T\textsubscript{7} (0.1\% KMS) which showed a lower increase in reducing sugar in comparison to T\textsubscript{6} (0.05\% KMS) which may be due to inactivation of proteolitic enzymes with high concentration of SO\textsubscript{2}. Furthermore, 0.1\% KMS is also not suitable in terms of food safety. The similar finding were reported by38 for storage of bael fruit pulp and squash according to39, according to37,39 for aonla juice and according to32 in mandarin juice. The effect of sodium benzoate as preservative to increase reducing sugar can be justified by reports of40 in storage of mango pulp and according to15 in storage of orange juice.

3.6 Total Sugar

The total sugar (Figure 7) content also showed similar trends as of reducing sugar which may be due to gradual hydrolysis of non-sugar carbohydrates or complex food materials into simple sugar. This is in conformity with41 for bael-papaya blended RTS beverage and according to13 in mixed fruit juice RTS. The maximum increase in total sugar was reported with T\textsubscript{6} (7.52-8.55\%) which was at par with T\textsubscript{8} (7.51-8.52 \%) and T\textsubscript{7} (7.50 – 8.49 \%) while, the minimum total sugar was reported with T\textsubscript{1} (7.51-8.35 \%). The greater increase in total sugar due to KMS may be due to release of SO\textsubscript{2} which created acidic medium to induce acid hydrolysis and rapid inversion of poly-saccharides to sugars. This is in conformity with17 in mandarin, according to37 in blended aonla juice.

3.7 Non-Enzymatic Browning

Browning is a result of accelerated non-enzymatic browning reaction at higher temperature as conformed by11,42,43. Most of the preservatives have significantly reduced the rate of browning of fruit juice in comparison to control and the pasteurized juice. The significantly least browning was reported in T\textsubscript{6} [0.05\% KMS (0.086-0.093)] followed by T\textsubscript{8} [0.05\% KMS + 0.05\% sodium benzoate (0.0862-0.094)] and T\textsubscript{7} [0.1\% KMS (0.086-0.098)] under ambient condition while, the heat treated, pasteurized and untreated juice suffered greater loss in quality and high degree of browning after 45 days (Figure 8). The inhibitory effect of SO\textsubscript{2} released from KMS may be responsible for slowing down of non-enzymatic browning reaction and the retention of natural color of the juice. This can be confirmed

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure7.png}
\caption{Variation in total sugar of Kinnow juice as function of preservatives and ambient storage.}
\end{figure}
by the report of49,51. According to45 has also observed similar result for mango pulp in storage and is in conformity with46 in aonla juice and according to47 for blended Kinnow juice.

3.8 Microbial Contamination

The existence of microbial contamination in the processed products is the function of the quality of raw materials, processing instruments, storage or processing atmosphere, packaging materials and the individuals employed in the processing process. According to46 reported that the approximate fungal count in most of the processed products is in order of 103 to 105. The lower order of microbial count is indicator of the safe and consumable fruit juice while the high order (\textgtrsim 105) is not safe for consumption. The observation recorded on microbial contamination being represented through Table 1. At ambient temperature the microbial count was observed to get increased for all treatments and remained within safe range up to 30 days of storage for some of the treatments (T\textsubscript{4} to T\textsubscript{8}) but at 45 days not a single treatment retained the safe order of microbial load. The present report is in conformity with49–51 for papaya juice. The minimum (1.70 \times 104 and 2.60 \times 105) microbial load was reported with T\textsubscript{7} (KMS 0.1\% treated juice) which was significantly better than T\textsubscript{8} [KMS 0.05\% +SB 0.05\% (2.51 \times 104 and 2.89 \times 105)], T\textsubscript{5} [KMS 0.05\% (3.30 \times 104 and 3.73 \times 105)], T\textsubscript{4} [SB 0.1\% (3.36 \times 104 and 4.01 \times 105)] and T\textsubscript{4} [SB 0.05\% (3.60 \times 104 and 4.70 \times 105)] when observed at 15 and 30 days, respectively under ambient storage while the Kinnow juice stored without preservatives (T\textsubscript{1}, T\textsubscript{2} and T\textsubscript{3}) showed excessive microbial load at 30 days which justified that Kinnow juice is not acceptable after 15 days when stored at ambient condition without adding any preservatives. There was a significant effect of KMS in inhibiting the microbial multiplication in anaerobic environment. This is in conformity with13 for preservation of spiced RTS beverages, according to52,53 while, studying microbial growth on the mango pulp,

![Figure 8. Variation in absorbance by Kinnow juice at 440nm wavelength.](image)

Treatments	Ambient Temperature			
Days	0 day	15 days	30 days	45 days
T\textsubscript{1}	1.40 \times 103	4.20 \times 104	2.50 \times 106	1.70 \times 108
T\textsubscript{2}	1.40 \times 103	4.30 \times 104	1.93 \times 106	1.50 \times 108
T\textsubscript{3}	1.40 \times 103	4.50 \times 104	4.01 \times 106	2.60 \times 108
T\textsubscript{6}	1.40 \times 103	3.30 \times 104	3.73 \times 105	1.70 \times 108
T\textsubscript{7}	1.40 \times 103	2.51 \times 104	2.89 \times 105	1.24 \times 106
according to54,55 while, studying preservation of fruit pulp. In15 reported inhibitory effect of SB on microbial growth in soursop and can be further confirmed with the findings of56. Increase in microbial count was also reported by57 during storage of rabri supplemented with different types of milk when stored at 5 Mel.

4. Conclusion

Our findings emphasize that preservatives like potassium metabisulphite and/or sodium benzoate in appropriate concentration can be used to enhance shelf life of Kinnow juice under ambient storage condition. The chemical and microbial quality parameters reflect that the nutritive value of juice is also retained up to acceptable level even at 30 days of storage. Further research under refrigerated storage may result in enhancement of shelf life and retention of even high nutritive value which should be investigated.

5. References

1. Nawaz MA, Ahmad W, Ahmad SAEED, Khan MM. Role of growth regulators on preharvest fruit drop, yield and quality in Kinnow mandarin. Pakistan Journal of Botany. 2008; 40(5):1971–81.
2. Ghafer MF, Prasad KN, Weng KK, Ismail A. Flavonoid, hesperidine, total phenolic contents and antioxidant activities from Citrus species. African Journal of Biotechnology. 2010; 9(3):326–30.
3. Abeysinghe DC, Li X, Sun C, Zhang W, Zhou C, Chen K. Bioactive compounds and antioxidant capacities in different edible tissues of citrus fruit of four species. Food chemistry. 2007; 104(4):1338–44.
4. Xu G, Liu D, Chen J, Ye X, Ma Y, Shi J. Juice components and antioxidant capacity of citrus varieties cultivated in China. Food Chemistry. 2008; 106(2):545–51.
5. Nolte AJ, Loesecke HWV. Grapefruit seed oil manufacture and physical properties. Industrial and Engineering Chemistry. 1940; 32(9):1244–6.
6. Charalambous G. Shelf life studies of foods and beverages. Elsevier Science; 1993. p. 253.
7. Vojdani JD, Beuchat LR, Tauxe RV. Juice-associated outbreaks of human illness in the United States, 1995 through 2005. Journal of Food Protection. 2008; 71(2):356–64.
8. Franke AA, Cooney RV, Henning SM, Custer LJ. Bioavailability and antioxidant effects of orange juice components in humans. Journal of Agricultural and Food Chemistry. 2005; 53(13):5170–8.
leafy vegetables. LWT-Food Science and Technology. 2000 Jun; 33(4):295–8.
26. Jain SK, Khurdiya DS. Ascorbic acid content and non-enzymatic browning in stored Indian gooseberry juice as affected by sulphitation and storage. Journal of Food Science and Technology (Mysore). 2009; 46(5):500–1.
27. Blasco R, Esteve MJ, Frigola A, Rodrigo M. Ascorbic acid degradation kinetics in mushrooms in a high-temperature short-time process controlled by a thermos-resistometer. LWT-Food Science and Technology. 2004; 37(2):171–5.
28. Singh S, Godara RK, Saini RS, Sharma JR. Standardization of processing technology for Baell blended Bael (Aegle marmelos) ready-to-serve beverages. Haryana Journal of Horticultural Sciences. 2005; 34(3/4):263.
29. Singh SV, Jain RK, Gupta AK. Changes in quality of debittered Kinnow juice during storage. Journal of Food Science and Technology (Mysore). 2009; 46(6):598–600.
30. Das RC, Dash J. The effect of wax emulsion, 2, 4-D and 2, 4, 5-T on the storage behavior of musambi fruits. In Proc Intl Symp Sub-trop and Trop Horti; New Delhi. 1967.
31. Sethi V, Anand JC, Saxena SK. Kinnow orange in juice and beverage making [India]. Indian Horticulture (India); 1980.
32. Pareek S, Paliwal R, Mukherjee S. Effect of juice extraction methods, potassium metabisulphite concentration and storage temperature on the extent of degradation and reactivity of chemical constituents in mandarin (Citrus reticulata Blanco) juice. Journal of Food, Agriculture and Environment. 2015; 13(2):39–44.
33. Rehman MA, Khan MR, Sharif MK, Ahmad S, Shah FUH. Study on the storage stability of fruit juice concentrates. Pakistan Journal of Food Sciences. 2014; 24(1):101–7.
34. Alaka OO, Aina JO, Falade KO. Effect of storage conditions on the chemical attributes of Ogbomoso mango juice. European Food Research and Technology. 2003 Dec; 218(1):79–82.
35. Nwachukwu E, Ezeigbo CG. Changes in the microbial population of pasteurized sourpsop juice treated with benzoate and lime during storage. Afr J Microbiol Res. 2013; 7(31):3992–5.
36. Singh KK, Mathur PB. Studies in the cold storage of cashew apples. Indian Journal of Horticulture. 1953; 10(3):115–21.
37. Garg V, Barwal VS, Sarera S. Preparation and evaluation of vitamin C enriched fruit drink. Journal of Food Science and Technology-Mysore. 2008; 45(6):524–6.
38. Roy SK, Singh RN. Bael fruit (Aegle marmelos)—A potential fruit for processing. Economic Botany. 1979; 33(2):203–12.
39. Bahadur V, Mishra D, Singh D B, Roshan R K. Effect of varieties and preservative levels on shelf life of aonla juice. Acta Horticulturae. 2010 Oct; 876:373–80. DOI: 10.17660/ActaHortic.2010.876.50. Available from: http://dx.doi.org/10.17660/ActaHortic.2010.876.50
40. Amin M, Malik AU, Mazhar MS, Din I, Khalid MS, Ahmad SAEED. Mango fruit desapping in relation to time of harvesting. Pakistan Journal of Botany. 2008; 40(4):1587–93.
41. Tandon DK, Kumar S, Dikshit A, Shukla DK. Storage study on bael-papaya blended RTS beverage. Indian Food Packer. 2007; 61(5):91.
42. Bhardwaj RL, Nandal U. Effect of storage temperature on physico-chemical and sensory evaluation of kinnow mandarin juice blends. Journal of Food Processing and Technology. 2014; 5(8):1–4.
43. Khurdiya DS, Anand JC. Effect of storage temperatures on the quality of phalsa beverage. Journal of Food Science and Technology. 1981; 18(4):161–3.
44. Ghosh KG, Nirmala N, Krishnappa KG, Parameshwaraiah PM, Borkar H, Vijayaraghavan PK. Preservation of fruit juices and pulp in flexible pouch. Indian Food Packer. 1981; 36(4):23–6.
45. Saini S, Sogi DS, Bawa AS. Shelf-life studies on chemically preserved sand pear (Pyrus pyrifolia cv. patharnakh) pulp. Journal of Food Science and Technology. 2003; 40(2):230–2.
46. Jain S, Sankhla APK, Dashora A, Sankhla AK. Physiochemical and sensory properties of orange drink. J Food Sci Tech India. 2003; 40(6):656–9.
47. Bhardwaj RL. Physico-chemical, sensory and microbiological quality of Kinnow juice stored in refrigerated storage condition. Asian Journal of Dairying and Foods Research. 2013; 32(3):203–13.
48. Rahman T, Hasan S, Noor R. An assessment of microbiological quality of some commercially packed and fresh fruit juice available in Dhaka city: A comparative study. Stamford Journal of Microbiology. 2011 Jul; 1(1):13–8.
49. Chauhan OP, Singh D, Tyagi SM, Balyan DK. Studies on preservation of sugarcane juice. International Journal of Food Properties. 2002; 5(1):217–29.
50. Yigeremu B, Bogale M, Ashenafi M. Fate of Salmonella species and E. coli in fresh-prepared orange, avocado, papaya, and pine apple juices. Ethiop. J Health Sci. 2001 Jul; 11(2):89–95.
51. Mutaku I, Erku W, Ashenafi M. Growth and survival of Escherichia coli O157: H7 in fresh tropical fruit juices at ambient and cold temperatures. International Journal of Food Sciences and Nutrition. 2005; 56(2):133–9.
52. Ogunrinola OA, Fung DYC, Jeon IJ. E. coli 0157: 117 growth in laboratory media as affected by phenolic antioxidants. Journal of Food Science. 1996 Sep; 61(5):1017–20.
53. Hashmi MS, Alam S, Riaz A, Shah AS. Studies on microbial and sensory quality of mango pulp storage with chemical preservatives. Pakistan Journal of Nutrition. 2007; 6(1):85–8.
54. Ogiehor IS, Ikenebomeh MJ. Antimicrobial effects of sodium benzoate on the growth, survival and aflatoxin production
potential of some species of Aspergillus in garri during storage. Pakistan Journal of Nutrition. 2004; 3(5):300–3.
55. Akhtar S, Mahmood S, Naz S, Nasir M, Sultan MT. Sensory evaluation of mangoes (Mangifera indica L.) grown in different regions of Pakistan. Pakistan Journal of Botany. 2009; 41(6):2821–9.
56. Parish ME. Microbial concern in citrus juice processing. Journal of Food Technology. 1991; 45(4):128–32.
57. Chauhan AS, Singh SP, Singh KV, Singh SJ. Effect of different types of milk on shelf life and microbial quality of rabri. Indian Journal of Science and Technology. 2014; 7(8):1039–42.