ON THE MOTIVE OF KAPUSTKA–RAMPAZZO’S CALABI-YAU THREEFOLDS

ROBERT LATERVEER

ABSTRACT. Kapustka and Rampazzo have exhibited pairs of Calabi-Yau threefolds X and Y that are L–equivalent and derived equivalent, without being birational. We complete the picture by showing that X and Y have isomorphic Chow motives.

1. INTRODUCTION

Let $\text{Var}(\mathbb{C})$ denote the category of algebraic varieties over the field \mathbb{C}. The Grothendieck ring $K_0(\text{Var}(\mathbb{C}))$ encodes fundamental properties of the birational geometry of varieties. The intricacy of the ring $K_0(\text{Var}(\mathbb{C}))$ is highlighted by the result of Borisov [7], showing that the class of the affine line \mathbb{A} is a zero–divisor in $K_0(\text{Var}(\mathbb{C}))$. Following on Borisov’s pioneering result, a great many people have been hunting for Calabi–Yau varieties X, Y that are not birational (and so $[X] \neq [Y]$ in the Grothendieck ring), but

$$([X] - [Y])\mathbb{L}^r = 0 \quad \text{in} \quad K_0(\text{Var}(\mathbb{C})),$$

i.e., X and Y are “L–equivalent” in the sense of [19]. In many cases, the captured varieties X and Y are also derived equivalent [13], [14], [23], [18], [27], [8], [19], [10], [22], [17], [16].

According to a conjecture made by Orlov [26, Conjecture 1], derived equivalent smooth projective varieties should have isomorphic Chow motives. This conjecture is true for $K3$ surfaces [12], but is still open for Calabi–Yau varieties of dimension ≥ 3. In [20], I verified Orlov’s conjecture for the Calabi–Yau threefolds of Ito–Miura–Okawa–Ueda [13]. The aim of the present note is to check that Orlov’s conjecture is also true for the threefolds constructed recently by Kapustka–Rampazzo:

Theorem (= theorem 4.1). Let X, Y be two derived equivalent Calabi–Yau threefolds as in [17]. Then there is an isomorphism of Chow motives

$$h(X) \cong h(Y) \quad \text{in} \quad \mathcal{M}_{\text{rat}}.$$

To prove theorem 4.1, we exploit the “homological projective duality–style” diagram given in [17] relating X and Y. One key ingredient in the proof that might be of independent interest is a result (theorem 3.3) concerning higher Chow groups of certain fibrations; this is a variant of a result of Vial’s [33].

Conventions. In this note, the word variety will refer to a reduced irreducible scheme of finite type over the field of complex numbers \mathbb{C}. For any variety X, we will denote by $A_j(X)$ the

1991 Mathematics Subject Classification. Primary 14C15, 14C25, 14C30.

Key words and phrases. Algebraic cycles, Chow groups, motives, Calabi–Yau varieties, derived equivalence.
Chow group of dimension \(j \) cycles on \(X \) with \(\mathbb{Q} \)-coefficients. For \(X \) smooth of dimension \(n \), the notations \(A_j(X) \) and \(A^{n-j}(X) \) will be used interchangeably.

The notation \(A^j_{\text{hom}}(X) \) will be used to indicate the subgroups of homologically trivial cycles. For a morphism between smooth varieties \(f: X \to Y \), we will write \(\Gamma_f \in A^*(X \times Y) \) for the graph of \(f \), and \(\Gamma_f^\top \in A^*(Y \times X) \) for the transpose correspondence.

The contravariant category of Chow motives (i.e., pure motives with respect to rational equivalence as in \([30], [25]\)) will be denoted \(M_{\text{rat}} \).

2. The Calabi–Yau threefolds

Theorem 2.1 (Kapustka–Rampazzo \([17]\)). Let \(X, Y \) be a general pair of Calabi–Yau threefolds in the family \(\tilde{X}_{25} \) that are dual to one another (in the sense of \([17\) Section 2]). Then \(X \) and \(Y \) are not birational, and so

\[
[X] \neq [Y] \quad \text{in} \quad K_0(\text{Var}(\mathbb{C})).
\]

However, one has

\[
([X] - [Y])L^2 = 0 \quad \text{in} \quad K_0(\text{Var}(\mathbb{C})).
\]

Moreover, \(X \) and \(Y \) are derived equivalent, i.e. there is an isomorphism of bounded derived categories

\[
D^b(X) \cong D^b(Y).
\]

In particular, there is an isomorphism of polarized Hodge structures

\[
H^3(X, \mathbb{Z}) \cong H^3(Y, \mathbb{Z}).
\]

Proof. Everything but the last phrase is in \([17]\). The isomorphism of Hodge structures is a corollary of the derived equivalence, in view of \([27\) Proposition 2.1 and Remark 2.3]. \(\square\)

Remark 2.2. As explained in \([17]\), the threefolds \(X, Y \) in the family \(\tilde{X}_{25} \) are a limit case of the Calabi–Yau threefolds in the family \(X_{25} \) studied in \([8], [27]\). A pair of dual varieties \(X, Y \) in the family \(X_{25} \) are also derived equivalent and L-equivalent (the exponent of \(L \) is, however, higher than in theorem 2.1).

3. Higher Chow groups and fibrations

Definition 3.1 (Bloch \([4], [5]\)). Let \(\Delta^j \cong A_j(\mathbb{C}) \) denote the standard \(j \)-simplex. For any quasi-projective variety \(M \) and any \(i \in \mathbb{Z} \), let \(z_i^{\text{simp}}(M, *) \) denote the simplicial complex where \(z_i(X, j) \) is the group of \((i + j)\)-dimensional algebraic cycles in \(M \times \Delta^j \) that meet the faces properly. Let \(z_i(M, *) \) denote the single complex associated to \(z_i^{\text{simp}}(M, *) \). The higher Chow groups of \(M \) are defined as

\[
A_i(M, j) := H^j(z_i(M, *) \otimes \mathbb{Q}).
\]

Remark 3.2. Clearly one has \(A_i(M, 0) \cong A_i(M) \). Higher Chow groups are related to higher algebraic \(K \)-theory: there are isomorphisms

\[
\text{Gr}^{\gamma-i}_K J_j (M)_{\mathbb{Q}} \cong A_i(M, j) \quad \text{for all} \quad i, j
\]

where \(K_j(M) \) is Quillen’s higher \(K \)-theory group associated to the category of coherent sheaves on \(M \), and \(\text{Gr}^{\gamma}_K \) is a graded for the \(\gamma \)-filtration \([4]\). Higher Chow groups are also related to
Voevodsky’s motivic cohomology (defined as hypercohomology of a certain complex of Zariski sheaves) [9], [24].

For later use, we establish the following result, which is a variant of a result of Vial’s [33]:

Theorem 3.3. Let $\pi : M \to B$ be a flat projective morphism between smooth quasi–projective varieties of relative dimension m. Assume that for every $b \in B$, the fibre $M_b := \pi^{-1}(b)$ has

$$A_i(M_b) = \mathbb{Q} \quad \forall i .$$

(i) The maps

$$\Phi_* := \sum_{k=0}^{m} h^{m-k} \circ \pi^*: \bigoplus_{k=0}^{m} A_{\ell-k}(B, j) \to A_{\ell}(M, j)$$

and

$$\Psi_* := \sum_{k=0}^{m} \pi_* \circ h^k: A_{\ell}(M, j) \to \bigoplus_{k=0}^{m} A_{\ell-k}(B, j)$$

are both isomorphisms, for any ℓ and j. (Here h^k denotes the operation of intersecting with the k–th power of a hyperplane section $h \in A^1(M)$.)

(ii) Set $V_k := (\Psi_*)^{-1} A_{\ell-k}(B, j) \subset A_{\ell}(M, j)$. Then

$$(\Phi_* \Psi_*)|_{V_m} = \lambda \text{id},$$

for some non–zero $\lambda \in \mathbb{Q}$.

Proof. (i) For $j = 0$ (i.e., for usual Chow groups), this is exactly [33, Theorem 3.2]. For arbitrary j (i.e., for higher Chow groups), a straightforward although laborious proof would consist in convincing the reader that everything Vial does in the proof of [33, Theorem 3.2] also applies to higher Chow groups. Indeed, all formal properties of Chow groups exploited in loc. cit. also hold for higher Chow groups.

Under the simplifying assumption that all fibres M_b are isomorphic to \mathbb{P}^m (which will be the case when we apply theorem 3.3 in this note), a quick proof could be as follows. Let $H \subset M$ be a general hyperplane section, and let $U = \mathbb{P}^m \cap B$ be the open over which the fibres of the restricted morphism $\pi|_U: H \to B$ are isomorphic to \mathbb{P}^{m-1}. Let $M_U := \pi^{-1}(U)$, and let us consider the restricted morphism

$$\pi|_U : M_U \to U .$$

Using the localization sequence for higher Chow groups and noetherian induction, we are reduced to proving (i) for $\pi|_U$. Let us consider the open $M'_U := M_U \setminus (H \cap M_U)$. The fibres of the morphism $\pi': M'_U \to U$ are isomorphic to \mathbb{A}^m. There is a commutative diagram with exact rows

$$\begin{array}{cccccc}
A_i(M'_U, j + 1) & \rightarrow & A_i(H, j) & \rightarrow & A_i(M_U, j) & \rightarrow \\
\uparrow (\pi')^* & & \uparrow \sum_{k=0}^{m} h^{m-1-k} o(\pi|_U)^* & & \uparrow \sum_{k=0}^{m} h^{m-k} o(\pi|_U)^* & \\
A_i(U, j + 1) & \rightarrow & \bigoplus_{k=0}^{m-1} A_k(U, j) & \rightarrow & \bigoplus_{k=0}^{m} A_k(U, j) & \rightarrow \\
\end{array}$$
Doing an induction on the fibre dimension m, it will suffice to prove that $(\pi')^*$ is an isomorphism for all i, j. But this follows from the corresponding result for K–theory [29, Proposition 4.1], in view of the isomorphism (1) and the fact that the pullback $(\pi')^*: K_j(U) \to K_j(M'_U)$ respects the γ–filtration. This proves that Φ_* is an isomorphism. The argument for Ψ_* is similar.

(ii) The direct summand V_m can be identified as

$$V_m = \bigcap_{k=0}^{m-1} \ker(\pi_* \circ h^k) \subset A_\ell(M, j).$$

Using this description, it is readily checked that

$$V_m = \pi^* A_{\ell-m}(X, j).$$

This implies (ii).

\[\square\]

Remark 3.4. In case B and M are smooth projective, theorem 3.3 can be upgraded to a relation of Chow motives [33, Theorem 4.2]. In the more general case where B and M are smooth but only quasi–projective, perhaps one can relate B and M in the category DM_{eff}^{gm} of Voevodsky motives? If so, the relation of higher Chow groups obtained in theorem 3.3 would be an immediate consequence, since higher Chow groups (with \mathbb{Q}–coefficients) can be expressed as Hom–groups in DM_{eff}^{gm} [9], [24].

4. MAIN RESULT

Theorem 4.1. Let X, Y be a pair of Calabi–Yau threefolds in the family \bar{X}_{25} that are dual to one another, in the sense of [17, Section 2]. Then there is an isomorphism

$$h(X) \cong h(Y) \text{ in } \mathcal{M}_{\text{rat}}.$$

Proof. First, to simplify matters, let us slightly cut down the motives of X and Y. It is known [17] that X and Y have Picard number 1. A routine argument gives a decomposition of the Chow motives

$$h(X) = 1 \oplus 1(1) \oplus h^3(X) \oplus 1(2) \oplus 1(3),$$
$$h(Y) = 1 \oplus 1(1) \oplus h^3(Y) \oplus 1(2) \oplus 1(3) \text{ in } \mathcal{M}_{\text{rat}},$$

where 1 is the motive of the point $\text{Spec}(k)$. (The gist of this “routine argument” is as follows: let $H \in A^1(X)$ be a hyperplane section. Then

$$\pi^{2i}_X := c_i H^{3-i} \times H \in A^3(X \times X), \ 0 \leq i \leq 3,$$

defines an orthogonal set of projectors lifting the Küneth components, for appropriate $c_i \in \mathbb{Q}$. One can then define $\pi^i_X := \Delta_X - \sum_i \pi^{2i}_X \in A^3(X \times X)$, and $h^i(X) = (X, \pi^i_X, 0) \in \mathcal{M}_{\text{rat}}$, and ditto for Y.)

To prove the theorem, it will thus suffice to prove there is an isomorphism of motives

$$h^3(X) \cong h^3(Y) \text{ in } \mathcal{M}_{\text{rat}}.$$
We observe that the above decomposition (plus the fact that $H^*(h^3(X)) = H^3(X)$ is odd-dimensional) implies equality

$$A^*(h^3(X)) = A^*_{\text{hom}}(X),$$

and similarly for Y.

To construct the isomorphism (2), we need look no further than the construction of the threefolds X, Y. As explained in [17, Section 2], the Calabi–Yau threefolds X, Y are related via a diagram

$$
\begin{array}{ccc}
D & \xrightarrow{i} & M \\
\lf \downarrow & & \lf \downarrow g \downarrow \ \\
X & \xleftarrow{f} & G(2, 5) & \xrightarrow{\pi_1} & F & \xrightarrow{\pi_2} & G(3, 5) & \xleftarrow{g_Y} & Y
\end{array}
$$

(3)

Here $G(j, 5)$ denotes the Grassmannian of j–dimensional subspaces in a 5–dimensional vector space. The variety F is the flag variety parametrizing pairs $(V, W) \in G(2, 5) \times G(3, 5)$ such that $V \subset W$. The variety $M \subset F$ is a hyperplane section. The Calabi–Yau varieties X, Y are closed subvarieties of $G(2, 5)$ resp. $G(3, 5)$, and the closed subvarieties D, E are defined as $f^{-1}(X)$ resp. $g^{-1}(Y)$. The morphisms f, g are \mathbb{P}^1–fibrations over the opens $G(2, 5) \setminus X$ resp. $G(3, 5) \setminus Y$, but the restrictions f_X, g_Y are \mathbb{P}^1–fibrations.

The flag variety F has trivial Chow groups (i.e. $A^*_{\text{hom}}(F) = 0$), and so F has a Chow–Künneth decomposition (this is a general fact for any smooth projective variety with trivial Chow groups; since all cohomology is algebraic, a Künneth decomposition exists; since $F \times F$ again has trivial Chow groups, the Künneth decomposition is a Chow–Künneth decomposition). By a standard trick (cf. for instance [15, Lemma 5.2]), this induces a Chow–Künneth decomposition $\{\pi^{i}_M\}$ for the hyperplane section $M \subset F$, with the property that

$$(M, \pi^{i}_M) \cong \oplus \mathbb{I}(\ast) \quad \text{in } \mathcal{M}_{\text{rat}} \quad \text{for all } j \neq 7 = \dim M.$$

In particular, we have that

$$A^i_{\text{hom}}(M) = A^i(h^7(M)) := (\pi^7_M)_*A^i(M) \quad \text{for all } i.$$

We now make the following claim:

Claim 4.2. There are isomorphisms

$$
\begin{align*}
\Gamma_1: & \quad h^3(X) \xrightarrow{\cong} h^7(M)(2), \\
\Gamma_2: & \quad h^3(Y) \xrightarrow{\cong} h^7(M)(2) \quad \text{in } \mathcal{M}_{\text{rat}}.
\end{align*}
$$

This claim obviously suffices to prove (2). To prove the claim, let us treat the isomorphism Γ_1 in detail (the same argument applies to Γ_2, upon replacing X and $G(2, 5)$ by Y resp. $G(3, 5)$). To prove the claim for Γ_1, it will suffice to find correspondences $\Gamma_1 \in A^5(X \times M), \Psi_1 \in A^5(M \times X)$ with the property that

$$
\begin{align*}
(\Xi_1)_*(\Gamma_1)_* = \text{id}: & \quad A^i_{\text{hom}}(X) \rightarrow A^i_{\text{hom}}(X), \\
(\Gamma_1)_*(\Xi_1)_* = \text{id}: & \quad A^i_{\text{hom}}(M) \rightarrow A^i_{\text{hom}}(M).
\end{align*}
$$

(4)
(Indeed, let us assume one has correspondences Γ_1, Ξ_1 satisfying (4). By what we have said above, this means that
\begin{align}
(\pi_X^3 \circ \Xi_1 \circ \pi_M^7 \circ \Gamma_1 \circ \pi_X^3)_* &= (\pi_X^3)_*: \ A^i(X) \to A^i(X), \\
(\pi_M^7 \circ \Gamma_1 \circ \pi_X^3 \circ \Xi_1 \circ \pi_M^7)_* &= (\pi_M^7)_*: \ A^i(M) \to A^i(M).
\end{align}

There exists a field $k \subset \mathbb{C}$, finitely generated over \mathbb{Q}, such that $X, M, \pi_X^3, \pi_M^7 \Gamma_1, \Xi_1$ are defined over k. Because \mathbb{C} is a universal domain, for any finitely generated field extension $K \supset k$, there is an inclusion $K \subset \mathbb{C}$. Thus, the natural maps $A^i(X_K) \to A^i(X_\mathbb{C})$ and $A^i(M_K) \to A^i(M_\mathbb{C})$ are injections [3, Appendix to Lecture 1]. This implies that the relations (5) also hold over K. Manin’s identity principle then gives that
\[\Gamma_1: \ h^3(X_k) \to h^7(M_k)(2) \text{ in } M_{\text{rat}} \]
is an isomorphism, and so Γ_1 induces an isomorphism of motives over \mathbb{C} as claimed.)

Before proving the claim, let us introduce some lemmas.

Lemma 4.3. Set-up as above. The composition
\[A^i_{\text{hom}}(X) \xrightarrow{(f_X)^*} A^i_{\text{hom}}(D) \xrightarrow{i_*} A^{i+2}_{\text{hom}}(M) \]
is surjective, for any i.

Proof. Let us write $U := M \setminus D$, and $G := G(2, 5)$. By assumption, U is a \mathbb{P}^1–fibration over $V := G \setminus X$.

For any i, there is a commutative diagram with exact rows
\[
\begin{array}{ccccccccc}
0 & \to & A_i(V, 1) & \to & A_i(X) & \to & A_i(G) & \to & A_i(V) \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
0 & \to & W^{-2i}H_{2i-1}(V, \mathbb{Q}) \cap F_{-i} & \to & H_{2i}(X, \mathbb{Q}) \cap F_{-i} & \to & H_{2i}(G, \mathbb{Q}) & \to & W^{-2i}H_{2i}(V, \mathbb{Q})
\end{array}
\]
where vertical arrows are (higher) cycle class maps into Borel–Moore homology, and W^*, F_* denote the weight filtration resp. the Hodge filtration on Borel–Moore homology [28]. (The upper row is exact thanks to localization for higher Chow groups [4], [5], [21]. The lower row is exact because the category of polarizable pure Hodge structures is semisimple [28]. For the cycle class map from higher Chow groups into Borel–Moore homology, cf. [31, Section 4.]) The Grassmannian G has trivial Chow groups. Using the fact that the Hodge conjecture is true for the threefold X, this implies that the cycle class map induces isomorphisms
\[A^i(V) \xrightarrow{\cong} W^{-2i}H^{2i}(V, \mathbb{Q}), \]
and the higher cycle class map induces a surjection
\[A_i(V, 1) \to W^{-1-2i}H_{2i-1}(V, \mathbb{Q}) \cap F_{1-2i}. \]
(These two facts together can be paraphrased by saying that V satisfies a variant\(^1\) of the “strong property” of Totaro’s [31, Section 4.]) Using theorem 3.3 plus the corresponding property of cohomology, this implies that U has the same property (i.e., U satisfies the strong property).

\(^1\)It is a variant, because in [31] only the weight filtration and not the Hodge filtration is taken into account. This works fine for the linear varieties considered in [31], but not for the varieties U, V under consideration here.
For any i, there is a commutative diagram with exact rows
\[
\begin{array}{cccccc}
\to & A_i(U, 1) & \to & A_i(D) & \to & A_i(M) & \to & A_i(U) \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & \\
W^{-2i}H_{2i-1}(U, \mathbb{Q}) \cap F^{-i} & \to & H_{2i}(D, \mathbb{Q}) \cap F^{-i} & \to & H_{2i}(M, \mathbb{Q}) & \to & W^{-2i}H_{2i}(U, \mathbb{Q})
\end{array}
\]
By what we have just observed (the strong property for U), the left vertical arrow is a surjection and the right vertical arrow is an isomorphism. A quick diagram chase then reveals that pushforward induces a surjection
\[
(6) \quad i_* : \ A_i^{\hom}(D) \to A_i^{\hom}(M) \quad \forall i .
\]
Next, since $f_X : D \to X$ is a \mathbb{P}^2-fibration, theorem 3.3 ensures that there are isomorphisms
\[
\Phi_* := \sum_{k=0}^2 h^{2-k} \circ (f_X)^*: \bigoplus_{k=0}^2 A_i^{\hom}(X) \xrightarrow{\cong} A_i^{\hom}(D) ,
\]
\[
\Psi_* := \sum_{k=0}^2 (f_X)_* \circ h^k: \ A_i^{\hom}(D) \xrightarrow{\cong} \bigoplus_{k=0}^2 A_i^{\hom}(X) .
\]
We write
\[
A_i^{\hom}(D) = V_0 \oplus V_1 \oplus V_2
\]
\[
(7) \quad := (\Psi^*)^{-1}A_i^{\hom}(X) \oplus (\Psi^*)^{-1}A_{i-1}^{\hom}(X) \oplus (\Psi^*)^{-1}A_{i-2}^{\hom}(X) .
\]
To prove the lemma, it remains to understand the pushforward map (6). Precisely, we will show that one summand of the decomposition (7) already surjects onto $A_i^{\hom}(M)$:
\[
\text{Im}(V_0 \oplus V_1 \xrightarrow{i_*} A_i^{\hom}(M)) \subset \text{Im}(V_2 \xrightarrow{i_*} A_i^{\hom}(M)) \quad \text{for all } i .
\]
To see this, we observe that there is a commutative diagram of complexes
\[
\begin{array}{ccccccc}
z_i(D, \ast) & \to & z_i(M, \ast) & \to & z_i(U, \ast) \\
\downarrow & & \downarrow & & \downarrow & \\
z_i(X, \ast) & \to & z_i(G(2, 5), \ast) & \to & z_i(V, \ast)
\end{array}
\]
(where the vertical arrows are proper pushforward maps). This gives rise to a commutative diagram with long exact rows
\[
\begin{array}{cccccc}
\to & A_i(U, 1) & \delta' & \to & A_i(D) & \to & A_i(M) & \to \\
\downarrow & (f_{U^*})_* & & \downarrow & (f_X)_* & & \downarrow & f_* & \\
\to & A_i(V, 1) & \delta' & \to & A_i(X) & \to & A_i(G(2, 5)) & \to
\end{array}
\]
Let us now assume $b \in A_i^{\hom}(D)$ lies in the summand V_0 of the decomposition (7). Then $(f_X)_*(b)$ is in $A_i^{\hom}(X)$. Since $A_i^{\hom}(G(2, 5)) = 0$, this means that $(f_X)_*(b)$ is in the image of the map δ', say $(f_X)_*(b) = \delta'(c')$. In view of theorem 3.3, the element $c' \in A_i(V, 1)$ comes from an element $c \in A_i(U, 1)$ lying in the direct summand (isomorphic to) $A_i(V, 1)$. Using sublemma 4.4 below, this means that there is equality
\[
\delta(c) = b - b_2 \quad \text{in } A_i(D) ,
\]
for some \(b_2 \in A_i(D) \) lying in the summand (isomorphic to) \(A_{i-2}(X) \). It follows that
\[
i_*(b) = i_*(b_2) \in \text{Im} \left(A_{i-2}(X) \to A_i(D) \to A_i(M) \right).
\]

As \(i_*(b_2) = i_*(b) \) is homologically trivial, the surjection (6) above shows that we may suppose \(b_2 \) is homologically trivial, and so we have found \(b_2 \) lying in the summand denoted \(V_2 \) (isomorphic to \(A_{i-2}^{\text{hom}}(X) \)). This shows that
\[
i_*(b) \in \text{Im} \left(A_{i-2}^{\text{hom}}(X) \to A_i(D) \to A_i(M) \right) =: \text{Im}(V_2 \to A_i(M)).
\]

Let us next assume that \(b \in A_i^{\text{hom}}(D) \) lies in the summand \(V_1 \) of the decomposition (7). The commutative diagram of complexes up to quasi–isomorphism
\[
z_i(D, *) \to z_i(M, *) \to z_i(U, *) \downarrow h \downarrow h \downarrow h
\]
\[
z_{i-1}(D, *) \to z_{i-1}(M, *) \to z_{i-1}(U, *) \downarrow \downarrow \downarrow \downarrow
\]
\[
z_{i-1}(X, *) \to z_{i-1}(G(2, 5), *) \to z_{i-1}(V, *)
\]
gives rise to a commutative diagram with exact rows
\[
\begin{array}{cccc}
A_i(U, 1) & \delta & A_i(D) & \to A_i(M) & \to \\
\downarrow (f|_U)_* \text{oh} & & \downarrow (f_X)_* \text{oh} & & \downarrow f_* \text{oh} \\
A_{i-1}(V, 1) & \to A_{i-1}(X) & \to A_{i-1}(G(2, 5)) & \\
\end{array}
\]

Reasoning just as above, we can find \(c \in A_i(U, 1) \) lying in the summand (isomorphic to) \(A_{i-1}(V, 1) \) such that
\[
\delta(c) = b - b_2 \quad \text{in } A_i(D),
\]
where \(b_2 \in A_i(D) \) is in the summand (isomorphic to) \(A_{i-2}(X) \). It follows once more that
\[
i_*(b) = i_*(b_2) \in \text{Im} \left(A_{i-2}(X) \to A_i(D) \to A_i(M) \right),
\]
and (using the surjectivity (6)) that
\[
i_*(b) \in \text{Im} \left(A_{i-2}^{\text{hom}}(X) \to A_i(D) \to A_i(M) \right) =: \text{Im}(V_2 \to A_i(M)).
\]

We have now proven the inclusion (8).

Combining (6), (8) and theorem 3.3(ii), we see that there is a surjection
\[
A_{i-2}^{\text{hom}}(X) \to A_i^{\text{hom}}(M),
\]
which is given by \(i_*(f_X)^* \). This proves the lemma.

In the proof of lemma 4.3 we have used the following sublemma:
Sublemma 4.4. Given \(i \in \mathbb{Z} \), let
\[
\Psi_*: \quad A_i(D) = \bigoplus_{k=0}^2 A_{i-k}(X), \quad \Psi_*: \quad A_i(U, 1) = \bigoplus_{k=0}^1 A_{i-k}(V, 1)
\]
be the decompositions of theorem 3.3. Let \(\delta: A_i(U, 1) \to A_i(D) \) be the boundary map of the localization exact sequence for the inclusion \(D \subset M \). Then
\[
\delta(A_i(V, 1)) \subset A_i(X) \oplus A_{i-2}(X),
\]
\[
\delta(A_{i-1}(V, 1)) \subset A_{i-1}(X) \oplus A_{i-2}(X).
\]

Proof. For the first inclusion, we consider the commutative diagram (10). In view of theorem 3.3, the direct summand of \(A_i(U, 1) \) isomorphic to \(A_i(V, 1) \) is exactly the kernel of the map \((f|_U)_* \circ h \). As such, the image under \(\delta \) is contained in
\[
\ker \left(A_i(D) \xrightarrow{(f|_U)_* \circ h} A_{i-1}(X) \right).
\]
Again applying theorem 3.3, this kernel coincides with the two summands isomorphic to \(A_i(X) \) resp. to \(A_{i-2}(X) \), as claimed.

The second inclusion is proven similarly, reasoning in the diagram (9).

Lemma 4.5. Set–up as above. There is equality
\[
D = \lambda h^2 + h \cdot f^*(d_1) + f^*(d_2) \quad \text{in} \quad A^2(M),
\]
for some non–zero \(\lambda \in \mathbb{Q} \) and some \(d_i \in A^i(G(2, 5)), \ i = 1, 2 \).

Proof. Let us consider the restriction \(h^2|_U \) of \(h^2 \in A^2(M) \) to the open \(U := M \setminus D \). Let \(f_U: U \to V \) be the restriction of the morphism \(f \), where \(V := G(2, 5) \setminus X \). As we have seen, \(f_U \) is a \(\mathbb{P}^1 \)-fibration. It thus follows from theorem 3.3 that
\[
h^2|_U = h \cdot (f_U)^*(c_1) + (f_U)^*(c_2) \quad \text{in} \quad A^2(U),
\]
for some \(c_i \in A^i(V), \ i = 1, 2 \). Let \(\bar{c}_i \in A^i(G(2, 5)) \) be elements such that \(\bar{c}_i|_U = c_i \) for \(i = 1, 2 \). The localization exact sequence (plus the fact that \(D \) is irreducible of codimension 2 in \(M \)) then implies that
\[
h^2 = h \cdot f^*(\bar{c}_1) + f^*(\bar{c}_2) + \mu D \quad \text{in} \quad A^2(M),
\]
for some \(\mu \in \mathbb{Q} \).

Let us assume, for a moment, that \(\mu = 0 \). Then relation (11) would imply in particular that
\[
h^2|_D = \left(h \cdot f^*(\bar{c}_1) + f^*(\bar{c}_2) \right)|_D \quad \text{in} \quad A^2(D).
\]
But this is absurd, for the right hand side maps to 0 under pushforward \((f_X)_* \), whereas the left hand side maps to a non–zero multiple of \([X] \in A_3(X) \) under pushforward \((f_X)_* \). It follows that \(\mu \neq 0 \).

Relation (11) proves the lemma; it suffices to define \(\lambda := 1/\mu \) and \(d_i := \lambda \bar{c}_i \in A^i(G(2, 5)) \), \(i = 1, 2 \).
Armed with these lemmas, we are now ready to prove the claim\(^\text{[4.2]}\) (and hence close the proof of the theorem). Let \(d \in \mathbb{Z}\) be the non–zero integer such that \((f_X)_*(h^d) = d[X]\) in \(A_3(X)\). We define correspondences \(\Gamma_1, \Xi_1\) as follows:

\[
\Gamma_1 := \Gamma_i \circ i^! \Gamma_f \quad \in \quad A^5(X \times M),
\]

\[
\Xi_1 := \frac{1}{d\lambda} i^! \Gamma_1 = \frac{1}{d\lambda} \Gamma_f \circ i^! \Gamma_i \quad \in \quad A^5(M \times X)
\]

(where \(\lambda\) is the non–zero constant of lemma\(^\text{[4.5]}\).

Let us show these correspondences \(\Gamma_1, \Xi_1\) verify the relations \((4)\). By construction, the composition \(\Xi_1 \circ \Gamma_1\) acts on Chow groups in the following way:

\[
(\Xi_1 \circ \Gamma_1)_* : \quad A_i(X) \xrightarrow{(f_X)_*} A_{i+2}(D) \xrightarrow{i^*} A_{i+2}(M) \xrightarrow{i^!} A_i(D) \xrightarrow{(f_X)_*} A_i(X)
\]

Thanks to lemma\(^\text{[4.3]}\) the map

\[
\frac{1}{d\lambda} i^* i_* : \quad A_{i+2}(D) \to A_i(D)
\]

is the same as intersecting with

\[
\frac{1}{d} \left(h^2 + \frac{1}{\lambda} (f_X)^*(d_1|X) : h + \frac{1}{\lambda} (f_X)^*(d_2|X) \right) \in A^2(D).
\]

In particular, if \(b \in A_i(X)\) then

\[
\frac{1}{d\lambda} i^* i_* (f_X)^*(b) = \frac{1}{d} \left(h^2 \circ (f_X)^*(b) + \frac{1}{\lambda} h \circ (f_X)^*(b \cdot d_1|X) + \frac{1}{\lambda} (f_X)^*(b \cdot d_2|X) \right) \quad \text{in} \quad A_i(D).
\]

But then, it follows that

\[
(f_X)_* \frac{1}{d\lambda} i^* i_* (f_X)^*(b) = \frac{1}{d} (f_X)_* \left(h^2 \circ (f_X)^*(b) + \frac{1}{\lambda} h \circ (f_X)^*(b \cdot d_1|X) + \frac{1}{\lambda} (f_X)^*(b \cdot d_2|X) \right)
\]

\[
= \frac{1}{d} (f_X)_* (h^2 \circ (f_X)^*(b))
\]

\[
= \frac{1}{d} (f_X)_* (h^2) \cdot b = b \quad \text{in} \quad A_i(X).
\]

That is, \(\Xi_1 \circ \Gamma_1\) acts as the identity on \(A_i(X)\), which proves the first half of the claimed result\(^\text{[4]}\).

It remains to prove the second half of \((4)\). The composition \(\Gamma_1 \circ \Xi_1\) acts on Chow groups in the following way:

\[
(\Gamma_1 \circ \Xi_1)_* : \quad A_{i,b}^\text{hom}(M) \xrightarrow{i^!} A_{i-2}^\text{hom}(D) \xrightarrow{(f_X)_*} A_{i-2}^\text{hom}(X) \xrightarrow{i^*} A_i^\text{hom}(D) \xrightarrow{i_*} A_i^\text{hom}(M).
\]

Let \(a \in A_i^\text{hom}(M)\). In view of lemma\(^\text{[4.3]}\) we may suppose \(a = i_*(f_X)^*(b)\), for some \(b \in A_{i-2}^\text{hom}(X)\). But we have just checked that \((\Xi_1 \circ \Gamma_1)_*(b) = b\) for any \(b \in A_{i-2}(X)\), which means that

\[
(f_X)_* \frac{1}{d\lambda} i^* (a) = (f_X)_* \frac{1}{d\lambda} i^* i_* (f_X)^*(b) = b \quad \text{in} \quad A_{i-2}^\text{hom}(X).
\]
Applying $i_*(f_X)^*$ on both sides, we conclude that
\[
(\Gamma_1 \circ \Xi_1)_*(a) = i_*(f_X)^*(f_X)_* \frac{1}{d\lambda} i^* i_*(f_X)^*(b) = i_*(f_X)^* b = a \quad \text{in } A^i_{\hom}(M),
\]
i.e., $\Gamma_1 \circ \Xi_1$ acts as the identity on $A^i_{\hom}(M)$ as claimed.

We have now established the equalities (4), and so we have proven the first half of claim 4.2. The second half of claim 4.2 (i.e., the existence of the isomorphism Γ_2) is proven by the same argument, the only difference being that X and $G(2,5)$ should be replaced by Y resp. $G(3,5)$. \hfill \square

Remark 4.6. It would be interesting to refine theorem 4.1 to an isomorphism with \mathbb{Z}–coefficients. Is it true that there are isomorphisms
\[
A^i(X)_{\mathbb{Z}} \xrightarrow{\cong} A^i(Y)_{\mathbb{Z}} \quad \forall i
\]
of Chow groups with \mathbb{Z}–coefficients?

The problem, in proving this, is that the fibration result (theorem 3.3) is a priori only valid for (higher) Chow groups with rational coefficients.

Remark 4.7. It would also be interesting to prove theorem 4.1 for a dual pair (X,Y) of Calabi–Yau threefolds in the family \mathcal{X}_{25} of [8], [27]. In the absence of a nice diagram like (3) linking X and Y, this seems considerably more difficult than theorem 4.1.

5. A COROLLARY

Corollary 5.1. Let X, Y be the Calabi–Yau threefolds constructed as in [17]. Let M be any smooth projective variety. Then there are isomorphisms
\[
N^j H^i(X \times M, \mathbb{Q}) \cong N^j H^i(Y \times M, \mathbb{Q}) \quad \text{for all } i, j.
\]
(Here, N^* denotes the coniveau filtration [5].)

Proof. Theorem 4.1 implies there is an isomorphism of Chow motives $h(X \times M) \cong h(Y \times M)$. As the cohomology and the coniveau filtration only depend on the motive [2], [32], this proves the corollary. \hfill \square

Remark 5.2. It is worth noting that for any derived equivalent threefolds X, Y, there are isomorphisms
\[
N^j H^i(X, \mathbb{Q}) \cong N^j H^i(Y, \mathbb{Q}) \quad \text{for all } i, j;
\]
this is proven in [1].

Acknowledgements. This note was written during a stay at the Schiltigheim Math Research Institute. Thanks to its director, Mrs. Ishitani, for running the institute with iron hands gloved in velvet.
REFERENCES

[1] J. Achter, S. Casalaina–Martin and Ch. Vial, Derived equivalent threefolds, algebraic representatives, and the coniveau filtration, arXiv:1704.01902.
[2] D. Arapura and S. Kang, Functoriality of the coniveau filtration, Canad. Math. Bull. 50 no. 2 (2007), 161—171.
[3] S. Bloch, Lectures on algebraic cycles, Duke Univ. Press Durham 1980.
[4] S. Bloch, Algebraic cycles and higher K–theory, Advances in Math. vol. 61 (1986), 267—304.
[5] S. Bloch, The moving lemma for higher Chow groups, J. Alg. Geom. 3 (1994), 537—568.
[6] S. Bloch and A. Ogus, Gersten’s conjecture and the homology of schemes, Ann. Sci. Ecole Norm. Sup. 4 (1974), 181—202.
[7] L. Borisov, Class of the affine line is a zero divisor in the Grothendieck ring, arXiv:1412.6194.
[8] L. Borisov, A. Căldăraru and A. Perry, Intersections of two Grassmannians in \mathbb{P}^n, arXiv:1707.00534.
[9] E. Friedlander, A. Suslin and V. Voevodsky, Cycles, transfers and motivic homology theories, Annals of Mathematics Studies Vol. 143, Princeton University Press, Princeton 2000.
[10] B. Hassett and K.–W. Lai, Cremona transformations and derived equivalences of $K3$ surfaces, arXiv:1612.07751.
[11] K. Honigs, Derived equivalence, Albanese varieties, and the zeta functions of 3-dimensional varieties (with an appendix by J. Achter, S. Casalaina–Martin, K. Honigs and Ch. Vial), Proc. Amer. Math. Soc. ,
[12] D. Huybrechts, Motives of derived equivalent $K3$ surfaces, Abhandlungen Math. Sem. Univ. Hamburg.
[13] A. Ito, M. Miura, S. Okawa and K. Ueda, The class of the affine line is a zero divisor in the Grothendieck ring: via G_2–Grassmannians, arXiv:1606.04210.
[14] A. Ito, M. Miura, S. Okawa and K. Ueda, Derived equivalence and Grothendieck ring of varieties: the case of $K3$ surfaces of degree 12 and abelian varieties, arXiv:1612.08497.
[15] J. Iyer and S. Müller–Stach, Chow–Künneth decomposition for some moduli spaces, Documenta Math. 14 (2009), 1—18.
[16] G. Kapustka, M. Kapustka and R. Moschetti, Equivalence of $K3$ surfaces from Verra threefolds, arXiv:1712.06958.
[17] M. Kapustka and M. Rampazzo, Torelli problem for Calabi–Yau threefolds with GLSM description, arXiv:1711.10233.
[18] A. Kuznetsov, Derived equivalence of Ito–Miura–Okawa–Ueda Calabi–Yau 3-folds, Journal of the Math. Soc. Japan,
[19] A. Kuznetsov and E. Shinder, Grothendieck ring of varieties, D– and L–equivalence, and families of quadrics, arXiv:1612.07193.
[20] R. Laterveer, On the motive of Ito–Miura–Okawa–Ueda Calabi–Yau threefolds, submitted,
[21] M. Levine, Techniques of localization in the theory of algebraic cycles, J. Alg. Geom. 10 (2001), 299—363.
[22] L. Manivel, Double spinor Calabi–Yau varieties, arXiv:1709.07736.
[23] N. Martin, The class of the affine line is a zero divisor in the Grothendieck ring: an improvement, Comptes Rendus Acad. Sci. Paris 354 (9) (2016), 936—939.
[24] C. Mazza, V. Voevodsky and C. Weibel, Lecture notes on motivic cohomology, Clay Mathematics Monographs vol. 2, American Math. Soc. 2011,
[25] J. Murre, J. Nagel and C. Peters, Lectures on the theory of pure motives, Amer. Math. Soc. University Lecture Series 61, Providence 2013,
[26] D. Orlov, Derived categories of coherent sheaves and motives, Uspekhi Mat. Nauk, 60 no. 6 (2005), 231—232, translation in Russian Math. Surveys 60 no. 6 (2005), 1242—1244.
[27] J. Ottem and J. Rennemo, A counterexample to the birational Torelli problem for Calabi–Yau threefolds, arXiv:1706.09952.
[28] C. Peters and J. Steenbrink, Mixed Hodge structures, Springer–Verlag Ergebnisse der Mathematik, Berlin Heidelberg New York 2008.
[29] D. Quillen, Higher algebraic K–theory I. In: Algebraic K-theory, I: Higher K-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), Springer Lecture Notes in Mathematics vol. 341, pp. 85—147, Springer Berlin 1973,
[30] T. Scholl, Classical motives, in: Motives (U. Jannsen et alii, eds.), Proceedings of Symposia in Pure Mathematics Vol. 55 (1994), Part 1,
[31] B. Totaro, Chow groups, Chow cohomology, and linear varieties, Forum of Mathematics, Sigma (2014), vol. 1, e1,
[32] Ch. Vial, Niveau and coniveau filtrations on cohomology groups and Chow groups, Proceedings of the LMS 106(2) (2013), 410—444,
[33] Ch. Vial, Algebraic cycles and fibrations, Documenta Math. 18 (2013), 1521—1553,
[34] Ch. Vial, Remarks on motives of abelian type, Tohoku Math. J. 69 (2017), 195—220.

Institut de Recherche Mathématique Avancée, CNRS – Université de Strasbourg, 7 Rue René Descartes, 67084 Strasbourg CEDEX, FRANCE.

E-mail address: robert.laterveer@math.unistra.fr