Weak second Bianchi identity for static, spherically symmetric spacetimes with timelike singularities.

(English) Class. Quantum Gravity 38, No. 18, Article ID 185001, 31 p. (2021)

MSC:
- 83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
- 83C40 Gravitational energy and conservation laws; groups of motions
- 83C75 Space-time singularities, cosmic censorship, etc.
- 81V70 Many-body theory; quantum Hall effect
- 83C50 Electromagnetic fields in general relativity and gravitational theory

Keywords:
second Bianchi identity; general relativity; energy-momentum conservation; naked singularities; particles; electromagnetism

Full Text: DOI

References:
[1] Andersson, L.; Burtscher, A. Y., On the asymptotic behavior of static perfect fluids, Ann. Henri Poincaré, 20, 813-857 (2019) · Zbl 1414.83023 · doi:10.1007/s00023-018-06758-z
[2] Aragone, C.; Deser, S., String dynamics from energy momentum conservation, Nucl. Phys., 92, 327-333 (1975) · doi:10.1016/s0550-3213(75)80001-0
[3] Balasubramanian, M. K., Scalar fields and spin-half fields on mildly singular spacetimes, PhD Thesis (2015)
[4] Blanchet, L., Gravitational radiation from post-Newtonian sources and inspiralling compact binaries, Living Rev. Relativ., 17, 2 (2014) · Zbl 1316.83003 · doi:10.12942/lrr-2014-2
[5] Boillat, G., Nonlinear electrodynamics: Lagrangians and equations of motion, J. Math. Phys., 11, 941-951 (1970) · doi:10.1063/1.1665231
[6] Born, M., Modified field equations with a finite radius of the electron, Nature, 132, 282 (1933) · Zbl 0008.18405 · doi:10.1038/132282a0
[7] Born, M.; Infeld, L., Foundations of the new field theory, Ann. Phys., NY, 309, 232-236 (2004) · doi:10.1016/j.aop.2003.08.020
[8] Bray, H. L., On the positive mass, Penrose, and ZAS inequalities in general dimension, Surveys in Geometric Analysis and Relativity, 1-27 (2011), Somerville, MA: International Press, Somerville, MA · Zbl 1260.53127
[9] Bray, H. L.; Jauregui, J. L., A geometric theory of zero area singularities in general relativity, Asian J. Math., 17, 525-560 (2013) · Zbl 1282.53059 · doi:10.4310/ajm.2013.v17.n3.a6
[10] Chandrasekhar, S., A limiting case of relativistic equilibrium, General Relativity, 185-199 (1972), Oxford: Clarendon, Oxford
[11] Ehlers, J.; Geroch, R., Equation of motion of small bodies in relativity, Ann. Phys., NY, 309, 232-236 (2004) · Zbl 1036.83004 · doi:10.1016/j.aop.2003.08.020
[12] Eiesland, J., The group of motions of an Einstein space, Bull. Am. Math. Soc., 27, 410 (1921) · Zbl 48.1066.11 · doi:10.1090/s0002-9904-1921-03398-2
[13] Eiesland, J., The group of motions of an Einstein space, Trans. Am. Math. Soc., 27, 213-245 (1925) · Zbl 51.0706.01 · doi:10.1090/s0002-9947-1925-1501308-7
[14] Einstein, A.; Infeld, L.; Hoffmann, B., The gravitational equations and the problem of motion, Ann. Math., 39, 65-100 (1938) · Zbl 0018.28103 · doi:10.2307/1968714
[15] Einstein, A.; Infeld, L., The gravitational equations and the problem of motion. II, Ann. Math., 41, 455-464 (1940) · Zbl 66.1144.05 · doi:10.2307/1969015
[16] Einstein, A.; Infeld, L., On the motion of particles in general relativity theory, Can. J. Math., 1, 209-241 (1949) · Zbl 0033.42501 · doi:10.4153/cjm-1949-020-8
[17] Geroch, R.; Jang, P. S., Motion of a body in general relativity, J. Math. Phys., 16, 65-67 (1975) · doi:10.1063/1.522416
[18] Geroch, R.; Traschen, J., Strings and other distributional sources in general relativity, Phys. Rev., 36, 1017-1031 (1987) · doi:10.1103/physrevd.36.1017
[19] Geroch, R.; Weatherall, J. O., The motion of small bodies in space-time, Commun. Math. Phys., 364, 607-634 (2018) · Zbl 1401.83006 · doi:10.1007/s00220-018-3268-8
[20] Gralla, S. E.; Wald, R. M., A rigorous derivation of gravitational self-force, Class. Quantum Grav., 25 (2008) · Zbl 1152.83405
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.