Variable stars in one open cluster within the *Kepler/K2-Campaign-5* field: M 67 (NGC 2682)*†

D. Nardiello¹,² ‡, M. Libralato¹,², L. R. Bedin¹, G. Piotto¹,², P. Ochner¹, A. Cunial¹,², L. Borsato¹,², V. Granata¹,²

¹Istituto Nazionale di Astrofisica - Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, Padova, IT-35122
²Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Vicolo dell’Osservatorio 3, Padova IT-35122

Accepted 2015 October 17. Received 2015 October 3; in original form 2015 October 3.

ABSTRACT

In this paper we continue the release of high-level data products from the multiyear photometric survey collected at the 67/92 cm Schmidt Telescope in Asiago. The primary goal of the survey is to discover and to characterise variable objects and exoplanetary transits in four fields containing five nearby open clusters spanning a broad range of ages.

This second paper releases a photometric catalogue, in five photometric bands, of the Solar-age, Solar-metallicity open cluster M 67 (NGC 2682). Proper motions are derived comparing the positions observed in 2013 at the Asiago’s Schmidt Telescope with those extracted from WFI@2.2m MPG/ESO images in 2000. We also analyse the variable sources within M 67. We detected 68 variables, 43 of which are new detection. Variable periods and proper-motion memberships of a large majority of sources in our catalogue are improved with respect to previous releases. The entire catalogue will be available in electronic format.

Besides the general interest on an improved catalogue, this work will be particularly useful because of: (1) the imminent release of *Kepler/K2 Campaign-5* data of this clusters, for which our catalogue will provide an excellent, high spatial resolution input list, and (2) characterisation of the M 67 stars which are targets of intense HARPS and HARPS-N radial-velocity surveys for planet search.

Key words: techniques: photometric – stars: variables: general – binaries: general – open clusters and associations: individual: M 67 – proper motions

1 INTRODUCTION

In Nardiello et al. (2015a, hereafter Paper I) we presented our multi-year, multi-wavelength photometric survey programme: “The Asiago Pathfinder for HARPS-N” (hereafter, APHN; PI: Bedin) aimed at characterising variable stars and transiting-exoplanet candidates in five open clusters (OCs). Originally, APHN was intended as a preparatory survey for the on-going searches of planets in OCs with the High Accuracy Radial velocity Planet Searcher for the Northern hemisphere (HARPS-N) mounted at the Telescopio Nazionale Galileo (TNG). The APHN survey has also recently acquired further interest, as four out of the five monitored OCs were chosen as targets for the *Kepler* extended mission *K2*† (Howell et al. 2014).

In Paper I we analysed the two OCs M 35 and NGC 2158, for which we released atlas and stacked images. In this second paper we present the third of our target OCs: M 67 (NGC 2682). The OC M 67 has been the subject of many investigations. Among them: the search and study of variable stars (Gilliland et al. 1991; Stassun et al. 2002; van den Berg et al. 2002; Sandquist & Shetrone 2003a,b; Stello et al. 2006, 2007; Bruntt et al. 2007; Pribulla et al. 2008; Yakut et al. 2009), the determinations of proper motions and memberships (Sanders 1977; Girard et al. 1989; Zhao et al. 1993; Yadav et al. 2008; Geller, Latham & Mathieu 2015), radial velocities (Mathieu et al. 1986; Mathieu & Latham 1986; Mathieu, Latham & Griffin 1990; Milone 1992; Milone & Latham 1994; Pasquini et al. 2011; Geller, Latham & Mathieu 2015), the estimates of cluster parameters (age ~4 Gyr, distance <1 kpc, metallicity [Fe/H]~0, $E(B-V) \sim 0.05$; Janes & Smith 1984; Mathieu & Latham 1986; $E(B-V) \sim 0.05$; Janes & Smith 1984; Mathieu & Latham 1986).

* Based on observations collected with the Schmidt 67/92 Telescope at the Osservatorio Astronomico di Asiago, which is part of the Osservatorio Astronomico di Padova, Istituto Nazionale di Astrofisica.
† Light curves of variable stars available at http://groups.dfa.unipd.it/-ESPG/aphn.html.
‡ E-mail: domenico.nardiello@unipd.it

1 http://keplerscience.arc.nasa.gov/K2/
Our investigation is focused on finding new variable stars and extracting a complete astro-photometric catalogue (with improved proper motions and membership probabilities) in a region of $\sim 0.6\degree$, centred M 67.

The paper is organised as follows. In Section 2 we describe our data set, the data reduction, the extraction and the detrending of the light curves. In Section 3 we show the tools used for finding variable stars. Section 4 is dedicated to variable star detection, proper motions and membership probabilities computation, and colour-magnitude diagrams (CMDs) presentation. In Section 5 we describe the released electronic material. Finally, in Section 6 there is a summary of our work.

2 OBSERVATIONS, DATA REDUCTION, LIGHT CURVES EXTRACTION AND DETRENDING

All images of the OC M 67 (α, δ)=$(08^h51^m18^s, +11^\circ48'00''$) were collected with the Asiago 67/92 cm Schmidt Telescope located on Mount Ekar (longitude $11^\circ57'10''$ E, latitude $45^\circ83'40''$ N, altitude 1370 m), that belongs to the Astronomical Observatory of Padova (OAPD), which is part of the Istituto Nazionale di Astrofisica (INAF). At the focus of the Schmidt telescope there is a SBIG STL-11000M camera, equipped with a Kodak KAI-11000M detector (4050 \times 2672 pixel, field of view: 58 \times 38 arcmin2, pixel scale: 862.5 mas pixel$^{-1}$). The characteristics of the telescope and the CCD are described in details in Paper I.

The OC M 67 is one of the four fields observed under the long-term observing programme APHN (PI: Bedin), aimed to characterise variable stars and transiting-exoplanet candidates in five OCs.

As in the case of M 35 and NGC 2158 (Paper I), in the first observing season (2012) M 67 data were collected in white light (hereafter indicated with filter N, where N stands for 'None'), with exposure time of 120 s, and 60 s (during the almost-full moon nights); during the second season (2013) and the third season (2014) we collected 180 s + 15 s R-filter and 180 s B-filter images. Finally, during the fourth season (2015), the observations were carried out in I-band (240 s + 15 s) and V-band (240 s). In Table 1 we give a log of the observations, while in Fig. 1 we show the histograms of the number of images taken during all the observing seasons.

All images are stored in the INAF national archive in Trieste.

For the data reduction, we used the software developed in detail in Paper I. For each image we made a grid of 9×5 spatially-varying, empirical point spread functions (PSFs), one for each of the 45 regions in which we divided the field of view (FOV); the software is similar to that developed by Anderson et al. (2006) for the Wide Field Imager (WFI) mounted at the ESO / Max-Planck-Gesellschaft (MPG) 2.2m telescope.

Filter	# Images	Exp. Time	FWHM (arcsec)	Median FWHM (arcsec)
B	57	180	1.20–1.86	1.47
V	13	240	1.59–2.31	1.90
R	588	15	1.33–7.66	3.17
I	822	180	1.44–6.16	2.98
N	78	240	1.70–7.38	3.41
	232	60		
	1878	120		

For any location on the detector, the best PSF model is obtained by a bilinear interpolation of the four closest PSFs and it is used to measure the position and the flux of the stars in each image.

We transformed stellar positions in all the images into the reference frame of the best image in the B-filter stack, calibrated proper motions and membership probabilities in a region of $\sim 0.6\degree$, centred M 67.

We created a stacked, high-signal-to-noise ratio (SNR) image (‘stack’) of the field for each filter. Using the N-filter stack, characterised by the highest SNR (Fig. 2), and the software used for single images, we derived an improved star list. We purged this star list from false detection using the $qfit$ parameter (a diagnostic related to the quality of the PSF fit, Anderson et al. 2008) and the procedure described in Libralato et al. (2014). The purged star list contains 6905 sources, and we used it as the master star list (MSL) for the extraction of the light curves (LCs). The MSL contains stars with $V \leq 25$: faint enough to reach the magnitude of the faintest white dwarfs (WDs) detected along the cooling sequence of M 67 by Bellini et al. (2010b). The three bottom panels of Fig. 2 are centred on the three WDs shown in Fig. 2 of Bellini et al. (2010b). The bottom-right panel of Fig. 2 shows the faintest WD ($V \sim 24$) identified by the same authors. We extracted the $BVRI$-photometry of the 6905 sources in our catalogue by using the $BVRI$-stacked images. We calibrated the magnitudes by matching our catalogue to the Stetson standard star catalogue (Stetson 2000). We derived calibration equations by means of least squares fitting of straight lines using magnitudes and colours.

For the LCs extraction, we used the software developed and described in details in Paper I. Briefly, by using (i) the MSL catalogue, (ii) the PSFs, and (iii) the six-parameters linear transformations between the MSL and the single-image catalogues, for each target star within the MSL, the software extracts LCs in two parallel versions: a first one from the original images, and a second one from images where the neighbours close to the target star were PSF-fitted and subtracted. In both versions, our tool extracts the flux of the target star using PSF fitting and aperture photometry. As in Paper I, for aperture photometry we adopted a dynamical aperture that depends on the Full Width Half Maximum (FWHM), with radius $r=1.0 \times$ FWHM. Therefore, for each star in the MSL, four light curves are generated: PSF with/without neighbour-subtracted and aperture with/without neighbour-subtracted.

In order to remove residual systematic errors from the LCs, we followed the procedure used in Paper I and described in detail

2 The “best image” is characterised by the minimum of the product between airmass and seeing.

3 http://ia2.oats.inaf.it/archives/asiago
Figure 1. Histogram of the number of images per night collected during the four campaigns of our programme. The white histogram refers to observations in white light; the red, blue, green, and mango histograms refer to observations in the R, B, V, and I filters, respectively.

Figure 2. Top: N-filter stacked image of M 67 obtained with our data. Bottom: zoom-in of the N-filter stacked image centred on the three white dwarfs shown in Fig. 2 of Bellini et al. (2010b).
in Nascimbeni et al. (2014). For each target star in each image, our algorithm computes local, weighted photometric zero-points using selected reference stars (generally the stars with the best rms at a given magnitude). The weights are a function of the relative on-sky position and of the magnitude difference between the target and the reference star. The software also computes a global zero-point correction, which —on average— provides worse residuals than the local zero-point correction, as also found in Paper I.

In Fig. 3 we show the photometric rms of the LCs derived from all the photometric methods (aperture with/without neighbours and PSF-fitting with/without neighbours). Even if the field of M 67 is relatively loose (if compared to the field analysed in Paper I) the photometry on images after neighbours subtraction is better than the photometry on original images, as the rms-scatter is lower and the rms-improvement is —on average— $\sim 3\%$ in the case of aperture photometry, and $\sim 1\%$ in the case of PSF-fitting photometry. Images were slightly de-focused to avoid saturation of main sequence (MS) turn off stars, therefore it was difficult to perfectly model the PSFs. This is also the reason why the rms PSF-fitting photometry is overall worse than the one associated to aperture photometry, as shown in Fig. 4.

3 VARIABLE FINDING

In order to detect candidate variables in our field, we used three different algorithms: the Generalized Lomb-Scargle (GLS) periodogram (Zechmeister & Kürster 2009), suitable for sinusoidal signals; the Analysis of Variance (AoV) periodogram (Schwarzenberg-Czerny 1989), useful to detect all variable types; the Box-fitting Least-Squares (BLS) periodogram (Kovács, Zucker & Mazeh 2002), effective for searching box-like dips in an otherwise flat or nearly flat LC, such as eclipsing binaries (EBs) and planetary transits. All the algorithms are part of the publicly available code VARTOOLS v.1.32† (Hartman et al. 2008).

We used the output parameters associated to each algorithm for excluding the sources in our catalogue that have low probabilities to be variable in our data. In order to isolate the candidate variable stars, we used the procedure described in Paper I and summarised in Fig. 5.

From the histograms of the detected periods for all the LCs, we removed the spikes (saving the stars with high SNR, left panel of Fig. 5). The spikes are associated to spurious periods due to systematic effects, such as instrumental and atmospheric artefacts. In

4 http://www.astro.princeton.edu/~jhartman/vartools.html
4 VARIABLE STARS AND COLOUR-MAGNITUDE DIAGRAMS

In our catalogue there are 6905 sources that cover a field-of-view of \(\sim 0.612 \) degree\(^2\) centred on M 67. In this catalogue we find 68 variables stars. All the variable stars are listed in Table 2; for each variable we provide the identification number (ID), the position, the period (if it is not irregular), and, when available, the magnitudes in \(N_{BVRI}, H_{2MASS}, K_{2MASS} \) bands, the membership probabilities as obtained in Sect. 4.1, and the radial velocities from Geller, Latham & Mathieu (2015).

Of these 68 variable stars, 25 variable stars have already been classified in other photometric works (Gilliland et al. 1991; Stassun et al. 2002; van den Berg et al. 2002; Sandquist & Shetrone 2003a,b; Stello et al. 2006, 2007; Bruntt et al. 2007; Pribulla et al. 2008; Yakut et al. 2009) and/or in the General Catalogue of Variable Stars (GCVS, Samus & Antipin 2013). Other variable stars listed in literature catalogues, but not found in our variable catalogue, are bright objects extremely saturated in our data (even in short exposures) or just outside the Schmidt FOV.

4.1 Proper motions and membership probabilities

We used stellar proper motions to separate cluster members and field stars. The approach adopted to compute stellar positional displacement is the same as in many other works, e.g., Bedin et al. (2003); Anderson et al. (2006); Yadav et al. (2008); Bellini et al. (2010b); Nardiello et al. (2015), and Libralato et al. (2015). Using six-parameter local transformations and a sample of likely cluster members (for example MS stars), we computed the displacement between the stellar positions in two different epochs, after being transformed into a common reference system. As first epoch, we used M 67 observed with the WF1 mounted at the ESO/MPG 2.2 m telescope, on February 16th, 2000 (\(t_0 = 2000.1 \)). As second epoch we used the best 100 Schmidt R-images collected during the 2013 observational run (\(t_2 \approx 2013.1 \)). The time baseline for the proper motion measurements is \(\sim 13.0 \) yr.

Since we used likely cluster members to compute the coefficients of the six-parameter linear transformations, the stellar displacements are computed relative to the cluster mean motion. Therefore, by construction, the cluster distribution in the vector-point diagram (VPD) is centred around (0,0), while field stars, that have a different motion relative to that of the cluster, lie in a different region of the VPD (see Fig. 6).

The membership probabilities (MPs) of the stars in the M 67 FOV have already been calculated using both astrometry (e.g. Sanders 1977; Girard et al. 1989; Zhao et al. 1993; Yadav et al. 2008) and radial velocities (e.g. Yadav et al. 2008; Pasquini et al. 2011; Geller, Latham & Mathieu 2015). Our final catalogue supplements the other works; we extracted the MPs in an homogeneous way for stars with \(V \leq 19.5 \) in a region of \(58 \times 38 \) arcmin\(^2\).

There are different methods to derive stellar MPs. We chose...
that described by Balaguer-Núñez, Tian & Zhao (1998). Briefly, we derived the frequency function for both cluster (Φc) and field stars (Φf). We assumed that cluster distribution is centred at (μα,μδ)c = (0.00,0.00) mas yr⁻¹ with an intrinsic dispersion of (σα,σδ)c = (0.650,0.71) mas yr⁻¹. For field stars, we have (μα,μδ)f = (9.34,−1.10) mas yr⁻¹ and a dispersion of (σα,σδ)f = (4.196,1.19) mas yr⁻¹. We ignored the spatial distribution of the two components and assumed that there is not a correlation between them (correlation coefficient y is set to 0). We excluded from our calculation poorly-measured-proper-motion stars. The membership probability is then computed as:

\[P_m = \frac{\Phi_c}{\Phi_c + \Phi_f} \]

Panel (a) of Fig. 6 shows the available MPs \(P_m \) as a function of the magnitude \(V \). The figure shows that we measured reliable MPs for stars with \(V \leq 19.5 \).

4.2 Colour-magnitude diagrams and light curves

In panels (a) and (b) of Fig. 6 we show the \(B \) versus (\(B-I \)) CMD of M 67. In panels (a) and (b), we plot in black the likely cluster member stars, selected according to their proper motions (i.e. the stars inside the red circles in the VPD of panels c), in azure the stars rejected and those are likely field stars, and with green dots the variable stars found in this work. In panel (d), using the same colour-code, we plot the positions of the stars in our MSL field of view.

In panels (c) there are four examples of variable stars with \(P_m > 97\% \). The LCs are normalised to the median magnitude. We measured reliable MPs for stars with \(V \leq 19.5 \).

5 ELECTRONIC MATERIAL

The catalogue of all the sources in our MSL is electronically available. The catalogue contains the following information: Cols (1) and (2) are the J2000.0 equatorial coordinates in decimal degrees; Cols (3) and (4) the positions in pixel on the N-filter stack; Cols (5)-(12) are the instrumental \(B \), \(V \), \(R \), \(I \), \(J_2 \), \(H_2 \), \(K_2 \) magnitudes (when the magnitude is not available, it is flagged with -999.999); Col. (13) is the identification number (ID) of the star; Cols. (14) and (15) give the proper relative motions in mas yr⁻¹ along (\(\alpha \cos \delta, \delta \)) direction (when it is not available, it is flagged with -999.999); Col. (16) gives the membership probabilities \(P_m \) (when it is not available, it is flagged with -1).

Along with the MSL, we release the catalogue of all variable stars found in this work. An example of the catalogue is Table 2: Cols (1) is the identification number (ID) of the variable star in our MSL; Cols (2) and (3) are the J2000.0 equatorial coordinates in decimal degree; Col. (4) contains the periods in day (when the star is irregular, the period is -99); Cols (5)-(12) are the instrumental \(B \), \(V \), \(R \), \(I \), \(J_2 \), \(H_2 \), \(K_2 \) magnitudes (when the magnitude is not available, it is flagged with -999.999); Col. (13) gives the membership probabilities \(P_m \) (when it is not available, it is flagged with -1); Col. (14) are the radial velocities measured by Geller, Latham & Mathieu (2015) (when the radial velocity measurement is not available, it is denoted as -1000). For each variable star, we also release the \(BRIN \) LCs.

Finally, we make the astrometrized stacks in \(BVRIN \) filters electronically available.

6 SUMMARY

In this work we present the photometric results for the third target (M 67) of the photometric survey of OC stars conducted with the 67/92 cm Schmidt telescope at Mount Ekar, Asiago. We analysed a total of 3707 images in \(B, V, R, I \) and white light (no filter), collected over 3.1 years. We used the algorithms described in Nardiello et al. (2015a) to obtain a complete list of stars (6905 sources and 410 sources with magnitude \(V \leq 5 \)) and to extract, detrend, and analyse the corresponding LCs. We identify 68 variable stars (43 of which are new). Combining Schmidt best data with WFI@2.2m MPG/ESO images (collected on 2000), we derived the relative proper motions and the membership probabilities for a great number of stars in our MSL. We release two electronic catalogues: the catalogue of variable stars, containing coordinates, periods \(B, V, R, I, N \), \(2MASS \) magnitudes, membership probabilities, radial ve-

5 The intrinsic dispersion is dominated by the positional errors and do not reflect the true intrinsic cluster dispersion.
Variable stars in the OC M 67

Figure 6. Panel (a): membership probabilities \(P_\mu \) as a function of the \(V \) magnitude; panel (b): CMD \(B \) versus \((B-I) \) of M67 stars in the MSL; panels (c): vector-point diagrams for the same stars as in panel (b) in the corresponding magnitude intervals. The cluster star proper motion distribution is centred around \((0,0)\); panel (d): positions \((\alpha, \delta)\) for all the stars in the Schmidt MSL. The red cross indicates the cluster centre (Yadav et al. 2008); panels (e): four examples of median-magnitude normalised LCs in filter \(N \) (black) and \(R \) (red). The four stars have \(P_\mu > 97\% \). In panels (a), (b), and (d), we plot in black the likely cluster members, i.e. the stars inside the red circles in panels (c), in azure the likely field stars, and in green the variable stars found in this work. In panel (b) we highlight the variable stars shown in panels (e).

The OC M 67 is in the field of the K2 Mission-Campaign-5. The released catalogue of M67 sources will be an excellent input-list for the extraction of LCs from K2 images. In this sense, our survey is preparatory to the analysis of K2 data, and complements (and extends in time) the light curves of the stars covered by K2.

ACKNOWLEDGEMENTS

We warmly thank the referee, Dr. R. Gilliland, for the prompt and careful reading of our manuscript.
DN, ML, LRB, GP, AC, LB, and VG acknowledge PRIN-INAF 2012 partial funding under the project entitled: “The M 4 Core Project with Hubble Space Telescope”. DN and GP also acknowledge partial support by the Università degli Studi di Padova Progetto di Ateneo CPDA141214 “Towards understanding complex star formation in Galactic globular clusters”.

References

Anderson J., Bedin L. R., Piotto G., Yadav R. S., Bellini A., 2006, A&A, 454, 1029
Anderson J. et al., 2008, AJ, 135, 2114
Balaguer-Núñez L., Galadi-Enríquez D., Jordi C., 2007, A&A, 470, 585
Balaguer-Núñez L., Tian K. P., Zhao J. L., 1998, A&AS, 133, 387
Bedin L. R., Piotto G., King I. R., Anderson J., 2003, AJ, 126, 247
Bellini A., Bedin L. R., Pichardo B., Moreno E., Allen C., Piotto G., Anderson J., 2010a, A&A, 513, A51
Bellini A. et al., 2010b, A&A, 513, A50
Belloni T., Verbunt F., Mathieu R. D., 1998, A&A, 339, 431
Brucalassi A. et al., 2014, A&A, 561, L9
Brunth H. et al., 2007, MNRAS, 378, 1371
Carraro G., Chiosi C., Bressan A., Bertelli G., 1994, A&AS, 103, 375
Demaarque P., Green E. M., Guenther D. B., 1992, AJ, 103, 151
Fan X. et al., 1996, AJ, 112, 628
Geller A. M., Latham D. W., Mathieu R. D., 2015, AJ, 150, 97
Gilliland R. L. et al., 1991, AJ, 101, 341
Girard T. M., Grundy W. M., Lopez C. E., van Altena W. F., 1989, AJ, 98, 227
Grocholski A. J., Sarajedini A., 2003, MNRAS, 345, 1015
Hartman J. D., Gaudi B. S., Holman M. J., McLeod B. A., Stanek K. Z., Barranco J. A., Pinsonneault M. H., Kalirai J. S., 2008, ApJ, 675, 1254
Howell S. B. et al., 2014, PASP, 126, 398
Jacobson H. R., Pilachowski C. A., Friel E. D., 2011, AJ, 142, 59
James K. A., Smith G. H., 1984, AJ, 89, 487
Kovács G., Zucker S., Mazeh T., 2002, A&A, 391, 369
Libralato M. et al., 2015, MNRAS, 450, 1664
Libralato M., Bellini A., Bedin L. R., Piotto G., Platais I., Kissler-Patig M., Milone A. P., 2014, A&A, 563, A80
Mathieu R. D., Latham D. W., 1986, AJ, 92, 1364
Mathieu R. D., Latham D. W., Griffin R. F., 1990, AJ, 100, 1859
Mathieu R. D., Latham D. W., Griffin R. F., Gunn J. E., 1986, AJ, 92, 1100
Milone A. A. E., 1992, PASP, 104, 1268
Milone A. A. E., Latham D. W., 1994, AJ, 108, 1828
Montgomery K. A., Marshall L. A., James K. A., 1993, AJ, 106, 181
Nardiello D., Piotto G., Platais I., Kissler-Patig M., Milone A. P., 2015b, A&A, 573, A70
Nascimbeni V. et al., 2014, MNRAS, 442, 2381
Nissen P. E., Twarog B. A., Crawford D. L., 1987, AJ, 93, 634
Pancino E., Carrera R., Rossetti E., Gallart C., 2010, A&A, 511, A56
Pasquini L., Biazzo K., Bonifacio P., Randich S., Bedin L. R., 2008, A&A, 489, 677
Pasquini L. et al., 2012, A&A, 545, A139
Pasquini L., Melo C., Chafero C., Dravins D., Ludwig H.-G., Bonifacio P., de La Reza R., 2011, A&A, 526, A127
Pichardo B., Moreno E., Allen C., Bedin L. R., Bellini A., Pasquini L., 2012, AJ, 143, 73
Pribulla T. et al., 2008, MNRAS, 391, 343
Randich S., Sestito P., Primas F., Pallavicini R., Pasquini L., 2006, A&A, 450, 557
Samus N. N., Antipin S. V., 2013, Astronomical and Astrophysical Transactions, 28, 49
Sanders W. L., 1977, A&AS, 27, 89
Sandquist E. L., 2004, MNRAS, 347, 101
Sandquist E. L., Shetrone M. D., 2003a, AJ, 126, 2954
Sandquist E. L., Shetrone M. D., 2003b, AJ, 125, 2173

This paper has been typeset from a TEX/LaTeX file prepared by the author.