Results for ϕ_1 and ϕ_2 from Belle

Pit Vanhoefer
Max-Plank-Institut für Physik
Föringer Ring 6
München 80805 GERMANY

We present a summary of measurements sensitive to the CKM angles ϕ_1 and ϕ_2, performed by the Belle experiment using the final data sample of $772 \times 10^6 B\bar{B}$ pairs at the $\Upsilon(4S)$ resonance produced at the KEK asymmetric e^+e^- collider. We discuss CP asymmetries from the decays $B^0 \to c\bar{c}K^0$, $D(\ast^+)D^{(\ast)-}$ which are sensitive to ϕ_1 and from $B \to \pi^+\pi^-$, $a_1 \pm \pi^\mp$ being sensitive to ϕ_2. Furthermore the measurement of the branching fraction of $B^0 \to \rho^0\rho^0$ decays and fraction of longitudinal polarization in this decay is presented and used to constrain ϕ_2 with an isospin analysis in the $B \to \rho\rho$ system.

PRESENTED AT

CKM2012, the 7th International Workshop on the CKM Unitarity Triangle
Cincinnati, USA, 6-10 September 2012
1 Introduction

One major precision test of the Standard Model (SM) is to validate the Cabibbo-Kobayashi-Maskawa (CKM) mechanism for violation of the combined charge-parity (CP) symmetry \[1, 2\]. This is one of the main purposes of the Belle experiment at KEK which has significantly contributed proving the CKM scheme and constraining the unitarity triangle for B decays to its current precision. Any deviation from unitarity would be a clear hint for physics beyond the SM. These proceedings give a summary of the experimental status of measurements of the CKM angles ϕ_1 and ϕ_2 defined from the CKM matrix elements as $\phi_1 \equiv \pi - \arg(-V_{td}V_{tb}^*/(V_{cd}V_{cb}^*))$ and $\phi_2 \equiv \arg(-V_{td}V_{tb}^*)/(V_{ud}V_{ub}^*)$.

The CKM angles can be determined by measuring the time-dependent asymmetry between B_0 and \bar{B}^0 decays into a common CP eigenstate \[3\]. In the decay sequence, $\Upsilon(4S) \to B_{CP}B_{Tag} \to f_{CP}f_{Tag}$, where one of the B mesons decays into a CP eigenstate f_{CP} at a time t_{CP} and the other decays into a flavour specific final state f_{Tag} at a time t_{Tag}, the time-dependent decay rate is given by

$$P(\Delta t, q) = e^{-|\Delta t|/\tau_{B_0}} \left[1 + q(A_{CP} \cos \Delta m_d \Delta t + S_{CP} \sin \Delta m_d \Delta t) \right],$$ (1)

where $\Delta t \equiv t_{CP} - t_{Tag}$, Δm_d is the mass difference between the mass eigenstates B_H and B_L and $q = +1(-1)$ for $B_{Tag} = B^0(\bar{B})$. The CP asymmetry is given by

$$\frac{N(B \to f_{CP}) - N(B \to \bar{f}_{CP})}{N(B \to f_{CP}) + N(B \to \bar{f}_{CP})},$$ (2)

where $N(B(\bar{B}) \to f_{CP})$ is the number of events of a $B(\bar{B})$ decaying to f_{CP}, the asymmetry can be time-dependent. The parameters A_{CP} and S_{CP} describe direct and mixing-induced CP violation, respectively \[4\]. All measurements presented here are based on Belle’s final data set of 772×10^6 BB pairs.

2 The Angle ϕ_1

First-order (tree) weak processes proceeding via $b \to c$ quark transitions such as $B^0 \to (c\bar{c})K^0$, $D^{(*)+}D^{(*)-}$, are directly sensitive to the angle ϕ_1, which is the CKM angle currently measured with the smallest experimental uncertainty.

2.1 The Decay Channels $B^0 \to (c\bar{c})K^0$

The decays $B^0 \to (c\bar{c})K^0$, including the so-called ‘golden channel’ $B^0 \to J/\psi K_S^0$, provide a theoretically and experimentally very clean environment to extract ϕ_1.

*There exists an alternate notation where $C_{CP} = -A_{CP}$.
Since possible additional contributions to the leading order tree diagram, see Fig. 1a), are negligible or even carry the same weak phase [4], the measured CP asymmetry $S_{CP} = \eta_{CP} \sin(2\phi_1)$ reveals an unpolluted value of ϕ_1, with the decay channel’s CP eigenvalue η_{CP}. The combined measurement of CP violation in the golden channel and $B^0 \to \psi(2S)K^0_S$, $B^0 \to \chi_c K^0_S$, and $B^0 \to J/\psi K^0_L$ provide currently the world’s most precise value of $\sin(2\phi_1) = 0.667 \pm 0.023$ (stat) ± 0.012 (syst) [5], as shown in Fig. 1. No direct CP violation was observed, $A_{CP} = 0.006 \pm 0.016$ (stat) ± 0.012 (syst), as predicted by the SM [6].

2.2 The Decays Channels $B^0 \to D^{(*)+}D^{(*)-}$

The decays $B^0 \to D^{(*)+}D^{(*)-}$ are also sensitive to ϕ_1, however additional contributions from loop (penguin) processes make a pollution of the measured observables possible. Hence also direct CP violation can occur. Compared to the previous Belle measurement, the updated result of $B^0 \to D^+D^-$ decays benefits from a better continuum suppression due to the use of neural-networks. The CP asymmetries obtained are $S_{CP} = 1.06^{+0.21}_{-0.11}$ (stat) ± 0.08 (syst) and $A_{CP} = 0.43 \pm 0.16$ (stat) ± 0.05 (syst) [7] and are in good agreement with the results from Babar [8]. The pseudo-scalar to vector scalar decay $B^0 \to D^{\pm}D^{\mp}$ is a decay into a non CP-eigenstate. One therefore has to consider four flavor charge combinations and the time-dependent decay rate in Eq. 1 has to be expanded to five CP parameters [9, 10]. The indirect CP asymmetry
obtained is $S_{CP} = -0.78 \pm 0.15$ (stat) ± 0.05 (syst), no direct CP violation has been observed \[7\]. $B^0 \to D^{*+}D^{*-}$ is a pseudo-scalar to vector vector decay and therefore composed of CP even and odd components. An angular analysis in the transversity basis is performed to separate the different CP states. The fraction of CP-odd states is found to be $R_{\perp} = 0.138 \pm 0.024$ (stat) ± 0.006 (syst) and a first observation of mixing-induced CP violation has been reported; $S_{CP} = -0.79 \pm 0.13$ (stat) ± 0.03 (syst), $A_{CP} = 0.15 \pm 0.08$ (stat) ± 0.04 (syst) \[11\]. The Δt distributions and CP asymmetries for each mode are shown in Fig. 2.

![Figure 2: Δt distributions for each flavour tag and the CP asymmetries, each with the fit result on top. a) $B^0 \to D^+D^-$, b) $B^0 \to D^{*\pm}D^{\mp}$ and c) $B^0 \to D^{*+}D^{*-}$.

3 ϕ_2

Decays proceeding via $b \to uud$ quark transitions such as $B^0 \to \pi\pi$, $\rho\pi$, $\rho\rho$ and $a_1(1260)\pi$, are directly sensitive to ϕ_2. At tree level we expect $A_{CP} = 0$ and $S_{CP} = \sin 2\phi_2$. Again, possible penguin contributions can give rise of direct CP violation, $A_{CP} \neq 0$ and also pollute the measurement of ϕ_2, $S_{CP} = \sqrt{1 - A_{CP}^2 \sin(2\phi_2^{eff})}$ where the observed $\phi_2^{eff} \equiv \phi_2 - \Delta \phi_2$ is shifted by $\Delta \phi_2$ due to different weak phases from additional non-leading contributions.

Despite this, it is possible to determine $\Delta \phi_2$ in $B^0 \to h^+h^-$ with an $SU(2)$ isospin analysis by considering the set of three $B \to hh$ decays where the hhs are either two pions or two longitudinally polarized ρs, related via isospin symmetry \[12\]. The $B \to hh$ amplitudes obey the triangle relations,

$$A_{+0} = \frac{1}{\sqrt{2}} A_{+-} + A_{00}, \quad \overline{A}_{-0} = \frac{1}{\sqrt{2}} \overline{A}_{+-} + \overline{A}_{00}. \quad (3)$$

Isospin arguments demonstrate that $B^+ \to h^+h^0$ is a pure first-order mode in the limit of neglecting electroweak penguins, thus these triangles share the same base, $A_{+0} =$
\[A_0, \Delta \phi_2 \] can then be determined from the difference between the two triangles. This method has an inherent 8-fold discrete ambiguity in the determination of \(\phi_2 \).

4 The Decay \(B \to \pi \pi \)

Preliminary results of the \(CP \) parameters in this pseudo-scalar to scalar scalar decay yield \(S_{CP} = -0.636 \pm 0.082 \) (stat) \(\pm 0.027 \) (syst) and \(A_{CP} = 0.328 \pm 0.061 \) (stat) \(\pm 0.027 \) (syst). The \(\Delta t \) distributions and the resulting \(CP \) asymmetry are shown in Fig. 3 a). Belle excludes the range \(\phi_2 \not\in [23.8^\circ, 66.8^\circ] \) at the 1\(\sigma \) level by performing an isospin analysis to remove the penguin contribution, see Fig. 3 b). The amount of direct \(CP \) violation was found to be smaller compared to the previous measurement at Belle [13]. The previous result was confirmed with the previous data set of \(535 \times 10^6 \) \(B\bar{B} \) pairs. The updated \(CP \) asymmetries are in better agreement with other experiments [14].

Figure 3: a) \(\Delta t \) distribution for each flavour tag and the fit result on top and the resulting \(CP \) asymmetry for \(B^0 \to \pi^+\pi^- \). Mixing-induced \(CP \) violation can be clearly seen in the asymmetry plots and the height difference in the \(\Delta t \) projection indicates direct \(CP \) violation. b) scan of \(\phi_2 \) from an isospin analysis in the \(B \to \pi\pi \) system, the dashed line corresponds to the one \(\sigma \) level.
5 The Decay $B^0 \rightarrow \rho^0 \rho^0$

The presence of multiple, largely unknown backgrounds with the same four charged pions final state as $B^0 \rightarrow \rho^0 \rho^0$ make this rare decay quite difficult to isolate. Interference between the various 4π modes need to be considered. Having a decay into two vector particles, an angular analysis has to be performed, similar to the decay $B^0 \rightarrow D^+ D^-$. As for $B^0 \rightarrow \rho^+ \rho^- [15, 16, 17]$, the decay $B \rightarrow \rho \rho$ is naively expected to be polarized dominantly longitudinally. However, color-suppressed B decays into light vectors are especially difficult to predict [18]. Besides updating to the full data set, a helicity angle $\cos \Theta_H$ for each ρ^0 is added to the fit. The angles, defined in the helicity basis, are powerful in separating the different backgrounds and allow one to measure the fraction f_L of longitudinal (purely CP-even) polarization in $B \rightarrow \rho \rho$ decays. As a preliminary result, Belle obtains $\mathcal{B}(B^0 \rightarrow \rho^0 \rho^0) = (1.02 \pm 0.30 \text{ (stat)} \pm 0.22 \text{ (syst)}) \times 10^{-6}$ with a fraction of longitudinal polarization, $f_L = 0.21_{-0.22}^{+0.18} \text{ (stat)} \pm 0.11 \text{ (syst)}$. Having a significance of 2.9 standard deviations, an upper limit of $\mathcal{B}(B^0 \rightarrow \rho^0 \rho^0) < 1.5 \times 10^{-6}$ at the 90% CL is provided [19]. Since this mode is currently statistically (and systematically) limited and is found to decay dominantly into transversally polarized ρ^0's (CP-even and odd), a measurement of the CP asymmetries has not been performed. However, the size of the amplitude of the decays into longitudinally polarized ρ^0s from this measurement has been used in an isospin analysis together with world averages of $B^0 \rightarrow \rho^+ \rho^-$ and $B^+ \rightarrow \rho^+ \rho^0$ decays [20] (longitudinal polarization only). The resulting constraint consistent with the SM value is $\phi_2 = (91.0 \pm 7.2)^\circ$. The relatively small amplitude of $B^0 \rightarrow \rho^0 \rho^0$ makes the isospin analysis in the $B \rightarrow \rho \rho$ less ambiguous. In addition, Belle reported the first evidence of $B^0 \rightarrow f_0 \rho^0$ decays with a significance of 3.0 σ; $\mathcal{B}(B^0 \rightarrow f_0 \rho^0) = (0.86 \pm 0.27 \text{ (stat)} \pm 0.15 \text{ (syst)}) \times 10^{-6}$. Distributions of the difference of energy of the reconstructed signal B to the beam energy, ΔE and one of the helicty angles, each with the fit result on top, are shown in Fig. 4 together with the ϕ_2 scan from the isospin analysis.

Comparing these results with the ones obtained by BaBar, we find good agreement in the branching fraction of $B^0 \rightarrow \rho^0 \rho^0$ decays, while there is a 2.1σ discrepancy in the fraction of longitudinal polarization; BaBar finds $f_L = 0.75_{-0.14}^{+0.11} \text{ (stat)} \pm 0.04 \text{ (syst)}$ [21]. Also the branching fraction of $B^0 \rightarrow f_0 \rho^0$ decays is significantly higher then the upper limit provided by BabBar; $\mathcal{B}(B^0 \rightarrow f_0 \rho^0) < 0.34 \times 10^{-6}$. Thus, further studies at higher statistics would be very interesting and hopefully will solve these tensions.
Figure 4: Distributions of a) ΔE and b) $\cos \Theta_H$ with the fit result on top. The shaded red area and the long dashed orange histogram are the $B^0 \to \rho^0 \rho^0$ and $f_0 \rho^0$ contributions, respectively. Furthermore, all four pion final states are shown in dashed cyan, the entire ($B\bar{B}$) background in dashed green (dark green) and the full PDF in blue. c) scan of ϕ_2 from an isospin analysis in the $B \to \rho \rho$ system, the dashed line corresponds to the one σ level.

6 The Decay $B^0 \to a_1(1260)^\pm \pi^\mp$

$B^0 \to a_1(1260)^\pm \pi^\mp$ is another decay with a four charged pion final state sensitive to ϕ_2, but is similar to $B^0 \to D^{*\pm}D^\mp$, a decay into a non-CP eigenstate. Belle reported the first evidence of mixing induced CP violation in this mode with 3.1σ; $S_{CP} = -0.51 \pm 0.14 \text{ (stat)} \pm (0.08) \text{ [22]}$. The amount of penguin pollution can in general be estimated by using $SU(3)$ symmetry [23] but would need more input data. Therefore a scan of an effective angle ϕ_2^{eff} has been presented, giving a fourfold solution for $\phi_2^{eff} \in [-25.5^\circ, -9.1^\circ], [34.7^\circ, 55.3^\circ]$ and $[99.1^\circ, 115.5^\circ]$, where the 2nd interval contains two overlapping solutions. The scan (c) is shown together with the Δt distribution (a) and the CP asymmetry (b) in Fig. 5.

Figure 5: a) projection of the fit result onto Δt for $B^0 \to a_1(1260)^\pm \pi^\mp$. b) the resulting time-dependent CP asymmetry. c) scan of ϕ_2^{eff} where the dashed line corresponds to the one σ level.
7 Summary

We have presented recent measurements from Belle sensitive to the CKM phases ϕ_1 and ϕ_2 using the full data set. For ϕ_1, Belle provides the currently most precise value, $\sin(2\phi_1) = 0.667 \pm 0.023 \text{ (stat)} \pm 0.012 \text{ (syst)}$, coming from $B^0 \to (\pi\pi)K^0$ decays. Furthermore Belle reported on CP violation in $B \to D^{(*)+}D^{(*)-}$ decays, where mixing induced CP violation in $B \to D^{*-}D^{*-}$ decays was observed for the first time.

Moreover, preliminary measurements of the CP asymmetries in $B \to \pi^+\pi^-$ and the branching fraction of $B \to \rho^0\rho^0$, together with fraction of longitudinal polarized ρ^0s in this decay were presented. The data are used to constrain ϕ_2 with an $SU(2)$ isospin analysis. Also, first evidence of mixing induced CP violation in the decay $B^0 \to a_1(1260)+\pi^+$, together with a scan of an effective ϕ_2 was presented. The current world averages of ϕ_1 and ϕ_2 as computed by the CKMfitter [24] (including the results presented) and UTfit [25] collaborations are $\phi_1 = (21.73^{+0.78}_{-0.74})^\circ$ and $\phi_2 = (88.5^{+4.7}_{-4.4})^\circ$ and $\phi_1 = (22.28\pm 0.92)^\circ$ and $\phi_2 = (89.1\pm 3.0)^\circ$, respectively. With BelleII being built and LHCb operating, the next generation of B physics experiments are expected to further reduce the uncertainty of the CKM observables, e.g. the uncertainty of ϕ_2 is expected to be reduced to $1^\circ - 2^\circ$ [26].

References

[1] N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963).
[2] M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
[3] I. Bigi and A. Sanda, CP Violation, Cambridge University Press, Cambridge (2009).
[4] H. Boos, J. Reuter and T. Mannel, Phys. Rev. D 70, 036006 (2004).
[5] I. Adachi et al. (The Belle Collaboration), Phys. Rev. Lett. 108, 171802 (2012).
[6] I.I. Bigi and A.I. Sander, , Nucl. Phys. B193, 85 (1981).
[7] M. Rhrken et al. (Belle Collaboration), Phys. Rev. D 85, 091106(R) (2012).
[8] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 79, 032002 (2009).
[9] R. Aleksan, I. Dunietz, B. Kayser and F. Le Diberder, Nucl. Phys. B 361, 141 (1991).
[10] B. Aubert et al. (BaBar Collaboration), Phys. Rev. Lett. 91, 201802 (2003).
[11] B. Kronenbitter et al. (Belle Collaboration), Phys. Rev. D 86, 071103(R).
[12] M. Gronau and D. London, Phys. Rev. Lett. 65, 3381 (1990).
[13] H. Ishino et al. (Belle Collab.), Phys. Rev. Lett. 98, 211801 (2007).
[14] J. P. Lees et al. (BaBar Collab.), arXiv:1206.3525v1 [hep-ex].
[15] B. Aubert et al. (BaBar Collab.), Phys. Rev. D 76, 052007 (2007).
[16] A. Somov et al. (Belle Collab.), Phys. Rev. Lett. 96, 171801 (2006).
[17] A. Somov et al. (Belle Collab.), Phys. Rev. D 76, 011104 (2007).
[18] M. Beneke, J. Rohrer and D. Yang, Nucl. Phys. B 774, 64-101 (2007).
[19] I. Adachi et al. (Belle Collab.), arXiv:1212.4015 [hep-ex].
[20] Y. Amhis et al. (Heavy Flavor Averaging Group (HFAG)), arXiv:hep-ph/1207.1158.
[21] B. Aubert et al. (BaBar Collab.), Phys. Rev. D 78, 071104 (2008).
[22] J. Dalseno et al. (Belle Collab.), arXiv:1205.5957v1 [hep-ex].
[23] R. Fleischer, arXiv:hep-ph/9809216v1.
[24] http://ckmfitter.in2p3.fr
[25] http://www.utfit.org
[26] T. Aushev et al., arXiv:1002.5012 (2010).