An EPQ model with life-time items with multivariate demand with markdown policy under shortages and inflation

1,∗ S. R. Singh, 2Monika Rani,

1,2Department of Mathematics, CCS University, Meerut

1shivrajpundir@gmail.com
2monikarani131287@gmail.com

*Corresponding author email: shivrajpundir@gmail.com

Abstract—Shortages are quite common in command economics and inflation is a regular increment in the price of services and goods in an economy over a span of time. In this paper we established an EPQ model with life-time items with multivariate demand with markdown policy under shortages and inflation. We also discover an inventory model that gives the best markdown time with shortages and inflation and at the same time maximize annual profit. An inventory model by using mathematical tools is developed. The numerical experiments together with sensitivity analysis for relevant parameter is provided to show the behaviour of model.

Keywords—Shortages, Inflation, Multivariate demand, Markdown policy.

1. Introduction

Decay is a very important feature in our daily life and can be well-defined as spoilage, decomposition and loss of value from the unique form. The study of decaying inventory models started with Ghare and Schrader [1963]. They developed the regular inventory model with a continuous rate of decaying items. Covert and Philip [1973] enlarged Ghare and Schrader continuous decaying amount to a two-parameter Weibull distribution decaying rate. Dave and Patel [1981] established an inventory model for decaying items with time-proportional demand. Nahmias [1982], Goyal and Giri [2001] provided a whole and updated survey of work for the decaying inventory. Singh et al. (2017) represented a partially backlogged EPQ model with demand dependent production and non-instantaneous deterioration.

Shortages situations exists when the demand of good at the market price is bigger than supply. Either an increase in demand, decrease in supply. Shortages is a situation in which there is a demand of items but stock vanish. Samanta and Roy [2004] represented a constant production control inventory model for decaying items with shortages. Singh et al. [2016] represented an inventory model for decaying items having periodic and inventory level dependent demand with shortages. Kumar and Singh [2018] established an effect of salvage value on a two-warehouse inventory model for decaying items with inventory dependent demand rate and partial backlogging.

High inflation charges in some countries could destabilize the total economic development. In present time it is a global phenomenon. Now-a-days inflation has become a regular feature.Buzacott
[1975] first represented an EOQ model with inflation issue to different types of rating policies. Hou [2006] represented an inventory model with inventory dependent consumption rate instantaneously measured the inflation and time value of money when shortages are permitted over a stable planning horizon. Singh and Jain [2009] considerate supplier credits in an inflationary atmosphere when reserve money is obtainable. Kathuria and Singh [2018] represented Credit financing in optimum ordering policies with inflation in fuzzy environments.

In many conditions of real life the selling price may not be continuous. Therefore, it is important for a retailer to select pricing and replenishment policies when the demand rate is inventory dependent and sensitive with respect to selling price. Mandal and Phaujdar [1989] have recognised an EPQ model with linearly stock dependent demand. Padmanabhan and Vrat [1995] studies an inventory model for perishable items with inventory dependent selling rate. Urban and baker [1997] studies single items EOQ model in which the demand inventory dependent but becomes constant after a certain time. Baker and Urban [1988] represented an EOQ model with a power form stock level dependent demand. A general characteristics of these studies that they consider the decaying process in the inventory takes place at the direct of their arrival. In real life, the majority of goods has a time period for keeping their original condition. Omar and Zulkipli [2014] measured demand to be deterministic and positively dependent on the level of items presented in a just-in-time system [21 - 24].

Markdown policy are regular price discounts such that once the amount of a product is marked down, it may not be brought up to the same price level again in the same selling season. Srivastava and Gupta [2013] developed an EPQ model for decaying items with time and price dependent demand under discount policy. Kamaruzaman and Omar (2019) an EPQ model of delayed decaying items with price and stock level dependent demand under discount policy [25 - 28].

An EPQ model of delayed decaying items with price and inventory level dependent demand under markdown policy is developed by Kamaruzaman and Omar (2019). In this paper they established an EPQ model with life-time items with multivariate demand with markdown policy under shortages and inflation. The salvage value is incorporated to the failed units. They established a model that gives the best markdown time and at the same time maximizes annual profit. In our study we extended this work by applying the concept of shortages and inflation. The public perception about Inflation is the overall increase in the goods prices which creates the most continuous effect on the price level of goods prices.

2. The following notations have been used in this paper.

Notations:

$I(t)$ = Inventory level.

θ = Constant deterioration rate.
K = Constant production rate.

\(C_n \) = Unit holding cost.

\(C_s \) = Shortage cost.

\(\delta \) = Backlogging parameter.

\(C_l \) = Lost sale cost.

\(C_o \) = Unit ordering cost.

\(C_p \) = Unit production cost.

\(\alpha \) = Markdown rate.

\(\varepsilon \) = Increase price rate.

\(p \) = Initial price

\(\gamma \) = Markdown percentage.

\(\mu \) = production percentage.

\(r \) = Inflation rate.

The following assumptions have been used in this paper.

Assumptions:

(1) Demand rate is a function of price and inventory level. The demand at time \(t \) is assumed to be \(b(\alpha p)^{-\varepsilon} + \beta I(t) \), where \(\alpha \), \(b \) and \(\beta \) are positive constants with \(\alpha \), and \(\beta \) are between 0 and 1.

(2) Only single type of item is considered over given period of \(T \) units of time.

(3) Shortage are permitted and partially backlogged.

(4) Rate of deterioration, \(\theta \) is constant any time, where \(0 \leq \theta < 1 \).

(5) All items are mandatory to be sold.

(6) Only unique time markdown price is applied and markdown price is known.

(7) The production up time is proportional to the cycle time where \(t_1 = \mu T \)

(8) Markdown time varies between \((T - t_1) \) which is equivalent to \(t_2 = \gamma (T - t_1) \).

(9) Inflation rate is applied.

3. Mathematical formulation
In this model we consider inventory system at time t as showed in figure 1. The production and supply start instantaneously and the production ends at time t_1 with the inventory level, Q_1, is reached. We assumed there is no deterioration during the production rate up-time. In the interval (t_1, t_2) inventory level decrease due to deterioration and demand rate. At the time $((t_1, t_2))$ the markdown is offered to increase the demand rate. After that point t_3 shortages are allowed with partially backlog. The inventory level at time t over a period $(0, T)$ is directed by these differential equations:

$$\frac{dI(t)}{dt} = k - (bp^{-\epsilon} + \beta I(t)) \quad 0 \leq t \leq t_1$$

(1)

With $\alpha = 1$ (no markdown) and boundary condition

$I(0) = 0, \quad I(t_1) = Q_1$

$I(t_2) = Q_2$

$$\frac{dI(t)}{dt} + \theta I(t) = -(bp^{-\epsilon} + \beta I(t)) \quad t_1 \leq t \leq t_2$$

(2)

$$\frac{dI(t)}{dt} + \theta I(t) = -(b(\alpha p)^{-\epsilon} + \beta I(t)) \quad t_2 \leq t \leq t_3$$

(3)

$I(t_3) = 0$

$$\frac{dI(t)}{dt} = -D \delta t_3 \leq t \leq T$$

(4)

$$\frac{dI(t)}{dt} = -\delta (b(\alpha p)^{-\epsilon} + \beta I(t)) t_3 \leq t \leq T$$

(5)
I(T) = -S

Solutions of these equations:

\[I(t) = \frac{k-bp^e}{\beta} (1-e^{-\beta t}) \] \(0 \leq t \leq t_1\)

(6)

\[Q_1 = \frac{k-bp^e}{\beta} (1-e^{-\beta t_1}) \]

(7)

\[I(t) = \frac{-bp^e}{(\theta+\beta)} + (Q_2 + \frac{-bp^e}{(\theta+\beta)})(e^{(\theta+\beta)(t_2-t)}) \]

(8)

\[I(t) = \frac{bp^e}{(\theta+\beta)} e^{(\theta+\beta)(t_3-t)} - 1 \]

(9)

\[Q_2 = \frac{b(ap)^e}{(\theta+\beta)} e^{(\theta+\beta)(t_3-t_2)} - 1 \]

(10)

\[I(t) = \frac{b(ap)^e}{(\theta+\beta)} (e^{\delta \beta (t_3-t)} - 1) \]

(11)

\[I(T) = \frac{b(ap)^e}{\beta} (e^{\delta \beta (t_3-t)} - 1) \]

(12)

\[-S = \frac{b(ap)^e}{\beta} (e^{\delta \beta (t_3-T)} - 1) \]

(13)

Sales revenue cost = \[p \left(\int_{t_0}^{t_1} D(t)e^{-rt}dt + \int_{t_1}^{t_2} D(t)e^{-rt}dt + \int_{t_2}^{T} D(t)e^{-rt}dt \right) \]

(14)

Shortage Cost = \[-C_e \int_{t_3}^{T} I(t)e^{-rt}dt \]

(15)

Lost sale cost = \[C_L (1-\delta) b(ap^e) \left(\int_{t_0}^{t_1} e^{-rt}d + \int_{t_1}^{t_2} e^{-rt}dt + \int_{t_2}^{t_3} I(t)e^{-rt}dt \right) \]

(16)

HoldingCost = \[C_h \left(\int_{t_0}^{t_1} I(t)e^{-rt}dt + \int_{t_1}^{t_2} I(t)e^{-rt}dt + \int_{t_2}^{t_3} I(t)e^{-rt}dt \right) \]
\[C_h \left[\frac{k-bp^{-e}}{\beta} - \frac{e^{-rt_1}}{r} + \frac{e^{-t_1(\beta+r)}}{r} - \frac{1}{r} \right] + bp^{-e} \frac{e^{-rt_2}}{r(\theta+\beta)} - \]

\[= \frac{Q_2 e^{-rt_2}}{r(\theta+\beta+\gamma t_2 e^{-\gamma(\theta+\beta+r)t_1}} + \frac{bp^{-e}}{r} \frac{e^{-rt_2}}{r(\theta+\beta+\gamma t_2 e^{-\gamma(\theta+\beta+r)t_1}} - \]

\[+ b(\alpha p)^{-e} \frac{-e^{-rt_3}}{r(\theta+\beta+\gamma t_2 e^{-\gamma(\theta+\beta+r)t_2}} + \frac{e^{-rt_2}}{r} \left\{ \frac{Q_2 e^{-rt_2}}{r(\theta+\beta+\gamma t_2 e^{-\gamma(\theta+\beta+r)t_1}} + \right\} \]

\[+ C_h \left[\frac{k-bp^{-e}}{\beta} - \frac{e^{-rt_1}}{r} + \frac{e^{-t_1(\beta+r)}}{r} - \frac{1}{r} \right] + bp^{-e} \frac{e^{-rt_2}}{r(\theta+\beta)} - \]

\[= C_d \left[\frac{k-bp^{-e}}{\beta} - \frac{e^{-rt_1}}{r} + \frac{e^{-t_1(\beta+r)}}{r} - \frac{1}{r} \right] + bp^{-e} \frac{e^{-rt_2}}{r(\theta+\beta)} - \]

\[e^{-rt_1} \] \[+ \frac{Q_2 e^{-rt_2}}{r} \frac{e^{-t_1(\beta+r)}}{r} - \frac{1}{r} \right] + bp^{-e} \frac{e^{-rt_2}}{r} \frac{e^{-t_2(\beta+r)}}{r} - \]

\[+ b(\alpha p)^{-e} \frac{e^{-t_3}}{r} \frac{e^{-t_2(\beta+r)}}{r} + \frac{e^{-rt_2}}{r} \left\{ \frac{Q_2 e^{-rt_2}}{r} \frac{e^{-t_1(\beta+r)}}{r} - \right\} \]

\[\text{Deterioration Cost} = \int_0^1 t \theta(t) e^{-rt} dt + \int_{t_2}^{t_1} \theta(t) e^{-rt} dt + \int_{t_2}^{t_1} \theta(t) e^{-rt} dt \]

\[\text{Setup cost} = \frac{C_0}{T} \]

\[\text{Production cost} = \frac{K_{sT}}{T} \]

\[\text{Total profit} = \text{Sale revenue cost} - \text{holding cost} - \text{deterioration cost} - \text{Shortage cost} - \text{Lost sale cost} - \text{setup cost} - \text{production cost} \]

\[= \frac{1}{T} \left\{ \left[Q_1 \frac{e^{-rt_1}}{r} + \frac{e^{-t_1(\beta+r)}}{r} - \frac{1}{r} \right] + bp^{-e} \frac{e^{-rt_2}}{r} \frac{e^{-t_2(\beta+r)}}{r} - \right\} \]

\[= \frac{1}{T} \left\{ \left[Q_1 \frac{e^{-rt_1}}{r} + \frac{e^{-t_1(\beta+r)}}{r} - \frac{1}{r} \right] + bp^{-e} \frac{e^{-rt_2}}{r} \frac{e^{-t_2(\beta+r)}}{r} - \right\} \]

\[= \frac{1}{T} \left\{ \left[Q_1 \frac{e^{-rt_1}}{r} + \frac{e^{-t_1(\beta+r)}}{r} - \frac{1}{r} \right] + bp^{-e} \frac{e^{-rt_2}}{r} \frac{e^{-t_2(\beta+r)}}{r} - \right\} \]

\[= \frac{1}{T} \left\{ \left[Q_1 \frac{e^{-rt_1}}{r} + \frac{e^{-t_1(\beta+r)}}{r} - \frac{1}{r} \right] + bp^{-e} \frac{e^{-rt_2}}{r} \frac{e^{-t_2(\beta+r)}}{r} - \right\} \]
\[
\left[\frac{e^{\delta t_3}e^{-\frac{\gamma rt_2}{r}}}{e^{-\frac{\gamma rt_2}{r}}} + \frac{e^{-\frac{\gamma rt_3}{r}}}{e^{-\frac{\gamma rt_3}{r}}} \right] - C_L \frac{1}{r}(1-\delta)b(\alpha p^{-\epsilon})\left[\frac{e^{-\frac{\gamma rt_3}{r}}}{e^{-\frac{\gamma rt_3}{r}}} \right] + \left[\frac{e^{\delta t_3}e^{-\frac{\gamma rt_2}{r}}}{e^{-\frac{\gamma rt_2}{r}}} + \frac{e^{-\frac{\gamma rt_3}{r}}}{e^{-\frac{\gamma rt_3}{r}}} \right] - \frac{C_0}{T} - K\frac{C_{pt_1}}{T}
\] (21)

TP is a function of t_1, t_2, and t_3. We optimize the TP function by following Srivastava and Gupta (2013) procedure where we rewrite:

$t_1 = \mu T$, $t_2 = \gamma(T-t_1)$, $t_3 = (1-\gamma)(1-\mu)T$

Srivastava and Gupta [2013] only varies T in order to find their optimal solution.

4. Numerical Example

In this section, a numerical example is considered to illustrate the model.

Let $\theta = .007$, $\beta = 0.7$, $r = 0.15$, $b = 10000$, $C_h = 2$, $p = 35$, $K = 300$, $C_L = .03$, $C_d = 0.5$, $\epsilon = 1.8$, $\delta = .82$, $\alpha = 0.6$, $C_p = 8$, $C_0 = 100$, $C_x = .02$, $\mu = 0.6$

The optimal value is $T = 7.89785$, $TP = 1455.96$, $\gamma = 0.665922$

And $t_1 = \mu T$, $t_2 = \gamma(T-t_1)$, $t_3 = (1-\gamma)(1-\mu)T$

$t_1 = 4.73871$, $t_2 = 2.10374083$, $t_3 = 1.05539917$, $Q_1 = 390.148$, $Q_2 = 216.486$

This graph show the concavity of the optimal profit.

5. Sensitivity Analysis

Sensitivity analysis w.r.to some involvement parameters is carried out to observe the change in Total cost with the change in different parameters, different level are choose as follows: +30%, +20%, +10% and -10%, -20%, -30%, respectively.
Table 1.1 Sensitivity analysis with respect to θ

θ	T	γ	TP	Q_1	Q_2
+30%	7.87734	.605852	1542.42	390.021	98.702
+20%	7.88423	.625893	1545.53	390.64	131.507
+10%	7.89106	.645916	1544.71	390.106	170.871
-10%	7.9046	.685914	1547.28	390.189	273.936
-20%	7.91134	.70589	1548.68	390.231	340.373
-30%	7.91809	.725853	1460.16	390.272	418.882

Table 1.2 Sensitivity analysis with respect to r

r	T	γ	TP	Q_1	Q_2
+30%	6.75134	.457734	1375.93	387.297	-16.047
+20%	7.09578	.523984	1528.15	384.268	12.629
+10%	7.47520	.593232	1352.39	387.297	73.623
-10%	8.37512	.742488	1570.47	392.814	606.753
-20%	8.92342	.823262	1697.99	395.285	1837.87
-30%	9.56733	.908295	1841.26	397.546	6607.48

Table 1.3 Sensitivity analysis with respect to C_h

C_h	T	γ	TP	Q_1	Q_2
+30%	7.87335	.582259	1383.62	389.996	66.098
+20%	7.88247	.610773	1407.61	390.053	104.606
+10%	7.89060	.638645	1431.72	390.103	154.24
-10%	7.90430	.692645	1480.31	390.188	299.246
-20%	7.91004	.718842	1504.78	390.223	402.647
-30%	7.91514	.744538	1529.00	390.254	533.53

Table 1.4 Sensitivity analysis with respect to C_l

C_l	T	γ	TP	Q_1	Q_2
+30%	7.89795	.665759	1455.91	390.148	217.776
+20%	7.89791	.665813	1455.93	390.148	217.632
+10%	7.89788	.665868	1455.94	390.148	217.776
-10%	7.89781	.665977	1455.97	390.148	218.061
-20%	7.89778	.666032	1455.98	390.147	218.205
-30%	7.89775	.666086	1456.00	390.147	218.346
Table 1.5 Sensitivity analysis with respect to C_s

C_s	T	γ	TP	Q_1	Q_2
+ 30%	7.89787	.665343	1455.84	390.148	217.407
+ 20%	7.89786	.665536	1455.88	390.148	216.898
+10%	7.89786	.665729	1455.92	390.148	217.407
-10%	7.89784	.666116	1455.99	390.148	218.431
-20%	7.89783	.666309	1456.03	390.148	218.943
-30%	7.89782	.666502	1456.07	390.148	219.455

Table 1.6 Sensitivity analysis with respect to δ

δ	T	γ	TP	Q_1	Q_2
+ 30%	7.89909	.663826	1455.43	390.156	212.492
+20%	7.89765	.666353	1456.06	390.147	219.049
+10%	7.89774	.666138	1456.01	390.147	218.484
-10%	7.89795	.665705	1455.90	390.148	217.349
-20%	7.89806	.665486	1455.85	390.149	216.777
-30%	7.89818	.665264	1455.80	390.150	216.199

6. Observation:
(1) If θ will be increase then γ, T and TP decrease and after this Q_1 increase and decrease both. If θ will be decrease then γ, T and TP increase and after this Q_1 increase and decrease both.
(2) If r will be increase then γ, T and TP decrease and after this Q_1 increase and decrease both. If r will be decrease then γ, T and TP increase and after this Q_2 increase and decrease both and show abnormal behaviour.
(3) If C_h will be increase then γ, T and TP decrease and after this Q_1 increase and decrease both. If C_h will be decrease then γ, T and TP increase and after this Q_2 increase and decrease both.
(4) If C_s will be increase then γ, TP decrease and T increase after this Q_1 increase and decrease both. If C_s will be decrease then γ, TP increase and T decrease and after this Q_2 increase and decrease both.
(5) If C_s will be increase then γ and TP decrease and T increase after this Q_1 constant. If C_s will be decrease then γ and TP increase and T decrease and after this Q_2 increase and decrease both.
(6) If δ will be increase then γ, TP decrease and T increase and after this Q_1 increase and decrease both. If δ will be decrease then γ, TP decrease and T increase after this Q_2 increase and decrease both.

7. Conclusion:
In this study, an EPQ model with life-time items with multivariate demand under inflation and markdown policy. It is clear that the inventory and maximize the profit, markdown policy is
introduced. The optimal replenishment time, optimal quantities, optimal markdown time as well as optimal annual profit have been derived. The previous studies, instead of fixing the markdown time, we study the markdown time as a variable together with the cycle length and it simply gives a better annual profit than fixing the value of it. It can also be concluded that policy maker must be very aware to set markdown rate as it is case dependent. The main purpose of this study is to maximize the total profit.

References:

1. Baker R. C., & Urban T.L., (1988). A deterministic inventory system with an inventory-level-dependent demand rate. Journal of the Operational Research Society, 39(9), 823-831.
2. Buzacott J.A., (1975). Economic order quantities with inflation. Operational Research Quarterly, 26, 553-558.
3. Covert R.B., & Philip, G.S.,(1973). An EOQ model with Weibull distribution deterioration. AIIE Transactions, 5 (1973) 323-326.
4. Dave U., & Patel, L. (1981). (T, si)-policy inventory model for deteriorating items with time proportional demand. Journal of Operational Research Society, 32,137–142.
5. Ghare P.M., & Schrader G. F., (1963). A model for exponentially decaying Inventory. Journal of industrial Engineering, 14(5), 238-243.
6. Goyal S. K., &Giri, B. C. (2001). Recent trends in modeling of deteriorating inventory. European Journal of operational research, 134(1), 1-16.
7. Hou K.L., (2006). An inventory model for deteriorating items with stock dependent consumption rate and shortages under inflation and time discounting, European Journal of Operational Research, 168 (2), 463–474.
8. KamaruzamanA.N., & Omar M., (2019). An EPQ model of delayed deteriorating items with price and inventory level dependent demand under markdown policy. J.Mech. cont&Math. Sci, Speical Issue-1, March pp 383-389
9. Kathuria J., & Singh S.R., (2018). Credit financing in optimal ordering policies with inflation in fuzzy surroundings. International Journal of Agricultural and Statistical Sciences, 14(1), pp. 251-262
10. Kumar N., & Singh S.R., (2014). Effect of salvage value on a two-warehouse inventory model for deteriorating items with stock-dependent demand rate and partial backlogging. International Journal of Operational Research 19(4), pp. 479-496.
11. Mandal B. N., &Phaujdar S., (1989).An Inventory Model for Deteriorating Items and Stock-Dependent Consumption Rate. The Journal of the Operational Research Society, 40(5), 483.
12. Nahmias S., (1982). Perishable inventory theory: A review. Operations research, 30(4), 680-708.
13. Omar M., & Zulkipli H., (2014). An integrated just-in-time inventory system with stock-dependent demand. Bulletin of the Malaysian Mathematical Sciences Society, 37(4).

14. Padmanabhan G., & Vrat P., (1995). EOQ models for perishable items under stock dependent selling rate. European Journal of Operational Research, 86(2), 281-292.

15. Samanta G. P., & Roy, A., (2004). A production inventory model with deteriorating items and shortages. Yugoslav Journal of Operations Research, 14(2), 219-230.

16. Singh S.R., & Jain R., (2009). Understanding supplier credits in an inflationary environment when reserve money is available. International Journal of Operational Research, 6(4), pp. 459-474.

17. Singh S., Singh S.R., Sharma S., (2017). A partially backlogged EPQ model with demand dependent production and non-instantaneous deterioration. International Journal of Mathematics in Operational Research 10(2), 211-228.

18. Singh S.R., Rastogi M., & Tayal S., (2016). An inventory model for deteriorating items having seasonal and stock-dependent demand with allowable shortages. Advances in Intelligent Systems and Computing 437, pp. 501-513.

19. Srivastava M., & Gupta, R., (2013). An EPQ model for deteriorating items with time and price dependent demand under markdown policy. Opsearch, 51(1), 148-158.

20. Urban T.L., & Baker R. C., (1997). Optimal ordering and pricing policies in a single-period environment with multivariate demand and markdowns. European Journal of Operational Research, 103(3), 573-583.

21. Jindal, M., Bajal, E., Chakraborty, A., Singh, P., Diwakar, M., & Kumar, N. (2020). A novel multi-focus image fusion paradigm: A hybrid approach. Materials Today: Proceedings.

22. Dhaundiyal, R., Tripathi, A., Joshi, K., Diwakar, M., & Singh, P. (2020, April). Clustering based Multi-modality Medical Image Fusion. In Journal of Physics: Conference Series (Vol. 1478, No. 1, p. 012024). IOP Publishing.

23. Singh, P., & Shree, R. (2017). A New Computationally Improved Homomorphic Despeckling Technique of SAR Images. International Journal of Advanced Research in Computer Science, 8(3).

24. Kumar, P., & Diwakar, M. A novel approach for multimodality medical image fusion over secure environment. Transactions on Emerging Telecommunications Technologies, e3985.

25. Tyagi, T., Gupta, P., & Singh, P. (2020, January). A Hybrid Multi-focus Image Fusion Technique using SWT and PCA. In 2020 10th International Conference on Cloud Computing, Data Science & Engineering (Confluence) (pp. 491-497). IEEE.

26. Kumar, M., & Diwakar, M. (2019). A new exponentially directional weighted function based CT image denoising using total variation. Journal of King Saud University-Computer and Information Sciences, 31(1), 113-124.
27. Singh, P., & Shankar, A. (2021). A novel optical image denoising technique using convolutional neural network and anisotropic diffusion for real-time surveillance applications. Journal of Real-Time Image Processing, 1-18.

28. Singh, P., Diwakar, M., Shankar, A., Shree, R., & Kumar, M. (2021). A Review on SAR Image and its Despeckling. Archives of Computational Methods in Engineering, 1-21.