COVID-19 mRNA Vaccines are Safe and Effective

Ciprian Silaghi1, Madalina Bordea2, Gina Klein3, Corina Tritean3, Genel Sur3,4, Cornel Aldea3,4, Gabriel Samasca5,6, Teodora-Larisa Timis6, Ioan-Alexandru Florian7, Peter Makovicky8, Pavol Makovicky9, Kvetoslava Rimarova10

1Department of Biochemistry, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
2Department of Microbiology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
3Emergency Hospital for Children, Cluj-Napoca, Romania
4Department of Pediatrics II, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
5Department of Immunology, Iuliu Hatieganu University of Medicine and Pharmacy
6Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
7Department of Neurosurgery, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
8Biomedical Research Center of the Slovak Academy of Sciences, Institute of Experimental Oncology, Bratislava, Slovak Republic
9Department of Biology, Faculty of Education, Selye Janos University, Komarno, Slovak Republic
10Department of Public Health and Hygiene, Faculty of Medicine, P. J. Šafárik University, Košice, Slovak Republic

*Corresponding author: silaghi.ciprian@yahoo.com

Received September 27, 2021; Revised November 02, 2021; Accepted November 10, 2021

Abstract mRNA vaccines are a novelty in the medical world. The researchers created these vaccines in a short time, which led to many question marks. In this article, we have analyzed the perception of the world's countries on these vaccines.

Keywords: mRNA vaccines, new vaccines, causes of mistrust

Cite This Article: Ciprian Silaghi, Madalina Bordea, Gina Klein, Corina Tritean, Genel Sur, Cornel Aldea, Gabriel Samasca, Teodora-Larisa Timis, Ioan-Alexandru Florian, Peter Makovicky, Pavol Makovicky, and Kvetoslava Rimarova, “COVID-19 mRNA Vaccines are Safe and Effective.” International Journal of Celiac Disease, vol. 9, no. 3 (2021): 103-106. doi: 10.12691/ijcd-9-3-4.

1. Introduction

The COVID-19 mRNA vaccines represent a new group of vaccines being produced [1]. These vaccines consist of synthetic mRNA strands encoding the SARS-CoV-2 Spike glycoprotein, packaged in lipid nanoparticles to deliver mRNA to cells [2]. BNT162b2 and mRNA-1273, manufactured by Pfizer/BioNTech® and Moderna®, respectively, contain nucleic acid and mRNA and can activate our human cells to accept protein factories to make the antigen (viral spike protein) that will elicit an immune response [3]. COVID-19 Moderna and Pfizer vaccines prevented infections as well as symptoms [4]. Three vaccines had efficacy >90% Pfizer-BioNTech (~95%), Moderna (~94%), and Sputnik V (~92%) [5]. Estimated mRNA vaccine effectiveness, for prevention of infection, was 90% for full immunization and 80% for partial immunization [6]. But the key issues were vaccine durability and [7] efficacy against specific SARS-CoV-2 circulating variants [8]. BNT162b2 and mRNA-1273 elicited specific and neutralizing antibodies concentrations among COVID-19 patients convalescent ‘serum in the first 100 days after COVID-19 vaccination [9]. Extending the interval between COVID-19 vaccine doses posed a risk to the elderly as a result of low immunogenicity to the vaccine [10]. But a single dose of the vaccine was enough to induce an effective response in previously infected patients [11]. The viral load was substantially reduced for infections occurring 12-37 days after the first dose of the BNT162b2 vaccine [12]. We aimed to analyze the new vaccines ‘perception in the general population. We also wanted to analyze the causes of mistrust in the new vaccines. Furthermore, we searched the PubMed database with the keywords, "COVID-19 vaccines" and analyzed all relevant articles for our aim.

2. World Perception of the COVID-19 Vaccine

COVID-19 vaccination is of capital and paramount importance to health integrity [13,14]. Successful management of the COVID-19 pandemic contributed to the intention of COVID-19 vaccination uptake [15]. Erroneous social news reports have complicated personal decision-making, leading to people with lower cognitive ability test scores being vaccine-hesitant [16]. The most common reason for COVID-19 vaccination refusal was doubt of health care, correctional, or government staff or institutions (20.1%) [17]. Morocco obtained the highest COVID-19 vaccine rates in Africa in the first phase. The health ministry of this country has also deployed a large communications campaign to provide information, reassure and encourage people to get vaccinated [18].
Before emergency use authorization, only half of the United States adults intended to accept COVID-19 vaccines; most others (40%) were uncertain [19]. Now, more than 70 million people in the United States have received one or more doses of a COVID-19 vaccine [20]. In China, free vaccinations increased the COVID-19 vaccination willingness rate [21]. Healthcare workers in Asia, including China, India, Indonesia, Singapore, Vietnam, and Bhutan, were willing to receive the COVID-19 vaccination [22]. Public service and the common good helped the government promote vaccination programs in the Philippines [23]. In Colombia, there was a high perception of the intention to vaccinate physicians against COVID-19, and this was very similar to that of the general population [24]. There was a need to regularly implement social distancing policies in the Nordic region. The vaccines were used to prevent outbreaks and cut the burden of patient hospitalizations on nursing and medical staff [25]. In Israel, younger people wanted to protect their families and their relatives (96.7%). They seed vaccination as an act of civic responsibility (91.9%) and expressed strong confidence in their healthcare providers (87.7%) [26]. In Japan, the perceived effectiveness of the vaccine and willingness to protect others played a critical role in the COVID-19 vaccine acceptance [27]. In Italy, the percentage of participants willing to be vaccinated against COVID-19 assessed by either-or questions was >90% (28). The intention to get vaccinated or intake of the COVID-19 vaccine among older Germans were positively related to the perceptions of enhancing infected, perceptions of the potential long-term effects ‘severity, the vaccine's efficacy, and the benefits of vaccination [28]. In Canada, there was a demand to discuss common misconceptions among workers supporting adults with intellectual disabilities to serve as vaccine promoters in their communities [30]. Also, still in Canada, those living with obesity were highly ambivalent about COVID-19 vaccination, so the need for patient-centred counselling was necessary [31]. In Poland, the percentage of COVID-19 vaccine acceptance among healthcare workers remained unsatisfactory [32]. The acceptance rate of the COVID-19 vaccine in the Saudi population was low. Varied interventions were necessary for raising awareness and emphasizing the safety and efficacy of the COVID-19 vaccine [33]. In Jordan, the high prevalence of COVID-19 vaccine hesitancy and its association with conspiracy beliefs was present among university students [34].

3. Populations at Risk

In the United Kingdom, smokers have more negative attitudes towards vaccines in general and were more likely to be unsure or unwilling to vaccinate against COVID-19, compared with the control group [35]. A European study revealed that supporting information on COVID-19 vaccines should also be provided to pregnant and breastfeeding women to avoid unfounded worries about the vaccines and to support shared decision-making in this population [36]. In the United States, COVID-19 mRNA vaccines generated humoral immunity in pregnant and lactating women, with immunogenicity and reactogenicity similar to that observed in the control group. Natural infection immunity responses were lower than vaccine-induced immune responses. Immune transfer to neonates appeared via the placenta and breast milk [37]. In France, Benomtane et al. observed a weak anti-SARS-CoV-2 antibody response after the first dose of mRNA COVID-19 vaccine in kidney transplant patients [38].

4. Side Effects

A new Centers for Disease Control and Prevention report revealed that a rate of 4.5 severe allergic reactions occurred among 1 million patients vaccinated with the mRNA-based COVID-19 vaccines until February 2021 [39]. A study from the World Allergy Organization Journal recommended patients with a history of anaphylaxis, from other or unknown causes, as a criterion for allergist-immunologists to further orientation [40]. Allergists' competence in the diagnosis and treatment of allergic reactions was vital for the screening of high-risk patients [41]. In the United States, Waheed et al. reported a patient diagnosed with Guillain-Barre Syndrome after receiving the first dose of the Pfizer - COVID-19 vaccine [42]. In China, Shi et al. observed an abnormal immune function in neurodegenerative diseases, which can substantially affect the safety and effectiveness of vaccines [43]. The current studies indicated a minor risk of acute neurological disorders [44]. In the United States, Chilimuri et al. reported a patient diagnosed with relapsing-remitting multiple sclerosis on B cell depleting therapy after the COVID-19 vaccine [45]. The adverse events for both vaccines were mild to moderate, with many injection-site reactions and fatigue in India. Deva Priya et al. reported no serious adverse events [46]. In the United Kingdom, mRNA vaccines caused milder, less frequent systemic side effects but more local reactions [47]. In Israel, Hiller et al. reported three patients who developed lymphadenopathy after the first dose of the Pfizer-BioNTech COVID-19 vaccine, but with a gradual regression in the enlarged nodes until complete resolution. [48]. In the Doppler echocolor study of patients who reported lymphadenopathy after the BNT162b2 Pfizer vaccine in Italy [49], no anomaly was found. Malayala et al. reported a case of purpuric rash and thrombocytopenia after receiving the first dose of the mRNA-1273 Moderna vaccine in the United States [50]. Ackerman et al. reported a persistent maculopapular rash after the first dose of the Pfizer-BioNTech COVID-19 vaccine in France [51]. Li et al. recommended studying age, sex, and variation between databases if background adverse events of special interest rates are compared to event rates observed with COVID-19 vaccines [52].

5. Conclusions

Immunizing the entire population is a public health issue in which all countries must participate. Work and social involvement in the COVID-19 pandemic are needed. We have not found any serious clinical manifestations of mRNA vaccines. The following public health measures are required: 1. The availability of COVID-19 vaccines at low cost in all
countries; 2. The use of masks covering the mouth and nose until the entire population has been immunized against COVID-19.

Conflicts of Interest

The authors declare no potential conflicts of interest.

Acknowledgements

Supported with grants KEGA of The Ministry of Education, Science, Research and Sport of the Slovak Republic No. 007UPJŠ-4/2018, No. 008UPJŠ-4/2020, No. 010UPJŠ-4/2021 and internal grant of University of Pavol Jozef Safarik IPEL VVGS-2020-1485.

References

[1] Samasca G. The COVID-19 Vaccination Debate: Should Patients with Celiac Disease be Vaccinated with COVID-19 Vaccine? International Journal of Celiac Disease. 2021; 9(1): 1-2.
[2] Verbeke R, Lentacker I, De Smedt SC, Dewitte H. The dawn of mRNA vaccines: The COVID-19 case. J Control Release. 2021: S0168-3659(21)00154-1.
[3] Diotallevi F, Campanati A, Radi G, Martina E, Rizzotto G, Barbadoro P, D’Errico MM, Offidani A. VACCINATION AGAINST SARS-COV-2 and PSORIASIS: the three things every dermatologist should know. J Eur Acad Dermatol Venereol. 2021; 35(7):e428-e430.
[4] Dyer O. Covid-19: Moderna and Pfizer vaccines prevent infections as well as symptoms, CDC study finds. BMJ. 2021; 373: n888.
[5] Dorofiei B, Ciobica A, Ilic ID, Maftei R, Ilea C. Mini-Review Discussing the Reliability and Efficiency of COVID-19 Vaccines. Diagnostics (Basel). 2021; 11: 579.
[6] Thompson MG, Burgess JL, Naleway AL, Tyner HL, Yoon SK, Meece J, Ohso LEB, Caban-Martinez AJ, Fowlkes A, Lutrick M, Kuntz JL, Dunnigan K, Odean ME, Hegmann KT, Stefanski E, Edwards LJ, Schaefer-Solle N, Grant L, Eillington K, Groom HC, Zane T, Thiess MS, Ivicic L, Wesley MG, Lamberte JM, Sun X, Smith ME, Phillips AL, Groover KD, Yoo YM, Gerald J, Brown Z, Thompson MG, Brewer J, Kan L, Gerber JE, Hutchinson RL, Schwartz B. COVID-19 vaccine between Greek and Cypriot healthcare personnel: is the country a predictor? Hum Vaccin Immunother. 2021: 1-8.
[7] Batté G, Deary IJ, Fawsns-Ritchie C, Gale CR, Alsulch D. Pre-pandemic Cognitive Function and COVID-19 Vaccine Hesitancy: Cohort Study. medRxiv. 2021: 2021.03.17.21253634.
[8] Stern MF, Piessecki AM, Strick LB, Rajeshwar P, Tyagi E, Dolovich S, Patel PR, Fukunaga NW. Willingness to Receive a COVID-19 Vaccination Among Incarcerated or Detained Persons in Correctional and Detention Facilities - Four States, September-December 2020. MMWR Morb Mortal Wkly Rep. 2021; 70: 473-477.
[9] Bournourbou AD, Oruotto O. Morocco achieves the highest COVID-19 vaccine rates in Africa in the first phase: what are reasons for its success? J Travel Med. 2021; 28(4): taab040.
[10] Salmon DA, Dudley MZ, Brewer J, Kan L, Gerber JE, Budigan H, Proveaux TM, Bernier R, Rimal R, Schwartz B. COVID-19 vaccination attitudes, values and intentions among United States adults prior to emergency use authorization. Vaccine. 2021: S0264-410X(21)00315-7.
[11] [No authors listed]. COVID-19 Roundup. Am J Nurs. 2021; 121: 18.
[12] Liu R, Zhang Y, Nicholas S, Leng A, Maitland E, Wang J. COVID-19 Vaccination Willingness among Chinese Adults under the Free Vaccination Policy. Vaccines (Basel). 2021; 9: 292.
[13] Chew NWS, Cheong C, Kong G, Phua K, Ngiam JN, Tan BYQ, Wang B, Hao F, Tan W, Han X, Tran BX, Hoang MT, Pham HQ, Vu GT, Chen Y, Danuji R, Rn K, Rv M, Talati K, Ho CS, Sharma AK, Ho RC, Sharma VK. An Asia-Pacific study on healthcare worker's perception and willingness to receive COVID-19 vaccination. Int J Infect Dis. 2021: S1201-0642(21)00287-3.
[14] Dela Cruz MDM, Mendoza AJM, Gueco GEA, Maginhag CMP, Gomez JMW Transparency of the national government as key in promoting the rollout of COVID-19 vaccines. J Public Health (Oxf). 2021; 43(2): e381-e382.
[15] Alvarado-Socarras JL, Vesga-Varela AL, Quintero-Lesmes DC, Díaz Sáez F, Collado CA, Vásquez-Rodríguez M. An Asia-Pacific study in healthcare worker's perception and willingness to receive COVID-19 vaccination. J Infect Dis. 2021; 9: 292.
[16] Benis A, Seidmann A, Ashkenazi S. Reasons for Taking the COVID-19 Vaccine by US Social Media Users. Vaccines (Basel). 2021; 9: 287.
[17] Amiri A. Role of social distancing in tackling COVID-19 during the first wave of pandemic in Nordic region: Evidence from daily deaths, infections and needed hospital resources. Int J Nurs Sci. 2021; 10: 8(2): 145-151.
[18] Benis A, Seidmann A, Ashkenazi S. Reasons for Taking the COVID-19 Vaccine by US Social Media Users. Vaccines (Basel). 2021; 9: 287.
[19] Machida M, Nakamura L, Kojima T, Saito R, Nakaya T, Hanbuchi T, Takamitia T, Otagiri Y, Fukushima N, Kikuchi H, Amagasa S, Watanabe H, Inoue S. Acceptance of a COVID-19 Vaccine in Japan during the COVID-19 Pandemic. Vaccines (Basel). 2021; 9: 210.
[20] Biasio LR, Bonaccorsi G, Lorini C, Mazzini D, Pecorelli S. Italian Adults' Likelihood of Getting COVID-19 Vaccine: A Second Online Survey. Vaccines (Basel). 2021; 9: 268.
[29] Malesza M, Wittmann E. Acceptance and Intake of COVID-19 Vaccines among Older Germans. J Clin Med. 2021; 10: 1388.

[30] Lunsky Y, Kithulegoda N, Thai K, Benham JL, Lang R, Desveaux L, Ivers NM. Beliefs regarding COVID-19 vaccines among Canadian workers in the intellectual disability sector prior to vaccine implementation. J Intellect Disabil Res. 2021; 65(7): 617-625.

[31] Vallis M, Glazer S. Protecting Individuals Living with Overweight and Obesity: Attitudes and Concerns Towards COVID-19 Vaccination in Canada. Obesity (Silver Spring). 2021; 29(7): 1128-1137.

[32] Szmyd B, Karuga FF, Bartoszek A, Staniecka K, Siwecka N, Bartoszek A, Blaszczyk M, Radek M. Attitude and Behaviors towards SARS-CoV-2 Vaccination among Healthcare Workers: A Cross-Sectional Study from Poland. Vaccines (Basel). 2021; 9: 218.

[33] Alfaageeh EI, Alshareef N, Alhazmi F, Chirwa GC. Acceptability of a COVID-19 Vaccine among the Saudi Population. Vaccines (Basel). 2021; 9: 226.

[34] Sallam M, Dababseh D, Eid H, Hasan H, Taim D, Al-Mahzoum K, Al-Haidar A, Yaseen A, Alabsneh NA, Assaf A, Bakri FG, Matar S, Mahafzah A. Low COVID-19 Vaccine Acceptance Is Correlated with Conspiracy Beliefs among University Students in Jordan. Int J Environ Res Public Health. 2021; 18: 2407.

[35] Jackson SE, Paul E, Brown J, Steptoe A, Fancourt D. Negative vaccine attitudes and intentions to vaccinate against Covid-19 in relation to smoking status: a population survey of UK adults. Nicotine Tob Res. 2021; 23(9): 1623-1628.

[36] Ceulemans M, Foulon V, Panchaud A, Winterfeld U, Pomar L, Szmyd B, Karuga FF, Bartoszek A, Staniecka K, Siwecka N, Szmyd B, Karuga FF, Bartoszek A, Staniecka K, Siwecka N, Lesage C, Kouni SN, Kounis GN, Velissaris D, Kounis NG. Early Post-COVID-19: Guillain-Barre Syndrome Following SARS-CoV-2 Vaccination in a Case Report. Acta Neurol Scand. 2021; 144(1): 41-44.

[37] Mathioudakis AG, Ghrew M, Ustianowski A, Ahmad S, Borrow R, Papavasileiou LP, Petrakis D, Bakerly ND. Self-Reported Real-World Safety and Reactogenicity of COVID-19 Vaccines: A Vaccine Recipient Survey. Life (Basel). 2021; 11: 249.

[38] Miller N, Goldberg SN, Cohen-Cymberknoh M, Vainstein V, Simanovsky N. Lymphadenopathy Associated With the COVID-19 Vaccine. Cureus. 2021; 13: e13524.

[39] Granata V, Fusco R, Setola SV, Galdiero R, Piccone I, Izzo F, D’Amelio R, Miele V, Grassi R, Grassi R, Petrollo A. Lymphadenopathy after BNT162B2 Covid-19 Vaccine: Preliminary Ultrasound Findings. Biology (Basel). 2021; 10: 214.

[40] Malayala SV, Mohan G, Vasireddy D, Atluri P, Purparic Rash and Thrombocytopenia After the mRNA-1273 (Moderna) COVID-19 Vaccine. Cureus. 2021; 13: e14099.

[41] Ackerman M, Henry D, Finon A, Binois R, Esteve E. Persistent maculopapular rash after the first dose of Pfizer-BioNTech COVID-19 vaccine. J Eur Acad Dermatol Venereol. 2021; 35(7): e423-e425.

[42] Li X, Ostropolets A, Makadia R, Shaoabi A, Rao G, Sena AG, Martinez-Hernandez E, Delmestri A, Verhamme K, Rijnbeek PR, Duarte-Salles T, Suchard M, Ryan P, Hripescak G, Prieto-Allambra D. Characterizing the incidence of adverse events of special interest for COVID-19 vaccines across eight countries: a multinational network cohort study. medRxiv. 2021: 2021. 03.25. 21254315.

© The Author(s) 2021. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).