H₂ abundance and ortho-to-para ratio in Titan’s troposphere

Bruno Bézard and Sandrine Vinatier
LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Meudon, France (bruno.bezard@obspm.fr)

Abstract

We have analyzed spectra recorded between 50 and 650 cm⁻¹ by the Composite Infrared Spectrometer (CIRS) aboard the Cassini spacecraft at low and high emission angles to determine simultaneously the H₂ mole fraction and ortho-to-para (o-p) ratio in Titan’s troposphere. We confirm that the N₂-CH₄ collision-induced absorption (CIA) coefficients used up to now need to be strongly increased at temperatures of 70-85 K. We find that the N₂-N₂ CIA coefficients are also too low in the N₂ band far wing, beyond 110 cm⁻¹. We derived a tropospheric H₂ mole fraction equal to (0.88 ± 0.13) × 10⁻³, which agrees with a previous determination based only on the H₂-N₂ dimer transition in the S₀(0) line. We find that the H₂ para fraction is close to equilibrium in the 20-km region. We have investigated different mechanisms that may operate in Titan’s atmosphere to equilibrate the H₂ o-p ratio and we have developed a one-dimensional model that solves the continuity equation in presence of such conversion mechanisms. We conclude that exchange with H atoms in the gas phase or magnetic interaction of H₂ in a physisorbed state on the surface of aerosols are too slow compared with atmospheric mixing to play a significant role. On the other hand, magnetic interaction of H₂ with CH₄, and to a lesser extent N₂, can operate on a timescale similar to the vertical mixing time in the troposphere. This process is thus likely responsible for the o-p equilibration of H₂ in the mid-troposphere implied by CIRS measurements.

1. Introduction

Molecular hydrogen (H₂) is formed in the upper atmosphere of Titan from the photodissociation of methane (CH₄) and other hydrocarbons. It exists in two forms: a singlet state with an anti-parallel configuration of the two proton spins (para-hydrogen) and a triplet state with the proton spins aligned parallel (ortho-hydrogen). A previous analysis of measurements with the Cassini/CIRS yielded a globally averaged H₂ mole fraction around 1 × 10⁻³ in Titan’s upper troposphere [1], in agreement with the Huygens/GCMS determination. This abundance is hard to reconcile with the 3-4 times larger value inferred from Cassini/INMS measurements around 1000 km, assuming no surface sink of H₂ and standard eddy mixing profile [2]. The previous CIRS determination was based on N₂-H₂ dimer transitions occurring in the region of the S₀(0) rotational transition of para H₂ and had to assume ortho-para (o-p) thermodynamical equilibrium [1]. The goal of this study is i) to infer simultaneously the H₂ mole fraction and o-p ratio using both the S₀(0) (para) and S₁(1) (ortho) H₂ lines, and ii) investigate the o-p equilibration in Titan’s atmosphere.

2. Analysis of Cassini/CIRS observations

We used low-latitude selections of CIRS spectra between 50 and 650 cm⁻¹ at 15-cm⁻¹ resolution recorded at low and high emission angles (Fig. 1). We analyzed the whole spectral range with a radiative transfer model that incorporates results from the Huygens probe measurements to better constrain the different opacity sources (gases and aerosols). We found that we need to increase the N₂-CH₄ collision-induced absorption (CIA) coefficients used up to now by about 52%, in agreement with previous analyses of CIRS spectra, and also increase the N₂-N₂ CIA coefficients beyond 110 cm⁻¹, in agreement with recent quantum mechanical calculations. We derived a H₂ mole fraction equal to (0.88 ± 0.13) × 10⁻³, which pertains to the ~1-34 km altitude range probed by the S₀(0) and S₁(1) lines. We found that CIRS spectra can be fitted assuming either ortho-to-para H₂ thermodynamical equilibrium at all levels or a constant para fraction in the range 0.49-0.53.
The line), and all these processes together (black lines). Exchange in the gas phase (green lines), magnetic interaction with CH$_4$, and N$_2$, is the only one that can operate in Titan’s troposphere on a timescale comparable with that of dynamical mixing. H exchange and conversion through adsorption and magnetic interaction on aerosol surface are not efficient enough in regard to atmospheric mixing (Fig. 2).

Figure 1: Low (13°) and high (59°) emission angle spectra are compared with synthetic spectra assuming o-p H$_2$ equilibrium and uniform H$_2$ mole fractions of 0.5, 0.88 and 1.5×10^{-3}. The high-emission spectra are shifted by 0.5 erg s$^{-1}$ cm$^{-2}$ sr$^{-1}$/cm1 for clarity.

3. H$_2$ ortho-para conversion in Titan’s atmosphere

From a careful survey of the mechanisms that can result in ortho-para (o-p) equilibration, we conclude that magnetic interaction with CH$_4$, and to a lesser extent N$_2$, is the only one that can operate in Titan’s troposphere on a timescale comparable with that of dynamical mixing. H exchange and conversion through adsorption and magnetic interaction on aerosol surface are not efficient enough in regard to atmospheric mixing (Fig. 2).

We have developed a 1-D model for the H$_2$ para fraction that solves the continuity equation and incorporates the conversion mechanisms in terms of time constants. Our nominal model produces a para fraction profile that is about 10% smaller than required to fit the observations. To reproduce the inferred o-p ratio in the 20-km region, low atmospheric mixing in the troposphere down to 15-20 km and conversion rates with CH$_4$ or N$_2$ slightly larger than extrapolated from o-p conversion rate measured in natural H$_2$ are required.

4. Conclusions

Our study confirms that the H$_2$ mole fraction in the troposphere is 3 to 4 times smaller than inferred from in situ measurements by Cassini/INMS. If those are correct, this discrepancy points to some unidentified physical or chemical mechanism at work to deplete H$_2$ in the lower atmosphere, or a peculiar choice of the eddy mixing profile [3]. The H$_2$ o-p ratio is close to equilibrium in the 20-km region. Equilibration results from magnetic interaction of H$_2$ with CH$_4$ and N$_2$ in the gas phase.

Acknowledgements

We acknowledge support from the Centre National d’Études Spatiales (CNES) and the Programme National de Planétologie (INSU/CNRS). We are indebted to the CIRS instrument team for planning the observations and calibrating the data. We thank V. Vuitton for providing files of her photochemical model, and F. Le Petit for useful discussions on the ortho-para conversion of H$_2$ on interstellar grains.

References

[1] Courtin, R., Sim, C.K., Kim, S.J., and Gautier, D.: The abundance of H$_2$ in Titan’s troposphere from the Cassini CIRS investigation, Vol. 68, pp. 89-99, 2012.

[2] Strobel, D.: Molecular hydrogen in Titan’s atmosphere: implications of the measured tropospheric and thermospheric mole fractions. Icarus, Vol. 208, pp. 878-886, 2010.

[3] Krasnopolsky, V.A.: Chemical composition of Titan’s atmosphere and ionosphere: observations and the photochemical model, Icarus, Vol. 236, pp. 83-91, 2014.