Review
Revising the paradigm: Are bats really pathogen reservoirs or do they possess an efficient immune system?

Maya Weinberg¹,* and Yossi Yovel¹,²

SUMMARY
While bats are often referred to as reservoirs of viral pathogens, a meta-analysis of the literature reveals many cases in which there is not enough evidence to claim so. In many cases, bats are able to confront viruses, recover, and remain immune by developing a potent titer of antibodies, often without becoming a reservoir. In other cases, bats might have carried an ancestral virus that at some time point might have mutated into a human pathogen. Moreover, bats exhibit a balanced immune response against viruses that have evolved over millions of years. Using genomic tools, it is now possible to obtain a deeper understanding of that unique immune system and its variability across the order Chiroptera. We conclude, that with the exception of a few viruses, bats pose little zoonotic danger to humans and that they operate a highly efficient anti-inflammatory response that we should strive to understand.

INTRODUCTION
Bats (Chiroptera) comprise the only order of mammals with the ability for powered flight, and with nearly 60 million years of physiological adaptations for this ability (Lei and Dong, 2016). With over 1,400 species, bats account for more than 20% of all mammalian species, second only to rodents, and can be found everywhere on earth except the poles (Calisher et al., 2006). Bats play an important role in insect control, reseeding deforested areas, and pollinating a variety of plants (Boyles et al., 2011; Zaho, 2020). Despite these useful roles, bats are mostly perceived as posing a threat to public health, as major transmitters of pathogenic and potentially zoonotic viruses (Dobson, 2005; Leroy et al., 2005; Li et al., 2005; Calisher et al., 2006). COVID-19 is only one recent example of media reports (Zhou et al., 2020) connecting bats to human disease and targeting them as reservoir animals, despite a lack of evidence (Andersen et al., 2020). Although the coronavirus isolated from bats in Wuhan (China) was found to be 96% genetically identical to the beta coronavirus that started the current pandemic, this degree of similarity accounts for a temporal distance of several to many years between the two, when taking the mutation rate of the virus into account (Boni et al., 2020; Ruiz-Aravena et al., 2022). Notably, the receptor-binding domain (RBD) of the bat virus cannot bind to human cells, indicating that it is not the direct source of the pandemic (Andersen et al., 2020; Chan et al., 2020; Ruiz-Aravena et al., 2022). Although there is some evidence that the potential ancestral COVID-19 virus had originated in bats (Shereen et al., 2020), to date, two years after the pandemic first struck, we still do not know the direct source of the human pathogenic COVID-19 variant (Ruiz-Aravena et al., 2022; Frutos et al., 2022). The bats’ widespread image as a danger to public health will, however, be difficult to rehabilitate (Zaho, 2020; MacFarlane and Rocha, 2020). In this review, we scrutinized the literature in order to assess the evidence and determine whether bats are or are not reservoir animals for more than a hundred pathogenic viruses, as is often claimed (Calisher et al., 2006; Epstein and Newman, 2011; Hayman, 2016; Wang and Anderson, 2019). Our findings suggest that in many cases the confidence regarding the bats’ role as reservoir animals is not sufficiently supported. Although we do not claim that bats are never the origin of human pathogens, we suggest that their role has been consistently exaggerated and often without the necessary scientific basis.

ARE BATS VIRAL RESERVOIR ANIMALS?
A reservoir animal is defined as an epidemiologically connected population in which the pathogen can be permanently maintained and from which infection is transmitted to the target population (Haydon et al., 2002). A slightly broader interpretation of this term is discussed by Ashford (Ashford, 2003).
More than 4,100 bat-associated viruses from 23 viral families were detected in ~200 bat species (Chen et al., 2014). Of these viruses, more than 100 were identified as important for "emerging and re-emerging human infections" (Calisher et al., 2006; Wong et al., 2007). As we will show later in discussion, however, in a substantial proportion of these cases there is no sufficient evidence to consider bats the reservoir species of these viruses.

The minimum requirement for determining a reservoir species is the isolation of the relevant pathogen from the species’ population. However, a broad literature review revealed that in ~50% of the reported human pathogenic viruses, an identical and viable pathogen was never isolated from bats. Ebola presents such an example, as bats are often accused of being reservoirs of this disease. The first study declaring fruit bats as reservoir animals of Ebola (Leroy et al., 2005) found that in bats in which immunoglobulin-g (IgG) specific for Ebola was detected, the only PCR-positive organs were the liver and spleen; levels of viral RNA were low, and no live virus was isolated. In other blood-filled organs (heart, liver, kidneys), no viral RNA was detected at all. This raises questions about the ability of the virus to be shed in bat bodily fluids. On the other hand, bats that were found to be positive for viral detection, using PCR tests, showed no IgG specific for Ebola in their serum. Thus, bats were found to be either viral carriers and sick or healed and immune (IgG positive with no virus detected). The authors themselves refer to this duality as “surprising.” In theory, the bats might have been tested shortly post-infection, at the stage in which the virus had been eradicated by the immune system, and the IgG titer had already increased. However, it is unlikely that all the bats were surveyed exactly at this time point. The more parsimonious explanation is that the bats were either sick or had overcome the disease and were now immune. We note, moreover, that PCR testing might not in itself be sufficient to detect an actual identical human pathogen virus. None of the later studies found that bats permanently host a viable Ebola virus. Moreover, the seroprevalence of Ebola antibodies in bat population is quite low—~3% (Yuan et al., 2012; Olival et al., 2013). Many epidemiologists would argue that such a low prevalence is insufficient for considering the species a reservoir animal (Scott, 2001; Drexler et al., 2014; Markotter et al., 2020; De Oliveira and Bonvicino, 2020). In comparison, if we take a known case of a reservoir animal, such as birds and avian flu or the West-Nile virus, we expect to find much higher rates of seroprevalence as well as to find both IgG and the isolation of viable viruses (Shortridge et al., 1998; Alexander, 2007; Travis, 2008; Wodak et al., 2011). To date, however, although the source of the Ebola virus remains unknown (Kock et al., 2019), bats are routinely accused of being reservoir animals of this disease in numerous scientific publications (Wang, 2009; Schountz, 2014; Han et al., 2015; Woo and Lau, 2019; Banerjee et al., 2020). The deep molecular, immunological, and ecological gaps in the Ebola reservoir hypothesis are well summarized by (Leendertz et al., 2016). Those authors also point out several important sampling biases as well as a lack of scientific publications of essential negative results (i.e., cases where no evidence for carrying Ebola was found). A similar pattern characterizes the perceived connection between bats and severe acute respiratory syndrome (SARS) (Li et al., 2005; Wang et al., 2006; Ge et al., 2013). Although the coronavirus diversity seems to be higher in bats than in any other mammals, and viruses closely related to SARS-CoV, MERS-CoV, and HCoV-229E exist in bats, identical human pathogens have never been found in bats. In the case of SARS, a virus 95% similar to the human pathogen and which can infect the human cell line was isolated from a bat, but the actual human pathogen SARS was never isolated, despite intensive attempts (Chinese SARS Molecular Epidemiology Consortium, 2004; Poon et al., 2004; Hui and Zumla, 2019). Moreover, it is widely accepted that even if the transmission of SARS to humans originated in bats, it was indirect, and first transmitted to an intermediate host (civet cats). Accordingly, Drexler et al. (Drexler et al., 2014) state that the “Lack of bat coronavirus isolates and full genomes challenge taxonomic classification and mechanisms of putative host switches from bats into humans are unknown.” Thus, although the wildlife origin of SARS remains unknown to date (Wang et al., 2006; Andersen et al., 2020), bats are routinely blamed for spreading this virus to humans.

Although the definition of a reservoir animal refers to carrying the actual pathogen and not to a related virus, we accept the rationale that a closely related virus that is only a few mutations away from the target pathogen could make its carrier a reservoir. In most cases, however, there is no good evidence that this is, indeed, the situation.

To examine the general situation, we performed a meta-analysis of the literature and examined the finding for over 100 viruses for which bats have been considered potential reservoirs (Calisher et al., 2006; Wang and Cowled, 2015; Hayman, 2016). We found that in a significant proportion of the cases (48%) this claim has been based on the seroprevalence of antibodies or PCR tests, and not on actual virus isolation (Table 1).
Table 1. A literature analysis of 101 viruses for which bats were claimed to be reservoir hosts

No	Virus	Family, genus	Serology	PCR	Isolation	Interesting statements from the original paper	Ref
1	Kolente virus	Alpharhabdovirinae, Ledantevirus	no	no	yes	It has not been found to infect humans	(Ghedin et al., 2013)
2	Tacaribe virus	Arenaviridae, Bunyavirales	yes	no	yes	Most closely related to Nepuyo virus	(Price, 1978b; Downs et al., 1963)
3	Nepuyo virus	Bunyaviridae, Bunyavirus	no	no	no	It has not been found to infect humans	(Calisher et al., 1971)
4	Guama virus	Bunyaviridae, Bunyavirus	no	no	no	Most closely related to Nepuyo virus	(Epstein and Newman, 2011)
5	Catu virus	Bunyaviridae, Bunyavirus	no	no	no	Most closely related to Nepuyo virus	(Pierlé et al., 2015)
6	Hanta virus	Bunyaviridae, Hantavirus	yes	yes	no	paper 1: Serotype of the isolates is closely related to Hantaan virus \ paper 2: sixteen samples positive were encountered among the wild rodents, bats, and opossums	(Kim et al., 1994)
7	Toscana virus	Bunyaviridae, Phlebovirus	no	no	yes	flies—rather than vertebrates—are considered to be its natural reservoir host. Isolated once from bat brain	(Charrel et al., 2005)
8	Rift valley fever virus	Bunyaviridae, Phlebovirus	yes	no	yes	Taken from premature or dead bats. Found in bedbugs as well.	(Kading et al., 2018; Boiro, Konstaninov and Numerov, 1987)
9	Kaeng Khoi virus	Bunyaviridae, unassigned	yes	no	yes	Taken from premature or dead bats. Found in bedbugs as well.	(Osborne et al., 2003; Williams et al., 1976)
10	Japanaaut virus	Bunyaviridae, unassigned	no	yes	no	Taken from premature or dead bats. Found in bedbugs as well.	(Fagre et al., 2018; Fagre et al., 2019)
11	Ife virus	Bunyaviridae, unassigned	yes	no	yes	Taken from premature or dead bats. Found in bedbugs as well.	(Kemp et al., 1988; Fagre et al., 2019)
12	Fomede virus	Bunyaviridae, unassigned	yes	yes	no	Taken from premature or dead bats. Found in bedbugs as well.	(Fagre et al., 2019)
13	Bangui virus	Bunyaviridae, unassigned	no	no	yes	Taken from premature or dead bats. Found in bedbugs as well.	(Mourya et al., 2014)
14	SARS virus	Coronaviridae, Betacoronavirus	no	no	no	The overall nucleotide sequence identity between Sars Like-CoV and SARS-CoV T was 94%.	(Drexler et al., 2014; Banerjee et al., 2019)
15	SARS like Corona virus	Coronaviridae, Betacoronavirus	yes	yes	no	The overall nucleotide sequence identity between SL-CoV and SARS-CoV T was 94%	(Li et al., 2005; Lau et al., 2005)

(Continued on next page)
Table 1. Continued

No	Virus	Family, genus	Serology	PCR	Isolation	Interesting statements from the original paper	Ref
16	MERS virus	Coronaviridae, Betacoronavirus	no	yes	no	(De Wit et al., 2016; Anthony et al., 2017)	
17	MERS like Corona virus	Coronaviridae, Betacoronavirus	no	yes	yes	(Ithete et al., 2013; Lau et al., 2021)	
18	Other Corona virus in bats	Coronaviridae, Betacoronavirus	no	yes	?	We identify critical gaps in knowledge of bat coronaviruses, which relate to spillover and pandemic risk, including the pathways to zoonotic spillover	(Ruiz-Aravena et al., 2022)
19	Reston Ebola virus	Filoviridae, Ebola virus	yes	yes	no	(Jayme et al., 2015)	
20	Zaire Ebola virus	Filoviridae, Ebola virus	yes	yes	no	(Leroy et al., 2005; Leendertz et al., 2016)	
21	Bombali virus	Filoviridae, Ebola virus	no	yes	no	(Forbes et al., 2019)	
22	West Nile virus	Filoviridae, Flavivirus	yes	no	yes	Considered accidental infection.	(Paul, Rajagopalan and Sreenivasan, 1970)
23	Marburg	Filoviridae, Marburgvirus	yes	yes	yes	It can be concluded that there was no evidence of vertical transmission of infection in R. aegyptiacus. Virus isolated from spleen and liver however, virus was not detected in feces or urine collected from infected specimens or the cave floor	(Towner et al., 2009; Leendertz et al., 2016)
24	Lasjovirus Iceland virus	Filoviridae, Cuevavirus	yes	yes	yes	(Kemenesi et al., 2022)	
25	Yokose8 virus	Flaviviridae, Flavivirus	yes	no	yes	Not associated with disease in either bats or humans	(MacKenzie and Williams, 2009; MacKenzie and Williams, 2009; Tajima et al., 2005)
26	Yellow fever virus	Flaviviridae, Flavivirus	yes	no	no	(Price, 1978b)	
27	Uganda S virus	Flaviviridae, Flavivirus	no	no	yes	(Lumsden, Williams and Mason, 1961)	
28	Tamana bat virus	Flaviviridae, Flavivirus	yes	no	yes	(Price, 1978a)	
29	St Louis encephalitis virus	Flaviviridae, Flavivirus	yes	no	no	Were shown to be susceptible to infection	(Sulkin et al., 1963; Boiro, Konstantinov and Numerov, 1987)
30	Sokuluk virus	Flaviviridae, Flavivirus	no	no	yes	Pathogenic for suckling mice and mice weighing 8g only when inoculated intracerebrally.	(Sehreber et al., 1973)
31	Saboya virus	Flaviviridae, Flavivirus	no	no	no	(Varelas Wesley and Calisher, 1982)	
32	Rio Bravo virus	Flaviviridae, Flavivirus	yes	no	yes	Not associated with disease in either bats or humans	(MacKenzie and Williams, 2009; Price, 1978a)
33	Phnom-Penh bat virus	Flaviviridae, Flavivirus	no	no	yes	Not associated with disease in either bats or humans	(MacKenzie and Williams, 2009)
Table 1. Continued

No	Virus	Family, genus	Serology	PCR	Isolation	Interesting statements from the original paper	Ref	
33	Montana Myotis leukoen-cephalitis (MML) virus	Flaviviidae, Flavivirus	no	no	yes	A single isolation in 1960	(Charlier et al., 2002)	
34	Kyasanur Forest disease virus	Flaviviidae, Flavivirus	yes	no	no		(Ajesh, Nagaraja and Sreejith, 2017; Pavni and Singh, 1968)	
35	Kampar virus	Flaviviidae, Flavivirus	no	no	no	Although the exact origin of Kampar virus is unknown, epidemiological tracing revealed that the house of the index case is surrounded by fruit trees frequently visited by fruit bats. There is a high probability that Kampar virus originated from bats and was transmitted to humans via bat droppings or contaminated fruits.	(Chua et al., 2008)	
36	Jugra virus	Flaviviidae, Flavivirus	no	no	yes		(MacKenzie and Williams, 2009)	
37	Japanese encephalitis virus	Flaviviidae, Flavivirus	no	no	yes		(Sulkin et al., 1970; Cross et al., 1971)	
38	Ileus virus	Flaviviidae, Flavivirus	yes	no	no	The main reservoir hosts are birds	(Stone et al., 2018)	
39	Entebbe bat virus	Flaviviidae, Flavivirus	no	no	yes	Not associated with disease in either bats or humans	(Simpson et al., 1968; MacKenzie and Williams, 2009)	
40	Dakar bat virus	Flaviviidae, Flavivirus	no	no	yes		(Simpson et al., 1968)	
41	Central European encephalitis virus	Flaviviidae, Flavivirus	yes	no	no	unidentified bat	(Calisher et al., 2006; Kozuch et al., 1990; Kuno, 2001)	
42	Carey Island virus	Flaviviidae, Flavivirus	no	no	yes	Not associated with disease in either bats or humans	(MacKenzie and Williams, 2009)	
43	Bukalasa bat virus	Flaviviidae, Flavivirus	no	no	yes		(MacKenzie and Williams, 2009)	
44	Dengue virus	Flaviviidae, Flavivirus	yes	yes	no		(Simpson et al., 1968)	
45	Zika Virus	Flaviviidae, Flavivirus	no	yes	no		(Torres-Castro et al., 2021)	
46	Hepacivirus	Flaviviidae, Hepacivirus	no	yes	no		(Platt et al., 2000; Zhang, Yang and Li, 1998)	
47	Pegivirus	Flaviviidae, Pegivirus	no	yes	no	Previously isolated in other mammals	(Quan et al., 2013)	
48	Parixa virus	Herpesviridae, unassigned	no	yes	no		(Quan et al., 2013)	
49	Herpes virus (gamma and beta)	Herpesviridae, unassigned	no	yes	no		(Calisher et al., 2006; Razafindratsimandresy et al., 2009)	
50	Agua Preta virus	Herpesviridae, unassigned	no	yes	no		(Wibbelt et al., 2007; Razafindratsimandresy et al., 2009)	
No	Virus	Family, genus	Serology	PCR	Isolation	Interesting statements from the original paper	Ref	
----	------------------------	-------------------------	----------	-----	--------------------	--	--	
51	A cytomegalovirus	Herpesviridae,	no	no	no	Based on histology and microscopy	(Carmeli et al., 2016)	
		unassigned						
52	Influenza virus A	Orthomyxoviridae,	yes	no	no		(Tandler, 1996)	
		Influenzavirus A						
53	Nipah virus	Orthoparamyxovirinae,	no	yes	yes	Humans acquired the infection solely from horses to date and not from flyingfoxes. The route of transmission to humans probably occurs through contact with respiratory secretions of infected horses.	(Lvov et al., 1979; Kelkar et al., 1981)	
		Henipavirus						
54	Hendra virus	Orthoparamyxovirinae,	yes	no	yes	Humans acquired the infection solely from horses to date and not from flyingfoxes. The route of transmission to humans probably occurs through contact with respiratory secretions of infected horses.	(Yob et al., 2001; Chua et al., 2002)	
		Henipavirus						
55	Parainfluenza virus	Orthoparamyxovirinae,	yes	no	yes		(Halpin et al., 2000; Field et al., 2001)	
	type 2	Respirovirus						
56	Parainfluenza virus	Orthoparamyxovirinae,	no	yes	no		(Pavri et al., 1971)	
	type 4	Respirovirus						
57	Sosuga virus	Paramyxoviridae,	no	yes	no		(Hause et al., 2021)	
		Pararubulavirus						
58	Tioman virus	Paramyxoviridae,	no	no	yes	One paper found virus other paper found antibodies. Human infections due to Tiomanvirus have not been described	(Amman et al., 2015)	
		Rubulavirus						
59	Menangle virus	Paramyxoviridae,	yes	no	no		(Chua et al., 2001)	
		Rubulavirus						
60	Mapuera virus	Paramyxoviridae,	no	no	yes		(Breed et al., 2010)	
		Rubulavirus						
61	Yogue virus	Bunyaviridae,	no	no	yes		(Henderson et al., 1995)	
		Nairovirus						
62	Moju dos Campos virus	Picornaviridae,	no	no	yes		(Walker et al., 2015)	
		unassigned						
63	Kasokero virus	Bunyaviridae,	no	no	yes		(Wanzeller et al., 2002)	
		Nairovirus						
64	Issyk-kul	Bunyaviridae,	no	no	yes		(Kalunda et al., 1986; Walker et al., 2015)	
		Nairovirus						
65	Keterah virus	Bunyaviridae,	no	no	no	Isolation from bat blood of parasiting tick	(Walker et al., 2015; Lvov et al., 1973)	
		Nairovirus						
66	Gossas virus	Bunyaviridae,	no	no	yes		(Varma and Converse, 1976)	
		Nairovirus						
67	Picorna viruses (11	Picornaviridae,	no	yes	no	Fecal samples of bats	(Walker et al., 2015)	
	subspecies)	varied						
68	Juruaca virus	Picornaviridae,	no	no	no	Unidentified bat	(Kemenesi et al., 2015; Yinda et al., 2017)	
		unassigned						
69	Bukakata virus	Reoviridae, Orbivirus	no	no	yes		(Epstein and Newman, 2011)	
70	Pulau virus	Reoviridae, Orthoreovirus	no	no	yes	The transmissibility and pathogenicity of these viruses to humans are unknown	(Fagre et al., 2019)	

(Continued on next page)
No	Virus	Family, genus	Serology	PCR	Isolation	Interesting statements from the original paper	Ref
71	Nelson Bay virus	Reoviridae, Orthoreovirus	no	no	yes	The transmissibility and pathogenicity of these viruses to humans are unknown	(Pritchard et al., 2006)
72	Melaka virus	Reoviridae, Orthoreovirus	no	no	no		(Gard and Compans, 1970)
73	Broome virus	Reoviridae, Orthoreovirus	no	yes	no		(Kaw et al., 2007)
74	Xi River virus	Reoviridae, Orthoreovirus	no	no	yes		(Thalmann et al., 2010)
						(Van Vuren et al., 2016)	
75	Mahlapitsi virus	Reoviridae, Orthoreovirus	no	yes	no		(Harima et al., 2020)
76	Fikirini virus	Rhabdoviridae, Ledantevirus	no	no	yes		(Du et al., 2010)
77	West Caucasian bat viruses	Rhabdoviridae, Lyssavirus	no	yes	no	Have not been shown to cause human infections to date	(Kading et al., 2013)
78	Taiwan bat lyssavirus	Rhabdoviridae, Lyssavirus	no	yes	yes	Isolated from dead bats	(Coertse et al., 2020)
79	Shimoni bat lyssavirus	Rhabdoviridae, Lyssavirus	no	no	yes	Isolated from a dead bat	(Hu et al., 2018)
80	Rabies8 virus, (genotype 1)	Rhabdoviridae, Lyssavirus	no	no	yes	Most human rabies deaths are due to exposure to rabid dogs and rabies virus infection. The predominant reservoir of all the other lyssaviruses (rabies-related lyssaviruses) is Old World bats with RABV only associated with bats in the New World (MarkOtter and Coertse, 2018).	(Kuzmin et al., 2010)
81	Mokola virus	Rhabdoviridae, Lyssavirus	yes	no	no		(Markotter and Coertse, 2018)
82	Lagosbat virus	Rhabdoviridae, Lyssavirus	yes	yes	yes	Over 5000 individual bats have been tested in Africa with a detection rate of less than 1%. Have not been shown to cause human infections to date	(Markotter and Coertse, 2018; Wright et al., 2010)
83	Khujand virus	Rhabdoviridae, Lyssavirus	yes	no	yes	Have not been shown to cause human infections to date	(Boulger and Porterfield, 1958; Freuling et al., 2015; Coertse et al., 2021)
84	Irkut virus	Rhabdoviridae, Lyssavirus	yes	no	yes	Have not been shown to cause human infections to date. Single bat isolation from brain	(Kuzmin et al., 2006; Kuzmin et al., 2003)
85	European batlyssaviruses 2	Rhabdoviridae, Lyssavirus	yes	yes	yes		(Kuzmin et al., 2003; Liu et al., 2013)
	European batlyssaviruses 1	Rhabdoviridae, Lyssavirus	yes	yes	no		(Whitby et al., 2000; Brookes et al., 2005; Mcelinney et al., 2013)

(Continued on next page)
No	Virus	Family, genus	Serology	PCR	Isolation	Interesting statements from the original paper	Ref
86	Duvenhage virus	Rhabdoviridae, Lyssavirus	yes	yes	yes	Each detection (antibodies, PCR, viral isolation) comes from a different study as quoted	(Serra-Cobo et al., 2002; Van Der Poel et al., 2005; McElhinney et al., 2013)
87	Australian bat lyssavirus	Rhabdoviridae, Lyssavirus	yes	no	yes	Have not been shown to cause human infections to date	(Coertse et al., 2020; Markotter et al., 2013; Foggin, 1988)
88	Arvan virus	Rhabdoviridae, Lyssavirus	yes	no	yes	It has not been associated with human infections	(Prada et al., 2019; Fraser et al., 1996)
89	Oita 296 virus	Rhabdoviridae, unassigned	no	no	yes		(Kuzmin et al., 2006; Kuzmin et al., 1992)
90	Mount Elgon bat virus	Rhabdoviridae, unassigned	no	no	yes		(Ghedin et al., 2013)
91	Kern canyon virus	Rhabdoviridae, unassigned	no	no	yes		(Murphy et al., 1970)
92	Vesicular stomatitis virus	Rhabdoviridae, Vesiculovirus	no	no	no		(Blasdel et al., 2015)
93	Chandipura virus	Rhabdoviridae, Vesiculovirus	no	no	no	Sandflies were believed to be the vector of Chandipura virus but it has not been found in association with bats	(Donaldson, 1970)
94	Rubulavirus	Rubulavirinae, Orthorubulavirus	no	no	yes		(Donaldson, 1970)
95	Ross river virus	Togaviridae, Alphavirus	no	no	yes	Isolation from pool of 37 bats brains in China. In Australia where it is active bats are not considered as reservoir and no isolation found.	(Baker et al., 2013a, 2013b)
96	Western equine encephalitis virus (WEEV)	Togaviridae, Alphavirus	no	no	no		(Zhao et al., 1997; Kay and Aaskov, 2020; Lau et al., 2017)
97	Venezuelan equine encephalitis virus (VEEV)	Togaviridae, Alphavirus	no	yes	yes		(Sotomayor-Bonilla et al., 2017)
98	Sindbis virus	Togaviridae, Alphavirus	no	no	yes		(Correa-Giron, Calisher and Baer, 1972)
99	Chikungunya virus	Togaviridae, Alphavirus	no	no	yes		(Blackburn et al., 1982)
100	Tonate virus	Togaviridae, Alphavirus	no	yes	yes		(Fischer et al., 2021)
101	Eastern equine encephalitis virus (EEEV)	Togaviridae, Alphavirus	no	no	no		(Sotomayor-Bonilla et al., 2017)

For each such virus, we examined the main papers describing the bat being the reservoir of this virus.
Moreover, many of the reported isolations are unconvincing: (1) Several viruses were only isolated from a single individual bat (Charlier et al., 2002); (2) In some cases isolation was performed from a homogenate of internal tissues from which transmission is unlikely (e.g., the liver and spleen) and not from oral swabs or saliva glands, urine, feces, or even blood or sera. (Mortlock et al., 2015; Hayman, 2016); (3) Several of the local viruses were also isolated from other animals in the region, including non-bat-specific ectoparasites (Ramírez-Martínez et al., 2021); and (4) Some isolations were taken from sick or dead individuals (Osborne et al., 2003; Kuzmin et al., 2010), which would probably not have transmitted the disease—sick bats have been shown to remain in the roost and refrain from social interactions (Moreno et al., 2021). Seroprevalence by itself doesn’t reflect the ability or even the potential for being a reservoir or creating spillover events (Barrantes Murillo et al., 2022).

Another common type of research attempts to intentionally infect bats with human pathogens, such as Nipah virus (Middleton et al., 2007), various Coronaviruses (Watanabe et al., 2010; Munster et al., 2016), and Ebola (Zaire) virus (Swanepoel et al., 1996), among many others. Such research has revealed that the viruses can replicate and circulate in bats until they eventually die out. These experiments are insufficient to consider bats as reservoirs. If anything, they indicate that humans are reservoirs of potential bat-pathogens. Moreover, in some cases, such as Ebola, infection experiments have demonstrated that the virus can also infect other animals (e.g., mice) (Swanepoel et al., 1996). Intentional infection of the grey-headed fruit bat (Pteropus poliocephalus) with Nipah virus (Middleton et al., 2007) nicely demonstrated how bats contend with the virus up to full recovery (zero viruses isolated 21 days post-infection from urine or any other bat tissue), resulting in immunity (virus-neutralizing antibodies detected 15 days in all the tested bats). This response is probably owing to the bat’s unique immune system (discussed below).

To date, the evidence regarding the isolation of actual harmful pathogen viruses in bats is limited, with only a few well-known cases, including the Marburg virus that was isolated from Rousettus aegyptiacus fruit bats in Uganda (Towner et al., 2009), and Hendra virus (HeV) that was isolated from Australian fruit bats. In the case of the Marburg virus, some knowledge gaps regarding the full host range and circulation remain (Leendertz et al., 2016). In the case of Hendra, humans are infected by horses, which are supposedly infected by bats. Direct infection from bats is rare at most, as indicated by a serological survey of 128 people with prolonged and close contact with Pteropid bats, and in whom no evidence of infection with HeV (Selsvey et al., 1996) was detected. This is important when considering the general public’s fear of bats (López-Baucells et al., 2018; MacFarlane and Rocha, 2020; Lu et al., 2021). Moreover, as pointed out by (Scott, 2001) virus isolation alone is not sufficient for considering an animal a reservoir, as evidence of transmission is also required. The mere detection of a virus in bats does not imply that spillover will occur, and many additional biological, ecological, and anthropogenic conditions must be in place for such an event to occur (Markotter et al., 2020). Some human pathogenic viruses are also known to infect and affect bats, including most lysavirus species (Banyard et al., 2011), Tacaribe arenavirus (Cogswell-Hawkinson et al., 2012), and the Zwiesel bat banyangvirus (Kohl et al., 2020), among others that are known to harm bats.

As these examples show, bats are often perceived as reservoirs of viral diseases solely owing to being serologically positive, which merely means that the bats have survived the disease and developed an immune response to it (Yob et al., 2001; Li et al., 2005; Swanepoel et al., 2007). In other cases, a virus closely related to the human pathogen but not pathogenic to humans may be present in bats, which is not sufficient to make bats its reservoir. Whereas bats might have been the ancestral origin of such a human virus, an intermediate host in which the viral mutations occurred, and where the virus reached significant prevalence, is probably needed for zoonotic spillover of the virus to humans to occur. According to (Olival et al., 2017) not only bats but also primates and rodents have a higher proportion of observed zoonotic viruses compared to other groups of mammals. Species in other orders (e.g. Cingulata, Pilosa, Didelphimorphia, Eulipotyphla) also share a majority of their observed viruses with humans, but the data is limited in these less diverse and poorly studied orders.

Unraveling the unique bat immune system

Interestingly, it seems that bats can contend with deadly viruses better than humans and most other mammals can. After over a century of focusing on the viruses that bats carry, there is increasing interest in understanding the uniquely potent bat immune system. Here, we summarize the findings to date, focusing on the ability of the bat immune system to fend off viral diseases.
Most early research focused on isolating the basic immune components of the innate and acquired bat immune system and comparing them with what was already known in mice and humans. Some of the main findings are as follows: Cells resembling follicular dendritic cells (FDCs) were described in Pteropus giganteus (Sarkar and Chakravarty, 1991) and macrophages, B cells, and T cells were identified in the spleen and lymph nodes of the Indian fruit bat. The complement cascade was found in Tadarida brasiliensis bats (Allen et al., 2009). A variety of immune cells, including lymphocytes, neutrophils, eosinophils, basophils, and macrophages, was also identified by morphological means in histological sections from the Brazilian free-tailed bat (T. brasiliensis) (Turmelle et al., 2010). The pattern recognition factor of toll-like receptors (TLR) was described in two species of fruit bat, Pteropus alecto and R. leschenaultia (Iha et al., 2010; Cowled et al., 2011), and found to be highly conserved between bats and other mammals. Several bat cytokine genes have now been characterized, including cDNAs corresponding to interleukin (IL)-2, IL-4, IL-6, IL-10, IL-12p40, and tumor necrosis factor (TNF) from R. leschenaultia (Iha et al., 2009), which both play an important role in the antiviral immune state. Bats have demonstrated a highly diverse antibody repertoire, exceeding that of most species and on a par only with humans and mice (Baker et al., 2010; Bratsch et al., 2011). Another study examined the interferon (IFN) signaling pathway following IFN production, to determine the importance of IFNs in inducing an “antiviral state” in bat cells through the simultaneous suppression of type I IFN and induction of type III IFN post virus infection (Virtue et al., 2011). The IFN systems in bats were later found to be highly diverse and much more complex than expected. A thorough review summarizing these innate and acquired immunological findings was published by (Baker et al., 2013b), showing that although bats appear to share most features of their immune system with other mammals, there are qualitative and quantitative differences in their immune responses.

Several of the early publications already provided initial evidence of one of the main characteristics of the bat immune system—a delayed immune response, on which we will elaborate later in discussion. McMurray and Thomas (McMurray and Thomas, 1979) and Paul (Paul and Chakravarty, 1986) found that T-cell proliferation as part of the immune response peaked at 120 h post-infection in comparison to 48 h in mice. Moreover, Chakraborty (Chakraborty, 1983) found that T-cell proliferation peaked at 120 h post-infection in comparison to 48 h in mice. Furthermore, Chakraborty (Chakraborty, 1983) found that cell-mediated immunity in bats is slower than in other mammals. Prolonging the immune response was later found to be a beneficial antiviral strategy in bats (Hayman, 2019).

Resistance versus tolerance in the bat immune response

A deeper understanding of the bat immune system was obtained using comparative genomics. Zhang et al. (Zhang et al., 2013) sequenced the genomes of two distantly related bat species (P. alecto and Myotis davidii) and revealed genetic evidence of a uniquely evolved immune system. Although some immune genes have been lost, others seemed to be under strong positive selection. Specifically, genes responsible for DNA damage checkpoints and repair pathways seemed to be undergoing accelerated positive selection. These authors hypothesized that flight-induced adaptations had inadvertently also affected the bat immune system. The strenuous and prolonged physiological efforts exerted during flight impose oxidative stress, resulting in severe DNA damage and the release of self-DNA fragments into the cytoplasm (Barzilai et al., 2002), somewhat similar to the DNA damage caused by a viral infection. Consequently, evolving an efficient DNA repair mechanism aimed at dealing with flight-induced cellular damage might have also enabled bats to fight off viral infections. Zhang et al. further hypothesized that these mechanisms may also be involved in the unique longevity of bats.

Additional bat genomes have as been studied, revealing new insights into the bat immune system (Zhang et al., 2013; Seim et al., 2013). Interestingly, one of the most important viral defense lines, namely the interferon (IFN) system, has been shown to vary greatly among bat species (Clayton and Munir, 2020). Interferons (IFNs) are secreted cytokines that induce an antiviral response by the host and are primarily responsible for inhibiting viral replication. Signaling pathways of IFN were already found in bats in 1969 (Stewart et al., 1969). New research has revealed a species-specific gene length size in bats, with much variability in functional responses, including permanent vs. stimulation-dependent secretion of IFNs, with different effects on the immune response: 1. Type I IFN locus has shortened in Pteropus Alecto (Zhou et al., 2016), but expanded in Pteropus vampyurus and Myotis lucifugus (Pavlovich et al., 2018); 2. Zhou et al., 2016) found a contraction of the type I IFN locus in the Australian black flying fox (P. alecto) and an unusual constitutive expression of IFN-α in these bats. Moreover, IFN type 3 in the same bat was induced in response to a viral infection; 3. Pavlovich et al., 2018) found a type I IFN complex in Rousettus bats, revealing an inhibitory signaling potential with no constitutive expression; 4. Banerjee et al., 2017) showed
that while poly I:C treatment (imitating dsRNA stimulus which is usually associated with viral infection) induces the secretion of type I IFNs in both human and Eptesicus fuscus bat cells, the bat cells express much lower levels of these inflammatory mediators; and S. Sarkis (Sarkis et al., 2018) found the induction of selective IFN stimulated genes in the common vampire bat (Desmodus rotundus). Some of these versatile responses led to the realization that the antiviral state achieved by a variety of IFN phenotypes in bats is also related to an anti-inflammatory response (see more in this recent review (Clayton and Munir, 2020).

The IFN system has also been shown to vary at the genetic regulation level. Xie and Li (Xie and Yang Li, 2020) demonstrated that a variety of bat species have a dampened interferon response owing to the replacement of the highly conserved serine residue in STING (stimulator of interferon genes), an essential adaptor protein in multiple DNA sensing pathways. This means that, in these species, the IFN response has substantially diminished, resulting in a reduced inflammatory response. Via the IFN antiviral cascade, the balanced reduction of inflammasome has started to be discovered.

A restrained immune response serves better in contending with viruses

Recent findings suggest that a novel “trick” of the bat immune system might be that of the reduced inflammatory response that accompanies the antiviral response of the system. In recent years, evidence is accumulating that in addition to its antiviral abilities, the bat immune system is characterized by a general restrained response during inflammatory processes. One mechanism responsible for reducing the immune response is that of the complete and unique loss of the PYHIN gene that was found in P. alecto and M. davidii bats (Ahn et al., 2016). This family of proteins serves as important immune sensors of intracellular self and foreign DNA and as activators of the inflammasome and/or interferon pathways. This reduction aids in achieving a milder inflammatory response. Another example of a dampened pathway is related to the important inflammasome sensor NLR family pyrin domain-containing 3 (NLRP3), which has been linked to both viral-induced and age-related inflammation. Ahn et al., 2019 found a dampened NLRP3-mediated inflammation in P. alecto, with implications for longevity and unique viral reservoir status. Recently, a diminished inflammatory signaling pathway was found in P. alecto and M. davidii bats (Goh et al., 2020).

As nicely summarized by Schneider et al. (Schneider and Ayres, 2008), there are two ways to survive infection: resistance and/or tolerance. It seems that bats have developed an excellent balance between the two: an enhanced host defense response, and immune tolerance through several different mechanisms (see Irving et al., 2021) for a detailed review article). Suppressed inflammasome pathways—as noted above—contribute to immune tolerance in bats and a well-balanced reaction. In humans, the dysregulation of the immune system seems to be responsible for increasing the severity of illness in the acute phase of viral disease (Hope and Bradley, 2021). Bats, in contrast, contend better with deadly viruses and, despite a longer or slower time of reaction, they eventually overcome these viruses to reach full recovery and elimination of the pathogen. Recent studies have focused on bats’ ability to contend with some of the most notorious viruses, including Marburg virus (Guito et al., 2021), COVID-19 (Ruiz-Aravena et al., 2022), and others (Mandl et al., 2018). A restrained immune response has also been shown to be valuable regarding longevity (Kacpryk et al., 2017; Gorbunova et al., 2020).

Conclusions

When considering the interaction of bats with viruses, the time seems right for a paradigm shift. Many bats contend with a variety of deadly viruses better than other mammals. This ability has evolved over nearly 60 million years of adaptation to powered flight. Bats balance their immune response in such a way that it is slow but highly efficient, making them seropositive and immune to viruses. Following immunity, their chance of relapse, to the point of becoming contagious, is low. This is evident from the numerous studies cited above, which have not managed to isolate a viable virus from antibody-seropositive bat individuals; and it is also evident from intentional bat infections in which the virus was shown to disappear after up to one month. In most cases, bats thus carry and spread infectious agents during the limited time frame of their sickness before they overcome it. A spillover of viral pathogens can only occur when bats harbor the identical human pathogenic virus. However, many viruses carried by bats cannot infect humans without first undergoing a natural process of evolution, meaning that bats carry the ancestral viruses and not the human pathogen (Forni et al., 2017; Clayton and Munir, 2020; Latinne et al., 2020). This is also what is known so far for COVID-19 (Poon et al., 2004; Boni et al., 2020; Ruiz-Aravena et al., 2022; Frutos et al., 2022). We should seek to avoid the disruption of their natural habitats that are resulting from rapid urbanization,
wildlife trade, and deforestation (Greger, 2007). This was neatly stated by Markotter et al. (2020), who wrote: "It is important to recognize the role of bats in zoonotic disease outbreaks and implement mitigation strategies to prevent exposure to infectious agents including working safely with bats. Equally important is the crucial role of bats in various ecosystem services. This necessitates a multidisciplinary One Health approach to close knowledge gaps and ensure the development of responsible mitigation strategies to not only minimize the risk of infection but also ensure the conservation of the species" (Markotter et al., 2020).

Bats’ antiviral immunological abilities should be studied in greater depth, so that we, humans, may learn more about efficiently combating viral disease, aging, and cancer. The immense diversity of species in the Chiroptera makes the information gathered highly species-specific and therefore quite complex. Differences in the biology, ecology, and physiology of the different species constitute important factors that must be considered. Fortunately, such understanding is now growing in the scientific community (Foley et al., 2018; Mollentze and Streicker, 2020; Cockrell and An, 2021; Irving et al., 2021). Despite all of the above, bats are nonetheless frequently blamed for being virus reservoirs with the scientific literature driving many of these terrible diseases are caused by viruses originated from bats" (Han et al., 2015); or headlines such as “Bats as reservoirs of severe emerging infectious diseases” or “Bats as vectors of diseases and parasites” (Klimpel and Mehlhorn, 2014). Like all animals, bats deserve a more accurate and scientific approach to the terminology applied to them (Puechmaille et al., 2021; Shapiro et al., 2021).

ACKNOWLEDGMENTS

We wish to thank Dr. Gabor A. Czirjak at the Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany for his valuable comments and discussion. We wish to thank Ofri Etan for their technical assistance regarding the data table.

AUTHOR CONTRIBUTIONS

Conceptualization - MW. Investigation and writing original draft - MW. Writing—Review & Editing, - YY.

DECLARATION OF INTERESTS

The authors manifest no conflict of interest.

REFERENCES

Ahn, M., Cui, J., Irving, A.T., and Wang, L.F. (2016). Unique loss of the PYHIN gene family in bats amongst mammals: implications for inflammasome sensing. Sci. Rep. 6, 21722–21727. https://doi.org/10.1038/srep21722.

Ahn, M., Anderson, D.E., Zhang, Q., Tan, C.W., Lim, B.L., Luko, K., Wen, M., Chia, W.N., Mani, S., Wang, L.C., and Ng, J.H.J. (2019). Dampered NLRP3-mediated inflammation in bats and implications for a special viral reservoir host. Nat. Microbiol. 4, 789–799. https://doi.org/10.1038/s41564-019-0371-3.

Ajesh, K., Nagaraja, B.K., and Sreejith, K. (2017). Kyasanur forest disease virus breaking the endemic barrier: an investigation into ecological effects on disease emergence and future outbreak. Zoonoses Public Health 64, e73–e80. https://doi.org/10.1111/zph.12349.

Alexander, D.J. (2007). An overview of the epidemiology of avian influenza. Vaccine 25 (30 SPEC. ISS.), 5637–5644. https://doi.org/10.1016/j.vaccine.2006.10.051.

Allen, L.C., Turmelle, A.S., Mendonça, M.T., Navara, K.J., Kunz, T.H., and McCracken, G.F. (2009). Roosting ecology and variation in adaptive and innate immune system function in the Brazilian free-tailed bat (Tadarida brasiliensis). J. Comp. Physiol. B 179, 315–323. https://doi.org/10.1007/s00360-008-0315-3.

Amman, B.R., Albarino, C.G., Bird, B.H., Nyikorahuka, L., Sealy, T.K., Balinandi, S., Schuh, A.J., Campbell, S.M., Stroher, U., Jones, M.E.B., et al. (2019). Centers for disease control and prevention, viral special pathogens branch, PO box 49. J. Wildl. Dis. 51, 774–779. https://doi.org/10.7589/2015-02-044.

Andersen, K.G., Rambaut, A., Lipkin, W.I., Holmes, E.C., and Garry, R.F. (2020). The proximal origin of SARS-CoV-2. Nat. Med. 26, 450–452. https://doi.org/10.1038/s41591-020-0820-9.

Anthony, S.J., Gilardi, K., Menachery, V.D., Goldstein, T., Seebide, B., Mbabazi, R., Navarrete-Macias, I., Liang, E., Wells, H., Hicks, A., et al. (2017). Further evidence for bats as the evolutionary source of Middle East respiratory syndrome coronavirus. mBio 8 e00373-17. https://doi.org/10.1128/mBio.00373-17.

Ashford, R.W. (2003). When is a reservoir not a reservoir? Emerg. Infect. Dis. 9, 1495–1499. https://doi.org/10.3201/eid0911.030088.

Paul, B.N., and Chakravarty, A.K. (1986). In vitro analysis of delayed immune response in a bat, Pteropus giganteus: process of con-A mediated activation. Dev. Comp. Immunol. 018, 1–18. https://doi.org/10.1016/0145-305x(86)90044-3.

Baker, K.S., Todd, S., Marsh, G.A., Crameri, G., Barr, J., Kamins, A.O., Peel, A.J., Yu, M., Hayman, D.T., Nadym, B., et al. (2013a). Novel, potentially zoonotic paramyxoviruses from the African straw-colored bat eIDolon helvum. J. Virol. 87, 1348–1358. https://doi.org/10.1128/JVI.01202-12.

Baker, M.L., Schountz, T., and Wang, L.-F. (2013b). Antiviral immune responses of bats: a review. Zoonoses Public Health 60, 104–116. https://doi.org/10.1111/j.1863-2378.2012.01528.x.

Baker, M.L., Tachedjian, M., and Wang, L.F. (2010). Immunoglobulin heavy chain diversity in Pteropid bats: evidence for a diverse and highly specific antigen binding repertoire. Immunogenetics 62, 173–184. https://doi.org/10.1007/s00251-010-0425-4.

Banerjee, A., Rapin, N., Bollinger, T., and Msra, V. (2017). Lack of inflammatory gene expression in bats: a unique role for a transcription repressor. Sci. Rep. 7, 2232. https://doi.org/10.1038/s41598-017-01513-w.
Viruses in pteropid bats, Papua New Guinea. Prevalence of henipavirus and rubulavirus in humans. Viruses 16, 977–1999. https://doi.org/10.3390/v16051999.

Brookes, S.M., Aegertler, J.N., Smith, G.C., Healy, D.M., Jolliffe, T.A., Swift, S.M., Mackie, I.J., Pritchard, J.S., Racey, P.A., Moore, N.P., and Fooks, A.R. (2005). European bat lyssavirus in Scottish bats. Emerg. Infect. Dis. 11, 572–578. https://doi.org/10.3201/eid1104.040920.

Calisher, C.H., Chappell, W.A., Maness, K.S., Lord, R.D., and Suda, W.D. (1971). Isolations of nepuyo virus strains from Honduras, 1967. Am. J. Trop. Med. Hyg. 20, 331–337. https://doi.org/10.4269/ajtmh.1971.20.331.

Calisher, C.H., Childs, J.E., Field, H.E., Holmes, K.V., and Schountz, T. (2006). Bats: important reservoir hosts of emerging viruses. Clin. Microbiol. Rev. 19, 315–345. https://doi.org/10.1128/CMR.00017-06.

Carnielli, P., Scheffer, K.C., Fah, W.O., de Oliveira Lima, J.Y., de Novaes Oliveira, R., Castillo, J.G., Lamamoto, K., Macedo, C.I., Brandão, P.E., Batista, H.B., et al. (2016). Genetic identification of species of bats that act as reservoirs or hosts for viral diseases. Annu. Rev. Res. Biol. 9, 1–9. https://doi.org/10.1146/annurev-resbio-042915-085151.

Chakraborty, C. (1983). Dichotomy of lymphocyte population and cell-mediated immune responses in a fruit bat, Pteropus giganteus. J. Indian Sci. 64, 15.

Charlier, N., Lyeysen, P., Pleij, C.W.A., Lemié, P., Billoir, F., Van Laethem, K., Vandamme, A.M., De Clerco, E., de Lamballière, X., and Neyts, J. (2002). Complete genome sequence of Montana Myotis leucocephalitis virus, phylogenetic analysis and comparative study of the 3’ untranslated region of flaviviruses with no known vector. J. Gen. Virol. 83, 1875–1885. https://doi.org/10.1099/0022-1317-83-8-1875.

Charel, R.N., Gallian, P., Navarro-Mari, J.M., Nicoletti, L., Papa, A., Sánchez-Seco, M.P., Tenorio, A., and de Lamballière, X. (2005). Geographic distribution of Toscana virus Italy. Emerg. Infect. Dis. 11, 1657–1663.

Chen, L., Liu, B., Yang, J., and Jin, Q. (2014). DBatVR: the database of bat-associated viruses. Database 2014, 1–7. https://doi.org/10.1093/database/bau021.

Chua, K.B., Wang, L.F., Lam, S.K., Cramerer, G., Yu, M., Wise, T., Boyle, D., Hyatt, A.D., and Eaton, B.T. (2001). Trianovirus, a novel paramyxovirus isolated from fruit bats in Malaysia. Virology 293, 215–229. https://doi.org/10.1006/viro.2000.0882.

Chua, K.B., Koh, C.L., Hooi, P.S., Wee, K.F., Khong, J.H., Chua, B.H., Chan, Y.P., Lim, M.E., and Lam, S.K. (2002). Isolation of nipah virus from Malaysian island flying-foxes. Microbes Infect. 4, 145–151. https://doi.org/10.1016/s1286-4579(01)01522-2.

Chua, K.B., Voon, K., Cramerer, G., Tan, H.S., Rosli, J., McEarchern, J.A., Sulaaruk, S., Yu, M., and Wang, L.F. (2008). Identification and characterization of a new orthoreovirus from patients with acute respiratory infections. PLoS One 3, e803. https://doi.org/10.1371/journal.pone.0000803.

Clayton, E., and Munir, M. (2020). Fundamental characteristics of bat interferon systems. Front. Cell. Infect. Microbiol. 10, 527921. https://doi.org/10.3389/fcimb.2020.527921.

Cockrell, C., and An, G. (2021). Comparative computational modeling of the bat and human immune response to viral infection with the comparative biology immune agent based model. Viruses 13, 1620–1624. https://doi.org/10.3390/v13081620.203592.

Coertse, J., Grobler, C.S., Sabela, C.T., Seeram, E.C.J., Kearney, T., Pawska, J.T., and Markott, W. (2020). Lyssavirus in insectivorous bats, South Africa, 2003–2018. Emerg. Infect. Dis. 26, 3056–3060. https://doi.org/10.3201/eid2612.200392.

Coertse, J., Geldenhuyys, M., Le Roux, K., and Markott, W. (2021). Lagos bat virus, an under-reported rabies-related lyssavirus. Viruses 13, 576. https://doi.org/10.3390/v13040576.

Coggswell-Hawkinson, A., Bowen, R., James, S., Gardiner, D., Calisher, C.H., Adams, R., and Schountz, T. (2012). Tacaribe virus causes fatal infection of an ostensible reservoir host, the Jamaican fruit bat. J. Virol. 86, 5791–5799. https://doi.org/10.1128/jvi.00201-12.

Correa-Giron, P., Calisher, C.H., and Baer, G.M. (1972). Epidemic strain of Venezuelan equine encephalomyelitis virus from a vampire bat captured in Oaxaca, Mexico, 1970. Science 175, 546–547. https://doi.org/10.1126/science.175.4021.546.

Cowled, C., Baker, M., Tachedjian, M., Zhou, P., Bulach, D., and Wang, L.F. (2011). Molecular characterisation of Toll-like receptors in the black flying fox Pteropus alecto. Dev. Comp. Immunol. 35, 7–18. https://doi.org/10.1016/j.dci.2010.07.006.

Cross, J.H., Lien, J.C., Huang, W.C., Lien, S.C., and Chu, S.F. (1971). Japanese encephalitis virus surveillance in Taiwan. II. Isolations from mosquitoes and bats in Taipei area 1969-1970. Taiwan Yi Xue Hui Za Zhi. 70, 681–688.

De Oliveira, M.B., and Bonvicino, C.R. (2020). Incidence of viruses in neotropical bats. Acta Chiropterol. 22, 461–489. https://doi.org/10.2478/acch-2020-0018.

De Wit, E., van Doremalen, N., Falzarano, D., and Munster, V.J. (2016). SARS and MERS: recent insights into emerging coronaviruses. Nat. Rev. Microbiol. 14, 523–534. https://doi.org/10.1038/nrmicro.2016.81.

Dobson, A.P. (2005). What links bats to emerging infectious diseases? Science 314, 628–629. https://doi.org/10.1126/science.1120872.

Donaldson, A.I. (1970). Bats as possible maintenance hosts for vesicular stomatitis virus. Am. J. Epidemiol. 92, 132–136. https://doi.org/10.1093/oxfordjournals.aje.a121185.

Downs, W.G., Anderson, C.R., Spence, L., Aitken, T.H.G., and Greenhall, A.H. (1963). Tacaribe virus, a new agent isolated from Artibeus bats and mosquitoes in Trinidad, west indies. Am. J. Trop. Med. Hyg. 12, 640–646. https://doi.org/10.4269/ajtmh.1962.12.640.
Drexler, J.F., Corman, V.M., and Drosten, C. (2014). Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS. Antivir. Res. 101, 45–56. https://doi.org/10.1016/j.antiviral.2013.10.013.

Du, L., Lu, Z., Fan, Y., Meng, K., Jiang, Y., Zhu, Y., Wang, S., Gu, W., Zou, X., and Tu, C. (2010). Xi River virus, a new bat reovirus isolated in southern China. Arch. Virol. 155, 1295–1299. https://doi.org/10.1007/s00705-010-0690-4.

Epstein, J., and Newman, S. (2011). Investigating the role of bats in emerging zoonoses: balancing ecology, conservation and public health interest. In The use of telemetry to understand bat movement and ecology (Citeseer).

Fage, A.C., Lee, J.S., Kyto, R.M., Bergren, N.A., Mossel, E.C., Nakayuki, T., Nakilla, B., Nyakarakhuka, L., Gilbert, A.T., Peterhans, J.K., et al. (2019). Discovery and characterization of bukakata orbivirus (Reoviridae-Orbivirus), a novel virus from a new bat species. Virus Res. 250, 112173. https://doi.org/10.1016/j.virusres.2021.112173.

Chan, J.F., Kok, K.H., Zhu, Z., Chu, H., To, K.K., Yuen, S., and Yuen, K.Y. (2020). Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg. Microb. Infect. 9, 221–236. https://doi.org/10.1080/22221751.2020.1719902.

Gard, G., and Comarn, R.W. (1970). Structure and cytopathic effects of Nelson Bay virus. J. Virol. 6, 100–106. https://doi.org/10.1128/JVI.6.1.100-106.1970.

Ge, Y.X., Li, J.L., Yang, X.L., Chmura, A.A., Zhu, G., Epstein, J.H., Mazet, J.K., Hu, B., Zhang, W., Peng, C., et al. (2013). Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 503, 535–538. https://doi.org/10.1038/nature12711.

Ghedin, E., Rogers, M.B., Widen, S.G., Guzman, H., Travassos da Rosa, A.P.A., Wood, T.G., Fitch, A., Popov, V., Holmes, E.C., Walker, P.J., et al. (2013). Kolente virus, a rhabdovirus species isolated from ticks and bats in the Republic of Guinea. J. Gen. Virol. 94, 2609–2615. https://doi.org/10.1099/vir.0.055939-0.

Goh, A., Ahn, M., Zhu, F., Lee, L.B., Luo, D., Irving, A.T., and Wang, L.F. (2020). Complementary regulation of caspase-1 and IL-1β reveals additional mechanisms of dampened inflammation in bats. Proc. Natl. Acad. Sci. USA 117, 28939–28949. https://doi.org/10.1073/pnas.2003521117.

Gorbunova, V., Seluanov, A., and Kennedy, B.K. (2003). Exceptional longevity. Sci. Adv. 6, eaao0926. https://doi.org/10.1126/sciadv.6.a0926.

Field, H., Young, P., Yob, J.M., Mills, J., Hall, L., and Mackenize, J. (2001). The natural history of Hendra and Nipah viruses. Microbes Infect. 3, 307–314. https://doi.org/10.1016/S1286-4579(01)00138-3.

Fischer, C., Pontier, D., Filippi-Cadaccioni, O., Pons, J.B., Postigo-Hidalgo, I., Duhayer, J., Brunink, S., and Drexler, J.F. (2021). Venezuelan equine encephalitis complex alphavirus in bats, French Guiana. Emerg. Infect. Dis. 27, 1141. https://doi.org/10.3202/eid2074.020676.

Foggin, C.M. (1988). Rabies and rabies-related viruses in Zimbabwe: historical, virological and ecological aspects. Ph.D. thesis (Harare: University of Zimbabwe).

Foley, N.M., Hughes, G.M., Huang, Z., Clarke, M., Jebb, D., Whelan, C.V., Petit, E.J., Touzalin, F., Farcy, O., Jones, G., et al. (2018). Growing old, yet exceptional longevity. Sci. Adv. 4, eaap10796. https://doi.org/10.1126/sciadv.aap10796.

Forbes, K.M., Webala, P.W., Jäskeläinen, A.J., Abudrahaman, S., Ogola, J., Masika, M.M., Kivstö, I., Alburkat, H., Pflüseni, I., Lceva, L., et al. (2019). Bambali virus in monkeys and public health interest. Emerg. Infect. Dis. 25, 955–957. https://doi.org/10.3201/eid2505.181666.

Fomi, D., Caglioni, R., Clerici, M., and Sironi, M. (2017). Molecular evolution of human coronavirus genomes. Trends Microbiol. 25, 35–48. https://doi.org/10.1016/j.tim.2016.09.001.

Frutos, R., Pierz, O., Gavotte, L., and Devaux, C.A. (2022). There is no “origin” to SARS-CoV-2. Environ. Res. 207, 112173. https://doi.org/10.1016/J.ENVIRES.2021.112173.

Gardner, B., and Comans, R.W. (1970). Structure and cytopathic effects of Nelson Bay virus. J. Virol. 6, 100–106. https://doi.org/10.1128/JVI.6.1.100-106.1970.

Han, H.J., Wen, H.L., Zhou, C.M., Chen, F.F., Luo, L.M., Liu, J.W., and Yu, X.J. (2015). Bats as reservoirs of severe emerging infectious diseases. Curr. Biol. 31, 257–270.e5. https://doi.org/10.1016/j.cub.2020.01.015.

Halpin, K., Young, P.L., Field, H.E., and Mackenize, J.S. (2000). Isolation of Hendra virus from a pteropid bat: a natural reservoir of Hendra virus. J. Gen. Virol. 81, 1927–1932. https://doi.org/10.1099/0022-1317-81-8-1927.CITEJ. REWORKS.

Henderson, G.W., Laird, C., Dermott, E., and Rima, B.K. (1995). Characterization of Mapuera virus: structure, proteins and nucleotide sequence of the gene encoding the nucleocapsid protein. J. Gen. Virol. 76, 2509–2518. https://doi.org/10.1099/0022-1317-76-10-2509.CITEJ. REWORKS.

Hope, J.L., and Bradley, L.M. (2021). Lessons in antiviral immunity. Science 371, 464–465. https://doi.org/10.1126/science.abf6446.

Hui, S.C., Hsu, C.L., Lee, M.S., Tu, Y.C., Chang, J.C., Wu, C.H., Lee, S.H., Ting, L.J., Tsai, K.R., Cheng, M.C., et al. (2018). Lyssavirus in Japanese pipistrelle, Taiwan. Emerg. Infect. Dis. 24, 762–785. https://doi.org/10.3201/eid2404.171696.

Hui, D.S.C., and Zuma, A. (2019). Severe acute respiratory syndrome: historical, epidemiological, and clinical features. Emerg. Infect. Dis. Clin. 33, 869–889. https://doi.org/10.1126/jid.2019.07.001.

Ishii, S., Ichii, S., Watanabe, S., Ueda, N., Taniguchi, S., Fuji, H., Ishii, Y., Kyuwa, A., Akashi, H., and Yoshikawa, Y. (2009). Molecular cloning and sequencing of the bDV-2 genome of the disease that uses the ACE2 receptor. J. Vet. Med. Sci. 71, 1691–1695. https://doi.org/10.1292/jvms.09.00169.

Ishii, S., Ichii, S., Watanabe, S., Ueda, N., Taniguchi, S., Fuji, H., Ishii, Y., Kyuwa, A., Akashi, H., and Yoshikawa, Y. (2009). Molecular cloning and sequencing of the bDV-2 and sequences of the CDVs encoding the gene for the disease that uses the ACE2 receptor. J. Vet. Med. Sci. 71, 1691–1695. https://doi.org/10.1292/jvms.09.00169.

Irving, A.T., Ahn, M., Goh, G., Anderson, D.E., and Wang, L.F. (2021). Lessons from the host defences of bats, a unique viral reservoir. Nature 589, 363–370. https://doi.org/10.1038/s41586-020-03126-0.

Ishete, N.L., Stoffberg, S., Corman, V.M., Cottontail, I.V.M., Richards, L.R., Schoeman, M.C., Drosten, C., Drexler, J.F., and Preiser, W. (2013). Close relative of human middle east respiratory
Philippine bats. Virol. J. Barr, J., Azul, R.R., et al. (2015). Molecular syndrome coronavirus in bat, South Africa. Emerg. Infect. Dis. 19, 1697–1699. doi.org/10.3201/EID1910.130946.

Kemegni, G., Zhang, D., Mantson, S., Dallas, B., Gofol, T., Ezust, P., Boldogh, S., Kurucz, K., Oldal, M., Kutas, A., et al. (2015). Genetic characterization of a novel picornavirus detected in minipetrous shrebsbi bats. J. Gen. Virol. 96, 815–821. https://doi.org/10.1111/j.1365-294X.2015.05333.x.

Kemegni, G., Töth, G.E., Mayer-Neto, M., Scott, T., Temperton, N., Wright, E., Muhlbberger, E., Hum, A.J., Sudel, E.L., Zana, B., et al. (2022). Isolation of infectious Lloviu virus from Schreiber’s bats in Hungary. Nat. Commun. 13, 1706. https://doi.org/10.1038/s41598-022-29298-1.

Kemp, G.E., Le Gonidec, G., Karabatsos, N., Rickenbach, A., and Crop, C. B. (1988). [IFEL: Dyschiroptera]. The natural reservoirs of the Diancia virus. Virology. 164, 575–577. https://doi.org/10.1016/0042-6822(88)90473-0.

Kim, G.R., Lee, Y.T., and Park, C.H. (1994). A new natural reservoir of hantavirus: isolation of hantavirus from lung tissues of bats. Arch. Virol. 134, 85–95. https://doi.org/10.1007/BF01279109.

Kimpep, S., and Mehlhorn, H. (2014). Bats (Chiroptera) as Vectors of Diseases and Parasites. 3, Springer, pp. 25–131.

Kock, R.A., Begvoeza, M., Ansumana, R., and Suluku, R. (2019). Searching for the source of Ebola: the elusive disease-spreading spiller into humans during the West African outbreak of 2013–2016. Rev. Sci. Tech. 38, 113–122. https://doi.org/10.20581/rst.38.1.2946.

Koh, C., Brinkmann, A., Radonic, A., Dabrowski, P.W., Nitsche, A., Muhldorfer, K., Wibbelt, G., and Kurth, A. (2020). Ziwiesel bat banyangvirus, a potentially zoonotic Huaiyangshan banyangvirus-like arbovirus in Northern bats from Germany. Sci. Rep. 10, 1370–1376. https://doi.org/10.1038/s41598-020-58466-w.

Kozuch, O., Labuda, M., Lysy, J., Weissman, P., and Kippel, E. (1990). Longitudinal study of the natural focus of the European equine encephalitis virus in West Slovakia. Acta Virol. 34, 537–544.

Kuno, G. (2001). Persistence of arboviruses and antiviral antibodies in vertebrate hosts: its occurrence and impacts. Rev. Med. Virol. 11, 165–190. https://doi.org/10.1002/rmv.314.

Kuzmin, I.V., Tumvidin, A.D., and Sybin, S.N. (1992). A lyssavirus with an unusual antigenic structure isolated from a bat in southern Kyrgyzstan. Vopr. Virusol. 37, 256–259.

Kuzmin, I.V., Orciari, L.A., Ara, Y.T., Smith, J.S., Hanlon, C.A., Kameoka, Y., and Rupprecht, C.E. (2003). Bat lyssaviruses (Aravan and Khujand) from Central Asia: phylogenetic relationships according to N, P and G gene sequences. Virus Res. 97, 65–79. https://doi.org/10.1016/S0168-1702(03)00217-X.

Kuzmin, I.V., Niezgoda, M., Carroll, D.S., Keefer, N., Hosain, M.J., Breiman, R.F., Ksiazek, T.G., and Rupprecht, C.E. (2006). Lyssavirus surveillance in bats. Bangladesh Emerg. Infect. Dis. 12, 486–488. https://doi.org/10.3201/eid1207.050333.

Kuzmin, I.V., Mayer, A.E., Niezgoda, M., Markotter, W., Agwanda, B., Breiman, R.F., and Rupprecht, C.E. (2010). Shimoni bat virus, a new representative of the Lyssavirus genus. Virus Res. 149, 197–210. https://doi.org/10.1016/J.VIRRES.2010.01.018.

Lam, S.P., Foo, R.Y.Y., Li, K.S.M., Huang, Y., Tsio, H.W., Wong, B.H.L., Wong, S.S.Y., Leung, S.Y., Chan, K.H., and Yuen, K.Y. (2005). Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc. Natl. Acad. Sci. USA 102, 14040–14045. https://doi.org/10.1073/PNAS.0506735102.

Lam, S.P.K., Foo, R.Y.Y., Li, K.S.M., Huang, Y., Tsio, H.W., Wong, B.H.L., Wong, S.S.Y., Leung, S.Y., Chan, K.H., and Yuen, K.Y. (2005). Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc. Natl. Acad. Sci. USA 102, 14040–14045. https://doi.org/10.1073/PNAS.0506735102.

Leendertz, S.A.J., Gogarten, J.F., Dux, A., Calvignac-Spencer, S., and Leendertz, F.H. (2016). Assessing the evidence supporting fruit bats as the primary reservoirs for Ebola viruses. EcoHealth 13, 18–25. https://doi.org/10.1007/ s10393-015-1053-0.

Lei, M., and Dong, D. (2016). Phylogenetic analyses of bat subordinal relationships based on transcriptome data. Sci. Rep. 6, 1–8. https://doi.org/10.1038/srep27726.

Leroy, E.M., Kumulungui, B., Pourrut, X., Rouquet, P., Hassanin, A., Yaba, P., Delacat, A., Paweska, J.T., Gonzalez, J.P., and Swanepoel, R. (2005). Bats are natural reservoirs of SARS-CoV-like betacoronavirus from lesser bamboo leaf bats. Nat. Med. 11, 486–488. https://doi.org/10.1038/nm1209.

Liu, Y., Zhang, S., Zhao, J., Zhang, F., and Hu, R. (2014). Isolation of infectious Lloviu virus from Greater horseshoe bat (Rhinolophus ferrumequinum) in China. Nat. Commun. 5, 4235. https://doi.org/10.1038/ncomms5235.

Li, W., Shi, Z., Yu, M., Ren, W., Smith, C., Epstein, J.H., Wang, H., Cranmer, G., Hu, Z., Zhang, H., et al. (2005). Bats are natural reservoirs of SARS-like coronaviruses. Science 310, 676–679. https://doi.org/10.1126/science.1118391.

Liu, Y., Zhang, S., Zhao, J., Zhang, F., and Hu, R. (2013). Isolation of an ancient coronavirus from a murine leucomys bat in China. PLoS Negl. Trop. Dis. 7, e2097. https://doi.org/10.1371/journal.pntd.0002097.

López-Bauccells, A., Rocha, R., and Fernández-Llamazares, A. (2018). When bats go viral: negative framings in virological research imperil bat conservation. Mamm Rev. 48, 62–66. https://doi.org/10.1111/MAM.12110.

Lu, M., Wang, X., Ye, H., Wang, H., Qiu, S., Zhang, H., Liu, Y., Luo, J., and Feng, J. (2021). Does public fear that bats spread COVID-19 jeopardize bat conservation? Biol. Conserv. 254, 108952. https://doi.org/10.1016/J.BIOCON.2021.108952.
and eastern Asia, and australasia: the potential
1775, bat in the Kirghiz S.S.R. Arch. Gesamte
isolated from Vespertilio pipistrellus Schreber,
(1973). ''Sokuluk'' virus, a new group B arbovirus
Osipova, N.Z., Fomina, K.B., and Grebenyuk, Y.I.
E.M., Gromashevski, V.L., Veselovskaya, O.V.,
Lvov, D.K., Tsyrkin, Y.M., Karas, F.R., Timopheev,
doi.org/10.1080/00034983.1961.11686063.

Ldov, K.D., Easterday, B., and Hinshaw, W. (1979).
[isolation of strains of the Hong Kong complex
(H3N2) influenza virus from Nyctalus noctula bats
in Kazakhstan]. Vopr. Virosl. 24, 338–341.

MacFarlane, D., and Rocha, R. (2020). Guidelines
for communicating about bats to prevent
persecution in the time of COVID-19. Biol.
Conserv. 248, 108650. https://doi.org/10.1016/j.
biocon.2020.108650.

MacKenzie, J.S., and Williams, D.T. (2009). The
biocon.

41

16

MacKenzie, J.S., and Williams, D.T. (2009). The
zoonotic flaviviruses of southern, south-eastern
and eastern Asia, and australasia: the potential
for emergent viruses. Zoonoses Public Health 56,
338–356. https://doi.org/10.1111/1863-2378.
2008.0208.x.

Mandl, J.N., Schneider, C., Schneider, D.S., and
Baker, M.L. (2018). Going to bat(s) for studies of
Mandl, J.N., Schneider, C., Schneider, D.S., and
Mcmurray, D.N., and Thomas, M.E. (1979). Cell-
poliocephalus). J. Comp. Pathol.

35

J. Mammal.

58

McMurray, D.N., and Thomas, M.E. (1979). Cell-
poliocephalus). J. Comp. Pathol.

35

J. Mammal.

58

in the Kirghiz S.S.R. Arch. Gesamte
isolated from Vespertilio pipistrellus Schreber,
(1973). ''Sokuluk'' virus, a new group B arbovirus
Osipova, N.Z., Fomina, K.B., and Grebenyuk, Y.I.
E.M., Gromashevski, V.L., Veselovskaya, O.V.,
Lvov, D.K., Tsyrkin, Y.M., Karas, F.R., Timopheev,
doi.org/10.1080/00034983.1961.11686063.

Ldov, K.D., Easterday, B., and Hinshaw, W. (1979).
[isolation of strains of the Hong Kong complex
(H3N2) influenza virus from Nyctalus noctula bats
in Kazakhstan]. Vopr. Virosl. 24, 338–341.

MacFarlane, D., and Rocha, R. (2020). Guidelines
for communicating about bats to prevent
persecution in the time of COVID-19. Biol.
Conserv. 248, 108650. https://doi.org/10.1016/j.
biocon.2020.108650.

MacKenzie, J.S., and Williams, D.T. (2009). The
zoonotic flaviviruses of southern, south-eastern
and eastern Asia, and australasia: the potential
for emergent viruses. Zoonoses Public Health 56,
338–356. https://doi.org/10.1111/1863-2378.
2008.0208.x.

Mandl, J.N., Schneider, C., Schneider, D.S., and
Baker, M.L. (2018). Going to bat(s) for studies of
Mandl, J.N., Schneider, C., Schneider, D.S., and
Mcmurray, D.N., and Thomas, M.E. (1979). Cell-
poliocephalus). J. Comp. Pathol.

35

J. Mammal.

58

in the Kirghiz S.S.R. Arch. Gesamte
isolated from Vespertilio pipistrellus Schreber,
(1973). ''Sokuluk'' virus, a new group B arbovirus
Osipova, N.Z., Fomina, K.B., and Grebenyuk, Y.I.
E.M., Gromashevski, V.L., Veselovskaya, O.V.,
Lvov, D.K., Tsyrkin, Y.M., Karas, F.R., Timopheev,
doi.org/10.1080/00034983.1961.11686063.

Ldov, K.D., Easterday, B., and Hinshaw, W. (1979).
[isolation of strains of the Hong Kong complex
(H3N2) influenza virus from Nyctalus noctula bats
in Kazakhstan]. Vopr. Virosl. 24, 338–341.

MacFarlane, D., and Rocha, R. (2020). Guidelines
for communicating about bats to prevent
persecution in the time of COVID-19. Biol.
Conserv. 248, 108650. https://doi.org/10.1016/j.
biocon.2020.108650.

MacKenzie, J.S., and Williams, D.T. (2009). The
zoonotic flaviviruses of southern, south-eastern
and eastern Asia, and australasia: the potential
for emergent viruses. Zoonoses Public Health 56,
338–356. https://doi.org/10.1111/1863-2378.
2008.0208.x.

Mandl, J.N., Schneider, C., Schneider, D.S., and
Baker, M.L. (2018). Going to bat(s) for studies of
Mandl, J.N., Schneider, C., Schneider, D.S., and
Mcmurray, D.N., and Thomas, M.E. (1979). Cell-
poliocephalus). J. Comp. Pathol.

35

J. Mammal.

58

in the Kirghiz S.S.R. Arch. Gesamte
isolated from Vespertilio pipistrellus Schreber,
(1973). ''Sokuluk'' virus, a new group B arbovirus
Osipova, N.Z., Fomina, K.B., and Grebenyuk, Y.I.
E.M., Gromashevski, V.L., Veselovskaya, O.V.,
Lvov, D.K., Tsyrkin, Y.M., Karas, F.R., Timopheev,
doi.org/10.1080/00034983.1961.11686063.

Ldov, K.D., Easterday, B., and Hinshaw, W. (1979).
[isolation of strains of the Hong Kong complex
(H3N2) influenza virus from Nyctalus noctula bats
in Kazakhstan]. Vopr. Virosl. 24, 338–341.

MacFarlane, D., and Rocha, R. (2020). Guidelines
for communicating about bats to prevent
persecution in the time of COVID-19. Biol.
Conserv. 248, 108650. https://doi.org/10.1016/j.
biocon.2020.108650.

MacKenzie, J.S., and Williams, D.T. (2009). The
zoonotic flaviviruses of southern, south-eastern
and eastern Asia, and australasia: the potential
for emergent viruses. Zoonoses Public Health 56,
338–356. https://doi.org/10.1111/1863-2378.
2008.0208.x.

Mandl, J.N., Schneider, C., Schneider, D.S., and
Baker, M.L. (2018). Going to bat(s) for studies of
Mandl, J.N., Schneider, C., Schneider, D.S., and
Mcmurray, D.N., and Thomas, M.E. (1979). Cell-
poliocephalus). J. Comp. Pathol.

35

J. Mammal.

58

in the Kirghiz S.S.R. Arch. Gesamte
isolated from Vespertilio pipistrellus Schreber,
(1973). ''Sokuluk'' virus, a new group B arbovirus
Osipova, N.Z., Fomina, K.B., and Grebenyuk, Y.I.
E.M., Gromashevski, V.L., Veselovskaya, O.V.,
Lvov, D.K., Tsyrkin, Y.M., Karas, F.R., Timopheev,
doi.org/10.1080/00034983.1961.11686063.
(Diptera: Hippoboscoidea) host relatives of effective communication for research, conservation, and public policy. Viruses 13, 1356. https://doi.org/10.3390/v13071356.

Shereen, M.A., Khan, S., Kazmi, A., Bashir, N., and Siddiqui, R. (2020). COVID-19 infection: emergence, transmission, and characteristics of human coronaviruses. J. Adv. Res. 24, 91–98. https://doi.org/10.1016/j.jare.2020.03.005.

Shortridge, K.F., Zhou, N.N., Guan, Y., Gao, P., Ito, T., Kawakoa, Y., Kodchali, K., Krauss, S., Markwell, D., Murti, K.G., et al. (1998). Characterization of avian H5N1 influenza viruses from poultry in Hong Kong. Virology 252, 331–342. https://doi.org/10.1006/viro.1998.9488.

Simpson, D.I., Williams, M.C., O'Sullivan, J.P., Cunningham, J.C., and Mutere, F.A. (1969). Studies on arboviruses and bats (Chiroptera) in East Africa. II. Isolation and haemagglutination-inhibition studies on bats collected in Kenya and throughout Uganda. Ann. Trop. Med. Parasitol. 62, 432–440.

Stewart, W.E., Scott, W.D., and Sulkin, S.E. (1969). Relative sensitivities of viruses to different species of interferon. J. Virol. 4, 147–153. https://doi.org/10.1128/jvi.4.2.147-153.1969.

Stone, D., Lyons, A.C., Huang, Y.S., Vanlandingham, D.L., Higgs, S., Blittvich, J.V., Adesiyun, A.A., Santana, S.E., Leiser-Miller, L., and Cheetham, S. (2018). Serological evidence of widespread exposure of Grenada fruit bats to chikungunya virus. Zoonoses Public Health 65, 505–511. https://doi.org/10.1111/zph.12460.

Sulkin, S.E., Allen, R., Miura, T., and Toyokawa, K. (1970). Studies of arthropod-borne virus infections in chiroptera. VI. Isolation of Japanese B encephalitis virus from naturally infected bats. Am. J. Trop. Med. Hyg. 19, 77–87. https://doi.org/10.4269/ajtmh.1970.19.77.

Sulkin, S.E., Allen, R., and Sims, R. (1963). Studies of arthropod-borne virus infections in chiroptera. I. Am. J. Trop. Med. Hyg. 12, 800–814. https://doi.org/10.4269/ajtmh.1963.12.800.

Swanepoel, R., Leman, P.A., Burt, F.J., zachariades, N.A., Braack, L.E., Ksiazek, T.G., Swanepoel, R., Leman, P.A., Kemp, A., Burt, F.J., Grobbelaar, A.A., Croft, J., Bausch, D.G., et al. (2007). Studies on arbovirus and bats collected in Kenya and throughout Uganda. Ann. Trop. Med. Parasitol. 101, 860–872. https://doi.org/10.1126/science.1138242.

Tajima, S., Takasaki, T., Matsuno, S., Nakayama, M., and Kurane, I. (2005). Genetic characterization of Yokoike virus, a flavivirus isolated from the bat in Japan. Virology 332, 38–44. https://doi.org/10.1016/j.virology.2004.06.052.

Tandler, B. (1996). Cytomegalovirus in the principal submandibular gland of the little brown bat, Myotis lucifugus. J. Pathol. 180, 1–9. https://doi.org/10.1002/1756-1652(19960701)180:1<1::AID-JPATH1>3.0.CO;2-J.

Thalmann, C.M., Cummings, D.M., Yu, M., Lunt, R., Pritchard, L.I., Hanssen, E., Crante, S., Hyatt, A., and Wang, L.F. (2010). Bats and bunyavirus, a new fusigenic Orthoreovirus species isolated from an Australian fruit bat. Virology 402, 26–40. https://doi.org/10.1016/j.virology.2009.11.048.

Torres-Castro, M., Noh-Pech, H., Hernández-Betancourt, S., Pelaez-Sánchez, R., Lugo-Caballero, C., and Puerto, F.I. (2021). West nile and Zica viruses in bats from a suburban area of Merida, Yucatan, Mexico. Zoonoses Public Health 68, 834–841. https://doi.org/10.10111/zph.12933.

Towner, J.S., Amman, B.R., Sealy, T.K., Carroll, S.A.R., Comer, J.A., Kemp, A., Swanepoel, R., Paddock, C.D., Balinandi, S., Mbita, M.L., et al. (2009). Isolation of genetically diverse Marburg viruses from Egyptian fruit bats. PLoS Pathog. 5, e1000536. https://doi.org/10.1371/journal.ppat.1000536.

Travis, D. (2008). West nile virus in birds and mammals. In Zoo and Wild Animal Medicine (Elsevier Inc), pp. 2–9. https://doi.org/10.1016/S0717-9210(08)34028-2.

Van Der Poel, W.H.M., Van der Heide, R., Verstraten, E.R.A.M., Takumi, K., Lina, P.H.C., and Kramps, J.A. (2005). European bat lyssavirus. The Netherlands. Emerg. Infect. Dis. 11, 1854–1859. https://doi.org/10.3201/eid1112.041200.

Jansen van Vuren, P., Wiley, M., Palacios, G., Storm, N., McCulloch, S., Markott, W., Birkhead, M., Kemp, A., and Paweska, J.T. (2016). Isolation of a novel fusogenic ortho-rubivirus from eucampipsida african bats in South Africa. Viruses 8, 65. https://doi.org/10.3390/v8030065.

Varelas Wesley, I., and Calisher, C.H. (1982). Antigenic relationships of flaviviruses with undetermined arthropod-borne status. Am. J. Trop. Med. Hyg. 31, 1273–1284. https://doi.org/10.4269/ajtmh.1982.31.1273.

Varma, M.G., and Converse, J.D. (1976). Keterah virus infection in four species of Argas ticks (Ixodoidea: argasidae). J. Med. Entomol. 13, 65–70. https://doi.org/10.1093/medent/13.1.65.

Virtue, E.R., Marsh, G.A., Baker, M.L., and Wang, L.F. (2011). Interferon production and signaling pathways are antagonized during henipavirus infection of fruit bat cell lines. PLoS One 6, e22488. https://doi.org/10.1371/journal.pone.0022488.

Walker, P.J., Widen, S.G., Firth, C., Blasdell, K.R., Wood, T.G., Travassos da Rosa, A.P.A., Guzman, H., Tesh, R.B., and Vasilakis, N. (2013). Genomic characterization of Yogue, Kasokoro, Issyk-Kul, Keterah, Gossas, and Thiifora viruses: nairoviruses naturally infecting bats, shrews, and ticks. Am. J. Trop. Med. Hyg. 93, 1041–1051. https://doi.org/10.4269/ajtmh.13-0344.

Wang, L.F. (2009). Bats and viruses: a brief review. Viral. S. 24, 93–99. https://doi.org/10.1007/s12252-009-0302-9.

Wang, L.F., and Anderson, D.E. (2019). Viruses in bats and potential spillover to animals and humans. Curr. Opin. Virol. 34, 79–89. https://doi.org/10.1016/j.coviro.2018.12.007.

Wang, L.F., and Cowled, C. (2015). Bats and Viruses: A New Frontier of Emerging Infectious...
Diseases (John Wiley & Sons), pp. 1–368. https://doi.org/10.1002/9781118818824.

Wang, L.F., Shi, Z., Zhang, S., Field, H., Daszak, P., and Eaton, B.T. (2006). Review of bats and SARS. Emerg. Infect. Dis. 12, 1834–1840. https://doi.org/10.3201/eid1212.060401.

Wanzeller, A.L.M., Diniz, J.A.P., Gomes, M.L.C., Cruz, A.C.R., Soares, M.C.P., de Souza, W., Travassos da Rosa, A.P.A., and Vasconcelos, P.F.C. (2002). Ultrastructural, antigenic and physicochemical characterization of the mojuı´(Bunyavirus) isolated from bat in the Brazilian Amazon Region. Mem. Inst. Oswaldo Cruz 97, 307–311. https://doi.org/10.1590/S0074-02762002000300005.

Watanabe, S., Masangkay, J.S., Nagata, N., Morikawa, S., Mizutani, T., Fukushima, S., Alviola, P., Oomatsu, T., Ueda, N., Iha, K., et al. (2010). Bat coronaviruses and experimental infection of bats, the Philippines. Emerg. Infect. Dis. 16, 1217–1223. https://doi.org/10.3201/eid1608.100208.

Whitby, J.E., Heaton, P.R., Black, E.M., Wooldridge, M., McElhinney, L.M., and Johnstone, P. (2000). First isolation of a rabies-related virus from a Daubenton’s bat in the United Kingdom. Vet. Rec. 147, 385–388. https://doi.org/10.1136/vr.147.14.385.

Wibbelt, G., Kurth, A., Yasmum, N., Bannert, M., Nagel, S., Nitsche, A., and Ehlers, B. (2007). Discovery of herpesviruses in bats. J. Gen. Virol. 88, 2651–2655. https://doi.org/10.1099/vir.0.83045-0.

Williams, J.E., Imlarp, S., Top, F.H., Jr., Cavanaugh, D.C., and Russell, P.K. (1976). Kaeng Khoi virus from naturally infected bedbugs (Cimicidae) and immature free tailed bats. Bull. World Health Organ. 53, 365–369.

Wodak, E., Richter, S., Bagó, Z., Revilla-Fernández, S., Weissenböck, H., Nowotny, N., and Winter, P. (2011). Detection and molecular analysis of West Nile virus infections in birds of prey in the eastern part of Austria in 2008 and 2009. Vet. Microbiol. 149, 358–366. https://doi.org/10.1016/j.vetmic.2010.12.012.

Wong, S., Lau, S., Woo, P., and Yuen, K.Y. (2007). Bats as a continuing source of emerging infections in humans. Rev. Med. Virol. 17, 67–91. https://doi.org/10.1002/rmv.520.

Woo, P.C.Y., and Lau, S.K.P. (2019). Viruses and bats. Viruses 11, E884–E885. https://doi.org/10.3390/v11100884.

Wright, E., Hayman, D.T.S., Vaughan, A., Temperton, N.J., Wood, J.L.N., Cunningham, A.A., Suu-Ire, R., Weiss, R.A., and Fooks, A.R. (2010). Virus neutralising activity of African fruit bat (Eidolon helvum) sera against emerging lyssaviruses. Virology 408, 183–189. https://doi.org/10.1016/j.virol.2010.09.014.

Yinda, C.K., Zell, R., Deboutte, W., Zeller, M., Conceição-Neto, N., Heylen, E., Masa, P., Knowles, N.J., Ghogomu, S.M., Van Ranst, M., and Matthijnssens, J. (2017). Highly diverse population of Picornaviridae and other members of the Picornavirales, in Cameroonian fruit bats. BMC Genom. 18, 249. https://doi.org/10.1186/s12864-017-3632-7.

Yob, J.M., Field, H., Rashidi, A.M., Morrissy, C., van der Heide, B., Rota, P., bin Azdhar, A., White, J., Daniels, P., Jamaluddin, A., and Ksiazek, T. (2001). Nipah virus infection in bats (order Chiroptera) in peninsular Malaysia. Emerg. Infect. Dis. 7, 439–441. https://doi.org/10.3201/eid0703.017312.

Yuan, J., Zhang, Y., Li, J., Zhang, Y., Wang, L.F., and Shi, Z. (2012). Serological evidence of ebolavirus infection in bats, China. Virol. J. 9, 236. https://doi.org/10.1186/1743-422x-9-236.

Zaho, H. (2020). COVID-10 drives new threat to bats in China. Science 367, 1436.

Zhang, G., Cowled, C., Shi, Z., Huang, Z., Bishop-Lilly, K.A., Fang, X., Wynne, J.W., Xiong, Z., Baker, M.L., Zhao, W., et al. (2013). Comparative analysis of bat genomes provides insight into the evolution of flight and immunity. Science 339, 456–460. https://doi.org/10.1126.science.1230835.

Zhang, H., Yang, X., and Li, G. (1998). [Detection of dengue virus genome RNA in some kinds of animals caught from dengue fever endemic areas in Hainan Island with reverse transcription-polymerase chain reaction] Zhonghua Shi Yan He Ke Zazhi 30, 226–228.

Zhao, C., Jiang, L., Yu, X., and Chen, W. (1997). Isolation of Ross River virus and its antibody Prevalence in Hainan Province. Chin. J. Vet. Sci. 17, 241–243.

Zhou, P., Tachedjian, M., Wynne, J.W., Boyd, V., Cui, J., Smith, I., Cowled, C., Ng, J.H.J., Mok, L., Michalski, W.P., et al. (2016). Contraction of the type i IFN locus and unusual constitutive expression of IFN-α in bats. Proc. Natl. Acad. Sci. USA 113, 2696–2701. https://doi.org/10.1073/pnas.1518240113.

Zhou, P., Yang, X.L., Wang, X.G., Hu, B., Zhang, L., Zhang, W., Si, H.R., Zhu, Y., Li, B., Huang, C.L., et al. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273. https://doi.org/10.1038/s41586-020-2012-7.