INTRODUCTION

Type 2 diabetes (T2D) is now posing a major threat to human health. World Health Organization has cautioned that it is taking the shape of a global epidemic. We could not solve the riddle about how exactly T2D is related to excess lipid input and have not developed proper understanding of this disease even though there is no dearth of research activities in this direction. Prior to the manifestation of T2D there occurs impaired ability of insulin to maintain glucose homeostasis. This is because of defects in insulin sensitivity which leads to insulin resistance that results in decreased insulin release by the pancreas. T2D silently progressed in the patient; it begins with insulin resistance that takes place due to the loss of insulin sensitivity. Though insulin resistance is the centre of pathogenesis, our treatment of the disease has not yet addressed it. It is now a fact that insulin resistance is manifested by lipid and fatty acids (FAs) play a critical role in blunting insulin sensitivity. Our understanding is still poor in deciphering how lipid impose insulin insensitivity, majority of workers suggest it is because of insulin signaling defects which implements insulin function in inhibiting glucose to the cell from circulation. Number of long chain saturated FA has been shown to produce insulin signaling defects. However, we really need further investigation to find specific target(s) for FA induced damage. In addition to these information, a new dimension of T2D is getting attractive is fetuin-A/α2-Heremans-Schmid Glycoprotein, a secretory protein from liver. Its gene locus has been identified as T2D susceptible. Fetuin-A’s excess expression occurs by FA and it disrupts adipocyte function. It has been shown to be associated with T2D especially in obesity. In this review, we briefly discuss the present status on the mechanistic understanding of lipid induced insulin resistance that leads to T2D. More we understand the mechanism; opportunity to fight the battle with T2D will be increasing. Since, this field is now vast; we covered a few major events. (Endocrinol Metab 27:12-19, 2012)

Key Words: Alpha-2-HS-Glycoprotein, Fatty acids, HMGA1, Insulin resistance, Lipids, Novel PKCs, Type 2 diabetes
When it is well accepted that lipid is causing insulin resistance and T2D, questioning about how lipid is involved therein becomes obvious. Many authors have shown that it is the fatty acid (FA) of lipid which is mostly associated with insulin resistance [3,5]. Some authors indicated that long chain saturated FAs are major culprit [9]. The list of FAs later has been shortened to 3-5 FAs and these are palmitate, myristate, stearate (saturated FAs) and oleate (unsaturated FA) [10,11]. There may be others, but reports on circulatory lipid profile in diabetic patients showed prevalence of these FAs and research area in the field of insulin resistance has predominantly used these FAs to blunt insulin sensitivity [6,12,13]. Apparently, next query would be raised on how FAs could adversely affect insulin sensitivity causing insulin resistance. To search this, number of molecules in insulin signaling pathway has been implicated. That insulin resistance is primarily due to insulin signaling defects, raises no doubt. These defects, in fact, may occur at various places from upstream to downstream and that include 1) insulin receptor (IR), 2) phosphatidylinositol 3-kinase (PI3K), phosphoinositide-dependent kinase1 (PDK1) and Akt mediated glucose transporter 4 (Glut4) activation, and 3) interplay of novel protein kinase Cs (nPKCs). Besides insulin signaling pathway another area of research is getting prominence which is adipocyte function. This is because any defect in the functioning of adipocyte would be reflected in lipid imbalance which is the root cause for insulin resistance.

Insulin resistance, the centre of pathogenesis in T2D, is indeed a vast area with umpteen number of research publications in every year. In this review we tried to briefly cover the advancement made so far in the above three areas to understand the mechanism of lipid induced insulin resistance.

**LIPID INDUCED INSULIN SIGNALING DEFECTS**

Insulin signaling is initiated when insulin binds to its receptor. IR is a α2β2 heterodimeric transmembrane protein that possesses intrinsic protein tyrosine kinase activity. Insulin binding to specific regions of the α-subunit leads to a rapid conformational change in the receptor that eventuates in autophosphorylation of specific tyrosine residues of the β-subunits through a transphosphorylation mechanism, i.e., C-terminal of β1 subunit phosphorylates tyrosine residues of β2 and vice-versa because of their kinase property. However, it is not yet clear about how insulin brings about mutual phosphorylation of the two tyrosine protein kinases. Autophosphorylation of tyrosine residues stimulates the catalytic activity of receptor tyrosine kinase and creates recruitment sites for insulin receptor substrate (IRS) proteins [14-16] which dock on pTyr moiety of IR when phosphate is transferred to IRS. PI3K is a target of IRS proteins, which phosphorylates specific phosphoinositides to form phosphatidylinositol 3,4,5 tri-phosphate from phosphatidylinositol 3,4 bis-phosphate that in turn activates serine/threonine kinases PDK1 which phosphorylates Akt [16,17]. Akt plays an important role by linking Glut4 to insulin signal transduction pathway [18]. This insulin signaling pathway is schematically represented in Fig. 1. FA has been shown to disrupt this pathway. Various authors described FA induced defects in different signaling molecules starting from IR to Glut4 [3,5,19-23].

Several evidences have been accumulated that hold FAs responsible for insulin inaction. Elevated FAs in circulation is associated with impaired insulin function and is commonly linked with obesity and T2D [5,24,25]. Increase of plasma FFA concentrations through lipid

![Fig. 1. Schematic representation of insulin signaling pathway. Fatty acid (FA) has been reported to impair this pathway by producing defects on insulin receptor (IR), insulin receptor substrate (IRS1), phosphatidylinositol 3-kinase (PI3K), phosphoinositide-dependent kinase1 (PDK1), Akt/protein kinase B (PKB), and glucose transporter 4 (Glut4).](http://dx.doi.org/10.3803/EnM.2012.27.1.12)
infusion causes insulin resistance in rat and human skeletal muscle [25,26]. Incubation of isolated muscle strips or cultured muscle cells with FFAs or lipoprotein lipase expression in skeletal muscle reduces insulin-mediated glucose uptake [3,27,28]. All these reports suggest that greater deposition of lipid in insulin sensitive tissues promotes insulin inaction and resistance. Lowering of glucose transport by FA is linked to inhibition of insulin-stimulated IRS-1 phosphorylation and IRS-1-associated PI3K activation indicating impairment of insulin activity due to insulin signaling defects [19-22,29,30]. These reports drive our attention towards FFAs as the major compounds causing insulin resistance and T2D. Many workers show palmitate as the most potent FA in inhibiting insulin action and resistance. Lowering of glucose transport by FA is linked to inhibition of insulin-stimulated IRS-1 phosphorylation and IRS-1-associated PI3K activity by FFA has been shown to be associated with an increase in IRS-1 serine phosphorylation. This in turn decreases IRS-1 tyrosine phosphorylation, impairing downstream effectors [20]. FA can disrupt further downstream insulin signals. Administration of saturated fat blocks insulin activation of Akt/protein kinase B with a concomitant increase in the amount of ceramide and diacylglycerol in cultured muscle cells [30]. Insulin actively sequesters Glut4 at an intracellular location which increases the rate of Glut4 trafficking to the membrane [32]. Glut4 is the penultimate molecule in the signal and its translocation to the membrane by insulin is the ultimate step in signaling, as only then glucose is transported into the cell. Lipid-associated insulin resistance has also been shown to be linked to Glut4 translocation defects [33]. Previous reports from our laboratory have shown that palmitate incubation of skeletal muscle cells and adipocytes, two major insulin target cells, suppressed insulin stimulated phosphorylation of receptor tyrosine kinase, PI3K, PDK1, and Akt. This inhibition of insulin signaling caused an impairment of Glut4 translocation to the membrane causing a significant deficiency in glucose uptake [21,22,34].

ROLE OF NPKCS IN FA MEDIATED INSULIN RESISTANCE

From the above description it would be evident that FFAs are involved in insulin resistance. However, the precise mechanism is unclear. Interestingly, interplay of PKC, especially nPKCs in lipid induced insulin sensitivity defects has been indicated by some authors [28,34,35]. Lipid infusion in rats and human has been shown to impair insulin stimulated glucose disposal in muscles and concomitant activation of PKCδ and PKCε. PKC δ and ε has been reported to be a negative regulator in the insulin signaling pathway. C1 domain of both these nPKCs is a tandem repeat of classical PKCs (cPKCs) that serves as a diacylglycerol sensor; C2 domain in nPKCs does not function as a Ca2+ regulated phospholipid binding module, a characteristics of cPKCs [36]. PKCδ has been shown to be a possible candidate for phosphorylating the IR on serine residues that could decrease tyrosine phosphorylation of IR affecting its routing [37]. Over expression of PKCδ in cultured myotubes induces serine phosphorylation of IR in response to insulin. The serine phosphorylation of IR changes IR distribution on the cell membrane; a rich component of it is localized on the internal membrane components thus causing attenuation of insulin induced tyrosine phosphorylation of IR [38]. Defective phosphorylation state of IR thus impedes downstream signaling cascade in the insulin signaling pathway. Interestingly, activation of PKC δ and ε occurs along with insulin resistance in muscle cells due to FA. What is still not clear is about the mechanism involved in PKC δ mediated downregulation of IR activity and whether it is direct or indirect. It has been demonstrated that PKC δ can directly inhibit IR kinase stimulated IRS1 associated tyrosine phosphorylation [39]. The same thing has also been suggested in lipid induced PKCδ activation in muscle [19,40]. All these information suggests a link of nPKCs in FA induced insulin resistance.

Reduced IR expression has been observed in mice and also in human diabetic patients [41,42] and PKCε has been implicated in IR damage. IR expression is inversely correlated to PKCε in diabetic obese rats [43] and lipid mediated hepatic insulin resistance has been shown to be prevented by knocking down of PKCε [44]. There are several reports on PKCε association with insulin resistance [22,45,46]. However, the most impressive work in relation to PKCε and IR degradation has been demonstrated by Ikeda et al. [43] when they observed in a well characterized diabetic animal model that overexpression of PKCε followed by its higher activity is inversely linked to IR expression which impaired insulin downstream signaling. We have reported that FA initiates disruption of insulin signal by phosphorylating PKCε in a PDK1 independent manner [21,22,47]. Palmitate and myristate phosphorylated PKCε (pPKCε) which then moves to nuclear region. Since PKCε lacks nuclear localization signal (NLS), we found it is F-actin, which has 13 NLS recognizes pPKCε and chaperoned it to nuclear region which coincided with reduced IR expression in skeletal muscle cells [47]. Question is how pPKCε is involved in IR downregulation. IR gene is regulated by an architectural tran-
Lipid Induced Insulin Resistance

Fatty acid (FA) causes insulin receptor (IR) downregulation through pPKCε. FA affected a kinase independent phosphorylation of PKCζ through palmitoylation in case of palmitate, pPKCζ is translocated to nucleus by F-actin where it impairs high mobility group A1 (HMGA1) which regulates IR gene transcription by permitting Sp1 and CCAAT/enhancer-binding protein beta transcription factor to the IR promoter. All these resulted downregulation of IR expression.

ASSOCIATION OF FETUIN-A IN INSULIN RESISTANCE AND T2D

Fetuin-A (?2 Heremans-Schmid glycoprotein) has long been implicated in obesity induced insulin resistance and diabetes. The human fetuin-A gene has been mapped on chromosome 3q27 which is identified as T2D susceptible locus [51]. Fetuin-A is synthesized in human liver and secreted into the serum and shown to be linked to insulin resistance and T2D as it inhibits IR kinase phosphorylation that adversely affects insulin downstream signals [52-58]. In fact, consistent elevated levels of circulating fetuin-A have been observed in high fat fed animals and obese diabetic patients [59,60]. Although fetuin-A appears to be potential in affecting insulin resistance and T2D, number of regulatory processes related to its synthesis, secretion and implementation of insulin resistance function requires a clear understanding. Knockout of fetuin-A gene (fetuin-A KO) in high fat diet (HFD) mice showed increased phosphorylation of IR and stimulation of insulin downstream signaling molecules in liver and skeletal muscle in response to insulin. In fetuin-A KO, HFD mice there is an enhanced glucose clearance and improved insulin sensitivity [54]. This implicates that fetuin-A KO mice are resistant to weight gain due to HFD.

Fetuin-A indeed requires a special attention because of its consistent association with insulin resistant and T2D on one hand and our little understanding about its role in the manifestation of this disease on the other. It appears that despite fetuin-A’s classical inhibitory effect on insulin resistance by inhibiting IR tyrosine kinase activity it could have some additional target(s). A few recently available reports indicate a coincidence between hyperlipidemia and dyslipidemia and fetuin-A in human being [57,58], this would lead to assume that fetuin-A has a link to lipid. One of such target therefore may be adiposity because human visceral adiposity is associated with incident diabetes in aged persons as a consequence of higher fetuin-A level [57]. In addition, a polymorphism of human fetuin-A gene affects adversely insulin action on adiposity and adiponectin production is suppressed due to fetuin-A in animals and humans [61,62]. All these imply that fetuin-A is poised to be an important factor in attenuating insulin activity by adversely affecting adipocyte function. Our work has explained two important aspects of fetuin-A. Although it is known that fetuin-A gene is expressed in liver and the protein is synthesized and secreted from there into the circulation in diabetic obese patients [55,60,63], what triggers its elevated synthesis remained unclear until recently. Obviously association of lipid with the excess production of fetuin-A is a clue that lipid is involved, if so, how its expression in liver is controlled by lipid/FA requires to be investigated. We have demonstrated that fetuin-A is overexpressed in db/db mice which is an ideal animal model in re-

http://dx.doi.org/10.3803/EnM.2012.27.1.12
http://www.enm-kes.org
FA and T2D. It was observed that increase in circulatory levels of FA coexisted with higher levels of fetuin-A in this mice pointing out the existing notion to be a possibility. We found that FA could significantly augment fetuin-A release from liver and this effect of FA is not direct but mediated through NF-κB [63]. NF-κB is known to play a major role in insulin resistance and lipid induced overexpression of NF-κB has been earlier demonstrated by us [64]. Lipid induced expression of fetuin-A and subsequent activation of NF-kB leading to insulin resistance is schematically represented in Fig. 3. We found that FA increased NF-κB binding to fetuin-A promoter and enhanced fetuin-A expression [63]. These results confirmed earlier reports on the increased level of fetuin-A in diabetic patients and animals [55,57,59]. On studying the detailed mechanism behind fetuin-A regulation it has been observed that there are six NF-κB binding sites on fetuin-A promoter of which three are responsible for fetuin-A promoter activation. In both diabetic human adipocyte and 3T3-L1 cell line fetuin-A has been found to abrogate adipogenic function of PPARγ, adiponectin, FAT/CD36 and aP2. Dysfunction of adipocyte by fetuin-A opened a new opportunity to deal insulin resistance and T2D.

**ASSOCIATION OF TOLL-LIKE RECEPTOR (TLR) IN FA INDUCED INSULIN RESISTANCE**

TLRs are pattern recognition receptors. TLR was originally identified in *Drosophila* where it is required to establish dorso-ventral pattern in developing embryo [65]. Surprisingly, TLR-mutant flies were found to be highly susceptible to fungal infection [66]. Subsequently, mammalian homologues of TLRs were detected in macrophage and found to be associated with the activation of innate immune system through the recognition of bacterial liposaccharide [67]. When macrophage accumulation in adipose tissue is observed during obese condition [68,69], it becomes a matter to consider seriously whether TLR could be linked to insulin resistance [70]. Among TLRs, TLR4 is found to be associated with obesity induced insulin resistance. TLR4 deficiency protected against insulin resistance implemented by diet containing high amount of saturated FA [71]. This suggests TLR4 participation in lipid induced insulin resistance.

This has been further investigated by using C3H/HeJ mice where loss-of-function mutation of TLR4 appears to prevent diet induced obesity and insulin resistance. It has been observed that high-fat diet induced defects in insulin signaling with increased adiposity while in TLR4 mutated mice, these were significantly reversed suggesting that TLR4 may be acting as a mediator in lipid induced insulin resistance [72-74]. However, the research activity on the TLR4 participation to deteriorate insulin sensitivity due to FA has just been initiated and therefore could not achieve the understandable status. This definitely requires a special attention because TLR4 sufficiently expressed in adipocyte, skeletal muscles and liver, the three major insulin target tissues. The mechanism, by which TLR4 can sense the presence of lipid in cellular ambience and then dictate it towards the loss of insulin sensitivity, is an obscure area where future input would provide a clear and relevant information.

**CONCLUSION**

Mechanism of lipid induced insulin resistance that leads to T2D requires a better understanding. There are number of shaded areas
and questions that require to be addressed. No doubt, last few years of contributions have sharpened our insight on the impairment of insulin sensitivity; understanding of precise mechanism yet appears to be a long way. Although consensus has reached on at least in one issue, i.e., loss of insulin sensitivity is due to insulin signaling defect, we really know little about how lipid can influence it. In this overview, we have described the current status of this subject. Important signaling molecules responsible for Glut4 transporter activation and migration to the membrane making glucose entry into the skeletal muscle and adipocyte are opposed by FA and position a persistent availability of pPKCε will expectedly play a vital role to produce dyslipidemia. Most likely, where considerable progress has been made in recent years.

Specific focus in the subject we attempted to briefly cover some areas that only emphasize the need for additional research, defining their role in the development of insulin resistance and beta-cell dysfunction. Eur J Clin Invest 32 Suppl 3:14-23, 2002

Santomauro AT, Boden G, Silva ME, Rocha DM, Santos RF, Ursich MJ, Strassmann PW, Wajchenberg BL: Overnight lowering of free fatty acids with Acipimox improves insulin resistance and glucose tolerance in obese diabetic and nondiabetic subjects. Diabetes 48:1836-1841, 1999

Zimmer PZ: Diabetes epidemiology as a tool to trigger diabetes research and care. Diabetologia 42:499-518, 1999

Zimmer P, Alberti KG, Shaw J: Global and societal implications of the diabetes epidemic. Nature 414:782-787, 2001

Ruddock MW, Stein A, Landlaker E, Park J, Cooksey RC, McClain D, Parri ME: Saturated fatty acids inhibit hepatic insulin action by modulating insulin receptor expression and post-receptor signalling. J Biochem 144:599-607, 2008

Vesby B, Gustafsson IB, Bengtsson S, Boberg M, Andersson A: Desaturation and elongation of fatty acids and insulin action. Ann NY Acad Sci 967:183-195, 2002

Haag M, Dippenslaar NG: Dietary fats, fatty acids and insulin resistance: short review of a multifaceted connection. Med Sci Monit 11:RA359-RA367, 2005

Hennes MM, Shrago E, Kissebah AH: Receptor and postreceptor effects of free fatty acids (FFA) on hepatocyte insulin dynamics. Int J Obes 14:831-841, 1990

Wyne KL: Free fatty acids and type 2 diabetes mellitus. Am J Med 115 Suppl 8A:29S-36S, 2003

Rosen OM: After insulin binds. Science 237:1452-1458, 1987

Saltiel AR, Kahn CR: Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414:799-806, 2001

Pessin JE, Saltiel AR: Signalling pathways in insulin action: molecular targets of insulin resistance. J Clin Invest 106:165-169, 2000

Alessi DR, Cohen P: Mechanism of activation and function of protein kinase B. Curr Opin Genet Dev 8:55-62, 1998

Kupriyanova TA, Kandtov KV: Akt-2 binds to Glut-4-containing vesicles and phosphorylates these component proteins in response to insulin. J Biol Chem 274:1458-1464, 1999

Griffin ME, Marucci MJ, Cline GW, Bell K, Baracci N, Lee D, Goodyear LJ, Kraegen EW, White MF, Shulman GI: Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade. Diabetes 48:1270-1274, 1999

Yu C, Chen Y, Cline GW, Zhang D, Zong H, Wang Y, Bergeron R, Kim
null
Genomewide search for type 2 diabetes-susceptibility genes in French whites: evidence for a novel susceptibility locus for early-onset diabetes on chromosome 3q27-qter and independent replication of a type 2-diabetes locus on chromosome 1q21-q24. Am J Hum Genet 67:1470-1480, 2000

Auberger P, Falquerho L, Contreres JO, Pages G, Le Cam G, Ross B, Le Cam A: Characterization of a natural inhibitor of the insulin receptor tyrosine kinase: cDNA cloning, purification, and anti-mitogenic activity. Cell 58:631-640, 1989

Rauth G, Pischke O, Fink E, Eulitz M, Tippmer S, Kellerer M, Häring HU, Nawaratil M, Haasemann M, Jahnen-Dechent W, Müller-Enstedt W: The nucleotide and partial amino acid sequences of rat fetuin. Identity with the natural tyrosine kinase inhibitor of the rat insulin receptor. Eur J Biochem 204:523-529, 1992

Matthews ST, Singh GP, Ranalletta M, Cintron VJ, Qiang X, Goustin AS, Jen KL, Charron MJ, Jahnen-Dechent W, Grunberger G: Improved insulin sensitivity and resistance to weight gain in mice null for the Abg gene. Diabetes 51:2450-2458, 2002

Mori K, Emoto M, Yokoyama H, Araki T, Teramura M, Koyama H, Shoji T, Inaba M, Nishizawa Y: Association of serum fetuin-A with insulin resistance in type 2 diabetic and nondiabetic subjects. Diabetes Care 29:468, 2006

Stefan N, Frietsche A, Weikert C, Boeing H, Joost HG, Häring HU, Schulze MB: Plasma fetuin-A levels and the risk of type 2 diabetes. Diabetes 57:2762-2767, 2008

Ik JH, Wessel CL, Kanaya AM, Vittinghoff E, Johnson KC, Koster A, Cauley JA, Harris TB, Cummings SR, Shlipak MG; Health ABC Study: Fetuin-A and incident diabetes mellitus in older persons. JAMA 300:182-188, 2008

Chen NX, O'Neill KD, Chen X, Duan D, Wang E, Sturek MS, Edwards JM, Moe SM: Fetuin-A uptake in bovine vascular smooth muscle cells is calcium dependent and mediated by annexins. Am J Physiol Renal Physiol 292:F599-F606, 2007

Lin X, Braymer HD, Bray GA, York DA: Differential expression of insulin receptor tyrosine kinase inhibitor (fetuin) gene in a model of diet-induced obesity. Life Sci 63:145-153, 1998

Stefan N, Hennige AM, Staiger H, Wicke C, Machicao F, Frietsche A, Häring HU, Stefan N: Fetuin-A induces cytokine expression and suppresses adiponectin production. PLoS One 3:e1765, 2008

Dasgupta S, Bharatacharya S, Biswas A, Majumdar SS, Mukhopadhyay S, Ray S: NF-kappaB mediates lipid-induced fetuin-A expression in hepatocytes that impairs adipocyte function effecting insulin resistance. Biochem Biophys Acta 1792:190-200, 2009

Hashimoto C, Hudson KL, Anderson KV: The Toll gene of Drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein. Cell 52:269-279, 1988

Lemaître B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA: The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86:973-983, 1996

Takeda K, Akira S: TLR signaling pathways. Semin Immunol 16:3-9, 2004

Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr: Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112:1796-1808, 2003

Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA, Chen H: Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112:1821-1830, 2003

Chair A, Kim F: Saturated fatty acids and inflammation: who pays the toll? Arterioscler Thromb Vasc Biol 30:692-693, 2010

Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS: TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest 116:3015-3025, 2006

Poggi M, Basileca D, Gual P, Iglesias MA, Gremelx T, Krauf C, Peiretti F, Verdier M, Julian-Vague I, Tanti JF, Burcelin R, Alessi MC: C3H/HeJ mice carrying a toll-like receptor 4 mutation are protected against the development of insulin resistance in white adipose tissue in response to a high-fat diet. Diabetologia 50:1267-1276, 2007

Tsuikumo DM, Carvalho-Filho MA, Carvalheira JB, Prada PO, Hirabara SM, Schenka AA, Araujo EP, Vassallo J, Curi R, Velloso LA, Saad MJ: Loss-of-function mutation in Toll-like receptor 4 prevents diet-induced obesity and insulin resistance. Diabetes 56:1986-1998, 2007

Song MJ, Kim KH, Yoon JM, Kim JB: Activation of Toll-like receptor 4 is associated with insulin resistance in adipocytes. Biochem Biophys Res Commun 346:739-745, 2006