Association between pediatric TBI mortality and median family income in the United States: A retrospective cohort study

Jonathan H. Pelletier, a Jaskaran Rakkar, a Dennis Simon, a,b,c,d Alicia K. Au, a,b,c,d Dana Y. Fuhrman, a,b Robert S.B. Clark, a,b,c,d Patrick M. Kochanek, a,b,c,d and Christopher M. Horvat,a,b,c,d,e,*

aDepartment Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
bDepartment of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
cBrain Care Institute, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
dSafar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
eDivision of Health Informatics, UPMC Children’s Hospital of Pittsburgh; Pittsburgh, PA, USA

Summary

Background There are regional disparities in pediatric traumatic brain injury (TBI) mortality across the United States, but the factors underlying these differences are unclear.

Methods We performed a retrospective cross-sectional analysis of the Pediatric Health Information System database including inpatient hospital encounters for children less than 18 years old with a primary diagnosis of TBI between 2010-2019.

Findings Lower median family income was associated with pediatric TBI mortality. Encounters from zip-codes with a median family income of < $20,000 had a 3.1% (29/950) mortality, as opposed to 1.3% (29/2,267) mortality for zip-codes with a median family income of > $80,000 (p = 0.00096). In multivariable logistic regression, every $10,000 of income was associated with an odds ratio of mortality of 0.94 (95% confidence interval 0.90 - 0.98). 82.5% (397/481) of ballistic TBI injuries were caused by a firearm. Lower income was associated with a higher proportion of ballistic TBI injuries (2.5% [24/950] for < $20,000 versus 0.3% [7/2,267] for > $80,000, p < 0.0001). In multivariable logistic regression, ballistic TBI injuries were associated with an odds ratio of mortality of 5.19 (95% confidence interval 4.00 - 6.73). United States regional variation in pediatric TBI mortality was linearly associated with the percentage of ballistic TBI (adjusted r-squared 0.59, p = 0.0097).

Interpretation Children from lower income zip-codes are more likely to sustain a ballistic TBI, and more likely to die. Further work is necessary to determine causal factors underlying these associations and to design interventions that prevent these injuries and/or improve outcomes.

Funding National Institutes of Health.

Copyright © 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Key Words: Traumatic brain injury; mortality; pediatrics; epidemiology

Introduction

Pediatric traumatic brain injury (TBI) has a worldwide incidence of 47-280 per 100,000 children, with male predominance after age three years.1 The estimated annual incidence of pediatric TBI in the United States (US) is ~70/100,000 children, with a bimodal age distribution, peaking at ages less than five years old and in the late teenage years.1,2 While US pediatric TBI
Articles

Research in context

Evidence before this study
Mortality in pediatric traumatic brain injury (TBI) varies across the United States (US), with more rural areas and the Southeastern US experiencing higher mortality. However, it is unclear whether these differences are related to differences in TBI mechanisms, pre-hospital care, trauma care, or sociodemographic factors.

Added value of this study
For the first time, this study demonstrates an association between median family income (assessed at the zip-code level) and pediatric TBI mortality in the United States. This association between income and TBI mortality was present when stratified according to rural / urban status, and in multivariable logistic regression after adjustment for confounders. A second association between the proportion of ballistic (predominantly firearm) TBI and mortality was also demonstrated. On a regional basis, higher levels of ballistic TBI were linearly associated with increases in TBI mortality.

Implications of all the available evidence
Median family income and ballistic injuries are associated with pediatric TBI mortality. Further research is necessary to determine whether interventions to reduce poverty and firearm violence may reduce pediatric TBI mortality.

Mortality decreased between 2000-2010, associated with decreased automobile-related TBI, mortality rates between 2010-2017 increased slightly, predominantly driven by increases in suicides and firearm violence.

US pediatric and adult TBI mortality varies by region, with higher mortality in more rural areas and the southeastern US. However, it is unclear whether these outcomes are related to differences in TBI mechanisms, access to pediatric trauma centres, or other factors. The relationship between socioeconomic factors and pediatric TBI mortality is also unclear. Single-center and county-level studies have come to varying conclusions regarding the influence of socioeconomic status on pediatric trauma outcomes. Lastly, the effects of the rise in the incidence of TBI caused by firearm violence on pediatric TBI mortality are also not well described.

Given this uncertainty, we sought to analyze sociodemographic and regional factors associated with pediatric TBI mortality using a large multi-centre database of US children’s hospitals.

Methods

Study Design and Setting
This was a retrospective cross-sectional study of inpatient admissions in PHIS, an online, quality controlled, anonymized, administrative data warehouse of 51 children’s hospitals across the US maintained by the Children’s Hospital Association (CHA). Demographic variables extracted included race (self-reported and categorized into White, Black or African American, American Indian or Alaska Native, Asian, Native Hawaiian or Pacific Islander, and other, as required by the United States Office of Management and Budget), ethnicity (Hispanic or Not Hispanic), age, sex, Rural-Urban Commuter Area (RUCA) codes, zip-code median income, admission diagnosis, intensive care unit (ICU) admission, use of invasive mechanical ventilation (IMV), and complex chronic conditions (CCC).

To ensure that changes in admission numbers reflected seasonal trends, rather than database expansion (as the PHIS database has grown over the past decade) we restricted the analysis to hospitals providing data since 2010. Patients age zero to eighteen years were eligible for inclusion if they were discharged between January 1st, 2010 and December 31st, 2019 from one of the PHIS centres with a primary encounter diagnosis of TBI, according to International Classification of Diseases (ICD) version 9 or version 10 codes, as defined by the US Military Health System. Diagnoses were filtered to exclude sequelae and subsequent encounters. Hospitals were grouped according to their US Census Division. Outcomes included the number of monthly and annual admissions over time, and in-hospital mortality, defined in PHIS. This study was granted an exemption by the University of Pittsburgh Institutional Review Board, as it was a secondary analysis of an anonymized database. This manuscript follows the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) reporting guidelines for cross-sectional studies.

Statistical Analyses
Cohort demographics were described using summary statistics and t-tests, chi-square tests, or Fisher exact tests as appropriate. Hospital charges were adjusted by the Centers for Medicare & Medicaid Services (CMS) wage/price index according to hospital zip code in PHIS. Charge-over-time analyses were adjusted for the quarterly Gross Domestic Product (GDP) provided by the Bureau of Economic Analysis and expressed in 2010 dollars. Patients were classified as having ballistic TBI if their encounter included a secondary diagnostic code for ballistic injuries. For analyses incorporating family income, each encounter was mapped to patient-level zip-code 2010 median family income using PHIS. Admission numbers were transformed into time-series data based on the date of admission and mapped to US Census Region. Chi-square testing was used to compare mortality proportions across hospitals, regions, and time. Seasonality testing was performed using Webel and Ollech’s method. Admission season was defined as the period from January 1st to December 31st, 2019.
as winter (December-February), spring (March-May), summer (June-August), or autumn (September-November) per United States weather patterns. Quantification of seasonal trends in admission rates between 2010-2019 was displayed using Locally Estimated Scatterplot Smoothing (LOESS). For analyses considering RUCA codes, zip-code level RUCA codes were extracted from PHIS and categorized according to population density and geographic isolation to match the categorizations of the US Census Bureau.

To understand whether income and ballistic injuries were associated with TBI mortality after adjustment for confounders, we trained a stepwise multivariable logistic regression model using data available at the time of admission, including demographics, geography, seasonality, and admission diagnosis based on imaging findings using k-fold cross-validation. Age was included as a spline with knots at 1, 5, 10, and 15 years, as these groups were previously known to display differing mortality trends. The linearity assumption for income and mortality was verified by visual inspection before model development.

To understand whether regional disparities in income and ballistic injuries were associated with previously-known regional differences in pediatric TBI mortality, we conducted linear regression between these variables and pediatric TBI mortality across the US Census Bureau regions.

We conducted two sensitivity analyses. In the first sensitivity analysis, we included TBI cases with codes that were definite or possible for TBI as defined by the US Military Health System (probable TBI). In the second sensitivity analysis, as a proxy for severe TBI, we included only patients with coding for TBI and the use of invasive mechanical ventilation (IMV) and without a pre-existing complex chronic condition (TBI + IMV), as supplied by PHIS (as PHIS does not include Glasgow Coma Scale score data).

All statistical analyses were performed using RStudio version 1.4.1103 (RStudio, Boston, MA) and R versions 4.0.5 and 4.1.1 (R Foundation for Statistical Computing, Vienna, Austria) with the following packages: caret, cowplot, ggrepel, gifi, kableExtra, knitr, lattice, lubridate, precrec, seastests, splines tidyverse, usmap.

Role of the Funding Source
The funders had no role in study design, data collection, analysis, interpretation, or writing of the report.

Results
Incidence
There were 50,872 encounters among 50,301 patients across 38 hospitals. Cohort demographics are shown in Supplemental Table 1 and stratified by mortality in Table 1. The median (interquartile range [IQR]) age was 5.7 (1.1-12.2) years. The cohort was 63.6% (32,361/50,872) male, 61.8% (31,460/50,872) white, 15.6% (7,961/50,872) black, and 19.9% (10,139/50,872) Hispanic. 19.3% (9,817/50,872) had an underlying complex chronic condition. The median (IQR) 2010 family income was $40,643 ($32,496 - $52,917). TBI admissions significantly decreased over the 10-year study period. There were 5,489 admissions in 2010 compared to 4,933 in 2019, p = 0.039 for trend. GDP-adjusted hospital charges per admission significantly increased over the study period (median [IQR] $17,580.5 [$9,007 - $36,853] in 2010 vs. $24,675 [$14,090 - $48,904] in 2019, p < 0.0001). TBI admissions met criteria for seasonality using Weibel and Ollech’s method. As shown in Supplemental Figure 1, there was an overall summer-predominance of admissions, with a median (IQR) 504 (480 - 526) in July compared to 344 (326 - 358) in January (p = 0.00018). TBI admissions typically peaked in the afternoon and evening hours, as shown in Supplemental Figure 2.

Mortality
Overall survival to discharge was 97.3% (49,491/50,872). There was a higher percentage of deaths in the winter compared with the summer, though the absolute number of deaths per season was similar (311/10,032 [3.1%] in winter versus 360/14,630 [2.5%] in the summer), shown in Supplemental Figure 1. Survival to discharge did not significantly change over time (5,347/5,489 [97.4%] in 2010 vs. 4,812/4,933 [97.5%] in 2019, p = 0.24). As shown in Figure 1, median family income was inversely related to TBI mortality. Zip-codes with median family income <$20,000 were associated with an overall 3.1% (29/950) mortality, compared with 1.3% (29/2,267) mortality among zip-codes with a median family income greater than $80,000 (p = 0.00096). When stratified according to United States Department of Agriculture RUCA codes, this inverse association between median family income and mortality was present in urban areas and isolated small rural towns, but not in large rural cities or small rural towns, as shown in Supplemental Figure 3. When stratified according to United States Office of Management and Budget race categories, there were significant differences in mortality according to income for patients of white race (3.0% [6/194] for income <$20,000 versus 1.1% [7/1,608] for income >$80,000, p = 0.041), but not for patients of other races, as shown in Supplemental Figure 4.

As shown in Figure 2, there was more than 3-fold difference in TBI mortality across the United States Census Divisions (4.1% in the East South Central Division vs. 1.2% in the Pacific Division, p < 0.0001). Also shown in Figure 2, there was 10-fold difference in TBI mortality at the hospital level (range 0.6%-6.1%, p < 0.0001). The 2010 median income ranged from
Characteristic	Overall, N = 50,872	Survived, N = 49,491	Died, N = 1,381	p-value
Age (Years)	5.7 (1.1, 12.2)	5.7 (1.1, 12.2)	6.3 (1.8, 12.5)	0.00067
Sex				0.48
Female	18,511	17,996 (97.2%)	515 (2.8%)	
Male	32,361	31,495 (97.3%)	866 (2.7%)	
Race				<0.0001
White	31,460	30,695 (97.6%)	765 (2.4%)	
Black	7,961	7,668 (96.3%)	293 (3.7%)	
American Indian	586	572 (97.6%)	14 (2.4%)	
Asian	1,313	1,295 (98.6%)	18 (1.4%)	
Pacific Islander	161	159 (98.8%)	2 (1.2%)	
Other	9,391	9,102 (96.9%)	289 (3.1%)	
Ethnicity				<0.0001
Hispanic or Latino	10,139	9,945 (98.1%)	194 (1.9%)	
Not Hispanic or Latino	35,934	34,984 (97.4%)	950 (2.6%)	
Unknown	4,799	4,562 (95.1%)	237 (4.9%)	
Zip-Code Median Income ($)	40,643	40,694	37,799	<0.0001
Urban	41,910	40,839 (97.4%)	1,071 (2.6%)	
Large Rural City	4,461	4,315 (96.7%)	146 (3.3%)	
Small Rural Town	2,644	2,553 (96.6%)	91 (3.4%)	
Isolated Small Rural Town	1,857	1,784 (96.1%)	73 (3.9%)	
US Census Region				<0.0001
East North Central	6,710	6,457 (96.2%)	253 (3.8%)	
East South Central	5,004	4,797 (95.9%)	207 (4.1%)	
Mountain	4,102	4,045 (98.6%)	57 (1.4%)	
New England	6,843	6,649 (97.2%)	194 (2.8%)	
Pacific	2,556	2,511 (98.2%)	45 (1.8%)	
South Atlantic	10,347	10,225 (98.8%)	122 (1.2%)	
West North Central	6,195	6,015 (97.1%)	180 (2.9%)	
West South Central	5,475	5,273 (96.3%)	202 (3.7%)	
Admission Season				0.023
Spring	13,323	12,969 (97.3%)	354 (2.7%)	
Summer	14,630	14,270 (97.5%)	360 (2.5%)	
Autumn	12,887	12,531 (97.2%)	356 (2.8%)	
Winter	10,032	9,721 (96.9%)	311 (3.1%)	
Admission Diagnosis				<0.0001
Concussion	7,030	7,027 (100.0%)	3 (0.0%)	
Skull Fracture	15,683	15,605 (99.5%)	78 (0.5%)	
Skull Fracture + Hemorrhage	11,969	11,562 (96.6%)	407 (3.4%)	
Artery or Nerve Injury	44	44 (100.0%)	0 (0.0%)	
Epidural	2,416	2,406 (99.6%)	10 (0.4%)	
Subdural	7,839	7,405 (94.5%)	434 (5.5%)	
Subarachnoid	1,226	1,156 (94.3%)	70 (5.7%)	
Intracerebral Hemorrhage	464	432 (93.1%)	32 (6.9%)	
Unspecified Intracranial Hemorrhage	655	632 (96.5%)	23 (3.5%)	
Contusion / Laceration	1,243	1,174 (94.4%)	69 (5.6%)	
Diffuse Axonal Injury	724	639 (88.3%)	85 (11.7%)	
Cerebral Edema	160	82 (51.2%)	78 (48.8%)	
Unspecified Injury	1,419	1,327 (93.5%)	92 (6.5%)	
Admitted to ICU	20,929	19,707 (94.2%)	1,222 (5.8%)	<0.0001

Table 1 (Continued)
$33,249 in the East South Central region to $51,964 in the New England region. As shown in Figure 3, regional variation in overall TBI mortality was not significantly associated with 2010 median income (adjusted r-squared 0.20, p = 0.13). The Middle Atlantic region had substantially lower TBI mortality than other regions with similar income. After removing the Middle Atlantic region, median income was inversely associated with TBI mortality (adjusted r-squared 0.66, p = 0.0085, Supplemental Figure 5).

Ballistic Injuries

There were 481/50,872 (0.9%) of TBI admissions with coding for gunshot wound or explosive device. Of these, 397/481 (82.5%) were injured by a firearm, 82/481 (17.0%) were injured by an air gun, and 2/481 (0.4%) were injured by an explosive. As shown in Figure 1, family income was inversely associated with ballistic TBI. Zip-codes with median family income < $20,000 were associated with an overall 2.5% (24/950) ballistic TBI, compared with 0.3% (7/2,267) ballistic TBI among zip-codes with a median family income greater than $80,000 (p < 0.0001).

Compared to the entire TBI cohort, patients with ballistic injuries were older, median (IQR) age 11.1 (4.8-14.7) vs. 5.7 (1.1-12.2), p < 0.0001 (Supplemental Table 1). A significantly higher proportion of patients with ballistic injuries were also male (360/481 [74.8%] vs. 12,361/50,872 [63.6%], p < 0.0001) and of black race (192/481 [39.9%] vs. 7,961/50,872 [15.6%], p < 0.0001). These patients were more frequently admitted to the ICU (163/481 [75.5%] vs. 20,929/50,872 [41.1%], p < 0.0001), more frequently placed on mechanical ventilation (325/481 [67.6%] vs. 10,109/50,872 [19.9%], p < 0.0001), and had lower survival to discharge (362/481 [75.3%] vs. 49,491/50,872 [97.3%], p < 0.0001). Ballistic TBI admissions were associated with higher hospital charges, median (IQR) $101,042 ($43,438-$261,718) vs. $25,344 ($13,241-$51,969), p < 0.0001.

Figure 1. TBI and 2010 Median Family Income. The top panel shows the association between the 2010 median family income for the patient’s zip code on the x-axis and the % of TBI injuries caused by ballistic injuries (predominantly firearms) on the y-axis. The bottom panel shows the association between the 2010 median family income on the x-axis and the % TBI mortality on the y-axis. For both panels, income is binned by $10,000 increments, and the number underneath each bar represents the number of encounters per bin.
As shown in Figure 4, the regional percentage of ballistic TBI was inversely correlated with the 2010 median income for the region (adjusted r-squared 0.64, \(p = 0.0061 \)). The Middle Atlantic region had notably lower ballistic TBI than other regions with comparable income. Regional variation in overall TBI mortality was directly associated with the percentage of TBI patients secondary to ballistic injuries (adjusted r-squared 0.59, \(p = 0.0097 \), Figure 5). The Middle Atlantic Region had mortality consistent with other regions with low proportions of ballistic TBI.

Ballistic TBI admissions did not meet the criteria for seasonality using Webel and Ollech’s method. The number of ballistic TBI admissions did not significantly change over time (Supplemental Figure 6, 44 in 2010 versus 56 in 2019, \(p = 0.26 \)). The percentage of TBI patients secondary to ballistic injuries ranged from 0.3% in the New England region to 2% in the East South Central region.

Sensitivity Analyses: Probable TBI and TBI + IMV
The demographics for the sensitivity analyses including patients with probable TBI and restricting the cohort to TBI patients undergoing invasive mechanical ventilation (TBI + IMV) are shown in Supplemental Table 1 and stratified by mortality in Supplemental Table 2 and Supplemental Table 3, respectively. Regional- and hospital-level variation for these sensitivity analyses is shown in Supplemental Figure 9 for the probable TBI group and Supplemental Figure 10 for the TBI + IMV group. Multivariable logistic regression for factors associated with mortality in the probable TBI group is shown in Supplemental Table 4 and in the TBI + IMV group is shown in Supplemental Table 5. Briefly, median family income was inversely associated with

Modeling
A multivariable logistic regression model to elucidate factors associated with pediatric TBI mortality is shown in Table 2. The linearity assumption for family income is shown in Supplemental Figure 7. The spline relationship between age and mortality is shown in Supplemental Figure 8. After adjustment, lower median family income was significantly associated with pediatric TBI mortality (odds ratio 0.94, 95% CI 0.90 - 0.98 for every $10,000 of family income). Ballistic injury was also significantly associated with mortality (odds ratio 5.19, 95% CI 4.00 - 6.73). Regional variation in TBI mortality remained significant, with patients in the East South Central United States having an odds ratio (95% CI) of mortality of 2.09 (1.61 - 2.71) compared to patients in the Pacific region.
mortality in the Probable TBI cohort (OR 0.94, 95% CI 0.90-0.98 per $10,000), the point estimate was similar in the smaller TBI + IMV cohort, but the association did not reach statistical significance (OR 0.95, 95% CI 0.87-1.05 per $10,000). Ballistic injury was significantly associated with mortality in both cohorts (Probable TBI OR

Figure 3. Correlation between regional median household income and % TBI mortality. The 2010 median family income for the patient’s zip code (grouped by US Census Division) is plotted on the x-axis and the % TBI mortality is plotted on the y-axis. The solid line represents the line of best fit using linear regression. The gray shaded region represents the 95% confidence interval of the model.

Figure 4. Correlation between regional median household income and % ballistic TBI. The 2010 median family income for the patient’s zip code (grouped by US Census Division) is plotted on the x-axis and the % ballistic TBI is plotted on the y-axis. The solid line represents the line of best fit using linear regression. The gray shaded region represents the 95% confidence interval of the model.
Discussion
This study reports the novel finding that zip-code level income is associated with pediatric TBI mortality in the United States. While previous studies have come to conflicting conclusions concerning the association between socioeconomic status and pediatric trauma outcomes,9,10 the present study is in agreement with adult data showing lower income zip-codes have higher in-hospital trauma mortality.26 Figure 1 shows that ballistic injuries increased significantly in zip-codes with the lowest 2010 median family incomes. Zip-codes with a 2010 median household income less than $40,000 had a 36% higher pediatric TBI mortality rate than those with a median income greater than $40,000. In multivariable logistic regression analysis, every $10,000 of family income was associated with an odds ratio of mortality of 0.94 (Table 2). In an additional novel analysis, this mortality difference was especially notable in areas classified as “urban” by RUCA codes, as shown in Supplemental Figure 3, arguing that associations between income and mortality do not simply mirror distance to trauma centres.7,8,26 While the point-estimate was similar, the association between income and mortality was not significant in the sensitivity analysis of patients receiving invasive mechanical ventilation (Supplemental Table 5). It is unclear whether this represents true differences in care-seeking patterns or is due to reduced power or possible model overfitting, as this cohort was only 10.3% of the size of the main analysis. Additionally, the association between income and mortality was present among patients of white race, but not other United States Office of Management and Budget race categories (Supplemental Figure 4). Further work is needed to understand whether this represents differences in care-seeking patterns or TBI mechanisms among these populations, or reflects structural racism.27–29

Ballistic TBI (82% of which was caused by firearms) represents a small, but particularly severe phenotype. This finding is in keeping with recently published trauma literature.30 While representing less than 1% of pediatric TBI, these patients were nearly nine times more likely to die than the overall cohort. A public health intervention aimed at reducing firearm-related TBI in children11 could also reduce pediatric TBI mortality. Given the disproportionate incidence and associated increased mortality of ballistic TBI in communities with lower household-level income (Figure 1), such an intervention would also align with the American Academy of Pediatrics’ goals of reducing health disparities.32 Interestingly, while overall rates of pediatric TBI decreased in the database between 2010-2019, ballistic TBIs did not (Supplemental Figure 6). In some states, physicians have been restricted from inquiring about gun ownership and offering counselling on safe gun storage for...
Table 2: Multivariable Logistic Regression for Factors Associated with Mortality in Pediatric TBI.

Variable	OR	p-value
Income		
Median Family Income (per $10,000)	0.94 (0.90 - 0.98)	0.0061
Age (Years)		
Modeled as a Cubic Spline, Shown in Supplemental Figure 6		
Race (Reference: White)		
Race: Black	1.08 (0.91 - 1.27)	0.39
Race: American Indian	1.00 (0.55 - 1.79)	0.99
Race: Asian	0.76 (0.46 - 1.25)	0.28
Race: Pacific Islander	0.46 (0.11 - 1.94)	0.29
Race: Other	1.43 (1.2 - 1.69)	<0.0001
Ethnicity (Reference: Not Hispanic)		
Ethnicity: Hispanic or Latino	0.73 (0.6 - 0.88)	0.00094
Ethnicity: Unknown	1.65 (1.38 - 1.98)	<0.0001
Sex (Reference: Female)		
Sex: Male	0.88 (0.78 - 0.99)	0.040
Rural Urban Commuter Code (Reference: Urban)		
Rural Urban Commuter Code: Large Rural City	0.95 (0.78 - 1.17)	0.65
Rural Urban Commuter Code: Small Rural Town	0.92 (0.72 - 1.18)	0.52
Rural Urban Commuter Code: Isolated Small Rural Town	1.05 (0.8 - 1.39)	0.72
Complex Chronic Condition (Reference: No Complex Chronic Condition)		
Pre-existing Complex Chronic Condition	11.97 (10.43 - 13.73)	<0.0001
Ballistic Injury (Reference: No Ballistic Injury)		
Ballistic Injury	5.21 (4.01 - 6.77)	<0.0001
US Census Division (Reference: Pacific)		
US Census Subregion: Mountain	1.58 (1.23 - 2.03)	0.00037
US Census Subregion: West North Central	1.67 (1.25 - 2.22)	0.00048
US Census Subregion: West South Central	1.78 (1.39 - 2.29)	<0.0001
US Census Subregion: East North Central	1.87 (1.46 - 2.39)	<0.0001
US Census Subregion: East South Central	1.78 (1.36 - 2.33)	<0.0001
US Census Subregion: New England	1.25 (0.87 - 1.81)	0.23
US Census Subregion: Middle Atlantic	0.83 (0.59 - 1.17)	0.29
US Census Subregion: South Atlantic	1.43 (1.1 - 1.85)	0.0068
Admit Season (Reference: Summer)		
Admit Season: Spring	1.10 (0.94 - 1.29)	0.24
Admit Season: Autumn	1.15 (0.98 - 1.36)	0.082
Admit Season: Winter	1.29 (1.09 - 1.53)	0.0028
Admission Dx (Reference: Concussion)		
Admission Dx: Skull Fracture without ICH	8.09 (2.55 - 25.7)	0.00039
Admission Dx: Skull Fracture with ICH	52.49 (16.81 - 163.91)	<0.0001
Admission Dx: Cranial Nerve or Carotid Artery Injury	0.00 (0 - Inf)	0.95
Admission Dx: Epidural Hemorrhage	5.53 (1.52 - 20.18)	0.0096
Admission Dx: Subdural Hemorrhage	60.66 (19.41 - 189.53)	<0.0001
Admission Dx: Subarachnoid Hemorrhage	87.31 (27.29 - 279.3)	<0.0001
Admission Dx: Intracerebral / Intracerebellar Hemorrhage	47.46 (14.3 - 157.52)	<0.0001
Admission Dx: Unspecified Intracranial Hemorrhage	42.48 (12.62 - 142.96)	<0.0001
Admission Dx: Cerebral / Cerebellar Contusion or Laceration	60.61 (18.88 - 194.57)	<0.0001
Admission Dx: Diffuse Axonal Injury	97.46 (30.55 - 310.91)	<0.0001
Admission Dx: Traumatic Cerebral Edema	527.03 (160.53 - 1730.25)	<0.0001
Admission Dx: Unspecified Injury	92.46 (29.1 - 293.8)	<0.0001
The present study also offers insight into regional differences in pediatric TBI mortality. As in previous studies, we found a greater than three-fold difference in TBI mortality across the US Census Divisions (Figure 2). Previous work has shown these differences to persist after adjustment for hospital characteristics. We demonstrate that this difference is robust to adjustment for sociodemographic factors (e.g. age, sex, RUCA codes). Notably, we also show correlations between income, ballistic TBI, and TBI mortality (Figures 3-5). Taken together, these trends suggest that actions to reduce poverty and prevent ballistic injuries may reduce disparities in pediatric TBI mortality.

Caution is needed when interpreting the meaning of these findings. While the present study identified ten-fold interhospital variation in TBI mortality, it does not necessarily imply discrepancies in inpatient care. Previous work has noted disparities in pediatric TBI mortality persist after adjustment for hospital characteristics. While the practice patterns of high-performing hospitals were not necessarily implied by the present study, we found that there is an increase in milder sports-related TBI during the warmer months. Another likely cause of increased incidence of TBI in the summer is increased automobile traffic during these months, as automobile accidents are a predominant cause of pediatric TBI.

This study has several limitations. While including over 50,000 encounters from 38 hospitals across the US, these data may not be fully representative of the US pediatric population. The median income of the included sample was $40,643, compared favourably to a nationwide average of $40,445 in 2010. However, PHIS predominantly includes large children’s hospitals, many of which are dedicated pediatric trauma centres. Because access to pediatric trauma care has previously been shown to reduce mortality, the present study may underestimate mortality rates among children hospitalized with TBI. Pediatric trauma care is known to be inconsistently structured across the United States, and the distance to trauma care is related to mortality. Because income data, but not geocoded zip-code data, are available in PHIS, it was not possible to conduct an analysis regarding the distance between a patient’s home and care center. We attempted to account for this relationship through the use of RUCA codes, but recognize that a geocoding approach would have been more precise. Though PHIS is quality controlled, all database analysis is subject to misclassification bias from errors in diagnostic coding. Additionally, we were unable to completely discern the factors contributing to mortality for each TBI. We attempted to adjust for the intrinsic heterogeneity of TBI by classifying diagnoses according to type (e.g. concussion versus subarachnoid haemorrhage), but this approach is limited in its granularity. While we excluded subsequent encounters for the same injury based on ICD codes, approximately 1% of patients had more than one TBI encounter. The clinical information in PHIS is limited, thus we could not fully control for severity of illness when assessing interhospital variability in mortality. Lastly, though using IMV is commonly used as a surrogate for severe TBI, it is imperfect.

In conclusion, lower family income and ballistic TBI are associated with pediatric TBI mortality in the United States. These associations are significant after multivariable adjustment for a variety of confounders. Pediatric TBI mortality varies three-fold regionally, and ten-fold across hospitals in the PHIS database. This variability is correlated with regional income and rates of ballistic TBI. Further work is needed to develop targeted interventions to address these disparities.

Contributors
Dr. Pelletier conceptualized the study, performed database extraction, performed statistical coding, and wrote the first draft of the manuscript. Dr. Rakkar performed statistical coding and substantially revised the work. Drs. Simon, Au, Fuhrman, Clark, Kochanek, and Horvat, reviewed the initial draft of the manuscript, contributed additional analyses, and substantially revised the work. All authors approved the final manuscript as submitted and agree to be accountable for all aspects of the work.
Declaration of interests
The authors have no conflicts of interest relevant to this article to disclose.

Funding Statement
The use of data generated this manuscript is contained in the Pediatric Health Information Systems, owned by the Children’s Hospital Association. While the authors cannot distribute the data, interested hospitals may join the Children’s Hospital Association via their website www.childrenshospitals.org.

Editorial Disclaimer: The Lancet Group takes a neutral position with respect to territorial claims in published maps and institutional affiliations.

Supplementary materials
Supplementary material associated with this article can be found in the online version at doi: 10.1016/j.lana.2021.100164.

References
1 Dewan MC, Mummadreddy N, Welions JC, Bonfild CM. Epidemiology of Global Pediatric Traumatic Brain Injury: Qualitative Review. World Neurol. 2016;61(4):179–109. e1.
2 Schneier AJ, Shields BJ, Hostetler SG, Xiang H, Smith GA. Incidence of Pediatric Traumatic Brain Injury and Associated Hospital Resource Utilization in the United States. PEDIATRICS. 2020;146(1):e1–e32.
3 Cheng P, Li R, Schwebel DC, Zhu M, Hu G. Traumatic brain injury among U.S. children and adolescents 0–19 years, 1999–2017. J. Safety Res. 2020;72:91–100.
4 Brown JB, Kheng M, Carney NA, Rubiano AM, Puyana JC. Geographical Disparity and Traumatic Brain Injury in America: Rural Areas Suffer Proucer Outcomes. J. Neurosci. Rural Pract. 2019;10:10–15.
5 Mills B, Bowhani-Rahbar A, Simonetti JA, Vavilala MS. Facility characteristics and inhospital pediatric mortality after severe traumatic brain injury. J. Neurotrauma. 2015;32:841–846.
6 Akiyi T, Yokota H, Morita A. Pediatric Traumatic Brain Injury: Characteristic Features, Diagnosis, and Management. Neurol. Med. Chir. (Tokyo). 2017;57:82–93.
7 Notrica DM, Weisser J, Garcia-Filion P, Kuroiwa E, Clarke D, Harte M, Hill J, Moffat S. Pediatric trauma centers: Correlation of ACS-verified trauma centers with CDC statewide pediatric mortality rates. J. Trauma Acute Care Surg. 2012;73:666–672.
8 Hisa RY, Srebrotinjak T, Maseli J, Crandall M, McCluskey C, Kellermann AL. The association of trauma center closures with increased inpatient mortality for injured patients. J. Trauma Acute Care Surg. 2014;76:1048–1054.
9 Broberg M, McCluskey CK, Wurtz M, Rose J, Dingeldein M, Rotta M, Slain K. Family Income is Not Associated with Outcomes in Pediatric Patients with Critical Traumatic Injury. Pediatrics. 2018;142:8.
10 Marcin JP, Schombri MS, He J, Romano PS. A Population-Based Analysis of Socioeconomic Status and Insurance Status and Their Relationship With Pediatric Trauma Hospitalization and Mortality Rates. Am. J. Public Health. 2002;92:461–466.
11 [Date unknown]. PHIS. [cited 2019 Oct 21] Available from: https://www.childrenshospitals.org/phins.
12 Mongiellozu J, Mohammad Z, Ten Have TR, Shah SS. Corticosteroids and mortality in children with bacterial meningitis. JAMA. 2002;289:2045–2055.
13 Bureau, U.C. [Date unknown]. Census.gov. Census.gov [cited 2021 Oct 19] Available from: https://www.census.gov/en.html.
14 [Date unknown]. USDA ERS – Rural-Urban-Commuting Area Codes. [cited 2021 May 14] Available from: https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/.
15 Pelletier JH, Rajkar J, Au AK, Fuhrman D, Clark RSB, Horvat CM. Trends in US Pediatric Hospital Admissions in 2020 Compared With the Decade Before the COVID-19 Pandemic. JAMA Netw. Open. 2021;4:e203727.
16 Feudtner C, Feinstein JA, Zhong W, Hall M, Dai D. Pediatric complex chronic conditions classification system version 2: updated for ICD-10 and complex medical technology dependence and transplantation. BMC Pediatr. 2014;14:199.
17 [Date unknown]. Surveillance Case Definitions | Health.mil. [cited 2021 Jan 21] Available from: https://www.health.mil/Military-Health-Topics/Combat-Support/Armed-Forces-Military-Health-Surveillance-Branch/Epidemiology-and-Analysis/Surveillance-Case-Definitions.
18 [Date unknown]. U.S. Census Divisions | Monitoring References | National Centers for Environmental Information (NCEI). [cited 2021 Jan 22] Available from: https://www.ncdc.noaa.gov/monitoring-references/maps/us-census-divisions.php.
19 [Date unknown]. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for reporting observational studies. [cited 2020 Dec 15] Available from: https://www.equator-network.org/reporting-guidelines/strobe/.
20 Dunn A, Grose SD, Zorekas SH. Adjusting Health Expenditures for Inflation: A Review of Measures for Health Services Research in the United States. Health Serv Res. 2013;48:575–596.
21 Webel K, and Ollech, D. (2017). Condensing information from multiple seasonality tests with random forests. The LOESS Procedure. SAS/STAT User’s Guide. Cary, NC: SAS Institute Inc. 2017:54.
22 Johnson TJ. Intersection of Bias, Structural Racism, and Social Determinants With Health Care Inequities. Pediatrics. 2020;146.
23 Brown JB, Kheng M, Carney NA, Rubiano AM, Puyana JC. Geographic Disparity and Traumatic Brain Injury in America: Rural Areas Suffer Proucer Outcomes. J. Neurosci. Rural Pract. 2019;10:10–15.
24 Mills B, Bowhani-Rahbar A, Simonetti JA, Vavilala MS. Facility characteristics and inhospital pediatric mortality after severe traumatic brain injury. J. Neurotrauma. 2015;32:841–846.
25 Akiyi T, Yokota H, Morita A. Pediatric Traumatic Brain Injury: Characteristic Features, Diagnosis, and Management. Neurol. Med. Chir. (Tokyo). 2017;57:82–93.
26 Notrica DM, Weisser J, Garcia-Filion P, Kuroiwa E, Clarke D, Harte M, Hill J, Moffat S. Pediatric trauma centers: Correlation of ACS-verified trauma centers with CDC statewide pediatric mortality rates. J. Trauma Acute Care Surg. 2012;73:666–672.
27 Hisa RY, Srebrotinjak T, Maseli J, Crandall M, McCluskey C, Kellermann AL. The association of trauma center closures with increased inpatient mortality for injured patients. J. Trauma Acute Care Surg. 2014;76:1048–1054.
28 Broberg M, McCluskey CK, Wurtz M, Rose J, Dingeldein M, Rotta M, Slain K. Family Income is Not Associated with Outcomes in Pediatric Patients with Critical Traumatic Injury. Pediatrics. 2018;142:8.
29 Marcin JP, Schombri MS, He J, Romano PS. A Population-Based Analysis of Socioeconomic Status and Insurance Status and Their Relationship With Pediatric Trauma Hospitalization and Mortality Rates. Am. J. Public Health. 2002;92:461–466.
30 Hagen MG, Carew B, Crandall M, Zaidi Z. Patients and Guns: Florida Physicians Are Not Asking. South. Med. J. 2019;112:581–585.
31 Rathore M. Physician “Gag Laws” and Gun Safety. Virtual Mentor. 2014;16:284–288.
32 Greene NH, Kernic MA, Vavilala MS, Rivara FP. Variation in Pediatric Traumatic Brain Injury and Associated Hospital Resource Utilization in the United States. PEDIATRICS. 2016;91:497–509. e1.
33 Hagen MG, Carew B, Crandall M, Zaidi Z. Patients and Guns: Florida Physicians Are Not Asking. South. Med. J. 2019;112:581–585.
34 Rathore M. Physician “Gag Laws” and Gun Safety. Virtual Mentor. 2014;16:284–288.
35 Greene NH, Kernic MA, Vavilala MS, Rivara FP. Variation in Pediatric Traumatic Brain Injury and Associated Hospital Resource Utilization in the United States. PEDIATRICS. 2016;91:497–509. e1.
36 Lawton R, Taylor N, Clay-Williams R, Braithwaite J. Positive deviance: a different approach to achieving patient safety. BMJ Qual. Saf. 2012:4:880–883.
37 Tansley G, Schuurman N, Bowes M, Erdogan M, Green R, Asbridge M, Yanchar N. Effect of predicted travel time to trauma care on mortality in major trauma patients in Nova Scotia. Can. J. Surg. 2019;62:123–130.

38 Pender T, David A, Dodson B, Calland JF. Pediatric trauma mortality: an ecological analysis evaluating correlation between injury-related mortality and geographic access to trauma care in the United States in 2010. J. Public Health. 2019:fdz091.

39 Myers SR, Branas CC, French B, Nance ML, Carr BG. A National Analysis of Pediatric Trauma Care Utilization and Outcomes in the United States. Pediatr. Emerg. Care. 2019;35:1–7.

40 Nance ML, Carr BG, Branas CC. Access to Pediatric Trauma Care in the United States. Arch. Pediatr. Adolesc. Med. 2009;163:312.

41 Husum H, Gilbert M, Wisborg T, Van Heng Y, Murad M. Rural pre-hospital trauma systems improve trauma outcome in low-income countries: a prospective study from North Iraq and Cambodia. J. Trauma. 2003;54:1188–1196.

42 Rampal S, Dunnick J, Siripong N, Conti KA, Gaines BA, Zuckerbraun NS. Seasonal, Weather, and Temporal Factors in the Prediction of Admission to a Pediatric Trauma Center. World J Surg. 2019;43:2211–2217.

43 [Date unknown]. Figure 2 - Travel on U.S. Highways By Month - December 2019 - Policy | Federal Highway Administration. [cited 2021 Feb 23] Available from: https://www.fhwa.dot.gov/policyinformation/travel_monitoring/19decvt/figure2.cfm.

44 Office, U.C.B.P.I. [date unknown]. Income, Poverty and Health Insurance Coverage in the United States: 2010 - Income & Wealth - Newsroom - U.S. Census Bureau. [cited 2021 Oct 3] Available from: https://www.census.gov/newsroom/releases/archives/income_wealth/chn-157.html.

45 Hartman M, Watson RS, Linde-Zwirble W, Clermont G, Lave J, Weissfeld L, Kochanek P, Angus D. Pediatric Traumatic Brain Injury Is Inconsistently Regionalized in the United States. Pediatrics. 2008;122:e172–e180.

46 Haque KD, Grinspan ZM, Mauer E, Nellis ME. Early Use of Antiseizure Medication in Mechanically Ventilated Traumatic Brain Injury Cases: A Retrospective Pediatric Health Information System Database Study. Pediatr. Crit. Care Med. Publish Ahead of Print. 2020.