An SO(10) grand unification model with S4 flavor symmetry

Yi Cai and Hai-Bo Yu

Department of Physics, University of Maryland, College Park, MD 20742, USA

(Dated: September 14, 2021)

Abstract

We present a supersymmetric grand unification model based on SO(10) group with S4 flavor symmetry. In this model, the fermion masses are from Yukawa couplings involving 10 and 126 Higgs multiplets and the flavor structures of mass matrices of both quarks and leptons are determined by spontaneously broken $S4$. This model fits all of the masses and mixing angles of the quarks and leptons. For the most general CP-violation scenario, this model gives $\sin \theta_{13}$ a wide range of values from zero to the current bound with the most probable values $0.02 - 0.09$. With certain assumptions where leptonic phases have same CP-violation source as CKM phase, one gets a narrower range $0.03 - 0.09$ for $\sin \theta_{13}$ with the most probable values $0.04 - 0.08$. This model gives leptonic Dirac CP phase the most probable values $2 - 4$ radians in the general CP-violation case.
I. INTRODUCTION

The discovery of no-zero neutrino masses and lepton mixings have raised hope to understand the mystery of flavor structures of quarks and leptons in a unified way\[1\]. Although many similarities between leptons and quarks make such unification plausible, the mixing pattern in the lepton sector is very different from that in the quark sector. However, there are now many grand unification models based on $SO(10)$ gauge group that can give small quark mixings and large lepton mixings along with all their masses with few assumptions\[1\].

Another interesting possibility is that there may exist horizontal underlying flavor symmetry. This is favored by leptonic mixing pattern with near maximal atmospheric mixing angle and the vanishing θ_{13}. A permutation symmetry between μ neutrino and τ neutrino in the flavor basis has been proposed in recent years\[2\][3]. Even though there is no apparent evidence of such symmetry in charged lepton and quark sector, it has been shown that the unified description of quarks and leptons with this symmetry is possible\[4\]. Applications of higher permutation group S_3, S_4 and A_4 to flavor symmetry also have been discussed in the literature\[5\][6][7]. Other discrete groups such as dihedral group D_4 and D_5 have been studied\[8\][9].

In this paper, we focus on the group $S_4 \times SO(10)$. S_4 has certain good features to be a flavor symmetry. First, it has three dimensional irreducible representation to accommodate the three generations of fermions naturally. Note that this is different from S_3 because the largest irreducible representation of S_3 has dimension two and therefore we have to treat one family of fermions different from other two. Second, it can be embedded into continuous group $SU(3)$ or $SO(3)$\[10\]. As we will show below, S_4 symmetry also gives degenerate spectrum of the right-handed neutrinos naturally, which has some interesting consequences for the neutrino phenomenology. For example, in this case, one can use the resonant enhancement of leptogenesis for (quasi-)degenerate right-handed neutrinos to generate enough baryon asymmetry\[11\]. With the degenerate heavy right-handed neutrinos, the low energy neutrino flavor structure is determined by Dirac mass matrix at the seesaw scale completely, which makes it easier to reconstruct high energy physics from low energy observables. Some work has been done in this direction. In Ref.\[12\], Lee and Mohapatra constructed a $S_4 \times SO(10)$ model, which naturally gives quasi-degenerate spectrum of neutrinos masses with small solar angle, which already has been ruled out by large mixing angle MSW
solution to the solar neutrino problem. In principle radioactive corrections may amplify the solar angle and keep the other two angles unchanged, but generally this needs extreme fine-tuning of parameters at the seesaw scale to realize it. On the other hand, in a recent paper by Hagedorn, Linder, and Mohapatra, a low energy scale non-supersymmetric model is presented based on S_4 flavor symmetry, which can accommodate current neutrino data. Our goal is to see if we can embed the model of Ref. [10] into a SUSY GUT framework without running into the small solar angle problem of Ref. [12]. In this letter, we address this question and find that we can build a realistic model based on $S_4 \times SO(10)$ with the proper choice of the parameter space.

In this model, all the quarks and leptons of one generation are unified into a 16 spinor representation of $SO(10)$ and the Yukawa coupling structures of three generations are determined by S_4. We use 10 and 126 representations of $SO(10)$ for Yukawa couplings to account for all the fermions masses and mixing angles. Even though in the most general CP-violation case this model has 18 complex parameters, it is not obvious whether it can accommodate all observed masses and mixing angles because of constraints from S_4 flavor symmetry and the correlations between quarks and leptons indicated by $SO(10)$ unification. For instance, with the particle assignment of S_4 in this model, the heavy right-handed neutrino mass matrix is proportional to an identity matrix, and the Dirac mass matrix of neutrino determines the mixing among light neutrinos completely. The general mechanism to generate the lepton sector mixing independently from the quark sector by right-handed neutrinos does not work in this model. On the other hand, one may argue that since the total number of parameters is much larger than that of observables, this model may lose predicability even if it can fit all the observables. We find this not to be the case. It turns out that half of complex phases can be rotated away by choices of basis and redefinitions of the right-handed fields of charged leptons and down-type quarks. For the most general CP-violation case, this model gives wide range of $\sin \theta_{13}$ from zero to current bound with the most probable values $0.02 - 0.09$. The most probable values of leptonic CP phase are $2 - 4$ radians. With certain assumptions where the leptonic phases have same CP-violation source as CKM phase, one gets narrower predicted range $0.03 - 0.09$ for $\sin \theta_{13}$ with the most probable values $0.04 - 0.08$.

Some issues about Higgs sector still need to be addressed. As we have six 10s and three 126s, without analyzing the $S_4 \times SO(10)$ invariant Higgs potential, whether or not we can
get the desired vacuum configuration still remains an open question. We do not concern with
doublet-doublet splitting and doublet-triplet splitting problems in this paper. With such
rich Higgs fields, we assume they can be realized in some way. And another fact we should be
careful is that generally the discrete flavor symmetry can enhance the accidental global sym-
metry of Higgs potential and lead to unwanted massless Nambu-Goldstone bosons. There
are ways found in the literature to avoid it. One can introduce gauge singlet Higgs fields
whose couplings are invariant under discrete symmetry but break the global symmetry[15],
or introduce soft terms which break discrete symmetry and global symmetry[16].

The paper is organized as follows: in Section 2, we present an $SO(10)$ model with $S4$
flavor symmetry and present the mass matrices of quarks and leptons; in Section 3, we
present a detailed numerical analysis including CP violation in quark and lepton sector. We
end with conclusions and remarks in Section 4.

II. SUSY SO(10) MODEL WITH S4 FLAVOR SYMMETRY

The group $S4$ is the permutation group of the four distinct objects, which has 24 distinct
elements. It has five conjugate classes and contains five irreducible representations $1,1',2,3$
and $3'$. Our assignment of fermions and Higgs multiplets to $S4 \times SO(10)$ are shown in Table

Fermions	Higgs Bosons
$\Psi_{a,a=1,2,3}$	Φ
Φ_{0}	$\Phi_{1,2}$
$\Phi_{3,4,5}$	

$\{3'\} \times \{16\}$	$\{1\} \times \{210\}$	$\{1\} \times \{126\}$
$\{2\} \times \{126\}$	$\{1\} \times \{10\}$	$\{2\} \times \{10\}$
$\{3\} \times \{10\}$		

TABLE I: Transformation property of fermions and Higgs multiplets under $S4 \times SO(10)$

In this model, we assign three generations of 16 to $3'$ irreducible representation of $S4$,
because $3'$ can be identified with the fundamental representation of continuous group $SO(3)$
or $SU(3)[10,25]$. In Higgs sector, because of $3' \times 3' = 1 + 1 + 3 + 3'$, to make Yukawa coupling
$S4$ invariant, Higgs fields cannot belong to $1'$. 1 is necessary for phenomenological reason,
otherwise all of the mass matrices would be traceless. To get symmetric mass matrices which
is required by group structure of $16 \cdot 16 \cdot 10$ or $16 \cdot 16 \cdot 126$, Higgs should not belong to $3'$.
We include both 2 and 3 to get realistic mass and mixing of quark and lepton. One might
think six 10 Higgs fields transforming as $1 + 2 + 3$ under $S4$ are enough. But there are two reasons why we also need $\mathbf{T26}$, one is to give right-handed neutrinos heavy masses and the other is to fix the bad mass relation between quark sector and lepton sector indicated by $16 \cdot 16 \cdot 10$. In this sense, our choice of Higgs fields is minimal.

The breaking of $SO(10)$ to Standard Model (SM) can be realized in many ways. In this model, we choose 210 Higgs field, which is 1 under $S4$ transformation, to break $SO(10)$ to $SU(2)_L \times SU(2)_R \times SU(4)_C$ (G_{224}) while keep the $S4$ symmetry. We choose $(1, 3, 10)$ components of only $\overline{\Delta}_0$ (the numbers denote representation under the G_{224}) to get vev v_R that breaks G_{224} down to the SM and gives heavy masses to right-handed neutrinos. With this breaking pattern, $S4$ symmetry is kept down to the electroweak scale.

To see what this model implies for fermion masses, let us first explain how the MSSM doublets emerge. Besides the $SU(2)_L$ Higgs doublets from submultiplets $(2, 2, 1)$ and $(2, 2, 15)$ contained in 10 and $\mathbf{T26}$ respectively, we also have Higgs doublets contained in $(2, 2, 10) \oplus (2, 2, \overline{10})$ from 210. Furthermore, to obtain anomaly-free theory, we need to introduce three 126, which we denote by Δ, that also contain Higgs doublets. Altogether, we have fourteen pairs of Higgs doublets: $\phi_u = (H_{iu}, \overline{\Delta}_{ju}, \Delta_{ju}, \Phi_{u1}, \Phi_{u2})$, $\phi_d = (H_{id}, \overline{\Delta}_{jd}, \Delta_{jd}, \Phi_{d1}, \Phi_{d2})$, where $i = 0, ..., 5$ and $j = 0, ..., 2$. As noted, six pairs from Hs, three pairs from $\overline{\Delta}s$, three pairs from Δs and two pairs from Φ. We can write Higgs doublet mass matrix as $\phi_u M_H \phi_d^T$. M_H can be diagonalized by $X M_H Y^T$, which X and Y are unitarity matrices acting on ϕ_u and ϕ_d respectively. At the GUT scale, by some doublet-triplet and doublet-doublet splitting mechanisms, we assume only one pair of linear combinations of $X_{\alpha\beta}^* \phi_{u\beta}$ and $Y_{\alpha\beta}^* \phi_{d\beta}$, say $X_{1\beta}^* \phi_{u\beta}$ and $Y_{1\beta}^* \phi_{d\beta}$, has masses of order of the weak scale and all others are kept super heavy near GUT scale, which generally can be realized by one fine-tuning of the parameters in the Higgs mass matrix. The MSSM Higgs doublets are given by this lightest pair: $H_u^{MSSM} = X_{1\beta}^* \phi_{u\beta}$ and $H_d^{MSSM} = Y_{1\beta}^* \phi_{d\beta}$. Since we focus on the structures of Yukawa couplings, we do not discuss the details of the splitting mechanisms that lead to the above results.

With Higgs fields and fermions listed in Table II we can write down $S4 \times SO(10)$ invariant Yukawa coupling as

$$W_{Yukawa} = (\Psi_1 \Psi_1 + \Psi_2 \Psi_2 + \Psi_3 \Psi_3)(h_0 H_0 + f_0 \Delta_0)$$
\[
+ \frac{1}{\sqrt{2}}(\Psi_2 \Psi_2 - \Psi_3 \Psi_3)(h_1 H_1 + f_2 \bar{\Delta}_1) + \frac{1}{\sqrt{6}}(-2\Psi_1 \Psi_1 + \Psi_2 \Psi_2 + \Psi_3 \Psi_3)(h_1 H_2 + f_2 \bar{\Delta}_2) \\
+ h_3[(\Psi_2 \Psi_3 + \Psi_3 \Psi_2)H_3 + (\Psi_1 \Psi_3 + \Psi_3 \Psi_1)H_4 + (\Psi_1 \Psi_2 + \Psi_2 \Psi_1)H_5]. \tag{1}
\]

After electroweak symmetry breaking, \((2, 2, 1)\) of \(H_i (i = 0, \ldots, 5)\) component acquires vevs (denoted by \(\langle H_i \rangle^u\) and \(\langle H_i \rangle^d\)). And \((2, 2, 15)\) sub-multiplet of \(\bar{\Delta}_j (j = 0, \ldots, 2)\) also get induced vevs. Their vevs are denoted by \(\langle \bar{\Delta}_j \rangle^u\) and \(\langle \bar{\Delta}_j \rangle^d (j = 0, 1, 2)\).

The mass matrices for the quarks and the leptons have following sum rules:

\[
M_u = M_u^{(10)} + M_u^{(126)}, \tag{2}
\]
\[
M_d = M_d^{(10)} + M_d^{(126)}, \tag{3}
\]
\[
M_\nu^D = M_\nu^{(10)} - 3M_u^{(126)}, \tag{4}
\]
\[
M_l = M_d^{(10)} - 3M_d^{(126)}, \tag{5}
\]
\[
M_\nu = -M_\nu^D M_\nu^D / f_0 v_R, \tag{6}
\]

where

\[
M_u^{(10)} = \begin{bmatrix}
a_0 - 2a_2 & a_5 & a_4 \\
a_5 & a_0 + a_1 + a_2 & a_3 \\
a_4 & a_3 & a_0 - a_1 + a_2
\end{bmatrix}, \tag{7}
\]
\[
M_d^{(10)} = \begin{bmatrix}
b_0 - 2b_2 & b_5 & b_4 \\
b_5 & b_0 + b_1 + b_2 & b_3 \\
b_4 & b_3 & b_0 - b_1 + b_2
\end{bmatrix}, \tag{8}
\]
\[
M_u^{(126)} = \begin{bmatrix}
d_0 - 2d_2 & 0 & 0 \\
0 & d_0 + d_1 + d_2 & 0 \\
0 & 0 & d_0 - d_1 + d_2
\end{bmatrix}, \tag{9}
\]
\[
M_d^{(126)} = \begin{bmatrix}
e_0 - 2e_2 & 0 & 0 \\
0 & e_0 + e_1 + e_2 & 0 \\
0 & 0 & e_0 - e_1 + e_2
\end{bmatrix}, \tag{10}
\]

and where \(a_i\) and \(b_i\) are products of the type \(h\langle H_i \rangle^u\) and \(h\langle H_i \rangle^d\) respectively. Similarly, we use \(d_j\) and \(e_j\) to denote products of the type \(f\langle \bar{\Delta}_j \rangle^u\) and \(f\langle \bar{\Delta}_j \rangle^d\) respectively. The MSSM vevs are given by \(v_u = X_{1\beta}^* \langle \phi_{u\beta} \rangle\) and \(v_d = Y_{1\beta}^\dagger \langle \phi_{d\beta} \rangle\), where we use \(v_u\) and \(v_d\) to denote vevs of \(H_u^{\text{MSSM}}\) and \(H_d^{\text{MSSM}}\) respectively. The Yukawa couplings and vevs of Higgs fields in general are complex, and there are 18 complex parameters. We choose a basis in which the down-quark mass matrix is diagonalized and set \(b_3 = 0, b_4 = 0, \) and \(b_5 = 0\). Note this is our
main difference with Ref. [12], where they choose a basis in which up-quark mass matrix is diagonal and set off-diagonal entries of M_u to zeros, which leads to small solar mixing angle. In the basis we choose, the charged lepton mass matrix is also diagonal. Therefore, the phases of $b_0, b_1, b_2, e_0, e_1,$ and e_2 can be rotated away by redefining 3 right-handed down-type quarks fields and three right-handed charged leptons. We treat $b_0, b_1, b_2, e_0, e_1,$ and e_2 as real parameters in later analysis, and they can be determined by the masses of down-quark and charged lepton completely.

Because the mass matrix of down-quark sector is diagonalized and M_u is symmetric, one can have

$$M_u = V_{CKM}^T \hat{M}_u V_{CKM},$$

(11)

where $\hat{M}_u \equiv \text{diag}(m_u, m_c, m_b)$. By fitting mass matrix of up-quark in Eq. (11), parameters a_3, a_4, a_5 can be determined. In addition, we get three conditions among the parameters $a_0, a_1, a_2, d_0, d_1,$ and d_2. Therefore, there are three complex parameters left to be determined by masses and mixings of neutrino sector. Without loss of generality, we choose $d_0, d_1,$ and d_2 to be determined by fitting of neutrino sector. And Dirac neutrino mass matrix can be written conveniently as

$$M_\nu^D = V_{CKM}^T \hat{M}_u V_{CKM} - 4 m_t \begin{bmatrix} x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z \end{bmatrix}$$

(12)

with

$$x \equiv \frac{1}{m_t}(d_0 - 2 d_2), y \equiv \frac{1}{m_t}(d_0 + d_1 + d_2), z \equiv \frac{1}{m_t}(d_0 - d_1 + d_2).$$

(13)

Because we know nothing about leptonic phases, in principle, there is no constraint on the phases of $d_0, d_1,$ and d_2.

To see how this model can give a large atmospheric mixing angle, we give an approximate analysis first. Using first order Wolfenstein parameterization [17] for the quark mixing, $V_{CKM}^T \hat{M}_u V_{CKM}$ can be written as

$$m_t \begin{bmatrix} \lambda^6 + A^2 \lambda^6(1 - i \eta - \rho) & \cdots & \\ -\lambda^5 - A^2 \lambda^5(1 - i \eta - \rho) & \lambda^4 + A^2 \lambda^4 & \cdots \\ A \lambda^3(1 - i \eta - \rho) & -A \lambda^2 & 1 \end{bmatrix}$$

(14)
where we use $m_c/m_t \simeq \lambda^4$ and $m_u/m_t \simeq \lambda^8$. Therefore, to get near maximal mixing of θ_{23}, y and z should satisfy

$$\lambda^4(1 + A) - 4y \simeq 1 - 4z.$$

(15)

III. DETAILED NUMERICAL ANALYSIS

To see if the model is phenomenologically acceptable, we first fit the masses of the charged leptons and down-type quarks using the mass values of leptons and quarks at the GUT scale with $\tan \beta = 10^{27}$ given in Ref. [18]:

input observable	tan$\beta = 10^{27}$
m_u (MeV)	$0.7238^{+0.1365}_{-0.1467}$
m_c (MeV)	$210.3273^{+19.0036}_{-21.2264}$
m_t (GeV)	$82.4333^{+30.2676}_{-14.7686}$
m_d (MeV)	$1.5036^{+0.4235}_{-0.2394}$
m_s (MeV)	$29.9454^{+4.3001}_{-4.5444}$
m_b (GeV)	$1.0636^{+0.1414}_{-0.0865}$
m_e (MeV)	$0.3585^{+0.0003}_{-0.0003}$
m_μ (MeV)	$75.6715^{+0.0578}_{-0.0501}$
m_τ (GeV)	$1.2922^{+0.0013}_{-0.0012}$

We use standard parametrization form for the V_{CKM} and take the following values at the scale M_z: $\sin \theta_{q12} = 0.2272, \sin \theta_{q13} = 0.00382, \sin \theta_{q23} = 0.04178$ and the CP phase $\delta_q = \frac{\pi}{3}$, where we use subscript q to distinguish them from the lepton section mixing angles. And we use RGE running factor $\eta = 0.8853$. At the GUT scale, we have the V_{CKM}

$$
\begin{bmatrix}
0.973841 & 0.227198 & 0.00169092 - 0.00292876i \\
-0.227079 - 0.000134603i & 0.97298 - 0.000031403i & 0.0369876 \\
0.00675837 - 0.00284968i & -0.0364044 - 0.000664834i & 0.99912
\end{bmatrix}
$$

(16)
A. Quark and charged lepton sector

Using the central values of charged lepton and down-quark masses at GUT scale, \(b_0, b_1, b_2, e_0, e_1 \) and \(e_2 \) are solved from Eq.\((5)\) and Eq.\((3)\) (in Mev)

\[
b_0 = 387.756, \quad b_1 = -539.649, \quad b_2 = 193.27, \quad e_0 = -22.7734, \quad e_1 = 22.8717, \quad e_2 = -11.5298.
\]

(17)

For up-quark sector, by solving Eq.\((11)\) and Eq.\((2)\), we get values of \(a_3, a_4, a_5 \) and three conditions for \(a_0, a_1, a_2, d_0, d_1, d_2 \) (in Mev):

\[
a_3 = -2990.72 - i54.757, \quad a_4 = 554.859 - i234.705, \quad a_5 = -66.748 + i8.155,
\]

\[
a_0 - 2a_2 + d_0 - 2d_2 = 14.628 - i3.162, \quad a_0 + a_1 + a_2 + d_0 + d_1 + d_2 = 308.363 + i3.977,
\]

\[
a_0 - a_1 + a_2 + d_0 - d_1 + d_2 = 82288.5 - i7.169 \times 10^{-6}.
\]

(18)

We can see that accommodation of hierarchical structure of fermions masses is realized by adjusting the parameters, \(S_4 \) flavor symmetry itself does not provide hints on it\([28]\).

B. Neutrino sector

In this model, the light neutrino mass matrix is given by type-I seesaw\([21]\). The mass matrix of right-handed neutrinos is proportional to an identity matrix due to the \(S_4 \) quantum number assignment, therefore the Dirac mass matrix \(M^D \) determines the lepton sector mixing because the charged lepton mass matrix is diagonalized.

\[
M_\nu = -\frac{1}{f_0 v_R} M^D_{\nu} M^D_{\nu}^T.
\]

(19)

This model gives hierarchical neutrino mass spectrum naturally. One can choose \(f_0 \sim 1 \) and \(v_R \sim 10^{14} \text{GeV} \), so the mass of the heaviest light neutrino is around \(10^{-2} - 10^{-1} \text{eV} \).

The fit of neutrino sector are found by scanning whole parameter space spanned by \(x, y \) and \(z \) under the constrain of the current experiment requirements.

We choose the standard parametrization for the lepton sector mixing:

\[
U = \begin{bmatrix}
c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\
-c_{23}s_{12} - s_{23}s_{13}c_{12}e^{i\delta} & c_{23}c_{12} - s_{23}s_{13}s_{12}e^{i\delta} & s_{23}c_{13} \\
s_{23}s_{12} - c_{23}s_{13}c_{12}e^{i\delta} & -s_{23}c_{12} - c_{23}s_{13}s_{12}e^{i\delta} & c_{23}c_{13}
\end{bmatrix} \cdot \text{diag}(e^{-i\varphi_1/2}, e^{-i\varphi_2/2}, 1)
\]

(20)
with $c_{ij} \equiv \cos \theta_{ij}$ and $s_{ij} \equiv \sin \theta_{ij}$. δ is the Dirac phase and φ_1, φ_2 are Majorana phases of neutrinos. These phases have range from 0 to 2π.

We take 3σ experiment bound $^{[23]}$:

$$0.24 \leq \sin^2 \theta_{12} \leq 0.40$$
$$0.34 \leq \sin^2 \theta_{23} \leq 0.68$$
$$\sin^2 \theta_{13} \leq 0.040$$
$$0.024 \leq \Delta m_{OD}^2 / \Delta m_{ATM}^2 \leq 0.040.$$ \hspace{1cm} (21)

As mentioned earlier, x, y, and z generally are complex numbers. For the most general CP-violation case, we treat the phases of x, y, and z as random input numbers with range $0 - 2\pi$. The results are shown in Fig.(1). In this case, $\sin \theta_{13}$ has wide range from zero to the current bound with the most probable values $0.02 - 0.09$ as shown in Fig.1(a). Fig.1(b) shows the correlation between $\sin \theta_{23}$ and $\sin \theta_{13}$. Fig.1(c) is the value distribution of Dirac CP-violation phase in the lepton sector. The allowed range of δ is quite large from 0 to 2π radians with the most probable values $2 - 4$ radians. Two Majorana phases φ_1 and φ_2 have wide range from 0 to 2π as shown in Fig.1(d), which is expected.

Now we consider an interesting special case where x, y, and z are all real. Note the complexity of $f_0 \nu_R$ only contributes an overall phase to the light neutrino mass matrix, which can be rotated away. Therefore, in this case leptonic CP-violation phases have same source as CKM phase.

The allowed range $0.03 - 0.09$ for $\sin \theta_{13}$ is narrower compared to the general case, and the most probable range is $0.04 - 0.08$ as shown in Fig.2(a). Unlike Fig.1(b), Fig.2(b) exhibits an interesting correlation between $\sin \theta_{23}$ and $\sin \theta_{13}$. If we take the central value of $\theta_{23} = \frac{\pi}{4}$, we can get two much narrower ranges for $\sin \theta_{13}$. One is $0.055 - 0.06$, and the other is $0.070 - 0.075$. The values of δ are $2.8 - 3$ radians, and $6.0 - 6.1$ with small possibility as shown in Fig.2(c). Fig.2(d) shows the allowed values of two Majorana phases. Note this parameter region is just left-up corner of Fig.1(d) for the most general case. The most probable value ranges for φ_1 and φ_2 are $0.02 - 0.15$ radians and $6.19 - 6.25$ radians respectively.

For illustration, we give a typical example of fit for this case. We take

$$x = 0.0139726, \ y = 0.025914, \ z = 0.273173$$ \hspace{1cm} (22)
FIG. 1: Numerical analysis for the most general case where $x, y,$ and z are complex consistent with current experimental bound Eq. (21). (a) Value distribution of $\sin \theta_{13}$. (b) Correlation between $\sin \theta_{23}$ and $\sin \theta_{13}$. (c) Value distribution of leptonic Dirac CP-violation phase. (d) Scatter plot of two Majorana CP-violation phases ϕ_1 and ϕ_2.

and solve $d_0, d_1, d_2, a_0, a_1, a_2$ from Eq. (13) and Eq. (18) (in Mev)

$$d_0 = 8602.18, \quad d_1 = -10191.2, \quad d_2 = 3725.19, \quad a_0 = 18935 + i0.271681,$$

$$a_1 = -30798.9 + i1.9887, \quad a_2 = 10036.1 + i1.71701. \quad (23)$$

With these parameters values as input, one then obtains for the neutrino parameters

$$\sin \theta_{12} \simeq 0.53, \quad \sin \theta_{23} \simeq 0.73$$

$$\sin \theta_{13} \simeq 0.054, \quad \Delta m^2_{31}/\Delta m^2_{ATM} \simeq 0.031. \quad (24)$$

And light neutrino masses are $m_1 = 0.00774\text{eV}$, $m_2 = 0.0118\text{eV}$, $m_3 = 0.051\text{eV}$, which are normalized by $\Delta m^2_{31} = 2.6 \times 10^{-3}\text{eV}$. The Dirac phase appearing in MNS matrix is $\delta = 2.84$ radians. And two Majorana phases are (in radians): $\varphi_1 = 0.093$, $\varphi_2 = 6.21$. The Jarlskog invariant has the value $J_{\text{cp}} = 1.80 \times 10^{-3}$. One can evaluate the effective neutrino mass
FIG. 2: Numerical analysis for case where x, y, z are real consistent with current experimental bound Eq. (21). (a) Value distribution of $\sin \theta_{13}$. (b) Correlation between $\sin \theta_{23}$ and $\sin \theta_{13}$. (c) Value distribution of leptonic Dirac CP-violation phase. (d) Scatter plot of two Majorana CP-violation phases φ_1 and φ_2.

for the neutrinoless double beta decays process to be

$$|\sum U_{ei}^2 m_{\nu_i}| \simeq 0.009 \text{ eV}.$$

IV. SUMMARY AND CONCLUSION

In summary, we build a supersymmetric $SO(10)$ model with $S4$ flavor symmetry. The three dimensional irreducible representation of $S4$ group unify three generations of fermions horizontally. 10 and 126 Higgs fields have been used to give the Yukawa couplings and generate all the masses and mixings of quarks and leptons. This model accommodates all observables including CKM CP-Violation phase. We studied the prediction of this model in the neutrino sector. For the most general CP-violation case, this model gives the most probable values $0.02 - 0.09$ for $\sin \theta_{13}$. In a special case where leptonic phases have same
CP-violation source as CKM phase, one gets narrower range \(0.03 - 0.09\) for \(\sin \theta_{13}\) with the most probable values \(0.04 - 0.08\).

In the model we present here, the masses of light neutrinos purely come from the type-I seesaw. Generally, one also can include the contribution from type-II seesaw, which can generate a scenario with degenerate neutrino mass spectrum naturally because of the \(S_4\) symmetry if the type-II seesaw dominates the contribution to the light neutrinos masses. It is interesting to study the mixing pattern and its radioactive stability. We leave this possibility for future work.

V. ACKNOWLEDGMENTS

The authors thank R.N. Mohapatra for suggesting the problem and useful discussion, K. Hsieh, J.H. Kang and P. Rastogi for comments. H.B.Y. specially thanks C. Hagedorn for helpful comments on the discrete symmetry. This work is supported by the National Science Foundation Grant No. PHY-0354401.

[1] For a recent review of the theoretical issues in neutrino physics, see R. N. Mohapatra and A. Y. Smirnov, \texttt{arXiv:hep-ph/0603118} to appear in Ann. Rev. Nucl. Science, \textbf{56} (2006).

[2] T. Fukuyama and H. Nishiura, \texttt{hep-ph/9702253}; R. N. Mohapatra and S. Nussinov, Phys. Rev. \textbf{D 60}, 013002 (1999); E. Ma and M. Raidal, Phys. Rev. Lett. \textbf{87}, 011802 (2001); C. S. Lam, \texttt{hep-ph/0104116}; T. Kitabayashi and M. Yasue, Phys.Rev. \textbf{D67} 015006 (2003); W. Grimus and L. Lavoura, \texttt{hep-ph/0305046}; Y. Koide, Phys.Rev. \textbf{D69}, 093001 (2004); Y. H. Ahn, Sin Kyu Kang, C. S. Kim, Jake Lee, \texttt{hep-ph/0602160}; A. Ghosal, \texttt{hep-ph/0304090} for examples of such theories, see W. Grimus and L. Lavoura, Phys. Lett. B \textbf{572}, 189 (2003); W. Grimus and L. Lavoura, J. Phys. G \textbf{30}, 73 (2004).

[3] W. Grimus, A. S. Joshipura, S. Kaneko, L. Lavoura, H. Sawanaka, M. Tanimoto, \texttt{hep-ph/0408123}; R. N. Mohapatra, JHEP, \textbf{0410}, 027 (2004); A. de Gouvea, Phys.Rev. \textbf{D69}, 093007 (2004); R. N. Mohapatra and W. Rodejohann, Phys. Rev. \textbf{D 72}, 053001 (2005); T. Kitabayashi and M. Yasue, Phys. Lett., \textbf{B 621}, 133 (2005); R. N. Mohapatra and S. Nasri, Phys. Rev. D \textbf{71}, 033001 (2005); R. N. Mohapatra, S. Nasri and H. B. Yu, Phys. Lett. B
[4] K. Matsuda and H. Nishiura, Phys. Rev. D 73, 013008 (2006); A. Joshipura, hep-ph/0512252.
R. N. Mohapatra, S. Nasri and H. B. Yu, Phys. Lett. B 636, 114 (2006).

[5] L. J. Hall and H. Murayama, Phys. Rev. Lett. 75, 3985 (1995); C. D. Carone, L. J. Hall and H. Murayama, Phys. Rev. D 53, 6282 (1996); P. F. Harrison and W. G. Scott, Phys. Lett. B 557, 76 (2003); J. Kubo, A. Mondragon, M. Mondragón and E. Rodríguez-Jauregui, Prog. Theor. Phys. 109, 795 (2003) Erratum-ibid. 114, 287 (2005); S. L. Chen, M. Frigerio and E. Ma, Phys. Rev. D 70, 073008 (2004) Erratum-ibid. D 70, 079905 (2004); L. Lavoura and E. Ma, Mod. Phys. Lett. A 20, 1217 (2005); R. Dermisek and S. Raby, Phys. Lett. B 622, 327 (2005); F. Caravaglios and S. Morisi, arXiv:hep-ph/0503234.
W. Grimus and L. Lavoura, JHEP 0508, 013 (2005); N. Haba and K. Yoshioka, Nucl. Phys. B 739, 254 (2006); S. Morisi, arXiv:hep-ph/0604106.
R. N. Mohapatra, S. Nasri and H. B. Yu, Phys. Lett. B 639, 318 (2006); R. Jora, S. Nasri and J. Schechter, hep-ph/0605069.
S. Morisi, arXiv:hep-ph/0605167.

[6] S. Pakvasa and H. Sugawara, Phys. Lett. B 82, 105 (1979); E. Derman and H.-S. Tsao, Phys. Rev. D 20, 1207 (1979); D.-G. Lee and R. N. Mohapatra, Phys. Lett. B 329, 463 (1994); R. N. Mohapatra, M. K. Parida and G. Rajasekaran, Phys. Rev. D 69, 053007 (2004); E. Ma, Phys. Lett. B 632, 352 (2006); C. Hagedorn, M. Lindner and R. N. Mohapatra, JHEP 0606, 042(2006).

[7] E. Ma and G. Rajasekaran, Phys. Rev. D 64, 113012 (2001); K. S. Babu, E. Ma and J. W. F. Valle, Phys. Lett. B 552, 207 (2003); K. S. Babu and X. G. He, arXiv:hep-ph/0507217.
A. Zee, Phys. Lett. B 630, 58 (2005); S. L. Chen, M. Frigerio and E. Ma, Nucl. Phys. B 724, 423 (2005); G. Altarelli and F. Feruglio, Nucl. Phys. B 741, 215 (2006); X. G. He, Y. Y. Keum and R. R. Volkas, JHEP 0604, 039 (2006); B. Adhikary, B. Brahmachari, A. Ghosal, E. Ma and M. K. Parida, Phys. Lett. B 638, 345 (2006); E. Ma, H. Sawanaka and M. Tanimoto, arXiv:hep-ph/0606103.
E. Ma, arXiv:hep-ph/0607190.

[8] W. Grimus and L. Lavoura, Phys. Lett. B 572, 189 (2003); W. Grimus, A. S. Joshipura, S. Kaneko, L. Lavoura and M. Tanimoto, JHEP 0407, 078 (2004); G. Seidl, arXiv:hep-ph/0301044.
T. Kobayashi, S. Raby and R. J. Zhang, Nucl. Phys. B 704, 3 (2005).

[9] E. Ma, arXiv:hep-ph/0409288.
[10] C. Hagedorn, M. Lindner and R. N. Mohapatra, JHEP 0606, 042(2006).
[11] J. R. Ellis, M. Raidal and T. Yanagida, Phys. Lett. B 546, 228 (2002); A. Pilaftsis and T. E. J. Underwood, Nucl. Phys. B 692, 303 (2004).
[12] D. G. Lee and R. N. Mohapatra, Phys. Lett. B 329, 463 (1994)
[13] K. S. Babu and R. N. Mohapatra, Phys. Rev. Lett. 70, 2845 (1993).
[14] T. E. Clark, T. K. Kuo and N. Nakagawa, Phys. Lett. B 115, 26 (1982); C. S. Aulakh and R. N. Mohapatra, Phys. Rev. D 28, 217 (1983); C. S. Aulakh, B. Bajc, A. Melfo, G. Senjanovic and F. Vissani, Phys. Lett. B 588, 196 (2004); B. Bajc, A. Melfo, G. Senjanovic and F. Vissani, Phys. Rev. D 70, 035007 (2004); T. Fukuyama, A. Ilakovac, T. Kikuchi, S. Meljanac and N. Okada, Phys. Rev. D 72, 051701 (2005); H. S. Goh, R. N. Mohapatra and S. Nasri, Phys. Rev. D 70, 075022 (2004).
[15] T. Kobayashi, J. Kubo and H. Terao, Phys. Lett. B 568, 83 (2003).
[16] K. Y. Choi, Y. Kajiyama, H. M. Lee and J. Kubo, Phys. Rev. D 70, 055004 (2004).
[17] L. Wolfenstein, Phys. Rev. Lett. 51, 1945 (1983).
[18] C. R. Das and M. K. Parida, Eur. Phys. J. C 20, 121 (2001).
[19] A. Hocker and Z. Ligeti, arXiv:hep-ph/0605217.
[20] Q. Shafi and Z. Tavartkiladze, Phys. Lett. B 594, 177 (2004).
[21] P. Minkowski, Phys. Lett. B67 , 421 (1977); M. Gell-Mann, P. Ramond, and R. Slansky, Supergravity (P. van Nieuwenhuizen et al. eds.), North Holland, Amsterdam, 1980, ; T. Yanagida, in Proceedings of the Workshop on the Unified Theory and the Baryon Number in the Universe (O. Sawada and A. Sugamoto, eds.), KEK, Tsukuba, Japan, 1979; S. L. Glashow, The future of elementary particle physics, in Proceedings of the 1979 Cargèse Summer Institute on Quarks and Leptons (M. Lévy et al. eds.), Plenum Press, New York, 1980, pp. 687; R. N. Mohapatra and G. Senjanović, Phys. Rev. Lett. 44 912 (1980).
[22] G. Lazarides, Q. Shafi and C. Wetterich, Nucl.Phys.B181, 287 (1981); R. N. Mohapatra and G. Senjanović, Phys. Rev. D 23, 165 (1981).
[23] M. Maltoni, T. Schwetz, M. A. Tortola and J. W. F. Valle, New J. Phys. 6, 122 (2004). See Appendix C of arXiv:hep-ph/0405172 for updated fit.
[24] C. Jarlskog, Phys. Rev. Lett. 55, 1039 (1985).
[25] If one gives up the possible embedding of S4 group to continuous group, one can choose 3 and the mass matrices for fermions do not change.
For the products and Clebsch-Gordan coefficients of S_4 group, one can see for example the Appendix A of Ref. [10].

In this model, the value of $\tan \beta$ is not determined as in MSSM. We take $\tan \beta = 10$ as an example.

One can use softly broken discrete flavor symmetry to understand fermion mass hierarchy, see for example [20].