Molecular fingerprinting of bovine mastitis-associated *Staphylococcus aureus* isolates from India

Madhavi Annamanedi1, P. Sheela2, Srinivasaiah Sundareshan2, Shrikrishna Isloor3, Priya Gupta1, Pagala Jasmeen1, Madhuranjana Gargi1, Sathi Mallick1 & Nagendra R. Hegde1

Staphylococcus aureus is a major etiological agent of clinical and subclinical bovine mastitis. Owing to the mostly backyard dairy practices, we hypothesized that genetic diversity among mastitis-associated *S. aureus* from India would be high, and investigated 166 isolates obtained mostly from the Southern State of Karnataka, but also from a few other states. The results revealed (a) 8 to 13 fragments in pulsed-field gel electrophoresis (PFGE), forming 31 distinct patterns, and (b) 34 spa types, of which three (t17680, t18314, and t18320) were newly identified. Multi-locus sequencing typing (MLST) identified 39 sequence types (STs), with ST2454 (34.4%) and ST2459 (24%) being the most commonly represented, which clustered to clonal complexes (CC) CC9 and CC97, respectively; 12 STs were newly identified. Thirty-four (20.5%) of the 166 isolates displayed oxacillin resistance. On the other hand, whereas none were *mec*+ C, 44 (26.5%) isolates were *mec* A+, with a predominance of SCCmecIVb (26/32 isolates, others being untypeable); 24 isolates (14.46%) were oxacillin-susceptible methicillin-resistant *S. aureus* (OS-MRSA; *mec* A but OS). Integrated analysis revealed that CC9-ST2454+ and CC97-ST2459-SCCmecIVb were the predominant MRSA, although the distribution of CC9 and CC97 was similar between methicillin-resistant and -susceptible isolates. By PCR, 56.25%, 28.75% and 47.5% of the 166 isolates were positive for *hlg*, *tsst* and *pvl* genes, respectively. Our results, for the first time describe the application of a combination of various molecular methods to bovine mastitis-associated *S. aureus* isolates from India, corroborate the worldwide distribution of CC97 and CC9, and suggest pathogenic potential of the isolates.

Infections and dynamics of disease caused by the same pathogen differ from host to host and from one geographical location to another. Some clonal lineages of a particular pathogen tend to be specific to a host, and others appear to transmit easily between hosts. To gain knowledge about similarities among strains, sources of infection, modes of transmission and carriage of virulence and resistance genes, one can employ molecular typing methods which can reveal genetic diversity of the isolates of a particular pathogen. *Staphylococcus aureus* is found associated with a variety of human infections, with some evidence for overlap in the distribution of certain clonal populations between humans and animals1–4. The organism is known to produce a number of virulence factors such as toxins and antibiotic resistance mediators which facilitate its survival in the host as well as in the environment5,6. In addition, methicillin-resistant *S. aureus* (MRSA), which encode multiple antimicrobial resistance genes, are a major problem in human medicine7. Bovine mastitis is a very common livestock production-related disease, and *S. aureus* is the major contributor, resulting in a range of manifestations, including a large proportion of subclinical and chronic cases8,9. Isolates from bovine mastitis have been shown to produce various types of hemolysins and enterotoxins, as well as Panton-Valentine leucocidin (PVL) and toxic shock syndrome toxin (TSST), although the proportions of the isolates expressing each type of these toxins vary widely10–12. Although early studies suggested much lower prevalence of MRSA among bovine mastitis-associated *S. aureus* compared to those isolated from human infections, recent studies have shown trends towards higher prevalence13–26. This has led to focus towards the longitudinal spread and sharing of particular MRSA clones and their related strains among and between animals and humans, in order to understand the consequence of animal-human interface in infections and diseases caused by MRSA.

1National Institute of Animal Biotechnology, Opposite Journalist Colony, Extended Q City Road, Near Gowlidoddi, Gachibowli, Hyderabad 500032, India. 2Department of Microbiology, Veterinary College, Karnataka Veterinary Animal and Fisheries Sciences University, Vinobanagar, Shivamogga, Karnataka 577204, India. 3Department of Microbiology, Veterinary College, Karnataka Veterinary Animal and Fisheries Sciences University, Hebbal, Bangalore 560024, India. *email: hegde@niab.org.in
Multiple genetic types of bovine mastitis-associated *S. aureus* exist worldwide. Studying the origin, clonal populations, genetic variants and virulence determinants of *S. aureus* is important for the understanding of epidemiology, ecology and host adaptation, zoonotic potential, association with disease, and possibly to predict clinical outcome and control of disease. Typing methods for *S. aureus* include pulsed-field gel electrophoresis (PFGE), staphylococcal protein A (*spa*) typing and multi-locus sequence typing (MLST). PFGE provides reliable epidemiological comparisons among isolates, and is based on macro-restriction fragment polymorphism of genomic DNA. *Spa* typing analyses sequence repeats within the X region of the *spa* gene. MLST analyses the sequence polymorphism of seven housekeeping genes of each isolate; MLST facilitates comparisons of population structures with high levels of discrimination and reproducibility. These typing methods provide tools to examine the epidemiological picture in terms of diversity and clonality of *S. aureus*.

Most of the studies investigating genotypes of mastitis-associated *S. aureus* have been from large dairy herds, where it may not be surprising to see high level of clonality. Indian dairy industry is majorly based on pooling practices where individual holders keeping a few animals contribute to pooling of milk through dairy cooperatives. Because of the scattering of animals, we hypothesized that mastitis-associated *S. aureus* strains from India would be quite diverse. Very few studies have examined genotypes of bovine mastitis-associated *S. aureus* in India. In one study, where 39 MRSA isolates from three different states (Andhra Pradesh, Karnataka, Telangana) were investigated, *spa* types t037 and t267 and sequence types (ST) 72, ST245 and ST239 were reported to be predominating despite some diversity. In another study with 100 isolates, *spa* types t359, t7867 and t3841 were found to be predominant in Karnataka. In a third study, where 16 isolates were identified as MRSA, 50% of the isolates belonged to ST10 (34.7%). Another report from West Bengal described the existence of t304 and t6267 types among nine MRSA isolates. In this study, we analysed 166 isolates from six different states of India using *spa*, MLST and PFGE, and found the existence of limited CCs with diversity at genotype level.

Results

In this study, 166 bovine mastitis-associated *S. aureus* isolates from six different states of India were studied. The isolates included 98 from Karnataka, 19 each from Gujarat and Telangana, 12 from Uttar Pradesh and 5 from Maharashtra (Fig. 1).

By *spa* typing, only 145 isolates were typeable and belonged to 34 different *spa* types. The predominant types among isolates from Karnataka and Gujarat were t359 (31/98, 30.3%) and t1965 (8/19, 41.2%), respectively. On the other hand, t7867 was the most frequent type in Uttar Pradesh (6/12, 50%), Telangana (2/5, 40%) and Meghalaya (6/19, 31.5%) (Fig. 2). Three new types (t17680, t18314 and t18320) were identified in this study.

By MLST, 39 sequence types (STs) were identified, with ST2454 (57/166, 34.4%) and ST2459 (40/166, 24%) being the most commonly represented. The most frequent STs from Karnataka and Gujarat were ST2459 (38/98, 38.7%) and ST5408 (4/19, 21%), respectively, whereas ST2454 predominated in Uttar Pradesh (12/12, 100%), Telangana (9/13, 69.2%), Meghalaya (13/19, 68.4%), and Maharashtra (4/9, 44.4%). In this study, 12 STs (ST5407, ST5408, ST5410, ST5411, ST5413, ST5414, ST5415, ST5416, ST5419, ST5420 and ST5689) were newly identified. The allelic profiles for all the isolates are shown in Supplementary Table S2 and the minimum spanning tree showing the relatedness among the different STs is shown in Fig. 3.

The 39 STs could be grouped into seven CCs: CC1, CC5, CC8, CC9, CC30 and CC97, with CC97 being predominant (Fig. 3). The dominant cluster from Gujarat (11/19, 57.8%) and Karnataka (53/98, 54%) was CC9, whereas CC9 dominated in Uttar Pradesh (12/12, 100%), Maharashtra (5/5, 100%), Meghalaya (17/19, 89.4%) and Telangana (11/13, 84.6%). Isolates belonging to CC1, CC5, CC8 and CC30 (20/166, 12%) were only identified from the states of Gujarat (6/20, 30%) and Karnataka (14/20, 70%).

By PFGE, only 144 of the 166 isolates produced bands upon Small digestion (Supplementary Fig. S1). The number of fragments ranged from 8 to 13, with 31 distinct patterns. Nine pulsotypes were identified at an 80% similarity level (Fig. 4). The majority of the isolates, 71.6% (101/141), clustered into two major pulsotypes C and E, followed by A and D (14% of the isolates). Majority of the isolates from Gujarat (10/12, 83.3%), Karnataka (34/90, 37.7%) and Meghalaya (7/13, 53.8%) clustered into pulsotype C. For pulsotype E, the proportions were 100% (12/12) for Telangana, 26.6% (24/90) for Karnataka, 70% (7/10) for Uttar Pradesh and 46.1% (6/13) for Meghalaya. All four isolates from Maharashtra belonged to pulsotype A (Table 1).

To examine virulence determinants with the potential for pathogenicity, we subjected the isolates to disk diffusion test, broth microdilution for MIC for determining susceptibility to oxacillin and to PCR for *mecA* and *mecC* genes. Out of the 166 isolates, 34 (20.4%) showed resistance to oxacillin, with MICs of 8 to 64 µg/mL, whereas mecA amplification was observed with 44 (26.6%) isolates (Supplementary Table S3); none of the isolates contained mecC (data not shown). Out of the 44 mecA-positive isolates, 20 showed oxacillin MIC of 32 µg/mL and 14 isolates showed oxacillin resistance in the absence of mecA or mecC (Table 1). By the definition of oxacillin susceptibility and presence of mecA, 24 of the 166 isolates (14.4%) could be categorised as OS-MRSA.

By PFGE, only 144 of the 166 isolates produced bands upon Small digestion (Supplementary Fig. S1). The number of fragments ranged from 8 to 13, with 31 distinct patterns. Nine pulsotypes were identified at an 80% similarity level (Fig. 4). The majority of the isolates, 71.6% (101/141), clustered into two major pulsotypes C and E, followed by A and D (14% of the isolates). Majority of the isolates from Gujarat (10/12, 83.3%), Karnataka (34/90, 37.7%) and Meghalaya (7/13, 53.8%) clustered into pulsotype C. For pulsotype E, the proportions were 100% (12/12) for Telangana, 26.6% (24/90) for Karnataka, 70% (7/10) for Uttar Pradesh and 46.1% (6/13) for Meghalaya. All four isolates from Maharashtra belonged to pulsotype A (Table 1).

To examine virulence determinants with the potential for pathogenicity, we subjected the isolates to disk diffusion test, broth microdilution for MIC for determining susceptibility to oxacillin and to PCR for *mecA* and *mecC* genes. Out of the 166 isolates, 34 (20.4%) showed resistance to oxacillin, with MICs of 8 to 64 µg/mL, whereas mecA amplification was observed with 44 (26.6%) isolates (Supplementary Table S3); none of the isolates contained mecC (data not shown). Out of the 44 mecA-positive isolates, 20 showed oxacillin MIC of >4 µg/mL and 14 isolates showed oxacillin resistance in the absence of mecA or mecC (Table 1). By the definition of oxacillin susceptibility and presence of mecA, 24 of the 166 isolates (14.4%) could be categorised as OS-MRSA.

Among 44 mecA+ isolates, 32 were typeable for SCCmec I to V, and most of the isolates (26/32) belonged to SCCmec IVb, whereas 12 isolates did not amplify any bands for these types (Table 1). The predominant MRSA clones were CC9-ST2454-SCCmecIVb-t7867 and CC9-ST2459-SCCmecIVb-t359 (Tables 1, 2).
Discussion

Mastitis is a major concern for the dairy industry, as it not only affects animal’s health, but also results in direct and indirect losses\(^3^3\). Despite producing highest amount of milk, Indian dairy industry is crippled by mastitis\(^3^4\), with an estimated annual loss of INR 71.6551 billion (USD 1.6 billion) as of two decades ago\(^3^5\). Loss per incidence of INR 400 to 2086 (about USD 6 to 31) and annual loss per animal of INR 1500 to 1700 (about USD 22 to 25) have been reported\(^3^6–3^9\).

Although bovine mastitis is a multi-factorial, multi-etiological disease, \textit{S. aureus} is one of the most common pathogens associated with it worldwide, including India\(^4^0–4^2\). Infection with \textit{S. aureus} can lead to a wide range of manifestations including clinical as well as subclinical, chronic, persistent and recurrent mastitis. Transmission of \textit{S. aureus} usually occurs from one animal to another through milking, but can also occur through contagion. Complete information on the population structure, virulence and resistance characteristics of mastitis-associated \textit{S. aureus} is desired to monitor its dissemination among animal populations and for risk assessment, so as to improve interventions. This is the first study to report the genotypes of bovine mastitis-associated \textit{S. aureus} from different locations in India, through the simultaneous application of \textit{spa} typing, MLST and PFGE.

Among several genotypes of \textit{S. aureus}, only a few appear to be associated with bovine mastitis\(^4^3\). As far as \textit{spa} types are concerned, from bovine milk, t002, t008, t267, t359 and t6877 have been reported from Brazil, Canada and Japan\(^4^4–4^7\); t127 and t2279 were reported to be common in China\(^4^8\). The \textit{spa} types t267 and t359 were also observed to be predominant among our isolates from Karnataka, and have been previously reported from this state\(^2^9\); other types such as t7867 and t3841 are also common in Karnataka\(^3^0\). On the other hand, t7867 was observed in all the states, suggesting that t267, t359 and t7867 may be commonly associated with bovine mastitis in India.

We observed a predominance of ST2454 and ST2459 among our isolates, although there were also 12 newly identified STs. Other types, ST72, ST245, ST239 and ST1687 have been previously reported from Andhra Pradesh, Telangana and Karnataka\(^2^9\), implying the existence of diverse genetic populations. Integrated data of our isolates showed that CC97-ST5414-t1965 and CC97-ST2459-t359 were predominant in the states of Gujarat and Karnataka, respectively, whereas CC9-ST2454-t7867 was frequent among isolates of the remaining four states studied.
Early phenotypic studies from Europe and the US showed low prevalence of MRSA among livestock13–15,18. By specific culturing or PCR for \textit{mecA} or \textit{mecC}, other studies have reported a relatively lower prevalence of 0% to 9.7% from Europe, US, Japan and South Korea17,19,20,25,26,45, while higher prevalence ranging from 16.7 to 49.6% has been reported from Germany, Brazil, Japan, Sweden and China16,21–24. We observed that 12.04% of our 166 isolates were methicillin-resistant both phenotypically and genotypically, whereas 14.46% were OS-MRSA. In total, 58 isolates (34.94%) were either oxacillin-resistant or \textit{mecA}. Earlier studies from India, which have performed either phenotypic or genotypic tests (not both), have reported a range from 5 to 27%49–52. It is possible that the high levels (34.94%) of MRSA within our isolates could just be a consequence of the application of both genotypic and phenotypic tests, but is similar to higher proportions observed in several parts of the world as stated above. It may, however, be noted that defining methicillin resistance has been problematic since a variety of conditions such as modifications in native penicillin-binding proteins, hyper-production of β-lactamase, or production of methicillinase can lead to resistance53. These studies together suggest that classifying an isolate as MRSA is complex, and in the context of a clinical setting, the phenotypic assay may be more important, although it is possible that genotypically positive, phenotypically negative isolates may still gain resistance in response to environmental stimuli such as encounters with salts or antibiotics54–56.

A large majority of our isolates, irrespective of methicillin resistance/susceptibility, clustered among CC97 and CC9. Historically, livestock-associated MRSA (LA-MRSA) were first reported from pig production systems, and found to belong to ST39857. Later, ST398 was also reported from bovine mastitis cases58,59, as well as other samples from various other livestock57. Majority of bovine mastitis-associated MRSA reported worldwide belong to CC39859,60, whilst less represented clones include those belonging to CC1, CC5, CC9, CC97, CC130 and a few others54–60. It is now apparent that strains belonging to CC9 are the predominant LA-MRSA in Asian countries whereas ST398 is predominant in Europe and North America54,60,61. In addition, CC97 MRSA have also been demonstrated to be predominant in dairy cattle and pigs in Italy62,63. On the other hand, a large proportion of MSSA from a number of countries have been reported to belong to CC398 and CC9758,77. ST398, an ST which clusters under CC398, is also predominant among MSSA from Japan and China64,65. In addition, MSSA from China also belonged to ST97 and ST9-SCC\textit{mecXII-t899} whilst MRSA belonged to ST1-SCC\textit{mecI-t1939}62. Whereas CC97...
and CC9 were widely represented in our MRSA as well as MSSA isolates, we did not find any isolate belonging to ST398, suggesting commonality as well as variance with studies worldwide.

The exact origin of the predominant strains in our study is not discernible since neither this is a longitudinal study, nor is there sufficient data from within India to compare and analyse. One of the major cluster of strains from our study was CC9-ST2454. This particular clone has been previously reported from pigs in China and from water buffalos in the Philippines. It may be argued that our CC9-ST2454 strains originated from pigs. However, most of the places from where isolates were obtained for our study were from semi-urban or village areas from states which have very less pig population. In India, the majority of pig rearing occurs in the Northeast region and the state of Kerala. In fact, a little more than 70% of the pig population of India is in the Northeast region, and only the state of Meghalaya belonged to this geographical location within the isolates that we obtained. In addition, most of the other locations from where isolates were obtained were free from domesticated or feral pigs. Hence, we consider it highly unlikely that ST2454-SCC_mec_IVb MRSA in our study may have originated directly from pigs, although we cannot rule out transmission events which predate isolation of the organisms used in our study.

Majority (26/32) of our mecA-containing isolates were typed as SCC_mec_IV, which has also been reported in other studies elsewhere. On the other hand, several recent studies have reported on oxacillin-susceptible mecA + S. aureus (OS-MRSA) in our study, 14.46% of the isolates were OS-MRSA. In Karnataka, OS-MRSA belonged to CC97-ST2459-SCC_mec_IVb with diverse spa types. In other states, OS-MRSA belonged to CC9-ST2454-SCC_mec_IVb-t267 or t4522. A report from China identified high incidence (35.9%) of OS-MRSA, and with SCC_mec_V-t267 whereas OS-MRSA isolates from Shanghai belonged to different spa and SCC_mec types. One study from India reported 48.7% OS-MRSA, with diverse STs and spa types. Only two of our OS-MRSA isolates belonged t267 and the remaining belonged to diverse types indicating clonal diversity among OS-MRSA.

Figure 3. Minimum-spanning tree of MLST data from 166 S. aureus isolates in each state. Each circle with different color represents a different sequence type (ST) and the size of the circle is directly proportional to the number of isolates for a particular ST. Major clonal complex (CC) in each state is highlighted by a grey halo around the circle. The branch thickness (dotted lines, dashed lines and increasing thickness of solid lines in that order) indicates inverse of the distance between the STs.
Figure 4. PFGE dendrogram. The tree was generated from composite fingerprinting with 80% similarity between the isolates. The pulsotypes are designated by the letters A through F, and individual patterns within these groups are numbered.
Sl. No	Isolate ID	PulsO type	OXA Disc	OXA MIC	mecA	SCCmec type	Toxin genes	spa type	ST	CC
1	GJ1	C1	S				+			
2	GJ2	C1	S				–			
3	GJ4	D4	S				–			
4	GJ5	C1	S				+			
5	GJ6	C1	S				+			
6	GJ8	D4	S				–			
7	GJ9	C1	S				–			
8	GJ10	C1	S				–			
9	GJ12	NT	S				+			
10	GJ13	NT	S				–			
11	GJ14	C1	S				+			
12	GJ17	C1	S				+			
13	GJ18	C1	S				–			
14	GJ22	NT	S				–			
15	GJ23	C1	S				–			
16	GJ24	NT	S				–			
17	GJ25	C1	S				–			
18	GJ26	NT	S				–			
19	GJ27	NT	S				–			
20	KA1	C1	S				–			
21	KA4	C1	S				+			
22	KA6	C1	S				+			
23	KA8	C1	S				+			
24	KA10	G	R	32	+	JVd	+			
25	KA12	C1	R	16	+		–			
26	KA22	C1	S				+			
27	KA24	C1	S				+			
28	KA25	C1	S				+			
29	KA26	C1	R	16	+		+			
30	KA31	C1	S				–			
31	KA38	C1	S				+			
32	KA41	F1	S				+			
33	KA42	C1	S				+			
34	KA46	B2	S				+			
35	KA48	C2	S	2	+	JVb	+			
36	KA54	B2	R	16	+		+			
37	KA55	NT	R	32	+		+			
38	KA56	C1	S				+			
39	KA57	C1	S				+			
40	KA58	B2	S				–			
41	KA59	C1	S				+			
42	KA60	C1	R	32	+	JVb	–			
43	KA62	C1	R	16	+		+			
44	KA63	C2	S	1	+	JVb	+			
45	KA64	C3	S				+			
46	KA66	C4	S				+			
47	KA67	G	S				+			
48	KA69	G	R	> 64	+	JVb	–			
49	KA70	C3	R	64	+		+			
50	KA75	C4	S				–			
51	KA76	G	S	1	+	V	+			
52	KA77	C3	S	1	+	JVb	+			
53	KA78	C3	S	2	+	V	+			
54	KA80	C3	S				+			
55	KA81	NT	S	1	+	JVb	+			
56	KA82	H	R	16	+		+			
57	KA83	H	R	16	+		+			
58	KA84	I	R	16	+	V	+			
59	KA85	NT	S				+			

Continued
Sl. No	Isolate ID	Pulsotype	OXA Disc	OXA MIC	meCmec	SCCmec type	Toxin genes	spa type	ST	CC	
60	KA86	C1	R	64	+	Jvb		− −	NT	NT	UA
61	KA90	NT	S	1	+	Jvb		+ +	17683	2459	97
62	KA94	E8	R	32	+	Jvb		+ −	4008	6	5
63	KA103	F1	S					− −	NT	2454	9
64	KA107	E8	R	16	+	Jvb		− −	110760	4968	8
65	KA115	E7	S					+ +	UA	2454	9
66	KA119	F1	R	32	+			+ +	UA	2454	9
67	KA123	F1	S	1	+			− −	NT	2453	97
68	KA124	E7	S					+ +	22297	2453	97
69	KA128	F1	R	32	+			− −	NT	2453	97
70	KA131	E6	S					+ +	NT	2459	97
71	KA132	E6	S					+ +	1224	2459	97
72	KA133	B2	S	1	+			+ +	NT	1687	97
73	KA134	C5	S					+ +	44522	2454	9
74	KA135	E2	R	16	+			+ +	12700	2454	9
75	KA140	NT	S					+ +	17967	2454	9
76	KA144	B1	S					+ +	44522	2454	9
77	KA145	B1	S					+ +	NT	2454	9
78	KA148	E5	S		+ +						
79	KA149	NT	S		+ +						
80	KA150	E5	S		+ +						
81	KA151	NT	S		+ +						
82	KA152	E5	S		+ +						
83	KA154	NT	S	1	+	Jvb		+ +	9021	1482	30
84	KA155	E7	S		+ +						
85	KA156	E7	S		+ +						
86	KA159	E7	S		+ +						
87	KA160	C1	S		+ −						
88	KA161	C2	S		+ +						
89	KA168	E3	S		+ −						
90	KA169	C3	R	64	+			− −	1539	4975	9
91	KA170	C4	S		+ +						
92	KA171	F1	S		+ +						
93	KA172	C4	S		+ −						
94	KA174	E3	S		+ +						
95	KA175	E7	R	16	+ +						
96	KA176	E7	R	32	+ +						
97	KA177	F1	S		+ +						
98	KA180	E3	S		+ +						
99	KA181	E8	S		− −						
100	KA182	E7	S		+ +						
101	KA184	E7	S		+ +						
102	KA192	D1	S		+ +						
103	KA193	E7	R	32	+ +						
104	KA194	A1	S		− −						
105	KA195	A3	S		+ −						
106	KA196	D3	R	16	+ +						
107	KA197	D3	S		− −						
108	KA198	E2	S		− −						
109	KA199	A1	S		− −						
110	KA200	A1	R	32	+ +						
111	KA201	D4	R	16	+ +						
112	KA202	E2	S		+ +						
113	KA203	D1	S		+ +						
114	KA204	NT	S		− −						
115	KA205	NT	S		− −						
116	KA206	E6	S		− −						
117	KA207	D2	S		+ +						
118	MG2	C4	S		− −						

Continued
By PFGE, we observed 31 pulsotypes among 144 isolates. Comparatively, narrower as well as wider ranges (from 10 among 146 isolates to 33 among 66 strains to 39 among 245 strains) have been reported by others. Although PFGE has been projected to be the gold standard for non-sequence-based typing of bacterial strains, there are very few PFGE typing studies for bovine mastitis-associated S. aureus isolates, possibly owing to the cost.

Sl. No	Isolate ID	Pulsotype	OXA Disc	OXA MIC	mecA	SCCmec type	Toxin genes	spa type	ST	CC
119	MG3	C4	S	1	+	IVb	+	NT	7867/2454	9
120	MG4	NT	S				+	44522/5416	9	
121	MG5	C4	S	2	+	IVb	+	417860/2454	9	
122	MG6	C4	S				+	7867/2454	9	
123	MG7	C4	R	32	+	IVb	+	7867/2454	9	
124	MG8	C4	S	1	+	IVb	+	12101/2459	97	
125	MG9	NT	S				+	12101/2454	9	
126	MG10	E2	S	2	+	IVb	+	44522/2454	9	
127	MG11	C4	S				+	417860/2454	9	
128	MG15	E2	S				+	44522/2454	9	
129	MG16	E2	S				+	7867/2454	9	
130	MG19	E3	S	1	+	IVb	+	12700/5418	9	
131	MG25	E2	S				+	NT	5418/2454	9
132	MG31	E7	S				+	7867/2454	9	
133	MG32	NT	R	32			+	4457/5419	9	
134	MG35	E2	S				+	44522/2454	9	
135	MG37	NT	S				+	7867/2454	9	
136	MG38	E2	S	1	+	IVb	+	44522/2454	9	
137	MH4	A3	S				+	118320/2454	9	
138	MH11	A3	S				+	118320/2454	9	
139	MH16	A2	S	1	+	IVb	+	7867/2454	9	
140	MH35	NT	S				+	NT	5113/2454	9
141	MH39	A2	S				+	7867/2454	9	
142	TG2	E4	S				+	NT	7867/5419	9
143	TG3	E4	S				+	7867/2454	9	
144	TG4	E2	S	2	+	IVb	+	44522/2454	9	
145	TG5	E4	S				+	417860/2454	9	
146	TG6	E4	S				+	7867/2454	9	
147	TG7	E4	S				+	7867/2454	9	
148	TG8	E7	S				+	12101/2459	97	
149	TG9	E7	S				+	12101/2219	97	
150	TG10	E2	S	1	+	IVb	+	44522/2454	9	
151	TG11	E4	S				+	417860/2454	9	
152	TG13	E2	S				+	44522/5420	9	
153	TG14	E4	R	32	+	IVb	+	7867/2454	9	
154	TG15	E2	R	8	+	IVb	+	NT	2454/2454	9
155	UP2	E1	S	1	+	IVb	+	NT	2454/2454	9
156	UP3	D3	R	>64	+	IVb	+	7867/2454	9	
157	UP4	E1	S				+	7867/2454	9	
158	UP5	D3	S	1	+	IVb	+	7867/2454	9	
159	UP6	E4	S	2	+	IVb	+	7867/2454	9	
160	UP7	D3	R	64			+	117860/2454	9	
161	UP10	E4	S				+	117860/2454	9	
162	UP11	E4	S				+	NT	2454/2454	9
163	UP13	NT	S				+	44522/2454	9	
164	UP14	E4	R	64			+	7867/2454	9	
165	UP15	NT	R	64			+	44522/2454	9	
166	UP16	E4	S				+	7867/2454	9	

Table 1. State-wise details of isolates and their characteristics. CC = Clonal complex; GJ = Gujarat; KA = Karnataka; MG = Meghalaya; MH = Maharashtra; MIC = minimum inhibitory concentration; OXA = oxacillin; NT = Non-typable; ST = Sequence Type; TG = Telangana; UA = Unassigned; UP = Uttar Pradesh.
of the equipment and the requirement for technical expertise. In addition, the results of PFGE typing for strains from different laboratories is not easily comparable without an extensive cataloguing of the banding patterns. It may, however, be noted that the majority of ST2454 and ST2459 strains clustered to pulsotypes E and C (30/57 and 21/40), respectively, suggesting correlation between the two typing methods.

A large proportion of the isolates from Karnataka showed the presence of both hlg and pvl genes, suggesting pathogenic potential of these isolates. It has been hypothesized that different clones might display differential patterns of antimicrobial resistance and virulence factors. We observed that isolates expressing the toxin genes hlg, tss and pvl belonged to particular pulsotypes (C2, C3, E5, E6 and E7), lending credence to this hypothesis. It should be noted that C and E pulsotypes encompassed the largest groups with 52 and 53 strains, respectively, but only five sub-pulsotypes among these contained the majority of the isolates carrying the pvl gene, suggesting potential association between certain pulsotypes and virulence.

In conclusion, the majority of the isolates that we studied belonged to two major clonal complexes CC97 and CC9, similar to what has been observed globally. And yet, genetic diversity was evident as supported by the existence of more than 30 different genetic types (by any of the three typing methods). While heterogeneity at the micro-level would appear to support our hypothesis that mastitis-associated S. aureus strains from India show diversity, the diversity appeared to be within the two CCs. Among the oxacillin-resistant strains, the majority of the isolates belonged to CC97- ST2454-SCCmecIVb-t359 in Karnataka and CC9-ST2454-SCCmecIVb-t3867 in the other states except Maharashtra. These strains may therefore represent the predominant clones in these regions. Importantly, ST2454- and ST2459-SCCmecIVb appear to be the major MRSA clones in the country. However, a wider inference of the study is limited by the higher number of isolates from some states than others. Hence, more extensive, structured studies involving more number of states and isolates are required to better understand the genetic diversity of S. aureus isolates causing mastitis in India. This could help in elucidating strain variation, studying movement and transmission events, and in designing better control and prevention strategies for bovine mastitis.

Materials and methods
Isolates and genomic DNA isolation. For this study, 166 isolates of S. aureus curated at the Department of Microbiology, Veterinary College, Bangalore, Department of Microbiology, Veterinary College, Shivamogga, Karnataka State, and the National Institute of Animal Biotechnology, Hyderabad, were used. The study was therefore retrospective, and focussed on obtaining complete set of typing data for as many isolates as possible. The isolates had been obtained at various times from clinical and subclinical mastitis cases from six different states: Gujarat (Anand), Karnataka (North and South), Maharashtra (Mumbai), Meghalaya (unknown locations), Telangana (Hyderabad) and Uttar Pradesh (unknown locations) in India. Whereas details of the locations and dates are available for most of the isolates from Karnataka (Supplementary Table S1), no details are available for other locations as the isolates were obtained from collaborators. The isolates had been identified earlier as S. aureus by biochemical tests as well as by polymerase chain reaction (PCR), and were re-confirmed before beginning this study by PCR for the nuc gene.

The isolates were cultured for 24 h at 35 °C on tryptic soy agar plates, and a single colony was further propagated in tryptic soy broth for 24 h. The cells were pelleted and genomic DNA was extracted using the HiYield Genomic DNA Mini Kit (Bacteria) (Real Biotech Corporation, Taiwan).

Spa typing. The spa repeat region was amplified using primers and conditions as per RidomSpa server [spa-1113f. (5′-TAAAGACGATCCTCGGTAGAC-3′) and spa-1514r (5′-CAGCAGTAGTGCCGTGTGGCTT-3′)]. PCR was performed with genomic DNA (500 ng), dNTPs (200 µM), each primer (10 pmol), and Taq DNA polymerase (1.25 U; New England Biolabs). Thermal cycling included initial denaturation (5 min at 80 °C) followed by 35 cycles of denaturation (45 s at 94 °C), annealing (45 s at 60 °C), and extension (90 s at 72 °C), with a single final extension (10 min at 72 °C). A portion of the PCR product was run on 1.5% agarose gel, and

State	MRSA Prevalent clones	MRSA Major pulsotype	OS-MRSA Prevalent clones	OS-MRSA Major pulsotype	MSSA Prevalent clones	MSSA Major pulsotype
Gujarat	None	None	None	None	CC97/diverse-STs/t1965	C
Karnataka	CC97/2459/t359	C & H	None	None	CC97/2459/t359	C
Meghalaya	CC9/2454/t7867	C	CC9/2454-IVb/diverse-spa-types	C	CC9/2454/4522	E
Maharashtra	None	None	CC9/2454-t7867 or t4522	C & E	CC9/2454/4522	E
Telangana	CC9/2454-IVb/t7867	E	CC9/2454-IVb/t4522	E	CC9/2454/7867	E
Uttar Pradesh	CC9/2454-t7867	D	CC9/2454-IVb/t7867	E	CC9/2454/7867	E

Table 2. Prevalence of different clones among MRSA, OS-MRSA and MSSA.
the remaining was purified using a kit (Real Biotech Corporation) and sequenced (Bioserve Biotechnologies, Hyderabad, India). Both forward and reverse reads were analyzed using Ridom SpaServer (https://spa.ridom.de/index.shtml) and spaTyper (http://spatyper.fortinbras.us/).

Multi-locus sequence typing and analysis. The designated seven housekeeping genes of *S. aureus* were amplified by PCR with the specific primers as prescribed by Enright et al.93 (Staph MLST database). PCRs were performed with genomic DNA (1 μg of), primers (500 ng each), and Master Mix (Takara Bio). The thermal cycling included an initial denaturation at 95 °C for 5 min, then 30 cycles of annealing at 55 °C for 1 min, extension at 72 °C for 1 min, and denaturation at 95 °C for 1 min, followed by a final extension of 72 °C for 5 min. The amplified fragments were purified and sequenced. Consensus sequences were obtained by aligning sequences from both orientations and analyzed using the PubMLST database to determine the ST. Minimum spanning tree was constructed based on STs and the advanced cluster analysis was performed to define the clonal complexes (CCs) by using the BioNumerics software version 7 (Applied Maths NB, Belgium). A CC was defined by similarity in at least four or more loci.

Pulsed-field gel electrophoresis. The bacterial isolates were grown for 24 h at 37 °C on tryptic soy agar plates. 1.8% SeaKem gold agarose was boiled in TE buffer (10 mM Tris–HCl, pH 8.0, 1 mM EDTA), aliquoted into micro-centrifuge tubes, and equilibrated to 60 °C in a heat block. Three to five colonies of each bacterial isolate were suspended in TEN buffer (0.1 M Tris–HCl, 0.15 M NaCl, 0.1 M EDTA; 125 μL) and adjusted to approx. 3.0 McFarland. Lysostaphin (5 μL of 1 mg/mL; Sigma-Aldrich, India) was added to the cell suspension followed by the addition of 1.8% SeaKem gold agarose (125 μL) and transferred to the plug mould. Solidified plugs were placed in EC buffer (6 mM Tris–HCl, 1.0 M NaCl, 0.1 M EDTA, 0.5% Brij 58, 0.2% deoxycholate, 0.5% sarkosyl; 1 mL) and incubated in a 37 °C water bath for 4 h. The EC buffer was replaced with ESP buffer (10 mM Tris–HCl, 1.0 mM EDTA, 1% SDS, 1 mg/mL of proteinase K, pH 8.0; 1 mL) and incubated overnight at 55 °C in a water bath. The ESP buffer was removed and the plugs were washed three times for 30 min each in TE buffer (10 mL). Plugs were digested with Smal (30 U; New England Biolabs) for 2 to 3 h at room temperature, and then sealed with 1% of Seakem GTG agarose in 0.5X TBE buffer (0.045 M Tris base, 0.045 M boric acid, pH 8.3, 1 mM EDTA). Electrophoresis was performed in CHEF-DRIII PFGE system (Bio-Rad Laboratories) with 5 s initial switch time and 40 s final switch time for 20 h at 120° angle, with 6-V/cm gradient, and chiller set at 14 °C. After electrophoresis, the gel was stained with ethidium bromide solution (1 mg/mL) and de-stained in water. The gel image was captured and subjected to analysis using BioNumerics software version 7. The percent similarity was attained on DICE coefficients derived from the unweighted pair group method with arithmetic averages (UPGMA). A coefficient similarity of 80% was fixed to assemble PFGE clusters. Band position tolerance was set at 1.0%.

Evaluation of methicillin susceptibility and the presence of mec genes. For these studies, methicillin-sensitive ATCC-29213 and methicillin-resistant ATCC-335913 strains of *S. aureus* were used as control strains. The antibiotic susceptibility of the isolates was evaluated by the disk diffusion test according to the Kirby-Bauer method94. Each isolate was subjected to testing three times along with a methicillin-sensitive and a –resistant reference strain (ATCC 29,213 and 335,913, respectively). Briefly, the isolates were inoculated into brain heart infusion broth (1 Ml; HiMedia) and incubated overnight at 37 °C. A suspension (0.5 mL) of the resultant culture was adjusted to 0.5 on McFarland scale using sterile phosphate-buffered saline (PBS, pH 7.2), and then spread plated onto Mueller–Hinton agar (HiMedia). Discs containing oxacillin or cefoxitin (HiMedia), as well as a sterile disc serving as a negative control, were gently placed on the dried inoculum, and the plates were incubated at 37 °C for 24 h. The zone of inhibition, inclusive of borders, was measured in mm and the breakpoints were applied as recommended for veterinary pathogens by the Clinical and Laboratory Science Institute95.

All the isolates were subjected to amplification of *mecA* and *mecC* genes using primers and conditions described previously96. All the isolates which showed *mecA* amplification were subjected to SCC*mec* typing using multiplex PCR for SCC*mec* types I to V as described previously97.

Further, minimum inhibitory concentration (MIC) of oxacillin was determined for all the isolates which showed either mecA amplification or resistance in disc diffusion, following the broth micro-dilution method recommended by CLSI98.

Detection of toxin genes. Presence of toxin genes (*hlg, tst* and *pvl*) was confirmed by individual PCRs using DNA template (100 ng) and gene-specific primer pairs (0.5 μM of each) added to a PCR Master Mix (Takara Bio, Japan), and amplification was performed with the following cycle: 15 min at 94 °C, followed by 30 cycles of 30 s at 94 °C, 1 min at 53 °C, and 1 min at 72 °C, with a final 10 min elongation step at 72 °C. PCR products were analysed by 2% agarose gel electrophoresis and UV transillumination. The primers were F: GCCAATTCTTATGAAATGC and R: CATACTGTACGGAGCAGGAT for *hlg*, F: ACCCGTCTTCCCTTATC and R: TTTTCGATTTGTAACGCC for *tst*, and F: GGCGGACAGAGTCAAG and R: TCGGATATCTGTTGGCAGT for *pvl*98-99.

Data availability

All data generated or analysed during this study are included in this article and its Supplementary Information files.
73. Rabehle, R. F. et al. Multilocus sequence typing of Staphylococcus aureus isolates recovered from cows with mastitis in Brazilian dairy herds. J. Med. Microbiol. 56, 1505–1511. https://doi.org/10.1099/jmm.0.47357-0 (2007).

74. Sarrou, S. et al. Dissemination of methillin-susceptible CC398 Staphylococcus aureus strains in a rural Greek area. PLoS ONE 10, e0122761. https://doi.org/10.1371/journal.pone.0122761 (2015).

75. Sheet, O. H., Grabowski, N. T., Klein, G., Reich, F. & Abdulmawjood, A. Characterisation of meCA gene negative Staphylococcus aureus isolated from bovine mastitis milk from Northern Germany. Folia Microbiol. (Prague) 64, 853–855. https://doi.org/10.1007/s12223-019-06069-z (2019).

76. Smith, E. M. et al. Multilocus sequence typing of intercontinental bovine Staphylococcus aureus isolates. J. Clin. Microbiol. 43, 4737–4743. https://doi.org/10.1128/JCM.43.9.4737-4743.2005 (2005).

77. Vandendriessche, S. et al. High genetic diversity of methillin-susceptible Staphylococcus aureus (MSSA) from humans and animals on livestock farms and presence of SCCmec remnant DNA in MSSA CC398. J. Antimicrob. Chemother. 69, 355–362. https://doi.org/10.1093/jac/dkt366 (2014).

78. Assi, T. et al. Presence of Staphylococcus aureus ST398 and ST9 in Swine in Japan. Jpn. J. Infect. Dis. 65, 551–552. https://doi.org/10.7883/yoken.65.551 (2012).

79. Yang, X. et al. Multilocus sequence typing and virulence-associated gene profile analysis of Staphylococcus aureus isolates from retail ready-to-eat food in China. Front. Microbiol. 9, 197. https://doi.org/10.3389/fmicb.2018.00197 (2018).

80. Dan, M. et al. Antimicrobial resistance, virulence gene profile and molecular typing of Staphylococcus aureus isolates from dairy cows in Xinjiang Province, northwest China. J. Glob. Antimicrob. Resist. 16, 96–104. https://doi.org/10.1016/j.jgar.2018.08.024 (2019).

81. Badua, A. T., Boonyayatra, S., Awaiwanont, N., Gaban, P. B. V. & Mingala, C. N. Antibiotic resistance and genotyping of meCA-positive methillin-resistant Staphylococcus aureus (MRSA) from milk and nasal carriage of dairy water buffaloes (Bubalus bubalis) in the Philippines. J. Adv. Vet. Anim. Res. 7, 397–406. https://doi.org/10.5455/javar.2020.g34 (2020).

82. Guo, D., Liu, Y., Han, C., Chen, Z. & Ye, X. Phenotypic and molecular characteristics of methillin-resistant and methillin-susceptible Staphylococcus aureus isolated from pigs: Implication for livestock-association markers and vaccine strategies. Infect. Drug Resist. 11, 1299–1307. https://doi.org/10.2147/IDR.S173624 (2018).

83. Havaei, S. A. et al. Detection of mecA and enterotoxin genes in Staphylococcus aureus isolates associated with bovine mastitis and characterization of Staphylococcal cassette chromosome mec (SCCmec) in MRSA strains. Iran. J. Microbiol. 7, 161–167 (2015).

84. Khaji, L. & Shahreza, M. H. SCCmec types in methillin-resistant Staphylococcus aureus strains of various types of milk. Electron. J. Biol. 13, 1 (2016).

85. Suleiman, A. B., Umoh, V. J., Kwaga, J. K. P. & Shaibu, S. J. Prevalence and antibiotic resistance profiles of methicillin-resistant Staphylococcus aureus (MRSA) isolated from bovine mastitis milk in Plateau State, Nigeria. Intern. Res. J. Microbiol. 2, 264–270 (2012).

86. Kamberovic, F. et al. mecA-positive methillin-sensitive Staphylococcus aureus clinical isolates in Zenica-Doboj Canton, Bosnia and Herzegovina. J. Chemother. 27, 330–336. https://doi.org/10.1179/1797947814Y.0000000207 (2015).

87. Mistry, H. et al. Prevalence and characterization of oxacillin susceptible mecA-positive clinical isolates of Staphylococcus aureus causing bovine mastitis in India. PLoS ONE 11, e0162256. https://doi.org/10.1371/journal.pone.0162256 (2016).

88. Saeed, K. et al. Oxacillin-susceptible mecA-positive Staphylococcus aureus (OS-MRSA), a hidden resistant mechanism among clinically significant isolates in the Wessex region/UK. Infection 42, 843–847. https://doi.org/10.1007/s10630-014-0641-1 (2014).

89. Saeed, K., Dryden, M. & Parnaby, R. Oxacillin-susceptible MRSA, the emerging MRSA clone in the UK?. J. Hosp. Infect. 76, 267–268. https://doi.org/10.1016/j.jhin.2010.03.004 (2010).

90. Lange, C., Cardoso, M., Senczek, D. & Schwarz, S. Molecular subtyping of Staphylococcus aureus isolates from cases of bovine mastitis in Brazil. Vet. Microbiol. 67, 127–141. https://doi.org/10.1016/s0378-1135(99)00031-0 (1999).

91. Brakstad, O. G., Aasbakk, K. & Maaland, J. A. Detection of Staphylococcus aureus by polymerase chain reaction amplification of the nuc gene. J. Clin. Microbiol. 30, 1654–1660. https://doi.org/10.1128/JCM.30.7.1654-1660.1992 (1992).

92. Shopsin, B. et al. Evaluation of protein A gene polymorphic region DNA sequencing for typing of Staphylococcus aureus strains. J. Clin. Microbiol. 37, 3556–3563. https://doi.org/10.1128/JCM.37.11.3556-3563.1999 (1999).

93. Enright, M. C., Day, N. P., Davies, C. E., Peacock, S. J. & Spratt, B. G. Multilocus sequence typing for characterization of meca-positive and meca-susceptible clones of Staphylococcus aureus. J. Clin. Microbiol. 38, 1098–1105 (2000).

94. Bauer, A. W., Kirby, W. M., Sherris, J. C. & Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 45, 493–496 (1966).

95. CLSI. 156 (Clinical and Laboratory Standards Institute, 2018).

96. Stegger, M. et al. Rapid detection, differentiation and typing of methillin-resistant Staphylococcus aureus harbouring either meCA or the new meCA homologue meCA(LGA251). Clin. Microbiol. Infect. 18, 395–400. https://doi.org/10.1111/j.1469-0691.2011.03715.x (2012).

97. McClure-Warnier, J. A., Conly, J. M. & Zhang, K. Multiplex PCR assay for typing of staphylococcal cassette chromosome mec types 1to V in methillin-resistant Staphylococcus aureus. J. Vis. Exp. https://doi.org/10.3791/56779 (2013).

98. Lina, G. et al. Involvement of Panton-Valentine leucocidin-producing Staphylococcus aureus in primary skin infections and pneumonia. J. Clin. Infect. Dis. 29, 1124–1132. https://doi.org/10.1086/313461 (1999).

99. Mehrtra, M., Wang, G. & Johnson, W. M. Multiplex PCR for detection of genes for Staphylococcus aureus enterotoxins, exfoliative toxins, toxic shock syndrome toxin 1, and methicillin resistance. J. Clin. Microbiol. 38, 1032–1035. https://doi.org/10.1128/JCM.38.5.1032-1035.2000 (2000).

Acknowledgements
This work was supported through a grant (BT/PR11245/ADV/90/165/2014) to NRH and SI, and a Research Associate Fellowship to MA, from the Department of Biotechnology, Ministry of Science and Technology, Government of India. The authors are thankful to all the researchers who generously donated isolates.

Author contributions
The work was ideated by NRH and SI. Re-confirmation of the micro-organisms and curation was done by MA, PS and SS. Laboratory work and data acquisition was carried out by MA, PS, SS, PG, Pj, MG and SM. Data was analysed by MA, PS, SI and NRH. MA and NRH wrote and revised the manuscript. All the authors reviewed the submitted versions of the manuscript.

Competing interests
The authors declare no competing interests.
