Gene discovery efforts and functional studies have credentialed the JAK-STAT signaling pathway as an important pathway contributing to malignant transformation. On the basis of these observations, JAK2 kinase inhibitors have been developed for clinical use, and ruxolitinib, a JAK2/JAK1 inhibitor is approved for primary myelofibrosis.2,3 More importantly, different JAK inhibitors have had different molecular or pathologic remissions at clinically achievable doses. JAK2-mutant malignancies to date, these agents have not led to approved for primary myelofibrosis.2,3 More importantly, JAK2 kinase inhibition for patients with breast cancer, lung cancer and pancreatic tumors4 and clinical trials are evaluating the role of JAK2 inhibitors in epithelial tumors.

Although there is a strong rationale for JAK2 kinase inhibition in JAK2-mutant malignancies to date, these agents have not led to molecular or pathologic remissions at clinically achievable doses. More importantly, different JAK inhibitors have had different toxicity profiles in the clinic, including anemia/thrombocytopenia, gastrointestinal side effects and more recent reports of neurologic side effects with newer-generation JAK2 inhibitors.5 As such, there is a need to better delineate the therapeutic window of JAK2 kinase inhibition and to better understand the requirement for JAK2 signaling in normal tissue homeostasis and in different malignant contexts.

We recently reported that the initiation and progression of BCR-ABLp210-driven myeloproliferative neoplasms (MPN) is independent of the presence of JAK2 using an acute, rapidly terminal retroviral disease model of CML.6 We asked how the absence of JAK2 in a chronic phase CML model would alter disease progression. To test this, we performed bone marrow (BM) transplantation experiments in non-irradiated NOD.Cg-Pkdcsid II2rgtm1Wjl/SzJ (NSG) mice, where we lowered the total number of donor cells from 2×10^7 to 1×10^6. We transduced Jak2$^{+/+}$ and Jak2$^{+/+}$Mx1Cre+ cells with BCR-ABLp210 retrovirus followed by transplantation into NSG recipients (see Supplementary Information). At the time point of transplantation, the proportion of BCR-ABL-positive cells was ~7% for both genotypes (data not shown). 24 h before injection, interferon-β was administered in vitro to delete Jak2. Under these conditions—when disease evolves slowly—the absence of Jak2 drastically accelerated disease development with increased white blood cell counts and severe splenomegaly (Figures 1a–c). The BM of diseased Jak2$^{+/+}$ animals contained at least 70% GFP+ cells (Figure 1d); GFP+ cells were not restricted to the myeloid compartment (Figure 1e). We observed an expanded GFP+ LSK (LinSca1+c-KIT+) compartment in the Jak2$^{+/+}$ cohort (Figure 1f).

We hypothesized that this might be indicative for an advantage for BCR-ABL in stem/progenitor cells over normal hematopoietic stem cells (HSCs) in the absence of Jak2.
Figure 1. Jak2 deletion accelerates BCR-ABL^{p210} leukemiation in mice but leads to a reduction of LSKs in normal hematopoiesis. Jak2^{−/−} and Jak2^{−/−}MxCre⁺ BM cells (1 × 10⁶) were injected in non-irradiated NSG mice (n = 12). (a) Mice that received Jak2^{−/−} BCR-ABL^{p210} transformed BM succumb prematurely to leukemia. Short lines indicate individual mice that were killed as control. Mice of the Jak2^{−/−} cohort display (b) increased peripheral WBCs and (c) spleen weights. (d) Percentages of BCR-ABL^{p210}/GFP⁺ cells are increased in BMs of mice that received Jak2^{−/−} BCR-ABL^{p210}-transformed BM compared with control animals. (e) Jak2^{−/−} BCR-ABL^{p210}/GFP⁺ cells contribute to B-cell and erythroid lineages. (f) Increased percentages of BCR-ABL^{p210}/GFP⁺ LSKs in mice that received a Jak2^{−/−} transplant. (g) Supplementation of Jak2^{−/−} BM with HSC-depleted carrier BM leads to premature death. Non-transformed Jak2^{−/−} BM was mixed with high-purity sorted HSC-depleted C57BL/6 J BM cells and injected into lethally irradiated recipients (n = 8). Scheme depicts experimental setup. (h) Numbers of LSKs are severely reduced in mice that received a mixture of Jak2^{−/−} BM and HSC-depleted carrier cells. Hematocrit (HCT) levels remained unaltered upon JAK2 loss. (i) Dose-response curves of BCR-ABL^{p210} LSKs incubated for 24 h in the presence of ruxolitinib (300 nM) and increasing doses of imatinib (ranging from 10 nM to 2 μM). (j) Frequencies of apoptotic (Annexin V⁺) LSKs upon imatinib treatment (48 h incubation; 2 μM). Asterisks denote level of statistical significance as determined by an unpaired t-test: *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001.
Previous studies had indicated a role for JAK2 in survival of normal HSCs: employing a tamoxifen-inducible conditional Jak2 knockout model (Jak2\textsuperscript{f/fCreERT2}), Park et al7 observed a reduction of Jak2-deficient stem cells that is reverted with time owing to incomplete deletion. Given these basic indications, we set out to analyze the self-renewal capacity of Jak2-deficient stem cells.
in a transplantation model. Jak2

Jak2f/fMx1Cre HSCs were mixed with HSC-depleted wild-type (wt) carrier BM, transplanted into lethally irradiated recipient mice that died within 40 days (Figure 1g). By contrast, all animals engrafted with wtMx1Cre HSCs remained healthy and displayed normal long-term engraftment. Mice reconstituted with Jak2f/f HSCs suffered from a nearly complete loss of the LSK compartment consistent with a severe impairment of HSPCs (hematopoietic stem and progenitor cells) function (Figure 1h). In this setting, percentages of granulocytes were slightly reduced, those of lymphocytes significantly increased (data not shown). Numbers of platelets (PLTs) and red blood cells (RBCs) remained unchanged (data not shown). Even when supported by wt BM, Jak2f/f HSCs fail to survive and repopulate efficiently after transplantation demonstrating a cell-autonomous self-renewal defect of Jak2-deficient HSCs.

To see whether the functions of Jak2 and BCR-ABL target inhibition has been less than complete in preclinical and clinical studies.2,3,6,7 However, current trials in acute leukemias and solid tumors are allowing dose escalation in an effort to inhibit the target more completely. Our approach suggests that more complete inhibition of Jak2 will result in dense inhibition of hematopoietic stem cell function and may even support leukemic stem cell outgrowth that is not dependent on Jak2. It may be possible that intermittent, complete Jak2 inhibition can spare normal HSPC function (as indicated by Park et al.7 that show a long-term recovery of HSC numbers); alternative-dosing approaches should be considered to increase the therapeutic window of Jak kinase inhibitors.

All available inhibitors of Jak2 interfere with the ATP-binding pocket and thus block Jak2 kinase activity and the resultant activation of the STAT1, STAT3 and STAT5 pathways. None of the phenotypes observed in respective knockout mice matches our findings or explains the pronounced effects of Jak2 deletion.10–12 Our data suggest that Jak2 loss leads to profound defects in HSC function due to coordinate inhibition of STAT1, STAT3 and STAT5, or due to STAT-independent effects of Jak2 on other signaling pathways.

Alternatively it is possible that Jak2 exerts its effects on stem/progenitor cells by regulating HSCs and control HSCs in vivo, we next performed competitive transplantation studies (see Supplementary Information). We mixed Jak2−/−Ly5.1 and Jak2f/fMx1Cre Ly5.2+ BM cells in a 1:1 ratio and reconstituted lethally irradiated Ly5.1+ recipient animals. Controls included transplantation of Ly5.1− and Ly5.2+ wt cells. Jak2 was deleted via poly(I:C) injections after documenting severe engraftment and equal chimerism. Serial analysis for 17 weeks following somatic Jak2 deletion revealed a continuous decrease in the proportion of Jak2−/−Ly5.2+ cells in the peripheral blood (Figure 2e). The marked reduction of Jak2−/−Ly5.2+ cells affected all lineages, including B220−B cells, and was most prominent for CD11b+Gr1+ cells, which were no longer detectable after 7 weeks (Figure 2e). After 17 weeks the mice were killed; fluorescence-activated cell sorting analysis confirmed the complete absence of Ly5.2+ HSCs and progenitors in recipients (Figure 2f).

Taken together, our data demonstrate a critical role for Jak2 for HSC maintenance, survival and function. Our data contrast findings from clinical trials with Jak2 inhibitors, in which context Jak2 kinase inhibition leads to dose-dependent anemia and thrombocytopenia. However, it is important to note that dose escalation of Jak2 inhibitors in MPN patients was titrated based on limiting anemia and thrombocytopenia, and as such the degree of target inhibition has been less than complete in preclinical and clinical studies.2,3,6,7
JAK-independent constitutive signaling will derive a competitive advantage in the setting of potent JAK2 inhibition. A combined application of imatinib and ruxolitinib is unlikely to solve that issue as JAK2 deficiency fails to enhance sensitivity to imatinib in BCR-ABL+ LSKs.

However, we hypothesize that in some cases, JAK2 inhibitor-mediated effects on stem cells might be advantageous; for example, as an adjunct to stem cell transplantation. However, in summary our data support the notion that JAK2 has a critical role in normal hematopoiesis, and current and future therapeutic approaches aimed at targeting JAK2 need to consider effects on stem cell function and the relative inhibitory effects on normal and malignant cells, which might limit, or even abrogate, therapeutic efficacy.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGEMENTS

We thank Thomas Decker, Peter Valenta, Graham Tebb, Angelika Berger, Oliver Hantschel and Matthias Muller for valuable scientific input. This work was supported by the Austrian Science Foundation (FWF-SFB 28 to VS; FWF P-24295-B23 to AH-K; FWF-SFB 47-B20), the Herzfelder’sche Familienstiftung (to VS and AH-K) and by NCI R01CA151949-01 to RLL RLL is a Leukemia and Lymphoma Society Scholar.

REFERENCES

1. O’Shea JJ, Holland SM, Staudt LM. JAKs and STATs in immunity, immunodeficiency, and cancer. *N Engl J Med* 2013; 368: 161–170.
2. Verstovsek S, Mesa RA, Gotlib J, Levy RS, Gupta V, D'Errico JP et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. *N Engl J Med* 2012; 366: 799–807.
3. Harrison C, Kiladjian JJ, Al-Ali HK, Gisslinger H, Waltzman R, Stallkovskaia V et al. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. *N Engl J Med* 2012; 366: 787–798.
4. Harry BL, Eckhardt SG, Jimeno A. JAK2 inhibition for the treatment of hematologic and solid malignancies. *Expert Opin Investig Drugs* 2012; 21: 637–655.
5. Santtos FPS, Kantarjian HM, Jain N, Manshouri T, Thomas DA, Garcia-Manero G et al. Phase 2 study of CEP-701, an orally available JAK2 inhibitor, in patients with primary or post-polycythemia vera/essential thrombocytocemia myelofibrosis. *Blood* 2010; 115: 1113–1136.
6. Hantschel O, Warsch W, Eckelhart E, Kaupe I, Grebien F, Wagner K-U et al. BCR-ABL uncoupled canonical JAK2-STAT signaling in chronic myeloid leukemia. *Nat Chem Biol* 2012; 8: 285–293.
7. Park SO, Wamsley HL, Bae K, Hu Z, Li X, Choe S et al. Conditional deletion of JAK2 reveals an essential role in hematopoiesis throughout mouse ontogeny: implications for Jak2 inhibition in humans. *PlasO One* 2013; 8: e59675.
8. Paradnani A, Gotlib JR, Jamieson C, Cortes JE, Talpaz M, Stone RM et al. Safety and efficacy of TG101348, a selective JAK2 inhibitor, in myelofibrosis. *J Clin Oncol* 2011; 29: 789–796.
9. Quintás-Cardama A, Vaddi K, Liu P, Manshouri T, Li J, Scherle PA et al. Preclinical characterization of the selective JAK1/2 inhibitor INCBO18424: therapeutic implications for the treatment of myeloproliferative neoplasms. *Blood* 2010; 115: 3109–3117.
10. Hoelbl A, Schuster C, Kovacic B, Zhu B, Wickre M, Hoelzl MA et al. Stat5 is indispensable for the maintenance of bcr/abl-positive leukaemia. *EMBO Mol Med* 2010; 2: 98–110.
11. Panopoulos AD, Zhang L, Snow JW, Jones DM, Smith AM, El Kasmi KC et al. STAT3 governs distinct pathways in emergency granulopoiesis and mature neutrophils. *Blood* 2006; 108: 3682–3690.
12. Wang Z, Kang Z, Zhang Y, Tse W, Bunting KD. Mutation of STAT1(δ3) binding sites in gp130(FKXQ) knock-in mice does not alter hematopoietic stem cell repopulation or self-renewal potential. *Am J Stem Cells* 2012; 1: 146–153.
13. Koppikar P, Bhagwat N, Kilpivaara O, Manshouri T, Adli M, Hricik T et al. Heterodimeric JAK-STAT activation as a mechanism of persistence to JAK2 inhibitor therapy. *Nature* 2012; 489: 155–159.
14. Keil E, Finkenstadt D, Wulka C, Trilling M, Liebfried P, Strobl B et al. Important scaffold function of the Janus kinase 2 uncovered by a novel mouse model harboring a Jak2 activation loop mutation. *Blood* 2013; 123: 520–529.
15. Dawson MA, Bannister AJ, Gottgens B, Foster SD, Bartke T, Green AR et al. JAK2 phosphorylates histone H3Y41 and excludes HP1alpha from chromatin. *Nature* 2009; 461: 819–822.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

Supplementary Information accompanies this paper on the Leukemia website (http://www.nature.com/leu)

Circulating miRNA markers show promise as new prognosticators for multiple myeloma

Leukemia (2014) 28, 1922–1926; doi:10.1038/leu.2014.155

One approach to improve risk prognostication in patients with multiple myeloma (MM) is to use new technologies to stratify patients based on distinct outcomes.1 Outcome prediction for most patients is based on the International Staging System (ISS) and the presence or absence of specific fluorescent in-situ hybridization abnormalities. Additional biomarkers are necessary to improve precision, and there is evidence that small non-coding RNAs, microRNAs (miRNAs), are involved in MM pathogenesis,2–4 but the predictive role of circulating miRNAs remains to be fully evaluated.

Accepted article preview online 12 May 2014; advance online publication, 6 June 2014

Leukemia (2014) 1909 – 1940 © 2014 Macmillan Publishers Limited