Choroidal Remodeling Distribution Pattern in the Macular Region in Chinese Young Patients with Myopia

Jun Wang
School of Ophthalmology and Eye Hospital, Wenzhou Medical University

Xin Ye
School of Ophthalmology and Eye Hospital, Wenzhou Medical University

Xiangjun She
School of Ophthalmology and Eye Hospital, Wenzhou Medical University

Jiahao Xu
School of Ophthalmology and Eye Hospital, Wenzhou Medical University

Yiqi Chen
School of Ophthalmology and Eye Hospital, Wenzhou Medical University

Jiwei Tao
School of Ophthalmology and Eye Hospital, Wenzhou Medical University

Xinjie Ye
School of Ophthalmology and Eye Hospital, Wenzhou Medical University

Lijun Shen (✉ slj@mail.eye.ac.cn)
School of Ophthalmology and Eye Hospital, Wenzhou Medical University

Research Article

Keywords: young myopic eyes, choroidal vascularity index (CVI), choroidal thickness (CT), spherical equivalent (SE), axial length (AL)

DOI: https://doi.org/10.21203/rs.3.rs-539206/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: The pathogenesis of myopia has been found to be associated with the blood supply of the choroid. This study aimed to determine the relationship between distribution pattern of the choroidal remodeling and the degree of myopia in young patients.

Methods: Young patients (age < 18 years) with spherical equivalent of less than -12 diopters (D) were included. Spectral-domain optical coherence tomography (SD-OCT) with enhanced depth imaging (EDI) modality was used to measure the choroidal thickness (CT) and choroidal vascularity index (CVI) in the macular regions. CVI was calculated as the proportion of luminal area to choroidal area and was measured within 1 mm and 3 mm nasal (N1 and N3), temporal (T1 and T3), superior (S1 and S3), and inferior (I1 and I3) to the foveal center. CT and CVI were compared across different ages (i.e., 5~9 years, 10~13 years, and 14~18 years), axial lengths (ALs) (i.e., 21.00~25.00mm and 25.01~29.00mm), and spherical equivalents (SEs) (i.e., SE>-0.5D, -0.5~-3.0D, -3.01~-6.0D, and <-6.0D). Multiple linear regression was applied to examine the associations amongst age, AL, SE, and CVI of different locations.

Results: 164 of 172 eyes from 85 volunteers were included. The mean CT in the central foveal was 269.87 ± 63.32µm (ranging from 93.00µm to 443.00µm). The mean sub foveal-CVI was 67.66 ± 2.40% (ranging from 57.84% to 79.60%). Multiple linear regression results revealed significant correlations between SE and T1-CVI ($p < 0.05$, $r^2 = 0.082$, $\beta = 0.194$), N1-CVI ($p < 0.05$, $r^2 = 0.039$, $\beta = 0.212$). Simple linear regression results revealed that T1-CVI ($p < 0.05$, $r^2 = 0.09$) and T3-CVI ($p < 0.05$, $r^2 = 0.05$) were negatively correlated with SE; N1-CVI ($p < 0.05$, $r^2 = 0.05$) and N3-CVI ($p < 0.05$, $r^2 = 0.04$) were negatively correlated with SE.

Conclusions and Relevance: CVI in the horizontal meridian underwent the largest change as myopia worsened. Temporal and nasal CVIs within the r =1mm and r=3mm sub foveal range were positively associated with degree of myopia in young patients. The CVI value may be used to assess the vascular status of the choroid and be a potential marker of myopic progression.

Introduction

Myopia has become the second leading cause of blindness worldwide and can create burdens on individuals and society (1). East Asian countries have experienced the fastest growth in cases of myopia. The prevalence of myopia among Chinese university students is about 95.5%, and high myopia accounts for about 19.5% (2). A significant proportion of available research has been conducted in young myopic eyes, and long-lasting choroidal alterations have notable importance for myopic development (3, 4). The choroid consists predominantly of blood vessels, and is involved in numerous physiological processes of the eye(5). Choroidal blood supply has been shown to be related to the pathogenesis of myopia(6), and choroidal thickness (CT) as well as choroidal vascularity index (CVI) are considered important measurement indexes for status of choroid.
CT is defined as the perpendicular distance between the Bruch membrane and the choroid/sclera junction on the optical coherence tomography (OCT) images. In both normal and highly myopic eyes, CT values vary among different regions in the macula, and CT is the thinnest at the nasal and inferior regions, followed by the superior and temporal regions (3, 7, 8). Several studies have demonstrated a decreased CT in highly myopic eyes (9–11). What is noteworthy is that Fang et al (12) reported a CT cut-off value of 56.5µm at 3mm nasally to the fovea, which is suggested as a diagnostic criterion of pathological myopia. However, CT is affected by age, gender, axial length, intraocular pressure, systolic blood pressure (5). Therefore, a more stable indicator needs to be found.

With the changes in CT, the subsequent remodeling of choroid vessels is worth studying. With an increase in luminal diameter, the choroid may be differentiated into choriocapillaris, Sattler's layer and Haller's layer (13). The choroidal stroma, which contains leukocytes, melanocytes, fibroblasts and numerous non-vascular smooth muscle cells, fills extravascular and extra lymphatic space (14). Unlike the lacunae action, with contraction of the non-vascular smooth muscle cells, choroid is becoming thinning (14). The CVI expressed as the proportion of luminal area to choroidal area, is a promising new parameter to assess the remodeling of choroid vessels and retinal blood supply in the macular area (15). After binarization, the OCT image is transformed to a black-and-white one. The stroma or interstitial area are represented by light pixels, while the vessel lumens are indicated by dark pixels. Then CVI is derived by calculating the ratio between the luminal area and the choroidal area of defined region. A recent study has noted that CVI was less influenced by physiologic factors mentioned above (16), thus it is emerging as a potentially more robust biomarker for the evaluation of choroidal status in myopic progression.

The advancement of the spectral-domain optical coherence tomography (SD-OCT) renders possible the non-invasive and quantitative measurements of the choroid with the resolution of 12 µm. In a clinical setting, enhanced depth imaging OCT (EDI-OCT) offers improvements in visualizing the choroid/sclera junction and observing the entire choroid. SD-OCT images can be processed for a detailed morphologic and vascular features analysis, including CT and the CVI at selected distances from the foveal center. In our study, we aimed to observe the distribution features of the CVI and CT in young patients by using SD-OCT with EDI technique to explore the features of distribution pattern of the choroidal remodeling during the progression of myopia.

Methods

Study population. The study included 172 eyes of 84 participants (aged 5–18 years) from the Zhejiang eye hospital and was approved by the Institutional Review Board. Informed written consent was obtained from every enrolled subject after a thorough explanation on the details of the study as well as potential risks and consequences of the study. Subjects were excluded if they suffered from corneal opacification, cataracts, glaucoma, retinal disease, or amblyopia.

Comprehensive Ophthalmic Examinations. All participants went through comprehensive ophthalmic examinations including the measurement of axial length (AL), cycloplegic refraction, slit-lamp and dilated
fundus examinations. The AL was measured by optical biometry (IOLMaster; Carl Zeiss, Jena, Germany). Their pupils were dilated with cyclopentane before refraction test and fundus examination.

Choroidal Image Acquisition. The choroidal thickness (CT) and choroidal vascularity index (CVI) in the macular region was examined by spectral-domain optical coherence tomography (SD-OCT, Optovue Inc., Fremont, CA, USA) with enhanced depth imaging (EDI) modality. Enhanced high-density B-scans (12μm resolution) were taken at different positions to obtain the choroidal images. Horizontal and vertical scans crossing the fovea and the optic disk were performed by the same trained technician to assure uniformity. Sixty scans at each position were montaged to create one image; only clear images were used for analysis. All the patients underwent the measurement in a seated position, and the EDI mode software (RTVue XR OCT Avanti System, version 2016.1.0; Optovue Inc., Fremont, CA, USA) was used to enhance the visibility of the choroid structure(17).

Choroidal thickness measurement. Subfoveal CT was manually measured by two independent researchers using the EDI-OCT, and the average thickness was considered as the result. CT was calculated as the distance between the lower boundary of RPE and the choroid-scleral border. Measurements of both the right and left eyes of each subject were obtained and used for further analysis.

Image binarization and choroidal vascularity index measurement. For further choroidal structure analysis, all collected images were processed and analyzed using the public domain ImageJ software (freely available at http://imagej.nih.gov/ij/; National Institutes of Health [NIH], Bethesda, MD). The image was firstly binarized by Niblack autolocal threshold tool(18), which takes the mean and standard deviation(SD) of all the pixels into consideration. After that, the choroid-scleral interface was clearly visualized and further enabled precise selection of the region of interest (i.e., total subfoveal choroidal area). The dark pixels representing luminal area were selected by color threshold tool and residual pixels were considered as stroma area. From the collected choroidal images, CVI was calculated as the ratio of the vascular luminal area to the choroidal area, measured at subfoveal (Sf), 1 mm and 3 mm nasal (N1 and N3, respectively), temporal (T1 and T3, respectively), superior (S1 and S3, respectively), and inferior (I1 and I3, respectively) to the foveal center (as indicated in Fig. 1). The mean Sf-CVI calculated as the average value of horizontal and vertical CVIs, including Sf1-CVI(r = 1mm) and Sf3-CVI(r = 3mm).

Statistical Analyses. CVI were compared across different age groups (i.e., 5–9 years, 10–13 years, and 14–18 years), axial lengths (i.e., 21.00–25.00mm and 25.01–29.00mm), and myopia groups (i.e., non-myopia(≥ -0.25D), low myopia(-0.25D~-3.0D), moderate myopia(3.0D~-6.0D) and high myopia(≤ -6.0D)). All data were analyzed to determine the relationship between these factors and CVI. Statistical analyses were conducted using IBM SPSS Statistics version 21.0 (IBM Corp., Armonk, NY, USA). Normality data distribution was tested with the Kolmogorov-Smirnov test. Normally distributed data were expressed as means ± standard deviations (SDs). Multiple linear regression was applied to examine the associations among age, AL, spherical equivalent (SE), and CVI of different locations. A value of $p < 0.05$ was considered statistically significant in all analyses.
Results

Descriptive statistics analysis results. CVI was measured in 164 of 172 eyes; eight eyes were excluded due to poor image quality. The age of the volunteers ranged from five to eighteen years with a mean value ± standard deviation (SD) of 10.05±2.65 years. Mean SE was -1.90 ± 2.48D (ranging from -10.75D to 6.75D). Mean AL is 24.34 ± 1.29mm (ranging from 21.50mm to 27.94mm) (Table 1). The mean CT in the central foveal was 269.87 ± 63.32µm (ranging from 93.00 µm to 443.00µm). The mean Sf-CVI in r=1mm region to the central foveal was 67.65±2.42% (ranging from 61.49 to 77.27%). The mean Sf-CVI in r=3mm region to the central foveal was 67.68±1.98 % (ranging from 62.63 to 74.13%) (Table 2).

Table 1. Demographics, clinical and choroidal characteristics of study subjects (n = 164).
Variables
Age(years)
5-9
10-13
14-18
Gender
male
female
AL (mm)
≤25
>25
SE (diopter)
>-0.25
-0.25~3.0
-3.0~6.0
≤-6.0

Data presented are means ± standard deviations (SD), except for gender, which is number (%).

AL: Axial length; SE: Spherical equivalent; SFCT: sub-foveal choroidal thickness;
CVI: choroidal vascularity index.
Table 2. Choroidal characteristics of study subjects (n = 164).

Variables	Mean ± SD	Range
SFCT (µm)	269.87±63.32	93.00 to 443.00
r=1mm		
Horizontal CVI (%)	67.99±2.69	61.49 to 78.72
Vertical CVI (%)	67.36±2.65	60.40 to 75.83
Mean CVI (%)	67.65±2.42	61.49 to 77.27
Temporal (%)	67.92±3.00	58.93 to 77.83
Nasal (%)	68.05±3.34	60.84 to 79.60
Superior (%)	67.45±2.90	61.35 to 75.70
Inferior (%)	67.27±3.00	57.84 to 78.46
r=3mm		
Horizontal CVI (%)	67.97±2.40	59.98 to 75.47
Vertical CVI (%)	67.44±2.08	60.65 to 73.05
Mean CVI (%)	67.68±1.98	62.63 to 74.13
Temporal (%)	67.32±5.74	58.51 to 75.82
Nasal (%)	68.22±2.95	61.30 to 76.09
Superior (%)	67.47±2.90	61.22 to 73.38
Inferior (%)	67.42±2.31	60.08 to 73.06

SFCT: sub-foveal choroidal thickness; CVI: choroidal vascularity index.

Choroidal Remodeling Distribution Pattern. The mean CVI of four regions above was compared in the different myopia groups respectively. In high myopia group, the measurements of CVI can be ordered as N-CVI (70.17, r=1;69.54, r=3), T-CVI (70.09, r=1;69.08, r=3), I-CVI (68.75, r=1;68.62, r=3) and S-CVI (67.95, r=1;68.12, r=3). In general, regardless of r=1mm or r=3mm, the distribution pattern of CVI was similar. Remarkably, irrespective of the group, CVI of the horizontal meridian was consistently greater than that of the vertical meridian, even though the difference was not significant($p>0.05$). It was worth mentioning that in all groups the mean N-CVI was always the greatest except the low myopia group in which T-CVI had the greatest value. However, One-way ANOVA analysis showed there were no significant differences in CVI of four regions in either myopia groups($p>0.05$).

CVI in the horizontal meridian underwent the largest change as myopia worsened. Temporal and nasal CVI within the r=1mm and r=3mm sub foveal range were positively associated with degree of myopia in
young patients (Table 3, Figure 2). Multiple linear regression results revealed significant correlations between SE and T1-CVI \((p < 0.05, r^2 = 0.082, \beta = 0.194) \), N1-CVI \((p < 0.05, r^2 = 0.039, \beta = 0.212) \) (Table 4). Simple linear regression results revealed that mean Sf1-CVI \((p < 0.05, r^2 = 0.08) \) and Sf3-CVI \((p < 0.05, r^2 = 0.07) \) were negatively correlated with SE; T1-CVI \((p < 0.05, r^2 = 0.09) \) and T3-CVI \((p < 0.05, r^2 = 0.05) \) were negatively correlated with SE; N1-CVI \((p < 0.05, r^2 = 0.05) \) and N3-CVI \((p < 0.05, r^2 = 0.04) \) were negatively correlated with SE (Figure 3).

Table 3. Results of simple linear regression analyses between different SE groups and CVI

CVI	Beta	p-value	R-square
T1CVI	0.270	0.000	0.073
N1CVI	0.228	0.003	0.052
S1CVI	0.132	0.093	0.017
I1CVI	0.130	0.097	0.017
T3CVI	0.213	0.005	0.045
N3CVI	0.184	0.016	0.028
S3CVI	0.145	0.063	0.021
I3CVI	0.150	0.055	0.023

SE is treated as ordinal categorical variable. The ordinal categorical values are as follows: \(\geq -0.25D = 0; -0.25D \sim -3.0D = 1; -3.0D \sim -6.0D = 2; \leq -6.0D = 3 \).

Table 4. Multiple linear regression analyses for age, AL and SE as correlates of CVI\(r = 1 \)mm
Variables

CVI	Variables	Beta	p-value	Adjusted R-square
T1CVI	Age	0.013	0.878	
	AL	0.118	0.234	0.082
	SE	0.194	0.044	
N1CVI	Age	-0.084	0.308	
	AL	0.059	0.557	0.039
	SE	0.212	0.030	
S1CVI	Age	-0.048	0.571	
	AL	0.013	0.900	0.001
	SE	0.351	0.181	
I1CVI	Age	-0.107	0.204	
	AL	0.111	0.286	0.011
	SE	0.085	0.401	

All the covariates presented are treated as ordinal categorical variables. The ordinal categorical values are as follows: (1) Age: 5-9yrs=0; 10-13yrs=1; 14-18yrs=2; (2) AL: \(\leq 25\text{mm}=0; >25\text{mm}=1; \geq -0.25\text{D}=0; -0.25\text{D}~-3.0\text{D}=1; -3.0\text{D}~-6.0\text{D}=2; \leq -6.0\text{D}=3.\)

CVI was a more stable measure index than CT. For the CVI of different regions, all the coefficients of variation were less than 5%. In contrast, the coefficient of variation of CT was greater than 20%, which was more than 4 times higher compared to the same index of CVI. With adjusted SE and AL, there was no significant difference in mean Sf-CVI across age groups \((p > 0.05)\). There was, however, significant difference in choroidal thickness (CT) across different age groups \((p < 0.05)\).

Discussion

Our study explored the relationship between distribution pattern of the choroidal remodeling and the degree of myopia in young patients (aged 5–18 years). Previous research has reported that the remodeling of the choroid is the key factor of pathological changes in high myopia. CT has been wildly used as an important predicator of choroidal remodeling in highly myopic eyes. This study found CVI to be a more robust measure index than CT. Mean Sf-CVI was not affected by age. There was, however, a significant difference in CT across different age groups.

There are lots of research focus on the distribution pattern of CT in highly myopic eyes. As in adults, there is a significant negative correlation between CT and axial growth rate in children \((19, 20)\). Myopia in
children is largely due to the axial elongation of the eye. In a few cases, it can also be related to the change in corneal refractive power. Children with slow eye growth have significantly thicker choroids, while children with faster eye growth (i.e., those who are developing myopia or whose myopia is developing rapidly) do not show such growth over time, and in many cases, the choroid is thinner (21). However, some studies have also mentioned that children's myopia drift is independently related to the growth of ophthalmic axis and the thinning of the choroid, and the increase of ophthalmic axis has nothing to do with the decrease of choroid thickness. The thinning of choroid is more than the secondary stretching effect of eye elongation (22). In a healthy eye, the choroid is the thickest in the fovea. While in highly myopic eyes, choroidal thickness of the temporal region may exceed that of the fovea, and the high occurrence of posterior sclera staphyloma in high myopia may be the main reason for choroid morphology. However, study(23) also found that the temporal choroid may has a greater thickness than the fovea choroid even in eyes without posterior sclera staphyloma, suggesting that relative temporal choroid thickening may involve changes in peripheral blood vessels around the optic papilla and a disproportionate temporal shift in the choroid/sclera ratio towards retinal displacement during myopia progression. In both healthy and highly myopic eyes, the lateral choroid of the nose was the thinnest in most studies(24–26). In addition, Lee et al.(25), after using OCT to measure and evaluate the variation trend of choroid thickness, proposed the temporal choroid thickness/fovea choroid thickness (CTT/CTF) ratio index. It was found that the CTT/CTF ratio index was positively correlated with AL ($p = 0.031$) and the width of peripapillary atrophy (PPA) of the optic disc atrophy arc ($p = 0.003$) but negatively correlated with SE ($p = 0.012$).

CVI is a promising new parameter to assess the remodeling of choroid vessels and retinal blood supply in the macular area. This study detected a significant positively association between the temporal and nasal CVIs and degree of myopia in young patients. As proposed by Nickla et al, the non-vascular smooth muscle cells mediate the choroidal thinning by contraction(27). In that case, the dilatation of vessel lumen occurs, resulting in the enlargement of choroidal luminal area in OCT image, which means a higher CVI. We hypothesized that with the progression of myopia, the temporal and nasal choroid responded first. The compensatory vasodilation of choroidal vessels of these two regions which was contributed by the non-vascular smooth muscle improved blood supply temporarily and caused higher value of CVI. While beyond a certain limit, the vessels would not dilate anymore and the reduction of blood flow may occur, followed by more severe consequences.

It has been proposed that the early-onset high myopia (7 to 11 years old) may be attributed to hereditary, with a higher risk of diffuse chorioretinal atrophy or more severe retinal lesions, while acquired high myopia (usually after 11 years old) is often influenced by the environment (28). Pärssinen et al. conducted a 22-year study by following children participants into their adulthood and found that the most important predictors of high myopia were younger age at baseline and faster myopia development during the first follow-up (29). High myopia carries a greater risk of ocular diseases such as cataracts, glaucoma, and retinal detachment (30), among which myopic macular degeneration (MMD) is one of the most frequent causes of vision loss or irreversible blindness in developed countries, especially in East Asia with higher myopia rates (31, 32). Wong et al. (31) found that the degree of choroid thinning was
closely related to the severity of MMD, while scleral thickness was weakly related to MMD; this information suggests that choroid thinning leads to reduction in choroid perfusion and choroidal ischemia, with subsequent upregulation of angiogenic factors is an important pathogenesis of MMD (33). The patients with lacquer cracks are likely to be at higher risk of the visual impairment and the development of myopic choroidal neovascularization. Some studies believe that choroidal thickness can be used as a biological indicator to predict the occurrence and severity of lacquer cracks in highly myopic eyes (34). Additionally, myopic choroidal neovascularization has also been confirmed to be closely related to choroidal thinning (35, 36). CVI is expected to be used together with CT as biomarkers of choroidal blood flow remodeling in the future.

Conclusion

Temporal and nasal CVIs within the r = 1mm and r = 3mm subfoveal range were positively associated with degree of myopia in young patients. CVI in the horizontal meridian underwent the largest change as myopia worsened. The CVI value may be used as a parameter in the evaluation of choroidal vascular status and a superior candidate biomarker for myopic progression. Future research, including studies focus on changes in children choroid, is necessary to elucidate the underlying pathophysiology and pathology of myopia.

Abbreviations

D Diopter
SD-OCT Spectral-domain optical coherence tomography
EDI Enhanced depth imaging
CT Choroidal thickness
CVI Choroidal vascularity index
N Nasal
T Temporal
S Superior
I Inferior
AL Axial length
SE Spherical equivalent
RPE Retinal pigmented epithelium
Declarations

Ethics approval and consent to participate: The study was conducted in accordance with the Declaration of Helsinki and approved by the Research Ethics committee of the Affiliated Eye Hospital of Wenzhou Medical University. Informed consent to participate in the study was obtained from all participants and for participants under 18, from a parent and/or legal guardian.

Consent for publication: Informed consent to publish was obtained from all of the participants and for participants are under 18, from a parent and/or legal guardian.

Availability of data and materials: The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

Competing Interests: None reported.

Funding: The sponsor or funding organization had no role in the design or conduct of this research.

Authors' Contribution: Dr. SLJ had full access to all the data in the study and will take responsibility for the integrity of the data and the accuracy of the data analysis. Study concept and design: WJ, YX. Acquisition, analysis, or interpretation of data: WJ, YX, XJH, CYQ, TJW. Drafting of the manuscript: WJ, YX, SXJ. Critical revision of the manuscript for important intellectual content: WJ, YX. Study supervision: SLJ.

Acknowledgements: The authors acknowledge Wenzhou scientific research project (Y20190627).

References

1. BA H, TR F, DA W, M J, KS N, P S, et al. Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Ophthalmology. 2016;123(5):1036-42.
2. J S, J Z, P Z, J L, H Z, Y Z, et al. High prevalence of myopia and high myopia in 5060 Chinese university students in Shanghai. Investigative ophthalmology & visual science. 2012;53(12):7504-9.

3. Read SA, Collins MJ, Vincent SJ, Alonso-Caneiro D. Choroidal thickness in myopic and nonmyopic children assessed with enhanced depth imaging optical coherence tomography. Invest Ophthalmol Vis Sci. 2013;54(12):7578-86.

4. Read SA, Fuss JA, Vincent SJ, Collins MJ, Alonso-Caneiro D. Choroidal changes in human myopia: insights from optical coherence tomography imaging. Clin Exp Optom. 2019;102(3):270-85.

5. Prousali E, Dastiridou A, Ziakas N, Androudi S, Mataftsi A. Choroidal thickness and ocular growth in childhood. Surv Ophthalmol. 2021;66(2):261-75.

6. Zhang Y, Wildsoet CF. RPE and Choroid Mechanisms Underlying Ocular Growth and Myopia. Prog Mol Biol Transl Sci. 2015;134:221-40.

7. Nagasawa T, Mitamura Y, Katome T, Shinomiya K, Naito T, Nagasato D, et al. Macular choroidal thickness and volume in healthy pediatric individuals measured by swept-source optical coherence tomography. Invest Ophthalmol Vis Sci. 2013;54(10):7068-74.

8. Zhang JM, Wu JF, Chen JH, Wang L, Lu TL, Sun W, et al. Macular Choroidal Thickness in Children: The Shandong Children Eye Study. Invest Ophthalmol Vis Sci. 2015;56(13):7646-52.

9. Breher K, Ohlendorf A, Wahl S. Myopia induces meridional growth asymmetry of the retina: a pilot study using wide-field swept-source OCT. Scientific reports. 2020;10(1):10886.

10. Panda-Jonas S, Holbach L, Jonas J. Choriocapillaris thickness and density in axially elongated eyes. Acta ophthalmologica. 2020.

11. Heirani M, Shandiz J, Shojaei A, Narooie-Noori F. Choroidal Thickness Profile in Normal Iranian Eyes with Different Refractive Status by Spectral-Domain Optical Coherence Tomography. Journal of current ophthalmology. 2020;32(1):58-68.

12. Fang Y, Du R, Nagaoka N, Yokoi T, Shinohara K, Xu X, et al. OCT-Based Diagnostic Criteria for Different Stages of Myopic Maculopathy. Ophthalmology. 2019;126(7):1018-32.

13. Esmaeelpour M, Kajic V, Zabihian B, Othara R, Ansari-Shahrezaei S, Kellner L, et al. Choroidal Haller’s and Sattler’s layer thickness measurement using 3-dimensional 1060-nm optical coherence tomography. PloS one. 2014;9(6):e99690-e.

14. Nickla DL, Wallman J. The multifunctional choroid. Progress in retinal and eye research. 2010;29(2):144-68.

15. Sonoda S, Sakamoto T, Yamashita T, Uchino E, Kawano H, Yoshihara N, et al. Luminal and stromal areas of choroid determined by binarization method of optical coherence tomographic images. Am J Ophthalmol. 2015;159(6):1123-31.e1.

16. Agrawal R, Gupta P, Tan KA, Cheung CM, Wong TY, Cheng CY. Choroidal vascularity index as a measure of vascular status of the choroid: Measurements in healthy eyes from a population-based study. Sci Rep. 2016;6:21090.
17. She X, Ye X, Chen R, Pan D, Shen L. Characteristics of Posterior Precortical Vitreous Pockets and Cloquet's Canal in Patients with Myopia by Optical Coherence Tomography. Invest Ophthalmol Vis Sci. 2019;60(14):4882-8.

18. Niblack W, editor An introduction to digital image processing. Advances in Computer Graphics VI, Images: Synthesis, Analysis, & Interaction; 1986.

19. He X, Deng J, Yin Y, Zhang B, Xiong S, Zhu J, et al. Macular choroidal thickness in Chinese preschool children: decrease with axial length but no evident change with age. International journal of ophthalmology. 2019;12(9):1465-73.

20. He X, Jin P, Zou H, Li Q, Jin J, Lu L, et al. CHOROIDAL THICKNESS IN HEALTHY CHINESE CHILDREN AGED 6 to 12: The Shanghai Children Eye Study. Retina (Philadelphia, Pa). 2017;37(2):368-75.

21. Read S, Fuss J, Vincent S, Collins M, Alonso-Caneiro D. Choroidal changes in human myopia: insights from optical coherence tomography imaging. Clinical & experimental optometry. 2019;102(3):270-85.

22. Jin P, Zou H, Xu X, Chang T, Zhu J, Deng J, et al. LONGITUDINAL CHANGES IN CHOROIDAL AND RETINAL THICKNESSES IN CHILDREN WITH MYOPIC SHIFT. Retina (Philadelphia, Pa). 2019;39(6):1091-9.

23. Fujiwara T, Imamura Y, Margolis R, Slakter JS, Spaide RF. Enhanced depth imaging optical coherence tomography of the choroid in highly myopic eyes. Am J Ophthalmol. 2009;148(3):445-50.

24. Chui TY, Zhong Z, Burns SA. The relationship between peripapillary crescent and axial length: Implications for differential eye growth. Vision Res. 2011;51(19):2132-8.

25. Lee K, Lee J, Lee CS, Park SY, Lee SC, Lee T. Topographical variation of macular choroidal thickness with myopia. Acta Ophthalmol. 2015;93(6):e469-74.

26. Hwang S, Kong M, Song YM, Ham DI. Choroidal spatial distribution indexes as novel parameters for topographic features of the choroid. Sci Rep. 2020;10(1):574.

27. Lee K, Lee J, Lee C, Park S, Lee S, Lee T. Topographical variation of macular choroidal thickness with myopia. Acta ophthamologica. 2015;93(6):e469-74.

28. Xiao O, Guo X, Wang D, Jong M, Lee P, Chen L, et al. Distribution and Severity of Myopic Maculopathy Among Highly Myopic Eyes. Investigative ophthalmology & visual science. 2018;59(12):4880-5.

29. Pärssinen O, Kauppinen M. Risk factors for high myopia: a 22-year follow-up study from childhood to adulthood. Acta ophthalmologica. 2019;97(5):510-8.

30. Wong Y, Zhu X, Tham Y, Yam J, Zhang K, Sabanayagam C, et al. Prevalence and predictors of myopic macular degeneration among Asian adults: pooled analysis from the Asian Eye Epidemiology Consortium. The British journal of ophthalmology. 2020.

31. Wong C, Phua V, Lee S, Wong T, Cheung C. Is Choroidal or Scleral Thickness Related to Myopic Macular Degeneration? Investigative ophthalmology & visual science. 2017;58(2):907-13.

32. Fricke T, Jong M, Naidoo K, Sankaridurg P, Naduvilath T, Ho S, et al. Global prevalence of visual impairment associated with myopic macular degeneration and temporal trends from 2000 through
2050: systematic review, meta-analysis and modelling. The British journal of ophthalmology. 2018;102(7):855-62.

33. Wakabayashi T, Ikuno Y, Gomi F. Different dosing of intravitreal bevacizumab for choroidal neovascularization because of pathologic myopia. Retina (Philadelphia, Pa). 2011;31(5):880-6.

34. Wang N, Lai C, Chou C, Chen Y, Chuang L, Chao A, et al. Choroidal thickness and biometric markers for the screening of lacquer cracks in patients with high myopia. PloS one. 2013;8(1):e53660.

35. Wang S, Wang Y, Gao X, Qian N, Zhuo Y. Choroidal thickness and high myopia: a cross-sectional study and meta-analysis. BMC ophthalmology. 2015;15:70.

36. Zhou Y, Song M, Zhou M, Liu Y, Wang F, Sun X. Choroidal and Retinal Thickness of Highly Myopic Eyes with Early Stage of Myopic Chorioretinopathy: Tessellation. Journal of ophthalmology. 2018;2018:2181602.

Figures

Figure 1

Image binarization for the choroid with normal choroidal thickness. (A) Original SD OCT image; (B) 6 mm sub foveal choroidal area; (C) Segmented OCT image using modified image binarization approach. Overlay of region of interest created after image binarization was performed on the SD OCT image.
Figure 2

Graph showing the relationship between CVI and degree of myopia. (A) T1- CVI was positively correlated with the degree of myopia (y = 0.9751*X + 66.83, p < 0.05, r² = 0.089). (B) N1- CVI was positively correlated with the degree of myopia (y = 0.9086*X + 67.01, p < 0.05, r² = 0.045). (C) T3- CVI was positively correlated with degree of myopia (y=0.6439*X+67.00, P <0.05, r²=0.045). (D) N3- CVI was positively correlated with degree of myopia (y=0.6581*X+67.01, P <0.05, r²=0.028).

Figure 3
Graph showing the relationship between choroidal vascularity index (CVI) and spherical equivalent (SE). All data points were used in simple linear regressions analysis. Different colored lines represent different regions’ CVI. (A) reveals a negative linear relation between SE and CVI ($r = 1\text{mm}$). (B) reveals a negative linear relation between SE and CVI ($r = 3\text{mm}$).