Leaf Wax Extracts of Four Deciduous Azalea Genotypes Affect Azalea Lace Bug (Stephanitis pyrioides Scott) Survival Rates and Behavior

Matthew Chappell and Carol Robacker
Department of Horticulture, University of Georgia, CAES Griffin Campus, 1109 Experiment Street, Griffin, GA 30223

ABSTRACT. Azaleas (Ericales: Ericaceae: Rhododendron L.) are a staple plant in many landscapes of the United States and are largely resistant to predation by insects, with the exception of azalea lace bug (ALB) (Heteroptera: Tingidae: Stephanitis pyrioides). Within deciduous azalea (Rhododendron: section Pentanthera G. Don) varying levels of resistance to ALB are observed with a continuous distribution from susceptible to highly resistant. In this study, epicuticular leaf wax from two ALB-resistant [R. canescens Michaux and R. periclymenoides (Michaux) Shinner] and two ALB-susceptible (‘Buttercup’ and ‘My Mary’) deciduous azalea genotypes was extracted and re-applied to fresh azalea foliage. Leaf wax extracted from ALB-resistant genotypes and applied to ALB-susceptible genotypes conferred a high level of resistance to both ALB feeding and oviposition in the treated ALB-susceptible genotypes. Conversely, leaf wax extracted from ALB-resistant genotypes and applied to ALB-resistant genotypes conferred susceptibility to the treated ALB-resistant genotypes. However, the effect was much less substantial than the effect of resistant wax extracts on susceptible genotypes and confined to ALB oviposition. When applied to the same genotype from which the extract was collected, leaf wax extract from ALB-susceptible genotypes had no effect on susceptibility, whereas resistant wax extract had a moderate effect on ALB oviposition rate. The results indicate that leaf wax serves as a primary mechanism of resistance of deciduous azalea to ALB.

Since its introduction from Japan in 1915, azalea lace bug (ALB) has become a significant pest on azalea throughout North America (Drake and Ruhoff, 1965; Weiss, 1916). ALB damage occurs from late spring until leaf drop, as up to four generations can occur in a single growing season (Neal and Douglass, 1988). Adult and nymphal ALB feed on the abaxial leaf surface by inserting stylets into stomata (Ishihara and Kawai, 1981). Chlorenchyma and other cell contents are removed from the mesophyll layer, resulting in speckling on foliage of susceptible species and cultivars. Additionally, cast skins of nymphs and brown to black frass deposition on the leaf further discolor foliage (Braman and Pendley, 1992; Buntin et al., 1996; Ishihara and Kawai, 1981; Mead, 1967).

Bioassays performed by Braman and Pendley (1992) found the deciduous R. canescens and R. prunifolium (Small) Millais to be resistant, whereas the evergreen cultivar Delaware Valley White [a selection of R. indica (L.) Sweet] was susceptible. Further work by Wang et al. (1998) evaluated four cultivars and 11 deciduous species selections and found R. periclymenoides, R. canescens, and R. prunifolium to be highly resistant and R. serrulatum (Small) Ahles and R. vicosum (L.) Torrey to show moderate resistance to ALB. Moderately susceptible to very susceptible species included R. arborescens (Pench) Torrey, R. austrinum (Small) Rehder, and R. oblongifolium (Small) Millais. Susceptible cultivars included ‘Buttercup’, a R. austrinum selection; ‘My Mary’, a complex hybrid of [R. atlanticum (Ashe) Rehd. × R. periclymenoides] × R. austrinum selection; and ‘Nacoochee’, a R. atlanticum × R. periclymenoides hybrid.

The principle function of the plant cuticle is to prevent excessive water loss (Hopkins, 1995). The epicuticular wax layer of the cuticle consists of long-chain aliphatic compounds derived from fatty acid chains. This wax layer is deposited on the leaf surface as amorphous intracuticular wax embedded in cutin polymers, as well as wax crystalloids. Epicuticular wax components include alkanes, primary and secondary alcohols, ketones, and wax esters (Eigenbrode and Espelie, 1995; Knust and Samuels, 2003). Epicuticular wax has been recognized as a deterrent to feeding and oviposition by herbivorous insects as well as an attractant of beneficial (often predatory) insects (Eigenbrode and Espelie, 1995). Specific examples of epicuticular wax–herbivore interactions have been identified and characterized in Allium cepa L. (Molenaar, 1984), Brassica rapa L. (Bodnaryk, 1992; Srivivasachar and Malik, 1972), Eucalyptus globulus Labill (Brennan and Weinbaum, 2001), Glycine max L. (Baker et al., 1985), Hordeum vulgare L. (Tsumuki et al., 1989), Sorghum bicolor (L.) Moench (Chapman et al., 1983; Nwanze et al., 1992; Weibel and Starks, 1986), and Triticum aestivum L. (Lowe et al., 1985).

In azalea, through the use of gas chromatography–mass spectrometry, specific lipid components of epicuticular wax have been implicated in ALB resistance and susceptibility (Balsdon et al., 1995; Wang et al., 1999). Research by Balsdon et al. (1995), analyzing lipid components of four susceptible evergreen cultivars and the resistant species R. canescens, identified three triterpenoid components that may have an effect on ALB behavior. However, data were not definitive as purported deterrent/stimulant compounds were found in similar concentrations in both R. canescens and the susceptible cultivars. Wang et al. (1999) identified lipid components correlated with ALB resistance and susceptibility in two deciduous resistant genotypes, four deciduous susceptible genotypes, and one evergreen susceptible azalea genotype. The lipid component present in the largest proportion among resistant genotypes was n-Hentriacontane, whereas in susceptible genotypes α- and β-amyrin were in greatest concentrations.
these studies suggest an association of leaf-surface lipids with ALB response, studies to quantify the actual effects of lipids on ALB behavior have not been conducted. The research described in this paper investigates the quantitative effects of leaf-surface lipids from susceptible and resistant foliage on ALB survival, feeding, and oviposition.

Materials and Methods

Plant materials. Genotypes included in this study were selected based upon previous bioassays that screened azaleas for response to ALB (Braman and Pendley, 1992; Wang et al., 1998). The azalea genotypes included in this study were the resistant R. periclymenoides and R. canescens and the susceptible ‘Buttercup' (R. austrinum selection) and ‘My Mary’ (Beasley hybrid). Due to a lack of sufficient numbers of adult female ALB, the experiment was undertaken in two parts. R. periclymenoides and ‘Buttercup' were paired and tested 30 Aug. 2004 followed 1 week later by R. canescens and ‘My Mary’. All plant material used in this research was obtained in Aug. 2004 from mature field-grown plants grown under mixed deciduous tree species. The field plots were established in Nov. 1994 and maintained through drip irrigation and annual fertilization with Osmocote Pro Controlled Release Fertilizer Plus Minors (19N–2.2P–7.5K; Scotts-Sierra Horticultural Products Co., Marysville, Ohio). No pesticides were applied.

Laboratory bioassays. Bioassays were conducted by extracting epicuticular leaf wax from two ALB-resistant and two ALB-susceptible deciduous azalea genotypes and re-applying to fresh azalea foliage of each of the four genotypes in a diallel design. Following leaf wax extraction and re-application, ALB were introduced to foliage in a closed and controlled environment and ALB survival, frass deposition, and oviposition were measured. To extract leaf wax, 40 azalea leaves per genotype were air-dried for 120 h, then immersed in 100 mL of chloroform for 15 s. Chloroform was evaporated and the remaining epicuticular wax re-suspended in 50 mL, 2 ethanol : 1 deionized water solution and stirred for 1 h. The resulting solution was applied directly under mild heating (32.2 °C) and stirring. Upon cooling to room temperature (20 °C), the resultant solution was allowed to dry on the leaf surface. If wax debris or unobstructed, with simple ratios calculated as a percentage of unclogged stomata per 100 μm².

Results and Discussion

Azalea lace bug survival. Variances from the two tests, performed 1 week apart, were homogeneous based on Bartlett’s test for homogeneity of variance at P > 0.05 (data not shown). Hence, data from the two independent experiments were combined and analyzed as a single data set. The first of three parameters assessed in this study, ALB survival, directly measures the deterrent effects of epicuticular leaf wax. Results indicate that epicuticular leaf wax from ALB-resistant genotypes contains a strong deterrent, as ALB survival was dramatically reduced when foliage of susceptible genotypes were treated with wax extract from resistant genotypes. When ‘Buttercup’ foliage was treated with R. periclymenoides wax extract, ALB survival was reduced from the ‘Buttercup’ nontreated and solution-only means of 2.9 and 3.0, respectively, to 0.6 (Table 1). This mean of 0.6 is comparable to the ALB survival on R. periclymenoides foliage.
treated with *R. periclymenoides* wax extract. Similarly, when ‘My Mary’ foliage was treated with *R. canescens* wax extract, ALB survival was reduced from the ‘My Mary’ nontreated and solution-only means of 3.0 and 2.9, respectively, to 1.0. This 1.0 ALB survival rate is comparable to that of *R. canescens* foliage treated with *R. canescens* wax extract.

Results point to an inverse effect as well, as leaf wax extracts from susceptible genotypes conferred susceptibility when applied to resistant genotypes. When ‘Buttercup’ wax extract was applied to *R. periclymenoides* foliage, ALB survival was increased from the *R. periclymenoides* nontreated and solution-only means of 1.0 and 1.4, respectively, to 3.2. This 3.2 value is comparable to that of ‘Buttercup’ foliage treated with ‘Buttercup’ wax extract (\(\tau = 3.1\)). Similarly, when ‘My Mary’ wax extract was applied to *R. canescens* foliage, ALB survival was increased from the *R. canescens* nontreated and solution-only means of 0.8 and 0.9, respectively, to 3.2. This 3.2 value is comparable to that of ‘My Mary’ foliage treated with ‘My Mary’ wax extract (\(\tau = 2.9\)).

Treatment of leaf surfaces with wax from the same genotype had no statistically significant effect on the level of resistance or susceptibility compared to nontreated or solution-only controls. *R. periclymenoides* foliage treated with *R. periclymenoides* wax extract had a mean ALB survival of 0.6, with nontreated and solution-only means statistically similar at 1.0 and 1.4, respectively. ‘Buttercup’ foliage treated with ‘Buttercup’ wax extract had a mean ALB survival of 3.1, with nontreated and solution-only means of 0.8 and 0.9, respectively, to 3.2. This 3.2 value is comparable to that of ‘My Mary’ foliage treated with ‘My Mary’ wax extract (\(\tau = 2.9\)). Treatment of leaf surfaces with wax from the same genotype followed this pattern.

Table 1. Numbers of surviving adult female azalea lace bugs, frass spots, and eggs on azalea foliage treated with epicuticular wax extract from *Rhododendron periclymenoides*, *R. canescens* susceptible (‘Buttercup’, ‘My Mary’) azalea foliage. Numbers are means of five replications and data are grouped based on the recipient of leaf wax. Mean separation is based upon least significant difference (LSD) at \(P < 0.05\). Means followed by the same letters are statistically similar.

Wax treatment	Frass treated surfaces*	Frass non-treated surfaces*	Eggs treated surfaces*	Eggs non-treated surfaces*
	‘Buttercup’ leaves (susceptible)*	‘My Mary’ leaves (susceptible)*	‘My Mary’ leaves (resistant)*	‘My Mary’ leaves (resistant)*
Wax treatment	‘Buttercup’	3.1 a	‘My Mary’	0.3 b
	Solution-only	3.0 a	‘My Mary’	12.6 a
	Nontreated	2.9 a	‘My Mary’	14.5 b
	R. periclymenoides	5.6 b	‘My Mary’	44.6 a
\(P < F\)	0.0001	0.0001	0.0015	0.0015
Wax treatment	‘Buttercup’	3.2 a	‘My Mary’	13.1 d
	Solution-only	1.4 b	‘My Mary’	25.9 a
	Nontreated	1.0 b	‘My Mary’	36.5 a
	R. periclymenoides	0.61	‘My Mary’	66.5 a
\(P < F\)	0.0015	0.0033	0.0008	0.0002
Wax treatment	‘Buttercup’	3.2 a	‘My Mary’	13.8 b
	Solution-only	1.0 b	‘My Mary’	25.9 a
	Nontreated	0.8 b	‘My Mary’	44.6 a
	R. canescens	0.61	‘My Mary’	14.5 b
\(P < F\)	0.0015	0.0033	0.0008	0.0002

*Surviving adult female lace bugs at 96 h. Each replication included four adult female lace bugs.

Frass on treated side of leaves at 96 h.

Frass on nontreated side of leaves at 96 h.

Eggs on treated side of leaves at 96 h.

Eggs on nontreated side of leaves at 96 h.

*The donor of leaf wax, solution-only treatment, or nontreated.

*All reported values are means over five replications.

*Mean separation based on LSD at \(P < 0.05\). Means followed by the same letters are statistically similar.

Azalea Lace Bug Frass Deposition. The number of frass spots is a direct assessment of ALB feeding. Frass deposition on foliage of susceptible genotypes treated with resistant wax extract were significantly reduced compared to susceptible controls, due to both mortality of ALB in these treatment combinations and a reduction in feeding of live ALB. Mean number of frass spots from ‘Buttercup’ leaf surfaces treated with *R. periclymenoides* wax extract was reduced from the solution-only mean of 66.5 to 5.9 (Table 1). Mean number of frass spots from ‘My Mary’ leaf surfaces treated with *R. canescens* wax extract was reduced from the ‘My Mary’ solution-only mean of 56.3 to 16.6. Photos of feeding damage and frass deposition on ‘My Mary’ foliage treated with *R. canescens* wax extract is shown in Fig. 1. Conversely, when wax extracts from susceptible genotypes were applied to resistant genotypes, treated leaf surfaces of resistant genotypes exhibited a susceptible response to ALB. Mean number of frass spots on *R. periclymenoides* leaf surfaces treated with ‘Buttercup’ wax extract was increased from the *R. periclymenoides* solution-only mean of 19.2 to 46.6. Similarly, mean number of frass spots on *R. canescens* leaf surfaces treated with ‘My Mary’ wax extract was increased from the *R. canescens* solution-only mean of 8.8 to 44.6. This treatment effect is seen in the Fig. 1 photograph of a *R. canescens* leaf treated with ‘My Mary’ wax extract.

Treatment of leaf surfaces with wax extracted from the same genotype showed no significant effect on the level of resistance. Mean number of frass spots on *R. canescens* leaf surfaces treated with *R. canescens* wax extract was 11.8, comparable to that of the solution-only mean 8.8. Similarly, mean number of frass spots on *R. periclymenoides* leaf surfaces treated with *R. periclymenoides* wax extract was 11.8, comparable to that of the solution-only mean 11.8.
wax extract was 2.9, comparable to that of the solution-only mean of 19.2. Conversely, treatment of ‘My Mary’ leaf surfaces with ‘My Mary’ wax extract showed a significant effect on the level of susceptibility compared to the solution-only control.

Azalea Lace Bug Oviposition. Egg deposition is an indirect measure of feeding, as eggs are typically deposited only on foliage of susceptible genotypes capable of supporting nymphal feeding and development. Oviposition rate on foliage of susceptible genotypes treated with resistant wax extract were significantly reduced compared to susceptible controls, probably due to significantly higher ALB mortality and a reduction in feeding of live ALB in these treatment combinations. Mean number of eggs on ‘Buttercup’ leaf surfaces treated with \textit{R. periclymenoides} wax extract was reduced from the ‘Buttercup’ solution-only mean of 14.6 to 0.9 (Table 1). Similarly, mean number of eggs on ‘My Mary’ leaf surfaces treated with \textit{R. canescens} wax extract was reduced from the ‘My Mary’ solution-only mean of 13.3 to 1.5. Conversely, oviposition was significantly increased on resistant genotypes treated with susceptible wax extracts. Mean number of eggs on \textit{R. periclymenoides} leaf surfaces treated with ‘Buttercup’ wax extract was increased from the ‘Buttercup’ solution-only mean of 2.0 to 8.5. Mean number of eggs on \textit{R. canescens} leaf surfaces treated with ‘My Mary’ wax extract was increased from the solution-only mean of 0.1 to 5.2. Treatment of leaf surfaces with wax from the same genotype neither positively nor negatively affected the resistance or susceptibility of genotypes in this study. Mean number of eggs on \textit{R. canescens} leaf surfaces treated with \textit{R. canescens} wax extract was 0.4, comparable to the solution-only mean of 0.1. Mean number of eggs on ‘Buttercup’ leaf surfaces treated with ‘Buttercup’ wax extract was 14.8, comparable to the solution-only mean of 14.6.

Epicuticular Leaf Wax Effects on Untreated Leaf Surfaces. The effects of epicuticular leaf wax extracts, in addition to significantly impacting ALB behavior on treated leaf surfaces, also significantly impacted behavior on nontreated leaf surfaces. Resistant wax extract had a similar impact on susceptible cultivars in both frass deposition and oviposition, again due to significantly higher ALB mortality in treatment combinations including wax solution of resistant genotypes. When \textit{R. periclymenoides} wax extract was applied to ‘Buttercup’ leaf surfaces, mean number of frass spots on nontreated leaf surfaces was reduced from the ‘Buttercup’ nontreated and solution-only (control) means of 112.9 and 68.7, respectively, to 6.5 (Table 1). Mean number of eggs on nontreated leaf surfaces was reduced from the ‘Buttercup’ nontreated and solution-only means of 25.9 and 13.8, respectively, to 0.3. When \textit{R. canescens} wax extract was applied to ‘My Mary’ leaf surfaces, mean number of frass spots on nontreated leaf surfaces was reduced from the ‘My Mary’ nontreated and solution-only means of 19.3 and 56.6, respectively, to 13.1. Mean number of eggs on nontreated leaf surfaces was reduced from the ‘My Mary’ nontreated and solution-only means of 29.4 and 12.7, respectively, to 0.3.

The same effect was noted when wax extract of susceptible genotypes was applied to resistant genotypes. When ‘Buttercup’ wax extract was applied to \textit{R. periclymenoides} leaf surfaces, mean number of frass spots on nontreated leaf surfaces was increased from the nontreated and solution-only means of 47.6 and 20.4, respectively, to 82.6. Mean number of eggs on nontreated leaf surfaces was also increased from the nontreated and solution-only means of 0.3 and 0.1, respectively, to 12.6.

Treatment of leaf surfaces with wax from the same genotypes mirrored controls, with no significant differences observed in frass or egg means with the exception of ‘My Mary’ frass means. For example, when \textit{R. canescens} wax extract was applied to \textit{R. canescens} leaf surfaces, mean number of frass spots on nontreated leaf surfaces was 13.2, comparable to both nontreated and solution-only values of 14.5 and 6.4, respectively. Mean number of eggs on nontreated leaf surfaces was 1.0, comparable to the nontreated and solution-only values of 0.3 and 0.1, respectively. When ‘My Mary’ wax was applied to ‘My Mary’ leaf surfaces, mean number of frass spots on nontreated leaf surfaces was 93.3, statistically different from the nontreated mean of 119.3, yet much greater than the \textit{R. canescens} solution value of 13.1. Mean number of eggs on nontreated leaf surfaces was 18.7, comparable to the solution-only mean of 12.7.

Pairwise Comparisons. To better elucidate the overall effect of wax extracts from resistant and susceptible genotypes on ALB behavior, on treated versus nontreated sides of a leaf, a dependent \textit{t} test (pairwise comparison) was performed on six data subsets (Table 2). Three data subsets yielded significant differences between both frass and/or egg counts on treated versus nontreated sides of foliage. The first subset, significant for both frass deposition and oviposition rate contained resistant genotypes as donor of leaf wax with susceptible genotypes as recipients of leaf wax. The second subset, significant only for oviposition rate, included all treatment groups containing a resistant genotype as a recipient of leaf wax with resistant genotypes as donors of leaf wax. The third subset, significant only for oviposition rate, included all treatment groups containing a susceptible genotype as a wax.
component that serves as a strong deterrent to ALB (Weinbaum, 2001; Molenaar, 1984). This response is most likely agronomically important crops (Bodnaryk, 1992; Brennan and Weinbaum, 2001; Molenaar, 1984). The results of this study demonstrate that leaf-surface lipids from resistant deciduous azalea foliage confers a high level of resistance to ALB feeding and oviposition, as previously proposed by Balsdon et al. (1995) and Wang et al. (1999) linked several specific chemical components, present in epicuticular wax of ALB-resistant genotypes, to this deterrent effect. Studies are under way to further their work and characterize whether reduced ALB survival, frass deposition (feeding), and oviposition observed on resistant genotypes is due to a specific lipid that serves as a strong deterrent within epicuticular wax and whether increased ALB survival and oviposition in susceptible genotypes is due to a chemical stimulant within epicuticular leaf wax. The future identification of specific epicuticular leaf wax component(s) linked to ALB resistance and susceptibility has the potential to significantly change both ALB resistance breeding and management strategies employed in ALB control.

Literature Cited

Baker, D., M. Rangappa, and P.S. Benepal. 1985. Comparative leaf morphology of soybean genotypes resistant and susceptible to Mexican bean beetle defoliation. Soybean Genet. Nwsl. 15:114–115.

Balsdon, J.A., K.E. Espelie, and S.K. Braman. 1995. Epicuticular lipids from azalea (Rhododendron spp.) and their potential role in host plant acceptance by azalea lace bug, Stephanitis pyrioides (Heteroptera: Tingidae). Biochem. Syst. Ecol. 23:477-485.

Bodnaryk, R.P. 1992. Leaf epicuticular wax, an antixenotic factor in Brassicaceae that affects the rate and pattern of feeding of flea beetles Phyllotreta cruciferae (Goeze). Can. J. Plant Sci. 72:1295–1303.

Braman, S.K. and A.F. Pendley. 1992. Evidence for resistance of deciduous azaleas to azalea lace bug. J. Environ. Hort. 10:40–43.

Brennan, E.B. and S.A. Weinbaum. 2001. Effect of epicuticular wax on donor with only resistant genotypes as recipients as leaf wax extract. No significant differences in frass deposition or oviposition were observed on treated versus nontreated sides of foliage within the following data subsets: 1) susceptible genotypes as a recipient of leaf wax and susceptible genotypes as a donor of leaf wax, 2) solution-only control as a treatment. Overall, results of the pairwise comparisons indicate a significant effect of leaf wax extracts from resistant genotypes on ALB feeding and oviposition, and with results from mean separation (LSD) analysis, it has been determined to be a significant negative effect. Such a strong response of ALB to resistant wax extracts, as concluded from both LSD and pairwise comparisons, is likely due to an epicuticular wax component that serves as a strong deterrent to ALB.

Table 2. Degrees of freedom, mean difference, standard deviation, t value, and probability of t values for pairwise comparison of frass deposition and oviposition counts on treated versus nontreated sides of azalea foliage. Data for the resistant genotypes Rhododendron periclymenoides and R. canescens were combined, as were the data for the susceptible genotypes ‘Buttercup’ and ‘My Mary’.

Donor	Recipient	df	Treated Mean	SD	t	P >	t	Oviposition Mean	SD	t	P >	t
Susceptible	Resistant	4	1.45	6.02	0.76	0.4658**	0.90	0.88	3.25	0.0100**		
Resistant	Susceptible	4	-20.90	21.96	-3.01	0.0143**	-8.40	4.39	-6.05	0.0002***		
Susceptible	Susceptible	4	-15.35	32.79	-1.48	0.1729 NS	-6.65	3.22	-6.04	0.5385 NS		
Resistant	Resistant	4	-3.30	5.24	-1.99	0.0776 NS	-0.90	0.84	-3.38	0.0082**		
Solution	Susceptible	4	-1.25	11.50	-0.34	0.7392 NS	0.70	4.45	0.50	0.6312 NS		
Solution	Resistant	4	0.60	3.46	0.55	0.5970 NS	-0.25	0.86	-0.92	0.3809 NS		

a, b, c P < 0.05, 0.01, or 0.001, respectively.

Fig. 2. Scanning electron micrographs of azalea lace bug susceptible cultivar ‘Buttercup’ foliage treated with wax solution of Rhododendron periclymenoides (panel A and C) and control micrographs of nontreated ‘Buttercup’ foliage (panel B and D). Stomata (S) and wax crystalloids (WC) are highlighted. Distance bars represent 10 μm.
adhesion of psyllids to glaucous juvenile and glossy adult foliage of *Eucalyptus globules* Labillardiere. Austral. J. Entomol. 40:270–277.

Buntin, G.D., S.K. Braman, D.A. Gilbertz, and D.V. Phillips. 1996. Chlorosis, photosynthesis, and transpiration of azalea foliage after azalea lace bug (Heteroptera: Tingidae) feeding injury. J. Econ. Entomol. 89: 990–995.

Chapman, R.F., S. Woodhead, and E.A. Bernays. 1983. Survival and dispersal of young larvae of *Chilo partellus* (Swinhoe) (Lepidoptera: Pyralidae) in two cultivars of sorghum. Bul. Entomol. Res. 73:65–74.

Drake, C.J. and F.A. Ruhoff. 1965. Lacebugs of the world: A catalog (Hemiptera: Tingidae). U.S. Natl. Museum Bul. 213.

Eigenbrode, S.D. and K.E. Espelie. 1995. Effects of plant epicuticular lipids on insect herbivores. Annu. Rev. Entomol. 40:171–194.

Hopkins, W.G. 1995. Introduction to plant physiology. Wiley, New York.

Ishihara, R. and S. Kawai. 1981. Feeding habits of the azalea lace bug, *Stephanitis pyrioides* Scot (Hemiptera: Tingidae). Jpn. J. Appl. Entomol. Zoology 25:200–202.

Johnson, W.T. and H.H. Lyon. 1991. Insects that feed on trees and shrubs. Cornell Univ. Press, Ithaca, N.Y.

Knust, L. and A.L. Samuels. 2003. Biosynthesis and secretion of plant cuticular wax. Progress Lipid Res. 42:51–80.

Lowe, H.J.B., G.J.P. Murphy, and M.L. Parker. 1985. Non-glaucousness, a probable aphid-resistance character of wheat. Ann. Appl. Biol. 106:555–560.

Mead, F.W. 1967. *Stephanitis* lace bugs of the United States (Hemiptera: Tingidae). Fla. Dept. Agr. Div. Plant Ind. Entomol. Circ. 62.

Molenar, N.D. 1984. Genetics, thrips (*Thrips tabaci* L.) resistance and epicuticular wax characteristics of nonglossy and glossy onions (*Allium cepa* L.). PhD Diss., Univ. of Wisconsin, Madison.

Neale, J.W., Jr. and L.W. Douglass. 1988. Development, oviposition rate, longevity, and voltinism of *Stephanitis pyrioides* (Heteroptera: Tingidae). An adventive predator of azalea at three temperatures. Environ. Entomol. 17:827–831.

Nwanze, K.F., R.J. Pring, P.S. Sree, D.R. Butler, Y.V.R. Reddy, and P. Soman. 1992. Resistance in sorghum to the shoot fly, *Atherigona soccata*: Epicuticular wax and wetness of the central whorl leaf of young seedlings. Ann. Appl. Biol. 120:373–382.

Srinivasachar, D. and R.S. Malik. 1972. An induced aphid-resistant, nonwaxy mutant in turnip, *Brassica rapa*. Current Sci. 41:820–821.

Tsumuki, H., K. Kanehisa, and K. Kawada. 1989. Leaf surface wax as a possible resistance factor of barley to cereal aphids. Appl. Entomol. Zoology 24:295–301.

Wang, Y., C.D. Robacker, and S.K. Braman. 1998. Identification of resistance to azalea lace bug among deciduous azalea taxa. J. Amer. Soc. Hort. Sci. 123:592–597.

Wang, Y., S.K. Braman, C.D. Robacker, and J.G. Latimer. 1999. Composition and variability of epicuticular lipids of azaleas and their relationship to azalea lace bug resistance. J. Amer. Soc. Hort. Sci. 124:239–244.

Weibel, D.E. and K.J. Starks. 1986. Greenbug nonpreference for blossomless sorghum. Crop Sci. 26:1151–1153.