Title: Imaging the ultrafast coherent control of a skyrmion crystal

Authors: Phoebe Tengdin¹, Benoit Truc¹, Alexey Sapozhnik¹, Lingyao Kong², Nina del Ser⁷, Simone Gargiulo¹, Ivan Madan¹, Thomas Schönenberger³, Priya R. Baral⁴, Ping Che⁵, Arnaud Magrez⁴, Dirk Grundler⁵, Henrik M. Rønnow³, Thomas Lagrange¹, Jiadong Zang⁶,⁷, Achim Rosch⁷, Fabrizio Carbone*¹

Affiliations:
¹Institute of Physics, LUMES, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
²School of Physics and Optoelectronics Engineering Science, Anhui University, Hefei 230601, China
³Institute of Physics, LQM, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
⁴Institute of Physics, Crystal Growth Facility, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
⁵Institute of Materials (IMX), Laboratory of Nanoscale Magnetic Materials and Magnonics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
⁶Department of Physics and Astronomy, University of New Hampshire, Durham NH, USA
⁷Institute for Theoretical Physics, University of Cologne, Köln, Germany

Abstract: Exotic magnetic textures emerging from the subtle interplay between thermodynamic and topological fluctuation have attracted intense interest due to their potential applications in spintronic devices. Recent advances in electron microscopy have enabled the imaging of random photo-generated individual skyrmions. However, their deterministic and dynamical manipulation is hampered by the chaotic nature of such fluctuations and the intrinsically irreversible switching between different minima in the magnetic energy landscape. Here, we demonstrate a method to coherently control the rotation of a skyrmion crystal by discrete amounts at speeds which are more than six orders of magnitude faster than previously observed. By employing circularly polarized femtosecond laser pulses with an energy below the bandgap of the Mott insulator Cu₂OSeO₃, we excite a collective magnon mode via the inverse Faraday effect. This triggers coherent magnetic oscillations that directly control the rotation of a skyrmion crystal imaged by cryo-Lorentz Transmission Electron Microscopy. The manipulation of topological order via ultrafast laser pulses shown here can be used to engineer fast spin-based logical devices.