Toxicity of Silybum marianum and Nerium oleander extracts against Mosquito Larvae of Culex quinquefasciatus (Say)

Mohammed Jaber Al-Obaidi
Trop. Biol. Res. Unit, College of Science, University of Baghdad, Baghdad, Iraq
Email: lafta@sc.uobaghdad.edu.iq

Abstract. Toxicity of two plant extracts against Culex quinquefasciatus mosquito larvae was measured in this work. The plants include the species; Silybum marianum and Nerium oleander. Their Lc50 and Lc90 after 4 hrs were evaluated against three instars of the mosquito. S. marianum Lc50 values were: 57, 214, and 379 ppm for the three instars respectively. S. marianum Lc90 values were: 2422, 2936, and 3161 ppm for the three instars respectively. N. oleander Lc50 values were: 161, 194, and 360 for the three instars respectively. N. oleander Lc90 values were: 1968, 2004, and 4203 for the three instars respectively. The results showed that the 1st instar larvae were more sensitive than the 2nd instar larvae, and this was more sensitive than the 3rd instar larvae. The results of recent work showed high correlation rate between logs of S. marianum and N. oleander concentrations and C. quinquefasciatus mortality percentage probits for all three larvae stages with high R values (0.911, 0.914 and 0.997) (0.993, 0.970 and 0.943) respectively. The aim of this study is to screen plant materials sources can be used in mosquito control.

Keywords: Culex quinquefasciatus, mortality, plant extracts, toxicity.

1. Introduction
Mosquito is considered a vector of different pathogens such as bacteria, viruses, protozoa, and nematodes. Also, it is responsible for different important diseases like dengue, malaria, Zika, yellow fever, and filarial fever (Gathany 2016). Culex quinquefasciatus is distributed in Iraq especially in middle and southern regions of the state. It is life in the urban areas because of it like the human so that it may be called house mosquito. Many studies conducted on this species (Al-Gerawi 2012) (Molan, A. R., Munther H. A. 2016). Using of natural products of plants to insect control has some advantages like they contain a bioactive chemicals, which are considered as selective substances, do not risk non-target organisms, safety, biodegradable, and no-residual effects to the environment (Benelli, G. P., Roman M. and P. 2017; Stevenson, P. C. I., Murray B. B. 2017). There are many studies on the subject of mosquito control by natural plant products indicate the ability to make them as alternatives to chemical insecticides. Some of them depending on the strategy which used the plant extracts to kill the mosquito larvae in their habitats and terminate their life cycles. Furthermore, the toxicity tolerance of chemicals and leaf extract has been studied on mosquito larvae (Moore, K. J. Q., Whitney B., Victoria Y. 2017) (Haddi, K. T., Hudson V .V.D., Yuzhe V. 2017) (Curtis 2018). Biologically active components in plants are known to be alkaloids, terpenoids, flavonoids,
phenolic compounds, organic acids or lipids (Saltveit 2017). The medical plant *Nerium oleander* L. (Apocynaceae) is a shrub evergreen flowering grows in Mediterranean tropical and subtropical areas (Jabli, M. T., Najeh R., Khiai S. 2018). The plant has some potential activities as the anti-inflammatory (Balkan, . A. G., Ahmet C. K., Hasan Y. 2018), antibacterial (Chauhan, S. S., Manjeet T., Amit D. 2017), antimicrobial (Liu, H.C., Si-Yu G., Jia-Ying S. 2018), antitumor (Schneider, N. F. Z., Cerella C. S. 2017), antinociceptive (Semiz 2017). As well as the plant *Silybum marianum* is found to have different activities, one of them antibacterial activity of seeds (Abed, I. J., Raad A. 2015). The important plant used in this study was used in other studies for different purposes as control of *Schistosoma mansoni* (Al-Obaidi 2016). The objective of recent work is to evaluate the potential of some medical plant extracts against the mosquito *Culex quinquefasciatus*.

2. **Materials and methods**

Plants samples

Leaves of *Silybum marianum* and *Nerium oleander* were collected from the gardens distributed in University of Baghdad, Iraq. The plants were identified by taxonomic keys found in Herbarium of Biology Department, College of Science, University of Baghdad. The samples were marketed and kept in Trop. Biol. Res. Unit laboratories for experiments.

Mosquito samples

The eggs and larvae of *Culex quinquefasciatus* were collected from a small pond near human dwellings in (Auiaeeeg city) 10km south of Baghdad. These larvae were transferred to the laboratory by class bottle containing 500 mL of water. Mosquito larvae were kept in the laboratory at 27 ±2 °C, 75–85 % RH and 10:14 (light/day). Larvae were fed with 5 ml rabbit blood. Adults were isolated and transferred to plastic containers with 500 mL of water to breeding.

Larval toxicity test

Twenty-five larvae (instars 1–3) were placed in 500 mL of dechlorinated water, and different concentrations of the two extracts were added. Tests of each concentration against each instar were replicated three times. In each case, the control comprised 25 larvae of distilled water. Control mortality were corrected by using Abbott’s formula (Abbott 1925), and mortality percent were calculated as follows:

\[
p = \frac{d}{d + m + \frac{f}{e}} - 100 \text{ (WHO 1981)}
\]

Statistical analysis

Data were analyzed by calculation the variance; the means were separated using Duncan’s multiple range tests by Alder and Rossler (1977). Mortality values were handled with probit analysis. In order to calculate LC50 and LC90, we are depending on Finney (1971) method. SPSS software package 24 versions was used. Results with p<0.05 were considered to be statistically significant.

3. **Results**

The results of this work appeared that the larval stages of *C. quinquefasciatus* significantly different in their responses to *S. marianum* extract. The median lethal concentration of *S. marianum* against the 3rd instar larvae of *C. quinquefasciatus* mosquito was 379 ppm while the ninety lethal concentration was 3161 ppm. The Lc50 of *S. marianum* against the 2nd instar of *C. quinquefasciatus* larvae was 214 ppm while the Lc90 was 2936ppm. The Lc50 of *S. marianum* against the 1st instar of *C. quinquefasciatus* larvae was 57 ppm while the Lc90 was 2422ppm. From these results, we show the sensitivity of the 1st instar larvae was more than of 2nd instar larvae, and this was more sensitive than the 3rd instar larvae. That means the toxicity of *S. marianum* plant extracts to the 3rd instar larvae was more than to 2nd instar larvae, and
this was more toxic to the 3rd instar larvae Tab. (1). The results of recent work showed high correlation rate between the log of S. marianum concentration and C. quinquefasciatus mortality percent probit for all three larvae stages under study with high R values (0.911, 0.914 and 0.997) respectively Fig. (1, 2 and 3).

Table (1): Toxicity of S. marianum aquatic extracts against C. quinquefasciatus mosquito larvae.

Larvae stage	T value	Sing(2-tail)	LC50 ppm	Fiducial limits	LC90 ppm	Fiducial limits
1st instar	3.443	0.001*	57	18	180	777
2nd instar	3.728	0.000*	214	89	510	7548
3rd instar	3.755	0.000*	379	164	861	6994

Figure 1: Scatter of mortality percentage probit of C. quinquefasciatus with S. marianum log of concentrations for instar 1.
The results of this work appeared that the larval stages of *C. quinquefasciatus* significantly different in their responses to *N. oleander* extract. The median lethal concentration of *N. oleander* against the 3rd instar larvae of *C. quinquefasciatus* mosquito was 360 ppm while the ninety lethal concentration was 4203 ppm. The Lc50 of *N. oleander* against the 2nd instar of *C. quinquefasciatus* larvae was 194 ppm while the Lc90 was 2004 ppm. The Lc50 of *N. oleander* against the 1st instar of *C. quinquefasciatus* larvae was 161 ppm while the Lc90 was 1968 ppm. Also, results of this study show that the sensitivity of the 1st instar larvae was more than of 2nd instar larvae, and this was more sensitive than the 3rd instar larvae. That means the toxicity of *N. oleander* plant extracts to the 3rd instar larvae was more than to 2nd instar larvae, and this was more toxic to the 3rd instar larvae Tab. (3).

Also, the results of recent work showed high correlation rate between the log of *N. oleander* concentration and *C. quinquefasciatus* mortality percent probit for all three larvae stages under study with high R values (0.993, 0.970 and 0.943) Fig. (4, 5 and 6) Respectively. The 1st instar was more sensitive than the sensitivity of 2nd and 3rd instars to the extracts of both *S. marianum* and *N. oleander* because the mortality of the 1st instar was more than the mortality of the 2nd and 3rd instars. The standard deviation of the result recorded for 1st instar was less than the SD recorded for 2nd and 3rd instars Fig. (7). The results of multiple comparisons among larvae stages dependent on mortality have appeared that the mean difference of 1st and 3rd instars is significant at the 0.05 level Tab. (3). The results of this study of ANOVA analysis to the three stages of mosquito have appeared that there are significant differences among them (p-value 0.051) Tab. (4).

Table (2): Toxicity of *N. oleander* aquatic extracts against *C. quinquefasciatus* mosquito larvae.

Larvae stage	t-value	Sig(2tail)	Lc50	Fiducial limits	Le90	Fiducial limits	
				LL	UL	LL	UL
1st instar	3.589	0.001*	161	72	363	1968	876
2nd instar	3.646	0.000*	194	89	424	2004	918
3rd instar	3.947	0.000*	360	147	881	4203	1718

Figures:

Figure 2: Scatter of mortality percentage probits of *C. quinquefasciatus* with *S. marianum* log of concentrations for instar 2.

Figure 3: Scatter of mortality percentage probits of *C. quinquefasciatus* with *S. marianum* log of concentrations for instar 3.

Figure 4: LC50 probit analysis

\[
y = 1.3864x + 1.4294 \\
R^2 = 0.9977
\]
Figure (4): Scatter of mortality percentage probits of *C. quinquefasciatus* with *N. oleander* log of concentrations for 1st instar.

![LC50 probit analysis](image)

Figure (5): Scatter of mortality percentage probits of *C. quinquefasciatus* with *N. oleander* log of concentrations for 2nd instar.
Figure (6): Scatter of mortality percentage probits of *C. quinquefasciatus* with *N. oleander* log of concentrations for 3rd instar.

Table (3): Multiple comparisons among larvae stages dependent on mortality as variable.

(I) stage	(J) stage	Mean Difference (I-J)	Std. Error	Sig.	95% Confidence Interval	Lower Bound	Upper Bound
instar1	instar2	22.40000	12.5	.217	-11.1529	55.9529	
instar1	instar3	34.40000	12.5	.044	-8.471	67.9529	
instar2	instar1	-22.40000	12.5	.217	-55.9529	11.1529	
instar2	instar3	12.00000	12.5	.618	-21.5529	45.5529	
instar3	instar1	-34.40000	12.5	.044	-67.9529	-8.471	
instar3	instar2	-12.00000	12.5	.618	-45.5529	21.5529	

*. The mean difference is significant at the 0.05 level.
Figure (7): Standard deviation of mortality recorded for three instars of mosquito exposed to two plant extracts.

Table (4): ANOVA analysis of the three stages of mosquito (p-value 0.05).

Mortality	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	3048.533	2	1524.267	3.855	.051
Within Groups	4745.200	12	395.433		
Total	7793.733	14			

4. Discussion

The results of this study which determine the toxicity of two plant extracts against target vector mosquito showed that the *N. oleander* extract was more toxic than the *S. marianum* extract to the mosquito larvae of *C. quinquefasciatus*. Also, we found that the 1st instar larva was more sensitive than 2nd instar larva and 3rd instar larva for both plant tested extracts. This result was agreed with other studies were found that the sensitivity of 1st and 2nd instars were more than the sensitivity of 3rd instar because they have more efficiency to food metabolism which plays a role to the appearance of toxicity (Mahmmod, E. A. A., Hussam A.A. 2011). The LC50 values recorded in this work were 57, 214 and 379 ppm against *C. quinquefasciatus* for *S. marianum* respectively. Our results were nearest of the study conducted by (Mekhlif 2017) which found LC50 (43 ppm) of *Astagalus annulata* plant extracts to *Culex pipiens molestus* larvae. The LC90 values were 2422, 2936 and 3161 ppm against *C. quinquefasciatus* for *S. marianum* respectively. The LC50 values were 161, 194 and 360 ppm against *C. quinquefasciatus* for *N. oleander* respectively. The LC90 values recorded in recent work were 1968, 2004 and 4203 ppm against *C. quinquefasciatus* for *N. oleander* respectively. Our results were agreed with another study which tested the extracts of *N. oleander* and found they were effective against the larvae of *C. quinquefasciatus* (48h-LC50= 168.84 ppm) (48h-LC90=11011.93ppm) (Raveen, R. K., Deepa K .T. 2014). The extracts of *A. mexicana*, *J. curcus*, *P. extensa*, and *W. sornifera* showed acute toxicity causing 100% mortality at 1,000, 500, and 250 ppm, respectively, against *C. quinquefasciatus* larvae (Karmegam, N. S.,
Anuradha M. 1997). Toxicity of Six ethanol plants extracts were tested against the Green Peach Aphid (GPA) and found that the toxic leaf extracts contain active substances that have the aphidicidal activity, so it was used in the control of the GPA in the greenhouse as an alternative to the insecticides in the IPM programs or in the organic culture (Madanat 2016). Solanum xanthocarpum fruits petroleum ether extract was observed as the most toxic with LC50 values of 62.62 ppm after 24 h and 59.45 ppm after 48 h of exposure period against the larvae of C. quinquefasciatus (Mohan, L. S. and N. 2005). Aqueous extract of Ricinus communis L. showed insecticidal activity against the bug Eurystylus oldi (Ajayi, O. S., Hari C. T. 2001).

We are noticed that the LC50 values recorded in different studies were various comparing with each other. It's clear if we focus on these studies; (Komalamisra, N.T., Yuwadee R., Yupha A. 2005) tested the Nerium oleander larvicidal activity against Aedes aegypti with the LC50 value of 197.97mg/l. A study deal with the larvicidal activity of different plants extracts against Cx. quinquefasciatus and recorded the LC50 values. Of these, Gleoonis coronarium flowers extracts (LC50= 53.0 ppm), Sonchus arvensis stem extracts (LC50= 68.0 ppm), Matricaria maritima flowers extracts (LC50 = 72.0 ppm) (Benelli, G. M., Filippo P., Roman M. 2017). A study has tested the effects of some plants extracts against the larvae of Cx. quinquefasciatus included Tagetes erectes leaf extract (LC50= 100.0 ppm) , Achilea millefolium stem extract (LC50= 120.0 ppm), Tanacetum vulgare flower extract (LC50= 178.0 ppm) and Otanthus maritimus stem extract (LC50 195.0 ppm) (Borah, R. Kalita M. C 2010). The mechanism of extracts effect on mosquito larvae due to digestive system effectiveness through the entrance of phytochemicals and bounded with lipids or cell metabolic effectiveness through moulting or skin effectiveness or cuticle hardness through Tyrosinase enzyme effectiveness or respiratory bores closing (Mahdi 2001).

A big number of plant chemicals has larvicidal activity. Mosquito different responses to these extracts due to many causes such as plant species, phytochemical type, plant part, extraction solvent, and extraction method (Ghosh, A. C., Nandita C. 2012) (Shaalan, E. A. C., Deon Y. 2005).

5. Conclusions
In general, the results of this study may open the possibility of future using of natural product extracts as a safe larvicidal environmentally. Further investigations are needed to evaluate the plant extracts activities against a wide range of mosquito species stages.

6. Acknowledgment
The author is grateful to Assistant Prof Shihab Ahmed Salman for his assistance to mosquito identification.

7. References
[1] Abed, I. J., Raad A., and Ghusoon A. A. 2015. “Antibacterial Effect of Flavonoids Extracted from Seeds of Silybum Marianum against Common Pathogenic Bacteria.” World Journal Experimental Biosci Eces, no. September. https://doi.org/10.13140/RG.2.1.4632.6240.
[2] Ajayi, O. S., Hari C. T., Ratnadass R. et al. 2001. “Incidence and Distribution of the Sorghum Head Bug, Eurystylus Oldi Poppius (Heteroptera: Miridae) and Other Panicle Pests of Sorghum in West and Central Africa.” International Journal of Tropical Insect Science 21 (2). Cambridge University Press:103–11.
[3] Al-Gerawi, H. R. L. 2012. “Some Aspects of Integrated Control of Mosquitoes. Department of Biology, College of Sciences.” University of Al –Qadisiya, 95pp.
[4] Al-Obaidi, M. J. 2016. “Applied Study to Evaluate the Molluscicidal Activity of Nerium Oleander Extracts to the Snail of Bulinus Truncatus,” 127–33.
[5] Balkan, A. G., Ahmet C. K., Hasan Y., et al. 2018. “Evaluation of the in Vitro Anti-Inflammatory Activity of Nerium Oleander L. Flower Extracts and Activity-Guided Isolation of the Active Constituents.” *Records of Natural Products* 12 (2).

[6] Benelli, G. M., Filippo P., Roman M., et al. 2017. “Mosquito Control with Green Nanopesticides: Towards the One Health Approach? A Review of Non-Target Effects.” *Environmental Science and Pollution Research*. Springer, 1–23.

[7] Benelli, G. P., Roman M., Filippo, and et al P. 2017. “Commentary: Making Green Pesticides Greener? The Potential of Plant Products for Nanosynthesis and Pest Control.” *Journal of Cluster Science*. Springer 28 (1):3–10.

[8] Borah, R. Kalita M. C, Kar A et al. 2010. “Larvicidal Efficacy of Toddalia Asiatica (Linn.) Lam against Two Mosquito Vectors Aedes Aegypti and Culex Quinquefasciatus.” *African Journal of Biotechnology* 9 (17):2527–30.

[9] Chauhan, S. S., Manjeet T., Amit D., et al. 2017. “Antibacterial Activity of Nerium Indicum against Some Gram Positive Bacterial Species.” *International Journal of Drug Research and Technology* 3 (1):3.

[10] Curtis, C. F. 2018. *Appropriate Technology in Vector Control*. CRC Press.

[11] Gathany, J.D. 2016. “Living with Mosquitoes: A Necessary Evil?,” 18–19.

[12] Ghosh, A. C., Nandita C., Goutam C. 2012. “Plant Extracts as Potential Mosquito Larvicides.” *The Indian Journal of Medical Research* 135 (5). Medknow Publications:581.

[13] Haddi, K. T., Hudson V .V.D., Yuzhe V., et al. 2017. “Detection of a New Pyrethroid Resistance Mutation (V410L) in the Sodium Channel of Aedes Aegypti: A Potential Challenge for Mosquito Control.” *Scientific Reports* 7. Nature Publishing Group:46549.

[14] Jabli, M. T., Najeh R., Khiari S., et al. 2018. “Physicochemical Characteristics and Dyeing Properties of Lignin-Cellulosic Fibers Derived from Nerium Oleander.” *Journal of Molecular Liquids* 249. Elsevier:1138–44.

[15] Karmegam, N. S., Anuradha M., Daniel V. et al. 1997. “Indigenous-Plant Extracts as Larvicidal Agents against Culex Quinquefasciatus Say.” *Bioresource Technology* 59 (2–3). Elsevier:137–40.

[16] Komalamisra, N.T., Yuwadee R., Yupha A., et al. 2005. “Screening for Larvicidal Activity in Some Thai Plants against Four Mosquito Vector Species.”

[17] Liu, H.C., Si-Yu G., Jia-Ying S., et al. 2018. “Effective Natural Antifouling Compounds from the Plant Nerium Oleander and Testing.” *International Biodeterioration & Biodegradation* 127. Elsevier:170–77.

[18] Madanat, H. M. 2016. “Toxicity of Six Ethanol Plant Extracts Against the Green Peach Aphid Myzus Persica Sulzer (Homoptera : Aphididae),” no. January.

[19] Mahdi, N. S. 2001. “Effect of Melia Azedarach L. and Azadirachta Indica [(A. Jass) Fruit Extracts on Biology of Anopheles Pulcherrimus Mosquito.” Baghdad.

[20] Mahmod, E. A. A., Hussam A.A., Hala H .M. et al. 2011. “Effect of Leaves and Fruits Ethanolic Extract of Duranta Repens on Mosquito Culex Pipens Pipens.” *Baghdad J of Sciences* 8 (4):870–76.

[21] Meek, A. F. 2017. “Larvicidal Efficacy and Residual Toxicity of Selected Xerophyte Plants against Culex Pipiens Molestus Mosquito” 4 (3):117–22.

[22] Mohan, L. S., Preeti, and S. Rivastava C. N. 2005. “Evaluation of Solanum Xanthocarpum Extracts as Mosquito Larvicides.” *Journal of Environmental Biology* 26 (2 Suppl):399–401.

[23] Molan, A. R., Munther H. A., Doaa A. 2016. “Larvicidal and Pupicidal Activity of Water Extracts from Tomato Pomaces and Their Components against Culex Quinquefasciatus (Diptra: Culicidae) under Laboratory Conditions.”

[24] Moore, K. J. Q., Whitney B., Victoria Y., et al. 2017. “Mosquito Control Practices and Zika Knowledge among Outdoor Construction Workers in Miami-Dade County, Florida.” *Journal of Occupational and Environmental Medicine* 59 (3). LWW:e17–19.

[25] Raveen, R. K., Deepa K .T., Arivoli M. et al. 2014. “Larvicidal Activity of Nerium Oleander
L. (Apocynaceae) Flower Extracts against Culex Quinquefasciatus Say (Diptera: Culicidae).” *International Journal of Mosquito Research* IJMR 1 (11):38–42.

[26] Saltveit, M. E. 2017. “Synthesis and Metabolism of Phenolic Compounds.” *Fruit and Vegetable Phytochemicals: Chemistry and Human Health, 2 Volumes*. John Wiley & Sons, 115.

[27] Schneider, N. F. Z., Cerella C. S., Cláudia M. O.D. et al. 2017. “Anticancer and Immunogenic Properties of Cardiac Glycosides.” *Molecules* 22 (11). Multidisciplinary Digital Publishing Institute:1932.

[28] Semiz, G. 2017. “Larvicidal Activity of Nerium Oleander L. Leaf Extract against Pine Processionary Moth (Thaumetopoea Wilkinsoni Tams.).”

[29] Shaalan, E. A. C., Deon Y., Mohamed W. F. A. et al. 2005. “A Review of Botanical Phytochemicals with Mosquitocidal Potential.” *Environment International* 31 (8). Elsevier:1149–66.

[30] Stevenson, P. C. I., Murray B. B., Steven R. et al. 2017. “Pesticidal Plants in Africa: A Global Vision of New Biological Control Products from Local Uses.” *Industrial Crops and Products* 110. Elsevier:2–9.

[31] WHO. 1981. *Instructions for Determining the Susceptibility or Resistance of Mosquito Larvae to Insecticides*.