abstract. In this note we present criteria on both symbols and integral kernels ensuring that the corresponding operators on compact manifolds belong to Schatten classes. A specific test for nuclearity is established as well as the corresponding trace formulae. In the special case of compact Lie groups, kernel criteria in terms of (locally and globally) hypoelliptic operators are also given. A notion of an invariant operator and its full symbol associated to an elliptic operator are introduced. Some applications to the study of r-nuclearity on L^p spaces are also obtained.

1. Introduction

Let M be a closed smooth manifold (smooth manifold without boundary) endowed with a positive measure dx. We denote by $\Psi^\nu(M)$ the usual Hörmander class of pseudo-differential operators of order $\nu \in \mathbb{R}$. In this paper we will be using the class $\Psi^\nu_{cl}(M)$ of classical operators (see e.g. [Dui11]). Furthermore, we denote by $\Psi^\nu_d(M)$ the class of positive definite operators in $\Psi^\nu_{cl}(M)$, and by $\Psi^\nu_e(M)$ the class of elliptic operators in $\Psi^\nu_{cl}(M)$. Finally, $\Psi^\nu_{+e}(M) := \Psi^\nu_d(M) \cap \Psi^\nu_e(M)$ will denote the class of classical positive elliptic pseudo-differential operators of order ν.

We associate a discrete Fourier analysis to the operator $E \in \Psi^\nu_{+e}(M)$ inspired by that considered by Seeley ([See65], [See69]), see also [GW73]. The eigenvalues of E form a sequence $\{\lambda_j\}_{0 \leq j < \infty}$, with $\lambda_0 := 0$ and with multiplicities d_j. The corresponding orthonormal basis of $L^2(M, dx)$ consisting of eigenfunctions of E will be denoted by $\{e^k_j\}_{j \geq 0}$. Relative to this basis, Fourier coefficients, Plancherel identity and Fourier inversion formula can be obtained.

By introducing suitable Sobolev spaces on $M \times M$ adapted to E we give first sufficient Sobolev type conditions on Schwartz integral kernels in order to ensure that the corresponding integral operators belong to different Schatten classes. Second, we introduce notions of invariant operators, Fourier multipliers and full matrix-symbols relative to E. We apply those notions to characterise Schatten classes and to find sufficient conditions for nuclearity and r-nuclearity in the sense of Grothendieck [Gro55] for invariant operators in terms of the full matrix-symbol.

The problem of finding such criteria on different kinds of domain is classical and has been much studied (cf. [BS77], [DR13], [DR14b], [Tof08], [BT10] and references therein).

\textit{Date:} August 27, 2014.

The first author was supported by Marie Curie IIF 301599. The second author was supported by EPSRC grant EP/K039407/1.
2. Kernel conditions for Schatten classes on compact manifolds

We first define Sobolev spaces $H^{\mu_1, \mu_2}_{x,y}(M \times M)$ of mixed regularity $\mu_1, \mu_2 \geq 0$.

Definition 2.1. Let $K \in L^2(M \times M)$ and let $\mu_1, \mu_2 \geq 0$. For operators $E_j \in \Psi_{\infty}^{\nu_j}(M)$ ($j = 1, 2$) with $\nu_j > 0$, we define

$$K \in H^{\mu_1, \mu_2}_{x,y}(M \times M) \iff (I + E_1)_x^\mu (I + E_2)_y^\nu K \in L^2(M \times M),$$

where the expression on the right hand side means that we are applying pseudo-differential operators on M separately in x and y. We note that these operators commute since they are acting on different sets of variables of K.

By the elliptic regularity the spaces $H^{\mu_1, \mu_2}_{x,y}(M \times M)$ do not depend on a particular choice of E_1, E_2 as above. We will now give our main kernel criterion obtained in [DR14c] for Schatten classes.

Theorem 2.2. Let M be a closed manifold of dimension n and let $\mu_1, \mu_2 \geq 0$. Let $K \in L^2(M \times M)$ be such that $K \in H^{\mu_1, \mu_2}_{x,y}(M \times M)$. Then the corresponding integral operator T_K on $L^2(M)$ given by $T_K f(x) = \int_M K(x, y) f(y) dy$ is in the Schatten classes $S_r(L^2(M))$ for $r > \frac{n}{n+2[\mu_1+\mu_2]}$.

We formulate below the results on the trace class. Due to possible singularities of the kernel $K(x, y)$ along the diagonal, we will require an averaging process on K as described in [DR14c] (see also [Br91], [Del10]). We denote by $\bar{K}(x, y)$ the pointwise values of such process defined a.e. As a corollary of Theorem 2.2 for the trace class we have:

Corollary 2.3. Let M be a closed manifold of dimension n and let $K \in L^2(M \times M)$, $\mu_1, \mu_2 \geq 0$, be such that $\mu_1 + \mu_2 > \frac{n}{2}$ and $K \in H^{\mu_1, \mu_2}_{x,y}(M \times M)$. Then the corresponding integral operator T_K on $L^2(M)$ is trace class and its trace is given by

$$\text{Tr}(T_K) = \int_M \bar{K}(x, x) dx.$$ \hspace{1cm} (2.2)

We also obtain several corollaries in terms of the derivatives of the kernel. We denote by $C^{\alpha}_{x}C^{\beta}_{y}(M \times M)$ the space of functions of class C^{β} with respect to y and C^{α} with respect to x.

Corollary 2.4. Let M be a closed manifold of dimension n. Let $K \in C^{\ell_1}_{x}C^{\ell_2}_{y}(M \times M)$ for some even integers $\ell_1, \ell_2 \in 2\mathbb{N}_0$ such that $\ell_1 + \ell_2 > \frac{n}{2}$. Then T_K is in $S_1(L^2(M))$, and its trace is given by

$$\text{Tr}(T_K) = \int_M K(x, x) dx.$$ \hspace{1cm} (2.3)

The corollary above is sharp (cf. Remark 4.5 of [DR14c]) as a consequence of classical results for the convergence of Fourier series on the torus (cf. [SW71], Ch. VII; [Walf65]).

We now formulate some consequences on compact Lie groups combining results from [DR13]. For example, on the compact Lie group SU(2) let X, Y, Z be three left-invariant vector fields X, Y, Z such that $[X, Y] = Z$ (for example, these would be
derivatives with respect to Euler angles at a point extended to the whole of SU(2) by the left-invariance). Let \(L_{sub} = X^2 + Y^2 \) be the sub-Laplacian. Then we have

\[
0 < r < \infty \text{ and } \alpha r > 4 \implies (I - L_{sub})^{-\alpha/2} \in S_r(L^2(SU(2))).
\] (2.4)

The same is true for \(S^3 \simeq SU(2) \) considered as the compact Lie group with the quaternionic product. Using this instead of elliptic operators we can show:

Corollary 2.5. Let \(K \in L^2(S^3 \times S^3) \) be such that we have \((1 - L_{sub})^{\mu_1/2}(1 - L_{sub})^{\mu_2/2}K \in L^2(S^3 \times S^3)\) for some \(\mu_1, \mu_2 \geq 0 \). Then \(T_K \) is in \(S_r(L^2(S^3)) \) for \(r > \frac{4}{2 + \mu_1 + \mu_2} \). The same result holds on the compact Lie groups SU(2) and SO(3).

We now argue that instead of the sub-Laplacian other globally hypoelliptic operators can be used, also those that are not necessarily covered by Hörmander’s sum of the squares theorem. We will formulate this for the group SO(3) noting that, however, the same conclusion holds also on SU(2) \(\simeq S^3 \). We fix three left-invariant vector fields \(X, Y, Z \) on \(SO(3) \) associated to the derivatives with respect to the Euler angles, so that we also have \([X, Y] = Z\), see [RT10] or [RT13] for the detailed expressions. We consider the following family of ‘Schrödinger’ differential operators

\[
\mathcal{H}_\gamma = iZ - \gamma(X^2 + Y^2),
\]

for a parameter \(0 < \gamma < \infty \). For \(\gamma = 1 \) it was shown in [RTW14] that \(\mathcal{H}_1 + cI \) is globally hypoelliptic if and only if \(0 \notin \left\{ c + \ell(\ell + 1) - m(m+1) : \ell \in \mathbb{N}, m \in \mathbb{Z}, |m| \leq \ell \right\} \).

It has been also shown in [DR13] Section 4] that, if \(\gamma > 1 \), then \(I + \mathcal{H}_\gamma \) is globally hypoelliptic, and

\[
(I + \mathcal{H}_\gamma)^{-\alpha/2} \in S_r \text{ if and only if } \alpha r > 4.
\]

As a consequence of this and following the argument in [DR14c] for the proof Theorem 2.2 with \(I + \mathcal{H}_\gamma \) instead of \(E = \Delta_M \) for the manifold \(M = SO(3) \), as well as Corollary 2.5 we obtain:

Corollary 2.6. Let \(K \in L^2(SO(3) \times SO(3)) \) be such that \((I + \mathcal{H}_\gamma)^{\mu_1/2}(I + \mathcal{H}_\gamma)^{\mu_2/2}K \in L^2(SO(3) \times SO(3))\) for some \(\mu_1, \mu_2 \geq 0 \). Then the integral operator \(T_K \) on \(L^2(SO(3)) \) is in \(S_r \) for \(r > \frac{4}{2 + \mu_1 + \mu_2} \) and \(\gamma > 1 \).

3. Symbols, Fourier multipliers and nuclearity

Let us now consider the concepts of invariant operator and corresponding full symbols introduced in [DR13a]. The eigenvalues of \(E \in \Psi_{+c}(M) \) (counted without multiplicities) form a sequence \(\{\lambda_j\} \) which we order so that

\[
0 = \lambda_0 < \lambda_1 < \lambda_2 < \cdots .
\] (3.1)

For each eigenvalue \(\lambda_j \), there is the corresponding finite dimensional eigenspace \(H_j \) of functions on \(M \), which are smooth due to the ellipticity of \(E \). We set

\[
d_j := \dim H_j, \text{ and } H_0 := \ker E.
\]

We also set \(d_0 := \dim H_0 \). Since the operator \(E \) is elliptic, it is Fredholm, hence also \(d_0 < \infty \) (we can refer to [Ati68], [Hor85a] for various properties of \(H_0 \) and \(d_0 \)). We fix an orthonormal basis of \(L^2(M) \) consisting of eigenfunctions of \(E \):

\[
\{e_j^{(k)}\}_{j \geq 0}^{1 \leq k \leq d_j}, \quad (3.2)
\]
where \(\{e^k_j\}_{1 \leq k \leq d_j} \) is an orthonormal basis of \(H_j \). Let \(P_j : L^2(M) \to H_j \) be the corresponding projection.

The Fourier coefficients of \(f \in L^2(M) \) with respect to the orthonormal basis \(\{e^k_j\} \) will be denoted by
\[
(\mathcal{F}f)(j, k) := \widehat{f}(j, k) := (f, e^k_j).
\]
We will call the collection of \(\widehat{f}(j, k) \) the Fourier coefficients of \(f \) relative to \(E \), or simply the Fourier coefficients of \(f \). If \(f \in L^2(M) \), we also write
\[
\widehat{f}(j) = \left(\begin{array}{c}
\widehat{f}(j, 1) \\
\vdots \\
\widehat{f}(j, d_j)
\end{array} \right) \in \mathbb{C}^{d_j},
\]
thus thinking of the Fourier transform always as a column vector. The following theorem proved in [14] is the base to introduce the concepts of invariant operators and full symbols relative to \(E \).

Theorem 3.1. Let \(M \) be a closed manifold and let \(T : C^\infty(M) \to L^2(M) \) be a linear operator. Then the following conditions are equivalent:

(i) For each \(j \in \mathbb{N}_0 \), we have \(T(H_j) \subseteq H_j \).

(ii) For each \(j \in \mathbb{N}_0 \) and \(1 \leq k \leq j \), we have \(T E e^k_j = E T e^k_j \).

(iii) For each \(\ell \in \mathbb{N}_0 \) there exists a matrix \(\sigma(\ell) \in \mathbb{C}^{d_\ell \times d_\ell} \) such that for all \(e^k_j \)
\[
\widehat{T e^k_j}(\ell, m) = \sigma(\ell)_{mk} \delta_{j, \ell}.
\]

(iv) For each \(\ell \in \mathbb{N}_0 \) there exists a matrix \(\sigma(\ell) \in \mathbb{C}^{d_\ell \times d_\ell} \) such that
\[
\widehat{T f}(\ell) = \sigma(\ell) \widehat{f}(\ell)
\]
for all \(f \in C^\infty(M) \).

The matrices \(\sigma(\ell) \) in (iii) and (iv) coincide. If \(T \) extends to a linear continuous operator \(T : \mathcal{D}'(M) \to \mathcal{D}'(M) \) then the above properties are also equivalent to the following ones:

(v) For each \(j \in \mathbb{N}_0 \), we have \(T P_j = P_j T \) on \(C^\infty(M) \).

(vi) \(TE = ET \) on \(L^2(M) \).

If any of the equivalent conditions (i)–(iv) of Theorem 3.1 are satisfied, we say that the operator \(T : C^\infty(M) \to L^2(M) \) is invariant (or is a Fourier multiplier) relative to \(E \). We can also say that \(T \) is \(E \)-invariant or is an \(E \)-multiplier. When there is no risk of confusion we will just refer to such kind of operators as invariant operators or as multipliers. If \(T \) extends to a linear continuous operator \(T : \mathcal{D}'(M) \to \mathcal{D}'(M) \) then we will say that \(T \) is strongly invariant relative to \(E \).

The proposition below shows how invariant operators can be expressed in terms of their symbols.

Proposition 3.2. An invariant operator \(T_\sigma \) associated to the symbol \(\sigma \) can be written in the following way:
\[
T_\sigma f(x) = \sum_{\ell=0}^{\infty} \sum_{m=1}^{d_\ell} (\sigma(\ell) \widehat{f}(\ell))_m e^m_\ell(x) = \sum_{\ell=0}^{\infty} [\sigma(\ell) \widehat{f}(\ell)]^\top e_\ell(x),
\]
where $[\sigma(\ell)\hat{f}(\ell)]$ denotes the column-vector, and $[\sigma(\ell)\hat{f}(\ell)]^\top e_\ell(x)$ denotes the multiplication (the scalar product) of the column-vector $[\sigma(\ell)\hat{f}(\ell)]$ with the column-vector $e_\ell(x) = (e_\ell^1(x), \ldots, e_\ell^m(x))^\top$. In particular, we also have

$$
(T_\sigma e_j^k)(x) = \sum_{n=1}^{d_j} \sigma(j)_{nk} e_j^n(x).
$$

(3.5)

If $\|\sigma(\ell)\|_{\mathcal{L}(H_1)}$ grows polynomially in ℓ and $f \in C^\infty(M)$, the convergence in (3.3) is uniform.

We can now formulate our characterisation of the membership of invariant operators in Schatten classes:

Theorem 3.3. Let $0 < r < \infty$. An invariant operator $T : L^2(M) \to L^2(M)$ is in $S_r(L^2(M))$ if and only if its symbol σ_T satisfies $\sum_{\ell=0}^{\infty} \|\sigma_T(\ell)\|_{S_r}^r < \infty$. Moreover

$$
\|T\|_{S_r(L^2(M))}^r = \sum_{\ell=0}^{\infty} \|\sigma_T(\ell)\|_{S_r}^r.
$$

If an invariant operator $T : L^2(M) \to L^2(M)$ is in the trace class $S_1(L^2(M))$, then

$$
\text{Tr}(T) = \sum_{\ell=0}^{\infty} \text{Tr}(\sigma_T(\ell)).
$$

We now turn to some applications to the nuclearity on $L^p(M)$ spaces. Let F_1 and F_2 be two Banach spaces and $0 < r \leq 1$, a linear operator T from F_1 into F_2 is called r-nuclear if there exist sequences (x_n') in F_1' and (y_n) in F_2 so that

$$
Ax = \sum_n \langle x, x'_n \rangle y_n \quad \text{and} \quad \sum_n \|x_n'\|_{F_1'} \|y_n\|_{F_2} < \infty.
$$

(3.6)

This notion, developed by Grothendieck [Gro55], extends the notion of Schatten classes to the setting of Banach spaces.

In order to study nuclearity on $L^p(M)$ for a given compact manifold M of dimension n, we introduce a function $\Lambda(j, k; n, p)$ which controls the L^p-norms of the family of eigenfunctions $\{e_j^k\}$ of the operator E, i.e. we will suppose that $\Lambda(j, k; n, p)$ is such that we have the estimates

$$
\|e_j^k\|_{L^p(M)} \leq \Lambda(j, k; n, p).
$$

(3.7)

There are many things that can be said about the behaviour of $\Lambda(j, k; n, p)$ in different settings, see e.g. results and discussions in [Don06] [TZ02] [DR14a].

We will use the following function \tilde{p} for $1 \leq p \leq \infty$:

$$
\tilde{p} := \begin{cases}
0, & \text{if } 1 \leq p \leq 2, \\
\frac{p^2 - 2}{p}, & \text{if } 2 < p < \infty, \\
1, & \text{if } p = \infty.
\end{cases}
$$

(3.8)

For $1 \leq p_1, p_2 \leq \infty$ we denote their dual indices by $q_1 := p_1', q_2 := p_2'$. The criterion for r-nuclearity now is:
Theorem 3.4. Let $1 \leq p_1, p_2 < \infty$ and $0 < r \leq 1$. Let $T : L^{p_1}(M) \to L^{p_2}(M)$ be a strongly invariant linear continuous operator. Assume that its matrix-valued symbol $\sigma(\ell)$ satisfies

$$
\sum_{\ell=0}^{\infty} \sum_{m,k=1}^{d} |\sigma(\ell)_{mk}| \Lambda(\ell, m; n, \infty)^{\hat{p}_2 r} \Lambda(\ell, k; n, \infty)^{\hat{q}_1 r} < \infty.
$$

Then the operator $T : L^{p_1}(M) \to L^{p_2}(M)$ is r-nuclear.

In some cases it is possible to simplify the sufficient condition above when the control function $\Lambda(\ell, m; n, \infty)$ is independent of m. For instance a classical result (local Weyl law) due to Hörmander ([Hör68, Theorem 5.1], [Hör85b, Chapter XXIX]) implies the following estimate:

Lemma 3.5. Let M be a closed manifold of dimension n. Let $E \in \Psi^\omega_{+c}(M)$, then

$$
\|e^m_{\ell}\|_{L^{\infty}} \leq C \lambda_{\ell}^{\frac{n-1}{2r}}.
$$

(3.9)

Thus $\Lambda(\ell; n, \infty) = C \lambda_{\ell}^{\frac{n-1}{2r}}$ furnishes an example of Λ independent of m. For controls of type $\Lambda(\ell; n, \infty)$ we have a basis-independent condition:

Corollary 3.6. Let $1 \leq p_1, p_2 < \infty$ and $0 < r \leq 1$. Let $T : L^{p_1}(M) \to L^{p_2}(M)$ be a strongly invariant formally self-adjoint continuous operator. Assume that its matrix-valued symbol $\sigma(\ell)$ satisfies

$$
\sum_{\ell=0}^{\infty} \|\sigma(\ell)\|^r_{S_{\ell}} \Lambda(\ell; n, \infty)^{(\hat{p}_2 + \hat{q}_1) r} < \infty.
$$

Then the operator $T : L^{p_1}(M) \to L^{p_2}(M)$ is r-nuclear. In particular, if its matrix-valued symbol $\sigma(\ell)$ satisfies

$$
\sum_{\ell=0}^{\infty} \|\sigma(\ell)\|^r_{S_{\ell}} \lambda_{\ell}^{\frac{(n-1)}{2r} (\hat{p}_2 + \hat{q}_1) r} < \infty,
$$

(3.10)

then the operator $T : L^{p_1}(M) \to L^{p_2}(M)$ is r-nuclear.

We now give an example of the application of such results in the case of the sphere $S^3 \simeq SU(2)$. We consider the Laplacian (the Casimir element) $E = -L_{S^3}$.

Corollary 3.7. If $\alpha > \frac{3}{r} + \frac{1}{2} (\hat{p}_2 + \hat{q}_1)$, $0 < r \leq 1$, $1 \leq p_1, p_2 < \infty$, the operator $(I - L_{S^3})^{-\frac{\alpha}{r}}$ is r-nuclear from $L^{p_1}(S^3)$ into $L^{p_2}(S^3)$.

Acknowledgements.

The first author was supported by Marie Curie IIF 301599. The second author was supported by EPSRC grant EP/K039407/1. The authors would like to thank Véronique Fischer for discussions.
References

[Ati68] M. F. Atiyah. Global aspects of the theory of elliptic differential operators. In Proc. Internat. Congr. Math. (Moscow, 1966), pages 57–64. Izdat. “Mir”, Moscow, 1968.

[Bri91] C. Brislawn. Traceable integral kernels on countably generated measure spaces. Pacific J. Math., 150(2):229–240, 1991.

[BS77] M. Š. Birman and M. Z. Solomjak. Estimates for the singular numbers of integral operators. Uspehi Mat. Nauk, 32(1(193)):17–84, 271, 1977.

[BT10] E. Buzano and J. Toft. Schatten-von Neumann properties in the Weyl calculus. J. Funct. Anal., 258(12):3080–3114, 2010.

[Del10] J. Delgado. The trace of nuclear operators on $L^p(\mu)$ for σ-finite Borel measures on second countable spaces. Integral Equations Operator Theory, 68(1):61–74, 2010.

[Don06] H. Donnelly. Eigenfunctions of the Laplacian on compact Riemannian manifolds. Asian J. Math., 10(1):115–125, 2006.

[DR13] J. Delgado and M. Ruzhansky. Schatten classes and traces on compact Lie groups. arXiv:1303.3914v1, 2013.

[DR14a] J. Delgado and M. Ruzhansky. Fourier multipliers, symbols and nuclearity on compact manifolds. arXiv:1404.6749, 2014.

[DR14b] J. Delgado and M. Ruzhansky. L^p-nuclearity, traces, and Grothendieck-Lidskii formula on compact Lie groups. J. Math. Pures Appl. (9), 102(1):153–172, 2014.

[DR14c] J. Delgado and M. Ruzhansky. Schatten classes on compact manifolds: kernel conditions. J. Funct. Anal., 267(3):772–798, 2014.

[Dui11] J. J. Duistermaat. Fourier integral operators. Modern Birkhäuser Classics. Birkhäuser/Springer, New York, 2011. Reprint of the 1996 edition [MR1362544], based on the original lecture notes published in 1973 [MR0451313].

[Gro55] A. Grothendieck. Produits tensoriels topologiques et espaces nucléaires. Mem. Amer. Math. Soc., 1955(16):140, 1955.

[GW73] S. J. Greenfield and N. R. Wallach. Remarks on global hypoellipticity. Trans. Amer. Math. Soc., 183:153–164, 1973.

[Hör68] L. Hörmander. The spectral function of an elliptic operator. Acta Math., 121:193–218, 1968.

[Hör85a] L. Hörmander. The Analysis of linear partial differential operators, vol. III. Springer-Verlag, 1985.

[Hör85b] L. Hörmander. The Analysis of linear partial differential operators, vol. IV. Springer-Verlag, 1985.

[RT10] M. Ruzhansky and V. Turunen. Pseudo-differential operators and symmetries. Background analysis and advanced topics, volume 2 of Pseudo-Differential Operators. Theory and Applications. Birkhäuser Verlag, Basel, 2010.

[RT13] M. Ruzhansky and V. Turunen. Global quantization of pseudo-differential operators on compact Lie groups, SU(2), 3-sphere, and homogeneous spaces. Int. Math. Res. Not. IMRN, (11):2439–2496, 2013. http://dx.doi.org/10.1093/imrn/rns122.

[RTW14] M. Ruzhansky, V. Turunen, and J. Wirth. Hörmander class of pseudo-differential operators on compact Lie groups and global hypoellipticity. J. Fourier Anal. Appl., 20(3):476–499, 2014.

[See65] R. T. Seeley. Integro-differential operators on vector bundles. Trans. Amer. Math. Soc., 117:207–240, 1965.

[See69] R. T. Seeley. Eigenfunction expansions of analytic functions. Proc. Amer. Math. Soc., 21:734–738, 1969.

[SW71] E. M. Stein and G. Weiss. Introduction to Fourier analysis on Euclidean spaces. Princeton University Press, Princeton, N.J., 1971. Princeton Mathematical Series, No. 32.

[Tof08] J. Toft. Schatten properties for pseudo-differential operators on modulation spaces. In Pseudo-differential operators, volume 1949 of Lecture Notes in Math., pages 175–202. Springer, Berlin, 2008.
[TZ02] J. A. Toth and S. Zelditch. Riemannian manifolds with uniformly bounded eigenfunctions. *Duke Math. J.*, 111(1):97–132, 2002.

[Wai65] S. Wainger. Special trigonometric series in k-dimensions. *Mem. Amer. Math. Soc. No.*, 59:102, 1965.

DEPARTMENT OF MATHEMATICS, IMPERIAL COLLEGE LONDON, 180 QUEEN’S GATE, LONDON SW7 2AZ, UNITED KINGDOM

E-mail address: j.delgado@imperial.ac.uk

DEPARTMENT OF MATHEMATICS, IMPERIAL COLLEGE LONDON, 180 QUEEN’S GATE, LONDON SW7 2AZ, UNITED KINGDOM

E-mail address: m.ruzhansky@imperial.ac.uk