Uterine torsion as an elusive obstetrical emergency in pregnancy: is there an association between gravid uterus torsion and Ehlers–Danlos syndrome?: a case report

Seyedeh Noushin Ghalandarpoor-Attar1 and Seyedeh Mojgan Ghalandarpoor-Attar2*

Abstract

Background: Timely diagnosis of uterine torsion can lead to acceptable maternal and fetal outcomes. This article presents the case of a 42-year-old pregnant woman, diagnosed with a rare 270° uterine torsion, in whom proper management led to good maternal outcomes but, unfortunately, severe prematurity and metabolic acidosis led to neonatal death. Moreover, the mother was clinically suspected for Ehlers–Danlos syndrome.

Case presentation: In December 2020, a 42-year-old pregnant Iranian woman, Gravid 3 para2 live2, at 30 weeks of gestation presented to the obstetric emergency department of Vali-Asr Hospital (Birjand, Iran) suffering from acute severe generalized abdominal pain, nausea, vomiting, and dizziness while she was hemodynamically unstable. After resuscitation, owing to persistent fetal bradycardia on fetal heart rate monitoring, she underwent an emergency cesarean section. Infra-umbilical midline skin incision was made, and when the abdominal cavity was opened, owing to abnormal appearance of the uterus, we further investigated the abdominopelvic cavity. Surprisingly, the uterus was dextrorotated by 270°. After uterine detorsion through a Kerr incision, a nonvigorous male baby was born with severe metabolic acidosis that led to his death soon after birth. Interestingly, we could find no predisposing factors such as pelvic abnormalities during surgery. Nevertheless, as her postoperative detailed physical examination revealed skin hyperextensibility, joint laxity, pelvic organ prolapse, and trivial exophthalmos, connective tissue disorders, mainly Ehlers–Danlos syndrome, were suspected. Unfortunately, for significant financial, cultural, and religious reasons, the patient refused to undergo further investigations. Additionally, despite severe congested uterus and subsequent uterine atony, timely diagnosis and anatomical correction of the gravid uterus before uterine incision prevented iatrogenic complications. The mother was discharged 2 days later without any postpartum complications.

Conclusion: Although uterine torsion is an extremely rare condition during pregnancy, based on severe associated maternal and perinatal complications, it is important to take this diagnosis into consideration as a differential diagnosis. Moreover, connective tissue disorders seem to be a potential risk factor for uterine torsion, although further studies on this subject are required.

Keywords: Uterine torsion, Pregnancy, Placenta abruption, Connective tissue disorder, Ehlers–Danlos syndrome

Background

Uterine torsion is defined as rotation of the uterus around its long axis greater than 45°, and it mainly occurs during pregnancy [1]. Rotation degree varies widely, from 45° to 180°, and dextorotation is much...
more frequent [2–5]. Surprisingly, most obstetricians and
obstetricians and
gynecologists may encounter this obstetrical emergency
only once in their lives [6]. On the other hand, although
uterine torsion complications in pregnancy depend
mainly on degree of rotation, gestational age, and time
eclipsed to diagnosis [7–9], in rotations exceeding 180°,
maternal and fetal mortality rates have been reported up
to 36% and 71%, respectively [7]. Owing to nonspecific
and vague symptoms that can mimic other obstetrical
complications, mainly placental abruption, its diagnosis
is elusive and is almost always postponed to the operating
room [7]. Delayed diagnosis can also result in serious
iatrogenic injuries to the uterus and/or adjacent organs,
especially the urinary system. Hence, strong clinical
suspicion, especially when the patient has an underlying
risk factor, can reduce both maternal and fetal mortality
and morbidity [10–15]. Various conditions have been
mentioned as predisposing factors, but to the best of our
knowledge, there is no report on uterine torsion being
associated with Ehlers–Danlos syndrome (EDS) as a
leading cause. In this current paper, we present a case of
uterine torsion in a clinically suspected pregnant woman
with EDS at 30 weeks of gestation.

Case presentation
A 42-year-old pregnant Iranian woman, Gravid 3
para2 live2, at 30 weeks of gestation was referred to
the obstetric emergency department of Vali-Asr
Hospital (Birjand, Iran) by the emergency service in
December 2020. She was suffering from acute-onset
severe abdominal pain followed by nausea, vomiting,
hypotension, and dizziness. She had two healthy
children, her previous pregnancies were uneventful,
and she declared no postpartum complications during
her previous gestations. She had no history of cigarette
smoking or alcohol consumption, and her marriage was
consanguineous. Moreover, she was living in a deprived
remote village around Birjand City (Southern Khorasan
Province, Iran) with very low socioeconomic status.

Upon her arrival, her body mass index, blood pressure,
pulse rate, respiratory rate, oral temperature, and
peripheral oxygen saturation in room air were 22.6 kg/
m², 70 mmHg, 130 beats per minute, 14 breaths per
minute, 36.9 °C, and 98% ,respectively. Her skin and
mucosal membranes were completely pale, and urinary
output was less than 50 cc per hour. She was lethargic,
but neurological examination did not reveal any focal
neurological deficit and corneal reflex was symmetrically
present in both eyes. Obstetrical examination revealed
increased fundal height in excess of a term uterus and
also uterine hypertonicity. No evidence of ruptured
membranes or external vaginal bleeding was evident.
Although on digital vaginal examination the cervix was
too high posteriorly positioned to be touched by digits,
it seemed unripe and closed. Moreover, continuous fetal
heart rate monitoring revealed fetal bradycardia.

As the patient was hemodynamically unstable,
resuscitation was initiated with a bolus of 2 L Ringer’s
lactate solution immediately and blood tests were sent.
Two units of packed cells were cross-matched. After
stabilization, owing to persistent fetal bradycardia, as low
as 80 beats per minute, she was emergently transferred
to the operating room for cesarean section delivery by
impression of massive occult placental abruption. Under
general anesthesia, the abdominal cavity was accessed
through a low midline incision. We encountered with
lateral wall of the uterus and left broad ligament. As
the uterus was leverotated approximately 90°, a severely
congested dark-purple uterus with many dilated tortuous
vessels on its lower segment was seen and no uterovesical
peritoneal reflex could be identified. Subsequently
manual exploration revealed an additional 180° uterine
dextrotorsion. Hence, abdominal wall skin incision was
expanded to upper umbilical level and the uterus was
detorted. Subsequently, a male baby weighing 1150 g
was born through a Kerr uterine incision. Unfortunately,
the 1-minute Apgar score was 0 and resuscitation was
unsuccessful. Umbilical cord blood gas analysis showed
severe metabolic acidosis (pH 6.95) and base excess of
16 mmol/L.

It is worth noting that, after detorsion, maternal
central and peripheral circulation began to improve
rapidly and myometrial layer color changed to near
normal, but when the uterine wound was closed, the
uterus became atonic. Uterotonic agents (0.2 mg of
intramuscular methylergenovine plus 30 international
units of intravenous oxytocin)were administered, and
owing to moderate anemia (hemoglobin of 9.8 g/dL)
detected in her initial laboratory tests, 2 units of packed
cells were transfused. Platelet count, coagulation study
(prothrombin time, partial prothrombin time, and
fibrinogen level), and liver and kidney function tests were
all unremarkable. Fortunately, despite anemia, all other
laboratory tests, including serum electrolytes, serum
aminotransferase, serum creatinine, and coagulation
study, were within normal limits post-operation period,
and her hemoglobin level reached 10 g/dL.

Interestingly, we could not find any pelvic abnormalities
such as congenital anomalies, uterine fibroids, pelvic or
adnexal masses, adhesion bands, fetal malpresentation,
or any report of vigorous fetal movements prior to
symptom onset. However, parietal peritoneum and
broad ligaments seemed too loose. In the postoperative
period, physical examination and detailed history were
taken. No additional significant data were found out
except for moderate low back pain; magnetic resonance
imaging had revealed lumbar disc herniation 2 years ago. Moreover, her height and body mass index were 1.7 m and 22.6 kg/m², respectively; she showed increased skin elasticity, joint hypermobility in upper extremities, and trivial exophthalmos. On vaginal examination based on pelvic organ prolapse quantification (POP-Q) classification, third-grade anterior and second-grade posterior compartment prolapse were evident; vaginal wall had increased elasticity, and no episiotomy scar or perineal lacerations were observed. In fact, no episiotomy had been made in either vaginal birth, and her previous newborns weighed nearly 3 kg. She received low-molecular-weight heparin 40 mg subcutaneously daily after 24 hours postoperation. On the basis of these systemic manifestations, connective tissue disorders, mainly Ehlers–Danlos, were highly suspected. However, as she was illiterate and living in a remote deprived village, she refused any further investigation, and on the second day postpartum, she was discharged from the hospital on her own request without any complication and was recommended to continue thromboprophylaxis for an additional 7 days. Subsequently, skin sutures were removed on the 12th postoperative day, and she did not come back thereafter. Unfortunately, we were not even able to contact her via phone to have an interview-based follow-up visit. It should be emphasized that, despite refusing to have her pictures taken and undergo further assessments, she gave us informed consent to publish this information.

Discussion
Here we presented a rare case of 270° gravid uterine torsion manifesting with hemodynamic instability and a clinical picture mimicking extensive occult placental abruption but without evidence of obvious coagulopathy. The patient had systemic clinical features of connective tissue disorders, mainly Ehlers–Danlos syndrome; however, definite diagnosis of Ehlers–Danlos could not be made as the patient refused genetic testing. In summary, the degree of uterine torsion, the shock status despite lack of external or internal bleeding, and accompanying clinical findings in favor of Ehlers–Danlos were all interesting points to be considered.

In fact, uterine torsion is an extremely rare event, especially in nonpregnant women, and often occurs in uncomplicated pregnancies, most commonly in the third trimester. It is associated with serious maternal and perinatal outcomes, and mortality rate reaches up to 12–18% [16–23]. In line with this, in the presented case, uterine torsion occurred in the 30th week of gestation and led to neonatal death. The precise etiology is not well known, but presence of uterine myomas, congenital anomalies, pelvic or adnexal masses or adhesions, abnormal fetal presentation, vigorous fetal movements, and abdominal trauma and high-ordered parities account for 70–84% of uterine torsions [24–27]. As mentioned before, relevant systemic signs and symptoms indicate that connective tissue disorders, most likely Ehlers–Danlos syndrome (EDS), are the only potential leading cause in our patient. There are 13 subtypes of EDS according to the International EDS Consortium, and the very rare vascular subtype predisposes pregnant women to more significant and life-threatening complications such as arterial dissection and/or rupture and uterine rupture [28], whereas pregnant women with hypermobile or classic subtypes of EDS are more susceptible to obstetrical complications such as pelvic organ prolapse, postpartum incontinence, abnormal wound healing, and atrophic scar formation [29, 30]. Still, there is no evidence in the literature of EDS association with gravid uterus torsion. However, owing to the patient’s refusal of further investigations and lack of genetic testing, a definite Ehlers–Danlos diagnosis and subtype specification could not be confirmed. This is the main limitation of our report.

Degree of uterine torsion usually varies between 45° and 180°. Owing to the natural right-side deviation of gravid uterus, dextrorotation is more common and rotation greater than 180° is rare [2–5]. In this presented case, the uterus had rotated in excess of 270°. Uterine torsion manifestation can vary significantly. Mild-to-severe abdominal pain accompanied by neurologic or hypovolemic shock is the most common feature, as seen here. Vaginal bleeding, nausea and vomiting, hemodynamic instability, uterine hypertonicity, increased fundal height, decreased fetal movements, fetal distress, intrauterine fetal death, obstructed labor, and dystocia are other possible manifestations [31, 32]. Surprisingly, our patient had fulfilled almost all these symptoms (hemodynamic instability, nausea and vomiting, severe acute abdominal pain, uterine hypertonicity, increased fundal height, and fetal distress). The diagnosis is difficult and almost always occurs during laparotomy [8, 33], as this patient was transferred to operating room with presumed diagnosis of severe occult placental abruption. However, imaging modalities such as ultrasound, computed tomography, or magnetic resonance imaging can facilitate diagnosis before surgery [31, 34, 35]. Nevertheless, because uterine torsion presents as an obstetrical emergency, definite diagnosis is almost always delayed until surgery time and there is not enough time to perform any imaging modalities. In line with this, the patient also manifested shock status and massive occult placental abruption was suspected initially. Moreover, she was referred to the emergency department during
night, which makes access to imaging facilities even more difficult in some health centers.

Uterine torsion can obliterate ovarian and/or uterine veins. Subsequently, venous congestion and increased placental cotyledon pressure may result in placental abruption. Furthermore, torsion can compress uterine arterial flow and reduce placental perfusion, leading to fetal distress or even intrauterine death [7]. Surgery is considered the main treatment option, while concomitant cesarean delivery is done in near-term or term pregnancies [32]. Maternal prognosis is usually acceptable, but perinatal mortality is still high [36]. If detorsion is impossible or torsion is not diagnosed before uterine wall incision, lower posterior uterine segment incision may damage uterine vasculature and cause severe adverse events [10–15]. Fortunately, in this patient, definite diagnosis was made before uterine incision. Detorsion was followed by a transverse low anterior uterine wall incision. In rare cases, owing to prolonged or irreversible ischemia and subsequent necrosis of the uterus or adjacent pelvic organs, hysterectomy or oophorectomy may be inevitable [37], although it is worth noting that, in a necrotic uterus, detorsion can cause sudden distributive shock and/ or serious coagulopathy as a result of reperfusion syndrome or amniotic fluid emboli [1], as Cook et al. stated [38]. Interestingly, as hypovolemic shock was due to obstructed uterine venous flow return in this case, by early uterine detorsion before onset of irreversible ischemia, obvious improvement in both peripheral and central circulation occurred. Furthermore, increased fundal height was due to obliterated venous return without any evidence of concealed retroplacental hematoma formation, and absence of clot formation may explain why no coagulopathy was observed. Fortunately, early laparotomy and detorsion of uterus subsequently resulted in full recovery of uterus circulation and hemodynamic parameters.

Conclusion

Although uterine torsion is an extremely rare condition among pregnant women, because of its severe associated maternal and perinatal complications, it should be suspected in every patient presenting with its associated vague and nonspecific symptoms. In fact, delayed diagnosis even at the time of surgery, can lead to severe additional iatrogenic complications and even mortality. Moreover, as we could not confirm Ehlers–Danlos syndrome or amniotic fluid emboli [1], as Cook et al. stated [38]. Interestingly, as hypovolemic shock was due to obstructed uterine venous flow return in this case, by early uterine detorsion before onset of irreversible ischemia, obvious improvement in both peripheral and central circulation occurred. Furthermore, increased fundal height was due to obliterated venous return without any evidence of concealed retroplacental hematoma formation, and absence of clot formation may explain why no coagulopathy was observed. Fortunately, early laparotomy and detorsion of uterus subsequently resulted in full recovery of uterus circulation and hemodynamic parameters.

physicians pay more attention to this potential risk factor when related systemic signs and symptoms are evident in a patient.

Acknowledgements

The authors thank Muhammed Hussein Mousavinasab for editing this text.

Author contributions

Both authors read and approved the final manuscript.

Funding

None.

Availability of data and materials

All relevant data are available at Vali-Asr Hospital, South Khorasan Province. Data sharing is not applicable to this article as no datasets were generated or analyzed during the study.

Declarations

Ethics approval and consent to participate

As the manuscript does not contain any direct patient identification details, ethical committee approval was waived. The ethical committee of Tehran University of Medical Sciences gave us approval for this case report publication because the manuscript does not contain any direct patient identification details.

Consent for publication

Written informed consent was obtained from the patient for publication of this case report without any accompanying images. A copy of the written consent is available for review by the Editor-in-Chief of this journal.

Competing interests

The authors declare that they have no competing interests.

Author details

1 Obstetrics and Gynecology Department, Baqyiatallah Hospital, School of Medicine, Baqyiatallah University of Medical Sciences, Tehran, Iran.
2 Obstetrics and Gynecology Department, Baharloo Hospital, Tehran University of Medical Sciences, Tehran, Iran.

Received: 19 May 2021 Accepted: 12 April 2022
Published online: 17 May 2022

References

1. Biswas MK, Summers P, Schultis SA, Herrera EH, Pernoll ML. Torsion of the gravid uterus: a report of two cases. J Reprod Med. 1990;35:194–7.
2. Kim SK, Chung JE, Bai SW, Kim JY, Kwon HK, Park KH, Song CH. Torsion of the pregnant uterus. Yonsei Med J. 2001;42:267–9.
3. Mustafa MS, Shakeel F, Sporrong B. Extreme torsion of the pregnant uterus. Aust N Z J Obstet Gynaecol. 1999;39:360–3.
4. Sikora-Szczeniak D, Szczesniak G, Legowik T, Sikora W. Torsion of the uterus with myomas in a postmenopausal woman—case study and review of the literature. Prz Menopauzalny. 2014;13:145–9.
5. Siparic R, Pervulov M, Stefanovic A, Tadic J, Gjonic M, Milicic J, Berisacav M. Uterine torsion in term pregnancy. Srp Arh Celok Lek. 2007;135:572–5.
6. Fatih FF, Gowri V, Rao K. Uterine torsion in second trimester of pregnancy followed by a successful-term pregnancy. BMJ Case Rep. 2012. https://doi.org/10.1136/bcr-2012-006359.
7. Jensen JG. Uterine torsion in pregnancy. Acta Obstet Gynecol Scand. 1992;71:260–5.
8. De Ioris A, Pezzuto C, Nardelli GB, Modena AB. Caesarean delivery through deliberate posterior hysterotomy in irreducible uterine torsion case report. Acta Biomed. 2010;81:141–3.
9. Kopko J, Stanczak R, Warzocha D, Wielgos M. Uterine torsion in the second trimester of pregnancy. Neuroendocrinol Lett. 2019;39:423–6.
10. Devi YL, Singh KHJ. Uterine torsion in pregnancy. J Obstet Gynaecol India. 1979;29:1260–1.
11. Fatih FF, Govri V, Rao K. Uterine torsion in second trimester of pregnancy followed by a successful term pregnancy. BMJ Case Rep. 2012. https://doi.org/10.1136/bcr-2012-006359.
12. Siegler SL, Silverstein LM. Torsion of a pregnant uterus with rupture. Am J Obstet Gynecol. 1948;55(6):1053–7.
13. Agar N, Canis M, Accoceberry M, Bourdel N, Lafaye AL, Gallot D. Prelabour uterine torsion complicated by partial abruption and fetal death. Gynecol Obstet Fertil. 2014;42:451–3.
14. Torbjorn P, Tore JM. Asymptomatic torsion of the pregnant uterus. Acta Obstet Gynecol Scand. 1980;59(6):371–4.
15. Voigt S. Torsion of the uterus as a complication of second trimester abortion. Ugeskr Laeger. 1992;154:726.
16. Hawaldar N, Ashok K. Torsion of non-gravid uterus with ovarian cyst—an extremely rare case. Pan Afr Med J. 2014;18:95.
17. Sachan R, Patel ML, Sachan P, Arora A. Complete axial torsion of pregnant uterus with leiomyoma. BMJ Case Rep. 2014. https://doi.org/10.1136/bcr-2014-205558.
18. Matsumoto H, Ohta T, Nakahara K, Kojimahara T, Kurachi H. Torsion of a nongravid uterus with a large ovarian cyst: usefulness of contrast MR image. Gynecol Obstet Invest. 2007;63:163–5.
19. Deshpande G, Kaul R. A case of torsion of gravid uterus caused by leiomyoma. Case Rep Obstet Gynecol. 2011. https://doi.org/10.1155/2011/206418.
20. Metz T, Trierweiler M, Arrigo AM, Winn VD. Uterine torsion in delayed diagnosis of abnormal anterior placentation: a report of 2 cases. J Reprod Med. 2009;54:322–4.
21. Thubert T, Abdul Razak R, Villefranque V, Muray JM, Picone O, Deffieux X. Uterine torsion in twin pregnancy. J Gynecol Obstet Biol Reprod. 2011;40:371–4.
22. Ahmed FU, Ambreen A, Zubair S, Kiran N. Torsion of a term uterus. J Coll Physicians Surg Pak. 2016;26:50–1.
23. Moores KL, Wood MG, Foon RP. A rare obstetric emergency: acute uterine torsion in a 32-week pregnancy. BMJ Case Rep. 2014. https://doi.org/10.1136/bcr-2013-202974.
24. Nesbitt REL, Conner GW. Torsion of the human pregnant uterus. Obstet Gynecol Surv. 1956;11:311–32.
25. Campbell MH, Sandlin AT, Wendell PJ, Whitcombe DD, Magann EF. Torsion of the gravid uterus & the Ehlers–Danlos syndromes with literature review. Obstet Gynecol Cases Rev. 2021;8:197.
26. Duplantier N, Begneaud W, Wood R, Dabezies C. Torsion of a gravid uterus associated with maternal trauma: a case report. J Reprod Med Obstet Gynecol. 2002;47(8):683–5.
27. Achnaha S, Monga D, Hassan MS. Case report: torsion of a gravid horn of didelphys uterus. J Obstet Gynaecol Res. 1996;22(2):107–9.
28. Murray ML, Pepin M, Peterson S, Byers PH. Pregnancy-related deaths and complications in women with vascular Ehlers–Danlos syndrome. Genet Med. 2014;16:874–80.
29. Campbell MH, Sandlin AT, Wendell PJ, Racher ML. A case of incarceration of the gravid uterus & the Ehlers–Danlos syndromes with literature review. Obstet Gynecol Cases Rev. 2021;8:197.
30. Jungwoo K, Moghees H, Eushaa M, Shazia J. Ehlers–Danlos syndrome in pregnancy: a review. Eur J Obstet Gynecol Reprod. 2020. https://doi.org/10.1016/j.ejogrb.2020.10.033.
31. Ramsayer AM, Whittington JR, Resendez VA, Whitcombe DD, Magann EF. Torsion in the gravid and nongravid uterus: a review of the literature of an uncommon diagnosis. Obstet Gynecol Surv. 2020;75:43–252.
32. LaHood J, You W. Uterine torsion and subsequent rupture in a bicornuate uterus associated with maternal death. BMJ Case Rep. 2018. https://doi.org/10.1136/bcr-2018-224398.
33. Pirot D, Gluck M, Oxnorn H. Torsion of the gravid uterus. Can Med Assoc J. 1973;109:1010–1.
34. Guie P, Adjibi R, N’Guesan E, Anongba S, Kouyate S, Toure K, Bouna A, Djibo A, Djimokho G, Diaw A, N’Guesan E, Yousouf O, Kabea E. Uterine torsion with maternal death: our experience and literature review. Clin Exp Obstet Gynecol. 2005;32:245–6.
35. Nicholson WK, Coulson CC, McCoy MC, Semelka RC. Pelvic magnetic resonance imaging in the evaluation of uterine torsion. Obstet Gynecol. 1995;85:888–90.