Background: Text messaging after sexually transmitted infection (STI)/HIV screening may be a cost-effective means of improving patient care, but it may not be appropriate for all patients. This study aimed to explore the profiles of patients who did not participate in a short message service (SMS) program after STI/HIV testing.

Methods: In October 2016, 396 patients in Paris were screened for STI/HIV and were invited to complete an anonymous self-administered questionnaire. Patients were offered the possibility of being notified by SMS after testing, 68% accepted (SMS group) and 32% did not (no-SMS group). Each of the 100 patients from the no-SMS group who had completed the questionnaire was matched with the next patient from the SMS group. Factors associated with nonparticipation in the SMS program were studied using conditional logistic regression models.

Results: Participation in the SMS program was not related to STI screening characteristics (screening results and seriousness of the diseases screened) but seemed to be related to patient characteristics. In multivariate analysis, compared with patients in the SMS group, those in the no-SMS program were more often older, socially less favored (born in Africa or Asia, no university diploma, living outside Paris). They also more often declined to answer sexual questions, which could reflect a need for privacy and discretion.

Conclusions: Although SMS after STI/HIV screening is well accepted, it does not suit all patients. Several contact options should be proposed to comply with patients’ preferences and to reduce the risk of nondelivery of STI screening results.

Text messaging is increasingly used to facilitate communication with patients in health care. It can be a tool for behavior change in disease prevention and management of chronic diseases. Interventions using mobile text messaging in health care have been shown to be effective in improving diabetes self-management, weight loss, physical activity, smoking cessation and medical adherence to antiretroviral therapy. Text messaging can also be used for delivery of medical test results, especially for HIV or other sexually transmitted infections (STIs). Notification by short message service (SMS) after STI screening may be a cost-effective means of improving patient care for STIs. Firstly, the texting notification protocol reduces delay between screening and treatment and decreases the proportion of untreated patients. For example, a study conducted in an inner London sexual health clinic found that texting decreased the time to treatment for genital Chlamydia trachomatis infection from 15.0 to 8.5 days. Secondly, as negative results are delivered by SMS, the texting protocol reduces the time medical staff spend on delivering negative results, freeing them to spend more time with patients with positive results. In a London clinic receiving 800 to 900 patients per month, it was estimated that the medical staff saved 46 hours a month by using text messaging notification.

Text messaging after STI/HIV testing is now recommended in European guidelines. Texted information should use simple vocabulary to minimize risk of misunderstanding and should be short and discreet to be accepted by patients. When results are negative, patients can be informed by a message such as “Your results are fine” or “All good” and they do not need to return to the center. Such a feedback protocol ensures that all patients with negative results are informed of their screening results. This is not the case when the patient has to come back to the center, as 7 to 22% of patients fail to return after STI screening. When patients have positive results, the SMS invites them to come back to the center with texts such as “Results now back” or “Hi (client’s name) I need 2c U. Can U contact me? Thanx (clinician’s first name)”. Despite benefits to patient and medical staff, and agreement with guidelines for European countries, communication technologies are still perceived as under-used by health professionals for delivering HIV test results across European regions. The few studies that have explored patients’ preferences showed an overall good acceptability of communicating test results by text messaging notification. For instance, 52% of patients in a US study and 69% of UK patients opted for texting. Most published studies on the practical acceptability of text messaging have been conducted for bacterial STIs (Chlamydia and gonorrhea). However, text messaging has also already been used to reduce loss to follow-up after HIV serology. Finally, a few studies have suggested that patients’ theoretical preferences may vary according to patient profile, such as age, gender, sexual orientation or economic status. It is now necessary to explore the influence of patients’ profile on the practical acceptability of text messaging for both bacterial and viral sexual infections.

The aim of this study was to explore patients’ profile associated with nonparticipation in a program of notification through text messaging after STI/HIV testing.
MATERIALS AND METHODS

Setting
The study was conducted in a free center for information, screening and diagnosis for HIV and STI (CeGIDD) located in a university hospital in Paris. The center offers screening for HIV, HBV, HCV, syphilis, chlamydia and gonococci. During pre-test counseling, the physician evaluates the patient’s risk-taking behavior and prescribes appropriate screening tests for each patient. Patients can remain anonymous or can give their name as they prefer. Whether the patient chooses to remain anonymous for screening or not, he or she is given an anonymity number. This number is used by the physician and nurse to call the patient in the waiting room. The consultation and blood testing take place in a closed room to ensure confidentiality. Since August 2016, patients are offered the possibility of being notified about their test results by SMS, rather than systematically coming to the center. In accordance with medical guidelines, if one of the screening tests performed is positive, results are not directly given in the text message. Patients are invited to return to the center to obtain their results and receive appropriate guidance. Participation in the SMS program is proposed and explained by the receptionist at the center, who gives the patients an information leaflet. During October 2016, 396 patients were screened for STIs including 360 who completed a short anonymous self-administered questionnaire in the waiting room (available in French and in English). Among the 396 screened patients, 271 participated in the SMS program (68%) and 122 (32%) did not.

Study Population
The study population included all patients who did not participate in the SMS program and who completed the anonymous self-administered questionnaire (n = 100). Although a standardized procedure aims to ensure that the same information is delivered to all patients regarding SMS notification, the time spent by the reception agent may vary depending on the influx of patients. Because this reception context is a potential confounding factor difficult to measure, a chronological matched case-control study design was chosen. Each of the 100 patients of the study population was matched with the next patient coming for STI screening who participated in the SMS program and had completed a questionnaire. The median time between the visits of a pair consisting of one case and one control patient was 30 minutes (Q1-Q3 [10–90]).

Data
Data on consultations and test results were routinely registered in the center database. This database included date of consultation, anonymity status (whether the patient decided to remain anonymous or not), participation in the SMS program, year of birth, gender, screening tests prescribed by the doctor and performed (HIV, HBV, HCV, syphilis, chlamydia and gonococci), test results, date of face-to-face delivery of results and/or date of SMS according to participation or nonparticipation in the SMS program and to the nature of the results (all negative or at least one positive result). As the various screening tests implied diseases which have very different levels of seriousness, a summarized single binary variable was created as an indicator of the seriousness of the diseases screened: screening for at least HIV, HBV and HCV vs other combinations.

The self-administered questionnaire included:
- sociodemographic data: gender, country of birth, place of residence, work status (employed, in training, no professional activity), educational level, health insurance coverage (full coverage for patients covered both by statutory health insurance and complementary voluntary health insurance, basic coverage for patients covered only by statutory health insurance, state assistance related to low income or illegal immigrant status, or no health insurance),
- data on sexual behavior: sexual orientation, number and type of sex partners (regular and/or occasional),
- data on the STI screening process: person who suggested screening (the patient himself/herself or someone else), previous screening for HIV.

Infections screened	Patients in the Study Population (n = 200)	Distribution in the No-SMS Group (n = 100), %	Distribution in the SMS Group (n = 100), %	P Stuart –Maxwell test
HIV				<0.01
Yes	191	99	92	
No	9	1	8	
HBV				<0.01
Yes	96	62	34	
No	104	38	66	
HCV				0.10
Yes	106	59	47	
No	94	41	53	
Syphilis				0.06
Yes	113	63	50	
No	87	37	50	
Chlamydia and/or gonococci				<0.01
Yes	125	49	76	
No	75	51	24	
All 6 infections screened				0.48
Yes	36	20	16	
No	164	80	84	
All 3 viral infections screened				<0.01
Yes	74	50	24	
No	126	50	76	
TABLE 2. Characteristics of Patients and Screening Tests According to Participation in the SMS Program among the Matched Case-Control Study Population (n = 200)

Variable	Patients in the Study Population (n = 200)	Distribution in the No-SMS Group (n = 100), %	Distribution in the SMS Group (n = 100), %	P Stuart-Maxwell Test
Gender				
Female	78	35	43	0.22
Male	122	65	57	
Age, y				
< 25	49	17	32	<0.01
25–34	77	31	46	
35–44	42	29	13	
≥ 45	32	23	9	
Social background				<0.01
University diploma when born in Europe or America	94	65	29	
No university diploma when born in Europe or America	41	22	19	
Born in Asia or Africa	65	13	52	
Place of residence				0.02
Paris	113	48	65	
Outside Paris	87	52	35	
Work status				<0.01
Employed/training	117	45	72	
No professional activity	83	55	28	
Health insurance coverage				<0.01
Full	100	37	63	
Basic	56	28	28	
State assistance or no coverage	44	35	9	
Sexual orientation				<0.01
Heterosexual	142	70	72	
Homo/bisexual	42	15	27	
Declined to answer	16	15	1	
Questions regarding sexual partner(s)				<0.01
Answered	176	79	97	
Declined to answer	24	21	3	
Previous HIV testing				0.09
No	36	13	23	
Yes	164	87	77	
Anonymous screening				0.07
Yes	183	88	95	
No	17	12	5	
Person who suggested screening				0.08
Patient himself/herself	158	74	84	
Other person	42	26	16	
Seriousness of diseases screened				<0.01
At least HIV + HBV + HCV	74	50	24	
Other combinations	126	50	76	
At least one positive screening result				0.80
No	181	90	91	
Yes	19	10	9	

Due to the small number of patients born in Asia and Africa who had an university diploma, country of birth and educational level were combined in a single variable with three categories: University diploma when born in Europe or America, No university diploma when born in Europe or America, and Born in Asia or Africa. Place of residence was used as a proxy for socio-economic status as the high rents in Paris compared with the suburbs lead to marked social stratification.

Statistical Analysis

Characteristics of patients and of their screening tests were compared according to participation in the SMS program (no-SMS group vs SMS group) using the Stuart-Maxwell test for matched-pair case-control data with multiple discrete levels of the exposure variables.25,26 Factors associated with nonparticipation in the texting program were studied using univariate and multivariate conditional logistic regression models. Multivariate analysis included factors selected by a backward stepwise selection method with a 0.2 significance level for removal from the model. Statistical analyses were performed using STATA/SE 13.1 (Stata Corporation, College Station, TX, USA).

RESULTS

The infections screened are shown according to participation in the SMS program in Table 1. Almost all patients were screened for HIV and more than half of patients were screened for other STIs. Patients were screened for a median of 4 infections (Q1-Q3 [3–5]).
The no-SMS group was compared with the SMS group (Table 2). In our study population, 9.5% of patients had at least one positive result after STI screening. This proportion was similar in both groups ($P = 0.80$). However, patients from the no-SMS group were more often screened for more serious STIs (at least HIV, HBV and HCV) than patients from the SMS group (50% vs 24%, $P < 0.01$). Except for gender, all other socio-demographic factors studied were associated with nonparticipation (Table 2): age, social background, place of residence, work status and health insurance coverage. Patients from the no-SMS group were less likely to respond to questions on their sexual orientation and sexual partner(s).

Results of univariate and multivariate conditional logistic regressions for nonparticipation in the SMS program (i.e. belonging to the no-SMS group) are presented in Table 3. The backward stepwise selection method retained seven variables in the multivariate model. In multivariate analysis, nonparticipation was higher among patients aged 35 years and over, those with a less favorable social background and those living outside Paris. Sexual orientation and non-response to questions regarding sexual partner(s) were associated with nonparticipation in the SMS program. Lastly, patients who had previously been tested for HIV were also less likely to participate in the SMS program.

DISCUSSION

In a free screening center in Paris, 68% (95% CI [64–73]) of patients screened for STIs or HIV agreed to participate in the...
SMS program after testing. This acceptance rate was similar to the 69% acceptance rate observed in a UK study conducted in a gen-
tourinary clinic7 and higher than that observed in the United
States (52%).7 In our matched case-control study, we found that
participation in the SMS program was not related to screening re-
results, as the proportion of positive results did not differ between
the no-SMS group and the SMS group. In multivariate analysis,
the seriousness of the disease screened (at least HIV and viral hepa-
titis) was also not associated with SMS program participation.
Participation was not related to STI screening characteristics and
appeared to be related only to patient characteristics, in particular
sociodemographic characteristics and sexual behavior.
The four characteristics describing the social profile of the
patient were significantly associated with nonparticipation in the
SMS program in univariate analysis (social background, place of
residence, work status, health insurance coverage). Consistently,
on all four variables, less favorable social conditions were more
frequent in the no-SMS group than in the SMS group. The step-
wise procedure led us to include only social background and place
of residence (living outside Paris being a strong indicator of socio-
economic status due to the lower housing rental costs). In this mul-
tivariate model, nonparticipation in the SMS program was higher
among patients born in Asia or Africa. In the United States,
non-white patients were less likely to participate in an SMS
program.7 In our study, patients with no university diploma also
had a higher probability of nonparticipation in the SMS pro-
gram. Socially less favored patients could be less comfortable
with SMS because it is a written form of communication that
they find more difficult to deal with than oral communication.
Similarly, a study conducted among women attending an STI
clinic in the United States showed that patients with a lower socio-
economic status were less likely to use text messaging.27 However,
a few studies exploring patient preferences, rather than actual
participation, concluded that socially less favored patients
were more likely to indicate greater preference for text messaging for re-
ceiving STI results than socially more favored patients.19,19 The
origin of this discrepancy between preferences and actual be-
havior concerning text messaging among socially less favored
patients needs to be investigated.
Nonparticipation in the SMS program also seemed linked
to sexual behavior. Patients declaring homosexual or bisexual rela-
tions were more likely to participate in the SMS program than pa-
tients declaring heterosexual relations. Moreover, patients who did
not respond to questions regarding their sexual partner(s) were less
likely to participate than patients who responded to these ques-
tions. Studies have shown that refusal to participate in sexual be-
avior research is associated with a less open attitude toward sex
and with feelings of guilt and shame about sex.28 Based on our re-
results, it can be postulated that patients who are less comfortable
with (their) sexuality could be less willing to receive their STI re-
results by SMS and could prefer face-to-face feedback. The lower
level of acceptability of SMS among these patients could reflect
concerns regarding confidentiality. This would also explain their
deciding to answer questions on sexual partner(s) in the litera-
ture, precisely to avoid the possibility that the results be shared
with another person.27
In our study, participation in the SMS program did not differ
according to the patient's gender, but did differ according to age.
Older patients had a significantly higher probability of nonpartici-
partion, with a mean age of 29 years in the SMS group and 36 years
in the no-SMS group. Among patients in the United States, texters
were also younger than non-texters.7 Following the same logic as
that discussed above for sexual behavior characteristics, this age ef-
fect could reflect a feeling of greater unease among older patients
during the STI screening process because they may tend to consider
that, in view of their age and prevailing social norms, they should be
engaged in a stable relationship that does not require STI screening.
Young people may feel more comfortable in discussing sexuality
and reporting information regarding sexual behavior.8,31,32 Moreover,
the relation that we observed between nonparticipation in the
SMS program and age may be confused by unmeasured factors,
such as marital status (this was not available in our study). Patients
older than 35 years may be more likely to be married than younger
ones. Therefore, this higher nonparticipation among older patients
could be related to a higher proportion of persons involved in extra-
marital relationships and more worried about privacy. Feeling less
comfortable with STI screening and privacy concerns may both be
factors that lead patients to choose to receive their results face-
to-face from a doctor rather than to be notified by SMS. Lastly,
although our population was relatively young (90% of patients in-
cluded in the study were younger than 47 years), less ease with use
of mobile technology among the older patients linked to a gener-
ation effect cannot be excluded, as text message use is associated
with younger age.27
Three limitations could have affected our results. Firstly, the
short self-administered questionnaire was available only in French
and in English. This was a possible barrier for non-French patients
who could have been excluded from the study population because
they were unable to complete the questionnaire. Secondly, to keep
the questionnaire short and easy to complete, only a proxy indica-
tor (place of residence) measured the standard of living. In the
Paris region where there is a marked difference in rents between
the city and its suburbs, place of residence is a very good indicator
of standard of living that can reliably be collected in a short self-
questionnaire. Complementary data on household income would
have been useful, but a much longer questionnaire would have
been needed for it to be efficiently collected. Lastly, the size of
the study population did not allow specific analysis of small sub-
populations. For example, it was not possible to explore as a single
analytical category patients born in Asia or Africa who had a uni-
versity diploma, or the groups of men who have sex with men
(MSM) or women who have sex with women (WSW).
In conclusion, the global acceptability of this text messag-
ing program after HIV and STI screening appeared quite good,
with 68% of patients screened agreeing to participate. However,
patient profile was an important factor in participation in this
SMS program. Nonparticipation was higher among patients living
in less favorable social conditions, patients older than 34 years and
patients who did not respond to questions regarding sexual behavior.
These factors may reflect a preference for oral communication and/or
less familiarity with use of such technology in a health con-
text. Patients may not be comfortable with the STI screening pro-
cess and may have privacy concerns. Text messaging is generally
acceptable and efficient for the transmission of negative results,
saving time for both healthcare professionals and patients. How-
ever, participation in such a program varies according to patient
profile. Moreover, SMS notification is not suitable for patients
who have difficulty in reading. Consequently, several options
should be proposed for delivering the results of STI screening to
increase the probability of patients being informed of their STI
test results.

REFERENCES
1. Cole-Lewis H, Kershaw T. Text messaging as a tool for behavior
change in disease prevention and management. Epidemiol Rev 2010;
32:56–69.
2. Hall AK, Cole-Lewis H, Bernhardt JM. Mobile text messaging for
health: a systematic review of reviews. Annu Rev Public Health
2015; 36:393–415.
3. Mitra S, Globerman J. Delivering HIV/STI test results over the phone and through text messaging. Rapid Responses Service - Ontario HIV Treatment Network 2016; 1–5.

4. Tripathi A, Duffus WA, Kissinger P, et al. Delivering laboratory results by text message and e-mail: a survey of factors associated with conceptual acceptability among STD clinic attendees. Telemed J E Health 2012; 18:500–506.

5. L’Engle KL, Mangone ER, Parcesepe AM, et al. Mobile Phone Interventions for Adolescent Sexual and Reproductive Health: A Systematic Review. Pediatrics 2016; 138:pii: e20160884.

6. Menon-Johansson AS, McNaught F, Mandalia S, et al. Texting de-identified medical information to patients increases the time to treatment for genital Chlamydia trachomatis infection. Sex Transm Infect 2006; 82:49–51.

7. Rodriguez-Hart C, Gray I, Kampert K, et al. Just text me! Texting sexually transmitted disease clients their test results in Florida, February 2012-January 2013. Sex Transm Dis 2015; 42:162–167.

8. Lim MS, Hocking JS, Hellard ME, et al. SMS STI: a review of the uses of mobile phone text messaging in sexual health. Int J STD AIDS 2008; 19:287–290.

9. Dhar J, Leguat C, Bonas S. Texting—a revolution in sexual health communication. Int J STD AIDS 2006; 17:375–377.

10. Bailey S, Scalley B, Gilles M. Text 2 treat - using SMS to recall clients for treatment. Int J STD AIDS 2014; 25:1038–1040.

11. Bell SA, Delpech V, Casabona J, et al. Delivery of HIV test results, post-test discussion and referral in healthcare settings: a review of guidance for European countries. HIV Med 2015; 16:620–627.

12. Picard O, Valin N, Fonquernie L, et al. Preferred options for receiving sexual health screening results: a population and patient survey. Int J STD AIDS 2008; 19:184–187.

13. Pahlavan G, Burdet C, Laouenan C, et al. Predictors of return rate for return for HIV test results in a free and anonymous screening centre. Int J STD AIDS 2015; 26:33–36.

14. Bell S, Casabona J, Tsereteli N, et al. HIV post-test practices: an online survey examining perceived delivery of HIV test results, post-test discussion and referral in healthcare settings across the WHO European Region. Sex Health 2016; 13:205–212.

15. Brughala R, Baife M, Conroy RM, et al. Young adults’ preferred options for receiving chlamydia screening test results: a cross-sectional survey of 6085 young adults. Int J STD AIDS 2011; 22:635–639.

16. Knussen C, Flowers P. Notification of syphilis test results by telephone: acceptability ratings in a community-based sample of Scottish gay men. Int J STD AIDS 2007; 18:827–828.

17. Brown L, Copas A, Stephenson J, et al. Preferred options for receiving sexual health screening results: a cross-sectional survey of 6085 young adults. Int J STD AIDS 2011; 22:635–639.