Access to primary energy sources - the basis of national energy security

Jan Szlązak and Rafal A Szlązak
DG SCORPION, Fabryczna 15, 40-611 Katowice, Poland
dg.scorpion@dgscorpion.pl

Abstract. National energy security is of fundamental importance for economic development of a country. To ensure such safety energy raw material, also called primary energy sources, are necessary. Currently in Poland primary energy sources include mainly fossil fuels, such as hard coal, brown coal, natural gas and crude oil. Other sources, e.g. renewable energy sources account for c. 15% in the energy mix. Primary energy sources are used to produce mainly electricity, which is considered as the cleanest form of energy. Poland does not have, unfortunately, sufficient energy sources and is forced to import some of them, mainly natural gas and crude oil. The article presents an insightful analysis of energy raw material reserves possessed by Poland and their structure taking account of the requirements applicable in the European Union, in particular, those related to environmental protection. The article also describes demand for electricity now and in the perspective of 2030. Primary energy sources necessary for its production have also been given. The article also includes the possibilities for the use of renewable energy sources in Poland, however, climatic conditions there are not particularly favourable to it. All the issues addressed in the article are summed up and ended with conclusions.

1. Introduction
Energy security of countries has always been a priority for each government. Since the beginning of armed conflicts in North Africa and the Middle East, in countries with rich deposits of crude oil and natural gas - the issue of energy security of many countries, including Poland, makes the front pages of newspapers.

Energy security is not clearly defined. In the in the Energy Law Act of 10 April 1997 [1], the following definition, which is also used in this article, is given:
‘National energy security – the condition of the economy which enables full coverage of the customer’s ongoing and prospective demand for fuels and energy in a technically and economically justified manner, with the observance of the environment protection requirements’.

Demand for final energy and quantities of primary energy sources necessary to produce it are published in a government document entitled: ‘The assumptions of the Polish energy policy until...’.

The current document sets out the perspective until 2030 and demand for energy raw materials even until 2050 (draft of policy assumptions ...) [2].

The production process of final energy, which is electricity, is schematically presented in figure 1. Electricity is considered as the cleanest energy and the most refined. Therefore, economic development of a country is determined on the basis of per capita energy consumption.

In the further parts of the article the said primary energy source will be discussed. Their usefulness for further development of the Polish economy will be assessed.
2. **Fossil sources of primary energy and their location in the territory of Poland**

The distribution of hard coal and brown coal deposits in Poland is shown in figure 2. The following colours mean respectively:

- black - hard coal,
- brown - brown coal.

![Figure 2. Deposits of hard coal and brown coal in Poland.](image_url)

Table 1 presents the balance reserves of the said energy raw materials, the number of the developed deposits and production as at 31 December 2015. The data presented in table 1 show that the balance reserves of hard coal increased by 4.26 billion Mg, despite its production of c. 72 million Mg in 2015. The increase of reserves results, however, mainly from the reassessment of coal reserves based on new criteria.

The reserves of other raw materials do not show significant changes, except for the changes resulting from production (gas, crude oil). It is worth noting that the gas balance includes also methane extracted from hard coal deposits, which until now has not been taken into account.
2.1. Hard coal

This raw material is the main source of primary energy used for electricity production. Over 50% of electricity has been produced using coal. Of all the energy sources at the disposal of the Polish energy industry, only the resources of hard coal and brown coal are sufficient. Therefore, the Polish energy industry is based mainly on those materials.

However, the reserves of those materials are determined in years. Hard coal reserves in Poland are shown in table 2 [4].

Table 1. Summary of geological balance reserves and production of important fossil fuels in Poland in 2015 - in million metric tons; natural gas and methane in billion metric tons; crude oil and gas - deposits extracted (Source: own study based on data of Polish Geological Institute).

Fossil fuel	Number of deposits	Balance reserves	Production						
	total developed quantity	situation on: 31/12/2015 including developed reserves	+ increase - decrease volume	2014 =100%					
ENERGY FOSSIL FUELS:									
- gas	352	236	101	213.59	138.09	-0.73	5.53	99.64	
- liquid	86	64	96	22.82	22.26	-0.71	0.90	97.83	
- solid	247	60	100	79.736	22.525	75.75	+426.55	128.20	98.64
Natural gas	292	207	100	122.82	101.68	-4.70	5.21	99.05	
Coal deposit methane	60	29	104	90.77	36.41	+3.97	0.32	110.34	
Crude oil	86	64	96	22.82	22.26	-0.71	0.90	97.83	
l	2	3	4	5	6	7	8	9	
Brown coal	91	9	100	23.516	1418.70	+5.60	63.13	98.64	
Hard coal	156	51	100	56.220	41.07	+426.05	65.07	98.64	

Taking account of operable reserves of 3.390 million Mg and current production of c. 70 million Mg annually - the reserves are sufficient to meet c. 48 years of production, i.e. to c. 2070, if decreased production in the final stage of coal deposits mining is taken into account.

Hard coal reserves in Poland compared to selected countries are shown in table 3 [5].

Table 2. Hard coal reserves in operating deposits as at 01/01/2015 (million Mg).

Balance reserves	Industrial reserves	Operable reserves	
During concession term	14.872	3.230	1.813
For entire deposit	20.282	6.023	3.390

Table 3. World hard coal production between 2008 – 2016 (in thousand Mg)

Source: GUS (Central Statistical Office).

COUNTRY	2008	2009	2010	2011	2012	2013*	2014	2015	2016
World	5.688.416	5.789.687	5.877.025	6.235.943	6.454.799	7.240.791	7.212.081		
Australia	431.004	426.996	449.004	443.700	488.868	542.832	571.332	571.284	
China	2.585.664	2.983.992							
India	483.468	521.376		523.488	560.100	561.276	600.972	631.788	
Indonesia	483.468	521.376							
Canada a	32.844	27.960	33.708	34.620	35.376	38.280	35.676		
Kazakhstan	181.572	209.340							
Poland b	84.240	77.916	76.596	76.212	79.524	76.452	73.008	72.228	70.584
South Africa	252.252	249.120	254.160	252.672	258.192	253.704			
Russia	245.568	230.316	245.088	257.328	276.504	274.800	286.428	298.788	311.688
United States c	1.063.044	975.156	983.724	993.936	922.440	893.436	907.224	813.720	670.104
Ukraine	59.268	54.816	54.444	61.752	64.692	63.312	44.688	28.224	
Vietnam	39.600	43.752	44.676	44.496	42.096				

a including sub-bituminous coal, b Excluding briquettes, sub-bituminous coal and similar solid fuels, c including brown coal

Not all countries make their recent commercial data available, therefore, there is no information in table 3 about production of such big players as China, Indonesia and Kazakhstan. However, the USA,
Russia and Australia publish their production. Global hard coal production in 2014 was over 7.2 billion Mg. Poland with production of c. 70 million Mg in 2016 is no longer a coal power. Table 3 has been included mainly as an indication from which country Poland could import coal after its own hard coal deposits have been depleted.

Table 4 shows global hard coal reserves broken down by continents. They amount to c. 411.3 billion Mg. The USA has the largest share in those reserves (108.95 billion Mg).

Table 4. Summary of hard coal balance reserves on individual continents.

No.	Continent	Reserves (million Mg)	Largest share in continent reserves
1.	Europe and Eurasia	162.042	Russia (49.088)
2.	Asia and Oceania	155.809	China (62.200)
3.	South and Central America	6.964	Columbia (6.434)
4.	North America	113.281	USA (108.950)
5.	Africa and Middle East	33.225	South Africa (30.408)
6.	WORLD TOTAL	411.321	USA (108.950)

2.2. Brown coal

Global production of brown coal in 2014 amounted to 810,467 thousand Mg. The largest producer of brown coal is Germany, where in 2015 production amounted to 178,068 thousand Mg. Countries with similar brown coal production of between 63 million Mg and 73 million Mg include: USA, Turkey, Poland and Russia. Brown coal production data between 2008 - 2015 are presented in table 5 [5].

A subtracting in Poland brown coal is usually transported directly to a power plant. Electricity production based on brown coal accounts for c. 31% of total production.

Balance reserves of brown coal in Poland are estimated at c. 23 billion Mg. Reserves broken down by exploration and development categories are shown in table 6. A substantial part of balance reserves (c. 3.690 million Mg) is deposited in so-called Poznań fault and cannot be mined due to protests of the local population.

Table 5. World’s brown coal production between 2008 - 2015 in thousand Mg.

Source: GUS (Central Statistical Office).

COUNTRY	2008	2009	2010	2011	2012	2013	2014	2015
World	990.528	856.142	840.249	890.675	887.187	834.669	810.467	.
Australia	69.907	72.037	72.090	71.000	71.350	62.845	60.661	.
Bosnia	5.518	5.628	5.618	6.289	5.836	5.711	6.110	.
Brazil	2.229	2.049	2.095	2.136	3.170	3.645	.	.
Bulgaria	28.740	27.180	29.304	37.080	33.420	28.620	.	35.856
Czech Republic	47.532	45.408	43.656	46.620	43.536	40.392	38.220	38.100
Estonia	16.044	14.928	17.892	18.732	18.420	20.508	20.436	19.716
Greece	62.460	61.824	53.628	56.796	61.740	52.572	48.024	45.096
India	32.124	35.724	37.733	40.380	46.524	44.760	46.164	44.448
Indonesia	-	-	-	-	-	-	-	-
Canada	.	34.908	34.980	34.188	32.496	31.188	30.624	32.076
Kazakhstan	4.728	.	.	.	6.724	8.209	7.310	6.686
Macedonia	5.903	7.349	5.723	6.938	5.936	6.330	6.330	.
Germany	175.308	169.680	169.404	176.508	185.436	182.700	178.512	178.068
Poland	59.668	57.108	56.510	62.841	64.280	65.849	63.877	63.060
Russia	80.496	68.136	76.620	76.524	77.832	72.984	69.408	73.248
Romania	31.956	28.512	28.668	33.396	32.088	22.896	.	24.204
Serbia	38.520	38.280	37.800	40.812	38.028	40.092	29.940	37.656
United States	68.659	65.751	70.970	73.574	71.602	70.061	72.110	.
Thailand	17.976	16.356	.	21.324	18.072	18.348	17.988	.
Turkey	86.076	82.164	74.760	79.020	74.652	63.048	66.936	51.444
Hungary	9.404	8.986	9.113	9.555	9.290	9.558	.	.

a including sub-bituminous coal
Table 6. Brown coal - million Mg (Source: own study based on data of Polish Geological Institute).

Item	Number of deposits	Geological reserves	Industrial reserves			
		A+B+C1	C2+D			
TOTAL RESERVES	91	23,516.19	6,067.91	17,448.28	3,522.44	1,122,670
including - developed deposits of resources						
Deposits of operating plants	9	1,418.70	1,406.82	11.89	48.31	1,112.23
Total	74	22,081.18	4,645.43	17,435.75	3,447.62	16.83
1. Deposits explored in detail	35	5,838.65	4,645.43	1,193.23	872.64	16.83
2. Deposits explored initially *	39	16,242.52	0.00	16,242.52	2,574.98	-
including - undeveloped deposits of resources						
Production stopped	8	16.30	15.66	0.64	26.51	-

* including resources of deposits in so-called Poznań fault of 3,690 million Mg

Developed balance reserves amount to 1.418 million Mg. This accounts for only 6% of all balance reserves. Coal from those reserves is mined by 5 mining plants, i.e.: Belchatów, Turów, Adamów, Konin and Sieniawa [3].

Global reserves of brown coal are estimated according to World Energy Council (WEC) at c. 195 bn Mg. In Poland only developed deposits can be considered for mining, i.e. c. 1,418 million Mg of reserves, which at the current average coal production of about 60 million metric tons gives about 24 years. Therefore the Polish energy industry will be able to use brown coal until 2040 at the current production level.

After 2040 brown coal must be substituted by other fuels, e.g. nuclear energy. The same applies to hard coal after 2070.

2.3. Natural gas

Industrial reserves of natural gas in Poland are estimated at c. 54,913 million m³. Gas deposits can be found in the following regions of Poland: Baltic Sea, Carpathian Mountains, Lowlands and Foothills. Developed and undeveloped gas deposits amount to about 51 billion m³, including c. 3.9 billion m³ of gas in undeveloped deposits. The balance reserves of the developed deposits amount to c. 101 billion m³ of gas [3]. Details of natural gas reserves in Poland are presented in table 7.

Natural gas consumption in Poland in 2016 was about 15 billion m³. Therefore, if the balance reserves were used completely, they would last for seven years at the most. Natural gas production from domestic deposits is about 5.2 billion m³ [3]. In such a situation gas reserves would last for about 20 years. However, it is impossible to extract completely gas from the deposit, so the period of its exploitation will be definitely shorter. Natural gas extraction from individual deposits in 2015 is presented in table 8. The data presented in Table 8 show that the Lowland and Foothills deposits were exploited most intensively.

Generally, it can be stated that natural gas deposits in Poland are insufficient for the needs of the Polish economy. A lot of hope was put on shale gas, widely present in Poland - figure 3. Reserves of this gas, initially considered as considerable, shrunk as they were identified in detail [6]. Current reserves of this gas are estimated at 346 to 762 billion m³ (according to PIG).

Natural gas production in Poland compared to selected countries is presented in table 9. Global production in 2015 was 138,479 PJ. The largest share in this production had the USA (29,426 PJ) and Russia (24,386 PJ) [5]. To obtain approximate values expressed in billion m³, multiply the values in PJ by the conversion factor dependent on gas calorific value, i.e. from 36 to 42. Then production in the USA will be c. 1,059,336 billion m³, and production in Russia will be: 877,896 million m³ (Note! the lower value has been used).
Figure 3. Map of shale gas occurrence in Poland
(Source: http://www.gazownictwopolskie.pl/gaz-z-%C5%82upk%C3%B3w/polskie-perspektywy)

Table 7. Natural gas - million m3 (Source: own study based on data of Polish Geological Institute).

Item	Number of deposits	Recoverable resources	Industrial reserves			
	Total	A+B	C			
TOTAL RESERVES - total	292	122.820.02	75.746.96	47.073.06	2.220.70	54.913.68
from oil and condensate deposits	27.168.97	10.480.93	16.688.04	654.52	10.642.95	
from gas deposits	88.929.48	58.544.46	30.385.02	1.566.18	43.691.34	
from underground gas storage facilities	6.721.57	6.721.57	-	-	579.39	
including - developed deposits of resources						
Total-	207	101.679.10	69.965.50	31.713.60	663.04	51.006.78
Baltic Sea (off shore)	2	542.26	109.46	432.80	-	525.81
Carpathian Mountains	28	1.115.84	682.56	433.28	10.77	386.72
		115.25	96.83	18.42	1.04	3.73
		879.09	464.23	414.86	9.73	261.49
		121.50	121.50	-	-	121.50
Lowlands	94	68.444.57	50.381.47	18.063.10	650.00	41.460.02
		12.485.17	4.558.05	7.927.12	650.00	5.404.08
		49.874.93	39.738.95	10.135.98	-	36.055.94
		6.084.47	6.084.47	-	-	-
Foothills	83	31.576.43	18.792.01	12.784.42	2.27	8.634.23
		1.552.45	1.495.02	57.43	-	887.44
		29.508.38	16.781.39	12.726.98	2.27	728.890.00
		515.60	515.60	-	-	457.89
including - undeveloped deposits of resources						
Total-	53	20.775.83	5.755.85	15.019.98	1.421.68	3.889.11
		12.371.96	4.221.57	8.150.39	1.93	3.820.87
		8.403.87	1.534.28	6.869.59	1.419.75	68.24
Table 8. Natural gas production - million m³
(Source: own study based on data of Polish Geological Institute).

Item	Total	From documented			
	Total	balance reserves	C	off-balance	
Total	5,213.52	5,122.04	4,226.02	986.02	1.48
from gas deposits	4,455.91	4,455.29	3,705.87	749.42	0.62
from crude oil deposits	367.14	366.28	129.70	236.58	0.86
from condensate deposits	390.47	390.47	390.45	0.02	-
Baltic Sea (off shore)	18.24	18.24	14.69	3.55	-
from gas deposits	0.00	0.00	-	-	-
from crude oil deposits	18.24	18.24	14.69	3.55	-
from condensate deposits	0.00	0.00	-	-	-
Carpathian Mountains	32.84	31.99	27.06	4.93	0.85
from gas deposits	29.61	29.10	25.17	3.93	0.51
from crude oil deposits	5.23	3.89	1.89	1.00	0.34
from condensate deposits	0.00	0.00	-	-	-
Lowlands	3,697.13	3,696.61	3,212.92	483.69	0.52
from gas deposits	3,019.09	3,019.09	2,766.94	252.15	-
from crude oil deposits	287.59	287.07	55.53	231.54	0.52
from condensate deposits	390.45	390.45	390.45	-	-
Foothills	1,465.31	1,465.20	971.35	493.85	0.11
from gas deposits	1,407.21	1,407.10	913.76	493.34	0.11
from crude oil deposits	58.08	58.08	57.59	0.49	-
from condensate deposits	0.02	0.02	-	-	0.02

Table 9. World’s natural gas production between 2008 – 2015
(Source: GUS (Central Statistical Office).

COUNTRY	2008	2009	2010	2011	2012	2013	2014	2015
World	121,361	117,882	126,332	126,332	132,003	135,455	136,264	138,479
Algeria	3,433	3,299	3,348	3,348	3,374	3,206	3,266	3,257
Saudi Arabia	2,840	2,855	2,787	2,787	3,081	3,114	3,325	3,300
Argentina	1,821	1,729	1,645	1,645	1,589	1,507	1,513	1,554
Australia	1,698	1,722	2,069	2,069	2,123	2,426	2,462	2,594
Azerbaijan	634	635	651	651	691	715	753	762
Bangladesh	655	713	774	774	818	882	905	960
China	3,126	3,320	3,729	3,729	4,306	4,705	5,067	5,214
Egypt	2,366	2,359	2,159	2,159	2,056	2,099	2,146	1,955
Netherlands	2,786	2,624	2,951	2,951	2,672	2,873	2,333	1,776
India	1,223	1,792	1,999	1,999	1,551	1,351	1,279	1,235
Indonesia	2,991	3,120	3,480	3,480	3,132	3,105	3,056	2,952
Iran	5,025	5,408	5,662	5,662	6,154	6,169	6,873	7,237
Canada	6,746	6,298	6,160	6,160	6,033	6,064	6,400	6,378
Qatar	3,242	3,701	4,992	4,992	5,977	6,759	6,624	6,789
Kazakhstan	1,000	1,099	1,145	1,145	1,329	1,428	1,455	1,530
Libya	651	604	639	639	464	486	473	444
Malaysia	2,390	2,175	2,373	2,373	2,394	2,707	2,737	2,699
Mexico	1,757	1,787	1,981	1,981	1,897	1,883	1,734	1,627
Nigeria	1,206	882	1,237	1,237	1,566	1,412	1,612	1,660
Norway	4,053	4,219	4,429	4,429	4,688	4,447	4,419	4,773
Oman	1,057	1,095	1,106	1,106	1,219	1,317	1,260	1,298
Pakistan	1,231	1,270	1,255	1,255	1,262	1,234	1,224	1,291
Poland	172	171	172	172	182	178	173	171
Russia	24,879	22,071	25,128	25,128	25,158	26,204	24,083	24,386
United States	21,855	22,317	23,018	23,018	25,976	26,238	28,027	29,426
Thailand	1,071	998	1,150	1,150	1,219	1,321	1,348	1,276
Trinidad and Tobago	1,629	1,683	1,667	1,667	1,597	1,604	1,596	1,503
Turkmenistan	2,671	1,445	1,716	1,716	2,616	2,972	3,033	3,163
Ukraine	837	752	718	718	717	746	699	680
Uzbekistan	2,555	2,321	2,278	2,278	2,384	2,259	2,339	2,227
Venezuela	1,070	1,023	891	891	945	911	914	1,005
Great Britain	2,917	2,500	2,394	2,394	1,630	1,529	1,532	1,660
United Arab Emirates	1,959	1,904	1,933	1,933	2,046	2,057	2,042	2,214
2.4. Crude oil

Crude oil reserves in Poland are very small, therefore, this energy raw material is almost entirely imported, in particular, from Russia. Crude oil reserves in Poland are shown in table 10. As at 31 December 2015 balance reserves of crude oil totalled c. 23 million Mg, and industrial reserves were only c. 14 million Mg. This material is present together with natural gas in the following deposits: Baltic Sea (off shore), Carpathian Mountains, Lowlands and Foothills. The reserves in table 10 are shown as balance, off-balance and industrial ones, and developed and undeveloped, and deposits exploitation of which has stopped.

Crude oil production in the world and Poland between 2010 - 2015 is presented in table 11. The data in table 11 show that, similarly to natural gas production, the biggest crude oil producers in 2015 were: The USA – 640,699 thousand Mg, Russia – 501,857 thousand Mg. Poland with production of 894 thousand Mg occupies the last position in table 11 [5]. Refining capacities of the petrochemical industry in Poland are c. 21 million Mg per annum. The main consumers of crude oil in Poland are PKN ORLEN and LOTOS Gdańsk Refinery. Crude oil is supplied to those companies mainly through the ‘Przyjaźń’ pipeline and the Northern Port in Gdańsk. In the light of the presented figures it can be stated that Poland does not have crude oil as a raw material, which could ensure its energy security.

Table 10. Crude oil - thousand Mg
(Source: own study based on data of Polish Geological Institute).

Item	Number of deposits	Recoverable resources	Industrial reserves			
	Total	A+B	C			
TOTAL RESERVES - total	86	22,824.28	9,496.80	13,327.48	395.40	14,191.12
Crude oil	21,338.91	9,473.22	11,865.69		395.40	14,131.10
Oil condensate	1,485.37	23.58	1,461.79			60.02
Baltic Sea	4,654.27	1,059.10	3,595.17			
	4,654.27	1,059.10	3,595.17			4,518.44
Carpathian Mountains	547.18	441.18	106.00	6.55	47.35	
Lowlands	16,682.91	7,652.79	9,030.12	3.21	9,460.43	
	15,353.36	7,652.79	7,700.57	3.21	9,400.41	
Foothills	376.32	225.84	150.48		48.02	
	376.32	225.84	150.48		48.02	
TOTAL	507.03	108.29	398.74	329.53	116.50	
	363.03	89.29	273.74	329.53	116.50	
	144.00	19.00	125.00	-	-	
	391.10	108.29	282.81	-	116.50	
	247.10	89.29	157.81	-	116.50	
	144.00	19.00	125.00	-	-	
	115.93	115.93	329.53		-	
	115.93	115.93	329.53		-	
Carpathian Mountains	1.50	1.50	3.75	-		
	1.50	1.50	3.75	-		
Lowlands	50.49	5.02	45.47	1.43	0.38	
	44.75	5.02	39.73	1.43	0.38	
	5.74	-	5.74	-	-	
Foothills	4.58	4.58	50.93	-	-	
	4.58	4.58	50.93	-	-	

8
Table 11. World’s crude oil production between 2008 – 2015 in thousand Mg [4]
Source: GUS (Central Statistical Office).

COUNTRY	2008	2009	2010	2011	2012	2013	2014	2015
World incl:								
World	3.728,306	3.634,622	3.689,826	3.718,712	3.799,594	3.783,850	3.857,747	
Algeria	61.048	54.736	54.048	52.976	55.776	54.617	54.275	
Angola	93.790	85.582	84.588	79.670	83.932	83.820	81.349	86.807
Saudi Arabia	460.145	407.938	406.997	464.098	487.968	480.355	484.116	508.026
Argentina	32.352	31.138	30.690	29.047	28.766	26.996	26.954	27.194
Australia	23.742	23.032	23.729	20.585	20.778	17.262	18.145	16.457
Azerbaijan	44.026	50.539	51.035	45.487	42.985	43.084	41.880	41.311
Brazil	92.376	99.500	104.801	107.436	105.398	103.147	114.910	124.178
China	190.024	189.606	203.832	203.646	206.998	208.202	209.450	
Egypt	33.264	33.150	35.928	35.376	36.269	35.338		
Ecuador Equatorial Guinea	26.196	24.256	24.890	26.089	26.326	27.445	29.006	28.320
India	33.972	33.229	36.704	38.237	37.990	37.678	37.543	37.238
Indonesia	48.312	46.700	46.003	44.675	42.592	40.717	39.106	39.046
Iraq	.	114.761	116.971	130.330	145.357	146.275	152.795	172.141
Iran	202.368	176.638	175.976	180.684	189.846	177.575	154.794	156.510
Canada	126.588	125.634	133.879	141.761	153.042	163.595	175.207	178.612
Qatar	41.128	35.677	35.683	35.692	35.797	35.226	34.507	31.915
Kazakhstan	66.584	64.292	67.924	66.514
Columbia	30.136	34.556	40.468	47.140	.	.	.	
Kuwait	134.926	113.860	116.401	133.931	150.269	147.108	144.445	
Libya	83.368	70.968	71.584	.	70.015	47.728		
Malaysia	33.048	31.427	30.254	27.346	27.864	27.214		
Mexico	145.524	135.246	133.916	132.575	132.464	131.126	126.275	117.851
Nigeria	103.740	104.370	120.083	116.558	114.864	107.975	106.532	103.886
Norway	99.288	98.255	91.316	85.664	78.299	74.382	76.150	77.611
Oman	.	40.459	43.051	44.128	45.865	46.906	46.978	48.847
Poland*	755	687	686	618	678	961	949	894
Russia	471.426	489.450	505.327	509.441	495.199	498.563	500.476	501.857
United States	337.460	361.228	376.576	391.656	444.247	507.360	591.200	640.699
Sudan	23.098	23.738	23.104	22.632	5.079			
Syria	18.647	18.325	19.785	18.033	8.253			
Venezuela	163.288	149.347	144.752	147.446	146.644	145.348	139.924	138.888
Great Britain	65.497	62.820	58.046	48.571	42.053	38.456	37.475	42.826
United Arab Emirates	124.914	107.536	111.650	123.204	128.024	146.456	145.928	

* Petroleum oils and oils obtained from bituminous minerals, crude
3. Renewable energy sources (RES)
Renewable energy sources include water, sun, water, biomass and biogas energy. These sources can be converted into electricity. Renewable energy includes also thermal sources, which are present in small quantities in Poland. They are of insignificant importance for energy security.

The EU energy policy, which should be followed by Poland, provides for systematic increase of the share of renewable energy in the energy mix of the Member States. Installed power in the Polish energy industry from renewable energy sources between 2005 and 2016 is shown in table 12. The data presented in table 12 show that to 2016 included 8.4 GW from RES were installed [7]. The most energy was obtained during that period from wind (58%), water (16%), biomass (22%), biogas (4%) and sun (0.03%).

Table 12. Power installed in the Polish energy industry obtained from renewable energy sources between 2005 – 2016 (Source: Own study based on the Energy Regulatory Office (URE) data)

Year	biogas	biomass	solar power	wind power	water power	Total	increase y/y
2005	31.972	189.790		83.280	852.495	1.157.537	
2006	36.760	238.790		152.560	934.031	1.362.141	204.604
2007	45.699	255.390		287.909	934.779	1.523.777	161.636
2008	54.615	231.990		451.090	940.576	1.678.271	154.494
2009	70.888	252.490	0.001	724.657	945.210	1.993.246	314.975
2010	82.884	356.190	0.033	1.180.272	937.044	2.556.423	563.177
2011	103.487	409.680	1.125	1.616.361	951.390	3.082.043	525.620
2012	131.247	820.700	1.290	2.496.748	966.103	4.416.088	1.334.045
2013	162.241	986.873	1.901	3.389.541	970.128	5.510.684	1.094.596
2014	188.549	1.008.245	21.004	3.833.832	977.007	6.028.637	517.953
2015	212.497	1.122.670	71.031	4.582.036	981.799	6.970.033	941.396
2016	233.967	1.281.065	99.098	5.807.416	993.995	8.415.541	1.445.508

4. Nuclear Energy

4.1. Nuclear power throughout the world
The information material developed by the Nuclear Energy Department of the Ministry of Energy in March 2017 [8] describes 449 operating nuclear reactors in 30 countries. In 2016 7 new reactors were put into service. Next 60 blocks is under construction and over 160 are planned. As a result global energy production capacities in nuclear power plants increased by about 9 GWe and at the end of 2015 their total power reached 392.23 GWe. Electricity production in nuclear power plants also increased and in 2015 was 2,441 TWh. The share of nuclear energy in total electricity production has been at a similar level for four years, and in 2015 it increased by hefty 11.5%. Apart from reactors generating electricity, there are also 228 research reactors used for scientific and educational research.

Table 13 presents the number of reactors, installed power and electricity production in those reactors. After a short period of investment stagnation in the nuclear energy industry, the boom in the nuclear energy sector can be currently observed.
Table 13. Energy reactors and world’s electricity production in EJ [8].

Year	Number of reactors	Net installed power (GWe)	Energy production (TWh)	Share (%)
2008	439	371.56	2597	15.0
2009	437	370.7	2558	14.0
2010	441	375.28	2630	13.8
2011	435	368.92	2518	13.5
2012	437	373.26	2346	11.0
2013	434	371.79	2359	11.0
2014	438	376.34	2410	11.0
2015	441	382.86	2441	11.5
2016	448	391.23		
2017	449	392.23		

The number and power of active reactors in the nuclear energy sector is presented in figure 6. Decisions on the construction of new power units or new nuclear power plants are currently taken in developing countries, in particular in South-East Asia (China, India, South Korea). Electricity production in nuclear power plants is shown in figure 4 [8]. Noticeable decrease of production is made up in 2014 and 2015.

4.2. Nuclear power in Poland

After long discussions devoted to threats resulting from a potential breakdown of a nuclear power plant, social acceptance of construction of the first nuclear power plant has been obtained. Its opening is foreseen for 2026 and included in ‘The assumptions of the Polish energy policy until 2030’. Nuclear power was to gradually substitute coal in the energy mix. Time necessary to construct a nuclear power plant is estimated at about 15 years. Therefore, it is impossible to construct such a power plant before 2030, all the more so since public feeling is also changing against nuclear power. Meanwhile, domestic hard and brown coal deposits are running out and not later than in the years 2050 - 2070 [3] they will have to be substituted with other primary energy source or imported. Public concern is unjustified, because around the Polish borders nuclear power plant already exist. Therefore, any breakdown of those power plants threatens also Poland. The public should be therefore convinced of such solutions.

5. Production and consumption of electricity in Poland

In ‘The assumptions of the Polish energy policy’ [2] it is assumed that the installed power in the National Power System in 2020 should be around 44 GW. It means increase of installed power by 7 GW. However, in the same document the same amount of power is assumed to be phased out by 2020 due to its wear and necessary modernisation. It is estimated that in the following years 15 GW of new production capacities should be created, which seems to be a difficult task. Current and until 2050
demand for electricity shows that extension of power infrastructure is a must not to experience ‘Black point’. Along with the issue of reconstructing production capacities in the power industry, the issue of supplying of energy raw materials to power plants must be solved. Currently the power industry, as is well known, is based on hard and brown coal. These materials will be depleted from the domestic reserves between 2040 and 2070. How to ensure energy security in Poland, whether to rely on coal, even imported, or whether to focus on other, more ecological, energy sources.

Table 14 presents production and consumption of electricity in the years 2015 - 2016. The data in table 14 shows that domestic electricity consumption in 2016 was 161,438 (in GWh) and was higher by 1.97% than in 2015. Total production was higher by 0.53%, and similarly, production in utility hydro power plants was higher by 6.1%. Considerable increase of electricity production was reported in gas-fired power plants (by 37.77%) and renewable energy sources (by 100.03%), including wind farms by 15.76%.

On the other hand, electricity production based on hard coal decreased by 0.65% and on brown coal by 4.41% [9]. Could these data show the withdrawal from coal-based power?

Table 14. Structure of electricity production in domestic power plants, volume of electricity exchange with foreign countries and domestic electricity consumption - monthly volumes and from the beginning of year - gross values (Source: Polskie Sieci Elektroenergetyczne – monthly reports).

Item	December	Cumulatively from January to December				
	2015 (GWh)	2016 (GWh)	Dynamics ((b-a)/a*100) (%)	2015 (GWh)	2016 (GWh)	Dynamics ((e-d)/d*100) (%)
Total production	14.464	15.218	5.22	161.772	162.626	0.53
Utility power plants	11.859	12.559	5.9	141.901	140.727	-0.83
Water utility power plant	229	272	18.64	2.261	2.399	6.1
Thermal utility power plant	11.630	12.287	5.65	139.640	138.328	-0.94
hard coal	6.972	7.381	5.87	81.883	81.348	-0.65
brown coal	4.166	4.375	5.02	53.564	51.204	-4.41
gas	493	532	7.89	4.193	5.776	37.77
Other renewable sources						
power plants	6	12	100	73	146	100.03
Wind farms	1.612	1.599	-0.78	10.041	11.623	15.76
Industrial power plants	986	1.047	6.2	9.757	10.130	3.82
Foreign exchange balance	-334	-243	-27.26	-334	1.999	-
Domestic electricity						
consumption	14.129	14.975	5.99	161.438	164.625	1.97

Table 15 present perspective demand for electricity included in ‘The assumptions of the Polish energy policy until 2050’ [2]. In the assumptions substantial volume of electricity production is based on nuclear power, whose presence in the Polish energy mix at that time is doubtful. If such energy is to be substituted by coal, coal will have to be imported.

Table 15. Electricity production estimate broken down by fuel (TWh) in Poland until 2050

Energy source	2010	2015	2020	2030	2035	2040	2045	2050
Hard coal	87.9	72.5	76.9	75.9	84.4	88.8	82.3	74.5
Brown coal	48.6	58.4	53.8	49.6	11.1	11.3	10.7	10.3
Natural gas	6.8	5.8	11.8	11.9	18.4	17.5	23.3	20.4
RES	11.6	20.6	34.0	36.9	61.1	65.1	67.5	73.2
Nuclear energy	0.0	0.0	0.0	11.8	45.1	45.4	44.2	43.2
Other	2.6	1.4	1.4	1.4	1.4	1.4	1.4	1.4
Total	157.5	158.7	177.9	187.5	221.5	229.5	229.4	223.0

6. Polish energy security indicators

An indicator determining national energy security is Stirling indicator (formula 1) [10], which determines a degree of diversification of energy supply:
\[d_N = -\sum_{j=1}^{m} u_j \ln u_j \] (1)

where: \(u_j \) – share of \(j^{th} \) energy carrier in national energy supply structure, \(m \) – number of energy carriers, \(\ln \) – natural logarithm.

Even structure of energy supplied to the domestic market is the most favourable. In Poland the Stirling indicator is about 1.0 and differ from the EU level (1.4), which is caused by a considerable share of domestic solid fuels (coal) in the Polish energy balance. The indicator can be improved by diversification of energy sources supplies. Not more than 30% can be imported from one direction (gas 85%, crude oil 95% from Russia).

The second parameter determining the condition of energy security is country’s energy self-sufficiency [10]. It is defined as the ratio of volume of domestic fuel acquisition to primary energy consumption:

\[W_i = \frac{P \cdot 100\%}{Z_k} \] (2)

where: \(P \) – fuel production in a given year, \(Z_k \) – domestic global consumption equal to the sum of individual fuels supplied to the domestic market less domestic reserves balance.

This indicator is currently about 85% and decreases as own resource diminishes.

Table 16. Global documented industrial reserves of conventional energy raw materials and their sufficiency

Materials	Reserves (million toe)	Reserves structure (%)	Reserves consumption (million toe)	Use structure (%)	Reserves sufficiency (years)
Hard/brown coal	469.298	59.6	2.957.0	31.7	158
					48
Crude oil	159.644	20.3	3.861.3	41.4	41
					1
Natural gas	158,815	20.1	2.512.2	26.9	63
					7
Total	787.757	100.0	9,330.5	100.0	84

Note: 1 toe = 41.868 GJ

Calculated per m³ global natural gas reserves as at 2009 amounted to 187.47 trillion m³. In the following years, despite current production, global natural gas reserves increased due to new discoveries. The situation is similar as far as crude oil is concerned - global reserves of this material according to the situation as at 2013 amounted to 234 billion metric tons. The richest deposits are in Saudi Arabia (36.5 bn t), Iran (20.8 bn t), Iraq (19.3 bn t), Venezuela (46.3 bn t), Kuwait (14.0 bn t) and Canada (28.2 bn t).

7. **Summary**

The article describes all available energy sources, which can be used to generate electricity, considered to be the cleanest form of energy. Such energy sources include: hard coal, brown coal, natural gas, crude oil, nuclear power and renewable energy sources (RES). Renewable energy sources include, in particular: water, solar, wind, biomass and biogas power.

All the mentioned energy sources, also called primary energy sources, has been described in detail in the context of economic usefulness and analysed in the context of sufficiency for social needs defined as National Energy Security. Individual types of primary energy sources, belonging to fossil fuels, have been analysed in terms of their reserves and recoverability in Poland and the world.

The Polish power industry is currently based on hard and brown coal, which generate c. 81% of total electricity - hard coal accounts for c. 50% from and brown coal for c. 31%. The above are followed by: natural gas (c. 3%) and water power (c. 3%). Water power is recognised as Renewable
Energy Sources. Other renewable energy sources develop according to the guidelines of the European Union and in 2020 they will reach about 15% - it is an estimated share in our energy mix [1]. There are not many good conditions for development of RES in Poland. Apart from the mentioned water power, solar and wind power have the largest share in RES. As far as fossil fuels are concerned, hard coal, at the current level of development and production (c. 70 million Mg/year), will last for about 50 years, i.e. to 2070. Brown coal from currently developed deposits, with annual production of c. 60 million Mg will last for about 30 years, i.e. to 2050. Natural gas, with deposits of about 100-120 billion m3 and current production of c. 5 billion m3, will last for about 20 years. However, natural gas consumption in Poland amounts currently to 15 billion m3 and is likely to increase - therefore Poland is will have to import. When importing it is necessary to diversify gas supplies. The LNG terminal in Świnoujście with annual capacity of 5 billion m3 of liquefied gas constitutes an important, but not sufficient, support of the national energy security. It is a pity that the project of 2001, which provided for connection of the Norwegian shelf and Poland in Niechorze with a pipeline with annual capacity of 10 billion m3 of gas, where about 5 billion m3 were intended for Poland. Currently Poland still has to import gas from the east through the existing pipelines.

Finally, crude oil scarce in Poland - 20-25 million metric tons. At current annual production levels of c. 1 million Mg, it will last for 20-25 years. However, annual needs relating to oil refining in Polish refineries are at a level of c. 20 million Mg. Crude oil is delivered to Poland through the ‘Przyjaźń’ pipeline from Russia and by tankers to the Northern Port in Gdańsk from other directions. So far such transport system has worked correctly, however, there is a project providing for crude oil transport through a new pipeline, ‘Golden Gate’, from the Caspian Sea, via Ukraine to Poland. Assuming that it will be possible to extract the hard and brown coal deposits completely - the country’s energy security is ensured until about 2050. If, however, coal will be gradually withdrawn from the Polish energy mix, it is urgent now to seek for other solutions, including nuclear power.

8. Conclusions

- Hard and brown coal reserves are running out in the developed deposits.
- Despite large reserves of brown coal are present in Poland - it should be assumed that they will not be exploited due to opposition of the local population.
- Hard coal reserves, although still quite rich, may not be fully exploited due to increasing natural hazards, such as methane, crumps and rockmass temperature. Also in this case Silesian community opposes to building new coal mines (e.g. near Pszczyna).
- The EU guidelines on environmental protection do not promote development of coal-based power generation.
- In the search for new energy sources it is necessary to start to construct nuclear power plants to make up for the losses of coal-based power generation.
- An alternative to coal power plants can be also gas power plants, especially in the light of the reports of the Polish Geological Institute (PIG) on shale gas deposits (deposits of 346 to 768 billion m3).
- Nuclear power as well gas power plants (if shale gas is not available) are based on imported primary energy sources.
- Decrease of hard and brown coal production to extend the period of its production and introduction of other energy sources (gas, nuclear power) should also be considered. A source of uranium supplies to Polish nuclear power plants is equally important. Considerable deposits of uranium can be found in Canada.

References

[1] Energy Law Act of 10 April 1997 as amended (J.L. 153.1504)
[2] Draft of Polish energy policy until 2050 (in polish: Projekt Polityki energetycznej Polski do 2050 roku), http://bip.me.gov.pl/node/24670, access of 11 May 2017.
[3] Balance of fossil fuel reserves in Poland as at 31 December 2015, Polish Geological Institute,
Polish Research Institute Warszawa 2016.

[4] Sobczyk E J, Kicki J, Jarosz J, Kowalczuk I and Stachurski K 2016 Gospodarka zasobami złóż węgla kamiennego w Polsce w latach 1990–2015 Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią Polskiej Akademii Nauk 92 pp 37–56.

[5] GUS reports, March 2017 (in polish: Raporty GUS marzec 2017), http://stat.gov.pl/statystyka-miedzynarodowa/porownania-miedzynarodowe/tablice-o-krajach-wedlug-tematow/przemysl-i-budownictwo/, access of 10 May 2017.

[6] Polish shale gas reserves https://www.polskielupki.pl/artykul-gaz-lupkowy-w-polsce/74129/zasoby-gazu-lupkowego-w-polsce, access of 21 April 2017.

[7] Installed power, reports of URE https://www.ure.gov.pl/pl/rynki-energii/energia-elektryczna/odnawialne-zrodla-ener/potencjal-krajowy-oze/5753,Moc-zainstalowana-MW.html, access of 10 May 2017.

[8] World’s nuclear energy, Information material developed by the Nuclear Energy Department of the Ministry of Energy, March 2017.

[9] Polskie Sieci Elektroenergetyczne – monthly reports http://www.pse.pl/index.php?modul=8&y=2016&m=12&id_rap=212, access of 08 May 2017.

[10] Kaliski M and Staśko D 2003 Rola krajowej infrastruktury paliwowo – surowcowej w kształtowaniu bezpieczeństwa energetycznego Polski Wiertnictwo, nafta, gaz 20/1 pp 101-10.