UB-311, a novel UBITh® amyloid β peptide vaccine for mild Alzheimer’s disease

Chang Yi Wanga,b,c,*, Pei-Ning Wangd, Ming-Jang Chiue, Connie L. Finstada, Feng Lina, Shugene Lynnhb, Yuan-Hung Taif, Xin De Fangg, Kesheng Zhaoa, Chung-Ho Hunga, Yiting Tsengc, Wen-Jiun Pengb, Jason Wangb, Chih-Chieh Yuc, Be-Sheng Kuoa, Paul A. Frohnac

aUnited Biomedical, Inc. (UBI), Hauppauge, NY, USA
bUnited Biomedical Inc., Asia (UBI-Asia), Hsinchu, Taiwan
cUnited Neuroscience, Inc. (UNS), Hsinchu, Taiwan
dDepartment of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
eDepartment of Neurology, National Taiwan University Hospital, Taipei, Taiwan

Abstract

Introduction: A novel amyloid β (Aβ) synthetic peptide vaccine (UB-311) has been evaluated in a first-in-human trial with patients of mild-to-moderate Alzheimer’s disease. We describe translational research covering vaccine design, preclinical characterization, and phase-I clinical trial with supportive outcome that advances UB-311 into an ongoing phase-II trial.

Methods: UB-311 is constructed with two synthetic Aβ\textsubscript{1–14}–targeting peptides (B-cell epitope), each linked to different helper T-cell peptide epitopes (UBITh®) and formulated in a Th2-biased delivery system. The hAPP751 transgenic mouse model was used to perform the proof-of-concept study. Baboons and macaques were used for preclinical safety, tolerability, and immunogenicity evaluation. Patients with mild-to-moderate Alzheimer’s disease (AD) were immunized by intramuscular route with 3 doses of UB-311 at weeks 0, 4, and 12, and monitored until week 48. Safety and immunogenicity were assessed per protocol, and preliminary efficacy was analyzed by Alzheimer’s Disease Assessment Scale–Cognitive Subscale (ADAS-Cog), Mini–Mental State Examination (MMSE), and Alzheimer’s Disease Cooperative Study–Clinician’s Global Impression of Change (ADCS-CGIC).

Results: UB-311 covers a diverse genetic background and facilitates strong immune response with high responder rate. UB-311 reduced the levels of Aβ\textsubscript{1–42} oligomers, protofibrils, and plaque load in hAPP751 transgenic mice. Safe and well-tolerated UB-311 generated considerable site-specific (Aβ\textsubscript{1–10}) antibodies across all animal species examined. In AD patients, UB-311 induced a 100% responder rate; injection site swelling and agitation were the most common adverse events (4/19 each). A slower rate of increase in ADAS-Cog from baseline to week 48 was observed in the subgroup of mild AD patients (MMSE ≥ 20) compared with the moderate AD subgroup, suggesting that UB-311 may have a potential of cognition improvement in patients with early stage of Alzheimer’s dementia.

Discussion: The UBITh® platform can generate a high-precision molecular vaccine with high responder rate, strong on-target immunogenicity, and a potential of cognition improvement, which support UB-311 for active immunotherapy in early-to-mild AD patients currently enrolled in a phase-II trial (NCT02551809).

Keywords: UB-311; UBITh® platform; Amyloid β vaccine; FIH clinical trial; Alzheimer’s disease

*Corresponding author. Tel.: 631-273-2828; Fax: 631-273-1717.
E-mail address: cywang@unitedbiomedical.com

http://dx.doi.org/10.1016/j.trci.2017.03.005
2352-8737/© 2017 United Biomedical, Inc. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The amyloid β (Aβ) peptide, central to the “Amyloid Cascade Hypothesis,” is thought to be the pivot for the onset and progression of Alzheimer’s disease (AD), and the toxic forms of oligomers and fibrils are suggested to be responsible for the death of synapses and neurons that leads the pathology of AD and dementia [1,2]. Although recent findings may suggest a dual protective/damaging role for Aβ peptides in AD pathology [3,4], a successful disease-modifying therapy for AD will include products that affect the disposition of Aβ in the brain [5], in which the immunotherapeutic strategy has drawn much attention since the first active immunotherapy was investigated in mice in 1999 [6].

AN-1792 vaccine [7,8], using aggregated full-length Aβ1–42 peptide as immunogen associated with a Th1 adjuvant (QS-21; saponin), was the first immunotherapy tested in AD patients, which generated anti-Aβ antibody responses in <25% of patients with improved memory and decreased level of tau protein in the cerebral spinal fluid of a small subset of patients [7,8], thus providing encouraging results for development of new Aβ vaccines. AN-1792 was discontinued because of acute meningoencephalitis symptoms in 6% of patients, likely caused by autoreactive T-cell activation and Aβ-reactive T-cell infiltration into the central nervous system [7].

Several second-generation Aβ-targeting vaccines were subsequently designed to minimize Aβ-related T-cell inflammation. These include the following: ACC-001 using Aβ1–7 peptide conjugated to diphtheria toxoid protein [9], CAD106 using Aβ1–6 peptide coupled to QB virus-like particle [10], V950 using multivalent Aβ1–15 conjugated to a carrier unknown [11], and affitopes AD01 and AD02 using Aβ mimetics (six amino acids) conjugated to KLH [12]. These vaccines induced variable anti-Aβ antibody titers and responder rates, with most of the immune response directed toward the large carrier molecules. To date, these and related vaccines have not presented convincing clinical efficacy data [13]. Development of AD02, ACC-001, and V950 vaccines have been discontinued for reasons unclear [14]. CAD106, currently in clinical phase-III trial, has completed two phase-II trials reporting acceptable safety and tolerability and evoking a strong serological responses in 80% of patients, and brain PET imaging was suggestive of target engagement [15,16]. Aβ is the principal target of late-stage development programs with relatively few agents in clinical trials for AD, suggesting a need to amplify the drug discovery ecosystem [17].

We describe in this report a novel design of the UBITH® platform-based, fully synthetic Aβ1–14 peptide vaccine (UB-311), preclinical characterization, and a first-in-human (FIH) phase-I clinical study which enrolled 19 patients with mild-to-moderate AD. UB-311 comprises two Aβ1–14–targeting peptides (B-cell epitopes), each linked to different helper T-cell peptide epitopes (UBITH®) as a chimeric peptide to maximize immunogenicity, which is formulated in a Th2-biased delivery system to minimize T-cell inflammatory reactivity. The UB-311 vaccine was safe and well-tolerated, generating strong site-specific (Aβ1–10) antibodies in all patients. Of note, a subgroup of mild AD patients (Mini–Mental State Examination [MMSE] ≥20) showed a positive trend toward cognition improvement.

2. Methods

2.1. Peptide synthesis and vaccine product

UBITH® Aβ1–14 peptide immunogens for the UB-311 vaccine product and Aβ peptide antigens for immunoassays were synthesized using automated solid-phase synthesis, purified by preparative high performance liquid chromatography (HPLC), and characterized by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometer, amino acid analysis, and reverse-phase HPLC. UB-311 comprises two Aβ1–14–targeting peptides (B-cell epitope), each synthetically linked to different helper T-cell peptide epitopes (UBITH®), and formulated in an alum-containing Th2-biased delivery system (US patent no. 9,102,752). The two Aβ immunogens are the cationic Aβ1–14+εK-KKK-MvF5 Th [ISITEIKGVIVHRITELF] and Aβ1–14+εK-HBsAg3 Th [KKKIIITITRITIID] peptides, in equimolar ratio; they were mixed with polyionic CpG oligodeoxynucleotide (ODN) to form stable immunostimulatory complexes of micron-size particulates, to which aluminum mineral salt (Adju-Phos, Brenntag Biosector, Denmark), was added to the final formulation, along with sodium chloride for toxicity and 0.25% 2-phenoxyethanol as preservative. The vaccine product was manufactured under “good manufacture practice” (GMP) conditions at United Biomedical as sponsor (New York).

2.2. FIH phase-I clinical trial with patients of mild-to-moderate Alzheimer’s disease

2.2.1. Patients and study design

An FIH phase-I clinical trial (NCT00965588) with a 24-week intervention phase (Fig. 1) was conducted at National Taiwan University Hospital and Taipei Veterans General Hospital in Taipei, Taiwan. A total of 19 adults with mild-to-moderate AD were enrolled, including 9 males and 10 females with 50–85 years of age (Table 1). Each patient was immunized three times with UB-311 (300 μg/dose) at weeks 0 (baseline), 4, and 12 by intramuscular injection. An observational 24-week extension study (NCT01189084), from weeks 24 to 48, was included to monitor long-term immunogenicity and efficacy with 14 eligible subjects (Fig. 1).

2.2.2. Objectives of the FIH trial

The primary objectives were to evaluate safety and tolerability; the secondary objectives were to assess immunogenicity and the preliminary vaccine efficacy after a three-dose regimen.
Safety assessments included vital signs, physical and neurolog-
ical examinations, laboratory parameters, electrocardiogram,
and brain magnetic resonance imaging (MRI) scans were per-
formed at the initial screening and at the end of the interven-
tional study (weeks 24–26). No abnormal MRI brain imaging
scans were reported. Blood samples were collected periodically
for clinical laboratory analysis, screening, and characterization
of anti-Aβ antibodies, and for in vitro lymphocyte proliferation
and cytokine production.

2.2.3. Preliminary evaluation of efficacy
The effect of the vaccine on cognition responses was
evaluated using three scales: two cognitive scales,
Alzheimer’s Disease Assessment Scale–Cognitive Subscale
(ADAS-Cog) and MMSE; and a global rating scale,
Alzheimer’s Disease Cooperative Study–Clinician’s Global
Impression of Change (ADCS-CGIC). ADAS-Cog and
ADCS-CGIC were performed at weeks 0, 16, 24, and 48;
MMSE was performed at screening visit, and at weeks
16, 24, 36, and 48.

2.2.4. Statistical analyses
For the UB-311 FIH trial, 19 treated patients were re-
cruited to demonstrate initial safety; the probability of
observing at least one case of meningoencephalitis with a
true incidence of 6% was calculated to be 69.1%. Pearson’s
correlation coefficient was calculated for the relationship
assessment between anti-Aβ antibody titer and ADAS-Cog
and MMSE change. For potential heterogeneity in treatment
effects, subgroup analyses were conducted on the efficacy
end points by baseline age and MMSE. Repeated-
measures mixed-effects model was used to estimate the rates
of change (slope) in ADAS-Cog and MMSE scores and to
determine the difference in slope between different sub-
groups. The model terms included baseline efficacy variable,
subgroup variable, visit time, and the interaction between
subgroup variable and visit time. First-order autocorrelation
was used as the covariance matrix based on the Akaike’s in-
formation criterion. All statistical analyses were based on
two-sided tests at a significance level of 0.05 and conducted.

Table 1
Baseline demographics and characteristics of patients with Alzheimer’s
disease (first-in-human trial with UB-311 vaccine)

Baseline demographics and disease assessment*	Value
Age, years	64.0 (8.3)
Mean (SD)	64.0 (51.0–78.0)
Median (range)	
Gender	
Male (%)	9 (47.4)
Female (%)	10 (52.6)
Race	
Asian (%)	19 (100.0)
Other (%)	0 (0.0)
BMI, kg/m²	23.1 (2.1)
Mean (SD)	22.6 (20.0–27.2)
Median (range)	
Time since Alzheimer’s disease diagnosis,	2.4 (2.3)
years	2.0 (0.3–10.7)
Mean (SD)	
ADCS-CGIC	
Borderline (%)	5 (26.3)
Mild (%)	11 (57.9)
Moderate (%)	3 (15.8)
MMSE	19.2 (3.2)
Mean (SD)	19.0 (15.0–25.0)
Median (range)	
HIS	1.4 (1.2)
Mean (SD)	1.0 (0.0–4.0)
CDR	1.1 (0.3)
Mean (range)	1.0 (1.0–2.0)

Abbreviations: SD, standard deviation; BMI, body mass index; ADCS-
CGIC, Alzheimer’s Disease Cooperative Study–Clinical Global Impression
of Change; MMSE, Mini–Mental State Examination; HIS, Hachinski
Ischemic Score; CDR, Clinical Dementia Rating.

*The enrolled patients were free of psychiatric, medical or substance
abuse problems, history of severe systemic, autoimmune disease or anaphy-
laxis, hepatic insufficiency, poor control of blood sugar, positive human im-
munodeficiency virus, hepatitis C virus antibodies, or hepatitis B surface
antigen enzyme immunoassay test results. Patients receiving stable treat-
ment with cholinesterase inhibitors were not excluded from the trial.
with R version 2.14.1 (R Foundation for Statistical Computing, Vienna, Austria).

2.3. Supplementary methods online

Supplementary methods and study results are provided online to support specific preclinical studies in animals and additional clinical data: (1) experimental animals for immunogenicity, pharmacology, and toxicity studies; (2) hAPP751 transgenic mouse model study; (3) enzyme-linked immunosorbent assay (ELISA) test for detection of antibodies to synthetic peptides; (4) specificity analyses of anti-Aβ antibodies by epitope mapping; (5) solid-phase ELISA for detection of Aβ antigens; (6) immunohistochemical analysis of human tissue cross-reactivity; (7) Biochemical extraction of Aβ from hAPP751 mouse brain tissues; (8) lymphocyte proliferation and cytokine analyses; and (9) dot-blot analysis of Aβ forms reactive with human antisera.

3. Results

3.1. High levels of anti-Aβ antibody response and responder rate

UB-311 comprises two peptide immunogens, each with an N-terminal Aβ1-14 peptide, synthetically linked through an amino acid spacer to different T helper (Th) cell peptides (UBIThepitopes) derived from two pathogen proteins, hepatitis B surface antigen (Supplementary Fig. 1A), and measles virus fusion protein (Supplementary Fig. 1B).

The vaccine product, formulated in CpG ODN and alum-containing Th2-biased delivery system, could maintain long-term chemical stability as demonstrated after storage for 3 years at 2°C–8°C (Supplementary Fig. 1C). Each peptide was purified to a well-defined molecular entity with an exact mass close to its respective theoretical value (Supplementary Figs. 1D and 1E).

![Graph A](image1)

Fig. 2. Serum anti-Aβ antibody titers assayed by ELISA and preferable targeted Aβ species visualized by dot plot after UB-311 immunization in AD patients. (A) Mean antibody response during the 24-week interventional study (solid line) in 19 AD patients treated with UB-311; 14 of 19 patients (dashed line) were followed up in an additional 24-week observational study, whose mean ADAS-Cog score was 4.9 (improvement). The mean baseline titer (pretreatment) was 1.0 log\textsubscript{10}; and 4 weeks after last vaccine boost at week 16, the titer peaked at 2.7 log\textsubscript{10} (range: 1.8–3.7 log\textsubscript{10}). At week 48, all patients had decreasing but still positive antibody titers, measured by Aβ1-28 ELISA test. At week 16, serum samples recognized Aβ1-42 monomers (B) and oligomers (C); preimmune serum samples collected at week 0 had anti-Aβ1-42 antibody levels below quantification limit (not shown on log scale), except subjects P109 (monomer) and P108 (oligomer). (D) At week 16, analysis of serum dot plot (left panel), flanked by the positive control 6E10 mAb, reveals that the vaccine-induced anti-Aβ antibodies bind preferentially to Aβ fibrils, followed by oligomers, and the least to monomers; the densitometric measures (right panel) for the three Aβ species are the mean scales from three representative AD subjects, P105, P108, and P206. Abbreviations: AD, Alzheimer’s disease; ADAS-Cog, Alzheimer’s Disease Assessment Scale–Cognitive Subscale; ELISA, enzyme-linked immunosorbent assay.
Table 2
Site specificity of anti-Aβ antibody in patients by peptide epitope mapping

Peptide sequence	Aβ position	Subjects																		
		P101	P102	P103	P104	P105	P106	P107	P108	P109	P201	P202	P203	P204	P205	P206	P207	P208	P209	P210
TEEISEVKMD	−9 to 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
EEISEVKMDA	−8 to 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
EISEVKMDE	−7 to 3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
ISEVKMDEAF	−6 to 4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
SEVKMDEFR	−5 to 5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
EVKMDAEFRH	−4 to 6	0	0	0	0	0	0	0	0	0	0	5	0	0	0	0	0	0	0	
VKMDAEFRHD	−3 to 7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
KMDAEFRHDS	−2 to 8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	52	
MDAEFRHDSG	−1 to 9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	121	
DAEFRHDSGYE	1–10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
AEFRHDSGYE	2–11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
EFRHDSGYEV	3–12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
FRHDSGYEVH	4–13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
RHDSGYEVHH	5–14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
HDSGYEVHHQ	6–15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
DSGYEVHIHQK	7–16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
SGYEVHIQKL	8–17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
GYEYHIQKLV	9–18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
YEVHIQKLVF	10–19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
EVHIQKLVF	11–20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
VHIQKLVF	12–21	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
HHQKLVF	13–22	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
HQQKLVF	14–23	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
QKLVF	15–24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
DAEFRHDSGYE	28–31	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

NOTE. The in vitro anti-Aβ antibody epitope mapping is a competitive binding inhibition enzyme-linked immunoassay for determination of binding residues of anti-Aβ antibody within the target region; the method is described in Section 2. The N-terminal Aβ1–10 (DAEFRHDSGY) peptide (given in bold) was identified to react most strongly with the serum samples collected on week 16 from each of the 19 patients immunized with UB-311; the results show 100% responder rate after immunization at weeks 0, 4, and 12. The numbers represent the dilution factor of each serum sample that corresponds to the 50% binding inhibition (IC50) by each of the 24 Aβ 10-mer peptides.
The unique design with UBITh® peptide epitopes (MvF5 and HBsAg3) allows for maximal coverage of the major histocompatibility complex class II binding motifs that can facilitate a high responder rate among the patient population with diverse genetic backgrounds (Supplementary Fig. 2). Of interest, in B-cell antigenicity, UB-311 elicited a strong antibody response that was exclusively directed to the vaccine target Aβ_1–14 but not to the UBITh® epitopes, as shown representatively in guinea pigs (Supplementary Table 1). UB-311 can elicit rapid recall immune responses as shown in vaccinated baboons after a long rest period of 72 weeks [18].

UB-311 generated high immune responses with 100% responder rate in diverse animal species (Supplementary Table 2) and durable, high anti-Aβ antibody response (Fig. 2A) in all of 19 AD patients in the FIH trial (Figs. 2B and 2C; Table 2). UB-311 generated, over-the-threshold, a mean anti-Aβ antibody titer of 1.7 \(\log_{10} \) at week 8 after two immunizations (weeks 0 and 4); the immune response peaked with 2.7 \(\log_{10} \) at week 16 (after booster injection at week 12) and remained elevated at week 48 (Fig. 2A).

3.2. Site-specificity epitope mapping

The UBITh® platform can generate a high-precision molecular vaccine as UB-311 has been shown, with immunized sera from baboons [18], to bind a precise peptide sequence DAEFRHDSGY, which represents the N-terminal 10-mer peptide of the full-length Aβ_1–42. In an additional competitive ELISA (Supplementary Table 3), significant reactions were seen with Aβ_1–28 and Aβ_1–10 peptides only (equivalent high inhibition level), but not with adjoining residue masking “D” (Aβ_1–11) or N-terminal “D” removed (Aβ_2–11, Aβ_3–12) or nonimmunogen peptide Aβ_17–43. The exactness of binding-site specificity at DAEFRHDSGY was further confirmed by 10-mer epitope mapping using sera from all 19 patients with AD (Table 2).

Table 3
Phase-I treatment-emergent adverse events in 19 patients with AD

System organ class*	Preferred term	No. of subjects = 19
Gastrointestinal disorders	Toothache	1 (5.3%)
General disorders and administration site conditions	Vomiting	1 (5.3%)
	Injection site hemorrhage	1 (5.3%)
	Injection site pain	1 (5.3%)
	Injection site swelling	4 (21.1%)
Infections and infestations	Herpes zoster	1 (5.3%)
	Upper respiratory tract infection	2 (10.5%)
Injury, poisoning, and procedural complications	Burns first degree	1 (5.3%)
	Open wound	1 (5.3%)
Investigations	Alanine aminotransferase increased	3 (15.8%)
	Aspartate aminotransferase increased	2 (10.5%)
	Autoantibody positive	2 (10.5%)
	Neutrophil count increased	1 (5.3%)
	Neutrophil percentage increased	1 (5.3%)
	Red blood cell sedimentation rate increased	2 (10.5%)
	White blood cell count increased	1 (5.3%)
Metabolism and nutrition disorders	Decreased appetite	1 (5.3%)
	Hyperglycemia	1 (5.3%)
Nervous system disorders	Poor quality sleep	1 (5.3%)
	Dizziness	1 (5.3%)
Psychiatric disorders	Agitation	4 (21.1%)
	Obsessive-compulsive disorder	1 (5.3%)
Renal and urinary disorders	Genitourinary tract infection	1 (5.3%)
	Nephrolithiasis	1 (5.3%)
Reproductive system and breast disorders	Epididymitis	1 (5.3%)
Respiratory, thoracic and mediastinal disorders	Cough	2 (10.5%)
Skin and subcutaneous tissue disorders	Herpes zoster	1 (5.3%)
	Cellulitis	1 (5.3%)
	Tinea cruris	1 (5.3%)

Abbreviation: AD, Alzheimer’s disease.

NOTE. Summary of treatment-emergent adverse events (AEs). The MedDRA system was used to code the AEs.

*The AEs were summarized descriptively by system organ class and preferred terms. AEs were classified into pretreatment and treatment-emergent AEs according to the time of occurrence. Treatment-emergent AEs, which were definitely, probably, or possibly related to the test drug, were regarded as treatment-related AEs. There were a total of 16 treatment-related AEs in 9 subjects (47.4%); the treatment-related AEs are indicated in **bold type**.

1Laboratory evaluation.
3.3. Preferential Aβ forms targeted by the vaccine

At week 16 after vaccination in AD patients where peak anti-Aβ responses were observed (Fig. 2A), antisera on ELISA was found to recognize Aβ1–42 monomers (Fig. 2B) and oligomers (Fig. 2C). Further analysis with dot blot (Fig. 2D) reveals that the vaccine-induced, anti-Aβ IgGs (purified from antisera) bind preferentially to Aβ fibrils, followed by oligomers, and the least to monomers.

3.4. Safety features in animals and human subjects

In UB-311-treated hAPP751 transgenic mice and cynomolgus macaques, no evidence was found for microglial cell activation (anti-CD11b antibody marker) or for T-cell infiltration (anti-CD3 antibody marker) of brain tissue; no changes in lymphocyte proliferation or upregulation of cytokine secretion were noted in macaque peripheral blood mononuclear cells (PBMCs) incubated with Aβ1–14 peptide [18]. In the FDA-approved panel of 30 normal adult human tissues stained with purified guinea pig anti-Aβ1–14 IgG, all tissues were negative other than some positive Aβ plaques and cerebral vessels in some brain samples from elderly individuals (Supplementary Fig. 3), indicative of no nonspecific binding by immunoglobulins generated after UB-311 vaccination.

UB-311 was safe and well tolerated in the 19 AD patients of FIH trial. Injection site swelling (4/19, 21%), agitation (4/19, 21%), and transient increase in alanine aminotransferase levels in blood (3/19, 16%) were the most common adverse effects. Treatment-emergent adverse events in 19 AD patients were reported in Table 3. No significant changes were notable with the electrocardiograms, brain magnetic resonance imaging scans, and neurology examination. Laboratory measures of hematological tests, blood clinical chemistry tests, and coagulation factors showed stable trends throughout the study period. No change of lymphocyte proliferation responses (Supplementary Table 4) or cytokine upregulation (Supplementary Table 5) was observed in the presence of Aβ1–14 or Aβ1–28 peptides. Of special note, no evidence of meningoencephalitis was recorded during or after the study.

3.5. Functional immunogenicity in animals and human subjects

UB-311 reduced plaque size in the cortex and hippocampus of hAPP751 aged responder transgenic mice (Supplementary Fig. 4A). The reducing effects correlated with the lowering of Aβ1–42 levels in brain tissue extracts, in which young responder transgenic mice were found to have fewer protofibrils (Triton X-100 fraction) and fewer large oligomers and
fibrils (sodium dodecyl sulfate [SDS] fraction) compared with nontreated or placebo control animals (Supplementary Fig. 4B).

In cynomolgus macaques, UB-311 promoted brain-to-blood Aβ efflux as demonstrated with increased plasma Aβ1–40 levels in the presence of elevated anti-Aβ1–14 antibody levels (Supplementary Table 6); Aβ1–40 levels remained steady state in the cerebral spinal fluid [18]. This was also observed in AD patients, although anti-Aβ1–14 antibody titers were much higher in the macaques after six vaccine doses than those in human subjects after three immunizations. Serum Aβ1–40 levels from 9 of 12 patients were measured for net change; anti-Aβ1–14 antibody titers greater than 2.4 log10 in serum showed measurable efflux (Supplementary Table 7). Of note, serum antibodies from all AD patients could bind Aβ1–42 monomers and oligomers (Figs. 2B and 2C), an activity that may lead to reduction of soluble oligomers in the brain.

3.6. Potential efficacy for mild Alzheimer’s disease

The UB-311 vaccine regimen of three immunizations (300 μg/dose at weeks 0, 4, and 12) by intramuscular route and monitored through week 24 (19 patients in interventional study phase) and week 48 (14 patients in observational extension study phase) (Fig. 1) was safe, well-tolerated, immunogenic and showed encouraging ADAS-Cog scores in a subset of patients. Observed in the 14 patients, ADAS-Cog scores increased by 3.2 points, MMSE scores decreased by 2.2 points, and about 39% of patients showed improvement or no change in ADCS-CGIC scores derived based on the clinician’s perception of the patient’s change in global clinical status over time. Possible confounder effects in the subgroups based on the age component, baseline MMSE scores, or gender were further analyzed in the post hoc subgroup analyses (Fig. 3). A significantly lower rate of change in ADAS-Cog from baseline to week 48 was observed in the subgroup of mild AD patients with baseline MMSE ≥ 20 (P = .0002, while P < .0083 is considered significant after adjusted for multiple comparisons with Bonferroni correction) (Fig. 3B), whereas there is no statistically significant difference in the rate of change of either ADAS-Cog or MMSE scores when grouped by age or gender of the subjects (Figs. 3A, 3C, 3D, and 3F). This suggests that UB-311 may have a potential of cognition improvement in patients with early stage of Alzheimer’s dementia.

4. Discussion

By design, UB-311 vaccine has several safety features. First, site-specific immunogenicity is directed to the N-terminus (Aβ1–10) (Table 2) and is devoid of intrinsic Aβ-specific T-cell epitopes located between amino acids 16–33 [19], the Aβ T-cell sites possibly responsible for the adverse T-cell autoimmunity in the case of AN-1792 (Aβ1–42) vaccine [20]. Second, UB-311 is formulated in a Th2-biased delivery system containing CpG ODN, known to favor generalized B-cell mitogenicity with a preference for regulatory Th2 responses rather than Th1 proinflammatory T-cell responses (US patent number 8,088,388); and alum is known to induce Th2-polarized immune responses [21].

The meningoencephalitis associated with AN-1792 vaccine may have also been exacerbated by a Th1-biased adjuvant composition that included QS-21 (saponin) adjuvant and polysorbate-80 surfactant in the formulation [8]. Thus, it is important to design a vaccine product that favors Th2-only while inhibiting without abrogating Th1 immunity [22,23]. Of note, Alzheimer’s disease represents a state of unhealthy aging, termed as “inflamm-aging,” marked by a decline of Th2 responses and chronic upregulation of Th1 proinflammatory mediators such as IL-6, TNF-α, and C-reactive protein in the brain [24,25] and by an inflammation-driven breakdown of blood brain barrier beginning in the hippocampus that could contribute to cognitive impairment [26].

UB-311 is safe and well tolerated in the chronic toxicity study in cynomolgus macaques and in FIH trial with AD patients, where no meningoencephalitis was reported. Of note, neither microglial cell activation nor T-cell infiltration was observed in brain tissue–staining studies with hAPP751 transgenic mice and cynomolgus macaques [18]. Furthermore, lack of PBMC proliferation responses and cytokine secretion in AD patients (Supplementary Tables 4 and 5) indicate that UB-311 did not generate inflammatory anti-self, cell-mediated immune responses.

The two UBITh® T-helper cell peptide epitopes, MvF5 Th and HBsAg3 Th, could maximize both anti-Aβ antibody titers and responder rates without generating significant anti-UBITH® antibody responses (Supplementary Table 1). The epitopes are expected to provide broader and stronger T-cell help than the incidental intrinsic T-helper epitopes of aggregated Aβ1–42, which may improve immunogenicity in an elderly population. This was observed that UB-311 generated a 100% responder rate for all AD patients in FIH trial (Figs. 2B and 2C; Table 2), and good antibody responses sustained throughout the 48-week study period (Fig. 2A). One additional important feature of the UBITh® platform–based vaccine design is that the responses to chimeric UBITh® anti-self-immunogens are reversible and can be maintained by booster immunizations [27–30].

Achieving a 100% responder rate is rare in the vaccine development history. AN-1792 vaccine in AD patients (with QS-21 as adjuvant) had a responder rate of <25% [7,8] but increased to 60% after additional injections with polysorbate-80 added in the formulation [31]. The CAD106 (Aβ1–6) vaccine with a bacteriophage Qβ carrier protein had improved anti-Aβ antibody response in 82% of AD patients but only for a short period with anti-Qβ antibodies still detected [10]. Overall, in contrast with UB-311, the current second-generation Aβ vaccines were reported with a 20%–80% responder rate, including ACC-001, CAD106, V950, affitopes, AD01, and AD02 [9–12].
The goal for active immunotherapy is to induce antibodies specific for both Aβ monomers and oligomers. Aβ peptides circulate in blood, cerebrospinal fluid, and brain interstitial fluid mainly as soluble Aβ1–40 [32,33]. Senile plaques contain both Aβ1–40 and Aβ1–42 [34], while vascular amyloid is predominantly the shorter Aβ1–40. Measurement of plasma Aβ1–40 could thus serve as a pharmacodynamic marker. The observation of plasma Aβ1–40 in cynomolgus macaques and human subjects (Supplementary Tables 6 and 7) suggests that UB-311 may operate through the mechanism of promoting efflux of Aβ peptides from brain, supporting the “amyloid sink hypothesis” [35].

In AD patients, UB-311 can generate antibodies able to bind both Aβ1–42 monomers and oligomers (Figs. 2B and 2C); and, in fact, the antibodies preferentially bind to fibrils, followed by oligomers, and weakly to monomers per dot-blot analysis (Fig. 2D). This is of considerable clinical interest as amyloid oligomers, rather than plaques, play a more important role for the disease development [36,37]; and Aβ1–42 oligomers are most toxic to neurons compared to Aβ1–42 monomers or amyloid plaques [1,2,38]. Aβ oligomers can contribute to AD pathogenesis by affecting synaptic plasticity and inhibition of long-term potentiation [38]. Of note, Aβ aggregates can cause certain inflammatory responses that lead to formation of tau aggregates and neurofibrillary tangles [39]; and oligomeric Aβ-induced IL-1β secretion by microglia may also augment neuroinflammation and increase neuronal cell death [40].

The phase-I observations suggest that UB-311 immunization may have a potential of cognition improvement in patients with mild AD. Compared with patients with moderate AD, those with mild AD (MMSE ≥ 20) revealed a stable trend in ADAS-Cog scores with a significant slowdown in deterioration and a slower worsening in MMSE (Fig. 3B). These findings indicate that patients with mild AD have a better cognitive response to UB-311 (P = .0002), and UB-311 may have a positive therapeutic effect in patients with early stage of Alzheimer’s disease.

The last two decades have seen robust development of disease-modifying, passive, and active anti-Aβ immunotherapy [5,13,14,41,42]; however, there has been very limited convincing clinical benefits of cognitive improvement [13,38]. Bapineuzumab [43] and solanezumab [44] failed to improve cognition or functional ability in patients with mild-to-moderate AD. Bapineuzumab was limited to lower doses, which were believed to be suboptimal for efficacy, due to high incidence of amyloid-related imaging abnormalities–edema [45]. Although potential benefits of both antibodies were observed in patients with mild dementia when stratified by disease severity, solanezumab in the recent EXPEDITION3 phase-III trial disappointingly failed to meet the primary end point in mild AD patients (http://www.medscape.com/viewarticle/873143?src=wnl_edit_tpal).

The chance to overcome mild AD may still exist. Aducanumab in a phase-Ib trial has shown a tantalizing but tenuous evidence that the mAb dose-dependently reduces Aβ plaque that correlates with cognitive improvement [46]. Unlike solanezumab that binds tightly to Aβ monomers but not to the more toxic soluble oligomers or insoluble fibrils [47], aducanumab selectively binds aggregated forms of Aβ, including soluble oligomers and insoluble fibrils, but does not bind monomers [48]. The cognitive efficacy by aducanumab implies that a similar positive effect may be achieved via active immunotherapy. UB-311 immunotherapy in patients with mild AD patients (Fig. 3B) may be mediated through a target-binding mechanism similar to that by aducanumab, that is, preferential binding to oligomers (Fig. 2C) and fibrils (Fig. 2D). UB-311 binds to Aβ monomers as well (Fig. 2B). Overall, the potential of cognition improvement observed with aducanumab [46] also support the amyloid cascade theory [39,48] including Aβ-induced tau pathology that underlies the Alzheimer’s disease [49,51].

Based on the favorable results of the UB-311 phase I trial (24-week treatment plus 24-week follow-up) in safety and preliminary efficacy, a randomized, double-blind, placebo-controlled, 78-week multicenter phase IIa trial (identifier no.: NCT02551809) was initiated in 2015 to characterize longer term safety, tolerability, immunogenicity, and efficacy. After the initial 0, 4, and 12 week priming doses, additional booster doses are given at 12-week or 24-week intervals in 45 patients with mild AD and a positive Aβ PET imaging scan at baseline. The phase-IIa trial is expected to conclude in 2018. No serious drug-related adverse events have been reported to date.

Acknowledgments

The authors wish to thank the study patients and their family members and the clinical investigators P.-N.W. and M.-J.C. and their site personnel. The FIH studies reported in this study were supported by United Biomedical, Inc., Hauppauge, New York, United Biomedical, Inc., Asia, Taiwan, and the Ministry of Economic Affairs Grant, Taiwan (grant proposal: UBITh AD Immunotherapeutic Vaccine [UB-311] for phase-I clinical trial; the fund no. 98-EC-17-A-20-1-0014). The authors also want to thank Dr. Ruby Chen at Academia Sinica whose laboratory performed the dot-blot analytical assay.

Authors’ contributions: C.Y.W. conceived the design of the peptide vaccine and directed the UB-311 vaccine program. P.-N.W. and M.-J.C. were principal investigators and contributed equally to the clinical trial. C.L.F., F.L., X.D.F., K.Z., C.H.H., W.-J.P., J.W., S.L., and C.-C.Y. designed the peptide vaccine and directed the UB-311 vaccine program. P.-N.W. and M.-J.C. were principal investigators and contributed equally to the clinical trial. C.L.F., F.L., X.D.F., K.Z., C.H.H., W.-J.P., J.W., S.L., Y.-H.T., Y.T., and C.-C.Y. designed and performed the experiments and also collected and analyzed output data. C.Y.W., C.L.F., B.S.K., and P.A.F. wrote the article. All authors discussed the results and implications and commented on the article at all stages. All authors contributed extensively to the work presented in this study.

C.Y.W., C.L.F., F.L., X.D.F., K.Z., W.-J.P., J.W., S.L., C.H.H., Y.-H.T., Y.T., C.-C.Y., B.-S.K., and P.A.F. are salary- and stockholders of the respective companies within the United Biomedical, Inc. group, the
References

[1] Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 2002; 297:353–6.

[2] Kayed R, Lasagna-Reeves CA. Molecular mechanisms of amyloid oligomers toxicity. J Alzheimers Dis 2013;33:567–78.

[3] Kumar DK, Choi SH, Washicosky KJ, Eimer WA, Ghofrani J, Lefkowitz A, et al. Amyloid-β peptide protects against microbial infection in mouse and worm models of Alzheimer’s disease. Sci Transl Med 2016;8:340ra72.

[4] Soscia SI, Kirby JE, Washicosky KJ, Tucker SM, Ingelsson M, Hyman B, et al. The Alzheimer’s disease-associated amyloid-beta-protein is an antimicrobial peptide. PLoS One 2010;5:e9505.

[5] Qian XX, Hamad B, Dias-Lalacca G. The Alzheimer disease market. Nat Rev Drug Discov 2015;14:675–6.

[6] Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, Guido T, et al. Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 1999;400:173–7.

[7] Orgogozo JM, Gilman S, Dartigues JF, Laurent B, Puel M, Kirby LC, et al. Subacute meningoencephalitis in a subset of patients with AD after Abeta42 immunization. Neurology 2003;61:46–54.

[8] Gilman S, Koller M, Black RS, Jenkins L, Griffith SG, Fox NC, et al. Clinical effects of Abenta immunization (AN1792) in patients with AD in an interrupted trial. Neurology 2005;64:1553–62.

[9] Pasquier F, Sadowsky C, Holstein A, Leterme GL, Peng Y, Jackson N, et al. Two phase 2 multiple ascending-dose studies of vautide cridificar leftkowitz A, et al. Amyloid-peptide protects against microbial infection in mouse and worm models of Alzheimer's disease. Sci Transl Med 2016;8:340ra72.

[10] Winblad B, Andreasen N, Minthon L, Floesser A, Imbert G, Dumortier T, et al. Safety, tolerability and antibody response of active Aβ immunotherapy with CAD106 in patients with Alzheimer’s disease: randomised, double-blind, placebo-controlled, first-in-human study. Lancet Neurol 2012;11:597–604.

[11] Savage MJ, Wu G, Mc Campbell A, Wessner KR, Citron M, Ling X, et al. A novel multivalent Abeta peptide vaccine with preclinical evidence of a central immune response that generates antiserum recognizing a wide range of Abeta peptide species. Alzheimers Dement 2010;6:S142. Abstract No. O3-07-03.

[12] Hendrix S, Ellison N, Stanworth S, Tierney L, Mattner F, Schmidt W, et al. Methodological aspects of the phase II study AFF006 evaluating amyloid-beta-targeting vaccine AFFITOPE AD02 in early Alzheimer’s disease—prospective use of novel composite scales. J Prev Alzheimers Dis 2015;2:91–102.

[13] Marciani DJ, Ellison N, Stanworth S, Tierney L, Mattner F, Schmidt W, et al. A retrospective analysis of the Alzheimer’s disease vaccine program—the critical need for new development strategies. J Neurochem 2016;137:678–700.

[14] Agadjanyan MG, Petrovsky N, Ghochikyan A. A fresh perspective from immunologists and vaccine researchers: active vaccination strategies to prevent and reverse Alzheimer’s disease. Alzheimers Dement 2015;11:1246–59.

[15] Farlow MR, Andreasen N, Riviere ME, Vostar I, Vitaliti A, Sovago J, et al. Long-term treatment with Aβ immunotherapy with CAD106 in mild Alzheimer’s disease. Alzheimers Res Ther 2015;7:23.

[16] Vandenberghe R, Riviere ME, Caputo A, Sovago J, Maguire RP, Farlow M, et al. Active Aβ immunotherapy CAD106 in Alzheimer’s disease: A phase 2b study. Alzheimers Dement (N Y) 2017;3:10–22.

[17] Cummings J, Morstort T, Lee G. Alzheimer’s drug development pipeline: 2016. Alzheimers Dement (N Y) 2016;2:222–32.

[18] Wang CY, Finstad CL, Walfield AM, Sia C, Sokoll KK, Chang TY, et al. Site-specific UBITh epitope vaccine induced strong Th2-type anti-Abeta antibody response with Alum to Qual A adjuvant switch. Vaccine 2006;24:2275–82.

[19] Pellicano M, Bulati M, Buffa S, Barbagallo M, Di Prima A, Misiano G, et al. Systemic immune responses in Alzheimer’s disease: in vitro dynamics of Abeta immune response. J Alzheimers Dis 2010;20:841–852.

[20] Greenberg SM, Bacskai BJ, Hyman BT. Alzheimer disease’s double epitope vaccine induced strong Th2-type anti-Abeta antibody response with Alum to Qual A adjuvant switch. Vaccine 2006;24:2275–82.

[21] Ghochikyan A, Mkrtichyan M, Petrushina I, Movsesyan N, Karapetyan A, Cribbs DH, et al. Prototype Alzheimer’s disease epitope vaccine induced strong Th2-type anti-Abeta antibody response with Alum to Qual A adjuvant switch. Vaccine 2006;24:2275–82.
mononuclear cell activation and cytokine production. J Alzheimers Dis 2010;21:181–92.

[23] Marciani DI. Alzheimer’s disease vaccine development: a new strategy focusing on immune modulation. J Neuroimmunol 2015;287:54–63.

[24] Giunta B, Fernandez F, Nikolic WV, Obregon D, Rapo E, Town T, et al. Inflammaging as a prodrome to Alzheimer’s disease. J Neuroinflammation 2008;5:51.

[25] Reale M, Iarlori C, Feliciani C, Gambi D. Peripheral chemokine receptors, their ligands, cytokines and Alzheimer’s disease. J Alzheimers Dis 2008;14:147–59.

[26] Montagne A, Barnes SR, Sweeney MD, Halliday MR, Sagare AP, Zhao Z, et al. Blood-brain barrier breakdown in the aging human hippocampus. Neuron 2015;85:296–302.

[27] Wang CY, Chang TY, Walfield AM, Ye J, Shen M, Chen SP, et al. Effective synthetic peptide vaccine for foot-and-mouth disease in swine. Vaccine 2002;20:2603–10.

[28] Wang CY, Shen M, Tan G, Fang XD, Ye J, Shen F, et al. Synthetic AIDS vaccine by targeting HIV receptor. Vaccine 2002;21:89–97.

[29] Wang CY, Walfield AM, Fang XD, Hammerberg B, Ye J, Li ML, et al. Synthetic IgE peptide vaccine for immunotherapy of allergy. Vaccine 2003;21:1580–90.

[30] Wang CY, Walfield AM. Site-specific peptide vaccines for immunotherapy and immunization against chronic diseases, cancer, infectious diseases, and for veterinary applications. Vaccine 2005;23:2049–56.

[31] Bayer AJ, Bullock R, Jones RW, Wilkinson D, Paterson KR, Jenkins L, et al. Evaluation of the safety and immunogenicity of synthetic Abeta42 (AN1792) in patients with AD. Neurology 2005;64:94–101.

[32] Ghiso J, Frangione B. Amyloidosis and Alzheimer’s disease. Adv Drug Deliv Rev 2002;54:1539–51.

[33] Zlokovic BV. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci 2011;12:723–38.

[34] Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci U S A 1985;82:4245–9.

[35] DeMattos RB, Bales KR, Cummins DJ, Dodart JC, Paul SM, Holtzman DM. Peripheral anti-Abeta antibody alters CNS and plasma Abeta clearance and decreases brain A beta burden in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 2001;98:8850–5.

[36] Zhao LN, Long H, Mu Y, Chew LY. The toxicity of amyloid oligomers. Int J Mol Sci 2012;13:7303–27.

[37] Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cottman CW, et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 2003;300:486–9.

[38] Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith J, et al. Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med 2008;14:837–42.

[39] Stancu IC, Vasconcelos B, Terwel D, Dewachter I. Models of β-amyloid induced Tau-pathology: the long and “folded” road to understand the mechanism. Mol Neurodegener 2014;9:51.

[40] Parajuli B, Sonobe Y, Horiuchi H, Takeuchi H, Mizuno T, Suzumara A. Oligomeric amyloid beta induces IL-1β processing via production of ROS: implication in Alzheimer’s disease. Cell Death Dis 2013;4:e975.

[41] Wisniewski T, Goni F. Immunotherapeutic approaches for Alzheimer’s disease. Neuron 2015;85:1162–76.

[42] Wisniewski T, Drummond E. Developing therapeutic vaccines against Alzheimer’s disease. Expert Rev Vaccines 2016;15:401–15.

[43] Salloway S, Sperling R, Fox NC, Blennow K, Klunk W, Raskind M, et al. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. Neurology 2015;84:2723–38.

[44] Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith J, et al. Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med 2008;14:837–42.

[45] Reiman EM. Attack on amyloid plaques in Alzheimer’s disease. Expert Rev Neurotherapeutics 2012;12:110–20.

[46] Bouter Y, Lopez Noguerola JS, Tucholla P, Crespi GA, Parker MW, Wiltfang J, et al. Abeta targets of the biosimilar antibodies of Bapineuzumab, Crenezumab, Solanezumab in comparison to an antibody against N-truncated Abeta in sporadic Alzheimer disease cases and mouse models. Acta Neuropathol 2015;130:713–29.

[47] Seifert H, et al. Phase 3 solanezumab trials: secondary outcomes in mild Alzheimer’s disease patients. Alzheimers Dement 2016;12:110–20.

[48] Sevigny J, Chiao P, Bussiere T, Weinreb PH, Williams L, Maier M, et al. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature 2016:537:50–6.

[49] Bouter Y, Lopez Noguerola JS, Tucholla P, Crespi GA, Parker MW, Wiltfang J, et al. Abeta targets of the biosimilar antibodies of Bapineuzumab, Crenezumab, Solanezumab in comparison to an antibody against N-truncated Abeta in sporadic Alzheimer disease cases and mouse models. Acta Neuropathol 2015;130:713–29.

[50] Reiman EM. Attack on amyloid-β protein. Nature 2016;537:36–7.

[51] Zempel H, Luedtke J, Kumar Y, Biermat J, Dawson H, Mandelkow E, et al. Amyloid-β oligomers induce synaptic damage via tau-dependent microtubule severing by TTLL6 and spastin. EMBO J 2013;32:2920–37.

[52] Seward ME, Swanson E, Norambuena A, Reimann A, Cochran JN, Li R, et al. Amyloid-β signals through tau to drive ectopic neuronal cell cycle re-entry in Alzheimer’s disease. J Cell Sci 2013;126:1278–86.

[53] Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith J, et al. Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med 2008;14:837–42.

[54] Stancu IC, Vasconcelos B, Terwel D, Dewachter I. Models of β-amyloid induced Tau-pathology: the long and “folded” road to understand the mechanism. Mol Neurodegener 2014;9:51.