Mechanisms Underlying the Bidirectional V_T Shift After Negative-Bias Temperature Instability Stress in Carbon-Doped Fully Recessed AlGaN/GaN MIS-HEMTs

Nicolò Zagni, Student Member, IEEE, Marcello Cioni, Student Member, IEEE, Alessandro Chini, Ferdinando Iucolano, Francesco Maria Puglisi, Member, IEEE, Paolo Pavan, Senior Member, IEEE, and Giovanni Verzellesi, Senior Member, IEEE

Abstract—In this brief, we investigate the bidirectional threshold voltage drift (V_T) following negative-bias temperature instability (NBTI) stress in carbon-doped fully recessed AlGaN/GaN metal–insulator–semiconductor high-electron-mobility transistors (MIS-HEMTs). Several stress conditions were applied at different: 1) gate biases ($V_{GS,STR}$); 2) stress times (t_{STR}); and 3) temperatures (T). Both negative and positive V_T (thermally activated with different activation energies, E_A) were observed depending on the magnitude of $V_{GS,STR}$. In accordance with the literature, observed $V_T < 0 \text{ V (} E_A \approx 0.5 \text{ eV)}$ under moderate stress is attributed to the emission of electrons from oxide and interface traps. Instead, $V_T > 0 \text{ V (} E_A \approx 0.9 \text{ eV)}$ under high stress is attributed to the increased negatively ionized acceptor trap density in the buffer associated with carbon doping.

Index Terms—AlGaN/gallium nitride (GaN) metal–insulator–semiconductor high-electron-mobility transistors (MIS-HEMTs), carbon doping, negative-bias temperature instability (NBTI), threshold voltage instability.

I. INTRODUCTION

Gallium nitride (GaN)-based devices have gained huge popularity in recent years due to their outstanding performance in terms of power density and operating frequency compared to Si counterparts for power switching and RF applications [1]. Conventional GaN high-electron-mobility transistors (HEMTs) are normally-ON devices, while normally-OFF operation is desirable for commercial devices. To this end, research and industry efforts have been focused toward the development of fully recessed metal–insulator–semiconductor (MIS)-HEMTs [2]. However, the presence of gate oxide and the associated defect-prone oxide/semiconductor interface leads to threshold voltage (V_T) instability, severely impacting device stability and operation [2].

Assessing the V_T stability after negative-bias temperature stress (NBTI) is important even in normally-OFF HEMTs since $V_{GS} \ll V_T$ is required to avoid false turn-on when devices are pulsed at large drain voltages [3]. Moreover, if large, negative gate biases are adopted, NBTI tests are a proxy for off-state conditions (experienced by the device under pulse-mode operation) as similar, large values of drain–gate voltage can be achieved with both stress setups.

Different NBTI trends were observed in the literature that can be categorized as follows depending on the sign of the observed V_T shifts (ΔV_T): 1) $\Delta V_T < 0 \text{ V [4]–[6]}$; 2) $\Delta V_T > 0 \text{ V [3], [7], [8]}$; and 3) ΔV_T of both signs, depending on device type or stress conditions [9], [10]. While $\Delta V_T < 0 \text{ V following NBTI is commonly attributed to the emission of electrons from traps in the gate oxide or at the interface with the semiconductor, a univocal explanation for } \Delta V_T > 0 \text{ V as a consequence of high negative gate bias stress is still lacking. Moreover, } \Delta V_T > 0 \text{ was also observed in off-state operating conditions, attributed to a hole generation mechanism [8], [11]. For this reason, it is worthwhile performing an in-depth analysis of } V_T \text{ stability after NBTI stress by exploring a wide range of stress conditions to provide a comprehensive explanation for the observed results.}

In this brief, we report on an extensive characterization of V_T stability in fully recessed AlGaN/GaN MIS-HEMTs under different stress conditions in terms of: 1) gate bias ($V_{GS,STR}$); 2) stress time (t_{STR}); and 3) temperature (T). Depending on the $V_{GS,STR}$ magnitude, we observed bidirectional ΔV_T (i.e., negative and positive) and thermally activated with different activation energies, E_A. In particular, we observed $\Delta V_T < 0 \text{ V (with } E_A \approx 0.5 \text{ eV)}$ under moderate stress.
The latter electrons from traps located in the gate oxide and/or at the interface with the semiconductor [4], [5], [9]. The latter behavior (ΔV_T > 0 V), instead, can be attributed to the increased negatively ionized acceptor traps in the buffer.

II. Devices Description

Tested devices were fully recessed AlGaN/GaN MIS-HEMTs grown by the metal–organic chemical vapor deposition on a Si(111) p-type substrate with 1-µm gate length. A schematic of the device cross section is shown in Fig. 1. The channel is composed of a low-carbon (LC)-doped (∼10^16 cm^-3) GaN layer of 0.3 µm. The GaN buffer layer instead is 4.7 µm thick and is highly C-doped (∼10^18 cm^-3). The AlGaN barrier layer is 20 nm with 25% Al concentration. The gate dielectric (20-nm Al_2O_3) is fully recessed and partially penetrates into the LC GaN (typical penetration depth is around 10 nm). This allows to effectively suppress the two-dimensional electron gas (2DEG) when no gate bias is applied, thus obtaining V_T > 0 V. Ohmic contacts were formed by Ti/Al-based metallization defined by means of a lift-off process [12]. The nominal 2DEG density and mobility are 8 × 10^12 cm^-2 and 1500 cm^2/Vs, respectively. The representative transfer (I_D–V_GS) and output (I_D–V_DS) curves of these devices are shown in Fig. 2 (blue squares). The characterization was performed on different devices with good measurement repeatability.

III. Stress Measurement Methodology

The NBTI stress characterization was carried out by means of a Keithley 4200 semiconductor parameter analyzer, with a thermal chuck employed for setting the device-under-test (DUT) temperature during the measurements. When applying the gate stress bias, drain and source contacts were grounded. The substrate contact was grounded by wiring the thermal chuck to the ground signal applied to the source contact. During stress, the device is periodically turned on by means of a stairway-like gate signal to monitor the V_T evolution [6]. To this end, the gate is swept between −2 and 2 V with steps of 0.1 V each lasting 10 µs, whereas the drain is fixed to 0.1 V. In correspondence with each step, the drain current (I_D) and gate voltage (V_GS) are acquired, allowing the reconstruction of the I_D–V_GS characteristics. Since the induced stress was monitored for up to t_{STR} = 1000 s, the gate stairway signal was applied to the DUT at logarithmically spaced time instants to ensure a uniform distribution of V_T acquisitions [13]. The chosen I_D–V_GS sweep rate represents the best compromise between speed and accuracy since the short time required for the V_T measurement minimizes the fast recovery between stress phases [6] but still provides enough samples for a correct I_D–V_GS acquisition. For each I_D–V_GS, V_T was extracted with the constant-current method (I_D = 0.5 mA/mm). ΔV_T is then simply calculated as (V_T − V_{T0}) with the reference V_{T0} acquired before starting the stress phase from a fresh I_D–V_GS curve. To determine the time constants of the V_T transients to be used in the Arrhenius plots (to extract the activation energy, E_A), the curves were fitted by means of stretched exponential functions, and the relative time constants were extracted in correspondence of the peak in the dV_T/dlog_{fSTR} signals.

IV. Experimental Results

Two different stress conditions were investigated in this work, i.e., moderate (V_{GSTR,STR} = −7 V) and high stress (V_{GSTR,STR} = −17 V), observing ΔV_T of both signs. The measured ΔV_T evolution is shown in Figs. 3 and 4 for the moderate and high-stress conditions, respectively. Fig. 3(a) shows that, for moderate stress, V_T drifts to the negative direction (i.e., becomes less than V_{T0}) with a saturation ΔV_T value of about −0.8 to −1 V at t_{STR} = 1000 s. This effect is widely reported in the literature and is attributed to the emission of electrons from traps located in the gate oxide or at the interface with the semiconductor [5], [9], which is known to be a thermally activated process [4]. In the devices tested in this work, for this process, E_A ≈ 0.5 eV was estimated [see Fig. 3(b)]. The time window considered for the time constants extraction was the full stress measurement range, i.e., 1 ms–1000 s. The ΔV_T < 0 V process can also be attributed to the deionization of acceptor traps in the buffer (related to C-doping) as a consequence of the applied negative gate stress [6].

Conversely, Fig. 4(a) shows that the high-stress condition causes V_T to drift in the positive direction (i.e., V_T becomes larger than V_{T0}). The positive drift is found to be weakly dependent on temperature for t_{STR} in the range of 1 ms–1 s,
Fig. 3. (a) Measured ΔV_T versus t_{STR} for different temperatures (see legend) at $V_{\text{GS,STR}} = -7$ V. (b) Arrhenius plot of the stress data (symbols). The linear fitting (dashed line) gives an activation energy $E_A \approx 0.5$ eV.

Fig. 4. (a) Measured ΔV_T versus t_{STR} for different temperatures (see legend) at $V_{\text{GS,STR}} = -17$ V. (b) Arrhenius plot of the stress data (symbols). The linear fitting (dashed line) gives an activation energy $E_A \approx 0.9$ eV.

Fig. 5. Measured I_G–V_{GS} curves for different temperatures (see legend) below the threshold.

Fig. 6. I_G versus reciprocal of thermal energy to extract the activation energy for the process of $E_A \approx 0.35$ eV, which was found to be independent of applied $V_{\text{GS,STR}}$.

whereas it exhibits a clear temperature-dependent component for $t_{\text{STR}} > 1$ s. E_A of the latter process was found to be ≈ 0.9 eV [see Fig. 4(b)]. The time window considered for the extraction of the time constants in the Arrhenius plot, in this case, was limited to the range for which an appreciable temperature dependence was observed, i.e., 1–1000 s. Note that because no appreciable V_T shift was observed for $t_{\text{STR}} > 1$ s at $T \leq 50$ °C, the extraction of E_A from the linear fitting excluded data in this temperature range. The fast $\Delta V_T > 0$ V can be attributed to the capture of electrons injected by the gate terminal in the oxide [7], whereas the thermally activated increase is induced by a slower process with $E_A \approx 0.9$ eV.

To further investigate on the origin of this 0.9-eV thermally activated positive V_T shift, we report the gate leakage current I_G versus $V_{\text{GS,STR}}$ in Fig. 5. We found that for both $V_{\text{GS,STR}} = -7$ and -17 V, the gate leakage current is thermally activated with $E_A \approx 0.35$ eV, as shown in Fig. 6. The different activation energy of I_G compared to that of ΔV_T indicates that gate leakage is not the root cause for the temperature dependence of ΔV_T. $E_A \approx 0.9$ eV actually indicates that the observed behavior is likely caused by the dynamics of buffer acceptor traps (related to C-doping) that are energetically located at about 0.9 eV from GaN valence band edge [14]. In fact, buffer traps are known to strongly
affect the behavior of AlGaN/GaN power MIS-HEMTs, as also supported by numerical simulations [15]–[20]. In this context, the thermally activated positive ΔV_T (with $E_A \approx 0.9$ eV) under high $|V_{GS,STR}|$ can be attributed to hole emission from the 0.9-eV C_N acceptor traps and the consequent increase in negatively ionized C_N levels. As suggested by device simulations in [19], we speculate that the emitted holes attracted at the dielectric/channel interface can recombine with electrons injected from the gate terminal. However, this phenomenon needs further investigation and will be subject of future work.

V. Conclusion

An in-depth experimental investigation of NBTI behavior in fully recessed AlGaN/GaN MIS-HEMTs has been presented. The results obtained by means of fast $I_D - V_{GS}$ characterization under relatively low negative gate bias stress (i.e., $V_{GS,STR} = -7$ V) revealed conventional negative V_T drift associated with the thermally activated emission of electron from interface and/or oxide traps. This process was characterized by an activation energy of about 0.5 eV. Conversely, the positive V_T shift observed for $V_{GS,STR} = -17$ V for long stress time was ascribed to the increased negatively ionized acceptor trap density in the buffer, supported by the correlation between the extracted activation energy level of carbon doping-related traps, both of about 0.9 eV.

References

[1] K. J. Chen et al., “GaN-on-Si power technology: Devices and applications,” IEEE Trans. Electron Devices, vol. 64, no. 3, pp. 779–795, Mar. 2017, doi: 10.1109/TED.2017.2657579.

[2] J. A. D. Alamo and E. S. Lee, “Stability and reliability of lateral GaN power field-effect transistors,” IEEE Trans. Electron Devices, vol. 66, no. 11, pp. 4578–4590, Nov. 2019, doi: 10.1109/TED.2019.2931718.

[3] M. Hua, J. Wei, Q. Bao, Z. Zhang, Z. Zheng, and K. J. Chen, “Dependence of V_{TH} stability on gate-bias under reverse-bias stress in E-mode GaN MIS-FET,” IEEE Electron Device Lett., vol. 39, no. 3, pp. 413–416, Mar. 2018, doi: 10.1109/LED.2018.2791664.

[4] M. Meneghini et al., “Negative bias-induced threshold voltage instability in GaN-on-Si power HEMTs,” IEEE Electron Device Lett., vol. 37, no. 4, pp. 474–477, Apr. 2016, doi: 10.1109/LED.2016.2530693.

[5] A. Guo and J. A. D. Alamo, “Unified mechanism for positive- and negative-temperature instability in GaN MOSFETs,” IEEE Trans. Electron Devices, vol. 64, no. 5, pp. 2142–2147, May 2017, doi: 10.1109/TED.2017.2686840.

[6] A. G. Viey et al., “Investigation of nBTI degradation on GaN-on-Si E-mode MOS-HT-HEMT,” in IEDM Tech. Dig., Dec. 2019, pp. 4.3.1-4.3.4, doi: 10.1109/IEDM19573.2019.8993588.

[7] J. He, M. Hua, Z. Zhang, and K. J. Chen, “Performance and V_{TH} stability in E-mode GaN fully recessed MIS-FETs and partially recessed MIS-HEMTs with LPCVD-SiN/PECVD-SiN$_x$ gate dielectric stack,” IEEE Trans. Electron Devices, vol. 65, no. 8, pp. 3185–3191, Aug. 2018, doi: 10.1109/TED.2018.2850042.

[8] M. Hua et al., “Hole-induced threshold voltage shift under reverse-bias stress in E-mode GaN MIS-FET,” IEEE Trans. Electron Devices, vol. 65, no. 9, pp. 3831–3838, Sep. 2018, doi: 10.1109/TED.2018.2856998.

[9] A. Guo and J. A. D. Alamo, “Negative-bias temperature instability of GaN MOSFETs,” in Proc. IEEE Int. Rel. Phys. Symp. (IRPS), Apr. 2016, pp. 4A11–4A16, doi: 10.1109/IRPS.2016.7574526.

[10] F. Sang et al., “Investigation of the threshold voltage drift in enhancement-mode GaN MOSFET under negative gate bias stress,” Jpn. J. Appl. Phys., vol. 54, no. 4, Apr. 2015, Art. no. 044101, doi: 10.7567/JJAP.54.044101.

[11] M. Hua, S. Yang, J. Wei, Z. Zheng, J. He, and K. J. Chen, “Hole-induced degradation in E-mode GaN MIS-FETs: Impact of substrate terminations,” IEEE Trans. Electron Devices, vol. 67, no. 1, pp. 217–223, Jan. 2020, doi: 10.1109/TED.2019.2954282.

[12] F. Iucolano, G. Greco, and F. Roccaforte, “Correlation between microstructure and temperature dependent electrical behavior of annealed Ti/Al/Ni/Au ohmic contacts to AlGaN/GaN heterostructures,” Appl. Phys. Lett., vol. 103, no. 20, Nov. 2013, Art. no. 201604, doi: 10.1063/1.4828839.

[13] A. Chini and F. Iucolano, “Evolution of on-resistance (R_{ON}) and threshold voltage (V_{TH}) in GaN HEMTs during switch-mode operation,” Mater. Sci. Semicond. Process., vol. 78, pp. 127–131, May 2018, doi: 10.1016/j.mssp.2017.10.029.

[14] J. L. Lyons, A. Janotti, and C. G. Van de Walle, “Effects of carbon on the electrical and optical properties of InN, GaN, and AlN,” Phys. Rev. B, Condens. Matter, vol. 89, no. 3, pp. 1–8, Jan. 2014, doi: 10.1103/PhysRevB.89.035204.

[15] G. Verzellesi et al., “Influence of buffer carbon doping on pulse and AC behavior of insulator-gate field-plated power AlGaN/GaN HEMTs,” IEEE Electron Device Lett., vol. 35, no. 4, pp. 443–445, Apr. 2014, doi: 10.1109/LED.2014.2304680.

[16] A. Chini et al., “Experimental and numerical analysis of hole emission process from carbon-related traps in GaN buffer layers,” IEEE Trans. Electron Devices, vol. 63, no. 9, pp. 3473–3478, Sep. 2016, doi: 10.1109/TED.2016.2593791.

[17] N. Zagni, F. M. Puglisi, P. Pavan, A. Chini, and G. Verzellesi, “Insights into the off-state breakdown mechanisms in power GaN HEMTs,” Microelectron. Rel., vols. 100–101, Sep. 2019, Art. no. 113374, doi: 10.1016/j.microrel.2019.06.066.

[18] N. Zagni et al., “Trap dynamics model explaining the R_{ON} stress/recovery behavior in carbon-doped power AlGaN/GaN MOS-HEMTs,” in Proc. IEEE Int. Rel. Phys. Symp. (IRPS), Apr. 2020, pp. 1–5, doi: 10.1109/IRPS45951.2020.9128816.

[19] N. Zagni, A. Chini, F. M. Puglisi, P. Pavan, and G. Verzellesi, “The effects of carbon on the bidirectional threshold voltage instabilities induced by negative gate bias stress in GaN MIS-HEMTs,” J. Comput. Electron., vol. 19, no. 4, pp. 1555–1563, Dec. 2020, doi: 10.1007/s10825-020-01573-8.

[20] N. Zagni et al., “‘Hole redistribution’ model explaining the thermally activated R_{ON} stress/recovery transients in carbon-doped AlGaN/GaN power MIS-HEMTs,” IEEE Trans. Electron Devices, vol. 68, no. 2, pp. 697–703, Feb. 2021, doi: 10.1109/TED.2020.3045683.