A new encoding of implied volatility surfaces for their synthetic generation

Zheng Gong∗
University of Essex
Colchester, United Kingdom
zg19500@essex.ac.uk

Wojciech Frys
UBS
London, United Kingdom
wojciech.frys@ubs.com

Renzo Tiranti
UBS
London, United Kingdom
renzo.tiranti@ubs.com

Carmine Ventre
King’s College London
London, United Kingdom
carmine.ventre@kcl.ac.uk

John O’Hara
University of Essex
Colchester, United Kingdom
johara@essex.ac.uk

Yingbo Bai
UBS
London, United Kingdom
yingbo.bai@ubs.com

ABSTRACT
In financial terms, an implied volatility surface can be described by its term structure, its skewness and its overall volatility level. We use a PCA variational auto-encoder model to perfectly represent these descriptors into a latent space of three dimensions. Our new encoding brings significant benefits for synthetic surface generation, in that (i) scenario generation is more interpretable; (ii) volatility extrapolation achieve better accuracy; and, (iii) we propose a solution to infer implied volatility surfaces of a stock from an index to which it belongs directly by modelling their relationship on the latent space of the encoding. All these applications, and the latter in particular, have the potential to improve risk management of financial derivatives whenever data is scarce.

1 INTRODUCTION
The Black-Scholes-Merton (BSM) model [5, 13] is the benchmark for stock option pricing and valuation. One major weakness of the standard BSM method is the assumption that volatility of the underlying stock is a constant, and not related to the moneyness or the remaining term of the option contract. This does not conform with our observations in the market. If we equate the BSM formula with market option prices and solve for the volatility parameter, we get the implied volatility value. Implied volatilities have a typical characteristic, which is, the value of volatility gets smaller as the option moneyness move close to one and gets larger as it moves away from one. This phenomenon is referred to as the implied Volatility Smile or Volatility Skewness [3]. If we take the remaining term of an option contract as another dimension into the volatility smile, we get the Implied Volatility Surface.

Implied volatility surface is the most important variable to consider if anyone wants to design, trade or evaluate financial derivatives. The most straightforward use case is to calculate the option prices of non-existent term and moneyness combinations of a particular underlying stock [9] on a particular trading day. This involves the process of predicting an extended subset of volatility values on a surface from some existing values that can be observed from the market. This task is commonly referred to as the implied volatility extrapolation. Once the extended volatility values are extrapolated, they can be put into the BSM formula to calculate the required prices of financial derivatives of the special term and moneyness.

The most common scenario is to extrapolate from products with short-term expiration to products with long-term expiration. The profit or loss of issuing such products are largely depended on the accuracy of the extrapolated implied volatility values.

Moving one step further, we could not only predict the extended term and moneyness combinations, but also predict implied volatility surfaces of a specific stock from another related stocks or stock index. We consider a scenario where, on a particular trading day, we have zero information about a stock’s implied volatility surface, and therefore we cannot perform extrapolation. However, we have the historical implied volatility surfaces of this stock and some other related stocks or stock indexes. We need to identify the relationships between different stocks/indexes from their empirical volatility surfaces and predict future implied volatility surfaces from scratch. This task is most challenging, and to the best of our knowledge, there is no established method to solve this problem.

It is also believed that the shape of an implied volatility surface reflects the current market perception of risk and return, and the implied volatility values indicate the demand and supply for different combinations of moneyness and term structure [2]. Ideally, market participants could generate many implied volatility surfaces

CCS CONCEPTS
• Computing methodologies → Knowledge representation and reasoning; Neural networks; Learning latent representations.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

Conference ’17, July 2017, Washington, DC, USA
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/10.1145/nnnnnn.nn.nn

∗Also with UBS.
with similar shape but not identical values, all representing typical market environments, and use this batch of synthetic surfaces for evaluating their derivative trading engines. Because stress scenarios are rarely represented in the historical data, the ability to generate synthetic implied volatility surfaces of good quality and in an interpretable manner is crucial.

In this paper, we present a new encoding mechanism of implied volatility surfaces using a PCA variational auto-encoder model. The new encoding significantly improves the state of the art for the three problems mentioned above.

There is limited literature on the modelling of implied volatility surfaces with neural network approaches [1, 4, 6, 15]. Their work did not clarify the question of what features of the implied volatility surfaces are exactly encoded or learnt by the neural network model. This is a crucial issue, as we want to generate (a subset or the whole) of a volatility surface to perform the aforementioned task. If we do not know how the neural network model encodes the market data or what is represented in the neural network model, we cannot interpret the generated synthetic surfaces.

The remainder of the paper is organised as follows. Section 2 introduces background knowledge about stock options, and briefly discusses the relevant literature on auto-encoder neural network models for implied volatility surfaces. In that section, we also explain our PCA variational auto-encoder model, which is used to encode the implied volatility surface differently. Section 3 introduces the data we used for our experiments and, more importantly, how we evaluate the usefulness of our generated synthetic implied volatility surfaces. Section 4 introduces our method of encoding implied volatility surfaces; we compare our approach with an alternative solution highlighting the differences on the training process, as well as the unique characteristics of the encoded latent space. Section 5 shows how we can leverage the new encoding to efficiently solve the three challenges on synthetic surfaces generation; interpretable scenario-based generation, implied volatility extrapolation and stock-specific generation. Section 6 concludes our work and proposes directions for future research.

2 LITERATURE REVIEW

2.1 Stock Option and Implied Volatility Surface

A European stock option gives an investor the right, but not the obligation, to buy or sell a stock at a predefined strike price K and expiration date T. The stock specified in the option contract is called the underlying stock. At a date t during the contract period, the price of underlying stock is S_t, and the remaining term of the option contract is $\tau = T - t$. The ratio between the strike price and price of the underlying asset is called moneyness $M_t = \frac{K}{S_t}$.

Stock options are financial derivatives, and at the time t, their prices P_t are usually calculated from BSM formula [8]:

$$P_t = BSM(S_t, K, T, r, t, \sigma_t),$$

where r is the risk-free interest rate, and we assume there are no dividends to be paid from the underlying stock.

The σ_t is the key parameter in the BSM formula. As we mentioned in Section 1, if we solve the BSM function using P_t observed from the market, we obtain the value of σ_t which is named implied volatility, and it is actually a function of τ and M_t. The function $\sigma_t = f(\tau, M_t)$ is usually represented as the implied volatility surface.

2.2 Variational Auto-Encoder and Implied Volatility Surface

Auto-encoder (AE) is a typical structure for neural network models, and has been very popular in the areas of image and language processing [7, 14]. It is effectively using two separate neural networks (encoder and decoder) to approximate the identity function $f(X) = X$, by first encoding the input data X into a latent vector Z and then decoding Z to output X' that replicate the input data X. When the difference between X and X' is small enough, the latent representation Z is considered to have successfully stored the information about the input X in the latent space, and usually the dimensionality of Z is much smaller than X (i.e., dimensionality reduction).

Variational Auto-Encoder (VAE) models are a popular extension of the autoencoder framework. It was first proposed by [10], and
later expanded in finer details [11]. A variational auto-encoder model structure is shown in Figure 1.

Instead of producing latent encodings Z in a deterministic manner like the classic auto-encoder, the VAE randomly samples them from a normal distribution that is parameterized by the encoder neural network. This special arrangement has one particular advantage. Because encoder and decoder networks are not directly linked, when the encoder takes the same input batch in training, the changes in Z are not only due to the updated parameters in the encoder, but also the randomness caused by the sampling process. This forces the decoder network to learn a distribution of Z values instead of deterministic values, which results in a more powerful decoder for synthetic data generation. This also explains why a VAE model takes longer training time than a classic AE model on the same dataset, even with identical training parameters.

The loss function for training a VAE model is formulated as:

$$L = L_{recon} + \lambda_{kl} \cdot L_{kl},$$

where L_{recon} is the reconstruction error, and it is calculated as the mean absolute error (MAE) between input X and output X'; λ_{kl} is the weight of L_{kl} in the loss function; and, L_{kl} is the Kullback-Leibler (KL) divergence between the encoded distributions and standard normal distribution $N(0, 1)$:

$$L_{kl} = -\frac{1}{2} \sum_{k=1}^{D} \left(1 + \log \Sigma_k^2 - \Sigma_k^2 - \mu_k^2 \right)$$

D being the number of latent dimensions, Σ_k and μ_k produced by the encoder neural network as shown in Figure 1. It is important to note that λ_{kl} is a hyperparameter that tunes the strength of the regularization provided by KL. Naturally, when λ_{kl} approaches 0, then the learning process optimizes Σ_k to be also close to 0 and the VAE effectively becomes a classic AE.

Bergeron et al. [4] implemented variational auto-encoder models on the implied volatility surfaces from the foreign exchange market. They encoded implied volatility surfaces into various numbers of latent dimensions, but did not clarify how many dimensions are optimal. This is due to the fact that their method could not separate the features of a surface into each latent dimensions, so that every time a new dimension is added, the model gains a certain degree of accuracy. Whether that dimension is really encoding a meaningful feature or just market noise is however unanswered. In addition to that, the encoding vectors obtained from their model are not useful for stock specific generation due to the lack of interpretability.

2.3 PCA Variational Auto-Encoder

To address the problems discussed above, we upgrade the variational auto-encoder model to a PCA variational auto-encoder.

The PCA auto-encoder model was first developed by [12]. They encoded implied volatility surfaces into various numbers of latent dimensions, but did not clarify how many dimensions are optimal. This is due to the fact that their method could not separate the features of a surface into each latent dimensions, so that every time a new dimension is added, the model gains a certain degree of accuracy. Whether that dimension is really encoding a meaningful feature or just market noise is however unanswered. In addition to that, the encoding vectors obtained from their model are not useful for stock specific generation due to the lack of interpretability.

The loss function for training a PCA variational auto-encoder on implied volatility surfaces becomes:

$$L = L_{recon} + \lambda_{kl} \cdot L_{kl} + \lambda_{cov} \cdot L_{cov}.$$

The value of λ_{cov} controls how much restriction we want to enforce on the model due to the covariance. On one hand, if λ_{cov} is too small, the latent dimensions are not independent. On the other hand, the model loses the ability to generate surfaces if λ_{cov} is too large. By trial and error, we found the optimal value of λ_{cov} is 0.1 for training a PCA variational auto-encoder on implied volatility surfaces.

We will be using the VAE model structure together with this loss function to train the PCA variational auto-encoder models. We are going to demonstrate their unique characteristics for the model training process and encoded latent space, and their strengths for dealing with the three synthetic surface generation challenges mentioned in the introduction.

3 DATASET AND EVALUATION CRITERIA

Our dataset consists of daily implied volatility surfaces for the period from 4 October 2016 to 4 October 2021. We collected data from 44 European listed stocks, as well as the stock index of STOXX50\(^1\). We also have the daily high, low, open, close prices of these stocks and index over the same period of time. The volatility surfaces computed before 4 October 2020 are marked as training datasets, and those after that date are testing datasets.

Among the 44 stocks, we take 6 stocks out of the dataset for performing the volatility surface extrapolation and specific stock generation tasks. We want to emphasize that the PCA variational auto-encoder model is capable of learning the general features of volatility surfaces, which not only exist among the temporal dimensions but also between difference stocks.

After we generate synthetic implied volatility surfaces from our model, we wish to measure how realistic or useful they are. To evaluate a model, one often calculates the numerical difference, as, e.g., the mean absolute error (MAE), between every point on a real surface and the generated surface. The conclusion would be that if MAE values are smaller, the model performs better. However, this seems unsatisfactory for two reasons. Firstly, the financial dataset sampled from the market contains a lot of noise. Consequently, we should not force the model to learn every piece of the data and the aforementioned evaluation method would more easily lead to overfitting. The MAE and other similar measurements are more adequate for computer science tasks, where the data has much less misleading information. Secondly, if we generated a surface that is identical to the market surface (i.e., with zero MAE) then it would

\(^1\)STOXX50 is a stock index covers 50 stocks from the Eurozone
not be useful in our context. We want our synthetic surfaces to be
similar but not identical to the market, and the similarity is within
a reasonable range (e.g. bid/offer spread), so that the synthetic
surfaces are considered useful. In order to obtain a measure of use-
fulness, we collected 9082 market quotes for options on European
stocks, and calculated the implied volatility spread between bid
quotes and offer quotes, and we come up with the evaluation thresh-
old as listed in Table 1. The table needs to be read in the following
way. If, for example, the absolute difference between the market
implied volatility and generated implied volatility $|\sigma_{3,0.9} - \sigma'_{3,0.9}|$
is smaller than 0.0149, then we consider the generated $\sigma'_{3,0.9}$ as a
satisfactory implied volatility point. We calculate the percentage
of satisfactory points within all the points on all the surfaces we
generate, and call this the satisfaction rate. In other words, if the
generated implied volatility is within the range of bid offer spread
from the market value, we consider it as satisfactory.

4 ENCODING IMPLIED VOLATILITY SURFACE
In this section, we are going to compare the training process of
a PCA variational auto-encoder with a classic variational auto-
encoder model, and discuss our discoveries from the trajectories of
the training losses. Once the model is trained, we can obtain the
plots for the encoded values of each implied volatility surfaces. As
our model is a PCA variational auto-encoder in which input data
are encoded into distributions, we are going to plot the mean μ
and logarithm of the variance Σ.

4.1 Training the PCA Variational Auto-encoder
As mentioned in Section 2, the PCA variational auto-encoder model
incorporates covariance measurements for each pair of latent di-
mensions in the loss function. By restricting the value of covariance
during model training, independent features of volatility surfaces
are embedded into latent dimensions. This modification not only
largely improves practicability and interpretability of auto-encoder
for surface related applications, but also significantly changes the
trajectory for the reconstruction losses during model training.

In this section, we focus on the model training process. It is
undoubtedly important to understand what is exactly learnt by
the neural network during the training, and this will be a solid
foundation for various volatility surface generation applications to
be discussed in Section 5.

There are three plots in Figure 2, which represent the evolution
of reconstruction loss L_{recon} in (2) and covariance loss L_{cov} in (1)
during the training of different variational auto-encoder models.
The plots are for a classic variational auto-encoder model, a PCA
variational auto-encoder model with three latent dimensions and a
Figure 3: Encoded Latent Space for STOXX50

PCA variational auto-encoder with four latent dimensions, respectively. The x-axis contains the number of training epochs, whereas the y-axis measures the loss values.

Figure 2a shows the training process of a classic variational auto-encoder model \((\text{i.e.}, \lambda_{\text{cov}} = 0)\) for implied volatility surfaces. We can clearly observe three turning points where the reconstruction loss is significantly reduced; they are at epoch number 2, 7 and 108. Every time the reconstruction loss has a large reduction, the covariance loss is reduced as well, but it quickly grows afterwards. The final value of covariance loss is roughly 0.468.

The training process of a PCA variational auto-encoder \((\text{with } \lambda_{\text{cov}} = 0.1)\) is shown in Figure 2b. It is evident that by adding a covariance constraint to the loss function, the training epochs needed to reach the minimum reconstruction error is smaller (reduced from 108 to 35 epochs). The explanation is that since the covariance is limited, the information encoded in the first two latent dimensions are largely reduced so that there is more information to be captured by the third dimension, and the model can quickly learn the feature. On the contrary, for the case of the classic variational auto-encoder, there is little information left for the third dimension, so the model struggles to learn the marginal information. It is important to note that in Figure 2b we show then training until 130 epochs for comparison with Figure 2a. The actual model we use for our experiments is trained after 40 epochs to avoid over-fitting.

Bergron et al. argue that implied volatility surfaces can be captured by variational auto-encoder using as few as two latent dimensions [4]. From our experiments of training PCA variational auto-encoder with 2 latent dimensions, we found that even though the reconstruction (MAE) error is small after two dimensions are learnt, the covariance loss is not small enough. More importantly, we did not observe the independence of the latent numbers when we build the interactive generation tool, which will be presented in Section 5.1.

We want to explore further the training process by adding one more latent dimension into the PCA variational auto-encoder model; the training process is shown in Figure 2c. We keep training the model until 500 epochs and cannot observe any further significant reduction in the reconstruction loss. This indicates that there is no further independent feature to be modelled by the PCA variational auto-encoder model.

This empirical observation can be quantified. It is important to have a quantitative measure, because the number of latent dimensions in the VAE is a hyperparameter that requires calibration and depends on training set and applications. This measure should confirm whether the chosen number of dimensions is too large for a given dataset or if the training process has failed to discover all the expected dimensions. During training it can be used as a stop trigger to end the process after it discovers all the dimensions.

The method we've chosen is to calculate the standard deviation of the encoded training set for each dimension in the latent space and check if they have the same order of magnitude.

The table 2 shows the difference between training the PCA variational auto-encoder with 4, 3 and 2 Latent Dimensions. It can be observed that the \(Z_3\), the additional dimension that failed to capture any new information, has an order of magnitude lower standard deviation.

From these observations, we can confirm that three latent dimensions are the only reasonable choice for encoding implied volatility.
We mentioned several times that PCA variation auto-encoder is a powerful method to generate synthetic surfaces for any specific description of the scenario that is requested. For example, if we need a surface of overall high volatility level, small difference of volatility among moneyness and large spread between short and long term, we can use small values for Z_1 and Z_3 and a large value of Z_2 to generate such a surface. This is not possible with the classical variation auto-encoder model.

5.2 Implied Volatility Extrapolation

We have briefly introduced the volatility extrapolation problem in Section 1. The task is to predict (extrapolate) the full implied volatility surface from only a subset of points on the same surface.

The extrapolation challenge can be interpreted as a two-step problem. The first step is to make sure that the encoding vector calculated from the known subset of a surface contains enough information to extrapolate the unknown points. This depends on what model is used to generate the encoded latent space. The second step is to use an optimisation method to efficiently find the points on the latent space which represent the known subset of a surface.

Bergeron et al. [4] suggested to use classic variational auto-encoder to encode the latent space and the L-BFGS algorithm to find the optimal latent encoding vector which minimises the difference on the known subset of a implied volatility surface. To generate the unknown subset of the surface, they provide this vector to the pre-trained decoder neural network.

In our dataset, each implied volatility surface has eight terms (3, 6, 9, 12, 18, 24, 36, 48 months) and 7 moneyness settings ($0.80, 0.90, 0.95, 1.00, 1.05, 1.10, 1.20$). For our extrapolation experiments, we assume the known subset of a volatility surface is of short term (month value of 3, 6, 9 and 12) and close to being at-the-money (moneyness value of $0.95, 1.00$ and 1.05), which consists of 12 points. The remaining 44 points are to be extrapolated, and we compare the full generated surface with the full true surface to evaluate the performance of the extrapolation methods using the satisfaction criteria introduced in Section 3.

We found that for the extrapolation task, PCA variational auto-encoder model is a better solution to produce the encoded latent space. In Section 5.1, we showed that the model captures the correlation between short- and long-term volatility through latent dimension Z_3, which indicates that the latent vector found from only short-term information also contain the relevant shape information for the long-term. Because volatility surfaces have to satisfy the no-arbitrage conditions, this connection is pretty stable across stocks and time-horizons. This is also the case for Z_2, which presents the volatility skewness. This is an important advantage of PCA variational auto-encoder, which leads to better extrapolation performances, as shown in Table 3.

We calculate the mean absolute errors on the known subset of surfaces (12 points) and unknown subset (44 points) separately in Table 3, as well as the satisfaction rates among all the 56 points on the surfaces. We can observe that even though both MAE errors...
Figure 4: Generated Synthetic Surfaces

Table 3: Volatility surface extrapolation with L-BFGS method

Stock	MAE (known)	MAE (unknown)	Satisfaction
DPWGN.DE	0.0044	0.0211	0.6571
DTEGN.DE	0.0154	0.0297	0.5161
LVMLPA	0.0029	0.0159	0.6857
MUVGN.DE	0.0049	0.0288	0.5366
SGEFPA	0.0040	0.0232	0.5989
SIEGN.DE	0.0065	0.0299	0.6268
Average	0.0063	0.0248	0.5887

(a) Classic Variational Auto-Encoder Model

Stock	MAE (known)	MAE (unknown)	Satisfaction
DPWGN.DE	0.0066	0.0259	0.8143
DTEGN.DE	0.0051	0.0202	0.6598
LVMLPA	0.0032	0.0117	0.7411
MUVGN.DE	0.0070	0.0336	0.6643
SGEFPA	0.0236	0.0600	0.4902
SIEGN.DE	0.0165	0.0290	0.7491
Average	0.0103	0.0301	0.6865

(b) PCA Variational Auto-Encoder Model

are higher for PCA variational auto-encoder, the satisfaction rate achieved is 10% higher. This indicates that PCA variational auto-encoder is encoding the shape of surfaces instead of individual values of volatility. We also found that the differences of MAEs between two subsets are smaller, which indicates that our model is better to infer the long-term volatility from the short-term volatility as discussed above. However, we think L-BFGS is not a perfect method for optimising on the encoded space because of the level of over-fitting; finding better solutions could be the object of further research.

5.3 Stock Specific Generation

The third practical question we want to solve is to infer the implied volatility surfaces for a particular stock from the stock index, by modelling their historical relationships on the latent space produced by a PCA variational auto-encoder model.

For every trading day, we have 39 volatility surfaces, which represent 38 stocks and 1 stock index (STOXX50). We encode these volatility surfaces using a trained PCA variational auto-encoder, and plot for every stock and trading day, its correspondent first latent number \(Z_1\) of the stock volatility and STOXX50 volatility surfaces. The plot is shown in Figure 5.

Every point plotted in Figure 5 represents a particular stock on a single trading day. Different colours represent different stocks; we also plot the line \(y = x\) as a reference.

We can see from Figure 5 that there is a linear relationship between \(Z_1\) of each stock and \(Z_1\) of STOXX50. This relationship exists for all the stocks we plotted in the figure. If we draw lines to models these relationships, we see the lines should have slopes close to one, which indicates if the index volatility surface shifts, the stock volatility surface moves roughly by the same amount. We also notice that most stocks have an intercept smaller than one, meaning that \(Z_1\) of stocks are generally smaller than \(Z_1\) of STOXX50. If we refer to volatility surface generation mentioned in Section 5.1, this should reflect that the volatility surface of a single stock is usually higher than the surface of the STOXX50 index on the same day, a known stylised fact of the market. Similar linear relationships hold true for \(Z_2\) and \(Z_3\) as well.

Based on these observations, we use linear regression models to capture the relationship between a particular stock and the STOXX50 index in the encoded space. For every stock on a trading day, we train three linear regression models to predict its three latent numbers separately. The independent variables for linear regression models are the latent number of STOXX50 index and the stock’s long-term price volatility. Every linear regression model has two independent variables. The models are trained in a moving windows manner, as illustrated in Figure 6.

For every trading day in the test period, we use three linear regression models to obtain the latent encoding of the implied volatility surface, which represents , and put the encoding vector into our pre-trained PCA variational auto-encoder. We then compare the generated surface with the true surface in our dataset and obtain the results shown in Table 4. The errors in Table 4 are calculated as the MAE between the true \(Z\) value and the predicted
one. We see the average satisfaction rate is 76%, which indicates most predicted implied volatility values are within the bid offer spread of the market.

6 CONCLUSION AND FUTURE RESEARCH

We use a new way to encode implied volatility surfaces into a latent space with a PCA variational auto-encoder neural network. The extra covariance measurement in the loss function for model training ensures independence of the three latent dimensions, which brings significant benefits for different synthetic surface generation applications. The scenario-based generation process becomes intuitive and interpretable. The volatility extrapolation performance is largely improved and over-fitting is reduced. We developed a novel solution to infer a single stock volatility surface from the stock index volatility surface.

Our work can be further developed by finding methods to capture the relationship between a share and an index on the latent space that are better than the linear regression models. It is also possible to use our new encoding for different tasks; e.g., consider the case that there is no historical volatility surface at all for the required stock. We could use a model trained on a difference stock and the stock index to produce the implied volatility surface as required.

REFERENCES

[1] Damien Ackerer, Natasa Tagasovska, and Thibault Vatter. 2020. Deep smoothing of the implied volatility surface. *Advances in Neural Information Processing Systems* 33 (2020), 11552–11563.

[2] Jianne Ajjo. 2008. Implied volatility term structure linkages between VDAX, VSMI and VSTOXX volatility indices. *Global Finance Journal* 18, 3 (2008), 290–302.

[3] Leif Andersen and Jesper Andreasen. 2000. Jump-diffusion processes: Volatility smile fitting and numerical methods for option pricing. *Review of derivatives research* 4, 3 (2000), 231–262.

[4] Maxime Bergeron, Nicholas Fung, John Hull, Zissis Poulos, and Andreas Veneris. 2022. Variational autoencoders: A hands-off approach to volatility. *The Journal of Financial Data Science* 4, 2 (2022), 125–138.

[5] Fischer Black and Myron Scholes. 2019. The pricing of options and corporate liabilities. In *World Scientific Reference on Contingent Claims Analysis in Corporate Finance: Volume 1: Foundations of CCA and Equity Valuation*. World Scientific, 3–21.

[6] Jay Cao, Jacky Chen, and John Hull. 2020. A neural network approach to understanding implied volatility movements. *Quantitative Finance* 20, 9 (2020), 1405–1413.

[7] Yu Chen and Mohammed J Zaki. 2017. Kate: K-competitive autoencoder for text. In *Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*. 85–94.

[8] Mark HA Davis. 2010. Black–Scholes Formula. In *Encyclopedia of Quantitative Finance* (2010), 199–207.

[9] Cristian Homescu. 2011. Implied volatility surface: Construction methodologies and characteristics. *arXiv preprint arXiv:1107.1834* (2011).

[10] Diederik P Kingma and Max Welling. 2013. Auto-encoding variational bayes. *arXiv preprint arXiv:1312.6114* (2013).

[11] Diederik P Kingma and Max Welling. 2019. An introduction to variational autoencoders. CoRR abs/1906.02691 (2019). *arXiv preprint arXiv:1906.02691* (2019).

[12] Saïd Ladjal, Alasdair Newson, and Chi-Hieu Pham. 2019. A PCA-like autoencoder. *arXiv preprint arXiv:1904.01277* (2019).

[13] Robert C Merton. 1973. Theory of rational option pricing. *The Bell Journal of economics and management science* (1973), 141–183.

[14] Yifei Zhang. 2018. A better autoencoder for image: Convolutional autoencoder. In *ICONIP17-DCEC*. Available online: http://users. cecs. anu. edu. au/Tom. Gedem/conf/ABCs2018/paper/ABCs2018_paper_58. pdf (accessed on 23 March 2017).

[15] Yu Zheng, Yongxin Yang, and Bowei Chen. 2019. Gated deep neural networks for implied volatility surfaces. *arXiv preprint arXiv:1904.12837* (2019).
Figure 6: Z1 of MUVGn.DE and STOXX50