Properties of the tensor correlation in He isotopes

Takayuki Myo1, Satoru Sugimoto2, Kiyoshi Katō3, Hiroshi Toki1 and Kiyomi Ikeda4

1Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki 567-0047, Japan
2Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
3Division of Physics, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
4The Institute of Physical and Chemical Research (RIKEN), Wako 351-0198, Japan

E-mail: myo@rcnp.osaka-u.ac.jp

Abstract. We investigate the roles of the tensor correlation on the structures of 45He. For 4He, we take the high angular momentum states as much as possible with the $2p2h$ excitations of the shell model type method to describe the tensor correlation. Three specific configurations are found to be favored for the tensor correlation. This correlation is also important to describe the scattering phenomena of the 4He+n system including the higher partial waves consistently.

1. Introduction

The tensor force is an important ingredient in the nuclear force and plays a characteristic role in the nuclear structure. Actually, we know that the contribution of the tensor force to the binding energy in 4He is of the same magnitude as that of the central force[1]. Although there is real space analyses of 4He with realistic interaction, it is important to understand the effect of the tensor force on the nuclear structure in a physically transparent manner by describing explicitly the tensor correlation in the model space.

Recently, Sugimoto, Toki and Ikeda have brought a progress in description of the tensor correlation in the model space[2]. Considering the pion as an origin of the tensor force, they showed that the tensor correlation is described as what causes the charge-parity mixing of the single-nucleon orbit mediated by the pion-field. They applied this charge-parity-projected Hartree-Fock method to 4He and succeeded in describing the tensor correlation.

The basic purpose of this study is to understand the essential effects of the tensor correlation on the nuclear structure by treating the tensor force explicitly. In this report, we investigate the structure of 4He in a shell model type method[3], referring the results of Ref. [2]. We furthermore discuss the effect of the tensor correlation on the 4He+n scattering phenomena.

2. Tensor correlation in 4He

For 4He, we extend the shell model type wave function from the conventional $(0s)^4$ configuration into the configuration mixing of $(0s)^4+(0s)^2(0p)^2+\cdots$ within the $2p2h$ excitations to describe the tensor correlation, that is, the $2p2h$ configurations can be coupled with the $(0s)^4$ one by the tensor force. We, furthermore, express the radial part of the particle states by superposition of the Gaussian basis functions beyond the harmonic oscillator ones. This is important to describe the spatial shrinkage of the particle orbits caused by the tensor force[2, 3, 4]. The hole state ($0s$ orbit) has a simple harmonic oscillator basis with length parameter b_{0s}.
Table 1. Properties of the obtained 4He ground state.

Property	Value
Energy	-28.0 MeV
$\langle V_{\text{tensor}} \rangle$	-51.0 MeV
Matter radius	1.48 fm
D-state probability	9.6%

$(0s_{1/2})^4$ $10(0p_{1/2})^0_{10}$ 85.0%

$(0s_{1/2})^0_{10}(0p_{1/2})^0_{10}$ 5.0%

$(0s_{1/2})^0_{10}(1s_{1/2})^0(0d_{3/2})^0_{10}$ 2.4%

$(0s_{1/2})^0_{10}(0p_{3/2})^0(0f_{5/2})^0_{10}$ 2.0%

Figure 1. 4He-n scattering phase shifts in comparison with the experiments[6].

We use Akaishi potential constructed from the G-matrix theory using the realistic AV8' interaction [4], and adjust the central part in order to fit the experimental matter radius and binding energy of the 4He in this model, but retaining the tensor and the LS parts.

We take the orbital angular momentum for particle states up to six (i-orbit) and adopt four Gaussian bases with length parameters 0.6, 0.8, 1.0, 1.4 fm for every particle states. These choices are sufficient to achieve the convergences of the solutions, while the momentum components are allowed in the G-matrix method. The energy minimum of 4He is obtained at $b_0 = 1.37$ fm. The properties of the 4He ground states are listed in Table 1, where $\langle V_{\text{tensor}} \rangle$ shows a large contribution. The results mean that our model can describe the tensor correlation. Among the $2p2h$ components, $(0s_{1/2})^2_{JT}(0p_{1/2})^2_{JT}$ with $(J, T) = (1, 0)$ for spin and isospin, is strongly mixed, which represents the pion-like 0^- coupling between the $0s_{1/2}$ and $0p_{1/2}$ orbits[2]. Remaining two $2p2h$ components come from the property of the tensor operator S_{12}, which changes relative orbital angular momentum and intrinsic spin of two-nucleon system both by two.

3. Tensor correlation in the 4He+n scattering

We investigate the tensor correlation for the 4He-n scattering phenomena. Since the obtained 4He has a large $0p_{1/2}$ component from the tensor correlation, this feature brings the Pauli blocking for the 5He$(1/2^-)$ state and the splitting of $1/2^- - 3/2^-$ can arise. To show this, we solve the coupled problem of the "tensor-optimized 4He cluster" $+n$ system[3] where we modify a microscopic 4He-n interaction, KKNN[5] consisting of central and LS terms. We construct a new 4He-n interaction with reducing the LS term by 48% from that of KKNN, shown in Fig. 1. We also investigate the d wave properties in comparison with the KKNN’s (no tensor correlation) results. Our results considering the tensor correlation reproduces the experimental behavior[6], which means that the 4He+n scattering is naturally described with the tensor correlation.

[1] H. Kamada et al., Phys. Rev. C 64(2001)044001.
[2] S. Sugimoto, K. Ikeda, H. Toki, Nucl. Phys. A 740(2004)77.
[3] T. Myo, K. Kato and K. Ikeda, Prog. Theor. Phys. 113(2005)763.
[4] Y. Akaishi, Nucl. Phys. A 738(2004)80.
[5] H. Kanada, T. Kaneko, S. Nagata and M. Nomoto, Prog. Theor. Phys. 61(1979)1327.
[6] Th. Stammbach, and R. L.Walter, Nucl. Phys. A 180(1972)225.